Cec-DPOP Example

Constraint Graph

Brc-DPOP

- 1. $M_{21} \times M_{11} = M_{21}$
- 2. $M_{52} \times M_{21} = M_{51}$
- 3. $M_{65} \times M_{51} = M_{61}$
- 4. $M_{36} \times M_{61} = M_{31}$

O(e) messages exchanged to establish path

Fig: Brc-DPOP Pseudo Tree

Cec-DPOP

1.
$$M_{21} \times M_{11} = M_{21}$$

2.
$$M_{52} \times M_{21} = M_{51}$$

3.
$$M_{31} \times M_{11} = M_{31}$$

4.
$$M_{63} \times M_{31} = M_{61}$$

5.
$$M_{51} \times M_{16} = M_{56}$$

O(loge) messages exchanged to establish path

Fig: Cec-DPOP Pseudo Tree

Conclusion

- Cross edge consistency does the same work as branch consistency, but faster
- Lower tree height resulting in faster (with parallelism) DPOP Util and Value propagation