МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Университет ИТМО

Факультет систем управления и робототехники

ОТЧЁТ

по лабораторной работе №2 по дисциплине «Линейные системы автоматического управления»

по теме: СВОБОДНОЕ ДВИЖЕНИЕ, УСТОЙЧИВОСТЬ (ВАРИАНТ 12)

Студент:

Группа R3343 Ткачёв И.Ю.

Предподаватель:

ассистент Пашенко А.В.

СОДЕРЖАНИЕ

1	СВОБОДНОЕ ДВИЖЕНИЕ		3
	1.1	Структурная схема системы	3
	1.2	Листинги аналитических расчетов	3
	1.3	Результаты вычисления коэффициентов $a_0, a_1 \dots$	4
	1.4	Аналитические выражения $y_{cs}(t)$	4
	1.5	Графики сигналов $y_{cs}(t)$, их сопоставление с вычисленными	
		аналитически	4
	1.6	Выводы	12
2	ОБЛАСТЬ УСТОЙЧИВОСТИ		13
	2.1	Листинги аналитических расчетов	13
	2.2	Графическое изображение границы устойчивости на	
		плоскости двух параметров $K(T_1)$ для случая фиксированной	
		T_2	14
	2.3	Графическое изображение границы устойчивости на	
		плоскости двух параметров $K(T_2)$ для случая фиксированной	
		T_1	15
	2.4	Графики сигналов $y(t)$ для трех наборов параметров K , T_1 и	
		T_2 , соответствующих различным случаям устойчивости	16
	2.5	Вывод	21
3	АВТОНОМНЫЙ ГЕНЕРАТОР		22
	3.1	Листинги аналитических расчетов	22
	3.2	Графики сигналов $g_{\mathtt{x}}(t)$ и $g(t)$ с их сопоставлением	23
4	вывол		25

1 СВОБОДНОЕ ДВИЖЕНИЕ

Рассмотрим математическую модель системы в виде дифференциального уравнения:

$$\ddot{y} + a_1 \dot{y} + a_0 y = u$$

с некоторыми начальными условиями $y(0), \dot{y}(0)$.

1.1 Структурная схема системы

С помощью блоков элементарных операций построим структурную схему системы. Проведем шесть экспериментов с различными параметрами

Рисунок 1 — Структурная схема системы в Simulink

системы. Так как мы изучаем свободное движение системы, входное воздействие u(t) примем за 0.

1.2 Листинги аналитических расчетов

Запишем характеристическое уравнение нашего ДУ:

$$\lambda^2 + a_1\lambda + a_0 = 0$$

Из теоремы Виета знаем, что:

$$\begin{cases} a_0 = \lambda_1 * \lambda_2 \\ a_1 = -(\lambda_1 + \lambda_2) \end{cases}$$

Так мы сможем найти коэффициенты a_0 и a_1 в зависимости от корней характеристического уравнения.

Общий вид решения однородного ДУ:

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

Это и будет являться аналитическим выражением $y_{cs}(t)$. Коэффициенты c_1 и c_2 находятся в зависимости от начальных условий y(0) и $\dot{y}(0)$.

1.3 Результаты вычисления коэффициентов a_0 , a_1

Приведу полученные коэффициенты для каждого из экспериментов:

- 1. $a_1 = 8$, $a_0 = 16$
- 2. $a_1 = 3.4$, $a_0 = 198.89$
- 3. $a_1 = 0$, $a_0 = 196$
- 4. $a_1 = -3.4$, $a_0 = 198.89$
- 5. $a_1 = -8$, $a_0 = 16$
- 6. $a_1 = 0$, $a_0 = -1.69$

1.4 Аналитические выражения $y_{\rm cb}(t)$

- 1. $y_{cB}(t) = e^{-4t} + 4te^{-4t}$
- 2. $y_{cB}(t) = \frac{17}{140}e^{-1.7t}sin14t + e^{-1.7t}cos14t$
- 3. $y_{cB}(t) = e^{-4t} + 4te^{-4t}$
- 4. $y_{cB}(t) = cos14t$
- 5. $y_{cB}(t) = 0.05e^{4t} 0.2te^{4t}$
- 6. $y_{cB}(t) = \frac{1}{26}e^{1.3t} \frac{1}{26}e^{-1.3t}$

1.5 Графики сигналов $y_{\rm cB}(t)$, их сопоставление с вычисленными аналитически

