Практика по матану, 3 сем (преподаватель Роткевич А. С.) Записал Костин П.А.

Данный документ неидеальный, прошу сообщать о найденных недочетах в вконтакте

Содержание

1	Фун	нкции от нескольких переменных	3
	1.1	02.09.2019	3
		1.1.1 Основные определения	3
	1.2	05.09.2019	6
		$1.2.1$ Примеры для \mathbb{R}^2	6
	1.3	09.09.2019	8
		1.3.1 Ещё больше определений	8
		1.3.2 Ещё больше примеров	8
	1.4	12.09.2019	10
		1.4.1 Некоторые особенные примеры	10
		1.4.2 Частные производные. Определения	10
		1.4.3 Частные производные. Примеры	11
	1.5	16.09.2019	13
	1.0	1.5.1 Дифференцирование неявных функций	14
	1.6	19.09.2019	15
	1.0	1.6.1 Неявные функции наносят ответный удар	15
	1.7	23.09.2019	17
	1.1	1.7.1 Дифференциалы высших порядков	18
	1.8	26.09.2019	19
	1.0	1.8.1 Ничего интересного	19
	1.0		19
	1.9	03.10.2019	
	1 10	1.9.1 Ф-ла Тейлора для неявной функции	19
	1.10	07.10.2019	21
		1.10.1 Готовимся к к.р	21
	1.11	14.10.2019	22
		1.11.1 Замена переменных в дифференциальных выраже-	
		ниях	22
	1.12	17.10.2019	24
		1.12.1 Я не знаю название этой темы	24
	1.13	21.10.2019	28
		1.13.1 Продолжаем делать примеры	28
	1.14	24.10.2019	30

	1.14.1	Экстремумы														30
1.15	28.10.2	2019														32
	1.15.1	Экстремумы														32
	1.15.2	Условный экс	тr	ei	νг	м										33

1 Функции от нескольких переменных

$1.1 \quad 02.09.2019$

1.1.1 Основные определения

Опр

$$\rho:X*X o\mathbb{R}$$
 - метрика, если

1.
$$\rho(x,y) \ge 0$$
, $\rho(x,y) = 0x = y$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$$
 (X,ρ) - метрическое пространство

Примеры

1.
$$\mathbb{R} \ \rho(x,y) = |x-y|$$

2.
$$x \neq \emptyset$$
 $\rho(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$

3.
$$\mathbb{R}^n$$
, $n \geqslant 1$ $\rho(x,y) = \sqrt{(x_1 - y_1)^2 + ... + (x_n - y_n)^2}$, где $x = (x_1, ..., x_n)$ $y = (y_1, ..., y_n)$

Опр

$$ho_1,
ho_2: X*X o \mathbb{R}$$
 - метрики, тогда $ho_1,
ho_2$ - эквивалентны, если (они задают одну топологию) $c_1
ho_1(x,y) \leqslant
ho_2(x,y) \leqslant c_2
ho_1(x,y)$ для $c_1, c_2 > 0$ - const

$$\mathbb{R}^2$$
 $\rho_1(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2} \leqslant \sqrt{2\rho_2^2(x,y)}$ $\rho_2(x,y) = \max(|x_1-y_1|,|x_2-y_2|)$ (упр.) $\frac{1}{\sqrt{2}}\rho_1(x,y) \leqslant \rho_2(x,y) \leqslant \rho_1(x,y)$ Пусть $\rho_3(x,y) = (|x_1-y_1|^p + ... |x-n-y_n|^p)^{\frac{1}{p}}, \ p \geqslant 1$ Если $p \to \infty$ $\rho_3 \to \rho_2$ $l_n^p = (\mathbb{R}^n, \rho_3)$ - пространство Лебега конечномерное (упр.) Д-ть, что все метрики эквивалентны (ρ_1, ρ_2, ρ_3)

Опр

 $ho:X*X o\mathbb{R}$ - метрика,

Открытым шаром в X относительно метрики ρ называется мн-во $B_r(x) = B(x,r) = \{y \in X : \rho(x,y) < r\}$

Замкнутым шаром называется $\overline{B}_r(x) = \{y \in X : \rho(y, x) \leq r\}$ Сферой называется $S_r(x) = \{y \in X : \rho(x, y) = r\}$

Упр

Замкнутый шар - не всегда замыкание шара (см. дискретную метрику)

Пример

$$\overline{l^p} = \{\{x_n\}_{n=1}^{\infty} : \sum_{n=1}^{\infty} |x_n|^p < \infty\} \ 1 \leqslant p < \infty$$

$$\rho(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) = (\sum_{n=1}^{\infty} (x_n - y_n)^p)^{\frac{1}{p}}$$

$$l^p \text{ - пр-во Лебега (последовательностей)}$$

Пример

C[0,1] - пр-во непр. функций $\rho(f,g) = \max_{[0,1]} |f-g|$ - полна (любая фундаментальная последовательность сходится)

$$ho_p(f,g)=(\int\limits_0^1|f-g|^pdx)^{rac{1}{p}}$$
 - не полная

Опр

$$(X,\rho)$$
 - метр. пр-во, $\{x_k\}_{k=1}^{\infty}\subset X,\,a\in X\,x_k\to a$ в пр-ве X по метрике ρ , если $\rho(x_n,a)\underset{k\to\infty}{\to}0$

$$\mathbb{R}^2 \ M_k = (x_k, y_k) \ P = (a, b) \ M_k \to P$$
 в евкл. метрике, т.е. $\rho(M_k, P) = \sqrt{(x_k - a)^2 + (y_k - b)^2} \underset{k \to \infty}{\to} 0x_k \to a, \ y_k \to b$

Замечание

Есть ρ_1, ρ_2 - экв. метрики, то $\rho_1(x_k, a) \to 0 \rho_2(x_k, a) \to 0$

Упр

$$x_k \to a, \ x_k \to b \Rightarrow a = b$$

 $(\rho(a,b) \leqslant \rho(a,x_k) + \rho(x_k,b) \to 0 \Rightarrow \rho(a,b) \to 0 \Rightarrow a = b)$

Опр

$$E\subset X,\,(X,\rho)$$
 - метр. пр-во, то $a\in X$ - т. сгущ. Е, если $orall \mathcal{E}\ \exists x\in E:
ho(a,x)<\mathcal{E}$

Опр

$$f: E o Y\ (X,
ho),\ (Y, d)$$
 - метр. пр-ва $(E \subset X),\ a$ - т. сгущ. $E,\ A \in Y,$ тогда A - предел отображения f в точке $a,\$ если $f(x) o A$ при $x \in E \setminus \{a\} o a$ (или $\forall \mathcal{E} > 0 \quad \exists \delta > 0: \rho(x, a) < \delta$ и $x \in E \subset \{a\},\$ то $d(f(x), A) < \mathcal{E})$ Обозначение: $A = \lim_{x \to a} f(x)$ или $f(x) o A$ $x o a$

Замечание

$$A = \lim_{x \to a} f(x) \forall \mathcal{E} > 0 \ \exists \delta > 0 : f(B_{\delta}(a) \setminus \{a\}) \subset B_{\mathcal{E}}(A)$$

$1.2 \quad 05.09.2019$

1.2.1 Примеры для \mathbb{R}^2

Будем в
$$\mathbb{R}^2$$
, $\rho((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Опр

$$f:E o\mathbb{R},\,E\subset\mathbb{R}^2,\,a\in\mathbb{R}^2$$
 - точка сгущения, $\lim_{x o a}f(x)=F,$ если $orall \mathcal{E}>0\quad \exists \delta>0:0<
ho(x,a)<\delta,\,x\in E\Rightarrow |f(x)-A|<\mathcal{E}$

 $B \mathbb{R}^2$ работают:

арифм. действия, теор. о двух миллиционерах, критерий Коши:

Опр

$$f:E \to \mathbb{R}$$
, частный случай $\exists \lim_{x \to a} f \forall \mathcal{E} > 0 \quad \exists \delta > 0:$ $|f(x) - f(y)| < \mathcal{E} \ 0 < \rho(x,a), \rho(y,a) < \delta \ (ynp)$

Упр

$$\exists \lim_{x \to a} f \forall \{x_n\} : x_n \neq a \quad x_n \to a \ (\rho(x_n, a) \to 0) \ \exists \lim_{n \to \infty} f(x_n)$$
 Обозначение:
$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = \lim_{\substack{(x, y) \to (x_0, y_0)}} f(x, y) \text{ - предел функции в т.}$$
 (x_0, y_0)

Пример

$$f(x,y) = (x+y) \sin \frac{1}{x} \sin \frac{1}{y}, \lim_{\substack{x \to 0 \\ y \to 0}} f(x,y) = 0, \text{ t.k.} |f(x,y)| \leqslant |x| + |y| \underset{\substack{x \to 0 \\ y \to 0}}{\to} 0,$$

$$\not\exists \lim_{y \to 0} \lim_{x \to y} f(x,y)$$

Пример

$$\overline{f(x,y)} = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$$
 - не существует, так как $\lim f(x,x) = 1, \ f(x,2x) = 0$

