# **Topology Qualifying Exam Solutions**

## D. Zack Garza

## Thursday $11^{\rm th}$ June, 2020

## **Contents**

| 1 | Prob              | olems to Revisit              | 1 |
|---|-------------------|-------------------------------|---|
| 2 | Gen               | eral Topology                 | 2 |
|   | 2.1               | 1 (Todo)                      | 2 |
|   | 2.2               | 2                             | 2 |
|   |                   | 2.2.1 Alternate Proof of (ii) | 2 |
|   | 2.3               |                               | 2 |
|   | 2.4               |                               | 2 |
|   | 2.5               |                               | 4 |
|   | 2.6               | · /                           | 4 |
|   | $\frac{2.0}{2.7}$ |                               | 4 |
|   | 2.8               |                               | 4 |
|   | 2.0               |                               | 4 |
|   | 2.9               |                               |   |
|   |                   |                               | 6 |
|   |                   |                               | 6 |
|   |                   | ()                            | 7 |
|   |                   |                               | 7 |
|   |                   |                               | 7 |
|   | 2.14              | 14                            | 7 |
|   | 2.15              | 15 (Todo)                     | 8 |
|   | 2.16              | 16                            | 8 |
|   | 2.17              | 17 (Todo)                     | 9 |
|   | 2.18              | 18                            | 9 |
|   | 2.19              | 19 (Todo)                     | 0 |
|   |                   |                               | 0 |

## 1 Problems to Revisit

- 4
- 6 (Without Heine-Borel)
- 8
- 10
- 11
- 14

## 2 General Topology

### 2.1 1 (Todo)

#### 2.2 2

- i. See definition section of review doc.
- ii. Use Heine-Borel theorem: a set  $U \subset \mathbb{R}^n$  is compact  $\iff U$  is closed and bounded.
  - X is closed in  $\mathbb{R}$ , since we can write its complement as an arbitrary union of open intervals:

$$X^c = (-\infty, 0) \bigcup \left( \bigcup_{n \in \mathbb{Z}^+} \left( \frac{1}{n}, \frac{1}{n+1} \right) \right) \bigcup (1, \infty)$$

- X is bounded, since we can pick r = 1, then  $x, y \in X \implies d(x, y) \le r = 1$ .
- iii. Use Heine-Borel again: X is not closed because it does not contain all of its limit points, e.g. the sequence  $\left\{x_n := \frac{1}{n} \mid n \in \mathbb{Z}^{\geq 1}\right\} \subset X$  but  $x_n \stackrel{n \longrightarrow \infty}{\longrightarrow} 0 \in X^c$ . Thus is is **not** compact.

#### 2.2.1 Alternate Proof of (ii)

See Munkres p.164

- Let  $\{U_i \mid j \in J\} \Rightarrow X$ ; then  $0 \in U_j$  for some  $j \in J$ .
- In the subspace topology,  $U_i$  is given by some  $V \in \tau(\mathbb{R})$  such that  $V \cap X = U_i$ 
  - A basis for the subspace topology on  $\mathbb{R}$  is open intervals, so write V as a union of open intervals  $V = \bigcup I_k$ .
  - Since  $0 \in U_j$ ,  $0 \in I_k$  for some k.
- Since  $I_k$  is an interval, it contains infinitely many points of the form  $x_n = \frac{1}{n} \in X$
- Then  $I_k \cap X \subset U_j$  contains infinitely many such points.
- So there are only finitely many points in  $X \setminus U_j$ , each of which is in  $U_{j(n)}$  for some  $j(n) \in J$  depending on n.
- So  $U_j$  and the finitely many  $U_{j(n)}$  form a finite subcover of X.

## 2.3 3 (Todo)

#### 2.4 4

Statement: show that the *Lebesque number* is well-defined for compact metric spaces.

Note: this is a question about the Lebesgue Number. See Wikipedia for detailed proof.

