Estudos Empíricos dos Métodos de Balanceamento para a Classificação

Daiany Francisca Lara Universidade do Estado de Mato Grosso - UNEMAT Colíder, Brasil dflara@unemat.br Aurora Trinidad Ramirez Pozo Universidade Federal do Paraná - UFPR Curitiba, Brasil aurora@inf.ufpr.br Léo Manoel Lopes da Silva Garcia Universidade do Estado de Mato Grosso - UNEMAT Colíder, Brasil leoneto@unemat.br Cláudia Alves Perez Faculdade do Pantanal - FAPAN Cáceres, Brasil claudiaperez@hotmail.com Franciano Antunes Universidade do Estado de Mato Grosso - UNEMAT Cáceres, Brasil franciano@unemat.br

Resumo-A classificação tem o objetivo de rotular eventos ou objetos de acordo com classes pré-estabelecidas. No entanto, a maioria dos algoritmos perdem a capacidade de predição, quando o conjunto de dados possui uma distribuição desbalanceada entre suas classes. Para tentar resolver esse problema diversos métodos tem sido propostos na literatura. O presente estudo tem como objetivo analisar e comparar os métodos mais conhecidos que se propõem a resolver o problema de classificação com bases desbalanceadas. Para isto, os métodos foram testados usando cinco classificadores tradicionais, e 13 bases provenientes do UCI Machine Learning Repository. Os resultados demonstram que é possível melhorar a taxa de classificação, mas é difícil dizer o método que se comporta melhor, pois tudo depende de como o algoritmo de classificação generaliza a base.

I. INTRODUÇÃO

As informações geradas pelos processos automatizados tem aumentado de forma considerável e estão dispostas e agrupadas de maneira irregular e desbalanceada, tornando difícil o entendimento dessas informações. De forma a aprimorar a análise dessas informações, algoritmos de aprendizado supervisionados como os classificadores são frequentemente utilizados [1]. Contudo, a utilização de bases com a distribuição desbalanceada entre as classes representa um dos aspectos que tem comprometido significativamente o desempenho dos algoritmos de classificação, pois não estão preparados para induzir bons modelos [2]. Normalmente, os resultados obtidos com esse tipo de base apresentam uma boa acurácia para a classe majoritária, e uma acurácia baixa para a classe em cada classe. Os testes foram realizados com 13 bases

minoritária. O que pode ser um problema quando a classe de interesse é justamente a classe minoritária.

Trabalhos encontrados na literatura apresentam métodos para tentar resolver o problema da classificação com classes desbalanceadas, tentando evitar os problemas causados pelos métodos aleatórios Oversampling e Undersampling [3][4][2]. Na maioria desses trabalhos, os testes dos métodos de balanceamento são realizados no máximo com três algoritmos de classificação. Os classificadores mais utilizados são: a árvore de decisão C4.5, e o classificador NaiveBayes e RIPPER. Geralmente, a métrica de avaliação utilizada é apenas a acurácia, o que pode ser um problema, pois nem sempre os métodos conseguem melhorar a classe minoritária, as vezes a melhora acontece apenas na classe majoritária, e que consequentemente melhora a acurácia.

Este trabalho faz uma análise comparativa dos principais métodos encontrados na literatura, com o intuito apresentar os métodos que realmente melhoram a taxa de acurácia e principalmente os valores dos verdadeiros positivos representada pela classe minoritária, e também melhorar, ou no mínimo manter os resultados da classe majoritária. Para tanto, foram testados esses métodos com classificadores que neste trabalho são chamados de tradicionais, como: Naive Bayes, Bayes Net, SMO, MultilayerPerceptron, J48 e JRip. As métricas de avaliação utilizadas são: RecallP, RecallN e Acurácia. Os resultados serão demonstrados de acordo com os valores dessas métricas, pois dessa forma pode-se observar o que realmente acontece

provenientes do repositório UCI.

Os métodos de balanceamento utilizados para a análise na fase de pré-processamento apresentados neste trabalho são: *Adasyn, Borderline, Smote, Oversampling e Undersampling*. A análise é feita também com os métodos conhecidos como Híbridos, pois faz uma junção dos métodos de balanceamento na fase de pré-processamento com a classificação, sendo eles: *BalanceCascade, EasyEnsemble, SMOTEBoost e SMOTEBoosting*.

O objetivo deste trabalho, de acordo com os resultados obtidos nos experimentos, é responder algumas questões que são de grande importância, como: (i) A Classificação pode ser melhorada aplicando algum método de balanceamento? (ii) Existe um método que sempre se comporta bem? (iii) Os classificadores podem influenciar nos resultados? (iv) O que significa melhorar a taxa de classificação da classe minoritária e no mínimo manter a taxa de classificação da classe majoritária? (v) Quais são as métricas de avaliação que realmente apontam a melhora da classe minoritária?

O Artigo está organizado da seguinte forma: Na Seção II são apresentadas as etapas do processo extração de conhecimento. Na Seção III estão relacionados os problemas causados pelo conjunto de dados desbalanceados e os métodos para resolver esses problemas. As ferramentas e classificadores utilizados neste trabalho assim como os experimentos com bases do UCI são apresentados nas Seções IV e V, respectivamente. E finalmente as conclusões são apresentadas na Seção VI.

II. DESCOBERTA DE CONHECIMENTO EM BASE DE DADOS - KDD

O processo de Descoberta de Conhecimento em Base de Dados (Knowledge Discovery in Databases - KDD) tem como intuito extrair conhecimento de grandes bases de dados, e abrange cinco etapas que exigem do usuário capacidade de análise e de tomada de decisão, as etapas envolvidas são: Seleção, Pré-processamento, Transformação, Mineração de Dados e Interpretação [Fayyad et al. 1996].

O pré-processamento tem o objetivo de aprimorar a qualidade dos dados coletados, visto que frequentemente os dados apresentam diversos problemas, como grande quantidade de valores desconhecidos, ruídos, desproporção entre o número de classe, dentre outros [2].

A mineração de dados é umas das etapas mais importantes do processo KDD, pois caracteriza-se pela existencia de um algoritmo que diante da tarefa proposta será eficiente em extrair conhecimento implícito e útil de um banco de dados. As tarefas de mineração de dados podem extrair diferentes tipos de conhecimento, sendo necessário decidir, já no início do processo de mineração de dados, qual o tipo de conhecimento que o algoritmo deve extrair [5]. As principais tarefas de mineração de dados tanto supervisionadas como não supervisionadas são: classificação, regressão, regras de associação e agrupamento.

III. CLASSIFICAÇÃO EM CONJUNTOS DE DADOS DESBALANCEADOS

As informações do mundo real são distribuídas de maneira minoritária. O Borderline-SMOTE então irá aplicar o desigual, principalmente em situações nas quais determinadas somente has instâncias do conjunto DANGER [2][1].

classes são mais difíceis de se obter, causando assim o problema de classes desbalanceadas.

Muitos aspectos podem influenciar o desempenho do modelo criado por um sistema supervisionado. Um desses aspectos está relacionado com a distribuição entre o número de exemplos pertencentes a cada uma das classes, ou seja, uma base de dados é dita desbalanceada, quando o número de exemplos de uma classe é maior que o número de exemplos da outra classe. Tal problema pode prejudicar o desempenho de classificação, pois tende a classificar exemplos da classe minoritária como sendo da classe majoritária [2].

Existem métodos que consistem em efetuar ajustes no conjunto de dados uniformizando uma distribuição de exemplos entre as classes utilizando amostragem (em ingles, sampling). Dentre os métodos existentes na literatura, seja para adicionar ou remover instâncias das classes, os mais conhecidos são: Oversampling (Sobreamostragem) aleatória, que replica exemplos da classe minoritária com o objetivo de obter uma distribuição mais balanceada [6]. E Undersampling (Subamostragem) aleatória, que tem como objetivo balancear o conjunto de dados pela eliminação de exemplos da classe majoritária [6]. São métodos equivalentes no que diz respeito ao balanceamento artificial das classes, mas com um conjunto próprio de problemas consequentes que podem atrapalhar o aprendizado. O problema causado pelo undersampling acontece na eliminação de exemplos da classe majoritária fazendo com que o classificador perca informações importantes pertencentes a essa classe. No caso do oversampling aumenta a probabilidade de ocorrer overfitting [7].

