Optimal kernel methods for large scale learning

Alessandro Rudi INRIA - École Normale Supérieure, Paris

joint work with Luigi Carratino, Lorenzo Rosasco

6 Mar 2018 – École Polytechnique

Learning problem

The problem \mathcal{P}

Find

$$f_{\mathcal{H}} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \mathcal{E}(f), \qquad \qquad \mathcal{E}(f) = \int d\rho(x, y) (y - f(x))^2$$

with ρ unknown but given $(x_i, y_i)_{i=1}^n$ i.i.d. samples.

Remarks:

- stochastic optimization problem
- $ightharpoonup \mathcal{H}$ is a space of candidate solutions.

Outline

Learning with kernels

Random projection

FALKON: Random projections and preconditioning

Kernel ridge regression

Let
$$K$$
 p.d. kernel (e.g. $K(x,x')=e^{-\gamma\|x-x'\|^2}$) and

$$\mathcal{H} = \overline{\operatorname{span}\{K(x,\cdot)|x\in X\}},$$

Problem $\widehat{\mathcal{P}}_n$

$$\widehat{f}_{\lambda} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||_{\mathcal{H}}^2$$

KRR: Statistic (worst case)

Noise

$$\mathbb{E}[|Y|^p \mid X = x] \leq \frac{1}{2} p! \sigma^2 b^{p-2}, \quad \forall p \geq 2$$

Kernel boundness $\sup_x K(x,x) < \infty$.

Best model There exists $f_{\mathcal{H}}$ solving

$$\min_{f \in \mathcal{H}} \mathcal{E}(f).$$

KRR: Statistic (worst case)

Noise

$$\mathbb{E}[|Y|^p \mid X = x] \le \frac{1}{2}p!\sigma^2b^{p-2}, \quad \forall p \ge 2$$

Kernel boundness $\sup_{x} K(x, x) < \infty$.

Best model There exists $f_{\mathcal{H}}$ solving

$$\min_{f \in \mathcal{H}} \mathcal{E}(f).$$

Theorem[(Caponnetto, De Vito '05)] Under the assumptions above

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\lambda n} + \lambda.$$

By selecting $\lambda_n = \frac{1}{\sqrt{n}}$

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\sqrt{n}}$$

KRR: Statistics (refined case)

Let
$$Lf(x') = \mathbb{E}K(x',x)f(x)$$
 and $\mathcal{N}(\lambda) = \operatorname{Trace}((L+\lambda I)^{-1}L)$

Capacity condition:

$$\mathcal{N}(\lambda) = O(\lambda^{-\gamma}), \qquad \gamma \in [0, 1]$$

Source condition:

$$f_{\mathcal{H}} \in \mathsf{Range}(L^r), \qquad r \ge 1/2$$

KRR: Statistics (refined case)

Let $Lf(x') = \mathbb{E}K(x',x)f(x)$ and $\mathcal{N}(\lambda) = \mathsf{Trace}((L+\lambda I)^{-1}L)$ Capacity condition:

$$\mathcal{N}(\lambda) = O(\lambda^{-\gamma}), \qquad \gamma \in [0, 1]$$

Source condition:

$$f_{\mathcal{H}} \in \mathsf{Range}(L^r), \qquad r \ge 1/2$$

Theorem[(Caponnetto, De Vito '05)] Under (basic) and (refined)

$$\mathbb{E}\mathcal{E}(\widehat{f_{\lambda}}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{\mathcal{N}(\lambda)}{n} + \lambda^{2r}.$$

By selecting
$$\lambda_n=n^{-\frac{1}{2r+\gamma}}$$

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n})-\mathcal{E}(f_{\mathcal{H}})\lesssim n^{-\frac{2r}{2r+\gamma}}$$

KRR: Statistics (refined case)

Let $Lf(x') = \mathbb{E}K(x',x)f(x)$ and $\mathcal{N}(\lambda) = \mathsf{Trace}((L+\lambda I)^{-1}L)$ Capacity condition:

$$\mathcal{N}(\lambda) = O(\lambda^{-\gamma}), \qquad \gamma \in [0, 1]$$

Source condition:

$$f_{\mathcal{H}} \in \mathsf{Range}(L^r), \qquad r \ge 1/2$$

Theorem[(Caponnetto, De Vito '05)] Under (basic) and (refined)

$$\mathbb{E}\mathcal{E}(\widehat{f_{\lambda}}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{\mathcal{N}(\lambda)}{n} + \lambda^{2r}.$$

