Machine Learning for Engineering and Science Applications

Overview of Machine Learning

Some common terms

- Artificial Intelligence Any method that tries to replicate the results of some aspect of human cognition
- Machine Learning Programs that perform better with experience.
- Artificial Neural Networks (ANN) A Machine Learning algorithm
- Deep Learning A type of ANN
- Big Data Using data to find unobvious patterns

Adapted from *Deep Learning*, Goodfellow et al (2016)

What is Machine Learning?

Machine Reading

Auto-Text to Knowledge

- Simple Definition -- Using Data to answer questions
- Study of computer algorithms
 - that improve automatically
 - through experience.
- Formally, A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measure *P* if its performance at tasks in *T*, as measured by *P*, improves with experience *E*.

The Machine Learning Paradigm

When is Machine Learning useful?

- When experts are unable to explain their expertise
 - Image recognition
 - Speech recognition
 - Driving a car
- When Human expertise does not exist
 - Hazardous environments -- Navigating on Mars
- Solution needs to be adapted to particular cases
 - User biometrics
 - Patient specific treatments

A fundamental "trick" in most of ML

- All problems are data, all solutions are functions/maps
- Cognitive tasks -- Humans get sensory inputs as qualia
 - We must convert these qualitative inputs into numbers Input Vectors
 - Similarly, outputs that humans give must also be converted into numbers
 Output/Target vectors
- Determining appropriate inputs and outputs for a machine learning task is an essential part of the process
- Often the "Learning Task" is learning the mapping from input to output.

Types of learning approaches

- Supervised Learning
 - Data labeled by human experts
 - Labeling images
 - Speech recognition

- Unlabeled data
- Grouping customers
- Detecting new diseases
- Anomaly detection

Other types of learning approaches

- Generative approaches
 - Creating new data that is "like" given data
 - Generally included in unsupervised learning
- Semi-supervised learning
 - Small amount of labeled data available along with unlabeled data
- Self-supervised learning
 - Implicit labels are extracted from data using heuristics
- Reinforcement learning
 - Actions are chosen based on rewards. Example: Chess, Games, etc.
 - Feedback is far removed temporally from action

Seven Steps in Machine Learning

- Gathering Data
 - Deciding what "data" means is part of the problem
- Preparing Data
 - Ensuring that there is no bias
- 3. Choosing a Model/Algorithm
 - Examples Random Forest, ANNs, Hidden Markov Models, etc.
- Training
 - Using data to determine model parameters
- 5. Evaluation How well did we do?
- 6. Hyperparameter Tuning
- 7. Prediction

Two problems in Supervised Learning

Classification	Regression
Split it	Fit it
Discrete or Categorical data.	Real number data
Has category associated	Has associated number
Example: Tumour classification	Example: Prediction of stock market

Mathematical ideas we will be using in this course

Linear Algebra

- Machine Learning involves mapping
 - From vectors to vectors
 - That is, matrix based transformations Linear Algebra

Probability

- Data and results have uncertainty built into them
- Conditional probability is a very important component of ML

Optimization

- For a given set of data what is the "best" model?
- Many ML models finally reduce to solving some optimization problem