Computer Graphics Homogeneous Notation

Matthias Teschner

What is visible at the sensor?

 Visibility can be resolved by ray casting or by applying transformations

Ray Casting computes ray-scene intersections to estimate q from p.

Rasterizers apply transformations to p in order to estimate q. p is projected onto the sensor plane.

Outline

- Motivation
- Homogeneous notation
- Transformations

Motivation

- Transformations in modeling and rendering
 - Position, reshape, and animate objects, lights, cameras
 - Project 3D geometry onto the camera plane
- Homogeneous notation
 - 3D vertices (positions) and 3D normals (directions) are represented with 4D vectors
 - Transformations are represented with 4x4 matrices
 - All transformations of positions and directions are consistently realized as a matrix-vector product

Transformations – 2D

Four faces / primitives / polygons, four points / vertices, four normals.

Translation.

Scale.

Transformations change vertex positions and surface normals.

Identity transform.

Shear.

Coordinate Systems and Transformations

Coordinate Systems and Transformations

Inverse view transform V^{-1} applied to all objects and the camera

Global coordinate system with one camera and three objects

Working in view space is motivated by simplified implementations. E.g., rays start at **0** in view space.

Modelview Transform

Local coordinate system of an object

Local coordinate system of a camera

Transformation from local into view space is realized with the modelview transform. Objects: $V^{-1}M_1$, $V^{-1}M_2$, $V^{-1}M_3$ Camera: $V^{-1}V = I$

More Transformations

- To transform from view space positions to positions on the camera plane
 - Projection transform
 - Viewport transform
- See lecture on projections

Transformations - Groups

- Translation, rotation, reflection
 - Preserve shape and size
 - Congruent transformations (Euclidean transformations)
- Translation, rotation, reflection, scale
 - Preserve shape
 - Similarity transformations

Affine Transformations

- Translation, rotation, reflection, scale, shear
 - Angles and lengths are not preserved
 - Preserve collinearity
 - Points on a line are transformed to points on a line
 - Preserve proportions
 - Ratios of distances between points are preserved
 - Preserve parallelism
 - Parallel lines are transformed to parallel lines

Affine Transformations

- 3D position p: (p' = T(p) = Ap + t)
- Affine transformations preserve affine combinations $T(\sum_i \alpha_i \cdot p_i) = \sum_i \alpha_i \cdot T(p_i)$ for $\sum_i \alpha_i = 1$
- E.g., a line can be transformed by transforming its control points \mathbf{p}_1'

Affine Transformations

- 3D position p: p' = Ap + t
- 3x3 matrix A represents linear transformations
 - Scale, rotation, shear
- 3D vector t represents translation
- Using the homogeneous notation, all affine transformations are represented with one matrix-vector multiplication

Positions and Vectors

- Positions / vertices specify a location in space
- Vectors / normals specify a direction
- Relations

```
position - position = vector
position + vector = position
vector + vector = vector
position + position not defined
```

Positions and Vectors

- Transformations can have different effects on positions and vectors
 - E.g., translation of a point changes its position, but translation of a vector does not change the vector
- Using the homogeneous notation, transformations of vectors and positions are handled in a unified way

Translation of positions and vectors.

Outline

- Motivation
- Homogeneous notation
- Transformations

Homogeneous Coordinates of Positions

- $-[x,y,z,w]^{\mathsf{T}}$ with $w \neq 0$ are the homogeneous coordinates of the 3D position $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$

Note $[x, y, z, w]^{\mathsf{T}} = \begin{bmatrix} y \\ z \end{bmatrix}$

- $[\lambda x, \lambda y, \lambda z, \lambda w]^T$ represents the same position $\left(\frac{\lambda x}{\lambda w}, \frac{\lambda y}{\lambda w}, \frac{\lambda z}{\lambda w}\right)^{\mathsf{T}} = \left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)^{\mathsf{T}} \text{ for all } \lambda \neq 0$
- Examples
 - $-[2,3,4,1]^{\mathsf{T}} \sim (2,3,4)^{\mathsf{T}}$
 - $-[2,4,6,1]^{\mathsf{T}} \sim (2,4,6)^{\mathsf{T}}$
 - $[4, 8, 12, 2]^{\mathsf{T}} \sim (2, 4, 6)^{\mathsf{T}}$
 - $-[0.2, 0.4, 0.6, 0.1]^{\mathsf{T}} \sim (2, 4, 6)^{\mathsf{T}}$

