How to prove a secret isogeny

Luca De Feo

Université Paris Saclay – UVSQ, France

June 4, 2019, CTCrypt, Svetlogorsk

based on joint work with

J. Burdges, S. Galbraith, S. Masson, C. Petit, A. Sanso

Slides online at https://defeo.lu/docet/

Elliptic curves

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve...

What's scalar multiplication?

$$[n]: P \mapsto \underbrace{P + P + \dots + P}_{n \text{ times}}$$

- ullet A map ${m E} o {m E}$,
- a group morphism,
- ullet with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

What's skdallalr/m/l/l/lip/l/cat/i/o/h/ an isogeny?

$$[n]: P \mapsto \underbrace{P + P + \dots + P}_{n \text{ times}}$$

- ullet A map E
 ightarrow E,
- a group morphism,
- ullet with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map E
 ightarrow E,
- a group morphism,
- ullet with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map E o E E',
- a group morphism,
- ullet with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map E o E E',
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map E o E E',
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree $h^2 \# H$.

$$\phi \ : \ P \mapsto \phi(P)$$

- A map $E \to E E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree $h^2 \# H$.

(Separable) isogenies ⇔ finite subgroups:

$$0 o H o E \stackrel{\phi}{ o} E' o 0$$

Isogenies: an example over \mathbb{F}_{11}

$$E': y^2 = x^3 - 4x$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

Isogenies: an example over \mathbb{F}_{11}

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.
- ullet Analogous to $x\mapsto x^2$ in \mathbb{F}_q^* .

$$j = 1728$$

Isogeny graphs

We look at the graph of elliptic curves with isogenies up to isomorphism. We say two isogenies ϕ , ϕ' are isomorphic if:

Example: Finite field, ordinary case, graph of isogenies of degree 3.

The graph of isogenies of prime degree $\ell \neq p$

All graphs are undirected (dual isogeny theorem).

Ordinary case (isogeny volcanoes)

Supersingular case (\mathbb{F}_p)

Supersingular case (\mathbb{F}_{p^2})

- Nodes can have degree 0, 1, 2 or $\ell + 1$.
 - ▶ For $\sim 50\%$ of the primes ℓ , graphs are just isolated points;
 - ► For other ~ 50%, graphs are 2-regular;
 - other cases only happen for finitely many ℓ 's.
- If $\ell = 2$ nodes have degree 1, 2 or 3;
- For $\sim 50\%$ of ℓ , graphs are isolated points;
- ullet For other $\sim 50\%$, graphs are 2-regular;
- The graph is $\ell + 1$ -regular.
- There is a unique (finite) connected component made of all supersingular curves with the same number of points.

Isogeny graphs taxonomy

Complex Multiplication (CM) graphs

- Ordinary / Supersingular (\mathbb{F}_p)
- Superposition of isogeny cycles (one color per degree)
- Isomorphic to Cayley graph of a quadratic class group
- Large automorphism group
- Typical size $O(\sqrt{p})$
- Used in: CSIDH

Full supersingular graphs

- Supersingular (\mathbb{F}_{p^2})
- One isogeny degree
- $(\ell + 1)$ -regular
- Tiny automorphism group
- Size $\approx p/12$
- Used in: SIDH

Post-quantum isogeny primitives

SIDH (Jao, De Feo 2011)

- Pronounce S-I-D-H;
- Based on isogeny walks in the full supersingular graph over \mathbb{F}_{p^2} ;
- Basis for the NIST KEM candidate SIKE;
- Better asymptotic quantum security;
- Short keys, slow.

CSIDH (Couveignes 1996; Rostovtsev, Stolbunov 2006; Castryck, Lange, Martindale, Panny, Renes 2018)

- Pronounce Sea-Side;
- ullet Based on isogeny walks in the supersingular CM graph over \mathbb{F}_p ;
- Straightforward generalization of Diffie–Hellman;
- More "natural" security assumption;
- Shorter keys, slower.

 A set of supersingular elliptic curves over F_p;

- A set of supersingular elliptic curves over F_p;
- A group action by a commutative class group G;

- A set of supersingular elliptic curves over F_p;
- A group action by a commutative class group G;
- Small degree generators of G: degree 2, degree 3, degree 5,...

- A set of supersingular elliptic curves over F_p;
- A group action by a commutative class group G;
- Small degree generators of G: degree 2, degree 3, degree 5,...

