

On Taylor series expansion of $(1+z)^A$ for $|z| > 1$

Akhila Raman

University of California at Berkeley, CA-94720. Email: akhila.raman@berkeley.edu. Ph: 510-540-5544

Abstract

It is well known that the Taylor series expansion of $(1+z)^A$ does not converge for $|z| > 1$ where A is a real number which is not equal to zero or a positive integer. A limited series expansion of this expression is obtained in this paper for $|z| > 1$ as a product of convergent series.

Keywords:

1. Introduction

It is well known that the Taylor series expansion of $(1+z)^A$ is given by

$$(1+z)^A = \sum_{n=0}^{\infty} \binom{A}{n} z^n \quad (1)$$

for $|z| < 1$ where $\binom{A}{n}$ is the binomial choose function. It is well known that the series expansion does not converge for $|z| > 1$ where A is a real number which is not equal to zero or a positive integer.

We could obtain a limited series expansion for $|z| > 1$ by writing the above expression as follows

$$(1+z)^A = (1 + \frac{z}{2} + \frac{z}{2})^A = (1 + \frac{z}{2})^A \left(1 + \frac{\frac{z}{2}}{(1 + \frac{z}{2})}\right)^A = (1 + \frac{z}{2})^A \left(1 + \frac{z}{z+2}\right)^A \quad (2)$$

The second term in the above equation has a convergent series representation, given that $|\frac{z}{z+2}| < 1$. If $|\frac{z}{2}| > 1$, we can write

$$(1 + \frac{z}{2})^A = (1 + \frac{z}{4})^A \left(1 + \frac{z}{z+4}\right)^A \quad (3)$$

Repeating this procedure iteratively, if m_0 is the minimum value for which $|\frac{z}{2^{m_0}}| < 1$, we can write

$$(1+z)^A = (1 + \frac{z}{2^{m_0}})^A \prod_{r=1}^{m_0} \left(1 + \frac{z}{z+2^r}\right)^A \quad (4)$$

Each of the terms in the above product of terms has a convergent series representation. Given that we can write the convergent series expansion for each of the terms above as $(1 + \frac{z}{2^{m_0}})^A =$

$\sum_{n=0}^{\infty} \binom{A}{n} \left(\frac{z}{2^{m_0}}\right)^n$ and $(1 + \frac{z}{(z+2^r)})^A = \sum_{m=0}^{\infty} \binom{A}{m} \left(\frac{z}{(z+2^r)}\right)^m$, where $\binom{A}{n}$ represents the Choose function[1], we have the **series expansion for $(1+z)^A$ expressed as a product of convergent series, which converges for $|z| > 1$** as follows:

$$(1+z)^A = [\sum_{n=0}^{\infty} \binom{A}{n} \left(\frac{z}{2^{m_0}}\right)^n] [\prod_{r=1}^{m_0} \sum_{m=0}^{\infty} \binom{A}{m} \left[\frac{z}{z+2^r}\right]^m] \quad (5)$$

2. Section 2

Let us take the case of $m_0 = 1$ for $1 < |z| < 2$. Expanding the term $\frac{1}{(z+2^r)^m}$ in the above equation 5 as Taylor series around a point $z = 0$, we have for $m > 0$

$$\frac{1}{(z+2^r)^m} = \sum_{j=0}^{\infty} b(j, r, m) z^j \quad (6)$$

where $b(0, r, m) = \frac{1}{(2^r)^m}$ and $b(j, r, m)$ is given as follows for $j = 1, 2, 3\dots$

$$b(j, r, m) = \binom{m+j-1}{j} \frac{(-1)^j}{(2^r)^{m+j}}; \quad (7)$$

For $m = 0$, $\frac{1}{(z+2^r)^m} = 1$. Now we can write the the series expansion of $(1+z)^A$ which converges for $1 < |z| < 2$, as a product of terms expanded in Taylor series as follows:

$$(1+z)^A = [\sum_{n=0}^{\infty} \binom{A}{n} \left(\frac{z}{2}\right)^n] [\sum_{m=0}^{\infty} \binom{A}{m} z^m \sum_{j=0}^{\infty} b(j, 1, m) z^j] \quad (8)$$

For the case of $m_0 > 1$ for $|z| > 2$, we can write as follows:

$$(1+z)^A = [\sum_{n=0}^{\infty} \binom{A}{n} \left(\frac{z}{2^{m_0}}\right)^n] [\sum_{m=0}^{\infty} \binom{A}{m} z^m \sum_{j=0}^{\infty} b(j, m_0, m) z^j] [\prod_{r=1}^{m_0-1} \sum_{m=0}^{\infty} \binom{A}{m} z^m \left[\frac{1}{z+2^r}\right]^m] \quad (9)$$

The last term in the above equation $(\frac{1}{z+2^r})^m$ can be expressed as follows:

$$\left(\frac{1}{z+2^r}\right)^m = (z+2^r)^{-m} = 2^{-r*m} (1 + \frac{z}{2^r})^{-m} \quad (10)$$

The term $(1 + \frac{z}{2^r})^{-m}$ can be recursively expanded using Eq.9 by substituting $z \rightarrow \frac{z}{2^r}$ and $A \rightarrow -m$ and $m_0 \rightarrow m_0 - r$ to obtain the series expansion of $(1+z)^A$ which converges for $|z| > 1$ as a product of terms expanded in Taylor series.

3. Section 3

Let us consider the following binomial expression

$$(x + y)^A \quad (11)$$

where A is a real number which is not equal to zero or a positive integer and $z = \frac{x}{y}$ and $|z| > 1$. Writing $(x + y)^A = (1 + \frac{x}{y})^A y^A = (1 + z)^A y^A$, we can write the series expansion of this expression using results obtained in equations 5 and 9 as follows:

$$(x + y)^A = y^A \sum_{n=0}^{\infty} \binom{A}{n} \left(\frac{z}{2^{m_0}}\right)^n \prod_{r=1}^{m_0} \sum_{m=0}^{\infty} \binom{A}{m} \left[\frac{z}{z + 2^r}\right]^m \quad (12)$$

$$(x + y)^A = y^A \left[\sum_{n=0}^{\infty} \binom{A}{n} \left(\frac{z}{2^{m_0}}\right)^n \right] \left[\sum_{m=0}^{\infty} \binom{A}{m} z^m \sum_{j=0}^{\infty} b(j, m_0, m) z^j \right] \left[\prod_{r=1}^{m_0-1} \sum_{m=0}^{\infty} \binom{A}{m} z^m \left[\frac{1}{z + 2^r}\right]^m \right] \quad (13)$$

4. Conclusion

It has been shown that the Taylor series expansion of $(1 + z)^A$ can be expanded as a product of convergent series, for $|z| > 1$ where A is a real number which is not equal to zero or a positive integer.

5. Acknowledgements

The author would like to thank Michael Schlosser(Universitat Wien) for his constructive comments on the paper.

6. References

- [1] Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.