SVT_2V5 MODELS (NSVT25, PSVT25)

1. CONDITIONS OF EXTRACTION

- Maturity: Preliminary
- Model parameters extraction based on lot: Q527AJA
- Geometrical extraction domain:
 - Drawn gate length : $10.0 \ge L \ge 0.28 \,\mu\text{m}$
 - Drawn transistor width : 10 \geq W \geq 0.4 μm
- Temperature extraction domain: -40 °C to 150 °C
- Bias extraction domain:
 - Gate bias: 0 ≤ |VGS| ≤ 2.75 V (VDD + 10%)
 - Drain bias: $0 \le |VDS| \le 2.75 V (VDD + 10\%)$
 - Bulk bias: $0 \le |VBS| \le 2.75 \text{ V (VDD + } 10\%)$

2. CONDITIONS OF SIMULATION

- Temperature: 25 °C
- Currents:

$$ION = Ids$$
 at $Vgs = 2.5 V$, $Vds = 2.5 V$ and $Vbs = 0 V$

• Threshold voltage in linear and saturation regime

VTLIN is Vgs value at Vds = 100 mV, Vbs = 0 V and Ids=100*W/L nA.

Current derivatives:

$$Gm = \frac{\partial}{\partial V_{qs}} Ids$$
 at Vgs = VTLIN + 0.2 V, Vds = 1.25 V and Vbs = 0 V

$$Gd = \frac{\partial}{\partial V_{ds}} Ids$$
 at Vgs = VTLIN + 0.2 V, Vds = 1.25 V and Vbs = 0 V

Analog gain = Gm/Gd

Gate Capacitances:

CGGINV = CGG at Vgs =
$$2.5$$
 V, Vds = 0 V and Vbs = 0 V CGD_ 0 V = CGD at Vgs = 0 V, Vds = 0 V and Vbs = 0 V

$$CGGMEAN = \frac{1}{VDD} \cdot \int_{0}^{VDD} CGG \times dVgs$$
 with VDD = 2.5 V and Vbs = 0 V

TAU = CGGMEAN*VDD/ION

• Diode Capacitances:

Note: the area and perimiters of source/drain junction diodes used for simulation are defined with the minimum poly-to-active distance specified in the DRM.

Transition frequency:

FT = frequency for which the small signal current gain H₂₁ is 0 dB (i.e. $\left| \frac{I_d}{I_g} \right| = 0$ dB).

3. MAIN ELECTRICAL CHARACTERISTICS OF NMOS SVT_2V5 TRANSISTORS

PARAMETERS	SVT25_TT	SVT25_SSA	SVT25_FFA	units			
N-channel transistors (nsvt25)							
VTLIN W=10/L=10.0	420	451	389	mV			
IDLIN W=10/L=10.0	3.28e-05	3.10e-05	3.48e-05	А			
VTSAT W=10/L=10.0	417	448	386	mV			
ION W=10/L=10.0	2.98e-04	2.75e-04	3.22e-04	А			
VTLIN W=10/L=0.28	432	469	394	mV			
IDLIN W=10/L=0.28	9.32e-04	8.62e-04	1.01e-03	А			
VTSAT W=10/L=0.28	395	435	355	mV			
ION W=10/L=0.28	5.68e-03	5.28e-03	6.11e-03	Α			
IOFF W=10/L=0.28	9.88e-11	3.38e-11	2.95e-10	Α			
IG_ON W=10/L=0.28	0.00e+00	0.00e+00	0.00e+00	А			
IG_OFF W=10/L=0.28	0.00e+00	0.00e+00	0.00e+00	Α			
FT W=10/L=0.28	3.60e+10	3.43e+10	3.78e+10	Hz			
CGGinv W=10/L=0.28	1.93e-14	1.92e-14	1.94e-14	F			
CGGmean W=10/L=0.28	1.75e-14	1.73e-14	1.77e-14	F			
CGD 0V W=10/L=0.28	3.90e-15	3.79e-15	4.07e-15	F			
CBD OFF ^a W=10/L=0.28	4.64e-15	5.23e-15	4.05e-15	F			
Tau W=10/L=0.28	7.7	8.2	7.2	ps			
Gm W=10/L=0.28	1.02e-03	9.40e-04	1.11e-03	S			
Gd W=10/L=0.28	1.55e-05	1.33e-05	1.81e-05	S			
Gain W=10/L=0.28	6.60e+01	7.08e+01	6.11e+01				
VTLIN W=0.4/L=0.28	349	386	312	mV			
IDLIN W=0.4/L=0.28	3.87e-05	3.45e-05	4.32e-05	Α			
VTSAT W=0.4/L=0.28	312	352	272	mV			
ION W=0.4/L=0.28	2.41e-04	2.16e-04	2.68e-04	Α			
IOFF W=0.4/L=0.28	3.96e-11	1.38e-11	1.16e-10	А			
FT W=0.4/L=0.28	3.14e+10	2.97e+10	3.32e+10	Hz			

Table 1: Main electrical characteristics for NMOS

a. Value coresponding to the minimum poly-to-acvtive distance specified in the DRM

