Set Theory2

Yao

2022年6月15日

目录

1	集合的宇宙 2			
	1.1	数理逻辑	2	
	1.2	层垒的谱系	4	
	1.3	相对化 relativization	10	
	1.4	绝对性	14	
	1.5	基础公理的相对一致性	19	
	1.6	基于良基关系的归纳与递归	22	
	1.7	基础公理的绝对性	26	
	1.8	不可达基数与 ZFC 的模型	37	
	1.9	反映定理	46	
	1.10	Exercise	50	
2	可构	成焦	61	
_	2.1	可定义性与哥德尔运算	61	
	2.2		70	
		哥德尔的 L		
	2.3	可构成公理和相对一致性	75	
	2.4	练习	82	
3	力迫		88	
	3.1	力迫法的基本思想	88	

3.2	脱殊扩张	89
3.3	力迫	95
3.4	M[G] 中的 ZFC	103
3.5	ZFC 的相对独立性	107
3.6	练习	110

1 集合的宇宙

1.1 数理逻辑

在 ZFC 下证明 ZFC \vdash CH,希望将 "ZFC \vdash CH" 表述为一阶句子 一般而言,给定一个 \mathcal{L} -理论 T 和一个 \mathcal{L} -句子 δ ," $T \vdash \sigma$ " 不能用一个 \mathcal{L} -句子表示,只能用元语言表述

我们需要在 ZFC 中编码"元语言"

在 ZFC 中可以定义 $\mathcal{N} = (\mathbb{N}, +, \times, 0, 1)$

即存在集合论语言 $\mathcal{L}=\{\in\}$ 中的 **公式**,在 **ZFC** 的任意模型中可以定义 $\mathbb{N},+,\times,0,1$,以上公式与模型无关

用「0[¬],「1[¬],「2[¬]...表示 ZFC 中的"自然数",以区别元语言中的自然数

Theorem 1.1. 如果 $R \subseteq \mathbb{N}^n$ 是一个递归关系。 $T \subseteq \operatorname{Th}(\mathcal{N})$ 是包含数论的适当丰富的理论,则存在公式 $\varphi(x_1,\ldots,x_n)$ 使得对任意自然数 m_1,\ldots,m_n 有

如果
$$(m_1,\ldots,m_n)\in R$$
则 $T\vdash \varphi(\lceil m_1\rceil,\ldots,\lceil m_n\rceil)$ 如果 $(m_1,\ldots,m_n)\notin R$ 则 $T\vdash \neg \varphi(\lceil m_1\rceil,\ldots,\lceil m_n\rceil)$

Remark. 1. $T \subseteq \text{Th}(\mathcal{N}) \subseteq \text{ZFC}$

- 2. φ 是语言 $\{+, \times, 0, 1\}$ 上的公式
- 3. φ 可以还原为一个 {∈} 上的公式
- 4. $\varphi(\lceil m_1 \rceil, \dots, \lceil m_n \rceil)$ 是一个闭语句

编码

编码函数 $f: X \to \mathbb{N}$

存在解码函数 g,h,对 $a=a_0,\ldots,a_n\in X$, h(f(a))=n+1, $g(f(a),k)=a_k$ (分量)

性质: 以上三种函数 f,g,h 均是递归函数 \Rightarrow 都是可表示的

性质: "公式集"的编码集是递归的

性质:如果 $T \subseteq ZFC$ 是可公理化的,则 T 的证明集的编码集是递归的

Corollary 1.2. 存在一个公式 ψ 和 θ 使得

 $\mathsf{ZFC} \vdash \psi(n) \Leftrightarrow n \text{ is a formula}$

 $\mathsf{ZFC} \vdash \neg \psi(n) \Leftrightarrow n \text{ is not a formula}$

 $\mathsf{ZFC} \vdash \theta(n) \Leftrightarrow n \text{ is a proof in } \mathsf{ZFC}$

 $\mathsf{ZFC} \vdash \neg \theta(n) \Leftrightarrow n \text{ is not a proof in } \mathsf{ZFC}$

称 ψ 定义了公式集, θ 定义了证明集

 $FORM = \{ \lceil \varphi \rceil \mid \varphi \text{ formula} \} \subseteq \mathbb{N}$

如果 $T \subseteq \mathsf{ZFC}$ 是可公理化的,则"T 是一致的"是一个一阶表述式"不存在一个有穷的证明序列 $D = (\varphi_1, \dots, \varphi_n)$ 使得 φ_n 形如 $\varphi \land \neg \varphi$,记作 $\mathsf{Con}(T)$

Theorem 1.3 (第二不完全). 如果T是包含ZFC的一个递归公理集,且T一致,则

$$T \not\vdash Con(T)$$

特别地, ZFC ⊁ Con(ZFC)

Theorem 1.4. 对任意可公理化的理论 T,ZFC \vdash Con(T) 当且仅当存在 $M \vDash T$

即不能在 ZFC 里证明 ZFC 有一个模型

需要可公理化来写出 Con(T),因此因为 ZFC
ot = Con(T),我们只能假设这么一个模型

集合论的模型跟集合论没什么关系,就是一个集合带一个二元关系,是 关于集合论语言的结构

Definition 1.5. 设 (M, E) 是集合论模型

1. 对任意公式 $\varphi(\bar{x},y)$, 定义 M^n 上的函数

$$h_{\omega}:M^n\to M$$

满足条件

$$M \vDash \exists y \varphi(\bar{a}, y) \Rightarrow M \vDash \varphi(\bar{a}, h_{\varphi}(\bar{a}))$$

 \hbar_{φ} 为 φ 的 Skolem 函数(依赖于选择公理,不同的变量选择有不同的函数)

2. 令 $\mathcal{H}=\{h_{\varphi}\mid \varphi \text{ formula}\}$ 为 Skolem 函数集合,设 S 是 M 的任意子集,则 $\mathcal{H}(S)$ 表示包含 S 且对 \mathcal{H} 封闭的最小集合,称之为 S 的 Skolem 壳

Lemma 1.6. 令 N 是集合论模型, $S \subseteq N$, 如果 $M = \mathcal{H}(S)$, 则 $M \prec N$

证明. Induction

对任意 $\bar{a} \in M^n$,有 $M \vDash \varphi(\bar{a}) \Leftrightarrow N \vDash \varphi(\bar{a})$

- 1. 不含量词,显然成立
- 2. φ 形如 $\exists y \psi(\bar{x},y)$, $N \vDash \exists y \psi(\bar{a},y) \Rightarrow N \vDash \psi(\bar{a},h_{\psi}(\bar{a}))$, by IH, $M \vDash \psi(\bar{a},h_{\psi}(\bar{a})) \Rightarrow M \vDash \exists y \psi(\bar{a},y)$

Theorem 1.7 (Löwenheim-Skolem Theorem).

1.2 层垒的谱系

工作于 ZF^- : ZF - 基础公理 $\alpha \mapsto V_{\alpha}$ 是 On 到 WF 的 1-1 映射,而 On 是真类

Lemma 1.8. For any ordinal α

1. V_{α} is transitive

4

- 2. $\xi \leq \alpha \Rightarrow V_{\xi} \subseteq V_{\alpha}$
- 3. if κ is inaccessible, then $|V_{\kappa}| = \kappa$

Definition 1.9. For any $x \in WF$, rank of x is

$$\operatorname{rank}(x) = \min\{\beta \mid x \in V_{\beta+1}\}\$$

$$\operatorname{rank}(x) = \alpha \Rightarrow x \in V_{\alpha+1} \land x \not\in V_\alpha$$

- $\bullet \ \ x \in V_{\alpha+1} \Leftrightarrow \mathrm{rank}(x) \leq \alpha$
- $x \subseteq V_{\alpha} \Leftrightarrow \operatorname{rank}(x) \le \alpha$

 $\textbf{Lemma 1.10.} \qquad 1. \ \ V_{\alpha} = \{x \in \text{WF} \mid \mathit{rank}(x) < \alpha\}$

- 2. WF is transitive
- 3. $\forall x, y \in WF, x \in y \Rightarrow rank(x) < rank(y)$
- 4. $\forall y \in WF$, $rank(y) = \sup\{rank(x) + 1 \mid x \in y\}$
- 证明. 1. by definition, $x\in V_{\mathrm{rank}(x)+1}\setminus V_{\mathrm{rank}(x)}$, $\mathrm{rank}(x)<\alpha\Rightarrow x\in V_{\mathrm{rank}(x)+1}\subseteq V_{\alpha}$ $\mathrm{rank}(x)\geq\alpha\Rightarrow x\notin V_{\alpha}$
 - 2. WF is the "union" of transitive sets
 - $3.\ y\in V_{\mathrm{rank}(y)+1}\smallsetminus V_{\mathrm{rank}(y)}\text{, }y\subseteq V_{\mathrm{rank}(y)}\text{, }x\in y\Rightarrow x\in V_{\mathrm{rank}(y)}\Rightarrow \mathrm{rank}(x)<\mathrm{rank}(y)$
 - 4. by 3, $\sup\{\mathrm{rank}(x)+1\mid x\in y\}\leq \mathrm{rank}(y).$ induction on $\mathrm{rank}(y)\leq \sup\{\mathrm{rank}(x)+1\mid x\in y\}$
 - rank(y) = 0

- $\begin{array}{l} \bullet \ \ {\rm rank}(y) = \beta + 1, y \in V_{\beta + 2} \smallsetminus V_{\beta + 1} \\ y \in V_{\beta + 2} \Rightarrow y \subseteq V_{\beta + 1}. \ \ y \notin V_{\beta + 1} \Rightarrow y \not\subseteq V_{\beta} \Rightarrow y \smallsetminus V_{\beta} \ \ {\rm nonempty}. \\ {\rm Let} \ x \in y \smallsetminus V_{\beta}, {\rm rank}(x) \geq \beta, {\rm sup}\{{\rm rank}(x) + 1 \mid x \in y\} \geq \beta + 1 = {\rm rank}(y) \\ \end{array}$
- $\operatorname{rank}(y) = \gamma$ for some limit, then $y \subseteq V_{\gamma}$ and for any $\xi < \gamma, y \not\subseteq V_{\xi}$, let $X_{\xi} \in y \setminus V_{\xi}$, then $\operatorname{rank}(X_{\xi}) \geq \xi$, $\sup\{\operatorname{rank}(x) + 1 \mid x \in y\} \geq \sup\{\xi + 1 \mid \xi < \operatorname{rank}(y)\} \geq \operatorname{rank}(y)$
- WF 中的集合按照秩分层
- 在 WF 中基础公理是成立的: $\forall y(y \neq \emptyset \rightarrow \exists x \in y(x \cap y = \emptyset))$, 因为任何序数集都有最小元,挑一个有最小 rank 的就好了
- WF 类的构造没有用到选择公理
- On \subseteq WF

Lemma 1.11. *for any ordinal* α

- 1. $\alpha \in WF$ and $rank(\alpha) = \alpha$
- 2. $V_{\alpha} \cap On = \alpha$
- 证明. $1.0 \in V_1 \setminus V_0 \subset WF$, rank(0) = 0

If $\alpha \in \operatorname{WF}$ and $\operatorname{rank}(\alpha) = \alpha$. $\alpha \in V_{\alpha+1} \setminus V_{\alpha}$, $\alpha \subseteq V_{\alpha+1}$. $\alpha+1 = \alpha \cup \{\alpha\} \subseteq V_{\alpha+1}$, $\alpha+1 \in V_{\alpha+2} \subset \operatorname{WF}$. If $\alpha+1 \in V_{\alpha+1}$, then $\operatorname{rank}(\alpha+1) \leq \alpha$, but $\alpha \in \alpha+1 \Rightarrow \operatorname{rank}(\alpha) = \alpha < \operatorname{rank}(\alpha+1)$. A contradiction

suppose γ is a limit ordinal and for any $\alpha < \gamma$, $\alpha \in V_{\alpha+1} \setminus V_{\alpha}$. $\gamma = \bigcup_{\alpha < \gamma} \alpha \subseteq \bigcup_{\alpha < \gamma} V_{\alpha} = V_{\gamma}$. Thus $\gamma \in V_{\gamma+1}$, $\mathrm{rank}(\gamma) \le \gamma$ and $\mathrm{rank}(\gamma) \not< \gamma$.

2. suppose $\beta \in V_{\alpha} \cap \text{On}$, then $\beta = \text{rank}(\beta) < \alpha$. If $\beta \in \alpha$ and $\text{rank}(\beta) < \alpha$, $\beta \in V_{\alpha} \cap \text{On}$

- **Lemma 1.12.** 1. If $x \in WF$, then $\bigcup x, \mathcal{P}(x), \{x\} \in WF$, and their rank $< rank(x) + \omega$
 - 2. If $x,y \in WF$, then $x \times y, x \cup y, x \cap y, \{x,y\}, (x,y), x^y \in WF$, and their $rank < rank(x) + rank(y) + \omega$
 - 3. $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \in V_{\omega+\omega}$
 - *4. for any set* x, $x \in WF \Leftrightarrow x \subset WF$
- 证明. 1. suppose $\operatorname{rank}(x) = \alpha. \ x \in V_{\alpha+1} \setminus V_{\alpha} \ \operatorname{and} \ x \subseteq V_{\alpha}.$ by transitivity, $\bigcup x \subseteq V_{\alpha} \Rightarrow \bigcup x \in V_{\alpha+1} \subset \operatorname{WF. rank}(\bigcup x) \leq \alpha$ suppose $y \in \mathcal{P}(x), \ y \subseteq x \Rightarrow y \subseteq V_{\alpha} \Rightarrow y \in V_{\alpha+1}. \ \mathcal{P}(x) \subseteq V_{\alpha+1},$ $\mathcal{P}(x) \in V_{\alpha+2}, \operatorname{rank}(\mathcal{P}(x)) \leq \alpha+1.$ $\{x\} \in \mathcal{P}(x) \in V_{\alpha+2}.$
 - 2. Suppose $\operatorname{rank}(x) = \alpha, \operatorname{rank}(y) = \beta, x \subset V_{\alpha}, y \subset V_{\beta}$ $x \cup y \subset V_{\alpha} \cup V_{\beta} = V_{\max(\alpha,\beta)}, \operatorname{rank}(x \cup y) \leq \max(\alpha,\beta)$ $x \cap y \subset V_{\min(\alpha,\beta)}$ $\{x,y\} \subseteq V_{\alpha+1} \cup V_{\beta+1} = V_{\max(\alpha,\beta)+1}, \operatorname{rank}(\{x,y\}) = \max(\alpha,\beta) + 1$ $(x,y) = \{\{x\}, \{x,y\}\} \subset V_{\max(\alpha,\beta)+2}. \operatorname{rank}((x,y)) = \max(\alpha,\beta) + 2$ $x \times y = \{(a,b) \mid a \in x, b \in y\}. \ a \in x \Rightarrow \operatorname{rank}(a) < \alpha, b \in y \Rightarrow \operatorname{rank}(b) < \beta, \operatorname{rank}(a,b) < \max(\alpha,\beta) + 2, (a,b) \in V_{\max(\alpha,\beta)+2}. \ x \times y \subseteq V_{\max(\alpha,\beta)+2}, \operatorname{rank}(x \times y) \leq \max(\alpha,\beta) + 2.$ $x^y \subseteq \mathcal{P}(x \times y) \subseteq V_{\max(\alpha,\beta)+3}.$
 - 3. $\mathbb{N} = \omega \in V_{\omega+1}$
 - $\mathbb{Z} \colon \mathrm{let} \sim \mathrm{be} \ \mathrm{an} \ \mathrm{equivalence} \ \mathrm{relation} \ \mathrm{on} \ \omega \times \omega, \ (a,b) \sim (c,d) \Leftrightarrow a+d=b+c, \ \mathrm{then} \ \mathbb{Z} = (\omega \times \omega)/\sim. \ \mathrm{Hence} \ \mathbb{Z} \ \mathrm{is} \ \mathrm{a} \ \mathrm{partition} \ \mathrm{of} \ \omega \times \omega \ \mathrm{and} \ \mathrm{hence} \ \mathbb{Z} \subseteq \mathcal{P}(\omega \times \omega). \ \mathbb{Z} \in V_{\omega+3}$

 $\begin{array}{lll} \mathbb{Q} \colon \mbox{ let } \sim \mbox{ be an equivalence on } \mathbb{Z} \times \mathbb{Z}^+ \text{, } (a,b) \sim (c,d) \Leftrightarrow ad = bc. \\ \mathbb{Q} \subseteq \mathcal{P}(\mathbb{Z} \times \mathbb{Z}^+) \text{, } \mathbb{Q} \in V_{\omega+6} \end{array}$

 $\mathbb{R}\text{: set of dedekind cut on }\mathbb{Q}\text{, }\mathbb{R}\subset\mathcal{P}(\mathbb{Q})\text{, }\mathbb{R}\in V_{\omega+8}$

4. \Rightarrow : WF is transitive

 \Leftarrow : x is a set and $x \subset \bigcup_{\alpha \in \operatorname{On}} V_{\alpha}$.

Claim: there is an ordinal α s.t. $x \subset V_{\alpha}$

Otherwise, let $f:\operatorname{On} o \mathcal{P}(x)$ s.t. $f(\alpha)=x \smallsetminus V_{\alpha}$. Then for any $y \in \mathcal{P}(x)$, $f^{-1}(y)$ is a set. $\operatorname{On} = \bigcup_{y \in x} f^{-1}(y)$ and is thus a set, a contradiction

AC => Any set has cardinality

Lemma 1.13. *Assume AC* ($V \models ZFC$)

- 1. for any group G, there is a group G' in WF s.t. $G \cong G'$
- 2. for any topological space T, there is a topological space T' in WF s.t. $T \cong T'$ (homeomorphic)
- 证明. 1. suppose $(G,*_G)$ is a group, $G,*_G \in V$. By AC, there is a cardinal α s.t. $|G|=\alpha$, that is, there is a bijection $f:\alpha \to G$. Define *: for any $x,y,z\in \alpha$, $x*y=z\Leftrightarrow f(x)*_G f(y)=f(z)$. Then $(\alpha,*)\cong (G,*_G)$, $*\subseteq \alpha \times \alpha$

V 中的任何结构都可以在 WF 中找到同构象(同构是在 V 里看到的)

Definition 1.14. 任意集合 A 上的二元关系 < 是 **良基**的,当且仅当对 A 的 任意非空子集 X ,X 有 < 下的极小元

Theorem 1.15. *If* $A \in WF$, then \in is a well-founded relation on A

证明. suppose $X \subseteq A$, $X \neq \emptyset$, $X \subseteq WF$, then elements of X has ranks and $x \in y \Rightarrow \operatorname{rank}(x) < \operatorname{rank}(y)$. Let x having least rank in X, then x is the \in -minimal element in X

Lemma 1.16. If A is a transitive set and \in is a well-founded relation on A, then $A \in WF$

证明. Just need to prove $A \subset WF$. If $A \not\subset WF$, $X = A \setminus WF \neq \emptyset$. Then X has a \in -minimal element x. Then $x \neq \emptyset \in WF$. For any $y \in x$, $y \in A$. By the minimality of x, $y \in WF$. Then $x \subset WF$, $x \in WF$, a contradiction

Lemma 1.17. For any set x, there is a minimal transitive set trcl(x) s.t. $x \subseteq trcl(x)$

证明. For any $n \in \omega$ define x_n

$$x_0 = x$$

$$x_{n+1} = \left| \begin{array}{c} \\ \\ \end{array} \right| x_n$$

let $\operatorname{trcl}(x) = \bigcup_{n \in \omega} x_n$.

- 1. $\mathrm{trcl}(x)$ is transitive $a\in\mathrm{trcl}(x)\Rightarrow a\in x_n\Rightarrow a\subseteq x_{n+1}\subseteq\mathrm{trcl}(x)$
- 2. $\operatorname{trcl}(x)$ is minimal If $y\supseteq x$ is transitive, recursively prove for any $n<\omega$, $x_n\subseteq y$.

trcl(x) is the **transitive closure** of x.

Lemma 1.18. We can prove the following without axiom of power set

- 1. *if* x *is transitive,* trcl(x) = x
- 2. $y \in x \Rightarrow trcl(y) \subseteq trcl(x)$
- 3. $trcl(x) = x \cup \{ | \{ trcl(y) \mid y \in x \} \}$
- 证明. 2. $y \in x \subset \operatorname{trcl}(x)$. $y \in \operatorname{trcl}(x)$. $\operatorname{trcl}(y) \subseteq \operatorname{trcl}(x)$.

3. $x \cup \bigcup \{ \operatorname{trcl}(y) \mid y \in x \} \subseteq \operatorname{trcl}(x)$ by (2)

 $\bigcup\{\operatorname{trcl}(y)\mid y\in x\}$ is transitive. For $y\in x,\,y\subseteq\operatorname{trcl}(y)$. Thus rhs is transitive

Theorem 1.19 (In ZF^-). For any set X, TFAE

- 1. $X \in WF$
- 2. $trcl(X) \in WF$
- 3. \in is a well-founded relation on trcl(X)

证明. $1 \rightarrow 2$: WF is closed under union

Theorem 1.20. *If* $V \models ZF^-$, TFAE

- 1. axiom of foundation $(V \vDash)$ axiom of foundation
- 2. for any set X, \in is a well-founded relation on X
- 3. V = WF

 $V \vDash \mathsf{ZF} \Rightarrow V = \mathsf{WF}(\mathsf{WF} \vDash \mathsf{ZF})$

Goal: $V \models \mathbf{ZF}^- \Rightarrow \mathbf{WF} \models \mathbf{ZF}^-$ 但是 \mathbf{WF} 是一个类,我们并没有定义我们可以用相对化编码 $\mathbf{WF} \models \mathbf{ZF}^-$

1.3 相对化 relativization

工作在 ZF-

Definition 1.21. M class, φ formula, φ 对 M 的 相对化 φ^M

- 1. $(x = y)^M := x = y$
- 2. $(x \in y)^M := x \in y$
- 3. $(\varphi \to \psi)^M := \varphi^M \to \psi^M$

4.
$$(\neg \varphi)^M := \neg \varphi^M$$

5.
$$(\forall x \varphi)^M := (\forall x \in M) \varphi^M$$

 φ^M 读作" φ 在 M 中为真",表示为 $(M, \in) \subseteq (V, \in)$ 有 $M \models \varphi$,即如果 $V \models \varphi^M$,那么 $M \models \varphi$,而 V 知道得更多一点

重新定义了满足

若 M 被公式 M(u) 定义, $(\forall x\varphi)^M$ 是公式 $\forall x(M(x) \to \varphi^M(x))$

Example 1.1. $M = \operatorname{On}_{+} \operatorname{On}_{+} \forall x \forall y (x \in y \lor y \in x \lor x = y)$

" $M \vDash \varphi$ "可以形式化为 $V \vDash \varphi^M$,而 M 对应于 M(u),即等价于 $T \vdash \varphi^M$,如果我们工作在某个 T 上

若函数 f 被公式 $\varphi(\bar{x},y)$ 定义,则 $V \vDash \forall \bar{x} \exists ! y \varphi(\bar{x},y)$,但相对化后不一定对,因此 $f^M = \{(\bar{x},y) \in M : \varphi^M(\bar{x},y)\}$ 不一定是 M 上的函数

Definition 1.22. for any theory T, any class M, M is a **model** of T, $M \models T$, iff for any axiom φ of T, φ^M holds, i.e., $V \models \varphi^M$

V 中定义出语义

Theorem 1.23. $V \models ZF^- \Rightarrow WF \models ZF - Inf$, $V \models (ZF - Inf)^{WF}$ 等价的 $ZF^- \vdash (ZF - Inf)^{WF}$

- 存在公理: $\exists x \in M(x=x)$
- ◆ 外延公理: Ext^M

$$\forall x \in M \forall y \in M \forall u \in M((u \in X \leftrightarrow u \in Y) \to X = Y)$$

Lemma 1.24. *If* M *is transitive, then* Ext^{M} *holds*

证明. suppose $X,Y\in M$, if $X\neq Y$, then there is $u\in X\triangle Y$ (by Ext in V), by transitivity, $u\in M$

• 分离公理模式: for any M, any formula φ , $S(\varphi)^M$

$$\forall x \in M \exists Y \in M \forall u \in M (u \in Y \leftrightarrow u \in X \land \varphi^M(u))$$

Therefore, if for any $X \in M$, $\{u \in X \mid \varphi^M(x)\} \in M$, then 分离公理模式在 M 中为真

Lemma 1.25. If M satisfies $x \in M \Leftrightarrow x \subset M$, then $S(\varphi)^M$ holds for any M

证明. Suppose $X\in M$, suffices to find corresponding $Y\in M$ s.t. $\forall u\in M(u\in Y\leftrightarrow u\in X\wedge \varphi^M(u))$

根据 V 中的分离公理, $Y = \{x \in X \mid \varphi^M(u)\} \in V \text{ and } Y \subseteq X \subset M$, thus $Y \in M$ and $\forall u(u \in Y \leftrightarrow u \in X \land \varphi^M(u))$. But $x \in Y \Rightarrow x \in M$, thus this is equivalent to $\forall u \in M(u \in Y \leftrightarrow u \in X \land \varphi^M(u))$

• axiom of pairing Pair

 $\forall x \in M \forall y \in M \exists z \in M \forall u \in M (u \in z \leftrightarrow u = x \lor u = y)$

只要 M 对对集函数 $x, y \mapsto \{x, y\}$ 封闭,则 $Pair^M$ 成立

● 幂集公理 Pow

$$\forall X \in M \exists Y \in M \forall u \in M (u \in Y \leftrightarrow \forall a \in M (a \in u \rightarrow a \in X))$$

Lemma 1.26. If M satisfies $x \in M \Leftrightarrow x \subset M$, then Pow^M holds

证明. for any $X\in M$, $\mathcal{P}(X)\in M$. and we prove $\mathcal{P}(X)$ is the Y, for any $u\in M$

ullet axiom of infinity Inf

$$\exists X \in M(\emptyset \in X \land \forall y \in M(y \in X \to y^+ \in X))$$

 $\emptyset : \psi(x) := \forall u(u \in x \to u \neq u), x = \emptyset \Leftrightarrow \psi(x)$

 $y^+: \varphi(y,z): \forall u \in z (u=y \lor u \in y) \land y \subseteq z \land y \in z$ 函数相对化后不一定是函数,所以放到下一节

• axiom of foundation Fod

$$\forall x \in M(\exists u \in M(u \in x) \to \exists y \in M(y \in x \land \neg \exists u \in M(u \in x \land u \in y)))$$

Lemma 1.27. If M is transitive and elements of M is well-founded under \in , then Fod^M holds

证明. suppose $x_0 \in M$ and there is

 $\psi := \exists u (u \in x) \text{ and } \varphi \text{ is the latter part}$

 $\psi^M(x_0) \leftrightarrow \exists u(u \in x_0) \text{ since } M \text{ is transitive, } \varphi^M(x_0) \leftrightarrow \exists y(y \in x_0 \land \neg \exists u \in M(u \in x \land u \in y))$

在 V 中, $x_0 \neq \emptyset$,由条件可知 (x_0, \in) 是良基的,于是 φ 在 V 中对,那 么当然在 M 中对

替换公理模式 Rep(φ)

 $\forall A \in M \forall x \in A \cap M \exists ! y \in M \varphi^M(x, y) \to \exists B \in M \forall x \in A \exists y \in B \varphi^M(x, y)$

$$\exists ! y \theta(y) : \exists y (\theta(y) \land \forall y' (\theta(y') \to y = y'))$$

Lemma 1.28. if M satisfied $x \in M \Leftrightarrow x \subset M$, then $Rep(\varphi)^M$ holds for any φ

证明. for any $A_0 \in M$, then $A_0 \cap M = A_0$, thus we have $\forall x \in A_0 \exists ! y (\varphi^M(x,y) \land M(y))$.

by
$$Rep(\varphi^M(x,y)\wedge M(y))$$
, $\exists B' \forall x\in A_0\exists y\in B'\varphi^M(x,y)\wedge M(y)$

Let
$$B = B' \cap M$$
, which is what we want

Thus in ZF^- , we can prove $WF \models ZF - \inf$

1.4 绝对性

 $(V, \in) \supseteq (M, \in)$

对于哪些 φ ,有 $V \models \varphi \Leftrightarrow M \models \varphi$

Definition 1.29. 公式 $\psi(\bar{x})$,对任意类 $M \subseteq N$,如果

$$\forall \bar{x} \in M(\psi^M(\bar{x}) \leftrightarrow \psi^N(\bar{x}))$$

就称 $\psi(\bar{x})$ 对于 M, N 是 **绝对的**,如果 N = V,则称 $\psi(\bar{x})$ 对于 M 是 **绝对的**

$$\bar{a} \in M, (M, \in) \vDash \psi(\bar{a}) \Leftrightarrow V \vDash \psi^{M}(\bar{a})$$

 ψ 相对于 M, N 绝对: $\forall \bar{a} \in M, \bar{q} M \models \psi(\bar{a}) \Leftrightarrow N \models \psi(\bar{a})$

if $\forall \varphi(\bar{x}) \in L$,均有 φ 相对于 M, N 绝对的,则 $M \leq N$

Lemma 1.30. *suppose* $M \subseteq N$, φ , ψ *formula*

- 1. 如果 φ, ψ 相对于M, N绝对, so are $\neg \varphi, \varphi \rightarrow \psi$
- 2. if φ is q.f., then φ 对任意 M 绝对
- 3. if M are transitive, and φ 相对于它们绝对, so is $\forall x \in y\varphi$
- 证明. 3. $\forall x \in y\varphi := \forall x(x \in y \to \varphi(x,y,\bar{z}))$,故 $(\forall x \in y\varphi)^M = \forall x \in M(x \in y \to \varphi^M(x,y,\bar{z}))$,任取 $y_0,\bar{z}_0 \in M$,则由 M 的传递性,都有 $x \in y_0 \Rightarrow x \in M$

目标: $\forall x \in M(x \in y_0 \to \varphi^M(x,y_0,\bar{z}_0))$ 当且仅当 $\forall x \in N(x \in y_0 \to \varphi^N(x,y_0,\bar{z}_0))$

由 φ 的绝对性,对每个 $x_0 \in M$,有

$$\varphi^M(x_0,y_0,\bar{z}_0) \leftrightarrow \varphi^N(x_0,y_0,\bar{z}_0)$$

故 $V \vDash \forall x \in M(x \in y_0 \to \varphi^M(x, y_0, \bar{z}_0)),$ 当且仅当 $V \vDash \forall x (x \in y_0 \to \varphi^M(x, y_0, \bar{z}_0))$ 当且仅当 $V \vDash \forall x \in N(x \in y_0 \to \varphi^M(x, y_0, \bar{z}_0))$

Lemma 1.31. 令 $M \subseteq N$ 且 M 传递, $\psi(\bar{x})$ 是一个公式, 则

- 1. 如果 ψ 是 Δ_0 公式,则他它对M,N是绝对的
- 2. 如果 ψ 是 Σ_1 公式,则

$$\forall \bar{x} \in M(\psi^M(\bar{x}) \to \psi^N(\bar{x}))$$

3. 如果 ψ 是 Π_1 公式,则

$$\forall \bar{x} \in M^n(\psi^N(\bar{x}) \to \psi^M(\bar{x}))$$

证明. 1. 对公式的长度进行归纳证明

2. 例子: $\Leftrightarrow M = \text{On,} N = \text{WF}$, $\Leftrightarrow \psi(y) := \forall x \in y \forall u, v \in x (u \in v \lor v \in u \lor u = v)$, 则 $\psi \not\in \Delta_0$ 的,则

$$\psi^M(y) = \forall x \in M(x \in y \to \forall u, v \in M(u, v \in x \to (u \in v \lor v \in u \lor u = v)))$$

$$\psi^N(y) = \forall x \in N(x \in y \to \forall u, v \in N(u, v \in x \to (u \in v \lor v \in u \lor u = v)))$$

任取 $x_0 \in WF \setminus On$ 使得 (x_0, \in) 不是线序,令 $y_0 = \{x_0\}$,则 $\psi^M(y_0)$ 的前件假, $\psi^M(y_0)$ 是真的, $\psi^N(y_0)$ 为假,因此

$$\forall \bar{x}(\psi^M(\bar{x}) \to \psi^N(\bar{x}))$$

错误

 $\Leftrightarrow x = \bar{x}, y = \bar{y}$

设 $\psi:=\exists \varphi(x,y),\ \varphi(x,y)\in \Delta_0, \psi^M:=\exists y\in M(\varphi^M(x,y)), \psi^N:=\exists y\in N(\varphi^N(x,y)),\$ 任取 $a\in M^m,\$ 目标 $\psi^M(a)\to \psi^N(a)$

若 $\psi^M(a)$ 成立,则有 $b\in M^n$ 使得 $\psi^M(a,b)$,由 Δ_0 的绝对性, $\psi^N(a,b)$,因此 $\exists y\psi^N(a,y)$

3. 设 $\psi := \forall y \varphi(x,y)$ 其中 $\varphi \in \Delta_0$,则 $\psi^M := \forall y \in M \varphi^M(x,y)$, $\psi^N := \forall y \in N \varphi^N(x,y)$,设 $a \in M$ 使得 $\psi^N(a)$ 成立,目标 $\psi^M(a)$ 成立。 $\psi^N(a) \Rightarrow$ 对所有的 $b \in N$ 均有 $\varphi^N(a,b)$ 成立,故对一切 $b \in M$ 有 $\varphi^N(a,b)$ 成立,由 φ 的绝对性, $\forall y \in M \varphi^M(a,y)$

Lemma 1.32. 设 $M \subseteq N$,均是句子集 Σ 的模型,而 $\Sigma \vdash \forall \overline{x}(\varphi(\overline{x}) \leftrightarrow \psi(\overline{x}))$,则 φ 对 M 与 N 绝对当且仅当 ψ 也是

证明. $M, N \vDash \forall \overline{x} (\varphi(\overline{x}) \leftrightarrow \psi(\overline{x}))$

$$\forall \bar{x} \in M^n(\varphi^M(\bar{x}) \leftrightarrow \psi^M(\bar{x})), \ \forall \bar{x} \in N^n(\varphi^N(\bar{x}) \leftrightarrow \psi^N(\bar{x}))$$
 若 φ 是绝对的, $\forall \bar{x} \in M^n(\varphi^M(\bar{x}) \leftrightarrow \varphi^N(\bar{x}))$ 因此, $\forall \bar{x} \in M^n(\psi^M(\bar{x}) \leftrightarrow \psi^N(\bar{x}))$

Definition 1.33. 假设 $M \subseteq N$, $f(x_1, ..., x_n)$ 是函数(类),设 $f(x_1, ..., x_n)$ 被公式 $\varphi(x_1, ..., x_n, y)$ 定义,称 f 相对于 M, N 是绝对的,是指

- 1. $\varphi(x_1,\ldots,x_n,y)$ 相对于 M,N 绝对
- 2. $\forall \bar{x} \in M^n \exists ! y \in M(\varphi^N(\bar{x}, y))$

由上一引理,f 的绝对性与定义 f 的公式无关

$$f^M=\{(x_1,\dots,x_n,y)\in M^{n+1}\mid \varphi^M(\bar x,y)\}, f\upharpoonright M=\{(x_1,\dots,x_n,y)\in M^{n+1}\mid \varphi(\bar x,y)\}$$

f 是绝对的当且仅当 $\forall \bar{x}M \forall y \in M(\varphi(\bar{x},y) \leftrightarrow \varphi^M(\bar{x},y))$ 当且仅当 $\varphi(M^n,M) = \varphi^M(M^n,M)$,即 $f \upharpoonright M = f^M$

