

=> FILE REG

FILE 'REGISTRY' ENTERED AT 12:12:44 ON 15 SEP 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 American Chemical Society (ACS)

=> DISPLAY HISTORY FULL L1-

FILE 'HCAPLUS' ENTERED AT 10:56:41 ON 15 SEP 2006
L1 422 SEA KOMIYA T?/AU
L2 51019 SEA (SOLID? OR POLYM?) (2A) ELECTROLY?
L3 3 SEA L1 AND L2
SEL L3 3 RN

FILE 'REGISTRY' ENTERED AT 11:00:11 ON 15 SEP 2006
L4 20 SEA (110-86-1/BI OR 119-65-3/BI OR 120-72-9/BI OR
L5 15 SEA L4 AND N/ELS
E PHOSPHORIC ACID/CN
L6 1 SEA "PHOSPHORIC ACID"/CN
E SULFURIC ACID/CN
L7 1 SEA "SULFURIC ACID"/CN

FILE 'HCA' ENTERED AT 11:04:47 ON 15 SEP 2006
L8 50519 SEA (SOLID? OR POLYM?) (2A) ELECTROLY? OR (PROTON? OR H OR
H2 OR HYDROGEN#) (3A) (COND# OR CONDUCT?) (3A) (SOLID? OR
POLYM?)
L9 145899 SEA L6 OR (PHOSPHORIC# OR ORTHOPHOSPHORIC#) (2A) ACID# OR
H3PO4
L10 426147 SEA L7 OR (SULFURIC# OR SULPHURIC# OR SULFERIC# OR
SULPHERIC#) (2A) ACID# OR H2SO4

FILE 'REGISTRY' ENTERED AT 11:09:19 ON 15 SEP 2006
E DIAZINE/CN

FILE 'HCA' ENTERED AT 11:11:39 ON 15 SEP 2006
L11 115909 SEA L5
L12 1129 SEA L11 AND L8
L13 92 SEA L12 AND L9
L14 125 SEA L12 AND L10

FILE 'REGISTRY' ENTERED AT 11:12:25 ON 15 SEP 2006
E HYDROGEN/CN
L15 1 SEA HYDROGEN/CN
E OXYGEN/CN
L16 1 SEA OXYGEN/CN

FILE 'LCA' ENTERED AT 11:13:47 ON 15 SEP 2006

L17 32138 SEA (PRODUC? OR PROD# OR GENERAT? OR MANUF? OR MFR# OR CREAT? OR FORM## OR FORMING# OR FORMAT? OR MAKE# OR MADE# OR MAKING# OR FABRICAT? OR SYNTHESI? OR PREPAR? OR PREP#)/BI,AB

FILE 'HCA' ENTERED AT 11:22:25 ON 15 SEP 2006

L18 272080 SEA L15/P OR (PRODUC? OR PROD# OR GENERAT? OR MANUF? OR MFR# OR CREAT? OR FORM## OR FORMING# OR FORMAT? OR MAKE# OR MADE# OR MAKING# OR FABRICAT? OR SYNTHESI? OR PREPAR? OR PREP#) (2A) (L15 OR H OR H2 OR HYDROGEN#)

L19 226241 SEA L16/P OR (PRODUC? OR PROD# OR GENERAT? OR MANUF? OR MFR# OR CREAT? OR FORM## OR FORMING# OR FORMAT? OR MAKE# OR MADE# OR MAKING# OR FABRICAT? OR SYNTHESI? OR PREPAR? OR PREP#) (2A) (L16 OR O OR O2 OR OXYGEN#)

L20 11 SEA (L13 OR L14) AND L18

L21 4 SEA (L13 OR L14) AND L19

FILE 'REGISTRY' ENTERED AT 11:25:00 ON 15 SEP 2006

E POLYETHYLENEIMINE/CN
E POLYETHYLENE IMINE/CN

FILE 'HCA' ENTERED AT 11:27:06 ON 15 SEP 2006

L23 1387 SEA POLYETHYLENEIMINE#/IT
D L23 1000-1005 KWIC

FILE 'REGISTRY' ENTERED AT 11:29:12 ON 15 SEP 2006

L24 1 SEA 9002-98-6

FILE 'HCA' ENTERED AT 11:31:38 ON 15 SEP 2006

L25 12118 SEA L24 OR POLYETHYLENEIMINE# OR POLYETHYLENE# (A) IMINE#
L26 37 SEA L25 AND (L9 OR L10) AND L8
L27 6 SEA L26 AND (L18 OR L19)

FILE 'REGISTRY' ENTERED AT 11:34:00 ON 15 SEP 2006

E POLYVINYIMIDAZOLE/CN
E POLYVINY IMIDAZOLE/CN
E VINYL IMIDAZOLE POLYMER/CN
E VINYL IMIDAZOLE HOMOPOLYMER/CN
E VINYL IMIDAZOLE/CN
E VINYLIMIDAZOLE/CN
E VINYLIMIDAZOLE HOMOPOLYMER/CN
L28 1 SEA "VINYLIMIDAZOLE HOMOPOLYMER"/CN
E VINYL PYRAZOLE HOMOPOLYMER/CN
E VINYL PYRAZOLE POLYMER/CN
E VINYL PYRAZOLE/CN
E VINYL PYRAZOLE/CN

FILE 'HCA' ENTERED AT 11:36:40 ON 15 SEP 2006

L29 4 SEA POLYVINYL PYRAZOLE#
D L29 1-4 KWIC

FILE 'REGISTRY' ENTERED AT 11:37:54 ON 15 SEP 2006
L30 1 SEA 25823-41-0
E POLYVINYL PYRIDINE/CN
E VINYL PYRIDINE POLYMER/CN
L31 1 SEA "VINYL PYRIDINE POLYMER"/CN

FILE 'HCA' ENTERED AT 11:39:01 ON 15 SEP 2006
L32 31 SEA L28
L33 10 SEA L30
L34 1071 SEA L31
L35 1 SEA (L32 OR L33) AND L8
L36 48 SEA L34 AND L8
L37 12 SEA L36 AND (L9 OR L10)
L38 3 SEA L37 AND (L18 OR L19)

FILE 'REGISTRY' ENTERED AT 11:41:32 ON 15 SEP 2006
L39 1 SEA 25233-30-1
L40 1 SEA 32109-42-5
L41 4 POLYLINK L40

FILE 'HCA' ENTERED AT 11:51:45 ON 15 SEP 2006
L42 78 SEA L40 OR L41
L43 34 SEA L42 AND L8
L44 17 SEA L43 AND (L9 OR L10)

FILE 'REGISTRY' ENTERED AT 11:56:02 ON 15 SEP 2006
L45 8 SEA L5 AND PMS/CI
D L45 1-8 IDE
SEL L45 1,2 RN
L46 2 SEA (131714-35-7/BI OR 50641-39-9/BI)

FILE 'HCA' ENTERED AT 11:59:08 ON 15 SEP 2006
L47 15 SEA L46
L48 10937 SEA L39
L49 1 SEA L47 AND L8
L50 110 SEA L48 AND L8 AND (L9 OR L10)
L51 7 SEA L50 AND L18
L52 3 SEA L50 AND L19

FILE 'REGISTRY' ENTERED AT 12:04:01 ON 15 SEP 2006
L53 10881 SEA (C(L)H(L)N)/ELS (L) 3/ELC.SUB AND PMS/CI

FILE 'HCA' ENTERED AT 12:04:55 ON 15 SEP 2006
L54 134166 SEA L53
L55 321 SEA L54 AND L8 AND (L9 OR L10)

L56 15 SEA L55 AND L18
L57 9 SEA L55 AND L19
L58 14 SEA L20 OR L21
L59 11 SEA L58 AND 1840-2002/PY,PRY
L60 6 SEA L27 AND 1840-2002/PY,PRY
L61 12 SEA L35 OR L38 OR L37
L62 8 SEA L61 AND 1840-2002/PY,PRY
L63 5 SEA L44 AND 1840-2002/PY,PRY
L64 9 SEA L49 OR L51 OR L52
L65 6 SEA L64 AND 1840-2002/PY,PRY
L66 23 SEA L56 OR L57
L67 12 SEA L66 NOT (L59 OR L60 OR L62 OR L63 OR L65)
L68 5 SEA L67 AND 1840-2002/PY,PRY

=> FILE HCA
FILE 'HCA' ENTERED AT 12:12:59 ON 15 SEP 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

=> D L59 1-11 CBIB ABS HITSTR HITIND

L59 ANSWER 1 OF 11 HCA COPYRIGHT 2006 ACS on STN
140:96885 **Proton conductive solid**

polymer electrolyte for electrochemical cell.

Komiya, Teruaki (Honda Giken Kabushiki Kaisha, Japan). Eur. Pat.
Appl. EP 1381107 A2 20040114, 14 pp. DESIGNATED STATES: R: AT, BE,
CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT,
LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK. (English). CODEN:
EPXXDW. APPLICATION: EP 2003-254383 20030710. PRIORITY: JP
2002-201718 20020710.

AB A material such as imidazole (nitrogen-contg. heterocyclic compd.), which has at least one lone pair, is dispersed in a basic solid polymer such as polybenzimidazole. The mole no. of imidazole per g of polybenzimidazole is less than 0.0014 mol, preferably less than 0.0006 mol. The basic solid polymer is impregnated with an acidic inorg. liq. such as **phosphoric acid** and **sulfuric acid** to prep. a **proton conductive solid polymer electrolyte**.

IT 91-22-5, Quinoline, uses 110-86-1, Pyridine, uses
119-65-3, IsoQuinoline 120-72-9, Indole, uses
120-73-0, Purine 288-13-1, Pyrazole
288-32-4, Imidazole, uses 9002-98-6

9003-47-8, Polyvinylpyridine 25232-42-2,
Polyvinylimidazole 25233-30-1 25823-41-0,
Poly(1-vinylpyrazole) 32109-42-5, Poly(1H-benzimidazole-
2,5-diyl) 50641-39-9 131714-35-7
(proton conductive solid
polymer electrolyte for electrochem. cell)

RN 91-22-5 HCA

CN Quinoline (8CI, 9CI) (CA INDEX NAME)

RN 110-86-1 HCA

CN Pyridine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 119-65-3 HCA

CN Isoquinoline (6CI, 8CI, 9CI) (CA INDEX NAME)

RN 120-72-9 HCA

CN 1H-Indole (9CI) (CA INDEX NAME)

RN 120-73-0 HCA

CN 1H-Purine (9CI) (CA INDEX NAME)

RN 288-13-1 HCA
CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCA
CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 9002-98-6 HCA
CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
CMF C2 H5 N

RN 9003-47-8 HCA
CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
CMF C7 H7 N
CCI IDS

D1- CH=CH₂

RN 25232-42-2 HCA

CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5

CMF C5 H6 N2

RN 25233-30-1 HCA

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

RN 25823-41-0 HCA

CN 1H-Pyrazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 20173-98-2

CMF C5 H6 N2

RN 32109-42-5 HCA
 CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

RN 50641-39-9 HCA
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diylphenylene) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 131714-35-7 HCA
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)phenylene] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 7664-38-2, Phosphoric acid, uses
 7664-93-9, Sulfuric acid, uses
 (proton conductive solid
 polymer electrolyte for electrochem. cell)

RN 7664-38-2 HCA
 CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA
 CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 1333-74-0P, Hydrogen, preparation
7782-44-7P, Oxygen, preparation
(proton conductive solid
polymer electrolyte for electrochem. cell)
RN 1333-74-0 HCA
CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

RN 7782-44-7 HCA
CN Oxygen (8CI, 9CI) (CA INDEX NAME)

O=O

IC ICM H01M010-40
ICS H01M006-18; C08G073-18
CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 38, 72
ST electrochem cell proton conductive solid
polymer electrolyte; fuel cell proton
conductive solid polymer
electrolyte; electrolyzer proton
conductive solid polymer
electrolyte
IT Azines
(diazine; proton conductive solid
polymer electrolyte for electrochem. cell)
IT Heterocyclic compounds
(nitrogen; proton conductive solid
polymer electrolyte for electrochem. cell)
IT Electrochemical cells
Electrolytic cells
Fuel cell electrolytes
Solid electrolytes
(proton conductive solid
polymer electrolyte for electrochem. cell)
IT Polybenzimidazoles
(proton conductive solid

polymer electrolyte for electrochem. cell)

IT Ionic conductivity
(proton; proton conductive solid polymer electrolyte for electrochem. cell)

IT Fuel cells
(solid electrolyte; proton conductive solid polymer electrolyte for electrochem. cell)

IT 7732-18-5, Water, processes
(electrolysis; proton conductive solid polymer electrolyte for electrochem. cell)

IT 91-22-5, Quinoline, uses 110-86-1, Pyridine, uses 119-65-3, IsoQuinoline 120-72-9, Indole, uses 120-73-0, Purine 288-13-1, Pyrazole 288-32-4, Imidazole, uses 9002-98-6 9003-47-8, Polyvinylpyridine 25232-42-2, Polyvinylimidazole 25233-30-1 25823-41-0, Poly(1-vinylpyrazole) 32109-42-5, Poly(1H-benzimidazole-2,5-diyl) 50641-39-9 131714-35-7
(proton conductive solid polymer electrolyte for electrochem. cell)

IT 7664-38-2, Phosphoric acid, uses
7664-93-9, Sulfuric acid, uses
(proton conductive solid polymer electrolyte for electrochem. cell)

IT 1333-74-0P, Hydrogen, preparation
7782-44-7P, Oxygen, preparation
(proton conductive solid polymer electrolyte for electrochem. cell)

L59 ANSWER 2 OF 11 HCA COPYRIGHT 2006 ACS on STN

133:137861 Proton conducting membrane using a solid acid for fuel cells. Haile, Sossina M.; Boysen, Dane; Narayanan, Sekharipuram R.; Chisholm, Calum (California Institute of Technology, USA). PCT Int. Appl. WO 2000045447 A2 20000803 , 61 pp. DESIGNATED STATES: W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM; RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, CY, DE, DK, ES, FI, FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG. (English). CODEN: PIXXD2. APPLICATION: WO 2000-US1783 20000121. PRIORITY: US 1999-PV116741 19990122; US 1999-PV146946 19990802; US 1999-PV146943 19990802; US 1999-PV151811 19990830; US 1999-439377 19991115.

AB A solid acid material is used as a proton conducting membrane in an electrochem. device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.

IT 25233-30-1, Polyaniline
 (proton conducting membrane using
 solid acid for fuel cells)

RN 25233-30-1 HCA

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

IT 1333-74-0P, Hydrogen, preparation
 (separator; proton conducting membrane using
 solid acid for fuel cells)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

ICI H01

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 72, 76

ST fuel cell proton conducting membrane
 solid acid

IT Conducting polymers
 Electric conductors
 Electric insulators
 Semiconductor materials
 (binder; proton conducting membrane using
 solid acid for fuel cells)

IT Fluoropolymers, uses
 Glass, uses
 Metals, uses
 Polyesters, uses

- Polymers, uses**
(binder; **proton conducting** membrane using **solid acid** for fuel cells)
- IT Sintering
(hot pressing; **proton conducting** membrane using **solid acid** for fuel cells)
- IT Polyketones
Polyketones
(polyether-; **proton conducting** membrane using **solid acid** for fuel cells)
- IT Polyethers, uses
Polyethers, uses
(polyketone-; **proton conducting** membrane using **solid acid** for fuel cells)
- IT Battery electrolytes
Ceramics
Electrolytic cells
Fuel cell electrolytes
Fuel cells
(**proton conducting** membrane using **solid acid** for fuel cells)
- IT Fluoropolymers, uses
Phosphates, uses
Polyanilines
Polysiloxanes, uses
Selenates
Silicates, uses
Sulfates, uses
(**proton conducting** membrane using **solid acid** for fuel cells)
- IT Capacitors
(supercapacitor; **proton conducting** membrane using **solid acid** for fuel cells)
- IT 7440-21-3, Silicon, uses 24937-79-9, Pvdf
(binder; **proton conducting** membrane using **solid acid** for fuel cells)
- IT 7782-42-5, Graphite, uses
(paper; **proton conducting** membrane using **solid acid** for fuel cells)
- IT 7722-76-1, Ammonium dihydrogen phosphate 7789-16-4, Cesium hydrogen sulfate cshso₄ 7803-63-6, Ammonium hydrogen sulfate 10294-60-7, Ammonium **hydrogen** selenate 12593-60-1, Ammonium phosphate sulfate ((NH₄)₂(H₂PO₄)(HSO₄)) 13453-45-7, Thallium **hydrogen** sulfate tlhso₄ 13774-16-8, Rubidium dihydrogen phosphate 13775-30-9 13778-50-2, Sodium silicate Na₃HSiO₄ 13780-02-4 15457-97-3, Sodium silicate (Na₂H₂SiO₄) 15587-72-1, Rubidium **hydrogen** sulfate 16331-85-4 18649-05-3, Cesium

dihydrogen phosphate 20583-58-8, **Sulfuric acid**
, rubidium salt (2:3) 22112-04-5 39473-99-9, Rubidium phosphate
selenate ($\text{Rb}_2(\text{H}_2\text{PO}_4)(\text{HSeO}_4)$) 41469-37-8, Sodium silicate NaH_3SiO_4
63317-98-6 63737-07-5, Cesium **hydrogen selenate** cshseO_4
68875-27-4, Rubidium **hydrogen selenate** 71555-62-9
88937-51-3 89190-25-0 99489-71-1, Ammonium arsenate sulfate
 $((\text{NH}_4)_2(\text{H}_2\text{AsO}_4)(\text{HSO}_4))$ 99543-07-4, Selenic acid, cesium salt (2:3)
101811-97-6, Potassium silicate KH_3SiO_4 135498-03-2 135710-63-3
157612-88-9 161430-99-5, Tellurium oxide TeO_4 161882-09-3
165901-90-6, Cesium phosphate sulfate $(\text{Cs}_3(\text{H}_2\text{PO}_4)(\text{HSO}_4)_2)$
183953-14-2, Silicic acid (H_4SiO_4), tripotassium salt 183953-17-5,
Silicic acid (H_4SiO_4), dipotassium salt 213411-40-6, Cesium
phosphate sulfate $(\text{Cs}_3(\text{H}_2\text{PO}_4)_0.5(\text{HSO}_4)2.5)$ 218931-29-4, Cesium
phosphate sulfate $(\text{Cs}_5(\text{H}_2\text{PO}_4)_2(\text{HSO}_4)_3)$ 220078-67-1, Cesium
phosphate selenate $(\text{Cs}_3(\text{H}_2\text{PO}_4)(\text{HSeO}_4)_2)$ 220078-71-7, Cesium
phosphate selenate $(\text{Cs}_5(\text{H}_2\text{PO}_4)_2(\text{HSeO}_4)_3)$ 231277-45-5, Cesium
phosphate sulfate $(\text{Cs}_2(\text{H}_2\text{PO}_4)(\text{HSO}_4))$ 233277-01-5, Ammonium
phosphate selenate $((\text{NH}_4)_2(\text{H}_2\text{PO}_4)(\text{HSeO}_4))$ 260429-55-8, Rubidium
phosphate sulfate $(\text{Rb}_2(\text{H}_2\text{PO}_4)(\text{HSO}_4))$ 286382-74-9, Cesium phosphate
selenate $(\text{Cs}_2(\text{H}_2\text{PO}_4)(\text{HSeO}_4))$ 286382-75-0 286382-77-2
286382-78-3 286382-79-4, Cesium phosphate selenate
 $(\text{Cs}_3(\text{H}_2\text{PO}_4)_0.5(\text{HSeO}_4)2.5)$ 286382-81-8 286382-82-9 286382-83-0
286382-84-1 286382-85-2 286382-86-3 286382-87-4 286382-88-5
286382-89-6 286382-90-9

(proton conducting membrane using
solid acid for fuel cells)

IT 1302-88-1, Cordierite 1309-48-4, Magnesia, uses 1344-28-1,
Alumina, uses 7429-90-5, Aluminum, uses 7439-89-6, Iron, uses
7440-02-0, Nickel, uses 7440-22-4, Silver, uses 7440-50-8,
Copper, uses 7440-57-5, Gold, uses 7440-66-6, Zinc, uses
7631-86-9, Silica, uses 9002-84-0, Ptfe 25038-78-2,
Poly(dicyclopentadiene) 25233-30-1, Polyaniline
25667-42-9 30604-81-0, Polypyrrole 31900-57-9, Polydimethyl
siloxane

(proton conducting membrane using
solid acid for fuel cells)

IT 1333-74-0P, **Hydrogen, preparation**
(separator; proton conducting membrane using
solid acid for fuel cells)

L59 ANSWER 3 OF 11 HCA COPYRIGHT 2006 ACS on STN

131:164272 Electrolytic capacitor and its manufacture. Saito, Kazuyo;
Nitta, Yukihiro; Tada, Hiroshi; Iwamoto, Shigeyoshi (Matsushita
Electric Industrial Co., Ltd., Japan). Eur. Pat. Appl. EP 938108 A2
19990825, 17 pp. DESIGNATED STATES: R: AT, BE, CH, DE, DK,
ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO.
(English). CODEN: EPXXDW. APPLICATION: EP 1999-100927 19990120.
PRIORITY: JP 1998-15269 19980128; JP 1998-350072 19981209.

