Computer Graphics ST0275

EAFIT University

Agenda

- How to represent a 3D object as a polygon mesh.
- Parametric surface
- OctTrees
- Projection of 3D objects to a 2D surface placing the camera in an arbitrary position

Motivation

- The world we see is 3D
- 3D graphics are more powerful than 2D graphics
- 3D graphics are needed for
 - Games
 - Movies
 - Virtual Reality
 - •

Representation

- In 2D, we needed two numbers to locate a point:
 - In polar coordinates: radius and angle
 - In the Cartesian plane: X and Y
- In 3D, we need three degrees of freedom (3 numbers):
 - In cylindrical coordinates: radius, angle, height
 - In spherical coordinates: radius, 2 angles
 - In the Cartesian plane: X, Y and Z

Parametric equation of the line segment

▶ 2D:

- x = x1 + t*(x2-x1)
- y = y1 + t*(y2-y1)
- t = [0..1]

Parametric equation of the line segment

▶ 3D:

```
x = x1 + t*(x2-x1)
```

$$y = y1 + t*(y2-y1)$$

- z = z1 + t*(z2-z1)
- \cdot t = [0..1]

In Summary:

Vector equation:

$$\mathbf{P} = \mathbf{P_0} + t(\mathbf{P_1} - \mathbf{P_0})$$

▶ In 2D

$$x = x_0 + t(x_1 - x_0)$$
$$y = y_0 + t(y_1 - y_0)$$

$$x = x_0 + t(x_1 - x_0)$$

$$y = y_0 + t(y_1 - y_0)$$

$$z = z_0 + t(z_1 - z_0)$$

Planes in 3D

Plane equation:

$$Ax + By + Cz = D(1)$$

If we have 3 vertices V1, V2, V3:
 (V2 - V1) x (V3 - V2) yields normal vector N
 N has the following components: A, B, C
 In order to solve for D, you take A, B, C, and the coordinates of one point in the plane into equation (1)

Relationship between a point and a plane

- V1, V2, V3 (in above equation) have to be numbered counterclockwise (looking at the polygon from the outside).
- If Ax + By + Cz − D < 0 the point is *inside*
- If Ax + By + Cz − D > 0 the point is outside

How to represent an object in 3D?

- As a polygon mesh
- Using parametric surfaces (Bézier Curves, NURBS,...)
- CSG (Constructive Solid Geometry)

Polygon Mesh

- The most widely used
- The object is wrapped in polygons
- In some cases textures are added

Objects as polygon meshes

- Most operations for this representation are currently done in the Graphics Card
- Once the mesh is created, the object can be rendered as:
 - "Wire-frame"
 - Solid
 - Texture mapped
 - Image from: http://z.about.com

Components of the mesh

- Points
- Segments of lines
 - Two different points form a line
- Polygons
 - Three non co-linear points determine a plane

Data Structure

Initially, define a set of points (vertices)

Data Structure

 Define the edges that link the vertices

$$\circ$$
 L1 = (P1, P2)

$$\cdot$$
 L2 = (P2, P3)

$$\circ$$
 L3 = (P3, P1)

$$\cdot$$
 L4 = (P2, P4)

$$\circ$$
 L5 = (P4, P5)

$$\cdot$$
 L6 = (P5, P3)

$$\circ$$
 L7 = (P3, P2)

Data Structure

- Then define the polygons
 - Edges
 - P1 = (L1, L2, L3)
 - P2 = (L4, L5, L6, L7)
 - Vertices
 - P1 = (P1, P2, P3)
 - P2 = (P2, P4, P5, P3)

Parametric Surfaces (will get back to this later)

- Generalization of the Bezier curve
- In the curve (even in space), only one parameter (u) is required.
- For the surface, two parameters are needed: u and v (why?)

$$P(u,v) = \sum_{j=0}^{m} \sum_{k=0}^{n} p_{j,k} BEZ_{j,m}(v) BEZ_{k,n}(u)$$

Parametric Surfaces

Figure 8 39

Wire-frame Bézier surfaces constructed with (a) nine control points arranged in a 3 by 3 mesh and (b) sixteen control points arranged in a 4 by 4 mesh. Dashed lines connect the control points.

