

PLUGIN DE QGIS PARA LA CONFECCIÓN DE MODELOS REALISTAS DE REDES DE DISTRIBUCIÓN DE AGUA

MANUAL DE USUARIO

Dirigido por Fernando Martínez Alzamora

fmartine@upv.es

Desarrollado por Néstor Lerma

nestorlerma@upv.es

www.redhisp.upv.es

Marzo, 2020

Instituto de Ingeniería del Agua y Medio Ambiente

CONTENIDO

IN	TRODUCCIÓN	1
DE	TALLES DE LA VERSIÓN ACTUAL	1
	Versión 0.9	1
DE	TALLES DE VERSIONES PREVIAS	1
	Versión 0.8	1
	Versión 0.7	2
	Versión 0.6	3
IN:	STALACIÓN	3
	Repositorio	3
	Local	5
Gι	JÍA RÁPIDA	7
	Archivo	7
	Gestor de Proyectos	8
	Crear Proyecto	8
	Importar datos	9
	Proyecto	10
	Editar Proyecto	10
	Opciones	11
	Valores por defecto	11
	Resumen	12
	Simular y ver resultados	12
	Exportar modelo a INP	14
	Edición	14
	Creación de elementos básicos	14
	Selección múltiple	14
	Mover nudos	14
	Edición de vértices	15
	Herramientas sobre elementos de la red	15
	Eliminación de elementos	15
	Propiedades	15
	Curvas de modulación	16
	Curvas de comportamiento	16
	Controles simples	17
	Rules	17

	Verificaciones	. 18
	Herramientas	. 18
D	ATOS DE ENTRADA	. 20
	Tuberías	. 20
	Líneas	. 20
	Patrones, Curvas, Controles, Reglas	. 20
	Valores por defecto	. 21
ΤI	PS	. 22
EJ	EMPLOS	. 23
	Ejemplo 1	. 23
	Ejemplo 2	. 26

INTRODUCCIÓN

QGISRed es una herramienta de ayuda al ingeniero hidráulico en la tarea de modelar una red de distribución de agua y en el proceso de toma de decisiones, dentro del entorno de un Sistema de Información Geográfico (SIG). Esta herramienta está diseñada como un complemento (plugin) del software libre QGis. Sin embargo, QGISRed emplea el código fuente del software GISRed, aplicación diseñada como herramienta de escritorio para el sistema operativo Windows.

El plugin QGISRed se desarrolla con el objetivo de poder aprovechar todas las herramientas que un entorno SIG puede proporcionar de manera nativa. Por ejemplo, herramientas de geoproceso, utilización de imágenes de satélite, gestión de estilos, etc. Por el contrario, este plugin tendrá una serie de limitaciones frente al potencial que pueda incluir la herramienta GISRed.

DETALLES DE LA VERSIÓN ACTUAL

Versión 0.9

Versiones de QGis: 3.0-3.99

Novedades:

- Un nuevo logo para el plugin QGISRed
- Creación ágil de tuberías, depósitos y embalses con herramientas propias, y opciones de anclaje a los elementos ya existentes
- Herramienta para editar el trazado de los elementos lineales, incluyendo creación (clic sobre el trazado), desplazamiento y borrado (botón derecho) de vértices
- Orientación por defecto de válvulas/bombas al insertarlas en una tubería, siguiendo el trazado de ésta
- Herramienta para invertir la orientación de los elementos lineales (tuberías, válvulas y bombas)
- Herramienta para partir y unir tuberías
- Herramientas para separar/unir nudos
- Herramienta para crear/deshacer conexiones en T
- Herramientas para crear/deshacer cruces de tuberías
- Herramienta para mover de posición válvulas y bombas
- Selección múltiple de elementos de diferentes capas (Ctrl añade y Shift elimina)
- Borrado de todos los elementos seleccionados dentro de una región poligonal
- Eliminación de la mayor parte de los botones dobles y sustitución por una opción en la ventana de diálogo.
- Nuevo icono para acceder a los últimos resultados sin simular de nuevo
- Posibilidad de expandir y comprimir el menú de resultados para permitir el acoplamiento de otras ventanas de QGis
- Corrección de un error al trabajar con rutas de ficheros largas
- Diversas mejoras sobre las prestaciones ya ofrecidas en versiones anteriores

DETALLES DE VERSIONES PREVIAS

Versión 0.8

Versiones de QGis: 3.0-3.99

Características:

- Edición de propiedades de los elementos principales a través de una ventana de diálogo, pudiendo navegar desde ella a través de los diferentes elementos del mismo tipo que contiene el modelo.
- Inserción/Eliminación de válvulas y bombas en tuberías. En el primer caso clicando en un punto de la tubería, ésta se dividirá o se acortará (según el caso) para introducir el nuevo elemento. En el segundo caso, clicando sobre el elemento válvula o bomba, éste se eliminará juntando las tuberías colindantes si es posible.
- Edición del trazado de la red, pudiendo mover nudos del modelo de modo que el resto de los elementos que coincidan espacialmente con éstos, se desplacen a la misma posición.
- Reorganización de todos los botones del plugin agrupándolos en 5 categorías para facilitar el manejo de las diferentes opciones.
- Corrección de errores en la lectura de algunas leyes de control.
- Diálogos para la edición de las opciones de cálculo y los valores por defecto.
- Verificación de lds repetidos durante la generación de los mismos.
- Ocultación de las tablas de datos de la leyenda (Patterns, Curves, Controls, Rules, Options y DefaultValues).
- Cambios en el menú de selección de resultados para mostrar una única variable por nudo o por línea. Reducción del tiempo de refresco.
- Opción para visualizar mediante etiquetas fijas el valor del parámetro elegido para cada elemento.
- Eliminación de los permisos de administrador para instalar las dependencias necesarias.
- Algunas mejoras sobre las prestaciones ya ofrecidas en versiones anteriores.

Versión 0.7

Versiones de QGis: 3.0-3.99

Características:

- Tabla resumen con el número de elementos de cada tipo, así como las unidades de caudal, la fórmula de pérdidas de carga y si se modela algún parámetro de calidad.
- Gestor de Curvas de modulación: Permite editar, crear, borrar, clonar, exportar e importar nuevas curvas de modulación (o Patterns). Añade la opción de definir el tipo de curva de modulación. También se indica qué elementos están asociados a esa curva. Por último, se incluye la funcionalidad de trabajar con valores reales (en función del valor base asociado a la curva) o con un multiplicador o factor (forma tradicional).
- Gestor de Curvas de comportamiento: Permite editar, crear, borrar, clonar, exportar e importar nuevas curvas de comportamiento. Para las curvas asociadas a bombas, en el caso de 1 o 3 puntos se especifica la ecuación de la curva aproximada. También se especifica los elementos asociados a dichas curvas.
- Gestor de Controles Simples: Permite editar, añadir, borrar, clonar y ordenar leyes de control simple. Incluye la opción de poder deshabilitar una ley de control.
- Gestor de Rules: Permite editar, añadir, borrar, clonar y ordenar Rules. Incluye la opción de poder deshabilitar una Rule. Se permiten combinar diferentes condiciones a través de los operadores OR y AND, así como seleccionar la condición combinada apropiada para aplicar a la Rule.
- Tanto en el gestor de controles simples como en el de Rules su definición se realiza de forma interactiva y no escribiendo texto (modo tradicional).

Versión 0.6

Versiones de QGis: 2.0-3.99

Características:

- Gestionar los proyectos de QGISRed. Es posible abrir, crear, importar, clonar o borrar proyectos.
- Crear o editar un proyecto de QGISRed. Permite crear las capas vectoriales (SHPs) de los elementos básicos con los que trabaja el software EPANET. Si el usuario elimina alguno de estos SHPs, es posible volver a crearlos.
- Importación de datos desde ficheros INP (EPANET) o SHPs. En el primer formato se pueden importar modelos completos desarrollados con el popular software EPANET. Mediante SHPs se puede crear o completar un modelo especificando para cada tipo de elemento principal, el SHP del que se desea importar información y qué campos contienen determinada información necesaria para el modelo.
- Validación del modelo, informando de si se ha producido algún tipo de error o aviso al procesar la información contenida en los SHPs.
- Exportación al fichero INP de EPANET, con la opción de abrir este software una vez generado el fichero.
- Simulación con la Toolkit de EPANET para mostrar los resultados hidráulicos y de calidad.
- Dispone de un conjunto de herramientas asociadas al trazado (eliminación de elementos superpuestos, simplificación de vértices alineados, creación de conexiones tipo T, fusión de tuberías con las mismas características o análisis de la conectividad de la red), a las propiedades de los elementos (análisis de longitudes, diámetros, materiales, fechas de instalación, cambio de estado de tuberías o interpolación de cotas), para añadir componentes (acometidas, hidrantes, desagües) o para sectorizar (sectores hidráulicos y sectores de demandas).

INSTALACIÓN

El plugin QGISRed requiere la instalación de las librerías GISRed (como se detallará más adelante). Las librerías de GISRed funcionan bajo el sistema operativo Windows y requieren tener instalado la versión 4.5 del componente .Net Framework de Windows. Por tanto, el plugin QGISRed solo funcionará bajo dichas condiciones.