即对任意 $\bar{a} \in M^n$,有 $f \upharpoonright M(\bar{a}) = f^M(\bar{a})$

Theorem 1.34. 以下关系和函数可以在 ZF^- – Pow – Inf 中用公式定义,且在 ZF^- – Pow – Inf 下等价于一个 Δ_0 -formula

- 1. $x \in y$
- 2. x = y
- 3. $x \subset y$
- 4. $\{x,y\}$
- 5. $\{x\}$
- 6. (x, y)
- *7.* ∅

- 8. $x \cup y$
- 9. $x \cap y$
- 10. x y
- 11. $x^+ = x \cup \{x\}$
- 12. x 传递
- 13. LJx
- 14. $\bigcap x$, $\mathbb{A} \bigcap \emptyset = \emptyset$
- 证明. 4. 函数 $z=\{x,y\}$ 被公式 $\forall u \in z (u=x \lor u=y) \land (x \in z \land y \in z)$
 - 5. $y = \{x\}$ 被公式 $\forall u \in y(u = x) \land (x \in y)$
 - 6. 函数 z=(x,y) 被公式 $\forall u\in z(u=x\vee x=\{x,y\}) \land x\in z \land \exists u\in z(u=\{x,y\})$
 - 7. $\forall y \in x (y \neq y)$
 - 8. 函数 $z = x \cup y$ 被公式 $\forall x \subset z \land y \subset z \land \forall u \in z (u \in x \lor u \in y)$
 - 9. 函数 $z = x \cap y$ 被公式 $z \subset x \land z \subset y \land \forall u \in x (u \in y \rightarrow u \in z)$
 - 10. 函数 $z = x y \ \forall u \in z (u \in x \land u \notin y) \land \forall u \in x (u \notin y \rightarrow u \in z)$
 - 11. 函数 $z = x^+ \forall u \in z (u \in x \lor u = x) \land x \in z \land x \subset z$
 - 12. $\forall y \in x (y \subset x)$
 - 13. 函数 $z = \bigcup x$, $\forall u \in z \exists y \in x (u \in y) \land \forall u \in x (u \subset z)$
 - 14. 函数 $z = \bigcap x$, $x = \emptyset \to z = \emptyset \land \forall u \in z \forall y \in x (u \in y) \land \exists y \in x \forall u \in z (\forall w \in x (u \in w) \to u \in z)$

Lemma 1.35. 如果 M 是一个传递类, f 是一个被 Δ_0 公式定义的函数, 如果 f 在 M 上封闭, 即 $f(M^n) \subseteq M$, 则 f 相对于 M 绝对

证明. 设 f 被 $\varphi(\bar{x},y)$ 定义, $\forall \bar{x},y \in M(\varphi(\bar{x},y) \leftrightarrow \varphi^M(\bar{x},y))$, $\forall \bar{x} \in M \exists ! y \in M(\varphi(\bar{x},y))$

Corollary 1.36. 之前的函数均在 ZF^- — Pow — Inf 的传递模型 M 中绝对的 ZF^- — Pow — Inf 能够保证函数封闭,传递性保证定义它们的公式的绝对性

Lemma 1.37. 绝对性对复合运算封闭,即假设 $M\subseteq N$, 公式 $\varphi(x_1,\dots,x_n)$ 函数 $f(x_1,\dots,x_n)$, $g_i(y_1,\dots,y_m)$, $1\leq i\leq n$ 都相对于 M,N 绝对,则 $\varphi(g_1(y_1,\dots,y_m),\dots,g_n(y_1,\dots,y_m))$ 与 $f(g_1(y_1,\dots,y_m),\dots,g_n(y_1,\dots,y_m))$ 也相对于 M,N 绝对

证明. 不妨设 m=n=1

设
$$g(y) = z$$
 被 $\theta(y, z)$ 定义, $\varphi(g(y)) := \exists z (\theta(y, z) \land \varphi(z))$
$$\varphi^M(g(y)) := \exists z \in M(\theta^M(y, z) \land \varphi^M(z)), \varphi^N(g(y)) := \exists z \in N(\theta^M(y, z) \land \varphi^M(z))$$

由绝对性 $\forall z \in M \forall y \in M(\theta^M(y,z) \land \varphi^M(z) \leftrightarrow \theta^N(y,z) \land \varphi^N(z))$ 任取 $y_0 \in M$,设 $\exists z \in N(\theta^N(y_0,z) \land \varphi^N(z))$,由函数 g(y) = z 的绝对性, $\forall y \in M \exists ! z \in M(\theta^N(y,z))$,存在唯一的 $z_0 \in M$ 使得 $\theta^N(y_0,z_0) \land \varphi^N(z_0)$

Theorem 1.38. 以下关系和函数对任意 ZF^- – Pow Inf 的传递模型 M 都是绝对的

- 1. 2 是有序对
- 2. $A \times B$
- 3. R 是关系
- 4. dom(R)
- 5. ran(R)
- 6. f 是函数

- 7. f(x)
- 8. f 是一一函数
- 证明. 1. "z 是有序对": $\exists u, v(z=(u,v))$,但是这不是 Δ_0 ,因此考虑 $\exists u \in \bigcup z \exists v \in \bigcup z (z=(u,v))$,注意这里不是平常的受囿量词,但是 令 $g_1(z) = \bigcup z$, $g_2(z) = \bigcup z$, $g_3(z) = z$, $\varphi(x_1,x_2,x_3) := \exists u \in x_1 \exists v \in x_2(x_3=(u,v))$,则 g_1,g_2,g_3,φ 绝对,故 $\varphi(g_1(z),g_2(z),g_3(z))$ 绝对
 - 2. 函数 $z = x \times y$: $\forall u \in z \exists s \in x \exists t \in y (u = (s, t)) \land \forall s \in x \forall t \in y \exists u \in z (u = (s, t))$
 - 3. R 是关系 $\Leftrightarrow \forall u \in R(u$ 是有序对)
 - 4. 函数, D = dom(R): $\forall x \in D \exists z \in R \exists u \in z \exists y \in u(z = (x, y))$ 且 $\forall z \in R \forall u \in z \forall x \in u \forall y \in u(z = (x, y) \rightarrow x \in D)$
 - 5. 同理
 - 6. f是关系 $\land \forall x \in dom(f) \exists ! y \in ran(f) \exists u \in f(u = (x, y))$
 - 7. $\varphi(f(x))$ 表示 f 是函数且 $x \in \text{dom}(f)$, 则 "y = f(x)" 定义为 $\varphi(f,x) \to \exists u \in f(u = x, y) \lor (\neg \varphi(f, x) \to y \neq \emptyset)$

8. "f 是函数" 且 $\forall s \in \text{dom}(f) \forall t \in \text{dom}(f) (f(s) = f(t) \rightarrow s = t)$

1.5 基础公理的相对一致性

如果 ZF 一致,则 ZF 一致

目标: $V \models ZF^-$, 证明 WF $\models ZF$, 等价于 $ZF^- \vdash (ZF)^{WF}$

Lemma 1.39. 若传递类 $M \in ZF^-$ – Pow – Inf 的模型,且 $\omega \in M$,则无穷公理在 M 中为真,因此无穷公理在 WF 中为真($ZF^ \vdash$ (Inf) WF)

- 证明. 由于 \emptyset 与 x^+ 都被 Δ_0 公式定义
 - $\not\equiv M \models \mathbf{ZF}^- \mathbf{Pow} \mathbf{Inf}$, $\not\sqsubseteq x^+ \not\equiv M \Leftrightarrow \mathbf{M} \mapsto \mathbf{M}$

- $\emptyset^M = \emptyset$, $(x^+)^M = x^+$
- 无穷公理的相对化为 $\exists x \in M(\emptyset \in x \land \forall y \in x(y^+ \in x))$
- $\exists x \in M(\emptyset \in M \land \forall y \in x(y^+ \in x))$
- $\mbox{$\mathbb{H}$} \mp \omega \in M, \ \mbox{\diamondsuit} \ x = \omega$

结论: WF ⊨ ZF

目标: $Con(\mathbf{ZF}^{-}) \vdash Con(\mathbf{ZF})$

Theorem 1.40. 设 T (ZF^-) 是集合论的的理论, Σ (ZF) 是一个句子集,设 M 是一个类且非空,如果 $T \vdash (M \models \Sigma)$,即 $T \vdash \Sigma^M$ 或者"若 $V \models T$,则 $V \models \Sigma^M$ ",则

- 1. 对集合论语言的任何语句 φ , 如果 $\Sigma \vdash \varphi$, 则 $T \vdash \varphi^M$
- 2. 如果T一致,则以 Σ 为公理的理论也一致
- 证明. 1. 设 $\varphi_1, \dots, \varphi_n = \varphi$ 是 Σ 的一个证明,对 $k \leq n$,归纳证明 $T \vdash \varphi_k^M$
 - 若 $\varphi_i \in \Sigma \cup Ax$,Ax一阶逻辑的公理, $T \vdash \varphi_i^M$
 - 若 i,j < k 使得 $\varphi_j = \varphi_k \to \varphi_k$,由归纳假设 $T \vdash \varphi_i^M, T \vdash \varphi_i^M \to \varphi_k^M$,因此 $T \vdash \varphi_k^M$
 - 2. 若 Σ 不一致,则存在 φ 使得 Σ \vdash $\varphi \land \neg \varphi$,从而 T \vdash $(\varphi \land \neg \varphi)^M$,故 T 不一致

Theorem 1.41. 基础公理相对于 ZF^- 一致,即如果 ZF^- 一致,则 ZF 一致证明. • $ZF^- \vdash (ZF)^{WF}$

• 故 ZF 一致能推出 ZF 一致

选择公理:任何非空集合都可被良序化 $\forall X \exists R (R \in X \perp h)$ 上的良序)

- 1. $R \subseteq X \times X$
- 2. R 是线序
- 3. $\forall Y \subseteq X, Y \neq \emptyset \Rightarrow Y$ 存在 *R*-极小元

Lemma 1.42 (ZF^-). 设 $M \not\in ZF^-$ - Pow - Inf 的传递模型,如果 $X,R \in M$ 并且 $R \not\in X$ 上的一个良序,则 $(R \not\in X)$ 的良序) M

证明. " $R \neq X$ 上的线序"被公式 $\varphi(X,R)$ 表达

- R 是关系
- $\forall x \in X(\neg R(x,x))$
- $\forall x, y, z \in X(R(x, y) \land R(y, z)) \rightarrow R(x, z)$

因此 $\varphi(X,R)$ 是 Δ_0 -公式

令公式 $\psi(X,Y,R)$ 为 $Y\subseteq X\wedge Y\neq\emptyset$ $\to\exists y\in Y\forall x\in Y(\neg R(x,y))$,则 $\psi(X,Y,R)$ 是 Δ_0 -公式,"R 是 X 上的良序"可以表达为 $\theta(X,Y)=\varphi(X,R)\wedge\forall Y\psi(X,Y,R)$

则 θ 是一个 Π_1 -公式

 $\forall X\in M\forall R\in M(\theta(X,R)\rightarrow\theta^M(X,R)),\ \text{任取}\ X_0,R_0\in M\ \text{使得}\ R_0\ 是$ X_0 上的良序,则 $\theta(X_0,R_0)$,故 $\theta^M(X_0,R_0)$ 也成立,即

Theorem 1.43 (ZF^-). V_{ω} 是 $ZFC - Inf + \neg Inf$ 的模型

证明. 与 WF 类似, V_{ω} 是传递的,且关于 $\{x,y\}$ $\bigcup x$, $\mathcal{P}(x)$ 封闭,故而是 ZF – Inf 的模型(练习)

- $\neg \text{Inf: } \forall x \neg (\emptyset \in X) \land \forall y \in x (y^+ \in x)$
- $\neg \operatorname{Inf}^M \colon \forall x \in M(\emptyset^M \in X \land \forall y \in x((y^+)^M \in x))$

由于 $M = V_{\omega}$ 传递,故 $(\neg \operatorname{Inf})^{M}$: $\forall x \in M(\emptyset \in X \land \forall y \in x(y^{+} \in x))$

由于 V_{ω} 中没有无穷集,故 $(\neg Inf)^{M}$ 在 V 中成立

 AC^M : 任取 $X \in V_{\omega}$, 若 $X \neq \emptyset$,存在 $R \in V_{\omega}$ 使得 R 是 X 上的良序 $\operatorname{rank}(\mathcal{P}(x \times y)) < \operatorname{max}(\operatorname{rank}(x), \operatorname{rank}(y))$,故 $\mathcal{P}(x \times x) \in V_{\omega}$

Corollary 1.44. $Con(ZF^{-}) \vdash Con(ZFC - Inf + \neg Inf)$

1.6 基于良基关系的归纳与递归

Definition 1.45. 类 R ($\varphi(x,y)$) 是类 X ($\psi(x)$) 上的良基关系当且仅当

$$\forall U \subset X(U \neq \emptyset \rightarrow \exists y \in U(\neg \exists z \in U(zRy)))$$

U 是集合

Example 1.2. \in 是 On 上的良基关系

如果 Fnd 成立,则 \in 是 V 上的良基关系

Theorem 1.46 (超穷归纳原理). 设 $\varphi(x)$ 是一个公式, 若 $\forall \alpha \in On$ 有 $\forall \beta (\beta < \alpha \rightarrow \varphi(\beta)) \rightarrow \varphi(\alpha)$, 则 $\forall \alpha \in On(\varphi(\alpha))$

Theorem 1.47 (超穷递归定理). 设 $G: V \to V$ 的函数,则存在唯一的函数 $F: On \to V$ 使得

$$F(\alpha) = G(F \upharpoonright \alpha)$$

Definition 1.48. 类 X 上的关系,类 R 是 **似集合**的当且仅当对任意 $x \in X$,有 $\{y \in X \mid yRx\}$ 是一个集合

类的元素一定是集合,因为类是集合宇宙的一个子区域

一般称 $\{y \in X \mid yRx\}$ 中的元素为 x 的前驱, \in 是任何类 X 上的似集合关系

Definition 1.49. 如果 $R \neq X$ 上的似集合关系,且 $x \in X$,则递归定义

- $pred^{0}(X, x, R) = \{ y \in X \mid yRx \}$
- $\operatorname{pred}^{n+1}(X, x, R) = \bigcup \{\operatorname{pred}(X, y, R) \mid y \in \operatorname{pred}^n(X, x, R)\}$
- $\bullet \ \operatorname{cl}(X,x,R) = \bigcup\nolimits_{n \in \omega} \operatorname{pred}^n(X,x,R)$

对每个 n,pred $^n(X,x,R)$ 是集合故 $\operatorname{cl}(X,x,R)$ 是集合若 R 是 \in ,且 X 是传递的,则 $\operatorname{cl}(X,x,R) = x$

Lemma 1.50. 如果 R 是 X 上的似集合关系,则对任意 $y \in cl(X, x, R)$,都有 $pred(X, y, R) \subseteq cl(X, x, R)$

证明. 设 $y \in \operatorname{cl}(X, x, R)$,则存在 $n \in \omega$ 使得 $y \in \operatorname{pred}^n(X, x, R)$,故 $\operatorname{pred}(X, y, R) \subseteq \operatorname{pred}^{n+1}(X, x, R)$

Theorem 1.51. 如果 R 是 X 上的良基关系,且是似集合的,则 X 的每个非空子类 Y 都有 R-极小元

证明. 任取 $x \in Y$,若 x 不是 Y 的 R-极小元,则 $\operatorname{pred}(X,x,R) \cap Y$ 非空,于是 $Y \cap \operatorname{cl}(X,x,R)$ 非空,令 $x_0 \in Y \cap \operatorname{cl}(X,x,R)$ 为极小元,则 x_0 是 Y 的极小元,否则 $\operatorname{pred}(X,x_0,R) \cap Y = \emptyset$,任取 $z_0 \in \operatorname{pred}(X,x_0,R) \cap Y$,则 $z_0 \in Y$, $z_0 \in \operatorname{cl}(X,x,R)$,于是 $z_0 \in Y \cap \operatorname{cl}(X,x,R)$ 且 z_0Rx_0 ,与 x_0 的极小性矛盾

Remark. 假设基础公理,则 \in 是 V 上的良基关系,若 $V \neq$ WF,则 $V \setminus$ WF 有极小元 x_0 非空,但是 $\forall y \in x_0 (y \in$ WF),于是 $x_0 \subset$ WF,矛盾,因此 V = WF

Theorem 1.52. 设 R 是 X 上的似集合的良基关系,如果 $F: X \times V \to V$ 是"函数",则存在唯一的"函数" $G: X \to V$ 使得 $\forall x \in X(G(x) = F(x,G \upharpoonright pred(X,x,R)))$

练习

证明. 1. 存在性

令公式 $\theta(x,t)$ 表示

- t 是一个函数(集合)
- $dom(t) = \{x\} \cup pred(X, x, R)$
- $\forall y \in \text{dom}(t)(t(y) = F(y, t \upharpoonright \text{pred}(X, y, R)))$

• $\forall y \notin \text{dom}(t)(t = \emptyset)$

令 $G = \{(x,y) \mid \theta(x,y)\}$, 证明 G 是函数:

1. 唯一性

若不唯一,则存在最小的 $x \in X$ 使得 $G(x) \neq G(x')$. 但是 $G(x) = F(x,G \upharpoonright (X,x,R)) = F(x,G' \upharpoonright (X,x,R)) = G'(x)$

Definition 1.53. 如果 $R \neq X$ 上的似集合关系,设 $x \in X$,则定义

$$rank(x, X, R) = sup\{rank(y, X, R) + 1 \mid yRx \land y \in X\}$$

(来自超穷递归)

Definition 1.54 (**Z**F¯). 如果类 X 传递, 且 \in 是 X 上的良基关系, 则 X \subseteq WF 且对任意 $x \in X$ 有 $\mathrm{rank}(x, X, \in) = \mathrm{rank}(x)$

证明. 若 $X \nsubseteq WF$, 取极小元 $x_0 \in X \setminus WF$, 显然 $x_0 \neq \emptyset$ 。任取 $z \in x_0$,由传 递性,有 $z \in X \cap WF$,于是 $x_0 \subseteq WF$,于是 $X \subseteq WF$

令 $Y = \{x \in X \mid \operatorname{rank}(x, X, \in) \neq \operatorname{rank}(x)\}$,如果 Y 非空,令 x_0 为 Y 的极小元,根据传递性, $x_0 \subseteq X$,且 $\forall z \in x_0$, $\operatorname{rank}(z, X, \in) = \operatorname{rank}(z)$

$$\begin{split} \operatorname{rank}(x_0,X,\in) &= \sup\{\operatorname{rank}(z,X,\in) + 1 \mid z \in x_0\} \\ \operatorname{rank}(x_0) &= \sup\{\operatorname{rank}(z) + 1 \mid z \in x_0\} \end{split} \qquad \Box$$

Definition 1.55. 令类 R 是 X 上似集合的良基关系,则 (X,R) 上的 **mostowski** 函数 G 定义为

$$G(x) = \{G(y) \mid y \in X \land yRx\}$$

G 的值域记作 M, 称之为 (X,R) 的 **Mostowski 坍塌**

Lemma 1.56. 设 R 是 X 上的一个似集合的良基关系, G 是其上的 Mostowski 函数, M 为其 Mostowski 坍塌, 则

1.
$$\forall x, y \in X(xRy \to G(x) \in G(y)), G: (X,R) \to (V, \in)$$
 同态

- 2. M 是传递集
- 3. 如果幂集公理成立,则 $M \subseteq WF(ZF^- Pow Inf)$
- 4. 如果幂集公理成立,且 $x \in X$,则 rank(x,X,R) = rank(G(x))
- 证明. 3. 断言: (M, \in) 是良基的

任取 $Y \subseteq M$ 非空,则 $G^{-1}(Y) \subseteq X$ 非空,有极小元 x_0 ,若 $G(x_0)$ 不是 Y 的极小元,则 $G(x_0) \cap Y \neq \emptyset$ 。令 $z \in G(x_0) \cap Y$,则存在 $y \in G^{-1}(Y)$ 使得 G(y) = z 且 yRx_0 ,与 x_0 极小矛盾

4. 没 $x \in X$, $\mathrm{rank}(G(x)) = \sup\{\mathrm{rank}(v) + 1 \mid v \in G(x)\} = \sup\{\mathrm{rank}(G(y)) + 1 \mid y \in X \land yRx\}$

设 x_0 是使得等式不成立的极小元,则对任意 $y \in X$, $yRx_0 \to \operatorname{rank}(y,X,R) = \operatorname{rank}(G(y))$

 $\begin{aligned} & \operatorname{rank}(x,X,R) = \sup\{\operatorname{rank}(y,X,R) + 1 \mid yRx \land y \in X\} = \sup\{\operatorname{rank}(G(y)) + 1 \mid yRx \land y \in X\} = \operatorname{rank}(G(x)) \end{aligned}$

那么 G 在什么条件下是个同构

Definition 1.57. $R \not = X$ 上的 **外延**的关系当且仅当

$$\forall x, y \in X (\forall z \in X (zRx \leftrightarrow zRy) \to x = y)$$

Lemma 1.58. 如果 X 是传递的,则 \in 在 X 上是外延的

证明.
$$\operatorname{pred}(X, x, \in) = x$$

Lemma 1.59. 令 R 是 X 上的似集合良基关系,如果 R 在 X 上是外延的,则 G 是同构

证明. 若 G 不是单射,即 $Y=\{x\in X\mid \exists y\in X(x\neq y\wedge G(x)=G(y))\}$ 非空,则有极小元 x_0 ,取极小的 $y_0\in Y$ 使得 $x_0\neq y_0$ 且 $G(x_0)=G(y_0)$,存在 $z_0\in X$ 使得 $\neg(z_0Rx_0\leftrightarrow z_0Ry_0)$

若
$$z_0 Rx_0$$
, $\neg z_0 Ry_0$, 则 $G(z_0) \in G(x_0)$, $G(z_0) \notin G(y_0)$

Theorem 1.60 (莫斯托夫斯基坍塌定理). 令 R 是 X 上的似集合良基关系,并且在 X 上是外延的,则存在传递类 M 和双射 G 满足 $G: X \to M$ 满足: G 是 (X,R) 与 (M,\in) 之间的同构。另外 M 和 G 唯一

1.7 基础公理的绝对性

已知 ZF^- 一致 \Rightarrow ZF 一致 本节工作于 ZF 中

Theorem 1.61. 以下关系和函数可以在 ZF — Pow 中用公式定义,且 ZF — Pow 可以证明这些公式等价于 Δ_0 公式,所以它们对任意 ZF — Pow 的传递模型 绝对

- 1. x 是序数
- 2. x 是极限序数
- 3. x 是后继序数
- $4. \omega$
- 5. x 是有穷序数
- 6. 0, 1, 2, ..., 20, ...

证明. 1. ∈ 良基

x 是序数 $\Leftrightarrow x$ 是传递集且 \in 是 x 上的线序 即 $\forall y \in x(y \subset x) \land \forall y, z \in x(y \in z \lor y = z \lor z \in y)$

- 4. $\Leftrightarrow \psi(x)$ 为"x 是极限序数"且 $\emptyset \in x$ 且 $\forall y \in x(y \text{ is limit } \to y = \emptyset)$
- 5. 令 $\psi(x)$ 为"x 是序数"且 $x \neq \omega$ 且 $\forall y \in x(y \neq \omega)$
- 6. 归纳证明: \emptyset : $\forall y \in x (y \neq y) \ \psi_0(x)$ 假设 n 被 $\psi_n(x)$ 定义,则 $\psi_{n+1}(x)$: $\exists y \in x (\psi_n(y) \land x = y^+)$

Remark. 令 $\psi_{limit}(x)$ 定义极限序数,即使 $V \vDash \neg \operatorname{Inf}, \psi_{limit}(x)$ 相对于 $\operatorname{ZF} - \operatorname{Pow} + \neg \operatorname{Inf}$ 的传递模型 M 仍然是绝对的,此时, $V \vDash \forall x (\psi_{limit}(x) \to x = \emptyset)$

同理定义 ω 的 $\psi_{\omega}(x)$ 也是绝对的,此时 $V \models \neg \exists (\psi_{\omega}(x))$ 若V和M均满足 \inf ,则 $\omega \in M$ 且 $\psi_{\omega}(\omega) \leftrightarrow \psi_{\omega}^{M}(\omega)$

Lemma 1.62. 如果 M 是 ZF — Pow 的传递模型,则 M 的所有有穷子集都是 M 的元素

证明. $\phi \sigma_n$ 为

$$\forall x \subset M(|x| = n \to x \in M)$$

V 看到的

1. σ_0 , $V \models (\mathbf{ZF} - \mathbf{Pow})^M$,由于 $\mathbf{ZF} - \mathbf{Pow} \vdash \exists x (x = \emptyset)$,故 $V \models \exists x \in M(x = \emptyset^M)$,而空集是一个绝对概念,因此 $V \models \exists x \in M(x = \emptyset)$

2. 假设 σ_n 成立,任取 $x \subset M$ s.t. |x| = n + 1, 任取 $y \in x$,则 $y \in M$,

Theorem 1.63. 以下概念对 ZF-Pow 的任何传递模型都是绝对的

- 1. x 是有穷的
- $2. X^n$
- 3. X^{<ω} 即 X 上所有有穷序列的集合
- 证明. 1. 令 $\psi(x,f)$ 表示"f 是函数"且 $\mathrm{dom}(f)=x$ 且 $\mathrm{ran}(f)\in\omega$ 且 "f 是 ——的"

显然 $\psi(x, f)$ 是绝对的, x 有穷 $\Leftrightarrow \exists f \psi(x, f)$

目标: $\forall x \in M(x \text{ finite} \leftrightarrow (x \text{ finite})^M)$,即 $\forall x \in M(\exists f \psi(x, f) \leftrightarrow \exists f \in M\psi(x, f))$

任取 $x_0 \in M$,若存在 $f_0 \in M$ 使得 $\psi^M(x_0, f_0)$ 成立,则 $\psi(x_0, f_0)$ 成立,

若存在 f 使得 $\psi(x_0, f)$ 成立,下面证明 $f_0 \in M$ 。存在 $n \in \omega$ 使得 $f_0: x \to n$ 是一一的函数, $f_0 \subseteq x_0 \times n$ 是有穷集

 $n 与 x_0$ 均属于 M, 故 $x_0 \times n \in M$, 故 $x_0 \times n \subset M$, 故 $f_0 \subseteq M$ 是有穷 子集,

2. X^n 是 n 到 X 的所有函数的集合

令 $f:n\to X$ 表示"f 是函数"且 $\mathrm{dom}(f)=n$ 且 $\mathrm{ran}(f)\subseteq X$ f 是绝对的,于是 $\forall f,n,X\in M((f:n\to X)\leftrightarrow (f:n\to X)^M)$ 定义函数

$$F(X,n) = \begin{cases} 0 & n \notin \omega \\ \{f \mid f : n \to X\} & n \in \omega \end{cases}$$

Z = F(X, n) 被公式 $\psi(X, n, Z)$ 表示: $(n \notin \omega \to Z = 0) \land (n \in \omega \to Z = \{f \mid f : n \to X\})$

下面证明 ψ 的绝对性,只需证明 $\forall n \in \omega$ 以及 $X_0, Z_0 \in M$,

$$\forall y \in Z_0(y:n \to X_0) \land \forall f((f:n \to X_0) \to f \in Z_0)$$

有绝对性,唯一的障碍是 $\forall f$,但是因为当 $n, X_0 \in M$ 且 $f: n \to X_0$,则 $f \in M$ 的有穷子集

故 $\psi(X, n, Z)$ 是绝对的

下面验证, $X^n \subseteq \mathcal{P}(n \times X) \in M$,于是 F 有绝对性

$$V \vDash \forall X \in M \forall n \in M \exists ! Z \in M \psi(X, n, Z)$$

任取 $X\in M$,若 $n\notin\omega$,则 $F(X,n)=\emptyset\in M$,若 $n\in\omega$,定义 $\theta_n(x,y)$ 为

$$\exists a_0 \dots a_{n-1} (x = (a_0, \dots, a_{n-1}) \wedge y = \{(0, a_0), \dots, (n-1, a_{n-1})\})$$

令 $[X^n]$ 表示 n 次笛卡儿积,显然 $[X^n] \in M$

 $\forall x \in [X^n] \exists ! y \in M\theta_n^M(x, y)$

由于 M 满足替换公理,故存在 $z \in M, X^n \subseteq z$ 根据分离公理

$$V \vDash \exists u \in M \forall f \in M (f \in u \leftrightarrow f \in z \land (f : n \to x))$$

故 $u = X^n \in M$

3. 先证明封闭, 再证明绝对

首先证明函数 $Z = X^{<\omega}$ 是绝对的

$$\diamondsuit F(X,n) = X^n \, , \text{M} \, Z = \bigcup \{F(X,0),F(X,1),\dots\} = \bigcup \operatorname{ran}(F(X,-)) \upharpoonright \omega$$

由于 $\omega \in M$,于是 $\mathrm{ran}(F(X,-) \upharpoonright \omega) \in M$,由并集公理, $\bigcup \mathrm{ran}(F(X,-) \upharpoonright \omega) \in M$

 $\exists \exists \ X \in M \Rightarrow X^{<\omega} \in M$

 $Z=X^{<\omega}$ 被公式 $\varphi(x,z)$ 定义: $\forall f(f\in z\leftrightarrow \exists n(n ext{ fintie ordinal } \land f\in X^n))$

验证: $\forall x \in M \forall z \in M(\varphi(x,z) \leftrightarrow \varphi^M(x,z))$

V 看到所有有穷序数都在 M 中

于是 φ 绝对, $\forall x \in M \exists ! z \in M \varphi(x, z)$

Theorem 1.64. 以下概念对 ZF-Pow 的任何传递模型都是绝对的

- 1. $R \neq X$ 上的良序 (集合)
- 2. type(x, R)
- 证明. 1. 已证明: $\forall R \in M \forall x \in M (R \not\in X)$ 的良序 $\to (R \not\in X)$ 的良序) M (1.42)

另一方面,ZF-Pow $\vdash \forall R \forall X[R \not \in X$ 的良序 $\to \exists \alpha \exists f (\alpha \text{ ordinal} \land f : (\alpha, \in) \cong (X, R)]$

后面的部分是绝对的

同时这个也有 M 的相对化 $(\mathbf{ZF} - \mathbf{Pow})^M \vdash \forall R \in M \forall X \in M[(R是 X 的良序)^M \rightarrow \exists \alpha \in M \exists f \in M(\alpha \text{ ordinal} \land f : (\alpha, \in) \cong (X, R)]$

若 $R_0,X_0\in M$ 且 $(R_0$ 是 X_0 的良序) M ,则存在 $\alpha\in M$, $f\in M$, $f:(\alpha,\in)$ $\cong(X_0,R_0)$,因此 $V\vDash R_0$ 是 X_0 的良序

2. 令 W(X,R) 表示 R 是 X 的良序,令 $\chi(X,R,Z)$ 表示 Z 是序数且 W(X,R) 且 $\exists f:(Z,\in)\cong(X,R)$

则 $Z = \text{type}(X, R) \Leftrightarrow \chi(X, R, Z)$,而 χ 是绝对(这里的问题是 $\exists f$,要证明 f 一定在 M 中,参考良序绝对性的证明, $f \subset Z \times X \in M$)的且 $\forall X, R \in M \exists ! Z \in M \chi(X, R, Z)$ (练习)

Theorem 1.65. 以下概念对 ZF-Pow 的任何传递模型都是绝对的

- 1. $\alpha + 1$
- $2. \alpha 1$
- 3. $\alpha + \beta$
- 4. $\alpha \cdot \beta$

证明. 2. $x = \alpha - 1$ 被

 $\alpha \neq 0 \land ((\alpha 后继 \land \alpha = x + 1) \lor (\alpha 极限 \land \alpha = x))$

3. 没有递归定义的绝对性

 $\alpha + \beta$ 的定义为 type($\alpha \oplus \beta$)

由于 type(-,-) 是绝对的,只需证明 $\alpha \oplus \beta$ 是绝对的

令 $F(\alpha,\beta) = W$, 其中 $W = \alpha \times \{0\} \cup \beta \times \{1\}$, 再令 $G(\alpha,\beta) = R$, 其中 $R \subseteq W^2$ 且满足 $\forall x \in \alpha \times \{0\} \forall y \in \beta \times \{1\} (xRy)$ 且 $\forall x,y \in \alpha((x,0)R(y,0) \leftrightarrow x \in y)$ 且 $\forall x,y \in \beta((x,1)R(y,1) \leftrightarrow x \in y)$

显然 R 是 W 的良序集

F 是绝对的

$$\forall x \in R[\exists a \in \alpha \exists b \in \alpha (a \in b \land x = ((a,0),(b,0)))$$

$$\lor \exists a \in \beta \exists b \in \beta (a \in b \land x = ((a,1),(b,1)))$$

$$\lor \exists a \in \alpha \exists b \in \beta (x = ((a,0),(b,1)))]$$

$$\land \forall a,b \in \alpha \exists x \in R(x = ((a,0),(b,0)))$$

$$\land \forall a,b \in \beta \exists x \in R(x = ((a,1),(b,1)))$$

$$\land \forall a \in \alpha \forall b \in \beta \exists x \in R(x = ((a,0),(b,1)))$$

用 $\theta(\alpha, \beta, x)$ 表示方括号,则 $V \models \forall z (z \in R \leftrightarrow \theta(\alpha, \beta, z))$

于是 $G(\alpha, \beta) = R \Leftrightarrow \psi(\alpha, \beta, R)$

 ψ, θ 是绝对的

若 $\alpha, \beta \in M$,则 $\{x \mid \theta(\alpha, \beta, x)\} = \{x \in M \mid \theta(\alpha, \beta, x)\} = \{x \in M \mid \theta^M(\alpha, \beta, x)\} \subseteq M$, $R = \{x \in W^2 \mid \theta^M(\alpha, \beta, x)\}$,由分离公理, $R \in M$ 故 $G(\alpha, \beta) = R$ 是绝对的,

 $\alpha + \beta = \text{type}(F(\alpha, \beta), G(\alpha, \beta))$ 是绝对的

4. 同理: $\alpha \cdot \beta = \text{type}(\alpha \otimes \beta)$ 是绝对的

令 $F(\alpha, \beta) = W$, 其中 $W = \alpha \times \beta$, 再令 $G(\alpha, \beta) = R$, 其中 $R \subseteq W^2$ 满足 $\forall x, y \in \alpha \forall u, v \in \beta((x, u)R(y, v) \leftrightarrow (x < y \lor (x = y \land u < v)))$, 于是 $R \to W$ 的良序集, F 是绝对的, 同理令 $V \models \forall z(z \in R) \leftrightarrow \theta(\alpha, \beta, z)$, $G(\alpha, \beta) = R \Leftrightarrow \psi(\alpha, \beta, R)$, ψ, θ 绝对。

