1 Complessità del calcolo

Caso pessimo

$$T_M(n) = \max \{T_M(x), |x| = n\}$$

 $S_M(n) = \max \{T_M(x), |x| = n\}$

Notazioni

- O-grande: limite asintotico superiore. Data g(n), $O(g(n)) = \{f(n) \mid \exists c, n_0 \ (c, n_0 > 0 : \forall n \geq n_0 0 \leq f(n) \leq cg(n))\}$
- Ω -grande: limite asintotico inferiore. Data $g(n), \Omega(g(n)) = \{f(n) \mid \exists c, n_0 \ (c, n_0 > 0 : \forall n \geq n_0 0 \leq c g(n) \leq f(n))\}$
- Θ -grande: limite asintotico sia superiore sia inferiore. Data g(n), $\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2, n_0 \ (c_1, c_2, n_0 > 0 : \forall n \geq n_0 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n))\}$

2 Teoremi di accelererazione lineare

- Se L è accettato da una MT M a k nastri con complessità $S_M(n)$, per ogni $c>0 (c\in R)$ si può costruire una MT M' a k nastri con complessità $S_{M'}(n)< cS_M(n)$
- Se L è accettato da una MT M a k nastri con complessità $S_M(n)$, si può costruire una MT M' a 1 nastro (non a nastro singolo) con complessità $S_{M'}(n) = S_M(n)$
- Se L è accettato da una MT M a k nastri con complessità $S_M(n)$, per ogni $c>0 (c\in R)$ si può costruire una MT M' a 1 nastro con complessità $S_{M'}(n)< cS_M(n)$
- Se L è accettato da una MT M a k nastri con complessità $T_M(n)$, per ogni $c>0 (c\in R)$ si può costruire una MT M' (a k+1 nastri) con complessità $T_{M'}(n)=\max\{n+1,cT_M(n)\}$

Conseguenze pratiche

- Lo schema di dimostrazione è valido per qualsiasi tipo di modello di calcolo, quindi anche per calcolatori reali (es.: aumentare il parallelismo fisico (16bit → 32bit → ...)).
- Aumentando la potenza di calcolo in termini di risorse disponibili si può aumentare la velocità di esecuzione, ma il miglioramento è al più lineare.
- Miglioramenti di grandezza superiore possono essere ottenuti solo cambiando algoritmo e non in modo automatico.

3 Macchina RAM

Comando	Operazione	Complessità
LOAD X	M[O] = M[X]	
LOAD= X	M[O] = X	
LOAD* X	M[O] = M[M[X]]	