1. 实验名称及目的

失效保护逻辑设计实验: 根据基础实验和分析实验,实现四旋翼返航和遥控器失联时能自动着陆。

2. 实验原理

将前几个实验设计调参的控制器进行编译烧录进飞控中,然后使用飞思 X200 无人机进行实飞,最后观察控制指令与实时响应的控制情况。

详细内容请参考文献[3]第 12 讲_实验八_失效保护逻辑设计实验.pptx,文献[4]第 14 讲_健康评估和失效保护 V2.pptx。

3. 实验效果

实现四旋翼返航和在遥控器失联时多旋翼能自动返航着陆。

4. 文件目录

文件夹/文件名称		说明	
icon	Init.m	模型初始化参数文件。	
	MavLinkStruct.mat	MAVLink 结构体数据文件。	
	pixhawk.png	Pixhawk 硬件图片。	
	readme.pdf	机架类型修改说明文件。	
	UE_Logo.jpg	RflySim3D软件图片。	
	F450.png	F450飞机模型图片。	
msg	costom_failsafe_e8.msg	自定义的 uORB 消息。	
	PX4uORBMsgGen.m	自动生成自定义 uORB 消息脚本。	
Init_control.m		控制器初始化参数文件。	
FailsafeLogic_FLY.slx		实飞模型文件(遥控器输入归一化处理)。	
zyfc-h7_0.0.8.px4		卓翼 H7 官方实飞固件	
X450.params		X450 飞机参数。	

5. 运行环境

序号	软件要求	硬件要求	
	状	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版及以上版本	飞思 X450 飞机 ^②	1
		遥控器 ³	1
		数据线、杜邦线等	若干

- ①: 推荐配置请见: https://doc.rflysim.com
- ②:本实验中所使用的飞机为飞思 X450 飞机的模型设计版,该飞机所搭载的飞控为 Pixhawk 6 C mini,须保证平台安装时的编译命令为: px4_fmu-v6c_default,固件版本为: 1.13.3。 其他配套飞控请见: http://doc.rflysim.com。

③: 本实验演示所使用的遥控器为: 天地飞 ET10、配套接收器为: WFLY RF209S。遥控器相关配置见: ...\e11_RC-Config\Readme.pdf

6. 官方固件实飞步骤

Step 1:

请扫码或点击下方二维码,将本例程文件夹下: <u>px4_fmu-v6c_default1133.px4</u>(飞控固件)上传至飞控中。

Step 2:

将飞机通过 USB 与电脑进行连接, 打开 QGC 软件, 设置机架为: DJI F450 w/ DJI ES Cs;

Step 3:

选择加载本例程文件夹下的参数文件: X450.params 文件。

加载成功后, 断开飞机, 再次进行连接飞机确保所有设置均已完成。

Step 4:

打开 QGC 地面站在其中进行如下设置:

注: 该飞行模式中的各通道设置须于遥控器中所设置的通道对映。

Step 5:

手动摆动飞机,查看 QGC 右上角仪表盘的显示情况,并确认飞机状态切换到手动 Manual 模式下。

Step 6:

请在指定飞场进行无人机实飞,若正常起飞,说明无人机状态良好;若未正常起飞,请检查传感器校准、参数设置等,具体请联系飞机生产厂家进行解决。请务必保证飞机状态良好的情况下,再进行下一步操作。

7. 本实验步骤

Step 1:

打开 MATLAB 软件, 在 MATLAB 中先运行 FLY-X450/msg/ PX4uORBMsgGen.m 文件, 再打开 FLY-X450/Init_control.m 文件, 点击运行, 运行之后会自动打开 FailsafeLogic_FLY.sl x 文件。

Step 2:

在打开的 FailsafeLogic_FLY.slx 文件的 Simulink 模型界面下,点击编译命令。

Step 3:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左侧为生成的编译报告。

Step 4:

用 USB 数据线链接飞控(或飞机)与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行, 弹出 CMD 对话框,显示正在上传固件至飞机中,等待上传成功。

Step 5:

打开 QGroundComtrol 软件,等待飞机连接成功。确认无人机机架类型选择如下图,并设置遥控器通道如下,其中 CH5 为解锁, CH6 为模式切换。

Step 6:

遥控器的设置如下图。注:遥控器设置中,CH5 通道需设置为二段式开关,CH6 通道设置为三段式开关。具体设置请见本平台的遥控器配置手册。

Step 7:

为确保安全,可在飞机上系上安全绳,并将安全绳的另一端固定在重物上。飞行时人

在安全半径以外,解锁多旋翼,先在手动模式下飞行一段时间,然后关闭遥控器电源,这意味着遥控器失联了,可以看到飞行器自动返航并着陆。

8. 参考文献

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版社,2018.
- [2]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社,2020.
- [3]. 第 12 讲_实验八_失效保护逻辑设计实验.pptx.
- [4]. 第 14 讲_健康评估和失效保护 V2.pptx.

9. 常见问题

Q1: 无

A1: 无