Pathwise Coordinate Descent Presentation for PhD Group

Johan Larsson

Department of Statistics, Lund University

November 27, 2020

Overview

Coordinate Descent

The Lasso

The Fused Lasso

Coordinate Descent for SLOPE?

Wrap-Up

Coordinate Descent

Setting

The general problem we want to solve is

$$\underset{x \in \mathbb{R}^p}{\text{minimize}} f(x),$$

with $f: \mathbb{R}^p \mapsto \mathbb{R}$ convex and continuous.

standard methods: gradient descent, Newton's method, etc.

Coordinate Descent

The (very simple) idea of coordinate descent is to minimize f(x) one coordinate (variable) at the time.

Algorithm 1 Coordinate Descent

```
while stopping criterion not reached do pick coordinate j from \{1,2,\ldots,p\} x_j \leftarrow \arg\min_{x_j \in \mathbb{R}} f(x) end while
```

Important: always use most recent coordinate update

Convex and Differentiable

For f(x) convex and differentiable, CD always obtains the global minimum.

Figure 1: Coordinate descent for $f(x_1, x_2) = 5x_1^2 - 6x_1x_2 + 5x_2^2$.

Convex and Non-Differentiable

For **non-differentiable** f, however, the algorithm need not converge.

Figure 2: Coordinate descent for $f(x_1, x_2) = |x + y| + 3|x - y|$.

Convex, Non-Differentiable, but Separable

It turns out that if f is of the form

$$f(x) = g(x) + \sum_{j=1}^{p} h(x_j),$$

i.e. $\mbox{\bf separable},$ then the algorithm converges even if each h_j is non-differentiable.

Convex, Non-Differentiable, but Separable

It turns out that if f is of the form

$$f(x) = g(x) + \sum_{j=1}^{p} h(x_j),$$

i.e. $\mathbf{separable}$, then the algorithm converges even if each h_j is non-differentiable.

Why does this matter? Because many useful penalties have exactly this form!

- lasso (and elastic net)
- the nonnegative garotte
- LAD-lasso
- group lasso

The Lasso

The Lasso

The lasso solves the following problem:

minimize
$$\frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
 subject to
$$\sum_{i=1}^{p} |\beta_j| \le t.$$

t is kind of a **budget** on the magnitude of the coefficient vector.

Lasso in Lagrangian form

To solve the lasso, we typically transform it into an **unconstrained** optimization problem:

minimize
$$\frac{1}{2} \sum_{i=1}^n \left(y_i - \sum_{j=1}^p x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^p |\beta_j|.$$

high values of λ : strong penalization, sparse solutions

Lasso in Lagrangian form

To solve the lasso, we typically transform it into an **unconstrained** optimization problem:

$$\text{minimize} \quad \frac{1}{2} \sum_{i=1}^n \left(y_i - \sum_{j=1}^p x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^p |\beta_j|.$$

high values of λ : strong penalization, sparse solutions

Regularization Path

usually don't know λ in advance

typically select it using **grid search** (with cross-validation): start at large λ ; finish at small λ (OLS)

The Lasso Path

Coordinate Descent for the Lasso: One Predictor

Assume x standardized, then the problem reduces to

$$\label{eq:minimize} \mathrm{minimize}_{\beta} \quad \frac{1}{2} \left(\beta - \hat{\beta}_{\mathrm{OLS}}\right)^2 + \lambda |\beta|,$$

leading to

$$\hat{\beta}_{lasso} = S(\hat{\beta}_{OLS}; \lambda) = sign(\hat{\beta}_{OLS}) \left(|\hat{\beta}_{OLS}| - \lambda \right)_{+}.$$

 $S(\cdot; \lambda)$ is the **soft-thresholding** operator.

Figure 3: The solution to two lasso problems with one predictor each. The dashed line marks the (unpenalized) ordinary least-squares solution. The red line marks the lasso solution. ($\gamma := \lambda$ in our notation.)

Coordinate Descent for the Lasso: Several Predictors

Rewrite lasso objective as

$$f(\beta) = \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{k \neq j} x_{ik} \beta_k - x_{ij} \beta_j \right)^2 + \lambda \sum_{k \neq j} |\beta_k| + \lambda |\beta_j|,$$

hold β_k for $k \neq j$ fixed, and minimize with respect to β_j :

$$\underset{\beta_j \in \mathbb{R}}{\operatorname{arg \, min}} f(\beta) = S\left(\sum_{i=1}^n x_{ij} \left(y_i - \sum_{k \neq j} x_{ik} \beta_k\right); \lambda\right)$$

Key: updates are cheap!

Convergence

Figure 4: Coordinate descent and proximal gradient for lasso with $n=200, \ p=50.$

The Fused Lasso

The Fused Lasso

The Fused Lasso minimizes

$$\frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_j \sum_{j=2}^{p} |\beta_j - \beta_{j-1}|.$$

Standard CD Does not Work for the Fused Lasso

The fused lasso penalty, however, isn't **separable**, which means that convergence is no longer guaranteed!

Figure 5: Coordinate descent failure for fused lasso problem.

