Introduction to Structural Equation Models

Hugo Saiz

Institute of Plant sciences - University of Bern

BEF Research

Europe PMC Funders Group Author Manuscript

Adv Ecol Res. Author manuscript; available in PMC 2020 January 06.

Published in final edited form as:

Adv Ecol Res. 2019; 61: 1-54. doi:10.1016/bs.aecr.2019.06.001.

A multitrophic perspective on biodiversity-ecosystem functioning research

nature ecology & evolution

ARTICLES
https://doi.org/10.1038/s41559-020-1280-9

Check for updates

The results of biodiversity-ecosystem functioning experiments are realistic

PROCEEDINGS B

rspb.royalsocietypublishing.org

The strength of the biodiversity – ecosystem function relationship depends on spatial scale

Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

ECOLOGY LETTERS

Ecology Letters, (2020) 23: 757-776

doi: 10.1111/ele.13456

REVIEWS AND SYNTHESES

Scaling-up biodiversity-ecosystem functioning research

High plant diversity is needed to maintain ecosystem services

Biodiversity – Ecosystem Functioning

Environment – Ecosystem Functioning

Environment - Biodiversity

Global Change Biology

Global Change Biology (2016) 22, 2329-2352, doi: 10.1111/gcb.13160

SPECIAL FEATURE

The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States

Biodiversity

Ecosystem functioning

Environment * Biodiversity

Environment – Biodiversity – Functioning

Indirect effects

Direct + Indirect effects

ECOLOGY LETTERS

Ecology Letters, (2015) 18: 834-843

doi: 10.1111/ele.12469

LETTER

Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition

Indirect effects matter

Never-ending complexity

Everything depends on everything

Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality

LETTER

https://doi.org/10.1038/s41586-018-0627-8

Biodiversity increases and decreases ecosystem stability

Oikos 118: 1892-1900, 2009

doi: 10.1111/j.1600-0706.2009.17556.x, © 2009 The Authors. Journal compilation © 2009 Oikos Subject Editor: Ulrich Brose. Accepted 26 May 2009

Context dependency of relationships between biodiversity and ecosystem functioning is different for multiple ecosystem functions

Unraveling the complexity

ARTICLE

Received 25 Jun 2015 | Accepted 23 Dec 2015 | Published 28 Jan 2016

DOI: 10.1038/ncomms10541

OPE

Microbial diversity drives multifunctionality in terrestrial ecosystems

Change ecology for a more relaxing science

Or

Try to disentangle the ecological mess

Unraveling the complexity

Figure 4: Direct and indirect effects of space, climate, soil pH, plant richness and microbial diversity on ecosystem multifunctionality in global drylands.

Structural Equation Models

(SEM)

Special Section: Observational Studies

Structural Equation Modeling for Observational Studies

JAMES B. GRACE, United States Geological Survey National Wetlands Research Center, 700 Cajundome Boulevard, Lafayette, LA 70506, USA

Jim Grace

Ecological Monographs, 80(1), 2010, pp. 67–87 © 2010 by the Ecological Society of America

On the specification of structural equation models for ecological systems

James B. Grace, 1,4 T. Michael Anderson, 2,5 Han Olff, 2 and Samuel M. Scheiner 3

Ecology, 101(4), 2020, e02962Published 2019. This article is a U.S. Government work and is in the public domain in the USA.

Scientist's guide to developing explanatory statistical models using causal analysis principles

SCIENCE

PRODUCTS

Maps, data,

NEWS Releases, CONNECT Contact, chat, ABOUT Organization, jobs, budget

Search C

Wetland and Aquatic Research Center

Quantitative Analysis Using Structural Equation Modeling

Overview

Related Science

USGS scientists have been involved for a number of years in the development and use of Structural Equation Modeling (SEM). This methodology represents an approach to statistical modeling that focuses on the study of complex cause-effect hypotheses about the mechanisms operating in systems. SEM is increasingly used in ecological and environmental studies and this site seeks to provide educational materials related to that enterprise. This site serves up tutorials, exercises, and examples designed to help researchers learn and apply SEM. Please click on the "Science" tab to learn more.

