Some Common Continous Random Variables

Some Common Continues Italiaom Variables					
	Normal	Exponential	Uniform	Erlang	Chi Squared
2	$X \sim N(\mu, \sigma^2)$	$X \sim Exp(\lambda)$	$X \sim U(a,b)$	$X \sim Erlang(\lambda, k)$	$X \sim \chi^2(k)$
($x \in [-\infty, \infty]$	$x \in [0, \infty]$	$x \in [a, b]$	$x \in [0, \infty]$	$x \in [0, \infty]$
$\int f(x)$	$= \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$f(x) = \lambda e^{-\lambda x}$	$f(x) = \frac{1}{b-a}$	$f(x) = \frac{\lambda^k}{(k-1)!} x^{k-1} e^{-\lambda x}$	
	$E(X) = \mu$	$E(X) = \frac{1}{\lambda}$	$E(X) = \frac{a+b}{2}$	$E(X) = \frac{k}{\lambda}$	E(X) = k
1	$Var(X) = \sigma^2$	$Var(X) = \frac{1}{\sqrt{2}}$	$Var(X) = \frac{(\bar{b}-a)^2}{12}$	$Var(X) = \frac{k}{\lambda^2}$	Var(X) = 2k
	$(\omega) = e^{j\mu\omega - \frac{\sigma^2\omega^2}{2}}$		$\phi_X(\omega) = \frac{e^{j\omega b} - e^{j\omega a}}{j\omega(b-a)}$	$\phi_X(\omega) = \left(\frac{\lambda}{\lambda - j\omega}\right)^k$	$\phi_X(\omega) = \left(\frac{1}{1-j2\omega}\right)^{k/2}$

Laplacian Random Variable $X \sim Lap(\alpha)$

 $x \in [-\infty, \infty]$ $f(x) = \frac{\alpha}{2}e^{-\alpha|x|}$ E(X) = 0 $Var(X) = \frac{\alpha^2}{\alpha^2}$ $\phi_X(\omega) = \frac{\alpha^2}{\alpha^2 + \omega^2}$ The Erlang distribution is the sum of k independent exponential random variables with rate λ . The Chi Second distribution is the sum of k independent standard named and remaindent variables. Squared distribution is the sum of the squares of k independent standard normal random variables.