

- Všechna dnes běžně používaná optická média vypadají na první pohled stejně:
 - jde o plastový kotouč o průměru 12 cm (existují i menší varianty), vysoké něco přes milimetr
- I jejich základní princip je stejný data se nachází na spirále, začínající ve středu média, a jsou uložena pomocí prohlubní v tenké vrstvě

- Princip čtení je u všech také stejný čte se pomocí laseru a senzoru
- Podle toho, jak se laserový paprsek od prohlubně odrazí, vyhodnotí se 1 a 0

- Rozdíly mezi jednotlivými typy médií spočívají v rozměrech datové spirály
- Čím menší je velikost prohlubní, vzdálenost mezi nimi a vzdálenost mezi jednotlivými drahami spirály, tím více dat se na médium vejde

OPTICKÁ MECHANIKA

OPTICKÁ MECHANIKA

Připojování

IDE

SATA

DĚLENÍ PODLE POČTU ZÁPISŮ

- Lisovaný disk
 - Nelze na něj zapisovat, též označován ROM, (např. DVD-ROM)
- Zapisovatelný disk
 - Lze jednou zapsat, též označován R, nebo Recordable (např. DVD-R)
- Přepisovatelný disk
 - Lze zapisovat vícekrát, též označován RW, nebo Rewritable (např. DVD-RW)

PŘEPISOVATELNÉ DISKY

- Přepisovatelná média mají všechny vlastnosti jako zapisovatelná, navíc však umožňují smazání jejich obsahu a nahrání nového
- Počet takových přepisů je udáván okolo 1000
- Na rozdíl od lisovaného, nebo zapisovatelného disku, má v sobě toto médium chemickou vrstvu, která může být v amorfní, nebo krystalické struktuře

PŘEPISOVATELNÉ DISKY

- Amorfní struktura světelný paprsek laseru pohlcuje, krystalická ho odráží
- Zápis neboli změna struktury citlivé vrstvy se provádí zvýšenou intenzitou laserového paprsku, čímž se vrstva lokálně zahřeje a roztaví
- Pokud je toto záření stálé, pak se vytvoří krystalická struktura. Pokud je však střídavé modulované, pak se vytvoří struktura amorfní

PŘEPISOVATELNÉ DISKY

ZÁKLADNÍ POJMY

- Optická média a mechaniky pracují se světlem (laserem)
- Na velikost prohlubní (pitů), vzdálenost mezi nimi, rozměry datové spirály a vzdálenost mezi jejími závity mají zásadní vliv tyto parametry:
 - vlnová délka použitého světla
 - numerická apertura optické soustavy

VLNOVÁ DÉLKA

 Vlnová délka označuje vzdálenost dvou nejbližších bodů, které kmitají ve fázi

VLNOVÁ DÉLKA

•
$$\lambda = vT = \frac{v}{f}$$

v – fázová rychlost šíření světla

T – perioda

f – frekvence

NUMERICKÁ APERTURA

- je maximální úhel, pod kterým ještě může světelný paprsek vstoupit do světlovodu
- $NA = n \cdot sin(\alpha)$

n – index lomu prostředí před objektivem (u vzduchu přibližně 1)

α – polovina vrch<mark>olovéh</mark>o úhlu paprsků (poloviční úhlová apertura)

DĚLENÍ PODLE TECHNOLOGIE

COMPACT DISC - CD

- Základem CD je plastový kotouč, na němž je nanesena vysoce reflexní vrstva (hliník), která je zalita pevným a čirým polykarbonátem
- V této vrstvě jsou značky pity, které neodrážejí světlo
- Značky jsou uspořádány do spirály se šířkou
 0.5 μm a se stoupáním 0.65 μm
- Spirála má přibližně 20 000 závitů a délka celé spirály je zhruba 6 km

COMPACT DISC - CD

- Disk se neotáčí konstantní rychlostí, ale tak, aby metrická rychlost pod hlavou byla stejná
- Pokud je hlava u okraje disku, má disk rychlost otáčení 200 ot/min, snímá-li hlava u středu, je rychlost otáčení 550 ot/min
- To platí pro klasické hudební přehrávače a jednorychlostní CD-ROM, které mají rychlost přenosu 150 kB/s

COMPACT DISC - CD

- Pro zvýšení rychlosti přenosu dat se používají vícerychlostní CD-ROM, které mají rychlost otáček x krát větší než klasické CD přehrávače
- U CD se používá laserové světlo s vlnovou délkou 780 nm a s numerickou aperturou 0,45

DIGITAL VERSATILE DISK – DVD

- Jde o formát digitálního optického datového nosiče, který může obsahovat filmy nebo jiné údaje
- Oficiální standard DVD-R(W) vytvořilo v roce 1997 DVD Fórum
- Ceny licencí však byly tak vysoké, že vznikla skupina DVD+RW Alliance, která vytvořila standard DVD+R(W), kde byly licence levnější