Repositorio

Para instalar el plugin o una actualización desde el repositorio oficial de QGis, se deben seguir los siguientes pasos:

- 1. Iniciar QGis v3.x
- 2. Acceder al menú Complementos → Administrar e instalar complementos...

3. Seleccionar la pestaña "Todos" (o "All"), en la barra superior escribir QGISRed. A continuación, seleccionar el único elemento que aparece y, por último, pulsar el botón para instalarlo en la esquina inferior derecha ("Install Plugin").

4. Una vez instalado aparecerá un mensaje que indica la necesidad de instalar las librerías de GISRed que se comentaban anteriormente.

- 5. Al pulsar sobre el botón "Sí" ("Yes") se descargarán e instalarán las dependencias necesarias para el funcionamiento del plugin (no requiere permisos de administrador).
- 6. Tanto si se pulsa en un botón como en otro ("Yes" o "No") aparecerá un mensaje en QGis que indica que el plugin se ha instalado. En el caso de pulsar el botón "No", cuando el usuario intente usar alguna herramienta del plugin se le indicará la necesidad de instalar las dependencias del plugin.

- 7. Cerrar la ventana al finalizar el proceso.
- 8. Debe aparecer una nueva barra de botones y un nuevo elemento en el menú superior.

Local

Para instalar una actualización del plugin de forma local, previamente a los pasos que se comentan a continuación, es necesario desinstalarlo. Para ello, se puede desinstalar desde el propio gestor de complementos de QGis, o manualmente borrando el directorio correspondiente.

- 1. Iniciar QGis v3.x
- 2. Acceder al menú Complementos→Administrar e instalar complementos...

 Seleccionar la pestaña "Instalar a partir de ZIP", seleccionar el fichero QGISRed.zip. A continuación, pulsar en "Instalar complemento" y si aparece el mensaje de aviso, pulsar en "Sí"

- 4. Al igual que en la instalación desde el repositorio se solicitará descargar e instalar unas librerías.
- 5. Cerrar la ventana al finalizar el proceso.
- 6. Debe aparecer una nueva barra de botones y un nuevo elemento en el menú superior.

 Q Untitled Project QGIS

GUÍA RÁPIDA

En este apartado se presenta brevemente cada herramienta de la que dispone el plugin. En las secciones posteriores se profundizará más en algunos detalles.

El plugin se divide principalmente en cinco categorías, cada una de ellas con un conjunto de herramientas que se muestran a continuación.

Categorías:

- File (Archivo)
- Project (Proyecto)
- Edition (Edición)
- Verifications (Verificaciones)
- Tools (Herramientas)

Archivo

Esta categoría contiene las herramientas relacionadas con la gestión de un proyecto, es decir, las utilidades básicas para abrir, crear, importar y cerrar.

Gestor de Proyectos

Esta ventana permite gestionar los proyectos de QGISRed abiertos recientemente, pero además se puede cargar proyectos que no aparezcan en el listado, borrar (*unload*) aquellos que no queramos que aparezcan, hacer una copia de alguno, crear un proyecto nuevo, importar datos o acceder al directorio del proyecto.

Cargar (Load)

Para importar un proyecto se debe especificar el nombre de la red y el directorio donde se encuentran los SHPs.

Clonar

Para clonar un proyecto se debe especificar el nombre nuevo de la red y el directorio donde se desea copiar. Si el nombre de la red es distinto al original, el directorio puede ser el mismo. Es decir, en un mismo directorio puede haber varios proyectos de QGISRed.

Crear Proyecto

Desde esta ventana es posible crear un proyecto de QGISRed, es decir, los SHPs necesarios para construir un modelo de una red hidráulica.

Los datos que se necesitan es el nombre de la red y el directorio donde crear la información. También se puede especificar el Sistema de Referencia de Coordenadas (CRS en inglés). Si en el campo del directorio se mantiene el valor por defecto "Temporal folder", el programa creará un directorio temporal que se podrá consultar desde el Gestor de Proyectos.

Una vez creado, aparecerá en la leyenda el siguiente contenido: Un grupo con el nombre de la red que, a su vez, incluirá otro grupo titulado "Inputs", indicando así que esa información son datos de entrada para construir el modelo. Dentro del grupo, se incluyen al menos 6 SHPs, uno por cada tipo de elemento base de EPANET.

Importar datos

QGISRed permite importar un modelo completo desde un fichero INP de EPANET o importar datos desde ficheros SHPs. En el primer caso, únicamente es necesario seleccionar el fichero INP. En el segundo caso, se debe seleccionar el directorio donde están las capas, y luego, para cada tipo de elemento, seleccionar la capa correspondiente y los campos que se quieren importar.

- Desde INP:

Desde SHPs:

Proyecto

Esta categoría permite editar el proyecto, ver un resumen de lo que contiene, exportarlo a otro formato y simular la parte hidráulica y de calidad.

