# UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE INFORMÁTICA



| Aplicativo para monitoral | mento | da qual | idade | do    | ar  |
|---------------------------|-------|---------|-------|-------|-----|
|                           | em an | nbiente | hosp  | itala | ar. |

Documentação de Concepção.

Alunos: Luciano Mendes.

## 1. Conceitos operacionais do sistema

#### 1.1. Entidades externas identificadas

Nesse sistema de monitoramento da qualidade do ar foram identificados e documentados os seguintes autores.

- Enfermeiro chefe: Usuário responsável pelo gerenciamento e monitoramento do sistema.
- Plataforma Airpure: Plataforma responsável por coletar e fornecer os dados através de sensores.



#### 1.2. Solução proposto do software

O NeoNatAir é um sistema projetado para aprimorar os cuidados no ambiente UTI por meio do monitoramento preciso das condições dos ambientes hospitalares. Com a API do Airpure fornecendo os dados em tempo real sobre a luminosidade, umidade, nível de ruído, presença de compostos orgânicos voláteis (VOCs) e temperatura, essenciais para garantir um ambiente seguro e saudável. Todas essas informações são facilmente acessíveis aos profissionais responsáveis pela UTI por meio de uma plataforma web intuitiva, oferecendo uma visão abrangente e atualizada das condições do ambiente.Com o

NeoNatAir os profissionais podem tomar decisões mais rápidas, proporcionando o melhor cuidado possível aos pacientes de alto risco.

## 2. Ambiente de trabalho do projeto

## 2.1. Gerência de configuração

Ferramentas para apoio no desenvolvimento do sistema.

- Github para controle de mudança e versão do projeto, o repositório consiste em duas branch. A branch principal do projeto\_MAIN e uma branch de homologação Development. https://github.com/lucianomenddes/neoNatAir
- Trello para acompanhamento das fases, atividades e sprints do projeto.

## 2.2. Infraestrutura tecnológica

Para o desenvolvimento do sistema foram definidas algumas ferramentas para a construção do mesmo.

- Frontend: Javascript, biblioteca React, framework nextjs, material ui.
- **Backend:** Node js, express js, axios.
- Banco de dados: Postgresql.
- Hospedagens: Heroku, netlify.
- Repositório remoto: Github.
- Testes da aplicação: jest, selenium.
- Prototipação: Figma.
- Ferramenta de modelagem: Google diagrams.

#### 3. Arquitetura do Software

## 3.1. Especificação de requisito e restrições arquiteturais

## 3.1.1. Requisitos funcionais

RF-01: O sistema deve permitir que o administrador crie ambientes virtuais para monitoramento da qualidade do ar para cada ambiente hospitalar.

RF-02: O sistema deve permitir que o administrador configure para cada ambiente individual, os parâmetros mínimo e máximo de cada dado obtido através dos sensores de temperatura, umidade e ruído, CO2, composto orgânico voláteis, fornecidos pela plataforma air pure.

RF-03: O sistema deve comparar em tempo real os dados obtidos pelo air pure com os parâmetros definidos previamente e notificar com alerta em caso de não conformidade.

RF-04: O sistema deve armazenar os alertas de não conformidades em um banco de dados.

RF-05: O sistema deve gerar relatórios dos alertas de não conformidades e permitir consultar por data específica.

## 3.1.2. Requisitos não funcionais

RNF-01: O sistema deve exibir os dados do ambiente criado em dashboard .

RNF-02: O sistema deve ser desenvolvido com tecnologias web suportadas pelos os navegadores Firefox, google chrome.

RNF-03: O sistema deve permitir configurar os alertas de não conformidades com push notification e alarmes sonoros.

#### 3.2. Visão externa



## 3.3. Visão interna



# 4. Projeto de Desenvolvimento do Software

- 4.1. definição do ambiente de trabalho
- 4.2. cronograma

| Etapas do projeto | Artefatos                                        | Data início | Data final | Entrega |
|-------------------|--------------------------------------------------|-------------|------------|---------|
| Concepção do SW   | termo de abertura,<br>doc de concepção           | 16/06/2022  | 07/07/2022 |         |
| Elaboração do SW  | Doc especificação<br>de requisitos               | 23/06/2022  | 07/07/2022 |         |
| Construção do SW  | Definição de<br>design detalhado<br>de software  | 14/07/2022  | 04/08/2022 |         |
| Transição do SW   | Implantação e<br>disponibilização do<br>software | 11/08/2022  | 08/09/2022 |         |
| Entrega final     |                                                  | 08/09/2022  | 15/09/2022 |         |

4.3. outra atividades e tarefas