Backpropagation, Neural Network

Haedong Kim

Def.

 Backpropagation: a way of computing gradients of functions (\(\nabla f\))

Problem statement

- By applying chain rule recursively
- In a computational way

Purposes

- 1. Perform a parameter update
- 2. Other useful purposed
 - Visualization
 - Interpreting neural networks

Compounded function

- We deal with compounded functions in neural networks
 - Multiple hidden layers

Kernel machines

1. Support Vector Machine (SVM)

(From the lecture note of Professor Seok, H., Introduction to Machine Learning, Korea Univ., 2016)

- Convex optimization (single global optimum)
- 2. Neural Network (NN)
 - Fixing the number of basis functions in advance
 - Allow them to be adaptive in *parametric form*
 - Non-convex optimization -> local minimums

髙麗大學校

Computational graph

e.g.

f(x,y,z) = (x+y)z

Computational graph of the f

5/

19

Goal

•
$$\frac{\partial f}{\partial z}$$
, $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$

Computational graph

Multiplication

Summation

•
$$f(x,y) = xy$$

•
$$f(x,y) = x + y$$

• Let
$$x + y = q$$
 and $f(x, y, z) = qz$

•
$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}, \quad \frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$f(x, y, z) = (x + y)z$$

$$f(x, y, z) = (x + y)z$$

$$\frac{\partial f}{\partial f} = 1$$

Local property of backpropagation

Backpropagation is a local process!

Picture for explaining local property

 Backpropagation can be thought of as gates communicating to each other

Local property of backpropagation

e. g. Sigmoid function

Local gradients of the sigmoid

•
$$f(\mathbf{w}, \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = \frac{1}{x} \qquad \rightarrow \qquad \frac{df}{dx} = -\frac{1}{x^2}$$

$$f_c(x) = c + x \rightarrow \frac{df}{dx} = 1$$

$$f(x) = e^x \qquad - > \qquad \frac{df}{dx} = e^x$$

•
$$f_a(x) = ax$$
 \rightarrow $\frac{df}{dx} = a$

8/

Local property of backpropagation

Computational graph of the sigmoid

$$f(x) = \frac{1}{x} \rightarrow \frac{df}{dx} = -\frac{1}{x^2}$$

$$f(x) = e^x \rightarrow \frac{df}{dx} = e^x$$

$$f_c(x) = c + x \rightarrow \frac{df}{dx} = 1$$

$$f_a(x) = ax \rightarrow \frac{df}{dx} = a$$

Modularity

Merge the graph

Sigmoid fn. $\sigma(x)$

$$\bullet \quad \sigma(x) = \frac{1}{1 + e^{-x}}$$

•
$$\frac{d\sigma(x)}{dx} = (1 - \sigma(x))\sigma(x)$$

$$0.20$$
 0.73 0.73

$$(1 - 0.73) * 0.73 * 1 = 0.2$$

Multiplication gate

Gradient swapper

$$f(x,y) = xy$$

$$\triangleright \quad \frac{\partial f}{\partial x} = y, \ \frac{\partial f}{\partial y} = x$$

Add gate

Gradient distributor

$$f(x,y) = x + y$$

$$\Rightarrow \frac{\partial f}{\partial x} = 1, \frac{\partial f}{\partial y} = 1$$

Max gate

Gradient router

$$f(x,y) = \max(x,y)$$

$$\geqslant \frac{\partial f}{\partial x} = 1 \ (x \ge y), 0 \ o/w$$

$$\frac{\partial f}{\partial x} = 1 \ (x \ge y), 0 \ o/w$$

$$\frac{\partial f}{\partial x} = 1 \ (y \ge x), 0 \ o/w$$

Another example

Any function

• $f(x,y) = \frac{x+\sigma(y)}{\sigma(x)+(x+y)^2}$ (It's useless in practice)

Computational graph

· add up gradients at forks

dx, dy

Summary

Problem

- Neural nets will be very large
 - Its gradient also will be very complex

Modularity

- Recursive application of the chain rule will save us!
 - Local property

Computational way

- It turns out that we don't need explicit expressions of gradients
 - Intermediate values
 - Staged computation

Biological inspiration

• "The area of Neural Networks has originally been primarily inspired by the goal of modeling biological neural systems, but has since diverged and become a matter of engineering..." (Andrej Karpathy)

Revisit

Block world

1963

Parallel processing

 Parallelism is the main difference of the human brain from a computer

Parallel processing

Two paradigms for parallel processing

SIMD

Single Instruction Multiple Data (SIMD)

 All processors execute the same instruction but on different pieces of data

MIMD

- Multiple Instruction Multiple Data (MIMD)
 - Different processors may execute different instructions on different data

Parallel processing

Intermediate model

- Each processor is a fixed function and execute same instruction as SIMD
- By loading different parameters into a local memory, they can be doing different thing

Distributed representation

The whole operation can be distributed over such processors

Distributed representation

Curse of dim.

The need for dist. rep.

Distributed representation allows us bypass the curse of dimensionality

18/ 19

of distinguishable regions is linear in # of parameters

of distinguishable regions grows almost exponentially with # of parameters

Generalize non-locally to never seen regions

Architecture design

Architecture

Depth and width

Universal approximation thm.

 A feedforward network with a single layer can approximate any Borel measurable function from one finite-dim. space to another, provided that the network is given enough hidden units

(Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366.)

Problems

- 1. Doesn't know appropriate parameters (Number of hidden units)
- 2. Overfitting

Practical solution

Sufficient capability & Regularization

?

A3Q