shortPath nb

April 29, 2018

```
In [1]: # Austin Griffith
        # Python 3.6.5
        # 4/25/2018
        import pandas as pd
        import numpy as np
        from gurobipy import *
        import matplotlib.pyplot as plt
        import matplotlib.pylab as pylab
        import networkx as nx
In [2]: # set up plotting parameters
        params = {'legend.fontsize': 20,
                  'figure.figsize': (13,9),
                 'axes.labelsize': 20,
                 'axes.titlesize':20,
                 'xtick.labelsize':15,
                 'ytick.labelsize':15}
        pylab.rcParams.update(params)
In [3]: # graph all nodes and paths
        def networkCompletePlot(solution,maxNode):
            G = nx.DiGraph()
            G.add_nodes_from(range(0,maxNode+1))
            for i,j in nodes:
                G.add_edge(i,j)
            # get solution nodes
            sp = [i for i,j in solution[1]]
            sp.append(end)
            colorNode = ['white' if not node in sp else 'red' for node in G.nodes()]
            title = 'Complete Network: Gamma = '+str(int(solution[0]))+', Opt Obj = '+str(round())
            nx.draw_networkx(G,node_color=colorNode,node_size=200)
            plt.axis('off')
            plt.title(title)
            plt.show()
```

```
def networkPathPlot(solution,maxNode,cost):
            # get solution nodes
            sp = [i for i,j in solution[1]]
            sp.append(end)
            # set up random position values
            a = np.arange(maxNode+1)
            b = np.arange(maxNode+1)
            np.random.shuffle(a)
            posArray = np.array([a,b]).transpose()
            positions = {}
            for p in range(0,len(sp)):
                L = posArray[p]
                positions[sp[p]] = (L[0],L[1])
            # set up network graph
            G = nx.DiGraph()
            G.add_nodes_from(sp)
            for i,j in tuplelist(solution[1]):
                G.add_edge(i,j)
            labels = {}
            for i in solution[1]:
                labels[i] = round(c[i],3)
            title = 'Optimal Path: Gamma = '+str(int(solution[0]))+', Opt Obj = '+str(round(solution[0]))+'
            nx.draw_networkx(G,positions,node_size=350)
            nx.draw_networkx_edge_labels(G,positions,edge_labels=labels)
            plt.axis('off')
            plt.title(title)
            plt.show()
In [4]: # pull data
        edges = pd.read_csv('edge_data.csv')
        edges['i'] = np.int64(edges['i'])
        edges['j'] = np.int64(edges['j'])
        # create dictionaries of edge values
        c = \{\}
        d = \{\}
        nodes = tuplelist()
        for i in edges.index:
            c[edges['i'][i],edges['j'][i]] = edges['c(ij)'][i]
            d[edges['i'][i],edges['j'][i]] = edges['d(ij)'][i]
            nodes.append((edges['i'][i],edges['j'][i]))
```

