Álgebra Linear

$\mathrm{MAT}5730$

2 semestre de 2019

Conteúdo

1	List	a 0																		5
	1.1	Exercício 1 .					 						 							5
	1.2	Exercício 2 .					 						 							5
	1.3	Exercício 3 .					 						 							5
	1.4	Exercício 4 .					 						 							6
	1.5	Exercício 5 .					 						 							6
	1.6	Exercício 6 .					 						 							7
	1.7	Exercício 7 .					 						 							7
	1.8	Exercício 8 .					 						 							9
	1.9	Exercício 9 .					 						 							9
	1.10	Exercício 10 .					 						 							9
	1.11	Exercício 11 .					 						 							10
	1.12	Exercício 12 .					 						 							10
	1.13	Exercício 13 .					 						 							10
	1.14	Exercício 14 .					 						 							11
	1.15	Exercício 15 .					 						 							11
	1.16	Exercício 16 .					 						 							11
	1.17	Exercício 17 .					 						 							11
	1.18	Exercício 18 .					 						 							11
	1.19	Exercício 19 .					 						 							12
	1.20	Exercício 20 .					 						 							12
	1.21	Exercício 21 .											 							12
_	-	_																		
2	List																			13
	2.1																			13
	2.2				•															14
	2.3																			14
	2.4																			17
	2.5																			17
	2.6	-	-			 -		-	-	-	 -	-			-	-		-	-	18
	2.7				•															20
	2.8				•															22
	2.9																			23
		Exercício 10 .																		23
		Exercício 11 .																		24
		Exercício 12.																		26
		Exercício 13.																		27
		Exercício 14.																		29
		Exercício 15.																		30
	2.16	Exercício 16 .					 						 							33

	2.17	Exercício	17															34
	2.18	Exercício	18						 									34
	2.19	Exercício	19						 									35
	2.20	Exercício	20						 									36
	2.21	Exercício	21						 									36
	2.22	Exercício	22						 									37
		Exercício																38
		Exercício																38
		Exercício																39
		Exercício																40
	_	Exercício	_															41
		Exercício																
		Exercício																
		Exercício																42
		Exercício																
		Exercício																
	2.33	Exercício	33															43
0	т.,	0																
3	List		4															44
	3.1	Exercício																
	3.2	Exercício																
	3.3	Exercício																
	3.4	Exercício																
	3.5	Exercício																48
	3.6	Exercício	6															49
	3.7	Exercício	7															49
	3.8	Exercício																50
	3.9	Exercício	9															52
	3.10	Exercício	10															52
	3.11	Exercício	11															54
	3.12	Exercício	12															54
	3.13	Exercício	13						 									55
	3.14	Exercício	14						 									55
		Exercício																57
	3.16	Exercício	16						 									59
	3.17	Exercício	17						 									59
		Exercício																60
		Exercício																60
		Exercício	-															61
		Exercício																62
		Exercício																63
		Exercício																64
		Exercício																65
		Exercício																65
		Exercício																66
	-	Exercício																67
		Exercício																67
		Exercício																68
		Exercício																70
		Exercício																70
		Exercício																70
		Exercício																71
	3 34	Exercício	34															71

	3.35	Exercício	35			•	 		•								 •							71
4	List	a 3																						72
-	4.1	Exercício	1																					72
	4.2	Exercício																						74
	4.3	Exercício																						75
	4.4	Exercício	-		 •	•	 	•	•	 •	•	 •	 •		•	 •	 •	•		•	•		 •	77
	4.4	Exercício																						77
	4.6	Exercício																						78
		Exercício																						79
	4.7							-						-			-	-				-		
	4.8	Exercício																						80
	4.9	Exercício	•																					81
		Exercício																						83
		Exercício																						84
		Exercício																						85
		Exercício																						85
	4.14	Exercício	14		 •	•	 			 •			 ٠											85
_	T !4	- 4																						97
5	List		1																					87
	5.1	Exercício																						87
	5.2	Exercício																						87
	5.3	Exercício																						88
	5.4	Exercício																						88
	5.5	Exercício																						88
	5.6	Exercício																						88
	5.7	Exercício																						89
	5.8	Exercício			 -	-				 -	-	 -	 -		-	 -	 -		-		-	-		89
	5.9	Exercício																						89
		Exercício																						89
	5.11	Exercício	11				 																	89
		Exercício																						90
	5.13	Exercício	13				 																	90
	5.14	Exercício	14				 																	90
	5.15	Exercício	15				 																	90
	5.16	Exercício	16				 																	90
	5.17	Exercício	17				 																	91
	5.18	Exercício	18				 																	91
	5.19	Exercício	19	 			 							 										91
	5.20	Exercício	20	 			 																	91
	5.21	Exercício	21	 			 																	91
		Exercício																						92
		Exercício																						93
		Exercício																						94
		Exercício																						94
		Exercício																						94
		Exercício																						
																								94 95
		Exercício																						
		Exercício																						95
		Exercício																						
	5.31	Exercício	31				 																	96

6	Lista 5		97
	6.1 Exercício 1		97
	6.2 Exercício 2		97
	6.3 Exercício 3		97
	6.4 Exercício 4		98
	6.5 Exercício 5		98
	6.6 Exercício 6		98
	6.7 Exercício 7		98
	6.8 Exercício 8		99
	6.9 Exercício 9		99
	6.10 Exercício 10		99
	6.11 Exercício 11		99
	6.12 Exercício 12		100
	6.13 Exercício 13		100
	6.14 Exercício 31		
	6.15 Exercício 32		101
	6.16 Exercício 33		
7	Lista 6		102
	7.1 Exercício 1		102
	7.2 Exercício 31		102

1 Lista 0

1.1 Exercício 1

(1) Seja

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \in \mathbb{R} : a, b \in \mathbb{Q}\}.$$

- (a) Prove que $\mathbb{Q}(\sqrt{2})$ é um corpo.
- (b) Prove que $\mathbb{Q}(\sqrt{2})$ é um \mathbb{Q} -espaço vetorial e exiba uma base desse espaço vetorial sobre \mathbb{Q} .
- (c) Mostre que se L e K são corpos tais que $K \subset L$, então L é um K-espaço vetorial.

1.2 Exercício 2

(2) Seja V um K-espaço vetorial e seja $\{u,v,w\}\subset V$ um conjunto linearmente independente. Determine condições sobre K para que o conjunto $\{u+v,u+w,v+w\}$ também seja linearmente independente.

1.3 Exercício 3

(3) Seja S um subconjunto de um espaço vetorial V sobre um corpo K. Recorde que o subespaço de V gerado por S é definido por

$$\langle S \rangle := \{ \lambda_1 v_1 + \ldots + \lambda_n v_n : n \in \mathbb{N}, \lambda_i \in K, v_i \in S \},$$

isto é, $\langle S \rangle$ é o conjunto de todas as combinações lineares de vetores em S.

- (a) Mostre que $\langle S \rangle$ é um subespaço de V.
- (b) Seja W a interseção de todos os subespaços de V que contém S. Mostre que $W = \langle S \rangle$.

(a) Primeiramente note que para qualquer conjunto $S' \subseteq S$ finito e $\alpha \colon S' \to \{0\}$ temos que $\sum_{x \in S'} \alpha_x x = 0$ e logo $0 \in \langle S \rangle$. Além disso, se $\lambda \in K$ e $x \in \langle S \rangle$ temos que $x = \sum_{x \in S'} \alpha_x x$ para $S' \subseteq S$ finito e $\alpha \colon B' \to \mathbb{R}$. Então

$$\lambda x = \sum_{x \in S'} (\lambda \alpha_x) x \in \langle S \rangle.$$

Por fim, sejam $x,y\in\langle S\rangle$. Então $x=\sum_{I_x}\alpha_v v$ e $y=\sum_{I_y}\beta_v v$ para conjuntos I_x,I_y finitos e funções $\alpha\colon I_x\to\mathbb{R}$ e $\beta\colon I_y\to\mathbb{R}$. Defina a função $\bar{\alpha}\colon I_x\cup I_y\to\mathbb{R}$ dada por

$$\bar{\alpha}_v := \begin{cases} \alpha_v & \text{se } v \in I_x; \\ 0, & \text{caso contrário.} \end{cases}$$

Similarmente, considere a função $\bar{\beta} \colon I_x \cup I_y \to \mathbb{R}$ dada por

$$\bar{\beta}_v := \begin{cases} \beta_v \text{ se } v \in I_y; \\ 0, \text{ caso contrário.} \end{cases}$$

Então temos que

$$x + y = \sum_{v \in I_x} \alpha_v v + \sum_{v \in I_y} \beta_v v = \sum_{v \in I_x \cup I_y} (\bar{\alpha}_v + \bar{\beta}_v) v.$$

Como $I_x \cup I_y$ é finito e $\bar{\alpha}_v + \bar{\beta}_v \in \mathbb{R}$ para cada $v \in I_x \cup I_y$ segue que $x + y \in \langle S \rangle$. Concluímos assim que $0 \in \langle S \rangle$, que $\lambda s \in \langle S \rangle$ para cada $\lambda \in K$ e cada $s \in \langle S \rangle$ e que $x + y \in \langle S \rangle$ sempre que $x, y \in \langle S \rangle$. Isto é, $\langle S \rangle$ é um subespaço.

(b) Considere o seguinte conjunto

$$W\coloneqq\bigcap\{U\subseteq V:U\text{ \'e subespaço e }S\subseteq U\}.$$

Seja U um subespaço de V que contém S. Pela definição de subespaço, obtemos que U contém todas as combinações lineares de elementos de S. Logo, $\langle S \rangle \subseteq U$. Concluímos assim que $\langle S \rangle$ está contido em cada subespaço de V que contém S e portanto $\langle S \rangle \subseteq W$.

Por outro lado, se $s \in W$ então s pertence a cada subespaço de V que contém S. Pelo item a, temos que $\langle S \rangle$ é um subespaço de V e claramente contém S. Portanto $s \in \langle S \rangle$.

1.4 Exercício 4

(4) Mostre que um subconjunto B de um espaço vetorial é linearmente independente se, e somente se, todo subconjunto finito de B é linearmente independente.

1.5 Exercício 5

- (5) Sejam W_1 e W_2 subespaços de um espaço vetorial V.
 - (a) Dê um exemplo mostrando que $W_1 \cup W_2$ pode não ser um subespaço de V.
 - (b) Prove que $W_1 \cup W_2$ é um subespaço se, e somente se $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$.
 - (c) Mostre que $W_1 + W_2$ é o subespaço gerado por $W_1 \cup W_2$.

- (a) Por exemplo, se $V=\mathbb{R}^2,\ W_1=\langle (1,0)\rangle$ e $W_2=\langle (0,1)\rangle$ então $W_1\cup W_2$ não é um subespaço de V.
- (b) Primeiro, suponha sem perda de generalidade que $W_1 \subseteq W_2$. Neste caso, temos que $W_1 \cup W_2 = W_2$, que é um subespaço por hipótese. A outra implicação é a contrapositiva da Proposição ?? das notas de aula.
- (c) Primeiramente vamos mostrar que $W_1+W_2\subseteq \langle W_1\cup W_2\rangle$. Se $w_1+w_2\in W_1+W_2$, então claramente

$$w_1 + w_2 = 1w_1 + 1w_2 \text{ com } w_1 \in W_1 \text{ e } w_2 \in W_2.$$

Por outro lado, seja $w \in \langle W_1 \cup W_2 \rangle$. Então podemos escrever

$$w = \sum_{v \in I_1 \cup I_2} \alpha_v v = \sum_{v \in I_1} \alpha_v v + \sum_{v \in I_2} \alpha_v v,$$

onde $I_1 \subseteq W_1$ e $I_2 \subseteq W_2$, e $\alpha \colon I_1 \cup I_2 \to \mathbb{R}$. Como W_1 e W_2 são subespaços temos que $\sum_{v \in I_1} \alpha_v v \in W_1$ e $\sum_{v \in I_2} \alpha_v v \in W_2$ e portanto $w \in W_1 + W_2$.

1.6 Exercício 6

(6) Considere o \mathbb{R} -espaço vetorial $\mathscr{M}_2(\mathbb{R})$ das matrizes de 2×2 sobre \mathbb{R} e os seguintes subconjuntos de $\mathscr{M}_2(\mathbb{R})$:

$$W_1 = \left\{ \begin{bmatrix} x & -x \\ y & z \end{bmatrix} : x, y, z \in \mathbb{R} \right\} \quad \text{e} \quad W_2 = \left\{ \begin{bmatrix} a & b \\ -a & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

- (a) Mostre que W_1 e W_2 são subespaços de $\mathcal{M}_2(\mathbb{R})$.
- (b) Encontre as dimensões de $W_1, W_2, W_1 + W_2$ e $W_1 \cap W_2$.

1.7 Exercício 7

(7) Seja $\mathscr{F} = \{S_i : i \in I\}$ uma família não vazia de subespaços distintos de um K-espaço vetorial V. Mostre que são equivalentes:

- (i) Para cada $i \in I$, temos que $S_i \cap \left(\sum_{i \neq j} S_j\right) = \{0\}.$
- (ii) O vetor nulo não pode ser escrito como uma soma de vetores não nulos, cada um pertencendo a um subespaço distinto de \mathscr{F} .
- (iii) Todo vetor não nulo de $\sum_{i \in I} S_i$ tem, a menos da ordem, uma decomposição única como soma de vetores não nulos $v = s_1 + \ldots + s_n$, com os vetores s_1, \ldots, s_n pertencendo a subespaços distintos de \mathscr{F} .

Observação: Segue deste exercício que $V = \sum_{i \in I} S_i$ é uma soma direta se, e somente se, uma das condições (i)-(iii) é satisfeita.

- (a) (i) \Longrightarrow (ii): Assuma que existe uma família de elementos não nulos $v_i \in S_i$ tais que $\sum_{i \in I} v_i = 0$. Seja $i_0 \in I$ e note que $v_{i_0} = -\sum_{i \in I \setminus \{i_0\}} v_i$. Como S_i é um subespaço para cada $i \in I$ concluímos que $v_{i_0} \in \sum_{i \in I \setminus \{i_0\}} S_i$. Como temos que $v_{i_0} \in S_{i_0}$ por construção, concluímos que $0 \neq v_{i_0} \in S_{i_0} \cap \left(\sum_{i \neq i_0} S_i\right)$ e portanto a afirmação (i) é falsa.
- (b) (ii) \Longrightarrow (i): Assuma que existe $i_0 \in I$ tal que existe $0 \neq v_{i_0} \in S_{i_0} \cap \left(\sum_{i \neq i_0} S_i\right)$. Neste caso, temos que existe uma família $\{-v_i\}_{i \in I \setminus \{i_0\}}$ com $v_i \in S_i$ para cada $i \in I \setminus \{i_0\}$ e $\sum_{i \in I \setminus \{i_0\}} v_i = v_{i_0}$. Dessa forma, temos que a família $\{v_{i_0}\} \cup \{v_i\}_{i \in I \setminus \{i_0\}}$ é uma família não nula com $v_i \in S_i$ para cada $i \in I$ e $\sum_{i \in I} v_i = 0$. Isto é, a afirmação (ii) é falsa.
- (c) (iii) \Longrightarrow (i): Seja $0 \neq s \in \sum_{i \in I} S_i$ e seja $\{s_i\}_{i \in I}$ a única decomposição de S. Assuma que existe $0 \neq v \in S_{i_0} \cap (\sum_{j \in I \setminus \{i_0\}} S_j)$ para algum $i_0 \in I$. Neste caso segue que

$$s = \sum_{i \in I} s_i = (s_{i_0} + v) + \sum_{j \in I \setminus \{i_0\}} s_i - v.$$

Isto é, s tem duas decomposições, o que é uma contradição.

(d) (i) \Longrightarrow (iii): Seja $0 \neq s \in \sum_{i \in I} S_i$ e assuma que existem duas famílias $\{s_i\}_{i \in I}$ e $\{v_i\}_{i \in I}$ distintas tais que

$$\sum_{i \in I} s_i = \sum_{i \in I} v_i = s.$$

. Seja $i_0 \in I$ tal que $s_{i_0} \neq v_{i_0}$. Então

$$0 \neq v_{i_0} - s_{i_0} = \sum_{i \in I \setminus \{i_0\}} s_i - \sum_{i \in I \setminus \{i_0\}} v_i$$
$$= \sum_{i \in I \setminus \{i_0\}} s_i - v_i.$$

Assim concluímos que $0 \neq v_{i_0} - s_{i_0} \in S_{i_0} \cap \left(\sum_{i \neq i_0} S_i\right)$. Isto é, a afirmação (i) é falsa.

(e) (ii) \Longrightarrow (iii): Seja $0 \neq s \in V$ e assuma que existem duas famílias distintas $\{v_i\}_{i \in I}$ e $\{s_i\}_{i \in I}$ tais que

$$\sum_{i \in I} v_i = \sum_{i \in I} s_i = s.$$

Neste caso, obtemos que

$$0 = s - s = \sum_{i \in I} s_i - \sum_{i \in I} v_i$$
$$= \sum_{i \in I} s_i - v_i.$$

Assim escrevemos o vetor nulo como uma soma não nula de vetores, cada um pertencendo a um subespaço S_i . Isso implica que a afirmação (ii) é falsa.

(f) (iii) \Longrightarrow (ii): Seja $0 \neq v \in V$, seja $\{v_i\}_{i \in I}$ a única família tal que $v_i \in S_i$ para cada $i \in I$ e $\sum_{i \in I} v_i = v$. Assuma que existe uma família $\{s_i\}_{i \in I}$ não nula de vetores onde $s_i \in S_i$ para cada $i \in I$ e $\sum_{i \in I} s_i = 0$. Então temos que

$$v = v + 0 = \sum_{i \in I} v_i + s_i = \sum_{i \in I} v_i - s_i = v - 0 = v,$$

o que nos da uma contradição.

1.8 Exercício 8

(8) Seja V um K-espaço vetorial e seja S um subconjunto linearmente independente de V. Mostre que, se $v \in V$ não for combinação linear dos elementos de S, então $S \cup \{v\}$ é linearmente independente.

Solução: Assuma que v é combinação linear dos elementos de S. Neste caso existe $S' \subseteq S$ finito e uma função $\alpha \colon S' \to \mathbb{R}$ tal que $\sum_{s \in S'} \alpha_s s = v$. Defina $\bar{\alpha} \colon S' \cup \{v\} \to \mathbb{R}$ tal que $\bar{\alpha}_s = \alpha_s$ para cada $s \in S'$ e $\bar{\alpha}_v = -1$. Então segue que $\sum_{s \in S' \cup \{v\}} \bar{\alpha}_s s = 0$. Isto é, $S \cup \{v\}$ é Linearmente dependente.

1.9 Exercício 9

(9) Seja V um K-espaço vetorial de dimensão finita e sejam U e W subespaços de V tais que V = U + W. Mostre que $V = U \oplus W$, se e somente se, $\dim(V) = \dim(U) + \dim(W)$.

Solução: Utilizando o fato de que

$$\dim(V) = \dim(W) + \dim(U) - \dim(U \cap W)$$

e o Exercício 7, vemos que as seguintes afirmações são equivalentes:

- 1. $V = U \oplus W$:
- 2. $\dim(V) = \dim(U) + \dim(W)$;
- 3. $V = U + W \text{ e dim}(U \cap W) = 0$;

1.10 Exercício 10

(10) Seja V um K-espaço vetorial e seja W um subespaço de V. Mostre que W possui complemento em V, isto é, que existe um subespaço U de V tal que $V = U \oplus W$.

Solução: Seja B_1 uma base de W. Como B_1 é L.I temos pelo Teorema 1 das notas de aula que existe uma base B de V tal que $B_1 \subseteq B$. Considere o conjunto $B_2 := B \setminus B_1$ e o subespaço $U := \langle B_2 \rangle$. Pelo exercício 3 temos que U é um subespaço e ainda temos do exercício 5 que V = W + U. Resta mostrar que $U \cap W = \{0\}$. Assuma que existe $0 \neq v \in U | capW$. Neste caso temos que existem conjuntos finitos $B_1' \subseteq B_1$ e B_2' e funções $\alpha : B_1' \to \mathbb{R}$ e $\beta : B_2' \to \mathbb{R}$ tais que

$$v = \sum_{b \in B_1'} \alpha_b b = \sum_{b \in B_2'} \beta_b b.$$

Seja $i_0 \in B_1'$ tal que $\alpha_{i_0} \neq 0$, então

$$b_{i_0} = \frac{1}{\alpha_{i_0}} \Big(\sum_{b \in B_2'} \beta_b w - \sum_{i \in B_1' \setminus \{i_0\}} \Big),$$

que, pelo exercício 8 implica que $B_1 \cup B_2$ não é L.I. Contradição.

1.11 Exercício 11

(11) Seja $V \neq \{0\}$ um espaço vetorial sobre um corpo infinito K. Mostre que V não é uma união de um número finito de subespaços próprios. E se K for finito?

Sugestão: Suponha que $V = W_1 \cup W_2 \cup ... \cup W_n$ e que $W_1 \nsubseteq W_2 \cup ... \cup W_n$. Sejam $w \in W_1 \setminus (W_2 \cup ... \cup W_n)$ e $v \notin W_1$. Seja $A = \{aw + v : a \in K\}$ e mostre que cada W_i contém no máximo um elemento de A.)

1.12 Exercício 12

(12) (Lei modular) Seja V um espaço vetorial. Sejam S, U, T subespaços de V. Mostre que se $U \subseteq S$, então:

$$S \cap (T + U) = (S \cap T) + (S \cap U).$$

Solução: Primeiro, note que como $U \subseteq S$ temos que $S \cap U = U$ e portanto é suficiente mostrar que

$$S \cap (T+U) = (S \cap T) + U.$$

Como $U \subseteq U + T$ e $U \subseteq S$ temos que

$$U \subseteq (U+T) \cap S. \tag{1}$$

Além disso, como $T \subseteq U + T$ temos que

$$T \cap S \subseteq (U+T) \cap S. \tag{2}$$

Assim, juntando as Equações 1 e 2 obtemos que $U+(T\cap S)\subseteq (U+T)\cap S$. Por outro lado, considere $y\in (U+T)\cap S$. Isto é, y=u+t=s para alguns $u\in U,\,t\in T,$ e $s\in S$. Como $U\subseteq S$ e S é subespaço, obtemos que $t=s-u\in S$ e concluímos que $t\in T\cap S$. Dessa forma segue que $y=u+t\in U+(T\cap S)$.

1.13 Exercício 13

(13) Para quais espaços vetoriais V a lei distributiva

$$S \cap (T + U) = (S \cap T) + (S \cap U)$$

é verdadeira para todos os subespaços S, T, U de V?

Solução: Vamos iniciar notando que se $\dim(V) \leq 1$ o resultado vale trivialmente. Se $\dim(V) \geq 2$, tomamos dois vetores v_t e v_u linearmente independentes e consideramos $T \coloneqq \langle v_t \rangle$, $U \coloneqq \langle v_u \rangle$ e $S \coloneqq \langle v_u + v_t \rangle$. Dessa forma temos $S \subseteq U + T$ e portanto $S \cap (U + T) = S$, mas por outro lado $(S \cap T) = (S \cap U) = 0$.

1.14 Exercício 14

- (14) Sejam U e V K-espaços vetoriais e seja $T: U \to V$ uma transformação linear.
 - (a) Prove que T é injetora se, e somente se, T leva todo subconjunto linearmente independente de U em um conjunto linearmente independente de V.
 - (b) Prove que se o subconjunto $\{T(u_1), \ldots, T(u_n)\}$ de V for linearmente independente, então $\{u_1, \ldots, u_n\}$ é um subconjunto linearmente independente de U.

Solução:

1.15 Exercício 15

- (15) Sejam U e V K-espaços vetoriais de dimensão finita tais que dim U = dim V e seja T: $U \to V$ uma transformação linear. Mostre que as seguintes afirmações são equivalentes:
 - (i) T é um isomorfismo;
 - (ii) T é sobrejetora;
 - (iii)T é injetora.

Solução:

1.16 Exercício 16

(16) Sejam U e V K-espaços e seja $T:U\to V$ um isomorfismo. Mostre que $T^{-1}:V\to U$ também é linear e, portanto, é um isomorfismo.

Solução:

1.17 Exercício 17

(17) Seja V um K-espaço vetorial e seja T um operador linear de V tal que $T^2 = T$ (um operador com essa propriedade é chamado de projeção). Mostre que

$$V = \operatorname{Ker} T \oplus \operatorname{Im} T$$

Solução:

1.18 Exercício 18

(18) Seja V um K-espaço vetorial de dimensão finita e seja T um operador linear de V. Mostre que as seguintes afirmações são equivalentes:

- (i) $\operatorname{Ker}^2 T = \operatorname{Ker} T$;
- (ii) $\operatorname{Im}^2 T = \operatorname{Im} T$;
- $(iii)V = \operatorname{Ker} T \oplus \operatorname{Im} T.$

1.19 Exercício 19

(19) Seja V um K-espaço vetorial de dimensão finita e seja $T: V \to V$ uma transformação linear tal que posto $T^2 = \text{posto}T$. Prove que $\text{Ker } T \cap \text{Im } T = \{0\}$.

Solução:

1.20 Exercício 20

(20) Seja V um K-espaço vetorial e sejam $S, T \in \mathcal{L}(V)$. Mostre que

$$T(\operatorname{Ker}(S \circ T)) = \operatorname{Ker} S \cap \operatorname{Im} T$$

Solução:

1.21 Exercício 21

(21) Sejam V e W dois espaços vetoriais sobre o corpo K e sejam S e T duas transformações lineares de V em W, ambas de posto finito. Mostre que S+T tem posto finito e que

$$|posto S - posto T| \le posto (T + S) \le posto S + posto T$$

2 Lista 1

2.1 Exercício 1

(1) Sejam V um K-espaço vetorial e W um subespaço de V. Seja $S = \{v_i\}_{i \in I} \subset V$ tal que $\overline{S} = \{v_i + W\}_{i \in I}$ é linearmente independente no espaço quociente V/W. Mostre que se A é um conjunto linearmente independente de W então $S \cup A$ é um conjunto linearmente independente de V.

Solução: Se $\overline{S} = \{\overline{v_i} = v_i + W\}_{i \in I}$ é LI em V/W, isso significa que, para todo $M \subseteq I$ finito, temos que, para $\alpha_m \in K$, com $m \in M$, ocorre

$$\sum_{m \in M} \alpha_m \overline{v_m} = 0 \Rightarrow \alpha_m = 0 \ \forall \ m \in M$$

Seja $A = \{w_j\}_{j \in J}$. Por hipótese, sabemos também que A é um conjunto linearmente independente, ou seja, para todo $N \subseteq I$ finito, temos que, para $\alpha_n \in K$, com $n \in N$, ocorre

$$\sum_{n \in N} \alpha_n w_n = 0 \Rightarrow \alpha_n = 0, \ \forall \ n \in N$$

Para mostrar que $S \cup A = \{v_i\}_{i \in I} \cup \{w_j\}_{j \in J} = \{u_p\}_{p \in I \cup J}$ é um conjunto linearmente independente de V, precisamos mostrar que, para todo $L \subset I \cup J$ finito, temos que, para $\alpha_{\ell} \in K$, com $\ell \in L$, ocorre

$$\sum_{\ell \in L} \alpha_{\ell} u_{\ell} = 0 \Rightarrow \alpha_{\ell} = 0, \ \forall \ \ell \in L$$

Para fazer isso, precisamos antes verificar se existem vetores que são comuns aos dois subconjuntos, ou seja, calcular $S \cap A$. Observe que

$$s \in S \Rightarrow \overline{s} \in \overline{S}$$

Como \overline{S} é um conjunto linearmente independente em W, temos que $\overline{s} \neq \overline{0}$. Portanto, segue que $s - 0 \notin W \Rightarrow s \notin W$. Mas como $A \subseteq W$, então isso quer dizer que $s \notin A$. Portanto, concluímos que $S \cap A = \emptyset$. Isso quer dizer que todos os v_i 's são diferentes dos w_j 's, e mais ainda, que $I \cup J$ é uma união disjunta.

Logo, considerando novamente $S \cup A = \{v_i\}_{i \in I} \cup \{w_j\}_{j \in J}$, para todo $L \subseteq I \cup J$ finito, existem $I' \subseteq I$ e $J' \subseteq J$ tais que $I' \cup J' = L$. Desse modo, temos que

$$\sum_{\ell \in L} \alpha_{\ell} u_{\ell} = 0 \Rightarrow$$

$$\sum_{i \in I'} \alpha_{i} v_{i} + \sum_{j \in J'} \alpha_{j} w_{j} = 0 \quad \text{em } V \Rightarrow$$

$$\overline{\sum_{i \in I'} \alpha_{i} v_{i} + \sum_{j \in J'} \alpha_{j} w_{j}} = \overline{0} \quad \text{em } V/W \Rightarrow$$

$$\sum_{i \in I'} \alpha_{i} \overline{v_{i}} + \sum_{j \in J'} \alpha_{j} \overline{w_{j}} = \overline{0} \Rightarrow \sum_{i \in I'} \alpha_{i} \overline{v_{i}} = \overline{0} \Rightarrow \alpha_{i} = 0 \,\,\forall \,\, i \in I',$$

$$= 0 \quad \text{pois } w_{i} \in W$$

pois $\{v_i\}_{i\in I'}\subseteq \overline{S}$ é um conjunto linearmente independente.

Assim, usando agora o fato de que $\{w_j\}_{j\in J'}\subseteq A$ é um conjunto linearmente independente em W, temos que

$$\sum_{i \in I'} \alpha_i v_i + \sum_{j \in J'} \alpha_j w_j = 0 \Rightarrow 0 + \sum_{j \in J'} \alpha_j w_j = 0 \Rightarrow \sum_{j \in J'} \alpha_j w_j = 0 \Rightarrow \alpha_j = 0 \ \forall \ j \in J'$$

Concluímos portanto que

$$\sum_{\ell \in L} \alpha_\ell u_\ell = 0 \Rightarrow \alpha_\ell = 0 \ \forall \ \ell \in L$$

Daí, $S \cup A$ é um conjunto linearmente independente em V.

2.2 Exercício 2

(2) Sejam V um K-espaço vetorial e W um subespaço de V. Seja $S = \{v_i\}_{i \in I} \subset V$ tal que $S = \{v_i + W\}_{i \in I}$ gera o espaço quociente V/W. Mostre que se A é um conjunto gerador de W então $S \cup A$ é um conjunto gerador de V.

Solução: Se $\overline{S} = \{\overline{v_i} = v_i + W\}_{i \in I}$ gera em V/W, isso significa que, para todo $\overline{v} \in V/W$, existem $M \subseteq I$ finito e $\alpha_m \in K$, com $m \in M$, tais que

$$\overline{v} = \sum_{m \in M} \alpha_m \overline{v_m}$$

Seja $A = \{w_j\}_{j \in J}$. Por hipótese, sabemos também que A gera W, ou seja, para todo $w \in W$, existem $N \subseteq J$ finito e $\alpha_n \in K$, com $n \in N$, tais que

$$w = \sum_{n \in N} \alpha_n w_n$$

Precisamos mostrar que $S \cup A = \{v_i\}_{i \in I} \cup \{w_j\}_{j \in J} = \{u_p\}_{p \in I \cup J}$ é um conjunto gerador para V, ou seja, que para todo $v \in V$, existem $L \subset I \cup J$ finito e $\alpha_\ell \in K$, com $\ell \in L$, tais que

$$v = \sum_{\ell \in L} \alpha_{\ell} u_{\ell}$$

Note que, como \overline{S} é um conjunto gerador de V/W, temos como já foi explicitado acima que, para $\overline{v} \in V/W$,

$$\overline{v} = \sum_{m \in M} \alpha_m \overline{v_m} \Rightarrow \overline{v} - \sum_{m \in M} \alpha_m \overline{v_m} = \overline{0} \Rightarrow v - \sum_{m \in M} \alpha_m v_m \in W$$

Como $A = \{w_j\}_{j \in J}$ é conjunto gerador para W, temos que existem $N \subseteq J$ finito e $\alpha_n \in K$, com $n \in N$, tais que

$$v - \sum_{m \in M} \alpha_m v_m = \sum_{n \in N} \alpha_n w_n$$

Assim, tomando $L = N \cup M$:

$$v = \sum_{m \in M} \alpha_m v_m + \sum_{n \in N} \alpha_n w_n \Rightarrow v = \sum_{\ell \in L} \alpha_\ell u_\ell$$

Portanto, $S \cup A$ é um conjunto gerador para V.

2.3 Exercício 3

- (3) Seja V um K-espaço vetorial e sejam U e W subespaços de V. Prove:
 - (a) O Segundo Teorema do Isomorfismo:

$$\frac{U+W}{W} \cong \frac{U}{U \cap W}.$$

(b) O Terceiro Teorema do Isomorfismo: Se $U \subset W$,

$$\frac{V}{W} \cong \frac{V/U}{W/U}$$

Solução:

(a) A intenção será encontrar uma transformação linear adequada para poder aplicar o Primeiro Teorema do Isomorfismo e concluir o resultado desejado. Considere a aplicação

$$\begin{array}{cccc} T & : & U & \longrightarrow & \frac{U+W}{W} \\ & u & \longmapsto & T(u) = \overline{u} = u + W \end{array}$$

Observe que T é uma transformação linear. De fato, segue trivialmente que:

 $\Rightarrow \forall u, v \in V, \text{ temos que }$

$$T(u+v) = \overline{u+v} = (u+v) + W = u+W+v+W = \overline{u} + \overline{v} = T(u) + T(v)$$

 $\forall u \in W, \forall \alpha \in K$, temos que

$$T(\alpha u) = \overline{\alpha u} = \alpha u + W = \alpha(\underline{u} + \underline{W}) = \alpha(\overline{\underline{u}}) = \alpha T(u)$$

Sendo T uma transformação linear, temos do Primeiro Teorema do Isomorfismo que

$$\frac{V/U}{\operatorname{Ker} T} \cong \operatorname{Im} T$$

Calculemos $\operatorname{Ker} T$ e $\operatorname{Im} T$:

 \spadesuit Im $T=\frac{U+W}{W}.$ Mostremos que T é sobrejetora: Para $a\in\frac{U+W}{W},$ dado por $a=\overline{u+w},$ onde $u\in U$ e $w\in W,$ temos que

$$a = \overline{u + w} = (u + w) + W = (u + W) + (w + W) = (u + W) + (0 + W) =$$

$$(u + 0) + W = u + W = \overline{u} = T(u)$$

Logo, para todo $a \in \frac{U+W}{W}$, existe um $u \in U$ tal que T(u) = a. Logo, T é sobrejetora, e portanto Im $T = \frac{U+W}{W}$.

lacktriangle Ker $T=U\cap W$. Claramente, sabemos que, como Ker $T=\{u\in U: T(u)=\overline{0}\}$, temos que Ker $T\subset U$. Mas também temos que, para $a\in \operatorname{Ker} T$, segue que $a\in U$, e

$$T(a) = \overline{0} = 0 + W \Rightarrow a - 0 \in W \Rightarrow a \in W$$

Portanto, segue que $a \in U \cap W$. Daí, Ker $T = U \cap W$.

Finalmente, obtemos do Primeiro Teorema do Isomorfismo que

$$\frac{U}{\operatorname{Ker} T} \cong \operatorname{Im} T \Rightarrow \frac{U}{U \cap W} \cong \frac{U+W}{W}.$$

(b) Utilizando a mesma estratégia do item (a), considere a aplicação

$$\begin{array}{cccc} T & : & \frac{V}{U} & \longrightarrow & \frac{V}{W} \\ & v + U & \longmapsto & T(v + U) = v + W \end{array}$$

Vejamos que T está bem-definida, ou seja, representantes de uma mesma classe de equivalência no domínio correspondem a representantes de uma mesma classe de equivalência na imagem. Temos, para $\overline{v_1} = v_1 + U, \overline{v_2} = v_2 + U \in \frac{V}{U}$, que

$$\overline{v_1} = \overline{v_2} \Rightarrow v_1 - v_2 \in U \subset W \Rightarrow v_1 - v_2 \in W \Rightarrow v_1 + W = v_2 + W.$$

Note que utilizamos fortemente o fato de que $U \subset W$ para mostrar que T está bem-definida. Além disso, T é uma transformação linear. De fato:

 $\clubsuit \ \forall v_1 + U, v_2 + U \in \frac{V}{U}$, temos que

$$T((v_1 + U) + (v_2 + U)) = T((v_1 + v_2) + U) = (v_1 + v_2) + W =$$
$$(v_1 + W) + (v_2 + W) = T(v_1 + U) + T(v_2 + U)$$

 $\forall v + U \in \frac{V}{U}, \forall \alpha \in K$, temos que

$$T(\alpha v + U) = \alpha v + W = \alpha (v + W) = \alpha T(v + U)$$

Sendo T uma transformação linear, temos do Primeiro Teorema do Isomorfismo que

$$\frac{U}{\operatorname{Ker} T} \cong \operatorname{Im} \, T$$

Calculemos $\operatorname{Ker} T$ e $\operatorname{Im} T$:

 \spadesuit Im $T=\frac{V}{W}.$ Claramente T é sobrejetora:

Para $v+W\in \frac{V}{W},$ temos que

$$v + W = T(v + U)$$

Logo, para todo $v+W\in \frac{V}{W}$, existe um $v+U\in \frac{V}{U}$ tal que T(v+U)=v+W. Logo, T é sobrejetora, e portanto Im $T=\frac{V}{W}$.

• Ker $T = \frac{W}{U}$. Observe que

$$v + U \in \operatorname{Ker} T \Leftrightarrow T(v + U) = v + W = 0 + W \Leftrightarrow v \in W \Leftrightarrow v + U \in \frac{W}{U}$$

Logo,
$$\operatorname{Ker} T = \frac{W}{U}$$
.

Finalmente, obtemos do Primeiro Teorema do Isomorfismo que

$$\frac{V/U}{\operatorname{Ker} T} \cong \operatorname{Im} T \Rightarrow \frac{V/U}{W/U} \cong \frac{V}{W}.$$

2.4 Exercício 4

(4) Seja V um K-espaço vetorial e sejam U e W subespaços de V tais que12 dim(V/U) = m e dim(V/W) = n. Prove que dim $(V/(U \cap W)) \le m + n$.

