Stabilitet i topologisk dataanalyse

Andreas M. Kristensen March 14, 2025

Contents

1	Inti	roduksjon	3
2	Forkunnskaper 4		
	2.1	Relasjoner og ordensrelasjoner	4
	2.2	Topologiske rom	6
	2.3	Homotopi	7
	2.4	Δ -Komplekser	7
	2.5	Vektorrom	8
	2.6	Kategoriteori	9
	2.7	Simplisialhomologi	13
3	Persistensmoduler og Barkoder 1		
	3.1	Persistensmoduler	14
		3.1.1 Interleaving-distanse	15
	3.2	Multimengder	16
	3.3	Barkoder	16
	3.4	Matching-kategorien	17
	3.5	Dekorerte endepunkter	17
4	Persistent Homologi 18		
	4.1	Topolgiske rom fra punktskyer	18
		4.1.1 Cech-komplekser	19
	4.2	Rips-komplekser	19
5	Alg	gebraisk Stabilitet	20
6	Anvendelser		
	6.1	Biologi	21

1 Introduksjon

Målet med denne oppgaven er å gi en innledning til topologisk data analyse og stabilitetsteoremet.

Først går oppgaven innom litt førkunnskaper om topologiske rom, grunnlegende homologi, vektorrom og kategoriteori. Disse emnene vil være essensielle for å kunne studere data på en topologisk måte.

Senere går vi igjennom persistensmoduler og barkoder. Det er disse som kommer til å være hovedfokuset av oppgaven. Vi definerer pseudometrikker på barkoder og persistensmoduler som forteller oss hvor like barkodene og persistensmodulene er.

Disse metrikkene vil senere lede til målet med selve oppgaven som er stabilitetsteoremet.

2 Forkunnskaper

Her går vi igjennom noen nødvendige definisjoner

2.1 Relasjoner og ordensrelasjoner

Noe som kommer til å være viktig gjennom oppgaven er relasjoner og spesielt ordensrelasjoner.

Definisjon 2.1.1. En relasjon R på en mengde A er en undermengde av $A \times A$.

Når et element $a \in A$ er relatert til et element $b \in A$ via en relasjon $R \subset A \times A$ skriver vi ofte aRb.

Noen egenskaper relasjoner kan ha er følgende:

For en relasjon $R \subset A \times A$, kan den ha

- Refleksivitet: Alle elementer i A er relaterte til seg selv.
- Symmetri: Hvis a er relatert til b så er b relatert til a.
- Transitivitet: Hvis a er relatert til b og b er relatert til c så er a relatert til c.
- Antisymmetri: Hvis a er relatert til b og b er relatert til a så er a = b.
- ullet Strengt sammenhengendhet: a er relatert til b eller b er relatert til a.
- Asymmetri: Hvis a er relatert til b så er aldri b relatert til a.
- Irrefleksivitet: Ingen elementer er relatert til seg selv.

Eksempel 2.1.1. For en mengde A er likhet = en relasjon som er refleksiv, symmetrisk og transitiv

Eksempel 2.1.2. Mindre enn eller lik $\leq på \mathbb{R}$ er refleksiv, symmetrisk, transitiv, og antisymmetrisk. Samme er sant for større enn eller likhetstegnet.

Noen typer relasjoner som likhetstegnet og mindre enn eller likhetstegnet har samme egenskaper og brukes såpass ofte at de får sine egne navn

Definisjon 2.1.2. En relasjon er kalt en ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

En annen type relasjon er ordensrelasjoner. Det er en slik relasjon \leq er. ordensrelasjoner kommer i mange former her er de tre største

Definisjon 2.1.3. En preorden er en relasjon som er refleksiv og som er transitiv. En mengde med en preordensrelasjon er kalt en "preordnet mengde" "promengder."

Definisjon 2.1.4. En delvis orden er en preorden som også er antisymmetrisk. En mengde med en delvis ordensrelasjon er kalt en "devis ordnet mengde" ofte forkortet til "pomengde" fra det engelske ordet "partial order".

Tilslutt har vi en total orden

Definisjon 2.1.5. En total orden er en delvis orden som også er strengt sammenhengende. En mengde med en total orden er en kalt en "totalt ordnet mengde."

Definisjon 2.1.6. En relasjon er en streng ordensrelasjon hvis den er assymmetrisk, irrefleksiv og transitiv.

Bemerk 2.1.1. Per definisjon er alle total ordensrelasjoner en delvis orden og alle delvis ordensrelasjoner er en preordensrelasjon.

Bemerk 2.1.2. Delvis ordensrelasjoner induserer en streng orden ved relasjonen < på følgende måte for en delvis ordensrelasjoner \le

 $a < b \text{ hvis og bare hvis } a \leq b \text{ og } a \neq b.$

Denne type streng orden bruker vi nå hvor ordensrelasjonene med \leq vil være delvis ordner, mens ordensrelasjonene med < vil være strenger ordner.

Et viktig eksempel for denne oppgaven er den leksikografiske ordenen.

Eksempel 2.1.3. For delvis ordnede mengder A med orden \leq_A og B med orden \leq_B kan vi sette den følgende ordenen \leq på $A \times B$ ved å la $(a,b) \leq (a',b')$ hvis og bare hvis $a <_A$ a' eller hvis a = a' og $b \leq_B b'$.

Proposisjon 2.1.1. Den leksikografiske ordenen er en delvis orden.

Proof. La A og B være delvis ordnede mengder med ordner \leq_A og \leq_B hhv. og la \leq være den leksikografiske ordnen på $A \times B$.

Refleksivitet

Refleksivitet er sant for gitt $(a,b) \in A \times B$ så er a = a og $b \leq_B b$ ved **definisjon 2.1.4**, dermed er $(a,b) \leq (a,b)$.

Transitivitet

La $(a,b) \le (a',b')$ og $(a',b') \le (a'',b'')$. Enten så er $a <_A a'$ eller er a = a' og $b \le_B b'$, vi ser på disse tilfellene individuelt.

" $a <_A a'$ ": Siden $(a', b') \le (a'', b'')$ har vi at $a' <_A a''$ eller a' = a'' og $b' \le_B b''$. Hvis $a' <_A a''$ har vi ved transitivitet $a <_A a''$ og hvis a' = a'' og $b' \le_B b''$ så har vi at $a <_A a''$.

