epare a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results and steps of implementation. Separe a report with all the results	
2. Clusters formed for diff K 3. centroids of the clusters similar examples should be part of different clusters, Similar examples should be part of same cluster. K means tries to put the data into the mber of clusters we tell it to. For a given K, randomly chose k data points to be the initial clyster centers, Assign each data point to each ster center, Re Compute the cluster centers with previous clustering. If converging criteria does not met repeat again. neans works through the following iterative process: Pick a value for k (the number of clusters to create) Initialize k 'centroids' (starting ints) in your data Create your clusters. Assign each point to the nearest centroid. Make your clusters better. Move each centroid to the center	
mber of clusters we tell it to. For a given K, randomly chose k data points to be the initial clyster centers, Assign each data point to each ster center, Re Compute the cluster centers with previous clustering. If converging criteria does not met repeat again. neans works through the following iterative process: Pick a value for k (the number of clusters to create) Initialize k 'centroids' (starting ints) in your data Create your clusters. Assign each point to the nearest centroid. Make your clusters better. Move each centroid to the center	
ints) in your data Create your clusters. Assign each point to the nearest centroid. Make your clusters better. Move each centroid to the center its cluster. Repeat steps 3-4 until your centroids converge. sing Inbuilt Functions 1 from sklearn import datasets	
<pre>import matplotlib.pyplot as plt import pandas as pd from sklearn.cluster import KMeans iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target plt.scatter(X[:,0], X[:,1], c=y, cmap='gist_rainbow') plt.xlabel('Speal Length', fontsize=18) Text(0, 0.5, 'Sepal Width')</pre> Text(0, 0.5, 'Sepal Width')	
km = KMeans(n_clusters = 3, n_jobs = 4, random_state=21)	
<pre>km.fit(X) KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,</pre>	
<pre> new_labels = km.labels_ # Plot the identified clusters and compare with the answers fig, axes = plt.subplots(1, 2, figsize=(16,8)) axes[0].scatter(X[:, 0], X[:, 1], c=y, cmap='gist_rainbow',edgecolor='k', s=150) axes[1].scatter(X[:, 0], X[:, 1], c=new_labels, cmap='jet',edgecolor='k', s=150) axes[0].set_xlabel('Sepal length', fontsize=18) axes[0].set_ylabel('Sepal width', fontsize=18) axes[1].set_xlabel('Sepal length', fontsize=18) axes[1].set_ylabel('Sepal width', fontsize=18) axes[1].tick_params(direction='in', length=10, width=5, colors='k', labelsize=20) axes[0].set_title('Actual', fontsize=18) axes[1].set_title('Predicted', fontsize=18)</pre>	
Actual Predicted 4.5 4.0 4.0 4.0 4.0 4.0 4.0	
2.5 2.0 5 6 7 8 Sepal length	
of using Inbuilt Functions 3] from sklearn import datasets import matplotlib.pyplot as plt import pandas as pd from sklearn.cluster import KMeans iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target plt.scatter(X[:,0], X[:,1], c=y, cmap='gist_rainbow')	
plt.xlabel('Speal Length', fontsize=18) Text(0, 0.5, 'Sepal Width') 45 40 8 9 25	
Speal Length t us define some basics to start the K means algorithm. There is a Threshold (theta) for movement of centroid in K means, total iterations fine the max number of interations that the running algorithm takes place. The train/fit and predict functions will give the functionality of the Means. The underlying difference between K Means and General Classification algorithms is that, in K Means we just focus whether we nieved the clusters which we targeted however in other clsutering algorithms we focus on more of finding how accurate the algorithm riked. Since it is unsupervised we have to use only training.	
