WHAT IS CLAIMED IS:

1	1. A method of forming a silicon oxide layer over a substrate
2	disposed in a substrate processing chamber, the method comprising:
3	flowing a process gas a silicon-containing gas, an oxygen-containing gas
4	and a fluorine-containing gas that is different from the silicon-containing gas into the
5	substrate processing chamber;
6	depositing the silicon oxide layer over the substrate by forming a high
7	density plasma from the process gas and biasing the plasma towards the substrate to
8	generate a sputter etching component simultaneous with film deposition, wherein the
9	substrate is heated to a temperature of at least 500°C during deposition of the silicon
10	oxide layer and wherein the deposited silicon oxide layer has a fluorine content of 1.0
11	at. % or less as measured by using Secondary Ion Mass Spectrometry (SIMS)
12	techniques.
1	2. The method of claim 1 wherein the sputtering element of the
2	deposition process slows deposition on corners of raised surfaces the silicon oxide layer
3	is deposited over thereby contributing to an increased gapfill capability of the silicon
4	oxide layer.
1	3. The method of claim 1 wherein the substrate is heated to a
2	temperature of between 650-750°C during deposition of the silicon oxide layer and the
3	silicon oxide layer is used to at least partially fill a trench etched as part of a shallow
4	trench isolation structure.
1	4. The method of claim 1 wherein said silicon oxide layer has a
2	fluorine content of 0.6 at. % or less.
1	5. The method of claim 4 wherein the silicon-containing gas
2	comprises SiH ₄ .
1	6. The method of claim 5 wherein the fluorine-containing gas
2	comprises NF ₃ .
1	7. The method of claim 6 wherein the oxygen-containing source
2	comprises O2

1	8. The method of claim 6 wherein the silicon oxide layer is an
2	undoped silicate glass layer (USG).
1	9. The method of claim 6 wherein the silicon oxide layer is doped
2	with phosphorus and the process gas further comprises a phosphorus-containing gas.
1	10. The method of claim 9 wherein said phosphorus-containing gas
2	comprises PH ₃ .
1	11. The method of claim 1 wherein the process gas further comprises
2	an inert gas.
1	12. The method of claim 11 wherein the inert gas comprises argon.
1	13. The method of claim 1 further comprising forming a thin layer of
2	silicon oxide material from a process gas that does not include the fluorine-containing
3	gas prior to introducing the fluorine-containing gas into the process gas.
1	14. The method of claim 1 wherein the silicon-containing gas is
2	introduced into the chamber from gas nozzles surrounding the substrate and from above
3	the substrate.
1	15. The method of claim 14 wherein the oxygen-containing gas is
2	introduced only from nozzles surrounding the substrate.
1	16. The method of claim 15 wherein the fluorine-containing gas is
2	introduced only from nozzles surrounding the substrate.
	17
1	17. A method of forming a silicon oxide layer over a substrate
2	disposed in a substrate processing chamber, the method comprising:
3	flowing a process gas a silicon-containing gas, an oxygen-containing gas
4	and a fluorine-containing gas that is different from the silicon-containing gas into the
5	substrate processing chamber;
6	depositing the silicon oxide layer over the substrate by forming a high
7	density plasma from the process gas and biasing the plasma towards the substrate to

generate a sputter etching component simultaneous with film deposition, wherein the

substrate is heated to a temperature of at least 650°C during deposition of the silicon

8 9

- 10 oxide layer and wherein the deposited silicon oxide layer has a fluorine content of 0.6
- at. % or less as measured by using Secondary Ion Mass Spectrometry (SIMS)
- 12 techniques.
- 1 18. The method of claim 17 wherein the sputtering element of the
- 2 deposition process slows deposition on corners of raised surfaces the silicon oxide layer
- 3 is deposited over thereby contributing to an increased gapfill capability of the silicon
- 4 oxide layer.
- 1 19. The method of claim 18 wherein the silicon oxide layer is used to
- 2 at least partially fill a trench etched as part of a shallow trench isolation structure.
- 1 20. The method of claim 17 wherein the silicon-containing gas
- 2 comprises SiH₄.
- 1 21. The method of claim 20 wherein the fluorine-containing gas
- 2 comprises NF₃.
- 1 22. The method of claim 21 wherein the oxygen-containing source
- 2 comprises O₂.
- 1 23. The method of claim 17 wherein the silicon oxide layer is an
- 2 undoped silicate glass layer (USG).
- 1 24. The method of claim 17 wherein the silicon oxide layer is doped
- 2 with phosphorus and the process gas further comprises a phosphorus-containing gas.
- 1 25. The method of claim 24 wherein said phosphorus-containing gas
- 2 comprises PH₃.
- 1 26. The method of claim 21 wherein the process gas further
- 2 comprises an inert gas.
- 1 27. The method of claim 26 wherein the inert gas comprises argon.
- 1 28. The method of claim 17 further comprising forming a thin layer
- 2 of silicon oxide material from a process gas that does not include the

- 3 fluorine-containing gas prior to introducing the fluorine-containing gas into the process
- 4 gas.
- 1 29. The method of claim 17 wherein the silicon-containing gas is
- 2 introduced into the chamber from gas nozzles surrounding the substrate and from above
- 3 the substrate.
- 1 30. The method of claim 17 wherein the oxygen-containing gas is
- 2 introduced only from nozzles surrounding the substrate.
- 1 31. The method of claim 17 wherein the fluorine-containing gas is
- 2 introduced only from nozzles surrounding the substrate.