

PCT/CH 2005/000086

SCHWEIZERISCHE EidGENOSSENSCHAFT
CONFÉDÉRATION SUISSE
CONFEDERAZIONE SVIZZERA

REC'D 21 FEB 2005

WIPO

PCT

Bescheinigung

Die beiliegenden Akten stimmen mit den ursprünglichen technischen Unterlagen des auf der nächsten Seite bezeichneten Patentgesuches für die Schweiz und Liechtenstein überein. Die Schweiz und das Fürstentum Liechtenstein bilden ein einheitliches Schutzgebiet. Der Schutz kann deshalb nur für beide Länder gemeinsam beantragt werden.

Attestation

Les documents ci-joints sont conformes aux pièces techniques originales de la demande de brevet pour la Suisse et le Liechtenstein spécifiée à la page suivante. La Suisse et la Principauté de Liechtenstein constituent un territoire unitaire de protection. La protection ne peut donc être revendiquée que pour l'ensemble des deux Etats.

Attestazione

I documenti allegati sono conformi agli atti tecnici originali della domanda di brevetto per la Svizzera e il Liechtenstein specificata nella pagina seguente. La Svizzera e il Principato di Liechtenstein formano un unico territorio di protezione. La protezione può dunque essere rivendicata solamente per l'insieme dei due Stati.

Bern, 16. Feb. 2005

Eidgenössisches Institut für Geistiges Eigentum
Institut Fédéral de la Propriété Intellectuelle
Istituto Federale della Proprietà Intellettuale

Administration Patente
Administration des brevets
Amministrazione dei brevetti

J. Leemann
Jenni Heinz

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Welt der Bildung

Hinterlegungsbescheinigung zum Patentgesuch Nr. 00300/04 (Art. 46 Abs. 5 PatV)

Das Eidgenössische Institut für Geistiges Eigentum bescheinigt den Eingang des unten näher bezeichneten schweizerischen Patentgesuches.

Titel:
Salze von Clopidogrel.

Patentbewerber:
Siegfried AG
Untere Brühlstrasse 4
4800 Zofingen

Vertreter:
Braun & Partner Patent-, Marken-, Rechtsanwälte
Reussstrasse 22
CH-4054 Basel

Anmeldedatum: 24.02.2004

Voraussichtliche Klassen: C07D

Uebertragen an:

Siegfried Generics International AG
Untere Bühlstrasse 4
4800 Zofingen
(Inhaber/in)

reg: 29.10.2004

**Exemplaire invariable
Esemplare immutabile**

P1403CH

Siegfried AG

23.02.2004 / ma

Salze von Clopidogrel

- Die vorliegende Erfindung betrifft Salze von Clopidogrel, insbesondere neue polymorphe Formen von Clopidogrel-Hydro-
- 5 bromid, sowie Salze von Clopidogrel mit Benzolsulfonsäure (Besylat), mit para-Toluolsulfonsäure (Tosylat), mit Naphthalin-2-sulfonsäure (Napsylat) und mit Oxalsäure (Oxalat).
- 10 Clopidogrel ist eine pharmazeutisch wirksame Verbindung und ist an sich bekannt. Mit Clopidogrel wird das rechts-drehende S-Enantiomer von alfa-(2-Chlorphenyl)-6,7-dihydro-thieno[3,2-c]pyridin-5(4H)essigsäuremethylester be-zeichnet, welches der chemischen Formel (I) entspricht:
- 15

- In diesem Sinne betrifft die vorliegende Erfindung neue
- 20 polymorphe Strukturen von (+)-(S)-Clopidogrel-Hydrogenbromid sowie neue Salze von (+)-(S)-Clopidogrel, wie diese vorgehend genannt sind. Die vorliegende Erfindung betrifft auch Verfahren zur Herstellung dieser Verbindungen sowie pharmazeutisch aktive Zusammensetzungen, welche mindestens
- 25 eine erfindungsgemäße Verbindung in an sich bekannten Konzentrationen enthalten.

- In EP 0 099 802 sind das racemische Gemisch sowie die beiden enantiomeren Formen von Clopidogrel beschrieben. In EP
- 30 1 087 976 sind weitere Salze von Clopidogrel beschrieben.

Die vorliegende Erfindung betrifft fünf neue polymorphe Formen von (+)-(S)-Clopidogrel-Hydrogenbromid, welche hierin als polymorphe "Form A", polymorphe "Form B", polymorphe "Form C", polymorphe "Form D" und als polymorphe "Form E", bezeichnet sind.

Diese fünf polymorphen Formen unterscheiden sich voneinander sowohl in ihren Pulver-Röntgendiagrammen (XRPD) als auch im Infrarot-Spektrum. In der vorliegenden Beschreibung werden die XRPD-Peaks zur Unterscheidung verwendet.

