

1 Introdução X-DI 32 05

Todos os produtos HIMA mencionados neste manual estão protegidos pela marca registrada da HIMA. A não ser que seja mencionado de outra forma, isso também se aplica aos outros fabricantes e seus produtos mencionados.

Todos os dados e avisos técnicos neste manual foram elaborados com o máximo de cuidado, considerando medidas de controle de garantia de qualidade efetiva. Em caso de dúvidas, dirija-se diretamente à HIMA. A HIMA ficaria grata por quaisquer sugestões, p. ex., informações que ainda devem ser incluídas no manual.

Os dados técnicos estão sujeitos a alterações sem notificação prévia. A HIMA ainda se reserva o direito de modificar o material escrito sem aviso prévio.

Informações mais detalhadas encontram-se na documentação no CD-ROM e na nossa homepage em http://www.hima.com.

© Copyright 2011, HIMA Paul Hildebrandt GmbH

Todos os direitos reservados.

Contato

O endereço da HIMA é:

HIMA Paul Hildebrandt GmbH

Postfach 1261

D-68777 Brühl

Tel.: +49 6202 709-0

Fax: +49 6202 709-107

E-Mail: info@hima.com

Índice de	Alterações	Tipo de alteração	
revisões		técnica	redacional
4.00	Adaptado ao SILworX V4 Edição em português (traduzida)		
			-

Página 2 de 58 HI 801 260 P Rev. 4.00

Índice

1	Introdução	5
1.1	Estrutura e utilização do manual	5
1.2	Grupo alvo	
1.3	Convenções de representação	6
1.3.1 1.3.2	Avisos de segurança Avisos de utilização	6
2	Segurança	8
2.1	Utilização prevista	8
2.1.1	Requisitos de ambiente	
2.1.2	Medidas de proteção contra ESD	8
2.2	Perigos residuais	9
2.3	Medidas de precaução de segurança	9
2.4	Informações para emergências	9
3	Descrição do produto	10
3.1	Função de segurança	10
3.1.1	Reação em caso de erro	10
3.2	Volume de fornecimento	10
3.3	Placa de identificação	11
3.4	Estrutura	11
3.4.1 3.4.2	Diagrama de blocosIndicador	
3.4.3	Indicador de status do módulo	14
3.4.4	Indicador de barramento de sistema	
3.4.5	Indicador de E/S	15
3.5	Dados do produto	16
3.6	Connector Boards	19
3.6.1	Codificação mecânica de Connector Boards	
3.6.2	Codificação de Connector Boards X-CB 005	
3.6.3	Connector Boards com bornes aparafusados	
3.6.4	Pinagem de Connector Boards com bornes aparafusados	
3.6.5	Connector Boards com conector de cabo	
3.6.6	Pinagem de Connector Boards com conector de cabo	
3.6.7 3.6.8	Connector Board redundância via dois suportes básicos de sistema Pinagem X-CB 005 05	
	•	
3.7	Cabo de sistema V CA 002	
3.7.1 3.7.2	Cabo de sistema X-CA 002	
3.7.3	Codificação do conector de cabo	

4	Colocação em funcionamento	31
4.1	Montagem	31
4.1.1	Ligação de entradas não utilizadas	31
4.2	Instalação e desinstalação do módulo	32
4.2.1	Montagem de uma Connector Board	
4.2.2	Instalação e desinstalação de um módulo	
4.3	Registro de eventos (SOE)	
4.4	Configuração do módulo no SILworX	
4.4.1 4.4.2	Registro ModuleRegistro I/O Submodule DI32_05	
4.4.2 4.4.3	Registro I/O Submodule DI32_05: Channels	
4.4.4 4.4.4	Submodule Status [DWORD]	
4.4.5	Diagnostic Status [DWORD]	
4.5	Variantes de ligação	
4.5 4.5.1	Ligação com iniciador ou contator ligado	
4.5.1 4.5.2	Ligação de transmitter via Field Termination Assembly	
4.5.3	Ligação redundante mediante dois suportes básicos	
5	Operação	48
5.1	Operação	48
5.2	Diagnóstico	48
6	Manutenção preventiva	49
6.1	Medidas de manutenção preventiva	49
6.1.1 6.1.2	Carregar o sistema operacional Repetição da verificação	
7	Colocação fora de serviço	
-		
8	Transporte	51
9	Eliminação	52
	Anexo	54
	Glossário	54
	Lista de figuras	55
	Lista de tabelas	56
	Índice remissivo	57

X-DI 32 05 1 Introdução

1 Introdução

O presente manual descreve as características técnicas do módulo e a sua utilização. O manual contém informações sobre a instalação, a colocação em funcionamento e a configuração do SILworX.

1.1 Estrutura e utilização do manual

O conteúdo deste manual é parte da descrição do hardware do sistema eletrônico programável HIMax.

O manual é dividido nos seguintes capítulos principais:

- Introdução
- Segurança
- Descrição do produto
- Colocação em funcionamento
- Operação
- Manutenção preventiva
- Colocação fora de serviço
- Transporte
- Eliminação

Adicionalmente devem ser observados os seguintes documentos:

Nome	Conteúdo	Nº do documento
Manual de sistema HIMax	Descrição do Hardware do sistema HIMax	HI 801 242 P
Manual de segurança HIMax	Funções de segurança do sistema HIMax	HI 801 241 P
Manual de comunicação HIMax	Descrição da comunicação e dos protocolos	HI 801 240 P
Ajuda Online SILworX (OLH)	Operação do SILworX	-
Primeiros passos	Introdução ao SILworX	HI 801 239 P

Tabela 1: Manuais adicionalmente em vigor

Os manuais atuais encontram-se na homepage da HIMA em www.hima.com. Com ajuda do índice de revisão na linha de rodapé, a atualidade de manuais eventualmente disponíveis pode ser comparada à versão na internet.

1.2 Grupo alvo

Este documento dirige-se a planejadores, projetistas e programadores de sistemas de automação, bem como pessoas autorizadas para colocação em funcionamento, operação e manutenção dos equipamentos e do sistema. Pressupõem-se conhecimentos especializados na área de sistemas de automatização direcionados à segurança.

HI 801 260 P Rev. 4.00 Página 5 de 58

1 Introdução X-DI 32 05

1.3 Convenções de representação

Para a melhor legibilidade e para clarificação, neste documento valem as seguintes convenções:

Negrito Ênfase de partes importantes do texto.

Denominações de botões, itens de menu e registros no SILworX

que podem ser clicados.

Itálico Parâmetros de sistema e variáveis

Courier Introdução de dados tal qual pelo usuário

RUN Denominações de estados operacionais em letras maiúsculas Cap. 1.2.3 Notas remissivas são híperlinks, mesmo quando não são

especialmente destacadas. Ao posicionar o cursor nelas, o mesmo muda sua aparência. Ao clicar, o documento salta

para o respectivo ponto.

Avisos de segurança e utilização são destacados de forma especial.

1.3.1 Avisos de segurança

Os avisos de segurança no documento são representados como descrito a seguir. Para garantir o menor risco possível devem ser observados sem excepção. A estrutura lógica é

- Palavra sinalizadora: Perigo, Atenção, Cuidado, Nota
- Tipo e fonte do perigo
- Consequências do perigo
- Como evitar o perigo

A PALAVRA SINALIZADORA

Tipo e fonte do perigo! Consequências do perigo Como evitar o perigo

O significado das palavras sinalizadoras é

- Perigo: No caso de n\u00e3o-observ\u00e1ncia resultam les\u00f3es corporais graves at\u00e9 a morte
- Atenção: No caso de não-observância há risco de lesões corporais graves até a morte
- Cuidado: No caso de não-observância há risco de lesões corporais leves
- Nota: No caso de não-observância ha risco de danos materiais

NOTA

Tipo e fonte dos danos! Como evitar os danos

Página 6 de 58 HI 801 260 P Rev. 4.00

X-DI 32 05 1 Introdução

1.3.2 Avisos de utilização Informações adicionais são estruturadas de acordo com o seguinte exemplo: Neste ponto está o texto das informações adicionais. Dicas úteis e macetes aparecem no formato: DICA Neste ponto está o texto da dica.

HI 801 260 P Rev. 4.00 Página 7 de 58

2 Segurança X-DI 32 05

2 Segurança

É imprescindível ler informações de segurança, avisos e instruções neste documento. Apenas utilizar o produto observando todos os regulamentos e normas de segurança.

Este produto é operado com SELV ou PELV. Do módulo em si não emana nenhum perigo. Utilização na área Ex é permitida apenas com medidas adicionais.

2.1 Utilização prevista

Componentes HIMax são previstos para a instalação de sistemas de comando direcionados à segurança.

Para a utilização de componentes no sistema HIMax devem ser satisfeitos os seguintes requisitos.

2.1.1 Requisitos de ambiente

Tipo de requisito	Faixa de valores
Classe de proteção	Classe de proteção III conforme IEC/EN 61131-2
Temperatura ambiente	0+60 °C
Temperatura de armazenamento	-40+85 °C
Contaminação	Grau de contaminação II conforme IEC/EN 61131-2
Altura de instalação	< 2000 m
Caixa	Padrão: IP 20
Tensão de alimentação	24 VDC

Tabela 2: Requisitos de ambiente

Condições de ambiente diferentes das indicadas neste manual podem levar a avarias operacionais do sistema HIMax.