- Write  $U = \{U_i \mid i \in I\}$ , then  $X \subseteq \bigcup_{i \in I} U_i$ . Need to construct a  $\delta > 0$ .
- By compactness of X, choose a finite subcover  $U_1, \dots, U_n$ .
- Define the distance between a point x and a set  $Y \subset X$ :  $d(x,Y) = \inf_{y \in Y} d(x,y)$ .
  - Claim: the function  $d(\cdot, Y): X \longrightarrow \mathbb{R}$  is continuous for a fixed set.

- Proof: Todo, not obvious.



• Define a function

$$f: X \longrightarrow \mathbb{R}$$
  
  $x \mapsto \frac{1}{n} \sum_{i=1}^{n} d(x, X \setminus U_i).$ 

Note this is a sum of continuous functions and thus continuous.

#### • Claim:

$$\delta \coloneqq \inf_{x \in X} f(x) = \min_{x \in X} f(x) = f(x_{\min}) > 0$$

suffices.

- That the infimum is a minimum: f is a continuous function on a compact set, apply the extreme value theorem: it attains its minimum.
- That  $\delta > 0$ : otherwise,  $\delta = 0 \implies \exists x_0 \text{ such that } d(x_0, X \setminus U_i) = 0 \text{ for all } i$ .
  - \* Forces  $x_0 \in X \setminus U_i$  for all i, but  $X \setminus \bigcup U_i = \emptyset$  since the  $U_i$  cover X.
- That it satisfies the Lebesgue condition:

$$\forall x \in X, \exists i \text{ such that } B_{\delta}(x) \subset U_i$$

\* Let  $B_{\delta}(x) \ni x$ ; then by minimality  $f(x) \ge \delta$ .

\* Thus it can not be the case that  $d(x, X \setminus U_i) < \delta$  for every i, otherwise

$$f(x) \le \frac{1}{n}(\delta + \dots + \delta) = \frac{n\delta}{n} = \delta$$

- \* So there is some particular i such that  $d(x, X \setminus U_i) \ge \delta$ .
- \* But then  $B_{\delta} \subseteq U_i$  as desired.

## 2.5 5 (Todo)

#### 2.6 6

Facts used:

- Cantor's Intersection Theorem
- Bases for standard topology on  $\mathbb{R}$ .
- Definition of compactness
- Toward a contradiction, let  $\{U_{\alpha}\} \rightrightarrows [0,1]$  be an open cover with no finite subcover.
- Then either  $[0, \frac{1}{2}]$  or  $[\frac{1}{2}, 1]$  has no finite subcover; WLOG assume it is  $[0, \frac{1}{2}]$ .
- Then either  $[0,\frac{7}{4}]$  or  $[\frac{7}{4},\frac{1}{2}]$  has no finite subcover
- Inductively defining  $[a_n, b_n]$  this way yields a sequence of closed, bounded, nested intervals (each with no finite subcover) with  $\operatorname{diam}([a_n, b_n]) \leq \frac{1}{2^n} \longrightarrow 0$ , so Cantor's Nested Interval theorem applies and the intersection contains exactly one point  $p \in [0, 1]$ .
- Since  $p \in [0,1]$ ,  $p \in U_{\alpha}$  for some  $\alpha$ .
- Since a basis for  $\tau(\mathbb{R})$  is given by open intervals, we can find an  $\varepsilon > 0$  such that  $(p-\varepsilon, p+\varepsilon) \subseteq U_{\alpha}$
- Then if  $\frac{1}{2^N} < \varepsilon$ , for  $n \ge N$  we have

$$[a_n, b_n] \subseteq (p - \varepsilon, p + \varepsilon) \subseteq U_{\alpha}.$$

• But then  $U_{\alpha} \rightrightarrows [a_n, b_n]$ , yielding a finite subcover of  $[a_n, b_n]$ , a contradiction.

#### 2.7 7 (Todo)

#### 2.8 8

Topic: proof of the tube lemma.

