

Fakultät Informatik

Institut Systemarchitektur

Professur Rechnernetze

WS 2016/2017 LV Rechnernetzpraxis

3. Strukturierte Verkabelung

Dr. rer.nat. D. Gütter

Mail: Dietbert.Guetter@tu-dresden.de

WWW: http://www.guetter-web.de/education/rnp.htm

02.11.2016

Verkabelungstopologien

vollvermaschtes Netz

- jeder Rechner hat eine Verbindung zu jedem anderen Rechner
- Leitungsanzahl: n * (n-1)/2
- nur in kleineren Netzen möglich

teilvermaschtes Netz

- reduzierte Verbindungsanzahl
- einige Rechner können nur noch über Vermittlungseinrichtungen erreicht werden
- beliebig skalierbar
- Vermittlung kann zu Engpässen führen

Einfache Verkabelungstopologien

Bedarfsverkabelung

- üblich bis ca. 1990
- Standorte der Arbeitsstationen und Server bestimmen Kabelführung Kostenanteil der Kabelinfrastruktur an IT-Technik gering
- Netzwerktechnologie erfordert spezifische Verkabelung

1980:

Ethernet 10Base5, 10Base2 Koaxverkabelung, busförmige Topologie

Ethernet 10Base-T TP-Kabel, baumförmige Topologie

Token Ring TP-Kabel, Ringtopologie

1990:

FDDI Lichtwellenleiter, Ringtopologie

Bedarfsverkabelung IEEE 802.3 Ethernet 10Base5

- Standardtechnologie Anfang der 80-er bis Anfang 90-er Jahre
- ein dickes (1 cm), starres (Biegeradius 25 cm) Koaxialkabel
- Transceiver bzw. MAU (Media Access Unit) für Medienzugriff (mit Dorn an Koaxkabel geklemmt, Anschluß während des Netzbetriebes möglich)

Kabelsegmente bei Ethernet 10Base5

- max. 500 m pro "Segment", 5 Segmente möglich → 2,5 km Länge
- Kopplung durch Signalverstärker (Repeater)
- unzuverlässig wegen der vielen Verbindungsstellen,
 Totalausfall des Netzes bereits bei einem Kontaktproblem
- schlecht administrierbar, nicht skalierbar (shared medium)

Kabelsegmente bei Ethernet 10Base2

- Standardtechnologie Anfang bis Mitte der 90-er Jahre
- dünneres Koaxialkabel, ebenfalls max. 5 Segmente
- kein Transceiver, Direktanschluß der Rechner über T-Stücke
- einfacher zu verlegen, sehr fehleranfällig

Bedarfsverkabelung für Ethernet 10Base-T

- TP-Kabel, gut verlegbar
- Stern- bzw. Baumtopologie, mehr Kabelaufwand
- zentraler Signalverstärker (Hub)
- gut administrierbar
 (da nur 2-Punktverbindungen Fehler schnell eingrenzbar)

Bedarfsverkabelung für Ethernet 10Base-F

- LWL-Kabel
- höhere Bandbreite, geringere Dämpfung, größere Reichweite
- galvanische Trennung
- nicht anfällig gegen elektromagnetische Störungen
- Einsatz vor allem bei Überwindung größerer Strecken (bis 2000 m)

Ethernet Mischformen

- verschiedene Netzkabeltypen
- verschiedene Topologien
- schwierige Zusammenarbeit mit anderen Netztechnologien
- Probleme noch größer bei

100 Mbit/s Fast Ethernet Netzwerken z.Tl. In zeitlicher Koexistenz mit alten Ethernet-Abschnitten

Bedarfsverkabelung für IEEE 802.5 Token Ring

- TP-Kabel, aber auch LWL
- Ringstruktur
- ringförmige Verkabelung bringt Probleme bei Fehlersuche

Bedarfsverkabelung für IEEE 802.5 Token Ring

- logischer Ring
- Sterntopologie mit TP-Kabeln
- nur eine zentraler Ringvermittler
- preiswerter, bessere Fehleradministration

Bei Rechnerausfall

Einfache Überbrückung des fehlerhaften Ringsegmentes

Bedarfsverkabelung für FDDI (Fiber Distributed Data Interface)

Token Ring auf Lichtwellenleiter-Basis mit 100 Mbit/s "Backbone" zur Netzintegration Anfang der 90-er Jahre Doppelringstruktur, fehlertolerant; max. 1000 Stationen über max. 200 km; "Backbone" zur Netzintegration

Gegenring normalerweise redundant

Bei Beschädigung wird Ring aufgetrennt und Gegenring genutzt

Bedarfsverkabelung: Fazit

hohe Infrastrukturkosten, da ca. aller 5 Jahre Erneuerung/Ergänzung der Verkabelung

- Kabelkosten
- Stecker
- Konfektionierungsarbeiten
- Baumaßnahmen

Kosten durch Netzausfall bei

- Baumaßnahmen
- Netzanlauf nach Rekonstruktion

→ Forderung an Kabelinfrastrukturplanung

- (relativ) technologieunabhängig
- langfristig

Verkabelung wird als Infrastruktur geplant, wie beim Stromnetz, Wasserrohrnetz, Gebäudeautomatisierungsnetz, ...