Die charakteristischen XRPD-Peaks der polymorphen Formen A, B, C, D und E sind ausgedrückt in Grad 2θ mit einer Genauigkeit von ± 0.2 Grad 2θ , und befinden sich bei folgenden in Tabelle 1 aufgelisteten Streuwinkeln.

Tabelle 1:

Form	Winkel [$2\theta^\circ$]:	relative Intensität
A	9.83 10.35 19.98 23.03	mittel mittel stark stark
B	9.49 10.39 12.87 19.53	mittel mittel mittel stark
C	8.20 8.92	stark stark
D	9.76 10.40 19.50 23.01	mittel schwach-mittel stark stark
E	7.72 9.27 9.88 11.91	mittel mittel mittel mittel

Die vorliegende Erfindung betrifft auch Verfahren zur Herstellung der erfindungsgemässen polymorphen Formen.

- 5 Clopidogrel-Hydrobromid der Form A erhält man, indem man Clopidogrel-Hydrobromid bei moderaten Temperaturen, insbesondere bei einer Temperatur im Bereich von 0°C bis 60°C, aus einem organischen Lösungsmittel, vorzugsweise aus einem Ester, Ether, einem Keton, einem Alkohol oder
- 10 Nitril, oder einem Gemisch dieser Verbindungen, vorzugsweise aus Aceton, Essigsäureethylester, Diisopropylether, tert.-Butyl-methylether, Methyl-isobutylketon, Dichlormethan, Toluol, Isobutyronitril, Isopropanol, kristallisiert. Das für die Kristallisation verwendete Clopidogrel-
- 15 Hydrobromid kann man *in situ* in demselben Lösungsmittel durch Vereinigung von Clopidogrel Base mit Bromwasserstoff (HBr) herstellen. Man kann aber auch bereits vorhandenes Clopidogrel-Hydrobromid durch Umkristallisation oder durch Kristallumwandlung aus der Suspension irgendeiner Form von
- 20 Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch gewinnen.

Clopidogrel Hydrobromid der polymorphen Form B stellt man her, indem man Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch durch rasches Überschreiten der Sättigungskurven, vorzugsweise durch schnelle Zugabe eines Antisolvens oder durch Verdampfungs-kristallisation, auskristallisiert bzw. ausfällt. Geeignete Lösungsmittel sind Aceton oder Dichlormethan. Geeignete 25 Antisoventien sind aliphatische Kohlenwasserstoffe. Lösungsmittel (Solventien) und Antisolventien unterscheiden sich in ihrer Polarität bzw. der Löskraft für das Clopidogrel Hydrobromid, sie sind jedoch gut miteinander mischbar. Vorzugsweise verfährt man bei einer Temperatur von 30 0°C bis 60°C. Das dafür verwendete Clopidogrel-Hydrobromid

- kann man *in situ* als Lösung in demselben Lösungsmittel durch Vereinigung von Clopidogrel Base mit Bromwasserstoff herstellen. Man kann aber auch bereits vorhandenes Clopidogrel-Hydrobromid aus einem geeigneten Lösungsmittel
- 5 oder Lösungsmittelgemisch wie beschrieben lösen. Form B wird durch rasches Ausfällen mit Antisolvens erhalten oder durch rasche Lösungsmittelabstraktion durch Techniken wie beispielsweise Sprühtröcknung.
- 10 Clopidogrel Hydrobromid der Form C erhält man, indem man Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch, vorzugsweise aus Acetonitril kristallisiert. Form C kann durch dieselben Techniken wie Form A erhalten werden, ausschlaggebend welche Form gebildet wird, ist das verwendete Lösungsmittel. Das für die Kristallisation verwendete Clopidogrel-Hydrobromid kann man *in situ* in demselben Lösungsmittel durch Vereinigung von Clopidogrel Base mit Bromwasserstoff herstellen. Man kann aber auch bereits vorhandenes Clopidogrel-Hydrobromid
- 15 durch Umkristallisation oder durch Kristallumwandlung aus der Suspension irgendeiner Form von Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch gewinnen.
- 20 Clopidogrel Hydrobromid der Form D erhält man entweder durch Vereinigung von Bromwasserstoff und Clopidogrel Base in einem geeigneten Lösungsmittel oder durch Umkristallisation oder durch Kristallumwandlung aus der Suspension irgendeiner Form von Clopidogrel Hydrobromid aus einem
- 25 geeigneten Lösungsmittel oder Lösungsmittelgemisch. Form D wird erhalten beim Einsatz von Isopropanol bei ca. 40°C, vorzugsweise im Bereich von 35°C bis 45°C. Bevorzugt wird die Kristallumwandlung aus der Suspension.