Statement: show  $X, Y \in \text{Top}_{\text{compact}} \iff X \times Y \in \text{Top}_{\text{compact}}$ 

#### 2.8.1 Proof 1

⇐=:

- By universal properties, the product  $X \times Y$  is equipped with continuous projections
- The continuous image of a compact set is compact, and  $\pi_1(X \times Y) = X, p_2(X \times Y) = Y$
- So X, Y are compact.

**⇒** :

Proof of Tube Lemma:

- Let  $\{U_j \times V_j \mid j \in J\} \rightrightarrows X \times Y$ .
- Fix a point  $x_0 \in X$ , then  $\{x_0\} \times Y \subset N$  for some open set N.
- By the tube lemma, there is a  $U^x \subset X$  such that the tube  $U^x \times Y \subset N$ .
- Since  $\{x_0\} \times Y \cong Y$  which is compact, there is a finite subcover  $\{U_j \times V_j \mid j \leq n\} \rightrightarrows \{x_0\} \times Y$ .
- "Integrate the X": write

$$W = \bigcap_{j=1}^{n} U_j,$$

then  $x_0 \in W$  and W is a finite intersection of open sets and thus open.

- Claim:  $\{U_j \times V_j \mid j \leq n\} \rightrightarrows W \times Y$ 
  - Let  $(x,y) \in W \times Y$ ; want to show  $(x,y) \in U_j \times V_j$  for some  $j \leq n$ .
  - Then  $(x_0, y) \in \{x_0\} \times Y$  is on the same horizontal line
  - $-(x_0, y) \in U_j \times V_j$  for some j by construction
  - So  $y \in V_j$  for this j
  - Since  $x \in W$ ,  $x \in U_j$  for every j, thus  $x \in U_j$ .
  - So  $(x,y) \in U_i \times V_i$

#### Actual Proof:

- Let  $\{U_j \mid j \in J\} \rightrightarrows X \times Y$ .
- Fix  $x_0 \in X$ , the slice  $\{x_0\} \times Y$  is compact and can be covered by finitely many elements  $\{U_j \mid j \leq m\} \rightrightarrows \{x_0\} \times Y$ .
  - Sum: write  $N = \bigcup_{j=1}^{m} U_j$ ; then  $\{x_0\} \times Y \subset N$ .
  - Apply the tube lemma to N: produce  $\{x_0\} \times Y \in W \times Y \subset N$ ; then  $\{U_j \mid j \leq m\} \Rightarrow W \times Y$ .
- Now let  $x \in X$  vary: for each  $x \in X$ , produce  $W_x \times Y$  as above, then  $\{W_x \times Y \mid x \in X\} \rightrightarrows X$ .
  - By above argument, every tube  $W_x \times Y$  can be covered by finitely many  $U_j$ .
- Since  $\{W_x \mid x \in X\} \rightrightarrows X$  and X is compact, produce a finite subset  $\{W_k \mid k \leq m'\} \rightrightarrows X$ .
- Then  $\{W_k \times Y \mid k \leq m'\} \rightrightarrows X \times Y$ ; the claim is that it is a finite cover.
  - Finitely many k
  - For each k, the tube  $W_k \times Y$  is covered by finitely by  $U_j$
  - And finite  $\times$  finite = finite.

#### Shorter mnemonic:

19. U It is sufficient to consider a cover consisting of elementary sets. Since Y is compact, each fiber  $x \times Y$  has a finite subcovering  $\{U_i^x \times V_i^x\}$ . Put  $W^x = \cap U_i^x$ . Since X is compact, the cover  $\{W^x\}_{x \in X}$  has a finite subcovering  $W^{x_j}$ . Then  $\{U_i^{x_j} \times V_i^{x_j}\}$  is the required finite subcovering.

