Проверка гипотез

а) Основные понятия теории проверки гипотез Износостойкость

 $oldsymbol{H}_0$ (нулевая гипотеза): износостойкость одинаковая

 H_1 (альтернативная гипотеза): износостойкость в I группе больше, чем во II группе

$$H_0: \theta \in \Theta_0 \ _{\mathbf{vs.}} H_1: \theta \in \Theta_1$$

Пусть X - случайная величина со значениями в $\mathcal X$

 $x \in R \Rightarrow$ гипотеза H_0 отклоняется в пользу альтернативы

 $x
otin R \Longrightarrow$ гипотеза H_0 экспериментальным данным не противоречит

$$R = \left\{ x : \ T(x) > c \right\}$$

T - статистика, c - критическое значение

Замечание. На практике при тестировании гипотез зачастую лучше также строить и доверительный интервал – больше информации!

Тестирование гипотез ~ презумпция невиновности — предполагается невиновность до тех пор, пока факты не покажут обратное

Определение. Функцией мощности критерия с критической областью R называют функцию

$$\beta(\theta) = \mathbb{P}_{\theta}(X \in R)$$

Размер критерия определяется согласно формуле

$$\alpha = \sup_{\theta \in \Theta_0} \beta(\theta)$$

Говорят, что критерий имеет уровень $\, \alpha \,$ если его размер меньше либо равен $\, \alpha \,$

$$heta= heta_0$$
 - простая гипотеза

$$heta > heta_0$$
 или $heta < heta_0$ - сложная гипотеза

Двухсторонний критерий: $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$

4 Односторонний критерий:

$$H_0: \theta \leq \theta_0$$
 vs. $H_1: \theta > \theta_0$

$$H_0: \theta \geq \theta_0$$
 vs. $H_1: \theta < \theta_0$

Пример.
$$X_1, \dots, X_n \sim N(\mu, \sigma)$$
, σ - известно. $H_0: \mu \leq 0_{\text{vs.}} H_1: \mu > 0$ $_{\text{3начит.}}\Theta_0 = (-\infty, 0]_{\text{и}} \Theta_1 = (0, \infty)$

Рассмотрим критерий:

$$H_0$$
 отклоняется, если $T>c$, где $T=\overline{X}$

Критическая область:

$$R = \left\{ (x_1, \dots, x_n) : T(x_1, \dots, x_n) > c \right\}$$

Обозначим через Z - с.в., распределенную стандартно нормально

$$\beta(\mu) = \mathbb{P}_{\mu} \left(\overline{X} > c \right)$$

$$= \mathbb{P}_{\mu} \left(\frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} > \frac{\sqrt{n}(c - \mu)}{\sigma} \right)$$

$$= \mathbb{P} \left(Z > \frac{\sqrt{n}(c - \mu)}{\sigma} \right)$$

$$= 1 - \Phi \left(\frac{\sqrt{n}(c - \mu)}{\sigma} \right)$$

Таким образом, размер критерия равен

$$\sup_{\mu \le 0} \beta(\mu) = \beta(0) = 1 - \Phi\left(\frac{\sqrt{nc}}{\sigma}\right)$$

Чтобы размер критерия равнялся lpha необходимо, чтобы

$$c = \frac{\sigma \Phi^{-1}(1 - \alpha)}{\sqrt{n}}$$

Основная гипотеза отклоняется, если $\overline{X} > \sigma \, \Phi^{-1} (1-\alpha)/\sqrt{n}$, то есть если

$$\frac{\sqrt{n}\left(\overline{X}-0\right)}{\sigma}>z_{\alpha},$$

$$z_{\alpha} = \Phi^{-1}(1-\alpha)$$

<u>Наиболее мощный критерий</u> – критерий, который имеет максимальную мощность относительно гипотезы H_1 среди критериев размера α

b) Критерий Вальда

Пусть θ - скалярный параметр, $\widehat{\theta}$ - его оценка, $\widehat{\mathsf{Se}}$ - оценка стандартной ошибки оценки $\widehat{\theta}$

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta \neq \theta_0$

Допустим, что $\widehat{\theta}$ - асимптотически нормальная оценка, то есть

$$\frac{(\widehat{\theta} - \theta_0)}{\widehat{\mathsf{se}}} \leadsto N(0, 1)$$

Согласно критерию Вальда размера lpha гипотеза H_0 отклоняется, если $|W|>z_{lpha/2}$, гле

$$W = \frac{\widehat{\theta} - \theta_0}{\widehat{\mathsf{se}}}$$

oxedown Теорема. Асимптотически размер критерия Вальда равен lpha, то есть

$$\mathbb{P}_{\theta_0}\left(|W|>z_{\alpha/2}\right) \to \alpha \prod_{\mathbf{при}} n \to \infty$$

Доказательство.

