Chapter 4: Duality Theory

June 18, 2022

Scribe: Eric Chen

Throughout this chapter, we consider the standard form problem

$$\min \quad c^T x$$
s.t. $Ax = b$

$$x \ge 0$$

and let P be the corresponding feasible set. We assume that the dimensions of matrix A are $m \times n$ and that its rows are linearly independent. Also, denote A_i as the ith column of the matrix A and a_i^T its ith row.

In summary, the construction of the dual of a primal minimization problem can be viewed as follows. We have a vector of parameters p, and for every p we have a method for obtaining a lower bound on the optimal cost. The dual problem is a maximization problem that looks for the tightest such lower bound.

1 The Dual Problem

Given primal problems and dual problems, we summarize their relations in the following table.

PRIMAL	minimize	maximize	DUAL
constraints	$\geq b_i$	≥ 0	variables
constraints	$\leq b_i$	≤ 0	variables
constraints	$=b_i$	free	variables
variables	≥ 0	$\leq c_j$	constraints
variables	≤ 0	$\geq c_j$	constraints
variables	free	$= c_j$	constraints

Its proof can be completed by simply following the definition.

Theorem 1.1. If we transform the dual into an equivalent minimization problem and then form its dual, we obtain a problem equivalent to the original problem.

Theorem 1.2. Suppose that we have transformed a linear programming problem Π_1 to another linear programming problem Π_2 , by a sequence of transformations of the following types:

(a) Replace a free variable with the difference of two nonnegative variables.

- (b) Replace an inequality constraint by an equality constraint involving a nonnegative slack variable.
- (c) If some row of the matrix A in a feasible standard form problem is a combination of the other rows, eliminate the corresponding equality constraint.

Then, the duals of Π_1 and Π_2 are equivalent, i.e., they are either both infeasible or they have the same optimal cost.

2 The Duality Theorem

Theorem 2.1 (Weak duality). If x is a feasible solution to the primal problem and p is a feasible solution to the dual problem, then

$$p^T b \le c^T x$$
.

Proof. For any vectors x and p, we define

$$u_i = p_i(a_i^T x - b_i), \quad v_i = (c_j - p^T A_j)x_j.$$

The definition of the dual problem requires the sign of p_i to be the same as the sign of $a_i^T x - b_i$ and the sign of $c_j - p^T A_j$ to be the same as the sign of x_j . Thus we have:

$$u_i, v_j \geq 0 \ \forall i, j.$$

Notice that

$$\sum_{i} u_i = p^T A x - p^T b,$$

and

$$\sum_{j} v_j = c^T x - p^T A x.$$

By adding two equalities, we obtain:

$$0 \le \sum_{i} u_i + \sum_{j} v_j = c^T x - p^T b.$$

A more simpler way to approach this proof is through Lagrangian function, as weak duality just means that

$$\sup_{p} \inf_{x} \mathcal{L}(x, p) \le \inf_{x} \sup_{p} \mathcal{L}(x, p).$$

By the weak duality theorem, we have the following lemma:

Lemma 2.2.

- (a) If the optimal cost in the primal is $-\infty$, then the dual problem must be infeasible.
- (b) If the optimal cost in the dual is $+\infty$, then the primal problem must be infeasible.

Another lemma of the weak duality theorem is shown as follows.

Lemma 2.3. Let x and p be feasible solutions to the primal and the dual, respectively, and suppose that $p^Tb = c^Tx$. Then x and p are optimal solutions to the primal and the dual, respectively.

We should notice that linear programming problem satisfies strong duality.

Theorem 2.4 (Strong duality). If a linear programming problem has an optimal solution, so does its dual, and the respective optimal costs are equal.