Zeithorizont 10 bis 20 Jahre (*langfristig* geringere Infrastrukturkosten)

- Anwendungsunabhängigkeit
- Netztechnik muss sich an die Verkabelung anpassen Erneuerung von Arbeitsstationen, Server und Vermittlungstechnik unabhängig von Verkabelung, Erneuerungszyklus mittelfristig, z.B. 2-3 Jahre
- Netzerweiterungen müssen möglich sein (Stationsanzahl, Übertragungsraten)
- Einfach: Installation, Wartung, Fehlerkontrolle, Management
- hohe Zuverlässigkeit (ggf. Einplanung von Redundanz)
- Schutz vor unberechtigtem Zugriff

Hierarchische Baumstruktur

Strukturierte Verkabelung - Standards

US-Normen

ANSI (American National Standard Institute) EIA (Electronics Industries Association) TIA (Telecommunication Industry Association)

1991 **EIA/TIA 568**

"Commercial Building Telecommunications Wiring Standard"

ISO (International Organization for Standardization)

IEC (International Electronic and Electrotechnical Commission)
CENELEC (European Committee for Electrotechnical Standardization)
DIN (Deutsches Institut für Normung)

1995 **ISO/IEC-11801** "General Cabling for Costumer Premises" **EN 50173** "General Cabling Systems"

DIN EN 50173 "Anwendungsneutrale Verkabelungssysteme"

DIN-Arbeitsgruppen

- DKE/GUK 715.3 "Informationstechnische Verkabelung von Gebäudekomplexen"
- DKE/UK 412.1 "Symmetrische Kabel und Leitungen, Drähte"
- DKE/K 712 "Sicherheit von Einrichtungen der Informationstechnik"

viele Detail-Standards Dokumentation relativ teuer, Bestellung meist über Beuth-Verlag

Phasen und Spezifikationen der Verkabelung

•	EN 50310	Gebäudemaßnahmen: Erdung, Potentialausgleich,
•	EN 50173	Planung der strukturierten Verkabelung
•	EN 50174-1	Spezifikation/Qualitätssicherung
•	EN 50174-2	Installation in Bürogebäuden
•	EN 50174-3	Installation im industriellen Bereich
•	EN 50174-4	Installation in Wohnungen
•	EN 50174-5	Installation in Rechenzentren
•	EN 50288-X	Kabelnormen
•	EN 60603-7-X	Steckverbinder (RJ-45,)
•	EN 50346	Prüfvorschriften für installierte Verkabelung

EMV - Elektromagnetische Verträglichkeit

"Gesetz über die elektromagnetische Verträglichkeit von Betriebsmitteln (EMVG)" vom 26.2.2008

regelt Begrenzung der "Störaussendung" und Mindest-"Störfestigkeit" von Geräten

Nachweis der EMV ist Pflicht (Konformitätserklärung)
→ CE-Zeichen (frz. Conformité Européenne)

DIN-Arbeitsgruppen

- DKE/UK 767.17, EMV von Einrichtungen der Informationsverarbeitungs- und Telekommunikationstechnik"
- DKE/UK 767.3 "Hochfrequente Störgrößen"

Normen

•	EN 55022	"Grenzwerte und Meßverfahren		
		für Funkstörungen von informationstechnischen Einrichtungen"		
•	EN 5082	"Fachgrundnorm Störfestigkeit"		

Topologievorschriften, Längenrestriktionen, Kabeltypen, ...

Primärverkabelung (Arealverkabelung)
 zwischen Standortverteiler SV und verschiedenen Gebäudeverteilern GV

Anforderungen

- Trassenführung mit Redundanz für Notfälle
- Potentialtrennung zwischen Gebäuden
- elektrische Störungsfestigkeit, Erweiterbarkeit, Abhörsicherheit
- o Integrationsmöglichkeit für Subnetze beliebiger Technologie
- o hohe Übertragungsraten (→ Lichtwellenleiter)

- **Sekundärverkabelung** (Steigzonenverkabelung) für den Anschluß der Etagenverteiler EV an Gebäudeverteiler
- Tertiärverkabelung (horizontale Verkabelung)
 von den Etagenverteilern zu den Computeranschlüssen TA

Sekundär-V.: LWL oder TP Tertiär-V: TP-Kabel

- 2 kupferbasierte Informationswege
 - Telefon
 - Datenübertragung.

