

# Statistical Learning Theory in Reinforcement Learning & Approximate Dynamic Programming

A. Lazaric & M. Ghavamzadeh (INRIA Lille – Team SequeL)
ICML 2012

INRIA Lille - Team SequeL

# Sequential Decision-Making under Uncertainty



- Move around in the physical world (e.g. driving, navigation)
- Play and win a game
- Retrieve information over the web
- Medical diagnosis and treatment
- Maximize the throughput of a factory
- ▶ Optimize the performance of a rescue team





- ▶ RL: A class of learning problems in which an agent interacts with a dynamic, stochastic, and incompletely known environment
- ► Goal: Learn an action-selection strategy, or policy, to optimize some measure of its long-term performance
- ▶ Interaction: Modeled as a MDP or a POMDP





**Goal:** Learn an action-selection strategy, or policy, to optimize some measure of its long-term performance





**Goal:** Learn an action-selection strategy, or policy, to optimize some measure of its long-term performance

**Algorithms:** are based on the two celebrated *dynamic* programming algorithms: **policy iteration** and **value iteration** 





# A Bit of History

- ► formulation of the problem: optimal control, state, value function, Bellman equations, etc.
- dynamic programming algorithms: policy iteration and value iteration + proof of convergence to an optimal policy
- approximate dynamic programming
  - performance evaluation: how close is the obtained solution to an optimal one?
    - asymptotic analysis: the performance with infinite number of samples



# A Bit of History

- ► formulation of the problem: optimal control, state, value function, Bellman equations, etc.
- dynamic programming algorithms: policy iteration and value iteration + proof of convergence to an optimal policy
- approximate dynamic programming
  - performance evaluation: how close is the obtained solution to an optimal one?
    - asymptotic analysis: the performance with infinite number of samples

in real problems we always have a finite number of samples



### Motivation

### what about the performance with finite number of samples?

- approximate dynamic programming (ADP)
  - asymptotic analysis
  - finite sample analysis



### Motivation

### what about the performance with finite number of samples?

- approximate dynamic programming (ADP)
  - asymptotic analysis
  - finite sample analysis
- finite sample analysis of ADP algorithms
  - error at each iteration of the alg.
  - how the error propagates through the iterations of the alg.



### Motivation

- finite sample analysis of ADP algorithms
  - error at each iteration of the alg.
    - ▶ the problem is formulated as *regression*, *classification*, or *fixed point*
    - tools from statistical learning theory are used to bound the error of these problems
  - ▶ how the error propagates through the iterations of the alg.







### Outline

**Preliminaries** 

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion



### Outline

### **Preliminaries**

Dynamic Programming
Approximate Dynamic Programming

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion





- ► RL: A class of learning problems in which an agent interacts with a dynamic, stochastic, and incompletely known environment
- ► Goal: Learn an action-selection strategy, or policy, to optimize some measure of its long-term performance
- ▶ Interaction: Modeled as a MDP or a POMDP



### Markov Decision Process

### **MDP**

- ▶ An MDP  $\mathcal{M}$  is a tuple  $\langle \mathcal{X}, \mathcal{A}, r, p, \gamma \rangle$ .
- ▶ The state space  $\mathcal{X}$  is a bounded closed subset of  $\mathbb{R}^d$ .
- ▶ The set of actions  $\mathcal{A}$  is finite  $(|\mathcal{A}| < \infty)$ .
- ▶ The reward function  $r: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$  is bounded by  $R_{\max}$ .
- ▶ The transition model  $p(\cdot|x,a)$  is a distribution over  $\mathcal{X}$ .
- $ightharpoonup \gamma \in (0,1)$  is a discount factor.
- **Policy:** a mapping from states to actions  $\pi(x) \in \mathcal{A}$



### Value Function

For a policy  $\pi$ 

Value function

$$V^{\pi}: \mathcal{X} \to \mathbb{R}$$

$$V^{\pi}(x) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(X_{t}, \pi(X_{t})) | X_{0} = x\right]$$

► Action-value function

$$Q^{\pi}: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$$

$$Q^{\pi}(x,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(X_{t}, A_{t}) | X_{0} = x, A_{0} = a\right]$$



### Notation

### Bellman Operator

▶ Bellman operator for policy  $\pi$ 

$$\mathcal{T}^{\pi}: \mathcal{B}(\mathcal{X}; V_{\max}) \to \mathcal{B}(\mathcal{X}; V_{\max})$$

 $ightharpoonup V^{\pi}$  is the unique fixed-point of the Bellman operator

$$(\mathcal{T}^{\pi}V)(x) = r(x, \pi(x)) + \gamma \int_{\mathcal{X}} p(dy|x, \pi(x))V(y)$$

▶ The action-value function  $Q^{\pi}$  is defined as

$$Q^{\pi}(x, a) = r(x, a) + \gamma \int_{\mathcal{X}} p(dy|x, a) V^{\pi}(y)$$

 $\mathcal{B}(\mathcal{X};V_{\max})$  is the space of functions on  $\mathcal{X}$  bounded by  $V_{\max}$ 



# Optimal Value Function and Optimal Policy

Optimal value function

$$V^*(x) = \sup_{\pi} V^{\pi}(x) \qquad \forall x \in \mathcal{X}$$

Optimal action-value function

$$Q^*(x, a) = \sup_{\pi} Q^{\pi}(x, a) \qquad \forall x \in \mathcal{X}, \ \forall a \in \mathcal{A}$$

• A policy  $\pi$  is **optimal** if

$$V^{\pi}(x) = V^*(x) \qquad \forall x \in \mathcal{X}$$



### Notation

### Bellman Optimality Operator

Bellman optimality operator

$$\mathcal{T}: \mathcal{B}(\mathcal{X}; V_{\max}) \to \mathcal{B}(\mathcal{X}; V_{\max})$$

 $lackbox{$V^*$}$  is the unique fixed-point of the Bellman optimality operator

$$(\mathcal{T}V)(x) = \max_{a \in \mathcal{A}} \left[ r(x, a) + \gamma \int_{\mathcal{X}} p(dy|x, a)V(y) \right]$$

▶ Optimal action-value function  $Q^*$  is defined as

$$Q^*(x, a) = r(x, a) + \gamma \int_{\mathcal{X}} p(dy|x, a) V^*(y)$$



# Properties of Bellman Operators

▶ **Monotonicity:** if  $V_1 \le V_2$  component-wise, then

$$\mathcal{T}^{\pi}V_1 < \mathcal{T}^{\pi}V_2$$
 and  $\mathcal{T}V_1 < \mathcal{T}V_2$ 

▶ Max-Norm Contraction:  $\forall V_1, V_2 \in \mathcal{B}(\mathcal{X}; V_{\text{max}})$ 

$$||\mathcal{T}^{\pi}V_1 - \mathcal{T}^{\pi}V_2||_{\infty} \le \gamma ||V_1 - V_2||_{\infty}$$

$$||\mathcal{T}V_1 - \mathcal{T}V_2||_{\infty} \le \gamma ||V_1 - V_2||_{\infty}$$



### Outline

### **Preliminaries**

Dynamic Programming Approximate Dynamic Programming

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion



# Dynamic Programming Algorithms

### Value Iteration

- $\triangleright$  start with an arbitrary action-value function  $Q_0$
- at each iteration k

$$Q_{k+1} = \mathcal{T}Q_k$$

### Convergence

 $\triangleright \lim_{k\to\infty} V_k = V^*.$ 

$$||V^* - V_{k+1}||_{\infty} = ||\mathcal{T}V^* - \mathcal{T}V_k||_{\infty} \le \gamma ||V^* - V_k||_{\infty} \le \gamma^{k+1} ||V^* - V_0||_{\infty} \stackrel{k \to \infty}{\longrightarrow} 0$$



# Dynamic Programming Algorithms

### Policy Iteration

- $\triangleright$  start with an arbitrary policy  $\pi_0$
- at each iteration k
  - ▶ Policy Evaluation: Compute  $Q^{\pi_k}$
  - ▶ Policy Improvement: Compute the greedy policy w.r.t.  $Q^{\pi_k}$

$$\pi_{k+1}(x) = (\mathcal{G}\pi_k)(x) = \arg\max_{a \in A} Q^{\pi_k}(x, a)$$

### Convergence

PI generates a sequence of policies with increasing performance  $(V^{\pi_{k+1}} \geq V^{\pi_k})$  and stops after a finite number of iterations with the optimal policy  $\pi^*$ .

$$V^{\pi_k} = \mathcal{T}^{\pi_k} V^{\pi_k} \le \mathcal{T} V^{\pi_k} = \mathcal{T}^{\pi_{k+1}} V^{\pi_k} \le \lim_{n \to \infty} (\mathcal{T}^{\pi_{k+1}})^n V^{\pi_k} = V^{\pi_{k+1}}$$



### Outline

### **Preliminaries**

Dynamic Programming
Approximate Dynamic Programming

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion



# **Approximate Dynamic Programming Batch Reinforcement Learning**



# Approximate Dynamic Programming Algorithms

### Value Iteration

- $\triangleright$  start with an arbitrary action-value function  $Q_0$
- at each iteration k

$$Q_{k+1} = \mathcal{T}Q_k$$

What if  $Q_{k+1} \approx \mathcal{T}Q_k$ ?

$$||Q^* - Q_{k+1}|| \stackrel{?}{\leq} \gamma ||Q^* - Q_k||$$





# Approximate Dynamic Programming Algorithms

### Policy Iteration

- $\triangleright$  start with an arbitrary policy  $\pi_0$
- ▶ at each iteration k
  - ▶ Policy Evaluation: Compute  $Q^{\pi_k}$
  - ▶ Policy Improvement: Compute the greedy policy w.r.t.  $Q^{\pi_k}$

$$\pi_{k+1}(x) = (\mathcal{G}\pi_k)(x) = \underset{a \in \mathcal{A}}{\arg\max} Q^{\pi_k}(x, a)$$

What if we cannot compute  $Q^{\pi_k}$  exactly? (Compute  $\widehat{Q}^{\pi_k} \approx Q^{\pi_k}$  instead)

$$\pi_{k+1}(x) = \underset{a \in \mathcal{A}}{\arg\max} \, \widehat{Q}^{\pi_k}(x, a) \neq (\mathcal{G}\pi_k)(x) \longrightarrow V^{\pi_{k+1}} \overset{?}{\geq} V^{\pi_k}$$





# Error at each Iteration (AVI)



Error at iteration k

$$||\mathcal{T}Q_k - Q_{k+1}||_{p,\rho} \le f(B,\mathcal{F})$$
 w.h.p.



# Error at each Iteration (API)



Error at iteration k

$$||Q^{\pi_k} - \widehat{Q}^{\pi_k}||_{p,\rho} \le f(B, \mathcal{F})$$
 w.h.p.



### Final Performance Bound

**Final Objective:** Bound the error after K iteration of the alg.

$$||V^* - V^{\pi_K}||_{p,\mu} \le f(B, \mathcal{F}, K)$$
 w.h.p.

 $\pi_K$  is the policy computed by the algorithm after K iterations



### Final Performance Bound

**Final Objective:** Bound the error after K iteration of the alg.

$$||V^* - V^{\pi_K}||_{p,\mu} \le f(B, \mathcal{F}, K)$$
 w.h.p.

 $\pi_K$  is the policy computed by the algorithm after K iterations

**Error Propagation:** How the error at each iteration propagates through the iterations of the algorithm



### SLT in RL & ADP

- supervised learning methods (regression, classification) appear in the inner-loop of ADP algorithms (performance at each iteration)
- tools from SLT that are used to analyze supervised learning methods can be used in RL and ADP (e.g., how many samples are required to achieve a certain performance)

### What makes RL more challenging?

- the objective is not always to recover a target function from its noisy observations (fixed-point vs. regression)
- the target sometimes has to be approximated given sample trajectories (non i.i.d. samples)
- propagation of error (control problem)
- the choice of the sampling distribution  $\rho$  (exploration problem)



### Outline

### **Preliminaries**

Tools from Statistical Learning Theory
Concentration Inequalities
Functional Concentration Inequalities

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion



# Objective of the section

► Introduce the theoretical tools used to derive the *error bounds* at each iteration



# Objective of the section

- Introduce the theoretical tools used to derive the error bounds at each iteration
- ► Understand the relationship between accuracy, number of samples, and confidence



### Outline

### **Preliminaries**

Tools from Statistical Learning Theory
Concentration Inequalities
Functional Concentration Inequalities

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion



Remark: all the learning algorithms use *random* samples instead of actual distributions.



**Remark**: all the learning algorithms use *random* samples instead of *actual* distributions.

**Question**: how *reliable* is the solution learned from *finite random* samples?



#### Theorem

Let  $X_1, \ldots, X_n$  be i.i.d. samples from a distribution  $\mathcal{P}$  bounded in [a,b], then for any  $\varepsilon > 0$ 

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{t=1}^{n}X_{t} - \mathbb{E}_{\mathcal{P}}[X_{1}]\right| > \varepsilon\right] \leq 2\exp\left(-\frac{2n\varepsilon^{2}}{(b-a)^{2}}\right)$$



#### Theorem

Let  $X_1, \ldots, X_n$  be i.i.d. samples from a distribution bounded in [a,b], then for any  $\varepsilon > 0$ 

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{t=1}^{n}X_{t} - \mathbb{E}[X_{1}]\right| > \underbrace{\varepsilon}_{accuracy}\right] \leq \underbrace{2\exp\left(-\frac{2n\varepsilon^{2}}{(b-a)^{2}}\right)}_{confidence}$$



## The Chernoff-Hoeffding Bound (Cont.d)

### Theorem

Let  $X_1, \ldots, X_n$  be i.i.d. samples from a distribution bounded in [a,b], then for any  $\delta \in (0,1)$ 

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{t=1}^{n}X_{t} - \mathbb{E}[X_{1}]\right| > (b-a)\sqrt{\frac{\log 2/\delta}{2n}}\right] \leq \frac{\delta}{\delta}$$



# The Chernoff-Hoeffding Bound (Cont.d)

#### $\mathsf{Theorem}$

Let  $X_1, X_2, \ldots$  be i.i.d. samples from a distribution bounded in [a,b], then for any  $\delta \in (0,1)$  and  $\varepsilon > 0$ 

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{t=1}^{n}X_{t}-\mathbb{E}[X_{1}]\right|>\varepsilon\right]\leq\delta$$

if

$$n \ge \frac{(b-a)^2 \log 2/\delta}{2\varepsilon^2}.$$



**Remark**: in ADP and RL, the samples are **not** necessarily **i.i.d.** but may be generated from trajectories



**Remark**: in ADP and RL, the samples are **not** necessarily **i.i.d**. but may be generated from trajectories

**Question**: how is it possible to extend the previous results to *non-i.i.d.* samples?



A sequence of random variables  $X_1, X_2, ...$  is a *martingale* difference sequence if for any t

$$\mathbb{E}[X_{t+1}|X_1,\ldots,X_t]=0$$



#### Theorem

Let  $X_1, \ldots, X_n$  be a martingale difference sequence bounded in [a,b], then for any  $\varepsilon > 0$ 

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{t=1}^{n}X_{t}\right|>\varepsilon\right]\leq2\exp\left(-\frac{2n\varepsilon^{2}}{(b-a)^{2}}\right)$$



### Outline

#### **Preliminaries**

Tools from Statistical Learning Theory
Concentration Inequalities
Functional Concentration Inequalities

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion



### The Functional Chernoff–Hoeffding Bound

**Remark**: the learning algorithm returns the *empirical* best hypothesis from a hypothesis set (e.g., a value function, a policy).