Proof. We prove this by simplex method and assume this problem is in standard form. Let us assume temporarily that the rows of A are linearly independent and that there exists an optimal solution. Also, we use some rules to avoid cycling, thus the simplex method terminates with an optimal solution x and an optimal basis B. Let $x_B = B^{-1}b$. When it terminates, we have the reduced costs

$$c^T - c_B^T B^{-1} A \ge 0.$$

By letting $p^T = c_B^T B^{-1}$, we have $p^T A \leq c^T$, where p is thus a feasible solution to the dual problem. In addition,

$$p^T b = c_B^T B^{-1} b = c_B^T x_B = c^T x.$$

We have thus shown that the optimal dual cost is equal to the optimal primal cost.

By the weak and strong duality theorem, we can derive the following table:

	Finite optimum	Unbounded	Infeasible
Finite optimum	Possible	Impossible	Impossible
Unbounded	Impossible	Impossible	Impossible
Infeasible	Impossible	Possible	Possible

Another important relation between primal and dual optimal solutions is provided by the *complementary slackness* conditions.

Theorem 2.5 (Complementary slackness). Let x and p be feasible solutions to the primal and the dual problem, respectively. The vectors x and p are optimal solutions for the two respective problems if and only if:

$$p_i(a_i^T x - b_i) = 0, \qquad \forall i,$$

and

$$(c_i - p^T A_i) x_i = 0, \qquad \forall j.$$

Proof. By the proof of weak duality, we showed that

$$c^T x - p^T b = \sum_i u_i + \sum_j v_j.$$

By the strong duality theorem, if x and p are optimal, then $c^T x = p^T b$, which implies that $u_i = v_i = 0$ for all i, j.

3 Farkas' Lemma and Linear Inequalities

Theorem 3.1 (Farkas' lemma). Let A be a matrix of dimensions $m \times n$ and let b be a vector in \mathbb{R}^m . Then exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector p such that $p^T A \ge 0$ and $p^T b < 0$.

Proof. Suppose that (a) holds, then if $p^TA \ge 0$, then $p^Tb = p^TAx \ge 0$, which shows that $p^Tb < 0$ cannot hold.

Now assume that (a) doesn't hold. Then consider

$$\min \quad p^T b$$
s.t. $p^T A \ge 0$

and problem

$$\max \quad 0^T x$$
s.t.
$$Ax = b$$

$$x > 0$$

Notice that the second is the dual of the first problem. The maximization problem is infeasible, which implies that the minimization problem is either unbounded or infeasible. Since p=0 is a feasible solution, then the problem is unbounded. Therefore, there exists some p which is feasible, such that $p^T A \ge 0$ and $p^T b < 0$.

Below is an equivalent statement of Farkas' lemma which is sometimes more convenient.

Lemma 3.2. Let A_1, \ldots, A_n and b be given vectors and suppose that any vector p that satisfies $p^T A_i \geq 0, i = 1, \ldots, n$, must also satisfy $p^T b \geq 0$. Then b can be expressed as a nonnegative linear combinations of the vectors A_1, \ldots, A_n .

Theorem 3.3. Suppose that the system of linear inequalities $Ax \le b$ has at least one solution, and let d be some scalar. Then the following are equivalent:

(a) Every feasible solution to the system $Ax \leq b$ satisfies $c^T x \leq d$.

(b) There exists some $p \ge 0$ such that $p^T A = c^T$ and $p^T b \le d$.

Proof. Consider one pair of problems, $\{\max c^T x \mid Ax \leq b\}$ and $\{\min p^T b \mid p^T A = c^T, p \geq 0\}$. Note that the first one is the dual of the second. Suppose that $c^T x \leq d$ always holds, then by the strong duality theorem, we know that there exists an optimal solution p which satisfies $p^T b \leq d$. The other side of proof can also be completed by using strong duality theorem.

4 From Separating Hyperplanes to Duality

Theorem 4.1. Every polyhedron is closed.

Proof. Consider $P = \{x \in \mathbb{R}^n \mid Ax \ge b\}$. As it's an intersection of finite number of closed sets, so it's closed.

Theorem 4.2 (Separating hyperplane theorem). Suppose C and D are two convex sets that do not intersect. Then there exists $a \neq 0$ and b such that $a^Tx \leq b$ for all $x \in C$ and $a^Tx \geq b$ for all $x \in D$.

