CIP- of AHY Docket 076439

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1994年 4月28日

出願番号 Application Number:

平成 6年特許願第114316号

[ST. 10/C]:

[JP1994-114316]

出 願 人
Applicant(s):

田邉 忠

特許庁長官 Commissioner,

Japan Patent Office

2003年 9月 9日

今井康

【書類名】

特許願

【整理番号】

A2386

【提出日】

平成 6年 4月28日

【あて先】

特許庁長官殿

【国際特許分類】

C12N 15/00

【発明の名称】 ヒト由来プロスタサイクリンシンターゼ

【請求項の数】

10

【発明者】

【住所又は居所】

大阪府豊中市東豊中町3丁目18番13号

【氏名】

田邉忠

【特許出願人】

【識別番号】

000004569

【氏名又は名称】 日本たばこ産業株式会社

【代表者】

水野 繁

【代理人】

【識別番号】

100080791

【弁理士】

【氏名又は名称】

高島 一

【電話番号】

06-227-1156

【手数料の表示】

【納付方法】

予納

【予納台帳番号】

006965

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【物件名】

受託証

【書類名】 明細書

【発明の名称】 ヒト由来プロスタサイクリンシンターゼ

【特許請求の範囲】

【請求項1】 実質的に配列表の配列番号12で示されるヒト由来プロスタサイクリンシンターゼのアミノ酸配列をコードする塩基配列を有するDNAを含むDNA。

【請求項2】 実質的に配列表の配列番号11で示される塩基番号28乃至1527の塩基配列を有するDNAを含む請求項1記載のDNA。

【請求項3】 配列表の配列番号11で示される塩基番号28乃至1527 の塩基配列を有する請求項2記載のDNA。

【請求項4】 実質的に配列表の配列番号12で示されるヒト由来プロスタサイクリンシンターゼのアミノ酸配列を有するポリペプチド。

【請求項5】 配列表の配列番号12で示されるヒト由来プロスタサイクリンシンターゼのアミノ酸配列を有する請求項4記載のポリペプチド。

【請求項6】 請求項 $1\sim3$ のいずれかに記載のDNAを含有する組換えベクター。

【請求項7】 請求項6記載の組換えベクターにより形質転換された宿主細胞。

【請求項8】 国際寄託番号FERM BP-4653またはFERM BP-4654で識別される形質転換細胞。

【請求項9】 請求項7記載の宿主細胞を培地中で培養して得られる培養物からヒト由来プロスタサイクリンシンターゼを取得することを特徴とするヒト由来プロスタサイクリンシンターゼの製造方法。

【請求項10】 実質的に配列表の配列番号12で示されるアミノ酸配列を 有するヒト由来プロスタサイクリンシンターゼに反応性を有する抗体。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1\]$

【産業上の利用分野】

本発明は、ヒト由来のプロスタサイクリンシンターゼ(Prostacyclin synthas

e、以下、PGISという)のアミノ酸配列を有するポリペプチド、それをコードするDNA、該DNAを含有するベクター、該ベクターで形質転換された宿主細胞および該宿主細胞を培養することによるヒト由来PGISの製造方法に関する。更に、当該PGISまたはその断片に対して反応性を示す抗体に関する。

[0002]

【従来の技術】

PGISは、主として血管内皮細胞のミクロソーム画分に含まれ、プロスタグランジン I_2 (以下、PGI $_2$ という) の合成、すなわちプロスタグランジン I_3 (以下、PGH $_2$ という) からPGI $_3$ への変換を触媒する酵素である。

[0003]

かかる酵素によって合成される PGI_2 は、強力な血小板凝集抑制作用および血管平滑筋弛緩作用を有する物質である。一方、血小板には当該 PGI_2 とは相反する作用、すなわち強力な血小板凝集作用および血管平滑筋収縮作用を有するトロンボキサン A_2 (以下、 TXA_2 という)が存在しており、血管系において両物質が拮抗的に作用し生体内の恒常性の維持に関与している〔ブリティッシュジャーナル オブ ファーマコロジー(Br. J. Pharmacol.),76巻,3頁,1982年〕。

[0004]

近年、成人病の一つとして挙げられている心筋梗塞血栓症や動脈硬化症等の循環器系の疾患は、かかる PGI_2 と TXA_2 の血管内における産生の不均衡、とりわけ PGI_2 の産生低下に基づく血管系の機能不全によって生じるものと考えられている(同上文献)。

[0005]

このような PGI_2 産生低下が原因と考えられる疾病の治療法として、 PGI_2 を医薬品として体外から補うことが考えられる。しかし、 PGI_2 は化学的に極めて不安定な物質であるため PGI_2 自体を医薬品として実用化することは困難である。かかる観点から、例えば現在、血液凝固阻止剤,血管拡張剤として安定な PGI_2 類縁体の開発が進められている。

[0006]

しかしながら、本来PGI $_2$ とTXA $_2$ との均衡のもとに成り立っている生体内の恒常性は、安定なPGI $_2$ 類縁体の投与によって却って崩れる可能性が考えられる。すなわち、安定なPGI $_2$ 類縁体を多量に投与することは、細胞のPGI $_2$ 応答性を低下させ、緊急の場合にPGI $_2$ に反応できなくなるという危険性を含む〔プロスタグランジンズ、19巻、2頁、1980年〕。

[0007]

従って、血栓症等の治療効果を期待すべく PGI_2 と TXA_2 との不均衡を是正して血管系の正常機能の回復を図るためには、化学的に安定な類縁体を用いる一方で、PGISの物理化学的性状及び生物学的性状を解明し、当該PGISあるいはPGISをコードするDNAを研究試薬として用いてPGISと PGI_2 産生の関わりを明らかにすること、および該PGISあるいはそれをコードするDNAを医薬品として開発し、 PGI_2 の産生を制御することが前述のような PGI_2 と TXA_2 との不均衡に起因する各種疾患の治療に対して重要かつ有意義なことと考えられる。

[0008]

従来、PGISに関しては、組織分布、即ち各種組織の血管内皮細胞、非血管 平滑筋細胞、及び動脈平滑筋における存在が報告されている〔Advances in Pros taglandin, Thromboxane, and Leukotriene Research, Vol.11, pp.87–92, (1983), 及びJ. Biol. Chem., Vol.258, No.9, pp.5922–5926, (1983)〕。また、ブタ及びウシからPGISの単離精製が試みられ〔ブタ:Cytochrome P450, Bioch emistry, Biophysics and Environmental Implications, pp.103–106 (1982)、ウシ: J. Biol. Chem., Vol.258, No.9, pp.3285–3293 (1983)〕、ウシPGISのN末端アミノ酸配列および下流の部分アミノ酸配列が報告されている〔Advanc es in Prostaglandin, Thromboxane, and Leukotriene Research, Vol.17, pp.29–33 (1987)、Biochemical and Biophysical Research Communications, Vol.197, No.3, pp.1041–1048 (1993)等〕。

[0009]

しかしながら、ヒトのPGISについては、その単離、精製およびアミノ酸配列について、今だ解明されていない。

[0010]

【発明が解決しようとする課題】

本発明の目的は、ヒト由来PGISのアミノ酸配列を明らかにし、当該ヒト由来PGIS及び該PGISをコードするDNAを提供することである。

$[0\ 0\ 1\ 1]$

該PGIS及びこれをコードするDNAは、①PGISの分子あるい遺伝子レベルでの物理化学的性状、及び生物学的性状の解析、②PGISの産生調節メカニズム、PGISに係るPGI2の産生調節メカニズムの解析、及び③PGI2とTXA2との産生量不均衡に起因すると考えられる各種循環器系疾患の原因究明および該疾患に対する治療薬の開発のための分子あるいは遺伝子レベルでの解析のための試薬として有用である。また、PGISあるいはそのmRNAに体内組織発現レベルおよび分布を測定するための診断薬として有用である。さらには、それら自身、それらの断片、あるいはそれらの修飾体を疾患部位特異的に生体内に導入することにより、PGI2の産生レベルを高めることによる、例えば血栓症、心筋梗塞、動脈硬化、狭心症等の各種循環器系疾患に対する治療薬としての利用が期待される。

[0012]

さらに、本発明の目的は、ヒト由来PGISをコードするDNAを含有する組換えベクター、および該ベクターで形質転換された宿主細胞からなるPGISの発現系を提供することであり、さらに該発現系を用いてPGISを遺伝子工学的に製造する方法を提供することである。

$[0\ 0\ 1\ 3]$

かかる方法により、ヒト由来PGISの簡便かつ効率的な量産が可能となる。

$[0\ 0\ 1\ 4]$

また、本発明はヒト由来PGISの精製、免疫組織化学的、病因解析に有用なヒト由来PGIS抗体を提供することを目的とする。

[0015]

【課題を解決するための手段】

本発明者らは、上述の目的を達成すべく鋭意研究を重ねた結果、ヒト動脈血管

内皮細胞からPGISをコードするcDNAのクローン化に成功し、そのcDNAの塩基配列からヒト由来PGISの一次構造を決定して本発明を完成するに至った。

[0016]

すなわち本発明は、実質的に配列番号12で示されるヒト由来PGISのアミノ酸配列をコードする塩基配列を有するDNAを含むDNA、好ましくは実質的に配列番号11に示される塩基番号28乃至1527の塩基配列を有するDNAを含むDNA、より好ましくは配列番号11に示される塩基番号28乃至1527の塩基配列を有するDNAに関する。

[0017]

また本発明は、上記DNAを含有する組換えベクター、該ベクターで形質転換された宿主細胞、該宿主細胞を培地中で培養して得られる培養物からヒト由来PGISを取得することを特徴とするヒト由来PGISの製造方法に関する。

[0018]

さらに本発明は、実質的に配列番号12で示されるヒト由来PGISのアミノ酸配列を有するポリペプチド、また当該ヒト由来PGISに反応性を示す抗体に関する。

[0019]

以下、本発明を詳細に説明する。

本発明のポリペプチドは、 PGH_2 を PGI_2 に変換する触媒活性を有し、実質的に後記配列表の配列番号 1 2 に示されるヒト由来PGISのアミノ酸配列を有するポリペプチドである。

[0020]

ここで「実質的に」とは、本発明のポリペプチドは、配列番号12に示される アミノ酸配列を有するポリペプチドに限定されず、当該アミノ酸配列を有するヒ ト由来PGISと同様な免疫学的かつ生物学的活性(ヒトPGIS活性)を有す る限り、配列番号12で示されるアミノ酸配列中のアミノ酸の幾つかについて欠 失、置換もしくは付加等あってもよいという趣旨である。

[0021]

アミノ酸の欠失, 置換もしくは付加部位は特に制限されないが、少なくとも配 列番号12に示されるアミノ酸配列中の441位のCys残基周辺領域は保存さ れている必要がある。というのも、本発明のヒト由来PGISは、そのアミノ酸 配列において既知のチトクロームP450とホモロジーを有し、かつC末端側の アミノ酸配列中にチトクロームP450の生物活性発現に重要なヘム結合部位(第5配位子) に相当するCys残基を有することから、チトクロームP450フ ァミリーに属する新規タンパクであると推定されるからである(生物物理, Vol. 32, No.1, pp.10-15, 1992年参照)。

[0022]

本発明のポリペプチドは、好ましくは配列番号12に示されるヒト由来PGI Sのアミノ酸配列を有するポリペプチドである。

[0023]

本発明のポリペプチドが有するPGIS活性とは、PGH2 をPGI2 に変換 する触媒活性をいう。当該PGIS活性は、例えば Salmon, J. A.および Flowe r, R. J.らの方法 [Methods Enzymol. 86, pp.p91-99 (1982)] に従って、¹⁴C ラベル化PGH2のPGI2への変換を、代謝産物である6ーケトーPGF 1α を薄層クロマトグラフィーにて分離したのち、該6-ケト-РGF 1αの放射活 性を検出することによって測定される。

$[0\ 0\ 2\ 4]$

また、本発明は、実質的に配列番号12で示されるヒト由来PGISのアミノ 酸配列をコードする塩基配列を有するDNAを含むDNAに関する。

[0025]

当該DNAは、上述のヒト由来PGISのアミノ酸配列をコードする塩基配列 を有するDNAを含むものであればいかなるものでもよく、具体的には、配列番 号12で示されるアミノ酸配列を有するポリペプチドまたはそれと同等の免疫学 的および生物学的活性を有するポリペプチドをコードするDNAが挙げられる。 より具体的には、配列番号11で示される塩基配列中、塩基番号28乃至152 7で示される塩基配列を含有するDNAを挙げることができる。

[0026]

