

Consider maximal non-self-intersecting polygonal chains on $[n] \times [m]$ stable under 180° rotation.

Figure 1: The 6 (or 8) maximal polygonal chains with vertices in $[3] \times [3]$.

Figure 2: $f(4 \times 3) = 82$

Question. How many non-self-intersecting polygonal chains with vertex set equal to $[n] \times [m]$ are stable under 180° rotation?

Related.

- 1. What if this is done with other kinds of symmetry? (e.g. horizontal or vertical reflection)
- 2. What if this is done for polygons instead of polygonal chains?
- 3. What if maximal means that the polygonal chain cannot be extended, a weaker condition than that the vertex set is $[n] \times [m]$. (This includes the last two chains in the example.)
- 4. What is the maximal length of such a chain with respect to ℓ_1, ℓ_2 , and ℓ_{∞} ? What if the symmetry restriction is dropped?
- 5. What if the only allowed moves are king moves? Rook moves?
- 6. What if this is done with vertex set $[n_1] \times [n_2] \times \cdots \times [n_k]$?

References.

Problems 5, 44, 46, 55, 68, 74, 87, and 104.