and long variables, both signed and unsigned, by printing appropriate values from standard headers and by direct computation. Harder if you compute them: determine the ranges of the various floating-point types.

2.3 Constants

An integer constant like 1234 is an int. A long constant is written with a terminal 1 (ell) or L, as in 123456789L; an integer too big to fit into an int will also be taken as a long. Unsigned constants are written with a terminal u or U, and the suffix ul or UL indicates unsigned long.

Floating-point constants contain a decimal point (123.4) or an exponent (1e-2) or both; their type is double, unless suffixed. The suffixes f or F indicate a float constant; 1 or L indicate a long double.

The value of an integer can be specified in octal or hexadecimal instead of decimal. A leading 0 (zero) on an integer constant means octal; a leading 0x or 0X means hexadecimal. For example, decimal 31 can be written as 037 in octal and 0x1f or 0X1F in hex. Octal and hexadecimal constants may also be followed by L to make them long and U to make them unsigned: 0XFUL is an unsigned long constant with value 15 decimal.

A character constant is an integer, written as one character within single quotes, such as 'x'. The value of a character constant is the numeric value of the character in the machine's character set. For example, in the ASCII character set the character constant '0' has the value 48, which is unrelated to the numeric value 0. If we write '0' instead of a numeric value like 48 that depends on character set, the program is independent of the particular value and easier to read. Character constants participate in numeric operations just as any other integers, although they are most often used in comparisons with other characters.

Certain characters can be represented in character and string constants by escape sequences like \n (newline); these sequences look like two characters, but represent only one. In addition, an arbitrary byte-sized bit pattern can be specified by

```
'\ooo'
```

where ooo is one to three octal digits (0...7) or by

```
'\xhh'
```

where hh is one or more hexadecimal digits (0...9, a...f, A...F). So we might write

```
#define VTAB '\013' /* ASCII vertical tab */
#define BELL '\007' /* ASCII bell character */
```

or, in hexadecimal,

```
#define VTAB '\xb' /* ASCII vertical tab */
#define BELL '\x7' /* ASCII bell character */
```

The complete set of escape sequences is

\a	alert (bell) character	\\	backslash
\ b	backspace	\?	question mark
\f	formfeed	\'	single quote
\n	newline	\"	double quote
\r	carriage return	\000	octal number
\t	horizontal tab	$\backslash \mathbf{x}hh$	hexadecimal number
\ v	vertical tab		

The character constant '\0' represents the character with value zero, the null character. '\0' is often written instead of 0 to emphasize the character nature of some expression, but the numeric value is just 0.

A constant expression is an expression that involves only constants. Such expressions may be evaluated during compilation rather than run-time, and accordingly may be used in any place that a constant can occur, as in

```
#define MAXLINE 1000
char line[MAXLINE+1];
```

or

or

```
#define LEAP 1 /* in leap years */
int days[31+28+LEAP+31+30+31+30+31+30+31+30+31];
```

A string constant, or string literal, is a sequence of zero or more characters surrounded by double quotes, as in

```
"" /* the empty string */
```

The quotes are not part of the string, but serve only to delimit it. The same escape sequences used in character constants apply in strings; \" represents the double-quote character. String constants can be concatenated at compile time:

```
"hello," " world"
```

"I am a string"

is equivalent to

```
"hello, world"
```

This is useful for splitting long strings across several source lines.

Technically, a string constant is an array of characters. The internal representation of a string has a null character '\0' at the end, so the physical storage required is one more than the number of characters written between the quotes. This representation means that there is no limit to how long a string can be, but programs must scan a string completely to determine its length. The standard library function strlen(s) returns the length of its character

SECTION 2.3 CONSTANTS 39

string argument s, excluding the terminal '\0'. Here is our version:

strlen and other string functions are declared in the standard header <string.h>.

Be careful to distinguish between a character constant and a string that contains a single character: 'x' is not the same as "x". The former is an integer, used to produce the numeric value of the letter x in the machine's character set. The latter is an array of characters that contains one character (the letter x) and a '\0'.

There is one other kind of constant, the enumeration constant. An enumeration is a list of constant integer values, as in

```
enum boolean { NO, YES };
```

The first name in an enum has value 0, the next 1, and so on, unless explicit values are specified. If not all values are specified, unspecified values continue the progression from the last specified value, as in the second of these examples:

Names in different enumerations must be distinct. Values need not be distinct in the same enumeration.

Enumerations provide a convenient way to associate constant values with names, an alternative to #define with the advantage that the values can be generated for you. Although variables of enum types may be declared, compilers need not check that what you store in such a variable is a valid value for the enumeration. Nevertheless, enumeration variables offer the chance of checking and so are often better than #defines. In addition, a debugger may be able to print values of enumeration variables in their symbolic form.