#### 2.9 9

#### 2.10 10

X is connected:

- Write  $X = L \coprod G$  where  $L = \{0\} \times [-1, 1]$  and  $G = \{\Gamma(\sin(x)) \mid x \in (0, 1]\}$  is the graph of  $\sin(x)$ .
- $L \cong [0,1]$  which is connected
  - Claim: Every interval is connected (todo)
- $\bullet$  Claim: G is connected (i.e. as the graph of a continuous function on a connected set)
  - The function

$$f: (0,1] \longrightarrow [-1,1]$$
  
 $x \mapsto \sin(x)$ 

is continuous (how to prove?)

- Products of continuous functions are continuous iff all of the components are continuous.
- Claim: The diagonal map  $\Delta: Y \longrightarrow Y \times Y$  where  $\Delta(t) = (t, t)$  is continuous for any Y since  $\Delta = (\mathrm{id}, \mathrm{id})$ 
  - \* Product of identity functions, which are continuous.
- The composition of continuous function is continuous, therefore

$$F: (0,1] \xrightarrow{\Delta} (0,1]^2 \xrightarrow{(\mathrm{id},f)} (0,1] \times [-1,1]$$
$$t \mapsto (t,t) \mapsto (t,f(t))$$

- Then G = F((0,1]) is the continuous image of a connected set and thus connected.
- $\bullet$  Claim: X is connected
  - Suppose there is a disconnecting cover  $X = A \coprod B$  such that  $\overline{A} \cap B = A \cap \overline{B} = \emptyset$  and  $A, B \neq \emptyset$ .
  - WLOG let  $(x, \sin(x)) \in B$  for x > 0 (otherwise just relabeling A, B)
  - Claim: B = G
    - \* It can't be the case that A intersects G: otherwise

$$X = A \coprod B \implies G = (A \bigcap G) \coprod (B \bigcap V)$$

disconnects G. So  $A \cap G = \emptyset$ , forcing  $A \subseteq L$ 

- \* Similarly L can not be disconnected, so  $B \cap L = \emptyset$  forcing  $B \subset G$
- \* So  $A \subset L$  and  $B \subset G$ , and since  $X = A \coprod B$ , this forces A = L and B = G.
- But any open set U in the subspace topology  $L \subset \mathbb{R}^2$  (generated by open balls) containing  $(0,0) \in L$  is the restriction of a ball  $V \subset \mathbb{R}^2$  of radius r > 0, i.e.  $U = V \cap X$ .
  - \* But any such ball contains points of G:

$$n \gg 0 \implies \frac{1}{n\pi} < r \implies \exists g \in G \text{ s.t. } g \in U.$$

- \* So  $U \cap L \cap G \neq \emptyset$ , contradicting  $L \cap G = \emptyset$ .
- $\bullet$  Claim: X is *not* path-connected.
  - Todo: "can't get from L to G in finite time".

- Toward a contradiction, choose a continuous function  $f: I \longrightarrow X$  with  $f(0) \in G$  and  $f(1) \in L$ .
  - \* Since  $L \cong [0,1]$ , use path-connectedness to create a path  $f(1) \longrightarrow (0,1)$
  - \* Concatenate paths and reparameterize to obtain  $f(1) = (0,1) \in L \subset \mathbb{R}^2$ .
- Let  $\varepsilon = \frac{1}{2}$ ; by continuity there exists a  $\delta \in I$  such that

$$t \in B_{\delta}(1) \subset I \implies f(t) \in B_{\varepsilon}(\mathbf{0}) \in X$$

- Using the fact that  $[1 \delta, 1]$  is connected,  $f([1 \delta, 1]) \subset X$  is connected.
- Let  $f(1-\delta) = \mathbf{x}_0 = (x_0, y_0) \subset X \subset \mathbb{R}^2$ .
- Define a composite map

$$F: [0,1] \longrightarrow \mathbb{R}F \qquad \qquad := \mathfrak{p}_{x-\text{axis}} \circ f.$$

