Melhores momentos

AULA 2

Conceitos discutidos

- um pouco mais de recursão
- um pouco de análise experimental de algoritmos
- um pouco de análise de algoritmos

Desempenho de fibonacciR

Algoritmo recursivo para F_n :

```
long fibonacciR(int n) {
  if (n == 0) return 0;
  if (n == 1) return 1;
  return fibonacciR(n-1) +
      fibonacciR(n-2);
}
```

Resolve subproblemas muitas vezes

fibonacciR(8)	fibonacciR(1)	fibonacciR(2)
fibonacciR(7)	fibonacciR(2)	fibonacciR(1)
fibonacciR(6)	fibonacciR(1)	fibonacciR(0)
fibonacciR(5)	fibonacciR(0)	fibonacciR(1)
fibonacciR(4)	fibonacciR(5)	fibonacciR(2)
fibonacciR(3)	fibonacciR(4)	fibonacciR(1)
fibonacciR(2)	fibonacciR(3)	fibonacciR(0)
fibonacciR(1)	fibonacciR(2)	fibonacciR(3)
fibonacciR(0)	fibonacciR(1)	fibonacciR(2)
fibonacciR(1)	fibonacciR(0)	fibonacciR(1)
fibonacciR(2)	fibonacciR(1)	fibonacciR(0)
fibonacciR(1)	fibonacciR(2)	fibonacciR(1)
fibonacciR(0)	fibonacciR(1)	fibonacciR(4)
fibonacciR(3)	fibonacciR(0)	fibonacciR(3)
fibonacciR(2)	fibonacciR(3)	fibonacciR(2)
fibonacciR(1)	fibonacciR(2)	fibonacciR(1)
fibonacciR(0)	fibonacciR(1)	fibonacciR(0)
fibonacciR(1)	fibonacciR(0)	fibonacciR(1)
fibonacciR(4)	fibonacciR(1)	fibonacciR(2)
fibonacciR(3)	fibonacciR(6)	fibonacciR(1)
fibonacciR(2)	fibonacciR(5)	fibonacciR(0)
fibonacciR(1)	fibonacciR(4)	fibonacci(8) = 21.
fibonacciR(0)	fibonacciR(3)	

Comparação experimental

```
meu prompt> time ./fibonacciI 45
fibonacci(45) = 1134903170
                          0m0.003s
real
                          0m0.001s
user
                          0m0.001s
sys
meu prompt> time ./fibonacciR 45
fibonacci(45) = 1134903170
                          0m8.486s
real
                          0m8.459s
user
                          0m0.008s
sys
```

Conclusões

Devemos **evitar** resolver o mesmo subproblema várias vezes.

O número de chamadas recursivas feitas por fibonacciR(n) é

$$2 \times (\mathbf{F}(\mathbf{n}+1)-1)$$
.

Mais conclusões

O consumo de tempo da chamada fibonacciR(n) é proporcional a

$$2 \times F(\mathbf{n}) - 2$$
.

O consumo de tempo da chamada fibonacciR(n) é exponencial pois

$$F(\mathbf{n}) \ge \left(\frac{3}{2}\right)^{\mathbf{n}-2}$$
 para $\mathbf{n} \ge 2$.

Pausa para nossos comerciais

► Plantão de dúvidas: Francisco e Lorenzo

Horário: terças das 15h às 16h

Link: https://meet.google.com/ztw-onpf-hze

Grupo MaratonUSP:

http://www.ime.usp.br/~maratona/

► Grupo PoliBits:

Responsável para treinar para a OBI ali na poli

Horário: sextas às 17h

Onde: sala GD-06 do prédio da Elétrica

Hoje

- mais recursão
- mais análise experimental de algoritmos
- um pouco de correção de algoritmos: invariantes
- um pouco de análise de algoritmos:
 "consumo de tempo proporcional a" e notação assintótica

Mais recursão ainda

PF 2.1, 2.2, 2.3 S 5.1

http://www.ime.usp.br/~pf/algoritmos/aulas/recu.html

Números binomiais

Fonte: http://blog.world-mysteries.com/

PF 2 (Exercícios)

http://www.ime.usp.br/~pf/algoritmos/aulas/recu.html

Binomial recursivo

Regra de Pascal

$$\binom{\frac{\mathbf{n}}{k}}{=} \begin{cases} 0, & \text{quando } \underline{\mathbf{n}} = 0 \text{ e } k > 0, \\ 1, & \text{quando } \underline{\mathbf{n}} \geq 0 \text{ e } k = 0, \\ \binom{n-1}{k} + \binom{n-1}{k-1}, & \text{quando } \underline{\mathbf{n}}, k > 0. \end{cases}$$