TP-Kabel-Qualität

LAN-tauglich ab

Kategorie 5 bzw. Klasse D

Gelände-Backbone max. 2000m
Lichtwellenleiter

Gebäude-Backbone max. 500m LWL bzw. STP

max. 100m
UTP ≥ Cat 5

EN 50173 Etagenverkabelung

 Installationskabel für jeden Netzwerkanschluß, meist Cu-TP-Kabel fest verlegt zwischen 2 Buchsen
 Patchfeld im FV-Raum ←→ Anschlußdosen in Arbeitsräumen

 Anschluß der aktiven Komponenten, z.B. Arbeitstationen und Switch mittels flexibler Anschlußkabel (Stecker ←→Stecker)

verdrillte Kupferleitungen (Twisted Pair)

Kabel relativ preiswert, leichte Montage gekennzeichnet durch

• Kabelgeometrie, -material

Durchmesser, Zahl der Adernpaare Schlaglänge (Verdrillungen pro Länge) Isolationsmaterial Schirmung Temperaturbereich Gewicht

- Frequenzband
- Max. Kabeldämpfung K für 100 m, z.B. bei 100 Mhz

Qualitätskategorien nach Normen EN50173 bzw. EIA/TIA 568

EN 50173 TP-Kabel

Kabel 8-adrig, Cu-Adern ca. 1mm, paarweise verdrillt, unterschiedliche Schirmung

UTP

(Unshielded Twisted Pair) Adernpaare ohne Schirmung, bis 100 MHz

auch U/UTP

FTP

(Foiled Twisted Pair) Adernpaare in Metallfolie, bis 625 MHz

auch U/FTP

S/UTP

(Screened unshielded TP) wie UTP plus Gesamtschirmung

auch F/UTP (Folie) bzw. SF/UTP (Geflecht + Folie)

S/FTP

(Screened foiled TP) wie FTP plus Gesamtschirmung

auch F/FTP (Folie) bzw. SF/FTP (Geflecht + Folie)

TP - Kabelklassen/-kategorien

Kabel- Kategorie	Link- Klasse	Grenz- frequenz	Zulässige Dämpfung bei	geeignet für		
EIA/TIA 568	EN 50173	-	Grenzfrequenz	Datenrate	Anwendung	
3		16 MHz	13,1 dB/100m	10 Mbit/s	Telefon/LAN	
	С	16 MHz	14,4 dB/100m	20 Mbit/s		
	D	100 MHz	24 dB/100m	100 Mbit/s	FastEthernet	
5		100 MHz	22 dB/100m	100 Mbit/s		
6		200 MHz	23 dB/100m	1 Gbit/s		
	Е	250 MHz	35,9 dB/100m	1 Gbit/s	GbE	
(6 _A)	E _A	500 MHz	49,3 dB/100m	10 Gbit/s	10 GbE	
	F	600 MHz	54,6 dB/100m	> 10 Gbit/s		
7		600 MHz	50 dB/100m	> 10 Gbit/s		
(7 _A)	F _A	1000 MHz	67,6 dB/100m			
8		2000 MHz	?/30m	40 Gbit/s	40 GbE	

RJ-45 Stecker- und Buchsenbelegung

TP-Kabel bestehen aus 4 farbige gekennzeichneten Adernpaaren, zB. Paar Blau/Weiß-Blau

EIA/	TIA 568 A		EIA	/TIA 568 B
1	Weiß-Grün		1	Weiß-Orange
2	Grün		2	Orange
3	Weiß-Orange		3	Weiß-Grün
4	Blau		4	Blau
5	Weiß-Blau		5	Weiß-Blau
6	Orange	87654321	6	Grün
7	Weiß-Braun		7	Weiß-Braun
8	Braun		8	Braun

B-Kodierung dominiert

Netzwerkinstallation

→ sämtliche Anschlüsse auf korrekte Installation prüfen Protolle in Netzwerkdokumentation aufnehmen

Festinstallation Flexible Kabel einheitliche Kodierung im gesamten Netzwerk normal: beidseitig gleich kodiert, sonst Cross-Over-Kabel

Stecker/Buchsen

RJ-45 (Registered Jack)
Standard, 8 Pin
max. bis Cat 6A
bis 500 MHz
ungeeignet für Cat7

Nexans GG45

abwärtskompatibel zu RJ-45 8+4 Pin bis 1000 MHz geeignet für Cat 7

Siemon TERA

unkompatibel zu RJ-45, 2, 4, oder 8 Pin bis 1,2 GHz Geeignet für Cat 7

EN 50173 Sammelpunkte (Consolidation Points)