Homogeneous Coordinates of Positions

From Cartesian to homogeneous coordinates

$$(x,y,z)^{\mathsf{T}} \to [x,y,z,1]^{\mathsf{T}}$$
 The most obvious way, but an infinite number of options. $(x,y,z)^{\mathsf{T}} \to [\lambda x, \lambda y, \lambda z, \lambda]^{\mathsf{T}} \xrightarrow{\lambda \neq 0}$

From homogeneous to Cartesian coordinates

$$[x, y, z, w]^{\mathsf{T}} \rightarrow (\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^{\mathsf{T}}$$

1D Illustration

- Homogeneous points $[\lambda x, \lambda]^T$ represent the same position x in Cartesian space
- Homogeneous points $[\lambda x, \lambda]^{\mathsf{T}}$ lie on a line in the 2D space [x, w]

Homogeneous Coordinates of Vectors

- For varying w, a point $[x, y, z, w]^\mathsf{T}$ is scaled and the points $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^\mathsf{T}$ represent a line in 3D space
- The direction of this line is $(x, y, z)^T$
- For $w \to 0$, the position $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^\mathsf{T}$ moves to infinity in the direction $(x, y, z)^\mathsf{T}$
- $-[x,y,z,0]^{\mathsf{T}}$ is a position at infinity in the direction of $(x,y,z)^{\mathsf{T}}$
- $-[x,y,z,0]^{\mathsf{T}}$ is a vector in the direction of $(x,y,z)^{\mathsf{T}}$

1D Illustration

Positions at Infinity

- Can be processed by graphics APIs, e.g. OpenGL
 - Used, e.g. in shadow volumes

Rendering of a triangle with vertices

$$\begin{bmatrix} 0 \\ 0.5 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} -0.5 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Rendering of a triangle with vertices

$$\begin{bmatrix} 0 \\ 0.5 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -0.5 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Positions and Vectors

If positions are in normalized form,
 position-vector relations can be represented

vector + vector = vector
$$\begin{vmatrix} u_y \\ u_z \end{vmatrix}$$
 +

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} + \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix} = \begin{bmatrix} p_x + v_x \\ p_y + v_y \\ p_z + v_z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} - \begin{bmatrix} r_x \\ r_y \\ r_z \\ 1 \end{bmatrix} = \begin{bmatrix} p_x - r_x \\ p_y - r_y \\ p_z - r_z \\ 0 \end{bmatrix}$$

Homogeneous Notation of Linear Transformations

$$\begin{pmatrix}
m_{00} & m_{01} & m_{02} \\
m_{10} & m_{11} & m_{12} \\
m_{20} & m_{21} & m_{22}
\end{pmatrix}
\begin{pmatrix}
p_x \\
p_y \\
p_z
\end{pmatrix}
\sim
\begin{pmatrix}
m_{00} & m_{01} & m_{02} & 0 \\
m_{10} & m_{11} & m_{12} & 0 \\
m_{20} & m_{21} & m_{22} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
p_x \\
p_y \\
p_z \\
1$$

– If the transform of $\begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix}$ results in $\begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix}$, then

the transform of $\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$ results in $\begin{bmatrix} r_x \\ r_y \\ r_z \\ 1 \end{bmatrix} \sim \begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix}$

Affine Transformations and Projections

- General form

$$\begin{bmatrix} m_{00} & m_{01} & m_{02} & t_0 \\ m_{10} & m_{11} & m_{12} & t_1 \\ m_{20} & m_{21} & m_{22} & t_2 \\ \hline p_0 & p_1 & p_2 & w \end{bmatrix}$$

- $-m_{ij}$ represent rotation, scale, shear
- $-t_i$) represent translation
- $-(p_i)$ are used for projections (see lecture on projections)
- is the homogeneous component

