A GRADUATE COURSE IN OPTIMIZATION

A GRADUATE COURSE

IN

OPTIMIZATION

CIE6010 Notebook

Prof. Yin Zhang

The Chinese University of Hongkong, Shenzhen

Contents

Ackn	nowledgments	xi
Notat	tions	xiii
1	Week1	1
1.1	Monday	1
1.1.1	Introduction to Optimizaiton	1
1.2	Wednesday	2
1.2.1	Reviewing for Linear Algebra	2
1.2.2	Reviewing for Calculus	2
1.2.3	Introduction to Optimization	3
2	Week2	7
2.1	Monday	7
2.1.1	Reviewing and Announments	7
2.1.2	Quadratic Function Case Study	8
2.2	Wednesday	11
2.2.1	Convex Analysis	11
3	Week3	17
3.1	Wednesday	17
3.1.1	Convex Analysis	17
3.1.2	Iterative Method	18
3.2	Thursday	22
3.2.1	Announcement	22
3.2.2	Sparse Large Scale Optimization	22

4	Week4	27
4.1	Wednesday	27
4.1.1	Comments for MATLAB Project	27
4.1.2	Local Convergence Rate	28
4.1.3	Newton's Method	29
4.1.4	Tutorial: Introduction to Convexity	30
5	Week5	33
5.1	Monday	33
5.1.1	Review	33
5.1.2	Existence of solution to Quadratic Programming	36
5.2	Wednesday	39
5.2.1	Comments about Newton's Method	39
5.2.2	Constant Step-Size Analysis	40
6	Week6	45
6.1	Monday	45
6.1.1	Announcement	45
6.1.2	Introduction to Quasi-Newton Method	45
6.1.3	Constrainted Optimization Problem	46
6.1.4	Announcement on Assignment	47
6.1.5	Introduction to Stochastic optimization	49
6.2	Tutorial: Monday	49
6.2.1	LP Problem	49
6.2.2	Gauss-Newton Method	50
6.2.3	Introduction to KKT and CQ	51
6.3	Wednesday	52
6.3.1	Review	52
632	Dual-Primal of LP	53

1	Week7	57
7.1	Monday	57
7.1.1	Announcement	57
7.1.2	Recap about linear programming	57
7.1.3	Optimization over convex set	60
7.2	Wednesday	62
7.2.1	Motivation	62
7.2.2	Convex Projections	63
7.2.3	Feasible diection method	65
8	Week8	69
8.1	Monday	69
8.1.1	Constraint optimization	70
8.1.2	Inequality Constraint Problem	71
8.2	Monday Tutorial: Review for CIE6010	71
9	Week9	79
9.1	Monday	79
9.1.1	Reviewing for KKT	79
9.2	Monday Tutorial: Reviewing for Mid-term	82
10	Week10	83
10.1	Monday	83
10.1.1	Duality Theory	83
10.1.2	Penalty Algorithms	86
10.2	Wednesday	89
10.2.1	Introduction to penalty algorithms	89
10.2.2	Convergence Analysis	90

11	Week11 93
11.1	Monday 93
11.1.1	Equality Constraint Problem
11.1.2	ADMM96
11.2	Wednesday 97
11.2.1	Comments on Assignment 6
11.2.2	Inequality Constraint Problem
11.2.3	Non-smooth unconstraint problem
12	Week12
12.1	Monday 101
12.1.1	Comments on Final Project
12.1.2	Trust Region Method
12.2	Monday Tutorial 104
12.2.1	Sub-gradient 104
12.3	Wednesday 107
12.3.1	Trust Region problem
12.4	Monday Tutorial: Trust Region Sub-problem 109
12.4.1	ADMM
12.4.2	Trust Region Subproblem
13	Week13
13.1	Wednesday 111
13.1.1	Approximate Gradient Projection
13.1.2	Conic Programming
14	Week14
14.1	Monday 113

15	Week14	117
15.1	Wednesday	117
15.1.1	Conic Programming	. 117
15.1.2	Algorithm to solve conic programming	. 119

Acknowledgments

This book is from the CIE6010 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

```
X
                  Set
\inf X \subseteq \mathbb{R} Infimum over the set X
\mathbb{R}^{m \times n}
                  set of all m \times n real-valued matrices
\mathbb{C}^{m \times n}
                  set of all m \times n complex-valued matrices
                  ith entry of column vector \boldsymbol{x}
x_i
                  (i,j)th entry of matrix \boldsymbol{A}
a_{ij}
                  ith column of matrix A
\boldsymbol{a}_i
\boldsymbol{a}_{i}^{\mathrm{T}}
                  ith row of matrix A
                  set of all n \times n real symmetric matrices, i.e., \mathbf{A} \in \mathbb{R}^{n \times n} and a_{ij} = a_{ji}
\mathbb{S}^n
                  for all i, j
                  set of all n \times n complex Hermitian matrices, i.e., \mathbf{A} \in \mathbb{C}^{n \times n} and
\mathbb{H}^n
                  \bar{a}_{ij} = a_{ji} for all i, j
\boldsymbol{A}^{\mathrm{T}}
                  transpose of \boldsymbol{A}, i.e, \boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}} means b_{ji} = a_{ij} for all i,j
                  Hermitian transpose of \boldsymbol{A}, i.e, \boldsymbol{B} = \boldsymbol{A}^{H} means b_{ji} = \bar{a}_{ij} for all i,j
A^{H}
trace(A)
                  sum of diagonal entries of square matrix A
1
                  A vector with all 1 entries
0
                  either a vector of all zeros, or a matrix of all zeros
                  a unit vector with the nonzero element at the ith entry
e_i
C(A)
                  the column space of \boldsymbol{A}
\mathcal{R}(\boldsymbol{A})
                  the row space of \boldsymbol{A}
\mathcal{N}(\boldsymbol{A})
                  the null space of \boldsymbol{A}
\operatorname{Proj}_{\mathcal{M}}(\mathbf{A}) the projection of \mathbf{A} onto the set \mathcal{M}
```

