Capítulo 9

Produto Interno, Projeções e Operadores Ortogonais

9.1 Introdução

Até o momento tratamos de diversos conceitos do \mathbb{R}^n , sem abordar os conceitos de norma de vetor e de ângulo entre vetores e suas consequências diretas, as quais são a distância entre pontos e a ideia de perpendicularidade. Para abordar esses conceitos, precisamos definir o conceito de produto escalar. Aproveitando o momento, vamos introduzir um conceito mais geral, que é o de produto interno. O produto interno nos permitirá estender as noções de distância e perpendicularidade a outros espaços vetoriais diferentes do \mathbb{R}^n .

Introduzindo o conceito de produto interno, podemos mostrar que o produto escalar do \mathbb{R}^n é um exemplo de produto interno. Por simplicidade, é bom imaginar que, pelo menos no princípio, quando falamos de produto interno, nos referimos ao produto escalar do \mathbb{R}^n .

9.2 Produto Interno

Iniciemos com a definição do produto interno no \mathbb{R}^n .

Definição 9.1

Suponha que, para cada par de vetores $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, existe uma função que associa um número real, denotado por $\langle \mathbf{u}, \mathbf{v} \rangle$. Essa função é chamada **produto interno** de V se satisfizer às seguintes propriedades:

$$I_1$$
 (Linearidade) $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle;$

$$I_2$$
 (Simetria) $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$;

$$I_3$$
 (Positividade) $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$, e $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ se, e somente se, $\mathbf{u} = 0$,

para todo $\mathbf{u}, \mathbf{v} \in \mathbf{w} \text{ em } \mathbb{R}^n \in \alpha, \beta \in \mathbb{R}$. O \mathbb{R}^n com o produto interno é denominado **espaço vetorial com produto interno** ou ainda **espaço euclidiano**¹.

Vamos definir o exemplo mais importante de produto interno no \mathbb{R}^n .

Exemplo 9.2

O produto escalar usual do \mathbb{R}^2 , isto é, para $\mathbf{u} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ e $\mathbf{v} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ definido por

$$\langle \mathbf{u}, \mathbf{v} \rangle = x_1 y_1 + x_2 y_2,$$

é um exemplo de produto interno. De fato, é claro que esta é uma função que toma dois vetores e retorna um número. Vamos verificar que esta função satisfaz às propriedades para que seja um produto interno. Para verificar a linearidade, considere ainda o vetor $\mathbf{w} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$. Então,

$$\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \left\langle \alpha \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \beta \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle$$

$$= \left\langle \begin{bmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 + \beta y_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right\rangle = (\alpha x_1 + \beta y_1) z_1 + (\alpha x_2 + \beta y_2) z_2$$

$$= \alpha (x_1 z_1 + x_2 z_2) + \beta (y_1 z_1 + y_2 z_2) = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle.$$

A simetria é evidente e, para a positividade, basta observar que $\langle \mathbf{u}, \mathbf{u} \rangle = x_1^2 + x_2^2 \ge 0$ é zero, se e somente se, $x_1 = x_2 = 0$, isto é, no caso em que $\mathbf{u} = \mathbf{0}$.

Podemos generalizar o produto escalar usual para o \mathbb{R}^n , com n > 2.

Exemplo 9.3

Considere os vetores $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Digamos que

$$\mathbf{u} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{v} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \text{ defina } \langle \mathbf{u}, \mathbf{v} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Verifique que a função assim definida satisfaz às propriedades exigidas de um produto interno, como fizemos para o caso do produto escalar no plano.

Gostaria de frisar que, para o melhor entendimento, no primeiro momento é interessante quando ler que \mathbb{R}^n é um espaço vetorial munido de um produto interno, imaginar que o produto interno é o produto escalar.

Vamos deduzir algumas propriedades que devem valer para qualquer produto interno. Para fazer isto só usaremos propriedades que constam na definição. Em particular, devem valer para o produto escalar.

¹O produto interno pode ser generalizado para vetores de \mathbb{C}^n , mas para fazer isso, precisamos substituir a propriedade I_2 por $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$, onde a barra denota a conjugação complexa. Nesse texto faremos apenas a teoria para espaços vetoriais reais.

1. O produto interno também é linear na sua segunda entrada. Veja:

$$\langle \mathbf{u}, \alpha \mathbf{v} + \beta \mathbf{w} \rangle = \langle \alpha \mathbf{v} + \beta \mathbf{w}, \mathbf{u} \rangle$$
$$= \alpha \langle \mathbf{v}, \mathbf{u} \rangle + \beta \langle \mathbf{w}, \mathbf{u} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle + \beta \langle \mathbf{u}, \mathbf{w} \rangle.$$

A primeira e terceira igualdades seguem pela simetria e a segunda igualdade da linearidade.

2. O produto $\langle \mathbf{0}, \mathbf{u} \rangle = \langle 0\mathbf{0}, \mathbf{u} \rangle = 0 \langle \mathbf{0}, \mathbf{u} \rangle = 0$, e, pela observação 1, temos, também, $\langle \mathbf{u}, \mathbf{0} \rangle = 0$.

Vamos dar um exemplo de uma função diferente do produto escalar que também satisfaz às propriedades do produto interno. E, mais adiante, vamos usar o produto interno para introduzir as noções de distância e ângulo entre vetores. Como podemos usar várias funções, vemos que existem várias maneiras (diferentes) de medir distância e ângulo entre vetores. Então, podemos fazer diversas perguntas, tais como: o que é invariante entre uma forma de medir e outra? E, sabendo as medidas de um objeto com respeito a um produto interno, como podemos determinar as suas medidas em relação a um outro produto interno? Com respeito à primeira pergunta, existe um ramo na matemática chamado topologia que responde a boa parte desta questão.

Exemplo 9.4

Sejam $\mathbf{u} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ e $\mathbf{v} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ em \mathbb{R}^2 , e considere

$$\langle \mathbf{u}, \mathbf{v} \rangle = 2x_1y_1 - x_1y_2 - x_2y_1 + x_2y_2.$$

Vamos verificar que essa função é um produto interno no plano. Para isso, seja $\mathbf{w} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$.

Vamos verificar a bilinearidade. Para isso, considere $\mathbf{w} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$ e $\alpha \in \mathbb{R}$ um escalar. Então,

$$\begin{split} \langle \mathbf{u} + \alpha \mathbf{v}, \mathbf{w} \rangle &= \left\langle \left[\begin{smallmatrix} x_1 + \alpha y_1 \\ x_2 + \alpha y_2 \end{smallmatrix} \right], \left[\begin{smallmatrix} z_1 \\ z_2 \end{smallmatrix} \right] \right\rangle \\ &= 2(x_1 + \alpha y_1)z_1 - (x_1 + \alpha y_1)z_2 - (x_2 + \alpha y_2)z_1 + (x_2 + \alpha y_2)z_2 \\ &= 2x_1z_1 - x_1z_2 - x_2z_1 + x_2z_2 + \alpha(2y_1z_1 - y_1z_2 - y_2z_1 + y_2z_2) \\ &= \left\langle \left[\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix} \right], \left[\begin{smallmatrix} z_1 \\ z_2 \end{smallmatrix} \right] \right\rangle + \alpha \left\langle \left[\begin{smallmatrix} y_1 \\ y_2 \end{smallmatrix} \right], \left[\begin{smallmatrix} z_1 \\ z_2 \end{smallmatrix} \right] \right\rangle = \left\langle \mathbf{u}, \mathbf{w} \right\rangle + \alpha \left\langle \mathbf{v}, \mathbf{w} \right\rangle, \end{split}$$

e, portanto, a função é linear na primeira entrada. Vamos verificar ainda a simetria

$$\langle \mathbf{u}, \mathbf{v} \rangle = 2x_1y_1 - x_1y_2 - x_2y_1 + x_2y_2 = 2y_1x_1 - y_1x_2 - y_2x_1 + y_2x_2 = \langle \mathbf{v}, \mathbf{u} \rangle$$
.

