Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarskjema i vedlegg 3. (Du skal altså *ikk*e levere inn selve eksamensoppgaven med oppgaveteksten.)

a) To partikler med ladning +2e og -e ligger på en rett linje l.

Hvor på linjen er den samlede elektriske feltstyrken fra partiklene null?

- A. Bare i et punkt som ligger til venstre for partiklene.
- B. I et punkt som ligger mellom partiklene, og i et punkt som ligger til venstre for partiklene.
- C. I et punkt som ligger mellom partiklene, og i et punkt som ligger til høyre for partiklene.
- D. Bare i et punkt som ligger til høyre for partiklene.
- b) Gravitasjonskraften mellom to kuler er G. Dersom avstanden blir halvert, blir gravitasjonskraften
 - A. $\frac{1}{2}$ G
 - B. G
 - C. 2G
 - D. 4G

c) Figuren under viser to kuler som henger i like lange, lette snorer med samme vinkel α fra loddlinjen. Kule 1 har masse m_1 og ladning q_1 . Kule 2 har masse m_2 og ladning q_2 . Ladningene har samme fortegn.

Da må

A.
$$m_1 = m_2 \text{ og } q_1 = q_2$$

- B. $m_1 = m_2$, men ladningene kan ha ulik verdi
- C. $q_1 = q_2$, men massene kan være ulike
- D. ingen av størrelsene nødvendigvis være like
- d) En satellitt med masse m sirkler rundt en planet med masse M. Radius i sirkelbanen er r. Det er kun gravitasjonskraften som virker på satellitten. Den totale mekaniske energien til satellitten er

A.
$$-\frac{\gamma mM}{r}$$

B.
$$-\frac{\gamma mM}{2r}$$

C.
$$-\frac{\gamma M}{r}$$

D.
$$-\frac{\gamma M}{2r}$$

e) En lang rett leder fører strømmen I_1 . Den rette lederen er plassert slik at den går gjennom aksen av en sirkelformet leder som fører strømmen I_2 . Se figuren.

Hvilken påstand om den magnetiske kraften på den sirkelformede lederen er riktig?

- A. Kraften er avhengig av størrelsene I_1 og I_2 .
- B. Kraften virker oppover parallelt med aksen.
- C. Kraften virker nedover parallelt med aksen.
- D. Det virker ingen magnetisk kraft.
- f) Figuren under viser banene til to ladde partikler K og L, som beveger seg i et homogent magnetfelt. Fartsretningen til partiklene er gitt i figuren.

Hva vet vi sikkert om de to partiklene?

- A. Massen til K er større enn massen til L.
- B. Farten til K er større enn farten til L.
- C. Ladningene til K og L har motsatt fortegn.
- D. Ladningene til K og L har samme fortegn.

g) En kvadratisk ledersløyfe trekkes med konstant fart gjennom et magnetfelt slik at sløyfa hele tiden står vinkelrett på retningen til magnetfeltet. Se figuren. Bredden til magnetfeltet er like stor som lengden av sidene i ledersløyfa.

Hvilken av grafene under viser **best** den induserte spenningen i sløyfa som funksjon av tiden?

- h) Et legeme beveger seg med konstant fart nedover et skråplan. Hvilken påstand er riktig?
 - A. Normalkraften og tyngdekraften er like store.
 - B. Friksjonen og tyngdekraften er like store.
 - C. Bevegelsesmengden øker.
 - D. Summen av kreftene som virker på legemet, er null.

i) To klosser som er forbundet med en lett snor, glir nedover et skråplan. Den nederste klossen har dobbelt så stor masse som den øverste. Vi ser bort fra friksjon.

Draget i snora er

- A. 0
- B. $mg \sin \alpha$
- C. $mg \cos \alpha$
- D. $2mg \sin \alpha$
- j) En kule med tyngde 200 N henger i ro i to lette snorer S_1 og S_2 slik figuren under viser.