2.4 Declarations

All variables must be declared before use, although certain declarations can be made implicitly by context. A declaration specifies a type, and contains a list of one or more variables of that type, as in

```
int lower, upper, step;
char c, line[1000];
```

Variables can be distributed among declarations in any fashion; the lists above could equally well be written as

```
int lower;
int upper;
int step;
char c;
char line[1000];
```

This latter form takes more space, but is convenient for adding a comment to each declaration or for subsequent modifications.

A variable may also be initialized in its declaration. If the name is followed by an equals sign and an expression, the expression serves as an initializer, as in

```
char esc = '\\';
int i = 0;
int limit = MAXLINE+1;
float eps = 1.0e-5;
```

If the variable in question is not automatic, the initialization is done once only, conceptually before the program starts executing, and the initializer must be a constant expression. An explicitly initialized automatic variable is initialized each time the function or block it is in is entered; the initializer may be any expression. External and static variables are initialized to zero by default. Automatic variables for which there is no explicit initializer have undefined (i.e., garbage) values.

The qualifier const can be applied to the declaration of any variable to specify that its value will not be changed. For an array, the const qualifier says that the elements will not be altered.

```
const double e = 2.71828182845905;
const char msg[] = "warning: ";
```

The const declaration can also be used with array arguments, to indicate that the function does not change that array:

```
int strlen(const char[]);
```

The result is implementation-defined if an attempt is made to change a const.

2.5 Arithmetic Operators

The binary arithmetic operators are +, -, *, /, and the modulus operator %. Integer division truncates any fractional part. The expression

produces the remainder when x is divided by y, and thus is zero when y divides x exactly. For example, a year is a leap year if it is divisible by 4 but not by 100, except that years divisible by 400 are leap years. Therefore

```
if ((year % 4 == 0 && year % 100 != 0) !! year % 400 == 0)
    printf("%d is a leap year\n", year);
else
    printf("%d is not a leap year\n", year);
```

The % operator cannot be applied to float or double. The direction of truncation for / and the sign of the result for % are machine-dependent for negative operands, as is the action taken on overflow or underflow.

The binary + and - operators have the same precedence, which is lower than the precedence of *, /, and %, which is in turn lower than unary + and -. Arithmetic operators associate left to right.

Table 2-1 at the end of this chapter summarizes precedence and associativity for all operators.

2.6 Relational and Logical Operators

The relational operators are

```
> >= < <=
```

They all have the same precedence. Just below them in precedence are the equality operators:

```
== !=
```

Relational operators have lower precedence than arithmetic operators, so an expression like i < lim-1 is taken as i < (lim-1), as would be expected.

More interesting are the logical operators && and | |. Expressions connected by && or | | are evaluated left to right, and evaluation stops as soon as the truth or falsehood of the result is known. Most C programs rely on these properties. For example, here is a loop from the input function getline that we wrote in Chapter 1:

```
for (i=0; i<lim-1 && (c=getchar()) != '\n' && c != EOF; ++i)
    s[i] = c;</pre>
```

Before reading a new character it is necessary to check that there is room to store it in the array s, so the test i < lim-1 must be made first. Moreover, if this test fails, we must not go on and read another character.

Similarly, it would be unfortunate if c were tested against EOF before getchar is called; therefore the call and assignment must occur before the character in c is tested.

The precedence of && is higher than that of !!, and both are lower than relational and equality operators, so expressions like

need no extra parentheses. But since the precedence of != is higher than assignment, parentheses are needed in

to achieve the desired result of assignment to c and then comparison with '\n'.

By definition, the numeric value of a relational or logical expression is 1 if the relation is true, and 0 if the relation is false.

The unary negation operator ! converts a non-zero operand into 0, and a zero operand into 1. A common use of ! is in constructions like

rather than

It's hard to generalize about which form is better. Constructions like !valid read nicely ("if not valid"), but more complicated ones can be hard to understand.

Exercise 2-2. Write a loop equivalent to the for loop above without using && or !!. \square

2.7 Type Conversions

When an operator has operands of different types, they are converted to a common type according to a small number of rules. In general, the only automatic conversions are those that convert a "narrower" operand into a "wider" one without losing information, such as converting an integer to floating point in an expression like f + i. Expressions that don't make sense, like using a float as a subscript, are disallowed. Expressions that might lose information, like assigning a longer integer type to a shorter, or a floating-point type to an integer, may draw a warning, but they are not illegal.

