Integer Polynomials

Andres Buritica Monroy

1 Basic facts

For all of these, let $p(x) = \sum_{i=0}^{n} a_i x^i$ be a polynomial with integer coefficients.

We say that p(x) is divisible by a polynomial q(x) if there is a polynomial r(x) (not necessarily with integer coefficients) such that p(x) = q(x)r(x). We also write $q(x) \mid p(x)$.

- (Division algorithm) For any polynomial q there are unique polynomials f and r such that p(x) = q(x)f(x) + r and $\deg R < \deg q$.
 - If q has integer coefficients, then f and r have rational coefficients. If q has a leading coefficient of ± 1 , then f and r have integer coefficients.
- (Factor theorem) If a is a root of p, then $x a \mid p(x)$.
- (Remainder theorem) If p(a) = c then $x a \mid p(x) c$.
- (*) If a and b are integers, then $a b \mid p(a) p(b)$.
- (Finite differences) If c is a constant and p is a polynomial with leading coefficient ax^n , then p(x) p(x c) is a polynomial with leading coefficient nax^{n-1} .
- (Rational Root Theorem) If y and z are integers with gcd(y, z) = 1 such that p(y/z) = 0 then $y \mid a_0$ and $z \mid a_n$.

2 Problems

- 1. What is the maximum possible value of n such that there exists an integer polynomial P such that the equation P(x) = 5 has n distinct integer solutions, and P(x) = 8 has an integer solution?
- 2. Prove that every nonconstant integer polynomial has a composite number in its image.
- 3. Do there exist two quadratics $ax^2 + bx + c$ and $(a+1)x^2 + (b+1)x + (c+1)$ which both have two integer roots?
- 4. Let P be an integer polynomial such that if P(x) is an integer then x is rational. Prove that P is linear.
- 5. Find all polynomials P(x) with integer coefficients such that if $m \mid n$ then $P(m) \mid P(n)$.

- 6. Prove that for any two distinct polynomials P and Q with coefficients in $\{0, 1, \ldots, 9\}$, either $P(-2) \neq Q(-2)$ or $P(-5) \neq Q(-5)$.
- 7. Let P(x) and Q(x) be polynomials with integer coefficients such that the leading coefficient of P(x) is 1. Suppose that $P(n)^n$ divides $Q(n)^{n+1}$ for infinitely many positive integers n. Prove that P(n) divides Q(n) for infinitely many positive integers n.
- 8. Let $n \geq 2$ be an integer and P(x) be a polynomial with nonnegative integer coefficients satisfying P(1) = 1 and $x^n P(1/x) = P(x)$ for all x. Prove that there exist infinitely many pairs x, y of positive integers such that x|P(y) and y|P(x).
- 9. Given are positive integers a, b satisfying $a \ge 2b$. Does there exist a polynomial P(x) of degree at least 1 with coefficients from the set $\{0, 1, 2, \ldots, b-1\}$ such that $P(b) \mid P(a)$?

3 Homework

- 1. Prove that if P is a polynomial with integer coefficients and leading term $a_0 n^k$ such that $m \mid P(n)$ for all n, then $m \mid k!a_0$.
- 2. Prove that for every polynomial P(x) of degree at least 2 with integer coefficients, there is an infinite arithmetic progression of integers which does not contain P(k) for any integer k.
- 3. Is there a polynomial f of degree 2023 with integer coefficients such that

$$f(n), f(f(n)), f(f(f(n))), \cdots$$

are pairwise relatively prime for any integer n?