Exam Summary WrStat-HS23

1 Kombinatorik

Zählregel

• Disjunkte Vereinigung: $|A \cup B| = |A| + |B|$

• Vereinigung: $|A \cup B| = |A| + |B| - |A \cap B|$

• Paare = Produkt: $|A \times B| = |A| \cdot |B|$

Reihenfolge / Permutation Jeder Platz im Hörsaal wird belegt:

$$P_{n} = \underbrace{\#\{\text{Plätze für 1. Objekt}\}}_{n} \cdot \underbrace{\#\{\text{Plätze für 2. Objekte}\}}_{n-1} \cdot \dots \cdot \underbrace{\#\{\text{Plätze für n. Objekte}\}}_{n} \cdot \dots \cdot \underbrace{\#\{\text{Plätze für n. Objekten}\}}_{n} \cdot \dots \cdot \underbrace{\#\{\text{Plätze für n. Objekt$$

Anzahl / Auswahl Problem Auf wie viele Arten kann man k Plätze aus n Plätzen auswählen? 16 Studenten (k) platzieren sich auf 32 Plätzen (n).

#Auswahlprozesse =
$$n \cdot (n-1) \cdot \dots \cdot (n-k+1)$$

= $\frac{n!}{(n-k)!}$
= $\binom{n}{k}$

Binominal Koeffizient (funktioniert meist nicht gut, Taschenrechner können grosse n! nicht rechnen) Besser so:

$$\frac{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)}{1 \cdot 2 \cdot 3 \cdot \ldots \cdot k}$$

Variation Auch als Perlenkette bekannt

#Möglichkeiten =
$$k[Farben]^{n[L"angen]}$$

2 Ereignisse und Wahrscheinlichkeit

Begriffe

Begriff	Model
Versuchausgang, Elementarereignis	ω
alle Versuchsausgänge	Ω
Ereignis	$A \subset \Omega$
Ereignis ist eingetreten	$\omega \in A$
sicheres Ereignis, tritt immer ein	Ω
unmögliches Ereignis, kann nicht eintreten	Ø
A und B tretten ein	$A \cap B$
A oder B tretten ein	$A \cup B$
Objekte $\}$ A hat B zur Folge, wenn A dann auch B	$A \subset B$
nicht A	$\overline{A} = \Omega \setminus A$

Bedingte Wahrscheinlichkeit Wahrscheinlichkeit, dass ein Toter ein rotes Shirt trägt (Wir untersuchen nur die Toten und schauen ob er ein Rotes Shirt trägt)

$$P(R|T) = \frac{P(R \cap T)}{P(T)}$$

Satz von Bayes:

$$P(R|T) \cdot P(T) = P(R \cap T) = P(T|R) \cdot P(R)$$

Satz der totalen Wahrscheinlichkeit

$$P(T \cap G) = P(T|G) \cdot P(G)$$

$$+P(T \cap B) = P(T|B) \cdot P(B)$$

$$+P(T \cap R) = P(T|R) \cdot P(R)$$

$$=P(T)$$

3 Zufallsvariabeln

Erwartungswert

$$E(X) = \sum_{i=1}^{n} g_i P(A_i) \tag{1}$$

Varianz

$$var(X) = E(X^2) - E(X)^2$$

WrStat-HS23 Exam Summary

Verteilungsfunktion und lichkeitsdichte

Die Verteilungsfunktion beschreibt die Wahrscheinlichkeiten der Werte einer Zufallsvariable:

$$F(X) = P(X \le x)$$

 $\phi(x)$ ist die Ableitung von F(x) und entspricht der Verteilungsdichte Funktion.

$$\phi(x) = \frac{d}{dx}F(x) = F'(x)$$

• Wahrscheinlichkeit: $P(X = x) \to \phi(x)dx$

• Summe: $\sum_{x} \to \int_{\infty}^{\infty}$ • $E(X) = \sum_{x} x \cdot P(X = x) \to E(X) = \int_{\infty}^{\infty} x \cdot \phi(x) dx$

Wichtig: Erkennen, was ist der Wert, was ist der Erwartungswert

Exponential- / Erlang- / Poisson-Verteilung

Exponentialverteilung

Dichtefunktion $ae^{-ax}, a > 0$

Verteilungsfunktion $1 - e^{-ax}$

Erwartungswert $\frac{1}{a}$

Varianz $\frac{1}{a^2}$ Median $\frac{1}{a} \log 2$

Possonverteilung

Wahrscheinlichkeit $P_{\lambda}(k) = \frac{\lambda^k}{k!} e^{-\lambda}$

Erwartungswert λ

Varianz λ

Normalverteilung

Normalverteilung

Dichtefunktion $\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Verteilungsfunktion keine elementare Funktion (Tabelle nutzen)

Erwartungswert μ

Varianz σ

Median μ

Wahrschein- 7 Binominalverteilung

Binominalverteilung

Wahrscheinlichkeit $P(k) = \binom{n}{k} p^k (1-p)^{n-k}$

Verteilungsfunktion $F(k) = \sum_{i=0}^{k} {n \choose i} p^i (1-p)^{n-i}$

Erwartungswert np

Varianz np(1-p)

8 Schätzen

Schätzen Mittelwert ist häufig ein guter Schätzer

t-Verteilung t-Verteilung sollte dann verwendet werden, wenn man wenig Daten hat, aber es normall Verteilt ist (kleine n).

Hypothesentest

Vorgehen Hypothesentest

- 1. Nullhypothese H_0 und Alternativhypothese H_1
- 2. Testgrösse und Verteilung unter der Annahme der Nullhypothese
- 3. Wahl des Signifikanzniveaus α
- 4. Kritischer Wert für Testgrösse, die nur mit Wahrscheinlichkeit α erreicht
- 5. Kritischer Wert erreicht \Rightarrow Nullhypothese H_0 verwerfen

Ist der neue Dünger besser? Die Stichproben X_1, \ldots, X_n und Y_1, \ldots, Y_m mit gleicher Varianz haben den gleichen Erwartungswert.

$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$t = \frac{\overline{X} - \overline{Y}}{\sqrt{(n-1)S_{Y}^{2} + (m-1)S_{Y}^{2}}} \sqrt{\frac{nm(n+m-2)}{n+m}}$$

 t_{krit} kann aus der t-Verteilung abgelesen werden. k erhält man durch n+m-2. Wenn t_{krit} überschritten wird, muss H_0 verworfen werden.

Exam Summary WrStat-HS23

10 Test einer Verteilung

 X^2 -Test

$$D = \sum_{i=1}^{d} \frac{(n_i - np_i)^2}{np_i}$$

 $D > D_+ \Rightarrow Daten passen nicht (H_0 verwerfen)$

 $\rm D < D_- \Rightarrow Daten$ passen zu gut, ist ein Hinweis auf Betrug

Kolmogorov-Smirnov-Test