Quad Sieve for twin and Sophie Germain primes

Yves Gallot

March 4, 2022

If we search for twin and Sophie Germain prime numbers, we first test the primality of $k 2^n - 1$. If it is prime, then we check the primality of $k 2^n + 1$, $k 2^{n-1} - 1$ and $k 2^{n+1} - 1$. A quad sieve ensures that the four forms don't have any small prime divisor.

Based on Bateman and Horn conjecture, the expected numbers of remaining candidates, primes of the form $k 2^n - 1$, twin primes and of Sophie Germain primes in a fixed sieved range are calculated in this note.

Conjecture (Bateman and Horn).

Let f_1, f_2, \dots, f_m be a set of m distinct irreducible polynomials with integral coefficients and a positive leading coefficient. Let f be their product and suppose that f does not vanish identically modulo any prime. Let w(p) be the number of solutions to the congruence $f(x) \equiv 0 \pmod{p}$. An integer n is prime-generating if every polynomial $f_i(n)$ produces a prime number. π_f is the number of prime-generating integers for $n_1 \leq n \leq n_2$. If $n_2 - n_1 \to \infty$ then

$$\pi_f \sim C_f \sum_{n=n_1}^{n_2} \frac{1}{\log f_1(n) \cdot \log f_2(n) \cdots \log f_m(n)}$$

$$\sim \frac{C_f}{D_f} \int_{n_1}^{n_2} \frac{dt}{(\log t)^m}$$

$$\sim \frac{C_f}{D_f} \left(\frac{n_2}{(\log n_2)^m} - \frac{n_1}{(\log n_1)^m} \right),$$

where D_f is the product of the degrees of the polynomials f_1, f_2, \dots, f_m and

$$C_f = \prod_{p \ prime} \frac{1 - w(p)/p}{(1 - 1/p)^m}.$$

 C_f is a sieving constant. Let S be a set containing n m-tuples of random integers. S is sieved for $p \le p_{max}$: an element is removed from the set if at least one integer of the m-tuple is divisible by p. The expected number of remaining elements is $\prod_{p \le p_{max}} (1 - 1/p)^m n$. If the m-tuples of the set are generated with the polynomials $f_i(n)$ then the expected number of remaining elements is $\operatorname{cand}_{p_{max}}(n) = \prod_{p \le p_{max}} (1 - w(p)/p) n$.

 $k 2^{n} - 1$ is odd and $C_{k 2^{n} - 1} = 2$.

For twin primes, we have $f_1(x) = 2x - 1$ and $f_2(x) = 2x + 1$. w(2) = 0 and w(p) = 2 for p > 2. $C_{(k2^n-1, k2^n+1)} = 4C_2$, where C_2 is the twin prime constant. $C_{(k2^n-1, k2^n+1)} \approx 2.6406473$.

 $f_1(x) = 2x - 1$ and $f_2(x) = 4x - 1$ for Sophie Germain primes. We still have w(2) = 0 and w(p) = 2 for p > 2 then $C_{(k2^{n-1}, k2^{n+1}-1)} = C_{(k2^{n-1}, k2^{n+1})}$.

The functions of the quadruplet are $f_1(x) = 2x - 1$, $f_2(x) = 4x - 1$, $f_3(x) = 8x - 1$ and $f_4(x) = 4x + 1$. w(2) = 0, w(3) = 2 and w(p) = 4 for p > 3. $C_{(k 2^{n-1}-1, k 2^n-1, k 2^{n+1}-1, k 2^n+1)} \approx 8.3023617$.

In the following table, the formula with the summation is applied.

Number of prime patterns: k is odd, $1 \le k \le 10^8$

	Form	Actual	Expected.
single	8 <i>k</i> – 1	5143331	5143482.8
twin	8k-1, 8k+1	350779	350497.4
Sophie Germain I	4k-1, 8k-1	363795	363558.9
Sophie Germain II	8k-1, 16k-1	338858	338346.4
quadruplet	4k-1, 8k-1, 8k+1, 16k-1	3042	2978.2

Mertens' third theorem is $\lim_{n\to\infty}\log n\prod_{p\le n}(1-1/p)=e^{-\gamma}$, where $\gamma\approx 0.57721566$ is the Euler's constant. We have $\operatorname{cand}_{p_{max}}(n)=\prod_{p\le p_{max}}(1-w(p)/p)$ $n\approx C_f\prod_{p\le p_{max}}(1-1/p)^m$ n, hence

$$\operatorname{cand}_{p_{max}}(n) \approx C_f \left(\frac{e^{-\gamma}}{\log p_{max}}\right)^m n.$$

For quad sieve, we have

cand_{$$p_{max}$$} $(n) \approx \frac{0.82504063 \, n}{(\log p_{max})^4}.$

If *N* has no prime factor $p \le p_{max}$ then the likelihood that *N* is prime is

$$\mathscr{P}(N) = \prod_{p \le p_{max}} (1 - 1/p)^{-1} \frac{1}{\log N} \approx \frac{\log p_{max}}{e^{-\gamma} \log N}.$$

Let S be a set of pairs (k, n). A quad sieve is applied to this set. The expected number of primes is

$$\pi_{k2^{n}-1} \approx \frac{1.4694571}{(\log p_{max})^{3}} \sum_{S} \frac{1}{\log(k2^{n}-1)}.$$

If *n* is fixed and *k* is odd, $k_1 \le k \le k_2$ and $1 \ll k 2^n$, we have:

$$\pi_s \approx \frac{0.73472856}{(\log p_{max})^3} \int_{k_1}^{k_2} \frac{dt}{\log(t \, 2^n)}.$$

Applying $\mathcal{P}(N)$ to twin primes:

$$\pi_t \approx \frac{1.30860477}{(\log p_{max})^2} \int_{k_1}^{k_2} \frac{dt}{\log(t \, 2^n)^2},$$

and $\pi_{SG} \approx 2 \,\pi_t$.

Quad sieve prime occurrences:

$$p_{max} = 10^4$$
, $n = 100$, k is odd, $1 \le k \le 10^9$

	Actual	Expected.	
candidates	57069	57324.8	
primes	10461	10562.8	
twin	1950	1946.6	
Sophie Germain	3825	3893.2	

$$p_{max} = 10^5$$
, $n = 100$, k is odd, $1 \le k \le 10^9$
Actual Expected.

	Actual	Expected.
candidates	23660	23480.2
primes	5419	5408.2
twin	1280	1245.8
Sophie Germain	2481	2491.6

$$p_{max} = 10^5$$
, $n = 1000$, k is odd, $1 \le k \le 10^{10}$

	Actual	Expected.
candidates	234241	234802.4
primes	6784	6732.2
twin	175	193.0
Sophie Germain	392	386.1

If n = 3321925 then $k \, 2^n - 1$ has more than one million digits. For $1 \le k \le 2^{52}$ the expected values are

p_{max}	candidates	primes	twin	SG
10^{12}	3,187,000,000	68,120	1.46	2.91
10^{13}	2,314,000,000	53,578	1.24	2.48
10^{14}	1,720,000,000	42,898	1.07	2.14
10^{15}	1,306,000,000	34,877	0.93	1.86

In practice, we can set $3321925 \le n \le 3321925 + 63$ and $1 \le k \le 2^{46}$.