

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Modelos de Computación

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2024-2025

Índice general

1.	Rela	aciones de Problemas	5
	1.1.	Introducción a la Computación	5
		1.1.1. Cálculo de gramáticas	16
	1.2.	Autómatas Finitos	32
	1.3.	Propiedades de los Lenguajes Regulares	56

1. Relaciones de Problemas

1.1. Introducción a la Computación

Ejercicio 1.1.1. Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X, Y\}$$
$$T = \{a, b\}$$
$$S = S$$

1. Describe el lenguaje generado por la gramática teniendo en cuenta que P viene descrito por:

$$S \to XYX$$

$$X \to aX \mid bX \mid \varepsilon$$

$$Y \to bbb$$

Sea $L = \{ubbbv \mid u, v \in \{a, b\}^*\}$. Demostraremos mediante doble inclusión que $L = \mathcal{L}(G)$.

 \subset) Sea $w \in L$. Entonces, w = ubbbv con $u, v \in \{a, b\}^*$. Veamos que $S \stackrel{*}{\Longrightarrow} w$:

$$S \Longrightarrow XYX \Longrightarrow XbbbX$$

Además, es fácil ver que la regla de producción $X \to aX \mid bX \mid \varepsilon$ nos permite generar cualquier palabra $u \in \{a,b\}^*$. Por tanto, tenemos que $X \stackrel{*}{\Longrightarrow} u$ y $X \stackrel{*}{\Longrightarrow} v$; teniendo así que $S \stackrel{*}{\Longrightarrow} ubbbv$.

 \supset) Sea $w \in \mathcal{L}(G)$. Veamos la forma de w:

$$S \Longrightarrow XYX \Longrightarrow XbbbX \Longrightarrow ubbbv \mid u, v \in \{a, b\}^*$$

donde en el último paso hemos empleado lo visto en el apartado anterior de la regla de producción $X \to aX \mid bX \mid \varepsilon$. Por tanto, $w \in L$.

2. Describe el lenguaje generado por la gramática teniendo en cuenta que P viene descrito por:

$$S \to aX \\ X \to aX \mid bX \mid \varepsilon$$

Sea $L = \{au \mid u \in \{a, b\}^*\}$. Demostraremos mediante doble inclusión que $L = \mathcal{L}(G)$.

 \subset) Sea $w \in L$. Entonces, w = au con $u \in \{a, b\}^*$. Veamos que $S \stackrel{*}{\Longrightarrow} w$:

$$S \Longrightarrow aX \Longrightarrow au$$

donde en el último paso hemos empleado lo visto respecto a la regla de producción $X \to aX \mid bX \mid \varepsilon$. Por tanto, $w \in \mathcal{L}(G)$.

 \supset) Sea $w \in \mathcal{L}(G)$. Veamos la forma de w:

$$S \Longrightarrow aX \Longrightarrow au \mid u \in \{a,b\}^*$$

donde en el último paso hemos empleado lo visto respecto a la regla de producción $X \to aX \mid bX \mid \varepsilon$. Por tanto, $w \in L$.

3. Describe el lenguaje generado por la gramática teniendo en cuenta que P viene descrito por:

$$S \to XaXaX$$
$$X \to aX \mid bX \mid \varepsilon$$

Sea $L = \{uavawa \mid u, v, w \in \{a, b\}^*\}$. Demostraremos mediante doble inclusión que $L = \mathcal{L}(G)$.

C) Sea $z \in L$. Entonces, z = uavawa con $u, v, w \in \{a, b\}^*$. Veamos que $S \stackrel{*}{\Longrightarrow} z$:

$$S \Longrightarrow XaXaX \Longrightarrow uavawa$$

donde en el último paso hemos empleado lo visto respecto a la regla de producción $X \to aX \mid bX \mid \varepsilon$. Por tanto, $z \in \mathcal{L}(G)$.

 \supset) Sea $z \in \mathcal{L}(G)$. Veamos la forma de z:

$$S \Longrightarrow XaXaX \Longrightarrow uavawa \mid u, v, w \in \{a, b\}^*$$

donde en el último paso hemos empleado lo visto respecto a la regla de producción $X \to aX \mid bX \mid \varepsilon$. Por tanto, $z \in L$.

4. Describe el lenguaje generado por la gramática teniendo en cuenta que P viene descrito por:

$$S \to SS \mid XaXaX \mid \varepsilon$$
$$X \to bX \mid \varepsilon$$

Sea el lenguaje $L = \{b^i a b^j a b^k \mid i, j, k \in \mathbb{N} \cup \{0\}\}$. Demostraremos mediante doble inclusión que $L^* = \mathcal{L}(G)$.

C) Sea $z \in L^* = \bigcup_{i \in \mathbb{N}} L^i$. Sea n el menor número natural tal que $z \in L^n$. Notando por $n_a(z)$ al número de a's en z, tenemos que $n_a(z) = 2n$. Entonces, $z \in L \cdot \ldots \cdot L$ (n veces), por lo que existen $i_1, j_1, k_1, \ldots, i_n, j_n, k_n \in \mathbb{N} \cup \{0\}$ tales que $z = b^{i_1}ab^{j_1}ab^{k_1} \cdot \ldots \cdot b^{i_n}ab^{j_n}ab^{k_n}$. Veamos que $S \stackrel{*}{\Longrightarrow} z$:

- Para conseguir el número de a's deseado, empleamos la regla de producción $S \to SS$ y reemplazamos una de las S por XaXaX. Esto lo hacemos n veces.
- Posteriormente, cada X la sustituiremos tantas veces como sea necesario por bX para conseguir el número de b's deseado en cada posición, y finalizaremos con $X \to \varepsilon$.
- \supset) Sea $z \in \mathcal{L}(G)$, y sea $n_a(z)$ el número de a's en z. Entonces, como el número de a siempre aumenta de dos en dos, tenemos que $n_a(z) = 2n$ para algún $n \in \mathbb{N} \cup \{0\}$. Veamos la forma de z:
 - Para llegar a z, hemos tenido que emplear la regla de producción $S \to SS \to SXaXaX$ n veces. Una vez llegados aquí, para eliminar la S (ya que habremos llegado a $n_a(z)$ a's), empleamos la regla de producción $S \to \varepsilon$.
 - Posteriormente, para cada X, tan solo podemos emplear la regla de producción $X \to bX \mid \varepsilon$ para conseguir el número de b's deseado en cada posición.

Por tanto, es directo ver que $z \in L^n \subseteq L^*$.

Ejercicio 1.1.2. Sea la gramática G = (V, T, P, S). Determinar en cada caso el lenguaje generado por la gramática.

1. Tenga en cuenta que:

$$V = \{S, A\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \begin{cases} S \rightarrow abAS \mid a \\ abA \rightarrow baab \\ A \rightarrow b \end{cases}$$

Sea $L = \{ua \mid u \in \{abb, baab\}^*\}$. Demostraremos mediante doble inclusión que $L = \mathcal{L}(G)$.

- C) Sea $w \in L$. Entonces, w = ua con $u \in \{abb, baab\}^*$. Veamos que $S \stackrel{*}{\Longrightarrow} w$. Para ello, sabemos que $u \in \{abb, baab\}^* = \bigcup_{i \in \mathbb{N}} \{abb, baab\}^i$. Sea n el menor número natural tal que $u \in \{abb, baab\}^n$, es decir, es una concatenación de n subcadenas, cada una de las cuales es o bien abb o bien baab. Veamos que S produce ambas subcadenas:
 - Para producir abb, tenemos que $S \rightarrow abAS \rightarrow abbS$.
 - Para producir baab, tenemos que $S \rightarrow abAS \rightarrow baabS$.

Como vemos, en cada caso podemos concatenar la subcadena necesaria, pero siempre nos quedará una S al final. Usamos la regla de producción $S \to a$ para eliminarla, llegando así a w, por lo que $S \stackrel{*}{\Longrightarrow} w$ y $w \in \mathcal{L}(G)$.

 \supset) Sea $w \in \mathcal{L}(G)$. Veamos la forma de w, para lo cual hay dos opciones:

- $S \to a$: En este caso, habremos finalizado la palabra con a, por lo que habremos añadido la subcadena a a la palabra al final.
- $S \to abAS$: En este caso, también hay dos opciones:
 - $S \to abAS \to baabS$: En este caso, habremos concatenado baab con S, por lo que habremos añadido la subcadena baab a la palabra.
 - $S \to abAS \to abbS$: En este caso, habremos concatenado abb con S, por lo que habremos añadido la subcadena abb a la palabra.

Por tanto, w es de la forma ua con u una concatenación de abb's y baab's, es decir, $u \in \{abb, baab\}^*$. Por tanto, $w \in L$.

2. Tenga en cuenta que:

$$\begin{split} V &= \{\langle \text{n\'umero} \rangle, \langle \text{d\'igito} \rangle \} \\ T &= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \\ S &= \langle \text{n\'umero} \rangle \\ P &= \left\{ \begin{array}{l} \langle \text{n\'umero} \rangle &\rightarrow & \langle \text{n\'umero} \rangle \langle \text{d\'igito} \rangle \\ \langle \text{n\'umero} \rangle &\rightarrow & \langle \text{d\'igito} \rangle \\ \langle \text{d\'igito} \rangle &\rightarrow & 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \end{array} \right\} \end{split}$$

Tenemos que $\mathcal{L}(G)$ es el conjunto de los números naturales, permitiendo tantos ceros a la izquierda como se quiera. Es decir (usando la notación de potencia y concatenación vista para lenguajes):

$$L = \{0^i n \mid i \in \mathbb{N} \cup \{0\}, \ n \in \mathbb{N} \cup \{0\}\}\$$

Demostrémoslo mediante doble inclusión que $L = \mathcal{L}(G)$.

- C) Sea $w \in L$. Entonces, $w = 0^i n$ con $i \in \mathbb{N} \cup \{0\}$ y $n \in \mathbb{N} \cup \{0\}$. Veamos que $\langle \text{número} \rangle \stackrel{*}{\Longrightarrow} w$:
 - En primer lugar, aplicamos |w|-1 veces la regla de producción $\langle \text{número} \rangle \rightarrow \langle \text{número} \rangle \langle \text{dígito} \rangle$ y la regla que lleva de $\langle \text{dígito} \rangle$ a uno de los símbolos terminales, consiguiendo así en cada etapa reemplazar la última variable presente en la cadena por un dígito.
 - Finalmente, aplicamos la regla de producción ⟨número⟩ → ⟨dígito⟩ para reemplazar la última variable por un dígito, que será el primero del número formado.

Por tanto, $\langle \text{número} \rangle \stackrel{*}{\Longrightarrow} w$, teniendo que $w \in \mathcal{L}(G)$.

 \supset) Sea $w \in \mathcal{L}(G)$. Como la única regla que aumenta la longitud es la regla de producción $\langle \text{número} \rangle \rightarrow \langle \text{número} \rangle \langle \text{dígito} \rangle$, tenemos que w tiene la forma:

$$\begin{split} \langle \text{n\'umero} \rangle &\Longrightarrow \langle \text{n\'umero} \rangle \langle \text{d\'igito} \rangle \stackrel{|w|-1 \text{ veces}}{\Longrightarrow} \\ &\Longrightarrow \langle \text{n\'umero} \rangle \langle \text{d\'igito} \rangle \langle \text{d\'igito} \rangle \stackrel{|w|-1 \text{ veces}}{\cdots} \langle \text{d\'igito} \rangle \Longrightarrow \\ &\Longrightarrow \langle \text{d\'igito} \rangle \stackrel{|w| \text{ veces}}{\cdots} \langle \text{d\'igito} \rangle \end{split}$$

Por tanto, tenemos que se trata una sucesión de |w| dígitos, lo que nos lleva a que $w \in L$.

3. Tenga en cuenta que:

$$V = \{A, S\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \left\{ \begin{array}{ccc} S & \rightarrow & aS \mid aA \\ A & \rightarrow & bA \mid b \end{array} \right\}$$

Sea $L = \{a^n b^m \in \{a, b\}^* \mid n, m \in \mathbb{N}\}$. Demostraremos mediante doble inclusión que $L = \mathcal{L}(G)$.

- \subset) Sea $w \in L$. Entonces, $w = a^n b^m \text{ con } n, m \in \mathbb{N}$. Veamos que $S \stackrel{*}{\Longrightarrow} w$:
 - En primer lugar, aplicamos n-1 veces la regla de producción $S \to aS$ para obtener $a^{n-1}S$,

$$S \stackrel{*}{\Longrightarrow} a^{n-1}S$$

- Para cambiar a la etapa de añadir b's, aplicamos la regla de producción $S \to aA$, obteniendo así a^nA ,
- Después, aplicamos m-1 veces la regla de producción $A \to bA$ para obtener $a^nb^{m-1}A$.
- Para finalizar, aplicamos la regla de producción $A \to b$ para obtener $a^n b^m$.

Por tanto, $S \stackrel{*}{\Longrightarrow} w$, teniendo que $w \in \mathcal{L}(G)$.

- ⊃) Sea $w \in \mathcal{L}(G)$. Vemos que en la palabra siempre va a haber tan solo una variable (ya sea S o A). Se empezará con la S, y en cierto momento se cambiará a la A, sin poder entonces volver a la S.
 - Cuando se está en la etapa en la que hay S, tan solo se pueden añadir a's, o bien cambiar a la A.
 - Cuando se está en la etapa en la que hay A, tan solo se pueden añadir b's.

Por tanto, tenemos que w estará formada por una sucesión de a's seguida de una sucesión de b's, lo que nos lleva a que $w \in L$.

Ejercicio 1.1.3. Encontrar gramáticas de tipo 2 para los siguientes lenguajes sobre el alfabeto $\{a, b\}$. En cada caso determinar si los lenguajes generados son de tipo 3, estudiando si existe una gramática de tipo 3 que los genera.

1. Palabras en las que el número de b no es tres.

Tenemos varias opciones:

- Que no tenga b's.
- \blacksquare Que tenga una b.
- Que tenga dos b's.
- Que tenga 4 o más b's.

Sea la gramática G = (V, T, P, S) dada por:

$$\begin{split} V &= \{S, A, X\} \\ T &= \{a, b\} \\ S &= S \\ P &= \left\{ \begin{array}{l} S &\to & A \mid AbA \mid AbAbA \mid XbXbXbXbX \\ A &\to & aA \mid \varepsilon \\ X &\to & aX \mid bX \mid \varepsilon \end{array} \right. \end{split}$$

Esta gramática no obstante es de tipo 2. Busquemos otra que sea de tipo 3. Sea la gramática G' = (V', T', P', S') dada por:

$$V' = \{S, X, Y, Z, W\}$$

$$T' = \{a, b\}$$

$$S' = S$$

$$P' = \begin{cases} S \to \varepsilon \mid aS \mid bX \\ X \to \varepsilon \mid aX \mid bY \\ Y \to \varepsilon \mid aY \mid bZ \\ Z \to aZ \mid bW \\ W \to \varepsilon \mid aW \mid bW \end{cases}$$

Esta sí es de tipo 3, y genera el lenguaje deseado.

