## Летний коллоквиум по математическому анализу

#### hse-ami-open-exams

### Содержание

| 1 | Понятие числового ряда, его частичной суммы. Сходимость и расходимость числовых рядов. Примеры сходящихся и расходящихся числовых рядов. Необходимый признак |   |  |  |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|
|   |                                                                                                                                                              |   |  |  |  |  |  |
|   | сходимости числового ряда.                                                                                                                                   |   |  |  |  |  |  |
|   | 1.1 Понятие числового ряда, его частичной суммы.                                                                                                             | 2 |  |  |  |  |  |
|   | 1.2 Сходимость и расходимость числовых рядов                                                                                                                 |   |  |  |  |  |  |
|   | 1.3 Примеры сходящихся и расходящихся числовых рядов                                                                                                         | 2 |  |  |  |  |  |
|   | 1.4 Необходимый признак сходимости числового ряда                                                                                                            | 2 |  |  |  |  |  |
| 2 | Критерий Коши сходимости числового ряда. Доказать расходимость гармонического                                                                                |   |  |  |  |  |  |
|   | ряда.                                                                                                                                                        | 3 |  |  |  |  |  |
|   | 2.1 Критерий Коши сходимости числового ряда                                                                                                                  | 3 |  |  |  |  |  |
|   | 2.2 Доказать расходимость гармонического ряда                                                                                                                | 3 |  |  |  |  |  |
| 3 | Критерий сходимости ряда с неотрицательными членами через частичные суммы. Тео-                                                                              |   |  |  |  |  |  |
|   | рема о сравнении и предельный признак сравнения.                                                                                                             | 4 |  |  |  |  |  |
|   | 3.1 Критерий сходимости ряда с неотрицательными членами через частичные суммы                                                                                | 4 |  |  |  |  |  |
|   | 3.2 Теорема о сравнении и предельный признак сравнения                                                                                                       | 4 |  |  |  |  |  |
| 4 | Интегральный признак сходимости числового ряда. Сходимость ряда $\sum_{k=1}^{\infty} rac{1}{k^{lpha} \ln^{eta} k}$ в за-                                    |   |  |  |  |  |  |
|   | висимости от значений $\alpha$ и $\beta$ .                                                                                                                   |   |  |  |  |  |  |
|   | 4.1 Интегральный признак сходимости числового ряда                                                                                                           | 5 |  |  |  |  |  |
|   | 4.2 Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений $\alpha$ и $\beta$ . (TODO)                           | 5 |  |  |  |  |  |
| 5 | Признак Даламбера в простой и предельной формах. Примеры.                                                                                                    |   |  |  |  |  |  |
| 6 | Признак Коши в простой и предельной формах. Примеры.                                                                                                         |   |  |  |  |  |  |

- 1 Понятие числового ряда, его частичной суммы. Сходимость и расходимость числовых рядов. Примеры сходящихся и расходящихся числовых рядов. Необходимый признак сходимости числового ряда.
- 1.1 Понятие числового ряда, его частичной суммы.

**Определение 1.** Числовая последовательность  $a_k$ , рассматриваемая вкупе с последовательностью

$$S_n = \sum_{k=1}^n a_k$$

ее частичных сумм, называется числовым рядом.

#### 1.2 Сходимость и расходимость числовых рядов.

Определение 2. Числовой ряд называется сходящимся, если

$$\exists \lim_{n \to \infty} S_n = S < \infty$$

и расходящимся иначе. Число S называется суммой ряда.

- 1.3 Примеры сходящихся и расходящихся числовых рядов.
  - 1.  $\sum_{n=1}^{\infty} \frac{1}{n}$  расходится (гармонический ряд)
  - 2.  $\sum_{n=1}^{\infty} \frac{1}{n^2} \text{сходится}$
  - $3. \sum_{n=1}^{\infty} \frac{1}{e^n}$  сходится
  - 4.  $\sum_{n=1}^{\infty} n$  расходится

#### 1.4 Необходимый признак сходимости числового ряда.

**Теорема 1.** Необходимым условием сходимости числового ряда является стремление  $\kappa$  0 его n-го члена  $a_n$ .

*Доказательство.* Действительно, в противном случае не выполняется критерий Коши для числовой последовательности  $S_n$ .

## 2 Критерий Коши сходимости числового ряда. Доказать расходимость гармонического ряда.

#### 2.1 Критерий Коши сходимости числового ряда.

Теорема 2. Числовой ряд сходится тогда и только тогда, когда он удовлетворяет условию Коши:

$$\forall \varepsilon > 0 \exists N_{\varepsilon} \forall n \geqslant N \forall p \in \mathbb{N} \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

Доказательство. Следует из критерия Коши сходимости числовой последовательности  $S_n$ .

