3.4. Система команд КР1816ВЕ48

3.4.1. Формат команд

Всі команди МК мають формат 1 чи 2 байта і виконуються за один чи два машинні цикли. Кожний цикл виконується за 5 тактів. Частота синхронізації тактів складає F/3, а циклів — F/15. Наприклад, при заданій частоті F=6 МГц тривалість тактів і циклів складає 0,5 і 2,5 мкс відповідно. За два машинні цикли виконуються всі команди з безпосереднім операндом, команди введення-виведення, команди передачі управління і роботи з підпрограмами, а також команди пересилок MOVX, MOVP, MOVP3. Решта команд виконуються за один машинний цикл. В МК передбачена можливість суміщення виконання однієї команди і вибірки наступної, що може зменшити час виконання команди. Мікроконтролер оперує з командами чотирьох типів (рис. 3.33).

Рис. 3.33. Типи команл МК48

3.4.2. Система команд

У МК48 використовуються чотири способи адресації:

- пряма,
- безпосередня,
- непряма,
- неявна.

До переваг системи команд МК48 можна віднести: ефективний ввід/вивід, включаючи маскування і можливість управління окремими бітами портів; реалізацію розгалуження за значенням окремих бітів; обробку як двійкових, так і десяткових двійковокодуючих чисел.

Під час виконання команд використовуються ознаки, що формуються в регістрі слова стану програми *RSW*, і ознаки користувача. Команди, в результаті виконання яких модифікуються ознаки, наведені в табл. 3.4. Функціональне призначення та способи формування ознак описані в розділі 3.2.2.

тиолица 5.7. Формуванна ознак результату					
Мнемоніка	Ознаки	Мнемоніка Ознаки			
ADD	C AC	JTF	TF = 0		
CLR C	C = 0	MOV PSW, A	C AC FO BS		
CPL C	C	RETR	C AC FO BS		
CLR F0	F0 = 0	RLC A	C		
CLR F1	F1 = 0	RRC A	C		
CPL F0	F0	SEL MB0; SEL MB1	DBF		
CPL F1	<i>F</i> 1	SEL RB0; SEL RB1	BS		
DA A	C AC				

Таблиця 3.4. Формування ознак результату

Для опису команд використовуються мнемокоди мови асемблера МК48. Під час запису символічного коду команд застосовуються наступні позначення:

A – акумулятор;

Т

r – номер регістру,

Rr - perictp 3 homepom r;

b - номер біту,

р - номер порту вводу/виводу,

Pp — порт з номером p

а - адреса,

d безпосередній операнд.

#d – безпосередній операнд (восьмирозрядне двійкове число);

@Rr — операнд, що адресується непрямо через Rr.

@A

#Rr

В стовбці «Коментарі» наведений опис операцій, що виконуються під час виконання команди. Для запису операцій використовуються мова мікрооперацій із застосуванням, символічних імен і скорочень. Номери розрядів регістрів подаються у квадратних дужках []. Операнд за непрямої адресації подається у дужках (). Наприклад, запис A := (Rr) означає, що в акумуляторі A

фіксується число, що зчитане з внутрішньої пам'яті даних за адресою, записаною в регістрі Rr. Для запису операндів часто використовуються складені слова, що записані у вигляді двох слів, розділених крапкою. Наприклад, запис PC[11..8]. A подає дванадцятирозрядне двійкове слово, вісім молодших розрядів якого ϵ вмістом акумулятора A, а чотири старші розряди — вмістом бітів (11..8) лічильника команд PC.

Всю множину команд асемблеру МК48 можна розбити на чотири основні групи:

- команди пересилки даних,
- команди основної групи:
 - виконання арифметичних операцій;
 - виконання логічних операцій;
- команди передачі управління;
- команди управління режимами роботи.

Система команд наведена в табл. 3.5. Команди згруповані за функціональними ознаками.

Команди пересилки даних

На рис. 3.34 представлений граф, що ілюструє можливі операції пересилки даних в МК48 (табл. 3.5). Операнди розрізняються за місцем розташування і за способом адресації. В операціях пересилки приймають участь такі операнди: акумулятор, РЗП, RSW, таймер, порти вводе/виводу, безпосередній операнд, ЗПД, РПД, ПП.

Рис. 3.34. Граф обміну даними у МК48

Всі операції пересилки даних в МК48 виконуються з застосуванням акумулятора A.

Під час пересилки даних між A та регістрами загального призначення РЗП банків регістрів, використовується пряма адресація, коли адреса операнда вміщується в тілі команди. Номер регістра, вміст якого пересилається в акумулятор вказується в трьох молодших бітах коду операції (рис. 3.33).

