

간편식 제조 공정 최적화와 수요예측을 통한 매출 증대

1. 추진 배경

코로나 19 이후 HMR(Home Meal Replacement) 간편식 시장은 최근 3년 사이 급격히 성장

경쟁 업체 출현 및 수요 급증에 따른 생산 과부하로 불량 제품 비중이 증가하여 매출액이 급락

2. 현상 및 개선기회

간편식 수요의 급증으로 생산 인프라의 과부하 및 불량품 발생의 증가에 따른 납기지연이 지속적으로 발생하는 상황

목표: "완제품 불량률 감소와 리드타임 개선을 통한 전년 대비 매출액 증대"

간편식 제조 프로세스

▋ 제조 공정 별 불량률 및 프로세스

3. 분석 계획

1. 분석 계획

무저	분석계획		
목적	분석방법	분석내용	
목표변수와	Bar chart	불량 건수 빈도 확인 출하 건수 빈도 확인	
	Pie Chart	제품군별 불량률 확인 품목별 출하완료 비율 확인	
주요 설명변수에 대 한 특성 파악	Box Plot	연속형 데이터 이상치 확인 최적의 온도와 압력 확인	
	Histogram	연속형 변수의 분포 확인 최적의 온도와 압력 확인	
	Line Plot	요일 및 시간에 따른 불량, 출하 건수 확인	
	카이제곱 검정	작업장, 요일, 생산라인 별 불량, 리드타임 확인	
불량 여부, 리드타	Shapiro-Wilks test	연속형 변수의 정규성 검정	
임 별 설명변수의 통계적 유의성 확인	2 Sample T-test	제품군별 양품과 불량의 평균 차이 검정	
	Mann-Whitney U test	정규성 검정을 만족하지 못한 변수에 대한 제품군별 양품과 불량의 평균 차이 검정	
불량 여부, 리드타 임 별 예측 모델 개발	Decision Tree	T 0 0 - 1	
	Random Forest	중요인자 도출 데이터를 활용한 예측모델 개발	
	Gradient Boosting	평가 지표를 고려하여 가장 설명력이 높은 모델 선정	
	XG Boosting	710 2074 21 42 10	

2. 정제 계획

- 분석에 필요한 간편식 제조 공정 데이터 사전 이해
- 이상치, 결측치에 대한 적절한 처리 방안 수립

* 이상치

납기일자 날짜 형식이 아닌 항목 제거

수주단가 및 금액이 음수인 항목은

반품된 항목으로 출하완료여부를 Y에서 N으로 대체

- * 결측치: 리드 타임이 음수인 항목 제거
- * 파생변수: KPI 항목인 리드 타임

정제된 총 데이터(1343250 rows * 13 columns)

Booking Data

간편식 공정 관련 품목별

공정 온도, 압력 및 생산시간 관련 정보 데이터

- * 파생변수: 불량유무, 날짜요일
- * 결측치 처리: 결측값 포함 변수 기준 87건 제거
- * 이상치 처리: x

정제된 총 데이터(23178 rows * 14 columns)

Cooking Data

품목별 오류조치시간, 오류조치작업장명 및 오류조치내용 관련 정보데이터

- 및 오류조치내용 관련 정보데이터
 * 파생변수: 오류조치시간 그룹 변수
- * 결측치 처리: 결측값 포함 변수 기준 3건 제거
- * 이상치 처리: x

정제된 총 데이터(1071 rows * 12 columns)

Error Message Data

4. 분석 결과1 - 불량률

1. 제품군별 불량률 확인

제품군	양품건수	불량건수
전체	22,139	1,039
sauce	11,106	519
rice	9,122	428

- 품목에 따른 제품군을 생성
- 제품군 중 sauce와 rice에서 불량건수가 가장 많은 비중을 차지함 (91.2%)

2. 제품군별 불량 발생 시간

13~16 21~24 5~8 17~20 1~4

오류시간클래스

- sauce의 경우 9~12시 사이에 오류가 가장 많이 발생 해당 시간대의 집중모니터링이 필요
- rice 의 경우 시간에 영향을 받지 않음을 확인