By selecting
$$\lambda_n=n^{-\frac{1}{2r+\gamma}}$$

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n})-\mathcal{E}(f_{\mathcal{H}})\lesssim n^{-\frac{2r}{2r+\gamma}}$$

KRR: Optimization

$$\widehat{f}_{\lambda}(x) = \sum_{i=1}^{n} K(x, x_i) c_i$$
$$(\widehat{K} + \lambda nI) c = \widehat{y}$$

Linear System

Computations

Space $O(n^2)$ Kernel eval. $O(n^2)$

Time $O(n^3)$

Large scale ML:

Running out of time and space ... can we fix it?

Computations for optimal statistical accuracy

Model: O(n)Space: $O(n^2)$

Kernel eval.: $O(n^2)$

Time: $O(n^3)$

Outline

Learning with kernels

Random projections

FALKON: Random projections and preconditioning

Random projections

Solve
$$\widehat{\mathcal{P}}_n$$
 on $\mathcal{H}_M = \mathrm{span}\{K(\widetilde{x}_1,\cdot),\ldots,K(\widetilde{x}_M,\cdot)\}$
$$\widehat{f}_{\lambda,\mathbf{M}} = \operatorname*{argmin}_{f \in \mathcal{H}_{\mathbf{M}}} \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}}^2$$

Random projections

Solve $\widehat{\mathcal{P}}_n$ on $\mathcal{H}_M = \operatorname{span}\{K(\widetilde{x}_1,\cdot),\ldots,K(\widetilde{x}_M,\cdot)\}$

$$\widehat{f}_{\lambda,\mathbf{M}} = \underset{f \in \mathcal{H}_{\mathbf{M}}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}}^2$$

 \blacktriangleright ... that is, pick M columns at random

$$\widehat{f}_{\lambda,M}(x) = \sum_{i=1}^{M} K(x, \widetilde{x}_i) c_i$$

$$(\widehat{K}_{nM}^{\top}\widehat{K}_{nM} + \lambda n \widehat{K}_{MM})c = \widehat{K}_{nM}^{\top}\widehat{y}$$

Linear System

- Nyström methods (Smola, Scholköpf '00)
- Gaussian processes: inducing inputs (Quionero-Candela et al '05)

Nyström KRR: Computations

$$\widehat{K}_{nM}$$
 = \widehat{y}

$$(\widehat{K}_{nM}^{\top}\widehat{K}_{nM} + \lambda n \widehat{K}_{MM})c = \widehat{K}_{nM}^{\top}\widehat{y}$$

Computations (train)

- ▶ Space $O(n^2) \rightarrow O(M_n^2)$ ▶ Kernel eval. $O(n^2) \rightarrow O(nM_n)$ ▶ Time $O(n^3) \rightarrow O(nM_n^2)$

Computations (test) $Q(n) \to O(M_n)$

Nyström KRR: Statistics (worst case)

Theorem[Rudi, Camoriano, Rosasco '15] Under the basic assumptions

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda,M}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\lambda n} + \lambda + \frac{1}{M}.$$

Nyström KRR: Statistics (worst case)

Theorem[Rudi, Camoriano, Rosasco '15] Under the basic assumptions

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda,M}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\lambda n} + \lambda + \frac{1}{M}.$$

By selecting
$$\lambda_n = \frac{1}{\sqrt{n}}$$
, $M_n = \frac{1}{\lambda_n}$

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n, M_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\sqrt{n}}$$

Remarks

$${\cal M}={\cal O}(\sqrt{n})$$
 suffices for optimal generalization

- ► Previous works: only for fixed design (Bach '13, Alaoui, Mahoney, '15, Yang et al. '15, Musco, Musco '16)
- ▶ Matches statistical minimax lower bounds [Caponnetto, De Vito '05].
- lacktriangle Special case: Sobolev spaces with s=d/2, e.g. exponential kernel and Fourier features.
- ▶ Same statistical bound of (kernel) ridge regression [Caponnetto, De Vito '05].