DIGITAL VERSATILE DISK – DVD

DVD využívá červený laser s vlnovou délkou
 650 nm a s numerickou aperturou 0,6

DIGITAL VERSATILE DISK - DVD

- běžné varianty:
 - DVD5
 - Jedna strana, jedna vrstva, kapacita 4.7 GB
 - DVD9
 - Jedna strana, dvě vrstvy, kapacita 8.5 GB
- méně běžné (dvoustranné) varianty:
 - DVD10
 - DVD14
 - DVD18

DVOUVRSTVÉ DVD

- Jediná dostupnější možností, jak dostat na DVD více dat než standardních 4.7 GB
- Médium začíná u středu na první vrstvě prvním sektorem a končí opět u středu, ale na druhé vrstvě, přibližně 4 milióntým sektorem
- Princip, jak se dostat z jedné strany na obě vrstvy, je pomocí různého zaostření laseru

DVOUVRSTVÉ DVD

DVD-RAM

- Vyspělý systém nelineárního záznamu, který maximálně využívá kapacitu disku
- Pro nahrávku není třeba souvislý volný prostor, podobně jako na pevném disku se zapisuje i do oddělených míst po již smazaných datech
- Má také větší přepisovatelnost než u disků ostatních formátů

DVD-RAM

- Umožňuje souběžný záznam a reprodukci
 - můžete se začít dívat od začátku na program, který se ještě nahrává, případně jeden program na disk zaznamenávat a jiný z něj sledovat
- Nevýhodou je nízká kompatibilita
 - disky DVD-RAM reprodukují jen přehrávače s formátem DVD-RAM kompatibilní
- Další nevýhodou je vyšší cena média

80 mm DISKY

- Kromě tradičních 120 mm kotoučů jsou také vyráběny menší 80 mm kotouče:
 - Mini-CD
 - kapacita 210 MB
 - Mini-DVD
 - kapacita 1,4 GB–5,2 GB
- Typické využití je distribuce menšího množství dat, např. driverů apod.

OPTICKÉ DISKY

All product samples shown are property of our customers. They are displayed here only to show our manufacturing capability

Disc formats available

3. GENERACE OPTICKÝCH DISKŮ

- Podobně jako tomu bylo u zapisovatelných a přepisovatelných DVD, i zde se vyskytují dva různé standardy, Blu-ray a HD-DVD
- Některé vlastnosti mají společné, jiné jsou naopak zcela odlišné
- Cílem obou ale bylo zvýšit kapacitu optických médií tak, aby bylo možné vypalovat desítky
 GB na jeden disk

3. GENERACE OPTICKÝCH DISKŮ

- Logickým pokračovatelem DVD jsou např. v tom, že stále používají 12 cm disk, stále se na ně zapisuje laserem, ale hustota záznamu se radikálně zvyšuje
- Nejjednodušším způsobem zvýšení hustoty je zkrácení a zúžení pitu a zmenšení rozteče mezi drahami
- Používá se modrý laser o vlnové délce 405 nm

HIGH DEFINITION DVD - HD-DVD

- Někdy též nazýváno Advanced Optical Disk (AOD)
- Numerická apertura se zvětšila na 0,65
- Kapacita u lisovaných disků:
 - Jednovrstvý až 15 GB
 - Dvouvrstvý až 30 GB
- U přepisovatelných disků tato kapacita vzrůstá na 20 GB, resp. 32 GB

BLU-RAY DISC - BD

- Druhý formát třetí generace byl představen v roce 2001 firmami Matsushita a Sony
- Tyto firmy již na začátku roku 2002 zformovaly konsorcium, které bylo nazváno Blu-ray Disc Association a do kterého dnes patří přes 100 společností z oblasti spotřební elektroniky
- Blu-ray rovněž využívá stejnou vlnovou délku laseru jako HD-DVD (405 nm), ale díky použití dvojice čoček dosahuje NA = 0,85

BLU-RAY DISC - BD

- Dalším rozdílem je, že záznamová vrstva je u BD pouze 0,1 mm, oproti 0,6 mm u HD-DVD
- Kapacity BD:
 - jednovrstvý až 25 GB
 - dvouvrstvý až 50 GB

POROVNÁNÍ CEN (konec roku 2018)

- mechaniky:
- CD-RW
 - nevyrábí a neprodává se
- DVD-RW
 - 300 až 500 Kč
- BD-RW
 - 1700 až 2000 Kč

- média:
 - CD-R 3 až 7 Kč
 - CD-RW 15 až 20 Kč
 - DVD-R 7 až 14 Kč
 - DVD-DL 14 až 20 Kč
 - DVD-RW 18 až 22 Kč
 - BD 25 GB 18 až 23 Kč
 - BD 50 GB 68 až 90 Kč
 - BD-RE 25 GB 40 až 50 Kč