Таблиця 3.5. Система команд мікроконтролера КМ1816ВЕ48

Мнемоніка	Код команди	Коментарі			
1	2	3			
	Основна група к	оманд та команди пересилки даних			
	<u>Команди звернення до акумулятора</u>				
CLR A	00100111	Встановлення вмісту акумулятора в нуль $A := 0$			
CPL A	00110011	Інвертування вмісту A; $A := NOT A$			
INC A	00010111	Інкремент вмісту A; $A := A + 1$			
DEC A	00000111	Декремент вмісту A; $A := A - 1$			
RR A	01110111	Циклічний зсув вмісту А вправо; $A[7] := A[0]$; $A[i] := A[i+1]$;			
		$i = \overline{6,0}$			
RL A	11100111	Циклічний зсув вмісту А вліво; $A[0] := A[7]$;			
		$A[i] := A[i+1] := A[i]; i = \overline{6,0}$			
RRC A	01100111	Циклічний зсув вмісту A з бітом переносу вправо; $A[7] := C$;			
		$C := A[0]; \ A[i] := A[i+1]; \ i = \overline{6,0}$			
RLC A	11110111	Циклічний зсув вмісту A з бітом переносу вліво; $A[0] := C$;			
		$C := A[1]; A[i+1] := A[i]; i = \overline{6,0}$			
SWAP A	01000111	Обмін тетрадами A ; $A[70] \leftrightarrow A[30]$			
DA A	01010111	Десяткова корекція вмісту A			

Продовження табл. 3.5

рооовження таол. 3.3				
1	2	3		
MOV A, Rr ; $r = (7-0)$	11111rrr	Пересилка вмісту регістру в A ; $A := Rr$		
MOV Rr, A ; $r = (7-0)$	10101rrr	Пересилка вмісту A в регістр; $Rr := A$		
XCH A, Rr ; $r = (7-0)$	00101rrr	Обмін вмісту A і регістру; $A \leftrightarrow Rr$		
ANL A, Rr ; $r = (7-0)$	01011rrr	Логічне I вмісту A і регістру; $A := A AND Rr$		
ORL A, Rr ; $r = (7-0)$	01001rrr	Логічне АБО вмісту A і регістру; $A := A OR Rr$		
XRL A, Rr ; $r = (7-0)$	11011rrr	Виключне АБО вмісту A і регістру; $A := A XOR Rr$		
ADD A, Rr ; $r = (7-0)$	01101rrr	Сума вмісту A і регістру; $A := A + Rr$		
ADDC A, Rr; $r = (7-0)$	01111rrr	Сума вмісту A , регістру і переносу C ; $A := A + Rr + C$		
DEC Rr ; $r = (7-0)$	11001rrr	Декремент вмісту регістру; $Rr := Rr - 1$		
INC Rr ; $r = (7-0)$	00011rrr	Інкремент вмісту регістру; $Rr := Rr + 1$		
	<u>Команди звернення до внутрішньої пам'яті даних</u>			
MOV A, QRr ; $r = 0,1$	1111000r	Пересилка із внутрішньої пам'яті даних в A ; $A := (Rr)$		
MOV @Rr, A ; $r = 0,1$	1010000r	Пересилка вмісту A до внутрішньої пам'яті даних; $(Rr) := A$		
XCH A, @Rr ; $r = 0,1$	0010000r	Обмін вмістом A і комірки внутрішньої пам'яті даних; $A \leftrightarrow Rr$		
XCHD A, @Rr; $r = 0,1$	0011000r	Обмін молодшими тетрадами A і комірки внутрішньої пам'яті даних; $A[30] \leftrightarrow (Rr[30])$		
ANL A, @Rr ; $r = 0, 1$	0101000r	Логічне I вмісту A і комірки внутрішньої пам'яті даних; $A := A \ AND \ (Rr)$		

Продовження	табл	3.5
110000000000000000000000000000000000000	тиол.	J.J

1	2	3	
ORL A, @Rr ; $r = 0, 1$	0100000r	Логічне АБО вмісту A і комірки резидентної пам'яті даних; $A \coloneqq A OR (Rr)$	
XRL A, @Rr ; $r = 0, 1$	1101000r	Виключення АБО вмісту A і комірки резидентної пам'яті даних; $A := A XOR (Rr)$	
ADD A, QRr ; $r = 0, 1$	0110000r	Сума вмісту A і комірки резидентної пам'яті даних; $A := A + (Rr)$	
ADDC A, @Rr; $r = 0,1$	0111000r	Сума вмісту A , комірки резидентної пам'яті даних і переносу C ; $A := A + (Rr) + C$	
INC @Rr ; $r = 0,1$	0001000r	Інкремент комірки резидентної пам'яті даних; $(Rr) := (Rr) + 1$	
Команди роботи з зовнішньою пам'яттю даних			
MOVX A, @Rr; $r = 0,1$	1000000r	Пересилка із ЗПД в A ; $A := (Rr)$	
MOVX @Rr,A; $r=0,1$	1001000r	Пересилка вмісту A до ЗПД; $(Rr) := A$	
<u>Команди звернення до пам'яті програми</u>			
MOV Rr, #d ; $r = (7-0)$	10111rrr	Пересилка безпосереднього операнда до регістру; $(Rr) := d$	
	dddddddd		
MOV A,#d	00100011	Пересилка безпосередньої адреси до A	
	dddddddd	A := d	
MOV @Rr,#d; $r = 0,1$	1011000r	Пересилка безпосереднього операнда до внутрішньої пам'яті	
	dddddddd	даних $(Rr) := d$	