E, por fim,

$$\langle \mathbf{u}, \mathbf{u} \rangle = 2x_1^2 - x_1x_2 - x_2x_1 + x_2^2 = x_1^2 + x_1^2 - x_1x_2 - x_2x_1 + x_2^2 = x_1^2 + (x_1 - x_2)^2 \ge 0.$$

A expressão $x_1^2 + (x_1 - x_2)^2 = 0$ se, e somente se, $x_1 = x_2 = 0$. Portanto, essa função satisfaz a todas as propriedades requeridas para que seja um produto interno.

9.3 Normas

Lembramos que, no plano, para calcular o comprimento de um vetor $\mathbf{u} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, basta calcular $\sqrt{x_1^2 + x_2^2}$. Isso se dá pela aplicação do teorema de Pitágoras. Para certificar-se de que entendeu isso, veja a figura 9.3. Falar no comprimento (ou norma) de um vetor é equivalente a calcular a distância da origem até as coordenadas que definem o vetor.

Figura 9.1: Aplicação do Teorema de Pitágoras

Observe que, se considerarmos o produto interno no plano, como o sendo o produto escalar, podemos expressar:

$$\sqrt{x_1^2 + x_2^2} = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}.$$

É possível fazer algo similar se estivermos no \mathbb{R}^3 com o produto interno sendo o produto escalar (repita o raciocínio acima).

Podemos generalizar o conceito de comprimento de vetor sempre que tivermos um produto interno definido, uma vez que, pela condição I_3 , o produto interno de um vetor por si mesmo é sempre não negativo e, por isto, podemos definir:

Definição 9.5

Sejam \mathbb{R}^n com um produto interno \langle,\rangle e $\mathbf{u} \in \mathbb{R}^n$. Definimos a norma de um vetor \mathbf{u} por ser

$$\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}.$$

Se $\|\mathbf{u}\| = 1$ ou, de maneira equivalente, $\langle \mathbf{u}, \mathbf{u} \rangle = 1$, dizemos que o vetor é **unitário** e que o vetor está *normalizado*. No caso em que $\mathbf{u} \neq \mathbf{0}$, com $\|\mathbf{u}\| \neq 1$, então podemos definir o **versor** desse vetor por fazer

$$\mathbf{u}' = \frac{1}{\|\mathbf{u}\|} \mathbf{u}.$$

Observe que o versor \mathbf{u}' tem norma igual a 1 e a mesma direção que o vetor \mathbf{u} . Esse processo também é conhecido por normalização do vetor \mathbf{u} .

Observação 9.6

Esta observação nos será muito útil no futuro. Sejam **u** e **v** dois vetores, então:

$$\|\mathbf{u} + \mathbf{v}\|^{2} = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle$$
$$= \|\mathbf{u}\|^{2} + 2 \langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^{2}.$$

Exemplo 9.7

Considere $\mathbf{u} = \begin{bmatrix} \frac{1}{2} \\ -3 \end{bmatrix} \in \mathbb{R}^3$ e o produto interno, o produto escalar. Logo a norma é

$$\|\mathbf{u}\| = \sqrt{1 + 2^2 + (-3)^2} = \sqrt{14}.$$

Observação 9.8

Se \mathbb{R}^n está munido de um produto interno, então a norma satisfará à seguinte propriedade: para quaisquer $\mathbf{u}, \mathbf{v} \in V$, temos

$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$
 (Designaldade Triangular).

Essa propriedade nos diz que o comprimento de um dos lados de um triângulo é sempre menor ou igual à soma dos comprimentos dos outros dois lados. Veja figura 9.2.

Figura 9.2: Desigualdade Triangular

Definição 9.9

Seja \mathbb{R}^n com um produto interno \langle , \rangle . A distância entre \mathbf{u} e \mathbf{v} é definida por

$$\operatorname{dist}(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$

Exemplo 9.10

Considerando \mathbb{R}^2 e o produto interno é o usual, calcule a distância entre $\mathbf{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ e $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

$$\operatorname{dist}(\mathbf{u}, \mathbf{v}) = \left\| \begin{bmatrix} 1\\-2 \end{bmatrix} - \begin{bmatrix} 3\\1 \end{bmatrix} \right\| = \sqrt{\left\langle \begin{bmatrix} -2\\-3 \end{bmatrix}, \begin{bmatrix} -2\\-3 \end{bmatrix} \right\rangle} = \sqrt{13} \text{ unidades.}$$

9.4 Ortogonalidade

Vamos justificar a ideia de \mathbf{u} ser ortogonal ou perpendicular a \mathbf{v} .

Seja novamente \mathbb{R}^2 com o produto interno o produto escalar. Considere dois vetores não nulos e não múltiplos um do outro, $\mathbf{u} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ e $\mathbf{v} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Então, podemos considerar os vetores $\mathbf{u}, \mathbf{v}, \mathbf{u} - \mathbf{v}$, são os lados de um triângulo (veja figura 9.3), e relacionar o comprimento de seus lados, usando a lei dos cossenos, se θ é o ângulo formado entre os vetores \mathbf{u} e \mathbf{v} então

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta.$$

Isso é equivalente a dizer que

Figura 9.3: Lei dos Cossenos

$$\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = \frac{1}{2} [\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2]$$

$$= \frac{1}{2} [x_1^2 + x_2^2 + y_1^2 + y_2^2 - (x_1 - y_1)^2 - (x_2 - y_2)^2]$$

$$= x_1 y_1 + x_2 y_2$$

$$= \langle \mathbf{u}, \mathbf{v} \rangle,$$

e temos a seguinte relação:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta.$$

Logo, se $\theta = \pi/2$, isto é, **u** é ortogonal a **v**, temos, neste caso, $\langle \mathbf{u}, \mathbf{v} \rangle = 0$. Reciprocamente, se **u** e **v** são dois vetores não nulos e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, então o ângulo entre eles é de $\cos \theta = 0$, portanto, $\theta = \pi/2$.

Portanto, definimos para qualquer produto interno.

Definição 9.11

Considerando o \mathbb{R}^n com um produto interno, dizemos que dois vetores \mathbf{u} e \mathbf{v} em \mathbb{R}^n são **ortogonais** (ou perpendiculares) se, e somente se, $\langle \mathbf{u}, \mathbf{v} \rangle = 0$. Neste caso, denotamos por $\mathbf{u} \perp \mathbf{v}$.