Nyström KRR: Statistics (refined)

Theorem[Rudi, Camoriano, Rosasco '15] Under (basic) and (refined)

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda,M}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{\mathcal{N}(\lambda)}{n} + \lambda^{2r} + \frac{1}{M}.$$

Nyström KRR: Statistics (refined)

Theorem[Rudi, Camoriano, Rosasco '15] Under (basic) and (refined)

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda,M}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{\mathcal{N}(\lambda)}{n} + \lambda^{2r} + \frac{1}{M}.$$

By selecting
$$\lambda_n = n^{-\frac{1}{2r+\gamma}}$$
, $M_n = \frac{1}{\lambda_n}$

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n,M_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim n^{-\frac{2r}{2r+\gamma}}$$

Remarks

- ▶ The obtained rate is minmax optimal [Caponnetto, De Vito '05].
- ▶ Reduces to worst case for $\gamma = 1, r = 1/2$.

Comparison with Random Features: [Rudi, Rosasco '17]

$$M = n^c$$

Computations required for $1/\sqrt{n}$ rate

Model: $O(\sqrt{n})$

Space: O(n)

Kernel eval.: $O(n\sqrt{n})$

Time: $O(n^2)$

Possible improvements:

- adaptive sampling
- optimization

Outline

Learning with kernels

Random projections

FALKON: Random projections and preconditioning

Beyond $O(n^2)$ time?

$$(\widehat{K}_{nM}^{\top}\widehat{K}_{nM} + \lambda n \widehat{K}_{MM}) c = \widehat{K}_{nM}^{\top}\widehat{y}.$$

$$\begin{vmatrix} c \\ \\ \\ \\ \end{vmatrix} \widehat{y}$$

Bottleneck: compute $\widehat{K}_{nM}^{\top}\widehat{K}_{nM}$ requires $O(nM^2)$ time.

Optimization to rescue

$$\underbrace{\widehat{K}_{nM}^{\top}\widehat{K}_{nM} + \lambda n\widehat{K}_{MM}}_{H} c = \underbrace{\widehat{K}_{nM}^{\top}\widehat{y}}_{b}.$$

Idea: First order methods

$$c_t = c_{t-1} - \frac{\tau}{n} \left[\hat{K}_{nM}^{\top} (\hat{K}_{nM} c_{t-1} - y_n) + \lambda n \hat{K}_{MM} c_{t-1} \right]$$

Pros: requires O(nMt)

Cons: $t \propto \kappa(H)$ arbitrarily large- $\kappa(H) = \sigma_{\max}(H)/\sigma_{\min}(H)$ condition number.

Preconditioning

Idea: solve an equivalent linear system with better condition number

Preconditioning

$$Hc = b \mapsto \mathbf{P}^{\top} H \mathbf{P} \beta = \mathbf{P}^{\top} b, \quad c = \mathbf{P} \beta.$$

Ideally $PP^{\top} = H^{-1}$, so that

$$t = O(\kappa(H)) \mapsto t = O(1)!$$

Computing a good preconditioning can be hard!

Remarks

▶ Preconditioning KRR (Fasshauer et al '12, Avron et al '16, Cutajat '16, Ma, Belkin '17)

$$H = K + \lambda nI$$

Can we precondition Nystrom-KRR?

Preconditioning Nystom-KRR

$$H := \widehat{K}_{nM}^{\top} \widehat{K}_{nM} + \lambda n \widehat{K}_{MM}$$

Proposed Preconditioning

$$PP^{\top} = \left(\frac{n}{M}\widehat{K}_{MM}^2 + \lambda n\widehat{K}_{MM}\right)^{-1}$$

Compare to naive preconditioning

$$PP^{\top} = \left(\widehat{K}_{nM}^{\top} \widehat{K}_{nM} + \lambda n \widehat{K}_{MM}\right)^{-1}.$$

Baby FALKON

Proposed Preconditioning

$$PP^{\top} = \left(\frac{n}{M}\widehat{K}_{MM}^2 + \lambda n\widehat{K}_{MM}\right)^{-1},$$

Gradient descent

$$\widehat{f}_{\lambda,M,t}(x) = \sum_{i=1}^{M} K(x, \widetilde{x}_i) c_{t,i}, \qquad c_t = \mathbf{P} \beta_t$$

$$\beta_t = \beta_{t-1} - \frac{\tau}{n} \mathbf{P}^{\top} \left[\widehat{K}_{nM}^{\top} (\widehat{K}_{nM} \mathbf{P} \beta_{t-1} - y_n) + \lambda n \widehat{K}_{MM} \mathbf{P} \beta_{t-1} \right]$$

FALKON

- ▶ Gradient descent → conjugate gradient
- ightharpoonup Computing P

$$P = \frac{1}{\sqrt{n}} T^{-1} A^{-1}, \quad T = \operatorname{chol}(K_{MM}), \quad A = \operatorname{chol}\left(\frac{1}{M} T T^{\top} + \lambda I\right),$$

where $\operatorname{chol}(\cdot)$ is the Cholesky decomposition.