днокристальні мікроконтролери сімейства КР1816ВЕ48

Продовження	табл	3 5	
прообысення	тиол.	ر. ر	,

1	2	3
ANL A,#d	01010011	Логічне I вмісту A з безпосереднім операндом; $A := A \ AND \ d$
	dddddddd	
ORL A,#d	01000011 Логічне АБО вмісту А з безпосереднім операндом;	
	dddddddd	$A := A \ OR \ d$
XRL A,#d	11010011	Виключне АБО вмісту А з безпосереднім операндом;
	dddddddd	$A := A \ XOR d$
ADD A,#d	00000011	Сума вмісту A та безпосереднього операнду; $A := A + d$
	dddddddd	
ADDC A,#d	00010011	Сума вмісту A , безпосереднього операнду та переносу C ;
	dddddddd	A := A + d + C
MOVP A, @A	10100011	Пересилка даних із поточної сторінки пам'яті програм до A ;
		$A := (PC[1 \ 18].A)$
MOVP3 A, @A	11100011	Пересилка даних із сторінки 3 пам'яті програм до A ;
		A := (0011.A)
	Команди	и звернення до регістру PSW
MOV PSW, A	11010111	Пересилка вмісту A до регістру PSW ; $PSW := A$
MOV A, PSW	11000111	Пересилка вмісту регістру PSW до A ; $A := PSW$
MOV A, T	01000010	Пересилка вмісту $TCNT$ в A ; $A := TCNT$
MOV T, A	01100010	Пересилка вмісту A в $TCNT$; $TCNT := A$
	Кома	анди встановлення ознак
CLR C	10010111	Встановлення в нуль ознаки C ; $C := 0$

Продовження та	бл.	3.:	5
----------------	-----	-----	---

11рооовження таол. 3.3 1	2	3
CPL C	10100111	Інвертування ознаки C ; $C := NOT C$
CLR F0	10000101	Встановлення в нуль ознаки $F0$; $F0 := 0$
CLR F1	10100101	Встановлення в нуль ознаки $F1$; $F1 := 0$
CPL F0	10010101	Інвертування ознаки $F0$; $F0 := NOT F0$
CPL F1	10110101	Інвертування ознаки $F1$; $F1 := NOT F1$
	<u>Команди</u>	звернення до портів Р1 і Р2
ANL Pp, #d ; $p = 1, 2$	100110pp	Логічне I порту $P1(P2)$ з безпосереднім операндом;
	dddddddd	$Pp := Pp \ AND \ d$
ORL Pp, #d ; $p = 1, 2$	100010pp	Логічне АБО порту $P1(P2)$ з безпосереднім операндом;
	dddddddd	Pp := Pp OR d
IN A, Pp	000010pp	Введення даних із порту $P1(P2)$ в A ; $A := Pp$
OUTL Pp, A	001110pp	Виведення вмісту A в порт $P1(P2)$ $Pp := A$
	рнення до портів P4, P5, P6, P7	
ANLD Pp, A ; $p = (7-4)$	100111pp	Логічне I порту $P4(P5, P6, P7)$ з $A; Pp := Pp AND A[30]$
ORLD Pp, A ; $p = (7-4)$	100011pp	Логічне АБО порту <i>P</i> 4 (<i>P</i> 5, <i>P</i> 6, <i>P</i> 7) з <i>A</i> ;
		Pp := Pp OR A[30]
MOVD A, Pp ; $p = (7-4)$	000011pp	Ввід із порту $P4(P5, P6, P7)$ в $A; A[74] := 0; A[30] := Pp$
MOVD Pp, A ; $p = (7-4)$	001111pp	Вивід молодшої тетради із A в порт $P4(P5, P6, P7)$;
		Pp := A[30]

