# 6. UNDECIDIBALITY

Theory of computation

Lecture Slides by: Er. Shiva Ram Dam, PEC

# Syllabus:

- 6.1 Church's Thesis
- 6.2 Halting Problem
- 6.3 Universal TM
- 6.4 Undecidable problem about TM
- 6.5 Recursive Function Theory
- 6.6 Properties of Recursive and Recursive Enumerable Language

#### 6.1 Decidable and Undecidable Problem

## **Decidable problem:**

- A problem is decidable if we can construct a TM that:
  - Will halt in finite amount of time for every input, and
  - Give answer as YES or NO.
- A decidable problem has an algorithm to determine to answer for a given input.
- Examples of decidable problems:
  - 1. Equivalence of two regular language
  - 2. Finiteness of regular language
  - Emptiness of CFL

## 6.1 Decidable and Undecidable Problem

## **Undecidable problem:**

- A problem is undecidable if <u>there is no TM</u> that:
  - · Will halt in finite amount of time for every input, and
  - Give answer as YES or NO.
- An undecidable problem has no algorithm to determine to answer for a given input.
- Examples of undecidable problems:
  - Ambiguity of CFL
  - Equivalence of two CFL
- Two popular undecidable problems are :
  - The Halting problem,
  - PCP (Post Correspondence Problem)

## 6.2 The Halting Problem

- Basically, halting means terminating.
- Halting means that the program on certain input:
  - will accept it and halt, or
  - reject it and halt, and never go into an infinite loop.
- Halting problem is undecidable.
- It asks- "Is it possible to tell whether a given machine will halt for some given input?"
  - The answer is NO.
- We cannot design a generalized algorithm which can appropriately say the given a program, the machine will ever halt or not.

# Halting problem: Example

## Input:

A TM and input string w

#### Problem:

Does the TM finish computing of the string w in a finite no. of steps?

#### Proof:

Assume TM exits to solve this problem and then we will show it is contradicting itself.

## Halting problem: Example (contd.)

Let the Machine be called HALTING MACHINE (HM). Let it produce a YES or NO in a finite amount of time.

## Block diagram:



# Halting problem: Example (contd.)

- Now lets design an INVERTED HALTING MACHINE
  - If HM returns YES, then loop forever
  - If HM returns NO, then halt
- Block diagram:



- Here,
  - If HM halts on given input, then it loops forever.
  - But if HM doesn't halt, it returns NO and hence halts.
- Hence, by contradiction, the Halting Problem is undecidable.

#### 6.3 Church's Thesis

- Church Thesis submitted by Alonzo Church (1936)
- Church's Thesis considers the TM as Ultimate Calculating Mechanism
- States that:

No computational procedure will be considered an algorithm unless it can be represented by a TM.

- Tied together the idea of Recursive Functions and Computable Functions.
- Church Thesis , however, cannot be a theorem.

## 6.4 Universal TM

- Introduced by Alan Turing in 1936-1937
- •A UTM can simulate the behavior of an arbitrary TM over any set of input symbols.
- Reads both the description of machine and the input from its own tape.
- Thus it is possible to create a single machine that can be used to compute any computable sequence.

# 6.4 Universal TM (contd.)



## 6.4 Universal TM (contd.)



## 6.5 Undecidable Problems about TM

The problems for which no algorithms exist are called Undecidable or Unsolvable.

One famous Undecidable Problem is the HALTING problem Some undecidable problems about TM are:

- Given Turing machine M and input string w for a TM, does M halt on input w?
- 2. Given M:
  - Does M halt on empty tape?
  - Is there any string at all on which M halts?
  - Does M halt on every input string?
  - Is the language the M semidecides regular? Is it Context free? Is it recursive?
- 3. Given two TMs (M1 and M2), do they halt on same input string?

## 6.6 Encoding of TM

- Is the process of formulating a notation system where we can encode both an arbitrary Turing machine T1 and an input string x over an arbitrary alphabet as strings e(T1) and e(x) over some fixed alphabet.
- The Encoding must not destroy any original information.
- For encoding, we use alphabets {0,1} although TM may have much larger alphabet.

