TEAM BIKE - ANALYZING CITI BIKES IN NYC AND PREDICTING BIKE USAGE

By Julian DeGroot-Lutzner and Vikramaditya Salwan

BACKGROUND & MOTIVATION

WHAT IS CITE BIKES?

- SOME OF OUR DRIVING QUESTIONS
- DOES WEATHER AFFECT BIKE USAGE?
- CITI BIKES' TARGET MARKET?
- ➤ WHAT TIME ARE MORE BIKES GETTING USED?
- ightharpoonup What stations are getting the most traffic?
- ARE THERE INCONSISTENCIES IN STATIONS GETTING MORE INFLOW THAN OUTFLOW OR VICE VERSA?

Lifecycle of an Analysis Project

Subset

Extract data to explore, work with

Clarify

Become familiar with the data, template a solution

Develop

Create a working model

Productize

Automate and integrate

Publish

Socialize

Class 1

Class 2 Class 3

Weekly Bike Rides in 2016

Bike Usage on Different Days

Bike Usage on Weekdays versus Weekends

Yearly Bike Usage by Age and Gender

Yearly Bike Usage by Gender

EXPLORATORY ANALYSIS - KEY TAKEAWAYS

BIKE SHARING HAS BEEN A MAJOR SUCCESS. WEATHER CAN PLAY A SPOILSPORT. FEMALES NOT USING BIKES RELATIVE TO MALES. TARGET MARKET - COMMUTERS AND 25 TO 50 YEAR OLDS.

Heatmap of Location of Bike Stations

Number of Rides per Station

Darker Red = More Rides

IMPORTERS AND EXPORTERS

TOP NORMALIZED IMPORTERS

##		id	start.count	end.count	difference	normalized.difference
##		<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>
##	1	521	2649	2380	269	0.05349
##	2	519	5367	4835	532	0.05215
##	3	281	2493	2279	214	0.04484
##	4	490	3264	3064	200	0.03161
##	5	479	2026	1904	122	0.03104
##	6	457	2287	2160	127	0.02856
##	7	523	2631	2496	135	0.02633
##	8	2006	2706	2574	132	0.02500
##	9	380	2199	2105	94	0.02184
##	10	528	1889	1811	78	0.02108

RANDOM FOREST

OUR MODEL

```
## Confusion Matrix and Statistics
##

## Reference
## Prediction FALSE TRUE
## FALSE 2232 918
## TRUE 1239 1941
##

##

##

##

Accuracy: 0.659
```

RMSE = 16.86

BASELINE

```
## Confusion Matrix and Statistics
##

## Reference
## Prediction FALSE TRUE
## FALSE 3471 2859
## TRUE 0 0
##

## Accuracy: 0.548
```


SUPPORT VECTOR MACHINES MODEL

Learned to adapt:

Start with a sample

Understand the sample

Create a model

Refine the question and repeat first steps