Key exchange:

Alice picks secret

$$a=g_2^{a_2}g_3^{a_3}g_5^{a_5}\cdots,$$

- A set of supersingular elliptic curves over F_p;
- A group action by a commutative class group G;
- Small degree generators of G: degree 2, degree 3, degree 5,...

Key exchange:

- Alice picks secret $a = g_2^{a_2} g_3^{a_3} g_5^{a_5} \cdots$,
- Bob picks secret $b = g_2^{b_2} g_3^{b_3} g_5^{b_5} \cdots$,

- A set of supersingular elliptic curves over F_p;
- A group action by a commutative class group G;
- Small degree generators of G: degree 2, degree 3, degree 5,...

Key exchange:

- Alice picks secret
 - $a=g_2^{a_2}g_3^{a_3}g_5^{a_5}\cdots$,
- Bob picks secret $b = g_2^{b_2} g_3^{b_3} g_5^{b_5} \cdots$,
- They exchange $E_A = a * E_1$ and $E_B = b * E_1$,

 E_A

•

• *E*

 $E_R \bullet$

- A set of supersingular elliptic curves over F_p;
- A group action by a commutative class group G;
- Small degree generators of G: degree 2, degree 3, degree 5,...

Key exchange:

- Alice picks secret $a = q_2^{a_2} q_3^{a_3} q_5^{a_5} \cdots,$
- Bob picks secret $b = g_2^{b_2} g_3^{b_3} g_5^{b_5} \cdots$,
- They exchange $E_A = a * E_1$ and $E_B = b * E_1$,
- Shared secret is $E_{AB} = (ab) * E_1 = a * E_B = b * E_A$.

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

- Fix small primes ℓ_A , ℓ_B ;
- No canonical labeling of the ℓ_A and ℓ_B -isogeny graphs; however...

Walk of length
$$e_A$$

Isogeny of degree $\ell_A^{e_A}$

Kernel
$$\langle P \rangle \subset E[\boldsymbol{\ell}_A^{e_A}]$$

$$\ker \phi = \langle P
angle \subset E[\ell_A^{e_A}]$$
 $\ker \psi = \langle Q
angle \subset E[\ell_B^{e_B}]$
 $\ker \phi' = \langle \psi(P)
angle$
 $\ker \psi' = \langle \phi(Q)
angle$

Security assumptions

Isogeny walk problem

Input Two isogenous elliptic curves E, E' over \mathbb{F}_q .

Output A path $E \to E'$ in an isogeny graph.

SIDH problem (1)

Input Elliptic curves E, E' over \mathbb{F}_q , isogenous of degree $\ell_A^{e_A}$.

Output The unique path $E \to E'$ of length e_A in the ℓ_A -isogeny graph.

SIDH problem (2)

- Input Elliptic curves E, E' over \mathbb{F}_q , isogenous of degree $\ell_A^{e_A}$;
 - The action of the isogeny on $E[\ell_R^{e_B}]$.

Output The unique path $E \to E'$ of length e_A in the ℓ_A -isogeny graph.

Why prove a secret isogeny?

Public: Curves E, E'

Secret: An isogeny walk E o E'

Why?

- For interactive identification;
- For signing messages;
- For validating public keys (esp. SIDH);
- More...

Zero knowledge Statistical Computational Quantum resistance Succinctness CSIDH SIDH Pairings

A Σ-protocol from Diffie-Hellman¹

• A key pair (s, g^s) ;

$$g \longrightarrow g^s$$

¹Kids, do not try this at home! Use Schnorr!

A Σ-protocol from Diffie-Hellman¹

- A key pair (s, g^s) ;
- Commit to a random element g^r ;

¹Kids, do not try this at home! Use Schnorr!

A Σ-protocol from Diffie-Hellman¹

- A key pair (s, g^s) ;
- Commit to a random element g^r ;
- Challenge with bit $b \in \{0, 1\}$;

¹Kids, do not try this at home! Use Schnorr!

A Σ -protocol from Diffie–Hellman¹

- A key pair (s, g^s) ;
- Commit to a random element g^r ;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s \mod \#G$;

¹Kids, do not try this at home! Use Schnorr!

A Σ-protocol from Diffie–Hellman¹

- A key pair (s, g^s) ;
- Commit to a random element g^r;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s \mod \#G$;
- Verify that $g^c(g^s)^b = g^r$.

¹Kids, do not try this at home! Use Schnorr!

