PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-219867

(43) Date of publication of application: 19.08.1997

(51)Int.CI.

HO4N 9/07 5/20 GO2B

HO4N 5/335

(21)Application number: 08-314223

(71)Applicant: TECHNO MEDIA:KK

(22)Date of filing:

11.11.1996

(72)Inventor: SUZUKI FUMINORI

WATANABE SATOSHI KITAGAWA HIROSHI

(30)Priority

Priority number: 07317397

Priority date: 10.11.1995

Priority country: JP

(54) STILL COLOR PICTURE IMAGE PICKUP DEVICE AND ITS METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To realize a moving image which obtains a picture of high quality equivalent to a three-CCD type at cost as low as a single-CCD type, prevents an inputting time from becoming redundant and is free from moire stripes.

SOLUTION: This device uses what obtained by fixing a color filter with different color component areas corresponding to the arraying interval of photoelectric conversion element to the front face of the image picking-up face of a solid-state image pickup device 33 with the image picking-up face constituted by arraying many photoelectric conversion elements in the state of a matrix. Then the solid-state image pickup device and incident light to the solid-state image pickup device 33 are mutually displaced by the unit of the arraying interval of photoelectric conversion element along the image picking-up face to change the irradiating position of the incident light to the solid-state image pickup device 33 to image-compose image data of the solid-state image

pickup device 33 picked up at the plural changed positions. In addition the dislocation is executed so as to invert moire phase to prevent moire stripes from being visualized in the moving image.

LEGAL STATUS

[Date of request for examination]

30.06.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-219867

(43)公開日 平成9年(1997)8月19日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ		技術表示箇所
H 0 4 N	9/07			H04N	9/07	Α
G02B	5/20	101		G 0 2 B	5/20	101
H 0 4 N	5/335			H 0 4 N	5/335	V

審査請求 未請求 請求項の数11 FD (全 11 頁)

(21)出願番号	特願平8-314223	(71)出顧人	
			株式会社テクノ・メディア
(22)出顧日	平成8年(1996)11月11日		神奈川県横浜市港北区新横浜2丁目4番15
		(72)発明者	鈴木 文典
(31)優先権主張番号	特顧平7-317397		埼玉県狭山市北入曽287-3
(32)優先日	平7(1995)11月10日	(72)発明者	波邊 悟史
(33)優先権主張国	日本 (JP)		神奈川県大和市代官1-1-14 朝日プラ
(,,,,,,,,,,	A		ザ桜ヶ丘三 202号
		(72)発明者	, -, -
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	神奈川県相模原市東林間5-13-8 ジュ
			ネパレス相模原第十四 301号
		(m () (h m) (
		(74)代理人	弁理士 小島 髙城郎

(54) 【発明の名称】 カラー静止画撮像装置及び方法

(57)【要約】

【課題】単板式程度のコストで三板式並の高画質を得ることを可能とし、且つ入力時間が冗長化することのないカラー静止画撮像装置及び方法を提供し、さらにモアレ 縞のない動画像を実現する。

【解決手段】光電変換素子がマトリックス状に多数配列されてなる撮像面を有する固体撮像デバイス33の撮像面の前面に、光電変換素子の配列間隔に対応して異なる色成分領域を有する色フィルタ11を固定したものを用い、固体撮像デバイスと固体撮像デバイスに対する入射光とを撮像面に沿って光電変換素子の配列間隔単位で相対変位させて固体撮像デバイスに対する入射光の照射位置を変更し、変更された複数の位置において撮像された固体撮像デバイスの画像データを画像合成する。また、モアレ位相が逆転するように移動させることにより、動画像においてモアレ縞が視認されないようにする。

10

20

【特許請求の範囲】

【請求項1】 光電変換素子がマトリックス状に多数配 列されてなる撮像面を有する固体撮像デバイスと、

前記固体撮像デバイスの前記撮像面の前面に固定される と共に前記光電変換素子の配列間隔に対応して異なる色 成分領域を有する色フィルタと、

前記固体撮像デバイスと該固体撮像デバイスに対する入 射光とを前記撮像面に沿って前記光電変換素子の配列間 隔単位で相対変位させ、該固体撮像デバイスに対する該 入射光の照射位置を変更する駆動手段と、

前記駆動手段によって照射位置が変更された複数の位置 において撮像された前記固体撮像デバイスの画像データ を記録する蓄積手段と、

前記蓄積手段に蓄積された前記画像データを読み出して 画像合成する処理手段と、

を有することを特徴とするカラー静止画撮像装置。

【請求項2】 前記駆動手段は、前記光電変換素子の大 きさに相当する大きさの前記入射光の照射領域が前記固 体撮像デバイスの前記色フィルタの隣接する全ての種類 の色成分領域上に移動するように、該固体撮像デバイス と該入射光とを複数回に亘って相対変位させることを特 徴とする請求項1のカラー静止画撮像装置。