A. Oversampling Orientado

Uma das técnicas mais conhecidas que tem se mostrado como um poderoso método em várias aplicações é o SMOTE (Synthetic Minority Oversampling Technique). Este método cria dados artificiais com base nas semelhanças existentes no espaço de característica entre os exemplos da classe minoritária. O algoritmo funciona criando exemplos sintéticos baseados em exemplos minoritários e seus k vizinhos mais próximos.

$$x_{new} = x_i + (\hat{x}_i - x_i)\delta \tag{1}$$

Esse método pode aumentar a taxa de acurácia, mas ocorre o efeito indesejado de modelos muito específicos para estes casos replicados, prejudicando a generalização para a classe de interesse, fato conhecido como overfitting. Para resolver esse problema vários métodos adaptativos como Borderline-SMOTE e ADASYN (Adaptative Synthetic Sampling) tem sido propostos [1], para que esses novos dados sejam gerados na vizinhança de cada caso da classe minoritária, de forma a fazer crescer a região de decisão e, assim, aumentar o poder de generalização dos classificadores [8].

Borderline-SMOTE - O algoritmo Borderline-SMOTE tem o objetivo de identificar, as amostras próximas a superfície de decisão, essas amostras são identificadas como conjunto DANGER. Este conjunto é formado por instâncias que possuem mais vizinhos da classe majoritária do que da classe minoritária. O Borderline-SMOTE então irá aplicar o SMOTE 15788715 Págiga 101ancias do conjunto DANGER [2][1]

A Figura 1 mostra a ocorrência de um ruído e nenhum exemplo sintético gerado por ele, como mostra a instância C [1].

Figura 1. Geração de dados baseados no método Borderline [1]

ADASYN - O algoritmo ADASYN é baseado no algoritmo SMOTE, o objetivo é reduzir o viés introduzidos pela distribuição desbalanceada, e principalmente deslocar adaptativamente a fronteira de decisão para focar nos exemplos mais difíceis de aprender. A ideia, é usar a distribuição de densidade como um critério para decidir automaticamente o número de dados sintéticos que precisam ser gerados para cada exemplo da classe minoritária.

Primeiramente é obtido o grau de desbalanceamento da classe pela Equação $d=\frac{m_p}{m_n}$. Onde m_p é o número de exemplos da classe minoritária e m_n é o número de exemplos da classe majoritária, e $d \in (0,1)$. Se $d < d_{th}$ então o cálculo do número de exemplos sintéticos que precisam ser gerados, é feito pela Equação $G=(m_n-m_p).\beta$. Onde $\beta\in(0,1)$ e é um parâmetro usado para especificar o nível de balanceamento desejado depois da geração dos dados sintéticos. Para cada exemplo x_i no conjunto de instâncias positivas P, sendo i = 1,...,P, são encontrados os K vizinhos mais próximos baseados na distância euclidiana no espaço dimensional n, e então calcular a proporção de $D_i = \frac{\Delta_i}{k}$. Onde Δ_i é o número de exemplos dos k vizinhos mais próximos de x_i que pertence a classe majoritária, portanto $D_i \in (0,1)$. Uma normalização é feita de D_i para $\hat{D}_i = D_i / \sum_{i=1}^{mp} D_i$, de modo que \hat{D}_i é a distribuição de densidade $(\sum_i \hat{D}_i = 1)$. Então o número de exemplos sintéticos que precisam ser gerados para cada exemplo minoritário x_i é dado pela Equação $g_i = \hat{D}_i \times G$. Onde G é o total de números de exemplos minoritários que precisam ser gerados para a classe minoritária. A ideia principal do ADASYN é usar a distribuição de densidade \hat{D}_i como um critério para decidir automaticamente o número de exemplos sintéticos que precisam ser gerados para cada exemplo da classe minoritária.

Cluster baseado em Oversampling - Algoritmos de Cluster baseados em oversampling tem como objetivo minimizar o problema de pequenos disjuntos que são conceitos aprendidos que cobrem poucos casos do conjunto de treinamento, podendo ser aplicável a conjuntos de dados multiclasses. Utiliza técnica de agrupamento k-means, ou seja, leva um conjunto aleatório K exemplos de cada cluster e calcula a média do vetor de características desses exemplos, chamados como centros do

é apresentado um de cada vez, e para cada exemplo, é feito o cálculo da distância euclidiana entre ele e cada centro do cluster. Então cada exemplo de treinamento é atribuído ao cluster que apresenta a menor magnitude do vetor de distância. Todos os meios de cluster são atualizados e o processo é repetido até que todos os exemplos sejam esgotados [1], [8].

B. Undersampling Orientado

Xu-Ying Liu [9] apresenta dois exemplos de métodos que tem o objetivo de reduzir a perda de informações causadas pelo método tradicional de undersampling aleatória. Esses métodos são conhecidos como híbridos, pois pertencem a um grupo de métodos que juntam os algoritmos de pré-processamento com classificação. Os algoritmos apresentados são: EasyEnsemble e BalanceCascade.

EasyEnsemble - Aprendizagem considerada não supervisionada, pois explora o conjunto N (instâncias da classe majoritária) utilizando uma amostragem aleatória com substituição [9]. A implementação do EasyEnsemble é considerada simples, pois dado um conjunto de treinamento minoritário P, e o conjunto de treinamento majoritário N, criam-se t subconjuntos $N_i{}', i=1,...,i=t$, compostos de exemplos retirados de N, onde $N_i{}'<|N|$, e utiliza-se comumente $|N_i'| = |P|$. Os subconjuntos $N_i', ..., N_t'$ são criados e treinados separadamente, onde um classificador H_i é treinado usando N_i e todos os exemplos de P (O classificador H_i utilizado foi o Adaboost). Todos os classificadores gerados são combinados para uma decisão final [2] [9].

BalanceCascade - Considerada uma abordagem supervisionada por explorar exemplos da classe majoritária N de um conjunto de treinamento. A ideia é depois que o H_1 é treinado, se um exemplo $x_1 \in N$ for corretamente classificado por H_1 , é aceitável pressupor que x_1 é um pouco redundante em N, dado que H_1 já aprendeu a classificar esse exemplo. Desta forma pode-se remover alguns exemplos classificados corretamente do conjunto N [9]. No BalanceCascade, a dependencia sequencial entre classificadores é principalmente explorada para reduzir a informação redundante na classe principal. Assim a estratégia de amostragem leva para um espaço de amostra restrita para o seguinte processo undersampling, na esperança de explorar o máximo de informação útil possível [9].

1) Integração de Amostragem e Boosting: Chawla [10] propôs um método que faz uma combinação da técnica SMOTE com o procedimento de Boosting. O SMOTE é utilizado para melhorar a predição das classes minoritárias, e o Boosting para não sacrificar a precisão do conjunto de dados, ou seja, é um método iterativo de combinação de classificadores, onde a cada iteração um classificador é induzido a partir de uma amostra de instâncias do conjunto de treinamento [10].

IV. FERRAMENTAS

Um estudo empírico foi realizado com diferentes bases de dados e métodos de balanceamento com o objetivo de entender mais profundamente os efeitos de cada um dos métodos. Para a realização dos experimentos foram utilizadas cluster. Em seguida, o restante dos exemplos de treinamento algumas ferramentas como: (i) O software Weka (Waikato Environment for Knowledge Analysis) que foi desenvolvido pela Universidade de Waikato na Nova Zelândia; (ii) e o Software Keel (Knowledge Extraction based on Evolutionary Learning), desenvolvida pelos projetos nacionais Espanhóis.

No processo de classificação, foram utilizados 6 (seis) algoritmos implementados no Software Weka e que neste trabalho são chamados de Classificadores tradicionais. Os classificadores são: Naive Bayes, Bayes Net, SMO, J48, JRip e MultilayerPerceptron.