При условии, что $\theta = \theta_0$ в силу асимптотической нормальности $(\widehat{\theta} - \theta_0)/\widehat{\text{se}} \leadsto N(0,1)$. Следовательно, вероятность отклонить основную гипотезу, когда она на самом деле верна, равняется

$$\mathbb{P}_{\theta_0} (|W| > z_{\alpha/2}) = \mathbb{P}_{\theta_0} \left(\frac{|\widehat{\theta} - \theta_0|}{\widehat{\mathsf{se}}} > z_{\alpha/2} \right)$$

$$\to \mathbb{P} (|Z| > z_{\alpha/2})$$

$$= \alpha$$

 $_{\rm при} Z \sim N(0,1)$

Замечание. Можно использовать также статистику $W=(\widehat{\theta}-\theta_0)/\text{se}_0$, где $^{\text{Se}_0}$ - значение стандартной ошибки, подсчитанное при $\theta=\theta_0$

Теорема. Допустим, что реальное значение θ есть $\theta_{\star} \neq \theta_{0}$. В таком случае значение мощности критерия Вальда $\beta(\theta_{\star})$ (вероятность $P(H_{1}|H_{1})$ принять альтернативную гипотезу, когда она верна) в пределе равна

$$1 - \Phi\left(\frac{\theta_0 - \theta_{\star}}{\widehat{\mathsf{se}}} + z_{\alpha/2}\right) + \Phi\left(\frac{\theta_0 - \theta_{\star}}{\widehat{\mathsf{se}}} - z_{\alpha/2}\right)$$

Замечание. $\widehat{\mathsf{se}}$ стремится к 0 при $n \to \infty$ => мощность критерия Вальда большая, если а) θ_\star сильно отличается от θ_0 b) объем выборки большой

<u>Пример</u>. Сравнение двух алгоритмов прогнозирования Пусть алгоритм I тестируется на выборке объема m, а другой алгоритм – на выборке объема n. Обозначим через X - неверных предсказаний для

алгоритма I, а через Y - количество неверных предсказаний для алгоритма

II. В таком случае $X \sim \text{Binomial}(m, p_1)$ и $Y \sim \text{Binomial}(n, p_2)$.

Пусть также $\delta=p_1-p_2$

$$H_0: \delta = 0 \ _{\mathbf{vs.}} H_1: \delta \neq 0$$

ОМП для δ равно $\widehat{\delta}=\widehat{p}_1-\widehat{p}_2$, оценка стандартной ошибки оценки равна

$$\widehat{\mathsf{se}} = \sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{m} + \frac{\widehat{p}_2(1-\widehat{p}_2)}{n}}$$

Согласно критерия Вальда гипотеза H_0 отвергается, если $|W|>z_{\alpha/2}$, где

$$W = \frac{\widehat{\delta} - 0}{\widehat{\mathsf{se}}} = \frac{\widehat{p}_1 - \widehat{p}_2}{\sqrt{\frac{\widehat{p}_1(1 - \widehat{p}_1)}{m} + \frac{\widehat{p}_2(1 - \widehat{p}_2)}{n}}}$$

Допустим, что тестовое множество одинаково для обоих алгоритмов. В таком случае наблюдения зависимы.

Используем следующую стратегию (парное сравнение): пусть $X_i=1$, если алгоритм I выдал правильный ответ и $X_i=0$ в противном случае. Аналогично, $Y_i=1$ если алгоритм II выдал правильный ответ и $Y_i=0$ в противном случае.

