HW4 posted tonight

Second - Order Methods (Topic for the rest of the semester)

1st Newton's Method/Solving Nonlinear Equations

- 1. One-Dimensional Newton
- 2. Rd Newton
- 3. Convergence Analysis
- 4. Problems with Newton

2nd Modified / Quasi - Newton Methods

3rd Trust-Region Methods

4th Conjugate Gradient Methods

Newton's Method

The classic setup of Newton seeks solutions to a system of nonlinear equations, x eRd

"Nonlinear Equation Solving".

"Nonlinear Optimization"

1. One-Dimensional Setup

Give f: R→IR, then

Find f'(x) = 0"root finding"

Take
$$F(x)=0$$
, $(F=f')$, linearize $F(x)$ at current x_k .

Then move to root of that linear equation.

Formally,
$$F(x+s) \approx F(x_k) + F'(x_k) \cdot s$$

Pick x_{k+1} s.t. $F(x_k) + F'(x_k)(x_{k+1} - x_k) = 0$
 $L_{x_k+s} \iff x_{k+1} = x_k - \frac{F'(x_k)}{F'(x_k)} \stackrel{\text{(provided }}{F'(x_k)})$

(with $s = -\frac{F(x_k)}{F'(x_k)}$)

(Check stationery point of 2nd order model = root of (2nd corder B' (x) = Newton Step)

Really Fast

Consider $F(x) = x^2 - a$.

Roots x= = = Va

Easy to run Newton F(x)= 2x

 $\chi_{k+1} = \chi_{k} - \frac{F(\chi_{k})}{F(\chi_{k})} = \chi_{k} - \frac{\chi_{k}^{2} - \alpha}{2\chi_{k}} = \frac{1}{2} \left(\chi_{k} - \frac{\alpha}{\chi_{k}} \right)$

Fix a=2, x0=1

×. 1

×1 1.5 ...

x2 1.41

x3 1.41421 ...

×4 1.41421356237 . --.

correct digits = 2"

(x7 ~60 correct)

Aside, Quake 3 (1999), Ux

Algorithm

approximate, the 2 Newton steps.

Formally suppose Sic > 0 (think Sic objective gap, distance to optimal, gradent zero).

Sk converges "Linearly" if $\exists ce(0.1)$, NZO 5.t. $\forall k$:N S_{k} :1 $\leq c \cdot S_{k}$.

Sk converges <u>sublinearly</u> if no such c exists.

Sk converges superlinearly if JECK35[0,1), N30 s.t.

YKEN SKHISCK SK lim CK = 0.

Sk converges <u>quadratically</u> if $\exists ceco.1)$, N=0 =.t. $\forall k \in \mathbb{N}$ $S_{k+1} \leq c S_k^2$.

(superlinear $S_{k+1} \leq C S_k^2 = (C S_k) S_k$).

$$F(x_k) \approx \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}}$$

$$\Rightarrow \times_{k+1} = \times_{k} - \frac{F(x_{k})}{\left(\frac{F(x_{k}) - F(x_{k+1})}{x_{k} - x_{k+1}}\right)}.$$

Under modest regularity conditions, this works.

$$x_k \rightarrow x^*$$
 (stationer point $f'(x) = 0$)

(superlinearly $|x_k - x^*| \rightarrow 0$)

$$|x_{k+1}-x^*| \le C \cdot |x_{k0}-x^*|^q$$
, $\varphi = \frac{\sqrt{5}-1}{2}$ =1,619...

>> Superlinear but not quadratic.

2. Newton in Rd

min f(x) ⇒
$$\nabla f(x) = 0$$

X∈ \mathbb{R}^d

Ly F: $\mathbb{R}^d \to \mathbb{R}^d$

"Nonlinear system of equation solving"

Idea: Linearize F(x), then solve that linear system to get closer to solving F(x)=0.

Recall, the Jacobian of
$$F(x)$$

$$\nabla F(x) = \begin{pmatrix} \frac{\partial F_1(x)}{\partial x_1} & \cdots & \frac{\partial F_2}{\partial x_d} & \cdots \\ \frac{\partial F_3}{\partial x_1} & \cdots & \frac{\partial F_3}{\partial x_d} & x \end{pmatrix}$$

The Jacobian is the unique linear operator s.t. $\forall s \in \mathbb{R}^d \lim_{t \to 0} \frac{F(x+ts) - (F(x) + \nabla F(x) + s)}{t} = 0.$

(The Hessian 72f is the Jacobian of Vf.)

Newton's Method

Linearize
$$F(x) \approx F(x_k) + \nabla F(x_k) \cdot (x - x_k)$$

full rank a nonsingular

System has unique sol.)

(invertible

$$\Rightarrow \chi_{\mu + 1} = \chi_{\mu} - \nabla F(\chi_{\mu})^{4} F(\chi_{\mu})$$

for optimization)

3D pictures

Linearize $\nabla f(x)$, go to the zero []

Mare to stationary point of 2nd order model

 $f(x_k) + \nabla f(x_k)^T + \frac{1}{2} s^T \nabla^2 f(x_k) s$ For a concase quade $\nabla^2 f + 0$ The saddle $\nabla^2 f + 0$

Convex quad

when of >0

"descent direction"

'ascent direction'

3. Convergence of Newton's Method

We won't prove the following classic theorem:

Theorem (Local Convergence)

Let FiRd -> Rd be cont diff and assume

F(x*) = 0 for some x*. If VF(x*) is

nonsingular, then some neighborhood S of x*

has any xoes produce Newton steps

XKES, XK > x", VF(xk) nonsingular.