Robust parameter estimation on gravitational wave signals from binary neutron star inspirals within minutes

Thibeau Wouters, Peter T.H. Pang, Tim Dietrich, Chris Van Den Broeck

email: t.r.i.wouters@uu.nl

email: arXiv:????.??????

April 8, 2024

Parameter estimation

• Parameter estimation (PE): get posterior of GW parameters θ

$$p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)}$$

 Problem: Markov Chain Monte Carlo (MCMC): computationally expensive for binary neutron stars (BNS)

Posterior

Thibeau Wouters Extreme matter/PE April 8, 2024

Methods

We extend Jim [1] to analyze BNS signals:

- JAX: automatic differentiation, GPU acceleration [2]
- Waveforms: TaylorF2 and IMRPhenomD_NRTidalv2 in RIPPLE [3]
- Relative binning: speed up likelihood evaluation [4, 5]
- MCMC sampler: FLOWMC [6]
 - Gradient-based sampler: "local sampler"
 - Normalizing flows (NF): "global sampler"

Validation – p-p plot

We demonstrate the robustness of JIM:

- ullet 100 GW events with HLV at design sensitivity and T=128 s,
- NRTv2: reference waveform relative binning without taper,
- Priors: Table 1.

Results - GW170817 & GW190425

- Compare with PBILBY
- Cornerplots:Figure 1, 2, 3, 4
- Jensen-Shannon divergences:
 Table 2
- GW170817, TaylorF2:

Results - Runtime

- Real events: includes (i) runtime to compute reference parameters for relative binning, (ii) training NF, (iii) sampling
- Injections: median runtime
- 1 GPU (A100) vs 480 cores (Intel Skylake Xeon Platinum 8174)

Event	WF	Jim (1 GPU)	PBILBY (480 cores)
GW170817	TF2	$(9.70 + 17.00) \mathrm{min}$	9.64 h
	NRTv2	$(5.69 + 28.02) \ min$	10.99 h
GW190425	TF2	$(5.13 + 16.49) \ min$	4.08 h
	NRTv2	$(6.15 + 15.37) \; {\sf min}$	4.69 h
Injection	TF2	24.76 min	-
	NRTv2	18.02 min	

Discussion – environmental impact

 Jim is 100× more environmentally friendly than PBILBY

Energy consumption for all 204 runs

Power of GPU: 400W, power of CPU: 240W

Average NL household: 2 810 kWh/year

	kWh	CO_2 [10 3 kg]	Trees [†]
Jim	33.78	0.01	0.55
PBILBY	3598.53	1.18	59.02

 $^{^\}dagger$ Number of trees needed to capture the emitted CO_2 in a year.

Conclusion

 Jim : a fast and environmentally friendly PE pipeline for GW signals

- Enhance MCMC with
 - JAX,
 - relative binning,
 - gradient-based samplers, and
 - normalizing flows
- Analyze BNS in 15 30 minutes of sampling time
- ullet 100× more environmentally friendly than PBILBY
- Science cases:
 - low-latency alerts,
 - large-scale population studies, and future generation GW detectors

References

- [1] Kaze WK Wong, Maximiliano Isi, and Thomas DP Edwards. "Fast gravitational wave parameter estimation without compromises". In: arXiv preprint arXiv:2302.05333 (2023). Available at: https://github.com/kazewong/jim.
- [2] Roy Frostig, Matthew James Johnson, and Chris Leary. "Compiling machine learning programs via high-level tracing". In: Systems for Machine Learning 4.9 (2018). Available at: https://github.com/google/jax.
- [3] Thomas DP Edwards et al. "RIPPLE: Differentiable and Hardware-Accelerated Waveforms for Gravitational Wave Data Analysis". In: arXiv preprint arXiv:2302.05329 (2023). Available at: https://github.com/tedwards2412/ripple/.
- [4] Kruthi Krishna et al. "Accelerated parameter estimation in Bilby with relative binning". In: (Dec. 2023). arXiv: 2312.06009 [gr-qc].
- [5] Barak Zackay, Liang Dai, and Tejaswi Venumadhav. "Relative Binning and Fast Likelihood Evaluation for Gravitational Wave Parameter Estimation". In: (June 2018). arXiv: 1806.08792 [astro-ph.IM].
- [6] Kaze WK Wong, Marylou Gabrié, and Daniel Foreman-Mackey. "FLOWMC: Normalizing-flow enhanced sampling package for probabilistic inference in Jax". In: arXiv preprint arXiv:2211.06397 (2022). Available at: https://github.com/kazewong/flowMC.
- [7] Patrick Kidger and Cristian Garcia. EQUINOX: neural networks in JAX via callable PyTrees and filtered transformations. Available at: https://github.com/patrick-kidger/equinox. 2021. arXiv: 2111.00254 [cs.LG].

