

Sabemos que
$$W = 2\pi \ell \Rightarrow W = 20\pi \text{ rad/s}$$

y tambrés que $W = 2\pi \ell \Rightarrow W = 20\pi \text{ rad/s}$

y tambrés que $A = 5 \cdot 10^{-2} \text{ m}$

En auserie de roce, la exergée x caver ve:

 $E_i = E \ell \Rightarrow \frac{1}{2} k A^2 = \frac{1}{2} m v^2 + \frac{1}{2} k x^2$

(Ec. vélida para cualquier x)

 $k = m w^2$
 $\Rightarrow m w^2 A^2 = m v^2 + \frac{1}{4} m w^2 x^2$

Despejando para $v \Rightarrow v = \pm w \sqrt{A^2 - x^2}$

sustitujendo para $x = 2 \cdot s \cdot 10^{-2} \text{ m}$
 $\Rightarrow v = \pm 2 \cdot 72 \cdot m \cdot 1s$

Nota: Tiere $z = 2 \cdot s \cdot 10^{-2} \cdot m$

Nota: Tiere $z = 2 \cdot s \cdot 10^{-2} \cdot m$
 $z = 2 \cdot s \cdot 10^{-2} \cdot m$

Nota: Tiere $z = 2 \cdot s \cdot 10^{-2} \cdot m$
 $z = 3 \cdot 10^{-2} \cdot m$

Nota: Tiere $z = 3 \cdot 10^{-2} \cdot m$
 $z = 3 \cdot 10^{-2} \cdot m$

Nota: Tiere $z = 3 \cdot 10^{-2} \cdot m$
 $z = 3 \cdot 10^{-2} \cdot m$