In claim 38, second line thereof, please insert the degree symbol --°-- between "400" and "C".

- 40. (Amended) A method of making a mesoporous film on a substrate, the method comprising the steps of:
- (a) combining a silica precursor with an aqueous solvent, a catalyst and a surfactant into a precursor solution;
- (b) [depositing said precursor solution in the form of a film onto the substrate; and] dispensing said precursor solution on the substrate;
- (c) [removing the aqueous solvent, said catalyst and said surfactant from the film to form a mesoporous film, said removing being performed by any one or more of the steps including spin-coating, rapid evaporation and calcination] forming a film by rapid evaporation of the solution on the substrate; and
- heating the film on the substrate to a temperature sufficient to decompose the surfactant, thereby producing a mesoporous film on the substrate.
- 49. (Amended) The method of claim 42, wherein [the precursor solution comprises tetraetoxysilane to form a silica thin film on the substrate], to form a silica thin film on the substrate, the precursor solution contains tetraethoxysilane.

In claim 54, second line thereof, delete "low-k".

In claim 55, second line thereof, after "the mesoporous film is a low-k dielectric film" insert --having a dielectric constant of less than approximately 2.5--. HERIZI

In claim 56, twelfth and thirteenth lines thereof, change "ration" to --ratio-- (two instances.

Please add the following new daims 63-71:

- to result in a low-k dielectric constant of less than approximately 2.5.
 - 64. A process to form mesostructured films, comprising:
- (a) preparing a precurso sol containing a soluble source of a metal oxide, water, an organic solvent, surfactant, and an acid or base catalyst, and
- (b) depositing the precursor sol on a substrate wherein evaporation of solvent and water causes the formation of said mesostructured films on the substrate surface wherein said mesostructured films are identified by XRD peaks in the range 2θ -2°-6° hexagonal, cubic, or lamellar electron diffraction patterns.

04