graph path, with costs on edges

```
maxNodes = max(edges['j'])
        minNodes = min(edges['i'])
In [5]: # choose start and end nodes
        start = 0
        end = 49
        # allowed edge congestions
        gend = 4
        gammas = np.linspace(0,gend,gend+1)
        print('Allowed Congestions:')
        print(gammas)
Allowed Congestions:
[ 0. 1. 2. 3. 4.]
In [6]: # initialize model
        model = Model('Shortest_Path')
        # set up x binary variables, set to each location/movement
        xVars = model.addVars(nodes, vtype=GRB.BINARY, name='move')
        y0 = model.addVar(vtype=GRB.CONTINUOUS, name='y0')
        zVars = model.addVars(nodes, lb=0.0, vtype=GRB.CONTINUOUS, name='cong')
        model.update()
In [7]: # constrain all entrance and exit nodes
        enterStart = []
        leaveStart = []
        enterEnd = []
        leaveEnd = []
        for n in nodes:
            # for start nodes
            if n[0] == start:
                leaveStart.append(xVars[n])
            elif n[1] == start:
                enterStart.append(xVars[n])
            # for end nodes
            if n[0] == end:
                leaveEnd.append(xVars[n])
            elif n[1] == end:
                enterEnd.append(xVars[n])
        model.addConstr(quicksum(leaveStart) == 1)
        model.addConstr(quicksum(enterStart) == 0)
        model.addConstr(quicksum(leaveEnd) == 0)
        model.addConstr(quicksum(enterEnd) == 1)
        model.update()
```

```
In [8]: # gather all paths
        paths = []
        for i in range(minNodes+1, maxNodes):
            pathFrom = []
            pathTo = []
            for n in nodes:
                if n[0] == i:
                    pathFrom.append(xVars[n])
                elif n[1] == i:
                     pathTo.append(xVars[n])
            paths.append([pathFrom,pathTo])
        model.update()
        for p in paths:
            model.addConstr(quicksum(p[0]) - quicksum(p[1]) == 0.0)
        model.update()
        print('Example of Path Constraint for a Given Node:')
        print(quicksum(p[0]) - quicksum(p[1]))
Example of Path Constraint for a Given Node:
<gurobi.LinExpr: move[48,0] + move[48,1] + move[48,2] + move[48,3] + move[48,4] + move[48,5] + m</pre>
In [9]: # objective function
        costObj = []
        for n in nodes:
            costObj.append(xVars[n]*c[n])
            model.addConstr(zVars[n] >= xVars[n]*d[n] - y0)
        model.update()
        print('Example of Congestion Constraint:')
        print(zVars[n],' >= ',xVars[n]*d[n] - y0)
Example of Congestion Constraint:
\langle gurobi.Var cong[49,48] \rangle >= \langle gurobi.LinExpr: 3.9051301780000003 move[49,48] + -1.0 y0 \rangle
In [10]: # iterate optimization through various gammas (congestions)
         output = []
         for g in gammas:
             # optimize
             objective = quicksum(costObj) + g*y0 + quicksum(zVars)
             model.setObjective(objective, GRB.MINIMIZE)
             model.optimize()
             # order the printout of optimal edges
             moves = \Pi
```

```
for m in xVars:
                 if xVars[m].x != 0:
                     moves.append(m)
             order = [moves[0]]
             for i in range(len(moves)):
                 for m in moves:
                     if order[i][1] == m[0]:
                         order.append(m)
             output.append([g,order,model.objVal])
Optimize a model with 2261 rows, 4419 columns and 11045 nonzeros
Variable types: 2210 continuous, 2209 integer (2209 binary)
Coefficient statistics:
                   [8e-05, 5e+00]
 Matrix range
  Objective range [1e-05, 1e+00]
  Bounds range
                   [1e+00, 1e+00]
                   [1e+00, 1e+00]
 RHS range
Found heuristic solution: objective 0.2538690
Presolve removed 2211 rows and 3869 columns
Presolve time: 0.01s
Presolved: 50 rows, 550 columns, 1100 nonzeros
Variable types: 0 continuous, 550 integer (550 binary)
Root relaxation: objective 1.331944e-01, 22 iterations, 0.00 seconds
                                        Objective Bounds
                  Current Node
                                  Work
Expl Unexpl | Obj Depth IntInf | Incumbent
                                                 BestBd
                                                          Gap | It/Node Time
                                   0.1331944
                                                0.13319 0.00%
Explored O nodes (22 simplex iterations) in 0.03 seconds
Thread count was 8 (of 8 available processors)
Solution count 2: 0.133194 0.253869
Optimal solution found (tolerance 1.00e-04)
Best objective 1.331943590000e-01, best bound 1.331943590000e-01, gap 0.0000%
Optimize a model with 2261 rows, 4419 columns and 11045 nonzeros
Variable types: 2210 continuous, 2209 integer (2209 binary)
Coefficient statistics:
 Matrix range
                   [8e-05, 5e+00]
  Objective range [1e-05, 1e+00]
 Bounds range
                   [1e+00, 1e+00]
                   [1e+00, 1e+00]
 RHS range
Loaded MIP start with objective 4.13319
```

Presolve removed 365 rows and 1409 columns

Presolve time: 0.07s

Presolved: 1896 rows, 3010 columns, 17106 nonzeros

Variable types: 1164 continuous, 1846 integer (1846 binary)