Solução: Das informações fornecidas no enunciado, sabemos que:

$$\dim(V/U) = m \Rightarrow \dim(V) - \dim(U) = m$$

$$\dim(V/W) = n \Rightarrow \dim(V) - \dim(W) = n$$

Somando essas duas equações obtemos:

$$2\dim(V) - (m+n) = \dim(U) + \dim(W).$$

Sabemos também que, se U e W são subespaços de V, então

$$\dim(U) + \dim(W) = \dim(U \cap W) + \dim(U + W)$$

Estamos interessados em encontrar $\dim(V/(U\cap W)) = \dim(V) - \dim(U\cap W)$. Observe que, como U e W são subespaços de V, então $\dim(V) \ge \dim(U+W)$. Desse modo,

$$\dim(U) + \dim(W) = \dim(U \cap W) + \dim(U + W) \le \dim(U \cap W) + \dim(V)$$

Então:

$$\dim(U) + \dim(W) \le \dim(U \cap W) + \dim(V) \Rightarrow 2\dim(V) - (m+n) \le \dim(U \cap W) + \dim(V) \Rightarrow$$
$$-(m+n) \le \dim(U \cap W) - \dim(V) \Rightarrow \dim(V) - \dim(U \cap W) \le m+n$$

Portanto, concluímos que

$$\dim(V/(U\cap W)) = \dim(V) - \dim(U\cap W) \le m+n \Rightarrow \boxed{\dim(V/(U\cap W)) \le m+n}$$

2.5 Exercício 5

- (5) Mostre que
 - (a) $W \oplus U = W' \oplus U'$ e $W \cong W' \nrightarrow U \cong U'$.
 - (b) $V \cong V', V = W \oplus U \in V' = W \oplus U' \nrightarrow U \cong U'.$

Solução:

(a) Considere K um corpo, e seja

$$V = \bigoplus_{i=1}^{\infty} Ke_i$$

Considere

$$W = \bigoplus_{i=1}^{\infty} Ke_{2i}$$

Observe que $W\subseteq V$, e além disso, $W\cong V$. Temos também que

$$V = W \oplus \left(\bigoplus_{i=1}^{\infty} Ke_{2i+1}\right)$$

Portanto, tomando

$$W = \bigoplus_{i=1}^{\infty} Ke_{2i}, \ U = \bigoplus_{i=1}^{\infty} Ke_{2i+1}, \ W' = V, \ e \ U' = \{0\},$$

temos que

$$\left(\bigoplus_{i=1}^{\infty} Ke_{2i}\right) \oplus \left(\bigoplus_{i=1}^{\infty} Ke_{2i+1}\right) \cong V \cong V \oplus \{0\} \Rightarrow W \oplus U = W' \oplus U'$$

e

$$\bigoplus_{i=1}^{\infty} Ke_{2i} \cong \bigoplus_{i=1}^{\infty} Ke_i \Rightarrow W \cong W',$$

mas

$$\bigoplus_{i=1}^{\infty} Ke_{2i+1} \ncong \{0\} \Rightarrow U \ncong U'$$

(b) Considere $K^{\mathbb{N}} = \{(a_0, a_1, a_2, ...) | a_i \in K\}$, e sejam:

$$V_i = \{(0, a_1, 0, a_3, \ldots) | a_{2i+1} \in K\} \text{ e } V_p = \{(a_0, 0, a_2, 0, \ldots) | a_{2i} \in K\}.$$

Tome $V=K^{\mathbb{N}},\ V'=V_i,\ U=V_p$ e $U'=\{0\}.$ Temos então que $V\cong V',$ pois $K^{\mathbb{N}}\cong V_i,$ e também

$$V = V_i \oplus V_p = W \oplus U$$
 e $V' = V_i \oplus \{0\} = W \oplus U'$,

mas

$$V_p \ncong \{0\} \Rightarrow U \ncong U'.$$

Portanto, temos que

$$V \cong V'$$

$$V = W \oplus U$$

$$V' = W \oplus U'$$

$$\Rightarrow U \cong U'$$

Observação: Cabe salientar que ambos os itens dessa questão são válidos quando V é um espaço vetorial de dimensão finita.

2.6 Exercício 6

(6) Seja V um espaço vetorial e seja W um subespaço de V. Suponha que $V = V_1 \oplus \ldots \oplus V_n$ e $S = S_1 \oplus \ldots \oplus S_n$, com $S_i \subseteq V_i$ subespaços de V para todo $i = 1, \ldots, n$. Mostre que

$$\frac{V}{S} \cong \frac{V_1}{S_1} \oplus \ldots \oplus \frac{V_n}{S_n}.$$

Solução: Sabemos que, se V é soma direta de $V_1 \oplus \ldots \oplus V_n$, então todo $v \in V$ pode ser escrito como soma de elementos de V_i de maneira única. Podemos escrever então

$$v = \sum_{i=1}^{n} v_i$$

O mesmo se aplica a S. Dito isso, considere a aplicação

$$T : V = \bigoplus_{i=1}^{n} V_i = V_1 \oplus \ldots \oplus V_n \longrightarrow \bigoplus_{i=1}^{n} \frac{V_i}{S_i} = \frac{V_1}{S_1} \oplus \ldots \oplus \frac{V_n}{S_n}$$
$$v = \sum_{i=1}^{n} v_i \longmapsto T(v) = \sum_{i=1}^{n} (v_i + S_i)$$

Verifiquemos que T é uma transformação linear:

• Para todo $u, v \in V$, podemos escrever de maneira única $u = \sum_{i=1}^{n} u_i$ e $v = \sum_{i=1}^{n} v_i$. Portanto, temos

$$T(u) + T(v) = T\left(\sum_{i=1}^{n} u_i\right) + T\left(\sum_{i=1}^{n} v_i\right) = \sum_{i=1}^{n} (u_i + S_i) + \sum_{i=1}^{n} (v_i + S_i) = \sum_{i=1}^{n} ((u_i + S_i) + (v_i + S_i)) = T(u + v) \Rightarrow T(u) + T(v) = T(u + v).$$

• Para todo $v \in V$, podemos escrever de maneira única $v = \sum_{i=1}^{n} v_i$; assim, para $\alpha \in K$:

$$T(\alpha v) = T\left(\alpha \sum_{i=1}^{n} v_i\right) = T\left(\sum_{i=1}^{n} \alpha v_i\right) = T\left(\sum_{i=1}^{n} \alpha v_i\right) = \sum_{i=1}^{n} (\alpha v_i + S_i) = \sum_{i=1}^{n} \alpha(v_i + S_i) = \alpha \sum_{i=1}^{n} (v_i + S_i) = \alpha T(v) \Rightarrow T(\alpha v) = \alpha T(v)$$

Logo, T é uma transformação linear. Vamos utilizar o Primeiro Teorema do Isomorfismo em T. Para isso, calculemos o núcleo e a imagem de T:

• Im(T): Dado $u \in \bigoplus_{i=1}^n \frac{V_i}{S_i}$, temos que esse elemento pode ser escrito de maneira única como

$$u = \sum_{i=1}^{n} (u_i + S_i),$$

onde $u_i \in V_i$. Então temos que

$$u = \sum_{i=1}^{n} (u_i + S_i) = T\left(\sum_{i=1}^{n} u_i\right).$$

Logo, T é sobrejetora, e

$$\operatorname{Im}(T) = \bigoplus_{i=1}^{n} \frac{V_i}{S_i} = \frac{V_1}{S_1} \oplus \ldots \oplus \frac{V_n}{S_n}$$

• Ker(T): Considere $v \in \text{Ker}(T)$. Então, tomando $v = \sum_{i=1}^{n} v_i$, temos que

$$v \in \text{Ker}(T) \Rightarrow T(v) = 0 \Rightarrow T\left(\sum_{i=1}^{n} v_i\right) = 0 \Rightarrow \sum_{i=1}^{n} (v_i + S_i) = 0 \Rightarrow$$

$$v_i + S_i = 0, \ \forall i \in \{1, \dots, n\} \Rightarrow v_i \in S_i, \ \forall i \in \{1, \dots, n\} \Rightarrow v \in S$$

Assim, $\operatorname{Ker}(T) \subseteq S$. Agora, tome $s \in S$. Então, como $S = \bigoplus_{i=1}^n S_i$, então podemos escrever s de maneira única como

$$s = \sum_{i=1}^{n} s_i,$$

onde $s_i \in S_i$, para i = 1, ..., n. Desse modo,

$$T(s) = T\left(\sum_{i=1}^{n} s_i\right) = \sum_{i=1}^{n} (s_i + S_i) = \sum_{i=1}^{n} (0 + S_i) = 0.$$

Assim, $S \subseteq \text{Ker}(T)$. Concluímos que Ker(T) = S.

Pelo Primeiro Teorema do Isomorfismo, temos que

$$\frac{V}{\operatorname{Ker}(T)} \cong \operatorname{Im}(T) \Rightarrow \frac{V}{S} \cong \bigoplus_{i=1}^{n} \frac{V_i}{S_i}$$

Então:

$$\frac{V}{S} \cong \frac{V_1}{S_1} \oplus \ldots \oplus \frac{V_n}{S_n},$$

como queríamos.

2.7 Exercício 7

(7) Seja V um K-espaço vetorial e seja W um subespaço de V. Seja $T \in \mathcal{L}(V)$ e defina $\overline{T} \colon V/W \to V/W$ por

$$\overline{T}(v+W) = T(v) + W$$
, para todo $v+W \in V/W$.

- (a) Determine uma condição necessária e suficiente sobre W para que \overline{T} esteja bem definida.
- (b) Se \overline{T} estiver bem definida, mostre que ela é linear e determine seu núcleo e sua imagem.

(a) Seja

$$\begin{array}{cccc} \pi & : & V & \longrightarrow & V/W \\ & v & \longmapsto & \pi(v) = v + W \end{array}$$

A projeção canônica de V em V/W. Então, podemos considerar o seguinte diagrama:

Note que $\pi \circ T = \overline{T} \circ \pi$. Daí, \overline{T} estará bem-definida se $\operatorname{Ker}(\pi) \subseteq \operatorname{Ker}(\pi \circ T)$. Claramente, temos que $\operatorname{Ker}(\pi) = W$. Vamos calcular $\operatorname{Ker}(\pi \circ T)$. Temos que

$$v \in \operatorname{Ker}(\pi \circ T) \Leftrightarrow \pi(T(v)) = \overline{0} \Leftrightarrow T(v) \in W \Leftrightarrow v \in T^{-1}$$

Logo, temos que

$$\operatorname{Ker}(\pi) \subseteq \operatorname{Ker}(\pi \circ T) \Rightarrow W \subseteq T^{-1}(W) \Rightarrow T[W] \subseteq W.$$

Portanto, uma condição necessária e suficiente para \overline{T} estar bem definida é que para todo $v \in W$, tenhamos $T(v) \in W$, ou seja, $T(W) \subseteq W$.

Em outras palavras, \overline{T} está bem definida se W for um subespaço T-invariante de V.

- (b) Verifiquemos que \overline{T} é uma transformação linear. Temos:
 - lacktriangle Para todos $u+W,v+W\in V/W$, lembrando que T é linear, temos que

$$\overline{T}((u+W)+(v+W))=\overline{T}((u+v)+W)=T(u+v)+W=T(u)+T(v)+W=$$

$$(T(u)+W)+(T(v)+W)=\overline{T}(u+W)+\overline{T}(v+W)$$
 Logo,
$$\overline{T}(\overline{u}+\overline{v})=\overline{T}(\overline{u})+\overline{T}(\overline{v}).$$

 \clubsuit Para todo $v+W\in V/W$, e para todo $\alpha\in K$, temos que

$$\overline{T}(\alpha(v+W)) = \overline{T}((\alpha v) + W) = T(\alpha v) + W = \alpha T(v) + W =$$

$$\alpha(T(v) + W) = \alpha \overline{T}(v+W)$$

Portanto, $\overline{T}(\alpha \overline{v}) = \alpha \overline{T}(\overline{v})$.

Vamos encontrar o núcleo e a imagem de \overline{T} .

 \forall Sendo $\overline{v} = v + W \in V/W$, observe que

$$\overline{T}(\overline{v}) = 0 \Rightarrow \overline{T(v)} = 0 \Rightarrow T(v) \in W \Rightarrow v \in T^{-1}(W).$$

Portanto, temos que

$$\operatorname{Ker}(\overline{T}) = \{\overline{v} | v \in T^{-1}(W)\}.$$

 \spadesuit Vamos verificar que \overline{T} é sobrejetora. Sabemos que π é sobrejetora. Então, temos que

$$\begin{array}{lll} \operatorname{Im}(\overline{T}) & = & \operatorname{Im}(\overline{T} \circ \pi) \\ & = & \operatorname{Im}(\pi \circ T) \\ & = & \{\pi(T(v)) : v \in V\} \\ & = & \{\overline{T(v)} : v \in V\} \end{array}$$

Portanto, temos que

$$\operatorname{Im}(\overline{T}) = V/W.$$

2.8 Exercício 8

(8) Seja $T \in \mathcal{L}(\mathbb{R}^3)$ o operador linear definido por T(x,y,z) = (x,x,x). Seja $T : \mathbb{R}^3/W \to \mathbb{R}^3/W$ tal que $\overline{T}((x,y,z)+W) = T(x,y,z)+W$, em que W = Ker T. Descreva \overline{T} .

Solução: Veja que \overline{T} está bem definida, pois $W=\mathrm{Ker}(T)$ é um subespaço T-invariante de V. Vamos encontrar o núcleo e a imagem de \overline{T} .

• Do exercício anterior, temos que

$$\operatorname{Ker}(\overline{T}) = \{ \overline{v} | v \in T^{-1}(W) \}.$$

Em particular,

$$\operatorname{Ker}(\overline{T}) = \{\overline{v}|v \in T^{-1}(\operatorname{Ker}T)\} = \{\overline{v}|v \in T^{-1}(\operatorname{Ker}T)\}$$

Então segue que

$$v \in T^{-1}(\operatorname{Ker} T) \Rightarrow T(v) \in \operatorname{Ker}(T) \Leftrightarrow T(T(v)) = 0.$$

Mas T(T(v)) = T(v). De fato, para $v = (x, y, z) \in \mathbb{R}^3$, temos

$$T(T(v))=T(\textcolor{red}{T(x,y,z)})=T(x,x,x)=(x,x,x)=T(x,y,z)=T(v)$$

Daí, como para $v \in T^{-1}(\operatorname{Ker} T)$, temos T(T(v)) = 0,

$$T(T(v)) = 0 \Rightarrow T(v) = 0$$

Além disso, se $v \in \text{Ker}(T) = W$, temos $\overline{v} = 0$.

Portanto, concluímos que $Ker(\overline{T}) = \{0\}$, ou seja, \overline{T} é injetora.

• Do exercício anterior, temos

$$\operatorname{Im}(\overline{T}) = V/W.$$

Logo, $\operatorname{Im}(\overline{T}) = \mathbb{R}^3 / \operatorname{Ker} T$. Podemos também descrever $\operatorname{Im}(\overline{T})$ da seguinte maneira:

$$\begin{array}{lll} \operatorname{Im}(\overline{T}) & = & \{\overline{T(v)} : v \in V\} \\ & = & \{T(v) + \operatorname{Ker} T | v = (x, y, z) \in \mathbb{R}^3\} \\ & = & \{(x, x, x) + \operatorname{Ker} T | x \in \mathbb{R}\} \\ & = & \{(x, x, x) + (0, y, z) | x, y, z \in \mathbb{R}\} \\ & = & \{(x, x + y, x + z) | x, y, z \in \mathbb{R}\} \end{array}$$

2.9 Exercício 9

(9) Sejam V e U K-espaços vetoriais. Seja W um subespaço de V e $\pi\colon V\to V/W$ a projeção canônica. Mostre que a função $\mathcal{L}(V/W,U)\to\mathcal{L}(V,U)$, dada por $T\to T\circ\pi$, é injetora.

Solução: Temos a função

Para mostrar que φ é injetora, precisamos verificar que, para $T \in \mathcal{L}(V/W, U)$, se $\varphi(T) = 0$, então $T \cong 0$. Note que

$$\varphi(T) = 0 \Rightarrow T \circ \pi = 0 \Rightarrow T(\pi(v)) = 0.$$

Vamos mostrar que $T(u) = 0 \ \forall u \in V/W$. Sabemos que π é sobrejetora. Assim, dado $u \in V/W$, existe $v \in V$ tal que $u = \pi(v)$. Logo,

$$T(u) = T(\pi(v)) = (T \circ \pi)(v) = 0.$$

Portanto, $T(u) = 0 \ \forall u \in V/W$. Daí, $Ker(\varphi) = \{0\}$. Concluímos que φ é injetora.

2.10 Exercício 10

(10) Seja V um K-espaço vetorial e seja W um subespaço de V. Mostre que $(V/W)^* \cong W^0$ e que $V^*/W^0 \cong W^*$.

Solução: Mostremos que $(V/W)^* \cong W^0$. Para isso, a ideia será utilizar a aplicação canônica de V em V/W e sua transposta, e depois aplicar o Primeiro Teorema do Isomorfismo para obter o resultado desejado. Comecemos considerando a aplicação canônica

$$\begin{array}{cccc} T & : & V & \longrightarrow & V/W \\ & v & \longmapsto & T(v) = v + W \end{array}$$

Veja que T é sobrejetora (isto é, Im T = V/W), e Ker T = W. Consideremos a aplicação transposta

$$\begin{array}{cccc} T^t & : & (V/W)^* & \longrightarrow & V^* \\ & f & \longmapsto & T^t(f) = f \circ T \end{array}$$

Das propriedades da transformação transposta, sabemos que

Ker
$$T^t = (\text{Im } T)^0 = (V/W)^0 = \{0\}$$

Im $T^t = (\text{Ker } T)^0 = W^0$

Pelo Primeiro Teorema do Isomorfismo, temos que

$$\frac{(V/W)^*}{\operatorname{Ker} T^t} \cong \operatorname{Im} T^t \Rightarrow \frac{(V/W)^*}{\{0\}} \cong W^0 \Rightarrow \boxed{(V/W)^* \cong W^0}$$

Mostremos agora que $V^*/W^0 \cong W^*$. Utilizaremos a mesma estratégia, mas considerando agora a inclusão. Tome a inclusão de W em V, isto é:

$$\iota : W \longrightarrow V
 w \longmapsto \iota(w) = w$$

Note que Ker $\iota = \{0\}$ e Im $\iota = W$. Seja

$$\begin{array}{cccc} \iota^t & : & V^* & \longrightarrow & W^* \\ & f & \longmapsto & \iota(f) = f \circ \iota \end{array}$$

a transposta de ι . Observe que

$$\operatorname{Ker} \iota^{t} = (\operatorname{Im} \iota)^{0} = W^{0}$$
$$\operatorname{Im} \iota^{t} = (\operatorname{Ker} \iota)^{0} = \{0\}^{0} = W^{*}$$

Pelo Primeiro Teorema do Isomorfismo,

$$\frac{V^*}{\operatorname{Ker}\,\iota^t}\cong\operatorname{Im}\,\iota^t\Rightarrow\frac{V^*}{W^0}\cong W^*\Rightarrow\boxed{V^*/W^0\cong W^*}$$

2.11 Exercício 11

(11) Sejam $A, B, C \in \mathcal{M}_n(K)$. Prove que

$$\det \left[\begin{array}{cc} 0 & C \\ A & B \end{array} \right] = (-1)^n \det(A) \det(C).$$

Solução: Considere

$$F_1: \mathcal{M}_n(K) \longrightarrow K$$

$$X \longmapsto F_1(X) = \det \begin{bmatrix} 0 & X \\ A & B \end{bmatrix}$$

Observe que F_1 é n-linear e alternada nas linhas de X. Logo, existe um $\lambda_1 \in K$ tal que

$$F_1(X) = \lambda_1 \det(X)$$
.

Em particular,

$$\lambda_1 = \lambda_1 \cdot \mathbf{1} = \lambda_1 \det(I_n) = F_1(I_n) = \det \begin{bmatrix} 0 & I_n \\ A & B \end{bmatrix} \Rightarrow \lambda_1 = \det \begin{bmatrix} 0 & I_n \\ A & B \end{bmatrix}$$

Considere agora

$$\begin{array}{cccc} F_2 & : & \mathscr{M}_n(K) & \longrightarrow & K \\ & Y & \longmapsto & F_2(Y) = \det \begin{bmatrix} 0 & I_n \\ Y & B \end{bmatrix} \end{array}$$

Temos que F_2 é n-linear e alternada nas colunas de Y. Logo, existe um $\lambda_2 \in K$ tal que

$$F_2(Y) = \lambda_2 \det(Y)$$
.

Além disso,

$$\lambda_2 = \lambda_2 \cdot \mathbf{1} = \lambda_2 \det(I_n) = F_2(I_n) = \det \begin{bmatrix} 0 & I_n \\ I_n & B \end{bmatrix} = (-1)^n \Rightarrow \lambda_2 = (-1)^n$$

Logo,

$$\lambda_1 = \det \begin{bmatrix} 0 & I_n \\ A & B \end{bmatrix} = F_2(A) = \lambda_2 \det(A) = (-1)^n \det(A)$$

Consequentemente,

$$\det \begin{bmatrix} 0 & C \\ A & B \end{bmatrix} = F_1(C) = \lambda_1 \det(C) = (-1)^n \det(A) \det(C)$$

Portanto, concluímos que

$$\det \left[\begin{array}{cc} 0 & C \\ A & B \end{array} \right] = (-1)^n \det(A) \det(C).$$

Observação: Mas porquê det $\begin{bmatrix} 0 & I_n \\ I_n & B \end{bmatrix} = (-1)^n$? Vamos explicitar essa matriz:

$$M = \begin{bmatrix} 0 & I_n \\ I_n & B \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 & \dots & 1 \\ \hline 1 & 0 & 0 & \dots & 0 & b_{11} & b_{12} & b_{13} & \dots & b_{1n} \\ 0 & 1 & 0 & \dots & 0 & b_{21} & b_{22} & b_{23} & \dots & b_{2n} \\ 0 & 0 & 1 & \dots & 0 & b_{31} & b_{32} & b_{33} & \dots & b_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 & b_{n1} & b_{n2} & b_{n3} & \dots & b_{nn} \end{bmatrix}$$

Por definição, temos que

$$\det M = \sum_{\sigma \in S_{2n}} \operatorname{sgn}(\sigma) m_{1\sigma(1)} m_{2\sigma(2)} \dots m_{2n\sigma(2n)}.$$

Mas observe que $m_{1\sigma(1)} \neq 0$ apenas quando $\sigma(1) = n + 1$. Também temos que $m_{2\sigma(2)} \neq 0$ apenas quando $\sigma(2) = n + 2$. Analogamente, concluímos que, para todo $k \leq n$,

$$m_{k\sigma(k)} = \begin{cases} 1, & \text{se } \sigma(k) = n + k; \\ 0, & \text{caso contrário.} \end{cases},$$

já que $m_{k\sigma(k)}$ estará na área em verde na matriz. Portanto, os somandos serão não nulos somente para as permutações que satisfazem $\sigma(k)=n+k$, para $k\leq n$. Então, temos que para $n<\ell\leq 2n$, $\sigma(\ell)=p$, onde $p\in\{1,2,\ldots,n\}$ Agora, veja que $m_{\ell\sigma(\ell)}$ se encontrará na área em vermelho na matriz, e portanto

$$m_{\ell\sigma(\ell)} = \begin{cases} 1, & \text{se } \sigma(\ell) = \ell - n; \\ 0, & \text{caso contrário.} \end{cases}$$

Logo, a única permutação para a qual $m_{g\sigma(g)} \neq 0 \ \forall g \in \{1,2,\dots,2n\}$ será a permutação

$$\rho = (1 \ n+1)(2 \ n+2)\dots(n \ 2n),$$

que é composta por uma quantidade ímpar de transposições, se n é ímpar, ou por uma quantidade par de transposições, se n é par. Logo, $\operatorname{sgn}(\rho) = (-1)^n$. Portanto, concluímos que

$$\det M = \sum_{\sigma \in S_{2n}} \operatorname{sgn}(\sigma) m_{1\sigma(1)} m_{2\sigma(2)} \dots m_{2n\sigma(2n)} = \operatorname{sgn}(\rho) m_{1\rho(1)} m_{2\rho(2)} \dots m_{2n\rho(2n)} =$$

$$(-1)^n m_{1(n+1)} m_{2(n+2)} \dots m_{2n(n)} = (-1)^n$$

2.12 Exercício 12

(12) Calcule o determinante da matriz de Vandermonde, isto é, prove que

$$\det \begin{bmatrix} 1 & 1 & \dots & 1 \\ c_1 & c_2 & \dots & c_n \\ \vdots & \vdots & \ddots & \vdots \\ c_1^{n-1} & c_2^{n-1} & \dots & c_n^{n-1} \end{bmatrix} = \prod_{1 \le i < j \le n} (c_j - c_i)$$

Solução: Vamos provar o resultado por indução sobre $n \ge 2$. Para n = 2, é fácil ver que

$$\det \begin{bmatrix} 1 & 1 \\ c_1 & c_2 \end{bmatrix} = c_2 - c_1 = \prod_{1 \le i < j \le 2} (c_j - c_i)$$

Assuma o resultado válido para n-1, ou seja,

$$\det \begin{bmatrix} 1 & 1 & \dots & 1 \\ c_1 & c_2 & \dots & c_n \\ \vdots & \vdots & \ddots & \vdots \\ c_1^{n-2} & c_2^{n-2} & \dots & c_n^{n-2} \end{bmatrix} = \prod_{1 \le i < j \le n-1} (c_j - c_i) = \prod_{1 \le i < j \le n-1} (c_j - c_i)$$

Provemos para a matriz $n \times n$. Utilizando a matriz transposta, vamos aplicar operações nas colunas da matriz de modo a obter zeros na primeira linha. Para isso, vamos multiplicar cada coluna C_i por $-c_1$ e somaremos com a coluna C_{i+1} , obtendo

$$\begin{bmatrix} 1 & c_1 & c_1^2 & \dots & c_1^{n-1} \\ 1 & c_2 & c_2^2 & \dots & c_2^{n-1} \\ 1 & c_3 & c_3^2 & \dots & c_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & c_n & c_n^2 & \dots & c_n^{n-1} \end{bmatrix} \xrightarrow{C_{i+1} = C_{i+1} - c_1 C_i} \begin{bmatrix} 1 & c_1 - c_1 1 & c_1^2 - c_1 c_1 & \dots & c_1^{n-1} - c_1 c_1^{n-2} \\ 1 & c_2 - c_1 1 & c_2^2 - c_1 c_2 & \dots & c_2^{n-1} - c_1 c_2^{n-2} \\ 1 & c_3 - c_1 1 & c_3^2 - c_1 c_3 & \dots & c_3^{n-1} - c_1 c_3^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & c_n - c_1 1 & c_n^2 - c_1 c_n & \dots & c_n^{n-1} - c_1 c_n^{n-2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & c_2 - c_1 & c_2(c_2 - c_1) & \dots & c_2^{n-2}(c_2 - c_1) \\ 1 & c_3 - c_1 & c_3(c_3 - c_1) & \dots & c_3^{n-2}(c_3 - c_1) \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 1 & c_n - c_1 & c_n(c_n - c_1) & \dots & c_n^{n-2}(c_n - c_1) \end{bmatrix}$$

Utilizando o Teorema de Laplace, temos que

$$\det \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & c_2 - c_1 & c_2(c_2 - c_1) & \dots & c_2^{n-2}(c_2 - c_1) \\ 1 & c_3 - c_1 & c_3(c_3 - c_1) & \dots & c_3^{n-2}(c_3 - c_1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & c_n - c_1 & c_n(c_n - c_1) & \dots & c_n^{n-2}(c_n - c_1) \end{bmatrix} =$$

$$\det \begin{bmatrix} c_2 - c_1 & c_2(c_2 - c_1) & \dots & c_2^{n-2}(c_2 - c_1) \\ c_3 - c_1 & c_3(c_3 - c_1) & \dots & c_3^{n-2}(c_3 - c_1) \\ \vdots & \vdots & \ddots & \vdots \\ c_n - c_1 & c_n(c_n - c_1) & \dots & c_n^{n-2}(c_n - c_1) \end{bmatrix}$$

Como cada linha está multiplicada por $c_i - c_1$, por propriedades do determinante, temos que

$$\det \begin{bmatrix} c_2 - c_1 & c_2(c_2 - c_1) & \dots & c_2^{n-2}(c_2 - c_1) \\ c_3 - c_1 & c_3(c_3 - c_1) & \dots & c_3^{n-2}(c_3 - c_1) \\ \vdots & \vdots & \ddots & \vdots \\ c_n - c_1 & c_n(c_n - c_1) & \dots & c_n^{n-2}(c_n - c_1) \end{bmatrix} =$$

$$(c_{2}-c_{1})(c_{3}-c_{1})\cdot\ldots\cdot (c_{n}-c_{1})\det\begin{bmatrix}1&c_{2}&c_{2}^{2}&\ldots&c_{2}^{n-2}\\1&c_{3}&c_{3}^{2}&\ldots&c_{3}^{n-2}\\1&c_{4}&c_{4}^{2}&\ldots&c_{4}^{n-2}\\\vdots&\vdots&\ddots&\vdots\\1&c_{n}&c_{n}^{2}&\ldots&c_{n}^{n-2}\end{bmatrix}=$$

$$\prod_{j=2}^{n} (c_j - c_1) \det \begin{bmatrix} 1 & c_2 & c_2^2 & \dots & c_2^{n-2} \\ 1 & c_3 & c_3^2 & \dots & c_3^{n-2} \\ 1 & c_4 & c_4^2 & \dots & c_4^{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & c_n & c_n^2 & \dots & c_n^{n-2} \end{bmatrix}$$

Como a matriz resultante tem tamanho $n-1 \times n-1$, da hipótese de indução, vem

$$\det \begin{bmatrix} 1 & c_2 & c_2^2 & \dots & c_2^{n-2} \\ 1 & c_3 & c_3^2 & \dots & c_3^{n-2} \\ 1 & c_4 & c_4^2 & \dots & c_4^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & c_n & c_n^2 & \dots & c_n^{n-2} \end{bmatrix} = \prod_{2 \le i < j \le n} (c_j - c_i).$$

Daí,

$$\left(\prod_{j=2}^{n} (c_j - c_1)\right) \det \begin{bmatrix}
1 & c_2 & c_2^2 & \dots & c_2^{n-2} \\
1 & c_3 & c_3^2 & \dots & c_3^{n-2} \\
1 & c_4 & c_4^2 & \dots & c_4^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & c_n & c_n^2 & \dots & c_n^{n-2}
\end{bmatrix} =$$

$$\left(\prod_{j=2}^{n}(c_j-c_1)\right)\left(\prod_{2\leq i< j\leq n}(c_j-c_i)\right)=\prod_{1\leq i< j\leq n}(c_j-c_i)$$

Assim, segue o resultado.

2.13 Exercício 13

(13) Mostre que

$$\det \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} = (a^2 + b^2 + c^2 + d^2)^2$$

Solução: Considere

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \quad e \quad B = \begin{bmatrix} c & d \\ d & -c \end{bmatrix},$$

e seja

$$C = \det \begin{bmatrix} A & -B \\ B & A \end{bmatrix}$$

Observe que a matriz CC^t é diagonal, já que as colunas são ortogonais. Como $\det(C) = \det(C^t)$, temos que

$$\det(C^2) = \det(C)\det(C) = \det(C)\det(C^t) = \det(CC^t)$$

De fato, temos que

$$CC^{t} = \begin{pmatrix} a^{2} + b^{2} + c^{2} + d^{2} & 0 & 0 & 0 \\ 0 & a^{2} + b^{2} + c^{2} + d^{2} & 0 & 0 \\ 0 & 0 & a^{2} + b^{2} + c^{2} + d^{2} & 0 \\ 0 & 0 & 0 & a^{2} + b^{2} + c^{2} + d^{2} \end{pmatrix}$$

Daí,

$$\det(CC^t) = (a^2 + b^2 + c^2 + d^2)^4$$

Portanto,

$$(\det(C))^2 = \det(CC^t) = (a^2 + b^2 + c^2 + d^2)^4 \Rightarrow \det(C) = \pm (a^2 + b^2 + c^2 + d^2)^2.$$

Mas observe que o coeficiente de a^4 no determinante de C deve ser 1, o que impossibilita a opção $\det(C) = -(a^2 + b^2 + c^2 + d^2)^2$, já que nesse caso o coeficiente de a^4 seria -1. Logo, segue que

$$\det(C) = (a^2 + b^2 + c^2 + d^2)^2$$

Outra solução: (assumindo $K = \mathbb{C}$) Primeiramente, vamos mostrar que, para $A, B \in \mathcal{M}_n(\mathbb{C})$, temos que

$$\det \begin{bmatrix} A & -B \\ B & A \end{bmatrix} = \left| \det(A + Bi) \right|^2$$

De fato:

$$\det\begin{pmatrix} A & -B \\ B & A \end{pmatrix} = \det\begin{pmatrix} A - iB & -B \\ B + iA & A \end{pmatrix} = \det\begin{pmatrix} A - iB & -B \\ i(A - iB) & A \end{pmatrix} = \det\begin{pmatrix} A - iB & -B \\ i(A - iB) & A \end{pmatrix} = \det\begin{pmatrix} A - iB & -B \\ i(A - iB) & A + iB \end{pmatrix} = \det\begin{pmatrix} A - iB & -B \\ 0 & A + iB \end{pmatrix} = \left|\det(A + Bi)\right|^{2}$$

Portanto, escrevendo

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \quad e \quad B = \begin{bmatrix} c & d \\ d & -c \end{bmatrix},$$

segue que

$$\det \begin{vmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{vmatrix} = \det \begin{bmatrix} A & -B \\ B & A \end{bmatrix} = |\det(A + Bi)|^2.$$

Como

$$A + Bi = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & d \\ d & -c \end{bmatrix} i = \begin{bmatrix} a + ci & -b + di \\ b + di & a - ci \end{bmatrix},$$

temos que

$$\left| \det(A+Bi) \right|^2 = \left| \det \begin{bmatrix} a+ci & -b+di \\ b+di & a-ci \end{bmatrix} \right|^2 = \left| (a+ci)(a-ci) - (di-b)(di+b) \right|^2 =$$

$$\left| a^2+c^2 - (-b^2-d^2) \right|^2 = \left| a^2+c^2+b^2+d^2 \right|^2 = (a^2+b^2+c^2+d^2)^2$$

2.14 Exercício 14

(14) Sejam $A, B \in \mathcal{M}_n(K)$. Mostre que se A é inversível então existem no máximo n escalares c tais que cA + B não é inversível.

Solução: Se cA + B é inversível, isso quer dizer que

$$(cA + B)A^{-1} = cI + BA^{-1}$$

é inversível. 1

Considere portanto a função

$$p: K \longrightarrow K$$
 $c \longmapsto p(c) = \det(cI + BA^{-1})$

Veja que essa função na verdade é um polinômio de grau n na variável c. De fato, chamando

$$A^{-1} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix} \quad e \quad B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1n} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2n} \\ b_{31} & b_{32} & b_{33} & \dots & b_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & b_{n3} & \dots & b_{nn} \end{pmatrix},$$

temos que

$$cI + BA^{-1} = \begin{pmatrix} c & 0 & 0 & \dots & 0 \\ 0 & c & 0 & \dots & 0 \\ 0 & c & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & c \end{pmatrix} + \begin{pmatrix} \sum_{k=1}^{n} b_{1k} a_{k1} & \sum_{k=1}^{n} b_{1k} a_{k2} & \sum_{k=1}^{n} b_{1k} a_{k3} & \dots & \sum_{k=1}^{n} b_{1k} a_{kn} \\ \sum_{k=1}^{n} b_{2k} a_{k1} & \sum_{k=1}^{n} b_{2k} a_{k2} & \sum_{k=1}^{n} b_{2k} a_{k3} & \dots & \sum_{k=1}^{n} b_{2k} a_{kn} \\ \sum_{i} b_{3k} a_{k1} & \sum_{i} b_{3k} a_{k2} & \sum_{k=1}^{n} b_{3k} a_{k3} & \dots & \sum_{k=1}^{n} b_{3k} a_{kn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} b_{nk} a_{k1} & \sum_{k=1}^{n} b_{nk} a_{k2} & \sum_{k=1}^{n} b_{nk} a_{k2} & \sum_{k=1}^{n} b_{nk} a_{k3} & \dots & \sum_{k=1}^{n} b_{nk} a_{kn} \\ \sum_{k=1}^{n} b_{2k} a_{k1} & \sum_{k=1}^{n} b_{2k} a_{k2} & \sum_{k=1}^{n} b_{2k} a_{k3} & \dots & \sum_{k=1}^{n} b_{2k} a_{kn} \\ \sum_{k=1}^{n} b_{2k} a_{k1} & \sum_{k=1}^{n} b_{2k} a_{k2} & \sum_{k=1}^{n} b_{2k} a_{k3} & \dots & \sum_{k=1}^{n} b_{2k} a_{kn} \\ \sum_{k=1}^{n} b_{3k} a_{k1} & \sum_{k=1}^{n} b_{3k} a_{k2} & c + \sum_{k=1}^{n} b_{3k} a_{k3} & \dots & \sum_{k=1}^{n} b_{3k} a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} b_{nk} a_{k1} & \sum_{k=1}^{n} b_{nk} a_{k2} & \sum_{k=1}^{n} b_{nk} a_{k3} & \dots & c + \sum_{k=1}^{n} b_{nk} a_{kn} \end{pmatrix}$$

¹De fato, cA + B é inversível se e somente se $cI + BA^{-1}$ é inversível.

Assim, temos que

$$\det(cI + BA^{-1}) = \det \begin{pmatrix} c + \sum_{k=1}^{n} b_{1k} a_{k1} & \sum_{k=1}^{n} b_{1k} a_{k2} & \sum_{k=1}^{n} b_{1k} a_{k3} & \dots & \sum_{k=1}^{n} b_{1k} a_{kn} \\ \sum_{k=1}^{n} b_{2k} a_{k1} & c + \sum_{k=1}^{n} b_{2k} a_{k2} & \sum_{k=1}^{n} b_{2k} a_{k3} & \dots & \sum_{k=1}^{n} b_{2k} a_{kn} \\ \sum_{k=1}^{n} b_{3k} a_{k1} & \sum_{k=1}^{n} b_{3k} a_{k2} & c + \sum_{k=1}^{n} b_{3k} a_{k3} & \dots & \sum_{k=1}^{n} b_{3k} a_{kn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} b_{nk} a_{k1} & \sum_{k=1}^{n} b_{nk} a_{k2} & \sum_{k=1}^{n} b_{nk} a_{k3} & \dots & c + \sum_{k=1}^{n} b_{nk} a_{kn} \end{pmatrix} \\ \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \alpha_{11} \alpha_{22} \dots \alpha_{nn} + \sum_{\substack{\sigma \in S_n \\ \sigma \neq 1}} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \\ \begin{pmatrix} c + \sum_{k=1}^{n} b_{1k} a_{k1} \end{pmatrix} \begin{pmatrix} c + \sum_{k=1}^{n} b_{2k} a_{k2} \end{pmatrix} \dots \begin{pmatrix} c + \sum_{k=1}^{n} b_{nk} a_{kn} \end{pmatrix} + \sum_{\substack{\sigma \in S_n \\ \sigma \neq 1}} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \\ \begin{pmatrix} c + \sum_{k=1}^{n} b_{1k} a_{k1} \end{pmatrix} \begin{pmatrix} c + \sum_{k=1}^{n} b_{2k} a_{k2} \end{pmatrix} \dots \begin{pmatrix} c + \sum_{k=1}^{n} b_{nk} a_{kn} \end{pmatrix} + \sum_{\substack{\sigma \in S_n \\ \sigma \neq 1}} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \\ \begin{pmatrix} c + \sum_{k=1}^{n} b_{nk} a_{km} \end{pmatrix} \begin{pmatrix} c + \sum_{k=1}^{n} b_{2k} a_{k2} \end{pmatrix} \dots \begin{pmatrix} c + \sum_{k=1}^{n} b_{nk} a_{kn} \end{pmatrix} + \sum_{\substack{\sigma \in S_n \\ \sigma \neq 1}} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \\ \begin{pmatrix} c + \sum_{k=1}^{n} b_{nk} a_{km} \end{pmatrix} \begin{pmatrix} c + \sum_{k=1}^{n} b_{2k} a_{k2} \end{pmatrix} \dots \begin{pmatrix} c + \sum_{k=1}^{n} b_{nk} a_{kn} \end{pmatrix} + \sum_{\substack{\sigma \in S_n \\ \sigma \neq 1}} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \\ \begin{pmatrix} c + \sum_{k=1}^{n} b_{nk} a_{km} \end{pmatrix} \begin{pmatrix} c + \sum_{k=1}^{n} b_{nk} a_{km} \end{pmatrix} \begin{pmatrix} c + \sum_{k=1}^{n} b_{nk} a_{km} \end{pmatrix} + \sum_{\substack{\sigma \in S_n \\ \sigma \neq 1}} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \\ \begin{pmatrix} c + \sum_{k=1}^{n} b_{nk} a_{km} \end{pmatrix} \begin{pmatrix} c + \sum_{k=1}^{n} b_{$$

Logo, p é um polinômio de grau n com coeficientes no corpo K.

Observe que cA + B não será inversível quando $\det(cI + BA^{-1}) = 0$, ou seja, quando c for uma raiz de p. Como o grau de p é n, segue que este possui no máximo n raízes em K, e daí temos que existem no máximo c escalares tais que cA + B não é inversível.

