Assessing the Feasibility of Predicting Social Network Users' Behavior Using Linguistic and Social Cues (Supplementary Material)

Stephanie Anneris MALVICINI $^{\rm a,b}$ Nina PARDAL $^{\rm c}$ Laura ALONSO ALEMANY $^{\rm d}$ Maria Vanina MARTINEZ $^{\rm a}$ Gerardo Ignacio SIMARI $^{\rm b,e}$

^a Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona, Spain

^b DCIC, Universidad Nacional del Sur (UNS), Argentina

^c University of Huddersfield, UK

^d FAMAF, Universidad Nacional de Córdoba, Argentina

^e ICIC (UNS-CONICET), Argentina

A. Prediction Classes

Table 1. Multiclass Predictions.

	0	1	2	3	4	5	6
P1	% is in $[0,25)$	% is in [25,50)	% is in [50,75)	% is in [75,100]			
P2	% is in $[0,25)$	% is in $[25,50)$	% is in [50,75)	% is in [75,100]			
P3	virtue=vice	virtue>vice	virtue <vice< th=""><th></th><th></th><th></th><th></th></vice<>				
P4	neutral	positive	negative				
P5	neutral	anger	disgust	fear	joy	sad.	surp.
P6	pos.=neg.	pos.>neg.	pos. <neg.< th=""><th></th><th></th><th></th><th></th></neg.<>				

 ${\bf Table~2.~Binary~Predictions.}$

	0	1		
P1	% is in $[0,50)$	% is in [50,100]		
P2	% is in $[0,50)$	% is in [50,100]		
P3	virtue interval \geq vice interval	virtue interval < vice interval		
P4	positive, neutral	negative		
P5	neutral, joy, surprise	fear, anger, disgust, sadness		
P6	pos. interval \geq neg. interval	pos. interval < neg. interval		

B. Machine Learning Models and Parameters

Following is a list of all models and the values for the hyper-parameters search:

- Logistic Regression: no hyper-parameters, but solver was set to "lbfgs" and max.iter to 1000.
- Decision Tree: no hyper-parameters.
- Random Forest:
 - * min_samples_leaf: 1, 5, 10, and 20.
 - * n_estimators: 10, 50, and 100.
- Multinomial Naive Bayes: with parameter force_alpha set to True and hyper-parameter search done on:
 - * alpha: 1e-9, 0.05, 0.1, 0.15, 0.2, 1, and 100 for binary; 0.00001, 0.0001, 0.001, 0.1, 1, 10, 100, and 1000 for multiclass.
 - * fit_prior: True and False.
- Complement Naive Bayes: with parameter force_alpha set to True and hyper-parameter search done on:
 - * alpha: 1e-9, 0.05, 0.1, 0.15, 0.2, 1, and 100.
 - * fit_prior: True and False.
- Neural Network: with parameter max_iter set to 500 and hyper-parameter search done on:
 - * hidden_layer_sizes: one hidden layer with 10, 15, 20, and 30 nodes, and two hidden layers with 20, 25, 30, and 35 nodes each.
 - * batch_size: 1, 10, 50, 100 and 200.

The dataset is split and used 90% for training and 10% for testing.

C. Machine Learning Results

Figure 1. F1 scores pattern-matching and distance of words.

 $\textbf{Figure 2.} \ \ \textbf{Precision scores pattern-matching and distance of words}.$

 $\textbf{Figure 3.} \ \ \text{Recall scores pattern-matching and distance of words}.$

Table 3. F1 score differences with Random Guessing.

Feature	Pattern Matching	Distance	
Abusive ratio interval	98.5%	51.94%	
MFD ratio	96.64%	57.76%	
Polarization ratio interval	51.1%	19.95%	
Predominant emotion	-11.83%	-11.83%	
Predominant sentiment	18.75%	17.7%	
Valence ratio	50.85%	36.57%	

D. Prompt structure

<|begin_of_text|><|start_header_id|>system<|end_header_id|>@username
has the following personality profile:

- Openness: personality_label (Score: 0.XX)
- Conscientiousness: personality_label (Score: 0.XX)
- Openness: personality_label (Score: 0.XX)
- Extraversion: personality_label (Score: 0.XX)
- Agreeableness: personality_label (Score: 0.XX)
- Communication style: communication_style_list
- Personality traits: personality_trait_category

Qusername has engaged in a Twitter conversation. The last tweets from that conversation are:

- "tweet_text_1"
- "tweet_text_2"
- "tweet_text_3"
- "tweet_text_4"
- "tweet_text_5"

Conversation metrics:

- Abusive words: metric_label
- Polarization words: metric_label
- Predominant emotion: predominant_category_label
- Moral virtue words: metric_label
- Moral vice words: metric_label
- Valence positive words: metric_label
- Valence negative words: $metric_label$
- Predominant sentiment: predominant_category_label

<|eot_id|><|start_header_id|>user<|end_header_id|>PREDICTION_TASK<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>GROUND_TRUTH

Being PREDICTION_TASK one of the three following:

In one word, predict if @username's response to the conversation will have a High or Low amount of type_1_prediction words.