Root relaxation: objective 7.420269e-01, 63 iterations, 0.00 seconds

Nodes			Cu	rrent	Nod	le	Objec	tive Bounds	1	Work			
Expl Unexpl		xpl	Obj	Dept1	h In	ıtInf	Incumbent	BestBd	Gap	It/Node	Time		
	0	0	0.74	203	0	34	4.13319	0.74203	82.0%	-	0s		
Н	0	0					1.9536830	0.74203	62.0%	-	0s		
Η	0	0					1.9184585	0.74203	61.3%	-	0s		
Η	0	0					1.9105642	0.74203	61.2%	-	0s		
Η	0	0					1.6807535	0.75255	55.2%	-	0s		
	0	0	0.81	623	0	16	1.68075	0.81623	51.4%	_	0s		
	0	0	0.94	160	0	27	1.68075	0.94160	44.0%	_	0s		
Н	0	0					1.3586585	0.94160	30.7%	-	0s		
	0	0	1.01	801	0	18	1.35866	1.01801	25.1%	-	0s		
	0	0	1.10	836	0	20	1.35866	1.10836	18.4%	_	0s		
Н	0	0					1.3528823	1.11922	17.3%	-	0s		
	0	0	1.17	071	0	19	1.35288	1.17071	13.5%	_	0s		
	0	0	1.18	298	0	13	1.35288	1.18298	12.6%	-	0s		
Н	0	0					1.2992082	1.18298	8.95%	-	0s		
	0	0	1.28	002	0	13	1.29921	1.28002	1.48%	_	0s		
	0	0	1.28	091	0	3	1.29921	1.28091	1.41%	-	0s		
	0	0	cut	off	0		1.29921	1.29921	0.00%	-	0s		

Cutting planes:

Gomory: 2 MIR: 2

Explored 1 nodes (270 simplex iterations) in 0.28 seconds Thread count was 8 (of 8 available processors)

Solution count 8: 1.29921 1.35288 1.35866 ... 4.13319

Optimal solution found (tolerance 1.00e-04)

Best objective 1.299208152000e+00, best bound 1.299208152000e+00, gap 0.0000%

Optimize a model with 2261 rows, 4419 columns and 11045 nonzeros

Variable types: 2210 continuous, 2209 integer (2209 binary)

Coefficient statistics:

Matrix range [8e-05, 5e+00] Objective range [1e-05, 2e+00] Bounds range [1e+00, 1e+00] RHS range [1e+00, 1e+00]

Loaded MIP start with objective 1.91931

Presolve removed 91 rows and 178 columns

Presolve time: 0.01s

Presolved: 2170 rows, 4241 columns, 10600 nonzeros

Variable types: 2121 continuous, 2120 integer (2120 binary)