39 Днокристальні мікроконтролери сімейства КР1816ВЕ48

Продовження табл. 3.5		
1	2	3
	<u>Коман</u>	<u>ди звернення до порту BUS</u>
ANL BUS, #d	10011000	Логічне I порту <i>BUS</i> з безпосереднім операндом;
	dddddddd	$BUS := BUS \ AND \ d$
ORL BUS, #d	10001000	Логічне АБО порту <i>BUS</i> з безпосереднім операндом;
	dddddddd	$BUS := BUS \ OR \ d$
INS A, BUS	00001000	Введення даних із порту BUS в A ; $A := BUS$
OUTL BUS, A	00000010	Виведення вмісту A в порт BUS ; $BUS := A$
	Кома	нди передачі управління
JMP a	aaa00100	Безумовний перехід
	aaaaaaaa	PC[100] := a[100]; PC[11] := MB
JMPP @A	10110011	Безумовний перехід в межах поточній сторінці;
		PC[70] := (A)
JC a	11110110	Перехід, якщо $C = 1$ $PC[7-0] := a$ інакше $PC := PC + 2$
	aaaaaaaa	
JNC a	11100110	Перехід, якщо $C = 0$
	aaaaaaaa	
DJNZ Rr,a	11101rrr	Декремент вмісту регістру і перехід, якщо вміст регістру не
	aaaaaaaa	дорівнює нулю
JZ a	11000110	Перехід, якщо вміст А дорівнює нулю
	aaaaaaaa	
JNZ a	10010110	Перехід, якщо вміст А не дорівнює нулю
	aaaaaaaa	

Продовження табл. 3.5

1	2	3
JFO a	10110110	Перехід, якщо $F0=1$
	aaaaaaaa	
JF1 a	01110110	Перехід, якщо $F1=1$
	aaaaaaaa	
JTO a	00110110	Перехід, якщо $T0=1$
	aaaaaaaa	
JNTO a	00100110	Перехід, якщо $T0=0$
	aaaaaaaa	
JT1 a	01010110	Перехід, якщо $T1 = 1$
	aaaaaaaa	
JNT1 a	01000110	Перехід, якщо $T1 = 0$
	aaaaaaaa	
JTF a	00010110	Перехід, якщо $TF = 1$
	aaaaaaaa	
JNI a	10000110	Перехід, якщо $INT = 0$
	aaaaaaaa	
JBb a	bbb10010	Перехід, якщо розряд <i>Bb</i> акумулятора встановлений в
	aaaaaaaa	одиницю
CALL a	aaa10100	Виклик підпрограми; $SP := SP + 1$; $(SP) := PSW[74]$;
	aaaaaaaa	
		PC[11] := MB; $PC[100] := a[100]$
RET	10000011	Повернення із підпрограми;
		SP := SP - 1; PC := (SP[110])
		,

39Фднокристальні мікроконтролери сімейства КР1816ВЕ48

Продовження табл. 3.5

1	2	3		
RETR	10010011	Повернення із підпрограми з встановленням стану;		
		SP = SP-1; $PC = SP[110]$; $PSW[74] = (SP[1512])$		
Команди управління режимами роботи				
ENTO CLK	01110101	Дозвіл видачі імпульсів синхрон. на ТО		
SEL MBO	11100101	Вибір нульового банку пам'яті програм; МВ := 0		
SEL MB1	11110101	Вибір першого банку пам'яті програм; МВ := 1		
SEL RBO	11000101	Вибір нульового банку регістрів пам'яті даних; RB:=0		
SEL RB1	11010101	Вибір першого банку регістрів пам'яті даних; RB:=1		
NOP	0000000	Немає операції		
EN I	00000101	Дозвіл зовнішніх переривань		
DIS I	00010101	Заборона зовнішніх переривань		
EN TCNTI	00100101	Дозвіл переривань від таймера/лічильника		
DIS TCNTI	00110101	Заборона переривань від таймера/лічильника		
STRT T	01010101	Запускання таймера/лічильника в режимі таймера		
STRT CNT	01000101	Запускання таймера/лічильника в режимі лічильника		
STOP TCNT	01100101	Зупинка таймера/лічильника		

Обмін даними між A та комірками РПД або ЗПД здійснюється з використанням непрямої адресації. При цьому, покажчики адреси розміщуються в регістрах R0 або R1 вибраного банку регістрів.

За неявної адресації у коді команди неявно (за замовчуванням) указується один з операндів. Найчастіше таким операндом ε акумулятор. За безпосередньої адресації у тілі команди в якості другого байту вказується безпосередній операнд (константа), який пересилається за місцем призначення, визначеним першим операндом.

До пам'яті програм здійснюється доступ лише у напряму читання даних.

Всі команди, окрім MOV PSW, А, не впливають на встановлення ознак.

Більшість команд виконує пересилку восьмибітних даних. Декілька команд оперують з чотирибітними операндами (тетрадами) і застосовуються для звернення до чотирибітних портів вводу/виводу P4, P5, P6, P7.

В МК48 передача даннях відбувається двох режимах: пересилки (завантаження) и обміну. Під час пересилки дані передаються від джерела до приймача, при цьому джерело даних не змінює свого вмісту. Обмін припускає одночасну передачу даних в обох напрямах при цьому змінюються значення обох операндів, що приймають участь в обміні.

Команди пересилки даних всередині МК48 виконуються за один машинний цикл, а обмін даними з ЗПД потребує двох машинних циклів.