2.1.2 Medidas de proteção contra ESD

Apenas pessoal com conhecimentos sobre medidas de proteção contra ESD pode efetuar alterações ou ampliações do sistema ou a substituição de módulos.

NOTA

Danos no equipamento por descarga eletrostática!

- Usar para os trabalhos um posto de trabalho protegido contra descarga eletrostática e usar uma fita de aterramento.
- Guardar o aparelho protegido contra descarga eletrostática, p. ex., na embalagem.

Página 8 de 58 HI 801 260 P Rev. 4.00

X-DI 32 05 2 Segurança

2.2 Perigos residuais

Do módulo HIMax em si não emana nenhum perigo.

Perigos residuais podem ser causados por:

- Erros do projeto
- Erros no programa de aplicação
- Erros na fiação

2.3 Medidas de precaução de segurança

Observar as normas de segurança em vigor no local de utilização e usar o equipamento de proteção prescrito.

2.4 Informações para emergências

Um sistema de comando HIMax é parte da tecnologia de segurança de uma instalação. A falha do sistema de comando coloca a instalação no estado seguro.

Em casos de emergência é proibida qualquer intervenção que impeça a função de segurança dos sistemas HIMax.

HI 801 260 P Rev. 4.00 Página 9 de 58

3 Descrição do produto

O módulo de entrada digital X-DI 32 05 destina-se à utilização no sistema eletrônico programável (PES) HIMax.

O módulo pode ser utilizado em todos os slots do suporte básico, exceto nos slots para os módulos de barramento de sistema, maiores detalhes no Manual de sistema HI 801 242 P.

O módulo permite a avaliação de até 32 iniciadores de segurança (p. ex., P+F). iniciadores conforme EN 60947-5-6 (NAMUR) ou contatores ligados.

O módulo é adequado para o registro de eventos SOE (Sequence of Events Recording). O registro de eventos ocorre num ciclo de 2 ms do módulo, informações mais detalhadas, veja Capítulo 4.3.

O módulo foi certificado pela TÜV para aplicações direcionadas à segurança até SIL 3 (IEC 61508, IEC 61511 e IEC 62061), Cat. 4 (EN 954-1) e PL e (EN ISO 13849-1).

As normas pelas quais os módulos e o sistema HIMax são verificados e certificados podem ser consultadas no Manual de segurança HIMax HI 801 241 P.

3.1 Função de segurança

O módulo avalia os sinais de entrada dos iniciadores e dos contatores e monitora a presença de guebra de fio e curto de linha nos circuitos de iniciador/contator.

A função de segurança está implementada conforme SIL 3.

3.1.1 Reação em caso de erro

No caso de erros, o módulo assume o estado seguro e as variáveis de entrada atribuídas fornecem o valor inicial (valor padrão = 0) para o programa de aplicação.

Para que as variáveis de entrada forneçam o valor 0 ao programa de aplicação no caso de falhas, os valores iniciais devem ser ajustados para 0. Se no lugar do valor de processo for avaliado o valor cru, o usuário deve programar a supervisão e o valor em caso de falhas no programa de aplicação.

O módulo ativa o LED Error na placa frontal.

3.2 Volume de fornecimento

O módulo precisa para a operação de uma Connector Board compatível. Ao usar um FTA, um cabo de sistema é necessário para conectar a Connector Board com o FTA. As Connector Boards, o cabo de sistema e os FTAs não fazem parte do volume de fornecimento do módulo.

A descrição das Connector Boards ocorre no Capítulo 3.6, a dos cabos de sistema no Capítulo 3.7. Os FTAs são descritos em manuais separados.

Página 10 de 58 HI 801 260 P Rev. 4.00

3.3 Placa de identificação

A placa de identificação contém os seguintes dados importantes:

- Nome do produto
- Marca de certificação
- Código de barras (código 2D ou traços)
- Número de peça (Part-No.)
- Índice de revisões do hardware (HW-Rev.)
- Índice de revisões do software (SW-Rev.)
- Tensão de operação (Power)
- Dados Ex (se cabível)
- Ano de fabricação (Prod-Year:)

Figura 1: Placa de identificação, como exemplo

3.4 Estrutura

O módulo é equipado com 32 entradas analógicas de corrente que são medidas cada uma por dois dispositivos internos de medição e verificados funcionalmente.

Quatro alimentações à prova de curto-circuito alimentam oito saídas de alimentação respectivamente. A cada entrada está atribuída uma saída de alimentação.

Através de 32 entradas, é possível avaliar os valores de medição dos iniciadores, iniciadores de segurança ou contatores ligados.

Os limiares de comutação para gerar sinais digitais podem ser parametrizados em SILworX.

O sistema de processadores 1002 do módulo de E/S direcionado à segurança comanda e supervisiona o nível de E/S. Os dados e estados do módulo de E/S são transmitidos aos módulos de processador mediante o barramento de sistema redundante. O barramento de sistema é configurado como redundante por motivos da disponibilidade. A redundância apenas está garantida se ambos os módulos do barramento de sistema foram encaixados no suporte básico e configurados no SILworX.

LEDs indicam o status das entradas digitais no indicador, veja Capítulo 3.4.2.

HI 801 260 P Rev. 4.00 Página 11 de 58

3.4.1 Diagrama de blocos

O seguinte diagrama de blocos mostra a estrutura do módulo.

Figura 2: Diagrama de blocos

Página 12 de 58 HI 801 260 P Rev. 4.00

3.4.2 Indicador

A figura a seguir reproduz o indicador do módulo.

Figura 3: Indicador

HI 801 260 P Rev. 4.00 Página 13 de 58

Os diodos luminosos indicam o estado operacional do módulo.

Os diodos luminosos do módulo são divididos em três categorias:

- Indicador de status do módulo (Run, Error, Stop, Init)
- Indicador de barramento de sistema (A, B)
- Indicador E/S (DI 1...32, Field)

Ao ligar a tensão de alimentação sempre ocorre um teste dos diodos luminosos no qual por um breve momento todos os diodos luminosos acendem.

Definição das frequências de piscar:

Na tabela a seguir são definidas as frequências de piscar dos LEDs:

Nome	Frequência de piscar
Piscar1	liga longo (aprox. 600 ms), desliga longo (aprox. 600 ms)
Piscar2	liga curto (aprox. 200 ms), desliga curto (aprox. 200 ms), liga curto (aprox. 200 ms), desliga longo (aprox. 600 ms)
Piscar x	Comunicação Ethernet: Piscando no ritmo da transmissão de dados

Tabela 3: Frequências de piscar dos diodos luminosos

3.4.3 Indicador de status do módulo

Estes diodos luminosos estão montados na parte superior da placa frontal.

LED	Cor	Status	Significado
Run	Verde	Liga	Módulo no estado RUN, operação normal
		Piscar1	Módulo no estado
			STOP/OS_DOWNLOAD ou
			RUN/UP STOP (só para módulos de processador)
		Desliga	Módulo não no estado RUN,
			observar os demais LEDs de status
Error	Vermelho	Liga/Piscar1	A falha interna do módulo detectada mediante auto-teste, p. ex., falha de hardware,
			software ou falhas da alimentação com tensão.
			Falhas ao carregar o sistema operacional
		Desliga	Operação normal
Stop	Amarelo	Liga	Módulo no estado STOP/VALID CONFIGURATION
		Piscar1	Módulo no estado
			STOP/INVALID CONFIGURATION ou
			STOP/OS_DOWNLOAD
		Desliga	Módulo não está no estado STOP,
			observar os demais LEDs de status
Init	Amarelo	Liga	Módulo no estado INIT
		Piscar1	Módulo no estado LOCKED
		Desliga	O módulo não está no estado INIT nem em
			LOCKED, observar os demais LEDs de status

Tabela 4: Indicador de status do módulo

Página 14 de 58 HI 801 260 P Rev. 4.00

3.4.4 Indicador de barramento de sistema

Os diodos luminosos para o indicador de barramento de sistema possuem a inscrição Sys Bus.

LED	Cor	Status	Significado
Α	Verde	Liga	Conexão lógica e física ao módulo de barramento de sistema no slot 1
		Piscar1	Sem conexão ao módulo de barramento de sistema no slot 1
	Amarelo	Piscar1	Conexão física ao módulo de barramento de sistema no slot 1 estabelecida Sem conexão a um módulo processador (redundante) na operação de sistema
В	Verde	Liga	Conexão lógica e física ao módulo de barramento de sistema no slot 2
		Piscar1	Sem conexão ao módulo de barramento de sistema no slot 2
	Amarelo	Piscar1	Conexão física ao módulo de barramento de sistema no slot 2 estabelecida Sem conexão a um módulo processador (redundante) na operação de sistema
A+B	Desliga	Desliga	Sem conexão lógica e física aos módulo de barramento de sistema nos slots 1 e 2

Tabela 5: Indicador de barramento de sistema

3.4.5 Indicador de E/S

Os diodos luminosos do indicador de E/S possuem a inscrição Channel.