2. Palabras que tienen 2 ó 3 b.

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, A, B\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \begin{cases} S \rightarrow AbAbABA \\ A \rightarrow aA \mid \varepsilon \\ B \rightarrow b \mid \varepsilon \end{cases}$$

Esta gramática no obstante es de tipo 2. Busquemos otra que sea de tipo 3. Sea la gramática G' = (V', T', P', S') dada por:

$$V' = \{S, X, Y, Z, W, V, T\}$$

$$T' = \{a, b\}$$

$$S' = S$$

$$P' = \begin{cases} S \rightarrow aS \mid X \\ X \rightarrow bY \\ Y \rightarrow aY \mid Z \\ Z \rightarrow bW \\ W \rightarrow aW \mid \varepsilon \mid V \\ V \rightarrow bT \\ T \rightarrow aT \mid \varepsilon \end{cases}$$

Esta gramática ya es de tipo 3, pero contiene un número elevado de variables. Veamos si podemos reducirlo: Sea la gramática G'' = (V'', T'', P'', S'') dada por:

$$V'' = \{S, X, Y, Z\}$$

$$T'' = \{a, b\}$$

$$S'' = S$$

$$P'' = \begin{cases} S \rightarrow aS \mid bX \\ X \rightarrow aX \mid bY \\ Y \rightarrow aY \mid \varepsilon \mid bZ \\ Z \rightarrow aZ \mid \varepsilon \end{cases}$$

Notemos que, en esta gramática de tipo 3, ya hemos conseguido el menor número de variables posibles, que representan las 4 etapas. Como la última es opcional, está la regla $Y \to \varepsilon$, para así no agregar la tercera b.

Ejercicio 1.1.4. Encontrar gramáticas de tipo 2 para los siguientes lenguajes sobre el alfabeto $\{a, b\}$. En cada caso determinar si los lenguajes generados son de tipo 3, estudiando si existe una gramática de tipo 3 que los genera.

1. Palabras que no contienen la subcadena ab.

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, A\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \left\{ \begin{array}{cc} S & \rightarrow & aA \mid bS \mid \varepsilon \\ A & \rightarrow & aA \mid \varepsilon \end{array} \right\}$$

Notemos además que esta gramática es de tipo 3, y se tiene que:

$$\mathcal{L}(G) = \{b^i a^j \mid i, j \in \mathbb{N} \cup \{0\}\}$$

2. Palabras que no contienen la subcadena baa.

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, B\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \left\{ \begin{array}{ccc} S & \rightarrow & aS \mid bB \mid \varepsilon \\ B & \rightarrow & bB \mid abB \mid a \mid \varepsilon \end{array} \right\}$$

Notemos además que esta gramática es de tipo 3.

Ejercicio 1.1.5. Encontrar una gramática libre de contexto que genere el lenguaje sobre el alfabeto $\{a, b\}$ de las palabras que tienen más a que b (al menos una más).

Sea la gramática G = (V, T, P, S) dada por:

$$\begin{split} V &= \{S, S'\} \\ T &= \{a, b\} \\ S &= S \\ P &= \left\{ \begin{array}{ccc} S & \rightarrow & S'aS' \\ S' & \rightarrow & S'aS' \mid aS'bS' \mid bS'aS' \mid \varepsilon \end{array} \right\} \end{split}$$

Ejercicio 1.1.6. Encontrar, si es posible, una gramática regular (o, si no es posible, una gramática libre del contexto) que genere el lenguaje L supuesto que $L \subset \{a, b\}^*$ y verifica:

1. $u \in L$ si, y solamente si, verifica que u no contiene dos símbolos b consecutivos. Sea la gramática G = (V, T, P, S) dada por:

$$\begin{split} V &= \{S\} \\ T &= \{a, b\} \\ S &= S \\ P &= \left\{ \begin{array}{l} S & \rightarrow & aS \mid baS \mid b \mid \varepsilon \end{array} \right\} \end{split}$$

2. $u \in L$ si, y solamente si, verifica que u contiene dos símbolos b consecutivos. Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, B, F\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \begin{cases} S \rightarrow aS \mid bB \\ B \rightarrow bF \mid aS \\ F \rightarrow aF \mid bF \mid \varepsilon \end{cases}$$

Notemos que, en este caso, tenemos tres estados:

- S: No hemos encontrado dos b's consecutivas.
- B: Hemos encontrado una b, y puede ser que nos encontremos la segunda
 b.
- F: Hemos encontrado dos b's consecutivas; ya hay libertad.

Sí es cierto que usamos tres variables. Para usar solo dos variables, podemos hacer lo siguiente. Sea la gramática G' = (V', T', P', S') dada por:

$$V' = \{S, X\}$$

$$T' = \{a, b\}$$

$$S' = S$$

$$P' = \left\{ \begin{array}{cc} S & \rightarrow & aS \mid bS \mid bbX \\ X & \rightarrow & aX \mid bX \mid \varepsilon \end{array} \right\}$$

Ejercicio 1.1.7. Encontrar, si es posible, una gramática regular (o, si no es posible, una gramática libre del contexto) que genere el lenguaje L supuesto que $L \subset \{a, b\}^*$ y verifica:

1. $u \in L$ si, y solamente si, verifica que contiene un número impar de símbolos a. Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \left\{ \begin{array}{cc} S & \rightarrow & aX \mid bS \\ X & \rightarrow & aS \mid bX \mid \varepsilon \end{array} \right\}$$

2. $u \in L$ si, y solamente si, verifica que no contiene el mismo número de símbolos a que de símbolos b.

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, A, B, X\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \begin{cases} S \rightarrow AaA \mid BbB \\ A \rightarrow AaA \mid X \\ B \rightarrow BbB \mid X \\ X \rightarrow aXbX \mid bXaX \mid \varepsilon \end{cases}$$

Ejercicio 1.1.8. Dado el alfabeto $A = \{a, b\}$ determinar si es posible encontrar una gramática libre de contexto que:

1. Genere las palabras de longitud impar, y mayor o igual que 3, tales que la primera letra coincida con la letra central de la palabra.

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X, A, B, C, D\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \begin{cases}
S & A \mid B \\
A & \rightarrow & aCX \\
C & \rightarrow & a \mid XCX \\
B & \rightarrow & bDX \\
D & \rightarrow & b \mid XDX \\
X & \rightarrow & a \mid b
\end{cases}$$

2. Genere las palabras de longitud par, y mayor o igual que 2, tales que las dos letras centrales coincidan.

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \left\{ \begin{array}{ccc} S & \rightarrow & XSX \mid C \\ C & \rightarrow & aa \mid bb \\ X & \rightarrow & a \mid b \end{array} \right\}$$

Ejercicio 1.1.9. Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \begin{cases} S \rightarrow SS \\ S \rightarrow XXX \\ X \rightarrow aX \mid Xa \mid b \end{cases}$$

Determinar si el lenguaje generado por la gramática es regular. Justificar la respuesta.

Sea la siguiente gramática regular G' = (V', T', P', S') dada por:

$$V' = \{S, X, Y, Z\}$$

$$T' = \{a, b\}$$

$$S' = S$$

$$P' = \begin{cases} S \rightarrow aS \mid bX \\ X \rightarrow aX \mid bY \\ Y \rightarrow aY \mid bZ \\ Z \rightarrow aZ \mid bX \mid \varepsilon \end{cases}$$

Tenemos que $\mathcal{L}(G) = \mathcal{L}(G')$, y como G' es una gramática regular, tenemos que $\mathcal{L}(G)$ es regular. Sí es cierto que en el tema 2 aprendemos otras maneras de demostrarlo más sencillas, como buscar un autómata finito que lo genere.

Ejercicio 1.1.10. Dado un lenguaje L sobre un alfabeto A, ¿es L^* siempre numerable? ¿nunca lo es? ¿o puede serlo unas veces sí y otras, no? Pon ejemplos en este último caso.

 L^* es siempre numerable, veámos por qué. L^* es un lenguaje sobre el alfabeto A, por lo que $L^* \subseteq A^*$ y A^* es numerable (visto en teoría), luego L^* también lo es.

Ejercicio 1.1.11. Dado un lenguaje L sobre un alfabeto A, caracterizar cuando $L^* = L$. Esto es, dar un conjunto de propiedades sobre L de manera que L cumpla esas propiedades si y sólo si $L^* = L$.

$$L = L^* \Longleftrightarrow \left\{ \begin{array}{c} \varepsilon \in L \\ \wedge \\ u, v \in L \implies uv \in L \end{array} \right.$$

Es decir, $L=L^*$ si y solo si la cadena vacía está en L y además es cerrado para concatenaciones.

Demostración. Demostramos mediante doble implicación.

 \iff) La inclusión $L\subseteq L^*$ es obvia, por lo que solo falta demostrar la otra inclusión.

Sea $v \in L^*$:

- 1. Si $v = \varepsilon \Longrightarrow v \in L$ por hipótesis.
- 2. Si $v \neq \varepsilon$, $\exists n \in \mathbb{N}$ tal que

$$v = a_1 a_2 \dots a_n$$

con $a_i \in L \ \forall i \in \{1, \dots, n\}$, de donde tenemos que $v \in L$, por ser cerrado para concatenaciones. Luego $L^* \subseteq L$.

- ⇒) Hemos de probar dos cosas:
 - 1. $\varepsilon \in L^* = L$.
 - 2. Sean $u, v \in L = L^* \Longrightarrow uv \in L^* = L$.

Ejercicio 1.1.12. Dados dos homomorfismos $f: A^* \to B^*$, $g: A^* \to B^*$, se dice que son iguales si f(x) = g(x), $\forall x \in A^*$. ¿Existe un procedimiento algorítmico para comprobar si dos homomorfismos son iguales?

Sí, basta probar que su imagen coincide sobre un conjunto finito de elementos, los de A:

$$f(x) = g(x) \quad \forall x \in A^* \iff f(a) = g(a) \quad \forall a \in A$$

Demostración.

 \iff Sea $v \in A^*$, $\exists n \in \mathbb{N}$ tal que $v = a_1 a_2 \dots a_n$ con $a_i \in A \ \forall i \in \{1, \dots, n\}$

$$f(v) = f(a_1)f(a_2)\dots f(a_n) = g(a_1)g(a_2)\dots g(a_n) = g(v)$$

 \Longrightarrow) Sea $a \in A \Longrightarrow a \in A^* \Longrightarrow f(a) = g(a)$.

Ejercicio 1.1.13. Sea $L \subseteq A^*$ un lenguaje arbitrario. Sea $C_0 = L$ y definamos los lenguajes S_i y C_i , para todo $i \ge 1$, por $S_i = C_{i-1}^+$ y $C_i = \overline{S_i}$.

- 1. ¿Es S_1 siempre, nunca o a veces igual a C_2 ? Justifica la respuesta.
- 2. Demostrar que $S_2 = C_3$, cualquiera que sea L.

 Observación. Demuestra que C_2 es cerrado para la concatenación.

Ejercicio 1.1.14. Demuestra que, para todo alfabeto A, el conjunto de los lenguajes finitos sobre dicho alfabeto es numerable.

Sea $A = \{a_1, a_2, \dots, a_n\}$, con $n \in \mathbb{N}$. Definimos el siguiente conjunto:

$$\Gamma = \{ L \subseteq A^* \mid L \text{ es finito} \}$$

Dado un símbolo $z \notin A$, definimos el conjunto $B = \{z\} \cup A$. Sea B^* numerable, y buscamos una inyección de Γ en B^* . Dado un lenguaje $L \in \Gamma$, sea $L = \{l_1, l_2, \ldots, l_m\}$, con $m \in \mathbb{N}$ y $l_i \in A^* \ \forall i \in \{1, \ldots, m\}$. Definimos la siguiente función:

$$f: \Gamma \longrightarrow B^*$$

$$L \longmapsto zl_1zl_2\dots zl_mz$$

Veamos que f es inyectiva. Sean $L_1, L_2 \in \Gamma$ tales que $f(L_1) = f(L_2)$. Entonces,

$$zl_1zl_2\dots zl_kz=zl_1'zl_2'\dots zl_{k'}'z$$

Por ser ambas palabras iguales, tenemos que k = k' y $l_i = l'_i \, \forall i \in \{1, ..., k\}$, de donde $L_1 = L_2$. Por tanto, f es inyectiva, por lo que Γ es inyectivo con un subconjunto de B^* , que es numerable. Por tanto, Γ es numerable.

1.1.1. Cálculo de gramáticas

Ejercicio 1.1.15 (Complejidad: Sencilla). Calcula, de forma razonada, gramáticas que generen cada uno de los siguientes lenguajes:

1.
$$\{u \in \{0,1\}^* \mid |u| \leq 4\}$$

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X\}$$

$$T = \{0, 1\}$$

$$S = S$$

$$P = \left\{ \begin{array}{ccc} S & \rightarrow & XXXX \\ X & \rightarrow & 0 \mid 1 \mid \varepsilon \end{array} \right\}$$

No obstante, esta gramática es de tipo 2. Busquemos una de tipo 3. Sea la gramática G' = (V', T', P', S') dada por:

$$V' = \{S, X, Y, Z\}$$

$$T' = \{0, 1\}$$

$$S' = S$$

$$P' = \begin{cases} S \rightarrow 0X \mid 1X \mid \varepsilon \\ X \rightarrow 0Y \mid 1Y \mid \varepsilon \\ Y \rightarrow 0Z \mid 1Z \mid \varepsilon \\ Z \rightarrow 0 \mid 1 \end{cases}$$

Tenemos que $\mathcal{L}(G) = \mathcal{L}(G')$, y es igual al lenguaje deseado. Tenemos por tanto que es un lenguaje regular.

2. Palabras con 0's y 1's que no contengan dos 1's consecutivos y que empiecen por un 1 y que terminen por dos 0's.

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X, Y\}$$

$$T = \{0, 1\}$$

$$S = S$$

$$P = \left\{ \begin{array}{ccc} S & \rightarrow & 1X00 \\ X & \rightarrow & 0Y \mid \varepsilon \\ Y & \rightarrow & 0Y \mid 1X \mid \varepsilon \end{array} \right\}$$

Notemos que esta gramática es de tipo 2 debido a la primera regla de producción. Busquemos una de tipo 3. Sea la gramática G' = (V', T', P', S') dada por:

$$V' = \{S, X, Y\}$$

$$T' = \{0, 1\}$$

$$S' = S$$

$$P' = \begin{cases} S \rightarrow 1X \\ X \rightarrow 0Y \mid F \\ Y \rightarrow 0Y \mid 1X \mid F \\ F \rightarrow 00 \end{cases}$$

Tenemos que $\mathcal{L}(G) = \mathcal{L}(G')$, y es igual al lenguaje deseado. Tenemos por tanto que es un lenguaje regular. En esta última gramática, tenemos los siguientes estados:

- \blacksquare S: Es el estado inicial, empezamos con un 1.
- X: Acabamos de escribir un 1, por lo que ahora tan solo podemos escribir 0's.
- Y: Acabamos de escribir un 0, por lo que ahora podemos escribir tanto 0's como 1's.
- F: Ya hemos terminado, y escribimos los dos 0's finales por la restricción impuesta.
- 3. El conjunto vacío.