Приклади команд:

```
; (A) := Rr, r = (7-0); пряма адресація.
VOM
        A, Rr
                  ; A := d; безпосередня адресація.
VOM
        A,#d
        A,#05
                  : A = 05; безпосередня адресація.
MOV
VOM
       Rr,#d
                  ; (Rr) := d, r = (7-0).
       A, PSW
                  (A) := PSW.
VOM
                  ; (A) := T.
VOM
       A,T
                  ; (A) := ((Rr)), r = 0,1; непряма адресація.
       A, @RO
MOV
                  (A) \leftrightarrow (Rr), r = (7-0).
XCH
        A,Rr
                  (A) \leftrightarrow (Rr), r = (7-0).
XCH
        A,#Rr
```

3.5.4. Розробка підпрограм виконання складних арифметичних операцій

Приклад 3.15: Розробити програму множення цілих восьмирозрядних чисел $Z = X \times Y$, де (X,Y) < 1. Множення реалізувати першим способом. У вихідному стані операнди подані в прямому коді.

Множення першим способом відбувається молодшими розрядами множника зі зсувом суми часткових добутків в сторону молодших розрядів за нерухомим множеним.

Операційна схема множення першим способом та алгоритм зображені на рис. 3.36 та рис.3.37. Цифрова діаграма стану регістрів зображена на рис. 3.38.

Рис. 3.36. Операційна схема множення чисел першим способом

Рис. 3.37. Алгоритм виконання операції множення

	$R4$ $\begin{bmatrix} 0 & \dots & n \end{bmatrix}$		$ \begin{array}{ccc} $		$\begin{bmatrix} R1(Y) \\ [0 \dots n] \end{bmatrix}$		R3(Лічильник)
	0	0000	0	1011	0	1111	101
1	0	0000			0	1111	
	$\frac{0}{0}$	<u>1111</u>					
	0	1111					
	0	0111	1	0101			100
2	0	0111			0	1111	
	<u>0</u> 1	<u>1111</u>					
	1	0110					
	0	1011	0	1010			011
3					0	1111	
	0	0101	1	0101			010
4	0	0101			0	1111	
	<u>0</u> 1	1111					
	I	0100					
	0	1010	0	1010			001
5					0	1111	
	0	0101	0	0101			000

Рис.3.38. Цифрова діаграма виконання операції множення

```
; У вихідному стані операнд знаходиться в регістрі R1 та R2.
```

; збережені в регістрі *R*4, молодші – в регістрі *R*2.

; *R*3 – лічильник циклів.

; Визначення знаку результату і подання операндів в ПК

CLR C ; обнуління ознаки C CLR F1 ; обнуління ознаки F1 XCH A, R1 ; обмін A та R1 XRL A, R2 ; ВИКЛЮЧНЕ АБО вмісту A та R2

JB7 111 ; визначення знаку результату

JMP 112

Ll1: CPL F1 ; встановлення ознаки F1

L12: MOV A, R2 ; A:=R2

ANL A, #7Fh ; встановлення знакового розряду R2 в

; нуль

MOV R2, A ; R2:=AMOV A, R1 ; A:=R1

[;] Після виконання операції множення старші розряди добутку

```
ANL
             A, #7Fh
                        ; встановлення знакового розряду R1 в
                        ; нуль
      VOM
             R1,A
                        :R1:=A
; зсув множника вправо
L14:
       VOM
              A,R2
                       : A := R2
       CLRC
       RRC A
                       ; зсув
       MOV R2,A
JNC L13
                       R2:=A
                       ; аналіз цифри множника, перехід якщо
                        A[0]=0
; додавання множника до суми часткових добутків
       MOV A,R4
       ADD A,R1
                        : A := R4 + R1
       MOV R4, A
                        R4 := A
; зсув суми часткових добутків
T<sub>1</sub>13:
       CLR
             C
                        : C = 0
       MOV A,R4
                        A := R4
       RRC A
                        ; зсув вправо, C := A[0]
                        ; R4:=A
              R4,A
       MOV
; перевірка вмісту лічильника циклів, та
; повернення на початок циклу, якщо R3 \neq 0
       DJNZ
              R3,114
                         ; аналіз лічильника циклів
; перевірка знаку результату, якщо F1 = 1 встановлення
; в одиницю старшого розряду регістру результату
                                      ; аналіз знаку результату
       JF1
             L15
             Ll6
       JMP
       MOV A,R4
L15:
                                      A:=R4
       ORL A, #80h
                                      ;R4[7]:=1
       MOV R4,A
                                      ;R4:=A
L16: NOP
       END.
```

Приклад 3.21: Розробити для МК48 програму обчислення квадратного кореня $A = \sqrt{B}$, де $0 \le B < 1$.