Steps for Encoding

| oteps for Effecting                                                             |
|---------------------------------------------------------------------------------|
| : + Start by assigning positive integer to each state,                          |
| each tape symbol and each & three directions in                                 |
| TM that we want to encode.                                                      |
| 2. Represent a state or a symbol by a string of O's                             |
| appropriate length. Here I's are used as constant                               |
| 3. For transition role, use encoing function(s).                                |
| $\xi: \mathcal{E}(q_i, q_j) = (q_k, a_k, D_m)$                                  |
| enclet as:                                                                      |
| $S(q_1) + S(q_1) + S(q_1) + S(q_1) + S(D_m) - S_{q_1} m1$                       |
| 4. Segante the entire transition rules by pair of 1's.                          |
| ie. m. 11 m. 11 m.                                                              |
|                                                                                 |
| S. Now case for 7M and ilp string is will be formed by separating them by three |
| separating them by three consecutive 1's.                                       |
|                                                                                 |
| 1/19/2022 Te e (7M) 111 e ( Schipter 6- Undecidibality                          |

```
7M, MT = (Q, \xi, \zeta, \delta, 2, F, B) where Q

Q_{1}, Q_{2}, Q_{3} , \xi = \{a, b\} , \zeta = \{a, b, B\} , Q_{1} = \{21\}
                                                                 and input string = as
```

| Step 2:<br>Let us represent states and symbols by a s | tups of 0,2 of abb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| priate length.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S(B) = 0<br>S(q;) = 0 i+1 for each q; E & 2           | 3 14 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5 (9;) = 01+2 for each 9, € Q                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| s(N)=0                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S(L) = 00<br>S(R) = 000                               | 7 / 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3(K) = 000                                            | and the same of th |
| Using encoding function s as depined as               | ve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| s(a) = 000 $s(a) = 00$                                | 2(N)=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $S(q_2) = 0000$ $S(q_2) = S(5) = 000$                 | S(L)=00<br>S(R)=000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| s(92) = 00000 s(B) = 0                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 560    | 3: Using encoury hunting for transition rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Ay-  | The same of the same of the same of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3 - 13 | $e(m_1) = S(q_1) + S(q_2) + S(q_3) + S(q_3) + S(q_4) + S(q_4) + S(q_5) + S$ |
|        | = 000 1 000 1 00000 1 00 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | e(m2) = S(93)1 S(9) 1 S(91) 1 S(6) 1 S(R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | - 00000 1 00 1 000 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | $Q(m_3) = S(q_3) + S(b) + S(q_e) + S(a) + S(R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 37 ( | = 00000 1 000 1 000 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | $e(m_4) = s(q_3) + s(B) + s(Q_3) + s(b) + s(L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | = 00000 1 0 1 00000 1 000 1 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| slep 4: | ( De for 7M, 7 is:                              |
|---------|-------------------------------------------------|
|         | e(7) = e(m1) 11 e(m2) 11 e(m3) 11 e(m4)         |
|         | = 0001 000 1 000001 001000 11                   |
| and the | CO CO D 1 CO D 1 CO D 1 CO D 11                 |
|         | Come 1 over 1 over 1 over 11                    |
|         | 1 0 L 08000 1 000 L 00                          |
| Styps:  | Now for 7 and and any input string x where x=ab |
|         | ( oce un 11 se: e(T) 111 e(x)                   |
|         | Herr, e(x) = 5(a) 1 s (b)                       |
|         | = 00 1 000                                      |
|         | Henry,                                          |
|         | e(7) 111 be(x) - 100111001                      |
|         | e(7) 111 6e(x) = 00010001 - 1000 111 001000     |

## 6.7 Recursive and Recursively Enumerable Language

When a TM executes an input, there are four possible outcomes of execution. Then Tm:

- 1. Halts and accept the input
- 2. Halts and rejects the input
- 3. Never halts(fall into loop), or
- 4. Crash

#### Reference:

https://www.geeksforgeeks.org/recursive-and-recursive-enumerable-languages-in-toc/

## 6.7.1 Recursive Enumerable Language (RE)

- Also called Type-0 language or TM Recognizable Language
- RE languages are those languages that can be accepted by TM.
- A language is RE if :
  - There exists a TM that accepts every string of the language, and
  - Does not accept strings that are not in the language.
- String that are not in the language may be rejected or may cause the TM to go into an infinite loop.
- RE language are superset of Recursive Language
- Every Recursive language is RE language, but not vice-versa.

