МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе№2 по дисциплине «Организация ЭВМ и систем» Тема: Изучение режимов адресации и формирования исполнительного адреса.

Студент гр. 1303	Насонов Я. К.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Изучить работу с режимами адресации на языке программирования Ассемблер.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

Выполнение работы

- 1. У преподавателя получен вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и свои данные занесены вместо значений, указанных в приведенной ниже программе.
- 2. Программа протранслирована с созданием файла диагностических сообщений; обнаруженные ошибки объяснены и закомментированы соответствующие операторы в тексте программы.

```
source _lab2.asm(41): error A2502: Improper operand type mov mem3,[bx]
```

Машинные команды не могут работать одновременно с двумя операндами, находящимися в оперативной памяти, то есть в команде только 1 операнд может указывать на ячейку памяти, другой операнд должен быть либо регистром, либо непосредственным значением.

```
source _ lab2.asm(43): warning A4001: Extra characters on line 7 Лишний символ. source _ lab2.asm(49): warning A4031: Operand types must match mov cx,vec2[di]
```

Разные типы операндов, cx – слово (2 байта), а vec2[di] – размерность 1 байт

```
source _ lab2.asm(53): warning A4031: Operand types must match mov cx,matr[bx][di]
```

```
source _ lab2.asm(54): error A2055: Illegal register value mov ax,matr[bx*4][di]
```

В непосредственной адресации с базированием и индексированием для вычисления исполнительного адреса берется сумма базового и индексного регистра, к которым добавляется непосредственно фигурирующее в команде смещение. Там не фигурирует умножение.

```
source _ lab2.asm(73): error A2046: Multiple base register mov ax,matr[bp+bx]
```

В косвенной адресации с индексированием исполнительный адрес берется в виде суммы адресов, находящихся в базовом и индексном регистрах, а в данной строке оба регистра базовые.

```
source _ lab2.asm(74): error A2047: Multiple index register mov ax,matr[bp+di+si]
```

В непосредственной адресации с базированием и индексированием берется сумма базового и индексного регистра, к которым добавляется непосредственно фигурирующее в команде смещение, а в данной строке фигурируют 2 индексных регистра и 1 базовый.

```
source _ lab2.asm(81): error A2006: Phase error between passes Main ENDP
```

Ошибка говорит о том, что в функции Маіп допущены ошибки.

3. Снова протранслирована программа и скомпонован загрузочный модуль.

Трансляция программы после исправления ошибок

```
C:\>masm LAB2.ASM
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [LAB2.OBJ]:
Source listing [NUL.LST]:
Cross-reference [NUL.CRF]:

49894 + 459416 Bytes symbol space free

O Warning Errors
O Severe Errors

C:\>
```

4. Программа выполнена в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.

Процесс выполнения программы

Адрес	Символический	16-ричный	Изменяемые данные	
команды	код команды	код команды	до	после
0000	PUSH DS	1E	IP = 0000	IP = 0001
			SP=0018	SP=0016
			STACK $(+0) = 0000$	STACK $(+0) = 19F5$
0001	SUB AX, AX	2BCO	IP = 0001	IP = 0003
			AX=0000	AX=0000
0003	PUSH AX	50	IP = 0003	IP = 0004
			SP=0016	SP=0014
			STACK (+0) = 19F5	STACK $(+0) = 0000$
			STACK $(+2) = 0000$	STACK (+2) = 19F5
0004	MOV AX, 1A07	B8071A	IP = 0004	IP = 0007
			AX = 0000	AX = 1A07
0007	MOV DS, AX	8ED8	IP = 0007	IP = 0009
			DS = 19F5	DS = 1A07
0009	MOV AX, 01F4	B8F401	IP = 0009	IP = 000C
			AX = 1A07	AX = 01F4
0000	MOVCVAV	9DC9	IP = 000C	IP = 000E
000C	MOV CX,AX	8BC8	CX = 00B0	CX = 01F4
000E	MOV DI 24	D224	IP = 000E	IP = 0010
000E	MOV BL,24	B324	BX = 0000	BX = 0024
0010	MOV BH,CE	B7CE	IP = 0010	IP = 0012

			BX = 0024	BX = CE24
0012	MOV [0002], FFCE	C7060200C EFF	IP = 0012	IP = 0018
0018	0018 MOV BX, 0006	BB0600	IP = 0018	IP = 001B
			BX = CE24	BX = 0006
001B	MOV [0000], AX	A30000	IP = 001B	IP = 001E
001E	MOV AL, [BX]	8A07	IP = 001E	IP = 0020
OOIL	WIE VIE, [BIT]	01107	AX = 01F4	AX = 011F
0020	MOV AL,	8A4703	IP = 0020	IP = 0023
0020	[BX+03]	0114703	AX = 011F	AX = 0122
0023	0023 MOV CX, [BX+03]	8B4F03	IP = 0023	IP = 0026
0023			CX = 01F4	CX = 2622
0026	0026 MOV DI, 0002	BF0200	IP = 0026	IP = 0029
0020			DI = 0002	DI = 0002
0020	MOV AL,	8A850E00	IP = 0029	IP = 002D
0029	0029 [000E+DI]		AX = 012	AX = 01CE
002D	002D MOV BX, 0003	BB0300	IP = 002D	IP = 0030
002D			BX = 0006	BX = 0003
0030	MOV AL,	8A811600	IP = 0030	IP = 0034
0030	[0016+BX+DI]		AX = 01CE	AX = 01FF
0034	MOV AX, 1A07	B8071A	IP = 0034	IP = 0037
0034	0034 WOV AX, 1A07		AX = 01FF	AX = 1A07
0037	0037 MOV ES, AX	8EC0	IP = 0037	IP = 0039
0037			ES = 19F5	ES = 1A07
0039	MOV AX, ES:	268B07	IP = 0039	IP = 003C
	[BX]		AX = 1A07	AX = 00FF
003C	MOV AX, 0000	B80000	IP = 003C	IP = 003F

