Functional data analysis: interpolation, registration, and nearest neighbors in *scikit-fda*

Pablo Marcos Manchón

Análisis de datos funcionales: interpolación, registro y vecinos próximos en *scikit-fda*

Pablo Marcos Manchón

Análisis de datos funcionales (FDA)

- Estudio de datos de naturaleza continua
- Los datos forman un conjunto de funciones $\{f_i\}_{i=1}^n$
- Aplicaciones en medicina, bioinformática, ingeniería...

Datos univariantes

$$f_i:\mathbb{R} o\mathbb{R}$$

- Curvas
- Superficies
- Datos multivariantes

- Datos univariantes
- Curvas

$$f_i: \mathbb{R} o \mathbb{R}^m$$

- Superficies
- Datos multivariantes

- Datos univariantes
- Curvas
- Superficies

$$f_i:\mathbb{R}^2 o\mathbb{R}$$

Datos multivariantes

- Datos univariantes
- Curvas
- Superficies
- Datos multivariantes

$$f_i: \mathbb{R}^d o \mathbb{R}^m$$

Proyecto scikit-fda

- Soporte al análisis de datos funcionales en Python
- Proyecto de código abierto
- Ecosistema de paquetes de computación científica de SciPy

Objetivo

- Extender las funcionalidades del paquete
 - Interpolación
 - Registro
 - Estimadores de vecinos próximos

Representación	Exploración	Preprocesamiento	Inferencia	Machine learning
Paramétrica	Visualización Estadísticos Profundidad Datos atípicos Reducción de dimensionalidad Distancias	Suavizado Registro Derivación Transformaciones	Tests Intervalos de confianza	Clasificación Regresión Clustering

Representación	Exploración	Preprocesamiento	Inferencia	Machine learning
Paramétrica	Visualización Estadísticos Profundidad Datos atípicos Reducción de dimensionalidad Distancias	Suavizado Registro Derivación Transformaciones	Tests Intervalos de confianza	Clasificación Regresión Clustering

Interpolación

- Los datos son observados en valores discretos $f_i(t_i)$
- Evaluación en puntos distintos a los observados
- Métodos basado en splines

Interpolación

- Los datos son observados en valores discretos $f_i(t_i)$
- Evaluación en puntos distintos a los observados
- Métodos basado en splines

Interpolación lineal

- Uso de segmentos de línea para unir los puntos
- Función continua lineal a trozos
- Sencillo y eficiente

Interpolación de splines

- Uso de polinomios para unir los puntos
- Funciones definidas a trozos
- Permiten el uso de derivadas

Interpolación suavizada

- Variación de la interpolación de splines
- Suavidad en las funciones
- Eliminación de ruido en mediciones

Interpolación multivariante

Representación	Exploración	Preprocesamiento	Inferencia	Machine learning
Paramétrica	Visualización Estadísticos Profundidad Datos atípicos Reducción de dimensionalidad Distancias	Suavizado Registro Derivación Transformaciones	Tests Intervalos de confianza	Clasificación Regresión Clustering

Representación	Exploración	Preprocesamiento	Inferencia	Machine learning
Paramétrica	Visualización Estadísticos Profundidad Datos atípicos Reducción de dimensionalidad Distancias	Suavizado Registro Derivación Transformaciones	Tests Intervalos de confianza	Clasificación Regresión Clustering

Registro

- Muestras presentan formas similares, pero no alineadas
- La variabilidad procede de su dominio
- Es deseable cuantificar y reducir esta variación

Registro

- Muestras presentan formas similares, pero no alineadas
- La variabilidad procede de su dominio
- Es deseable cuantificar y reducir esta variación

Registro

- Muestras presentan formas similares, pero no alineadas
- La variabilidad procede de su dominio
- Es deseable cuantificar y reducir esta variación