Hva vet vi om snorkreftene som virker på kula fra snorene?

- A. Kraften fra S_1 er lik kraften fra S_2 , og begge er mindre enn 100 N.
- B. Kraften fra S₁ er lik kraften fra S₂, og begge er større enn 100 N.
- C. Kraften fra S_1 er større enn kraften fra S_2 , og begge er mindre enn 100 N.
- D. Kraften fra S_1 er mindre enn kraften fra S_2 , og begge er større enn 100 N.

k) En ball kastes på skrå. Den forlater hånden ved tiden t = 0. Vi ser bort fra luftmotstand. Hvilken av grafene under beskriver best farten til ballen i vertikal retning?

I) To kuler, P og Q, er i samme høyde over et horisontalt underlag. Kulene er like store, men P har større masse enn Q.

P slippes akkurat samtidig som Q skytes horisontalt med farten v_0 . Vi ser bort fra luftmotstand. Hvilken påstand er **riktig**?

- A. P treffer bakken før Q.
- B. Q treffer bakken før P.
- C. P og Q treffer bakken samtidig.
- D. Verdien av v_0 avgjør hvilken kule som treffer bakken først.

m) I taket i en vogn henger en pendel. Vogna beveger seg rettlinjet på et horisontalt underlag og bremser jevnt, slik at pendelen har et konstant utslag med vinkelen α i forhold til loddlinjen.

Hvor stor er akselerasjonen til vogna?

- A. $g \sin \alpha$
- B. $g tan \alpha$
- C. $\frac{g}{\sin \alpha}$
- D. $\frac{g}{\tan \alpha}$
- n) En horisontal skive roterer med konstant vinkelfart om en vertikal akse. Aksen går gjennom sentrum S av skiva. På skiva er det markert to punkt, P og Q. Se figuren under. Avstanden SP er dobbelt så stor som avstanden SQ. Akselerasjonen til skiva i punktet Q er a.

Akselerasjonen til skiva i punktet P er

- A. $\frac{1}{2}a$
- В. а
- C. 2a
- D. 4a

o) Figurene under viser legemer som beveger seg i horisontale sirkelbaner med konstant banefart. Massen, radien og banefarten er angitt på figurene. I hvilken av figurene er summen av kreftene på legemet **minst**?

p) To små stålklosser K og L, kan gli friksjonsfritt i banen vist i figuren under. Kloss K har større masse enn L. Klossene slippes samtidig fra samme høyde.

Hva kan skje med klossene etter at de støter sammen?

- A. Begge klossene blir liggende i ro.
- B. Klossene bytter fart.
- C. Kloss L blir liggende i ro, mens kloss K skifter fartsretning.
- D. Kloss K blir liggende i ro, mens kloss L skifter fartsretning.

- q) En partikkel som er i ro, deler seg i to. Den ene delen, som har masse m, får farten 3v like etter delingen. Den andre delen får farten 2v. Da er massen til den andre delen
 - A. $\frac{2}{3}m$
 - B. $\frac{3}{5}m$
 - C. $\frac{3}{2}m$
 - D. $\frac{5}{3}m$
- r) To romskip, Aurora og Borealis, beveger seg i samme retning med konstant fart like oppunder lysfarten. Et tredje romskip, Capella, beveger seg i motsatt retning, men med like stor fart som de to andre. Se figuren under.

Det sendes ut et lyssignal fra Aurora som varer tiden t_0 målt i Aurora. Denne tiden registrerer astronautene i Borealis som t_B og astronautene i Capella som t_C . Da vil

- $\text{A.} \quad t_{\scriptscriptstyle B} = t_{\scriptscriptstyle O} \text{ og } t_{\scriptscriptstyle C} > t_{\scriptscriptstyle O}$
- B. $t_B = t_0 \text{ og } t_C < t_0$
- C. $t_B > t_0$ og $t_C > t_0$
- D. $t_{\rm\scriptscriptstyle B} > t_{\rm\scriptscriptstyle O} \ {\rm og} \ t_{\rm\scriptscriptstyle C} < t_{\rm\scriptscriptstyle O}$

s) I et forsøk med fotoelektrisk effekt sendes fotoner med ulik frekvens mot et metall. Den maksimale kinetiske energien til de løsrevne elektronene blir målt. Forsøket gjentas med et annet metall. Grafene under viser den maksimale kinetiske energien til elektronene som funksjon av frekvensen til fotonene for de to metallene.