밥류와 소스류가 전체 불량의 90% 차지하므로 이를 중점적으로 개선해야 함을 도출

4. 분석 결과1 - 불량률

불량률 개선을 위한 최적조건 도출

불량을 유발하는 Vital Few 도출

1. 충전실 온도

2. 실링 압력

4. 분석 결과1 - 불량률

불량률 개선을 위한 최적조건 도출

불량을 유발하는 Vital Few 도출

3.쿠킹스팀압력

Sauce , Rice 품목 모두 비슷한 핵심인자 최적 조건을 가짐

구분	충전실온도(℃)	실링 압력 (k g/ ㎝)	쿠킹스팀 압력 (kg/대)
최적조건	72 이상	205 이상	23.2 이상

최적조건을 지키지 않은 현재 평균 불량률 : 4.5%

핵심인자들을 최적 범위내로 조절할 시, 평균 불량률을 1% 이내로 관리 가능

4. 분석 결과2 - 리드타임

1. 수주사업장별 건수

수주사업장	건수	비율
С	808,242	78.4%
Α	214,074	20.8%
기타	9,076	0.8%

C, A 사업장이 전체에서 **99.2%** 차지하므로 C,A 사업장 집중 관리 필요

2. 출하미완료와 수주사업장 관계: C사업장 개선기회

- C사업장의 경우 A사업장 대비 출하 미완료 비율이 10배 이상 높음
- C 사업장의 출하 미완료 개선과 리드타임 개선필요

수주사업장	출하 미완료 건수	출하 미완료 비율(%)	평균리드타임(일)
С	5,218	91.4%	1.65
Α	137	8.6%	1.13

3. 요일별 수주수량과 리드타임의 관계

- 수주수량이 많을수록 리드타임이 길어짐(양의 상관관계)
- 그러나 금요일은 수주수량이 가장 낮으나 리드타임은 길다는 것을 확인
- 금요일은, 주말을 앞두고 있으므로 이와 같은 현상이 발생
- 금요일의 수주수량을 미리 예측하여
 예측생산시스템으로 전환한다면 리드타임을 줄일 수 있을것이라 판단

4. 금요일 기준 수주수량 & 리드타임 상위 품목

품목명	수주수량(건)	평균리드타임(일)
60계옛날 양념치킨소스	241,991	3.60
네네토마토케첩 153kg	311,481	6.29
시아스단호박 샐러드(이랜드)	334,029	4.85

- 상위 3개의 품목명을 확인하여 해당품목에 대한 수주수량을 예측
- 예측된 수주 수량을 기준으로 금요일에 원활한 작업을 수행

5. 개선안 및 적용 방안1 - 불량률

불량 여부 분류모델 개발

불량 여부 예측 모델을 개발하고 TestAccurcy, F1-score 가 우수한 모델 XGBoost 선정 생산 전에 불량여부를 예측하여 불량률 개선에 활용

분류 모델 성능 비교 0.9 0.8 0.7 ■ TestAccuracy 0.5 ■ F1-score 0.3 0.2 0.1 LR DT RF XGBoost **Test Accuracy** F1-score Logistic 0.76 0.57 Regression Decision 0.88 0.74 Tree Random Forest 0.89 0.81 **XGBoost** 0.93 0.92

5. 개선안 및 적용 방안2 - 리드타임

리드타임 예측모델 개발

리드타임 예측 모델을 개발하고 RMSE, MAE, R2-SCORE 값이 우수한 모델 XGBoost 선정 리드타임을 예측하여 납기 준수율 개선에 활용

5. 개선안 및 적용 방안2 - 리드타임

금요일 리드타임 큰 품목의 수주량 예측모델 개발

예측생산시스템 전환으로 금요일에 수주수량이 많고, 리드타임이 긴 품목의 수주 수량을 예측하여 금요일의 리드타임을 줄여 전체적인 리드타임을 개선

케첩

5. 개선안 및 적용 방안

관리도 & 모니터링 시스템 구축

이상치제어를 못할시 불량률이 높아지므로 모니터링 필요 충전실온도/실링압력/쿠킹스팀압력을 3 시그마 범위로 관리도를 통해 모니터링을 진행

실시간 데이터 모니터링 시스템 구축

불량 여부에 대해 높은 설명력을 갖는 '쿠킹스팀압력'를 바탕으로 밥 & 소스류에 대한 신속한 불량 처리를 할 수 있는 모니터링 시스템 구축

5. 개선안 및 적용 방안 - 종합성과

불량률 감소를 통한 매출액 증대

모니터링 시스템을 통한 제품별 최적 온도, 압력 관리

- 예측 모델에서 도출된 최적의 환경 적용
- 불량률에 영향을 미치는 핵심인자에 대한 지속적 모니터링 실시
- 불량률 감소를 통해 시간당 생산량 증대
- 대량 생산 가능 환경을 조성하여 매출액 증대
 -> 공정 개선 이후 총 매출액 2%향상 예상

KPI	현수준	공정 개선 후
완제품 불량률(%)	4.7	1.0 이내

리드타임 개선을 통한 매출액 증대

요일별 대량 수주 예측 예측 가능 품목에 대한 방안 마련

- 주기성을 가지는 품목의 경우 수주수량 예측 및 배분을 통한 리드타임 감소
- 수주 수량이 증가하는 추세를 보이는 항목에
 대한 사전준비로 리드타임 감소
- 항목별 리드타임 감소를 통해 생산원가 절감 및 매출액 증대

KPI	현수준	공정 개선 후
리드타임(일)	1.5	1.2 이내