Para os experimentos deste trabalho, foram utilizadas bases do repositório UCI Machine Learning Repository. O repositório UCI, abrange bases relacionadas a diversos problemas, e estão disponíveis para todos que precisam trabalhar com aprendizagem de máquina. [11]. As Bases utilizadas nos experimentos e suas principais características estão relacionadas na Tabela I.

Tabela	I		
CARACTERISTICAS	DA	BASE	UCI

Base	Instâncias	Atributos	Classe				
Dase	Histancias	Atributos	Positivo	Negativo			
Breast	683	10	239	444			
Bupa	345	7	145	200			
Ecoli	336	8	35	301			
Flag	194	29	17	177			
Glass	214	10	17	197			
Haberman	306	4	81	225			
Heart	270	14	120	150			
Ionosphere	351	34	126	225			
Lettera	19999	17	789	19210			
New-thyroid	215	6	35	180			
Pima	768	9	500	268			
Satimage	6435	37	626	5809			
Vehicle	846	19	199	647			

A. Métricas de avaliação

Na classificação, a utilização de alguma métrica para avaliar os resultados obtidos é necessária, e um exemplo para essa avaliação é a matriz de confusão que mostra o número de classificações corretas em relação as esperadas por cada classe. A matriz de confusão pode representar o problema de duas classes como também multiclasses, e o número de acertos da classe se encontra na diagonal principal da matriz [2].

As métricas que são relevantes para os problemas de classes desbalanceadas são: Precisão, Recall e F-measures, métricas essas que também utilizam as variáveis da matriz de confusão, e são apropriadas quando se está preocupado com o desempenho das classes [2].

V. RESULTADOS

Primeiramente, foram aplicados os classificadores tradicionais nas bases originais com o objetivo de poder observar o comportamento destes, com as bases que possuem um alto nível de desbalanceamento. Vale lembrar que todas as tabelas estão no Apêndice.

A Tabela III apresenta os resultados das bases retiradas do repositório UCI, classificadas com os algoritmos tradicionais. É possível perceber que os classificadores nem sempre conseguem predizer corretamente algumas bases, principalmente

possuem um número menor de exemplos que determinam essa classe, ou também, podem possuir os problemas como ruídos, dificultando assim o poder de generalização do classificador.

Com o intuito de melhorar os resultados obtidos anteriormente, foram aplicados os métodos de balanceamento (Adasyn, Borderline, Smote, Oversampling e Undersampling). Os resultados para esse experimento são apresentados na Tabela V.

A seguir, é feito uma análise por base, considerando os diferentes métodos de balanceamento com os diferentes classificadores (Tabela V). Uma comparação é feita com os resultados obtidos com a base original (Tabela III), o objetivo é poder dizer os métodos que se destacam.

Breast - é possível perceber que o método Oversampling utilizando os classificadores NaiveBayes, J48 e BayesNet, conseguem melhorar os valores da classe positiva mantendo a classe negativa. Outro método, que se destaca nesta base melhorando ambas as classes é o Borderline classificado pelo J48 e JRip. As 4 bases **Bupa**, **Ecoli**, **Flag e Haberman**, conseguem uma melhora na classe positiva mas diminui a classe negativa, e principalmente a taxa de classificação. Vale lembrar que as bases Flag e Ecoli possuem um nível de desbalanceamento razoável em relação a Bupa e Haberman, o que não justifica a não melhora, este fato pode estar relacionado a problemas de generalização ou ruídos. Heart - O método Undersampling é o mais frequente nesta base, ou seja, este melhora os valores da classe positiva e mantem da classe negativa com o classificador NaiveBayes e melhora os valores de ambas as classes com o J48. O classificador J48 também apresenta melhoras com os métodos Borderline e Smote. **Ionosphere -** O método Undersampling melhora as classes positivas e negativas, consequentemente melhorando a taxa de classificação, isto é possível com a utilização dos classificadores J48 e BayesNet. Outro método que consegue uma significativa melhora nesta base é o Borderline com os classificadores NaiveBayes e J48. Lettera - O método Smote consegue melhorar a classe positiva e manter os valores da classe negativa com os classificadores J48 e JRip. O classificador BayesNet melhora ambas as classes com os métodos Borderline e Smote. New-Thyroid -Os classificadores NaiveBayes, MultilayerP e J48 conseguem melhorar a classe positiva e manter a classe negativa com o método Oversampling. O método Adasyn consegue também melhorar e manter com o classificador J48 e JRip. Acontece o mesmo com o método Smote e classificado pelo JRip. Pima - Nesta base, o único método que consegue melhorar significativamente o valores das classes e taxa de classificação é o Adasyn, classificado pelo algoritmo NaiveBayes. Satimage - É possível perceber que a melhora na classe positiva é significativa na maioria dos métodos e classificadores, mas o método que consegue melhorar ambas as classes nesta base é o Oversampling com o classificador BayesNet. Vehicle -Nesta base a maioria dos métodos conseguem uma melhora na maioria dos classificadores. O método Adasyn classificado pelo J48 e JRip melhora os valores das classes positivas e negativas e consequentemente a Acurácia. O método Smote melhora todos os valores com os classificadores NaiveBayes, J48 e JRip. O método Oversampling com os classificadores para a classe positiva (RecallP), pois provavelmente estas bases NaiveBayes e BayesNet e o método Undersampling com os

classifacadores NaiveBayes, JRip e BayesNet.

Considerando os diferentes métodos de balanceamento com os diferentes classificadores, é possível perceber uma frequencia de alguns métodos em cada base, ou seja, alguns métodos conseguem melhorar os valores de RecallP e RecallN com diversos classificadores. De acordo com essa frequencia uma análise foi feita entre os classificadores, com o intuito de comparar esse resultado com o resultado da base original utilizando o mesmo classificador. A Tabela II apresenta a porcentagem de melhoria do método que se destaca com a base original.

Base	Métodos	Classificador	RecallP	RecallN	Acurácia
	Original	Jrip	0,958	0,953	95,460
breast	Borderline	Jrip	0,975	0,957	96,339
	% de M	elhoria	1,77%	0,42%	0,92%
	Original	J48	0,283	0,964	91,118
Glass	Oversampling	J48	0,417	0,964	92,049
	% de M	elhoria	47,35%	0,00%	1,02%
	Original	J48	0,717	0,780	75,185
Heart	Undersampling	J48	0,767	0,787	77,778
	% de M	elhoria	6,97%	0,90%	3,45%
	Original	J48	0,818	0,911	87,738
Ionosphere	Borderline	J48	0,849	0,956	91,726
	% de M	elhoria	3,79%	4,94%	4,55%
	Original	BayesNet	0,848	0,992	98,605
Lettera	Smote	BayesNet	0,937	0,994	99,19
	% de M	elhoria	10,50%	0,20%	0,59%
	Original	Jrip	0,857	0,978	95,814
NewThyroid	Adasyn	Jrip	0,914	0,983	97,209
	% de M	elhoria	6,67%	0,57%	1,46%
	Original	NaiveBayes	0,848	0,608	76,433
Pima	Adasyn	NaiveBayes	0,921	0,909	91,755
	% de M	elhoria	8,61%	49,48%	20,05%
	Original	BayesNet	0,945	0,683	74,467
Vehicle	Undersampling	BayesNet	0,992	0,968	97,656
	% de M	elhoria	4,94%	41,78%	31,14%

As bases Bupa, Ecoli, Flag, Haberman e Satimage não aparecem na Tabela II por não ter um método que melhore ambas as classes em nenhum dos classificadores. As bases Pima e Vehicle por exemplo, se destacam entre as bases, pois conseguem um significativo aumento na taxa de classificação, mas evidentemente com métodos e classificadores diferentes. O destaque da base Pima é o método Adasyn classificado pelo NaiveBayes, e da base Vehicle, o método Undersampling com o classificador BayesNet. Métodos esses que trabalham de forma totalmente diferente, o Adasyn por exemplo, tem a função de aumentar a classe minoritária acrescentando exemplos sintéticos próximos a superfície de decisão, e Undersampling, tem a função de diminuir os exemplos da classe majoritária.