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S\}$$

$$T = \emptyset$$

$$S = S$$

$$P = \{ S \rightarrow S \}$$

4. El lenguaje formado por los números naturales.

Sea la gramática G = (V, T, P, S) dada por:

 $V = \{\langle \text{número no iniciado} \rangle, \langle \text{dígito no cero} \rangle, \langle \text{dígito} \rangle, \langle \text{número iniciado} \rangle \}$

 $T = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 $S = \langle \text{número no iniciado} \rangle$

$$P = \left\{ \begin{array}{ll} \langle \text{n\'umero no iniciado} \rangle & \rightarrow & \langle \text{d\'igito no cero} \rangle \mid \langle \text{d\'igito no cero} \rangle \langle \text{n\'umero iniciado} \rangle \\ \langle \text{n\'umero iniciado} \rangle & \rightarrow & \langle \text{d\'igito} \rangle \mid \langle \text{d\'igito} \rangle \langle \text{n\'umero iniciado} \rangle \\ \langle \text{d\'igito no cero} \rangle & \rightarrow & 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \\ \langle \text{d\'igito} \rangle & \rightarrow & 0 \mid \langle \text{d\'igito no cero} \rangle \end{array} \right.$$

Notemos que esta gramática es similar a la descrita en el Ejercicio 1.1.2.2, pero adaptada para que los números naturales no puedan empezar por 0. No obstante, esta gramática es de tipo 2. Busquemos una de tipo 3. Sea la gramática G' = (V', T', P', S') dada por:

$$\begin{split} V' &= \{S, X, Y, Z\} \\ T' &= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \\ S' &= S \\ P' &= \left\{ \begin{array}{ccc|c} S & \to & 0 \mid 1N \mid 2N \mid 3N \mid 4N \mid 5N \mid 6N \mid 7N \mid 8N \mid 9N \\ N & \to & 0N \mid 1N \mid 2N \mid 3N \mid 4N \mid 5N \mid 6N \mid 7N \mid 8N \mid 9N \mid \varepsilon \end{array} \right\} \end{split}$$

5.
$$\{a^n \in \{a,b\}^* \mid n \ge 0\} \cup \{a^n b^n \in \{a,b\}^* \mid n \ge 0\}$$

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X, Y\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \begin{cases} S \rightarrow X \mid Y \mid \varepsilon \\ X \rightarrow aX \mid \varepsilon \\ Y \rightarrow aYb \mid \varepsilon \end{cases}$$

6. $\{a^n b^{2n} c^m \in \{a, b, c\}^* \mid n, m > 0\}$

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X, Y, Z\}$$

$$T = \{a, b, c\}$$

$$S = S$$

$$P = \left\{ \begin{array}{ccc} S & \rightarrow & aXbbcY \\ X & \rightarrow & aXbb \mid \varepsilon \\ Y & \rightarrow & cY \mid \varepsilon \end{array} \right\}$$

7.
$$\{a^n b^m a^n \in \{a, b\}^* \mid m, n \ge 0\}$$

Sea la gramática G = (V, T, P, S) dada por:

$$\begin{split} V &= \{S, X\} \\ T &= \{a, b\} \\ S &= S \\ P &= \left\{ \begin{array}{ccc} S & \rightarrow & aSa \mid bX \mid \varepsilon \\ X & \rightarrow & bX \mid \varepsilon \end{array} \right. \right\} \end{split}$$

8. Palabras con 0's y 1's que contengan la subcadena 00 y 11.

Sea la gramática G = (V, T, P, S) dada por:

$$\begin{split} V &= \{S, X\} \\ T &= \{0, 1\} \\ S &= S \\ P &= \left\{ \begin{array}{ccc} S & \rightarrow & X00X11X \mid X11X00X \\ X & \rightarrow & 0X \mid 1X \mid \varepsilon \end{array} \right. \right\} \end{split}$$

Notemos que esta gramática es de tipo 2. Busquemos una de tipo 3. Sea la gramática G' = (V', T', P', S') dada por:

$$V' = \{S, X, A, B, F\}$$

$$T' = \{0, 1\}$$

$$S' = S$$

$$P' = \begin{cases} S \to 0S \mid 1S \mid X \\ X \to 00A \mid 11B \\ A \to 0A \mid 1A \mid 11F \\ B \to 0B \mid 1B \mid 00F \\ F \to 0F \mid 1F \mid \varepsilon \end{cases}$$

Notemos que:

- S: No hemos encontrado ninguna subcadena.
- ullet X: Hemos encontrado una subcadena, y ahora buscamos la otra.
- A: Hemos encontrado la subcadena 00, y ahora buscamos la subcadena 11.
- B: Hemos encontrado la subcadena 11, y ahora buscamos la subcadena 00.
- F: Hemos encontrado ambas subcadenas.
- 9. Palíndromos formados con las letras a y b.

Sea la gramática G = (V, T, P, S) dada por:

$$\begin{split} V &= \{S, X, Y\} \\ T &= \{a, b\} \\ S &= S \\ P &= \left\{ \begin{array}{l} S & \rightarrow & aSa \mid bSb \mid \varepsilon \mid a \mid b \end{array} \right\} \end{split}$$

Notemos que las reglas $S \to a \mid b$ se han añadido para añadir los palíndromos de longitud impar.

Ejercicio 1.1.16 (Complejidad: Media). Calcula, de forma razonada, gramáticas que generen cada uno de los siguientes lenguajes:

1. $\{uv \in \{0,1\}^* \mid u^{-1} \text{ es un prefijo de } v\}$

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X, Y\}$$

$$T = \{0, 1\}$$

$$S = S$$

$$P = \begin{cases} S \rightarrow XY \\ X \rightarrow 0X0 \mid 1X1 \mid \varepsilon \\ Y \rightarrow 0Y \mid 1Y \mid \varepsilon \end{cases}$$

Notemos que X deriva en el palíndromo, uu^{-1} , y Y en el resto de la palabra de v.

2. $\{ucv \in \{a, b, c\}^* \mid |u| = |v|\}$

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X\}$$

$$T = \{a, b, c\}$$

$$S = S$$

$$P = \left\{ \begin{array}{ccc} S & \rightarrow & XSX \mid c \\ X & \rightarrow & a \mid b \mid c \end{array} \right\}$$

3. $\{u1^n \in \{0,1\}^* \mid |u| = n\}$

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X\}$$

$$T = \{0, 1\}$$

$$S = S$$

$$P = \left\{ \begin{array}{ccc} S & \rightarrow & XS1 \mid \varepsilon \\ X & \rightarrow & 0 \mid 1 \end{array} \right\}$$

4. $\{a^nb^na^{n+1}\in\{a,b\}^*\mid n\geqslant 0\}$ (observar transparencias de teoría)

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X, Y\}$$

$$T = \{a, b\}$$

$$S = S$$

$$P = \begin{cases}
S \rightarrow a \mid abaa \mid aXbaa \\
Xb \rightarrow bX \\
Xa \rightarrow Ybaa \\
bY \rightarrow Yb \\
aY \rightarrow aa \mid aaX
\end{cases}$$

Ejercicio 1.1.17 (Complejidad: Difícil). Calcula, de forma razonada, gramáticas que generen cada uno de los siguientes lenguajes:

1. $\{a^n b^m c^k \in \{a, b, c\}^* \mid k = m + n\}$

Sea la gramática G = (V, T, P, S) dada por:

$$V = \{S, X\}$$

$$T = \{a, b, c\}$$

$$S = S$$

$$P = \left\{ \begin{array}{ccc} S & \rightarrow & aSc \mid X \\ X & \rightarrow & bXc \mid \varepsilon \end{array} \right\}$$

- 2. Palabras que son múltiplos de 7 en binario.
 - **Opción 1.** Hacer un autómata que acepte el lenguaje. Aunque un concepto del Tema 2, lo añadimos por ser más simple que la segunda opción. Cada estado, donde N es el número que llevamos leído, viene notado por:

$$q_i: N \mod 7 = i \quad \forall i \in \{0, \dots, 6\}$$

Usamos que:

- Añadirle un 0 al final a un número en binario es multiplicarlo por 2.
- Añadirle un 1 al final a un número en binario es multiplicarlo por 2 y sumarle 1.

Por tanto, el AFD sería:

Figura 1.1: AFD que acepta los múltiplos de 7 en binario.

La gramática, por tanto, que genera este lenguaje es G = (V, T, P, S)

dada por:

$$V = Q = \{q_0, \dots, q_6\}$$

$$T = A = \{0, 1\}$$

$$S = q_0$$

$$P = \begin{cases} q_0 \to 0q_0 \mid 1q_1 \mid \varepsilon \\ q_1 \to 0q_2 \mid 1q_3 \\ q_2 \to 0q_4 \mid 1q_5 \\ q_3 \to 0q_6 \mid 1q_0 \\ q_4 \to 0q_1 \mid 1q_2 \\ q_5 \to 0q_3 \mid 1q_4 \\ q_6 \to 0q_5 \mid 1q_6 \end{cases}$$

Opción 2. Un tanto más complicada, introduce cálculos con números binarios. La idea principal es que si x es un número natural, entonces:

$$7x = (8-1)x = 8x - x$$

- Multiplicar un número en binario por 8 es añadirle tres 0s al final.
- Restar un número binario menos otro es realizarle el complemento a dos al segundo, sumar los números y descartar el primer 1.

Realizar estas dos operaciones es más sencillo que multiplicar un número cualquiera en binario por 7. Procedemos por tanto, a:

- a) Generar un número cualquiera en binario.
- b) Multiplicarlo por 8.
- c) Generar su complemento a 2 en binario.
- d) Sumar ambos números.
- e) Descarar el bit de acarreo (el más significativo).

Para esta opción, construiremos la gramática G = (V, T, P, S) dada por:

$$V = \{S, N, \alpha, \beta, \delta, \gamma, Z, Z', A, D, E, E_0, E_1, E_2, E'_0, E'_1, \overline{E_0}, \overline{E_1}, \overline{E_2}, L_0, L_1, X\}$$

$$T = \{0, 1\}$$

$$S = S$$

Y P es un conjunto que contiene todas las reglas de producción que se mostrarán a continuación.

La idea es:

- Generar entre α y β cualquier número en binario, mientras generamos entre β y γ su complemento a 1 en espejo (es decir, el número invertido). Finalmente, multiplicaremos el de la izquierda por 8 y se verá reflejado en la izquierda con 1s.
- Posteriormente, usaremos la variable Z para sumarle 1 al complemento a 1 del número generado.
- Como no podemos modificar símbolos terminales una vez ya generados, trabajaremos todo el rato hasta el final con variables, de forma que A será un 0 y B un 1.

- Una vez generado el número 8x y x en complemento a dos en espejo, pasaremos a sumar ambos números usando para ello las variables E y L. Los símbolos del número en complemento a 2 los iremos eliminando y en la izquierda controlaremos los bits del número que ya hemos usado con la variable δ .
- Cuando las variables β y γ "se toquen", habremos terminado de sumar y ya sólo quedará eliminar las variables delimitadoras (las letras griegas) y sustituir A y B por 0 y 1, respectivamente.

Comenzamos ya describiendo las reglas de producción:

■ En primer lugar, creamos el entorno en el que trabajaremos, aceptando "0" como número en binario múltiplo de 7:

$$S \to \alpha BNABBB\gamma \mid 0$$

Iremos usando N para generar nuestro número a su izquierda y el complemento a 1 en espejo a la derecha.

- Las tres Bs ya introducidas a la derecha son para luego compensar la multiplicación por 8.
- Así mismo, hemos generado ya B a la izquierda y A a la derecha para aceptar sólo números binarios que comiencen por 1.

Usamos ahora la variable N para generar cualquier número en binario a la izquierda, con su complemento a 1 en espejo a la derecha:

$$N \rightarrow ANB \mid BNA \mid AAA\gamma\beta Z$$

Una vez generado el número, terminaremos añadiendo 3 As a la izquierda (multiplicar por 8), incluyendo los separadores γ y β y la variable Z, que se encargará de sumar 1 al número en complemento a 1 para pasarlo a complemento a 2.

 Usamos ahora Z para pasar el número de la derecha a complemento a 2:

$$ZB \rightarrow BZ$$

Buscamos el primer 0, por lo que saltamos los 1s.

$$ZA \rightarrow Z'B$$

Hemos encontrado el primer 0, lo cambiamos por 1 y volvemos con la variable Z'.

$$BZ' \to Z'A$$

Volvemos a la izquierda, cambiando todos los 1s que saltamos anteriormente por 0s.

$$\beta Z' \to \beta L_0$$

Una vez llegamos a β , tenemos el número en complemento a 1 y comenzamos con la aritmética (L_0 representa que no hemos cogido ningún número y que no nos llevamos nada de la suma anterior).

- Comenzamos ahora con la aritmética, la parte más complicada de la gramática. Distinguimos dos casos:
 - a) No nos llevamos nada de la operación anterior (L_0) :

$$L_0A \to E_0$$

Cogemos un 0 de la derecha y la variable E_0 lo transportará a la izquierda.

$$AE_0 \to E_0 A$$

$$BE_0 \to E_0 B$$

$$\beta E_0 \to E_0 \beta$$

Nos movemos hacia la izquierda, buscando δ (que indica por dónde nos quedamos sumando).

$$\delta E_0 \to \overline{E_0}$$

Donde la barra indica que hemos "cogido" δ , la cual tendremos que soltar en el siguiente dígito.

$$A\overline{E_0} \to \delta A E_0'$$

 $B\overline{E_0} \to \delta B E_0'$

Como estamos sumando 0, dejamos el dígito invariante, sólo movemos δ hacia la izquierda. Usamos la variable E'_0 para volver, que indica que no nos llevamos nada de la suma:

$$E'_0A \to AE'_0$$

 $E'_0B \to BE'_0$
 $E'_0\beta \to \beta L_0$

Nos desplazamos hacia la derecha, hasta encontrar β , ya que después encontraremos el siguiente dígito con el que operar. Como no nos llevábamos nada, volvemos a L_0 .

Si ahora no nos llevamos nada y en vez de un 0 (una A) hay un 1 (una B), repetimos el proceso pero usando para ello E_1 :

$$L_0B \to E_1$$

$$AE_1 \to E_1A$$

$$BE_1 \to E_1B$$

$$\beta E_1 \to E_1\beta$$

$$\delta E_1 \to \overline{E_1}$$

A continuación, $\overline{E_1}$ se encontrará con el dígito con el que operar:

$$A\overline{E_1} \to \delta B E_0'$$

$$B\overline{E_1} \to \delta A E_1'$$

- Si era un 0 (una A), lo cambiamos por un 1.
- Si era un 1 (una B), lo cambiamos por un 0 y nos llevamos 1 (que es lo que indica E'_1).

El comportamiento de E'_1 es similar a E'_0 pero ahora pasando a L_1 :

$$E'_1 A \to A E'_1$$

$$E'_1 B \to B E'_1$$

$$E'_1 \beta \to \beta L_1$$

b) Ahora, estamos en el caso en el que nos llevamos un 1 de la operación anterior (L_1) , que hemos visto que puede suceder:

$$L_1A \to E_1$$

Si nos encontramos un 0 llevando 1, es como si nos hubiéramos encontrado un 1 llevando 0, por lo que no hay nada nuevo que hacer. Sin embargo, si nos encontramos un 1:

$$L_1B \to E_2$$

Tenemos que tener en mente que el siguiente dígito con el que realizar la suma lo sumaremos con 2 (E_2 es análogo a E_0 y E_1 pero ahora "transportando" un 2):

$$AE_2 \to E_2 A$$

$$BE_2 \to E_2 B$$

$$\beta E_2 \to E_2 \beta$$

$$\delta E_2 \to \overline{E_2}$$

A continuación, $\overline{E_2}$ se encontrará con el dígito con el que operar:

$$A\overline{E_2} \to \delta A E_1'$$

$$B\overline{E_2} \to \delta B E_1'$$

Similar al caso de $\overline{E_0}$, dejamos el dígito invariante pero ahora tenemos que llevarnos 1 para la siguiente opereación.