Binomial

	0	1	2	3	4	5	6	7	8	k
0	1	0	0	0	0	0	0	0	0	
1	1	1	0	0	0	0	0	0	0	
2	1	2	1	0	0	0	0	0	0	
3	1	3	3	1	0	0	0	0	0	
4	1	4	6	4	1	0	0	0	0	
5	1	5	10	10	5	1	0	0	0	
6	1	6	15	20	15	6	1	0	0	
7	1	7	21	35	35	21	7	1	0	
:	:	:	:	:	:	:	:	:	:	٠
n										

Binomial

	0	1	2	3	4	5	6	7	8	k	
0	1	0	0	0	0	0	0	0	0		_
1	1	1	0	0	0	0	0	0	0		
2	1	2	1	0	0	0	0	0	0		
3	1	3	3	1	0	0	0	0	0		
4	1	4	6	4	1	0	0	0	0		
5	1	5	10	10	5	1	0	0	0		
6	1	6	15	20	15	6	1	0	0		
7	1	7	21	35	35	21	7	1	0		
:	:	÷	÷	:	:	÷	:	:	÷	٠	
n											

Mais eficiente . . .

Versão anterior da regra de Pascal:

$$\binom{\frac{n}{k}}{=} \begin{cases} 0, & \text{quando } \underline{n} = 0 \text{ e } k > 0, \\ 1, & \text{quando } \underline{n} \geq 0 \text{ e } k = 0, \\ \binom{n-1}{k} + \binom{n-1}{k-1}, & \text{quando } \underline{n}, k > 0. \end{cases}$$

Outro jeito de definir a regra de Pascal:

$$\binom{n}{k} = \begin{cases} 0, & \text{quando } n < k, \\ 1, & \text{quando } n = k \text{ ou } k = 0, \\ \binom{n-1}{k} + \binom{n-1}{k-1}, & \text{quando } n, k > 0. \end{cases}$$

Mais eficiente . . .

	0	1	2	3	4	5	6	7	8		k
0	1	0	0	0	0	0	0	0	0		
1	1	1	0	0	0	0	0	0	0		
2	1	2	1	0	0	0	0	0	0		
3	1	3	3	1	0	0	0	0	0		
4	1	4	6	4	1	0	0	0	0		
5	1	5	10	10	5	1	0	0	0		
6	1	6	15	20	15	6	1	0	0		
7	1	7	21	35	35	21	7	1	0		
:	:	:	÷	÷	:	÷	:	:	÷	٠	
n											

Mais eficiente . . .

```
\binom{\textbf{n}}{\textbf{k}} = \begin{cases} 0, & \text{quando } \textbf{n} < \textbf{k}, \\ 1, & \text{quando } \textbf{n} = \textbf{k} \text{ ou } \textbf{k} = 0, \\ \binom{\textbf{n}-1}{\textbf{k}} + \binom{\textbf{n}-1}{\textbf{k}-1}, & \text{quando } \textbf{n}, \textbf{k} > 0. \end{cases}
```

binomialR1(3,2)

```
binomialR1(3,2)
  binomialR1(2,2)
  binomialR1(2,1)
    binomialR1(1,1)
    binomialR1(1,0)
binom(3,2)=3.
```

binomialR1(5,4)

```
binomialR1(5,4)
  binomialR1(4,4)
  binomialR1(4.3)
    binomialR1(3,3)
    binomialR1(3,2)
      binomialR1(2,2)
      binomialR1(2,1)
        binomialR1(1,1)
        binomialR1(1,0)
binom(5,4)=5.
```

Binomial iterativo

```
long binomialI(int n, int k) {
  int i, j, bin[MAX][MAX];
  for (j = 1; j \le k; j++) bin[0][j] = 0;
  for (i = 0; i \le n; i++) bin[i][0] = 1;
  for (i = 1; i \le n; i++)
    for (j = 1; j \le k; j++)
       bin[i][j] = bin[i-1][j] +
                   bin[i-1][j-1];
  return bin[n][k]:
```

E agora? Qual é mais eficiente?

```
meu prompt> time ./binomialI 30 20
binom(30,20)=30045015
                            0m0.003s
real
                            0m0.001s
user
                            0m0.001s
sys
meu_prompt> time ./binomialR1 30 20
binom(30.20)=30045015
real
                             0m0.191s
                             0m0.188s
user
                             0m0.002s
sys
```

