Maths for Machine Learning Revision notes

Table of Contents

Contents Page no.

Equations of a straight line	3
Parallel and perpendicular lines, hyperplane, vector form of a hyperplane	4
Vectors, halfspaces	5
Transpose, dot product, unit vector	6
Distance between two points, norm, angle b/w two vectors, projection, intersection	7
Distance b/w : Hyperplane and origin, point and hyperplane, parallel hyperplanes Circle	8
Rotating coordinate axes, limit, function	9
Important functions for ML	10
Continuity, tangent and derivative	12
Finding optima	14
Partial derivative	16
Gradient descent	17
Variants of Gradient descent	18
Constrained optimization, Method of Lagrange multipliers	19
Principal component analysis	20
Optimization without Gradient descent	23
Eigenvector and Eigenvalue	24

Equations of a straight line:

1. Slope-intercept form of a straight line is given as:

$$y = mx + c$$

Where, m is the slope of the line and c is the y-intercept.

And $m = tan\theta$ where θ is the angle which the line makes with the positive x-axis.

2. Point-slope form:

$$y - y_1 = m(x - x_1)$$

where m is the slope of the line and (x_1, y_1) are the coordinates of a point on the line.

3. Two-point form:

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

 $y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)$ Where, (x_1,y_1) and (x_2,y_2) are the coordinates of two points on the line.

4. Intercept form:

$$\frac{x}{a} + \frac{y}{b} = 1$$

3

Where a and b are the intercepts of the line on the x-axis and y-axis respectively.

5. General form:

$$ax + by + c = 0$$

where a, b, and c are real numbers.

• Two lines are called **parallel** to each other if the values of the slope are equal. Let's consider two lines $y=m_1x+c_1$ and $y=m_2x+c_2$.

The above two lines are parallel if $m_1 = m_2$.

The above two lines are **Perpendicular** to each other if:

$$m_1 = -\frac{1}{m_2}$$

Hyperplane is a linear surface in n-dimensions.
 The general equation of a hyperplane is given as:

$$w_1x_1 + w_2x_2 + w_3x_3 + \dots + w_nx_n + w_0 = 0$$

Where, $w_1, w_2, w_3, ..., w_n$ are called the **weights/coefficients** and

 $x_1, x_2, x_3, ..., x_n$ are the **features**.

The equation of a plane in 3-D is given as:

$$w_1 x + w_2 y + w_3 z + w_0 = 0$$

• Vector form of a hyperplane is:

$$w^T x + w_0 = 0$$

Where,
$$w=\begin{bmatrix}w_1\\w_2\\w_3\\.\\.\\.\\w_n\end{bmatrix}$$
 and, $x=\begin{bmatrix}x_1\\x_2\\x_3\\.\\.\\.\\x_n\end{bmatrix}$

 Vectors can be interpreted as coordinates as well as a line segment from the origin to the coordinate.

For example, the below-given vector \overrightarrow{r} can be considered as coordinates of point P(x,y,z) as well as a line segment from the origin to point P(x,y,z).

• **Half Spaces:** In geometry, a half-space is either of the two parts into which a plane divides the three-dimensional Euclidean space.

Example: Let's assume that a hyperplane $w^Tx+w_0=0$ is classifying the data points of two different classes in a space.

Let's say we got a point x_0 in the space.

Now, If:

$$w^T x_0 + w_0 > 0 \quad \Rightarrow \quad \text{the point is in the +ve halfspace}$$

$$w^T x_0 + w_0 < 0 \quad => \quad \text{the point is in the -ve halfspace}.$$

The transpose operation changes a column vector into a row vector and vice versa.
 For example,

$$\text{if } \vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ . \\ . \\ . \\ a_n \end{bmatrix} \qquad \text{then, } \vec{a}^T = \begin{bmatrix} a_1 & a_2 & a_3 & . & . & . & a_n \end{bmatrix}$$

• **Dot product** of two vectors \overrightarrow{d} and \overrightarrow{b} is given as :

$$\overrightarrow{a}.\overrightarrow{b} = a_1b_1 + a_2b_2 + a_3b_3 + \dots + a_nb_n$$

Where,
$$\vec{a}=egin{bmatrix} a_1\\a_2\\a_3\\.\\.\\.\\a_n \end{bmatrix}$$
 and $\overrightarrow{b}=[b_1\ b_2\ b_3\ .\ .\ .\ b_n]$

Also,
$$\overrightarrow{a}, \overrightarrow{b} = \overrightarrow{b}, \overrightarrow{a}$$

Geometrically, it is the product of the magnitudes of the two vectors and the cosine of the angle between them.

i.e.
$$\overrightarrow{a}.\overrightarrow{b} = |\overrightarrow{a}|.|\overrightarrow{b}|.cos(\theta)$$

where $\boldsymbol{\theta}$ is the angle between the two vectors.

If the dot product of two vectors is **zero**, then the vectors are **perpendicular** to each other.

Unit vector is a vector that has a magnitude of 1.
 To convert a vector into a unit vector, we divide the vector by its magnitude.

i.e. unit vector =
$$\hat{u} = \frac{\overrightarrow{u}}{||\overrightarrow{u}||}$$

- → We can multiply any scalar value with the unit vector to get the desired magnitude (equal to that scalar value) in the same direction.
- → All vectors with the same unit vector are parallel
- **Distance between two points** having coordinates (x_1, y_1) and (x_2, y_2) in an x-y plane is given as:

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

• **Norm** or **Magnitude** of a vector is calculated by taking the square root of dot product with itself.

i.e.
$$||\overrightarrow{a}|| = \sqrt{\overrightarrow{a} \cdot \overrightarrow{a}}$$

It represents the **length** of a vector or **distance** of \overrightarrow{d} coordinate from the origin.

Angle between two vectors is given as :

$$\theta = \cos^{-}\left(\frac{\overrightarrow{a}.\overrightarrow{b}}{||\overrightarrow{a}||.||\overrightarrow{b}||}\right)$$

• Projection of vector \overrightarrow{a} on $\overrightarrow{b} = \frac{\overrightarrow{a}.\overrightarrow{b}}{||b||}$

• At the **point of intersection** of two lines, both lines will have the same coordinates.

Example: Let's say we have two lines, y = x+2 and y = 2x+1.

We need to find the point of intersection of these two lines.

We assume that the lines intersect at a single point (a,b).

Therefore, this point will satisfy both the line's equations.

i.e.
$$b = a+2$$
 — i)

$$b = 2a+1$$
 — ii)

Solving above two equations, we get, a = 1 and b = 3.

Therefore, the given two lines intersect at the point (1,3).

Distance of a Hyperplane from the origin:

Let's assume a hyperplane $\ \overrightarrow{w}^T\overrightarrow{x}+w_0=0$.

Its distance from the origin is given as: $d = \frac{w_0}{||\overrightarrow{w}||}$

• **Distance of a point** \overrightarrow{x}_0 from a **hyperplane** is given as:

$$d = \frac{|w^T x_0 + w_0|}{||w||}$$

i.e. Just put the point in the hyperplane's equation and divide by the square root of the summation of coefficients' square (or norm of the *w* vector)

• Distance between two parallel hyperplanes

Given two parallel hyperplanes, $w^Tx+w_0=0$ and $w^Tx+w_1=0$, Distance between them is given as:

$$d = \frac{|w_1 - w_2|}{||w||}$$

• The **equation of a circle** in the x-y plane is given as:

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

where, (x_0, y_0) are the coordinates of the center of the circle and r is the radius of the circle.

8