

Solutions for climate change mitigation and health co-benefits

Ina Danquah
Data Science Initiative-Africa (DSI-A)
Durban, July 18th, 2023

Course outline

Week 1

Concepts of climate change and weather; public databases

Concepts of footprints (LCA); public databases

Remote sensing – terms and concepts

Remote sensing – techniques and approaches

Concepts and indicators of food systems (dashboard, diet quality indicators)

Week 2

Methodological challenges and solutions – identify climate change impacts on health

Derive solutions for climate change adaptation (MEGA, optimization modelling)

Derive solutions for climate change mitigation (sustainable diets)

Own project work

Remote sensing – software, data, image analysis

Course outline

Week 2

Methodological challenges and solutions – identify climate change impacts on health Derive solutions for climate change adaptation (MEGA, optimization modelling)

Derive solutions for climate change mitigation (sustainable diets)

Own project work

Remote sensing – software, data, image analysis

IPCC, 2018

Learning objectives

- Familiarize with the concept of sustainable diets
- Consolidate knowledge about methods to identify the sustainability of diets
- Understanding approaches to design context-specific sustainable diets
- Applying the socio-ecological model for the implementation of sustainable diets

Literature

- FAO (2010) Sustainable diets and biodiversity: directions and solutions for policy, research and action.
- Schulze M and Hoffmann K. Methodological approaches to study dietary patterns in relation to risk of coronary heart disease and stroke. BJN 2006; 95: 860-869
- Seconda L et al. Development and validation of an individual sustainable diet index in the NutriNet-Santé study cohort. BJN 2019; 121: 1166-1177
- Willett W *et al.* Food in the Anthropocene. The EAT-*Lancet* Commission on healthy diets from sustainable food systems. Lancet 2019; 393: 447-492
- van Dooren C et al. A review of the use of linear programming to optimize diets, nutritiously, economically and environmentally. Fron Nutr 2018; 5: 48

What are sustainable diets?

Definition of the Food and Agriculture Organization (FAO)

"Sustainable Diets are those diets with low environmental impacts which contribute to food and nutrition security and to healthy life for present and future generations. Sustainable diets are protective and respectful of biodiversity and ecosystems, culturally acceptable, accessible, economically fair and affordable; nutritionally adequate, safe and healthy; while optimizing natural and human resources."

Dimensions of sustainability

UK HD

Example 1 –
Compare
exploratory
patterns (PCA)
with
recommendations

Weil et al., 2023 under review

Example 2 – Construct a multi-component Sustainable Diet Score

SDI component	Chosen indicator	Data	Result
Healthfulness	Global Diet Quality Score (GDQS)	AFPQ	Healthfulness score
Climate-friendliness	Carbon footprint of each food item	RODAM Study (Ghana)	Climate-friendliness score
Affordability	Local food prices weighted against educational level and settlement type	Market data + AFPQ	Affordability score
Cultural appropriateness	Ratio natural to processed food	AFPQ food items	Cultural appropriateness score
			Sum of the 4 subscores = SDI

Yalikun Y et al., 2023 under review

Example 3 – Construct an evidence-based index (EAT-Lancet Planetary Health Diet)

Meta-analysis for diet-disease-associations

- **Define Planetary Boundaries**
- Consider food system for feasibility

Formulate strategies for implementation OCEAN ACIDIFICATION RIOGEOCHEMICAL → Safe operating space Willett W et al., Lancet 2018

The Planetary Health Diet

		Macronutrient intake grams per day (possible range)	Caloric intake kcal per day
- cuttile	Whole grains Rice, wheat, corn and other	232	811
	Tubers or starchy vegetables Potatoes and cassava	50 (0-100)	39
-	Vegetables All vegetables	300 (200-600)	78
	Fruits All fruits	200 (100–300)	126
•	Dairy foods Whole milk or equivalents	250 (0-500)	153
3	Protein sources Beef, lamb and pork Chicken and other poultry Eggs Fish Legumes Nuts	14 (0-28) 29 (0-58) 13 (0-25) 28 (0-100) 75 (0-100) 50 (0-75)	30 62 19 40 284 291
•	Added fats Unsaturated oils Saturated oils	40 (20–80) 11.8 (0-11.8)	354 96
	Added sugars All sugars	31 (0-31)	120

