Laboratorio di Segnali e Sistemi - A.A. 2021/22

Esperienza 2:

Amplificatore CE senza capacità di emettitore

Chiara Scrocca 1855186 Alessandro Tancredi 1919636 Rosso Vitale 1892051

17 novembre 2021

Indice

6	Conclusioni	6
	5.2 Resistenza d'uscita	5
	5.1 Diagramma di Bode	4
5	Misure effettuate	4
4	Parametri costruttivi del circuito	3
3	Operazioni eseguite	2
2	Apparato sperimentale	2
1	Obiettivi dell'esperienza	2

1 Obiettivi dell'esperienza

L'obiettivo dell'esperienza è quello di progettare e realizzare un amplificatore sfruttando un diodo BJT in configurazione ad emettitore comune, senza capacità di emettitore, per poi realizzare il diagramma di Bode della risposta in frequenza e misurare la resistenza d'uscita.

2 Apparato sperimentale

Per questa esperienza sono stati utilizzati:

- Generatore di segnali
- Generatore di tensione continua (elind MODEL 6TD20)
- Oscilloscopio digitale (Keysight DSOX1102G) con banda passante 70 MHz e frequenza di campionamento 2 GSa/s, impedenza d'ingresso un 1 M Ω in parallelo a 16 pF.
- Breadboard
- Multimetro da banco (Fluke 45) con risoluzione pari a 3‰, impedenza d'ingresso 10 M Ω in parallelo a <100 pF.
- Transistor BJT 2N2222 con fattore di forma TO-92
- Resistori e condensatori

Figura 1: Circuito montato sulla breadboard in laboratorio

3 Operazioni eseguite

Dopo una prima fase di progettazione del circuito volta a soddisfare i due criteri richiesti ($|A_V| = 8$; $f_L \approx 100 Hz$) si realizza il circuito in laboratorio e si procede come segue:

- 1. Si misurano i valori di V_B , V_E , V_{CE}
- 2. Si verifica che siano $V_B>0.7,\,V_E>0.2,\,V_{CE}\approx V_{CC}/3$ (Per scelta di progettazione)
- 3. Si misura, per un certo numero di punti equispaziati su scala logaritmica, il valore di V_{in} e V_{out}
- 4. Si realizza il diagramma di Bode per la funzione di trasferimento e si estraggono le frequenze di taglio
- 5. Scegliendo adeguatamente il valore della resistenza di carico R_L si procede a misurare la tensione d'uscita con e senza carico per stimare la resistenza d'uscita R_{out}

4 Parametri costruttivi del circuito

Per realizzare il circuito abbiamo adattato i valori di progetto ai componenti disponibili in laboratorio. I valori dei componenti misurati sono riportati nella tabella seguente.

Resistori (Ω)	Condensatori (nF)
$R_1 = 46620 \pm 23$	$C_i = 221.10 \pm 1.11$
$R_2 = 6730 \pm 3$	$C_o = 440.50 \pm 2.20$
$R_C = 3882 \pm 2$	
$R_E = 470.30 \pm 0.24$	
$R_S = 50.00 \pm 0.03$	
$R_L = 3883 \pm 3$	

Figura 2: Circuito

5 Misure effettuate

5.1 Diagramma di Bode

Dopo aver ottenuto che $V_B = (1.450 \pm 0.002)V > 0.7V$, $V_E = (5.234 \pm 0.003)V > 0.2V$, $V_{CE} = (4.440 \pm 0.003)V \approx V_{CC}/3$, sono stati campionati 23 punti sull'asse delle frequenze, i corrispondenti valori di V_{in} , V_{out} e della funzione di trasferimento $|T(j\omega)|$ sono riportati in tabella 1:

ν (Hz)	$V_{in} (mV)$	V_{out} (V)	$ T(j\omega) $
10.2	810 ± 24	0.56 ± 0.02	0.69 ± 0.03
19.9	820 ± 25	1.05 ± 0.03	1.28 ± 0.05
42.7	820 ± 25	2.05 ± 0.06	2.50 ± 0.11
88.3	820 ± 25	3.64 ± 0.11	4.44 ± 0.19
106	820 ± 25	4.10 ± 0.12	5.00 ± 0.21
130	820 ± 25	4.55 ± 0.14	5.55 ± 0.24
184	810 ± 24	5.23 ± 0.16	6.46 ± 0.27
378	810 ± 24	5.99 ± 0.18	7.40 ± 0.31
784	810 ± 24	6.27 ± 0.19	7.74 ± 0.33
1.623k	810 ± 24	6.35 ± 0.19	7.84 ± 0.33
3.325k	810 ± 24	6.35 ± 0.19	7.84 ± 0.33
6.92k	810 ± 24	6.35 ± 0.19	7.84 ± 0.33
14.1k	810 ± 24	6.31 ± 0.19	7.79 ± 0.33
29.1k	810 ± 24	6.20 ± 0.19	7.65 ± 0.32
61.7k	810 ± 24	6.07 ± 0.18	7.59 ± 0.32
127k	810 ± 24	5.71 ± 0.17	7.14 ± 0.30
258k	810 ± 24	4.70 ± 0.14	5.88 ± 0.25
349k	810 ± 24	4.02 ± 0.12	4.96 ± 0.21
545k	800 ± 24	3.02 ± 0.09	3.78 ± 0.16
1.03M	800 ± 24	1.81 ± 0.05	2.26 ± 0.10
2.6M	800 ± 24	0.80 ± 0.02	1.00 ± 0.04
4.8M	790 ± 24	0.44 ± 0.02	0.56 ± 0.02
10.8M	740 ± 22	0.24 ± 0.01	0.32 ± 0.01

