Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$q = \frac{b_2}{b_1} = 2\sqrt{2}$, unde q este rația progresiei geometrice $(b_n)_{n \ge 1}$	2p
	$b_4 = b_1 q^3 = \sqrt{2} \cdot \left(2\sqrt{2}\right)^3 = 32$	3p
2.	Axa Ox este tangentă graficului funcției $f \Leftrightarrow \Delta = 0 \Leftrightarrow 4 - 4m = 0$ m = 1	3p 2p
3.	$3^{x-1}(3^3 - 3 - 6) = 6 \Leftrightarrow 3^{x-1} \cdot 18 = 6 \Leftrightarrow 3^{x-1} = \frac{1}{3}$	3 p
	x-1=-1, deci $x=0$	2p
4.	Mulțimea A are 90 de elemente, deci sunt 90 de cazuri posibile	2 p
	Numărul $2n-60$ aparține mulțimii A dacă $10 \le 2n-60 \le 99$, deci sunt 45 de cazuri favorabile, de unde obținem $p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{45}{90} = \frac{1}{2}$	3 p
5.	$m_{AB} = -\frac{1}{3}$ și, cum $d \perp AB$, obținem $m_d = 3$	2p
	$C(2,3)$ și, cum $C \in d$, obținem că ecuația dreptei d este $y-3=3(x-2)$, adică $y=3x-3$	3 p
6.	AC = AB = 6	2p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC \cdot \sin 120^{\circ}}{2} = \frac{6 \cdot 6 \cdot \frac{\sqrt{3}}{2}}{2} = 9\sqrt{3}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = 0 \cdot 0 - 1 \cdot (-1) =$	3 p
	= 0 + 1 = 1	2 p
b)	$B(3) \cdot B(5) = (3I_2 + iA)(5I_2 + iA) = 15I_2 + 8iA + i^2A \cdot A = 16I_2 + 8iA =$	3p
	$=8(2I_2+iA)=8B(2)$, deci $x=2$	2p
c)	$B(m)+iB(n) = {m+in i-1 \atop -i+1 m+in} \Rightarrow \det(B(m)+iB(n)) = (m+in)^2 - 2i, \text{ unde } m, n \in \mathbb{Z}$	2p
	$B(m)+iB(n)$ nu este inversabilă, deci $\det(B(m)+iB(n))=0 \Rightarrow m^2-n^2+2(mn-1)i=0$ şi, cum m şi n sunt numere întregi, obținem perechile $(-1,-1)$ şi $(1,1)$	3 p
2.a)	$2*5 = 2\cdot 5 - \sqrt{(2-1)(5-1)} =$	3p
	$=10-\sqrt{4}=8$	2p

b)	$x*1 = x \cdot 1 - \sqrt{(x-1)(1-1)} = x$, pentru orice $x \in M$	2p
	$1*x=1\cdot x-\sqrt{(1-1)(x-1)}=x$, pentru orice $x\in M$, deci $e=1$ este elementul neutru al legii de compoziție,,*"	3 p
c)	$((nx)*y)-x(n*y) = x\sqrt{(n-1)(y-1)} - \sqrt{(nx-1)(y-1)} = \sqrt{y-1} \cdot \frac{(x-1)(nx-x-1)}{x\sqrt{n-1} + \sqrt{nx-1}}, \text{ pentru}$	2p
	$x, y \in M $ şi $n \in \mathbb{N}$, $n \ge 2$	
	Cum $nx - x - 1 = x(n-1) - 1$ și $x \ge 1$, n este număr natural, $n \ge 2$, obținem $nx - x - 1 \ge 0$,	2n
	deci $(nx) * y \ge x(n * y)$, pentru orice $x, y \in M$ și orice număr natural $n, n \ge 2$	эp

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\frac{2}{\sqrt{x}} \cdot (x^2 + 3) - 4\sqrt{x} \cdot 2x$	
	$f'(x) = \frac{\frac{2}{\sqrt{x}} \cdot (x^2 + 3) - 4\sqrt{x} \cdot 2x}{(x^2 + 3)^2} =$	3 p
	$= \frac{2x^2 + 6 - 8x^2}{\sqrt{x}(x^2 + 3)^2} = \frac{6(1 - x^2)}{\sqrt{x}(x^2 + 3)^2}, \ x \in (0, +\infty)$	2p
b)	Tangenta la graficul funcției f în punctul $A(a, f(a))$ este paralelă cu axa $Ox \Leftrightarrow f'(a) = 0$,	3p
	$deci 1 - a^2 = 0$	•
	Cum $a \in (0, +\infty)$, obţinem $a = 1$	2p
c)	$f'(x) < 0$, pentru orice $x \in (1, +\infty) \Rightarrow f$ este strict descrescătoare pe $(1, +\infty)$	2p
	$1 < x < x + \frac{1}{x} \Rightarrow f(x) > f\left(x + \frac{1}{x}\right)$, deci $\frac{\sqrt{x}}{x^2 + 3} > \frac{\sqrt{x + \frac{1}{x}}}{x^2 + \frac{1}{x^2} + 5}$, pentru orice $x \in (1, +\infty)$	3р
2.a)	$\int_{0}^{1} e^{x} f(x) dx = \int_{0}^{1} (e^{x} + 2x) dx = (e^{x} + x^{2}) \Big _{0}^{1} =$	3 p
	= e + 1 - 1 = e	2p
b)	$\int_{-1}^{0} f(x) dx = \int_{-1}^{0} (1 + 2xe^{-x}) dx = (x - 2(x + 1)e^{-x}) \Big _{-1}^{0} =$	3 p
	=-2-(-1)=-1	2p
c)	$F'(x) = f(x), \text{ pentru orice } x \in \mathbb{R}, \text{ deci } \int_{0}^{1} F(x) f''(x) dx = F(x) f'(x) \left \frac{1}{0} - \frac{f^{2}(x)}{2} \right _{0}^{1} =$ $= F(1) f'(1) - F(0) f'(0) - \frac{f^{2}(1) - f^{2}(0)}{2}$	3 p
	$f'(x) = 2(1-x)e^{-x}$, deci $f'(1) = 0$ şi, cum $F(0) = 0$, obținem $\int_{0}^{1} F(x)f''(x)dx = \frac{-2(e+1)}{e^{2}}$, deci $a = -2$	2p