一般に、遺伝子組換え技術分野では、遺伝暗号の縮重に従い、遺伝子から産生される蛋白質のアミノ酸配列を変えることなくその遺伝子のDNA配列の少なくとも一つの塩基を他の塩基に置換することができる。従って、本発明のDNAは、配列表配列番号11の塩基番号28乃至1527で示される塩基配列を遺伝暗号に基づく置換によって変化された塩基配列を有するDNAをも包含する。

[0027]

また、本発明のDNAは、いかなる方法で得られるものであってもよい。例えばmRNAから調製される相補DNA(cDNA)、ゲノムDNAから調製されるDNA、化学合成によって得られるDNA、RNAまたはDNAを鋳型としてPCR法で増幅させて得られるDNAおよびこれらの方法を適当に組み合わせて構築されるDNAをも全て包含するものである。

[0028]

本発明のDNAは、常法に従ってヒト由来PGISのmRNAからcDNAを クローン化する方法、ゲノムDNAを単離してスプライシング処理する方法、化 学合成する方法等により取得することができる。

[0029]

(1) 例えば、ヒト由来PGISのmRNAからcDNAをクローン化する方法と しては、以下の方法が例示される。

[0030]

まず、ヒト動脈血管細胞などヒト由来PGISを産生(分泌)する細胞を培養し、その培養液から該PGISをコードするmRNAを調製する。mRNAの調製は、例えばグアニジンチオシアネート法〔Chirgwin, J. M. et al., Biochem., 18,5294(1979)〕、熱フェノール法もしくはAGPC法等の公知の方法を用いて調製した全RNAをオリゴ(dT)セルロースやポリUーセファロース等によるアフィニティクロマトグラフィーにかけることによって行うことができる。

[0031]

次いで得られたmRNAを鋳型として、例えば逆転写酵素を用いる等の公知の方法 [例えばOkayama, H. らの方法 {Okayama, H. et al., Mol. Cell. Biol., 2, 161 (1982) 及び同誌 3, 280 (1983)} やGubler, U.とHoffman, B. J.の方法 {

Gubler, H. and Hoffman, B. J., Gene, 25, 263 (1983) + が例示される。〕で cDNA鎖を合成し、cDNAの二本鎖 cDNAへの変換を行う。このcDNA をプラスミドベクターもしくはファージベクターに組み込み、大腸菌を形質転換して、あるいはインビトロパッケージング後大腸菌に形質移入(トランスフェクト)することにより cDNAライブラリーを作製する。

[0032]

ここで用いられるプラスミドベクターとしては、宿主内で複製保持されるものであれば特に制限されず、また用いられるファージベクターとしても宿主内で増殖できるものであれば良い。常法的に用いられるクローニング用ベクターとしてpUC119, $\lambda gt10$, $\lambda gt11$ 等が例示される。ただし、後述の免疫学的スクリーニングに供する場合は、宿主内でPGIS 遺伝子を発現させうるプロモーターを有したベクターであることが好ましい。

[0033]

プラスミドにcDNAを組み込む方法としては、例えば Maniatis, T. ら,モレキュラークローニング,ア・ラボラトリー・マニュアル (Molecular Cloning, A Laboratory Manual), Cold Spring Harbor Laboratory, p. 239 (1982)に記載の方法などが挙げられる。また、ファージベクターにcDNAを組み込む方法としては、Hyunh, T. V. らの方法 [Hyunh, T. V., DNA Cloning, a practical approach, 1,49 (1985) | などが挙げられる。簡便には、市販のライゲーションキット (例えば、宝酒造製等)を用いることもできる。このようにして得られる組換えプラスミドやファージベクターは、原核細胞(例えば、E. coliHB101,DH5またはMC1061/P3等)等の適当な宿主に導入する。

[0034]

プラスミドを宿主に導入する方法としては、Maniatis, T.らのモレキュラークローニング, ア・ラボラトリー・マニュアル(Molecular Cloning, A Laboratory Manual), Cold Spring Harbor Laboratory, p. 239 (1982) に記載の塩化カルシウム法または塩化カルシウム/塩化ルビジウム法、エレクトロポレーション法等が挙げられる。また、ファージベクターを宿主に導入する方法としてはファージDNAをインビトロパッケージングした後、増殖させた宿主に導入する方法等が

例示される。インビトロパッケージングは、市販のインビトロパッケージングキット(例えば、ストラタジーン社製、アマシャム社製等)を用いることによって 簡便に行うことができる。

[0035]

上記の方法によって作製された c D N A ライブラリーから、本発明の P G I S をコードする c D N A を単離する方法は、一般的な c D N A スクリーニング法を組み合わせることによって行うことができる。

[0036]

例えば、別個にヒトPGISのアミノ酸配列に対応すると考えられるオリゴヌクレオチドを化学合成したのち、これを32Pでラベルしてプローブとなし、公知のコロニーハイブリダイゼーション法 [Crunstein, M. and Hogness, D.S.: Proc. Natl. Acid. Sci. USA 72, 3961 (1975)] またはプラークハイブリダイゼーション法 [Molecular Cloning, A Laboratory Manual), Cold Spring Harbor Laboratory, p. 239 (1982)] により、目的の c D N A を含有するクローンをスクリーニングする方法、PCRプライマーを作製しPGISの特定領域をPCR法により増幅し、該領域をコードするD N A 断片を有するクローンを選択する方法等が挙げられる。また、c D N A を発現しうるベクター(例えば、λ g t 1 1 ファージベクター)を用いて作製した c D N A ライブラリーを用いる場合には、後述の本発明PGIS抗体を用いる抗原抗体反応を利用して、目的のクローンを選択することができる。大量にクローンを処理する場合には、PCR法を利用したスクリーニング法を用いることが好ましい。

[0037]

この様にして得られたDNAの塩基配列はマキサム・ギルバート法 [Maxam, A.M. and Gilbert, W., Proc. Natl. Acad. Sci. USA., 74, 560 (1977)] あるいはファージM13を用いたジデオキシヌクレオチド合成鎖停止の方法 [Sanger, F.ら、Proc. Natl. Acad. Sci. USA, 74, 5463-5467 (1977)] によって決定することができる。PGIS遺伝子は、その全部または一部を上記のようにして得られるクローンから制限酵素等により切り出すことにより取得できる。

[0038]

(2) また、ヒト動脈血管細胞のゲノムDNAからPGISをコードするDNAを 単離することによる調製方法としては、例えば以下の方法が例示される。

[0039]

ヒト動脈血管細胞を好ましくはSDSまたはプロテナーゼK等を用いて溶解し、フェノールによる抽出を反復してDNAの脱蛋白質を行う。RNAを好ましくはリボヌクレアーゼにより消化する。得られるDNAを適当な制限酵素により部分消化し、得られるDNA断片を適当なファージまたはコスミドで増幅しライブラリーを作成する。そして目的の配列を有するクローンを、例えば放射性標識されたDNAプローブを用いる方法等により検出し、該クローンからPGISの遺伝子の全部または一部を制限酵素等により切り出し取得する。

[0040]

(3) また、化学的合成による本発明のDNAの製造は、配列表配列番号11に示される塩基配列をもとにして、常法に従って行うことができる。

[0041]

さらに本発明は、上述のPGISをコードするDNAを含有する組換えベクターに関する。本発明の組換えベクターとしては、原核細胞及び/または真核細胞の各種の宿主内で複製保持または自己増殖できるものであれば特に制限されず、プラスミドベクターおよびファージベクターが包含される。

[0042]

当該組換えベクターは、簡便には当業界において入手可能な組換え用ベクター(プラスミドDNAおよびバクテリアファージDNA)に本発明のヒト由来PGISをコードするDNAを常法により連結することによって調製することができる。用いられる組換え用ベクターとして具体的には、大腸菌由来のプラスミドとして例えばpBR322、pBR325、pUC12、pUC13など、酵母由来プラスミドとして例えばpSH19、pSH15など、枯草菌由来プラスミドとして例えばpUB110、pTP5、pC194などが例示される。また、ファージとしては、 λ ファージなどのバクテリオファージが、さらにレトロウイルス、ワクシニヤウイルス、核多角体ウイルスなどの動物や昆虫のウイルス [pVL1392、pBK283、Autographa californica 多核体ウイルス(AcNPV)、Bombyx mori多核体ウイルス(BmNPV)] が例示される。

[0043]

PGIS遺伝子を発現させPGISを生産させる目的においては、発現ベクターが有用である。発現ベクターとしては、原核細胞および/または真核細胞の各種の宿主細胞中でPGIS遺伝子を発現し、これら蛋白質を生産する機能を有するものであれば特に制限されない。好ましくは、昆虫細胞に感染し、該細胞中でPGISを産生する昆虫ウイルス由来の発現ベクターである。

[0044]

宿主細胞として細菌、特に大腸菌を用いる場合、一般に発現ベクターは少なくともプロモーターーオペレーター領域、開始コドン、本発明PGISをコードするDNA、終止コドン、ターミネーター領域および複製可能単位から構成される

[0045]

宿主として酵母,動物細胞または昆虫細胞を用いる場合、発現ベクターは少なくともプロモーター、開始コドン、本発明ポリペプチドをコードするDNA、終止コドンを含んでいることが好ましい。またシグナルペプチドをコードするDNA、エンハンサー配列、本発明ポリペプチドの5'側および3'側の非翻訳領域、スプライシング接合部、ポリアデニレーション部位、選択マーカー領域または複製可能単位などを含んでいてもよい。

[0046]

細菌中で本発明のポリペプチドを発現させるためのプロモーターーオペレーター領域は、プロモーター、オペレーターおよび Shine-Dalgarno(SD) 配列 (例えば、AAGGなど)を含むものである。例えば宿主が大腸菌の場合、好適にはTェpプロモーター,1acプロモーター,recAプロモーター, λ PLプロモーター,1ppプロモーターなどを含むものが例示される。酵母中で本発明のPGISを発現させるためのプロモーターとしては、PH05プロモーター,PGKプロモーター,GAPプロモーター,ADHプロモーターが挙げられ、宿主がバチルス属菌の場合は、SL01プロモーター,SP02プロモーター,penPプロモーターなどが挙げられる。また、宿主が動物細胞等の真核細胞である場合、SV40由来のプロモーター,VPロウイルスのプロモーター,VPロテーター

ックプロモーター、核多角体ウイルスの有するポリヘドリンプロモーターなどが 挙げられる。しかし、特にこれらに限定されるものではない。また、発現にはエ ンハンサーの利用も効果的な方法である。

[0047]

好適な開始コドンとしては、メチオニンコドン(ATG)が例示される。

[0048]

終止コドンとしては、常用の終止コドン(例えば、TAG, TGAなど)が例示される。

[0049]

ターミネーター領域としては、通常用いられる天然または合成のターミネーターを用いることができる。

[0050]

複製可能単位とは、宿主細胞中でその全DNA配列を複製することができる能力をもつDNAをいい、天然のプラスミド,人工的に修飾されたプラスミド(天然のプラスミドから調製されたDNAフラグメント)および合成プラスミド等が含まれる。好適なプラスミドとしては、E. coliではプラスミド pBR322、もしくはその人工的修飾物(pBR322を適当な制限酵素で処理して得られるDNAフラグメント)が、酵母では酵母2 μ プラスミド、もしくは酵母染色体DNAが、また哺乳動物細胞ではプラスミドpRSVneo ATCC 37198,プラスミドpSV2 dhfr ATCC 37145,プラスミドpdBPV-MMTneo ATCC 37224,プラスミドpSV2neo ATCC 37149等があげられる。

[0051]

エンハンサー配列、ポリアデニレーション部位およびスプライシング接合部位 については、例えばそれぞれSV40に由来するもの等、当業者において通常使 用されるものを用いることができる。

[0052]

選択マーカーとしては、通常使用されるものを常法により用いることができる。例えばテトラサイクリン、アンピシリン、またはカナマイシン等の抗生物質耐性遺伝子等が例示される。

[0053]

本発明の発現ベクターは、少なくとも、上述のプロモーター、開始コドン、本発明のPGISをコードするDNA、終止コドンおよびターミネーター領域を連続的かつ環状に適当な複製可能単位に連結することによって調製することができる。またこの際、所望により制限酵素での消化やT4DNAリガーゼを用いるライゲーション等の常法により適当なDNAフラグメント(例えば、リンカー、他のレストリクションサイトなど)を用いることができる。

[0054]

本発明の形質転換体は、上述の発現ベクターを宿主細胞に導入することにより 調製することができる。

[0055]

