PROBLEM STATEMENT:- TO PREDICT THE RAINFALL BASED ON VARIOUS FEATURES OF THEDATASET

IMPORTING THE ESSENTIAL LIBRARIES

In [3]:

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
```

In [4]:

df=pd.read_csv(r"C:\Users\shaik\Desktop\202U1A3344\rainfall in india 1901-2015.csv")
df

Out[4]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNU
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	337:
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	295
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	307!
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1530
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	140
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	139
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642
4116 rows × 19 columns															

DATA PREPROCESSING

In [5]:

df.head()

Out[5]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	1
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	1
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	1
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	1
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	
4																•

In [6]:

df.tail()

Out[6]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9
4															>

In [7]:

```
df.isnull().any()
```

Out[7]:

SUBDIVISION False False YEAR JAN True FEB True MAR True APR True True MAY True JUN JUL True AUG True SEP True OCT True NOV True DEC True ANNUAL True Jan-Feb True Mar-May True Jun-Sep True Oct-Dec True dtype: bool

In [8]:

```
df.fillna(method='ffill',inplace=True)
df.isnull().sum()
```

Out[8]:

SUBDIVISION	0
YEAR	0
JAN	0
FEB	0
MAR	0
APR	0
MAY	0
JUN	0
JUL	0
AUG	0
SEP	0
OCT	0
NOV	0
DEC	0
ANNUAL	0
Jan-Feb	0
Mar-May	0
Jun-Sep	0
Oct-Dec	0
dtype: int64	

In [9]:

```
df.describe()
```

Out[9]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	
count	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4110
mean	1958.218659	18.957240	21.823251	27.415379	43.160641	85.788994	230.567979	347.177235	291
std	33.140898	33.576192	35.922602	47.045473	67.816588	123.220150	234.896056	269.321089	18
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	0.000000	(
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.475000	175.900000	15
50%	1958.000000	6.000000	6.700000	7.900000	15.700000	36.700000	138.900000	284.800000	25!
75%	1987.000000	22.200000	26.800000	31.400000	50.125000	97.400000	306.150000	418.325000	37
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2362.800000	1664
4									•

In [10]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):
                 Non-Null Count Dtype
#
    Column
---
     SUBDIVISION 4116 non-null
                                 object
0
    YEAR
                 4116 non-null
                                 int64
1
                 4116 non-null
                                 float64
    JAN
2
    FEB
                 4116 non-null
                                 float64
3
4
    MAR
                 4116 non-null
                                 float64
 5
    APR
                 4116 non-null
                                 float64
 6
    MAY
                 4116 non-null
                                 float64
7
    JUN
                 4116 non-null
                                 float64
                                 float64
                 4116 non-null
8
     JUL
                 4116 non-null
                                 float64
9
    AUG
    SEP
                 4116 non-null
                                 float64
10
                 4116 non-null
11
    OCT
                                 float64
12 NOV
                 4116 non-null
                                 float64
13 DEC
                 4116 non-null
                                 float64
14 ANNUAL
                 4116 non-null
                                 float64
                 4116 non-null
15 Jan-Feb
                                 float64
                 4116 non-null
                                 float64
16 Mar-May
17 Jun-Sep
                 4116 non-null
                                 float64
18 Oct-Dec
                 4116 non-null
                                 float64
dtypes: float64(17), int64(1), object(1)
memory usage: 611.1+ KB
```

In [11]:

df.columns

Out[11]:

```
In [12]:
df.shape
Out[12]:
(4116, 19)
In [13]:
df['ANNUAL'].value_counts()
Out[13]:
790.5
          4
770.3
          4
1836.2
          4
1024.6
         4
         3
1926.5
443.9
         1
689.0
         1
605.2
509.7
1642.9
Name: ANNUAL, Length: 3712, dtype: int64
In [14]:
df['Jan-Feb'].value_counts()
Out[14]:
       238
0.0
         80
0.1
0.2
         52
0.3
         38
0.4
         32
23.3
         1
95.2
         1
76.9
         1
66.5
         1
69.3
         1
Name: Jan-Feb, Length: 1220, dtype: int64
In [15]:
df['Mar-May'].value_counts()
Out[15]:
0.0
         29
0.1
         13
0.3
         11
8.3
         11
11.5
         10
         . .
246.3
248.1
         1
151.3
         1
249.5
         1
223.9
          1
Name: Mar-May, Length: 2262, dtype: int64
```

```
In [16]:
```

```
df['Jun-Sep'].value_counts()
```

Out[16]:

```
434.3
          4
334.8
          4
573.8
          4
613.3
          4
1082.3
          3
301.6
         1
380.9
         1
409.3
         1
229.4
958.5
          1
```