Root relaxation: objective 7.612361e-01, 77 iterations, 0.00 seconds

Nodes			Current Node				Obje	ctive Bound	s l	Work			
Expl Unexpl		expl	Obj	Dept	h Int	Inf	Incumben	t BestBd	Gap	It/Node	Time		
	0	0	0.76	124	0	40	1.91931	0.76124	60.3%	-	0s		
H	0	0					1.8339424	0.76124	58.5%	-	0s		
	0	0	1.00	051	0	27	1.83394	1.00051	45.4%	_	0s		
	0	0	1.01	.980	0	25	1.83394	1.01980	44.4%	-	0s		
	0	0	1.13	039	0	26	1.83394	1.13039	38.4%	-	0s		
	0	0	1.13039		0	26	1.83394	1.13039	38.4%	-	0s		
H	0	0					1.8229833	1.13385	37.8%	-	0s		
	0	0	1.14	204	0	23	1.82298	1.14204	37.4%	-	0s		
	0	0	1.21	474	0	22	1.82298	1.21474	33.4%	-	0s		
	0	0	1.23	511	0	26	1.82298	1.23511	32.2%	-	0s		
	0	0	1.25	863	0	26	1.82298	1.25863	31.0%	-	0s		
	0	0	1.34	503	0	25	1.82298	1.34503	26.2%	-	0s		
	0	0	1.34	503	0	33	1.82298	1.34503	26.2%	-	0s		
	0	0	1.34	503	0	24	1.82298	1.34503	26.2%	-	0s		
	0	0	1.34	503	0	25	1.82298	1.34503	26.2%	-	0s		
H	0	0					1.6457191	1.34503	18.3%	-	0s		
	0	0	1.34	503	0	20	1.64572	1.34503	18.3%	_	0s		
	0	0	1.34	503	0	20	1.64572	1.34503	18.3%	-	0s		
	0	0	1.34	503	0	18	1.64572	1.34503	18.3%	_	0s		
	0	0	1.34	503	0	23	1.64572	1.34503	18.3%	_	0s		
	0	0	1.35	059	0	20	1.64572	1.35059	17.9%	_	0s		
	0	0	1.59	872	0	17	1.64572	1.59872	2.86%	_	0s		
	0	0	1.59	872	0	25	1.64572	1.59872	2.86%	_	0s		
	0	0	1.59	872	0	22	1.64572	1.59872	2.86%	-	0s		
	0	0	1.59	872	0	25	1.64572	1.59872	2.86%	-	0s		
	0	0	1.59	872	0	7	1.64572	1.59872	2.86%	-	0s		
	0	0	1.62	779	0	9	1.64572	1.62779	1.09%	-	0s		
	0	0	cut	off	0		1.64572	1.64572	0.00%	-	0s		

Cutting planes:

Gomory: 3 Clique: 1 MIR: 1

Explored 1 nodes (513 simplex iterations) in 0.28 seconds Thread count was 8 (of 8 available processors)

Solution count 4: 1.64572 1.82298 1.83394 1.91931

Optimal solution found (tolerance 1.00e-04)

Best objective 1.645719055000e+00, best bound 1.645719055000e+00, gap 0.0000%

Optimize a model with 2261 rows, 4419 columns and 11045 nonzeros

Variable types: 2210 continuous, 2209 integer (2209 binary)

Coefficient statistics:

Matrix range [8e-05, 5e+00] Objective range [1e-05, 3e+00] Bounds range [1e+00, 1e+00] RHS range [1e+00, 1e+00]

Loaded MIP start with objective 1.99223

Presolve removed 91 rows and 178 columns

Presolve time: 0.01s

Presolved: 2170 rows, 4241 columns, 10600 nonzeros

Variable types: 2121 continuous, 2120 integer (2120 binary)

Root relaxation: objective 8.701595e-01, 88 iterations, 0.00 seconds

Nodes		Current Node				Object	Bounds	Work				
Ex	pl Une	expl	Obj D	epth I	ntInf		Incumbent]	BestBd	Gap	It/Node	Time
	0	0	0.8701	6 0	57		1.99223	0	.87016	56.3%	-	0s
Η	0	0				:	1.8339424	0	.87016	52.6%	-	0s
	0	0	1.2272	1 0	28		1.83394	1	. 22721	33.1%	-	0s
	0	0	1.2272	1 0	28		1.83394	1	. 22721	33.1%	-	0s
	0	0	1.3649	5 0	36		1.83394	1	. 36495	25.6%	-	0s
Н	0	0					1.7690089	1	. 36495	22.8%	_	0s
	0	0	1.4351	6 0	27		1.76901	1	.43516	18.9%	_	0s
	0	0	1.5419	6 0	29		1.76901	1	.54196	12.8%	_	0s
	0	0	1.5419	6 0	16		1.76901	1	.54196	12.8%	_	0s
	0	0	1.6545	4 0	21		1.76901	1	. 65454	6.47%	_	0s
	0	0	1.6658	8 0	15		1.76901	1	. 66588	5.83%	-	0s
	0	0	1.7505	3 0	6		1.76901	1	.75053	1.04%	-	0s
	0	0	cutof	f 0			1.76901	1	.76901	0.00%	-	0s

Explored 1 nodes (373 simplex iterations) in 0.15 seconds Thread count was 8 (of 8 available processors)

Solution count 3: 1.76901 1.83394 1.99223

Optimal solution found (tolerance 1.00e-04)