若 $\alpha, \beta \in M$,由分离公理, $R \in M$,因此 $G(\alpha, \beta) = R$ 是绝对的,故 $\alpha \cdot \beta = \text{type}(F(\alpha, \beta), G(\alpha, \beta))$ 是绝对的

设 X 是一个类,被公式 X(x) 定义,称 X 绝对是指 $\forall x \in M(X(x) \leftrightarrow X^M(x))$

令 X^M 表示 $\{x \in M \mid X^M(x)\}$, X 对于 M 绝对 $\Leftrightarrow X^M = X \cap M$ 若 M 是 ZF — Pow 的传递模型,则 $\mathsf{On}^M = M \cap \mathsf{On}$

作为函数的类, $G:X\to Y$ 其中 X,Y 是类,是一个公式 G(x,y) 满足函数的条件

称 G 相对于类 M 是绝对的是指

- 1. $\forall x \in X^M \exists ! y \in Y^M G^M(x,y)$, $\exists \exists G^M : X^M \to Y^M$
- 2. $\forall x \in M \forall y \in M(G^M(x,y) \leftrightarrow G(x,y))$

Theorem 1.66. 设 $R \not\in X$ 的似集合的良基关系, $F: X \times V \to V$, 令 $G: X \to V$ 如递归定理所定义的:

$$\forall x \in X(G(x) = F(x, G \upharpoonright pred(X, x, R)))$$

令 $M \neq ZF$ - Pow 的传递模型, 且假设

- 1. F 相对于 M 绝对的
- 2. X, R 相对于 M 是绝对的
- 3. $(R在 X 上是似集合的)^M$
- 4. $\forall x \in M(pred(X, x, R) \subseteq M)$

则 G 对 M 是绝对的

证明. 阅读书中证明

$$V \vDash (X^M = X \cap M)$$

$$V \vDash (R^M = R \cap (M \times M))$$

$$V \vDash R^M = (X^M)^2 \cap R$$

$$V \models (X^M, R^M)$$
 是良基的

R 在 X 上是似集合的, $\forall x \in X \exists z \forall y \in X (y \in z \leftrightarrow yRx)$,它的相对化就是 $\forall x \in X^M \exists z \in M \forall y \in X^M (y \in z \leftrightarrow yR^M x)$,取 $M \cap z$ 就行了

故 (X^M, R^M) 是似集合的且 $\forall x \in M(\operatorname{pred}(X^M, x, R^M) \in M)$

由X与R的绝对性, $\operatorname{pred}(X^M,x,R^M) = \operatorname{pred}(X,x,R) \cap M$

由于 $\forall x \in M(\operatorname{pred}(X,x,R)) \subseteq M$,故 $\forall x \in M(\operatorname{pred}(X^M,x,R^M) = \operatorname{pred}(X,x,R))$

断言 1: 函数 $y = \operatorname{pred}(X, x, R)$ 是绝对的 $y = \operatorname{pred}(X, x, R)$ 被公式 $\psi(x, y)$ 表示:

$$\forall z(z \in y \leftrightarrow z \in X \land zRx)$$

则 $\psi^M(x,y)$ 为

$$\forall z \in M (z \in y \leftrightarrow z \in X^M \land z R^M x)$$

若 $x_0, y_n \in M$,有 $z \in y_0 \rightarrow z \in M$, $zRx_0 \rightarrow z \in M$

故 ψ 绝对,由以上分析,若 $x\in M$,则 $\operatorname{pred}(X,x,R)\in M$ 。故 $y=\operatorname{pred}(X,x,R)$ 是作为函数是绝对的

对任意的 $x \in M$,有 $(\operatorname{pred}(X, x, R))^M = \operatorname{pred}(X, x, R) = \operatorname{pred}(X^m, x, R^M)$ 先在 (X^M, R^M) 是似集合的的良基关系,由绝对性, $F^M : X^M \times M \to$ M,这些都是 V 看到的,那么由递归定理,存在函数 $g : X^M \to V$ 满足

$$\forall x \in X^M(g(x) = F^M(x,g \upharpoonright \mathsf{pred}(X^M,x,R^M)))$$

目标:证明 $g = G^M$ (书本)

问题: 递归定理中的 "G" 只刻画了 G 的性质并非定义 (元语言)

回亿: G(x) 的定义令公式 $\theta(x,t)$ 表示

- t 是一个函数(集合)
- $x \in X$
- $\bullet \ \operatorname{dom}(t) = \{x\} \cup \operatorname{pred}(X, x, R)$
- $\forall y \in \text{dom}(t)(t(y) = F(y, t \upharpoonright \text{pred}(X, y, R)))$
- $\forall y \notin \text{dom}(t)(t = \emptyset)$

则 $G(x) = y \Leftrightarrow \exists t(\theta(x, t) \land y = t(x))$

下面证明 $\exists t(\theta(x,t) \land y = t(x))$ 的绝对性

断言 2: $\theta(x,t)$ 是绝对的

只需证明 $t \upharpoonright \operatorname{pred}(X, y, R)$ 是绝对的,即若 $x_0 \in X^M, y_0 \in \operatorname{pred}(X, x_0, R)$, $t_0 \in M$,则 $t_0 \upharpoonright \operatorname{pred}(X, y_0, R) = (t_0 \upharpoonright \operatorname{pred}(X, y_0, R))^M$ 函数 $s = t \upharpoonright \operatorname{pred}(X, y, R)$ 被公式

 $\eta(y,t,s) := \forall x \in s \exists u \exists v (uRy \land v = t(u) \land x = (u,v)) \land \forall u \forall v (uRy \land v = t(u) \rightarrow (u,v) \in s)$

验证: η 是绝对的 (练习), 但是 uRy, 因此 $u \in M$,

故 $\theta(x,t)$ 是绝对的

断言 3: $\theta(x,t)$ 定义了一个类函数,即 $V \vDash \forall x \in X \exists ! t \theta(x,t)$ 练习(对 $x \in X$ 归纳证明)

下面证明 θ 作为函数是绝对的 **断言 4** : 若 $x \in M$,则 $\forall t(\theta(x,t) \to t \in M)$ 否则,存在一个极小的 $x_0 \in M$,使得 $\theta(x_0,t_0)$ 且 $t_0 \notin M$

若 $\mathrm{pred}(X,x_0,R)=\emptyset$,则由 θ 的定义, $t_0=\{(x_0,F(x_0,\emptyset))\}\in M$,矛盾

 $t^* = \operatorname{ran}(\theta \upharpoonright \operatorname{pred}(X, x_0, R))$

由归纳假设, $\forall x \in \operatorname{pred}(X, x_0, R) \exists ! y \in M(\theta(x, y))$

于是 $\forall x \in \operatorname{pred}(X, x_0, R) \exists ! y \in M(\theta^M(x, y))$

因此 $t^* = \operatorname{ran}(\theta^M \upharpoonright \operatorname{pred}(X, x_0, R))$

由替换公理, $t^* \in M$, 由绝对性

$$t_0 = (\bigcup t^*) \cup \{(x_0, F^M(x_0, \bigcup t^*))\} \in M$$

矛盾

故 $\forall x \in M \exists ! t \in M \theta(x,t)$, 即 $\theta(x,t)$ 作为函数绝对记 $\phi(x,y) := \exists t (\theta(x,t) \land y = t(x))$, 则

$$\phi^M(x,y) = \exists t \in M(\theta(x,t) \land y = t(x))$$

但是 $\forall x \in M \forall y \in M$

$$(\exists t(\theta(x,t) \land y = t(x))) \leftrightarrow \exists t \in M(\theta(x,t) \land y = t(x))$$

下面证明 G(x) 作为函数绝对, 即 G(x) 封闭

回亿: $q: X^M \to M$ 满足

$$\forall x \in X^M(g(x) = F^M(x, g \upharpoonright \operatorname{pred}(X^M, x, R^M)))$$

断言 5: $\forall x \in X^M(G(x) = g(x))$

否则,存在"极小"的 $x_0 \in X^M = X \cap M$ 使得 $G(x_0) \neq g(x_0)$

显然 $\operatorname{pred}(X,x_0,R)=\operatorname{pred}(X^M,x_0,R^M)\neq\emptyset$,否则 $g(x_0)=F^M(\emptyset,g\upharpoonright\emptyset)=F^M(\emptyset,g\upharpoonright\emptyset)=F(\emptyset,q\upharpoonright\emptyset)=G(x_0)$

假设 $\operatorname{pred}(X,x_0,R)=\operatorname{pred}(X^M,x_0,R^M)\neq\emptyset$,由 x_0 的极小性,有 $\forall x\in\operatorname{pred}(X,x_0,R)\cap\operatorname{pred}(X^M,x_0,R^M)$ 时,有 G(x)=g(x)

因此
$$G \upharpoonright \operatorname{pred}(X, x_0, R) = g \upharpoonright \operatorname{pred}(X^M, x_0, R^M)$$

$$g(x_0) = F^M(x_0, g \upharpoonright \operatorname{pred}(X^M, x_0, R^M)) = G(x_0), \ \ \texttt{矛盾}$$
 □

Theorem 1.67. 一下概念对 ZF-Pow 的传递模型都是绝对的

- $1. \alpha^{\beta}$ (序数)
- 2. rank(x)
- 3. trcl(x)

证明. 1. 若
$$\alpha = 0$$
,则 $\alpha^{\beta} = 0$

它是递归定义的, 因此是绝对的

规定 $On \times On$ 上的关系 R 为

$$R = \{((\alpha, \beta_1), (\alpha, \beta_2)) \mid \beta_1 \in \beta_2\} \subseteq \mathsf{On}^2$$

显然 R 是良基关系,R 是似集合的, $\operatorname{pred}(\operatorname{On}^2,(\alpha,\beta),R)=\{\alpha\}\times\beta$ 定义 $F:\operatorname{On}^2\times V\to V$ 为

$$F(\alpha,\beta,x) = \begin{cases} 0 & \alpha = 0 \lor x \notin \mathsf{On}^3 \\ 1 & \beta = 0 \land \alpha \neq 0 \\ \left(\bigcup_{y \in x} \pi_3(y)\right) \cdot \alpha & \mathsf{otherwise}, x \in \mathsf{On}^3 \end{cases}$$

有 M 的传递性, $x=(x_1,x_2,x_3)\in M\Rightarrow x_1,x_2,x_3\in M$ 由 (x_1,x_2,x_3) 的绝对性, $y=\pi_3(x)$ 是绝对的,因为 $y=\pi_3(x)$ 为

$$\exists x_1 \exists x_2 \exists x_3 (x=(x_1,x_2,x_3) \land y=x_3)$$

验证 $G(\alpha, \beta) = \alpha^{\beta}$ 是基于 F 递归定义的,因此 G 是绝对的

- 2. $\operatorname{rank}(x)$,即 $\operatorname{rank}(V,x,\in)$ $\operatorname{rank}(x) = \sup \{\operatorname{rank}(y) + 1 \mid y \in x\}, \,\, 找\, F, \,\, 并证明绝对性, \,\, 练习$
- 3. $trcl(x) = x \cup \bigcup \{trcl(y) \mid y \in x\}$ 练习

Remark. $\alpha + \beta$ 也是递归定义的

Remark. • rank(x) 的定义用到 V_{α}

- 当 $M \nvDash Pow$, V_{α}^{M} 没有意义
- rank(x) 仍可递归定义为 $sup\{rank(y) + 1 \mid y \in x\}$
- 当 $M \models Pow$,则两种定义等价 定义公式 $\varphi(x,y)$ 为

$$\forall z (z \in y \leftrightarrow z \subseteq x)$$

当 $V \models \text{Pow}$,则 $V \models \forall x \exists ! y \varphi(x, y)$,即 $\varphi(x, y)$ 定义了一个函数,记作 $\mathcal{P}(x) = y$ 若 $M \models \text{Pow}$,则

$$V \vDash \forall x \in M \exists ! y \in M \varphi^M(x,y)$$

当 M 传递时, $⊆^M ⇔ ⊆$,若 M ⊨ Pow,则

$$V \vDash (\varphi^M$$
定义了 M 到 M 的函数)

记该函数为 $\mathcal{P}^M(x)$,即 $\mathcal{P}^M(x)=\{z\in M\mid z\subseteq^Mx\}$ 当 M 传递时, $\mathcal{P}^M(x)=\{z\in M\mid z\subseteq x\}=\mathcal{P}(x)\cap M$

同理
$$V^M_{\alpha} = \{x \in M \mid (\operatorname{rank}(x) < \alpha)^M \}$$

Lemma 1.68. 若M是ZF的传递模型,则

- 1. 若 $x \in M$,则 $\mathcal{P}^M(x) = \mathcal{P}(x) \cap M$ 只需 Pow 加传递
- 2. 如果 $\alpha \in M$, 则 $V_{\alpha}^{M} = V_{\alpha} \cap M$ 只需ZF-Pow,若有Pow,则 V_{α}^{M} 是由 \mathcal{P}^{M} 得到的

Remark. \mathcal{P} 与 V_{α} 作为函数不是绝对的 固定 $x \in M$,则 $\mathcal{P}(x)$ 可以是带参数 x 的公式

$$\mathcal{P}(x)(y): \forall z(z \in y \leftrightarrow z \in x)$$

此时谓词 $\mathcal{P}(x)$ 是绝对的, $(\mathcal{P}(x))^M = \mathcal{P}(x) \cap M$

固定 $\alpha \in M \cap \mathrm{On}$,则 V_{α} 可以看成带参数 α 的谓词,此时 $(V_{\alpha})^{M} = V_{\alpha} \cap M$ 是绝对的

1.8 不可达基数与 ZFC 的模型

一般来讲, V_{α} 不是 ZF 的模型,比如 ZF $^ \vdash$ $(V_{\omega} \vDash$ ZFC - Inf) 令 Z 表示 ZF - 替换公理模式(Rep) ZC 表示 ZFC - Rep

Theorem 1.69. 如果 $\gamma > \omega$ 是无穷极限序数,则 ZF $\vdash (V_{\gamma} \vDash Z)$,ZFC $\vdash (V_{\gamma} \vDash ZC)$

证明. 假设 V ⊨ ZF

- 存在公理:
- 外延公理: $\forall x \in V_{\gamma} \forall y \in V_{\gamma} \forall u \in V_{\gamma} ((u \in x \leftrightarrow u \in y) \to x = y), V_{\gamma}$ 传递
- 分离公理模式: 假设 $x \in V_{\gamma}$, 则存在 $\beta < \gamma$ 使得 $x \in V_{\beta}$, 故 $x \subseteq V_{\beta}$, $\mathcal{P}(x) \subseteq \mathcal{P}(V_{\beta}) = V_{\beta+1} \subseteq V_{\gamma}$, 则若 $x \in V_{\gamma}$, 则 X 的子集均属于 V_{γ}

分离公理

$$\forall x \in V_{\gamma} \exists Y \in V_{\gamma} \forall u \in V_{\gamma} (u \in Y \leftrightarrow u \in X \land \varphi^{M}(u))$$

在 V 里面可以看到这些是 X 的子集,且能看到 X 的所有子集在 V_{γ} 里

- 对集公理, $\forall x \forall y \exists z \forall u (u \in z \leftrightarrow u = x \lor u = y)$ $\mathop{\mathcal{C}}\nolimits x, y \in V_\gamma \subseteq \mathrm{WF} = V \,, \, \text{frank}(\{x,y\}) < \mathrm{max}\{\mathrm{rank}(x), \mathrm{rank}(y)\} + \omega \,,$ 故 $\{x,y\} \in V_\gamma$
- 并集公理, 类似
- 幂集公理, 类似
- 无穷公理 对于 $\mathbf{ZF}^ \mathbf{Pow}$ \mathbf{Rep} 的传递模型, \emptyset 与后继运算是绝对的 $\omega \in V_{\gamma}$,故无穷公理的相对化成立
- 基础公理

$$\forall x \in V_{\gamma}((x \neq \emptyset)^{V_{\gamma}} \to \exists y \in V_{\gamma}(y \in x \land (y \cap x = \emptyset)^{V_{\gamma}}))$$
 对于 \mathbf{ZF}^{-} — Pow —Rep 的传递模型, \emptyset 与 \cap 是绝对的 而 $V_{\gamma} \subseteq \mathbf{WF} = V$,故 Fnd 成立

若 $V \vDash \mathsf{ZFC}$,设 $X \in V_\gamma$,则 $V \vDash \exists R (R \not = X \text{ 的良序})$ 。 $R \subseteq X \times X \Rightarrow R \in V_\gamma$,对于 $\mathsf{ZF}^- - \mathsf{Pow} - \mathsf{Inf} - \mathsf{Rep}$ 的传递模型 V_γ 有

$$V \vDash (R \not \in X$$
 的良序) $^{V_{\gamma}}$

Exercise 1.8.1. 证明 $V_{\omega+\omega}$ 不满足 Rep

证明.
$$f: n \to \omega + n$$

Proposition 1.70. 工作在 ZFC

- ZF 不能证明"V_ω, 存在"
- ZF 不能证明"对任意 x, trcl(x) 存在"

证明. 构造模型否定这两个命题

令
$$V \vDash \mathsf{ZFC}$$
,令 $X_0 = \omega$, $X_{\alpha+1} = \mathcal{P}(X_\alpha)$, $X_\gamma = \bigcup_{\beta < \gamma} X_\beta$ (γ 极限序数)显然 $\overline{X} = \bigcup_{\alpha \in \mathsf{On}} X_\alpha = \mathsf{WF} = V$ (练习)

$$X_0 \subseteq V_{\omega}, X_0 \in V_{\omega+1}, X_{\alpha} \subseteq V_{\omega+\alpha}, \overline{X} \subseteq WF$$

$$V_0 \subseteq X_0$$
, $V_\alpha \subseteq X_\alpha$, WF $\subseteq \overline{X}$

容易验证以下事实: X_{α} 传递(归纳),设 f(x,y) 表示 $\{x,y\}$,(x-y), $x \times y$, $\bigcup x$, $\cap x$, $\mathcal{P}(x)$,...

若 $x \in X_{\alpha}, y \in X_{\beta}$,则 $f(x,y) \in X_{\max\{\alpha,\beta\}+\omega}$

类似可证 X_{ω} 是 ZC - Inf 的传递模型

由于 $\omega \in X_{\omega}$,故 $X_{\omega} \models Inf$,即 $X_{\omega} \models ZC$

显然 $V_{\omega} \nsubseteq \omega = X_0$,于是存在 $V_n \nsubseteq X_0$,故 $\mathcal{P}(V_n) \nsubseteq \mathcal{P}(X_0)$,即 $\forall k < \omega$, $V_{n+k} \nsubseteq X_k$,故 $\forall n < \omega$,都有 $V_{\omega} \nsubseteq X_n$,故 $V_{\omega} \notin X_{\omega}$

但要严格地说的话得找到一个东西定义 V_{ω} 然后证明它的相对化在 X_{ω} 不满足

另一方面,
$$V_0 \subseteq X_0 \Rightarrow V_n \subseteq X_n$$
,于是 $V_\omega \subseteq X_\omega$

$$\diamondsuit G: \omega \to WF 为 G(n) = V_n$$

验证 G 相对于 X_{ω} 是绝对的,G 的任何一个片段都是有穷的,因此片段的值域都在 X_{ω} 中,因为 X_{ω} 对于任何有穷集合封闭

注:当 $M \models \mathsf{ZF-Pow}$,我们知道递归函数 G 的绝对性,此时 $X_\omega \not\models \mathsf{Rep}$,然而 X_ω 的任何有穷子集都属于 X_ω ,故而对任何 $f:\omega \to X_\omega$,有 $f(\{0,\dots,n\}) \in X_\omega$,可以证明 G 的绝对性(练习)

 V_{ω} 被公式 $\eta(x): \exists n \in \omega(x \in G(n))$

 $(V_{\omega}$ 被" $\alpha \in V_{\omega}$ "定义,但是 X_{ω} 不一定认为 V_{ω} 是集合,必需用 X_{ω} 认可的方式定义)

 V_{ω} 存在指的是

$$\exists y \forall x (x \in y \leftrightarrow \eta(x))$$

由于 G 是绝对的, $\eta(x)$ 绝对,因此 X_{ω} 认为" V_{ω} 存在"当且仅当 $\exists y \in X_{\omega} \forall x \in X_{\omega} (x \in y \leftrightarrow \eta(x))$

由于 $V_{\omega} \subseteq X_{\omega}$ 且 X_{ω} 是传递的,以上的公式等价于

$$\exists y \in X_\omega \forall x (x \in y \leftrightarrow \eta(x))$$

而这样的 y 只能是 V_{ω} , 而 $V_{\omega} \notin X_{\omega}$, 因此以上句子不成立

即 $ZFC \vdash "X_{\omega} \models ZC + V_{\omega}$ 不存在"

证明"x 存在且 $\operatorname{trcl}(x)$ 不存在",假设 $V \vDash \operatorname{ZFC}$,令 $t(u) = \{u\}$, $x_n = t^n(n)$, $\operatorname{rank}(x_n) = 2n$, $x = \{x_n \mid n < \omega\}$,令 $X_0 = x$, $X_1 = \bigcup X_0$,…, $X_{n+1} = \bigcup X_n$,则 $\operatorname{trcl}(x) = \bigcup_{n < \omega} X_n$

令 $Y_0=\omega\cup X_0$, $Y_{n+1}=\mathcal{P}(Y_n)\cup Y_n\cup X_n$,验证 $Y_\omega=\bigcup_{n<\omega}Y_n$ 是传递的,验证 $Y_\omega\vDash \mathsf{ZC}$,验证 $x\in Y_1\subseteq Y$,验证 $\mathsf{trcl}(x)=\bigcup_{n<\omega}X_n\notin Y$,即验证 $\forall n\exists m(X_m\nsubseteq Y_n)$

后面类似,证明
$$Y_{ij} \models "trcl(x)$$
不存在"

Theorem 1.71. 如果 κ 是不可达基数,则在 ZF^- 中可以证明 V_{κ} \models ZF,在 ZFC^- 中可以证明 V_{κ} \models ZFC

证明. 已知 $\mathbf{ZF}^- \models (V_{\kappa} \models Z)$, $\mathbf{ZFC}^- \models (V_{\kappa} \models \mathbf{ZC})$,下面验证替换公理模式

$$\forall A(\forall x \in A \exists ! y \psi(x, y) \to \exists B \forall x \in A \exists y \in B \psi(x, y))$$

相对化

 $\forall A \in M (\forall x \in A \exists ! y \in M \psi^M(x, y) \to \exists B \in M \forall x \in A \exists y \in B \psi(x, y))$

假设 $A \in V_{\kappa}$ 且 $\forall x \in A \exists ! y \in V_{\kappa} \psi^{M}(x,y)$

由于 κ 是极限序数,故 $A \in V_{\kappa} \Rightarrow \exists \alpha < \kappa (A \in V_{\alpha})$,因此 $A \subseteq V_{\alpha}$,而 $V \vDash (\psi^{M} : A \to V_{\kappa})$,于是 $V \vDash |A| \leq |V_{\alpha}| < \kappa$, $V \vDash |f(A)| < \kappa$, $V \vDash f(A) \subseteq V_{\kappa}$,由 κ 的正则性,所以存在 $\beta < \kappa$, $f(A) \subseteq V_{\beta}$,于是 $f(A) \in V_{\beta+1} \subseteq V_{\kappa}$,即 B = f(A)即可

注: V_{κ} 的基数小于 κ 的子集都是 V_{κ} 的元素 若 M 的有穷子集都是 M 的元素,则 $M \models$ 有穷 Rep

Corollary 1.72. ZFC 中不能证明"存在不可达基数"

证明. 若 ZFC \vdash "存在不可达基数",则 ZFC \vdash " $V_{\kappa} \models$ ZFC",即 ZFC \vdash $\exists X (\mathsf{ZFC})^{X}$,因为 V_{κ} 是个集合,因此 ZFC \vdash Con(ZFC)

若只能找到一个真类,我们不能得到能证明一致性

若 T 是可公理化的,则

$$\mathsf{ZFC} \vdash \mathsf{Con}(T) \leftrightarrow \exists M(T)^M$$

(粗略的完全性定理) 取一个适当大的子集 $P \subseteq ZFC$,有

$$P \vdash \mathsf{Con}(T) \leftrightarrow \exists M(T)^M$$

已知若 $V \models ZF^-$,则 WF $\models ZF,ZF^- \vdash (ZF)^{WF} \Rightarrow ZF^- \models Con(ZF)$,因为 WF 不是集合

Lemma 1.73. 设 κ 是不可达基数 (极限序数),则以下概念对 V_{κ} 都是绝对的

- 1. x 是一个基数
- 2. x 是正则基数
- 3. x 是一个不可达基数
- 证明. 1. x 是基数被公式 $\varphi(x)$ 表示:"x 是序数" $\land \forall f \forall y \in x((f:y \to x) \to \operatorname{ran}(f) \neq x)$

三个子公式对 $\mathbf{ZF} - \mathbf{Pow} - \mathbf{Inf} - \mathbf{Rep}$ 的传递模型都是绝对的 若 κ 是极限序数,则

$$V_{\kappa} \models \mathsf{ZF} - \mathsf{Pow} - \mathsf{Inf} - \mathsf{Rep}$$

由于 $\varphi(x)$ 是一个 Π_1 公式, 故

$$\forall x \in V_{\kappa}(\varphi(x) \to \varphi^{V_{\kappa}}(x))$$

另一方面,要证明 $\forall x \in V_{\kappa}(\varphi^{V_{\kappa}}(x) \to \varphi(x))$,只需证明若 $x,y \in V_{\kappa}$ 且 $f:y \to x$,则 $f \in V_{\kappa}$

显然若 $f:y\to x$,则 $f\in x^y$,而 $x,y\in V_\alpha$, $x^y\in V_{\alpha+\omega}$,故 $f\in V_\kappa$,rank $(f)\leq \max\{\operatorname{rank}(x),\operatorname{rank}(y)\}+2$

2. x 是正则基数被公式 $\varphi(x)$ 表示: "x 是基数" $\land \forall f \forall y \in x[(f:y \to x) \to \exists z \in x(\operatorname{ran}(f) \subseteq z)]$

与1类似

3. x 是不可达基数被公式 $\varphi(x)$ 表示: "x 是正则基数" $\land \forall f \forall y \in x((f:2^y \to x) \to \operatorname{ran}(f) \neq x)$

 2^y 是 y 到 2 的全体函数为绝对概念

用"I"表示"存在不可达基数"

Lemma 1.74. 如果 ZFC 一致,则 ZFC $+\neg I$ 也是一致的,即

$$ZFC \vdash Con(ZFC) \rightarrow Con(ZFC + \neg I)$$

证明. 设 $V \models ZFC + Con(ZFC)$, $V \models \exists M(ZFC)^M$

先在 $M \models \mathsf{ZFC}$,视 M 为集合宇宙,若 κ 是 M 中最小的不可达基数,则 $V_{\kappa} \models \mathsf{ZFC} + \neg I$,即 $M \models (\mathsf{ZFC} + \neg I)^{V_{\kappa}}$

存在 M 中的元素 X 使得 $M \models "(X, \in) \models \mathsf{ZFC} + \neg I"$,即 $M \models (\mathsf{ZFC} + \neg I)^X$,则 $V \models ((\mathsf{ZFC} + \neg I)^X)^M$,即 $\forall y \rightsquigarrow \forall y \in X \rightsquigarrow \forall y \in X \cap M$,因此 $V \models (\mathsf{ZFC} + \neg I)^{X \cap M}$ (验证:归纳)

注: M 看到 (X, \in) 恰好是 V 看到的 $(X \cap M, \in)$

因此 $V \models Con(ZFC + \neg I)$

若 M 中不存在不可达基数,则 $M \models \mathsf{ZFC} + \neg I$,因此 $V \models (\mathsf{ZFC} + \neg I)^M$ 事实上 $(\mathbb{N}, +, \times, 0, 1) + AC + \mathsf{Con}(\mathsf{ZFC}) \vdash \mathsf{Con}(\mathsf{ZFC} + \neg I)$ (完全性要AC)

以上引理表明: ZFC F I

以上证明没有使用哥德尔不完全定理

最好的情况是,"ZFC+I"一致,即我们希望 ZFC 下构造"ZFC+I"的模型

Corollary 1.75. 在 ZFC 中不能生成"ZFC + I"的模型,即

$$ZFC + Con(ZFC) \not\vdash Con(ZFC + I)$$

证明. 否则,假设 ZFC 一致,则 ZFC +I 一致,目标 ZFC +I \vdash Con(ZFC +I) 任取 $V \models$ ZFC +I,则 $V \models$ (ZFC) $^{V_{\kappa}}$,由完全性, $V \models$ Con(ZFC),因此有了矛盾

Definition 1.76. 对任意的无穷基数 κ

$$H_{\kappa} = \{x \mid |\operatorname{trcl}(x)| < \kappa\}$$

Lemma 1.77 ($V \models ZFC$). 对任意的无穷基数 κ 有

$$H_{\kappa} \subseteq V_{\kappa}$$

证明. V = WF,只需验证 $\forall x \in H_{\kappa}$,有 $rank(x) < \kappa$

设 $x\in H_\kappa$,令 $t={\rm trcl}(x)$,令 $s=\{{\rm rank}(y)\mid y\in t\}\subseteq {\rm On}$,验证 s 是序数

假设 α 是最小的不属于 s 的序数, $\alpha \subseteq s$,若 $\alpha \neq s$,令 $\beta = \min(s \setminus \alpha)$,因此 $\beta > \alpha$,令 $y \in t$ 使得 $\beta = \operatorname{rank}(y)$, $\forall z \in y$, $z \in t$ 且 $\operatorname{rank}(z) < \operatorname{rank}(y)$,由 β 的极小性, $\forall z \in y(\operatorname{rank}(z) < \alpha)$, $\beta = \operatorname{rank}(y) = \sup\{\operatorname{rank}(z) + 1 \mid z \in y\}$,因此 $\beta \leq \alpha$,矛盾

故 $s=lpha,\; \exists \; |s|\leq |t|=|\mathrm{trcl}(x)|<\kappa,\;$ 所以 $lpha<\kappa,\; x\subseteq\mathrm{trcl}(x)\subseteq V_s$

Lemma 1.78. 如果 κ 是正则基数,则 $H_{\kappa} = V_{\kappa}$ 当且仅当 κ 是不可达基数

证明. 设 κ 不可达,只需证明 $V_{\kappa} \subseteq H_{\kappa}$

对 $\alpha < \kappa$ 进行归纳证明: $|V_{\alpha}| < \kappa$ (练习)

设 $x \in V_{\kappa}$,则存在 $\alpha < \kappa$ 使得 $x \in V_{\alpha}$, $\operatorname{trcl}(x) \subseteq V_{\alpha}$,因此 $|\operatorname{trcl}(x)| < \kappa$ 假设 κ 不是不可达基数,则存在 $\lambda < \kappa$, $2^{\lambda} \ge \kappa$, $\mathcal{P}(\lambda) \in V_{\lambda+\omega} \subseteq V_{\kappa}$, $|\operatorname{trcl}(P(\lambda))| \ge 2^{\lambda} \ge \kappa$,因此 $P(\lambda) \in V_{\kappa} \setminus H_{\kappa}$

Lemma 1.79. 对于任意无穷基数 κ

1. H_κ 传递

- 2. $H_{\kappa} \cap On = \kappa$
- 3. $x \in H_{\kappa} \Rightarrow \bigcup x \in H_{\kappa}$
- 4. $x, y \in H_{\kappa} \Rightarrow \{x, y\} \in H_{\kappa}$
- $5. \ x \in H_{\kappa} \perp y \subseteq x, \ \ y \in H_{\kappa}$
- 6. 如果 κ 正则,则

$$\forall x (x \in H_{\kappa} \leftrightarrow x \subset H_{\kappa} \land |x| < \kappa)$$

- 证明. 1. 设 $x\in y\in H_\kappa$,则 $|\mathrm{trcl}(y)|<\kappa$,而 $\mathrm{trcl}(x)\subset\mathrm{trcl}(y)$,因此 $x\in H_\kappa$
 - 2. 若 $\alpha < \kappa$,则 $\alpha = \operatorname{trcl}(\alpha)$,因此 $\alpha \in H_{\kappa}$ 若 $\alpha \in H_{\kappa}$,则 $|\alpha| < \kappa$,因此 $\alpha < \kappa$
 - $3. \ \bigcup x \subseteq \operatorname{trcl}(x) \Rightarrow \operatorname{trcl}(\bigcup x) \subseteq \operatorname{trcl}(x), \ \ \text{\'et} \ x \in H_{\kappa} \Rightarrow \bigcup x \in H_{\kappa}$
 - 4. $\operatorname{trcl}(\{x,y\}) = \{x,y\} \cup \operatorname{trcl}(x) \cup \operatorname{trcl}(y)$
 - 5. $trcl(y) \subseteq trcl(x)$
 - 6. 若 $x \in H_{\kappa}$,由传递性, $x \subset H_{\kappa}$, $|x| \leq |\operatorname{trcl}(x)| < \kappa$ 若 $x \subset H_{\kappa}$, $|x| < \kappa$, 设 $x = \{x_i \mid i < \lambda\}$,则 $\operatorname{trcl}(x) = x \cup \bigcup_{i < \lambda} \operatorname{trcl}(x_i)$,若 $|\operatorname{trcl}(x)| \geq \kappa$,则 $\forall \alpha < \kappa$,存在 $i < \lambda$ 使得 $|\operatorname{trcl}(x_i)| > \alpha$,故 λ 与 κ 共尾

Theorem 1.80 (ZFC). 若 κ 是不可数正则基数,则 $H_{\kappa} \models$ ZFC – Pow

证明. H_{κ} 传递 \Rightarrow 外延公理

 H_{κ} 非空 \Rightarrow 存在公理

由于 $x \in H_{\kappa} \leftrightarrow x \subset H_{\kappa} \land |x| < \kappa$,故分离公理 + 替换公理成立 H_{κ} 对 $\bigcup x$ 与 $\{x,y\}$ 封闭,故对集公理 + 并集公理成立

 H_{κ} 满足以上公理 $\Rightarrow \emptyset, \omega, x^+, x \cap y$ 的绝对性

由于 $\omega \in H_{\kappa}$, $H_{\kappa} \models Inf$

 $\emptyset, x \cap y$ 的绝对性, $H_{\kappa} \vDash Fnd$

选择公理: $\forall x \in H_k \exists R \in H_\kappa (R \to X \ \text{的良序})^{H_\kappa}$

已知,若 $x, R \in H_{\kappa}$,则 R 是 x 的良序当且仅当 (R是 X 的良序) H_{κ} (ZF-Pow)

只需验证: 如果 $X \in H_{\kappa}$, 则 $\forall R \subseteq X \times X$, 有 $R \in H_{\kappa}$

显然 $|X|<\kappa$,因此 $|X\times X|<\kappa$,若 $a,b\in X$,则 $|\mathrm{trcl}((a,b))|<|\mathrm{trcl}(x)|+\aleph_0$,因此 $(a,b)\in H_\kappa$,因此 $R\subset H_\kappa$,根据 (6),有 $R\in H_\kappa$

Theorem 1.81 (ZFC). 如果 κ 是不可数正则基数、TFAE

- 1. $H_{\kappa} \models ZFC$
- 2. $H_{\kappa} = V_{\kappa}$
- 3. κ 不可达

证明. 已知 $2 \leftrightarrow 3$

 $1 \to 2+3$: 若 κ 不是不可达基数,则存在 $\lambda < \kappa$ 使得 $2^{\lambda} \ge \kappa$, $\lambda \in H_{\kappa}$ 且 $\mathcal{P}(\lambda) \notin H_{\kappa}$,于是 $H_{\kappa} \nvDash \text{Pow}$

