Coeficiente de Correlação Linear de Pearson

Introdução

Tem-se uma variável estatística bidimensional quando, relativamente a cada elemento da população, se observa e estuda duas características distintas.

Para as variáveis estatísticas X e Y, a variável estatística bidimensional é representada por (X, Y).

Diagrama de dispersão — "nuvem " de pontos — é o conjunto dos pontos do tipo (x, y) representados num referencial, onde x e y são os valores observados das variáveis X e Y, respectivamente.

Quando tomamos as variáveis duas a duas podemos verificar o que sucede a uma variável, X, quando outra variável, Y, varia.

Existe correlação linear quando é possível ajustar à "nuvem" de pontos uma recta.

Coeficiente de Correlação de Pearson:

A intensidade da associação linear existente entre as variáveis pode ser quantificada através do chamado coeficiente de correlação linear de Pearson:

$$r = \frac{C_{X,Y}}{S_X S_Y}, \quad r \in [-1, 1]$$

onde:

- C_{XY}- Covariância ou variância conjunta das variáveis X e Y;
- S_X- desvio padrão da variável X;
- S_x- desvio padrão da variável Y.

• Caso de Dados não agrupados

$$C_{X,Y} = \frac{\sum_{i=1}^{n} x_i y_i}{n} - \bar{X}\bar{Y}$$

• Caso de Dados agrupados

$$C_{X,Y} = \frac{\sum_{i=1}^{m} x_i y_i F_i}{n} - \bar{X}\bar{Y}$$

for "perfeita" o coeficiente de correlação será igual a c) as variáveis não estão correlacionadas. No limite, isto é, em caso de "absoluta independência" o coeficiente de correlação será igual a 0.

- a) Variáveis positivamente correlacionadas. No limite, isto é, se a correlação for "perfeita" - como é o caso se considerarmos a correlação da variável x consigo própria - o coeficiente de correlação será igual a 1.
- variáveis b) estão negativamente as correlacionadas. No limite, isto é, se a correlação -1.

C)

Coeficiente de correlação	Correlação
r = 1	Perfeita positiva
$0.8 \le r < 1$	Forte positiva
$0,5 \le r < 0,8$	Moderada positiva
$0,1 \le r < 0,5$	Fraca positiva
0 < r < 0,1	Ínfima positiva
0	Nula
-0,1 < r < 0	Ínfima negativa
$-0.5 < r \le -0.1$	Fraca negativa
$-0.8 < r \le -0.5$	Moderada negativa
$-1 < r \le -0.8$	Forte negativa
r = -1	Perfeita negativa

Observação 1: Não se verificar correlação linear, **não** significa que não se verifique outro tipo de correlação, por exemplo, exponencial.

Observação 2: Qualquer que seja a correlação verificada, correlação não significa causalidade.

Exemplo: Calcular o valor do coeficiente de correlação linear de Pearson entre o peso e a altura:

Altura (X)	Peso (Y)
1,75	76
1,69	71
1,85	90
1,8	81
1,7	70
1,74	73
1,87	76
1,68	65
1,76	70
1,95	92
1,96	90
1,62	55

Diagrama de Dispersão

