ELEN E6883: Introduction to Blockchain Technology

Homework 2

Tong Wu, tw2906

Problem 1

True

Section	1	
False		
Section	2	
True		
Section	3	
True	_	
Section	11	
	-	
True		
Section	5	

Problem 2

Section 1

According to the hint, a_z satisfies the recurrence relation $a_z=pa_{z+1}+qa_{a-1}$, reform the equation in terms of a_z-a_{z-1} :

$$egin{align} a_z-a_{z-1}&=(rac{q}{p})^{z-1}(a_1-a_0)+a_0\ &a_z&=\sum_{i=0}^{z-1}(rac{q}{p})^{z-1}(a_1-a_0)+a_0 \end{split}$$

Where the a_0 should be 1 in this case since the attacker has the same block as the chain (p=q):

$$egin{align} a_z &= \sum_{i=0}^{z-1} (rac{q}{p})^{z-1} (a_1 - a_0) \ &= \sum_{i=0}^{z-1} (rac{q}{p})^{z-1} (a_1 - 1) + 1 \ &= (a_1 - 1) rac{1 - (rac{q}{p})^z}{1 - rac{q}{p}} + 1 \ &= a_1 z - k + 1 \ \end{pmatrix}$$

Assume $z \to \infty$, $a_z = 0$:

$$egin{aligned} \lim_{z o\infty}(a_1-1)rac{1-(rac{q}{p})^z}{1-rac{q}{p}}+1&=0\ a_1&=1-rac{1-rac{q}{p}}{1-(rac{q}{p})^z}\ a_z&=egin{cases} (rac{q}{p})^z,& ext{p}> ext{q}\ 1,& ext{otherwise} \end{cases} \end{aligned}$$

Section 2

Since that the equation of the probability of an event with m time successes and n times of failures can be written as:

$$P = q^m p^n$$

In the trail, the last trail must be failure so the last successes is coming before the last failure, so there should be total m+n+1 trails. Hence, it can be written as:

ELEN-E6883_HW2_tw2906 - Tong Wu

$$P(m) = inom{m+n+1}{m}q^mp^n$$

Problem 3

Section 1

If a transaction from address X is included from the miner, then the pool will fork since the pool has the most of the hash power, which will create a longer chain in order to invalidates the chains contains the transaction from the address X. Hence, the miner will be informed that this block will be invalidated.

Section 2

The probability that the attacker successfully build the block is q^2 . Hence, in order to avoid attacking, the payment amount should be:

$$(1-q^2)$$
(transaction fee + reward)

Where the total amount should be greater than the block reward, hence:

$$(1-q^2) ({
m transaction fee} + {
m reward}) \geq {
m reward} \ {
m transaction fee} \geq rac{{
m reward}}{1-0.2^2} \ {
m transaction fee} \geq rac{12.5}{0.96} - 12.5 \ {
m transaction fee} \geq 0.5208 \ {
m BTC}$$

Problem 4

Section 1

Begin	End	Probability	Event
0,	0	$(1-\gamma)(1-\alpha)$	Honest miner mines a block on the main branch
0,	0	$\gamma(1-lpha)$	Honest miner mines a block on the selfish miner's block
0,	0	α	Selfish miner mines a block on the private branch
0	0	1-lpha	Honest miner mines a block
1	0,	1-lpha	Honest miner mines a block on the main branch, selfish miner publishes the private branch containing one block
2	0	1-lpha	Honest miner mines a block on the main branch, selfish miner publishes the private branch containing two blocks
n	n+1	α	Selfish miner mines a block on the private branch
n	n-1	1-lpha	Honest miner mines a block on the main branch

Section 2

Begin	End	Probability	Reward
0,	0	$(1-\gamma)(1-\alpha)$	2
0,	0	$\gamma(1-lpha)$	1
0	0	$1-\alpha$	1