Oпределим $D_i = X_i - Y_i$

номер	X_i	Y_i	$D_i = X_i - Y_i$
1	1	0	1
2	1	1	0
3	1	1	0
4	0	1	-1
5	0	0	0
:	:	:	:
n	0	1	_1
11		T	-1

$$\delta = \mathbb{E}(D_i) = \mathbb{E}(X_i) - \mathbb{E}(Y_i) = \mathbb{P}(X_i = 1) - \mathbb{P}(Y_i = 1)$$

Непараметрическая оценка для δ равна $\widehat{\delta} = \overline{D} = n^{-1} \sum_{i=1}^n D_i$ и

$$\widehat{\mathrm{se}}(\widehat{\delta}) = S/\sqrt{n}$$
, гле $S^2 = n^{-1} \sum_{i=1}^n (D_i - \overline{D})^2$

$$H_0: \delta = 0_{\text{vs.}} H_1: \delta \neq 0$$

$$W = \widehat{\delta}/\widehat{\mathrm{se}}$$

гипотеза H_0 отвергается, если $|W|>z_{lpha/2}$

14

15

Пример. Сравнение средних значений. Пусть X_1,\dots,X_m и Y_1,\dots,Y_n - две независимые выборки из генеральных совокупностей, средние значения которых равны μ_1 и μ_2 соответственно, s_1^2 и s_2^2 - выборочные дисперсии. Положим $\delta=\mu_1-\mu_2$.

$$H_0: \delta = 0$$
 vs. $H_1: \delta \neq 0$ $\widehat{\delta} = \overline{X} - \overline{Y}$

$$\widehat{\mathsf{se}} = \sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}$$

гипотеза H_0 отвергается, если $|W|>z_{lpha/2}$, где

$$W = \frac{\widehat{\delta} - 0}{\widehat{\text{se}}} = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}$$

Пример. Сравнение двух медиан. Условия задачи аналогичны предыдущей с той лишь разницей, что теперь сравниваются значения двух медиан.

Положим $\delta = \nu_1 - \nu_2$, где ν_1 и ν_2 - медианы.

$$H_0: \delta = 0_{\text{vs.}} H_1: \delta \neq 0$$

 $\widehat{\delta}=\widehat{
u}_1-\widehat{
u}_2$, где $\widehat{
u}_1$ и $\widehat{
u}_2$ выборочные значения медиан. Оценка $\widehat{\mathfrak{Se}}$ стандартной ошибки оценки $\widehat{\delta}$ может быть получена с помощью бутстрепа. Статистика критерия Вальда имеет вид $W=\widehat{\delta}/\widehat{\mathfrak{Se}}$

<u>Теорема</u>. Критерий Вальда размера α отклоняет $H_0: \theta = \theta_0$ в пользу $H_1: \theta \neq \theta_0$, если и только если $\theta_0 \notin C$, где

$$C = (\widehat{\theta} - \widehat{\operatorname{se}} \, z_{\alpha/2}, \ \widehat{\theta} + \widehat{\operatorname{se}} \, z_{\alpha/2})$$

Таким образом, тестирование гипотезы эквивалентно проверке, попало ли значение θ_0 в доверительный интервал

 ${\it 3}$ амечание. В случае отклонения гипотезы H_0 говорят, что результат статистически значим. Однако «запас», с которым отклонили H_0 , может быть мал – результат мало значим с практической точки зрения.

Если доверительный интервал не включает θ_0 , то H_0 отклоняется. Однако значения в этом интервале могут быть близки к θ_0 (результат не значим с практической точки зрения), а могут быть и далеки от θ_0 .

Таким образом, если даже результат статистически значим — это еще не означает, что он значим с практической точки зрения. При этом доверительны интервалы более информативны, чем просто проверка гипотез

с) Квантили

Ответы типа "отклонить H_0 " или "принять H_0 " не очень информативны. Можно для каждого значения α узнать, отклоняется ли H_0 при этом значении α . Вообще говоря, если гипотеза была отклонена на уровне α , то и на уровне $\alpha'>\alpha$ она также будет отклонена

19 <u>Определение</u>. Допустим, что для каждого $\alpha \in (0,1)$ имеется критерий размера $\alpha \in (0,1)$ с критической областью R_{α} . Тогда

p-value =
$$\inf \left\{ \alpha : T(X^n) \in R_\alpha \right\}$$

p-value — наименьший уровень значимости, на котором еще можно отклонить \boldsymbol{H}_0 . Чем больше p-value — тем вероятнее, что \boldsymbol{H}_0 надо отклонить.