Editar Proyecto

En la ventana de edición de un proyecto no es posible cambiar el nombre de la red, ni su directorio. Si se elimina alguno de los SHPs (elementos base), al acceder a la ventana anterior, permitirá marcar dicha capa para volverla a crear. Esta ventana también permite especificar un nombre de escenario, apuntar una serie de notas relativas al escenario. Por último, es posible marcar diferentes tipos de elementos complementarios que se cargarán al proyecto.

Opciones

Es posible editar de propiedades asociadas al cálculo del modelo hidráulico y de calidad.

Valores por defecto

También se pueden editar una serie de valores por defecto utilizados en la creación de los diferentes elementos soportados.

Resumen

Permite acceder a una ventana donde se resumen los elementos que contiene el modelo, así como algunas unidades y fórmulas de interés.

Simular y ver resultados

Pulsando sobre el botón ⁵ se lleva a cabo la simulación de la red y se abre una barra lateral como la de la siguiente imagen. En ella podemos seleccionar qué resultados y qué intervalo de tiempo mostrar.

Una vez se simula, aparece una ventana que contiene el reporte de la simulación generado por la Toolkit de EPANET y se abren las capas de resultado seleccionadas en el campo de "Browser for Results".

Desde la barra lateral es posible abrir o cerrar tipos de resultados, así como cambiar el instante de tiempo que se quiere mostrar.

Además, es posible guardar los resultados de la simulación especificando un nombre del escenario (correspondiente únicamente a los resultados y no a los datos) y unos comentarios para indicar, por ejemplo, qué características tiene ese escenario o qué datos se han cambiado.

Exportar modelo a INP

Esta ventana nos permite exportar a un fichero INP el modelo generado a partir de la información contenida en el proyecto de QGISRed. Además, dispone la opción de especificar con qué programa abrir el fichero resultante.

Edición

Esta sección permite editar el trazado, las propiedades de los elementos y otros componentes como curvas y controles.

Creación de elementos básicos

Con estos botones es posible crear los elementos básicos que maneja Epanet para una red hidráulica. El primero, aparte de crear una tubería y asignarle sus propiedades por defecto, también genera los dos nudos extremos (tipo Junctions).

Los dos siguientes botones permiten crear depósitos y embalses. En este caso es necesario pulsar sobre un nudo ya existente (no es posible crear un nudo aislado).

Los dos últimos botones permiten insertar válvulas y bombas en tuberías existente. Por ello, es necesario seleccionar un punto de una tubería.

Selección múltiple

Con el botón () es posible seleccionar mediante un rectángulo (clicando y arrastrando) o un polígono (clicando en cada uno de los puntos – sin arrastrar) todos los elementos que se encuentran dentro de la región seleccionada. Esto permite, por ejemplo, borrar de forma masiva elementos. En siguientes versiones permitirá aplicar ciertas herramientas sobre los elementos seleccionados.

Mover nudos

Este botón () permite mover los nodos de nuestra red (Junctions, Tanks, Reservoirs) y que se desplacen el resto de los elementos que coincidan espacialmente con este (otros nodos, tuberías, válvulas o bombas).

Edición de vértices

Con esta herramienta (**) es posible mover los vértices intermedios de los elementos lineales (tuberías, válvulas y bombas), así como crear nuevos vértices (clicando donde se desee añadir) o borrarlos (botón derecho sobre el vértice).

Herramientas sobre elementos de la red

Con estas herramientas es posible:

- Invertir la orientación de una línea (tubería, válvula o bomba)
- Dividir una tubería o unir dos tuberías con las mismas propiedades (diámetro, edad y material)
- Dividir un nudo en varios, uno según el número de líneas que conecte. Proceso inverso de unir nudos. Los nudos tienen que ser de tipo Junction. Para dividir, se debe pulsar botón derecho sobre el nudo. Para unir, tiene que ser de dos en dos. Se selecciona primero el nudo origen y luego el nudo destino (botón izquierdo).
- Crear o deshacer conexiones en T. Funciona de forma similar a la herramienta anterior.
- Crear o deshacer cruces de tuberías. Se debe clicar con el botón izquierdo sobre el nudo de cruce a fusionar o sobre el punto de cruce de dos tuberías.
- Desplazar válvulas o bombas de una tubería a otra (o en la misma tubería, pero en otra posición).

Eliminación de elementos

Esta herramienta (permite borrar elementos. Pueden seleccionarse previamente aquellos que se desee borrar o, en caso contrario, seleccionar el elemento a borrar haciendo clic sobre él.

Propiedades

Este botón () permite seleccionar cualquier elemento de nuestro modelo y acceder a sus propiedades (a través de una ventana de diálogo) y modificarlas de un modo sencillo e intuitivo.

