CS145: INTRODUCTION TO DATA MINING

4: Vector Data: Decision Tree

Instructor: Yizhou Sun

yzsun@cs.ucla.edu

October 13, 2020

Methods to Learn

	Vector Data	Set Data	Sequence Data	Text Data
Classification	Logistic Regression; Decision Tree; KNN SVM; NN			Naïve Bayes for Text
Clustering	K-means; hierarchical clustering; DBSCAN; Mixture Models			PLSA
Prediction	Linear Regression GLM*			
Frequent Pattern Mining		Apriori; FP growth	GSP; PrefixSpan	
Similarity Search			DTW	

Vector Data: Trees

Tree-based Prediction and Classification

- Classification Trees
- Regression Trees
- Random Forest
- Summary

Tree-based Models

 Use trees to partition the data into different regions and make predictions

Easy to Interpret

 A path from root to a leaf node corresponds to a rule

• E.g., if age <= 30 and student=no

Vector Data: Trees

- Tree-based Prediction and Classification
- Classification Trees

- Regression Trees
- Random Forest
- Summary

Decision Tree Induction: An Example

- ☐ Training data set: Buys xbox
- ☐ The data set follows an example of Quinlan's ID3 (Playing Tennis)
- Resulting tree:

credit rating

excellent

fair

fair

fair

fair

student

no

no

no

no

yes

income

high

high

high

low

medium

age

<=30

<=30

>40

>40

31...40

buys_Xbox

no

no

yes

ves

yes

no

ves

no

yes

yes

yes

yes

yes

no

How to choose attributes?

Q: Which attribute is better for the classification task?

Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty (impurity) associated with a random variable
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, \dots, y_m\}$,
 - $H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$, where $p_i = P(Y = y_i)$
 - Interpretation:
 - Higher entropy => higher uncertainty $\frac{8}{5}$ _{0.5}
 - Lower entropy => lower uncertainty

Conditional Entropy

How much uncertainty of Y if we know an attribute X?

$$\bullet H(Y|X) = \sum_{x} p(x)H(Y|X=x)$$

Weighted average of entropy at each branch!

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i, estimated by |C_{i, D}|/|D|
- Expected information (entropy) needed to classify a tuple in D:
 m

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

 Information needed (after using A to split D into v partitions) to classify D (conditional entropy):

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_{A}(D)$$

Attribute Selection: Information Gain

Class P: buys_xbox = "yes"

Class N: buys xbox = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_xbox
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

	$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$
)	$+\frac{5}{14}I(3,2) = 0.694$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$
 $Gain(credit_rating) = 0.048$

Attribute Selection for a Branch

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left use majority voting in the parent partition

Computing Information-Gain for Continuous-Valued Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the best split point for A
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible *split point*
 - $(a_i+a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}
 - The point with the *minimum expected information requirement* for A is selected as the split-point for A
- Split:
 - D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in D satisfying A > split-point

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- Ex. $SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2\left(\frac{4}{14}\right) \frac{6}{14} \times \log_2\left(\frac{6}{14}\right) \frac{4}{14} \times \log_2\left(\frac{4}{14}\right) = 1.557$
 - gain_ratio(income) = 0.029/1.557 = 0.019
- The attribute with the maximum gain ratio is selected as the splitting attribute

*Gini Index (CART, IBM IntelligentMiner)

 If a data set D contains examples from n classes, gini index, gini(D) is defined as

$$gini(D) = 1 - \sum_{j=1}^{v} p_j^2$$

where p_i is the relative frequency of class j in D

• If a data set D is split on A into two subsets D_1 and D_2 , the gini

index
$$gini(D)$$
 is defined as
$$gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$$
Poduction in Impurity:

• Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

 The attribute provides the smallest gini_{split}(D) (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

*Computation of Gini Index

Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂: {high}

$$\begin{split} & gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right) Gini(D_1) + \left(\frac{4}{14}\right) Gini(D_2) \\ &= \frac{10}{14} \left(1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2\right) + \frac{4}{14} \left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2\right) \\ &= 0.443 \\ &= Gini_{income} \in \{high\}(D). \end{split}$$

Gini_{low,high} is 0.458; Gini_{medium,high} is 0.450. Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index

Comparing Attribute Selection Measures

- The three measures, in general, return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others (why?)
 - *Gini index:
 - biased to multivalued attributes

*Other Attribute Selection Measures

- <u>CHAID</u>: a popular decision tree algorithm, measure based on χ^2 test for independence
- C-SEP: performs better than info. gain and gini index in certain cases
- G-statistic: has a close approximation to χ^2 distribution
- MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):
 - The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
- Multivariate splits (partition based on multiple variable combinations)
 - <u>CART</u>: finds multivariate splits based on a linear comb. of attrs.
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior than others

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - <u>Prepruning</u>: *Halt tree construction early*-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - <u>Postpruning</u>: *Remove branches* from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use validation dataset to decide which is the "best pruned tree"

Vector Data: Trees

- Tree-based Prediction and Classification
- Classification Trees
- Regression Trees

- Random Forest
- Summary

From Classification to Prediction

- Target variable
 - From categorical variable to continuous variable
- Attribute selection criterion
 - Measure the purity of continuous target variable in each partition
- Leaf node
 - A simple model for that partition, e.g., average

Attribute Selection

- Reduction of Variance
- For attribute A, weighted average variance

$$Var_{A}(D) = \sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times Var(D_{j})$$

$$Var(D_{j}) = \sum_{y \in D_{j}} (y - \bar{y})^{2} / |D_{j}|,$$
where $\bar{y} = \sum_{y \in D_{j}} y / |D_{j}|$

• Pick the attribute with the lowest weighted average variance

Leaf Node Model

 Take the average of the partition for leave node I

$$\bullet \, \widehat{y}_l = \sum_{y \in D_l} y \, / |D_l|$$

Example: Predict Baseball Player Salary

- Dataset: (years, hits)=>Salary
 - Colors indicate value of salary (blue: low, red: high)

A Regression Tree Built

A Different Angle to View the Tree

A leaf is corresponding to a box in the plane

Trees vs. Linear Models

Vector Data: Trees

- Tree-based Prediction and Classification
- Classification Trees
- Regression Trees

Summary

A Single Tree or a Set of Trees?

- Limitation of single tree
 - Accuracy is not very high
 - Overfitting
- A set of trees
 - The idea of ensemble

The Idea of Bagging

Bagging: Bootstrap Aggregating

Why It Works?

Each classifier produces the prediction

$$\bullet f_i(x)$$

 The error will be reduced if we use the average of multiple classifiers

•
$$var\left(\frac{\sum_{i} f_{i}(x)}{t}\right) = var(f_{i}(x))/t$$

Random Forest

- Sample t times data collection: random sample with replacement for objects, $n' \leq n$
- Sample p' variables: Select a subset of variables for each data collection, e.g., $p' = \sqrt{p}$
- Construct t trees for each data collection using selected subset of variables

- Aggregate the prediction results for new data
 - Majority voting for classification
 - Average for prediction

Properties of Random Forest

Strengths

- Good accuracy for classification tasks
- Can handle large-scale of dataset
- Can handle missing data to some extent

Weaknesses

- Not so good for predictions tasks
- Lack of interpretation

Vector Data: Trees

- Tree-based Prediction and Classification
- Classification Trees
- Regression Trees
- Random Forest
- Summary

Summary

- Classification Trees
 - Predict categorical labels, information gain, tree construction
- Regression Trees
 - Predict numerical variable, variance reduction
- Random Forest
 - A set of trees, bagging