 $V \vDash \forall z \in H_{\kappa} \forall x \in H_{\kappa} (x \in z \leftrightarrow x \subseteq \lambda)$

$$2 \rightarrow 1$$
 显然

以上引理表明,若 κ 正则且不是不可达的,则

$$\mathsf{ZFC} \vdash (\mathsf{ZFC} - \mathsf{Pow} + \neg \mathsf{Pow})^{H_{\kappa}}$$

故 $Con(ZFC) \rightarrow Con(ZFC-Pow+\neg Pow)$,即 Pow 不能由 ZFC 中的其它 公理推出

Corollary 1.82. $Con(ZFC) \rightarrow Con(ZFC - Pow + \forall (x countable))$

证明. $H_{\omega_1} \models \mathsf{ZFC} - \mathsf{Pow}$

x 可数:存在 f, $(f:x\to\omega)$ 是双射,只需要这个 f 是属于 H_{ω_1} 就行了,但这是显然的 $\forall x,y\in H_{\kappa'}$ $x^y\in H_{\kappa}$ 用性质 6

这个可数我们得在
$$H_{\omega_1}$$
 里看到

1.9 反映定理

已知 $V \models \mathbf{ZF} \Rightarrow V_{\alpha} \models Z \alpha > \omega$

 $V \vDash \mathsf{ZFC} \Rightarrow V_{\alpha} \vDash \mathsf{ZC} \ (\alpha > \omega)$

 $V_{\omega} \models \mathsf{ZFC} - \mathsf{Inf}$

 V_{α} 不能"反映"V 的全貌, 除非 α 是不可达基数

对不可达基数 κ , V_{κ} 能"反映"V 的全貌(不全对)

 H_{κ} 也类似,

本节讨论另一个方向: 对给定的句子 φ , 若 φ 在 V 中成立, 则能否找到 α 使得 $V_{\alpha} \models \varphi$

问: 是否存在 φ ,它在 V 中成立,但是 $\forall \alpha(V_\alpha \nvDash \varphi)$ (因为 ZC 少了无穷条 Rep)

Theorem 1.83 (反映定理). 对于任意有穷 $\varphi_1, ..., \varphi_n$, 存在 α 使得

$$V \vDash \varphi_i \Leftrightarrow V_{\alpha} \vDash \varphi_i (i = 1, \dots, n)$$

即

$$V \vDash \varphi_i \leftrightarrow \varphi_i^{V_\alpha}$$

设 F 是一个集合论语言的公式集,如果对每个 $\varphi(x_1,\ldots,x_n)\in F$,对每个 $a_1,\ldots,a_n\in M$,有 $M\models\varphi[a_1,\ldots,a_n]\Leftrightarrow N\models\varphi[a_1,\ldots,a_n]$,则称 M 是 N 的相对于 F 的初等子模型,记作 $M\prec_F N$

反映定理是 Löwenheim-Skolem Theorem 的有穷"版本",等价地说 F中的公式相对于 V_{α} 绝对

Lemma 1.84. 令 $M\subseteq N$ 都是类, $\varphi_1,\ldots,\varphi_n$ 是对子公式封闭的公式集,则以下命题等价

- $1. \varphi_1, \dots, \varphi_n$ 相对于 M 和 N 绝对
- 2. 如果 φ_i 是形如 $\exists x \varphi_i(x, y_1, ..., y_m)$ 的公式,则

$$\forall \bar{y} \in M(\exists x \in N\varphi_j^N(x,\bar{y}) \to \exists x \in M\varphi_j^N(x,\bar{y}))$$

证明. $1 \rightarrow 2$: 设 φ_i 形如这样的形式,由绝对性

$$\forall \bar{y} \in M(\varphi_i^N(\bar{y}) \leftrightarrow \varphi_i^M(\bar{y}))$$

再由 φ_i 的绝对性, $\forall \bar{y}(\exists x \in M\varphi_i^M(x,\bar{y}) \leftrightarrow \exists x \in M\varphi_i^N(x,\bar{y}))$

 $2 \to 1$: 对 φ_i 的长度归纳证明:若 $|\varphi_i|$ 最小,则 φ_i 无量词,因此绝对若长度小于 $|\varphi_i|$ 的公式都是绝对的,则 φ_i 的所有子公式都绝对,而 φ_i 的形式有以下形式

- 1. $\varphi_i \to \varphi_k$
- 2. $\neg \varphi_i$
- 3. $\exists x \varphi_i(x, \bar{y})$

只需验证情形 3: 任取 $\bar{y} \in M$, 由题设条件,

$$\exists x \in N\varphi_j^N(x,\bar{y}) \to \exists x \in M\varphi_j^N(x,\bar{y})$$

由 φ_i 的绝对性,有

$$\forall x \in M(\varphi_i^N(x,\bar{y}) \leftrightarrow \varphi_i^M(x,\bar{y}))$$

而显然

$$\exists x \in M\varphi_{i}^{M}(x,\bar{y}) \to \exists x \in M\varphi_{i}^{N}(x,\bar{y}) \to \exists x \in N\varphi_{i}^{N}(x,\bar{y})$$

这个证明没有用到有穷性, 因此无穷情况也成立

Theorem 1.85 (反映定理,ZF). 对于任意有穷公式集 $F=\{\varphi_1,\ldots,\varphi_n\}$,对任意 $\alpha\in \mathrm{On}$,存在 $\beta\geq \alpha$ 使得 F 对 V_β 绝对

在
$$ZF$$
 中, $WF = V$

证明. 由于没有选择公理,无法"构造" $\mathcal{H}(V_{\alpha})$, V_{α} 的 Skolem hull

由于有了前面的引理,本质上,我们只需要找到一个 V_{β} 使得每个形如 $\exists x \varphi(x, \bar{y})$ 的公式以及每一组参数 $\bar{b} \in V_{\beta}$ 有 $V \models \exists x \varphi_j(x, \bar{b}) \Leftrightarrow V_{\beta} \models \exists x \varphi_j(x, \bar{b})$,即系数来自 V_{β} 的方程若有解,则有一个解 $\in V_{\beta}$

设 $\varphi_i \in F$ 且形如 $\exists y \varphi_j(\bar{x}, y)$,定义函数 h_i 如下:

- $\in \mathbb{R}$ $\bar{x} \in V$, $\Leftrightarrow U = \{y \mid \varphi_i(\bar{x}, y)\}$
- 若 $U \neq \emptyset$,则存在最小的 ξ 使得 $U \cap V_{\xi} \neq \emptyset$,此时令 $h_i(\bar{x}) = V_{\xi}$ (用了 序数的良序性)
- 函数 h_i 满足

$$\forall \bar{x}(\exists y \varphi_i(\bar{x}, y) \to \exists y \in h_i(\bar{x}) \varphi_i(\bar{x}, y))$$

定义 h_F 为:

$$h_F(x_1,\dots,x_m) = \bigcup \{h_i(x_1,\dots,x_m): i=1,\dots,n\}$$

这里必需要求只能有穷多个,因为 h_i 是类

则 h_F 满足: 对每个形如 $\exists y \varphi_i(\bar{x}, y)$ 的公式,有

$$\forall \bar{x}(\exists y \varphi_i(\bar{x}, y) \to \exists y \in h_F(\bar{x}) \varphi_i(\bar{x}, y))$$

任取 α , 递归定义 V_{α}^{i} , $i \in \omega$ 如下:

- $V_{\alpha}^0 = V_{\alpha}$
- $\bullet \ V_{\alpha}^{i+1} = V_{\alpha}^{i} \cup \bigcup \{h_{F}(\bar{y}) \mid \bar{y} \in V_{\alpha}^{i}\}$

令 $V_{\beta} = \bigcup V_{\alpha}^{i}$,相当于 V_{α} 的 F-Skolem hull,若 $\varphi_{i} \in F$ 形如 $\exists y \varphi_{j}(\bar{x}, y)$ 任取 $\bar{x} \in V_{\beta}$,则存在 $k < \omega$ 使得 $\bar{x} \in V_{\alpha}^{k}$,若 $\exists y \varphi_{j}(\bar{x}, y)$,则

$$\exists y \in h_F(\bar{x}) \varphi_j(\bar{x},y)$$

Corollary 1.86 (ZF). 令 $F = \{\sigma_1, \dots, \sigma_n\}$ 为 ZF 的有穷子集,则

$$\forall \alpha \exists \beta \geq \alpha (\sigma_1^{V_\beta} \wedge \dots \wedge \sigma_n^{V_\beta})$$

证明. 将 F 扩张为 F',有穷且对子公式封闭,于是 $\forall \alpha \exists \beta \geq \alpha$ 使得 F' 相对于 V_{β} 绝对

对于 F' 中的句子,有

 $ZF \vdash \sigma \leftrightarrow \sigma^{V_{\beta}}$

Corollary 1.87. 设 $F = \{\sigma_1, \dots, \sigma_n\} \subseteq ZF$,除非 ZF 不一致,否则 " $F \not\vdash ZF$ " 证明. 存在 V_β 使得 $ZF \vdash (F)^{V_\beta}$,若 $F \vdash ZF \Rightarrow ZF \vdash (ZF)^{V_\beta}$,故 $ZF \vdash (ZF)^{V_\beta} \to Con(ZF)$ (无需 AC,反过来要),因此 $ZF \vdash Con(ZF)$

Remark. 以上推论对 ZF 的任意扩张成立

若 AC 成立,则反映定理可以改进为存在可数 (M, \in) 使得 $M \prec_F V$ (绝对性强于 \prec_F ,用 Skolem hull)

- 若 F 含有无穷公理,则 $M \neq V_{\omega}$
- - 令 ψ(x,y) 表示 ∀u(u ∈ y ↔ u ⊆ x), 令 Pow: ∀x∃yψ(x,y), 则 ψ 与 Pow 不能同时绝对
 M 传递时, ⊆↔⊆^M, 若 ψ 绝对,则 V 看到的幂集跟 M 看到的幂集,而 M 是可数的
- 若 $F \subseteq_f ZFC$,由 Mostowski collapsing 定理,存在传递模型使得 $(M, \in) \cong (N, \in)$

F 相对于 N 绝对,但是 F 的子公式不一定绝对(比如 ψ 与 Pow)

Theorem 1.88 (ZFC). 对任意有穷公式集F,对任意集合N,存在集合M 使得

- 1. $N \subseteq M$
- $2. \varphi_1, \ldots, \varphi_n$ 相对于 (M, \in) 绝对

- 3. $|M| \leq |N| + \aleph_0$
- 4. 若 N 至 δ 可数,则 M 可数

证明. 不妨设 F 对于子公式封闭,令 \mathcal{H}_F 为 F 对应的 Skolem 函数集,令 $M=\mathcal{H}_F(N)$ (练习)

Corollary 1.89 (ZFC). 对任意有穷 句子 集 $F = \{\varphi_1, \dots, \varphi_n\}$,对任意的传递 集 N,存在 M 满足

- 1. $N \subseteq M$
- 2. F 相对于 (M, ∈) 是绝对的
- 3. $|M| \leq |N| + \aleph_0$
- 4. M 传递

证明. 不妨设外延公理 $\in F$,则存在 (M', \in) 满足 1-3

 (M', \in) 良基似集合且满足外延公理

故 $G:M'\to V$, $x\mapsto \{G(y)\mid y\in M'\wedge y\in x\}$ 是 M' 到 M=G(M') 的 同构,M 传递,由 M' 的绝对性, $V\vDash\varphi_i\leftrightarrow\varphi_i^{M'}$ 由同构

$$\varphi_i^{M'} \Leftrightarrow M' \vDash \varphi_i \Leftrightarrow M \vDash \varphi_i \Leftrightarrow \varphi_i^M$$

故F相对于M绝对

设 $N\subseteq M'$ 传递,对 N 中元素的 rank 归纳证明: $\forall x\in N(G(x)=x)$,即 $G(N)=N\subseteq M$

句子集的绝对性被同构保持,而公式不是这样(例子是幂集公理) Remark. 若 $\varphi(x_1,\ldots,x_n)$ 是一个公式,且 $(M,\epsilon)\cong (M',\epsilon)$ 则 φ 相对于

1.10 Exercise

Exercise 1.10.1 (7.10.1). 令 N 是集合论模型, $S \subseteq N$,如果 $M = \mathcal{H}(S)$,则 $M \prec N$

证明. Induction

对任意 $\bar{a} \in M^n$, 有 $M \models \varphi(\bar{a}) \Leftrightarrow N \models \varphi(\bar{a})$

- 1. 不含量词,显然成立
- 2. φ 形如 $\exists y \psi(\bar{x}, y)$, $N \vDash \exists y \psi(\bar{a}, y) \Rightarrow N \vDash \psi(\bar{a}, h_{\psi}(\bar{a}))$, by IH, $M \vDash \psi(\bar{a}, h_{\psi}(\bar{a})) \Rightarrow M \vDash \exists y \psi(\bar{a}, y)$

Exercise 1.10.2 (7.10.2). 对任何集合 $x\in \mathrm{WF}$,如果 $\mathrm{rank}(x)=\alpha$,则 $x\subseteq V_{\alpha}$, $x\notin V_{\alpha}$,并且对任意 $\gamma>\alpha$, $x\in V_{\gamma}$

证明. 根据定义, $x \notin V_{\alpha}$, $x \in V_{\alpha+1}$,因此 $x \subseteq V_{\alpha}$,对于任意 $\gamma > \alpha$, $V_{\alpha+1} \subseteq V_{\gamma}$,因此 $x \in V_{\gamma}$

Exercise 1.10.3 (7.10.3). 1. $V_{\alpha} = \{x \in WF \mid rank(x) < \alpha\}$

- 2. WF is transitive
- 3. $\forall x, y \in WF, x \in y \Rightarrow rank(x) < rank(y)$
- 4. $\forall y \in WF$, $rank(y) = sup\{rank(x) + 1 \mid x \in y\}$
- 证明. 1. by definition, $x\in V_{\mathrm{rank}(x)+1}\setminus V_{\mathrm{rank}(x)}$, $\mathrm{rank}(x)<\alpha\Rightarrow x\in V_{\mathrm{rank}(x)+1}\subseteq V_{\alpha}$ $\mathrm{rank}(x)\geq\alpha\Rightarrow x\notin V_{\alpha}$
 - 2. WF is the "union" of transitive sets
 - $3. \ y \in V_{\mathsf{rank}(y)+1} \smallsetminus V_{\mathsf{rank}(y)}\text{, } y \subseteq V_{\mathsf{rank}(y)}\text{, } x \in y \Rightarrow x \in V_{\mathsf{rank}(y)} \Rightarrow \mathsf{rank}(x) < \mathsf{rank}(y)$
 - 4. by 3, $\sup\{\mathrm{rank}(x)+1\mid x\in y\}\leq \mathrm{rank}(y).$ induction on $\mathrm{rank}(y)\leq \sup\{\mathrm{rank}(x)+1\mid x\in y\}$
 - rank(y) = 0

- $$\begin{split} \bullet \ \, & \operatorname{rank}(y) = \beta + 1, y \in V_{\beta + 2} \smallsetminus V_{\beta + 1} \\ & y \in V_{\beta + 2} \Rightarrow y \subseteq V_{\beta + 1}. \ \, y \notin V_{\beta + 1} \Rightarrow y \not\subseteq V_{\beta} \Rightarrow y \smallsetminus V_{\beta} \text{ nonempty.} \\ & \operatorname{Let} \, x \in y \smallsetminus V_{\beta}, \operatorname{rank}(x) \geq \beta, \sup \{ \operatorname{rank}(x) + 1 \mid x \in y \} \geq \beta + 1 = \operatorname{rank}(y) \end{split}$$
- $\operatorname{rank}(y) = \gamma$ for some limit, then $y \subseteq V_{\gamma}$ and for any $\xi < \gamma, y \not\subseteq V_{\xi}$, let $X_{\xi} \in y \setminus V_{\xi}$, then $\operatorname{rank}(X_{\xi}) \ge \xi$, $\sup\{\operatorname{rank}(x) + 1 \mid x \in y\} \ge \sup\{\xi + 1 \mid \xi < \operatorname{rank}(y)\} \ge \operatorname{rank}(y)$

Exercise 1.10.4 (7.10.4). 1. If $x \in WF$, then $\bigcup x, \mathcal{P}(x), \{x\} \in WF$, and their rank $< \operatorname{rank}(x) + \omega$

- 2. If $x,y\in {\sf WF}$, then $x\times y, x\cup y, x\cap y, \{x,y\}, (x,y), x^y\in {\sf WF}$, and their rank $<{\sf rank}(x)+{\sf rank}(y)+\omega$
- 3. $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \in V_{\omega+\omega}$
- 4. for any set x, $x \in WF \Leftrightarrow x \subset WF$
- 证明. suppose $\operatorname{rank}(x) = \alpha. \ x \in V_{\alpha+1} \setminus V_{\alpha} \ \operatorname{and} \ x \subseteq V_{\alpha}.$ by transitivity, $\bigcup x \subseteq V_{\alpha} \Rightarrow \bigcup x \in V_{\alpha+1} \subset \operatorname{WF. rank}(\bigcup x) \leq \alpha$ suppose $y \in \mathcal{P}(x), \ y \subseteq x \Rightarrow y \subseteq V_{\alpha} \Rightarrow y \in V_{\alpha+1}. \ \mathcal{P}(x) \subseteq V_{\alpha+1},$ $\mathcal{P}(x) \in V_{\alpha+2}, \operatorname{rank}(\mathcal{P}(x)) \leq \alpha+1.$ $\{x\} \in \mathcal{P}(x) \in V_{\alpha+2}.$
 - $$\begin{split} \text{1. Suppose } \operatorname{rank}(x) &= \alpha, \operatorname{rank}(y) = \beta, \, x \subset V_{\alpha}, \, y \subset V_{\beta} \\ & \quad x \cup y \subset V_{\alpha} \cup V_{\beta} = V_{\max(\alpha,\beta)}, \, \operatorname{rank}(x \cup y) \leq \max(\alpha,\beta) \\ & \quad x \cap y \subset V_{\min(\alpha,\beta)} \\ & \quad \{x,y\} \subseteq V_{\alpha+1} \cup V_{\beta+1} = V_{\max(\alpha,\beta)+1}, \, \operatorname{rank}(\{x,y\}) = \max(\alpha,\beta) + 1 \\ & \quad (x,y) = \{\{x\}, \{x,y\}\} \subset V_{\max(\alpha,\beta)+2}. \, \operatorname{rank}((x,y)) = \max(\alpha,\beta) + 2 \end{split}$$

$$\begin{split} x\times y &= \{(a,b) \mid a\in x, b\in y\}. \ a\in x \Rightarrow \mathrm{rank}(a) < \alpha, b\in y \Rightarrow \\ \mathrm{rank}(b) &< \beta, \mathrm{rank}(a,b) < \mathrm{max}(\alpha,\beta) + 2, (a,b) \in V_{\mathrm{max}(\alpha,\beta) + 2}. \ x\times y \subseteq V_{\mathrm{max}(\alpha,\beta) + 2}, \mathrm{rank}(x\times y) \leq \mathrm{max}(\alpha,\beta) + 2. \end{split}$$

$$x^y\subseteq \mathcal{P}(x\times y)\subseteq V_{\max(\alpha,\beta)+3}.$$

2. $\mathbb{N} = \omega \in V_{\omega+1}$

 $\mathbb{Z} \colon \mathrm{let} \sim \mathrm{be} \ \mathrm{an} \ \mathrm{equivalence} \ \mathrm{relation} \ \mathrm{on} \ \omega \times \omega, \ (a,b) \sim (c,d) \Leftrightarrow a+d = b+c, \ \mathrm{then} \ \mathbb{Z} = (\omega \times \omega)/\sim. \ \mathrm{Hence} \ \mathbb{Z} \ \mathrm{is} \ \mathrm{a} \ \mathrm{partition} \ \mathrm{of} \ \omega \times \omega \ \mathrm{and} \ \mathrm{hence} \ \mathbb{Z} \subseteq \mathcal{P}(\omega \times \omega). \ \mathbb{Z} \in V_{\omega+3}$

 $\begin{array}{lll} \mathbb{Q} \colon \mbox{ let } \sim \mbox{ be an equivalence on } \mathbb{Z} \times \mathbb{Z}^+ \mbox{, } (a,b) \sim (c,d) \ \Leftrightarrow \ ad = \ bc. \\ \mathbb{Q} \subseteq \mathcal{P}(\mathbb{Z} \times \mathbb{Z}^+) \mbox{, } \mathbb{Q} \in V_{\omega + 6} \end{array}$

 \mathbb{R} : set of dedekind cut on \mathbb{Q} , $\mathbb{R} \subset \mathcal{P}(\mathbb{Q})$, $\mathbb{R} \in V_{\omega+8}$

3. \Rightarrow : WF is transitive

 \Leftarrow : x is a set and $x \subset \bigcup_{\alpha \in On} V_{\alpha}$.

Claim: there is an ordinal α s.t. $x \subset V_{\alpha}$

Otherwise, let $f:\operatorname{On} o \mathcal{P}(x)$ s.t. $f(\alpha)=x \smallsetminus V_{\alpha}$. Then for any $y \in \mathcal{P}(x)$, $f^{-1}(y)$ is a set. $\operatorname{On} = \bigcup_{y \in x} f^{-1}(y)$ and is thus a set, a contradiction

Exercise 1.10.5 (7.10.5). 对任意拓扑空间 T,存在 WF 中的拓扑空间 T' 和 T 同胚

证明. 假设 T 是一个拓扑空间,由 AC,存在基数 α 使得 $|T|=\alpha$,于是有一个双射 $f:\alpha\to T$ 。令 T' 是 α 上的拓扑空间, $x\in T'$ 是开集当且仅当 f(x) 是 T 中的开集,于是 f 是一个同胚

Exercise 1.10.6 (7.10.6). 令 $M \subseteq N \perp M$ 传递, $\psi(\bar{x})$ 是一个公式, 则

1. 如果 ψ 是 Δ_0 公式,则他它对 M,N 是绝对的

2. 如果 ψ 是 Σ_1 公式,则

$$\forall \bar{x} \in M(\psi^M(\bar{x}) \to \psi^N(\bar{x}))$$

3. 如果 ψ 是 Π_1 公式,则

$$\forall \bar{x} \in M^n(\psi^N(\bar{x}) \to \psi^M(\bar{x}))$$

证明. 1. 对公式的长度进行归纳证明

2. 例子: 令 M = On, N = WF, 令 $\psi(y) := \forall x \in y \forall u, v \in x (u \in v \lor v \in u \lor u = v)$, 则 $\psi \not\in \Delta_0$ 的,则

$$\psi^M(y) = \forall x \in M(x \in y \to \forall u, v \in M(u, v \in x \to (u \in v \lor v \in u \lor u = v)))$$

$$\psi^N(y) = \forall x \in N(x \in y \to \forall u, v \in N(u, v \in x \to (u \in v \lor v \in u \lor u = v)))$$

任取 $x_0 \in WF \setminus On$ 使得 (x_0, \in) 不是线序,令 $y_0 = \{x_0\}$,则 $\psi^M(y_0)$ 的前件假, $\psi^M(y_0)$ 是真的, $\psi^N(y_0)$ 为假,因此

$$\forall \bar{x}(\psi^M(\bar{x}) \to \psi^N(\bar{x}))$$

错误

 $\Leftrightarrow x = \bar{x}, y = \bar{y}$

设 $\psi:=\exists \varphi(x,y),\; \varphi(x,y)\in \Delta_0, \psi^M:=\exists y\in M(\varphi^M(x,y)), \psi^N:=\exists y\in N(\varphi^N(x,y)),\;$ 任取 $a\in M^m,\;$ 目标 $\psi^M(a)\to \psi^N(a)$

若 $\psi^M(a)$ 成立, 则有 $b\in M^n$ 使得 $\psi^M(a,b)$, 由 Δ_0 的绝对性, $\psi^N(a,b)$, 因此 $\exists y\psi^N(a,y)$

3. 设 $\psi := \forall y \varphi(x,y)$ 其中 $\varphi \in \Delta_0$,则 $\psi^M := \forall y \in M \varphi^M(x,y)$, $\psi^N := \forall y \in N \varphi^N(x,y)$,设 $a \in M$ 使得 $\psi^N(a)$ 成立,目标 $\psi^M(a)$ 成立。 $\psi^N(a) \Rightarrow \text{对所有的 } b \in N \text{ 均有 } \varphi^N(a,b) \text{ 成立,故对一切 } b \in M \text{ 有 } \varphi^N(a,b) \text{ 成立,由 } \varphi \text{ 的绝对性,} \forall y \in M \varphi^M(a,y)$

Exercise 1.10.7 (7.10.7). 证明莫斯托夫斯基定理中的 M 和 G 唯一

证明. 假设 M,N 是传递类且 $f:(M,\in)\cong(N,\in)$, $S=\{x\in M\mid f(x)\neq x\}$ 。因为 $M\neq N$,因此 S 非空,取 S 的极小元 x_0 ,则对于任意 $y\in x_0$, $y=f(y)\in f(x_0)$,于是 $x_0\subset f(x_0)$,又因为 f 是双射,同理有 $f(x_0)\subset x_0$,于是 $f(x_0)=x_0$,矛盾。因此 M=N。

若 $f_1:(X,R)\cong (M,\in),\ f_2:(X,R)\cong (N,\in),$ 则 M=N, 于是 $f_1f_2=f_2f_1=\mathrm{id},$ 因此 $f_1=f_2$

Exercise 1.10.8 (7.10.8). 证明以下概念对任意 ZF - Pow 的传递模型绝对

- 1. $X^{<\omega}$
- 2. $\alpha + \beta$
- 3. $\alpha \cdot \beta$
- 4. α^{β}
- 5. rank(x)
- 6. trcl(x)
- 证明. 1. 先证明封闭,再证明绝对

首先证明函数 $Z = X^{<\omega}$ 是绝对的

由于 $\omega \in M$,于是 $\mathrm{ran}(F(X,-) \upharpoonright \omega) \in M$,由并集公理, $\bigcup \mathrm{ran}(F(X,-) \upharpoonright \omega) \in M$

 $Z=X^{<\omega}$ 被公式 $\varphi(x,z)$ 定义: $\forall f(f\in z\leftrightarrow \exists n(n \text{ fintie ordinal} \land f\in X^n))$

验证: $\forall x \in M \forall z \in M(\varphi(x,z) \leftrightarrow \varphi^M(x,z))$

V 看到所有有穷序数都在 M 中

于是 φ 绝对, $\forall x \in M \exists ! z \in M \varphi(x, z)$

2. 没有递归定义的绝对性

 $\alpha + \beta$ 的定义为 type($\alpha \oplus \beta$)

由于 type(-,-) 是绝对的,只需证明 $\alpha \oplus \beta$ 是绝对的

令
$$F(\alpha,\beta)=W$$
, 其中 $W=\alpha\times\{0\}\cup\beta\times\{1\}$, 再令 $G(\alpha,\beta)=R$, 其中 $R\subseteq W^2$ 且满足 $\forall x\in\alpha\times\{0\}\forall y\in\beta\times\{1\}(xRy)$ 且 $\forall x,y\in\alpha((x,0)R(y,0)\leftrightarrow x\in y)$ 且 $\forall x,y\in\beta((x,1)R(y,1)\leftrightarrow x\in y)$

显然 $R \neq W$ 的良序集

F 是绝对的

$$\forall x \in R[\exists a \in \alpha \exists b \in \alpha (a \in b \land x = ((a,0),(b,0)))$$

$$\vee \exists a \in \beta \exists b \in \beta (a \in b \land x = ((a,1),(b,1)))$$

$$\vee \exists a \in \alpha \exists b \in \beta (x = ((a,0),(b,1)))]$$

$$\wedge \forall a,b \in \alpha \exists x \in R(x = ((a,0),(b,0)))$$

$$\wedge \forall a,b \in \beta \exists x \in R(x = ((a,1),(b,1)))$$

$$\wedge \forall a \in \alpha \forall b \in \beta \exists x \in R(x = ((a,0),(b,1)))$$

用 $\theta(\alpha, \beta, x)$ 表示方括号,则 $V \models \forall z (z \in R \leftrightarrow \theta(\alpha, \beta, z))$

于是
$$G(\alpha, \beta) = R \Leftrightarrow \psi(\alpha, \beta, R)$$

 ψ, θ 是绝对的

若 $\alpha, \beta \in M$,则 $\{x \mid \theta(\alpha, \beta, x)\} = \{x \in M \mid \theta(\alpha, \beta, x)\} = \{x \in M \mid \theta^M(\alpha, \beta, x)\} \subseteq M$, $R = \{x \in W^2 \mid \theta^M(\alpha, \beta, x)\}$,由分离公理, $R \in M$ 故 $G(\alpha, \beta) = R$ 是绝对的,

$$\alpha + \beta = \text{type}(F(\alpha, \beta), G(\alpha, \beta))$$
 是绝对的

3. 同理: $\alpha \cdot \beta = \text{type}(\alpha \otimes \beta)$ 是绝对的

令 $F(\alpha, \beta) = W$, 其中 $W = \alpha \times \beta$, 再令 $G(\alpha, \beta) = R$, 其中 $R \subseteq W^2$ 满足 $\forall x, y \in \alpha \forall u, v \in \beta((x, u)R(y, v) \leftrightarrow (x < y \lor (x = y \land u < v)))$, 于是 $R \neq W$ 的良序集, F 是绝对的, 同理令 $V \models \forall z(z \in R) \leftrightarrow \theta(\alpha, \beta, z)$, $G(\alpha, \beta) = R \Leftrightarrow \psi(\alpha, \beta, R)$, ψ, θ 绝对。

若 $\alpha, \beta \in M$,由分离公理, $R \in M$,因此 $G(\alpha, \beta) = R$ 是绝对的,故 $\alpha \cdot \beta = \mathsf{type}(F(\alpha, \beta), G(\alpha, \beta))$ 是绝对的

4. 若 $\alpha = 0$,则 $\alpha^{\beta} = 0$

它是递归定义的, 因此是绝对的

规定 $On \times On$ 上的关系 R 为

$$R = \{((\alpha, \beta_1), (\alpha, \beta_2)) \mid \beta_1 \in \beta_2\} \subseteq \text{On}^2$$

显然 R 是良基关系,R 是似集合的, $\operatorname{pred}(\operatorname{On}^2,(\alpha,\beta),R)=\{\alpha\}\times\beta$ 定义 $F:\operatorname{On}^2\times V\to V$ 为

$$F(\alpha,\beta,x) = \begin{cases} 0 & \alpha = 0 \lor x \not \in \mathsf{On}^3 \\ 1 & \beta = 0 \land \alpha \neq 0 \\ \left(\bigcup_{y \in x} \pi_3(y)\right) \cdot \alpha & \mathsf{otherwise}, x \in \mathsf{On}^3 \end{cases}$$

有 M 的传递性, $x=(x_1,x_2,x_3)\in M\Rightarrow x_1,x_2,x_3\in M$ 由 (x_1,x_2,x_3) 的绝对性, $y=\pi_3(x)$ 是绝对的,因为 $y=\pi_3(x)$ 为

$$\exists x_1 \exists x_2 \exists x_3 (x=(x_1,x_2,x_3) \land y=x_3)$$

验证 $G(\alpha, \beta) = \alpha^{\beta}$ 是基于 F 递归定义的,因此 G 是绝对的

- 6. $trcl(x) = x \cup \bigcup \{trcl(y) \mid y \in x\}$ 练习

Exercise 1.10.9 (7.10.9). $V_{\omega} = ZF - Inf + \neg Inf$

证明. 与 WF 类似, V_{ω} 是传递的, 且关于 $\{x,y\}$ $\bigcup x,\mathcal{P}(x)$ 封闭, 故而是 ZF – Inf 的模型 (练习)

 $\neg \text{Inf: } \forall x \neg (\emptyset \in X) \land \forall y \in x (y^+ \in x)$

 $\neg \operatorname{Inf}^M \colon \forall x \in M(\emptyset^M \in X \land \forall y \in x((y^+)^M \in x))$

由于 $M=V_{\omega}$ 传递,故 $(\neg \operatorname{Inf})^{M}$: $\forall x \in M(\emptyset \in X \land \forall y \in x(y^{+} \in x))$

由于 V_{ω} 中没有无穷集,故 $(\neg Inf)^{M}$ 在 V 中成立

 AC^M : 任取 $X \in V_{\omega}$, 若 $X \neq \emptyset$,存在 $R \in V_{\omega}$ 使得 $R \neq X$ 上的良序 $\operatorname{rank}(\mathcal{P}(x \times y)) < \operatorname{max}(\operatorname{rank}(x), \operatorname{rank}(y))$,故 $\mathcal{P}(x \times x) \in V_{\omega}$

Exercise 1.10.10 (7.10.10). ZC 不能证明 " V_{ω} 存在", ZC 不能证明"对任意 x,trcl(x) 存在"

证明. 构造模型否定这两个命题

令 $V \vDash \mathsf{ZFC}$,令 $X_0 = \omega$, $X_{\alpha+1} = \mathcal{P}(X_\alpha)$, $X_\gamma = \bigcup_{\beta < \gamma} X_\beta$ (γ 极限序数)显然 $\overline{X} = \bigcup_{\alpha \in \mathsf{On}} X_\alpha = \mathsf{WF} = V$ (练习)

 $X_0 \subseteq V_{\omega}, X_0 \in V_{\omega+1}, X_{\alpha} \subseteq V_{\omega+\alpha}, \overline{X} \subseteq WF$

 $V_0 \subseteq X_0, V_\alpha \subseteq X_\alpha, \text{WF} \subseteq \overline{X}$

容易验证以下事实: X_{α} 传递(归纳),设 f(x,y) 表示 $\{x,y\}$,(x-y), $x \times y$, $\bigcup x$, $\cap x$, $\mathcal{P}(x)$,...