As seguintes propriedades seguem imediatamente a definição de ortogonalidade.

- 1) Qualquer que seja o vetor $\mathbf{u} \in \mathbb{R}^n$, temos $\mathbf{u} \perp \mathbf{0}$.
- 2) $\mathbf{u} \perp \mathbf{w}$ se, e somente se, $\mathbf{w} \perp \mathbf{u}$.

- 3) Se $\mathbf{u} \perp \mathbf{w}$, para todo $\mathbf{w} \in V$, então $\mathbf{u} = \mathbf{0}$.
- 4) Se $\mathbf{u} \perp \mathbf{w}$ e $\mathbf{v} \perp \mathbf{w}$, então $(\mathbf{u} + \lambda \mathbf{v}) \perp \mathbf{w}$.

Dizemos que $X = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ é um **conjunto ortogonal**, se $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$, para todo $i \neq j$. E, se além disso, $\langle \mathbf{u}_i, \mathbf{u}_i \rangle = 1$, para todo $i = 1, 2, \dots, n$, dizemos que X é **ortonormal**.

Teorema 9.12

Considere o \mathbb{R}^n munido de produto interno \langle , \rangle . Se X é um conjunto ortogonal formado por vetores não nulos, então X é LI.

Demonstração: Veja o exercício R9.1.

Exemplo 9.13

Considere \mathbb{R}^3 e o produto interno \langle , \rangle o produto escalar do \mathbb{R}^3 e $X = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -$

$$\left\langle \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\rangle = -1 + 1 = 0, \quad \left\langle \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\-1\\2 \end{bmatrix} \right\rangle = -1 - 1 + 2 = 0$$

е

$$\left\langle \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\-1\\2 \end{bmatrix} \right\rangle = 1 - 1 = 0$$
. Portanto, esse conjunto é ortogonal.

Observação 9.14

Teorema de Pitágoras: Sejam \mathbb{R}^n com um produto interno e \mathbf{u} e \mathbf{v} dois vetores. Então, sabemos que

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2$$
.

Se $\mathbf{u} \perp \mathbf{v}$, temos que $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ e daí

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

que é o Teorema de Pitágoras para o caso vetorial.

9.4.1 Complemento Ortogonal

Seja F um subconjunto do \mathbb{R}^n , o qual está munido de um produto interno \langle , \rangle . O complemento ortogonal de F, denotado por F^{\perp} , consiste nos vetores de \mathbb{R}^n que são ortogonais a cada vetor $\mathbf{v} \in F$, ou seja,

$$F^{\perp} = \{ \mathbf{u} \in \mathbb{R}^n : \langle \mathbf{u}, \mathbf{v} \rangle = 0, \text{ para todo } \mathbf{v} \in F \}.$$

No caso em que $F = \{v\}$, temos que

$$v^{\perp} = \{ \mathbf{u} \in \mathbb{R}^n : \langle \mathbf{u}, \mathbf{v} \rangle = 0 \}$$

É fácil perceber que nesta situação v^{\perp} é um subespaço vetorial.

Exemplo 9.15

Considere $F = \left\{ \mathbf{u} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -2\\0\\1 \end{bmatrix} \right\}$ um subconjunto de \mathbb{R}^3 . Encontre F^{\perp} .

Queremos determinar $\mathbf{w} = \begin{bmatrix} z \\ y \\ z \end{bmatrix}$, tais que $\langle \mathbf{w}, \mathbf{u} \rangle = 0$ e, também, $\langle \mathbf{w}, \mathbf{v} \rangle = 0$. Fazendo as contas, obtemos

$$\begin{cases} x + 2y - z = 0 \\ -2x + z = 0 \end{cases} \Leftrightarrow \begin{cases} y = 3/2 \ x \\ z = 2x. \end{cases}$$

Portanto,
$$F^{\perp} = \left\{ \begin{bmatrix} 3/2 \frac{x}{x} \\ 2x \end{bmatrix} : x \in \mathbb{R} \right\} = \operatorname{Span} \left\{ \begin{bmatrix} 1/2 \\ 2 \end{bmatrix} \right\}.$$

Teorema 9.16

Seja F um subconjunto do \mathbb{R}^n , o qual está munido de um produto interno, então F^{\perp} é um subespaço vetorial de \mathbb{R}^n .

Demonstração: Veja o exercício R9.4.

9.5 Projeções Ortogonais

O objetivo é discutir como definir operadores lineares que projetam ortogonalmente um vetor sobre um subespaço vetorial W do \mathbb{R}^n .

Inicialmente, considere o vetor unitário \mathbf{v} e outro vetor \mathbf{u} qualquer do \mathbb{R}^n . Chamamos o vetor $\langle \mathbf{u}, \mathbf{v} \rangle \mathbf{v}$ de projeção ortogonal de \mathbf{u} sobre \mathbf{v} . Veja a figura 9.4.

Figura 9.4: Projeção ortogonal sobre o v

Vamos justificar esse nome, verificando que $\mathbf{w} = \mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{v}$ é perpendicular ao vetor \mathbf{v} .

$$\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle - \langle \mathbf{u}, \mathbf{v} \rangle \langle \mathbf{v}, \mathbf{v} \rangle = 0,$$

pois $\langle \mathbf{v}, \mathbf{v} \rangle = 1$. E, no caso geral, se \mathbf{v} é um vetor não nulo qualquer, consideremos o seu versor, $\mathbf{v}' = \frac{1}{\|\mathbf{v}\|} \mathbf{v}$. Então, novamente $\langle \mathbf{u}, \mathbf{v}' \rangle \mathbf{v}'$ é a projeção ortogonal de \mathbf{u} sobre \mathbf{v}' e, substituindo \mathbf{v}' por \mathbf{v} , temos:

$$\left\langle \mathbf{u}, \mathbf{v}' \right\rangle \mathbf{v}' = \left\langle \mathbf{u}, \frac{1}{\|\mathbf{v}\|} \mathbf{v} \right\rangle \frac{1}{\|\mathbf{v}\|} \mathbf{v} = \frac{\left\langle \mathbf{u}, \mathbf{v} \right\rangle}{\|\mathbf{v}\|^2} \mathbf{v} = \frac{\left\langle \mathbf{u}, \mathbf{v} \right\rangle}{\left\langle \mathbf{v}, \mathbf{v} \right\rangle} \mathbf{v}.$$

Denotamos a projeção ortogonal de ${\bf u}$ sobre ${\bf v}$ por

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}.$$

Observe ainda que a norma do vetor \mathbf{v} é indiferente para o resultado. Por isso, é mais interessante considerarmos o subespaço vetorial gerado por \mathbf{v} , isto é, $W = \mathrm{Span}\{\mathbf{v}\}$, e definirmos

$$\operatorname{proj}_{W}(\mathbf{u}) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}, \text{ onde } \mathbf{0} \neq \mathbf{v} \in W.$$

Antes de continuarmos, vamos dar um exemplo da forma que esse operador assume no plano.

Exemplo 9.17

Estamos interessados em determinar as fórmulas de uma transformação linear que projeta um dado vetor $\mathbf{u} \in \mathbb{R}^2$ sobre uma reta, passando pela origem, e que, portanto, tem equação y = ax para algum $a \in R$ fixo.