4. MAIN ELECTRICAL CHARACTERISTICS OF PMOS SVT_2V5 TRANSISTORS

PARAMETERS	SVT25_TT	SVT25_SSA	SVT25_FFA	units			
P-channel transistors (psvt25)							
VTLIN W=10/L=10.0	475	534	416	mV			
IDLIN W=10/L=10.0	9.29e-06	8.51e-06	1.01e-05	А			
VTSAT W=10/L=10.0	474	534	415	mV			
ION W=10/L=10.0	8.88e-05	7.82e-05	1.00e-04	А			
VTLIN W=10/L=0.28	401	463	341	mV			
IDLIN W=10/L=0.28	3.52e-04	3.18e-04	3.91e-04	А			
VTSAT W=10/L=0.28	358	421	295	mV			
ION W=10/L=0.28	3.35e-03	2.97e-03	3.77e-03	А			
IOFF W=10/L=0.28	1.00e-10	1.60e-11	6.54e-10	А			
IG_ON W=10/L=0.28	0.00e+00	0.00e+00	0.00e+00	А			
IG_OFF W=10/L=0.28	0.00e+00	0.00e+00	0.00e+00	А			
FT W=10/L=0.28	2.08e+10	1.94e+10	2.23e+10	Hz			
CGGinv W=10/L=0.28	1.90e-14	1.89e-14	1.91e-14	F			
CGGmean W=10/L=0.28	1.73e-14	1.70e-14	1.75e-14	F			
CGD 0V W=10/L=0.28	3.55e-15	3.44e-15	3.74e-15	F			
CBD OFF ^a W=10/L=0.28	4.84e-15	5.45e-15	4.23e-15	F			
Tau W=10/L=0.28	12.9	14.3	11.6	ps			
Gm W=10/L=0.28	6.18e-04	5.49e-04	7.06e-04	S			
Gd W=10/L=0.28	1.29e-05	1.06e-05	1.61e-05	S			
Gain W=10/L=0.28	4.79e+01	5.19e+01	4.37e+01				
VTLIN W=0.4/L=0.28	391	454	328	mV			
IDLIN W=0.4/L=0.28	1.71e-05	1.49e-05	1.95e-05	А			
VTSAT W=0.4/L=0.28	348	414	283	mV			
ION W=0.4/L=0.28	1.53e-04	1.29e-04	1.80e-04	А			
IOFF W=0.4/L=0.28	5.37e-12	8.14e-13	3.66e-11	А			
FT W=0.4/L=0.28	2.18e+10	2.01e+10	2.36e+10	Hz			

Table 2: Main electrical characteristics for PMOS

a. Value coresponding to the minimum poly-to-acvtive distance specified in the DRM

5. ELECTRICAL BEHAVIOR VERSUS GATE LENGTH AND CHANNEL WIDTH FOR NMOS SVT_2V5 TRANSISTORS

Figure 1: ION/□=ION*L/W versus drawn gate length for NMOS SVT_2V5 transistors (W = 10 μm)

Figure 2 : IOFF versus drawn gate length for NMOS SVT_2V5 transistors (W = 10 μ m)

5/16

Figure 3 : Threshold voltage VTLIN versus drawn gate length for NMOS SVT_2V5 transistors (W = 10 μ m)

Figure 4 : DIBL= VTLIN-VTSAT versus drawn gate length for NMOS SVT_2V5 transistors (W = 10 μ m)

Figure 5 : GM*Ld versus drawn gate length for NMOS SVT_2V5 transistors (W = 10 μ m)

Figure 6 : GD*Ld versus drawn gate length for NMOS SVT_2V5 transistors (W = 10 μ m)

Figure 7 : GAIN versus drawn gate length for NMOS SVT_2V5 transistors (W = 10 μ m)

Figure 8 : ION versus drawn channel width for NMOS SVT_2V5 transistors (L = 0.28 μ m)

Figure 9 : IOFF versus drawn channel width for NMOS SVT_2V5 transistors (L = 0.28 μ m)

Fig)ure 10: Threshold voltage VTLIN versus drawn channel width for NMOS SVT_2V5 transistors (L = 0.28

6. ELECTRICAL BEHAVIOR VERSUS GATE LENGTH AND CHANNEL WIDTH FOR PMOS SVT_2V5 TRANSISTORS

Figure 11 : ION versus drawn gate length for PMOS SVT_2V5 transistors (W = 10 μ m)

Figure 12 : IOFF versus drawn gate length for PMOS SVT_2V5 transistors (W = 10 μ m)

Figure 13 : Threshold voltage VTLIN versus drawn gate length for PMOS SVT_2V5 transistors (W = 10 μ m)

Figure 14 : DIBL= VTLIN-VTSAT versus drawn gate length for PMOS SVT_2V5 transistors (W = 10 μ m)

Figure 15 : GM*Ld versus drawn gate length for PMOS SVT_2V5 transistors (W = 10 μ m)

Figure 16 : GD*Ld versus drawn gate length for PMOS SVT_2V5 transistors (W = 10 μ m)

Figure 17 : GAIN versus drawn gate length for PMOS SVT_2V5 transistors (W = 10 μ m)

Figure 18 : ION versus drawn channel width for PMOS SVT_2V5 transistors (L = 0.28 μ m)

Figure 19 : IOFF versus drawn channel width for PMOS SVT_2V5 transistors (L = 0.28 μ m)

Fig)ure 20: Threshold voltage VTLIN versus drawn channel width for PMOS SVT_2V5 transistors (L = 0.28