A Σ-protocol from Diffie–Hellman¹

- A key pair (s, g^s) ;
- Commit to a random element g^r ;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s$ mod #G;
- Verify that $g^c(g^s)^b = g^r$.

Zero-knowledge

Does not leak because: c is uniformly distributed and independent from s.

¹Kids, do not try this at home! Use Schnorr!

A Σ-protocol from Diffie–Hellman¹

- A key pair (s, g^s) ;
- Commit to a random element g^r;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s$ mod #G;
- Verify that $g^c(g^s)^b = g^r$.

Zero-knowledge

Does not leak because: c is uniformly distributed and independent from s.

Unlike Schnorr, compatible with group action Diffie-Hellman.

 $E_1 \xrightarrow{g^s} E_s$ $g^r \nearrow g^{r-s}$ E_r

¹Kids, do not try this at home! Use Schnorr!

The trouble with groups of unknown structure

In CSIDH secrets look like:

$$g^{\vec{s}} = g_2^{s_2} g_3^{s_3} g_5^{s_5} \cdots$$

- the elements g_i are fixed,
- the secret is the exponent vector $\vec{s} = (s_2, s_3, \dots) \in [-B, B]^n$,
- secrets must be sampled in a box $[-B, B]^n$ "large enough"...

The trouble with groups of unknown structure

In CSIDH secrets look like:

$$g^{\vec{s}} = g_2^{s_2} g_3^{s_3} g_5^{s_5} \cdots$$

- the elements g_i are fixed,
- the secret is the exponent vector $\vec{s} = (s_2, s_3, \dots) \in [-B, B]^n$,
- secrets must be sampled in a box $[-B, B]^n$ "large enough"...

The leakage

With \vec{s} , $\vec{r} \stackrel{\$}{\leftarrow} [-B, B]^n$, the distribution of $\vec{r} - \vec{s}$ depends on the long term secret \vec{s} !

The two fixes

Compute the group structure and stop whining

CSI-FiSh: Beullens, Kleinjung and Vercauteren 2019 (eprint:2019/498)

- Already suggested by Couveignes (1996) and Stolbunov (2006).
- Computationally intensive (subexponential parameter generation).
- Decent parameters, e.g.: 263 bytes, 390 ms, @NIST-1.
- Technically not post-quantum.

Do like the lattice people

SeaSign: D. and Galbraith 2019

- Use Fiat-Shamir with aborts (Lyubashevsky 2009).
- Huge increase in signature size and time.
- Compromise signature size/time with public key size (still slow).

Rejection sampling

- Sample long term secret \vec{s} in the usual box $[-B, B]^n$,
- Sample ephemeral \vec{r} in a larger box $[-(\delta + 1)B, (\delta + 1)B]^n$,
- Throw away $\vec{r} \vec{s}$ if it is out of the box $[-\delta B, \delta B]^n$.

Zero-knowledge

Theorem: $\vec{r} - \vec{s}$ is uniformly distributed in $[-\delta B, \delta B]^n$.

Problem: set δ so that rejection probability is low.

Performance

- For λ -bit security, protocol must be repeated λ times in parallel;
- $\delta = \lambda n$ for a rejection probability $\leq 1/3$;
- Signature size $\approx \lambda n$ coefficients $\in [-\delta B, \delta B]$;
- Sign/verify time linear in $\|\vec{r} \vec{s}\|_{\infty} \approx \lambda^2 n^2 B$.

CSIDH instantiation (NIST-1)

```
Parameters: \lambda = 128, n = 74, B = 5;
```

PK size: 64 B

SK size: 32 B

Signature: 20 KiB

Verify time: 10 hours

Sign time: 3× verify

- One key pair (\vec{s}, E_s) ;
- Challenge $b \in \{0, 1\}$;
- Reveal $\vec{r} b\vec{s}$;
- $\rightarrow \lambda$ iterations;

- One key pair (\vec{s}, E_s) ;
- Challenge $b \in \{0, 1\}$;
- Reveal $\vec{r} b\vec{s}$;
- $\rightarrow \lambda$ iterations;

Compromise: t-bit challenges

- $2^{\mathbf{t}}$ key pairs $(\vec{s_i}, E_i)$;
- Challenge $b \in \{0, 2^t\}$;
- Reveal $\vec{r} \vec{s_b}$;
- $\rightarrow \lambda/t$ iterations;

- One key pair (\vec{s}, E_s) ;
- Challenge $b \in \{0, 1\}$;
- Reveal $\vec{r} b\vec{s}$;
- $\rightarrow \lambda$ iterations;
- ightarrow Sample $r \stackrel{\$}{\leftarrow} [-\lambda nB, \lambda nB]$.