"a = a' og $b \le b'$ ": Likt som over, siden $(a',b') \le (a'',b'')$ så er $a' <_A a''$ eller a' = a'' og $b' \le_B b''$. Hvis $a' <_A a''$ har vi at a = a' som betyr at $a <_A a''$. Hvis a' = a'' og $b' \le_B b''$ så har vi at a = a' og a' = a'' så ved transitivitet av a' = a'' så er a' = a'', ved transitivitet av a' = a'' så er a' = a'', ved transitivitet av a' = a'' så er a' = a'', ved transitivitet av a' = a'' så er a' = a'' så er a' = a''.

Antisymmetri

Til slutt må en vise at hvis $(a,b) \le (a',b')$ og $(a',b') \le (a,b)$ så er (a,b) = (a',b'). Dette gjør vi ved et kontrapositivt bevis. Anta at $(a,b) \ne (a',b')$, da viser vi at

 $(a,b) \not\leq (a',b')$ eller $(a',b') \not\leq (a,b)$. Siden $(a,b) \neq (a',b')$ så er $a \neq a$ som betyr at hvis $(a,b) \leq (a',b')$ må dette være fordi $a <_A a'$, men da kan ikke $a' <_A a$ ved antisymmetri av \leq_A altså er $(a',b') \leq (a,b)$ og på samme måte kan ikke $(a,b) \leq (a',b')$ hvis $(a',b') \leq (a,b)$.

Ordensrelasjoner gir oss en rekkefølge på elementer i mengden.

2.2 Topologiske rom

Definisjon 2.2.1. Et par (X, \mathcal{T}) hvor X er en mengde og $\mathcal{T} \subset \mathcal{P}(X)$ slik at

- $X, \emptyset \in \mathcal{T}$
- Gitt en vilkårelig samling av mengder $\{U_{\alpha}\}_{\alpha}$ så er $\bigcup_{\alpha} U_{\alpha} \in \mathcal{T}$
- For en endelig samling av mengder $\{U_1, \ldots, U_n\} \in \mathcal{T}$ så er snittet $U_1 \cap \cdots \cap U_n \in \mathcal{T}$

Vi kaller mengden \mathcal{T} for topologien på X og mengdene i \mathcal{T} for åpne mengder.

Når topologien \mathcal{T} på en mengde X er kjent eller ikke viktig lar vi være å skrive det topologiske rommet som et par (X, \mathcal{T}) og skriver bare X. Alle funksjoner mellom topologiske rom vil være kontinuerlige. Til slutt så vil et "rom" bety et topologisk rom.

Eksempel 2.2.1. Euklidisk rom $(\mathbb{R}^n, \mathcal{T})$ er et topologisk rom med åpne mengder unioner av vilkårlig mange mengder av typen

$$\mathcal{B}(x,\delta) = \{ y \in \mathbb{R}^n \mid ||x - y|| < \delta \}$$

kalt åpne baller. Euklidisk rom er som regel alltid bare skrevet \mathbb{R}^n siden det er den topologien på \mathbb{R}^n som er antatt.

Definisjon 2.2.2. La (X, \mathcal{T}_X) og (Y, \mathcal{T}_Y) være topologiske rom. En funksjon $f: X \to Y$ er kalt kontinuerlig hvis for en hver $V \in \mathcal{T}_Y$ så er $f^{-1}(V) \in \mathcal{T}_X$.

Eksempel 2.2.2. La $f: \mathbb{R} \to \mathbb{R}$ være funksjonen f(x) = 2x + 1, da er f kontinuerlig. La V = (a, b) et opent intervall, da blir $f^{-1}(V) = \{x \in \mathbb{R} \mid 2x + 1 \in V\} = (\frac{a}{2} - 1, \frac{b}{2} - 1)$ som også er et åpent intervall.

Definisjon 2.2.3. La (X, \mathcal{T}) være et topologisk rom og la $A \subset X$ da er det en naturlig topologi \mathcal{T}_A vi kan sette på A definert ved

$$U \in \mathcal{T}_A \iff \exists V \in \mathcal{T} \quad s.a \quad V \cap A = U$$

Vi kaller (A, \mathcal{T}_A) et underrom av (X, \mathcal{T}) og vi kaller \mathcal{T}_A underromstopologien på A.

Når vi senere ser på punktskyer i \mathbb{R}^n og spesif
kt simplisial kompleksene

2.3 Homotopi

Definisjon 2.3.1. La X og Y være topologiske rom og la $f,g:X\to Y$ være funksjoner. En homotopi mellom f og g er en funksjon

$$F: X \times [0,1] \to Y$$
.

Slik at F(x,0) = f(x) og F(x,1) = g(x). Hvis det eksisterer en homotopi mellom en funksjon f og g sier vi at de er homotope og vi skriver at $f \simeq g$.

Definisjon 2.3.2. To topologiske rom X og Y er homotopiekvivalente hvis det eksisterer funksjoner $f: X \to Y$ og $g: Y \to X$ slik at

$$g \circ f \simeq \mathrm{id}_X \quad f \circ g \simeq \mathrm{id}_Y$$

2.4 Δ -Komplekser

En måte å lage topologiske rom er å starte med enkle byggeklosser og lime dem sammen. Dette kan vi gjøre ved å bruke n-dimensjonale trekanter kalt n-simplekser.

Definisjonene er fra?

Definisjon 2.4.1. Standardsimplekset Δ^n er definert ved

$$\Delta^n = \{ \boldsymbol{x} \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n+1} x_i = 1, x_i \ge 0 \ \forall i = 0, \dots, n \}$$

En side på et n-simpleks er en (n-1)-simpleks.

Definisjon 2.4.2. Et Δ -kompleks struktur på et rom X er en samling av kontinuerlige funksjoner $\sigma_{\alpha}: \Delta^n \to X$ med n avhengig av α slik at:

- 1. Restriksjonen $\sigma_{\alpha} \mid \mathring{\Delta}^n$ er injektiv og hvert punkt i X er i bildet av nøyaktig en slik Restriksjon.
- 2. Hver restriksjon av σ_{α} til en side av Δ^n er en av funksjonene $\sigma_{\beta}:\Delta^{n-1}\to X$
- 3. En mengde $A \subset X$ er åpen hvis og bare hvis $\sigma_{\alpha}^{-1}(A)$ er åpen for hver σ_{α} .

