Daily average air temperature

MIN: -62.22 MAX: 46.11 UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 686

Given that:

at1m: 1m average air temperature; at1.5m: 1m average air temperature; at2m: 2m average air temperature; at3m: 3m average air temperature; max_at: 2m maximum air temperature; min_at: 2m minimum air temperature

If at1.5m, then at2m=at1.5m

If at1m, then

- If there is both at1m and at3m, then o at2m = (at3m at1m)/2 + at1m
- If there is at1m and no at3m, then o at2m = at1m

If there is a max_at and min_at:

• at2m = (max_at - min_at) / 2 + min_at

Daily maximum air temperature

MIN: -66.22 MAX: 46.11 UNITS: degrees DATA TYPE: maximum TIME ZONE: UTC VARIABLEID: 687

Given that:

max_at1m: 1m maximum air temperature; max_at1.5m: 1m maximum air temperature; max_at2m: 2m maximum air temperature temperature; max_at3m: 3m maximum air temperature

If max_at1.5m, then max_at2m is max_at1.5m.

If max at1m, then

- If there is both max_at1m and max_at3m, then
 o max_at2m = (max_at3m max_at1m)/2 + max_at1m
- If there is a max_at1m and no max_at3m, then o max_at2m = max_at1m

Daily minimum air temperature

MIN: -66.22 MAX: 46.11 UNITS: degrees DATA TYPE: minimum TIME ZONE: UTC VARIABLEID: 688

Given that:

min_at1m : 1m minimum air temperature; min_at1.5m : 1m minimum air temperature; min_at2m : 2m minimum air temperature temperature; min_at3m : 3m minimum air temperature

If min_at1.5m, then min_at2m is min_at1.5

If min_at1m, then

- If there is both min_at1m and min_at3m, then o min_at2m = (min_at3m - min_at1m)/2 + min_at1m
- If there is a min_at1m and no min_at3m, then o min_at2m = min_at1m

Daily average discharge

MIN: 0 MAX: UNITS: cms DATA TYPE: average TIME ZONE: UTC VARIABLEID: 689

Calculated average discharge for all available data values.

Daily precipitation

MIN: 0 MAX: 254 UNITS: mm DATA TYPE: total TIME ZONE: UTC VARIABLEID: 690

Calculated total daily precipitation for all available data values.

Daily average relative humidity

MIN: 0 MAX: 100 UNITS: percent DATA TYPE: average TIME ZONE: UTC VARIABLEID: 691

Given that:

at1m: 1m average air temperature; at2m: 2m average air temperature; at3m: 3m average air temperature; rh1m: 1m average relative humidity; rh2m: 2m average relative humidity; rh3m: 3m average relative humidity; dew1m: 1m average dew point temperature; dew2m: 2m average dew point temperature; dew3m: 3m average dew point temperature

If there is only at1m and rh1m, the rh2m is rh1m.

If at1m, at3m, rh1m, rh3m are all available, then

- 1. Calculate dew1m and dew3m:
- LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)+0.4926)/(0.0708-
- 0.00421*LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)) as dew1m
- LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)+0.4926)/(0.0708-
- 0.00421*LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)) as dew3m
- 2. Calculate dew2m:
- (dew3m-dew1m)/2+dew1m = dew2m
- 3. Calculate at2m: (at3m-at1m)/2+at1m = at2m

If the 2m dew point temperature is not higher than the 2m air temperature, then calculate the rh2m using all values in given time period:

Daily average snow depth

MIN: 0 MAX: 12 UNITS: meters DATA TYPE: average TIME ZONE: UTC VARIABLEID: 692

Calculated average snow depth for all available data values.

Daily average snow water equivalent

MIN: 0 MAX: 1200 UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 693

Calculated average snow water equivalent for all available data values.

Daily average water temperature

MIN: MAX: UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 694

Calculated average water temperature for all available data values at the lowest available depth.

Daily average wind direction

MIN: 0 MAX: 360 UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 695

Calculated average wind direction for all available data values that are measured at the maximum sensor height for each timestamp.

1. Create vector components:

x = AVG(Wind Speed * COS(Wind Direction * PI/180))

y = AVG(Wind Speed * SIN(Wind Direction * PI/1 80))

2. Find offsets, used to go from vector back to radial:

if (x > 0 and y > 0) Offset=0

if (x < 0) Offset=180

if (x > 0) and y < 0) Offset=360

3. Calculate average wind direction:

if x <> 0, and x and y are not null

Wind Direction = ARCTAN(y/x)*180/PI + Offset

else if x = 0

Wind Direction = 0

else

Wind Direction = null

Daily average wind speed

MIN: 0 MAX: 50 UNITS: m/s DATA TYPE: average TIME ZONE: UTC VARIABLEID: 696

Calculated average wind speed for all available data values that are measured at the maximum sensor height for each timestamp.

