An Intelligent Financial Advisor

- Student Name: CHEN Ziyang
- Student ID No. 21095751D
- Programme-Stream Code: 62435-FFT
- Supervisor: Dr. LEONG Hong Va
- Co-Examiner: Dr. XIA Xianjin
- Working with LEE, Ka Chun Caius, 20069386D

Table of contents

- 1. Introduction & Problem Statement
- 2. Objectives and Outcome
- 3. Project Methodology
- 4. Design and Development
- 5. Implementation
- 6. Result analysis and Reflection
- 7. Demonstration
- 8. Conclusion
- 9. Reference

1. Introduction & Problem Statement

Introduction

- Aging Society Challenges
- Traditional Financial Planners: High fees and low efficiency
- FinTech & AI quickly development
- Greater efficiency and lower fees intelligent services are needed

Problem Statement

- Difficulty to predict future Scenario and ensure asset value preservation
- Lack of risk assessment tools to personalize user assets
- Lack of affordable professional financial planning services.

2. Objectives and Outcome

1. Portfolio Allocation Based on User Risk Tolerance

- Predict risk tolerance and Generate user portrait based on user info.
- Allocate assets based on user risk tolerance and mean-variance optimization.
- Help user min risk while max potential growth, make wise financial decisions.

2. Portfolio Historical Performance

- Multi-portfolio backtesting with different asset allocations.
- Assess portfolios performance with metrics (final balance, CAGR, max drawdown, and Sharpe ratio) over past periods, including withdrawals and rebalancing.
- Help users to evaluate the past risk and return of the portfolios.

3. Simulator Tool

- Simulate future financial scenarios using three types of models. (Historical, Statistical, Parametric simulation)
- Test portfolios under optimistic, pessimistic, or baseline conditions.
- Help users prepare for potential future economic outcomes.

3. Project Methodology

ly Connected · Recent Postings · Calendar · Publications · Site Map · A-Z index · Careers · FAQs · Videos · Contact

Search

Q Advanced

Board of Governors of the Federal Reserve System

The Federal Reserve, the central bank of the United States, provides the nation with a safe, flexible, and stable monetary and financial system.

Supervision About Monetary **Financial** Consumers News **Payment Economic** Data the Fed & Events Policy & Regulation Stability Systems Research & Communities

Home > Economic Research > Survey of Consumer Finances (SCF)

Survey of Consumer Finances (SCF)

Figure 3. SCFP2022 (Household financial survey of the Federal Reserve) [2]

Project Methodology (Risk Tolerance Calculation)

- **Dataset:** SCFP2022 (Household financial survey of the Federal Reserve) [2]
- **Risk Tolerance Calculation:**

$$Risk Tolerance = \frac{Risky Assets}{Risky Assets + RiskFree Assets}$$

- **Risky Assets:** Stocks, Bonds, Non-Money Market Funds (NMMF).
- **RiskFree Assets:** Liquid assets, Time deposits, Savings bonds, Cash.

Project Methodology (Data Processing & Feature Engineering)

- Handling Missing Values
- One-Hot Encoding: Convert categorical variables into separate binary features.
 - Categorical variables: Education level, marital status, occupation.

Feature Selection:

- Key Features: Age, Income, Education, Occupation, Marital Status.
- Method: Use ML model for initial feature selection.
- Domain Knowledge: Combined with financial expertise to refine feature choices.

Red	Yellow	Green
1	0	0
1	0	0
0	1	0
0	0	1

Figure 4. One-Hot Encoding Example [3]

Project Methodology (Portfolio Simulation)

Objective: Simulate future financial scenarios (Optimistic, Pessimistic, Baseline).

- Optimistic Scenario ($\uparrow \mu$, $\downarrow \sigma$): Increases mean returns and decreases volatility.
- Pessimistic Scenario ($\downarrow \mu$, $\uparrow \sigma$): Decreases mean returns and increases volatility.

Monte Carlo Simulation, with Historical, Statistical, and Parametric simulation.

