

Clínica de Tecnologia da Informação e Comunicação

Redes de Computadores

Prof. MSc. Jhonatan Geremias *jhonatan.geremias@pucpr.br*

Padrões da tecnologia Wifi-Fi

- Padrão 802.11n: consegue atingir uma velocidade de transferência de 300 Mbps;
 - Comparado as tecnologias anteriores (a,b,g);
 - Possui melhor alcance de sinal;
 - Seu sinal é mais estável;
 - Compatível com padrões anteriores;
 - Possui a tecnologia MIMO: permite ter múltiplas entradas e saídas para dados;
 - Com ela aumentamos a velocidade do WIFI, alcance e estabilidade.

Padrões da tecnologia Wifi-Fi

- Padrão 802.11ac: consegue atingir uma <u>velocidade de transferência de</u>
 1300Mbps;
 - Trabalha com faixa de <u>frequência de 5GHz;</u>
 - Trabalhando com menos interferências;
 - Oferece uma largura de canal maior, até 160 MHz contra 40 MHz;
 - Possui a tecnologia Beamforming:
 - Transmissão inteligente: foca o sinal do wifi em uma direção específica;
 - Onde um ou mais dispositivos estão conectados;
 - A transmissão entre smartphone e o roteador;
 - Tem uma qualidade melhor;
 - Menos suscetível a interferências;
 - Alcance ampliado.

Padrões da tecnologia Wifi-Fi

- Alguns roteadores têm a opção de escolher em qual padrão trabalhar;
- Outros possibilitam trabalhar em mais de um modo ao mesmo tempo.

Configurar melhor a rede Wi-Fi

- Utilizar as tecnologias mais recentes.
- Evite interferências de sinal;
- Configure o roteador para reiniciar de forma programada;
- Encontrar a posição ideal para o roteador;
- Alterar a frequência de transmissão para reduzir a interferência (2,4 GHz e 5,0 GHz);
- Melhorar a qualidade do sinal alterando o canal
 - Evitar a sobreposição de canais;
 - Programadas podem auxiliar no processo;
- Utilizar o QoS (Quality of Service) para controlar o tráfego de rede;
- Fortalecer a segurança da rede;
 - Utilizar senha forte aliada a um protocolo forte (WPA2);
 - Deixar o SSID oculto;

Arquitetura Internet (WAN)

A introdução do equipamento roteador determina a arquitetura WAN.

Quadro e Pacote

 Pacotes são transportados no campo de dados dos quadros. Os pacotes IP são definidos pelo tipo 0x800.

Endereço de Rede

 O agrupamento de computadores em rede permite reduzir a quantidade de informações na memória do roteador.

Conexão de Redes com Tecnologias Diferentes

O endereçamento dos quadros é local ao enlace e o endereçamento do pacote é

fim a fim.

Protocolo PPP

- O protocolo Ponto-a-Ponto (PPP (Point-to-Point Protocol));
- Foi desenvolvido e padronizado através da RFC 1661 (1993);
- Objetivo de transportar todo o tráfego entre 2 dispositivos de rede através de uma única conexão física;
- Usado no nível da camada de enlace de dados;
- Basicamente toda a internet é baseada nesse protocolo;
- Permite a conexão que há entre sua casa e o seu provedor de acesso à internet;
- Possui recursos que permitem a detecção de erros de transmissão.

Protocolo PPP

Endereços IP

- Endereço IPv4 público é atribuído como único globalmente;
- A limitação do uso de endereços IPv4 privados é que eles só podem ser usados por dispositivos que não precisam ser acessados da Internet;
- O endereço IPv4 de broadcast direcionado tem a função de enviar uma cópia do pacote de dados para todos os dispositivos na rede física.

Endereços IP's

- A principal motivação para a migração do sistema de rede do formato IPv4 para
 IPv6 é a necessidade de aumentar o número de endereços disponíveis;
- A notação decimal pontuada representa um endereço IPv4 como quatro grupos de oito bits, expressos em decimal e separados por um ponto;
- A máscara de rede IPV4 possui 32 bits, onde os bits "1" marcam o prefixo da rede e os bits "0" marcam o ponto de rede (host).

O que é IPv6?

