		Note	
		Ι	\prod
Name Vorname			
	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	$\begin{vmatrix} 3 \end{vmatrix}$		
Unterschrift der Kandidatin/des Kandidaten			
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Klausur			
MA9202 Mathematik für Physiker 2	7		
(Analysis 1)			
,			
Prof. Dr. S. Warzel	9		
10. Februar 2015, 11:00 – 12:30 Uhr			
10. 10. 10. 11.00 12.00 0.11	\sum		
Hörsaal: Platz: Platz:			
1015000			
Hinweise:	1 Er	stkorrek	 tur
Überprüfen Sie die Vollständigkeit der Angabe: 9 Aufgaben			
Bearbeitungszeit: 90 min Erlaubte Hilfsmittel: ein selbsterstelltes DIN A4 Blatt	П		
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen.	Z	weitkorre	ktur
Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berück-			
sichtigt.			
	_		
ur von der Aufsicht auszufüllen:			
örsaal verlassen von bis			
avroitir abgagaban um			
orzeitig abgegeben um			

 $Be sondere\ Bemerkungen:$

1. Vollständige Induktion	[8 Punkte]
Beweisen Sie mittels vollständiger Induktion, dass $\sum_{k=0}^{n-1} k^4 \leq \frac{1}{5}n^5$ für alle $n \in \mathbb{N}$ gilt.	
k=0	

2. Komplexe Zahlen

[8 Punkte]

(a) Geben Sie den Wert von $\sum\limits_{k=1}^n \mathrm{e}^{\mathrm{i}kx}$ für $x\not\in 2\pi\mathbb{Z},\, n\in\mathbb{N}$ als Bruch an.

 $\sum_{k=1}^{n} e^{ikx} =$

(b) Bestimmen Sie Real– und Imaginärteil von $\frac{e^{i\pi}}{4+3i}$.

 $\operatorname{Re}\left(\frac{\mathrm{e}^{\mathrm{i}\pi}}{4+3\mathrm{i}}\right) =$

$$\operatorname{Im}\left(\frac{e^{i\pi}}{4+3i}\right) =$$

(c) Geben Sie Betrag und Argument von $\frac{1}{(-i+1)^5}$ an.

 $\left|\frac{1}{(-i+1)^5}\right| =$

$$\arg\left(\frac{1}{(-i+1)^5}\right) =$$

3. Konvergenz von Folgen und Reihen	[6 Punkte]
(a) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \left(\sqrt{n^4+n^2}-n^2\right)$.	
$\square = -\infty \qquad \square = 0 \qquad \square = \frac{1}{3} \qquad \square = \frac{1}{2} \qquad \square = 1 \qquad \square = \infty \qquad \square$	☐ existiert nicht
(b) Gegen welchen Wert ist die Reihe $\sum_{n=1}^{\infty} \left(\frac{4}{3}\right)^n$ eigentlich oder uneigentlich ko	onvergent?
$\square - \infty$ $\square - 4$ $\square - 3$ $\square \ 0$ $\square \ \frac{3}{7}$ $\square \ \frac{4}{7}$ $\square \ \infty$ \square keiner der an	agegebenen Werte
(c) Die Reihe $\sum_{n=1}^{\infty} \frac{e^{in\frac{\pi}{2}}}{n^2}$ ist	
\Box konvergent \Box absolut konvergent \Box bestimmt divergent	\Box undefiniert

4. Potenzreihen ∞ ∞2	[7 Punkte]
Bestimmen Sie den Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} \frac{n^2}{2^n} x^{2n}$.	

5. Grenzwerte von Funktionen, stetige Fortsetzbarkeit	[4 Punkte]
(a) Welchen Wert hat $\lim_{x \to 1} \frac{\ln x}{1-x^3}$?	
$\square -\infty \square -1 \square -\frac{1}{3} \square 0 \square \frac{1}{3} \square 3 \square \infty \square$	existiert nicht
(b) Durch welchen Wert ist die Funktion $f: \mathbb{R} \setminus \{-1,1\} \to \mathbb{R}, f(x) = \frac{x^2 - 3x + 2}{x^2 - 1}$ b fortsetzbar?	ei $x = 1$ stetig
\square -1 \square $-\frac{1}{2}$ \square 0 \square $\frac{1}{2}$ \square 1 \square 2 \square nicht stet	ig fortsetzbar

6. Integration

[5 Punkte]

(a) Berechnen Sie das folgende Integral für alle $x \in \mathbb{R}$.

(Hinweis: $\arctan'(x) = \frac{1}{1+x^2}$)

 $\int_{0}^{x} 2t \arctan(t) dt =$

(b) Für welche $\alpha\in\mathbb{R}$ ist das Integral $\int\limits_1^\infty x^\alpha\mathrm{d}x$ absolut konvergent?

 $\alpha \in$

Eine gewöhnliche I Bestimmen Sie eine I skizzieren Sie diese.	Differentialgleichung [9 Punkt Lösung $x(t)$ der Differentialgleichung $\dot{x}=\sqrt{1+x}$ mit $x(0)=0$ für $t\geq 0$ u	te] und

8. Taylorentwicklung

[8 Punkte]

Wir betrachten die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x^2)$.

(a) Wie lautet das Taylorpolynom sechster Ordnung von f um den Entwicklungspunkt 0?

 $T_6 f(x;0) =$

(b) Zeigen Sie, dass $T_4 f(x; 0) - f(x) = o(x^5)$.

$9. \ \, \textbf{Fourierkoeffizienten}$

[9 Punkte]

Sei $f: \mathbb{R} \to \mathbb{R}$ 2π -periodisch mit f(x) = 1 für $x \in (-\pi, 0]$ und f(x) = -1 für $x \in (0, \pi]$.

- (a) Berechnen Sie die Fourierkoeffizienten $\widehat{f}(k)$.
- (b) Für welche $x \in [-\pi, \pi]$ konvergiert die Fourierreihe $\sum_{k=-\infty}^{\infty} \widehat{f}(k) e^{\mathrm{i}kx}$ gegen f(x)?