Math 245

James Yu

September 28, 2017

Contents

1	September 8 - September 13		
	1.1	Inner Product	1
	1.2	Cauchy-Bunyakovsky-Schwarz Inequality	2
	1.3	Orthogonality	3
	1.4	Gram-Schmidt Procedure	4
	1.5	Orthogonal Complement	5
2	\mathbf{Sep}	tember 15 - September 20	7
	2.1	Orthogonal Complement (continued)	7
	2.2	Adjoints	8
	2.3	Least Squares (example)	10
3	September 22 - September 27		
	3.1	Normal Operators	13
	3.2	Self-Adjoint Operators	15
	3.3	Isometries	16

Week 1

September 8 - September 13

1.1 Inner Product

Definition 1.1.1 (Inner Product Space). An inner product space (over \mathbb{C}) is a vector space V and a function:

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$$

satisfying:

i.
$$\langle \vec{x} + \vec{y}, \vec{z} \rangle = \langle \vec{x}, \vec{z} \rangle + \langle \vec{y}, \vec{z} \rangle$$
 for all $\vec{x}, \vec{y}, \vec{z} \in V$

ii.
$$\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$$
 for all $\vec{x}, \vec{y} \in V$ and $c \in \mathbb{C}$

iii.
$$\langle \vec{x}, \vec{y} \rangle = \overline{\langle \vec{y}, \vec{x} \rangle}$$
 for all $\vec{x}, \vec{y} \in V$

iv.
$$\langle \vec{x}, \vec{x}, \in \rangle \mathbb{R}_{>0}$$
 if $\vec{x} \neq \vec{0}$, $\langle \vec{x}, \vec{x} \rangle = 0$ otherwise

Example 1.1.1.1 (Standard Complex Inner Product).

$$V = \mathbb{C}^n$$
 $\langle (x_1, \dots, x_n), (y_1, \dots, y_n) \rangle = x_1 \overline{y_1} + \dots + x_n \overline{y_n}$

Properties i, ii, and iii clearly hold. For iv, for any $\vec{x} = (a_1 + b_1 i, \dots, a_n + b_n i)$

$$\langle \vec{x}, \vec{x} \rangle = (a_1 + b_1 i) \overline{(a_1 + b_1 i)} + \dots + (a_n + b_n i) \overline{(a_n + b_n i)}$$

$$= a_1^2 + b_1^2 + \dots + a_n^2 + b_n^2$$
(1.1)

This is the standard complex inner product. If we replace \mathbb{C}^n with \mathbb{R}^n then we get the standard real inner product (dot product).

Example 1.1.1.2 (L^2 Inner Product).

$$V = C([0,1]) \qquad \langle f, g \rangle = \int_0^1 f \overline{g}$$

This is called the L^2 inner product on V

Example 1.1.1.3 (Frobenius Inner Product).

$$V = M_n(\mathbb{C})$$
 $\langle A, B \rangle = \operatorname{tr} \left(A \overline{B^{\mathsf{T}}} \right)$

This is called the *Frobenius inner product* on V. It satisfies iv because, for $A = (a_{ij})$, $B = (b_{ij})$ we have:

$$\operatorname{tr}\left(A\overline{B^{\intercal}}\right) = \sum a_{ij}\overline{b_{ij}}$$

which is equivalent to the standard complex inner product

1.2 Cauchy-Bunyakovsky-Schwarz Inequality

Definition 1.2.1 (Length). If \vec{v} is a vector in an inner product space, the length of \vec{v} is:

$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

Theorem 1.2.2 (Cauchy-Schwarz). Let $\vec{x}, \vec{y} \in V$ be vectors in an inner product space, then:

$$|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| \, ||\vec{y}||$$

Proof. If $\vec{y} = \vec{0}$, this is trivial. Otherwise, for any $c \in \mathbb{C}$

$$0 \le \|\vec{x} - c\vec{y}\|^2 \tag{1.3}$$

$$\leq \|\vec{x}\|^2 - \bar{c}\langle \vec{x}, \vec{y}\rangle - c\langle \vec{y}, \vec{x}\rangle + c\bar{c}\|y\|^2 \tag{1.4}$$

So, let $c = \frac{\langle \vec{x}, \vec{y} \rangle}{\|y\|^2}$:

$$0 \le \|\vec{x}\|^2 - \frac{\overline{\langle \vec{x}, \vec{y} \rangle}}{\|y\|^2} \langle \vec{x}, \vec{y} \rangle - \frac{\langle \vec{x}, \vec{y} \rangle}{\|y\|^2} \langle \vec{y}, \vec{x} \rangle + \frac{\langle \vec{x}, \vec{y} \rangle}{\|y\|^4} \|y\|^2$$

$$(1.5)$$

$$\leq \|\vec{x}\|^{2} - \frac{|\langle \vec{x}, \vec{y} \rangle|^{2}}{\|y\|^{2}} - \frac{|\langle \vec{x}, \vec{y} \rangle|^{2}}{\|y\|^{2}} + \frac{|\langle \vec{x}, \vec{y} \rangle|^{2}}{\|y\|^{2}}$$
 (1.6)

$$\left| \langle \vec{x}, \vec{y} \rangle \right|^2 \le \left\| \vec{x} \right\|^2 \left\| \vec{y} \right\|^2 \tag{1.7}$$

$$|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| \, ||\vec{y}|| \tag{1.8}$$

Remark. We can define the angle between \vec{x}, \vec{y} as $\cos^{-1} \frac{|\langle \vec{x}, \vec{y} \rangle|}{\|\vec{x}\| \|\vec{y}\|}$.