Hourly average air temperature

MIN: -62.22 MAX: 46.11 UNITS: degrees DATA TYPE: TIME ZONE: UTC VARIABLEID: 677

Given that:

at1m: 1m average air temperature; at1.5m: 1.5m average air temperature; at2m: 2m average air temperature; at3m: 3m average air temperature; max_at: 2m maximum air temperature; min_at: 2m minimum air temperature

If at1.5m, then at2m is at1.5m.

If at1m, then

- If there is both at1m and at3m, then
 o at2m = (at3m at1m)/2 + at1m
- If there is at1m and no at3m, then o at2m = at1m

If there is a max_at and min_at:

• at2m = (max_at - min_at) / 2 + min_at

Hourly precipitation

MIN: 0 MAX: 120 UNITS: mm DATA TYPE: total TIME ZONE: UTC VARIABLEID: 678

Calculated total precipitation for all available data values.

Hourly average relative humidity

MIN: 0 MAX: 100 UNITS: percent DATA TYPE: average TIME ZONE: UTC VARIABLEID: 679

Given that:

at1m: 1m average air temperature; at2m: 2m average air temperature; at3m: 3m average air temperature; rh1m: 1m average relative humidity; rh2m: 2m average relative humidity; rh3m: 3m average relative humidity; dew1m: 1m average dew point temperature; dew2m: 2m average dew point temperature; dew3m: 3m average dew point temperature

If there is only at1m and rh1m, the rh2m is rh1m.

If at1m, at3m, rh1m, rh3m are all available, then

- 1. Calculate dew1m and dew3m:
- LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)+0.4926)/(0.0708-
- 0.00421*LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)) as dew1m
- LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)+0.4926)/(0.0708-
- 0.00421*LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)) as dew3m
 - 2. Calculate dew2m:
 - (dew3m-dew1m)/2+dew1m = dew2m
- 3. Calculate at2m: (at3m-at1m)/2+at1m = at2m

If the 2m dew point temperature is not higher than the 2m air temperature, then calculate the rh2m using all values in given time period:

Hourly average snow depth

MIN: 0 MAX: 12 UNITS: meters DATA TYPE: average TIME ZONE: UTC VARIABLEID: 680

Calculated average snow depth for all available data values.

Hourly average snow water equivalent

MIN: 0 MAX: 1200 UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 681

Hourly average wind direction

MIN: 0 MAX: 360 UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 682

Calculated average wind direction for all available data values that are measured at the maximum sensor height for each timestamp.

1. Create vector components:

```
x = AVG(Wind Speed * COS(Wind Direction * PI/180))
```

y = AVG(Wind Speed * SIN(Wind Direction * PI/1 80))

2. Find offsets, used to go from vector back to radial:

```
if (x > 0 \text{ and } y > 0) Offset=0
```

if (x < 0) Offset=180

if (x > 0) and y < 0) Offset=360

3. Calculate average wind direction:

```
if x <> 0, and x and y are not null
```

Wind Direction = ARCTAN(y/x)*180/PI + Offset

else if x = 0

Wind Direction = 0

else

Wind Direction = null

Hourly average wind speed

MIN: 0 MAX: 50 UNITS: m/s DATA TYPE: average TIME ZONE: UTC VARIABLEID: 685

Calculated average wind speed for all available data values that are measured at the maximum sensor height for each timestamp.

Monthly average air temperature, requires at least 10 days to compute avera	age
---	-----

MIN: MAX: UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 697

Calculated average 2m air temperature

Monthly (average	discharge	, rea	uires	at le	east 10) da	vs to	com	pute	averag	e

MIN: MAX: UNITS: cms DATA TYPE: average TIME ZONE: UTC VARIABLEID: 700

Calculated average discharge

Monthly total precipitation, requires at least 10 days to compute monthly total

MIN: MAX: UNITS: mm DATA TYPE: total TIME ZONE: UTC VARIABLEID: 701

Calculated total precipitation

Monthly average relative humidity, requires at least 10 days to compute monthly average

MIN: MAX: UNITS: percent DATA TYPE: average TIME ZONE: UTC VARIABLEID: 707

Given that:

at1m: 1m average air temperature; at2m: 2m average air temperature; at3m: 3m average air temperature; rh1m: 1m average relative humidity; rh2m: 2m average relative humidity; rh3m: 3m average relative humidity; dew1m: 1m average dew point temperature; dew2m: 2m average dew point temperature; dew3m: 3m average dew point temperature

If there is only at1m and rh1m, the rh2m is rh1m.