<pre>theta = 0.01 tot_iter = 80 colors = 10*["g", "r", "b", "c", "k"] def fit(data): centroids = {} for i in range(k): centroids[i]= data[i] # That is first k=4 centroids will be the starting k=4 of the dataset for i in range(tot_iter): labels = {} for i in range(k): labels[i] = [] # feature set in data</pre>	
<pre>for fset in X: distances = [np.linalg.norm(fset-centroids[centroid]) for centroid in centroids] # Creating a list of distances where 0th element of the list will be # the distance to the 0th centroid with data elements. label = distances.index(min(distances)) # Classification labels[label].append(fset) # Says that feature set belongs to that centroid prev_centroids = dict(centroids) for label in labels: pass # centroids[label] = np.average(labels[label], axis=0) # Taking avergae of all the labels we have and assigning the centroid with that label # Finds the centroid for previous centroids labels # Finds the mean of all the features for any given class and redefines the centroid converged = True</pre>	
<pre>for clabel in centroids: original_centroid = prev_centroids[clabel] current_centroid = centroids[clabel] # Checking for the threshold theta by which the centroid should take movements if np.sum((current_centroid - original_centroid)/original_centroid * 100) > theta: converged = False if converged: break for centroid in centroids: plt.scatter(centroids[centroid][0], centroids[centroid][1], marker="o", color="k", s=150, linewidths=5) for label in labels: color = colors[label] for fset in labels[label]:</pre>	
<pre>plt.scatter(fset[0], fset[1], marker="x", color=color, s=150, linewidths=5) def predict(data): distances = [np.linalg.norm(data-centroids[centroid]) for centroid in centroids] label = distances.index(min(distance)) return label</pre> LD CENTROIDS	
45 40 35 30 25 45 50 55 60 65 70 75 80	
<pre>theta = 0.01 tot_iter = 80 colors = 10*["g", "r", "b", "c", "k"] def fit(data): centroids = {} for i in range(k): centroids[i] = data[i] # That is first k=4 centroids will be the starting k=4 of the dataset for i in range(tot_iter): labels = {} for i in range(k):</pre>	
<pre>labels[i] = [] # feature set in data for fset in X: distances = [np.linalg.norm(fset-centroids[centroid]) for centroid in centroids] # Creating a list of distances where 0th element of the list will be # the distance to the 0th centroid with data elements. label = distances.index(min(distances)) # Classification labels[label].append(fset) # Says that feature set belongs to that centroid prev_centroids = dict(centroids) for label in labels: # pass centroids[label] = np.average(labels[label], axis=0) # Taking avergae of all the labels we have and assigning the centroid with that label # Finds the centroid for previous centroids labels</pre>	
<pre># Finds the mean of all the features for any given class and redefines the converged = True for clabel in centroids: original_centroid = prev_centroids[clabel] current_centroid = centroids[clabel] # Checking for the threshold theta by which the centroid should take movements if np.sum((current_centroid - original_centroid)/original_centroid * 100) > theta: converged = False if converged: break for centroid in centroids: plt.scatter(centroids[centroid][0], centroids[centroid][1], marker="o", color="k", s=150, linewidths=5) for label in labels:</pre>	
<pre>color = colors[label] for fset in labels[label]: plt.scatter(fset[0], fset[1], marker="x", color=color, s=150, linewidths=5) EW CENTROIDS 1] fit(X)</pre>	
35 30 25 60 65 70 75 80	
te that some points which are classified green previouslt, are now classified according to the nearest centroid Its try with smaller and larger cluster for values k=2 and k=6 =2 1-1 cell hidden =2 plot	
1 fit(X) 45 40 35 30 25	
20 - X X X	
40- 35- 30- 25-	
te that for K=6 it is wrose than k=4 Means: A Try with MNIST dataset J # Import the MNIST dataset from keras.datasets import mnist	
<pre>(x_train, y_train), (x_test, y_test) = mnist.load_data() print('Training Data: {}'.format(x_train.shape)) print('Training Labels: (}'.format(y_train.shape)) Training Data: (60000, 28, 28) Training Labels: (60000,) I) print('Testing Data: {}'.format(x_test.shape)) print('Testing Labels: {}'.format(y_test.shape))</pre> Testing Data: (10000, 28, 28)	
Testing Labels: (10000,) 5] fig, axs = plt.subplots(3, 3, figsize = (12, 12)) plt.gray() for i, ax in enumerate(axs.flat): ax.matshow(x_train[i]) ax.axis('off') ax.set_title('Number {}'.format(y_train[i])) fig.show() Number 5 Number 0 Number 4	