AB An electrolytic capacitor includes (a) a capacitor element having a pos. electrode, a neg. electrode, and a solid org. conductive material disposed between the pos. electrode and the neg. electrode; (b) an electrolyte; (c) a case for accommodating the capacitor element and the electrolyte; and (d) a sealing member disposed to cover the opening of the case. The solid org. conductive material contains an org. semiconductor and/or a conductive polymer. An electrolytic capacitor having excellent impedance characteristic, small leakage current, excellent reliability, and high dielec. strength is obtained.

IT 7664-38-2, Phosphoric acid, processes
25233-30-1, Polyaniline 25233-30-1D, Polyaniline,
sulfonated
(manuf. of electrolytic capacitors contg.)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 25233-30-1 HCA
CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
CMF C6 H7 N

RN 25233-30-1 HCA
CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
CMF C6 H7 N

IC ICM H01G009-02
 CC 76-10 (Electric Phenomena)
 Section cross-reference(s): 38
 IT Conducting polymers
 Manila hemp (*Musa textilis*)
 Paper
 Seals (parts)
 (manuf. of electrolytic capacitors contg.)
 IT 56-81-5, 1,2,3-Propanetriol, processes 62-23-7, p-Nitrobenzoic acid 69-65-8, Mannite 88-75-5 96-48-0 107-21-1, 1,2-Ethanediol, processes 552-16-9, o-Nitrobenzoic acid 1518-16-7D, TCNQ, complexes 1623-15-0, Monobutyl phosphate 3385-41-9, Diammonium adipate 7429-90-5, Aluminum, processes 7440-44-0, Carbon, processes 7664-38-2, Phosphoric acid, processes 7727-54-0, Ammonium persulfate 7803-65-8 10028-22-5, Ferric sulfate 10043-35-3, Boric acid, processes 13445-49-3, Peroxydisulfuric acid [(HO)S(O)2]2O2 25233-30-1, Polyaniline 25233-30-1D, Polyaniline, sulfonated 25233-34-5, Polythiophene 25233-34-5D, Polythiophene, sulfonated 30604-81-0, Polypyrrole 30604-81-0D, Polypyrrole, sulfonated 50905-10-7, 1,6-Decanedicarboxylic acid 77214-82-5 88107-08-8 92538-40-4 117920-72-6 126213-51-2 127171-87-3, Tetramethyl ammonium phthalate, processes 167552-54-7, processes (manuf. of electrolytic capacitors contg.)

L59 ANSWER 4 OF 11 HCA COPYRIGHT 2006 ACS on STN
 129:61705 Bipolar electrochemical charge storage devices and their fabrication. Li, Changming; Jung, Richard H.; Nerz, John (Motorola, Inc., USA). U.S. US 5768090 A 19980616, 9 pp.
 (English). CODEN: USXXAM. APPLICATION: US 1996-755876 19961202.
 AB An electrochem. capacitor cell is provided with 1st and 2nd electrodes, and a solid polymer electrolyte is disposed between them. The electrodes may be either the same or different materials and may be fabricated from Ru, Ir, Co, W, V, Fe, Mo, Hf, Ni, Ag, Zn, and combinations thereof. The solid polymer electrolyte is in intimate contact with both electrodes, and is made from a polymeric support structure having an electrolyte active species dispersed in it. Also a method of fabricating a bipolar electrochem. charge storage device by assembling at least the 1st and 2nd bipolar subassemblies together with the 2nd layer of electrode active

material for the 1st bipolar subassembly in direct contact with the 1st layer of electrode active material for the 2nd bipolar subassembly without a current collector disposed between them is described.

IT 7664-38-2, Phosphoric acid, processes
 7664-93-9, Sulfuric acid, processes
 9002-98-6 9003-47-8, Poly(vinyl pyridine)
 (fabrication of bipolar electrochem. charge storage devices
 contg.)
 RN 7664-38-2 HCA
 CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA
 CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

RN 9002-98-6 HCA
 CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
 CMF C2 H5 N

RN 9003-47-8 HCA
 CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1

CMF C7 H7 N
CCI IDS

D1—CH=CH₂

IC ICM H01G009-00
INCL 361523000
CC 76-10 (Electric Phenomena)
Section cross-reference(s): 38, 52, 72
ST bipolar electrochem charge storage device manuf; **polymer electrolyte** electrochem capacitor manuf
IT Electrolytes
(fabrication of bipolar electrochem. charge storage devices having **polymer electrolytes**)
IT Polymers, processes
(fabrication of bipolar electrochem. charge storage devices having **polymer electrolytes**)
IT 1310-58-3, Potassium hydroxide, processes 1310-65-2, Lithium hydroxide (LiOH) 1310-73-2, Sodium hydroxide (NaOH), processes 7439-88-5, Iridium, processes 7439-89-6, Iron, processes 7439-98-7, Molybdenum, processes 7440-02-0, Nickel, processes 7440-18-8, Ruthenium, processes 7440-22-4, Silver, processes 7440-33-7, Tungsten, processes 7440-48-4, Cobalt, processes 7440-58-6, Hafnium, processes 7440-62-2, Vanadium, processes 7440-66-6, Zinc, processes 7647-01-0, **Hydrogen chloride**, processes 7664-38-2, **Phosphoric acid**, processes 7664-93-9, **Sulfuric acid**, processes 7697-37-2, Nitric acid, processes 9002-89-5, Polyvinyl alcohol 9002-98-6 9003-01-4, Polyacrylic acid 9003-05-8, Polyacrylamide 9003-06-9, Acrylamide-acrylic acid copolymer 9003-35-4, Phenol-formaldehyde copolymer 9003-39-8, Poly(vinyl pyrrolidone) 9003-47-8, Poly(vinyl pyridine) 12036-10-1, Ruthenium oxide (RuO₂) 24981-14-4, Poly(vinyl fluoride) 25249-16-5, Poly(2-hydroxyethyl methacrylate) 25322-68-3, Polyethylene glycol 28390-30-9 29011-20-9 85885-77-4, Cerium hydroxide (CeOH)
(fabrication of bipolar electrochem. charge storage devices contg.)

127:18475 Proton-conductive polymer

solid electrolytes. Bessho, Keiichi; Teramoto, Toshio; Ishikawa, Katsuhiro (Japan Synthetic Rubber Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 09087510 A2 19970331 Heisei, 8 pp. (Japanese). CODEN: JKXXAF. APPLICATION: JP 1995-268064 19950922.

AB The title electrolytes, useful for primary, secondary, and fuel batteries, display devices, sensors, capacitors, ion-exchange membranes, etc. (no data), are prep'd. from (a) introducing sulfone or phosphoric group to arom. or N-contg. ring polymers with heat resistance >250° [e.g., reaction **product** of (O-p-C₆H₄-p-C₆H₄-CO₂-p-C₆H₄)_n and H₂SO₄] and (b) **polymer with proton cond.** at relative humidity 50% 10-5 s/cm, polymer with water absorptivity >1%, and/or polymer with glass transition temp. <0° [e.g., polyoxyethylene, polyethyleneimine, poly(vinyl alc.)].

IT 9002-98-6

(proton-conductive polymer
solid electrolytes)

RN 9002-98-6 HCA

CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4

CMF C2 H5 N

IT 7664-93-9, Sulfuric acid, reactions

(proton-conductive polymer
solid electrolytes)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IC ICM C08L071-00

ICS C08L065-00; G01N027-406; H01G009-028; H01M006-18; H01M008-02;
H01M010-40

CC 37-6 (Plastics Manufacture and Processing)
ST **proton conductive polymer**
solid electrolyte; sulfonated polyoxyphenylene
polycarbonate proton conductor; polyoxyethylene proton
conductive solid electrolyte;
Polyethyleneimine proton conductive
solid electrolyte; polyvinyl alc proton
conductive solid electrolyte
IT Conducting polymers
 (ionic; proton-conductive polymer
 solid electrolytes)
IT Polyoxyphenylenes
Polyoxyphenylenes
 (polyester-; proton-conductive
 polymer solid electrolytes)
IT Polyesters, reactions
Polyesters, reactions
 (polyoxyphenylene-; proton-conductive
 polymer solid electrolytes)
IT Sulfonation
 (proton-conductive polymer
 solid electrolytes)
IT Polyamines
Polyoxyalkylenes, uses
 (proton-conductive polymer
 solid electrolytes)
IT Polybenzimidazoles
 (proton-conductive polymer
 solid electrolytes)
IT 25734-65-0DP, reaction product with 1,3-propanesultone
189640-60-6DP, reaction product with 1,3-propanesultone
189768-11-4DP, reaction product with **sulfuric acid**
189768-12-5DP, reaction product with **sulfuric acid**
 (proton-conductive polymer
 solid electrolytes)
IT 9002-89-5, Poly(vinyl alcohol) 9002-98-6 25322-68-3
26913-06-4, Poly[imino(1,2-ethanediyl)]
 (proton-conductive polymer
 solid electrolytes)
IT 1120-71-4D, 1,3-Propanesultone, reaction products with
polybenzimidazoles 7664-93-9, **Sulfuric**
acid, reactions 16672-87-0 25734-65-0 91442-06-7
189768-12-5
 (proton-conductive polymer
 solid electrolytes)

studied with online mass spectrometry. Schmidt, V. M.; Tegtmeyer, D.; Heitbaum, J. (Institut fuer Physikalische Chemie, Universitaet Witten/Herdecke, Stockumer Strasse 10, Witten-Annen, 58453, Germany). Journal of Electroanalytical Chemistry, 385(2), 149-55 (English) 1995. CODEN: JECHE. ISSN: 0368-1874.

Publisher: Elsevier.

AB The hydrogen evolution reaction (HER) was followed during the polymn. of aniline on porous platinum electrodes by cyclic voltammetry combined with online mass spectrometry. The reaction takes place at the electrode|polymer interface by considering the collection efficiency of the membrane inlet system. Homogeneous films of polyaniline (PANI) can be deposited onto porous electrode substrates. In this way, a pervaporation membrane is formed with the conducting polymer as the active layer. The permeation of water through a PANI membrane is dependent on the oxidn. state of PANI. The higher permeability in the oxidized state is explained in terms of structural alterations during the redox process.

IT 1333-74-0P, Hydrogen, properties
(electrochem. evolution during aniline polymn. on porous platinum studied by cyclic voltammetry and mass spectrometry)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IT 7664-93-9, Sulfuric acid, uses
(redox of polyaniline in sulfuric acid
accompanied by potential-dependent permeation of water)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 25233-30-1P, Polyaniline
(transport of protons and water through polyaniline membranes
studied with online mass spectrometry)

RN 25233-30-1 HCA

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

CC 72-2 (Electrochemistry)
Section cross-reference(s): 35, 36, 66

IT Permeability and Permeation
(redox of polyaniline in **sulfuric acid**
accompanied by potential-dependent permeation of water)

IT Electric conductors, polymeric
(transport of protons and water through polyaniline)

IT Redox reaction
(electrochem., of polyaniline in **sulfuric acid**
accompanied by potential-dependent permeation of water)

IT 1333-74-0P, Hydrogen, properties
(electrochem. evolution during aniline polymn. on porous platinum
studied by cyclic voltammetry and mass spectrometry)

IT 7664-93-9, Sulfuric acid, uses
(redox of polyaniline in **sulfuric acid**
accompanied by potential-dependent permeation of water)

IT 25233-30-1P, Polyaniline
(transport of protons and water through polyaniline membranes
studied with online mass spectrometry)

L59 ANSWER 7 OF 11 HCA COPYRIGHT 2006 ACS on STN

111:42849 Hydrogen separation and electricity generation using novel
electrolyte membranes. Polak, Anthony J.; Petty-Weeks, Sandra
(Allied-Signal, Inc., USA). U.S. US 4797185 A 19890110,
12 pp. Cont. of U. S. Ser. No. 756,889, abandoned. (English).
CODEN: USXXAM. APPLICATION: US 1987-70620 19870706. PRIORITY: US
1984-687351 19841228; US 1985-756889 19850719.

AB An app. for performing an electrochem. process involving a gaseous
mixt. having a component which, in the presence of a catalytic
agent, is capable of dissocg. to yield H ions or of combining with H
ions, comprises a thin-film macroscopically homogeneous polymer
blend membrane, a membrane housing comprising a 1st and a 2nd gas
chamber sepd. by the membrane, 2 sep. portions of catalytic agent
effective to promote the dissocn. and combination, and means for
forming an elec. connection in operative contact with the catalytic
agent. The app. comprises also means to supply fuel gas to 1 and
oxidant gas to the other of the 2 chambers, or to supply the gaseous
mixt. to 1 and remove H from the other chamber. The membrane
possessing a high protonic cond. and formed by removing the solvent
from a soln. of a **phosphoric acid** and a polymer

contains .apprx.10-70% H₂PO₃, HPO₃, H₃PO₄, H₄P₂O₇, and polyphosphoric acid and .apprx.30-90% polymer such as poly(vinyl alc.), poly(vinyl fluoride), polyethylene glycol, etc. In 1 version, the membrane may be formed into a hollow fiber having elec. conductive particles with catalyst embedded in the fiber walls; a multiplicity of such fibers may be used to form a H sepn. device.

IT 9002-98-6, Polyethylenimine 9003-47-8, Poly(vinyl pyridine)

(membranes from blends contg. phosphorus acids and, for fuel cells and hydrogen sepn.)

RN 9002-98-6 HCA

CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4

CMF C2 H5 N

RN 9003-47-8 HCA

CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1

CMF C7 H7 N

CCI IDS

D1- CH=CH₂

IT 7664-38-2, Phosphoric acid, uses and
miscellaneous 7664-93-9, Sulfuric acid
, uses and miscellaneous

(membranes from blends contg. polymer and, for fuel cells and hydrogen sepn.)

RN 7664-38-2 HCA
 CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA
 CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 1333-74-0P, Hydrogen, preparation
 (sepn. of, membranes from phosphorus acid-polymer blends for)
 RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IC ICM C25B001-02
 ICS C25B009-00
 INCL 204129000
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38, 49, 72
 ST hydrogen sepn acid polymer membrane; fuel cell acid polymer
 membrane; phosphoric acid polymer membrane cond;
 cond protonic acid polymer membrane
 IT 9002-89-5, Poly(vinyl alcohol) 9002-98-6, Polyethylenimine
 9003-01-4, Poly(acrylic acid) 9003-05-8, Poly(acrylamide)
 9003-43-4, Poly(vinyl pyrrolidine) 9003-47-8, Poly(vinyl
 pyridine) 9004-35-7, Cellulose acetate 24981-14-4, Poly(vinyl
 fluoride) 25189-55-3, Poly(N-isopropyl acrylamide) 25322-68-3,
 Poly(ethylene glycol) 25805-17-8, Poly(ethyloxazoline)
 26101-52-0, Poly(vinyl sulfonic acid) 26793-34-0,
 Poly(N,N-dimethyl acrylamide) 26913-06-4, Polyethylenimine
 (membranes from blends contg. phosphorus acids and, for fuel
 cells and hydrogen sepn.)
 IT 2466-09-3, Pyrophosphoric acid 7664-38-2,
 Phosphoric acid, uses and miscellaneous

7664-93-9, Sulfuric acid, uses and
miscellaneous 7803-60-3, Hypophosphoric acid 10343-62-1,
Metaphosphoric acid
(membranes from blends contg. polymer and, for fuel cells and
hydrogen sepn.)

IT 1333-74-0P, Hydrogen, preparation
(sepn. of, membranes from phosphorus acid-polymer blends for)

L59 ANSWER 8 OF 11 HCA COPYRIGHT 2006 ACS on STN

110:138716 Hydrogen separation and electricity generation using novel
three-component membrane. Young, Ping; Polak, Anthony J.
(Allied-Signal, Inc., USA). U.S. US 4795536 A 19890103,
13 pp. Cont. of U.S. Ser. No. 753,495, abandoned. (English).
CODEN: USXXAM. APPLICATION: US 1987-70622 19870706. PRIORITY: US
1985-753495 19850710.

AB An app. for performing an electrochem. process involving a gaseous
mixt. having a component which in presence of a catalytic agent is
capable of dissocg. to yield H+ or of combining with H+ comprises a
thin-film polymer-blend membrane, a membrane housing comprising a
1st and a 2nd gas chamber sepd. by the membrane, 2 sep. portions of
catalytic agent effective to promote the dissocn. and combination,
and means for forming elec. connection in operative contact with the
catalytic agent. The app. comprises also means to supply fuel gas
to 1 and oxidant gas to the other of the 2 chambers, or to supply
the gaseous mixt. to 1 and remove H from the other of the 2
chambers. The membrane possessing a high H+ cond. and
formed by removing the solvent from a soln. of a blend of 3
components: H₂PO₃, HPO₃, H₃PO₄, H₄P₂O₇, and polyphosphoric
acid .apprx.10-50; an org. polymer such as poly(vinyl alc.),
poly(vinyl fluoride), etc. .apprx.40-80; and a poly(org. acid) such
as poly(acrylic acid) .apprx.10-40 mol%. For increased strength, a
membrane may be composited with or attached to a porous support. In
1 version, elec. conductive particles with catalyst are partly
embedded in the membrane to **form** a H sepg.
device.

IT 9002-98-6, Polyethylenimine
(electrolyte membranes from blends contg. phosphoric
acid-poly(org. acid)-, for fuel cells and hydrogen sepn.)

RN 9002-98-6 HCA

CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4

CMF C2 H5 N

IT 7664-38-2, Phosphoric acid, uses and
miscellaneous 7664-93-9, Sulfuric acid
, uses and miscellaneous
(electrolyte membranes from blends contg. polymer-poly(org.
acid)-, for fuel cells and hydrogen sepn.)
RN 7664-38-2 HCA
CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA
CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 1333-74-0P, Hydrogen, preparation
(sepn. of, electrolyte membranes from phosphoric
acid-polymer-poly(org. acid) for)
RN 1333-74-0 HCA
CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IC ICM C25B001-02
ICS C25B009-00
INCL 204129000
CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 38, 49, 72
ST hydrogen electrolytic sepn composite electrolyte; fuel cell
solid electrolyte composite; phosphoric
acid polymer electrolyte composite;

**polyorg acid polymer electrolyte composite; cond
solid electrolyte composite**

IT Fuel cells

(electrolyte membranes for, **phosphoric acid**
-polymer-poly(org. acid) blend)

IT 9002-89-5, Poly(vinyl alcohol) 9002-98-6, Polyethylenimine
9004-35-7, Cellulose acetate 24981-14-4, Poly(vinyl fluoride)
25322-68-3, Polyethylene glycol
(electrolyte membranes from blends contg. **phosphoric**
acid-poly(org. acid)-, for fuel cells and hydrogen sepn.)