FLSA

We begin with a special case of the fused lasso: the fused lasso signal approximator (FLSA):

$$\underset{\beta}{\text{minimize}} \left\{ \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_i)^2 + \lambda_1 \sum_{i=1}^{n} |\beta_i| + \lambda_2 \sum_{i=2}^{n} |\beta_i - \beta_{i=1}| \right\}$$

Figure 6: Fused lasso solution for signal approximation.

Solving FLSA via Three Cycles

Descent cycle

run coordinate descent for each β_i

Fusion cycle

consider fusing neighboring parameters

Algorithm 2 CD for the fused lasso (smoothing cycle).

```
Require: \delta > 0
\lambda_2 \leftarrow 0
repeat
\lambda_2 \leftarrow \lambda_2 + \delta
repeat
run descent cycle
run fusion cycle
until no changes in coefficient estimates occur
until until \lambda_2 reaches target value
```

Descent Cycle

Assume that $\beta_i \notin \{0, \beta_{i-1}, \beta_{i+1}\}$, hold all β_k , $k \neq i$ fixed. Then,

$$\frac{\partial f(\beta)}{\partial \beta_i} = -(y_i - \beta_i) + \lambda_1 \operatorname{sign}(\beta_i) - \lambda_2 \operatorname{sign}(\beta_{i+1} - \beta_i) + \lambda_2 \operatorname{sign}(\beta_i - \beta_{i-1}),$$

which is piecewise linear.

Descent Cycle

Assume that $\beta_i \notin \{0, \beta_{i-1}, \beta_{i+1}\}$, hold all β_k , $k \neq i$ fixed. Then,

$$\frac{\partial f(\beta)}{\partial \beta_i} = -(y_i - \beta_i) + \lambda_1 \operatorname{sign}(\beta_i) - \lambda_2 \operatorname{sign}(\beta_{i+1} - \beta_i) + \lambda_2 \operatorname{sign}(\beta_i - \beta_{i-1}),$$

which is piecewise linear. Then proceed to

- 1. check for a zero in each interval
- **2.** if no zero is found, examine objective values at $\beta_i = 0, \beta_{i-1}, \beta_{i+1}$

Fusion Cycle

Descent cycle can get stuck! The fusion cycle considers fusing **two** coefficients and moving them together.

Enforce $|\beta_i-\beta_{i-1}|=0$ by letting $\gamma:=\beta_i=\beta_{i=1}$ and minimize with respect to γ .

$$\frac{\partial f(\beta)}{\partial \gamma} = (-y_{i-1} - \gamma) - (y_i - \gamma) + 2\gamma_1 \operatorname{sign}(\gamma) - \gamma_2 \operatorname{sign}(\beta_{i+1} - \gamma) + \gamma_2 \operatorname{sign}(\gamma - \beta_{i-2})$$

If optimal γ decreases objective, accept the move (set $\gamma^* = \beta_i = \beta_{i-1}$).

Figure 7: Smoothing cycle for the fused lasso.

Let's repeat:

Algorithm 3 CD for the fused lasso (smoothing cycle).

```
\label{eq:require: bound} \begin{split} \mathbf{Require:} & \ \delta > 0 \\ \lambda_2 \leftarrow 0 \\ & \mathbf{repeat} \\ & \lambda_2 \leftarrow \lambda_2 + \delta \\ & \mathbf{repeat} \\ & \text{run } \textit{descent cycle} \\ & \text{run } \textit{fusion cycle} \\ & \mathbf{until } \text{ no changes in coefficient estimates occur} \\ & \mathbf{until } \text{ until } \lambda_2 \text{ reaches target value} \end{split}
```

Assumptions

For the strategy to work, we need two assumptions.

Assumption 1

If the increments δ are sufficiently small, fusions will occur between no more than two neighboring points at a time.

This assumptions holds as long as the data have some randomness (no two adjacent y values have the same values).

Assumptions

For the strategy to work, we need two assumptions.

Assumption 1

If the increments δ are sufficiently small, fusions will occur between no more than two neighboring points at a time.

This assumptions holds as long as the data have some randomness (no two adjacent y values have the same values).

Assumption 2

Two parameters that are fused in the solution for (λ_1, λ_2) will be fused for all $(\lambda_1, \lambda_2' > \lambda_2)$.

This assumptions holds for the FLSA problem in general, but not for the general fused lasso.

Two-Dimensional Fused Lasso

Figure 8: Lasso and 2D fused lasso denoising.

Coordinate Descent for SLOPE?

Sorted L-One Penalized Estimation (SLOPE)

SLOPE minimizes

$$g(\beta) + \sum_{i=1}^{p} \lambda_i |\beta|_{(i)}$$

where $\sum_{i=1}^{p} \lambda_i |\beta|_{(i)}$ is the **sorted** ℓ_1 **norm**, with

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 0, \qquad |\beta|_{(1)} \ge |\beta|_{(2)} \ge \cdots \ge |\beta|_{(p)}.$$

Wrap-Up

Wrap-Up

- CD can be extremely efficient but is not as generally applicable as standard first-order methods
- CD can be modified to handle non-separable penalty functions (fused lasso), with caveats
- CD works works extremely well with screening rules
- can we use ides from fused lasso to find a CD method for SLOPE?