Name: Jun-Sep, Length: 3683, dtype: int64

In [17]:

```
df['Oct-Dec'].value_counts()
```

Out[17]:

```
0.0
         16
0.1
         15
0.5
         13
0.6
         12
0.7
         11
         . .
191.5
         1
124.5
          1
139.1
          1
41.5
          1
555.4
          1
Name: Oct-Dec, Length: 2389, dtype: int64
```

EXPLORATARY DATA ANALYSIS:

In [18]:

```
df=df[['JAN','FEB','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```



```
In [19]:

df.columns

Out[19]:
Index(['JAN', 'FEB', 'MAR', 'APR', 'DEC'], dtype='object')

In [20]:

x=df[["FEB"]]
y=df["JAN"]
```

Now we are fitting our data to all models

Linear Regression

```
In [21]:
```

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=44)
```

In [23]:

```
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(X_train,y_train)
print(reg.intercept_)
coeff_=pd.DataFrame(reg.coef_,x.columns,columns=['coefficient'])
coeff_
```

9.892556121805407

Out[23]:

coefficient

FEB 0.403596

In [24]:

```
score=reg.score(X_test,y_test)
print(score)
```

0.2383295717256828

In [26]:

```
predictions=reg.predict(X_test)
plt.scatter(y_test,predictions)
```

Out[26]:

<matplotlib.collections.PathCollection at 0x1c2330b3bb0>

In [27]:

```
df500=df[:][:500]
sns.lmplot(x="FEB",y="JAN",order=2,ci=None,data=df500)
plt.show()
```


In [29]:

```
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
reg.fit(X_train,y_train)
reg.fit(X_test,y_test)
```

Out[29]:

LinearRegression()

```
In [31]:
```

```
y_pred=reg.predict(X_test)
plt.scatter(X_test,y_test,color='black')
plt.plot(X_test,y_pred,color='r')
plt.show()
   3631 # GH#42269
File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:5637, in Index._check_index
ing_error(self, key)
   5633 def _check_indexing_error(self, key):
   5634
            if not is_scalar(key):
   5635
                # if key is not a scalar, directly raise an error (the code below
   5636
                # would convert to numpy arrays and raise later any way) - GH29926
-> 5637
                raise InvalidIndexError(key)
InvalidIndexError: (slice(None, None, None), None)
 600
 500
 400
```

In [33]:

300

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 Score:",r2)
```

R2 Score: 0.18265421008098348

ridge model:

In [34]:

```
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
features= df.columns[0:5]
target= df.columns[-5]
```

In [35]:

```
x=np.array(df['JAN']).reshape(-1,1)
y=np.array(df['FEB']).reshape(-1,2)
```

In [36]:

```
x= df[features].values
y= df[target].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=18)
```

In [37]:

```
ridgeReg=Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge=ridgeReg.score(x_train,y_train)
test_score_ridge=ridgeReg.score(x_test,y_test)
```

In [38]:

```
print("\n Ridge Model:\n")
print("the train score for ridge model is{}".format(train_score_ridge))
print("the test score for ridge model is{}".format(test_score_ridge))
```

Ridge Model:

the train score for ridge model is0.99999999984547 the test score for ridge model is0.999999999809215

In [39]:

```
lr=LinearRegression()
```

In [40]:

```
plt.figure(figsize= (10,10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color="red",label="ridge
plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green",label="lineraRegression"
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


LASSO MODEL:

In [41]:

```
lasso=Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is{}".format(test_score_ls))
```

The train score for ls model is 0.9999116675344395 The test score for ls model is 0.9999116271603994

In [42]:

```
pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")
```

Out[42]:

<AxesSubplot:>

In [43]:

```
from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_train,y_train)
print(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))
```

- 0.99999999999911
- 0.99999999999911

In [44]:

```
plt.figure(figsize= (10,10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color="red",label="Ridge
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label="Lasso")
plt.plot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green",label="LinearRegression")
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


ELASTIC NET

In [45]:

```
from sklearn.linear_model import ElasticNet
eln=ElasticNet()
eln.fit(x,y)
print(eln.coef_)
print(eln.intercept_)
print(eln.score(x,y))
```

```
[9.99098574e-01 0.00000000e+00 3.02728910e-05 0.00000000e+00 0.00000000e+00]
0.016258606966616185
0.9999992160905338
```

In [51]:

```
y_pred_elastic = eln.predict(x_train)
mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
print(mean_squared_error)
```

0.0008307258312266487

CONCLUSION:

In []:

Here we concluded that with respect to all other models we getting LassoModel for best accuracy