Number 1 Number 9 Number 2	
Number 1 Number 3 Number 1	
7) X = x_train.reshape(len(x_train),-1) Y = y_train	
# normalize the data to 0 - 1 One hot x = x.astype(float) / 255. print(X.shape) print(X[0].shape) (60000, 784) (784,) etting Failed when trying to run method fit(X) which is defined in earlier sections	
<pre>Error is expected to come since it is very large computation // k=10 theta = 0.01 tot_iter = 80 colors = 10*["g", "r", "b", "c", "k", "m", "y", "w"] def fit(data): centroids = {} for i in range(k): centroids(i]= data[i] # That is first k=4 centroids will be the starting k=4 of the dataset for i in range(tot_iter):</pre>	
<pre>labels = {} for i in range(k): labels[i] = [] # feature set in data for fset in X: distances = [np.linalg.norm(fset-centroids[centroid]) for centroid in centroids] # Creating a list of distances where 0th element of the list will be # the distance to the 0th centroid with data elements. label = distances.index(min(distances)) # Classification labels[label].append(fset) # Says that feature set belongs to that centroid prev_centroids = dict(centroids) for label in labels: # pass centroids[label] = np.average(labels[label], axis=0)</pre>	
<pre># Taking avergae of all the labels we have and assigning the centroid with that label # Finds the centroid for previous centroids labels # Finds the mean of all the features for any given class and redefines the centroid converged = True for clabel in centroids: original_centroid = prev_centroids[clabel] current_centroid = centroids[clabel] # Checking for the threshold theta by which the centroid should take movements if np.sum((current_centroid - original_centroid)/original_centroid * 100) > theta: converged = False if converged: break for centroid in centroids: plt.scatter(centroids[centroid][0], centroids[centroid][1], marker="o", color="k", s=150, linewidths=5)</pre>	
for label in labels: color = colors[label] for fset in labels[label]: plt.scatter(fset[0], fset[1], marker="x", color=color, s=150, linewidths=5) O] fit(X) /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:34: RuntimeWarning: divide by zero encountered in true_divide /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:34: RuntimeWarning: invalid value encountered in true_divide KeyboardInterrupt Traceback (most recent call last) /usr/local/lib/python3.6/dist-packages/zmq/backend/cython/checkrc.pxd in zmq.backend.cython.checkrccheck_rc()	
SEARCH STACK OVERFLOW Exception ignored in: 'zmq.backend.cython.message.Framedealloc' Traceback (most recent call last): File "zmq/backend/cython/checkrc.pxd", line 13, in zmq.backend.cython.checkrccheck_rc KeyboardInterrupt KeyboardInterrupt Traceback (most recent call last) <ipython-input-140-76392c5d9b19> in <module>() > 1 fit(X) \$\frac{1}{2}\$ 9 frames /usr/local/lib/python3.6/dist-packages/matplotlib/artist.py in sticky_edges(self)</module></ipython-input-140-76392c5d9b19>	
1050 self.stale = True 1051 -> 1052 @property 1053 def sticky_edges(self): 1054 """ KeyboardInterrupt: SEARCH STACK OVERFLOW 004 - 002 -	
se MiniBatchKmeans to the size of the MNIST dataset, we will use the mini-batch implementation of k-means clustering provided by scikit-learn. This will	2 1
matically reduce the amount of time it takes to fit the algorithm to the data. Ref: https://medium.com/datadriveninvestor/k-means-clustering-imagery-analysis-56c9976f16b6 from sklearn.cluster import MiniBatchKMeans n_digits = len(np.unique(y_test)) print(n_digits) # Initialize KMeans model kmeans = MiniBatchKMeans(n_clusters = n_digits) # Fit the model to the training data	
<pre>kmeans.fit(X) kmeans.labels_ 10 array([6, 7, 3,, 6, 5, 9], dtype=int32) 2] def infer_cluster_labels(kmeans, actual_labels): inferred_labels = {} for i in range(kmeans.n_clusters):</pre>	
<pre># find index of points in cluster labels = [] index = np.where(kmeans.labels_ == i) # append actual labels for each point in cluster labels.append(actual_labels[index]) # determine most common label if len(labels[0]) == 1: counts = np.bincount(labels[0]) else: counts = np.bincount(np.squeeze(labels)) # assign the cluster to a value in the inferred_labels dictionary</pre>	