Пример

Построить
$$f(x,y)$$
 т.ч. $\forall a,b \; \exists \lim_{t\to 0} f(at,bt) = A$, но $\angle \lim_{\substack{x\to 0 \ y\to 0}} f(x,y)$ $f=\frac{y^2}{x}=\frac{b^2}{a}t\to 0$, но при $x=\frac{1}{n^2},\; y=\frac{1}{n}$ предел - единица

Замечание

Если
$$\gamma(t)_{t \to t_0}^{} \in \mathbb{R}^2$$
 и $\exists \lim_{x \to a} f(x) = A$, то $\exists \lim_{t \to t_0} f(\gamma(t))$

Замечание

Если
$$\forall \gamma: \gamma(t) \to a \in \mathbb{R}^2$$
 и $\exists \lim f(\gamma(t))$, то $\exists \lim_{x \to a} f$

Замечание

 $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$ - не предел по кривой (из-за необязательного равенства предела и значения в пределе). Более формально: пусть = $\lim_{x \to x_0} \overline{f}(x)$ $\overline{f}(x) = \lim_{y \to y_0} f(x,y) \neq$ (не обязательно) $\neq f(x,y_0)$

Опр

$$\lim_{\substack{x \to +\infty \ y \to +\infty}} f(x,y) = A, \text{ если}$$
 $\forall \mathcal{E} > 0 \; \exists M > 0 : \forall x,y : \max(x,y) > M \; |f(x,y) - A| < \mathcal{E}$

$$f=rac{y}{x}tg(rac{x}{x+y})$$
 - не имеет предела, $f(x,x)=tg(rac{1}{2}),$ $f(x,x^2)=xtg(rac{1}{1+x}) o 0$

$1.3 \quad 09.09.2019$

1.3.1 Ещё больше определений

Опр

1.
$$A = \lim_{\substack{x \to +\infty \\ y \to +\infty}} f(x,y)$$
, если $orall \mathcal{E} > 0 \; \exists M > 0 : x > M \; y > M \Rightarrow |f(x,y) - A| < \mathcal{E}$

2.
$$A = \lim_{\substack{x \to +\infty \ y \to +\infty}} f(x,y)$$
, если $\forall \mathcal{E} > 0 \; \exists M > 0 : |x| > M \; |y| > M \Rightarrow |f(x,y) - A| < \mathcal{E}$

3.
$$A=\lim_{P\to\infty}f(P)\ P\in\mathbb{R}^2,$$
 если $orall \mathcal{E}>0\ \exists M>0:
ho(0,P)>M\Rightarrow |f(x,y)-A|<\mathcal{E}$

Замечание

Демидович по первым двум определениям

Опр

Для конечного предела:
$$A=\lim_{x\to a} f(x,y),$$
 если $\forall \mathcal{E}>0 \quad \exists M>0 \quad \delta>0: y>M \quad |x-a|<\delta\Rightarrow |f(x,y)-A|<\mathcal{E}$

1.3.2 Ещё больше примеров

Пример

$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} \left(\frac{xy}{x^2 + y^2}\right)^{x^2}$$

Решение

Заметим, что
$$\frac{xy}{x^2+y^2} \leqslant \frac{1}{2} \Rightarrow 2xy \leqslant x^2+y^2 \Rightarrow 0 \leqslant (x-y)^2$$
 для х $\neq y$ Значит дробь стремится к 0

Пример

$$\overline{\lim_{\substack{x \to 0 \\ y \to 0}} (\frac{xy}{x^2 + y^2})^{x^2}}$$

Решение

При
$$x = y$$
 предел $\frac{1}{2}$
При $x = y^2$ предел 0

Пример

$$f = \sin(\frac{\pi y^2}{x^2 + 3y^2})$$
 Найти $\lim_{\substack{x \to +\infty \\ y \to +\infty}} f$, $\lim_{\substack{x \to \infty \\ y \to +\infty}} f$, $\lim_{\substack{x \to \infty \\ y \to +\infty}} f$, $\lim_{\substack{x \to \infty \\ y \to +\infty}} f$

Решение

Первый не имеет предела $(x=y,\,x=\sqrt{y}).$ Второй $\frac{\sqrt{3}}{2}.$ Третий 0

$$\frac{ \displaystyle \frac{ \displaystyle \text{Пример}}{\displaystyle \lim_{\substack{x \to +\infty \\ y \to +\infty}}} \underline{sin(y-x^2)}{y-x^2}$$

Решение

$$z = y - x^2, z \to 0 \Rightarrow x, y \to 0$$
$$|z| \leqslant |x| + |y| \leqslant 2\sqrt{x^2 + y^2}$$

$$\frac{\mathbf{\Pi}\mathbf{pимеp}}{f} = \frac{1-\sqrt[3]{sin^4x+cos^4y}}{\sqrt{x^2+y^2}},$$
 найти $\lim_{\substack{x\to 0\\y\to 0}} f$

Решение

$$\overline{1-\sqrt[3]{t}}_{t\to 1}\frac{1-t}{3} \text{ (т.к. } 1-\sqrt[3]{t}=\frac{1-t}{1+\sqrt[5]{t}+\sqrt[3]{t^2}})$$
 Значит $\lim_{\substack{x\to 0\\y\to 0}}f=\lim_{\substack{x\to 0\\y\to 0}}\frac{1}{3}\frac{1-(sin^4x+cos^4y)}{\sqrt{x^2+y^2}}=\lim_{\substack{x\to 0\\y\to 0}}\frac{2sin^2y-sin^4y-sin^4x}{3\sqrt{x^2+y^2}}$ Заменим по Тейлору:
$$=\lim_{\substack{x\to 0\\y\to 0}}\frac{2y^2+\overline{o}(y^3)-x^4+\overline{o}(x^6)}{3\sqrt{x^2+y^2}}$$
 Попробуем оценить по модулю $|\frac{2y^2-x^4}{\sqrt{x^2+y^2}}|$, заметим что $y^2\leqslant x^2+y^2$, $x^4\leqslant 2(x^2+y^2)\leqslant x^2+y^2$ (для $x^2+y^2<1$), чтобы избавиться от \overline{o} оценим так: $\overline{o}+y^2\leqslant 2(x^2+y^2)$, $\overline{o}+x^4\leqslant 2(x^2+y^2)\leqslant x^2+y^2$ Тогда $|\frac{2y^2-x^4}{\sqrt{x^2+y^2}}|\leqslant 2\frac{3(x^2+y^2)}{\sqrt{x^2+y^2}}\leqslant 6\sqrt{x^2+y^2}\to 0$

$1.4 \quad 12.09.2019$

1.4.1 Некоторые особенные примеры

Пример

$$\frac{\lim_{x \to 0} (1+x)^{\frac{1}{x+x^2y}}}{\lim_{x \to 0} (1+x)^{\frac{1}{x}}} = \lim_{\substack{x \to 0 \\ y \to 1}} ((1+x)^{\frac{1}{x}})^{\frac{1}{1+xy}} = e$$

Пример

$$\frac{f(x,y)}{f(x,y)} = \begin{cases} \frac{x^3 - xy^2}{x^2 + y^2} & , x^2 + 2^2 \neq 0 \\ a & , else \end{cases}$$

- 1) a = ?, т.ч. f непр
- 2) a = ?, f непрю на прямых, проходящих через 0

Решение

1)
$$a = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3 - xy^2}{x^2 + y^2} = \lim_{\substack{x \to 0 \\ y \to 0}} x \frac{x^2 - y^2}{x^2 + y^2} = 0$$

Замечание

$$x^n y^m \leqslant (\sqrt{x^2 + y^2})^{n+m}$$
 и $|x| \leqslant \sqrt{x^2 + y^2}$

1.4.2 Частные производные. Определения

$$f: \Omega \subset \mathbb{R}^3 \to \mathbb{R}, P_0 = (x_0, y_0, z_0)$$

Опр

f - диф. в точке P_0 , если $\exists A, B, C \in \mathbb{R}$, т.ч.

$$f(x_0, +\delta x, y_0 + \delta y, z + \delta z = f(x_0, y_0, z_0) + A\delta x + B\delta y + C\delta z + \overline{o}(\sqrt{(\delta x)^2 + (\delta y)^2 + (\delta z)^2})$$
 Пусть $h = (\delta x, \delta y, \delta z)^T$

$$f(P_0 + h) = f(P_0) = \begin{pmatrix} A \\ B \\ C \end{pmatrix}^T h + \overline{o}(|h|)$$

$$df(x, y, z) = Adx + Bdy + Cdz$$

Дифференциал сопоставляет $(dx, dy, dz) \rightarrow Adx + Bdy + Cdz$

Опр

Частной произв. по перем. х в т. (x_0,y_0,z_0) называется предел (если \exists)

$$\lim_{t \to 0} \frac{f(x_0 + t, y_0, t_0) - f(x_0, y_0, z_0)}{t} = \frac{\partial f}{\partial x}(x_0, y_0, z_0) = f'_x(x_0, y_0, z_0)$$