1.3 Orthogonality

Definition 1.3.1 (Orthogonality). Two vectors \vec{x}, \vec{y} are orthogonal if and only if $\langle \vec{x}, \vec{y} \rangle = 0$.

Definition 1.3.2 (Unit vector). A unit vector is a vector of length 1.

Definition 1.3.3 (Orthogonal Set). An *orthogonal set* is a set S where $\langle \vec{x}, \vec{y} \rangle = 0$ for all $\vec{x}, \vec{y} \in S, \vec{x} \neq \vec{y}$.

Definition 1.3.4 (Orthonormal Set). An *orthonormal set* is an *orthogonal set* in which each vector is a *unit vector*.

Example 1.3.4.1 (Standard Basis). The standard basis in \mathbb{R}^n is orthonormal

Theorem 1.3.5 (Orthonormal Coordinates). Let $\{\vec{v}_1, \ldots, \vec{v}_n\}$ be an orthogonal basis of an inner product space V. Then for any $\vec{x} \in V$ we have:

$$\vec{x} = \sum_{i=1}^{n} \frac{\langle \vec{x}_i, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \vec{v}_i$$

Proof. Write $\vec{x} = a_1 \vec{v}_1 + \ldots + a_n \vec{v}_n$. Then, for any i:

$$\langle \vec{x}, \vec{v}_i \rangle = \langle a_1 \vec{v}_1 + \ldots + a_n \vec{v}_n, \vec{v}_i \rangle \tag{1.9}$$

$$= a_1 \langle \vec{v}_1, \vec{v}_i \rangle + \ldots + a_n \langle \vec{v}_n, \vec{v}_i \rangle \tag{1.10}$$

$$= a_i \langle \vec{v}_i, \vec{v}_i \rangle \tag{1.11}$$

$$a_i = \frac{\langle \vec{x}, \vec{v_i} \rangle}{\|\vec{v_i}\|^2} \tag{1.12}$$

Remark. If $\{\vec{v}_1, \dots, \vec{v}_n\}$ is orthonormal, then $\vec{x} = \sum_{i=1}^n \langle \vec{x}_i, \vec{v}_i \rangle \vec{v}_i$

Remark. The $\vec{v_i}$ coordinate of \vec{x} depends only \vec{x} and $\vec{v_i}$. It does not depend on any other vectors in the basis.

Remark. In finite dimensions, inner product spaces always have orthograal bases.

Theorem 1.3.6 (Orthogonal \implies Linear Independence). Let S be an orthogonal set of non-zero vectors, then S is linearly independent.

Proof. For any $\vec{v}_1, \ldots, \vec{v}_n \in S$, set $a_1\vec{v}_1 + \ldots + a_n\vec{v}_n = \vec{0}$. By similar construction as 1.3.5, we can show for any i that:

$$a_i \langle \vec{v}_i, \vec{v}_i \rangle = 0$$

Since $\vec{v}_i \neq 0$ by assumption, $a_i = 0$ for all i.

1.4 Gram-Schmidt Procedure

Given a basis $\{\vec{w}_1, \dots \vec{w}_n\}$ for a (finite dimensional) inner product space V, the Gram-Schmidt gives an orthogonal basis for V as follows:

Step ① Set
$$\vec{v}_1 = \vec{w}_1$$

Step ② Set
$$\vec{v}_2 = \vec{w}_2 - \frac{\langle \vec{w}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1$$

. . .

Step ① Set
$$\vec{v}_i = \vec{w}_i - \sum_{j=1}^{i-1} \frac{\langle \vec{w}_2, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \vec{v}_i$$

Claim 1.4.1. $\{\vec{v}_1, \dots, \vec{v}_n\}$ is an orthogonal basis of V

Proof. We first check that $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is orthogonal.

We proceed by induction on i. If n = 1, we are vacuously done.

