

AMBA Interconnect Design Flow Automation

Tom Ajamian Analog Devices, Inc.

September 24th, 2015 Boston, MA

AMBA Interconnect Design Flow

We found ourselves...

- Spending a great deal of time on things other than design or optimization related tasks
- Frustrated with tediousness in the flow
- Unable to leverage performance models as much as we'd like

Creating an automated solution to help alleviate these problems

Agenda

AMBA Interconnect Design Challenges

Automation Goals

AMBA Designer Automation Flow

Performance Analysis and Model Integration

Conclusion

AMBA Interconnect Design Challenges

AMBA Designer Configuration

Per Node

- Time closure
 - 10 fields
- Buffer depths
 - Per channel
- Run-time Configuration
 - AQoS features: latency, rate, trans.
 - ASIB only
 - read_qos priority value
 - write_qos priority value
 - fd_bit max-o limit

Per Connection

- Max Outstanding
 - Read
 - Write
 - Total

Overall Layout

- Per-switch mux
- Clock domain crossings
- Datawidth conversions
- Many combinations
- All parameters are interdependent
 - Can't be evaluated individually

AMBA SoC Design Flow

Has many moving parts

Maintaining coherency between all of these can be a full time job!

Problems with this workflow

- Lots of manual steps which are quite time consuming and tedious
 - Menus buried in the AMBA Designer GUI
 - Manual translation between specs and AMBA Designer
 - Manual translation to other formats
- These steps must be repeated over and over during a design
- Potential for human error, with costs extending to debug and DV

We can do better!

AMBA Designer

Screenshot of Configurator GUI

Automation Goals

Our Goals

Saving time and money

- Saving time by avoiding lots of manual steps (resourcing)
- Reducing human error from manual efforts
 - Because human error costs time and resources for debug and DV!!
- All of this saves

Goals

- Single-source specifications a single source of truth
- Automating translation between formats
- Performance models must be part of the automated flow

Detailed and accurate methods for performance analysis of the interconnect

Overall Automation Goal

AMBA Designer Automation Flow

Goals

- Single-source specifications a single source of truth
- Automating translation between formats
- Detailed and accurate methods for performance analysis of the interconnect

Performance models must be part of the automated flow

Goals

- Single-source specifications a single source of truth
- Automating translation between formats
- Detailed and accurate methods for performance analysis of the interconnect

Performance models must be part of the automated flow

AMBA SoC Design Flow

AMBA SoC Design Flow

Automation Flow

Performance Analysis and Model Integration

Modeling interconnect performance; and how do we tie this to our automation?

Goals

- Single-source specifications a single source of truth
- Automating translation between formats
- Detailed and accurate methods for performance analysis of the interconnect

Performance models must be part of the automated flow

Goals

- Single-source specifications a single source of truth
- Automating translation between formats
- Detailed and accurate methods for performance analysis of the interconnect

Performance models must be part of the automated flow

Different tools at different times

And varying levels of fidelity

- Pen and paper / spreadsheet analysis
- Performance models / simulation for dynamic interaction
- RTL simulation at block level
- RTL simulation at full chip level

Different tools at different times

And varying levels of fidelity

- Pen and paper / spreadsheet analysis
- Performance models / simulation for dynamic interaction
- RTL simulation at block level
- RTL simulation at full chip level

SystemC TLM 2.0 Environment (& much more)

For our needs, it provides:

- Cycle accurate AMBA bus models and monitors
 - NIC301 and NIC400 (& more)
- Supporting models for memories and initiators
- Ability to assemble representative SoC as a 'platform'

Platform Architect (PA) – IMPO

(Interconnect and memory performance optimization)

ADI IPA Methodology Overview

Interconnect Performance Analysis

IPA: The SoC Design

- We want to explore different:
 - Interconnect topologies
 - Per-node configuration options
- Need a way to describe these

Challenges with platform assembly

- Platform assembly in Platform Architect is time consuming
 - Especially for larger interconnect designs
- Limits the number of interconnect designs an architect can explore
 - Many manual steps to generate the performance models (IPA platform) when an AMBA Designer interconnect is created/updated

Back to our goals...

Goals

- Single-source specifications a single source of truth
- Automating translation between formats
- Detailed and accurate methods for performance analysis of the interconnect

Performance models must be part of the automated flow

Goals

- Single-source specifications a single source of truth
- Automating translation between formats
- Detailed and accurate methods for performance analysis of the interconnect

Performance models must be part of the automated flow

Platform generation from spec

Specification Tables

Platform Architect Platform

Platform generation from spec

Conclusion

Overall Automation Flow

Q&A

Thank You