Disse kriteriene gir oss en måte å lage forskjellige topologiske rom ved enkle byggeklosser.

Eksempel 2.4.1 (ex:SirkelDkomp). Vi kan lage et Δ for sirkelen S^1 ved følgende:

- La $\sigma_0: \Delta^0 = \{*\} \rightarrow S^1$ være en avbilding som sender * til et punkt i S^1 .
- La $\sigma_1: \Delta^1 \to X$ være avbildingen som sender $\partial \Delta^1$ til punktet $\sigma_0(*)$ og alle andre punkter $x \in \mathring{\Delta}^1$ sendes injektiv til S^1 .

Her er $\{\sigma_0, \sigma_1\}$ et Δ -kompleks på S^1 . Intuitivt kan en tenke på σ_1 som at man limer fast endepunktene til linjen som gir oss sirkelen.

2.5 Vektorrom

For å definere hva et vektorrom er må vi først gå igjennom hva en kropp er.

Definisjon 2.5.1. En mengde K sammen med binære operatorer $+, \cdot : K \times K \to K$ er en kropp hvis gitt $a, b, c \in K$ så holder det følgende

- (a+b) + c = a + (b+c)
- $\bullet \ a+b=b+a$
- $a \cdot (b+c) = a \cdot b + a \cdot c$
- Det eksisterer et element $0 \in K$ slik at a + 0 = a = 0 + a
- Det eksisterer et element $1 \in K$ slik at $a \cdot 1 = a = 1 \cdot a$
- Det eksisterer et element $-a \in K$ slik at a + (-a) = 0
- Det eksisterer et element $a^{-1} \in K$ slik at $a \cdot a^{-1} = 1$.

Ofte lar vi være å skrive a+(-b) og skriver heller a-b vi lar også være å skrive $a\cdot b$ og skriver heller ab

Definisjon 2.5.2. Et vektorrom V over en kropp K er en mengde med binære operatorer $+: V \times V \to V$ og $\cdot: K \times V \to V$, kalt skalarmultiplikasjon, slik at for elementer $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ og $a, b, c \in K$ så holder det følgende

- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Det eksisterer et element $0 \in V$ slik at $\mathbf{u} + 0 = \mathbf{u} = 0 + \mathbf{u}$
- Det eksisterer et element $-\mathbf{u} \in V$ slik at $\mathbf{u} + (-\mathbf{u}) = 0$
- $\bullet \ (a+b) \cdot \mathbf{u} = a \cdot \mathbf{u} + b \cdot \mathbf{u}$
- $a \cdot (\mathbf{u} + \mathbf{v}) = a \cdot \mathbf{u} + a \cdot \mathbf{v}$
- $a \cdot (b \cdot \mathbf{u}) = (ab) \cdot \mathbf{u}$.

Vi kaller elementer $\mathbf{v} \in V$ for vektorer og elementer $a \in K$ for skalarer.

Igjen skriver vi ofte $\mathbf{v} + (-\mathbf{u})$ som $\mathbf{v} - \mathbf{u}$ og $a \cdot \mathbf{v}$ som $a\mathbf{v}$.

Definisjon 2.5.3. La V og W være vektorrom over en kropp K og la $f:V \to W$ være en funksjon. Vi kaller f lineær hvis for vektorer $\mathbf{u}, \mathbf{v} \in V$ og en skalar $a \in K$ så holder det følgende

- $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$
- $f(a\mathbf{v}) = af(\mathbf{v})$

Vi kaller også slike funksjoner lineære avbildinger/transformasjoner/funksjoner

Eksempel 2.5.1. Rommet $V = \mathbb{R}^n$ over kroppen \mathbb{R} er et vektorrom med punktvis addisjon, og skalarmultiplikasjon

$$(a_1,\ldots,a_n)+(b_1,\ldots,b_n)=(a_1+b_1,\ldots,a_n+b_n)$$

og

$$c(a_1,\ldots,a_n)=(ca_1,\ldots,ca_n).$$

Eksempel 2.5.2. funksjonen $f: \mathbb{R}^2 \to \mathbb{R}^2$ definert ved $f(v) = 2\mathbf{v}$ er lineær siden gitt $\mathbf{u}, \mathbf{v} \in V$ og $a \in \mathbb{R}$ så er

- $f(\mathbf{u} + \mathbf{v}) = 2(\mathbf{u} + \mathbf{v}) = 2\mathbf{u} + 2\mathbf{v} = f(\mathbf{u}) + f(\mathbf{v})$
- $f(a\mathbf{v}) = 2(a\mathbf{v}) = (2a)\mathbf{v} = (a \cdot 2)\mathbf{v} = af(\mathbf{v})$

2.6 Kategoriteori

Et samlende rammeverk i matematikk er en vanskelig oppgave å få laget, men et rammeverk som gjør en god jobb og som brukes heletiden nå til dags er kategoriteori. Kategoriteori gir en formulering på de forskjellige områdene i matematikk som f.eks. topologi og algebra.

Definisjon 2.6.1. En kategori C er et par (ob(C), hom(C)) av klasser. Elementene i ob(C) er kalt objekter og elementene i hom(C) er kalt morfier. Morfiene i C kan bli sett på som piler mellom objektene i C, en morfi f mellom objekter A og B skrives $f: A \to B$. For morfier $f: A \to B$ og $g: B \to C$ har vi en morfi $g \circ f: A \to C$ som vi kaller komposisjonen av f med g. For ethvert objekt $A \in ob(C)$ har vi en morfi $id_A: A \to A$ som vi kaller identitetsmorfien som tilfredstiller for enhver morfi $f: A \to B$:

$$f \circ id_A = f$$
, $id_B \circ f = f$.

Bemerk 2.6.1. Objektene og morfiene til noen kategorier som f.eks. Set som vi senere snakker raskt om kan ikke være inneholdt i det vi kaller mengder og er heller elementer av en klasse. Vi kaller kategorier hvor objektene og morfiene er elementer av en mengde små kategorier eller at en kategori er liten. Disse kategoriene kommer til å bli brukt senere i definisjonen på et diagram.

I en kategori er det noen spesielle morfier som kalles isomorfier.

