Aufgabe 24

- (a) Es gilt $M_12 = \mathbb{C}\Delta + \mathbb{C}G_4^3$. Daher lässt sich jede Modulform in M_{12} in der Form $f = \alpha\Delta + \beta G_4^3$ schreiben. Es gilt $G_4(a) = 0 \Leftrightarrow a = \rho$ und $\Delta(a) = 0 \Leftrightarrow a = i\infty$. Für $a = \rho$ wähle daher $\alpha = 0, \beta = 1$. Dann ist $f(\rho) = 0 \cdot \Delta(\rho) + G_4^3(\rho) = 0$. Sonst wähle $\beta = \Delta(a)$ und $\alpha = -G_4^3(a)$. Dann gilt $f(a) = -G_4^3(a) \cdot \Delta(a) + \Delta(a) \cdot G_4^3(a) = 0$.
- (b) Besitzt f keine Nullstellen in \mathbb{H} , so muss nach der $\frac{k}{12}$ -Formel bereits $v_{i\infty}(f)=\frac{k}{12}$ gelten. Insbesondere ist also $k\in 12\mathbb{Z}$. Die Funktion $g=\frac{f}{\Delta\frac{1}{12}}$ ist holomorph auf \mathbb{H} als Quotient zweier holomorpher Funktionen, die keine Nullstellen in \mathbb{H} besitzen. Die Nullstellenordung am Punkt $i\infty$ ist bei beiden Funktionen identisch, sodass $\lim_{z\to i\infty}g(z)=c$ gilt. Insbesondere ist die Funktion also beschränkt auf der Fundamentalmenge. Wegen $g(M\langle z\rangle)=\frac{(cz+d)^{-k}}{(cz+d)^{-k}}g(z)=g(z)$ ist g daher eine Modulform vom Gewicht 0 und es gilt $g\equiv c$, also $f=c\Delta^{k/12}$.

Aufgabe 25

(a) Es gilt $T\langle z\rangle=\frac{z+1}{1}=z+1$ und $S\langle z\rangle=\frac{-1}{z}$. Liegt ein Punkt bereits in $\overline{\mathcal{F}}$, so wählen wir $M=(ST)^3=-E_2$. Ein Punkt in der komplexen oberen Halbebene kann sonst durch iteriertes Anwenden von T in den Streifen $|\Re(\tau)\leq 1/2|$ gebracht werden. Beachte

$$\Im(M\langle \tau \rangle) = \frac{\Im(\tau)}{|c\tau + d|^2}.$$

Völlig analog zum Beweis im Skript folgt nun, dass die Menge $\{\Im(M\langle\tau\rangle)|M\in \mathrm{SL}(2,\mathbb{Z})\}$ ein Maximum besitzt. Sei o.B.d.A. $\Im(\tau)$ dieses Maximum und durch Translation sei o.B.d.A. auch $|\Re(\tau)| \leq 1/2$. Der Vergleich von $\Im(\tau) \geq \Im(S\langle\tau\rangle)$ zeigt dann $\Im(\tau) \geq \Im(\tau)/|\tau|^2$. Daher besitzt jeder $\mathrm{SL}(2,\mathbb{Z})$ -Orbit in \mathbb{H} einen Repräsentanten im Bereich $\overline{\mathcal{F}}$, definiert durch

$$|\Re(\tau)| \le 1/2$$
 , $|\tau| \ge 1$.

(b) Wegen

$$\Im(M\langle \tau \rangle) = \frac{\Im(\tau)}{|c\tau + d|^2}.$$

ist $\Gamma\langle\tau\rangle\in\mathbb{H}\ \forall\tau\in\mathbb{H}$. Nach Teilaufgabe a existiert daher ein M mit $MA\tau\in\overline{\mathcal{F}}$.

- (c) In der Vorlesung wurde gezeigt, dass \mathcal{F} ein genauer Fundamentalbereich ist. Daher ist $MA\langle \tau \rangle \notin \mathcal{F}$ für ein beliebiges $\tau \in \mathcal{F}$ und $MA \notin \{\pm E_2\}$. Das ist nur dann möglich wenn $\tau' := MA\langle \tau \rangle \in \mathcal{F}^c \cap \overline{\mathcal{F}}$, also
 - (a) $\Re(\tau') = \frac{1}{2}$ oder
 - (b) $|\tau| = 1 \text{ und } \Re(\tau) > 0.$

Im ersten Fall gilt dann aber $T\langle \tau'-1\rangle = \tau'$ mit $\tau'-1 \in \mathcal{F}$ und weil \mathcal{F} ein genauer Fundamentalbereich ist folgt daraus $\tau = \tau'-1 \implies \Re(\tau) = \frac{1}{2} \implies \tau \in \partial F$. Im zweiten Fall gilt $S\langle -\overline{\tau'}\rangle = \frac{1}{\tau'} = \frac{\tau'}{|\tau'|^2} = \tau'$ und weil \mathcal{F} ein genauer Fundamentalbereich ist folgt daraus $\tau = -\overline{\tau'}$.

Das kann aber beides nicht sein, da τ als innerer Punkt von $\mathcal F$ gewählt war. Also muss $MA\langle \tau \rangle = \tau$ gelten und $MA \in \{\pm E_2\}$. $-E_2$ ist in $\tilde \Gamma$ enthalten. Angenommen, $E_2 \notin \tilde \Gamma$. Wähle dann $A = -E_2$. Dann gilt $M \cdot -E_2 = -E_2 \implies M = E_2 \in \tilde \Gamma$. Das ist ein Widerspruch, also liegt auch E_2 in $\tilde \Gamma$. Insbesondere gilt daher $\forall A \in \Gamma \colon A^{-1} \in \tilde \Gamma$ und damit $\tilde \Gamma = \Gamma$.