Hands-on analysis of DArTseq data for linkage mapping

Jessen Bredeson and Jess Lyons

Points of order

- Please be on time and minimize disruptions
- GitHub site is home base for everything pertaining to the course
 - https://github.com/bredeson/HandsOnDArT
 - Current agenda, resources, exercises, etc.
 - Check there first!
- Course goals
 - Understand DArTseq data, and use it for mapping
 - Strengthen UNIX skills in an applied context
 - Teach teachers

On your index card:

Name, and preferred name

Research focus

What will you be using DArTseq data for?

Experience working with genotyping data/mapping

GBS/DArTseq overview

DArT genotyping platforms

- 1. DArT (traditional): Oligo hybridization array chip
- Restriction digestion + bacterial cloning
- Relative fluorescent color signal
- Presence/Absence
- 100s–1,000s of markers

- DArTseq: Reduced representation sequencing
- Restriction enzyme double-digest
- Methylation sensitivity
- Markers biased to genic portions of genome
- 1,000s–10,000s of markers

GBS/DArTseq library construction

Restriction digest

ApeKI: G C W G C C G W C G

W= A or T

Pool samples PCR

Sequencing

GBS/DArTseq variant sampling

DArTseq data types

- SNP: Nucleotide differences observed in tag sequences
- "Co-dominant" genotypes:

```
Aa x aa => 1 Aa : 1 aa
Aa x Aa => 1 AA : 2 Aa : 1 aa
AA x Aa => 1 AA : 1 Aa
```

SilicoDArTs:

- Presence/absence variation
- "Dominant" genotypes:

```
G^1 \times G^0 : Aa \times aa \Rightarrow 1 Aa : 1 aa \Rightarrow 1 G^1 : 1 G^0
: AA x aa \Rightarrow 2 Aa : 0 aa \Rightarrow 2 G^1 : 0 G^0
```

0	aa
1	Aa
2	AA
-	No data

0	A allele not present
1	A allele present
-	No data

DArT bioinformatic analysis

- Data generation:
 - Libraries sequenced using Illumina HiSeg 2000/2500
 - Sequencing reads filtered for 90% confidence over half of read
- Genome-independent variants and genotyping calling
 - Reads clustered to form ~77 bp marker sequence tags
 - SNPs called as differences between tags
- Allows markers to be mapped/re-mapped to a genomic sequence
 - No need to re-map all reads and re-call SNPs

A brief UNIX review

Useful UNIX commands for working with files

Tools specifically useful for looking at files/directories:

- Navigation: Is, cd, pwd relative vs. absolute paths
- 2. File viewing: less, more, head, tail, od, column
- 3. File manipulation: mv, cp, rm, mkdir, grep, cat, cut, tr, sed
- 4. File compression and archiving: gzip, bzip2, zip, tar
- File transfer: scp, wget, curl
- 6. Getting help: man, apropos

```
/
— files/
— home/
— bredeson/
— lyons/
— cuffdiff.txt
```

```
Absolute: ls /home/lyons/cuffdiff.txt Relative: ls ./cuffdiff.txt
```

Common cross-platform file issues

- Invisible characters:
 - CR/LF/CRLF
 - Tabs vs spaces
- Special characters:
 - File encoding (ASCII vs. Unicode)

Carriage Return (CR)	Old Mac OS versions	\r
Line Feed (LF)	MacOS X, UNIX, LINUX	\n
CRLF	Windows	\r\n

Invisible characters

od -c is your friend!


```
2605320
2605340
2605360
2605400
2605420
2605440
2605460
2605500
2605520
2605540
2605560
2605600
2605620
2605640
2605660
2605700
2605720
2605740
2605760
2606000
2606020
2606040
2606060
2606100
               6
```