【請求項3】 前記色フィルタの前記色成分領域が各前 記光電変換素子の大きさに相当する大きさでモザイク状 に配置されたことを特徴とする請求項1記載のカラー静 止画撮像装置。

【請求項4】 前記色フィルタの前記色成分領域が前記 光電変換素子の幅に相当する幅でストライプ状に配置さ れたことを特徴とする請求項1記載のカラー静止画撮像 装置。

【請求項5】 前記駆動手段は前記入射光に対して前記 固体撮像デバイスを移動させることを特徴とする請求項 1 記載のカラー静止画撮像装置。

【請求項6】 前記駆動手段は、前記固体撮像デバイス と前記入射光とを前記光電変換素子の配列間隔の1/2 相対変位させ、さらにそこから該光電変換素子の配列間 隔単位で相対変位させて該固体撮像デバイスに対する該 入射光の照射位置を変更することを特徴とする請求項1 記載のカラー静止画撮像装置。

【請求項7】 前記駆動手段は、前記固体撮像デバイス 40 を第1の方向及び前記第1の方向と直角をなす第2の方 向に移動自在に支持する支持装置を有し、

前記支持装置は、入射光の光軸に対して垂直面を構成す る支持板部と、前記支持板部の両側に直角に設けられた 起立部と、両側の前記起立部の端部に設けられた該支持 板部と平行な取付板部をそれぞれ有し、弾性を有する薄 板を折り曲げて一体に成形された第1及び第2の板部材 を有することを特徴とする請求項1記載のカラー静止画 撮像装置。

【請求項8】

において屈曲に対する剛性を低減されていることを特徴 とする請求項7記載のカラー静止画撮像装置。

【請求項9】 前記処理手段は、静止画の合成の他に、 動画像を出力するビデオ信号作成機能を有し、

前記ビデオ信号作成機能は、前記固体撮像デバイスと前 記入射光とを前記固体撮像デバイスの配列間隔単位で横 方向又は縦方向又は両方向に相対変位させて撮像された 2種類の画像を入力し、第1の画像を第1フィールドの タイミングで出力し、第2の画像を第2フィールドのタ イミングで出力することを特徴とする請求項1記載のカ ラー静止画撮像装置。

【請求項10】 前記第1の画像と第2の画像は双方に 現れるモアレ縞の位相が互いに反転の関係となっている ことを特徴とする請求項9記載のカラー静止画撮像装

【請求項11】 光電変換素子がマトリックス状に多数 配列されてなる撮像面を有する固体撮像デバイスの該撮 像面の前面に、該光電変換素子の配列間隔に対応して異 なる色成分領域を有する色フィルタを固定したものを用

前記固体撮像デバイスと該固体撮像デバイスに対する入 射光とを前記撮像面に沿って前記光電変換素子の配列間 隔単位で相対変位させて該固体撮像デバイスに対する該 入射光の照射位置を変更し、変更された複数の位置にお いて撮像された前記固体撮像デバイスの画像データを画 像合成する、

ことを特徴とするカラー静止画撮像方法。

【発明の詳細な説明】

[0001]

30 【発明の属する技術分野】本発明は固体撮像デバイスを 用いたカラー静止画撮像装置及び方法に関するものであ る。

[0002]

【発明が解決しようとする課題】従来、CCD(Cha rge Coupled Device、電荷結合デバ イス) 等の固体撮像デバイスを用いたカラー撮像装置シ ステムには以下のようなものがある。

【0003】1) 三板式カラーカメラ

入射光を光学系 (プリズム) を用いて色の三原色に分解 し、その三成分それぞれを三枚の固体撮像デバイスを用 いて受光する。この三板式カラーカメラによれば、一度 に色の三成分を取り出すことができ、処理系も成分毎に 独立するため理想的な撮像特性を得ることができる。そ の反面、三枚の固体撮像デバイスが必要であり、色分解 光学系が複雑であり、しかも三枚の固体撮像デバイスの 取付精度も要求されることからシステムは高価になると いう問題点がある。

【0004】2) 単板式カラーカメラ

固体撮像デバイスの各画素(光電変換素子)のそれぞれ 前記第1及び第2の板部材は折り曲げ部 50 に色フィルタを付け、一個の固体撮像デバイスから色情

20

3

報も得ようとする方式である。色フィルタは原色または 補色を各画素に対応してモザイク状やストライプ状に配 列したものが用いられる。この単板式カラーカメラで は、三板式に比べて特別な色分解光学系が不要であり、 且つ固体撮像デバイスは単一で済むためシステムは安価 となる利点がある。しかし、画素当たり取り出せる情報 は単色であり、不足する色情報は隣の画素の情報で補う ため、それが原因で偽色の発生や分解能の劣化を伴うと いう問題点がある。

