Jigsaw Unintended Bias in Toxicity Classification Deep Learning Project

李思宇 2018214124

肖 尧 2018214183 常耀耀 2018214139

彭 程 2018214152 原之宇 2018214168

2019-06-03

Outline

- Background
 - Problem Background
 - Dataset
 - Evaluation Metrics

- 2 Method
 - Pre-processing
 - Feature Engineering
 - Model
- 3 Result

Toxicity Comment Detection

On-line conversation system

Unintended Bias for all identities

Classification Task in NLP

Dataset

- \sim 2 million comments
- Imbalanced, only 8% positive samples.
- Some auxiliary information is provided in training data.
- Many mis-spelled words and beyond.

Evaluation Metrics

Combination of overall AUC and 3 Bias AUCs.

- AUC_{overall} is defined in total test data.
- Bias AUCs are restricted to identity mention comments.

score =
$$0.25 \text{AUC}_{\text{overall}} + \sum_{a=1}^{3} 0.25 \left(\frac{1}{N} \sum_{s=1}^{N} m_{s,a}^{-5}\right)^{-\frac{1}{5}}$$

Outline

- 1 Background
 - Problem Background
 - Dataset
 - Evaluation Metrics

- 2 Method
 - Pre-processing
 - Feature Engineering
 - Model
- 3 Resul

Data Pre-processing

- Two 300-d embedding vocabularies: Glove, Fast-text.
- Pre-processing steps, including:
 - Isolate punctuations.
 - Remove unknown symbols.
 - Handle contractions in Tokenizer.

Feature Engineering

Noever [1] pointed out some features are useful in this task.

By statistical approaches, 16 features have been constructed, including

- Number of toxic word
- Comment toxic score, sum of toxic word weights
- Number of good word
- Comment good score, sum of good word weights
- Number of exclamation marks
- Number of capitals
- ...

Feature Engineering

capitals	0.0039	0.05	0.026	0.019	0.028	0.025	0.014	0.026	0.00072
caps_vs_length	-0.022	-0.0085	-0.006	-0.038	0.017	0.011	-0.0036	-0.0053	0.00082
num_exclamation_marks	-0.0094	0.017	0.053	-0.0079	0.056	0.035	0.019	0.055	0.021
num_question_marks	-0.0022	0.029	0.014	-0.0027	0.019	0.012	0.016	0.019	-0.00043
num_punctuation	0.0014	0.043	0.019	0.03	0.018	0.013	0.019	0.017	-0.0065
num_symbols	-0.0041	-0.01	-0.013	0.0073	0.019	0.00067	0.0026	-0.015	-0.011
num_words	0.016	0.051	0.012	0.059	0.015	0.0097	0.022	0.0096	-0.0099
num_unique_words	0.02	0.054	0.019	0.064	0.018	0.012	0.023	0.017	-0.0089
words_vs_unique	-0.021	-0.049	0.0011	-0.06	-0.003	-0.0053	-0.016	0.0012	0.0094
num_smilies	-0.011	-0.0083	-0.0094	-0.017	-0.001	-0.0039	-0.00041	-0.01	-0.0032
num_special_punc	-0.0016	-0.0012	-0.0023	-0.0026	-0.001	-0.0008	-0.00035	-0.0027	-0.00054
num_strange_font	0.02	0.058	0.012	0.064	0.0078	0.0072	0.028	0.01	-0.017
num_toxic_words	0.0079	0.15	0.57	0.015	0.37	0.23	0.16	0.54	0.051
toxic_words_score	0.018	0.31	0.59	0.026	0.36	0.26	0.18	0.59	0.09
num_good_words	-0.0058	-0.0083	-0.015	-0.0066	-0.0066	-0.0056	-0.0037	-0.016	-0.0056
good_words_score	-0.0093	-0.017	-0.033	-0.0068	-0.015	-0.013	-0.0081	-0.036	-0.012
	disagree	identity attack	insult	likes	obscene	severe toxicity	sexual explicit	target	threat

图 3: Correlations between some constructed features and original data information.

Model

Model

- LSTM model
 - Strengths: Flexible architectures. | Time saving.
 - Weaknesses: Hard to obtain the highest score.
- BERT
 - Strengths: Just need fine-tuning. | Powerful.
 - Weaknesses: Highly time-consuming. | Hard to change.

Model — LSTM

(a) Pre-train by identity information.

- (b) Final train with all features.
- 图 4: The LSTM architectures designed in our experiments.

Model

Model — BERT

- Just fine-tune it as suggested [2].
- More layers added after original model.

图 5: The pre-trained representation model BERT can be directly fine-tuned to state-of-the-arts in various NLP tasks.

Model — Tricks

Model

- Multitask Learning
- ☑ Auxiliary prediction results
- ☑ Identity regression
- Loss Function Design
- ☑ Consider identity weight
- National Imbalanced data
- No loss for "NA"
- Ensemble
- O Cascade / Stacked
- Architecture Optimization
- **V**

Data and Features

- ☑ Pre-processing
- Statistically constructed features

Speed up

- ✓ Sequence bucketing
- ☑ Use pickled embedding data
- ✓ Saving processed variables

Outline

- 1 Background
 - Problem Background
 - Dataset
 - Evaluation Metrics

- 2 Method
 - Pre-processing
 - Feature Engineering
 - Model
- Result

Model Best Score

表 1: The highest score achieved by different methods.

Model	LB Score	Rank ¹
LSTM	0.93706	350+ (15%)
BERT	0.9402	90+ (4%)
Ensemble	0.94265	20+ (1%)

¹ There are 2412 teams in total.

Detailed Results

表 2: Extensive performance comparison of different model architectures and methods.

Model	Core idea	Pre-processing	Traning Data	Batch Size	#Epoch	LB Score	Rank	Ensemble
Bidirectional LSTM			ALL	512	5	0.93524	800+	6 LSTM(v1)
Bidirectional LSTM						0.93706	350+	2 LSTM(v2)
Bidirectional GRU	$LSTM \to GRU$					\downarrow^1	1	3 LSTM + 3 GRU
BERT	One More Dense Layer	NO	65%	32	1	0.93686	520+	NO
	More Complex Classifier and Custom Loss	NO	65%	64	1	0.93791	280+	NO
	Change Loss Weight (3 versions)							
	Remove 2 FC Layers	NO	65%	64	1	ļ	ļ	NO
	Focal Loss (3 versions)							
	Add Aux/Statistics Features (4 versions)							
	Add Test Prediction In Training							
	All Kinds of Data Preprocessing (3 versions)	YES						
	All Data, 128 BS, 2 EN	NO	ALL	128	2	0.9402	90+	NO
Ensemble	6 LSTM(v1) + BERT(v1), Average					0.93964	100+	
	6 LSTM(v1) + BERT(v1), Weighted(3 versions)					↓	\downarrow	
	6 LSTM(v1) + BERT(v1), Weighted(0.4/0.6)					0.93978	100+	
	2 LSTM(v2) + BERT(v1), Weighted(0.4/0.6)					0.94065	70+	
	2 LSTM(v2) + BERT(v2), Weighted(0.4/0.6)					0.94265	20+	

¹ The symbol '1' means ranking decline.

Reference

- David Noever.
 Machine learning suites for online toxicity detection, 2018.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
 Bert: Pre-training of deep bidirectional transformers for language understanding, 2018.

Thank you!

Q&A