Invisible characters

Jessicas-	-MacB	ook-	Pro:	DArt	seq_	to_m	appi	ng_w	orks	hop	jess\$	od	-с	IGSS	_ord	er.csv
000000	P	1	а	t	е	I	D	,	R	0	w	,	C	0	1	u
0000020	m	n	,	0	r	g	а	n	i	S	m	,	S	р	е	С
0000040	i	е	S	,	G	е	n	0	t	У	p	е	1	Т	i	S
0000060	S	u	е	,	C	0	m	m	е	n	t	S	\r	\n	1	,
0000100	Α	,	1	,	Y	a	m	,	D	i	0	S	C	0	r	е
0000120	a		a	1	a	t	а		L		,	T	D	а	2.00	1
0000140	,	1	е	а	f	,	D			a	1	a	t	a		d
0000160	i	V	е	r	S	i	t	У		I	I	T	A		C	0
0000200	1	1	e	C	t	i	0	n	\r	\n	1	,	В	,	1	,
0000220	Y	а	m	,	D	i	0	S	C	0	r	е	a		а	1
0000240	а	t	a		L	•	,	Т	D	a	_	2	1	1	e	a
0000260	f	,	D	•		а	1	а	t	a		d	i	٧	е	r
0000300	S	i	t	У		I	I	T	Α		C	0	1	1	е	C
0000320	t	i	0	n	\r	\n	1	,	C	,	1	,	Y	а	m	,
0000340	D	i	0	S	C	0	r	е	a		a	1	a	t	a	
0000360	L		,	T	D	а	_	3	,	1	е	а	f	,	D	•
000400		а	1	а	t	a		d	i	V	е	r	S	i	t	У
0000420		I	I	T	Α		C	0	1	1	е	C	t	i	0	n
0000440	\r	\n	1	,	D	,	1	,	Y	а	m	,	D	i	0	S

.csv file made on a mac

Special characters

Non-ASCII characters are not read properly

Common HTS data formats

Common HTS formats you may encounter

- FASTA
- FASTQ
- VCF
- SAM

FASTA sequence file format

"Greater-than" symbol (>) signifies a new sequence record

*Everything after the first whitespace (one or more spaces or tabs) is interpreted as description

FASTQ sequence file format

"At" symbol (@) signifies a new sequence record (but may also be observed in the quality string Sequence ID Sequence description* (required) (optional; Paired-end Illumina seguences will have (both on one line) 1 or 2 in the leading colon-separated fields) @SN638:1322:HHFYVBCXY:2:2213:17643:60632 1:N:0:2 Sequence string GTTGGTTTGTTGCTTGGTTTCATTCTATGTGTGCTTGATTGTTG Not wrapped **Quality string** Not wrapped; Characters represent **Quality ID** ASCII+offset transformed numeric values: see Must start with a '+'; https://en.wikipedia.org/wiki/FASTQ format Typically left blank for more info

^{*}Everything after the first whitespace (one or more spaces or tabs) is interpreted as description

VCF: Variant Call Format

Tab-separated, columnar file

Please visit https://samtools.github.io/hts-specs/VCFv4.2.pdf for more detailed information.

SAM: Sequence Alignment/Map format

Tab-separated, columnar file

Please visit https://samtools.github.io/hts-specs/SAMv1.pdf for more detailed information.

UNIX & File Format Exercises

- If you have not already completed the exercises on the PFB2017 website, please do so first. If you have, proceed to the next item.
- Log into the AWS server
- 3. Make a directory called "exercises" and navigate into it
- Copy all files starting with "data" from the /files directory into your exercises directory.
- 5. Examine the contents of data1 (hint: use less).
 - a. What format of file is it? Rename the file with the appropriate file extension.
 - b. Is the contents of the file single-end or paired-end?
- 6. Examine the contents of data2.
 - a. What format of file is it? Rename the file with the appropriate file extension.
 - b. What is incorrect about its formatting?

UNIX & File Format Exercises

- 7. Examine the contents of data3 (hint: use man to look at the -S option).
 - a. What format of file is it? Rename the file with the appropriate file extension.
 - b. How many loci are there? How many SNPs? How many Indels?
- 8. Examine the contents of data4.
 - a. What format of file is it?
 - b. What is incorrect about this file (hint: see od)?
 - c. From which operating system might it have come from?
 - d. Correct the file using UNIX commands (hint: see tr)
- 9. Examine the contents of data5.
 - a. The file is tab-delimited, but what is incorrect about this file?
 - b. Correct the file using UNIX commands.