- Clopidogrel Hydrobromid der Form E erhält man entweder durch Vereinigung von Bromwasserstoff und Clopidogrel Base in einem geeigneten Lösungsmittel oder durch Umkristallisation irgendeiner Form von Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch.
- Geeignete Lösungsmittel sind: Gemische aus Halogenkohlenwasserstoffen wie beispielsweise Dichlormethan (Lösungsmittel, Solvens) und aliphatischen Kohlenwasserstoffen (Antisolvens). Die Herstellung von Clopidogrel der Form E gelingt beim langsamem Unterschreiten der Sättigungskurve durch beispielsweise langsames Verdampfen des Solvenses aus der Lösung von Solvens, Antisolvens und Clopidogrel Hydrobromid.
- Die vorliegende Erfindung betrifft auch Salze von Clopidogrel mit ausgewählten organischen Sulfonsäuren, insbesondere Clopidogrel Besylat, Clopidogrel Tosylat, Clopidogrel Napsylat, Clopidogrel Oxalat sowie Clopidogrel Maleat.
- Clopidogrel Besylat stellt man her, indem man equimolare Mengen von Benzolsulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel miteinander zur Reaktion bringt. Geeignete Lösungsmittel sind beispielsweise Alkohole, Ether und Nitrile. Als Lösungsmittel bevorzugt ist Methanol. Vorzugsweise wird die Verbindung durch Lösungsmittelabstraktion isoliert, d.h. beispielsweise durch Entfernen des Lösungsmittels durch Destillation oder Sprühtröcknung.
- Clopidogrel Tosylat stellt man her, indem man equimolare Mengen von para-Toluolsulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel miteinander zur Reaktion bringt. Geeignete Lösungsmittel sind beispielsweise Alkohole, Ether und Nitrile. Als Lösungsmittel bevorzugt wird Methanol. Vorzugsweise wird die Verbindung durch Lösungsmittelabstraktion isoliert.

Clopidogrel Napsylat stellt man her, indem man equimolare Mengen von Naphtahlin-2-sulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel umsetzt. Geeignete Lösungsmittel sind beispielsweise Alkohole, Ether, Nitrile
5 und Wasser. Als Lösungsmittel bevorzugt sind Isopropanol, Wasser, Diisopropylether. Alternativ kann man Clopidogrel Napsylat auch durch Umsalzen aus Clopidogrel Salzen (z.B. aus Clopidogrel Hydrobromid) und Naphthalin-2-sulfonsäure oder einem Salz davon, z.B. Natrium-2-naphthylsulfonat,
10 herstellen.

Clopidogrel Oxalat stellt man her, indem man equimolare Mengen von Oxalsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel umsetzt. Solche geeignete Lösungsmittel sind im vorgehenden Absatz genannt. Vorteilhaft wird die Verbindung durch Lösungsmittelabstraktion isoliert.
15

Clopidogrel Maleat stellt man her, indem man equimolare Mengen von Maleinsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel, wie im vorgehenden Absatz genannt,
20 umsetzt. Vorteilhaft wird die Verbindung durch Lösungsmittelabstraktion isoliert. Die folgenden Beispiele erläutern die Erfindung. In den Figuren 1-8 sind die XRPD-Diagramme der beanspruchten Verbindungen dargestellt.

25

Beispiel 1

160 g Clopidogrel Base werden in 260 g Aceton gelöst. In diese Lösung wird unter Eiskühlung solange Bromwasserstoff Gas eingeleitet bis der pH-Wert der Lösung (gemessen mit feuchtem Indikator-Papier) bei 2 (zwei) liegt. Mit zunehmender HBr-Konzentration beginnt Clopidogrel Hydrobromid zu kristallisieren. Die entstandene Suspension wird auf 0°C gekühlt und 2 Stunden gut gerührt. Der Feststoff wird mittels Vakuumfiltration isoliert und mit kaltem Aceton gewaschen. Die Feuchtware wird im Vakuum bis zur Gewichts-

konstanz getrocknet. Man erhält 130 g Clopidogrel Hydro-bromid der Form A mit folgenden Eigenschaften:

HPLC Gehalt an Clopidogrel HBr: 100%

DSC: Endothermie-Maximum: 143°C

5

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

10	3484	67%	3075	76%	3005	58%	2952	50%	2704	59%
	2628	46%	2476	21%	1753	3%	1593	73%	1474	37%
	1437	17%	1404	37%	1349	42%	1319	18%	1297	20%
	1226	8%	1180	22%	1135	55%	1056	37%	983	59%
	965	45%	919	65%	885	75%	845	46%	789	61%
	762	24%	740	30%	706	51%	626	86%	597	72%
	534	78%	454	70%						

15 XRPD [Cu K α_1]:

Winkel [2 θ °]:	Rel. Intensität [%]
9.83	33
10.35	22
13.24	14
14.01	51
14.37	30
16.40	8
17.44	10
18.39	18
19.22	18
19.68	18
19.98	100
20.73	16
22.08	25
22.53	19
23.03	90
25.93	11
26.26	30
26.44	34
27.13	11
27.49	11
28.01	28
28.91	37
29.29	8
29.85	16
30.71	10
31.42	12
31.75	34
33.17	19
36.22	9
37.33	7
40.16	9
41.58	10
42.23	10
48.92	7