若 $x \in X_{\alpha}$, 则 $f(x,y) \in X_{\max\{\alpha,\beta\}+\omega}$

类似可证 X_{ω} 是 ZC - Inf 的传递模型

由于 $\omega \in X_{\omega}$,故 $X_{\omega} \models Inf$,即 $X_{\omega} \models ZC$

显然 $V_{\omega} \nsubseteq \omega = X_0$,于是存在 $V_n \nsubseteq X_0$,故 $\mathcal{P}(V_n) \nsubseteq \mathcal{P}(X_0)$,即 $\forall k < \omega$, $V_{n+k} \nsubseteq X_k$,故 $\forall n < \omega$,都有 $V_{\omega} \nsubseteq X_n$,故 $V_{\omega} \notin X_{\omega}$

但要严格地说的话得找到一个东西定义 V_{ω} 然后证明它的相对化在 X_{ω} 不满足

另一方面, $V_0 \subseteq X_0 \Rightarrow V_n \subseteq X_n$,于是 $V_\omega \subseteq X_\omega$ 令 $G: \omega \to WF$ 为 $G(n) = V_n$

验证 G 相对于 X_{ω} 是绝对的,G 的任何一个片段都是有穷的,因此片段的值域都在 X_{ω} 中,因为 X_{ω} 对于任何有穷集合封闭

注: 当 $M \models \mathsf{ZF-Pow}$,我们知道递归函数 G 的绝对性,此时 $X_{\omega} \nvDash \mathsf{Rep}$,然而 X_{ω} 的任何有穷子集都属于 X_{ω} ,故而对任何 $f: \omega \to X_{\omega}$,有 $f(\{0,\ldots,n\}) \in X_{\omega}$,可以证明 G 的绝对性(练习)

 V_{ω} 被公式 $\eta(x): \exists n \in \omega (x \in G(n))$

 $(V_{\omega}$ 被" $\alpha \in V_{\omega}$ "定义,但是 X_{ω} 不一定认为 V_{ω} 是集合,必需用 X_{ω} 认可的方式定义)

 V_{ω} , 存在指的是

$$\exists y \forall x (x \in y \leftrightarrow \eta(x))$$

由于 G 是绝对的, $\eta(x)$ 绝对,因此 X_{ω} 认为" V_{ω} 存在"当且仅当 $\exists y \in X_{\omega} \forall x \in X_{\omega} (x \in y \leftrightarrow \eta(x))$

由于 $V_{\omega} \subseteq X_{\omega}$ 且 X_{ω} 是传递的,以上的公式等价于

$$\exists y \in X_{\omega} \forall x (x \in y \leftrightarrow \eta(x))$$

而这样的 y 只能是 V_{ω} , 而 $V_{\omega} \notin X_{\omega}$, 因此以上句子不成立

即 $ZFC \vdash "X_{\omega} \models ZC + V_{\omega}$ 不存在"

证明"x 存在且 $\operatorname{trcl}(x)$ 不存在",假设 $V \vDash \operatorname{ZFC}$,令 $t(u) = \{u\}$, $x_n = t^n(n)$, $\operatorname{rank}(x_n) = 2n$, $x = \{x_n \mid n < \omega\}$,令 $X_0 = x$, $X_1 = \bigcup X_0$,…, $X_{n+1} = \bigcup X_n$,则 $\operatorname{trcl}(x) = \bigcup_{n < \omega} X_n$

令 $Y_0=\omega\cup X_0$, $Y_{n+1}=\mathcal{P}(Y_n)\cup Y_n\cup X_n$,验证 $Y_\omega=\bigcup_{n<\omega}Y_n$ 是传递的,验证 $Y_\omega\vDash \mathsf{ZC}$,验证 $x\in Y_1\subseteq Y$,验证 $\mathsf{trcl}(x)=\bigcup_{n<\omega}X_n\notin Y$,即验证 $\forall n\exists m(X_m\nsubseteq Y_n)$

后面类似,证明
$$Y_{\omega} \models " \operatorname{trcl}(x)$$
不存在"

Exercise 1.10.11 (7.10.11). 对任意 $\kappa > \omega$, $H_{\kappa} \models Z - \text{Pow}$

证明. H_{κ} 传递 \Rightarrow 外延公理

 H_{κ} 非空 \Rightarrow 存在公理

由于 $x \in H_{\kappa} \leftrightarrow x \subset H_{\kappa} \land |x| < \kappa$, 故分离公理 + 替换公理成立

 H_{κ} 对 $\bigcup x$ 与 $\{x,y\}$ 封闭, 故对集公理 + 并集公理成立

 H_{κ} 满足以上公理 $\Rightarrow \emptyset, \omega, x^+, x \cap y$ 的绝对性

由于 $\omega \in H_{\kappa}$, $H_{\kappa} \models Inf$

 $\emptyset, x \cap y$ 的绝对性, $H_{\kappa} \vDash Fnd$ 选择公理: $\forall x \in H_k \exists R \in H_\kappa (R \neq X)$ 的良序) $^{H_\kappa}$ 已知, 若 $x, R \in H_{\kappa}$, 则 $R \in X$ 的良序当且仅当 $(R \in X$ 的良序) H_{κ} (ZF - Pow)Exercise 1.10.12 (7.10.12). "R 是良基的"对 ZF-Pow 的所有传递模型是绝 对的 证明. "R 是良基的"被 $\varphi := \forall x (x \neq \emptyset \rightarrow \exists y \in x \neg \exists z \in x (zRy))$ 是 Π_1 句子,只要证明 $\varphi^M \to \varphi$,由于rank是绝对的,对于任何x,rank(x) = α , 若对于任何 $y \in x$ 都存在 $z \in x$ 使得 zRy, *Exercise* 1.10.13 (7.10.13). (On, ∈) 满足哪些公理 证明. 存在公理, 外延公理 无穷公理, 选择公理 分离公理,对集,并集,幂集,替换不满足, Exercise 1.10.14 (7.10.14). 证明在 $V_{\omega+\omega}$ 中,替换公理不成立 证明. 考虑 $f: n \mapsto \omega + n$ Exercise 1.10.15 (7.10.15). $X \in WF$, 则 X 可良序化当且仅当 (X可良序化) WF , 由此证明 AC 蕴含 $(AC)^{WF}$,及 $Con(ZFC^-) \rightarrow Con(ZFC)$ 证明. 因为 $X \in WF$,因此X是集合,而X上的任何良序关系 $R \subseteq X \times X \in X$ WF, 因此 $R \in WF$ 因为 ZF⁻ ⊢ (ZF)^{WF},所以 ZFC⁻ ⊢ (ZFC)^{WF},因此 Con(ZFC⁻) →

Exercise 1.10.16 (7.10.16). 假设 $F = \{\varphi_1, \dots, \varphi_n\}$ 是 ZF 公理的有穷子集,并且 F 可以推出 ZF 的所有公理。同时假设 β 是使得 V_β 满足 F 的最小的 β ,证明:ZF 的定理"存在 α 使得 $V_\alpha \models F$ "在 V_β 中不成立,所以第一个满足 F 的 V_β 不是 ZF 模型

Con(ZFC)

证明. 若 $\mathbf{ZF} \models (\exists \alpha (V_{\alpha} \models F))^{V_{\beta}}$,即 $\exists \alpha \in V_{\beta}((F)^{V_{\alpha}})^{V_{\beta}}$,如果能证明 $\alpha \mapsto V_{\alpha}$ 对 V_{β} 绝对,那么由于 $\alpha \in V_{\beta}$, $V_{\alpha} \in V_{\beta}$,于是 $((F)^{V_{\alpha}})^{V_{\beta}} = F^{V_{\alpha} \cap V_{\beta}} = F^{V_{\alpha}}$,这与 β 最小矛盾。

因为 $\alpha \mapsto V_{\alpha}$ 是递归定义的,只需证明 $\mathcal{P}(x)$, $\bigcup x$ 对 V_{β} 绝对,因为 V_{β} 传递,所以 $\bigcup x$ 对 V_{β} 绝对。

对于任意 $x \in V_{\beta}$,因为 V_{β} 传递且 $V_{\beta} \vDash \text{Pow}$,所以 $\mathcal{P}^{V_{\beta}}(x) = \mathcal{P}(x) \cap V_{\beta} = \mathcal{P}(x)$,因此 $\mathcal{P}(x)$ 对 V_{β} 绝对。所以 $\alpha \mapsto V_{\alpha}$ 对 V_{β} 绝对。

Exercise 1.10.17 (7.10.18). 对任意公式 φ ,存在序数的无界闭集 C_{φ} 使得对任意 $\alpha \in C_{\varphi}$, V_{α} 反映 φ ,即 φ 对 V_{α} 绝对

证明. 令 $\psi := \forall x \exists y \forall u (u \in x \leftrightarrow u \subseteq y)$,于是 $C = \{\alpha \mid V_{\alpha} \boxtimes \varphi \land \psi\}$ 是极限序数的集合,同时又是闭的,因此是一个无界闭集。

Exercise 1.10.18 (3.10.19). 假设 M 是集合论的传递模型

1. 如果 |M| = |X| < |Y|, 则 |X| < |Y|

证明. 1.

2 可构成集

2.1 可定义性与哥德尔运算

Definition 2.1. 令 M 是集合, $X \subseteq M^n$ 是 相对于 M 由 ψ 通过参数可定义 的是指存在 $y_1, \ldots, y_m \in M$ 使得

$$X=\{(x_1,\ldots,x_n)\mid \psi^M(x_1,\ldots,x_n,y_1,\ldots,y_m)\}$$

简称 X 为 M 的可定义子集

 $\operatorname{Def}(M)$ 为 M 的可定义子集, $\bar{a} \in X \in \operatorname{Def}(M) \Leftrightarrow \exists \psi(\bar{x},\bar{y}) \exists \bar{b} \in M^m M \models \psi(\bar{a},\bar{b})$

Def(M) 看起来不是个集合,因为量词在公式上

Remark. • $Def(M) \subseteq \mathcal{P}(M)$

- $|\mathrm{Def}(M)| \leq |M| + \aleph_0$ (AC)
- Def(M) 的定义是一个"2 阶"表达式
- 在 ZF 下,该"2 阶"表达式可形式化为一个一阶表达式 FORM(x) 使得 $\forall n \in \mathbb{N}$, FORM $(n) \Leftrightarrow n$ 是某公式 φ 的编码,于是 $\exists \varphi \Leftrightarrow \exists x \text{FORM}(x)$
- 对任意公式 ψ , ψ^M 都是 Δ_0 公式
- 故 $\mathsf{Def}(M)$ 中的集合被某个 Δ_0 公式定义 $X = \{\bar{a} \mid \bar{a} \in M^n \land \psi^M(\bar{a}, \bar{b})\}$
- 本节的目标是刻画 Def(M)

Definition 2.2. 以下运算称为 哥德尔运算

$$\begin{split} G_1(X,Y) &= \{X,Y\} \\ G_2(X,Y) &= X \times Y \\ G_3(X,Y) &= \in \upharpoonright X \times Y \\ G_4(X,Y) &= \in \upharpoonright X - Y \\ G_5(X,Y) &= X \cap Y \\ G_6(X,Y) &= \bigcup X \\ G_7(X,Y) &= \mathrm{dom}(X) \\ G_8(X,Y) &= \{(x,y) \mid (y,x) \in X\} \\ G_9(X,Y) &= \{(x,y,z) \mid (x,z,y) \in X\} \\ G_{10}(X,Y) &= \{(x,y,z) \mid (y,z,x) \in X\} \end{split}$$

对任意集合 M, $\operatorname{cl}_G(M)$ 表示 M 的 **哥德尔闭包**

Definition 2.3. 满足以下条件的公式 ψ 称为 **范式**

- 1. ψ 中的逻辑符号只有 \neg , \wedge , \exists
- 2. = 不出现
- 3. 若 $x_i \in x_j$ 出现在 ψ 中,则 $i \neq j$
- 4. \exists 只以这样的形式出现: $\exists x_{m+1} \in x_i \varphi(x_1, ..., x_{m+1})$, 其中 $1 \le i \le m$

Lemma 2.4. 每一 Δ_0 公式都可改写为范式,即若 ψ 是 Δ_0 公式,则存在一个范式 ψ' 对任意包含外延公理的句子集 Σ

$$\Sigma \vdash \psi \leftrightarrow \psi'$$

证明. \neg , \land , \exists 是功能完全的,可以假设 ψ 仅含这些

公式 $x_i = x_j$ 在外延公理下等价于 $\forall u \in x_i (u \in x_j) \land \forall u \in x_j (u \in x_i)$ $x_i \in x_i \Leftrightarrow \exists u \in x_i (u = x_i)$

约束变元的下标的改变不影响公式的一阶性质

$$\forall \bar{x}(\exists y \varphi(\bar{x},y) \leftrightarrow \exists z \varphi(\bar{x},z))$$

Theorem 2.5. 对任意的 Δ_0 公式 $\psi(x_1, ..., x_n)$,存在函数 G,G 是哥德尔运算的复合,并且对任意 $Y_1, ..., Y_n$, $G(Y_1, ..., Y_n) = \{(x_1, ..., x_n) \mid (\bigwedge x_i \in Y_i) \land \psi(x_1, ..., x_n)\}$

证明. 不妨设 ψ 是范式, 对 ψ 的复杂度归纳

1. $\psi(x_1,\ldots,x_n)$ 是原子公式,此时 ψ 形如 $x_i\in x_j,\,i\neq j$,对 n 用归纳法证明

 $x_1 \in x_2$,有 $\psi(x_1, x_2)$, $\theta(x_1, \dots, x_{10})$ 在此处对应的G不是一个东西,因为它们定义出来的集合不一样,因此G不一样

- (a) 如果 n = 2,则 $\psi(x_1, x_2)$ 为 $x_1 \in x_2$ 或 $x_2 \in x_1$

 - $\not\equiv \psi \not\ni x_2 \in x_1$, $\Leftrightarrow G(Y_1, Y_2) = G_8(G_3(Y_2, Y_1), Y_2)$

- (b) 若 n>2 且 $i,j\neq n$,则 $\psi=\psi(x_1,\dots,x_{n-1})$ 由归纳假设,存在 n-1 元哥德尔运算 G',令 $G(Y_1,\dots,Y_n)=G_2(G'(Y_1,\dots,Y_{n-1}),Y_n)$
- (c) n > 2, $i, j \neq n 1$

则 $\psi=\psi(x_1,\dots,x_{n-2},x_n)$,令 $u_1=x_1,\dots,u_{n-2}=x_{n-2},u_{n-1}=x_n,u_n=x_{n-1}$,令 $\theta(\bar{u})=\psi(\bar{x})=\psi(\bar{u})$,但它们定义的集合不同,加了个变元

设 ψ 为 $x_{n-2} \in x_n$

则 $\psi(\bar{x})$: 第 n-2 个分量属于第 n-1 个分量

 $\theta(\bar{u})$: 第n-2个分量属于第n-1个分量

由 1.2 可知,存在哥德尔运算 $G_{\theta}(Y_1,\ldots,Y_n)=\{(a_1,\ldots,a_n):$ $\bigwedge_{k=1}^n a_k \in Y_k \wedge \theta(\bar{a})\}$,将 $((a_1,\ldots,a_{n-2}),a_{n-1},a_n)$ 看作三元组

則
$$G' = G_9(G_\theta(Y_1, ..., Y_n), Y_n)$$

$$\Leftrightarrow G(Y_1, \dots, Y_n) = G'(Y_1, \dots, Y_{n-2}, Y_n, Y_{n-1})$$

- $$\begin{split} (\mathbf{d}) \ \, & \ \, \forall n>2, i=n-1, j=n, \ \, x_{n-1} \in x_n \\ & \ \, \Leftrightarrow G'(Y_1,\ldots,Y_n) = G_3(Y_{n-1},Y_n) \times (Y_1 \times \cdots \times Y_{n-2}) \\ & \ \, (x_{n-1},x_n,(x_1,\ldots,x_{n-2})) \, \\ & \ \, \exists \, \exists \, \exists \, \exists \, d \, \in G_{10}(G'(Y_1,\ldots,Y_n),Y_n) \end{split}$$
- (e) n > 2, i = n, j = n 1, 类似
- 2. 设 $\psi(x_1,\ldots,x_n)$ 是 $\neg \varphi(x_1,\ldots,x_n)$,

$$G'(Y_1,\ldots,Y_n)=\{(x_1,\ldots,x_n)\mid \bigwedge_{i=1}^n x_i\in Y_i \wedge \varphi(x_1,\ldots,x_n)\}$$

$$\diamondsuit G(Y_1,\dots,Y_n) = Y_1 \times \dots \times Y_n - G'(Y_1,\dots,Y_n)$$

- 3. 设 $\psi(x_1,...,x_n)$ 为 $\varphi_1(\bar{x}) \wedge \varphi_2(\bar{x})$ 设 G', G'' 分别对应 $\varphi_1, \varphi_2, \bigcup G(Y_1,...,Y_n) = G'(Y_1,...,Y_n) \cap G''(Y_1,...,Y_n)$
- 4. 设 $\psi(x_1,\ldots,x_n)$ 形如 $\exists x_{n+1} \in x_i \varphi(x_1,\ldots,x_{n+1})$ 设 G_{ω} 对应 φ ,则不难找到

$$\varphi'(x_1,\dots,x_{n+1})=\varphi(x_1,\dots,x_{n+1})\wedge x_{n+1}\in x_i$$

对应的哥德尔运算的复合 G', 显然

$$\psi(x_1,\dots,x_n)\Leftrightarrow\exists x_{n+1}(\varphi'(x_1,\dots,x_{n+1}))$$

$$\mathrm{dom}(G'(Y_1,\dots,Y_n,Y_{n+1}))=\{(x_1,\dots,x_n)\mid\exists x_{n+1}(\bigwedge_{i=1}^{n+1}x_i\in Y_i\wedge\varphi(x_1,\dots,x_{n+1}\wedge x_{n+1}\in x_i))\}$$
 注意到 $x_{n+1}\in x_i\wedge x_i\in Y_i\Rightarrow x_{n+1}\in\bigcup Y_i$ 令 $G(Y_1,\dots,Y_n)=\mathrm{dom}(G'(Y_1,\dots,Y_n,\bigcup Y_i))$

Corollary 2.6. 如果 M 传递且 $cl_G(M)=M$,则对任意 Δ_0 公式 $\psi(x,y_1,\dots,y_m)$,对任意集合 $X\in M$,对任意 $y_1,\dots,y_m\in M$,如果

$$Y = \{x \in X \mid \psi(x,y_1,\dots,y_m)\}$$

则 $Y \in M$, 注意到 $\psi = \psi^M$, 则有

 $\forall \bar{y} \in M \forall X \in M \exists Y \in M \forall u \in M (u \in Y \leftrightarrow u \in X \land \psi^M(u, \bar{y}))$

这是 $\psi(x,\bar{y})$ 对应的分离公理, 故 Δ_0 -分离公理模式在M中为真

证明.
$$y_1,\ldots,y_m\in M\stackrel{G_1}{\Longrightarrow}\{y_1\},\ldots,\{y_m\}\in M$$
 设 $G(Y_0,Y_1,\ldots,Y_m)$ 是 $\psi(x,\bar{y})$ 对应的哥德尔运算的组合,则 $Y=\mathrm{dom}^{(m)}(G(X,\{y_1\},\ldots,\{y_m\}))$

Remark. 以上证明给出了一个更强的结论: 若 $\psi(x,\bar{y})$ 是一个 Δ_0 公式,则存在哥德尔运算的复合 G 使得

$$G(X,\{y_1\},\ldots,\{y_m\})=\{x\in X\mid \psi(x,\bar{y})\}$$

设 M 是集合,对任意 ψ , ψ ^M 是 Δ ₀ 公式

Lemma 2.7. 如果 $G(X_1, ..., X_n)$ 是哥德尔运算的复合,则 $Z = G(X_1, ..., X_n)$ 等价于一个 Δ_0 -公式,故 G 作为函数相对于 ZF 的传递模型是绝对的

证明. 对 G 的复杂度归纳证明绝对

1. G 是某个 G_i

$$G_1, G_2, G_4, G_5, G_6, G_7$$
 已证

$$G_3(X,Y) = \in \uparrow X \times Y$$
,取 $\psi(X,Y,Z)$ 为

$$\forall u \in Z \exists x \in X \exists y \in Y (x \in y \land z = (x,y)) \land \forall x \in X \forall y \in Y (x \in y \rightarrow \exists z \in Z (z = (x,y)))$$

于是
$$\psi(X,Y,Z) \Leftrightarrow Z = G_3(X,Y)$$

 $ZF \vdash \forall X \forall Y \exists ! Z \psi(X, Y, Z)$,若 $M \vDash ZF$,则

$$\forall x \in M \forall y \in M \exists ! z \in M \psi^M(X, Y, Z)$$

$$\exists \exists X, Y \in M \Rightarrow G_3(X,Y) \in M$$

$$G_8(X,Y) = \{(x,y) \mid (y,z) \in X\}, \Leftrightarrow \psi(X,Y,Z)$$
 为

$$\forall u \in Z \exists x \in \bigcup X \exists y \in \bigcup X \exists w \in X (w = (x, y) \land u = (y, x))$$

$$\land \forall x \in \bigcup X \forall y \in \bigcup X \forall w \in X (w = (x, y) \rightarrow \exists u \in Z (u = (y, x)))$$

$$\land (Y = Y)$$

因为
$$\{y, \{x, y\}\} \in X \Rightarrow x, y \in \bigcup X$$

同理
$$M \models \mathsf{ZF} \Rightarrow (X, Y \in M \Rightarrow G_8(X, Y) \in M)$$

$$G_9, G_{10}$$
 与 G_8 类似

对 $G(X_1, ..., X_n)$ 的复杂度归纳证明

- 1. $u \in G(X_1, \dots, X_n)$ 是 Δ_0 的
- 2. 若 φ 是 Δ_0 的,则 $\forall u \in G(X_1, ..., X_n) \varphi$ 是 Δ_0 的

3.
$$Z = G(X_1, ..., X_n)$$
 是 Δ_0 的

设
$$G(X_1, ..., X_n) = G_i(F_1(X_1, ..., X_n), F_2(X_1, ..., X_n))$$

1.
$$u \in G_1(F_1, F_2) \Leftrightarrow u = F_1 \lor u = F_2$$

 $u \in G_2(F_1, F_2) \Leftrightarrow \exists x \in F_1 \exists y \in F_2(u = (x, y))$

$$\begin{split} u &\in G_3(F_1,F_2) \Leftrightarrow \exists x \in F_1 \exists y \in F_2(x \in y \land u = (x,y)) \\ u &\in G_4(F_1,F_2) \Leftrightarrow u \in F_1 \land u \notin F_2 \\ u &\in G_5(F_1,F_2) \Leftrightarrow u \in F_1 \land u \in F_2 \\ u &\in G_6(F_1,F_2) \Leftrightarrow \exists x \in F_1(u \in x) \\ u &\in G_7(F_1,F_2) \Leftrightarrow \exists x \in F_1 \exists y \in \bigcup F_1(x = (u,y)) \\ u &\in G_8(F_1,F_2) \Leftrightarrow \exists x \in F_1 \exists y \in \bigcup F_1 \exists z \in \bigcup F_2(x = (y,z) \land u = (z,y)) \\ (练习) \end{split}$$

- 2. $\forall u \in G_1(F_1, F_2)\varphi \Leftrightarrow (u = F_1 \to \varphi) \land (u = F_2 \to \varphi)$ $\forall u \in G_2(F_1, F_2)\varphi \Leftrightarrow \forall x \in F_1 \forall y \in F_2(u = (x, y) \to \varphi)$ $\forall u \in G_3(F_1, F_2)\varphi \Leftrightarrow \forall x \in F_1 \forall y \in F_2(u = (x, y) \land x \in y \to \varphi)$ $\forall u \in G_4(F_1, F_2)\varphi \Leftrightarrow \forall u \in F_1(u \notin F_2 \to \varphi)$ (练习)
- 3. $Z = G(X_1, ..., X_n)$ 可表示为

$$\forall u \in Z (u \in G(\overline{X})) \land u \in G(\overline{X}) (u \in Z)$$

Remark. 我们证明了" $u \in G(x)$ "与" $\forall u \in G(\bar{x})\varphi$ "是 Δ_0 公式

Theorem 2.8. 对任意传递集

$$\mathrm{Def}(M) = cl_G(M \cup \{M\}) \cap \mathcal{P}(M)$$

证明. \subseteq : 设 $X\in \mathrm{Def}(M)$ 形如 $\{x\in M\mid \psi^M(x,y_1,\ldots,y_m)\}$, ψ 公式, $\bar{y}\in M$ 由于 ψ^M 是一个 Δ_0 公式,故存在哥德尔运算的组合 G 使得

$$G(M,\{y_1\},\dots,\{y_m\}) = \{x \in M \mid \psi^M(x,y_1,\dots,y_m)\}$$

故 $X \in \operatorname{cl}_G(M \cup \{M\})$

 \supseteq : 设 $y_1, \dots, y_m \in M$ 以及哥德尔运算的组合 G 使得

$$X = G(M, \{y_1\}, \dots, \{y_m\})$$

且 $X \subseteq M$,存在 Δ_0 公式 $\varphi(u, M, y_1, \dots, y_m)$ 使得

$$\varphi(u, M, \bar{y}) \Leftrightarrow u \in G(M, \bar{y})$$

显然 $X=\{u\mid \varphi(u,M,y_1,\ldots,y_m)\}$,将 φ 中形如 " $\forall x\in M$ "," $\exists x\in M$ " 的量词改为" $\forall x$ "," $\exists x$ ",则 φ 变为 ψ

由于 M 是传递模型,受囿量词(如 $\exists x \in y$)关于 M 的相对化不改变,故 $\psi^M = \varphi$

Remark.

$$\mathsf{ZF} \vdash \forall X((X 传 \dot{\mathfrak{B}}) \to \forall u(u \in \mathsf{Def}(X) \leftrightarrow u \in \mathsf{cl}_G(X \cup \{X\}) \land u \subseteq X))$$

若 M ⊨ ZF

$$\forall X \in M((X \not\in \dot{\mathbb{B}})^M \to \forall u \, ((u \in \mathsf{Def}(X))^M \leftrightarrow (u \in \mathsf{cl}_G(X \cup \{X\}) \land u \subseteq X))^M)$$

Lemma 2.9. 如果 (类) M 是 ZF 的传递模型,则类函数 $X \mapsto Def(X)$ 相对于 M 是绝对的

证明. 关键要证明 $X \mapsto \operatorname{cl}_G(X)$ 的绝对性

递归定义函数 $F: \omega \times V \to V$ 为

$$F(0,X) = X$$

$$F(n+1,X) = F(n,X) \cup \{G_i(X,Y) \mid X,Y \in F(n,X), i = 1,...,10\}$$

则
$$\operatorname{cl}_G(X) = \operatorname{I} \operatorname{Jran}(F(-,X))$$

故只需验证 F 的绝对性,只需验证 F(n) 到 F(n+1) 的运算绝对将 F(n,X) 看作变元 W,只需验证函数

$$W \cup \{G_i(X,Y) \mid X,Y \in W, i = 1,...,10\}$$

绝对

只需验证
$$Z = G(W) = \{G_i(X,Y) \mid X,Y \in W, i = 1,...,10\}$$
 绝对,由

$$\forall u \in Z \exists x,y \in W(\bigvee_{i=1}^{10} u = G_i(x,y)) \land \forall x,y \in W \exists u \in z(\bigvee_{i=1}^{10} u = G_i(x,y))$$

故 $Y = \operatorname{cl}_G(X)$ 是 Δ_0 公式,M 作为 ZF 的传递模型,对 G_i 封闭,故 $\operatorname{cl}_G(X) \in M$,因此它作为函数绝对

由于 $M \models \mathbf{ZF}$, 若 $X \in M$ 传递,则 $\forall u \in M$ 有

$$\begin{split} V \vDash (u \in \mathrm{Def}(X))^M &\leftrightarrow [u \in \mathrm{cl}_G(X \cup \{X\}) \wedge u \subseteq X]^M \\ &\leftrightarrow (u \in \mathrm{cl}_G(X \cup \{X\}))^M \wedge (u \subseteq X)^M \\ &\leftrightarrow u \in \mathrm{cl}_G(X \cup \{X\}) \wedge u \subseteq X \\ &\leftrightarrow u \in \mathrm{Def}(X) \end{split}$$

最后 Z = Def(X) 当且仅当 $\varphi(X, Z)$:

$$\forall u \in Z(u \in \mathsf{Def}(X)) \land \forall u(u \in \mathsf{Def}(X) \to u \in Z)$$

它的相对化只在与 ∀u

设
$$X, Z \in M$$
,显然 $\varphi(X, Z) \to \varphi^M(X, Z)$

另一方面, $u\in \mathrm{Def}(X)\Rightarrow u\in \mathrm{cl}_G(X\cup\{X\})\subseteq M\Rightarrow u\in M$,因为哥德尔函数是绝对的

最后,若 $X \in M$ 传递,则 $Def(X) \in M$,这是因为

$$\operatorname{Def}(X) = \{u \mid u \in \operatorname{cl}_G(X \cup \{X\}) \land u \subseteq X\} = \{u \in M \mid (u \in \operatorname{cl}_G(X \cup \{X\}))^G \land (u \subseteq^M X)\}$$

由分离公理, $Def(X) \in M$

故
$$X \mapsto Def(X)$$
 (X 传递) 是绝对的

Lemma 2.10. 对任意传递集

- 1. $\operatorname{Def}(M) \subseteq \mathcal{P}(M)$
- 2. $M \subseteq Def(M)$

- 3. 若 $X \subseteq_f M$, 则 $X \in Def(M)$
- 4. 若 AC 且 $|M| \ge \omega$, 则 |Def(M)| = |M|
- 证明. 2. 若 $a \in M$,则 $a \subseteq M$,且

$$a = \{u \in M \mid u \in a\} = \{u \in M \mid (u \in a)^M\} \in \mathsf{Def}(M)$$

3. 对 n 归纳证明: $a_1, \ldots, a_n \in M \Rightarrow \{a_1, \ldots, a_n\} \in M$

第0步: 空集是可以定义的

第1步: 若 $a \in M$, $\{a\}$ 来自 G_1

第 n+1 步: $\{a_1,\ldots,a_n\},\{a_{n+1}\}\in \mathrm{Def}(M)$,故 $\{\{a_1,\ldots,a_n\},\{a_{n+1}\}\}\in \mathrm{Def}(M)$,故 $\{a_1,\ldots,a_{n+1}\}\in \mathrm{Def}(M)$

4. $x \in M \Rightarrow \{x\} \in Def(M) \Rightarrow |M| \le |Def(M)|$

若 $X\in \mathrm{Def}(M)$,则存在 G 以及 $a_1,\dots,a_n\in M$ 使得 $X=G(M,a_1,\dots,a_n)$, G 是哥德尔运算的组合,只有 ω 个,故 $|\mathrm{Def}(M)|\leq |M|\cdot \aleph_0=|M|$

2.2 哥德尔的 L

Definition 2.11. 对任意 α , 递归定义 L_{α}

- 1. $L_0 = \emptyset$
- 2. $L_{\alpha+1} = \text{Def}(L_{\alpha})$
- 3. 对与极限序数, $L_{\gamma} = \bigcup_{\beta < \gamma} L_{\beta}$

定义 $\mathbf{L} = \bigcup_{\alpha \in \mathsf{On}} L_{\alpha}$, \mathbf{L} 的元素称为 可构成集

Lemma 2.12. 对任意序数 α

- 1. L_{α} 传递
- $2. \ \alpha < \beta \Rightarrow L_{\alpha} \subseteq L_{\beta}$

3.
$$L_{\alpha} \subseteq V_{\alpha}$$

传递集有 $M \subseteq Def(M)$

证明. 1. 归纳

- (a) 空集传递
- $\begin{array}{l} \text{(b)} \ \ L_{\alpha+1}=\mathrm{Def}(L_{\alpha})\\ \\ a\in L_{\alpha+1}\Rightarrow a\subseteq L_{\alpha}\subseteq \mathrm{Def}(L_{\alpha})=L_{\alpha+1} \end{array}$
- 2. $L_{\alpha} \subseteq \text{Def}(L_{\alpha})$

Definition 2.13.

$$\mathrm{rank}_{\mathbf{L}}(x) := \min\{\beta \mid x \in L_{\beta+1}\}$$

Lemma 2.14. $\forall \alpha$

$$L_{\alpha} = \{x \in \mathbf{L} \mid \mathit{rank}_{\mathbf{L}}(x) < \alpha\}$$

Definition 2.15. $x \in L_{\operatorname{rank}_{\mathbf{L}}(x)+1}$

若
$$\mathrm{rank}_{\mathbf{L}}(x) < lpha$$
, $L_{\mathrm{rank}_{\mathbf{L}}(x)+1} \subseteq L_{lpha} \Rightarrow x \in L_{lpha}$
若 $x \in L_{lpha}$, $lpha \geq \mathrm{rank}_{\mathbf{L}}(x)+1$, $lpha > \mathrm{rank}_{\mathbf{L}}(x)$

Lemma 2.16. $\forall \alpha$

- 1. $L_{\alpha} \cap On = \alpha$
- 2. $\alpha \in \mathbf{L} \wedge rank_{\mathbf{L}}(\alpha) = \alpha$

证明. 1. 归纳

- (a) $L_0 \cap On = 0$
- (b)

$$\begin{split} L_{\alpha+1} \cap \mathsf{On} &= \{x \in \mathsf{On} \mid \mathsf{rank}_{\mathbf{L}}(x) < \alpha + 1\} \\ &= (L_{\alpha} \cap \mathsf{On}) \cup \{x \in \mathsf{On} \mid \mathsf{rank}_{\mathbf{L}}(x) = \alpha\} \\ &= \alpha \cup \{x \in \mathsf{On} \mid \mathsf{rank}_{\mathbf{L}}(x) = \alpha\} \end{split}$$

只需证明 $\{x \in \mathsf{On} \mid \mathsf{rank}_{\mathsf{L}}(x) = \alpha\} = \{\alpha\},\$ 因为 $\alpha \subseteq L_{\alpha}$

在基础公理下"x 是序数"是一个 Δ_0 公式 φ ,故若 $x \in L_{\alpha}, \varphi(x) \leftrightarrow \varphi^{L_{\alpha}}(x)$

故
$$\alpha=\{x\in L_{\alpha}\mid \varphi(x)\}=\{x\in L_{\alpha}\mid \varphi^{L_{\alpha}}(x)\}\in \mathrm{Def}(L_{\alpha})$$
,故 $\alpha\in L_{\alpha+1}\smallsetminus L_{\alpha}$

同时
$$L_{\alpha+1} \cap \operatorname{On} \subseteq V_{\alpha+1} \cap \operatorname{On} = \alpha + 1$$

(c) 极限: 作业

$$L_{\alpha}\cap \operatorname{On} = \operatorname{On} \cap \bigcup_{\beta < \alpha} L_{\beta} = \bigcup_{\beta < \alpha} \beta = \alpha$$

Lemma 2.17. $\forall \alpha \in \mathsf{On}$

- 1. $L_{\alpha} \in L_{\alpha+1}$
- 2. L_{α} 的任意有穷子集属于 $L_{\alpha+1}$

证明. 1.
$$L_{\alpha} = \{x \in L_{\alpha} \mid x = x\} = \{x \in L_{\alpha} \mid (x = x)^{L_{\alpha}}\} \in Def(L_{\alpha})$$

2. 2.10

不能断言实数属于 L, 也不能断言 L 关于 Pow 封闭

Lemma 2.18. 1. $\forall n \in \omega, L_{\alpha} = V_{\alpha}$

2.
$$L_{\omega} = V_{\omega}$$

Lemma 2.19. 如果 AC,则 $\forall \alpha \geq \omega$, $|L_{\alpha}| = |\alpha|$

证明. 对 $\alpha \ge \omega$ 归纳

- $\alpha = \omega$

$$|L_{\alpha}| = |\operatorname{Def}(L_{\beta})| = |L_{\beta}| = |\beta| = |\alpha|$$

• 若 α 极限序数, $|L_{\beta}| = \left|\bigcup_{\beta < \alpha} L_{\beta}\right| \le |\alpha|$ 另一方面, $\alpha \subseteq L_{\alpha}$

Lemma 2.20 (L 的反映定理). 对于任意有穷公式集 $F = \{\varphi_1, ..., \varphi_n\}$,对任意 $\alpha \in \text{On}$,存在 $\beta \geq \alpha$ 使得 F 对 L_β 和 L 绝对