Definisjon 2.6.2. En isomorfi i en kategori \mathcal{C} er en morfi $f: A \to B$ mellom to objekter $A, B \in \text{ob}(\mathcal{C})$ hvor det eksisterer en morfi $g: B \to A$ slik at følgende holder

$$f \circ g = \mathrm{id}_B, \quad g \circ f = \mathrm{id}_A.$$

Vi kaller g inversen til f. Hvis to objekter A og B er ismorfe skriver vi $A \cong B$.

Bemerk 2.6.2. Identitetsmorfien er en isomorfi siden $id_A \circ id_A = id_A$. Altså er id_A sin egen invers.

Andre spesielle morfier er følgende:

Definisjon 2.6.3. En morfi $f: A \to B$ er kalt en epimorfi hvis for ethvert par med mofier $q, h: B \to C$ så holder

$$g \circ f = h \circ f \implies g = h$$

En skriver $f: A \rightarrow B$ for en epimorfi når det er viktig å notere.

Definisjon 2.6.4. En morfi $f: A \to B$ er kalt en monomorfi hvis for ethvert par $g, h: C \to A$ så holder

$$f \circ g = f \circ h \implies g = h$$

En skriver $f: A \hookrightarrow B$ for en monomorfi hvis det er viktig å notere.

Noen eksempler på kategorier, deres isomorfier, epimorfier og monomorfier er følgende

Eksempel 2.6.1. Kategorien Set har mengder som objekter og funksjoner som morfier. Her er bijektive funksjoner isomorfier, surjektive funksjoner epimorfier og injektive funksjoner er monomorfier.

Eksempel 2.6.2. Kategorien Top er kategorien hvor objektene er topologiske rom og morfiene er kontinuerlige funksjoner. Isomorfier i Top, kalt homeomorfier, er bijektive og kontinuerlig funksjoner med en kontinuerlig invers, epimorfi er surjektive og kontinuerlige funksjoner og monomorfier er injektive og kontinuerlige funksjoner.

Eksempel 2.6.3. Kategorien \mathbf{Vect}_K er kategorien av vektorrom over en kropp K som objekter og lineære avbildinger som morfier. Isomorfier i \mathbf{Vect}_K , kalt vektorromisomorfier, er bijektive og lineære avbildinger, inversen vil automatisk være lineær så vi trenger ikke inverskriteriet som vi gjør i \mathbf{Top} . Epimorfiene er surjektive lineære avbildinger og monomorfiene er injektive lineære avbildinger.

Morfiene i en kategori trenger ikke å være funksjoner, her er et eksempel på en kategori hvor morfiene ikke er funksjoner.

Eksempel 2.6.4. Kategorien \mathbf{R} har de reelle tall \mathbb{R} som objekter og \leq relasjonen som morfier. Komposisjon er gitt ved transitivitet og identitetsmorfiene er gitt ved s=s. Identitetsmorfiene er også de eneste isomorfiene fordi hvis $a\leq b$ er en isomorfi så er $b\leq a$ dens invers, men hvis $a\leq b$ og $b\leq a$ så er a=b. Her er alle morfier epimorfier og monomorfier.

Bemerk 2.6.3. Gitt en kategori C eksisterer det en kategori C^{op} kalt den omvendte kategorien av C med de samme objektene, men med alle morfiene snudd andre vei.

I noen kategorier er det spesielle objekter kalt initialobjekt og terminalobjekter.

Definisjon 2.6.5. I en kategori C er et initialobjekt I et objekt slik at for ethvert objekt $A \in C$ eksisterer det en unik morfi $I \to A$.

Definisjon 2.6.6. I en kategori C er et terminalobjekt T et objekt slik at for ethvert objekt $A \in C$ det eksisterer en unik morfi $T \to A$.

Et objekt som er både initial og terminal er kalt et nullobjekt

En flott ting med kategoriteori formuleringen av forskjellige strukturer er at en kan studere en kategori ved hjelp av en annen kategori.

Definisjon 2.6.7. La C og D være kategorier en funktor $F: C \to D$ er funksjoner $ob(C) \to ob(D)$ og $bom(C) \to bom(D)$ slik at for morfier $f: A \to B$ og $g: B \to C$ i C så er $F(f): F(A) \to F(B)$, $F(g \circ f) = F(g) \circ F(f)$ og for ethvert objekt $A \in ob(C)$ så er $F(id_A) = id_{F(A)}$.

Definisjon 2.6.8. En funktor på formen $F: \mathcal{C}^{op} \to \mathcal{D}$ eller $F: \mathcal{C} \to \mathcal{D}^{op}$ er kalt en kontravariant funktor fra \mathcal{C} til \mathcal{D} .

Ofte skriver vi bare $F:\mathcal{C}\to\mathcal{D}$ for en kontravariant funktor og sier at den er kontravariant. En funktor som ikke er kontravariant kalles også ofte kovariant, men også bare for en funktor.

Bemerk 2.6.4. Gitt en funktor $F: \mathcal{C} \to \mathcal{D}$ og en isomorfi $f: A \to B$ i \mathcal{C} så er F(f) en isomorfi i \mathcal{D} . Siden f er en isomorfi så eksisterer det en $g: B \to A$ med egenskapene i **Definisjon 2.6.2**. Dette gir

$$id_{F(A)} = F(id_A) = F(f \circ g) = F(f) \circ F(g).$$

På samme måte får vi $F(f \circ g) = \mathrm{id}_{F(B)}$. Dermed blir F(g) en invers av F(f) som betyr at den er en isomorfi.

Eksempel 2.6.5. Vi kan definere en funktor $F: \mathbf{Set} \to \mathbf{Top}$ som setter den diskrete topologien på en mengde X, her blir alle funksjoner $f: X \to Y$ sendt til $F(f) = f: (X, \mathcal{P}(X)) \to (Y, \mathcal{P}(Y))$, den er kontinuerlig siden for enhver delmengde $A \in \mathcal{P}(Y)$ så er $f^{-1}(A) \in \mathcal{P}(X)$.

På samme måte har vi en funktor $F: \mathbf{Set} \to \mathbf{Top}$ som setter den trivielle topologien på en mengde og bevarer funksjonene.

