Dr. Andrey Soldatenkov

Exam: Commutative Algebra (V3A1, Algebra I)

Solutions can be written in English or German

Exercise A. (2+3 points)

- 1) Let A be a ring and $S \subset A$ a multiplicative subset. Prove the following equality for the nilradical: $\mathfrak{N}(S^{-1}A) = S^{-1}(\mathfrak{N}(A))$.
- 2) A ring is called reduced if its nilradical is trivial. Prove that the following assertions are equivalent:
 - i) A is reduced.
 - ii) $A_{\mathfrak{p}}$ is reduced for all prime ideals $\mathfrak{p} \subset A$.
 - iii) $A_{\mathfrak{m}}$ is reduced for all maximal ideal $\mathfrak{m} \subset A$.

Exercise B. (4 points)

Let $\varphi \colon A \to B$ be a surjective ring homomorphism. Consider any B-module M simultaneously as an A-module and identify $\operatorname{Spec}(B)$ with the closed subset $V(\operatorname{Ker}(\varphi)) \subset \operatorname{Spec}(A)$. Prove that under this identification the equalities $\operatorname{Ass}_B(M) = \operatorname{Ass}_A(M)$ and $\operatorname{Supp}_B(M) = \operatorname{Supp}_A(M)$ hold.

Exercise C. (1 + 2 + 1 + 3 points)

Compute the dimensions of the following rings and provide a chain of prime ideals of maximal length in each case:

- i) \mathbb{Z} ; ii) $k[X,Y]/(X^2-Y^3)$ for a field k;
- iii) $k[X] \otimes_k k[X]$ for a field k; iv) $\prod_{i=1}^n k_i$ for fields k_i .

Exercise D. (4 points)

Let k be a field and $\nu : k(x)^* \to \mathbb{Z}$, $F(x)/G(x) \mapsto \deg(G) - \deg(F)$. Show that ν is a discrete valuation. Determine its valuation ring and a uniformizing parameter.

Exercise E. (3+3 points) Consider the ring $A = k[x,y,z]/(xyz,z^2)$, with k a field.

- i) Show that (x), (y) are primary ideals and that (z) is a prime ideal.
- ii) Determine a minimal primary decomposition of (0) and decide which of the associated prime ideals are isolated and which ones are embedded.

Exercise F. (2+1+2 points)

- i) State the 'going-up' theorem for ring extensions $A \subset B$.
- ii) Show, by describing a counterexample, that the going-up property does not hold for the ring extension $\mathbb{Z} \subset \mathbb{Z}[1/5]$.
- iii) Explain why $k[x,y] \hookrightarrow k[x,y,z]/(zy-x)$ (k a field) cannot be integral.

Exercise G. (2+2 points)

- i) Prove that a ring A is a field if and only if every A-module is free.
- ii) Prove that an integral domain A is a field if and only if every A-module is flat.

Klausureinsicht (review of corrected exam): Thursday July 30, 14.15 – 15.45. Seminar rooms 0.007 and 0.008.