E agora? Qual é mais eficiente?

```
meu prompt> time ./binomialI 40 30
binom(40,30)=847660528
                            0m0.003s
real
                            0m0.001s
user
                            0m0.001s
sys
meu_prompt> time ./binomialR1 40 30
binom(40.30)=847660528
real
                             0m5.519s
                             0m5.433s
user
                             0m0.009s
sys
```

Resolve subproblemas muitas vezes?

```
binomialR1(6,4)
                                           binomialR1(2,1)
  binomialR1(5,4)
                                             binomialR1(1,1)
    binomialR1(4,4)
                                             binomialR1(1,0)
    binomialR1(4,3)
                                       binomialR1(4,2)
      binomialR1(3,3)
                                         binomialR1(3,2)
      binomialR1(3,2)
                                           binomialR1(2,2)
        binomialR1(2,2)
                                           binomialR1(2,1)
        binomialR1(2,1)
                                             binomialR1(1,1)
          binomialR1(1,1)
                                             binomialR1(1.0)
          binomialR1(1.0)
                                         binomialR1(3,1)
  binomialR1(5,3)
                                           binomialR1(2,1)
    binomialR1(4.3)
                                             binomialR1(1.1)
      binomialR1(3.3)
                                             binomialR1(1.0)
      binomialR1(3.2)
                                           binomialR1(2.0)
        binomialR1(2,2)
                                  binom(6,4)=15.
```


Resolve subproblemas muitas vezes?

binomialR1(7,4)	binomialR1(1,0)	binomialR1(1,0
binomialR1(6,4)	binomialR1(3,1)	binomialR1(2,0)
binomialR1(5,4)	binomialR1(2,1)	binomialR1(5,2)
binomialR1(4,4)	binomialR1(1,1)	binomialR1(4,2)
binomialR1(4,3)	binomialR1(1,0)	binomialR1(3,2)
binomialR1(3,3)	binomialR1(2,0)	binomialR1(2,2)
binomialR1(3,2)	binomialR1(6,3)	binomialR1(2,1)
binomialR1(2,2)	binomialR1(5,3)	binomialR1(1,1)
binomialR1(2,1)	binomialR1(4,3)	binomialR1(1,0)
binomialR1(1,1)	binomialR1(3,3)	binomialR1(3,1)
binomialR1(1,0)	binomialR1(3,2)	binomialR1(2,1)
binomialR1(5,3)	binomialR1(2,2)	binomialR1(1,1)
binomialR1(4,3)	binomialR1(2,1)	binomialR1(1,0)
binomialR1(3,3)	binomialR1(1,1)	binomialR1(2,0)
binomialR1(3,2)	binomialR1(1,0)	binomialR1(4,1)
binomialR1(2,2)	binomialR1(4,2)	binomialR1(3,1)
binomialR1(2,1)	binomialR1(3,2)	binomialR1(2,1)
binomialR1(1,1)	binomialR1(2,2)	binomialR1(1,1)
binomialR1(1,0)	binomialR1(2,1)	binomialR1(1,0)
binomialR1(4,2)	binomialR1(1,1)	binomialR1(2,0)
binomialR1(3,2)	binomialR1(1,0)	binomialR1(3,0)
binomialR1(2,2)	binomialR1(3,1)	binom(7,4)=35.
binomialR1(2,1)	binomialR1(2,1)	
binomialR1(1.1)	binomialR1(1.1)	

Árvore da recursão

binomialR1 resolve subproblemas muitas vezes.

Árvore

Fonte: http://tfhoa.com/treework

Desempenho de binomialR1

Quantas chamadas recursivas faz a função binomialR1?

Faz o dobro do número de adições.

Vamos calcular o número de adições feitas pela chamada binomialR1(n,k).

Número de adições

Seja T(n, k) o número de adições feitas pela chamada binomialR1(n, k).

Número de adições

Seja T(n,k) o número de adições feitas pela chamada binomialR1(n,k).

linha	número de adições
1	=0
2	=0
3	= T(n-1,k)
4	= T(n-1,k-1) + 1
4	,

$$T(\mathbf{n},\mathbf{k}) = T(\mathbf{n}-1,\mathbf{k}) + T(\mathbf{n}-1,\mathbf{k}-1) + 1$$

Relação de recorrência!

