Frist for innlevering: Tirsdag 21. april kl 17

ØVING med deltafunksjonar

Oppgåve 1 Spreiing på δ -funksjonspotensialet

Vi skal nå studere potensialet

$$V(x) = \beta \delta(x) \equiv f \frac{\hbar^2}{m_e a_0} \delta(x),$$

der f nå kan vere anten positiv eller negativ. Dette potensialet er ein forenkla modell av eit potensial som er null overalt, unntatt i eit tynt sjikt ved yz-planet, som utgjer ein barriere eller ein brønn. Vi sender nå eit elektron vinkelrett inn mot dette sjiktet, i positiv x-retning, med energien $E = (\hbar k)^2/2m_e$. Som vi har sett i forelesningane, kan vi analysere dette spreiingsproblemet vha ein energieigenfunksjon, på forma $e^{ikx} + re^{-ikx}$ for x < 0 og te^{ikx} for x > 0. Her gjer vi nå ein liten vri, ved å dividere med den komplekse faktoren t på begge sider. Energieigenfunksjonen kan då skrivast på forma

$$\psi(x) = \begin{cases} \psi_I(x) = \psi_i(x) + \psi_r(x) & \text{for } x < 0, \\ \psi_{II}(x) = \psi_t(x) & \text{for } x > 0. \end{cases}$$

Her representerer

$$\psi_i(x) = \frac{1}{t} e^{ikx}, \qquad \psi_r(x) = b e^{-ikx} \quad \text{og} \quad \psi_t(x) = e^{ikx}$$

innkommande, reflektert og transmittert bølge. (Vi har sett r/t = b.)

- a) Den generelle løysinga av den tidsuavhengige Schrödingerlikninga for x > 0 inneheld også eit ledd $D \exp(-ikx)$. Kvifor har vi droppa dette leddet i uttrykket for ψ_{II} for x > 0?
- b) Vis at forholdet mellom transmittert og innkommande straumtettheit også etter denne vrien er

$$T = |t|^2.$$

Straumtettheitene finn du vha formelen $j_x = \Re \left[\psi^* \frac{\hbar}{im} \frac{d}{dx} \psi \right]$.

c) Bruk kontinuitetskravet for $\psi(x)$ og diskontinuitetskravet for $d\psi(x)/dx$,

$$\psi'(0^+) - \psi'(0^-) = \frac{2m\beta}{\hbar^2}\psi(0),$$

til å vise at

$$t = \left[1 + \frac{if}{ka_0}\right]^{-1}.$$

[Hint: Eliminer koeffisienten b.]

La E_B være bindingsenergien for tilfellet f < 0 (utleia på førelesning). Finn transmisjonskoeffisienten T uttrykt ved forholdet E/E_B . Drøft resultatet for tilfella (i) $E \ll E_B$, (ii) $E = E_B$ og (iii) $E \gg E_B$, og skissér R = 1 - T som funksjon av E/E_B . Er det rimeleg å seie at bindingsenergien representerer ein naturleg energiskala når vi skal diskutere korleis T avheng av E (både for f < 0 og f > 0)?

d) Eit interessant poeng ved utrekninga av 1/t er at den teknisk sett er gyldig ikkje berre for positive reelle $k = \sqrt{2m_e E/\hbar^2}$, men og når k er kompleks. Men for slike k-verdiar blir den resulterande bølgjefunksjonen

$$\psi = \begin{cases} \frac{1}{t}e^{ikx} + be^{-ikx} & \text{for} \quad x < 0, \\ e^{ikx} & \text{for} \quad x > 0 \end{cases}$$

ikkje alltid ein eigenfunksjon. Men her har vi et unntak: Sjekk at viss $\Im(k) > 0$, så vil ψ gå mot null for $x \to \infty$, medan vi i grensa $x \to -\infty$ har at e^{-ikx} går mot null og e^{ikx} går mot uendeleg. Det einaste som kan redde situasjonen og gjev oss ein akseptabel eigenfunksjon er at transmisjonsamplituden t går mot uendeleg. Finn den (imaginære) k-verdien som gjer t uendeleg stor (t er ein pol). Finn den resulterande eigenfunksjonen ψ , og overtyd deg om at denne og den tilhøyrende energien er dei same som blei funne i førre oppgåve. Moral: Polar i "transmisjonsamplituden" t svarer til bundne tilstandar.

Oppgåve 2 Rotasjonssymmetrisk potensial i to dimensjonar

I denne oppgåva skal vi studere ein partikkel med masse μ som bevegar seg i eit rotasjonssymmetrisk potensial $V(\mathbf{r}) = V(r)$ i to dimensjonar.

a) Vis at den tidsuavhengige Schrödingerlikninga i polarkoordinatar (r, ϕ) kan skrivast som

$$\left[-\frac{\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} - \frac{\hat{L}_z^2}{\hbar^2 r^2} \right) + V(r) \right] \psi(r, \phi) = E\psi(r, \phi) . \tag{0.1}$$

der $\hat{L}_z = -i\hbar \frac{d}{d\phi}$. Eigenfunksjonane for \hat{H} kan skrivast på forma $\psi(r,\phi) = R(r)e^{im\phi}$. Finn dei moglege verdiane for m. Hint: Bølgjefunksjonen må vere eintydig.

b) Vis ved innsetting at radiallikning for R(r) kan skrivast som

$$\left[-\frac{\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} - \frac{m^2}{r^2} \right) \right] R(r) + V(r)R(r) = ER(r) . \tag{0.2}$$

c) I resten av oppgåva er $V(r) = \frac{1}{2}\mu\omega^2r^2$, det vil seie vi studerer ein isotrop todimensjonal oscillator. Vi skriv nå bølgjefunksjonen som R(r) = u(x) der $x = r\sqrt{\frac{\mu\omega}{\hbar}}$ er ein dimensjonslaus variabel. I tillegg skriv vi $u(x) = P(x)e^{-\frac{1}{2}x^2}$. Radiallikninga for P(x) kan da skrivast som

$$\[P''(x) + \left(\frac{1}{x} - 2x\right)P'(x) + \left(\epsilon - 2 - \frac{m^2}{x^2}\right)P(x)\] = 0, \qquad (0.3)$$

der $\epsilon = E/(\frac{1}{2}\hbar\omega)$. Dette treng du ikkje vise. Bruk likning (0.3) og potensrekkjemetoden til å finne spektret (energinivåa) til den isotrope todimensjonal oscillatoren.

d) Det finst ei løysing der P(x) er konstant. Vis at dette gjev m=0 og $\epsilon=2$. Den neste bølgjefunksjonen er $P(x) \sim x$. Finn ϵ og dei tilhøyrande verdiane for m i dette tilfellet.