Dmap: Automating Domain Name Ecosystem Measurements and Applications

Maarten Wullink, **Giovane C. M. Moura**, and Cristian Hesselman SIDN Labs
Arnhem, the Netherlands
giovane.moura@sidn.nl

TMA 2018 June 27th, 2018 Vienna, Austria

The situation

Question: how to measure all these properties with current measurement tools?

The situation

► Answer: zmap + dig + masscan + ... + ad gustum

you can do it, but it ain't pretty...

The situation

The problem:

- 1. wasted time spent on repetitive tasks
 - execution, coordinating different tools, error handling, retries.
- 2. heterogeneous data formats per tool
 - good luck in parsing them
- 3. more complexity \rightarrow more errors
 - As we know, one little mistake may void entire experiments [1]
- 4. hard to reproduce studies

Can we do better than this?

- Complexity begs for automation
- We faced the same problem at .nl
 - a DNS zone with 5.8m domain names
 - imagine periodically crawling it ...
 - for multiple applications

We decided to build a new tool: Dmap

- Dmap: Domain name ecosystem mapper
- current tools do not fulfill our requirements
- neither current data repositories

We open it for researchers:

https://dmap.sidnlabs.nl

Our requirements

- 1. Domain-centric (scan list of domains, no IP addresses)
- 2. Automate the execution of measurements
- 3. Crawl multiple protocols (DNS, HTTP, TLS, SMTP, etc)
- 4. Support both IPv4 and IPv6
- 5. Completeness: fail-safe, retry mechanism
- 6. Derived features (not only raw datasets)
- SQL-based interface
- Modular
- Distributed
- Open source

- ▶ Dmap is not a stand-alone tool, like nmap, zmap...
- It is a RESTFul web service developed in Java, based on Spring Boot [2]
- Can be run as a single . jar file
- Can be distributed over multiple servers for scalability
- Uses PostgreSQL to store results and metadata (not raw measurements)

Figure: Dmap Architecture

A. Data preparation:

- Crawler service reads csv file with list of domains into PostgreSQL
 - can be used with million domains (5.8m on .nl)
- Crawler service moves 15,000 domains at a time

B. Crawlers modules:

- Crawler reads domains from Input Queue, start crawler threads
- We wrote each crawler based on libraries
- Each thread uses this domain in a pipeline
 - actual measurements of DNS, HTTP, TLS, SMTP ,Screenshot
- Users can activate/deactive crawlers per measurement
- Dmap keep state of each crawler for each domain
 - fail-safe mechanisms
 - in a PostgreSQL table so you can check it later

C. Classifiers:

Table: Six out of thirty Dmap classifiers and features

Classifier	Features
TLSCert	extract X.509 cert. info and type of cert
ServerClass	OS and Web server fingerprint
Parking	if a domain is parked and/or for sale
CMSClass	CMS, shopping cart and forum detection if a domain has a registrar placeholder page
Business	type of site (online shop)
LetsEncrypt	if domain uses Let's Encrypt Certs

Data Model

- 166 features
- in SQL format, also JSON
- ► See https://dmap.sidnlabs.nl
- Other tables used for metadata and control

```
domainname: "wikipedia.org",
                                 pageLangProb:100,
crawlRun:764.
                                 pageFingerprint: (ommit)
ipVersion: 4.
                                 httpRedirect:false,
url:null,
                                 httpRedirectCount:1,
crawlName: "www.wikipedia.org",
                                 httpRedirectChain: "www.w:
crawlUrl: "https://www.
                                 pedia.org, www.wikipedia.c
wikipedia.org/",
                                 httpRedirectHttps:true,
crawlDomain: "wikipedia.org",
                                 httpRedirectTld:false,
crawlDate: "2018-05-15
                                 tldStart: "org",
T09:28:48.642+0000",
                                 tldEnd: "org",
crawlStatus:0,
                                 htmlLinksAll:320,
crawlPages:2,
                                 htmlLinksInt:0,
crawlRetries:0,
                                 htmlLinksExt:320.
networkLoadTime:24.
                                 htmlLinksImg:0,
networkLoadTimeAll:[
                                 htmlVersion: "HTML 5",
```

Figure: Sample HTTP features for wikipedia.org

- ▶ Input: 5,766,118 domains from .nl DNS zone
- Date: September 3rd, 2017
- 8x 1.4GHz VM, 32 GB of RAM, 1Gbps shared line
- 6 crawlers (screenshot off), 300 crawler threads, 50 classifier threads

Precision:

- We compared DNS results with OpenIntel¹
- Different vantage points, different software
- Same input: .nl domains on Sep. 3rd, 2017
- Metric : number of AAAA records (IPv6 addresses)
 - ▶ Dmap: 913,593
 - OpenIntel: 913,511

HTTP Crawler: we know when and why it fails, if it fails

Figure: HTTP crawler result codes

Performance

- This is not a stateless wide scan tool
- It is way more expensive: DNS, HTTP, TLS, SMTP, over both IPv4 and IPv6
- In our setup, Dmap crawled 1 million domains a day
 - 8x 1.4GHz VM, 32 GB of RAM, 1Gbps shared line
 - 6 crawlers (screenshot off), 300 crawler threads, 50 classifier threads
- Run it on multiple machines, designed to scale

- We present three applications for Dmap
- ► They are not an exhaustive list
- We are using several others internal projects
- We hope others build new applications using Dmap

Profiling Alexa 1 million domains

Profiling Alexa 1 million

- Try it! dataset and SQL code available at https://dmap.sidnlabs.nl
- Each result here obtained with SQL
- Hypothesis tests within seconds

query to count # IPv4 HTTP domains

```
select count(1) from crawl_result_http where
crawl_run=67 and ip_version=4 and crawl_status=0;
```

1. Profiling Alexa 1 million

# Domains (OK)	IPv4	IPv6	
# Domains (OK)			IPv6/IPv4
	972,155	153,485	0.16
# Unique NSes	289,014	26,127	0.09
# Unique IP	210,650	19,754	0.09
# Unique ASes	18,418	3,178	0.17
# CDN Cloudflare	117,538	115,396	0.98
	HTTP		
	IPv4	IPv6	IPv6/IPv4
# Domains (OK)	968,338	153,485	0.16
# HTML 5	681,757	116,066	0.17
Bytes (median)	53,889	64,735	1.20
External links (median)	7	8	1.14
Internal links (median)	67	75	1.12
Cookies (median)	1	1	1.00
	TLS		
	IPv4	IPv6	IPv6/IPv4
# Domains (OK)	772,455	129,443	0.17
# Let's Encrypt	165,526	10,466	0.06
	SMTP		
	IPv4	IPv6	IPv6/IPv4
# Domains (OK)	843,126	190,736	0.23
# Unique SMTP	501,848	24,311	0.05
# Unique IP	286,504	10,113	0.04
# Unique StartTLS	302,871	8,016	0.03

Applications: Alexa profiling

IPv6 adoption is slightly faster on SMTP

	DNS			
	IPv4	IPv6	IPv6/IPv4	
# Domains (OK)	972,155	153,485	0.16	
# Unique NSes	289,014	26,127	0.09	
# Unique IP	210,650	19,754	0.09	
# Unique ASes	18,418	3,178	0.17	
# CDN Cloudflare	117,538	115,396	0.98	
	HTTP			
	IPv4	IPv6	IPv6/IPv4	
# Domains (OK)	968,338	153,485	0.16	
# HTML 5	681,757	116,066	0.17	
Bytes (median)	53,889	64,735	1.20	
External links (median)	7	8	1.14	
Internal links (median)	67	75	1.12	
Cookies (median)	1	1	1.00	
TLS				
	IPv4	IPv6	IPv6/IPv4	
# Domains (OK)	772,455	129,443	0.17	
# Let's Encrypt	165,526	10,466	0.06	
SMTP				
	IPv4	IPv6	IPv6/IPv4	
# Domains (OK)	843,126	190,736	0.23	
# Unique SMTP	501,848	24,311	0.05	
# Unique IP	286,504	10,113	0.04	
# Unique StartTLS	302,871	8,016	0.03	

Applications : Alexa profiling

77% support HTTPS, 1 in 5 are Let's Encrypt

	DNS		
	IPv4	IPv6	IPv6/IPv4
# Domains (OK)	972,155	153,485	0.16
# Unique NSes	289,014	26,127	0.09
# Unique IP	210,650	19,754	0.09
# Unique ASes	18,418	3,178	0.17
# CDN Cloudflare	117,538	115,396	0.98
	HTTP	•	
	IPv4	IPv6	IPv6/IPv4
# Domains (OK)	968,338	153,485	0.16
# HTML 5	681,757	116,066	0.17
Bytes (median)	53,889	64,735	1.20
External links (median)	7	8	1.14
Internal links (median)	67	75	1.12
Cookies (median)	1	1	1.00
	TLS	•	
	IPv4	IPv6	IPv6/IPv4
# Domains (OK)	772,455	129,443	0.17
# Let's Encrypt	165,526	10,466	0.06
	SMTP	•	•
	IPv4	IPv6	IPv6/IPv4
# Domains (OK)	843,126	190,736	0.23
# Unique SMTP	501,848	24,311	0.05
# Unique IP	286,504	10,113	0.04
# Unique StartTLS	302,871	8,016	0.03

Measure Web Encryption Adoption on .nl

2. Measure Web Encryption Adoption (on .nl)

Dmap supports longitudinal studies

Table: TLS/SSL Web deployment on .nl zone over IPv4

20170903		20180201	
Zone size	5,766,118	5,801,191	
TLS/SSL	2,595,281 (45.10%)	2,674,877 (46.10%)	
	Types of Certificates		
Unknown	382 (0.01%)	407 (0.01%)	
self-signed	883,844 (34.05%)	749,033 (28.01%)	
DV	1,406,072 (54.17%)	1,618,575 (60.5%)	
OV	269,284 (10.37%)	272,318 (10.18%)	
EV	35,699 (1.37%)	34,544 (1.29%)	
Let's Encrypt DV deployed certificates share			
Let's Encrypt (%DV)	366,623 (14.12%)	523,029 (32.31%)	

Applications: web encryption evolution on .nl

Small growth on Web encryption over 5 month period

Table: TLS/SSL Web deployment on .nl zone over IPv4

	20170903	20180201	
Zone size	5,766,118	5,801,191	
TLS/SSL	2,595,281 (45.10%)	2,674,877 (46.10%)	
	Types of Certificates		
Unknown	382 (0.01%)	407 (0.01%)	
self-signed	883,844 (34.05%)	749,033 (28.01%)	
DV	1,406,072 (54.17%)	1,618,575 (60.5%)	
OV	269,284 (10.37%)	272,318 (10.18%)	
EV	35,699 (1.37%)	34,544 (1.29%)	
Let's Encrypt DV deployed certificates share			
Let's Encrypt (%DV)	366.623 (14.12%)	523.029 (32.31%)	

Applications: web encryption evolution on .nl

Decline of self-signed, growth of DV certs

Table: TLS/SSL Web deployment on .nl zone over IPv4

	20170903	20180201	
Zone size	5,766,118	5,801,191	
TLS/SSL	2,595,281 (45.10%)	2,674,877 (46.10%)	
	Types of Certificates		
Unknown	382 (0.01%)	407 (0.01%)	
self-signed	883,844 (34.05%)	749,033 (28.01%)	
DV	1,406,072 (54.17%)	1,618,575 (60.5%)	
OV	269,284 (10.37%)	272,318 (10.18%)	
EV	35,699 (1.37%)	34,544 (1.29%)	
Let's Encrypt DV deployed certificates share			
Let's Encrypt (%DV)	366,623 (14.12%)	523,029 (32.31%)	

Applications: web encryption evolution on .nl

1/3 of .nl DV certs of domains are by Let's Encrypt

Table: TLS/SSL Web deployment on .nl zone over IPv4

	20170903	20180201	
Zone size	5,766,118	5,801,191	
TLS/SSL	2,595,281 (45.10%)	2,674,877 (46.10%)	
	Types of Certificates		
Unknown	382 (0.01%)	407 (0.01%)	
self-signed	883,844 (34.05%)	749,033 (28.01%)	
DV	1,406,072 (54.17%)	1,618,575 (60.5%)	
OV	269,284 (10.37%)	272,318 (10.18%)	
EV	35,699 (1.37%)	34,544 (1.29%)	
Let's Encrypt DV deployed certificates share			
Let's Encrypt (%DV)	366,623 (14.12%)	523,029 (32.31%)	

CMS/Web server usage on .nl

3. CMS/Web server profiling and usage

- We wrote classifiers that identify those
- Apache/Wordpress dominates it

Table: CMS and Web Server Usage .nl zone (20170903)

CMS	Total (%)	Web Server	Total (%)
Wordpress	848,083 (73.84%)	Apache	3,397,930 (77.05%)
Joomla	99,865 (8.69%)	nginx	696,697 (15.79%)
Drupal	40,798 (3.55%)	MS ISS	249,367 (5.65%)
Blogo	20,749 (1.80%)	cloud-nginx	60,530 (1.13%)
Wix	17,861 (1.53%)	Coyote	4,237 (0.01%)
Others	121,232 (10.43%)	Others	905 (0.00%)
Total	1,148,408	Total	4,409,666

Summary

- Complexity is bad for measurements
- Dmap automates and reduces complexity of multi-application measurements
- It has now 40 classifers (30 when we wrote the paper), that add rich set of features
- Besides, provides an SQL data model (easy to analyze)
- It's open, scalable, and distributed
- Potential to speed up your research/PhD/project
- We use it in .nl, and we keep on developing it

Future work – you can help us

Nicolaes Visscher, 1658, cartographer from Amsterdam

Future work - you can help us

Nicolaes Visscher, 1658, cartographer from Amsterdam

Antarctica was only discovered in 1820! Let's map other protocols

Questions?

Download it!

- ▶ https://dmap.sidnlabs.nl
 - From July 6th 2018.
- contact: giovane.moura@sidn.nl

Bibliography I

- [1] V. Paxson, "Strategies for Sound Internet Measurement," in Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, ser. IMC '04. New York, NY, USA: ACM, 2004, pp. 263–271. [Online]. Available: http://doi.acm.org/10.1145/1028788.1028824
- [2] Spring, "Spring Boot," Feb. 2018, https://projects.spring.io/spring-boot/.