Chapter 15

Week14

15.1. Wednesday

15.1.1. Conic Programming

The primal conic programming is given by:

min
$$\langle \boldsymbol{C}, \boldsymbol{X} \rangle$$
 $\langle \boldsymbol{a}_i, \boldsymbol{X} \rangle = \boldsymbol{b}_i, i = 1, \ldots, m$ $\boldsymbol{X} \in \mathcal{K}$

LP, SDP, SOCP.

The dual form is given by:

$$\max \quad \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$$

$$\sum_{i=1}^{m} y_{i} \boldsymbol{a}_{i} + S = \boldsymbol{C}$$

$$S \in \mathcal{K}^{*}$$

Most problem setting is self-dual.

$$Ax = b$$
$$A*y + S = C$$

Fermat-Weber location problem: Given a set of points p_i , our goal is to

$$\min_{\boldsymbol{y} \in \mathbb{R}^2} \sum_{i=1}^m \|\boldsymbol{y} - \boldsymbol{p}_i\|$$

Note that it is norm 2 instead of its square. It's relatively complicated problem.

Introduce variables η_1, \ldots, η_m :

min
$$\eta_1 + \cdots + \eta_m$$

$$\|\boldsymbol{y} - \boldsymbol{p}_i\| \le \eta_i, \quad i = 1, \dots, m$$

Or equivalently,

$$\min_{m{y},m{\eta},m{z}} ~~ m{1}^{\mathrm{T}}m{\eta}$$
 $m{z}_i+m{y}=m{p}_i, \quad i=1,\ldots,m$ $\|m{z}_i\| \leq \eta_i$

The dual problem is

$$\max \quad \sum_{i=1}^{m} \boldsymbol{p}_{i}^{T} \boldsymbol{x}_{i}$$

$$\sum_{i=1}^{m} \boldsymbol{x}_{i} = 0$$

$$\|\boldsymbol{x}_{i}\| \leq 1, i = 1, \dots, m$$

the last constraint is the second order cone.

For quadratic constraint with $A \succeq 0$:

$$(\boldsymbol{A}\boldsymbol{y}+\boldsymbol{b})^{\mathrm{T}}(\boldsymbol{A}\boldsymbol{y}+\boldsymbol{b})-\boldsymbol{c}^{\mathrm{T}}\boldsymbol{y}-\boldsymbol{d}\leq 0$$

which is equivalent to say

$$\begin{bmatrix} I & Ay + b \\ (Ay + b)^{\mathrm{T}} & c^{\mathrm{T}}y + d \end{bmatrix} \succeq 0$$

QCQP can be converted into SDP when A is convex.

$$\left({{m{c}}^{ ext{T}}y + {m{d}} - rac{1}{4}} \right)^2 + \|{m{A}}{m{y}} + {m{b}}\|^2 \le \left({{m{c}}^{ ext{T}}y + {m{d}} + rac{1}{4}} \right)^2$$

Thus QCQP can be converted into SOCP as well.

15.1.2. Algorithm to solve conic programming

min
$$\langle C, X \rangle$$

 $\langle A_i, X \rangle = b_i, i = 1, ..., m$
 $X \succeq 0$

$$\max \quad \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$$
$$\sum y_i A_i + Z = C$$
$$Z \succeq 0$$

If both (P) and (D) are **strictly feasible**, then there exists X^* , y^* (feasible) such that

$$\langle \boldsymbol{C}, \boldsymbol{X}^* \rangle = \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}^*$$

which follows that

$$\langle \boldsymbol{C}, \boldsymbol{X} \rangle - \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} = \langle \boldsymbol{X}, \boldsymbol{Z} \rangle = 0$$

It suffices to let

$$0 = \mathsf{trace}(\boldsymbol{X}\boldsymbol{Z}) = \sum_i \lambda_i(\boldsymbol{Z}^{1/2}\boldsymbol{X}\boldsymbol{Z}^{1/2})$$

which implies

$$\mathbf{Z}^{1/2}\mathbf{X}\mathbf{Z}^{1/2} = 0 \Longleftrightarrow \mathbf{Z}^{1/2}\mathbf{X}^{1/2} = 0$$