O que é o IPv6

IPv4 e IPv6

■ IPv4:

- 2^32 = 4.294.967.296 endereços;
- Constituído por 32 bits;
- o Exemplo: 192.168.0.1;

■ IPv6:

- 2^128 = 340.282.366.920.938.463.463.374.607.431.768.211.456 endereços;
- o 340 undecilhões;
- A estrutura do IPv6 é baseado no IPv4;
- Constituído por 128 bits;
- Exemplo: FEDC:2D9D:DC28:7654:3210:FC57:D4C8:1FFF.

Loopback (Transmissão Local)

- Os pacotes IP com endereço de loopback não são enviados para camadas inferiores da pilha TCP/IP;
 - Tratados localmente na própria estação;
- Recomendação do IETF: 127.0.0.0/8 é reservado para loopback;

ARP (Address Resolution Protocol)

- O ARP faz a adaptação entre o Ethernet e o IP;
- Encapsulado diretamente dentro do Ethernet;
- Todo computador, ao ter sua pilha IP (re)iniciada, envia um ARP request para seu próprio endereço para detectar endereços duplicados.

ARP – Inundação de Broadcast

- O protocolo ARP utiliza mensagens em broadcast que tem alto impacto na carga total da rede;
- Para reduzir o tráfego total de ARP, os dispositivos que hospedam o protocolo IP utilizam uma cache, visível pelo comando: arp -a

```
C:\Users\Jhonatan>arp -a
Interface: 192.168.0.79 --- 0xc
                        Endereço físico
  Endereço IP
                                               Tipo
  192.168.0.1
                        00-22-b0-ca-0e-fd
                                               dinâmico
  192.168.0.85
                        ec-55-f9-8b-ba-72
                                               dinâmico
  192.168.0.255
                                               estático
                        ff-ff-ff-ff-ff
 224.N.N.22
                        01-00-5e-00-00-16
                                               estático
  224.0.0.252
                        01-00-5e-00-00-fc
                                               estático
 239.255.255.250
                        01-00-5e-7f-ff-fa
                                               estático
C:\Users\Jhonatan}_
```


ARP e Roteamento

- Roteadores respondem, mas não propagam broadcast;
- Isso implica que não é possível localizar o endereço MAC de algum computador situado do outro lado de um roteador.

intra-rede

inter-rede

Roteamento

- Comunicação Intra-Rede
 - O endereço físico de destino é os endereço MAC do computador de destino;

MAC	MAC	IP	IP	DADOS
DESTINO	ORIGEM	ORIGEM	DESTINO	

- Comunicação Inter-Redes
 - O endereço físico de destino é o endereço MAC do roteador ligado a mesma rede física que a estação transmissora.

MAC	MAC	IP	IP	DADOS
ROTEADOR	ORIGEM	ORIGEM	DESTINO	

Comunicação Inter-Redes

- O endereço IP de origem e de destino se mantém os mesmos durante todos os saltos de um pacote através de vários roteadores;
- O endereço MAC é modificado para endereçar os elementos participantes de cada salto.

Problemas de Conectividade

Problemas de conectividade de rede

- Conexões lentas;
- Perda ou nenhuma conexão;
- Conexão intermitente;

Possíveis Causas

- Erros de configuração local ou de rede;
- Configurações DNS incorretamente configuradas;
- Tabelas de roteamento ineficientemente configuradas ou falhas do roteador;
- Cabeamento inferior, danificado ou desconectado;
- Servidores sobrecarregados;
- Congestionamento da rede;
- Servidor ou falhas de energia.

- Com o teste de velocidade você consegue saber o desempenho e qualidade da sua conexão.
 - Verifique a velocidade tanto do download como também upload;
 - Certificar que a velocidade está de acordo com a velocidade contratada;
 - As operadores de serviço são obrigadas a fornecer no mínimo 80% da velocidade que foi contratada;
 - O ideal é realizar os teste diretamente pelo site da ANATEL:

https://www.brasilbandalarga.com.br/bbl/

Cla	ro	05/10/202	21 16:16:19
Download 51.83 Mbps	Upload 8.55 Mbps	Latência Jitter Perda IP Região Servidor Região Teste	24 ms 50 ms 0 % 191.177.185.100 Claro - Curitiba- PR Paraná