■ A poco que se piense, como 8x y su complemento a 2 tienen la misma cantidad de bits, terminaremos de realizar la operación cuando nos llevemos 1 y no queden bits del número en complemento a 2, dando lugar a:

$$\beta L_1 \gamma \to X$$

donde X es una variable finalizadora, que usamos para cambiar las As por 0s, las Bs por 1s y eliminar las variables auxiliares que nos quedan (ya hemos eliminado β y γ directamente al crear X, por lo que nos quedan δ y α):

$$AX \to X0$$

$$BX \to X1$$

$$\delta X \to X$$

$$\alpha X \to \varepsilon$$

Cuando lleguemos a αX , habremos "limpiado" la palaba, por lo que ya podemos quitar todas las variables, generando una palabra de la gramática, que forzosamente tiene que ser un múltiplo de 7 en binario (acabamos de multiplicar cualquier número por 7). Además, como con esta gramática podemos multiplicar cualquier número por 7, esta genera todos los números que son múltiplos de 7 en binario.

Mostramos finalmente un ejemplo de producción de una palabra mediante esta gramática. Trataremos de generar "14" en binario (la 3ª palabra que usa menos reglas de producción para ser creada, tras 0 y 7):

```
S \to \alpha BNABBB\gamma \to \alpha BANBABBB\gamma \to \alpha BAAAA\delta\beta ZBABBB\gamma \to
             \rightarrow \alpha BAAAA\delta\beta BZABBB\gamma \rightarrow \alpha BAAAA\delta\beta BZ'BBBB\gamma \rightarrow
            \rightarrow \alpha BAAAA\delta\beta Z'ABBBB\gamma \rightarrow \alpha BAAAA\delta\beta L_0ABBBB\gamma \rightarrow
             \rightarrow \alpha BAAAA\delta\beta E_0BBBB\gamma \rightarrow \alpha BAAAA\delta E_0\beta BBBB\gamma \rightarrow
             \rightarrow \alpha BAAAA\overline{E_0}\beta BBBB\gamma \rightarrow \alpha BAAA\delta AE'_0\beta BBBB\gamma \rightarrow
             \rightarrow \alpha BAAA\delta A\beta L_0 BBBB\gamma \rightarrow \alpha BAAA\delta A\beta E_1 BBB\gamma \rightarrow
             \rightarrow \alpha BAAA\delta AE_1\beta BBB\gamma \rightarrow \alpha BAAA\delta E_1A\beta BBB\gamma \rightarrow
             \rightarrow \alpha BAAA\overline{E_1}A\beta BBB\gamma \rightarrow \alpha BAA\delta BE'_0A\beta BBB\gamma \rightarrow
            \rightarrow \alpha BAA\delta BAE_0'\beta BBB\gamma \rightarrow \alpha BAA\delta BA\beta L_0BBB\gamma \rightarrow
             \rightarrow \alpha BAA\delta BA\beta E_1BB\gamma \rightarrow \alpha BAA\delta BAE_1\beta BB\gamma \rightarrow
             \rightarrow \alpha BAA\delta BE_1A\beta BB\gamma \rightarrow \alpha BAA\delta E_1BA\beta BB\gamma \rightarrow
             \rightarrow \alpha BAA\overline{E_1}BA\beta BB\gamma \rightarrow \alpha BA\delta BE'_0BA\beta BB\gamma \rightarrow
           \rightarrow \alpha BA\delta BBE'_0A\beta BB\gamma \rightarrow \alpha BA\delta BBAE'_0\beta BB\gamma \rightarrow
             \rightarrow \alpha BA\delta BBA\beta L_0BB\gamma \rightarrow \alpha BA\delta BBA\beta E_1B\gamma \rightarrow \alpha BA\delta BBAE_1\beta B\gamma \rightarrow
             \rightarrow \alpha BA\delta BBE_1A\beta B\gamma \rightarrow \alpha BA\delta BE_1BA\beta B\gamma \rightarrow \alpha BA\delta E_1BBA\beta B\gamma \rightarrow
            \rightarrow \alpha B\delta BBBE'_0A\beta B\gamma \rightarrow \alpha B\delta BBBAE'_0\beta B\gamma \rightarrow \alpha B\delta BBBA\beta L_0B\gamma \rightarrow
            \rightarrow \alpha B \delta B B E_1 B A \beta \gamma \rightarrow \alpha B \delta B E_1 B B A \beta \gamma \rightarrow \alpha B \delta E_1 B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B B A \delta \gamma \rightarrow \alpha B \delta B A \delta \gamma \rightarrow 
            \rightarrow \alpha \delta ABBE'_1BA\beta\gamma \rightarrow \alpha \delta ABBBE'_1A\beta\gamma \rightarrow \alpha \delta ABBBAE'_1\beta\gamma \rightarrow
             \rightarrow \alpha \delta ABBBA\beta L_1 \gamma \rightarrow \alpha \delta ABBBAX \rightarrow \alpha \delta ABBBX 0 \rightarrow \alpha \delta ABBX 10 \rightarrow
            \rightarrow \alpha \delta ABX110 \rightarrow \alpha \delta AX1110 \rightarrow \alpha \delta X01110 \rightarrow \alpha X01110 \rightarrow 01110
```

Ejercicio 1.1.18 (Complejidad: Extrema (no son libres de contexto)). Calcula, de forma razonada, gramáticas que generen cada uno de los siguientes lenguajes:

1. $\{ww \mid w \in \{0,1\}^*\}$ Para este lenguaje, hemos construido la gramática G = (V,T,P,S) dada por:

$$V = \{S, \alpha, \beta, \gamma, X, E, E_1, E_0, E', B\}$$

$$T = \{0, 1\}$$

$$S = S$$

P que contiene las reglas de producción que se mostrarán a continuación.

La idea principal en la gramática es generar entre las variables α y β cualqueir palabra del lenguaje $\{0,1\}^*$. Posteriormente, iremos copiando dicha palabra a la derecha de β usando para ello las variables E y γ , de forma que con γ controlaremos la parte de la palabra de la izquierda que ya hayamos copiado a la derecha de β .

Finalmente, usaremos B para eliminar cualquier rastro de las variable auxiliares. De esta forma, las reglas de P son:

• Para generar cualquier palabra entre α y β :

$$S \to \alpha X \beta$$
$$X \to 0X \mid 1X \mid E\gamma$$

• Para coger un 1 y copiarlo a la derecha:

Hemos de estar al final de la parte de la palabra no copiada (luego ha de ser $xE\gamma$ siendo x 0 o 1). Posteriormente, avanzamos γ a la izquierda para indicar que dicho 1 ya está copiado y cambiamos a la variable que transporta el 1 a la derecha:

$$1E\gamma \rightarrow \gamma 1E_1$$

Posteriormente, movemos dicha variable a la derecha:

$$E_1 1 \to 1E_1$$
$$E_1 0 \to 0E_1$$

Cuando lleguemos al final de la palabra de la izquierda, soltamos el 1 al inicio de la palabra de la derecha:

$$E_1\beta \to E'\beta 1$$

 Para coger un 0 y copiarlo a la derecha, es una situación análoga pero usamos otra variable:

$$0E\gamma \to \gamma 0E_0$$

$$E_01 \rightarrow 1E_0$$

$$E_00 \rightarrow 0E_0$$

$$E_0\beta \to E'\beta 0$$

• Ahora, explicamos E', cuya única funcionalidad es volver al final de la parte no copiada de la palabra de la izquierda:

$$1E' \rightarrow E'1$$

$$0E' \to E'0$$

$$\gamma E' \to E \gamma$$

• La copia de la palabra terminará cuando se de $\alpha E \gamma$ (ya que estará toda la palabra copiada a la derecha). En dicho caso, eliminamos todas las variables auxiliares restantes:

$$\alpha E \gamma \to B$$

$$B1 \to 1B$$

$$B0 \to 0B$$

$$B\beta \to \varepsilon$$

Puede demostrarse que el lenguaje generado por esta gramática es el solicitado. Por la complejidad de la gramática, nos limitamos a mostrar un ejemplo para ver de forma intuitiva el buen funcionamiento de la misma.

Trataremos de generar la cadena: 10111011 (es decir, (1011)²):

$$S \rightarrow \alpha X\beta \rightarrow \alpha 1X\beta \rightarrow \alpha 10X\beta \rightarrow \alpha 101X\beta \rightarrow \alpha 1011X\beta \rightarrow \alpha 1011E\gamma\beta \rightarrow \alpha 101\gamma 1E_1\beta \rightarrow \alpha 101\gamma 1E'\beta 1 \rightarrow \alpha 101\gamma E'1\beta 1 \rightarrow \alpha 101E\gamma 1\beta 1 \rightarrow \alpha 10\gamma 1E_1\beta 1 \rightarrow \alpha 10\gamma 11E_1\beta 1 \rightarrow \alpha 10\gamma 11E'\beta 11 \rightarrow \alpha 10\gamma 1E'1\beta 11 \rightarrow \alpha 11\beta 11 \rightarrow \alpha 11$$

2. $\{a^{n^2} \in \{a\}^* \mid n \geqslant 0\}$

La idea que hemos tenido para hacer una gramática que acepte el lenguaje es la siguiente. Si representamos las 5 primeras palabras del lenguaje (ordenándolas por su longitud):

Notemos que podemos ordenar las letras de la siguiente forma (olvidándonos de ε , que no será relevante):

 De forma que tenemos 1 grupo de 1 "a", dos grupos de 2 "a", 3 grupos de 3 "a", ... Notemos que dados n grupos de n "a", será sencillo construir n+1 grupos de n+1 "a", ya que nos bastará con añadir una "a" a cada grupo y con duplicar el último grupo de "a".

Hemos construido una gramática G = (V, T, S, P) que simula este comportamiento inductivo del lenguaje, con lo que el lenguaje generado por la misma es el solicitado. Tenemos:

$$V = \{\alpha, \beta, \delta, \gamma, \sigma, X, A, E, E_{\sigma}, \overline{E}, E', I, R, L, Z\}$$

$$T = \{0, 1\}$$

$$S = S$$

Donde P es el conjunto de reglas de producción que contiene todas las reglas que explicaremos a continuación.

La idea es que si queremos generar la palabra a^{n^2} , que generemos n-1 As entre α y β . Tendremos ya creada una letra a y lo que haremos será que por cada A que hayamos generado, repitamos el proceso inductivo descrito anteriormente. Además, separaremos los "grupos" de "a" con variables I. Finalmente, para duplicar un grupo de "a", usaremos las variables δ y σ .

Empezamos generando nuestro entorno en el que trabajaremos (o la palabra vacía):

$$S \to \alpha X \beta I a \delta \gamma \mid \varepsilon$$

A continuación, usamos X para generar las As:

$$X \to AX \mid E$$

Una vez terminadas de leer las As, generaremos E, que se encargará de ir eliminando una A, de realizar el proceso inductivo y de volver al estado inicial, hasta terminar con todas las As generadas.

Ahora, hacemos que E coja una A, con lo que le dejamos salir de la región comprendida por α y β :

$$AE\beta \rightarrow \beta E$$

Ahora desplazamos la variable E a la derecha, haciendo que cada vez que entre en un grupo de "a" (cuando pase una variable I) añada una nueva:

$$Ea \rightarrow aE$$

 $EI \rightarrow IaE$

Cuando la variable E se encuentre con δ , habremos terminado de incrementar las "a", con lo que tendremos que duplicar ahora el último grupo de "a". Para ello, prepararemos un entorno, de forma que entre I y σ vayamos generando el nuevo grupo de "a", entre σ y δ se encuentre las "a" por copiar; y que entre δ y γ se encuentren las "a" que ya hayan sido duplicadas.

De esta forma, cuando E se encuentre con δ , pasaremos a una variable que busque I para colocar delante suya σ :

$$E\delta \to E_{\sigma}\delta$$

$$aE_{\sigma} \to E_{\sigma}a$$

$$IE_{\sigma} \to I\sigma R$$

Ahora, usaremos R para movernos a la derecha tras copiar una letra y L para movernos a la izquierda con el fin de pegar una letra.

$$Ra \rightarrow aR$$

Nos movemos a la derecha

$$aR\delta \to L\delta a$$

Cuando lleguemos a δ , guardamos una "a" más como copiada.

$$aL \rightarrow La$$

Nos moveremos hacia la izquierda buscando σ para crear una a:

$$\sigma L \rightarrow a\sigma R$$

Pegaremos una a tras σ y repetiremos el proceso.