1.4.3 Частные производные. Примеры

y_{TB}

f - дифф.
$$\Rightarrow$$
 \exists част. пр. и $A=\frac{\partial f}{\partial x}(x_0,y_0,z_0),\ B=\frac{\partial f}{\partial x},\ C=\frac{\partial f}{\partial x}$

Производные старшего порядка

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial x})$$
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} \neq (\text{не всегда}) \ \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial y \partial x}$$

Частные производные сложной функции

$$w = f(x, y, z), \ \mathbb{R}^2 \to \mathbb{R}^3. \ (u, v) \to (\varphi(u, v), \psi(u, v), \chi(u, v))$$

$$w = f(\varphi(u, v), \psi(u, v), \chi(u, v))$$

$$\frac{\partial w}{\partial u} = \frac{\partial f}{\partial x}, \frac{\partial \varphi}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial \psi}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial \chi}{\partial u}$$

$$\frac{\partial w}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial \varphi}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial \psi}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial \chi}{\partial v}$$

$$\left(\frac{\partial w}{\partial u}\right) = \begin{pmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \psi}{\partial u} & \frac{\partial \chi}{\partial u} \\ \frac{\partial \varphi}{\partial v} & \frac{\partial \psi}{\partial v} & \frac{\partial \chi}{\partial v} \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial v} \end{pmatrix}$$

Пример

$$\frac{\partial^2 w}{\partial u \partial v} = \frac{\partial f}{\partial x} \frac{\partial^2 \varphi}{\partial u \partial v} + (\frac{\partial^2 f}{\partial x^2} \frac{\partial u}{\partial v} + \frac{\partial^2 f}{\partial x \partial y} \frac{\partial \psi}{\partial v} + \frac{\partial^2 f}{\partial x \partial z} \frac{\partial \chi}{\partial v}) \frac{\partial \varphi}{\partial u} + \dots$$

$$F = f(x, xy, xyz) = f(u, v, w)$$

$$\frac{\partial F}{\partial x} = \frac{\partial f}{\partial u} 1 + \frac{\partial f}{\partial v} y + \frac{\partial f}{\partial w} yz$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial u} + y \frac{\partial}{\partial v} + uz \frac{\partial}{\partial w}$$

$$\frac{\partial^2 F}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial u}) + \frac{\partial}{\partial x} (\frac{\partial f}{\partial v}) y + \frac{\partial f}{\partial v} \frac{\partial}{\partial x} (y) + \frac{\partial}{\partial x} (\frac{\partial f}{\partial w}) yz + \frac{\partial f}{\partial w} \frac{\partial}{\partial x} (yz)$$

$$\begin{split} \frac{\partial}{\partial x} (\frac{\partial f}{\partial u}) &= \frac{\partial^2 f}{\partial u^2} + y \frac{\partial^2 f}{\partial u \partial v} + yz \frac{\partial^2 f}{\partial u \partial w} = \\ &= \frac{\partial^2 f}{\partial u^2} + y \frac{\partial^2 f}{\partial v^2} + (yz)^2 \frac{\partial^2 f}{\partial w^2} + zy \frac{\partial^2 f}{\partial u \partial v} + 2y^2 z \frac{\partial^2 f}{\partial v \partial w} + 2yz \frac{\partial^2 f}{\partial u \partial w} \end{split}$$

Дано
$$u=x^y$$
, найти $\frac{\partial^2 u}{\partial x^2}, \frac{\partial^2 u}{\partial y^2}, \frac{\partial^2 u}{\partial x \partial y}$
$$\frac{\partial u}{\partial x} = yx^{y-1}, \quad \frac{d^2 u}{\partial x^2} = y(y-1)x^{y-2}$$

$$\frac{\partial u}{\partial y} = \ln(x)x^y, \quad \frac{\partial^2 y}{\partial y^2} = \ln^2(x)x^y$$

$$\frac{\partial^2 u}{\partial x \partial y} = x^{y-1} + y\ln(x)x^{y-1}$$

1.5 16.09.2019

Пример

Выяснить, есть ли производная у $f(x,y) = \sqrt[3]{x^3 + y^3}$

Решение

$$\frac{\partial f}{\partial x} = \frac{x^2}{\sqrt[3]{(x^3 + y^3)^2}}, \quad x^3 + y^3 \neq 0$$

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{\sqrt[3]{t^3 + 0^3} - \sqrt[3]{o^3 + 0^3}}{t} = 1$$

$$\lim_{\substack{x \to 0 \\ y \to 0}} \text{ Не } \exists$$

$$\text{Пусть } \sqrt[3]{x^3 + y^3} - \text{диф. В точке } (0,0) \Rightarrow$$

$$\sqrt[3]{x^3 + y^3} = 0 + x + y + \overline{o}(\sqrt{x^2 + y^2})$$

$$\sqrt[3]{(0 + \delta x)^3 + (0 + \delta y)^3} = f(x,y) + \frac{\partial f}{\partial x}(0,0)\delta x + \frac{\partial f}{\partial x}(0,0)\delta y + \overline{o}(\sqrt{\delta x^2 + \delta y^2})$$

$$= 0$$

$$= 1$$

$$\sqrt[3]{x^3 + y^3} = x + y + \overline{o}(\sqrt{x^2 + y^2}), \quad x, y \to 0$$

$$x_n = y_n \quad \sqrt[3]{2}x = 2x + \overline{o}(x)$$

$$\sqrt[3]{2} - 2 = \overline{o}(1)?!!$$

То есть из существования ч.п. не следует дифференцируемость

Теорема

Если существуют ч.п. и они непр. в рассм. точке \Rightarrow ф-ия диф. в этой

$$\overline{f(x,y)} = xy \frac{x^2 - y^2}{x^2 + y^2}, \ f(0,0) = 0 \Rightarrow \text{f - Heпр. в 0}$$

$$g(x,y) = \frac{\partial f}{\partial x} = \frac{3x^2y - y^3}{x^2 + y^2} - 2x^2y \frac{x^2 - y^2}{(x^2 + y^2)}, \quad \frac{\partial f}{\partial x}(0,0) = 0$$

$$\frac{\partial}{\partial y} (\frac{\partial f}{\partial x})|_{(0,0)} = \lim_{t \to 0} (\frac{-\frac{t^3}{t^2} - 0}{t}) = -1$$
 Аналогично $\frac{\partial f}{\partial x} = 0, \ \frac{\partial}{\partial x} (\frac{\partial f}{\partial y}) = 1$

$$\frac{\textbf{Теорема}}{\text{Если}} \frac{\partial^2 f}{\partial x \partial y} \text{ и } \frac{\partial^2 f}{\partial y \partial x} \; \exists \; \text{в окр. точки, непр. в этой точке} \Rightarrow \text{в этой точке}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

1.5.1 Дифференцирование неявных функций

Опр

$$F:\mathbb{R}^n imes\mathbb{R}\to\mathbb{R}$$
 $F(x_1,...,x_n;y),$ $F(x_1^0,...,x_n^0;y^0)=0$ $y=f(x_1,...,x_n)$ - ф-ия задана неявно уравнением $F(x_1,...,x_n;y)=0$ в откр. точке $(x_1^0,...,x_n^0,y^0),$ если $(x=(x_1,...,x_n))$:

1.
$$F(x, f(x)) = 0$$
 (в окр. x^0)

2.
$$f(x^0) = y^0$$

Теорема (о неявном отображении)

$$F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}, \quad F(x^0,y^0) = 0, \ F$$
 - непр. диф. в окр $(x^0,y^0),$ $F_y'(x^0,y^0) \neq 0, \ \text{тогда}:$

- 1. $\exists y = f(x_1, ..., x_n)$ зад. неявно ур. F(x, y) = 0
- 2. f диф. в окр. x^0

3.
$$\frac{\partial f}{\partial x_0} = -\frac{\partial F}{\partial x_0} / \frac{\partial F}{\partial y}$$
 в окр. x^0

1.6 19.09.2019

1.6.1 Неявные функции наносят ответный удар

Пример

$$F(x,y)=ye^y+x+x^2=0$$

$$y(x)=y(0)+y'(0)x+\frac{y''(0)}{2}x^2+\ldots+\frac{g^{(n)}(0)}{n!}x^n+\overline{o}(x^n),\ \text{при }x\to0$$

$$x_0=0\quad y(0)=?\quad ye^y=0\quad y=0$$

$$F'y=e^y+ye^y|_{(0,0)}=1\neq0$$

$$y'(0)=-\frac{F'_x}{F'_y}|_{(0,0)}=-\frac{1+2x}{1}=-1\ \text{ т.о. неявное отображение}$$

$$y'(x)=-\frac{F'_x}{F'_y}=-\frac{1+2x}{(y(x)+1)e^{y(x)}}$$

$$y(x)=0-x+\overline{o}(x)$$

Что теперь делать? Способ 1:

$$y''(x) = (y'(x))' = \left(-\frac{F_x'(x, y(x))}{F_y'(x, y(x))}\right)' = \left(-\frac{1 + 2x}{(y(x) + 1)e^{y(x)}}\right)'$$
$$= -\frac{2}{(y(x) + 1)e^{y(x)}} + \frac{1 + 2x}{((y(x) + 1)e^{y(x)}}(y(x) + 2)e^{y(x)}y'(x) \underset{x=0}{=} -2 - 4 = -6$$