LED	Cor	Status	Significado
Channel	Amarelo	Liga	Nível High ativo
132		Piscar2	Falha de canal
		Desliga	Nível Low ativo
Field	Vermelho	Piscar2	Erro de campo em no mínimo um canal (quebra de condutor, curto-circuito, sobrecorrente, etc.)
		Desliga	Lado de campo sem erros

Tabela 6: Diodos luminosos do indicador de E/S

HI 801 260 P Rev. 4.00 Página 15 de 58

3.5 Dados do produto

Informações gerais			
Tensão de alimentação	24 VDC, -15%+20%, w _s ≤ 5%, SELV, PELV		
Consumo de corrente	mín. 450 mA (sem canais/alimentações de iniciador) máx. 1 A (no caso de curto circuito de alimentações de iniciador)		
Consumo de corrente por canal	mín. 0 mA (sem alimentação de iniciador) máx. 12,5 mA (com alimentação de iniciador)		
Temperatura de operação	0 °C+60 °C		
Temperatura de armazenamento	-40 °C+85 °C		
Umidade	máx. de 95% de umidade relativa, sem condensação		
Grau de proteção	IP 20		
Dimensões (H x L x P) em mm	310 x 29,2 x 230		
Massa	aprox. 1,12 kg		

Tabela 7: Dados do produto

Figura 4: Vistas

Página 16 de 58 HI 801 260 P Rev. 4.00

Entradas digitais		
Quantidade de entradas	32 unipolar com pólo de referência DI-,	
(número de canais)	não galvanicamente separadas entre si	
Tipo de entrada	Entradas digitais para iniciadores de segurança (p. ex., P+F). iniciadores conforme EN 60 947-5-6 (NAMUR) ou contatores ligados	
Corrente de entrada nominal	09,25 mA	
	Limiares de comutação podem ser livremente ajustados no SILworX	
Faixa de uso corrente de entrada	09,3 mA	
Resolução	12 Bit	
Valor do LSB (Least Significant Bit)	0,1 μΑ	
Shunt para medição de corrente	1000 Ω, no Connector Board	
Comprimento do condutor	Comprimento do condutor depende da resistência do condutor ≤ 50 Ω, conforme EN 60 947-5-6	
Ciclo registro de eventos (SOE)	2 ms	
Renovação de valores de medição (no programa de aplicação)	Tempo de ciclo do programa de aplicação	
Erros técnicos de medição do valor final		
Precisão do erro básico	< ±0,5% incl. Shunt	
Precisão do erro de uso	< ±1% com 060 °C, inclus. Shunt	
Precisão de segurança técnica	< ±2%	

Tabela 8: Dados técnicos das entradas digitais

Valores padrão das entradas digitais		
Iniciador conforme EN 60947–5	Verificar valores para o iniciador utilizado	
	concretamente.	
Limiar de ligação Low → High	1,8 mA	
Limiar de desligamento High → Low	1,4 mA	
Quebra de fio	≤ 0,2 mA (para TMR 0,3 mA)	
Curto de linha	≥ 6,55 mA	
Iniciador de segurança conf.	Verificar valores para o iniciador utilizado	
EN 60947-5-6	concretamente.	
Limiar de ligação Low → High	1,8 mA	
Limiar de desligamento High → Low	1,4 mA	
Quebra de fio	≤ 0,2 mA (para TNR 0,3 mA)	
Curto de linha	≥ 4,825 mA	
Contator com combinação de	Verificar valores para combinação de resistência	
resistência (1 k Ω /10 k Ω)	utilizada concretamente.	
Limiar de ligação Low → High	1,8 mA	
Limiar de desligamento High → Low	1,4 mA	
Quebra de fio	≤ 0,2 mA (para TMR 0,3 mA)	
Curto de linha	≥ 9,0 mA	

Tabela 9: Valores padrão das entradas digitais

HI 801 260 P Rev. 4.00 Página 17 de 58

▲ CUIDADO

Ao usar módulos com tríplice redundância (TMR), no caso de iniciadores de segurança, a inversão de polaridade não é mais detectada como curto de linha.

Alimentação de iniciador	Alimentação de iniciador				
Quantidade de alimentações de iniciador	4 com 8 saídas cada				
Tensão de saída alimentação de iniciador	8,2 VDC, ±6%				
Supervisão alimentação de iniciador	O módulo monitora as alimentações de iniciadores para detectar sobretensão, subtensão e sobrecorrente. No caso de um erro, ajusta o status correspondente Supply X OK para FALSE.				
Curto circuito de uma alimentação de iniciador	> 200 mA (0 V por grupo) O módulo desliga a alimentação de iniciador correspondente e atribui o status correspondente Supply X OK FALSE.				
Duração máxima de sobrecarga curto circuito (S+ → DI+)	60 s				
Atribuição das saídas de alimenta	ção				
Para a alimentação sempre deve entrada!	ser usada a saída de tensão atribuída à respectiva				
S1+S8+	DI1+DI8+				
S9+S16+	DI2+DI16+				
S17+S24+	DI17+DI24+				
S25+S32+	DI15+DI32+				

Tabela 10: Dados técnicos da alimentação de iniciador

Página 18 de 58 HI 801 260 P Rev. 4.00

3.6 Connector Boards

Uma Connector Board conecta o módulo ao nível de campo. O módulo e a Connector Board em conjunto formam uma unidade funcional. Antes da instalação do módulo, montar a Connector Board no slot previsto.

As seguintes Connector Boards estão disponíveis para o módulo:

Connector Board	Descrição
X-CB 005 01	Connector Board com bornes aparafusados
X-CB 005 02	Connector Board redundante com bornes aparafusados
X-CB 005 03	Connector Board com conector de cabo
X-CB 005 04	Connector Board redundante com conector de cabo
X-CB 005 05	Connector Board com conector de cabo, FTA redundante
X-CB 005 06	Connector Board com tríplice redundância com bornes aparafusados
X-CB 005 07	Connector Board com tríplice redundância com conector de cabo

Tabela 11: Connector Boards disponíveis

3.6.1 Codificação mecânica de Connector Boards

Módulos de E/S e Connector Boards são codificados mecanicamente a partir da Revisão AS10 do hardware para impedir o equipamento com módulos de E/S incompatíveis. Pela codificação é excluído o equipamento incorreto e assim, eliminam-se as consequências para módulos redundantes e para o campo. Além disso, o equipamento com módulos incorretos não influencia o sistema HIMax, pois apenas módulos corretamente configurados no SILworX entram no modo RUN.

Módulos de E/S e as Connector Board correspondentes são equipados com uma codificação mecânica em forma de cunhas. As cunhas de codificação no conector F da Connector Board entram nos recessos do conector M do módulo de E/S, veja Figura 5.

Módulos de E/S codificados apenas podem ser inseridos nas Connector Boards correspondentes.

HI 801 260 P Rev. 4.00 Página 19 de 58

Figura 5: Exemplo de uma codificação

Módulos de E/S codificados apenas podem ser colocados em Connector Boards não codificadas. Módulos de E/S não codificados não podem ser colocados em Connector Boards codificadas.

3.6.2 Codificação de Connector Boards X-CB 005

a7	a13	a20	a26	e7	e13	e20	e26
		Х			Χ		Χ

Tabela 12: Posição das cunhas de codificação

Página 20 de 58 HI 801 260 P Rev. 4.00

3.6.3 Connector Boards com bornes aparafusados

Figura 6: Connector Boards com bornes aparafusados

HI 801 260 P Rev. 4.00 Página 21 de 58

3.6.4 Pinagem de Connector Boards com bornes aparafusados

Nº de pino	Denominação	Sinal	Nº de pino	Denominação	Sinal
1	01a	S1+	1	02a	S2+
2	01b	DI1+	2	02b	DI2+
3	03a	S3+	3	04a	S4+
4	03b	DI3+	4	04b	DI4+
5	05a	S5+	5	06a	S6+
6	05b	DI5+	6	06b	DI6+
7	07a	S7+	7	08a	S8+
8	07b	DI7+	8	08b	DI8+
Nº de pino	Denominação	Sinal	Nº de pino	Denominação	Sinal
1	09a	S9+	1	10a	S10+
2	09b	DI9+	2	10b	DI10+
3	11a	S11+	3	12a	S12+
4	11b	DI11+	4	12b	DI12+
5	13a	S13+	5	14a	S14+
6	13b	DI13+	6	14b	DI14+
7	15a	S15+	7	16a	S16+
8	15b	DI15+	8	16b	DI16+
Nº de pino	Denominação	Sinal	Nº de pino	Denominação	Sinal
1	17a	S17+	1	18a	S18+
2	17b	DI17+	2	18b	DI18+
3	19a	S19+	3	20a	S20+
4	19b	DI19+	4	20b	DI20+
5	21a	S21+	5	22a	S22+
6	21b	DI21+	6	22b	DI22+
7	23a	S23+	7	24a	S24+
8	23b	DI23+	8	24b	DI24+
Nº de pino	Denominação	Sinal	Nº de pino	Denominação	Sinal
1	25a	S25+	1	26a	S26+
2	25b	DI25+	2	26b	DI26+
3	27a	S27+	3	28a	S28+
4	27b	DI27+	4	28b	DI28+
5	29a	S29+	5	30a	S30+
6	29b	DI29+	6	30b	DI30+
7	31a	S31+	7	32a	S32+
8	31b	DI31+	8	32b	DI32+

Tabela 13: Pinagem de Connector Boards com bornes aparafusados

Página 22 de 58 HI 801 260 P Rev. 4.00

A ligação do lado de campo ocorre com conectores de bornes que são encaixados nas réguas de pinos da Connector Board.