**Question**: how do the previous results extend to the case of random hypotheses in a hypothesis set?



## The Functional Chernoff-Hoeffding Bound

#### Theorem

Let  $X_1, \ldots, X_n$  be i.i.d. samples from an arbitrary distribution  $\mathcal{P}$  in  $\mathcal{X}$  and  $f: \mathcal{X} \to [a, b]$  a bounded function, then for any  $\varepsilon > 0$ 

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{t=1}^{n} f(X_t) - \mathbb{E}[f(X_1)]\right| > \varepsilon\right] \le 2\exp\left(-\frac{2n\varepsilon^2}{(b-a)^2}\right)$$



#### $\mathsf{Theorem}$

Let  $X_1, \ldots, X_n$  be i.i.d. samples from an arbitrary distribution  $\mathcal P$  in  $\mathcal X$  and  $\mathcal F$  a set of functions bounded in [a,b], then for any **fixed**  $f \in \mathcal F$  and any  $\varepsilon > 0$ 

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{t=1}^{n} f(X_t) - \mathbb{E}[f(X_1)]\right| > \varepsilon\right] \le 2\exp\left(-\frac{2n\varepsilon^2}{(b-a)^2}\right)$$



**Remark**: usually we do not know which function f the learning algorithm will return (it is random!)



**Remark**: usually we do not know which function f the learning algorithm will return (it is random!)

#### Theorem

Let  $X_1, \ldots, X_n$  be i.i.d. samples from an arbitrary distribution  $\mathcal P$  in  $\mathcal X$  and  $\mathcal F$  a set of functions bounded in [a,b], then for any  $\varepsilon>0$ 

$$\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_t) - \mathbb{E}[f(X_1)] \right| > \varepsilon \right] \leq ???$$



### The Union Bound

Also known as: Boole's inequality, Bonferroni inequality, etc.

#### Theorem

Let  $A_1, A_2, \ldots$  be a countable set of events, then

$$\mathbb{P}\Big[\bigcup_{i} A_i\Big] \leq \sum_{i} \mathbb{P}\big[A_i\big].$$



### The Union Bound

Also known as: Boole's inequality, Bonferroni inequality, etc.

#### Theorem

Let  $A_1, A_2, \ldots$  be a countable set of events, then

$$\mathbb{P}\Big[\bigcup_i A_i\Big] \leq \sum_i \mathbb{P}[A_i].$$



$$\mathbb{P}\Big[\exists f \in \mathcal{F} : \Big| \frac{1}{n} \sum_{t=1}^{n} f(X_t) - \mathbb{E}[f(X_1)] \Big| > \varepsilon\Big]$$



$$\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_{t}) - \mathbb{E}[f(X_{1})] \right| > \varepsilon\right] \\
= \mathbb{P}\left[\left\{ \left| \frac{1}{n} \sum_{t=1}^{n} f_{1}(X_{t}) - \mathbb{E}[f_{1}(X_{1})] \right| > \varepsilon\right\} \bigcup \\
\left\{ \left| \frac{1}{n} \sum_{t=1}^{n} f_{2}(X_{t}) - \mathbb{E}[f_{2}(X_{1})] \right| > \varepsilon\right\} \bigcup \\
\dots \\
\left\{ \left| \frac{1}{n} \sum_{t=1}^{n} f_{N}(X_{t}) - \mathbb{E}[f_{N}(X_{1})] \right| > \varepsilon\right\} \bigcup \\
\dots \\
\dots \end{bmatrix}$$



#### $\mathsf{Theorem}$

Let  $X_1, \ldots, X_n$  be i.i.d. samples from an arbitrary distribution  $\mathcal P$  in  $\mathcal X$  and  $\mathcal F$  a **finite** set of functions bounded in [a,b] with  $|\mathcal F|=N$ , then for any  $f_1\in\mathcal F$  and any  $\delta\in(0,1)$ 

$$\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_t) - \mathbb{E}[f(X_1)] \right| > (b-a)\sqrt{\frac{\log 2/\delta}{2n}} \right] \le N \max_{f \in \mathcal{F}} \mathbb{P}\left[\left| \frac{1}{n} \sum_{t=1}^{n} f(X_t) - \mathbb{E}[f(X_1)] \right| > (b-a)\sqrt{\frac{\log 2/\delta}{2n}} \right] \le N\delta$$



#### $\mathsf{Theorem}$

Let  $X_1, \ldots, X_n$  be i.i.d. samples from an arbitrary distribution  $\mathcal{P}$ in  $\mathcal{X}$  and  $\mathcal{F}$  a **finite** set of functions bounded in [a,b] with  $|\mathcal{F}| = N$ , then for any  $f_1 \in \mathcal{F}$  and any  $\delta \in (0,1)$ 

$$\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_t) - \mathbb{E}[f(X_1)] \right| > (b-a) \sqrt{\frac{\log 2N/\delta}{2n}} \right] \le \delta$$



**Problem**: In general  $\mathcal{F}$  contains an infinite number of functions (e.g., a linear classifier)



## The Symmetrization Trick

$$\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_{t}) - \mathbb{E}[f(X_{1})] \right| > \varepsilon\right]$$

$$\leq 2\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_{t}) - \frac{1}{n} \sum_{t=1}^{n} f(X'_{t}) \right| > \frac{\varepsilon}{2}\right]$$

with the ghost samples  $\{X_t'\}_{t=1}^n$  independently drawn from  $\mathcal{P}$ .



### The VC dimension

Not all the *infinities* are the same...







### The VC dimension

Not all the *infinities* are the same...





Let's consider a binary space  $\mathcal{F} = \{f : \mathcal{X} \to \{0,1\}\}$ 



How many different predictions can a space  $\mathcal{F}$  produce over n distinct inputs?











































The *VC dimension* of a linear classifier in dim. 2 is  $VC(\mathcal{F}) = 3$ .



Let  $S = (x_1, \dots, x_d)$  be an arbitrary sequence of points, then

$$\Pi_S(\mathcal{F}) = \{ (f(x_1), \dots, f(x_d)), h \in \mathcal{F} \}$$

is the set of all the possible ways the d points can be classified by hypothesis in  $\mathcal{F}$ .



Let  $S = (x_1, \dots, x_d)$  be an arbitrary sequence of points, then

$$\Pi_S(\mathcal{F}) = \{ (f(x_1), \dots, f(x_d)), h \in \mathcal{F} \}$$

is the set of all the possible ways the d points can be classified by hypothesis in  $\mathcal{F}$ .

#### Definition

A set S is shattered by a hypothesis space  $\mathcal{F}$  if  $|\Pi_S(\mathcal{F})| = 2^d$ .



#### Definition (VC Dimension)

The VC dimension of a hypothesis space  ${\mathcal F}$  is

$$VC(\mathcal{F}) = \max\{d \mid \exists |S| = d, |\Pi_S(\mathcal{F})| = 2^d\}$$



#### Definition (VC Dimension)

The VC dimension of a hypothesis space  ${\mathcal F}$  is

$$VC(\mathcal{F}) = \max\{d \mid \exists |S| = d, |\Pi_S(\mathcal{F})| = 2^d\}$$

#### Lemma (Sauer's Lemma)

Let  $\mathcal F$  be a hypothesis space with VC dimension d, then for any sequence of  $\mathbf n$  points  $S=(x_1,\ldots,x_n)$  with n>d

$$|\Pi_S(\mathcal{F})| \le \sum_{i=0}^d \binom{n}{i} \le \frac{n^d}{n^d}$$



**Question**: how many values can  $f \in \mathcal{F}$  (with  $\mathcal{F}$  a *binary* space) take on 2n samples?

$$2\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_t) - \frac{1}{n} \sum_{t=1}^{n} f(X_t') \right| > \frac{\varepsilon}{2} \right]$$



**Question**: how many values can  $f \in \mathcal{F}$  (with  $\mathcal{F}$  a *binary* space) take on 2n samples?

$$2\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_t) - \frac{1}{n} \sum_{t=1}^{n} f(X_t') \right| > \frac{\varepsilon}{2} \right]$$

If  $VC(\mathcal{F}) = d$  and 2n > d, then the answer is **at most**  $(2n)^d!$ 



#### Theorem

Let  $X_1, \ldots, X_n$  be i.i.d. samples from an arbitrary distribution  $\mathcal P$  in  $\mathcal X$  and  $\mathcal F$  a **finite** set of binary functions with  $\mathbf V \mathcal C = d$ , then for any  $\delta \in (0,1)$ 

$$\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_t) - \mathbb{E}[f(X_1)] \right| > \sqrt{\frac{\log 2N/\delta}{2n}} \right] \le 2\delta$$

with  $N = (2n)^d$ .



A simplified reading of the previous bound

For any set of n i.i.d. samples and any binary function  $f \in \mathcal{F}$  with  $VC(\mathcal{F}) = d$ 

$$\left| \frac{1}{n} \sum_{t=1}^{n} f(X_t) - \mathbb{E}[f(X_1)] \right| \le O\left(\sqrt{\frac{d \log n/\delta}{n}}\right)$$

with probability  $1 - \delta$  (w.r.t. to the randomness of the samples)



## The Pollard's Inequality

**Extension**: how does the previous result extend to the case of a real-valued space  $\mathcal{F}$ ?



## The Pollard's Inequality

**Question**: how many values can  $f \in \mathcal{F}$  (with  $\mathcal{F}$  a *real-valued* space) take on 2n samples?

$$2\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_t) - \frac{1}{n} \sum_{t=1}^{n} f(X_t') \right| > \frac{\varepsilon}{2} \right]$$

Answer: an infinite number of values...



**Observation**: we only need an *accuracy* of order  $\varepsilon$ .



**Observation**: we only need an *accuracy* of order  $\varepsilon$ .

**Question**: how many functions from  $\mathcal{F}$  do we need to achieve an accuracy of order  $\varepsilon$  on 2n samples?



A space  $\mathcal{F}_{\varepsilon} \subset \mathcal{F}$  is an  $\varepsilon$ -cover of  $\mathcal{F}$  on the states  $\{x_t\}_{t=1}^n$  if

$$\forall f \in \mathcal{F}, \exists f' \in \mathcal{F}_{\varepsilon} : \left| \frac{1}{n} \sum_{t=1}^{n} f(x_t) - \frac{1}{n} \sum_{t=1}^{n} f'(x_t) \right| \leq \varepsilon$$



A space  $\mathcal{F}_{\varepsilon} \subset \mathcal{F}$  is an  $\varepsilon$ -cover of  $\mathcal{F}$  on the states  $\{x_t\}_{t=1}^n$  if

$$\forall f \in \mathcal{F}, \exists f' \in \mathcal{F}_{\varepsilon} : \left| \frac{1}{n} \sum_{t=1}^{n} f(x_t) - \frac{1}{n} \sum_{t=1}^{n} f'(x_t) \right| \leq \varepsilon$$



A space  $\mathcal{F}_{\varepsilon} \subset \mathcal{F}$  is an  $\varepsilon$ -cover of  $\mathcal{F}$  on the states  $\{x_t\}_{t=1}^n$  if

$$\forall f \in \mathcal{F}, \exists f' \in \mathcal{F}_{\varepsilon} : \left| \frac{1}{n} \sum_{t=1}^{n} f(x_t) - \frac{1}{n} \sum_{t=1}^{n} f'(x_t) \right| \leq \varepsilon$$



A space  $\mathcal{F}_{\varepsilon} \subset \mathcal{F}$  is an  $\varepsilon$ -cover of  $\mathcal{F}$  on the states  $\{x_t\}_{t=1}^n$  if

$$\forall f \in \mathcal{F}, \exists f' \in \mathcal{F}_{\varepsilon} : \left| \frac{1}{n} \sum_{t=1}^{n} f(x_t) - \frac{1}{n} \sum_{t=1}^{n} f'(x_t) \right| \leq \varepsilon$$

The *cover number* of  $\mathcal{F}$  is

$$\mathcal{N}(\mathcal{F}, \varepsilon, \{x_t\}_{t=1}^n) = |\mathcal{F}_{\varepsilon}|$$



## The Pollard's Inequality

We build an  $(\varepsilon/8)$ -cover of  $\mathcal F$  on states  $\{X_t\}_{t=1}^n \cup \{X_t'\}_{t=1}^n$ , thus we have

$$\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_{t}) - \frac{1}{n} \sum_{t=1}^{n} f(X'_{t}) \right| > \frac{\varepsilon}{2} \right] \\
\leq \mathbb{P}\left[\exists f \in \mathcal{F}_{\varepsilon/8} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_{t}) - \frac{1}{n} \sum_{t=1}^{n} f(X'_{t}) \right| > \frac{\varepsilon}{4} \right] \\
\leq \mathbb{E}\left[\mathcal{N}\left(\mathcal{F}, \varepsilon/8, \left\{X_{t} \cup X'_{t}\right\}_{t=1}^{n}\right)\right] \mathbb{P}\left[\left| \frac{1}{n} \sum_{t=1}^{n} f(X_{t}) - \frac{1}{n} \sum_{t=1}^{n} f(X'_{t}) \right| > \frac{\varepsilon}{4} \right]$$



## The Pollard's Inequality

#### Theorem

Let  $X_1, \ldots, X_n$  be i.i.d. samples from an arbitrary distribution  $\mathcal{P}$  in  $\mathcal{X}$  and  $\mathcal{F}$  a set of bounded functions in [0, B], then for any  $\varepsilon > 0$ 

$$\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \frac{1}{n} \sum_{t=1}^{n} f(X_t) - \mathbb{E}[f(X_1)] \right| > \varepsilon \right]$$

$$\leq 8\mathbb{E}\left[ \mathcal{N}\left(\mathcal{F}, \varepsilon/8, \{X_t \cup X_t'\}_{t=1}^n\right) \right] \exp\left(-\frac{n\varepsilon^2}{64B^2}\right).$$



#### The Pseudo-Dimension

**Question**: how is it possible to *compute the cover number*? A real-valued space  $\mathcal F$  has a *psuedo-dimension* d if

$$\mathcal{V}(\mathcal{F}) = \mathsf{VC}\Big(\big\{(x,y) \to \mathsf{sign}(f(x)-y), f \in \mathcal{F}\big\}\Big) = d$$



#### The Pseudo-Dimension

**Question**: how is it possible to *compute the cover number*? A real-valued space  $\mathcal{F}$  has a *psuedo-dimension* d if

$$\mathcal{V}(\mathcal{F}) = \mathsf{VC}\Big(\big\{(x,y) \to \mathsf{sign}(f(x)-y), f \in \mathcal{F}\big\}\Big) = d$$

For any  $\{x_t\}_{t=1}^n$ 

$$\mathcal{N}(\mathcal{F}, \varepsilon, \{x_t\}_{t=1}^n) \le O\left(\left(\frac{B}{\varepsilon}\right)^d\right)$$



## Functional Concentration Inequality for $L_2$ -norm

**Remark**: In some cases we want to consider the *deviations* between different norms.



## Functional Concentration Inequality for $L_2$ -norm

**Remark**: In some cases we want to consider the *deviations* between different norms.

**Example**: in *least-squares regression*, the error is measured with  $L_2$ -norms, so we want to bound the deviation between

$$\left(\frac{1}{n}\sum_{t=1}^{n}f(X_t)^2\right)^{1/2} \qquad \left(\mathbb{E}\left[f(X)^2\right]\right)^{1/2}$$