Tabella 1

Figura 3: Immagine acquisita all'oscilloscopio

Con i dati raccolti è stato realizzato il diagramma di Bode (figura 4). Interpolando i dati raccolti intorno alle zone di cutoff, è stato possibile estrarre i valori delle due frequenze di taglio principali, f_L , data dall'inserimento del condensatore di accoppiamento C_{in} e f_H , dovuta alle capacità interne al transistor. I valori ottenuti sono:

$$f_L = (100.07 \pm 10.42)Hz$$

 $f_H = (395855 \pm 84386)Hz$

4

Figura 4: Diagramma di Bode

Mentre i valori attesi sono stati calcolati pari a:

$$\hat{f}_L = (106.17 \pm 0.53) Hz$$

$$\hat{f}_H \in (640kHz; 6MHz)$$

L'interpolazione è stata eseguita utilizzando il metodo dei minimi quadrati, le incertezze sono state calcolate con la formula della propagazione. La f_H è stata stimata attraverso i dati reperibili dal datasheet del transistor ed è per tanto una stima soggetta a un gran numero di errori sistematici (ad esempio la capacità dei cavi BNC), errori dovuti ad approssimazioni e in generale ad uno scarso livello di conoscenza del BJT in questione.

5.2 Resistenza d'uscita

Per stimare il valore della resistenza d'uscita abbiamo misurato, per tre diverse frequenze scelte all'interno della banda passante, i valori della tensione d'uscita con e senza carico. Il carico è stato scelto $R_L \approx R_C$ in modo da avere una stima il più precisa possibile ed è stato misurato: $R_L = (3883 \pm 3)\Omega$ Per stimare la resistenza d'uscita R_{out} abbiamo quindi utilizzato la relazione:

$$\frac{V_{out}^{(vuoto)}}{V_{out}^{(carico)}} = \frac{1}{R_L} (R_L + R_{out}) = 1 + \frac{R_{out}}{R_L} \implies R_{out} = R_L (\frac{V_{out}^{(vuoto)}}{V_{out}^{(carico)}} - 1)$$
(1)

Ottenendo un valore medio di R_{out} pari a:

$$R_{out}(3622.76 \pm 227.33)\Omega$$

$\nu (\mathrm{kHz})$	$V_{out}^{(con\ carico)}$ (V)	$V_{out}^{(senza\ carico)}$ (V)	$R_{out} (\Omega)$
19.9 ± 0.6	6.31 ± 0.19	3.26 ± 0.10	3632.87 ± 321.92
40.0 ± 1.2	6.23 ± 0.19	3.22 ± 0.10	3629.76 ± 321.79
70.0 ± 2.1	6.21 ± 0.19	3.22 ± 0.10	3605.64 ± 320.77

Tabella 2: Misure di tensione con $R_L = (3883 \pm 3)\Omega$

6 Conclusioni

Attraverso lo studio della risposta in frequenza del circuito, è stato possibile apprezzare un'amplificazione prossima a quella attesa, pari a $\hat{A}_v = -\frac{R_C}{R_E} = -8.25 \pm 0.01$, mentre quella calcolata è pari a $A_v = -7.78 \pm 0.33$, risultando quindi compatibili entro due σ . Il valore della frequenza di taglio f_L misurato risulta anch'esso compatibile con il valore atteso, seppure non si possa dire altrettanto rispetto alla frequenza f_H . L'incompatibilità di quest'ultimo risultato può essere causata da una serie di errori sistematici già discussi precedentemente, e in generale da un insufficiente stato di conoscenza del singolo transistor. Nella seconda parte la misura della resistenza d'uscita è in accordo con la teoria entro 1σ . L'esito dell'esperienza è quindi considerato più che soddisfacente, in quanto ha confermato la buona progettazione circuitale.