Falkon statistics (worst case)

Theorem

Under (basic), when $M > \frac{\log n}{\lambda}$,

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n,M_n,t_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\lambda n} + \lambda + \frac{1}{M} + \exp\left[-t \left(1 - \frac{\log n}{\lambda M}\right)^{1/2}\right]$$

Falkon statistics (worst case)

Theorem

Under (basic), when $M > \frac{\log n}{\lambda}$,

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n,M_n,t_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\lambda n} + \lambda + \frac{1}{M} + \exp\left[-t \left(1 - \frac{\log n}{\lambda M}\right)^{1/2}\right]$$

By selecting

$$\lambda_n = 1/\sqrt{n}, \qquad M_n = \frac{2\log n}{\lambda}, \qquad t_n = \log n,$$

then

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n, M_n, t_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\sqrt{n}}$$

Falkon statistics (refined results)

Theorem

Under (basic) and (refined), when $M > \frac{\log n}{\lambda}$,

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n,M_n,t_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{\mathcal{N}(\lambda)}{n} + \lambda^{2r} + \frac{1}{M} + \exp\left[-t \left(1 - \frac{\log n}{\lambda M}\right)^{1/2}\right]$$

Falkon statistics (refined results)

Theorem

Under (basic) and (refined), when $M > \frac{\log n}{\lambda}$,

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n,M_n,t_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{\mathcal{N}(\lambda)}{n} + \lambda^{2r} + \frac{1}{M} + \exp\left[-t \left(1 - \frac{\log n}{\lambda M}\right)^{1/2}\right]$$

By selecting

$$\lambda_n = n^{-\frac{1}{2r+\gamma}}, \qquad M_n = \frac{2\log n}{\lambda}, \qquad t_n = \log n,$$

then

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n,M_n,t_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim n^{-\frac{2r}{2r+\gamma}}$$

Remarks

Relevant works

- ► SGD
- ▶ RF-KRR (Rahimi, Recht '07; Bach '15; Rudi, Rosasco '17)
- ▶ Divide and conquer (Zhang et al. '13)
- ► NYTRO (Angles et al '16)
- ► Nyström SGD (Lin, Rosasco '16)

- ► Same statistical properties/memory requirements
- Much smaller time complexity

Proof: bridging statistics and optimization

Lemma

Let
$$\delta > 0$$
, $\kappa_P := \kappa(P^\top H P)$, $c_\delta = c_0 \log \frac{1}{\delta}$. When $\lambda \geq \frac{1}{n}$

$$\mathcal{E}(\widehat{f}_{\lambda,M,t}) - \mathcal{E}(f_{\mathcal{H}}) \leq \mathcal{E}(\widehat{f}_{\lambda,M}) - \mathcal{E}(f_{\mathcal{H}}) + c_{\delta} \exp(-t/\sqrt{\kappa_{P}}).$$

with probability $1 - \delta$.

Proof: bridging statistics and optimization

Lemma

Let $\delta > 0$, $\kappa_P := \kappa(P^\top H P)$, $c_\delta = c_0 \log \frac{1}{\delta}$. When $\lambda \geq \frac{1}{n}$

$$\mathcal{E}(\widehat{f}_{\lambda,M,t}) - \mathcal{E}(f_{\mathcal{H}}) \leq \mathcal{E}(\widehat{f}_{\lambda,M}) - \mathcal{E}(f_{\mathcal{H}}) + c_{\delta} \exp(-t/\sqrt{\kappa_{P}}).$$

with probability $1 - \delta$.

Lemma

Let $\delta \in (0,1], \lambda > 0$. When

$$M = \frac{2\log\frac{1}{\delta}}{\lambda},$$

then

$$\kappa(P^{\top}HP) \le \left(1 - \frac{\log \frac{1}{\delta}}{\lambda M}\right)^{-1} < 4$$

with probability $1 - \delta$.

