Differentiable Probabilistic Models

William Watson

nextbillyonair@gmail.com

Abstract

d

Contents

1	Intro	oduction	6
	1.1	Philosophy	6
2	Back	ground	6
	2.1	Kronecker Product	6
	2.2	Gradients	6
	2.3	Jacobian	6
	2.4	Hessian	6
	2.5	Newton Optimization	6
3	Disti	ributions	6
	3.1	Distribution (Base Class)	6
	3.2	Arcsine	6
	3.3	Asymmetric Laplace	6
	3.4	Bernoulli	6
	3.5	Beta	6
	3.6	Categorical	6
	3.7	Cauchy	6
	3.8	Chi Square	6
	3.9	Conditional Model	6
	3.10	Convolution	6
	3.11	Data	6
	3.12	Dirac Delta	6
	3.13	Dirichlet	6
		Exponential	6
		Fisher-Snedcor (F-Distribution)	6
		Commo	

Differentiable Probabilistc Models: Documentation

3.17	Generator	6
3.18	Gumbel	6
3.19	Gumbel Softmax	6
3.20	Gumbel Mixture Model	6
3.21	Half Cauchy	6
3.22	Half Normal	6
3.23	Hyperbolic Secant	6
3.24	Infinite Mixture Model	6
3.25	Kumaraswamy	6
3.26	Langevin	6
3.27	Laplace	6
3.28	Log Cauchy	6
3.29	Log Laplace	6
3.30	Log Normal	6
3.31	Logistic	6
3.32	Logit Normal	6
3.33	Mixture Model	6
3.34	Normal (Independent)	6
3.35	Normal (Multivariate)	6
3.36	Pareto	6
3.37	Poisson	6
3.38	Rayleigh	6
3.39	Relaxed Bernoulli	6
3.40	Student T	6
3.41	Transformed Distribution	6
3.42	Uniform	6
3.43	Weibull	6
TT.		_
	sforms	6
4.1	Transform (Base Class)	7
4.2	Inverse Transform	7
4.3	Chain	7
4.4	Affine	7
4.5	Exp	7
4.6	Expm1	7
4.7	Gumbel	7
4.8	Identity	8
4.9	Kumaraswamy	8
	Log	8
4 11	Logit	8

4.12	Planar		8
4.13	Power		8
4.14	Radial		8
4.15	Recipro	ocal	8
4.16	Sigmoi	id	9
4.17	SinhAr	resinh	9
4.18	Softplu	ıs	9
4.19	Softsig	n	9
4.20	Square		9
4.21	Tanh .		9
4.22	Weibul	11	9
~			_
			9
5.1	_		10
			10
			10
		•	10
		-	10
			10
	5.1.6	-	10
	5.1.7		10
5.2	Advers		10
	5.2.1	Adversarial Loss (Base Class)	12
	5.2.2	GAN Loss	12
	5.2.3	MMGAN Loss	12
	5.2.4	WGAN Loss	12
	5.2.5	LSGAN Loss	12
	5.2.6	Gradient Penalty	12
	5.2.7	Spectral Norm	12
5.3	ELBO		12
Mod	alc		12
		sion	12
0.1	_		12
		-	12
			12
			12
62			12
0.2			12
	6.2.1	Rayasian Logistic Pagrassion (Remoulli)	12
	4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 Crite 5.1	4.13 Power 4.14 Radial 4.15 Recipre 4.16 Sigmon 4.17 SinhAn 4.18 Softplu 4.19 Softsig 4.20 Square 4.21 Tanh 4.22 Weibul Criterion 5.1 Diverg 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.2 Advers 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.3 ELBO Models 6.1 Regres 6.1.1 6.1.2 6.1.3 6.1.4 6.2 Classif 6.2.1	5.1 Divergences 5.1.1 Cross-Entropy 5.1.2 Perplexity 5.1.3 Exponential 5.1.4 Forward KL Divergence 5.1.5 Reverse KL Divergence 5.1.6 Jensen-Shannon Divergence 5.1.7 Earth Mover's Distance 5.2 Adversarial Loss 5.2.1 Adversarial Loss (Base Class) 5.2.2 GAN Loss 5.2.3 MMGAN Loss 5.2.4 WGAN Loss 5.2.5 LSGAN Loss 5.2.6 Gradient Penalty 5.2.7 Spectral Norm 5.3 ELBO Models 6.1 Regression 6.1.1 Linear Regression (Normal) 6.1.2 L1 Regression (Laplace) 6.1.3 Ridge Regression (Normal + Normal Prior on Weights) 6.1.4 Lasso Regression (Normal + Laplace Prior on Weights) 6.2 Classification 6.2.1 Logistic Regression (Bernoulli)