【0005】3)色フィルタ転換単板式カラーカメラ 固体撮像デバイスを単板で用い、被写体から固体撮像デ バイスまでの光路内に配設された色フィルタを固体撮像 デバイスの電荷転送タイミングと同期させて順次転換 し、これにより色情報を取り出す。それらを蓄積、合成 してカラー静止画像を得る。この場合において画素ずら し法を行って解像度の向上を図った例がある(特開平6 -181546号)。この色フィルタ転換式では、単板 で三枚式と同等の画質が得られる利点があるものの、比 較的大きな色フィルタを回転等させて固体撮像デバイス に入射させる光の色を順次変更するようにしているため 撮像入力に時間を要し、しかも装置が大形化するという 問題点がある。

【0006】本発明は上述の実情に鑑みてなされたものであり、単板式程度のコストで三板式並の高画質を得ることを可能とし、且つ入力時間が冗長化することのないカラー静止画撮像装置及び方法を提供することを目的としている。

[0007]

【課題を解決するための手段】上述の目的を達成するための本発明にかかるカラー静止画撮像装置は、光電変換素子がマトリックス状に多数配列されてなる撮像面を有する固体撮像デバイスと、前記固体撮像デバイスの前記撮像面の前面に固定されると共に前記光電変換素子の配列間隔に対応して異なる色成分領域を有する色フィルタと、前記固体撮像デバイスと該固体撮像デバイスに対する入射光とを前記撮像面に沿って前記光電変換素子の配列間隔単位で相対変位させ、該固体撮像デバイスに対する該入射光の照射位置を変更する駆動手段と、前記駆動手段によって照射位置が変更された複数の位置において撮像された前記固体撮像デバイスの画像データを記録する蓄積手段と、前記蓄積手段に蓄積された前記画像データを読み出して画像合成する処理手段と、を有することを特徴とする。

【0008】好適には、前記駆動手段は、前記光電変換素子の大きさに相当する大きさの前記入射光の照射領域が前記固体撮像デバイスの前記色フィルタの隣接する全ての種類の色成分領域上に移動するように、該固体撮像デバイスと該入射光とを複数回に亘って相対変位させる。

【0009】また解像度をさらに向上させるため、前記 50 ようになっている。そして、この色フィルタ11及び固

駆動手段は、前記固体撮像デバイスと前記入射光とを前記光電変換素子の配列間隔の1/2相対変位させ、さらにそこから該光電変換素子の配列間隔単位で相対変位させて該固体撮像デバイスに対する該入射光の照射位置を変更する。

【0010】好適な構成として、前記駆動手段は、前記

固体撮像デバイスを第1の方向及び前記第1の方向と直 角をなす第2の方向に移動自在に支持する支持装置を有 し、前記支持装置は、入射光の光軸に対して垂直面を構 成する支持板部と、前記支持板部の両側に直角に設けら れた起立部と、両側の前記起立部の端部に設けられた該 支持板部と平行な取付板部をそれぞれ有し、弾性を有す る薄板を折り曲げて一体に成形された第1及び第2の板 部材を有する。前記第1及び第2の板部材は好適には折 り曲げ部において屈曲に対する剛性を低減されている。 【0011】また、上述の目的を達成するための本発明 にかかるカラー静止画撮像方法は、光電変換素子がマト リックス状に多数配列されてなる撮像面を有する固体撮 像デバイスの該撮像面の前面に、該光電変換素子の配列 間隔に対応して異なる色成分領域を有する色フィルタを 固定したものを用い、前記固体撮像デバイスと該固体撮 像デバイスに対する入射光とを前記撮像面に沿って前記 光電変換素子の配列間隔単位で相対変位させて該固体撮 像デバイスに対する該入射光の照射位置を変更し、変更 された複数の位置において撮像された前記固体撮像デバ イスの画像データを画像合成することを特徴とする。

[0012]

【発明の実施の形態】以下、本発明の実施の形態について図面を用いて詳細に説明する。

【0013】図4は本発明の原理の説明図である。図4は色フィルタ11の一部を表し、図中多数描かれた正方形のそれぞれは色フィルタ11の色成分領域12を示している。この各色成分領域12に三原色RGBのフィルタがモザイク状に配置される。フィルタの色配列はこの例では、いわゆるベイヤー配列と呼ばれるものであり、GRが交互に配列された行とBGが交互に配列された行とがGが市松状になるように交互に配列されている。因に、G信号を多くすることにより解像度が向上することが知られている。

