LAST WEEK

• Minkowski distance
$$\int \frac{1}{f_0} + f_w + f_w$$

$$X = (1,2)$$

$$X_{1} = (4,3)$$

$$X_{2} = (4,3)$$

$$X_{3} = (4,3)$$

$$X_{4} = (4,3)$$

$$X_{1} = (4,3)$$

$$X_{1} = (4,3)$$

$$X_{2} = (4,3)$$

$$X_{3} = (4,3)$$

$$X_{4} = (4,3)$$

$$X_{4} = (4,3)$$

$$X_{5} = (4,3)$$

$$= \left((4-1)^2 + (3-1)^2 \right)^{\frac{1}{2}}$$

$$M = ($$

$$\mathcal{M} = ($$

- Cosine similarity
- Correlation measures

Au	4	W	` -	 TT	L
	\dashv		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	74	\},PP
igolse			T		
'				•	

ASSOCIATION RULE MINING

BEIYU LIN

ASSOCIATION RULE MINING

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items

Market transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
\{Beer\} \rightarrow \{Eggs\},\
\{Milk, Bread\} \rightarrow \{Diaper, Beer\},\
```

REVIEW: SET AND SUBSET

- {a, b, c, d} ⇔ a set (there are one or more than one items)
- Subset ⇔ possible combinations of the items in a set
 - Possible sets:
 - {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}, {b, c, d}, {c, d}, {c,
 - What is the total number of the subset:

$$2^{+} = 2^{+} + 1000$$

$$2^{+} = 2^{+} + 1000$$

$$- C_{4}^{0} + C_{4$$

3) 21 ten
$$\binom{2}{4} = \frac{4!}{2!2!} = \frac{2132!}{21821}$$

(3) 3 item
$$C_4^3 = 4$$

ASSOCIATION RULE MINING

- Itemset (set / subset) : octor X
 - A collection of one or more items
 - Example: {Milk, Bread, Diaper}
 - k-itemset
 - An itemset that contains k items
- **Support count (σ)**
 - Frequency of occurrence of an itemset 7 3 - itemset

■ E.g. σ({Milk, Bread, Diapet}) = 2 item set us a subject in dataset

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

> min 6

Fraction of transactions that contain an itemset E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Frequent Itemset

An itemset whose support is greater than or equal to a minsup threshold

DEFINITION: ASSOCIATION RULE

- Association Rule
 An implication expression of the form X
 - An implication expression of the form X → Y,
 where X and Y are itemsets
 - Example:
 {Milk, Diaper} → {Beer}

 × z-itemux

 | T-itemset|

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Rule Evaluation Metrics
 - Support (s) = $\{M, D, B\}$
 - Fraction of transactions that contain both X and Y
 - Confidence (c)

Example:

$$\{\text{Milk}, \text{Diaper}\} \Rightarrow \{\text{Beer}\}$$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$
 =# of itemset / total # transaction

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$
 = # of itemset of Xand Y/ # of

ASSOCIATION RULE MINING TASK

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support $\geq minsup$ threshold f
 - confidence ≥ minconf threshold

- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally expensive / prohibitive!

TID	Item s
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

 ${a,b,c,d} \rightarrow # of subset:$

COMPUTATIONAL COMPLEXITY

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[\begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If
$$d=6$$
, $R=602$ rules

MINING ASSOCIATION RULES

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

$$\{Milk, Diaper\} \rightarrow \{Beer\} (s=0.4, c=0.67)$$

 $\{Milk, Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0)$
 $\{Diaper, Beer\} \rightarrow \{Milk\} (s=0.4, c=0.67)$
 $\{Beer\} \rightarrow \{Milk, Diaper\} (s=0.4, c=0.67)$
 $\{Diaper\} \rightarrow \{Milk, Beer\} (s=0.4, c=0.5)$
 $\{Milk\} \rightarrow \{Diaper, Beer\} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

MINING ASSOCIATION RULES

- Two-step approach:
 - I. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

FREQUENT ITEMSET GENERATION

FREQUENT ITEMSET GENERATION

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity $\sim O(NMw) => Expensive since M = 2^d!!!$

FREQUENT ITEMSET GENERATION STRATEGIES

Reduce the number of candidates (M)

Complete search: M=2^d

Use pruning techniques to reduce M

- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