If at1m, at3m, rh1m, rh3m are all available, then

- 1. Calculate dew1m and dew3m:
- LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)+0.4926)/(0.0708-
- 0.00421*LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)) as dew1m
- LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)+0.4926)/(0.0708-
- 0.00421*LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)) as dew3m
 - 2. Calculate dew2m:
 - (dew3m-dew1m)/2 + dew1m = dew2m
 - 3. Calculate at2m: (at3m-at1m)/2+at1m = at2m

If the 2m dew point temperature is not higher than the 2m air temperature, then calculate the rh2m using all values in given time period:

Monthly	y average sno	w depth, r	equires at	least 1 da	v to com	pute monthl	y average

MIN: MAX: UNITS: meters DATA TYPE: average TIME ZONE: UTC VARIABLEID: 702

Calculated average snow depth

Monthly	y average snow water	equivalent,	requires at least 1 d	ay to com	pute monthly	average

MIN: MAX: UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 721

Calculated average snow water equivalent

Annual average air temperature, requires all 12 months values for average

MIN: MAX: UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 699

Calculated average 2m air temperature

Annual	average	discharge,	requires	all 12	months	values	for	average

MIN: MAX: UNITS: cms DATA TYPE: average TIME ZONE: UTC VARIABLEID: 710

Calculated average discharge

Annual total precipita	ation, requires al	l 12 months values	for annual total
------------------------	--------------------	--------------------	------------------

MIN: MAX: UNITS: mm DATA TYPE: total TIME ZONE: UTC VARIABLEID: 703

Calculated total precipitation

Annual average RH, requires all 12 months values for average

MIN: MAX: UNITS: percent DATA TYPE: average TIME ZONE: UTC VARIABLEID: 708

Calculated average relative humidity

Annual peak discharge, peak May/June data value

MIN: MAX: UNITS: cms DATA TYPE: maximum TIME ZONE: UTC VARIABLEID: 712

Annual peak discharge (May/June)

Annual peak snow depth, peak March/April/May/June data value

MIN: MAX: UNITS: meters DATA TYPE: maximum TIME ZONE: UTC VARIABLEID: 705

Annual peak snow depth (March/April/May/June)

Annual peak snow water equivalent, peak March/April/May/June data valu	Annual	peak snow water	equivalent,	peak March/	April/I	May/June	data valu
--	--------	-----------------	-------------	-------------	---------	----------	-----------

MIN: MAX: UNITS: mm DATA TYPE: maximum TIME ZONE: UTC VARIABLEID: 717

Annual peak snow water equivalent (March/April/May/June)

Average winter air temperature, requires all three months from December thru Februa

MIN: MAX: UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 719

Calculated average 2m winter air temperature (December, January, February)

Average fall air temperature, requires all three months from September to November

MIN: MAX: UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 722

Calculated average 2m fall air temperature (September, October, November)

Average spring air temperature, requires all three months from March to May

MIN: MAX: UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 724

Calculated average 2m spring air temperature (March, April, May)

Average summer air temperature, requires all three months from June to August

MIN: MAX: UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 726

Calculated average 2m summer air temperature (June, July, August)

Average fall precipitation, requires all three months from September to November

MIN: MAX: UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 729

Average fall precipitation (September, Octover, November)

Average winter precipitation, requires all three months from December to February

MIN: MAX: UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 731

Average winter precipitation (December, January, February)

Average spring precipitation, requires all three months from March to May

MIN: MAX: UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 733

Average spring precipitation (March, April, May)

Average summer precipitation, requires all three months from June to August

MIN: MAX: UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 735

Average summer precipitation (June, July, August)

Average summer discharge, requires all three months from June to August

MIN: MAX: UNITS: cms DATA TYPE: average TIME ZONE: UTC VARIABLEID: 737

Calculated average summer discharge (June, July, August)

Average summer relative humidity, requires all three months from June to August

MIN: MAX: UNITS: percent DATA TYPE: average TIME ZONE: UTC VARIABLEID: 739

Given that:

at1m: 1m average air temperature; at2m: 2m average air temperature; at3m: 3m average air temperature; rh1m: 1m average relative humidity; rh2m: 2m average relative humidity; rh3m: 3m average relative humidity; dew1m: 1m average dew point temperature; dew2m: 2m average dew point temperature; dew3m: 3m average dew point temperature

If there is only at1m and rh1m, the rh2m is rh1m.