Os conectores de bornes possuem as seguintes características:

Ligação lado de campo				
Conector de bornes	8 un., 8 pinos			
Seção transversal	0,21,5 mm² (de um fio)			
do condutor	0,21,5 mm² (fio fino)			
	0,21,5 mm² (com terminal tubular)			
Comprimento	6 mm			
de decapagem				
Chave de fenda	Fenda 0,4 x 2,5 mm			
Binário de aperto	0,20,25 Nm			

Tabela 14: Características dos conectores de bornes

HI 801 260 P Rev. 4.00 Página 23 de 58

3.6.5 Connector Boards com conector de cabo

Figura 7: Connector Boards com conector de cabo

Página 24 de 58 HI 801 260 P Rev. 4.00

3.6.6 Pinagem de Connector Boards com conector de cabo

Para estas Connector Boards, a HIMA disponibiliza cabos de sistema pré-confeccionados, veja Capítulo 3.7. Os conectores de cabo e a Connector Board são codificados.

Pinagem de conectores!

A seguinte tabela descreve a pinagem dos conectores do cabo de sistema.

Identificação de fios em semelhança à DIN 47100:

Linho	c c		b	b		а		
Linha	Sinal	Cor	Sinal	Cor	Sinal	Cor		
1	S32+	rosa-marrom 1)	DI32+	branco-rosa 1)	reservado	marrom- vermelho 1)		
2	S31+	cinza-marrom 1)	DI31+	branco-cinza 1)	reservado	branco- vermelho 1)		
3	S30+	amarelo-marrom 1)	DI30+	branco-amarelo 1)	reservado	marrom-azul 1)		
4	S29+	marrom-verde 1)	DI29+	branco-verde 1)	reservado	branco-azul 1)		
5	S28+	vermelho-azul 1)	DI28+	cinza-rosa 1)				
6	S27+	violeta 1)	DI27+	preto 1)				
7	S26+	vermelho 1)	DI26+	azul 1)				
8	S25+	rosa 1)	DI25+	cinza 1)				
9	S24+	amarelo 1)	DI24+	verde 1)				
10	S23+	marrom 1)	DI23+	branco 1)				
11	S22+	vermelho-preto	DI22+	azul-preto				
12	S21+	rosa-preto	DI21+	cinza-preto				
13	S20+	rosa-vermelho	DI20+	cinza-vermelho				
14	S19+	rosa-azul	DI19+	cinza-azul				
15	S18+	amarelo-preto	DI18+	verde-preto				
16	S17+	amarelo-vermelho	DI17+	verde-vermelho				
17	S16+	amarelo-azul	DI16+	verde-azul				
18	S15+	amarelo-rosa	DI15+	rosa-verde				
19	S14+	amarelo-cinza	DI14+	cinza-verde				
20	S13+	marrom-preto	DI13+	branco-preto				
21	S12+	marrom-vermelho	DI12+	branco-vermelho				
22	S11+	marrom-azul	DI11+	branco-azul				
23	S10+	rosa-marrom	DI10+	branco-rosa				
24	S9+	cinza-marrom	DI9+	branco-cinza				
25	S8+	amarelo-marrom	DI8+	branco-amarelo				
26	S7+	marrom-verde	DI7+	branco-verde				
27	S6+	vermelho-azul	DI6+	cinza-rosa				
28	S5+	violeta	DI5+	preto				
29	S4+	vermelho	DI4+	azul				
30	S3+	rosa	DI3+	cinza				
31	S2+	amarelho	DI2+	verde				
32	S1+	marrom	DI1+	branco				

Anel cor de laranja adicional no caso de repetição de cores da identificação de fios.
 Tabela 15: Pinagem dos conectores de cabo do cabo de sistema

HI 801 260 P Rev. 4.00 Página 25 de 58

3.6.7 Connector Board redundância via dois suportes básicos de sistema

Mono

X-CB 005 05

- 1 Conectores de módulos de E/S
- Ligação lado de campo (conector de cabo linha 1)
- 3 Ligação lado de campo (conector de cabo linha 32)
- 4 Codificação para conectores de cabo

Figura 8: Connector Board com conector de cabo, variante X-CB 005 05

Página 26 de 58 HI 801 260 P Rev. 4.00

3.6.8 Pinagem X-CB 005 05

Para esta Connector Board, a HIMA disponibiliza cabos de sistema pré-confeccionados, veja Capítulo 3.7. Os conectores de cabo e a Connector Board são codificados.

Pinagem de conectores!

A seguinte tabela descreve a pinagem dos conectores do cabo de sistema.

Identificação de fios em semelhança à DIN 47100.

Linha	e		d		С		b	b		а	
Linna	Sinal	Cor	Sinal	Cor	Sinal	Cor	Sinal	Cor	Sinal	Cor	
1	S32+	vermelho 2)	DI_R32+	rosa- marrom ¹⁾	DI32+	branco- rosa 1)			reserv.	amarelo- cinza ²⁾	
2	S31+	azul ²⁾	DI_R31+	cinza- marrom ¹⁾	DI31+	branco -cinza 1)			reserv.	cinza- verde ²⁾	
3	S30+	rosa ²⁾	DI_R30+	amarelo- marrom 1)	DI30+	branco- amarelo 1)			reserv.	marrom- preto 2)	
4	S29+	cinza 2)	DI_R29+	marrom- verde 1)	DI29+	branco- verde 1)			reserv.	branco- preto ²⁾	
5	S28+	amarelo 2)	DI_R28+	vermelho- azul 1)	DI28+	cinza- rosa ¹⁾					
6	S27+	verde 2)	DI_R27+	violeta 1)	DI27+	preto 1)					
7	S26+	marrom 2)	DI_R26+	vermelho 1)	DI26+	azul 1)					
8	S25+	branco 2)	DI_R25+	rosa 1)	DI25+	cinza 1)					
9	S24+	vermelho- preto 1)	DI_R24+	amarelo 1)	DI24+	verde 1)					
10	S23+	azul-preto 1)	DI_R23+	marrom 1)	DI23+	branco 1)					
11	S22+	rosa- preto 1)	DI_R22+	vermelho- preto	DI22+	azul- preto					
12	S21+	cinza- preto 1)	DI_R21+	rosa- preto	DI21+	cinza- preto					
13	S20+	rosa- vermelho ¹⁾	DI_R20+	rosa- vermelho	DI20+	cinza- vermelho					
14	S19+	cinza- vermelho ¹⁾	DI_R19+	rosa-azul	DI19+	cinza- azul					
15	S18+	rosa- azul ¹⁾	DI_R18+	amarelo- preto	DI18+	verde- preto					
16	S17+	cinza- azul ¹⁾	DI_R17+	amarelo- vermelho	DI17+	verde- vermelho					
17	S16+	amarelo- preto 1)	DI_R16+	amarelo- azul	DI16+	verde- azul	S-	marrom- vermelho ²⁾			
18	S15+	verde- preto 1)	DI_R15+	amarelo- rosa	DI15+	rosa- verde	S-	branco- vermelho ²⁾			
19	S14+	amarelo- vermelho 1)	DI_R14+	amarelo- verde	DI14+	cinza- verde	S-	marrom- azul ²⁾			
20	S13+	verde- vermelho 1)	DI_R13+	marrom- preto	DI13+	branco- preto	S-	branco- azul ²⁾			
21	S12+	amarelo- azul ¹⁾	DI_R12+	marrom- vermelho	DI12+	branco- vermelho	S-	rosa- marrom ²⁾			
22	S11+	verde- azul ¹⁾	DI_R11+	marrom- azul	DI11+	branco- azul	S-	branco- rosa ²⁾			
23	S10+	amarelo- rosa ¹⁾	DI_R10+	rosa- marrom	DI10+	branco- rosa	S-	cinza- marom ²⁾			
24	S9+	rosa- verde ¹⁾	DI_R9+	cinza- marrom	DI9+	branco- cinza	S-	branco- cinza ²⁾			
25	S8+	amarelo- cinza ¹⁾	DI_R8+	amarelo- marrom	DI8+	branco- amarelo	DI-	amarelo- marrom ²⁾			
26	S7+	cinza- verde ¹⁾	DI_R7+	marrom- verde	DI7+	branco- verde	DI-	branco- amarelo ²⁾			

HI 801 260 P Rev. 4.00 Página 27 de 58

27		marrom- preto 1)	DI_R6+	vermelho- azul	DI6+	cinza- rosa	DI-	marrom- verde ²⁾	
28		branco- preto 1)	DI_R5+	violeta	DI5+	preto	DI-	branco- verde ²⁾	
29		marrom- vermelho ¹⁾	DI_R4+	vermelho	DI4+	azul	DI-	vermelho- azul ²⁾	
30		branco- vermelho ¹⁾	DI_R3+	rosa	Di3+	cinza	DI-	cinza- rosa ²⁾	
31	_	marrom- azul ¹⁾	DI_R2+	amarelo	DI2+	verde	DI-	violeta 2)	
32	S1+	branco-azul 1)	DI_R1+	marrom	DI1	branco	DI-	preto 2)	

¹⁾ Anel cor de laranja adicional na primeira repetição de cores da identificação de fios.

Tabela 16: Pinagem dos conectores de cabo do cabo de sistema

Página 28 de 58 HI 801 260 P Rev. 4.00

²⁾ Anel cor violeta adicional na segunda repetição de cores da identificação de fios.

3.7 Cabo de sistema

Os cabos de sistema conectam as Connector Boards com os Field Termination Assemblies.