Beispiel 2

10 g Clopidogrel Hydrobromid (Form A) werden in 60 g Aceton unter leichtem Erwärmen vollständig gelöst. Diese Lösung wird in einem gross dimensionierten Rundkolben

- 5 unter Rühren evakuiert, wobei das Lösungsmittel entfernt wird und Clopidogrel Hydrobromid ausfällt. Es verbleibt ein weisser Rückstand von 10 g von Clopidogrel Hydrobromid der Form B mit folgenden Eigenschaften:

HPLC Gehalt an Clopidogrel HBr: 100%

- 10 DSC: Endothermie-Maximum: schwacher Peak bei ca. 130°C

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3436	39%	2952	50%	2479	27%	1754	3%	1708	50%
1636	69%	1480	38%	1437	13%	1320	26%	1296	26%
1224	13%	1179	25%	1134	64%	1056	46	1038	44%
1011	47%	963	63%	917	78%	883	76%	843	60%
788	68%	762	26%	727	41%	627	79%	597	65%
531	76%	455	67%						

15 XRPD [Cu K α_1]:

Winkel [20 °]:	Rel. Intensität [%]
9.50	34.95
10.39	34.57
12.87	24.42
13.74	23.08
14.14	38.5
16.13	31.84
16.86	20.24
18.52	18.04
19.53	100
20.88	44.26
21.63	20.92
22.34	18.09
22.93	47.93
23.23	52.29
23.60	17.76
24.83	32.92
25.12	47.4
25.41	40.78
27.25	24.32
27.54	26.55
28.50	25.57
29.01	30.56
30.07	16.68
30.67	19.36
31.23	19.37
31.53	14.47
32.26	29.23
33.57	15.51
34.16	10.02
36.09	10.93
36.83	12.91
40.70	11.28
44.15	11.06
48.63	8.98
9.50	34.95

Beispiel 3

13 g Clopidogrel Hydrobromid (Form A) werden in 30 ml Acetonitril suspendiert und mehrere Stunden bei Raumtemperatur verrührt. Anschliessend wird der Feststoff mittels

5 Vakuumfiltration isoliert. Die Feuchtware wird bis zur Gewichtskonstanz im Vakuum getrocknet. Man erhält 11 g Clopidogrel Hydrobromid der Form C mit folgenden Eigenschaften:

HPLC Gehalt an Clopidogrel HBr: 100%

10 DSC: Endothermie-Maximum: 145°C

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3437	65%	3064	48%	3003	56%	2952	51%	2910	51%
2533	24%	1758	3%	1593	77%	1480	44%	1439	21%
1392	47%	1348	44%	1320	32%	1295	12%	1217	17%
1178	18%	1071	51%	1031	44%	1015	43%	973	59%
952	63%	911	72%	891	69%	838	65%	784	76%
756	22%	712	33%	624	68%	591	71%	536	84%
456	74%								

15 20 XRPD [Cu K α_1]:

Winkel [20 °]:	Rel. Intensität [%]
8.20	63
8.92	100
13.91	21
14.76	21
15.07	22
16.67	52
18.52	45
19.42	17
20.49	22
21.31	27
21.62	23
22.49	14
22.88	25
23.31	28
24.46	74
25.83	55
26.87	25
27.60	25
27.96	21
28.81	15
29.66	18
30.60	22
32.67	22
37.51	11

Beispiel 4

- 1 g Clopidogrel Hydrobromid (Form B) wird in 2 ml Iso-
5 propanol suspendiert und über Nacht bei 40°C verrührt.
Anschliessend wird der Feststoff mittels Vakuumfiltration
isoliert. Die Feuchtware wird bis zur Gewichtskonstanz im
Vakuum getrocknet. Man erhält 0.8 g Clopidogrel Hydro-
bromid der Form D mit folgenden Eigenschaften:
10 HPLC Gehalt an Clopidogrel HBr: 100%
DSC: Endothermie-Maximum: 144°C

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

15	3483	58%	3110	78%	3075	82%	3021	79%	2906	61%
	2486	30%	2362	34%	1753	3%	1484	58%	1436	29%
	1391	47%	1337	51%	1316	46%	1295	22%	1260	47%
	1228	19%	1188	35%	1136	72%	1061	57%	1035	51%
	1009	45%	967	66%	944	63%	903	72%	845	69%
20	787	84%	748	39%	733	38%	708	52%	622	82%
	597	76%	542	91%	484	87%	454	80%		

XRPD [Cu K α]:

Winkel [2 θ °]:	Rel. Intensität [%]
9.76	43
10.40	10
11.38	11
12.85	13
13.73	52
14.30	27
15.02	22
17.23	24
19.50	100
19.91	33
20.65	68
22.03	29
23.01	95
23.97	35
25.07	52
26.86	31
27.45	30
28.76	44
29.63	30
31.10	32