## Example: of RE language

Let L={w∈{a,b}\* : w contains at least one 'a' Then we can design a TM for L as:



- This machine scans to the right to find one 'a'.
- If no 'a' is found, it goes forever, never halting.
- It halts only if there is at least one 'a'.

Therefore, given language is recursively enumerable.

## 6.7.2 Recursive Language (REC Language)

- A language is recursive if:
  - There exists a TM that accepts every sting of the language and
  - rejects every strings that are not in the language.
- A REC language is decidable by TM. It means it will enter into final state for acceptable strings and into rejecting state for nonacceptable strings.
- So, the TM will always halt in this case.
- A REC language is the subset of RE language.
- For eg:

L={a<sup>n</sup>b<sup>n</sup>c<sup>n</sup>|n>=1} is recursive language because we can construct a TM which will move to final state if the string is of the form a<sup>n</sup>b<sup>n</sup>c<sup>n</sup>, else move to non-final state.

## Relationship between RE and REC language



Relationship between RE and REC language

## 6.8 Turing Recognizable Language

- Can run forever without deciding
- A language L is Turing recognizable if there exists a Turing machine M such that for all srings w:
  - If  $w \in L$ , eventually M enter  $q_{accept}$ .
  - If  $w \notin L$ , either M enters  $q_{reject}$  or M never terminates.

## 6.9 Turing Decidable Language

- Always terminates
- •A language L is Turing decidable if there exists a Turing machine M such that for all strings w:
  - If  $w \in L$ , M enter  $q_{accept}$ .
  - If  $w \notin L$ , M enters  $q_{reject}$

## 6.10 Theorems Proof:

If a language is recursive then it is recursively enumerable.

A language is recursive if :

TM accepts every stings of the language then **enters into final state**, and rejects every strings that are not in the language, then **enters into rejecting state**.

■ A language L is recursively enumerable if:

TM accepts every strings of the language, then **enters into final state**, and rejects every string that are not in the language, then **may enter into rejecting state or may loop forever.** 

Hence, we can say that a recursive language is also a recursively enumerable. This is shown with a relationship diagram.



#### 6.11 Properties of Recursive and Recursive Enumerable Language

- 1. The complement of a Recursive Language is recursive.
- 2. The union of two Recursive language is recursive.
- 3. The union of two RE language is recursively enumerable
- 4. If a language L and its complement L' are both recursively enumerable, then L (and hence L') is recursive.
- 5. If L is recursive language then  $\Sigma^*$  L is recursive.

## 6.12 Theorem Proof:

## 1. The complement of a Recursive Language is recursive

- Let L be recursive language.
- Tm be Turing machine that halts on all inputs and accepts L
- Let us construct a Turing machine Tm' from Tm so that if Tm enters a final state on input w, then Tm' halts without accepting.
- If Tm halts without accepting, Tm' enters a final state.



- Since one of these two events occurs, Tm' is an algorithm.
- So, clearly, T(Tm') is the complement of L and thus the complement of L is recursive language.

# 2. The union of two recursive language is recursive.

- Let L1 and L2 be two recursive languages accepted by Tm1 and Tm2 respectively.
- Let us construct a turing machine Tm that first simulates Tm1 and then Tm2.
- If Tm1 accepts, then Tm accepts and halts.
- If Tm1 rejects, then Tm simulates Tm2 and accepts iff Tm2 accepts.



- Here, since both Tm1 and Tm2 are algorithm, and Tm is guaranteed to halt in either the case.
- Hence, clearly, Tm accepts L1 U L2.
- Thus, the union of two recursive language is also recursive.

#### 3. The union of two recursively enumerable language is recursively enumerable.

- Let L1 and L2 be recursively enumerable language and their enumerative TM are Tm1 and Tm2 respectively.
- Let us construct a Turing machine Tm which can simulate Tm1 and Tm2 simultaneously on separate tape.



- Here, if either Tm1 or Tm2 accepts, Tm also accepts.
- Thus, union of two RE languages is also RE.

4. If a language L and its complement L' are both recursively enumerable,

then L (and hence L') is recursive.

Let Tm and Tm' accept L and L' respectively.

- Let us construct a Turing machine T which simulate Tm and Tm' simultaneously.
- T accepts w if Tm accepts w, and
- T rejects w if Tm' accepts w



- Thus, T will always say either YES or NO, but never says both.
- Since T is algorithm that acceptsL, it follows that L is recursive.