## Functional Concentration Inequality for $L_2$ -norm

#### Theorem

Let  $X_1, \ldots, X_n$  be i.i.d. samples from an arbitrary distribution  $\mathcal{P}$  in  $\mathcal{X}$  and  $\mathcal{F}$  a set of bounded functions in [0, B], then for any  $\varepsilon$ 

$$\mathbb{P}\left[\exists f \in \mathcal{F} : \left| \left(\frac{1}{n} \sum_{t=1}^{n} f(X_t)^2\right)^{1/2} - 2\left(\mathbb{E}\left[f(X)^2\right]\right)^{1/2}\right| > \varepsilon\right]$$

$$\leq 3\mathbb{E}\left[\frac{\mathcal{N}_2}{24} \left(\mathcal{F}, \frac{\sqrt{2}}{24} \varepsilon, \{X_t \cup X_t'\}_{t=1}^n\right)\right] \exp\left(-\frac{n\varepsilon^2}{288B^2}\right).$$



## Summary

- ► Learning algorithms use *finite random* samples
  - ⇒ *concentration* of averages to expectations



## Summary

- ► Learning algorithms use *finite random* samples
  - ⇒ *concentration* of averages to expectations
- Learning algorithms use *spaces of functions* 
  - ⇒ concentration of averages to expectations for any function



#### Outline

**Preliminaries** 

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI Error at Each Iteration Error Propagation The Final Bound

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion



#### Objective of the section

 Step-by-step derivation a performance bound for a popular algorithm



#### Objective of the section

- Step-by-step derivation a performance bound for a popular algorithm
- ► Show the *interplay* between *prediction error* and *propagation*



Linear space (used to approximate action-value functions)

$$\mathcal{F} = \left\{ f(x, a) = \sum_{j=1}^{d} \alpha_j \varphi_j(x, a), \ \alpha \in \mathbb{R}^d \right\}$$



Linear space (used to approximate action-value functions)

$$\mathcal{F} = \left\{ f(x, a) = \sum_{j=1}^{d} \alpha_j \varphi_j(x, a), \ \alpha \in \mathbb{R}^d \right\}$$

with features

$$\varphi_j: \mathcal{X} \times \mathcal{A} \to [0, L] \qquad \phi(x, a) = [\varphi_1(x, a) \dots \varphi_d(x, a)]^\top$$



**Input**: space  $\mathcal{F}$ , iterations K, sampling distribution  $\rho$ , num of samples n



**Input**: space  $\mathcal F$ , iterations K, sampling distribution  $\rho$ , num of samples n Initial function  $\widetilde Q^0\in\mathcal F$ 



**Input**: space  $\mathcal{F}$ , iterations K, sampling distribution  $\rho$ , num of samples n

Initial function  $\widetilde{Q}^0 \in \mathcal{F}$ For  $k = 1, \dots, K$ 



**Input**: space  $\mathcal{F}$ , iterations K, sampling distribution  $\rho$ , num of samples n

Initial function  $\widetilde{Q}^0 \in \mathcal{F}$ For  $k = 1, \dots, K$ 

▶ Draw n samples  $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$ 



**Input**: space  $\mathcal{F}$ , iterations K, sampling distribution  $\rho$ , num of samples n

Initial function  $\widetilde{Q}^0 \in \mathcal{F}$  For  $k = 1, \dots, K$ 

- ▶ Draw n samples  $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- Sample  $x_i' \sim p(\cdot|x_i, a_i)$  and  $r_i = r(x_i, a_i)$



**Input**: space  $\mathcal{F}$ , iterations K, sampling distribution  $\rho$ , num of samples n

Initial function  $\widetilde{Q}^0 \in \mathcal{F}$ 

For  $k = 1, \dots, K$ 

- ▶ Draw n samples  $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- ▶ Sample  $x_i' \sim p(\cdot|x_i, a_i)$  and  $r_i = r(x_i, a_i)$
- $\qquad \qquad \textbf{Compute } \textbf{\textit{y}}_{i} = r_{i} + \gamma \max_{a} \widetilde{Q}^{k-1}(x_{i}', a)$



**Input**: space  $\mathcal{F}$ , iterations K, sampling distribution  $\rho$ , num of samples n

Initial function  $\widetilde{Q}^0 \in \mathcal{F}$  For  $k = 1, \dots, K$ 

- ightharpoonup Draw n samples  $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- Sample  $x_i' \sim p(\cdot|x_i, a_i)$  and  $r_i = r(x_i, a_i)$
- Compute  $y_i = r_i + \gamma \max_a \widetilde{Q}^{k-1}(x_i', a)$
- ▶ Build training set  $\{((x_i, a_i), y_i)\}_{i=1}^n$



**Input**: space  $\mathcal{F}$ , iterations K, sampling distribution  $\rho$ , num of samples n

Initial function  $\widetilde{Q}^0 \in \mathcal{F}$ 

For  $k = 1, \dots, K$ 

- ightharpoonup Draw n samples  $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- Sample  $x_i' \sim p(\cdot|x_i, a_i)$  and  $r_i = r(x_i, a_i)$
- ▶ Compute  $y_i = r_i + \gamma \max_a \widetilde{Q}^{k-1}(x_i', a)$
- ▶ Build training set  $\{((x_i, a_i), y_i)\}_{i=1}^n$
- ▶ Solve the *least squares problem*

$$f_{\widehat{\alpha}_k} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f_{\alpha}(x_i, a_i) - y_i)^2$$



**Input**: space  $\mathcal{F}$ , iterations K, sampling distribution  $\rho$ , num of samples n

Initial function  $\widetilde{Q}^0 \in {\cal F}$ 

For  $k = 1, \dots, K$ 

- ightharpoonup Draw n samples  $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- Sample  $x_i' \sim p(\cdot|x_i, a_i)$  and  $r_i = r(x_i, a_i)$
- Compute  $y_i = r_i + \gamma \max_a \widetilde{Q}^{k-1}(x_i', a)$
- ▶ Build training set  $\{((x_i, a_i), y_i)\}_{i=1}^n$
- ► Solve the *least squares problem*

$$f_{\widehat{\alpha}_k} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f_{\alpha}(x_i, a_i) - y_i)^2$$

• Return  $\widetilde{Q}^k = \operatorname{Trunc}(f_{\widehat{\alpha}^k})$ 



**Input**: space  $\mathcal{F}$ , iterations K, sampling distribution  $\rho$ , num of samples n

Initial function  $\widetilde{Q}^0 \in \mathcal{F}$ 

For  $k = 1, \dots, K$ 

- ▶ Draw n samples  $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- Sample  $x_i' \sim p(\cdot|x_i, a_i)$  and  $r_i = r(x_i, a_i)$
- Compute  $y_i = r_i + \gamma \max_a \widetilde{Q}^{k-1}(x_i', a)$
- ▶ Build training set  $\{((x_i, a_i), y_i)\}_{i=1}^n$
- ► Solve the *least squares problem*

$$f_{\widehat{\alpha}_k} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f_{\alpha}(x_i, a_i) - y_i)^2$$

 $ightharpoonup \operatorname{Return} \widetilde{Q}^k = \operatorname{Trunc}(f_{\widehat{\alpha}^k})$ 

Return  $\pi_K(\cdot) = \arg \max_a \widetilde{Q}^K(\cdot, a)$  (greedy policy)



**Objective 1**: derive a bound on the performance (quadratic) loss w.r.t. a *testing* distribution  $\mu$ 

$$||Q^* - Q^{\pi_K}||_{\mu} \le ???$$



#### Outline

#### **Preliminaries**

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI Error at Each Iteration Error Propagation The Final Bound

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion



**Input**: space  $\mathcal{F}$ , iterations K, sampling distribution  $\rho$ 

Initial function  $\widetilde{Q}^0 \in \mathcal{F}$ 

For  $k = 1, \ldots, K$ 

- ▶ Draw n samples  $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- ▶ Sample  $x_i' \sim p(\cdot|x_i, a_i)$  and  $r_i = r(x_i, a_i)$
- Compute  $y_i = r_i + \gamma \max_a \widetilde{Q}^{k-1}(x_i', a)$
- ▶ Build training set  $\{((x_i, a_i), y_i)\}_{i=1}^n$
- ► Solve the *least squares problem*

$$f_{\widehat{\alpha}_k} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f_{\alpha}(x_i, a_i) - y_i)^2$$

 $\blacktriangleright \ \operatorname{Return} \ \widetilde{Q}^k = \operatorname{Trunc}(f_{\widehat{\alpha}^k})$ 

Return  $\pi_K(\cdot) = \arg \max_a \widetilde{Q}^K(\cdot, a)$  (greedy policy)



**Input**: space  $\mathcal{F}$ , iterations K, sampling distribution  $\rho$ 

Initial function  $\widetilde{Q}^0 \in \mathcal{F}$ 

For  $k = 1, \ldots, K$ 

- ▶ Draw n samples  $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- ▶ Sample  $x_i' \sim p(\cdot|x_i, a_i)$  and  $r_i = r(x_i, a_i)$
- Compute  $y_i = r_i + \gamma \max_a \widetilde{Q}^{k-1}(x_i', a)$
- ▶ Build training set  $\{((x_i, a_i), y_i)\}_{i=1}^n$
- ► Solve the *least squares problem*

$$f_{\widehat{\alpha}_k} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f_{\alpha}(x_i, a_i) - y_i)^2$$

▶ Return  $\widetilde{Q}^k = \mathsf{Trunc}(f_{\widehat{\alpha}^k})$ 

Return  $\pi_K(\cdot) = \arg \max_a \widetilde{Q}^K(\cdot, a)$  (greedy policy)



- ▶ Draw n samples  $(x_i, a_i) \stackrel{\text{i.i.d}}{\sim} \rho$
- Sample  $x_i' \sim p(\cdot|x_i, a_i)$  and  $r_i = r(x_i, a_i)$
- Compute  $y_i = r_i + \gamma \max_a \widetilde{Q}^{k-1}(x_i', a)$
- ▶ Build training set  $\{((x_i, a_i), y_i)\}_{i=1}^n$
- ► Solve the *least squares problem*

$$f_{\widehat{\alpha}_k} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f_{\alpha}(x_i, a_i) - y_i)^2$$

▶ Return  $\widetilde{Q}^k = \text{Trunc}(f_{\widehat{\alpha}^k})$ 



**Target**: at each iteration we want to approximate  $Q^k = TQ^{k-1}$ 



**Target**: at each iteration we want to approximate  $Q^k = TQ^{k-1}$ 

**Objective 2**: derive an *intermediate* bound on the prediction error [random design]

$$||Q^k - \widetilde{Q}^k||_{\rho} \leq ???$$



**Target**: at each iteration we have samples  $\{(x_i, a_i)\}_{i=1}^n$  (from  $\rho$ )



**Target**: at each iteration we have samples  $\{(x_i, a_i)\}_{i=1}^n$  (from  $\rho$ )

**Objective 3**: derive an *intermediate* bound on the prediction error *on the samples* [deterministic design]

$$\frac{1}{n} \sum_{i=1}^{n} \left( Q^{k}(\mathbf{x}_{i}, \mathbf{a}_{i}) - \widetilde{Q}^{k}(\mathbf{x}_{i}, \mathbf{a}_{i}) \right)^{2} = ||Q^{k} - \widetilde{Q}^{k}||_{\widehat{\rho}}^{2} \leq ???$$



Obj 3

$$||Q^k - \widetilde{Q}^k||_{\widehat{\rho}}^2 \leq ???$$



Obj 3

$$||Q^k - \widetilde{Q}^k||_{\widehat{\rho}}^2 \leq ???$$

 $\Rightarrow$  Obj 2

$$||Q^k - \widetilde{Q}^k||_{\rho} \leq ???$$



#### Obj 3

$$||Q^k - \widetilde{Q}^k||_{\widehat{\rho}}^2 \leq ???$$

 $\Rightarrow$  Obj 2

$$||Q^k - \widetilde{Q}^k||_{\rho} \leq ???$$

 $\Rightarrow$  Obj 1

$$||Q^* - Q^{\pi_K}||_{\mu} \le ???$$



#### Returned solution

$$f_{\widehat{\alpha}_k} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f_{\alpha}(x_i, a_i) - y_i)^2$$



#### Returned solution

$$f_{\widehat{\alpha}_k} = \arg\min_{f_{\alpha} \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f_{\alpha}(x_i, a_i) - y_i)^2$$

#### **Best** solution

$$f_{\alpha_k^*} = \arg\inf_{f_{\alpha} \in \mathcal{F}} ||f_{\alpha} - Q^k||_{\rho}$$



Given the set of inputs  $\{(x_i, a_i)\}_{i=1}^n$  drawn from  $\rho$ .



Given the set of inputs  $\{(x_i,a_i)\}_{i=1}^n$  drawn from  $\rho$ . Vector space

$$\mathcal{F}_n = \{ z \in \mathbb{R}^n, z_i = f_{\alpha}(x_i, a_i); f_{\alpha} \in \mathcal{F} \} \subset \mathbb{R}^n$$



Given the set of inputs  $\{(x_i,a_i)\}_{i=1}^n$  drawn from  $\rho$ . Vector space

$$\mathcal{F}_n = \{z \in \mathbb{R}^n, z_i = f_{\alpha}(x_i, a_i); f_{\alpha} \in \mathcal{F}\} \subset \mathbb{R}^n$$

Empirical  $L_2$ -norm

$$||f_{\alpha}||_{\widehat{\rho}}^2 = \frac{1}{n} \sum_{i=1}^n f_{\alpha}(x_i, a_i)^2 = \frac{1}{n} \sum_{i=1}^n z_i^2 = ||z||_n^2$$



Given the set of inputs  $\{(x_i,a_i)\}_{i=1}^n$  drawn from  $\rho$ . Vector space

$$\mathcal{F}_n = \{z \in \mathbb{R}^n, z_i = f_{\alpha}(x_i, a_i); f_{\alpha} \in \mathcal{F}\} \subset \mathbb{R}^n$$

Empirical  $L_2$ -norm

$$||f_{\alpha}||_{\widehat{\rho}}^2 = \frac{1}{n} \sum_{i=1}^n f_{\alpha}(x_i, a_i)^2 = \frac{1}{n} \sum_{i=1}^n z_i^2 = ||z||_n^2$$

Empirical orthogonal projection

$$\widehat{\Pi}y = \arg\min_{z \in \mathcal{F}_n} ||y - z||_n$$



Target vector:

$$\begin{aligned} q_i &= Q^k(x_i, a_i) = \mathcal{T}\widetilde{Q}^{k-1}(x_i, a_i) \\ &= r(x_i, a_i) + \gamma \max_{a} \int_{\mathcal{X}} \widetilde{Q}^{k-1}(dx', a) p(dx'|x_i, a_i) \end{aligned}$$



► Target vector:

$$q_i = Q^k(x_i, a_i) = \mathcal{T}\widetilde{Q}^{k-1}(x_i, a_i)$$
$$= r(x_i, a_i) + \gamma \max_a \int_{\mathcal{X}} \widetilde{Q}^{k-1}(dx', a) p(dx'|x_i, a_i)$$

Observed target vector:

$$y_i = r_i + \gamma \max_{a} \widetilde{Q}^{k-1}(x_i', a)$$



► Target vector:

$$q_i = Q^k(x_i, a_i) = \mathcal{T}\widetilde{Q}^{k-1}(x_i, a_i)$$
$$= r(x_i, a_i) + \gamma \max_{a} \int_{\mathcal{X}} \widetilde{Q}^{k-1}(dx', a) p(dx'|x_i, a_i)$$