宿主細胞としては、例えば微生物〔細菌(例えば、エシェリキア属菌、バチルス属菌),酵母(例えば、サッカロマイセス属など),動物細胞および昆虫細胞など〕が挙げられる。具体的には、エシェリキア属菌ではエシェリキア・コリ(Escherichia coli)K12DH1,M103,JA221,HB101,C600,XL-1 Blue,JM109などが例示される。バチルス属菌ではバチルス・サチリス(Bacillus subtilis)207-21 などが挙げられる。酵母としてはサッカロマイセス・セレビシエ(Saccarom yces cerevisiae)AH22,AH22R-,NA87-11A,DKD-5Dなどが挙げられる。動物細胞としてはサル細胞COS-7,Vero,チャイニーズハムスター細胞CHO,マウスL細胞,ヒトFL細胞などが挙げられる。昆虫細胞としてはBmN4,Sf9 などが挙げられる。好ましくは、昆虫細胞である。

[0056]

一般にDNA配列のクローニングおよびベクターの組立てのための宿主細胞としては原核細胞が好ましい。組立てられた発現ベクターは次に適当な宿主細胞に形質転換されるが、この際の宿主細胞としては原核細胞のみならず真核細胞をも使用することができる。好ましくは、昆虫細胞(BmN4, Sfなど)である。

[0057]

発現ベクターの宿主細胞への導入〔形質転換(本発明では、形質移入を含む概念で用いる。)〕は従来公知の方法を用いて行うことができる。

例えば、細菌(大腸菌、Bacillus subtilis 等)の場合は、例えばCohen らの方法 [Proc. Natl. Acad. Sci. USA., 69, 2110 (1972)]、プロトプラスト法 [Mol. Gen. Genet., 168, 111 (1979)] やコンピテント法 [J. Mol. Biol., 56, 209 (1971)] によって、Saccharomyces cerevisiaeの場合は、例えばHinnenらの方法 [Proc. Natl. Acad. Sci. USA., 75, 1927 (1978)] やリチウム法 [J. Bacteriol., 153, 163 (1983)] によって、動物細胞の場合は、例えばGrahamの方法 [Virology, 52, 456 (1973)]、昆虫細胞の場合は、例えばSummers らの方法 [Mol. Cell. Biol. 3, 2156-2165 (1983)] によってそれぞれ形質転換することができる。

[0058]

本発明のヒト由来PGISは、上記の如く調製される発現ベクターを含む形質 転換体(本発明では形質移入体を包含する意味で使用する。)を栄養培地で培養 することによって製造することができる。

[0059]

栄養培地は、宿主細胞(形質転換体)の生育に必要な炭素源,無機窒素源もしくは有機窒素源を含んでいることが好ましい。炭素源としては、例えばグルコース,デキストラン,可溶性デンプン,ショ糖などが、無機窒素源もしくは有機窒素源としては、例えばアンモニウム塩類,硝酸塩類,アミノ酸,コーンスチープ・リカー,ペプトン,カゼイン,肉エキス,大豆粕,バレイショ抽出液などが例示される。また所望により他の栄養素〔例えば、無機塩(例えば塩化カルシウム,リン酸二水素ナトリウム,塩化マグネシウム),ビタミン類,抗生物質(例えばアンピシリン,カナマイシン等)など〕を含んでいてもよい。

[0060]

培養は当業界において知られている方法により行われる。培養条件、例えば温度、培地のpHおよび培養時間は、PGISの最高力価が得られるように適宜選択される。

[0061]

なお、下記に宿主細胞に応じて用いられる具体的な培地および培養条件を例示 するが、何らこれらに限定されるものではない。

[0062]

宿主が細菌、放線菌、酵母、糸状菌である場合、例えば上記栄養源を含有する 液体培地が適当である。好ましくは、pHが5~8である培地である。

[0063]

宿主が大腸菌の場合、好ましい培地としてM9 培地 [Miller. J., Exp. Mol. Genet, p.431, Cold Spring Harbor Laboratory, New York (1972)] が例示される。かかる場合、培養は、必要により通気、攪拌をしながら、通常 $14 \sim 43$ $\mathbb C$ 、約 $3 \sim 24$ 時間行うことができる。

[0064]

宿主がBacillus属菌の場合、必要により通気、攪拌をしながら、通常 $3.0 \sim 4$ 0.0 、約 $1.6 \sim 9.6$ 時間行うことができる。

[0065]

宿主が酵母である場合、培地として、例えばBurkholder最小培地〔Bostian. K. L. et al, Proc. Natl. Acad. Sci. USA, 77, 4505(1980)〕が挙げられ、p. Hは $5\sim8$ であることが望ましい。培養は通常約 $2.0\sim3.5$ ℃で約 $1.4\sim1.4.4$ 時間行なわれ、必要により通気や攪拌を行うこともできる。

[0066]

宿主が動物細胞の場合、培地として例えば約5~20%の胎児牛血清を含むMEM培地 [Science, 122, 501 (1952)], DMEM培地 [Virology, 8, 396 (1959)]、RPMI1640培地 [J. Am. Med. Assoc., 199, 519 (1967)], 199培地 [proc. Soc. Exp. Biol. Med., 73, 1 (1950)] 等を用いることができる。培地のpHは約6~8であるのが好ましく、培養は通常約30~40℃で約15~60時間行なわれ、必要により通気や攪拌を行うこともできる。

[0067]

宿主が昆虫細胞の場合、例えば胎児牛血清を含むGrace's 培地 [Proc. Natl. Acad. Sci. USA, 82, 8404 (1985)] 等が挙げられ、そのpHは約 $5\sim8$ であるのが好ましい。培養は通常約 $20\sim40$ ℃で $15\sim100$ 時間行なわれ、必要により通気や攪拌を行うこともできる。

[0068]

本発明のヒト由来PGISは、上記培養により得られる培養物より以下のようにして取得できる。

[0069]

すなわち、本発明のヒト由来PGISが、培養物のうち培養液中に存在する場合は、得られた培養物を濾過または遠心分離等の方法で培養濾液(上清)を得、該培養濾液から天然または合成蛋白質を精製並びに単離するために一般に用いられる常法に従って該PGISを精製、単離する。

[0070]

単離、精製方法としては、例えば塩析、溶媒沈澱法等の溶解度を利用する方法、透析、限外濾過、ゲル濾過、ドデシル硫酸ナトリウムーポリアクリルアミドゲル電気泳動など分子量の差を利用する方法、イオン交換クロマトグラフィーやヒドロキシルアパタイトクロマトグラフィーなどの荷電を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動などの等電点の差を利用する方法などが挙げられる。

[0071]

一方、本発明ヒト由来PGISが培養された形質転換体のペリプラズムまたは細胞質内に存在する場合は、培養物を濾過または遠心分離などの常法に付して菌体あるいは細胞を集め、適当な緩衝液に懸濁し、例えば超音波やリゾチーム及び凍結融解などの方法で細胞等の細胞壁および/または細胞膜を破壊した後、遠心分離やろ過などの方法でPGISを含有する膜画分を得る。該膜画分をトリトン等の界面活性剤を用いて可溶化して粗溶液を得る。そして、当該粗溶液を先に例示したような常法を用いて処理することにより、本発明PGISを単離、精製することができる。

$[0\ 0\ 7\ 2]$

また、本発明は、上述のヒト由来PGISに反応性を有する抗体に関する。本 発明の抗体は、上記性質を有するポリクローナル抗体およびモノクローナル抗体 を共に包含する。本発明の抗体は、常法に従って取得することができる。

[0073]

例えば、本発明のモノクローナル抗体は、いわゆる細胞融合によって製造されたハイブリドーマから製造することができる。即ち、抗体産生細胞と骨髄細胞との間に、融合ハイブリドーマを形成させ、当該ハイブリドーマをクローン化し、ヒト由来PGISのアミノ酸配列の一部または全部を有するポリペプチドを抗原としてそれに対して特異的親和性を示す抗体を生産するクローンを選択することによって製造される。その操作は、免疫抗原として本発明のヒト由来PGISを使用する以外は、従来既知の手段を用いることができる。

[0074]

免疫原は、例えば完全フロインドアジュバンドと混和後、動物の免疫用として使用される。動物としては、例えばマウス,ラット,ウサギ等が例示される。免疫は動物の皮下、筋肉内、腹腔内に約 $5\sim200\mu$ g/回を注射することにより行われる。初回免疫から約 $1\sim2$ 週間毎に $1\sim4$ 度免疫を行い、さらに約 $1\sim4$ 週間後に最終免疫を行う。最終免疫より約 $3\sim5$ 日後、免疫動物から抗体産生細胞を分取する。抗体産生細胞としては、脾細胞、リンパ節細胞等が挙げられる。

[0075]

骨髄細胞としては、例えばマウス、ラット、ヒト由来のものが使用される。例えばマウスミエローマP3・X63・Ag8, P3・X63・Ag8-U1, P3・NS1-Ag4, SP2/0-Ag14, X63-Ag8・653等が例示される。抗体産生細胞と骨髄細胞とは同種動物由来であることが好ましい。

[0076]

細胞融合は、例えばネイチャー、第266巻、550頁(1977)に記載の方法またはこれに準じる方法によって行われる。この際、30~50%ポリエチレングリコール(平均分子量1,000~4,000)を用いて30~40 $^{\circ}$ の温度下、約1~3分間程度反応させることによって行われる。

[0077]

細胞融合によって得られた細胞は目的とするモノクローナル抗体を産生するクローンのスクリーニングに付される。すなわち、当該細胞を例えばマイクロプレート中で培養し、増殖の見られたウェルの培養上清中の抗体価を、例えば酵素抗体法等によって測定し、適切な抗体を産生しているウェルを得る。このようなウ

ェルから更に例えば限界希釈法によってクローニングを行ってクローンを得る。本発明のモノクローナル抗体は、当該ハイブリドーマ細胞クローンを通常の培養方法、高密度培養方法あるいはスピンナーフラスコ培養方法等の培養上清よりプロテインA結合担体あるいは抗マウスイムノグロブリン結合担体を用いたアフィニティクロマトグラフィーにより精製することにより得られる。

[0078]

また培養したハイブリドーマ細胞を、予めプレステン処理した同系マウス腹腔に注射することにより腹水として得られ、これを硫安塩析した後DEAEイオン交換クロマトグラフィーによりIgG画分として精製し調製することができる。

[0079]

【発明の効果】

本発明は、ヒト由来のPGISのアミノ酸配列、該配列を有する酵素をコードするDNAの塩基配列を初めて明らかにするものである。かかるアミノ酸配列および塩基配列の解明に基づいて、本発明は遺伝子工学的手法によるPGISの製造法およびこれに関連する発現系を提供する。

[0080]

本発明のPGIS及びこれをコードするDNAは、

①PGISの分子あるい遺伝子レベルでの物理化学的性状、及び生物学的性状の 解析、

[0081]

②PGISの産生調節メカニズム、PGISに係るPGI₂の産生調節メカニズムの解析、及び

[0082]

③PGI₂とTXA₂との産生量不均衡に起因すると考えられる各種循環器系疾患の原因究明および該疾患に対する治療薬の開発のための分子あるいは遺伝子レベルでの解析、

のための試薬として有用である。

[0083]

また、PGISあるいはそのmRNAに体内組織発現レベルおよび分布を測定

するための診断薬として有用である。

[0084]

さらには、それら自身、それらの断片、あるいはそれらの修飾体を疾患部位特異的に生体内に導入することにより、 PGI_2 の産生レベルを高めることによる、例えば血栓症、心筋梗塞、動脈硬化、狭心症等の各種循環器系疾患に対する治療薬としての利用が期待される。

[0085]

さらに、本発明のヒト由来PGISをコードするDNAを含有する組換えべクター、および該ベクターで形質転換された宿主細胞からなるPGISの発現系は、ヒト由来PGISの簡便かつ効率的な量産を可能とする遺伝子工学的製造に有用である。

[0086]

また、本発明のヒト由来PGIS抗体は、ヒト由来PGISの精製、免疫組織化学的、病因解析〔各種組織(子宮、心臓、骨格筋、肺、前立腺等)の特異染色〕に有用である。

[0087]

本発明の実施例において用いるプラスミド、制限酵素等の酵素、T4DNAリガーゼ及び他の物質は市販のものであり、常法に従って使用することできる。cDNAのクローニング、塩基配列の決定、宿主細胞のトランスフェクション、形質移入体の培養、得られる培養物からのPGISの採取、精製等および抗体の取得に用いられた操作についても当業者によく知られているものであるか、文献により知ることのできるものである。

[0088]

また、本発明で用いるpHPGIS36 (PBJT-BA-4、受託番号FE RM BP-4653) およびpHPGIS135 (PBJT-BA 5、受託番号FERM BP-4654) は、通商産業省工業技術院生命工学工業技術研究所に国際寄託されている。

[0089]

【実施例・参考例】

以下、本発明を具体的に説明するため実施例および参考例を示すが、本発明は これら実施例等によって何ら制限されるものではない。

[0090]