A char is just a small integer, so chars may be freely used in arithmetic expressions. This permits considerable flexibility in certain kinds of character transformations. One is exemplified by this naive implementation of the function atoi, which converts a string of digits into its numeric equivalent.

```
/* atoi: convert s to integer */
int atoi(char s[])
{
   int i, n;

   n = 0;
   for (i = 0; s[i] >= '0' && s[i] <= '9'; ++i)
        n = 10 * n + (s[i] - '0');
   return n;
}</pre>
```

As we discussed in Chapter 1, the expression

```
s[i] - '0'
```

gives the numeric value of the character stored in s[i], because the values of '0', '1', etc., form a contiguous increasing sequence.

Another example of char to int conversion is the function lower, which maps a single character to lower case for the ASCII character set. If the character is not an upper case letter, lower returns it unchanged.

```
/* lower: convert c to lower case; ASCII only */
int lower(int c)
{
   if (c >= 'A' && c <= 'Z')
       return c + 'a' - 'A';
   else
      return c;
}</pre>
```

This works for ASCII because corresponding upper case and lower case letters are a fixed distance apart as numeric values and each alphabet is contiguous—there is nothing but letters between A and Z. This latter observation is not true of the EBCDIC character set, however, so this code would convert more than just letters in EBCDIC.

The standard header <ctype.h>, described in Appendix B, defines a family of functions that provide tests and conversions that are independent of character set. For example, the function tolower(c) returns the lower case value of c if c is upper case, so tolower is a portable replacement for the function lower shown above. Similarly, the test

```
c >= '0' && c <= '9'
can be replaced by
   isdigit(c)</pre>
```

We will use the <ctype.h> functions from now on.

There is one subtle point about the conversion of characters to integers. The language does not specify whether variables of type char are signed or unsigned quantities. When a char is converted to an int, can it ever produce a negative integer? The answer varies from machine to machine, reflecting

differences in architecture. On some machines a char whose leftmost bit is 1 will be converted to a negative integer ("sign extension"). On others, a char is promoted to an int by adding zeros at the left end, and thus is always positive.

The definition of C guarantees that any character in the machine's standard printing character set will never be negative, so these characters will always be positive quantities in expressions. But arbitrary bit patterns stored in character variables may appear to be negative on some machines, yet positive on others. For portability, specify signed or unsigned if non-character data is to be stored in char variables.

Relational expressions like i > j and logical expressions connected by && and | | are defined to have value 1 if true, and 0 if false. Thus the assignment

$$d = c >= '0' && c <= '9'$$

sets d to 1 if c is a digit, and 0 if not. However, functions like isdigit may return any non-zero value for true. In the test part of if, while, for, etc., "true" just means "non-zero," so this makes no difference.

Implicit arithmetic conversions work much as expected. In general, if an operator like + or * that takes two operands (a binary operator) has operands of different types, the "lower" type is *promoted* to the "higher" type before the operation proceeds. The result is of the higher type. Section 6 of Appendix A states the conversion rules precisely. If there are no unsigned operands, however, the following informal set of rules will suffice:

If either operand is long double, convert the other to long double.

Otherwise, if either operand is double, convert the other to double.

Otherwise, if either operand is float, convert the other to float.

Otherwise, convert char and short to int.

Then, if either operand is long, convert the other to long.

Notice that floats in an expression are not automatically converted to double; this is a change from the original definition. In general, mathematical functions like those in <math.h> will use double precision. The main reason for using float is to save storage in large arrays, or, less often, to save time on machines where double-precision arithmetic is particularly expensive.

Conversion rules are more complicated when unsigned operands are involved. The problem is that comparisons between signed and unsigned values are machine-dependent, because they depend on the sizes of the various integer types. For example, suppose that int is 16 bits and long is 32 bits. Then -1L < 1U, because 1U, which is an int, is promoted to a signed long. But -1L > 1UL, because -1L is promoted to unsigned long and thus appears to be a large positive number.

Conversions take place across assignments; the value of the right side is converted to the type of the left, which is the type of the result.

A character is converted to an integer, either by sign extension or not, as described above.

Longer integers are converted to shorter ones or to chars by dropping the excess high-order bits. Thus in

```
int i;
char c;
i = c;
c = i;
```

the value of c is unchanged. This is true whether or not sign extension is involved. Reversing the order of assignments might lose information, however.

If x is float and i is int, then x = i and i = x both cause conversions; float to int causes truncation of any fractional part. When double is converted to float, whether the value is rounded or truncated is implementation-dependent.

Since an argument of a function call is an expression, type conversions also take place when arguments are passed to functions. In the absence of a function prototype, char and short become int, and float becomes double. This is why we have declared function arguments to be int and double even when the function is called with char and float.