- ➤ 1 glass of milk per day
- ➤ 1 hamburger per week
- 2 servings of poultry per week
- → 2 eggs per week
- 2 servings of fish per week
- > 2-3 servings of legumes per day
- > 1-2 servings of nuts/seeds per day
- Total fat max. 35% of energy
- <1 softdrink per day</p>

Willett W et al., Lancet 2018

Example 4 – Maximum explained variance in sustainability (hybrid)

UK **HD**

Which method is it?

Based on the FAO's definition of sustainable diets, our index includes seven indicators categorised into four standardised subindexes, respectively, environmental, nutritional, economic and sociocultural. The index (range: 4–20) was obtained by summing the sub-indexes.

Seconda L et al., Br J Nutr 2019

Which method is it?

Four patterns were identified. Respondents were found to consider "mountain products" a fundamental commodity with reference to all related categories of food (cheese, meat, honey, fruits and vegetables) and believed that all stages of the supply chain should be carried out in mountain areas. All of the four patterns also reported a positive perception of mountain products, and they associated mountain foodstuffs with various key concepts, such as sustainable development (32.6%), local traditions and specialities (49.1%) and health (18.3%).

Bonadonna A et al., Sustainability 2022

Which method is it?

We developed a food-based metric incorporating a more comprehensive list of food groups than most existing diet metrics, and a simple means of scoring consumed amounts.

Bromage S et al., J Nutr 2021

Approaches to design sustainable diets

Quantitative → optimization modelling → prototype

Environmental footprint

What is diet optimization?

Optimization – Advantages and limitations

Advantages

- Simultaneous application of constraints to ensure nutritional adequacy and other aspects of sustainability
- Help identify trade-offs by studying constraints that are difficult to fulfil or incompatible with other constraints

Limitations

- Can lead to no or unrealistic solution when constraints are too severe or incompatible
- Difficult to include cultural acceptability (proxy: deviation from current diet)
- Sensitive to starting diet, menu items
- Difficult to interpret and explain changes

Optimization – Example: urban Ghana

UK **HD**

Optimization – Example: urban Ghana

Food Group	Starting diet women (g)	Starting diet men (g)	Optimized diet women (g)	Optimized diet men (g)
Cakes and Sweets	14.5	12.8	7	5.5
Coffee Tea	100	100	36	46
Condiments	60.7	64.8	29	30
Dairy Products	30.0	42.1	10	10
Eggs	12.9	5.0	2	2
Fermented Maize products	120.0	120	70	68
Fish and Seafood	87.0	83.7	55	50
Fruits	120.0	130	94	104
Legumes	44.2	69.3	15	31
Margarine	4.5	2.57	12	7
Meat mixed dishes	64.3	64.3	10	10
Nuts and Seeds	4.7	4.67	1.3	1.3
Olive Oil	0.2	1.21	0.02	0.12
Other Oils	3.8	3.99	11	2
Palm Oil	1.5	1.47	10	9
Potatoes	13.3	16.7	1.3	1.6
Poultry	10.0	12.5	5	5
Processed Meat	11.7	11.7	0.2	1.2
Red Meat	26.7	47.9	10	12
Rice & Pasta	163.0	182	136	147
Soft Drinks & Juices	33.8	55.0	27	48

Kallah-Dagadu G et al., 2023 in preparation

Approaches to design sustainable diets

Qualitative → pilot-test prototype

Fülbert H et al., 2023 under review

Approaches to design sustainable diets

What is the current situation?

What are the possibilities and limitations?