25 Beispiel 5

13.5 g Clopidogrel Hydrobromid werden in 140 g Dichlormethan gelöst. Der Lösung werden bei Raumtemperatur 82 g Heptan (Isomerengemisch) zugegeben (es verbleibt eine

Lösung) und unter einem leichten Stickstoffstrom über Nacht verrührt. Aus der entstandenen Suspension wird der Feststoff mittels Vakuumfiltration isoliert und bis zur Gewichtskonstanz getrocknet. Man erhält 13 g Clopidogrel

5 Hydrobromid der Form E mit folgenden Eigenschaften:

HPLC Gehalt an Clopidogrel HBr: 100%

DSC: Endothermie-Maximum: 125°C

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

10	3485	57%;	3007	64%;	2956	44%;	2908	41%;	2489	19%;
	1748	3%;	1593	75%;	1481	40%;	1438	18%;	1397	46%;
	1345	42%;	1321	31%;	1297	13%;	1263	43%;	1229	12%;
	1180	26%;	1059	52%;	1034	43%;	1015	33%;	968	65%;
	951	64%;	909	72%;	892	71%;	841	60%;	786	72%;
15	758	24%;	720	17%;	623	72%;	593	73%;	539	87%;
	480	81%;	456	73%;	421	86%.				

XRPD [Cu K α_1]:

Winkel [20 °]:	Rel. Intensität [%]
7.72	41
9.27	47
9.88	65
11.91	51
14.28	41
15.45	42
16.91	34
20.65	32
21.10	59
21.38	71
22.17	50
23.15	68
24.11	86
25.36	52
25.87	100
26.96	43
28.74	64
29.74	39

20 Beispiel 6

3.0 g Benzolsulfonsäure und 5.5 g Clopidogrel Base werden in 30 ml Methanol gelöst. Das Lösungsmittel wird im Vakuum entfernt. Es verbleiben 8.5 g Clopidogrel Besylat als Feststoff mit folgenden Eigenschaften:

25 HPLC Gehalt an Clopidogrel Besylat: 100%

DSC: Endothermie-Maximum: keines

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3437	28%	3066	56%	2957	42%	2579	44%	1752	3%
1636	65%	1593	76%	1479	31%	1444	14%	1322	36%
1226	3%	1159	3%	1122	4%	1069	32%	1034	11%
1016	6%	996	14%	913	69%	887	70%	840	67%
759	16%	727	10%	694	20%	611	4%	565	26%
480	76%	457	74%						

XRPD [Cu K α_1]:
es gibt keine deutlichen Peaks

5 Beispiel 7

3.2 g para-Toluolsulfonsäure und 5.5 g Clopidogrel Base werden in 30 ml Methanol gelöst. Das Lösungsmittel wird anschliessend im Vakuum entfernt. Es verbleiben 8.7 g Clopidogrel Tosylat als Feststoff mit folgenden Eigen-
10 schaften:

HPLC Gehalt an Clopidogrel Tosylat: 100%

DSC: Endothermie-Maximum: keines

IR (KBr Pressling) [cm $^{-1}$ bei % Transmission]:

3438	33%	2957	29%	2576	37%	1752	3%	1636	65%
1596	65%	1438	14%	1323	33%	1225	3%	1157	3%
1120	4%	1033	6%	1009	4%	912	71%	840	67%
816	34%	787	77%	761	35%	710	38%	681	4%
628	79%	596	68%	567	8%	478	77%	457	71%

XRPD [Cu K α_1]:

20 es gibt keine deutlichen Peaks

Beispiel 8

52.5 g Natrium-2-naphthylsulfonat werden bei ca. 75°C in 430 ml demineralisiertem Wasser gelöst. Zu der warmen
25 Lösung wird eine Lösung aus 50 g Clopidogrel Hydrogen-
sulfat in 200 ml Wasser gegeben. Die resultierende
Mischung wird auf Raumtemperatur gekühlt und die obere
ölige Phase abgetrennt. Das abgetrennte Öl wird in 230 g
Isopropanol gelöst. Diese Lösung wird mit Magnesiumsulfat
30 getrocknet und mit 250 g Diisopropylether verdünnt. Die
Lösung wird in der Wärme (ca. 60°C) mit Clopidogrel
Napsylat geimpft und über Nacht unter Rühren auf Raum-
temperatur abkühlen gelassen. Der Feststoff wird mittels
Vakuumfiltration isoliert, mit Diisopropylether gewaschen

und anschliessend im Vakuum getrocknet. Man erhält 37 g Clopidogrel Napsylat mit folgenden Eigenschaften:

HPLC Gehalt an Clopidogrel Napsylat: 100%

DSC: Endothermie-Maximum: 149°C

5

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3438	57%	2969	47%	2672	63%	2593	59%	2362	72%
1751	10%	1595	79%	1475	54%	1438	53%	1329	54%
1301	59%	1222	11%	1171	3%	1135	29%	1090	21%
1032	10%	993	60%	956	78%	906	82%	886	83%
866	74%	830	64%	783	83%	753	27%	724	76%
698	48%	676	21%	650	71%	623	73%	597	76%
567	47%	480	69%	461	76%	421	78%		

XRPD [Cu K α_1]:

Winkel [2 θ °]:	Rel. Intensität [%]
6.79	32
8.27	33
8.59	59
12.44	21
12.62	22
13.07	31
13.55	62
16.87	59
17.24	63
18.25	14
19.00	71
19.69	52
20.02	19
20.24	47
21.34	100
21.82	17
22.40	42
22.72	19
23.02	50
23.27	25
23.65	47
24.75	49
25.09	33
25.34	56
25.85	18
27.11	25
27.61	19
28.12	22
32.14	15
32.55	20
32.97	14
35.10	11

Beispiel 9

- 2.5 g Natrium-2-naphthylsulfonat werden in 60 ml Wasser gelöst. Schwebestoffe werden durch Klarfiltration abgetrennt. Dann werden 30 ml Methanol und 2.9 g Clopidogrel 5 Hydrobromid zugegeben. Die entstandenen Lösung wird unter kräftigem Rühren langsam ca. 50% des Lösungsmittels bei Raumtemperatur entzogen. Der gebildete weisse Feststoff wird mittels Vakuumfiltration isoliert, mit Wasser gewaschen und im Vakuum bis zur Gewichtskonstanz getrocknet.
- 10 Man erhält 3 g Clopidogrel Napsylat mit den gleichen Eigenschaften wie in Beispiel 8 beschrieben.

Beispiel 10

- 10 g Clopidogrel Base und 3.1 g Oxalsäure werden in 100 ml 15 Dichlormethan gelöst. Das Lösungsmittel wird im Vakuum entfernt. Es verbleiben 13 g Clopidogrel Oxalat mit folgenden Eigenschaften:
HPLC Gehalt an Clopidogrel Oxalat: 100%.
DSC: Endothermie-Maximum: keines

20

IR (KBr Pressling) [cm⁻¹ bei % Transmission]:

3434	52%;	2959	37%;	2564	43%;	1752	3%;	1626	14%;
1438	16%;	1220	9%;	1041	37%;	1013	37%;	956	50%;
838	56%;	761	40%;	708	27%;	629	74%;	596	68%;
25	533	87%;	457	62%.					

Patentansprüche

1. Polymorphe Formen von (+)-(S)-Clopidogrel-Hydrogenbromid, als polymorphe "Form A", dadurch gekennzeichnet,
5 dass diese die folgenden charakteristischen XRPD-Peaks im Pulver-Röntgendiagrammen (XRPD) aufweisen (ausgedrückt in Grad 2θ mit einer Genauigkeit von ±0.2 Grad 2θ):

Form	Winkel [2θ°]:	relative Intensität
A	9.83	mittel
	10.35	mittel
	19.98	stark
	23.03	stark

10

2. Polymorphe Formen von (+)-(S)-Clopidogrel-Hydrogenbromid, als polymorphe "Form B", dadurch gekennzeichnet, dass diese die folgenden charakteristischen XRPD-Peaks im Pulver-Röntgendiagrammen (XRPD) aufweisen (ausgedrückt in 15 Grad 2θ mit einer Genauigkeit von ±0.2 Grad 2θ):

Form	Winkel [2θ°]:	relative Intensität
B	9.49	mittel
	10.39	mittel
	12.87	mittel
	19.53	stark

- 20 3. Polymorphe Formen von (+)-(S)-Clopidogrel-Hydrogenbromid, als polymorphe "Form C", dadurch gekennzeichnet, dass diese die folgenden charakteristischen XRPD-Peaks im Pulver-Röntgendiagrammen (XRPD) aufweisen (ausgedrückt in Grad 2θ mit einer Genauigkeit von ±0.2 Grad 2θ):

Form	Winkel [2θ°]:	relative Intensität
C	8.20	stark
	8.92	stark

25

4. Polymorphe Formen von (+)-(S)-Clopidogrel-Hydrogenbromid, als polymorphe "Form D", dadurch gekennzeichnet, dass diese die folgenden charakteristischen XRPD-Peaks im Pulver-Röntgendiagrammen (XRPD) aufweisen (ausgedrückt in Grad 2θ mit einer Genauigkeit von ±0.2 Grad 2θ):
- 5 Grad 2θ mit einer Genauigkeit von ±0.2 Grad 2θ):

Form	Winkel [2θ°]:	relative Intensität
D	9.76	mittel
	10.40	schwach-mittel
	19.50	stark
	23.01	stark

5. Polymorphe Formen von (+)-(S)-Clopidogrel-Hydrogenbromid, als polymorphe "Form E", dadurch gekennzeichnet, dass diese die folgenden charakteristischen XRPD-Peaks im Pulver-Röntgendiagrammen (XRPD) aufweisen (ausgedrückt in Grad 2θ mit einer Genauigkeit von ±0.2 Grad 2θ):

Form	Winkel [2θ°]:	relative Intensität
E	7.72	mittel
	9.27	mittel
	9.88	mittel
	11.91	mittel

15

6. Die Verbindungen Clopidogrel Besylat, Clopidogrel Tosylat, Clopidogrel Napsylat, Clopidogrel Oxalat und Clopidogrel Maleat.

