Image Classification on Caltech-256 Dataset

Springboard Data Science Capstone Project

Florian Sestak

Overview

- Approach
- Caltech256
- Models
- Problems
- Conclusion

Approach

- Analyse the dataset
- Train different models on a small part of the dataset
- Take the best performing model and train it on the whole dataset

Caltech256

- http://www.vision.caltech.edu/Image_Datasets/Caltech256/
- 257 Categories
- 30607 images
- 15423 different resolutions

Dataset	Released	Categories	Pictures	Pictures Per Category			
			Total	Min	Med	Mean	Max
Caltech-101	2003	102	9144	31	59	90	800
Caltech-256	2006	257	30608	80	100	119	827

Caltech256 - Samples

Caltech256 - Class distribution

RGB - Distribution of different classes

Models

- Trained on 10 classes
- Comparing the models
- Choose final model and train it on the whole data

Models

<u>Library</u>	<u>Model</u>	<u>Train - Accuracy</u>	Test - Accuracy
sklearn	K - Nearest	0.40	0.42
sklearn	SVM	0.19	0.16
Keras	CNN	0.64	0.51

CNN - Final Model

- VGG16 architecture (https://arxiv.org/pdf/1409.1556.pdf)
- Pre-trained weights (ImageNet)
- Replaced the last three fully connected layers
- Freezed the other layers
- Learning Rate, Decay and Momentum based on Paper
- Loading data in batches from directories

CNN - Final Model - Parameters

- Epochs 32
- Batch_size: 50
- Steps_per_epoch: training_samples / batch_size = 492
- Stochastic Gradient Descent
 - Learning rate: 0.01
 - o Decay: 0.0005
 - Momentum: 0.9
 - Nestrov

CNN - Final Model - Image Augmentation

- rotation_range=40,
- width_shift_range=0.2,
- height_shift_range=0.2,
- rescale=1./255,
- shear_range=0.2,
- zoom_range=0.2,
- horizontal_flip=True,
- fill_mode='nearest'

CNN - Final Model Result

al_acc								
0.660				_	-	-	~	•
0.620		1						
0.580		1						
0.540		1						
0.500								
0.460								
	0.	000	10	.00	20	.00	30	.00

Accuracy:	0.93
Validation Accuracy	0.68
Top 5 Validation Accuracy	0.87

CNN - Final Model - Compared with benchmark

http://www.vision.caltech.edu/Image_Datasets/Caltech256/performance/performance.png

Problems

Problems

Problems - Overfitting

Conclusion

- Beat Caltech256 benchmark
- Improvement with cleaner data
- More data augmentation
- Very easy with Keras
- Big training time improvement on GPU

Thank you