Рисунок 2 — График входного сигнала

Рисунок 3 — Эксперимент 1

Рисунок 4 — Эксперимент 2

Рисунок 5 — Эксперимент 3

Рисунок 6 — Эксперимент 4

Рисунок 7 — Эксперимент 5

Рисунок 8 — Эксперимент 6

1.6 Выводы

Графики сигналов, получившиеся в результате моделирования, совпадаю с вычесленными аналитически. Также можно сделать вывод об устойчивости каждой из систем:

- 1. Система асимптотически устойчива. Это можно наблюдать на графике сигнала, также $Re\lambda_1, \lambda_2 < 0$
- 2. Система асимптотически устойчива. Это можно наблюдать на графике сигнала, также $Re\lambda_1, \lambda_2 < 0$
- 3. Система устойчива (но не асимптотически). Это можно наблюдать на графике сигнала, также $Re\lambda_1, \lambda_2=0$ и $Im\lambda_1, \lambda_2\neq 0$
- 4. Система неустойчива. Это можно наблюдать на графике сигнала, также $Re\lambda_1, \lambda_2 > 0$
- 5. Система неустойчива. Это можно наблюдать на графике сигнала, также $Re\lambda_1, \lambda_2 > 0$
- 6. Система неустойчива. Это можно наблюдать на графике сигнала, также $Re\lambda_1>0$

2 ОБЛАСТЬ УСТОЙЧИВОСТИ

2.1 Листинги аналитических расчетов

В данном задании мы имеем дело с системой 3-го порядка, заданной следующей структурной схемой.

Определим при каких значениях постоянных времени T_1 и T_2 , полюса со-

Рисунок 9 — Структурная схема системы

ответствующих передаточных функций совпадут с первым набором корней λ_1, λ_2 из Задания 1.

Запишем следующую систему:

$$\begin{cases} T_1 s + 1 = 0 \\ T_2 s + 1 = 0 \\ s = -4 \end{cases}$$

Получим следующие значения T_1 и T_2 :

$$\begin{cases} T_1 = \frac{1}{4} \\ T_2 = \frac{1}{4} \end{cases}$$

Определим границу устойчивости в пространстве параметров K и T_1 с фиксированным T_2 , опираясь на критерий Гурвица. Аналогично определим границу устойчивости в пространстве параметров K и T_2 с фиксированным T_1 . Для начала запишем ДУ нашей системы:

$$y = \frac{K(g-y)}{s(T_1s+1)(T_2s+1)} = \frac{K(g-y)}{T_1T_2s^3 + (T_1+T_2)s^2 + s}$$

$$T_1T_2\ddot{y} + (T_1 + T_2)\ddot{y} + \dot{y} + Ky = 0$$

$$\ddot{y} + \frac{T_1 + T_2}{T_1 T_2} \ddot{y} + \frac{1}{T_1 T_2} \dot{y} + \frac{K}{T_1 T_2} y = 0$$

Получили следующее:

$$\begin{cases} a_3 = 1 \\ a_2 = \frac{T_1 + T_2}{T_1 T_2} \\ a_1 = \frac{1}{T_1 T_2} \\ a_0 = \frac{K}{T_1 T_2} \end{cases}$$

В нашем случае критерий Гурвица можно записать следующим образом:

$$\begin{cases} K > 0 \\ T_1, T_2 > 0 \\ \frac{T_1 + T_2}{T_1 T_2} > K \end{cases}$$

Теперь, подставив фиксированное T_2 или T_1 , мы можем получить уравнения границ устойчивости $K(T_1)$ и $K(T_2)$. Области, лежащие под этими кривыми будут областями устойчивости в каждом из пространств параметров.

$$\begin{cases} K(T_1) = 4 + \frac{1}{T_1} \\ K(T_2) = 4 + \frac{1}{T_2} \end{cases}$$

2.2 Графическое изображение границы устойчивости на плоскости двух параметров $K(T_1)$ для случая фиксированной T_2

Рисунок 10 — Граница устойчивости $K(T_1)$

2.3 Графическое изображение границы устойчивости на плоскости двух параметров $K(T_2)$ для случая фиксированной T_1

Рисунок 11 — Граница устойчивости $K(T_2)$

2.4 Графики сигналов y(t) для трех наборов параметров K, T_1 и T_2 , соответствующих различным случаям устойчивости

Теперь зададимся тремя наборами параметров K, T_1, T_2 :

- 1. $K=4, T_1=0.25, T_2=0.2$ (асимптотически устойчивая система)
- 2. $K = 5, T_1 = 0.25, T_2 = 1$ (система на границе устойчивости)
- 3. $K = 10, T_1 = 0.6, T_2 = 0.25$ (неустойчивая система)

Проведем моделирование при входном воздействии g(t) = 1.

