NOIP模拟赛

题目名称	Reflection	The Summit	Core	Farewell
题目类型	传统型	传统型	传统型	传统型
输入文件名	reflection.in	summit.in	core.in	farewell.in
输出文件名	reflection.out	summit.out	core.out	farewell.out
时间限制	1s	6s	2s	6s
内存限制	1024 MiB	1024 MiB	1024 MiB	1024 MiB
测试点数目	5	4	4	4
测试点是否等分	否	否	否	否

注意事项

- 1. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 2. 编译选项: -1m -std=c++14。
- 3. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 4. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格分隔。
- 5. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 6. 每道题目的栈空间与所给的空间限制一致。
- 7. 原则上,每个测试点时限为标准程序在该测试点上的运行时间的 2 倍及以上。

Reflection

【题目描述】

众所周知,平均数和中位数都从某种角度刻画了一个集合的中间位置,而它们一般是十分接近的。现在小 q 想要知道这两个数是否可能相差很远。定义一个集合 S 的平均数与中位数的差的绝对值为 val(S) 。现在小 q 给你了一个正整数的可重集 A ,他想让你告诉他对于所有 A 的子集 S ,val(S) 的最大值。

平均数和中位数的定义: 设 $S = \{s_1, s_2, \cdots, s_n\} (s_1 \leq s_2 \leq \cdots \leq s_n)$,则:

- S 的平均数为 $\frac{s_1+s_2+\cdots+s_n}{n}$
- ullet S 的中位数为 $\left\{egin{array}{ll} s_{(n+1)/2} & n ext{ is odd} \ rac{s_{n/2}+s_{n/2+1}}{2} & n ext{ is even} \end{array}
 ight.$

【输入格式】

第一行一个数 n ,代表可重集的大小。

第二行 n 个数 a_1, a_2, \ldots, a_n , 代表可重集中的所有数。

【输出格式】

一行一个数,表示 val(S) 中的最大值。如果你的答案与标准答案相对或绝对误差在 10^{-6} 以内则视为正确。

【样例输入1】

5 1 4 5 9 11

【样例输出 1】

2.0000000000

【样例输入 2】

见下发文件 ex_reflection2.in。

【样例输出 2】

见下发文件 ex_reflection2.out。

【数据范围】

保证 $n \leq 5 imes 10^5, 1 \leq a_1 \leq a_2 \leq \cdots \leq a_n \leq 10^9$ 。

subtask1(10pts): 保证 $n \leq 20$ 。

subtask2(20pts): 保证 $n \leq 500$ 。

subtask3(20pts): 保证 $n \leq 5000$ 。

subtask4(20pts): 保证 $n \leq 10^5$ 。

subtask5(30pts): 无特殊限制。

The Summit

【题目描述】

有一个长度为 2n 的序列 a_1,a_2,\ldots,a_{2n} ,初始全为 0。你要构造 k 个完美匹配。依次对这 k 个完美匹配执行以下操作:

• 对于匹配内的每对 i, j (i < j),如果 $a_i \le a_j$,则令 a_i 增大 1, a_j 减小 1;如果 $a_i > a_j$,则令 a_i 减小 1, a_j 增大 1。

你需要保证任意时刻 $|a_i| \leq 3(1 \leq i \leq n)$ 。 对输入质数模数 p 取模。

【输入格式】

一行三个正整数 n, k, p。

【输出格式】

一行一个整数,表示答案对质数 p 取模的结果。

【样例输入1】

3 2 998244353

【样例输出 1】

225

【样例解释 1】

所有可能的匹配都是合法的,两轮共 $15^2 = 225$ 种可能性。

【样例输入2】

8 4 998244353

【样例输出 2】

740255777

【样例输入3】

100 5 1000000007

【样例输出3】

272254976

【数据范围】

保证 $n \leq 400, k \leq 20, 10^8 \leq p \leq 10^9 + 7$ 。保证 p 为质数。

subtask1(30pts): 保证 $n \le 5, k \le 5$ 。

subtask2(30pts): 保证 $n \leq 50$ 。

subtask3(20pts): 保证 p = 998244353。

subtask4(20pts): 无特殊限制。

Core

【题目描述】

给定一个平面上的点集 S。令 f(S) 为有多少个点对 $a \in S, b \in S, a \neq b$ 使得

 $\mathrm{dis}_1(a,b)=\min_{c\in S}\mathrm{dis}_1(a,c)$

 $\mathrm{dis}_2(a,b) = \max_{c \in S} \mathrm{dis}_2(a,c)$

其中 dis_1 为切比雪夫距离, $\mathrm{dis}_1((x_1,y_1),(x_2,y_2))=\max(|x_1-x_2|,|y_1-y_2|)$, dis_2 为曼哈顿 距离, $\mathrm{dis}_2((x_1,y_1),(x_2,y_2))=|x_1-x_2|+|y_1-y_2|$ 。

初始 S 为空。依次执行 n 次操作,每次往 S 内添加一个点,你需要回答新的 f(S) 的值。

【输入格式】

第一行一个正整数 n。

接下来 n 行,每行两个整数 x,y,表示新加入的点的坐标。

【输出格式】

n 行,每行一个正整数,表示每次操作后的 f(S)。

【样例输入1】

4 1 4 4 2 4 6 7 4

【样例输出 1】

0 2 4 4

【样例输入2】

13			
1 3			
2 2			
2 3			
2 4			
3 1			
3 2			
3 3			
3 4			
3 5			
4 2			
4 3			
4 4			
5 3			

【样例输出 2】

【数据范围】

保证 $1 \le n \le 4 \times 10^5, 1 \le x, y \le 10^7$ 。保证加入的点两两不同。

subtask1(30pts): 保证 $n \leq 2000$ 。

subtask2(20pts):保证每次操作的点的坐标在范围内均匀随机生成。

subtask3(30pts): 保证 $n \le 5 \times 10^4$ 。

subtask4(20pts): 无特殊限制。

Farewell

【题目描述】

给定序列 a_1, a_2, \ldots, a_n 和 b_1, b_2, \ldots, b_n ,构造一个两边各 n 个点的完全二分图,其中左边第 i 个点和右边第 j 个点的边权为 (a_i+b_j) mod 998244353。

建完二分图后看,删掉图中指定的 m 条边,称得到的图为 G。

给定 k,对 $i=1,2,\ldots,k$ 求 G 中大小为 i 的最大权匹配(只有边权对 998244353 取模,权值和可能会超过 998244353)。

【输入格式】

第一行三个整数 n, m, k。

接下来两行,每行n整数,表示序列a和序列b。

接下来 m 行,每行两个整数 x,y,表示删掉左边的第 x 个点连向右边第 y 个点的边。

【输出格式】

输出一行 k 个整数,表示大小为 $i=1,2,\ldots,k$ 的最大权匹配的权值和。如果不存在大小为 i 的匹配,改为输出 -1。

【样例输入1】

```
3 4 3
10 998244352 5
998244352 8 6
1 2
1 3
2 2
3 3
```

【样例输出 1】

998244351 998244364 27

【样例输入2】

```
1 1 1
0
0
1 1
```

【样例输出 2】

-1

【数据范围】

```
保证 1 \le n \le 10^5, 0 \le m \le 3 \times 10^5, 1 \le k \le \min(n, 200)。
```

保证 $0 \leq a_i, b_i < 998244353$,保证删除的边两两不同。

subtask1(30pts): 保证 $n \leq 50$ 。

subtask2(30pts): 保证 m=0。

subtask3(20pts): 保证 $k \leq 50$ 。

subtask4(20pts): 无特殊限制。