El proceso terminará cuando no haya más "a" entre σ y δ :

$$\sigma R \delta \to I \overline{E}$$

Cuando hayamos terminado, colocamos una I para hacer efectivo el nuevo grupo. Finalmente, debemos colocar nuevamente δ a la izquierda de γ para la siguiente vez que copiemos. Usamos para ello \overline{E} :

$$\overline{E}a \to a\overline{E}$$

Nos movemos a la izquierda buscando γ y cuando la encontremos, colocamos δ :

$$\overline{E}\gamma \to E'\delta\gamma$$

Usaremos finalmente E' para desplazarnos a la izquierda, tras β , donde volveremos a la variable E, que reiniciará el proceso descrito para realizarlo nuevamente:

$$aE' \to E'a$$

 $IE' \to E'I$
 $\beta E' \to E\beta$

Este proceso terminará cuando no queden As por copiar. En dicho caso, pasaremos a una variable Z que eliminará todas las variables auxiliares:

$$\alpha E \to Z$$

De esta forma, Z se mueve a la derecha, eliminando todas las variables y pasando a través de las letras:

$$\begin{split} Z\beta &\to Z \\ ZI &\to Z \\ Za &\to aZ \\ Z\delta &\to Z \\ Z\gamma &\to \varepsilon \end{split}$$

Como ejemplo y para comprobar que el lenguaje generado por dicha gramática funciona es el deseado mostramos el siguiente ejemplo, en el que generamos a^9 :

```
\rightarrow \alpha A\beta IaEa\delta\gamma \rightarrow \alpha A\beta IaaE\delta\gamma \rightarrow \alpha A\beta IaaE_{\sigma}\delta\gamma \rightarrow \alpha A\beta IaE_{\sigma}a\delta\gamma 
                                                                  \rightarrow \alpha A\beta I E_{\sigma} aa\delta \gamma \rightarrow \alpha A\beta I \sigma Raa\delta \gamma \rightarrow \alpha A\beta I \sigma aRa\delta \gamma \rightarrow \alpha A\beta I \sigma aaR\delta \gamma \rightarrow \alpha A\beta I \sigma \alpha A\beta I \sigma \alpha A\beta I \sigma \alpha A\beta I \sigma \alpha A\beta 

ightarrow \alpha A\beta I\sigma aL\delta a\gamma 
ightarrow \alpha A\beta I\sigma La\delta a\gamma 
ightarrow \alpha A\beta Ia\sigma Ra\delta a\gamma 
ightarrow \alpha A\beta Ia\sigma aR\delta a\gamma 
ightarrow

ightarrow lpha Aeta Ia\sigma L\delta aa\gamma 
ightarrow lpha Aeta Iaa\sigma R\delta aa\gamma 
ightarrow lpha Aeta Iaa I\overline{E}aa\gamma 
ightarrow lpha Aeta Iaa Ia\overline{E}a\gamma 
ightarrow
                                                                  \rightarrow \alpha A\beta IaaIaa\overline{E}\gamma \rightarrow \alpha A\beta IaaIaaE'\delta\gamma \rightarrow \alpha A\beta IaaIaE'a\delta\gamma \rightarrow \alpha A\beta IaaIE'aa\delta\gamma \rightarrow \alpha A\beta IaaIE'aa\delta\gamma \rightarrow \alpha A\beta IaaIaaE'aa\delta\gamma \rightarrow \alpha A\beta IaaIaaIaB'aa\delta\gamma \rightarrow \alpha A\beta IaaIaaE'aa\delta\gamma \rightarrow \alpha A\beta IaaE'aa\delta\gamma \rightarrow \alpha A\beta IaaE'aa\delta\alpha \rightarrow \alpha A\beta IaaE'a\alpha \rightarrow \alpha
                                                                  \rightarrow \alpha A\beta IaaE'Iaa\delta\gamma \rightarrow \alpha A\beta IaE'aIaa\delta\gamma \rightarrow \alpha A\beta IE'aaIaa\delta\gamma \rightarrow
                                                                  \rightarrow \alpha A \beta E' Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha \beta E Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa Iaa \delta \gamma \rightarrow \alpha A E \beta Iaa \delta \gamma \rightarrow
                                                                  \rightarrow \alpha \beta IaEaaIaa\delta \gamma \rightarrow \alpha \beta IaaEaIaa\delta \gamma \rightarrow \alpha \beta IaaaEIaa\delta \gamma \rightarrow \alpha \beta IaaaEIaAA \gamma \rightarrow \alpha \beta IaaAA \gamma \rightarrow \alpha \alpha \beta IaaA \gamma \rightarrow \alpha \beta I
                                                                  \rightarrow \alpha \beta IaaaIaEaa\delta \gamma \rightarrow \alpha \beta IAAAIaaEa\delta \gamma \rightarrow \alpha \beta IaaaIaaaE\delta \gamma \rightarrow \alpha \beta IaaaAIaaaE\delta \gamma \rightarrow \alpha \beta IaaaAE\delta \gamma \rightarrow \alpha \beta IaaAE\delta \gamma \rightarrow \alpha \beta IaAE\delta \gamma \rightarrow \alpha \alpha
                                                                  \rightarrow \alpha \beta IaaaIaaaE_{\sigma}\delta\gamma \rightarrow \alpha \beta IaaaIaaE_{\sigma}a\delta\gamma \rightarrow \alpha \beta IaaaIaE_{\sigma}aa\delta\gamma \rightarrow
                                                                  \rightarrow \alpha \beta IaaaI\sigma aaRa\delta \gamma \rightarrow \alpha \beta IaaaI\sigma aaaR\delta \gamma \rightarrow \alpha \beta IaaaI\sigma aaL\delta a \gamma \rightarrow \alpha \beta IaaaI\sigma aaL\delta \alpha \gamma \rightarrow \alpha \beta IaaaI\sigma aaB\delta \gamma \rightarrow \alpha \beta IaaaB\delta \gamma \rightarrow \alpha \beta IaaB\delta \gamma \rightarrow \alpha \beta 

ightarrow lpha eta Iaaa Iaa \Gamma La\delta aa\gamma 
ightarrow lpha eta Iaaa Iaa\sigma Ra\delta aa\gamma 
ightarrow lpha eta Iaaa Iaa\sigma aR\delta aa\gamma 
ightarrow lpha eta Iaaa Iaa\sigma aR\delta aa\gamma 
ightarrow lpha eta Iaaa Iaa\sigma AB\delta aa\gamma 
ightarrow lpha ABI aaa Iaaa AB\delta aa\gamma 
ightarrow lpha ABI aaa AB\delta aaa 
ightarrow lpha ABI aaa AB\delta aa AB\delta aaa 
ightarrow lpha ABI aaa AB\delta aaa 
ightarrow lpha ABI aaaa AB\delta aaaa 
ightarrow lpha ABI aaaa AB\delta aaaaa 
ightarrow lpha ABI aaa

ightarrow \alpha \beta IaaaIaaa I \Delta \delta aaa\gamma 
ightarrow \alpha \beta IaaaIaaa I A \delta \delta aaa\gamma 
ightarrow \alpha \beta IaaaIaaa I \overline{E} aaa\gamma 
ightarrow \alpha \beta Iaaa I \overline{E} aaa \gamma 
ightarrow \alpha \beta Iaaa I aaa I aaa I aaa I aaa A Taaa A Taaa I aaa I aaa I aaa I aaa A Taaa A Taaa I aaa I 
                                                                  \rightarrow \alpha\beta IaaaIaaaIaaaE'\delta\gamma \stackrel{(*)}{\rightarrow} \alpha\beta E'IaaaIaaaIaaa\delta\gamma \rightarrow \alpha E\beta IaaaIaaaIaaa\delta\gamma \rightarrow

ightarrow aZaaIaaaIaaa\delta\gamma 
ightarrow aaZaIaaaIaaa\delta\gamma 
ightarrow aaaZIaaaIaaa\delta\gamma 
ightarrow
                                                                  \rightarrow aaaZaaaIaaa\delta\gamma \stackrel{(**)}{\rightarrow} aaaaaaaaaZ\delta\gamma \rightarrow aaaaaaaaaZ\gamma \rightarrow aaaaaaaaa
                                                                                  ■ Donde en (*) hemos aplicado reiteradas veces que aE' \rightarrow E'a y que
                                                                                                                                                IE' \rightarrow E'I.
```

- 3. $\{a^p \in \{a\}^* \mid p \text{ es primo}\}$
- 4. $\{a^n b^m \in \{a, b\}^* \mid n \leqslant m^2\}$

■ Donde en (**) hemos aplicado varias veces que $ZI \to Z$ y que $Za \to aZ$.

Figura 1.2: Autómata Finito Determinista del Ejercicio 1.2.1

Figura 1.3: Autómata Finito Determinista del Ejercicio 1.2.2

1.2. Autómatas Finitos

Ejercicio 1.2.1. Considera el siguiente Autómata Finito Determinista (AFD) dado por $M = (Q, A, \delta, q_0, F)$, donde:

- $Q = \{q_0, q_1, q_2\}$
- $A = \{0, 1\}$
- La función de transición viene dada por:

$$\delta(q_0, 0) = q_1,$$
 $\delta(q_0, 1) = q_0$
 $\delta(q_1, 0) = q_2,$ $\delta(q_1, 1) = q_0$
 $\delta(q_2, 0) = q_2,$ $\delta(q_2, 1) = q_2$

•
$$F = \{q_2\}$$

Describe informalmente el lenguaje aceptado.

Su representación gráfica está en la Figura 1.2.

Tenemos que el lenguaje aceptado por el autómata es el conjunto de todas las palabras que contienen la cadena 00 como subcadena. Es decir,

$$L = \{u_1 00u_2 \in \{0, 1\}^* \mid u_1, u_2 \in \{0, 1\}^*\}.$$

Ejercicio 1.2.2. Dado el AFD de la Figura 1.3, describir el lenguaje aceptado por dicho autómata.

El lenguaje aceptado por el autómata es el conjunto de todas las palabras que contienen un número par de a's. Es decir,

$$L = \{u \in \{a, b\}^* \mid n_a(u) \text{ es par, } n_a(u) > 0\},\$$

Ejercicio 1.2.3. Dibujar AFDs que acepten los siguientes lenguajes con alfabeto $\{0,1\}$:

1. El lenguaje vacío,

2. El lenguaje formado por la palabra vacía, es decir, $\{\varepsilon\},$

3. El lenguaje formado por la palabra 01, es decir, {01},

4. El lenguaje $\{11,00\}$,

5. El lenguaje $\{(01)^i \mid i \ge 0\},\$

6. El lenguaje formado por las cadenas con 0's y 1's donde el número de unos es divisible por 3.

Ejercicio 1.2.4. Obtener a partir de la gramática regular $G = (\{S, B\}, \{1, 0\}, P, S),$ con

$$P = \begin{cases} S \to 110B \\ B \to 0B \mid 1B \mid \varepsilon \end{cases}$$

un AFND que reconozca el lenguaje generado por esa gramática. El autómata obtenido es el de la Figura 1.4.

Figura 1.4: Autómata Finito No Determinista del Ejercicio 1.2.4

Ejercicio 1.2.5. Dada la gramática regular $G = (\{S\}, \{1, 0\}, P, S)$, con

$$P = \{S \to S10, S \to 0\},\$$

obtener un AFD que reconozca el lenguaje generado por esa gramática.

El lenguaje es:

$$L = \{0(10)^n \mid n \in \mathbb{N} \cup \{0\}\}.$$

El autómata obtenido es el de la Figura 1.5.

Figura 1.5: Autómata Finito Determinista del Ejercicio 1.2.5

Ejercicio 1.2.6. Construir un AFND o AFD (dependiendo del caso) que acepte las cadenas $u \in \{0,1\}^*$ que:

1. AFND. Contengan la subcadena 010.

El autómata obtenido es el de la Figura 1.6.

Figura 1.6: Autómata Finito No Determinista del Ejercicio 1.2.6 apartado 1.

2. AFND. Contengan la subcadena 110.

El autómata obtenido es el de la Figura 1.7.

Figura 1.7: Autómata Finito No Determinista del Ejercicio 1.2.6 apartado 2.

3. AFD. Contengan simultáneamente las subcadenas 010 y 110.

El estado q_0 representa que no se ha empezado ninguna de las subcadenas, y el estado q_F representa que se han encontrado ambas cadenas. Hay dos opciones:

Opción 1 Primero se lee 010 y luego 110. Son los siguientes estados:

- q_0 : Estado inicial, no ha empezado la subcadena 010.
- q_1 : Se ha leído el 0 de la subcadena 010.
- q_2 : Se ha leído la subcadena 01 de la subcadena 010.
- q_3 : Se ha leído la subcadena 010. No ha empezado la subcadena 110.

Figura 1.8: Autómata Finito Determinista del Ejercicio 1.2.6 apartado 3.

- q_4 : Se ha leído el 1 de la subcadena 110.
- q_5 : Se ha leído la subcadena 11 de la subcadena 110.
- ullet q_F : Se ha leído la subcadena 110. Se han leído ambas subcadenas.

Opción 2 Primero se lee 110 y luego 010. Son los siguientes estados:

- q_0 : Estado inicial, no ha empezado la subcadena 110.
- q_1' : Se ha leído el 1 de la subcadena 110.
- q_2' : Se ha leído la subcadena 11 de la subcadena 110.
- q_3' : Se ha leído la subcadena 110. Se ha leído el 0 de la subcadena 010. Notemos que en este caso podemos agruparlo, puesto que el último carácter de la subcadena 110 es el mismo que el primero de la subcadena 010.
- q_4' : Se ha leído la subcadena 01 de la subcadena 010.
- q_F : Se ha leído la subcadena 010. Se han leído ambas subcadenas.

El autómata obtenido es el de la Figura 1.8.

Ejercicio 1.2.7. Construir un AFD que acepte el lenguaje generado por la siguiente gramática:

$$S \to AB$$
, $A \to aA$, $A \to c$, $B \to bBb$, $B \to b$.

El lenguaje generado por la gramática es:

$$L = \{a^n c b^{2m+1} \mid n, m \in \mathbb{N} \cup \{0\}\}.$$

El autómata obtenido es el de la Figura 1.9.

Ejercicio 1.2.8. Construir un AFD que acepte el lenguaje $L \subseteq \{a, b, c\}^*$ de todas las palabras con un número impar de ocurrencias de la subcadena abc.

El autómata tiene los siguientes estados:

• q_0 : Llevo un número par de ocurrencias de abc, y no he empezado la siguiente.

Figura 1.9: Autómata Finito Determinista del Ejercicio 1.2.7

Figura 1.10: Autómata Finito Determinista del Ejercicio 1.2.8

- q_1 : Acabo de empezar una ocurrencia impar de abc, llevo solo una a.
- q_2 : Estoy en una ocurrencia impar de abc, llevo ab.
- q_3 : Llevo un número impar de ocurrencias de abc, y no he empezado la siguiente.
- $\bullet \ q_4$: Acabo de empezar una ocurrencia par de abc, llevo solo una a.
- q_5 : Estoy en una ocurrencia par de abc, llevo ab.

El autómata obtenido es el de la Figura 1.10.

Ejercicio 1.2.9. Sea L el lenguaje de todas las palabras sobre el alfabeto $\{0,1\}$ que no contienen dos 1s que estén separados por un número impar de símbolos. Describir un AFD que acepte este lenguaje.

Sea $u \in L$. Veamos que, a lo sumo, puede tener dos 1's. Supongamos por reducción al absurdo que tiene tres 1's. Entonces, entre la primera y la segunda hay un

Figura 1.11: Autómata Finito Determinista del Ejercicio 1.2.9.

número impar de símbolos, y entre la segunda y la tercera hay un número impar de símbolos. Por lo tanto, entre el primer y el tercer 1 hay:

- Un número par de símbolos antes del segundo 1.
- El segundo 1.
- Un número par de símbolos entre el segundo y el tercer 1.

Por tanto, como el número de símbolos entre el primer y el tercer 1 es impar, entonces $u \notin L$. Por lo tanto, u tiene a lo sumo dos 1's.

Por tanto, los estados son:

- q_0 : No se ha introducido ningún 1.
- q_p : Se ha introducido un 1, después de él y antes del siguiente 1 hay un número par de símbolos.
- q_i : Se ha introducido un 1, después de él y antes del siguiente 1 hay un número impar de símbolos.
- q_2 : Se han introducido dos 1's, y no se ha introducido ningún otro.
- \blacksquare E: Estado de error.

El autómata obtenido es el de la Figura 1.11.

Ejercicio 1.2.10. Dada la expresión regular $(a+\varepsilon)b^*$, encontrar un AFND asociado y, a partir de este, calcular un AFD que acepte el lenguaje.

El AFND con transiciones nulas obtenido (siguiendo el algoritmo) es el de la Figura 1.12.

Podemos simplificar este autómata para que así la transición al AFD sea más sencilla. El autómata simplificado es el de la Figura 1.13.

A partir de este autómata simplificado, obtenemos el AFD de la Figura 1.14.

Ejercicio 1.2.11. Obtener una expresión regular para el lenguaje complementario al aceptado por la gramática

$$S \to abA \mid B \mid baB \mid \varepsilon$$
, $A \to bS \mid b$, $B \to aS$.

Figura 1.12: Autómata Finito No Determinista algorítmico del Ejercicio 1.2.10.

Figura 1.13: Autómata Finito No Determinista simplificado del Ejercicio 1.2.10.

Figura 1.14: Autómata Finito Determinista del Ejercicio 1.2.10.

