Раздел 7. Функции нескольких переменных Вариант 1*

- 1. Найти и изобразить на плоскости область определения функции $z=3^{ln(-x^2-y^2-4x)}+\frac{1}{\sqrt[4]{xy}}$.
- 2. Дана функция $z = \frac{y}{(x^2 y^2)^5}$. Показать, что $\frac{1}{x} \cdot \frac{dz}{dx} + \frac{1}{y} \cdot \frac{dz}{dy} = \frac{z}{y^2}$.
- 3. Исследовать функцию на экстремум: $u = x^3 + 3xy^2 15x 12y$.
- 4. Вычислить приближённо: $5 \cdot 1,03^{2,98} \cdot e^{0,05}$.
- 5. Имеются данные о расходах на производство и доходах от реализации в условных единицах. Используя метод наименьших квадратов, вывести формулу квадратичной зависимости $y = ax^2 + bx + c$, если:

	\boldsymbol{x}	10	20	30	40	50	60
	у	1,06	1,33	1,52	1,68	1,81	1,91

Раздел 7. Функции нескольких переменных Вариант 2*

- 1. Найти и изобразить на плоскости область определения функции $z = lg \sqrt[3]{\frac{x^2 y 1}{x y}}$.
- 2. Дана функция $z = \frac{y^2}{3x} + arcsinxy$. Показать, что $x^2 \cdot \frac{dz}{dx} xy \cdot \frac{dz}{dy} + y^2 = 0$.
- 3. Исследовать функцию на экстремум: $u = x^2 + xy + y^2 \ln x 3 \ln y$.
- 4. Вычислить приближённо: $\sqrt{1,02^{2,94} ln0,99}$.
- 5. Имеются данные о расходах на производство и доходах от реализации в условных единицах. Используя метод наименьших квадратов, вывести формулу квадратичной зависимости $y = ax^2 + bx + c$, если:

\boldsymbol{x}	3	5	7	9	11	13		
у	26	76	150	240	360	500		

Раздел 7. Функции нескольких переменных Вариант 3*

- 1. Найти и изобразить на плоскости область определения функции $z=e^{\sqrt[4]{x-y^2-4y+3}}+\ln(-x-2y).$
- 2. Дана функция $z=ln(x^2+y^2+2x+1)$. Показать, что $\frac{d^2z}{dx^2}+\frac{d^2z}{dy^2}=0$.
- 3. Исследовать функцию на экстремум: $u = 3x^2y + y^3 18x 30y$.
- 4. Вычислить приближённо: $\sqrt{1,98^{3,02}+e^{0,01}}$
- 5. Имеются данные о расходах на производство и доходах от реализации в условных единицах. Используя метод наименьших квадратов, вывести формулу квадратичной зависимости $y = ax^2 + bx + c$, если:

Ī	x	2	6	10	14	18	22
	у	3,1	6,7	9,5	11,9	14,0	15,5

Раздел 7. Функции нескольких переменных Вариант 4*

- 1. Найти и изобразить на плоскости область определения функции $z=2^{\log_3(4x^2-y^2)}+\sqrt{4y-x^2-y^2}$.
- 2. Дана функция $z=e^{xy}$. Показать, что $x^2 \cdot \frac{d^2z}{dx^2} 2xy \cdot \frac{d^2z}{dxdy} + y^2 \cdot \frac{d^2z}{dy^2} + 2xyz = 0$.
- 3. Исследовать функцию на экстремум: $u = 2x^3 xy^2 + 5x^2 + y^2$.
- 4. Вычислить приближённо: $2^{0,02} \cdot \sqrt[6]{69} \cdot \sqrt[3]{25}$.
- 5. Имеются данные о расходах на производство и доходах от реализации в условных единицах. Используя метод наименьших квадратов, вывести формулу квадратичной зависимости $y = ax^2 + bx + c$, если:

х	1	3	5	7	9	11
\overline{y}	2,0	10,1	22,6	37,1	54,5	73,2

Раздел 7. Функции нескольких переменных Вариант 5*

- 1. Найти и изобразить на плоскости область определения функции $z=5\sqrt[4]{2x-x^2-y^2}-\sqrt{xy^3}$.
- 2. Дана функция $z = ln(x + e^{-y})$. Показать, что $\frac{dz}{dx} \cdot \frac{d^2z}{dxdy} \frac{dz}{dy} \cdot \frac{d^2z}{dx^2} = 0$.
- 3. Исследовать функцию на экстремум: $u = x^3 + 3xy^2 51x 24y$.
- 4. Вычислить приближённо: $1,03^{1,96} \cdot e^{0,2}$.
- 5. Имеются данные о расходах на производство и доходах от реализации в условных единицах. Используя метод наименьших квадратов, вывести формулу квадратичной зависимости $y = ax^2 + bx + c$, если:

	<u> </u>						
x	1	4	7	10	13	16	
\overline{v}	3,0	7,6	11,2	13,8	17,1	19,5	