## 5. If L is recursive language then $\Sigma^*$ - L is recursive.

The required Tm-complement can be represented as:



 $\Sigma^*$  - L means Recursive of L

- When a string w ∈ ∑\* is given as input to Tm-complement, its control passes the string to Tm1 as input.
- As Tm1 decides the language L, therefore, for w ∈ L after a finite no. of moves, Tm1 outputs YES which is given as input to Tm2, which in turn returns NO.
- Similarly for w ∉ L , Tm2 return YES
- Hence, there exists a Tmcomplement for ∑\* - L
- So it is Turing decidable, that is recursive.

Also Refer:

https://www.geeksforgeeks.org/recursive-and-recursive-enumerable-languages-in-toc/

#### Other properties:

- 1. Intersection of two recursive language is also recursive.
- 2. Intersection of two recursive enumerable language is also recursive enumerable.

#### 3. References videos:

- 1. <a href="https://www.youtube.com/watch?v="4asJqA2xTl">https://www.youtube.com/watch?v= 4asJqA2xTl</a>
- 2. <a href="https://www.youtube.com/watch?v=BwIRBVM">https://www.youtube.com/watch?v=BwIRBVM</a> POE
- 3. <a href="https://www.youtube.com/watch?v=VhK0p3QSE4A">https://www.youtube.com/watch?v=VhK0p3QSE4A</a>

## 6.13 Recursive Function Theory

- Recursive function theory is a functional or declarative approach to computation.
- In this approach, computation is described in terms of "what is to be accomplished" instead of "how to accomplish".
- Recursive function theory begins with some very elementary functions that are intuitively effective.
- Then it provides a few methods for building more complicated functions from simpler functions.

#### Reference:

https://legacy.earlham.edu/~peters/courses/logsys/recursiv.htm https://www.youtube.com/watch?v=7vgXBspFVh4

E.g.: Given the recursive function defined by:

f(1)=1

f(2)=2

f(n)=2f(n-1)+f(n-2) for n>=3

What is the value of f(5)?

#### The answer is 29

Computation is as:

| n | value                                                                   |
|---|-------------------------------------------------------------------------|
| 1 | f(1)=1                                                                  |
| 2 | f(2)=2                                                                  |
| 3 | f(3)=2f(n-1)+f(n-2)<br>=2f(3-1)+f(3-2)<br>=2f(2)+f(1)<br>=2*2+1<br>=5   |
| 4 | f(4)=2f(n-1)+f(n-2)<br>=2f(4-1)+f(4-2)<br>=2f(3)+f(2)<br>=2*5+2<br>=12  |
| 5 | f(5)=2f(n-1)+f(n-2)<br>=2f(5-1)+f(5-2)<br>=2f(4)+f(3)<br>=2*12+5<br>=29 |

#### 6.13.1 Initial Functions for Natural Numbers

- All the elementary functions are all functions of natural numbers.
- They make take zero as input, nut no negative number, and not any rational or irrational numbers.
- Let N={0,1,2,....} be a set of natural numbers, we have three initial function over N defined as below:

#### 1. Zero function

The Zero function returns zero regardless of its argument.

Denoted by Z and defined as:

$$Z(n) = 0$$
 for  $\forall n \in N$ 

Eg: Z(2) = 0

Reference:

https://www.youtube.com/watch?v= cswflQg0Ss

#### 2. Successor function

The Successor functions returns the successor of its arguments.

Denoted by S and defined as:

$$S(n) = n+1 \text{ for } \forall n \in \mathbb{N}$$

Eg: 
$$S(2) = 2 + 1 = 3$$

#### 3. Projection function

Defined as  $P_i^n(a_1,a_2,....a_n) = a_i$  where  $a_i \in N$  for i=1,2,3,...n and i < = n

Projection function takes n arguments and returns their i<sup>th</sup> argument.