If at1m, at3m, rh1m, rh3m are all available, then

1. Calculate dew1m and dew3m:

 $\label{log:logical_logical_logical_logical} \begin{subarray}{ll} LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)+0.4926)/(0.0708-0.00421*LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)+0.4926)/(0.0708-0.00421*LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)) as dew3m \begin{subarray}{ll} dew3m & de$

2. Calculate dew2m:

(dew3m-dew1m)/2+dew1m = dew2m

3. Calculate at2m: (at3m-at1m)/2+at1m = at2m

If the 2m dew point temperature is not higher than the 2m air temperature, then calculate the rh2m using all values in given time period:

Average winter relative humidity, requires all three months from December to February

MIN: MAX: UNITS: percent DATA TYPE: average TIME ZONE: UTC VARIABLEID: 741

Given that:

at1m: 1m average air temperature; at2m: 2m average air temperature; at3m: 3m average air temperature; rh1m: 1m average relative humidity; rh2m: 2m average relative humidity; rh3m: 3m average relative humidity; dew1m: 1m average dew point temperature; dew2m: 2m average dew point temperature; dew3m: 3m average dew point temperature

If there is only at1m and rh1m, the rh2m is rh1m.

If at1m, at3m, rh1m, rh3m are all available, then

1. Calculate dew1m and dew3m:

 $\label{log:logical_logical_logical_logical} \begin{subarray}{ll} LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)+0.4926)/(0.0708-0.00421*LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)+0.4926)/(0.0708-0.00421*LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)) as dew3m \begin{subarray}{ll} dew3m & de$

2. Calculate dew2m:

(dew3m-dew1m)/2+dew1m = dew2m

3. Calculate at2m: (at3m-at1m)/2+at1m = at2m

If the 2m dew point temperature is not higher than the 2m air temperature, then calculate the rh2m using all values in given time period:

(0.611 * EXP((17.3 * AVG(dew2m))/(AVG(dew2m) + 237.3))) / (0.611 * EXP((17.3 * AVG(at2m))/(AVG(at2m) + 237.3))) * 100.0 as rh2m

Average annual average air temperature, requires at least five years to compute

MIN: MAX: UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 698

Average of all average annual air temperature

Average annual average discharge, requires at least one year to compute

MIN: MAX: UNITS: cms DATA TYPE: average TIME ZONE: UTC VARIABLEID: 711

Average of all average annual discharge

Average annual average peak discharge, requires at least one year to compute

MIN: MAX: UNITS: cms DATA TYPE: average TIME ZONE: UTC VARIABLEID: 713

Average of all average annual peak discharge

Average annual average peak snow depth, requires at least five years to compute

MIN: MAX: UNITS: meters DATA TYPE: average TIME ZONE: UTC VARIABLEID: 706

Average of all average annual peak snow depth

Average annual average peak snow water equivalent, requires at least five years to compute

MIN: MAX: UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 718

Average of all average annual peak snow water equivalent

Average anni	uai totai preci	ipitation, requires	s at least jive	years to con	присе			
MIN:	MAX:	UNITS: mm	DATA TYPE:	average	TIME ZONE:	UTC	VARIABLEID:	704

Average of all total annual precipitation

Average annual average relative humidity, requires at least five years to compute

MIN: MAX: UNITS: percent DATA TYPE: average TIME ZONE: UTC VARIABLEID: 709

Given that:

at1m: 1m average air temperature; at2m: 2m average air temperature; at3m: 3m average air temperature; rh1m: 1m average relative humidity; rh2m: 2m average relative humidity; rh3m: 3m average relative humidity; dew1m: 1m average dew point temperature; dew2m: 2m average dew point temperature; dew3m: 3m average dew point temperature

If there is only at1m and rh1m, the rh2m is rh1m.