20

7. Polymorphe Form von Clopidogrel Napsylat dadurch gekennzeichnet, dass diese die folgenden charakteristischen XRPD-Peaks im Pulver-Röntgendiagrammen (XRPD) aufweist (ausgedrückt in Grad 2θ mit einer Genauigkeit von ±0.2 Grad 2θ):

Winkel [2θ°]:	relative Intensität
8.59	mittel - stark
13.55	mittel - stark
19.00	mittel - stark
21.34	stark

8. Verfahren zur Herstellung von Clopidogrel-Hydrobromid der Form A nach Anspruch 1, dadurch gekennzeichnet, dass man Clopidogrel-Hydrobromid bei einer Temperatur im Bereich von 0°C bis 60°C, aus einem organischen Lösungsmittel, vorzugsweise aus einem Ester, Ether, einem Keton, einem Alkohol oder Nitril, oder einem Gemisch dieser Verbindungen, vorzugsweise aus Aceton, Essigsäureethyl-ester, Diisopropylether, tert.-Butyl-methylether, Methyl-isobutylketon, Dichlormethan, Toluol, Isobutyronitril, 10 Isopropanol, kristallisiert.
9. Verfahren zur Herstellung von Clopidogrel-Hydrobromid der Form A nach Anspruch 1, dadurch gekennzeichnet, dass man dieses durch Umkristallisation oder durch Kristallumwandlung aus der Suspension irgend einer Form von Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch gewinnt.
10. Verfahren zur Herstellung von Clopidogrel Hydrobromid der polymorphen Form B nach Anspruch 2, dadurch gekennzeichnet, dass man Clopidogrel Hydrobromid aus einem geeigneten Lösungsmittel oder Lösungsmittelgemisch durch rasches Überschreiten der Sättigungskurven, vorzugsweise durch schnelle Zugabe eines Antisolvens oder durch Verdampfungskristallisation, ausfällt, wobei das Lösungsmittel vorzugsweise ausgewählt ist aus Aceton und Dichlormethan und das Antisolvens vorzugsweise einen aliphatischen Kohlenwasserstoff darstellt.
- 30 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man Form B durch rasches Ausfällen mittels Lösungsmittelabstraktion, vorzugsweise durch Sprühtröcknung, herstellt.

12. Verfahren zur Herstellung von Clopidogrel Hydrobromid der polymorphen Form C nach Anspruch 3, dadurch gekennzeichnet, dass man Clopidogrel aus Acetonitril kristallisiert oder aus der Suspension irgendeiner Form
5 von Clopidogrel Hydrobromid aus Acetonitril durch Umkristallisation gewinnt.
13. Verfahren zur Herstellung von Clopidogrel Hydrobromid der polymorphen Form D nach Anspruch 4, dadurch gekennzeichnet, dass man Bromwasserstoff und Clopidogrel Base in Isopropanol bei ca. 40°C vereinigt.
10
14. Verfahren zur Herstellung von Clopidogrel Hydrobromid der polymorphen Form D nach Anspruch 4, dadurch gekennzeichnet, dass man Clopidogrel Hydrobromid irgendeiner Form, in Isopropanol gelöst oder suspendiert, bei ca. 40°C, vorzugsweise im Bereich von 35°C bis 45°C, kristallisiert oder umkristallisiert.
15
- 20 15. Verfahren zur Herstellung von Clopidogrel Hydrobromid der polymorphen Form E nach Anspruch 5, dadurch gekennzeichnet, dass man Bromwasserstoff und Clopidogrel Base in einem Gemisch bestehend aus Halogenkohlenwasserstoffen, vorzugsweise bestehend aus Dichlormethan (Solvens) und
25 aliphatischen Kohlenwasserstoffen (Antisolvens), vereinigt, und durch langsames Unterschreiten der Sättigungskurve, vorzugsweise durch langsames Verdampfen des Solvens, kristallisiert.
- 30 16. Verfahren zur Herstellung von Clopidogrel Besylat nach Anspruch 6, dadurch gekennzeichnet, dass man equimolare Mengen von Benzolsulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel, vorzugsweise in einem Alkohol, Ether und/oder Nitril, vorzugsweise in Methanol,
35 zur Reaktion bringt und das gebildete Salz isoliert, vor-

zugsweise mittels Lösungsmittelabstraktion, vorzugsweise durch Entfernen des Lösungsmittels durch Destillation oder Sprühtrocknung.