Compromise: t-bit challenges

- $2^{\mathbf{t}}$ key pairs $(\vec{s_i}, E_i)$;
- Challenge $b \in \{0, 2^t\}$;
- Reveal $\vec{r} \vec{s_b}$;
- $\rightarrow \lambda/t$ iterations;

- One key pair (\vec{s}, E_s) ;
- Challenge $b \in \{0, 1\}$;
- Reveal $\vec{r} b\vec{s}$;
- $\rightarrow \lambda$ iterations;
- ightarrow Sample $r \stackrel{\$}{\leftarrow} [-\lambda nB, \lambda nB]$.

Compromise: t-bit challenges

- $2^{\mathbf{t}}$ key pairs $(\vec{s_i}, E_i)$;
- Challenge $b \in \{0, 2^t\}$;
- Reveal $\vec{r} \vec{s_b}$;
- $\rightarrow \lambda/t$ iterations;
- \rightarrow Sample $r \stackrel{\$}{\leftarrow} [-\lambda nB/\mathbf{t}, \lambda nB/\mathbf{t}].$

Public key compression

Public key compression

Construct Merkle tree on top of public keys, root is the new public key;

Public key compression

- Construct Merkle tree on top of public keys, root is the new public key;
- Include Merkle proof in the signature.

SeaSign Performance (NIST-1)

	t=1bit challenges	t=16 bits challenges	PK compression
Sig size	20 KiB	978 B	3136 B
PK size	64 B	4 MiB	32 B
SK size	32 B	16 B	1 MiB
Est. keygen time	30 ms	30 mins	30 mins
Est. sign time	30 hours	6 mins	6 mins
Est. verify time	10 hours	2 mins	2 mins
Asymptotic sig size	$O(\lambda^2 \log(\lambda))$	$O(\lambda t \log(\lambda))$	$O(\lambda^2 t)$

Recent speed/size compromises by Decru, Panny and Vercauteren

, a, a					
Sig size	36 KiB	2 KiB	_		
Est. sign time	30 mins	80 s	_		
Est. verify time	20 mins	20 s	_		

A Σ -protocol for SIDH

 $\frac{1}{3}$ -soundness

Secret ϕ of degree $\ell_A^{e_A}$.

A Σ -protocol for SIDH

 $\frac{1}{3}$ -soundness Secret ϕ of degree $\ell_A^{e_A}$.

- $lackbox{0}$ Choose a random point $P \in E[oldsymbol{\ell}_B^{e_B}]$, compute the diagram;
- 2 Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;

 $\frac{1}{3}$ -soundness Secret ϕ of degree $\ell_A^{e_A}$.

- lacktriangle Choose a random point $P \in E[oldsymbol{\ell}_B^{oldsymbol{e_B}}]$, compute the diagram;
- ② Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- The verifier challenges to reveal one out of the 3 sides
 - ▶ Isogenies ψ , ψ' (degree $\ell_B^{e_B}$) unrelated to secret;

 $\frac{1}{3}$ -soundness Secret ϕ of degree $\ell_A^{e_A}$.

- lacktriangle Choose a random point $P \in E[oldsymbol{\ell}_B^{oldsymbol{e_B}}]$, compute the diagram;
- ② Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- The verifier challenges to reveal one out of the 3 sides
 - ▶ Isogenies ψ , ψ' (degree $\ell_B^{e_B}$) unrelated to secret;

 $rac{1}{3}$ -soundness Secret ϕ of degree $\ell_A^{e_A}$.

- lacktriangle Choose a random point $P \in E[oldsymbol{\ell}_B^{oldsymbol{e_B}}]$, compute the diagram;
- ② Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- The verifier challenges to reveal one out of the 3 sides
 - ▶ Isogenies ψ , ψ' (degree $\ell_B^{e_B}$) unrelated to secret;
 - ▶ Isogeny ϕ' conjectured to not reveal useful information on ϕ .

 $\frac{1}{3}$ -soundness

Secret ϕ of degree $\ell_A^{e_A}$.