<pre>if np.argmax(counts) in inferred_labels: # append the new number to the existing array at this slot inferred_labels[np.argmax(counts)].append(i) else: # create a new array in this slot inferred_labels[np.argmax(counts)] = [i] #print(labels) #print('Cluster: {}, label: {}'.format(i, np.argmax(counts))) return inferred_labels</pre>	
<pre>def infer_data_labels(X_labels, cluster_labels): # empty array of len(X) predicted_labels = np.zeros(len(X_labels)).astype(np.uint8) for i, cluster in enumerate(X_labels): for key, value in cluster_labels.items(): if cluster in value: predicted_labels[i] = key return predicted_labels</pre>	
<pre>cluster_labels = infer_cluster_labels(kmeans, Y) X_clusters = kmeans.predict(X) predicted_labels = infer_data_labels(X_clusters, cluster_labels) print (predicted_labels[:20]) print (Y[:20]) [7 0 4 1 7 2 1 2 1 6 3 1 3 6 1 7 2 1 6 7] [5 0 4 1 9 2 1 3 1 4 3 5 3 6 1 7 2 8 6 9] [5] kmeans = MiniBatchKMeans(n_clusters = 36) kmeans.fit(X) # record centroid values centroids = kmeans.cluster_centers_</pre>	
<pre># reshape centroids into images images = centroids.reshape(36, 28, 28) images *= 255 images = images.astype(np.uint8) # determine cluster labels cluster_labels = infer_cluster_labels(kmeans, Y) # create figure with subplots using matplotlib.pyplot fig, axs = plt.subplots(6, 6, figsize = (20, 20)) plt.gray()</pre>	
<pre># loop through subplots and add centroid images for i, ax in enumerate(axs.flat): # determine inferred label using cluster_labels dictionary for key, value in cluster_labels.items(): if i in value: ax.set_title('Inferred Label: {}'.format(key)) # add image to subplot ax.matshow(images[i]) ax.axis('off') # display the figure fig.show()</pre>	
CA O] # Again load mnist, standardize from keras.datasets import mnist import matplotlib.pyplot as plt import pandas as pd import numpy as np	
<pre>(x_train, y_train), (x_test, y_test) = mnist.load_data() print('Training Data: {}'.format(x_train.shape)) print('Training Labels: {}'.format(y_train.shape)) Training Data: (60000, 28, 28) Training Labels: (60000,) 1] plt.imshow(x_train[2]) print(y_train[2]) 4 0 +</pre>	
0 - 5 - 10 - 15 - 20 -	
25 -	

□ Comment 🛎 Share 🌣 🌑

```
[203] new_labels = Y[0:15000]
new_data = X[0:15000]
       print('the shape of sample data: '+ str(new_data.shape))
      the shape of sample data: (15000, 784)
[204] covar_matrix = np.matmul(new_data.T, new_data)
      print(covar_matrix.shape)
       (784, 784)
[205] # From scipy.linearalgebra we can have pre built libs of eigen value and eigen vectors
       from scipy.linalg import eigh
       # Higest eigen values and vectors
# eigh returns values in ascending order
       values, vectors = eigh(covar_matrix, eigvals=(782,783))
vectors = vectors.T
      print(vectors.shape)
      (2, 784)
[206] final_coordinates = np.matmul(vectors,new_data.T)
[207] print(final_coordinates.shape)
# (2X784) X (784X15000)
       (2, 15000)
[208] new labels.shape
       (15000,)
[209] # Adding labels
       final_coordinates = np.vstack((final_coordinates, new_labels)).T
       df = pd.DataFrame(data=final_coordinates, columns=("PC1","PC2", "label"))
      print(df.head())
      PC1 PC2 label
0 -0.272273 6.483883 5.0
1 3.545998 6.941575 0.0
2 1.478622 3.166248 4.0
3 -3.305616 4.144610 1.0
4 -1.533636 5.880873 9.0
[212] import seaborn as sb
       sb.FacetGrid(df, hue="label", size=6).map(plt.scatter, 'PC1', 'PC2').add_legend()
       plt.show()
       /usr/local/lib/python3.6/dist-packages/seaborn/axisgrid.py:316: UserWarning: The `size` parameter has been renamed to `height`; please update your code.
         warnings.warn(msg, UserWarning)
          14
         12
       5
 Note that labels 0 (dark blue) and 1 (orange) are completely separated. Moreover, we have just transformed our 784D dataset in 2D plane.
 Great!
[219] # Now using PCA / Prebuilt function
       from sklearn import decomposition
       pca = decomposition.PCA()
       pca.n_components = 2
       pca_data = pca.fit_transform(new_data)
      print(pca_data.shape)
       (15000, 2)
[222] # Putting to vertical stack
   pca_data = np.vstack((pca_data.T, new_labels)).T
   pca_dataframe = pd.DataFrame(data=pca_data, columns=("PC1","PC2", "label"))
   sb.FacetGrid(pca_dataframe, hue="label", size=6).map(plt.scatter, 'PC1', 'PC2').add_legend()
       plt.show()
       /usr/local/lib/python3.6/dist-packages/seaborn/axisgrid.py:316: UserWarning: The `size` parameter has been renamed to `height`; please update your code.
         warnings.warn(msg, UserWarning)
```

2

-4 -2 0 2 4 6 8 PC1

5