Figura 1.15: Autómata Finito Determinista del lenguaje $\mathcal{L}(S)$ del Ejercicio 1.2.11.

Observación. Construir un AFD asociado.

Esta gramática es lineal por la derecha. Algorítmicamente, obtenemos el autómata de la Figura 1.15 para el lenguaje generado por S, $\mathcal{L}(S)$.

Ahora, tendríamos que eliminar las transiciones nulas para poder así aplicar el algoritmo para hallar la expresión regular. Esto no es sencillo, por lo que vamos a intentar obtener de forma directa el AFD. Para ello, la gramática dada genera el mismo lenguaje que las siguientes reglas de producción, donde hemos eliminado la variable B:

$$S \to abA \mid aS \mid baaS \mid \varepsilon,$$
 $A \to bS \mid b$

Eliminamos ahora la variable A:

$$S \rightarrow abbS \mid abb \mid aS \mid baaS \mid \varepsilon$$

Veamos ahora que la regla $S \to abb$ no es relevante, ya que podemos obtenerla a partir de $S \to abbS$ y $S \to \varepsilon$. Por tanto, la gramática dada inicialmente genera el mismo lenguaje que si estas fuesen las reglas de producción:

$$S \rightarrow abbS \mid aS \mid baaS \mid \varepsilon$$

Por tanto, vemos que:

$$\mathcal{L}(G) = \{abb, a, baa\}^*.$$

En consecuencia, la expresión regular asociada a $\mathcal{L}(G)$ es:

$$(abb + a + baa)^*$$

Figura 1.16: Autómata Finito Determinista del lenguaje $\mathcal{L}(G)$ del Ejercicio 1.2.11.

Figura 1.17: Autómata Finito Determinista del lenguaje $\overline{\mathcal{L}(G)}$ del Ejercicio 1.2.11.

El AFD asociado a esta expresión regular es el de la Figura 1.16.

Por tanto, el autómata finito determinista asociado al lenguaje complementario de $\mathcal{L}(G)$ es el de la Figura 1.17.

Buscamos ahora una expresión para $\overline{\mathcal{L}(G)}$. Resolvemos el siguiente sistema:

$$\begin{cases} q_0 &= aq_0 + bq_1 \\ q_1 &= bq_0 + aq_2 + \varepsilon \\ q_2 &= aq_0 + bq_E + \varepsilon \\ q_E &= aq_E + bq_E + \varepsilon \end{cases}$$

De la última ecuación, obtenemos que $q_E = (a + b)^*$. El sistema queda:

$$\begin{cases} q_0 = aq_0 + bq_1 \\ q_1 = bq_0 + aq_2 + \varepsilon \\ q_2 = aq_0 + b(a+b)^* + \varepsilon \end{cases}$$

Sustituyendo q_2 , obtenemos:

$$\begin{cases} q_0 = aq_0 + bq_1 \\ q_1 = bq_0 + a(aq_0 + b(a+b)^* + \varepsilon) + \varepsilon \end{cases}$$

Tenemos que:

$$q_1 = (b + aa)q_0 + ab(a+b)^* + a + \varepsilon$$

Figura 1.18: AFD del lenguaje del Ejercicio 1.2.12 apartado 3.

Sustituyendo, tenemos que:

$$q_0 = aq_0 + b [(b + aa)q_0 + ab(a + b)^* + a + \varepsilon] =$$

$$= (a + b(b + aa))q_0 + bab(a + b)^* + ba + b \stackrel{(*)}{=}$$

$$\stackrel{(*)}{=} (a + b(b + aa))^* (bab(a + b)^* + ba + b)$$

donde en (*) hemos aplicado el Lema de Arden. Por tanto, la expresión regular asociada a $\overline{\mathcal{L}(G)}$ es:

$$(a + b(b + aa))^*(bab(a + b)^* + ba + b)$$

Ejercicio 1.2.12. Dar expresiones regulares para los lenguajes sobre el alfabeto $\{a,b\}$ dados por las siguientes condiciones:

1. Palabras que no contienen la subcadena a,

 b^*

2. Palabras que no contienen la subcadena ab.

 b^*a^*

3. Palabras que no contienen la subcadena aba.

Este lenguaje viene descrito por el autómata de la Figura 1.18.

Obtenemos la expresión regular asociada al lenguaje del autómata de la Figura 1.18.

$$\begin{cases} q_0 = bq_0 + aq_1 + \varepsilon \\ q_1 = aq_1 + bq_2 + \varepsilon \\ q_2 = bq_0 + aE + \varepsilon \\ E = aE + bE \end{cases}$$

Usando el Lema de Arden, obtenemos que $E = (a + b)^*$. Sustituyendo, obtenemos:

$$\begin{cases} q_0 = bq_0 + aq_1 + \varepsilon \\ q_1 = aq_1 + bq_2 + \varepsilon \\ q_2 = bq_0 + a(a+b)^* + \varepsilon \end{cases}$$

Sustituyendo q_2 , obtenemos:

$$\begin{cases} q_0 = bq_0 + aq_1 + \varepsilon \\ q_1 = aq_1 + b(bq_0 + a(a+b)^* + \varepsilon) + \varepsilon \end{cases}$$

Usando el Lema de Arden, obtenemos que:

$$q_1 = a^* [b(bq_0 + a(a+b)^* + \varepsilon) + \varepsilon]$$

Sustituyendo en la primera ecuación, tenemos que:

$$q_0 = bq_0 + aa^*[b(bq_0 + a(a+b)^* + \varepsilon) + \varepsilon] + \varepsilon =$$

$$= bq_0 + aa^*[bbq_0 + ba(a+b)^* + b + \varepsilon] + \varepsilon =$$

$$= (b + aa^*bb)q_0 + aa^*[ba(a+b)^* + b + \varepsilon] + \varepsilon \stackrel{(*)}{=}$$

$$\stackrel{(*)}{=} (b + aa^*bb)^*[aa^*(ba(a+b)^* + b + \varepsilon) + \varepsilon]$$

donde en (*) hemos aplicado el Lema de Arden. Por tanto, la expresión regular asociada al lenguaje del autómata de la Figura 1.18 es:

$$(b + aa^*bb)^*[aa^*(ba(a+b)^* + b + \varepsilon) + \varepsilon]$$

Ejercicio 1.2.13. Determinar si el lenguaje generado por la siguiente gramática es regular:

$$S \to AabB$$
, $A \to aA \mid bA \mid \varepsilon$, $B \to Bab \mid Bb \mid ab \mid b$.

En caso de que lo sea, encontrar una expresión regular asociada.

Es directo ver que el lenguaje generado por la gramática tiene como expresión regular asociada:

$$(a+b)^*ab(ab+b)^+.$$

Por tanto, el lenguaje es regular.

Ejercicio 1.2.14. Sobre el alfabeto $A = \{0, 1\}$ realizar las siguientes tareas:

1. Describir un autómata finito determinista que acepte todas las palabras que contengan a 011 o a 010 (o las dos) como subcadenas.

Tenemos los siguientes estados:

- q_0 : No se ha empezado ninguna subcadena.
- q_1 : Se ha empezado una subcadena deseada. Tengo el carácter 0.
- q_2 : Se continúa la subcadena deseada. Tengo los caracteres 01.
- $\underline{q_3}$: Se ha encontrado la subcadena deseada. Tengo los caracteres 011 o $\overline{010}$.

El autómata obtenido es el de la Figura 1.19.

Figura 1.19: Autómata Finito Determinista del Ejercicio 1.2.14 apartado 1.

Figura 1.20: Autómata Finito Determinista del Ejercicio 1.2.14 apartado 2.

2. Describir un autómata finito determinista que acepte todas las palabras que empiecen o terminen (o ambas cosas) por 01.

Tenemos los siguientes estados:

- q_0 : No hemos leído nada.
- $\underline{q_1}$: Hemos empezado con un 0, por lo que puede comenzar por 01 (o terminar por 01).
- q_2 : Hemos empezado con 01, por lo que ya no hay más restricciones.
- q_3 : No hemos empezado por 01, por lo que ha de terminar por 01.
- $\underline{q_4}$: Ha de terminar por 01, y estamos en 0, por lo que si introduce un 1 puede terminar.
- $\underline{q_5}$: Ha de terminar por 01, y acabamos de leer 01, por lo que podemos terminar.

El autómata obtenido es el de la Figura 1.20.

3. Dar una expresión regular para el conjunto de las palabras en las que hay dos ceros separados por un número de símbolos que es múltiplo de 4 (los símbolos que separan los ceros pueden ser ceros y puede haber otros símbolos delante o detrás de estos dos ceros).

$$(0+1)^*$$
⁰ $((0+1)(0+1)(0+1)(0+1))^*$ ⁰ $(0+1)^*$

Notemos que los dos 0's en cuestión están marcados en rojo para facilitar la comprensión.

4. Dar una expresión regular para las palabras en las que el número de ceros es divisible por 4.

En un primer momento, podríamos pensar en:

$$(1*01*01*01*01*)*$$

No obstante, una palabra con 1's y sin 0's, que es aceptada por el lenguaje, no está contemplada en la expresión regular. La expresión regular correcta es:

$$(1*01*01*01*0)*1*$$

Ejercicio 1.2.15. Construye una gramática regular que genere el siguiente lenguaje:

$$L_1 = \{u \in \{0, 1\}^* \mid \text{el número de 1's y de 0's es impar}\}.$$

Tenemos los siguientes estados:

- E_{01} : Tenemos un error en 0 y 1, ya que el número de 0's y de 1's es par.
- $\underline{E_0}$: Tenemos un error en 0, ya que el número de 0's es par. El número de 1's es impar.
- $\underline{E_1}$: Tenemos un error en 1, ya que el número de 1's es par. El número de 0's es impar.
- X: No tenemos errores. El número de 0's y de 1's es impar.

La gramática obtenida es $G = (\{E_{01}, E_0, E_1, X\}, \{0, 1\}, P, E_{01}),$ donde P es:

$$E_{01} \rightarrow 0E_1 \mid 1E_0,$$

$$E_0 \rightarrow 0X \mid 1E_{01},$$

$$E_1 \rightarrow 0E_{01} \mid 1X,$$

$$X \rightarrow 0E_0 \mid 1E_1 \mid \varepsilon$$

Ejercicio 1.2.16. Encuentra una expresión regular que represente el siguiente lenguaje:

$$L_2 = \{0^n 1^m \mid n \ge 1, m \ge 0, n \text{ múltiplo de 3 y } m \text{ es par}\}.$$

La expresión regular es:

$$(000)^+(11)^*$$

Ejercicio 1.2.17. Diseña un autómata finito determinista que reconozca el siguiente lenguaje:

 $L_3 = \{u \in \{0,1\}^* \mid \text{el número de 1's no es múltiplo de 3 y el número de 0's es par}\}.$

Sean n_0 el número de 0's y n_1 el número de 1's.

Tenemos la siguiente disposición de estados:

Figura 1.21: Autómata Finito Determinista del Ejercicio 1.2.17

Figura 1.22: Autómata Finito Determinista del Ejercicio 1.2.18

- Los estados de arriba representan $n_0 \mod 2 = 0$.
- Los estados de abajo representan $n_0 \mod 2 = 1$.
- Los estados de la primera columna representan $n_1 \mod 3 = 0$.
- Los estados de la segunda columna representan $n_1 \mod 3 = 1$.
- Los estados de la tercera columna representan $n_1 \mod 3 = 2$.

El estado q_{ij} representa $n_0 \mod 2 = i \ y \ n_1 \mod 3 = j$.

El autómata obtenido es el de la Figura 1.21.

Ejercicio 1.2.18. Dar una expresión regular para el lenguaje aceptado por el autómata de la Figura 1.22.

Establecemos una ecuación por cada uno de los estados. El sistema inicial es:

$$\begin{cases} q_0 = \varepsilon + aq_1 + bq_1, \\ q_1 = aq_1 + bq_2, \\ q_2 = \varepsilon + aq_0 + bq_1. \end{cases}$$

Buscamos obtener la expresión regular asociada a q_1 :

$$q_1 = aq_1 + b + baq_0 + bbq_1 =$$

= $baq_0 + b + (a + bb)q_1 \stackrel{(*)}{=}$
 $\stackrel{(*)}{=} (a + bb)^*(baq_0 + b)$

donde en (*) hemos aplicado el Lema de Arden. Sustituyendo en la ecuación de q_0 obtenemos:

$$q_{0} = \varepsilon + (a+b)q_{1} =$$

$$= \varepsilon + (a+b)(a+bb)^{*}(baq_{0}+b) =$$

$$= \varepsilon + (a+b)(a+bb)^{*}b + (a+b)(a+bb)^{*}baq_{0} \stackrel{(*)}{=}$$

$$\stackrel{(*)}{=} ((a+b)(a+bb)^{*}ba)^{*}(\varepsilon + (a+b)(a+bb)^{*}b)$$

donde, de nuevo, en (*) hemos aplicado el Lema de Arden. Por tanto, la expresión regular asociada al autómata es:

$$((a+b)(a+bb)^*ba)^*(\varepsilon + (a+b)(a+bb)^*b).$$

Ejercicio 1.2.19. Dado el lenguaje

$$L = \{u110 \mid u \in \{1, 0\}^*\},\$$

encontrar la expresión regular, la gramática lineal por la derecha, la gramática lineal por la izquierda y el AFD asociado.

La expresión regular es:

$$(0+1)^*110.$$

La gramática lineal por la derecha es $G = (\{S, A\}, \{0, 1\}, P, S),$ donde P es:

$$S \to 0S \mid 1S \mid A$$
$$A \to 110.$$

La gramática lineal por la izquierda es $G = (\{S,A\},\{0,1\},P',S)$, donde P' es:

$$S \to X110$$
$$X \to X0 \mid X1 \mid \varepsilon.$$

El AFD asociado es el de la Figura 1.23. Sus estados son:

- q_0 : No estoy en la cadena 110 final.
- q_1 : He leído un 1 de la cadena final.
- q_2 : He leído un 11 de la cadena final.
- q_3 : He leído un 110 de la cadena final.

Figura 1.23: Autómata Finito Determinista del Ejercicio 1.2.19

Figura 1.24: Autómata Finito Determinista del Ejercicio 1.2.21

Ejercicio 1.2.20. Dado un AFD, determinar el proceso que habría que seguir para construir una gramática lineal por la izquierda capaz de generar el Lenguaje aceptado por dicho autómata.

Sea $M=(Q,A,\delta,q_0,F)$ un AFD. Como Q es finito, podemos enumerar los estados como $Q=\{q_1,q_2,\ldots,q_n\}$. La Gramática Lineal por la Izquierda asociada es $G=(Q\cup\{S\},A,P,S)$, donde hemos supuesto $S\notin Q$ debido a nuestra enumeración de los estados. Las reglas de producción son:

$$P = \begin{cases} S \rightarrow q_i & \forall q_i \in F \\ q_i \rightarrow q_j a & \forall q_i, q_j \in Q, a \in A \mid \delta(q_j, a) = q_i \\ q_0 \rightarrow \varepsilon. \end{cases}$$

Notemos que lo que hacemos es invertir el autómata, obtener la gramática lineal por la derecha, y después invertir las reglas de producción de esta última.