Computational implications

Cost for optimal generalization with FALKON

$$M_n = O(\sqrt{n}), \quad t_n = \log n$$
 \downarrow

Model: $O(\sqrt{n})$

Space: O(n)

Kernel eval.: $O(n\sqrt{n})$

Time: $O(n^2) \rightarrow O(n\sqrt{n})$

In practice

Some experiments

	MillionSongs ($n\sim 10^6$)			YELP $(n \sim 10^6)$		TIMIT $(n \sim 10^6)$	
	MSE	Relative error	Time(s)	RMSE	Time(m)	c-err	Time(h)
FALKON	80.30	$4.51 imes10^{-3}$	55	0.833	20	32.3%	1.5
Prec. KRR	-	4.58×10^{-3}	289^{\dagger}	-	-	-	-
Hierarchical	-	4.56×10^{-3}	293*	-	-	-	-
D&C	80.35	-	737*	-	-	-	-
Rand. Feat.	80.93	-	772*	-	-	-	-
Nyström	80.38	-	876*	-	-	-	-
ADMM R. F.	-	5.01×10^{-3}	958^{\dagger}	-	-	-	-
BCD R. F.	-	-	-	0.949	42^{\ddagger}	34.0%	1.7^{\ddagger}
BCD Nyström	-	-	-	0.861	60^{\ddagger}	33.7%	1.7^{\ddagger}
KRR	-	4.55×10^{-3}	-	0.854	500^{\ddagger}	33.5%	8.3^{\ddagger}
EigenPro	-	-	-	-	-	32.6%	3.9 $^{?}$
Deep NN	-	-	-	-	-	32.4%	-
Sparse Kernels	-	-	-	-	-	30.9%	-
Ensemble	-	-	-	-	-	33.5%	-

Table: MillionSongs, YELP and TIMIT Datasets. Times obtained on: \ddagger = cluster of 128 EC2 r3.2xlarge machines, \dagger = cluster of 8 EC2 r3.8xlarge machines, \dagger = single machine with two Intel Xeon E5-2620, one Nvidia GTX Titan X GPU and 128GB of RAM, \star = cluster with 512 GB of RAM and IBM POWER8 12-core processor, * = unknown platform.

Some more experiments

	SUSY $(n \sim 10^6)$			HIGGS $(n \sim 10^7)$		IMAGENET $(n \sim 10^6)$	
	c-err	AUC	Time(m)	AUC	Time(h)	c-err	Time(h)
FALKON	19.6%	0.877	4	0.833	3	20.7%	4
EigenPro	19.8%	-	6 $^{\circ}$	-	-	-	-
Hierarchical	20.1%	-	40^\dagger	-	-	-	-
Boosted Decision Tree	-	0.863	-	0.810	-	-	-
Neural Network	-	0.875	-	0.816	-	-	-
Deep Neural Network	-	0.879	4680^{\ddagger}	0.885	78^{\ddagger}	-	-
Inception-V4	-	-	-	-	-	20.0%	-

Table: Architectures: † cluster with IBM POWER8 12-core cpu, 512 GB RAM, ≀ single machine with two Intel Xeon E5-2620, one Nvidia GTX Titan X GPU, 128GB RAM, ‡ single machine.

Contributions

▶ Best computations so far for optimal statistics

Space
$$O(n)$$
 Time $O(n\sqrt{n})$

- ► Random projections+iterative solvers+preconditioning
- ... fast rates
- ...adaptive sampling

Next?

- ▶ Distributed architectures...
- Open the kernel blackbox!

Let $K_x = K(x, \cdot) \in \mathcal{H}$,

$$C = \int K_x \otimes K_x d\rho_X(x), \quad \widehat{C}_n = \frac{1}{n} \sum_{i=1}^n K_{x_i} \otimes K_{x_i}, \quad \widehat{C}_M = \frac{1}{M} \sum_{i=1}^M K_{\widetilde{x}_j} \otimes K_{\widetilde{x}_j}.$$

Recall that $P = \frac{1}{\sqrt{n}}T^{-1}A^{-1}$, $T = \operatorname{chol}(K_{MM})$, $A = \operatorname{chol}(\frac{1}{M}TT^{\top} + \lambda I)$.