证明. 目标: 找到 L_{β} 使得对每个形如 $\exists x \varphi(x, \bar{y})$ 的公式及每一组参数 $\bar{b} \in L_{\beta}$ 有 $\mathbf{L} \vDash \exists x \varphi(x, \bar{b}) \Leftrightarrow L_{\beta} \vDash \exists x \varphi_j(x, \bar{b})$

设 $\varphi_i \in F$ 且形如 $\exists y \varphi_i(x, \bar{y})$,定义函数 h_i 如下

- 任取 $\bar{y} \in \mathbf{L}$, 令 $U = \{x \mid \varphi_i(x, \bar{y})\}$
- 若 $U = \emptyset$, 则 $h_i(\bar{y}) = 0$
- 若 $U \neq \emptyset$,则存在最小的 ξ 使得 $U \cap L_{\xi} \neq \emptyset$,此时令 $h_i(\bar{y}) = L_{\xi}$

于是函数 h_i 满足

$$\forall \bar{y}(\exists y \varphi_j(x,\bar{y}) \to \exists x \in h_i(\bar{y}) \varphi_j(x,\bar{y}))$$

定义 h_F 为

$$h_F(y_1,\dots,y_m) = \bigcup \{h_i(y_1,\dots,y_m): i=1,\dots,n\}$$

则 h_F 满足:对每个形如 $\exists x \varphi_j(x, \bar{y})$ 的公式,有

$$\forall \bar{y}(\exists x \varphi_j(x,\bar{y}) \to \exists x \in h_F(\bar{y}) \varphi_j(x,\bar{y}))$$

任取 α , 定规定义 L_{α}^{i} , $i \in \omega$, 如下

- $\bullet \ L_{\alpha}^{0}=L_{\alpha}$
- $\bullet \ L_{\alpha}^{i+1} = V_{\alpha}^i \cup \bigcup \{h_F(\bar{y}) \mid \bar{y} \in V_{\alpha}^i\}$

Theorem 2.21 (ZF). L 是 ZF 的模型

证明. • 存在公理

- 外延公理(L传递)
- 并集公理

 $y=\bigcup x$ 被 Δ_0 公式 $\psi(x,y)$ 定义,相对化为 $\forall x\in \mathbf{L}\ \exists y\in \mathbf{L}\ \psi(x,y)$,只需验证 $x\in \mathbf{L}\Rightarrow\bigcup x\in \mathbf{L}$

若 $x \in L_{\alpha}$,则 $\bigcup x = \{y \mid \exists u \in x (y \in u)\}$,由 L_{α} 的传递性, $\bigcup x = \{y \in L_{\alpha} \mid [\exists u \in x (y \in u)]^{L_{\alpha}}\} \in L_{\alpha+1}$

 $\bigcup x \ 是哥德尔运算, \ x \in L_\alpha \Rightarrow \bigcup x \in \mathrm{Def}(L_\alpha)$

• 分离公理 $\forall x \in \mathbf{L} \exists y \in \mathbf{L} \forall u \in \mathbf{L} (u \in y \leftrightarrow u \in X \land \varphi^{\mathbf{L}}(u))$

断言: $\forall \alpha \exists \beta > \alpha$ 使得 φ 相对于 L_{β} 和 L 绝对(练习)(L 的反映定理) 设 $x \in L_{\alpha}$, $y = \{u \mid u \in X \land \varphi^{L_{\beta}}(u)\} = \{u \in L_{\beta} \mid u \in x \land \varphi^{L_{\beta}}(u)\} \in L_{\beta+1}$

显然 $\forall u \in \mathbf{L}(u \in y \leftrightarrow u \in X \land \varphi^{\mathbf{L}_{\beta}}(u) \leftrightarrow u \in X \land \varphi^{\mathbf{L}}(u))$

- L 满足以上公理, x⁺, Ø, ω 均绝对 故无穷公理,基础公理成立
- 幂集公理: $\forall x \in \mathbf{L} \exists y \in \mathbf{L} \forall u \in \mathbf{L} (u \in y \leftrightarrow u \subseteq x), y = \mathcal{P}(x) \cap \mathbf{L}$, 只需验证 $\mathbf{L} \cap \mathcal{P}(x) \in \mathbf{L}$

设 $x \in L_{\alpha}$, $\mathcal{P}(x) \cap \mathbf{L} \subseteq \mathbf{L}$ 是集合 存在充分大的 $\beta > \alpha$ 使得 $\mathcal{P}(x) \cap \mathbf{L} = \mathcal{P}(x) \cap L_{\beta}$ $y = \{u \in L_{\beta} \mid (u \subseteq x)^{L_{\beta}}\} = \{u \in \mathbf{L} \mid u \subseteq x\} = \mathcal{P}(x) \cap \mathbf{L} \in L_{\beta+1} \subseteq \mathbf{L}$

• 替换公理

 $\forall x \in \mathbf{L} \, \exists ! y \in \mathbf{L} \, \psi^{\mathbf{L}}(x,y) \to \forall A \in \mathbf{L} \, \exists B \in \mathbf{L} \, \forall a \in A \exists b \in B \psi^{\mathbf{L}}(a,b)$ 任取 $A \in L_{\alpha}$,取 $\beta > \alpha$ 使得

- 1. $\forall a \in A \exists b \in L_{\beta} \psi^{\mathbf{L}}(a,b)$ 因为 $\psi^{\mathbf{L}}$ 是 **L** 上的函数, $V \vDash \exists B \forall a \in A \exists b \in B \psi^{\mathbf{L}}(a,b)$,于是 $B \subseteq L$
- 2. ψ 相对于 L_{β} 和 L 绝对

则 $B=\{b\in\mathbf{L}\mid\exists a\in\psi^{\mathbf{L}}(a,b)\}=\{b\in L_{\beta}\mid\exists a\in A\psi^{L_{B}}(a,b)\}\in L_{\beta+1}$

2.3 可构成公理和相对一致性

可构成公理: $\mathbf{L} = V$

Remark. • $L \subset V$

- 但不能证明 \mathbf{L} 是 \mathbf{L} 的真子类,因为 $\mathbf{ZF} \vdash (\mathbf{V} = \mathbf{L})^{\mathbf{L}}$,因此 $\mathbf{V} = \mathbf{L} + \mathbf{ZF}$ 一致
- 将证明 L 是 ZF + V = L 的模型
- $\mathbf{V} = \mathbf{L} \supset \forall x \exists \alpha \in \mathsf{On}(x \in L_{\alpha})$
- 相对化为 $\forall x \in \mathbf{L} \exists \alpha \in \mathrm{On}^{\mathbf{L}} (x \in L_{\alpha})^{\mathbf{L}}$ 等价于 $\forall x \in \mathbf{L} \exists \alpha \in \mathrm{On} (x \in L_{\alpha})^{\mathbf{L}}$

Lemma 2.22. 函数 $\alpha\mapsto L_\alpha$ 对 ZF (ZF – Pow) 的任何传递模型是绝对的证明. " $\alpha\mapsto L_\alpha$ " 是递归定义的

- $L_{\alpha+1} = \operatorname{Def}(L_{\alpha})$, Def 是绝对的
- $L_{\gamma} = \bigcup_{\alpha < \gamma} L_{\alpha}$, \bigcup 是绝对的

故 $\alpha \mapsto L_{\alpha}$ 是绝对的

Theorem 2.23. $L \ \ ZF + V = L$ 的模型

证明.
$$\forall x \in \mathbf{L}((x \in L_{\alpha})^{\mathbf{L}} \leftrightarrow x \in L_{\alpha})$$

Theorem 2.24. 设M 是传递真类且是ZF — Pow 的模型,则

$$L = L^M \subseteq M$$

$$\begin{split} \mathbf{L} &= \mathbf{L^L} \Leftrightarrow \mathbf{V} = \mathbf{L^L} \\ \forall x \in \mathbf{L}(x \in \mathbf{L^L}) \,, \ \ \mathbf{L} \vDash \forall x (x \in \mathbf{L}) \end{split}$$

证明.
$$\mathbf{L}(x) := \exists \alpha (\alpha \text{ ordinal}) \land (x \in L_{\alpha}))$$

$$\mathbf{L}^{\mathbf{M}}(x) := \exists \alpha \in \mathbf{M}((\alpha \text{ ordinal})^{\mathbf{M}}) \land (x \in L_{\alpha})^{\mathbf{M}})$$

括号里都是绝对的,若 $\mathsf{On}, \mathsf{L} \subseteq \mathsf{M}$,则 $\forall x (\mathsf{L}(x) \leftrightarrow \mathsf{L}^{\mathsf{M}}(x))$

由于 **M** 是真类,于是存在 $x \in \mathbf{M} \setminus V_{\alpha}$,因此 $\mathrm{rank}(x) > \alpha$,由于 rank 相对于 **M** 绝对,则 $x \in \mathbf{M} \Rightarrow x \in \mathrm{rank}(x) \in \mathbf{M}$,由传递性, $\alpha \in \mathrm{rank}(x) \Rightarrow \alpha \in \mathbf{M}$ 由于 $\alpha \mapsto L_{\alpha}$ 是绝对的,故 $\alpha \in \mathbf{M} \Rightarrow L_{\alpha} \in \mathbf{M} \Rightarrow L_{\alpha} \subseteq \mathbf{M}$,因此 **L** $\subseteq \mathbf{M}$

Definition 2.25. 如果 **ZF** 的传递模型 **M** 包含了所有的序数,则称 **M** 是 **内** 模型

因此 L 是最小的内模型

Lemma 2.26 (ZF). 存在 ZF – Pow 的有穷子集 $\{\psi_1, ..., \psi_n\}$ 使得序数,秩, L_{α} 对 $\{\psi_1, ..., \psi_n\}$ 的任意传递模型都是绝对的

证明. 序数:

• 存在一个 Δ_0 公式 $\varphi(x)$ (良序不是 Δ_0 ,但是假设了良基公理,就只用 说明线序了) 使得

$$\mathsf{ZF} - \mathsf{Pow} \vdash "x \text{ ordinal"} \leftrightarrow \varphi(x)$$

因此存在 ${\bf ZF-Pow}$ 的有穷子集 Δ 证明这件事,于是 $\Delta^M \vdash (x \text{ ordinal})^M \leftrightarrow \varphi^M(x)$

若 $M \vDash \Delta$,则 $ZF \vdash \Delta^M$

故 $\operatorname{ZF} \vdash (x \text{ ordinal})^M \leftrightarrow \varphi^M(x)$,因此 $\operatorname{ZF} \vdash \forall x \in M((x \text{ ordinal})^M \leftrightarrow (x \text{ ordinal}))$

秩:

• $\operatorname{rank}(x): V \to \operatorname{On}, x \mapsto \sup\{\operatorname{rank}(y)+1 \mid y \in x\} = \bigcup\{\operatorname{rank}(y)+1 \mid y \in x\}$

rank 是用 x^+ 和 $\bigcup x$ 递归定义的,由超穷递归定理,若 M 是 $\mathbf{ZF}-\mathbf{Pow}$ 的传递模型,则 rank 绝对,即 rank(x)=y 被公式 $\varphi(x,y)$ 定义 将集合论语言扩张为 $\mathcal{L}'=\{\in,M\}$,M 可以看作常元或者一元谓词则超穷递归定理可以表述为

根据紧致性,存在 \mathbf{ZF} – \mathbf{Pow} 的有穷子集 Δ 证明这件事,将 M 解释为满足以上条件的某个类 \mathbf{M} ,则

$$ZF \cup \Delta^{\mathbf{M}} \cup (\mathbf{M}$$
 传递) $\vdash \cdots$

 $\alpha \mapsto L_{\alpha}$ 证明方法与秩类似(练习) L_{α} 由 \bigcup , Def 递归定义得到,

Remark. 定理 8.3.5 可以表述为,对任意类 \mathbf{M} , $\mathbf{ZF} \vdash \mathbf{M}$ 真类 \wedge \mathbf{M} 传递 \wedge $\psi_1^{\mathbf{M}} \wedge \cdots \wedge \psi_n^{\mathbf{M}} \to \mathbf{L} \subseteq \mathbf{M}$

Lemma 2.27. 如果 M 是传递集,则 $M \cap On$ 是序数且是最小的不属于 M 序数,记作 α^M

证明. 只要证明 $M \cap On$ 传递就行了

Theorem 2.28. 存在 ZF – Pow 公理的有穷子集 $\{\psi_1,\dots,\psi_n\}$ 使得 $\forall M(M$ 传递 $\land \psi_1^M \land \dots \land \psi_n^M \to (L_{\alpha^M} = \textbf{\textit{L}}^M \subseteq M))$

证明. 取有穷子集 $\Delta=\{\psi_1,\dots,\psi_n\}\subseteq {\sf ZF-Pow}$ 使得 Δ 的任何传递模型对序数、秩、 L_α 绝对且 $\Delta\vdash$ "不存在最大序数"

 $\forall x(x\in \mathbf{L}^M \leftrightarrow \exists \alpha \in \mathrm{On}^M (x\in L_\alpha)^M), \ \text{由于序数绝对}, \ \mathrm{On}^M = M\cap \mathrm{On} = \alpha^M$

由于 L_{α} 的绝对性, $\alpha \in M \cap \mathrm{On} \Rightarrow L_{\alpha} \in M$ 且 $x \in L_{\alpha} \leftrightarrow (x \in L_{\alpha})^{M}$,故

$$\forall x(x \in \mathbf{L}^M \leftrightarrow \exists \alpha \in \alpha^M (x \in L_\alpha))$$

同时 $\Delta^M \vdash \forall \alpha \in \text{On}^M \exists \beta \in \text{On}^M (\beta > \alpha)$,于是 α^M 中没有最大元, α^M 是极限序数,于是 $L_{\alpha^M} = \bigcup_{\alpha \in M} L_{\alpha}$,即 $\exists \alpha \in \alpha^M (x \in L_{\alpha}) \leftrightarrow x \in L_{\alpha^M}$

Remark. • 若 $M \vDash (\mathbf{V} = \mathbf{L})$,则 $\forall x \in M(x \in \mathbf{L}^M)$,且满足 Δ , $M \subseteq \mathbf{L}^M = L_{\alpha^M} \subseteq M$

• 若 $\mathbf{M} \vDash (\mathbf{V} = \mathbf{L})$ 且满足 Δ ,则 $\forall x \in \mathbf{M}(x \in \mathbf{L}^{\mathbf{M}})$,于是 $\mathbf{M} \subseteq \mathbf{L}^{\mathbf{M}} = \mathbf{L} \subseteq \mathbf{M}$,于是 $\mathbf{M} = \mathbf{L}$

Corollary 2.29. 存在 ZF - Pow + (V = L) 的有穷子集 Δ 满足

- 1. 如果M 是传递真类且M ⊨ Δ 则 M = L
- 2. $\forall M(M$ 传递 $\land M \models \Delta \rightarrow L_{\alpha^M} = M)$

Theorem 2.30 (ZF). L 上存在良序,因此 (V = L) 蕴含选择公理, $ZF + V = L \models ZFC$

证明. 递归定义映射 $\alpha \mapsto <_{\alpha} \subseteq L^{2}_{\alpha}$ 满足

- 1. $\forall \alpha \in On$, $<_{\alpha}$ 是 L_{α} 上的良序
- 2. $\forall \alpha < \beta, <_{\alpha} \subseteq <_{\beta}$
- 3. $\forall \alpha < \beta \forall x \in L_{\alpha} \forall y \in L_{\beta} \in L_{\beta} L_{\alpha}(x <_{\beta} y)$

递归定义如下: $\mathrm{rank}_{\mathbf{L}}(x) < \mathrm{rank}(y) \Rightarrow x <_L y, <_L = \bigcup_{\alpha \in \mathrm{On}} <_\alpha$

设 $\forall \beta < \alpha, <_{\beta}$ 已定义,且满足以上条件

若 α 是极限序数, $<_{\alpha} = \bigcup_{\beta < \alpha} <_{\beta}$

若 $\alpha=\beta+1$, 则 $L_{\alpha}=\mathrm{Def}(L_{\beta})\subseteq\mathrm{cl}_G(L_{\beta}\cup\{L_{\beta}\})$,故 L_{α} 有分层结构,即定义

 $\bullet \ F(0) = L_{\beta} \cup \{L_{\beta}\}$

- $F(n+1) = F(n) \cup \{G_i(x,y) \mid x,y \in F(n), i=1,\dots,10\}$ 则 $L_{\alpha} = \bigcup_{n<\omega} F(n)$ 对于每个 $n \in \omega$ 递归定义 F(n) 上的良序 $<_{\alpha}^n$ 满足
- 1. $m < n \Rightarrow <_{\alpha}^{m} \subseteq <_{\alpha}^{n}$
- 2. $m < n \Rightarrow \forall x \in F(m) \forall y \in (F(n) F(m))(x <_{\alpha}^{n} y)$
- F(0) 规定 $\forall x \in L_{\beta}, x <_{\alpha}^{0} L_{\beta}$
- $\forall x, y \in F(n+1)$, 规定 $x <_{\alpha}^{n+1} y$ 当且仅当以下情形之一成立
 - 1. $x, y \in F(n) \coprod x <_{\alpha}^{n} y$
 - 2. $x \in F(n) \perp y \notin F(n)$
 - 3. $x, y \in F(n+1) F(n)$ 且以下情形之一成立
 - (a) $\Leftrightarrow i_0 = \min\{i \leq 10 \mid \exists u, v \in F(n)(G_i(u, v) = x)\}, j_0 = \min\{j \leq 10 \mid \exists u, v \in F(n)(G_i(u, v) = y)\} \ \ \exists \ i_0 < j_0$
 - (b) 若 i_0, j_0 如上且 $i_0 = j_0$ 令 $u_0 = \min_{<\alpha^n} \{ u \in F(n) \mid \exists v \in F(n) (G_{i_0}(u,v) = x) \}$,同样算 s_0 且 $u_0 < s_0$
 - (c) i_0, j_0, u_0, s_0 如上且相当 再看 v
- $\diamondsuit <_{\alpha} = \bigcup_{n < \omega} <_{\alpha}^{n}$,则 $<_{\alpha}$ 是 L_{α} 上的良序
- $\Leftrightarrow <_{\mathbf{L}} = \bigcup_{\alpha \in \mathbf{On}} <_{\alpha} 则 <_{\mathbf{L}}$ 是良序

Theorem 2.31 (ZF). 如果 V = L 则对任意序数 α

$$\mathcal{P}(L_{\alpha})\subseteq L_{|\alpha|^{+}}$$

证明. $\Diamond \Delta \in \mathbb{Z}F + \mathbf{V} = \mathbf{L}$ 的有穷子集使得

$$\forall M(M$$
传递 $\wedge \Delta^M \to (L_{\alpha^M} = M))$

任取 $X \subseteq L_{\alpha}$,令 $Y = L_{\alpha} \cup \{X\}$,显然 Y 传递,由选择公理,有 **ZFC** 下的 反映定理,故存在传递的 $M \supseteq Y$,使得

- Δ 相对于 M 绝对,于是 $V \models \Delta^M$,因此 $M = L_{\alpha^M}$
- $|M| = |Y| \cdot \aleph_0$

由于
$$|L_{\alpha^M}| = |M| = |Y| \cdot \omega = |\alpha^M| = |\alpha| \cdot \omega \Rightarrow \alpha < \alpha^M < |\alpha|^+$$
 故 $X \in Y \subseteq L_{\alpha^M} \subset L_{|\alpha|^+}$

$$ZF + V = L \vdash \forall \alpha \in On(\mathcal{P}(L_{\alpha}) \subseteq L_{\alpha}^{+})$$

$$ZF + V = L \vdash ZFC + GCH$$

$$ZF \vdash (ZF + V = L)^L$$

$$ZF \vdash (ZFC + GCH)^{L}$$

Corollary 2.32. $Con(ZF) \rightarrow Con(ZFC + GCH)$

若 $\mathcal{P}(\omega) \in \mathbf{L}$, 则 $\forall x \subseteq \omega (x \in \mathbf{L} \land x \subseteq \omega)$, $x \in \mathbf{L} \Rightarrow x \subseteq \omega \leftrightarrow (x \subseteq \omega)^{\mathbf{L}}$ 而 $(x \subseteq \omega)^{\mathbf{L}} \Rightarrow (x \in L_{\omega^1})^{\mathbf{L}} \Rightarrow x \in L_{\omega_1}$, 故 $\mathsf{ZFC} \vdash |\mathcal{P}(\omega)| = |\omega_1|$

Theorem 2.33. Δ 是 ZF + V = L 的有穷子集 $ZF \vdash \exists M(|M| = \omega \land M$ 传递 $\land \Delta^M)$

证明.
$$\diamondsuit \varphi = \exists M(|M| = \omega \land M$$
传递 $\land \Delta^M)$

则
$$ZF + (V = L) \vdash \varphi$$
 (练习,反映定理)

因为 $ZF+(V=L)\vdash ZFC+(V=L)$,故 $ZF+(V=L)\vdash \varphi$,由于 $L\vDash ZF+(V=L)$,以 $ZF\vdash \varphi^L$

$$(|M| = \omega)^{\mathbf{L}}$$
 表示

$$\exists f \in \mathbf{L}(f:\omega \to M$$
双射) $^{\mathbf{L}}$

而双射关于 ZF 的传递模型绝对,故 $(|M| = \omega)^{L} \leftrightarrow |M| = \omega$

传递性也是绝对的

$$(\Delta^M)^{\mathbf{L}} \leftrightarrow \Delta^{M \cap \mathbf{L}} = \Delta^M$$

故
$$ZF \vdash \varphi^{\mathbf{L}} \to \varphi$$
, 故 $ZF \vdash \varphi$

如果 Δ 足够丰富, $\Delta^M \Rightarrow M = L_{\alpha^M}$, 故 $ZF \vdash \exists \alpha \in On(|\alpha| = \omega \land \Delta^{L_\alpha})$

Lemma 2.34. 假设 V = L, 则对任意不可数正则基数 κ 有

$$L_{\kappa} = H_{\kappa}$$

证明. $L_{\kappa} \subseteq H_{\kappa}$

若 $x\in L_\kappa$,则存在 $\alpha<\kappa$ 使得 $x\in L_\alpha\Rightarrow {\rm trcl}(x)\subseteq L_\alpha$,故 $|{\rm trcl}(x)|\le |\alpha|<\kappa$, $x\in H_\kappa$

反设 $H_{\kappa}-L_{\kappa}$ 非空,由基础公理,有极小元 x,由传递性 $x\subseteq H_{\kappa}, x\subseteq L_{\kappa}$ $|\mathrm{trcl}(x)|<\kappa$, $|x|<\kappa$,由于 κ 的正则性,存在 $\alpha<\kappa$ 使得 $x\subseteq L_{\alpha}$,故 $x\in L_{|\alpha|^+}\subseteq L_{\kappa}$,矛盾

Remark. • 若 κ 是不可数正则基数,则 $H_{\kappa} \models \mathsf{ZF-Pow}$,因此 $L_{\kappa} \models \mathsf{ZF-Pow}$

• 对任意的 $\alpha \in On$, $(\mathbf{V} = \mathbf{L})^{L_{\alpha}}$ 为公式

$$\forall x \in L_{\alpha} \exists \beta \in L_{\alpha} (\beta \hat{\mathcal{F}} \otimes \Lambda) \times (L_{\beta})^{L_{\alpha}}$$

由于 $L_{\kappa} \models \mathsf{ZF-Pow}$,故 $\alpha \mapsto L_{\alpha}$ 相对 L_{κ} 绝对,故 $(\mathbf{V} = \mathbf{L})^{L_{\kappa}}$ 成立,故 κ 不可数正则能够推出 $L_{\kappa} \models \mathsf{ZF-Pow} + (\mathbf{V} = \mathbf{L})$

Corollary 2.35. 如果 κ 不可数正则,则

$$L_{\kappa} \vDash \mathsf{ZF} - \mathsf{Pow} + (\textit{\textbf{V}} = \textit{\textbf{L}})$$

如果 κ 不可达,则

$$L_{\kappa} \models \mathbf{ZF} + (\mathbf{V} = \mathbf{L})$$

证明. 只需验证 $\operatorname{Pow}^{L_{\kappa}} \, \forall x \in L_{\kappa} \exists y \in L_{\kappa} \forall u \in L_{\kappa} (u \in y \leftrightarrow u \subseteq x)$ 设 $x \in L_{\kappa}$,则存在 α 使得 $x \in L_{\alpha}$ $\operatorname{ZF} + \mathbf{V} = \mathbf{L} \vdash \forall \alpha (\mathcal{P}(L_{\alpha}) \subseteq L_{|\alpha|^{+}})$

$$\begin{split} \mathbf{L} &\vDash \mathbf{ZF} + \mathbf{V} = \mathbf{L} \Rightarrow \forall \alpha (\mathcal{P}(L_{\alpha}) \subseteq L_{|\alpha|^{+}})^{\mathbf{L}} \\ &\Rightarrow \forall u \in \mathbf{L} (u \subseteq L_{\alpha} \to u \in L_{|\alpha|^{+}})^{\mathbf{L}} \\ &\Rightarrow \forall u \in \mathbf{L} (u \subseteq L_{\alpha} \to u \in L_{|\alpha|^{+}}) \end{split}$$

故
$$\forall u \in L_{\kappa}(u \subseteq x \to u \in L_{|\alpha|^+})$$
 令 $y = \{u \in L_{|\alpha|^+} \mid (u \subseteq x)^{L_{|\alpha|^+}}\} = \{u \in L_{|\alpha|^+} \mid u \subseteq x\}$ 则 $y \in \mathrm{Def}(L_{|\alpha|^+})$,所以

$$\forall u \in L_{\kappa} (u \subseteq x \leftrightarrow u \in y)$$

由于 κ 不可达, $|\alpha|^+ + 1 < \kappa$,因此 $y \in L_{\kappa}$

2.4 练习

Lemma 2.36 (L 的反映定理). 对于任意有穷公式集 $F=\{\varphi_1,\ldots,\varphi_n\}$,对任意 $\alpha\in \mathrm{On}$,存在 $\beta\geq \alpha$ 使得 F 对 L_β 和 L 绝对

证明. 目标: 找到 L_{β} 使得对每个形如 $\exists x \varphi(x, \bar{y})$ 的公式及每一组参数 $\bar{b} \in L_{\beta}$ 有 $\mathbf{L} \vDash \exists x \varphi(x, \bar{b}) \Leftrightarrow L_{\beta} \vDash \exists x \varphi_j(x, \bar{b})$

设 $\varphi_i \in F$ 且形如 $\exists y \varphi_i(x, \bar{y})$,定义函数 h_i 如下

- 任取 $\bar{y} \in \mathbf{L}$,令 $U = \{x \mid \varphi_i(x, \bar{y})\}$
- 若 $U \neq \emptyset$,则存在最小的 ξ 使得 $U \cap L_{\xi} \neq \emptyset$,此时令 $h_i(\bar{y}) = L_{\xi}$

于是函数 h_i 满足

$$\forall \bar{y}(\exists y \varphi_i(x, \bar{y}) \to \exists x \in h_i(\bar{y}) \varphi_i(x, \bar{y}))$$

定义 h_F 为

$$h_F(y_1,\ldots,y_m) = \left\{ \begin{array}{l} \left\{ h_i(y_1,\ldots,y_m) : i=1,\ldots,n \right\} \end{array} \right.$$

则 h_F 满足: 对每个形如 $\exists x \varphi_j(x, \bar{y})$ 的公式,有

$$\forall \bar{y}(\exists x \varphi_j(x,\bar{y}) \to \exists x \in h_F(\bar{y}) \varphi_j(x,\bar{y}))$$

任取 α , 定规定义 L^i_{α} , $i \in \omega$, 如下

$$\bullet \ L_{\alpha}^0 = L_{\alpha}$$

 $\bullet \ L_{\alpha}^{i+1} = V_{\alpha}^{i} \cup \bigcup \{h_{F}(\bar{y}) \mid \bar{y} \in V_{\alpha}^{i}\}$

$$\diamondsuit$$
 $L_{\alpha}=\bigcup_{i\in\omega}L_{\alpha}^{i}$,只要证明存在 $\gamma\in$ On 使得 $L_{\alpha}\subseteq L_{\gamma}$

Lemma 2.37 (ZF). 存在 ZF – Pow 的有穷子集 $\{\psi_1,\ldots,\psi_n\}$ 使得序数,秩, L_α 对 $\{\psi_1,\ldots,\psi_n\}$ 的任意传递模型都是绝对的

Exercise 2.4.1. 令 Δ 是 ZF + V = L 的有穷子集,令 $\varphi=\exists M(|M|=\omega \land M$ 传递 $\wedge \Delta^M)$

则 $ZF + (V = L) \vdash \varphi$ (练习,反映定理)

证明. 取
$$L_{\omega}$$

Exercise 2.4.2 (8.4.1). 对任意集合 A, 递归定义 $L_{\alpha}(A)$ 如下

1.
$$L_0(A) = trcl(\{A\})$$

2.
$$L_{\alpha+1}(A) = \text{Def}(L_{\alpha}(A))$$

3. 对任意极限序数
$$\alpha$$
, $L_{\alpha}(A) = \bigcup_{\beta < \alpha} L_{\beta}(A)$

$$\diamondsuit$$
 $\mathbf{L}(A) = \bigcup_{\alpha \in \operatorname{On}} L_{\alpha}(A)$,证明

- 1. $\mathbf{L}(\emptyset) = \mathbf{L}$
- 2. 对任意 A, L(A) 是传递的, 且 $L(A) \models ZF$
- 3. 如果 $A \subseteq \omega$,则 $\mathbf{L}(A) \models \mathbf{GCH}$
- 4. 如果 $A \subseteq \omega_1$ 且假设 $\mathbf{V} = \mathbf{L}(A)$,则 GCH 成立

证明. 1.
$$L_0(\emptyset) = \emptyset = L_0$$

2. 首先 $L_0(A)$ 传递,同时 $\alpha \in L_{\alpha+1}(A) = \mathrm{Def}(L_{\alpha}(A)) \subseteq \mathcal{P}(L_{\alpha}(A))$,于 是 $\alpha \subseteq L_{\alpha}(A) \subseteq \mathrm{Def}(L_{\alpha}(A)) = L_{\alpha+1}(A)$,极限情况显然

存在公理、外延公理、对集公理显然

传递推出并集公理

而 L(A) 也有反映定理,因此有分离公理

于是 x^+,\emptyset,ω 绝对,因此无穷公理、基础公理成立 幂集公理(证明 $\mathbf{L} \cap \mathcal{P}(x) \in \mathbf{L}$) 替换公理(来自于反映定理)

3. 令 $B = \operatorname{trcl}(\{A\})$,对 α 归纳能证明对任意 $\alpha \geq |B|$ 都有 $|L_{\alpha}(A)| = |\alpha|$ 。 或者 $|L_{\alpha}(A)| = \max |\alpha|$, |A| 因为 B 上有良序,因此 $\mathbf{L}(A)$ 上有良序, 类似的,可以找到 $\mathbf{ZF} - \mathbf{Pow}$ 的有限子集 F 使得序数、秩、 $L_{\alpha}(A)$ 对 F 的任意包含 B 的传递模型绝对,因此有 $\mathbf{ZF} - \mathbf{Pow}$ 的有限子集 F' 使得

$$\forall M(B \subseteq M \land M \not\in \mathcal{B} \land F^M \to L_{\alpha^M}(A) = \mathbf{L}(A)^M \subseteq M)$$

又因为有 $\mathbf{L}(A)$ 版本的反映原理,因此对任意 $\alpha \geq |M|$,有 $\mathbf{L}(A) \models \mathcal{P}(L_{\alpha}(A)) \subseteq L_{|\alpha|^+}(A)$

4. 只需证明 CH,证明 $\mathcal{P}(\omega) \subseteq \bigcup \{L_{\alpha}(A \cap \beta) : \alpha, \beta < \omega_1\}$

Exercise 2.4.3 (8.4.4). 不用 AC 证明对任意 $\alpha \ge \omega$, $|L_{\alpha}| = |\alpha|$

Exercise 2.4.4 (8.4.5). 假设 AC,对任意 $\alpha > \omega$, $|L_{\alpha}| = |V_{\alpha}|$ 当且仅当 $\alpha = \beth_{\alpha}$

证明. \Rightarrow : 若 $\alpha \geq \omega^2$,则 $|\alpha| = |L_{\alpha}| = |V_{\alpha}| = |V_{\omega+\alpha}| = \beth_{\alpha}$,于是 $|\alpha| \leq \beth_{|\alpha|} \leq \beth_{\alpha}$,因此 $\alpha = |\alpha| = \beth_{\alpha}$

若 $\omega < \alpha < \omega^2$, 不存在

$$\Leftarrow$$
: 显然 $\alpha \geq \omega^2$, 因此 $|V_{\alpha}| = \Im_{\alpha} = \alpha = |L_{\alpha}|$

Exercise 2.4.5 (8.4.6). 如果 V = L,则

- 1. 对任意 $\alpha > \omega$, $L_{\alpha} = V_{\alpha}$ 当且仅当 $\alpha = \beth_{\alpha}$
- 2. 对任意无穷基数 κ , $L_{\kappa} = V_{\kappa}$

link

证明. 注意到 $|V_{\omega+\alpha}| = \beth_{\alpha}$

- 2. 因为 V = L,所以 GCH 成立,所以 $\beth_{\kappa} = \kappa^{+}$,若 κ 是无穷基数,则 $\kappa = \beth_{\kappa}$

Exercise 2.4.6 (8.4.7). 证明整数 $\mathbb Z$ 有理数 $\mathbb Q$ 都属于 $L_{\omega+\omega}$

证明. 因为
$$L_{\omega+1} \cap \operatorname{On} = \omega + 1$$
,因此 $\omega \in L_{\omega+1}$,因此 $\mathbb{Z} \in L_{\omega+1}$

Exercise 2.4.7 (8.4.8). $Con(ZF) \rightarrow Con(ZFC + GCH + \neg \exists \alpha (\alpha 弱不可达))$

证明. 令 $\mathbf{M} = \bigcap \{L_{\kappa} \mid \kappa$ 是弱不可达基数},于是 ZF 不能知道 \mathbf{M} 是 L 还是 L_{κ}

证明. 注意到 GCH 可以推出任何弱不可达基数是强不可达基数

证明. 若
$$M \models Con(ZF)$$
, 若 M 包含

Exercise 2.4.8 (8.4.9). 假设 M 是集合,A 是集合,考虑结构 $(M, \in, A \cap M)$,它是在 (M, \in) 中加入一个新的一元谓词 $x \in A$,令 $Def^A(M)$ 表示 M 的所有能在结构 $(M, \in, A \cap M)$ 中可定义的子集,定义

- 1. $L_0[A] = \emptyset$
- 2. $L_{\alpha+1}[A] = \operatorname{Def}^A(L_{\alpha}[A])$
- 3. 对任意极限序数 α , $L_{\alpha}[A] = \bigcup_{\beta < \alpha} L_{\beta}[A]$

 \diamondsuit $\mathbf{L}[A] = \bigcup_{\alpha \in \mathbf{On}} L_{\alpha}[A]$,证明

1. 如果
$$\alpha \leq \beta$$
,则 $L_{\alpha}[A] \subseteq L_{\beta}[A]$

- 2. 对任意 α , $L_{\alpha}[A] \subseteq V_{\alpha}$
- 3. 每个 $L_{\alpha}[A]$ 都是传递的
- 4. 如果 $\alpha < \beta$,则 $L_{\alpha}[A] \in L_{\beta}[A]$
- 5. $L_{\alpha}[A] \cap \alpha = \alpha$
- 6. $n \in \omega \Rightarrow L_n[A] = V_n$
- 7. $\forall \alpha \geq \omega, |L_{\alpha}[A]| = |\alpha|$

证明. $\operatorname{Def}^A(M) = \operatorname{Def}(M \cup \{M \cap A\})$

- 1. 对 $\alpha=0$ 显然成立,若对 α 成立且 $\alpha+1\leq \beta,\ a\in L_{\alpha+1}[A]\Rightarrow a\subseteq L_{\alpha}[A]\subseteq \operatorname{Def}^A(L_{\alpha}[A])=L_{\alpha+1}[A]$
- 2. Obviously, $L_{\alpha+1}[A]\subseteq \mathcal{P}(L_{\alpha}[A])$
- 3. 空集传递

$$a\in L_{\alpha+1}[A]\Rightarrow a\subseteq L_{\alpha}\subseteq \mathrm{Def}^A(L_{\alpha})=L_{\alpha+1}[A]$$

- 4. $L_\alpha=\{x\in L_\alpha\mid (x=x)^{L_\alpha}\}$
- 5. $L_{\alpha} \subseteq L_{\alpha}[A]$
- 6. 一样
- 7. 归纳

 $|L_{\alpha+1}[A]| = \left| \mathsf{Def}^A(L_\alpha[A]) \right| = \left| \mathsf{Def}(L_\alpha[A] \cup \{A \cap L_\alpha[A]\}) \right| = |L_\alpha[A] \cup \{A \cap L_\alpha[A]\}| = |\alpha+1|$

Exercise 2.4.9 (8.4.10). 如果 $A \subseteq L$,则 L[A] = L

证明.