Relação de recorrência

$$\label{eq:Tnk} T(\textbf{n},\textbf{k}) = \begin{cases} 0, & \textbf{n} < \textbf{k}, \\ 0, & \textbf{n} = \textbf{k} \text{ ou } \textbf{k} = 0, \\ T(\textbf{n}-1,\textbf{k}) + T(\textbf{n}-1,\textbf{k}-1) + 1, & \textbf{n},\textbf{k} > 0. \end{cases}$$

Quanto vale T(n,k)?

$$\binom{\frac{n}{k}}{=} \begin{cases} 0, & \text{quando } \frac{n}{k} < k, \\ 1, & \text{quando } \frac{n}{k} = k \text{ ou } k = 0, \\ \binom{\frac{n-1}{k}}{k} + \binom{\frac{n-1}{k-1}}{k-1}, & \text{quando } \frac{n}{k} > 0. \end{cases}$$

Número T(n, k) de adições

Т	0	1	2	3	4	5	6	7	8		k
0	0	0	0	0	0	0	0	0	0		
1	0	0	0	0	0	0	0	0	0		
2	0	1	0	0	0	0	0	0	0		
3	0	2	2	0	0	0	0	0	0		
4	0	3	5	3	0	0	0	0	0		
5	0	4	9	9	4	0	0	0	0		
6	0	5	14	19	14	5	0	0	0		
7	0	6	20	34	34	20	6	0	0		
:	:	:	:	:	:	:	:	:	:	٠	
n											

Binomial

	0	1	2	3	4	5	6	7	8		k
0	1	0	0	0	0	0	0	0	0		
1	1	1	0	0	0	0	0	0	0		
2	1	2	1	0	0	0	0	0	0		
3	1	3	3	1	0	0	0	0	0		
4	1	4	6	4	1	0	0	0	0		
5	1	5	10	10	5	1	0	0	0		
6	1	6	15	20	15	6	1	0	0		
7	1	7	21	35	35	21	7	1	0		
:	:	:	÷	:	:	:	:	:	:	٠	
n											

Número de adições

O número T(n,k) de adições feitas pela chamada binomialR1(n,k) é

$$\binom{\mathbf{n}}{\mathbf{k}} - 1$$
.

O consumo de tempo da função é proporcional ao número de iterações, logo é "proporcional" a $\binom{n}{k}$.

Quando o valor de k é aproximadamente n/2

$$\binom{\mathbf{n}}{\mathbf{k}} \ge 2^{\frac{\mathbf{n}}{2}}$$

e o consumo de tempo é dito "exponencial".

Conclusões

Devemos evitar resolver o mesmo subproblema várias vezes.

O número de chamadas recursivas feitas por binomialR1(n,k) é

$$2 \times \binom{\mathbf{n}}{\mathbf{k}} - 2$$
.

Binomial mais eficiente ainda ...

Supondo $\mathbf{n} \ge \mathbf{k} \ge 1$ temos que

Binomial mais eficiente ainda ...

Logo, supondo $\mathbf{n} \ge \mathbf{k} \ge 1$, podemos escrever

$$\binom{n}{k} = \begin{cases} n, & \text{quando } k = 1, \\ \binom{n-1}{k-1} \times \frac{n}{k}, & \text{quando } k > 1. \end{cases}$$

$$long \ binomialR2(int \ n, \ int \ k) \ \{ \\ 1 \ if \ (k == 1) \ return \ n; \\ 2 \ return \ binomialR2(n-1, \ k-1) \ * \ n \ / \ k; \\ \}$$

A função binomialR2 faz recursão de cauda (tail recursion).

binomialR2(20,10)

```
binomialR2(20,10)
  binomialR2(19,9)
    binomialR2(18,8)
      binomialR2(17,7)
        binomialR2(16,6)
          binomialR2(15,5)
            binomialR2(14,4)
              binomialR2(13,3)
                 binomialR2(12,2)
                   binomialR2(11,1)
binom(20,10)=184756.
```

E agora, qual é mais eficiente?

```
meu prompt> time ./binomialI 30 2
binom(30.2)=435
                           0m0.003s
real
                           0m0.001s
user
                           0m0.001s
sys
meu prompt> time ./binomialR2 30 2
binom(30.2)=435
                            0m0.003s
real
                            0m0.001s
user
                            0m0.001s
sys
```

E agora, qual é mais eficiente?

```
meu prompt> time ./binomialI 40 30
binom(40,30)=847660528
                            0m0.003s
real
                            0m0.001s
user
                            0m0.001s
sys
meu_prompt> time ./binomialR2 40 30
binom(40.30)=847660528
real
                             0m0.003s
                             0m0.001s
user
                             0m0.001s
sys
```

Conclusão

O número de chamadas recursivas feitas por binomialR2(n,k) é k-1.

