AI Planning Exercise Sheet 8

AI Planning Exercise Sheet 8

Date: December 14, 2014

Students: Axel Perschmann, Tarek Saier

Exercise 8.1

Exercise 8.2

Notes:

- $\Pi = \langle V, I, O, \gamma \rangle$ (in FDR) is SAS⁺ iff
 - $\forall o \in O$ have no conditional effects
 - $\forall \chi$ of $o \in O$ and γ are conjunctions of atoms
- $\mathcal{T}(\Pi) = \langle S, L, T, s_0, S_{\star} \rangle$ is the induced transition system of $\Pi = \langle V, I, O, \gamma \rangle$ where
 - S is the set of states over V

 - $T = \{ \langle s, o, t \rangle \in S \times L \times S | app_o(s) = t \}$

 - $-S_{\star} = \{ s \in S | s \models \gamma \}$
- $P \subseteq V$ is a pattern, $\Pi|_P$ denotes Π restricted to the variables in P
- π_P is the projection $S \to S'$ for P, \mathscr{T}^{π_P} denotes the transition system induced by π_P
- two transition systems $\mathscr T$ and $\mathscr T'$ are graph-equivalent $(\mathscr T\overset{G}{\sim}\mathscr T')$ if there exists a bijective function $\phi: S \to S'$ such that
 - $-\phi(s_0) = s'_0$
 - $-s \in S_{\star} \text{ iff } \phi(s) \in S'_{\star}$
 - $\langle s, \ell, t \rangle \in T$ for some $\ell \in L$ iff $\langle \phi(s), \ell', \phi(t) \rangle \in T'$ for some $\ell' \in L'$
- (a) to show: $\mathscr{T}(\Pi|_P) \stackrel{G}{\sim} \mathscr{T}(\Pi)^{\pi_P}$ if Π
 - is an SAS⁺ planning task
 - is not trivially unsolvable
 - has no trivially inapplicable operators

(b)