Hvilken påstand er riktig?

- A. Metall 1 har minst løsrivingsarbeid.
- B. De to metallene har samme løsrivingsarbeid.
- C. Metall 1 har størst løsrivingsarbeid.
- D. Løsrivingsarbeidet er null for begge metallene.
- t) Under er det gitt tre elementærpartikkelreaksjoner.
 - 1. $\mu^{-} \rightarrow e^{-} + v_{e} + v_{u}$
 - 2. $n \rightarrow p + e^- + \overline{v}_e$
 - 3. $\mu^+ + n \rightarrow p + \overline{\nu}_{\mu}$

Hvilke(n) av reaksjonene er mulige?

- A. 1 og 2
- B. 1 og 3
- C. 2 og 3
- D. bare 2

- u) Hvilken av partiklene under er ikke bygd opp av kvarker?
 - A. elektronet
 - B. protonet
 - C. π -mesonet
 - D. nøytronet
- v) Figuren viser en prinsippskisse av et røntgenrør der spenningen over røret er U.

I strålingen fra et slikt rør er den nedre grensen for bølgelengden gitt ved

- A. $\lambda = \frac{eU}{h}$
- B. $\lambda = \frac{eU}{hm}$
- C. $\lambda = \frac{2eU}{m}$
- D. $\lambda = \frac{hc}{eU}$

w) En ladd kule P beveger seg mot en ladd kule Q. Det er kun den elektriske kraften fra Q som virker på P. Den potensielle energien til P avtar.

Hvilken påstand er riktig?

- A. Kulene har ulik ladning.
- B. Kulene har lik ladning.
- C. P må ha positiv ladning.
- D. Q må ha positiv ladning.
- x) Et analogt lydsignal blir digitalisert. Hva vil skje med det rekonstruerte signalet dersom det dynamiske området er **for lite**?
 - A. Vi får aliasing.
 - B. Signalet blir klippet.
 - C. Signalet forsvinner.
 - D. De høyeste frekvensene forsvinner.

Oppgave 2

- a) Hva er et comptonstøt? Hvorfor representerer dette et brudd med klassisk fysikk?
- b) Når et positron og et elektron møtes, annihilerer de og blir omdannet til energi. Prosessen kan skrives

$$e^- + e^+ \rightarrow 2\gamma$$

- 1. Hvorfor må det dannes minst to fotoner?
- 2. Anta at det blir dannet to fotoner. Vis at frekvensen til hvert foton er større enn 10^{20} Hz.
- c) Hva sier ekvivalensprinsippet i den generelle relativitetsteorien? Gjør rede for et tankeeksperiment som illustrerer dette.
- d) En strømsløyfe med areal A og resistans R er i ro i et homogent magnetfelt. Den magnetiske flukstettheten, B, står vinkelrett på papirplanet, se figuren under. Verdien av B varierer.

- 1. Hvorfor vil det gå en strøm gjennom strømsløyfa?
- 2. Hva blir retningen til strømmen når B er rettet inn i papirplanet og øker?

I et tidsrom varierer B lineært med tiden, slik at vi kan skrive

$$B(t) = kt$$

der t er tiden og k er en konstant.

3. Finn et uttrykk for strømmen som går gjennom sløyfa.

Del 2

Oppgave 3

Oppgaven dreier seg om behandling av data fra eksperimentelt arbeid.

