zk-SNARKS

lambda, ThunderDB zeqing.guo@thunderdb.io

March, 2018

Homomorphic Encryption

- Definition: Homomorphic encryption allows computation on ciphertext which, when decrypted, matches the operations as if they had performed on the plaintext
- ▶ An example RSA: $\mathcal{E}(x_1) \cdot \mathcal{E}(x_2) = \mathcal{E}(x_1 \cdot x_2)$, so we have $\mathcal{D}(\mathcal{E}(x_1) \cdot \mathcal{E}(x_2)) = \mathcal{D}(\mathcal{E}(x_1 \cdot x_2)) = x_1 \cdot x_2$

Zero-Knowledge Proof

- ▶ **Definition:** zero-knowledge proof is a method by which one party (*prover*) can prove to another party (*verifier*) that she knows a value *x*, without conveying any information apart from the fact that she knows the value *x*.
- zk-SNARKS are short for succinct non-interactive arguments of knowledge
 - Succinct: the sizes of the message are tiny
 - ▶ Non-interactive: there is no or onlu little interaction
 - Arguments: the verifier is only protected against computationallu limited provers

P and NP

- Polynomial-time programs: programs whose runtime is at most n^k for some k are called "polynomial-time programs"
- ▶ **P** is the class of problems *L* that have polynomial-time programs
- ▶ **NP** is the class of problems *L* that have a polynomial-time program V that can be used to verify a fact given a polynomially-sized so-called witness for that fact.

Quadratic Span Programs

- A Quadratic Span Program (QSP) consists of a set of polynomials and the task is to find a linear combination of those that is a multiple of another given polynomials.
- ▶ A QSP over a field *F* for inputs of length *n* consists of
 - ightharpoonup polynomials $v_0, \ldots, v_m, w_0, \ldots, w_m$ over this field F,
 - a polynomial t over F (the target polynomials)
 - ▶ an injective function $f:(i,j)|1 \le i \le n, j \in 0, 1 \to 1, ..., m$

Quadratic Span Programs (cont.)

- ▶ For each binary input string *u*, the function *f* restricts the polynomials that can be used. For formally:
 - ▶ $a_k, b_k = 1$ if k = f(i, u[i]) for some i, (u[i]) is the ith bit of u)
 - $ightharpoonup a_k, b_k = 0 \text{ if } k = f(i, 1 u[i]) \text{ for some } i$
 - the target polynomials t divides $v_a w_b$ where $v_a = v_0 + a_1 v_1 + \ldots + a_m v_m$ and $w_b = w_0 + b_1 w_1 + \ldots + b_m w_m$
- ▶ If we use $a_1, ..., a_m, b_1, ..., b_m$ as the *NP witness*, then we can see the that it costs polynomial t for all the verifiers to check that t divides $v_a w_b$
 - ▶ This can be facilitated by the prover in providing another polynomial h such that $th = v_a w_b$, so we only need to check $t(s)h(s) v_a(s)w_b(s) = 0$

The zkSNARKS in Detail

Background

- ▶ Ellitic curve can be simply represented like $\mathcal{E}(\S) := g^x$
- ▶ Ellitic curve with pairing function: $e(g^x, g^y) = e(g, g)^{xy}$

Setup

- 1. Verifier generates Common reference string (CRS)
 - ► CRS: a random and secret field element(s) chosen by verifiers
- 2. Verifier generates $\mathcal{E}(f'), \mathcal{E}(f^{\infty}), \cdots, \mathcal{E}(f^{\lceil})$, where d is the max degree of all polynomials in the group
- 3. Verifier generates a random number α and generates $\mathcal{E}(\alpha f'), \mathcal{E}(\alpha f^{\infty}), \cdots, \mathcal{E}(\alpha f^{\lceil})$
- 4. Verifier destroys s, α , β_v , β_w , γ
 - ▶ Verifier uses α to check prover evaluated the polynomial correctly by check $e(\mathcal{E}(\{(f)), g^{\alpha})) = e(\alpha\{(f), g)$

$$\begin{cases} e(\lceil(\{(f)),g^{\alpha}) &= e(g,g)^{\alpha f(s)} \\ e(\alpha\{(f),g) &= e(g,g)^{\alpha f(s)} \end{cases} \to e(\lceil(\{(f)),g^{\alpha}) = e(\alpha\{(f),g)$$