Logo, a reta é gerada pelo vetor $\mathbf{v} = \begin{bmatrix} 1 \\ a \end{bmatrix}$, isto é, qualquer ponto da reta é um múltiplo deste vetor. Considere $\mathbf{u} = \begin{bmatrix} x \\ y \end{bmatrix}$. Queremos encontrar $\lambda \in \mathbb{R}$, tal que $\lambda \mathbf{v}$ seja a projeção ortogonal de \mathbf{u} sobre a reta y = ax. Como vimos anteriormente, outra maneira de expressar essa relação, é pedir que os vetores \mathbf{v} e $\mathbf{u} - \lambda \mathbf{v}$ sejam perpendiculares, isto é,

$$\langle \mathbf{v}, \mathbf{u} - \lambda \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle - \lambda \langle \mathbf{v}, \mathbf{v} \rangle = 0.$$

Isolando λ , temos que

$$\lambda = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} = \frac{\left\langle \begin{bmatrix} 1 \\ a \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \right\rangle}{\left\langle \begin{bmatrix} 1 \\ a \end{bmatrix}, \begin{bmatrix} 1 \\ a \end{bmatrix} \right\rangle} = \frac{x + ay}{1 + a^2}.$$

Portanto, se definirmos $P: \mathbb{R}^2 \to \mathbb{R}^2$ por $\mathbf{u} \mapsto \operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \lambda \mathbf{v}$, este operador terá a seguinte expressão:

$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} \left(\frac{1}{1+a^2}\right) x + \left(\frac{a}{1+a^2}\right) y \\ \left(\frac{a}{1+a^2}\right) x + \left(\frac{a^2}{1+a^2}\right) y \end{bmatrix}.$$

No exemplo 9.18, veremos que a reflexão de um vetor, em torno de uma reta que passa pela origem, está intimamente ligada com a projeção do vetor sobre esta mesma reta.

Exemplo 9.18

A reflexão de um vetor \mathbf{u} sobre uma reta y = ax nos dá um vetor $S\mathbf{u}$ do lado oposto da reta, de tal maneira que o segmento de reta determinado por \mathbf{u} e $S\mathbf{u}$ é perpendicular a reta y = ax que corta este segmento no ponto médio, conforme figura 9.6.

Figura 9.5: Projeção

Figura 9.6: Reflexão

Observe na figura 9.6 que o vetor $\mathbf{u} + S\mathbf{u}$ está sobre a reta y = ax, uma vez que esta reta é exatamente a diagonal do paralelogramo determinado pelos vetores \mathbf{u} e $S\mathbf{u}$. Além disso, o vetor $\mathbf{u} + S\mathbf{u}$ é igual a duas vezes a projeção ortogonal de \mathbf{u} sobre o vetor $\mathbf{v} = \begin{bmatrix} 1 \\ a \end{bmatrix}$ que determina a reta. E, portanto,

$$2\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \mathbf{u} + S\mathbf{u} \Leftrightarrow S\mathbf{u} = 2\operatorname{proj}_{\mathbf{v}}\mathbf{u} - \mathbf{u}.$$

Em termos de fórmulas, obtemos:

$$S\begin{bmatrix} x \\ y \end{bmatrix} = 2\begin{bmatrix} \left(\frac{1}{1+a^2}\right)x + \left(\frac{a}{1+a^2}\right)y \\ \left(\frac{a}{1+a^2}\right)x + \left(\frac{a^2}{1+a^2}\right)y \end{bmatrix} - \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \left(\frac{1-a^2}{1+a^2}\right)x + \left(\frac{2a}{1+a^2}\right)y \\ \left(\frac{2a}{1+a^2}\right)x + \left(\frac{a^2-1}{1+a^2}\right)y \end{bmatrix}.$$

9.5.1 Desigualdade de Cauchy-Schwarz

Vamos retornar à situação $\mathbf{z} = \operatorname{proj}_{\mathbf{v}}(\mathbf{u})$ e definir $\mathbf{w} = \mathbf{u} - \mathbf{z}$, isso implica que $\mathbf{u} = \mathbf{w} + \mathbf{z}$, com $\mathbf{w} \perp \mathbf{z}$. Pelo teorema de Pitágoras, temos que: $\|\mathbf{u}\|^2 = \|\mathbf{w}\|^2 + \|\mathbf{z}\|^2$. Em particular, $\|\mathbf{z}\| \leq \|\mathbf{u}\|$, isto é, o comprimento da projeção $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$ é sempre menor ou igual ao comprimento de \mathbf{u} .

Mas a norma de $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$ é $\|\langle \mathbf{u}, \mathbf{v} \rangle\| / \|\mathbf{v}\|$. Segue que $\|\langle \mathbf{u}, \mathbf{v} \rangle\| / \|\mathbf{v}\| \le \|\mathbf{u}\|$, ou seja,

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| \, ||\mathbf{v}||$ (Designaldade de Cauchy-Schwarz).

9.5.2 Processo de Ortonormalização de Gram-Schmidt

O processo de Gram-Schmidt é um procedimento que inicia com um conjunto LI $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s\}$ de vetores de \mathbb{R}^n e retorna um conjunto ortonormal $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_s\}$, com a seguinte propriedade: para cada k, com $1 \le k \le s$, os vetores $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ pertencem ao subespaço vetorial Span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

Para entender o processo de ortogonalização de Gram-Schmidt, vamos voltar a nossa discussão de como obter a projeção ortogonal de um vetor \mathbf{u} sobre um subespaço vetorial W, de dimensão dois, do \mathbb{R}^n . Como estamos interessados em encontrar uma fórmula para a projeção ortogonal de um vetor \mathbf{u} sobre W, considere $\mathbf{v}, \mathbf{w} \in W$, tal que $W = \operatorname{Span}\{\mathbf{v}, \mathbf{w}\}$. Lembrando que já sabemos calcular $\operatorname{proj}_{\mathbf{v}}\mathbf{u}$ e $\operatorname{proj}_{\mathbf{w}}\mathbf{u}$. Então, certamente existem α e $\beta \in \mathbb{R}$, tais que o vetor $\hat{\mathbf{u}} = \alpha \operatorname{proj}_{\mathbf{v}}\mathbf{u} + \beta \operatorname{proj}_{\mathbf{w}}\mathbf{u}$ é a $\operatorname{projeção}$ ortogonal de \mathbf{u} sobre W. Precisamos determinar α e β . Como sabemos que $(\mathbf{u} - \hat{\mathbf{u}}) \perp \mathbf{v}$ deve acontecer, temos:

$$\begin{split} \left\langle \left(\mathbf{u} - \widehat{\mathbf{u}}\right), \mathbf{v} \right\rangle &= \left\langle \mathbf{u} - \left(\alpha \operatorname{proj}_{\mathbf{v}} \mathbf{u} + \beta \operatorname{proj}_{\mathbf{w}} \mathbf{u}\right), \mathbf{v} \right\rangle \\ &= \left\langle \mathbf{u}, \mathbf{v} \right\rangle - \alpha \left\langle \operatorname{proj}_{\mathbf{v}} \mathbf{u}, \mathbf{v} \right\rangle - \beta \left\langle \operatorname{proj}_{\mathbf{w}} \mathbf{u}, \mathbf{v} \right\rangle \\ &= \left\langle \mathbf{u}, \mathbf{v} \right\rangle - \alpha \frac{\left\langle \mathbf{u}, \mathbf{v} \right\rangle}{\left\langle \mathbf{v}, \mathbf{v} \right\rangle} \left\langle \mathbf{v}, \mathbf{v} \right\rangle - \beta \frac{\left\langle \mathbf{u}, \mathbf{w} \right\rangle}{\left\langle \mathbf{w}, \mathbf{w} \right\rangle} \left\langle \mathbf{w}, \mathbf{v} \right\rangle \\ &= \left\langle \mathbf{u}, \mathbf{v} \right\rangle - \alpha \left\langle \mathbf{u}, \mathbf{v} \right\rangle - \beta \frac{\left\langle \mathbf{u}, \mathbf{w} \right\rangle \left\langle \mathbf{w}, \mathbf{v} \right\rangle}{\left\langle \mathbf{w}, \mathbf{w} \right\rangle} = 0. \end{split}$$