Feasibility, acceptability, appropriateness, fidelity

Implementing sustainable diets

Implementing sustainable diets – Phases

PRECEDE/
PROCEDE model

Precede: predisposing, reinforcing, and enabling constructs in educational/ecological diagnosis and evaluation Phase 4 Phase 3 Phase 1 Phase 2 Educational & Administrative & Epidemiological Social. policy assessment and ecological assessment assessment assessment Intervention alignment Health Programme Predisposing Genetics Educational strategies Reinforcing Behaviour Quality Health Policy of life Regulation Environment Enabling Organisation Phase 5 Phase 6 Phase 7 Phase 8 Implementation Process evaluation Impact evaluation Outcome evaluation Proceed: policy, regulatory, and organizational constructs in educational and environmental development diagnosis and evaluation

Green LW & Kreuter MW. New York: McGraw-Hill, 2005

Implementing sustainable diets – Example

PRECEDE/PROCEDE model

- Phases 1 & 2: high prevalence of overweight and nutrition transition
- Phase 3: dietary habits characterized
- Phase 4: sustainable diets prototyped
- Phase 5: pilot-testing of sustainable diets
- Phase 6: implementation
- Phase 7: process evaluation
- Phase 8: impact evaluation
- Phase 9: results evaluation

Sustainable diets – Design

Sustainable lifestyle intervention for weight-loss and diabetes prevention among adults with overweight/obesity living on Ouagdougou

Sustainable diets – Setting

- Ouagadougou: urban HDSS
- 250 adults with BMI ≥25 kg/m² and the family cook
- men and women
- formal and informal settlements
- Household-based sampling

Ouagadougou HDSS 2011; Rossier et al. Int J Epidemiol 2012; Rossier et al. PLoS ONE 2014

Sustainable diets – Intervention

Steps for participant and data collection			N	Nonth of	the stud	ly		
		1	2	3	4	5	6	12
Recruitment	х							
Check for eligibility criteria, including anthropometric measurements	x							
Oral and written study information and informed consent taking	x							
Sociodemographic and physical assessments	х						х	х
Socio-demographic questionnaire	х							
Global Physical Activity Questionnaire (GPAQ)	x						х	х
Anthropometric measurements	x						х	х
Height								
Weight								
Waist circumference								
Cardio-metabolic measurements	x						х	х
Blood pressure								
Resting heart rate								
Fasting blood glucose								
Oral glucose tolerance test								
HbA1c								
Blood Lipids: TG, Total-Chol, HDL								
Dietary Assessments	х			х			х	х
24-hour dietary recall	xx			XX			xx	xx
Sustainble Diet Weight-Loss Intervention		х	х	х	х	х	х	
Standard counselling material		х						
(control group)								
Group counselling (intervention group)		х		х		х		
Guided market visit + cooking session (intervention group)					х			
Guided physical activity session (intervention group)		XXXX	xxxx	XXXX	XXXX	xxxx	XXXX	

