LA FONCTION INVERSE A01

Dans tout ce qui suit on utilise la fonction f définie sur $]-\infty$; $0[\cup]0; +\infty[$ par: $f(x) = \frac{1}{x}$

EXERCICE N°1 *limite en* $+\infty$

1) Reproduire et compléter le tableau suivant :

x	10	800	10000	50000	400000	1000000
f(x)						

2) Vers quel nombre semblent se rapprocher les f(x) quand x prend des valeurs positives de plus en plus grandes ?

3) Résoudre dans]0; $+\infty[$ l'inéquation suivante : $\frac{1}{x} < 0,000 \ 001$.

4) Résoudre dans]0; $+\infty[$ l'inéquation suivante : $\frac{1}{x} < \epsilon$ où ϵ est un nombre réel positif. On vient de démontrer que l'on peut rendre f(x) aussi proche de zéro que

l'on veut ($0 < f(x) < \epsilon$) en prenant x suffisamment grand ($x > \frac{1}{\epsilon}$). Autrement dit : $\lim_{x \to 0} f(x) = 0$

EXERCICE N°2 *limite en* $-\infty$

 ϵ se lit epsilon

En vous inspirant de l'exercice n°1, justifiez que $\lim_{x \to \infty} f(x) = 0$

EXERCICE N°3 limite à droite en zéro.

1) Reproduire et compléter le tableau suivant :

х	1	0,1	0,05	0,008	0,0004	0,000001
f(x)						

2) Vers quel nombre semblent se rapprocher les f(x) quand x prend des valeurs positives de plus en plus petites ?

3) Résoudre dans]0; $+\infty[$ l'inéquation suivante : $\frac{1}{x} > 1 000 000$.

4) Résoudre dans]0; $+\infty[$ l'inéquation suivante : $\frac{1}{x} > M$ où M est un nombre réel positif.

On vient de démontrer que l'on peut rendre f(x) aussi grand que l'on veut (f(x) > M) en prenant x suffisamment proche de la droite de zéro $0 < x < \epsilon$).

Autrement dit : $\lim_{x \to +\infty} f(x) = +\infty$

EXERCICE N°4 limite à gauche en zéro

En vous inspirant de l'exercice n°3, justifiez que $\lim_{x\to +\infty} f(x) = -\infty$

LA FONCTION INVERSE A01

Dans tout ce qui suit on utilise la fonction f définie sur $]-\infty$; $0[\cup]0; +\infty[$ par: $f(x) = \frac{1}{x}$

EXERCICE N°1 *limite en* $+\infty$

1) Reproduire et compléter le tableau suivant :

x	10	800	10000	50000	400000	1000000
f(x)						

2) Vers quel nombre semblent se rapprocher les f(x) quand x prend des valeurs positives de plus en plus grandes ?

3) Résoudre dans]0; $+\infty[$ l'inéquation suivante : $\frac{1}{x} < 0,000 \ 001$.

4) Résoudre dans]0; $+\infty[$ l'inéquation suivante : $\frac{1}{x} < \epsilon$ où ϵ est un nombre réel positif. On vient de démontrer que l'on peut rendre f(x) aussi proche de zéro que

l'on veut ($0 < f(x) < \epsilon$) en prenant x suffisamment grand ($x > \frac{1}{\epsilon}$). Autrement dit : $\lim_{x \to 0} f(x) = 0$

EXERCICE N°2 *limite en* $-\infty$

 ϵ se lit epsilon

En vous inspirant de l'exercice n°1, justifiez que $\lim_{x \to \infty} f(x) = 0$

EXERCICE N°3 limite à droite en zéro.

1) Reproduire et compléter le tableau suivant :

х	1	0,1	0,05	0,008	0,0004	0,000001
f(x)						

2) Vers quel nombre semblent se rapprocher les f(x) quand x prend des valeurs positives de plus en plus petites ?

3) Résoudre dans]0; $+\infty[$ l'inéquation suivante : $\frac{1}{x} > 1 000 000$.

4) Résoudre dans]0; $+\infty[$ l'inéquation suivante : $\frac{1}{x} > M$ où M est un nombre réel positif.

On vient de démontrer que l'on peut rendre f(x) aussi grand que l'on veut (f(x) > M) en prenant x suffisamment proche de la droite de zéro $0 < x < \epsilon$).

Autrement dit : $\lim_{x \to +\infty} f(x) = +\infty$

EXERCICE N°4 limite à gauche en zéro

En vous inspirant de l'exercice n°3, justifiez que $\lim_{x\to +\infty} f(x) = -\infty$