			AX = 00FF	AX = 0000
003F MOV ES, AX	MOVECAY	8EC0	IP= 003F	IP= 0041
	MOV ES, AX		ES = 1A07	ES= 0000
			IP = 0041	IP = 0042
		1E	SP = 0014	SP = 0012
0041	PUSH DS		STACK $(+0) = 0000$	STACK $(+0) = 1A07$
			STACK (+2) =19F5	STACK (+2) = 0000
			STACK $(+4) = 0000$	STACK (+4) = 19F5
			IP = 0042	IP = 0043
			ES = 0000	ES = 1A07
0042 POP ES		SP = 0012	SP = 0014	
	POPES	07	STACK $(+0) = 1A07$	STACK (+0) = 0000
		STACK $(+2) = 0000$	STACK (+2) = 19F5	
			STACK (+4) =19F5	STACK (+4) = 0000
0042	MOV CX, ES:	268B4FFF	IP = 0043	IP= 0047
1 10043	[BX—01]		CX = 2622	CX= FFCE
0047 XCHG AX, C		91	IP=0047	IP=0048
	XCHG AX, CX		AX = 0000	AX = FFCE
			CX = FFCE	CX = 0000
0049	MOV DI 0002	BF0200	IP = 0048	IP = 004B
0048 MOV DI, 0002	MO V DI, 0002		DI=0002	DI=0002
004B	MOV ES: [BX + DI], AX	268901	IP = 004B	IP = 004E
0045	MOV DD CD	8BEC	IP = 004E	IP = 0050
004E	MOV BP, SP		BP = 0010	BP = 0014
0050	DITCH [0000]	EE270000	IP = 0050	IP = 0054
0050 PUSH	PUSH [0000]	FF360000	SP = 0014	SP = 0012

	1	1	¥	
			STACK $(+0) = 0000$	STACK $(+0) = 01F4$
			STACK (+2) = 19F5	STACK $(+2) = 0000$
			STACK $(+4) = 0000$	STACK (+4) =19F5
			IP = 0054	IP = 0058
		FF360200	SP = 0012	SP = 0010
0054	PUSH [0002]		STACK $(+0) = 01F4$	STACK (+0) = FFCE
0034	1 0511 [0002]		STACK $(+2) = 0000$	STACK $(+2) = 01F4$
			STACK (+4) = 19F5	STACK $(+4) = 0000$
			STACK $(+6) = 0000$	STACK $(+6) = 19F5$
0050	0070 MOVEDD CD	8BEC	IP = 0058	IP = 005A
0058 MOV BP, SP	MOV BP, SP		BP = 0014	BP = 0010
005 4	MOV DX,	8B560	IP = 005A	IP = 005D
003A	005A [BP+02]		DX = 01F4	DX = 01F4
			IP = 005D	IP = FFCE
		SP = 0010	SP = 0016	
		CS =1A0A	CS = 01F4	
005D	RET Far 0002	CA0200	STACK (+0) = FFCE	STACK $(+0) = 19F5$
			STACK $(+2) = 01F4$	STACK $(+2) = 0000$
			STACK (+4) = 0000	STACK $(+4) = 0000$
			STACK (+6) = 19F5	STACK $(+6) = 0000$

Выводы

В ходе выполнения лабораторной работы были получены основные навыки работы с режимами адресации на языке программирования Ассемблер.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lab2.asm

```
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?); word - 2 байта
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0 ; word - 2 байта
mem2 DW 0
mem3 DW 0
vec1 DB 31,32,33,34,38,37,36,35 ; byte - 1 байт
vec2 DB 50,60,-50,-60,70,80,-70,-80
matr DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
push DS; push data segment
sub AX, AX
push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax,n1
mov cx,ax
mov bl,EOL
mov bh, n2
; Прямая адресация
mov mem2,n2
mov bx, OFFSET vec1
mov mem1,ax
; Косвенная адресация
```

```
mov al,[bx]
; нельзя работать с операндами,
; оба из которых находятся в оперативной памяти
;mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx,3[bx]
; Индексная адресация
mov di, ind ; destination index
mov al, vec2[di]
; cx - слово (2 bytes), vec2[di] - 1 byte
;mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al,matr[bx][di]
; cx - word (2 bytes), matr[bx][di] - byte
;mov cx,matr[bx][di]
; в непосредственной адресации с базированием
; и индексированием берётся сумма базового и
; индексного регистра, к ним добавляется смещение, но
; умножение там не фигурирует
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
; ---- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
; в косвенной адресации с с индексированием адрес
; берётся в виде суммы адресов базового и индексного
; регистров, но тут оба регистра базовые
;mov ax,matr[bp+bx]
```

```
; 2 индексных и 1 базовый регистр, должны быть ; базовый и индексный регистры ;mov ax,matr[bp+di+si] ; Использование сегмента стека push mem1 push mem2 mov bp,sp mov dx,[bp]+2 ret 2

Main ENDP CODE ENDS
```

END Main