【0014】固体撮像デバイス(図4では示されていない)はこの色フィルタ11の背面に位置している。固体撮像デバイスは例えばCCDであり、画素となる光電変換素子であるフォトダイオードがマトリックス状に多数(例えば、7μmの配列間隔で25万個)配列されてなる撮像面を有し、この撮像面の前面に色フィルタ11が固定されている。色フィルタ11のそれぞれの色成分領域12は固体撮像デバイスの各光電変換素子には各々対向するように設けら、各光電変換素子には各々対向する色成分領域のフィルタを透過した入射光が照射される

体撮像デバイスはカメラのレンズ系 (図示せず) の焦点 位置に位置決めして取り付けられる。

【0015】このような固体撮像デバイスでは、各光電変換素子に付属するフィルタの色がそれぞれ決まっているので、一つの光電変換素子から取り出せる色情報は一回の撮像当たり単一である。

【0016】カメラのレンズ系からの入射光は固体撮像デバイスの撮像面の全面に亘って照射されるが、ここで一例として入射光が照射している撮像面のある一点Wについて考える。図4(a)においてW点の固体撮像デバイス上の位置座標を(0,0)とする。図4(a)の状態から固体撮像デバイスを色フィルタ11と共に撮像面内のXY座標上で正確に一画素分(光電変換素子の配列間隔分)下方にずらすと、図4(b)に示すように、W点は固体撮像デバイス上の位置座標(0,1)に移動する。

【0017】つまり、固体撮像デバイスの位置座標

(0,0) の位置のフィルタ色はGであるが、位置座標 (0,1) の位置のフィルタ色はBであるので、位置座標 (0,0) 、 (0,1) の二つの位置でそれぞれ撮像 することで、W点について色の二成分 (G,B) の情報 を取り出すことができる。

【0018】また同様に、固体撮像デバイスを左方にずらして、W点を位置座標(1,0)に移動させればその位置のフィルタ色はRとなり、そこで撮像すればRの情報を得ることができる。結局、W点における必要な全ての色の三成分(R,G,B)は位置座標(0,0)、

(0, 1)、(1, 0)でそれぞれ撮像することで取り 出すことができる。

【0019】一方、この色フィルタ11では色の配列の 関係上、例えば図4(a)のV点では色の三成分を得る ためには、位置座標(0,0)、(0,1)、(1, 1)での撮像が必要である。

【0020】従って、この色フィルタ11の例では位置 座標(0, 0)、(0, 1)、(1, 0)、(1, 1) でそれぞれ撮像することにより、合計四回の撮像で全て の画素について全部の色成分を得ることができる。

【0021】尚、ここに示した固体撮像デバイスの色フィルタの配列は説明のための単なる一例であり、固体撮像デバイスの移動方向、距離、順番、回数等を色フィルタの色配列に対応して適宜選択することで全ての画素について全部の色成分を得ることができる。

【0022】このように、色フィルタを有する固体撮像デバイスを入射光に対して相対移動させ、複数の位置において撮像した画像データを合成することで、固体撮像デバイスの画素数が比較的少なくても解像度の良いカラー静止画像を得ることが可能である。

【0023】次に、本発明の撮像装置の一例について説明する。図1は本発明にかかる撮像カメラ要部の分解斜視図、図2は本発明にかかる撮像カメラの一部破断して

内部構造を示す斜視図である。

【0024】図2に示すように、この撮像カメラ21は 筺体22の前面部にレンズ系23を有し、レンズ系23 の焦点位置にCCD(図2では図示されていない)を支 持するベースプレート24が筺体22内に配設される。 ベースプレート24は筺体22にねじ25により固定さ れ、入射光の照射位置を変更する駆動手段としてのCC D駆動装置26を介してベースプレート24にCCDが 搭載される。

【0025】
(0025】
(0025】
(0025】
(0025】
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(0025)
(002

【0026】図1に示すように、ベースプレート24の中央部には方形の窓部32が開口され、そこをレンズ系23からの入射光が通過するように位置決め固定されると共に窓部32にCCD33が臨むように配設されて入射光を受光する。CCD33はXY支持装置34により支持される。XY支持装置34は第1及び第2の板部材であるX軸板部材35とY軸板部材36を有している。

【0027】X軸板部材35は、入射光の光軸に対して 垂直面を構成する支持板部37と、支持板部37の両側 に直角に設けられた起立部38と、両起立部38の端部 に設けられた支持板部37と平行な取付板部39を有 し、例えばステンレス鋼等の弾性を有する金属薄板を折 り曲げて一体に成形される。支持板部37の中央にはレ ンズ系23からの入射光が通過する方形の窓部40が開 口される。支持板部37と起立部38との境界の折り曲 げ部及び、起立部38と取付板部39との境界の折り曲 げ部にはそれぞれスリット41、42が形成されてい る。両側の取付板部39にはそれぞれ2個のねじ取付穴 43が開口され、X軸板部材35はそのねじ取付穴43 を用いてねじ44によりベースプレート24に固定され