2.15 Exercício 15

- (15) Sejam $A, B, C, D \in \mathcal{M}_n(K)$ com D inversível.
 - (a) Mostre que

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(AD - BD^{-1}CD)$$

(b) Se CD = DC, mostre que

$$\det \left[\begin{array}{cc} A & B \\ C & D \end{array} \right] = \det(AD - BC).$$

O que acontece quando D não é inversível?

(c) Se
$$DB = BD$$
, calcule det $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$.

Solução: Pelo Teorema de Binet, sabemos que o determinante de um produto de duas matrizes quadradas é o produto de seus determinantes, ou seja, se $X, Y \in \mathcal{M}_n(K)$, então

$$det(X) det(Y) = det(XY)$$

Além disso, lembramos que, para $U, V, X, Y \in \mathcal{M}_n(K)$, temos

$$\det \begin{bmatrix} U & 0 \\ X & Y \end{bmatrix} = \det U \det Y$$

e

$$\det \begin{bmatrix} U & V \\ 0 & Y \end{bmatrix} = \det U \det Y$$

Feitas essas observações, estamos aptos a resolver a questão.

(a) Para obter o resultado desejado, a ideia será multiplicar a matriz em questão por uma matriz conveniente cujo determinante é 1. Dessa forma, utilizando as observações acima, sendo I_n a notação para a matriz identidade $n \times n$, e lembrando que D é invertível, temos que

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} I_n & 0 \\ -D^{-1}C & I_n \end{pmatrix} = \begin{pmatrix} A - BD^{-1}C & B \\ 0 & D \end{pmatrix}$$

Calculando os determinantes, vem

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I_n & 0 \\ -D^{-1}C & I_n \end{bmatrix}\right) = \det\left(\begin{array}{c} A - BD^{-1}C & B \\ 0 & D \end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det\left(\begin{bmatrix} I_n & 0 \\ -D^{-1}C & I_n \end{bmatrix}\right) = \det\left(\begin{array}{c} A - BD^{-1}C & B \\ 0 & D \end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det I_n \cdot \det I_n = \det\left(A - BD^{-1}C\right) \det(D) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det(I_nI_n) = \det\left((A - BD^{-1}C)D\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det(I_n) = \det(AD - BD^{-1}CD) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) = \det\left(AD - BD^{-1}CD\right)$$

(b) Utilizando as observações acima, sendo I_n a notação para a matriz identidade $n \times n$, e usando o fato de que CD = DC, temos que

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} D & 0 \\ -C & I_n \end{pmatrix} = \begin{pmatrix} AD - BC & B \\ CD - DC & D \end{pmatrix} = \begin{pmatrix} AD - BC & B \\ 0 & D \end{pmatrix}$$

Como Dé invertível, temos de
t $D \neq 0.$ Portanto, segue que

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\begin{bmatrix} D & 0 \\ -C & I_n \end{bmatrix}\right) = \det\left(\begin{array}{c} AD - BC & B \\ 0 & D \end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det\left(\begin{bmatrix} D & 0 \\ -C & I_n \end{bmatrix}\right) = \det\left(\begin{array}{c} AD - BC & B \\ 0 & D \end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det(D) \det(I_n) = \det(AD - BC) \det(D) \Rightarrow$$

$$\det\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(AD - BC) \det(D) \cdot \frac{1}{\det(D)} \Rightarrow$$

$$\det\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(AD - BC)$$

- (c) Para resolver este item, vamos utilizar as propriedades das matrizes transpostas. Lembrando que, se $X, Y \in \mathcal{M}_n(K)$, então
 - $(X^t)^t = X$;
 - $(X + Y)^t = X^t + Y^t$;
 - $(XY)^t = Y^t X^t$:
 - $\det(X^t) = \det(X)$.

De posse dessas propriedades, observe que

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right]^t = \left[\begin{array}{cc} A^t & C^t \\ B^t & D^t \end{array}\right]$$

Daí, utilizando a notação I_n para a matriz identidade $n \times n$, e usando o fato de que DB = BD,

$$\begin{pmatrix} A^t & C^t \\ B^t & D^t \end{pmatrix} \begin{pmatrix} D^t & 0 \\ -B^t & I_n \end{pmatrix} = \begin{pmatrix} A^tD^t - B^tC^t & C^t \\ B^tD^t - D^tB^t & D^t \end{pmatrix} = \begin{pmatrix} (DA)^t - (CB)^t & C^t \\ (DB)^t - (BD)^t & D^t \end{pmatrix} = \begin{pmatrix} (DA - CB)^t & C^t \\ (DB - BD)^t & D^t \end{pmatrix} = \begin{pmatrix} (DA - CB)^t & C^t \\ 0 & D^t \end{pmatrix}$$

Novamente, sendo D invertível, então D^t também é invertível. Logo, temos

$$\det\left(\left[\begin{array}{cc}A^t & C^t\\B^t & D^t\end{array}\right]\left[\begin{array}{cc}D^t & 0\\-B^t & I_n\end{array}\right]\right) = \det\left(\begin{array}{cc}(DA - CB)^t & C^t\\0 & D^t\end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix}\right) \det\left(\begin{bmatrix} D^t & 0 \\ -B^t & I_n \end{bmatrix}\right) = \det\left(\begin{array}{c} (DA - CB)^t & C^t \\ 0 & D^t \end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix}\right) \det(D^t) \det(I_n) = \det\left((DA - CB)^t\right) \det\left(D^t\right) \Rightarrow$$

$$\det\begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix} = \det\left((DA - CB)^t\right) \det\left(D^t\right) \cdot \frac{1}{\det(D^t)} \Rightarrow$$

$$\det\begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix} = \det\left((DA - CB)^t\right) \Rightarrow \det\begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix} = \det\left((DA - CB)^t\right) \Rightarrow$$

2.16 Exercício 16

(16) Seja $A \in \mathcal{M}_{m \times n}(K)$. Prove que

$$\det(I_m + AA^t) = \det(I_n + A^t A)$$

Observação: Tal identidade é um caso particular da conhecida como identidade de Weinstein-Aronszajn.

Solução: Se A é uma matriz:

$$\begin{pmatrix} I_m & 0 \\ A^T & I_n \end{pmatrix} \begin{pmatrix} I_m + AA^T & A \\ 0 & I_n \end{pmatrix} \begin{pmatrix} I_m & 0 \\ -A^T & I_n \end{pmatrix} = \begin{pmatrix} I_m & A \\ 0 & I_n + A^TA \end{pmatrix}.$$

Desse modo,

$$\det \left(\begin{pmatrix} I_{m} & 0 \\ A^{T} & I_{n} \end{pmatrix} \begin{pmatrix} I_{m} + AA^{T} & A \\ 0 & I_{n} \end{pmatrix} \begin{pmatrix} I_{m} & 0 \\ -A^{T} & I_{n} \end{pmatrix} \right) = \det \begin{pmatrix} I_{m} & A \\ 0 & I_{n} + A^{T}A \end{pmatrix} \Rightarrow$$

$$\det \begin{pmatrix} I_{m} & 0 \\ A^{T} & I_{n} \end{pmatrix} \det \begin{pmatrix} I_{m} + AA^{T} & A \\ 0 & I_{n} \end{pmatrix} \det \begin{pmatrix} I_{m} & 0 \\ -A^{T} & I_{n} \end{pmatrix} = \det \begin{pmatrix} I_{m} & A \\ 0 & I_{n} + A^{T}A \end{pmatrix} \Rightarrow$$

$$\det (I_{m}) \det (I_{n}) \det (I_{m}) \det (I_{m}) \det (I_{m}) \det (I_{n}) = \det (I_{m}) \det (I_{n}) \det (I_{n} + A^{T}A) \Rightarrow$$

$$\det (I_{m}) \det (I_{n}) \det (I_{n$$

Outra solução: Vamos utilizar uma versão estendida do item a do exercício 15: Sendo $A \in \mathcal{M}_n(K)$ $B \in \mathcal{M}_{m \times n}(K), C \in \mathcal{M}_{n \times m}(K)$ e $D \in \mathcal{M}_n$, com D invertível, temos que

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(D)\det(A - BD^{-1}C)$$

Daí, tomando $A = I_m$, B = A, $C = -A^t$ e $D = I_n$, temos que

$$\det \begin{bmatrix} I_m & A \\ -A^t & I_n \end{bmatrix} = \det(I_n) \det(I_m - AI_n^{-1}(-A^t)) = \underbrace{\det(I_n)}_{=1} \det(I_m + AA^t) = \det(I_m + AA^t)$$

Por outro lado, observando que

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det \begin{bmatrix} D & C \\ B & A \end{bmatrix},$$

temos

$$\det\begin{bmatrix} I_n & -A^t \\ A & I_m \end{bmatrix} = \det(I_m) \det(I_n - (-A^t)I_m^{-1}A) = \underbrace{\det(I_m)}_{-1} \det(I_n + A^tA) = \det(I_n + A^tA)$$

Portanto, concluímos que $\det(I_m + AA^t) = \det(I_n + A^tA)$.

2.17 Exercício 17

(17) Seja $\sigma \in S_n$ e defina

$$T_{\sigma}: K^{n} \longrightarrow K^{n}$$
 $e_{i} \longmapsto T_{\sigma}(e_{i}) = e_{\sigma(i)}$,

para $i = \{1, 2, ..., n\}$ e $\{e_1, e_2, ..., e_n\}$ é a base canônica de K^n . Calcule $\det(T_\sigma)$.

Solução: Observe que T_{σ} está permutando as colunas da matriz cujas colunas são os elementos da base canônica. Assim, para cada coluna i, vamos associar o vetor $e_{\sigma(i)}$. Então, sendo A a matriz de T_{σ} na base canônica, temos que $a_{\ell k} = 1$ se e somente se $k = \sigma(\ell)$. Da definição de determinante, sabemos que

$$\det A = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) a_{1\tau(1)} a_{2\tau(2)} \dots a_{n\tau(n)}$$

Mas observe que os somandos acima serão todos não nulos apenas se $\tau = \sigma$. Então,

$$\det A = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) a_{1\tau(1)} a_{2\tau(2)} \dots a_{n\tau(n)} = \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} = \operatorname{sgn}(\sigma) 1 \cdot 1 \cdot \dots \cdot 1 = \operatorname{sgn}(\sigma).$$

Portanto, $det(T_{\sigma}) = sgn(\sigma)$.

2.18 Exercício 18

(18) Seja $C \in \mathcal{M}_n(K)$ a matriz

$$\begin{bmatrix} x & 0 & 0 & \dots & 0 & c_0 \\ -1 & x & 0 & \dots & 0 & c_1 \\ 0 & -1 & x & \dots & 0 & c_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x & c_{n-2} \\ 0 & 0 & 0 & \dots & -1 & x + c_{n-1} \end{bmatrix}$$

Prove que $\det C = x^n + c_{n-1}x^{n-1} + \ldots + c_1x + c_0$.

Solução: Vamos provar o resultado por indução sobre $n \ge 2$.

Para n=2, temos que

$$C = \left[\begin{array}{cc} x & c_0 \\ -1 & x + c_1 \end{array} \right].$$

Portanto,

$$\det C = x(x+c_1) + c_0 = x^2 + c_1 x + c_0.$$

Seja agora n > 2 e admita que o resultado é verdadeiro para matrizes $n - 1 \times n - 1$ desse tipo. Usando o desenvolvimento de det C por Laplace, pela primeira linha, temos que

$$\det \begin{bmatrix} x & 0 & 0 & \dots & 0 & c_0 \\ -1 & x & 0 & \dots & 0 & c_1 \\ 0 & -1 & x & \dots & 0 & c_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x & c_{n-2} \\ 0 & 0 & 0 & \dots & -1 & x + c_{n-1} \end{bmatrix} =$$

$$\mathbf{x} \cdot \det \begin{bmatrix} x & 0 & \dots & 0 & c_1 \\ -1 & x & \dots & 0 & c_2 \\ 0 & -1 & \dots & 0 & c_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & x & c_{n-2} \\ 0 & 0 & \dots & -1 & x + c_{n-1} \end{bmatrix} + (-1)^{n+1} c_0 \det \begin{bmatrix} -1 & x & 0 & \dots & 0 & 0 \\ 0 & -1 & x & \dots & 0 & 0 \\ 0 & 0 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & x \\ 0 & 0 & 0 & \dots & 0 & -1 \end{bmatrix}$$

Pela hipótese de indução, segue que

$$\det C = x(x^{n-1} + c_{n-1}x^{n-2} + \ldots + c_2x + c_1) + (-1)^{n+1}c_0(-1)^{n-1} = x^n + c_{n-1}x^{n-1} + \ldots + c_1x + c_0,$$
como queríamos.

2.19 Exercício 19

(19) Seja K um corpo e A_1, \ldots, A_n matrizes quadradas sobre K. Seja B a matriz triangular por blocos

$$\begin{bmatrix} A_1 & * & \dots & * \\ 0 & A_2 & \ddots & * \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & A_n \end{bmatrix}$$

Mostre que $\det B = \det(A_1) \det(A_2) \dots \det(A_n)$.

Solução: A demonstração de tal resultado se dará por indução em n. Para n=2, temos a matriz

$$\left[\begin{array}{cc} A_1 & * \\ 0 & A_2 \end{array}\right],$$

na qual sabemos que seu determinante é $\det(A_1)\det(A_2)$.

Suponha que o resultado é verdadeiro para certo n = k. Dessa forma, temos que

$$\det \begin{bmatrix} A_1 & * & * & \dots & * \\ 0 & A_2 & * & \dots & * \\ 0 & 0 & A_3 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & * \\ 0 & 0 & 0 & \dots & A_k \end{bmatrix} = \det(A_1) \det(A_2) \dots \det(A_k) = \prod_{i=1}^k \det(A_i)$$

Calculemos o determinante de B para n=k+1. Dividindo a matriz em blocos, e utilizando que, para $U \in \mathcal{M}_{\ell}(K), V \in \mathcal{M}_{\ell \times m}(K), Y \in \mathcal{M}_{m}(K)$, temos que

$$\det \begin{pmatrix} U & V \\ 0 & Y \end{pmatrix} = \det(U)\det(Y),$$

Em particular, tomando $\ell = k$ e m = 1, podemos considerar

$$\det \begin{bmatrix} A_1 & * & * & \dots & * & * \\ 0 & A_2 & * & \dots & * & * \\ 0 & 0 & A_3 & \dots & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & A_k & * \\ \hline 0 & 0 & 0 & \dots & 0 & A_{k+1} \end{bmatrix} = \det \begin{pmatrix} U & V \\ 0 & Y \end{pmatrix} = \det(U) \det(Y) = \det \begin{pmatrix} A_1 & * & * & \dots & * \\ 0 & A_2 & * & \dots & * \\ 0 & A_2 & * & \dots & * \\ \vdots & \vdots & \vdots & \ddots & * \\ 0 & 0 & 0 & \dots & A_k \end{pmatrix} \det(A_{k+1}) = \begin{pmatrix} A_1 & * & * & \dots & * \\ 0 & A_2 & * & \dots & * \\ \vdots & \vdots & \vdots & \ddots & * \\ 0 & 0 & 0 & \dots & A_k \end{pmatrix}$$

$$\prod_{i=1}^{k+1} \det(A_i) = \det(A_1) \det(A_2) \dots \det(A_k) \det(A_{k+1})$$

Segue então o resultado desejado.

2.20 Exercício 20

(20) Seja K um corpo e $a, b, c, d, e, f, g \in K$. Mostre que

$$\det \begin{bmatrix} a & b & b \\ c & d & e \\ f & g & g \end{bmatrix} + \det \begin{bmatrix} a & b & b \\ e & c & d \\ f & g & g \end{bmatrix} + \det \begin{bmatrix} a & b & b \\ d & e & c \\ f & g & g \end{bmatrix} = 0$$

Solução: Temos que o determinante é uma forma 3-linear das linhas da matriz, então:

$$\det \begin{bmatrix} a & b & b \\ c & d & e \\ f & g & g \end{bmatrix} + \det \begin{bmatrix} a & b & b \\ e & c & d \\ f & g & g \end{bmatrix} + \det \begin{bmatrix} a & b & b \\ d & e & c \\ f & g & g \end{bmatrix} = \det \begin{bmatrix} a & b & b \\ c+d+e & d+c+e & e+d+c \\ f & g & g \end{bmatrix}$$

Note que a segunda e a terceira coluna são iguais. Como o determinante é 3-linear e alternado nas colunas da matriz, segue que

$$\det \begin{bmatrix} a & b & b \\ c+d+e & d+c+e & e+d+c \\ f & g & g \end{bmatrix} = 0.$$

2.21 Exercício 21

(21) Sabendo que os números inteiros 23028, 31882, 86469, 6327 e 61902 são todos múltiplos de 19, mostre que o número inteiro

$$\det \begin{bmatrix}
2 & 3 & 0 & 2 & 8 \\
3 & 1 & 8 & 8 & 2 \\
8 & 6 & 4 & 6 & 9 \\
0 & 6 & 3 & 2 & 7 \\
6 & 1 & 9 & 0 & 2
\end{bmatrix}$$

é múltiplo de 19.

Solução: Utilizaremos as propriedades dos determinantes. Multiplicando a primeira coluna por 10^4 , a segunda por 10^3 , a terceira por 10^2 , e a quarta por 10, chamando

$$A = \left| \begin{array}{ccccc} 2 & 3 & 0 & 2 & 8 \\ 3 & 1 & 8 & 8 & 2 \\ 8 & 6 & 4 & 6 & 9 \\ 0 & 6 & 3 & 2 & 7 \\ 6 & 1 & 9 & 0 & 2 \end{array} \right|,$$

temos que

$$\det \begin{bmatrix} 20000 & 3000 & 0 & 20 & 8 \\ 30000 & 1000 & 800 & 80 & 2 \\ 80000 & 6000 & 400 & 60 & 9 \\ 0 & 6000 & 300 & 20 & 7 \\ 60000 & 1000 & 900 & 0 & 2 \end{bmatrix} = \det \begin{bmatrix} 2 \cdot 10^4 & 3 \cdot 10^3 & 0 \cdot 10^2 & 2 \cdot 10 & 8 \\ 3 \cdot 10^4 & 1 \cdot 10^3 & 8 \cdot 10^2 & 8 \cdot 10 & 2 \\ 8 \cdot 10^4 & 6 \cdot 10^3 & 4 \cdot 10^2 & 6 \cdot 10 & 9 \\ 0 \cdot 10^4 & 6 \cdot 10^3 & 3 \cdot 10^2 & 2 \cdot 10 & 7 \\ 6 \cdot 10^4 & 1 \cdot 10^3 & 9 \cdot 10^2 & 0 \cdot 10 & 2 \end{bmatrix} = 10^4 \cdot 10^3 \cdot 10^2 \cdot 10 \det A = 10^{10} \det A$$

Agora, somando as quatro primeiras colunas à quinta coluna, isso não altera o valor do determinante, e como todos os elementos são múltiplos de 19, temos

$$\det \begin{bmatrix} 20000 & 3000 & 0 & 20 & 23028 \\ 30000 & 1000 & 800 & 80 & 31882 \\ 80000 & 6000 & 400 & 60 & 86469 \\ 0 & 6000 & 300 & 20 & 6327 \\ 60000 & 1000 & 900 & 0 & 61902 \end{bmatrix} = 10^{10} \det A \Rightarrow$$

$$\det \begin{bmatrix} 20000 & 3000 & 0 & 20 & 23028 \\ 30000 & 1000 & 800 & 80 & 31882 \\ 80000 & 6000 & 400 & 60 & 86469 \\ 0 & 6000 & 300 & 20 & 6327 \\ 60000 & 1000 & 900 & 0 & 61902 \end{bmatrix} = 10^{10} \det A \Rightarrow$$

$$\det \begin{bmatrix} 20000 & 3000 & 0 & 20 & 19 \cdot 1212 \\ 30000 & 1000 & 800 & 80 & 19 \cdot 1678 \\ 80000 & 6000 & 400 & 60 & 19 \cdot 4551 \\ 0 & 6000 & 300 & 20 & 19 \cdot 333 \\ 60000 & 1000 & 900 & 0 & 19 \cdot 3258 \end{bmatrix} = 10^{10} \det A \Rightarrow$$

$$19 \det \begin{bmatrix} 20000 & 3000 & 0 & 20 & 1212 \\ 30000 & 1000 & 900 & 0 & 19 \cdot 3258 \\ 80000 & 6000 & 400 & 60 & 4551 \\ 0 & 6000 & 300 & 20 & 333 \\ 60000 & 1000 & 900 & 0 & 3258 \end{bmatrix} = 10^{10} \det A$$

Desse modo, temos que $19 \mid 10^{10} \det A$, mas como $\mathrm{mdc}(10^{10}, 19) = 1$, ou seja, $19 \in 10^{10}$ são primos entre si, temos que $19 \mid \det A$. Portanto, o determinante de A é um múltiplo de 19.

2.22 Exercício 22

(22) Seja
$$K$$
 corpo e $a,b,c\in K$. Usando a matriz
$$\begin{bmatrix} b & c & 0\\ a & 0 & c\\ 0 & a & b \end{bmatrix}$$
, calcule
$$\det \begin{bmatrix} b^2+c^2 & ab & ac\\ ab & a^2+c^2 & bc\\ ac & bc & a^2+b^2 \end{bmatrix}$$

Solução: Chamando

$$A = \begin{bmatrix} b & c & 0 \\ a & 0 & c \\ 0 & a & b \end{bmatrix} \quad \text{e} \quad B = \begin{bmatrix} b^2 + c^2 & ab & ac \\ ab & a^2 + c^2 & bc \\ ac & bc & a^2 + b^2 \end{bmatrix},$$

observe que

$$AA^{t} = \begin{bmatrix} b & c & 0 \\ a & 0 & c \\ 0 & a & b \end{bmatrix} \cdot \begin{bmatrix} b & a & 0 \\ c & 0 & a \\ 0 & c & b \end{bmatrix} = \begin{bmatrix} b^{2} + c^{2} & ab & ac \\ ab & a^{2} + c^{2} & bc \\ ac & bc & a^{2} + b^{2} \end{bmatrix} = B.$$

Logo, temos que

$$\det(B) = \det(AA^t) \Rightarrow \det(B) = \det(A)\det(A^t) \Rightarrow$$
$$\det(B) = \det(A)\det(A) \Rightarrow \boxed{\det(B) = (\det(A))^2}$$

2.23 Exercício 23

(23) Seja K um corpo e n um inteiro positivo. Dadas matrizes $A, B \in \mathcal{M}_n(K)$ mostre que

$$\det \begin{bmatrix} A & B \\ B & A \end{bmatrix} = \det(A+B)\det(A-B)$$

Solução: Como somar elementos das colunas e somar elementos das linhas não altera o determinante da matriz, temos que

$$\det\begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det\begin{pmatrix} A+B & B \\ B+A & A \end{pmatrix} = \det\begin{pmatrix} A+B & B \\ B+A-(A+B) & A-B \end{pmatrix} = \det\begin{pmatrix} A+B & B \\ 0 & A-B \end{pmatrix}$$

Utilizando o fato de que, para $U, V, X, Y \in \mathcal{M}_n(K)$, temos

$$\det \begin{bmatrix} U & V \\ 0 & Y \end{bmatrix} = \det U \det Y$$

Ficamos com

$$\det \begin{pmatrix} A+B & B \\ 0 & A-B \end{pmatrix} = \det(A+B)\det(A-B) \Rightarrow \det \begin{bmatrix} A & B \\ B & A \end{bmatrix} = \det(A+B)\det(A-B)$$

2.24 Exercício 24

(24) Seja K um corpo e V um espaço vetorial de dimensão finita n. Sejam $B=(e_1,\ldots,e_n)$ e $C=(d_1,\ldots,d_n)$ duas bases de V. Sejam φ a única forma n-linear tal que $\varphi(e_1,\ldots,e_n)=1$ e ψ a única forma n-linear tal que $\psi(d_1,\ldots,d_n)=1$. Qual o valor de $\psi(e_1,\ldots,e_n)$ e de $\varphi(d_1,\ldots,d_n)$? Use isso para dar uma relação entre ψ e φ .

2.25 Exercício 25

(25) Seja K um corpo, n um inteiro positivo e $K_n[t]$ o conjunto de polinômios de grau menor ou igual que n com coeficientes em K. Sejam $t_1, \ldots, t_{n+1} \in K$ dois a dois distintos. Considere para $i=1,\ldots,n+1$ as funções de avaliação

$$\begin{array}{cccc} \tau_i & : & K_n[t] & \longrightarrow & K \\ & p(t) & \longmapsto & \tau_i(p(t)) = p(t_i) \end{array}$$

- (a) Mostre que $\mathscr{B} = \{\tau_1, \dots, \tau_{n+1}\}$ é base de $K_n[t]^*$. (Sugestão: use o exercício 12.)
- (b) Mostre que os polinômios de Lagrange

$$L_i(t) = \prod_{j \neq i} \frac{t - t_j}{t_i - t_j}, i = 1, \dots, n + 1,$$

formam uma base dual de \mathscr{B} .

(c) Mostre que para quaisquer $a_1, \ldots, a_{n+1} \in K$ existe um único polinômio p(t) de grau menor o igual que n tal que $p(t_i) = a_i$, para $i = 1, \ldots, n+1$. (O resultado do item (c) é a conhecida Fórmula de Interpolação de Lagrange)

(a) Como $K_n[t]$ é um K-espaço vetorial de dimensão finita, temos que dim $K_n[t]^* = \dim K_n[t] = n+1$. Logo, para provar que \mathscr{B} é base, basta mostrar que \mathscr{B} é LI.

Sejam $\alpha_1, \ldots, \alpha_{n+1} \in K$ tais que

$$\sum_{i=1}^{n+1} \alpha_i \tau_i = \alpha_1 \tau_1 + \ldots + \alpha_{n+1} \tau_{n+1} = 0$$

Vamos mostrar que $\alpha_i = 0 \ \forall i \in \{1, \dots, n+1\}$. Avaliemos $\sum_{i=1}^{n+1} \alpha_i \tau_i \text{ em } 1, t, \dots, t^n$:

$$\begin{cases} \sum_{i=1}^{n+1} \alpha_{i} \tau_{i}(1) = \alpha_{1} \tau_{1}(1) + \dots + \alpha_{n+1} \tau_{n+1}(1) = 0 \\ \sum_{i=1}^{n+1} \alpha_{i} \tau_{i}(t) = \alpha_{1} \tau_{1}(t) + \dots + \alpha_{n+1} \tau_{n+1}(t) = 0 \\ \vdots \\ \sum_{i=1}^{n+1} \alpha_{i} \tau_{i}(t^{n}) = \alpha_{1} \tau_{1}(t^{n}) + \dots + \alpha_{n+1} \tau_{n+1}(t^{n}) = 0 \end{cases} \Rightarrow \begin{cases} \alpha_{1} 1 + \dots + \alpha_{n+1} 1 = 0 \\ \alpha_{1} t_{1} + \dots + \alpha_{n+1} t_{n+1} = 0 \\ \vdots \\ \alpha_{1} t_{1}^{n} + \dots + \alpha_{n+1} t_{n+1}^{n} = 0 \end{cases}$$

Logo, $(\alpha_1, \alpha_2, \dots, \alpha_{n+1})$ é solução do sistema homogêneo

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ t_1 & t_2 & \dots & t_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ t_1^n & t_2^n & \dots & t_{n+1}^n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n+1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Como $t_1, t_2, \ldots, t_{n+1}$ são diferentes, observe que a matriz obtida é uma matriz de Vandermonde. Assim, pela questão 12, temos que

$$\det \begin{pmatrix} 1 & 1 & \dots & 1 \\ t_1 & t_2 & \dots & t_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ t_1^n & t_2^n & \dots & t_{n+1}^n \end{pmatrix} = \prod_{1 \le i < j \le n+1} (t_j - t_i) \ne 0,$$

o que resulta que a única solução possível para este sistema é a trivial. Consequentemente, temos $t_1=t_2=\ldots=t_{n+1}=0$. Daí, $\mathcal B$ é LI, e portanto uma base para $K_n[t]^*$.

2.26 Exercício 26

(26) Seja n > 1 um inteiro e $I \subseteq \mathbb{R}$ um intervalo aberto. Seja $\mathscr{C}^{(n-1)}(I,\mathbb{R})$ o conjunto das funções de classe n-1, i.e. deriváveis n-1 vezes com derivada n-1 contínua. Dadas $f_1, \ldots, f_n \in \mathscr{C}^{(n-1)}(I,\mathbb{R})$, o Wronskiano de f_1, \ldots, f_n é a função

$$W(f_1,\ldots,f_n): I \longrightarrow \mathbb{R}$$

 $t \longmapsto (W(f_1,\ldots,f_n))(t)$

definida como

$$(W(f_1,\ldots,f_n))(t) = \det \begin{bmatrix} f_1(t) & f_2(t) & \dots & f_n(t) \\ f'_1(t) & f'_2(t) & \dots & f'_n(t) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(t) & f_2^{(n-1)}(t) & \dots & f_n^{(n-1)}(t) \end{bmatrix}$$

Mostre que se existir $t \in I$ tal que $(W(f_1, \ldots, f_n))(t) \neq 0$ então $\{ff_1, \ldots, f_n\} \subset \mathscr{C}^{(n-1)}(I, \mathbb{R})$ é \mathbb{R} -linearmente independente.

Observe que a recíproca não é verdadeira. Por exemplo, seja $I=(-1,1), f_1\colon t\to t^3, f_2\colon t\to |t^3|$. O conjunto $\{f_1,f_2\}$ é \mathbb{R} -linearmente independente, mas $(W(f_1,f_2))(t)=0$ para todo $t\in (-1,1)$.

Solução:

2.27 Exercício 27

(27) Seja V um K-espaço vetorial de dimensão finita n e sejam $f_1, f_2, \ldots, f_r \in V^*$. Defina

$$f_1 \wedge f_2 \wedge \ldots \wedge f_r \colon V \times V \times \ldots \times V \to K$$

por $f_1 \wedge f_2 \wedge \ldots \wedge f_r(v_1, v_2, \ldots, v_r) = \det f_i(v_j)$.

- (a) Verifique que $f_1 \wedge f_2 \wedge \ldots \wedge f_r$ é r-linear e alternada.
- (b) Mostre que $f_1 \wedge f_2 \wedge \ldots \wedge f_r \neq 0$ se, e somente se $\{f_1, f_2, \ldots, f_r\}$ é linearmente independente.
- (c) Prove que se $\{f_1, f_2, \dots, f_n\}$ é uma base de V^* então o conjunto

$$\{f_J = f_{j_1} \land f_{j_2} \land \ldots \land f_{j_r}\}, \text{ para todo } J = \{j_1 < j_2 < \ldots j_r\} \subset \{1, 2, \ldots, n\}\}$$

é uma base de $\mathscr{A}_r(V)$.

(d) Sejam B de uma base de V e $B^* = \{f_1, f_2, \ldots, f_n\}$ sua base dual. Descreva a base de $\mathscr{A}_r(V)$ que obtemos usando o item anterior. (A forma linear $f_1 \wedge f_2 \wedge \ldots \wedge f_r$ é chamada de produto exterior dos funcionais f_1, f_2, \ldots, f_r .)

Solução:

Questões Suplementares

2.28 Exercício 28

(28) Considere a matriz

$$A = \begin{pmatrix} \frac{1}{x_1 + y_1} & \frac{1}{x_1 + y_2} & \frac{1}{x_1 + y_3} & \cdots & \frac{1}{x_1 + y_n} \\ \frac{1}{x_2 + y_1} & \frac{1}{x_2 + y_2} & \frac{1}{x_2 + y_3} & \cdots & \frac{1}{x_2 + y_n} \\ \frac{1}{x_3 + y_1} & \frac{1}{x_3 + y_2} & \frac{1}{x_3 + y_3} & \cdots & \frac{1}{x_3 + y_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{x_n + y_1} & \frac{1}{x_n + y_2} & \frac{1}{x_n + y_3} & \cdots & \frac{1}{x_n + y_n} \end{pmatrix},$$

onde $x_i + y_j \neq 0$ para $1 \leq i, j \leq n$. Mostre que o determinante dessa matriz, conhecido por determinante de Cauchy, é dado por

$$\det A = \frac{\prod_{i>j}^{n} (x_i - x_j)(y_i - y_j)}{\prod_{i,j=1}^{n} (x_i + y_j)}$$

2.29 Exercício 29

(29) O determinante da matriz circulante $n \times n$ é dado por

$$\det \begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ a_n & a_1 & a_2 & \dots & a_{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_3 & a_4 & a_5 & \dots & a_2 \\ a_2 & a_3 & a_4 & \dots & a_1 \end{bmatrix} = (-1)^{n-1} \prod_{j=0}^{n-1} \left(\sum_{k=1}^n \zeta^{jk} a_k \right),$$

onde $\zeta = e^{\frac{2\pi i}{n}}$. Encontre o determinante da matriz circulante $n \times n$ dada por

$$A = \begin{bmatrix} 1 & 4 & 9 & \dots & n^2 \\ n^2 & 1 & 4 & \dots & (n-1)^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 9 & 16 & 25 & \dots & 4 \\ 4 & 9 & 16 & \dots & 1 \end{bmatrix}.$$

Solução:

2.30 Exercício 30

(30) Sejam $A, B \in \mathcal{M}_n(K)$ duas matrizes invertíveis, tais que

$$A^{-1} + B^{-1} = (A+B)^{-1}$$

- (a) Se $K = \mathbb{R}$, mostre que det $A = \det B$.
- (b) Se $K = \mathbb{C}$, mostre que pode ocorrer det $A \neq \det B$, mas é válido que $|\det A| = |\det B|$.

Solução:

2.31 Exercício 31

(31) Prove a identidade de Woodbury: para $A \in \mathcal{M}_n(K)$, $U \in \mathcal{M}_{n \times m}(K)$, $C \in \mathcal{M}_{m \times m}(K)$ e $V \in \mathcal{M}_{m \times n}(K)$, temos que

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U \left(C^{-1} + VA^{-1}U\right)^{-1} VA^{-1}$$

Solução:

2.32 Exercício 32

(32) [Teorema do Determinante de Gasper] Seja $M \in \mathcal{M}_n(\mathbb{R})$, s a soma das entradas da matriz e q a soma dos quadrados das entradas dessa matriz. Considere $\alpha = \frac{s}{n}$ e $\beta = \frac{q}{n}$. O Teorema do Determinante de Gasper afirma que $|\det A| \leq \beta^{\frac{n}{2}}$, e no caso em que $\alpha^2 \geq \beta$:

$$|\det A| \le |\alpha| \left(\frac{n\beta - \alpha^2}{n-1}\right)^{\frac{n-1}{2}}$$

2.33 Exercício 33

- (33) Considere a matriz quadrada A_n cujas entradas são os n^2 primeiros números primos.
 - (a) Mostre que o maior valor possível para $det(A_2)$ é um número primo.
 - (b) Encontre todos os valores de n para os quais o maior determinante possível para $\det(A_n)$ é um número primo.

3 Lista 2

3.1 Exercício 1

(1) Seja V um espaço vetorial sobre um corpo K e $T \in \mathcal{L}(V)$. Sejam $\lambda \in K$ um autovalor de T e $f(t) \in K[t]$. Mostre que $f(\lambda)$ é um autovalor de f(T).

Solução:

Considere $f(t) = \alpha^n t^n + \alpha^{n-1} t^{n-1} + \ldots + \alpha_0$. Sendo λ um autovalor de T, sabemos que existem um $v \neq 0$ tal que $T(v) = \lambda v$. Lembrando que $T^n(v) = \lambda^n v$, temos que

$$(f(T))(v) = (\alpha^{n}T^{n} + \alpha^{n-1}T^{n-1} + \dots + \alpha_{1}T + \alpha_{0})(v)$$

$$= \alpha^{n}T^{n}(v) + \alpha^{n-1}T^{n-1}(v) + \dots + \alpha_{1}T(v) + \alpha_{0}I(v)$$

$$= \alpha^{n}\lambda^{n}v + \alpha^{n-1}\lambda^{n-1}v + \dots + \alpha_{1}\lambda^{v} + \alpha_{0}\lambda^{0}v$$

$$= \alpha^{n}\lambda^{n}v + \alpha^{n-1}\lambda^{n-1}v + \dots + \alpha_{1}\lambda v + \alpha_{0}\lambda^{0}v$$

$$= (\alpha^{n}\lambda^{n} + \alpha^{n-1}\lambda^{n-1} + \dots + \alpha_{1}\lambda + \alpha_{0})v = f(\lambda)v$$

Portanto, concluímos que $(f(T))(v) = f(\lambda)v$. Como $v \neq 0$, temos que $f(\lambda)$ é autovalor de f(T).

3.2 Exercício 2

(2) Seja V um K-espaço de dimensão finita n e seja $T: V \to V$ um operador linear. Mostre que se T tem n autovalores distintos então T é diagonalizável.

Solução:

Sejam $\lambda_1, \ldots, \lambda_n$ autovalores distintos. Para cada i existe um $v_i \neq 0$ tal que $T(v_i) = \lambda_i v_i$.

Se:

$$\alpha_1 v_1 + \dots \alpha_n v_n = 0,$$

então para todo polinômio $p \in K[t]$ temos:

$$p(T)(\alpha_1 v_1 + \dots \alpha_n v_n) = p(T)(0),$$

aí:

$$\alpha_1 p(T)(v_1) + \dots + \alpha_n p(T)(v_n) = 0,$$

aí, pelo exercício 1 temos:

$$\alpha_1 p(\lambda_1) v_1 + \dots + \alpha_n p(\lambda_n) v_n = 0.$$

Seria muito bom podermos encontrar um polinômio p tal que:

$$p(\lambda_1) = 1$$
, $p(\lambda_2) = 0$, ..., $p(\lambda_n) = 0$.

Sabemos que o polinômio:

$$q(t) = (x - \lambda_2) \dots (x - \lambda_n)$$

satisfaz:

$$q(\lambda_2) = 0, \ldots, q(\lambda_n) = 0.$$

O valor de $q(\lambda_1)$ pode não ser 1, mas sabemos que $q(\lambda_1) \neq 0$, aí basta considerarmos:

$$p(t) = \frac{q(t)}{q(\lambda_1)}.$$

Aplicando este p na equação:

$$\alpha_1 p(\lambda_1) v_1 + \dots + \alpha_n p(\lambda_n) v_n = 0,$$

então obtemos:

$$\alpha_1 v_1 = 0$$
,

mas $v_1 \neq 0$, assim $\alpha_1 = 0$. Analogamente $\alpha_2 = \cdots = \alpha_n$. Logo a sequência (v_1, \ldots, v_n) é linearmente independente, mas dim V = n, aí o conjunto $\{v_1, \ldots, v_n\}$ forma uma base de V. Logo T é diagonalizável.

3.3 Exercício 3

- (3) Sejam V um K-espaço de dimensão finita, $T \in \mathcal{L}(V)$ e $\lambda \in K$ um autovalor de T. Chamamos de multiplicidade algébrica de λ ao maior inteiro m tal que $(t-\lambda)^m$ divida o polinômio característico $p_T(t)$ de T. A dimensão do autoespaço $V_T(\lambda)$ é a multiplicidade geométrica de λ .
 - (a) Mostre que a multiplicidade geométrica de λ é sempre menor ou igual à multiplicidade algébrica de λ .
 - (b) Mostre que T é diagonalizável se, e somente se, $p_T(t)$ é produto de fatores lineares e, para cada autovalor λ de T, as multiplicidades algébrica e geométrica de λ coincidem.

Solução:

(a) Seja m a multiplicidade geométrica de λ . Então $V_T(\lambda)$ tem uma base $\{e_1, \ldots, e_m\}$. Podemos completar para a base $B = \{e_1, \ldots, e_m, e_{m+1}, \ldots, e_n\}$ de V. Assim temos:

$$[T]_B = \begin{pmatrix} \lambda I_m & X \\ 0 & Y \end{pmatrix},$$

Calculando o polinômio característico de T, temos

$$p_T(t) = \det(tI - [T]_B) = \det\left(\begin{pmatrix} tI_m & 0\\ 0 & tI \end{pmatrix} - \begin{pmatrix} \lambda I_m & X\\ 0 & Y \end{pmatrix}\right) = \det\left(\begin{pmatrix} (t - \lambda)I_m & X\\ 0 & tI - Y \end{pmatrix}\right) = (t - \lambda)^m \det(tI - Y),$$

então $(t-\lambda)^m \mid p_T(t)$, e portanto m é menor ou igual à multiplicidade algébrica de λ .