Bürobetrieb wechselnde Anforderungen an Anzahl und Position der Anschlußdosen

2002 Möglichkeit der Installation von Sammelpunkten zwischen Etagenverteiler und Anschlußdosen

- Zugängigkeit muß gegeben sein (Zwischendecken, Unterflursysteme, ...)
- maximal 12 Anschlüsse pro CP
- Abstand EV ←→ CP muß größer als 15 m sein

Qualitätssicherung

EN 50173 Formulierung Anforderungen an Netzwerkinstallation

EN 50174 Qualitätsplan, unterschiedliche Stufen

EN 50346 Meßverfahren,

hohe Anzahl HF-Messungen (48 pro Kabel) (moderne Geräte messen Meßwertsatz in 9 s)

Verifizierung Überprüfen der Verdrahtung

Zuordnen von Anschlüssen

Durchgangstest

Qualifizierung Überprüfen der Gewährleistung der Bandbreite

Zertifizierung Überprüfen Konformität mit vorgegebenen Standards

Grenzwerteinhaltung nach ISO/IEC 11801, EN 50173, ...

Referenzierung Untersuchungen im Labor

Zertifikat: Kontrollparameter

Wiremap Kontrolle der korrekten Verdrahtung Impedance Leitungswellenwiderstand des Kabels

Attenuation Dämpfung

Length Länge der Übertragungsstrecke

DC-Resistance Ohmscher Widerstand

NEXT (near end crosstalk) Nahübersprechen FEXT (far end crosstalk) Fernübersprechen

ACR-F (ELFEXT) (equal level far end crosstalk) Verhältnis des übersprechenden

Ausgangspegels zum eigentlichen Ausgangspegel

ACR (Attenuation To Crosstalk Ratio) Dämpfung-Übersprech-

Verhältnis

powersum NEXT Leistungssumme des Nahübersprechens

powersum ELFEXT Leistungssumme der elektromagnetische Koppelung am

entfernten Kabelende

powersum ACR Leistungssumme des Dämpfung-Übersprech-Verhältnis

Return Loss Rückflussdämpfung

NVP (nominal velocity of propagation) verzögerte Signallaufzeit

gegenüber der Lichtgeschwindigkeit im Vakuum

Propagation Delay Signallaufzeit

Delay Skew Signallaufzeitunterschied auf verschiedenen Aderpaaren

Zertifikat: Kontrollparameter

Wiremap (Verdrahtungsfehler)

- Adernvertauschung
- Überkreuzung von Adernpaaren
- nicht paarweise Pin-zuordnung
- Ader-Schirmschluß
- offene Pins

Gleichstromwiderstand

- Überschreitung von Grenzwerten problematisch
- niedrige Werte ermöglichen Fernstromversorgung

Kapazität (optional)

- Uberschreitung von Grenzwerten problematisch (Feuchtigkeit im Kabel, Druckstellen, ...)
- Meßwert dient der Berechnung der Impedanz

Delay Laufzeiten

Zusammenhang

- Signalausbreitungsgeschwindigkeit
- Länge
- NVP (Nominal Velocity of Propagation)

$$T_{L} = \frac{l_{Kabel}}{c_{Kabel}} = \frac{l_{Kabel}}{NVP * c_{Vakuum}}$$

NVP-Wert: Angabe durch Kabelhersteller (0,6 ... 0,9), abhängig von

- Verkürzungsfaktor
- Schlaglänge, Verdrillung

In der Praxis wird die o.g. Formel meist umgekehrt benutzt. Laufzeitmessung → Kabellänge

Delay Skew Laufzeitdifferenzen

Kabelproduktion

→ NVP-Wert schwankt über Kabellänge Laufzeitdifferenzen zwischen den einzelnen Adernpaaren eines Kabels

Skew = Differenz zwischen Maximal- und Minimalwert

$$Delay Skew = T_{L-max} - T_{L-min}$$

wichtig für Technologien mit zeitparallelem Senden über mehrere Adern z.B. bei 10GbE

Bidirektionale Übertragung mit 4 x 250 Mbit/s
Delay Skew von 4 ns bedeutet bereits Zeitverschiebung um 1 Bitzeit!