Proof. Define the distance between C and D as:

$$\mathbf{dist}(C, D) = \inf\{\|u - v\|_2 \mid u \in C, v \in D\},\$$

and that there exists points $c \in C$, $d \in D$ that achieve the minimum distance. Define

$$a = d - c,$$
 $b = \frac{\|d\|_2^2 - \|c\|_2^2}{2},$

and define one affine function as

$$f(x) = a^{T}x - b = (d - c)^{T}(x - (1/2)(d + c)),$$

and this defines the hyperplane $\{x \mid a^Tx = b\}$. First we show that f is nonpositive on D. Suppose there were a point $u \in D$ for which

$$f(u) = (d - c)^{T} (u - (1/2)(d + c)) < 0.$$

We can then express f(u) as:

$$f(u) = (d-c)^{T}(u-d+(1/2)(d-c)) = (d-c)^{T}(u-d)+(1/2)\|d-c\|_{2}^{2}.$$

Then we know it implies that $(d-c)^T(u-d) < 0$. Now we observe that

$$\left. \frac{d}{dt} \|d + t(u - d) - c\|_{2}^{2} \right|_{t=0} = 2(d - c)^{T} (u - d) < 0,$$

so for some small t > 0 with t < 1, we have

$$||d + t(u - d) - c||_2 < ||d - c||_2,$$

which means the point d+t(u-d) is closer to c than d is. Since D is convex and contains d and u, we have $d+t(u-d)\in D$, which makes a contradiction.

Prove Farkas' lemma by separating hyperplanes.

Proof. Let

$$S = \{Ax \mid x \ge 0\}$$

= \{y \| \text{ there exists } x \text{ such that } y = Ax, x \ge 0\},

Note that S is the projection of the polyhedron $\{(x,y) \mid y = Ax, x \ge 0\}$ onto y coordinate, is itself a polyhedron, and is closed.

We now invoke the separating hyperplane theorem to separate b from S and conclude that there exists a vector p such that $p^Tb < p^Ty$ for every $y \in S$. Since $0 \in S$, we must have $p^Tb < 0$. Furthermore, for every column A_i of A and every $\lambda > 0$, we have $\lambda A_i \in S$ and $p^Tb < \lambda p^TA_i$, then we divide both sides by λ and take λ to infinity we have $p^TA_i \geq 0$. So $p^TA \geq 0$.

We then complete the proof of strong duality by Farkas' lemma.

Proof. Consider this pair of primal and dual problems: $\{\min c^T x | Ax \ge b\}$ and $\{\max p^T b | p^T A = c^T, p \ge 0\}$. We assume that the primal has an optimal solution x^* .

Let $I = \{i \mid a_i^T x^* = b_i\}$ be the active index set at x^* . Consider vector d and $\varepsilon > 0$ satisfies $a_i^T d \ge 0$. Then we have

$$a_i^T(x^* + \varepsilon d) \ge a_i^T x^* = b_i \quad \forall i \in I.$$

In addition, if $i \notin I$ and ε is sufficiently small, we know

$$a_i^T x^* > b_i \Rightarrow a_i^T (x^* + \varepsilon d) > b_i,$$

so $x^* + \varepsilon d$ is a feasible solution. By the optimality of x^* , we obtain $c^T d \ge 0$. By Farkas' lemma, c can be expressed as a nonnegative linear combination of the vectors $a_i, i \in I$:

$$c = \sum_{i \in I} p_i a_i, \ p_i > 0.$$

For $i \notin I$, we define $p_i = 0$. We then have $p \ge 0$ and $p^T A = c^T$. In addition,

$$p^T b = \sum_{i \in I} p_i b_i = \sum_{i \in I} p_i a_i^T x^* = c^T x^*,$$

which shows that the cost of this dual feasible solution p is the same as the optimal primal cost. The strong duality theorem now follows from weak duality theorem.