- 5 17. Verfahren zur Herstellung von Clopidogrel Tosylat nach Anspruch 6, dadurch gekennzeichnet, dass man equimolare Mengen von para-Toluolsulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel, vorzugsweise in einem Alkohol, Ether und/oder Nitril, vorzugsweise in
10 Methanol, zur Reaktion bringt und das gebildete Salz isoliert, vorzugsweise mittels Lösungsmittelabstraktion, vorzugsweise durch Entfernen des Lösungsmittels durch Destillation oder Sprühtrocknung.
- 15 18. Verfahren zur Herstellung von Clopidogrel Napsylat nach Anspruch 7, dadurch gekennzeichnet, dass man equimolare Mengen von Naphtahlin-2-sulfonsäure mit Clopidogrel Base in einem geeigneten Lösungsmittel, vorzugsweise in einem Alkohol, Ether, Nitril und/oder Wasser, vorzugsweise
20 in Isopropanol, Wasser, Diisopropylether und/oder Methanol, zur Reaktion bringt und das gebildete Salz isoliert, vorzugsweise mittels Lösungsmittelabstraktion, vorzugsweise durch Entfernen des Lösungsmittels durch Destillation oder Sprühtrocknung.
- 25 18. Verfahren zur Herstellung von Clopidogrel Napsylat nach Anspruch 7, dadurch gekennzeichnet, dass man dieses durch Umsalzen aus Clopidogrel Salzen, vorzugsweise aus Clopidogrel Hydrobromid, in Gegenwart von Naphthalin-2-sulfonsäure oder einem Salz davon, vorzugsweise Natrium-2-naphthylsulfonat, gewinnt.
- 30 19. Verfahren zur Herstellung von Clopidogrel Oxalat nach Anspruch 6, dadurch gekennzeichnet, dass man equimolare Mengen von Oxalsäure mit Clopidogrel Base in einem geeig-

- neten Lösungsmittel, vorzugsweise in einem Alkohol, Ether,
Nitril und/oder Wasser, vorzugsweise in Isopropanol,
Wasser, Diisopropylether und/oder Methanol, zur Reaktion
bringt und das gebildete Salz isoliert, vorzugsweise
5 mittels Lösungsmittelabstraktion, vorzugsweise durch
Entfernen des Lösungsmittels durch Destillation oder
Sprühtrocknung.
20. Verfahren zur Herstellung von Clopidogrel Maleat nach
10 Anspruch 6, dadurch gekennzeichnet, dass man equimolare
Mengen von Maleinsäure mit Clopidogrel Base in einem
geeigneten Lösungsmittel, vorzugsweise in einem Alkohol,
Ether, Nitril und/oder Wasser, vorzugsweise in Isopro-
panol, Wasser, Diisopropylether und/oder Methanol, zur
15 Reaktion bringt und das gebildete Salz isoliert, vorzugs-
weise mittels Lösungsmittelabstraktion, vorzugsweise durch
Entfernen des Lösungsmittels durch Destillation oder
Sprühtrocknung.
- 20 21. Pharmazeutisch wirksame Zusammensetzung, dadurch ge-
kennzeichnet, dass diese eine Verbindung nach einem der
Ansprüche 1-7 in an sich bekannten Konzentrationen
enthält.

Zusammenfassung

Polymorphe Formen von (+)-(S)-Clopidogrel-Hydrogenbromid,
5 als polymorphe Formen A, B, C, D und E, welche durch ihre
charakteristischen XRPD-Peaks im Pulver-Röntgendiagramm
gekennzeichnet sind sowie die Salze Clopidogrel Besylat,
Clopidogrel Tosylat, Clopidogrel Napsylat, Clopidogrel
Oxalat und Clopidogrel Maleat.

**Urteckundliches Exemplar
Exemplaire invariable
Esemplare immutabile**

Anhang: XRPD Diagramme:

Clopidogrel Hydrobromid Form A

Figur 1

Exemplar Exemplaire invariable
Esemplare immutabile

Clopidogrel Hydrobromide Form B

Figur 2

Clopidogrel Hydrobromide Form C

Figur 3

Unveränderliches Exemplar Exemplaire invariable Esemplare immutabile

Figur 4

Clopidogrel Hydrobromide Form E Figur 5

**Unveränderliches Exemplar
Exemplaire invariable
Esemplare immutabile**

Clopidogrel Besylat

Figur 6

Clopidogrel Tosylat

Figur 7

Unveränderliches Exemplar

Exemplaire invariable

Exemplare immutabile

Clopidogrel Napsylat

Figur 8

PCT/CH2005/000086

