## Fourth Year Committee Report

Sarah Stevens, McMahon Lab

Meeting: October 26th, 2017 in MSB 5503

I am interested in understanding how bacterial populations diversify and form species. My work aims to better understand the forces that shape bacterial population structure using the lakes as a model system. The McMahon Lab metagenomic time series of many lakes is an ideal dataset for investigating how wild bacterial populations change through time.

## Research Progress

### Submitted manuscript

The manuscript I submitted last year has been accepted to ISMEJ.

#### Abstract

To understand the forces driving differentiation and diversification in wild bacterial populations, we must be able to delineate and track ecologically relevant units through space and time. Mapping metagenomic sequences to reference genomes derived from the same environment can reveal genetic heterogeneity within populations, and in some cases, be used to identify boundaries between genetically similar, but ecologically distinct, populations. Here we examine population-level heterogeneity within abundant and ubiquitous freshwater bacterial groups such as the acI Actinobacteria and LD12 Alphaproteobacteria (the freshwater sister clade to the marine SAR11) using 33 single cell genomes and a 5-year metagenomic time series. The single cell genomes grouped into 15 monophyletic clusters (termed "tribes") that share at least 97.9% 16S rRNA identity. Distinct populations were identified within most tribes based on the patterns of metagenomic read recruitments to single-cell genomes representing these tribes. Genetically distinct populations within tribes of the acI actinobacterial lineage living in the same lake had different seasonal abundance patterns, suggesting these populations were also ecologically distinct. In contrast, sympatric LD12 populations were less genetically differentiated. This suggests that within one lake, some freshwater lineages harbor genetically discrete (but still closely related) and ecologically distinct populations, while other lineages are composed of less differentiated populations with overlapping niches. Our results point at an interplay of evolutionary and ecological forces acting on these communities that can be observed in real time.

## **Current Project**



Figure 1: Diagram from Sampling to Bins Diagram

I continue to be interested in discerning the forces shaping wild bacterial populations and would like to turn my focus from the whole genomes of populations to their gene content.

Are there related sequence-discrete populations in bog lakes (Crystal Bog, Mary Lake, Trout Bog)? How closely related are they? Do they share a common gene pool? Are there genes present in one lake but not the other for these closely related populations? Is there an ecological or physical barrier to recombination between these two lakes? I have been working on getting bins for Crystal Bog and Mary Lake over the past year. My current challenges are dereplicating them, since we likely have recovered the same genomes from multiple timepoints, and classifying them, as past methods did not scale up. I will also bin additional genomes from Trout Bog using new assemblies of the individual time points. Once I have binned, dereplicated, classified genomes from the three bog lakes I can start comparing them. With these genomes, I will search for very closely related genomes and quantify how similar they are across their genomes both the percentage and identity of shared genomic content. For genomes that are very closely related (tentatively about >95\% nucleotide identity across a shared genome content of at least 50% of their genome), I will also investigate if the associated populations share a common gene pool between the two lakes. By mapping the metagenomes from one lake to MAGs from the other, I will identify if there are regions or genes that are present in only one of the lakes and if the diversity of shared genes is different between the two lakes. I will search for patterns among the shared or absent genes that may be explained by the different environments of the two lakes. I will also look for evidence of a barrier to recombination between these allopatric populations.

### **Publications**

Garcia, S. L.\*, **Stevens, S. L. R.**\*, Crary, B., Martinez-Garcia, M., Stepanauskas, R., Woyke, T., Tringe, S. G., Andersson, S., Bertilsson, S., Malmstrom, R., McMahon, K. D. (*accepted to ISMEJ*). Contrasting patterns of genome-level diversity across distinct co-occurring populations.

He, S., **Stevens, S. L. R.**, Chan, L.-K., Bertilsson, S., Glavina del Rio, T., Tringe, S. G., ... McMahon, K. D. (2017). Ecophysiology of Freshwater Verrucomicrobia Inferred from Metagenome-Assembled Genomes. mSphere. doi:10.1128/mSphere.00277-17

Bendall, M. L.\*, **Stevens, S. L. R.**\*, Chan, L.-K., Malfatti, S., Schwientek, P., Tremblay, ... McMahon, K. D., Malmstrom, R. R. (2016). Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISMEJ. doi:10.1038/ismej.2015.241 **featured article**\*Equal contributors

#### Conference Poster

Stevens, S. L. R., Egan, R., Malmstrom, R.R., McMahon, K. D. Comparative Genomics of Selected Bacterial Populations from Several Freshwater Bog Lakes. 2017 Microbial Population Biology Gordon Research Conference. July 2017. Andover, NH. Link to Poster

### Professional Development

- Software/Data Carpentry
  - Taught 2 Software Carpentry Workshops (1 on-campus, 1 off-campus)
  - Taught 2 Data Carpentry Workshops on-campus
- Computational Biology, Ecology, and Evolution(ComBEE) group Started Nov. 2014
  - Taught git workshop Spring 2017
  - Taught gh-pages worskhop Fall 2017
  - 'Retired' from organizing events Summer 2017
- Attended Anvio workshop at UChicago April 2017
- Taught Anvio workshop on campus May 2017
- Attended Open Science Grid User school Summer 2017

# Awards

- UW-Madison Dept. of Bacteriology Travel Award - Spring  $2017\,$