Concursul de admitere iulie 2024

\mathbf{Barem}

I. A	Alge	ebră. Din oficiu	1 p
	(a)	Calculul lui Δ : $\Delta = m^2 - 4m - 8$	0,5 p
		Condiția $\Delta \geq 0$	0,5 p
		Calculul soluțiilor ecuației $\Delta=0$: $2\pm2\sqrt{3}$	0,5 р
		Soluția: $m \in (-\infty, 2-2\sqrt{3}] \cup [2+2\sqrt{3}, \infty)$	0,5 p
	(b)	$s_1 = m \dots \dots$	0,5 p
		$s_2 = m^2 - 2m - 4$	0,5 p
		$s_3 = m^3 - 3m^2 - 6m$	
		$s_3 - s_1 s_2 + (s_1 + 2) s_1 = 0$	
		Demonstrarea afirmației: " $s_n \in \mathbb{R}$ pentru orice n."	
	(c)	$\det(A) = 2m^2 - 1 \dots$	0,5 p
		$A \text{ inversabil} \breve{\mathbf{a}} \Leftrightarrow m \in \mathbb{R} \setminus \left\{ \pm \frac{1}{\sqrt{2}} \right\} \dots$	0,5 p
		Enunţarea axiomelor grupului	
		Verificarea axiomelor grupului	
	(d)	Observația că $m \in \mathbb{Z}$	0.5 p
	()	Deducerea valorilor $m=6$ și $m=-2$	
II.	An	naliză. Din oficiu	1 p
	(a)	Demonstrarea faptului că funcția f_1 este strict crescătoare pe $(-1,\infty)$.0,75 p
		Determinarea ecuației asimptotei verticale	0,5 p
		Determinarea ecuației asimptotei orizontale spre ∞	
		Argumentarea faptului că graficul funcției f_1 nu are asimptote oblice spre ∞	
	(b)	Calculul $\int_0^1 f_1(x^2) dx = 1 - \frac{\pi}{4}$	1,5 p
		Calculul $\int_0^1 f_1(x^2) dx = 1 - \frac{\pi}{4} \dots$ Calculul $\int_0^1 f_n(x^2) dx = 1 - \frac{\arctan \sqrt{n}}{\sqrt{n}} \text{ pentru orice } n \in \mathbb{N}^* \dots$	1 p
		Finalizare: $\lim_{n \to \infty} \int_0^1 f_n(x^2) dx = 1$	0,5 p
	(c)	Calculul $f'_n(x) = \frac{n}{(nx+1)^2}$ pentru orice $x \in [0,\infty)$ şi $n \in \mathbb{N}^*$	0,5 p
		Calculul $f_n''(x) = \frac{-2n^2}{(nx+1)^3}$ pentru orice $x \in [0, \infty)$ și $n \in \mathbb{N}^*$	
		Alegerea unei valori convenabile pentru c	0,5 p
		Demonstrarea faptului că șirul obținut este divergent	0,5 p

(d)	Obţinerea egalităţii $\frac{f_n\left(\frac{1}{n}\right)}{1 \cdot \ln 2} + \frac{f_n\left(\frac{2}{n}\right)}{2 \cdot \ln 3} + \dots + \frac{f_n\left(\frac{n}{n}\right)}{n \cdot \ln (n+1)} = \frac{1}{2 \cdot \ln 2} + \frac{1}{3 \cdot \ln 3} + \dots + \frac{1}{(n+1) \cdot \ln (n+1)}$ pentru orice $n \in \mathbb{N}^*$
	Obţinerea concluziei $\lim_{n \to \infty} \left(\frac{f_n\left(\frac{1}{n}\right)}{1 \cdot \ln 2} + \frac{f_n\left(\frac{2}{n}\right)}{2 \cdot \ln 3} + \dots + \frac{f_n\left(\frac{n}{n}\right)}{n \cdot \ln (n+1)} \right) = \infty \dots \dots 1,5 \text{ p}$
III. G	eometrie. Din oficiu
(a)	Demonstrația faptului că $ABCD$ este pătrat 0,5 p Obținerea ecuației dreptei AC : $x+y-1=0$ 0,5 p Obținerea ecuației dreptei BD : $x-y+1=0$ 0,5 p Obținerea coordonatelor punctului de intersecție $Q(0,1)$ 0,5 p
(b)	Aflarea coordonatelor punctelor $M\left(-\frac{1}{2},0\right)$ și $N\left(1,\frac{2}{3}\right)$
(c)	Calculul razei cercului înscris $r=\sqrt{2}-1$
(d)	Dacă P are coordonatele (x_0, y_0) , atunci $x_0^2 + y_0^2 - 4y_0 + 3 = 0$

Orice rezolvare corectă este punctată corespunzător.