5 Cones and Extreme Rays

Definition 5.1. A set $C \subset \mathbb{R}^n$ is a **cone** if $\lambda x \in C$ for all $\lambda \geq 0$ and all $x \in C$.

Remark. A polyhedron of the form $P = \{x \in \mathbb{R}^n \mid Ax \geq 0\}$ is a nonempty cone and is called a polyhedral cone.

Theorem 5.2. Let $C \subset \mathbb{R}^n$ be the polyhedral cone defined by the constraints $a_i^T x \geq 0, i = 1, \ldots, m$. Then the following are equivalent:

- (a) The zero vector is an extreme point of C.
- (b) The cone C does not contain a line.
- (c) There exist n vectors out of the family a_1, \ldots, a_m that are linearly independent.

Remark. If the zero vector is an extreme point, we say that the cone is **pointed**.

Definition 5.3. Consider a nonempty polyhedron

$$P = \{x \in \mathbb{R}^n \mid Ax \ge b\},\$$

and some point $y \in P$. The **recession cone at** y is defined as the set

$$\{d \in \mathbb{R}^n \mid A(y + \lambda d) \ge b, \ \forall \lambda \ge 0\}.$$

It can be easily seen that this set is the same as

$$\{d \in \mathbb{R}^n \mid Ad \ge 0\}.$$

Remark. From the definition above, we know that recession cone is indeed a polyhedral cone, and is independent of the starting point y. For the case of standard form

$$P = \{ x \in \mathbb{R}^n \mid Ax = b, x \ge 0 \},$$

the recession cone is the set

$$\{d\in\mathbb{R}^n\mid Ad=0, d\geq 0\}.$$

This can be easily verified by transforming the standard form into the corresponding general form.

Definition 5.4. The nonzero elements of the recession cone are called the **rays** of the polyhedron P.

Definition 5.5.

- (a) A nonzero element x of a polyhedral cone $C \subset \mathbb{R}^n$ is called an **extreme ray** if there are n-1 linearly independent constraints that are active at x.
- (b) An extreme ray of the recession cone associated with a nonempty polyhedron P is also called an **extreme ray** of P.

Remark. We say that two extreme rays are equivalent if one is a positive multiple of the other. So any n-1 linearly independent constraints define a line and can lead to at most two nonequivalent extreme rays, with one being the negative of the other. Given that there is a finite number of ways that we can choose n-1 constraints to become active, we conclude that the number of extreme rays of a polyhedron is finite.

Theorem 5.6. Consider the problem of minimizing c^Tx over a pointed polyhedral cone

$$C = \{x \in \mathbb{R}^n \mid a_i^T x \ge 0, i = 1, \dots, m\}.$$

The optimal cost is equal to $-\infty$ if and only if some extreme ray d of C satisfies $c^T d < 0$.

Proof. If there exists some extreme ray d such that $c^T d < 0$, then we can move along this direction and get $v_{opt} = -\infty$.

If the optimal cost is $-\infty$, then there must exist some $x \in C$ such that $c^T x < 0$, by suitably scaling x, we can have $c^T x = -1$. Now consider polyhedron

$$P = \{ x \in \mathbb{R}^n \mid a_1^T x \ge 0, \dots, a_m^T \ge 0, c^T x = -1 \},$$

by the assumption above, we know that P is nonempty. Since C is pointed, the vectors a_1, \ldots, a_m span \mathbb{R}^n and implies that P has at least one extreme point, denoted as d. We know that at d there are n active linearly independent constraints, so at least n-1 of them are of the form $a_i^T x \geq 0$. It follows that d is an extreme ray of C.

Theorem 5.7. Consider the problem of minimizing c^Tx subject to $Ax \ge b$ and assume that the feasible set has at least one extreme point. The optimal cost is equal to $-\infty$ if and only if some extreme ray d of the feasible set satisfies $c^Td < 0$.