How to Use This Site

This site provides tutorials, examples, and exercises for those wishing to learn basic or specialized structural equation modeling methods. A description of what has been added and when can be found in the document **What's**New.

Contact

Comments on existing tutorials and suggestions for additional tutorials can be sent to sem@usgs.gov. Please note that while emails to this address will be read, we cannot provide individual replies given time constraints. For this we apologize, but we do hope the materials provided will be helpful.

Status - Active

Contacts

James Grace

Research Ecologist
Wetland and Aquatic Research Center

Email: gracej@usgs.gov Phone: 337-298-1671

Explore More Science:

tutorials structural equation modeling SEM quantitative analysis statistics

Jon Lefcheck

Methods in Ecology and Evolution

British Ecological Society

Methods in Ecology and Evolution 2015

doi: 10.1111/2041-210X.12512

APPLICATION

PIECEWISESEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics

Jonathan S. Lefcheck*

SAMPLE(ECOLOGY)

RANDOM THOUGHTS ON ECOLOGY, BIODIVERSITY, AND SCIENCE IN GENERAL

ABOUT ME PUBLICATIONS CV PHOTOS CONTACT BLOG

TEACHING

STRUCTURAL EQUATION MODELING

This introductory short course is designed to familiarize participants with the philosophy and practice of structural equation modeling / confirmatory path analysis. All course materials, including lectures, datasets, and R scripts, are available for download below. Thanks to Jarrett Byrnes for generous donation of lecture slides: visit his site for more materials!

READINGS

Grace et al. (2013) "Guidelines for a graph-theoretic implementation of structural equation modeling." *Ecosphere*. PDF

Search ...

- LATEST TWEETS -

RT @stefanako71: Imagine doing something so wacky that prompts Pauly and Hilborn to be in total agreement. 2 days ago

RT @bethaniey15: Don't forget to email me before 16 May if you would like to apply for this PhD opportunity on understanding the role of #s...3 days ago

Structural Equation Models

Structural Equation Model is a **modelling framework** for building and evaluating hypotheses about cause-effect connections in systems

It is a **system level** approach to explore the interrelations among the components of the study system

Structural Equation Model is not a proof of causality

Importance of ecological knowledge

All the causal relations must be built based on theoretical knowledge

Modelling process

Graphical models

Equational form

Graphical form

Graphical models for stats

Mult Regression model

$$y_1 = a + x_1$$

$$y_1 = a + x_1 + x_2 + x_3$$

$$x_1 \sim x_2$$

SEM test multiple equations

Linear-normal relations

SEM test multiple equations

SEM test multiple equations

Direct effect $X_1 \rightarrow Y_2 = \gamma_{12}$

Indirect effect $X_1 \rightarrow Y_2 = \gamma_{11} * \beta_{12}$

Relation + Absence of relations

Non saturated

Saturated (if included)

Nice pictures for your work!

Plant diversity effects on soil food webs are stronger than those of elevated CO₂ and N deposition in a long-term grassland experiment

SEM is based in covariance matrix

Covariance matrix is a square matrix including the covariance between elements in a vector

SEM is based in covariance matrix

Standardized covariances (correlation)

Path calculation

Correlations are just covariances

	X ₁	X_2	Y ₁
X ₁	1.0		
X ₂	0.4	1.0	
Y ₁	0.5	0.6	1.0

Path calculation

Correlations are just covariances

Direct paths are just covariances

	X_1	X_2	Y_1	Y ₂
X ₁	1.0			
X_2	0	1.0		
Y ₁	0.3	0.6	1.0	
Y ₂	0.06	0.12	0.2	1.0

Path calculation

Correlations are just covariances

Direct paths are just covariances

Compound paths are the product of covariances

$$X_1 \rightarrow Y_2 = 0.3 * 0.2 = 0.06$$

$$X_2 \rightarrow Y_2 = 0.6 * 0.2 = 0.12$$

	X_1	X_2	Y_1	Y ₂
X ₁	1.0			
X ₂	0	1.0		
Y ₁	0.3	0.6	1.0	
Y ₂	0.06	0.12	0.2	1.0

Conditional independence

Compound paths can be different from covariance

$$X_1 \rightarrow Y_2 = 0.55 * 0.6 = 0.33 \neq 0.5$$

	X_1	Y_1	Y ₂
X ₁	1.0		
Y ₁	0.55	1.0	
Y ₂	0.5	0.6	1.0

Conditional independence

Compound paths can be different from covariance

$$X_1 \rightarrow Y_2 = 0.55 * 0.6 = 0.33 \neq 0.5$$

Partial effect 0.24

 $\begin{array}{c|c}
x_1 \\
0.55 \\
y_1 \\
\hline
y_2
\end{array}$

In this case, x_1 and y_2 are not conditional independent and additional paths are required