実施例1 cDNA塩基配列の決定

(1) λhPGIS141の作製

ヒトゲノムライブラリー(Genomic Lung fibroblast cell line, W I 38、クローンテック社製)を 2×10^5 PFU 程まき、本発明者が先に作製したウシc D N A(Tanabe, T., Hara, S., Miyata, A., Brugger, R., and Ullrich, V.(19 93)in Abstract book of 3rd international conference on eicosanoid and o ther bioactive lipids in cancer, inflammation and radiation Injury, pp. 137 参照)をプローブとして、プラークハイブリダイゼーションによるスクリーニングを行った。

[0091]

その結果、4つのポジティブシグナルを得て、そのうちの1つを単一プラークにまで単離した。これを液体培養することにより大量のファージDNAを調製して、精製後種々の制限酵素消化によるマッピングを行った。サザンハイブリダイゼーションにより、エクソンを含むフラグメントを同定して、DNAシークエンスによる構造解析を行い、最終的に単離されたクローン(λhPGIS141)がヒトPGISをコードするものであることを確認した。

[0092]

このようにして得られた λ h P G I S 1 4 1 について、制限酵素サイトマッピングや塩基配列決定など構造解析した結果、 λ h P G I S 1 4 1 はウシP G I S の c D N A の塩基配列の 6 7 3 \sim 8 5 5 に相当する領域を含んでいることが確認された(配列番号 8)。

[0093]

この得られた λ h P G I S 1 4 1 の c D N A フラグメントの塩基配列をもとに、配列表配列番号 $1 \sim 4$ に示す配列を有するプライマー〔配列番号 1:P1 プライマー (674-689)、配列番号 2:P2 プライマー (699-718)、配列番号 3:P3 プライマー (696-713)、配列番号 4:P4 プライマー (805-822)〕を合成した。

[0094]

(2) PCR法によるcDNAの増幅

該プライマーを用いて、ヒト動脈血管内皮細胞(以下、HAECという。クラボー社製) 1μ gの poly(A)+ RNA (mRNA) を鋳型として、3'下流領域および5'上流領域のcDNAをそれぞれPCR法により増幅した (Biochem. Biophys. Res. Commun. 178, 1479–1484)。

[0095]

3'下流領域に相当する c D N A を増幅するために、まず d T $_{17}$ アダプター(5'-GACTCGACTCGACTCGA(T) $_{17}$ -3'、配列番号 5)でプライムし、伸長作成したファースト c D N A 鎖を P 1 プライマー(674-689) およびアダプタープライマー(配列番号 6)で、ついで P 2 プライマー(699-718) 及びアダプタープライマー(配列番号 6)を用いて増幅した。一方、 5'上流領域の c D N A は 5'R A C E システム(G I B C O B R L)を用いて増幅した。プロトコールに従って、ホモメリック d C テイルをファースト c D N A 鎖につけて、更にセカンド c D N A 鎖をアダプタープライマー(5'-(CUA) $_4$ GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIGG3')(配列番号 7)を用いて作成した。第 1 段階の増幅は P 4 プライマーとアダプタープライマー(配列番号 7)とを用いて行った。次いで第 2 段階の増幅を P 3 プライマーとアダプタープライマー(配列番号 7)とを用いて行った。なお、P C R 法は下記のサイクロプロファイルに従って 3 5 サイクル行った。

[0096]

変性 $94 \, \mathbb{C}$, 1分 $72 \, \mathbb{C}$, 3分

[0097]

各PCR生成物(3'下流領域増幅産物、5'下流領域増幅産物)から一部を取り出して、それぞれを1%アガロースゲルを用いた電気泳動で精製を行った。 ウシPGISのcDNA(pBPGISI)をプローブとしたサザンハイブリダイゼーションにより、該プローブにクロスハイブリダイズしたバンドからDNAを抽出して、得られたDNAをpBluescriptIISK(-) にクローン化した。

[0098]

すなわち、以下の手順に従ってクローン化、スクリーニングを行った。

- (1)電気泳動後、ゲルからシグナルの見られたバンドを切り出す。
- (2)アガラーゼ消化を 4 0 ℃で 1 時間行う(アガラーゼ 1 unit/100 μ l ゲル)。
- (3) DNAをフェノールで抽出した後、エタノール沈澱する。
- (4)該DNAエタノール沈澱を滅菌水に溶解後、37℃で1時間のポリヌクレオ チドカイネース処理する。
- (5) クレノウフラグメントにより、末端の修復を行う(16℃、1時間)。
- (6)Takara ligation kit によるライゲーションを行う。
- (7)常法に従い、トランスフォーメーションを行う。
- (8) プレートにまく。
- (9)常法に従ってレプリカを作成する。
- (10) レプリカのニトロセルロースフィルターをウシPGISの c DNAをプロー ブとして用いて、常法に従ってコロニーハイブリダイゼーションを行う。

[0099]

尚、ハイブリダイゼーションは、 $6\times SSC$ [$1\times SSC$ は、0.15M N a C1、15mM クエン酸ナトリウム(pH7.0)を含有する], $5\times Denh$ ardt's 溶液, 250μ g/ml サケ精子DNA, 0.1%SDSおよびランダムプライミング法によりラベル化した c DNAのフラグメント(10^6 cpm /ml) の中で60%で行った。得られたフィルターに対して $3\times SSC$, 0.1%SDS中で室温下、5%間の洗浄を2回、それから $0.1\times SSC$, 0.1%SDS中で50%、15%間の洗浄を10%0で12~16時間、増感スクリーンを用いてフジX線フィルムを当てた。

[0100]

得られたインサートDNAをpBluescriptII SK(-) にサブクローニングした。

[0101]

これにより、ヒト由来PGISの3'下流領域のDNAを含有するクローン PHPGIS135および5'上流領域のDNAを含有するクローン pHPGIS36を取得した。次に、サンガー法 [Sanger, F., Nickle,, S., and Coulson,

A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467] に従って、Taq dye プライマーサイクル配列キット(アプライドバイオシステムズ社製)を用いてモデル3 7 3 A DNAシーケンサー(アプライドバイオシステムズ社製)によって、各クローンの挿入DNAの塩基配列を決定した。これにより、pHPGIS 3 6 クローンはインサートDNA配列として、5 側にアダプター配列を配した ヒトPGISのcDNAの740bpの塩基配列を有している(配列番号9)ことがわかり、これによりATGを翻訳開始配列(Met)とする238アミノ酸残基からなるPGISのアミノ酸の部分配列が解明された。

[0102]

また、pHPGIS135クローンはインサートDNA配列として、3'側にアダプター配列を配したヒトPGISのcDNAの1277bpの塩基配列を有している(配列番号10)ことがわかり、これにより226番目のアスパラギン酸から始まるカルボキシル基側領域のPGISの部分アミノ酸配列が解明された。後記配列表の配列番号9にpHPGIS36クローンに含有されるヒトPGISのcDNAの塩基配列およびこれからコードされるアミノ酸配列を、配列番号10にpHPGIS135クローンに含有されるヒトPGISのcDNAの塩基配列およびこれからコードされるアミノ酸配列を記載する。なお、図1にヒトPGISのcDNAの制限酵素マップおよびλhPGIS141,pHPGIS36およびpHPGIS135に含まれるDNAが当該ヒトPGISのcDNAのどの領域に相当するかを示す。また、図2にpHPGIS36の制限酵素マップを示す。

【書類名】 明細書

[0103]

以上のクローニングにより得られたヒトPGISのcDNAは、翻訳開始コドン周辺に Kozakら [Nucleic Acids Res. 12, 857-872 (1984)] によって示された真核生物の開始コドンのコンセンサス配列を有しており、終止コドンに相当するTGAコドンが500コドン後に存在していた。これらのことから、クローニングされたヒトPGISのcDNAは、配列番号12に示すように500アミノ酸残基をコードする1500bpの有する1977bpであることが判り、これ

によりコードされるタンパクの分子量は約57,000であろうと推測された。

[0104]

また、当該DNAによりコードされるアミノ酸配列を、本発明者らによって別にクローニングされたウシ由来のPGISのアミノ酸配列と比較したところ、約88%のホモロジーを有していることがわかった。本発明者らによるウシPGISの研究から、ウシPGISは、チトクロムP450 7ファミリー(CYP7)に属するコレステロール7αーヒドロキシラーゼと31%のホモロジーを有しており、特にチトクロムP450のへム結合部位(第5配位子)である441位のCys残基周辺領域が保存されていることが判っているが、本発明のヒトPGISの活性に重要な役割を担うものと考えられる。

[0105]

また、ウシPGISは、コレステロール 7α -ヒドロキシラーゼとは31%のホモロジーがあるものの、チトクロムP450ファミリーに属するヒトトロンボキサンシンターゼとは16%のホモロジーしか、また既知のチトクロムP450タンパクのいずれとも40%以上のホモロジーは有しないことから、チトクロムP450スーパーファミリーの中の新しいファミリーであることが予想されるが、ヒトPGISも同様にこの新しいファミリーに属するものと考えられる。

[0106]

このような構造活性相関の探索は医薬品の研究開発に不可欠なものであるが、かかる探索は、ヒトPGISの一次構造が明らかになることにより初めて成しえるものである。従って、ヒトPGISの一次構造を初めて開示する本発明は、研究の分野のみならず産業上においても極めて重要な意義を有する。

[0107]

実施例2 ヒトPGISの発現

(1)ヒトPGISの発現ベクターの構築

得られたpHPGIS36クローンおよびpHPGIS135クローンそれぞれより、cDNAインサート領域を適切な制限酵素を用いて切り出し精製する。得られる両フラグメントを熱変性(95 \mathbb{C} 、10 \mathbb{O} の分間)した後、アニーリングさ

せる。次にDNAポリメラーゼにより、オーバーラップ領域を合成開始領域として、当該領域から5'方向および3'方向の両方向に複製を行う。得られた全長 c DNAを鋳型として開始コドン、終止コドンそれぞれの領域よりプライマーを 合成してPCRを行う。その際、プライマーの3'には適当な制限酵素サイトを アンカー部位として構築する。

[0108]

得られたPCR産物を精製後、それらの塩基配列を確認するとともに、Bam HIおよびSmaI (BglII)にて消化を行い、BamHI-SmaI (BglII)フラグメントを得RU当該BamHI-SmaI (BglII)フラグメントをあらかじめBamHI-SmaI処理したpVL1393発現ベクターのBamHI-SmaI部位に導入する。作成された組換えプラスミド(PGIS7)を制限酵素マッピングおよびDNA配列分析によってキャラクタライズする。

[0109]

(2) バキュロウイルス発現システム

Sf9細胞(インビトロゲン社製)を10%ウシ胎児血清,0.33%イーストレイト及び0.33%ラクトアルブミンハイドロライセートを含有するグレースインセクト培地を用いて27℃で単層培養する。組換えウイルスを産生させるため、Sf9細胞(1. 5×1 06 細胞)組換えプラスミド(PGIS7、50μg)と野生型バキュロウイルスDNA(AcNPV; $1 \mu g$)とを混合してリン酸カルシウム沈澱法によりトランスフェクトした。組換えバキュロウイルスは、プラークアッセイとプローブとして32PーラベルしたPGISのcDNAフラグメントを使用するスロットハイブリダイゼーションとを組み合わせることによって単離し、さらに増幅させる。

[0110]

該Sf9細胞を野生型バキュロウイルスまたは組換えバキュロウイルスにインフェクションする。インフェクションして3日後、細胞を集め(2×10^8 細胞)、 10μ Mへミンを含有する血清含有培地中、または含有しない血清含有培地中で5時間インキュベーションする。

[0111]

得られた細胞をリン酸緩衝生理食塩水で洗浄し、-80 $^{\circ}$ に保存する。細胞のミクロソーム画分を HaurandとUllrich らの方法に従って調製する(J. Biol. C hem. 260, 15059–15067)。得られた細胞(2×10^8 細胞)を $10\,\mathrm{mM}$ リウム緩衝液(pH7.0), $10\,\mathrm{mM}$ EDTA, $5\,\mathrm{mM}$ $^{\circ}$ $^{\circ}$

[0112]

[0113]

(3) ウエスタン イムノブロット分析

インフェクションされたS f 9 細胞とヒト血小板のミクロソーム画分を Laemm liの方法 [Nature 227, 680-685 (1979)] に従って10%SDS-PAGEにかける。泳動されたタンパクを Towbin らの方法 [Proc. Natl. Acad. Sci. USA 7 6, 4350-4354 (1979)] に従ってポリビニリデンジフルオライド (PVDF) 膜 (イモビロン, ミリポア) 上に電気泳動的に移す。10%ウマ血清含有トリス塩酸緩衝生理食塩水 (TBS) (pH7. 4) を室温下で30%間前処理し、3%スキムミルクを含むTBS中で、ブロットメンブレンをウシPGISに対するポリクローナル抗体と一緒にインキュベーションする。