Найбільш простий алгоритм обчислення квадратного кореня з n-pозpяdно \ddot{i} мантиси числа зводиться до підбору цифр результату розряд за розрядом, починаючи із старшого 2^{-1} розряду. При цьому

обчислення i-ї цифри результату X відбувається таким чином. Після отримання чергової (i-1)-ї цифри в i- \check{u} розряд A розміщується одиниця. Обчислюється різниця $(B-A_i^2)=R_i$. Якщо, $R_i\geq 0$ то і A_i є число, де цифри всіх розрядів співпадають з цифрами результату A. Якщо, $R_i<0$ то в і-му розряді необхідно поставити нуль і переходити до обчислення (i+1) -го розряду. Оскільки в цьому випадку обчислення знову починається з підстановки пробної одиниці, то замість заміни одиниці на нуль в i-му розряді віднімається одиниця з (i+1) -го.

Виконання обчислення з точністю до шостого розряду приведене на діаграмі (рис. 3.42, a). Для досягнення регулярності обчислень у разі отримання додатної різниці операцію віднімання доцільно замінити підсумуванням зворотного коду наступного результату з дописаними цифрами 11, при цьому отримаємо підсумовування в доповнювально коді, наприклад, діаграма (рис. 3.42, δ).

Для виконання обчислень в МК48 застосовуються восьмирозрядні регістри, тому корінь з восьмирозрядної мантиси можливо обчислити тільки з точністю до чотирьох розрядів після коми.

Операційна схема пристрою для обчислення кавадраткого кореня зображена на рис. 3.43, цифрова діаграма та алгоритм обчислення на рис. 3.44, та 3.45 відповідно.

00 10010001	0 00 10010001
- 00 01	+ 11 11
0001010001	1 00 01010001
0010100010 зсув	00 10100010 scyr
_ 00 101	+ 11 011
000000010	1 00 00000010
000000100 всув	00 00000100 scyr
_ 00 1101	+ 11 0011
1100110100	0 11 00110110
	10 01101100 scyr
_	+ 00 11011
	0 11 01000100
	10 10001000 зсув
+ 00 110011	+ 00 110011
	- 00 01 00 01010001 00 10100010 эсув - 00 101 00 00000010 00 00000100 эсув - 00 1101 11 00110100 10 0110110 11 01000000 10 10000000 эсув

0
$$11 | 01001100$$
 0 $11 | 01010100$ 10 10011000 3CyB $+ 00 | 1100011$ $+ 00 | 1100011$ 0 $11 | 01011110$ 0 $11 | 01011110$ $A = \sqrt{B} = 0,110000$ $A = \sqrt{B} = 0,110000$ δ

Рис. 3.42. Діаграма обчислення квадратного кореня: a – у прямому коді; δ – у доповнювальному коді.

Рис. 3.43. Операційна схема обчислення квадратного кореня

NC-	$\leftarrow RA$	$\leftarrow RB$			CT	M	
№	[1 n]	[1 n]	n+1 $n+2$	[1	n]	CT	Мікрооперації
ПС	000000	000000	00	100100	01	100	
1	000000	000000	10	010001	00		2(RGC := l[RGC].0, RGB := l[RGB].RGC(0))
		+111111	<u>11</u>				$RGB := RGB + \overline{RGA}.11$
		00000	01				
2	00000,1	000000	10	100010	00		RGC := l[RGC].0, $RGB := l[RGB].\underline{RGC}(0),$ $RGA := l[RGA].\overline{RGB}(0)$
		000001	01	000100	00		RGC := l[RGC].0, RGB := l[RGB].RGC(0)
		+111110	11				$RGB(0) = 0 \Rightarrow$ $RGB := RGB + \overline{RGA}.11$

200 днокристальні мікроконтролери сімейства КР1816ВЕ48

$\overline{}$		00000	^ ^		011	CT CT 1 CT 0
		00000	00		011	$CT := CT - 1$; $CT \neq 0$
3	0000,11	000000	00	00100000		RGC := l[RGC].0, $RGB := l[RGB].\underline{RGC(0)},$ RGA := l[RGA].RGB(0)
		000000	00	01000000		RGC := l[RGC].0, RGB := l[RGB].RGC(0)
		+111100	<u>11</u>			$RGB(0) = 0 \Rightarrow \underline{RGB} := RGB + \overline{RGA}.11$
		111100	11		010	$CT := CT - 1; CT \neq 0$
4	000,110	111001	10	10000000		RGC := l[RGC].0, RGB := l[RGB].RGC(0), RGA := l[RGA].RGB(0)
		110011	01	00000000		RGC := l[RGC].0, RGB := l[RGB].RGC(0)
		+000110	11			$RGB(0) = 1 \Rightarrow$ RGB := RGB + RGA.11
		111010	00		001	$CT := CT - 1; CT \neq 0$
5	00,1100	110100	00	00000000		RGC := l[RGC].0, RGB := l[RGB].RGC(0), RGA := l[RGA].RGB(0)
		101000	00	00000000		RGC := l[RGC].0, RGB := l[RGB].RGC(0)
		+001100	11			$RGB(0) = 1 \Rightarrow$ RGB := RGB + RGA.11
		<u>1</u> 10100	11		000	CT := CT - 1; $CT = 0$
	D 2 /	14 II-1				