Eksempel 2.6.6. Vi har også en funktor $F : \mathbf{Top} \to \mathbf{Set}$ definert ved $F((X, \mathcal{T})) = X$ og $F(f : (X, \mathcal{T}) \to (Y, \mathcal{T}')) = f : X \to Y$. Denne funktoren kaller vi for glemmefunktoren siden den glemmer all struktur til rommet. En kan også gjøre dette for andre kategorier som \mathbf{Vect}_K og \mathbf{R} .

Eksempel 2.6.7. Et eksempel på en kontravariant funktor er $\operatorname{Hom}(\cdot,W)$: $\operatorname{Vect}_K \to \operatorname{Vect}_K$ som sender et vektorrom $V \in \operatorname{Vect}_K$ til vektorrommet $\operatorname{Hom}(V,W)$ av lineære avbildinger $V \to W$ og den sender lineære avbildinger $T: U \to V$ til $\operatorname{Hom}(T,W): \operatorname{Hom}(V,W) \to \operatorname{Hom}(U,W)$ via $\operatorname{Hom}(T,W)(g) = g \circ T$ for en $g: V \to W$. Her kan man se at funktoren snur på morfien som gjør den kontravariant.

En kan også definere en pil mellom to funktorer

Definisjon 2.6.9. La C og D være kategorier og la $F, G : C \to D$ funktorer. En naturlig transformasjoner er en pil $\eta : F \to G$ slik at for ethvert objekt $A \in C$ har vi en morfi $\eta_A : F(A) \to G(A)$ og for enhver morfi $f : A \to B$ i C har vi at diagrammet

$$F(A) \xrightarrow{\eta_A} G(A)$$

$$F(f) \downarrow \qquad \qquad G(f) \downarrow$$

$$F(B) \xrightarrow{\eta_B} G(B)$$

kommuterer.

Disse to tingene gir oss en ny type kategori

Definisjon 2.6.10. For kategorier C og D er kategorien C^D , med funktorer $F: C \to D$ som objekter og naturlige transformasjoner som morfier, kalt en funktorkategori

Kategorier er ofte ekstremt store og ofte er vi bare interessert i noen få objekter og morfier i kategorien. Derfor kan vi sette opp et diagram.

Definisjon 2.6.11. La \mathcal{J} være en liten kategori. Et diagram av form \mathcal{J} i en kategori \mathcal{C} er en funktor $D: \mathcal{J} \to \mathcal{C}$.

Dette er ikke en intuitiv definisjon, men diagrammer er ikke så farlige som en skal tro her er noen illustrative eksempler

Eksempel 2.6.8. Her er en illustrasjon som viser hvordan formen på kategorien $\mathcal J$ gir et diagram i en kategori $\mathcal C$

Funktoren D sender 1 til A, 2 til B osv. Siden D er en funktor sender den id₁ til id_{D(1)} = id_A osv. Funktoren sender morfiene til de naturlige morfiene.

Eksempel 2.6.9. I dette eksempelet er \mathcal{J} trekantformet, dette gir diagrammet $D: \mathcal{J} \to \mathcal{C}$

Funktoren D sender 1 til A, 2 til B og 3 til C og morfiene blir sendt til de naturlig morfiene.

Vi pleier aldri å faktisk tegne opp \mathcal{J} og funktoren D definisjonen er bare nødvendig for å være presis. Objektenes identiteter er alltid tilstede i et diagram, men det er kjedelig å tegne og kan gjøre diagrammet rotete, derfor lar vi være å tegne identitetspilen til objektene med mindre de er nødvendige.

Siden enhver kategori har en omvendt kategori kan vi lage omvendt diagrammer ved en kontravariant funktor $F:\mathcal{J}\to\mathcal{C}$

Vi bruker diagrammer hele tiden i matematikk og spesielt et type diagram kalt et kommutativt diagram

Definisjon 2.6.12. Et diagram $D: \mathcal{J} \to \mathcal{C}$ er kalt kommutativt hvis alle morfier som starter med samme objekt og slutter på samme objekt er like.

I eksempel 2.6.7 er diagrammet kommutativt hvis $g \circ f = h \circ i$ og i eksempel 2.6.8 er diagrammet kommutativt hvis $h = g \circ f$.

Ved hjelp av kommutative diagrammer kan vi definere det vi kaller det kategoriske produktet skrevet $A \times B$ for to objekter i en kategori. Her er definisjonen

Definisjon 2.6.13. For objekter A, B i en kategori C er produkter (hvis det eksisterer) et objekt $A \times B \in C$ sammen med morfier $\pi_1 : A \times B \to A$ og $\pi_2 : A \times B \to B$ slik at for ethvert objekt $X \in C$ og morfier $f_1 : X \to A$ og $f_2 : X \to B$ eksisterer det en unik morfi $\langle f_1, f_2 \rangle : X \to A \times B$ slik at diagrammet

kommuterer.

2.7 Simplisialhomologi

Det er mange spørsmål om topologiske rom som er vanskelige å svare på om man ikke har de rette verktøyene.

Et eksempel på et teorem som er vanskelig å bevise rent topologisk er Borsuk-Ulam teoremet

Teorem 2.7.1. La $f: S^n \to \mathbb{R}^n$ være en kontinuerlig funksjon, da eksisterer det et punkt $x \in S^n$ slik at f(x) = f(-x).

Vi kan studere topologiske rom ved bruk av algebra. Dette kan vi gjøre med homologigruppene.

Fra ? har vi følgende definisjon på et n-kjedekompleks med forskjell at n-kjedene er frie abelske grupper, mens her er de vektorrom.

Definisjon 2.7.1. For et Δ -kompleks X kan vi lage et fritt vektorrom $\Delta_n(X)$ ved å la basisen av $\Delta_n(X)$ være alle n-simpleksene til X. Elementene i $\Delta_n(X)$ er kalt n-kjeder og er formelle summer $\sum_{\alpha} n_{\alpha} \sigma_{\alpha}$ hvor $n_{\alpha} \in K$ og $\sigma_{\alpha} : \Delta^n \to X$.

