EE25BTECH11012-BEERAM MADHURI

Question:

Let the vectors \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} be such that $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = \mathbf{0}$. Let A and B be planes determined by the pairs of vectors \mathbf{a} , \mathbf{b} and \mathbf{c} , \mathbf{d} respectively. Then the angle between A and B is

a) 0

b) $\frac{\pi}{4}$

c) $\frac{\pi}{3}$

d) $\frac{\pi}{2}$

1

Solution:

given,

$$(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = 0 \tag{0.1}$$

 \Rightarrow angle between $\mathbf{a} \times \mathbf{b}$ and $\mathbf{c} \times \mathbf{d}$ is 0

$$\therefore \mathbf{a} \times \mathbf{b} \parallel \mathbf{c} \times \mathbf{d} \tag{0.2}$$

Given that,

plane A is determined by **a**, **b** plane B is determined by **c**, **d**

normals to planes A and B:

$$n_A = \mathbf{a} \times \mathbf{b} \tag{0.3}$$

$$n_B = \mathbf{c} \times \mathbf{d} \tag{0.4}$$

Angle between Planes A and B = Angle between Normals n_A and n_B

$$\mathbf{a} \times \mathbf{b} \parallel \mathbf{c} \times \mathbf{d} \tag{0.5}$$

$$\therefore n_A \parallel n_B \tag{0.6}$$

∴
$$planeA \parallel planeB$$
 (0.7)

Hence, Angle between the planes is 0. option (a).

Fig. 0.1: Planes A and B

[H]