Sustainable diets – Flow chart 6 months

Baseline characteristics

Standardized mean differences

Effects on primary outcomes after 6 months

Outcomes	Baseline	Midline	Adjusted difference (95% CIs) and p-valu	
N	208	191	183	
Laboratory				
Fasting glucose (mmol/L)				
Intervention	5.03 ± 1.02	3.96 ± 0.91	-0.339 (-0.620, -0.057)	0.019
Control	5.08 ± 1.14	4.17 ± 1.10		
Glucose 30 min (mmol/L)				
Intervention	-	6.38 ± 1.95	-0.325 (-0.914, 0.264)	0.278
Control	-	6.58 ± 1.96		
Glucose 120 min				
(mmol/L)				
Intervention	-	5.87 ± 2.01	-0.068 (-0.719, 0.583)	0.837
Control	-	5.79 ± 2.45		
HbA1c (mmol/mol)				
Intervention	44.4 ± 11.4	42.7 ± 8.8	-0.100 (-2.670, 2.470)	0.939
Control	45.7 ± 13.3	42.8 ± 10.6		
HbA1c (%)				
Intervention	6.21 ± 1.05	6.05 ± 0.81	-0.009 (-0.244, 0.226)	0.939
Control	6.33 ± 1.22	6.07 ± 0.97		
Triglycerides (mmol/L)				
Intervention	0.87 (0.66-1.18)	1.00 (0.73, 1.40)	-0.051 (-0.324, 0.221)	0.710
Control	0.93 (0.68-1.44)	0.99 (0.66, 1.49)		
Total cholesterol				
(mmol/L)				
Intervention	4.49 (4.16-5.22)	4.61 (4.05, 5.35)	0.043 (-0.268, 0.353)	0.786
Control	4.48 (4.10-5.31)	4.43 (3.87, 5.36)		
HDL-cholesterol		, , ,		
(mmol/L)				
Intervention	0.91 (0.70-1.15)	1.21 (0.93, 1.46)	0.090 (-0.110, 0.289)	0.374
Control	0.99 (0.79-1.21)	1.15 (1.01, 1.35)	, , , , , , , , , , , , , , , , , , , ,	
LDL-cholesterol	, , ,	, , , , , , , , , , , , , , , , , , , ,		
(mmol/L)				
Intervention	4.07 (3.34-4.79)	3.89 (3.32, 4.67)	0.018 (-0.265, 0.301)	0.902
Control	3.94 (3.46-4.95)	3.97 (3.19, 4.74)	, , ,	

Mean differences, their 95% confidence intervals (CIs), and p-values were calculated by linear regression and are adjusted for baseline values, age, number of people in the household, employment status, and occupation.

35/45

Effects on primary outcomes after 6 months

Outcomes	Baseline	Midline	Adjusted differences (95% CIs) and p-values	
N	208	191	183	
Anthropometry				
Weight (kg)				
Intervention	81.3 ± 12.9	81.0 ± 13.5	-0.765 (-2.178, 0.647)	0.286
Control	82.0 ± 14.6	81.9 ± 15.6		
BMI (kg/m^2)				
Intervention	29.7 ± 4.8	29.6 ± 5.2	-0.274 (-0.793, 0.244)	0.298
Control	29.7 ± 4.7	29.8 ± 5.0		
Waist (cm)				
Intervention	93.8 ± 9.9	94.5 ± 11.3	-1.661 (-4.289, 0.968)	0.214
Control	93.2 ± 11.3	94.8 ± 13.3		
Clinical				
Systolic BP (mmHg)				
Intervention	124 ± 21	123 ± 20	-0.836 (-4.958, 3.286)	0.689
Control	121 ± 17	122 ± 20		
Diastolic BP (mmHg)				
Intervention	88 ± 38	82 ± 14	1.429 (-3.137, 5.995)	0.538
Control	83 ± 11	80 ± 16		
Pulse rate (beats/min)				
Intervention	81 ± 11	80 ± 10	-1.767 (-4.424, 0.890)	0.191
Control	82 ± 11	83 ± 11		

Effects on changes in primary outcomes

Outcomes	Crude mean changes (95% CIs) Midline – Baseline	Adjusted mean differences in ch and p-values	nanges (95% CIs)
Laboratory		-	
ΔFasting glucose (mmol/L)			
Intervention (n=88)	-1.06 (-1.64, -0.48)	-0.36 (-0.71, -0.01)	0.046
Control (n=94)	-0.79 (-1.03, -0.56)		
ΔHbA1c (mmol/mol)			
Intervention (n=88)	-1.83 (-7.76, 4.10)	0.73 (-2.92, 4.39)	0.692
Control (n=94)	-2.55 (-4.98, -0.11)		
ΔHbA1c (%)			
Intervention (n=88)	-0.17 (-0.71, 0.38)	0.07 (-0.27, 0.40)	0.692
Control (n=94)	-0.23 (-0.46, -0.01)		
ΔTriglycerides (mmol/L)			
Intervention (n=88)	0.18 (-3.44, 3.80)	1.11 (-1.12, 3.34)	0.328
Control (n=94)	-0.92 (-2.41, 0.56)		
ΔTotal cholesterol (mmol/L)			
Intervention (n=88)	0.07 (-1.57, 1.71)	0.50 (-0.51, 1.52)	0.329
Control (n=94)	-0.48 (-1.16, 0.19)		
ΔHDL-cholesterol (mmol/L)			
Intervention (n=88)	0.35 (0.02, 0.68)	0.09 (-0.11, 0.29)	0.396
Control (n=94)	0.22 (0.09, 0.36)		
ΔLDL-cholesterol (mmol/L)			
Intervention (n=88)	-0.20 (-0.70, 0.30)	0.06 (-0.24, 0.35)	0.711
Control (n=94)	-0.20 (-0.41, 0.00)		37/45