1 Conectores de cabo idênticos

Figura 9: Cabo de sistema X-CA 002-01-n

Dependendo do tipo de Connector Board, há dois tipos de cabo de sistema disponíveis.

3.7.1 Cabo de sistema X-CA 002

O cabo de sistema X-CA 002 conecta as Connector Boards X-CB 002 03/04/07 com os Field Termination Assemblies.

Informações gerais	
Cabo	LIYY-TP 34 x 2 x 0,25 mm ²
Condutor	Fio fino
Diâmetro externo médio (d)	aprox. 15,2 mm
Raio mínimo de dobradura	
instalação fixa	5 x d
móvel	10 x d
Comportamento de combustão	Resistente a chamas e autoextintor conf. IEC 60332-1-22-2
Comprimento	830 m
Codificação de cores	Orientado na DIN 47100, veja Tabela 15.

Tabela 17: Dados de cabo X-CA 002

HI 801 260 P Rev. 4.00 Página 29 de 58

O cabo de sistema está disponível nas seguintes variantes padrão:

Cabo de sistema	Descrição	Comprimento
X-CA 002 01 8	Conectores de cabos de ambos os lados.	8 m
X-CA 002 01 15		15 m
X-CA 002 01 30		30 m

Tabela 18: Cabos de sistema disponíveis X-CA 002

3.7.2 Cabo de sistema X-CA 009

O cabo de sistema X-CA 009 conecta a Connector Board X-CB 005 05 com o Field Termination Assembly.

Informações gerais				
Cabo	LIYCY-TP 58 x 2 x 0,14 mm ²			
Condutor	Fio fino			
Diâmetro externo médio (d)	aprox. 18,3 mm			
Raio mínimo de dobradura instalação fixa móvel	5 x d 10 x d			
Comportamento de combustão	Resistente a chamas e autoextintor conf. IEC 60332-1-22-2			
Comprimento	830 m			
Codificação de cores	Orientado na DIN 47100, veja Tabela 16.			

Tabela 19: Dados de cabo X-CA 009

O cabo de sistema está disponível nas seguintes variantes padrão:

Cabo de sistema	Descrição	Comprimento
X-CA 009 01 8	Conectores de cabos de ambos os lados.	8 m
X-CA 009 01 15		15 m
X-CA 009 01 30		30 m

Tabela 20: Cabos de sistema disponíveis X-CA 009

3.7.3 Codificação do conector de cabo

Os conectores de cabo são equipados com três pinos de codificação. Desta forma, os conectores de cabos apenas podem ser inseridos em Connector Boards e FTAs com a respectiva codificação, veja Figura 7.

Página 30 de 58 HI 801 260 P Rev. 4.00

4 Colocação em funcionamento

Este capítulo descreve a instalação e configuração do módulo, bem como as suas variantes de ligação. Para informações mais detalhadas, veja o Manual de segurança HIMax HI 801 241 P.

A aplicação direcionada à segurança (SIL 3 conf. IEC 61508) das entradas deve corresponder aos requisitos de segurança inclusive os sensores conectados. Informações mais detalhadas no Manual de segurança HIMax.

4.1 Montagem

É necessário observar os seguintes pontos durante a montagem:

- Somente operar com os componentes de ventilação correspondentes, veja Manual de sistema HI 801 242 P.
- Somente operar com a Connector Board correspondente, veja Capítulo 3.6.
- O módulo inclusive suas peças de conexão deve ser configurado para alcançar no mínimo o grau de proteção IP 20 conf. EN 60529: 1991 + A1:2000.

NOTA

Danos por ligação incorreta!

Não-observância pode resultar em danos nos componentes eletrônicos. Os seguintes pontos devem ser observados.

- Conectores e bornes do lado de campo
 - Na ligação dos conectores e bornes ao lado de campo, observar medidas adequadas de aterramento.
 - Utilizar para cada entrada de medição um cabo blindado com pares de fios trançados (twisted pair).
 - Colocar a blindagem do lado do módulo no trilho de blindagem de cabos (usar borne de conexão de blindagem SK 20 ou equivalente).
 - No caso de condutores multifilares, a HIMA recomenda colocar terminais tubulares nas extremidades dos condutores. Os bornes de ligação devem ser adequados para a conexão das bitolas dos condutores utilizados.
- Em caso de utilização de alimentação de iniciador, utilizar a respectiva alimentação de iniciador atribuída à entrada. (p. ex. S1+ com DI1+).
- A HIMA recomenda utilizar a alimentação do iniciador do módulo. Falhas de função de uma unidade de alimentação ou medição podem causar a sobrecarga e danos da respectiva entrada de medição do módulo. No caso de alimentação externa, verificar após sobrecarga não-transiente o valor zero e o valor final!
- Uma ligação redundante das entradas deve ser realizada mediante as respectivas Connector Boards, veja Capítulo 3.6.

4.1.1 Ligação de entradas não utilizadas

Entradas não utilizadas podem permanecer abertas e não precisam ser terminadas. Para evitar curtos, porém, não é permitido conectar condutores com pontas abertas do lado de campo às Connector Boards.

HI 801 260 P Rev. 4.00 Página 31 de 58

4.2 Instalação e desinstalação do módulo

Este capítulo descreve a substituição de um módulo existente ou a inserção de um módulo novo.

Ao desmontar um módulo, a Connector Board permanece no suporte básico HIMax. Isso evita fiação dispendiosa adicional nos bornes de ligação, pois todas as ligações de campo são ligadas através da Connector Board do módulo.

4.2.1 Montagem de uma Connector Board

Ferramentas e meios auxiliares

- Chave de fenda, fenda 0,8 x 4,0 mm
- Connector Board compatível

Montar a Connector Board:

- 1. Inserir a Connector Board com a ranhura para cima no trilho guia (veja a este respeito o desenho na continuação). Engatar a ranhura no pino do trilho guia.
- 2. Apoiar a Connector Board sobre o trilho de blindagem de cabo.
- 3. Aparafusar ao suporte básico mediante os dois parafusos a prova de perda. Primeiramente inserir o parafuso inferior, depois o superior.

Desmontar a Connector Board:

- 1. Desparafusar do suporte básico os dois parafusos a prova de perda.
- 2. Levantar a Connector Board do trilho de blindagem de cabo na parte inferior.
- 3. Puxar a Connector Board para fora do trilho guia.

Figura 10: Inserir a Connector Board

Página 32 de 58 HI 801 260 P Rev. 4.00

Figura 11: Aparafusar a Connector Board

HI 801 260 P Rev. 4.00 Página 33 de 58

4.2.2 Instalação e desinstalação de um módulo

Este capítulo descreve a instalação e desinstalação de um módulo HIMax. Um módulo pode ser instalado e desinstalado enquanto o sistema HIMax está em operação.

NOTA

Danos nos conectores de encaixe por emperramento! Não-observância pode resultar em danos no sistema de comando. Sempre inserir o módulo no suporte básico de forma cautelosa.

Ferramentas

- Chave de fenda, fenda 0,8 x 4,0 mm
- Chave de fenda, fenda 1,2 x 8,0 mm

Instalação

- 1. Abrir a chapa de cobertura do inserto do ventilador:
 - ☑ Colocar as travas para a posição open aberta
 - ☑ Dobrar a chapa de cobertura para cima e inserir no inserto do ventilador
- 2. Inserir o módulo na parte superior no perfil de encaixe, veja 1.
- 3. Girar o módulo do lado inferior para dentro do suporte básico e engatar com leve pressão, veja 2.
- 4. Aparafusar o módulo, veja 3.
- 5. Puxar a chapa de cobertura do ventilador para fora e dobrar para baixo.
- Travar a chapa de cobertura.

Desinstalação

- 1. Abrir a chapa de cobertura do inserto do ventilador:
 - ☑ Colocar as travas na posição open aberta
 - ☑ Dobrar a chapa de cobertura para cima e inserir no inserto do ventilador
- 2. Soltar o parafuso, veja 3.
- 3. Girar o módulo do lado inferior para fora do suporte básico e empurrar com leve pressão para cima, veja 2 e 1.
- 4. Puxar a chapa de cobertura do ventilador para fora e dobrar para baixo.
- 5. Travar a chapa de cobertura.

Página 34 de 58 HI 801 260 P Rev. 4.00

Figura 12: Instalar e desinstalar módulo

Abrir a chapa de cobertura do inserto do ventilador apenas brevemente durante a operação do sistema HIMax (< 10 min), pois isso prejudica a convecção forçada de ar.

HI 801 260 P Rev. 4.00 Página 35 de 58

4.3 Registro de eventos (SOE)

O registro de eventos é possível para todas as entradas digitais do módulo. Entradas a serem monitoradas são configuradas com ajuda da ferramenta de programação SILworX, veja Ajuda Online e Manual de comunicação HI 801 240 P.

O módulo de E/S lê em cada um dos seus ciclos (2 ms) os valores de medição das entradas digitais e forma eventos que são armazenados na memória tampão volátil de eventos de E/S.

O evento consiste em:

Evento	Descrição
ID do evento	O ID do evento é atribuído pelo PADT.
Carimbo de hora	Data (p. ex: 21.11.2008)
	Hora (p. ex.: 9:31:57.531)
Estado de evento	Alarme/Normal
Qualidade de	Quality good/
evento	Quality bad, veja www.opcfoundation.org

Tabela 21: Descrição do evento

O módulo processador lê os eventos ciclicamente da memória tampão de eventos e os armazena na sua memória não-volátil. Eventos lidos pelo módulo processador podem ser sobrescritos na memória tampão de eventos por novos eventos.