$[0 \ 1 \ 1 \ 4]$

0.05%Tween20を含有するTBSで洗浄した後、メンブレンをホー

スラディッシュペルキシダーゼ(ベクター・ラボラトリーズ社製)とコンジュゲートする抗マウス I g G ウマ抗体と 3 %スキムミルクを含有する T B S で 3 7 ℃ で 3 0 分間インキュベーションする。 0. 0 5 % T w e e n 2 0 を含有する T B S で、さらに T B S で 十分洗浄した後、免疫反応陽性のバンドをイムノステイニング H R P キット(コニカ製)で検出する。

[0115]

実施例3 抗PGISポリクローナル抗体の作製

0.5 mlのリン酸緩衝生理食塩水(PBS)に溶解したPGISと等量のアジュバンドを乳化させた後、これをウサギに皮下注射する。その後、10日置きに同様の皮下注射を2回行い、最後の皮下注射から10日後に当該ウサギの血を採取する。該ウサギの血より調製したウサギ抗PGIS血清から抗PGIS/IgGをプロテインA セファロース 4B (バイオラッド社製)を用いることによって精製、取得する。

[0116]

実施例4 抗PGISモノクローナル抗体の作製

①マウス

近交系BALB/c系マウス雄5週令を入手し、動物飼育チェンバー内(23+1 \mathbb{C} 、湿度70%)で標準ペレットを使用して飼育し、給水は任意に行う。

[0117]

②免疫原

ヒト由来の精製PGISを使用した。ヒトPGISはダルベッコPBSで1mg/mIとなるように調製し、 100μ gずつ試験管に分注し、使用するまで80%で凍結保存する。

[0118]

③免疫方法

ヒトPGIS100 μ g \neq 0. 5 m l と同量の Freund's complete adjuvant を混合し、乳化状にした抗原 2 0 μ g を 5 匹の 5 週令雄の B A L B \neq c マウスの 腹腔および背中の皮下十数カ所に 2 週間毎に 2 か月間投与する。 2 か月間の免疫 の後、抗体価を測定し、抗体価の高いマウスを選んでさらに 1 週間毎に 5 0 μ g

、100μg、200μgを腹腔内投与し追加投与を行う。

[0119]

また、別の2匹のマウスに同様に2か月の免疫の後、1か月あけて100μg を腹腔内に投与し、さらに1週間後100μgを静注注射し追加免疫を行う。

[0120]

④細胞融合

最終免疫から3日後にBALB/cマウスの摘脾を行い、EMEM培養液中で 脾細胞の浮遊液を作成する。次いで脾細胞をEMEM培養液で4回洗浄した後、 細胞数を算定する。

[0121]

細胞融合は、2-amino-6-oxy-8 azapuraine(8-Azaguanine)耐性のBALB/c マウス骨髄腫由来培養細胞株($P3-X63-Ag8\cdot653$:以下、X63 細胞と略す)を親細胞株として用いる。X63細胞は、非働化した胎児ウシ血清(FCS) 5%を含むRPM1-1640培養液(20μ g/ml、8-Azaguanine含有)で継代培養し、対数増殖期のX63細胞を用いRPMI-164培養液で3回洗浄した後、細胞数を算定する。

[0122]

細胞融合は、ポリエチレングリコールー4000をRPMI-1640培養液で50 (w/v) %濃度となるように溶解して使用する。

[0123]

脾細胞とX63細胞の比が10:1となるように混合し、1500 r p mで5分間遠心後、上清を除去し、細胞ペレットをよく懸濁し、ポリエチレングリコールを用いて、KohkerとMilsteinの方法に準じて細胞融合を行う。その後、脾細胞が3.5×106個/mlとなるように、HAT選択培地(10%FCSを添加したRPMI-1640培養液に1×10-4Mヒポキサンチン、4×10-7Mアミノプテリン及び1.6×10-5Mチミジンを含有)に浮遊させる。次いで、細胞浮遊液の100 μ 1ずつを96穴マイクロテストプレートの各穴に分注した後、炭酸ガスインキュベータ(37 $\mathbb C$ 、湿度95%、8%炭酸ガス)で培養を行う。培養開始後、1日めと2日めにHAT培地を各穴に1滴ずつ、また培養開始後

7日めと9日めにHAT培地を各穴に2滴ずつ添加してさらに培養を行う。

[0124]

⑤スクリーニング

培養開始後、10日めより細胞のクローンが出現し、抗体産生に有無を確認するため、ハイブリドーマの培養上清を用いて抗原抗体反応試験を行う。

[0125]

すなわち、ハイブリドーマの培養上清とヒトPGIS抗原液とを 50μ 1ずつ Uボトムノマイクロタイタープレートに入れ、さらに抗マウスイムノグロブリン 抗体を結合させたセファロース4Bの20%懸濁液を 50μ 1を加えて室温で1時間攪拌した後、10分間静置する。次に抗マウスイムノグロブリン抗体結合セファロース4Bがウェルに底に完全に沈むのを確認した後、この上清を 20μ 1とり、この上清中に残存するヒトPGISの濃度をPGISELISA系で測定する。このとき、ハイブリドーマの培養上清中にヒトPGISに対する抗ヒトPGISモノクローナル抗体が存在する場合には、ヒトPGISと抗ヒトPGISモノクローナル抗体とが反応し、さらに抗マウスイムノグロブリン抗体結合セファロース4Bとが抗原抗体複合体を介して沈降し、上清中に残存するヒトPGISの濃度が減少し、抗ヒトPGISモノクローナル抗体の存在が証明される。

[0126]

参考例1 RNAブロット分析

幾種かのサイトカインの、HAECに由来するヒトPGISmRNAの発現に 対する影響をみるためにRNAブロットハイブリダイゼーション分析を行った。

[0127]

まず、幾種かのサイトカイン $\{IL-1\alpha\ (lng/ml)\ ,IL-1\beta\ (lng/ml)\}$ 、 $IL-1\beta\ (lng/ml)$ 、 IL-6(2.5ng/ml) 、 $TNF-\alpha\ (5ng/ml)$ 、 $TNF-\beta\ (lng/ml)$ $\}$ で $24時間のインキュベーション処理した各HAEC由来の全RNA <math>(30\mu g)$ をホルムアミドで変性して、 1.5%ホルムアルデヒドを含む 1%寒天ゲル上で電気泳動し、ナイロンメンブレンにトランスファーした。プローブ $\{pHPGIS\ 135および グリセルアルデヒド-3-ホスフェートデヒドロゲナーゼ (GAPDH) \}$ をランダムプライミング法 $\{Feinberg,\ A.P.,\ and\ Vogelstein,\ B.\ (1983)\ Anal.\ Bioc$

ページ: 30/

hem. 132, 6-13) を用いて、 $\left[\alpha - 32P\right]$ d C T P で標識した。

[0128]

次に、Biochem. Biophys. Res. Commun. 178, p1479–1484 (1991) に記載の方法に従ってハイブリダイゼーションを行った。得られた膜は、最後に0.1%S D S を含有する60%00. $1\times$ S S C (0.15M NaCl, 0.015M クエン酸ナトリウム,pH7. 0) で洗浄し、風乾後オートラジオグラフをとった。結果を図4に示す。HAE C 由来のヒトPG I SのmRNAの主なバンドは、約6kbのところに認められ、その他3本のマイナーバンドが認められた(3.2、2.5 および1.7kb)。実験の結果、IL- 1α 、IL- 1β もしくはIL-6とともに24時間インキュベーションしたヒトPG I SのmRNAの発現は、サイトカイン処理しなかったコントロールと比較して約2倍上昇していることが認められた。しかして、サイトカインによるPG I Sの発現、産生の増大によるものと考えられる。逆に、サイトカインによる処理は、PG I Sの発現を高めることによりPG I Sの活性を増大させ、ひいてはPG I 2 産生を促進するのに極めて有効な方法である。

[0129]

参考例2 PGISのmRNAの体内分布

ヒト体内におけるPGISのmRNAの発現分布をみるために、RNAブロット分析を行った。具体的には、クローンテック社より、ヒト各組織ポリA RNAを電気泳動してブロッティングしてあるフィルターを購入し、hPGIS135を上述の方法により32P標識化し、前述と同様の条件を用いてノーザンブロットハイブリダイゼーションを行った。

[0130]

結果を図5および図6に示す。この結果から、PGISのmRNAはヒト組織で広く、特に子宮、心臓、骨格筋、肺、前立腺に豊富に発現しており、また小腸、腎臓、肝臓及び脳にもわずかであるが有意なレベルで発現していることが確認された。これらの結果は、従来のPGISの酵素活性および免疫反応による組織分布の報告と一致しており、PGISが血管系での作用に加えて様々な生理学的

役割を担っていることが示唆される。また、図4で示された6kbの強い主なバンドと3本の弱いバンドは上記全ての組織において観察されたが、弱いバンドの相対的な濃さは組織間でさまざまであった。このような転写物の多様な存在様式は、mRNAの別のスプライシングが生じている可能性もしくはプロスタグランジンエンドペルオキシダーゼにおいて見つかったような類似遺伝子(アイソザイム)の存在の可能性を示唆するものである。

[0131]

【配列表】

配列番号:1

配列の長さ:16

配列の型:核酸

鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

GGGACAAGGA CCACAT

16

[0132]

配列番号:2

配列の長さ:20

配列の型:核酸

鎖の数: 一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

CAAAAGTCGC CTGTGGAAGC

20

[0133]

配列番号:3

配列の長さ:18

配列の型:核酸

鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

CACAGGCGAC TTTTGACA

18

[0134]

配列番号: 4

配列の長さ:18

配列の型:核酸

鎖の数: 一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

TGCCTGCATC TCCTCTGA

18

[0135]

配列番号:5

配列の長さ:19

配列の型:核酸

鎖の数: 一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

GACTCGAGTC GACATCGATT TTTTTTTTT TTTTT

35

[0136]

配列番号:6

配列の長さ:17

配列の型:核酸

鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

GACTCGAGTC GACATCG

17

[0137]

配列番号:7

配列の長さ:48

配列の型:核酸

鎖の数: 一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列の特徴:36,37,41,42,46及び47番目の記号N はそれぞれイノシンを示す。

配列

CUACUACUAC UAGGCCACGC GTCGACTAGT ACGGGNNGGG NNGGGNNG

48

[0138]

配列番号:8

配列の長さ:183

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直線状

配列の種類:cDNA

起源

生物名:ヒト

株名: λhPGIS141

配列の特徴

特徴を表す記号:peptide

存在位置:1..183

特徴を決定した方法:S

5

配列

GGG GAC AAG GAC CAC ATG TGC AGT GTC AAA AGT CGC CTG TGG AAG CTG 48

Gly Asp Lys Asp His Met Cys Ser Val Lys Ser Arg Leu Trp Lys Leu

10

15

CTA TCC CCA GCC AGG CTG GCC AGG CGG GCC CAC CGG AGC AAA TGG CTG 96

Leu Ser Pro Ala Arg Leu Ala Arg Arg Ala His Arg Ser Lys Trp Leu

20 25 30

GAG AGT TAC CTG CTG CAC CTG GAG GAG ATG GGT GTG TCA GAG GAG ATG 144

Glu Ser Tyr Leu Leu His Leu Glu Glu Met Gly Val Ser Glu Glu Met

35

40

45

CAG GCA CGG GCC CTG GTG CTG CAG CTG TGG GCC ACA CAG

183

Gln Ala Arg Ala Leu Val Leu Gln Leu Trp Ala Thr Gln

50

55

60

[0139]