【0028】尚。折り曲げ部において屈曲に対する剛性 を低減させる手段としては、上述のようにスリットを設 ける代わりに、折り曲げ部に複数の小孔を連ねて開口す るようにしてもよい。

【0029】ここで、取付板部39がベースプレート24に固定された状態で支持板部37はベースプレート24から所定距離離間し且つ平行となる。折り曲げ部にスリット41、42が形成されていることにより各折り曲げ部での屈曲に対する剛性が低減され、折り曲げ部で屈曲することで支持板部37はベースプレート24に対して略平行状態を維持したまま第1の方向であるX軸方向(図示例では横方向)に弾性変位することが可能である。

50 【0030】同様にXY支持装置34のY軸板部材36

は、支持板部45、起立部46、取付板部47、窓部4 8、スリット49、50を有し、X軸板部材35の一回 り小さい相似形をし、薄板を屈曲して成形される。 X 軸 板部材35とY軸板部材36を組み合わせた状態を表す 図3に示すように、Y軸板部材36はねじ取付穴51を 用いて内側に入り込む形でX軸板部材35の支持板部3 7に固定される。

【0031】取付板部47がX軸板部材35に固定され た状態でY軸板部材36の支持板部45はX軸板部材3 5の支持板部37から所定距離離間し且つ平行となる。 折り曲げ部で屈曲することでY軸板部材36の支持板部 45はX軸板部材35の支持板部37に対して略平行状 態を維持したままX軸と直角をなす第2の方向であるY 軸方向(図示例では縦方向)に弾性変位することが可能 である。従って、両支持板部37、45の動きが合成さ れることで、Y軸板部材36の支持板部45はベースプ レート24に対してXY平面内(入射光に対して直交す る面内)で移動することができる。

【0032】このようにXY支持装置34をX軸板部材 35とY軸板部材36とで構成することで、簡単な構成 20 にて正確に作動する支持装置を得ることが可能である。

【0033】Y軸板部材36の支持板部45の四隅には ねじ取付穴52が開口され、このねじ取付穴52を用い て支持板部45にXY移動プレート53がねじ54によ り固定される。XY移動プレート53の中央には窓部5 5が開口され、そこにCCD33が固定される。CCD 33はその回路基板56との間にCCD位置決め板57 を介在させて回路基板56に取り付けられると共に、回 路基板56とCCD位置決め板57に開口されたねじ取 付穴58を用いてねじ59によりXY移動プレート53 に固定される。

【0034】ここで、固体撮像デバイスとしてのCCD 33は上述のX軸及びY軸の方向にマトリックス状に光 電変換素子が多数配列されてなる撮像面を有し、撮像面 に図4に示すような色フィルタ11が固定されている。 XY移動プレート53にCCD33が固定された状態に おいて、撮像面のXY方向が前述のXY支持装置34の XY方向と一致し、且つCCD33の撮像面が入射光に 対して所定の位置になるようにCCD位置決め板57に よって調節される。

【0035】XY移動プレート53の側部及び下部にそ れぞれX軸係合腕60及びY軸係合腕61が形成され る。それに対応して、ベースプレート24にはX軸駆動 部62及びY軸駆動部63が設けられている。X軸駆動 部62は、ベースプレート24に固定された支持部材6 4と、ばね材よりなる変位増幅アングル65と、X軸方 向に変位するX軸圧電素子66とを有している。

【0036】変位増幅アングル65は、支持部材64に ねじ67により固定される支点部68と、中間腕部69

し、係合部70の先端に開口された孔71にXY移動プ レート53のX軸係合腕60が嵌入して位置決めされ

【0037】X軸圧電素子66は支持部材64と中間腕 部69の間に挟圧されて取付られる。変位増幅アングル 65の支点部68の先端には板ばね85が形成され、X 軸圧電素子66の取付時にこの板ばね85が中間腕部6 9をX軸圧電素子66に押し付けるように作用する。

【0038】X軸圧電素子66は図示しないドライバ回 路装置に接続され、所定のタイミングで電圧が印加され ることで変位する。X軸圧電素子66が変位すると、そ の動きは変位増幅アングル65により拡大されてX軸係 合腕60に伝達され、XY移動プレート53、すなわち CCD33をX軸方向に移動させる。印加電圧を変更す ることでCCD33の移動量を調節することができ、こ れらの制御は公知の手段を用いてすることが可能であ る。

【0039】Y軸駆動部63もX軸駆動部62と同様な 構成をしており、支持部材72、変位増幅アングル7 3、Y軸方向に変位するY軸圧電素子74とを有し、所 定のタイミングでY軸圧電素子74に電圧が印加される ことでXY移動プレート53、すなわちCCD33をY 軸方向に移動させる。