In one word, predict if @username's response to the conversation will have more type_2_prediction_category_1, more type_2_prediction_category_2, or Equal amount of type_2_prediction words. Your answer should be type_2_prediction_category_1, type_2_prediction_category_2, or Equal.

In one word, predict which type_3_prediction will have @username's response to the conversation. Your answer should be type_3_prediction_categories.

If the prompt corresponds to an example, then **GROUND_TRUTH** is form as the corresponding prediction label as explained on Section ??, followed by <|eot_id|>. If it is not an example, it is left empty.

Where:

- username: Twitter's username of the current user.
- personality_label: "High" if the personality score is greater than 0.5, "Low" otherwise.
- communication_style_list: list including all categories of Communication Styles and Communication Needs whose scores are greater than 0.5.
- personality_trait_category: "Rational" if rational category score is greater than 0.5, "Emotional" otherwise. it can be the case that there are less than five previous tweets.
- tweet_text_[1:5]: text of the previous five tweets to the current user's response.
- metric_label: "High" or "Low" following what is described on Section ??.
- predominant_category_label: name of the predominant category.
- type_1_prediction: "abusive" or "polarization".
- type_2_prediction: "moral" or "valence".
- type_2_prediction_category_1: "Virtue" or "Positive", which corresponds.
- type_2_prediction_category_2: "Vice" or "Negative", which corresponds.
- type_3_prediction: "sentiment" or "emotion".
- type_3_prediction_categories: a comma-separated list of all sentiment or emotion categories, with ", or" before the final item.

Zero-shot experiment prompts are built following the previous template and using the test dataset, with **GROUND_TRUTH** left empty. For the Few-shot experiments, a prompt is built and attached for each different prediction class using the training dataset and filling **GROUND_TRUTH**; then a prompt like the zero-shot experiments is built for the prediction, and attached at the end.

E. Large Language Models Results

Figure 4. Confusion matrices for Valence.

Figure 5. Confusion matrices for Abusive.

 $\textbf{Figure 6.} \ \ \text{Confusion matrices for Polarization}.$

 $\textbf{Figure 7.} \ \ \text{Confusion matrices for Emotion}.$

 $\textbf{Figure 8.} \ \ \text{Confusion matrices for Sentiment}.$

Figure 9. Confusion matrices for MFD.

Table 4. Comparison of Zero Shot and Few Shot performance for each prediction.

Prediction	Metric	Zero Shot	Few Shot
	Precision	0.0	0.2350
Abusive	Recall	0.0	0.7483
	F1	0.0	0.3577
	Precision	0.0	0.3841
Polarization	Recall	0.0	0.8187
	F1	0.0	0.5228
	Precision	0.0868	0.2672
Emotion (Micro)	Recall	0.0868	0.2672
, ,	F1	0.0868	0.2672
	Precision	0.1235	0.1471
Emotion (Macro)	Recall	0.1365	0.1636
, , ,	F1	0.0300	0.0969
	Precision	0.5725	0.5082
Emotion (Weighted)	Recall	0.0868	0.2672
, , ,	F1	0.0827	0.3252
	Precision	0.3915	0.4829
Sentiment (Micro)	Recall	0.3915	0.4829
` ′	F1	0.3915	0.4829
	Precision	0.4377	0.4251
Sentiment (Macro)	Recall	0.3571	0.3775
, ,	F1	0.2734	0.3469
	Precision	0.5081	0.4995
Sentiment (Weighted)	Recall	0.3915	0.4829
, - ,	F1	0.3270	0.4622
	Precision	0.2541	0.4337
MFD (Micro)	Recall	0.2541	0.4337
	F1	0.2541	0.4337
	Precision	0.2912	0.3410
MFD (Macro)	Recall	0.3283	0.3395
	F1	0.1611	0.3283
	Precision	0.4838	0.5100
MFD (Weighted)	Recall	0.2541	0.4337
	F1	0.1638	0.4582
	Precision	0.3558	0.3439
Valence (Micro)	Recall	0.3558	0.3439
	F1	0.3558	0.3439
	Precision	0.2410	0.3628
Valence (Macro)	Recall	0.3727	0.3666
	F1	0.2872	0.2952
	Precision	0.2436	0.3741
Valence (Weighted)	Recall	0.3558	0.3439
	F1	0.2842	0.2917