Vi henger lodd med forskjellig masse i en fjær og registrerer forlengelsen av fjæra når loddet henger i ro. Se figur 1. Tabell 1 viser resultatene fra forsøket.

Loddets masse (g)	20	50	100	150	200
Forlengelsen av fjæra (cm)	1,3	3,7	7,2	10,1	14,9

Figur 1

Tabell 1. Data for masse og forlengelse.

a) Bruk verdiene i tabell 1 og oppgi riktig verdi av fjærkonstanten med usikkerhet.

Bilde 1 viser et annet forsøk. Et lodd med masse 50 g henger i ro i en fjær med fjærkonstant k = 4,5 N/m.

En sensor er koblet til en datalogger, slik at vi kan registrere loddets posisjon og fart.

Vi trekker loddet loddrett ned og slipper det.

Grafen i figur 2 viser farten til loddet som funksjon av tiden. Positiv fartsretning er oppover.

Bilde 1

t / (s)	v / (m/s)
0,10	0,30
0,20	0,37
0,30	0,13
0,40	-0,22
0,50	-0,39
0,60	-0,22

Figur 2. Loddets fart som funksjon av tiden.

Tabell 2. Fart som funksjon av tiden

- b) 1. Beskriv loddets posisjon og fartsretning i punktene A, B, C og D.
 - 2. Tegn en figur som viser kreftene som virker på loddet i punktene i oppgave b)1.
 - 3. Hvor langt beveger loddet seg fra posisjon B til posisjon D?

I en fysikkbok står det at farten til et lodd som svinger vertikalt i en fjær, er gitt ved

$$v(t) = A\sin(\sqrt{\frac{k}{m}} \cdot t)$$

der A er en konstant, m er massen til loddet og k er fjærkonstanten.

c) Bruk grafen i figur 2 eller data fra tabell 2 til å undersøke om dette stemmer for loddet i dette forsøket.

Du kan få bruk for at perioden til funksjonen $\sin(cx)$ er $2\pi/c$.

Oppgave 4

Oppgaven dreier seg om gravitasjon.

Fire av de store månene til Jupiter: Io, Europa, Ganymedes og Callisto, ble oppdaget av Galileo i 1610.

Figur 1. Galileos tegning av Jupiters måner.

Månene kretser i tilnærmede sirkelbaner rundt Jupiter. Tabell 1 viser rundetider og midlere radius for banene månene sirkler i.

Måne	Midlere radius / km	Rundetid/døgn
lo	421800	1,769
Europa	671100	3,551
Ganymedes	1070400	7,155
Callisto	1882700	16,69

Tabell 1. Data for Jupiters måner.

https://solarsystem.nasa.gov/planets/profile.cfm?Object=Jupiter&Display=Sats, lastet ned 18.09.2014

- a) Bruk tabellverdiene for Callisto og bestem massen til Jupiter.
- b) To legemer, A og B, går med konstant banefart i hver sin sirkelbane rundt en planet.
 - 1. Ta utgangspunkt i Newtons gravitasjonslov, og vis at sammenhengen mellom rundetidene T_A og T_B og radiene r_A og r_B for de to legemene kan skrives

$$\left(\frac{T_A}{T_B}\right)^2 = \left(\frac{r_A}{r_B}\right)^3$$

2. Bruk verdiene i tabell 1 for radius og rundetid, og undersøk om forholdet mellom rundetidene er i samsvar med formelen gitt i b)1 for månene lo og Europa.

Den tyske fysikeren Philipp von Jolly gjorde i 1881 et forsøk for å finne en verdi for gravitasjonskonstanten γ .

Figur 2. Skisse av forsøket til von Jolly. (Størrelsene er ikke i riktige proporsjoner.)

