The best proof of Cousin's lemma

Jordan Mitchell Barrett math@jmbarrett.nz https://jmbarrett.nz/

Victoria University of Wellington

NZMASP 2020 Thursday 26th November 2020

Reverse mathematics

- ► For us, best proof = least assumptions (axioms)
- lacktriangle Find weakest axiom system ${\mathcal S}$ which can prove a theorem ${arphi}$
- Almost all theorems are equivalent to one of five systems
- In order of increasing strength:
 - ► RCA₀: computable mathematics
 - ► WKL₀: compactness
 - ► ACA₀: arbitrary quantification over N
 - ► ATR₀: ordinals
 - ▶ Π_1^1 -CA₀: quantification over \mathbb{R} or $\mathcal{P}(\mathbb{N})$

Riemann integration

▶ Partition [0,1], pick a tag point in each subinterval

lacktriangle Want these approximations to converge as $\Delta x
ightarrow 0$

Gauge integration

- ▶ Gauge: positive-valued function $\delta \colon [0,1] \to \mathbb{R}^+$
- ▶ $P = \langle x_i, t_i \rangle$ is δ-fine if $(x_i, x_{i+1}) \subseteq B(t_i, \delta(t_i))$ for all i

Cousin's lemma

Cousin's lemma

Every gauge $\delta:[0,1]\to\mathbb{R}^+$ has a δ -fine partition.

Proof.

Ask: is there any point $t \in [0, 1]$ such that $\delta(t) > 1$?

Yes: then $P = \langle 0, t, 1 \rangle$ is δ -fine.

No: split [0,1] in half, and see if either half has $\delta(t)>1/2$, etc.

Must terminate: else we get

$$l_0 \supseteq l_1 \supseteq \cdots$$
. Pick $r \in \bigcap l_n$, then $\delta(r) = 0$; contradiction!

Question

Is this the *best* proof?

Our contributions

- ▶ This proof uses quantification over $\mathbb{R} \implies \Pi_1^1$ -CA₀!
- Can we do better? For continuous gauges: yes!
- ► Theorem: CL for continuous functions equivalent to WKL₀.
- Baire 1 = pointwise limit of continuous functions
- ightharpoonup ACA₀ \leq CL_{B1} \leq Π_1^1 -CA₀
- ► Baire 2 = ptwise limit of B1
- ightharpoonup ATR₀ \leq CL_{B2} \leq Π_1^1 -CA₀

References

▶ Jordan Mitchell Barrett. *The reverse mathematics of Cousin's lemma*. Honours thesis, VUW, 2020. URL: jmbarrett.nz

For more reading on reverse mathematics:

- Stephen G. Simpson. Subsystems of Second Order Arithmetic. 2nd ed. Perspectives in Logic, Cambridge University Press, Cambridge, 2009.
- ▶ John Stillwell. *Reverse Mathematics: Proofs from the Inside Out.* Princeton University Press, Princeton, 2018.