IT 9003-01-4, Poly(acrylic acid) 25087-26-7, Poly(methacrylic acid)
50851-57-5, Poly(styrenesulfonic acid)
(electrolyte membranes from blends contg. **phosphoric**
acid-polymer-, for fuel cells and hydrogen sepn.)

IT 2466-09-3, Pyrophosphoric acid 7664-38-2,
Phosphoric acid, uses and miscellaneous
7664-93-9, **Sulfuric acid**, uses and
miscellaneous 7803-60-3, Hypophosphoric acid 10343-62-1,
Metaphosphoric acid
(electrolyte membranes from blends contg. polymer-poly(org.
acid)-, for fuel cells and hydrogen sepn.)

IT 1333-74-0P, **Hydrogen, preparation**
(sepn. of, electrolyte membranes from **phosphoric**
acid-polymer-poly(org. acid) for)

L59 ANSWER 9 OF 11 HCA COPYRIGHT 2006 ACS on STN

107:62049 Electrochemical method and apparatus using **proton-conducting polymers**. Zupancic, Joseph J.; Swedo, Raymond J.; Petty-Weeks, Sandra L. (UOP Inc., USA). U.S. US 4664761 A 19870512, 10 pp. (English). CODEN: USXXAM.
APPLICATION: US 1985-814339 19851227.

AB An interpenetrating polymer-network membrane for use as **solid electrolyte** in fuel cells or sepn. of H from gas mixt. or other electrochem. processes involving H⁺ contains a host polymer blend of H₃PO₄ or H₂SO₄ mixed with a polymer or copolymer of ethyleneimine, acrylic acid, ethylene oxide, 2-ethyl-2-oxazoline, acrylamide, N-substituted acrylamide, 4-vinylpyridine, methacrylic acid, N-vinylimidazole, vinylsulfonic acid, 2-vinylpyridine, poly(hydroxyethylene), or PhOH-HCHO resin and a guest polymer of acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-acrylamido-2-methylpropanesulfonic acid, N-benzylacrylamide, N-ethylmethylacrylamide, N-phenylacrylamide, or N-phenylmethacrylamide crosslinked by methylenebisacrylamide, N,N-diallylacryllamide, m-xylenebisacrylamide, or N,N'-trimethylenebisacrylamide where the repeating units of the guest polymer is different from that of the host polymer. The membrane is coated with catalysts on opposite sides and used as partitioner to sep. 2 gas chambers in an app. An aq. soln. of

H₃PO₄ and poly(vinyl alc.) and an aq. soln. of methylenebisacrylamide and methacrylic acid were mixed, poured into a Petri dish, H₂O was evapd., the film was irradiated by a 175-keV electron beam at 5 Mrad/pass from 1 side, cut into a 1"-diam. disk, and sputtered to form 400-Å Pt layers on both sides. This disk had a resistivity of 2 + 106 Ω-cm and a H flux of 1.8 + 10⁻⁵ ft³/ft²-h.

IT 1333-74-0P, Hydrogen, preparation
(sepn. of, from gas mixts. by electrochem. processes,
solid polymer electrolytes for)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IT 7664-38-2, Phosphoric acid, uses and
miscellaneous 7664-93-9, Sulfuric acid
, uses and miscellaneous 9002-98-6 25232-42-2,
Poly(N-vinylimidazole)
(solid electrolytes contg., proton-conductive, for fuel cells and other electrochem. app)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA
CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

RN 9002-98-6 HCA
CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4

CMF C2 H5 N

RN 25232-42-2 HCA

CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5

CMF C5 H6 N2

IC ICM C25B001-02

ICS H01M008-10

INCL 204129000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 38, 47, 49, 72ST polyvinyl alc phosphoric acid electrolyte;
polymethacrylic acid solid electrolyte;
fuel cell polymer solid electrolyte;
hydrogen sepn polymer solid electrolyteIT Fuel cells
(electrolytes for, solid polymer)IT 30421-16-0, Methacrylic acid-methylenebisacrylamide copolymer
(crosslinked, solid electrolytes contg.,
proton-conductive, for fuel cells and other
electrochem. app.)IT 1333-74-0P, Hydrogen, preparation
(sepn. of, from gas mixts. by electrochem. processes,
solid polymer electrolytes for)IT 7664-38-2, Phosphoric acid, uses and
miscellaneous 7664-93-9, Sulfuric acid
, uses and miscellaneous 9002-89-5 9002-98-6
9003-01-4, Poly(acrylic acid) 9003-05-8 9003-35-4, Formaldehyde
phenol copolymer 25014-15-7, Poly(2-vinylpyridine) 25087-26-7,
Poly(methacrylic acid) 25232-41-1, Poly(4-vinylpyridine)
25232-42-2, Poly(N-vinylimidazole) 25322-68-3,

Poly(ethylene oxide) 25805-17-8, Poly(2-ethyl-2-oxazoline)
 26101-52-0, Poly(vinyl sulfonic acid)
 (solid electrolytes contg., proton-conductive, for fuel cells and other electrochem. app)

L59 ANSWER 10 OF 11 HCA COPYRIGHT 2006 ACS on STN
 105:7055 Electrically conductive aniline polymers. Tamura, Shohei; Sasaki, Sadamitsu; Sasaki, Takeshi; Abe, Masao; Miyatake, Hiroshi (Nitto Electric Industrial Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 61021129 A2 19860129 Showa, 9 pp. (Japanese).
 CODEN: JKXXAF. APPLICATION: JP 1984-142845 19840709.

AB An elec. conductive polymer with cond. $\geq 10^{\circ}$ S/cm is prep'd. by electrolysis of an aniline soln. contg. H₂SO₄ at 1: \geq 5-30 aniline- H₂SO₄ equiv. ratio and a voltage >1 V higher than the std. calomel electrode and 0.01 mA/cm²-1 A/cm². Thus, the **electrolytic polymn.** was conducted in a 5% aq. aniline soln. contg. H₂SO₄ in 1:8 equiv. ratio at +2V (initially) and 5 mA/cm² for 2 h to form a H₂SO₄-doped aniline polymer on a Pt electrode maintaining cond. 2.6 S/cm after 4 mo of exposure to air.

IT 7664-93-9P, properties
 (aniline polymers doped with, elec. conductive, oxidative degrdn.-resistant, prepn. of, by **electrolytic polymn.**)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 25233-30-1P
 (sulfuric acid-doped, elec. conductive, oxidative degrdn.-resistant, prepn. of, by **electrolytic polymn.**)

RN 25233-30-1 HCA

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

IC ICM C08G073-00
 CC 35-7 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 76
 ST aniline polymer **sulfuric acid** doping; elec
 conductive aniline polymer; **electrolytic polymn**
 aniline
 IT Electric conductors
 (aniline polymers, doped with **sulfuric acid**,
 oxidative degrdn.-resistant, prepn. of, by **electrolytic
 polymn.**)
 IT Polymerization
 (electrochem., of aniline in presence of **sulfuric
 acid**, in manuf. of elec. conductive polymers with high
 oxidative degrdn. resistance)
 IT 7664-93-9P, properties
 (aniline polymers doped with, elec. conductive, oxidative
 degrdn.-resistant, prepn. of, by **electrolytic
 polymn.**)
 IT 25233-30-1P
 (**sulfuric acid**-doped, elec. conductive,
 oxidative degrdn.-resistant, prepn. of, by **electrolytic
 polymn.**)

L59 ANSWER 11 OF 11 HCA COPYRIGHT 2006 ACS on STN
 103:88374 Electroconductive organic polymers. Tamura, Shohei; Sasaki,
 Sadamitsu; Abe, Masao; Nakazawa, Hitoshi; Ichinose, Hisashi;
 Nakamoto, Keiji; Sasaki, Takeshi; Ezoe, Minoru; Sakagawa, Mitsuo;
 Miyatake, Hiroshi (Nitto Electric Industrial Co., Ltd. , Japan).
 Ger. Offen. DE 3441011 A1 19850605, 69 pp. (German).
 CODEN: GWXXBX. APPLICATION: DE 1984-3441011 19841109. PRIORITY: JP
 1983-212280 19831110; JP 1983-212281 19831110; JP 1984-198873
 19840922.

AB Polymers contg. the repeating units -p-C₆H₃(R)N:C₆H₃(R):N-p- (R = H, alkyl), **prep'd.** by oxidative polymn. of aniline
 derivs., when doped with electron acceptors have elec. cond.
 $\geq 10 \mu\text{S}/\text{cm}$. Thus, adding a soln. of 1.84 g K₂Cr₂O₇ and
 4.61 g H₂SO₄ in 28.8 g H₂O over 30 min to a soln. of 5 g
 PhNH₂ and 4 mL cond. HCl in 45 g H₂O stirred in an ice bath and
 stirring 30 min gave a green polymer [25233-30-1] with
 inherent viscosity (H₂SO₄, 30°) 0.46 and elec.
 cond. 2.0 S/cm, unchanged on standing 4 mo in air or when measured

in vacuo (0.01 torr).
 IT 7664-93-9, uses and miscellaneous
 (doping agent, for elec. conductive polyanilines)
 RN 7664-93-9 HCA
 CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 25233-30-1P
 (elec. conductive, proton acid-doped, manuf. of)
 RN 25233-30-1 HCA
 CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
CMF C6 H7 N

IC ICM C08G073-02
 ICS H01L031-04; H01L029-28; H01B001-12
 CC 35-5 (Chemistry of Synthetic High Polymers)
 ST elec conductor polyaniline; aniline polymer elec conductor; doping
 polyaniline conductive; oxidative polymn aniline; chromic acid
 polymn aniline; sulfuric acid polymn aniline
 IT Electric conductors
 (aniline deriv. polymers, proton acid-doped,
 manuf. of)
 IT 7601-90-3, uses and miscellaneous 7647-01-0, uses and
 miscellaneous 7664-93-9, uses and miscellaneous
 7697-37-2, uses and miscellaneous 10035-10-6, uses and
 miscellaneous 16872-11-0 16940-81-1
 (doping agent, for elec. conductive polyanilines)
 IT 25233-30-1P 97917-08-3P
 (elec. conductive, proton acid-doped, manuf. of)

=> D L68 1-5 CBIB ABS HITSTR HITIND

L68 ANSWER 1 OF 5 HCA COPYRIGHT 2006 ACS on STN

139:186482 Novel catalysts and processes for their preparation. Chen, Jun; Swiegers, Gerhard F.; Too, Chee O.; Wallace, Gordon G. (Commonwealth Scientific and Industrial Research Organisation, Australia; University of Wollongong). PCT Int. Appl. WO 2003068392 A1 20030821, 68 pp. DESIGNATED STATES: W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW; RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, CY, DE, DK, ES, FI, FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG, TR. (English). CODEN: PIXXD2. APPLICATION: WO 2003-AU143 20030211.

PRIORITY: AU 2002-445 20020211.

AB Accordingly, in an aspect of the invention, and not necessarily the broadest aspect, there is provided a hybrid homogeneous-heterogeneous catalyst contg. catalytic groups, wherein the catalytic activity of the catalyst is largely provided as a result of the interaction of catalytic groups in a suitable proximity and disposition to other catalytic groups, the proximity and disposition resulting from statistical considerations.

IT 1333-74-0P, Hydrogen, processes

(novel catalysts for electrochem. generation of)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IT 30604-81-0P, Polypyrrole

(novel catalysts for electrochem. generation of hydrogen contg. polypyrrole-ferrocene monosulfonate)

RN 30604-81-0 HCA

CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7

CMF C4 H5 N

IT 7664-93-9, **Sulfuric acid**, uses
(voltammetry of platinum bare and modified with electrodeposited
polypyrrole-ferrocene monosulfonate electrodes in H₂SO₄
soln.)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IC ICM B01J035-00

CC 67-1 (Catalysis, Reaction Kinetics, and Inorganic Reaction
Mechanisms)

Section cross-reference(s): 29, 38, 72

ST electrocatalyst polypyrrole ferrocene monosulfonate **hydrogen**
generation

IT Conducting polymers

(catalysts for electrochem. **generation of**
hydrogen contg.)

IT Electric potential

(for electrodeposition of polypyrrole-ferrocene monosulfonate as
novel catalysts for electrochem. **generation of**
hydrogen, on)

IT Current density

(for electrodeposition of polypyrrole-ferrocene monosulfonate as
novel catalysts for electrochem. **generation of**
hydrogen, on Pt)

IT Linear-sweep voltammetry

(of platinum bare and modified with electrodeposited
polypyrrole-ferrocene monosulfonate electrodes in H₂SO₄
soln.)

IT Doping

(of polypyrrole with ferrocene and toluene sulfonates in prepn.
of catalysts for electrochem. **generation of**
hydrogen)

IT Electrodeposition

(of polypyrrole-ferrocene monosulfonate as novel catalysts for
electrochem. **generation of hydrogen**)

IT Chemically modified electrodes

(platinum with electrodeposited polypyrrole-ferrocene
monosulfonate as novel catalysts for electrochem.
generation of hydrogen)

IT 102-54-5, Ferrocene

(derivs.; catalysts for electrochem. generation of hydrogen contg. conducting polymer and ferrocene catalytic group)

IT 109-97-7, Pyrrole 34962-35-1, Ammonium Ferrocene sulfonate (for electrodeposition of polypyrrole-ferrocene monosulfonate as novel catalysts for electrochem. generation of hydrogen, on Pt in soln. contg.)

IT 1333-74-0P, Hydrogen, processes (novel catalysts for electrochem. generation of)

IT 30604-81-0P, Polypyrrole (novel catalysts for electrochem. generation of hydrogen contg. polypyrrole-ferrocene monosulfonate)

IT 32218-90-9, Ferrocene monosulfonate (novel catalysts for electrochem. generation of hydrogen contg. polypyrrole-ferrocene monosulfonate)

IT 7440-06-4, Platinum, uses (of polypyrrole-ferrocene monosulfonate as novel catalysts for electrochem. generation of hydrogen, on)

IT 7664-93-9, Sulfuric acid, uses (voltammetry of platinum bare and modified with electrodeposited polypyrrole-ferrocene monosulfonate electrodes in H₂SO₄ soln.)

IT 16722-51-3, p-Toluene sulfonate, uses (voltammetry of platinum bare and modified with electrodeposited polypyrrole-toluene sulfonate electrodes in H₂SO₄ soln.)

L68 ANSWER 2 OF 5 HCA COPYRIGHT 2006 ACS on STN

138:26768 A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes. Li, Qingfeng; Hjuler, H. A.; Hasiotis, C.; Kallitsis, J. K.; Kontoyannis, C. G.; Bjerrum, N. J. (Materials Science Group, Department of Chemistry, Technical University of Denmark, Lyngby, DK-2800, Den.).

Electrochemical and Solid-State Letters, 5(6), A125-A128 (English) 2002. CODEN: ESLEF6. ISSN: 1099-0062. Publisher:

Electrochemical Society.

AB From a polymer electrolyte blend of polybenzimidazole and sulfonated polysulfone, a polymer electrolyte membrane fuel cell was developed with an operational temp. up to 200°. Due to the high operational temp., the fuel cell can tolerate 1.0-3.0 vol.% CO in the fuel, compared to <100 ppm CO for the Nafion-based technol. at 80°. The high CO tolerance makes it possible to use the reformed hydrogen directly from a simple methanol reformer without further CO removal. That both the fuel cell and the methanol reformer operate at temps. around 200° opens the possibility for an integrated system. The resulting system is expected to exhibit high power d. and simple construction as well as efficient capital and operational cost.

IT 25734-65-0

(blends with sulfonated polysulfones and phosphoric acid; quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes)

RN 25734-65-0 HCA

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX NAME)

IT 1333-74-0, Hydrogen, uses

(formation and oxidn. of; quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IT 7664-38-2D, Phosphoric acid, compd. with polybenzimidazole and sodium sulfonated polysulfone (polymer electrolyte dopant; quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 38

ST methanol reforming hydrogen fuel cell blend polymer membrane electrolyte; polybenzimidazole sulfonated polysulfone blend phosphate dopant electrolyte membrane

IT Reforming catalysts

(for methanol; quasi-direct methanol fuel cell system based on

blend **polymer** membrane **electrolytes**)
IT Electric current-potential relationship
(methanol reforming catalyst for fuel cell system based on blend
polymer membrane **electrolytes**)
IT Fuel cell **electrolytes**
(**polymer electrolytes**; quasi-direct methanol
fuel cell system based on blend **polymer** membrane
electrolytes)
IT Fuel cell electrodes
Polymer electrolytes
(quasi-direct methanol fuel cell system based on blend
polymer membrane **electrolytes**)
IT **Polymer blends**
(**solid electrolytes**; quasi-direct methanol
fuel cell system based on blend **polymer** membrane
electrolytes)
IT Polysulfones, uses
(sulfonated, sodium salts, blend with polybenzimidazole and
phosphoric acid; quasi-direct methanol fuel
cell system based on blend **polymer** membrane
electrolytes)
IT Carbon black, uses
(support for platinum anode catalyst, cast onto carbon paper;
quasi-direct methanol fuel cell system based on blend
polymer membrane **electrolytes**)
IT 7440-06-4, Platinum, uses
(anode catalyst, cast onto carbon paper; quasi-direct methanol
fuel cell system based on blend **polymer** membrane
electrolytes)
IT 25734-65-0
(blends with sulfonated polysulfones and **phosphoric**
acid; quasi-direct methanol fuel cell system based on
blend **polymer** membrane **electrolytes**)
IT 291280-30-3, TGP-H 120
(carbon paper support for platinum-carbon catalyst; quasi-direct
methanol fuel cell system based on blend **polymer**
membrane **electrolytes**)
IT 630-08-0, Carbon monoxide, uses
(catalyst poison, tolerance to; quasi-direct methanol fuel cell
system based on blend **polymer** membrane
electrolytes)
IT 1314-13-2, Zinc oxide, uses 1344-28-1, Alumina, uses 7440-50-8,
Copper, uses
(copptd.; methanol reforming catalyst for fuel cell system based
on blend **polymer** membrane **electrolytes**)
IT 1333-74-0, Hydrogen, uses
(formation and oxidn. of; quasi-direct methanol fuel
cell system based on blend **polymer** membrane

electrolytes)

IT 7664-38-2D, Phosphoric acid, compd. with polybenzimidazole and sodium sulfonated polysulfone (polymer electrolyte dopant; quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes)

IT 67-56-1, Methanol, uses (quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes)

L68 ANSWER 3 OF 5 HCA COPYRIGHT 2006 ACS on STN

132:327051 Voltammetric study of the reduction and relaxation of poly(o-toluidine). Effect of the polymer thickness and the external electrolyte nature and concentration. Rodriguez Presa, M. J.; Posadas, D.; Florit, M. I. (Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, La Plata, 1900, Argent.). Journal of Electroanalytical Chemistry, 482(2), 117-124 (English) 2000. CODEN: JECHE. ISSN: 0368-1874. Publisher: Elsevier Science S.A..