Curvas de modulación

El botón permite acceder a la edición de los diferentes tipos de curvas (de modulación o "patterns" y de comportamiento).

En la primera pestaña de la ventana se pueden gestionar las curvas de modulación.

Curvas de comportamiento

Desde el mismo botón, pero en la segunda pestaña, se pueden gestionar las curvas demodulación.

Controles simples

El botón 🏁 permite acceder a la edición de los diferentes tipos de controles (simples o Rules).

En la primera pestaña de la ventana se pueden gestionar los controles simples.

Rules

Desde el mismo botón, pero en la segunda pestaña, se pueden gestionar Rules.

Verificaciones

Esta categoría contiene un conjunto de herramientas para verificar la topología y los datos introducidos. Las herramientas se aplican de forma masiva a toda la red.

Las utilidades actuales permiten:

- Consolidar los datos introducidos.
- Buscar elementos superpuestos y eliminarlos.
- Simplificar vértices alineados en los elementos lineales.
- Simplificación o unión de tuberías con el mismo diámetro, material y año de instalación.
- Crear conexiones tipo T, es decir, si un nudo de conectividad uno coincide sobre una tubería, ésta es dividida en dos y conectadas entre sí.
- Análisis de la conectividad de la red, mostrando zonas aisladas. Esta herramienta permite eliminar subzonas con un número de tuberías inferior al indicado por el usuario.
- Análisis de las longitudes de las tuberías. Compara la longitud asignada como atributo con la longitud Euclídea. Muestra un mensaje en caso de que la diferencia sea superior a un porcentaje especificado por el usuario. Existe la opción de que automáticamente se modifique el valor de la longitud con el valor geométrico si el usuario así lo indica.
- Análisis de diámetros, indicando aquellos superiores o inferiores a unos umbrales preestablecidos.
- Análisis de los materiales, indicando aquellos no reconocidos o desconocidos.
- Análisis de fechas de instalación de tuberías, indicando fechas incorrectas o futuras.
- Sectores hidráulicos: tratan de identificar si todas las demandas pueden ser satisfechas a partir de las fuentes de suministro disponibles, en particular depósitos y embalses.

Herramientas

En esta categoría se dispone de un conjunto de utilidades para aplicar propiedades o insertar elementos masivamente.

Las utilidades actuales permiten:

Asignación el coeficiente de rugosidad según el material y el año de instalación.

- Interpolación masiva de las cotas de los elementos puntuales (nudos, depósitos y embalses) a partir de archivos ASCII.
- Asignación del estado inicial de una tubería en función del estado de las válvulas manuales (o de corte).
- Insertar acometidas, tanto como un nudo puntual, como un tramo lineal (tubería)
- Insertar hidrantes, asignando el nombre de éste al nudo más próximo o en su defecto creando uno sobre la tubería en la que espacialmente se sitúe.
- Insertar desagües, asignando el nombre de éste al nudo más próximo o en su defecto creando uno sobre la tubería en la que espacialmente se sitúe.
- Sectores de demanda: permite identificar zonas de la red delimitadas por caudalímetros y elementos de regulación que permitan abrir o cerrar una tubería.

DATOS DE ENTRADA

Esta sección detalla qué valores se deben introducir en los diferentes campos que existen en las tablas de atributos de los elementos que aparecen en la leyenda de QGis y que forman parte del proyecto QGISRed. Todos aquellos datos que se deben introducir con los mismos valores que en EPANET no se comentarán (revisar el manual de EPANET).

Tuberías

A partir de la versión 0.8 estos datos se pueden introducir desde la ventana de propiedades y no requiere conocer las opciones disponibles. Sin embargo, por si se quiere editar algún dato manualmente desde la tabla de atributos:

En la tabla de atributos de este tipo de elemento aparecen dos campos adicionales respecto los de EPANET, en este caso, el campo *Material* e *InstalDate*. El primero corresponde con el material de la tubería y los valores que se puede definir son:

- GREY CAST IRON
- DUCTILE CAST IRON
- STEEL
- FIBER CEMENT
- GALVANIZEDIRON
- CONCRETE WITH SHEET METAL JACKET
- CONCRETE WITHOUT SHEET METAL JACKET
- PRESTESSED CONCRETE
- LEAD
- POLYETHYLENE
- ORIENTATED PVC
- UNPLASTICIZED PVC
- COPPER
- HIGHT DENSITY POLYETHYLENE
- LOW DENSITY POLYETHYLENE
- MEDIUM DENSITY POLYETHYLENE
- UNDETERMINED
- UNKNOWN

En el caso del campo *InstalDate*, éste corresponde con la fecha de instalación de la tubería. El formato de entrada es *yyyyMMdd*, donde *yyyy* corresponde con los cuatro dígitos del año, *MM* es el número de mes con dos cifras (añadiendo un 0 delante si es necesario) y *dd* es el día (20190715, para el 15 de julio de 2019). Con estos dos campos es posible estimar la rugosidad de la tubería.

