II.5. Combinational Circuits

• output values depend only on the input values at the current moment

The Multiplexer

- 2^n inputs (data)
- *n* selection inputs (control variables)
 - control (address) bits
- a single output
- each data input corresponds to a DNF term
- one of the inputs (data bit) is selected copied to the output

Multiplexer $4 \rightarrow 1 (n=2)$

S_1	S_0	О
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

Logic Diagram (4→1)

Implementation of Boole functions

- selection inputs make a number
- which is the index of the data input to be selected for the output
- we can thus implement Boole functions through the multiplexer
 - data inputs the outputs corresponding to the rows in the truth table
 - selection inputs inputs of the Boole function

Examples

Efficient Implementation - folding

majority of 3

A	В	C	
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A	В	
0	0	0
0	1	С
1	0	С
1	1	1

Efficient Implementation - folding

A	В	C	
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

		odd
A	В	
0	0	С
0	1	$\overline{\overline{\mathbf{C}}}$
1	0	$\overline{\overline{\mathbf{C}}}$
1	1	С

The Decoder

- *n* inputs
- 2^n outputs
- at each moment, exactly one of the outputs is activated
 - the one whose index is the number made by the inputs
 - each output corresponds to a DNF term written with the input variables

Decoder n=2

I_1	I_0	O_3	O_2	O_1	O_0
0	0	0	0		1
0	1	0	0		0
1	0	0	1	_	0
1	1	1	0	0	0

Logic Diagram (*n*=2)

Addition - Decoder Implementation

A	В	C_{in}	Sum	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

The Comparison Circuit

- comparison operators: = $, > , < , \ge , \le$
 - example of implementation: 4-bit equality
 - homework: complete comparison (<, =, >)

Adders

- half-adder
 - Adds the two input bits
 - outputs: a sum bit and a carry bit
 - cannot be extended for adding longer numbers
- full adder
 - Adds the three input bits (including carry in)
 - same outputs: a sum bit and a carry (out) bit
 - can be extended for multiple digits (bits)

Logic Diagrams

A	В	Sum	C _{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

_	A	В	C_{in}	Sum	C_{out}
	0	0	0	0	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

Ripple-carry Adder (16 bits)

Ripple-carry Adders

- this kind of addres uses carry propagation
- advantage: the same (simple) circuit, repeated
- drawback: low speed
 - for each rank, one must wait for the result from the previous rank
 - so the delay is proportional to the number of bits

Speed-up (1)

- carry lookahead adder
 - carry in generated independently for each rank

•
$$C_0 = A_0 B_0$$

•
$$C_1 = A_0 B_0 A_1 + A_0 B_0 B_1 + A_1 B_1$$

•

•
$$C_i = G_i + P_i C_{i-1} = A_i B_i + (A_i + B_i) \cdot C_{i-1}$$

• ...

Speed-up (2)

- carry lookahead adder (continued)
 - advantage hish speed
 - eliminates the delay caused by carry propagation
 - drawback requires complex additional circuits
 - usually combination of the two methods
- carry selection adder
 - for each rank, compute the sum for both $C_{in}=0$ and $C_{in}=1$, the select the correct result

Elementary Arithmetic Logic Unit (1 Bit)

F_1	F_0	F
0	0	A and B
0	1	A or B
1	0	A+B
1	1	A-B

 F_1, F_0 - control signals

Improved Design

F_1	F_0	F
0	0	A and B
0	1	A or B
1	0	A+B
1	1	A-B

 F_1, F_0 - control signals

Arithmetic Logic Unit (16 Bits)

III. Sequential Circuits

Sequential Circuit

- at each moment, the output depends on
 - the input
 - the internal state
- so, for the same input, different output values may emerge, at different moments
- internal state
 - memorized by the circuit
 - evolves in time

Block Diagram

State Evolution

- the state changes at certain moments
 - synchronous: at regular time moments
 - provided by a special signal (clock)
 - asynchronous: when an event occurs
 - events are defined depending on the circuit's activity
 - why doesn't it change permanently?
 - sending the signals through gates and communication lines - with delays
 - so signals are considered after they have stabilized

The Clock

- periodic signal
 - active cycle the percentage of the period when the signal is active
 - depends on what active signal means
 - level-active (during value 0 or 1)
 - edge-active (changing from 0 to 1 or the reverse)
- period duration
 - long enough for the signals to stabilize

Implementation

- the simplest logic diagram
 - the feed-back connection is essential

usually, more complex schemes are used

Types of Sequential Circuits

- bit-level bistable circuits
- depending on how the clock is detected
 - latch level-active
 - flip-flop edge-active
- multi-bit circuits
 - registers, counters
 - made of multiple bistable circuits