(b) (\Rightarrow) Se T é diagonalizável, então, sendo $\lambda_1, \ldots, \lambda_k$ os autovalores distintos, existe uma base:

$$B = \{v_{1,1}, \dots, v_{1,m_1}, \dots, v_{k,1}, \dots, v_{k,m_k}\}$$

de autovetores tais que $T(v_{l,j}) = \lambda_l v_{l,j}$ para todo $l = 1, \ldots, k$ e $j = 1, \ldots, m_l$, e portanto:

$$p_T(t) = (t - \lambda_1)^{m_1} \dots (t - \lambda_k)^{m_k},$$

aí para i = 1, ..., k, para v tal que $T(v) = \lambda_i v$, sendo:

$$v = \sum_{l=1}^{k} \sum_{j=1}^{m_l} \alpha_{l,j} v_{l,j},$$

então temos:

$$T(v) = T\left(\sum_{l=1}^{k} \sum_{j=1}^{m_l} \alpha_{l,j} v_{l,j}\right) = \lambda_i \left(\sum_{l=1}^{k} \sum_{j=1}^{m_l} \alpha_{l,j} v_{l,j}\right) \Rightarrow$$

$$\sum_{l=1}^{k} \sum_{j=1}^{m_l} \alpha_{l,j} T\left(v_{l,j}\right) = \sum_{l=1}^{k} \sum_{j=1}^{m_l} \alpha_{l,j} \lambda_i v_{l,j} \Rightarrow$$

$$\sum_{l=1}^{k} \sum_{j=1}^{m_l} \alpha_{l,j} \lambda_l v_{l,j} = \sum_{l=1}^{k} \sum_{j=1}^{m_l} \alpha_{l,j} \lambda_i v_{l,j} \Rightarrow$$

$$\sum_{l=1}^{k} \sum_{j=1}^{m_l} \alpha_{l,j} (\lambda_l - \lambda_i) v_{l,j} = 0,$$

e portanto para $l \neq i$ temos $\lambda_l \neq \lambda_i$, temos $\alpha_{l,j}(\lambda_l - \lambda_i) = 0$, o que acarreta $\alpha_{l,j} = 0$. Daí:

$$v = \sum_{i=1}^{m_i} \alpha_{i,j} v_{i,j}.$$

Com isso podemos concluir que o conjunto:

$$\{v_{i,1},\ldots,v_{i,m_i}\}$$

é uma base de $V_T(\lambda_i)$, ou seja, $m_i = \dim V_T(\lambda_i)$.

 (\Leftarrow) Por outro lado, se:

$$p_T(t) = (t - \lambda_1)^{m_1} \dots (t - \lambda_k)^{m_k}$$

e $m_i = \dim V_T(\lambda_i)$, então seja:

$$\{v_{i,1},\ldots,v_{i,m_i}\}$$

uma base de $V_T(\lambda_i)$. Como $m_1 + \cdots + m_k = n$, basta mostrarmos que o conjunto

$$B = \{v_{1,1}, \dots, v_{1,m_1}, \dots, v_{k,1}, \dots, v_{k,m_k}\}$$

é linearmente independente. De fato, para quaisquer escalares $\alpha_{1,1}, \ldots, \alpha_{1,m_1}, \ldots, \alpha_{k,1}, \ldots, \alpha_{k,m_k} \in K$, se

$$\sum_{l=1}^{k} \sum_{j=1}^{m_l} \alpha_{l,j} v_{l,j} = 0,$$

então, para todo $i=1,\ldots,k$, seguindo a ideia do exercício 2, podemos considerar o polinômio

$$q(t) = \prod_{l \neq i} (x - \lambda_l) = (x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_{i-1})(x - \lambda_{i+1}) \dots (x - \lambda_k)$$

e depois:

$$p(t) = \frac{q(t)}{q(\lambda_i)},$$

assim, aplicando p(T), obtemos:

$$p(T)\left(\sum_{l=1}^{k}\sum_{j=1}^{m_{l}}\alpha_{l,j}v_{l,j}\right) = 0 \Rightarrow \sum_{l=1}^{k}\sum_{j=1}^{m_{l}}\alpha_{l,j}p(T)\left(v_{l,j}\right) = 0 \Rightarrow$$

$$\sum_{l=1}^{k} \sum_{j=1}^{m_l} \alpha_{l,j} p(\lambda_l) \left(v_{l,j} \right) = 0,$$

aí, como $p(\lambda_i) = 1$ e $p(\lambda_l) = 0$ para $l \neq i$, então:

$$\sum_{i=1}^{m_l} \alpha_{i,j} \left(v_{i,j} \right) = 0,$$

mas o conjunto:

$$\{v_{i,1},\ldots,v_{i,m_i}\}$$

é linearmente independente, assim:

$$\alpha_{i,1} = \cdots = \alpha_{i,m_i} = 0;$$

logo temos:

$$\alpha_{1,1} = \dots = \alpha_{1,m_1} = \dots = \alpha_{k,1} = \dots = \alpha_{k,m_k} = 0.$$

Assim, B é linearmente independente.

3.4 Exercício 4

(4) Seja

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

Calcule A^{2019} .

Solução: Calculemos o polinômio característico de A:

$$p_A(\lambda) = \det(A - \lambda I) = \det\left(\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right) = \det\left(\begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}\right) = \lambda^2 - 4\lambda - 5$$

Pelo Teorema de Cayley-Hamilton, temos que $p_A(A) = 0$. Daí:

$$p_A(A) = 0 \Rightarrow A^2 - 4A - 5 = 0 \Rightarrow A^2 = 4A + 5I.$$

Portanto, podemos utilizar essa identidade para obter A^n em função de A. Por exemplo:

$$A^{3} = A^{2} \cdot A = (4A + 5I) \cdot A = 4A^{2} + 5A = 4(4A + 5I) + 5A = 21A + 20I$$

$$A^{4} = A^{3} \cdot A = (21A + 20I) \cdot A = 21A^{2} + 20A = 21(4A + 5I) + 20A = 104A + 105I$$

$$A^{5} = A^{4} \cdot A = (104A + 105I) \cdot A = 104A^{2} + 105A = 104(4A + 5I) + 105A = 521A + 520I$$

Em geral, pode-se verificar por indução que

$$A^{n} = \left(\frac{5^{n} + 5(-1)^{n}}{6} + 1\right)A + \frac{5^{n} + 5(-1)^{n}}{6}$$

Logo, temos que

$$A^{2019} = \left(\frac{5^{2019} - 5}{6} + 1\right)A + \frac{5^{2019} - 5}{6}$$

Outra solução: Observe que a matriz A é diagonalizável, e portanto podemos obter P invertível e D diagonal tal que $A = PDP^{-1}$. Daí, teremos que $A^n = PD^nP^{-1}$. Realizando os cálculos, obtemos

$$P = \begin{bmatrix} -1 & \frac{1}{2} \\ 1 & 1 \end{bmatrix} \quad \mathbf{e} \quad D = \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix},$$

e portanto,

$$A^{n} = \begin{bmatrix} -1 & \frac{1}{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} (-1)^{n} & 0 \\ 0 & 5^{n} \end{bmatrix} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

Logo,

$$A^{2019} = \begin{bmatrix} -1 & \frac{1}{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 5^{2019} \end{bmatrix} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

3.5 Exercício 5

(5) Seja V um espaço vetorial de dimensão finita e seja $T \colon V \to V$ um operador linear inversível. Prove que:

- (a) Se λ é um valor próprio de T, então $\lambda \neq 0$.
- (b) λ é um valor próprio de T se, e somente se, λ^{-1} é um valor próprio de T^{-1} (onde T^{-1} é o operador inverso de T).
- (c) Se λ é um valor próprio de T, mostre que a multiplicidade algébrica de λ é igual à multiplicidade algébrica de $\frac{1}{\lambda}$.

Solução:

(a) Se λ é um autovalor de T, então sabemos que existe $\neq 0$ tal que $Tv = \lambda v$. Como T é inversível, temos que

$$T^{-1}(T(v)) = T^{-1}(\lambda v) \Rightarrow v = \lambda T^{-1}(v)$$

Sendo $v \neq 0$, temos que $\lambda T^{-1}(v) \neq 0$, o que implica $\lambda \neq 0$.

(b)

 (\Rightarrow) Se λ é autovalor de T, existe $v\neq 0$ tal que $Tv=\lambda v.$ Temos então que

$$T^{-1}(T(v)) = T^{-1}(\lambda v) \Rightarrow v = \lambda T^{-1}(v) \Rightarrow \lambda^{-1}v = \lambda^{-1}(\lambda T^{-1}(v)) \Rightarrow T^{-1}(v) = \lambda^{-1}v$$

Portanto, como $v \neq 0$ é tal que $T^{-1}(v)\lambda^{-1}v$, temos que λ^{-1} é autovalor de T^{-1} .

- (⇐) A recíproca é análoga.
- (c) Se λ é autovalor de T então, sendo B uma base e $A = [T]_B$, então seja:

$$p_T(t) = (t - \lambda)^m q(t), \quad q(\lambda) \neq 0,$$

então:

$$\det(tI - A) = (t - \lambda)^m q(t)$$

$$\det\left(\frac{1}{t}I - A\right) = \left(\frac{1}{t} - \lambda\right)^m q\left(\frac{1}{t}\right)$$

$$\frac{1}{t^n} \det(I - tA) = \left(\frac{1}{t} - \lambda\right)^m q\left(\frac{1}{t}\right)$$

$$\det\left(A^{-1} - tI\right) \det(A) = t^n \left(\frac{1}{t} - \lambda\right)^m q\left(\frac{1}{t}\right)$$

$$\det\left(tI - A^{-1}\right) = \frac{(-1)^{n-m} t^{n-m} \left(t - \frac{1}{\lambda}\right)^m q(\frac{1}{t})}{\lambda^m \det(A)}$$

aí sendo:

$$r(t) = t^{n-m} q\left(\frac{1}{t}\right),\,$$

então r é um polinômio e aí:

$$\det\left(tI - A^{-1}\right) = \frac{(-1)^{n-m}\left(t - \frac{1}{\lambda}\right)^m r(t)}{\lambda^m \det(A)}$$

e também:

$$r\left(\frac{1}{\lambda}\right) = \left(\frac{1}{\lambda}\right)^{n-m} q\left(\frac{1}{\frac{1}{\lambda}}\right) = \left(\frac{1}{\lambda}\right)^{n-m} q(\lambda) \neq 0.$$

3.6 Exercício 6

(6) Seja V um espaço vetorial de dimensão n e seja $T \in \mathcal{L}(V)$ de posto 1. Prove que ou T é diagonalizável ou T é nilpotente.

Solução: Como T tem posto 1, então existe uma base $\{e_1\}$ de T[V]. Assim podemos completar uma base $B = \{e_1, \ldots, e_n\}$ de V, e aí para cada i existe c_i tal que $T(e_i) = c_i e_1$. Temos dois casos a considerar:

• Se $c_1 = 0$, então para todo *i* temos:

$$T(T(e_i)) = T(c_i e_1) = c_i T(e_1) = c_i c_1 e_1 = 0;$$

logo $T^2 = 0$, aí T é nilpotente.

• Se $c_1 \neq 0$, então consideremos a matriz:

$$A = [T]_B = \begin{pmatrix} c_1 & c_2 & & c_n \\ 0 & 0 & & 0 \\ & & \ddots & \\ 0 & 0 & & 0 \end{pmatrix}.$$

É fácil ver que A tem posto 1, aí A tem nulidade n-1, e consequentemente a multiplicidade geométrica de 0 é n-1. Também temos:

$$p_A(x) = \begin{pmatrix} x - c_1 & -c_2 & & -c_n \\ 0 & x & & 0 \\ & & \ddots & \\ 0 & 0 & & x \end{pmatrix} = x^{n-1}(x - c_1).$$

Portanto os autovalores são 0 e c_1 com multiplicidades algébricas respectvamente n-1 e 1. Assim T é diagonalizável.

3.7 Exercício 7

(7) Seja $A = (a_{ij}) \in \mathcal{M}_n(K)$ a matriz em que $a_{ij} = a \neq 0$ para todo $1 \leq i, j \leq n$. A matriz A é diagonalizável? Qual é o seu polinômio minimal?

(a) Se $n \ge 2$, então a matriz é diagonalizável se e só se $na \ne 0$. De fato, sendo:

$$A = \begin{pmatrix} a & a & & a \\ a & a & & a \\ & & \ddots & \\ a & a & & a \end{pmatrix}$$

com $a \neq 0$, então é fácil ver que A tem posto 1, aí a multiplicidade geométrica de 0 é n-1. Além disso:

$$p_{A}(x) = \det \begin{pmatrix} x - a & -a & -a \\ -a & x - a & -a \\ & \ddots & \\ -a & -a & x - a \end{pmatrix}$$

$$= \det \begin{pmatrix} x - na & -a & -a \\ x - na & x - a & -a \\ & \ddots & \\ x - na & -a & x - a \end{pmatrix}$$

$$= (x - na) \det \begin{pmatrix} 1 & -a & -a \\ 1 & x - a & -a \\ & \ddots & \\ 1 & -a & x - a \end{pmatrix}$$

$$= (x - na) \det \begin{pmatrix} 1 & -a & -a \\ 1 & x - a & -a \\ & \ddots & \\ 0 & 0 & x \end{pmatrix}$$

$$= (x - na)x^{n-1}.$$

Assim:

- Se $na \neq 0$, então a multiplicidade algébrica de 0 é n-1, aí A é diagonalizável.
- $\bullet\,$ Se na=0, então a multiplicidade algébrica de 0 é n, aí A não é diagonalizável.
- (b) Se $n \ge 2$, então o polinômio minimal de A é $x^2 nax$. De fato, A não é múltiplo de identidade, aí o polinômio minimal deve ter grau pelo menos 2. Porém temos o seguinte:

$$A^{2} = \begin{pmatrix} a & a \\ & \ddots & \\ a & a \end{pmatrix} \begin{pmatrix} a & a \\ & \ddots & \\ a & a \end{pmatrix} = \begin{pmatrix} na^{2} & na^{2} \\ & \ddots & \\ na^{2} & na^{2} \end{pmatrix} = naA,$$

assim $A^2 - naA = 0$. Assim o polinômio minimal de A é $x^2 - nax$.

3.8 Exercício 8

(8) Seja $A \in \mathcal{M}_{n \times 1}(K)$. A matriz AA^t é diagonalizável?

Seja:

$$A = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

Se $n \ge 2$ e $A \ne 0$, então mostraremos que AA^t é diagonalizável se e só se $a_1^2 + \cdots + a_n^2 \ne 0$. De fato:

$$AA^{t} = \begin{pmatrix} a_{1}^{2} & a_{1}a_{2} & & a_{1}a_{n} \\ a_{2}a_{1} & a_{2}^{2} & & a_{2}a_{n} \\ & & \ddots & \\ a_{n}a_{1} & a_{n}a_{2} & & a_{n}a_{n} \end{pmatrix}.$$

É fácil ver que AA^t tem posto 1, aí A tem nulidade n-1, aí a multiplicidade geométrica de 0 é n-1. Além disso, se tivermos $a_i \neq 0$ para todo i, então:

$$p_{AA^t}(x) = \det \begin{pmatrix} x - a_1^2 & -a_1a_2 & -a_1a_n \\ -a_2a_1 & x - a_2^2 & -a_2a_n \\ & \ddots & \\ -a_na_1 & -a_na_2 & x - a_n^2 \end{pmatrix}$$

$$= a_1 \dots a_n \det \begin{pmatrix} \frac{x}{a_1} - a_1 & -a_2 & -a_n \\ -a_1 & \frac{x}{a_2} - a_2 & -a_n \\ & \ddots & \\ -a_1 & -a_2 & \frac{x}{a_n} - a_n \end{pmatrix}$$

$$= a_1 \dots a_n \det \begin{pmatrix} \frac{x}{a_1} - a_1 & -a_2 & -a_n \\ -\frac{x}{a_1} & \frac{x}{a_2} & 0 \\ & \ddots & \\ -\frac{x}{a_1} & 0 & \frac{x}{a_n} \end{pmatrix}$$

$$= \det \begin{pmatrix} x - a_1^2 & -a_2^2 & -a_n^2 \\ -x & x & 0 \\ & \ddots & \\ -x & 0 & x \end{pmatrix}$$

$$= \det \begin{pmatrix} x - (a_1^2 + a_2^2 + \dots + a_n^2) & -a_2^2 & -a_n^2 \\ & \ddots & \\ 0 & 0 & x \end{pmatrix}$$

$$= \begin{pmatrix} x - (a_1^2 + a_2^2 + \dots + a_n^2) \end{pmatrix} x^{n-1}.$$

Agora, no caso em que $a_i = 0$ para algum i, então seja B a matriz obtida de A retirando-se todas as entradas nulas, suponhamos que sejam k entradas, então é fácil ver que:

$$p_{AA^t}(x) = p_{BB^t}(x)x^k = \left(x - \sum_{a_i \neq 0} a_i^2\right)x^{n-k-1}x^k = \left(x - \sum_{i=1}^n a_i^2\right)x^{n-1}.$$

De qualquer modo temos:

$$p_{AA^t}(x) = \left(x - \left(a_1^2 + a_2^2 + \dots + a_n^2\right)\right)x^{n-1}.$$

Assim, temos o seguinte:

- Se $a_1^2 + \cdots + a_n^2 \neq 0$, então a multiplicidade algébrica de 0 é n-1, aí AA^t é diagonalizável.
- Se $a_1^2 + \cdots + a_n^2 = 0$, então a multiplicidade algébrica de 0 é n, aí AA^t não é diagonalizável.

Um contraexemplo é o seguinte: considere $A \in \mathcal{M}_2(\mathbb{C})$, dada por

$$A = \begin{pmatrix} 1 \\ i \end{pmatrix}$$

Então

$$AA^t = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix},$$

mas essa matriz não é diagonalizável.

3.9 Exercício 9

(9) Sejam $A, B \in \mathcal{M}_n(K)$. Prove que se I - AB é inversível, então I - BA é inversível e que

$$(I - BA)^{-1} = I + B(I - AB)^{-1}A.$$

Solução: Suponha que I - AB é inversível. Vamos mostrar que $B(I - AB)^{-1}A + I$ é o inverso de I - BA. De fato,

$$(I - BA)(B(I - AB)^{-1}A + I) = B(I - AB)^{-1}A + I - BAB(I - AB)^{-1}A - BA$$

$$= B((I - AB)^{-1} - AB(I - AB)^{-1})A + I - BA$$

$$= B((I - AB)(I - AB)^{-1})A + I - BA$$

$$= BA + I - BA$$

$$= I$$

Analogamente, mostra-se que $(B(I-AB)^{-1}A+I)(I-BA)=I$. Logo, I-BA é inversível.

3.10 Exercício 10

(10) Sejam $A, B \in \mathcal{M}_n(K)$. Prove que AB e BA têm os mesmos autovalores em K. Elas têm o mesmo polinômio característico? E o minimal?

Solução:

(a) Mostraremos que AB e BA têm os mesmos autovalores. O item (b) fornecerá uma outra demonstração disso. De fato, se λ é autovalor de AB, então existe um $v \neq 0$ tal que $ABv = \lambda v$, aí $BABv = B(\lambda v) = \lambda Bv$, assim: (i) se $Bv \neq 0$, então λ é um autovalor de BA; (ii) se Bv = 0, então $\lambda v = ABv = 0$, aí $\lambda = 0$ e $\det(AB) = 0$, aí $\det(A) \det(B) = 0$, aí $\det(B) \det(A) = 0$, aí $\det(BA) = 0$, aí existe $u \neq 0$ tal que $BAu = 0 = \lambda u$, aí λ é autovalor de BA; de qualquer modo λ é autovalor de BA. A recíproca é análoga.

(b) Mostraremos que AB e BA têm o mesmo polinômio característico. De fato, existem matrizes inversíveis P e Q tais que:

$$A = P \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix} Q,$$

aí seja:

$$B = Q^{-1} \begin{pmatrix} X & Y \\ Z & W \end{pmatrix} P^{-1},$$

então temos:

$$AB = P \begin{pmatrix} X & Y \\ 0 & 0 \end{pmatrix} P^{-1}$$
 e $BA = Q^{-1} \begin{pmatrix} X & 0 \\ Z & 0 \end{pmatrix} Q$,

assim:

$$p_{AB}(x) = p_X(x)x^{n-k}$$
 e $p_{BA}(x) = p_X(x)x^{n-k}$.

(c) Nem sempre AB e BA têm o mesmo polinômio minimal. De fato, seja:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \mathbf{e} \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Então:

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 e $BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Assim $AB \neq 0$ e BA = 0, e $m_{AB}(t) = t^2$, mas $m_{BA}(t) = t$.

(d) (**Bônus**) Se A é inversível, então AB e BA têm o mesmo polinômio minimal. De fato temos $A(BA)^n = (AB)^n A$ para todo n, aí:

$$m_{AB}(BA) = A^{-1}Am_{AB}(BA)$$

= $A^{-1}m_{AB}(AB)A$
= 0,

de modo que $m_{BA}(x) \mid m_{AB}(x)$, e também:

$$m_{BA}(AB) = m_{BA}(AB)AA^{-1}$$

= $Am_{BA}(BA)A^{-1}$
= 0,

de modo que $m_{AB}(x) \mid m_{BA}(x)$, assim concluímos que $m_{AB}(x) = m_{BA}(x)$. Analogamente, se B é inversível, então AB e BA têm o mesmo polinômio minimal.

Outra solução: Se uma das matrizes é inversível, digamos A por exemplo, então AB e BA são semelhantes. Então

$$BA = A^{-1}(AB)A.$$

Neste caso, AB e BA possuirão o mesmo polinômio característico e o mesmo polinômio minimal. Caso contrário, considere as matrizes

$$C = \begin{bmatrix} tI & A \\ B & I \end{bmatrix} \quad e \quad \begin{bmatrix} I & A \\ B & tI \end{bmatrix}$$

Temos que

$$CD = \begin{bmatrix} tI - AB & tA \\ 0 & tI \end{bmatrix}$$
 e $DC = \begin{bmatrix} tI & A \\ 0 & -BA + tI \end{bmatrix}$

Então veja que

$$\det(CD) = \det(DC) \Rightarrow t^n \det(tI - AB) = t^n \det(tI - BA) \Rightarrow t^n p_{AB}(t) = t^n p_{BA}(t) \Rightarrow p_{AB}(t) = p_{BA}(t)$$

3.11 Exercício 11

(11) Seja $A \in \mathcal{M}_n(K)$ uma matriz diagonalizável. Mostre que A^r é diagonalizável para todo inteiro $r \geq 1$. Exiba uma matriz $n\tilde{a}o$ diagonalizável tal que A^2 é diagonalizável.

Solução:

- (a) Se A é diagonalizável, então K^n tem uma base $\{v_1, \ldots, v_n\}$ tal que para todo i exista λ_i tal que $Av_i = \lambda_i v_i$, aí $A^r(v_i) = \lambda_i^r v_i$; logo A^r é diagonalizável.
- (b) Seja:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Então A tem posto 1, aí tem nulidade 1, aí a multiplicidade geométrica de 0 é 1, mas:

$$p_A(x) = \det \begin{pmatrix} x & -1 \\ 0 & x \end{pmatrix} = x^2,$$

aí a multiplicidade algébrica de 0 é 2, aí A não é diagonalizável. Porém, é fácil ver que $A^2=0$, de modo que A^2 é diagonalizável.

3.12 Exercício 12

(12) Seja $D \in \mathcal{M}_n(K)$ uma matriz diagonal com polinômio característico

$$p_D(t) = (t - c_1)^{d_1} \cdots (t - c_k)^{d_k},$$

em que c_1, \ldots, c_k são distintos. Seja

$$W = A \in \mathcal{M}_n(K) : DA = AD.$$

Prove que

$$\dim W = d_1^2 + \ldots + d_k^2.$$

Solução: Como D é diagonal e $p_D(x) = (x - c_1)^{d_1} \cdots (x - c_k)^{d_k}$, sendo a matriz representada assim:

$$D = \begin{pmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{pmatrix},$$

então devemos ter:

$$\{1,\ldots,n\}=X_1\cup\cdots\cup X_k,$$

em que:

$$X_i = \{r \in \{1, \dots, n\} : d_r = c_i\}.$$

Para todo $A \in W$, então na entrada (r,s) devemos ter $(DA)_{r,s} = (AD)_{r,s}$, aí $d_r a_{r,s} = a_{r,s} d_s$, aí $(d_r - d_s) a_{r,s} = 0$, aí $d_r = d_s$ ou $a_{r,s} = 0$. Assim, para i,j com $i \neq j$, então para $r \in X_i$ e $s \in X_j$ devemos ter $d_r = c_i \neq c_j = d_s$, aí $a_{r,s} = 0$. Assim, sendo $E_{r,s}$ a matriz que vale 1 na entrada (r,s) e 0 nas outras, então é fácil ver que A deve ser combinação linear do conjunto:

$$M = \bigcup_{i=1}^{k} \{ E_{r,s} : r, s \in X_i \},$$

que tem $d_1^2 + \cdots + d_n^2$ elementos e é linearmente independente. Por outro lado, é fácil ver que qualquer combinação linear de M está em W. Assim a conclusão segue.

3.13 Exercício 13

(13) Seja $D \in \mathcal{L}(P_n(\mathbb{R}))$ o operador derivação. Encontre o polinômio minimal de D.

Solução: É fácil ver que $D^{n+1} = 0$. Além disso, para todo:

$$p(t) = a_n t^n + \dots + a_0,$$

então:

$$p(D)(x^{n}) = (a_{n}D^{n} + a_{n-1}D^{n-1} + a_{n-2}D^{n-2} + \dots + a_{0}I)(x^{n})$$

$$= a_{n}D^{n}(x^{n}) + a_{n-1}D^{n-1}(x^{n}) + a_{n-2}D^{n-2}(x^{n}) + \dots + a_{0}I(x^{n})$$

$$= a_{n}\frac{n!}{0!} + a_{n-1}\frac{n!}{1!}x + a_{n-2}\frac{n!}{2!}x^{2} + \dots + a_{0}\frac{n!}{n!}x^{n},$$

assim se $p(t) \neq 0$, então $p(D)(x^n) \neq 0$, aí $p(D) \neq 0$. Logo o polinômio minimal deve ter grau $\geq n+1$, aí deve ser igual a x^{n+1} .

3.14 Exercício 14

(14) Determine o polinômio minimal de cada uma das seguintes matrizes:

(a)
$$\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$
 (b) $\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ (e) $\begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$

Solução:

(a)

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$

Temos o seguinte:

$$p_A(x) = \det \begin{pmatrix} x - 2 & 1 \\ -1 & x \end{pmatrix} = x(x - 2) - 1(-1) = x^2 - 2x + 1 = (x - 1)^2.$$

Assim $m_A(x) | (x-1)^2$, porém $A - I \neq 0$, aí $m_A(x) = (x-1)^2$.

(b)

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

Temos o seguinte:

$$p_A(x) = \det \begin{pmatrix} x - 2 & -1 \\ 0 & x - 1 \end{pmatrix} = (x - 2)(x - 1).$$

Assim é fácil ver que $m_A(x) = (x-2)(x-1)$.

(c)

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Temos o seguinte:

$$p_A(x) = \det \begin{pmatrix} x - 1 & 0 & -1 \\ 0 & x - 1 & 0 \\ -1 & 0 & x - 1 \end{pmatrix} = x(x - 1)(x - 2).$$

Assim é fácil ver que $m_A(x) = x(x-1)(x-2)$.

(d)

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Temos o seguinte:

$$p_A(x) = \det \begin{pmatrix} x - 1 & -1 & -1 \\ 0 & x - 1 & -1 \\ 0 & 0 & x - 1 \end{pmatrix} = (x - 1)^3.$$

Assim $m_A(x) \mid (x-1)^3$. Porém:

$$(A-I)^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

que não é nulo, assim $m_A(x) = (x-1)^3$.

(e)

$$A = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$$

Temos o seguinte:

$$p_A(x) = \det \begin{pmatrix} x - a & -b & -c \\ 0 & x - a & -b \\ 0 & 0 & -a \end{pmatrix} = (x - a)^3.$$

Assim $m_A(x) \mid (x-a)^3$. Porém:

$$(A - aI)^2 = \begin{pmatrix} 0 & 0 & b^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

assim:

- Se b=0 e c=0, então $m_A(x)=x-a$.
- Se b = 0 e $c \neq 0$, então $m_A(x) = (x a)^2$.
- Se $b \neq 0$ e $c \neq 0$, então $m_A(x) = (x-a)^3$.

3.15 Exercício 15

(15) Seja $C \in \mathcal{M}_n(K)$ a matriz

$$\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & -c_0 \\ 1 & 0 & 0 & \dots & 0 & -c_1 \\ 0 & 1 & 0 & \dots & 0 & -c_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & -c_{n-2} \\ 0 & 0 & 0 & \dots & 1 & -c_{n-1} \end{bmatrix}$$

Prove que o polinômio característico de C é

$$p_C(t) = t^n + c_{n-1}t^{n-1} + \ldots + c_1t + c_0.$$

Mostre que este é também o polinômio minimal de C. A matriz C é chamada de **matriz companheira** do polinômio $c_0 + c_1t + \ldots + c_{n-1}t^{n-1} + t^n$.

(a) Fazendo o desenvolvimento de Laplace sobre a linha superior e "repetindo" o processo, temos o seguinte:

$$p_{C}(x) = \det \begin{pmatrix} x & 0 & 0 & \dots & 0 & c_{0} \\ -1 & x & 0 & \dots & 0 & c_{1} \\ 0 & -1 & x & \dots & 0 & c_{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x & c_{n-2} \\ 0 & 0 & 0 & \dots & -1 & x + c_{n-1} \end{pmatrix}$$

$$= x \det \begin{pmatrix} x & 0 & \dots & 0 & c_{1} \\ -1 & x & \dots & 0 & c_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & x & c_{n-2} \\ 0 & 0 & \dots & -1 & x + c_{n-1} \end{pmatrix} + (-1)^{n+1}c_{0} \det \begin{pmatrix} -1 & x & 0 & \dots & 0 \\ 0 & -1 & x & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & x \\ 0 & 0 & 0 & \dots & x \end{pmatrix} + (-1)^{n+1}c_{0} \det \begin{pmatrix} -1 & x & 0 & \dots & 0 \\ 0 & -1 & x & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & x \\ 0 & 0 & 0 & \dots & x \end{pmatrix} + (-1)^{n+1}c_{0} \det \begin{pmatrix} -1 & x & 0 & \dots & 0 \\ 0 & -1 & x & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & x \\ 0 & 0 & 0 & \dots & x \end{pmatrix} + (-1)^{n+1}c_{0}(-1)^{n-1}$$

$$= x \det \begin{pmatrix} x & 0 & \dots & 0 & c_{1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & x & c_{n-2} \\ 0 & 0 & \dots & -1 & x + c_{n-1} \end{pmatrix} + c_{0}$$

$$= x \det \begin{pmatrix} x & \dots & 0 & c_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & x & c_{n-2} \\ 0 & 0 & \dots & -1 & x + c_{n-1} \end{pmatrix} + c_{0}$$

$$= x \det \begin{pmatrix} x & \dots & 0 & c_{2} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & x & c_{n-2} \\ 0 & \dots & -1 & x + c_{n-1} \end{pmatrix} + c_{1}$$

$$= x \det \begin{pmatrix} x & \dots & 0 & c_{2} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & x & c_{n-2} \\ 0 & \dots & -1 & x + c_{n-1} \end{pmatrix} + c_{1}$$

$$= x \det \begin{pmatrix} x & \dots & 0 & c_{2} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & x & c_{n-2} \\ 0 & \dots & -1 & x + c_{n-1} \end{pmatrix} + c_{1}$$

(b) Consideremos a base canônica $\{e_0, \dots, e_{n-1}\}\$ de K^n . Então temos:

$$C(e_0) = e_1$$

$$C(e_1) = e_2$$

$$\vdots$$

$$C(e_{n-2}) = e_{n-1}$$

$$C(e_{n-1}) = -c_{n-1}e_{n-1} - c_{n-2}e_{c-2} - \dots - c_0e_0.$$

Para $p(x) = a_{n-1}x^{n-1} + \dots + a_0$ temos:

$$p(C)(e_0) = (a_{n-1}C^{n-1} + \dots + a_0)(e_0)$$

= $a_{n-1}C^{n-1}(e_0) + \dots + a_0e_0$
= $a_{n-1}e_{n-1} + \dots + a_0e_0$,

aí se $p(x) \neq 0$ então $p(C)(e_0) \neq 0$, aí $p(C) \neq 0$. Logo o polinômio minimal deve ter grau $\geq n$, aí ele deve ser igual ao polinômio característico.

3.16 Exercício 16

(16) Verdadeiro ou falso?² Se $A \in \mathcal{M}_n(K)$ é uma matriz triangular superior e A é diagonalizável, então A já é uma matriz diagonal.

Solução: Falso. De fato, considere a matriz:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

É fácil ver que A tem posto 1, portanto nulidade 1 e aí a multiplicidade algébrica de 0 é 1. Além disso:

 $p_A(x) = \det \begin{pmatrix} x - 1 & -1 \\ 0 & x \end{pmatrix} = (x - 1)x,$

de modo que a multiplicidade algébrica de 0 é 1. Assim A é triangular superior e diagonalizável, mas não é diagonal.

Comentário:

Apesar da resposta ao exercício, ainda podemos concluir que, se $A = (a_{xy})$ é uma matriz triangular superior, então A é diagonalizável se e só se, para r < s tais que $a_{rr} = a_{ss}$, tivermos $a_{rs} = 0$.

De fato, sejam c_1, \ldots, c_k os valores distintos que aparecem na diagonal. Então devemos ter:

$$\{1,\ldots,n\} = X_1 \cup \cdots \cup X_k,$$

em que:

$$X_i = \{r \in \{1, \dots, n\} : d_r = c_i\}.$$

Para i, seja $d_i = |X_i|$. Então o polinômio característico de A é:

$$p_A(x) = (x - c_1)^{d_i} \dots (x - c_k)^{d_k}$$

de modo que para cada i então a multiplicidade algébrica de c_i é d_i . Para cada i, então é fácil ver que a matriz $A - c_i I$, ao ser escalonada, terá nulidade d_i se e só se para $r, s \in X_i$ tais que r < s tivermos $a_{r,s} = 0$. Nisso a conclusão segue.

3.17 Exercício 17

(17) Sejam K um corpo, n um inteiro positivo e $A \in \mathcal{M}_n(K)$ uma matriz de posto $r \leq n$. Mostre que o polinômio minimal de A tem grau menor ou igual a r+1.

Solução: Se $A \in \mathcal{M}_n(K)$ tem posto $r \leq n$, então consideremos a imagem da transformação $x \mapsto Ax$, então ela tem uma base $\{b_1, \ldots, b_r\}$, aí completemos uma base $B = \{b_1, \ldots, b_r, b_{r+1}, \ldots, b_n\}$ de K^n , aí, sendo $C = [A]_B$, existe uma matriz inversível P tal que $C = PAP^{-1}$, e também temos:

$$C = \begin{pmatrix} X & Y \\ 0 & 0 \end{pmatrix}.$$

É fácil provar por indução que para todo $n \ge 0$ temos:

$$C^{n+1} = \begin{pmatrix} X^{n+1} & X^n Y \\ 0 & 0 \end{pmatrix}.$$

²Só de perguntar isso tem uma grande chance de ser falso XD

Assim, sendo $p(x) = a_r x^r + \cdots + a_0$ o polinômio característico da matriz X, então, pelo teorema de Cayley-Hamilton, temos p(X) = 0, aí:

$$p(C)C = \sum_{k=0}^{r} a_k C^{k+1}$$

$$= \sum_{k=0}^{r} a_k \begin{pmatrix} X^{k+1} & X^k Y \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{k=0}^{r} a_k X^{k+1} & \sum_{k=0}^{r} a_k X^k Y \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} p(X)X & p(X)Y \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

assim p(C)C = 0, aí p(A)A = 0, logo, como p(x)x é um polinômio de grau r + 1, então o polinômio minimal de A tem grau menor ou igual a r + 1.

3.18 Exercício 18

(18) Seja K um corpo de característica diferente de 2 e $T: \mathcal{M}_n(K) \to \mathcal{M}_n(K)$ o operador linear definido por $T(A) = A^t$. Mostre que T é diagonalizável, determine os autovalores de T, as dimensões dos autoespaços e uma base de $\mathcal{M}_n(K)$ formada por autovetores de T.

Solução: Seja V_+ o conjunto das matrizes simétricas e seja V_- o conjunto das matrizes antissimétricas. Seja $E_{i,j}$ a matriz que vale 1 na entrada (i,j) e 0 nas demais. Então é fácil ver que o conjunto:

$$B_{+} = \{E_{i,i} : 1 \le i \le n\} \cup \{E_{i,j} + E_{j,i} : 1 \le i < j \le n\}$$

tem $\frac{n^2+n}{2}$ elementos e é uma base de V_+ , e, como a característica do corpo é diferente de 2, então é fácil ver que o conjunto:

$$B_{-} = \{ E_{i,j} - E_{j,i} : 1 \le i < j \le n \}$$

tem $\frac{n^2-n}{2}$ elementos e é uma base de V_- . Além disso, para cada $A \in V_+ \cap V_-$, então $A = A^t = -A$, aí 2A = 0, aí A = 0. Logo V_+ e V_- são independentes. Assim $B_+ \cup B_-$ é uma base de n^2 elementos do espaço $V_+ + V_-$. Porém a dimensão de $\mathcal{M}_n(K)$ é n^2 , assim $\mathcal{M}_n(K) = V_+ + V_-$. Com isso temos as respostas para todas as questões do exercício. Mais especificamente, T é diagonalizável, os autovalores são 1 e -1, a dimensão dos autoespaços $V_T(1)$ e $V_T(-1)$ são respectivamente $\frac{n^2+n}{2}$ e $\frac{n^2-n}{2}$, e $B_+ \cup B_-$ é uma base de autovetores de T.

3.19 Exercício 19

(19) Mostre que uma matriz $A \in \mathcal{M}_n(K)$ é inversível se, e somente se, o termo constante de seu polinômio minimal é diferente de zero.

Solução: Temos o seguinte:

$$A$$
 não é inversível \Leftrightarrow $-A$ não é inversível \Leftrightarrow $\det(-A) = 0$ \Leftrightarrow $\det(0I - A) = 0$ \Leftrightarrow $p_A(0) = 0$ \Leftrightarrow $m_A(0) = 0$.

3.20 Exercício 20

- (20) Seja $A \in \mathcal{M}_n(K)$ uma matriz inversível.
 - (a) Mostre que existe um polinômio $p(t) \in K[t]$ tal que $A^{-1} = p(A)$.
 - (b) Seja

$$A = \begin{pmatrix} 2 & 1 & 4 \\ 3 & 0 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$

Encontre p(t) tal que $p(A) = A^{-1}$.

