Div/Tut batch: D $_{--}$ / T $_{--}$

CODE A

Date: 12/11/2018.

Roll Number: _ _ _ _ _

(1) Define f(0,0) (without explanation) in a way that makes f continuous in a neighborhood of (0,0). Here

$$f(x,y) = \log\left(\frac{3x^2 - x^2y^2 + 3y^2}{x^2 + y^2}\right)$$
 for $(x,y) \neq (0,0)$.

Answer: $f(0,0) = \log 3 = 0.477$.

(2) Find the directional derivative $D_{\bf u}f$ at (0,0) along ${\bf u}=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ of the function

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} , & \text{if } (x,y) \neq 0 \\ 0 , & \text{if } (x,y) = 0. \end{cases}$$

Answer: $D_{\mathbf{u}}f(0,0) = \frac{1}{2\sqrt{2}} = 0.35355.$

(3) Find the maximum value of f(x, y, z) = x - 2y + 5z on the sphere $x^2 + y^2 + z^2 = 30$.

Answer: 30.

(4) Let W be the subset of \mathbb{R}^3 bounded by the three planes $x=0,\ y=0,\ z=2,$ the surface $z=x^2+y^2,$ and lying in the quadrant $x\geq 0,\ y\geq 0.$ Then

$$\iiint_W x dx dy dz = \frac{8\sqrt{2}}{15} = 0.7542.$$

(5) The volume of the region below the plane z+x=1 and inside the cylinder $x^2+y^2\leq 1$,

$$0 \le z \le 1$$
, is $\pi - \frac{2}{3} = 2.4749$.

Div/Tut batch: D $_{-}$ / T $_{-}$

CODE B

Date: 12/11/2018.

Name:

Roll Number: _ _ _ _ _ _

(1) Define f(0,0) (without explanation) in a way that makes f continuous in a neighborhood of (0,0). Here

$$f(x,y) = \log\left(\frac{3x^2 - x^2y^2 + 3y^2}{x^2 + y^2}\right) \quad \text{ for } (x,y) \neq (0,0).$$

Answer: $f(0,0) = \log 3 = 0.477$.

(2) Find the directional derivative $D_{\bf u}f$ at (0,0) along ${\bf u}=(\frac{\sqrt{2}}{\sqrt{3}},\frac{1}{\sqrt{3}})$ of the function

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & \text{if } (x,y) \neq 0\\ 0, & \text{if } (x,y) = 0. \end{cases}$$

Answer: $D_{\mathbf{u}}f(0,0) = \frac{2}{3\sqrt{3}} = 0.3849.$

(3) Find the minimum value of $f(x,y)=x^2+y^2$ subject to the constraint $x^2-2x+y^2=4y$.

Answer: 0.

(4) Let W be the subset of \mathbb{R}^3 bounded by the three planes x=0, y=0, z=2, the surface $z=x^2+y^2$, and lying in the quadrant $x\geq 0$, $y\geq 0$. Then

$$\iiint_{W} y dx dy dz = \frac{8\sqrt{2}}{15} = 0.7542.$$

(5) The volume of the region below the plane z+y=1 and inside the cylinder $x^2+y^2\leq 1$,

$$0 \le z \le 1$$
, is $\pi - \frac{2}{3} = 2.4749$.

Div/Tut batch: D $_{-}$ / T $_{-}$

CODE C

Date: 12/11/2018.

Name:

Roll Number: _ _ _ _ _

(1) Define f(0,0) (without explanation) in a way that makes f continuous in a neighborhood of (0,0). Here

$$f(x,y) = \log\left(\frac{3x^2 - x^2y^2 + 3y^2}{x^2 + y^2}\right) \quad \text{ for } (x,y) \neq (0,0).$$

Answer: $f(0,0) = \log 3 = 0.477$.

(2) Find the directional derivative $D_{\bf u}f$ at (0,0) along ${\bf u}=(\frac{\sqrt{3}}{2},\frac{1}{2})$ of the function

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} , & \text{if } (x,y) \neq 0 \\ 0 , & \text{if } (x,y) = 0. \end{cases}$$

Answer: $D_{\mathbf{u}}f(0,0) = \frac{3}{8} = 0.375.$

(3) Find the maximum value of $f(x,y)=x^2+y^2$ subject to the constraint $x^2-2x+y^2=4y$.

Answer: 20.

(4) Let W be the subset of \mathbb{R}^3 bounded by the three planes x=0, y=0, z=2, the surface $z=x^2+y^2$, and lying in the quadrant $x\geq 0$, $y\geq 0$. Then

$$\iiint_{W} x dx dy dz = \frac{8\sqrt{2}}{15} = 0.7542.$$

(5) The volume of the region below the plane z+x=1 and inside the cylinder $x^2+y^2\leq 1$,

$$0 \le z \le 1$$
, is $\pi - \frac{2}{3} = 2.4749$.

Div/Tut batch: D $_{--}$ / T $_{--}$

CODE **D**

Date: 12/11/2018.

Roll Number: ______

(1) Define f(0,0) (without explanation) in a way that makes f continuous in a neighborhood of (0,0). Here

$$f(x,y) = \log\left(\frac{3x^2 - x^2y^2 + 3y^2}{x^2 + y^2}\right) \quad \text{ for } (x,y) \neq (0,0).$$

Answer: $f(0,0) = \log 3 = 0.477$.

(2) Find the directional derivative $D_{\bf u}f$ at (0,0) along ${\bf u}=(\frac{2}{\sqrt{5}},\frac{1}{\sqrt{5}})$ of the function

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & \text{if } (x,y) \neq 0\\ 0, & \text{if } (x,y) = 0. \end{cases}$$

Answer: $D_{\mathbf{u}}f(0,0) = \frac{4}{5\sqrt{5}} = 0.35777.$

(3) Find the minimum value of f(x, y, z) = x - 2y + 5z on the sphere $x^2 + y^2 + z^2 = 30$.

Answer: -30.

(4) Let W be the subset of \mathbb{R}^3 bounded by the three planes x=0, y=0, z=2, the surface $z=x^2+y^2$, and lying in the quadrant $x\geq 0$, $y\geq 0$. Then

$$\iiint_{W} y dx dy dz = \frac{8\sqrt{2}}{15} = 0.7542.$$

(5) The volume of the region below the plane z+y=1 and inside the cylinder $x^2+y^2\leq 1$,

$$0 \le z \le 1$$
, is $\pi - \frac{2}{3} = 2.4749$.