Pode-se observar na Tabela II que não é possível dizer que um método é melhor que o outro, pois os métodos possuem comportamentos diferentes em cada base, é importante ressaltar também, que o classificador pode influenciar nos resultados. Comprovando este fato, pode ser visto nos resultados obtidos no trabalho de [12], os resultados para a base Pima com o Algoritmo Adasyn aplicado e comparado com o algoritmo Smote e ambos classificados por um algoritmo de arvore de decisão. Os resultados do trabalho de [12] demonstram que o Adasyn obtém o melhor resultado em relação a taxa de acurácia 68% e 60% de Recall, e pode ser observado nos resultados obtidos nos experimentos deste trabalho que o classificador que se destaca com resultados melhores é o NaiveBayes, tendo 92% de RecallP e 91,77% de acurácia.

A Tabela IV apresenta os resultados das bases originais os valores das classes com o método Undersampling, enquanto utilizando os métodos híbridos. Esses Métodos são chamados que o Borderline com o EasyEnsemble aumenta apenas a

híbridos por terem uma combinação entre métodos de préprocessamento e classificadores.

Observando os resultados com os métodos híbridos (Tabela IV), é possível notar resultados razoáveis para a classe minoritária, sem diminuir drasticamente os valores da classe majoritária, se comparado com os resultados obtidos na Tabela III. Os métodos que se destacam são: *BalanceCascade, EasyEnsemble e SmoteBoost*, é importante observar também, que esses métodos conseguem valores razoáveis da classe positiva, principalmente nas bases que o nível de desbalanceamento é grande, como por exemplo, Lettera, Glass, Flag, Satimage, Ecoli, New-thyroid e Vehicle.

A Tabela VI apresenta os resultados com os métodos de balanceamento classificados com os métodos híbridos. É notório que os resultados para a classe positiva (RecallP) são melhores em todas as bases, no entanto, os resultados são piores para a classe negativa. A análise da Tabela VI é comparada com os métodos híbridos aplicados ā base original (Tabela IV).

Breast - O método Smote melhora a classe positiva mantendo a classe negativa se classificado pelo método hibrido EasyEnsemble. O mesmo acontece com os métodos Adasyn, Borderline e Oversampling classificados pelo SmoteBoost. **Bupa** - Pode-se observar a melhora significativa da classe negativa com o método BalanceCascade com todos os métodos de pré-processamento, mas é notório também os péssimos valores da classe de interesse (positiva). Nesta base um método que pode ser destacado é SmoteBoost com o método Smote, pois quase mantem os valores das classes. Ecoli - O método híbrido SmoteBagging consegue melhorar a classe positiva e manter a classe negativa com o método Oversampling. O destaque vai para o método Borderline, que consegue melhorar ambas as classes com este mesmo classificador. Flag - Nesta base os resultados são satisfatórios, pois o método Smote consegue aumentar os valores de ambas as classes, com os classificadores SmoteBagging e SmoteBoost, Oversampling com o SmoteBoost e o método Undersampling com o EasyEnsemble. Glass, Haberman e Satimage - Os métodos, tanto para pré-processamento quanto os híbridos, não conseguem melhorar a classe positiva sem diminuir drasticamente os valores da classe negativa. Heart - O método híbrido SmoteBoost, utilizando o método de pré-processamento Adasyn e Oversampling, consegue melhorar ambas as classes nesta base. . Ionosphere - SmoteBoost com o método Smote e Undersampling melhora a classe negativa mantendo o valor da classe positiva, consequentemente melhorando a acurácia. **Lettera** - O único método de pré-processamento que consegue predizer a classe negativa é o Undersampling. O restante dos métodos não conseguem predizer nenhum exemplo da classe positiva, e acerta 100% da classe positiva. New-Thyroid -Os métodos Borderline e Smote conseguem melhoras nas classes positiva e negativa, classificados pelos métodos híbridos EasyEnsemble. O método Oversampling mantem uma das classes com o EasyEnsemble, o mesmo acontece com Borderline com SmoteBagging e Adasyn com SmoteBoost. Pima - O Método híbrido SmoteBoost aumenta razoavelmente os valores das classes com o método Undersampling, enquanto

classe positiva. **Vehicle -** Nesta base, o método híbrido SmoteBoost consegue aumentar os valores de uma das classes mantendo os valores da outra, melhorando assim a acurácia, os métodos em destaque são Adasyn, Borderline e Oversampling.

Os resultados afirmam que os métodos de balanceamento melhoram a capacidade de predição dependendo é claro de como o classificador generaliza a base, e principalmente o nível de desbalanceamento. A piora em algumas bases com alguns métodos de balanceamento pode ter ocorrido por terem movido a fronteira de decisão, dificultando ainda mais o poder de generalização dos métodos híbridos.

VI. CONCLUSÃO

Neste trabalho foram apresentados métodos propostos na literatura para tratar o problema de classificação em bases desbalanceadas. Estes métodos foram aplicados em treze (13) bases de dados provenientes do UCI *Machine Learning Repository*.

Primeiramente, foram efetuados os experimentos aplicando 5 classificadores chamados de classificadores Tradicionais. Com o intuito de observar o comportamento dos métodos de balanceamento foram aplicados na base original os métodos de balanceamento: Adasyn, Borderline, Oversampling, Smote e Undersampling e novamente classificados pelos algoritmos tradicionais. Com o mesmo objetivo os métodos híbridos BalanceCascade, EasyEnsemble, SMOTEBagging e SMOTE-Boost foram aplicados na base original e depois aplicados com a base já balanceada com o métodos de pré-processamento.

Para as 13 bases, cada método apresenta resultados diferentes para cada classificador. De acordo com os resultados obtidos nos experimentos deste trabalho é possível responder as questões realizadas ao assunto, que são: (i) A Classificação pode ser melhorada aplicando algum método de balanceamento? A melhora da classificação é possível, mas para tal, é preciso da combinação correta do método aplicado com o classificador. Observar utilizando uma métrica de avaliação que realmente indique a melhoria nos valores da classe de interesse (classe minoritária). Para isso, vários testes deveriam ser realizados para descobrir o método que resulta melhores valores para uma base específica. (ii) Existe um método que sempre se comporta bem? Com os resultados obtidos é possível dizer que ainda não existe um método que resolva todos os problemas da classificação desbalanceada, pois como pode ser visto, os métodos possuem comportamentos diferentes, dependendo da base e do classificador. Geralmente, as bases utilizados para testar a eficácia dos métodos são bases provenientes do UCI machine learning repository, bases que são préprocessadas e que não possuem os problemas como ruídos, que normalmente são mais frequentes em bases do mundo real. (iii) Os classificadores podem influenciar nos resultados? Como dito anteriormente, cada classificador é capaz de construir um modelo a partir do conjunto de dados de treinamento, por este motivo, o classificador pode sim influenciar nos resultados, como mostra os resultados das bases provenientes do UCI machine learning repository. Ou seja, a mesma base com o mesmo método de balanceamento aplicado, utilizando classificadores diferentes possuem resultados diferentes. Podeclassificadores para observar melhor o comportamento dos métodos aplicados. (iv) O que significa melhorar a taxa de classificação da classe minoritária e no mínimo manter a taxa de classificação da classe majoritária? Quando acontece a melhora nos valores da classe minoritária e os valores da classe majoritária são no mínimo mantidos, significa que o método realmente consegue evitar os problemas indesejados como por exemplo os ruídos, facilitando assim o poder de generalização do classificador, e consequentemente melhorando a acurácia. (v) Quais são as métricas de avaliação que realmente apontam a melhora da classe minoritária? Um dos fatores importantes observado neste trabalho é o tipo de métrica de avaliação utilizada como critério de avaliação, pois a maioria dos trabalhos relacionados citados neste trabalho utilizam a acurácia e o F-Measure como o critério de avaliação, o que não significa que com os resultados dessas métricas tenha melhorado a classe minoritária, pois na maioria das vezes a melhora acontece apenas na classe majoritária, mascarando o verdadeiro objetivo dos métodos de balanceamento. Desta forma, é muito importante observar os resultados obtidos entre as classes separadamente. Uma maneira interessante é utilizar a métrica de avaliação Recall, fazendo os cálculos dos verdadeiros positivos e dos verdadeiros negativos.