Solução:

(a) Sabemos que a soma dos autovalores de uma matriz corresponde à seu traço, e o produto dos autovalores corresponde ao determinante. Pelo Teorema de Cayley-Hamilton, também é conhecido que $p_A(A) = 0$. Assim, seja o polinômio caracerístico dado por:

$$p_A(t) = t^n + a_{n-1}t^{n-1} + a_{n-2}t^{n-2} + \dots + a_1t + a_0.$$

Sendo A invertível, então $a_0 = p_A(0) = \det(-A) = (-1)^n \det(A) \neq 0$ e também:

$$A^n + a_{n-1}A^{n-1} + \ldots + a_0I = 0,$$

portanto temos:

$$A \cdot \frac{-1}{a_0} \left(A^{n-1} + a_{n-1} A^{n-2} + \dots + a_1 \right) = I.$$

Logo, considerando o polinômio $p(t) \in K[t]$ dado por

$$p(t) = \frac{-1}{a_0} \left(t^{n-1} + a_{n-1}t^{n-2} + a_{n-2}t^{n-3} + \dots + a_1 \right),$$

então:

$$A \cdot p(A) = I,$$

de modo que:

$$p(A) = A^{-1}.$$

(b) Encontremos primeiramente o polinômio característico de A:

$$p_A(x) = \det(xI - A)$$

$$= \det\begin{pmatrix} x - 2 & -1 & -4 \\ -3 & x & -1 \\ -2 & 0 & x - 1 \end{pmatrix}$$

$$= x^3 - 3x^2 - 9x + 1,$$

ou seja,

$$p_A(x) = x^3 - 3x^2 - 9x + 1.$$

Pelo item anterior, o polinômio p(t) procurado é

$$p(t) = \frac{-1}{1}(t^2 - 3t - 9) \Rightarrow p(t) = p(t) = -t^2 + 3t + 9$$

De fato, temos que

$$p(A) = -A^{2} + 3A + 9$$

$$= -\begin{pmatrix} 2 & 1 & 4 \\ 3 & 0 & 1 \\ 2 & 0 & 1 \end{pmatrix}^{2} + 3 \begin{pmatrix} 2 & 1 & 4 \\ 3 & 0 & 1 \\ 2 & 0 & 1 \end{pmatrix} + 9 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= -\begin{pmatrix} 15 & 2 & 13 \\ 8 & 3 & 13 \\ 6 & 2 & 9 \end{pmatrix} + \begin{pmatrix} 6 & 3 & 12 \\ 9 & 0 & 3 \\ 6 & 0 & 3 \end{pmatrix} + \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & -1 \\ 1 & 6 & -10 \\ 0 & -2 & 3 \end{pmatrix},$$

e basta verificar que a matriz é inversa de A.

3.21 Exercício 21

(21) Determine todas as matrizes $A \in \mathcal{M}_2(\mathbb{R})$ nilpotentes e calcule $\det(A+I)$ e $\det(A-I)$.

Solução: Se A é nilpotente, então existe $k \ge 1$ tal que $A^k = 0$, aí o polinômio minimal deve ser da forma $m_A(x) = x^l \text{ com } l \le k$, mas, pelo teorema de Cayley-Hamilton, o grau de $m_A(x)$ deve ser ≤ 2 , aí $l \le 2$, aí $A^2 = 0$. Agora, sendo:

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix},$$

então:

$$A^{2} = \begin{pmatrix} \alpha^{2} + \beta \gamma & \beta(\alpha + \delta) \\ \gamma(\alpha + \delta) & \beta \gamma + \delta^{2} \end{pmatrix},$$

assim é fácil ver que $A^2=0$ se e somente se $\alpha+\delta=0$ e $\alpha^2+\beta\gamma=0$. Assim, as matrizes nilpotentes em $\mathscr{M}_2(\mathbb{R})$ são as matrizes da forma:

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}, \quad \alpha \in \mathbb{R}, \quad \beta \gamma = -\alpha^2.$$

Calculemos det(A + I) e det(A - I):

• Temos

$$\det(A+I) = \det\left(\begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = \det\left(\begin{pmatrix} \alpha+1 & \beta \\ \gamma & -\alpha+1 \end{pmatrix}\right) =$$
$$(\alpha+1)(1-\alpha) - \beta\gamma = 1 - \alpha^2 - (-\alpha^2) = 1 - \alpha^2 + \alpha^2 = 1 \Rightarrow \boxed{\det(A+I) = 1}$$

• Temos

$$\det(A - I) = \det\left(\begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = \det\left(\begin{pmatrix} \alpha - 1 & \beta \\ \gamma & -\alpha - 1 \end{pmatrix}\right) = (\alpha - 1)(-1 - \alpha) - \beta\gamma = 1 - \alpha^2 - (-\alpha^2) = 1 - \alpha^2 + \alpha^2 = 1 \Rightarrow \boxed{\det(A - I) = 1}$$

3.22 Exercício 22

(22) Sejam V um espaço vetorial sobre \mathbb{R} e $\{e_1, e_2, e_3\}$ uma base de V. Seja $T: V \to V$ o operador linear definido por

$$T(e_1) = e_2 - e_1, T(e_2) = e_3 - e_1, T(e_3) = e_3 - e_2.$$

- (a) Mostre que T não é diagonalizável.
- (b) Calcule T^{212} (Dica: utilize o Teorema de Cayley-Hamilton)

Solução:

(a) Em relação à base canônica, temos:

$$T = \begin{pmatrix} -1 & -1 & 0 \\ 1 & 0 & -1 \\ & 1 & 1 \end{pmatrix}.$$

Assim temos:

$$p_T(x) = \det \begin{pmatrix} x+1 & 1 & 0 \\ -1 & x & +1 \\ 0 & -1 & x-1 \end{pmatrix} = x(x^2+1).$$

Assim é fácil ver que T não é diagonalizável sobre \mathbb{R} , pois o polinômio característico não se decompõe em fatores lineares.

(b) Pelo teorema de Cayley-Hamilton, temos $T(T^2+1)=0$, assim $T^3=-T$, desse modo para todo $n\geq 1$ temos $T^{n+2}=-T^n$. Temos:

$$T^2 = \begin{pmatrix} 0 & 1 & 1 \\ -1 & -2 & -1 \\ 1 & 1 & 0 \end{pmatrix},$$

de modo que $T^{212} = -T^{210} = T^{208} = \cdots = T^4 = -T^2$, assim:

$$T^{212} = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix},$$

Aviso:

De agora em diante, utilizaremos o fato de que um operador T sobre um espaço V de dimensão finita é diagonalizável se e somente se o polinômio minimal é produto de fatores lineares distintos.

3.23 Exercício 23

(23) Seja $T \in \mathcal{L}(V)$ um operador diagonalizável e seja W um subespaço de V T-invariante. Prove que a restrição de T a W, $T \upharpoonright_W \in \mathcal{L}(W)$ é diagonalizável.

Solução: É fácil ver que um operador é diagonalizável se e somente se todo elemento $v \in V$ for uma soma de autovetores. Se T é um operador diagonalizável e W for um subespaço T-invariante, então basta mostrar que se v_1, \ldots, v_n são autovetores associados a autovalores distintos c_1, \ldots, c_n e $v_1 + \cdots + v_n \in W$, então $v_1 \in W$ e \ldots e $v_n \in W$. Faremos isto por indução em n. Se n = 1, então é fácil. Se é válida para n-1, então para $v_1, \ldots, v_{n-1}, v_n$ autovetores associados a autovalores distintos $c_1, \ldots, c_{n-1}, c_n$, se:

$$w = v_1 + \dots + v_{n-1} + v_n \in W,$$

então temos:

$$T(w) = T(v_1) + \cdots + T(v_{n-1}) + T(v_n),$$

aí:

$$T(w) = c_1 v_1 + \dots + c_{n-1} v_{n-1} + c_n v_n$$

assim:

$$T(w) - c_n w = (c_1 - c_n)v_1 + \dots + (c_{n-1} - c_n)v_{n-1},$$

mas $T(w)-c_nw\in W$ e os $(c_1-c_n)v_1,\ldots,(c_{n-1}-c_n)v_{n-1}$ são autovetores associados a autovalores distintos c_1,\ldots,c_{n-1} , aí pela hipótese de indução temos $(c_1-c_n)v_1\in W,\ldots,(c_{n-1}-c_n)v_{n-1}\in W,$ mas $c_1-c_n\neq 0,\ldots,c_{n-1}-c_n\neq 0$, aí $v_1\in W,\ldots,v_{n-1}\in W,$ aí $v_n=w-(v_1+\cdots+v_{n-1})\in W.$ Assim todo elemento $w\in W$ é soma de autovetores de $T\upharpoonright_W.$ Logo $T\upharpoonright_W$ é diagonalizável.

Solução alternativa: (Válida somente para espaços de dimensão finita)

Seja $B' = \{e_1, \ldots, e_m\}$ uma base de W e completemos uma base $B = \{e_1, \ldots, e_m, e_{m+1}, \ldots, e_n\}$ de V. Então o operador T está representado por uma matriz da forma:

$$T = \begin{pmatrix} X & ? \\ 0 & Y \end{pmatrix}.$$

É fácil provar por indução que, para todo n então T^n é uma matriz da forma:

$$\begin{pmatrix} X^n & ? \\ 0 & Y^n \end{pmatrix}$$
,

assim para todo polinômio p(x) temos:

$$p(T) = \begin{pmatrix} p(X) & ? \\ 0 & p(Y) \end{pmatrix},$$

em particular temos:

$$0 = m_T(T) = \begin{pmatrix} m_T(X) & ?\\ 0 & m_T(Y) \end{pmatrix},$$

logo temos $m_T(X) = 0$, aí $m_X(x) \mid m_T(x)$. Assim, se T é diagonalizável, então $m_T(x)$ é um produto de fatores lineares distintos, aí $m_X(x)$ é um produto de fatores lineares disintos, mas X representa a transformação $T \upharpoonright_W$, aí $T \upharpoonright_W$ é diagonalizável.

3.24 Exercício 24

(24) Seja $T \in \mathcal{L}(V)$ um operador linear tal que todo subespaço de V é T-invariante. Mostre que T é um múltiplo do operador identidade.

Solução: Seja B uma base de V.

Para $b \in B$ então Kb é T-invariante, aí existe um único $\lambda_b \in K$ tal que $T(b) = \lambda_b b$.

Para $b, c \in B$ tais que $b \neq c$, então K(b+c) é T-invariante, aí existe um $\lambda \in K$ tal que $T(b+c) = \lambda(b+c)$, aí $T(b) + T(c) = \lambda b + \lambda c$, aí $\lambda_b b + \lambda_c c = \lambda b + \lambda c$, aí $\lambda_b = \lambda$ e $\lambda_c = \lambda$, aí $\lambda_b = \lambda_c$.

Logo existe um $\lambda \in K$ tal que $\forall b \in B : \lambda_b = \lambda$, aí para todo $b \in B$ temos $T(b) = \lambda b$; logo $T = \lambda I$.

3.25 Exercício 25

(25) Seja $T \in \mathcal{L}(V)$ um operador linear e seja W um subespaço de V. Prove que W é T-invariante se, e somente se, W^0 é T^t -invariante.

Solução: Primeiramente, lembremos que

$$W^{0} = \{ f \in V^* \mid \forall w \in W : f(w) = 0 \}$$

(a) Se W é T-invariante, então temos que $T(W) \subseteq W$. Dado $f \in W^0$, veja que

$$T^t(f) = f \circ T$$

e temos também para $w \in W$:

$$(f \circ T)(w) = f(T(w)) \in f(T(W)) \subseteq f(W) = 0,$$

aí:

$$(f \circ T)(w) = 0;$$

logo:

$$T^t(W^0) \subseteq W^0$$
.

Logo, W^0 é T^t -invariante.

(b) Se W^0 é T^t -invariante, então

$$T^t(W^0) \subseteq W^0 = \{ f \in \mathcal{L}(V) \mid f(W) = 0 \}.$$

Seja $w \in W$. Para $f \in W^0$, temos $T^t(f) \in W^0$, aí $f \circ T \in W^0$, aí $(f \circ T)(w) = 0$. Ou seja, $\forall f \in W^0 : f(T(w)) = 0$. Suponhamos por absurdo que $T(w) \notin W$. Consideremos $(v_i)_{i \in I}$ uma base para W e completemo-la para uma base $(v_i)_{i \in I}$ de V. Seja:

$$T(w) = \sum_{j \in K} \alpha_j v_j,$$

em que K seja um subconjunto finito de I. Tome $k \in K \setminus J$ tal que $\alpha_k \neq 0$, que existe, pois $T(w) \notin W$. Considere $\varphi_k \colon V \to K$ tal que:

$$\varphi(v_i) = \begin{cases} 1, & \text{se } i = k \\ 0, & \text{se } i \neq k. \end{cases}$$

Note que $\varphi_k \in W^0$. Mas teremos o seguinte:

$$\varphi_k(T(w)) = \varphi_k\left(\sum_{j \in K} \alpha_j v_j\right) = \sum_{j \in K} \alpha_j \varphi_k(v_j) = \alpha_k \neq 0.$$

3.26 Exercício 26

(26) Seja V um espaço vetorial de dimensão finita sobre um corpo algebricamente fechado e seja $T \in \mathcal{L}(V)$. Prove que T é diagonalizável se, e somente se, para todo subespaço T-invariante W de V existe um subespaço T-invariante U tal que

$$V = W \oplus U$$

Observação: Um operador linear T é dito semi-simples quando todo subespaço T-invariante de V tem um complemento que é também T-invariante.

Solução:

(a) Se T é diagonalizável, então seja B uma base de autovetores, aí, para subespaço W que seja T-invariante, seja C uma base de W. Então existe uma base E de V tal que $C \subseteq E \subseteq B \cup C$, aí para $e \in E \setminus C$ então $e \in B$, aí e é autovetor. Assim seja U o subespaço gerado por $E \setminus C$, então para $e \in E \setminus C$ então $e \in B$, aí existe $\lambda \in K$ tal que $T(e) = \lambda e$, aí $T(e) \in U$; logo U é T-invariante, e além disso é fácil ver que $V = W \oplus U$.

(b) Se todo subespaço T-invariante tiver complemento vetorial T-invariante então sejam $\lambda_1, \ldots, \lambda_k$ os autovalores distintos, e seja:

$$W = V_T(\lambda_1) + \dots + V_T(\lambda_k),$$

então W é T-invariante, aí existe U subespaço T-invariante tal que $V=W\oplus U,$ aí existe uma base B tal que:

$$[T]_B = \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix},$$

aí $p_T(x) = p_X(x)p_Y(x)$, mas:

$$p_T(x) = (x - \lambda_1)^{r_1} \dots (x - \lambda_k)^{r_k},$$

aí:

$$p_Y(x) = (x - \lambda_1)^{s_1} \dots (x - \lambda_k)^{s_k}$$

com $s_i \leq r_i$ para todo i, aí se existe i tal que $s_i > 0$ então $p_Y(\lambda_i) = 0$, aí existe $u \neq 0$ tal que $u \in U$ e $T(u) = \lambda_i u$, aí $u \in W$, contradição; logo $\forall i : s_i = 0$, aí $p_Y(x) = 1$, aí U = 0, aí W = V, aí T é diagonalizável.

3.27 Exercício 27

(27) Seja V um espaço vetorial de dimensão finita sobre \mathbb{C} e seja $T \in \mathcal{L}(V)$. Prove que as seguintes afirmações são equivalentes:

- (a) T é diagonalizável e $T^{2n} = T^n$.
- (b) $T^{n+1} = T$.

Solução:

(a) Se T é diagonalizável e $T^{2n} = T^n$, então existe uma base B tal que T seja representada pela matriz:

$$T = \begin{pmatrix} c_1 & & & \\ & c_2 & & \\ & & \ddots & \\ & & & c_k \end{pmatrix}.$$

Como $T^{2n} = T^n$, então para todo i temos $c_i^{2n} = c_i^n$, aí $c_i^{n+1} = c_i$; logo $T^{n+1} = T$.

(b) Se $T^{n+1} = T$, então, sendo $m_T(x)$ o polinômio minimal de T, temos:

$$m_T(x) \mid x^{n+1} - x = x(x^n - 1) = x \prod_{k=0}^{n-1} \left(x - \operatorname{cis}\left(\frac{2k\pi}{n}\right) \right),$$

assim $m_T(x)$ é produto de fatores lineares distintos, aí T é diagonalizável.

3.28 Exercício 28

(28) Seja $A \in \mathcal{M}_n(K)$ e o operador

$$T_A: \mathcal{M}_n(K) \longrightarrow \mathcal{M}_n(K)$$

 $M \longmapsto T_A(M) = AM - MA$

Prove que se A é diagonalizável então T_A é diagonalizável.

Solução: Se A é diagonalizável, então existem uma matriz inversível P e uma matriz diagonal D tais que $A = PDP^{-1}$. Consideremos primeiro o operador T_D . Seja:

$$D = \begin{pmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{pmatrix}.$$

Então, para matriz $M=(m_{i,j})$ e para $i,j=1,\ldots,n$, a entrada (i,j) da matriz DM-MD é $(d_i-d_j)m_{i,j}$; assim, para $i,j=1,\ldots,n$, sendo $E_{i,j}$ a matriz que vale 1 na entrada (i,j) e 0 nas demais, então é fácil ver que $T_D(E_{i,j})=(d_i-d_j)E_{i,j}$, assim $E_{i,j}$ é autovetor de T_D . Porém, para $M \in \mathcal{M}_n(K)$, temos o seguinte:

$$T_A(M) = AM - MA$$

= $PDP^{-1}M - MPDP^{-1}$
= $P(DP^{-1}MP - P^{-1}MPD)P^{-1}$
= $PT_D(P^{-1}MP)P^{-1}$.

Logo, para i, j = 1, ..., n, é fácil ver que $PE_{i,j}P^{-1}$ é autovetor de T_A . Além disso, as matrizes $PE_{i,j}P^{-1}$ em que i, j = 1, ..., n formam uma base de $\mathcal{M}_n(K)$. Portanto T_A é diagonalizável.

3.29 Exercício 29

(29) Seja V um K-espaço de dimensão finita e sejam $E_1, E_2, \dots E_k \in \mathcal{L}(V)$ tais que $E_1 + E_2 + \dots + E_k = I$.

- (a) Prove que se $E_i E_j = 0$, para $i \neq j$, então $E_i^2 = E_i$ para todo $i = 1, 2, \dots, k$.
- (b) Prove que se $E_i^2 = E_i$ para todo i = 1, 2, ..., k e a característica de K é zero, então $E_i E_j = 0$, sempre que $i \neq j$.

Solução:

(a) Se $E_i E_j = 0$ para $i \neq j$, então para todo i temos:

$$E_{i} = E_{i}I$$

$$= E_{i}(E_{1} + \dots + E_{n})$$

$$= E_{i}E_{1} + \dots + E_{i}E_{n}$$

$$= E_{i}E_{i},$$

ou seja, $E_i^2 = E_i$.

(b) Se $E_i^2 = E_i$ para todo i = 1, 2, ..., k e a característica de K é zero, então seja $P_i = \text{Im}(E_i)$ e $K_i = \text{Ker}(E_i)$, então é fácil ver que $V = P_i \oplus K_i$, aí existe base B_i de V tal que:

$$[E_i]_{B_i} = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix},$$

de modo que $\operatorname{tr}(E_i) = \dim(P_i) \cdot 1_K$. Além disso, $\operatorname{tr}(I) = \dim(V) \cdot 1_K$. Como:

$$I = E_1 + \dots + E_k,$$

então:

$$V = P_1 + \dots + P_k$$

e também:

$$\operatorname{tr}(I) = \operatorname{tr}(E_1) + \dots + \operatorname{tr}(E_k),$$

aí:

$$\dim(V) \cdot 1_K = \dim(P_1) \cdot 1_K + \dots + \dim(P_k) \cdot 1_K,$$

mas a característica de K é zero, aí:

$$\dim(V) = \dim(P_1) + \dots + \dim(P_k).$$

Portanto, para k, temos o seguinte:

$$\begin{split} \dim(V) &= \dim(\sum_i P_i) \\ &= \dim(P_k) + \dim(\sum_{i \neq k} P_i) - \dim(P_k \cap \sum_{i \neq k} P_i) \\ &\leq \dim(P_k) + \sum_{i \neq k} \dim(P_i) - \dim(P_k \cap \sum_{i \neq k} P_i) \\ &= \sum_i \dim(P_i) - \dim(P_k \cap \sum_{i \neq k} P_i) \\ &= \dim(V) - \dim(P_k \cap \sum_{i \neq k} P_i), \end{split}$$

aí:

$$\dim(P_k \cap \sum_{i \neq k} P_i) \le 0,$$

aí:

$$P_k \cap \sum_{i \neq k} P_i = 0;$$

logo:

$$V = P_1 \oplus \cdots \oplus P_k.$$

Assim, para $i \neq j$, então para v temos:

$$E_j(v) = E_1 E_j(v) + \dots + E_k E_j(v),$$

aí:

$$0 = \sum_{l \neq i} E_i E_j(v),$$

mas:

$$\forall l \neq j : E_i E_j(v) \in P_l,$$

aí:

$$\forall l \neq j : E_l E_j(v) = 0,$$

aí:

$$E_i E_i(v) = 0;$$

logo:

$$E_i E_i = 0.$$

3.30 Exercício 30

(30) Seja $A \in \mathcal{M}_n(K)$ e seja

$$p_A(t) = t^n + a_{n-1}t^{n-1} + \ldots + a_1t + a_0$$

o polinômio característico de A. Mostre que $a_{n-1} = -\operatorname{tr}(A)$, o traço de A, e $a_0 = (-1)^n \det(A)$.

Solução: Temos o seguinte:

$$p_A(x) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n \left(x \delta_{i,\sigma(i)} - a_{i,\sigma(i)} \right)$$

Para $\sigma \in S_n$, se $\sigma \neq I$, então existe j tal que $\sigma(j) \neq j$, aí sendo $k = \sigma(j)$ temos $j \neq k$ e $\sigma(j) \neq j$ e $\sigma(k) \neq k$, assim temos:

$$\operatorname{sgn}(\sigma) \prod_{i=1}^{n} \left(x \delta_{i,\sigma(i)} - a_{i,\sigma(i)} \right) = \operatorname{sgn}(\sigma) a_{j,\sigma(j)} a_{k,\sigma(k)} \prod_{i \neq j,k} \left(x \delta_{i,\sigma(i)} - a_{i,\sigma(i)} \right),$$

que tem grau no máximo n-2. Assim, o coeficiente de grau n-1 do polinômio:

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n \left(x \delta_{i,\sigma(i)} - a_{i,\sigma(i)} \right)$$

é igual ao coeficiente de grau n-1 do polinômio:

$$sgn(I) \prod_{i=1}^{n} (x \delta_{i,I(i)} - a_{i,I(i)}) = \prod_{i=1}^{n} (x - a_{i,i}),$$

que é igual a $-(a_1 + \cdots + a_n)$, que é -tr(A). Além disso, é fácil ver que:

$$a_0 = p_A(0) = \det(0I - A) = \det(-A) = (-1)^n \det(A).$$

Questões Suplementares

3.31 Exercício 31

(31) [Algoritmo de Faddeev-LeVerrier] Nesse exercício, vamos apresentar um algoritmo para o cálculo direto dos coeficientes do polinômio característico de uma matriz $A \in \mathcal{M}_n(K)$, conhecido como Algoritmo de Faddeev-LeVerrier.³

Solução:

3.32 Exercício 32

(32) Seja $K = \frac{\mathbb{Z}_2[x]}{\langle x^3 + x + 1 \rangle}$. Dada a matriz

encontre uma matriz inversível P e uma matriz diagonal D em $\mathbb{M}_3(K)$ tais que $PAP^{-1} = D$.

³A título de curiosidade, Urbain Le Verrier (1811-1877) foi quem descobriu Netuno, ao prever sua existência matematicamente.

3.33 Exercício 33

(33) Seja $A \in \mathcal{M}_3(\mathbb{K})$. Prove que

$$P_A(x) = \frac{1}{6}[\operatorname{tr}^3(A) + 2\operatorname{tr}(A^3) - 3\operatorname{tr}(A)\operatorname{tr}(A^2)] - \frac{1}{2}[\operatorname{tr}^2(A) - \operatorname{tr}(A^2)]x + \operatorname{tr}(A)x^2 - x^3,$$

onde $P_A(x)$ denota o polinômio característico de A.

Solução:

3.34 Exercício 34

(34) Seja $A \in \mathcal{M}_3(\mathbb{C})$ uma matriz não inversível tal que $\operatorname{tr}(A^2) = \operatorname{tr}(A^3)$. Prove que se $\operatorname{tr}(A)$ é um número natural maior do que 1, então $\operatorname{tr}(A^3) \in \mathbb{Q}$.

Solução:

3.35 Exercício 35

(35) Considere a matriz

$$A = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

(a) Prove que A é semelhante à matriz

$$N = \begin{bmatrix} n & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

(b) Encontre uma matriz $P \in \mathcal{M}_n(\mathbb{R})$ tal que $PAP^{-1} = N$ e satisfaz as seguintes condições: a soma dos elementos de P é n, $\operatorname{tr}(P) = 1$ e $\det(P) = -(n^{n-1})$.

4 Lista 3

Aviso:

De agora em diante, utilizaremos o fato de que um operador T sobre um espaço V de dimensão finita é triangularizável se e somente se o polinômio minimal é produto de fatores lineares.

4.1 Exercício 1

(1) Seja

$$A = \begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

Seja $T \in \mathcal{L}(\mathbb{R}^3)$ tal que $[T]_{can} = A$. Encontre a decomposição primária de T.

Solução: Para encontrar a decomposição primária de T, precisamos encontrar seu polinômio característico, escrevê-lo na forma $p(t) = p_1^{n_1} \cdot p_2^{n_2} \cdot \ldots \cdot p_k^{n_k}$, com p_1, \ldots, p_k irredutíveis mônicos distintos.

(a) Encontrando o polinômio característico de A:

$$p(\lambda) = \det(\lambda I - A)$$

$$= \det \begin{pmatrix} \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} - \begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix} \end{pmatrix}$$

$$= \det \begin{pmatrix} \begin{bmatrix} \lambda - 6 & 3 & 2 \\ -4 & \lambda + 1 & 2 \\ -10 & 5 & \lambda + 3 \end{bmatrix} \end{pmatrix}$$

$$= \lambda^3 - 2\lambda^2 + \lambda - 2$$

$$= (\lambda - 2)(\lambda^2 + 1)$$

(b) Decompondo $V=\mathbb{R}^3$ em soma direta: Como $p(\lambda)=(\lambda-2)(\lambda^2+1)$, podemos escrever

$$\mathbb{R}^3 = V_1 \oplus V_2$$

onde $V_1 = \text{Ker}(A - 2I)$ e $V_2 = \text{Ker}(A^2 + I)$.

(c) Encontrando geradores para V_1 e V_2 : Temos que

$$\begin{bmatrix} 4 & -3 & -2 \\ 4 & -3 & -2 \\ 10 & -5 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} 4x_1 - 3x_2 - 2x_3 = 0 \\ 10x_1 - 5x_2 - 5x_3 = 0 \end{cases} \Rightarrow x_1 = \frac{x_3}{2}, x_2 = 0.$$

Logo, se $v \in V_1 = \text{Ker}(A - 2I)$, temos: $v = (\frac{x_3}{2}, 0, x_3) = (\frac{1}{2}, 0, 1)$.

Podemos tomar $v_1 = \left(\frac{1}{2}, 0, 1\right)$, e temos que $V_1 = \langle v_1 \rangle$, o que mostra que V_1 tem dimensão 2.

E também temos que:

$$\begin{bmatrix} 5 & -5 & 0 \\ 0 & 0 & 0 \\ 10 & -10 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} 5x_1 - 5x_2 = 0 \\ 10x_1 - 10x_2 = 0 \end{cases} \Rightarrow x_1 = x_2$$

Logo, se $v \in V_1 = \text{Ker}(A^2 + I)$, temos:

$$v = (x_2, x_2, x_3) = x_2(1, 1, 0) + x_3(0, 0, 1).$$

Daí, podemos escolher os vetores

$$v_2 = (1, 1, 0)$$
 e $v_3 = (0, 0, 1)$.

E então $V_2 = \langle v_2, v_3 \rangle$. Além disso, V_2 tem dimensão 2.

(d) Compor uma base com os geradores de V_1 e V_2 e escrever a matriz de T nessa base: Podemos considerar a base

$$B = \{v_1, v_2, v_3\} = \{(\frac{1}{2}, 0, 1), (1, 1, 0), (0, 0, 1)\}$$

Calculemos T nessa base:

$$\begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = 2v_1 + 0v_2 + 0v_3$$

$$\begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 5 \end{bmatrix} = 0v_1 + 3v_2 + 5v_3$$

$$\begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix} = 0v_1 - 2v_2 - 3v_3$$

Logo, temos a representação de T na base B como uma matriz diagonal em blocos como se vê abaixo:

$$[T]_B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 5 & -3 \end{bmatrix}$$

O bloco (2) corresponde à restrição de T ao subespaço invariante $V_1 = \operatorname{Ker}(T-2I)$, enquanto o bloco

$$\begin{pmatrix} 3 & -2 \\ 5 & -3 \end{pmatrix}$$

é produzido pela restrição de T ao subespaço invariante $V_2 = \operatorname{Ker}(T^2 + I)$.

4.2 Exercício 2

(2) Seja V um espaço vetorial de dimensão finita sobre o corpo K. Seja $\mathscr F$ uma família de operadores triangularizáveis que comutam. Prove que:

- (a) Existe um autovetor comum a todos os operadores de \mathscr{F} , isto é, existe $v \in V$ não nulo tal que, para cada $T \in \mathscr{F}, T(v) = \lambda_T v$, para algum $\lambda_T \in K$. (Sugestão: Use indução na dimensão de V.)
- (b) Mostre que a família

$$\mathscr{G} = \{ T^t \in \mathscr{L}(V^*) | T \in \mathscr{F} \}$$

é uma família de operadores lineares que comutam.

- (c) Use o item (a) para obter $f \in V^*$ autovetor comum à família \mathscr{G} . Prove que ker f é invariante sob T, para todo $T \in \mathscr{F}$.
- (d) Use indução na dimensão de V (e o item (c)) para provar que existe uma base B de V tal que $[T]_B$ é triangular, para todo $T \in \mathscr{F}$.

- (a) Suponhamos a afirmação para espaços vetoriais de dimensão menor que n. Seja V um espaço com $\dim(V) = n$. Seja \mathscr{F} conjunto de operadores triangularizáveis que comutam. Se todo elemento de \mathscr{F} é múltiplo da identidade, então acaba. Senão, então existe $T \in \mathscr{F}$ que não é múltiplo da identidade, então, como T é triangularizável, então existe um autovalor c, aí, sendo $W = \operatorname{Ker}(T cI)$, então $W \neq 0$ e $\dim(W) < n$, aí, como os elementos de \mathscr{F} se comutam, então W é invariante para todo elemento de \mathscr{F} . Para $U \in \mathscr{F}$, então m_U é produto de fatores lineares, aí, como $m_{U \upharpoonright W} \mid m_U$, então $m_{U \upharpoonright W}$ é produto de fatores lineares, aí $U \upharpoonright W$ é triangularizável. Como $\dim(W) < n$, então existe um $v \in W$ não nulo tal que para cada $U \in \mathscr{F}$ exista um $\lambda \in K$ tal que $(U \upharpoonright W)(v) = \lambda v$, aí $U(v) = \lambda v$; aí acaba.
- (b) Para $T, U \in \mathscr{F}$ temos $T \circ U = U \circ T$, aí para $f \in V^*$ temos:

$$\begin{array}{lll} T^t(U^t(f)) & = & T^t(f \circ U) \\ & = & (f \circ U) \circ T \\ & = & f \circ (U \circ T) \\ & = & f \circ (T \circ U) \\ & = & (f \circ T) \circ U \\ & = & U^t(f \circ T) \\ & = & U^t(T^t(f)); \end{array}$$

logo $T^tU^t = U^tT^t$. Além disso, para todo $T \in \mathcal{F}$, então é fácil ver que T^t é triangularizável.

- (c) Pelo item (a), então existe $f \in V^*$ não nulo tal que para todo $T \in \mathscr{F}$ exista $\lambda \in K$ tal que $T^t(f) = \lambda f$, aí $f \circ T = \lambda f$, aí para $v \in \operatorname{Ker}(f)$ então f(v) = 0, aí $\lambda f(v) = 0$, aí f(T(v)) = 0, aí $T(v) \in \operatorname{Ker}(f)$; aí $\operatorname{Ker}(f)$ é T-invariante.
- (d) Suponhamos a afirmação válida para espaços com dimensão menor que n. Seja V tal que $\dim(V) = n$. Pegue um $f \in V^*$ não nulo tal que $\ker(f)$ seja invariante para todo elemento de \mathscr{F} , aí seja $W = \ker(f)$, então temos $n = \dim(V) = \dim(\ker(f)) + \dim(\operatorname{Im}(f)) = \dim(W) + 1$, aí $\dim(W) = n 1$. Para $T \in \mathscr{F}$, então m_T é produto de fatores lineares, mas $m_{T \upharpoonright W} \mid m_T$, aí $m_{T \upharpoonright W}$ é produto de fatores lineares, aí $T \upharpoonright W$ é triangularizável. Assim pela hipótese de indução existe base B de $\ker(f)$ tal que para todo $T \in \mathscr{F}$ então $[T \upharpoonright W]_B$ seja triangular, aí pegando um e_n tal que $e_n \notin W$, então $C = B \cup \{e_n\}$ é uma base e aí para todo $T \in \mathscr{F}$ existe um $\lambda \in K$ tal que:

$$[T]_C = \begin{pmatrix} [T \upharpoonright W]_B & * \\ 0 & \lambda \end{pmatrix},$$

aí $[T]_C$ é triangular.

4.3 Exercício 3

(3) Sejam V um K-espaço vetorial de dimensão finita e $T \in \mathcal{L}(V)$ um operador linear que comuta com todo operador diagonalizável de $\mathcal{L}(V)$. Prove que T é um múltiplo escalar do operador identidade.

Solução: Seja $A \in M_n(K)$ uma matriz que comute com toda matriz diagonalizável.

Para todo i, considerando a matriz:

$$B_i = \begin{pmatrix} 0 & 0 & 0 \\ & \ddots & & \ddots \\ 0 & 1 & & 0 \\ & \ddots & & \ddots \\ 0 & 0 & & 0 \end{pmatrix}$$

que vale 1 na entrada (i,i) e 0 nas outras, então B_i é diagonal, aí $B_iA = AB_i$, mas:

$$B_i A = \begin{pmatrix} 0 & 0 & 0 \\ & \ddots & & \ddots \\ a_{i,1} & a_{i,i} & a_{i,n} \\ & \ddots & & \ddots \\ 0 & 0 & 0 \end{pmatrix}$$

e

$$AB_{i} = \begin{pmatrix} 0 & a_{1,i} & 0 \\ & \ddots & & \ddots \\ 0 & a_{i,i} & 0 \\ & \ddots & & \ddots \\ 0 & a_{n,i} & 0 \end{pmatrix},$$

assim para todo $j \neq i$ temos $a_{i,j} = 0$ e $a_{j,i} = 0$. Portanto A é uma matriz diagonal:

$$A = \begin{pmatrix} a_1 & & 0 \\ & \ddots & \\ 0 & & a_n \end{pmatrix},$$

aí para i, j tais que i < j, consideremos a matriz:

$$C_{i,j} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ & \ddots & & \ddots & & \ddots & \\ 0 & 1 & 1 & 0 & 0 \\ & \ddots & & \ddots & & \ddots & \\ 0 & 0 & 0 & 0 & 0 & 0 \\ & \ddots & & \ddots & & \ddots & \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

que vale 1 nas entradas (i,i) e (i,j) e vale 0 nas outras, então $C_{i,j}$ é diagonalizável, aí $C_{i,j}A=AC_{i,j}$, mas:

$$C_{i,j}A = egin{pmatrix} 0 & 0 & 0 & 0 & 0 \ & \ddots & & \ddots & & \ddots & \ 0 & a_i & a_j & & 0 \ & \ddots & & \ddots & & \ddots & \ 0 & 0 & 0 & 0 & & 0 \ & \ddots & & \ddots & & \ddots & \ 0 & 0 & 0 & 0 & & 0 \end{pmatrix}$$

 \mathbf{e}

$$AC_{i,j} = egin{pmatrix} 0 & & 0 & & 0 & & 0 \ & \ddots & & \ddots & & \ddots & \ 0 & & a_i & & a_i & & 0 \ & \ddots & & \ddots & & \ddots & \ 0 & & 0 & & 0 & & 0 \ & \ddots & & \ddots & & \ddots & \ 0 & & 0 & & 0 & & 0 \end{pmatrix},$$

aí $a_i = a_j$. Logo A é múltiplo da identidade.

4.4 Exercício 4

(4) Seja $A \in \mathcal{M}_3(\mathbb{R})$ uma matriz não nula tal que $A^3 = -A$. Mostre que A é semelhante à matriz

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Solução: Considerando o polinômio $f(x)=x^3+x$, então f(A)=0. Aí, como a decomposição em fatores irredutíveis é $f(x)=x(x^2+1)$, então seja $V_1=\operatorname{Ker}(A)$ e $V_2=\operatorname{Ker}(A^2+I)$, então pela decomposição primária temos $\mathcal{M}_3(\mathbb{R})=V_1\oplus V_2$ e os subespaços V_1 e V_2 são A-invariantes. Assim sejam $A_1=A\upharpoonright V_1$ e $A_2=\upharpoonright V_2$. Como $A\neq 0$, então $V_1\neq V$, aí $\dim(V_1)\leq 2$, aí $\dim(V_2)\geq 1$. Além disso, temos $A_2^2+I=0$, aí $A_2^2=-I$, aí $\det(A_2)^2=(-1)^{\dim(V_2)}$, aí $\dim(V_2)$ deve ser par, aí $\dim(V_2)=2$, aí $\dim(V_1)=1$. Logo, pegue um $u\in V_1$ não nulo qualquer, então $\{u\}$ é base de V_1 . Pegue $e\in V_2$ não nulo, então mostraremos que $\{e,A_2(e)\}$ é base de V_2 . De fato, para $a,b\in\mathbb{R}$, se $ae+bA_2(e)=0$, então $A_2(ae+bA_2(e))=0$, aí $-be+A_2(e)=0$, aí:

$$0 = a0 - b0 = a(ae + bA_2(e)) - b(-be + A_2(e)) = (a^2 + b^2)e,$$

a
í $a^2 + b^2 = 0$, aí a = b = 0. Assim temos uma base B tal que:

$$[A]_B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

4.5 Exercício 5

(5) Sejam V um K-espaço vetorial de dimensão $n \in T \in \mathcal{L}(V)$ com polinômio minimal

$$m_T(t) = p_1(t)^{m_1} \cdot \ldots \cdot p_k(t)^{m_k},$$

onde $p_i(t)$ são distintos e irredutíveis em K[t]. Seja $V = V_1 \oplus \ldots \oplus V_k$ a decomposição primária de V, isto é, $V_i = \text{Ker}(p_i(T)^{m_i})$. Seja W um subespaço T-invariante de V. Mostre que

$$W = (W \cap V_1) \oplus \ldots \oplus (W \cap V_k).$$

Solução: Seja:

$$f_i(t) = \frac{m_T(t)}{p_i(t)^{m_i}}.$$

Então f_1, \ldots, f_k são primos entre si, aí existem g_1, \ldots, g_k tais que:

$$f_1g_1 + \dots + f_kg_k = 1.$$

Assim, para $w \in W$, então:

$$w = f_1(T)g_1(T)(w) + \cdots + f_k(T)g_k(T)(w),$$

e também:

$$p_i(T)^{m_i} f_i(T) q_i(T)(w) = m_T(T) q_i(T)(w) = 0,$$

aí:

$$f_i(T)q_i(T)(w) \in V_i$$

mas W é T-invariante, aí:

$$f_i(T)g_i(T)(w) \in W$$
,

aí:

$$f_i(T)g_i(T)(w) \in W \cap V_i$$
.

Portanto:

$$W = (W \cap V_1) + \ldots + (W \cap V_k),$$

e é fácil ver que esta soma é direta.

4.6 Exercício 6

(6) Sejam V um K-espaço vetorial de dimensão n e $T \in \mathcal{L}(V)$ com polinômio característico

$$p_T(t) = (t - \lambda_1)^{n_1} (t - \lambda_2)^{n_2} \cdot \dots \cdot (t - \lambda_k)^{n_k}$$

e polinômio minimal

$$m_T(t) = (t - \lambda_1)^{m_1} (t - \lambda_2)^{m_2} \cdot \dots \cdot (t - \lambda_k)^{m_k},$$

com λ_i distintos.