Amplitud y fase

Traslaciones

- Denominado shift registration
- Uso de traslaciones

$$f_i^*(t) = f_i(t+\delta_i)$$

 Minimización de suma de errores cuadrados REGSSE

$$\int \sum_{i=1}^n (f_i^*(t) - \bar{f}^*(t))^2 dt$$

Traslaciones

- Denominado shift registration
- Uso de traslaciones

$$f_i^*(t) = f_i(t+\delta_i)$$

 Minimización de suma de errores cuadrados REGSSE

$$\int \sum_{i=1}^n (f_i^*(t) - \bar{f}^*(t))^2 dt$$

Transformaciones generales

- Difeomorfismos del dominio
- Representados por warpings

$$\circ \quad \gamma_i(t): \mathcal{T} o \mathcal{T}$$

- Continuas y crecientes
- Frontera invariante
- Composición de funciones

$$f_i^*(t) = f_i(\gamma_i(t)) = f_i \circ \gamma_i$$

Puntos de referencia

- Denominado landmark registration
- Puntos característicos
 (e. g. máximos o mínimos)
- Alineación a puntos de referencia

$$\gamma_i(t_j^*) = t_{ij}$$

Puntos de referencia

- Denominado landmark registration
- Puntos característicos
 (e. g. máximos o mínimos)
- Alineación a puntos de referencia

$$\gamma_i(t_j^*) = t_{ij}$$

Alineación por pares

- Búsqueda criterio empleando la estructura continua
- No supervisado
- Minimización de un funcional de energía para la alineación de dos muestras

$$\gamma_{21} = rgmin E \left[f_1, f_2 \circ \gamma
ight] \ _{\gamma \in \Gamma}$$

Registro de un conjunto de muestras

- ullet Creación de una plantilla $\mu(t)$
- Todas las muestras son alineadas a esta plantilla común

$$\gamma_i = rgmin E \left[\mu, f_i \circ \gamma
ight]$$

• Término de energía y plantilla adecuados

Registro elástico

- Empleo de geometría de Riemann
- Métrica de Fisher-Rao como energía
- Invariancia respecto a deformaciones simultáneas

$$d_{FR}(f_1,f_2)=d_{FR}(f_1\circ\gamma,f_2\circ\gamma)$$

Marco matemático denominado análisis elástico

Variedad de Riemann

- Métrica de Riemann
- Definida en el espacio tangente
- Longitud de camino geodésico

Variedad de Riemann

- Métrica de Riemann
- Definida en el espacio tangente
- Longitud de camino geodésico

Variedad de Riemann

- Métrica de Riemann
- Definida en el espacio tangente
- Longitud de camino geodésico

Transformada SRSF

• La transformada SRSF aplana la variedad

$$SRSF\{f\} = sign(\dot{f})\sqrt{|\dot{f}|}$$

• Convierte la métrica de Fisher-Rao en la métrica \mathbb{L}^2

$$\|q_1-q_2\|_{\mathbb{L}^2} = \int \left|q_1(t)-q_2(t)
ight|^2 dt$$

Permite computación eficiente

Transformada SRSF

Transformación de funciones

$$SRSF\{f\} = sign(\dot{f})\sqrt{|\dot{f}|}$$

Aplana la variedad

$$\|q_1-q_2\|_{\mathbb{L}^2} = \int \left|q_1(t)-q_2(t)
ight|^2 dt$$

Las geodésicas son rectas

$$L[\alpha] = \alpha q_1 + (1 - \alpha)q_2$$

Registro elástico

- ullet Uso de la media elástica como plantilla $\mu(t)$
- Métrica de Fisher-Rao como energía

Registro elástico

- ullet Uso de la media elástica como plantilla $\mu(t)$
- Métrica de Fisher-Rao como energía

Registro elástico

- Uso de la media elástica como plantilla $\mu(t)$
- Métrica de Fisher-Rao como energía

Representación	Exploración	Preprocesamiento	Inferencia	Machine learning
Paramétrica	Visualización Estadísticos Profundidad Datos atípicos Reducción de dimensionalidad Distancias	Suavizado Registro Derivación Transformaciones	Tests Intervalos de confianza	Clasificación Regresión Clustering

Representación	Exploración	Preprocesamiento	Inferencia	Machine learning
Paramétrica	Visualización Estadísticos Profundidad Datos atípicos Reducción de dimensionalidad Distancias	Suavizado Registro Derivación Transformaciones	Tests Intervalos de confianza	Clasificación Regresión Clustering