Рис. 3.44. Цифрова діаграма обчислення квадратного кореня

Рис. 3.45. Алгоритм обчислення квадратного кореня

```
; обчислення кореня з восьмирозрядної мантіси числа
; з точністю до чотирьох знаків після коми
      INS
            A, BUS
      VOM
                            ; A – завантаження X
            R2,A
           R2,#10010001
      VOM
            В
           R1,#0h
                           ; B — для підсумовування
      VOM
     MOV R0,#0h
                           ; C — для
                            ; зберігання реультата
; завдання кількості повторень циклу CT:=4
      MOV R3, #4h
LL3: MOV
           A,R0
     MOV R4,A
                    ; R4:=A(R4:=A.11)
                      B[ZN]:=0
      VOM
            R5,#0h
; два зсуви вліво A, B
      CLR
           С
      MOV
           A, R2
      RLC A
      VOM
           R2,A
      MOV
           A,R1
           Α
      RLC
      VOM
           R1,A
            С
      CLR
      MOV A, R2
      RLC
           Α
           R2,A
      VOM
      VOM
           A,R1
      RLC
            Α
           R1,A
      VOM
      JB7 LL1
                      ; аналіз B[ZN]
           A,R4
      MOV
                      : R4 := !A
      CPL
           Α
     MOV
           R4,A
LL1:
           A,R4
     MOV
     RLC
           Α
      RLC
           Α
           A,#3h
      ORL
      MOV R4, A
                    : R4 := A.11
      ADD
           A, R1
```

```
VOM
            R1,A
            LL2
     JB7
            R5, #1h ; |B[ZN] := 1
     MOV
LL2:
     CLR
            C
     MOV
            A,R0
     RLC
            Α
                  A[N]:=B[ZN]
     ADD A, R5
           RO, A
     VOM
     DJNZ R3,LL3
                    ; перевірка циклу
     MOV
            A,R0
     OUTL
            BUS, A
     END
```

3.5.5. Розробка програм управління

Приклад 3.14: Розробити програму реалізації алгоритму управління, що заданий логічною схемою алгоритм (ЛСА).

Вихідні дані:

• Алгоритм управління:

$$H Y_5 X_1 \uparrow (Y_1 Y_2) X_2 \uparrow \downarrow (Y_3 Y_4) \downarrow^2 K$$

• Тривалість управляючих сигналів:

$$T(y_1) = T(y_2) \ge 240$$
мкс, $T(y_3) = T(y_4) \ge 30$ мкс, $T(y_5) = 450$ мкс

Алгоритм управління зображений на рис. 3.46.

Для вводу і виводу сигналів будемо використовувати порт P1, причому, розряди порту P1[6] та P1[7] в початковому стані налаштовані на ввід (P1[6,7]=1), а P1[5..0] — на вивід інформації. Відповідність виходів порту і сигналів вказано в табл. 3.6.

Таблиця 3.6. Відповідність виходів порту і сигналів

Розряд порту	P17	P16	P15	P14	P13	P12	P11	P10
Сигнал	<i>X</i> 1	Вхід	<i>Y</i> 1	<i>Y</i> 2	<i>Y</i> 3	<i>Y</i> 4	<i>Y</i> 5	Вихід

Для формування потрібної тривалості сигналів Y1 і Y2 будемо використовувати TCNT в режимі таймера. При F=6 $M\Gamma u$ для відліку проміжку часу, не меншого 240 мкс, необхідна зміна змістовного TCNT на 3. Для формування інтервалу часу, тривалістю 30 мкс

(керуючі сигнали Y3 та Y4), при вказаній частоті F потрібно виконати 12 командних циклів. Для формування затримки в 450 мкс (Y5), необхідно використовувати і таймер, і тривалість команди.