• Historical Simulation: Uses actual past returns to simulate future portfolio performance.

$$r_t = \frac{P_t - P_{t-1}}{P_{t-1}} \times 100 \ R_{portfolio} = \sum_{i=1}^{N} w_i \times r_i$$

• Statistical Simulation (Normal Model): assumes returns follow a normal distribution, generating asset returns based on mean and volatility.

$$r_{annual} \sim \mathcal{N}(\mu, \Sigma)$$

• Statistical Simulation (GARCH Model): models changing market volatility over time, helping simulate real-world ups and downs more accurately.

$$r_t = \mu + \epsilon_t, \epsilon_t \sim N(0, \sigma_t 2)$$

Project Methodology (Portfolio Simulation)

- The Parameterized Simulation: Defines parameters for return distribution (adjusts mean μ and volatility σ) to simulate returns based on Lognormal distribution.
 - Annualized Mean (μ): A higher mean results in greater expected returns.
 - Adjusting μ shifts the central value of asset returns.
 - Increasing μ increases expected returns
 - Annualized Volatility (a): A higher volatility increases risk and return fluctuation.
 - Adjusting σ alters the dispersion of returns, affecting risk.
 - increasing σ introduces more risk.
 - Covariance & Correlation: Affects portfolio risk by describing how assets move together.
 - High correlation leads to concentrated risk.

4. Design & Development

Design & Development

The system adopts a front-end and back-end separation architecture.

- **Server:** Node.js + Express + Flask
- **Database:** Amazon Web Services RDS for MySQL (stores user data)
- **Front-end:** React framework + UI (Ant)
- Local csv files: store market data (daily update using Kaggle dataset) [4].

Figure 5. React + Node.js + Express + Amazon Web Services RDS Overview [5]

Design and Development - Components

Group project with my teammate LEE, Ka Chun Caius (20069386D). My personal contribution is detailed with attributes and methods. There are **three main components** in my contribution:

User Portrait

Multi-Portfolio Back test

Simulator

UserPortfolio one-to-many (1:0..*) relationship with Allocation.

• MultiPortfolioBacktest has zeroto-many (0..*) relationship with Asset.

Simulator has a one-to-many
(1:0..*) relationship with Asset.

Design and Development - Database Design and Normalization

- Goal: Store and manage user data (personal information, investment portfolios, financial goals, consumption records, etc.)
- Relational database: MySQL
- Cloud service platform: Amazon RDS for MySQL
- **Normalized design:** Follows the 1NF (atomic), 2NF (no partial dependencies) and 3NF (no transitive dependencies)
- user_portrait table: records user's basic information and risk tolerance (generated by ML model);
- allocations table: records user's asset allocation;
- All tables are connected to the users table via the foreign key **user_id**.

5. Implementation

5.1 User Portrait Module – Implementation

Save, update and manage the user's basic information. Machine Learning model predicts risk tolerance. Allocate personalized investment portfolio.

Backend (Flask + Node.js)

- /predict_risk
- /allocate
- /get_performance
- /efficient_frontier

Database (MySQL on AWS RDS)

• user_portrait, allocations

Frontend (React + Recharts):

- InvestorForm Collects input for prediction.
- AllocationChart, PerformanceChar EfficientFrontierChart: Visualize AI-generated allocation and return.

Figure 8. User Risk Tolerance Prediction Workflow

5.1 User Portrait Module – Implementation

Save, update and manage the user's basic information. Machine Learning model predicts risk tolerance. Allocate personalized investment portfolio.

Backend (Flask + Node.js)

- /predict_risk
- /allocate
- /get_performance
- /efficient_frontier

Database (MySQL on AWS RDS)

• user_portrait, allocations

Frontend (React + Recharts):

- InvestorForm Collects input for prediction.
- AllocationChart, PerformanceChar EfficientFrontierChart: Visualize AI-generated allocation and return.

Figure 9. Asset Allocation Process Flow

5.1 User Portrait Module – Implementation

Save, update and manage the user's basic information. Machine Learning model predicts risk tolerance. Allocate personalized investment portfolio.

