MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 3 - DECEMBER 2015 ROUND 7 TEAM QUESTIONS ANSWERS**

- A) _____ D) ____
- C) (______, _____) F) _____
- A) In $\triangle ABC$, with angles as indicated,

D lies on \overline{BC} such that \overline{AD} bisects $\angle A$.

$$\frac{DC}{DA} = 2$$
 and $BC = 6$.

Compute the perimeter of $\triangle ABC$.

B) Consider the following statements about the integer x. x and x + 2 are prime.

The minimum positive integer value of x for which all of these statements are true is x = 11. Determine the next largest value of x for which all of these statements are true.

- C) Compute the coordinates of point R.
- D) Given: a, b, m, n > 0, $a^{b+c} = m$ and $b^{c+a} = n$. If $\log(a^bb^a) = 2$, express $(ab)^c$ as a simplified expression in terms of m and n.
- E) List the integers from 1 to 100 inclusive in 10 rows as indicated at the right. Let n be the smallest prime in the list.

Repeat the following pair of statements until $n^2 > 100$.

Cross out every n^{th} number in the list which is larger than n. Now let *n* be the smallest integer in the list not crossed out.

1	2	3	 10
11	12	13	 20
21	22	23	30
81	82	83	 90
91	92	93	 100

Let (a,b) be consecutive un-crossed-out integers, where b > a.

The simplified ratio of the number of ordered pairs for which b-a=2 to the number of ordered pairs for which b-a=6 is k:j.

Determine the ordered pair of integers (k, j).

F) A polygon with n sides has more than 1,000,000 diagonals. What is the minimum number of sides this polygon could have?