Først ble to like kuler av kvikksølv, hver med massen m= 5009,450g, plassert på hver sin side av en skålvekt. Skålvekten var da i balanse. En stor blykule med masse M= 5775,7 kg ble plassert rett under en av kvikksølvkulene. Da ble det ubalanse. For å oppnå likevekt ble et lite legeme med masse n=0,589 mg lagt på skålen til høyre. Avstanden mellom M og m ble målt til d=0,5686 m. Tyngdeakselerasjonen på stedet var g=9,807 m/s 2 .

c) Bruk opplysningene over til å bestemme en verdi for gravitasjonskonstanten γ .

Oppgave 5

Oppgaven dreier seg om magnetiske felt og krefter.

En leder med lengde L og masse m henger i to masseløse ledninger som kan svinge om en akse. Se figur 1. Når bryter S_1 er lukket og bryter S_2 er åpen, går det en konstant strøm I i lederen. Det settes på et magnetfelt B, slik at lederen svinger ut. Se figur 2. Vinkelen som ledningene danner med loddlinjen, er α . Strømmen I gjennom lederen har retning inn i papirplanet i figur 2.

Lederen henger i ro som vist i figur 2.

- a) Forklar hvorfor lederen får et utslag mot venstre.
- b) Vis at massen til lederen er gitt ved

$$m = \frac{ILB}{g \tan \alpha}$$

Bryter S_1 åpnes og S_2 lukkes. Magnetfeltet B er det samme som i a), og lederen beveger seg fra posisjonen gitt i figur 2.

- c) Forklar at det likevel vil gå en strøm i lederen når den beveger seg.
- d) Finn retningen til strømmen gjennom lederen når
 - 1. den svinger ned mot det laveste punktet
 - 2. lederen svinger opp på høyre side

- e) To lange, rette, parallelle ledere henges opp i lette, isolerende tråder. Vi sender like stor, men motsatt rettet strøm gjennom lederne.
 - 1. Forklar hvorfor det virker en frastøtende kraft mellom lederne.

Vinkelen α mellom loddlinjen og trådene er 6,6°. Avstanden mellom lederne er 3,0 cm. Massen per meter leder er 0,0145 kg/m.

2. Hvor stor er strømmen i lederne?

Faktavedlegg som er tillate brukt ved eksamen i fysikk 2 Kan brukast under både del 1 og del 2 av eksamen.

Jorda

Ekvatorradius	6378 km
Polradius	6357 km
Middelradius	6371 km
Masse	5,974 · 10 ²⁴ kg
Standardverdien til tyngdeakselerasjonen	9,80665 m/s ²
Rotasjonstid	23 h 56 min 4,1 s
Omløpstid om sola	1 a = 3,156 \cdot 10 ⁷ s
Middelavstand frå sola	1,496 \cdot 10 ¹¹ m

Sola

6,95 · 10 ⁸ m 1,99 · 10 ³⁰ kg

Månen

Radius	1 738 km
Masse	7,35 · 10 ²² kg
Tyngdeakselerasjon ved overflata	1,62 m/s ²
Middelavstand frå jorda	3,84 · 10 ⁸ m

Planetane og Pluto

Planet	Masse, 10 ²⁴ kg	Ekvator-radius, 10° m	Midlare solavstand, 109 m	Rotasjonstid, d	Siderisk omløpstid +, a	Massetettleik, 10³ kg/m³	Tyngde- akselerasjon på overflata, m/s²
Merkur	0,33	2,44	57,9	58,6	0,24	5,4	3,7
Venus	4,9	6,05	108	243*	0,62	5,2	8,9
Jorda	6,0	6,38	150	0,99	1,00	5,5	9,8
Mars	0,64	3,40	228	1,03	1,88	3,9	3,7
Jupiter	1900	71,5	778	0,41	11,9	1,3	25
Saturn	568	60,3	1429	0,45	29,5	0,7	10
Uranus	87	25,6	2871	0,72*	84,0	1,3	8,9
Neptun	103	24,8	4504	0,67	165	1,6	11
Pluto	0,013	1,2	5914	6,39*	248	2,1	0,6

^{*} Retrograd rotasjonsretning, dvs. motsett rotasjonsretning av den som er vanleg i solsystemet.