Effects on changes in primary outcomes

Outcomes	Crude mean changes (95% CIs) Adjusted mean differences in change Midline – Baseline and p-values Intervention eff		0 .
Anthropometry		_	
ΔWeight (kg)			
Intervention (n=88)	-0.38 (-2.71, 1.96)	-0.75 (-2.16, 0.66)	0.293
Control (n=94)	0.10 (-0.86, 1.06)		
$\Delta BMI (kg/m^2)$			
Intervention (n=88)	-0.14 (-1.00, 0.72)	-0.28 (-0.79, 0.24)	0.298
Control (n=94)	0.03 (-0.32, 0.39)	•	
ΔWaist (cm)			
Intervention (n=88)	0.74 (-3.79, 5.27)	-1.81 (-4.52, 0.91)	0.191
Control (n=94)	1.91 (0.05, 3.77)	•	
Clinical			
ΔSystolic BP (mmHg)			
Intervention (n=88)	-1.21 (-8.22, 5.80)	-1.02 (-5.31, 3.26)	0.637
Control (n=94)	-0.01 (-2.88, 2.87)	•	
ΔDiastolic BP (mmHg)			
Intervention (n=88)	-6.23 (-21.59, 9.13)	-3.18 (-12.64, 6.28)	0.508
Control (n=94)	-3.25 (-9.54, 3.05)		
ΔPulse rate (beats/min)			
Intervention (n=88)	-0.47 (-5.62, 4.67)	-1.04 (-4.21, 2.12)	0.517
Control (n=94)	0.98 (-1.13, 3.09)	· · · · ·	

Sensitivity analyis – weight-loss

Weight-loss	Total (n = 182)	Control (n = 94)	Intervention (n = 88)
Achieved any weight-loss	50.0%	51.1%	48.9%
Achieved weight-loss goal (≥ 2.5 kg)	23.1%	26.6%	19.3%

Effect on fasting glucose at midline

Adjusted difference (mmol/L):

-0.65 (-1.31, 0.001); p = 0.051

Effect on change in fasting glucose

Adjusted difference in change (mmol/L):

-0.37 (-0.82, 0.07); p = 0.099

Summary and conclusion

- Lower fasting glucose (-0.34 mmol/L) and stronger reduction in fasting glucose (-0.36 mmol/L) in intervention group than in controls
- No differences in weight-loss between the groups (Hawthorne effect)
- Results similar in sensitivity analysis; with slight improvements in 30min glucose value
- > Sustainable diet intervention improves fasting glucose and this is indpendent of weight-loss

Outlook

Per protocol analysis

- Effects on dietary changes
- Effects on environmental outcomes
- Cost-effectiveness

Impact mapping

Impact mapping – example

Kariuki J & Njuki J. Development in Practice 2013

Merci beaucoup!

What was our approach?

Summary

- FAO concept of sustainable diets: multi-dimensional
- Methods to identify sustainability of diets: data-driven, hypothesis-based, hybrid
- Approaches to design sustainable diets: optimization modelling, qualitative design research
- Socio-ecological model for the implementation of sustainable diets: consider the system!