21

< 0.01 => H_{0} заведомо не верна

 $0.01 - 0.05 \Longrightarrow H_0$ не верна

 $0.05 - 0.10 \Longrightarrow H_0$ скорее всего не верна

> 0.1 => ничего определенного о гипотезе \boldsymbol{H}_0 сказать нельзя

Замечание. Большое p-value не является «подтверждением» \boldsymbol{H}_0 . Большое p-value появляется, если: а) \boldsymbol{H}_0 верна b) \boldsymbol{H}_0 неверна, но мощность теста невилика

Замечание. Не надо путать p-value и $\mathbb{P}(H_0|\mathrm{Data})$: p-value не является вероятностью того, что верна нулевая гипотеза

 $\underline{\text{Теорема}}$. Допустим, что критерий размера α имеет вид

$$H_0$$
 отвергается, если $T(X^n) \ge c_{\alpha}$

Тогда

$$\begin{array}{c} \text{p-value} = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(T(X^n) \geq T(x^n)) \\ \\ \text{22} \end{array}$$
 где x^n - реализация выборки X^n . Если $\Theta_0 = \{\theta_0\}$, то
$$\text{p-value} = \mathbb{P}_{\theta_0}(T(X^n) \geq T(x^n))$$

p-value — это вероятность (при условии ${\pmb H}_0$) того, что статистика ${\pmb T}({\pmb X}^n)$ примет значение больше либо равное значения, которое реализовалось в опыте

<u>Теорема.</u> Пусть $w=(\widehat{\theta}-\theta_0)/\widehat{\text{se}}$ обозначает наблюденное значение статистики Вальда W. p-value в таком случае равно

$$\mathrm{p-value} = \mathbb{P}_{\theta_0}(|W|>|w|) \approx \mathbb{P}(|Z|>|w|) = 2\Phi(-|w|)_{\text{, где}}$$
 $Z \sim N(0,1)$

23

Теорема. Если распределение статистики критерия непрерывное, то тогда при гипотезе $H_0: \theta = \theta_0$ p-value ~ p.p. (0,1). Следовательно, если гипотеза H_0 отклоняется в случае, если p-value меньше α , то вероятность ошибки первого рода равна α .

Другими словами, если H_0 , то p-value = случайной величине с p.p. на (0,1). 24 Если верна H_1 , то распределение p-value будет концентрироваться около 0. Пример. Равенство значений холестерина в крови.

$$W = \frac{\widehat{\delta} - 0}{\widehat{\text{se}}} = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} = \frac{216.2 - 195.3}{\sqrt{5^2 + 2.4^2}} = 3.78$$

Пусть $Z \sim N(0,1)$, тогда

p-value =
$$\mathbb{P}(|Z| > 3.78) = 2\mathbb{P}(Z < -3.78) = .0002$$

Чтобы протестировать равенство медиан, используем критерий

$$W = \frac{\widehat{\nu}_1 - \widehat{\nu}_2}{\widehat{\text{se}}} = \frac{212.5 - 194}{7.7} = 2.4$$

d) Распределение хи-квадрат и критерий Пирсона

Пусть Z_1,\dots,Z_k - независимые стандартно нормально распределенные случайные величины. $V=\sum_{i=1}^k Z_i^2$, тогда $V\sim\chi_k^2$ - хи-квадрат с k степенями свободы

$$f(v) = \frac{v^{(k/2)-1}e^{-v/2}}{2^{k/2}\Gamma(k/2)}$$

$$\mathbb{E}(V) = k, \mathbb{V}(V) = 2k$$

$$\chi_{k,\alpha}^2 = F^{-1}(1-lpha)$$
 - верхняя квантиль, F - функция распределения, т.е. $\mathbb{P}(\chi_k^2>\chi_{k,lpha}^2)=lpha$

Пусть $X=(X_1,\ldots,X_k)$ имеет мультиномиальное распределение с параметрами (n,p). ОМП для p равно $\widehat{p}=(\widehat{p}_1,\ldots,\widehat{p}_k)=(X_1/n,\ldots,X_k/n)$

Обозначим через $p_0 = (p_{01}, \dots, p_{0k})$ некоторый фиксированный вектор 26 вероятностей

$$H_0: p = p_0 _{\mathbf{vs.}} H_1: p \neq p_0$$

Положим $E_j = \mathbb{E}(X_j) = np_{0j}\,$ - среднее значение X_j при гипотезе H_0

Определение. Статистика χ^2 Пирсона имеет вид

$$T = \sum_{j=1}^{k} \frac{(X_j - np_{0j})^2}{np_{0j}} = \sum_{j=1}^{k} \frac{(X_j - E_j)^2}{E_j}$$