OctTrees

- Octrees are volumetric representations of objects.
- Elements are represented as large volumes of "voxels" (volumetric elements).
- Each voxel has properties (color, density, ...).

Quadtrees

Figure 8-65

Quadtree representation for a square region of the xy plane that contains a single foreground-color area on a solid-color background.

Octrees

Data Elements in the Representative Octree Node

Figure 8-66

A cube divided into numbered octants and the associated octree node with eight data elements.

Volume Rendering

Visualización en 3D a partir de "cortes" 2D:

Image from:
http://graphics.stanford.edu/projects/vo
lume/

Constructive Solid Geometry

- You can create new objects from existing ones by the following operations:
 - Union
 - Intersection
 - Subtraction

General 3D pipeline:

Figure 7-11

General three-dimensional transformation pipeline, from modeling coordinates to world coordinates to viewing coordinates to projection coordinates to normalized coordinates and, ultimately, to device coordinates.

- In a previous lesson, we defined the Projection Matrix
- This assumes that the observer is looking in the "-z" direction.

- We have two coordinate system:
- World and Camera

Figure 7-10

Photographing a scene involves selection of the camera position and orientation.

- Question: How to express the object in terms of the camera system?
- Answer: Transform the camera system so that it coincides with the world system.

Figure 7-13

Orientation of the view plane and view-plane normal vector N.

- For the virtual camera we need:
 - Position
 - Orientation
 - Looking-at vector (negative, actually, to make it a right-handed system) (we will call it n)
 - "Up" vector (we will call it V (note the capital))
- Think of a photography camera
- uvn is called an ortho-normal base.

Translate the camera and the objects in the scene coordinate system (C.S.) to the world C.S.

$$P_0 = (x_0, y_{0,} z_0)$$

$$T = \begin{bmatrix} 1 & 0 & 0 & -x_0 \\ 0 & 1 & 0 & -y_0 \\ 0 & 0 & 1 & -z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 2 Define a righthanded set of axes that serve as camera C.S.
- n: view plane normal vector (similar to Z)
- V: non-orthogonal "up" vector (similar to Y)
- v. orthogonal up vector
- u: orthogonal "right" vector (similar to X)

$$n = \frac{N}{|N|} = (n_x, n_y, n_z)$$

$$u = \frac{V \times n}{|V \times n|} = (u_x, u_y, u_z)$$

$$v = n \times u = (v_x, v_y, v_z)$$

Notice that

$$(n_x, n_y, n_z)$$

- Are the cosine-direction angles of unitary vector n.
- ▶ Same for vectors *v* and *u*.

▶ 3. So, the following matrix:

$$R = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Will rotate the camera c.s. to coincide with the world c.s.

The coordinate transformation matrix is:

And then we can use the previous projection matrix

$$M_{per} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix}$$
$$\begin{bmatrix} X & Y & Z & W \end{bmatrix}^{T} = \begin{bmatrix} x & y & z & \frac{z}{d} \end{bmatrix}^{T}$$

Example

- Assume the camera is looking from <0,0,0> into the positive X direction. "Up" vector is <0,1,0>. Form the uvn orthonormal base.
- Transform point <1,1,1> to the new base.

Retos

Clase

Observador en <0, 0, 1>, mirando hacia el punto
 <-3, 0, 1>. Vector up: <0, 1, 0>. Hay un punto en
 <-3, 3, -2>. Al aplicar la transformación UVN, ¿Dónde queda?

Casa

 Poner la cámara en un punto cualquiera de la escena, mirando hacia el centro de la casita. Aplicar la transformación uvn, luego la proyección y dibujarla.

Credits

- Graphs taken from Hearn & Baker, Computer Graphics with OpenGL, 3rd Edition, Chapter 8
- First image from: http://eusebeia.dyndns.org/4d/vis/02analogy
- Reading: Hearn & Baker, sections 8-1, 8-21, 8-22.