Fonctions elliptiques

Les parties II, III et IV sont indépendantes entre elles mais exploitent toutes les trois les fonctions présentées dans la partie I.

Partie I – Constructions des fonctions elliptiques

k désigne un réel de l'intervalle [0,1].

1. Justifier l'existence de l'intégrale : $\int_{-1}^{1} \frac{dt}{\sqrt{1-t^2}\sqrt{1-k^2t^2}}$.

On definit une fonction $U:[-1,1] \to \mathbb{R}$ en posant $U(x) = \int_0^x \frac{\mathrm{d}t}{\sqrt{1-t^2}\sqrt{1-k^2t^2}}$.

Cette fonction U est appelée fonction elliptique de $1^{\text{ère}}$ espèce et de module k .

- Etablir que pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], U(\sin(x)) = \int_0^x \frac{d\tau}{\sqrt{1 k^2 \sin^2(\tau)}}$
- 3. On introduit désormais la fonction réelle $u: \mathbb{R} \to \mathbb{R}$ définie par la relation $u(x) = \int_0^x \frac{\mathrm{d}t}{\sqrt{1 k^2 \sin^2(t)}}$
- 3.a Etudier la parité de la fonction u.
- 3.b Justifier que u est de classe \mathcal{C}^{∞} et donner l'expression de u'(x). En déduire que u est strictement croissante.
- 3.c Etablir: $\lim_{x \to \infty} u(x) = +\infty$.
- 3.d Conclure que u réalise une bijection de \mathbb{R} vers \mathbb{R} .
- 4. On note $A: \mathbb{R} \to \mathbb{R}$ l'application réciproque de la fonction u. A est appelée fonction d'amplitude.
- 4.a Préciser le sens de variation et la parité de A
- 4.b Justifier que A est de classe C^{∞} et exprimer A'.
- 4.c Observer que A'' vérifie : $A'' + k^2 \sin A \cos A = 0$.
- 5. Montrer que la quantité $u(x+\pi)-u(x)$ est constante quel que soit $x\in\mathbb{R}$. Exprimer cette constante qu'on notera K en fonction de $u\left(\frac{\pi}{2}\right)$ puis de $T=\int_0^1\!\frac{\mathrm{d}t}{\sqrt{1-t^2}\sqrt{1-k^2t^2}}$.
- 6. Pour tout $y \in \mathbb{R}$, on note x = A(y) et on définit les fonctions Sn,Cn et Dn par : $Sn(y) = \sin(x), \ Cn(y) = \cos(x) \ \text{et} \ Dn(y) = \sqrt{1 k^2 \sin^2(x)} \ .$ Ces trois fonctions sont appelées fonctions de Jacobi.
- 6.a Etudier la parité de ces 3 fonctions et préciser leur régularité.
- 6.b Montrer qu'elles sont périodiques et donner leur période en fonction de T.
- 6.c Calculer Sn(T), Cn(T) et Dn(T).
- 6.d Exprimer les dérivées Sn', Cn' et Dn' en fonction de Sn, Cn et Dn.
- 6.e Justifier que Sn est solution sur R du problème différentiel : $\begin{cases} y'' + (1+k^2)y 2k^2y^3 = 0 \\ y(0) = 0, y'(0) = 1 \end{cases}$.
- 7. Préciser les fonctions Sn,Cn et Dn lorsque k=0 ainsi que la valeur de T.

Partie II – Formule d'addition sur les fonctions de Jacobi

- 1. Soit l'application $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ suivante : $(a,b) \mapsto \left(\frac{1}{2}(a+b), \frac{1}{2}(a-b)\right)$. Montrer que ϕ est bijective et exprimer son application réciproque ϕ^{-1} .
- 2. Pour toute application $f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto f(x,y) \end{cases}$, on note g l'application composée $f \circ \phi$.
- 2.a Démontrer que f est de classe C^1 si et seulement si g l'est également.
- 2.b Exprimer dans ce cas les dérivées partielles premières de g notées : $\frac{\partial g}{\partial a}$ et $\frac{\partial g}{\partial b}$ en fonction de celles de f notées : $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.
- 2.c En déduire une description de l'ensemble E formé des fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 telle que $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}.$
- 3. Soit $f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto f(x,y) \end{cases}$ de classe \mathcal{C}^1 vérifiant : $\forall (x,y) \in \mathbb{R}^2, f(x,y) = f(y,x)$ et $\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial x}(y,x)$. Montrer qu'il existe $\alpha: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 telle que : $\forall (x,y) \in \mathbb{R}^2, f(x,y) = \alpha(x+y)$.
- 4. Démontrer :

$$\forall (x,y) \in \mathbb{R}^2, Sn(x+y) = \frac{Sn(x)Cn(y)Dn(y) + Sn(y)Cn(x)Dn(x)}{1 - k^2Sn^2(x)Sn^2(y)}.$$