Líneas

A diferencia de EPANET u otras herramientas, GISRed y, por tanto, QGISRed no requiere la definición de la topología, es decir, para cada línea no es necesario definir el Id del nudo inicial y final. Este proceso se hace automáticamente por análisis espacial.

Patrones, Curvas, Controles, Reglas

A partir de la versión 0.7 se dispone de nuevas herramientas para introducir esta información (ver apartado correspondiente). Estos datos se almacenan en tablas de datos (DBF) que pueden ser editadas desde QGis. Para modificar este tipo de información directamente desde las tablas,

se introduce de forma muy parecida al fichero INP de EPANET, pero en vez de separado por espacios, está separado en diferentes columnas.

En el caso de los Patrones, se añade un campo adicional que indica el orden de los factores dentro de un mismo patrón o curva de modulación.

Para las Reglas, son tres los nuevos campos (*RuleOrder*, Line*Order* y *Name*). Si importamos desde un fichero INP que contenga Rules, la primera vez que abrimos la tabla de atributos se mostrará desordenada (según la versión de QGis).

	RuleOrder	LineOrder	Clause	Object	ldObj	Attribute	Operator	Value	Name
1	1	6	AND	PIPE	2	STATUS	IS	OPEN	a2
2	1	5	THEN	PIPE	1	STATUS	IS	CLOSED	a1
3	2	1	RULE		2				
4	1	7	ELSE	PIPE	3	STATUS	IS	OPEN	ea1
5	2	3	THEN	PIPE	2	STATUS	IS	OPEN	Action
6	2	2	IF	NODE	2	PRESSURE	>	20	Condition
7	1	2	IF	NODE	1	PRESSURE	>	20	c1
8	1	1	RULE		1				
9	1	4	OR	NODE	2	PRESSURE	>	15	c3
10	1	3	AND	NODE	1	DEMAND	>	1	c2

En ese caso, es necesario ordenar por la columna *LineOrder* y después por *RuleOrder*. De ese modo, veremos un aspecto muy parecido a como se escriben la Rules en EPANET, pero como dos columnas adicionales al principio. Estas columnas nos permitirán añadir o modificar componentes de una Regla concreta. Deberemos asignar el mismo *RuleOrder* para todas las filas que correspondan a la misma Regla y luego especificar el orden adecuado para cada fila en el campo *LineOrder*.

	RuleOrder 🌋	LineOrder	Clause	Object	ldObj	Attribute	Operator	Value	Name
1	1	1	RULE		1				
2	1	2	IF	NODE	1	PRESSURE	>	20	c1
3	1	3	AND	NODE	1	DEMAND	>	1	c2
4	1	4	OR	NODE	2	PRESSURE	>	15	c3
5	1	5	THEN	PIPE	1	STATUS	IS	CLOSED	a1
6	1	6	AND	PIPE	2	STATUS	IS	OPEN	a2
7	1	7	ELSE	PIPE	3	STATUS	IS	OPEN	ea1
8	2	1	RULE		2				
9	2	2	IF	NODE	2	PRESSURE	>	20	Condition
10	2	3	THEN	PIPE	2	STATUS	IS	OPEN	Action

La última columna "Name" permite darle nombre a cada una de las condiciones o acciones definidas, de modo que a través de la interfaz pueden ser fácilmente reconocibles.

Valores por defecto

Los valores por defecto (DefaultValues) son un conjunto de atributos que se utilizan en el proceso de lectura, construcción o validación del modelo para corregir o completar información. Por ejemplo, los prefijos de nuevos elementos que se crean, la separación mínima o máxima a la hora de introducir un elemento sobre una tubería o los valores por defecto de alguno de los atributos de cada elemento. El usuario puede modificar estos datos haciendo un uso coherente de los mismos.

TIPS

En este apartado se comentan algunos puntos que pueden resultar interesantes para el usuario de QGISRed:

- En el Gestor de Proyectos, para abrir un proyecto reciente es suficiente con hacer doble clic sobre él.
- La importación de un modelo en INP reemplaza cualquier información previa. Sin embargo, la importación de SHPs es incremental, es decir, se puede importar una capa y luego otra, obteniendo al final una combinación de ambas.
- Cualquier herramienta del plugin que se utilice empleará la información contenida en el directorio del proyecto, no únicamente las capas abiertas en QGis.
- Al exportar el modelo a INP, si no se quiere abrir el fichero resultante, el usuario puede pulsar el botón derecho del ratón sobre la ruta del programa, dejándola en blanco.
- Guardar el proyecto de QGis permite que al volver a abrir el proyecto de QGISRed o directamente el proyecto de QGis, aparezca todo como el usuario lo había dejado al guardar.
- Cuando la opción "Advertencias de mapa" está activa, es necesario seleccionar una capa concreta para que aparezcan las etiquetas.