Теорема. При гипотезе H_0 выполнено, что

27

$$T \rightsquigarrow \chi^2_{k-1}$$

Таким образом, гипотеза H_0 отвергается, если $T>^{\chi^2_{k-1,\alpha}}$. Этот критерий имеет асимптотический уровень значимости α . p-value равняется $\mathbb{P}(\chi^2_{k-1}>t)$, где t - реализация значения статистики T

<u>Пример.</u> Горох Менделя. Два типа: круглые желтые зерна и сморщенные зеленые зерна. Имеется 4 типа потомков: круглые желтые, сморщенные желтые, круглые зеленые и сморщенные зеленые. Количество потомков каждого типа образуют мультиномиальное распределение с вероятностью $p=(p_1,p_2,p_3,p_4)$. Из теории следует, что

$$p_0 \equiv \left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right)$$

28

В результате эксперимента:
$$n=556$$
 , $X=(315,101,108,32)$

$$H_0: p = p_0 _{\text{vs.}} H_1: p \neq p_0$$

$$np_{01} = 312.75, np_{02} = np_{03} = 104.25, np_{04} = 34.75$$

$$\chi^{2} = \frac{(315 - 312.75)^{2}}{312.75} + \frac{(101 - 104.25)^{2}}{104.25} + \frac{(108 - 104.25)^{2}}{104.25} + \frac{(32 - 34.75)^{2}}{34.75} = 0.47$$

$$p-value = \mathbb{P}(\chi_{3}^{2} > .47) = .93$$

Таким образом, данные теории Менделя не противоречат

Теория тестирования гипотез не подходит для доказательства гипотезы H_0 Неспособность отклонить H_0 может быть как следствием того, что H_0 - истинная гипотеза, так и следствием того, что использованный критерий имеет небольшую мощность. М.б. лучше было построить доверительный интервал для расстояния между p и p_0

29 е) Критерий перестановок — применяется для проверки того, отличаются ли распределения. Критерий перестановок — «точный» в том смысле, что он не использует предположения об асимптотической сходимости к нормальному распределению

допустим, что $X_1, \ldots, X_m \sim F_X$ и $Y_1, \ldots, Y_n \sim F_Y$ две независимые выборки и ${\pmb H}_0$ - гипотеза, согласно которой распределения F_X и F_Y совпадают

$$H_0: F_X = F_{Y_{\mathbf{vs}}} H_1: F_X \neq F_Y$$

Обозначим через $T(x_1, \dots, x_m, y_1, \dots, y_n)$ - некоторую тестовую статистику, например,

$$T(X_1,\ldots,X_m,Y_1,\ldots,Y_n)=|\overline{X}_m-\overline{Y}_n|$$

30 Положим N=m+n и рассмотрим все N! перестановок объединенной выборки $X_1,\ldots,X_m,Y_1,\ldots,Y_n$. Для каждой из перестановок подсчитаем значение статистики T. Обозначим эти значения $T_1,\ldots,T_{N!}$. Если $\boldsymbol{H_0}$ верна, то при фиксированных упорядоченных значениях $X_1,\ldots,X_m,Y_1,\ldots,Y_n$ значение статистики T распределены равномерно на множестве $T_1,\ldots,T_{N!}$.

Обозначим через распределение, согласно которому

31

$$P_0(T=T_i)=1/N!, i=1,...,N!$$

перестановочное распределение статистики T. Пусть $t_{
m obs}$ - значение статистики, которое было получено в опыте.

p-value =
$$\mathbb{P}_0(T > t_{obs}) = \frac{1}{N!} \sum_{j=1}^{N!} I(T_j > t_{obs})$$

<u>Пример.</u> Допустим, что $(X_1,X_2,Y_1)=(1,9,3)$. Пусть $T(X_1,X_2,Y_1)=|\overline{X}-\overline{Y}|=2$, тогда

перестановка	значение Т	вероятность
(1,9,3)	2	1/6
(9,1,3)	2	1/6
(1,3,9)	7	1/6
(3,1,9)	7	1/6
(3,9,1)	5	1/6
(9,3,1)	5	1/6

p-value равно $\mathbb{P}(T>2)=4/6$

32

Алгоритм (сокращение времени подсчетов):

- 1. Подсчитать $t_{\text{obs}} = T(X_1, \dots, X_m, Y_1, \dots, Y_n)$
- 2. Сделать перестановку. Подсчитать значение статистики
- 33 3. Повторить предыдущий шаг B раз. Пусть T_1, \dots, T_B получившиеся значения
 - 4. Приближенное p-value

$$\frac{1}{B} \sum_{j=1}^{B} I(T_j > t_{\text{obs}})$$

<u>Пример</u>. Данные — уровни информационной РНА (вещество, несущее генетическую информацию) для каждого из генов, которые (как считается) характеризуют количество протеина, которое производит соответствующий ген (грубо говоря — чем больше значение характеристики — тем ген более активный). В таблице — значения уровней для генов 10 пациентов с двумя типами раковых клеток в печени. В таблице 2.638 генов.