IAU bestemte i 2006 at Pluto ikkje lenger skulle reknast som ein *planet*.

Nokre konstantar

Fysikkonstantar	Symbol	Verdi
Atommasseeininga	u	1,66 · 10-27 kg
Biot-Savart-konstanten	k _m	2 · 10 ⁻⁷ N/A ² (eksakt)
Coulombkonstanten	k e	8,99 · 10 ⁹ N · m ² /C ²
Elementærladninga	е	1,60 · 10 ⁻¹⁹ C
Gravitasjonskonstanten	γ	6,67 · 10 ⁻¹¹ N · m ² /kg ²
Lysfarten i vakuum	С	3,00 · 108 m/s
Planckkonstanten	h	6,63 · 10 ⁻³⁴ Js

Massar	Symbol	Verdi
Elektronmassen	m _e	$9,1094 \cdot 10^{-31} \text{ kg} = 5,4858 \cdot 10^{-4} \text{ u}$
Nøytronmassen	<i>m</i> _n	1,6749 · 10-27 kg = 1,0087 u
Protonmassen	m _p	1,6726 · 10 ⁻²⁷ kg = 1,0073 u
Hydrogenatomet	тн	1,6817 · 10 ⁻²⁷ kg = 1,0078 u
Heliumatomet	m _{He}	6,6465 · 10 ⁻²⁷ kg = 4,0026 u
Alfapartikkel (Heliumkjerne)	mα	6,6447 · 10 ⁻²⁷ kg = 4,0015 u

[†]Omløpstid målt i forhold til stjernehimmelen.

Data for nokre elementærpartiklar

Partikkel	Symbol	Kvark- samansetning	Elektrisk ladning/e	Anti- partikkel		
Lepton						
Elektron	e ⁻		-1	e ⁺		
Myon	μ		-1	μ^{+}		
Tau	$ au^-$		-1	τ+		
Elektronnøytrino	ν_{e}		0	$\overline{\nu}_{\rm e}$		
Myonnøytrino	V_{μ}		0	$\overline{\mathcal{V}}_{\mu}$		
Taunøytrino	ν_{τ}		0	$\overline{\nu}_{\tau}$		
Kvark						
Орр	u	u	+2/3	ū		
Ned	d	d	-1/3	d		
Sjarm	С	С	+2/3	c		
Sær	S	S	-1/3	s		
Торр	t	t	+2/3	ī		
Botn	b	b	-1/3	b		
Meson	Meson					
Ladd pi-meson	π^-	ūd	-1	π^{+}		
Nøytralt pi- meson	π ^o	u u ,d d	0	$\overline{\pi^0}$		
Ladd K-meson	K ⁺	us	+1	K ⁻		
Nøytralt K-meson	Κ ⁰	ds	0	K ^o		
Baryon						
Proton	р	uud	+1	p		
Nøytron	n	udd	0	n		
Lambda	Λ^{0}	uds	0	$\overline{\Lambda^0}$		
Sigma	Σ^+	uus	+1	$\overline{\Sigma^+}$		
Sigma	Σ^{0}	uds	0	$\frac{\overline{\Sigma}^+}{\overline{\Sigma}^0}$		
Sigma	Σ^-	dds	-1			
Ksi	Ξο	USS	0	Ξ°		
Ksi	Ξ	dss	-1	Σ - Ξ · Ξ · Ξ · Ξ · Ξ · Ξ · Ξ · Ξ · Ξ · Ξ		
Omega	Ω^{-}	SSS	-1	$\overline{\Omega^-}$		

Formelvedlegg tillatt brukt ved eksamen i fysikk 2

Kan brukes på både del 1 og del 2 av eksamen.