Sammen med disse n-kjedekompleksene er det også avbildinger

$$d_n: \Delta_n(X) \to \Delta_{n-1}(X)$$

gitt ved

3 Persistensmoduler og Barkoder

3.1 Persistensmoduler

Et sentralt tema for å kunne forstå stabilitet og topologisk dataanalyse er ideen om persistensmoduler. I dette kapitellet går vi gjennom en litt abstrakt introduksjon og så ser vi på hvorfor de er viktige innenfor topologisk dataanalyse. Definisjonen på en Persistensmodul er kort og enkel.

Definisjon 3.1.1. En persistensmodul M er en funktor $M: \mathbf{R} \to \mathbf{vect}_k$.

Vi skriver M_t for vektorromet M(t) (det t-ende vektorromet) for å unngå fremtidig forvirring. Siden en persistensmodul M er en funktor fra pomengden \mathbf{R} til \mathbf{vect}_k så har vi for hver $s \leq t$ en lineær avbilding $\varphi_M(s,t) : M_s \to M_t$ som vi kaller overgangsavbildinger.

Gitt to persistensmoduler M og N kan vi definere en morfi $f: M \to N$ som en samling av lineære avbildinger $\{f(s): M_s \to N_s \mid s \in \mathbb{R}\}$ slik at diagrammet

$$M_s \xrightarrow{f(s)} N_s$$

$$\downarrow^{\varphi_M(s,t)} \qquad \downarrow^{\varphi_N(s,t)}$$

$$M_t \xrightarrow{f(t)} N_t$$

kommuterer. Vi kan komponere morfiene på den følgende måten; gitt morfier $f: M \to N$ og $g: M \to P$ er $g \circ f$ definert som samlingen $\{g_s \circ f_s: M_s \to P_s \mid s \in \mathbb{R}\}.$

Siden vi har objekter, persistensmoduler, og vi har morfier mellom dem kan vi definere kategorien av persistens moduler

Definisjon 3.1.2. Kategorien $\mathbf{vect}_k^{\mathbf{R}}$ er kategorien av persistensmodulene med persistensmodul-morfier mellom dem.

Eksempel 3.1.1. Gitt en filtrering $F_{\bullet}X = \{F_tX\}_{t\in\mathbb{R}}$ av et topologisk rom X kan vi definere persistensmodulen $H_n(F_{\bullet}X) = \{H_n(F_tX;k)\}_{t\in\mathbb{R}}$ med overgangsavbildinger $\varphi_{H_n(F_{\bullet}X)}(s,t) = i_*(s,t)$

Et eksempel på en særlig enkel, men viktig persistensmodul er intervalpersistensmodulen definert som følgende.

La $I \subset \mathbb{R}$ være et intervall da definerer vi intervall-persistensmodulen C(I) som følger:

$$C(I)_t = \begin{cases} k, & t \in I \\ 0, & \text{ellers} \end{cases}$$

med overgangsavbildinger definert ved

$$\varphi_{C(I)}(s,t) = \begin{cases} id_k, & s,t \in I \\ 0, & \text{ellers} \end{cases}$$

Denne persistensmodulen er nyttig når vi skal definere barkoder snart.

3.1.1 Interleaving-distanse

Stabilitet av persistensmoduler innebærer relasjonen mellom to typer distanser, Bottleneck distansen mellom barkoder og Interleaving distansen mellom persistensmoduler. Her definerer vi interleaving distansen mellom to Persistensmoduler.

For å definere distansen må vi gjennom noen få steg.

Definisjon 3.1.3. En δ -forskyvning av en persistensmodul er en funktor

$$(\cdot)(\delta) : \mathbf{vect}_k^{\mathbf{R}} \to \mathbf{vect}_k^{\mathbf{R}}$$

Som tar en persistensmodul M til $M(\delta)$ hvor $M(\delta)_t = M_{t+\delta}$ og tar persistensmodulmorfier $f: M \to N$ til $f(\delta): M(\delta) \to N(\delta)$.

Denne funktorer gir oss konseptet av δ -interleavinger.

Definisjon 3.1.4. La M og N være persistensmoduler. Vi sier at M og N er δ -interleavet hvis det eksisterer persistensmodulmorfier $f: M \to N(\delta)$ og $g: N \to M(\delta)$ slik at

$$q(\delta) \circ f = \varphi_M(t, t + 2\delta), \quad f(\delta) \circ q = \varphi_N(t, t + 2\delta)$$

Vi kaller $\varphi_M^{\varepsilon}(t)=\varphi_M(t,t+\varepsilon)$. Bemerk at $\varphi_M^0=\mathrm{id}_M$ for di $\varphi_M^0(t)=\varphi_M(t,t+0)=\varphi_M(t,t)=\mathrm{id}_M$.

Definisjon 3.1.5. For M og N persistensmoduler definerer vi interleaving-distansen d_I ved

$$d_I(M,N) = \inf\{\delta \in [0,\infty) \mid M \text{ og } N \text{ er } \delta\text{-interleavet}\}$$

Denne avstanden gir et tall på hvor "isomorfe" to persistensmoduler er.

Proposisjon 3.1.1. For M og N persistensmoduler så holder

$$d_I(M,N) = 0 \iff M \cong N$$

Proof. " \Longrightarrow "

Hvis $d_I(M,N)=0$ så finnes det en 0-interleaving mellom M og N altså det eksisterer persistensmodulmorfier $f:M\to N(0)=N$ og $g:N\to M(0)=M$ slik at $g(0)\circ f=g\circ f=\varphi_M^0=\mathrm{id}_M$ og $f(0)\circ g=\varphi_N^0=\mathrm{id}_N$. Dermed er f og g inverser av hverandre og er dermed isomorfier.

" ← "

Hvis $M \cong N$ så eksisterer det persistensmodulmorfier $f: M \to N$ og $g: N \to M$ slik at $g \circ f = \mathrm{id}_M = \varphi_M^0$ og $f \circ g = \mathrm{id}_N = \varphi_N^0$. Så det eksisterer en 0-interleaving og dermed er $d_I(M, N) = 0$.

3.2 Multimengder

Mengder er begrenset i og med at de ikke inneholder repitisjoner, mengden $\{a, a, b\}$ er regnet som mengden $\{a, b\}$. For oss vil vi ha muligheten for at en mengde kan inneholde mange like elementer.

Dermed definerer vi en multimengde.

Definisjon 3.2.1. Vi definerer en multimengde som et par S = (S, m), hvor S er en mengde og en funksjon $m : S \to \mathbb{N}$.