配列番号:9

配列の長さ:792

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直線状

配列の種類:cDNA

起源

生物名:ヒト

株名: pHPGIS36

配列の特徴

特徴を表す記号:CDS

存在位置:20..790

特徴を決定した方法:E

特徴を表す記号:mat peptide

存在位置:20..790

特徴を決定した方法: S

配列

CTACTACTAC TAGGCCACGC GTCGACTAGT ACGGGGGGGG GGGGGGGGG GCAGCCCCGC 60

CAGCCCCGCC AGCCCCGCG ATG GCT TGG GCC GCG CTC CTC GGC CTC CTG

109

Met Ala Trp Ala Ala Leu Leu Gly Leu Leu

5

10

GCC GCA CTG TTG CTG CTG CTG CTA CTG AGC CGC CGC CGC ACG CGG CGA 157

Ala	Ala	Leu	Ser	Arg	Arg	Arg	Thr	Arg	Arg							
				15					20					25		
CCT	GGT	GAG	CCT	CCC	CTG	GAC	CTG	GGC	AGC	ATC	CCC	TGG	TTG	GGG	TAT	205
Pro	Gly	Glu	Pro	Pro	Leu	Asp	Leu	Gly	Ser	Ile	Pro	Trp	Leu	Gly	Tyr	
			30					35					40			
GCC	TTG	GAC	TTT	GGA	AAA	GAT	GCT	GCC	AGC	TTC	CTC	ACG	AGG	ATG	AAG	253
Ala	Leu	Asp	Phe	Gly	Lys	Asp	Ala	Ala	Ser	Phe	Leu	Thr	Arg	Met	Lys	
		45					50					55				
GAG	AAG	CAC	GGT	GAC	ATC	TTT	ACT	ATA	CTG	GTT	GGG	GGC	AGG	TAT	GTC	301
Glu	Lys	His	Gly	Asp	Ile	Phe	Thr	Ile	Leu	Val	Gly	Gly	Arg	Tyr	Val	
	60					65					70					
ACC	GTT	CTC	CTG	GAC	CCA	CAC	TCC	TAC	GAC	GCG	GTG	GTG	TGG	GAG	CCT	349
Thr	Val	Leu	Leu	Asp	Pro	His	Ser	Tyr	Asp	Ala	Val	Val	Trp	Glu	Pro	
75					80					85					90	
CGC	ACC	AGG	CTC	GAC	TTC	CAT	GCC	TAT	GCC	ATC	TTC	CTC	ATG	GAG	AGG	397
Arg	Thr	Arg	Leu	Asp	Phe	His	Ala	Tyr	Ala	Ile	Phe	Leu	Met	Glu	Arg	
				95					100					105		
ATT	TTT	GAT	GTG	CAG	CTT	CCA	CAT	TAC	AGC	CCC	AGT	GAT	GAA	AAG	GCC	445
Ile	Phe	Asp	Val	Gln	Leu	Pro	His	Tyr	Ser	Pro	Ser	Asp	Glu	Lys	Ala	
			110					115					120			
AGG	ATG	AAA	CTG	ACT	CTT	CTC	CAC	AGA	GAG	CTC	CAG	GCA	CTC	ACA	GAA	493
Arg	Met	Lys	Leu	Thr	Leu	Leu	His	Arg	Glu	Leu	Gln	Ala	Leu	Thr	Glu	
		125					130					135				
GCC	ATG	TAT	ACC	AAC	CTC	CAT	GCA	GTG	CTG	TTG	GGC	GAT	GCT	ACA	GAA	541
Ala	Met	Tyr	Thr	Asn	Leu	His	Ala	Val	Leu	Leu	Gly	Asp	Ala	Thr	Glu	
	140					145					150					
GCA	GGC	AGT	GGC	TGG	CAC	GAG	ATG	GGT	CTC	CTC	GAC	TTC	TCC	TAC	AGC	589
Ala	Gly	Ser	Gly	Trp	His	Glu	Met	Gly	Leu	Leu	Asp	Phe	Ser	Tyr	Ser	
155					160					165					170	

TTC CTG CTC AGA GCC GGC TAC CTG ACT CTT TAC GGA ATT GAG GCG CTG 637

Phe Leu Leu Arg Ala Gly Tyr Leu Thr Leu Tyr Gly Ile Glu Ala Leu

175 180 185

CCA CGC ACC CAT GAA AGC CAG GCC CAG GAC CGC GTC CAC TCA GCT GAT 685

Pro Arg Thr His Glu Ser Gln Ala Gln Asp Arg Val His Ser Ala Asp

190 195 200

GTC TTC CAC ACC TTT CGC CAG CTC GAC CGG CTG CTC CCC AAA CTG GCC 733

Val Phe His Thr Phe Arg Gln Leu Asp Arg Leu Leu Pro Lys Leu Ala

205 210 215

CGT GGC TCC CTG TCA GTG GGG GAC AAG GAC CAC ATG TGC AGT GTC AAA 781

Arg Gly Ser Leu Ser Val Gly Asp Lys Asp His Met Cys Ser Val Lys

220 225 230

AGT CGC CTG TG 792

Ser Arg Leu

235

[0140]

配列番号:10

配列の長さ:1296

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直線状

配列の種類:cDNA

起源

生物名:ヒト

株名:pHPGIS135

配列の特徴

特徴を表す記号:CDS

存在位置:3..827

特徴を決定した方法:E

华	特徴を	表す	ト記号	∄:p	ept i	de										
存	存在位	2置:	3	827												
特	持徴を	· 決分	目した	こ方法	ቷ: 5	6										
配歹	ij															
GG	GAC .	AAG (GAC (CAC .	ATG ′	TGC .	AGT (GTC .	AAA .	AGT (CGC	CTG '	TGG .	AAG (CTG	47
	Asp 1	Lys .	Asp 1	Hisl	Met (Cys :	Ser '	Val :	Lys :	Ser .	Arg :	Leu '	Trp :	Lys 1	Leu	
					5					10					15	
СТА	TCC	CCA	GCC	AGG	CTG	GCC	AGG	CGG	GCC	CAC	CGG	AGC	AAA	TGG	CTG	95
Leu	Ser	Pro	Ala	Arg	Leu	Ala	Arg	Arg	Ala	His	Arg	Ser	Lys	Trp	Leu	
				20					25					30		
GAG	AGT	TAC	CTG	CTG	CAC	CTG	GAG	GAG	ATG	GGT	GTG	TCA	GAG	GAG	ATG	143
Glu	Ser	Tyr	Leu	Leu	His	Leu	Glu	Glu	Met	Gly	Val	Ser	Glu	Glu	Met	
			35					40					45			
CAG	GCA	CGG	GCC	CTG	GTG	CTG	CAG	CTG	TGG	GCC	ACA	CAG	GGG	AAT	ATG	191
Gln	Ala	Arg	Ala	Leu	Val	Leu	Gln	Leu	Trp	Ala	Thr	Gln	Gly	Asn	Met	
		50					55					60				
GGT	CCC	GCT	GCC	TTC	TGG	CTC	CTG	CTC	TTC	CTT	CTC	AAG	AAT	CCT	GAA	239
Gly	Pro	Ala	Ala	Phe	Trp	Leu	Leu	Leu	Phe	Leu	Leu	Lys	Asn	Pro	Glu	
	65					70					75					
GCC	CTG	GCT	GCT	GTC	CGC	GGA	GAG	CTC	GAG	AGT	ATC	CTT	TGG	CAA	GCG	287
Ala	Leu	Ala	Ala	Val	Arg	Gly	Glu	Leu	Glu	Ser	Ile	Leu	Trp	Gln	Ala	
80					85					90					95	
GAG	CAG	CCT	GTC	TCG	CAG	ACG	ACC	ACT	CTC	CCA	CAG	AAG	GTT	CTA	GAC	335
Glu	Gln	Pro	Val	Ser	Gln	Thr	Thr	Thr	Leu	Pro	Gln	Lys	Val	Leu	Asp	
				100					105					110		
AGC	ACA	CCT	GTG	CTT	GAT	AGC	GTG	CTG	AGT	GAG	AGC	CTC	AGG	CTT	ACA	383
Ser	Thr	Pro	Val	Leu	Asn	Ser	Val	Leu	Ser	Glu	Ser	Leu	Arσ	Leu	Thr	

120

115

125

GCT	GCC	CCC	TTO	CATO	ACC	CGC	GAG	GTT	GTG	GTG	GAC	CTG	GCC	ATG	CCC	431
Ala	Ala	Pro	Phe	e Ile	Thr	Arg	Glu	Val	Val	Val	Asp	Leu	Ala	Met	Pro	
		130)				135					140				
ATG	GCA	GAC	GGC	G AGA	GAA	TTC	AAC	CTG	CGA	CGT	GGT	GAC	CGC	СТС	CTC	479
Met	Ala	Asp	Gly	/ Arg	Glu	Phe	Asn	Leu	Arg	Arg	Gly	Asp	Arg	Leu	Leu	
	145					150					155					
CTC	TTC	CCC	TTC	CTG	AGC	CCC	CAG	AGA	GAC	CCA	GAA	ATC	TAC	ACA	GAC	527
Leu	Phe	Pro	Phe	Leu	Ser	Pro	Gln	Arg	Asp	Pro	Glu	Ile	Tyr	Thr	Asp	
160					165					170					175	
CCA	GAG	GTA	TTT	` AAA	TAC	AAC	CGA	TTC	CTG	AAC	CCT	GAC	GGA	TCA	GAG	575
Pro	Glu	Val	Phe	Lys	Tyr	Asn	Arg	Phe	Leu	Asn	Pro	Asp	Gly	Ser	Glu	
				180					185					190		
AAG	AAA	GAC	TTT	TAC	AAG	GAT	GGG	AAA	CGG	CTG	AAG	AAT	TAC	AAC	ATG	623
Lys	Lys	Asp	Phe	Tyr	Lys	Asp	Gly	Lys	Arg	Leu	Lys	Asn	Tyr	Asn	Met	
			195					200					205			
CCC	TGG	GGG	GCG	GGG	CAC	AAT	CAC	TGC	CTG	GGG	AGG	AGT	TAT	GCG	GTC	671
Pro	Trp	Gly	Ala	Gly	His	Asn	His	Cys	Leu	Gly	Arg	Ser	Tyr	Ala	Val	
		210					215					220				
AAC	AGC	ATC	AAA	CAA	TTT	GTG	TTC	CTT	GTG	CTG	GTG	CAC	TTG	GAC	TTG	719
Asn	Ser	Ile	Lys	Gln	Phe	Val	Phe	Leu	Val	Leu	Val	His	Leu	Asp	Leu	
	225					230					235					
GAG	CTG	ATC	AAC	GCA	GAT	GTG	GAG	ATC	CCT	GAG	TTT	GAC	CTC	AGC	AGG	767
Glu	Leu	Ile	Asn	Ala	Asp	Val	Glu	Ile	Pro	Glu	Phe	Asp	Leu	Ser	Arg	
240					245					250					255	
TAC	GGC	TTC	GGT	CTG	ATG	CAG	CCG	GAA	CAC	GAC	GTG	CCC	GTC	CGC	TAC	815
Tyr	Gly	Phe	Gly	Leu	Met	Gln	Pro	Glu	His	Asp	Val	Pro	Val	Arg	Tyr	
				260					265					270		
CGC	ATC	CGC	CCA	TGAC	CACAG	GG A	.GCAG	ATGG	A TC	CACG	TGCT	CGC	СТСТ	GCC		867
Arg	Ile	Arg	Pro													

275

CAGCCTGCCC CAGCCTGCCC CAGCCTCCCA GCTTTCTGTG TGCACAGTTG GCCCGGGTGC 927

AGGTGCTAGC ATTACCACTT CCCTGCTTTT CTCCCAGAAG GCTGGGTCCA GGGGAGGGAA 987

AAGCTAAGAG GGTGAACAAA GAAAAGACAT TGAAAGCTCT ATGGATTATC CACTGCAAAG 1047

TTTTCTTTCC AAAATCAGGC TTTGTCTGCT CCCAATTCAC CTCGTTACTC TCACCTCGTG 1107

ATATCCACAA ATGCTATTCA GATAAGGCAG AACTAGGAGT CTTCACTGCT CTGCCCCCAA 1167

CTCCCGGAGG TGTCACCTTC CTAGTTCTTA TGAGCTAGCA TGGCCCGGGC CTTATCCAGT 1227

CAAAGCGGAT GCTGGCCACA GAAAGGCCAC TCAGGATGTC CTTTGTGTCC ATCGATGTCG 1287

ACTCGAGTC 1296

[0141]

