Q	Part	Sub Part	Marking Guidance	Mark	Comments
1	(a)		$CaF_2(s) \rightarrow Ca^{2+}(g) + 2F^-(g)$	1	
1	(b)	(i)	Enthalpy change for formation of 1 mol of substance	1	Allow <u>heat energy change</u> , NOT energy
			From its elements	1	
			Reactants and products/all substances in their standard states	1	Or normal states at 298 K, 1 bar (100 kPa)
1	(b)	(ii)	$Ca(s) + F_2(g) \rightarrow CaF_2(s)$	1	
1	(b)	(iii)	$\Delta H_{f}(CaF_{2}) = \Delta H_{a}(Ca) + 1st IE(Ca) + 2^{nd} IE(Ca) + BE(F_{2}) + 2xEA(F) - \Delta H_{L}(CaF_{2})$ $= 193 + 590 + 1150 + 158 + (2 x - 348) - 2602$	1	Or labelled diagram
			= -1207 kJ mol ⁻¹	1	Correct answer scores 3 -842 scores 2 (transfer error) -859 scores 1 only (using one E.A.) Units not required, wrong units lose 1 mark
1	(c)		Electrostatic attraction stronger/ionic bonding stronger/attraction between ions stronger/more energy to separate ions	1	Molecular attraction /atoms/intermolecular forces CE=0
			Because fluoride (ion) smaller than chloride	1	Do not allow F or fluorine
1	(d)	(i)	$\Delta H = \Delta H_{L} + \Sigma \Delta H_{hyd} = 2237 - 1650 + (2 \times -364)$	1	Can be on cycle/diagram
			$= -141 \text{ kJ mol}^{-1}$	1	Correct answer scores 2 Units not required, wrong units lose 1 mark

1	(d)	(ii)	Decreases	1	If ans to (d)(i) positive allow increases
			Reaction exothermic/∆H -ve	1	If (d)(i) +ve allow endothermic/ ΔH +ve
			(Equilibrium)shifts to left/backwards (as temperature rises)/ equilibrium opposes the change	1	If (d) (i) +ve allow shifts to right/forwards / equilibrium opposes the change
					If no answer to (d) (i) assume –ve ΔH used If effect deduced incorrectly from any ΔH CE=0 for these 3 marks
1	(e)		u.v. absorbed: electrons/they move to higher energy (levels)/ electrons excited	1	Must refer to absorbing u.v. NOT visible light or this must be implied.
			visible light given out: electrons/they fall back down/move to lower energy (levels)	1	ingrit or this must be implied.