E, como também $(\mathbf{u} - \widehat{\mathbf{u}}) \perp \mathbf{w}$ deve acontecer, obtemos que:

$$\begin{aligned} \left\langle \left(\mathbf{u} - \widehat{\mathbf{u}}\right), \mathbf{w} \right\rangle &= \left\langle \mathbf{u} - \left(\alpha \operatorname{proj}_{\mathbf{v}} \mathbf{u} + \beta \operatorname{proj}_{\mathbf{w}} \mathbf{u}\right), \mathbf{w} \right\rangle \\ &= \left\langle \mathbf{u}, \mathbf{w} \right\rangle - \alpha \frac{\left\langle \mathbf{u}, \mathbf{v} \right\rangle \left\langle \mathbf{v}, \mathbf{w} \right\rangle}{\left\langle \mathbf{v}, \mathbf{v} \right\rangle} - \beta \left\langle \mathbf{u}, \mathbf{w} \right\rangle = 0. \end{aligned}$$

Encontrar α e β é equivalente a encontrar a solução de um sistema linear com duas equações nas variáveis α e β . Mas este sistema possui uma solução muito simples se $\mathbf{v} \perp \mathbf{w}$: nesta circunstância a solução é $\alpha = 1 = \beta$. Além disso, se \mathbf{v}

e w não são perpendiculares, sem nenhuma perda, podemos escolher os vetores $\mathbf{v}, \widehat{\mathbf{w}} = \mathbf{w} - \operatorname{proj}_{\mathbf{v}} \mathbf{w}$, e teremos que $\mathbf{v} \perp \widehat{\mathbf{w}}$, uma vez que ainda $W = \operatorname{Span} \{ \mathbf{v}, \widehat{\mathbf{w}} \}$.

Juntando tudo isso, podemos definir o operador projeção ortogonal de ${\bf u}$ sobre W por ser

$$\operatorname{proj}_W \mathbf{u} = \operatorname{proj}_{\mathbf{v}} \mathbf{u} + \operatorname{proj}_{\widehat{\mathbf{w}}} \mathbf{u}.$$

Essa situação se generaliza para espaços em qualquer dimensão, e é a base do processo de ortonormalização de Gram-Schmidt que descrevemos abaixo. O processo inicia com um conjunto LI $X = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s\}$ de vetores de \mathbb{R}^n e retorna um conjunto ortonormal $Y = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_s\}$, com a seguinte propriedade: para cada k, com $1 \le k \le s$, os vetores $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ pertencem ao subespaço vetorial Span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

Vamos descrever o procedimento, fazendo

E, finalmente, vamos normalizar os vetores, isto é,

$$\mathbf{u}_1 = \frac{1}{\|\mathbf{v}_1'\|} \mathbf{v}_1', \dots, \mathbf{u}_s = \frac{1}{\|\mathbf{v}_s'\|} \mathbf{v}_s'.$$

Exemplo 9.19

Seja o \mathbb{R}^3 com o produto escalar, considere a seguinte base $\left\{\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\2\\1 \end{bmatrix}, \right.$

 $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$ do \mathbb{R}^3 e aplique o processo de ortonormalização de Gram-Schmidt, para obtermos uma base ortogonal:

$$\mathbf{v}_{1}' = \mathbf{v}_{1} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

$$\mathbf{v}_{2}' = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, \mathbf{v}_{1}' \rangle}{\langle \mathbf{v}_{1}', \mathbf{v}_{1}' \rangle} \mathbf{v}_{1}' = \begin{bmatrix} 0\\2\\1 \end{bmatrix} - \frac{\langle \begin{bmatrix} 0\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \rangle}{\langle \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \rangle} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\2\\1 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$

$$\mathbf{v}_{3}' = \mathbf{v}_{3} - \left(\frac{\langle \mathbf{v}_{3}, \mathbf{v}_{1}' \rangle}{\langle \mathbf{v}_{1}', \mathbf{v}_{1}' \rangle} \mathbf{v}_{1}' + \frac{\langle \mathbf{v}_{3}, \mathbf{v}_{2}' \rangle}{\langle \mathbf{v}_{2}', \mathbf{v}_{2}' \rangle} \mathbf{v}_{2}' \right)$$

$$= \begin{bmatrix} 0\\0\\3 \end{bmatrix} - \left(\frac{\langle \begin{bmatrix} 0\\3\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \rangle}{\langle \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \rangle} \begin{bmatrix} 1\\1\\1 \end{bmatrix} + \frac{\langle \begin{bmatrix} 0\\3\\3 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \rangle}{\langle \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \rangle} \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$

$$= \begin{bmatrix} 0\\0\\3 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix} - 0 \begin{bmatrix} -1\\1\\0 \end{bmatrix} = \begin{bmatrix} -1\\1\\2 \end{bmatrix}.$$

Normalizando, temos:

$$\mathbf{u}_{1} = \frac{1}{\|\mathbf{v}_{1}'\|} \mathbf{v}_{1}' = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}; \ \mathbf{u}_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \ e \ \mathbf{u}_{3} = \frac{1}{\sqrt{6}} \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix},$$

a qual é uma base ortonormal do \mathbb{R}^3 .

Observação 9.20

Como consequência do processo de ortonormalização de Gram-Schmidt, temos que todo espaço vetorial de dimensão finita, munido de um produto interno, admite uma base ortonormal. De fato, seja $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ uma base qualquer de \mathbb{R}^n , aplicando o processo de Gram-Schmidt, obtemos $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ ortonormal, que gera \mathbb{R}^n . Pelo teorema 9.12, sabemos que $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ é LI e, portanto, ele é uma base de \mathbb{R}^n .

Observação 9.21

Uma outra consequência do conceito de projeção ortogonal é que o mesmo minimiza a distância de um vetor $\mathbf{u} \in \mathbb{R}^n$ a um subespaço vetorial $W \subset \mathbb{R}^n$. Para compreender bem esta propriedade, suponha que $\hat{\mathbf{u}} = \operatorname{proj}_W(\mathbf{u})$, isto é, $\hat{\mathbf{u}}$ é a projeção ortogonal de \mathbf{u} sobre o subespaço vetorial W. Vamos mostrar que

$$\|\mathbf{u} - \widehat{\mathbf{u}}\| \le \|\mathbf{u} - \mathbf{v}\|$$
, para todo $\mathbf{v} \in W$.