(a) Prove que, para cada i = 1, 2, ..., k, temos que

$$\dim \operatorname{Ker}(T - \lambda_i I)^{m_i} = n_i.$$

(b) Seja

$$W_i = \{v \in V : (T - \lambda_i I)^t(v) = 0, \text{ para algum inteiro } r \ge 0\}.$$

Prove que $W_i = \text{Ker}(T - \lambda_i I)^{m_i}$, para todo $i = 1, \dots, k$.

- (a) Sendo $V_i = \operatorname{Ker}(T \lambda_i I)^{m_i}$, então pela decomposição primária temos $V = V_1 \oplus \cdots \oplus V_k$ e cada V_i é T-invariante. Além disso, sendo $V_i' = \operatorname{Ker}(T \lambda_i I)^{n_i}$, então pela decomposição primária temos $V = V_1' \oplus \cdots \oplus V_k'$ e cada V_i' é T-invariante. Mas também temos $V_i \subseteq V_i'$ para cada i. Logo é fácil ver que $V_i = V_i'$ para todo i. Para cada i seja $T_i = T \upharpoonright V_i$. Então $p_T = p_{T_1} \dots p_{T_k}$. Além disso, para cada i temos $m_{T_i}(t) = (t \lambda_i)^{m_i}$. Assim λ_i é o único autovalor de T_i em V_i , mas p_{T_i} é produto de fatores lineares, assim $p_{T_i}(t) = (t \lambda_i)^{r_i}$ para algum r_i . Assim $p_T(t) = (t \lambda_1)^{r_1} \dots (t \lambda_k)^{r_k}$, aí, pela fatoração única de polinômios, para todo i temos $r_i = n_i$, aí $p_{T_i} = (t \lambda_i)^{n_i}$, aí dim $(V_i) = n_i$, aí dim $(\operatorname{Ker}(T \lambda_i I)^{m_i}) = n_i$.
- (b) É fácil ver que para todo i temos $V_i \subseteq W_i$. Agora, para cada i, então para $v \in W_i$ então existe r tal que $(T \lambda_i I)^r(v) = 0$, mas seja $v = v_1 + \dots + v_k$ com $v_j \in V_j$, então $0 = \sum_j (T \lambda_i I)^r(v_j)$ e para todo j temos $(T \lambda_i I)^r(v_j) \in V_j$, aí para todo $j \neq i$ temos $(T \lambda_i I)^r(v_j) = 0$, mas $(T \lambda_j I)^{m_j}(v_j) = 0$ e $(t \lambda_i)^r$ e $(t \lambda_j)^{m_j}$ são primos entre si, aí por Bézout temos $v_j = 0$; logo $v = v_i$, aí $v \in V_i$. Logo, $V_i = W_i$, ou seja, $W_i = \text{Ker}(T \lambda_i I)^{m_i}$.

4.7 Exercício 7

(7) Seja N um operador linear nilpotente em um espaço vetorial de dimensão finita n. Prove que o polinômio característico de N é $p_N(t) = t^n$.

Solução: Seja N um operador linear nilpotente. Então existe um $r \ge 1$ tal que $N^r = 0$.

Primeiro mostraremos que, se W é um subespaço tal que $W \neq V$, então existe um $\alpha \in V$ tal que $\alpha \notin W$ e $N(\alpha) \in W$. De fato, pegue um $\beta \in V$ tal que $\beta \notin W$, aí seja s o menor tal que $N^s(\beta) \in W$, então $s \geq 1$ e também $s \leq r$, assim $N^{s-1}(\beta) \notin W$ e $N(N^{s-1}(\beta)) \in W$.

Agora, apliquemos repetidamente o discurso do parágrafo anterior para chegarmos numa base ordenada (a_1,\ldots,a_n) . Seja $W_0=0$. Se $W_0\neq V$, então pegue um $\alpha_1\in V$ tal que $\alpha_1\notin W_0$ e $N(\alpha_1)\in W_0$, e aí seja W_1 o subespaço gerado por α_1 . Se $W_1\neq V$, então pegue um $\alpha_2\in V$ tal que $\alpha_2\notin W_1$ e $N(\alpha_2)\in W_1$, e aí seja W_2 o subespaço gerado por α_1,α_2 . Continue dessa maneira até obtermos n vetores α_1,\ldots,α_n . É fácil ver que, sendo $B=(\alpha_1,\ldots,\alpha_n)$ a base ordenada obtida, então $[N]_B$ é uma matriz estritamente triangular, assim seu polinômio característico é t^n .

Solução Alternativa 1: Faremos a resolução por indução na dimensão de V. Suponhamos o exercício válido para $\dim(V) < n$. Seja V espaço vetorial tal que $\dim(V) = n$ e seja $N \in L(V)$ tal que exista r tal que $N^r = 0$. Se V = 0, é fácil. Senão, então tome um $v \neq 0$ qualquer. Consideremos:

$$m_{N,v}(t) = t^m + \alpha_{m-1}t^{m-1} + \dots + \alpha_1t + \alpha_0,$$

o polinômio mônico de menor grau tal que $m_{N,v}(N)(v) = 0$. Então $B_1 = \{v, N(v), \dots, N^{m-1}(v)\}$ é linearmente independente. Além disso, como $N^r(v) = 0$, então $m_{N,v}(t) \mid t^r$, aí $m_{N,v}(t) = t^m$. Seja W o subespaço gerado por ele. Note que W é N-invariante e ainda:

$$[N \upharpoonright_W]_{B_1} = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix},$$

assim $p_{N \upharpoonright W}(t) = t^m$. Seja B uma base de V tal que $B_1 \subseteq B$ e seja $B_2 = \{\overline{b} : b \in B \setminus B_1\}$. Então B_2 é uma base de V/W e, sendo $\overline{N} \in L(V/W)$ o operador induzido, temos:

$$[N]_B = \begin{pmatrix} [N \upharpoonright_W]_{B_1} & * \\ 0 & [\overline{N}]_{B_2} \end{pmatrix},$$

assim é fácil ver que $p_N(t)=p_{N\restriction_W}(t)p_{\overline{N}}(t)$, mas também é fácil ver que $\overline{N}^r=0$, aí por hipótese de indução temos $p_{\overline{N}}(t)=t^{n-m}$, aí $p_N(t)=t^n$.

Solução Alternativa 2: Seja K um corpo algebricamente fechado. Nesse caso, sendo N a matriz que representa este operador nilpotente, temos que $N^r=0$ para algum $r\geq 1$. Então, sendo λ um autovalor de N, para $v\neq 0$, temos

$$N(v) = \lambda v \Rightarrow N^r(v) = \lambda^r v \Rightarrow 0 = \lambda^r v \Rightarrow \lambda^r = 0 \Rightarrow \lambda = 0$$

Portanto, todos os autovalores de N são nulos, e o polinômio característico de N será

$$p_N(t) = (t - \lambda_1) \dots (t - \lambda_n) = t^n$$

Se K não for algebricamente fechado, podemos fazer uma extensão L de K de modo que L seja algebricamente fechado, e considerar N e seu respectivo polinômio característico nesse corpo.

4.8 Exercício 8

(8) Seja V um K-espaço de dimensão finita e sejam $T, N \in L(V)$ tais que N é nilpotente e TN = NT. Prove que

(a) T é inversível se, e somente se, T + N é inversível.

(b)
$$det(T) = det(T + N) e p_T(t) = p_{T+N}(t)$$
.

Solução:

(a)

 (\Rightarrow) Como N é nilpotente, sabemos que existe m>0 tal que $N^m=0$. Assumindo que $N\neq 0$ (pois do contrário não há o que demonstrar), então m>1. Se T é inversível, podemos escrever

$$T + N = T(I + T^{-1}N)$$

Note também que

$$TN = NT \Rightarrow T^{-1}N = NT^{-1}$$
.

e consequentemente

$$(-T^{-1}N)^m = (-1)^m T^{-m} N^m = 0.$$

Lembrando da identidade polinomial

$$x^{m} - 1 = (x - 1) \sum_{i=0}^{m-1} x^{m-1-i},$$

que podemos reescrever como

$$1 - x^{m} = (1 - x) \sum_{i=0}^{m-1} x^{m-1-i},$$

podemos aplicá-la tomando $x = -T^{-1}N$, obtendo

$$1 - x^{m} = (1 - x) \sum_{i=0}^{m-1} x^{m-1-i} \Rightarrow 1 - (-T^{-1}N)^{m} = (1 - (-T^{-1}N)) \sum_{i=0}^{m-1} (-T^{-1}N)^{m-1-i} \Rightarrow 1 - (-T^{-1}N)^{m} = (1 - x) \sum_{i=0}^{m-1} x^{m-1-i} \Rightarrow 1 - (-T^{-1}N)^{m} = (1 - x) \sum_{i=0}^{m-1} x^{m-1-i} \Rightarrow 1 - (-T^{-1}N)^{m} = (1 - x) \sum_{i=0}^{m-1} (-T^{-1}N)^{m-1-i} \Rightarrow 1 - (-T^{-1}N)^{m} = (1 - x) \sum_{i=0}^{m-1} (-T^{-1}N)^{m-1-i} \Rightarrow 1 - (-T^{-1}N)^{m} = (1 - x) \sum_{i=0}^{m-1} (-T^{-1}N)^{m-1-i} \Rightarrow 1 - (-T^{-1}N)^{m} = (1 - x) \sum_{i=0}^{m-1} (-T^{-1}N)^{m-1-i} \Rightarrow 1 - (-T^{-1}N)^{m} = (1 - x) \sum_{i=0}^{m-1} (-T^{-1}N)^{m-1-i} \Rightarrow 1 - (-T^{-1}N)^{m-1-$$

$$I - (-T^{-1}N)^m = (I + T^{-1}N) \sum_{i=0}^{m-1} (-T^{-1}N)^{m-1-i}.$$

Mas por outro lado, temos que

$$I - (-T^{-1}N)^m = I - 0 = I$$

donde segue que

$$I - (-T^{-1}N)^m = (I + T^{-1}N) \sum_{i=0}^{m-1} (-T^{-1}N)^{m-1-i} \Rightarrow I = (I + T^{-1}N) \sum_{i=0}^{m-1} (-T^{-1}N)^{m-1-i}.$$

Logo, isso mostra que $(I + T^{-1}N)$ possui uma inversa, respectivamente:

$$\sum_{0}^{m-1} (-T^{-1}N)^{m-1-i}.$$

Daí, concluímos que ambos $T \in I + T^{-1}N$ são inversíveis; logo seu produto também o é. Mas

$$T(I + T^{-1}N) = T + N.$$

Portanto, segue que T+N é inversível.

(⇐) Se T+N é inversível, como -N é nilpotente e (T+N)(-N)=(-N)(T+N), então basta aplica (⇒) para T+N e -N em vez de T e N e concluir que (T+N)-N é inversível, aí T é inversível.

(b)

Se $\det(T) = 0$, então T não é inversível, aí, pelo item (a), a matriz T + N não é inversível, aí temos $\det(T + N) = 0$, aí $\det(T) = \det(T + N)$. Se $\det(T) \neq 0$, então T é inversível, aí utilizando que

$$T + N = T(I + T^{-1}N),$$

podemos inferir que:

$$\det(T+N) = \det(T)\det(I+T^{-1}N),$$

porém TN=NT e N é nilpotente, aí $T^{-1}N$ é nilpotente, assim, pela resolução do Exercício 7 da Lista 3, existe uma base B tal que a matriz de $T^{-1}N$ seja estritamente triangular superior, assim $I+T^{-1}N$ é triangular superior com todas as entradas na diagonal valendo 1, assim $\det(I+T^{-1}N)=1$, aí $\det(T+N)=\det(T)$.

(c)

Para todo t, então -N é nilpotente e também:

$$(tI - T)(-N) = (-N)(tI - T),$$

aí pelo item (b) temos:

$$p_T(t) = \det(tI - T)$$

$$= \det(tI - T - N)$$

$$= \det(ti - (T + N))$$

$$= p_{T+N}(t)$$

4.9 Exercício 9

(9) Seja

$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

Seja $T \in \mathcal{L}(\mathbb{R}^3)$ tal que $[T]_{can} = A$. Escreva T = D + N, com D diagonalizável, N nilpotente e DN = ND.

Solução: Vamos encontrar a decomposição de Jordan-Chevalley de A. Para isso, calculemos primeiramente o polinômio característico de A:

$$p_{A}(\lambda) = \det(\lambda I - A)$$

$$= \det \begin{pmatrix} \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} - \begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix} \end{pmatrix}$$

$$= \det \begin{pmatrix} \begin{bmatrix} \lambda - 3 & -1 & 1 \\ -2 & \lambda - 2 & 1 \\ -2 & -2 & \lambda \end{bmatrix} \end{pmatrix}$$

$$= \lambda^{3} - 5\lambda^{2} + 8\lambda - 4$$

$$= (\lambda - 2)^{2}(\lambda - 1).$$

Logo, os autovalores são $\lambda_1=2$ e $\lambda_2=1$. Consideremos então para cada autovalor λ_i , com $i=1,2,\ldots,k$, os polinômios da forma $W_i(t)=\prod_{\substack{j=1\\i\neq i}}^k(t-\lambda_j)^{\alpha_j}$. Temos então

$$W_1(t) = (t-1)$$
 e $W_2(t) = (t-2)^2$

Vamos encontrar agora polinômios $Q_1(t)$ e $Q_2(t)$ tais que $Q_1(t)W_1(t) + Q_2(t)W_2(t) = 1$.

Para este caso, observe que $(t-2)^2 = t^2 - 4t + 4 = (t-1)(t-3) + 1$, o que pode ser obtido dividindo-se W_2 por W_1 . Daí,

$$(3-t)(t-1) + 1 \cdot (t-2)^2 = 1 \Rightarrow Q_1(t) = (3-t)$$
 e $Q_2(t) = 1$

Calculemos o polinômio $D(t) = \sum_{i=1}^{k} \lambda_i Q_i(t) W_i(t)$. Temos para nosso caso:

$$D(t) = \sum_{i=1}^{2} \lambda_i Q_i(t) W_i(t)$$

$$= \lambda_1 Q_1(t) W_1(t) + \lambda_2 Q_2(t) W_2(t)$$

$$= 2(3-t)(t-1) + 1 \cdot (t-2)^2 \cdot 1$$

$$= -t^2 + 4t - 2$$

Portanto, temos que

$$D = D(A) = -A^2 + 4A - 2I = \begin{bmatrix} -9 & -3 & 4 \\ -8 & -4 & 4 \\ -10 & -6 & 4 \end{bmatrix} + \begin{bmatrix} 12 & 4 & -4 \\ 8 & 8 & -4 \\ 8 & 8 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ -2 & 2 & 2 \end{bmatrix}$$

Daí,

$$N = A - D = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ -2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & -1 \\ 2 & 0 & -1 \\ 4 & 0 & -2 \end{bmatrix}$$

De fato, pode-se verificar que $N^2 = 0$, e que D é diagonalizável. Além disso,

$$DN = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ -2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & -1 \\ 2 & 0 & -1 \\ 4 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 4 & 0 & -2 \\ 4 & 0 & -2 \\ 8 & 0 & -4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & -1 \\ 2 & 0 & -1 \\ 4 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ -2 & 2 & 2 \end{bmatrix} = ND$$

Portanto, A = D + N.

Observação: Em resumo, o processo para se encontrar a decomposição de Jordan-Chevalley de uma matriz A é o seguinte:

- \clubsuit Encontre o polinômio característico de A e seus respectivos autovalores $\lambda_1, \lambda_2, \dots \lambda_k$;
- \forall Para cada autovalor λ_i , escreva um polinômio da forma

$$W_i(t) = \prod_{\substack{j=1\\j\neq i}}^k (t-\lambda_j)^{\alpha_j} = (t-\lambda_1)^{\alpha_1} \cdot \ldots \cdot (t-\lambda_{i-1})^{\alpha_{i-1}} \cdot (t-\lambda_{i+1})^{\alpha_{i+1}} \cdot \ldots \cdot (t-\lambda_k)^{\alpha_k}$$

 \spadesuit Encontre polinômios $Q_1(t), Q_2(t), \ldots, Q_r(t)$ tais que

$$Q_1(t)W_1(t) + Q_2(t)W_2(t) + \ldots + Q_k(t)W_k(t) = 1$$

♥ Determine o polinômio

$$D(t) = \sum_{i=1}^{k} \lambda_i Q_i(t) W_i(t),$$

e encontre D = D(A).

 \maltese Calcule N = A - D.

4.10 Exercício 10

- (10) Sejam $A \in \mathcal{M}_n(K)$ e $T_A : \mathcal{M}_n(K) \to \mathcal{M}_n(K)$ o operador definido por $T_A(M) = AM MA$.
 - (a) Prove que se A é nilpotente, então T_A é nilpotente. Vale a recíproca?
- (b) Prove que se K é algebricamente fechado e se T_A é diagonalizável, então A é diagonalizável. (Sugestão: Para cada matriz $M \in \mathcal{M}_n(K)$ seja $\tilde{M} \in \mathcal{L}(K^n)$ o operador tal que $[\tilde{M}]_{can} = M$. Seja $v \in K^n$ um autovetor de \tilde{A} . Considere a transformação linear $\varphi \colon \mathcal{M}_n(K) \to K^n$ definida por $\varphi(M) = \tilde{M}(v)$. Prove que φ é sobrejetora.)

Solução:

(a) Se A é nilpotente, então existe um r > 0 tal que $A^r = 0$. Observe que

$$T_A^2(M) = T_A(T_A(M))$$

= $T_A(AM - MA)$
= $A(AM - MA) - ((AM - MA))A$
= $A^2M - 2AMA + MA^2$

Também temos que

$$T_A^3(M) = T_A(TA^2(M))$$

= $T_A(A^2M - 2AMA + MA^2)$
= $A(A^2M - 2AMA + MA^2) - (A^2M - 2AMA + MA^2)A$
= $A^3M - 3A^2MA + 3AMA^2 - MA^3$

Em geral, procedendo analogamente, temos que

$$T_A^k(M) = \sum_{i=0}^k (-1)^i \binom{k}{i} A^{k-i} M A^k$$

Logo, a menor potência de A que aparecerá em $T_A^k(M)$ será $\left\lfloor \frac{k}{2} \right\rfloor$.

Portanto, para $k \geq 2r$, a menor potência de A que aparecerá em $T_A^k(M)$ será no mínimo $\left\lfloor \frac{2r}{2} \right\rfloor = r$. Portanto, teremos $T_A^k(M) = 0$ para todo M, e portanto o operador T_A será nilpotente.

Observe que a recíproca não é verdadeira. Tome por exemplo $A=I_n$. Então nesse caso, temos que

$$T_{I_n}(M) = I_n M - M I_n = 0.$$

Logo, $T_{I_n} = 0$, que obviamente é nilpotente, mas $A = I_n$ não é nilpotente.

(b) Suponhamos que A possua um autovalor λ e T_A seja diagonalizável. Seja $v \neq 0$ tal que $Av = \lambda v$. Sejam $\lambda_1, \ldots, \lambda_r$ os autovalores de T_A . Para toda $M \in \mathcal{M}_n(K)$, então existem M_1, \ldots, M_r tais que:

$$M = M_1 + \cdots + M_r$$

e para todo i tenhamos:

$$T_A(M_i) = \lambda_i M_i$$
,

assim temos:

$$T_A(M_i)v = \lambda_i M_i v \Rightarrow AM_i v - M_i A v = \lambda_i M_i v$$

$$\Rightarrow AM_i v - \lambda M_i v = \lambda_i M_i v$$

$$\Rightarrow AM_i v = (\lambda_i + \lambda) M_i v,$$

aí $M_i v$ é autovetor de A; logo todo vetor da forma M v pode ser expresso como soma de autovetores de A. Além disso, como $v \neq 0$, então existe j tal que $v_j \neq 0$, assim para i seja $E_i \in \mathcal{M}_n(K)$ a matriz que vale v_j^{-1} na entrada (i,j) e 0 nas outras, então $E_i v = e_i$, em que $e_i \in K^n$ é o vetor que vale 1 na entrada i e 0 nas demais. Portanto toda matriz em $\mathcal{M}_n(K)$ é da forma M v para alguma $M \in \mathcal{M}_n(K)$, aí pode ser expressa como soma de autovalores de A. Logo A é diagonalizável.

Observação: T_A na verdade é um operador de derivação em $\mathcal{M}_n(K)$. Veja que $\forall M, N \in \mathcal{M}_n(K)$, temos que

$$T_A(M+N) = A(M+N) - (M+N)A$$

= $AM - MA + AN - NA$
= $T_A(M) + T_A(N)$;

$$T_A(MN) = AMN - MNA$$

$$= AMN - MAN + MAN - MNA$$

$$= (AMN - MAN) + (MAN - MNA)$$

$$= T_A(M)N + MT_A(N).$$

4.11 Exercício 11

(11) Encontre duas matrizes nilpotentes de ordem 4 que tenham o mesmo polinômio minimal, mas que não sejam semelhantes.

Solução: Sejam

Observe que $A^2=B^2=0$, e A e B possuem o mesmo polinômio minimal, mas A e B não são semelhantes. De fato, para matriz $P\in M_4(K)$, sendo:

$$P = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{pmatrix},$$

então:

е

$$BP = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_{1,1} & p_{1,2} & p_{1,3} & p_{1,4} \\ p_{2,1} & p_{2,2} & p_{2,3} & p_{2,4} \\ p_{3,1} & p_{3,2} & p_{3,3} & p_{3,4} \\ p_{4,1} & p_{4,2} & p_{4,3} & p_{4,4} \end{pmatrix} = \begin{pmatrix} p_{21} & p_{22} & p_{23} & p_{24} \\ 0 & 0 & 0 & 0 \\ p_{41} & p_{42} & p_{43} & p_{44} \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

assim, se PA = BP, então:

$$p_{21} = p_{22} = p_{23} = p_{41} = p_{42} = p_{43} = 0, \quad p_{13} = p_{24}, \quad p_{33} = p_{44},$$

 $\log P$ deve ser da forma:

$$P = \begin{pmatrix} p_{11} & p_{12} & a & p_{14} \\ 0 & 0 & 0 & a \\ p_{31} & p_{32} & b & p_{34} \\ 0 & 0 & 0 & b \end{pmatrix},$$

aí fica fácil ver que P não é inversível. Portanto, não existe matriz inversível P tal que $PAP^{-1} = B$, ou seja, A e B não são semelhantes.

Observação: Para ver que A e B não são semelhantes, também podemos olhar sua forma normal de Jordan e observar que elas possuem decomposições em blocos distintas.

Questões Suplementares

4.12 Exercício 12

(12) O teorema de Fine-Herstein estabelece que a quantidade de matrizes nilpotentes em $\mathbb{M}_n(\mathbb{F}_q)$ é q^{n^2-n} . Prove-o.

Solução:

4.13 Exercício 13

(13) Encontre uma matriz nilpotente $A \in \mathcal{M}_3(\mathbb{R})$ de ordem 3 que possui todas as entradas nãonulas.

Solução:

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$

4.14 Exercício 14

(14) Sejam $A, B \in \mathcal{M}_n(\mathbb{C})$ duas matrizes tais que

$$A^2B + AB^2 = 2ABA$$

(a) Para

$$A = \begin{pmatrix} 9 & 18 \\ -1 & 0 \end{pmatrix} \quad e \quad B = \begin{pmatrix} 0 & -9 \\ 2 & 9 \end{pmatrix}$$

encontre $k \in \mathbb{N}$ tal que $(AB - BA)^k = 0$.

(b) Prove que existe um inteiro k tal que $(AB - BA)^k = 0$.

5 Lista 4

5.1 Exercício 1

- (1) Sejam V um K-espaço vetorial de dimensão finita e $T \in \mathcal{L}(V)$.
 - (a) Prove que se existe um vetor cíclico para T então todo subespaço próprio T-invariante de V também tem um vetor cíclico.
 - (b) Vale a recíproca do item (a)? (Isto é, se todo subespaço próprio T-invariante W de Vtem um vetor cíclico para T_W , é verdade que existe um vetor cíclico para T?)

Solução:

(a) Sabemos que um vetor $v \in V$ é cíclico se Z(v,T) = V, onde

$$Z(v,T) = \{g(T)(v) \mid g(t) \in K[t]\}.$$

Para subespaço W que seja T-invariante, então seja $\{e_1,\ldots,e_m\}$ uma base de W. Para todo i então existe um polinômio p_i tal que $e_i=p_i(T)(v)$. Seja $p=\mathrm{mdc}(p_1,\ldots,p_m)$. Então por Bézout existem polinômios q_1,\ldots,q_m tais que $p_1q_1+\cdots+p_mq_m=p$, assim

$$p(T)(v) = q_1(T)(e_1) + \dots + q_m(T)(e_m) \in W,$$

aí, como $p \mid p_i$ para todo i, então, sendo w = p(T)(v), temos W = Z(w, T).

(b) A recíproca não é verdadeira. Seja $V=K^2$ e T=I. Então para todo $v\in V$ temos Z(v,T)=Kv. Todo subespaço próprio T-invariante tem dimensão no máximo 1, assim é da forma Ke=Z(e,T). Por outro lado, é fácil ver que para todo $v\in V$ temos $Z(v,T)=Kv\neq V$.

5.2 Exercício 2

(2) Sejam V um K-espaço vetorial de dimensão finita e $T \in \mathcal{L}(V)$. Prove que se T^2 tem um vetor cíclico, então T tem um vetor cíclico. Vale a recíproca?

Solução: Seja $n=\dim V$. Se v é um vetor cíclico para T^2 , isso quer dizer que $V=Z(v,T^2)$. Vejamos que $Z(v,T^2)\subseteq Z(v,T)$.

$$Z(v, T^{2}) = \{g(T^{2})(v) \mid g(t) \in K[t]\} = \langle v, T^{2}(v), T^{4}(v), \ldots \rangle \subseteq \langle v, T(v), T^{2}(v), \ldots \rangle = Z(v, T).$$

Logo, concluímos que

$$Z(v, T^2) \subseteq Z(v, T) \Rightarrow V \subseteq Z(v, T) \Rightarrow Z(v, T) = V$$

Assim, v é um vetor cíclico para T.

Observe que a recíproca não é verdadeira. Tome:

$$T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Então v = (1,0) é um vetor cíclico para T, mas $T^2 = I$, que não possui um vetor cíclico.

5.3 Exercício 3

- (3) Sejam V um K-espaço vetorial de dimensão $n \in T \in \mathcal{L}(V)$ um operador diagonalizável.
 - (a) Mostre que existe um vetor cíclico para T se, e somente se, T tem n autovalores distintos.
 - (b) Mostre que se T tem n autovalores distintos e se $\{v_1, \ldots, v_n\}$ é uma base de autovetores de T, então $v = v_1 + v_2 + \ldots + v_n$ é um vetor cíclico para T.

Solução:

(a) Se existe $v \in V$ tal que V = Z(v,T), então $\{v,T(v),\ldots,T^{n-1}(v)\}$ é base de V, aí m_T tem grau n, e sendo $\lambda_1,\ldots,\lambda_r$ os autovalores distintos, então

$$m_T(t) = (t - \lambda_1) \dots (t - \lambda_r).$$

Assim, concluímos que m_T tem grau r. Logo, r = n e T tem n autovalores distintos. A recíproca será resolvida no item (b).

(b) Se T tem n autovalores distintos e se $\{v_1, \ldots, v_n\}$ é uma base de autovetores de T, então para cada $i \in \{1, \ldots, n\}$. existe λ_i tal que $T(v_i) = \lambda_i v_i$; assim $\lambda_1, \ldots, \lambda_n$ devem ser distintos. Agora, considere para cada $i \in \{1, \ldots, n\}$,

$$q_i(t) = \prod_{j \neq i} (t - \lambda_j)$$
 e $p_i(t) = \frac{q_i(t)}{q_i(\lambda_i)}$,

então:

$$v_i = p_i(\lambda_1)v_1 + \dots + p_i(\lambda_n)v_n$$

= $p_i(T)v_1 + \dots + p_i(T)v_n$
= $p_i(T)(v_1 + \dots + v_n).$

Logo, $v_1 + \cdots + v_n$ é um vetor cíclico para T.

5.4 Exercício 4

(4) Prove que duas matrizes de ordem 3 são semelhantes se, e somente se, elas têm o mesmo polinômio característico e o mesmo polinômio minimal.

Solução:

5.5 Exercício 5

(5) Prove que toda matriz $A \in \mathcal{M}_n(K)$ é semelhante à sua transposta A^t .

Solução:

5.6 Exercício 6

- (6) Sejam V um K-espaço vetorial de dimensão $n \in T \in \mathcal{L}(V)$.
 - (a) Prove que Im T tem um complementar T-invariante se, e somente se, Im $T \cap \text{Ker } T = 0$.
 - (b) Se Im $T \cap \text{Ker } T = 0$, prove que Ker T é o único complementar de Im T que é T-invariante.

5.7 Exercício 7

(7) Seja $A \in \mathscr{M}_n(\mathbb{R})$ a matriz

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{bmatrix}$$

Encontre uma matriz inversível P tal que $P^{-1}AP$ esteja na forma racional.

Solução: Primeiramente, encontremos o polinômio característico e o polinômio minimal de A. Temos que

$$p_A(\lambda) = \det(A - \lambda I) \Rightarrow p_A(\lambda) = \det\left(\begin{bmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}\right) \Rightarrow$$

$$p_A(\lambda) = \det \begin{bmatrix} 1 - \lambda & 3 & 3 \\ 3 & 1 - \lambda & 3 \\ -3 & -3 & -5 - \lambda \end{bmatrix} \Rightarrow p_A(\lambda) = \lambda^3 + 3\lambda^2 - 4 \Rightarrow p_A(\lambda) = (\lambda - 1)(\lambda + 2)^2$$

O polinômio minimal será

$$m_A(\lambda) = (\lambda - 1)(\lambda + 2) = \lambda^2 + \lambda - 2$$

Dessa forma, temos que

$$V = Z(v_1, A) \oplus Z(v_2, A)$$

Como na decomposição cíclica, o A-anulador do primeiro vetor v_1 é o polinômio minimal, temos que

$$\dim(Z(v_1, A)) = \deg(m_A) = 2$$

Portanto, na decomposição, aparece apenas mais um vetor v_2 , sendo

$$\dim(Z(v_2, A)) = 1,$$

ou seja, v_2 é um vetor característico de A. O Aanulador de v_2 é $p_2 = \lambda - 2$, pois $p_A = p_1 p_2$. A matriz que representa $Z(v_1, A)$ será portanto, a matriz companheira de $p_1(\lambda) = m_A(\lambda)$. Assim,

$$A_1 = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix}$$

A matriz que representa $Z(v_2, A)$ será a matriz companheira de $p_2(\lambda) = \lambda + 2$. Assim,

$$A_2 = \left\lceil -2 \right\rceil$$

Portanto, temos que a forma racional de A é

$$R = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \Rightarrow R = \begin{bmatrix} 0 & 2 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Encontremos agora a matriz P. Para isso, precisaremos encontrar bases para $Z(v_1, A)$ e $Z(v_2, A)$. Vamos primeiramente descrever $V_1 = \text{Ker}(A - I)$ e $V_2 = \text{Ker}(A + 2I)$. • Para encontrar uma base para V_1 , seja $v=(x,y,z)\in V$. Então, temos que

$$(A-I)v = 0 \Rightarrow \begin{bmatrix} 0 & 3 & 3 \\ 3 & 0 & 3 \\ -3 & -3 & -6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{cases} 3y + 3z = 0 \\ 3x + 3z = 0 \\ -3x - 3y - 6z = 0 \end{cases} \Rightarrow v = z \cdot (-1, -1, 1)$$

Desse modo, temos que $V_1 = \text{Ker}(A - I) = \langle (-1, -1, 1) \rangle$. Denotemos $u_1 = (-1, -1, 1)$.

• Para encontrar uma base para V_2 , seja $v=(x,y,z)\in V$. Então, temos que

$$(A+2I)v=0\Rightarrow\begin{bmatrix}3&3&3\\3&3&3\\-3&-3&-3\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}\Rightarrow$$

$$\begin{cases} 3x + 3y + 3z = 0 \\ 3x + 3y + 3z = 0 \\ -3x - 3y - 3z = 0 \end{cases} \Rightarrow v = y \cdot (-1, 1, 0) + z(-1, 0, 1)$$

Desse modo, temos que $V_2 = \text{Ker}(A+2I) = \langle (-1,1,0), (-1,0,1) \rangle$. Denotemos $u_2 = (-1,1,0)$ e $u_3 = (-1,0,1)$.

Para encontrar v_1 , como $p_1 = m_A$, precisamos escolher um vetor de V_1 e um de V_2 . Podemos então tomar $v_1 = u_1 + u_2$ (poderia ser $u_1 + u_3$ também), e assim

$$v_1 = (-1, -1, 1) + (-1, 1, 0) \Rightarrow v_1 = (-2, 0, 1).$$

Sabemos que $\{v_1, Av_1\}$ é uma base para $Z(v_1, A)$. Então,

$$Av_1 = \begin{bmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$$

Logo, $\mathscr{B} = \{(-2,0,1), (1,-3,1)\}$ é base para $Z(v_1,A)$. Para encontrar v_2 , como $p_2 = \lambda + 2$, podemos tomar $v_2 = u_3$. Logo,

$$v_2 = u_3 \Rightarrow v_2 = (-1, 0, 1)$$

Assim, temos que $\mathscr{B}_2 = \{v_2\} = \{(-1,0,1)\}$ é base para $Z(v_2,A)$. A matriz P será composta pelos vetores de \mathscr{B}_1 e \mathscr{B}_2 dispostos em suas colunas. Assim,

$$P = \begin{bmatrix} -2 & 1 & -1 \\ 0 & -3 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Com efeito, uma rápida verificação mostra que

$$P^{-1}AP = \begin{bmatrix} -1 & -\frac{2}{3} & -1 \\ 0 & -\frac{1}{3} & 0 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{bmatrix} \begin{bmatrix} -2 & 1 & -1 \\ 0 & -3 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} = R \Rightarrow R = P^{-1}AP,$$

como queríamos.

5.8 Exercício 8

(8) Seja $A \in \mathscr{M}_n(\mathbb{R})$ a matriz

$$A = \begin{bmatrix} 3 & -4 & -4 \\ -1 & 3 & 2 \\ -3 & -3 & -5 \end{bmatrix}$$

Encontre vetores $\{v_1,\ldots,v_r\}$ que satisfazem as condições do Teorema da Decomposição Cíclica.

Solução:

5.9 Exercício 9

(9) Sejam N_1 e N_2 matrizes de ordem 6 nilpotentes. Suponha que elas têm o mesmo polinômio minimal e o mesmo posto. Prove que elas são semelhantes. Mostre que o mesmo resultado não é verdadeiro para matrizes de ordem 7.

Solução:

5.10 Exercício 10

(10) Seja $A \in \mathcal{M}_n(\mathbb{R})$, tal que $A^2 + I = 0$. Prove que n = 2k e que A é semelhante à matriz

$$A = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix},$$

onde $I \in \mathscr{M}_k(\mathbb{R})$ é a matriz identidade.

Solução:

5.11 Exercício 11

(11) Sejam V um K-espaço vetorial de dimensão finita e $T \in \mathcal{L}(V)$. Prove que T tem um vetor cíclico se, e somente se a seguinte afirmação é verdadeira: "Todo operador linear que comuta com T é um polinômio em T."

Solução:

(a) Se T tem um vetor cíclico, então, para todo operador linear U que comuta com T, o conjunto W = Im(U) é um subespaço T-invariante. Pelo Exercício 1 da Lista 4, existe w tal que W = Z(w,T), aí existe um polinômio p tal que U(v) = p(T)(w). Assim, para todo k, temos que

$$UT^k(v) = T^k \textcolor{red}{U}(v) = T^k \textcolor{red}{p(\textcolor{red}{T})}(v) = p(\textcolor{red}{T})T^k(v).$$

Logo, como $\{v, T(v), T^2(v) \dots\}$ gera V, então U = p(T).

5.12 Exercício 12

(12) Sejam V um K-espaço vetorial de dimensão finita e $T \in \mathcal{L}(V)$. Prove que todo vetor não nulo $v \in V$ é um vetor cíclico para T se, e somente se, o polinômio característico de T é irredutível em K[t].

5.13 Exercício 13

(13) Sejam V um K-espaço vetorial de dimensão finita e $T \in \mathcal{L}(V)$. Suponha que o polinômio minimal de T é igual ao polinômio característico de T e é uma potência de um polinômio irredutível. Prove que nenhum subespaço não trivial de V invariante sob T tem um complementar que também é invariante sob T.

Solução:

5.14 Exercício 14

(14) Determine a forma racional R da matriz

$$\begin{bmatrix} 1 & 2 & 0 & 4 \\ 4 & 1 & 2 & 0 \\ 0 & 4 & 1 & 2 \\ 2 & 0 & 4 & 1 \end{bmatrix} \in \mathcal{M}_4(\mathbb{R})$$

e encontre uma matriz inversível P tal que $P^{-1}AP = R$.

Solução:

5.15 Exercício 15

(15) Seja $T \in \mathcal{L}(K^6)$ com polinômio minimal $m_T(x) = (x^2 - 2)(x^2 + 1)$. Ache as possibilidades para a forma racional de T para $K = \mathbb{Q}, K = \mathbb{R}$ e $K = \mathbb{C}$.

Solução:

5.16 Exercício 16

(16) Seja $T \in \mathcal{L}(\mathbb{R}^4)$ um operador linear tal que $t^2 + 3$ é um divisor do polinômio minimal de T e 1 é o único autovalor de T. Quais são as possíveis a formas racionais de T?

Solução:

5.17 Exercício 17

(17) Classifique, a menos de semelhança, as matrizes reais de ordem 6 com polinômio minimal

$$(t-1)^2(t+1)(t-2)$$
.

Solução:

5.18 Exercício 18

(18) Determine quais das matrizes seguintes são semelhantes:

$$A = \begin{bmatrix} -1 & 4 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ 13 & -16 & 2 & -1 \\ -9 & -13 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & -8 & -6 & 0 \\ -1 & 5 & 3 & 0 \\ 2 & -8 & -5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{e} \quad C = \begin{bmatrix} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & -4 & -1 \end{bmatrix}.$$

5.19 Exercício 19

(19) Mostre que as matrizes complexas

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{e} \quad B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i \end{bmatrix}$$

são semelhantes.

Solução:

5.20 Exercício 20

(20) Classifique, a menos de semelhança, todas as matrizes de ordem 6 nilpotentes.

Solução:

5.21 Exercício 21

(21) Encontre a forma de Jordan real J da matriz

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ -2 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & -1 & -1 \end{bmatrix}$$

e a matriz P tal que $P^{-1}AP = J$.

Solução:

5.22 Exercício 22

(22) Seja

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}.$$

Determine a forma de Jordan J de A e encontre uma matriz inversível P tal que $P^{-1}AP = J$.

Solução: Para encontrar a forma de Jordan de A, vamos primeiramente encontrar o polinômio característico e o minimal de A. Temos que

$$p_A(\lambda) = \det(A - \lambda I) = \det \left(\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right) =$$

$$\det \left(\begin{bmatrix} -\lambda & 1 & 0 & 0 \\ 0 & -\lambda & 1 & 0 \\ 0 & 0 & -\lambda & 1 \\ 0 & 0 & -1 & -\lambda \end{bmatrix} \right) = \lambda^4 + \lambda^2 \Rightarrow p_A(\lambda) = \lambda^2(\lambda + i)(\lambda - i)$$

Sabemos que o polinômio minimal é o polinômio de menor grau que anula T. Além disso, $m_A(t) \mid p_A(t)$. Nesse caso, uma inspeção direta mostra que $m_A(t) = p_A(t) = \lambda^2(\lambda+i)(\lambda-i)$. Portanto, os autovalores de A são 0, i e -i. A quantidade de vezes que cada um aparecerá em J é exatamente sua multiplicidade algébrica, ou seja, a multiplicidade em $p_a(t)$. Desse modo, já sabemos que 0 aparecerá duas vezes, enquanto i e -i aparecerão uma vez cada. Resta-nos agora determinar quantos blocos de Jordan estão associados a cada autovalor.

