标题及目录

张三丰

2018年6月12日

目录

1	摘要	摘要															1									
2	引言															2										
3	实验方法																2									
	3.1	数据																								2
	3.2	图表																								2
		3.2.1		实验	分条	件																				2
		3.2.2		实验	验过	程																				2
4	4 实验结果															2										
5	结论														2											
6	致谢																									2

1 摘要

车牌识别系统(License Plate Recognition 简称 LPR)技术基于数字图像处理,是智能交通系统中的关键技术,同时他的发展也十分迅速,已经逐

渐融入到我们的现实生活中。文章介绍了车牌识别系统的意义、图像去噪处理以及图像二值化方法,并通过仿真试验模拟了图像处理的过程。本文所做的工作在于前期的图像预处理工作。本次设计着重在于图像识别方面,中心工作都为此而展开,文中没有进行车牌的定位处理,而是采用数码相机直接对牌照进行正面拍照,获取原始车牌图像。之后利用 Matlab 编程对图片进行了大小的调整、彩色图片转化成灰度图片、图片去噪、以及图片二值化等工作。其中,去噪与二值化是关系图像识别率的关键。

关键字:车牌识别系统;图像预处理;字符识别;Matlab;去噪;二值化

- 2 引言
- 3 实验方法
- 3.1 数据
- 3.2 图表
- 3.2.1 实验条件
- 3.2.2 实验过程
- 4 实验结果
- 5 结论
- 6 致谢