EMA749 – Topologia Geral Prof. Hudson Lima

Lista 1

- Resolva todos os exercícios do Capítulo 2 do Livro do Lee.
- Resolva os exercícios abaixo.
- 1. Prove que o cilindro $C=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2=1\}$ é homeomorfo a esfera \mathbb{S}^2 menos dois pontos.
- 2. Qual é a decomposição $X=int(A)\cup\partial A\cup Ext(A)$ para $X=\mathbb{R}^2$ e $A=([0,1]^2\cap\mathbb{Q}^2)\cup\{(2019,2019)\}?$
- 3. Seja X um conjunto não-vazio e defina

$$d(x,y) = \begin{cases} 0 & \text{, se } x = y \\ 1 & \text{, se } x \neq y \end{cases}.$$

Prove que (X,d) é um espaço métrico e conclua que a topologia discreta é metriz'avel.

- 4. Prove que [0,1] e \mathbb{S}^1 não são homeomorfos.
- 5. Dados $a \in \mathbb{Z}$ e $b \in \mathbb{Z}_{>0}$, seja $N_{a,b} = \{a+nb : n \in \mathbb{Z}\}$ (conjunto das PA's infinitas dos dois lados começando em a e com razão b). É verdade que $\mathcal{B} = \{N_{a,b} : a \in \mathbb{Z}, b \in \mathbb{Z}_{>0}\}$ é uma base em \mathbb{Z} ?
- 6. Sejam X e Y espaços topológicos, seja $\{A_j: j \in J\}$ uma coleção de subespaços de X tal que $X = \bigcup_{j \in J} A_j$. Suponha que $f_j \colon A_j \to Y$ sejam aplicações contínuas $(A_j \text{ com a topologia subsespaço})$ tais que $f_i|_{A_i \cap A_j} = f_j|_{A_j \cap A_i}$ para todo $i, j \in J$. Considere a aplicação $f \colon X \to Y$ definida impondo $f|_{A_j} = f_j$ (observe que está bem definida). Verifique que f é contínua em cada um dos seguintes casos:
 - (a) Todos os A_i são abertos.
 - (b) Todos os A_i são fechados e J é finito.

7. Sejam (X, τ) e (Y, μ) espaços topológicos. Prove que o seguinte é uma base em $X \times Y$:

$$\mathcal{B} = \{ A \times B : A \in \tau, \ B \in \mu \}.$$

A topologia induzida por esta base é a chamada topologia produto em $X \times Y$. Imagine como podemos re-obter a topologia canônica em \mathbb{R}^2 identificando \mathbb{R}^2 com $\mathbb{R} \times \mathbb{R}$ e como um disco aberto não é um elemento da base neste caso.

- 8. Prove que um espaço topológico X é Hausdorff se, e somente se, $\Delta_X = \{(x,x) \in X \times X : x \in X\}$ é fechado na topologia produto de $X \times X$.
- 9. Exiba uma base para a topologia da reta com duas origens (justificando que é base). Prove que a sequência $x_n = 1/n$ converge para as duas origens e portanto não há unicidade do limite.
- 10. Alguns exercícios da teoria:
 - (a) Dê exemplos de funções abertas que não são contínuas.
 - (b) Ser homeomorfo é uma relação de equivalência.
 - (c) A única topologia Hausdorff em um conjunto finito é a topologia discreta.