Observed target vector:

$$y_i = r_i + \gamma \max_{a} \widetilde{Q}^{k-1}(x_i', a)$$

Noise vector (zero-mean and bounded):

$$\xi_i = q_i - y_i$$

$$|\xi_i| \le V_{\text{max}}$$
  $\mathbb{E}[\xi_i|x_i] = 0$ 







ightharpoonup Optimal solution in  $\mathcal{F}_n$ 

$$\widehat{\Pi}q = \arg\min_{z \in \mathcal{F}_n} ||q - z||_n$$



ightharpoonup Optimal solution in  $\mathcal{F}_n$ 

$$\widehat{\Pi}q = \arg\min_{z \in \mathcal{F}_n} ||q - z||_n$$

Returned vector

$$\widehat{q}_i = f_{\widehat{\alpha}^k}(x_i, a_i)$$

$$\widehat{q} = \widehat{\Pi}y = \arg\min_{z \in \mathcal{F}_n} ||y - z||_n$$







$$||Q^k - f_{\widehat{\alpha}^k}||_{\widehat{\rho}}^2 = ||q - \widehat{q}||_n^2$$



$$||Q^k - f_{\widehat{\alpha}^k}||_{\widehat{\rho}}^2 = ||q - \widehat{q}||_n^2$$





$$||Q^k - f_{\widehat{\alpha}^k}||_{\widehat{\rho}}^2 = ||q - \widehat{q}||_n^2$$



$$||q - \widehat{q}||_n \le ||q - \widehat{\Pi}q||_n + ||\widehat{\Pi}q - \widehat{q}||_n = ||q - \widehat{\Pi}q||_n + ||\widehat{\xi}||_n$$



$$\underbrace{||q - \widehat{q}||_n}_{\text{prediction err}} \leq \underbrace{||q - \widehat{\Pi}q||_n}_{\text{approx. err}} + \underbrace{||\widehat{\xi}||_n}_{\text{estim. err}}$$



$$\underbrace{||q - \widehat{q}||_n}_{\text{prediction err}} \leq \underbrace{||q - \widehat{\Pi}q||_n}_{\text{approx. err}} + \underbrace{||\widehat{\xi}||_n}_{\text{estim. err}}$$

Prediction error: distance between learned function and target function



$$\underbrace{||q - \widehat{q}||_n}_{\text{prediction err}} \leq \underbrace{||q - \widehat{\Pi}q||_n}_{\text{approx. err}} + \underbrace{||\widehat{\xi}||_n}_{\text{estim. eri}}$$

- Prediction error: distance between learned function and target function
- ▶ **Approximation error**: distance between the *best* function in  $\mathcal{F}$  and the *target* function  $\Rightarrow$  depends on  $\mathcal{F}$



$$\underbrace{||q - \widehat{q}||_n}_{\text{prediction err}} \leq \underbrace{||q - \widehat{\Pi}q||_n}_{\text{approx. err}} + \underbrace{||\widehat{\xi}||_n}_{\text{estim. err}}$$

- Prediction error: distance between learned function and target function
- ▶ **Approximation error**: distance between the *best* function in  $\mathcal{F}$  and the *target* function  $\Rightarrow$  depends on  $\mathcal{F}$
- ▶ **Estimation error**: distance between the *best* function in  $\mathcal{F}$  and the *learned* function  $\Rightarrow$  depends on the samples



The noise 
$$\widehat{\xi} = \widehat{\Pi} \xi$$

$$\Rightarrow ||\widehat{\xi}||_n = \langle \widehat{\xi}, \widehat{\xi} \rangle = \langle \widehat{\xi}, \xi \rangle$$



The noise  $\widehat{\xi}=\widehat{\Pi}\xi$ 

$$\Rightarrow ||\widehat{\xi}||_n = \langle \widehat{\xi}, \widehat{\xi} \rangle = \langle \widehat{\xi}, \xi \rangle$$

The projected noise belongs to  $\mathcal{F}_n$ 

$$\Rightarrow \exists f_{\beta} \in \mathcal{F} : f_{\beta}(x_i, a_i) = \widehat{\xi_i}, \quad \forall (x_i, a_i)$$



The noise  $\widehat{\xi} = \widehat{\Pi} \xi$ 

$$\Rightarrow ||\widehat{\xi}||_n = \langle \widehat{\xi}, \widehat{\xi} \rangle = \langle \widehat{\xi}, \xi \rangle$$

The projected noise belongs to  $\mathcal{F}_n$ 

$$\Rightarrow \exists f_{\beta} \in \mathcal{F} : f_{\beta}(x_i, a_i) = \widehat{\xi}_i, \quad \forall (x_i, a_i)$$

By definition of inner product

$$\Rightarrow ||\widehat{\xi}||_n = \frac{1}{n} \sum_{i=1}^n f_{\beta}(x_i, a_i) \xi_i$$



The noise  $\xi$  has zero mean and it is bounded in  $[-V_{\rm max}, V_{\rm max}]$ 



The noise  $\xi$  has zero mean and it is bounded in  $[-V_{\max}, V_{\max}]$ Thus for any **fixed**  $f_{\beta} \in \mathcal{F}$  (the expectation is *conditioned* on  $(x_i, a_i)$ )

$$\Rightarrow \mathbb{E}_{\xi} \left[ \frac{1}{n} \sum_{i=1}^{n} f_{\beta}(x_i, a_i) \xi_i \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\xi} \left[ f_{\beta}(x_i, a_i) \xi_i \right] = 0$$



The noise  $\xi$  has zero mean and it is bounded in  $[-V_{\max}, V_{\max}]$ Thus for any **fixed**  $f_{\beta} \in \mathcal{F}$  (the expectation is *conditioned* on  $(x_i, a_i)$ )

$$\Rightarrow \mathbb{E}_{\xi} \left[ \frac{1}{n} \sum_{i=1}^{n} f_{\beta}(x_i, a_i) \xi_i \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\xi} \left[ f_{\beta}(x_i, a_i) \xi_i \right] = 0$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} \left( f_{\beta}(x_i, a_i) \xi_i \right)^2 \le 4V_{\max}^2 \frac{1}{n} \sum_{i=1}^{n} f_{\beta}(x_i, a_i)^2 = 4V_{\max} ||f_{\beta}||_{\widehat{\rho}}^2$$

⇒ we can use concentration inequalities



**Problem**:  $f_{\beta}$  is a random variable



**Problem**:  $f_{\beta}$  is a random variable

**Solution**: we need functional concentration inequalities



Define the space of *normalized functions* 

$$\mathcal{G} = \left\{ g(\cdot) = \frac{f_{\alpha}(\cdot)}{||f_{\alpha}||_{\widehat{\rho}}}, f_{\alpha} \in \mathcal{F} \right\}$$



Define the space of *normalized functions* 

$$\mathcal{G} = \left\{ g(\cdot) = \frac{f_{\alpha}(\cdot)}{||f_{\alpha}||_{\widehat{\rho}}}, f_{\alpha} \in \mathcal{F} \right\}$$

[by definition]  $\Rightarrow \forall g \in \mathcal{G}, ||g||_{\widehat{\rho}} \leq 1$ 



Define the space of *normalized functions* 

$$\mathcal{G} = \left\{ g(\cdot) = \frac{f_{\alpha}(\cdot)}{||f_{\alpha}||_{\widehat{\rho}}}, f_{\alpha} \in \mathcal{F} \right\}$$

[by definition]  $\Rightarrow \forall g \in \mathcal{G}, ||g||_{\widehat{\rho}} \leq 1$ 

 $[\mathcal{F} \text{ is a linear space}] \Rightarrow \mathcal{V}(\mathcal{G}) = d+1$ 



Application of Pollard's inequality for space  ${\cal G}$ 



Application of Pollard's inequality for space  $\mathcal{G}$ 

For any  $g \in \mathcal{G}$ 

$$\left| \frac{1}{n} \sum_{i=1}^{n} g(x_i, a_i) \xi_i \right| \le 4V_{\text{max}} \sqrt{\frac{2}{n} \log \left( \frac{3(9ne^2)^{d+1}}{\delta} \right)}$$

with probability  $1 - \delta$  (w.r.t., the realization of the noise  $\xi$ ).



By definition of g

$$\Rightarrow \left| \frac{1}{n} \sum_{i=1}^{n} f_{\alpha}(x_i, a_i) \xi_i \right| \leq 4V_{\max} ||f_{\alpha}||_{\widehat{\rho}} \sqrt{\frac{2}{n} \log \left( \frac{3(9ne^2)^{d+1}}{\delta} \right)}$$



By definition of g

$$\Rightarrow \left| \frac{1}{n} \sum_{i=1}^{n} f_{\alpha}(x_i, a_i) \xi_i \right| \leq 4V_{\max} ||f_{\alpha}||_{\widehat{\rho}} \sqrt{\frac{2}{n} \log \left( \frac{3(9ne^2)^{d+1}}{\delta} \right)}$$

For the specific  $f_{\beta}$  equivalent to  $\widehat{\xi}$ 

$$\Rightarrow \langle \widehat{\xi}, \xi \rangle \leq 4V_{\max} ||\widehat{\xi}||_n \sqrt{\frac{2}{n} \log \left(\frac{3(9ne^2)^{d+1}}{\delta}\right)}$$



By definition of g

$$\Rightarrow \left| \frac{1}{n} \sum_{i=1}^{n} f_{\alpha}(x_i, a_i) \xi_i \right| \leq 4V_{\max} ||f_{\alpha}||_{\widehat{\rho}} \sqrt{\frac{2}{n} \log \left( \frac{3(9ne^2)^{d+1}}{\delta} \right)}$$

For the specific  $f_{\beta}$  equivalent to  $\widehat{\xi}$ 

$$\Rightarrow \langle \widehat{\xi}, \xi \rangle \le 4V_{\max} ||\widehat{\xi}||_n \sqrt{\frac{2}{n} \log \left(\frac{3(9ne^2)^{d+1}}{\delta}\right)}$$

Recalling the objective

$$\Rightarrow ||\widehat{\xi}||_n^2 \le 4V_{\max}||\widehat{\xi}||_n \sqrt{\frac{2}{n} \log\left(\frac{3(9ne^2)^{d+1}}{\delta}\right)}$$



By definition of g

$$\Rightarrow \left| \frac{1}{n} \sum_{i=1}^{n} f_{\alpha}(x_i, a_i) \xi_i \right| \leq 4V_{\max} ||f_{\alpha}||_{\widehat{\rho}} \sqrt{\frac{2}{n} \log \left( \frac{3(9ne^2)^{d+1}}{\delta} \right)}$$

For the specific  $f_{\beta}$  equivalent to  $\widehat{\xi}$ 

$$\Rightarrow \langle \widehat{\xi}, \xi \rangle \leq 4V_{\max} ||\widehat{\xi}||_n \sqrt{\frac{2}{n} \log \left(\frac{3(9ne^2)^{d+1}}{\delta}\right)}$$

Recalling the objective

$$\Rightarrow ||\widehat{\xi}||_n^2 \le 4V_{\max}||\widehat{\xi}||_n \sqrt{\frac{2}{n} \log\left(\frac{3(9ne^2)^{d+1}}{\delta}\right)}$$

$$\Rightarrow ||\widehat{\Pi}q - \widehat{q}||_n \le 4V_{\max}\sqrt{\frac{2}{n}\log\left(\frac{3(9ne^2)^{d+1}}{\delta}\right)}$$









#### Theorem

At each iteration k and given a set of state—action pairs  $\{(x_i, a_i)\}$ , LinearFQI returns an approximation  $\widehat{q}$  such that

$$\begin{split} ||q - \widehat{q}||_n &\leq ||q - \widehat{\Pi}q||_n + ||\widehat{\Pi}q - \widehat{q}||_n \\ &\leq ||q - \widehat{\Pi}q||_n + O\bigg(V_{\max}\sqrt{\frac{d\log n/\delta}{n}}\bigg) \end{split}$$



#### Moving back from vectors to functions

$$||q - \widehat{q}||_n = ||Q^k - f_{\widehat{\alpha}_k}||_{\widehat{\rho}}$$
$$||q - \widehat{\Pi}q||_n \le ||Q^k - f_{\alpha_k^*}||_{\widehat{\rho}}$$

$$\Rightarrow ||Q^k - f_{\widehat{\alpha}_k}||_{\widehat{\rho}} \le ||Q^k - f_{\alpha_k^*}||_{\widehat{\rho}} + O\left(V_{\max}\sqrt{\frac{d\log n/\delta}{n}}\right)$$



By definition of truncation  $(\widetilde{Q}^k = \mathsf{Trunc}(f_{\widehat{\alpha}_k}))$ 

#### Theorem

At each iteration k and given a set of state—action pairs  $\{(x_i,a_i)\}$ , LinearFQI returns an approximation  $\widehat{Q}^k$  such that (**Objective 3**)

$$||Q^k - \widetilde{Q}^k||_{\widehat{\rho}} \le ||Q^k - f_{\widehat{\alpha}_k}||_{\widehat{\rho}}$$

$$\le ||Q^k - f_{\alpha_k^*}||_{\widehat{\rho}} + O\left(V_{\max}\sqrt{\frac{d\log n/\delta}{n}}\right)$$



**Remark**: in order to move from **Obj3** to **Obj2** we need to move from empirical to expected  $L_2$ -norms



**Remark**: in order to move from **Obj3** to **Obj2** we need to move from empirical to expected  $L_2$ -norms

Since  $\widetilde{Q}^k$  is truncated, it is bounded in  $[-V_{\max},V_{\max}]$ 

$$2||Q^k - \widetilde{Q}^k||_{\widehat{\rho}} \ge ||Q^k - \widetilde{Q}^k||_{\rho} - O\left(V_{\max}\sqrt{\frac{d\log n/\delta}{n}}\right)$$



**Remark**: in order to move from **Obj3** to **Obj2** we need to move from empirical to expected  $L_2$ -norms

Since  $\widetilde{Q}^k$  is truncated, it is bounded in  $[-V_{\max},V_{\max}]$ 

$$2||Q^k - \widetilde{Q}^k||_{\widehat{\rho}} \ge ||Q^k - \widetilde{Q}^k||_{\rho} - O\left(V_{\max}\sqrt{\frac{d\log n/\delta}{n}}\right)$$

The best solution  $f_{\alpha_{L}^{*}}$  is a fixed function in  $\mathcal{F}$ 

$$||Q^k - f_{\alpha_k^*}||_{\widehat{\rho}} \le 2||Q^k - f_{\alpha_k^*}||_{\rho} + O\left(\left(V_{\max} + L||\alpha_k^*||\right)\sqrt{\frac{\log 1/\delta}{n}}\right)$$



#### Theorem

At each iteration k, LinearFQI returns an approximation  $\widetilde{Q}^k$  such that (**Objective 2**)

$$\begin{split} ||Q^k - \widetilde{Q}^k||_{\rho} &\leq 4||Q^k - f_{\alpha_k^*}||_{\rho} \\ &+ O\bigg(\big(V_{\max} + L||\alpha_k^*||\big)\sqrt{\frac{\log 1/\delta}{n}}\bigg) \\ &+ O\bigg(V_{\max}\sqrt{\frac{d\log n/\delta}{n}}\bigg), \end{split}$$

with probability  $1 - \delta$ .



$$\begin{split} ||Q^k - \widetilde{Q}^k||_{\rho} &\leq 4||Q^k - f_{\alpha_k^*}||_{\rho} \\ &+ O\bigg(\big(V_{\max} + L||\alpha_k^*||\big)\sqrt{\frac{\log 1/\delta}{n}}\bigg) \\ &+ O\bigg(V_{\max}\sqrt{\frac{d\log n/\delta}{n}}\bigg) \end{split}$$



$$\begin{split} ||Q^k - \widetilde{Q}^k||_{\rho} &\leq 4||Q^k - f_{\alpha_k^*}||_{\rho} \\ &+ O\bigg(\big(V_{\max} + L||\alpha_k^*||\big)\sqrt{\frac{\log 1/\delta}{n}}\bigg) \\ &+ O\bigg(V_{\max}\sqrt{\frac{d\log n/\delta}{n}}\bigg) \end{split}$$