$$X_1 \rightarrow Y_2 = 0.55 * 0.47 + 0.24 = 0.26 + 0.24 = 0.5$$

$$Y_1 \rightarrow Y_2 = 0.47 + 0.55 * 0.24 = 0.47 + 0.13 = 0.6$$

	X ₁	Y ₁	Y ₂
X_1	1.0		
Y ₁	0.55	1.0	
Y ₂	0.5	0.6	1.0

Also considers correlations

Paths and errors

Errors represent influence of unmodeled factors

Total effects

Total effects of one variable is the sum of all direct and indirect paths

$$Y_2 = 0.31 + 0.4 * 0.48 = 0.31 + 0.19 = 0.5$$

Total effects

Total effects of one variable is the sum of all direct and indirect

 $Y_2 = 0.31 + 0.4 * 0.48 = 0.31 + 0.19 = 0.5$

Calculating SEM

$$y_1 = a + \gamma_{11} x_1 + C_1$$

$$y_2 = a + \gamma_{12}x_1 + \mathcal{C}_2$$

$$y_3 = a + \beta_{13}y_1 + \beta_{23}y_2 + \zeta_3$$

Calculating SEM

$$y_1 = a + \gamma_{11} x_1 + \varsigma_1$$

$$y_2 = a + \gamma_{12} x_1 + C_2$$

$$y_3 = a + \beta_{13}y_1 + \beta_{23}y_2 + \varsigma_3$$

$$X_1 \rightarrow Y_3 = \gamma_{11} * \beta_{13} + \gamma_{12} * \beta_{23}$$

Hoping for no significance

We accept SEM when p > 0.05

Global vs Local estimation

Global estimation

Considers the model as a whole

Compares observed covariances to model covariances

Allows correlation between variables

lavaan R-package

Local estimation

Breaks the model in sub-models

Evaluates the importance of missing paths for the model

Allows generalized mixed models

piecewiseSEM R-package

Getting started with lavaan

All examples used here come from:

https://www.usgs.gov/centers/wetland-and-aquatic-research-center/science/quantitative-analysis-using-structural-equation?qt-science center objects=0#qt-science center objects

Big thank you to James Grace for open his teaching material to anyone interested in working with SEMs

Getting started with lavaan

Working with *lavaan* requires R statistical software

Prior to SEM analysis:

Install and load lavaan library

Load the data

Explore the data

Standardize and transform the data when necessary to meet model assumptions (assumptions for linear modelling)

Doing SEM in *lavaan*

Step 1: Specify model

Doing SEM in *lavaan*

Step 1: Specify model

Step 2: Estimate model

mod.1.fit <- sem(mod.1, data=dat)</pre>

Doing SEM in *lavaan*

Step 1: Specify model

Step 2: Estimate model

mod.1.fit <- sem(mod.1, data=dat)</pre>

Step 3: Extract results

summary(mod.1.fit)

Interpreting SEM output

lavaan 0.6-7 ende	d normally	after 27	iteration	s
Estimator Optimization me Number of free	thod	ur cc. 27		ML NLMINB 7
Number of observ	vations			90
Model Test User M	odel:			
Test statistic Degrees of free P-value (Chi-sq				17.729 2 0.000
Parameter Estimat	es:			
Standard errors Information Information sat	urated (h1)	model		Standard Expected ructured
Regressions:			_	
y1 ~	Estimate	Std.Err	z-value	P(> z)
x1	0.400	0.081	4.911	0.000
y2 ~ x1 y3 ~	0.875	0.367	2.381	0.017
y1	0.935			
y2	0.129	0.041	3.121	0.002
Variances:				
	Estimate			
. y1	0.005			
. y2	0.094			
. y3	0.015	0.002	6.708	0.000