If at1m, at3m, rh1m, rh3m are all available, then

- 1. Calculate dew1m and dew3m:
- LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)+0.4926)/(0.0708-
- 0.00421*LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)) as dew1m

LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)+0.4926)/(0.0708-

- 0.00421*LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)) as dew3m
 - 2. Calculate dew2m:

(dew3m-dew1m)/2 + dew1m = dew2m

3. Calculate at2m: (at3m-at1m)/2+at1m = at2m

If the 2m dew point temperature is not higher than the 2m air temperature, then calculate the rh2m using all values in given time period:

Average annu	ıal average w MAX:		-		es at least fiv average	-	-	VARIABLEID:	720
Average of all a	verage winter	air temp	erature (D	ecember, Janı	uary, February	·)			

Average annual average fall air temperature, requires at least five years to compute

MIN: MAX: UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 723

Average of all average fall air temperature (September, Octover, November)

Average annu MIN:	al average sp MAX:	_	-		s at least five average	-	-	VARIABLEID:	725
Average of all a	verage spring a	air tempe	rature (M	arch, April, Ma	ay)				

Average annual average summer air temperature, requires at least five years to compute

MIN: MAX: UNITS: degrees DATA TYPE: average TIME ZONE: UTC VARIABLEID: 727

Average of all average summer air temperatures (June, July, August)

Average annual average fall precipitation, requires at least five years to comput	Averaae annual (averaae fall	precipitation.	requires at leas	t five	vears to compu
---	------------------	--------------	----------------	------------------	--------	----------------

MIN: MAX: UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 730

Average of all average fall precipitation (September, Octover, November)

Average annual average winter precipitation, requires at least five years to compute

MIN: MAX: UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 732

Average of all average winter precipitation (December, January, February)

Average annual average spring precipitation, requires at least five years to compute

MIN: MAX: UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 734

Average of all average spring precipitation (March, April, May)

Average annual average summer precipitation, requires at least five years to compute

MIN: MAX: UNITS: mm DATA TYPE: average TIME ZONE: UTC VARIABLEID: 736

Average of all average summer precipitation (June, July, August)

Average annual average summer discharge, requires at least five years to compute MIN: MAX: UNITS: cms DATA TYPE: average TIME ZONE: UTC VARIABLEID: 738 Average of all average summer discharge (June, July, August)

Average annual average summer relative humidity, requires at least five years to compute

MIN: MAX: UNITS: percent DATA TYPE: average TIME ZONE: UTC VARIABLEID: 740

Given that:

at1m: 1m average air temperature; at2m: 2m average air temperature; at3m: 3m average air temperature; rh1m: 1m average relative humidity; rh2m: 2m average relative humidity; rh3m: 3m average relative humidity; dew1m: 1m average dew point temperature; dew2m: 2m average dew point temperature; dew3m: 3m average dew point temperature

If there is only at1m and rh1m, the rh2m is rh1m.

If at1m, at3m, rh1m, rh3m are all available, then

- 1. Calculate dew1m and dew3m:
- LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)+0.4926)/(0.0708-
- 0.00421*LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)) as dew1m

LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)+0.4926)/(0.0708-

0.00421*LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)) as dew3m

- 2. Calculate dew2m:
- (dew3m-dew1m)/2 + dew1m = dew2m
- 3. Calculate at2m: (at3m-at1m)/2+at1m = at2m

If the 2m dew point temperature is not higher than the 2m air temperature, then calculate the rh2m using all values in given time period:

Average annual average winter relative humidity, requires at least five years to compute

MIN: MAX: UNITS: percent DATA TYPE: average TIME ZONE: UTC VARIABLEID: 742

Given that:

at1m: 1m average air temperature; at2m: 2m average air temperature; at3m: 3m average air temperature; rh1m: 1m average relative humidity; rh2m: 2m average relative humidity; rh3m: 3m average relative humidity; dew1m: 1m average dew point temperature; dew2m: 2m average dew point temperature; dew3m: 3m average dew point temperature

If there is only at1m and rh1m, the rh2m is rh1m.

If at1m, at3m, rh1m, rh3m are all available, then

1. Calculate dew1m and dew3m:

 $\label{log:logical_logical_logical_logical} \begin{subarray}{ll} LOG((0.611*(EXP((17.3*at1m)/(at1m+237.3))))*rh1m/100)+0.4926)/(0.0708-0.00421*LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)+0.4926)/(0.0708-0.00421*LOG((0.611*(EXP((17.3*at3m)/(at3m+237.3))))*rh3m/100)) as dew3m \begin{subarray}{ll} dew3m & de$

2. Calculate dew2m:

(dew3m-dew1m)/2+dew1m = dew2m

3. Calculate at2m: (at3m-at1m)/2+at1m = at2m

If the 2m dew point temperature is not higher than the 2m air temperature, then calculate the rh2m using all values in given time period: