МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №4.7.2

Эффект Поккельса

Пилюгин Л. С. Б02-212 20 марта 2024 г.

1 Аннотация

Цель работы: Исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

Оборудование: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

2 Теоритические сведения

2.1 Распространение плоских монохроматических волн в одноосных кристаллах

В некоторых кристаллах потенциальные ямы, в которых находятся электроны вблизи узлов решетки, не являются сферически симметричными. Для малых отклонений от положения равновесия потенциальная энергия электрона будет иметь вид

$$U = a_x x^2 + a_y y^2 + q_z z^2$$

Если $a_y=a_z=a_\perp,\,a_x=a_\parallel,\,$ то кристалл называется одноосным с оптической осью x.

Так как одноосный кристалл неизотропен, векторы \vec{E} и \vec{D} в общем случае неколлинеарны:

$$\vec{D} = \varepsilon_{\perp} \vec{E}_{\perp} + \varepsilon_{\parallel} \vec{E}_{\parallel}$$

Распространение электромагнитных волн в отсутствие электрических зарядов и токов описывается уравнениями

$$\operatorname{rot} \vec{H} = \frac{1}{c} \frac{\partial \vec{D}}{\partial t}$$

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{H}}{\partial t}$$

Плоские монохроматические волны в таких условиях описываются уравнениями

$$\vec{E} = \vec{E_0} \exp\left(i\left(\omega t - \vec{k}\vec{r}\right)\right)$$

$$\vec{H} = \vec{H_0} \exp\left(i\left(\omega t - \vec{k}\vec{r}\right)\right)$$

$$\vec{D} = \vec{D_0} \exp\left(i\left(\omega t - \vec{k}\vec{r}\right)\right)$$

Отсюда следует, что rot $\vec{H}=-i\vec{k}\times\vec{H},\,\frac{\partial\vec{D}}{\partial t}=i\omega\vec{D}$ и аналогичные выражения для других векторов.

Подставив эти значения в уравнения Максвелла, получаем

$$\vec{D} = -\frac{c}{\omega}\vec{k} \times \vec{H}$$

$$\vec{H} = \frac{c}{\omega}\vec{k} \times \vec{E}$$

Отсюда видно, что $\vec{D},\,\vec{H}$ и \vec{k} взаимно перпендикулярны, а \vec{E} лежит в одной плоскости с \vec{D} и $\vec{k}.$

При этом выполнение материалистического уравнения возможно только если \vec{D} перпендикулярен плоскости, в которой лежат оптическая ось кристалла и \vec{k} (обыкновенная волна, рисунок слева), либо лежит в ней (необыкновенная волна, рисунок справа).

Обыкновенная и необыкновенная волны распространяются в кристалле с разной скоростью. Обыкновенная волна поперечна относительно \vec{E} и \vec{H} , поэтому для нее уравнения Максвелла те же, что и в изотропных средах, а скорость распространения

$$v_{\rm o} = \frac{c}{\sqrt{\varepsilon_{\perp}}} = \frac{c}{n_{\rm o}}$$

 $n_{\mathrm{o}} = \sqrt{arepsilon_{\perp}}$ — коэффициент преломления обыкновенной волны.

Найдем фазовую скорость необыкновенной волны.

Получаем:

$$v=rac{\omega}{k}=rac{cH}{D}=rac{cE\coslpha}{H},$$
См. рисунок и формулы связи $\vec{D},\,\vec{E},\,\vec{H}$ и \vec{k}

Исключая H и выражая угол α через скалярное произведение, получим

$$v = c\sqrt{\frac{E\cos\alpha}{D}} = c\sqrt{\frac{\vec{E}\vec{D}}{D^2}}$$

$$\vec{E}\vec{D} = \varepsilon_{\parallel}E_{\parallel}^2 + \varepsilon_{\perp}E_{\perp}^2 = \frac{D_{\parallel}^2}{\varepsilon_{\parallel}} + \frac{D_{\perp}^2}{\varepsilon_{\perp}} = D^2\left(\frac{\sin^2\theta}{\varepsilon_{\parallel}} + \frac{\cos^2\theta}{\varepsilon_{\perp}}\right)$$

$$v_{\rm e} = \frac{c}{n(\theta)}$$

$$n(\theta) = \frac{1}{\sqrt{\frac{\sin^2 \theta}{\varepsilon_{\parallel}} + \frac{\cos^2 \theta}{\varepsilon_{\perp}}}}$$

Фазовая скорость необыкновенной волны зависит от угла между оптической осью и волновым вектором. Кроме того, вектор Поинтинга не коллинеарен волновому вектору, поэтому направление переноса энергии и переноса фазы не совпадают.

Плоская монохроматическая волна, попадающая из изотропной среды в одноосный кристалл, распадается на две взаимно ортогональные плоские волны, которые распространяются в разных направлениях и с разными скоростями.

Важным частным случаем является распространение волн в одноосном кристалле перпендикулярно оптической оси. При этом у обыкновенной оси вектор \vec{E} колеблется в плоскости, перпендикулярной этой оси. Для обыкновенной волны показатель преломления $n_o = \sqrt{\varepsilon_\perp}$, а для необыкновенной $n_e = \sqrt{\varepsilon_\parallel}$ (т.к. $\theta = 90^\circ$).

Для нормально падающей волны компоненты обыкновенной и необыкновенной волн будут распространяться независимо и к моменту выхода наберут разность фаз

$$\Delta \varphi = kh \left(n_e - n_o \right)$$

2.2 Интерференция на одноосном кристалле

Если перед одноосным кристаллом, помещенным между скрещенными поляроидами, поместить матовую пластинку, после которой лучи будут рассеиваться под разными углами, то на выходе образуется интерференционная картина в виде концентрических окружностей, перерезанных крестом. Эту картину образовали обыкновенные и необыкновенные лучи.

Коэффициент преломления для обыкновенного луча не зависит от угла падения на пластинку и равен $n_1=n_o$. Для необыкновенного луча в приближении малых углов $n_2=n_o-(n_o-n_e)\,\theta^2$. Таким образом разность фаз составляет

$$\Delta \varphi = \frac{2\pi}{\lambda} l \left(n_o - n_e \right) \theta^2$$

Направлениями постояной разности фаз служат конусы. Из-за этого картина предствляет собой концентрические окружности. Крест выделяет те области, в которых распространяется только одна волна (обыкновенная или необыкновенная). При повороте выходного поляроида на 90° картина меняется на противоположную.

Найдем радиус темного кольца m в случае скрещенных поляроидов. При m=0 сдвиг фаз равен нулю и луч не проходит анализатор. При сдвиге фаз $2\pi m$ ситуация аналогична. Поэтому

$$2\pi m = \frac{2\pi}{\lambda} l \left(n_o - n_e \right) \theta^2$$

 $\theta_{\text{внешн}} = n_o \theta$, поэтому

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{(n_o - n_e)} m$$

2.3 Влияние электрического поля

Изотропное вещество можно превратить в неизотропное, поместив его в сильное электрическое поле. В этом случае электроны смещаются к новому положению равновесия и в потенциальной энергии появляются составляющие высоких порядков:

$$U = ax^2 + \beta x^3 + \gamma x^4$$

Если $\beta \neq 0$, то вторая производная энергии окажется линейной функцией и получится эффект Поккельса: появится наведенное двулучепреломление, разность показателей преломления которого пропорциональна приложенному напряжению.

Поместим одноосный кристалл с осью z в электрическое поле $E_{\text{эл}}$, направленное вдоль x. В данной работе свойства кристалла таковы, что в плоскости xy появятся дополнительные перпендикулярные направления под углами 45° к осям x и y с показателями преломления $n_o + \Delta n$ и $n_o + \Delta n$. Причем $\Delta n = AE_{\text{эл}}$.