AB The redn. and relaxation of poly(o-toluidine) (POT) was studied as a function of the wait time at different waiting potentials near the redn. potential of the polymer. The influence of the film thickness, the acid concn., and the ionic strength of the external electrolytic soln. on these processes were also studied. Two types of electrolytes were employed: perchloric and sulfuric acid. Both the redn. and the relaxation times depend on the proton concn. of the external electrolyte media and on the film thickness. They are independent of the ionic strength and, in a limited range, of the waiting potential. The voltammetric response of fully reduced and relaxed polymers shows that, at low sweep rates, the kinetics are controlled by slow ionic movements within the polymer. Expts. with medium exchange show that, once the polymer is fully reduced and relaxed, its state is independent of the compn. and concn. of the electrolyte in which this particular state was obtained. Furthermore, they also show that the shape of the voltammetric oxidn. profile depends exclusively on the compn. and concn. of the electrolyte in which the polymer is being oxidized. This means that the effect of the soln. compn. and concn. is manifested only through the participation of protons and anions in the mechanism of oxidn. of the polymer.

IT 7664-93-9, Sulfuric acid, uses (cyclic voltammetry of gold electrode modified with poly(o-toluidine) film in soln. of)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 97917-08-3, Poly(o-toluidine)
 (effect of polymer thickness and external electrolyte nature and
 concn. on electroredn. and relaxation of)
 RN 97917-08-3 HCA
 CN Benzenamine, 2-methyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 95-53-4
CMF C7 H9 N

CC 72-2 (Electrochemistry)
 Section cross-reference(s): 25, 56
 IT Concentration (condition)
Electrolytes
 Reduction, electrochemical
 Relaxation
 Thickness
 (effect of **polymer** thickness and external electrolyte
 nature and concn. on electroredn. and relaxation of
 poly(o-toluidine))
 IT Polymerization
 (electrochem.; **formation** of poly(o-toluidine)
 film on gold electrode)
 IT 7664-93-9, Sulfuric acid, uses
 (cyclic voltammetry of gold electrode modified with
 poly(o-toluidine) film in soln. of)
 IT 97917-08-3, Poly(o-toluidine)
 (effect of polymer thickness and external electrolyte nature and
 concn. on electroredn. and relaxation of)

electrode-polymer electrolyte interface. Gomes, M. A. B.; Goncalves, D.; Pereira de Souza, E. C.; Valla, B.; Aegeuter, M. A.; Bulhoes, L. O. S. (Dep. Quim., Univ. Fed. Sao Carlos, Sao Carlos, 13560, Brazil). *Electrochimica Acta*, 37(9), 1653-6 (English) 1992. CODEN: ELCAAV. ISSN: 0013-4686.

AB The electropolymer of o-toluidine and o-anisidine gave uniform electroactive polymer films which were analyzed by cyclic voltammetry, impedance, and UV-visible absorption spectra. These films exhibit a reversible electrochem. response during cyclic voltammetry expts. in aq., nonaq. and **polymer electrolytes**. Their electrochromic efficiency is high in aq. and nonaq. electrolytes but decreases in the **polymer electrolyte**. A solid-state cell having the configuration: ITO/TiO₂-CeO₂/LiN(SO₂CF₃)₂-PEO complex/polymer/ITO, was assembled. The transmittance variation of this system between the oxidized and reduced state is .apprx.20% at 632.8 nm.

IT 7664-93-9, **Sulfuric acid**, uses
(electrochem. polymn. of toluidine and anisidine and electrochromic properties of their polymers in solns. contg.)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 97917-08-3, Poly(o-toluidine)
(electrochem. **prepn.** and electrochromic properties of)

RN 97917-08-3 HCA

CN Benzenamine, 2-methyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 95-53-4
CMF C7 H9 N

CC 72-2 (Electrochemistry)
Section cross-reference(s): 35, 36, 73

IT 7664-93-9, Sulfuric acid, uses
(electrochem. polymn. of toluidine and anisidine and
electrochromic properties of their polymers in solns. contg.)

IT 97917-08-3, Poly(o-toluidine) 99742-70-8, Poly(
o-anisidine)
(electrochem. prep. and electrochromic properties of)

IT 1306-38-3, Cerium dioxide, properties 13463-67-7, Titanium
dioxide, properties
(electrochromic properties of polytoluidine and polyanisidine in
solid electrolyte in system with)

IT 7439-93-2D, Lithium, PEO complex 25322-68-3, PEO 25322-68-3D,
PEO, lithium complex
(electrochromic properties of polytoluidine and polyanisidine in
solid electrolyte of)

IT 90076-65-6
(electrochromic properties of polytoluidine and polyanisidine in
solid electrolyte of PEO with)

L68 ANSWER 5 OF 5 HCA COPYRIGHT 2006 ACS on STN

105:191844 Catalytic electrodes for oxygen reduction. Okabayashi,
Katsuaki; Goto, Fumio; Abe, Katsuji (Toyota Central Research and
Development Laboratories, Inc., Japan). Jpn. Kokai Tokkyo Koho JP
61040320 A2 19860226 Showa, 6 pp. (Japanese). CODEN:
JKXXAF. APPLICATION: JP 1984-162174 19840731.

AB A polymeric electrode exhibiting high catalytic activity in redn. of
O is prep. by electrolytic
polymn. of pyrrole in a soln. contg. a porphyrin deriv. (I)
contg. sulfonic acid or carboxylic acid to form a I-doped
polypyrrole on an anode before immersing the formed polymer into a
soln. contg. a divalent metal and heating the treated polymer to
change I to a metal porphyrin and heating. In this method, I is
incorporated in the polymer at high concn. due to the high stability
of the electrolyte soln. The product is useful in O sensors,
biosensors, in a fuel batteries. Thus, electrolytic
polymn. was conducted by passing the current through an aq.
soln. contg. 0.001 M tetraphenylporphyrin trisulfonate (II) and 0.1
M pyrrole at 0.5 mA/cm² for 30 s to deposit II-doped polypyrrole on
a glassy carbon electrode. The polymer-coated electrode was then
immersed into a 0.1 M aq. Co²⁺ soln. at 60° for 1 min to give
a modified electrode. When redn. of O was conducted by passing 0.1
mA/cm² between electrodes (one of which comprised the above modified
electrode) immersed into a 0.05 M aq. H₂SO₄ soln. satd.
with O (pH 1, 25°), the voltage value changed from 325 mV
initially to 310 mV after 2 h, compared with 270 and 70 mA, resp.,
when doped polymer was prep. by electrolysis of a soln. contg.
pyrrole and metal-contg. II.

IT 30604-81-0P
(metal porphyrin-doped, with high catalytic activity in

**oxygen redn., prepn. of, by
electrolytic polymn., in manuf. of catalytic
electrodes)**

RN 30604-81-0 HCA

CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7

CMF C4 H5 N

IC ICM C08G061-12

CC 35-7 (Chemistry of Synthetic High Polymers)

Section cross-reference(s): 72

ST polypyrrole doping phenylporphyrin cobalt complex;
electrolytic polymn pyrrole; catalytic electrode
oxygen redn

IT Porphyrins

(metal complexes, polypyrrole doped with, with high catalytic
activity in oxygen redn., prepn. of, by
electrolytic polymn., in manuf. of catalytic
electrodes)

IT Reduction, electrochemical

(of oxygen, electrodes for, prepn. of)

IT Electric conductors

(polypyrrole doped with metal porphyrins, for catalytic
electrodes for oxygen redn., prepn. of, by
electrochem. polymn.)

IT 30604-81-0P

(metal porphyrin-doped, with high catalytic activity in
oxygen redn., prepn. of, by
electrolytic polymn., in manuf. of catalytic
electrodes)

IT 104671-14-9P

(poly(pyrrole) doped with, with high catalytic activity in
oxygen redn., prepn. of, by
electrolytic polymn., in manuf. of catalytic
electrodes)

IT 13939-11-2P	13966-42-2P	14325-03-2P	14494-37-2P	14783-38-1P
14875-96-8P	15415-30-2P	15442-64-5P	15627-10-8P	19584-91-9P
30137-73-6P	30138-25-1P	70414-73-2P	73001-65-7P	78521-08-1P
81957-14-4P	85245-78-9P	101241-04-7P	104671-11-6P	

105120-06-7P

(polypyrrole doped with, with high catalytic activity in
oxygen redn., prepn. of, by
electrolytic polymn., in manuf. of catalytic
electrodes)

=>

=> D L60 1-6 CBIB ABS HITSTR HITIND

L60 ANSWER 1 OF 6 HCA COPYRIGHT 2006 ACS on STN

140:96885 Proton conductive solid

polymer electrolyte for electrochemical cell.

Komiya, Teruaki (Honda Giken Kabushiki Kaisha, Japan). Eur. Pat.

Appl. EP 1381107 A2 20040114, 14 pp. DESIGNATED STATES: R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK. (English). CODEN: EPXXDW. APPLICATION: EP 2003-254383 20030710. PRIORITY: JP 2002-201718 20020710.

AB A material such as imidazole (nitrogen-contg. heterocyclic compd.), which has at least one lone pair, is dispersed in a basic solid polymer such as polybenzimidazole. The mole no. of imidazole per g of polybenzimidazole is less than 0.0014 mol, preferably less than 0.0006 mol. The basic solid polymer is impregnated with an acidic inorg. liq. such as phosphoric acid and sulfuric acid to prep. a proton conductive solid polymer electrolyte.

IT 9002-98-6

(proton conductive solid
polymer electrolyte for electrochem. cell)

RN 9002-98-6 HCA

CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4

CMF C2 H5 N

IT 7664-38-2, Phosphoric acid, uses

7664-93-9, Sulfuric acid, uses

(proton conductive solid

polymer electrolyte for electrochem. cell)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA
 CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 1333-74-0P, Hydrogen, preparation
 7782-44-7P, Oxygen, preparation
 (proton conductive solid
 polymer electrolyte for electrochem. cell)
 RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

RN 7782-44-7 HCA
 CN Oxygen (8CI, 9CI) (CA INDEX NAME)

IC ICM H01M010-40
 ICS H01M006-18; C08G073-18
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38, 72
 ST electrochem cell proton conductive solid
 polymer electrolyte; fuel cell proton
 conductive solid polymer
 electrolyte; electrolyzer proton
 conductive solid polymer
 electrolyte
 IT Azines
 (diazine; proton conductive solid
 polymer electrolyte for electrochem. cell)
 IT Heterocyclic compounds

(nitrogen; proton conductive solid
polymer electrolyte for electrochem. cell)

IT Electrochemical cells
Electrolytic cells
Fuel cell electrolytes
Solid electrolytes
(proton conductive solid
polymer electrolyte for electrochem. cell)

IT Polybenzimidazoles
(proton conductive solid
polymer electrolyte for electrochem. cell)

IT Ionic conductivity
(proton; proton conductive
solid polymer electrolyte for
electrochem. cell)

IT Fuel cells
(solid electrolyte; proton
conductive solid polymer
electrolyte for electrochem. cell)

IT 7732-18-5, Water, processes
(electrolysis; proton conductive
solid polymer electrolyte for
electrochem. cell)

IT 91-22-5, Quinoline, uses 110-86-1, Pyridine, uses 119-65-3,
IsoQuinoline 120-72-9, Indole, uses 120-73-0, Purine 288-13-1,
Pyrazole 288-32-4, Imidazole, uses 9002-98-6
9003-47-8, Polyvinylpyridine 25232-42-2, Polyvinylimidazole
25233-30-1 25823-41-0, Poly(1-vinylpyrazole) 32109-42-5,
Poly(1H-benzimidazole-2,5-diyl) 50641-39-9 131714-35-7
(proton conductive solid
polymer electrolyte for electrochem. cell)

IT 7664-38-2, Phosphoric acid, uses
7664-93-9, Sulfuric acid, uses
(proton conductive solid
polymer electrolyte for electrochem. cell)

IT 1333-74-0P, Hydrogen, preparation
7782-44-7P, Oxygen, preparation
(proton conductive solid
polymer electrolyte for electrochem. cell)

L60 ANSWER 2 OF 6 HCA COPYRIGHT 2006 ACS on STN

129:61705 Bipolar electrochemical charge storage devices and their
fabrication. Li, Changming; Jung, Richard H.; Nerz, John (Motorola,
Inc., USA). U.S. US 5768090 A 19980616, 9 pp.
(English). CODEN: USXXAM. APPLICATION: US 1996-755876 19961202.

AB An electrochem. capacitor cell is provided with 1st and 2nd
electrodes, and a solid polymer
electrolyte is disposed between them. The electrodes may be

either the same or different materials and may be fabricated from Ru, Ir, Co, W, V, Fe, Mo, Hf, Ni, Ag, Zn, and combinations thereof. The **solid polymer electrolyte** is in intimate contact with both electrodes, and is made from a polymeric support structure having an electrolyte active species dispersed in it. Also a method of fabricating a bipolar electrochem. charge storage device by assembling at least the 1st and 2nd bipolar subassemblies together with the 2nd layer of electrode active material for the 1st bipolar subassembly in direct contact with the 1st layer of electrode active material for the 2nd bipolar subassembly without a current collector disposed between them is described.

IT 7664-38-2, Phosphoric acid, processes
 7664-93-9, Sulfuric acid, processes
 9002-98-6
 (fabrication of bipolar electrochem. charge storage devices
 contg.)
 RN 7664-38-2 HCA
 CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA
 CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

RN 9002-98-6 HCA
 CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
 CMF C2 H5 N

IC ICM H01G009-00
INCL 361523000
CC 76-10 (Electric Phenomena)
Section cross-reference(s): 38, 52, 72
ST bipolar electrochem charge storage device manuf; **polymer electrolyte** electrochem capacitor manuf
IT Electrolytes
(fabrication of bipolar electrochem. charge storage devices having **polymer electrolytes**)
IT Polymers, processes
(fabrication of bipolar electrochem. charge storage devices having **polymer electrolytes**)
IT 1310-58-3, Potassium hydroxide, processes 1310-65-2, Lithium hydroxide (LiOH) 1310-73-2, Sodium hydroxide (NaOH), processes 7439-88-5, Iridium, processes 7439-89-6, Iron, processes 7439-98-7, Molybdenum, processes 7440-02-0, Nickel, processes 7440-18-8, Ruthenium, processes 7440-22-4, Silver, processes 7440-33-7, Tungsten, processes 7440-48-4, Cobalt, processes 7440-58-6, Hafnium, processes 7440-62-2, Vanadium, processes 7440-66-6, Zinc, processes 7647-01-0, Hydrogen chloride, processes 7664-38-2, Phosphoric acid, processes 7664-93-9, Sulfuric acid, processes 7697-37-2, Nitric acid, processes 9002-89-5, Polyvinyl alcohol 9002-98-6 9003-01-4, Polyacrylic acid 9003-05-8, Polyacrylamide 9003-06-9, Acrylamide-acrylic acid copolymer 9003-35-4, Phenol-formaldehyde copolymer 9003-39-8, Poly(vinyl pyrrolidone) 9003-47-8, Poly(vinyl pyridine) 12036-10-1, Ruthenium oxide (RuO₂) 24981-14-4, Poly(vinyl fluoride) 25249-16-5, Poly(2-hydroxyethyl methacrylate) 25322-68-3, Polyethylene glycol 28390-30-9 29011-20-9 85885-77-4, Cerium hydroxide (CeOH)
(fabrication of bipolar electrochem. charge storage devices contg.)

L60 ANSWER 3 OF 6 HCA COPYRIGHT 2006 ACS on STN

127:18475 Proton-conductive polymer

solid electrolytes. Bessho, Keiichi; Teramoto, Toshio; Ishikawa, Katsuhiro (Japan Synthetic Rubber Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho JP 09087510 A2 19970331 Heisei, 8 pp. (Japanese). CODEN: JKXXAF. APPLICATION: JP 1995-268064 19950922.

AB The title electrolytes, useful for primary, secondary, and fuel

batteries, display devices, sensors, capacitors, ion-exchange membranes, etc. (no data), are prep'd. from (a) introducing sulfone or phosphoric group to arom. or N-contg. ring polymers with heat resistance >250° [e.g., reaction product of (O-p-C₆H₄-p-C₆H₄-CO₂-p-C₆H₄)_n and H₂SO₄] and (b) polymer with proton cond. at relative humidity 50% 10-5 s/cm, polymer with water absorptivity >1%, and/or polymer with glass transition temp. <0° [e.g., polyoxyethylene, polyethyleneimine, poly(vinyl alc.)].

IT 9002-98-6

(proton-conductive polymer
solid electrolytes)

RN 9002-98-6 HCA

CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4

CMF C2 H5 N

IT 7664-93-9, Sulfuric acid, reactions
(proton-conductive polymer
solid electrolytes)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IC ICM C08L071-00

ICS C08L065-00; G01N027-406; H01G009-028; H01M006-18; H01M008-02;
H01M010-40

CC 37-6 (Plastics Manufacture and Processing)

ST proton conductive polymer

solid electrolyte; sulfonated polyoxyphenylene
polycarbonate proton conductor; polyoxyethylene proton
conducting solid electrolyte;polyethyleneimine proton conductive
solid electrolyte; polyvinyl alc proton

IT conductive solid electrolyte
Conducting polymers
(ionic; proton-conductive polymer
solid electrolytes)

IT Polyoxyphenylenes
Polyoxyphenylenes
(polyester-; proton-conductive
polymer solid electrolytes)

IT Polyesters, reactions
Polyesters, reactions
(polyoxyphenylene-; proton-conductive
polymer solid electrolytes)

IT Sulfonation
(proton-conductive polymer
solid electrolytes)

IT Polyamines
Polyoxyalkylenes, uses
(proton-conductive polymer
solid electrolytes)

IT Polybenzimidazoles
(proton-conductive polymer
solid electrolytes)

IT 25734-65-0DP, reaction product with 1,3-propanesultone
189640-60-6DP, reaction product with 1,3-propanesultone
189768-11-4DP, reaction product with sulfuric acid
189768-12-5DP, reaction product with sulfuric acid
(proton-conductive polymer
solid electrolytes)

IT 9002-89-5, Poly(vinyl alcohol) 9002-98-6 25322-68-3
26913-06-4, Poly[imino(1,2-ethanediyl)]
(proton-conductive polymer
solid electrolytes)

IT 1120-71-4D, 1,3-Propanesultone, reaction products with
polybenzimidazoles 7664-93-9, Sulfuric
acid, reactions 16672-87-0 25734-65-0 91442-06-7
189768-12-5
(proton-conductive polymer
solid electrolytes)

L60 ANSWER 4 OF 6 HCA COPYRIGHT 2006 ACS on STN
111:42849 Hydrogen separation and electricity generation using novel
electrolyte membranes. Polak, Anthony J.; Petty-Weeks, Sandra
(Allied-Signal, Inc., USA). U.S. US 4797185 A 19890110,
12 pp. Cont. of U. S. Ser. No. 756,889, abandoned. (English).
CODEN: USXXAM. APPLICATION: US 1987-70620 19870706. PRIORITY: US.
1984-687351 19841228; US 1985-756889 19850719.

AB An app. for performing an electrochem. process involving a gaseous
mixt. having a component which, in the presence of a catalytic

agent, is capable of dissocg. to yield H ions or of combining with H ions, comprises a thin-film macroscopically homogeneous polymer blend membrane, a membrane housing comprising a 1st and a 2nd gas chamber sepd. by the membrane, 2 sep. portions of catalytic agent effective to promote the dissocn. and combination, and means for forming an elec. connection in operative contact with the catalytic agent. The app. comprises also means to supply fuel gas to 1 and oxidant gas to the other of the 2 chambers, or to supply the gaseous mixt. to 1 and remove H from the other chamber. The membrane possessing a high protonic cond. and formed by removing the solvent from a soln. of a **phosphoric acid** and a polymer contains .apprx.10-70% H₂PO₃, HPO₃, H₃PO₄, H₄P₂O₇, and polyphosphoric acid and .apprx.30-90% polymer such as poly(vinyl alc.), poly(vinyl fluoride), polyethylene glycol, etc. In 1 version, the membrane may be formed into a hollow fiber having elec. conductive particles with catalyst embedded in the fiber walls; a multiplicity of such fibers may be used to form a H sepn. device.