Para isso, vamos calcular a dimensão de cada autoespaço associado. Temos:

• $\dim(\operatorname{Ker}(A^2)) = 2$. Observe que A^2 possui 2 linhas linearmente independentes:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \xrightarrow{L_3 = L_3 + L_1 \atop L_4 = L_4 + L_2} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Logo, posto(A) = 2, e portanto

$$\dim(\operatorname{Ker}(A)) = 4 - \operatorname{posto}(A) \Rightarrow \dim(\operatorname{Ker}(A)) = 4 - 2 \Rightarrow \dim(\operatorname{Ker}(A)) = 2$$

Encontremos os autovetores que geram $Ker(A^2)$. Temos que:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow (x, y, z, w) = x \cdot (1, 0, 0, 0) + y \cdot (0, 1, 0, 0)$$

Logo, $Ker(A) = \langle (1, 0, 0, 0), (0, 1, 0, 0) \rangle$.

• $\dim(\operatorname{Ker}(A-iI))=1$. Temos que

$$A - iI = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} - \begin{bmatrix} i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & i \end{bmatrix} = \begin{bmatrix} -i & 1 & 0 & 0 \\ 0 & -i & 1 & 0 \\ 0 & 0 & -i & 1 \\ 0 & 0 & -1 & -i \end{bmatrix} \xrightarrow{L_4 = L_4 - iL_3} \begin{bmatrix} -i & 1 & 0 & 0 \\ 0 & -i & 1 & 0 \\ 0 & 0 & -i & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Portanto, posto(A-iI)=3, e dim $({\rm Ker}(A-iI))=1$. Encontremos agora um autovetor que gera ${\rm Ker}(A-iI)$. Para isso, basta resolver o sistema

$$\begin{bmatrix} -i & 1 & 0 & 0 \\ 0 & -i & 1 & 0 \\ 0 & 0 & -i & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow (x, y, z, w) = w \cdot (i, -1, -i, 1)$$

Portanto, $Ker(A - iI) = \langle (i, -1, -i, 1) \rangle$

• $\dim(\operatorname{Ker}(A+iI))=1$. Temos que

$$A + iI = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} + \begin{bmatrix} i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & i \end{bmatrix} = \begin{bmatrix} i & 1 & 0 & 0 \\ 0 & i & 1 & 0 \\ 0 & 0 & i & 1 \\ 0 & 0 & -1 & i \end{bmatrix} \xrightarrow{L_4 = L_4 + iL_3} \begin{bmatrix} i & 1 & 0 & 0 \\ 0 & i & 1 & 0 \\ 0 & 0 & i & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Portanto, posto(A + iI) = 3, e dim(Ker(A + iI)) = 1. Encontremos agora um autovetor que gera Ker(A + iI). Para isso, basta resolver o sistema

$$\begin{bmatrix} i & 1 & 0 & 0 \\ 0 & i & 1 & 0 \\ 0 & 0 & i & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow (x, y, z, w) = w \cdot (-i, -1, i, 1)$$

Portanto, $Ker(A - iI) = \langle (-i, -1, i, 1) \rangle$.

Portanto, a forma de Jordan de A será

$$J = \begin{bmatrix} J_0 & 0 & 0 \\ 0 & J_i & 0 \\ 0 & 0 & J_{-i} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i \end{bmatrix}$$

Para encontrar a matriz P, basta colocar na i-ésima coluna o autovetor que gera o respectivo autoespaço associado ao autovalor da i-ésima coluna de J. Assim,

$$P = \begin{bmatrix} 1 & 0 & i & -i \\ 0 & 1 & -1 & -1 \\ 0 & 0 & -i & i \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

De fato,

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & \frac{i}{2} & \frac{1}{2} \\ 0 & 0 & -\frac{i}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & i & -i \\ 0 & 1 & -1 & -1 \\ 0 & 0 & -i & i \\ 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i \end{pmatrix}$$

5.23 Exercício 23

(23) Seja V um espaço vetorial de dimensão n, com $n \ge 2$ e seja T um operador linear em V de posto 2. Determine todas as possíveis formas de Jordan de T.

Solução:

5.24 Exercício 24

(24) Seja $T: \mathscr{P}_n(\mathbb{R}) \to \mathscr{P}_n(\mathbb{R})$ o operador linear definido por

$$T(p(t)) = p(t+1).$$

- (a) Determine a forma de Jordan de T.
- (b) Se n=4, encontre uma base B de $\mathscr{P}_n(\mathbb{R})$ tal que $[T]_B$ esteja na forma de Jordan.

Solução:

5.25 Exercício 25

(25) Determine o número de matrizes não semelhantes A em $\mathcal{M}_6(\mathbb{R})$ satisfazendo

$$(A-2I)^3 = 0.$$

5.26 Exercício 26

(26) Seja $T: \mathbb{R}^6 \to \mathbb{R}^6$ um operador linear com polinômio característico

$$p_T(t) = (t-a)^3 (t-b)^3,$$

polinômio minimal

$$m_T(t) = (t-a)^2(t-b)$$

e $a \neq b$. Determine a forma racional e a forma de Jordan de T.

Solução:

5.27 Exercício 27

(27) Classifique, a menos de semelhança, todas as matrizes reais de ordem 7 com polinômio característico

$$p_T(t) = (t-1)^4(t-2)^2(t-3).$$

Solução: Sabemos que duas matrizes são semelhantes se, e somente se, possuem a mesma forma de Jordan. Logo, todas as matrizes reais de ordem 7 serão semelhantes a uma das formas de Jordan determinadas pelo operador $T \colon \mathbb{R}^7 \to \mathbb{R}^7$ que possui o polinômio característico acima. Daí, observe que

- Como t-1 tem expoente 4 em $p_T(t)$, o autovalor 1 deve aparecer quatro vezes na diagonal principal;
- Como t-2 tem expoente 2 em $p_T(t)$, o autovalor 2 deve aparecer duas vezes na diagonal principal;
- Como t-3 tem expoente 2 em $p_T(t)$, o autovalor 3 deve aparecer uma vez na diagonal principal.

Assim, as formas canônicas de Jordan possíveis são:

$$\begin{pmatrix} 1 & 1 & 0 & 0 & | & 0 & | & 0 \\ 0 & 1 & 1 & 0 & | & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 1 & | & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 & | & 0 & |$$

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\ \end{pmatrix}$$

5.28 Exercício 28

(28) Determine a forma racional e a forma de Jordan da matriz real

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -3 & 0 & 0 & -1 & -1 \\ -3 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & 3 & 3 \\ -2 & -2 & 0 & -2 & 3 \end{bmatrix}.$$

Solução:

5.29 Exercício 29

(29) Seja V um espaço vetorial de dimensão finita n sobre o corpo K e seja $T \in \mathcal{L}(V)$. Seja $f \in K[t]$ um polinômio mônico, irredutível e de grau $d \geq 1$.

- (a) Suponha que $d \mid n$. Prove que existe $T \in \mathcal{L}(V)$ tal que o polinômio minimal de T é f.
- (b) Se $T \in \mathcal{L}(V)$ é tal que seu polinômio minimal tem grau d e é irredutível em K[t], é verdade que $d \mid n$? Justifique.

Solução:

5.30 Exercício 30

(30) Dê a forma de Jordan de um operador linear $T: \mathbb{R}^7 \to \mathbb{R}^7$ com polinômio característico $p_T(t) = (t-1)^2(t-2)^4(t-3)$ e tal que dim(Ker(T-2I)) = 2, dim(Ker(T-I)) = 1 e $\text{Ker}(T-2I)^3 \neq \text{Ker}(T-2I)^2$.

Solução:

Questões Suplementares

5.31 Exercício 31

(31) Seja V um espaço vetorial de dimensão n e considere $T: V \to V$ cuja matriz na base canônica é $A \in \mathcal{M}_n(\mathbb{R})$, que possui como polinômio característico

$$p_A(t) = (t - \lambda_1)^{P(a_1)} \cdot (t - \lambda_2)^{P(a_2)} \cdot \dots \cdot (t - \lambda_k)^{P(a_k)},$$

onde P(k) representa o k-ésimo número pentagonal, e $(a_n)_{n\geq 1}$ é a sequência definida recursivamente por

$$\begin{cases} a_1 = 2, \\ a_{n+1} = 7n - a_n - 9, \forall n > 1 \end{cases}$$

- (a) Prove que n não pode ser 2019.
- (b) Mostre que a quantidade de formas de Jordan que a matriz A pode ter é um múltiplo de 7.

6 Lista 5

Nesta lista, V é um K-espaço com produto interno \langle , \rangle em que $K = \mathbb{R}$ ou $K = \mathbb{C}$.

6.1 Exercício 1

- (1) Faça o que se pede:
 - (a) Se $K = \mathbb{R}$, mostre que, para $u, v \in V$,

$$\langle u, v \rangle = 0 \Leftrightarrow ||u + v||^2 = ||u||^2 + ||v||^2.$$

- (b) Mostre que (a) é falso se $K = \mathbb{C}$.
- (c) Se $K = \mathbb{C}$, mostre que para $u, v \in V$,

$$\langle u, v \rangle = 0 \Leftrightarrow \|\alpha u + \beta v\|^2 = \|\alpha u\|^2 + \|\beta v\|^2,$$

para todos $\alpha, \beta \in \mathbb{C}$.

Solução:

(a) Observando que

$$||v|| = \sqrt{\langle v, v \rangle} \Rightarrow ||u + v|| = \sqrt{\langle u + v, u + v \rangle},$$

a partir das propriedades do produto interno, segue que

$$||u+v||^2 = \sqrt{\langle u+v, u+v \rangle^2} = \langle u+v, u+v \rangle =$$

$$\langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle =$$

$$\|u\|^{2} + 0 + 0 + \|v\|^{2} = \|u\|^{2} + \|v\|^{2} \Rightarrow \overline{\|u + v\|^{2} = \|u\|^{2} + \|v\|^{2}}$$

Agora, se $||u+v||^2 = ||u||^2 + ||v||^2$, então temos que

$$||u+v||^{2} = \langle u+v, u+v \rangle = ||u||^{2} + ||v||^{2} + 2\langle u, v \rangle \Rightarrow ||u+v||^{2} = ||u||^{2} + ||v||^{2} + 2\langle u, v \rangle \Rightarrow ||u+v||^{2} = ||u||^{2} + ||v||^{2} + 2\langle u, v \rangle \Rightarrow 2\langle u, v \rangle = 0 \Rightarrow \boxed{\langle u, v \rangle = 0}$$

6.2 Exercício 2

(2) Mostre que vale a lei do paralelogramo:

$$||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2, \ \forall u, v \in V$$

Solução:

6.3 Exercício 3

(3) Se $K = \mathbb{R}$, mostre que, para $u, v \in V, ||u|| = ||v||$ se, e somente se, u + v e u - v são ortogonais. Discuta a afirmação para $K = \mathbb{C}$.

6.4 Exercício 4

- (4) Seja V um espaço vetorial sobre um corpo K.
- (a) Se $K = \mathbb{C}$, mostre que vale a identidade de polarização, para todos $u, v \in V$:

$$4\langle u, v \rangle = \|u + v\|^2 - \|u - v\|^2 + i\|u + iv\|^2 - i\|u - iv\|^2$$

(b) Se $K = \mathbb{R}$, mostre que vale a identidade de polarização, para todos $u, v \in V$:

$$4\langle u, v \rangle = ||u + v||^2 - ||u - v||^2$$

Solução:

6.5 Exercício 5

- (5) Encontre uma base ortonormal de cada um dos seguintes subespaços S e determine também, em cada caso, o subespaço S^{\perp} .
 - (a) S é o subespaço de \mathbb{C}^3 gerado pelos vetores $v_1 = (1,0,i)$ e $v_2 = (2,1,1+i)$, com o produto interno usual.
 - (b) $S = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$, com o produto interno usual.

(c)
$$S = \{p(t) \in \mathscr{P}_3(\mathbb{R}) | tp'(t) = p(t)\} \in \langle p, q \rangle = \int_0^1 p(t)q(t) dt$$

- (d) $S = \{A \in \mathcal{M}_3(\mathbb{R}) | \operatorname{tr}(A) = 0\} \in \langle A, B \rangle = \operatorname{tr}(AB^t).$
- (e) $S = \langle (1, -1, 1) \rangle$, com o produto interno usual.

Solução:

6.6 Exercício 6

(6) Prove que se

$$|\langle u, v \rangle| = ||u|| ||v||,$$

então u e v são linearmente dependentes.

Solução:

6.7 Exercício 7

(7) Sejam W um subespaço de V e $v \in V$. Um vetor $w \in W$ é uma $melhor\ aproximação\ para\ v$ por vetores em W se

$$||v-w|| \le ||v-u||$$
, para todo $u \in W$.

Prove que

- (a) O vetor $w \in W$ é uma melhor aproximação para $v \in V$ por vetores em W se, e somente se, $v-w \in W^{\perp}$.
- (b) Se uma melhor aproximação para $v \in V$ por vetores em W existe, então ela é única.
- (c) Se dim $W < \infty$ então existe uma melhor aproximação para $v \in V$ por vetores em W e ela é dada por $w = \sum_{i=1}^k \langle v, e_i \rangle e_i$, onde $\{e_1, \dots, e_k\}$ é uma base ortonormal qualquer de W.

Tal vetor é chamado de projeção ortogonal de v em W.

Solução:

6.8 Exercício 8

- (8) Sejam W um subespaço de V e $v \in V$. Seja $E: V \to V$ a função tal que E(v) = w, a projeção ortogonal de v em W. (Assuma que, para todo $v \in V$, existe tal w.) Prove que
 - (a) E é um operador linear em V.
 - (b) E é idempotente.
 - (c) Im E = W e Ker $E = W^{\perp}$.
 - (d) $V = W \oplus W^{\perp}$.

Solução:

6.9 Exercício 9

(9) Seja W um subespaço de dimensão finita de V. Existem, em geral, várias projeções cuja imagem é W. Uma delas, a projeção ortogonal, tem a propriedade que $||E(v)|| \le ||v||$, para todo $v \in V$. Prove se $E \in \mathcal{L}(V)$ é uma projeção cuja imagem é W e $||E(v)|| \le ||v||$, para todo $v \in V$, então E é a projeção ortogonal em W. (Sugestão: Prove que $\langle E(v), v - E(v) \rangle = 0$, para todo $v \in V$ se, e somente se, $\langle u, E(v) \rangle = 0$, para todo $u \in \operatorname{Ker} E$ e $v \in V$.)

Solução:

6.10 Exercício 10

(10) Sejam W um subespaço de dimensão finita de V e E a projeção ortogonal de V em W. Prove que $\langle E(v), u \rangle = \langle v, E(u) \rangle$ para todos $u, v \in V$.

Solução:

6.11 Exercício 11

- (11) Sejam V e W espaços vetoriais de mesma dimensão (finita) sobre K e com produtos internos \langle,\rangle_V e \langle,\rangle_W , respectivamente. Seja $T:V\to W$ uma transformação linear. Prove que as seguintes afirmações são equivalentes:
 - (a) $\langle T(u), T(v) \rangle_W = \langle u, v \rangle$, para todos $u, v \in V$.
 - (b) T leva **toda** base ortonormal de V em uma base ortonormal de W.
 - (c) T leva **uma** base ortonormal de V em uma base ortonormal de W.
 - (d) $||T(v)||_W = ||v||_V$ para todo $v \in V$.

Tal T é um isomorfismo de espaços com produto interno.

Solução:

6.12 Exercício 12

(12) Uma matriz $A \in \mathcal{M}_n(K)$ é chamada ortogonal se $AA^t = I_n$ e unitária se $AA^* = I_n$. Encontre um exemplo de uma matriz complexa unitária que não é ortogonal e um exemplo de uma matriz que é ortogonal e não é unitária.

Solução:

6.13 Exercício 13

(13) Seja $T \in \mathcal{L}(V)$ um isomorfismo de espaços com produto interno, isto é,

$$\langle T(u), T(v) \rangle = \langle u, v \rangle,$$

para todos $u,v\in V$. Prove que T possui um adjunto e $T^*=T^{-1}$. Prove que vale também a recíproca, isto é, se T possui um adjunto com $T^*=T^{-1}$, então T é um isomorfismo de espaços com produto interno. Tal T é chamado operador unitário se $K=\mathbb{C}$ e ortogonal se $K=\mathbb{R}$.

Solução: (\Rightarrow) Para provar que T possui um adjunto, precisamos verificar que existe $T^* \in \mathcal{L}(V)$ tal que

$$\langle T(u), v \rangle = \langle u, T^*(v) \rangle, \quad \forall u, v \in V$$

Como T é um isomorfismo, sabemos que existe $T^{-1} \in \mathcal{L}(V)$. Consideremos o vetor $v = T^{-1}(w)$. Daí, $\forall u, w \in V$:

$$\begin{split} \left\langle T(u), T(v) \right\rangle &= \left\langle u, v \right\rangle & \Rightarrow & \left\langle T(u), T(T^{-1}(w)) \right\rangle = \left\langle u, T^{-1}(w) \right\rangle \\ & \Rightarrow & \left\langle T(u), w \right\rangle = \left\langle u, T^{-1}(w) \right\rangle. \end{split}$$

Logo, T possui um adjunto, e $T^* = T^{-1}$.

 (\Leftarrow) Se $T \in \mathcal{L}(V)$ possui um operador adjunto $T^* \in \mathcal{L}(V)$, sabemos por definição que

$$\langle T(u), v \rangle = \langle u, T^*(v) \rangle, \quad \forall u, v \in V$$

Como $T^* = T^{-1}$, escrevendo v = T(w), temos que

$$\begin{split} \left\langle T(u),v\right\rangle &= \left\langle u,T^*(v)\right\rangle &\ \Rightarrow\ \left\langle T(u),v\right\rangle = \left\langle u,T^{-1}(v)\right\rangle \\ &\ \Rightarrow\ \left\langle T(u),T(w)\right\rangle = \left\langle u,T^{-1}(T(w))\right\rangle \\ &\ \Rightarrow\ \left\langle T(u),T(w)\right\rangle = \left\langle u,T^{-1}(T(w))\right\rangle \\ &\ \Rightarrow\ \left\langle T(u),T(w)\right\rangle = \left\langle u,w\right\rangle. \end{split}$$

Logo, T é um isomorfismo.

Solução:

6.14 Exercício 14

(14) Seja T o operador linear em \mathbb{C}^2 (com o produto interno usual) definido por: T(1,0) = (1+i,2) e T(0,1) = (i,i). Determine a matriz de T^* em relação à base canônica de \mathbb{C}^2 . Vale que $TT^* = T^*T$?

Solução: Seja $A \in \mathcal{M}_2(\mathbb{C})$ a matriz que representa T. Pelas informações do enunciado, se

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix},$$

devemos ter

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1+i \\ 2 \end{pmatrix} \quad e \quad \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} i \\ i \end{pmatrix}.$$

Daí, segue que $\alpha=1+i, \gamma=2,$ e $\beta=\delta=i.$ Portanto, a matriz de T na base canônica de \mathbb{C}^2 é

$$\begin{pmatrix} 1+i & i \\ 2 & i \end{pmatrix}.$$

Observe que a matriz adjunta T^* corresponde ao hermitiano de A, ou seja,

$$[T^*]_{\operatorname{can}} = A^* = A^H = \overline{A}^t.$$

Logo, temos que a matriz procurada é

$$[T^*]_{can} = A^* = \overline{\begin{pmatrix} 1+i & i \\ 2 & i \end{pmatrix}}^t = \begin{pmatrix} 1-i & -i \\ 2 & -i \end{pmatrix}^t = \begin{pmatrix} 1-i & 2 \\ -i & -i \end{pmatrix}$$

Observe que

$$AA^* = \begin{pmatrix} 1+i & i \\ 2 & i \end{pmatrix} \begin{pmatrix} 1-i & 2 \\ -i & -i \end{pmatrix} = \begin{pmatrix} 3 & 3+2i \\ 3-2i & 5 \end{pmatrix}$$
$$A^*A = \begin{pmatrix} 1-i & 2 \\ -i & -i \end{pmatrix} \begin{pmatrix} 1+i & i \\ 2 & i \end{pmatrix} = \begin{pmatrix} 6 & 1+3i \\ 1-3i & 2 \end{pmatrix}$$

Logo $TT^* \neq T^*T$ nesse caso, ou seja, T não é um operador normal.

6.15 Exercício 15

- (15) Seja T um operador linear em V que possui um adjunto T^* .
 - (a) Mostre que $\operatorname{Ker} T^* = (\operatorname{Im} T)^{\perp}$ e que $\operatorname{Im} T^* \subset (\operatorname{Ker} T)^{\perp}$.
 - (b) Mostre que se dim $V < \infty$, então Im $T^* = (\operatorname{Ker} T)^{\perp}$.
 - (c) Seja $V = \mathscr{C}([0,1],\mathbb{R})$ e $T \in \mathscr{L}(V)$ definida por: $f \longmapsto T(f)$,, com (T(f))(t) = tf(t) para todo $t \in [0,1]$. Determine T^* e mostre que Im $T^* \neq (\operatorname{Ker} T)^{\perp}$.

Solução:

(a) Provemos que Ker $T^* = (\operatorname{Im} T)^{\perp}$. Temos que

$$x \in \operatorname{Ker} T^* \quad \Leftrightarrow \quad T^*(x) = 0 \\ \Leftrightarrow \quad \left\langle T^*(x), y \right\rangle = 0, \ \forall y \in V \\ \Leftrightarrow \quad \left\langle x, T(y) \right\rangle = 0, \ \forall y \in V \\ \Leftrightarrow \quad x \perp \operatorname{Im} T \\ \Leftrightarrow \quad x \in (\operatorname{Im} T)^{\perp}$$

6.16 Exercício 16

(16) Seja $T \in \mathcal{L}(V)$. Prove que se T é inversível, então T^* é inversível e $(T^*)^{-1} = (T^{-1})^*$.

Solução: Se T é inversível, então existe $T^{-1} \in \mathcal{L}(V)$ tal que $TT^{-1} = I$. Desse modo, das propriedades da adjunção, temos que

$$(TT^{-1})^* = I^* \Rightarrow (T^{-1})^*T^* = I$$

Logo, $(T^{-1})^* \in \mathcal{L}(V)$ é tal que $(T^{-1})^*T^* = I$. Portanto, T^* é inversível. Para mostrar que $(T^*)^{-1} = (T^{-1})^*$, podemos seguir dois caminhos:

• Temos que

$$I = I^*(TT^{-1})^* = (T^{-1})^*T^*$$

Logo,
$$(T^{-1})^* = (T^*)^{-1}$$
.

• Sabemos que $(T^*)^{-1}T^*=I$, então $((T^*)^{-1}T^*)^*=I^*$. Das propriedades de *, temos que $I^*=I$, $(AB)^*=B^*A^*$ e $A^{**}=A$. Daí,

$$((T^*)^{-1}T^*)^* = I^* \Rightarrow ((T^*)^*(T^*)^{-1})^* = I \Rightarrow T^{**}((T^*)^{-1})^* = I \Rightarrow T((T^*)^{-1})^* = I$$

Assim, concluímos que $((T^*)^{-1})^*$ é a inversa de T. Ou seja,

$$T^{-1} = ((T^*)^{-1})^* \Rightarrow (T^{-1})^* = (((T^*)^{-1})^*)^* \Rightarrow (T^{-1})^* = ((T^*)^{-1})^{**} \Rightarrow \boxed{(T^{-1})^* = (T^*)^{-1}}$$

 \bullet Sendo T^* o adjunto de T, sabemos por definição que

$$\langle T(u), v \rangle = \langle u, T^*(v) \rangle \quad \forall u, v \in V$$

Então, substituindo u por $T^{-1}(w)$, onde $w \in V$, ficamos com

$$\langle T(u), v \rangle = \langle u, T^*(v) \rangle \Rightarrow \langle T(T^{-1}(w)), v \rangle = \langle T^{-1}(w), T^*(v) \rangle \Rightarrow \langle w, v \rangle = \langle T^{-1}(w), T^*(v) \rangle$$

Por outro lado, para T^{-1} e $x = T^*(v) \in V$:

$$\langle T^{-1}(w), \mathbf{x} \rangle = \langle w, (T^{-1})^*(\mathbf{x}) \rangle \Rightarrow \langle T^{-1}(w), T^*(v) \rangle =$$

$$\langle w, (T^{-1})^*(T^*(v)) \rangle \Rightarrow \langle T^{-1}(w), T^*(v) \rangle = \langle w, (TT^{-1})^*(v) \rangle \Rightarrow$$

$$\langle T^{-1}(w), T^*(v) \rangle = \langle w, \mathbf{I}^*(v) \rangle \Rightarrow \langle T^{-1}(w), T^*(v) \rangle = \langle w, v \rangle$$

Daí, temos que

$$\langle T^{-1}(w), T^*(v) \rangle =$$

MelhorarEXPLICAÇÃO

6.17 Exercício 17

(17) Seja E um operador linear em V tal que $E^2 = E$ e tal que E possui um adjunto E^* . Prove que E é autoadjunto se, e somente se $EE = E^*E$. Prove também que, neste caso, E é a projeção ortogonal em $W = \operatorname{Im} E$.

6.18 Exercício 18

(18) Sejam V um espaço vetorial sobre \mathbb{C} e $T \in \mathcal{L}(V)$. Prove que T é autoadjunto se, e somente se $\langle T(v), v \rangle \in \mathbb{R}$, para todo $v \in V$.

Solução: (\Rightarrow) Seja T um operador auto-adjunto. Então, sabemos que $T^* = T$. Para mostrar que certo $z \in \mathbb{C}$ é real, basta verificar que $z = \overline{z}$. Dado $v \in V$, tem-se que

$$\langle T(v), v \rangle = \langle v, T^*(v) \rangle = \langle v, T^*(v) \rangle = \overline{\langle T(v), v \rangle} \Rightarrow \langle T(v), v \rangle \in \mathbb{R}$$

 (\Leftrightarrow) Dado $v \in V$, se $\langle T(v), v \rangle \in \mathbb{R}$, então temos que $\langle T(v), v \rangle = \overline{\langle T(v), v \rangle}$. Assim,

$$\langle T(v), v \rangle = \overline{\langle T(v), v \rangle} = \overline{\langle v, T^*(v) \rangle} = \langle T^*(v), v \rangle \Rightarrow \langle (T - T^*)(v), v \rangle = 0 \quad \forall v \in V$$

Como V é um espaço vetorial sobre \mathbb{C} , temos que $T-T^*$, acarretando $T=T^*$.

6.19 Exercício 19

(19) Sejam V um espaço vetorial sobre \mathbb{C} e $T \in \mathcal{L}(V)$. Prove que se $\langle T(v), v \rangle = 0$, para todo $v \in V$, então T = 0. Dê um exemplo para mostrar que o mesmo resultado não é necessariamente verdadeiro se V é um espaço vetorial sobre \mathbb{R} .

Solução: Por hipótese, $\langle T(v+w), v+w \rangle = 0$ para quaisquer $v, w \in V$. Assim,

$$\langle T(v+w), v+w \rangle = 0 \Rightarrow \langle T(v) + T(w), v+w \rangle = 0 \Rightarrow \langle T(v), v \rangle + \langle T(v), w \rangle + \langle T(w), v \rangle + \langle T(w), w \rangle \Rightarrow 0 + \langle T(v), w \rangle + \langle T(w), v \rangle + 0 \Rightarrow \langle T(v), w \rangle + \langle T(w), v \rangle = 0$$

Note que w é arbitrário na igualdade obtida acima. Daí, podemos substituir w por iw, e usando que

$$\left\langle T(v),iw\right\rangle =\bar{i}\left\langle T(v),w\right\rangle =-i\left\langle T(v),w\right\rangle \quad \text{e}\quad \left\langle T(iw),v\right\rangle =\left\langle iT(w),v\right\rangle =i\left\langle T(w),v\right\rangle ,$$

podemos verificar que

$$\langle T(v), w \rangle + \langle T(w), v \rangle = 0 \Rightarrow \langle T(v), iw \rangle + \langle T(iw), v \rangle = 0 \Rightarrow -i \langle T(v), w \rangle + i \langle T(w), v \rangle = 0 \Rightarrow i(\langle T(w), v \rangle - \langle T(v), w \rangle) = 0 \Rightarrow \langle T(w), v \rangle - \langle T(v), w \rangle = 0$$

Dessa forma, temos que

$$\underline{\left\langle T(v),w\right\rangle +\left\langle T(w),v\right\rangle +\left\langle T(w),v\right\rangle -\left\langle T(v),w\right\rangle }=0\Rightarrow 2\left\langle T(w),v\right\rangle =0\Rightarrow \overline{\left\langle T(w),v\right\rangle =0}$$

Obtemos portanto que $\langle T(w),v\rangle=0$ para quaisquer $v,w\in V$. Vejamos que isso acarreta T=0. Faça v=T(w). Então $\langle T(w),T(w)\rangle=0$ e daí T(w)=0 para todo $w\in V$. Consequentemente, T=0.

Observe que na resolução acima tivemos que considerar a unidade imaginária em certo momento. Vejamos que tal resultado não vale para espaços vetoriais sobre \mathbb{R} . Considere o operador linear T em $V = \mathbb{R}^2$ definido por T(x, y) = (y, -x). Então, para todo $v = (v_1, v_2) \in \mathbb{R}^2$, temos que

$$\langle T(v), v \rangle = \langle (-v_2, v_1), (v_1, v_2) \rangle = -v_2 v_1 + v_1 v_2 = 0.$$

Logo, $\langle T(v), v \rangle = 0$ para todo $v \in V$, mas claramente $T \neq 0$.

6.20 Exercício 20

(20) Sejam V um espaço vetorial sobre \mathbb{C} e T uma função de V em V tal que, para todos $u, v \in V$, $\|T(u) - T(v)\| = \|u - v\|$ e T(iv) = iT(v). Prove que T é linear e que $\|T(v)\| = \|v\|$, para todo $v \in V$.

6.21 Exercício 21

(21) Seja T um operador linear em V tal que T admite um adjunto. Prove que se $T^*T=0$ então T=0.

Solução: Vamos primeiramente provar que, se $T^*T = 0$, então $TT^* = 0$. Observe que $0^* = 0$, pois para todos $u, v \in V$,

$$\langle 0(u), v \rangle = \langle 0, v \rangle = 0 = \langle u, 0 \rangle = \langle u, v(0) \rangle.$$

Veja que

$$(T^*T)^* = 0^* \Rightarrow T^*T^{**} = 0 \Rightarrow T^*T = 0.$$

6.22 Exercício 22

(22) Seja $A \in \mathcal{M}_n(\mathbb{C})$. Mostre que A se escreve de modo único como A = B + iC, onde B e C são matrizes autoadjuntas.

Solução: Façamos

$$B = \frac{A + A^*}{2}$$
 e $C = \frac{A - A^*}{2i}$.

Então

$$B + iC = \frac{A + A^*}{2} + i\frac{A - A^*}{2i} = \frac{A + A^*}{2} + \frac{A - A^*}{2} = \frac{2A}{2} = A.$$

Além disso,

$$B^* = \left(\frac{A+A^*}{2}\right)^* = \frac{A^* + A^{**}}{2} = \frac{A^* + A}{2} = B$$

e

$$C^* = \left(\frac{A - A^*}{2i}\right)^* = \frac{A^* - A^{**}}{\overline{2i}} = -\frac{A^* - A}{2i} = \frac{A - A^*}{2i} = C,$$

ou seja, $B \in C$ são matrizes auto-adjuntas.

6.23 Exercício 23

(23) Sejam $S, T \in \mathcal{L}(V)$. Suponha que S e T admitem adjuntas.

- (a) Mostre que se S e T são autoadjuntas, então ST é autoadjunta se, e somente se, ST = TS.
- (b) Encontre duas matrizes $S \in T$ autoadjuntas tais que ST não é autoadjunta.
- (c) Prove que T^*T é autoadjunta.
- (d) Se T é autoadjunta, mostre que S^*TS é autoadjunta.
- (e) Mostre que se S e T são autoadjuntas, então ST + TS é autoadjunta.

(a) Se S e T são autoadjuntas, então $S = S^*$ e $T = T^*$. (\Rightarrow) Se ST é autoadjunta, então

$$(ST)^* = \frac{ST}{S} = \frac{S^*T^*(TS)^*}{ST}$$

Portanto, da unicidade do operador adjunto, temos

$$(ST)^* - (TS)^* = 0 \Rightarrow (ST - TS)^* = 0 \Rightarrow ST - TS = 0 \Rightarrow ST = TS.$$

 (\Leftrightarrow) Se ST = TS, então

$$(ST)^* = (TS)^* \Rightarrow (ST)^* = S^*T^* \Rightarrow (ST)^* = ST.$$

Portanto, ST é autoadjunta.

(b) Considere

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \mathbf{e} \quad T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Então $ST = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ não é autoadjunta.

Outro exemplo: Sejam $T, S \in \mathcal{L}(\mathbb{R}^2)$, dadas por

$$T(x,y) = (x + 2y, 2x)$$
 e $S(x,y) = (y, x + y)$

As matrizes que representam T e S na base canônica (que é ortonormal) são

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix},$$

respectivamente. Observe que T e S são autoadjuntos pois A e B são matrizes hermitianas. Temos que

$$AB = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}.$$

Essa matriz não é hermitiana. Como a base canônica é ortonormal, então TS não é autoadjunta.

(c) Se T é autoadjunta, então

$$T^*T = TT^*$$

Pelo item (a), tomando $S = T^*$, segue que T^*T é autoadjunta.

(d) Se T é autoadjunta, então $T^* = T$. Logo,

$$(S^*TS)^* = (S^*(TS))^* = (TS)^*S^{**} = S^*T^*S = S^*TS.$$

(e) Vamos provar ST+TS é autoadjunta pela definição, ou seja, mostraremos que para todo $u,v\in V,$

$$\langle (ST + TS)(u), v \rangle = \langle u, (ST + TS)(v) \rangle$$

Para isso, lembrando que $T^* = T$ e $S^* = S$, vemos que

$$\begin{split} \left\langle (ST+TS)(u),v\right\rangle &= \left\langle (ST)(u),v\right\rangle + \left\langle (TS)(u),v\right\rangle \\ &= \left\langle S(T(u)),v\right\rangle + \left\langle T(S(u)),v\right\rangle \\ &= \left\langle T(v),S^*(v)\right\rangle + \left\langle S(u),T^*(v)\right\rangle \\ &= \left\langle T(v),S(v)\right\rangle + \left\langle S(u),T(v)\right\rangle \\ &= \left\langle u,T^*(S(v))\right\rangle + \left\langle u,S^*(T(v))\right\rangle \\ &= \left\langle u,T(S(v))\right\rangle + \left\langle u,S(T(v))\right\rangle \\ &= \left\langle u,(TS)(v)\right\rangle + \left\langle u,(ST)(v)\right\rangle \\ &= \left\langle u,(ST+TS)(v)\right\rangle \end{aligned}$$

Portanto, $\langle (ST+TS)(u), v \rangle = \langle u, (ST+TS)(v) \rangle$, e ST+TS é autoadjunta.

6.24 Exercício 24

- (24) Seja V um espaço vetorial com dimensão finita e seja $T \in \mathcal{L}(V)$ normal. Mostre que
 - (a) Se T é nilpotente, então T=0.
 - (b) Se T é idempotente, então $T^* = T$.
 - (c) Se $T^3 = T^2$, então T é idempotente.
 - (d) Se $T^8 = T^7$, T é autoadjunto e idempotente.

(a) Seja A a matriz que representa T na base canônica. Como T é normal, então A também é normal, ou seja, $A^*A = AA^*$.

Sendo A normal, então A é diagonalizável. Logo, existe uma matriz invertível P tal que $P^{-1}AP = D$, onde D é uma matriz diagonal cujas entradas na diagonal são exatamente os autovalores de A.

Como A é nilpotente, todos os seus autovalores são 0. Consequentemente, as entradas na diagonal de D são todas nulas, e assim D=0. Segue que

$$A = P D P^{-1} = P D P^{-1} = 0$$

Portanto, todo operator normal e nilpotente é nulo.

Outra solução: Seja A a matriz que representa T na base canônica. Como A é nilpotente, existe um inteiro positivo k tal que $A^k = 0$. Vamos provar por indução que A = 0. Se k = 1, o resultado é trivial.

Suponha k > 1 e que o caso k - 1 funcione. Tome $B = A^{k-1}$. Note que, como T é normal, então A também é normal, e consequentemente a matriz B também é normal.

Para um vetor $x \in \mathbb{C}^n$, vamos calcular a norma do vetor B^*Bx como segue:

$$||B^*Bx|| = (B^*Bx)^*(B^*Bx)$$

$$= (Bx)^*B^{**}B^*Bx$$

$$= x^*B^*B^*Bx$$

$$= x^*(B^*)^2B^2x$$

$$= 0.$$

pois $B^2=A^{2k-2}=0$, já que $k\geq 2$ implica $2k-2\geq k$. Daí, temos que $B^*Bx=0$ para todo $x\in\mathbb{C}^n$.

Assim,

$$||Bx|| = (Bx)^*(Bx) = x^*B^*Bx = 0, \quad \forall x \in \mathbb{C}^n.$$

Consequentemente, B=0. Pela hipótese de indução, $A^{k-1}=0$ implica A=0, e portanto A deve ser a matriz nula. Assim, T também é o operador nulo.

(b) Se T é idempotente, então sabemos que $T^2=T$. Sendo normal, sabemos também que $T^*T=TT^*$. Se $T^*T=0$, pelo Exercício 21, temos que T=0, que claramente é autoadjunto.

Consideremos agora $T^*T \neq 0$. Então, observe que

$$(T-T^*)(T^*T) = TT^*T - T^*T^*T = TTT^* - (T^2)^*T = T^2T^* - T^*T = TT^* - T^*T = TT^* - TT^* = 0$$

Concluímos portanto que $(T-T^*)(T^*T)=0$. Como $T^*T\neq 0$, segue que $T-T^*=0$, acarretando $T=T^*$.

(c) Como T é normal, pelo Teorema Espectral, existe uma base ortonormal $\{e_1, e_2, \ldots, e_n\}$ de V consistindo de autovetores de T. Sejam $\lambda_1, \ldots, \lambda_n$ os correspondentes autovalores. Então,

$$T(e_j) = \lambda_j e_j,$$

para $j=1,\ldots,n$. Aplicando T uma quantidade adequada de vezes em ambos os membros da equação acima, temos que

$$T^3(e_j) = \lambda_j^3 e_j$$
 e $T^2(e_j) = \lambda_j^2 e_j$.

Dessa forma,

$$T^3(e_j) = T^2(e_j) \Rightarrow \lambda_j^3 e_j = \lambda_j^2 e_j \Rightarrow \lambda_j^3 = \lambda_j^2 \Rightarrow \lambda_j^2 (\lambda - 1) = 0$$

Isso implica que λ_j vale 1 ou 0. Em particular, todos os autovalores de T são reais. A matriz de T com respeito à base ortonormal $\{e_1,\ldots,e_n\}$ será a matriz diagona com $\lambda_1,\ldots,\lambda_n$ na diagonal. Esta matriz claramente é equivalente à sua transposta conjugada, e portanto é hermitiana. Daí, $T=T^*$. Aplicando T em ambos os membros na equação obtida inicialmente, ficamos com

$$T^2(e_j) = \frac{\lambda_j^2}{2} e_j = \frac{\lambda_j}{2} e_j = T(e_j),$$

onde utilizamos que $\lambda_j^2 = \lambda_j$, afinal λ_j vale 0 ou 1. Como T^2 e T coincidem numa base, então devem ser iguais. Logo, $T^2 = T$, e T é idempotente.