EJEMPLOS

Ejemplo 1

El primer ejemplo pretende ilustrar la facilidad de importar un modelo previo disponible en un fichero INP de EPANET y realizar el cálculo hidráulico y de calidad.

Disponiendo del archivo INP ("Red1_SI.inp") y QGis abierto, pulsamos sobre el botón de importar (en la barra de botones o en el menú superior):

i About...

Se abrirá la siguiente ventana, en la que se debe definir el nombre de la red, el directorio donde se guardarán los SHPs, así como el sistema de referencia (CRS) y el archivo INP. Una vez indicada esta información se pulsa el botón "Import Data From INP".

En este ejemplo no existe ningún aviso en el proceso de importación, pero si los hubiese aparecería una ventana emergente con el registro de incidencias ocurridas.

En la ventana principal de QGis aparecerán las capas del modelo y las tablas con la información no espacial:

A partir de la versión 0.7, los datos relativos a curvas (de modelación y de comportamiento) se pueden editar a través de los botones correspondientes. A partir de la versión 0.8, las propiedades de cada elemento también pueden ser editadas mediante la herramienta que permite acceder a los datos a través de una ventana de diálogo. Sin embargo, también es posible consultar los datos contenidos en cada uno de los ítems que aparecen en la leyenda accediendo a su tabla de atributos (botón secundario en cada capa o con el botón disponible en la barra superior de herramientas). Si se desea modificar algún valor, hay que habilitar el modo edición para la capa o tabla seleccionada, cambiar o incluso añadir algún elemento y finalmente guardar los cambios.

Partiendo del supuesto que el modelo está completamente definido, se procede a realizar el cálculo hidráulico y de calidad. Para ello, es necesario pulsar sobre el botón "Run model", apareciendo un menú lateral.

Tras efectuar la simulación, de forma instantánea para este ejemplo, aparece una ventana emergente con el reporte generado por la ToolKit de EPANET, al mismo tiempo que se cargan los resultados seleccionados (*Flow y Pressure*).

Desde el menú lateral que aparece al pulsar sobre el botón de simular, es posible mostrar los diferentes resultados, así como cambiar el instante de tiempo a representar.

Es recomendable desactivar la visualización del grupo de Inputs, para que los colores representativos de los resultados se aprecien mejor.

Si se activa (si no lo está) la opción de "Mostrar avisos de mapa" , seleccionando una capa de resultados y manteniendo el cursor encima de un elemento aparece el valor asociado a esa variable para el tiempo seleccionado.

Ejemplo 2

Este ejemplo muestra cómo construir el modelo del ejemplo anterior (*Red1_SI*) desde el principio, sin importación, es decir, creando los diferentes elementos en QGis.

Lo primero que hay que hacer, una vez abierto QGis, es pulsar sobre "Crear Proyecto" ("Create Project"). Esto es posible hacerlo desde el menú superior o desde la barra de herramientas del propio plugin de QGISRed.

Se abrirá una ventana donde se debe completar el nombre de la red, el directorio de trabajo y el sistema de referencia (CRS). Para este ejemplo que no dispone de una localización espacial concreta podemos seleccionar el WGS 84. A continuación, pulsamos sobre el botón "Create project".

Aparecerá un mensaje de que el proceso ha finalizado correctamente y en la leyenda se mostrarán las capas y tablas (vacías o con los valores por defecto).

Antes de continuar y, como el proceso puede llevar su tiempo, es recomendable guardar el proyecto con QGis. De este modo, la próxima vez que queramos continuar, tanto si abrimos el proyecto de QGis como el proyecto de QGISRed, estará todo igual que lo habíamos dejado la última vez que lo guardemos.

A partir de la versión 0.9, las siguientes operaciones pueden realizarse con las herramientas propias del plugin QGISRed.

Previo a comenzar a dibujar el trazado de nuestro modelo es conveniente activar la opción de "autoensablado" de QGis. Esta opción facilitará la creación de un elemento a partir de un punto anterior de nuestro modelo. Para ello, hay que mostrar la barra de herramientas "Snapping Toolbar" y activar el primer botón.

Llegados a este punto podemos comenzar a dibujar el trazado. Posiblemente lo más conveniente sea empezar por las tuberías, luego válvulas y bombas y, por último, embalses y depósitos. Por tanto, se debe activar la capa de Pipes en modo edición, seleccionar el botón para crear una nueva línea.