Eg: 
$$P_2^3(7,8,9)=8$$

# 16.13.2 The Building Operations

We can build more complex and interesting functions from the initial set using three methods:

- 1. Composition
- 2. Primitive recursion
- 3. Minimization

#### **References:**

- https://www.youtube.com/watch?v=twHp7IrPJEs
- https://www.youtube.com/watch?v=cjq0X-vfvYY
- https://www.youtube.com/watch?v=bFkU-qV2loo

## 6.13.3 Composition of function

- We can define a new function by the combination of two or more functions.
- Such defined functions are called composition functions.
- For e.g.: given S(n)=n+1

$$S(Z(a)) = S(0)$$
  
= 1

$$S(S(Z(n))) = S(S(0))$$
  
=  $S(1)$   
= 2

Reference:

https://www.youtube.com/watch?v=twHp7IrPJEs

#### 6.13.4 Primitive Recursive Function

- A function is primitive if:
  - It is an initial function
  - It is obtained from recursion or composition of initial functions.
- The factorial function is derived by primitive recursion from the functions for multiplication and subtraction.
- Eg:

#### Reference:

- https://www.youtube.com/watch?v=cjq0X-vfvYY
- https://people.cs.clemson.edu/~goddard/texts/theoryOfComputation/16.pdf

#### 6.13.5 Minimisation

It provides the way to find the least value.



Reference: https://www.youtube.com/watch?v=bFkU-qV2loo

#### 6.13.6 Recursive functions

- A function which calls itself directly or indirectly and terminates after infinite no. of steps is known as Recursive function.
- In recursive function, terminating point is also known as base point.
- Each and every time, the function calls itself, it should be nearer to the base point.
- Recursive function are built up from basic functions by some operations.

Examples of recursive definitions

$$\begin{cases} f_1(0) & \equiv 0 \\ f_1(x+1) & \equiv f_1(x) + (x+1) \end{cases} \qquad f_1(x) = \text{sum of } 0, 1, 2, \dots, x$$

$$\begin{cases} f_2(0) & \equiv 0 \\ f_2(1) & \equiv 1 \\ f_2(x+2) & \equiv f_2(x) + f_2(x+1) \end{cases} \qquad f_2(x) = x \text{th Fibonacci number}$$

1/19/2022 Chapter 6- Undecidibality 41

#### 6.13.7 Partial Recursive Function

- A function f(a1, a2, ....an)computed by a TM is known as partial recursive function if f is defined for some but not all values of a<sub>1</sub>, a<sub>2</sub>, ....a<sub>n</sub>.
- Let  $f(a_1,a_2,a_3, ....,a_n)$  be a function and defined on function  $g(b_1,b_2,b_3,....,b_m)$ , then; **f** is partial function if some element of **f** is assigned to almost one element of function **g**.
- A partial function is recursive if:
  - It is an initial function over N, or
  - It is obtained by applying recursion or composition or minimization on initial function over N.

#### Refer:

- Pandey A.K., An Introduction to Automata Theory and Formal Language, Page 280
- https://www.youtube.com/watch?v=\_RlkwPCN4yQ

#### 6.13.8 Total Recursive Function

- A function is said to be total recursive function if it is defined for all of its arguments.
- Let  $f(a_1, a_2, a_3, ...., a_n)$  be a function and defined on function  $g(b_1, b_2, b_3, ...., b_m)$ , then;  $\mathbf{f}$  is total function if every element of  $\mathbf{f}$  is assigned to some unique element of function  $\mathbf{g}$ .

#### Refer:

- https://www.youtube.com/watch?v= RIkwPCN4yQ
- Pandey A.K., An Introduction to Automata Theory and Formal Language, Page 280

#### References:

- Pandey A.K., An Introduction to Automata Theory and Formal Language
- https://www.youtube.com/watch?v=0Q9qAM2htII https://www.youtube.com/watch?v=macM MtS w4 https://www.youtube.com/watch?v=2PaOjhnyQ9o https://www.youtube.com/watch?v=NbrnomQkc2U
- https://www.youtube.com/watch?v= RlkwPCN4yQ
- https://legacy.earlham.edu/~peters/courses/logsys/recursiv.htm
- https://www.youtube.com/watch?v=7vgXBspFVh4
- https://www.youtube.com/watch?v=twHp7IrPJEs
- https://www.youtube.com/watch?v=cjq0X-vfvYY
- https://www.youtube.com/watch?v=bFkU-qV2loo
- https://www.youtube.com/watch?v=yaDQrOUK-KY
- https://www.youtube.com/watch?v= cswflQg0Ss

# End of chapter