Homogeneous Coordinates - Summary

- $-[x,y,z,w]^{\mathsf{T}}$ with $w \neq 0$ are the homogeneous coordinates of the 3D position $(\frac{x}{w},\frac{y}{w},\frac{z}{w})^{\mathsf{T}}$
- $-[x,y,z,0]^{\mathsf{T}}$ is a point at infinity in the direction of $(x,y,z)^{\mathsf{T}}$
- $-[x,y,z,0]^{\mathsf{T}}$ is a vector in the direction of $(x,y,z)^{\mathsf{T}}$

$$-\begin{bmatrix} m_{00} & m_{01} & m_{02} & t_0 \\ m_{10} & m_{11} & m_{12} & t_1 \\ m_{20} & m_{21} & m_{22} & t_2 \\ p_0 & p_1 & p_2 & w \end{bmatrix}$$

 $\begin{bmatrix} t_0 \\ t_1 \\ t_2 \\ w \end{bmatrix}$ is a transformation that represents rotation, scale, shear, translation, projection

Outline

- Motivation
- Homogeneous notation
- Transformations

Transformations

Translation

Of a position

$$m{T}(m{t})m{p} = egin{bmatrix} 1 & 0 & 0 & t_x \ 0 & 1 & 0 & t_y \ 0 & 0 & 1 & t_z \ 0 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} p_x \ p_y \ p_z \ 1 \end{bmatrix} = egin{bmatrix} p_x + t_x \ p_y + t_y \ p_z + t_z \ 1 \end{bmatrix}$$

Of a vector

$$m{T}(m{t})m{v} = egin{bmatrix} 1 & 0 & 0 & t_x \ 0 & 1 & 0 & t_y \ 0 & 0 & 1 & t_z \ 0 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} v_x \ v_y \ v_z \ 0 \end{bmatrix} = egin{bmatrix} v_x \ v_y \ v_z \ 0 \end{bmatrix}$$

Inverse transform

$$oldsymbol{T}^{-1}(oldsymbol{t}) = oldsymbol{T}(-oldsymbol{t})$$

Rotation

- Positive (anticlockwise) rotation with angle ϕ around the x-, y-, z-axis

$$m{R}_x(\phi) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & \cos\phi & -\sin\phi & 0 \ 0 & \sin\phi & \cos\phi & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$m{R}_y(\phi) = \left[egin{array}{cccc} \cos \phi & 0 & \sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{array}
ight]$$

Matrices for rotations around arbitrary axes are built by combining simple rotations and translations.

$$\boldsymbol{R}_{z}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi & 0 & 0\\ \sin \phi & \cos \phi & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation - Inverse Transform

The inverse of a rotation matrix is its transpose

$$\boldsymbol{R}_{x}(-\phi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos -\phi & -\sin -\phi & 0 \\ 0 & \sin -\phi & \cos -\phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & \sin \phi & 0 \\ 0 & -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \boldsymbol{R}_{x}^{\mathsf{T}}(\phi)$$

$$oldsymbol{R}_x^{-1} = oldsymbol{R}_x^{\mathsf{T}}$$

$$oldsymbol{R}_y^{-1} = oldsymbol{R}_y^{\mathsf{T}}$$

$$oldsymbol{R}_x^{-1} = oldsymbol{R}_x^{\mathsf{T}} \qquad \qquad oldsymbol{R}_y^{-1} = oldsymbol{R}_y^{\mathsf{T}} \qquad \qquad oldsymbol{R}_z^{-1} = oldsymbol{R}_z^{\mathsf{T}}$$

Mirroring / Reflection

- Mirroring with respect to x=0, y=0, z=0 plane
- Changes the sign of the x-, y-, z-component

$$\mathbf{P}_{x} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{P}_{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{P}_{z} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The inverse of a reflection is its transpose

$$oldsymbol{P}_x^{-1} = oldsymbol{P}_x^{\mathsf{T}} \qquad oldsymbol{P}_y^{-1} = oldsymbol{P}_y^{\mathsf{T}} \qquad oldsymbol{P}_z^{-1} = oldsymbol{P}_z^{\mathsf{T}}$$

Orthogonal Matrices

– Rotation and reflection matrices are orthogonal $m{R}m{R}^\mathsf{T} = m{R}^\mathsf{T}m{R} = m{I} \quad m{R}^{-1} = m{R}^\mathsf{T}$

