Geometric Graph Learning for Predicting Protein Mutation Effect

Kangfei Zhao*#, Yu Rong#, Biaobin Jiang#, Jianheng Tang\$,
Hengtong Zhang#, Jeffrey Xu Yu\(^\), Peilin Zhao#

*Beijing Insitute of Technology

#Tencent AI Lab

\$Hong Kong University of Science and Technology

\(^\) The Chine University of Hong Kong

Affinity=0.01

Mutant Proteins

Affinity 0.13 Δ Affinity=0.12

Affinity=2.10 \triangle Affinity=2.09

Background: Protein Rrepresenation

- Protein features: elementary biophysical and sequence-derived features
- Sequence modeling for amino acid residue sequence
 - RNN, Pretrain LLM

- 3D structure modeling
 - 3D convolution

3D graph learning

Graph Learning for Protein Representation

• Single-level: Atom-level vs. Amino acid residue-level

© Cannot model the structural hierarchy of proteins

- Inducive biases: invariant to 3D transformations
- © Cannot preserve the inductive biases

Transition

Rotation

Permutation

Overview: Hierarchical Graph Invariant Network

Overview: Hierarchical Graph Invariant Network

Invariant to transition, rotation of atom coordinates and permutation of atom indices

$$f(\Pi[h_a^{(0)}], \Pi[Qc+g]) = f(h_a^{(0)}, c)$$

Experimental Studies: Setup

- 9 Baseline Approaches
 - 2 ML models: GBDT, SVR
 - 3 Sequence models: PIPR, BertPIPR, ECNet
 - 4 Graph based models: GeoPPI, HGAT, EGNN, GAN
 - Ours: 3-layer EGNN and 3-layer GAN
- 3 Protein Datasets
 - Envision: functional fitness changes
 - SKEMPI: binding free energy changes
 - SARA-COV-2: human antibody affinity against COVID-19 virus changes
- Protein Structures
 - Protein Databank and EvoEF2
- Evaluation Metrics
 - MAE, MSE, STD, Spearman coefficient (R)

Variants	Envision	SKEMPI2	SARS-COV-2
# proteins	6,899	6,323	349
# wild-type	6	348	35
# mutation points	1	$1 \sim 27$	1 ~ 7
# chains	1	2 ~ 8	3
Species	human, rat, mouse, etc.	human, rat, mouse, etc.	human
Range of target	[-0.38, 1.57]	[-9.51, 12.30]	[-2.61, 2.77]

Profile of the Datasets

Experimental Studies: Effectiveness

Category Method	Envision		SKEMPI2			SARS-COV-2							
	MSE ↓	MAE ↓	STD↓	R↑	MSE ↓	MAE ↓	STD↓	R↑	MSE ↓	MAE ↓	STD↓	R ↑	
Classical	SVR	0.1053	0.2666	0.1850	0.4959	3.7153	1.3134	1.4108	0.4044	2.5270	1.4029	0.7476	0.0171
ML	GBDT	0.0536	0.1761	0.1504	0.7887	1.3610	0.8073	0.8422	0.7339	2.2586	1.3318	0.6963	0.1500
Sequence based PIPR BertPIPR ECNet	0.0817	0.2210	0.1814	0.6480	2.5766	1.0735	1.1934	0.5786	10.5463	2.9059	1.4498	0.0059	
	BertPIPR	0.0703	0.2020	0.1814	0.7070	2.2282	0.9937	1.1139	0.6020	9.6517	2.7249	1.4922	-0.1183
	0.0741	0.2004	0.1839	0.7268	1.6146	0.8656	0.9291	0.6793	2.5311	1.3859	0.8084	-0.0193	
9	GeoPPI	0.1197	0.2749	0.2100	0.5473	2.4170	1.1389	1.0582	0.5704	2.7779	1.4011	0.9026	0.2833
Graph based EGI	GAN	0.0748	0.2041	0.1821	0.7318	1.8722	0.9736	0.9614	0.6876	2.3947	1.2806	0.8688	0.1052
	HGAT	0.1005	0.2398	0.2072	0.6269	1.4467	0.8278	0.8726	0.7037	2.1370	1.2259	0.7963	0.3548
	EGNN	0.0924	0.2346	0.1932	0.6506	6.4225	1.7459	1.8369	0.2194	5.3932	1.9169	1.3110	-0.2347
	HGIN	0.0694	0.1715	0.2000	0.7931	1.1646	0.7172	0.8064	0.7646	1.3841	0.9271	0.7242	0.5832

The MSE, MAE, STD of Absolute Error and Spearman coefficient (R) on 3 Protein Datasets

Experimental Studies: Ablation Studies

Variants	SKEMPI2				
variants	MSE ↓	$MAE \downarrow$	STD↓	R↑	
Node (Message)	1.3433	0.7861	0.8517	0.7360	
Node + Seq. (Message)	1.1930	0.7301	0.8123	0.7540	
Node + Spat. (Message)	1.3317	0.7777	0.8526	0.7314	
Node (Att. Bias)	1.6182	0.8738	0.9245	0.7017	
Node + Seq. (Att. Bias)	1.3442	0.7784	0.8592	0.7265	
Node + Spat. (Att. Bias)	1.2410	0.7478	0.8258	0.7525	
2-layer EGNN	1.1793	0.7266	0.8070	0.7551	
4-layer EGNN	1.1495	0.7119	0.8016	0.7676	
2-layer GAN	1.3355	0.7761	0.8562	0.7412	
4-layer GAN	1.1516	0.6887	0.8230	0.7648	

K	MSE ↓	MAE ↓	STD ↓	R↑
32	1.1713	0.7156	0.8120	0.7582
64	1.1216	0.6995	0.7952	0.7698
128	1.1178	0.7063	0.7867	0.7665
256	1.1519	0.7095	0.8053	0.7640
Full	1.1646	0.7172	0.8064	0.7646

Varying the K nearest neighbors of in atom-level

Ablation Studies on SKEMPI2

Experimental Studies: Case Study

Prediction vs. True Value

Protein embedding by T-SNE

Experimental Studies: Case Study

Attention heatmap

Good-performed Case

Bad-performed Case

Thank you!

Q & A

zkf1105@gmail.com