RD / WR 요청이 발생했을 때 해당 동작을 SSD 내부의 NAND Flash Memory 구조에 맞게 바꾸 과정이 FTL을 통해서 이루어진다.

Garbage Collection Wear Leveling

FTL 은 Logical Block Mapping 을 통해서 가능한데

- Page(Sector) Mapping
- Block Mapping
- Hybrid Mapping

1. Page(Sector) Mapping

1 block = 4 sector 16 logical sectors Row-size of mapping table = 16

Pros: short access time?

Cons: mapping table size might be too large

"LSN 9 번에 데이터를 write 해줘"라는 요청이 들어오면 mappping table 결과에 따라서 PSN 3 번에 해당 데이터를 기록한다.

만약 mapping table 에 해당 PSN 이 없으면 비어있는 physical pages 를 찾아서 기록하고 모든 physical pages 가 사용중이면 valid 데이터를 빈 공간으로 복사하고 mapping table 을 수정한 뒤 erase 한다.

mapping table 을 플래시 메모리에 저장하거나 write 요청이 들어올 때마다 LSN을 따로 저장하는 방식으로 언제든지 rebuild (from failure) 가능하다.

1. Page(Sector) Mapping

Table 1. Measures of Sector mapping scheme

Garbage collection cost	Block Erase is done		
	when a block is		
	completely utilized.		
RAM requirement	Proportional to flash size		
Search time	Not required		
Usefulness	Useful in case strict time		
	requirement		

"LSN 9 번에 데이터를 write 해줘"라는 요청이 들어오면 mappping table 결과에 따라서 PSN 3 번에 해당 데이터를 기록한다.

만약 mapping table 에 해당 PSN 이 없으면 비어있는 physical pages 를 찾아서 기록하고 모든 physical pages 가 사용중이면 valid 데이터를 빈 공간으로 복사하고 mapping table 을 수정한 뒤 erase 한다.

mapping table 을 플래시 메모리에 저장하거나 write 요청이 들어올 때마다 LSN을 따로 저장하는 방식으로 언제든지 rebuild (from failure) 가능하다.

2. Block Mapping

if m pages in 1 block, mapping table 크기는 1/m 이 됨 row-size of mapping table = num_of_blocks

Pros: size of mapping table very small

Cons : requires many read / write operation

Block Mapping 에서 LBN은 반드시 offset 정보를 나타내는 PBN으로 매핑된다. "LSN 9 번에 데이터를 write 해줘"라는 요청이 들어오면 LBN = LSN / num_of_blocks 으로 블록을 찾아가고 PBN 이 디폴트이면 그대로 기록하고, 이미 기록되어 있으면 해당 데이터를 비어있는 블록으로 copy – erase – copy back 을 실행한다. 이 과정에서 read / write 연산이 많이 발생한다.

2. Block Mapping

Table 2. Measures of block mapping scheme

Garbage collection cost	Block Erase is done hen
	a block is completely
	utilized.
RAM requirement	Proportional to flash size
Search time	Not required
Usefulness	Useful in case of strict
	time requirement

Block Mapping 에서 LBN은 반드시 offset 정보를 나타내는 PBN으로 매핑된다. "LSN 9 번에 데이터를 write 해줘"라는 요청이 들어오면 LBN = LSN / num_of_blocks 으로 블록을 찾아가고 PBN 이 디폴트이면 그대로 기록하고,이미 기록되어 있으면 해당 데이터를 비어있는 블록으로 copy – erase – copy back 을 실행한다.이 과정에서 read / write 연산이 많이 발생한다.

3. Hybrid Mapping

Page Mapping 과 Block Mapping 의 단점을 극복하기 위해서

Log Block : save page mapping info Data Block : save block mapping info

데이터 수정 및 삽입 시에 Log Block 을 먼저 기록 후 Data Block 에도 기록하기 log 와 data 는 RAM inside SSD 에 저장한다 .

"LSN 9 번에 데이터를 write 해줘"라는 요청이 들어오면 LBN = LSN / num_of_blocks 를 통해 PBN 을 찾는다. 해당 PBN 이 비어있으면 그대로 기록하고 비어있지 않으면 다른 비어있는 블록을 찾아서 기록한 뒤에 mapping table 을 업데이트 한다.

Log Block 과 Data Block 을 서로 consistent 하게 만드는 과정을 merge 라고 한다. when Log-block is full it is flushed to Data-block into a new clean block by writing to a new clean block.

Figure 1: Three Types of Merge Operations

우리가 흔히 알고 있는 copy valid data – erase original block – copy back 방식은 Full Merge 방식이다.

Partial Merge 와 Switch Merge 는 특수한 케이스에만 사용한다.

3. Hybrid Mapping

Page Mapping 과 Block Mapping 의 단점을 극복하기 위해서

Log Block : save page mapping info Data Block : save block mapping info

Merge 방식은 세 가지로 분류할 수 있다.

