6SENG001W Reasoning about Programs

Tutorial 2. Using Atelier B & ProB to Evaluate Set Expressions

Introduction

This tutorial is based on the sets, types & constants introduced in Lecture 2.

It is intended to introduce you to using AMN sets notation & evaluating sets in an Abstract Machine using the B tools.

ProB is the main tool we shall use to evaluate set, constant & type expressions.

For more information about how to set up & use the B tools see the manuals & Tutorial 1.

Exercise 2.1

- Using Atelier B, creating a new B project.
- Do this from the Atelier B "Atelier B > New > Project" menu.

Enter a Project Name, e.g.

tutorial2

Select "Project Type" as "Software Development".

• Add a component to your tutorial2 project. Do this from the "Atelier B > New > Component" menu.

Enter a new component name:

Sets.mch

add it to the project.

You will then use it to explore set & constant expressions.

• If everything has gone properly you should see an **orange box** with "**Sets**" in it.

Benelux <: EU & Benelux = { BEL, LUX, NL }

Exercise 2.2

Using the Atelier B built in editor, type in the following Sets machine, that provides the definitions of various set & constant definitions:

```
MACHINE Sets
```

```
SETS
  EU = { BEL, NL, LUX, FR, DK, POR, GBR, ITA, IRL, DUT, ESP, GRE };

LETTER = { aa, bb, cc, dd, ee, ff, gg, hh, ii, jj, kk, ll, mm, nn, oo, pp, qq, rr, ss, tt, uu, vv, ww, xx, yy, zz }

CONSTANTS
  Benelux,
  AA, BB, CC, DD,
  Even, Odd, Fives

PROPERTIES
```

```
AA = \{ aa, bb, cc, dd, ee, ff, gg, hh \}
                                                                            &
     AA <: LETTER
                                                                             &
     BB <: LETTER
                      BB = { aa, ee, ii, oo, uu }
     CC <: LETTER
                      CC = \{ xx, yy, zz \}
                      DD = { ff, oo, rr, mm, aa, 11, ee, tt, hh, dd, ss }
     DD <: LETTER
                  & Even = { ev | ev : NAT & ev mod 2 = 0 & ev <= 20 }
     Even <: NAT
                          = \{ od \mid od : NAT \& od mod 2 = 1 \& od <= 20 \}
     Odd <: NAT
                  & Odd
     Fives <: NAT & Fives = { fi | fi : NAT & fi mod 5 = 0 & fi <= 20 }
  VARIABLES
    homeland, EE, FF, GG
  INVARIANT
     homeland: EU
     EE <: LETTER & FF <: LETTER & GG <: LETTER
  INITIALISATION
    homeland, EE, FF, GG := GBR, { ee }, { ff }, { gg }
END
```

Exercise 2.3

Syntax & Type Checking the specification, using Atelier B.

You can either syntax & type check the Sets specification as you type it in or after you have finished typing it in.

The Atelier B tool will type check it automatically immediately after you have saved any changes.

Error messages will be displayed in the "Outline" sub-window & underlined in red in the specification.

Alternatively, you can "force" type checking by either:

- pressing the *blue circular "Tc" button* at the top of the tool's main screen.
- o pressing Control-T, i.e. hold down the "Ctrl" (Control) key & at the same time press the "T" key.

Exercise 2.4

Once the Sets machine has been syntax & type checked & there are no errors, you can animate it using the ProB animator.

To do this start the ProB animator from the Ubuntu "Applications > Programming" menu.

Then *open* the **Sets.mch** file from the "File > Open" menu, by using the "Browse" option.

If there are **no errors** then you should see:

- 1. The specification in the top window.
- 2. In the bottom "Enabled operations" window, you should see "INITIALISATION({})".

To begin the animation "double-click" on INITIALISATION({}).

Note that there are **NO enabled operations listed** as this machine has none, you are simply going to use the definitions to evaluate set expresions.

Exercise 2.5

After loading the Sets.mch machine into ProB you can now use it to evaluate set expressions.

For details on how to do this & the list of expressions that you are to evaluate see these notes: **Evaluating Set expressions**.

Last updated: 1/10/17