ELECTROMAGNETISMO

Mestrados Integrados em Engenharia Civil, de Polímeros, de Materiais, de Telecomunicações e Informática, Textil

Teste 1 **-B-8 de Novembro de 2014** (Duração: 2h00 + 30min)

No	ome: Nº: Curso.:
1) 2)	Preencha os cabeçalhos (com o seu nome, número e curso) antes de iniciar o teste. As Questões Q1 a Q6 só estarão completamente respondidas se todas as alíneas verdadeiras e falsas forem indicadas e a questão justificada. Existe sempre pelo menos uma alínea que é verdadeira. Pode haver várias alíneas corretas. Nestas questões, a sua justificação deve ser o mais sucinta e esquemática possível.
K	$= \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 N \cdot m^2 \cdot C^{-2} $ $\varepsilon_0 = 8.85 \times 10^{-12} (SI)$
Car	rga elementar: $e = 1.6 \times 10^{-19}$ C; massa do protão: $m_p = 1.67 \times 10^{-27}$ kg; massa do electrão: $m_e = 9.1 \times 10^{-31}$ kg
apr [] []	. (1.5 valores) Um corpo possui carga elétrica de 1,6 C. Pode-se afirmar que no corpo há uma falta de, roximadamente: 10 ¹⁸ protões; 10 ¹⁹ protões; 10 ¹⁹ eletrões 10 ²³ eletrões.
	Escolha a opção correta e justifique. (Faça o cálculo.)
[] [] []	as linhas do campo eléctrico nunca cruzam as superfícies equipotenciais. o campo eléctrico de um dipolo tem simetria radial esférica. os isoladores são materiais onde não há cargas. o campo eléctrico de uma carga pontual positiva aponta sempre para longe da carga.
	Justifique muito sucintamente cada resposta. Na segunda alínea faça um esquema.
cor	L.(1.5 valores) Duas esferas metálicas, L e M , electricamente neutras estão em ntacto. Uma barra carregada com carga $-q$ é aproximada da esfera L , mas sem a ara. De seguida, as duas esferas são ligeiramente afastadas uma da outra e só depois retira a barra.
[]	No final, a carga da esfera $L \notin \frac{-q}{2}$ e a da esfera $M \notin \frac{+q}{2}$.
[]	No final, a carga da esfera $L \notin \frac{+q}{2}$ e a da esfera $M \notin \frac{-q}{2}$.
	No final, a carga de ambas as esferas é nula. No final, a carga da esfera L é de valor superior à da esfera M por esta estar mais afastada da barra carregada.
	stifique. Na figura, esquematize a distribuição de carga. Repita o esquema para um estante do passo posterior e ra o final.
	. (1.5 valores) Um dipolo eléctrico formado por cargas $+2e$ e $-2e$ separadas por uma distância de 0.78 nm , é ometido a um campo eléctrico uniforme de intensidade 3.4×10^6 N/C. Escolha as afirmações verdadeiras e as falsas.
[] []	O momento do binário torsor que o campo aplica ao dipolo é nulo quando o seu momento dipolar \vec{p} é antiparalelo a \vec{E} . O momento do binário torsor que o campo aplica ao dipolo é nulo quando o seu momento dipolar \vec{p} é perpendicular a \vec{E} . O dipolo adquire um movimento de rotação em torno dum eixo perpendicular ao seu. O dipolo adquire um movimento de translação com velocidade constante.

Esboce um esquema. Apresente os cálculos que justificam as suas opções.

Q5. (1.5 valores) Na figura são representados cinco objectos carregados: $q_1=q_4=+1.55$ nC; $q_3=-1.55$ nC; $q_2=q_5=-2.95$ nC; A secção transversal de um superfície gaussiana é representada pela linha S. Indique, qual o fluxo do campo eléctrico através desta superfície. **Justifique.**

Apresente o cálculo.

Q6. (2 valores) O esquema mostra um par de grandes placas condutoras separadas por uma distância de *15cm*. O potencial de cada placa está assinalado na figura.

[] As linhas de campo e as superfícies equipotenciais são paralelas às placas.

[] O módulo do campo eléctrico na região entre as placas é crescente com a distância de A para B.

[] O módulo do campo eléctrico a meia distância entre placas tem o valor 467N/C.

[] O trabalho realizado pelo campo ao deslocar uma carga de *-3mC*, desde a placa A até à placa B é nulo.

Justifique. Na figura, esquematize as linhas de campo e as superfícies equipotenciais. Classifique este campo e indique porquê. Faça o cálculo de $|\vec{E}|$ e de ΔE_p .

Todas as resoluções devem ser justificadas.

P1. (3 valores) A figura mostra um electrão (e) e um protão (p), em duas configurações diferentes (D=2d).

- a) Na configuração (1), calcule o campo eléctrico e o potencial eléctrico no ponto S. (No esquema desenhe os vectores campo)
- b) Determine o vector força que será exercida num electrão colocado no ponto *S*.
- c) Quando a posição das cargas é alterada para a situação 2 campo eléctrico em *S* altera-se? E o potencial? Justifique com cálculos. (Desenhe também os vectores campo.)

Nome:	Nº:	Lic.:

Todas as resoluções devem ser justificadas.

P2. (4 valores) A figura representa uma esfera isoladora colocada no centro de uma casca esférica, condutora. A esfera tem raio r_1 =2cm e carga Q_1 = -6mC; a casca esférica tem raio interior r_2 =8cm, exterior r_3 =8.5cm e carga Q_2 =+6mC.

- a) Na figura esquematize a distribuição de carga na esfera e na casca esférica
- b) Calcule o fluxo do campo eléctrico através de cada uma das superfícies esféricas, S_A e S_B , de raios r_A =4cm e r_B =10cm.
- c) Calcule o campo eléctrico nos pontos A, B e num ponto com raio r_c =8.2cm.

- P3. (3.5 valores) Um campo eléctrico $\vec{E} = 2000\hat{\imath}$ (V/m) está representado na figura por cinco linhas de campo paralelas e equidistantes. As linhas representadas a tracejado são perpendiculares às linhas de campo. Um protão, que se desloca ao longo do eixo dos xx, passa em S com velocidade de $1.2 \times 10^6 (m/s)\hat{\imath}$. A distância entre S e P é de 2.0 cm. Determine:
 - a) As diferenças de potencial V_P - V_S e V_Q - V_S .
 - b) O trabalho realizado pelo campo eléctrico para levar um protão de *R* a *P*.
 - c) A velocidade que o protão terá quando passa no ponto P