- (d) Um raciocínio análogo ao do item (c) permite concluir que T é autoadjunto e idempotente. Em geral, usando uma argumentação similar, pode-se provar que todo operador normal para o qual existe um inteiro positivo $k \ge 1$ tal que $T^{k+1} = T^k$ é autoadjunto e idempotente.
- 6.25 Exercício 25

(25)

Solução: Questões Suplementares

6.26 Exercício 31

(31) Considere o seguinte subespaço de \mathbb{R}^3 :

$$W = \{(x, y, z) \in \mathbb{R}^3 | x + 2y - 3z = 0, x - 2y + z = 0\}$$

- (a) Descreva o operador de projeção ortogonal de V em W.
- (b) Verifique que $\mathbb{R}^3 = W \oplus W^{\perp}$.

Solução:

6.27 Exercício 32

(32) Seja \mathscr{F} o espaço vetorial das funções reais com o produto interno usual, e considere os conjuntos

$$S_p = \{ f \mid f(x) = f(-x) \}$$
 e $S_i = \{ f \mid f(x) = -f(-x) \}$

- (a) Verifique que S_i e S_p são subespaços vetoriais de $\mathscr{F}.$
- (b) Descreva os operadores de projeção ortogonal de \mathscr{F} em S_i e em S_p .
- (c) Encontre subespaços W_1 e W_2 de $\mathscr F$ tais que

$$\mathscr{F} = S_i \oplus W_1$$
 e $\mathscr{F} = S_p \oplus W_2$

(d) Conclua que $\mathscr{F} = S_p \oplus S_i$.

Solução:

6.28 Exercício 33

(33) (Decomposição QR) A Decomposição QR de uma matriz $A \in \mathcal{M}_n(K)$ consiste em escrever a matriz A como um produto QR, onde Q é uma matriz ortogonal (se $K = \mathbb{R}$) ou unitária (se $K = \mathbb{C}$) e R é uma matriz triangular superior. Tal decomposição é importante para o método dos mínimos quadrados e é base para algoritmos computacionais de cálculo de autovalores de uma matriz.

- (a) Prove que toda matriz $A \in \mathcal{M}_n(K)$ admite uma decomposição QR.
- (b) Encontre a decomposição QR das seguintes matrizes:

(
$$\alpha$$
) $A = \begin{pmatrix} 12 & -51 & 4 \\ 6 & 167 & -68 \\ -4 & 24 & -41 \end{pmatrix}$ (β)

Solução:

6.29 Exercício 34

(34) Considere $T_2 \in \mathcal{L}(\mathbb{R}^2)$ e $T_3 \in \mathcal{L}(\mathbb{R}^3)$, dadas respectivamente por

$$T_2(x,y) = (x+3y,3x+2y)$$
 e $T_3(x,y,z) = (2x+7y+8z,7x+3y+7z,8x+7y+5z.$

- (a) Escreva as matrizes de T_2 e T_3 nas bases canônicas de \mathbb{R}^2 e \mathbb{R}^3 , respectivamente.
- (b) Encontre T_2^* e T_3^* , e verifique que T_2 e T_3 são autoadjuntos. Sabe-se que $\mathscr{B}_2 = \{(1,1),(1,0)\}$ é uma base para \mathbb{R}^2 , e $\mathscr{B}_3 = \{(1,1,-1),(2,-1,0),(3,2,0)\}$ é uma base para \mathbb{R}^3 .
- (c) Encontre as matrizes que representam T_2 e T_3 nessas bases.
- (d) Encontre as matrizes que representam T_2^* e T_3^* nessas bases e observe que ssas matrizes não são hermitianas. Isso entra em contradição com o fato de T_2 e T_3 serem autoadjuntas?

6.30 Exercício 35

(35) Suponha que T é um operador normal em V e 3 e 4 são seus autovalores. Prove que existe um vetor $v \in V$ tal que $||v|| = \sqrt{2}$ e ||T(v)|| = 5.

Solução: Sejam u e v os autovetores de T com respeito aos autovalores 3 e 4, respectivamente. Então,

$$T(u) = 3u$$
 e $T(w) = 4w$.

Trocando u por $\frac{u}{\|u\|}$ e w por $\frac{w}{\|w\|}$, podemos assumir sem perda de generalidade que $\|u\| = \|w\| = 1$. Como T é normal, u e w são ortogonais. O Teorema de Pitágoras implica que

$$||u + w|| = \sqrt{||u||^2 + ||w||^2} = \sqrt{2},$$

e também

$$||T(u+w)|| = ||T(u) + T(w)|| = ||3u + 4w|| = \sqrt{9||u||^2 + 16||v||^2} = 5.$$

Tomando v=u+w, obtemos um vetor v tal que $\|v\|=\sqrt{2}$ e $\left\|T(v)\right\|=5,$ como pedido pelo enunciado.

7 Lista 5,5

7.1 Espaços com produto interno

7.2 Exercício 1

- (1) Determine quais das funções $\langle , \rangle : \mathbb{R}^4 \to \mathbb{R}$ abaixo definem um produto interno em \mathbb{R}^4 :
 - (a) $\langle (a, b, c, d), (x, y, z, w) \rangle = ax + 2by + 5cz + dw;$
 - (b) $\langle (a,b,c,d),(x,y,z,w)\rangle = ax by + cz + 3dw;$
 - (c) $\langle (a,b,c,d),(x,y,z,w)\rangle = ay + 2bx + cz + dw;$
 - (d) $\langle (a,b,c,d),(x,y,z,w)\rangle = ax + 5cz + dw;$
 - (e) $\langle (a, b, c, d), (x, y, z, w) \rangle = ax + 2b + 5z + dw$.

Solução: Para resolver essa questão, podemos utilizar duas técnicas diferentes:

• Verificando se os axiomas de produto interno são satisfeitos:

(a) Temos que

Sejam $u = (u_1, u_2, u_3, u_4), v = (v_1, v_2, v_3, v_4), w = (w_1, w_2, w_3, w_4) \in \mathbb{R}^4$. Então

$$\begin{array}{lll} \langle u+v,w\rangle &=& \left\langle (u_1+v_1,u_2+v_2,u_3+v_3,u_4+v_4),(w_1,w_2,w_3,w_4)\right\rangle \\ &=& (u_1+v_1)w_1+2(u_2+v_2)w_2+5(u_3+v_3)w_3+(u_4+v_4)w_4 \\ &=& u_1w_1+v_1w_1+2u_2w_2+2v_2w_2+5u_3w_3+5v_3w_3+u_4w_4+v_4w_4 \\ &=& u_1w_1+2u_2w_2+5u_3w_3+u_4w_4+v_1w_1+2v_2w_2+5v_3w_3+v_4w_4 \\ &=& \left\langle (u_1,u_2,u_3,u_4),(w_1,w_2,w_3,w_4)\right\rangle + \left\langle (v_1,v_2,v_3,v_4),(w_1,w_2,w_3,w_4)\right\rangle \\ &=& \left\langle u,w\right\rangle + \left\langle v,w\right\rangle \end{array}$$

Sejam $u = (u_1, u_2, u_3, u_4), v = (v_1, v_2, v_3, v_4) \in \mathbb{R}^4$ e $\alpha \in \mathbb{R}$. Temos:

$$\begin{aligned}
\langle \alpha u, v \rangle &= \langle (\alpha u_1, \alpha u_2, \alpha u_3, \alpha u_4), (v_1, v_2, v_3, v_4) \rangle \\
&= \alpha u_1 v_1 + 2\alpha u_2 v_2 + 5\alpha u_3 v_3 + \alpha u_4 v_4 \\
&= \alpha (u_1 v_1 + 2u_2 v_2 + 5u_3 v_3 + u_4 v_4) \\
&= \alpha \langle (u_1, u_2, u_3, u_4), (v_1, v_2, v_3, v_4) \rangle \\
&= \alpha \langle u, v \rangle
\end{aligned}$$

 $\spadesuit \langle u, v \rangle = \langle v, u \rangle$. Sejam $u = (u_1, u_2, u_3, u_4), v = (v_1, v_2, v_3, v_4) \in \mathbb{R}^4$. Então

$$\langle u, v \rangle = \langle (u_1, u_2, u_3, u_4), (v_1, v_2, v_3, v_4) \rangle$$

$$= u_1 v_1 + 2u_2 v_2 + 5u_3 v_3 + u_4 v_4$$

$$= v_1 u_1 + 2v_2 u_2 + 5v_3 u_3 + v_4 u_4$$

$$= \langle (v_1, v_2, v_3, v_4), (u_1, u_2, u_3, u_4) \rangle$$

$$= \langle v, u \rangle$$

 \blacklozenge $\langle u, u \rangle \ge 0; \langle u, u \rangle = 0 \Leftrightarrow u = 0.$

Seja $u=(u_1,u_2,u_3,u_4)\in\mathbb{R}^4$. Então

$$\langle u, u \rangle = \langle (u_1, u_2, u_3, u_4), (u_1, u_2, u_3, u_4) \rangle = u_1^2 + 2u_2^2 + 5u_3^2 + u_4^2 \ge 0$$

Além disso,

$$\langle u,u\rangle=0 \Leftrightarrow u_1^2+2u_2^2+5u_3^2+u_4^2=0 \Leftrightarrow u=0.$$

Logo, temos que $\langle (a, b, c, d), (x, y, z, w) \rangle = ax + 2by + 5cz + dw$ é um produto interno em \mathbb{R}^4 .

(b)

Argumentando via matrizes, escrevendo o produto interno utilizando a notação matricial.

(a) Podemos escrever

$$\left\langle (a,b,c,d),(x,y,z,w) \right\rangle = u^t A v = (a,b,c,d) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}.$$

Como A é real e simétrica, basta mostrar que A é positiva definida. Se uma matriz é positiva definida, então é possível reduzí-la a uma matriz diagonal que possui todas as entradas na diagonal positivas. Claramente A é uma matriz diagonal, e todas suas entradas na diagonal são positivas. Logo, A é positiva definida, e $\langle (a,b,c,d),(x,y,z,w)\rangle = ax + 2by + 5cz + dw$ é um produto interno em \mathbb{R}^4 .

(b)

7.3 Exercício 2

(2) Considere a função $\langle , \rangle : \mathbb{C}^2 \to \mathbb{C}^2$ dada por

$$\langle u, v \rangle = x_1 \overline{y_1} + (1+i)x_1 \overline{y_2} + (1-i)x_2 \overline{y_1} + 3x_2 \overline{y_2}.$$

- (a) Verifique que \langle , \rangle é um produto interno em \mathbb{C}^2 .
- (b) Encotnre a norma de $v=(1+2i,2+3i)\in\mathbb{C}^2$ em relação a esse produto interno.

Solução:

7.4 Exercício 3

(3) Use a desigualdade de Cauchy-Bunyakovski-Schwarz em \mathbb{R}^3 para provar a seguinte desigualdade, para $a_i > 0, i = 1, 2, 3$:

$$(a_1 + a_2 + a_3) \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} \right) \ge 0$$

Solução:

7.5 Exercício 4

(4) Seja $V = \mathcal{M}_{m \times n}(\mathbb{R})$. Mostre que

$$\langle A, B \rangle = \operatorname{tr}(B^t A)$$

define um produto interno em V.

7.6 Exercício 5

(5) Encontre uma base ortonormal para o subespaço $W \subset \mathbb{C}^3$ gerado por $u_1 = (1, i, 1)$ e $u_2 = (1 + i, 0, 2)$.

Solução: Pelo Processo de Ortonormalização de Gramm-Schmidt, sabemos que existe um conjunto ortonormal $\{u_1, u_2\}$ tal que $\langle u_1, u_2 \rangle = \langle (1, i, 1), (1+i, 0, 2) \rangle$. Temos então que, para $v_1 = (1, i, 1)$ e $v_2 = (1+i, 0, 2)$,

$$u_1 = v_1 = (1, i, 1)$$

е

$$u_{2} = v_{2} - \frac{\langle v_{2}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} = (1+i, 0, 2) - \frac{\langle (1, i, 1), (1+i, 0, 2) \rangle}{\|(1, i, 1)\|^{2}} (1, i, 1) \Rightarrow$$

$$u_{2} = (1+i, 0, 2) - \frac{3+i}{1} (1, i, 1) \Rightarrow u_{2} = (4+2i, -1+3i, 5+i)$$

Em seguida, veja que $||u_1|| = 1$ e $||u_2|| = 28 + 20i$. Logo, u_1 já está normalizado. Para u_2 , temos

$$\hat{u}_2 = \frac{(4+2i, -1+3i, 5+i)}{28+20i} =$$

7.7 Exercício 6

(6) Completar até uma base ortogonal em \mathbb{R}^4 o seguinte sistema de vetores:

$$\{(1, -2, 2, -3), (2, -3, 2, 4)\}$$

Solução:

7.8 Exercício 7

(7) Usando o processo de ortogonalização de Gramm-Schmidt, construir uma base ortogonal de subespaços para cada item:

(a)
$$\{(1,2,2,-1),(1,1,-5,3),(3,2,8,-7)\}\subset\mathbb{R}^4$$
;

(b)
$$\{(1,1,-1,-2),(5,8,-2,-3),(3,9,3,8)\}\subset \mathbb{R}^4;$$

(c)
$$\{(1+i,3i,2-i),(2-3i,10+2i,5-i)\}\subset\mathbb{C}^3$$
.

Solução:

7.9 Exercício 8

(8) Seja $V = \mathscr{C}([0,1],\mathbb{C})$ o espaço de funções complexas contínuas com produto interno dado por

$$\langle f, g \rangle = \int_{0}^{1} f(t) \overline{g(t)} \, \mathrm{d}t.$$

Prove que

(a) o sistema de funções

$$\{1, \sqrt{2}\cos(2\pi nt), \sqrt{2}\sin(2\pi nt), n, m = 1, 2, \ldots\}$$

 \acute{e} um conjunto ortonormal em V;

(b) o sistema de funções $\{e^{2\pi int}, n=0,\pm 1,\pm 2,\ldots\}$ é um conjunto ortonormal em V.

Solução:

7.10 Exercício 9

(9) Seja $V = \mathcal{M}_N(\mathbb{R})$ com produto interno $\langle A, B \rangle = \operatorname{tr}(AB^t)$. Achar complementos ortogonais para os subespaços

- (a) $\{A \in \mathcal{M}_n(\mathbb{R}) | \operatorname{tr}(A) = 0\};$
- (b) $\{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\};$
- (c) $\{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\};$
- (d) matrizes com zeros debaixo da diagonal principal.

Solução:

7.11 Exercício 10

(10) Encontre o cosseno do ângulo entre $u \in v$ se

$$u = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} \quad e \quad v = \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$$

no espaço euclidiano $V = \mathcal{M}_2(\mathbb{R})$ com produto interno do exercício anterior.

Solução: Temos que

$$\cos\theta = \frac{\langle u, v \rangle}{\|u\| \|v\|},$$

onde θ é o ângulo entre u e v. Calculemos os elementos necessários:

$$\langle u, v \rangle = \left\langle \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix} \right\rangle = \operatorname{tr} \left(\begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}^t \right) = \operatorname{tr} \left(\begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \right) = \operatorname{tr} \left(\begin{pmatrix} -1 & 7 \\ 1 & 3 \end{pmatrix} \right) = 2$$

$$\langle u, u \rangle = \left\langle \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} \right\rangle = \operatorname{tr} \left(\begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} \right) = \operatorname{tr} \left(\begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix} \right) = \operatorname{tr} \left(\begin{pmatrix} 5 & 5 \\ 5 & 10 \end{pmatrix} \right) = 15$$

$$\langle v, v \rangle = \left\langle \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix} \right\rangle = \operatorname{tr} \left(\begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}^t \right) = \operatorname{tr} \left(\begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \right) = \operatorname{tr} \left(\begin{pmatrix} 1 & -3 \\ -3 & 13 \end{pmatrix} \right) = 14$$

Então

$$||u|| = \sqrt{\langle u, u \rangle} = \sqrt{15}$$
 e $||v|| = \sqrt{\langle v, v \rangle} = \sqrt{14}$

Logo,

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|} \Rightarrow \cos \theta = \frac{2}{\sqrt{15}\sqrt{14}} \Rightarrow \cos \theta = \frac{2}{\sqrt{210}} \Rightarrow \boxed{\cos \theta = \frac{\sqrt{210}}{105}}$$

7.12 Exercício 11

(11) Sejam \mathbb{R}^4 com o produto interno usual e

$$S = \{(x, y, z, w) \in \mathbb{R}^4 | x - 2y + z + w = 0\}$$

Determine uma base ortogonal de S e uma outra para S^{\perp} .

Solução: Observe que w = -x + 2y - z. Logo, um vetor $v \in S$ é da forma

$$v = (x, y, z, -x + 2y - z) = x(1, 0, 0, -1) + y(0, 1, 0, 2) + z(0, 0, 1, -1).$$

Portanto, temos que $\mathscr{B} = \{(1,0,0,-1), (0,1,0,2), (0,0,1,-1)\}$ é uma base para S. Vamos ortogonalizála, utilizando o processo de Ortogonalização de Gramm-Schmidt. Tomando $u_1 = (1,0,0,-1), u_2 = (0,1,0,2)$ e $u_3 = (0,0,1,-1)$, encontraremos a base ortogonal $\{w_1, w_2, w_3\}$:

$$w_{1} = u_{1} = (1, 0, 0, -1)$$

$$w_{2} = u_{2} - \frac{\langle u_{2}, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1} = (0, 1, 0, 2) - \frac{\langle (0, 1, 0, 2), (1, 0, 0, -1) \rangle}{\|(1, 0, 0, -1)\|^{2}} (1, 0, 0, -1) = (0, 1, 0, 2) - \frac{-2}{(\sqrt{2})^{2}} (1, 0, 0, -1) = (0, 1, 0, 2) + (1, 0, 0, -1) = (1, 1, 0, 1)$$

$$w_{3} = u_{3} - \frac{\langle u_{3}, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1} - \frac{\langle u_{3}, w_{2} \rangle}{\|w_{2}\|^{2}} w_{2} = (0, 0, 1, -1) - \frac{\langle (0, 0, 1, -1), (1, 0, 0, -1) \rangle}{\|(1, 0, 0, -1)\|^{2}} (1, 0, 0, -1) - \frac{\langle (0, 0, 1, -1), (1, 1, 0, 1) \rangle}{\|(1, 1, 0, 1)\|^{2}} (1, 1, 0, 1) = (0, 0, 1, -1) = \frac{1}{(\sqrt{2})^{2}} (1, 0, 0, -1) + \frac{1}{3} (1, 1, 0, 1) = \left(-\frac{1}{6}, \frac{1}{3}, 1, -\frac{1}{6} \right)$$

Logo, $\left\{(1,0,0,-1),(1,1,0,1),\left(-\frac{1}{6},\frac{1}{3},1,-\frac{1}{6}\right)\right\}$ é uma base ortogonal de S.

Para encontrar uma base para S^{\perp} , precisamos primeiro descrever os elementos desse conjunto. Para isso, sabemos que, se $w \in S^{\perp}$, então $\langle w, v \rangle = 0 \ \forall v \in S$. Em particular, isso ocorre para os elementos da base de S. Daí, sendo $w = (w_1, w_2, w_3, w_4)$,

$$\begin{cases} \langle w, u_1 \rangle = 0 \\ \langle w, u_2 \rangle = 0 \\ \langle w, u_3 \rangle = 0 \end{cases} \Rightarrow \begin{cases} w_1 - w_4 = 0 \\ w_2 + 2w_4 = 0 \\ w_3 - w_4 = 0 \end{cases} \Rightarrow w = w_4(1, -2, 1, 1)$$

Logo, $\{(1, -2, 1, 1)\}$ é uma base ortogonal para S^{\perp} .

7.13 Exercício 12

(12) Considere o espaço $V = \mathscr{P}_3(\mathbb{R})$ com o produto interno dado por

$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t) dt$$

Ache uma base ortonormal de $\langle 1, 5+t \rangle^{\perp}$.

Solução: Seja $h \in \langle 1, 5+t \rangle^{\perp}$. Então, temos que

$$\begin{cases} \langle 1, h \rangle = 0 \\ \langle 5 + t, h \rangle = 0 \end{cases} \Rightarrow \begin{cases} \int_{0}^{1} h(t) dt = 0 \\ \int_{0}^{1} (5 + t)h(t) dt = 0 \end{cases}$$

Como $h \in \mathcal{P}_3(\mathbb{R})$, temos que $h(t) = \alpha t^3 + \beta t^2 + \gamma t + \delta$. Então

$$\begin{cases} \int_{0}^{1} \alpha t^{3} + \beta t^{2} + \gamma t + \delta dt = 0 \\ \int_{0}^{1} (5+t)(\alpha t^{3} + \beta t^{2} + \gamma t + \delta) dt = 0 \end{cases} \Rightarrow \begin{cases} \frac{1}{4}\alpha + \frac{1}{3}\beta + \frac{1}{2}\gamma + \delta = 0 \\ \frac{29}{20}\alpha + \frac{23}{12}\beta + \frac{17}{6}\gamma + \frac{11}{2}\delta = 0 \end{cases} \Rightarrow$$

$$(\alpha, \beta, \gamma, \delta) = \gamma \left(\frac{10}{3}, -4, 1, 0\right) + \delta(20, -18, 0, 1)$$

Logo, sendo $f(t) = \frac{10t^3}{3} - 4t^2 + t$ e $g(t) = 20t^3 - 18t^2 + 1$, temos que $\{f,g\}$ é uma base para $\langle 1, 5 + t \rangle^{\perp}$. Observe que $||f|| = \frac{\sqrt{105}}{105}, ||g|| = \sqrt{\frac{33}{35}}$ e $\langle f,g \rangle = \frac{19}{210}$. Logo, vamos precisar ortonormalizá-la, e para isso, utilizaremos o Processo de Ortogonalização de Gramm-Schmidt. Sendo $\{h_1, h_2\}$ a base que procuramos, temos:

$$h_1(t) = f(t) = \frac{10t^3}{3} - 4t^2 + t$$

$$h_2(t) = g - \frac{\langle g, h_1 \rangle}{\|h_1\|^2} h_1 = 20t^3 - 18t^2 + 1 - \frac{\frac{19}{210}}{\left(\frac{\sqrt{105}}{105}\right)^2} \left(\frac{10t^3}{3} - 4t^2 + t\right) = 20t^3 - 18t^2 + 1 - \frac{19}{2} \left(\frac{10t^3}{3} - 4t^2 + t\right) = -\frac{1}{6} (70t^3 - 120t^2 + 57t - 6)$$

Temos então que h_1 e h_2 são ortogonais. Basta agora normalizá-los. Como $||h_1|| = \frac{\sqrt{105}}{105}$ e $||h_2|| = \frac{\sqrt{3}}{6}$, temos

$$h_1(t) = \sqrt{105} \left(\frac{10t^3}{3} - 4t^2 + t \right)$$
 e $h_2(t) = -\frac{\sqrt{3}}{3} (70t^3 - 120t^2 + 57t - 6)$

Assim, $\{h_1, h_2\}$ é a base ortonormal procurada.

Exercício 13 7.14

(13) Seja $V = \mathcal{C}([-1,1],\mathbb{R})$ com o produto interno dado por

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$$

Seja $W \subset V$ o subespaço formado pelas funções ímpares. Determine W^{\perp} .

Seja f uma função ímpar. Então sabemos por definição que f(-x) = -f(x). Além disso, sabemos que, se f é ímpar, então

$$\int_{-a}^{a} f(t) dt = 0, \forall a \in \mathbb{R}.$$

Daí, queremos que h(t)=f(t)g(t) seja ímpar, para f ímpar. Ou seja, h(-t)=-h(t). Mas como

$$h(-t) = f(-t)g(-t) = -f(t)g(-t)$$
$$-h(t) = -f(t)g(t),$$

devemos ter então

$$h(-t) = -h(t) \Rightarrow -f(t)g(-t) = -f(t)g(t) \Rightarrow g(-t) = g(t).$$

Logo, se g for uma função par, então $\langle f,g\rangle=0$, para toda função f ímpar. Concluímos assim que todas as funções ímpares são ortogonais às funções pares. Portanto, W^{\perp} é o subespaço formado pelas funções pares.

7.15Exercício 14

(14) Para cada caso, encontre a distância entre o vetor x e o subespaço que contém as soluções de cada sistema de equações

(a)
$$\begin{cases} 2x_1 + 2x_2 + x_3 + x_4 = 0 \\ 2x_1 + 4x_2 + 2x_3 + 4x_4 = 0 \end{cases}$$
 e $x = (2, 4, 0, -1);$
(b)
$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 0 \\ x_1 + 3x_2 + x_3 - 3x_4 = 0 \end{cases}$$
 e $x = (3, 3, -4, 2);$

(b)
$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 0 \\ x_1 + 3x_2 + x_3 - 3x_4 = 0 \end{cases}$$
 e $x = (3, 3, -4, 2);$

Solução:

7.16 Exercício 15

(15) A sequência de polinômios $(p_k)_{k\in\mathbb{N}}$, dada recursivamente por

$$\begin{cases} p_0(x) = 1, \\ p_n(x) = \frac{1}{2^n n!} \frac{d^n}{dt^n} (x^2 - 1)^n, n \ge 1 \end{cases}$$

são chamados polinômios de Legendre. Prove que os polinômios de Legendre formam uma base ortonormal no espaço euclidiano $\mathscr{P}_n(\mathbb{R})$ com produto interno $\langle f,g\rangle=\int f(t)g(t)\,\mathrm{d}t.$

Solução: Mostremos que a sequência $(p_k)_{k\leq n}$ pode ser obtida por meio da ortonormalização da base $\{1, t, t^2, \dots, t^n\}$ de $\mathscr{P}_n(\mathbb{R})$.

A tabela abaixo mostra os 11 primeiros polinômios de Legendre:

Figura 1: Gráficos dos polinômios de Legendre com $n \leq 5$

n	$p_n(t)$
0	1
1	t
2	$\frac{1}{2}(3t^2-1)$
3	$\frac{1}{2} \left(5t^3 - 3t\right)$
4	$\frac{1}{8}\left(35t^4-30t^2+3\right)$
5	$\frac{1}{8} \left(63t^5 - 70t^3 + 15t \right)$
6	$\frac{1}{16}\left(231t^6 - 315t^4 + 105t^2 - 5\right)$
7	$\frac{1}{16}\left(429t^7 - 693t^5 + 315t^3 - 35t\right)$
8	$\frac{1}{128} \left(6435t^8 - 12012t^6 + 6930t^4 - 1260t^2 + 35 \right)$
9	$\frac{1}{128} \left(12155t^9 - 25740t^7 + 18018t^5 - 4620t^3 + 315t \right)$
10	$\frac{1}{128} \left(46189t^{10} - 109395t^8 + 90090t^6 - 30030t^4 + 3465t^2 - 63 \right)$

Os gráficos dos polinômios de Legendre com $n \leq 5$ são mostrados abaixo:

Observação: Vamos mostrar que $(p_n(t))_{n\geq 0}$ é base ortonormal para $L^2[-1,1]$. Tem-se

$$p_n(t) = \frac{1}{2^n n!} \frac{d^n}{dt^n} (t^2 - 1)^n$$

Segue do Teorema de Stone-Weierstrass que

$$\mathscr{C}([-1,1],\mathbb{R}) = \overline{[t^n, n \ge 0]}^{\| \boldsymbol{\cdot} \|_{\infty}} = \overline{[p_n, n \ge 0]}^{\| \boldsymbol{\cdot} \|_{\infty}}$$

Além disso,

$$\|f\|_2 \le \sqrt{2} \|f\|_{\infty} \ \forall f \in L^2[-1,1]$$

Daí, $[p_n, n \ge 0]$ é denso em $(\mathscr{C}([-1, 1], \mathbb{R}), \| \cdot \|_2)$, e $[p_n, n \ge 0]$ é denso em $L^2[-1, 1]$.

Sendo que $(p_n)_{n\geq 0}$ é uma família ortonormal, segue do Teorema da Base Ortonormal que $(p_n)_{n\geq 0}$ é base ortonormal de $L^2[-1,1]$.

7.17 Exercício 16

- (16) Calcule o volume do paralelepípedo formado pelos vetores
 - (a) (1,-1,1,-1), (1,1,1,1), (1,0,-1,0), (0,1,0,-1).
 - (b) (1,1,1,1), (1,-1,-1,1), (2,1,1,3), (0,1,-1,0).

Solução:

7.18 Exercício 17

- (17) No espaço euclidiano $\mathscr{P}_n(\mathbb{R})$ com o produto interno $\int_{-1}^1 f(x)g(x) dx$, calcule
 - (a) o volume do paralelepípedo $P[1, x, ..., x^n]$;
 - (b) a distância do vetor x^n até o subespaço $\mathscr{P}_{n-1}(\mathbb{R})$;
 - (c) o ângulo entre o vetor x^n e o subespaço $\mathscr{P}_{n-1}(\mathbb{R})$;
 - (d) a distância do vetor x^k até o subespaço $\mathscr{P}_{\ell}(\mathbb{R})$, onde $k=0,1,\ldots,n$ e $\ell\leq n$;
 - (e) o ângulo entre o vetor x^n e o subespaço $\mathscr{P}_{n-1}(\mathbb{R})$, onde $k=0,1,\ldots,n$ e $\ell\leq n$.

Solução:

7.19 Exercício 18

(18) Considere $\mathscr{C}([0,2\pi],\mathbb{R})$ munido do produto interno

$$\langle f, g \rangle = \int_{0}^{2\pi} f(x)g(x) \, \mathrm{d}x.$$

Determine a função $h \in \langle 1, \operatorname{sen} x, \cos x \rangle$ que melhor se aproxime de $f \colon [0, 2\pi] \to \mathbb{R}$ dada por f(t) = t - 1.

Solução:

7.20 Exercício 19

- (19) Sabemos que é possível representar um sistema linear a partir de um operador linear $T \in \mathcal{L}(V,U)$, escrevendo o sistema na forma Tx = b. Mesmo assim, esse sistema pode ser insolúvel. Vamos então procurar um x tal que a distância para a imagem de T seja a menor possível. Considere então $x \in U$ ta que para todo $v \in \text{Im } (T)$, tenhamos $\langle T(x) b, v \rangle = 0$.
 - (a) Prove que x satisfaz

$$(T^*T)(x) = T^*(b)$$

(b) Verifique que o sistema representado pela equação acima sempre possui solução.

Solução:

(a) Se $\langle T(x) - b, v \rangle = 0$ para todo $v \in \text{Im } (T)$, então $T(x) - b \in (\text{Im } (T))^{\perp}$. Mas $(\text{Im } (T))^{\perp} = \text{Ker}(T^*)$. Daí,

$$T^*(T(x) - b) = 0 \Rightarrow (T^*T)(x) = T^*(b).$$

(b) Claramente $T(x) \in \text{Im } (T)$. Logo, o sistema $T^*(T(x)) = T^*(b)$ possui solução.

7.21 Exercício 20

(20) Determine a reta que melhor se ajusta aos pontos (1,10), (0,6), (1,4), (2,2) de \mathbb{R}^2 .

Solução: Considere $\alpha x + \beta y + \gamma = 0$ a equação da reta desejada. Queremos que esses pontos pertençam à reta. Logo, formamos o seguinte sistema:

$$\begin{cases} -\alpha - 10\beta + \gamma = 0 \\ -6\beta + \gamma = 0 \\ \alpha - 4\beta + \gamma = 0 \\ 2\alpha - 2\beta + \gamma = 0 \end{cases} \Rightarrow A = [T]_{can} = \begin{bmatrix} -1 & -10 & 1 \\ 0 & -6 & 1 \\ 1 & -4 & 1 \\ 2 & -2 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Sendo $x = (\alpha, \beta, \gamma)^t$ e $b = (0, 0, 0)^t$, queremos encontrar x que resolva

$$(A^*A)(x) = A^*(b).$$

Logo, temos que

$$\begin{pmatrix} 6 & 2 & 2 \\ 2 & 156 & -22 \\ 2 & -22 & 4 \end{pmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{pmatrix} -1 & 0 & 1 & 2 \\ -10 & -6 & -4 & -2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} 6\alpha + 2\beta + 2\gamma = 0 \\ 2\alpha + 156\beta - 22\gamma = 0 \\ 2\alpha - 22\beta + 4\gamma = 0 \end{cases}$$

7.22 Exercício 21

(21) Determine o polinômio de grau 2 que melhor se ajusta aos pontos (1,0),(0,1),(1,1),(2,4) de \mathbb{R}^2 .

Solução:

7.23 Exercício 22

(22) Determine a melhor solução aproximada do sistema

$$\begin{cases} x - 2y = 1\\ x - y = 0\\ 2x + 2y = 2 \end{cases}$$

Solução: A matriz que representa o sistema será

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 2 & 2 \end{bmatrix}$$

Logo, tomando $z = (x, y)^t$ e $b = (1, 0, 2)^t$,

$$Az = b$$

Vamos encontrar z tal que $A^*Az = A^*b$:

$$A^*Az = A^*b \Rightarrow \begin{bmatrix} 6 & 1 \\ 1 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ -2 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \Rightarrow \begin{cases} 6x + y = 5 \\ x + 9y = 2 \end{cases} \Rightarrow Z = \left(\frac{43}{53}, \frac{7}{53}\right)$$

Portanto, a melhor solução aproximada para o sistema será $\left(\frac{43}{53},\frac{7}{53}\right)$.

7.24 Exercício 23

(23) Considere o espaço vetorial $\mathscr{P}_3(\mathbb{R})$ com produto interno dado por

$$\langle f, g \rangle = \int_{0}^{1} f(x)g(x) \, \mathrm{d}x.$$

Determine o polinômio do subespaço $\langle 1, x^2 \rangle$ que melhor se aproxima de $f(x) = x^3x$.

Solução: Seja $W = \langle 1, x^2 \rangle$. Vamos encontrar

$$d(f, W) = \{ ||f - w|| | w \in W \}$$

Sabemos que $d(f, W) = ||f - E_W(f)||$, onde

$$E_W(f) = \sum_{i=1}^{2} \frac{\langle f, w_i \rangle}{\|w_i\|^2} w_i = \frac{\langle f, 1 \rangle}{\|1\|^2} + \frac{\langle f, x^2 \rangle}{\|x^2\|^2}$$

Logo,

$$E(x^{3} - x) = \frac{\langle x^{3} - x, 1 \rangle}{\|1\|^{2}} + \frac{\langle x^{3} - x, x^{2} \rangle}{\|x^{2}\|^{2}} = \frac{-\frac{1}{4}}{1} + \frac{-\frac{1}{12}}{\frac{1}{5}} = -\frac{2}{3}$$

e

$$d(f,W) = \left\| x^3 - x + \frac{2}{3} \right\| = \int_0^1 \left(x^3 - x + \frac{2}{3} \right) \left(x^3 - x + \frac{2}{3} \right) dx = \frac{59}{315}.$$

Basta encontrar um g(x) tal que

$$||f - g|| = \frac{59}{315}$$

7.25 Exercício 24

(24) Ache $a, b, c \in \mathbb{R}$ de forma a minimizar o valor da integral

$$\int_{-1}^{1} \left| x^3 - ax^2 - bx - c \right|^2 \mathrm{d}x.$$

7.26 Exercício 25

(25) Sejam U, V espaços com produtos internos e $T: U \to V$ uma aplicação tal que $\langle T(u), T(v) \rangle = \langle u, v \rangle \ \forall u, v \in U$. Mostre que T é linear.

Solução: Para verificar que T é linear, precisamos mostrar que, para todo $u,v\in V$ e $\alpha\in K$, temos que T(u+v)=T(u)+T(v) e $T(\alpha u)=\alpha T(u)$. De fato,

• para $u, v, w \in U$, temos que

$$\left\langle T(u+v),T(w)\right\rangle = \left\langle (u+v),w\right\rangle = \left\langle u,w\right\rangle + \left\langle v,w\right\rangle = \left\langle T(u),T(w)\right\rangle + \left\langle T(v),T(w)\right\rangle = \left\langle T(u)+T(v),T(w)\right\rangle \Rightarrow T(u+v)$$

• para $u, v, w \in U$, temos que

$$\left\langle T(\alpha u), T(w) \right\rangle = \left\langle \alpha u, w \right\rangle = \alpha \left\langle u, w \right\rangle = \alpha \left\langle T(u), T(w) \right\rangle + \left\langle \alpha T(v), T(w) \right\rangle \Rightarrow T(\alpha u) = \alpha T(u).$$

Logo, T é linear.

7.27 Operadores lineares em espaços com produto interno

7.28 Exercício 26

(26) Para cada um dos seguintes funcionais lineares $\varphi \in V^*$, encontre um vetor $u \in V$ tal que $\varphi(v) = \langle v, u \rangle \ \forall v \in V$:

(a)
$$V = \mathbb{R}^3, \varphi(x, y, z) = x + 2y - 3z;$$

(b)
$$V = \mathbb{C}^3, \varphi(x, y, z) = ix + (2 + 3i)y + (1 - 2i)z;$$

(c)
$$V = \mathscr{P}_2(\mathbb{R}), \varphi(f) = f(1);$$

Solução:

(a) Note que

$$x + 2y - 3z = \langle (1, 2, -3), (x, y, z) \rangle.$$

Portanto, temos que para $u = (1, 2, -3), \varphi(v) = \langle u, v \rangle, \forall v \in V.$

(b) Veja que

$$ix + (2+3i)y + (1-2i)z = \langle (i, 2+3i, 1-2i), (x, y, z) \rangle.$$

Portanto, temos que para $u = (i, 2 + 3i, 1 - 2i), \varphi(v) = \langle u, v \rangle, \forall v \in V.$

(c) Sejam $f(x) = ax^2 + bx + c$ e $g(x) = \alpha x^2 + \beta x + \gamma$. Como f(1) = a + b + c, temos que

$$\varphi(f) = a + b + c.$$

Queremos encontrar g tal que $\varphi(f) = \langle g, f \rangle$. Logo, devemos ter

$$\langle g, f \rangle = a + b + c \Rightarrow \langle g, f \rangle = \int_{0}^{1} g(x)f(x) dx \Rightarrow \int_{0}^{1} (\alpha x^{2} + \beta x + \gamma)(ax^{2} + bx + c) dx = a + b + x$$

7.29 Exercício 27

(27) Seja $T \in \mathcal{L}(\mathbb{C}^2)$ o operador dado por T(1,0) = (1+i,2) e T(0,1) = (i,i). Considerando \mathbb{C}^2 com o produto interno canônico, determine T^* .

Solução: Observe que a representação matricial de T na base canônica de \mathbb{C}^2 é

$$A = [T]_{\text{can}} = \begin{bmatrix} 1+i & i \\ 2 & i \end{bmatrix}$$

Como a base canônica é uma base ortonormal, a matriz que representa T^* na base canônica será a hermitiana de A, ou seja,

$$[T^*]_{can} = A^H = A^* = [T^*]_{can} = \overline{\begin{bmatrix} 1+i & i \\ 2 & i \end{bmatrix}}^t = \begin{bmatrix} 1-i & 2 \\ -i & -i \end{bmatrix}$$

Logo, o operador $T^* \in \mathcal{L}(\mathbb{C}^2)$ é dado por T(1,0) = (1-i,-i) e T(0,1) = (2,-i). Questões Suplementares

7.30 Exercício k

(k) Prove que para qualquer triângulo, a soma dos quadrados das medidas de suas três medianas é igual a três quartos da soma dos quadrados das medidas de seus lados.

Solução:

7.31 Exercício k+1

(k+1) Considere um tetraedro. Chamamos de *bimediana* o segmento que liga os pontos médios de duas arestas opostas do tetraedro.

- (a) Prove que, para qualquer tetraedro, a soma dos quadrados das medidas de suas três bimedianas é igual a um quarto da soma dos quadrados das medidas de suas arestas.
- (b) Encontre

- 8 Lista 6
- 8.1 Exercício 1
- **(1)**

Questões Suplementares

8.2 Exercício 31

(31)