\triangleright Noting that $V_{B17} = V_{E16}$:

$$V_{EB23B} = V_{B16} - V_{E16} - V_{CB17} = V_{BE16} - V_{CB17}$$

- \triangleright Under *normal operating condition*, $V_{BE16} \sim 0.7 \text{ V}$
- ➤ If Q_{17} also is in the *FA mode*, which is the *desired mode of operation*, then the *CB junction* of Q_{17} will be *reverse biased*
 - \Rightarrow V_{CB17} is *positive*
 - \Rightarrow V_{EB23B} < V_{BE16}, and Q_{23B} would *remain off*
- Now, if for any reason whatsoever, Q_{17} moves towards saturation, then V_{CB17} would decrease

- As soon as V_{CB17} equals zero (corresponding to onset of saturation of Q_{17}):
 - \Rightarrow Q_{23B} would *turn on* and *rob* the *base drive* away from the base of Q₁₆
 - \Rightarrow Q₁₇ pushed back to the FA mode of operation
- ➤ This *chain of events* is *pretty complicated* indeed
- Thus, Q_{23B} prevents Q_{17} from saturating, and thus, ensures optimum performance of the circuit

• Anomalies and Limitations:

- > Common-Mode Rejection
- > Input Offset Voltage/Input Offset Current
- > Saturation Voltages
- > Minimum Allowed Supply Voltage
- > Slew Rate and Full-Power Bandwidth

> Common-Mode Rejection:

- An extremely important parameter (CMRR)
- Depends on:
 - \clubsuit The *output resistance* r_{08} of Q_8
 - ***** Matching of the input transistors $(Q_1-Q_2 \text{ and } Q_3-Q_4)$
- *Higher* $r_{08} \Rightarrow Better CMRR$
- More mismatch in the input transistors ⇒ Worse
 CMRR
- Exact calculation of A_{cm} is pretty tedious
- A *rough estimate* of A_{cm} can be *obtained* by noting that:
 - ***** For *common-mode input*, the *common collector point* of Q_1 - Q_2 is *not at ac ground*, but *connected to the collector* of Q_8
 - $r_{08} = V_{AP}/I_{C8} = 2.6 \text{ M}\Omega$

- Now, refer to the 2-port equivalent of the differentialinput stage, having the input resistance R_{i2} of the gain stage as its load
- Noting that the stage is basically CE(D):

$$\Rightarrow A_{cm} \simeq \frac{-(R_{01} || R_{i2})}{1/G_{m1} + 2r_{08}} = -0.48$$

■ Thus:

CMRR =
$$|A_{dm}/A_{cm}| = 4.85 \times 10^5 (113.76 \text{ dB})$$

which is *phenomenal*

- This figure is *much higher* than that *computed earlier*
- Of course, the *analysis* is *highly simplistic*
- Even then, the *actual value* may be *well above 100 dB*

> Input Offset Voltage/Input Offset Current:

- Created due to a *mismatch* between the *input* transistors
- For an *op-amp* with $A_{vOL} = 10^5$, operated with a *power* supply of ± 10 V, V_{id} needed to cause V_0 to reach either of these two extremes = $\pm 100 \, \mu V$
- The *mismatch* between the *input transistors* typically create a *voltage difference* between the *inputs*, known as the *Input Offset Voltage* (V_{OS})
- **Typical value** of V_{OS} for **741 op-amp** ~ 5-10 mV
- This would *cause* V_0 to *saturate* at either $+V_{CC}$ or $-V_{CC}$
- This is known as *saturation* or *latch-up* problem

- In 741, there is a *provision* to *eliminate* this *problem*, known as *offset nulling*
- Refer to the *circuit* of 741, and note *pin numbers* 1 and 5 *connected* to the *emitters* of Q_5 and Q_6
- Between these *two pins*, a *potentiometer* is connected, with its *wiper* connected to $-V_{CC}$
- This *potentiometer* is known as the *offset null resistor*
- It *eliminates* the *effect* of V_{OS} by *creating* an *unequal* division of bias currents in the two branches of the input circuit, just enough to balance the difference caused due to device mismatch

• Procedure:

- **Tie both inputs to ground**: V_0 would most likely **saturate** at either $+V_{CC}$ or $-V_{CC}$
- \diamond Next, *move the wiper* of the *potentiometer* in the *direction* that creates a *magnitude reduction* of V_0
- ❖ Towards the *end*, it will become *very sensitive*, and a *perfect nulling*, i.e., V₀ becoming *exactly zero*, *may not be possible*
- ❖ The typically expected minimum value of V₀ may be ~ 5-10 mV
- **!** Leave the *potentiometer setting* at the *best possible* achieved result
- * Done!