- A Préliminaires : résolution correcte de l'équation 1 (avec simplification de $\exp\left(-\frac{1}{2}\ln(1+x^2)\right)$ dans la résolution de l'équation homogène).
- B Préliminaires : résolution correcte de l'équation 1 (notez entre 0 et 3 la clarté de la rédaction pour la variation de la constate).
- C A1 : les hypothèses du théorème de dérivation des composées : on doit lire « y dérivable sur I et $x \mapsto x^{1-p}$ dérivable sur \mathbb{R}_+^* »
- D A3-(c): l'étude de f_{λ} avec la disjonction de cas sur λ et les deux tableaux de variations.

Problème. Équations de Bernoulli et de Ricatti. (Corrigé succint).

Les deux équations posées dans la partie Préliminaires ont pour ensembles de solutions

$$S_1 = \left\{ x \mapsto 1 + \frac{\lambda}{\sqrt{1 + x^2}} \mid \lambda \in \mathbb{R} \right\} \quad \text{et} \quad S_2 = \left\{ x \mapsto \ln(x) - 1 + \frac{\lambda}{x} \mid \lambda \in \mathbb{R} \right\}.$$

J'espère que pour la première équation, vous vous êtes épargné une variation de la constante pour la recherche de la solution particulière!

Partie A. Équations de Bernoulli.

1. La fonction $y: I \to \mathbb{R}_+^*$ est dérivable sur I. La fonction $x \mapsto x^{1-p} (=e^{(1-p)\ln(x)})$ est dérivable sur \mathbb{R}_+^* . La fonction $z = y^{1-p}$ est donc dérivable sur I comme composée et

$$z' = (1-p)y'y^{-p}$$
.

- 2. En divisant dans l'équation par y^p , on obtient $y'y^{-p} = a(x)y^{1-p} + b(x)$: y est solution de (B) ssi z est solution de (LB).
- 3. (a) Pour cet exemple, $p = \frac{1}{2}$ et $1 p = \frac{1}{2}$. L'équation (LB_1) est la première équation des préliminaires.
 - (b) Ses solutions : les fonctions $x\mapsto 1+\frac{\lambda}{\sqrt{1+x^2}}$ avec $\lambda\in\mathbb{R}.$
 - (c) Fixons λ réel et étudions $f_{\lambda}: x \mapsto 1 + \frac{\lambda}{\sqrt{1+x^2}} = 1 + \lambda(1+x^2)^{-1/2}$. La fonction f_{λ} est dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R} \quad f_{\lambda}'(x) = -\lambda x (1+x^2)^{-3/2}.$$

Cas $\lambda \leq 0$.

Dans le cas où $\lambda > 0$, la fonction f_{λ} prend toujours des valeurs strictement positives. En revanche, si $\lambda \leq 0$, il faut et il suffit que $1 + \lambda$ soit strictement positif pour que f_{λ} prenne des valeurs strictement positives. Bilan : les solutions strictement positives de (LB1) sont les fonctions $x \mapsto 1 + \frac{\lambda}{\sqrt{1+x^2}}$ avec $\lambda > -1$.

- (d) Si $z=y^{1/2}$ est de la forme ci-dessus, alors on sait donner $y=z^2$. Les solutions sont les fonctions de la forme $x\mapsto \left(1+\frac{\lambda}{\sqrt{1+x^2}}\right)^2$, avec $\lambda>-1$.
- 4. (a) Pour cet exemple, p=2 et 1-p=-1. L'équation (LB_2) est la première équation des préliminaires.
 - (b) Ses solutions : les fonctions $x \mapsto \ln(x) 1 + \frac{\lambda}{x}, \ \lambda \in \mathbb{R}$.
 - (c) Soit $\lambda \in \mathbb{R}$. On se donne la fonction $g_{\lambda}: x \mapsto \ln(x) 1 + \frac{\lambda}{x}$. Dérivable sur \mathbb{R}_{+}^{*} et de dérivée $g'_{\lambda}: x \mapsto \frac{1}{x} \frac{\lambda}{x^{2}} = \frac{x \lambda}{x^{2}}$. Une telle fonction a pour tableau de variations

Pour avoir des fonctions strictement positives sur \mathbb{R}_+^* , une condition nécessaire et suffisante est d'avoir $\lambda > 1$.

(d) Si $z = y^{-1}$ est de la forme ci-dessus, alors on sait donner $y = z^{-1}$. Les solutions sont les fonctions de la forme $x \mapsto \left(\ln(x) - 1 + \frac{\lambda}{x}\right)^{-1}$, avec $\lambda > 1$. Partie B. Équations de Ricatti.

1. On a posé $z = y - y_0$ où y est une fonction dérivable sur I et y_0 une solution particulière de (R).

$$y$$
 est solution $\iff y' = a + by + cy^2$
 $\iff (z + y_0)' = a + b(z + y_0) + c(z + y_0)^2$
 $\iff z' + y_0' = a + bz + by_0 + cz^2 + 2cy_0z + cy_0^2$
 $\iff z' + \underbrace{y_0' - a - by_0 - cy_0^2}_{=0} = (b + 2cy_0)z + cz^2$
 $\iff z' = \alpha z + cz^2$,

en posant $\alpha = b + 2cy_0$.

2. On vérifie que $y_0: x \mapsto x$ est une solution particulière de (R_3) . L'équation de Bernoulli associée n'est autre que (B_2) , dont on a déterminé les solutions strictement positives sur \mathbb{R}_+^* . D'après l'énoncé, si z est solution de (B_2) , $z + y_0$ est solution de (R_3) .

Voici donc un ensemble de solutions de (R_3) :

$$\{x \mapsto x + (\ln(x) - 1 + \lambda/x)^{-1}, \ \lambda > 1\}.$$