Nome: D.N.I.:

1.	2.	3.	4.	5.	6.	7.	8.	Cualificación.
A	A	A	A	A	A	A	_	R. ben
В	В	В	В	В	В	В	_	R. mal
С	С	С	С	С	С	С	_	R. branco
D	D	D	D	D	D	D	Nota:	Nota test
								Total:

Cada pregunta ben respostada da parte do test suma 1 punto, se a resposta é incorrecta resta 0.2 e se se deixa en branco nin suma nin resta. O valor do exercicio 8 é de 3 puntos, dous puntos por resolvelas integrais e un punto por comprobar que a integral indefinida obtida é correcta e que se verifican as hipóteses da regra de Barrow.

Recoméndase ler inicialmente xunto co enunciado da pregunta todas as opcións, xa que pode reducir os cálculos e axudar a obter máis eficientemente a resposta. Para a cualificación somentes se terá en conta a cuadrícula e a resolución do exercicio 8 facilitada.

1. Sabendo que g'(t) non é unha función constante, $\int_1^e g(t)dt = \sqrt{3}$, e é o número de Euler, e C é unha constante arbitraria, cal das seguintes identidades é correcta:

$$\boxed{\mathbf{A}} \int_{1}^{e} ln(r)g(r)dr = ln(r)\sqrt{3} + C$$

$$\boxed{\mathbf{B}} \int_{1}^{e} \frac{1}{\sqrt{2}} g(r) dr = g'(t)$$

$$\int_{1}^{e} \left(\frac{\ln(r)}{r} + g(r) \right) dr = \frac{1}{2} + \sqrt{3}$$

D ningunha das anteriores.

2. A intensidade dunha corrente alterna podemos expresala mediante a función

$$i(t) = i_o sen\left(\frac{2\pi t}{T}\right)$$

sendo i_o o valor máximo, T o período e t a variable tempo. A raíz cadrada do valor medio do cadrado da intensidade da corriente no intervalo [0,T] recibe o nome de intensidade eficaz ou efectiva i_{ef} .

Aplicando o teorema do valor medio á función $i^2(t)$ e calculando a raíz cadrada ao valor medio de dita función, xunto coa identidade trigonométrica $sen^2(\alpha) = \frac{1}{2}(1-cos(2\alpha))$, obtense que $i_{ef} = \frac{i_o}{\sqrt{2}}$

 \fbox{B} Aplicando o teorema do valor medio a $i^2(t)$ e calculando a raíz cadrada ao valor medio de dita función, obtense que esta acada o valor $i_{ef}=i_o$

C Aplicando a identidade trigonométrica $sen^2(\alpha) = \frac{1}{2}(1 - cos(2\alpha))$, para a integral que se precisa no cálculo de i_{ef} , obtense que esta acada o valor $i_{ef} = \frac{i_o}{T}$

D ningunha das anteriores.

3. O desenvolvemento seguinte para obter o valor da integral:

$$\int_{-1}^{1} \frac{1}{t^2} dt = \int_{-1}^{1} t^{-2} dt = \left[\frac{t^{-1}}{-1} \right]_{-1}^{1} = \left[\frac{-1}{t} \right]_{-1}^{1} = \frac{-1}{1} - \frac{-1}{-1} = -2$$

- A | é correcto ao aplicar a regra de Barrow por verificárense tódalas hipóteses para a función $f(t) = \frac{1}{t^2}$ no intervalo [-1, 1]
- B é correcto xa que a función $f(t) = \frac{1}{t^2}$ no intervalo [-1,1] é decrecente por tanto ten integral negativa
- trátase dunha integral impropia e o resultado é incorrecto
- D | ningunha das anteriores.
- 4. Unha compañía compra unha máquina en t=0 (anos). Estímase que xere uns ingresos de

$$I(t) = 180 - 0.25 t^2$$

miles de euros e que, ao mesmo tempo, á compañía suporalle un custo de

$$C(t) = t^2$$

miles de euros manter e reparar a máquina. Finalmente, sábese que o valor de "recompra" da máquina é de

$$S(t) = \frac{7105}{t+7}$$

miles de euros. Se T é o instante onde intersecan as gráficas das funcións ingresos e custos, esto é, I(T) = C(T), e t^* verifica

$$\int_{t^*}^T I(r) - C(r) \, dr = S(t^*),$$

decídese vender a máquina para optimizar os beneficios e reducir o tempo en explotación, tendo en conta o valor de recompra, cal das seguinter afirmacións é correcta:

- A gañancia total, despois de vender a máquina, ascende a $\int_0^{t^*} I(r) - C(r) \, dr + S(t^*)$
- D | ningunha das anteriores.
- 5. A derivada da función $F(x) = \int_{\cos(x)}^{\sin(x)} \frac{1}{1-t^2} dt$ é

$$\boxed{\mathbf{A}} F'(x) = \frac{1}{1 - x^2}$$

$$\boxed{\mathbf{C}} F'(x) = \frac{sen(x)}{1 - sen^2(x)} - \frac{cos(x)}{1 - cos^2(x)}$$

$$F'(x) = \frac{\cos(x)}{1 - \sin^2(x)} + \frac{\sin(x)}{1 - \cos^2(x)}$$

D | ningunha das anteriores.

6. A integral
$$I = \int_0^3 \frac{1}{s-1} ds$$
,

 $\boxed{\mathbf{A}}$ resólvese aplicando a regra de Barrow no intervalo [0,3] e vale I=ln(2)

 $\boxed{\mathbf{C}}$ é unha integral impropia e o seu valor é 0.

R é unha integral impropia e non corverxe.

D ningunha das anteriores.

7. Seleccionar a única opción que resolve con MATLAB correctamente a cuestión descrita:

A Calcular a área encerrada pola gráfica da función $f(x) = x^3 - 4x$ no intervalo [-2, 2].

 \gg syms x

 $\gg f = x^3 - 4 * x$

 $\gg I = int(f,x,-2,2)$

C A gráfica da Figura 1 obtense tecleando os seguintes comandos:

 \gg syms x

 $\gg I = rsums(sen(x)/x,0,3.14)$

e os valores que aparecen na gráfica significan que o número de elementos da partición é 1.851984 e o valor da integral definida da función $\frac{sen(x)}{x}$ no intervalo $[0,\pi]$ é 53 e pódese calcular tamén empregando interación por partes.

Best tratamos de calcular a integral

$$F(x) = \int_0^x \frac{1}{1 + s^2} ds,$$

os comandos correctos que temos que introducir son:

 \gg syms s x

 $\gg F = int(1/(1+s^2),0,x)$

E a resposta de MATLAB é

F=

atan(x)

D A secuencia de comandos:

 $\overline{\gg}$ C=[-5:1:5]

 \gg xp=linspace(-2,2,20)

 $\gg y = subs(int(f),xp)$

 \gg [C,Y]=meshgrid(C,y)

 $\gg \operatorname{plot}(x,C+Y,'*')$

Permite representar algunhas primitivas dunha certa función f(x) definida previamente en simbólico, no intervalo $x \in [-5,5]$, para 20 valores de constantes C entre -2 y 2

Figura 1: Gráfica rsums

8. Calcular a integral indefinida

$$\int sen(x)cos(x)e^{senx} dx$$

e comprobar que a solución proposta é a correcta. Comprobar se se verifican as hipóteses para poder aplicar a regra de Barrow para obter o valor da integral definida

$$I_d = \int_0^{\frac{\pi}{2}} sen(x)cos(x)e^{senx} dx,$$

de ser o caso dar o valor de I_d . (3 puntos)