Literature Survey

Date	25 th September 2022
Team ID	PNT2022TMID03498
Project Name	Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image
	Representation

SI. NO	Title	Author	Year of Publishing	Reference link
1.	Automated characterization of arrhythmias using nonlinear features from tachycardia ECG beats	U Rajendra, Acharya, Hamido Fujita, Muhammad Adam, Oh Shu lih, Tan Jen Hong, Vidya K Sudarshan.	2017	https://ieeexplore.ieee. org/abstract/document /7844294
2.	Interpretation and Classification of Arrhythmia Using Deep Convolutional Network	Prateek Singh, Ambalika Sharma.	2022	https://www.researchg ate.net/publication/36 3291215_Interpretatio n_and_Classification_of _Arrhythmia_using_De ep_Convolutional_Net work
3.	A Review of Automated Diagnosis of ECG Arrhythmia Using Deep Learning Methods	Praveen kumar tyagi, Neha Rathore, Deepak Parashra, Dheeraj Agrawal.	2022	https://www.researchg ate.net/publication/36 1597512_A_Review_of _Automated_Diagnosis _of_ECG_Arrhythmia_ Using_Deep_Learning_ Methods
4.	Building normal ECG models to detect any arrhythmias using deep learning	Keigi Gyohten, Shota hori, Hidehiro Ohki, Toshiya Takami.	2020	https://www.researc hgate.net/publication /348282231_Building _normal_ECG_model s_to_detect_any_arr hythmias_using_deep _learning

5.	ECG Classification for Heart Arrhythmia Using Deep Machine Learning	Shalin savalia, Vahid Emamian.	2021	https://www.researchg ate.net/publication/35 6327202_ECG_Classific ation_for_Heart_Arrhyt hmia_Using_Deep_Mac hine_Learning
----	--	-----------------------------------	------	--