

FIG. 1

Replacement Sheet

FIG. 2

FIG. 3A

FIG. 3B

FIG. 4A

FIG. 4B

FIG. 5A

FIG. 5B

FIG. 6

CAPACITOR TYPE	CAP. (mF)	VOLTAGE (V)	DIMEN. (mm)	ERS (mΩ)	CV/c.c. (mFV/c.c.)
TANTALUM	0.47	6.3	6.0x7.0x3.5	100	20
	1.0	4.0	6.0x7.0x3.6	30	26
ELECTROLYTIC	1.5	4.0	\$10xL20	15	3.2
CAPACITOR ORGANIC	2.2	4.0	¢12.5xL22	10	3.3
SEMI-CONDUCTIVE ELECTROLYTE	2.2	6.3	¢16xL25	15	2.8
ELECTROLYTIC	4.7	6.3	φ16xL26	100	9
CAPACITOR	15	6.3	¢16xL35.5	30	13
	. 22	6.3	∮18xL41	20	13
	15	10	∮18xL35.5	30	17
	330	10	∳76xL114	10	9
BEST CAPTM	250	8.0	52x50x4.4	50	150
	250	5.5	48x30x3.2	09	300
	200	5.5	48x30x5.6	30	350
	009	4.5	48x30x5.0	25	380
	700	3.5	48x30x4.5	20	400
	09	5.5	28x17x3.2	200	210
	120	5.5	28x17x5.5	100	250

FIG. 7

FEATURE/MODEL#	5.5/48x30-1		4.5/48x30-2	3.5/48x30-2	5.5/28x17-1	5.5/48x30-2 4.5/48x30-2 3.5/48x30-2 5.5/28x17-1 5.5/28x17-2 3.5/28x17-2 3.5/28x17-1	3.5/28x17-2	3.5/28x17-1
NOMINAL								
VOLTAGE (V)	5.5	5.5	4.5	3.5	5.5	5.5	3.5	3.5
CAPACITANCE(1)(mF)) 250	200	009	002	09	120	200	60
$ESR(2)$ (m Ω)	09	30	25	20	200	100	70	100
L.C.(3) (µA)	<10	<20	<10	<10	<2	4 >	<2	<2
CYCLE-LIFE(4) (#)				 >	<107			
DIMENSIONS (mm)								
L×W		48)	48x30			283	28×17	
I	3.2	9.6	5.0	4.5	3.2	5.5	4.0	1.8
TEMPERATURE (°C)				20°C	-20°C+60°C			

FIG. 8