El modelo que debemos construir es el siguiente. Como punto de partida se puede elegir la tubería que parte del depósito superior.

Primeros pasos:

1) Tras seleccionar el segundo punto de nuestra tubería, pulsamos botón derecho para aceptar ese tramo. En ese momento aparece una ventana para introducir los datos asociados al modelo y que están contenidos en la tabla de atributos. En cualquier caso, cuando generemos o consolidemos el modelo los datos vacíos que sean necesarios se completarán.

- 2) Se aprecia el cuadrado fucsia que facilita la selección del final de la tubería anterior.
- 3) Terminamos de dibujar el resto de las tuberías.
- 4) Dibujamos la bomba (activar edición de la capa) y la válvula (activar edición de la capa).
- 5) Dibujar el depósito (activar edición de la capa) y el embalse (activar edición de la capa).

Una vez construida la topología hay que introducir los datos de cada elemento. Para ello, debemos guardar todos los cambios en las distintas capas editadas. Una vez hecho, seleccionando la herramienta de edición de propiedades podemos clicar en cada elemento y modificar sus datos.

También es posible modificar los datos, manteniendo el modo edición, abriendo la tabla de atributos de un tipo de elemento, en la que aparecen todos los elementos creados para ese tipo e ir completando la información. Otra opción es utilizar el identificador de objetos seleccionando en el menú lateral que se abre la opción de "Auto open form". Esto permite que al clicar sobre un elemento se abra una ventana emergente para introducir los datos únicamente de ese elemento.

Otra opción adicional cuando el valor de un campo se repite en todos o casi todos los elementos (por ejemplo, el coeficiente de rugosidad de las tuberías del ejemplo), es posible usar la calculadora de campos . Se marca la opción de actualizar un campo, se selecciona el campo y se completa el valor deseado.

Como habrá observado el lector, no se han introducido los nudos (*junctions*) por el momento. Podrían añadirse manualmente uno a uno y completar su información o, una vez validemos y consolidemos el modelo, estos elementos se crearán y bastará con completar los datos como, por ejemplo, los relativos a la demanda base.

Una vez introducidos todos los datos de los elementos, hay que completar los datos de la curva característica de la bomba. Para ello, se pulsa el botón y accedemos a la edición de curvas. En este ejemplo solo es necesario introducir un punto de la curva y especificar el tipo de curva.

El procedimiento es: añadir una nueva curva de comportamiento, editar con el icono / el tipo de curva, seleccionado la opción PUMP y, a continuación, añadir el par de valores Flow-Head correspondientes.

También es necesario introducir los datos de la curva de modulación. Desde la misma ventana, pero en la pestaña correspondiente, se introducen los valores del ejemplo.

Una vez finalizada la introducción de estos datos, se pulsa en el botón "Aceptar" para guardar esos cambios. A continuación, será necesario en la bomba especificar el Id de la curva de comportamiento en el campo *IdHFCurve*.

Llegados a este punto, podemos validar la topología y los datos introducidos. Pulsando el botón os mostrará un listado de mensajes, correspondiente únicamente a la creación de los nudos (junctions) a partir de las tuberías (pipes). La imagen puede diferir a partir de la versión 0.9.

Si lo consideramos correcto, al pulsar sobre el botón Aceptar (*Accept*), veremos cómo se han creado los nodos faltantes en el esquema.

Una vez disponemos de los nodos, podemos completar sus datos, de igual modo que se ha hecho con el resto de los elementos. Ahora debemos visualizar nuestro esquema con en la siguiente figura.

Si volvemos a validar, veremos cómo ya no aparecen mensajes de errores.

Otro aspecto para completar son las leyes de control simple que se definen para este ejemplo. Se accede con el botón ** y, en la primera pestaña, creamos los dos controles simples.

Para finalizar, antes de proceder con la simulación, es necesario modificar las opciones pertinentes, para ello pulsamos el botón y modificamos las siguientes.

HEADLOSS	D-W
UNBALANCED	CONTINUETO
CONTINUETO	10
QUALITY TYPE	CHEMICAL
CHEMICAL LABEL	Cloro
CONCENTRATION UNITS	mg/l
DURATION	24:00 (1.00:00:00)
QUALITY TIMESTEP	00:05
STATUS	YES
SUMMARY	NO

Hay que mencionar que, el PATTERN por defecto que aparece en las opciones es el Id 1. En este ejemplo corresponde con el Id de la curva de modulación que se ha creado. En caso contrario, sería necesario cambiarlo si queremos asignar a todos los nudos de caudal esa curva o, especificar el Id correspondiente en cada nudo.

Si simulamos del mismo modo que en el Ejemplo 1, veremos que se obtienen los mismos resultados.