IT 9002-98-6, Polyethylenimine

(membranes from blends contg. phosphorus acids and, for fuel cells and hydrogen sepn.)

RN 9002-98-6 HCA

CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4

CMF C2 H5 N

IT 7664-38-2, Phosphoric acid, uses and
miscellaneous 7664-93-9, Sulfuric acid
, uses and miscellaneous

(membranes from blends contg. polymer and, for fuel cells and hydrogen sepn.)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA
 CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 1333-74-0P, Hydrogen, preparation
 (sepn. of, membranes from phosphorus acid-polymer blends for)
 RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IC ICM C25B001-02
 ICS C25B009-00
 INCL 204129000
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38, 49, 72
 ST hydrogen sepn acid polymer membrane; fuel cell acid polymer
 membrane; phosphoric acid polymer membrane cond;
 cond protonic acid polymer membrane
 IT 9002-89-5, Poly(vinyl alcohol) 9002-98-6, Polyethylenimine
 9003-01-4, Poly(acrylic acid) 9003-05-8, Poly(acrylamide)
 9003-43-4, Poly(vinyl pyrrolidine) 9003-47-8, Poly(vinyl pyridine)
 9004-35-7, Cellulose acetate 24981-14-4, Poly(vinyl fluoride)
 25189-55-3, Poly(N-isopropyl acrylamide) 25322-68-3, Poly(ethylene
 glycol) 25805-17-8, Poly(ethyloxazoline) 26101-52-0, Poly(vinyl
 sulfonic acid) 26793-34-0, Poly(N,N-dimethyl acrylamide)
 26913-06-4, Polyethylenimine
 (membranes from blends contg. phosphorus acids and, for fuel
 cells and hydrogen sepn.)
 IT 2466-09-3, Pyrophosphoric acid 7664-38-2,
 Phosphoric acid, uses and miscellaneous
 7664-93-9, Sulfuric acid, uses and
 miscellaneous 7803-60-3, Hypophosphoric acid 10343-62-1,
 Metaphosphoric acid
 (membranes from blends contg. polymer and, for fuel cells and
 hydrogen sepn.)
 IT 1333-74-0P, Hydrogen, preparation
 (sepn. of, membranes from phosphorus acid-polymer blends for)

110:138716 Hydrogen separation and electricity generation using novel three-component membrane. Young, Ping; Polak, Anthony J. (Allied-Signal, Inc., USA). U.S. US 4795536 A 19890103, 13 pp. Cont. of U.S. Ser. No. 753,495, abandoned. (English). CODEN: USXXAM. APPLICATION: US 1987-70622 19870706. PRIORITY: US 1985-753495 19850710.

AB An app. for performing an electrochem. process involving a gaseous mixt. having a component which in presence of a catalytic agent is capable of dissocg. to yield H⁺ or of combining with H⁺ comprises a thin-film polymer-blend membrane, a membrane housing comprising a 1st and a 2nd gas chamber sepd. by the membrane, 2 sep. portions of catalytic agent effective to promote the dissocn. and combination, and means for forming elec. connection in operative contact with the catalytic agent. The app. comprises also means to supply fuel gas to 1 and oxidant gas to the other of the 2 chambers, or to supply the gaseous mixt. to 1 and remove H from the other of the 2 chambers. The membrane possessing a high H⁺ cond. and formed by removing the solvent from a soln. of a blend of 3 components: H₂PO₃, HPO₃, H₃PO₄, H₄P₂O₇, and polyphosphoric acid .apprx.10-50; an org. polymer such as poly(vinyl alc.), poly(vinyl fluoride), etc. .apprx.40-80; and a poly(org. acid) such as poly(acrylic acid) .apprx.10-40 mol%. For increased strength, a membrane may be composited with or attached to a porous support. In 1 version, elec. conductive particles with catalyst are partly embedded in the membrane to form a H sepg. device.

IT 9002-98-6, Polyethylenimine
(electrolyte membranes from blends contg. phosphoric acid-poly(org. acid)-, for fuel cells and hydrogen sepn.)

RN 9002-98-6 HCA

CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4

CMF C2 H5 N

IT 7664-38-2, Phosphoric acid, uses and
miscellaneous 7664-93-9, Sulfuric acid
, uses and miscellaneous
(electrolyte membranes from blends contg. polymer-poly(org.
acid)-, for fuel cells and hydrogen sepn.)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 1333-74-0P, Hydrogen, preparation

(sepn. of, electrolyte membranes from phosphoric acid-polymer-org. acid) for

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IC ICM C25B001-02

ICS C25B009-00

INCL 204129000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 38, 49, 72

ST hydrogen electrolytic sepn composite electrolyte; fuel cell
solid electrolyte composite; phosphoric acid polymer electrolyte composite;
polyorg acid polymer electrolyte composite; cond
solid electrolyte composite

IT Fuel cells

(electrolyte membranes for, phosphoric acid -polymer-poly(org. acid) blend)

IT 9002-89-5, Poly(vinyl alcohol) 9002-98-6, Polyethylenimine
9004-35-7, Cellulose acetate 24981-14-4, Poly(vinyl fluoride)
25322-68-3, Polyethylene glycol
(electrolyte membranes from blends contg. phosphoric acid-poly(org. acid)-, for fuel cells and hydrogen sepn.)

IT 9003-01-4, Poly(acrylic acid) 25087-26-7, Poly(methacrylic acid)
50851-57-5, Poly(styrenesulfonic acid)

(electrolyte membranes from blends contg. **phosphoric acid-polymer-**, for fuel cells and hydrogen sepn.)

IT 2466-09-3, Pyrophosphoric acid 7664-38-2,
Phosphoric acid, uses and miscellaneous
 7664-93-9, **Sulfuric acid**, uses and
 miscellaneous 7803-60-3, Hypophosphoric acid 10343-62-1,
Metaphosphoric acid
 (electrolyte membranes from blends contg. polymer-poly(org. acid)-, for fuel cells and hydrogen sepn.)

IT 1333-74-0P, **Hydrogen, preparation**
 (sepn. of, electrolyte membranes from **phosphoric acid-polymer-poly(org. acid)** for)

L60 ANSWER 6 OF 6 HCA COPYRIGHT 2006 ACS on STN
 107:62049 Electrochemical method and apparatus using **proton-conducting polymers**. Zupancic, Joseph J.; Swedo, Raymond J.; Petty-Weeks, Sandra L. (UOP Inc., USA). U.S. US 4664761 A 19870512, 10 pp. (English). CODEN: USXXAM.
 APPLICATION: US 1985-814339 19851227.

AB An interpenetrating polymer-network membrane for use as **solid electrolyte** in fuel cells or sepn. of H from gas mixt. or other electrochem. processes involving H⁺ contains a host polymer blend of **H₃PO₄** or **H₂SO₄** mixed with a polymer or copolymer of ethyleneimine, acrylic acid, ethylene oxide, 2-ethyl-2-oxazoline, acrylamide, N-substituted acrylamide, 4-vinylpyridine, methacrylic acid, N-vinylimidazole, vinylsulfonic acid, 2-vinylpyridine, poly(hydroxyethylene), or PhOH-HCHO resin and a guest polymer of acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-acrylamido-2-methylpropanesulfonic acid, N-benzylacrylamide, N-ethylmethylacrylamide, N-phenylacrylamide, or N-phenylmethacrylamide crosslinked by methylenebisacrylamide, N,N-diallylacryllamide, m-xylenebisacrylamide, or N,N'-trimethylenebisacrylamide where the repeating units of the guest polymer is different from that of the host polymer. The membrane is coated with catalysts on opposite sides and used as partitioner to sep. 2 gas chambers in an app. An aq. soln. of **H₃PO₄** and poly(vinyl alc.) and an aq. soln. of methylenebisacrylamide and methacrylic acid were mixed, poured into a Petri dish, H₂O was evapd., the film was irradiated by a 175-keV electron beam at 5 Mrad/pass from 1 side, cut into a 1"-diam. disk, and sputtered to form 400-Å Pt layers on both sides. This disk had a resistivity of 2 + 10⁶ Ω-cm and a H flux of 1.8 + 10⁻⁵ ft³/ft²-h.

IT 1333-74-0P, **Hydrogen, preparation**
 (sepn. of, from gas mixts. by electrochem. processes, **solid polymer electrolytes** for)

RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

IT 7664-38-2, Phosphoric acid, uses and
 miscellaneous 7664-93-9, Sulfuric acid
 , uses and miscellaneous 9002-98-6
 (solid electrolytes contg., proton-
 conductive, for fuel cells and other electrochem. app)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

RN 9002-98-6 HCA

CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4

CMF C2 H5 N

IC ICM C25B001-02
 ICS H01M008-10

INCL 204129000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38, 47, 49, 72

ST polyvinyl alc phosphoric acid electrolyte;

polymethacrylic acid solid electrolyte;
fuel cell polymer solid electrolyte;
hydrogen sepn polymer solid electrolyte

IT Fuel cells
(electrolytes for, solid polymer)

IT 30421-16-0, Methacrylic acid-methylenebisacrylamide copolymer
(crosslinked, solid electrolytes contg.,
proton-conductive, for fuel cells and other
electrochem. app.)

IT 1333-74-0P, Hydrogen, preparation
(sepn. of, from gas mixts. by electrochem. processes,
solid polymer electrolytes for)

IT 7664-38-2, Phosphoric acid, uses and
miscellaneous 7664-93-9, Sulfuric acid
, uses and miscellaneous 9002-89-5 9002-98-6
9003-01-4, Poly(acrylic acid) 9003-05-8 9003-35-4, Formaldehyde
phenol copolymer 25014-15-7, Poly(2-vinylpyridine) 25087-26-7,
Poly(methacrylic acid) 25232-41-1, Poly(4-vinylpyridine)
25232-42-2, Poly(N-vinylimidazole) 25322-68-3, Poly(ethylene
oxide) 25805-17-8, Poly(2-ethyl-2-oxazoline) 26101-52-0,
Poly(vinyl sulfonic acid)
(solid electrolytes contg., proton-
conductive, for fuel cells and other electrochem. app)

=>

=> D L62 1-8 CBIB ABS HITSTR HITIND

L62 ANSWER 1 OF 8 HCA COPYRIGHT 2006 ACS on STN

140:96885 Proton conductive solid

polymer electrolyte for electrochemical cell.

Komiya, Teruaki (Honda Giken Kabushiki Kaisha, Japan). Eur. Pat. Appl. EP 1381107 A2 20040114, 14 pp. DESIGNATED STATES: R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK. (English). CODEN: EPXXDW. APPLICATION: EP 2003-254383 20030710. PRIORITY: JP 2002-201718 20020710.

AB A material such as imidazole (nitrogen-contg. heterocyclic compd.), which has at least one lone pair, is dispersed in a basic solid polymer such as polybenzimidazole. The mole no. of imidazole per g of polybenzimidazole is less than 0.0014 mol, preferably less than 0.0006 mol. The basic solid polymer is impregnated with an acidic inorg. liq. such as phosphoric acid and sulfuric acid to prep. a proton conductive solid polymer electrolyte.

IT 9003-47-8, Polyvinylpyridine 25823-41-0,
Poly(1-vinylpyrazole)

(proton conductive solid
polymer electrolyte for electrochem. cell)

RN 9003-47-8 HCA

CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1

CMF C7 H7 N

CCI IDS

D1-CH=CH₂

RN 25823-41-0 HCA

CN 1H-Pyrazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 20173-98-2
 CMF C5 H6 N2

IT 7664-38-2, Phosphoric acid, uses
 7664-93-9, Sulfuric acid, uses
 (proton conductive solid
 polymer electrolyte for electrochem. cell)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 1333-74-0P, Hydrogen, preparation
 7782-44-7P, Oxygen, preparation
 (proton conductive solid
 polymer electrolyte for electrochem. cell)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

RN 7782-44-7 HCA

CN Oxygen (8CI, 9CI) (CA INDEX NAME)

O=O

IC ICM H01M010-40
ICS H01M006-18; C08G073-18
CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 38, 72
ST electrochem cell proton conductive solid
polymer electrolyte; fuel cell proton
conductive solid polymer
electrolyte; electrolyzer proton
conductive solid polymer
electrolyte
IT Azines
(diazine; proton conductive solid
polymer electrolyte for electrochem. cell)
IT Heterocyclic compounds
(nitrogen; proton conductive solid
polymer electrolyte for electrochem. cell)
IT Electrochemical cells
Electrolytic cells
Fuel cell electrolytes
Solid electrolytes
(proton conductive solid
polymer electrolyte for electrochem. cell)
IT Polybenzimidazoles
(proton conductive solid
polymer electrolyte for electrochem. cell)
IT Ionic conductivity
(proton; proton conductive
solid polymer electrolyte for
electrochem. cell)
IT Fuel cells
(solid electrolyte; proton
conductive solid polymer
electrolyte for electrochem. cell)
IT 7732-18-5, Water, processes
(electrolysis; proton conductive
solid polymer electrolyte for
electrochem. cell)
IT 91-22-5, Quinoline, uses 110-86-1, Pyridine, uses 119-65-3,
IsoQuinoline 120-72-9, Indole, uses 120-73-0, Purine 288-13-1,
Pyrazole 288-32-4, Imidazole, uses 9002-98-6 9003-47-8
, Polyvinylpyridine 25232-42-2, Polyvinylimidazole 25233-30-1
25823-41-0, Poly(1-vinylpyrazole) 32109-42-5,
Poly(1H-benzimidazole-2,5-diyl) 50641-39-9 131714-35-7
(proton conductive solid
polymer electrolyte for electrochem. cell)
IT 7664-38-2, Phosphoric acid, uses
7664-93-9, Sulfuric acid, uses

(proton conductive solid
polymer electrolyte for electrochem. cell)

IT 1333-74-0P, Hydrogen, preparation
7782-44-7P, Oxygen, preparation
(proton conductive solid
polymer electrolyte for electrochem. cell)

L62 ANSWER 2 OF 8 HCA COPYRIGHT 2006 ACS on STN

139:150738 Acid-base proton conducting

polymer blend membrane for fuel cells. Nam, Kiehyun; Xu, Helen; Cao, Shuguang; Olmeijer, David; Servaites, Jon; Wang, Ying (Polyfuel, Inc., USA). PCT Int. Appl. WO 2003062493 A1 20030731, 38 pp. DESIGNATED STATES: W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW; RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, CY, DE, DK, ES, FI, FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG, TR. (English). CODEN: PIXXD2. APPLICATION: WO 2003-US2361 20030123. PRIORITY: US 2002-2002/PV351445 20020123.

AB The acid-base proton conducting polymer blend membrane comprises a first acidic polymer having acidic subunits, a second basic polymer having basic subunits, and a third polymer contg. one or more functional units for improving membrane cond., flexibility, water remaining ability, dimension stability, and methanol crossover. In one embodiment, the acid-base polymer blend membrane of the present invention comprises a first acidic polymer having acidic subunits, a second basic polymer having basic subunits, wherein at least one of the first acidic and second basic polymer comprises one or more functional units to improve the properties of the membrane. The functional units include hydrophilic units, adhesion promoter units, methanol block units, dimensional stabilizer units, and flexible units. Optionally, interpenetrating polymer networks are added to the blends to improve the membrane dimensional stability, and rubbers are optionally added to the blends to improve the membrane mech. properties and reduce methanol permeability. A typical membrane was manufd. by adding 0.2 g NH₃ to 12 g AcNMe₂ contg. 0.7 g sulfonated PEEK, adding 0.3 g styrene-4-vinylpyridine block copolymer (no.-av. mol. wt. vinylpyridine block 80,000, no.-av. mol. wt. styrene block 160,000), casting, drying, soaking 16 h in 1.5 M H₂SO₄, and rinsing in water.

IT 9003-47-8, Polyvinylpyridine
(base polymer; acid-base proton
conducting polymer blend membrane with good
mech. properties, hydrophilicity, and decreased methanol

permeability for fuel cells)

RN 9003-47-8 HCA

CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1

CMF C7 H7 N

CCI IDS

D1—CH=CH₂

IC ICM C25B001-02

ICS C25B013-08; H01M008-10

CC 38-3 (Plastics Fabrication and Uses)
Section cross-reference(s): 52

ST acid base proton conducting polymer
blend membrane fuel cell; styrene vinylpyridine block copolymer
blend proton conducting membrane; ammonium sulfonated PEEK blend
acid base proton conducting membrane

IT Polymer blends

(acid-base proton conducting polymer

blend membrane with good mech. properties, hydrophilicity, and
decreased methanol permeability for fuel cells)

IT Synthetic rubber, uses

(acrylonitrile, mech.-property improving component; acid-base
proton conducting polymer blend

membrane with good mech. properties, hydrophilicity, and
decreased methanol permeability for fuel cells)

IT Polybenzimidazoles

(base polymer; acid-base proton

conducting polymer blend membrane with good

mech. properties, hydrophilicity, and decreased methanol
permeability for fuel cells)

IT Silicone rubber, uses

(di-Me, aminopropyl group-terminated, mech.-property improving
component; acid-base proton conducting

polymer blend membrane with good mech. properties,

hydrophilicity, and decreased methanol permeability for fuel
cells)

IT Fluoro rubber
(hexafluoropropene-vinylidene fluoride, Kynar Flex,
mech.-property improving component; acid-base **proton conducting polymer** blend membrane with good
mech. properties, hydrophilicity, and decreased methanol
permeability for fuel cells)

IT Interpenetrating polymer networks
(mech.-property improving component; acid-base **proton conducting polymer** blend membrane with good
mech. properties, hydrophilicity, and decreased methanol
permeability for fuel cells)

IT Synthetic rubber, uses
(phosphazene, trifluoroethoxy, mech.-property improving
component; acid-base **proton conducting polymer** blend membrane with good mech. properties,
hydrophilicity, and decreased methanol permeability for fuel
cells)

IT Polysulfones, uses
(polyether-, acid **polymer**; acid-base **proton conducting polymer** blend membrane with good
mech. properties, hydrophilicity, and decreased methanol
permeability for fuel cells)

IT Polyimides, uses
Polysulfones, uses
(polyether-, sulfonated, acid **polymer**; acid-base
proton conducting polymer blend
membrane with good mech. properties, hydrophilicity, and
decreased methanol permeability for fuel cells)

IT Polyketones
(polyether-, sulfonated; ammonium salts, acid **polymer**;
acid-base **proton conducting polymer**
blend membrane with good mech. properties, hydrophilicity, and
decreased methanol permeability for fuel cells)

IT Polyethers, uses
(polyimide-, sulfonated, acid **polymer**; acid-base
proton conducting polymer blend
membrane with good mech. properties, hydrophilicity, and
decreased methanol permeability for fuel cells)

IT Polyethers, uses
(polyketone-, sulfonated, ammonium salts, acid **polymer**;
acid-base **proton conducting polymer**
blend membrane with good mech. properties, hydrophilicity, and
decreased methanol permeability for fuel cells)

IT Polyethers, uses
(polysulfone-, acid **polymer**; acid-base **proton conducting polymer** blend membrane with good
mech. properties, hydrophilicity, and decreased methanol
permeability for fuel cells)