No caso da memória tampão de eventos cheia, o módulo de E/S gera uma mensagem de evento Overflow System na memória não-volátil do módulo processador. Depois, não são mais gerados eventos novos até haver espaço na memória tampão.

Página 36 de 58 HI 801 260 P Rev. 4.00

4.4 Configuração do módulo no SILworX

O módulo é configurado no Hardware Editor da ferramenta de programação SILworX.

Observar os seguintes pontos durante a configuração:

- Para o diagnóstico do módulo e dos canais, é possível avaliar adicionalmente ao valor de medição todos os parâmetros de sistema no programa de aplicação. Informações mais detalhadas sobre os parâmetros de sistema podem ser encontradas nas tabelas a partir do Capítulo 4.4.1.
- Dois limiares para o diagnóstico do condutor são registrados relacionada à segurança com o módulo. Os limiares de comutação podem ser parametrizados através da configuração do módulo no SILworX.
- Na utilização da alimentação do iniciador do módulo, ativar o parâmetro Supply x On. Para o diagnóstico da alimentação de iniciador usada, pode ser avaliado o status Supply X OK no programa de aplicação. Informações mais detalhadas sobre o status Supply X OK podem ser encontradas na Tabela 23.
- No caso de módulos com ligação redundante, os grupos de alimentação de iniciadores devem ser ativados pelo parâmetro Supply X On.
 Para o diagnóstico das alimentações de iniciador redundante, os status Supply X OK das duas alimentações de iniciador usadas devem ser avaliados mediante um bloco OU.
 Na saída do bloco OU deve ser usado um retardo de desligamento (p. ex., bloco funcional TOF) com a duração de no mínimo um ciclo de módulo processador.
 Isso impede a falha temporária da supervisão de diagnóstico (p. ex., ao substituir um módulo com ligação redundante). Neste caso deve ser observado que com esta medida, a avaliação para este status é retardada de forma proporcional.
- Se um grupo de redundância for criado, a configuração do grupo de redundância ocorre nos seus registros. Os registros do grupo de redundância divergem dos registros dos módulos individuais, veja as seguintes tabelas.

Para a avaliação dos parâmetros de sistema no programa de aplicação, devem ser atribuídas variáveis globais aos parâmetros de sistema. Executar este passo no Hardware Editor, na visualização de detalhe do módulo.

As seguintes tabelas contêm os parâmetros de sistema do módulo na mesma ordem como no Hardware Editor.

DICA

Para a conversão dos valores hexadecimais em sequências de Bits é útil, p. ex., a calculadora do Windows[®], na visão **científico**.

HI 801 260 P Rev. 4.00 Página 37 de 58

4.4.1 Registro Module

O registro **Module** contém os seguintes parâmetros de sistema do módulo:

Nome		R/W	Descrição	
Estes status e parâr	netros são i			no Hardware Editor.
Name		W	Nome do módu	
Spare Module		W	Ativado: Módulo do grupo de redundância ausente no suporte básico não é avaliado como erro. Desativado: Módulo do grupo de redundância ausente no suporte básico é avaliado como erro. Ajuste padrão: Desativado Apenas é exibido no registro do grupo de redundância!	
Noise Blanking		W		são de avarias pelo módulo processador
3			(Ativado/Desativado) Ajuste padrão: Ativado O módulo processador retarda a reação de erro após uma avaria transiente até o tempo de segurança. O último valor de processo válido permanece para o programa de aplicação.	
Nome	Tipo de dados	R/W	Descrição	
Os seguintes status de aplicação.	e parâmetro	s poden	n ser atribuídos a	a variáveis globais e usados no programa
Module OK	BOOL	R	Operação de re redundantes nã FALSE: Erro de módulo	e um canal (sem erros externos)
Madula Ctatus	DWODD	_		âmetro Module Status!
Module Status	DWORD	R	Status do módu	
Timestamn [us]	DWORD	R	e não preci programa c	Erro do módulo 1) Limiar de temperatura 1 ultrapassado Limiar de temperatura 2 ultrapassado Valor de temperatura com erro Tensão L1+ com erro Tensão L2+ com erro Tensões internas com erro Sem conexão ao módulo 1) s possuem efeito sobre o status Module OK isam ser avaliados especificamente no de aplicação.
Timestamp [µs]	טאטאט			ossegundos do carimbo de hora. edição das entradas digitais.
Timestamp [s]	DWORD	R		ındos do carimbo de hora. edição do carimbo de hora.

Tabela 22: Registro Module no Hardware Editor

Página 38 de 58 HI 801 260 P Rev. 4.00

4.4.2 Registro I/O Submodule DI32_05 O registro I/O Submodule DI32_05 contém os seguintes parâmetros de sistema:

Nome			Descrição	
Estes status e parâmetro	os são introd	duzidos	diretamente no Hardware Editor.	
Nome		R	Nome do módulo	
Show Signal Overflow		W	Indicar transbordamento do sinal de medição com o LED <i>Field</i> (ativado/desativado) Ajuste padrão: Ativado	
Show Supply Overcurred	Show Supply Overcurrent		Indicar sobrecorrente da alimentação com o LED <i>Field</i> (ativado/desativado) Ajuste padrão: Ativado	
Supply 1 ON	Supply 1 ON		Utilizar alimentações de iniciador do módulo canal 1 a 8 (ativado/desativado) Ajuste padrão: Ativado	
Supply 2 ON		W	Utilizar alimentações de iniciador do módulo canal 9 a 16 (ativado/desativado) Ajuste padrão: Ativado	
Supply 3 ON		W	Utilizar alimentações de iniciador do módulo canal 17 a 24 (ativado/desativado) Ajuste padrão: Ativado	
Supply 4 ON		W	Utilizar alimentações de iniciador do módulo canal 25 a 32 (ativado/desativado) Ajuste padrão: Ativado	
Nome	Tipo de dados	R/W	Descrição	
Os seguintes status e pa de aplicação.	arâmetros po	odem s	er atribuídos a variáveis globais e usados no programa	
Diagnostic Request	DINT	W	Para solicitar um valor diagnóstico, deve ser transmitida ao módulo a respectiva ID (codificação veja Capítulo 4.4.5) pelo parâmetro <i>Diagnostic Request</i> .	
Diagnostic Response	DINT	R	Logo que a <i>Diagnostic Response</i> retornar a ID da <i>Diagnostic Request</i> (codificação veja Capítulo 4.4.5), o <i>Diagnostic Status</i> exibirá o valor de diagnóstico solicitado.	
Diagnostic Status	DWORD	R	O valor de diagnóstico solicitado conforme <i>Diagnostic</i> Response.	
			No programa de aplicação é possível avaliar as IDs das <i>Diagnostic Request</i> e das <i>Diagnostic Response</i> . Só quando ambas tiverem a mesma ID, o <i>Diagnostic Status</i> irá conter o valor de diagnóstico solicitado.	
Background Test Error	BOOL	R	TRUE: Teste de fundo com erro FALSE: Teste de fundo sem erro	
Restart on Error	BOOL	W	Cada módulo de E/S que estiver permanentemente desligado devido a erros, pode ser reconduzido ao estado RUN com ajuda do parâmetro <i>Restart on Error</i> . Para este fim, colocar o parâmetro <i>Restart on Error</i> de FALSE para TRUE. O módulo de E/S executa um autoteste completo e apenas assume o estado RUN se nenhum erro foi detectado.	
			Ajuste padrão: FALSE	

HI 801 260 P Rev. 4.00 Página 39 de 58

Nome	Data Type	R/W	Descrição
Supply 1 OK	BOOL	R	As alimentações de iniciadores são monitoradas para detectar sobretensão, subtensão e sobrecorrente. TRUE: Alimentação de iniciador sem erro. FALSE: Tensão do iniciador com erro.
Supply 2 OK	BOOL	R	Como Supply 1 OK
Supply 3 OK	BOOL	R	Como Supply 1 OK
Supply 4 OK	BOOL	R	Como Supply 1 OK
Submodule OK	BOOL	R	TRUE: sem erros de submódulo Sem erros de canal FALSE: erros de submódulo Erros de canal de um canal (também erros externos)
Submodule Status	DWORD	R	Status do submódulo codificado por Bits (codificação, veja Capítulo 4.4.4)

Tabela 23: Registro E/S-Submodul DI32_05 no Hardware Editor

As alimentações de iniciadores dos módulos são à prova de curto circuito. Ao ultrapassar a corrente total (> 200 mA) o módulo desliga a alimentação de iniciador correspondente. Se a sobrecarga for retirada dentro de 30 segundos, a alimentação de iniciador automaticamente liga de novo. Se a sobrecarga estiver incidindo por mais de 30 segundos, o módulo tenta a cada 60 segundos ligar a alimentação do iniciador novamente.

Avarias transientes breves (< 5 ms) não levam ao desligamento da alimentação do iniciador.

O desligamento de uma alimentação de iniciador afeta todas as entradas deste grupo (Tabela 10), ou seja, os valores digitais destas entradas assumem o valor inicial. Além disso, o módulo para estas 8 entradas indica uma quebra de fio se isso foi parametrizado.

No estado STOP VALID do sistema de comando HIMax, as alimentações parametrizadas de iniciadores dos módulos estão ligados.