APÊNDICE

Tabela III Classificadores Tradicionais -Base Original

Base	Class. Tradicionais	RecallP	RecallN	Acurácia
	NaiveBayes	0,975	0,957	96,340
	SMO	0,962 0,941	0,973 0,969	96,924
breast	MultilayerP J48	0,941	0,969	95,900 94,729
	JRip	0,958	0,953	95,460
	BayesNet	0,979	0,971	97,364
	NaiveBayes	0,772	0,395	55,362
	SMO	0,007	0,995	57,971
bupa	MultilayerP	0,634	0,770	71,304
	J48	0,634	0,690	66,667
	JRip BayesNet	0,490 0,172	0,785 0,870	66,087 57,681
	NaiveBayes	0,800	0,870	88,402
	SMO	0,029	1,000	89,877
Ecoli	MultilayerP	0,714	0.963	93,766
	J48	0,486	0,973	92,270
	JRip	0,571	0,960	91,971
	BayesNet	0,886	0,860	86,308
	NaiveBayes	0,500	0,808	77,908
-	SMO	0,067	0,960	88,138
Flag	MultilayerP J48	0,117 0,000	0,949 1,000	87,625 91,242
	JRip	0,000	0,960	88,650
	BayesNet	0,300	0,904	85,088
	NaiveBayes	0,783	0,457	48,084
	SMO	0,000	1,000	92,060
Glass	MultilayerP	0,183	0,970	90,642
	J48	0,283	0,964	91,118
	JRip	0,067	0,980	90,664
	BayesNet	0,000	1,000	92,060
	NaiveBayes SMO	0,199 0,000	0,942 1,000	74,521 73,533
haberman	MultilayerP	0,000	0,902	73,882
паостнан	J48	0,470	0,809	71,893
	JRip	0,345	0,867	72,871
	BayesNet	0,257	0,893	72,544
	NaiveBayes	0,792	0,853	82,593
heart	SMO	0,775	0,907	84,815
	MultilayerP	0,733	0,820	78,148
	J48	0,717	0,780	75,185
	JRip BayesNet	0,708 0,808	0,833 0,860	77,778 83,704
	NaiveBayes	0,865	0,809	82,893
	SMO	0,714	0,960	87,167
ionosphere	MultilayerP	0,810	0,964	90,881
•	J48	0,818	0,911	87,738
	JRip	0,826	0,929	89,175
	BayesNet	0,810	0,929	88,600
	NaiveBayes	0,858	0,992	98,650
Lettera	SMO MultilayerP	0,845 0,888	0,998 1,000	99,160 99,540
Lettera	J48	0,958	0,999	99,715
	JRip	0,938	0,998	99,635
	BayesNet	0,848	0,992	98,605
	NaiveBayes	1,000	0,972	97,674
	SMO	0,543	1,000	92,558
New-thyroid	MultilayerP	0,943	0,989	98,140
	J48	0,829	0,989	96,279
	JRip Payas Nat	0,857	0,978	95,814
	BayesNet NaiveBayes	0,886 0,848	0,994	97,674 76,433
	NaiveBayes SMO	0,848	0,534	76,956
pima	MultilayerP	0,838	0,563	74,219
r	J48	0,816	0,567	72,916
	JRip	0,836	0,605	75,525
	BayesNet	0,828	0,630	75,910
	NaiveBayes	0,866	0,815	82,020
	SMO	0,000	1,000	90,272
Satimage	MultilayerP	0,660	0,970	94,017
	J48 JRip	0,545 0,514	0,957 0,968	91,671 92,432
	BayesNet	0,814	0,968	92,432 86,030
	NaiveBayes	0,833	0,592	66,192
	SMO	0,909	0,975	95,981
Vehicle	MultilayerP	0,939	0,983	97,279
			0,957	93,503
veineie	J48	0,864		75,505
veineie	J48 JRip BayesNet	0,864 0,859 0,945	0,944 0,683	92,436 74,467

Tabela IV MÉTODOS HÍBRIDOS - BASE ORIGINAL

Base	Híbridos	RecallP	RecallN	Acurácia
	BalanceCascade	0,980	0,940	96,00
breast	EasyEnsemble	0,960	0,960	96,00
breast	SMOTEBagging	0,940	0,960	95,00
	SMOTEBoost	0,940	0,960	95,00
	BalanceCascade	0,910	0,240	52,00
bupa	EasyEnsemble	0,710	0,640	67,00
oupa	SMOTEBagging	0,510	0,760	66,00
	SMOTEBoost	0,600	0,720	67,00
	BalanceCascade	0,940	0,830	84,00
E E	EasyEnsemble	0,880	0,790	80,00
Ecoli	SMOTEBagging	0,820	0,880	88,00
	SMOTEBoost	0,800	0,940	92,00
	BalanceCascade	0,820	0,610	63,00
	EasyEnsemble	0,820	0,550	57.00
Flag	SMOTEBagging	0,470	0,840	81,00
	SMOTEBoost	0,290	0,900	85,00
	BalanceCascade	0,880	0,540	57.00
	EasyEnsemble	0,760	0,650	66,00
Glass	SMOTEBagging	0.580	0,850	83,00
	SMOTEBoost	0,580	0,900	87,00
	BalanceCascade	0,660	0,610	63,00
	EasyEnsemble	0,560	0,760	70,00
haberman	SMOTEBagging	0,550	0,750	70,00
	SMOTEBoost	0,590	0,720	68,00
	BalanceCascade	0,920	0,360	61.00
heart	EasyEnsemble	0,830	0,740	78,00
	SMOTEBagging	0,760	0,860	81,00
	SMOTEBagging	0,750	0,765	76,00
	BalanceCascade	0,730	0,765	86.00
	EasyEnsemble	. ,	.,	89,00
ionosphere	SMOTEBagging	0,860	0,890	90,00
	SMOTEBagging	0,840	0,894	
	BalanceCascade	0,840	0,903	91,00
		0,980	0,970	97,00
Lettera	EasyEnsemble	0,980	0,970	97,00
	SMOTEBagging SMOTEBoost	1,00	0,000	3,00
		1,00	0,000	3,00
	BalanceCascade	0,970	0,930	93,00
New-thyroid	EasyEnsemble	0,850	0,960	94,00
	SMOTEBagging	0,910	0,950	94,00
	SMOTEBoost	0,970	0,960	96,00
	BalanceCascade	0,540	0,860	65,00
pima	EasyEnsemble	0,670	0,760	70,00
	SMOTEBagging	0,770	0,690	74,00
	SMOTEBoost	0,740	0,710	73,00
	BalanceCascade	0,870	0,830	83,00
Satimage	EasyEnsemble	0,860	0,820	83,00
	SMOTEBagging	0,720	0,940	92,00
	SMOTEBoost	0,710	0,950	93,00
	BalanceCascade	0,980	0,890	91,00
Vehicle.	EasyEnsemble	0,960	0,910	92,00
venicie	SMOTEBagging	0,950	0,930	94,00
	SMOTEBoost	0,950	0,950	95,00