IT Polyethers, uses
(polysulfone-, sulfonated, acid **polymer**; acid-base **proton conducting polymer** blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT Ionic conductors
(**proton**; acid-base **proton conducting polymer** blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT Fluoropolymers, uses
(rubber, mech.-property improving component; acid-base **proton conducting polymer** blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT Fuel cells
(**solid electrolyte**, proton-exchange membranes; acid-base **proton conducting polymer** blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT Fluoro rubber
(vinylidene fluoride, mech.-property improving component; acid-base **proton conducting polymer** blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT 97917-34-5, A 12
(DMS-A 12, mech.-property improving component; acid-base **proton conducting polymer** blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT 31694-16-3D, PEEK, sulfonated, ammonium salts
(acid **polymer**; acid-base **proton conducting polymer** blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT 67-56-1, Methanol, miscellaneous
(acid-base **proton conducting polymer** blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT 9003-53-6, Polystyrene
(addnl. hydrophobic component; acid-base **proton conducting polymer** blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT 9003-47-8, Polyvinylpyridine 25232-42-2,
Polyvinylimidazole 32236-74-1, Acrylonitrile-4-vinylpyridine copolymer 69638-75-1, Acrylic acid-styrene-4-vinylpyridine

copolymer 107082-95-1, Styrene-4-vinylpyridine block copolymer
 (base polymer; acid-base proton
 conducting polymer blend membrane with good
 mech. properties, hydrophilicity, and decreased methanol
 permeability for fuel cells)

IT 9003-39-8, PVP 25086-29-7, Styrene-vinylpyrrolidone copolymer
 25086-89-9, Vinyl acetate-vinylpyrrolidone copolymer 25189-55-3,
 Poly-N-isopropylacrylamide 25249-16-5, Poly-2-hydroxyethyl
 methacrylate 29297-55-0, N-Vinylimidazole-N-vinylpyrrolidone
 copolymer 30581-59-0, Dimethylaminoethyl methacrylate-
 vinylpyrrolidone copolymer 31261-19-5, Acrylonitrile-N-
 isopropylacrylamide copolymer 36521-72-9, Vinyl acetate-vinyl
 alcohol-N-vinylpyrrolidone copolymer 200216-54-2,
 Acrylonitrile-vinylimidazole copolymer
 (hydrophilic component; acid-base proton
 conducting polymer blend membrane with good
 mech. properties, hydrophilicity, and decreased methanol
 permeability for fuel cells)

IT 24968-99-8, Polyvinyl cinnamate
 (mech.-property improving component; acid-base proton
 conducting polymer blend membrane with good
 mech. properties, hydrophilicity, and decreased methanol
 permeability for fuel cells)

IT 78-10-4, TEOS 681-84-5, TMOS
 (mech.-property improving component; acid-base proton
 conducting polymer blend membrane with good
 mech. properties, hydrophilicity, and decreased methanol
 permeability for fuel cells)

IT 9002-89-5, Polyvinyl alcohol 9003-20-7, Polyvinyl acetate
 24937-78-8, EVA 25213-24-5, Vinyl acetate-vinyl alcohol copolymer
 37203-28-4, Vinyl acetate-vinylpyridine copolymer 61318-17-0,
 Vinyl alcohol-vinylpyridine copolymer 570394-13-7, Vinyl
 alcohol-vinyl acetate-vinylpyridine copolymer
 (methanol-blocking component; acid-base proton
 conducting polymer blend membrane with good
 mech. properties, hydrophilicity, and decreased methanol
 permeability for fuel cells)

IT 9011-17-0, Hexafluoropropylene-vinylidene fluoride copolymer
 24937-79-9, Polyvinylidene fluoride 25014-41-9, PAN 28212-50-2,
 Polybis(trifluoroethoxy)phosphazene
 (rubber, mech.-property improving component; acid-base
 proton conducting polymer blend
 membrane with good mech. properties, hydrophilicity, and
 decreased methanol permeability for fuel cells)

rechargeable batteries and fuel cells. Brochu, Fernand; Duval, Michel (Hydro-Quebec, Can.). PCT Int. Appl. WO 2000028611 A1 20000518, 21 pp. DESIGNATED STATES: W: CA, JP; RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE. (English). CODEN: PIXXD2. APPLICATION: WO 1999-CA1022 19991102. PRIORITY: US 1998-186138 19981105.

AB Organophosphoric materials obtained from the reaction of **orthophosphoric acid** with various org. reagents, including acetonitrile, acrylonitrile, a low mol. wt. ether, a low mol. wt. alc., or mixts. thereof are materials for use in **proton-conducting polymer electrolytes**. The novel organophosphoric materials have the beneficial effect of preventing the degrdn. of the polymers while still providing excellent ionic cond.

IT 7664-38-2D, **Orthophosphoric acid**, reaction product with acetonitrile 7664-93-9D, **Sulfuric acid**, reaction product with org. reagent, uses 9003-47-8, **Polyvinylpyridine** (materials for use in **proton-conducting polymer electrolytes** for electrochromic devices, rechargeable batteries and fuel cells)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

RN 9003-47-8 HCA

CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1

CMF C7 H7 N

CCI IDS

D1—CH=CH₂

IC ICM H01M008-10
ICS H01M010-40; H01M006-18; G02F001-15; C07F009-09
CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 38
ST organophosphoric material **proton conducting polymer electrolyte**; electrochromic device organophosphoric material electrolyte; battery organophosphoric material electrolyte; fuel cell organophosphoric material electrolyte
IT Polysulfones, uses
(arom.; materials for use in **proton-conducting polymer electrolytes** for electrochromic devices, rechargeable batteries and fuel cells)
IT Alcohols, uses
Ethers, uses
(low mol. wt., reaction product with inorg. acid; materials for use in **proton-conducting polymer electrolytes** for electrochromic devices, rechargeable batteries and fuel cells)
IT Battery electrolytes
Conducting polymers
Electrochromic devices
Fuel cell electrolytes
(materials for use in **proton-conducting polymer electrolytes** for electrochromic devices, rechargeable batteries and fuel cells)
IT Acrylic polymers, uses
Fluoropolymers, uses
Polyamides, uses
Polybenzimidazoles
Polyethers, uses
Polyimides, uses
Polythioarylenes
(materials for use in **proton-conducting polymer electrolytes** for electrochromic devices, rechargeable batteries and fuel cells)

IT Sulfonic acids, uses
(perfluorosulfonic acid polymers; materials for use in **proton-conducting polymer electrolytes** for electrochromic devices, rechargeable batteries and fuel cells)

IT Fluoropolymers, uses
Fluoropolymers, uses
(sulfo-contg.; materials for use in **proton-conducting polymer electrolytes** for electrochromic devices, rechargeable batteries and fuel cells)

IT 7631-86-9, Aerosil, uses
(colloidal; materials for use in **proton-conducting polymer electrolytes** for electrochromic devices, rechargeable batteries and fuel cells)

IT 9010-79-1, Ethylene-propylene copolymer
(fluorinated; materials for use in **proton-conducting polymer electrolytes** for electrochromic devices, rechargeable batteries and fuel cells)

IT 75-05-8D, Acetonitrile, reaction product with **orthophosphoric acid**, uses 107-13-1D,
Acrylonitrile, reaction product with **orthophosphoric acid** 7601-90-3D, Perchloric acid, reaction product with org. reagent, uses 7664-38-2D, **Orthophosphoric acid**, reaction product with acetonitrile 7664-38-2D , **Orthophosphoric acid**, reaction product with org. reagent 7664-93-9D, **Sulfuric acid** , reaction product with org. reagent, uses 9002-89-5, Pva 9003-05-8, Polyacrylamide 9003-20-7, Polyvinyl acetate 9003-39-8 9003-47-8, Polyvinylpyridine 24937-79-9, Pvdf 57271-36-0, Butylene-ethylene-styrene copolymer 90622-00-7D, Benzene, ethenyl-, trifluoro deriv., sulfonic acid deriv. 105809-46-9D, Polypyrazole, arom. deriv.
(materials for use in **proton-conducting polymer electrolytes** for electrochromic devices, rechargeable batteries and fuel cells)

L62 ANSWER 4 OF 8 HCA COPYRIGHT 2006 ACS on STN

129:61705 Bipolar electrochemical charge storage devices and their fabrication. Li, Changming; Jung, Richard H.; Nerz, John (Motorola, Inc., USA). U.S. US 5768090 A 19980616, 9 pp.
(English). CODEN: USXXAM. APPLICATION: US 1996-755876 19961202.

AB An electrochem. capacitor cell is provided with 1st and 2nd electrodes, and a **solid polymer electrolyte** is disposed between them. The electrodes may be either the same or different materials and may be fabricated from Ru, Ir, Co, W, V, Fe, Mo, Hf, Ni, Ag, Zn, and combinations thereof. The **solid polymer electrolyte** is in intimate contact with both electrodes, and is made from a polymeric

support structure having an electrolyte active species dispersed in it. Also a method of fabricating a bipolar electrochem. charge storage device by assembling at least the 1st and 2nd bipolar subassemblies together with the 2nd layer of electrode active material for the 1st bipolar subassembly in direct contact with the 1st layer of electrode active material for the 2nd bipolar subassembly without a current collector disposed between them is described.

IT 7664-38-2, Phosphoric acid, processes
 7664-93-9, Sulfuric acid, processes
 9003-47-8, Poly(vinyl pyridine)
 (fabrication of bipolar electrochem. charge storage devices
 contg.)
 RN 7664-38-2 HCA
 CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA
 CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

RN 9003-47-8 HCA
 CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
 CMF C7 H7 N
 CCI IDS

D1- CH=CH₂

IC ICM H01G009-00
INCL 361523000
CC 76-10 (Electric Phenomena)
Section cross-reference(s): 38, 52, 72
ST bipolar electrochem charge storage device manuf; **polymer electrolyte** electrochem capacitor manuf
IT Electrolytes
(fabrication of bipolar electrochem. charge storage devices having **polymer electrolytes**)
IT Polymers, processes
(fabrication of bipolar electrochem. charge storage devices having **polymer electrolytes**)
IT 1310-58-3, Potassium hydroxide, processes 1310-65-2, Lithium hydroxide (LiOH) 1310-73-2, Sodium hydroxide (NaOH), processes 7439-88-5, Iridium, processes 7439-89-6, Iron, processes 7439-98-7, Molybdenum, processes 7440-02-0, Nickel, processes 7440-18-8, Ruthenium, processes 7440-22-4, Silver, processes 7440-33-7, Tungsten, processes 7440-48-4, Cobalt, processes 7440-58-6, Hafnium, processes 7440-62-2, Vanadium, processes 7440-66-6, Zinc, processes 7647-01-0, Hydrogen chloride, processes 7664-38-2, Phosphoric acid, processes 7664-93-9, Sulfuric acid, processes 7697-37-2, Nitric acid, processes 9002-89-5, Polyvinyl alcohol 9002-98-6 9003-01-4, Polyacrylic acid 9003-05-8, Polyacrylamide 9003-06-9, Acrylamide-acrylic acid copolymer 9003-35-4, Phenol-formaldehyde copolymer 9003-39-8, Poly(vinyl pyrrolidone) 9003-47-8, Poly(vinyl pyridine) 12036-10-1, Ruthenium oxide (RuO₂) 24981-14-4, Poly(vinyl fluoride) 25249-16-5, Poly(2-hydroxyethyl methacrylate) 25322-68-3, Polyethylene glycol 28390-30-9 29011-20-9 85885-77-4, Cerium hydroxide (CeOH)
(fabrication of bipolar electrochem. charge storage devices contg.)

L62 ANSWER 5 OF 8 HCA COPYRIGHT 2006 ACS on STN
128:199644 **Polymer electrolyte** and electrochemical cell containing this electrolyte. Wu, Han; Li, Changming; Lian, Ke

Keryn (Motorola, Inc., USA). U.S. US 5723231 A 19980303,
7 pp. (English). CODEN: USXXAM. APPLICATION: US 1996-762477
19961209.

AB The cell comprises 1st and 2nd electrodes fabricated from materials selected from Ru, Ir, Pt, Co, W, V, Fe, etc. and sepd. by an electrolyte material comprising an admixt. of an acid having a b.p. or decompn. temp. >100°, ≥1 polymer, and fumed SiO₂ 0.2-8 wt.%. An electrochem. capacitor comprises 2 RuO₂ electrodes sepd. by a gel electrolyte including an admixt. of H₃PO₄ and poly(benzimidazole) in a ratio of (2-50):1, and fumed SiO₂ 0.5-5 wt.%.

IT 9003-47-8, Poly(vinylpyridine)
(in electrolyte for electrochem. cell)

RN 9003-47-8 HCA

CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1

CMF C7 H7 N

CCI IDS

D1—CH=CH₂

IT 7664-38-2, Phosphoric acid, uses
(in polymer electrolyte for electrochem.
cell)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

IC ICM H01M006-04

INCL 429203000

CC 76-10 (Electric Phenomena)

ST Section cross-reference(s): 38, 52
electrochem cell **polymer electrolyte**; capacitor
electrochem **phosphoric acid polybenzimidazole**
electrolyte; silica fumed electrochem cell **polymer**
electrolyte

IT Capacitors
 Electrolytic cells
 (**polymer electrolyte** and electrochem. cell
 contg. this electrolyte)

IT 12036-10-1, Ruthenium dioxide
 (electrodes in capacitor with **polymer**
 electrolyte)

IT 7631-86-9, Silica, uses
 (fumed in **polymer electrolyte** for
 electrochem. cell)

IT 9002-98-6 9003-01-4, Poly(acrylic acid) 9003-05-8,
Polyacrylamide 9003-39-8, Poly(vinylpyrrolidone) **9003-47-8**
, Poly(vinylpyridine) 25322-68-3, PEO
 (in electrolyte for electrochem. cell)

IT **7664-38-2, Phosphoric acid**, uses
 (in **polymer electrolyte** for electrochem.
cell)

L62 ANSWER 6 OF 8 HCA COPYRIGHT 2006 ACS on STN
111:126071 Gas detection apparatus and method with an electrolyte
membrane. Polak, Anthony J.; Petty-Weeks, Sandra (Allied-Signal,
Inc., USA). U.S. US 4824528 A **19890425**, 13 pp. Cont. of
U.S. Ser. No. 756,614, abandoned. (English). CODEN: USXXAM.
APPLICATION: US 1987-70650 19870706. PRIORITY: US 1984-687348
19841228; US 1985-756614 19850719.

AB An app. and method are described for detecting and measuring H and
gaseous compds. capable of dissocg. into or combining with H ions
using a **solid-electrolyte** concn. cell. A
solid-electrolyte membrane is used which comprises
an org. polymer-inorg. compd. blend prep'd. by admixing an org.
polymer, such as poly(vinyl alc.) with **phosphoric**
acid in a mutually miscible solvent. A ref. gas or a solid
ref. substance is used. For increased, strength, a membrane may be
composited with or attached to a porous support.

IT **7664-38-2, Orthophosphoric acid**, uses
and miscellaneous **9003-47-8**, Polyvinyl pyridine
 (electrolyte-membrane gas detection app. contg.)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 9003-47-8 HCA
 CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
 CMF C7 H7 N
 CCI IDS

D1- CH=CH₂

IC ICM G01N027-58
 INCL 204-1T
 CC 79-2 (Inorganic Analytical Chemistry)
 IT 2466-09-3, Pyrophosphoric acid 7440-05-3, Palladium, uses and
 miscellaneous 7440-06-4, Platinum, uses and miscellaneous
7664-38-2, Orthophosphoric acid, uses
 and miscellaneous 7803-60-3, Hypophosphoric acid 9002-89-5,
 Polyvinyl alcohol 9002-98-6 9003-01-4, Polyacrylic acid
 9003-05-8, Polyacrylamide 9003-39-8, Polyvinyl pyrrolidinone
9003-47-8, Polyvinyl pyridine 9004-35-7, Cellulose acetate
 10343-62-1, Metaphosphoric acid 12648-42-9, Palladium hydride
 24981-14-4, Polyvinyl fluoride 25189-55-3, Poly(N-isopropyl
 acrylamide) 25322-68-3, Polyethylene glycol 25805-17-8
 26101-52-0, Poly(vinyl sulfonic acid) 26793-34-0
 (electrolyte-membrane gas detection app. contg.)

L62 ANSWER 7 OF 8 HCA COPYRIGHT 2006 ACS on STN
 111:42849 Hydrogen separation and electricity generation using novel
 electrolyte membranes. Polak, Anthony J.; Petty-Weeks, Sandra
 (Allied-Signal, Inc., USA). U.S. US 4797185 A 19890110,
 12 pp. Cont. of U. S. Ser. No. 756,889, abandoned. (English).

CODEN: USXXAM. APPLICATION: US 1987-70620 19870706. PRIORITY: US 1984-687351 19841228; US 1985-756889 19850719.

AB An app. for performing an electrochem. process involving a gaseous mixt. having a component which, in the presence of a catalytic agent, is capable of dissocg. to yield H ions or of combining with H ions, comprises a thin-film macroscopically homogeneous polymer blend membrane, a membrane housing comprising a 1st and a 2nd gas chamber sepd. by the membrane, 2 sep. portions of catalytic agent effective to promote the dissocn. and combination, and means for forming an elec. connection in operative contact with the catalytic agent. The app. comprises also means to supply fuel gas to 1 and oxidant gas to the other of the 2 chambers, or to supply the gaseous mixt. to 1 and remove H from the other chamber. The membrane possessing a high protonic cond. and formed by removing the solvent from a soln. of a **phosphoric acid** and a polymer contains .apprx.10-70% H₂PO₃, HPO₃, H₃PO₄, H₄P₂O₇, and polyphosphoric acid and .apprx.30-90% polymer such as poly(vinyl alc.), poly(vinyl fluoride), polyethylene glycol, etc. In 1 version, the membrane may be formed into a hollow fiber having elec. conductive particles with catalyst embedded in the fiber walls; a multiplicity of such fibers may be used to form a H sepn. device.

IT 9003-47-8, Poly(vinyl pyridine)
(membranes from blends contg. phosphorus acids and, for fuel cells and hydrogen sepn.)

RN 9003-47-8 HCA

CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1

CMF C7 H7 N

CCI IDS

D1-CH=CH₂

IT 7664-38-2, Phosphoric acid, uses and
miscellaneous 7664-93-9, Sulfuric acid
, uses and miscellaneous
(membranes from blends contg. polymer and, for fuel cells and

hydrogen sepn.)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 1333-74-0P, Hydrogen, preparation

(sepn. of, membranes from phosphorus acid-polymer blends for)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IC ICM C25B001-02

ICS C25B009-00

INCL 204129000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 38, 49, 72

ST hydrogen sepn acid polymer membrane; fuel cell acid polymer
membrane; phosphoric acid polymer membrane cond;
cond protonic acid polymer membrane

IT 9002-89-5, Poly(vinyl alcohol) 9002-98-6, Polyethylenimine
9003-01-4, Poly(acrylic acid) 9003-05-8, Poly(acrylamide)
9003-43-4, Poly(vinyl pyrrolidine) 9003-47-8, Poly(vinyl
pyridine) 9004-35-7, Cellulose acetate 24981-14-4, Poly(vinyl
fluoride) 25189-55-3, Poly(N-isopropyl acrylamide) 25322-68-3,
Poly(ethylene glycol) 25805-17-8, Poly(ethyloxazoline)
26101-52-0, Poly(vinyl sulfonic acid) 26793-34-0,
Poly(N,N-dimethyl acrylamide) 26913-06-4, Polyethylenimine
(membranes from blends contg. phosphorus acids and, for fuel
cells and hydrogen sepn.)

