Module 10 – Part III Challenges in Time Series Machine Learning

Challenges in Time Series Machine Learning

Stationarity

- Stationary vs Non-Stationary Data. What makes a data set Stationary?
- In a stationary timeseries, the statistical properties do not depend on the time

Data with trend and seasonality are NOT stationary!

Time Series Cross Validation

- With time series data, we cannot shuffle the data! TS data is not IID.
- We also need to avoid data leakage!

- 1) Purged K-Fold CV
- 2) Walk forward rolling / expanding window
- 3) Combinatorial purged CV

Purged K-Fold CV

- Leakage takes place when the training set contains information that also appears in the testing set.
- Leakage will enhance the model performance
- Solution: Purging and Embargoing
- Purged K-Fold CV: Adding purging and embargoing whenever we produce a train/test split in K-Fold CV.

FIGURE 7.3 Embargo of post-test train observations

Walk Forward Cross Validation

Walk forward cross validation Expanding windows

Walk forward cross validation Rolling windows

Combinatorial Purged Cross Validation (CPCV)

- The goal is to generate multiple unique back-test path that span the entire data set.
- In each path, we can look at the model's OOS performance for the entire time period.

Time Series Bootstrapping

- IID bootstrapping (random sample with replacement) does not work for time series data with temporal dependency.
- Time series Bootstrapping methods:
 - Parametric (based on models with iid residuals and resampling from residuals.
 Example: ARIMA bootstrap)
 - Non-parametric block bootstrap (data is directly resampled. Assumption: blocks can be samples so that they are approximately iid)
 - Moving Block Bootstrap (MBB)
 - Circular Block Bootstrap (CBB)
 - Stationary Bootstrap (SB)

Moving Block Bootstrap (MBB)

- Moving Block Bootstrap, samples overlapping fixed size blocks of m consecutive observations.
- Blocks starts at indices 1, ..., T-m+1

Circular Block Bootstrap (CBB)

- CBB is a simple extension of MBB which assumes the data live on a circle so that $y_{T+1} = y_1$, $y_{T+2} = y_2$, etc.
- CBB has better finite sample properties since all data points get sampled with equal probability.

Stationary Bootstrap (SB)

- In SB, the block size is no longer fixed.
- Chooses an average block size of m rather than an exact block size.
- Popularity of SB stems from difficulty in determining optimal m
- Once applied to stationary data, the resampled pseudo time series by SB are stationary. This is not the case for MBB and CBB.