Multimengder er derimot vanskelige å jobbe med, derfor jobber vi med deres representasjoner

$$\operatorname{Rep}(S) = \{(s, k) \in S \times \mathbb{N} \mid k \le m(s)\}.$$

3.3 Barkoder

En barkode \mathcal{B} er en representasjon av en multimengde av intervaller. Elementer i en barkode er dermed par (I, k) der I er et intervall og $k \in \mathbb{N}$. Ofte når indeksen k er nødvendig skriver vi bare I for et intervall i barkoden.

I Bauer and Lesnick [2015] sier forfatter at gitt en persistensmodul ${\cal M}$ som kan skrives

$$M \cong \bigoplus_{I \in \mathcal{B}_M} C(I)$$

Da er \mathcal{B}_M unikt bestemt. Vi kaller slike persistensmoduler intervalldekomponerbare.

Dette er en konsekvens av følgende teorem

Teorem 3.3.1. Hvis
$$\bigoplus_{I \in \mathcal{B}} C(I) \cong \bigoplus_{J \in \mathcal{C}} C(J)$$
 så er $\mathcal{B} \cong \mathcal{C}$

Proof. Anta at det ikke eksisterer en bijeksjon mellom \mathcal{B} og \mathcal{C} f.eks.

I følge Bauer and Lesnick [2015] har vi følgende teorem

Teorem 3.3.2. Enhver p.e.d. persistensmodul er intervalldekomponerbar.

Proof. La M være en p.e.d. peristensmodul. Mengden $I_n = \{s \in \mathbb{R} \mid \dim M_s = n\}$ er en disjunkt union av intervaller $I_{n_1} \sqcup I_{n_2} \sqcup \ldots$, vi kan la $C(I_{n_1} \sqcup I_{n_2} \sqcup \ldots) = C(I_{n_1}) \oplus C(I_{n_2}) \oplus \ldots$ og få

$$M \cong \bigoplus_{n,k \in \in \mathbb{N}} C(I_{n_k}).$$

Da blir $\mathcal{B}_M = \{I_{n_j} \mid n, j \in \mathbb{N}\}$, en kan la $I_{n_j} = \emptyset$ når den ikke påvirker unionen I_n .

Liknende for persistensmoduler har barkoder sin egen metrikk, men for å komme fram til denne metrikken må en gå gjennom noen definisjoner

3.4 Matching-kategorien

Definisjonen på en matching er gitt i Bauer and Lesnick [2015] seksjon 2.2

Definisjon 3.4.1. En matching mellom mengder S og T (skrevet $\sigma: S \to T$) er en bijeksjon $\sigma: S' \to T'$ mellom delmengder $S' \subset S$ og $T' \subset T$. Vi skriver T' som im σ og $S' = \operatorname{coim} \sigma$.

Fra Bauer and Lesnick [2015] har vi også følgende definisjon: "En kan tenke på en matching σ som en relasjon $\sigma \subset S \times T$ slik at $(s,t) \in \sigma$ hvis og bare hvis $s \in \operatorname{coim} \sigma$ og $\sigma(s) = t$." Bauer and Lesnick [2015] nevner også reversmatchingen rev σ , men skriver bare at den er definert på den åpenbare måten. Her er en rask og litt grundigere definisjon på rev siden den vil bli brukt senere.

Definisjon 3.4.2. For en matching $\sigma: S \to T$ er et element $(t, s) \in \text{rev } \sigma$ hvis og bare hvis $(s, t) \in \sigma$.

Vi kan også komponere matchinger som definert i Bauer and Lesnick [2015]. La $\sigma: S \to T$ og $\tau: T \to U$ være matchinger da kan vi definere komposisjonen

$$\tau \circ \sigma = \{(s, u) \mid \exists t \in T \text{ s.a. } (s, t) \in \sigma, (t, u) \in \tau\}$$

Dette gjør matchinger av mengder om til en kategori **Mch**, hvor objektene er mengder og morfiene er matchinger.

3.5 Dekorerte endepunkter

Matchingene vi vil undersøke er matchinger mellom barkoder som beveger endepunkter til intervaller på en kontollert måte. Dette gjøres i den \mathbf{R} -indiserte innstillingen ved å introdusere litt formalisme.

La $D = \{-, +\}$ være en totalt ordnet mengde med $- \le +$. La $\mathbb{E} = \mathbb{R} \times D \cup \{-\infty, \infty\}$ være mengden av dekorerte endepunkter. For en $t \in \mathbb{R}$ skriver vi t^+ og t^- istedet for å skrive (t, +) og (t, -) hhv. Den leksikografiske ordenen definert i **eksempel 2.1.3** induserer en total orden på \mathbb{E} . Vi kan definere en addisjonsoperator $+ : \mathbb{E} \times \mathbb{R} \to \mathbb{E}$ ved $s^{\pm} + t = (s + t)^{\pm}$ og en subtraksjonsoperator $- : \mathbb{E} \times \mathbb{R} \to \mathbb{E}$ ved e - t = e + (-t) for $(e, t) \in \mathbb{E} \times \mathbb{R}$. Definisjonen på \mathbb{E} gir en bijeksjon mellom mengden $\{(b, d) \in \mathbb{E} \times \mathbb{E} \mid b < d\}$ og mengden $\mathcal{I}_{\mathbb{R}}$ av intervaller i \mathbb{R} gitt ved tabellen

Vi vil alltid skrive intervallet spesifisert ved $b < d \text{ som } \langle b, d \rangle$

4 Persistent Homologi

En grunn til å bry seg om persistensmoduler er fordi de er en generalisering av homologien av en filtrering av et topologisk rom.

Definisjon 4.0.1. La X være et topologisk rom da er en filtrering på X en $f ext{ iny slip} g \in F_{\bullet}X = \{F_tX\}_{t \in \mathbb{R}}$ slik at hvis $s \leq t$ så er $F_sX \subset F_tX$ og $F_{\infty}X = X$.