Наш ряд Тэйлора:

$$y(x) = -x - 3x^2 + \overline{o}(x^2)$$

Способ 2 (метод неопр. коэффициентов)

$$\begin{split} y(x) &= -x + ax^2 + bx^3 + \overline{o}(x^3) \\ F(x,y(x)) &= 0 \text{ B onp x=0} \\ &(-x + ax^2 + bx^3 + \overline{o}(x^3))e^{-x + ax^2 + bx^3 + \overline{o}(x^3)} + x + x^2 = 0 \\ e^t &= 1 + t + \frac{t^2}{2} + \frac{t^3}{6} + \overline{o}(t^3), \quad t \to 0 \\ t &= y(x) \end{split}$$

$$(-x+ax^2+bx^3)[1+(-x+ax^2+bx^3)+\frac{(-x+ax^2+bx^3)^2}{2}+\\ +\frac{(-x+ax^2+bx^3)^3}{6}+o(x^2)]+x+x^2=0$$

$$F(x,y)=ye^y+x+x^2=0$$

$$(-x+ax^2+bx^3+\overline{o}(x^3))(1-x+(a+\frac{1}{2})x^2+(b-a-\frac{1}{6})x^3+\overline{o}(x^3))+x+x^2=0$$

$$\overline{o}(x^3)-x+x^2(1+a)+x^3(b-a-a-\frac{1}{2})+x+x^2=0$$

$$\overline{o}(x^3)+(a+2)x^2+(b-2a-\frac{1}{2})x^3=0$$

$$\begin{cases} a+2=0\\ b-2a-\frac{1}{2}=0 \end{cases}$$
 система должна быть диагональной
$$a=-2\quad b=-\frac{7}{2}$$

Пример

$$\cos(xy) + \sin x + e^{y+x} = 2$$

Проверить условие т.о неявной ф-ии и найти разл у(x) по Тейллору до $\overline{o}(x^3)$

$$x = 0, \quad F(0, y) = 0 \to y(0)$$

1.
$$1 + e^y = 2$$
, $y = 0$, $F(0,0) = 0$, $y(0) = 0$

2.
$$F'_y = -x\sin(xy) + e^{y+x}|_{(0,0)} = 1 \neq 0$$

 $F'_x = -y\sin(xy) + \cos(x) + e^{y+x}|_{(0,0)} = 2$
 $y'(0) = -2$

Методом неявных коэффициентов

$$y(x) = -2x + ax^{2} + bx^{3} + \overline{o}(x^{3})$$
$$\cos(-2x^{2} + ax^{3} + bx^{4} + \overline{o}(x^{4})) + \sin x + e^{-x + ax^{2} + bx^{3} + \overline{o}(x^{3})} = \dots$$

$1.7 \quad 23.09.2019$

$$F(u; x, y) = 0$$

$$F(u_0;x_0,y_0)=0 \ F'_u(u_0;x_0,y_0)
eq 0$$
 \Rightarrow $u(x_0,y_0)=u_0 \ F(u(x,y),x,y)=0 \ u'_x=-rac{F'_x}{F'_y} \ u'_y=-rac{F'_y}{F'_y}$

Ф-ла Тейлора для функцийи от неск. перем.

$$u: E \subset \mathbb{R}^n \to \mathbb{R}, \quad x \in E \to u(x)$$

$$T_R(x,x^0) = \sum_{|\alpha| \le k} \frac{\partial^\alpha u(x^0)}{\partial x^\alpha} \frac{(x-x^0)^\alpha}{\alpha!} = \sum_{j=0}^k \frac{d^j u(x^0)[x-x^0]}{j!}$$

$$\alpha \text{ - мультииндекс}, \quad \alpha = (\alpha_1,...,\alpha_k), \quad \alpha_j \in \mathbb{N} \cup \{0\}$$

$$|\alpha| = \alpha_1 + ... + \alpha_n, \quad \alpha! = \alpha_1!...\alpha_n!$$

$$\frac{\partial^\alpha u}{\partial x^\alpha} = \frac{\partial^{|\alpha|}}{\partial x^{\alpha_1}_1...x^{\alpha_n}}, \quad (x-x_0)^\alpha = (x_1-x_1^0)^{\alpha_1}...(x_n-x_n^0)^{\alpha_n}$$

Теорема

$$u \in C^k \overset{\text{B okp. } x^0}{\Rightarrow}$$

$$u: \mathbb{R}^2 \to \mathbb{R}$$

$$u(x,y) = u(x_0, y_0) + \frac{1}{2} (x_0, y_0)(x - x_0) + u\frac{1}{2} (x_0, y_0)(y - y_0) + u\frac{1}{2} (x_0, y_0)(y - y_0)(y - y_0)(y - y_0) + u\frac{1}{2} (x_0, y_0)(y - y$$

1.7.1 Дифференциалы высших порядков

Пример

$$u: \mathbb{R}^2 \to \mathbb{R}^2 \quad (x,y) \to u(x,y)$$

$$du = \frac{\partial u}{\partial x}\Big|_{(x_0,y_0)} dx + \frac{\partial u}{\partial y}\Big|_{(x_0,y_0)} dy = du[dx,dy]$$

$$du: \mathbb{R}^2 \to \mathbb{R} \quad (dx,dy) \to du[dx,dy] \text{ - дифференциал первого порядка}$$

$$d^2u = d(du) = d(\frac{\partial u}{\partial x})dx + d(\frac{\partial u}{\partial y})dy = \frac{\partial^2 u}{\partial x^2}dx^2 + 2\frac{\partial^2 u}{\partial x \partial y}dxdy + \frac{\partial^2 u}{\partial y^2}dy^2$$

$$d_d^k(d^{k-1}u) = \sum_{j=0}^k C_j^k \frac{\partial^k u}{\partial x^j \partial y^{k-j} dx^j dy^{k-j}} = d^ku[dx,dy], \quad u \in C^k$$

$$= dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial x}$$

Понятно, что можно дальше обобщать, но делать мы это, конечно, не будем

Пример

$$f = x^y = e^{y \ln x}, \quad d^2 f \text{ в точке } (2,1)$$

$$\frac{\partial f}{\partial x} = e^{y \ln x} \frac{y}{x} \quad \frac{\partial f}{\partial y} = e^{y \ln x} \ln x$$

$$f''_{xx} = \frac{\partial^2 f}{\partial x^2} = e^{y \ln x} \left(\frac{x}{y}\right)^2 - e^{y \ln x} \frac{y}{x^2} \stackrel{(2,1)}{=} 0$$

$$f''_{yy} = e^{y \ln x} \ln^2 \stackrel{(2,1)}{=} \ln^2 2$$

$$f''_{xy} = e^{y \ln x} \frac{y}{x} \ln x + e^{y \ln x} \frac{1}{x} \stackrel{(2,1)}{=} \ln 2 + 1$$

Тогда наш ответ:

$$d^2u|_{(2,1)} = 2(\ln 2 + 1)dxdy + 2\ln^2 2dy^2$$

Пример

Найти
$$d^3 f$$
 для $f = x^4 + xy^2 + yz^2 + zx^2$

Как понять, что такое d^3f от отрех переменных?

$$d^{3}u = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y} + dz\frac{\partial}{\partial z}\right)^{3}u$$
$$d^{3} \stackrel{(0,1,2)}{=} 3 * 2dx^{2}dz + 3 * 2dydz^{2} + 3 * 2dx^{2}dy$$

1.8 26.09.2019

1.8.1 Ничего интересного

$1.9 \quad 03.10.2019$

1.9.1 Ф-ла Тейлора для неявной функции

Пример

$$F(x, y; u) = u^3 + 3yu - 4x = 0, \quad u(x, y) \text{ B okp. } (1, 1)$$

Задача. Написать ф. Тейлора для u(x,y) с точность. до $\underline{o}(\underbrace{\sqrt{(x-1)^2+(y-1)^2}}_{\varphi})^n$

$$(x,y) = (1,1)$$
 $u^3 + 3u - 4 = 0 \Rightarrow (u^2 + u + 4)(u - 1) = 0 \Rightarrow u(1,1) = 1$

Проверим, что $F_u'(1,1;1) \neq 0, \, 3u^2 + 3y \neq 0$

$$u'_{x} = -\frac{F'_{x}}{F'_{u}} = \frac{2}{3} \quad u'_{y} = -\frac{F'_{y}}{F'_{u}} = -\frac{1}{2}$$

$$u(x,y) = 1 - \frac{2}{3}(x-1) - \frac{1}{2}(y-1) + \overline{o}(\varphi) \quad n = 1$$