【0040】ここでは、圧電素子66、74の駆動によ りCCD33を光電変換素子の配列間隔毎に移動させる 必要があるが、その圧電素子66、74に対する印加電 圧(駆動電圧)とCCD33の移動距離とのキャリプレ ーションは、例えばテストパターンを撮像したときにテ レビモニタに現れるモアレ縞を利用して容易に行うこと ができる。

【0041】一例として、レゾリューションチャートに は、分解能測定のために白地に黒い縦縞パターンと横縞 パターンが描かれており、それぞれ縞の太さと間隔が次 第に狭まっていくようになっている。撮像装置で撮像し た画像をビデオモニタで見ながら、このチャートに焦点 を合わせて行くと、前述した単板式の欠点である偽色が 白と黒との境目部分に発生するため、縞パターンと重な る位置に赤と青が交互になった別の縞模様が現れる。こ の偽色の縞模様はテストパターンの縞よりも太く間隔も 大きいので見易く、CCDを移動させた時の移動量も同 様に大きいので確認し易い。

【0042】X方向の調整を行うには、縦縞パターン上 に現れた偽色の位置を観察しながら、駆動電圧を調整す る。偽色の位置は、正確にはモニタに対する位置ではな く、縦縞パターンに対する相対位置を見る。移動させた 前後で丁度赤と青が入れ代わるようになれば、移動量は 丁度1画素である。Y方向の調整は、横縞パターンを使 って同様に行うことができる。

【0043】尚、ここで用いることのできるテストチャ と、中間腕部69の先端に設けられた係合部70とを有 50 ートはレンリューションチャートに限られるものではな

30

40

く、適当に見易い偽色が出るパターンであればよい。

【0044】図5は上述の撮像装置に対応した装置全体のブロック図、図6はその制御フロー図である。図5に示すように、CCD33はイメージ入射光を光電変換してADコンバータ75に出力する。ADコンバータ75はCCD33からの信号を画像データとして最子化し、その画像データはシステムコントロール76の制御にて蓄積手段であるデジタルシグナルプロセス(DSP)78は蓄積装置77に蓄積された画像データを読み出して一枚の画に合成して出力する。一方、CCD駆動装置26はシステムコントロール76の命令で適宜CCD33を画素の配列間隔単位で移動させる。

【0045】CCD33の移動と撮像は例えば図6に示すように行われる。すなわち、最初にステップ79で、XY座標(0,0)で撮像した画像データをデータ蓄積装置77の第1のメモリに蓄積する。次にステップ80で、XY座標(0,1)で撮像した画像データをデータ蓄積装置77の第2のメモリに蓄積する。次にステップ81、でXY座標(1,0)で撮像した画像データをデータ蓄積装置77の第3のメモリに蓄積する。次にステップ82で、XY座標(1,1)で撮像した画像データをデータ蓄積装置77の第4のメモリに蓄積する。最後にステップ83で、DSP78が第1~第4のメモリから画像データを読み出して一枚の画に合成して出力する。

【0046】このように、複数の位置において撮像した画像データを合成することで、固体撮像デバイスの画素数が比較的少なくても解像度の良いカラー静止画像を得ることが可能となる。この例の場合は三原色それぞれの画像データが全画素について得られることになるので従来の色フィルタを有する固体撮像デバイスに比べて3倍の解像度が達成される。

【0047】ところで従来、固体撮像デバイスの解像度 を上げる手法として画素ずらし法がある。CCD等の固 体撮像デバイスの解像度は画素数で決まり、固体撮像デ バイス自体の解像度を上げるためには画素を高密度に配 列しなければならず素子自体の改良による高解像度化に は限界がある。そこで、限られた画素数の固体撮像デバ イスの解像度を上げる従来の技術として考えられたのが 画素ずらし法である。これは固体撮像デバイスの本来の 位置における撮像に加えて固体撮像デバイスと入射光と の相対位置を画素ピッチ(光電変換素子の配列間隔)の 例えば1/2ずらした位置においても撮像を行い、本来 は画素が存在しない空間からも情報を取り出し、その情 報を本来の画像に挿入することで解像度を向上させるも のである。ずらし母を画素ピッチの1/3、1/4、・ ・・間隔にしてサンプリング点を増やせば、素子の一画 素当たりの感光範囲との関係にもよるが、さらに細かい 空間情報を得ることも可能である。

【0048】この画素ずらし法を本発明に応用することでさらに高い解像度を有する画像を得ることが可能となる。図7は本発明に画素ずらし法を応用する一例の説明図である。

10

【0049】図7において、正方形で示したものは固体 撮像デバイスの各画素84を表している。いま、左上角 にある画素84の中心点をC、X方向に画素ピッチの1 /2移動させた点をC1、Y方向に画素ピッチの1/2 移動させた点をC2、X、Y両方向に画素ピッチの1/ 2移動させた点をC3とする。