Exercise 2.4.10 (8.4.11). 任给集合 A, L[A] 是 ZF 的传递模型

证明. 因为对任意 $\alpha \in \text{On}$, $L_{\alpha}[A]$ 传递, 因此 $\mathbf{L}[A]$ 传递

存在公理:

外延公理: L[A] 传递, 所以成立

对集公理: 若 $a,b \in \mathbf{L}[A]$, 则存在 α 使得 $a,b \in L_{\alpha}[A]$, 因此 $\{a,b\} \in L_{\alpha+1}[A]$

并集公理: $y = \bigcup x$ 被 Δ_0 公式 $\psi(x,y)$ 定义,于是并集公理相对化为 $\forall x \in \mathbf{L}[A] \exists y \in \mathbf{L}[A] \psi(x,y)$ 。若 $x \in L_{\alpha}[A]$,则 $\bigcup x = \{y \mid \exists u \in x (y \in u)\} \subseteq L_{\alpha}[A] \in L_{\alpha+1}[A]$,

分离公理: 证明 $\forall x \in \mathbf{L}[A] \exists y \in \mathbf{L}[A] \forall u \in \mathbf{L}[A] (u \in y \leftrightarrow u \in x \land \varphi^{\mathbf{L}[A]}(u))$ 跟 **L** 的反映定理类似,我们也有 **L**[A] 的反映定理

假设 $x \in L_{\alpha}[A]$,则存在 $\beta > \alpha$ 使得 φ 相对于 $L_{\beta}[A]$ 和 $\mathbf{L}[A]$ 绝对,于是 $y = \{u \in \mathbf{L}[A] \mid u \in x \land \varphi^{\mathbf{L}[A]}(u)\} = \{u \in L_{\alpha}[A] \mid u \in x \land \varphi^{L_{\beta}[A]}(u)\} \in L_{\beta+1}[A]$,因此

于是 $\mathbf{L}[A]$ 满足 $\mathbf{ZF} - \mathbf{Pow} - \mathbf{Rep} - \mathbf{Inf}$,于是 x^+, \emptyset, ω 均绝对,于是无穷 公理成立

幂集公理: 对于任意 $x \in \mathbf{L}[A]$, 要证明 $y = \mathcal{P}(x) \cap \mathbf{L}[A] \in \mathbf{L}[A]$,

存在 $\alpha \in \text{On}$ 使得 $x \in L_{\alpha}[A]$,因为 $\mathcal{P}(x) \cap \mathbf{L}[A]$ 是集合,因此存在 充分大的 $\beta > \alpha$ 使得 $\mathcal{P}(x) \cap \mathbf{L} = \mathcal{P}(x) \cap L_{\beta}[A]$,同时因为 $L_{\beta}[A]$ 传递, $y = \{u \in L_{\beta}[A] \mid (u \subseteq x)^{L_{\beta}}\} \in L_{\beta+1} \subseteq \mathbf{L}$

替换公理: 要证明

 $\forall x \in \mathbf{L}[A] \exists ! y \in \mathbf{L}[A] \psi^{\mathbf{L}[A]}(x,y) \to \forall C \in \mathbf{L}[A] \exists B \in \mathbf{L}[A] \forall a \in C \exists b \in B \psi^{\mathbf{L}}(a,b)$ 任取 $C \in L_{\alpha}[A]$,取 $\beta > \alpha$ 使得

- 1. ψ 相对于 $L_{\beta}[A]$ 和 $\mathbf{L}[A]$ 绝对
- 2. $\forall a \in C \exists b \in L_{\beta}[A] \psi^{\mathbf{L}[A]}(a, b)$

則 $B=\{b\in\mathbf{L}[A]\mid\exists a\in C\psi^{\mathbf{L}[A]}(a,b)\}=\{b\in L_{\beta}[A]\mid\exists a\in C\psi^{L_{\beta}[A]}(a,b)\}\in L_{\beta+1}[A]$ \qed

Exercise 2.4.11 (8.4.12). 任给集合 A, L[A] 满足选择公理

Lemma 2.38.
$$\diamondsuit \overline{A} = A \cap L[A]$$
, $M L[\overline{A}] = L[A] \perp \overline{A} \in L[\overline{A}]$

证明. 对
$$\alpha$$
 归纳证明 $L_{\alpha}[A]=L_{\alpha}[\overline{A}]$ 令 $U=L_{\alpha}[A]$,则

$$A \cap U = A \cap U \cap \mathbf{L}[A] = \overline{A} \cap U$$

因此

$$L_{\alpha+1}[A] = \operatorname{Def}^A(U) = \operatorname{Def}^{A\cap U}(U) = \operatorname{Def}^{\overline{A}}(U) = L_{\alpha+1}[\overline{A}]$$

证明. 可以假设 $A \in \mathbf{L}[A]$, 因此 $A \in L_{\alpha}[A]$

3 力迫

目标: $Con(ZFC) \rightarrow Con(ZFC + \neg CH)$

已知 $V \models 2^{\aleph_0} \ge \aleph_1$

为了得到 $2^{\aleph_0}=\aleph_1$ 的模型,构造了 \mathbf{L} ,在 \mathbf{L} 中, ω 的子集均出现在 L_{ω_1} 中

如果要构造 $2^{\omega} > \aleph_1$ 的模型,要扩张集合宇宙

运用外模型的方法,显然 $Con(ZFC + \neg CH) \rightarrow Con(ZFC + \mathbf{V} \neq \mathbf{L})$

因为 $M \models \mathsf{ZFC} + \mathbf{V} = \mathbf{L} \Rightarrow M \models \mathsf{GCH}$

内模型的方法不能得到 $Con(ZFC + V \neq L)$

设传递真类 $N \models ZFC + V \neq L$,由于 L 的极小性,L \subset

3.1 力迫法的基本思想

假设 ZFC 一致,令 V \models ZFC +Con(ZFC),由 LST,ZFC 有一个可数模型,由 Mostowski 坍塌定理,存在 ZFC 的可数传递模型 M 我们要构造 $M \models$ ZFC 的扩张使得 \neg CH 成立,比如 $2^\omega = \omega_2$ On $M = On \cap M = \alpha^M$ 是可数的,记作 o(M), $\omega_1^M < \omega_2^M < o(M)$ 为 M 看到的 $\omega_1, \omega_2, \ \omega_1^M \neq \omega_1 \cap M$

在V看来, $\omega_1^M,\omega_2^M,o(M)$ 可数

若 $M \models \mathbf{CH}$,即 $\exists f \in M(f: \mathcal{P}(\omega)^M \cong \omega_1^M)$,这里 $\mathcal{P}(\omega)^M = \mathcal{P}(\omega) \cap M$ 为了破坏 \mathbf{CH} ,可以在 M 中添加 $\mathcal{P}(\omega)$ 的子集得到 M 的扩张 N 使得 $N \models \mathcal{P}(\omega) = \omega_2$

难点

- 1. $M \models \mathsf{ZFC}, a \notin M, M \cup \{a\} \nvDash \mathsf{ZFC}$,故 N 要对集合运算封闭
- 2. 要保证 $\omega_1^M = \omega_1^N, \omega_2^M = \omega_2^N$, 在 $\mathcal{P}(\omega)^M$ 中添加 ω_2^M 个元素后得到 $\mathcal{P}(\omega)^N$, $N \models \exists f(f: \mathcal{P}(\omega) \to \omega_2^M) \Rightarrow \mathcal{P}^N(\omega) \cong \omega_2^N$

3.2 脱殊扩张

设 $M \models {\sf ZFC}$ 是可数传递模型,令 $\mathbb{P} \in M$ 是一个偏序集, \mathbb{P} 的脱殊滤 G 一般不属于 M,将 G 添加到 M 得到 M 的扩张 M[G],M[G] 的性质由 \mathbb{P} 决定

Definition 3.1. 设 (\mathbb{P} , \leq , $\mathbb{1}$) 是偏序集,其中 \leq 是其上的偏序,而 $\mathbb{1}$ 是 \mathbb{P} 最大元,

- 1. $\mathbb P$ 称为 **力迫偏序**或 **力迫**, $\mathbb P$ 的元素称为 **力迫条件**, $\forall p,q\in\mathbb P$, $p\leq q$ 称为力迫条件 p 强于 q
- 2. $D \subseteq \mathbb{P}$ 是 稠密的指 $\forall p \in \mathbb{P} \exists q \in D (q \leq p)$
- 3. $G \subseteq \mathbb{P}$ 是 \mathbb{P} 上的滤指
 - (a) $\mathbb{1} \in G$
 - (b) $\forall p, q \in G \exists r \in G (r \leq p \land r \leq q)$
 - (c) $\forall p, q \in \mathbb{P}(q \le p \land q \in G \to p \in G)$
- 4. 设 M 是一个集合(如 ZF 的传递模型),如果 $G \subseteq \mathbb{P}$ 是滤,且对任意 稠密子集 $D \subseteq \mathbb{P}$ 有

$$D \in M \to G \cap D \neq \emptyset$$

则称 $G \in M$ 上的 \mathbb{P} -脱殊滤

Lemma 3.2. 如果 M 是 ZF — Pow 的可数传递模型,且 $\mathbb{P} \in M$ 则 $\forall p \in \mathbb{P}$ 存在 M 上的 \mathbb{P} - 脱殊滤 G 使得 $p \in G$

证明. M 可数, $\{D_n \mid n \in \omega\}$ 是 \mathbb{P} 的属于 M 的全体可数子集 $\Leftrightarrow p_0 = p$ 且 $\forall n \in \omega$, $\Leftrightarrow p_{n+1} \in D_n$ 使得

 $p_0 \ge p_1 \ge \dots$

令 G 为 $\{p_n \mid n \in \omega\}$ 生成的滤,则 $P \in G$ 且 G 与每个 D_n 相交,从而脱 殊

Definition 3.3. 偏序集 \mathbb{P} 的元素 p,q 称为不相容是指 $\neg \exists r \in \mathbb{P}(r \leq p \land r \leq q)$,记作 $p \bot q$, \mathbb{P} 是无原子的指 $\forall p \in \mathbb{P} \exists r, q \in \mathbb{P}(r \leq p \land q \leq p \land r \bot q)$

Proposition 3.4. 令 M 是 ZFC 的传递模型, $\mathbb{P} \in M$,如果 \mathbb{P} 是无原子的且G 是 M 上的 \mathbb{P} - 脱殊滤,则 $G \notin M$

证明. 只要证明 $\mathbb{P} - G \notin M$,由于 \mathbb{P} 无原子, $\forall p \in \mathbb{P} \exists r, q \leq p, r \perp q, r, q$ 至 多有一个在 G 中,设 $q \notin G$,则有 $\forall p \in \mathbb{P} \exists q \in \mathbb{P} - G(q \leq p)$,故而 $\mathbb{P} - G$ 稠密,若 $\mathbb{P} - G \in M$,由于 G 是脱殊滤, $G \cap (\mathbb{P} - G) \neq \emptyset$,矛盾

Example 3.1. 令 $M \models {\sf ZFC}$ 是可数传递模型, $I,J \in M$,令 ${\sf Func}_{\omega}(I,J) = \{p \mid p \not \in I$ 到 J 的部分函数 $\land |p| < \omega\}$,则它无原子,令 $\mathbb{P} = ({\sf Func}(I,J), \supseteq, \emptyset)$,由于 $I,J \in M$,故 $\mathbb{P} \in M$ (练习, ${\sf Func}_n(I,J)$ 属于 M, ${\sf Func}_1(I,J) = I \times J$)如果 I 是无穷集,则对每个 $x \in I$ 与 $y \in J$, $D_x = \{p \in \mathbb{P} \mid x \in {\sf dom}(p)\}$,

设 G 是 $\mathbb P$ 的滤,则 G 中的函数两两相容,故 $\bigcup G = f_G$ 是 I 到 J 的部分函数

若 G 是 M 上的脱殊滤, $G \notin M$,则 $G \cap D_x$, $G \cap E_y$ 均非空,故 $f_G = \bigcup G$ 是 I 到 J 的满射

接下来构造 M[G],称为 M 的脱殊扩张。M 中的人知道 M[G] 中的元素 如何构造,如以上例子中的 $f_G \notin M$,但 M 中的人知道如何逼进 f_G ,M[G] 中的元素都有一个"名字",用于描述其构造,生活在 M 中的人可以讨论

Definition 3.5. 设 \mathbb{P} 是一个力迫, $\forall \alpha \in \mathsf{On}$,递归定义 $V_{\alpha}^{\mathbb{P}}$

- 1. $V_0^{\mathbb{P}} = \emptyset$
- 2. $V_{\alpha+1}^{\mathbb{P}} = \mathcal{P}(V_{\alpha}^{\mathbb{P}} \times \mathbb{P})$
- 3. $V_{\lambda}^{\mathbb{P}} = \bigcup_{\beta < \lambda} V_{\beta}^{\mathbb{P}}$

V^ℙ 中的元素称为 ℙ-名字

若 $\tau \in \mathbf{V}^{\mathbb{P}} \Leftrightarrow \exists \alpha (\tau \in \mathcal{P}(V_{\alpha}^{\mathbb{P}} \times \mathbb{P})) \Leftrightarrow \tau \subseteq V_{\alpha}^{\mathbb{P}} \times \mathbb{P}, \;$ 因此 τ 是一个二元关系

Definition 3.6. 对任意力迫 \mathbb{P} ,对任意集合 x 递归定义

$$\hat{x} = \{(\hat{y}, \mathbb{1}) \mid y \in x\}$$

直观上 $\mathbf{V}^{\mathbb{P}}$ 比 \mathbf{V} 丰富, $x \mapsto \hat{x} \neq \mathbf{V}$ 到 $\mathbf{V}^{\mathbb{P}}$ 的嵌入,同时 $\mathbf{V}^{\mathbb{P}} \subset \mathbf{V}$

Definition 3.7. 对任意力迫 \mathbb{P} ,任意 \mathbb{P} 上的滤 G,以及任意 \mathbb{P} -名字 τ ,递归 定义 τ 的值 τ_G 或 $Val(\tau, G)$ 为:

如果对任意 $\beta<\alpha$ 以及 $\sigma\in V_{\beta}^{\mathbb{P}},\ \sigma_{G}$ 已定义,若 $\tau\in V_{\alpha}^{\mathbb{P}},\ \tau_{G}=\{\sigma_{G}\mid\exists p(\sigma,p)\in\tau\wedge p\in G\}$

 $\forall x(\hat{x})_G = x$ (练习,用 rank 归纳)

Lemma 3.8. " τ 是 \mathbb{P} 名字"," τ_G 是 \mathbb{P} 名字的值" 对 $\mathbb{Z}F$ — $\mathbb{P}Ow$ 的传递模型 M 都是绝对的

对 ℙ 跟 M 都没有要求

证明. 设 $\psi(\tau)$ 表示" τ 是 \mathbb{P} -名字",对 $\mathrm{rank}_{\mathbf{V}}(\tau)$ 归纳证明 $\psi(\tau) \leftrightarrow \psi^{M}(\tau)$,不 用 $V^{\mathbb{P}}$ 的 rank 是因为不是所有元素都属于它, $\psi(\tau)$ 为公式

 τ 是关系 $\land \forall \sigma \in \text{dom}(\tau)(\sigma$ 是 \mathbb{P} -名字) $\land \forall p \in \text{ran}(\tau(p \in \mathbb{P}))$

若 $\tau \in M$,则 $\operatorname{dom}(\tau), \operatorname{ran}(\tau) \in M$, 因此 $\operatorname{dom}(\tau), \operatorname{ran}(\tau) \subseteq M$, 由归纳假 设 $\forall \sigma \in \operatorname{dom}(\tau)(\psi(\sigma) \leftrightarrow \psi^M(\sigma))$,故 $\psi^M(\tau) \leftrightarrow \psi(\tau)$

这里 \mathbb{P} 是个参数,不过在不在 M 中无所谓 令 $\theta(x,y)$ 表示 $x \in \mathbf{V}^{\mathbb{P}} \land y = x_G$,则 $\theta(x,y)$ 当且仅当

$$\psi(x) \land \forall \sigma \in \mathrm{dom}(x) \forall p \in \mathrm{ran}(x) ((\sigma, p) \in x \land p \in G \to \exists u \in y \theta(\sigma, u))$$
$$\land \forall u \in y \exists \sigma \in \mathrm{dom}(x) \exists p \in \mathrm{ran}(x) ((\sigma, p) \in X \land p \in G \land \theta(\sigma, u))$$

对 rank(x) 归纳证明

$$\forall x, y \in M(\theta(x, y) \leftrightarrow \theta^M(x, y))$$

 $\Leftrightarrow \varphi(y)$ 表示 $\exists x \theta(x,y)$, 于是我们要证

$$\forall y \in M(\varphi(y) \leftrightarrow \varphi^M(y))$$

即

$$\forall y \in M(\exists x \theta(x, y) \leftrightarrow \exists x \in M\theta^M(x, y))$$

只要证明 $\forall y \in M \exists x \in M \theta(x,y)$,容易验证 $y \in M \Rightarrow \hat{y} \in M$ (替换公理),而 $y = (\hat{y})_G$,因此 $\theta(\hat{y},y)$

我们证明了 $\varphi(y):=\exists x\theta(x,y)$ 是绝对的,但是 $\theta(x,y)$ 作为函数不一定绝对, $x\in M\Rightarrow x_G\in M$,若 $G\in M$ 则 $x\in M\cap \mathbf{V}^\mathbb{P}\Rightarrow x_G\in M$ (练习,对 $\mathrm{rank}(x)$ 归纳)

- $1. \psi(x)$ 绝对
- 2. $\theta(x,y)$ 绝对
- 3. $\varphi(y)$ 绝对

若 $\mathbb{P} \notin M$,则 1 成立,但是 $\psi^M(x) \Leftrightarrow \mathbb{M} \models \psi(x)$,虽然是对的,但是在 M 看来 ψ 不是公式

Definition 3.9. 令 M 是 ZFC 的传递模型, $\mathbb{P} \in M$,定义 $M^{\mathbb{P}} = \mathbf{V}^{\mathbb{P}} \cap M$,即 $M^{\mathbb{P}} = \{ \tau \in M \mid (\tau \mathbb{E} \mathbb{P} - A \hat{\mathbf{z}})^M \}$

如果 $G \subseteq \mathbb{P}$ 是 \mathbb{P} 上的滤,则

$$M[G] = \{\tau_G \mid \tau \in M^{\mathbb{P}}\}$$

- *M*[*G*] 是 *M* 的扩张
- M 中的人可以部分了解 M[G]
- 如 $f_G = \bigcup G \in M[G]$,M 可以看到 f_G 的"任意多"的部分信息,但 $f_G \notin M$

Lemma 3.10. 设 M 是 ZFC 的传递模型, $\mathbb{P} \in M$ 为力迫, $G \subseteq \mathbb{P}$ 是非空滤,则

- 1. 若 $N \models \mathsf{ZFC}$ 是传递模型, $M \subseteq N$ 且 $G \in N$, 则 $M[G] \subseteq N$
- 2. M[G] 传递
- 3. $\forall x \in M(\hat{x} \in M^{\mathbb{P}} \land \hat{x}_G = x), \text{ if } M \subseteq M[G]$
- 4. $\Gamma = \{(\hat{p}, p) \mid p \in \mathbb{P}\}, \ \ \ M \Gamma_G = G, \ \$ 故 $G \in M[G]$
- 5. $\forall \tau \in M^{\mathbb{P}}(rank(\tau_G)) \leq rank(\tau)$
- 6. o(M) = o(M[G])
- 证明. 1. 已证明,若 $x\in N^{\mathbb{P}}$ 且 $G\in N$,则 $x_G\in N$,由于 $M^{\mathbb{P}}\subseteq N^{\mathbb{P}}$,故 $M[G]\subseteq N$
 - 2. $y \in x_G \Leftrightarrow \exists \sigma \exists p ((\sigma, p) \in x \land p \in G \land y = \sigma_G), \text{ if } y \in x_G \in M[G] \Rightarrow y \in M[G]$
 - 3. 替换公理证明 $\hat{x} \in \mathbb{M}^{\mathbb{P}}$,对 rank(x) 归纳证明 $\hat{x}_G = x$
 - 4. 替换公理, $\Gamma \in M$,
 - 5. 对 $\operatorname{rank}(x)$ 归纳证明,若 $x \in \mathbf{V}^{\mathbb{P}}$,则 $\operatorname{rank}(x_G) \leq \operatorname{rank}(x)$
 - $\operatorname{rank}(x) = 0 \Rightarrow x = \emptyset$
 - 设当 $y \in \mathbf{V}^{\mathbb{P}}$ 且 $\mathrm{rank}(y) < \mathrm{rank}(x) \Rightarrow \mathrm{rank}(y_G) \leq \mathrm{rank}(y)$

$$\begin{split} \operatorname{rank}(x_G) &= \sup\{\operatorname{rank}(y_G) + 1 \mid \exists p \in G((y,p) \in X)\} \\ &\leq \sup\{\operatorname{rank}(y) + 1 \mid \exists p \in G((y,p) \in X)\} \\ &\leq \operatorname{rank}(x) \end{split}$$

因为 $y \in (y, p) \in x \Rightarrow \operatorname{rank}(y) + 1 \le \operatorname{rank}(x)$

6. $M \subseteq M[G] \Rightarrow o(M) \subseteq o(M[G])$

 $\forall \alpha \in o(M[G])\,,\, \mbox{\it id}\,\, \alpha = x_G\,,\, \mbox{\it id}\,\, + x \in M^{\mathbb{P}}\,, \\ \mbox{\it id}\,\, \alpha = {\rm rank}(\alpha) \leq {\rm rank}(x) \in M\,,\,\, \mbox{\it id}\,\, M\,\, \mbox{\it id}\,\, \mbox{\it id}\,\, + \alpha \in M$

Definition 3.11. 如果 $D \subseteq \mathbb{P}$ 且 $p \in \mathbb{P}$,则 D 是 p 下稠密的是指 $\forall q \leq p \exists r \leq q (r \in D)$

- 1. 或者 $G \cap D \neq \emptyset$ 或者 $\exists q \in G$ 使得 $\forall r \in D(r \perp q), q \perp D$
- 2. 如果 $p \in G$ 且D是p下稠密的,则 $G \cap D \neq \emptyset$

任取 $q \in \mathbb{P}$,

- (a) 若 $q \perp D \Rightarrow q \in D'$
- (b) 若 $\exists r \in D$ 使得 $q \not\perp r$,则 $\exists t \leq q, r$,因此 $t \in D'$,

故 D' 是稠密的,因此 $G \cap D' \neq \emptyset$,若 $G \cap D_1 \neq \emptyset$,由于 G 向上封闭,故 $G \cap D \neq \emptyset$;若 $G \cap D_2 \neq \emptyset$,就存在 $q \in G$ 使得 $q \perp D = \emptyset$

2. 若 $p \in G$ 且 D 是 p 下稠密的,则 $\forall q \in G \exists s \in G$ 使得 $s \leq p, q$,由稠密性, $\exists r \in D$ 使得 $r \leq s \leq p, q$,则 $q \not\perp r$,故 $G \cap D \neq \emptyset$

设 $\theta(x,y)$ 是一个公式, $\pi,\sigma\in \mathbf{V}^{\mathbb{P}}$,则 $\theta(\pi,\sigma)$ 可视为 $\mathcal{L}_{\mathbf{V}^{\mathbb{P}}}$ 句子 因此记法 $M[G] \models \theta(\pi,\sigma)$ 是合理的,不区分 $M[G] \models \theta(\pi_G,\sigma_G)$ 和 $M[G] \models \theta(\pi,\sigma)$

称 $\mathcal{L}_{\mathbf{v}^{\mathbb{P}}}$, $\mathcal{L}_{M^{\mathbb{P}}}$ 称为 **力迫语言**

3.3 力迫

设 M 是 ZFC 的传递模型, \mathbb{P} 是 M 中的一个力迫,(\mathbb{P} ,1, \leq) \in M, G 是 M 上的一个脱殊滤且 $G \notin M$ (即要求 G 无原子)

我们希望证明 $M[G] \models ZFC$

考虑分离公理:

设 $\psi(x,y)$ 是公式, $\sigma,\tau \in M^{\mathbb{P}}$,要证明

$$X = \{x \in \tau_G \mid \psi^{M[G]}(x,\sigma_G)\} \in M[G]$$

即要找到 $\pi \in M^{\mathbb{P}}$ 使得 $X = \pi_G$,定义

$$\pi = \{ (\rho, p) \mid \rho \in \mathsf{dom}(\sigma) \land p \in \mathbb{P} \land p \Vdash \psi(\rho, \sigma) \}$$

 $p \Vdash \psi(\rho,\sigma)$ 表示对任意包含 p 的脱殊滤 $G,\ M[G] \vDash \psi(\rho_G,\sigma_G)$,即 $M[G] \vDash \psi(\rho,\sigma)$

我们首先证明关系" $p \Vdash \psi(\rho, \sigma)$ "是在 M 中可定义的

Definition 3.13. 令 $\varphi(x_1, ..., x_n)$ 为公式, M 是 ZFC 的可数传递模型, $\mathbb{P} \in M$ 为力迫, $\tau_1, ..., \tau_n \in M^{\mathbb{P}}$ 且 $p \in \mathbb{P}$,则

$$p \Vdash_{\mathbb{P},M} \varphi(\tau_1,\dots,\tau_n)$$

当且仅当

$$\forall G[(G是\ M\ \bot \hbox{ \mathbb{P}--脱殊滤} \land p \in G) \to M[G] \vDash \varphi(\bar{\tau})]$$

简记p $\Vdash \varphi$,读作p 力迫 φ

Example 3.2. 设 M, \mathbb{P} 如上, $p \in \mathbb{P}$, 则

- 1. 如果 $q \in \mathbb{P}$ 且 $p \leq q$ (p 的力迫条件强于 q),则 $p \Vdash \hat{q} \in \Gamma$, $\Gamma = \{(\hat{x}, x) \mid x \in \mathbb{P}\}$
- 2. 设 $\pi = \{(\hat{p}, q) \mid p, q \in \mathbb{P} \land p \perp q\}, \ \ \text{则} \ \mathbb{1} \Vdash (\pi \cap \Gamma = \emptyset)$
- 3. 设 $\theta = \theta(\tau_1, \dots, \tau_n)$, $\tau_i \in M$, 则 $\mathbb{1} \Vdash \theta$ 当且仅当对每个 M 上的脱殊滤 G, 都有 $M[G] \vDash \theta(\tau_{1G}, \dots, \tau_{nG})$
- 4. 设 $\tau \in M^{\mathbb{P}}$, $(\pi, p) \in \tau$, $q \leq p$, 则 $q \Vdash (\pi \in \tau)$

证明. 1. $p \in G \Rightarrow q \in G$,而 $\hat{q}_G = q_r \Gamma_G = G$

2. 练习,1 \Vdash ($\pi \cap \Gamma = \emptyset$) \Leftrightarrow 对每个 M 上的脱殊滤G 有 $M[G] \models \pi_G \cap G = \emptyset$

3.

4.

Lemma 3.14. 如果 $p \Vdash \theta$, $q \leq p$, 那么 $q \Vdash \theta$

证明. $q \le p \Rightarrow$ 包含 q 的滤包含 p

引入力迫关系的目的是将 M 上的脱殊滤所包含的信息转换为 M 内部的信息

我们可以通过力迫 $\mathbb P$ 的组合性质来分析力迫扩张 M[G] 的一阶性质给定力迫公式 $\theta(\tau_1,\dots,\tau_n)$ 以及力迫 p,期望

- 1. 要么包含 p 的脱殊滤 G 都满足 $M[G] \Vdash \theta$, 即 $p \Vdash \theta$
- 2. 要么存在 q < p 使得包含 q 的脱殊滤 H 满足 $M[H] \models \neg \theta$, $q \Vdash \neg \theta$ 如果以上期望是真的,那么

$$D = \{ p \in \mathbb{P} \mid (p \Vdash \theta) \lor (p \Vdash \neg \theta) \}$$

是 ℙ的一个稠密子集(练习)

如果 $p \Vdash \theta$ 还在 M 中可定义,则 $D \in M$,于是 D 与 M 上每一个 \mathbb{P} -脱殊滤相交,设 $p \in G \cap D$,若 $p \Vdash \theta$,则 $M[G] \Vdash \theta$,于是 $M[G] \not\models \neg \theta$,于是 $p \not\Vdash \neg \theta$,因此 $p \Vdash \theta$

 $\mathbb{F} p \Vdash \theta \Leftrightarrow M[G] \vDash \theta$

以上分析表明,如果这两个条件成立,则

"M[G] ⊨ θ 可以由 $p \in G \cap D$ 来见证

而这两个条件由以下两个引理保证

Lemma 3.15 (真相引理). 设 M, \mathbb{P} 如上, $\theta(x_1, \dots, x_n)$ 是公式, $\tau_1, \dots, \tau_n \in M^{\mathbb{P}}$, $G \in M$ 上的脱殊滤,则

$$M[G] \vDash \theta(\tau_1, \dots, \tau_n) \Leftrightarrow \exists p \in G(p \Vdash \theta(\tau_1, \dots, \tau_n))$$

证明. ⇐: 定义

⇒: 揭示了具体力迫扩张与所有力迫之间的关系

对于给定的 θ ,某个具体的 $M[G] \models \theta$ 并不是巧合,是因为它包含了 p 这个决定性条件

Example 3.3. 设 M, \mathbb{P}, G 如上, $p_1, p_2 \in \mathbb{P}$,令 $\Gamma = \{(\tilde{p}, p) \mid p \in \mathbb{P}\}$ 令 为 $\hat{p}_1 \in \Gamma \land \hat{p}_2 \in \Gamma$,则

$$\begin{split} M[G] \vDash \theta \Leftrightarrow p_1 \in G \land p_2 \in G \\ \Leftrightarrow \exists p \in G (p \leq p_1 \land p \leq p_2) \end{split}$$

显然 $p \Vdash \theta$: 任何包含 p 的滤一定包含 p_1, p_2

Lemma 3.16 (可定义性引理). 设 $\varphi(x_1,\ldots,x_n)$ 是一个公式, M 是 ZFC 的可数传递模型,则如下集合 A_{\wp} 在模型 (M,\in) 中是免参数可定义的

 $A_{\varphi} = \{(p, \mathbb{P}, \leq, \mathbb{1}, \tau_1, \dots, \tau_n) \mid (\mathbb{P}, \leq, 1) \in MM \ \land p \in \mathbb{P} \land \tau_1, \dots, \tau_n \in M^{\mathbb{P}} \land p \Vdash_{\mathbb{P}, M} \varphi(\tau_1, \dots, \tau_n) \}$

但是一个问题是脱殊滤不一定在 M 里, M 说不了, 得换一种方式

Lemma 3.17 (内在力迫). 设 (\mathbb{P} , \leq , $\mathbb{1}$) 是一个力迫, $p \in \mathbb{P}$ 是一个力迫条件, $\tau_1, \tau_2 \in V^{\mathbb{P}}$,则

1.
$$p \Vdash^* \tau_1 = \tau_2$$
 当且仅当

$$\forall \sigma \in (\mathrm{dom}(\tau_1) \cup \mathrm{dom}(\tau_2)) \forall q \leq p[q \Vdash^* (\sigma \in \tau_1) \leftrightarrow q \Vdash^* (\sigma \in \tau_2)]$$

(递归定义要基于似集合的良序关系, rank)

2. $p \Vdash^* \tau_1 \in \tau_2$ 当且仅当

$$\{q \le p \mid \exists (\sigma, r) \in \tau_2 (q \le r \land q \Vdash^* (\sigma = \tau_1))\}$$

在 p 下稠密

3. 若 ϕ 是 $\tau_1 = \tau_2$ 或 $\tau_1 \in \tau_2$,则

$$p \Vdash^* \neg \phi \Leftrightarrow \neg (\exists q \le r(q \Vdash^* \phi))$$

以上关系是递归定义的," \Vdash *"对 **ZFC** 的传递模型绝对 $\exists q \leq p$ 事实上是一个受囿量词,因为

Lemma 3.18. 设 $\tau_1, \tau_2 \in \mathbf{V}^{\mathbb{P}}, \ \theta \ \not \exists \ \tau_1 \in \tau_2 \ \vec{\mathbf{x}} \ \tau_1 = \tau_2$

- 1. 如果 $p \Vdash^* \theta$ 且 $q \leq p$,则 $q \Vdash^* \theta$
- 2. $p \Vdash^* \theta$ 当且仅当 $\{q \leq p \mid q \Vdash^* \theta\}$ 在 p 下稠密

证明. 1. 定义

2. ⇒: 由 1

 \Leftarrow : 设 { $q ≤ p | q \Vdash^* \theta$ } 在 p 下稠密

 $若 \theta$ 是 $\tau_1 \in \tau_2$

$$\diamondsuit D_q = \{s \leq q \mid \exists (\sigma,r) \in \tau_2 (s \leq r \wedge s \Vdash^* \sigma = \tau_1)\}$$

于是条件等价于 $\{q \le p \mid D_q$ 在 q 下稠密 $\}$ 在 p 下稠密

显然 $q \leq p \Rightarrow D_q \subseteq D_p$,故以上条件推出 $\{q \leq p \mid D_p$ 在 q 下稠密} 在 p 下稠密

断言: D_p 在 p 下稠密

 $\forall r \leq p \exists q \leq p$ 使得 $(q \leq r \land D_p$ 在 q 稠密)于是 $\exists s \in D_p (s \leq q)$,于是 s < r