Способ 1 (n = 2, 3, ...)

$$u'_{x} = -\frac{F'_{x}}{F'_{u}} = -\frac{4}{3u^{2} + 3y} \quad u''_{xx} = \frac{4 * 6uu'_{x}}{(3u^{2} + 3y^{2})^{2}} = -\frac{16}{36} = -\frac{4}{9}$$

$$u''_{xy} = \frac{4(6uu'_{y} + 3)}{(3u^{2} + 3y^{2})^{2}} = 0 \quad u''_{yy} = \left(-\frac{3u}{3u^{2} + 3y}\right)'_{y} = -\frac{u'_{y}(u^{2} + y) - (2uu' + 1)u}{(u^{2} + y)^{2}} = \frac{1}{4}$$

$$u(x, y) = 1 - \frac{2}{2}(x - 1) - \frac{1}{2}(y - 1) + \frac{1}{2}(-\frac{4}{9}(x - 1)^{2} + \frac{1}{4}(y - 1)^{2})^{2} + \overline{o}(\varphi^{2})$$

Способ 2 (более высокие степени, метод неопр. коэф.)

$$u^{3}(x,y) = \left(1 + \frac{2}{3}(x-1) - \frac{1}{2}(y-1) + a(x-1)^{2} + b(x-1)(y-1) + c(y-1)^{2} + \overline{o}(\varphi^{2})\right)^{3}$$

$$t = x - 1 \qquad s = y - 1$$

$$0 = u^{3} + 3yu - 4x = \overline{o}(\varphi^{2}) + 1 + 3 * 1^{2} \left(\frac{2}{3}t - \frac{1}{2}s + at^{2} + bts + cs^{2}\right) + 3\left(\left(\frac{2}{3}t\right)^{2} + \frac{s^{2}}{4} - \frac{2}{3}ts\right) + 3(s+1)u - 4(t+1) = 0$$

$$\left((s+1)u = s + \frac{2}{3}t - \frac{1}{2}s + s\left(\frac{2}{3}t - \frac{1}{2}s\right) + at^2 + bts + cs^2 + \overline{o}(\varphi^2)\right)$$

$$= \overline{o}(\varphi^2) + \underbrace{(1+3-4)} + t\left(3\frac{2}{3} + 3\frac{2}{3} - 4\right) + s\left(-\frac{3}{2} + \frac{3}{2}\right) + t^2\underbrace{\left(3a + 3\frac{4}{9} + 3a\right)}_{=0} + ts\underbrace{\left(3b - 2 + 3\left(\frac{2}{3} + b\right)\right)}_{=0} + s^2\underbrace{\left(3c + \frac{3}{4} - \frac{3}{2} + 3c\right)}_{=0}$$

Приравняли к 0, т.к. у найденного выше u(x,y) эти коэф. =0

$$\Rightarrow a = -\frac{2}{9} \quad b = 0 \quad c = \frac{1}{8}$$

ДЗ: 3127-3186 (10 задач)

$1.10 \quad 07.10.2019$

1.10.1 Готовимся к к.р.

Пример

$$ue^{x+u} + y\cos(x+y) = 0$$
 (x_0, y_0) $o(\varphi^2)$ $o(\varphi^3)$ $\varphi = \sqrt{x^2 + y^2}$

Решение

Решил у доски

Замечание

Можно подставлять (0, y), (x, 0), (x, x)

Пример

$$u\cos(x-u) + e^{u}\sin(x+u) = 0$$

$$u(x) = c_0 + c_1x + c_2x^2 + c_3x^3 + \dots + c_6x^6 + \overline{x^6} \quad x_0 = 0 \quad u(0) = 0$$

$$F'_u = \cos(x-u) + u\sin(x-u) + 2ue^{u^2}\sin(x+u) + e^{u^2}\cos(x+u) \stackrel{(0,0)}{=} 2$$

$$c_1 = u'_x(0) = -\frac{F'_x}{F'_u} = -\frac{1}{2}$$

Заметим, что F(-x, -u) = -F(x, u)

$$\Rightarrow F(x, yu) = 0 \Rightarrow F(-x, -u) = 0$$

u - нечетна $\Rightarrow c_{2n} = 0$

$$u(x) = -\frac{x}{2} + c_3 x^3 + c_4 x^5 + o(x^6)$$

$$\left(-\frac{x}{2} + c_3 x^3 + c_5 x^5 + o(x^6)\right) \left(1 - \frac{1}{2} \left(\frac{3x}{2} - c_3 x^3\right) + \frac{1}{4!} \left(\frac{3x}{2}\right)^4 + o(x^5)\right) + \left(1 + \left|-\frac{x}{2} + c_3 x^3\right| + \frac{1}{2} \left(-\frac{x}{2}\right)^4 + o(x^5)\right)$$

$$\left(\frac{x}{2} + c_3 x^3 + c_5 x^5 + o(x^6)\right) - \frac{1}{6} \left(\frac{x}{2} + c_3 x^3\right)^2 = 0$$

<u>Замечание</u>

- 1. Если F(-x,u) = F(x,u) или $F(-x,u) = -F(x,u) \Rightarrow$ u четна
- 2. Если F(-x,-u)=F(x,u) или $F(-x,-u)=-F(x,u)\Rightarrow$ u нечетна

$1.11 \quad 14.10.2019$

1.11.1 Замена переменных в дифференциальных выражениях

Замена перем. в выражениях с полными производными

$$F(x,y,y_x',y_{xx}'',\ldots)$$

$$(x,y) \to (u,v)$$

$$y_x',y_{xx}'',\ldots$$
 нужно выразить через u_v',u_{vv}''
$$\exists x = f(u,v) \quad y = g(u,v)$$

$$y(x) = y(f(u,v)) = y(f(u(v),v)) = g(u(v),v)$$
 Дифференцируем по v:
$$\frac{\partial g}{\partial u}u_v' + \frac{\partial g}{\partial v} = y_x'\left(\frac{\partial f}{\partial u}u_v' + \frac{\partial f}{\partial v}\right) \quad (*)$$

$$\Rightarrow y_x' = \frac{\frac{\partial g}{\partial u}u_v' + \frac{\partial g}{\partial v}}{\frac{\partial f}{\partial u}u_v' + \frac{\partial f}{\partial v}}$$

Другой способ воспринимать: y = y(x) Продифференцируем ещё раз (*) по v:

$$\begin{split} \mathbf{u''}_{vv} & \frac{\partial y}{\partial u} + u'_v \left(\frac{\partial^2 g}{\partial u^2} u'_v + \frac{\partial^2 g}{\partial v^2} \right) + \frac{\partial^2 g}{\partial v^2} = \\ & = y''_{xx} \left(\frac{\partial f}{\partial u} u'_v + \frac{\partial f}{\partial v} \right)^2 + y'_x \left(u''_{vv} \frac{\partial f}{\partial u} + (u'_v)^2 \frac{\partial^2 f}{\partial u^2} + u'_v \frac{\partial^2 f}{\partial u \partial v} + \frac{\partial^2 f}{\partial v^2} \right) \end{split}$$

Второй способ:

$$x = f(u(v), v) \quad y'_x = h(u(v), \underbrace{u'_v(v)}_w, v) \leftarrow *$$

$$y_{xx}'' = \frac{\frac{\partial h}{\partial u}u_v' + \frac{\partial h}{\partial w}u_{vv}'' + \frac{\partial h}{\partial v}}{\frac{\partial f}{\partial u}u_v' + \frac{\partial f}{\partial v}}$$

Пример

Подставить в дифференциальное уравнение выражения

$$y^{4}y'' + xyy' - 2y^{2} = 0 \quad y(x) \to u(t)$$
$$x = e^{t} \quad y = ue^{2t}$$

Решение

Проблема в том, что мы не знаем, что такое y', т.к. в диф. ур-ии производная по х

$$\begin{split} x &= f(u,t) = e^t \quad y = g(u,t) = ue^{2t} \\ u(t)e^{2t} &= y = y(e^t) \\ u'_t e^{2t} + 2ue^{2t} &= y'_x e^t \Rightarrow y'_x(e^t) = y'_x|_{x=e^t} = (u'_t + 2u)e^t \\ y''_{xx} \mathscr{E}^t &= ((u'_t + 2u) + (u''_{tt} + 2u'_t)) \mathscr{E}^t \end{split}$$

Пример

$$y'y''' - 3(y'')^2 = x$$
$$y(x) \to x(y)$$

Решение

$$x = u \quad y = t \quad u(t)$$

$$(x, y) \to (u, t)$$

$$t = y(u(t)) \Rightarrow 1 = y'u' \Rightarrow y' = \frac{1}{u'}$$

$$y'' = \frac{u''}{(u')^3}$$

$$y''' = \frac{u'''(u')^3 - 3(u'')^2(u')^2}{(u'^7)} = \frac{u'''}{(u')^4} - 3\frac{(u'')^2}{(u')^5}$$

