FINDING THE EQUATION OF CIRCLE

B.TEJA, P. PRANEETH, PRANJAL

February 15, 2019

Question

If the line 2x+3y+1=0 and 3x-y-4=0 lie along the diameters of a circle of circumference 10π then the equation of the circle is ?

Solution

given equations are

$$\begin{bmatrix} 2 & 3 \end{bmatrix} x = -1$$
$$\begin{bmatrix} 3 & -1 \end{bmatrix} x = 4$$

and circumference of circle is 10π

by solving we will get the intersection point

as
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

We know that the circumference of the circle is $2\pi r$ As the given circumference is 10π $2\pi r = 10\pi$

therefore radius of given circle is (r=5)

we know that the equation of circle with centre

$$C = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$||(X - C)||^2 = r^2$$

 $(X - C)^T(X - C) = r^2$
 $X^TX - 2C^TX = r^2 - C^TC$

by substituting the centre C equation of the circle is

$$X^T X$$
- $\begin{bmatrix} 1 & -1 \end{bmatrix} X = r^2$ - $\begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

therefore

$$x^2 + y^2 - 2x + 2y - 23 = 0$$

is the required circle equation

Extra

 $x=rcos(\Theta) +h y=sin(\Theta) +k$ by differentiating slope of circle at Θ is $m = -cot\Theta$ as we know the values of Θ by the given line equations we will get the slopes of tangents at 4 intersection points now we will find tangent equations from slope and point

we will get the 4 intersection points of tangents now we can find the area of one triangle by $(base * height) \div 2$ now the area of quadrilateral is 2*area of triangle