- $-\mathbf{\textit{R}}_{1},\mathbf{\textit{R}}_{2}$ are orthogonal $\Rightarrow \mathbf{\textit{R}}_{1}\mathbf{\textit{R}}_{2}$ is orthogonal
- Rotation: $\det \mathbf{R} = 1$, Reflection: $\det \mathbf{R} = -1$
- Length of a vector is preserved $\| oldsymbol{R} oldsymbol{v} \| = \| oldsymbol{v} \|$
- Angles are preserved $\langle {m R}{m u}, {m R}{m v}
 angle = \langle {m u}, {m v}
 angle$

Scale

Scaling x-, y-, z-components of a position or vector

$$m{S}(s_x, s_y, s_z) m{p} = egin{bmatrix} s_x & 0 & 0 & 0 & 0 \ 0 & s_y & 0 & 0 \ 0 & 0 & s_z & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} p_x \ p_y \ p_z \end{bmatrix} = egin{bmatrix} s_x p_x \ s_y p_y \ s_z p_z \ 1 \end{bmatrix}$$

- Inverse $S^{-1}(s_x,s_y,s_z) = S(\frac{1}{s_x},\frac{1}{s_y},\frac{1}{s_z})$
- Uniform scaling: $s_x = s_y = s_z = s$

$$\boldsymbol{S}(s) = \begin{bmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{or, e.g. } \boldsymbol{S}(s) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{s} \end{bmatrix}$$

Shear

- Offset of one component with respect to another component

- Six shear modes in 3D
- E.g., shear of x with respect to z

$$m{H}_{xz}(s)m{p} = egin{bmatrix} 1 & 0 & s & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} p_x \ p_y \ p_z \ 1 \end{bmatrix} = egin{bmatrix} p_x + sp_z \ p_y \ p_z \ 1 \end{bmatrix}$$

- Inverse $\boldsymbol{H}_{xz}^{-1}(s) = \boldsymbol{H}_{xz}(-s)$

Compositing Transformations

- Composition is achieved by matrix multiplication
 - A translation $m{T}$ applied to $m{p}$, followed by a rotation $m{R}$ $m{R}(m{T}m{p}) = (m{R}m{T})m{p}$
 - A rotation $m{R}$ applied to $m{p}$, followed by a translation $m{T}$ $m{T}(m{R}m{p})=(m{T}m{R})m{p}$
 - Note that generally $TR \neq RT$
 - The order of composed transformations matters

Examples

Rotation around a line through t parallel to the x-, y-, z- axis

$$m{T}(m{t})m{R}_{xyz}(\phi)m{T}(-m{t})$$

Scale with respect to an arbitrary axis

$$\boldsymbol{R}_{xyz}(\phi)\boldsymbol{S}(s_x,s_y,s_z)\boldsymbol{R}_{xyz}(-\phi)$$

– E.g., b_1, b_2, b_3 represent an orthonormal basis, then scaling along these vectors is realized with

$$\begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{S}(s_x, s_y, s_z) \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$$

2D Example – Rotation About a Point

We want to rotate the object points p_i around point t.

Translation by -t. Rota

$$oldsymbol{T}(-oldsymbol{t})oldsymbol{p}_i$$

Rotation by ϕ .

$$\widehat{m{R}(\phi)}m{T}(-m{t})m{p}_i$$

Translation by t.

$$m{T}(m{t})m{R}(\phi)m{T}(-m{t})m{p}_i$$

Rigid-Body Transform

- In Cartesian coordinates: p' = Rp + t with R being a rotation and t being a translation

$$p = R^{-1}(p' - t) = R^{-1}p' - R^{-1}t = R^{\mathsf{T}}p' - R^{\mathsf{T}}t$$

The inverse in homogeneous notation

$$\left[\begin{array}{c} \boldsymbol{p} \\ 1 \end{array}\right] = \left[\begin{array}{cc} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0}^\mathsf{T} & 1 \end{array}\right]^{-1} \left[\begin{array}{c} \boldsymbol{p}' \\ 1 \end{array}\right] = \left[\begin{array}{cc} \boldsymbol{R}^\mathsf{T} & -\boldsymbol{R}^\mathsf{T} \boldsymbol{t} \\ \boldsymbol{0}^\mathsf{T} & 1 \end{array}\right] \left[\begin{array}{c} \boldsymbol{p}' \\ 1 \end{array}\right]$$