Подставляя, получаем:

$$-\frac{x_{yyy}^{\prime\prime\prime}}{(x_y^\prime)^5} = x$$

ДЗ: 3431-3449

1.1217.10.2019

1.12.1 Я не знаю название этой темы

1. Замена независимой переменной

$$F(x, y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}...)$$

$$z(x, y)$$

$$x = f(u, v)$$

$$y = g(u, v)$$

$$z = z(x, y) = z(f(u, v), g(u, v))$$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial f}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial g}{\partial u} \Rightarrow \frac{\partial z}{\partial x} = ...$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial f}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial g}{\partial v} \Rightarrow \frac{\partial z}{\partial y} = ...$$

Нужно учитывать Якобиан $\det \begin{pmatrix} \frac{\partial f}{\partial u} & \frac{\partial y}{\partial u} \\ \partial f & \partial \underline{g} \end{pmatrix} \neq 0$ - без этого нет

Нужно учитывать Якобиан det
$$\frac{\partial f}{\partial v} \frac{\partial g}{\partial v}$$
 $\neq 0$ - без этого не решения системы Вторые производные:
$$\left\{ \frac{\partial^2 z}{\partial u} = \frac{\partial^2 z}{\partial x^2} \left(\frac{\partial f}{\partial u} \right)^2 + 2 \frac{\partial^2 z}{\partial x \partial y} \frac{\partial f}{\partial u} \frac{\partial g}{\partial u} + \frac{\partial^2 z}{\partial y^2} \left(\frac{\partial g}{\partial u} \right)^2 + \frac{\partial z}{\partial x} \frac{\partial^2 f}{\partial u^2} + \frac{\partial z}{\partial y} \frac{\partial^2 g}{\partial u^2} \right\}$$

$$\left\{ \frac{\partial^2 z}{\partial u \partial v} \right\}$$

$$\frac{\partial^2 z}{\partial v^2}$$

$$\frac{\partial}{\partial u} \left(\frac{\partial z}{\partial x} \cdot \frac{\partial f}{\partial u} \right) = \frac{\partial}{\partial u} \left(\frac{\partial z}{\partial x} \right) \frac{\partial f}{\partial u} + \frac{\partial z}{\partial x} \frac{\partial^2 f}{\partial u^2} =
= \left(\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) \frac{\partial f}{\partial u} + \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) \frac{\partial g}{\partial u} \right) \frac{\partial f}{\partial u} + \frac{\partial z}{\partial x} \frac{\partial^2 f}{\partial u^2} =
= \frac{\partial^2 z}{\partial^2 x^2} \left(\frac{\partial f}{\partial u} \right)^2 + \frac{\partial^2 z}{\partial x \partial y} \frac{\partial f}{\partial u} \frac{\partial g}{\partial u} + \frac{\partial z}{\partial x} \frac{d^2 f}{\partial u^2}$$

2. Замена переменных и функций

$$(x, y, z(x, y)) \to (u, v, w(u, v))$$

$$x = f(u, v, w), \quad y = y(u, v, w), \quad z = h(u, v, w)$$

$$\Rightarrow h(u, v, w(u, v)) = z(x, y) = z(f(u, v, w(u, v)), \ g(u, v, w(u, v)))$$

$$\begin{cases} \frac{\partial h}{\partial u} + \frac{\partial h}{\partial w} \frac{\partial w}{\partial u} = \frac{\partial z}{\partial x} \left(\frac{\partial f}{\partial u} + \frac{\partial f}{\partial w} \frac{\partial w}{\partial u} \right) + \frac{\partial z}{\partial y} \left(\frac{\partial g}{\partial u} + \frac{\partial g}{\partial w} \frac{\partial w}{\partial u} \right) \\ \frac{\partial h}{\partial v} + \frac{\partial h}{\partial v} \frac{\partial w}{\partial v} = \dots$$

$$\Rightarrow \frac{\partial z}{\partial x} = \dots, \quad \frac{\partial z}{\partial y} = \dots$$

Пример

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

$$\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}$$

$$(x, y, z(x, y)) \to (r, \varphi, z(r, \varphi))$$

$$\frac{\partial z}{\partial r} = \frac{\partial}{\partial r} z(r \cos \varphi, r \sin \varphi) = \frac{\partial z}{\partial x} \cos \varphi + \frac{\partial z}{\partial y} \sin \varphi$$

$$\frac{\partial z}{\partial \varphi} = \frac{\partial z}{\partial x}(-r \sin \varphi) + \frac{\partial z}{\partial y}(r \cos \varphi)$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$ad - bc = 1$$

Наша зависимость:

$$\begin{pmatrix}
\frac{\partial z}{\partial r} \\
\frac{1}{r} \frac{\partial z}{\partial \varphi}
\end{pmatrix} = \begin{pmatrix}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{pmatrix} \begin{pmatrix}
\frac{\partial z}{\partial x} \\
\frac{\partial z}{\partial y}
\end{pmatrix} \Rightarrow \begin{pmatrix}
\frac{\partial z}{\partial x} \\
\frac{\partial z}{\partial y}
\end{pmatrix} = \begin{pmatrix}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{pmatrix} \begin{pmatrix}
\frac{\partial z}{\partial r} \\
\frac{1}{r} \frac{\partial z}{\partial \varphi}
\end{pmatrix}$$

$$\begin{pmatrix}
\frac{\partial z}{\partial x}
\end{pmatrix}^2 + \begin{pmatrix}
\frac{\partial z}{\partial y}
\end{pmatrix}^2 = \begin{pmatrix}
\frac{\partial z}{\partial r} \cos \varphi - \frac{\sin \varphi}{r} \frac{\partial z}{\partial \varphi}
\end{pmatrix}^2 + (\dots + \dots)^2 =$$

$$= \begin{pmatrix}
\frac{\partial z}{\partial r}
\end{pmatrix}^2 \cos^2 \varphi + \frac{\sin^2 \varphi}{r^2} \begin{pmatrix}
\frac{\partial z}{\partial \varphi}
\end{pmatrix}^2$$

Упр

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$$

3. Новые переменные выражены через старые

$$(x, y, z(x, y)) \to (u, v, w(u, v))$$

$$u = p(x, y, z)$$

$$v = q(x, y, z)$$

$$w = r(x, y, z)$$

$$\Rightarrow r(x, y, z(x, y)) = w = w(u, v) = w(p(x, y, z(x, y)), q(x, y, z(x, y)))$$

$$\frac{\partial r}{\partial x} + \frac{\partial r}{\partial z} \frac{\partial z}{\partial x} = \frac{\partial w}{\partial u} \left(\frac{\partial p}{\partial x} + \frac{\partial p}{\partial z} \frac{\partial z}{\partial x} \right) + \frac{\partial w}{\partial v} \left(\frac{\partial q}{\partial x} + \frac{\partial q}{\partial z} \frac{\partial z}{\partial x} \right)$$

$$\to \frac{\partial z}{\partial x} = F(\frac{\partial w}{\partial n}, \frac{\partial w}{\partial v}, x, y, z)$$

Проблема в том, что он выражен через страые переменные, а нужно как-то выражать через новые (u, v, w)

Можно попробовать через
$$\begin{array}{ll} u=p(x,y,z) & x=f(u,v,w) \\ v=q(x,y,z) \to y=g(u,v,w) \\ w=r(x,y,z) & z=h(u,v,w) \end{array}$$

Пример

$$y\frac{\partial^2 z}{\partial y^2} + 2\frac{\partial z}{\partial y} = \frac{2}{x}$$

$$u = \frac{x}{y} \qquad v = x \qquad w = xz - y$$

$$xz(x, y) - y = w(u, v) = w(\frac{x}{y}, x)$$

Выражение через старые переменные тут лучше, потому что нам нужно считать меньше производных

$$\begin{split} x\frac{\partial z}{\partial y} - 1 &= \frac{\partial w}{\partial u} \left(-\frac{x}{y^2} \right) \\ x\frac{\partial^2 z}{\partial y^2} &= \frac{\partial^2 w}{\partial u^2} \left(-\frac{x}{y^2} \right)^2 + \frac{\partial w}{\partial u} \frac{2x}{y^3} \end{split}$$

$$y\left(\frac{\partial^2 w}{\partial u^2}\frac{x}{y^4} + \frac{\partial w}{\partial u}\frac{2}{y^3}\right) + 2\left(\frac{1}{x} - \frac{1}{y^2}\frac{\partial w}{\partial u}\right) = \frac{2}{x}$$

$$\frac{x}{y^3}\frac{\partial^2 w}{\partial u^2} = 0 \leftarrow \text{Ура, не зависит от x,y}$$

$$x = v$$
 Альтернативный вариант был $\rightarrow y = \frac{v}{u}$

 $z = \frac{w + \frac{v}{u}}{v}$

$1.13 \quad 21.10.2019$

1.13.1 Продолжаем делать примеры

Пример (3475)

$$x^{2} \frac{\partial z}{\partial x} + y^{2} \frac{\partial z}{\partial y} = z^{2}$$

$$x, y, z(x, y) \to u, v, w(u, v)$$

$$u = x, v = \frac{1}{y} - \frac{1}{x}, w = \frac{1}{z} - \frac{1}{x}$$

Решение

Выразим старые переменные через новые:

$$x = u$$
, $y = \frac{u}{uv+1}$, $z = \frac{u}{uw+1}$

Можем составить тождество:

$$\frac{u}{uw+1} = z(x, y) = z(u, \frac{u}{uv+1})$$

Продифференцируем ЛЧ:

$$\Rightarrow \left(\frac{u}{uw+1}\right)'_{u} = \frac{(uw+1) - (w+uw'_{u})u'}{(uw+1)^{2}} = \frac{1 - uw'_{u}u'}{(uw+1)^{2}}$$

$$\Rightarrow \left(\frac{u}{uw+1}\right)'_{v} = \frac{-u^{2}w'_{v}}{(uw+1)^{2}}$$