Рис. 3.46 Алгоритм управління

;Перед викона	нням пр	ограми порт Р1	знаходиться в стані 11111111.
	MOV	R5,#4H	; завантаження константи 4 в R5
	MOV	A, #FDH	; завантаження константи
			; (-3) _{ДК} в таймер
	MOV	T, A	_
	ORL	P1,#18H	; встановлення сигналів
			Y3 = Y4 = 1
Loop:	NOP		; відлік часового інтервалу
	ANL	P1,#C0h	;P1:=11000000
	MOV	R5,#10	; завантаження константи 10
			; в R5
	MOV	A, #FBh	;завантаження константи
			; (– 5) _{ДК} в таймер
	MOV	T, A	
	ORL	P1,#2	; встановлення сигналу $Y5 = 1$
	STRT	T	; запуск таймера
Label2:	JTF	Label1	; відлік часового інтервалу
	JMP	Label2	; з використанням таймеру
			; (400мкс)
Label1:	DJNZ	R5, label1	; відлік часового інтервалу

```
; 3 використанням R5(50 \text{мкс})
                                 ; зняття управляючого сигналу
            ANL
                    P1, #C0h
                    A, #FDh
            MOV
                                 : завантаження константи
                                 (-3)_{\text{ЛК}} в таймер
                    T,A
            VOM
                    R5,#4
            VOM
                                 ; завантаження константи 4 в R5
                    A,P1
            TN
                                 ;ввід та перевірка
                    Label3
            JB7
                   P1,#30h
            ORL
                                 ; встановлення сигналів
                                 : Y1 = Y2 = 1
                    Т
            STRT
                                 ; запуск таймера
Label4:
            JTF
                    Label5
                                 : відлік часових інтервалів
                                 ; з використанням таймеру
            JMP
                    Label4
                    P1,#C0h
                                 ; зняття керуючих сигналів
Label5:
            ANL
                                 : Y3 = Y4 = 1
Label3:
            NOP
                                 ; відлік часового інтервалу
            DJNZ
                    R5, label3 : 3 використанням R5
            ANL
                    P1, #C0h
                                 ; зняття управляючих сигналів
            END.
```

Приклад 3.18: Розробити структурну схему підключення до МК48 програмованого периферійного адаптера BB55. Розробити програму пересилки даних із порту *PB* в порти *PA* та *PC*. Адреси портів ППА належать загальному адресному простору зовнішньої пам'яті даних.

Вихідні дані:

• Адреси портів:

```
PA – ACh, PB – ADh, PC – AEh, Perictp УСРР – AFh.
```

Структурна схема підключення до МК48 однієї сторінки ЗПД та програмованого периферійного адаптера BB55 зображена на рис. 3.47. Для підключення ППА застосовується селектор адреси CA.

; Прийом байту із порту PB в порти PA та PC.

```
моч R0, #0AFh ; адресу Регістру УСРР завантажуємо у ; покажчик адреси
```

```
VOM
         A, #082h
                         ; ініціалізація ВВ55 (порти РА і РС
                         ; налаштовуються на вивід, а порт PB —
                         ; на ввід даних)
VOM
         @RO,A
VOM
         RO, #OADh
                         ; підготовка адреси порта PB
XVOM
         A, @R0
                         ; читання даних із порту PB
                         ; підготовка адреси порта РА
VOM
         R0,#0ACh
VOM
         @RO,A
                         ; запис даних в порт PA
VOM
         @R1,#0AEh
                        ; підготовка адреси порту PC
VOM
         @R1,A
                         ; запис даних в порт PC
END
```

Приклад 3.19: Розробити структурну схему підключення до МК48 ЗПД та програмованого зв'язувального адаптера BB51. Зовнішня пам'ять даних складається з чотирьох сторінок, для перемикання між якими застосовуються два молодших виводи порту *P*1. Адреси регістрівУСРР та УСК ПЗА належать першій сторінці ЗПД (адреса РД -00h; адреса РС(УС) -01h)

Розроблена структурна схема МПС зображена на рис. 3.48.

```
P1 = 11111111 встановлюється під час ініціалізації
                   P1, #0FDh; вибір номера сторінки
          ANL
                              ; "1" 11111101 для ВВ51
          ORL
                   P1,#01h
                              ; установка першого банку
          SEL
                   RB1
                              ; регістрів
                   R0,#00h
                               адреса регістра даних ПЗА
          VOM
                               завантажується в R0
                   R1,#01h
                               адреса Регістру УСРР (УСРР.
          VOM
                               VCI) ПЗА завантажується в R1
          VOM
                   A,#07Eh
                              ; ініціалізація ПЗА
                              ; (асинхронний режим).
                              ; передача байта в послідовний ;
          XVOM
                   @R1,A
                              канал з регістра R2
                              ; запис УСК (УСІ) в РС ПЗА
          MOV
                   A;#31h
          XVOM
                   @R1,A
          XVOM
                  A, @R1
WW1:
                              ; читання слова стану ПЗА
                              ; і перевірка готовності передавача
                   A,#01
          ANL
          JΖ
                   WW1
```

	MOV	A,R2	; запис даних в передавач ПЗА ; з <i>R</i> 2
	MOVX	@R0,A	; прийом байта з послідовного ;
			каналу в <i>R</i> 2
	MOV	A,#34h	; запис управляючого слова в ПЗА
	MOVX	@R1,A	•
WW2:	MOV	X,a,@R1	; читання <mark>слова стану</mark> з ПЗА
			; і перевірка готовності приймача
	ANL	a,#02h	
	JZ	WW2	
	MOVX	A, @R1	; читання <mark>стану слова</mark> в ПЗА
			; і перехід, якщо знайдена помилка
	ANL	A,#38h	7 1 70 , 7,
	JNZ	ERROR	
	MOVX	A, @R0	; читання байта даних та передача
			; B <i>R</i> 2
	MOV	R2,A	•
ERROR:	NOP		; обробка помилки
	END		, 1