Ejercicio 1.2.21. Construir un autómata finito determinista que acepte el lenguaje de todas las palabras sobre el alfabeto $\{0,1\}$ que no contengan la subcadena 001. Construir una gramática regular por la izquierda a partir de dicho autómata.

Los estados son los siguientes:

- q_0 : No se ha empezado la subcadena 001
- q_1 : Se ha leído un 0 de la subcadena 001.
- q_2 : Se ha leído un 00 de la subcadena 001.
- \underline{E} : Se ha leído la subcadena 001, por lo que es el estado de error.

El autómata obtenido es el de la Figura 1.24.

Respecto a la gramática regular por la izquierda, usando el algoritmo descrito en el apartado anterior, tenemos que la gramática es $G = (Q \cup \{S\}, \{0, 1\}, P, S)$, donde P es:

$$P = \begin{cases} S \to q_0 \mid q_1 \mid q_2, \\ q_0 \to q_0 1 \mid q_1 1 \mid \varepsilon \\ q_1 \to q_0 0, \\ q_2 \to q_1 0 \mid q_2 0, \\ E \to E 0 \mid E 1 \mid q_2 1, \end{cases}$$

Ejercicio 1.2.22. Sea $B_n = \{a^k \mid k \text{ es múltiplo de } n\}$. Demostrar que B_n es regular para todo n.

Fijado $n \in \mathbb{N}$, la expresión regular correspondiente es:

$$(a \overset{n \text{ veces}}{\longleftrightarrow} a)^* = (a^n)^*$$

Equivalentemente, usando la notación de las expresiones regulares de UNIX, la expresión regular sería:

$$(a\{n\})^*$$

Ejercicio 1.2.23. Sea A un alfabeto. Decimos que $u \in A^*$ es un prefijo de $v \in A^*$ si existe $w \in A^*$ tal que uw = v. Decimos que u es un prefijo propio de v si además $u \neq v$ y $u \neq \varepsilon$. Demostrar que si L es regular, también lo son los lenguajes siguientes:

1. NOPREFIJO $(L) = \{u \in L \mid \text{ningún prefijo propio de } u \text{ pertenece a } L\},$

Como L es regular, existe un AFD $M = (Q, A, \delta, q_0, F)$ tal que $L = \mathcal{L}(M)$. Construimos un AFD $M' = (Q \cup \{E\}, A, \delta', q_0, F)$, donde E es un estado de error $(E \notin Q)$ y δ' es:

$$\begin{cases} \delta'(q, a) = \delta(q, a) & \forall q \in Q \setminus F, a \in A \\ \delta'(q, a) = E & \forall q \in F, a \in A \\ \delta'(E, a) = E & \forall a \in A \end{cases}$$

Demostramos mediante doble inclusión que NOPREFIJO $(L) = \mathcal{L}(M')$.

- \subseteq) Sea $u \in \text{NOPREFIJO}(L)$. Entonces, por definición de NOPREFIJO(L), $u \in L$. Por tanto, $\exists q \in F$ tal que $\delta^*(q_0, u) = q$. Para ver que $u \in \mathcal{L}(M')$, basta ver que $(\delta')^*(q_0, u) \in F$.
 - Como u no tiene prefijos propios en L, entonces $\delta^*(q_0, u') \notin F$ para todo prefijo propio u' de u; es decir, en los pasos de cálculo desde q_0 hasta $\delta^*(q_0, u)$ no se pasa por ningún estado final. Por tanto, como en esos casos $\delta' = \delta$, entonces $\delta^*(q_0, u) = q \in F$, por lo que $u \in \mathcal{L}(M')$.
- \supseteq) Sea $u \in \mathcal{L}(M')$. En primer lugar, tenemos que $(\delta')^*(q_0, u) \in F$. Veamos ahora que los pasos de cálculo desde q_0 hasta $(\delta')^*(q_0, u)$ leyendo u no son ninguno finales.

Si alguno de ellos fuese final (si u tuviese algún prefijo propio $v \in L$), entonces desde él pasaríamos a E, y de este estado no final no saldríamos, llegando a contradicción. Por tanto, u no tiene prefijos propios pertenecientes a L. Además, como en estos casos $\delta' = \delta$, tenemos que $\delta^*(q_0, u) \in F$, luego $u \in L$. De esta forma, $u \in \text{NOPREFIJO}(L)$.

2. NOEXTENSION(L) = { $u \in L \mid u$ no es un prefijo propio de ninguna palabra de L}. Como L es regular, existe un AFD $M = (Q, A, \delta, q_0, F)$ tal que $L = \mathcal{L}(M)$. Construimos un AFD $M' = (Q, A, \delta, q_0, F')$, donde:

$$F' = \{ q \in F \mid \delta^*(q, u) \notin F, \forall u \in A^* \}$$

Demostramos mediante doble inclusión que NOEXTENSION $(L) = \mathcal{L}(M')$.

- Sea $u \in \text{NOEXTENSION}(L)$. Entonces, por definición de NOEXTENSION(L), $u \in L$. Por tanto, $\exists q \in F$ tal que $\delta^*(q_0, u) = q$. Para ver que $u \in \mathcal{L}(M')$, basta ver que $q \in F'$.

 Supongamos por reducción al absurdo $q \notin F'$. Entonces, $\exists v \in A^*$ tal que $\delta^*(q, v) \in F$. Pero entonces, $\delta^*(q_0, uv) = \delta^*(\delta^*(q_0, u), v) = \delta^*(q, v) \in F$, por lo que $uv \in L$ y, por tanto, u es prefijo propio de uv, lo cual es una contradicción. Por tanto, $q \in F'$ y, por tanto, $u \in \mathcal{L}(M')$.
- luego $u \in L$. Veamos ahora que u no es prefijo propio de ninguna palabra de L.

 Supongamos por reducción al absurdo que u es prefijo propio de alguna palabra de L. Entonces, $\exists v \in A^* \setminus \{\varepsilon\}$ tal que $uv \in L$. Por tanto, $\delta^*(q_0, uv) \in F$. Pero entonces, $\delta^*(q_0, uv) = \delta^*(\delta^*(q_0, u), v) = \delta^*(q, v) \in F$. No obstante, hemos demostrado entonces que $q \notin F'$, lo cual es una contradicción. Por tanto, u no es prefijo propio de ninguna palabra de L y, por tanto, $u \in \text{NOEXTENSION}(L)$.

 \supseteq) Sea $u \in \mathcal{L}(M')$. En primer lugar, tenemos que $\delta^*(q_0, u) = q \in F' \subset F$,

Ejercicio 1.2.24. Si $L \subseteq A^*$, define la relación \equiv en A^* como sigue: si $u, v \in A^*$, entonces $u \equiv v$ si y solo si para toda $z \in A^*$, tenemos que $(uz \in L \Leftrightarrow vz \in L)$.

1. Demostrar que \equiv es una relación de equivalencia.

Veamos las tres propiedades de las relaciones de equivalencia:

- Reflexiva: Sea $u \in A^*$. Entonces, para todo $z \in A^*$, tenemos trivialmente que $(uz \in L \Leftrightarrow uz \in L)$. Por tanto, $u \equiv u$.
- Simétrica: Sean $u, v \in A^*$ tales que $u \equiv v$. Entonces, para todo $z \in A^*$, tenemos que $(uz \in L \Leftrightarrow vz \in L)$. Por tanto, para todo $z \in A^*$, tenemos que $(vz \in L \Leftrightarrow uz \in L)$, lo cual implica que $v \equiv u$.
- Transitiva: Sean $u, v, w \in A^*$ tales que $u \equiv v$ y $v \equiv w$. Entonces, para todo $z \in A^*$, tenemos que $(uz \in L \Leftrightarrow vz \in L)$ y $(vz \in L \Leftrightarrow wz \in L)$. Por tanto, para todo $z \in A^*$, tenemos que $(uz \in L \Leftrightarrow wz \in L)$, lo cual implica que $u \equiv w$.

Tenemos por tanto que \equiv es una relación de equivalencia.

2. Calcular las clases de equivalencia de $L = \{a^i b^i \mid i \ge 0\}$.

En este caso, $A = \{a, b\}$. La primera clase de equivalencia que encontramos es las palabras que, le añadamos al final lo que le añadamos, no pertenecen al lenguaje. Es decir:

$$[u \in A^* \mid \text{en } u \text{ hay una } a \text{ después de una } b \quad \forall \quad u = a^i b^j, \ j > i]$$

Por comodidad, ya que $b \notin L$, considerando este representante de clase de equivalencia, notaremos a esta clase de equivalencia con [b]. Además, para cada $k \in \mathbb{N} \cup \{0\}$, tenemos:

$$[a_k] =: \{a^{k+j}b^j \mid j \in \mathbb{N} \cup \{0\}\}$$

Veamos en primer lugar que no hay más clases de equivalencia. Dado $u \in A^*$, si u tiene una a después de una b, entonces $u \in [b]$. En caso contrario, tenemos $u = a^i b^j$ con $i, j \in \mathbb{N} \cup \{0\}$.

- Si j > i, entonces $u \in [b]$.
- Si $j \leq i$, entonces $u \in [a_{i-j}]$.

Por tanto, tenemos que no hay más clases de equivalencia. Veamos ahora que estas clases de equivalencia son disjuntas.

- Sea $u \in [b]$. Si u tiene una a después de una b, entonces de forma directa $\nexists k \in \mathbb{N} \cup \{0\}$ tal que $u \in [a_k]$, ya que las palabras de estas clase de equivalencia son casos particulares de a^*b^* . Por otro lado, si $u = a^ib^j$ con j > i, entonces para que sea de la forma $a^{k+j}b^j$ es necesario que k+j=i, por lo que k=i-j<0, luego $\nexists k \in \mathbb{N} \cup \{0\}$ tal que $u \in [a_k]$. En conclusión, vemos que $[b] \cap [a_k] = \emptyset$ para todo $k \in \mathbb{N} \cup \{0\}$.
- Sean $k_1, k_2 \in \mathbb{N} \cup \{0\}$ tales que $k_1 \neq k_2$. Supongamos que $[a_{k_1}] \cap [a_{k_2}] \neq \emptyset$. Entonces, $\exists u \in A^*$ tal que $u \in [a_{k_1}] \cap [a_{k_2}]$. Por tanto, tenemos que $u = a^{k_1+j_1}b^{j_1} = a^{k_2+j_2}b^{j_2}$ con $j_1, j_2 \in \mathbb{N} \cup \{0\}$. Igualando las potencias de a y b, tenemos que $k_1+j_1=k_2+j_2$ y $j_1=j_2$. Por tanto, $k_1=k_2$, lo cual es una contradicción. Por tanto, $[a_{k_1}] \cap [a_{k_2}] = \emptyset$ para todo $k_1, k_2 \in \mathbb{N} \cup \{0\}$ tales que $k_1 \neq k_2$.

Por tanto, vemos que las clases de equivalencia de L son [b] y $[a_k]$ para todo $k \in \mathbb{N} \cup \{0\}$. Notemos que:

- [b] es la clase de equivalencia de las palabras que, le añadamos al final lo que le añadamos, no pertenecen al lenguaje. Para cualquier par $u, v \in [b]$, tenemos que, para todo $z \in A^*$, $uz \in L \Leftrightarrow vz \in L$ es cierto por vacuidad, puesto que en ambos casos $uz, vz \notin L$.
- $[a_0]$ es la clase de equivalencia de las palabras que pertenecen al lenguaje. Para cualquier par $u,v\in[a_0]$, tenemos que, para todo $z\in A^*,\,uz\in L\Leftrightarrow vz\in L$ es cierto. Tomando $z=\varepsilon$, tenemos que $u=uz,v=vz\in L$; mientras que si $z\neq\varepsilon$, entonces $uz,vz\notin L$.

- $[a_k]$ para $k \neq 0$ es la clase de equivalencia de las palabras que tan solo pertenecen al lenguaje al concatenarles b^k . Para cualquier par $u, v \in [a_k]$, tenemos que, para todo $z \in A^*$, $uz \in L \Leftrightarrow vz \in L$ es cierto. Tomando $z = b^k$, tenemos que $ub^k, vb^k \in L$; mientras que si $z \neq b^k$, entonces $uz, vz \notin L$.
- 3. Calcular las clases de equivalencia de $L = \{a^i b^j \mid i, j \ge 0\}$.

La primera clase de equivalencia que encontramos es las palabras que, le añadamos al final lo que le añadamos, no pertenecen al lenguaje. Es decir:

$$[u \in A^* \mid \text{en } u \text{ hay una } a \text{ después de una } b]$$

Por comodidad, ya que $ba \notin L$, considerando este representante de clase de equivalencia, notaremos a esta clase de equivalencia con [ba]. Además, tenemos dos clases de equivalencia más:

$$[a] = \{a^i \mid i \in \mathbb{N} \cup \{0\}\}\$$
$$[ab] = \{a^i b^j \mid i \in \mathbb{N} \cup \{0\}, j \in \mathbb{N}\}\$$

Veamos en primer lugar que no hay más clases de equivalencia. Dado $u \in A^*$, si u tiene una a después de una b, entonces $u \in [ba]$. En caso contrario, tenemos $u = a^i b^j$ con $i, j \in \mathbb{N} \cup \{0\}$.

- Si j = 0, entonces $u \in [a]$.
- Si j > 0, entonces $u \in [ab]$.

Por tanto, tenemos que no hay más clases de equivalencia. Veamos ahora que estas clases de equivalencia son disjuntas.

- Sea $u \in [ba]$. Como u tiene una a después de una b, entonces de forma directa tenemos que $u \notin [a], [ab]$. En conclusión, vemos que $[ba] \cap [a] = [ba] \cap [ab] = \emptyset$.
- Sea $u \in [ab]$. Como $u = a^i b^j$ con $i, j \in \mathbb{N} \cup \{0\}$ con $j \neq 0$, entonces $u \notin [a]$. Por tanto, vemos que $[ab] \cap [a] = \emptyset$.

Por tanto, vemos que las clases de equivalencia de L son [ba], [a] y [ab]; y estas son disjuntas.

4. Demostrar que L es aceptado por un autómata finito determinista si y solo si el número de clases de equivalencia es finito.

Demostramos mediante doble inclusión.

 \Longrightarrow) Supongamos que L es aceptado por un autómata finito determinista. Sea $M=(Q,A,\delta,q_0,F)$ su AFD minimal que acepta L. Supongamos $u,v\in A^*$ tales que $u\equiv v$. Sean:

$$q_u := \delta^*(q_0, u) \in F,$$

$$q_v := \delta^*(q_0, v) \in F.$$

Veamos ahora que q_u, q_v son indistingibles, es decir, $q_u = q_v$.

■ Para todo $z \in A^*$, como $u \equiv v$, se tiene que:

$$uz \in L \Leftrightarrow vz \in L$$
.

Equivalentemente, tenemos que:

$$\delta^*(\delta^*(q_0, u), z) \in F \iff \delta^*(\delta^*(q_0, v), z) \in F$$

Es decir:

$$\delta^*(q_u, z) \in F \iff \delta^*(q_v, z) \in F$$

Por tanto, q_u y q_v son indistinguibles; y como el autómata es minimal, $q_u = q_v$.