	6.2.3	Softmax Regression (Categorical)	12
	6.2.4	Bernoulli Naive Bayes (Bernoulli - Bernoulli)	12
	6.2.5	Gaussian Naive Bayes (Multinomial - Gaussian)	12
	6.2.6	Multinomial Naive Bayes (Bernoulli - Multinomial)	12
	6.2.7	Linear Discriminant Analysis (Multinomial - Shared Covariance)	12
	6.2.8	Quadratic Discriminant Analysis (Multinomial - Multivariate Gaussian)	12
6.3	Cluster	ing	12
	6.3.1	Gaussian Mixture Model	12
6.4	Uncons	strained Matrix Factorization (Gaussian)	12
6.5	Princip	le Components Analysis	12
	6.5.1	PCA	12
	6.5.2	EM-PPCA	12
	6.5.3	Variational PPCA	12
6.6	Genera	tive Adversarial Networks	12
	6.6.1	Generative Adversarial Networks	12
	6.6.2	GAN Model	12
	6.6.3	MMGAN Model	12
	6.6.4	WGAN Model	12
	6.6.5	LSGAN Model	12
6.7	Variation	onal Auto-Encoders	12
Mon	te Carl)	12
7.1	Monte	Carlo Integration	12
7.2	Linear	Congruential Generator	12
7.3	Inverse	Transform Sampling	12
7.4	Box-M	uller	12
7.5	Marsag	glia-Bray	12
7.6	Rejecti	on Sampling	12
7.7	MCMO	C: Metropolis	12
7.8	MCMO	C: Metropolis-Hastings	12
7.9	MCMC	C: Metropolis-Adjusted Langevin Algorithm (MALA)	12
7.10	MCMO	C: Hamiltonian Monte Carlo	12

1 Introduction

- 1.1 Philosophy
- 2 Background
- 2.1 Kronecker Product
- 2.2 Gradients
- 2.3 Jacobian
- 2.4 Hessian
- 2.5 Newton Optimization
- 3 Distributions
- 3.1 Distribution (Base Class)
- 3.2 Arcsine
- 3.3 Asymmetric Laplace
- 3.4 Bernoulli
- 3.5 Beta
- 3.6 Categorical
- 3.7 Cauchy
- 3.8 Chi Square
- 3.9 Conditional Model
- 3.10 Convolution
- 3.11 Data
- 3.12 Dirac Delta
- 3.13 Dirichlet
- 3.14 Exponential
- 3.15 Fisher-Snedcor (F-Distribution)
- 3.16 Gamma
- 3.17 Generator
- 3.18 Gumbel
- 3.19 Gumbel Softmax
- 3.20 Gumbel Mixture Model
- 3.21 Half Cauchy
- 3.22 Half Normal
- 3.23 Hyperbolic Secant
- 3.24 Infinite Mixture Model
- 3.25 Kumaraswamy
- 3.26 Langevin
- 3 27 I anlaca