Proof. If there exists some extreme ray d such that $c^T d < 0$, then the conclusion is trivial. For the reverse direction, consider the dual problem

$$\max p^T b$$
s.t. $p^T A = c^T$
 $p > 0$

As the primal is unbounded, then the dual is infeasible, then the problem

$$\max \quad p^T 0$$
s.t.
$$p^T A = c^T$$

$$p \ge 0$$

is infeasible, which means that the associated primal problem

$$\min \quad c^T x$$
s.t. $Ax \ge 0$

is either unbounded or feasible. As x=0 is a feasible solution, then the problem is unbounded. Since the primal feasible set has at least one extreme point, the rows of A span \mathbb{R}^n . It follows that the recession cone

$$\{x \mid Ax \ge 0\}$$

is pointed and thus exists an extreme ray d of the recession cone satisfying $c^Td < 0$. By definition, this is an extreme ray of the feasible set.

6 Representation of Polyhedra

Theorem 6.1 (Resolution theorem). Let

$$P = \{ x \in \mathbb{R}^n \mid Ax \ge b \}$$

be a nonempty polyhedron with at least one extreme point. Let x^1, \ldots, x^k be the extreme points and let w^1, \ldots, w^r be a complete set of extreme rays of P. Let

$$Q = \left\{ \sum_{i=1}^{k} \lambda_{i} x^{i} + \sum_{j=1}^{r} \theta_{j} w^{j} \mid \lambda_{i} \ge 0, \theta_{j} \ge 0, \sum_{i=1}^{k} \lambda_{i} = 1 \right\}.$$

Then Q = P.

Proof. Let

$$x = \sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j$$

be an element of Q. The vector

$$y = \sum_{i=1}^{k} \lambda_i x^i$$

is a convex combination of elements of P, it therefore satisfies

$$Ay \ge b$$
.

Also, let

$$z = \sum_{j=1}^{r} \theta_j w^j,$$

we know that $Az \geq 0$ as w^j are extreme rays, so $Ax = A(y+z) \geq b$. Thus we have proved $Q \subseteq P$.

For the reverse, assume that P is not a subset of Q. Let z be an element of P that does not belong to Q, consider the following problem:

$$\max \sum_{i=1}^{k} 0\lambda_i + \sum_{j=1}^{r} 0\theta_j$$
s.t.
$$\sum_{i=1}^{k} \lambda_i x^i + \sum_{j=1}^{r} \theta_j w^j = z$$

$$\sum_{i=1}^{k} \lambda_i = 1$$

$$\lambda_i \ge 0, \qquad i = 1, \dots, k$$

$$\theta_j \ge 0, \qquad j = 1, \dots, r$$

which is infeasible as $z \notin Q$. Its dual problem is

$$\min \quad p^T z + q$$
s.t. $p^T x^i + q \ge 0, \qquad i = 1, \dots, k$

$$p^T w^j \ge 0, \qquad j = 1, \dots, r$$

As the latter problem has a feasible solution namely p,q=0, then it is unbounded. So there exists some (p,q) such that p^Tz+q is negative. On the other hand, $p^Tx^i+q\geq 0$ for all i and this implies that $p^Tz< p^Tx^i$ for all i.

Fix p as above, consider problem

$$\min \quad p^T x$$
s.t. $Ax \ge b$

If the optimal value is finite, there exists an extreme point x^i which is optimal. Since z is a feasible solution, we obtain $p^Tx^i \leq p^Tz$, which makes a contradiction. If the optimal cost is $-\infty$, then we must have $p^Tw^j < 0$, which also makes a contradiction.

Lemma 6.2. A nonempty bounded polyhedron is the convex hull of its extreme points.

Proof. Let

$$P = \{x \mid Ax \ge b\}$$

be a nonempty bounded polyhedron. If d is a nonzero element of the cone $C = \{x \mid Ax \geq 0\}$ and x is an element of P, we have $x + \lambda d \in P$ for all $\lambda > 0$, contradicting the boundedness of P. \square

Lemma 6.3. Assume that the cone $C = \{x \mid Ax \ge 0\}$ is pointed. Then every element of C can be expressed as a nonnegative linear combination of the extreme rays of C.