Tabela V MÉTODOS DE PRÉ-PROCESSAMENTO

D	Martin		NaiveBay	es		SMO			Multilayer	P		J48		1	JRip			BayesNet	
Base	Métodos	RecallP	RecallN	Acurácia															
	ADASYN	0,987	0,944	95,901	0,996	0,955	96,926	0,979	0,946	95,754	0,950	0,939	94,292	0,971	0,948	95,606	0,992	0,968	97,656
, à	Boderline	0,987	0,948	96,193	0,992	0,962	97,219	0,975	0,959	96,487	0,941	0,959	95,317	0,975	0,957	96,339	0,983	0,966	97,217
breast	Smote	0,983	0,955 0,957	96,487 96,487	0,983 0,979	0,971 0,966	97,510 97,072	0,967 0,958	0,957 0,962	96,048 96,048	0,950 0,950	0,948 0,953	94,873 95,165	0,966	0,953	95,754	0,979	0,968 0,971	97,217 97,804
	Undersampling	0,979	0,937	95,756	0,979	0,900	97,072	0,938	0,962	97,073	0,950	0,933	95,165	0,934	0,944	96,193 95,172	0,992	0,971	97,511
	ADASYN	0,834	0,275	51,014	0,745	0,525	61,739	0,786	0,570	66,087	0,621	0,610	61,449	0,710	0,610	65,217	0,883	0,125	44.348
	Boderline	0,807	0,300	51,304	0,717	0,490	58,551	0,724	0,665	68,986	0,517	0,685	61,449	0,648	0,650	64,928	0,669	0,430	53,043
Bupa	Smote	0,828	0,295	51,884	0,745	0,480	59,130	0,703	0,640	66,667	0,614	0,645	63,188	0,634	0,610	62,029	0,717	0,330	49,275
V	Oversampling	0,821	0,260	49,565	0,724	0,495	59,130	0,703	0,660	67,826	0,607	0,670	64,348	0,641	0,650	64,638	0,614	0,515	55,652
	Undersampling	0,834	0,230	48,406	0,786	0,430	57,971	0,703	0,565	62,319	0,545	0,680	62,319	0,669	0,605	63,188	0,883	0,125	44,348
	ADASYN	0,943	0,840	85,114	0,857	0,807	81,247	0,800	0,897	88,696	0,800	0,874	86,611	0,829	0,870	86,611	0,914	0,844	85,119
Ecdi	Boderline	0,886	0,867	86,901	0,886	0,834	83,924	0,743	0,937	91,677	0,714	0,927	90,478	0,600	0,934	89,890	0,914	0,857	86,308
Eco.	Smote Oversampling	0,943 0,914	0,844 0,844	85,404 85,105	0,886 0,857	0,824 0,830	83,029 83,332	0,886 0,800	0,900 0,937	89,881 92,270	0,743 0,657	0,914 0,937	89,587 90,777	0,743 0,629	0,910 0,907	89,289 87,801	0,914 0,800	0,851 0,864	85,720 85,711
	Undersampling	0,971	0,840	85,404	0,971	0,787	80,632	0,800	0,837	83,332	0,800	0,784	78,595	0,914	0,837	84,522	0,914	0,807	81,831
	ADASYN	0,617	0,514	52,105	0,400	0,740	71,134	0,283	0,791	74,750	0,217	0,769	72,186	0,250	0,893	83,522	0,367	0,791	75,263
	Boderline	0,433	0,825	78,934	0,267	0,893	83,522	0,183	0,927	86,100	0,200	0,905	84,049	0,067	0,943	86,599	0,067	0,994	91,242
Flag	Smote	0,550	0,429	43,900	0,417	0,752	72,173	0,533	0,769	74,764	0,617	0,875	85,020	0,317	0,870	81,957	0,367	0,849	80,459
,	Oversampling	0,550	0,746	72,753	0,050	0,893	81,943	0,133	0,870	80,391	0,283	0,898	84,521	0,167	0,909	84,521	0,350	0,893	84,575
	Undersampling	0,550	0,493	49,649	0,700	0,696	69,663	0,700	0,662	66,545	0,683	0,566	57,800	0,550	0,482	48,596	0,650	0,700	69,568
	ADASYN	0,850 0,800	0,431 0,523	46,213 54,142	1,000 1,000	0,314	36,866 37,298	0,633 0,433	0,822 0,924	80,864	0,583 0,433	0,888 0,954	86,390	0,650 0,300	0,797 0,934	78,505 88,283	0,533 0,433	0,777 0,888	75,703 85,039
as ⁵	Boderline Smote	0,800	0,523	54,142 45,759	0.867	0,319 0,380	37,298 42,027	0,433	0,924	88,317 85,028	0,433	0,934	91,096 81,761	0,550	0,934	88,283 84,994	0,433	0,888	79,867
Glass	Oversampling	0,783	0,461	48.084	0,883	0,390	42,924	0,483	0,939	90.188	0,417	0,964	92.049	0,233	0,939	88.328	0,233	0,934	87,829
	Undersampling	0,833	0,406	43,865	1.000	0,263	32,193	0,883	0,461	49,446	0,800	0,542	56,489	0,800	0,415	44,762	0,933	0,411	45,293
	ADASYN	0,371	0,898	75,833	0,368	0,884	74,870	0,297	0,884	72,898	0,629	0,693	67,652	0,667	0,667	66,653	0,704	0,622	64,363
-an	Boderline	0,334	0,898	74,849	0,346	0,902	75,505	0,471	0,804	71,581	0,580	0,778	72,559	0,582	0,738	69,614	0,556	0,800	73,538
heriti	Smote	0,358	0,893	75,177	0,346	0,902	75,510	0,349	0,858	72,242	0,555	0,733	68,646	0,642	0,693	67,980	0,506	0,764	69,603
Hat	Oversampling	0,346	0,898	75,177	0,382	0,889	75,516	0,455	0,836	73,548	0,531	0,680	64,056	0,568	0,684	65,341	0,457	0,809	71,565
	Undersampling	0,396	0,858	73,543	0,454	0,747	67,023	0,692	0,627	64,379	0,485	0,782	70,270	0,592	0,747	70,608	0,663	0,587	60,894
	ADASYN Boderline	0,842	0,847 0.867	84,444 84,074	0,833 0,842	0,827 0.860	82,963 85,185	0,750 0,733	0,787 0,760	77,037 74,815	0,758	0,760 0.787	75,926 77,778	0,700 0,717	0,773 0,813	74,074 77,037	0,825 0,808	0,813 0,840	81,852 82,593