配列番号:11

配列の長さ:1977

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直線状

配列の種類:cDNA

起源

生物名:ヒト

配列の特徴

特徴を表す記号:CDS

存在位置:28..1527

特徴を決定した方法:E

特徴を表す記号: mat peptide

存在位置:28..1527

特徴を決定した方法:S

配列

AGCCCCGCCA GCCCCGCGATG GCT TGG GCC GCG CTC CTC GGC

Met Ala Trp Ala Ala Leu Leu Gly

5

СТС	CTG	GCC	GCA	CTG	TTG	CTG	CTG	CTG	СТА	CTG	AGC	CGC	CGC	CGC	ACG	99
Leu	Leu	Ala	Ala	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Ser	Arg	Arg	Arg	Thr	
	10					15					20					
CGG	CGA	CCT	GGT	GAG	CCT	CCC	CTG	GAC	CTG	GGC	AGC	ATC	CCC	TGG	TTG	147
Arg	Arg	Pro	Gly	Glu	Pro	Pro	Leu	Asp	Leu	Gly	Ser	Ile	Pro	Trp	Leu	
25					30					35					40	
GGG	TAT	GCC	TTG	GAC	TTT	GGA	AAA	GAT	GCT	GCC	AGC	TTC	CTC	ACG	AGG	195
Gly	Tyr	Ala	Leu	Asp	Phe	Gly	Lys	Asp	Ala	Ala	Ser	Phe	Leu	Thr	Arg	
				45					50					55		
ATG	AAG	GAG	AAG	CAC	GGT	GAC	ATC	TTT	ACT	ATA	CTG	GTT	GGG	GGC	AGG	243
Met	Lys	Glu	Lys	His	Gly	Asp	Ile	Phe	Thr	Ile	Leu	Val	Gly	Gly	Arg	
			60					65					70			
TAT	GTC	ACC	GTT	CTC	CTG	GAC	CCA	CAC	TCC	TAC	GAC	GCG	GTG	GTG	TGG	231
Tyr	Val	Thr	Val	Leu	Leu	Asp	Pro	His	Ser	Tyr	Asp	Ala	Val	Val	Trp	
		75					80					85				
GAG	CCT	CGC	ACC	AGG	CTC	GAC	TTC	CAT	GCC	TAT	GCC	ATC	TTC	CTC	ATG	339
Glu	Pro	Arg	Thr	Arg	Leu	Asp	Phe	His	Ala	Tyr	Ala	Ile	Phe	Leu	Met	
	90					95					100					
		ATT														387
Glu	Arg	Ile	Phe	Asp	Val	Gln	Leu	Pro	His		Ser	Pro	Ser	Asp		
105					110					115					120	
		AGG														435
Lys	Ala	Arg	Met		Leu	Thr	Leu	Leu		Arg	Glu	Leu	Gln		Leu	
				125			~	~ · -	130	0.00	0.000	mm.c	000	135	0.00	400
		GCC														483
Thr	Glu	Ala			Thr	Asn	Leu		Ala	Val	Leu	Leu		Asp	Ala	
	.	001	140		000	maa	0.10	145	4 mc	000	CTC	OT C	150	TYTC	TCC	50 1
ACA	GAA	GCA	GGC	AGT	GGC	166	CAC	GAG	AIG	GGT	CIC	CIC	GAC	H	ICC	531

Thr	Glu	Ala	Gly	Ser	Gly	Trp	His	Glu	Met	Gly	Leu	Leu	Asp	Phe	Ser	
		155					160					165				
TAC	AGC	TTC	CTG	CTC	AGA	GCC	GGC	TAC	CTG	ACT	CTT	TAC	GGA	ATT	GAG	579
Tyr	Ser	Phe	Leu	Leu	Arg	Ala	Gly	Tyr	Leu	Thr	Leu	Tyr	Gly	Ile	Glu	
	170					175					180					
GCG	CTG	CCA	CGC	ACC	CAT	GAA	AGC	CAG	GCC	CAG	GAC	CGC	GTC	CAC	TCA	627
Ala	Leu	Pro	Arg	Thr	His	Glu	Ser	Gln	Ala	Gln	Asp	Arg	Val	His	Ser	
185					190					195					200	
GCT	GAT	GTC	TTC	CAC	ACC	TTT	CGC	CAG	CTC	GAC	CGG	CTG	CTC	CCC	AAA	675
Ala	Asp	Val	Phe	His	Thr	Phe	Arg	Gln	Leu	Asp	Arg	Leu	Leu	Pro	Lys	
				205					210					215		
CTG	GCC	CGT	GGC	TCC	CTG	TCA	GTG	GGG	GAC	AAG	GAC	CAC	ATG	TGC	AGT	723
Leu	Ala	Arg	Gly	Ser	Leu	Ser	Val	Gly	Asp	Lys	Asp	His	Met	Cys	Ser	
			220					225					230			
GTC	AAA	AGT	CGC	CTG	TGG	AAG	CTG	CTA	TCC	CCA	GCC	AGG	CTG	GCC	AGG	771
Val	Lys	Ser	Arg	Leu	Trp	Lys	Leu	Leu	Ser	Pro	Ala	Arg	Leu	Ala	Arg	
		235					240					245				
													CAC			819
Arg	Ala	His	Arg	Ser	Lys	Trp	Leu	Glu	Ser	Tyr	Leu	Leu	His	Leu	Glu	
	250					255					260					
GAG	ATG	GGT	GTG	TCA	GAG	GAG	ATG	CAG	GCA	CGG	GCC	CTG	GTG	CTG	CAG	867
Glu	Met	Gly	Val	Ser	Glu	Glu	Met	Gln	Ala	Arg	Ala	Leu	Val	Leu	Gln	
265					270					275					280	
CTG	TGG	GCC	ACA	CAG	GGG	AAT	ATG	GGT	CCC	GCT	GCC	TTC	TGG	CTC	CTG	915
Leu	Trp	Ala	Thr	Gln	Gly	Asn	Met	Gly	Pro	Ala	Ala	Phe	Trp	Leu	Leu	
				285					290					295		
															GAG	963
Leu	Phe	Leu	Leu	Lys	Asn	Pro	Glu	Ala	Leu	Ala	Ala	Val	Arg	Gly	Glu	
			300)				305	,				310)		

CTC	GAG	AGT	ATC	CTT	TGG	CAA	GCG	GAG	CAG	CCT	GTC	TCG	CAG	ACG	ACC	1011
Leu	Glu	Ser	Ile	Leu	Trp	Gln	Ala	Glu	Gln	Pro	Val	Ser	Gln	Thr	Thr	
		315					320					325				
ACT	CTC	CCA	CAG	AAG	GTT	CTA	GAC	AGC	ACA	CCT	GTG	CTT	GAT	AGC	GTG	1059
Thr	Leu	Pro	Gln	Lys	Val	Leu	Asp	Ser	Thr	Pro	Val	Leu	Asp	Ser	Val	
	330					335					340					
CTG	AGT	GAG	AGC	CTC	AGG	CTT	ACA	GCT	GCC	CCC	TTC	ATC	ACC	CGC	GAG	1107
Leu	Ser	Glu	Ser	Leu	Arg	Leu	Thr	Ala	Ala	Pro	Phe	Ile	Thr	Arg	Glu	
345					350					355					360	
GTT	GTG	GTG	GAC	CTG	GCC	ATG	CCC	ATG	GCA	GAC	GGG	AGA	GAA	TTC	AAC	1155
Val	Val	Val	Asp	Leu	Ala	Met	Pro	Met	Ala	Asp	Gly	Arg	Glu	Phe	Asn	
				365					370					375		
CTG	CGA	CGT	GGT	GAC	CGC	CTC	CTC	CTC	TTC	CCC	TTC	CTG	AGC	CCC	CAG	1203
Leu	Arg	Arg	Gly	Asp	Arg	Leu	Leu	Leu	Phe	Pro	Phe	Leu	Ser	Pro	Gln	
			380					385					390			
AGA	GAC	CCA	GAA	ATC	TAC	ACA	GAC	CCA	GAG	GTA	TTT	AAA	TAC	AAC	CGA	1251
Arg	Asp	Pro	Glu	Ile	Tyr	Thr	Asp	Pro	Glu	Val	Phe	Lys	Tyr	Asn	Arg	
		395					400					405				
TTC	CTG	AAC	CCT	GAC	GGA	TCA	GAG	AAG	AAA	GAC	TTT	TAC	AAG	GAT	GGG	1299
Phe	Leu	Asn	Pro	Asp	Gly	Ser	Glu	Lys	Lys	Asp	Phe	Tyr	Lys	Asp	Gly	
	410					415					420					
AAA	CGG	CTG	AAG	AAT	TAC	AAC	ATG	CCC	TGG	GGG	GCG	GGG	CAC	AAT	CAC	1347
Lys	Arg	Leu	Lys	Asn	Tyr	Asn	Met	Pro	Trp	Gly	Ala	Gly	His	Asn	His	
425					430					435					440	
TGC	CTG	GGG	AGG	AGT	TAT	GCG	GTC	AAC	AGC	ATC	AAA	CAA	TTT	GTG	TTC	1395
Cys	Leu	Gly	Arg	Ser	Tyr	Ala	Val	Asn	Ser	Ile	Lys	Gln	Phe	Val	Phe	
				445					450					455		
CTT	GTG	CTG	GTG	CAC	TTG	GAC	TTG	GAG	CTG	ATC	AAC	GCA	GAT	GTG	GAG	1443
Leu	Val	Leu	Val	His	Leu	Asp	Leu	Glu	Leu	He	Asn	Ala	Asp	Val	Glu	

ATC CCT GAG TTT GAC CTC AGC AGG TAC GGC TTC GGT CTG ATG CAG CCG 1491

Ile Pro Glu Phe Asp Leu Ser Arg Tyr Gly Phe Gly Leu Met Gln Pro
475 480 485

GAA CAC GAC GTG CCC GTC CGC TAC CGC ATC CGC CCA TGACACAGGG 1537

Glu His Asp Val Pro Val Arg Tyr Arg Ile Arg Pro

490 495 500

AGCAGATGGA TCCACGTGCT CGCCTCTGCC CAGCCTGCCC CAGCCTGCCC CAGCCTCCCA 1597
GCTTTCTGTG TGCACAGTTG GCCCGGGTGC AGGTGCTAGC ATTACCACTT CCCTGCTTTT 1657
CTCCCAGAAG GCTGGGTCCA GGGGAGGGAA AAGCTAAGAG GGTGAACAAA GAAAAGACAT 1717
TGAAAAGCTCT ATGGATTATC CACTGCAAAG TTTTCTTTCC AAAATCAGGC TTTGTCTGCT 1777
CCCAATTCAC CTCGTTACTC TCACCTCGTG ATATCCACAA ATGCTATTCA GATAAGGCAG 1837
AACTAGGAGT CTTCACTGCT CTGCCCCCAA CTCCCGGAGG TGTCACCTTC CTAGTTCTTA 1897
TGAGCTAGCA TGGCCCGGGC CTTATCCAGT CAAAGCGGAT GCTGGCCACA GAAAGGCCAC 1957
TCAGGATGTC CTTTGTGTCC

[0142]

配列番号:12

配列の長さ:500

配列の型:アミノ酸

トポロジー:直線状

配列の種類:ペプチド

5

配列

Met Ala Trp Ala Ala Leu Leu Gly Leu Leu Ala Ala Leu Leu Leu

10 15

Leu Leu Ser Arg Arg Thr Arg Arg Pro Gly Glu Pro Pro Leu

20 25 30

Asp Leu Gly Ser Ile Pro Trp Leu Gly Tyr Ala Leu Asp Phe Gly Lys

35 40 45

Asp Ala Ala Ser Phe Leu Thr Arg Met Lys Glu Lys His Gly Asp Ile

	50					55					60				
Phe	Thr	Ile	Leu	Val	Gly	Gly	Arg	Tyr	Val	Thr	Val	Leu	Leu	Asp	Pro
65					70					75					80
His	Ser	Tyr	Asp	Ala	Val	Val	Trp	Glu	Pro	Arg	Thr	Arg	Leu	Asp	Phe
				85					90					95	
His	Ala	Tyr	Ala	Ile	Phe	Leu	Met	Glu	Arg	Ile	Phe	Asp	Val	Gln	Leu
			100					105					110		
Pro	His	Tyr	Ser	Pro	Ser	Asp	Glu	Lys	Ala	Arg	Met	Lys	Leu	Thr	Leu
		115					120					125			
Leu	His	Arg	Glu	Leu	Gln	Ala	Leu	Thr	Glu	Ala	Met	Tyr	Thr	Asn	Leu
	130					135					140				
His	Ala	Val	Leu	Leu	Gly	Asp	Ala	Thr	Glu	Ala	Gly	Ser	Gly	Trp	His
145					150					155					160
Glu	Met	Gly	Leu	Leu	Asp	Phe	Ser	Tyr	Ser	Phe	Leu	Leu	Arg	Ala	Gly
				165					170					175	
Tyr	Leu	Thr	Leu	Tyr	Gly	Ile	Glu	Ala	Leu	Pro	Arg	Thr	His	Glu	Ser
			180					185					190		
Gln	Ala	Gln	Asp	Arg	Val	His	Ser	Ala	Asp	Val	Phe	His	Thr	Phe	Arg
		195					200					205			
Gln	Leu	Asp	Arg	Leu	Leu	Pro	Lys	Leu	Ala	Arg	Gly	Ser	Leu	Ser	Val
	210					215					220				
Gly	Asp	Lys	Asp	His	Met	Cys	Ser	Val	Lys	Ser	Arg	Leu	Trp	Lys	Leu
225					230					235					240
Leu	Ser	Pro	Ala	Arg	Leu	Ala	Arg	Arg	Ala	His	Arg	Ser	Lys	Trp	Leu
				245					250					255	5
Glu	Ser	Tyr	Leu	Leu	His	Leu	Glu	Glu	Met	Gly	Val	Ser	Glu	Glu	Met
			260					265					270		
Gln	Ala	Arg	Ala	Leu	Val	Leu	Gln	Leu	Trp	Ala	Thr	Gln	Gly	Asn	Met
		275					280					285			