Interpreting SEM output

lavaan 0.6-7 ended normally after 27 iterations	
Estimator Optimization method Number of free parameters	ML NLMINB 7
Number of observations	90
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square)	17.729 2 0.000
Parameter Estimates:	
Information Ex	tandard xpected uctured

Regressions:				
	Estimate	Std.Err	z-value	P(> z)
y1 ~				
x1	0.400	0.081	4.911	0.000
y2 ~				
x1	0.875	0.367	2.381	0.017
y3 ~				
y1	0.935	0.171	5.475	0.000
y2	0.129	0.041	3.121	0.002
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.y1	0.005	0.001	6.708	0.000
.y2	0.094	0.014	6.708	0.000
.y3	0.015	0.002	6.708	0.000
-) -	3.025			

Model info and evaluation

Valid model: p-value > 0.05

Interpreting SEM output

lavaan 0.6-7 ended normally after	27 iterations
Estimator Optimization method Number of free parameters	ML NLMINB 7
Number of observations	90
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square)	17.729 2 0.000
Parameter Estimates:	
Standard errors Information Information saturated (h1) model	Standard Expected l Structured

Regressions:	Estimate	Std.Err	z-value	P(> z)
y1 ~ x1	0.400	0.081	4.911	0.000
y2 ~ x1 y3 ~	0.875	0.367	2.381	0.017
y1 y2	0.935 0.129	0.171 0.041	5.475 3.121	0.000 0.002
Variances:		1 -		-6.1.15
.y1 .y2	Estimate 0.005 0.094	0.001 0.014	6.708 6.708	P(> z) 0.000 0.000
. y3	0.015	0.002	6.708	0.000

Paths info

Regression estimate: equation parameters

Variances estimates: error estimates

SEM definition in *lavaan*

regression

 $x2 \sim x1$

correlation

x2 ~~ x1

Latent variable x2 = x1 (unmeasured effect)

Composite variable x2 <~ x1 (caused by)

SEM model evaluation

When evaluating a SEM we asked two questions:

Are we missing important links?

All included paths are supported by the data?

Are we missing important links?

If model is significant, important paths are missing

We compare our model to a saturated model

Saturated model will be identical to data (p-value =1)

Are we missing important links?

If model is significant, important paths are missing

We compare our model to a saturated model

Saturated model will be identical to data (p-value =1)

Modification Indices:

```
The op rhe
                     epc sepc.lv sepc.all sepc.nox
           0.000
                   0.000
                           0.000
                                    0.000
                                              0.000
       y2 0.014
                   0.000
                           0.000
                                    0.012
                                              0.012
       y3 16.119 -0.008
                          -0.008
                                    -0.943
                                             -0.943
       y3 16.119 -0.073
                          -0.073
                                    -1.945
                                             -1.945
       y2 0.014
                   0.003
                           0.003
                                    0.011
                                              0.011
       y3 10.215 -0.337
                          -0.337
                                    -0.662
                                             -0.662
           0.014
                                    0.014
                                             0.014
                   0.056
                           0.056
          2.107 -0.681
                          -0.681
                                    -0.324
                                             -0.324
                                              4.556
       x1 16.119
                   0.683
                           0.683
                                    0.400
                   0.000
                           0.000
                                    0.000
                                              0.000
           0.000
                   0.000
                           0.000
                                    0.000
                                              0.000
       y2 0.000
                   0.345
                           0.345
                                    0.590
                                              0.590
       v3 15.946
```

Modification indices

summary(mod.1.fit, modindices = T)

High mi (>3.64) indicates a missing path

Are we missing important links?