Seja \mathbf{v} um vetor qualquer de W, então $\hat{\mathbf{u}} - \mathbf{v} \in W$ e $(\hat{\mathbf{u}} - \mathbf{v}) \perp (\mathbf{u} - \hat{\mathbf{u}})$, mas pelo teorema de Pitágoras, para espaços vetoriais,

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u} - \widehat{\mathbf{u}} + \widehat{\mathbf{u}} - \mathbf{v}\|^2 = \|\mathbf{u} - \widehat{\mathbf{u}}\|^2 + \|\widehat{\mathbf{u}} - \mathbf{v}\|^2.$$

Portanto, $\|\mathbf{u} - \mathbf{v}\| \ge \|\mathbf{u} - \widehat{\mathbf{u}}\|$, para todo $\mathbf{v} \in W$.

Essa propriedade possui numerosas aplicações, tais como o Método dos Mínimos Quadrados ou Regressão linear, quadrática ou Regressão exponencial, como é conhecido na Estatística.

9.6 Matrizes e Operadores Ortogonais

As matrizes ortogonais são interessantes, pois com elas podemos executar movimentos sem deformação no \mathbb{R}^n .

Vamos fazer uma observação que serve como motivação para a definição da matriz ortogonal. Seja $V = \mathbb{R}^3$ e o produto interno o produto escalar do \mathbb{R}^3 . Se $\left\{\mathbf{u}_1 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}\right\}$ é uma base ortonormal, isto é, $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \mathbf{u}_i^t \mathbf{u}_j = 0$, se $i \neq j$, se i = j, então $\langle \mathbf{u}_i, \mathbf{u}_i \rangle = \mathbf{u}_i^t \mathbf{u}_i = ||\mathbf{u}_i||^2 = 1$.

Logo, se montarmos a matriz A, colocando os vetores \mathbf{u}_i nas colunas, acharemos $A = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$, e ao calcularmos

$$A^t A = \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} = \begin{bmatrix} \langle \mathbf{u}_1, \mathbf{u}_1 \rangle & \langle \mathbf{u}_1, \mathbf{u}_2 \rangle & \langle \mathbf{u}_1, \mathbf{u}_3 \rangle \\ \langle \mathbf{u}_2, \mathbf{u}_1 \rangle & \langle \mathbf{u}_2, \mathbf{u}_2 \rangle & \langle \mathbf{u}_2, \mathbf{u}_3 \rangle \\ \langle \mathbf{u}_3, \mathbf{u}_1 \rangle & \langle \mathbf{u}_3, \mathbf{u}_2 \rangle & \langle \mathbf{u}_3, \mathbf{u}_3 \rangle \end{bmatrix}.$$

E, usando que $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ é uma base ortonormal, teremos que $A^tA = I$ (veja definição 9.11).

Definição 9.22

Dizemos que uma matriz quadrada A é uma matriz ortogonal se $A^tA = I$.

Exemplo 9.23

De acordo com o exemplo 9.19, o conjunto

$$\left\{\mathbf{u}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ \mathbf{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \ \mathbf{u}_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\-1\\2 \end{bmatrix} \right\}$$

é uma base ortonormal e, portanto, a matriz

$$A = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{bmatrix}$$

é ortogonal.

Teorema 9.24

Seja \langle , \rangle um produto interno em \mathbb{R}^n , considere α e β , duas bases ortonormais em \mathbb{R}^n . Então a matriz de mudança de coordenadas $[I]^{\alpha}_{\beta}$ é uma matriz ortogonal.

Demonstração: Vamos fazer a demonstração para o caso em que n=3. Acreditamos que você será capaz de dar uma prova para o caso geral. Sejam $\alpha=$

 $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ e $\beta = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ duas bases ortonormais de \mathbb{R}^3 . Para achar a matriz $[I]^{\alpha}_{\beta}$, precisamos encontrar as coordenadas dos vetores da base β com respeito à base α . Digamos que

$$\mathbf{u}_1 = a_{11}\mathbf{v}_1 + a_{21}\mathbf{v}_2 + a_{31}\mathbf{v}_3$$

$$\mathbf{u}_2 = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2 + a_{32}\mathbf{v}_3$$

$$\mathbf{u}_3 = a_{13}\mathbf{v}_1 + a_{23}\mathbf{v}_2 + a_{33}\mathbf{v}_3.$$

A matriz fica:

$$[I]^{\alpha}_{\beta} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

Queremos ver que essa matriz é ortogonal. Para isso, observe que, como α e β são ortonormais, obtemos:

$$1 = \langle u_i, u_i \rangle = \langle a_{1i} \mathbf{v}_1 + a_{2i} \mathbf{v}_2 + a_{3i} \mathbf{v}_3, a_{1i} \mathbf{v}_1 + a_{2i} \mathbf{v}_2 + a_{3i} \mathbf{v}_3 \rangle$$

= $a_{1i}^2 + a_{2i}^2 + a_{3i}^2$,

e, também, se $i \neq j$, temos:

$$0 = \langle u_i, u_j \rangle = \langle a_{1i} \mathbf{v}_1 + a_{2i} \mathbf{v}_2 + a_{3i} \mathbf{v}_3, a_{1j} \mathbf{v}_1 + a_{2j} \mathbf{v}_2 + a_{3j} \mathbf{v}_3 \rangle$$

= $a_{1i} a_{1j} + a_{2i} a_{2j} + a_{3i} a_{3j}$.

Isso mostra que $[I]^{\alpha}_{\beta}$ é ortogonal.

Vamos definir agora os operadores ortogonais que estão conectados com as matrizes ortogonais

Definição 9.25

Sejam \langle , \rangle um produto interno de \mathbb{R}^n e $T : \mathbb{R}^n \to \mathbb{R}^n$ um operador linear, se a matriz $[T]^{\alpha}_{\alpha}$, com respeito a alguma base ortonormal α , for ortogonal, dizemos que T é um operador ortogonal.

Exemplo 9.26

Quando tratamos de rotações de um ângulo θ em torno da origem, ao calcular a matriz deste operador linear em termos da base canônica, obtivemos, no exemplo 5.8, a matriz

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Agora, se temos os vetores $\mathbf{u} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$, obtidos por tomar as colunas da matriz A, veremos que $\langle \mathbf{u}, \mathbf{u} \rangle = \cos^2 \theta + \sin^2 \theta = 1 = \langle \mathbf{v}, \mathbf{v} \rangle$. Além disso, $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, e $\{ \mathbf{u}, \mathbf{v} \}$ é uma base ortonormal. Portanto, A é uma matriz ortogonal.

Teorema 9.27

Sejam \langle , \rangle um produto interno em \mathbb{R}^n e $T : \mathbb{R}^n \to \mathbb{R}^n$ um operador linear, então as seguintes condições são equivalentes:

- (1) T é um operador ortogonal;
- (2) A matriz de T com respeito a qualquer base ortonormal é ortogonal;
- (3) $\langle T(\mathbf{u}), T(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle, \quad \forall \mathbf{u} \ e \ \mathbf{v} \in V.$

Exercícios resolvidos

R9.1. Prove o teorema 9.12: Seja \langle , \rangle um produto interno em \mathbb{R}^n . Se X é um conjunto ortogonal formado por vetores não nulos, então X é LI.