As saídas de alimentação de iniciador dos módulos não podem ser forçadas e apenas podem ser ajustadas pelos parâmetros no Hardware Editor.

Os limites de tensão das saídas de alimentação de iniciadores são supervisionados pelo módulo de forma relacionada à segurança. No caso de sobretensão, subtensão ou sobrecorrente, o status correspondente *Supply X OK* é colocado em FALSE.

Para a alimentação de um canal sempre deve ser usada a saída de tensão atribuída à respectiva entrada (p. ex., S1+ com DI1+).

Página 40 de 58 HI 801 260 P Rev. 4.00

4.4.3 Registro I/O Submodule DI32_05: Channels

O registro **I/O Submodule DI32_05: Channels** contém os seguintes parâmetros de sistema para cada entrada digital.

É possível atribuir variáveis globais aos parâmetros de sistema com -> e usar as mesmas no programa de aplicação. Os valores sem -> devem ser introduzidos diretamente.

Nome	Tipo de dados	R/W	Descrição
Channel no.		R	Número de canal, definição fixa
SP LOW	DINT	W	Limite superior do nível Low O SP LOW (valor de comutação LOW) define o limite a partir do qual o módulo detecta LOW e desliga o LED Channel. Restrição: SP LOW ≤ SP HIGH Ajuste padrão: 14 000 (1,4 mA)
SP HIGH	DINT	W	Limite inferior do nível High O SP HIGH (valor de comutação HIGH) define o limite a partir do qual o módulo detecta HIGH e liga o LED Channel. Restrição: SP LOW ≤ SP HIGH Ajuste padrão: 18 000 (1,8 mA)
-> Ch. value [BOOL]	BOOL	R	Valor de processo Booleano do canal de acordo com os limites SP LOW e SP HIGH.
-> Channel OK	BOOL	R	TRUE: canal sem erros. O valor de entrada é válido. FALSE: canal com erros. O valor de entrada é colocado em 0.
OC Limit	DINT	W	Valor limite em mA para a detecção de quebra de fio. Se o valor de medição analógico cair abaixo de <i>OC Limit</i> , o módulo detecta uma quebra de fio e desliga o LED <i>Channel</i> para este canal. Ajuste padrão: 2 000 (0,2 mA)
-> OC	BOOL	R	TRUE: Há uma quebra de fio. FALSE: Não há quebra de fio. Definido através de <i>OC Limit</i> .
SC Limit	DINT	W	Valor de limiar em mA para a detecção de uma curto de linha. Se o valor de medição analógico ultrapassar <i>SC Limit</i> , o módulo detecta um curto de linha e ajusta o LED <i>Channel</i> para este canal em Piscar2. Ajuste padrão: 65 500 (6,55 mA)
-> SC	BOOL	R	TRUE: Há um curto de linha. FALSE: Não há curto de linha. Definido através de um <i>SC Limit</i> .
T on [μs]	UDINT	W	Retardo de ligação O módulo indica a mudança de nível de LOW para HIGH somente depois que o nível High estiver ativo mais tempo do que o tempo parametrizado t _{on} . Atenção: O tempo máximo de reação T _R (worst case) aumenta para este canal pelo retardo ajustado, pois uma mudança de nível somente é detectada como tal depois de esgotar o tempo de retardo. Faixa de valores: 0(2 ³² - 1) Ajuste padrão: 0

HI 801 260 P Rev. 4.00 Página 41 de 58

Nome	Tipo de dados	R/W	Descrição
T off [μs]	UDINT	W	Retardo de desligamento O módulo indica a mudança de nível de HIGH para LOW somente depois que o nível Low estiver ativo mais tempo do que o tempo parametrizado t _{off} . Atenção: O tempo máximo de reação T _R (worst case) aumenta para este canal pelo retardo ajustado, pois uma mudança de nível somente é detectada como tal depois de esgotar o tempo de retardo. Faixa de valores: 0(2 ³² - 1) Ajuste padrão: 0
-> Raw Value [DINT]	DINT	R	Valor de medição analógico não processado do canal Faixa de valores: 093 000 (09,3 mA)
Redund.	BOOL	R	Requisito: Um módulo redundante deve ter sido criado. Ativado: Ativar a redundância de canal para este canal. Desativado: Desativar a redundância de canal para este canal. Ajuste padrão: Desativado
Redundancy value	BYTE	W	Ajuste como o valor de redundância é formado. Min Max Average (Média) Ajuste padrão: Max Apenas é exibido no registro do grupo de redundância!

Tabela 24: Registro I/O Submodule D32_05: Channels no Hardware Editor

4.4.4 Submodule Status [DWORD]

Codificação do Submodule Status.

Codificação	Descrição
0x0000001	Erros da unidade de hardware (submódulo)
0x00000002	Reset de um barramento de E/S
0x00000004	Erro durante a configuração da unidade de hardware
0x00000008	Erro durante a verificação dos coeficientes
0x20000000	Tensões de operação com erro
0x40000000	Erro durante a conversão AD (início da conversão)
0x10000000	Erro durante a conversão AD (final da conversão)

Tabela 25: Submodule Status [DWORD]

Página 42 de 58 HI 801 260 P Rev. 4.00

4.4.5 Diagnostic Status [DWORD] Codificação do **Diagnostic Status**.

ID	Descrição			
0	Valores de dia	Valores de diagnóstico (1002032) são exibidos sequencialmente.		
100	Estado de temperatura codificado por Bit			
	0 = normal			
		ar de temperatura 1 ultrapassado		
		ar de temperatura 2 ultrapassado		
101		ição de temperatura com erro		
101		medida (10 000 Digit/°C)		
200		são codificado por Bit		
	0 = normal	(04) ()		
		(24 V) com erro		
201	Não usado!	(24 V) com erro		
	Nao usauo!			
202				
203	0	04 \/ (DOOL)		
300		m 24 V (BOOL)		
1001–1032	Status de canal dos canais 132			
	Codificação	Descrição		
	0x0001	Erros da unidade de hardware (submódulo)		
	0x0002	Erro de canal devido a erro interno		
	0x0400	Valores limite LS-/LB ultrapassados/não alcançados ou erro de módulo de canal		
	0x0800	Valores de medição não são válidos (talvez defeito no sistema de medição)		
	0x1000	Valores de medição não dentro da precisão relacionada à segurança		
	0x2000	Valor de medição com transbordo negativo/transbordo		
	0x4000	Canal não está parametrizado		
	0x8000	Medição independente dos dois sistemas de medição com avaria		
2001–2004	Status de erro de iniciador)	das fontes de alimentação 14 (p. ex., alimentações		
	Codificação	Descrição		
	0x2000	Sobrecarga da alimentação de iniciador		
	0x4000	Subtensão da alimentação de iniciador		
	0x8000	Sobretensão da alimentação de iniciador		

Tabela 26: Diagnostic Information [DWORD]

HI 801 260 P Rev. 4.00 Página 43 de 58

4.5 Variantes de ligação

Este capítulo descreve a ligação correta do módulo relacionada à segurança. As seguintes variantes de ligação são permitidas.

Os contatores devem ser ligados com uma combinação de resistência para detecção da quebra de fio e curto de linha, p. ex., 1 k Ω e 10 k Ω , veja também Capítulo 3.4.1 e Capítulo 3.5.

4.5.1 Ligação com iniciador ou contator ligado

A ligação das entradas ocorre via Connector Boards. Para a ligação redundante, há Connector Boards especiais à disposição.

As alimentações de iniciador são desacopladas por diodos, assim, no caso de redundância de módulos, é possível que as alimentações de iniciador de dois módulos possam alimentar um iniciador.

Na ligação conforme Figura 13, é possível utilizar as Connector Boards X-CB 005 01 (com bornes aparafusados) ou X-CB 005 03 (com conector de cabo).

Figura 13: Iniciador de um mono-canal ou contator ligado

Página 44 de 58 HI 801 260 P Rev. 4.00

No caso da ligação redundante conf. Figura 14, os módulos são colocados de forma adjacente no suporte básico numa Connector Board conjunta. É possível utilizar as Connector Boards X-CB 005 02 (com bornes aparafusados) ou X-CB 005 04 (com conector de cabo).

Figura 14: Iniciador redundante ou contator ligado

HI 801 260 P Rev. 4.00 Página 45 de 58

4.5.2 Ligação de transmitter via Field Termination Assembly

A ligação de iniciadores via Field Termination Assembly X-FTA 002 01 ocorre como representado na Figura 15. Para informações mais detalhadas, veja o Manual HI 801 275 P do X-FTA 002 01.

Figura 15: Ligação via Field Termination Assembly

Página 46 de 58 HI 801 260 P Rev. 4.00

4.5.3 Ligação redundante mediante dois suportes básicos

A figura mostra a ligação de um iniciador ou contato ligado quando os módulos redundantes estão em suportes básicos diferentes ou não estão adjacentes no Rack. Os shunts de medição são posicionados no Field Termination Assembly.

Figura 16: Ligação redundante mediante dois suportes básicos

HI 801 260 P Rev. 4.00 Página 47 de 58

5 Operação X-DI 32 05

5 Operação

O módulo é operado num suporte básico HIMax e dispensa supervisão especial.

5.1 Operação

A operação no módulo em si não está prevista.

Qualquer operação, p. ex. Forcing das entradas digitais, ocorre pelo PADT. Detalhes sobre isso encontram-se na documentação do SILworX.