Finally, explicit type conversions can be forced ("coerced") in any expression, with a unary operator called a *cast*. In the construction

```
(type-name) expression
```

the expression is converted to the named type by the conversion rules above. The precise meaning of a cast is as if the expression were assigned to a variable of the specified type, which is then used in place of the whole construction. For example, the library routine sqrt expects a double argument, and will produce nonsense if inadvertently handed something else. (sqrt is declared in <math.h>.) So if n is an integer, we can use

```
sgrt((double) n)
```

to convert the value of n to double before passing it to sqrt. Note that the cast produces the *value* of n in the proper type; n itself is not altered. The cast operator has the same high precedence as other unary operators, as summarized in the table at the end of this chapter.

If arguments are declared by a function prototype, as they normally should be, the declaration causes automatic coercion of any arguments when the function is called. Thus, given a function prototype for sqrt:

```
double sqrt(double);
the call
```

```
root2 = sqrt(2);
```

coerces the integer 2 into the double value 2.0 without any need for a cast.

The standard library includes a portable implementation of a pseudo-random number generator and a function for initializing the seed; the former illustrates a cast:

```
unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{
    next = next * 1103515245 + 12345;
    return (unsigned int)(next/65536) % 32768;
}

/* srand: set seed for rand() */
void srand(unsigned int seed)
{
    next = seed;
}
```

Exercise 2-3. Write the function htoi(s), which converts a string of hexadecimal digits (including an optional 0x or 0x) into its equivalent integer value. The allowable digits are 0 through 9, a through f, and A through F. \square

2.8 Increment and Decrement Operators

C provides two unusual operators for incrementing and decrementing variables. The increment operator ++ adds 1 to its operand, while the decrement operator -- subtracts 1. We have frequently used ++ to increment variables, as in

```
if (c == '\n')
++n1;
```

The unusual aspect is that ++ and -- may be used either as prefix operators (before the variable, as in ++n), or postfix (after the variable: n++). In both cases, the effect is to increment n. But the expression ++n increments n before its value is used, while n++ increments n after its value has been used. This means that in a context where the value is being used, not just the effect, ++n and n++ are different. If n is 5, then

```
x = n++;
sets x to 5, but
x = ++n;
```

sets x to 6. In both cases, n becomes 6. The increment and decrement operators can only be applied to variables; an expression like (i+j)++ is illegal.

In a context where no value is wanted, just the incrementing effect, as in

```
if (c == '\n')
    n1++;
```

prefix and postfix are the same. But there are situations where one or the other is specifically called for. For instance, consider the function squeeze(s,c), which removes all occurrences of the character c from the string s.

```
/* squeeze: delete all c from s */
void squeeze(char s[], int c)
{
   int i, j;

   for (i = j = 0; s[i] != '\0'; i++)
      if (s[i] != c)
            s[j++] = s[i];
   s[j] = '\0';
}
```

Each time a non-c occurs, it is copied into the current j position, and only then is j incremented to be ready for the next character. This is exactly equivalent to

```
if (s[i] != c) {
    s[j] = s[i];
    j++;
}
```

Another example of a similar construction comes from the getline function that we wrote in Chapter 1, where we can replace

```
if (c == '\n') {
    s[i] = c;
    ++i;
}
```

by the more compact

```
if (c == '\n')
s[i++] = c:
```

As a third example, consider the standard function strcat(s,t), which concatenates the string t to the end of the string s. strcat assumes that there is enough space in s to hold the combination. As we have written it, strcat returns no value; the standard library version returns a pointer to the resulting string.

As each character is copied from t to s, the postfix ++ is applied to both i and j to make sure that they are in position for the next pass through the loop.

Exercise 2-4. Write an alternate version of squeeze(s1,s2) that deletes each character in s1 that matches any character in the *string* s2.

Exercise 2-5. Write the function any (s1,s2), which returns the first location in the string s1 where any character from the string s2 occurs, or -1 if s1 contains no characters from s2. (The standard library function strpbrk does the same job but returns a pointer to the location.)

2.9 Bitwise Operators

C provides six operators for bit manipulation; these may only be applied to integral operands, that is, char, short, int, and long, whether signed or unsigned.

- & bitwise AND
- bitwise inclusive OR
- bitwise exclusive OR
- << left shift
- >> right shift
- one's complement (unary)

The bitwise AND operator & is often used to mask off some set of bits; for example,

```
n = n \& 0177;
```

sets to zero all but the low-order 7 bits of n.

The bitwise OR operator | is used to turn bits on:

```
x = x \mid SET_ON;
```

sets to one in x the bits that are set to one in SET_ON.

The bitwise exclusive OR operator ^ sets a one in each bit position where its operands have different bits, and zero where they are the same.

One must distinguish the bitwise operators & and ! from the logical operators && and !, which imply left-to-right evaluation of a truth value. For example, if x is 1 and y is 2, then x & y is zero while x && y is one.