APPENDIX

Normalizing flow

Normalizing flows details:

- Rational-quadratic neural spline flows
- 10 layers, 8 bins
- 128 neurons in hidden layers
- Adam optimizer, learning rate decayed (polynomial schedule)
- Deep learning library: EQUINOX [7]

Validation – Mismatch waveforms

Cross-check against $LAL_{\rm SUITE}$: mismatch histogram based on 10 000 waveforms, from uniform samples with following ranges:

Parameter	Range
Component masses	$[0.5M_{\odot}, 3M_{\odot}]$
Component aligned spins	[-0.05, 0.05]
Dimensionless tidal deformabilities	[0, 5000]
Inclination angle	$[0,\pi]$

Thibeau Wouters Extreme matter/PE April 8, 2024

Table 1: Prior ranges used in our analyses. All priors are uniform priors with the specified range.

Parameter	Injection	GW170817	GW190425
$\overline{\mathcal{M}\left[M_{\odot} ight]}$	[0.88, 2.61]	[1.18, 1.21]	[1.485, 1.490]
q	[0.5, 1]	[0.125, 1]	[0.125, 1]
χ_i	[-0.05, 0.05]	[-0.05, 0.05]	[-0.05, 0.05]
Λ_i	[0,5000]	[0,5000]	[0, 5000]
$d_L \; [{ m Mpc}]$	[30, 300]	[1, 75]	[1,500]
t_c [s]	[-0.1, 0.1]	[-0.1, 0.1]	[-0.1, 0.1]
ϕ_{c}	$[0,2\pi]$	$[0, 2\pi]$	$[0, 2\pi]$
$\cos\iota$	[-1,1]	[-1,1]	[-1,1]
ψ	$[0,\pi]$	$[0,\pi]$	$[0,\pi]$
α	$[0,2\pi]$	$[0,2\pi]$	$[0,2\pi]$
$\sin\delta$	[-1,1]	[-1,1]	[-1,1]

GW170817 & GW190425: Jensen-Shannon divergences

Table 2: Jensen-Shannon divergences (in bits) between the marginal posterior obtained for GW170817 and GW190425 using TaylorF2 and IMRPhenomD_NRTidalv2 with JIM and PBILBY, with the highest value of each comparison in bold. The divergences are bound between [0,1].

	GW170817		GW190425	
Parameter	TF2	NRTv2	TF2	NRTv2
$\overline{\mathcal{M}}$	0.001725	0.000516	0.003557	0.002461
q	0.005212	0.007894	0.004837	0.002960
χ_1	0.005633	0.004301	0.002794	0.004825
χ_2	0.003030	0.002671	0.002416	0.003041
Λ_1	0.001062	0.002208	0.008556	0.000783
Λ_2	0.000559	0.002186	0.005808	0.003576
d_L	0.001544	0.01847	0.001273	0.002878
ϕ_c	0.003500	0.010714	0.003338	0.006126
$\cos\iota$	0.001615	0.012851	0.006400	0.005279
ψ	0.004048	0.011036	0.001516	0.003730
α	0.014008	0.001258	0.009822	0.012291
$\sin\delta$	0.009570	0.001761	0.008934	0.009228

GW170817 with TaylorF2

Figure 1

Thibeau Wouters Extreme matter/PE April 8, 2024

GW170817 with IMRPhenomD_NRTidalv2

Figure 2

Thibeau Wouters Extreme matter/PE April 8, 2024

GW190425 with TaylorF2

Figure 3

GW190425 with IMRPhenomD_NRTidalv2

Figure 4