Теперь продифференцируем ПЧ и составим систему:

$$\begin{cases} z\left(u,\ \frac{u}{uv+1}\right)_u' = \frac{\partial z}{\partial x} \cdot 1 + \frac{\partial z}{\partial y}\left(\frac{1(uv+1) - vu}{(uv+1)^2}\right) = \frac{1 - uw_u'u'}{(uw+1)^2} \\ z\left(u,\ \frac{u}{uv+1}\right)_v' = \frac{\partial z}{\partial y}\left(\frac{-u^2}{(uv+1)^2}\right) = \frac{1 - uw_u'u'}{(uw+1)^2} \end{cases}$$

Мы нашли то что хотели:

$$\frac{\partial z}{\partial y} = \frac{w_v'(uv+1)^2}{(uw+1)^2}$$

$$\frac{\partial z}{\partial x} = \frac{1 - u^2 w_u'}{(uw+1)^2} - \frac{w_v'(vu+1)^2}{(uw+1)^2} \frac{1}{(uv+1)^2}$$

Пример

$$\frac{\partial^2 z}{\partial x^2} + z \frac{\partial^2 z}{\partial z \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$$

$$u = x + y, \quad v = x - y, \quad w = xy - z$$

Решение

Составим тождество

$$xy - z = w(x + y, x - y) = w(u, v)$$

Дифференцируем по х:

$$\frac{\partial w}{\partial u_1} + \frac{\partial w}{\partial v} = y - z_x'$$

$$w'_{x} = (xy - z)'_{x} = y - z'_{x}$$

Дифференцируем по у:

$$\frac{\partial w}{\partial u} \underbrace{\frac{\partial u}{\partial y}}_{=1} + \frac{\partial w}{\partial v} \underbrace{\frac{\partial v}{\partial y}}_{=-1} = \frac{\partial w}{\partial u} - \frac{\partial w}{\partial v} = x - z_y'$$

$$w'_y = (xy - z)'_y = x - z'_y$$

$$z'_{x} = y - \underbrace{\frac{\partial w}{\partial u} - \frac{\partial w}{\partial v}}_{w(u,v) = h(x+y, x-y)}$$

$$\frac{\partial^2 z}{\partial x^2} = \underbrace{\frac{\partial y}{\partial x}}_{=0} - \frac{\partial}{\partial x} \left(h(\underbrace{x+y}_u, \ \underbrace{x-y}_v) \right) = \frac{\partial h}{\partial u} + \frac{\partial h}{\partial v} = -\frac{\partial^2 w}{\partial u^2} - 2\frac{\partial^2 w}{\partial v \partial u} - \frac{\partial^2 w}{\partial v^2}$$

$$z_y' = x + \frac{\partial w}{\partial v} - \frac{\partial w}{\partial u}$$

$$\frac{\partial^2 z}{\partial y^2} = \underbrace{\frac{\partial x}{\partial y}}_{=0} + \frac{\partial}{\partial y} \left(h_1(x+y, x-y) \right) = \frac{\partial h_1}{\partial u} - \frac{\partial h_1}{\partial v} = 2 \frac{\partial^2 w}{\partial v \partial u} - \frac{\partial^2 w}{\partial u^2} - \frac{\partial^2 w}{\partial v^2}$$

$$\frac{\partial^2 z}{\partial x \partial y} = 1 - \frac{\partial^2 w}{\partial u^2} + \frac{\partial^2 w}{\partial v^2}$$

$1.14 \quad 24.10.2019$

1.14.1 Экстремумы

Теорема (необходимое условие лок. экстремума)

$$f:D\subset\mathbb{R}^n o\mathbb{R}$$
 x^0 - внутр. точка D, f - диф. в x^0 в x^0 лок. экстр. $\Rightarrow \forall j$ $\frac{\partial f}{\partial x_0}(x^0)=0$

Опр

$$\int x^0$$
 - страционарная, если $\forall g \quad \frac{\partial f}{\partial x_0}(x^0) = 0$

Пример

$$f = x^3$$
 $f'(0) = 0$, но $x_0 = 0$ - не экстр. точка

y_{TB}

Достаточное условие лок. экстремума: Пусть $f \in C^2, \quad x^0$ - страционарная точка, тогда:

- 1. d^2f строго пол. определен \Rightarrow в x^0 лок. мин.
- 2. $d^2 f$ отриц. опр. \Rightarrow лок. макс.

3.
$$\exists e_1, e_2 \in \mathbb{R}^n : \frac{d^2 f(x^0)[e_1] > 0}{d^2 f(x^0)[e_2] < 0} \Rightarrow \mathbf{B} \ x^0 \text{ нет экстр.}$$

$$d^{2}f = \sum_{i,j=0}^{n} \frac{\partial^{2}f}{\partial x_{i}\partial x_{j}} dx_{i} dx_{j} = dx^{T} A dx$$

$$dx = \frac{dx_1}{dx_n} \quad A = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{i,j=1}^2$$

Опр

Кв. форма пол. определена \Leftrightarrow она принимает пол. значения на вект $\neq 0$ Кв. форма отр. определена \Leftrightarrow -//- отр. знач.

$$f(x) = f(x^{0}) + d^{2}f(x^{0})[x - x^{0}] + \overline{o}(|x - x^{0}|^{2})$$

Теорема (критерий Сильвестра)

$$A = (a_{ij})_{i,j=1}^n$$
 $a_{ij} = a_{ji}$ $F(x) = \sum_{i,j=1}^n x_i x_j$

Кв. форма пол. опр. $\Leftrightarrow A_1 > 0, \ A_2 > 0, \ ..., \ A_n > 0$ Кв. форма отр. опр. $\Leftrightarrow A_1 < 0, \ A_2 < 0, \ ..., \ A_n < 0$

$$A_k = \det((a_{ij})_{i,j=1}^k) = \det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & & & & \\ \dots & & & & \\ a_{k1} & & & a_{kk} \end{pmatrix}$$

Пример (n=2)

$$f: \mathbb{R}^2 \Rightarrow \mathbb{R}$$
 (x_0, y_0) - стац.
$$\begin{pmatrix} f''_{xx} & f''_{xy} \\ f''_{xy} & d'_{yy} \end{pmatrix} = \begin{pmatrix} A & B \\ B & C \end{pmatrix}$$

 x^{0} - лок. мин $\Leftrightarrow A>0$ и $AC-B^{2}>0$ x^{0} - лок. макс $\Leftrightarrow A<0$ и $AC-B^{2}<0$ Если $AC-B^{2}>0$ \Rightarrow нет экстр.

$$f = x^2 - xy + y^2 - 2x + y$$
 $\frac{\partial f}{\partial x} = 2x - y - 2 = 0$ $\Rightarrow (1,0)$ - стац. точка $\frac{\partial f}{\partial y} = -x + 2y + 1 = 0$ $d^2f = 2dx^2 - 2dxdy + 2dy^{@}$ $\frac{\partial^2 f}{\partial x \partial y}$ $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ $A = 2 > 0$ $AC - B^2 = 5 > 0$ $\Rightarrow (1, 0)$ - лок. экстр.

