Tipos compleios

seq < T >: secuencia de tipo T

crear	$ \hspace{.1cm} \langle \rangle, \hspace{.1cm} \langle x,y,z \rangle$
tamaño	s , length(s)
pertenece	$i \in s$
ver posición	s[i]
cabeza	head(s)
cola	tail(s)
concatenar	concat(s1, s2), s1 + s2
subsecuencia	subseq(s, i, j), s[ij]
setear posición	setAt(s, i, val)

$\operatorname{conj} < T >: \operatorname{conjunto} \operatorname{de} \operatorname{tipo} \operatorname{T}$

crear	$\mid \{\}, \{x, y, z\}$
tamaño	c , length(c)
pertenece	$i \in c$
unión	$c1 \cup c2$
intersección	$c1 \cap c2$
diferencia	c1-c2

dict < K, V >: diccionario que asocia claves de tipo K con valores de tipo V

crear	{}, {"juan" : 20, "diego" : 10}
tamaño	d , length(d)
pertenece (hay clave)	$k \in d$
valor	$ \mathrm{d}[\mathrm{k}] $
setear valor	setKey(d, k, v)
eliminar valor	delKey(d, k)

tupla<T1, ..., Tn>: tupla de tipos T1, ..., Tn

crear	$ \langle x,y,z angle$
campo	s[i]

struct<campo1: T1, ..., campon: Tn>: tupla con nombres para los campos.

crear	$\langle x:20,y:10\rangle$
campo	s_x, s_y

Precondición más débil (wp)

La precondición más débil es la condición mínima necesaria antes de ejecutar una sentencia para garantizar que una postcondición dada se cumpla.

Lógica de Hoare

Una forma de razonar sobre la corrección de programas es a través de las triples de Hoare $\{P\}C\{Q\}$. El objetivo es obtener una fórmula lógica α tal que α es verdadera si y solo si $\{P\}C\{Q\}$ es verdadero.

Predicado def(E): Definición. Dada una expresión E, llamamos def(E) a las condiciones necesarias para que E esté definida.

 $\textbf{Predicado} \ Q_E^x \textbf{:} \quad \text{Definición. Dado un predicado} \ Q, \ \text{el predicado} \ Q_E^x \ \text{se obtiene reemplazando}...$

Axiomas WP

- Axioma 1. $\operatorname{wp}(x := E, Q) \equiv \operatorname{def}(E) \wedge Q_E^x$
- **Axioma 2.** $\operatorname{wp}(\operatorname{skip}, Q) \equiv Q$.
- **Axioma 3.** $wp(S1; S2, Q) \equiv wp(S1, wp(S2, Q)).$
- Axioma 4. Si S = if B then S1 else S2 endif, entonces

$$wp(S,Q) \equiv def(B) \wedge_L ((B \wedge wp(S1,Q)) \vee (\neg B \wedge wp(S2,Q)))$$

■ Axioma 5. wp(while B do S endwhile, Q) $\equiv (\exists_{i\geq 0})(H_i(Q))$ no podemos usar mecanicamente el Axioma 5 para demostrar la corrección de un ciclo con una cantidad no acotada a priori de iteraciones

Propiedades:

- Monotonía: Si Q implica R, entonces wp(S,Q) implica wp(S,R).
- Distributividad: $wp(S, Q \land R)$ equivale a $wp(S, Q) \land wp(S, R)$.
- \blacksquare Excluded Miracle: wp(S, false) equivale a false.

Invariante de un ciclo

Definición. Un predicado I es un invariante de un ciclo si:

- 1. I vale antes de comenzar el ciclo, y
- 2. Si vale $I \wedge B$ al comenzar una iteración arbitraria, entonces sigue valiendo I al finalizar la ejecución del cuerpo del ciclo.

Un invariante describe un estado que se satisface cada vez que comienza la ejecución del cuerpo de un ciclo y también se cumple cuando la ejecución del cuerpo del ciclo concluye.

Teorema del Invariante. Si existe un predicado I tal que:

- 1. $P_C \Rightarrow I$,
- $2. \ \{I \wedge B\}S\{I\} \iff (I \wedge B) \implies wp(S,I)$
- 3. $I \wedge \neg B \Rightarrow Q_C$,

entonces $\{P_C\}$ while B do S endwhile $\{Q_C\}$ es válida.

Función variante

La función variante representa una cantidad que se va reduciendo

- Si existe una función variante f_v tal que:
 - 1. $\{I \wedge B \wedge f_v = v_0\} S\{f_v < v_0\} \iff (I \wedge B \wedge f_v = v_0) \implies wp(S, f_v < v_0)$
 - 2. Si $I \wedge f_v \leq 0$ implica $\neg B$

Correctitud de un Programa Completo

Para demostrar la correctitud de un programa completo utilizando la lógica de Hoare, seguimos estos pasos:

- 1. Código antes del ciclo: Debemos demostrar que las precondiciones implican la precondición más débil del código previo al ciclo, es decir, $Pre \Rightarrow \text{wp}(C\acute{o}digo_previo, P_c)$
- 2. Correctitud del ciclo: Utilizamos el teorema del invariante, ya que no podemos calcular la precondición más débil del ciclo en general. El teorema del invariante se expresa de la siguiente manera:
 - a) $P_c \Rightarrow I$
 - b) $(I \wedge B) \Rightarrow \text{wp}(Ciclo, I)$
 - $(I \land \neg B) \Rightarrow Q_C$
- 3. Código posterior al ciclo: Comprobamos que las postcondiciones del ciclo implican la precondición más débil del código posterior al ciclo, es decir,
 - $Q_c \Rightarrow \text{wp}(C\acute{o}digo_posterior, Post)$
- 4. Conclusión: Si probamos estas tres cosas, podemos concluir, por corolario de monotonía, que el programa completo es correcto con respecto a la especificación:

$$Pre \Rightarrow \text{wp}(Programa_completo, Post)$$

Especificación y Relaciones de Fuerza

Especificación:

La especificación define qué es lo que debe hacer un algoritmo, en términos de relación entre sus entradas y sus salidas, sin determinar cómo lo hace. Las relaciones de fuerza entre especificaciones son importantes para entender cuán restrictiva o general es una especificación con respecto a otra.

Subespecificación:

Implica otorgar una precondición más restrictiva o una postcondición más débil que lo deducido del enunciado del problema. Una precondición más restrictiva excluye casos de entrada posibles. Una postcondición más débil permite soluciones no deseadas.

Sobreespecificación:

Consiste en proporcionar una postcondición más restrictiva o una precondición más débil que lo necesario. Una precondición más débil obliga al algoritmo a considerar casos innecesarios. Una postcondición más restrictiva limita las posibles soluciones.

Relaciones de Fuerza:

Decimos que A es más fuerte que B cuando $A \to B$ es una tautología. También podemos afirmar que A fuerza a B o que B es más débil que A. **Ejemplos:**

- $p \wedge q$ es más fuerte que p.
- $p \lor q$ no es más fuerte que p.
- p es más fuerte que $p \to q$.
- p no es más fuerte que q.
- False es la fórmula más fuerte de todas.
- True es la fórmula más débil de todas.