IT 2466-09-3, Pyrophosphoric acid 7664-38-2,

Phosphoric acid, uses and miscellaneous
7664-93-9, Sulfuric acid, uses and
miscellaneous 7803-60-3, Hypophosphoric acid 10343-62-1,
Metaphosphoric acid
 (membranes from blends contg. polymer and, for fuel cells and
 hydrogen sepn.)

IT **1333-74-0P, Hydrogen, preparation**
 (sepn. of, membranes from phosphorus acid-polymer blends for)

L62 ANSWER 8 OF 8 HCA COPYRIGHT 2006 ACS on STN

107:69923 Gas detection with a three-component membrane and a sensor
 using this membrane. Petty-Weeks, Sandra (UOP Inc., USA). U.S. US
 4661211 A 19870428, 13 pp. (English). CODEN: USXXAM.
 APPLICATION: US 1985-753477 19850710.

AB The title app. and method are described for detecting and measuring
 H and gaseous compds. capable of dissocg. into or combining with H
 ions using a solid electrolyte concn. cell. A
 novel solid electrolyte membrane is used which
 comprises a 3-component blend prepd. by admixing an org. polymer or
 copolymer, such as poly(vinyl alc.), with an inorg. compd., such as
 H_3PO_4 , and an org. compd. selected from a group of polymers
 and copolymers having monomer units contg. N, O, or S atoms, such as
 poly(vinyl pyrrolidinone), in a mutually miscible solvent. A ref.
 gas or a solid ref. substance is used. For increased strength, a
 membrane may be composited with or attached to a porous support
 without losing its desirable properties.

IT 9003-47-8, Poly(vinylpyridine) 7664-38-2D, derivs.

7664-93-9, Sulfuric acid, uses and
miscellaneous
 (in hydrogen gas sensor with three-component membrane)

RN 9003-47-8 HCA

CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
 CMF C7 H7 N
 CCI IDS

D1- CH=CH₂

RN 7664-38-2 HCA
CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA
CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IC ICM G01N027-58
INCL 204-1T
CC 79-2 (Inorganic Analytical Chemistry)
Section cross-reference(s): 38, 67, 76
IT 9002-89-5, Polyvinyl alcohol 9002-98-6 9003-05-8,
Poly(acrylamide) 9003-35-4 9003-39-8, Poly(vinyl pyrrolidinone)
9003-43-4, Poly(vinyl pyrrolidine) 9003-47-8,
Poly(vinylpyridine) 9004-35-7D, Cellulose acetate, polymers
12648-42-9, Palladium hydride 24981-14-4, Polyvinyl fluoride
25322-68-3 25585-49-3 25805-17-8 26101-52-0, Poly(vinyl
sulfonic acid) 7440-05-3, Palladium, uses and miscellaneous
7440-06-4, Platinum, uses and miscellaneous 7664-38-2D,
derivs. 7664-93-9, Sulfuric acid, uses
and miscellaneous
(in hydrogen gas sensor with three-component membrane)

=>

=> D L63 1-5 CBIB ABS HITSTR HITIND

L63 ANSWER 1 OF 5 HCA COPYRIGHT 2006 ACS on STN

140:96885 Proton conductive solid

polymer electrolyte for electrochemical cell.

Komiya, Teruaki (Honda Giken Kabushiki Kaisha, Japan). Eur. Pat.

Appl. EP 1381107 A2 20040114, 14 pp. DESIGNATED STATES: R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK. (English). CODEN: EPXXDW. APPLICATION: EP 2003-254383 20030710. PRIORITY: JP 2002-201718 20020710.

AB A material such as imidazole (nitrogen-contg. heterocyclic compd.), which has at least one lone pair, is dispersed in a basic solid polymer such as polybenzimidazole. The mole no. of imidazole per g of polybenzimidazole is less than 0.0014 mol, preferably less than 0.0006 mol. The basic solid polymer is impregnated with an acidic inorg. liq. such as **phosphoric acid** and **sulfuric acid** to prep. a proton conductive solid polymer electrolyte.

IT 32109-42-5, Poly(1H-benzimidazole-2,5-diyl)

(proton conductive solid

polymer electrolyte for electrochem. cell)

RN 32109-42-5 HCA

CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

IT 7664-38-2, Phosphoric acid, uses

7664-93-9, Sulfuric acid, uses

(proton conductive solid

polymer electrolyte for electrochem. cell)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA
CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IC ICM H01M010-40
ICS H01M006-18; C08G073-18
CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 38, 72
ST electrochem cell proton conductive solid
polymer electrolyte; fuel cell proton
conductive solid polymer
electrolyte; electrolyzer proton
conductive solid polymer
electrolyte
IT Azines
(diazine; proton conductive solid
polymer electrolyte for electrochem. cell)
IT Heterocyclic compounds
(nitrogen; proton conductive solid
polymer electrolyte for electrochem. cell)
IT Electrochemical cells
Electrolytic cells
Fuel cell electrolytes
Solid electrolytes
(proton conductive solid
polymer electrolyte for electrochem. cell)
IT Polybenzimidazoles
(proton conductive solid
polymer electrolyte for electrochem. cell)
IT Ionic conductivity
(proton; proton conductive
solid polymer electrolyte for
electrochem. cell)
IT Fuel cells
(solid electrolyte; proton
conducting solid polymer
electrolyte for electrochem. cell)
IT 7732-18-5, Water, processes
(electrolysis; proton conductive
solid polymer electrolyte for
electrochem. cell)

IT 91-22-5, Quinoline, uses 110-86-1, Pyridine, uses 119-65-3,
 IsoQuinoline 120-72-9, Indole, uses 120-73-0, Purine 288-13-1,
 Pyrazole 288-32-4, Imidazole, uses 9002-98-6 9003-47-8,
 Polyvinylpyridine 25232-42-2, Polyvinylimidazole 25233-30-1
 25823-41-0, Poly(1-vinylpyrazole) 32109-42-5,
 Poly(1H-benzimidazole-2,5-diyl) 50641-39-9 131714-35-7
 (proton conductive solid
 polymer electrolyte for electrochem. cell)

IT 7664-38-2, Phosphoric acid, uses
 7664-93-9, Sulfuric acid, uses
 (proton conductive solid
 polymer electrolyte for electrochem. cell)

IT 1333-74-0P, Hydrogen, preparation 7782-44-7P, Oxygen,
 preparation
 (proton conductive solid
 polymer electrolyte for electrochem. cell)

L63 ANSWER 2 OF 5 HCA COPYRIGHT 2006 ACS on STN

138:224099 Properties of ab-PBI membranes for fuel cells. Uchida,
 Hiroyuki; Yamada, Yoshifumi; Asano, Naoki; Watanabe, Masahiro; Litt,
 Morton (Graduate School of Engineering, University of Yamanashi,
 Takeda 4, Kofu, 400-8511, Japan). Electrochemistry (Tokyo, Japan),
 70(12), 943-945 (English) 2002. CODEN: EECTFA. ISSN:
 1344-3542. Publisher: Electrochemical Society of Japan.

AB Poly(2,5-benzimidazole) (ab-PBI) membranes were characterized for
 use as electrolytes in fuel cells operating at elevated temps. (100
 to 200°). The cond. of phosphoric acid
 -doped ab-PBI was ≤0.12 S cm-1 at temps. <120°, but it
 decreased to 0.025 S cm-1 >150° due to a dehydration of the
 doped acid. Using the H₃PO₄-doped ab-PBI, H₂/O₂ fuel cell
 could be operated at 120° with a low humidification of
 reactant gases, although it was necessary to keep the acid-doping
 level high in both the membrane and the electrodes.

IT 7664-38-2, Phosphoric acid, uses
 (complexes with Poly(2,5-benzimidazole) (electrolyte) or
 platinum/carbon/PTFE (electrodes); properties of acid-doped
 ab-PBI electrolyte membranes for fuel cells)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

IT 32109-42-5, Poly(2,5-benzimidazole)

(phosphoric acid-doped; properties of
acid-doped ab-PBI electrolyte membranes for fuel cells)

RN 32109-42-5 HCA

CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 38

ST membrane polybenzimidazole **phosphoric acid** doped
polymer electrolyte fuel cell; PBI membrane
electrolyte humidity effect cond

IT Electric conductivity
Fuel cell electrolytes
Polymer electrolytes
(properties of acid-doped ab-PBI electrolyte membranes for fuel
cells)

IT 7664-38-2, **Phosphoric acid**, uses
(complexes with Poly(2,5-benzimidazole) (electrolyte) or
platinum/carbon/PTFE (electrodes); properties of acid-doped
ab-PBI electrolyte membranes for fuel cells)

IT 32109-42-5, Poly(2,5-benzimidazole)
(**phosphoric acid**-doped; properties of
acid-doped ab-PBI electrolyte membranes for fuel cells)

L63 ANSWER 3 OF 5 HCA COPYRIGHT 2006 ACS on STN

138:73636 **Proton-conducting polymers** based
on benzimidazoles and sulfonated benzimidazoles. Asensio, Juan
Antonio; Borros, Salvador; Gomez-Romero, Pedro (Institut de Ciencia
de Materials de Barcelona (CSIC), Barcelona, E-08193, Spain).
Journal of Polymer Science, Part A: Polymer Chemistry, 40(21),
3703-3710 (English) 2002. CODEN: JPACEC. ISSN:
0887-624X. Publisher: John Wiley & Sons, Inc..

AB A sulfonated deriv. of polybenzimidazole is reported, and its
properties are analyzed in comparison with related polybenzimidazole
proton-conducting materials. Poly(2,5-benzimidazole),
poly(m-phenylenebenzobisimidazole), and poly[m-(5-sulfo)-
phenylenebenzobisimidazole] were prep'd. by condensation of the
corresponding monomers in polyphosphoric acid. Several adducts of
these polymers with **phosphoric acid** were prep'd.
The resulting materials were characterized by chem. anal., Fourier

transform IR spectroscopy, and thermogravimetric anal.; also, the dc cond. of doped and undoped derivs. was measured. Similar to what has been obsd. for the com. polybenzimidazole polymer (also examd. here for comparison), the title polymers exhibit high thermal stability. Furthermore, their doping with **phosphoric acid** leads to a significant increase in cond. from less than 10-11 Scm-1 for the undoped polymers to 10-4 Scm-1 (both at room temp.) for their acid-loaded derivs.

IT 7664-38-2, **Phosphoric acid**, uses
 (dopant; **proton-conducting polymers**
 based on benzimidazoles and sulfonated benzimidazoles)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

IT 29692-96-4P, 3,4-Diaminobenzoic acid homopolymer
 32109-42-5P, Poly(1H-benzimidazole-2,5-diyl)
 (**phosphoric acid-doped; proton-**
conducting polymers based on benzimidazoles and
 sulfonated benzimidazoles)

RN 29692-96-4 HCA

CN Benzoic acid, 3,4-diamino-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 619-05-6
 CMF C7 H8 N2 O2

RN 32109-42-5 HCA

CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

CC 35-5 (Chemistry of Synthetic High Polymers)
 ST sulfonated polybenzimidazole synthesis thermal property; elec cond
phosphoric acid doping polybenzimidazole
 IT Polybenzimidazoles
 (**phosphoric acid-doped; proton-conducting polymers** based on benzimidazoles and sulfonated benzimidazoles)
 IT Polybenzimidazoles
 (polybenzodimidazoles, or sulfonated, **phosphoric acid-doped; proton-conducting polymers** based on benzimidazoles and sulfonated benzimidazoles)
 IT Conducting polymers
 Electric conductivity
 Polymer chains
 Thermal stability
 (**proton-conducting polymers** based on benzimidazoles and sulfonated benzimidazoles)
 IT 7664-38-2, Phosphoric acid, uses
 (dopant; **proton-conducting polymers** based on benzimidazoles and sulfonated benzimidazoles)
 IT 27233-57-4P 29692-96-4P, 3,4-Diaminobenzoic acid homopolymer 32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 96937-27-8P 481710-69-4P 481710-70-7P
 (**phosphoric acid-doped; proton-conducting polymers** based on benzimidazoles and sulfonated benzimidazoles)

L63 ANSWER 4 OF 5 HCA COPYRIGHT 2006 ACS on STN
 132:79110 Polybenzimidazoles/**phosphoric acid**
 solid polymer electrolytes: mechanical and electrical properties. Litt, M.; Ameri, R.; Wang, Y.; Savinell, R.; Wainwright, J. (Macromolecular Science Dept., Case Western Reserve University, Cleveland, OH, 44106-7202, USA). Materials Research Society Symposium Proceedings, 548(Solid State Ionics V), 313-323 (English) 1999. CODEN: MRSPDH. ISSN: 0272-9172.
 Publisher: Materials Research Society.
 AB Poly(2,2'-(m-phenylene)-5,5'-bibenzimidazole), PBI and poly

(2,5-benzimidazole), ABPBI, were cast into films and doped with phosphoric acid. Their mech. properties were studied as a function of inherent viscosity and phosphoric acid content. The com. PBI with an I. V. of 0.8 to 0.9 had relatively low elongation at break. It was fractionated; the higher the inherent viscosity the higher the modulus and elongation. At low phosphoric acid doping the modulus rose because a cryst. phase developed, and then dropped as more phosphoric acid was added. A second doping method produced films with high crystallinity and higher cond. (0.02-.03 vs. 0.06-.08 S/cm.) but poorer elongation than those made by doping a cast film in phosphoric acid. In order to get higher mol. wt. films that could have better mech. properties, we decided to polymerize 3,4-diaminobenzoic acid to ABPBI, an AB polymer for which I. V.'s of .apprx. 16 have been reported. After learning how to purify and polymerize the monomer, I.V.'s of 6-8 were easily obtained. Conductivities of the doped ABPBI films were as high as those of the best PBI films. With their high viscosities, the ABPBI films were much tougher and had better elongation than the doped PBI films.

IT 7664-38-2, Phosphoric acid, properties
(mech. and elec. properties of polybenzimidazole/
phosphoric acid solid polymer
electrolytes)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

IT 29692-96-4, 3,4-Diaminobenzoic acid homopolymer
32109-42-5, Poly(1H-benzimidazole-2,5-diyl)
(mech. and elec. properties of polybenzimidazole/
phosphoric acid solid polymer
electrolytes)

RN 29692-96-4 HCA

CN Benzoic acid, 3,4-diamino-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 619-05-6

CMF C7 H8 N2 O2

RN 32109-42-5 HCA
 CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

CC 36-5 (Physical Properties of Synthetic High Polymers)
 ST polybenzimidazole **phosphoric acid** doped
solid electrolyte; elec mech property
 polybenzimidazole **phosphoric acid** electrolyte
 IT Expansion
 (elongation at break; mech. and elec. properties of
 polybenzimidazole/**phosphoric acid**
 solid polymer electrolytes)
 IT Crystallinity
 Doping
 Electric conductivity
 Polymer electrolytes
 Tensile strength
 Young's modulus
 (mech. and elec. properties of polybenzimidazole/
 phosphoric acid solid polymer
 electrolytes)
 IT Polybenzimidazoles
 (mech. and elec. properties of polybenzimidazole/
 phosphoric acid solid polymer
 electrolytes)
 IT Stress, mechanical
 (yield; mech. and elec. properties of polybenzimidazole/
 phosphoric acid solid polymer
 electrolytes)
 IT 7664-38-2, Phosphoric acid, properties
 (mech. and elec. properties of polybenzimidazole/

**phosphoric acid solid polymer
electrolytes)**

IT 25734-65-0, Poly(2,2'-(m-phenylene)-5,5'-bibenzimidazole)
 26101-19-9, Isophthalic acid-3,3',4,4'-Tetraminobiphenyl copolymer
 29692-96-4, 3,4-Diaminobenzoic acid homopolymer
 32109-42-5, Poly(1H-benzimidazole-2,5-diyl)
 (mech. and elec. properties of polybenzimidazole/
**phosphoric acid solid polymer
electrolytes)**

L63 ANSWER 5 OF 5 HCA COPYRIGHT 2006 ACS on STN

132:38168 **Solid polymer electrolytes.**

Akita, Hiroshhi; Ichikawa, Masao; Iguchi, Masaru; Nosaki, Katsutoshi; Oyanagi, Hiroyuki (Honda Giken Kogyo K. K., Japan). Eur. Pat. Appl. EP 967674 A1 19991229, 19 pp. DESIGNATED STATES: R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO. (English). CODEN: EPXXDW. APPLICATION: EP 1999-303888 19990519. PRIORITY: JP 1998-153644 19980520.

AB In a **solid polymer electrolyte**, an imidazole ring-contg. polymer is doped with an acid in which ≥ 1 H atom of an inorg. acid is substituted by a functional group having a Ph group. The imidazole ring-contg. polymer is a polybenzimidazole compd. The inorg. acid is **phosphoric acid**. The amt. of the acid with which the imidazole ring-contg. polymer is doped is from 1 to 10 mols./repeating structure unit of a mol. chain of the polymer. The **polymer electrolyte** is produced by a soln. blend method.

IT 32109-42-5, Poly(1H-benzimidazole-2,5-diyl)
 (**solid polymer electrolytes with**
imidazole ring-contg. polymer)

RN 32109-42-5 HCA

CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

IC ICM H01M006-18
 ICS H01M010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38

ST battery solid polymer electrolyte;
imidazole ring contg polymer electrolyte battery

IT Battery electrolytes
(solid polymer electrolytes with
imidazole ring-contg. polymer)

IT 838-85-7, Diphenylphosphate 993-13-5, Methylphosphonic acid
1571-33-1, Phenylphosphonic acid 1809-19-4, Phosphonic acid,
dibutyl ester 3658-48-8, Phosphonic acid, bis(2-ethylhexyl) ester
(dopant; solid polymer electrolytes
with imidazole ring-contg. polymer)

IT 25734-65-0 32109-42-5, Poly(1H-benzimidazole-2,5-diyl)
(solid polymer electrolytes with
imidazole ring-contg. polymer)

IT 76-05-1, Trifluoroacetic acid, uses
(solid polymer electrolytes with
imidazole ring-contg. polymer)

>

=> D L65 1-6 CBIB ABS HITSTR HITIND

L65 ANSWER 1 OF 6 HCA COPYRIGHT 2006 ACS on STN

140:96885 Proton conductive solid

polymer electrolyte for electrochemical cell.

Komiya, Teruaki (Honda Giken Kabushiki Kaisha, Japan). Eur. Pat.

Appl. EP 1381107 A2 20040114, 14 pp. DESIGNATED STATES: R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK. (English). CODEN: EPXXDW. APPLICATION: EP 2003-254383 20030710. PRIORITY: JP 2002-201718 20020710.

AB A material such as imidazole (nitrogen-contg. heterocyclic compd.), which has at least one lone pair, is dispersed in a basic solid polymer such as polybenzimidazole. The mole no. of imidazole per g of polybenzimidazole is less than 0.0014 mol, preferably less than 0.0006 mol. The basic solid polymer is impregnated with an acidic inorg. liq. such as phosphoric acid and sulfuric acid to prep. a proton conductive solid polymer electrolyte.

