Robótica Móvil un enfoque probabilístico

Locomoción sobre ruedas

Ignacio Mas

Locomoción sobre ruedas

Locomoción: Capacidad de moverse de un lugar a otro

- Accionamiento Diferencial (AmigoBot, Pioneer 2)
- Automóvil (dirección tipo Ackerman)
- Accionamiento Síncrono (B21)
- XR4000
- Ruedas Mecanum (Omniruedas)

Las ruedas también pueden girar alrededor del eje z

Centro de Curvatura Instantáneo (ICC)

 Para que haya rodamiento, cada rueda debe moverse en la dirección de su eje "y"

Accionamiento diferencial

Acc. Diferencial: Cinemática directa

Acc. Diferencial: Cinemática directa

Dirección tipo Ackermann

Dirección tipo Ackermann

$$R = \frac{d}{\tan \varphi}$$

$$\omega(R+l/2) = v_r$$
$$\omega(R-l/2) = v_l$$

$$\omega(R-l/2)=v$$

$$R = \frac{l}{2} \frac{(v_l + v_r)}{(v_r - v_l)}$$

$$\omega = \frac{v_r - v_l}{l}$$

Accionamiento Síncrono

$$x(t) = \int_{0}^{t} v(t') \cos[\theta(t')]dt'$$

$$y(t) = \int_{0}^{t} v(t') \sin[\theta(t')]dt'$$

$$\theta(t) = \int_{0}^{t} \omega(t') dt'$$

XR4000

$$x(t) = \int_{0}^{t} v(t') \cos[\theta(t')]dt'$$

$$y(t) = \int_{0}^{t} v(t') \sin[\theta(t')]dt'$$

$$\theta(t) = \int_{0}^{t} \omega(t') dt'$$

XR4000

Ruedas Mecanum

$$v_{y} = (v_{0} + v_{1} + v_{2} + v_{3})/4$$

$$v_{x} = (v_{0} - v_{1} + v_{2} - v_{3})/4$$

$$v_{\theta} = (v_{0} + v_{1} - v_{2} - v_{3})/4$$

$$v_{error} = (v_{0} - v_{1} - v_{2} + v_{3})/4$$

Ejemplo

Plataforma Kuka OmniRob

Omnibot de 3 ruedas

$$\begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \end{bmatrix} = \frac{1}{R} \begin{bmatrix} -\sin(\delta + \phi) & \cos(\delta + \phi) & L \\ -\sin(\delta - \phi) & -\cos(\delta - \phi) & L \\ \cos(\phi) & \sin(\phi) & L \end{bmatrix} \begin{bmatrix} \dot{x}_{m} \\ \dot{y}_{m} \\ \dot{\phi} \end{bmatrix}$$

Vehículos tipo oruga

Otros Robots: OmniTread

[cortesía de Johann Borenstein]

Restricciones No-Holonómicas

- Las restricciones no-holonómicas limitan los posibles movimientos incrementales dentro del espacio de configuración del robot.
- Robots con accionamiento diferencial o síncrono se mueven en trayectorias circulares y no pueden moverse lateralmente.
- Robots con ruedas Mecanum pueden moverse lateralmente (no tienen restricciones noholonómicas).

Holonómica vs. No-Holonómica

- Restricciones no-holonómicas reducen el espacio de control a la configuración actual
 - no es posible moverse lateralmente
- Restricciones holonómicas reducen el espacio de configuración.
 - E.g., un tren sobre vías (no todas las posiciones y orientaciones son posibles)

Accionamiento con restricciones no-holonómicas

- Síncrono
- Diferencial
- Tipo Ackermann

Accionamiento sin restricciones no-holonómicas

- Ruedas Mecanum
- XR4000

Dead Reckoning y Odometría

 Estimación del movimiento basado en los comandos de control o lecturas de los encoders en las ruedas

Integración en el tiempo

Resumen

- Introdujimos diferentes tipos de accionamiento para robots con ruedas
- Ecuaciones para describir el movimiento de los accionamientos básicos dada la velocidad de las ruedas
- Restricciones no-holonómicas
- Odometría y dead-reckoning