5.2 Diagnóstico

O estado do módulo é indicado pelos LEDs do lado frontal do módulo, veja Capítulo 3.4.2.

O histórico de diagnóstico do módulo pode ser lido adicionalmente com a ferramenta de programação SILworX. Nos Capítulos 4.4.4 e 4.4.5 são descritos os status de diagnóstico mais importantes.

Se um módulo é colocado em um suporte básico, o mesmo gera durante a inicialização mensagens diagnósticas que indicam disfunções ou valores de tensão incorretos. Estas mensagens apenas indicam uma falha do módulo se ocorrerem após a transição para a operação de sistema.

Página 48 de 58 HI 801 260 P Rev. 4.00

6 Manutenção preventiva

Módulos defeituosos devem ser substituídos por módulos intactos do mesmo tipo ou de um tipo de substituição autorizado.

A reparação do módulo apenas pode ser efetuada pelo fabricante.

Para substituir módulos devem ser observados os requisitos do Manual do sistema HI 801 242 P e do Manual de segurança HI 801 241 P.

6.1 Medidas de manutenção preventiva

6.1.1 Carregar o sistema operacional

No contexto da melhora de produtos, a HIMA continua desenvolvendo o sistema operacional do módulo. A HIMA recomenda aproveitar paradas planejadas do sistema para carregar a versão atualizada do sistema operacional para os módulos.

O carregamento do sistema operacional é descrito no Manual de sistema ou na ajuda Online. Para carregar o sistema operacional, o módulo precisa estar no estado parado STOP.

A versão atual do do módulo encontra-se no Control Panel do SILworX. A placa de identificação mostra a versão no momento do fornecimento, veja Capítulo 3.3.

6.1.2 Repetição da verificação

Módulos HIMax devem ser submetidos a uma repetição da verificação em intervalos de 10 anos. Para informações mais detalhadas, veja o Manual de segurança HI 801 241 P.

HI 801 260 P Rev. 4.00 Página 49 de 58

7 Colocação fora de serviço

Puxar o módulo para fora do suporte básico para colocar fora de serviço. Detalhes sobre isso no Capítulo *Instalação e desinstalação do módulo*.

Página 50 de 58 HI 801 260 P Rev. 4.00

X-DI 32 05 8 Transporte

8 Transporte

Para a proteção contra danos mecânicos, os componentes HIMax devem ser transportados nas embalagens.

Sempre armazenar componentes HIMax nas embalagens originais dos produtos. As mesmas servem ao mesmo tempo à proteção contra ESD. A embalagem do produto sozinha não é suficiente para o transporte.

HI 801 260 P Rev. 4.00 Página 51 de 58

9 Eliminação X-DI 32 05

9 Eliminação

Clientes industriais assumem a responsabilidade pelo hardware HIMax colocado fora de funcionamento. Sob solicitação é possível firmar um acordo de descarte com a HIMA.

Encaminhar todos os materiais a uma eliminação correta em relação ao meio-ambiente.

Página 52 de 58 HI 801 260 P Rev. 4.00

X-DI 32 05 9

HI 801 260 P Rev. 4.00 Página 53 de 58

9 Anexo X-DI 32 05

Anexo

Glossário

Conceito	Descrição
ARP	Descrição Address Resolution Protocol: Protocolo de rede para a atribuição de endereços
	de rede a endereços de hardware
Al	Analog Input: Entrada analógica
Connector Board	Placa de conexão para o módulo HIMax
COM	Módulo de comunicação
CRC	Cyclic Redundancy Check: Soma de verificação
DI	Digital Input: Entrada digital
DO	Digital Output: Saída digital
CEM	Compatibilidade eletromagnética
EN	·
	Normas européias
ESD	ElectroStatic Discharge: descarga eletrostática
FB	Fieldbus: barramento de campo
FBS	Funktionsbausteinsprache: linguagem de bloco funcional
FTT	Fault tolerance time: tempo de tolerância de falhas
ICMP	Internet Control Message Protocol: Protocolo de rede para mensagens de status e de falhas
IEC	Normas internacionais para eletrotécnica
Endereço MAC	Endereço de hardware de uma conexão de rede (Media Access Control)
PADT	Programming and Debugging Tool (conforme IEC 61131-3), PC com SILworX
PE	Terra de proteção
PELV	Protective Extra Low Voltage: Extra baixa tensão funcional com separação segura
PES	Programable Electronic System: Sistema eletrônico programável
PFD	Probability of Failure on Demand: Probabilidade de uma falha ao demandar uma função de segurança
PFH	Probability of Failure per Hour: Probabilidade de uma falha perigosa por hora
R	Read: Ler
Rack-ID	Identificação de um suporte básico (número)
Livre de efeitos de retro- alimentação	Dois circuitos de entrada estão ligados à mesma fonte (p. ex., transmissor). Uma ligação de entrada é chamada de "livre de efeitos de retroalimentação" se ela não interferir com os sinais de uma outra ligação de entrada.
R/W	Read/Write: Ler/Escrever
SB	Systembus: (módulo do) barramento de sistema
SELV	Safety Extra Low Voltage: Tensão extra baixa de proteção
SFF	Safe Failure Fraction: Fração de falhas que podem ser controladas com segurança
SIL	Safety Integrity Level (conf. IEC 61508)
SILworX	Ferramenta de programação para HIMax
SNTP	Simple Network Time Protocol (RFC 1769)
SRS	System.Rack.Slot Endereçamento de um módulo
SW	Software
TMO	Timeout
TMR	Triple Module Redundancy: módulos com tríplice redundância
W	Write
Ws	Valor limite do componente total de corrente alternada
Watchdog (WD)	Supervisão de tempo para módulos ou programas. O ultrapassar o tempo do Watchdog, o módulo ou programa entre em parada por erro.
WDZ	Tempo de Watchdog

Página 54 de 58 HI 801 260 P Rev. 4.00

X-DI 32 05 9 Anexo

Lista de 1	figuras	
Figura 1:	Placa de identificação, como exemplo	11
Figura 2:	Diagrama de blocos	12
Figura 3:	Indicador	13
Figura 4:	Vistas	16
Figura 5:	Exemplo de uma codificação	20
Figura 6:	Connector Boards com bornes aparafusados	21
Figura 7:	Connector Boards com conector de cabo	24
Figura 8:	Connector Board com conector de cabo, variante X-CB 005 05	26
Figura 9:	Cabo de sistema X-CA 002-01-n	29
Figura 10:	Inserir a Connector Board	32
Figura 11:	Aparafusar a Connector Board	33
Figura 12:	Instalar e desinstalar módulo	35
Figura 13:	Iniciador de um mono-canal ou contator ligado	44
Figura 14:	Iniciador redundante ou contator ligado	45
Figura 15:	Ligação via Field Termination Assembly	46
Figura 16:	Ligação redundante mediante dois suportes básicos	47

HI 801 260 P Rev. 4.00 Página 55 de 58

9 Anexo X-DI 32 05

Lista de t	abelas	
Tabela 1:	Manuais adicionalmente em vigor	5
Tabela 2:	Requisitos de ambiente	8
Tabela 3:	Frequências de piscar dos diodos luminosos	14
Tabela 4:	Indicador de status do módulo	14
Tabela 5:	Indicador de barramento de sistema	15
Tabela 6:	Diodos luminosos do indicador de E/S	15
Tabela 7:	Dados do produto	16
Tabela 8:	Dados técnicos das entradas digitais	17
Tabela 9:	Valores padrão das entradas digitais	17
Tabela 10:	Dados técnicos da alimentação de iniciador	18
Tabela 11:	Connector Boards disponíveis	19
Tabela 12:	Posição das cunhas de codificação	20
Tabela 13:	Pinagem de Connector Boards com bornes aparafusados	22
Tabela 14:	Características dos conectores de bornes	23
Tabela 15:	Pinagem dos conectores de cabo do cabo de sistema	25
Tabela 16:	Pinagem dos conectores de cabo do cabo de sistema	28
Tabela 17:	Dados de cabo X-CA 002	29
Tabela 18:	Cabos de sistema disponíveis X-CA 002	30
Tabela 19:	Dados de cabo X-CA 009	30
Tabela 20:	Cabos de sistema disponíveis X-CA 009	30
Tabela 21:	Descrição do evento	36
Tabela 22:	Registro Module no Hardware Editor	38
Tabela 23:	Registro E/S-Submodul DI32_05 no Hardware Editor	40
Tabela 24:	Registro I/O Submodule D32_05: Channels no Hardware Editor	42
Tabela 25:	Submodule Status [DWORD]	42
Tabela 26:	Diagnostic Information [DWORD]	43

Página 56 de 58 HI 801 260 P Rev. 4.00

X-DI 32 05 9 Anexo

Índice remissivo

Connector Board	19	Diagnóstico	
Com bornes aparafusados	21	Indicador de barramento de sistema	. 15
Com conector de cabo	24	Indicador de E/S	. 15
Dados técnicos		Diagrama de blocos	. 12
Entradas	17	Função de segurança	. 10
Iniciadores	18	Indicador de status do módulo	
Módulo	16		

HI 801 260 P Rev. 4.00 Página 57 de 58

HI 801 260 P © 2011 HIMA Paul Hildebrandt GmbH HIMax e SILworX são marcas registradas da: HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Alemanha Tel. +49 6202 709-0 Fax +49 6202 709-107 HIMax-info@hima.com www.hima.com