Formler og definisjoner fra fysikk 1 som kan være til hjelp

$v = \lambda f$	$f = \frac{1}{T}$	$ \rho = \frac{m}{V} $	P = Fv
$I = \frac{Q}{t}$	$R = \frac{U}{I}$	P = UI	$E_0 = mc^2$
^A _Z X, der X er	grunnstoffets kjem	iske symbol,	$s = \frac{1}{2}(v + v)t$
Z er antall protoner i kjernen og A er antall			$s = \frac{1}{2}(v_0 + v)t$ $v^2 - v_0^2 = 2as$
nukleoner i	kjernen		$v - v_0 = 2as$

Formler og sammenhenger fra fysikk 2 som kan være til hjelp

$\lambda = \frac{h}{\rho}$	$p = \frac{E}{c} = \frac{h}{\lambda}$	$hf_{maks} = eU$
$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$	$t = \gamma t_0$	$p = \gamma mv$
$E = \gamma mc^2$	$E_{k} = E - E_{0} = (\gamma - 1)mc^{2}$	$E = \frac{U}{d}$
$\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$	$\Delta E \cdot \Delta t \ge \frac{h}{4\pi}$	$\varepsilon = vB\ell$
ω = 2πf	$U = U_m \sin \omega t$, der $U_m = nBA\omega$	$U_{\rm s}I_{\rm s}=U_{\rm p}I_{\rm p}$
$\frac{U_s}{U_p} = \frac{N_s}{N_p}$	$hf = W + E_k$	$F_{\rm m} = k_{\rm m} \frac{I_1 I_2}{r} \ell$

Formler fra matematikk som kan være til hjelp

Likninger

Formel for løsning av andregradslikninger	$ax^2 + bx + c = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Derivasjon

3	
Kjerneregel	$(g(u))' = g'(u) \cdot u'$
Sum	(u+v)'=u'+v'
Produkt	$(u \cdot v)' = u' \cdot v + u \cdot v'$
Kvotient	$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$
Potens	$(x^r)' = r \cdot x^{r-1}$
Sinusfunksjonen	$(\sin x)' = \cos x$
Cosinusfunksjonen	$(\cos x)' = -\sin x$
Eksponentialfunksjonen e ^x	$(e^x)' = e^x$

Integrasjon

into Bradjon	
Konstant utenfor	$\int k \cdot u(x) \mathrm{d}x = k \cdot \int u(x) \mathrm{d}x$
Sum	$\int (u+v) dx = \int u dx + \int v dx$
Potens	$\int x^r dx = \frac{x^{r+1}}{r+1} + C , r \neq -1$
Sinusfunksjonen	$\int \sin kx dx = -\frac{1}{k} \cos kx + C$
Cosinusfunksjonen	$\int \cos kx dx = \frac{1}{k} \sin kx + C$
Eksponentialfunksjonen e ^x	$\int e^{kx} dx = \frac{1}{k} e^{kx} + C$

Geometri

sinv = motstående katet	
hypotenus	$a^2 = b^2 + c^2 - 2bc \cos A$
$cosv = \frac{hosliggende katet}{}$	
hypotenus	sinA _ sinB _ sinC
tanv = motstående katet	${a} = {b} = {c}$
hosliggende katet	
Areal og omkrets av sirkel: $A = \pi r^2$ $O = 2\pi r$	Overflate og volum av kule: $V = \frac{4}{3}\pi r^3$

Vektorer

VOICEOFOT	
Skalarprodukt	$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cdot \cos u$
	$[X_1, Y_1, Z_1] \cdot [X_2, Y_2, Z_2] = X_1 \cdot X_2 + Y_1 \cdot Y_2 + Z_1 \cdot Z_2$
Vektorprodukt	$ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b} \cdot \sin u$
	$\vec{a} \times \vec{b}$ står vinkelrett på \vec{a} og vinkelrett på \vec{b}
	\vec{a} , \vec{b} og $\vec{a} \times \vec{b}$ danner et høyrehåndssystem