【0050】画案ずらしを応用した本発明にかかる撮像においては、先ず左上角にある画素84の中心が点Cあるときにこれを中心として1画素ピッチずつ固体撮像デバイスを上述したように移動させ、4ヶ所それぞれの位置で撮像を行う。次に左上角にある画素84の中心が点C1に来るように固体撮像デバイスを半画素分移動させ、その位置を中心として同様に1画素ピッチずつ固体撮像デバイスを上述したように移動させ、4ヶ所それぞれの位置で撮像を行う。同様に、中心が点C2、点C3に来るようにそれぞれ移動させ、各々の位置を中心として1画素ピッチずつ固体撮像デバイスを上述したように移動させ、4ヶ所それぞれの位置で撮像を行う。最後に、このように撮像した合計16枚の画像データを合成して、一つのカラー静止画を得る。

【0051】尚、この例では一つの静止画像を得るのに 16回の撮像を行うことになるが、固体撮像デバイスを 微少量移動させるに要する圧電素子の作動時間は僅かで あり、極めて短時間で16回の撮像を行うことができ ス

10 【0052】このように画素ずらしを併用することで高解像度が達成でき、図7で説明した例では、1個の25万画素の固体撮像デバイスを用いて100万画素のデバイスを3板用いたのと同等の解像度を得ることが可能となる。

【0053】ところで、本発明の高精細静止画カメラは、高精細静止画を撮ることを目的としているが、通常のCCDカメラとして、ビデオ信号レベルでの使用も可能であることが求められることがある。このときには偽色(モアレ縞)は欠点とみなされ、問題となる。本発明は、この問題をも解決する手段を提供するので、以下に説明する。

【0054】通常、モザイクカラーCCDカメラは、ドット毎の色合いが正確に検出できないため、高い周波数成分が含まれる映像では、その近辺に偽色(モアレ縞)が生じる。これを防止するためには、画像をCCDの手前で、ある程度ぼかす、すなわち高周波数成分をカットする必要があり、一般に、オプティカル・ローパスフィルターが用いられる。しかし、完全にはモアレが消去できないので、さらにエッジ検出回路と色信号抑圧回路と を組み合わせて、モアレ消去回路が用いられる。

【0055】本発明の高精細静止画カメラは、高精細画を撮ることを目的としているため、画像の高周波成分が重要であり、オプティカル・ローパスフィルターを用いることは出来ない。従って、本発明の高精細静止画カメラを通常の解像度のモードで動作させると、前述の偽色の問題が発生してしまう。

【0056】一つの解決策として、通常の解像度のモードにおいては、1 露出時間(例えば1/60秒)以内に、少なくとも1周期の割合で、X-Y微動テーブルを振動させ、オプティカル・ローパスフィルターを用いることなく高周波数成分をカットし、偽色の問題を解決する方法もある。しかし、この場合、完全にモアレ縞を消そうとすると画像がぼけ過ぎ、オプティカル・ローパスフィルターと同じ程度の効果に押さえようとすれば、振動の制御が難しい上、従来と同じようにモアレ消去回路が必要となる。

【0057】本発明は、この問題をも解決する手段を提 供する。すなわち、通常の解像度のモードにおいては、 第1フィールドと第2フィールドでモアレの位相が逆転 するようにX-Y微動テーブルをフィールド毎に移動さ せ、モアレを視認できないようにすることによって偽色 の問題を解決するのである。その移動方向は、用いられ るカラーフィルターの色の並び方によるが、本願の実施 例に示したカラーフィルター(RGBG)の場合は、 X、Y共に1画素同時に動かし、結果的に斜めに移動す るのが適当である。つまり、前述のX方向及びY方向の 調製方法の説明からわかるように、X方向に1画素ずら すと細かい縦筋パターン上に現れるモアレ縞の赤と青が 入れ代わり、更にY方向に1画素ずらすと細かい横筋パ ターン上に現れるモアレ縞の赤と青が入れ代わる。これ をフィールド毎に繰り返すと、実際には赤と青が交互に 表示されているにも拘わらず、人間の目には全くモアレ が見えなくなるのである。このとき、CCDの読み出し タイミングもフィールド毎に1画素分ずらすことによ り、解像度の高い画像信号が得られる。

【0058】このように、本発明の髙精細静止画カメラは、髙精細静止画だけでなく、モアレの全く見えない、従来になく画質の良いビデオ信号を、オプティカル・ローパスフィルターやモアレ消去回路を用いることなく、得ることができるのである。