III.1. Bistable Circuits

Bistable Circuit

- what should a bit-implementation circuit look like?
- specifications
 - can write either 0 or 1 to it
 - memorize the last written value until a new one is written
 - can read the last written value
- cannot be a combinational circuit (memorization)

No-clock RS Bistable Circuit

- two inputs (R,S), two outputs (Q,P), two feed-back connections
 - the circuit implements a single bit: $P = \overline{Q}$

How It Works (1)

at first sight we have simultaneously

$$q = Q$$
 and $p = P$
 $Q = \overline{p + R}$
 $P = \overline{q + S}$

- in fact, when inputs change, outputs do not change instantly
 - due to gate propagation delays
 - so the behavior can be studied with truth tables

How It Works (2)

- consider (q,p) the current output values
- and (Q,P) the next output values
 - depending on (q,p) and on inputs (R,S)
 - they will becomecurrent values after thepropagation delays

Karnaugh Diagram

outputs: QP

qp\RS	00	01	11	10
00	11	10	00	01
01	01	00	00	01
11	00	00	00	00
10	10	10	00	00

$$Q = \overline{p + R}$$

$$P = \overline{q + S}$$

Stable States

- in principle, (Q,P) changes permanently
- but when (Q,P)=(q,p),
 we have a stable state
 - we want to find these stable states
 - the circuit can be controlled if passing only through stable states

qp\RS	00	01	11	10
00	11	10	00	01
01	01	00	00	01
11	00	00	00	00
10	10	10	00	00

Functioning (1)

initial state (q,p)	evolution (q,p)	conclusion		
	R=0, S=1			
00	$00 \rightarrow 10 \text{ stable}$			
01	$01 \rightarrow 00 \rightarrow 10 \text{ stable}$	the circuit evolves towards the stable state (Q,P)=(1,0) in all cases		
10	10 stable			
11	$11 \rightarrow 00 \rightarrow 10 \text{ stable}$			
R=1, S=0				
00	$00 \rightarrow 01$ stable			
01	01 stable	the circuit evolves towards		
10	$10 \rightarrow 00 \rightarrow 01$ stable	the stable state (Q,P)=(0,1) in all cases		
11	$11 \rightarrow 00 \rightarrow 01$ stable			

Functioning (2)

initial state (q,p) evolution (q,p)		conclusion		
	R=0, S=0			
00	$00 \to 11 \to 00 \to \dots$	for q=p, the circuit oscillates		
01	01 stable	indefinitely		
10	10 stable	for q≠p, the circuit holds the		
11	$11 \rightarrow 00 \rightarrow 11 \rightarrow \dots$	state (stable)		
R=1, S=1				
00	00 stable			
01	$01 \rightarrow 00$ stable	the circuit evolves towards the stable state $(Q,P)=(0,0)$ in all cases		
10	$10 \rightarrow 00$ stable			
11	$11 \rightarrow 00$ stable			

Functioning (3)

- we remind the condition $P=\overline{Q}$
- (R,S)=(0,0): keep the current state (memorization)
- (R,S)=(0,1): stabilize at Q=1 (set)
- (R,S)=(1,0): stabilize at Q=0 (reset)
- (R,S)=(1,1): forbidden combination
 - because P=Q does not implement a bit

Synchronous Sequential Circuits

- add a synchronization signal (clock) to the RS bistable circuit
- starting from which other bistable circuits can be designed
 - − D, JK, T
- all are latches (level-active)

RS Latch

$q(=Q_t)$	R	S	Q_{t+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	*
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	*

D Latch

- models only R≠S situations
- eliminates the forbidden combination
- with this circuit, the current state does not actually depend on the previous one

JK Latch

• eliminates the RS forbidden combination

$q(=Q_t)$	J	K	Q_{t+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

T Latch

- derived from the JK latch
- models only J=K situations

$q(=Q_t)$	T	Q_{t+1}
0	0	0
0	1	1
1	0	1
1	1	0

State Evolution

R	S	Q_{t+1}	
0	0	Q_t	unchanged
0	1	1	write 1
1	0	0	write 0
1	1	*	forbidden

J	K	Q_{t+1}	
0	0	Q_{t}	unchanged
0	1	0	write 0
1	0	1	write 1
1	1	$\overline{Q_t}$	invert

D	Q_{t+1}	
0	0	write 0
1	1	write 1

$$\begin{array}{c|cccc} T & Q_{t+1} & & \\ \hline 0 & Q_t & \text{unchanged} \\ 1 & \overline{Q}_t & \text{invert} \end{array}$$

Block Diagrams for Latches

Homework

- implement and analyze the behavior of the no-clock RS circuit using NAND gates instead of the NOR gates
- the same for the RS, D, JK, T latches