	Type I						Type II				
34 .	Patient	1	2	3	4	5	6	7	8	9	10
	Gene 1	230	-1,350	-1,580	-400	-760	970	110	-50	-190	-200
	Gene 2	470	-850	8	-280	120	390	-1730	-1360	-1	-330
	:	:	:	:	:	:	:	:	:	:	:
	•										•

Протестируем, отличается ли медиана уровня между группами. $T=|\widehat{\nu}_1-\widehat{\nu}_2|=710$, при этом p-value = 0.045. Значит, если использовать уровень значимости α =0.05, то окажется, что опытные данные гипотезе о равенстве медиан противоречат.

f) Критерий на основе отношения правдоподобия

Определение. Рассмотрим гипотезы

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \notin \Theta_0$

35 Пусть
$$\widehat{\theta}$$
 - ОМП и $\widehat{\theta_0}$ - ОМП при $\boldsymbol{\theta_0} \in \boldsymbol{\Theta_0}$

Статистика отношения правдоподобия имеет вил

$$\lambda = 2\log\left(\frac{\sup_{\theta\in\Theta}\mathcal{L}(\theta)}{\sup_{\theta\in\Theta_0}\mathcal{L}(\theta)}\right) = 2\log\left(\frac{\mathcal{L}(\widehat{\theta})}{\mathcal{L}(\widehat{\theta}_0)}\right)$$

 $\underline{\mathbf{3}}$ амечание. $\mathbf{3}$ амена $\mathbf{\Theta}_0^c$ на $\mathbf{\Theta}$ фактически не влияет на критерий

Теорема. Допустим, что $\theta = (\theta_1, \dots, \theta_q, \theta_{q+1}, \dots, \theta_r)$. Пусть $\Theta_0 = \{\theta: (\theta_{q+1}, \dots, \theta_r) = (\theta_{0,q+1}, \dots, \theta_{0,r})\}$

Пусть λ - критерий на основе отношения правдоподобия. При гипотезе $H_0: \theta \in \Theta_0$

$$\lambda(x^n) \leadsto \chi^2_{r-q,\alpha}$$

 36 где $^{r-q}$ - размерность $^{\Theta}$ за вычетом размерности $^{\Theta_0}$. p-value для критерия равно $\mathbb{P}(\chi^2_{r-q}>\lambda)$

Например, если $\theta=(\theta_1,\theta_2,\theta_3,\theta_4,\theta_5)$ и необходимо проверить, что $\theta_4=\theta_5=0$, тогда у предельного распределения имеется 5-3=2 степеней свободы

Пример. Горох Менделя. Статистика отношения правдоподобия для

$$H_0: p = p_0 \,_{\text{vs.}} H_1: p \neq p_0$$

принимает вид

37

$$\lambda = 2 \log \left(\frac{\mathcal{L}(\widehat{p})}{\mathcal{L}(p_0)} \right)$$

$$= 2 \sum_{j=1}^{4} X_j \log \left(\frac{\widehat{p}_j}{p_{0j}} \right)$$

$$= 2 \left(315 \log \left(\frac{\frac{315}{556}}{\frac{9}{16}} \right) + 101 \log \left(\frac{\frac{101}{556}}{\frac{3}{16}} \right) + 108 \log \left(\frac{\frac{108}{556}}{\frac{3}{16}} \right) + 32 \log \left(\frac{\frac{32}{556}}{\frac{1}{16}} \right) \right)$$

$$= 0.48$$

При гипотезе H_1 - 4 параметра. Так как сумма параметров должна равняться 1, то размерность пространства параметров равна 3. При гипотезе H_0 «свободных» параметров нет, значит количество степеней свободы равно 3 и χ_3^2 является предельным распределением.

p-value =
$$\mathbb{P}(\chi_3^2 > .48) = .92$$

38 Зачастую и критерий хи-квадрат и критерий отношения правдоподобий дают примерно одинаковые результаты при условии, что размер выборки достаточно большой

д) Множественные тесты

В некоторых приложениях необходимо проверить много гипотез «за раз». См., например, пример по уровни информационной РНА – 2638 проверок.

