

OPTIMIZATION

MASTER IN FUNDAMENTAL PRINCIPLES OF DATA SCIENCE

OPTIMIZATION PROBLEM 2

CONCRETE MIXING PROBLEM

Author

Vladislav Nikolov Vasilev

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

ACADEMIC YEAR 2021-2022

1 Problem description

Suppose that we are mixing concrete and are using n different gravel sizes s_1, \ldots, s_n .

The ideal mixture is given by $c = (c_1, \ldots, c_n)$, where c_i $(0 \le c_i \le 1)$ is the fraction of size s_i in the mix, and $\sum_{i=1}^n c_i = 1$.

Gravel mixtures come from m different mines: $C_1, \ldots C_m$. The gravel composition at each mine C_j is given by $C_j = (c_1^j, \ldots, c_n^j)$, where $0 \le c_i^j \le 1$ for all $i = 1, \ldots, n$ and $\sum_{i=1}^n c_i^j = 1$.

Let $x=(x_1,\ldots,x_m)$ be the vector which represents the fraction of the gravel of the mine $C_j \in C$ in the mixture, where $0 \le x_j \le 1$ for all $j=1,\ldots,m$ and $\sum_{j=1}^m x_j = 1$.

Find the best possible approximation $x = (x_1, ..., x_m)$ of the ideal mixture, $c = (c_1, ..., c_n)$, by using the material from the m mines.

2 Solution