Backend (Flask + Node.js)

- /predict_risk
- /allocate
- /get_performance
- /efficient_frontier

Database (MySQL on AWS RDS)

• user portrait, allocations

Frontend (React + Recharts):

- InvestorForm Collects input for prediction.
- AllocationChart, PerformanceChart, EfficientFrontierChart: Visualize AI-generated allocation and return.

Figure 10. Performance Evaluation and Efficient Frontier Calculation Process

5.2 Risk Tolerance predicting Implementation

- 1. **Data Preprocessing**: Remove rows with missing values (NaN), infinity (inf), and negative infinity (-inf).
- 2. One-Hot Encoding: Categorical variables (e.g., Education Level, Marital Status) were transformed into binary features. Avoids introducing bias that could arise from treating categories as ordinal.
- 3. Feature Selection: Used RandomForest to assess feature importance. Combined with domain knowledge and project requirement to select features like age, education level, income.
- **4. Model Training**: Tested multiple models. **ExtraTreesRegressor** perform the best, and tuned ExtraTreesRegressor with **RandomizedSearchCV** for optimal performance.
- **5. Risk Tolerance Prediction**: User submits financial data through the front-end. Back-end processes the data using the trained model and outputs a risk tolerance value (1 to 5).

5.3 Dynamic Asset Allocation Implementation

- 1. Data preparation and annualization:
 - Load monthly closing prices from CSV: assets_monthly = load_assets_from_csv()
 - Calculate monthly returns: pct_change().dropna()
 - Annualized returns μ and covariance matrix Σ : annualize returns and cov()
- 2. Minimize portfolio volatility:
 - Initial equal weight $w_0 = 1/N$
 - Define the objective function: portfolio volatility $\sigma(w) = \sqrt{(w^T \Sigma w)}$, constraint $\sum w_i = 1$, $0 \le w_i \le 1$
 - Call scipy.optimize.minimize to find w* that minimizes portfolio volatility $\sigma(w)$.
- 3. Optimize weights with risk tolerance:
 - Optimize weight w* combined with risk tolerance (τ): $w_{adjusted} = \tau \times w^* + (1 \tau) \times w_{equal}$
 - Normalization: $w_{final} = w_{adjusted} / \sum w_{adjusted}$
- 4. Output and backtesting
 - Return w_{final} , calculate the monthly return and cumulative performance of the portfolio based on w_{final} : get_asset_allocation()

5.4 Simulation Module — Implementation

Purpose: simulate portfolio performance under different market scenarios (Optimistic, Pessimistic, Baseline).

- Built-in scenario adjustment & cash-flow functions.
- Three Monte Carlo simulation: historical, statistical, parametric.

Backend (Flask):

- 1. /api/simulator accepts JSON, builds params via build_simulation_params()
- 2. Calls adjust, then selected run function, collects results via make_results_summary()
- 3. Returns structured JSON per scenario

Frontend (React):

- 1. InvestorForm gathers inputs, validates weights = 100%
- 2. Axios POST to /api/simulator with JWT
- 3. Displays PredictionChart & metrics table under tabs

Figure 11. Simulation Module Flowchart

5.4 Simulation Module — Implementation

Figure 11. Simulation Module Flowchart

Scenario Adjustment (adjust_parameters_for_scenario):

- Optimistic: $\mu_{new} = \mu_{old} + 0.01$, $\sigma_{new} = \sigma_{old} \times 0.9$
- Pessimistic: $\mu_{new} = \mu_{old} 0.01$, $\sigma_{new} = \sigma_{old} \times 1.1$
- Baseline: no change

Cash Flow (apply_cashflow):

- Fixed withdrawal/contribution & percentage withdrawal
- Inflation adjustment via (1+inflation rate) year

5.4 Simulation Module (Historical) — Implementation

- Repeatedly sample past monthly returns (eg. randomly extracts 12 returns), compound them into annual portfolio returns based on asset weights
- Calls apply_cashflow to update the account balance.
- Iterate across years and Monte Carlo paths to build a full distribution of potential portfolio values.
- The main functions: run_historical_simulation_annual. Model Historical Call run historical simulation Apply cashflow adjustments choice Simulation Parametric Call run_parameterized_simulation Simulation **Statistical** Simulation Normal Call run statistical simulation normal distribution **GARCH** Call run statistical simulation garch Figure 12. Simulation Module Flowchart (model part)