Laufzeitmessung

Ausnutzung der Signalreflexion am Kabelende

- keine Reflexion, wenn korrekter Kabelabschluß mit Wellenwiderstand
- Reflexion, wenn offenes Ende
- Reflexion mit Pegelumkehr bei kurzgeschlossenem Ende

Beim Meßvorgang werden kurze Impulse (zB. 20 ns) gesendet und die Zeitdifferenz gemessen: zwischen Senden Signal und Empfang des reflektierten Signales

→ Laufzeit = Meßwert / 2

Kabelrückflußdämpfung (Return Loss)

An Störstellen der Übertragungsstrecke erfolgen Signalreflexionen Ursachen: Kabelmontagefehler, falsche Abschlußwiderstände, ...

$$A_r = 10 \lg \left(\frac{Sendeleistung}{reflektierte Leistung} \right)$$

Beim Meßvorgang werden kurze Impulse (zB. 20 ns) gesendet und danach die Intensität des reflektierten Signales gemessen.

Über Messung der Laufzeit kann auch Reflexionsort ermittelt werden.

Impedanz

Wellenwiderstand

wird berechnet aus Meßwerten für Laufzeit und Kabelkapazität

→ Größe der Kabelabschlußwiderstände

$$Z_0 = \frac{T_L}{C}$$

$$c_{Kabel} = \frac{l_{Kabel}}{T_L} = \frac{1}{\sqrt{L'*C'}}$$

$$Z_0 = \sqrt{\frac{L'}{C'}}$$

Beispielmessung

- 500 ns Laufzeit
- 5 nF Kapazität
- → 100Ω Impedanz

Kabeldämpfung (Insertion Loss)

Dämpfungsgrenzwerte müssen unbedingt eingehalten werden

→ Messungen und ggf. Korrekturen an der Netzwerkinstallation

Kabeldämpfung abhängig von

- Kabellänge
- Frequenz
- Installationsfehlern (Biegungen, Quetschungen)
- Temperatur , Luftfeuchtigkeit

Insertion Loss ist durch Verstärkung korrigierbar

NEXT Near End Crosstalk

Nahübersprechen NEXT

- Signalströme im Paar A induzieren Störströme im Nachbar-Paar B
- NEXT wird am Kabelanfang gemessen, Maßeinheit dB
- relativ längenunabhängig
- stark frequenzabhängig, beeinflußbar durch Kabelqualität

$$NEXT = 10\lg\left(\frac{Sendeleistung - nah - A}{St\"{o}rleistung - nah - B}\right)$$

NEXT kann sich an den beiden Enden unterscheiden → 2 Messungen NEXT ist prinzipiell korrigierbar, durch Gegensteuern im Adernpaar B

PSNEXT Power Sum NEXT

berücksichtigt NEXT von **allen** anderen Paaren im Kabel bedeutsam für Kabel mit Parallel-Übertragung über mehrere Adernpaare

Hauptursachen für schlechte NEXT-Werte

- zu geringe Qualität der Netzwerkkomponenten
- Montagefehler

FEXT Far End Crosstalk

Fernübersprechen FEXT

- FEXT wird am der Einspeisung entgegengesetzten Ende gemessen
- Nebensprechen erfolgt über gesamte Kabellänge zusätzlich geht Leitungsdämpfung ein
- → FEXT-Wert längenabhängig, schwer meßbar

$$FEXT = 10\lg\left(\frac{Sendeleistung - fern - A}{St\"{o}rleistung - nah - B}\right)$$

FEXT ist nicht korrigierbar.

ACR Attenuation Crosstalk Ratio Verhältnis des Nebensprechens NEXT zur Dämpfung A

ACR [dB] = NEXT [dB] - Dämpfung [dB]

ACR-F bzw. ELFEXT (Equal Level Far-end Cross Talk)

Verhältnis des Nebensprechens FEXT zur Dämpfung A
relativ längenunabhängig

ACR-F [dB] = FEXT [dB] - Dämpfung [dB]

PSACR und **PSACR-F**

PSACR = PSNEXT minus Dämpfung des eigenen Paares

PSACR-F = Summe ACR-F der anderen Paare

EMI (Eletromagnetic Interference) / AXTALK (Alien NEXT)

EMI Einstrahlung durch Emission fremder Geräte

AXTALK Übersprechen in Kabelbündeln zwischen Nachbarkabeln

ANEXT, PS ANEXT, PS AACR-F, ...

Problem bei Frequenzen >= 500 MHz in UTP-Installationen

Auswege

- Kabelabstände erhöhen
- Abstände der Netzwerkdosen erhöhen
- Patch Panels mit größerem Buchsenabstand
- bessere Schirmung durch S/FTP-Kabel
 Dämpfung des Alien AXTALK um 100 dB
- Installation auf Niveau Klasse F Gütegarantie "per Design"

Grenzwerte

Grenzwerte einer Übertragungsstrecke Klasse E (250 MHz) nach Standard EN 50173:2001

