Multi-Class Logistic Regression and Perceptron

Instructor: Wei Xu

Some slides adapted from Dan Jurfasky, Brendan O'Connor and Marine Carpuat

MultiClass Classification

- Q: what if we have more than 2 categories?
 - Sentiment: Positive, Negative, Neutral
 - Document topics: Sports, Politics, Business,
 Entertainment, ...

Q: How to easily do Multi-label classification?

Two Types of MultiClass Classification

- Multi-label Classification
 - each instance can be assigned more than one labels

- Multinominal Classification
 - each instance appears in exactly one class (classes are exclusive)

Multinominal Classification

Pretty straightforward with Naive Bayes.

$$P(\operatorname{spam}|D) \propto P(\operatorname{spam}) \prod_{w \in D} P(w|\operatorname{spam})$$

Log-Linear Models

$$P(y|x) \propto e^{w \cdot f(x,y)}$$

$$P(y|x) = \frac{1}{Z(w)} e^{w \cdot f(x,y)}$$

Multinominal Logistic Regression

$$P(y|x) \propto e^{w \cdot f(x,y)}$$

$$P(y|x) = \frac{1}{Z(w)} e^{w \cdot f(x,y)}$$

$$P(y|x) = \frac{e^{w \cdot f(x,y)}}{\sum_{y' \in Y} e^{w \cdot f(x,y')}}$$

normalization term (Z) so that probabilities sum to 1

(a.k.a) Softmax Regression

Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Article Talk Read Edit View history Search Wikipedia Q

Not logged in Talk Contributions Create account Log in

Softmax function

From Wikipedia, the free encyclopedia

In mathematics, the **softmax function**, or **normalized exponential function**,^{[1]:198} is a generalization of the logistic function that "squashes" a K-dimensional vector \mathbf{z} of arbitrary real values to a K-dimensional vector $\sigma(\mathbf{z})$ of real values in the range (0, 1) that add up to 1. The function is given by

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for $j = 1, ..., K$.

$$P(y=j|x_i) = \frac{e^{w_j \cdot x_i}}{\sum_k e^{w_k \cdot x_i}}$$

$$P(y = 1|x) = \frac{e^{w_1 \cdot x}}{e^{w_0 \cdot x + w_1 \cdot x - w_1 \cdot x} + e^{w_1 \cdot x}}$$

$$P(y = 1|x) = \frac{e^{w_1 \cdot x}}{e^{w_0 \cdot x - w_1 \cdot x} e^{w_1 \cdot x} + e^{w_1 \cdot x}}$$

$$P(y=1|x) = \frac{e^{w_1 \cdot x}}{e^{w_1 \cdot x}(e^{w_0 \cdot x - w_1 \cdot x} + 1)}$$

$$P(y=1|x) = \frac{1}{e^{w_0 \cdot x - w_1 \cdot x} + 1}$$

$$P(y = 1|x) = \frac{1}{e^{-w'\cdot x} + 1}$$

Sigmoid (logistic) function

Multinominal Logistic Regression

- Binary (two classes):
 - We have one feature vector that matches the size of the vocabulary
- Multi-class in practice:
 - one weight vector for each category

 $w_{
m pos}$ $w_{
m neg}$ $w_{
m neut}$

In practice, can represent this with one giant weight vector and repeated features for each category.

Maximum Likelihood Estimation

$$w_{\text{MLE}} = \operatorname{argmax}_{w} \log P(y_1, \dots, y_n | x_1, \dots, x_n; w)$$

$$= \operatorname{argmax}_{w} \sum_{i} \log P(y_{i}|x_{i}; w)$$

$$= \operatorname{argmax}_{w} \sum_{i} \log \frac{e^{w \cdot f(x_{i}, y_{i})}}{\sum_{y' \in Y} e^{w \cdot f(x_{i}, y')}}$$

Multiclass LR Gradient

$$\frac{\partial \mathcal{L}}{\partial w_j} = \sum_{i=1}^{D} f_j(y_i, d_i) - \sum_{i=1}^{D} \sum_{y \in Y} f_j(y, d_i) P(y|d_i)$$

empirical feature count

expected feature count

(a.k.a) Maximum Entropy Classifier

or MaxEnt

- Math proof of "LR=MaxEnt":
 - [Klein and Manning 2003]
 - [Mount 2011]

Perceptron Algorithm

- Very similar to logistic regression
- Not exactly computing gradient

[Rosenblatt 1957]

http://www.peterasaro.org/writing/neural_networks.html

Perceptron Algorithm

- Very similar to logistic regression
- Not exactly computing gradient (simpler)

$$P(y=1|x)=1 \text{ if } \mathbf{w} \cdot \mathbf{\varphi}(x) \ge 0$$

 $P(y=1|x)=0 \text{ if } \mathbf{w} \cdot \mathbf{\varphi}(x) < 0$

$$P(y=1|x) = \frac{e^{w \cdot \varphi(x)}}{1 + e^{w \cdot \varphi(x)}}$$

Perceptron vs. LR

- The Perceptron is an online learning algorithm.
- Standard Logistic Regression is not

Online Learning

- The Perceptron is an online learning algorithm.
- Logistic Regression is not:

this update is effectively the same as "w += y_i * x_i"

$$w_{\text{MLE}} = \operatorname{argmax}_{w} \log P(y_1, \dots, y_d | x_1, \dots, x_d; w)$$
$$= \operatorname{argmax}_{w} \sum_{i} y_i \log p_i + (1 - y_i) \log(1 - p_i)$$

(Full) Batch Learning

update parameters after each pass of training set

```
Initialize weight vector w = 0
Create features
Loop for K iterations
Loop for all training examples x_i, y_i
```

update_weights(w)

Online Learning

update parameters for each training example

```
Initialize weight vector w = 0

Create features

Loop for K iterations

Loop for all training examples x_i, y_i

...

update_weights(w, x_i, y_i)
```

Perceptron Algorithm

- Very similar to logistic regression
- Not exactly computing gradient

If y = 1, increase the weights for features in $\varphi(x)$

If y = -1, decrease the weights for features in $\varphi(x)$

Perceptron Algorithm

- Very similar to logistic regression
- Not exactly computing gradient

```
Initialize weight vector w = 0

Loop for K iterations

Loop For all training examples x_i

if sign(w * x_i) != y_i

w += y_i * x_i
```

The Intuition

 For a given example, makes a prediction, then checks to see if this prediction is correct.

- If the prediction is correct, do nothing.
- If the prediction is incorrect, change its parameters so that it would do better on this example next time around.

Perceptron (vs. LR)

 Only hyperparameter is maximum number of iterations (LR also needs learning rate)

Perceptron (vs. LR)

 Only hyperparameter is maximum number of iterations (LR also needs learning rate)

 Guaranteed to converge if the data is linearly separable (LR always converge)

Linear Separability

What does "converge" mean?

- It means that it can make an entire pass through the training data without making any more updates.
- In other words, it has correctly classified every training example.
- Geometrically, this means that it was found some hyperplane that correctly segregates the data into positive and negative examples

What if non linearly separable?

- In real-world problem, this is nearly always the case.
- The perceptron will not be able to converge.

Q: Then, when to stop?