1.
$$P^{\top}HP = A^{-\top}V^*(\widehat{C}_n + \lambda I)VA^{-1}$$

Let $K_x = K(x, \cdot) \in \mathcal{H}$,

$$C = \int K_x \otimes K_x d\rho_X(x), \quad \widehat{C}_n = \frac{1}{n} \sum_{i=1}^n K_{x_i} \otimes K_{x_i}, \quad \widehat{C}_M = \frac{1}{M} \sum_{i=1}^M K_{\widetilde{x}_j} \otimes K_{\widetilde{x}_j}.$$

Recall that $P = \frac{1}{\sqrt{n}}T^{-1}A^{-1}$, $T = \operatorname{chol}(K_{MM})$, $A = \operatorname{chol}(\frac{1}{M}TT^{\top} + \lambda I)$.

2.
$$P^{\top}HP = A^{-\top}V^*(\widehat{C}_M + \lambda I)VA^{-1} + A^{-\top}V^*(\widehat{C}_n - \widehat{C}_M)VA^{-1}$$

Let $K_x = K(x, \cdot) \in \mathcal{H}$,

$$C = \int K_x \otimes K_x d\rho_X(x), \quad \widehat{C}_n = \frac{1}{n} \sum_{i=1}^n K_{x_i} \otimes K_{x_i}, \quad \widehat{C}_M = \frac{1}{M} \sum_{i=1}^M K_{\widetilde{x}_j} \otimes K_{\widetilde{x}_j}.$$

Recall that $P = \frac{1}{\sqrt{n}}T^{-1}A^{-1}$, $T = \operatorname{chol}(K_{MM})$, $A = \operatorname{chol}(\frac{1}{M}TT^{\top} + \lambda I)$.

3.
$$P^{\top}HP = I + A^{-\top}V^*(\widehat{C}_n - \widehat{C}_M)VA^{-1}$$

Let $K_x = K(x, \cdot) \in \mathcal{H}$,

$$C = \int K_x \otimes K_x d\rho_X(x), \quad \widehat{C}_n = \frac{1}{n} \sum_{i=1}^n K_{x_i} \otimes K_{x_i}, \quad \widehat{C}_M = \frac{1}{M} \sum_{i=1}^M K_{\widetilde{x}_j} \otimes K_{\widetilde{x}_j}.$$

Recall that $P = \frac{1}{\sqrt{n}}T^{-1}A^{-1}$, $T = \operatorname{chol}(K_{MM})$, $A = \operatorname{chol}(\frac{1}{M}TT^{\top} + \lambda I)$.

3.
$$P^{\top}HP = I + E \text{ with } E = A^{-\top}V^*(\widehat{C}_n - \widehat{C}_M)VA^{-1}$$

Let $K_x = K(x, \cdot) \in \mathcal{H}$,

$$C = \int K_x \otimes K_x d\rho_X(x), \quad \widehat{C}_n = \frac{1}{n} \sum_{i=1}^n K_{x_i} \otimes K_{x_i}, \quad \widehat{C}_M = \frac{1}{M} \sum_{i=1}^M K_{\widetilde{x}_j} \otimes K_{\widetilde{x}_j}.$$

Recall that $P = \frac{1}{\sqrt{n}}T^{-1}A^{-1}$, $T = \operatorname{chol}(K_{MM})$, $A = \operatorname{chol}(\frac{1}{M}TT^{\top} + \lambda I)$.

4.
$$\kappa(P^{\top}HP) = \kappa(I+E) \le \frac{1+||E||}{1-||E||}, \text{ when } ||E|| < 1,$$

Let $K_x = K(x, \cdot) \in \mathcal{H}$,

$$C = \int K_x \otimes K_x d\rho_X(x), \quad \widehat{C}_n = \frac{1}{n} \sum_{i=1}^n K_{x_i} \otimes K_{x_i}, \quad \widehat{C}_M = \frac{1}{M} \sum_{i=1}^M K_{\widetilde{x}_j} \otimes K_{\widetilde{x}_j}.$$

Recall that $P = \frac{1}{\sqrt{n}}T^{-1}A^{-1}$, $T = \operatorname{chol}(K_{MM})$, $A = \operatorname{chol}(\frac{1}{M}TT^{\top} + \lambda I)$.

$$5.E = A^{-\top}V^*(\widehat{C}_n - \widehat{C}_M)VA^{-1} \le 1/2 \text{ w.h.p. when } M \ge \frac{c_0 \log \frac{1}{\delta}}{\lambda}$$