Vecinos próximos

- Generalización a espacios funcionales
- Emplean noción de localidad
- Usados en problemas de clasificación y regresión

Vecinos próximos

K-NN

 Uso de los K vecinos más próximos

Radius-NN

 Muestras a menor distancia que un radio

Vecinos próximos

- K-NN
 - Uso de los K vecinos más próximos
- Radius-NN
 - Muestras a menor distancia que un radio

Clasificación

- Cada muestra de entrenamiento tiene una etiqueta de clase
- Voto ponderado de los vecinos

Regresión

- Cada muestra de entrenamiento tiene asociada una respuesta
- Predicción de la respuesta
 - Respuesta escalar
 - Respuesta funcional

Regresión

- Cada muestra de entrenamiento tiene asociada una respuesta
- Predicción de la respuesta
 - Respuesta escalar
 - Respuesta funcional

Regresión

- Cada muestra de entrenamiento tiene asociada una respuesta
- Predicción de la respuesta
 - Respuesta escalar
 - Respuesta funcional

- Código público en Github
- Estándares de codificación
- Trabajo en equipo
- Documentación
- Pruebas
- Integración continua

- Código público en Github
- Estándares de codificación
- Trabajo en equipo
- Documentación
- Pruebas
- Integración continua

- Código público en Github
- Estándares de codificación
- Trabajo en equipo
- Documentación
- Pruebas
- Integración continua

Operations with image dimensions #101

- Código público en Github
- Estándares de codificación
- Trabajo en equipo
- Documentación
- Pruebas
- Integración continua

skfda.preprocessing.registration.shift_registration

skfda.preprocessing.registration.shift_registration(fd, *, maxiter=5, tol=0.01, restrict_domain=False, extrapolation=None, step_size=1, initial=None, eval_points=None, **kwargs) [source

Perform shift registration of the curves.

Realizes a registration of the curves, using shift alignment, as is defined in [RS05-7-2]. Calculates δ_i for each sample such that $x_i(t+\delta_i)$ minimizes the least squares criterion:

REGSSE =
$$\sum_{i=1}^{N} \int_{\mathcal{T}} [x_i(t+\delta_i) - \hat{\mu}(t)]^2 ds$$

Estimates the shift parameter δ_i iteratively by using a modified Newton-Raphson algorithm, updating the mean in each iteration, as is described in detail in [RS05-7-9-1].

Parameters:

- fd (FData) Functional data object to be registered.
- maxiter (int, optional) Maximun number of iterations. Defaults to 5.
- tol (float, optional) Tolerance allowable. The process will stop if
 max_i | δ_i^(v) δ_i^(v-1)| < tol. Default sets to 1e-2.
- restrict_domain (bool, optional) If True restricts the domain to avoid evaluate
 points outside the domain using extrapolation. Defaults uses extrapolation.

- Código público en Github
- Estándares de codificación
- Trabajo en equipo
- Documentación
- Pruebas
- Integración continua

- Código público en Github
- Estándares de codificación
- Trabajo en equipo
- Documentación
- Pruebas
- Integración continua

- Código público en Github
- Estándares de codificación
- Trabajo en equipo
- Documentación
- Pruebas
- Integración continua

- Código público en Github
- Estándares de codificación
- Trabajo en equipo
- Documentación
- Pruebas
- Integración continua

Representación	Exploración	Preprocesamiento	Inferencia	Machine learning
Paramétrica • Bases No paramétrica • Densa • Dispersa	Visualización Estadísticos Profundidad Datos atípicos Reducción de dimensionalidad Distancias	Suavizado Registro Derivación Transformaciones	Tests Intervalos de confianza	Clasificación Regresión Clustering

Representación	 Diseño unificado API Ampliación métodos de las representaciones Optimización representación en bases API para la evaluación, interpolación y extrapolación
Exploración	 Creación de módulo con métricas Métricas Lp multivariantes y elásticas
Preprocesamiento	 API para el registro de datos Transformacions para análisis elástico
Aprendizaje automático	Estimadores de vecinos próximos, regresión y clasificación
General	 Mejoras documentación paquete Ampliación bancos de pruebas existentes Configuración de herramientas Cl

iMuchas gracias!