Meßwerte	Frequenz / MHz								
Loss [dB] Delay [ns]	1	4	10	16	20	31,25	100	200	250
Insertion Loss	4,0	4,2	6,5	8,3	9,3	11,7	21,7	31,7	35,9
Delay				555					
Delay Skew	50,0	50,0	50,0	50,0	50,0	50,0	50,0	50,0	44,0
NEXT	65,0	63,0	56,6	53,2	51,6	48,4	39,9	34,8	33,1
PSNEXT	62,0	60,5	54,0	50,6	49,0	45,7	37,1	31,9	30,2
Return Loss	19,0	19,0	19,0	18,0	17,5	16,5	12,0	9,0	8,0
ACR-F	63,2	51,2	43,2	39,2	37,2	33,3	23,3	17,2	15,3
PSACR-F	60,3	48,3	40,3	36,2	34,3	30,4	20,3	14,2	12,3
ACR	62,8	58,9	50,0	44,9	42,3	36,7	18,2	3,0	-2,8
PSACR	58,0	56,3	47,5	42,3	39,7	34,0	15,4	0,2	-5,7

IEEE 802.3af Power over Ethernet

bisher Informationsübertragung über Netzwerk

Stromversorgung getrennt (220V-Wechselstromnetz)

IEEE 802.3af Stromversorgung über Netzwerk

PSE (Power Sourcing Equipment) → PD (Powered Device)

pro Kabel ca. 15 W Leistung, und 44 ... 57 V Spannung

typischerweise 48 V

2 Varianten

- Phantomeinspeisung MDI und MDI-X (über Datenübertragungspaare)
- Spare-Pair-Einspeisung (über ungenutzte Paare)
- PSE kann Verfahren wählen (muß aber einheitlich sein im Netzwerk)
- PD muß alle Verfahren beherrschen
- beim Anschließen erfolgt Erkennungsprozedur (zwischen PSE und PD)

→ Vorsicht

IEEE 802.3af Phantomeinspeisung

PSE setzt Adernpaare 1/2 und 3/6 auf unterschiedliche Potentiale PD kann die Spannungsdifferenz nutzen

MDI (Phantomeinspeisung)

MDI-X (Phantomeinspeisung - alternativ mit umgekehrter Polung)

IEEE 802.3af Spare-Pair-Einspeisung

PSE setzt Adernpaare 4/5 und 7/8 auf unterschiedliche Potentiale PD kann die Spannungsdifferenz nutzen

Probleme

- unkompatibel zu ISDN, ...
- ungeeignet f\u00fcr Netzwerke,
 in denen alle Adernpaare genutzt werden !!! (z.B. Gbit-Ethernet)

IEEE 802.3af Power over Ethernet

Leistungsklassen								
Klasse	Тур	Max. Strom	Max. Leistung (PSE)					
0	default	0-5 mA	15,4 W	0,44 W - 12,95 W				
1	optional	8-13 mA	4,0 W	0,44 W - 3,84 W				
2	optional	16-21 mA	7,0 W	3,84 W - 6,49 W				
3	optional	25-31 mA	15,4 W	6,49 W - 12,95 W				
4	reserviert	35-45 mA	15,4 W	reserviert				

Standardleistung 15 W reicht für VoIP-Telefone, ..., nicht für Computer Erhöhung auf 30 W in Diskussion (IEEE 802.3at)

Wärmeentwicklung

- pro Kabel ist die Wärmeabgabe unkritisch
- bei Kabelbündeln muß Wärmebilanz berechnet werden!
 zulässiger Kabeltemperaturbereich z.B. 20 ... + 60 0C

UTP

UTP, PVC, 4 pair, Cat-5, 305 m 39-504-PB (Molex)

Eigenschaften:

- 1. kompatibel zu EIA/TIA 568A and ISO/IEC 11801
- 2. speziell für horizontale Verkabelung und Backbone
- 3. schmaler Außendurchmesser
- 4. Charakteristische Impedanz = 100 ± 15 Ohm
- 5. Min. NEXT bei 100 m und 100 MHz = 32 dB
- 6. Max. Dämpfung, dB/100 m bei 100MHz = 22 dB
- 7. Temperaturbereich von -20 bis +60 0C

Paar 1: weiss-blau/blau

Paar 2: weiss-orange/orange

Paar 3: weiss-grün/grün

Paar 4: weiss-braun/braun

UTP

UTP Cable Riser, 100-pair MS.B0130 (Molex)

- 1. kompatibel zu EIA/TIA 568A and ISO/IEC 11801
- 2. 4 x 25 Paar-Elemente
- 3. FR-PVC-Mantel (feuerfestes PVC)
- 4. kompatibel mit EIA/TIA 568A und ISO/IEC 11801
- 5. speziell für Sprache und Backbone
- 6. Min. NEXT bei 100 m und 16 MHz = 23 dB
- 7. Charakteristische Impedanz = 100±25 Ohm
- 8. Max. Dämpfung, dB/100 m bei 16 MHz = 13.1
- 9. Temperaturbereich = -20 to +60 0C