$1.15 \quad 28.10.2019$

1.15.1 Экстремумы

Пример

Найти экстремумы

$$f(x, y, z) = x^2 + y^2 - z^2 - 4x + 6y - 2z$$

Решение

Найдем первые производные и приравняем к 0:

$$\begin{cases} f'_x = 2x - 4 = 0 \\ f'_y = 2y - 6 = 0 \\ f'_z = -2z - 2 = 0 \end{cases} \Rightarrow x = 2 \quad y = -3 \quad z = -1$$

$$\frac{\partial^2 f}{\partial x^2} = 2 \quad \frac{\partial^2 f}{\partial y^2} = 2 \quad \frac{\partial^2 f}{\partial z^2} = -2$$

$$\frac{\partial^2}{\partial x \partial y} = 0 \quad \frac{\partial^2 f}{\partial y \partial z} = 0 \quad \frac{\partial^2 f}{\partial x \partial z} = 0$$

$$\begin{pmatrix} f''_{xx} & f''_{xy} & f''_{xz} \\ f''_{xy} & f''_{yy} & f''_{yz} \\ f''_{xz} & f''_{yz} & f''_{zz} \end{pmatrix} = \begin{pmatrix} A_1 & A_2 & A_3 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$\Rightarrow A_1 = \det(2) = 2 \quad A_2 = \det\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 4 \quad A_3 = \det\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix} = -8$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 2(dx^2 + dy^2 - dz^2)$$

$$f(x, y, z) = (x+7z)e^{-(x^2+y^2+z^2)}$$

$$\begin{cases} f'_x = e^{-(\cdot)} + (x+7z)(-2x)e^{-(\cdot)} = 0\\ f'_y = (x+7z)(-2y)e^{-(\cdot)} = 0\\ f'_z = 7e^{-(\cdot)} + (x+7z)(-2z)e^{-(\cdot)} = 0 \end{cases} \Rightarrow x = \pm \frac{1}{10} \quad y = 0 \quad z = \pm \frac{1}{10}$$

Можно не дифференцировать всё, т.к. нас интересуют только слагаемые, которые мы обнуляем

$$f_{xx}'' \overset{\text{в инт. точке}}{\sim} (-4x - 14z)e^{-(\)} \quad f_{yy}'' \sim -2(x + 7z)e^{(\)} \quad f_{zz}'' \sim (-28z - 2x)e^{(\)}$$

$$f_{xy}'' \sim 0$$
 $f_{xz}'' = (-14x)e^{(\)}$ $f_{yz}'' = 0$

Матрица для точки $x = \frac{1}{10}$ y = 0 $z = \frac{1}{10}$:

$$\begin{pmatrix} -102 & 0 & -14 \\ 0 & -100 & 0 \\ -14 & 0 & -198 \end{pmatrix}$$

$$A_1 < 0$$
 $A_2 > 0$ $A_3 < 0 \Rightarrow$ лок. max

Матрица для точки $x = -\frac{1}{10}$ y = 0 $z = -\frac{1}{10}$:

$$\begin{pmatrix}
102 & 0 & 14 \\
0 & 100 & 0 \\
14 & 0 & 198
\end{pmatrix}$$

$$A_1, A_2, A_3 > 0 \Rightarrow$$
 лок. min

Замечание

$$f'(x_0) = 0 \Rightarrow (fg)'(x_0) = fg'(x_0)$$

1.15.2 Условный экстремум

Теорема

$$f: \mathbb{R}^n \to \mathbb{R}$$
 $\varphi_1, ..., \varphi_k: \mathbb{R}^n \to \mathbb{R}$ $k < n$

Локальный экстр. f при условии
$$\begin{cases} \varphi_1(x) = 0 \\ ... \\ \varphi_k(x) = 0 \end{cases} \quad x = (x_1,...,x_n)$$

$$abla arphi_1, \
abla arphi_2, \ ..., \
abla arphi_k$$
 - лин. незав.

Рассмотрим вспомогательную функцию:

$$L(x) = f(x) + \sum_{j=1}^k \lambda_k \varphi_j(x)$$
 - ф-ия Лагранжа

 $\lambda_1,...,\lambda_k$ - мн-ли Лагранжа Алгоритм:

1. Ищем стац. точки L:

$$\begin{cases} \frac{\partial}{\partial x_j} L(x) = 0, & j = 1...n \\ \varphi_i(x) = 0, & i = 1...k \text{ - система из } k+n \text{ уравнений} \end{cases}$$

⇒ находим стац. точки (это точки, подозр. на экстр.)

2. Нужно проверить, что в стац. точках условия $\varphi_i=0$ должны быть независимы в том смысле, что вектора $\nabla \varphi_1,...,\nabla \varphi_k$ - лин. независимы или:

$$\operatorname{rk} \begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1} & \dots & \frac{\partial \varphi_1}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial \varphi_k}{\partial x_1} & \dots & \frac{\partial \varphi_k}{\partial x_n} \end{pmatrix} = k$$

k=1 означает $\nabla \varphi_1 \neq 0$

3. Исследуем d^2L в стац. точках

$$d^2L>0$$
 при усл., что $darphi_i=0$ $j=1...k\Rightarrow$ усл. лок. min $d^2L<0$ при усл., что $darphi_i=0$ $j=1...k\Rightarrow$ усл. лок. max

"Пример"
$$f = \frac{x^2 - y^2}{2}$$

$$d^2L = dx^2 - dy^2]\varphi(x) = x + \frac{1}{2}y = 0$$

$$d\varphi = dx + \frac{dy}{2} = 0$$

$$d^2L = \left(\frac{dy}{2}\right)^2 - (dy)^2 = -\frac{3}{4}dy^2 < 0$$

Пример

$$\varphi_1 = x^2 + y^2 + z^2 - 1 = 0$$

$$f(x) = x^3$$

Решение

Шаг 1:

$$L(x) = x^{3} + \lambda(x^{2} + y^{2} + z^{2} - 1)$$

$$\begin{cases}
L'_{x} = 3x^{2} + 2\lambda x = 0 = x(2x + 2\lambda) \\
L'_{y} = 2\lambda y = 0 \\
L'_{z} = 2\lambda z = 0 \\
x^{2} + y^{2} + z^{2} - 1 = 0
\end{cases}$$

$$\lambda = 0 \Rightarrow x = 0 \quad y^{2} + z^{2} = 1$$

$$\lambda \neq 0 \Rightarrow y = z = 0 \quad x = 1 \quad \lambda = -\frac{3}{2} \quad x = -1 \quad \lambda = \frac{3}{2}$$

Шаг 2: (x, y, z, lambda) - стац. точка

$$d^2L = (2\lambda + 6x)d^2x + 2\lambda dy^2 + 2\lambda z^2$$

Можем изучать при $0=d(x^2+y^2+z^2-1)=2x\ dx+2y\ dy+2z\ dz_{\text{фикс}}=0$

Случай 2:

$$\lambda \neq 0$$
 $dx = \frac{ydy + zdz}{x} = 0$ $(y = z = 0)$

$$d^2L = 2\lambda(dy^2 + dz^2)$$

 $\lambda > 0$ - пол. опр $(-1,\ 0,\ 0),\ \lambda < 0$ - отр. опр. $(1,\ 0,\ 0)$ $(-1,\ 0,\ 0)$ - лок. макс. $(1,\ 0,\ 0)$ - лок. мин.

Случай 1:

$$x=0$$
 $\lambda=0$ $d^2L=0$ - метод не работает

Но f(x) = 0 при x = 0 и $y^2 + z^2 = 1 \Rightarrow$ нет лок. мин. и лок. макс.

Пример

$$u = xyz \qquad \begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 0 \end{cases}$$

$$L(x, y, z) = xyz + \lambda_1(x^2 + y^2 + z^2) + \lambda_2(x + y + z)$$

$$\begin{cases} yz + 2\lambda_1 x + \lambda_2 = 0 \\ xz + 2\lambda_1 y + \lambda_2 = 0 \\ xy + 2\lambda_1 z + \lambda_2 = 0 \end{cases}$$

$$x^2 + y^2 + z^2 = 1$$

$$x + y + z = 0$$

$$\Rightarrow \lambda_1 = -\frac{3}{2}xyz$$

$$\xrightarrow{1 + 2 + 3} \lambda_2 = -\frac{1}{3}(yz + xz + xy)$$

$$\xrightarrow{4} (x + y + z)^2 - 2(xy + xz + yz) = 1 \Rightarrow \lambda_2 = \frac{1}{6}$$

$$\begin{cases} (z - 2\lambda_1)(y - x) = 0 \\ (x - 2\lambda_1)(z - y) = 0 \\ (y - 2\lambda_1)(x - z) = 0 \end{cases}$$

$$\Rightarrow \left(\pm \frac{1}{\sqrt{6}}, \pm \frac{1}{\sqrt{6}}, \mp \frac{2}{\sqrt{6}}; \pm \frac{1}{2\sqrt{6}}, \pm \frac{1}{6} \right) \text{ if eige } \dots$$

Следующий шаг:

rk
$$\begin{pmatrix} 2x & 2y & 2z \\ 1 & 1 & 1 \end{pmatrix} = 2$$
, кроме $x = y = z$

Следующий шаг:

$$d^{2}L = 2\lambda_{1}(dx^{2} + dy^{2} + dz^{2}) + 2xdydz + 2ydxdz + 2zdxdy$$

Но нам известно:

$$\begin{cases} 2xdx + 2ydy + 2zdz = 0\\ dx + dy + dz = 0 \end{cases}$$

Посмотрим на точку $x = y = \pm \frac{1}{\sqrt{6}}$

$$\Rightarrow dz = 0$$
 $dx = -dy \Rightarrow d^2L = (4\lambda_1 - 2z)dx^2 = \pm\sqrt{6}dx^2$

Ответ: $\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right)$ - усл. лок. мин., $\left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)$ - усл. лок. макс.

Остальные аналогично