AleynikovaEP 20122024-155320

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Коэффициент передачи цепи обратной связи частотно независим и равен 10^1 , а крутизна характеристики управления частотой ГУН равна 1.5 МГп/В. Частота колебаний опорного генератора (ОГ) 240 МГп. Частота колебаний ГУН 2020 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 4.7 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 1255 кГц на 7.9 дБ больше, чем вклад ГУН. Чему равна крутизна характеристики фазового детектора?

Рисунок 1 – Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, Φ Д - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 0.31 В/рад
- 2) 0.46 В/рад
- 3) 0.61 В/рад
- 4) 0.76 В/рад
- 5) 0.91 В/рад
- 6) 1.06 В/рад
- 7) 1.21 В/рад
- 8) 1.36 В/рад
- 9) 1.51 В/рад

Источник колебаний с доступной мощностью -3.6 дБм и частотой 2550 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 150 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 2549.99994 МГц, если спектральная плотность мощности его собственных шумов равна минус 156 дБм/Гц, а полоса пропускания ПЧ установлена в положение 2 Гц?

- 1)-141.8 дБм
- 2) -143.5 дБм
- 3) -145.2 дБм
- 4) -146.9 дБм
- 5) -148.6 дБм
- 6) -150.3 дБм
- 7) -152 дБм
- 8) -153.7 дБм
- 9) -155.4 дБм

Если цепь на рисунке 2 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 7.375 кГц на 5.5 дБ больше, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ на 5 дБ больше, чем вклад ГУН. Известно, что C = 3.4 нФ, а $R_1 = 6914$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 2 – Электрическая схема цепи обратной связи

- $1)3602 \, O_{\rm M}$
- 2) 3625 O_M
- $3)3648 \, \mathrm{OM}$
- 4) $3671 \, \text{Om}$
- $5)3694\,\mathrm{Om}$
- 6) $3717 \, \text{OM}$
- $7)3740 \, O_M$
- 8) 3763 O_M
- 9) 3786 O_M

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением верхней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 4530 М Γ ц и спектральную плотность мощности фазового шума на отстройке 100 к Γ ц минус 127 д $\mathrm{Брад^2/\Gamma}$ ц . Спектральная плотность мощности фазового шума на отстройке 100 к Γ ц второго колебания равна минус 124 д $\mathrm{Бн/\Gamma}$ ц, а частота его равна 9040 М Γ ц. Чему равна спектральная плотность мощности фазового шума синтезированного колебания на отстройке 100 к Γ ц при описанном выше некогерентном синтезе?

- 1)-133 дБн/Гц
- 2)-130 дБн/Гц
- 3) -128.3 дБн/ Γ ц
- 4) -127 дБн/Гц
- 5) -126 дБн/Гц
- 6) -125.3 дБн/Гц
- 7) -123.5 дБн/Гц
- 8) -123 дБн/Гц
- 9) -122.2 дБн/Гц

Источник колебаний и частотой 6590 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 178 дБн/Гц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1679 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 1 Гц, если с доступная мощность на выходе усилителя равна -2.5 дБм?

- 1) -176.1 дБн/ Γ ц
- 2) -176.6 дБн/Гц
- 3) -177.1 дБн/Гц
- 4) -177.6 дБн/ Γ ц
- 5) -178.1 дБн/Гц
- 6) -178.6 дБн/Гц
- 7) -179.1 дБн/Гц
- 8) -179.6 дБн/Гц
- 9) -180.1 дБн/Гц

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Частота колебаний опорного генератора (ОГ) 40 МГц. Частота колебаний ГУН 4040 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 35.3 дБн/Гц для ОГ и плюс 61.9 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 20 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=14.9603, \tau=21.7069$ мкс.

Крутизна характеристики управления частотой ГУН равна 2.2 М Γ ц/В. Крутизна характеристики фазового детектора 1 В/рад.

Рисунок 3 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дB отличается спектральная плотность мощности фазовых шумов на частоте отстройки 181 к Γ ц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза?

- 1) на минус 0.5 дБ
- 2) на минус 0.9 дБ
- 3) на минус 1.3 дБ
- 4) на минус 1.7 дБ
- на минус 2.1 дБ
- 6) на минус 2.5 дБ
- 7) на минус 2.9 дБ
- 8) на минус 3.3дБ
- 9) на минус 3.7 дБ