#### Remarks

- No algorithm can do better
- Constant 4
- ightharpoonup Depends on the space  $\mathcal{F}$
- $\triangleright$  Changes with the iteration k



$$\begin{split} ||Q^k - \widetilde{Q}^k||_{\rho} &\leq 4||Q^k - f_{\alpha_k^*}||_{\rho} \\ &+ O\bigg(\big(V_{\max} + L||\alpha_k^*||\big)\sqrt{\frac{\log 1/\delta}{n}}\bigg) \\ &+ O\bigg(V_{\max}\sqrt{\frac{d\log n/\delta}{n}}\bigg) \end{split}$$

#### Remarks

- ▶ Vanishing to zero as  $O(n^{-1/2})$
- ▶ Depends on the features (L) and on the best solution  $(||\alpha_k^*||)$



$$\begin{split} ||Q^k - \widetilde{Q}^k||_{\rho} &\leq 4||Q^k - f_{\alpha_k^*}||_{\rho} \\ &+ O\bigg(\big(V_{\max} + L||\alpha_k^*||\big)\sqrt{\frac{\log 1/\delta}{n}}\bigg) \\ &+ O\bigg(V_{\max}\sqrt{\frac{d\log n/\delta}{n}}\bigg) \end{split}$$

#### Remarks

- ▶ Vanishing to zero as  $O(n^{-1/2})$
- ▶ Depends on the dimensionality of the space (d) and the number of samples (n)



#### Outline

#### **Preliminaries**

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI Error at Each Iteration Error Propagation The Final Bound

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion



#### Objective 1

$$||Q^* - Q^{\pi_K}||_{\mu}$$



#### Objective 1

$$||Q^* - Q^{\pi_K}||_{\mu}$$

▶ **Problem 1**: the test norm  $\mu$  is different from the sampling norm  $\rho$ 



#### Objective 1

$$||Q^* - Q^{\pi_K}||_{\mu}$$

- ▶ **Problem 1**: the test norm  $\mu$  is different from the sampling norm  $\rho$
- ▶ **Problem 2**: we have bounds for  $\widetilde{Q}^k$  not for the performance of the corresponding  $\pi_k$



#### Objective 1

$$||Q^* - Q^{\pi_K}||_{\mu}$$

- ▶ **Problem 1**: the test norm  $\mu$  is different from the sampling norm  $\rho$
- ▶ **Problem 2**: we have bounds for  $\widetilde{Q}^k$  not for the performance of the corresponding  $\pi_k$
- ▶ **Problem 3**: we have bounds for one single iteration



### Propagation of Errors

Bellman operators

$$\mathcal{T}Q(x, a) = r(x, a) + \gamma \int_{\mathcal{X}} \max_{a'} Q(dx', a') p(dx'|x, a)$$
$$\mathcal{T}^{\pi}Q(x, a) = r(x, a) + \gamma \int_{\mathcal{X}} Q(dx', \pi(dx')) p(dx'|x, a)$$

Optimal action—value function

$$Q^* = \mathcal{T}Q^*$$

Greedy policy

$$\pi(x) = \arg \max_{a} Q(x, a)$$
  
$$\pi^{*}(x) = \arg \max_{a} Q^{*}(x, a)$$

Prediction error

$$\varepsilon^k = Q^k - \widetilde{Q}^k$$



$$Q^* - \widetilde{Q}^{k+1} = \underbrace{\mathcal{T}^{\pi^*}Q^*}_{\text{fixed point}} \underbrace{-\mathcal{T}^{\pi^*}\widetilde{Q}^k + \mathcal{T}^{\pi^*}\widetilde{Q}^k}_{0} \underbrace{-\mathcal{T}\widetilde{Q}^k + \varepsilon_k}_{\widetilde{Q}^{k+1}}$$



$$Q^* - \widetilde{Q}^{k+1} = \underbrace{\mathcal{T}^{\pi^*}Q^* - \mathcal{T}^{\pi^*}\widetilde{Q}^k}_{\text{recursion}} + \underbrace{\mathcal{T}^{\pi^*}\widetilde{Q}^k + -\mathcal{T}\widetilde{Q}^k}_{\leq 0} + \underbrace{\varepsilon_k}_{\text{error}}$$



$$Q^* - \widetilde{Q}^{k+1} = \mathcal{T}^{\pi^*} Q^* - \mathcal{T}^{\pi^*} \widetilde{Q}^k + \mathcal{T}^{\pi^*} \widetilde{Q}^k + -\mathcal{T} \widetilde{Q}^k + \varepsilon_k$$
  
$$\leq \gamma P^{\pi^*} (Q^* - \widetilde{Q}^k) + \varepsilon_k$$



$$Q^* - \widetilde{Q}^K \le \sum_{k=0}^{K-1} \gamma^{K-k-1} (P^{\pi^*})^{K-k-1} \varepsilon_k + \gamma^K (P^{\pi^*})^K (Q^* - \widetilde{Q}^0)$$



$$Q^* - \widetilde{Q}^{k+1} = \underbrace{\mathcal{T}Q^*}_{\text{fixed point}} \underbrace{-\mathcal{T}^{\pi_k}Q^* + \mathcal{T}^{\pi_k}Q^*}_{0} \underbrace{-\mathcal{T}\widetilde{Q}^k + \varepsilon_k}_{\widetilde{Q}^{k+1}}$$



$$Q^* - \widetilde{Q}^{k+1} = \underbrace{\mathcal{T}Q^* - \mathcal{T}^{\pi_k}Q^*}_{\geq 0} + \underbrace{\mathcal{T}^{\pi_k}Q^* - \mathcal{T}\widetilde{Q}^k}_{\text{greedy pol.}} + \underbrace{\varepsilon_k}_{\text{error}}$$



$$Q^* - \widetilde{Q}^{k+1} \ge \underbrace{\mathcal{T}^{\pi_k} Q^* - \mathcal{T}^{\pi_k} \widetilde{Q}^k}_{\text{recursion}} + \underbrace{\varepsilon_k}_{\text{error}}$$



$$Q^* - \widetilde{Q}^{k+1} \ge \gamma P^{\pi_k} (Q^* - \widetilde{Q}^k) + \varepsilon_k$$



$$Q^* - \widetilde{Q}^{k+1} \ge \sum_{k=0}^{K-1} \gamma^{K-k-1} (P^{\pi_{K-1}} P^{\pi_{K-2}} \dots P^{\pi_{k+1}}) \varepsilon_k + \gamma^K (P^{\pi_{K-1}} P^{\pi_{K-2}} \dots P^{\pi_0}) (Q^* - \widetilde{Q}^0)$$



$$Q^* - Q^{\pi_K} = \underbrace{\mathcal{T}^{\pi^*}Q^*}_{\text{fixed point}} \underbrace{-\mathcal{T}^{\pi^*}\widetilde{Q}^K + \mathcal{T}^{\pi^*}\widetilde{Q}^K}_{0} \underbrace{-\mathcal{T}^{\pi_K}\widetilde{Q}^K + \mathcal{T}^{\pi_K}\widetilde{Q}^K}_{0} \underbrace{-\mathcal{T}^{\pi_K}\widetilde{Q}^K}_{\text{fixed point}}$$



$$Q^* - Q^{\pi_K} = \underbrace{\mathcal{T}^{\pi^*}Q^* - \mathcal{T}^{\pi^*}\widetilde{Q}^K}_{\text{error}} + \underbrace{\mathcal{T}^{\pi^*}\widetilde{Q}^K - \mathcal{T}^{\pi_K}\widetilde{Q}^K}_{\leq 0} + \underbrace{\mathcal{T}^{\pi_K}\widetilde{Q}^K - \mathcal{T}^{\pi_K}\widetilde{Q}^K}_{\text{function vs policy}}$$



$$Q^* - Q^{\pi_K} \leq \gamma P^{\pi^*}(Q^* - \widetilde{Q}^K) + \gamma P^{\pi_K}(\widetilde{Q}^K \underbrace{-Q^* + Q^*}_0 - Q^{\pi_K})$$



**Step 3**: from 
$$\widetilde{Q}^K$$
 to  $\pi_K$  (problem 2)  
By definition  $\mathcal{T}^{\pi_K}\widetilde{Q}^K = \mathcal{T}\widetilde{Q}^K \geq \mathcal{T}^{\pi^*}Q^K$ 

$$Q^* - Q^{\pi_K} \leq \gamma P^{\pi^*} (\underbrace{Q^* - \widetilde{Q}^K}_{\text{error}}) + \gamma P^{\pi_K} (\underbrace{\widetilde{Q}^K - Q^*}_{\text{error}} + \underbrace{Q^* - Q^{\pi_K}}_{\text{policy performance}})$$



$$(I - \gamma P^{\pi_K})(Q^* - Q^{\pi_K}) \le \gamma (P^{\pi^*} - P^{\pi_K})(Q^* - \widetilde{Q}^k)$$



$$Q^* - Q^{\pi_K} \le \gamma (I - \gamma P^{\pi_K})^{-1} (P^{\pi^*} - P^{\pi_K}) (Q^* - \widetilde{Q}^k)$$



$$Q^* - Q^{\pi_K} \le \gamma (I - \gamma P^{\pi_K})^{-1} (P^{\pi^*} - P^{\pi_K}) (Q^* - \widetilde{Q}^k)$$



#### Step 3: plugging the error propagation (problem 2)

$$Q^* - Q^{\pi_K} \le (I - \gamma P^{\pi_K})^{-1} \left\{ \sum_{k=0}^{K-1} \gamma^{K-k} \left[ (P^{\pi^*})^{K-k} - P^{\pi_K} P^{\pi_{K-1}} \dots P^{\pi_{k+1}} \right] \varepsilon_k + \left[ (P^{\pi^*})^{K+1} - (P^{\pi_K} P^{\pi_{K-1}} \dots P^{\pi_0}) \right] (Q^* - \widetilde{Q}^0) \right\}$$



#### Step 4: rewrite in compact form

$$Q^* - Q^{\pi_K} \le \frac{2\gamma(1 - \gamma^{K+1})}{(1 - \gamma)^2} \left[ \sum_{k=0}^{K-1} \alpha_k A_k |\varepsilon_k| + \alpha_K A_K |Q^* - \widetilde{Q}^0| \right]$$

 $ightharpoonup \alpha_k$ : weights

•  $A_k$ : summarize the  $P^{\pi_i}$  terms



#### **Step 5**: take the norm w.r.t. to the test distribution $\mu$

$$\begin{split} ||Q^* - Q^{\pi_K}||^2_{\mu} &= \int \rho(dx, da) (Q^*(x, a) - Q^{\pi_K}(x, a))^2 \\ &\leq \left[ \frac{2\gamma(1 - \gamma^{K+1}}{(1 - \gamma)^2} \right]^2 \int \mu(dx, da) \left[ \sum_{k=0}^{K-1} \alpha_k A_k |\varepsilon_k| + \alpha_K A_K |Q^* - \tilde{Q}^0| \right]^2 (x, a) \\ &\leq \left[ \frac{2\gamma(1 - \gamma^{K+1}}{(1 - \gamma)^2} \right]^2 \int \mu(dx, da) \left[ \sum_{k=0}^{K-1} \alpha_k A_k \varepsilon_k^2 + \alpha_K A_K (Q^* - \tilde{Q}^0)^2 \right] (x, a) \end{split}$$



#### Focusing on one single term

$$\begin{split} \mu A_k &= \frac{1-\gamma}{2} \mu (I-\gamma P^{\pi_K})^{-1} \big[ (P^{\pi^*})^{K-k} + P^{\pi_K} P^{\pi_{K-1}} \dots P^{\pi_{k+1}} \big] \\ &= \frac{1-\gamma}{2} \sum_{m \geq 0} \gamma^m \mu (P^{\pi_K})^m \big[ (P^{\pi^*})^{K-k} + P^{\pi_K} P^{\pi_{K-1}} \dots P^{\pi_{k+1}} \big] \\ &= \frac{1-\gamma}{2} \Big[ \sum_{m \geq 0} \gamma^m \mu (P^{\pi_K})^m (P^{\pi^*})^{K-k} + \sum_{m \geq 0} \gamma^m \mu (P^{\pi_K})^m P^{\pi_K} P^{\pi_{K-1}} \dots P^{\pi_{k+1}} \big] \end{split}$$



#### **Assumption**: concentrability terms

$$c(m) = \sup_{\pi_1 \dots \pi_m} \left| \left| \frac{d(\mu P^{\pi_1} \dots P^{\pi_m})}{d\rho} \right| \right|_{\infty}$$

$$C_{\mu,\rho} = (1 - \gamma)^2 \sum_{m>1} m \gamma^{m-1} c(m) < +\infty$$



#### **Step 5**: take the norm w.r.t. to the test distribution $\mu$

$$\begin{aligned} ||Q^* - Q^{\pi_K}||_{\mu}^2 \\ &\leq \left[ \frac{2\gamma(1 - \gamma^{K+1})}{(1 - \gamma)^2} \right]^2 \left[ \sum_{k=0}^{K-1} \alpha_k (1 - \gamma) \sum_{m \geq 0} \gamma^m c(m + K - k) ||\varepsilon_k||_{\rho}^2 + \alpha_K (2V_{\text{max}})^2 \right] \end{aligned}$$



**Step 5**: take the norm w.r.t. to the test distribution  $\mu$  (problem 1)

$$||Q^* - Q^{\pi_K}||_{\mu}^2 \leq \left[\frac{2\gamma}{(1-\gamma)^2}\right]^2 C_{\mu,\rho} \max_k ||\varepsilon_k||_{\rho}^2 + O\left(\frac{\gamma^K}{(1-\gamma)^3} V_{\max}^2\right)$$



#### Outline

#### **Preliminaries**

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI Error at Each Iteration Error Propagation The Final Bound

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion



# Plugging Per-Iteration Regret

$$||Q^* - Q^{\pi_K}||_{\mu}^2 \le \left[\frac{2\gamma}{(1-\gamma)^2}\right]^2 C_{\mu,\rho} \max_{k} ||\varepsilon_k||_{\rho}^2 + O\left(\frac{\gamma^K}{(1-\gamma)^3} V_{\max}^2\right)$$



 $+O\left(V_{\max}\sqrt{\frac{d\log n/\delta}{n}}\right)$ 

# Plugging Per-Iteration Regret

$$||Q^* - Q^{\pi_K}||_{\mu}^2 \le \left[\frac{2\gamma}{(1-\gamma)^2}\right]^2 C_{\mu,\rho} \max_{k} ||\varepsilon_k||_{\rho}^2 + O\left(\frac{\gamma^K}{(1-\gamma)^3} V_{\max}^2\right)$$

$$||\varepsilon_k||_{\rho} = ||Q^k - \widetilde{Q}^k||_{\rho} \le 4||Q^k - f_{\alpha_k^*}||_{\rho}$$

$$+ O\left(\left(V_{\max} + L||\alpha_k^*||\right)\sqrt{\frac{\log 1/\delta}{n}}\right)$$