Solução: Considere $X = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ um conjunto formado por vetores não nulo e ortogonais. Queremos verificar que a única solução do sistema

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n = 0$$

é a solução trivial. Se fizermos o produto interno com \mathbf{u}_i , obtemos

$$\langle \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n, \mathbf{u}_i \rangle = \langle 0, \mathbf{u}_i \rangle = 0.$$

Logo, $\alpha_i \langle \mathbf{u}_i, \mathbf{u}_i \rangle = 0 \Rightarrow \alpha_i = 0$, para todo i = 1, 2, ..., n e, portanto, a única solução é a trivial $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$. Por isso, X é LI.

- **R9.2.** Prove o teorema 9.27: Sejam \langle , \rangle um produto interno em \mathbb{R}^n e $T : \mathbb{R}^n \to \mathbb{R}^n$ um operador linear, então as seguintes condições são equivalentes:
 - (1) T é um operador ortogonal;
 - (2) A matriz de T com respeito a qualquer base ortonormal é ortogonal;
 - (3) $\langle T(\mathbf{u}), T(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$, $\forall \mathbf{u} \in \mathbf{v} \in V$.

Solução: $(1) \Rightarrow (2)$ Esta implicação segue da seguinte propriedade: digamos que A e B sejam matrizes ortogonais, então AB também é uma matriz ortogonal. De fato, se calcularmos $(AB)^tAB = B^t(A^tA)B = B^tIB = B^tB = I$. Vamos aplicar esta propriedade para provar a implicação. Iniciemos com $\alpha \subset V$, uma base ortonormal, na qual $[T]^{\alpha}_{\alpha}$ é ortonormal, e $\beta \subset V$, uma outra base ortonormal qualquer. Podemos calcular as matrizes de mudança de coordenadas $[I]^{\alpha}_{\beta}$ e $[I]^{\beta}_{\alpha}$, que são ortogonais pelo lema 9.24. Então, como

$$[T]^{\beta}_{\beta} = [I]^{\alpha}_{\beta} [T]^{\alpha}_{\alpha} [I]^{\beta}_{\alpha},$$

segue da observação inicial que $[T]^{\beta}_{\beta}$ também é ortogonal.

(2) \Rightarrow (3) Seja $\beta = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ uma base ortonormal de Ve seja

$$A = [T]^{\beta}_{\beta} = [a_{ij}].$$

Então, os escalares a_{ij} são obtidos por

$$T(\mathbf{v}_j) = \sum_{i=1}^n a_{ij} \mathbf{v}_i \in T(\mathbf{v}_k) = \sum_{r=1}^n a_{rk} \mathbf{v}_r, \text{ com } j, k = 1, \dots, n.$$

E temos

$$\langle T(\mathbf{v}_{j}), T(\mathbf{v}_{k}) \rangle = \left\langle \sum_{i=1}^{n} a_{ij} \mathbf{v}_{i}, \sum_{r=1}^{n} a_{rk} \mathbf{v}_{r} \right\rangle$$

$$= \sum_{i=1}^{n} \sum_{r=1}^{n} a_{ij} a_{rk} \left\langle \mathbf{v}_{i}, \mathbf{v}_{r} \right\rangle$$

$$= \sum_{i=1}^{n} a_{ij} a_{ik} \text{ e como a matriz } [a_{ij}] \text{ \'e ortogonal}$$

$$= \delta_{jk}$$

$$= \left\langle \mathbf{v}_{j}, \mathbf{v}_{k} \right\rangle$$

E $\langle T(\mathbf{v}_j), T(\mathbf{v}_k) \rangle = \langle \mathbf{v}_j, \mathbf{v}_k \rangle$ e a propriedade é válida para os vetores da base inicial. Mas então, se \mathbf{u} e \mathbf{v} são vetores quaisquer de V, então podemos escrever $\mathbf{u} = \sum_{j=1}^{n} x_j \mathbf{v}_j$ e $\mathbf{v} = \sum_{k=1}^{n} x_k \mathbf{v}_k$, logo,

$$\langle T(\mathbf{u}), T(\mathbf{v}) \rangle = \left\langle \sum_{j=1}^{n} x_j T(\mathbf{v}_j), \sum_{k=1}^{n} y_k T(\mathbf{v}_k) \right\rangle$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} x_j y_k \left\langle T(\mathbf{v}_j), T(\mathbf{v}_k) \right\rangle$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} x_j y_k \left\langle \mathbf{v}_j, \mathbf{v}_k \right\rangle$$

$$= \left\langle \sum_{j=1}^{n} x_j \mathbf{v}_j, \sum_{k=1}^{n} y_k \mathbf{v}_k \right\rangle = \left\langle \mathbf{u}, \mathbf{v} \right\rangle.$$

 $(3) \Rightarrow (1)$ Seja $\alpha = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n}$, uma base ortonormal de \mathbb{R}^n , e $a_{ij} \in \mathbb{R}$ escolhidos por satisfazer:

$$T(\mathbf{v}_j) = \sum_{i=1}^n a_{ij} \mathbf{v}_i \in T(\mathbf{v}_k) = \sum_{r=1}^n a_{rk} \mathbf{v}_r, \text{ com } j, k = 1, \dots, n.$$

Isto é, os a_{ij} são os coeficientes da matriz $[T]^{\alpha}_{\alpha}$. Então,

$$\delta_{ij} = \langle \mathbf{v}_j, \mathbf{v}_k \rangle$$

$$= \langle T(\mathbf{v}_j), T(\mathbf{v}_k) \rangle$$

$$= \left\langle \sum_{i=1}^n a_{ij} \mathbf{v}_i, \sum_{r=1}^n a_{rk} \mathbf{v}_r \right\rangle$$

$$= \sum_{i=1}^n a_{ij} a_{ik}.$$

Mas isso é equivalente a dizer que $[T]^{\alpha}_{\alpha}$ é ortogonal.

- **R9.3.** a) Encontre a aplicação linear $S: \mathbb{R}^2 \to \mathbb{R}^2$, que é a reflexão em torno da reta y = x.
 - b) Obtenha a matriz de S na base canônica.

Solução: Lembrando que $S{\bf u}=2P{\bf u}-{\bf u}$ é dada pela fórmula

$$S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} \left(\frac{1-a^2}{1+a^2}\right)x + \left(\frac{2a}{1+a^2}\right)y \\ \left(\frac{2a}{1+a^2}\right)x + \left(\frac{a^2-1}{1+a^2}\right)y \end{bmatrix}.$$

Como a hipótese do exercício é a=1, segue que $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} y \\ x \end{bmatrix}$, e a matriz, em relação à base canônica, é

$$A = \left[S \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \quad S \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) \right] = \left[\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right].$$

R9.4. Prove o teorema 9.16: Se F é um subconjunto do \mathbb{R}^n , o qual está munido de um produto interno, então F^{\perp} é um subespaço vetorial de \mathbb{R}^n .

