Interpretable Machine Learning

Feature Effects Individual Conditional Expectation (ICE) Plot

Learning goals

- ICE curves as local effect method
- How to sample grid points for ICE curves

MOTIVATION

Question: How does varying a single feature of an observation affect its predicted outcome?

Idea: For a given observation, change the value of the feature of interest, and visualize how prediction changes

Example: On model prediction surface (left), select observation and visualize changes in prediction for different values of x_2 , while keeping x_1 fixed

 \Rightarrow local interpretation

INDIVIDUAL CONDITIONAL EXPECTATION (ICE)

▶ "Goldstein et. al" 2013

Partition each observation \mathbf{x} into \mathbf{x}_{S} (feature(s) of interest) and \mathbf{x}_{-S} (remaining features)

~ →	In practice, \mathbf{x}_S consists of one or two features
	(i.e., $ S \leq 2$ and $-S = S^{\complement}$).

Formal definition of ICE curves:

- ullet Define grid points $\mathbf{x}_S^* = \mathbf{x}_S^{*^{(1)}}, \dots, \mathbf{x}_S^{*^{(g)}}$ to vary \mathbf{x}_S
- Plot point pairs $\left\{ \left(\mathbf{x}_{S}^{*^{(k)}}, \hat{f}_{S,ICE}^{(i)}(\mathbf{x}_{S}^{*^{(k)}})\right) \right\}_{k=1}^{g}$ where $\hat{f}_{S,ICE}^{(i)}(\mathbf{x}_{S}^{*}) = \hat{f}(\mathbf{x}_{S}^{*}, \mathbf{x}_{-S}^{(i)})$
- For each k connect point pairs to obtain ICE curve
- \sim ICE curves visualize how prediction of *i*-th observation changes after varying its feature values indexed by S using grid points \mathbf{x}_s^* while keeping all values in -S fixed

1. Step - Grid points:

- Sample grid values $\mathbf{x}_{S}^{*^{(1)}}, \dots, \mathbf{x}_{S}^{*^{(g)}}$ along possible values of feature S (|S|=1)
- For $\mathbf{x}^{(i)} = (\mathbf{x}_S, \mathbf{x}_{-S})$, replace \mathbf{x}_S with those grid values
- \Rightarrow Creates new artificial points for *i*-th obs. (here: $\mathbf{x}_S^* = x_1^* \in \{1, 2, 3\}$ scalar)

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $\hat{t}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{f}_{1,ICE}^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)}) ext{ vs. } x_1^* \in \{1, 2, 3\}$$

ĺ	xs	X ₂	X ₃	\hat{f}
ĺ	1	4	7	0.4

	xs	X ₂	X ₃	\hat{f}
>	2	4	7	0.6

Xs	X ₂	\mathbf{X}_3	\hat{f}
3	4	7	0.7

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $\hat{t}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{f}_{1,\mathit{ICE}}^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)}) ext{ vs. } x_1^* \in \{1, 2, 3\}$$

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $\hat{t}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{f}_{1,ICE}^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)}) ext{ vs. } x_1^* \in \{1, 2, 3\}$$

3. Step - Repeat for other observations:

ICE curve for i = 2 connects all predictions at grid values associated to the i-th observation.

3. Step - Repeat for other observations:

ICE curve for i = 3 connects all predictions at grid values associated to the i-th observation.

ICE CURVES - INTERPRETATION

Example: Prediction surface of a model (left), select observation and visualize changes in prediction for different values of x_2 while keeping x_1 fixed

 \Rightarrow local interpretation

COMMENTS ON GRID VALUES

- ullet Plotting ICE curves involves generating grid values ${f x}_S^*$; shown on x-axis
- Three common strategies for grid definition:
 - Equidistant grid values within feature range
 - Random samples from observed feature values
 - Quantiles of observed feature values
- Marginal realism: Random and quantile grids better reflect the marginal distribution of $x_S \Rightarrow$ reduce unrealistic values along x_S

Grid points for X_S (red) for highlighted observation (blue)

COMMENTS ON GRID VALUES

- ullet Plotting ICE curves involves generating grid values ${f x}_S^*$; shown on x-axis
- Three common strategies for grid definition:
 - Equidistant grid values within feature range
 - Random samples from observed feature values
 - Quantiles of observed feature values
- Marginal realism: Random and quantile grids better reflect the marginal distribution of $x_S \Rightarrow$ reduce unrealistic values along x_S
- However: For correlated features, extrapolation remains:

PRACTICAL CONSIDERATIONS

Grid resolution (instances × grid over feature of interest)

- Too coarse ⇒ may miss sharp nonlinearities or discontinuities
- Too fine ⇒ high runtime (without gaining much)
- ullet Fix: cap at pprox 50 100 grid points; vectorize predictions by feeding the model a single data frame containing all grid-modified instances

ICE curves (number of instances/curves visualized)

- Too few ⇒ hides instance variability, misses subgroup differences
- Too many ⇒ visual overload (many overlapping curves), time intensive
- Fix: Stratified or cluster-based subsample (e.g., 100); facet by subgroup

Default values for popular libraries:

Library	Grid	ICE curves
sklearn (Py)	100	1 000 (random)
PDPbox (Py)	10	num. rows
iml (R)	20	num. rows
pdp (R)	51	num. rows

ICE curves (black lines) and their point-wise average across the grid (yellow line)