因此 $p \Vdash^* \tau_1 \in \tau_2$

若 θ 是 $\tau_1 = \tau_2$,且 $\{q \le p \mid q \Vdash^* \theta\}$ 在 p 下稠密,任取 $\sigma \in \text{dom}(\tau_1) \cup \text{dom}(\tau_2)$ 以及 $q \le p$

由稠密性,取 $r \leq q$ 使得 $r \Vdash^* \tau_1 = \tau_2$

由于 $q \Vdash^* \sigma \in \tau_1$, 于是 $r \Vdash^* \sigma \in \tau_1$

 $r \Vdash^* \tau_1 = \tau_2 \Rightarrow r \vDash^* \sigma \in \tau_1 \leftrightarrow r \Vdash^* \sigma \in \tau_2 \ (\, \mathfrak{F} \, \exists \,)$

注意到满足" $r \Vdash^* \sigma \in \tau_2$ "的 r 在 q 下稠密

Lemma 3.19. 设 θ 是 $\tau_1 = \tau_2$ 或 $\tau_1 \in \tau_2$, $p \in \mathbb{P}$, 则

$$p \Vdash^* \theta \Leftrightarrow \neg(\exists q \le p(q \Vdash^* \neg \theta))$$

证明. \Rightarrow 设 $p \Vdash^* \theta$ 且 $q \le p$,则 $q \Vdash^* \theta$ (由引理)

若存在r < p且 $r \Vdash^* \neg \theta$,则由定义 $\forall s < r(s \not \Vdash^* \theta)$,矛盾

 \Leftarrow : 即 $\forall q \leq p(q \Vdash^* \neg \theta)$, 由定义 $q \vdash^* \neg \theta$, 于是 $\exists r \leq q(r \vdash^* \theta)$

故 $\forall q \leq p \exists r \leq q (r \Vdash^* \theta)$, 因此 $\{r \leq p \mid r \Vdash^* \theta\}$ 在 p 下稠密,因此 $p \Vdash^* \theta$

Lemma 3.20 (原子公式的真相引理). 设 M 是 ZFC 的传递模型, $\sigma, \tau \in M^{\mathbb{P}}$, θ 为 $\sigma = \tau$ 或 $\sigma \in \tau$, G 为 M 上的 \mathbb{P} - 形殊滤, 则

- $1. \ \, \not\! E \ \, p \in G \ \, \mbox{且} \, \left(p \Vdash^* \theta \right)^M, \ \, \mbox{则} \, M[G] \Vdash \theta(\sigma_G, \tau_G)$
- 2. 若 $M[G] \vDash \theta$, 那么 $\exists p \in G(p \Vdash^* \theta)^M$

证明.对 rank 归纳证明(不怎么正确,应该是基于某个良序结构)

1. 固定 $p \in G$

(a) 若 $p \Vdash^* \sigma \in \tau$, 则

$$D_p = \{q \leq p \mid \exists (\pi,r) \in \tau (q \leq r \wedge q \Vdash^* \pi = \sigma)\}$$

在p下稠密且 $D_p \in M$

于是 $D_p\cap G\neq\emptyset$ (引理),令 $q\in D_p\cap G$,由归纳假设 $q\Vdash^*\pi=\sigma\Rightarrow M[G]\models\pi_G=\sigma_G$

由于 $r \geq q$,故 $r \in G \Rightarrow \pi_G \in \tau_G \Rightarrow M[G] \models \sigma_G \in \pi_G$

(b) 若 $p \Vdash^* (\sigma = \tau)$

由对称性,只需证明 $\sigma_G \subseteq \tau_G$

设 $\pi_G \in \sigma_G$,于是 $M[G] \models \pi \in \sigma$ 则存在 $r \in G$, $\pi \in M^{\mathbb{P}}$ 使得 $(\pi, r) \in \sigma$

由归纳假设 (2), 则 $\exists r \in G(r \Vdash^* \pi \in \sigma)$

由相容性,可以假设 $q \leq p, r$ 且 $q \Vdash^* \pi \in \sigma$,而 $q \Vdash^* \sigma = \tau$,因此 $q \Vdash^* (\pi \in \tau)$ (练习),应用 1.1 中归纳假设,于是 $M[G] \models \pi_G \in \tau_G$

- 2. 设 $M[G] \models \theta(\sigma_G, \tau_G)$
 - (a) θ 是 $\sigma \in \tau$

 $D_p = \{q \leq p \mid \exists (\pi,r) \in \tau (q \leq r \land q \Vdash^* \pi = \sigma)\}$

 $p \Vdash^* \sigma \in \tau$ 当且仅当 D_p 在 p 下稠密

 $M[G] \vDash \sigma_G \in \tau_G \Leftrightarrow \exists r \in G \exists \delta \in M^{\mathbb{P}}((\delta,r) \in \tau \wedge \delta_G = \sigma_G)$

由归纳假设, $\delta_G = \sigma_G \Rightarrow \exists p_1 \in G(p_1 \Vdash^* \delta = \sigma)$

取 $p \leq p_1, r$ 且 $p \in G$,则 $p \Vdash^* \delta = \sigma$,此时 $q \leq p \Rightarrow q \in D_p$,故 D_p 在 p 下稠密

- (b) 设 θ 是 $\sigma = \tau$ 且 $M[G] \models \sigma_G = \tau_G$,对 $p \in \mathbb{P}$ 定义 $p \in D$ 当且仅当以下条件之一成立
 - i. $p \Vdash^* \sigma = \tau$
 - ii. $\exists \delta \in \text{dom}(\sigma) \cup \text{dom}(\tau)(p \Vdash^* (\delta \in \sigma) \land p \Vdash^* (\delta \notin \tau))$
 - iii. $\exists \delta \in \mathrm{dom}(\sigma) \cup \mathrm{dom}(\tau) (p \Vdash^* (\delta \not\in \sigma) \land p \Vdash^* (\sigma \in \tau))$

断言 D 是稠密集(练习)

显然 $D \in M$, 故 $D \cap G \neq \emptyset$, 取 $p \in D \cap G$

假设 p 满足条件 2,令 δ 为证据,由归纳假设 $p \Vdash^* (\delta \in \sigma) \Rightarrow M[G] \models \delta_G \in \sigma_G = \tau_G$

而 $\sigma_G \in \tau_G \Rightarrow \exists G \in G(r \Vdash^* \delta \in \tau)$,取 $s \in G$ 使得 $s \leq r, p$,则 $s \Vdash^* \delta \in \tau$

而条件 $p \Vdash^* (\neg(\delta \in \tau)) \Rightarrow \forall s \leq p(s \not\Vdash^* \delta \in \tau)$,于是得到矛盾,故 p 不满足 2,同理也不满足 3

Lemma 3.21 (力迫原子公式的可定义性). 各记号如上, $p \Vdash \theta \Leftrightarrow (p \Vdash^* \theta)^M \Leftrightarrow p \Vdash^* \theta$

证明. ←是以上引理

⇒: 设 $p \Vdash \theta$ 且 $p \nVdash^* \theta$,由引理 9.3.9,则 $\exists q_0 \leq p(q_0 \Vdash^* \neg \theta)$,由定义, $\forall r \leq q_0 (r \nVdash^* \theta)$

 $p \Vdash \theta \Rightarrow \forall G(p \in G \Rightarrow M[G] \models \theta)$,令 G 为包含 q_0 的一个脱殊滤,则 $p \in G$,由于 θ 是原子公式,由原子公式的真相引理,

$$M[G] \Vdash \theta \Rightarrow \exists s \in G(s \Vdash^* \theta)$$

取 $r \leq q_0, s$ 且 $r \in G$,则 $r \Vdash^* \theta$,于是矛盾

Definition 3.22. 设 \mathbb{P} 是力迫, $p \in \mathbb{P}$, $\varphi(x_1, \dots, x_n)$ 为公式, $\tau_1, \dots, \tau_n \in \mathbf{V}^{\mathbb{P}}$,定义 $p \Vdash^* \varphi(\tau_1, \dots, \tau_n)$ 如下

- 1. 若 φ 为 $x_1 = x_2$ 一样
- 2. $x_1 \in x_2$ 一样
- 3. φ 是 $\psi_1 \wedge \psi_2$ 为

$$p \Vdash^* \varphi(\bar{\tau}) \Leftrightarrow p \Vdash^* \psi_1(\bar{\tau}) \overrightarrow{\otimes} p \Vdash^* (\bar{\tau})$$

Lemma 3.23. 设 $\theta(x_1,\dots,x_n)$ 是一个公式, $\tau_1,\dots,\tau_n\in \mathbf{V}^{\mathbb{P}}$, $p\in\mathbb{P}$ 则

- 1. $p \Vdash^* \theta$, 则 $\forall q \leq p \neq q \Vdash^* \theta$
- 2. $p \Vdash^* \theta$ 当且仅当 $\{q \leq p \mid q \Vdash^* \theta\}$ 在 p 下稠密
- 3. $p \Vdash^* \theta \Leftrightarrow \neg(\exists q \leq p(q \Vdash^* \neg \theta))$

证明. 1. 归纳,练习

- 2. ←: 复杂度归纳
 - (a) θ 是 $\phi \wedge \psi$, 定义 $E_{p,\theta} = \{q \leq p \mid q \Vdash^* \theta\}$ 在 p 下稠密,于是 $E_{p,\phi}$ 和 $E_{p,\psi}$ 在 p 下稠密
 - (b) ¬ ψ 由定义¬($\exists r \leq p(r \Vdash^* \psi)$),若 $\exists q_0 \leq p(q_0 \Vdash^* \psi)$ 由 $E_{p,\theta}$ 在 p 下稠密,存在 $r_0 \in E_{p,\theta}$ 使得 $r_0 \leq q_0$,即 $r_0 \Vdash^* \neg \psi$ 且 $r_0 \leq q_0$,取 $s \leq r_0 \leq q_0$,于是 $s \Vdash^* \psi$,矛盾
 - (c) θ 是 $\exists x \varphi(x)$ $q_0 \Vdash^* \theta$ 表明

$$F_{q_0} = \{r \leq q_0 \mid \exists \sigma \in \mathbf{V}^{\mathbb{P}}(r \Vdash^* \varphi(\sigma))\}$$

在 q_0 下稠密,取 $r_0 \in F_{q_0}$,则 $r_0 \leq q_0 \leq s_0$,故 $\{r \leq p \mid \exists \sigma \in \mathbf{V}^{\mathbb{P}}(r \Vdash^* \varphi(\sigma))\}$ 在 \mathbb{P} 下稠密

注意内在力迫是绝对的

Theorem 3.24 (力迫定理). \mathbb{P} , G, ψ 是 $\mathcal{L}_{M\mathbb{P}}$ -句子

- 1. $\forall P \in G, P \Vdash \psi \Rightarrow M[G] \vDash \psi$
- 2. $M[G] \Vdash \psi \Rightarrow \exists p \in G(p \Vdash \psi)$
- 3. " $p \vdash \psi(\tau_1, \dots, \tau_n)$ " 是 M 中可定义的,即 $\exists \varphi^M(x_1, \dots, x_n, y)$ 使得 $p \Vdash \psi(\tau_1, \dots, \tau_n) \Leftrightarrow \varphi^M \tau_1, \dots, \tau_n, p$

(要考)

102

3.4 M[G] 中的 ZFC

GOAL: 若 M 是 ZFC 的可数传递模型,则脱殊扩张 M[G] 也是 ZFC 的模型

1. 存在公理: *M*[*G*] 非空

2. 外延公理: M[G] 传递

3. 对集公理: 设 $\sigma_G, \pi_G \in M[G]$, 令 $\delta = \{(\sigma, \mathbb{1}), (\pi, \mathbb{1})\}$, 则 $\delta_G = \{\sigma_G, \pi_G\}$

4. 并集公理: 设 $\sigma \in M^{\mathbb{P}}$, 令

$$\delta = \{(\eta, p) \mid \exists (\pi, q) \in \sigma \exists r ((\eta, r) \in \pi \land p \le r, q)\}$$

断言: $\delta_G = \bigcup \sigma_G$: 设 $(\eta, p) \in \delta$ 使得 $\eta_G \in \delta_G$, 则 $p \in G$, 以上定义 $q, r \in G, \eta_G \in \pi_G \in \sigma_G$, 故 $\delta_G \subset \bigcup \sigma_G$

设 $(\pi,q) \in \sigma$ 且 $q \in G$,即 $\pi_G \in \sigma_G$,设 $(\eta,r) \in \pi$ 且 $r \in G$,由相容性,有 $p \in G$ 使得 $p \le r,q$,由定义, $(\eta,p) \in \delta$,故 $\eta_G \in \delta_G$

5. 基础公理:显然

6. 无穷公理: $\omega \in M \Rightarrow \omega \in M[G]$

7. 分离公理

不失一般性,设 $\psi=\psi(x,y),\ \sigma,\tau\in M^{\mathbb{P}},$ 证明 $X=\{a\in\sigma_G\mid\psi(a,\tau_G)^{M[G]}\}$ 属于 M[G]

 $\diamondsuit \ \rho = \{(\pi, p) \in \mathsf{dom}(\sigma) \times \mathbb{P} \mid p \Vdash (\pi \in \sigma \land \psi(\pi, \tau))\}$

由于 " \Vdash " 在 M 中可定义,故 $\rho \in M \cap \mathbf{V}^{\mathbb{P}} = M^{\mathbb{P}}$

断言: $X = \rho_G$

 \subseteq : 设 $a \in X$,则 $\exists p \in G, \pi \in dom(\sigma)$ 使得

$$(\pi,p)\in\sigma, \pi_G=a, M[G]\vDash\psi(\pi,\tau)$$

由力迫定理, $\exists q \in G(q \Vdash \psi(\pi, \tau))$,由相容性,取 $r \in G$ 使得 $r \leq p, q$,于是 $r \Vdash \psi(\pi, \tau)$

由于 $(\pi,p) \in \sigma$ 且 $r \leq p$,有 $r \Vdash \pi \in \sigma$,因此 $(\pi,r) \in \rho$, $a = \pi_G \in \rho_G$ \supseteq : 设 $b \in \rho_G$,则存在 $(\pi,p) \in \operatorname{dom}(\sigma) \times G$ 使得 $b = \pi_G$,且 $p \Vdash (\pi \in \sigma \land \psi(\pi,\tau))$ 由力迫定理, $p \in G \Rightarrow M[G] \Vdash \pi \in \sigma \land \psi(\pi,\tau)$,于是 $b = \pi_G \in X$, $\rho_G \subseteq X$

8. 幂集公理,即

$$X \in M[G] \Rightarrow \mathcal{P}^{M[G]}(X) = \mathcal{P}(X) \cap M[G] \in M[G]$$

由分离定理,只需证明

$$\exists Y \in M[G](\mathcal{P}(X) \cap M[G] \subseteq Y)$$

设 $X = \sigma_G$,其中 $\sigma \in M^{\mathbb{P}}$

$$\diamondsuit S = \mathcal{P}^M(\mathsf{dom}(\sigma) \times \mathbb{P}) \in M^{\mathbb{P}}, \ \mathbb{H} \ S = \{\delta \in \mathbb{M}^{\mathbb{P}} \mid \mathsf{dom}(\delta) \subseteq \mathsf{dom}(\sigma)\}$$

断言:
$$\diamondsuit P = S \times \{1\} \mathcal{P}(\sigma_G) \cap M[G] \subseteq S_G$$

$$\pi_G \subseteq \sigma_G \Rightarrow \forall (\eta,p) \in \pi(p \in G \to \exists q^\eta \in G \exists \epsilon^\eta(\epsilon^\eta,q^\eta) \in G \land \eta_G = \epsilon_G^\eta)$$

取 $(\eta, p) \in \pi$ 且 $p \in G$, 令 $(\epsilon^{\eta}, q^{\eta}) \in \sigma$ 满足 $q^{\eta} \in G$ 且 $q^{\eta} \in G$ 且 $\eta_G = \epsilon_G^{\eta}$, 令 $\delta = \{(\epsilon^{\eta}, q^{\eta}) \mid \exists p \in G((\eta, p) \in \pi)\}$ 显然 $\operatorname{dom}(\delta) \subseteq \sigma$ 且

$$\delta_G = \{\epsilon_G^{\eta} \mid \exists p \in G((\eta, p) \in \pi)\} = \{\eta_G \mid \exists p \in G((\eta, p) \in \pi)\} = \pi_{\sigma}$$

故 $\pi_G \in S_G$,但是这个证明是错的,因为 δ 是用 M[G] 的选择函数做 出来的

$$\diamondsuit \ \delta = \{(\epsilon,q) \mid \epsilon \in \mathsf{dom}(\sigma) \land q \Vdash \epsilon \in \pi\}$$

断言: $\pi_G = \delta_G$

任取 $(\eta, p) \in \pi$ 且 $p \in G$,由以上分析,存在 $(\epsilon^{\eta}, q^{\eta}) \in \sigma$ 且 $\epsilon_{G}^{\eta} = \eta_{G}$, $q \in G$ 由力迫定理, $\exists r \in G(r \Vdash \epsilon^{\eta} = \eta)$

取 $q \in G$ 使得 $q \le p, r$, 则 $q \Vdash \eta \in \pi$ 且 $q \Vdash \epsilon^{\eta} = \eta$, 因此 $q \Vdash \epsilon^{\eta} \in \pi$ 即 $(\epsilon^{\eta}, q) \in \delta$ 且 $q \in G$, 故 $\epsilon^{\eta}_{G} \in \delta_{G}$, 因此 $\pi_{G} \subseteq \delta_{G}$

设 $(\epsilon,p)\in\delta$ 且 $p\in G$, 则由定义 $p\Vdash\epsilon\in\pi$, 由力迫定理, $M[G]\Vdash\epsilon\in\pi$, 即 $\epsilon_G\in\pi_G$, 故 $\delta_G\subseteq\pi_G$

9. 替换公理

设 $\sigma \in M^{\mathbb{P}}$, $\psi(x,y)$ 是一个公式且

$$M[G] \vDash \forall x \in \sigma \exists ! y \psi(x, y)$$

我们要证明存在 $\rho \in M^{\mathbb{P}}$ 使得

$$M[G] \vDash \forall x \in \sigma \exists y \in \rho \psi(x, y)$$

下面是一个错误的证明:固定 σ 定义 ρ 为

$$\rho = \{(\sigma, p) \mid \exists x \in \sigma(p \Vdash \psi(x, \delta))\} \subseteq M, \in V^{\mathbb{P}}$$

但这不能推出 $\rho \in M^{\mathbb{P}}$

断言 ρ 满足要求

任取 $\eta \in \sigma$, 则存在 $\epsilon \in M^{\mathbb{P}}$ 使得 $M[G] \models \psi(\eta, q)$, 令 $r \in G$ 使得 $r \Vdash \psi(\eta, q)$

" $p \Vdash \psi(\eta, \epsilon)$ "被公式 $\varphi^M(p, \eta, \epsilon)$ 定义,把 M 看作 V 由反映定理,存在 $\alpha \in o(M)$ 使得

- $\bullet \ V_{\alpha}^{M}\ni \sigma, \mathbb{P}$
- $\exists z \varphi^M(x, y, z)$ 关于 V_α^M 绝对 即, $\forall p, \eta \in V_\alpha^M(\exists (p \Vdash \psi(\eta, z) \to \exists z \in V_\alpha^M(p \Vdash \psi(\eta, z))))$

定义

$$\rho = \{(\delta, p) \mid \delta \in M^{\mathbb{P}} \cap V^{M}_{\alpha}, p \in \mathbb{P}, \exists x \in \sigma(p \Vdash \psi(x, \sigma))\}$$

断言 ρ 满足要求设 $\eta \in \sigma$,则 $\exists \delta \in M^{\mathbb{P}}$ 使得 $M[G] \vDash \psi(\eta, \delta)$,由力迫定理, $\exists p \in G(p \Vdash \psi(\eta, \delta)) \ p \Vdash \psi(\eta, \delta) \Rightarrow \exists \epsilon \in V_{\alpha}^{M} \cap M^{\mathbb{P}}(p \Vdash \psi(\eta, \epsilon))$ (反映定理)

故 $(\epsilon, p) \in \rho, p \in G, \epsilon_G \in \rho_G$,而 $p \Vdash \psi(\eta, \epsilon)$,于是 $M[G] \models \psi(\eta_G, \epsilon_G)$ 以上证明表明,在 **ZF** 中

$$\forall x \in A \exists y \psi(x, y) \to \exists B \forall x \in A \exists y \in B \psi(x, y)$$

10. 选择公理:验证以下公理

$$\forall x \exists \alpha \in \mathsf{On} \, \exists f (f \boxtimes \mathfrak{Z} \wedge \mathsf{dom}(f) = \alpha \wedge x \subseteq \mathsf{ran}(f))$$

这样 x 就被良序化了

目标: 任取 $\sigma \in M^{\mathbb{P}}$,找到一个 $\alpha \in o(M)$ 与 $f \in M^{\mathbb{P}}$ 使得 f_G 是函数且 $\mathrm{dom}(f_G) = \alpha$ 且 $\sigma_G \subseteq \mathrm{ran}(f_G)$

利用 M 战偶归纳的选择公理, $\exists \alpha \in o(M)$ 使得

$$dom(\sigma) = \{\pi_{\gamma} \mid \gamma < \alpha\}$$

即 $\gamma \mapsto \pi_{\gamma} \stackrel{\cdot}{=} \alpha$ 到 $dom(\sigma)$ 的双射

断言:M 中的可定义函数 $pair:M^{\mathbb{P}}\times M^{\mathbb{P}}\to M^{\mathbb{P}}$ 使得 $(pair(x,y))_G=(x_G,y_G)$,练习

$$\diamondsuit S = \{ pair(\hat{\gamma}, \pi_{\gamma}) \mid \gamma < \alpha \} \subseteq M^{\mathbb{P}}$$

起
$$au_G = \{(\hat{\gamma}_G, \pi_{\gamma G}) \mid \gamma < \alpha\} = \{(\gamma, \pi_{\gamma G}) \mid \gamma < \alpha\}$$
 是一个函数

$$\mathrm{dom}(\tau_G) = \alpha \mathrel{\not\sqsubseteq} \mathrm{ran}(\tau_G) \supseteq \sigma_G$$

Theorem 3.25. 设 M 是 ZFC 的可数模型, $\mathbb{P} \in M$ 为偏序, G 是 M 上的 \mathbb{P} -脱殊滤,则

- 1. M[G] 是包含 $M \cup \{G\}$ 的最小的 ZFC 模型
- 2. o(M) = o(M[G])

Corollary 3.26. $Con(ZFC) \rightarrow Con(ZFC \vdash V \neq L)$

证明. M 是 ZFC 的可数传递模型,P 是 M 的无原子力迫,G 是 M 上的 \mathbb{P} -脱殊滤,由于 o(M)=o(M[G]),故 $\mathbf{L}^M=L_{o(M)}=L_{o(M[G])}=\mathbf{L}^{M[G]}\subseteq M$ 故 $\mathbf{L}^{M[G]}\neq M[G]\Rightarrow M[G]\models \mathbf{L}\neq \mathbf{V}$

3.5 ZFC 的相对独立性

Definition 3.27. 定义力迫 $\mathbb{P} = \operatorname{Func}(I, J)$ 为

$$\operatorname{Func}(I,J) = \{p \mid |p| < \omega \land p$$
函数 $\land \operatorname{dom}(p) \subseteq I \land \operatorname{ran}(p) \subseteq J\}$

$$\diamondsuit$$
 ($\mathbb{P}, \leq, \mathbb{1}$) = (Func(I, J), \supseteq, \emptyset)

Lemma 3.28. 如果 $I, J \in M$, I 无穷且 J 非空, G 是 M 上的 Func(I, J) 脱殊滤,则[]G 是 I 到 J 的满射

Example 3.4. 设 $\kappa \in M$ 且 $M \models "\kappa$ 是不可数基数",设 G 是 Func (ω, κ) 脱殊 滤,令 $f_G = \bigcup G \in M[G]$,则 f_G 是 ω 到 κ 的满射,则 $M[G] \models "\kappa$ 可数",事 实上, κ 在 M[G] 中不再是基数(但仍是序数),这是因为 M[G] 中的可数基数只有 ω ,故 $\kappa = \omega$,则 $M \models "\kappa$ 可数"

Lemma 3.29. 如果 $\alpha \in o(M)$, G 是 $Func(\alpha \times \omega, 2)$ -脱殊滤,则

$$(2^{\omega} \geq |\alpha|)^{M[G]}$$

证明. 令 $f_G = \bigcup G : \alpha \times \omega \to 2$,固定 $\beta < \alpha$,则 $f_G(\beta, -)$ 是 ω 到 2 的函数,故 f_G 可以视作一个 α -序列 $(f_\beta \mid \beta < \alpha)$, $f_\beta = f_G(\beta, -)$, $(f_\beta \mid \beta < \alpha) \in M[G]$, $\forall a < b < \alpha$, 定义

$$E^a_b = \{p \in \mathbb{P} \mid \exists n \in \omega(\{(a,n),(b,n)\} \subseteq \mathrm{dom}(p) \wedge p(a,n) \neq p(b,n))\}$$

则 $\forall a < b < \alpha, E_b^a$ 在 \mathbb{P} 中稠密

若 $p \in G \cap E_b^a$, 则 $\exists n < \omega(p(a,n) \neq p(b,n))$, $p \subseteq f_G \Rightarrow p(a,-) \subseteq f_a$ 且 $p(b,-) \subseteq f_b$, 故 $f_a \neq f_b$, 故 $\beta \to f_\beta$ 是 α 到 2^ω 的一一映射

Remark. 取 $\alpha \in M$ 为 ω_2^M ,若 $\omega_2^M = \omega_2^{M[G]}$,则以上引理表明 $M[G] \models 2^\omega > \omega_2$,故下一步的关键是保证 $\omega_2^M = \omega_2^{M[G]}$

Definition 3.30. 设 \mathbb{P} 是偏序, $D \subseteq \mathbb{P}$,若

$$\forall x, y \in D(x \neq y \rightarrow x \perp y)$$

就称 D 是 \mathbb{P} 的 **反链**,若 \mathbb{P} 的任意反链可数,则称 \mathbb{P} 有可数反链性质,记作 c.c.c.(countable chain condition)

Lemma 3.31 (Δ -系统引理). 如果 A 是有穷集合族,且 $|A| > \omega$,则存在不可数的 $A_0 \subseteq A$ 以及有穷集合 R 使得

$$\forall X, Y \in \mathcal{A}(X \cap Y = R)$$

称有这样性质的集合族 A_0 称为 Δ -系统, R 称为 A_0 的根

证明. 令 $\mathcal{B}_n = \{x \in \mathcal{A} \mid |x| = n\}$,则 $\mathcal{A} = \bigcup_{n \in \omega} \mathcal{B}_n$,故存在 $n \in \omega$ 使得 \mathcal{B}_n 不可数,不失一般性,假设 $\mathcal{A} = \mathcal{B}_n$,对 n 归纳证明

n=1 时, $\mathcal{A}_0=\mathcal{A}$,根为 0

n+1 两种可能性

- 1. 存在 y 使得 $\mathcal{A}_{y} = \{X \in \mathcal{A} \mid y \in X\}$ 不可数 令 $\mathcal{B} = \{X \setminus \{y\} \mid X \in \mathcal{A}_{y}\}$,由归纳假设, \mathcal{B} 有 Δ -系统 \mathcal{B}_{0} ,其根为 R_{0} ,则 $\mathcal{A}_{0} = \{Y \cup \{y\} \mid Y \in \mathcal{B}_{0}\}$ 为 \mathcal{A} 的 Δ 系统,其根为 $R = R_{0} \cup \{y\}$
- 2. $\forall y \in \bigcup \mathcal{A}$, $\mathcal{A}_y = \{x \in \mathcal{A} \mid y \in X\}$ 均可数,对每个 $X \in \mathcal{A}$, $\{Y \in \mathcal{A} \mid Y \cap X \neq \emptyset\}$ 可数,设 $\mathcal{A} = \{X_\alpha \mid \alpha < \omega_1\}$,对每个 $\alpha < \omega_1$,有 $D_\alpha = \{Y \in \mathcal{A} \mid \exists \beta < \alpha(Y \cap X_\beta \neq \emptyset)\}$ 可数 令 $Y_0 = X_0$,则存在 $Y_1 = X_\alpha$ 与 Y_0 不相交,因为 ω_1 正则,因此对每个 α 都可找到 β 使得 $\{Y_i \mid i < \alpha\} \subseteq \{X_j \mid j < \beta\}$,而 D_β 可数,取最小的 δ 使得 $X_\delta \in \mathcal{A} \setminus D_\beta$,令 $Y_\alpha = X_\delta$,则 $\{Y_i : i < \alpha\}$ 也不相交

Lemma 3.32. 若 J 可数,则 Func(I,J) 有 c.c.c.

证明. 若 $I = \emptyset$ 或 $J = \emptyset$, 则 Func $(I, J) = \emptyset$, 显然有 c.c.c.

若 Func(I, J) 可数,显然也有

假设 Func(I, J) 不可数, (I 不可数)

设 $X \subseteq \text{Func}(I, J)$ 不可数,我们要找到相容的 $p, q \in X$

 $\diamondsuit \mathcal{A} = \{ \mathsf{dom}(p) \mid p \in X \}$

断言: A 不可数

这是因为 $X \subseteq \operatorname{Func}(A,J)$,若 A,J 均可数,则 $\operatorname{Func}(A,J)$ 可数

不妨假设 \mathcal{A} 是一个 Δ -系统,根为 R,注意到定义域不交的函数总是相容的,因此 R 非空

 $p \perp q \Leftrightarrow p \upharpoonright R \neq q \upharpoonright R$, 令 J^R 是所有 R 到 J 的函数,则 $p \mapsto p \upharpoonright R$ 是 X 到 J^R 的单射,故 $|X| \leq |J^R|$,但 J^R 可数,X 不可数

Lemma 3.33. 设 $\mathbb{P} \in M$ 且 (\mathbb{P} 有 c.c.c.) M , $G \not\in M$ 上的 \mathbb{P} -脱殊滤,令 $A, B \in M$, $(f:A \to B) \in M[G]$,则存在 M 中的映射 $F:A \to \mathcal{P}(B)$ 使得

$$\forall a \in A (f(a) \in F(a) \land \forall a \in A ((|F(a)| \leq \omega))^M)$$

证明. 令 $\tau \in M^{\mathbb{P}}$ 是 $f \in M[G]$ 的名字, $M[G] \models (\tau : \hat{A} \to \hat{B})$,由力迫定理, $\exists p \in G(p \Vdash (\tau : \hat{A} \to \hat{B})), \text{ 对每个 } a \in A, \text{ 定义}$

$$F(a) = \{ b \in B \mid \exists q \le p(q \Vdash \tau(\hat{a}) = \hat{b}) \}$$

对每个 $a \in A$, 定义

$$F(a) = \{ b \in B \mid \exists q \le p(q \Vdash \tau(\hat{a}) = \hat{b}) \}$$

由力迫定理,F 在 M 中可定义, $F \in M$, $M[G] \models \forall a \in A \exists b \in B(b = f(a))$ 任 取 $a \in A$, $\exists b \in B \exists r \in G$ 使得 $r \Vdash \hat{b} = \tau(\hat{a})$

取 $q \in G$ 使得 $q \le r, p$,则 $q \Vdash \tau(\hat{a}) = \hat{b} \land \tau$ 函数,故 $b = f(a) \in F(a)$ 下面验证 $M \vDash |F(a)| < \omega$

由选择公理,存在 $Q: F(a) \to \mathbb{P}, b \mapsto Q(b)$ 满足 $Q(b) \le p$ 且 $Q(b) \Vdash \hat{b} = \tau(\hat{a})$

显然 $Q(b) \Vdash (\tau : \hat{A} \to \hat{B})$

若 $b_1, b_2 \in F(a)$ 使得 $Q(b_1), Q(b_2)$ 相容,则存在滤 $G \ni Q(b_1), Q(b_2)$,

 $Q(b_i) \Vdash \hat{b}_i = \tau(\hat{a}) \Rightarrow M[G] \vDash \tau_G$ 是函数 $\land \tau_G(a) = b_1 \land \tau_G(a) = b_2$,故 $b_1 \neq b_2 \Rightarrow Q(b_1) \bot Q(b_2)$,即 Q 的像是 $\mathbb P$ 中反链,故 F(a) 可数

Definition 3.34. 称 $\mathbb{P} \in M$ 是 **保持基数**的当且仅当对任意 *P*-脱殊滤 G 有 $\forall \beta \in o(M((\beta \overline{\mathtt{A}} \underline{\mathtt{W}})^M \leftrightarrow (\beta \overline{\mathtt{A}} \underline{\mathtt{A}} \underline{\mathtt{W}})^{M[G]}))$

保持共尾是它们的共尾一样

Lemma 3.35. 令 $\mathbb{P} \in M$, $G \neq M$ 上的 \mathbb{P} -脱殊滤

1. $(\kappa$ 正则) $^{M} \rightarrow \forall G((\kappa$ 正则) $^{M[G]})$, 则 \mathbb{P} 保持共尾

Lemma 3.36. 若 $\mathbb{P} \in M$ 且 $(\mathbb{P}$ 有可数反链 $)^M$,则 \mathbb{P} 保持基数

Theorem 3.37. $Con(ZFC) \rightarrow Con(ZFC + \neg CH)$

证明. 令 $\mathbb{P} = \operatorname{Func}((\omega_2)^M \times \omega, 2)$,则 \mathbb{P} 有可数反链性质,故而保持序数,故 $(\omega_2)^M = (\omega_2)^{M[G]}$,故 $M[G] \models 2^\omega \geq \omega_2 > \omega_1$

3.6 练习

Exercise 3.6.1. 令 $M \models \mathsf{ZFC}$ 是可数传递模型, $I, J \in M$, 令 $\mathsf{Func}_{\omega}(I, J) = \{p \mid p \not \in I \ \exists \ J \ \text{的部分函数} \land |p| < \omega\}$,则它无原子,令 $\mathbb{P} = (\mathsf{Func}(I, J), \supseteq, \emptyset)$,由于 $I, J \in M$,故 $\mathbb{P} \in M$

证明. 对于任何 $n\in\omega$,令 $\mathrm{Func}_n(I,J)=\{p\mid p$ 是 I 到 J 的部分函数 $\land |p|< n\}$,下面证明 $\mathrm{Func}_n(I,J)\in M$

n=0 显然

 $\operatorname{Func}_{n+1}(I,J) = \{p \cup \{(a,b) \subseteq I \times J\} \mid p \in \operatorname{Func}_n(I,J) \wedge a \notin \operatorname{dom}(p) \wedge a \in I \wedge b \in J\}, \ \, 因此 \operatorname{Func}_{n+1}(I,J) \in M \qquad \qquad \square$

Exercise 3.6.2. $\forall x(\hat{x})_G = x$

证明. $\hat{\emptyset}_G = \emptyset$

假设对于所有 $y \in x$,都有 $(\hat{y})_G = y$,则 $(\hat{x})_G = (\{(\hat{y}, \mathbb{1}) \mid y \in x\})_G = \{(\hat{y})_G \mid y \in x\} = \{y \mid y \in x\} = x$