# Plugging Per-Iteration Regret

#### The inherent Bellman error

$$\begin{split} ||Q^k - f_{\alpha_k^*}||_{\rho} &= \inf_{f \in \mathcal{F}} ||Q^k - f||_{\rho} \\ &= \inf_{f \in \mathcal{F}} ||\mathcal{T}\widetilde{Q}^{k-1} - f||_{\rho} \\ &\leq \inf_{f \in \mathcal{F}} ||\mathcal{T}f_{\alpha_{k-1}} - f||_{\rho} \\ &\leq \sup_{g \in \mathcal{F}} \inf_{f \in \mathcal{F}} ||\mathcal{T}g - f||_{\rho} = d(\mathcal{F}, \mathcal{T}\mathcal{F}) \end{split}$$



# Plugging Per–Iteration Regret

 $f_{\alpha_k^*}$  is the orthogonal *projection* of  $Q^k$  onto  $\mathcal{F}$  w.r.t.  $\rho$ 

$$\Rightarrow ||f_{\alpha_k^*}||_{\rho} \leq ||Q^k||_{\rho} = ||\mathcal{T}\widetilde{Q}^{k-1}||_{\rho} \leq ||\widetilde{Q}^{k-1}||_{\infty} \leq V_{\max}$$



# Plugging Per-Iteration Regret

Gram matrix

$$G_{i,j} = \mathbb{E}_{(x,a) \sim \rho}[\varphi_i(x,a)\varphi_j(x,a)]$$

Smallest eigenvalue of G is  $\omega$ 

$$||f_{\alpha}||_{\rho}^{2} = ||\phi^{\top}\alpha||_{\rho}^{2} = \alpha^{\top}G\alpha \ge \omega\alpha^{\top}\alpha = \omega||\alpha||^{2}$$

$$\max_k ||\alpha_k^*|| \leq \max_k \frac{||f_{\alpha_k^*}||_\rho}{\sqrt{\omega}} \leq \frac{V_{\max}}{\sqrt{\omega}}$$



#### The Final Bound

#### Theorem

LinearFQI with a space  $\mathcal F$  of d features, with n samples at each iteration returns a policy  $\pi_K$  after K iterations such that

$$\begin{aligned} ||Q^* - Q^{\pi_K}||_{\mu} &\leq \frac{2\gamma}{(1 - \gamma)^2} \sqrt{C_{\mu, \rho}} \Bigg( 4d(\mathcal{F}, \mathcal{T}\mathcal{F}) + O\bigg(V_{\max} \Big(1 + \frac{L}{\sqrt{\omega}}\Big) \sqrt{\frac{d \log n/\delta}{n}} \bigg) \Bigg) \\ &+ O\bigg(\frac{\gamma^K}{(1 - \gamma)^3} V_{\max}^2\bigg) \end{aligned}$$



#### The Final Bound

#### Theorem

LinearFQI with a space  $\mathcal F$  of d features, with n samples at each iteration returns a policy  $\pi_K$  after K iterations such that

$$||Q^* - Q^{\pi_K}||_{\mu} \leq \frac{2\gamma}{(1-\gamma)^2} \sqrt{\frac{C_{\mu,\rho}}{C_{\mu,\rho}}} \left( 4d(\mathcal{F}, \mathcal{T}\mathcal{F}) + O\left(V_{\max}\left(1 + \frac{L}{\sqrt{\omega}}\right)\sqrt{\frac{d\log n/\delta}{n}}\right) \right) + O\left(\frac{\gamma^K}{(1-\gamma)^3} V_{\max}^2\right)$$

The *propagation* (and different norms) makes the problem *more complex*  $\Rightarrow$  how do we choose the *sampling distribution*?



#### Theorem

LinearFQI with a space  $\mathcal F$  of d features, with n samples at each iteration returns a policy  $\pi_K$  after K iterations such that

$$||Q^* - Q^{\pi_K}||_{\mu} \le \frac{2\gamma}{(1-\gamma)^2} \sqrt{C_{\mu,\rho}} \left( 4d(\mathcal{F}, \mathcal{T}\mathcal{F}) + O\left(V_{\max}\left(1 + \frac{L}{\sqrt{\omega}}\right)\sqrt{\frac{d\log n/\delta}{n}}\right) \right) + O\left(\frac{\gamma^K}{(1-\gamma)^3} V_{\max}^2\right)$$

The *approximation* error is *worse* than in regression  $\Rightarrow$  how do *adapt* to the Bellman operator?



#### **Theorem**

LinearFQI with a space  $\mathcal F$  of d features, with n samples at each iteration returns a policy  $\pi_K$  after K iterations such that

$$\begin{split} ||Q^* - Q^{\pi_K}||_{\mu} \leq & \frac{2\gamma}{(1 - \gamma)^2} \sqrt{C_{\mu,\rho}} \Bigg( 4d(\mathcal{F}, \mathcal{T}\mathcal{F}) + O\bigg(V_{\max}\Big(1 + \frac{L}{\sqrt{\omega}}\Big)\sqrt{\frac{d\log n/\delta}{n}}\bigg) \Bigg) \\ & + O\bigg(\frac{\gamma^K}{(1 - \gamma)^3} V_{\max}^2\bigg) \end{split}$$

The dependency on  $\gamma$  is worse than at each iteration  $\Rightarrow$  is it possible to *avoid* it?



#### Theorem

LinearFQI with a space  $\mathcal F$  of d features, with n samples at each iteration returns a policy  $\pi_K$  after K iterations such that

$$||Q^* - Q^{\pi_K}||_{\mu} \le \frac{2\gamma}{(1-\gamma)^2} \sqrt{C_{\mu,\rho}} \left( 4d(\mathcal{F}, \mathcal{T}\mathcal{F}) + O\left(V_{\max}\left(1 + \frac{L}{\sqrt{\omega}}\right)\sqrt{\frac{d\log n/\delta}{n}}\right) \right) + O\left(\frac{\gamma^K}{(1-\gamma)^3}V_{\max}^2\right)$$

The error decreases exponentially in K

$$\Rightarrow K \approx \varepsilon/(1-\gamma)$$



#### The Final Bound

#### **Theorem**

LinearFQI with a space  $\mathcal F$  of d features, with n samples at each iteration returns a policy  $\pi_K$  after K iterations such that

$$\begin{aligned} ||Q^* - Q^{\pi_K}||_{\mu} &\leq \frac{2\gamma}{(1 - \gamma)^2} \sqrt{C_{\mu,\rho}} \Biggl( 4d(\mathcal{F}, \mathcal{T}\mathcal{F}) + O\Biggl(V_{\max}\Bigl(1 + \frac{L}{\sqrt{\omega}}\bigr) \sqrt{\frac{d \log n/\delta}{n}} \Biggr) \Biggr) \\ &+ O\Biggl(\frac{\gamma^K}{(1 - \gamma)^3} V_{\max}^2 \Biggr) \end{aligned}$$

The smallest eigenvalue of the Gram matrix

 $\Rightarrow$  design the features so as to be *orthogonal* w.r.t.  $\rho$ 



#### The Final Bound

#### Theorem

LinearFQI with a space  $\mathcal F$  of d features, with n samples at each iteration returns a policy  $\pi_K$  after K iterations such that

$$\begin{aligned} ||Q^* - Q^{\pi_K}||_{\mu} &\leq \frac{2\gamma}{(1 - \gamma)^2} \sqrt{C_{\mu,\rho}} \Bigg( 4d(\mathcal{F}, \mathcal{T}\mathcal{F}) + O\bigg(V_{\max}\Big(1 + \frac{L}{\sqrt{\omega}}\Big) \sqrt{\frac{d \log n/\delta}{n}} \bigg) \Bigg) \\ &+ O\bigg(\frac{\gamma^K}{(1 - \gamma)^3} V_{\max}^2 \bigg) \end{aligned}$$

The asymptotic rate O(d/n) is the same as for regression



## Summary

- ▶ At each iteration FQI solves a regression problem
  - ⇒ *least–squares* prediction error bound



## Summary

- At each iteration FQI solves a regression problem
   ⇒ least-squares prediction error bound
- ► The error is propagated through iterations ⇒ propagation of any error



## Outline

**Preliminaries** 

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)
Least-Squares Temporal-Difference Learning (LSTD)
LSTD and LSPI Error Bounds

Classification-based Policy Iteration

Discussion



# Finite-Sample Performance Bound of Least-Squares Policy Iteration (LSPI)



## Least-Squares Policy Iteration (LSPI)

LSPI: is an approximate policy iteration algorithm that uses

Least-Squares Temporal-Difference Learning (LSTD)

for policy evaluation.



## Objective of the Section

 a brief description of LSTD (policy evaluation) and LSPI (policy iteration) algorithms

report final sample performance bounds for LSTD and LSPI

describe the main components of these bounds



#### Outline

#### **Preliminaries**

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Least-Squares Temporal-Difference Learning (LSTD)

I STD and LSPI Error Bounds

Classification-based Policy Iteration

Discussion



# Least-Squares Temporal-Difference Learning (LSTD)

▶ Linear function space  $\mathcal{F} = \{f: f(\cdot) = \sum_{i=1}^d \alpha_i \varphi_i(\cdot)\}$ 

$$\{\varphi_j\}_{j=1}^d \in \mathcal{B}(\mathcal{X}; L)$$
 ,  $\phi: \mathcal{X} \to \mathbb{R}^d, \ \phi(\cdot) = (\varphi_1(\cdot), \dots, \varphi_d(\cdot))^\top$ 

 $ightharpoonup V^{\pi}$  is the fixed-point of  $\mathcal{T}^{\pi}$ 

$$V^{\pi} = \mathcal{T}^{\pi}V^{\pi}$$

 $ightharpoonup V^{\pi}$  may not belong to  ${\cal F}$ 

$$V^{\pi} \notin \mathcal{F}$$

▶ Best approximation of  $V^{\pi}$  in  $\mathcal{F}$  is

$$\Pi V^{\pi} = \operatorname*{arg\,min}_{f \in \mathcal{F}} ||V^{\pi} - f||$$

( $\Pi$  is the projection onto  $\mathcal{F}$ )





## Least-Squares Temporal-Difference Learning (LSTD)

- ▶ LSTD searches for the fixed-point of  $\Pi_2 \mathcal{T}^{\pi}$  instead ( $\Pi_2$  is a projection into  $\mathcal{F}$  w.r.t.  $L_{7}$ -norm)
- $ightharpoonup \Pi_{\infty} \mathcal{T}^{\pi}$  is a contraction in  $L_{\infty}$ -norm
  - $ightharpoonup L_{\infty}$ -projection is numerically expensive when the number of states is large or infinite
- ▶ LSTD searches for the fixed-point of  $\Pi_{2,\rho}\mathcal{T}^{\pi}$

$$\Pi_{2,\rho} \ g = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} ||g - f||_{2,\rho}$$



# Least-Squares Temporal-Difference Learning (LSTD)

When the fixed-point of  $\Pi_o \mathcal{T}^{\pi}$  exists, we call it the LSTD solution

$$V_{\mathsf{TD}} = \Pi_{\rho} \mathcal{T}^{\pi} V_{\mathsf{TD}}$$



$$\begin{split} \langle r^\pi + \gamma P^\pi V_{\mathsf{TD}} - V_{\mathsf{TD}}, \varphi_i \rangle_\rho &= 0 \\ \underbrace{\langle r^\pi, \varphi_i \rangle_\rho}_{} - \sum_{i=1}^d \underbrace{\langle \varphi_j - \gamma P^\pi \varphi_j, \varphi_i \rangle_\rho}_{} \cdot \alpha_{\mathsf{TD}}^{(j)} &= 0 \quad \longrightarrow \quad \textit{A} \; \alpha_{\mathsf{TD}} = \textit{b} \end{split}$$

 $\langle \mathcal{T}^{\pi} V_{\mathsf{TD}} - V_{\mathsf{TD}}, \varphi_i \rangle_{\rho} = 0, \qquad i = 1, \dots, d$ 

- In general,  $\Pi_{\rho}\mathcal{T}^{\pi}$  is not a contraction and does not have a fixed-point.
- ▶ If  $\rho = \rho^{\pi}$ , the stationary dist. of  $\pi$ , then  $\Pi_{\rho^{\pi}} \mathcal{T}^{\pi}$  has a unique fixed-point.



#### Proposition (LSTD Performance)

$$||V^{\pi} - V_{\mathsf{TD}}||_{\rho^{\pi}} \le \frac{1}{\sqrt{1 - \gamma^2}} \inf_{V \in \mathcal{F}} ||V^{\pi} - V||_{\rho^{\pi}}$$

## LSTD Algorithm

- We observe a trajectory generated by following the policy  $\pi$   $(X_0,R_0,X_1,R_1,\ldots,X_N)$  where  $X_{t+1}\sim P\big(\cdot|X_t,\pi(X_t)\big)$  and  $R_t=r\big(X_t,\pi(X_t)\big)$
- $\blacktriangleright$  We build estimators of the matrix A and vector b

$$\widehat{A}_{ij} = \frac{1}{N} \sum_{t=0}^{N-1} \varphi_i(X_t) \left[ \varphi_j(X_t) - \gamma \varphi_j(X_{t+1}) \right] \qquad , \qquad \widehat{b}_i = \frac{1}{N} \sum_{t=0}^{N-1} \varphi_i(X_t) R_t$$

 $\widehat{A}\widehat{\alpha}_{\mathsf{TD}} = \widehat{b} \qquad , \qquad \widehat{V}_{\mathsf{TD}}(\cdot) = \phi(\cdot)^{\top}\widehat{\alpha}_{\mathsf{TD}}$ 

when  $n \to \infty$  then  $\widehat{A} \to A$  and  $\widehat{b} \to b$ , and thus,  $\widehat{\alpha}_{\mathsf{TD}} \to \alpha_{\mathsf{TD}}$  and  $\widehat{V}_{\mathsf{TD}} \to V_{\mathsf{TD}}$ .