- \* F is continuous as a composition of continuous functions.
- Then  $F([1-\delta,1]) \subset \mathbb{R}$  is connected and thus must be an interval (a,b)
- Since  $f(1) = \mathbf{0}$  which has x-component zero,  $[0, b] \subset (a, b)$ .
- Since  $f(1 \delta) = \mathbf{x}$ ,  $F(\mathbf{x}) = x_0$  and this  $[0, x_0] \subset (a, b)$ .
- Thus for all  $x \in (0, x_0]$  there exists a  $t \in [1 \delta, 1]$  such that  $f(t) = (x, \sin(\frac{1}{x}))$ .
- Now toward the contradiction, choose  $x = \frac{1}{2n\pi \pi/2} \in \mathbb{R}$  with n large enough such that  $x \in (0, x_0)$ .
  - \* Note that  $\sin\left(\frac{1}{x}\right) = -1$  by construction.
  - \* Apply the previous statement: there exists a t such that  $f(t) = (x, \sin\left(\frac{1}{x}\right)) = (x, -1)$ .
  - \* But then

$$||f(t) - f(x)|| = ||(x, -1) - (0, 1)|| = ||(x, 2)|| > \frac{1}{2},$$

contradicting continuity of f.

#### 2.11 11 (Todo)

#### 2.12 12 (Todo)

- Using the fact that  $[0, \infty) \subset \mathbb{R}$  is Hausdorff, any retract must be closed, so any closed interval  $[\varepsilon, N]$  for  $0 \le \varepsilon \le N \le \infty$ .
  - Note that  $\varepsilon = N$  yields all one point sets  $\{x_0\}$  for  $x_0 \ge 0$ .
- No finite discrete sets occur, since the retract of a connected set is connected.
- ?

#### 2.13 13 (Todo)

#### 2.14 14

- Take two connected sets X, Y; then there exists  $p \in X \cap Y$ .
- Toward a contradiction: write  $X \bigcup Y = A \coprod B$  with both  $A, B \subset A \coprod B$  open.

- Since  $p \in X \bigcup Y = A \coprod B$ , WLOG  $p \in A$ . We will show B must be empty.
- Claim:  $A \cap X$  is clopen in X.
  - $-A\bigcap X$  is open in X:?
  - $-A\bigcap X$  is closed in X: ?
- The only clopen sets of a connected set are empty or the entire thing, and since  $p \in A$ , we must have  $A \cap X = X$ .
- By the same argument,  $A \cap Y = Y$ .
- So  $A \cap (X \cup Y) = (A \cap X) \cup (A \cap Y) = X \cup Y$
- Since  $A \subset X \bigcup Y$ ,  $A \cap (X \bigcup Y) = A$
- Thus  $A = X \bigcup Y$ , forcing  $B = \emptyset$ .

## 2.15 15 (Todo)

#### 2.16 16

Topic: closure and connectedness in the subspace topology. See Munkres p.148

- $S \subset X$  is **not** connected if S with the subspace topology is not connected.
  - I.e. there exist  $A, B \subset S$  such that
    - \*  $A, B \neq \emptyset$ ,
    - $*A \cap B = \emptyset,$
    - \*  $A \prod B = S$ .
- Or equivalently, there exists a nontrivial  $A \subset S$  that is clopen in S.

Show stronger statement: this is an iff.

**⇒** :

- Suppose S is not connected; we then have sets  $A \bigcup B = S$  from above and it suffices to show  $\operatorname{cl}_Y(A) \cap B = A \cap \operatorname{cl}_X(B) = \emptyset$ .
- A is open by assumption and  $Y \setminus A = B$  is closed in Y, so A is clopen.
- Write  $\operatorname{cl}_Y(A) := \operatorname{cl}_X(A) \cap Y$ .
- Since A is closed in Y,  $A = \operatorname{cl}_Y(A)$  by definition, so  $A = \operatorname{cl}_Y(A) = \operatorname{cl}_X(A) \cap Y$ .
- Since  $A \cap B = \emptyset$ , we then have  $cl_Y(A) \cap B = \emptyset$ .
- The same argument applies to B, so  $\operatorname{cl}_Y(B) \cap A = \emptyset$ .