FTP

FTP, LSZH, 4 pair, Cat-5.305m 39A-504-AA (Molex)

Eigenschaften:

- 1. LSZH-Mantel (Low Smoke Zero Halogen)
- 2. kompatibel mit EIA/TIA 568A und ISO/IEC 11801
- 3. Speziell für horizontale Verkabelung and Backbone
- 4. Schmaler Außendurchmesser
- 5. Min. NEXT bei 100 m Kabel und 100 MHz = 32 dB
- 6. Charakteristische Impedanz = 100 ± 15 Ohm
- 7. Max. Dämpfung, dB/100 m = 22
- 8. Temperaturbereich = -20 to +600C

Paar 1: weiss-blau/blau

Paar 2: weiss-orange/orange

Paar 3: weiss-grün/grün

Paar 4: weiss-braun/braun

S/UTP

S/FTP

S/FTP PVC Cable 600 MHz 4-pair, 305 m 39A-504-SM

- 1. kompatibel mit DIN 44312-5 (600 MHz)
- 2. speziell für horizontale Verkabelung und Backbone
- 3. FR-PVC- Mantel (feuerfestes PVC), grau (RAL 7046)
- 4. jedes Paar individuell mit Aluminium/Polyester Folie abgeschirmt
- 5. Durchmesser des Leiters 23 AWG (0.58 mm)
- 6. garantiert EMV -Schutz (360 Grad Abschirmung)
- 7. Charakteristische Impedanz 100 ± 15 Ohm
- 8. Maximale Dämpfung 45.49 dB/100 m
- 9. Mechanische Charakteristiken bei 600 MHz 100 W
- 10. Pair-Pair NEXT 600MHz = 98 dB/100m
- 11. Temperaturbereich = -20 to +60 0C

Twinax Cable

SFP IB4X Cable

- 1. Für die Ethernettechnologie 10Gbase-CX4 optimiert Dämpfung unter 10 dB auf 15 m bei 1,25 GHZ
- 8 Adernpaare mit Schirmung innen 2 Adernpaare mit Zusatzschirmung, darum weitere 6 Adernpaare außen Gesamtschirmung
- 3. Spezielle Stecker/Buchsen

Stecker

RJ45 Shielded Modular Plug Kit MX95043-2891 (Molex)

- 1. entspricht Cat5 Anforderungen
- 2. 360° Abschirmung
- 3. Draht: $1.02 \text{ mm} \pm 0.1 \text{ mm}$
- 4. Plastteile (Schutzstecker) zugehörig

Buchsen

Euromod 1xRJ45, M1 Straight, 568B, UTP, PoweCat, White 17.1B.011.A0042 (Molex)

- 1. Euromod-Wallplates und Bezels kompatibel
- 2. enthält RJLP RJ45-Connector geschlossen
- 3. PowerSum kompatibel
- 4. geeignet für High Speed Data Transmission (Gigabit Ethernet, 622 Mbps ATM)
- 5. Platzsparende kleine Module

Lichtwellenleiter

- hohe Übertragungsraten, sehr hohe Reichweiten
- hohe Abhörsicherheit
- keine Beeinflussung durch äußere elektromagnetische Störfelder
- kein Nebensprechen
- Erdung Potentialausgleich, Abschirmung nicht nötig, Überspannungsschutz, keine Explosionsgefahr
- keine Möglichkeit der Gerätestromversorgung über LWL
- empfindlich gegenüber mechanischer Belastung, Gefahr Faserbruch nicht einfach zu verlegen, Zuglasten, Biegeradius
- hoher Konfektionierungsaufwand (Installation durch Spezialfirmen)
- Schwachstelle Steckertechnik (Verschmutzung, Justage)
 Dämpfung durch Spleiße
- hohe Kosten für Geräte- und Messtechnik

Faser-Kategorien

Optical Multimode OM1 ... OM3e

- preiswert, insbesondere bei Nutzung von LED-Strahlern
- Modendispersion, Einschränkungen Datenraten/Enfernungen

Optical Singlemode OS1

- kostenintensiv
- keine Modendispersion, höhere Datenraten/größere Kabellängen

Max. zulässige Dämpfung nach EN 50173-1									
Kategorie	Max. Dämpfung (dB/km)								
	850 nm 1300 nm 1310 nm 1550 nm								
OM1	3,5	1,5							
OM2	3,5	1,5							
OM3	3,5	1,5							
OS1			1,0	1,0					

Faser-Klassen

nach EN 50173-1

- OF-300 zulässig für Kabellängen bis 300 m
- OF-500 zulässig für Kabellängen bis 500 m
- OF-2000 zulässig für Kabellängen bis 2000 m