Gly	Pro	Ala	Ala	Phe	Trp	Leu	Leu	Leu	Phe	Leu	Leu	Lys	Asn	Pro	Glu
	290					295					300				
Ala	Leu	Ala	Ala	Val	Arg	Gly	Glu	Leu	Glu	Ser	Ile	Leu	Trp	Gln	Ala
305					310					315					320
Glu	Gln	Pro	Val	Ser	Gln	Thr	Thr	Thr	Leu	Pro	Gln	Lys	Val	Leu	Asp
				325					330					335	
Ser	Thr	Pro	Val	Leu	Asp	Ser	Val	Leu	Ser	Glu	Ser	Leu	Arg	Leu	Thr
			340					345					350		
Ala	Ala	Pro	Phe	Ile	Thr	Arg	Glu	Val	Val	Val	Asp	Leu	Ala	Met	Pro
		355					360					365			
Met	Ala	Asp	Gly	Arg	Glu	Phe	Asn	Leu	Arg	Arg	Gly	Asp	Arg	Leu	Leu
	370					375					380				
Leu	Phe	Pro	Phe	Leu	Ser	Pro	Gln	Arg	Asp	Pro	Glu	Ile	Tyr	Thr	Asp
385					390					395					400
Pro	Glu	Val	Phe	Lys	Tyr	Asn	Arg	Phe	Leu	Asn	Pro	Asp	Gly	Ser	Glu
				405					410					415	
Lys	Lys	Asp	Phe	Tyr	Lys	Asp	Gly	Lys	Arg	Leu	Lys	Asn	Tyr	Asn	Met
			420					425					430		
Pro	Trp	Gly	Ala	Gly	His	Asn	His	Cys	Leu	Gly	Arg	Ser	Tyr	Ala	Val
		435					440					445			
Asn	Ser	Ile	Lys	Gln	Phe	Val	Phe	Leu	Val	Leu	Val	His	Leu	Asp	Leu
	450					455					460				
Glu	Leu	Ile	Asn	Ala	Asp	Val	Glu	Ile	Pro	Glu	Phe	Asp	Leu	Ser	Arg
465					470					475					480
Tyr	Gly	Phe	Gly	Leu	Met	Gln	Pro	Glu	His	Asp	Val	Pro	Val	Arg	Tyr
				485					490					495	
Arg	Ile	Arg	Pro												
_		_	500												

【図面の簡単な説明】

【図1】

ヒトPGISのcDNAの制限酵素マップ、およびλhPGIS141、pHPGIS135およびpHPGIS36に含有されるPGISのDNAの領域を示す図である。

[図2]

プラスミドpHPGIS36の制限酵素マップを示す図である。

【図3】

プラスミドpHPGIS135の制限酵素マップを示す図である。

【図4】

サイトカインで処理したヒトPGISのmRNAのRNAブロット(電気泳動)分析の結果を示す写真である。

【図5】

PGISのmRNAのヒト体内(膵臓、腎臓、骨格筋、肝臓、肺、胎盤、脳、心臓)における発現分布を電気泳動的に示す写真である。

【図6】

PGISのmRNAのヒト体内(周辺白血球,大腸,小腸,卵巣,睾丸,前立腺,胸腺,脾臓)における発現分布を電気泳動的に示す写真である。

【書類名】

【図1】

図面

【図2】

【図3】

【図4】

医进口油罗耳

COURTO 10 10 10 10

【図5】

医圆线用写真

【図6】

区面代用写真

【書類名】 要約書

【要約】

【構成】 実質的に配列番号12で示されるヒト由来プロスタサイクリンシンターゼ(PGIS)のアミノ酸配列をコードする塩基配列を有するDNA を含むDNA、該DNA を含有するベクター、該ベクターで形質転換された宿主細胞、該宿主細胞を培地中で培養することによるヒト由来PGISの製造法。実質的に配列番号12で示されるヒト由来PGISのアミノ酸配列を有するポリペプチド、当該ヒト由来PGISに反応性を示す抗体。

【効果】 ヒト由来PGISの一次構造、それをコードする塩基配列を明らかにする。PGIS及びそのDNA は、PGI 2 とTXA 2 との産生量不均衡による循環器系疾患の治療薬開発のための試薬、PGIS又はそのmRNAの体内組織発現レベルの測定用診断薬として有用。またPGIS等を疾患部位特異的に生体内に導入することによる循環器系疾患の治療薬としての利用。本製造法はヒト由来PGISの簡便,効率的量産に有用。本抗体はヒト由来PGISの精製、免疫組織化学的、病因解析に有用。

【選択図】 なし

国際様式

INTERNATIONAL FORM

特許手続上の微生物の寄託の国際的承認 に関するブダペスト条約

下記国際審託当局によって規則で、1に従い 発行される

原客託についての受託証

BUDAPEST TREATY ON THE INTERNATIO. NAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this раде.

殿

氏名 (名称)

日本たばこ産業株式会社

代表取締役社長 水野 繁

容託者

あて名 **9** 140

東京都品川区東品川四丁目12季62号

]. 微生物の表示 (受託番号) (会託者が付した識別のための表示) FERM BP- 4653 PRJT-BA-4 [[. 科学的性質及び分類学上の位置 I 棚の強生物には、次の事項を記載した文書が添付されていた。 区 科学的性質 区 分類学上の位置 皿、受動及び受託 6年 4月26日(原寄託日)に受領した「欄の微生物を受託する。 本国際容託当局は、平成 IV. 移管請求の受領 木国際会託当局は、 日(原寄託日)に1個の微生物を受領した。 日に原春託よりブダベスト条約に基づく春託への移管請求を受領した。 月 そして、 V. 国際公託当局 通商商菜省工業技術院生命工学工業技術研究所 National Institute Oscience and Human-Technology
Agency Opening Hold I Science and Technology 名 称: 調性命互節 舒 木 . DIRECTOR GENERAL. STEE FEBRUARY Osamu あて名: 日本国茨城県 配成 原本 日本国茨城県 おり (郵便番号305) 1-3. Higashi l chome Tsukubs-shi ibaraki-ken 305, JAPAN 平成 6年(1994) 4月 26日

国際様式

INTERNATIONAL FORM

特許手続上の微生物の審託の国際的承認 に関するブダペスト条約

下記国際客託当局によって規則7.1に従い 発行される

原寄託についての受託証

BUDAPEST TREATY ON THE INTERNATIO-NAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this puee.

氏名 (名称)

あて名

日本たばこ産業株式会社 代表取締役社長 水野 繁

寄託者

€ 140

東京都品川区東品川四丁自12番62号

殿

1. 微生物の表示	
(寄託者が付した識別のための表示) PBJT-BA 5	(受託番号) FERM BP- 4654
II 科学的性質及び分類学 Eの位置	
1 個の微生物には、次の事項を記載した文書が添付されていた。 区 科学的性質 区 分類学上の位置	
□. 受領及び受託	
本国際寄託当局は、平成 6年 4月26日(原寄託日)に受	領した「禰の微生物を受託する。
IV. 移管請求の受領	· · · · · · · · · · · · · · · · · · ·
本国際審託当局は、	
V. 国際寄託当局	
V. 国際寄託当局 通 商 産 業 省 工 業 技 術 院 生 命 工 学 工	. 葉技物 弧 究 所
通商産業省工業技術院生命工学工 National ins Agency 名称: Agency	. 葉技術研究所 and Human-Tochnology and Technology
通商産業省工業技術院生命工学工 National Ins 名称: Agency 所長 鈴木 ファインスロー Osamu 文本のです。 DIRECT	and Human-Technology and Technology OR GENERAL. ※ 3 写 (鄭 便 巻 号 3 0 5)
通商産業省工業技術院生命工学工 National Ins 名称: Asency 所長 鈴木 アデザウス研 Osamu Sural Time Institute	and Human-Technology and Technology OR GENERAL. ※ 3 写 (鄭 便 巻 号 3 0 5)

【書類名】 職権訂正データ

【訂正書類】 特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】 000004569

【住所又は居所】 東京都品川区東品川4丁目12番62号

【氏名又は名称】 日本たばこ産業株式会社

【代理人】 申請人

【識別番号】 100080791

【住所又は居所】 大阪府大阪市中央区平野町3丁目3番9号 (湯木

ビル) 高島国際特許事務所

【氏名又は名称】 高島 一

【提出された物件の記事】

【提出物件名】 原寄託についての受託証 2

【書類名】

出願人名義変更届

【提出日】

平成 7年 6月26日

【あて先】

特許庁長官殿

【事件の表示】

【出願番号】

平成 6年特許願第114316号

【発明の名称】

ヒト由来プロスタサイクリンシンターゼ

【承継人】

【住所又は居所】

大阪府豊中市東豊中町3丁目18番13号

【氏名又は名称】

田邉 忠

【承継人代理人】

【識別番号】

100080791

【弁理士】

【氏名又は名称】

高島 一

【電話番号】

06-227-1156

【手数料の表示】

【納付方法】

予納

【予納台帳番号】

006965

【納付金額】

4,400円

【提出物件の目録】

【物件名】

承継人であることを証明する書面 1

【物件名】

委任状 1

譲渡 証 書

平成7年5月29日

住 所 大阪府豊中市東豊中町3丁目18番13号

譲受人 田 邉 忠 殿

住 所 東京都港区虎ノ門二丁目2番1号

譲渡人 日本たばこ産業株式会社

代表者 水 野

下記発明に関する特許を受ける権利を貴殿に譲渡したことに相違ありません。

記

- 1. 出願番号 平成6年特許願第114316号
- 2. 発明の名称 「ヒト由来プロスタサイクリンシンターゼ」

整理番号

委 任 状

平成 7年 5月29日

私は、識別番号 100080791 弁理士

ー 氏を以って

代理人として下記事項を委任します。

記

平成6年特許顧第114316号発明の名称 「ヒト由来プロスタサイクリンシンターゼ」

2. 上記出願又は 平成 年

顫

号

に基づく「特許法第41条 第1項及び実用新案法第8条第1項の」優先福主張並び にその取下げ。

- 3. 上記出顧の分割出願及び補正却下の決定に対する新たな出願に関する一切の件並びに本件に関する上記事項一切。
- 4. 上記出願に関する審査請求、優先審査に関する事情説明書の提出、刊行物の提出、 証明の請求及び上記出願又は審判請求に関する物件の下附を受けること。
- 5. 第1項に関する通常実施権許諾の裁定請求、裁定取消請求並びにそれ等に対する 答弁、取下其他本件に関する提出書類及び物件の下附を受けること。
- 6. 上記各項に関し行政不服審査法に基づく諸手続を為すこと。
- 7. 上記事項を処理する為、復代理人を選任及び解任すること。
- 8. 使用に基づく特例の適用の主張の取下げ。

識別番号

住 所 大阪府豊中市東豊中町3丁目18番13号

氏名(名称) 田 邊 忠 (代表者)

1/E

【書類名】

職権訂正データ

【訂正書類】

出願人名義変更届

<認定情報・付加情報>

【承継人】

【識別番号】

595110128

【住所又は居所】

大阪府豊中市東豊中町3丁目18番13号

【氏名又は名称】

田邉忠

【代理人】

申請人

【識別番号】

100080791

【住所又は居所】

大阪府大阪市中央区平野町3丁目3番9号 (湯木

ビル) 高島国際特許事務所

【氏名又は名称】

高島 一

【提出された物件の記事】

【提出物件名】

委任状 (代理権を証明する書面) 1

承継人であることを証明する書面 1

特願平06-114316

出願人履歴情報

識別番号

[000004569]

1. 変更年月日 [変更理由]

1991年 7月 1日

住所

住所変更

氏 名

東京都品川区東品川4丁目12番62号

日本たばこ産業株式会社

2. 変更年月日

1995年 5月16日

[変更理由]

住所変更

住 所

東京都港区虎ノ門二丁目2番1号

氏 名

日本たばこ産業株式会社

特願平06-114316

出願人履歴情報

識別番号

[595110128]

1. 変更年月日

1995年 6月26日

[変更理由]

新規登録

住 所

大阪府豊中市東豊中町3丁目18番13号

氏 名

田邉忠

٠ ان