Пусть свет на входе в кристалл поляризован вертикально, а анализатор пропускает горизонтальную поляризацию. Разложим исходный вектор $E=E_0exp(i\,(\omega t-kz))$ по осям ξ и η . $E_\xi=E_\eta=E_0/\sqrt{2}$. После прохождения кристалла между векторами E_ξ и E_η появится разность фаз

$$\Delta \varphi = \frac{4\pi l}{\lambda} A E_{\text{эл}} = \frac{4\pi}{\lambda} \frac{l}{d} A U$$

U — напряжение на кристалле, d — его поперечный размер.

Результирующее поле после анализатора — сумма проекций E_ξ и E_η на x:

$$E_{\text{вых}} = \frac{E_0}{2} \exp\left(i\left(\omega t - kl\right)\right) \left(e^{i\Delta\varphi/2} - e^{-i\Delta\varphi/2}\right) = E_0 \exp\left(i\left(\omega t - kr\right)\right) \sin\left(\frac{\Delta\varphi}{2}\right)$$

В случае параллельных поляризаторов

$$E_{\text{вых}} = E_0 \exp\left(i\left(\omega t - kr\right)\right) \cos\left(\frac{\Delta\varphi}{2}\right)$$

Интенсивность света пропорциональна квадрату E. В случае скрещенных поляроидов:

$$I_{\text{вых}} = I_0 \sin^2\left(\frac{\Delta\varphi}{2}\right) = I_0 \sin^2\left(\frac{\pi}{2}\frac{U}{U_{\lambda/2}}\right)$$

В случае параллельных

$$I_{\text{вых}} = I_0 \cos^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right)$$
$$U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{I}$$

— полуволновое напряжение. При $U=U_{\lambda/2}$ сдвиг фаз между двумя волнами равен π .

3 Оборудование

Схемы установок для наблюдения интерференции и изучения двойного лучепреломления в электрическом поле приведены на рисунках.

Свет гелий-неонового лазера, поляризованный в вертикальной плоскости, проходя сквозь матовую пластинку, рассеивается и падает на двоякопреломляющий кристалл под различными углами. Кристалл ниобата лития с размерами $3\times3\times26$ мм вырезан вдоль оптической оси z. На экране, расположенном за скрещенным поляроидом, видна интерференционная картина.

Для $\lambda = 0.63$ мкм в ниобате лития $n_o = 2.29$.

Убрав рассеивающую пластинку и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла.

Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию луча с помощью осциллографа.

4 Измерения

$$L = 74 \pm 0.5$$
 см, $\lambda = 0.63$ мкм, $l = 26$ мм, $n_o = 2.29$.

m	r, cm
1,0	$2,8 \pm 0,2$
2,0	$3,9 \pm 0,2$
3,0	4.8 ± 0.2
4,0	$5,5 \pm 0,2$
5,0	6.1 ± 0.2

Наклон графика $k=7.8\pm0.8~\mathrm{cm^2}$

$$n_o - n_e = \frac{(n_o L)^2 \lambda}{lk} = 0.10 \pm 0.01$$

Методом изменения интенсивности пятна на экране найдем $U_{\lambda/2}=480\pm15$ B, $U_{\lambda}=930\pm15$ B, $U_{3\lambda/2}=1410\pm15$ B,

Методом фигур Лиссажу $U_{\lambda/2} = 450 \pm 30 \; \mathrm{B}$

На рисунке приведены фигуры Лиссажу для случая, когда поляризации скрещены. При переходе к параллельным поляризациям они отразятся относительно горизонтальной оси.

5 Вывод

В работе исследовалось двулучепреломление в кристалле ниобата лития и влияние на него электрического поля (эффект Поккельса). Были получены разность коэффициентов преломления для обыкновенной и необыкновенной волн и волновые напряжения.