Heart	Smote	0,808	0,840	82,593	0,842	0,853	82,222	0,733	0,760	79,630	0,783	0,780	78,148	0,717	0,813	73,704	0,825	0,827	82,593 82,593
He	Oversampling	0,792	0,853	82,593	0,817	0,847	83,333	0,650	0,787	72,593	0,667	0,753	71,481	0,742	0,780	76,296	0,817	0,827	82,222
	Undersampling	0,817	0,853	83,704	0,842	0,853	84,815	0,767	0,793	78,148	0,767	0,787	77,778	0,742	0,787	76,667	0,825	0,840	83,333
	ADASYN	0,873	0,844	85,453	0,738	0,920	85,473	0,905	0,907	90,588	0,888	0,880	88,306	0,841	0,822	82,893	0,905	0,871	88,314
Sthere	Boderline	0,865	0,849	85,445	0,746	0,920	85,755	0,794	0,947	89,163	0,849	0,956	91,726	0,833	0,920	88,889	0,858	0,893	88,028
105PH	Smote	0,865	0,858	86,016	0,738	0,929	86,040	0,818	0,933	89,163	0,818	0,929	88,889	0,850	0,849	84,926	0,873	0,907	89,449
Tor	Oversampling	0,865	0,787	81,469	0,714	0,933	85,461	0,834	0,933	89,734	0,873	0,920	90,314	0,779	0,911	86,342	0,802	0,942	89,171
	ADASYN	0,865	0,787 0,794	81,473 77,614	0,738	0,929	86,036 86,534	0,786 0,944	0,929	87,738 98,880	0,841	0,951	91,163 99,680	0,873 0,913	0,880	87,751 99,340	0,834 0,757	0,933	89,738 98,875
	Boderline	0,330	0,794	93,565	0,437	0,800	80,899	0,973	0,991	90,634	0,933	0,999	99,490	0,915	0,997	99,540	0,737	0,998	99,370
nera	Smote	0,173	0,995	96,270	0.896	0,976	97,280	0,951	0,971	97,000	0,978	0,999	99,805	0,957	0,998	99,595	0,937	0,994	99,190
Per	Oversampling	0,782	0,993	98,490	0,896	0,974	97,050	0,949	0,972	97,105	0,987	0,975	97,505	0,972	0,970	96,990	0,947	0,968	96,745
	Undersampling	0,868	0,983	97,855	0,890	0,973	97,010	0,949	0,969	96,820	1,000	0,928	93,953	1,000	0,922	93,488	0,971	0,911	92,093
.x	ADASYN	0,902	0,923	92,969	1,000	0,822	85,116	1,000	0,950	95,814	0,943	0,989	98,140	0,914	0,983	97,209	0,943	0,978	97,209
a syroite	Boderline	1,000	0,967	97,209	1,000	0,933	94,419	1,000	0,978	98,140	1,000	0,967	97,209	0,914	0,950	94,419	0,914	0,961	95,349
Mile.	Smote	0,971 1,000	0,950	95,349 98,605	1,000 1,000	0,928	93,953 94,884	1,000	0,967	97,209	0,943	0,983	97,674	0,886 0,886	0,978 0,961	96,279 94,884	0,886 0,886	0,983 0,944	96,744 93,488
40.	Oversampling Undersampling	0,943	0,983	98,005	1,000	0,939 0,939	94,884	1,000 0,914	0,989	99,070 98,140	0,971	0,742	98,605 70,705	0,886	0,961	69,399	0,886	0,769	72,140
	ADASYN	0,943	0,909	91,755	0,750	0,720	73,959	0,738	0,765	74,747	0,724	0,742	72,659	0,740	0,743	74,086	0,768	0,706	74,613
	Boderline	0,706	0,750	72,142	0,774	0,679	74,090	0,752	0,731	74,483	0,690	0,750	71,107	0,736	0,728	73,318	0,750	0,672	72,272
Pima	Smote	0,730	0,732	73,054	0,772	0,683	74,093	0,744	0,720	73,574	0,752	0,735	74,607	0,748	0,649	71,358	0,730	0,739	73,299
χ.	Oversampling	0,722	0,724	72,275	0,774	0,675	73,960	0,752	0,705	73,574	0,702	0,739	71,481	0,714	0,739	72,266	0,690	0,732	70,445
	Undersampling	0,724	0,694	71,361	0,774	0,694	74,613	0,772	0,713	75,134	0,797	0,884	87,584	0,673	0,919	89,495	0,574	0,931	89,650
	ADASYN	0,795	0,712	74,173	0,925	0,678	70,194	0,940	0,573	60,839	0,701	0,947	92,354	0,620	0,938	90,707	0,552	0,952	91,329
280E	Boderline	0,186 0,395	0,957	88,174	0,879 0,872	0,744	75,695	0,885 0,928	0,614 0,588	63,994 62,067	0,818	0,900 0,945	89,215	0,695	0,918 0,945	89,666	0,689	0,921	89,868
gatific	Smote Oversampling	0,395	0,951 0,938	89,728 90,070	0,872	0,756 0,743	76,721 75,742	0,928	0,588	62,067	0,706 0,895	0,945	92,199 84.755	0,594 0.827	0,945	91,096 82,284	0,707 0.871	0,915 0.826	89,510 83,015
7	Undersampling	0,337	0,938	83.916	0,891	0,743	75,742	0,911	0,594	60,699	0,893	0,943	94,448	0,909	0,822	91.728	0,939	0,820	88,669
	ADASYN	0,848	0,790	80,107	0,834	0,660	70,065	0,995	0,913	93,258	0,924	0,974	96,222	0,889	0,944	93,144	0,945	0,909	91,738
	Boderline	0,915	0,677	73,293	0,889	0,653	70,892	0,990	0,940	95,151	0,919	0,937	93,265	0,895	0,930	92,198	0,900	0,892	89,378
atticle	Smote	0,924	0,708	75,896	0,940	0,643	71,248	0,995	0,921	93,850	0,935	0,972	96,339	0,884	0,961	94,327	0,919	0,900	90,437
40.	Oversampling	0,944	0,705	76,131	0,955	0,644	71,719	0,990	0,943	95,386	0,965	0,943	94,803	0,935	0,923	92,555	0,945	0,843	86,663
	Undersampling	0,940	0,699	75,542	0,945	0,644	71,483	0,995	0,910	93,021	0,950	0,939	94,292	0,971	0,948	95,606	0,992	0,968	97,656