The shift operators << and >> perform left and right shifts of their left operand by the number of bit positions given by the right operand, which must be positive. Thus x << 2 shifts the value of x left by two positions, filling vacated bits with zero; this is equivalent to multiplication by 4. Right shifting an unsigned quantity always fills vacated bits with zero. Right shifting a signed quantity will fill with sign bits ("arithmetic shift") on some machines and with 0-bits ("logical shift") on others.

The unary operator ~ yields the one's complement of an integer; that is, it converts each 1-bit into a 0-bit and vice versa. For example,

```
x = x \& \sim 077
```

sets the last six bits of x to zero. Note that $x \& \sim 077$ is independent of word length, and is thus preferable to, for example, x & 0177700, which assumes that x is a 16-bit quantity. The portable form involves no extra cost, since ~ 077 is a constant expression that can be evaluated at compile time.

As an illustration of some of the bit operators, consider the function getbits(x,p,n) that returns the (right adjusted) n-bit field of x that begins at position p. We assume that bit position 0 is at the right end and that n and p are sensible positive values. For example, getbits(x,4,3) returns the three bits in bit positions 4, 3 and 2, right adjusted.

```
/* getbits: get n bits from position p */
unsigned getbits(unsigned x, int p, int n)
{
    return (x >> (p+1-n)) & ~(~0 << n);
}</pre>
```

The expression x >> (p+1-n) moves the desired field to the right end of the word. ~0 is all 1-bits; shifting it left n bit positions with ~0<<n places zeros in the rightmost n bits; complementing that with ~ makes a mask with ones in the rightmost n bits.

Exercise 2-6. Write a function setbits (x,p,n,y) that returns x with the n bits that begin at position p set to the rightmost n bits of y, leaving the other bits unchanged. \Box

Exercise 2-7. Write a function invert(x,p,n) that returns x with the n bits that begin at position p inverted (i.e., 1 changed into 0 and vice versa), leaving the others unchanged. \Box

Exercise 2-8. Write a function rightrot(x, n) that returns the value of the integer x rotated to the right by n bit positions. \square

2.10 Assignment Operators and Expressions

Expressions such as

$$i = i + 2$$

in which the variable on the left hand side is repeated immediately on the right, can be written in the compressed form

$$i += 2$$

The operator += is called an assignment operator.

Most binary operators (operators like + that have a left and right operand) have a corresponding assignment operator op =, where op is one of

```
+ - * / % << >> & ^ |
```

If $expr_1$ and $expr_2$ are expressions, then

$$expr_1$$
 $op = expr_2$

is equivalent to

$$expr_1 = (expr_1) op (expr_2)$$

except that $expr_1$ is computed only once. Notice the parentheses around $expr_2$:

$$x *= y + 1$$

means

$$x = x * (y + 1)$$

rather than

$$x = x * y + 1$$

As an example, the function bitcount counts the number of 1-bits in its integer argument.

```
/* bitcount: count 1 bits in x */
int bitcount(unsigned x)
{
    int b;

    for (b = 0; x != 0; x >>= 1)
        if (x & 01)
            b++;
    return b;
}
```

Declaring the argument x to be unsigned ensures that when it is right-shifted, vacated bits will be filled with zeros, not sign bits, regardless of the machine the program is run on.

Quite apart from conciseness, assignment operators have the advantage that they correspond better to the way people think. We say "add 2 to i" or

"increment i by 2," not "take i, add 2, then put the result back in i." Thus the expression i += 2 is preferable to i = i+2. In addition, for a complicated expression like

```
yyval[yypv[p3+p4] + yypv[p1+p2]] += 2
```

the assignment operator makes the code easier to understand, since the reader doesn't have to check painstakingly that two long expressions are indeed the same, or to wonder why they're not. And an assignment operator may even help a compiler to produce efficient code.

We have already seen that the assignment statement has a value and can occur in expressions; the most common example is

```
while ((c = getchar()) != EOF)
```

The other assignment operators (+=, -=, etc.) can also occur in expressions, although this is less frequent.

In all such expressions, the type of an assignment expression is the type of its left operand, and the value is the value after the assignment.