#### 2.2 Доказать расходимость гармонического ряда.

**Теорема 3.** Гармонический ряд  $\sum_{n=1}^{\infty} \frac{1}{n}$  расходится.

Доказательство. Воспользуемся критерием Коши:

$$\exists \varepsilon > 0 \forall N \exists n \geqslant N \exists p \in \mathbb{N} |S_{n+p} - S_n| \geqslant \varepsilon$$

Пусть p = n. Тогда

$$S_{n+p}-S_n=\frac{1}{n+1}+\ldots+\frac{1}{2n}\geqslant\frac{n}{2n}=\frac{1}{2}=\varepsilon$$

- 3 Критерий сходимости ряда с неотрицательными членами через частичные суммы. Теорема о сравнении и предельный признак сравнения.
- 3.1 Критерий сходимости ряда с неотрицательными членами через частичные суммы.

**Теорема 4.** Ряд с неотрицательными членами  $\sum_{n=1}^{\infty} p_n$  сходится тогда и только тогда, когда последовательность частиных сумм  $\{S_n\}$  ограничена.

Доказательство. Необходимость следует из того, что любая сходящаяся последовательность является ограниченной. Поскольку  $p_n \geqslant 0$ , то  $\{S_n\}$  монотонно возрастает, а тогда по теореме Вейерштрасса эта последовательность сходится тогда и только тогда, когда она является ограниченной сверху. Тем самым доказана достаточность.

#### 3.2 Теорема о сравнении и предельный признак сравнения.

**Теорема 5** (первый признак сравнения). Если  $\forall n \in \mathbb{N} \Rightarrow 0 \leqslant p_n \leqslant q_n, \ mo$ 

- 1. Из сходимости  $\sum q_n$  следует сходимость  $\sum p_n$
- 2. Из расходимости  $\sum p_n$  следует расходимость  $\sum q_n$

Доказательство.

- 1. Напрямую следует из теоремы 4.
- 2. Предположим, что  $\sum p_n$  расходится, а  $\sum q_n$  сходится. Тогда получаем противоречие с пунктом 1.

**Теорема 6** (предельный признак сравнения). Если  $p_n > 0, q_n > 0$  и  $\exists \lim_{n \to \infty} = l \in (0, +\infty)$ , то ряды  $\sum p_n$  и  $\sum q_n$  сходятся и расходятся одновременно.

Доказательство. По определению предела

$$\forall \varepsilon \exists N_{\varepsilon} \forall n \geqslant N \Rightarrow \left| \frac{p_n}{q_n} - l \right| < \varepsilon \Leftrightarrow l - \varepsilon < \frac{p_n}{q_n} < l + \varepsilon \Leftrightarrow q_n(l - \varepsilon) < p_n < q_n(l + \varepsilon).$$

Осталось лишь воспользоваться теоремой 5.

# 4 Интегральный признак сходимости числового ряда. Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений $\alpha$ и $\beta$ .

#### 4.1 Интегральный признак сходимости числового ряда.

**Теорема 7.** Пусть при любом  $k \in [1, +\infty)$  выполняется  $f(k) \ge 0$ , причем  $f(k) \searrow 0$ . Тогда сходимость ряда  $\sum_{k=1}^{\infty} f(k)$  эквивалентна сходимости несобственного интеграла  $\int\limits_{1}^{\infty} f(x) dx$ .

Доказательство. При  $x \in [k, k+1]$ , в силу  $f(x) \searrow$ , имеем  $f(k+1) \leqslant f(x) \leqslant f(k)$ . Возьмем определенный интеграл от всех частей неравенства:

$$\int_{k}^{k+1} f(k+1)dx \leqslant \int_{k}^{k+1} f(x)dx \leqslant \int_{k}^{k+1} f(k)dx$$

$$f(k+1) \leqslant \int_{k}^{k+1} f(x)dx \leqslant f(k)$$

Просуммируем теперь это неравенство по всем k от 1 до n. Получаем

$$\sum_{k=2}^{n+1} f(k) \leqslant \int_{1}^{n+1} f(x) dx \leqslant \sum_{k=1}^{n} f(k)$$

Теперь, если ряд  $\sum_{k=1}^{\infty}$  сходится, то из правой части неравенства следует, что сходится интеграл. Если же сходится интеграл, то из левой части неравенства вытекает, что сходится ряд. Аналогично с расходимостью.

4.2 Сходимость ряда  $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$  в зависимости от значений  $\alpha$  и  $\beta$ . (TODO)

## 5 Признак Даламбера в простой и предельной формах. Примеры.

**Теорема 8** (признак Даламбера в допредельной форме). *Если*  $\forall k \in \mathbb{N}$  *выполнено* 

$$\frac{p_{k+1}}{p_k} \leqslant q < 1,$$

то ряд  $\sum p_k$  сходится. В противном случае ряд расходится.

oОказательство.

| 6 | Признак К | оши в простой | и предельной | формах. | Примеры. |
|---|-----------|---------------|--------------|---------|----------|
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |
|   |           |               |              |         |          |