5.4 Simulation Module (Statistical) — Implementation

- The normal model assumes the asset return rate follows a normal distribution with a fixed mean and fixed volatility.
- The GARCH model treats "volatility" as a variable that changes over time. Continuously update the current conditional variance based on the historical forecast errors (residuals) and past volatility levels.
- Related functions: run_statistical_simulation_normal, run_statistical_simulation_garch

5.4 Simulation Module (Parametric) — Implementation

- Does not rely on any historical data.
- Directly samples according to the Lognormal distribution based on the μ and σ input by the user
- Calls apply_cashflow to complete the cash flow processing.
- The main functions: run_parameterized_simulation

6. Result analysis and Reflection

6.1 Dataset

Dataset: SCFP2022

Published by the **Federal Reserve Board (FRB)** of the US [2].

- Category: EDCL, MARRIED, OCCAT1, YESFINRISK
- Discrete numeric: KIDS
- Continuous numeric: AGE, INCOME, ASSET, RT 5 10000

Figure 13. Feature Distribution

6.2 Model Training

- 10-fold cross-validation
- R² as the performance score
- Model: LR, decision trees, SVR, MLP, RandomForest Regressor, ExtraTreesRegressor
- **GridSearchCV** to tuned hyperparameters
- ExtraTreesRegressor performs the best!

Figure 14. Overall Model Performance

6.3 ExtraTreesRegressor Model evaluation results

• R², MSE, and RMSE are performed well

To calculate the **F1 score**:

- Risk tolerance divides into five levels (classification task).
- F1 validation value is 0.74.
- May be the regression task will **lose some details** in the classification task.
- Risk tolerance score is **noisy**.
- Need more model generalization

Metric	Training Value	Validation Value
\mathbb{R}^2	0.9873	0.9275
MSE	0.0016	0.0090
RMSE	0.0399	0.0950
MAE	0.0179	0.0439
F1 Score	0.8907	0.7394

Table 1. ExtraTreesRegressor model evaluation results

6.4 the Reflection of Feature Importance

Figure 15. Feature Importance

Most important features: ASSET, INCOME

• Financial resources is the core role of the wealth safety net.

EDCL_4 vs EDCL_2: Education NOT ONLY improves knowledge, BUT ALSO affects decision-making by improving economic status and cognitive ability

- High education (EDCL_4): Master more information and resources → Stronger risk management ability
- Low education (EDCL_2): Face uncertainty and pressure → Limited risk tolerance

7. Demonstration

8. Conclusion

- Successfully built risk preference prediction model
- ASSET and INCOME are key factors in risk tolerance
- Achieved Dynamic asset allocation
- Simulation tool supports multi-scenario testing

• Inspiration:

Increasing asset and education support for low-income and low-education groups. This system can be used as an inclusive financial tool to help users make smarter financial decisions

• Future work:

Optimize model generalization, expand data sources

9. Reference

- 1. B. Vereckey, "Can generative AI provide trusted financial advice?," *MIT Sloan*. [Online]. Available: https://mitsloan.mit.edu/ideas-made-to-matter/can-generative-ai-provide-trusted-financial-advice
- 2. Survey of Consumer Finances (SCF), "Changes in U.S. family finances from 2019 to 2022: Evidence from the survey of consumer finances," *Federal Reserve Bulletin*, Oct. 2023. doi:10.17016/8799
- 3. DigitalSreeni, "137 What is one hot encoding in machine learning?," *YouTube*, [Online]. Available: https://www.youtube.com/watch?v=i2JSH5tn2qc.
- 4. Yash, "S&P500 Daily Update dataset," *Kaggle*. [Online]. Available: https://www.kaggle.com/datasets/yash16jr/s-and-p500-daily-update-dataset.
- 5. Bezkoder, "React + node.js + express + mysql example: Build a crud app," *BezKoder*. [Online]. Available: https://www.bezkoder.com/react-node-express-mysql/.