Exercise 2-9. In a two's complement number system, x &= (x-1) deletes the rightmost 1-bit in x. Explain why. Use this observation to write a faster version of bitcount. \square

2.11 Conditional Expressions

The statements

compute in z the maximum of a and b. The conditional expression, written with the ternary operator "?:", provides an alternate way to write this and similar constructions. In the expression

```
expr_1 ? expr_2 : expr_3
```

the expression $expr_1$ is evaluated first. If it is non-zero (true), then the expression $expr_2$ is evaluated, and that is the value of the conditional expression. Otherwise $expr_3$ is evaluated, and that is the value. Only one of $expr_2$ and $expr_3$ is evaluated. Thus to set z to the maximum of a and b,

```
z = (a > b) ? a : b; /* z = max(a, b) */
```

It should be noted that the conditional expression is indeed an expression, and it can be used wherever any other expression can be. If $expr_2$ and $expr_3$

are of different types, the type of the result is determined by the conversion rules discussed earlier in this chapter. For example, if f is a float and n is an int, then the expression

$$(n > 0)$$
 ? f : n

is of type float regardless of whether n is positive.

Parentheses are not necessary around the first expression of a conditional expression, since the precedence of ?: is very low, just above assignment. They are advisable anyway, however, since they make the condition part of the expression easier to see.

The conditional expression often leads to succinct code. For example, this loop prints n elements of an array, 10 per line, with each column separated by one blank, and with each line (including the last) terminated by a newline.

```
for (i = 0; i < n; i++)
printf("%6d%c", a[i], (i%10==9 !! i==n-1) ? '\n' : ' ');
```

A newline is printed after every tenth element, and after the n-th. All other elements are followed by one blank. This might look tricky, but it's more compact than the equivalent if-else. Another good example is

```
printf("You have %d item%s.\n", n, n==1 ? "" : "s");
```

Exercise 2-10. Rewrite the function lower, which converts upper case letters to lower case, with a conditional expression instead of if-else.

2.12 Precedence and Order of Evaluation

Table 2-1 summarizes the rules for precedence and associativity of all operators, including those that we have not yet discussed. Operators on the same line have the same precedence; rows are in order of decreasing precedence, so, for example, *, /, and % all have the same precedence, which is higher than that of binary + and -. The "operator" () refers to function call. The operators -> and . are used to access members of structures; they will be covered in Chapter 6, along with sizeof (size of an object). Chapter 5 discusses * (indirection through a pointer) and & (address of an object), and Chapter 3 discusses the comma operator.

Note that the precedence of the bitwise operators &, $^{\circ}$, and † falls below == and !=. This implies that bit-testing expressions like

```
if ((x \& MASK) == 0) ...
```

must be fully parenthesized to give proper results.

C, like most languages, does not specify the order in which the operands of an operator are evaluated. (The exceptions are &&, !!, ?:, and ','.) For example, in a statement like

OPERATORS	ASSOCIATIVITY
() [] -> .	left to right
! ~ ++ + - * & (type) sizeof	right to left
* / %	left to right
+ -	left to right
<< >>	left to right
< <= > >=	left to right
== !=	left to right
&.	left to right
^	left to right
1	left to right
&&	left to right
11	left to right
?:	right to left
= += -= *= /= %= &= ^= ¦= <<= >>=	right to left
,	left to right

TABLE 2-1. PRECEDENCE AND ASSOCIATIVITY OF OPERATORS

Unary +, -, and * have higher precedence than the binary forms.

```
x = f() + g();
```

f may be evaluated before g or vice versa; thus if either f or g alters a variable on which the other depends, x can depend on the order of evaluation. Intermediate results can be stored in temporary variables to ensure a particular sequence.

Similarly, the order in which function arguments are evaluated is not specified, so the statement

```
printf("%d %d\n", ++n, power(2, n));  /* WRONG */
```

can produce different results with different compilers, depending on whether n is incremented before power is called. The solution, of course, is to write

```
++n;
printf("%d %d\n", n, power(2, n));
```

Function calls, nested assignment statements, and increment and decrement operators cause "side effects"—some variable is changed as a by-product of the evaluation of an expression. In any expression involving side effects, there can be subtle dependencies on the order in which variables taking part in the expression are updated. One unhappy situation is typified by the statement

```
a[i] = i++:
```

The question is whether the subscript is the old value of i or the new.

Compilers can interpret this in different ways, and generate different answers depending on their interpretation. The standard intentionally leaves most such matters unspecified. When side effects (assignment to variables) take place within an expression is left to the discretion of the compiler, since the best order depends strongly on machine architecture. (The standard does specify that all side effects on arguments take effect before a function is called, but that would not help in the call to printf above.)

The moral is that writing code that depends on order of evaluation is a bad programming practice in any language. Naturally, it is necessary to know what things to avoid, but if you don't know how they are done on various machines, you won't be tempted to take advantage of a particular implementation.

CHAPTER 3: Control Flow

The control-flow statements of a language specify the order in which computations are performed. We have already met the most common control-flow constructions in earlier examples; here we will complete the set, and be more precise about the ones discussed before.