【0059】尚、上述の説明では固体撮像デバイス上の入射光の照射位置を移動させるために固体撮像デバイスを移動させているが、本発明では固体撮像デバイスと入射光とを相対変位することが必要であり、固体撮像デバイスを移動させる代わりに入射光を移動させるようにしてもよい。これは例えば、ガラス板等を用いて行うことができる。

【0060】すなわち、ガラス板等の屈折率が空気より 大きな透明材料をX軸及びY軸を中心としてそれぞれ独 立に僅かに回動できるように支持して光路上のCCDに 50

12 前方に配置し、その透明材料の傾き角度を変化させることで入射光を屈折させてそのの照射位置を変更すること

とで入射光を屈折させてそのの照射位置を変更することができる。この場合、小さな傾き角度で大きく入射光を 偏向させるには、透明材料の厚みを増やせばよい。

【0061】また、上述の例ではRGBがモザイク上に配列された色フィルタを用いているが、本発明に用いる色フィルタはこれに限られるものではない。RGBのフィルタをモザイク状に並べる並べ方は種々の組み合わせがあり、さらに補色Cy、M、Yeあるいは白色Wを加えたもの等種々の色フィルタアレイ(CFA)について本発明を適用できる。

【0062】さらに、RGBを順番にストライプ状に配列した色フィルタも好適に使用できる。上述のモザイク状配列の場合は入射光の照射位置をXYの両方向に移動させる必要があるが、ストライプ状配列を用いた場合には、ストライプを横切る一方向の移動だけで足り、駆動装置の構造を簡素化できる利点がある。

【0063】また、上述の説明では固体撮像デバイスの例としてCCDを挙げたが、本発明はこれに限られず、その他例えば、MOS形撮像デバイス、CPD(Charge Priming Device、呼び水転送デバイス)等についても同様に適用することができる。

【0064】また、駆動源として上述の例では圧電素子を用いているが、その他、磁歪素子も好適に使用でき、さらにプランジャソレノイドのような直線モータ、回転モータ、単なる電磁石も使用することができる。

【0065】上述の説明では撮像面が平面となっている例について示したが、光電変換素子で構成される撮像面は必ずしも平面でなくとも良く、場合によっては撮像面を例えば、球面状に構成すると共に、球面内で相対移動させるようにすることも可能である。

[0066]

【発明の効果】以上説明したように本発明によれば、光電変換素子がマトリックス状に多数配列されてなる撮像面を有する固体撮像デバイスの撮像面の前面に光電変換素子の配列間隔に対応して異なる色成分領域を有する色フィルタを固定したものを用い、固体撮像デバイスに対する入射光の照射領域を光電変換素子の配列間隔単位で変更し、変更された複数の位置において撮像された固体撮像デバイスの画像データを画像合成して一枚のカラー静止画像を得るようにしているので、固体撮像デバイスの個数、画素数を増やすことなく、単板式程度のコストで三板式並の高画質を得ることができ、且つ入力時間が冗長化することもない。更に、モアレ縞の全く見えない動画像をも作成することが出来る。

【図面の簡単な説明】

【図1】 本発明にかかる撮像カメラ要部の分解斜視図 【図2】 本発明にかかる撮像カメラの一部破断して内 部構造を示す斜視図

【図3】 本発明にかかるX軸板部材とY軸板部材を組

40

13

み合わせた状態を表すXY支持装置の斜視図

【図4】 本発明の原理の説明図

【図5】 本発明にかかる撮像装置に対応した装置全体 のブロック図

【図6】 図5の装置の制御フロー図

【図7】 本発明に画素ずらし法を応用する一例の説明

図

【符号の説明】

11 色フィルタ

12 色成分領域

21 撮像カメラ

22 筺体

23 レンズ系

24 ベースプレート

26 駆動装置

27 メイン回路基板

28 電源スイッチ

29 モード切換スイッチ

30 外部電源ジャック

31 信号入出力端子

33 CCD

34 XY支持装置

35 X軸板部材

36 Y軸板部材

37、45 支持板部

38、46 起立部

39、47 取付板部

41、42、49、50 スリット

53 XY移動プレート

56 回路基板

57 CCD位置決め板

10 60 X軸係合腕

61 Y軸係合腕

62 X軸駆動部

63 Y軸駆動部

64、72 支持部材

65、73 変位増幅アングル

66 X軸圧電素子

74 Y軸圧電素子

75 ADコンバータ

76 システムコントロール

20 77 データ蓄積装置

78 デジタルシグナルプロセス

【図1】

【図5】 合成面像 デジタルングナルプロセス 第3のメモリ 第4のメモリ 第2のメモリ 第1のメモリ システムコントロール വ 9 CCD駆動装置 က

イメージ入射光

【図6】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.