Solução: Para garantir que F^{\perp} é um subespaço vetorial de \mathbb{R}^n é necessário verificar as seguintes três condições:

- $0 \in F^{\perp}$, uma vez que $\langle \mathbf{u}, 0 \rangle = 0$, para todo $\mathbf{u} \in F$;
- Se $\mathbf{v}, \mathbf{w} \in F^{\perp}$, então $\langle \mathbf{u}, \mathbf{v} + \alpha \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \alpha \langle \mathbf{u}, \mathbf{w} \rangle = 0 + \alpha 0 = 0$ para todo $\alpha \in \mathbb{R}$ e, portanto, $\mathbf{v} + \alpha \mathbf{w} \in F^{\perp}$.

Isto é o suficiente para garantir que F^{\perp} seja um subespaço vetorial. Veja que não exigimos nenhuma restrição ao subconjunto F.

Exercícios propostos

P9.1. Encontre k, tal que os vetores

$$\mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ k \\ 3 \end{bmatrix} \text{ e } \mathbf{v} = \begin{bmatrix} 3 \\ k \\ 7 \\ -6 \end{bmatrix}$$

de \mathbb{R}^4 sejam ortogonais.

P9.2. Encontre uma base ortogonal para os subespaços de \mathbb{R}^3 , gerados pelos vetores:

$$a) \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \quad b) \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\1 \end{bmatrix}.$$

- **P9.3.** Em cada um dos casos abaixo, determine se o conjunto $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} \subset \mathbb{R}^3$ é ortogonal, apenas ortogonal ou nenhum dos dois.
 - a) $\mathbf{u} = \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -1\\-1\\1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} -1\\1\\2 \end{bmatrix}.$
 - **b)** $\mathbf{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -b \\ a \\ 0 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} -ac \\ -bc \\ a^2+b^2 \end{bmatrix}.$
 - c) $\mathbf{u} = \frac{1}{7} \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix}, \mathbf{v} = \frac{1}{7} \begin{bmatrix} 3 \\ 2 \\ -6 \end{bmatrix}, \mathbf{w} = \frac{1}{7} \begin{bmatrix} -6 \\ -3 \\ 2 \end{bmatrix}.$
- **P9.4.** Use a desigualdade de Cauchy-Schwarz no \mathbb{R}^3 , para mostrar que, se a>0,b>0 e c>0, então

$$(a+b+c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \ge 9.$$

P9.5. Sejam a, b e c números reais positivos, tais que a + b + c = 1. Use a desigualdade de Cauchy-Schwarz no \mathbb{R}^3 , para mostrar que

$$\left(\frac{1}{a} - 1\right) \left(\frac{1}{b} - 1\right) \left(\frac{1}{c} - 1\right) \ge 8.$$

P9.6. Encontre uma base ortogonal para o espaço solução de:

a)
$$\begin{cases} 2x + y + z = 0 \\ y + z = 0 \end{cases}$$
 b) $x - y + z = 0$.

- **P9.7.** a) Encontre a aplicação linear $S: \mathbb{R}^2 \to \mathbb{R}^2$, que é a reflexão em torno da reta y=2x.
 - b) Obtenha a matriz de S na base canônica.
- **P9.8.** Mostre a lei do paralelogramo: $|\mathbf{u} + \mathbf{v}|^2 + |\mathbf{u} \mathbf{v}| = 2|\mathbf{u}|^2 + 2|\mathbf{v}|^2$, para quaisquer que sejam $\mathbf{u}, \mathbf{v} \in (\mathbb{R}^n, \langle , \rangle)$.
- **P9.9.** Sejam $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, prove que se $(\mathbf{u}+\mathbf{v}) \perp (\mathbf{u}-\mathbf{v})$, então $|\mathbf{u}| = |\mathbf{v}|$. Interprete o resultado geometricamente.
- **P9.10.** Mostre que, se S é um conjunto ortogonal de vetores não nulos, S é linearmente independente.
- **P9.11.** Seja $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ uma base ortogonal de \mathbb{R}^n . Então, dado qualquer $v \in \mathbb{R}^n$, verifique que as coordenadas de v com respeito a base são dadas por

$$\mathbf{v} = \frac{\langle \mathbf{v}, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 + \frac{\langle \mathbf{v}, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2 + \dots + \frac{\langle \mathbf{v}, \mathbf{u}_n \rangle}{\langle \mathbf{u}_n, \mathbf{u}_n \rangle} \mathbf{u}_n.$$

P9.12. Seja $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ uma base ortogonal de \mathbb{R}^n e $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, dois vetores quaisquer, mostre que

$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{e}_1 \rangle \langle \mathbf{v}, \mathbf{e}_1 \rangle + \dots + \langle \mathbf{u}, \mathbf{e}_n \rangle \langle \mathbf{v}, \mathbf{e}_n \rangle$$
.

- **P9.13.** Mostre que $(I-A)(I+A)^{-1}$ é uma matriz ortogonal, onde $A = \begin{bmatrix} 0 & 5 \\ -5 & 0 \end{bmatrix}$.
- **P9.14.** Determine valores para $x, y \in z$, tal que a matriz abaixo seja canônica

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1\\ x & y & z \end{bmatrix}.$$

- **P9.15.** Considere em \mathbb{R}^3 a função dada por $\langle \mathbf{u}, \mathbf{v} \rangle = 8x_1x_2 3x_2y_1 3x_1y_2 + 2y_1y_2 + 2z_1z_2$, onde $\mathbf{u} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ e $\mathbf{v} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$.
 - (a) Verifique que esaa função é um produto interno.
 - (b) Usando a norma que é a consequência deste produto interno, encontre o vetor do plano 2x + 3y 6z = 0 que está mais próximo do vetor $\mathbf{w} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$.
 - (c) Calcule a distância, usando a função distância que provem deste produto interno, de \mathbf{w} até o plano 2x+3y-6z=0.
- **P9.16.** Considere o \mathbb{R}^2 com o produto interno dado por $\langle \mathbf{u}, \mathbf{v} \rangle = x_1 y_1 + 2x_2 y_2 x_1 y_2 x_2 y_1$, onde $\mathbf{u} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ e $\mathbf{v} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$.
 - (a) Determine m, de tal forma que os vetores $\begin{bmatrix} 1+m \\ 2 \end{bmatrix}$ e $\begin{bmatrix} 3 \\ m-1 \end{bmatrix}$ sejam ortogonais.
 - (b) Determine todos os vetores de \mathbb{R}^2 ortogonais a $\begin{bmatrix} 1\\2 \end{bmatrix}$.
 - (c) Determine todos os vetores $\left[\begin{smallmatrix}m\\m-1\end{smallmatrix}\right]$ que têm norma 1.
- **P9.17.** Mostre que uma transformação ortogonal do plano no plano deixa invariante a distância entre dois pontos, isto é, dados ${\bf u}$ e ${\bf v}$, dois vetores quaisquer,

$$||T\mathbf{u} - T\mathbf{v}|| = ||\mathbf{u} - \mathbf{v}||.$$

P9.18. Mostre que, se T é uma transformação ortogonal do plano no plano, sua matriz em relação à base canônica só pode ser da forma:

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
(Rotações)

ou da forma

$$B = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$
(Reflexões).