We compare our model to a saturated model

Saturated model will be identical to data (p-value =1)

If model is significant, important paths are missing

Modification Indices:									
8 9		•	rhs x1 v2	mi 0.000 0.014	epc 0.000 0.000	sepc.lv 0.000	sepc.all 0.000 0.012	sepc.nox 0.000 0.012	
10 11				16.119 16.119		-0.008 -0.073	-0.943 -1.945	-0.943 -1.945	
13	y1	~	y3	10.215	-0.337	-0.337	-0.662	-0.662	
14 15	y2	~	уı УI	0.014 2 107	0.036	0.036 0.681	0.014	0.014	
16	y3	~	x1	16.119	0.683	0.683	0.400	4.556	
1/	XI V1	~	yΣ	0.000	0.000	0.000	0.000	0.000	
19	x1	~	ý3	15.946	0.345	0.345	0.590	0.590	

Modification indices

summary(mod.1.fit, modindices = T)

High mi (>3.64) indicates a missing path

Testing the improved model

Specify new model

Model Test User Model:

Test statistic	0.014
Degrees of freedom	1
P-value (Chi-square)	0.906

All included paths are supported?

We evaluate each path independently

Some paths can be not supported (p-value > 0.05)

Regressions:				
	Estimate	Std.Err	z-value	P(> z)
y1 ~ x1	0.400	0.081	4.911	0.000
y2 ~	0.075	0.267	2 204	0.017
x1 y3 ~	0.875	0.367	2.381	0.017
y1	0.935	0.171	5.475	0.000
y2	0.129	0.041	3.121	0.002

How to select the best model

Statistical model selection is an important issue, not only for SEM

Some approaches:

Based on theory, model includes relations that make sense theoretically

Based on data, model includes relations that are statistically supported

How to select the best model

Statistical model selection is an important issue, not only for SEM

Some approaches:

Based on theory, model includes relations that make sense theoretically

Based on data, model includes relations that are statistically supported

Not best option, Up to your philosophy

Qualities of a good SEM

Included paths make ecological sense

Model is not significant

Options:

Keep as many paths as possible (highlights the importance of weak effects)

Remove paths to get the most parsimonious model (highlight important effects)

Selecting the most parsimonious model

We can select models using AIC (lowest AIC = better model)

Comparing models

anova(mod.fit.1,mod.fit.2)

```
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq) mod.2.fit 1 -310.38 -290.39 0.014 mod.1.fit 2 -294.67 -277.17 17.729 17.715 1 2.566e-05 *** --- Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
```

Interpreting results

For interpreting the model is best to work with standardize estimates

standardizedsolution(mod.2.fit,type="std.all") lavInspect(mod.2.fit,what="rsquare")

```
se z pvalue ci.lower ci.upper
lhs op rhs est.std
       x1
            0.460 0.079
                         5.848
                                0.000
                                         0.306
                                                  0.614
       x1
                         2.492
                                0.013
                                         0.052
                                                  0.435
            0.243 0.098
            0.301 0.086
                         3.508
                                0.000
                                         0.133
                                                  0.470
    ~ y1
                                         0.039
           0.195 0.080
                         2.442
                                0.015
                                                  0.352
                                         0.235
                         4.776
                                0.000
                                                  0.562
           0.399 0.083
                                         0.647
      y1
            0.789 0.072 10.911
                                0.000
                                                  0.930
          0.941 0.048 19.779
                               0.000
                                         0.848
                                                  1.034
          0.550 0.072
                         7.610
                                0.000
                                         0.409
                                                  0.692
            1.000 0.000
                                         1.000
                                                  1.000
                            NA
                                   NA
```


Calculate the effects

Direct, indirect and total effects can be calculated

Effects on y_1 :

Effects on y₂:

Direct = 0.46Indirect = NATotal = 0.46 Direct = 0.243 Indirect = NA Total = 0.243

Effects on y₃:

Direct = 0.301 + 0.399 + 0.195 = 0.895Indirect = 0.46 * 0.301 + 0.243 * 0.195 = 0.186Total = 0.895 + 0.186 = 1.081

Extras in lavaan

It is possible to work with factors (dummy variables)

It is possible to work with interactions

It is possible to work with non-linear (polynomial) relations

$$x_1^2 \rightarrow y_2$$

Where to look for nice info

<u>lavaan</u>

https://www.usgs.gov/centers/wetland-and-aquatic-research-center/science/quantitative-analysis-using-structural-equation?qt-science center objects=0#qt-science center objects

https://lavaan.ugent.be/tutorial/cfa.html

<u>piecewiseSEM</u>

https://jonlefcheck.net/teaching/

https://jslefche.github.io/sem_book/index.html

Acknowledgements

UNIVERSITÄT BERN

