1 The Tautological Bundle

Consider the fibre bundle, $\pi: S^{2n+1} \to \mathbb{P}^n_{\mathbb{C}}$ given by consider ing $S^{2n+1} \subset \mathbb{C}^{n+1}$ and restricting the projection $\mathbb{C}^{n+1} \to \mathbb{P}^n_{\mathbb{C}}$. Then π is a principal S^1 -bundle. Consider the tautological representation $\rho: U(1) \to \mathrm{GL}_1(\mathbb{C})$ which is the inclusion $U(1) \to \mathbb{C}^\times$, which gives an associated line bundle $S^{2n+1} \times_{\rho} \mathbb{C}$. We call this the tautological bundle since its fibre above a point is the line in \mathbb{C}^{n+1} which that point on $\mathbb{P}^n_{\mathbb{C}}$ corresponds to.

To see this explicitly, consider the following bundle,

$$T = \{(L, v) \mid L \in \mathbb{P}^n_{\mathbb{C}} \text{ and } v \in L \subset \mathbb{C}^{n+1}\} \subset \mathbb{P}^n_{\mathbb{C}} \times \mathbb{C}^{n+1}$$

with the projection $\pi: T \to \mathbb{P}^n_{\mathbb{C}}$ via $(L, v) \mapsto L$. I claim that this bundle is isomorphic to the tautological bundle constructed above.

Consider the map $f: S^{2n+1} \times_{\rho} \mathbb{C} \to T$ via $f: [x,\lambda] \mapsto (\operatorname{Span}(x),\lambda x)$. This is clearly a bundle map since $\pi([x,\lambda]) = \pi(x) = \operatorname{Span}(()x) = \pi(\operatorname{Span}(x),\lambda x)$. Furthermore it is well-defined because $f([x,\mu\lambda]) = (\operatorname{Span}(x),\mu\lambda x) = (\operatorname{Span}(\mu x),\lambda\mu x) = f([\mu x,\lambda])$. We need to check that this map is injective and surjective. First, if $f([x,\lambda]) = f([y,\mu])$ then $\operatorname{Span}(x) = \operatorname{Span}(y)$ so $y = \gamma x$ for $\gamma \in \mathbb{C}^{\times}$ and $\lambda x = \mu y$ so $\lambda = \mu \gamma$ (since these vectors are nonzero) and thus,

$$[x,\lambda] = [x,\gamma\mu] = [\gamma x,\mu] = [y,\mu]$$

For surjectivity note that given (L, v) with $v \in L$ then $L = \operatorname{Span}(x)$ for $x \in S^{2n+1}$ and $v = \lambda x$ with $\lambda \in \mathbb{C}$ since L is a line. Thus $f([x, \lambda]) = (L, v)$.

The tautological bundle has no nonzero (holomorphic) global sections. However, there are n+1 independent global sections of its dual. To see this consder the global $\operatorname{Hom}(T,\mathcal{O}_{\mathbb{P}})$. There exist n+1 idependent functions defined by the n+1 projections $p_k:\mathbb{C}^{n+1}\to\mathbb{C}$ via the construction,

$$T \hookrightarrow \mathcal{O}_{\mathbb{P}}^{n+1} = \mathbb{P}_{\mathbb{C}}^n \times \mathbb{C}^{n+1} \xrightarrow{p_k} \mathbb{P}_{\mathbb{C}}^n \times \mathbb{C} = \mathcal{O}_{\mathbb{P}}$$

These sections are referred to as X_k , the k^{th} coordinate function on $\mathbb{P}^n_{\mathbb{C}}$.

Producing the coordinate functions X_k as sections of the dual X^{\vee} identifies the tautological bundle T with the algebraic twist $\mathcal{O}_{\mathbb{P}}(-1)$ and thus its dual is the Serre twisting sheaf $T^{\vee} = \mathcal{O}_{\mathbb{P}}(1)$.