The energy of a uniformly dense spherical black hole

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe the energy of a uniformly dense spherical black hole. The paper ends with "The End"

Introduction

In a previous paper, I've described my universal constant Υ . In this paper, I describe the energy of a uniformly dense spherical black hole.

The energy of a uniformly dense spherical black hole

Eliminating M, g and T and c from the equations

$$\rho = \frac{M}{\frac{4}{3}\pi R^3}$$

$$g = G\frac{M}{R^2}$$

$$c = gT$$
 and
$$E = Mc^2$$
 gives us
$$E = \frac{64}{27}G^2\pi^3\Upsilon^2\rho R^3$$

where

E is the energy of a uniformly dense spherical black hole G is the gravitational constant $\pi \text{ is the circular constant}$ $\Upsilon \text{ is Ghosh's universal constant}$ $\rho \text{ is the density of the uniformly dense spherical black hole}$ R is the radius of the uniformly dense spherical black hole

The End