<u>Product Demand Prediction (Case Study)</u>

A product company plans to offer discounts on its product during the upcoming holiday season. The company wants to find the price at which its product can be a better deal compared to its competitors. For this task, the company provided a dataset of past changes in sales based on price changes. You need to train a model that can predict the demand for the product in the market with different price segments.

- 1. Product Code
- 2. Wearhouse
- 3. Product_Category
- 4. Date
- 5.Order_Demand

I hope you now understand what kind of problem statements you will get for the product demand prediction task. In the section below, I will walk you through predicting product demand with machine learning using Python.

Product Demand Prediction using Python

Let's start by importing the necessary Python libraries and the dataset we need for the task of product demand prediction:

import pandas as pd

import numpy as np

import plotly.express as px

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

```
df.head()
  Product_Code Warehouse Product_Category
                                 Date Order_Demand
0 Product_0993
             Whse_J
                     Category_028 2012/7/27
1 Product_0979
             Whse_J
                     Category_028 2012/1/19
                                            500
2 Product_0979
                      Category_028
             Whse_J
                                2012/2/3
                                            500
3 Product_0979
             Whse_J
                      Category_028
                                2012/2/9
                                            500
4 Product_0979
             Whse_J
                      Category_028
                               2012/3/2
                                            500
df.shape
(1048575, 5)
df.columns
dtype='object')
df.Product Code.unique()
df.Warehouse.unique()
array(['Whse_J', 'Whse_S', 'Whse_C', 'Whse_A'], dtype=object)
df.Product_Category.nunique()
33
df.dtypes
Product_Code
                    object
                    object
Warehouse
Product_Category
                    object
Date
                    object
Order_Demand
                    object
dtype: object
```

df = pd.read_csv('/content/drive/MyDrive/Historical Product Demand.csv')

```
def check_order_demand(x):
    try:
        int(x)
    except:
        return False
    return True
#Check where Order_demand is not an integer
df[~df.Order_Demand.apply(lambda x: check_order_demand(x))].head(6)
```

```
Product_Code Warehouse Product_Category
                                                          Date Order_Demand
 112290
          Product 2169
                                                       2012/8/9
                          Whse A
                                        Category 024
                                                                          (1)
 112307
          Product 2132
                                                     2012/11/1
                          Whse A
                                        Category_009
                                                                         (24)
 112308
          Product_2144
                          Whse\_A
                                        Category_009 2012/11/1
                                                                         (24)
 112356
          Product_2118
                          Whse_A
                                        Category_009
                                                       2012/3/7
                                                                         (50)
 112357
          Product_2120
                          Whse_A
                                        Category_009
                                                                        (100)
                                                       2012/3/7
 112360 Product_1794
                          Whse_A
                                        Category_024 2012/6/28
                                                                          (1)
def change_to_int(x):
   try:
       return int(x)
   except:
       return int(x[1:-1])
check = '(10)'
change_to_int(check)
```

10

```
\label{eq:df.order_Demand} \mbox{df.Order\_Demand.apply(lambda } x : \mbox{ change\_to\_int}(x) \mbox{ )}
```

df.describe()

Order_Demand

	_
count	1.048575e+06
mean	4.906977e+03
std	2.892678e+04
min	0.000000e+00
25%	2.000000e+01
50%	3.000000e+02
75%	2.000000e+03
max	4.000000e+06

	Code	Warehouse	Category	Date	Demand
0	Product_0993	Whse_J	Category_028	2012/7/27	100
1	Product_0979	Whse_J	Category_028	2012/1/19	500
2	Product_0979	Whse_J	Category_028	2012/2/3	500
3	Product_0979	Whse_J	Category_028	2012/2/9	500
4	Product_0979	Whse_J	Category_028	2012/3/2	500

```
100 * df.isna().sum()[3]/ df.shape[0]
```

1.0718355863910545

```
df = df.dropna()
df.isna().sum()
```

Code 0
Warehouse 0
Category 0
Date 0
Demand 0
dtype: int64

```
df.Date.min(), df.Date.max()
```

```
('2011/1/8', '2017/1/9')
```

```
sns.countplot(x = 'Warehouse', data = df)

<Axes: xlabel='Warehouse', ylabel='count'>
sns.countplot(x = 'Warehouse', data = df)
```



```
# Plot the 5 most popular category
df.Category.value_counts().head(5).plot(kind = 'bar', color = color_pal[2])
plt.xlabel('Category')
plt.show()
 400000
 300000
 200000
 100000
         0
                                          Category_001
                                                                              Category_021
                 Category_019
                                Category_005
```



```
df.Demand.skew()
```

31.432925049321977

```
# Total Demand by Warehouse
warehouse_Demand = df.groupby('Warehouse')['Demand'].sum()
warehouse_Demand
```

Warehouse

Whse_A 147877431 Whse_C 585071404 Whse_J 3363200396 Whse_S 1038024700 Name: Demand, dtype: int64

 $warehouse_Demand.plot(kind = 'barh', ylabel = 'Sum of the demand')$


```
df.groupby('Warehouse')['Demand'].mean().plot(kind = 'barh')
plt.show()
```


df.head()

	Code	Warehouse	Category	Date	Demand
0	Product_0993	Whse_J	Category_028	2012/7/27	100
1	Product_0979	Whse_J	Category_028	2012/1/19	500
2	Product_0979	Whse_J	Category_028	2012/2/3	500
3	Product_0979	Whse_J	Category_028	2012/2/9	500
4	Product_0979	Whse_J	Category_028	2012/3/2	500

```
# features, Target variable
Features = ['day_of_the_week', 'Quarter', 'Month', 'Year', 'Week']
target = ['Demand']
```