IT 25233-30-1 50641-39-9 131714-35-7

(proton conductive solid

polymer electrolyte for electrochem. cell)

RN 25233-30-1 HCA

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

RN 50641-39-9 HCA

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diylphenylene) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 131714-35-7 HCA

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)phenylene] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 7664-38-2, Phosphoric acid, uses

7664-93-9, Sulfuric acid, uses

(proton conductive solid

polymer electrolyte for electrochem. cell)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 1333-74-0P, Hydrogen, preparation

7782-44-7P, Oxygen, preparation

(proton conductive solid

polymer electrolyte for electrochem. cell)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

RN 7782-44-7 HCA

CN Oxygen (8CI, 9CI) (CA INDEX NAME)

O=O

IC ICM H01M010-40

ICS H01M006-18; C08G073-18

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 72

ST electrochem cell proton conductive solid

polymer electrolyte; fuel cell proton

conductve solid polymer

electrolyte; electrolyzer proton

conductve solid polymer

electrolyte

IT Azines

(diazine; proton conductive solid
polymer electrolyte for electrochem. cell)

IT Heterocyclic compounds
(nitrogen; proton conductive solid
polymer electrolyte for electrochem. cell)

IT Electrochemical cells
Electrolytic cells
Fuel cell electrolytes
Solid electrolytes
(proton conductive solid
polymer electrolyte for electrochem. cell)

IT Polybenzimidazoles
(proton conductive solid
polymer electrolyte for electrochem. cell)

IT Ionic conductivity
(proton; proton conductive
solid polymer electrolyte for
electrochem. cell)

IT Fuel cells
(solid electrolyte; proton
conductive solid polymer
electrolyte for electrochem. cell)

IT 7732-18-5, Water, processes
(electrolysis; proton conductive
solid polymer electrolyte for
electrochem. cell)

IT 91-22-5, Quinoline, uses 110-86-1, Pyridine, uses 119-65-3,
IsoQuinoline 120-72-9, Indole, uses 120-73-0, Purine 288-13-1,
Pyrazole 288-32-4, Imidazole, uses 9002-98-6 9003-47-8,
Polyvinylpyridine 25232-42-2, Polyvinylimidazole
25233-30-1 25823-41-0, Poly(1-vinylpyrazole) 32109-42-5,
Poly(1H-benzimidazole-2,5-diyl) 50641-39-9
131714-35-7
(proton conductive solid
polymer electrolyte for electrochem. cell)

IT 7664-38-2, Phosphoric acid, uses
7664-93-9, Sulfuric acid, uses
(proton conductive solid
polymer electrolyte for electrochem. cell)

IT 1333-74-0P, Hydrogen, preparation
7782-44-7P, Oxygen, preparation
(proton conductive solid
polymer electrolyte for electrochem. cell)

L65 ANSWER 2 OF 6 HCA COPYRIGHT 2006 ACS on STN

133:137861 Proton conducting membrane using a
solid acid for fuel cells. Haile, Sossina M.; Boysen, Dane;
Narayanan, Sekharipuram R.; Chisholm, Calum (California Institute of

Technology, USA). PCT Int. Appl. WO 2000045447 A2 20000803 , 61 pp. DESIGNATED STATES: W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM; RW: AT, BE, BF, BJ, CF, CG, CH, CI, CM, CY, DE, DK, ES, FI, FR, GA, GB, GR, IE, IT, LU, MC, ML, MR, NE, NL, PT, SE, SN, TD, TG. (English). CODEN: PIXXD2. APPLICATION: WO 2000-US1783 20000121. PRIORITY: US 1999-PV116741 19990122; US 1999-PV146946 19990802; US 1999-PV146943 19990802; US 1999-PV151811 19990830; US 1999-439377 19991115.

AB A solid acid material is used as a proton conducting membrane in an electrochem. device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.

IT 25233-30-1, Polyaniline
(proton conducting membrane using
solid acid for fuel cells)

RN 25233-30-1 HCA

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
CMF C6 H7 N

IT 1333-74-0P, Hydrogen, preparation
(separator; proton conducting membrane using
solid acid for fuel cells)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

ICI H01

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 72, 76

- ST fuel cell **proton conducting** membrane
solid acid
- IT **Conducting polymers**
 - Electric conductors
 - Electric insulators
 - Semiconductor materials
 - (binder; **proton conducting** membrane using
solid acid for fuel cells)
- IT Fluoropolymers, uses
 - Glass, uses
 - Metals, uses
 - Polyesters, uses
 - Polymers**, uses
 - (binder; **proton conducting** membrane using
solid acid for fuel cells)
- IT Sintering
 - (hot pressing; **proton conducting** membrane
using **solid acid** for fuel cells)
- IT Polyketones
 - Polyketones
 - (polyether-; **proton conducting** membrane using
solid acid for fuel cells)
- IT Polyethers, uses
 - Polyethers, uses
 - (polyketone-; **proton conducting** membrane
using **solid acid** for fuel cells)
- IT Battery electrolytes
 - Ceramics
 - Electrolytic cells
 - Fuel cell electrolytes
 - Fuel cells
 - (**proton conducting** membrane using
solid acid for fuel cells)
- IT Fluoropolymers, uses
 - Phosphates, uses
 - Polyanilines
 - Polysiloxanes, uses
 - Selenates
 - Silicates, uses
 - Sulfates, uses
 - (**proton conducting** membrane using
solid acid for fuel cells)
- IT Capacitors
 - (supercapacitor; **proton conducting** membrane
using **solid acid** for fuel cells)
- IT 7440-21-3, Silicon, uses 24937-79-9, Pvdf
 - (binder; **proton conducting** membrane using
solid acid for fuel cells)

IT 7782-42-5, Graphite, uses
(paper; **proton conducting** membrane using
solid acid for fuel cells)

IT 7722-76-1, Ammonium dihydrogen phosphate 7789-16-4, Cesium
hydrogen sulfate cshso₄ 7803-63-6, Ammonium
hydrogen sulfate 10294-60-7, Ammonium **hydrogen**
selenate 12593-60-1, Ammonium phosphate sulfate
(NH₄)₂(H₂PO₄)(HSO₄)) 13453-45-7, Thallium **hydrogen**
sulfate tlhso₄ 13774-16-8, Rubidium dihydrogen phosphate
13775-30-9 13778-50-2, Sodium silicate Na₃HSiO₄ 13780-02-4
15457-97-3, Sodium silicate (Na₂H₂SiO₄) 15587-72-1, Rubidium
hydrogen sulfate 16331-85-4 18649-05-3, Cesium
dihydrogen phosphate 20583-58-8, **Sulfuric acid**
, rubidium salt (2:3) 22112-04-5 39473-99-9, Rubidium phosphate
selenate (Rb₂(H₂PO₄)(HSeO₄)) 41469-37-8, Sodium silicate NaH₃SiO₄
63317-98-6 63737-07-5, Cesium **hydrogen** selenate cshseo₄
68875-27-4, Rubidium **hydrogen** selenate 71555-62-9
88937-51-3 89190-25-0 99489-71-1, Ammonium arsenate sulfate
(NH₄)₂(H₂AsO₄)(HSO₄)) 99543-07-4, Selenic acid, cesium salt (2:3)
101811-97-6, Potassium silicate KH₃SiO₄ 135498-03-2 135710-63-3
157612-88-9 161430-99-5, Tellurium oxide teo₄ 161882-09-3
165901-90-6, Cesium phosphate sulfate (Cs₃(H₂PO₄)(HSO₄))₂
183953-14-2, Silicic acid (H₄SiO₄), tripotassium salt 183953-17-5,
Silicic acid (H₄SiO₄), dipotassium salt 213411-40-6, Cesium
phosphate sulfate (Cs₃(H₂PO₄))_{0.5}(HSO₄)_{2.5} 218931-29-4, Cesium
phosphate sulfate (Cs₅(H₂PO₄))₂(HSO₄)₃ 220078-67-1, Cesium
phosphate selenate (Cs₃(H₂PO₄))(HSeO₄)₂ 220078-71-7, Cesium
phosphate selenate (Cs₅(H₂PO₄))₂(HSeO₄)₃ 231277-45-5, Cesium
phosphate sulfate (Cs₂(H₂PO₄))(HSO₄)) 233277-01-5, Ammonium
phosphate selenate ((NH₄)₂(H₂PO₄))(HSeO₄)) 260429-55-8, Rubidium
phosphate sulfate (Rb₂(H₂PO₄))(HSO₄)) 286382-74-9, Cesium phosphate
selenate (Cs₂(H₂PO₄))(HSeO₄)) 286382-75-0 286382-77-2
286382-78-3 286382-79-4, Cesium phosphate selenate
(Cs₃(H₂PO₄))_{0.5}(HSeO₄)_{2.5}) 286382-81-8 286382-82-9 286382-83-0
286382-84-1 286382-85-2 286382-86-3 286382-87-4 286382-88-5
286382-89-6 286382-90-9
(**proton conducting** membrane using
solid acid for fuel cells)

IT 1302-88-1, Cordierite 1309-48-4, Magnesia, uses 1344-28-1,
Alumina, uses 7429-90-5, Aluminum, uses 7439-89-6, Iron, uses
7440-02-0, Nickel, uses 7440-22-4, Silver, uses 7440-50-8,
Copper, uses 7440-57-5, Gold, uses 7440-66-6, Zinc, uses
7631-86-9, Silica, uses 9002-84-0, Ptfe 25038-78-2,
Poly(dicyclopentadiene) 25233-30-1, Polyaniline
25667-42-9 30604-81-0, Polypyrrole 31900-57-9, Polydimethyl
siloxane
(**proton conducting** membrane using
solid acid for fuel cells)

IT 1333-74-0P, Hydrogen, preparation
 (separator; proton conducting membrane using
 solid acid for fuel cells)

L65 ANSWER 3 OF 6 HCA COPYRIGHT 2006 ACS on STN
 131:164272 Electrolytic capacitor and its manufacture. Saito, Kazuyo;
 Nitta, Yukihiro; Tada, Hiroshi; Iwamoto, Shigeyoshi (Matsushita
 Electric Industrial Co., Ltd., Japan). Eur. Pat. Appl. EP 938108 A2
 19990825, 17 pp. DESIGNATED STATES: R: AT, BE, CH, DE, DK,
 ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO.
 (English). CODEN: EPXXDW. APPLICATION: EP 1999-100927 19990120.
 PRIORITY: JP 1998-15269 19980128; JP 1998-350072 19981209.

AB An electrolytic capacitor includes (a) a capacitor element having a pos. electrode, a neg. electrode, and a solid org. conductive material disposed between the pos. electrode and the neg. electrode; (b) an electrolyte; (c) a case for accommodating the capacitor element and the electrolyte; and (d) a sealing member disposed to cover the opening of the case. The solid org. conductive material contains an org. semiconductor and/or a conductive polymer. An electrolytic capacitor having excellent impedance characteristic, small leakage current, excellent reliability, and high dielec. strength is obtained.

IT 7664-38-2, Phosphoric acid, processes
 25233-30-1, Polyaniline 25233-30-1D, Polyaniline,
 sulfonated
 (manuf. of electrolytic capacitors contg.)

RN 7664-38-2 HCA

CN Phosphoric acid (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 25233-30-1 HCA
 CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
 CMF C6 H7 N

RN 25233-30-1 HCA
 CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
 CMF C₆ H₇ N

IC ICM H01G009-02
 CC 76-10 (Electric Phenomena)
 Section cross-reference(s): 38
 IT Conducting polymers
 Manila hemp (*Musa textilis*)
 Paper
 Seals (parts)
 (manuf. of electrolytic capacitors contg.)
 IT 56-81-5, 1,2,3-Propanetriol, processes 62-23-7, p-Nitrobenzoic acid 69-65-8, Mannite 88-75-5 96-48-0 107-21-1, 1,2-Ethanediol, processes 552-16-9, o-Nitrobenzoic acid 1518-16-7D, TCNQ, complexes 1623-15-0, Monobutyl phosphate 3385-41-9, Diammonium adipate 7429-90-5, Aluminum, processes 7440-44-0, Carbon, processes 7664-38-2, Phosphoric acid, processes 7727-54-0, Ammonium persulfate 7803-65-8 10028-22-5, Ferric sulfate 10043-35-3, Boric acid, processes 13445-49-3, Peroxydisulfuric acid [(HO)₂S(O)₂]202) 25233-30-1, Polyaniline 25233-30-1D, Polyaniline, sulfonated 25233-34-5, Polythiophene 25233-34-5D, Polythiophene, sulfonated 30604-81-0, Polypyrrole 30604-81-0D, Polypyrrole, sulfonated 50905-10-7, 1,6-Decanedicarboxylic acid 77214-82-5 88107-08-8 92538-40-4 117920-72-6 126213-51-2 127171-87-3, Tetramethyl ammonium phthalate, processes 167552-54-7, processes (manuf. of electrolytic capacitors contg.)

studied with online mass spectrometry. Schmidt, V. M.; Tegtmeyer, D.; Heitbaum, J. (Institut fuer Physikalische Chemie, Universitaet Witten/Herdecke, Stockumer Strasse 10, Witten-Annen, 58453, Germany). Journal of Electroanalytical Chemistry, 385(2), 149-55 (English) 1995. CODEN: JECHE. ISSN: 0368-1874.

Publisher: Elsevier.

AB The hydrogen evolution reaction (HER) was followed during the polymn. of aniline on porous platinum electrodes by cyclic voltammetry combined with online mass spectrometry. The reaction takes place at the electrode|polymer interface by considering the collection efficiency of the membrane inlet system. Homogeneous films of polyaniline (PANI) can be deposited onto porous electrode substrates. In this way, a pervaporation membrane is formed with the conducting polymer as the active layer. The permeation of water through a PANI membrane is dependent on the oxidn. state of PANI. The higher permeability in the oxidized state is explained in terms of structural alterations during the redox process.

IT 1333-74-0P, Hydrogen, properties
(electrochem. evolution during aniline polymn. on porous platinum studied by cyclic voltammetry and mass spectrometry)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IT 7664-93-9, Sulfuric acid, uses
(redox of polyaniline in sulfuric acid
accompanied by potential-dependent permeation of water)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 25233-30-1P, Polyaniline
(transport of protons and water through polyaniline membranes
studied with online mass spectrometry)

RN 25233-30-1 HCA

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

CC 72-2 (Electrochemistry)
Section cross-reference(s): 35, 36, 66

IT Permeability and Permeation
(redox of polyaniline in **sulfuric acid**
accompanied by potential-dependent permeation of water)

IT Electric conductors, polymeric
(transport of **protons** and water through polyaniline)

IT Redox reaction
(electrochem., of polyaniline in **sulfuric acid**
accompanied by potential-dependent permeation of water)

IT 1333-74-0P, Hydrogen, properties
(electrochem. evolution during aniline polymn. on porous platinum
studied by cyclic voltammetry and mass spectrometry)

IT 7664-93-9, Sulfuric acid, uses
(redox of polyaniline in **sulfuric acid**
accompanied by potential-dependent permeation of water)

IT 25233-30-1P, Polyaniline
(transport of protons and water through polyaniline membranes
studied with online mass spectrometry)

L65 ANSWER 5 OF 6 HCA COPYRIGHT 2006 ACS on STN

105:7055 Electrically conductive aniline polymers. Tamura, Shohei;
Sasaki, Sadamitsu; Sasaki, Takeshi; Abe, Masao; Miyatake, Hiroshi
(Nitto Electric Industrial Co., Ltd., Japan). Jpn. Kokai Tokkyo
Koho JP 61021129 A2 19860129 Showa, 9 pp. (Japanese).
CODEN: JKXXAF. APPLICATION: JP 1984-142845 19840709.

AB An elec. conductive polymer with cond. $\geq 10^{\circ}\text{S}/\text{cm}$ is
prepd. by electrolysis of an aniline soln. contg. H₂SO₄ at
1: ≥ 5 -30 aniline- H₂SO₄ equiv. ratio and a voltage >1
V higher than the std. calomel electrode and 0.01 mA/cm²-1 A/cm².
Thus, the **electrolytic polymn.** was conducted in
a 5% aq. aniline soln. contg. H₂SO₄ in 1:8 equiv. ratio at
+2V (initially) and 5 mA/cm² for 2 h to form a
H₂SO₄-doped aniline polymer on a Pt electrode maintaining
cond. 2.6 S/cm after 4 mo of exposure to air.

IT 7664-93-9P, properties
(aniline polymers doped with, elec. conductive, oxidative
degrdn.-resistant, prepn. of, by **electrolytic
polymn.**)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 25233-30-1P

(sulfuric acid-doped, elec. conductive,
oxidative degrdn.-resistant, prepn. of, by electrolytic
polymn.)

RN 25233-30-1 HCA

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

IC ICM C08G073-00

CC 35-7 (Chemistry of Synthetic High Polymers)
Section cross-reference(s): 76

ST aniline polymer sulfuric acid doping; elec
conductive aniline polymer; electrolytic polymn
aniline

IT Electric conductors

(aniline polymers, doped with sulfuric acid,
oxidative degrdn.-resistant, prepn. of, by electrolytic
polymn.)

IT Polymerization

(electrochem., of aniline in presence of sulfuric
acid, in manuf. of elec. conductive polymers with high
oxidative degrdn. resistance)

IT 7664-93-9P, properties

(aniline polymers doped with, elec. conductive, oxidative
degrdn.-resistant, prepn. of, by electrolytic
polymn.)

IT 25233-30-1P

(sulfuric acid-doped, elec. conductive,
oxidative degrdn.-resistant, prepn. of, by electrolytic

polymn.)

L65 ANSWER 6 OF 6 HCA COPYRIGHT 2006 ACS on STN
 103:88374 Electroconductive organic polymers. Tamura, Shohei; Sasaki, Sadamitsu; Abe, Masao; Nakazawa, Hitoshi; Ichinose, Hisashi; Nakamoto, Keiji; Sasaki, Takeshi; Ezoe, Minoru; Sakagawa, Mitsuo; Miyatake, Hiroshi (Nitto Electric Industrial Co., Ltd., Japan). Ger. Offen. DE 3441011 A1 19850605, 69 pp. (German). CODEN: GWXXBX. APPLICATION: DE 1984-3441011 19841109. PRIORITY: JP 1983-212280 19831110; JP 1983-212281 19831110; JP 1984-198873 19840922.

AB Polymers contg. the repeating units -p-C₆H₃(R)N:C₆H₃(R):N-p- (R = H, alkyl), prep'd. by oxidative polymn. of aniline derivs., when doped with electron acceptors have elec. cond. $\geq 10 \mu\text{S}/\text{cm}$. Thus, adding a soln. of 1.84 g K₂Cr₂O₇ and 4.61 g H₂SO₄ in 28.8 g H₂O over 30 min to a soln. of 5 g PhNH₂ and 4 mL cond. HCl in 45 g H₂O stirred in an ice bath and stirring 30 min gave a green polymer [25233-30-1] with inherent viscosity (H₂SO₄, 30°) 0.46 and elec. cond. 2.0 S/cm, unchanged on standing 4 mo in air or when measured in vacuo (0.01 torr).

IT 7664-93-9, uses and miscellaneous
 (doping agent, for elec. conductive polyanilines)

RN 7664-93-9 HCA

CN Sulfuric acid (8CI, 9CI) (CA INDEX NAME)

IT 25233-30-1P
 (elec. conductive, proton acid-doped, manuf. of)
 RN 25233-30-1 HCA
 CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
 CMF C₆ H₇ N

IC ICM C08G073-02
ICS H01L031-04; H01L029-28; H01B001-12
CC 35-5 (Chemistry of Synthetic High Polymers)
ST elec conductor polyaniline; aniline polymer elec conductor; doping
polyaniline conductive; oxidative polymn aniline; chromic acid
polymn aniline; **sulfuric acid** polymn aniline
IT Electric conductors
(aniline deriv. polymers, proton acid-doped,
manuf. of)
IT 7601-90-3, uses and miscellaneous 7647-01-0, uses and
miscellaneous 7664-93-9, uses and miscellaneous
7697-37-2, uses and miscellaneous 10035-10-6, uses and
miscellaneous 16872-11-0 16940-81-1
(doping agent, for elec. conductive polyanilines)
IT 25233-30-1P 97917-08-3P
(elec. conductive, proton acid-doped, manuf. of)

>=