4.1n维向量空间

主要内容: n 维向量空间的概念

 R^n 的子空间

● 一.n 维向量空间的概念

① 几何空间中:
$$\vec{a} := \overrightarrow{OP} = (a_1, a_2, a_3)$$
 点P的坐标

● 向量的线性运算:

$$\alpha + \beta = (a_1 + b_1, a_2 + b_2, a_3 + b_3),$$

 $k \cdot \alpha = (ka_1, ka_2, ka_3).$

●所有三维向量组成的集合,按上述线性运算,满足:

(1)
$$\alpha + \beta = \beta + \alpha$$
;

(2)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
;

(3)
$$\alpha + \theta = \alpha$$
;

$$(4) \alpha + (-\alpha) = 0;$$

(5) 1
$$\alpha = \alpha$$
;

(6)
$$k(l \alpha) = (kl)\alpha$$
;

(7)
$$k(\alpha + \beta) = k\alpha + k\beta$$
;

(8)
$$(k+l) \alpha = k \alpha + l \alpha$$
.

称这个集合构成一个三维向量空间,记为 R^3 .

● *n* 维向量空间 (*R*ⁿ):

·n 维向量:

$$lpha=(a_1,a_2,\cdots,a_n)$$
 有序数组 n 维行向量 α 的分量

$$n$$
维列向量: $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$

·实(复)向量: 分量为实(复)数

邓良剑

n维向量的实际意义

确定飞机的状态,需要以下6个参数:

• 机身的仰角

 φ $\left(-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}\right)$

• 机翼的转角

- ψ $(-\pi < \varphi \leq \pi)$
- 机身的水平转角 θ $(0 \le \varphi < 2\pi)$
- 飞机重心在空间的位置参数P(x, y, z)

所以,确定飞机的状态,需用6维向量: $a = (x, y, z, \varphi, \psi, \theta)$

• 向量相等:
$$\alpha = (a_1, a_2, ..., a_n), \beta = (b_1, b_2, ..., b_n)$$

$$\alpha = \beta \Leftrightarrow a_i = b_i$$

- 零向量: $\alpha = (0, 0, ..., 0)$
- 负向量: $-\alpha = (-a_1, -a_2, ..., -a_n)$
- R^n : n 维向量的全体.
- n 维向量的线性运算: $\alpha = (a_1, a_2, ..., a_n), \beta = (b_1, b_2, ..., b_n),$

$$\alpha + \beta = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n),$$

 $k \cdot \alpha = (ka_1, ka_2, ..., ka_n), k \in \mathbb{R}.$

加法与数乘满足:

- (1) $\alpha + \beta = \beta + \alpha$;
- (2) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;
- (3) α +0 = α ;
- (4) $\alpha + (-\alpha) = 0$;
- (5) 1 α = α ;
- (6) $k(l\alpha) = (kl)\alpha$;
- (7) $k(\alpha + \beta) = k\alpha + k\beta$;
- (8) $(k + l) \alpha = k\alpha + l\alpha$.

称 R^n 构成 n 维实向量空间.

• 线性方程组与n维向量的线性运算

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases},$$

$$\bullet \quad \mathbf{EP} \quad x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix},$$

•
$$\mathbb{R}$$
 $(\alpha_1, \alpha_2, \cdots, \alpha_n)X = b,$ $AX = b.$

•
$$\mathbb{R}$$
 $x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n = b$,
• \mathbb{R} $(\alpha_1, \alpha_2, \dots, \alpha_n)X = b$,
 $AX = b$.
 $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$

R^n 的子空间

• \Box . R^n 的子空间

●定义

 $\varphi \neq V \subset R^n$, 且 $\forall \alpha$, $\beta \in V$, $k \in R$, 有 $\alpha + \beta \in V$, $k\alpha \in V$, 则称 $V \neq R^n$ 的一个子空间.

例1: 设 $V = \{(x_1, x_2) | x_1 + x_2 = 0\}$, V是否是 R^2 的子空间?

例2: 设 $V = \{(x_1, x_2) | x_1 + x_2 = 1\}$, V是否是 R^2 的子空间?

R^n 的子空间

例3:过坐标原点的平面为 \mathbb{R}^3 的一个子空间; 过坐标原点的空间直线为 \mathbb{R}^3 的一个子空间.

但是:

- ◆ 不经过坐标原点的平面不是 R^3 的一个子空间;
- ◆ 不经过坐标原点的空间直线不是R³的一个子空间.

因为,不存在零元 (0).

学到了什么?

10

n维向量空间的概念

 R^n 的子空间