3.1 Statements and Blocks

An expression such as x = 0 or i++ or printf(...) becomes a statement when it is followed by a semicolon, as in

```
x = 0;
i++;
printf(...);
```

In C, the semicolon is a statement terminator, rather than a separator as it is in languages like Pascal.

Braces { and } are used to group declarations and statements together into a compound statement, or block, so that they are syntactically equivalent to a single statement. The braces that surround the statements of a function are one obvious example; braces around multiple statements after an if, else, while, or for are another. (Variables can be declared inside any block; we will talk about this in Chapter 4.) There is no semicolon after the right brace that ends a block.

3.2 If-Else

The if-else statement is used to express decisions. Formally, the syntax is

```
if (expression)
    statement 1
else
    statement 2
```

56 CONTROL FLOW CHAPTER 3

where the else part is optional. The expression is evaluated; if it is true (that is, if expression has a non-zero value), statement₁ is executed. If it is false (expression is zero) and if there is an else part, statement₂ is executed instead.

Since an if simply tests the numeric value of an expression, certain coding shortcuts are possible. The most obvious is writing

```
if (expression)
instead of
  if (expression != 0)
```

Sometimes this is natural and clear; at other times it can be cryptic.

Because the else part of an if-else is optional, there is an ambiguity when an else is omitted from a nested if sequence. This is resolved by associating the else with the closest previous else-less if. For example, in

```
if (n > 0)
    if (a > b)
    z = a;
    else
    z = b;
```

the else goes with the inner if, as we have shown by indentation. If that isn't what you want, braces must be used to force the proper association:

```
if (n > 0) {
    if (a > b)
    z = a;
}
else
    z = b;
```

The ambiguity is especially pernicious in situations like this:

The indentation shows unequivocally what you want, but the compiler doesn't get the message, and associates the else with the inner if. This kind of bug can be hard to find; it's a good idea to use braces when there are nested ifs.

By the way, notice that there is a semicolon after z = a in

```
if (a > b)
    z = a;
else
    z = b;
```

This is because grammatically, a *statement* follows the if, and an expression statement like "z = a;" is always terminated by a semicolon.

3.3 Else-If

The construction

```
if (expression)
statement
else if (expression)
statement
else if (expression)
statement
else if (expression)
statement
else if (expression)
statement
```

occurs so often that it is worth a brief separate discussion. This sequence of if statements is the most general way of writing a multi-way decision. The expressions are evaluated in order; if any expression is true, the statement associated with it is executed, and this terminates the whole chain. As always, the code for each statement is either a single statement, or a group in braces.

The last else part handles the "none of the above" or default case where none of the other conditions is satisfied. Sometimes there is no explicit action for the default; in that case the trailing

else statement

can be omitted, or it may be used for error checking to catch an "impossible" condition.

To illustrate a three-way decision, here is a binary search function that decides if a particular value x occurs in the sorted array v. The elements of v must be in increasing order. The function returns the position (a number between 0 and n-1) if x occurs in v, and -1 if not.

Binary search first compares the input value x to the middle element of the array v. If x is less than the middle value, searching focuses on the lower half of the table, otherwise on the upper half. In either case, the next step is to compare x to the middle element of the selected half. This process of dividing the range in two continues until the value is found or the range is empty.

58 CONTROL FLOW CHAPTER 3

```
/* binsearch: find x in v[0] <= v[1] <= ... <= v[n-1] */</pre>
int binsearch(int x, int v[], int n)
{
    int low, high, mid;
    low = 0;
   high = n - 1;
   while (low <= high) {
        mid = (low+high) / 2;
        if (x < v[mid])
            high = mid - 1;
        else if (x > v[mid])
            low = mid + 1;
                /* found match */
        else
            return mid:
   return -1; /* no match */
}
```

The fundamental decision is whether x is less than, greater than, or equal to the middle element v[mid] at each step; this is a natural for else-if.

Exercise 3-1. Our binary search makes two tests inside the loop, when one would suffice (at the price of more tests outside). Write a version with only one test inside the loop and measure the difference in run-time. \Box

3.4 Switch

The switch statement is a multi-way decision that tests whether an expression matches one of a number of *constant* integer values, and branches accordingly.

```
switch (expression) {
    case const-expr: statements
    case const-expr: statements
    default: statements
}
```

Each case is labeled by one or more integer-valued constants or constant expressions. If a case matches the expression value, execution starts at that case. All case expressions must be different. The case labeled default is executed if none of the other cases are satisfied. A default is optional; if it isn't there and if none of the cases match, no action at all takes place. Cases and the default clause can occur in any order.

In Chapter 1 we wrote a program to count the occurrences of each digit, white space, and all other characters, using a sequence of if ... else if ... else. Here is the same program with a switch:

SECTION 3.4 SWITCH 59

```
#include <stdio.h>
main() /* count digits, white space, others */
    int c, i, nwhite, nother, ndigit[10];
   nwhite = nother = 0;
    for (i = 0; i < 10; i++)
        ndigit[i] = 0;
   while ((c = getchar()) != EOF) {
        switch (c) {
        case '0': case '1': case '2': case '3': case '4':
        case '5': case '6': case '7': case '8': case '9':
            ndigit[c-'0']++;
            break;
        case ' ':
        case '\n':
        case '\t':
            nwhite++;
            break:
        default:
           nother++:
            break:
        }
   printf("digits =");
   for (i = 0; i < 10; i++)
       printf(" %d", ndigit[i]);
   printf(", white space = %d, other = %d\n",
       nwhite, nother);
   return 0;
```

The break statement causes an immediate exit from the switch. Because cases serve just as labels, after the code for one case is done, execution falls through to the next unless you take explicit action to escape. break and return are the most common ways to leave a switch. A break statement can also be used to force an immediate exit from while, for, and do loops, as will be discussed later in this chapter.

Falling through cases is a mixed blessing. On the positive side, it allows several cases to be attached to a single action, as with the digits in this example. But it also implies that normally each case must end with a break to prevent falling through to the next. Falling through from one case to another is not robust, being prone to disintegration when the program is modified. With the exception of multiple labels for a single computation, fall-throughs should be used sparingly, and commented.

As a matter of good form, put a break after the last case (the default here) even though it's logically unnecessary. Some day when another case gets added at the end, this bit of defensive programming will save you.

60 CONTROL FLOW CHAPTER 3

Exercise 3-2. Write a function escape(s,t) that converts characters like newline and tab into visible escape sequences like \n and \t as it copies the string t to s. Use a switch. Write a function for the other direction as well, converting escape sequences into the real characters.

3.5 Loops—While and For

We have already encountered the while and for loops. In

```
while (expression)
statement
```

the expression is evaluated. If it is non-zero, statement is executed and expression is re-evaluated. This cycle continues until expression becomes zero, at which point execution resumes after statement.

The for statement

except for the behavior of continue, which is described in Section 3.7.

Grammatically, the three components of a for loop are expressions. Most commonly, $expr_1$ and $expr_3$ are assignments or function calls and $expr_2$ is a relational expression. Any of the three parts can be omitted, although the semi-colons must remain. If $expr_1$ or $expr_3$ is omitted, it is simply dropped from the expansion. If the test, $expr_2$, is not present, it is taken as permanently true, so

```
for (;;) {
...
}
```

is an "infinite" loop, presumably to be broken by other means, such as a break or return.

Whether to use while or for is largely a matter of personal preference. For example, in

```
while ((c = getchar()) == ' ' ii c == '\n' ii c == '\t')
;  /* skip white space characters */
```

there is no initialization or re-initialization, so the while is most natural.

The for is preferable when there is a simple initialization and increment, since it keeps the loop control statements close together and visible at the top of

```
the loop. This is most obvious in
for (i = 0; i < n; i++)
```

which is the C idiom for processing the first n elements of an array, the analog of the Fortran DO loop or the Pascal for. The analogy is not perfect, however, since the index and limit of a C for loop can be altered from within the loop, and the index variable i retains its value when the loop terminates for any reason. Because the components of the for are arbitrary expressions, for loops are not restricted to arithmetic progressions. Nonetheless, it is bad style to force unrelated computations into the initialization and increment of a for, which are better reserved for loop control operations.

As a larger example, here is another version of atoi for converting a string to its numeric equivalent. This one is slightly more general than the one in Chapter 2; it copes with optional leading white space and an optional + or - sign. (Chapter 4 shows atof, which does the same conversion for floating-point numbers.)

The structure of the program reflects the form of the input:

```
skip white space, if any
get sign, if any
get integer part and convert it
```

Each step does its part, and leaves things in a clean state for the next. The whole process terminates on the first character that could not be part of a number.

```
#include <ctype.h>
/* atoi: convert s to integer; version 2 */
int atoi(char s[])
{
   int i, n, sign;

   for (i = 0; isspace(s[i]); i++) /* skip white space */
    ;
   sign = (s[i] == '-') ? -1 : 1;
   if (s[i] == '+' !! s[i] == '-') /* skip sign */
        i++;
   for (n = 0; isdigit(s[i]); i++)
        n = 10 * n + (s[i] - '0');
   return sign * n;
}
```

The standard library provides a more elaborate function strtol for conversion of strings to long integers; see Section 5 of Appendix B.

The advantages of keeping loop control centralized are even more obvious when there are several nested loops. The following function is a Shell sort for sorting an array of integers. The basic idea of this sorting algorithm, which was