Рисунок 12 — Входной сигнал

Рисунок 13 — Асимптотически устойчивая система

Рисунок 14 — Система на границе устойчивости

Рисунок 15 — Неустойчивая система

2.5 Вывод

В этом задании мы воспользовались критерием Гурвица для исследования устойчивости системы 3-го порядка, что позволило нам определить критический коэффициент усиления K.

3 АВТОНОМНЫЙ ГЕНЕРАТОР

3.1 Листинги аналитических расчетов

Рассмотрим систему вида:

$$\begin{cases} \dot{x} = Ax \\ g = Cx \end{cases}$$

Зададим для системы такие параметры A, C, x(0), чтобы выход системы при свободном движении совпадал с желаемым выходом:

$$g_{\mathbf{x}} = \sin(-3t) + e^{7t} \sin t$$

Запишем общий вид решение приведенной нами системы:

$$\begin{cases} x(t) = e^{At}x(0) \\ y(t) = Ce^{At}x(0) \end{cases}$$

Запишем жорданову матрицу A, в соответствии с нашим желаемым выходом:

$$A = \begin{pmatrix} 0 & 3 & 0 & 0 \\ -3 & 0 & 0 & 0 \\ 0 & 0 & 7 & 1 \\ 0 & 0 & -1 & 7 \end{pmatrix}$$

Запишем матричную экспоненту e^{At} :

$$e^{At} = \begin{pmatrix} cos3t & sin3t & 0 & 0\\ -sin3t & cos3t & 0 & 0\\ 0 & 0 & e^{7t}cost & e^{7t}sint\\ 0 & 0 & -e^{7t}sint & e^{7t}cost \end{pmatrix}$$

А также вектор начальных условий x(0) и вектор C:

$$x(0) = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}$$

$$C = \begin{pmatrix} c_1 & c_2 & c_3 & c_4 \end{pmatrix}$$

Тогда выход нашей системы будет выглядеть следующим образом:

$$Ce^{At}x(0) = \begin{pmatrix} c_1 & c_2 & c_3 & c_4 \end{pmatrix} \begin{pmatrix} cos3t & sin3t & 0 & 0 \\ -sin3t & cos3t & 0 & 0 \\ 0 & 0 & e^{7t}cost & e^{7t}sint \\ 0 & 0 & -e^{7t}sint & e^{7t}cost \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} =$$

$$= a_1c_1cos3t + a_2c_1sin3t - a_1c_2sin3t + a_2c_2cos3t \\ +a_3c_3e^{7t}cost + a_4c_3e^{7t}sint - a_3c_4e^{7t}sint + a_4c_4e^{7t}cost =$$

$$= (a_1c_1 + a_2c_2)cos3t + (a_2c_1 - a_1c_2)sin3t \\ + (a_3c_3 + a_4c_4)e^{7t}cost + (a_4c_3 - a_3c_4)e^{7t}sint$$

Теперь подберем коэффициенты так, чтобы выход системы соответствовал желаемому:

$$\begin{cases} a_1c_1 + a_2c_2 = 0 \\ a_2c_1 - a_1c_2 = -1 \\ a_3c_3 + a_4c_4 = 0 \\ a_4c_3 - a_3c_4 = 1 \end{cases}$$

Например, подойдут следующие значения:

$$x(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & 1 & 1 & 0 \end{pmatrix}$$

3.2 Графики сигналов $g_{\mathbf{x}}(t)$ и g(t) с их сопоставлением

Проведем моделирование следующей структурной схемы в Simulink, чтобы убедиться в корректности расчетов.

График выходного сигнала нашей системы совпал с желаемым выходным сигналом, значит наши расчеты были произведены верно.

Рисунок 16 — Структурная схема

Рисунок 17 — Сопоставление выхода системы с желаемым выходом

4 ВЫВОД

В данной лабораторной работе мы изучили свободное движение динамической системы. Также мы рассмотрели различные виды устойчивости системы, а также критерии устойчивости.