### Outline

**Preliminaries** 

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Least-Squares Temporal-Difference Learning (LSTD)

LSTD and LSPI Error Bounds

Classification-based Policy Iteration

Discussion



### LSTD Error Bound

When the Markov chain induced by the policy under evaluation  $\pi$  has a stationary distribution  $\rho^{\pi}$  (Markov chain is ergodic - e.g.  $\beta$ -mixing), then

#### Theorem (LSTD Error Bound)

Let  $\tilde{V}$  be the truncated LSTD solution computed using n samples along a trajectory generated by following the policy  $\pi$ . Then with probability  $1-\delta$ , we have

$$||V^{\pi} - \widetilde{V}||_{\rho^{\pi}} \le \frac{c}{\sqrt{1 - \gamma^2}} \inf_{f \in \mathcal{F}} ||V^{\pi} - f||_{\rho^{\pi}} + O\left(\sqrt{\frac{d \log(d/\delta)}{n \nu}}\right)$$

- ightharpoonup n=# of samples , d= dimension of the linear function space  ${\cal F}$
- $\nu$  = the smallest eigenvalue of the Gram matrix  $(\int \varphi_i \ \varphi_j \ d\rho^{\pi})_{i,j}$ (Assume: eigenvalues of the Gram matrix are strictly positive - existence of the model-based LSTD solution)
- $\triangleright$   $\beta$ -mixing coefficients are hidden in the  $O(\cdot)$  notation



### LSTD Error Bound

#### LSTD Error Bound

$$||V^{\pi} - \widetilde{V}||_{\rho^{\pi}} \leq \frac{c}{\sqrt{1 - \gamma^2}} \underbrace{\inf_{f \in \mathcal{F}} ||V^{\pi} - f||_{\rho^{\pi}}}_{\text{approximation error}} + \underbrace{O\left(\sqrt{\frac{d \log(d/\delta)}{n \ \nu}}\right)}_{\text{estimation error}}$$

- ▶ **Approximation error:** it depends on how well the function space  $\mathcal F$  can approximate the value function  $V^\pi$
- **Estimation error:** it depends on the number of samples n, the dim of the function space d, the smallest eigenvalue of the Gram matrix  $\nu$ , the mixing properties of the Markov chain (hidden in O)



#### Theorem (LSPI Error Bound)

Let  $V_{-1}\in\widetilde{\mathcal{F}}$  be an arbitrary initial value function,  $\widetilde{V}_0,\ldots,\widetilde{V}_{K-1}$  be the sequence of truncated value functions generated by LSPI after K iterations, and  $\pi_K$  be the greedy policy w.r.t.  $\widetilde{V}_{K-1}$ . Then with probability  $1-\delta$ , we have

$$||V^* - V^{\pi_K}||_{\mu} \le \frac{4\gamma}{(1 - \gamma)^2} \left\{ \sqrt{CC_{\mu,\rho}} \left[ cE_0(\mathcal{F}) + O\left(\sqrt{\frac{d\log(dK/\delta)}{n \nu_{\rho}}}\right) \right] + \gamma^{\frac{K - 1}{2}} R_{\max} \right\}$$



#### Theorem (LSPI Error Bound)

Let  $V_{-1}\in\widetilde{\mathcal{F}}$  be an arbitrary initial value function,  $\widetilde{V}_0,\ldots,\widetilde{V}_{K-1}$  be the sequence of truncated value functions generated by LSPI after K iterations, and  $\pi_K$  be the greedy policy w.r.t.  $\widetilde{V}_{K-1}$ . Then with probability  $1-\delta$ , we have

$$||V^* - V^{\pi_K}||_{\mu} \le \frac{4\gamma}{(1-\gamma)^2} \left\{ \sqrt{CC_{\mu,\rho}} \left[ cE_0(\mathcal{F}) + O\left(\sqrt{\frac{d\log(dK/\delta)}{n \nu_{\rho}}}\right) \right] + \gamma^{\frac{K-1}{2}} R_{\max} \right\}$$

▶ Approximation error:  $E_0(\mathcal{F}) = \sup_{\pi \in \mathcal{G}(\widetilde{\mathcal{F}})} \inf_{f \in \mathcal{F}} ||V^{\pi} - f||_{\rho^{\pi}}$ 



#### Theorem (LSPI Error Bound)

Let  $V_{-1} \in \widetilde{\mathcal{F}}$  be an arbitrary initial value function,  $\widetilde{V}_0, \dots, \widetilde{V}_{K-1}$  be the sequence of truncated value functions generated by LSPI after K iterations, and  $\pi_K$  be the greedy policy w.r.t.  $\widetilde{V}_{K-1}$ . Then with probability  $1-\delta$ , we have

$$||V^* - V^{\pi_K}||_{\mu} \le \frac{4\gamma}{(1-\gamma)^2} \left\{ \sqrt{CC_{\mu,\rho}} \left[ cE_0(\mathcal{F}) + O\left(\sqrt{\frac{d\log(dK/\delta)}{n \nu_{\rho}}}\right) \right] + \gamma^{\frac{K-1}{2}} R_{\max} \right\}$$

- ▶ Approximation error:  $E_0(\mathcal{F}) = \sup_{\pi \in \mathcal{G}(\widetilde{\mathcal{F}})} \inf_{f \in \mathcal{F}} ||V^{\pi} f||_{\rho^{\pi}}$
- **Estimation error:** depends on  $n, d, \nu_{\rho}, K$



#### Theorem (LSPI Error Bound)

Let  $V_{-1} \in \widetilde{\mathcal{F}}$  be an arbitrary initial value function,  $\widetilde{V}_0, \dots, \widetilde{V}_{K-1}$  be the sequence of truncated value functions generated by LSPI after K iterations, and  $\pi_K$  be the greedy policy w.r.t.  $\widetilde{V}_{K-1}$ . Then with probability  $1-\delta$ , we have

$$||V^* - V^{\pi_K}||_{\mu} \le \frac{4\gamma}{(1-\gamma)^2} \left\{ \sqrt{CC_{\mu,\rho}} \left[ cE_0(\mathcal{F}) + O\left(\sqrt{\frac{d\log(dK/\delta)}{n\nu_{\rho}}}\right) \right] + \gamma^{\frac{K-1}{2}} R_{\max} \right\}$$

- ▶ Approximation error:  $E_0(\mathcal{F}) = \sup_{\pi \in \mathcal{G}(\widetilde{\mathcal{F}})} \inf_{f \in \mathcal{F}} ||V^{\pi} f||_{\rho^{\pi}}$
- **Estimation error:** depends on  $n, d, \nu_{\rho}, K$
- Initialization error: error due to the choice of the initial value function or initial policy  $|V^*-V^{\pi_0}|$



$$||V^* - V^{\pi_K}||_{\mu} \le \frac{4\gamma}{(1-\gamma)^2} \left\{ \sqrt{CC_{\mu,\rho}} \left[ cE_0(\mathcal{F}) + O\left(\sqrt{\frac{d\log(dK/\delta)}{n \nu_{\rho}}}\right) \right] + \gamma^{\frac{K-1}{2}} R_{\max} \right\}$$

## Lower-Bounding Distribution

There exists a distribution  $\rho$  such that for any policy  $\pi \in \mathcal{G}(\widetilde{\mathcal{F}})$ , we have  $\rho \leq C \rho^{\pi}$ , where  $C < \infty$  is a constant and  $\rho^{\pi}$  is the stationary distribution of  $\pi$ . Furthermore, we can define the concentrability coefficient  $C_{\mu,\rho}$  as before.



$$||V^* - V^{\pi_K}||_{\mu} \le \frac{4\gamma}{(1-\gamma)^2} \left\{ \sqrt{CC_{\mu,\rho}} \left[ cE_0(\mathcal{F}) + O\left(\sqrt{\frac{d\log(dK/\delta)}{n\nu_{\rho}}}\right) \right] + \gamma^{\frac{K-1}{2}} R_{\max} \right\}$$

### Lower-Bounding Distribution

There exists a distribution  $\rho$  such that for any policy  $\pi \in \mathcal{G}(\widetilde{\mathcal{F}})$ , we have  $\rho \leq C\rho^{\pi}$ , where  $C < \infty$  is a constant and  $\rho^{\pi}$  is the stationary distribution of  $\pi$ . Furthermore, we can define the concentrability coefficient  $C_{\mu,\rho}$  as before.

 $\nu_{\rho}$  = the smallest eigenvalue of the Gram matrix  $(\int \varphi_i \ \varphi_j \ d\rho)_{i,j}$ 



## Outline

**Preliminaries** 

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Algorithm

Bounds on Error at each Iteration and Final Error

Discussion



# Finite-Sample Performance Bound of a Classification-based Policy Iteration Algorithm



## Objective of the Section

 classification-based vs. regression-based (value function-based) policy iteration

describe a classification-based policy iteration algorithm

- report bounds on the error at each iteration and on the error after K iterations of the algorithm
- describe the main components of these bounds



# Value-based (Approximate) Policy Iteration



\* We use Monte-Carlo estimation for illustration purposes.



## Classification-based Policy Iteration



\* First introduced by Lagoudakis & Parr (2003) and Fern et al. (2004,2006).



# Value-based vs Classification-based Policy Iteration





## **Appealing Properties**

- ▶ **Property 1.** More important to have a policy with a performance similar to the greedy policy w.r.t.  $Q^{\pi_k}$  than an accurate approximation of  $Q^{\pi_k}$ .
- ► **Property 2.** In some problems good policies are easier to represent and learn than their corresponding value functions.



### Outline

#### **Preliminaries**

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Algorithm

Bounds on Error at each Iteration and Final Error

Discussion



**Input:** policy space  $\Pi \subseteq \mathcal{B}^{\pi}(\mathcal{X})$ , state distribution  $\rho$ , number of rollout states N, number of rollouts per state-action pair M, rollout horizon H

**Initialize:** Let  $\pi_0 \in \Pi$  be an arbitrary policy

for 
$$k = 0, 1, 2, ...$$
 do

Construct the rollout set  $\mathcal{D}_k = \{x_i\}_{i=1}^N, \ x_i \stackrel{\text{iid}}{\sim} \rho$ 

for all states  $x_i \in \mathcal{D}_k$  and actions  $a \in \mathcal{A}$  do

for 
$$j=1$$
 to  $M$  do

Perform a rollout according to policy  $\pi_k$  and return

$$R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{H-1} \gamma^t r(x^t, \pi_k(x^t)),$$

with 
$$x^t \sim p\big(\cdot | x^{t-1}, \pi_k(x^{t-1})\big)$$
 and  $x^1 \sim p(\cdot | x_i, a)$ 

#### end for

$$\widehat{Q}_{j}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{j=1}^M R_j^{\pi_k}(x_i, a)$$

end for

$$\pi_{k+1} = \arg\min_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)$$
 (classifier)

end for



**Input:** policy space  $\Pi \subseteq \mathcal{B}^{\pi}(\mathcal{X})$ , state distribution  $\rho$ , number of rollout states N, number of rollouts per state-action pair M, rollout horizon H**Initialize:** Let  $\pi_0 \in \Pi$  be an arbitrary policy

for 
$$k = 0, 1, 2, ...$$
 do

Construct the rollout set 
$$\mathcal{D}_k = \{x_i\}_{i=1}^N, \ x_i \stackrel{\text{iid}}{\sim} \rho$$

for all states 
$$x_i \in \mathcal{D}_k$$
 and actions  $a \in \mathcal{A}$  do

for 
$$j=1$$
 to  $M$  do

Perform a rollout according to policy  $\pi_k$  and return

$$R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{H-1} \gamma^t r(x^t, \pi_k(x^t)),$$

with 
$$x^t \sim p \left( \cdot | x^{t-1}, \pi_k(x^{t-1}) \right)$$
 and  $x^1 \sim p(\cdot | x_i, a)$  end for

$$\widehat{Q}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{i=1}^{M} R_i^{\pi_k}(x_i, a)$$

$$Q^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{j=1}^{M} R_j^{\pi_k}(x_i, a)$$
 end for

$$\pi_{k+1} = \arg\min_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)$$

(classifier)

end for



**Input:** policy space  $\Pi \subseteq \mathcal{B}^{\pi}(\mathcal{X})$ , state distribution  $\rho$ , number of rollout states N, number of rollouts per state-action pair M, rollout horizon H

**Initialize:** Let  $\pi_0 \in \Pi$  be an arbitrary policy

for 
$$k = 0, 1, 2, ...$$
 do

Construct the rollout set  $\mathcal{D}_k = \{x_i\}_{i=1}^N, \ x_i \stackrel{\text{iid}}{\sim} \rho$ 

for all states  $x_i \in \mathcal{D}_k$  and actions  $a \in \mathcal{A}$  do

for j=1 to M do

Perform a rollout according to policy  $\pi_k$  and return

$$R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{H-1} \gamma^t r(x^t, \pi_k(x^t)),$$

with 
$$x^t \sim p\big(\cdot | x^{t-1}, \pi_k(x^{t-1})\big)$$
 and  $x^1 \sim p(\cdot | x_i, a)$ 

end for

$$\widehat{Q}_{j}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{j=1}^M R_j^{\pi_k}(x_i, a)$$

end for

$$\pi_{k+1} = \arg\min_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)$$

end for

(classifier)



Input: policy space  $\Pi\subseteq\mathcal{B}^\pi(\mathcal{X})$ , state distribution  $\rho$ , number of rollout states N, number of rollouts per state-action pair M, rollout horizon H Initialize: Let  $\pi_0\in\Pi$  be an arbitrary policy for  $k=0,1,2,\ldots$  do Construct the rollout set  $\mathcal{D}_k=\{x_i\}_{i=1}^N,\ x_i\stackrel{\text{iid}}{\sim}\rho$  for all states  $x_i\in\mathcal{D}_k$  and actions  $a\in\mathcal{A}$  do

for j=1 to M do

Perform a rollout according to policy  $\pi_k$  and return

$$R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{H-1} \gamma^t r(x^t, \pi_k(x^t)),$$

$$\begin{array}{l} \text{with } x^t \sim p\big(\cdot|x^{t-1},\pi_k(x^{t-1})\big) \text{ and } x^1 \sim p(\cdot|x_i,a) \\ \text{end for} \\ \widehat{Q}^{\pi_k}(x_i,a) = \frac{1}{M} \sum_{j=1}^M R_j^{\pi_k}(x_i,a) \\ \text{end for} \\ \pi_{k+1} = \arg\min_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}\;;\pi) \end{array}$$

(classifier)



end for

**Input:** policy space  $\Pi \subseteq \mathcal{B}^{\pi}(\mathcal{X})$ , state distribution  $\rho$ , number of rollout states N, number of rollouts per state-action pair M, rollout horizon H

**Initialize:** Let  $\pi_0 \in \Pi$  be an arbitrary policy

for 
$$k = 0, 1, 2, ...$$
 do

Construct the rollout set  $\mathcal{D}_k = \{x_i\}_{i=1}^N, \ x_i \stackrel{\text{iid}}{\sim} \rho$ 

for all states  $x_i \in \mathcal{D}_k$  and actions  $a \in \mathcal{A}$  do

$$\mathbf{for}\ j=1\ \mathsf{to}\ M\ \mathbf{do}$$

Perform a rollout according to policy  $\pi_k$  and return

$$R_j^{\pi_k}(x_i, a) = r(x_i, a) + \sum_{t=1}^{H-1} \gamma^t r(x^t, \pi_k(x^t)),$$

with 
$$x^t \sim p\big(\cdot | x^{t-1}, \pi_k(x^{t-1})\big)$$
 and  $x^1 \sim p(\cdot | x_i, a)$ 

#### end for

$$\widehat{Q}^{\pi_k}(x_i, a) = \frac{1}{M} \sum_{j=1}^M R_j^{\pi_k}(x_i, a)$$

end for

$$\pi_{k+1} = \arg\min_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)$$

end for

(classifier)



#### **Empirical Error:**

$$\widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho};\pi) = \frac{1}{N} \sum_{i=1}^{N} \left[ \max_{a \in \mathcal{A}} \widehat{Q}^{\pi_k}(x_i, a) - \widehat{Q}^{\pi_k}(x_i, \pi(x_i)) \right],$$

 $(\widehat{\rho} \text{ is the empirical distribution induced by the samples in } \mathcal{D}_k)$ 

with the objective to minimize the Expected Error

$$\mathcal{L}_{\pi_k}(\rho; \pi) = \int_{\mathcal{X}} \left[ \max_{a \in \mathcal{A}} Q^{\pi_k}(x, a) - Q^{\pi_k}(x, \pi(x)) \right] \rho(dx)$$



# Mistake-based vs. Gap-based Errors

#### Mistake-based error

$$\begin{split} \mathcal{L}_{\pi_k}(\rho\;;\pi) &= \mathbb{E}_{x \sim \rho} \Big[ \mathbb{I} \left\{ \pi(x) \neq (\mathcal{G}\pi_k)(x) \right\} \Big] \\ &= \int_{\mathcal{X}} \mathbb{I} \left\{ \pi(x) \neq \arg\max_{a \in \mathcal{A}} Q^{\pi_k}(x,a) \right\} \rho(dx) \end{split}$$

#### Gap-based error

$$\begin{split} &\mathcal{L}_{\pi_k}(\rho\;;\pi) = \int_{\mathcal{X}} \Big[ \max_{a \in \mathcal{A}} Q^{\pi_k}(x,a) - Q^{\pi_k} \big(x,\pi(x)\big) \Big] \rho(dx) \\ &= \int_{\mathcal{X}} \mathbb{I} \left\{ \pi(x) \neq \arg\max_{a \in \mathcal{A}} Q^{\pi_k}(x,a) \right\} \Big[ \max_{a \in \mathcal{A}} Q^{\pi_k}(x,a) - Q^{\pi_k} \big(x,\pi(x)\big) \Big] \rho(dx) \end{split}$$



