DB 2차 프로젝트

DB연동 및 시각화

CONTENTS

 1
 EXCEL

 지역별 회원 수

02 R 지역별 평균 신용 한도 지역별 가입 성비

 Python

 지역별 상세 정보

 (버블맵, 마커맵)

CONTENTS

1 EXCEL 지역별 회원 수

분석주제

✓ 지역별 회원 수

- ✓ 데이터를 시도, 광역시, 특별시 급으로 나누어
- ✓ 어느 지역의 회원이 가장 많은가에 대해 차트로 표현

1 EXCEL 지역별 회원 수

분석과정

✓ QUERY

SELECT ADDRESS, COUNT(ADDRESS) AS COUNT_ADDRESS FROM
(SELECT REPLACE(SUBSTR(ADDRESS1,1,2),'uC', '인천') AS ADDRESS FROM CUSTOMER)
GROUP BY ADDRESS
ORDER BY COUNT_ADDRESS;

- ✓ CUSTOMER의 ADDRESS1 컬럼에 유니코드 값이 잘못 들어간 데이터 존재
 - → REPLACE를 통해 제거
- ✓ 특별시, 광역시, 도에 따라 회원 수 데이터 추출

1 EXCEL 지역별 회원 수

✓ 서울, 경기권이 가장 뚜렷하게 많음

✓ 서울 : 94만

✓ 경기:89만

✓ 세종, 제주는 가장 적은 회원수를 보유하고 있음

✓ 제주 : 5만

✓ 세종 : 2만

지역별 회원 수

분석주제

✓ 지역별 평균 신용 한도

- ✔ 데이터를 시도, 광역시, 특별시 급으로 나누어
- ✓ 지역별로 평균 신용 한도의 차이가 얼마나 나는지 확인
- ✓ 막대그래프를 통해 지역간 비교

✓ 지역별 가입 성비

- ✓ 데이터를 시도, 광역시, 특별시 급으로 나누어
- ✓ 지역별로 가입자에 대한 성비가 어떻게 되는지 확인
- ✓ 원그래프를 통해 지역간 비교

✓ QUERY

SELECT REGION, CREDIT_LIMIT FROM
(SELECT REPLACE(SUBSTR(ADDRESS1,1,2),'uC', '인천') AS REGION, CREDIT_LIMIT
FROM CUSTOMER);

- ✓ CUSTOMER의 ADDRESS1 컬럼에 유니코드 값이 잘못 들어간 데이터 존재
 - → REPLACE를 통해 제거

✓ R을 통한 전처리 (address_data: DB에서 가져온 데이터)

```
data(-address_data %)%
group_by(REGION) %)% # 지역별 그룹핑
summarise(count=n(), mean = mean(CREDIT_LIMIT)) %)% # count, 평균 계산
arrange(mean) # 평균 순서대로 정렬
```

- ✓ ggplot2을 통한 시각화
 - → 막대 그래프를 통한 시각화

```
> head(data)
# A tibble: 6 x 3
REGION count mean
<chr> <int> <ohr> 1 광주 149270 2493.</br>
2 인천 178340 2495.<br/>3 충남 340515 2497.<br/>4 경북 542451 2497.<br/>5 세종 20470 2498.<br/>6 충북 255226 2498.
```

R 지역별 평균 신용 한도

- ✓ 제주 가입자의 평균 신용한도가 뚜렷하게 높음
 - ✓ 제주: 2517
- ✓ 나머지 지역에 대해서는 고른 분포를 보여주고 있음
 - ✓ 2493 ~ 2505 에 대해 분포하고 있음
 - ✓ 광주: 2493 (최저 지역)

✓ QUERY

SELECT REGION, GENDER FROM (SELECT REPLACE(SUBSTR(ADDRESS1,1,2), 'uC', '인천') AS REGION, GENDER FROM CUSTOMER);

- ✓ CUSTOMER의 ADDRESS1 컬럼에 유니코드 값이 잘못 들어간 데이터 존재
 - → REPLACE를 통해 제거

✔ R을 통한 전처리 (gender_data: DB에서 가져온 데이터)
 data2⟨-gender_data%⟩%
 group_by(REGION, GENDER)%⟩% # 지역, 성별에 대한 그룹핑
 summarise(n=n())%⟩% # 그룹에 대해 데이터의 개수 카운트

mutate(freq=n/sum(n)) # 전체에 대한 데이터의 비율

- ✓ ggplot2을 통한 시각화
 - → 원 그래프를 통한 시각화

R 지역별 평균 신용 한도

- ✓ 지역별 원그래프 내에 절대 수치, 상대 수치 표현
- ✓ 지역별 고른 성비를 보여주고 있음

✓ 남자: 47% ~ 48%

✓ 여자: 52% ~ 53%

- ✓ 해당 데이터에 대해서는 의미 없는 그래프
 - ✓ 만약, 마케팅 결과 데이터라면
 - ✓ 어느 지역에서 더 관심을 가지는지 알 수 있음

Python 지역별 상세 정보

분석주제

✓ 지역별 상세 정보

- ✓ 지도에 지역별 회원 수, 평균 나이, 평균 신용한도, 성비 등 자세한 정보 표현
 - → folium과 OpenStreetMap을 통한 표현
- ✓ 마커를 통한 위치 표현
- ✓ 버블맵을 통한 가장 회원수의 밀도가 높은 지역 표현

