# **Control y Sistemas**

# Trabajo práctico: Modelado de sistemas físicos

#### Método de modelado de las 3 fases

1) Encuentre el modelo en espacio de estados del siguiente circuito según el método de las 3 fases.



Implemente el sistema en **Simulink** para v(t) = 5 V, R = 100 Ohm y L = 500 mH.

2) Encuentre el modelo en espacio de estados del siguiente modelo físico según el método de las 3 fases.

Implemente el sistema en **Simulink** para diferentes valores de *c*, *F*(*t*) y *m*.



## Modelado en SimScape

**3)** Modele el siguiente sistema utilizando **Simscape**. Considere que el sistema arranca en equilibrio con x1 = x2 = 0 m y f = 0 N. Encuentre los valores de x1 y x2 para f(t) igual a 1) una señal escalón y 2) una señal senoidal. m1 = m2 = 50 kg, k1 = 104 N/m,  $k2 = 1.5 \times 104$  N/m.



**4)** Modele el siguiente sistema utilizando **Simscape**. Encuentre los valores de i1, i2 e i3. R = 1 kOhm, L1 = L2 = 8 mH, C = 2 uF, v1 = v2 = 12V



**5)** En la siguiente figura se observa un brazo robot de un enlace (link). La masa del robot es m y su centro de masa está ubicado a una distancia L desde la juntura, la que se acopla al torque de un motor Tm a través de engranajes. Como el brazo rota, el efector del peso del brazo genera un torque opuesto que depende del ángulo del brazo y que por tanto es no lineal. Desprecie los efectos de amortiguamiento en el sistema. El sistema está afectado por la gravedad g, la cual produce un torque igual a -m g L sin  $\theta$ .



Modele el siguiente sistema utilizando Simscape.

Los parámetros del motor son  $R = 0.5 \Omega$ , L = 0.002 H,  $K = 0.05 N \cdot m/A$ .

Los parámetros del brazo robot son I1 = 0.0851kg· m 2 , I2 = 0.37 kg· m 2 , gear ratio = 2, m = 4 kg, L = 0.25 m, and g = 9.81 m/s<sup>2</sup>.

Se debe excitar al sistema con la siguiente señal trapezoidal:



Ajuste la altura del pulso trapezoidal para que el motor entregue una velocidad angular de  $3\pi/4$  al final de 2s.

### Modelado en Simulink

**6)** Modele el siguiente sistema masa resorte en espacio de estados con m1 = m2 = 1, c1 = 2, c2 = 3, k1 = 1, y k2 = 4. Obtenga la respuesta al escalón en x2 para condiciones iniciales nulas.

Represente el modelo en Simulink.



### Función de transferencia

7) El modelo de la suspensión de un vehículo se muestra en la figura. En este modelo simplificado, las masas de la rueda, el neumático y el eje no se consideran. La masa m representa un cuarto de la masa del vehículo. La constante de resorte k modela la elasticidad tanto del neumático como del muelle de suspensión. La constante de amortiguación c modela el amortiguador. La posición de equilibrio de m es cuando y = 0 y

x = 0. El desplazamiento de la superficie de la carretera y(t) puede derivarse del perfil de la superficie de la carretera y la velocidad del automóvil. Encuentre la ecuación de movimiento de m con y(t) como entrada, y obtenga la **función de transferencia.** 



m = 250 kg, k = 22000 N/m y c = 2000 N·s/m.

### Modelo matemático

**8)** El modelo de suspensión que se muestra en la figura incluye la masa del conjunto rueda-neumático-eje. La masa *m1* es un cuarto de la masa de la carrocería del automóvil, y *m2* es la masa del eje rueda-neumático montaje.

La constante de resorte *k1* representa la elasticidad de la suspensión, y *k2* representa la elasticidad del neumático. Derive las **ecuaciones de movimiento** para *m1* y *m2* en términos de los desplazamientos del equilibrio, *x1* y *x2*.



m1 = 250 kg, m2 = 25 kg, k = 22000 N/m y c = 2000 N·s/m.