Ballasted Polar:

with the well known equation for lift:

$$mg = \frac{1}{2} \text{ rho S V}^2 C_a$$
 (1)

and

$$o = m_b/m \tag{2}$$

o = ballast overload

 $m_b = ballasted mass$

m = unballasted mass as from reference polar

we solve eq. (1) for V

$$V = sqrt(m g / \frac{1}{2} rho S Ca)$$

as we can consider everything except mass m as constant in the above expression we can conclude:

$$V_{b} / V = sqrt(m_{b} / m)$$
 (2)

or

$$V = V_{b} / sqrt(o) V$$
 (3)

with the second order approximation for sink:

$$Sink(V) = a0 + a1 V + a2 V^{2}$$
 (4)

and (3) in (4), we get for the ballasted sink:

$$Sink_b(V_b) = a0 + a1 \frac{1}{sqrt(o)} V_b + a2 (\frac{1}{sqrt(o)} V_b)^2$$

or simplified for direct coefficient modulation:

$$Sink_b(V_b) = a0 + (a1 / sqrt(o)) V_b + (a2 / o) V_b^2$$

A quick check of the new formula using polar of Nimbus 2 might explain my creepy suspicions flying bit too slow with my watered glider:

FB	S2F (old formula)	S2F (new formula)
30	125	125
35	133	135
40	140	144
45	147	153
50	153	162