- **①** Choose a random point $P \in E[\ell_B^{e_B}]$, compute the diagram;
- 2 Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- The verifier challenges to reveal one out of the 3 sides
 - ▶ Isogenies ψ , ψ' (degree $\ell_B^{e_B}$) unrelated to secret;
 - ▶ Isogeny ϕ' conjectured to not reveal useful information on ϕ .

Improving to $\frac{1}{2}$ -soundness

- Reveal ψ, ψ' simultaneously;
- Reveals action of ϕ on $E[\ell_B^{e_B}] \Rightarrow$ Stronger security assumption.

SIDH signature performance (NIST-1)

According to Yoo, Azarderakhsh, Jalali, Jao and Vladimir Soukharev 2017:

Size: $\approx 100KB$,

Time: seconds.

SIDH signature performance (NIST-1)

According to Yoo, Azarderakhsh, Jalali, Jao and Vladimir Soukharev 2017:

Size: $\approx 100KB$, Time: seconds.

Galbraith, Petit and Silva 2017

- Concept similar to CSI-FiSh: exploits known structure of endomorphism ring;
- Statistical zero knowledge (under heuristic assumptions);
- Based on the generic isogeny walk problem (requires special starting curve, though);
- Size/performance comparable to Yoo et al. (and possibly slower).

Weil pairing and isogenies

Theorem

Let $\phi: E \to E'$ be an isogeny and $\hat{\phi}: E' \to E$ its dual. Let e_N be the Weil pairing of E and e'_N that of E'. Then, for

$$e_N(P,\hat{\phi}(Q))=e_N'(\phi(P),Q),$$

for any $P \in E[N]$ and $Q \in E'[N]$.

Corollary

$$e_N'(\phi(P),\phi(Q))=e_N(P,Q)^{\deg\phi}.$$

Refresher: Boneh-Lynn-Shacham (BLS) signatures

Setup:

- Elliptic curve E/\mathbb{F}_p , s.t $N|\#E(\mathbb{F}_p)$ for a large prime N,
- ullet (Weil) pairing $e_N: E[N] imes E[N] o \mathbb{F}_{p^k}$ for some small embedding degree k,
- A decomposition $E[N] = X_1 \times X_2$, with $X_1 = \langle P \rangle$.
- A hash function $H: \{0,1\}^* \to X_2$.

Private key: $s \in \mathbb{Z}/N\mathbb{Z}$.

Public key: *sP*.

Sign: $m \mapsto sH(m)$.

Verifiy: $e_N(P, sH(m)) = e_N(sP, H(m))$.

$$egin{aligned} X_1 imes X_2 & \xrightarrow{\quad [s] imes 1 \ } X_1 imes X_2 \ 1 imes [s] igg| \qquad \qquad igg| e_N \ X_1 imes X_2 & \xrightarrow{\quad e_N \ } \mathbb{F}_{p^k} \end{aligned}$$

US patent 8,250,367 (Broker, Charles and Lauter 2012)

Signatures from isogenies + pairings

- ullet Replace the secret [s]:E o E with an isogeny $\phi:E o E'$;
- Define decompositions

$$E[N] = X_1 \times X_2, \qquad E'[N] = Y_1 \times Y_2,$$

s.t.
$$\phi(X_1) = Y_1$$
 and $\phi(X_2) = Y_2$;

• Define a hash function $H: \{0,1\}^* \to Y_2$.

Pairing proofs: what for?

- Non-interactive, not post-quantum, not zero knowledge;
- Useful for (partially) validating SIDH public keys;
- Succinct: proof size, verification time independent of walk length!

Application: Verifiable Delay Functions

D., Masson, Petit and Sanso 2019 (eprint:2019/166):

- Similar to time-lock puzzles;
- No secret: everything is public;
- Generating proof takes configurable sequential time T;
- Verifying proof takes time independent from T;
- Security assumptions very different and new!
- Applications to blockchains: randomness beacons, consensus protocols, ...

Conclusion

- Different isogeny graphs enable different styles of proofs, different security assumptions.
- Post-quantum isogeny signatures are still far from practical.
- Practical isogeny signatures do exists (CSI-FiSh); you can start using them now if you are an isogeny hippie, but they do not scale.
- Pairing-based proofs are usable, but not interesting for signatures: look into succinctness, instead!
- Tons of open questions on classical and quantum security, on security proofs, and on constructions.
- Proofs can be chained easily: useful for multi-party supersingular curve generation (work in progress with J. Burdges).
- The isogenista dream: a one-pass post-quantum signature scheme based on walks in isogeny graphs.