## Mistake-based vs. Gap-based Errors

#### Mistake-based error

$$\mathcal{L}_{\pi_k}(\rho;\pi) = \mathbb{E}_{x \sim \rho} \Big[ \mathbb{I} \left\{ \pi(x) \neq (\mathcal{G}\pi_k)(x) \right\} \Big]$$

$$= \int_{\mathcal{X}} \underbrace{\mathbb{I} \left\{ \pi(x) \neq \arg\max_{a \in \mathcal{A}} Q^{\pi_k}(x,a) \right\}}_{\text{mistake}} \rho(dx)$$

#### Gap-based error

$$\begin{split} \mathcal{L}_{\pi_k}(\rho\;;\pi) &= \int_{\mathcal{A}} \Big[ \max_{a \in \mathcal{A}} Q^{\pi_k}(x,a) - Q^{\pi_k} \big(x,\pi(x)\big) \Big] \rho(dx) \\ &= \int_{\mathcal{X}} \underbrace{\mathbb{I}\left\{ \pi(x) \neq \arg\max_{a \in \mathcal{A}} Q^{\pi_k}(x,a) \right\}}_{\text{mistake}} \Big[ \max_{a \in \mathcal{A}} Q^{\pi_k}(x,a) - Q^{\pi_k} \big(x,\pi(x)\big) \Big] \rho(dx) \end{split}$$



# Mistake-based vs. Gap-based Errors

#### Mistake-based error

$$\mathcal{L}_{\pi_k}(\rho \; ; \pi) = \mathbb{E}_{x \sim \rho} \left[ \mathbb{I} \left\{ \pi(x) \neq (\mathcal{G}\pi_k)(x) \right\} \right]$$

$$= \int_{\mathcal{X}} \underbrace{\mathbb{I} \left\{ \pi(x) \neq \arg \max_{a \in \mathcal{A}} Q^{\pi_k}(x, a) \right\}}_{\text{mistake}} \rho(dx)$$

## Gap-based error

$$\begin{split} \mathcal{L}_{\pi_k}(\rho\;;\pi) &= \int_{\mathcal{X}} \bigg[ \max_{a \in \mathcal{A}} Q^{\pi_k}(x,a) - Q^{\pi_k} \big(x,\pi(x)\big) \bigg] \rho(dx) \\ &= \int_{\mathcal{X}} \underbrace{\mathbb{I}\left\{ \pi(x) \neq \arg\max_{a \in \mathcal{A}} Q^{\pi_k}(x,a) \right\}}_{\text{mistake}} \underbrace{\bigg[ \max_{a \in \mathcal{A}} Q^{\pi_k}(x,a) - Q^{\pi_k} \big(x,\pi(x)\big) \bigg]}_{\text{cost/regret}} \rho(dx) \end{split}$$



## Outline

#### **Preliminaries**

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Algorithm

Bounds on Error at each Iteration and Final Error

Discussion



## Error at each Iteration

#### Theorem

Let  $\Pi$  be a policy space with  $h=VC(\Pi)<\infty$  and  $\rho$  be a distribution over  $\mathcal{X}$ . Let N be the number of states in  $\mathcal{D}_k$  drawn i.i.d. from  $\rho$ , H be the rollout horizon, and M be the number of rollouts per state-action pair. Let

$$\pi_{k+1} = \operatorname*{arg\,min}_{\pi \in \Pi} \widehat{\mathcal{L}}_{\pi_k}(\widehat{\rho}; \pi)$$

be the policy computed at the k 'th iteration of DPI . Then, for any  $\delta>0$ 

$$\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \le \inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi) + 2(\epsilon_1 + \epsilon_2 + \gamma^H Q_{\max}),$$

with probability  $1 - \delta$ , where

$$\epsilon_1 = 16Q_{\max}\sqrt{rac{2}{N}\left(h\lograc{eN}{h} + \lograc{32}{\delta}
ight)}$$
 and

$$\epsilon_2 = 8(1 - \gamma^{H})Q_{\text{max}}\sqrt{\frac{2}{MN}\left(h\log\frac{eMN}{h} + \log\frac{32}{\delta}\right)}$$



#### The bound

$$\mathcal{L}_{\pi_k}(\rho\;;\pi_{k+1}) \leq \underbrace{\inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho\;;\pi)}_{\text{approximation}} \; + 2\underbrace{\left(\epsilon_1(N) + \epsilon_2(N,M,H) + \gamma^H Q_{\max}\right)}_{\text{estimation}}$$

- Approximation error: it depends on how well the policy space Π can approximate greedy policies.
- ► **Estimation error:** it depends on the number of rollout states, number of rollouts, and the rollout horizon.



#### The bound

$$\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \leq \inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi) + 2(\epsilon_1(N) + \epsilon_2(N, M, H) + \gamma^H Q_{\max})$$

#### The approximation error

$$\begin{split} &\inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho \ ; \pi) = \\ &\inf_{\pi \in \Pi} \int_{\mathcal{X}} \mathbb{I} \left\{ \pi(x) \neq (\mathcal{G}\pi_k)(x) \right\} \Big[ \max_{a \in \mathcal{A}} Q^{\pi_k}(x, a) - Q^{\pi_k} \big( x, \pi(x) \big) \Big] \rho(dx) \end{split}$$



The bound

$$\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \le \inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi) + 2(\epsilon_1(N) + \epsilon_2(N, M, H) + \gamma^H Q_{\max})$$

The estimation error

$$\begin{aligned} \epsilon_1 &= 16Q_{\max}\sqrt{\frac{2}{N}\left( \frac{h}{h}\log\frac{eN}{h} + \log\frac{32}{\delta} \right)} \\ \epsilon_2 &= 8(1 - \gamma^{\frac{H}{2}})Q_{\max}\sqrt{\frac{2}{MN}\left( \frac{h}{h}\log\frac{eMN}{h} + \log\frac{32}{\delta} \right)} \end{aligned}$$



The bound

$$\mathcal{L}_{\pi_k}(\rho; \pi_{k+1}) \leq \inf_{\pi \in \Pi} \mathcal{L}_{\pi_k}(\rho; \pi) + 2(\epsilon_1(N) + \epsilon_2(N, M, H) + \gamma^H Q_{\max})$$

The estimation error

$$\epsilon_1 = 16Q_{\text{max}} \sqrt{\frac{2}{N} \left( h \log \frac{eN}{h} + \log \frac{32}{\delta} \right)}$$

$$\epsilon_2 = 8(1 - \gamma^H) Q_{\text{max}} \sqrt{\frac{2}{MN} \left( h \log \frac{eMN}{h} + \log \frac{32}{\delta} \right)}$$

- Avoid overfitting  $(\epsilon_1)$ : take  $N\gg h$
- Fixed budget of rollouts B=MN: take M=1 and N=B
- ▶ Fixed budget B=NMH and M=1 : take  $H=O(\frac{\log B}{\log 1/\gamma})$  and N=O(B/H)



#### Theorem

Let  $\Pi$  be a policy space with VC-dimension h and  $\pi_K$  be the policy generated by DPI after K iterations. Then, for any  $\delta > 0$ 

$$||V^* - V^{\pi_K}||_{1,\mu} \le \frac{C_{\mu,\rho}}{(1-\gamma)^2} \left[ d(\Pi,\mathcal{G}\Pi) + 2(\epsilon_1 + \epsilon_2 + \gamma^H Q_{\max}) \right] + \frac{2\gamma^K R_{\max}}{1-\gamma}$$

with probability  $1 - \delta$ , where

$$\epsilon_1 = 16Q_{ ext{max}}\sqrt{rac{2}{N}\left(h\lograc{eN}{h} + \lograc{32K}{\delta}
ight)}$$
 and

$$\epsilon_2 = 8(1 - \gamma^H)Q_{\text{max}}\sqrt{\frac{2}{MN}\left(h\log\frac{eMN}{h} + \log\frac{32K}{\delta}\right)}$$



#### $\mathsf{Theorem}$

Let  $\Pi$  be a policy space with VC-dimension h and  $\pi_K$  be the policy generated by DPI after K iterations. Then, for any  $\delta > 0$ 

$$||V^* - V^{\pi_K}||_{1,\mu} \leq \frac{C_{\mu,\rho}}{(1-\gamma)^2} \Big[ d(\Pi,\mathcal{G}\Pi) + 2(\epsilon_1 + \epsilon_2 + \gamma^H Q_{\max}) \Big] + \frac{2\gamma^K R_{\max}}{1-\gamma}$$

with probability  $1 - \delta$ , where

$$\epsilon_1 = 16Q_{\max}\sqrt{\frac{2}{N}\left(h\log\frac{eN}{h} + \log\frac{32K}{\delta}\right)} \qquad \text{and} \qquad$$

$$\epsilon_2 = 8(1 - \gamma^H)Q_{\text{max}}\sqrt{\frac{2}{MN}\left(h\log\frac{eMN}{h} + \log\frac{32K}{\delta}\right)}$$

Concentrability coefficient:  $C_{u,\rho}$ 



#### $\mathsf{Theorem}$

Let  $\Pi$  be a policy space with VC-dimension h and  $\pi_K$  be the policy generated by DPI after K iterations. Then, for any  $\delta > 0$ 

$$||V^* - V^{\pi_K}||_{1,\mu} \leq \frac{C_{\mu,\rho}}{(1-\gamma)^2} \Big[ d(\Pi,\mathcal{G}\Pi) + 2 \textcolor{red}{(\epsilon_1 + \epsilon_2 + \gamma^H Q_{\max})} \Big] + \frac{2\gamma^K R_{\max}}{1-\gamma}$$

with probability  $1 - \delta$ , where

$$\epsilon_1 = 16 Q_{
m max} \sqrt{rac{2}{N} \left(h \log rac{eN}{h} + \log rac{32K}{\delta}
ight)}$$
 and

$$\epsilon_2 = 8(1 - \gamma^H)Q_{\text{max}}\sqrt{\frac{2}{MN}\left(h\log\frac{eMN}{h} + \log\frac{32K}{\delta}\right)}$$

**Estimation error:** depends on M, N, H, h, and K



#### Theorem

Let  $\Pi$  be a policy space with VC-dimension h and  $\pi_K$  be the policy generated by DPI after K iterations. Then, for any  $\delta > 0$ 

$$||V^* - V^{\pi_K}||_{1,\mu} \leq \frac{C_{\mu,\rho}}{(1-\gamma)^2} \Big[ d(\Pi,\mathcal{G}\Pi) + 2(\epsilon_1 + \epsilon_2 + \gamma^H Q_{\max}) \Big] + \frac{2\gamma^K R_{\max}}{1-\gamma}$$

with probability  $1 - \delta$ , where

$$\epsilon_1 = 16Q_{
m max}\sqrt{rac{2}{N}\left(h\lograc{eN}{h} + \lograc{32K}{\delta}
ight)}$$
 and

$$\epsilon_2 = 8(1 - \gamma^H)Q_{\text{max}}\sqrt{\frac{2}{MN}\left(h\log\frac{eMN}{h} + \log\frac{32K}{\delta}\right)}$$

Initialization error: error due to the choice of the initial policy





## Inherent Greedy Error $d(\Pi, \mathcal{G}\Pi)$

(approximation error)

$$d(\Pi, \mathcal{G}\Pi) = \sup_{\pi \in \Pi} \inf_{\pi' \in \Pi} \mathcal{L}_{\pi}(\rho; \pi')$$

$$= \sup_{\pi \in \Pi} \inf_{\pi' \in \Pi} \int_{\mathcal{X}} \mathbb{I} \left\{ \pi'(x) \neq (\mathcal{G}\pi)(x) \right\} \Big[ \max_{a \in \mathcal{A}} Q^{\pi}(x,a) - Q^{\pi} \big( x, \pi'(x) \big) \Big] \rho(dx)$$





# Other Finite-Sample Analysis Results in Batch RL

- ► Approximate Value Iteration (Munos & Szepesvari 2008)
- Approximate Policy Iteration
  - ► LSTD and LSPI (Lazaric et al. 2010, 2012)
  - ▶ Bellman Residual Minimization (Maillard et al. 2010)
  - ▶ Modified Bellman Residual Minimization (Antos et al. 2008)
  - Classification-based Policy Iteration (Fern et al. 2006; Lazaric et al. 2010; Gabillon et al. 2011; Farahmand et al. 2012)
  - ► Conservative Policy Iteration (Kakade & Langford 2002; Kakade 2003)



# Other Finite-Sample Analysis Results in Batch RL

- ► Approximate Modified Policy Iteration (Scherrer et al. 2012)
- Regularized Approximate Dynamic Programming
  - ▶ L<sub>2</sub>-Regularization
    - ▶  $L_2$ -Regularized Policy Iteration (Farahmand et al. 2008)
    - ▶  $L_2$ -Regularized Fitted Q-Iteration (Farahmand et al. 2009)
  - ▶ L<sub>1</sub>-Regularization and High-Dimensional RL
    - Lasso-TD (Ghavamzadeh et al. 2011)
    - LSTD (LSPI) with Random Projections (Ghavamzadeh et al. 2010)



# Outline

**Preliminaries** 

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

Discussion

Learned Lessons



# **Discussion**



#### **Preliminaries**

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

#### Discussion

Learned Lessons



# **Learned Lessons**



# Comparison to Supervised Learning

we obtain the optimal rate of regression and classification for RL (ADP) algorithms

#### What makes RL more challenging then?

- dependency on  $1/(1-\gamma)$  (sequential nature of the problem)
- the approximation error is more complex
- the propagation of error (control problem)
- the sampling problem (how to choose  $\rho$  exploration problem)



- ▶ Tuning the parameters (given a fixed accuracy  $\epsilon$ )
  - $\blacktriangleright$  number of samples (inverting the bound)  $n \geq \widetilde{\Omega}(\tfrac{d}{\epsilon})$
  - $\blacktriangleright$  number of iterations (inverting the bound)  $K \approx \epsilon/(1-\gamma)$
- choice of function  $\mathcal F$  and/or policy space  $\Pi$
- tradeoff between approximation and estimation errors



## Outline

#### **Preliminaries**

Tools from Statistical Learning Theory

A Step-by-step Derivation for Linear FQI

Least-Squares Policy Iteration (LSPI)

Classification-based Policy Iteration

#### Discussion

Learned Lessons





- High-dimensional spaces: how to deal with MDPs with many state-action variables?
  - ► First example in *deterministic design for LSTD*
  - **Extension** to other algorithms



- High-dimensional spaces: how to deal with MDPs with many state-action variables?
  - ► First example in *deterministic design for LSTD*
  - Extension to other algorithms
- Optimality: how optimal are the current algorithms?
  - ▶ Improve the *sampling* distribution
  - ► Control the *concentrability* terms
  - ▶ Limit the *propagation* of error through iterations



- High-dimensional spaces: how to deal with MDPs with many state-action variables?
  - ► First example in *deterministic design for LSTD*
  - Extension to other algorithms
- Optimality: how optimal are the current algorithms?
  - ▶ Improve the *sampling* distribution
  - ► Control the *concentrability* terms
  - ▶ Limit the *propagation* of error through iterations
- Off–policy learning for LSTD



# Statistical Learning Theory Meets Dynamic Programming



M. Ghavamzadeh, A. Lazaric {mohammad.ghavamzadeh, alessandro.lazaric}@inria.fr

sequel.lille.inria.fr