Planes and Normals

– Planes can be represented by a surface normal n and a point r. All points p with $n \cdot (p - r) = 0$ form a plane $n_x p_x + n_y p_y + n_z p_z + (-n_x r_x - n_y r_y - n_z r_z) = 0$

$$n_x p_x + n_y p_y + n_z p_z + (-n_x r_x - n_y r_z)$$

 $n_x p_x + n_y p_y + n_z p_z + d = 0$
 $(n_x n_y n_z d)(p_x p_y p_z 1)^{\mathsf{T}} = 0$
 $(n_x n_y n_z d) \mathbf{A}^{-1} \mathbf{A}(p_x p_y p_z 1)^{\mathsf{T}} = 0$

- The transformed points $\mathbf{A}[p_x \ p_y \ p_z \ 1]^\mathsf{T}$ are on the plane represented by $(n_x \ n_y \ n_z \ d)\mathbf{A}^{-1} = ((\mathbf{A}^{-1})^\mathsf{T}(n_x \ n_y \ n_z \ d)^\mathsf{T})^\mathsf{T}$
- If a surface is transformed by A, its homogeneous notation (including the normal) is transformed by $(A^{-1})^{\mathsf{T}}$

Basis Transform - Translation

Two coordinate systems

$$egin{aligned} m{C}_1 &= (m{O}_1, \{m{e}_1, m{e}_2, m{e}_3\}) \ m{C}_2 &= (m{O}_2, \{m{e}_1, m{e}_2, m{e}_3\}) \ m{O}_2 &= m{T}(m{t}) m{O}_1 \end{aligned}$$

Basis Transform - Translation

- The coordinates of p_1 with respect to C_2 are given by $p_2 = p_1 t$ $p_2 = T(-t)p_1$
- The coordinates of a point in the transformed basis correspond to the coordinates of the point in the untransformed basis transformed by the inverse basis transform
 - Translating the origin by $m{t}$ corresponds to translating the object by $-m{t}$
 - Rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle

Basis Transform - Rotation

Two coordinate systems

$$egin{aligned} m{C}_1 &= (m{O}, \{m{e}_1, m{e}_2, m{e}_3\}) \ m{C}_2 &= (m{O}, \{m{b}_1, m{b}_2, m{b}_3\}) \end{aligned}$$

Basis Transform - Rotation

– Coordinates of p_1 with respect to C_2 are given by

$$m{p}_2 = \left(egin{array}{c} m{b}_1^\mathsf{T} \ m{b}_2^\mathsf{T} \ m{b}_3^\mathsf{T} \end{array}
ight) m{p}_1 \sim \left[egin{array}{cccc} m{b}_{1,x} & m{b}_{1,y} & m{b}_{1,z} & 0 \ m{b}_{2,x} & m{b}_{2,y} & m{b}_{2,z} & 0 \ m{b}_{3,x} & m{b}_{3,y} & m{b}_{3,z} & 0 \ 0 & 0 & 1 \end{array}
ight] m{p}_1$$

- $\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3$ are the basis vectors of \boldsymbol{C}_2 with respect to \boldsymbol{C}_1
- b_1, b_2, b_3 are orthonormal, represent a rotation
- Rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle

Basis Transform - Application

- The view transform can be seen as a basis transform
- Objects are in a global system $C_1 = (O_1, \{e_1, e_2, e_3\})$
- The camera is at O_2 and oriented with $\{b_1, b_2, b_3\}$
- After the view transform, all objects are represented in the eye or camera coordinate system $C_2 = (O_2, \{b_1, b_2, b_3\})$
- Placing and orienting the camera is a transformation \emph{v}
- The basis transform is realized by applying $v^{\scriptscriptstyle -1}$ to all objects

View Transform

$$C_2 = (O_2, \{b_1, b_2, b_3\})$$

Inverse view transform V^1 applied to all objects and the camera

$$C_1 = (O_1, \{e_1, e_2, e_3\})$$

$$m{C}_1 \quad o \quad m{V} \quad o \quad m{C}_2$$

Summary

- Usage of the homogeneous notation is motivated by a unified processing of affine transformations, perspective projections, points, and vectors
- All transformations of points and vectors are represented by a matrix-vector multiplication
- "Undoing" a transformation is represented by its inverse
- Compositing of transformations is accomplished by matrix multiplication