Tabela VI PRÉ-PROCESSAMENTO COM OS MÉTODOS HÍBRIDOS

Base	Métodos		BalanceCascade			EasyEnsemble			SmoteBag			SmoteBoost	
Dase		RecallP	RecallN	Acurácia	RecallP	RecallN	Acurácia	RecallP	RecallN	Acurácia	RecallP	RecallN	Acuráci
	ADASYN	0,920	0,950	94,000	0,960	0,950	96,000	0,990	0,920	94,000	0,950	0,960	96,000
2	Boderline	0,770	0,970	90,000	0,950	0,960	96,000	0,970	0,940	95,000	0,960	0,960	96,000
	Smote	0,880	0,970	94,000	0,970	0,960	96,000	0,990	0,940	96,000	0,940	0,960	95,000
	Oversampling	0,910	0,970	95,000	0,950	0,960	96,000	0,980	0,940	95,000	0,950	0,960	96,000
	Undersampling	0,910	0,970	95,000	0,950	0,940	95,000	0,980	0,940	95,000	0,950	0,950	95,000
	ADASYN	0,280	0,840	61,000	0,520	0,740	64,000	0,810	0,470	61,000	0,600	0,620	61,000
•	Boderline	0,240	0,920	64,000	0,570	0,770	68,000	0,760	0,540	63,000	0,640	0,650	64,000
	Smote	0,070	0,950	58,000	0,500	0,810	68,000	0,800	0,560	66,000	0,600	0,710	66,000
	Oversampling	0,270	0,930	65,000	0,460	0,750	63,000	0,780	0,570	66,000	0,560	0,710	65,000
	Undersampling	0,170	0,950	62,000	0,560	0,730	66,000	0,750	0,600	66,000	0,680	0,670	67,000
	ADASYN	0,570	0,930	89,000	0,680	0,900	87,000	0,910	0,850	85,000	0,710	0,900	88,000
	Boderline	0,510	0,960	91,000	0,680	0,940	91,000	0,850	0,890	88,000	0,680	0,940	91,000
	Smote	0,480	0,980	92,000	0,600	0,940	90,000	0,800	0,890	88,000	0,570	0,960	92,000
	Oversampling	0,510	0,970	92,000	0,710	0,940	91,000	0,880	0,880	88,000	0,710	0,940	91,000
	Undersampling	0,480	0,950	90,000	0,800	0,910	90,000	0,850	0,860	86,000	0,740	0,850	83,000
	ADASYN	0,110	0,940	87,000	0,110	0,870	80,000	0,410	0,720	69,000	0,170	0,920	85,000
	Boderline	0,110	0,960	88,000	0,050	0,930	85,000	0,170	0,900	84,000	0,170	0,950	88,000
	Smote	0,290	0,930	88,000	0,290	0,870	82,000	0,580	0,880	85,000	0,410	0,960	91,000
	Oversampling	0,110	0,970	89,000	0,640	0,880	86,000	0,640	0,750	74,000	0,290	0,940	89,000
	Undersampling	0,230	0,720	68,000 92,000	0,880	0,640	67,000	0,700	0,670	67,000	0,880 0,520	0,650 0,920	67,000 89,000
	ADASYN		0,970				89,000 91,000	0,760		78,000			
	Boderline	0,290 0,290	0,960 0,990	91,000 93,000	0,350 0,410	0,950	91,000	0,410	0,910 0,900	87,000 87,000	0,410 0,350	0,960 0,950	92,000 91,000
	Smote Oversampling	0,290	0,990	93,000	0,410	0,950 0,910	91,000 87,000	0,470 0,820	0,900	87,000 78,000	0,350	0,950	91,000 87,000
	Undersampling	0,330	0,900	90,000 85,000	0,410	0,630	63,000	0,820	0,780	78,000 59,000	0,410	0,620	62,000
	ADASYN	0,230	0,900	71,000	0,580	0,690	66,000	0,520	0,390	68,000	0,600	0,620	68,000
	Boderline	0,140	0,910	71,000	0,580	0,740	68,000	0,610	0,700	70,000	0,500	0,710	70,000
	Smote	0,280	0,900	70,000	0,500	0,740	67,000	0,640	0,730	66,000	0,500	0,780	65,000
	Oversampling	0,160	0,860	70,000	0,550	0,740	69,000	0,580	0,720	68,000	0,590	0,680	66,000
	Undersampling	0,120	0,920	70,000	0,640	0,680	67,000	0,610	0,720	70.000	0,580	0,700	67,000
	ADASYN	0,120	0,960	67,000	0,740	0,810	78,000	0,810	0,740	77,000	0,770	0,800	78,000
	Boderline	0,310	0,980	61,000	0,680	0,850	77,000	0,740	0,750	74,000	0,760	0,770	77,000
	Smote	0,130	0,950	61,000	0,680	0,840	77,000	0,800	0,770	78,000	0,730	0,770	76,000
	Oversampling	0,200	0,980	62,000	0,700	0,820	77,000	0,800	0,760	77,000	0,790	0,800	80,000
	Undersampling	0,100	0,960	57,000	0,680	0,790	74,000	0,800	0,760	77,000	0,800	0,740	77,000
	ADASYN	0,700	0,960	86,000	0.840	0,950	91,000	0,920	0,830	86,000	0,920	0,920	92,000
	Boderline	0,690	0,980	88,000	0,820	0,960	91,000	0,890	0,890	89,000	0,870	0,940	92,000
	Smote	0,690	0,980	88,000	0,800	0,960	90,000	0,900	0,880	89,000	0,840	0,960	92,000
	Oversampling	0,730	0,980	89.000	0,800	0,920	88,000	0,890	0,880	89,000	0.860	0,940	91,000
	Undersampling	0,750	0,930	86.000	0,810	0,900	87,000	0,880	0.890	89,000	0,840	0,960	92,000
	ADASYN	1,00	0,000	3,00	1,00	0,000	3,00	1,00	0,000	3,00	1,00	0,000	3,00
	Boderline	1,00	0,000	3,00	1,00	0,000	3,00	1,00	0,000	3,00	1,00	0,000	3,00
	Smote	1,00	0,000	3,00	1,00	0,000	3,00	1,00	0,000	3,00	1,00	0,000	3,00
	Oversampling	1,00	0,000	3,00	1,00	0,000	3,00	1,00	0,000	3,00	1,00	0,000	3,00
	Undersampling	0,860	0,990	98,000	0,970	0,970	97,000	0,990	0,920	92,000	0,980	0,980	98,000
	ADASYN	0,820	0,980	96,000	0,940	0,950	94,000	0,970	0,930	94,000	1,00	0,960	96,000
	Boderline	0,880	1,00	98,000	0,880	0,980	96,000	0,910	0,980	97,000	0,880	0,970	96,000
	Smote	0,850	0,980	96,000	0,880	0,980	96,000	0,910	0,970	96,000	0,850	0,980	96,000
	Oversampling	0,850	0,970	95,000	0,850	0,960	94,000	0,940	0,930	93,000	0,910	0,940	93,000
	Undersampling	0,940	0,920	93,000	0,940	0,890	90,000	0,910	0,910	91,000	0,910	0,930	93,000
	ADASYN	0,240	0,950	49,000	0,640	0,760	68,000	0,770	0,620	72,000	0,660	0,790	70,000
	Boderline	0,390	0,920	57,000	0,710	0,760	73,000	0,830	0,570	74,000	0,730	0,720	72,000
	Smote	0,490	0,880	62,000	0,730	0,710	72,000	0,800	0,620	74,000	0,800	0,640	74,000
	Oversampling	0,360	0,940	56,000	0,680	0,730	70,000	0,810	0,600	74,000	0,690	0,750	71,000
	Undersampling	0,250	0,960	50,000	0,650	0,760	69,000	0,780	0,650	73,000	0,750	0,720	74,000
	ADASYN	0,460	0,970	92,000	0,650	0,940	91,000	0,980	0,630	67,000	0,690	0,950	93,000
	Boderline	0,540	0,970	92,000	0,610	0,950	92,000	0,930	0,730	75,000	0,690	0,960	94,000
	Smote	0,490	0,970	92,000	0,600	0,960	92,000	0,960	0,680	71,000	0,610	0,970	94,000
	Oversampling	0,510	0,960	92,000	0,670	0,940	92,000	0,970	0,670	70,000	0,700	0,960	93,000
	Undersampling	0,470	0,950	91,000	0,800	0,870	86,000	0,930	0,730	75,000	0,900	0,840	84,000
	ADASYN	0,840	0,960	93,000	0,920	0,940	94,000	0,980	0,840	88,000	0,960	0,950	95,000
	Boderline	0,550	0,980	88,000	0,900	0,960	94,000	0,970	0,890	91,000	0,950	0,970	97,000
	Smote	0,730	0,970	92,000	0,870	0,960	94,000	0,980	0,870	90,000	0,930	0,970	96,000
	Oversampling	0,820	0,960	93,000	0,910	0,940	93,000	0,990	0,820	86,000	0,950	0,960	96,000
	Undersampling	0,640	0,950	88,000	0,940	0,900	91,000	0,970	0,870	90,000	0,960	0,910	92,000

REFERÊNCIAS

- [1] H. He, "Learning from imbalanced data," and Data Engineering, IEEE Transactions, vol. 21, 2009. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5128907
- [2] M. Beckmann, "Algoritmos Genéticos como estratégia de Pré-Processamento em conjunto de dados Desbalanceados," Dissertação de Mestrado, UFRJ, 2010. [Online]. Available: http://objdig.ufrj.br/60/ teses/coppe_m/MarceloBeckmann.pdf
- [3] H. Han, "Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning," Advances in Intelligent Computing, 2005. [Online]. Available: http://www.springerlink.com/ index/5d3mfq0vd7wuh96g.pdf
- [4] N. Chawla and A. Lazarevic, "SMOTEBoost: Improving prediction of the minority class in boosting," *Knowledge Discovery*, 2003. [Online]. Available: http://www.springerlink.com/index/mt1gbpar9akb02a2.pdf
- [5] U. Fayyad and G. Piatetsky-Shapiro, "From data mining to knowledge discovery in databases," 1996. [Online]. Available: http://www.aaai.org/ ojs/index.php/aimagazine/article/viewArticle/1230
- [6] G. E. A. P. A. Batista, "Pré-processamento de Dados em Aprendizado de Máquina Supervisionado," Tese de Doutorado, USP - São Carlos, 2003. [Online]. Available: http://www.teses.usp.br/teses/disponiveis/55/ 55134/tde-06102003-160219/
- [7] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, "A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches," sci2s.ugr.es, 2011. [Online]. Available: http://sci2s.ugr.es/publications/ficheros/2011-Galar-IEEE\TSMCc-Ensembles.pdf
- [8] E. Machado, "Um estudo de limpeza em base de dados desbalanceada e com sobreposição de classes," Dissertação de Mestrado, Universidade de Brasília, 2009. [Online]. Available: http://repositorio.bce.unb.br/ handle/10482/1397
- [9] X.-Y. Liu, J. Wu, and Z.-H. Zhou, "Exploratory undersampling for class-imbalance learning." *IEEE transactions on systems, man, and cybernetics.*, vol. 39, no. 2, Apr. 2009. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19095540
- [10] K. Bowyer, N. Chawla, L. Hall, and W. Kegelmeyer, "SMOTE: synthetic minority over-sampling technique," *Arxiv preprint arXiv*, vol. 16, 2011.
- [11] A. Frank and A. Asuncion, "UCI machine learning repository," 2010. [Online]. Available: http://archive.ics.uci.edu/ml
- [12] H. He, Y. Bai, E. A. Garcia, and S. Li, "ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning," *International Joint Conference on Neural Networks*, 2008.