- 4.1 Transform (Base Class)
- 4.2 Inverse Transform
- 4.3 Chain
- 4.4 Affine
 - Parameters
 - Location $\mu \in \mathbb{R}^n$
 - Scale $\sigma > 0$
 - Forward

$$f(x) = \mu + \sigma \cdot x \tag{1}$$

• Inverse

$$f^{-1}(y) = \frac{y - \mu}{\sigma} \tag{2}$$

• Log Absolute Determinant Jacobian

$$\log|\det \mathbf{J}|(x,y) = \log|\sigma| \tag{3}$$

- 4.5 Exp
 - Parameters
 - None
 - Forward

$$f(x) = e^x (4)$$

• Inverse

$$f^{-1}(y) = \log y \tag{5}$$

• Log Absolute Determinant Jacobian

$$\log|\det \mathbf{J}|(x,y) = x \tag{6}$$

- 4.6 Expm1
 - Parameters
 - None
 - Forward

$$f(x) = e^x - 1 \tag{7}$$

• Inverse

$$f^{-1}(y) = \log(1+y) \tag{8}$$

• Log Absolute Determinant Jacobian

$$\log|\det \mathbf{J}|(x,y) = x\tag{9}$$

- 4.7 Gumbel
 - Parameters
 - Location $\mu \in \mathbb{R}^n$
 - Scale $\sigma > 0$
 - Forward

$$f(x) = \exp\left(-\exp\left(-\frac{x-\mu}{\sigma}\right)\right) \tag{10}$$

• Inverse

$$f^{-1}(y) = \mu - \sigma \cdot \log\left(-\log\left(y\right)\right) \tag{11}$$

• Log Absolute Determinant Jacobian

$$\log|\det \mathbf{J}|(x,y) = -\log\left(\frac{\sigma}{-\log(y)\cdot y}\right) \tag{12}$$

- 4.8 Identity
- 4.9 Kumaraswamy
- 4.10 Log
 - Parameters
 - None
 - Forward

$$f(x) = \log x \tag{13}$$

Inverse

$$f^{-1}(y) = \exp y \tag{14}$$

• Log Absolute Determinant Jacobian

$$\log|\det \mathbf{J}|(x,y) = -y \tag{15}$$

- 4.11 Logit
 - Parameters
 - None
 - Forward

$$f(x) = \log\left(\frac{x}{1-x}\right) \tag{16}$$

• Inverse

$$f^{-1}(y) = \frac{1}{1 + e^{-y}} \tag{17}$$

• Log Absolute Determinant Jacobian

$$\log|\det \mathbf{J}|(x,y) = \log(1 + e^{-y}) + \log(1 + e^{y}) \tag{18}$$

- 4.12 Planar
- **4.13** Power
 - Parameters
 - Power p
 - Forward

$$f(x) = \begin{cases} e^x & p = 0\\ (1 + x \cdot p)^{1/p} & \text{otherwise} \end{cases}$$
 (19)

Inverse

$$f^{-1}(y) = \begin{cases} \log y & p = 0\\ y^{p-1}/p & \text{otherwise} \end{cases}$$
 (20)

• Log Absolute Determinant Jacobian

$$\log|\det \mathbf{J}|(x,y) = \begin{cases} x & p = 0\\ \left(\frac{1}{p} - 1\right) \cdot \log(x \cdot p + 1) & \text{otherwise} \end{cases}$$
 (21)

- 4.14 Radial
- 4.15 Reciprocal
 - Parameters
 - None
 - Forward

$$f(x) = 1/x \tag{22}$$

• Inverse

$$f^{-1}(y) = 1/y (23)$$

• Log Absolute Determinant Jacobian

$$\log|\det \mathbf{J}|(x,y) = -2 \cdot \log|x| \tag{24}$$

- 4.16 Sigmoid
 - Parameters
 - None
 - Forward

$$f(x) = \frac{1}{1 + e^{-x}} \tag{25}$$

• Inverse

$$f^{-1}(y) = \log\left(\frac{y}{1-y}\right) \tag{26}$$

• Log Absolute Determinant Jacobian

$$\log|\det \mathbf{J}|(x,y) = -\log(1 + e^{-x}) - \log(1 + e^{x}) \tag{27}$$

- 4.17 SinhArcsinh
- 4.18 Softplus
- 4.19 Softsign
- 4.20 Square
- 4.21 Tanh
- 4.22 Weibull

5 Criterion

The criterion and divergences listed here can be used to quantify the "distance" between two distributions. Hence, in conjunction with torch optimizers, one can minimize said difference to learn the paramters of a distribution. For sake of notation clarity, p is the true distribution and q is the learned distribution. Hence we "fit" q to match p. In addition, we provide the Monte Carlo approximation.