Допустим, что каждый критерий проверяется на уровне α , то есть на во время каждой из проверок с вероятностью α основная гипотеза может быть неверно отвергнута. При этом вероятность допустить хотя бы одно 39 ложное отклонения основной гипотезы существенно больше => множественные тесты

Рассмотрим m различных случаев проверки гипотез

$$H_{0i}_{\mathbf{vs.}}H_{1i}, i=1,\ldots,m$$

Обозначим через P_1,\ldots,P_m величины m p-values для этих гипотез

Метод Бонферрони: Для заданных p-values P_1,\ldots,P_m основная гипотеза H_{0i} отклоняется, если

$$P_i < \frac{\alpha}{m}$$

<u>Теорема</u>. При применении метода Бонферрони вероятность неправильно отклонить любую из основных гипотез меньше либо равна α

О Доказательство. Обозначим через R событие, что по крайней мере одна из основных гипотез была ложно отклонена, R_i - событие, что i-ая основная гипотеза была ложно отклонена.

Напомним, что для любых событий A_1, \dots, A_k выполнено, что $\mathbb{P}(\bigcup_{i=1}^k A_i) \leq \sum_{i=1}^k \mathbb{P}(A_i)$

$$\mathbb{P}(R) = \mathbb{P}\left(\bigcup_{i=1}^{m} R_i\right) \le \sum_{i=1}^{m} \mathbb{P}(R_i) = \sum_{i=1}^{m} \frac{\alpha}{m} = \alpha$$

<u>Пример.</u> В случае с анализом уровней РНА для $\alpha = 0.05$ получаем, что 0.05/2.638 = 0.00001895375

Метод Бонферрони консервативен – суть метода в том, что он делает по сути невозможным, чтобы произошло даже одно ложное отклонение

Иногда лучше контролировать интенсивность ложных отклонений (False Discovery Rate, FDR) = среднее значение отношения ложных отклонений к числу отклонений вообще

Пусть m_0 - количество «верных» нулевых гипотез, $m_1 = m - m_0$.

	$oldsymbol{H}_0$ не отклонена	$oldsymbol{H}_0$ отклонена	Σ
$oldsymbol{H}_0$ верна	$oldsymbol{U}$	$oldsymbol{V}$	m_0
$oldsymbol{H}_0$ неверна	$m{T}$	S	m_1
Σ	m-R	R	m

Доля ложных отклонений (False Discovery Proportion, FDP)

$$FDP = \begin{cases} V / R, R > 0 \\ 0, R = 0 \end{cases}$$
$$FDR = E(FDP)$$

Метод Benjamini-Hochberg:

- 1. Пусть $P_{(1)} < \cdots < P_{(m)}$ величины p-value, отсортированные по возрастанию
- 2. Пусть C_m в случае, если P_1, \dots, P_m независимы, в противном случае положим $C_m = \sum_{i=1}^m (1/i)$.
- 43 3. Определим

$$\ell_i = \frac{i\alpha}{C_m m}$$

$$R = \max \left\{ i : P_{(i)} < \ell_i \right\}$$

- 4. Пусть $T = P_{(R)}$ пороговое значение метода.
- 5. Отклоняются такие H_{0i} , для которых $P_i \leq T$

<u>Теорема</u>. При применении метода Benjamini-Hochberg независимо от того, сколько основных гипотез на самом деле верно и независимо от того, какое распределение имеют P_1, \dots, P_m в случае неверной основной гипотезы, выполнено, что

$$FDR = E(FDP) \le \frac{m_0}{m} \alpha \le \alpha$$

<u>Пример</u>. Допустим, что было протестировано 10 независимых гипотез, для которых были получены следующие p-value

- 0.00017 0.00448 0.00671 0.00907 0.01220
- 0.33626 0.39341 0.53882 0.58125 0.98617

При $\alpha=0.05$ метод Бонферрони отклоняет любую гипотезу, p-value которой меньше чем $\alpha/10=0.005$ => будут отклонены только первые две гипотезы. Для метода Benjamini-Hochberg определяется наибольшее i, для которого $P_{(i)} < i\alpha/m$. В рассматриваемом случае это i=5, то есть отклоняется первые 5 гипотез

h) Критерий согласия

Необходимо проверить согласие параметрической модели распределения и полученных в эксперименте данных

Пусть $\mathfrak{F} = \{f(x;\theta): \theta \in \Theta\}$ - параметрическая модель, $\theta = (\theta_1, \dots, \theta_s)$. Допустим, что область значений выборки $= (-\infty, \infty)$.