- 1) Full Merge: 어떤 log block 이 선택되었는데 first page 부터 last page 까지 NOT sequentially 데이터가 기록되어 있을 경우 블록 전체를 new clean block 으로 복사 m read, m write, 2 erase operation
- 2) Switch Merge: 어떤 log block 이 선택되었는데 sequentially 데이터가 기록되어 있을 경우해당 log block 이 data block 으로 사용됨 1 erase operation
- 3) Partial Merge: 어떤 log block 이 선택되었는데 first page 부터 in the middle page 까지 sequentially 데이터가 기록되어 있을 경우 data block 으로 비어있는 페이지를 채움 n read, n write, 1 erase (0 < n < m)

3. Hybrid Mapping

Page Mapping 과 Block Mapping 의 단점을 극복하기 위해서

Log Block : save page mapping info Data Block : save block mapping info

Write to LSN =9

LBN PBN

O 3

1 2

2 1

Block 2

Block 2

Block 3

Flash Memory

Sector 0

Hybrid Mapping 에는 아주 다양한 방법이 있다.

BAST FAST LAST SuperBlock Reconfigurable FTL DFTL

Hybrid log-block FTL

만약에 L1 Cache I/O 처리 속도를 1초 (sec) 로 가정한다면 ??

	Nanoseconds (ns)	Microseconds (µs)	Milliseconds (ms)	If L1 Access is 1 second
L1 Cache Reference	0.5			1 sec
L2 Cache Reference	7			14 secs
DRAM Access	200			6 mins, 40 secs
Intel Octane 3D XPoint	7,000	7		3 hours, 53 mins, 20 secs
Micron 9100 NVMe PCle SSD Write	30,000	30		16 hours, 40 mins
Mangstor NX NVMeF Array Write	30,000	30		16 hours, 40 mins
DSSD D5 NVMeF Array	100,000	100		2 days, 7 hours, 33 mins, 20 secs
Mangstor NX NVMeF Array Read	110,000	110		2 days, 13 hours, 6 mins, 40 secs
NVMe PCIe SSD Read	110,000	110		2 days, 13 hours, 6 mins, 40 secs
Micron 9100 NVMe PCIe SSD Read	120,000	120		2 days, 18 hours,m40 mins
Disk Seek	10,000,000	10,000	10	7 months, 10 days, 11 hours, 33 mins, 20 secs
DAS Disk Access	100,000,000	100,000	100	6 years, 4 months, 19 hours, 33 mins, 20 secs
SAN Array Access	200,000,000	200,000	200	9 years, 6 months, 2 days, 17 hours, 20 mins

	Latency	Specified Max Bandwidth	Expected BW - 1K Byte	Expected BW - 8K Byte
			Record	Record
HBM2	15ns	256 GB/sec	53 GB/sec	174 GB/sec
DDR4	25ns	19.2 GB/sec	13 GB/sec	18 GB/sec
DIMMs1				-
SSD - PCIe32	20us	2.8 GB/sec	49 MB/sec	357 MB/sec
SSD – SATA3 ³	55us	500 MB/sec	18 MB/sec	115 MB/sec
15K SAS	5.5ms	246 MB/sec	0.2 MB/sec	0.8 MB/sec
HDD ⁴				

Notes and sources: Rambus Analysis.

- 1. DDR4 @ 2400 Mbps
- 2. Intel SSD DC P3700 Series
- 3. Intel SSD DC S3710 Series
- 4. Cheetah 15K.5 SAS Hard Drive

	SLC	MLC	TLC	HDD	RAM
P/E cycles	100k	10k	5k	*	*
Bits per cell	1	2	3	*	*
Seek latency (µs)	*	*	*	9000	*
Read latency (µs)	25	50	100	2000-7000	0.04-0.1
Write latency (µs)	250	900	1500	2000-7000	0.04-0.1
Erase latency (µs)	1500	3000	5000	*	*
Notes	* metric is not applicable for that type of memory				
Sources	P/E cycles [20] SLC/MLC latencies [1] TLC latencies [23] Hard disk drive latencies [18, 19, 25] RAM latencies [30, 52] L1 and L2 cache latencies [52]				

TABLE I
MEMORY TECHNOLOGY SUMMARY [1]

	Read	Write	Read BW	Write BW
	time (ns)	time (ns)	(MB/s)	(MB/s)
DRAM	10	10	1,000	900
PCRAM	20-200	$80-10^4$	200-800	100-800
SLC	$10^4 - 10^5$	$10^4 - 10^7$	0.1	$10^{-3} - 10^{-1}$
Flash				
ReRAM	$5-10^5$	5-10 ⁸	1-1000	0.1-1000
Hard	10^{6}	10^{6}	50-120	50-120
drive				

TABLE II
READ AND WRITE PERFORMANCE (MB/s) ON RAW BLOCK DEVICE

	Write Random Band- width	Write Sequential Band- width	Read Ran- dom Band- width	Read Sequential Bandwidth
Optane	2174.08	2172.62	2286.15	2568.53
HDD	6.08	200.25	2.7	204.30