On établit de même, mais on ne le demande pas ici, les formules :

$$\forall (x,y) \in \mathbb{R}^2, Cn(x+y) = \frac{Cn(x)Cn(y) - Sn(x)Dn(x)Sn(y)Dn(y)}{1 - k^2Sn^2(x)Sn^2(y)} \text{ et}$$

$$\forall (x,y) \in \mathbb{R}^2, Dn(x+y) = \frac{Dn(x)Dn(y) - k^2Sn(x)Cn(x)Sn(y)Cn(y)}{1 - k^2Sn^2(x)Sn^2(y)}$$

Partie III – Rectification de la lemniscate de Bernoulli

On munit le plan \mathbf{R}^2 de sa structure euclidienne orientée usuelle et on note $\mathcal{R}=(O;\vec{i},\vec{j})$ son repère canonique. Pour $\theta\in\mathbb{R}$, on note $\vec{u}(\theta)=\cos\theta\cdot\vec{i}+\sin\theta\cdot\vec{j}$ et $\vec{v}(\theta)=-\sin\theta\cdot\vec{i}+\cos\theta\cdot\vec{j}$. On appelle lemniscate de Bernoulli, la courbe \mathcal{C} d'équation polaire $\rho=\sqrt{2\cos2\theta}$ c'est à dire la courbe de point courant $M(\theta)$ déterminé par $\overrightarrow{OM(\theta)}=\rho(\theta)\cdot\vec{u}_{\theta}$ avec $\rho(\theta)=\sqrt{2\cos2\theta}$.

- 1.a Préciser le domaine de définition et la périodicité de l'application $\theta \mapsto \rho(\theta)$.

 Justifier que $\mathcal C$ est symétrique par rapport au point O.
- 1.b Justifier que C est symétrique par rapport à l'axe (Ox)
- 1.c Dresser le tableau de variation de $\theta \mapsto \rho(\theta)$ sur l'intervalle $\left[0, \frac{\pi}{4}\right]$.
- 1.d Donner l'allure de la courbe $\mathcal C$ en prenant une unité égale à 4 cm. On prendra soin de préciser les tangentes aux points de paramètres $\theta \in \left\{0, \frac{\pi}{4}\right\}$.
- 1.e On oriente la courbe $\mathcal C$ dans le sens des θ croissants. Préciser, sur la figure qui précède le sens de parcours des θ croissants sur les deux boucles figurées.

On s'intéresse ici à la portion de la courbe $\mathcal C$ correspondant à $\theta\in\left]-\frac{\pi}{4},\frac{\pi}{4}\right]$.

- 2. On désigne par s l'abscisse curviligne d'origine M(0) le long de la portion de \mathcal{C} étudiée. On note $\vec{T}(\theta)$ le premier vecteur du repère de Frénêt au point $M(\theta)$.
- 2.a. Exprimer $\frac{\mathrm{d}s}{\mathrm{d}\theta}$.
- 2.b Déterminer une fonction numérique $\theta \mapsto \alpha(\theta)$ dérivable telle que : $\forall \theta \in \mathbb{R}, \alpha(\theta) = (\vec{i}, \vec{T}(\theta))[2\pi]$.
- 2.c Exprimer la valeur du rayon de courbure $R(\theta)$ en tout point $M(\theta)$ de \mathcal{C} .
- 3. En observant $s(\theta) = \int_0^\theta \frac{\sqrt{2} d\alpha}{\sqrt{1 2\sin^2 \alpha}}$ puis en s'appuyant sur un changement de variable adéquate, exprimer $s(\theta)$ à l'aide de la fonction U pour un paramètre $k \in [0,1[$ à préciser.

Partie IV – Période d'un pendule simple

On se donne $\omega > 0$ et $\alpha \in \left]0, \frac{\pi}{2}\right[$.

- 1. (Cas des petites oscillations) On considère le problème différentiel : $\begin{cases} y'' + \omega^2 \cdot y = 0 \\ y(0) = \alpha, y'(0) = 0 \end{cases}$ (1)
- 1.a Montrer que ce problème possède une solution unique que l'on exprimera.
- 1.b Déterminer la période T_0 de cette solution.
- 2. (Etude générale)

On considère désormais le problème différentiel suivant : $\begin{cases} y'' + \omega^2 \sin y = 0 \\ y(0) = \alpha, y'(0) = 0 \end{cases}$ (2)

On admet que celui-ci possède une solution unique définie sur ${\mathbb R}$.

Pour tout $k \in [0,1]$ et $t_0 \in \mathbb{R}$, on considère la fonction f définie par : $f(t) = -2\arcsin(k \cdot Sn(\omega(t-t_0)))$.

- 2.a Déterminer l'ensemble de définition de f et justifier que f y est indéfiniment dérivable.
- 2.b Observer que f est solution sur \mathbb{R} de l'équation différentielle $y'' + \omega^2 \sin y = 0$.
- 2.c Montrer qu'il existe k et t_0 à déterminer tels que f soit solution du problème (2).
- 2.d Observer que f est périodique et préciser sa période T_1 en fonction de ω et T.
- 2.e Montrer que T_1 est une fonction croissante de α .
- 3. Montrer que le rapport $\frac{T_1}{T_0}$ ne dépend que de α (et non de ω).