Разделим ($-\infty$, ∞) на k непересекающихся интервалов I_1,\dots,I_k . Для $j=1,\dots,k$ обозначим через

$$p_j(\theta) = \int_{I_j} f(x;\theta) dx$$

вероятность попадания наблюдения в интервал I_j при условии, что модель верна.

Пусть N_j - количество элементов выборки, которые попали в I_j

48

Можно показать, что функция правдоподобия для параметра θ на основе наблюдений N_1,\dots,N_k (в предположении, что эти наблюдения имеют мультиномиальное распределение) имеет вид

$$Q(\theta) = \prod_{j=1}^{k} p_i(\theta)^{N_j}$$

Максимизируя $Q(\theta)$, получаем оценку $\widetilde{\theta} = (\widetilde{\theta}_1, \dots, \widetilde{\theta}_s)$ параметра θ .

Критерий согласия имеет вид

$$Q = \sum_{j=1}^{k} \frac{(N_j - np_j(\widetilde{\theta}))^2}{np_j(\widetilde{\theta})}$$

Теорема. Пусть основная гипотеза H_0 состоит в том, что выборка — простая, элементы которой имеют распределение из параметрического класса $\mathfrak{F} = \{f(x;\theta): \theta \in \Theta\}$. В условиях гипотезы H_0 статситика критерия Q сходится по распределению к χ^2_{k-1-s} . Таким образом, приближенное p-value критерия равно $\mathbb{P}(\chi^2_{k-1-s} > q)$, где q наблюдаемое в эксперименте значение статистики Q

Если заменить $\widetilde{\theta}$ на ОМП $\widehat{\theta}$, то теорема перестанет выполняться.

Критерия согласия не позволяют проверить «правильность» модели. Если H_0 не была отклонена, то это не значит, что модель правильная. Модель могла быть не отклонена просто потому, что мощность критерия — низкая => лучше использовать непараметрические модели. Если H_0 была отклонена, то модель заведомо «плохая».

і) Критерий Неймана-Пирсона для случая двух простых гипотез, t-критерий

Лемма Неймана-Пирсона (наиболее мощный тест для случая двух простых гипотез):

$$H_0: \theta = \theta_{0}_{vs} H_1: \theta = \theta_1$$

50 Пусть статистика

$$T = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} = \frac{\prod_{i=1}^n f(x_i; \theta_1)}{\prod_{i=1}^n f(x_i; \theta_0)} \tag{*}$$

Допустим, что H_0 отвергается при T>k. Если выбрать k так, что $\mathbb{P}_{\theta_0}(T>k)=\alpha$, то критерий на основе статистики (*) будет наиболее мощным размера α , то есть среди всех критериев размера α критерий Неймана-Пирсона имеет максимальную мощность $\beta(\theta_1)$

j) t-тест. Для проверки гипотезы $H_0: \mu = \mu_0$, где $\mu = \mathbb{E}(X_i)$, можно использовать критерий Вальда. В случае, если распределение данных близко к нормальному, а размер выборки не очень большой, имеет смысл использовать t-критерий.

Случайная величина имеет распределение Стьюдента (t-распределение) с k степенями свободы, если

$$f(t) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k\pi}\Gamma\left(\frac{k}{2}\right)\left(1 + \frac{t^2}{k}\right)^{(k+1)/2}}$$

При $k \to \infty$ t-распределение стремится к стандартному нормальному распределению. При k=1 t-распределение совпадает с распределением Коши.

Пусть $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, где параметры $\theta = (\mu, \sigma^2)$ неизвестны

$$H_0: \mu = \mu_0 \text{ vs. } H_0: \mu \neq \mu_0$$

Обозначим через S_n^2 - выборочную дисперсию

$$T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{S_n}$$

Основная гипотеза отвергается, если $|T|>t_{n-1,\alpha/2}$ - квантиль распределения Стьюдента с n-1 степенью свободы

При больших n выполняется, что $T \approx N(0,1)$, то есть при больших n t-критерий эквивалентен критерию Вальда