Erro de Conectividade - Windows

- Verificar se algum programa não está provocando instabilidade na conexão;
 - Desabilita todos os programa de terceiros para uma inicialização limpa.
- Para inicialização limpa siga os passos abaixo:
 - 1. Na Área de Trabalho, pressione simultaneamente as teclas Windows + R para abrir o Executar;
 - 2. No Executar digite MSCONFIG e clique em OK para abrir a Configuração do Sistema;
 - 3. Na guia Serviços, assinale a opção Ocultar todos serviços Microsoft e clique em Desativar Tudo;
 - 4. Clique em Aplicar e em OK;
 - 5. Reinicie o computador.

Erro de Conectividade - Windows

- Redefinir as configurações de rede do computador:
 - 1. Digite CMD na barra de pesquisa;
 - 2. Clique com o botão direito do Mouse sobre a opção Prompt de Comando;
 - 3. Clique na opção Executar como Administrador;
 - 4. Na tela **Prompt de Comando**, execute os comandos descritos abaixo, pressionando Enter ao final de cada linha:

Comando:

- ipconfig /release permite liberar o endereço IP do adaptador especificado
- ipconfig /renew permite renovar um IP dinâmico no servidor DHCP
- ipconfig /flushdns permite limpar o cache de resolução do servidor DNS
- ipconfig /registerdns atualiza todas as concessões DHCP e torna a registrar os nomes DNS
- nbtstat -rr libera e atualiza nomes NetBIOS para o computador local que é registrado com servidores WINS.

Redefinir a Configuração de Rede - Windows

- Redefinir totalmente as configurações de rede do Windows:
 - 1. Digite CMD na barra de pesquisa;
 - 2. Clique com o botão direito do Mouse sobre a opção Prompt de Comando;
 - 3. Clique na opção Executar como Administrador;
 - 4. Na tela **Prompt de Comando**, execute os comandos descritos abaixo, pressionando Enter ao final de cada linha:

Comando:

- netsh int ip reset all reescreve as chaves do registro usadas pelo TCP/IP.
- O comando reset reescreve as duas chaves do Registro a seguir:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
SYSTEM\CurrentControlSet\Services\DHCP\Parameters\

• netsh winsock reset – permite apagara toda configuração de rede do Windows.

Configuração de rede - Linux

- Configurar o DNS (resolv.conf);
- Configurar o hostname (/etc/hosts);
- Configurar o IP da máquina;

Comando:

- Problema de resolução de nomes
- vim /etc/resolv.conf
- Adicionar as entradas no servidor DNS

nameserver 8.8.8.8

nameserver 8.8.4.4

Adicionado o servidor DNS do Google, você pode adicionar um DNS

Configuração do DNS - Linux

- Configurar o DNS (resolv.conf);
- Configurar o hostname (/etc/hosts);

Comando:

- Problema de resolução de nomes
- vim /etc/resolv.conf
- Adicionar as entradas no servidor DNS (adicionando DNS do Google)

nameserver 8.8.8.8

nameserver 8.8.4.4

- Obs.: Você pode adicionar também o IP de outros servidores de DNS conhecido;
- Adicionar um entrada de nome na própria máquina;
- vim /etc/hosts

10.32.1.22 zeus zeus.ppgia.pucpr.br

Configuração do DNS – Linux (Ubuntu)

Configuração da interface de rede, IP estático:

/etc/network/interfaces

Comando:

- Configurando IP estático
- vim /etc/network/interfaces

auto eth0

iface eth0 inet static

address 10.32.1.22

netmask 255.255.255.0

network 10.32.1.0

broadcast 10.32.1.255

gateway 10.32.1.1

sudo service restart networking

netplan

Comando:

- Configurando IP estático
- sudo vim /etc/netplan/01-netcfg.yaml

enp0s8:

dhcp4: no

dhcp6: no

addresses: [10.32.1.22/24,]

gateway4: 10.32.1.1

nameservers:

addresses: [8.8.8.8, 8.8.4.4]

sudo netplan apply

Obrigado!

Jhonatan Geremias

Jhonatan.geremias@pucpr.br