Best objective 1.769008875000e+00, best bound 1.769008875000e+00, gap 0.0000%

Optimize a model with 2261 rows, 4419 columns and 11045 nonzeros

Variable types: 2210 continuous, 2209 integer (2209 binary)

Coefficient statistics:

Matrix range [8e-05, 5e+00]

```
Objective range [1e-05, 4e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
```

Loaded MIP start with objective 1.8923

Presolve removed 91 rows and 178 columns

Presolve time: 0.01s

Presolved: 2170 rows, 4241 columns, 10600 nonzeros

Variable types: 2121 continuous, 2120 integer (2120 binary)

Root relaxation: objective 9.929632e-01, 67 iterations, 0.00 seconds

Nodes			Current Node					Objec	;	Work				
Expl Unexpl		1	Obj	Depth	Int	Inf		Incumbent	${\tt BestBd}$	Ga	p	It/No	le	Time
	0	0	0.99	296	0	50		1.89230	0.99296	47.	5%	_		0s
H	0	0					1	.8339424	0.99296	45.	9%	-		0s
	0	0	1.41	127	0	38		1.83394	1.41127	23.	0%	-		0s
	0	0	1.41	127	0	31		1.83394	1.41127	23.	0%	-		0s
	0	0	1.49	119	0	31		1.83394	1.49119	18.	7%	-		0s
	0	0	1.49	119	0	29		1.83394	1.49119	18.	7%	-		0s
	0	0	1.64	322	0	27		1.83394	1.64322	10.	4%	-		0s
	0	0	1.64	322	0	16		1.83394	1.64322	10.	4%	-		0s
	0	0	1.72	029	0	21		1.83394	1.72029	6.2	0%	-		0s
	0	0	1.72	029	0	11		1.83394	1.72029	6.2	0%	_		0s
	0	0	1.80	893	0	3		1.83394	1.80893	1.3	6%	-		0s
	0	0	1.80	893	0	1		1.83394	1.80893	1.3	6%	_		0s
	0	0	cut	off	0			1.83394	1.83394	0.0	0%	-		0s

Cutting planes:

Gomory: 1 MIR: 1

Explored 1 nodes (433 simplex iterations) in 0.15 seconds Thread count was 8 (of 8 available processors)

Solution count 2: 1.83394 1.8923

Optimal solution found (tolerance 1.00e-04)
Best objective 1.833942446000e+00, best bound 1.833942446000e+00, gap 0.0000%

```
print('Cost of Movement (Objective):')
print(o[2])
networkCompletePlot(o,maxNodes)
networkPathPlot(o,maxNodes,c)
```

For Gamma: 0.0

Path:

[(0, 23), (23, 21), (21, 47), (47, 4), (4, 22), (22, 6), (6, 45), (45, 3), (3, 18), (18, 49)]

Cost of Movement (Objective):

Complete Network: Gamma = 0, Opt Obj = 0.13319

Optimal Path: Gamma = 0, Opt Obj = 0.13319

For Gamma: 1.0

Path:

[(0, 48), (48, 8), (8, 30), (30, 47), (47, 49)]

Cost of Movement (Objective):

Complete Network: Gamma = 1, Opt Obj = 1.29921

Optimal Path: Gamma = 1, Opt Obj = 1.29921

For Gamma: 2.0

Path:

[(0, 48), (48, 8), (8, 30), (30, 47), (47, 49)]

Cost of Movement (Objective):

Complete Network: Gamma = 2, Opt Obj = 1.64572

Optimal Path: Gamma = 2, Opt Obj = 1.64572

For Gamma: 3.0

Path:

[(0, 48), (48, 8), (8, 30), (30, 47), (47, 49)]

Cost of Movement (Objective):

Complete Network: Gamma = 3, Opt Obj = 1.76901

Optimal Path: Gamma = 3, Opt Obj = 1.76901

For Gamma: 4.0

Path:

[(0, 7), (7, 49)]

Cost of Movement (Objective):

Complete Network: Gamma = 4, Opt Obj = 1.83394

Optimal Path: Gamma = 4, Opt Obj = 1.83394