Interaction

- Prover publishes
 - \triangleright v_0, \dots, v_m and w_0, \dots, w_m
 - ▶ †
- Verifier publishes
 - $\blacktriangleright \mathcal{E}(f'), \mathcal{E}(f^{\infty}), \cdots, \mathcal{E}(f^{\lceil})$ and $\mathcal{E}(\alpha f'), \mathcal{E}(\alpha f^{\infty}), \cdots, \mathcal{E}(\alpha f^{\lceil})$
 - $\triangleright \mathcal{E}(\sqcup(f)), \mathcal{E}(\alpha\sqcup(f))$
 - $\triangleright \mathcal{E}(\sqsubseteq_{\prime}(f)), \cdots, \mathcal{E}(\sqsubseteq_{\updownarrow}(f)), \mathcal{E}(\alpha\sqsubseteq_{\prime}(f)), \cdots, \mathcal{E}(\alpha\sqsubseteq_{\updownarrow}(f)),$
 - $\blacktriangleright \mathcal{E}(\supseteq_{\prime}(f)), \cdots, \mathcal{E}(\supseteq_{\updownarrow}(f)), \mathcal{E}(\alpha \supseteq_{\prime}(f)), \cdots, \mathcal{E}(\alpha \supseteq_{\updownarrow}(f)),$
 - $\triangleright \mathcal{E}(\gamma), \mathcal{E}(\beta \sqsubseteq \gamma), \mathcal{E}(\beta \boxminus \gamma)$
 - $\triangleright \ \mathcal{E}(\beta_{\sqsubseteq} \sqsubseteq_{\infty}(f)), \cdots, \mathcal{E}(\beta_{\sqsubseteq} \sqsubseteq_{\updownarrow}(f))$
 - $\blacktriangleright \ \mathcal{E}(\beta_{\square} \square_{\infty}(f)), \cdots, \mathcal{E}(\beta_{\square} \square_{\updownarrow}(f))$
 - $\triangleright \ \mathcal{E}(\beta \sqsubseteq \sqcup (f)), (E(\beta_w t(s)))$

Proof

- ▶ The indices that are not restricted in $f:(i,j)|1 \le i \le n, j \in 0, 1 \to 1, \cdots, m$ with $a_1, \cdots, a_m, b_1, \cdots, b_m$ are called I_{free}
- $ightharpoonup v_{free}(x) = \sum_{k \in I_{free}} a_k v_k$
- $v_{in}(x) = \sum_{k \in (I \setminus I_{free})} a_k v_k$

Prover generates a proof for verifiers.

- $\blacktriangleright V_{free} := \mathcal{E}(\sqsubseteq_{\{\nabla\rceil\rceil}(f)), W := \mathcal{E}(\sqsupseteq(f)), H := \mathcal{E}(\langle(f))$
- $\qquad \qquad V'_{\text{free}} := \mathcal{E}(\alpha \sqsubseteq_{\{\nabla\rceil\rceil}(f)), W' := \mathcal{E}(\alpha \sqsupseteq (f)), H' := \mathcal{E}(\alpha \lang (f))$
- $Y := \mathcal{E}(\beta \sqsubseteq \sqsubseteq_{\{\nabla\}\}} (f) + \beta \sqsubseteq \supseteq (f))$

Verification

Verifiers verify the proof as follows:

- 1. $e(V'_{free}, g) = e(V_{free}, g^{\alpha})e(W', \mathcal{E}(\infty)) = e(W, \mathcal{E}(\alpha)), e(H', \mathcal{E}(\infty)) = e(H, \mathcal{E}(\alpha))$
- 2. $e(\mathcal{E}(\gamma), Y) = e(\mathcal{E}(\beta_{\square}\gamma), V_{free})e(\mathcal{E}(\beta_{w}\gamma), W)$
- 3. $e(\mathcal{E}(v_0(s))\mathcal{E}(v_{in}(s))\overline{V}_{free},\mathcal{E}(w_0(s))W) = e(H,\mathcal{E}(t(s)))$
 - ► This checks that $(v_0(s) + a_1v_1(s) + \cdots + a_mv_m(s))(w_0(s) + b_1w_1(s) + \cdots + b_mw_m(s)) = h(s)t(s)$