⇐ :

- Suppose displayed condition holds; given such A, B we will show they are clopen in Y.
- Since  $\operatorname{cl}_Y(A) \cap B = \emptyset$ , (claim) we have  $\operatorname{cl}_Y(A) = A$  and thus A is closed in Y.

- Why?

$$\operatorname{cl}_{Y}(A) := \operatorname{cl}_{X}(A) \bigcap Y$$

$$= \operatorname{cl}_{X}(A) \bigcap \left(A \coprod B\right)$$

$$= \left(\operatorname{cl}_{X}(A) \bigcap A\right) \coprod \left(\operatorname{cl}_{X}(A) \bigcap B\right)$$

$$= A \coprod \left(\operatorname{cl}_{X}(A) \bigcap B\right) \quad \text{since } A \subset \operatorname{cl}_{Y}(A)$$

$$= A \coprod \left(\operatorname{cl}_{Y}(A) \bigcap B\right) \quad \text{since } B \subset Y$$

$$= A \coprod \emptyset \quad \text{using the assumption}$$

$$= A.$$

• But  $A = Y \setminus B$  where B is closed, so A is open and thus a nontrivial clopen subset.



## 2.17 17 (Todo)

#### 2.18 18

• Define a new function

$$g: X \longrightarrow \mathbb{R}$$
 
$$x \mapsto d_X(x, f(x)).$$

- ullet Attempt to minimize. Claim: g is a continuous function.
- Given claim, a continuous function on a compact space attains its infimum, so set

$$m \coloneqq \inf_{x \in X} g(x)$$

and produce  $x_0 \in X$  such that g(x) = m.

• Then

$$m > 0 \iff d(x_0, f(x_0)) > 0 \iff x_0 \neq f(x_0).$$

• Now apply f and use the assumption that f is a contraction to contradict minimality of m:

$$d(f(f(x_0)), f(x_0)) \le C \cdot d(f(x_0), x_0)$$

$$< d(f(x_0), x_0) \quad \text{since } C < 1$$

$$\le m$$

• Proof that g is continuous: use the definition of g, the triangle inequality, and that f is a contraction:

$$d(x, f(x)) \le d(x, y) + d(y, f(y)) + d(f(x), f(y))$$

$$\implies d(x, f(x)) - d(y, f(y)) \le d(x, y) + d(f(x), f(y))$$

$$\implies g(x) - g(y) \le d(x, y) + C \cdot d(x, y) = (C + 1) \cdot d(x, y)$$

- This shows that g is Lipschitz continuous with constant C+1 (implies uniformly continuous, but not used).

#### 2.19 19 (Todo)

### 2.20 20

| Space               | Connected    | Locally Connected |
|---------------------|--------------|-------------------|
| $\mathbb{R}$        | <b>√</b>     | <b>√</b>          |
| $[0,1]\bigcup[2,3]$ |              | $\checkmark$      |
| Sine Curve          | $\checkmark$ |                   |
| $\mathbb{Q}$        |              |                   |

- a. See definitions in intro.
- b. Claim: the Topologist's sine curve X suffices.

Proof:

- $\bullet$  Claim 1: X is connected.
  - Intervals and graphs of cts functions are connected, so the only problem point is 0.
- Claim 2: X is **not** locally path connected.
  - Take any  $B_{\varepsilon}(0) \in \mathbb{R}^2$ ; then  $\pi_X B_{\varepsilon}(0)$  yields infinitely many arcs, each intersecting the graph at two points on  $\partial B_{\varepsilon}(0)$ .
  - These are homeomorphic to a collection of disjoint embedded open intervals, and any disjoint union of intervals is clearly not connected.

Todo: what's the picture?