Por tanto, hemos demostrado que si $u \equiv v$, entonces $\delta^*(q_0, u) = \delta^*(q_0, v)$, por lo que el número de clases de equivalencia es menor o igual que el número de estados de Q. Como Q es finito, el número de clases de equivalencia también lo es finito.

- \Leftarrow) Supongamos que el número de clases de equivalencia es finito. Sea el autómata $M=(Q,A,\delta,q_0,F)$, donde:
 - $lackbox{ }Q$ es el conjunto de clases de equivalencia de L,
 - $q_0 = [\varepsilon],$
 - $\delta([u], a) = [ua]$. Veamos que está bien definida. Sea $u, v \in A^*$ tales que $u \equiv v$, y veamos que, para todo $a \in A$, $ua \equiv va$. Como $u \equiv v$, para todo $z \in A^*$, tenemos que:

$$uz \in L \Leftrightarrow vz \in L$$
.

Por tanto, tomando z = az', con $z' \in L$, tenemos que:

$$uaz' \in L \Leftrightarrow vaz' \in L$$
.

Es decir, $ua \equiv va$. Por tanto, δ está bien definida.

■ $F = \{[u] \in Q \mid u \in L\}$. Para ver que F está bien definida, veamos que, si $u \equiv v$, entonces $u \in L \iff v \in L$. Esto es directo tomando $z = \varepsilon$.

Veamos ahora que $L = \mathcal{L}(M)$.

$$u \in \mathcal{L}(M) \iff \delta^*(q_0, u) \in F \iff \delta^*([\varepsilon], u) \in F \iff [\varepsilon u] \in F \iff [u] \in F \iff u \in L$$

5. ¿Qué relación existe entre el número de clases de equivalencia y el autómata finito minimal que acepta L?

Veamos que el autómata descrito en el apartado anterior es minimal. En primer lugar, hemos de demostrar que no tiene estados inaccesibles.

■ Sea $q \in Q$ una clase de equivalencia de L. Tomando un representante $u \in q$, tenemos que $\delta^*(q_0, u) = q$. Por tanto, q es accesible.

Veamos ahora que no tiene estados indistingibles.

■ Sean $q_1, q_2 \in Q$ clases de equivalencia distintas de L. Tomando representantes $u_1 \in q_1, u_2 \in q_2$, tenemos que:

$$\delta^*(q_0, u_1) = [u_1] = q_1,$$

$$\delta^*(q_0, u_2) = [u_2] = q_2.$$

Entonces, como son clases de equivalencia distintas, $u_1 \not\equiv u_2$, lo cual implica que $\exists z \in A^*$ tal que $u_1z \in L$ y $u_2z \notin L$ o viceversa. Supongamos sin pérdida de generalidad el primer caso, luego:

$$\exists z \in A^* \mid u_1 z \in L \quad \land \quad u_2 z \notin L \iff \delta^*(q_0, u_1 z) \in F \quad \land \quad \delta^*(q_0, u_2 z) \notin F$$

Por tanto, q_1 y q_2 no son indistinguibles.

Por tanto, hemos visto que todos los estados de Q son accesibles y no son indistinguibles, por lo que el autómata M del ejercicio anterior es minimal. Por tanto, la relación es que el número de clases de equivalencia es igual al número de estados del autómata finito minimal que acepta L.

Ejercicio 1.2.25. Dada una palabra $u = a_1 \cdots a_n \in A^*$, se llama Per(u) al conjunto

$$\{a_{\sigma(1)},\ldots,a_{\sigma(n)}\mid \sigma \text{ es una permutación de } \{1,\ldots,n\}\}.$$

Dado un lenguaje L, se llama $\operatorname{Per}(L) = \bigcup_{u \in L} \operatorname{Per}(u)$. Dar expresiones regulares y autómatas minimales para $\operatorname{Per}(L)$ en los siguientes casos:

1.
$$L = (00 + 1)^*$$

Tenemos que:

$$Per(L) = \{ u \in A^* \mid n_0(u) \text{ es par} \}$$

Su autómata finito minimal es:

Este es de forma directa minimal, puesto que sus dos estados son distinguibles al ser uno final y el otro no. Para obtener la expresión regular, resolvemos el sistema de ecuaciones:

$$q_0 = 1q_0 + 0q_1 + \varepsilon$$
$$q_1 = 1q_1 + 0q_0$$

De la segunda ecuación, obtenemos $q_1 = 1*0q_0$. Sustituyendo en la primera, obtenemos:

$$q_0 = 1q_0 + 0(1^*0q_0) + \varepsilon$$

$$q_0 = 1q_0 + 01^*0q_0 + \varepsilon$$

$$q_0 = (1 + 01^*0)q_0 + \varepsilon$$

$$q_0 = (1 + 01^*0)^*$$

De forma directa, podríamos haber obtenido la siguiente expresión regular:

$$1*(01*01*)*$$

2. $L = (0+1)^*0$,

Tenemos que $Per(L) = \{u \in A^* \mid n_0(u) > 0\}$. Su autómata finito minimal es:

Este es de forma directa minimal, puesto que sus dos estados son distinguibles al ser uno final y el otro no. Para obtener la expresión regular, resolvemos el sistema de ecuaciones:

$$q_0 = 1q_0 + 0q_1$$

 $q_1 = (0+1)q_1 + \varepsilon$

Tenemos por tanto que $q_1 = (0+1)^*$, y sustituyendo en la primera ecuación, obtenemos:

$$q_0 = 1q_0 + 0(0+1)^* = 1^* \frac{0}{0}(0+1)^*$$

3. $L = (01)^*$.

Tenemos que $\operatorname{Per}(L) = \{u \in A^* \mid n_0(u) = n_1(u)\}$. En este caso, veamos que el lenguaje no es regular usando el Lema de Bombeo. Para todo $n \in \mathbb{N}$, consideramos la palabra $z = 0^n 1^n$, que cumple $|z| \ge n$. Si consideramos una descomposición z = uvw con $|uv| \le n$ y $|v| \ge 1$, tenemos que:

$$u = 0^k$$
, $v = 0^l$, $w = 0^{n-k-l}1^n$, $con k + l \le n, l \ge 1$

Entonces, tomando i=2, tenemos que $uv^2w=0^{n+l}1^n\notin L.$ Por tanto, L no es regular.

¿Es posible que, siendo L regular, Per(L) no lo sea?

Como hemos visto en el apartado anterior, el lenguaje $L=(01)^*$ es regular, pero su permutación no lo es. Por tanto, es posible que, siendo L regular, Per(L) no lo sea.

1.3. Propiedades de los Lenguajes Regulares

Ejercicio 1.3.1. Determinar si los siguientes lenguajes son regulares o libres de contexto. Justificar las respuestas.

- 1. $\{0^i b^j \mid i = 2j \text{ ó } 2i = j\}$
- 2. $\{uu^{-1} \mid u \in \{0,1\}^*, |u| \leq 1000\}$
- 3. $\{uu^{-1} \mid u \in \{0,1\}^*, |u| \geqslant 1000\}$
- 4. $\{0^i 1^j 2^k \mid i = j \text{ ó } j = k\}$

Ejercicio 1.3.2. Determinar qué lenguajes son regulares o libres de contexto de los siguientes:

- a) $\{u0u^{-1} \mid u \in \{0,1\}^*\}$
- b) Números en binerio que sean múltiplos de 4
- c) Palabras de $\{0,1\}^*$ que no contienen la subcadena 0110.

Ejercicio 1.3.3. Determinar qué lenguajes son regulares y qué lenguajes son libres de contexto entre los siguientes:

- a) Conjunto de palabras sobre el alfabeto $\{0,1\}$ en las que cada 1 va precedido por un número par de ceros.
- b) Conjunto $\{0^i1^2j0^{i+j}\mid i,j\geqslant 0\}$
- c) Conjunto $\{0^i1^j0^{i*j} \mid i,j \geqslant 0\}$

Ejercicio 1.3.4. Determina si los siguientes lenguajes son regulares. Encuentra una gramática que los genere o un reconocedor que los acepte.

- a) $L_1 = \{0^i 1^j \mid j < i\}.$
- b) $L_2 = \{001^i 0^j \mid i, j \geqslant 1\}.$
- c) $L_3 = \{010u \mid u \in \{0,1\}^*, u \text{ no contiene la subcadena } 010\}.$

Ejercicio 1.3.5. Sea el alfabeto $A = \{0, 1, +, =\}$, demostrar que el lenguaje

$$ADD = \{x = y + z \mid x, y, z \text{ son números en binario, y } x \text{ es la suma de } y \text{ y } z\}$$

no es regular.

Ejercicio 1.3.6. Determinar si los siguientes lenguajes son regulares o no:

- a) $L = \{uvu^{-1} \mid u, v \in \{0, 1\}^*\}.$
- b) L es el lenguaje sobre el alfabeto $\{0,1\}$ formado de las palabras de la forma u0v donde u^{-1} es un prefijo de v.
- c) L es el lenguaje sobre el alfebeto $\{0,1\}$ formado por las palabres en las que el tercer símbolo empezando por el final es un 1.

Ejercicio 1.3.7. Dar una expresión regular para la intersección de los lenguajes asociados a las expresiones regulares $(01+1)^*0$ y $(10+0)^*$. Se valorará que se construya el autómata que acepta la intersección de estos lenguajes, se minimice y, a partir del resultado, se construya la expresión regular.

Ejercicio 1.3.8. Encontrar un AFD minimal para el lenguaje

$$(a+b)^*(aa+bb)(a+b)^*$$

Ejercicio 1.3.9. Para cada uno de los siguientes lenguajes regulares, encontrar el autómata minimal asociado, y a partir de dicho autómata minimal, determinar la gramática regular que genera el lenguaje:

- 1. a^+b^+
- 2. $a(a+b)^*b$

Ejercicio 1.3.10. Determinar autómatas minimales para los lenguajes $L(M_1) \cup L(M_2)$ y $L(M_1) \cap \overline{L(M_2)}$ donde,

1. $M_1 = (\{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \delta_1, q_0, \{q_2\})$ donde

2. $M_2 = (\{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \delta_2, q_0, \{q_2\})$ donde

Ejercicio 1.3.11. Dado el conjunto regular representado por la expresión regular $a^*b^* + b^*a^*$, construir un autómata finido determinístico minimal que lo acepte.

Ejercicio 1.3.12. Sean los lenguajes:

- 1. $L_1 = (01+1)^*00$
- 2. $L_2 = 01(01+1)^*$

construir un autómata finito determinístico minimal que acepte el lenguaje $L_1 \setminus L_2$, a partir de autómatas que acepten L_1 y L_2 .

Ejercicio 1.3.13. Dados los alfabetos $A = \{0, 1, 2, 3\}$ y $B = \{0, 1\}$ y el homomorfismo f de A^* en B^* dado por:

1.
$$f(0) = 00$$
, $f(1) = 01$, $f(2) = 10$, $f(3) = 11$

Sea L el conjunto de las palabras de B^* en las que el número de símbolos 0 es par y el de símbolos 1 no es múltiplo de 3. Construir un autómata finito determinista que acepte el lenguaje $f^{-1}(L)$.

Ejercicio 1.3.14. Determinar si las expresiones regulares siguientes representan el mismo lenguaje:

a)
$$(b + (c+a)a^*(b+c))^*(c+a)a^*$$

b)
$$b^*(c+a)((b+c)b^*(c+a))^*a^*$$

c)
$$b^*(c+a)(a^*(b+c)b^*(c+a))^*a^*$$

Justificar la respuesta.

Ejercicio 1.3.15. Construir un autómata finito determinista minila que acepte el conjunto de palabras sobre el alfabeto $A = \{0, 1\}$ que representen números no divisibles por dos ni por tres.

Ejercicio 1.3.16. 1. Construye una gramática regular que genere el siguiente lenguaje:

$$L_1 = \{u \in \{0,1\}^* \mid \text{ el número de 1's y el número de 0's en } u \text{ es par } \}$$

2. Construye un autómata que reconozca el siguiente lenguaje:

$$L_2 = \{0^n 1^m \mid n \geqslant 1, m \geqslant 0, n \text{ múltiplo de } 3, m \text{ par } \}$$

3. Diseña el AFD mínimo que reconoce el lenguaje $(L_1 \cup L_2)$.

Ejercicio 1.3.17. Construir autómatas finitos para los siguientes lenguajes sobre el alfabeto $\{a, b, c\}$:

- a) L_1 : palabras del lenguaje $(a+b)^*(b+c)^*$.
- b) L_2 : palabras en las que nunca hay una 'a' posterior a una 'c'.
- c) $(L_1 \setminus L_2) \cup (L_2 \setminus L_1)$

¿Qué podemos concluir sobre L_1 y L_2 ?

Ejercicio 1.3.18. Si $f: \{0,1\}^* \to \{a,b,c\}^*$ es un homomorfismo dao por

$$f(0) = aab$$
 $f(1) = bbc$

dar autómatas finitos deterministas minimales para los lenguajes L y $f^{-1}(L)$ donde $L \subseteq \{a, b, c\}^*$ es el lenguaje en el que el número de símbolos a no es múltiplo de 4.

Ejercicio 1.3.19. Si L_1 es el lenguaje asociadoa a la expresión regular $01(01+1)^*$ y L_2 el lenguaje asociado a la expresión $(1+10)^*01$, encontrar un autómata minimal que acepte el lenguaje $L_1 \setminus L_2$.

Ejercicio 1.3.20. Sean los alfabetos $A_1 = \{a, b, c, d\}$ y $A_2 = \{0, 1\}$ y el lenguaje $L \subseteq A_2^*$ dado por la expresión regular $(0+1)^*0(0+1)$, calcular una expresión regular para el lenguaje $f^{-1}(L)$ donde f es el homomorfismos entre A_1^* y A_2^* dado por

$$f(a) = 01$$
 $f(b) = 1$ $f(c) = 0$ $f(d) = 00$

Ejercicio 1.3.21. Dado el lenguaje L asociado a la expresión regular $(01 + 011)^*$ y el homomorfismo $f : \{0,1\}^* \to \{0,1\}^*$ dado por f(0) = 01, f(1) = 1, construir una expresión regular para el lenguaje $f^{-1}(L)$.

Ejercicio 1.3.22. Dar expresiones regulares para los siguientes lenguajes sobre el alfabeto $A_1 = \{0, 1, 2\}$:

- a) L dado por el conjunto de palabras en las que cada 0 que no sea el último de la palabra va seguido por un 1 y cada 1 que no sea el último símbolo de la palabra va seguido por un 0.
- b) Considera el homomorfismo de A_1 en $A_2 = \{0, 1\}$ dado por f(0) = 001, f(1) = 100, f(2) = 0011. Dar una expresión regular para f(L).
- c) Dar una expresión regular para LL^{-1} .

Ejercicio 1.3.23. Dados los lenguajes

$$L_1 = \{0^i 1^j \mid i \ge 1, j \text{ es par y } j \ge 2\}$$

у

$$L_2 = \{1^j 0^k \mid k \geqslant 1, j \text{ es impar y } j \geqslant 1\}$$

encuentra:

- a) Una gramática regular que genere el lenguaje L_1 .
- b) Una expresión regular que represente al lenguaje L_2 .
- c) Un automata finito determinista que acepte las cadenas de la concatenación de los lenguajes L_1L_2 . Aplica el algoritmos para minimizar este autómata.