Siden det er en naturlig inklusjon $i_{F_{\bullet}X}(s,t): F_sX \hookrightarrow F_tX$ når $s \leq t$ kan vi se på en filtrering som en funktor $\mathbf{R} \to \mathbf{Top_{inc}}$ hvor $\mathbf{Top_{inc}}$ er kategorien av topologiske rom hvor morfiene er inklusjoner. Vi kan også definere morfier mellom filtreringer:

La $F_{\bullet}X$ og $G_{\bullet}X$ være filtreringer av X da er en morfi $f:F_{\bullet}X\to G_{\bullet}X$ en følge $\{f(t):F_tX\to G_tX\}$ slik at diagrammet

$$F_s X \xrightarrow{f(s)} G_s X$$

$$\downarrow i_{F_{\bullet}X}(s,t) \qquad \downarrow i_{G_{\bullet}X}(s,t)$$

$$F_t X \xrightarrow{f(t)} G_t X$$

kommuterer. Da er filtreringer av et rom en kategori som vi kaller Filt(X).

Akkurat som topologiske rom kan vi ta homologien på filtreringer ved komposisjonen $\mathbf{R} \xrightarrow{F_{\bullet}X} \mathbf{Top_{inc}} \xrightarrow{H_i} \mathbf{vect}$. Eksplisitt blir dette følgende: Gitt et rom X la $F_{\bullet}X$ være en filtrering. Da er $H_i(F_{\bullet}X)$ en persistensmodul

Gitt et rom X la $F_{\bullet}X$ være en filtrering. Da er $H_i(F_{\bullet}X)$ en persistensmodul definer ved

$$H_i(F_{\bullet}X)_t = H_i(F_tX)$$

med overgangsavbildinger

$$\varphi_{H_i(F_{\bullet}X)}(s,t) = (i_{F_{\bullet}X}(s,t))_*$$

Dette er metoden man bruker i topologisk dataanalyse for å studere "formen" på en punktsky av data, noe vi kommer tilbake til i anvendelsene. Før vi kan diskutere slike anvendelser må vi først vite hvordan vi lager topologiske rom ved en punktskyer.

4.1 Topolgiske rom fra punktskyer

En punktsky $P \subset \mathbb{R}^d$ er en diskret mengde av punkter i \mathbb{R}^d . Dette kan være data om farger eller gråtoner på bilder, nerver i en hjerne osv.

Det er ikke mye topologisk informasjon vi kan få ut a skyen i seg selv gitt at den er en diskret mengde, men vi kan lage simplisialkomplekser av skyen. Dette kan gjøres på mange måter, men det er to hovedmetoder å gjøre dette på.

4.1.1 Cech-komplekser

En måte å lage simplisialkomplekser av en punktsky er ved å lage en k-simpleks mellom k+1 punkter hvis snittet av ε -ballene i punktene snitter hverandre.

Definisjon 4.1.1. La $P \subset \mathbb{R}^d$ være en punktsky vi definerer Cech-komplekset ved

$$C_{\varepsilon}(P) = \left\{ (x_i)_i \mid \bigcap_i \bar{\mathcal{B}}(x_i, \varepsilon) \neq \emptyset \right\}.$$

Problemet med dette komplekset er at en må telle hvor mange sirkler som snitter hverandre.

Eksempel 4.1.1. La $P = \{(-1,1), (1,1), (1,-1), (-1,-1)\}$ for forskjellige verdier av ε får vi forskjellige simplisialkomplekser gitt her, for å forkorte mengden av simplisialkompleksene skriver vi $v_0 = (-1,-1), v_1 = (1,-1), v_2 = (1,1), v_3 = (-1,1)$ i stedet for punktene

• $N \mathring{a} r \ 0 \le \varepsilon < \frac{1}{2} s \mathring{a} e r$

$$C_{\varepsilon}(P) = \{ [v_0], [v_1], [v_2], [v_3] \}.$$

• $N \mathring{a} r \frac{1}{2} \le \varepsilon < \sqrt{2} s \mathring{a} e r$

$$\mathcal{C}_{\varepsilon}(P) = \{[v_0], [v_1], [v_2], [v_3], [v_0, v_1], [v_0, v_3], [v_2, v_3], [v_1, v_2]\}.$$

• $N \mathring{a} r \varepsilon \ge \sqrt{2} s \mathring{a} e r$

$$\mathcal{C}_{\varepsilon}(P) = \{[v_0], [v_1], [v_2], [v_3], [v_0, v_1], [v_0, v_2], [v_0, v_3], [v_1, v_2], [v_1, v_3], [v_2, v_3], [v_0, v_1, v_2], [v_0, v_1, v_3], [v_0, v_2, v_3], [v_0, v_1, v_2], [v_0, v_2], [v$$

4.2 Rips-komplekser

En annen måte å få et simplisialkompleks av en punktsky er å lage et k-simpleks mellom k+1 punkt hvis de er ε nærme hverandre.

Definisjon 4.2.1. La $P \subset \mathbb{R}^d$ være en punktsky, da er Rips-komplekset definert ved

$$\mathcal{R}_{\varepsilon}(P) = \{(x_i)_i \mid |x_i - x_j| \le \varepsilon\}$$

Cech- og Rips-kompleksene er begge filtreringer av simplisialkomplekset der hver kombinasjon av punkter i punktskyen har en simpleks. Dermed er de også filtreringer av topologiske rom. Dette gir oss persistensmodulene

$$H_i(\mathcal{C}_{\bullet}(P)) = \{H_i(\mathcal{C}_{\varepsilon}(P))\}_{\varepsilon \in \mathbb{R}}$$

og

$$H_i(\mathcal{R}_{\bullet}(P)) = \{H_i(\mathcal{R}_{\varepsilon}(P))\}_{\varepsilon \in \mathbb{R}}.$$

Det er disse man bruker når man studerer de topologiske egenskapene til data.

5 Algebraisk Stabilitet

6 Anvendelser

Ved å kunne studere data på topologisk måte kan en få informasjon om data som tidligere hadde vært skygget av kompleksiteten og mengden datapunkt. Her er noen eksempler på områder TDA har blitt brukt til å undersøke forskjellige områder i vitenskap

6.1 Biologi

I biologi spesielt i nevrobiologi kan en bruke TDA til å studere hjernens nettverk.

References

Ulrich Bauer and Michael Lesnick. Induced Matchings and the Algebraic Stability of Persistence Barcodes. *Journal of Computational Geometry*, pages 162–191 Pages, March 2015. doi:10.20382/jocg.v6i2a9. [Referanser]