✓ QUERY

```
query = "SELECT ADDRESS, ROUND(AVG(CREDIT_LIMIT),2) AS AVG_CREDIT_LIMIT, ROUND(AVG(AGE),2) AS AVG_AGE,
  count(GENDER) AS COUNT_ALL,
  CONCAT(TO CHAR(ROUND(count(case when GENDER = 'F' then 1 END)/count(GENDER),4)*100),'%') AS COUNT FEMALE,
  CONCAT(TO_CHAR(ROUND(count(case when GENDER = 'M' then 1 END)/count(GENDER),4)*100),'%') AS COUNT_MALE,
  CASE WHEN COUNT(GENDER)(=20000 THEN '회원 수 적음'
   WHEN COUNT(GENDER)(=50000 THEN '회원 수 보통'
   WHEN COUNT(GENDER)>50000 THEN '회원 수 많음'
  END AS COUNT STAT.
  CASE WHEN COUNT(GENDER) (= 20000 THEN 'red'
   WHEN COUNT(GENDER)(=50000 THEN 'orange'
   WHEN COUNT(GENDER)>50000 THEN 'green'
  END AS COUNT_COLOR
FROM( SELECT REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(RTRIM(SUBSTR(ADDRESS1, 0, INSTR(ADDRESS1, '', 1, 2))),
  'uC778천 강화군', '인천 강화군'), '강원 홍천uAD70', '강원 홍천군'), '강원 삼uCC99시', '강원 삼척시'), '충북 uCDA9주시','충북 충주시'), '경기 안
uC591시','경기 안양시') AS ADDRESS, CREDIT_LIMIT, TRUNC((SYSDATE - BIRTH_DT) / 365) AS AGE, GENDER
  FROM CUSTOMER
) GROUP BY ADDRESS ORDER BY ADDRESS;"
```

✓ QUERY에 대한 결과를 데이터프레임으로 변환

df.head()

	ADDRESS	AVG_CREDIT_LIMIT	AVG_AGE	COUNT_ALL	COUNT_FEMALE	COUNT_MALE	COUNT_STAT	COUNT_COLOR
0	강원 강릉시	2497.27	42.08	33171.0	52.12%	47.88%	회원 수 보통	orange
1	강원 고성군	2483.74	42.00	12128.0	51.68%	48.32%	회원 수 적음	red
2	강원 동해시	2494.28	42.03	14226.0	51.83%	48.17%	회원 수 적음	red
3	강원 삼척시	2500.71	41.89	21882.0	52.5%	47.5%	회원 수 보통	orange
4	강원 속초시	2491.17	41.94	6575.0	52.03%	47.97%	회원 수 적음	red

✓ 각 컬럼에 대한 데이터를 마커에 표현하고자 함

Python지역별 상세 정보

분석과정

- ✓ 각 시군구 좌표를 가지고 있는 데이터와 병합
- ✓ 각 시군구에 대한 위도, 경도 데이터를 이용해 지도에 표현할 마커의 위치를 지정함

location[['ADDRESS','lat','long']]

	ADDRESS	lat	long			
0	서울 강남구	37.4951	127.06278			
1	서울 강동구	37.55274	127.14546			
2	서울 강북구	37.6349	127.02015			
3	서울 강서구	37.56227	126.81622			
4	서울 관악구	37.47876	126.95235			
223	전남 진도군	34.41018	126.1688			
224	전남 곡성군	35.21449	127.2628			
225	전남 구례군	35.20944	127.46444			
226	제주 제주시	33.50972	126.52194			
227	제주 서귀포시	33.29307	126.49748			
228 rows × 3 columns						

✓ 각 지역에 대한 회원 수에 비례하여원의 크기 지정

✓ 어느 지역의 회원 수가 가장 많은 지지도를 통해 확인할 수 있음

✓ 서울, 경기권에 회원이 많다는 것을 알 수 있음

- ✓ 각 지역에 대한 회원 수에 대해 마커의 색으로 회원 범례 표현
- ✓ 마커를 클릭했을 때, 지역에 대한 자세한 정보를 알 수 있음
- ✓ 좀 더 상세한 정보가 있을 경우,더 구체적인 마케팅에 활용할 수 있음