		P		Q	
	Criterion	$\log p(x)$	$x \sim P$	$\log q(x)$	$x \sim Q$
Divergence	Cross-Entropy Perplexity Exponential Forward KL Reverse KL JS Divergence	<i>y y y y</i>	<i>y y y</i>	> > > > > > > > > >	<i>y</i>
Adversarial	GAN MMGAN WGAN LSGAN		<i>y y y</i>		\ \ \ \ \ \ \ \

5.1 Divergences

5.1.1 Cross-Entropy

$$H(p,q) = -\int p(x) \log q(x) dx$$

$$= -\frac{1}{n} \sum_{x \sim p} \log q(x)$$
(28)

5.1.2 Perplexity

$$H(p,q) = \exp\left(-\int p(x)\log q(x)dx\right)$$

$$= \exp\left(-\frac{1}{n}\sum_{x\sim p}\log q(x)\right)$$
(29)

5.1.3 Exponential

5.1.4 Forward KL Divergence

$$H(p,q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$

$$= \frac{1}{n} \sum_{x \sim p} \log \frac{p(x)}{q(x)}$$
(30)

5.1.5 Reverse KL Divergence

$$H(p,q) = \int q(x) \log \frac{q(x)}{p(x)} dx$$

$$= \frac{1}{n} \sum_{x \sim q} \log \frac{q(x)}{p(x)}$$
(31)

5.1.6 Jensen-Shannon Divergence

5.1.7 Earth Mover's Distance

5.2 Adversarial Loss

Adversarial Losses are criterion functions that allow for sample-sample based training between models p and q. More formally, it hides a Discriminator model that attempts to discriminate between the real data from p and fake data generated from q.

- **5.2.1** Adversarial Loss (Base Class)
- 5.2.2 GAN Loss
- 5.2.3 MMGAN Loss
- 5.2.4 WGAN Loss
- 5.2.5 LSGAN Loss
- 5.2.6 Gradient Penalty
- 5.2.7 Spectral Norm
- **5.3** ELBO
- 6 Models
- 6.1 Regression
- 6.1.1 Linear Regression (Normal)
- 6.1.2 L1 Regression (Laplace)
- **6.1.3** Ridge Regression (Normal + Normal Prior on Weights)
- 6.1.4 Lasso Regression (Normal + Laplace Prior on Weights)
- 6.2 Classification
- 6.2.1 Logistic Regression (Bernoulli)
- 6.2.2 Bayesian Logistic Regression (Bernoulli)
- 6.2.3 Softmax Regression (Categorical)
- 6.2.4 Bernoulli Naive Bayes (Bernoulli Bernoulli)
- **6.2.5** Gaussian Naive Bayes (Multinomial Gaussian)
- **6.2.6** Multinomial Naive Bayes (Bernoulli Multinomial)
- **6.2.7** Linear Discriminant Analysis (Multinomial Shared Covariance)
- 6.2.8 Quadratic Discriminant Analysis (Multinomial Multivariate Gaussian)
- 6.3 Clustering
- 6.3.1 Gaussian Mixture Model
- **6.4** Unconstrained Matrix Factorization (Gaussian)
- 6.5 Principle Components Analysis
- 6.5.1 PCA
- **6.5.2** EM-PPCA
- 6.5.3 Variational PPCA
- 6.6 Generative Adversarial Networks
- 6.6.1 Generative Adversarial Networks
- 6.6.2 GAN Model
- 6.6.3 MMGAN Model
- 6.6.4 WGAN Model
- 6.6.5 LSGAN Model

- 12
- 6.7 Variational Auto-Encoders
- 7 Monte Carlo