Curvas de Hilbert

Fonte: http://momath.org/home/math-monday-03-22-10

Niklaus Wirth, *Algorithms and Data Structures*Prentice Hall, 1986.

http://en.wikipedia.org/wiki/Hilbert curve

Curvas de Hilbert

As curvas a seguir seguem um certo padrão regular e podem ser desenhadas na tela sobre o controle de um programa.

O objetivo é descobrir o esquema de recursão para construir tais curvas.

Curvas de Hilbert

As curvas a seguir seguem um certo padrão regular e podem ser desenhadas na tela sobre o controle de um programa.

O objetivo é descobrir o esquema de recursão para construir tais curvas.

Estes padrões serão chamados de H_0, H_1, H_2, \ldots

Cada H_i denomina a **curva de Hilbert** de ordem i, em homenagem a seu inventor, o matemático *David Hilbert*.

H_4

Qual é o padrão?

Vamos ver uma animação?

Padrão

As figuras mostram que H_{i+1} é obtida pela composição de 4 instâncias de H_i de metade do tamanho e com a rotação apropriada, ligadas entre si por meio de 3 linhas de conexão.

Padrão

As figuras mostram que H_{i+1} é obtida pela composição de 4 instâncias de H_i de metade do tamanho e com a rotação apropriada, ligadas entre si por meio de 3 linhas de conexão.

Por exemplo:

- ► H₁ é formada por 4 H₀ (vazio) conectados por 3 linhas.
- ► H₂ é formada por 4 H₁ conectados por 3 linhas
- ► H₃ é formada por 4 H₂ conectados por 3 linhas

 H_2

H_4

Partes da curva

Para ilustrar, denotaremos as quatro possíveis instâncias por A, B, C e D:

- A será o padrão que tem a "abertura" para direita;
- B será o padrão que tem a "abertura" para baixo;
- C será o padrão que tem a "abertura" para esquerda; e
- D será o padrão que tem a "abertura" para cima.

Representaremos a chamada da função que desenha as interconexões por meio da setas \uparrow , \downarrow , \leftarrow , \rightarrow .

 $B_2 \ e \ B_3$

C_2 e C_3

D_4

Esquema recursivo

Assim, surge o seguinte esquema recursivo:

Para desenhar os segmentos, utilizaremos a chamada de uma função

linha(x,y,direcao,comprimento)

que "move um pincel" da posição (x,y) em uma dada direcao por um certo comprimento.


```
typedef enum {DIREITA, ESQUERDA, CIMA, BAIXO} Direcao;
void linha(int *x, int *y,
     Direcao direcao, int comprimento) {
  switch (direcao) {
  case DIREITA : *x = *x + comprimento;
     break:
  case ESQUERDA : *x = *x - comprimento;
     break:
  case CIMA
                  : *y = *y + comprimento;
     break;
                  : *y = *y - comprimento;
  case BAIXO
    break:
  desenheLinha(*x, *y);
                                   4 日 N 4 間 N 4 国 N 4 国 N 1 国 1 1
```

$\mathbf{A}_{\mathbf{k}}$

```
void
a(int k, int *x, int *y, int comprimento) {
  if (k > 0) {
    d(k-1, x, y, comprimento);
    linha(x, y, ESQUERDA, comprimento);
    a(k-1, x, y, comprimento);
    linha(x, y, BAIXO, comprimento);
    a(k-1, x, y, comprimento);
    linha(x, y, DIREITA, comprimento);
    b(k-1, x, y, comprimento);
```

B_k

```
void
b(int k, int *x, int *y, int comprimento) {
  if (k > 0) {
    c(k-1, x, y, comprimento);
    linha(x, y, CIMA, comprimento);
    b(k-1, x, y, comprimento);
    linha(x, y, DIREITA, comprimento);
    b(k-1, x, y, comprimento);
    linha(x, y, BAIXO, comprimento);
    a(k-1, x, y, comprimento);
```

```
void
c(int k, int *x, int *y, int comprimento) {
  if (k > 0) {
    b(k-1, x, y, comprimento);
    linha(x, y, DIREITA, comprimento);
    c(k-1, x, y, comprimento);
    linha(x, y, CIMA, comprimento);
    c(k-1, x, y, comprimento);
    linha(x, y, ESQUERDA, comprimento);
    d(k-1, x, y, comprimento);
```

D_k

```
void
d(int k, int *x, int *y, int comprimento) {
  if (k > 0) {
    a(k-1, x, y, comprimento);
    linha(x, y, BAIXO, comprimento);
    d(k-1, x, y, comprimento);
    linha(x, y, ESQUERDA, comprimento);
    d(k-1, x, y, comprimento);
    linha(x, y, CIMA, comprimento);
    c(k-1, x, y, comprimento);
```