Max. zulässige Dämpfung auf der Übertragungsstrecke									
Klasse	Multimode Monomode								
	850 nm	1300 nm	1310 nm	1550 nm					
OF-300	OF-300 2,55 dB		1,8 dB	1,8 dB					
OF-500	3,25 dB	2,25 dB	2,0 dB	2,0 dB					
OF-2000	8,50 dB	4,50 dB	3,5 dB	3,5 dB					

modale Bandbreite bei OM-Fasern

BLP – (Effektive Modal Bandwith)
 Bandbreitenlängenprodukt , bzw. modale Bandbreite
 Maß für Modendispersion bei OM-Fasern

Max. Größe der Impulsfrequenz bei 1 km Kabellänge Gemessen in [MHz*km]

z.B. BLP = 1000 MHz*km Länge 1 km max. Impulsfrequenz 1000MHz Länge 2 km max. Impulsfrequenz 500 MHz

Meßmethode **OFL** (Overfilled Launch)

- LED-ähnliche Lichteinkopplung (weiter Öffnungswinkel, Anregung aller Kernmoden)
 Messung bei Wellenlängen von 850 nm und bei 1300 nm
- Erhöhung Lichtimpulsfrequenz , bis zur 3dB-Dämpfung (ca 50%)
- Multiplikation Frequenz x Faserlänge

BLP bei LED-optimierten Fasern meist für 1300 nm größer als für 850 nm

Lichtwellenleiter - Technologieeignung

Fasertypen

• Optical Multimode OM1 ... OM3e

• Optical Singlemode OS1

Zitat: KSI Kontakt-Systeme Inter GmbH

	OM1	OM1e	OM2	OM2e	ОМЗ	ОМ3е	OS1
100BASE-SX			OF3	00			-
100BASE-FX			OF2	2000			
1000BASE-SX	-		OF	500			-
1000BASE-LX		OF500 OF500			OF2000		
10GBASE-SR		-			OF300	OF500	
10GBASE-LX4		OF300		OF500	OF	300	
10GBASE-LR							
10GBASE-LW	_						OF2000
10GBASE-ER							
10GBASE-EW							

Lichtwellenleiter-Fasertypen Übersicht

	Standards	Multimode						Singlemode
	IEC/ISO 11801 Klasse	OM1	OM1e	OM2	OM2e	OM3	OM3e	OS1
	IEC 60793-2 Kategorie	10-A1b	10-A1b	10-A1a	10-A1a	10-A1a.2	10-A1a.2	50-B1.1
	EN 50173-1 Standards		EN 60793-2-10	EN 60793-2-50				
	ITU-T	G.651	G.651	G.651	G.651	G.651	G.651	G.652
	Core/Cladding	62,5 / 125 µm	62,5 / 125 µm	50 / 125µm	50 / 125µm	50 / 125µm	50 / 125µm	9(10) / 125μm
-	ptimiert für Wellenlänge	-	1300nm	-	1300nm	850nm	850nm	-
	numerische Apertur	0,275	0,275	0,2	0,2	0,2	0,2	-
				Dämpfung dB/				
	850nm	3,1	3,1	2,5	2,5	2,5	2,3	0,4
	1300nm	0,8	0,8	0,7	0,7	0,7	0,5	0,25
					dukt (BLP) MH			
	850nm OFL (minEMBc)	200	250	500	600	1500 (2000)	3500 (4500)	-
	1300nm	600	800	1000	1200	500	500	-
				Linklän	ige m			
_	100BASE-SX / 100Mbit/s	300	300	300	300	300	300	-
850nm	1000BASE-SX / 1Gbit/s	275	500	550	750	900	1000	-
	10GBASE-SR / 10Gbit/s	33	65	82	110	300	550	-
	100BASE-FX / 100Mbit/s	2000	2000	2000	2000	2000	2000	60000
۽	1000BASE-LX / 1Gbit/s	550	1000	550	2000	550	550	5000
1310nm	10GBASE-LX4 / 10Gbit/s	300	450	300	900	300	300	10000
-	10GBASE-LR / 10Gbit/s	-	-	-	-	-	-	10000
	10GBASE-LW / 10Gbit/s	-	-	-	-	-	-	10000
1550nm	10GBASE-ER / 10Gbit/s	-	-	-	-	-	-	40000
1550	10GBASE-EW / 10Gbit/s	-	-	-	-	-	-	40000

[©] KSI Kontakt-Systeme Inter Ges.m.b.H. www.ksi.at ksi@ksi.at +43 1 61096 - 0

Steckertypen für LWL

ST-Stecker

SC-Stecker

SC-Duplex-Stecker