Otherwise, assume that $\{\vec{v}_1,\ldots,\vec{v}_i\}$ is orthogonal. For any $1 \leq j \leq i$ we have:

$$\langle \vec{v}_{i+1}, \vec{v}_j \rangle = \left\langle \vec{w}_{i+1} - \sum_{k=1}^i \frac{\langle \vec{w}_{i+1}, \vec{v}_k \rangle}{\|\vec{v}_k\|^2} \vec{v}_k, \vec{v}_j \right\rangle$$

$$(1.13)$$

$$= \left\langle \vec{w}_{i+1} - \frac{\langle \vec{w}_{i+1}, \vec{v}_j \rangle}{\|\vec{v}_i\|^2} \vec{v}_j, \vec{v}_j \right\rangle$$

$$(1.14)$$

$$= \langle \vec{w}_{i+1}, \vec{v}_j \rangle - \frac{\langle \vec{w}_{i+1}, \vec{v}_j \rangle}{\|\vec{v}_i\|^2} \|\vec{v}_j\|^2$$
(1.15)

$$= \langle \vec{w}_{i+1}, \vec{v}_j \rangle - \langle \vec{w}_{i+1}, \vec{v}_j \rangle \tag{1.16}$$

$$=0 (1.17)$$

Furthermore, $\vec{v_i} \neq \vec{0}$. For i = 1 we have $\vec{v_1} = \vec{w_1} \neq \vec{0}$ by assumption. Otherwise, we have $\vec{v_i} = \vec{w_i} - \vec{x}$ for $x \in \text{span}\{\vec{w_1}, \dots, \vec{w_{i-1}}\}$. Thus $\vec{v_i}$ is a nonzero linear combination of $\{\vec{w_1}, \dots, \vec{w_i}\}$ and is therefore non-zero.

Thus $\{\vec{v}_1, \dots, \vec{v}_n\}$ is a set of n vectors in an n-dimensional space that are orthogonal and nonzero. By 1.3.6 they are linearly independent, and thus a basis of V.

Remark. To obtain an *orthonormal basis* of V, simply divide each $\vec{v_i}$ by its length. This is called *normalizing*.

1.5 Orthogonal Complement

Definition 1.5.1 (Orthogonal Complement). Let V be an *inner product space* and $W \subset V$ a subspace. The orthogonal complement of W is:

$$W^{\perp} = \{ \vec{v} \in V : \langle \vec{v}, \vec{w} \rangle = 0 \text{ for all } \vec{w} \in W \}$$

Example 1.5.1.1 (Orthogonal complement of entire space is empty).

$$W = V$$

$$W^{\perp} = \{ \vec{v} \in V : \langle \vec{v}, \vec{w} \rangle = 0 \text{ for all } \vec{w} \in V \} = \{ \vec{0} \}$$
 because $\langle \vec{v}, \vec{v} \rangle = 0 \implies \vec{v} = \vec{0}$

Example 1.5.1.2 (Orthogonal complement of empty subspace is the entire space).

$$W = \left\{ \vec{0} \right\}$$
 $W^{\perp} = V$

Example 1.5.1.3 (Orthogonal complehent of a line is a plane).

$$V = \mathbb{R}^3$$
 $W = \{(0, 0, z) : z \in \mathbb{R}\}$ $W^{\perp} = \{(x, y, 0) : x, y \in \mathbb{R}\}$

${f Week} \,\, {f 2}$

September 15 - September 20

2.1 Orthogonal Complement (continued)

Theorem 2.1.1. Let V be a finite-dimensional inner product space, and $W \subset V$ be a subspace, then:

$$V \simeq W \oplus W^{\perp}$$

via the transformation $T: W \oplus W^{\perp} \to V$ given by:

$$T(\vec{w}, \vec{w}') = \vec{w} + \vec{w}'$$

Proof. We prove the theorem by writing an inverse for T. Let $\{\vec{w}_1, \ldots, \vec{w}_k\}$ be an orthonormal basis of W and define:

$$\Psi: V \to W \oplus W^{\perp} \tag{2.1}$$

$$\Psi(\vec{v}) = \left(\sum_{i=1}^{k} \langle \vec{v}, \vec{w}_i \rangle \vec{w}_i , \vec{v} - \sum_{i=1}^{k} \langle \vec{v}, \vec{w}_i \rangle \vec{w}_i \right)$$
(2.2)

 Ψ is well defined since the first entry is in W by being a linear combination of $\vec{w_i}$, and the right entry is in W^{\perp} because it is orthogonal to each $\vec{w_i}$ in our basis. It clear that $T \circ \Psi = \mathrm{id}_V$, so it remains to be shown that $\Psi \circ T = \mathrm{id}_{W \oplus W^{\perp}}$:

$$\Psi\left(T\left(\vec{w}, \vec{w}'\right)\right) = \Psi(\vec{w} + \vec{w}') \tag{2.3}$$

$$= \left(\sum_{i=1}^{k} \langle \vec{w} + \vec{w}', \vec{w}_i \rangle w_i , \vec{w} + \vec{w}' - \sum_{i=1}^{k} \langle \vec{w} + \vec{w}', \vec{w}_i \rangle w_i\right)$$
(2.4)

$$= \left(\sum_{i=1}^{k} \langle \vec{w}, \vec{w}_i \rangle w_i , \vec{w} + \vec{w}' - \sum_{i=1}^{k} \langle \vec{w}, \vec{w}_i \rangle w_i \right)$$
 (2.5)

$$= (\vec{w}, \vec{w}') \tag{2.6}$$

Thus T and Ψ are inverses. Since T and Ψ are linear transformations, T is an isomorphism.

Corollary 2.1.1.1 (Extension of orthonormal basis). Let $\{\vec{w}_1, \ldots, \vec{w}_k\}$ be an orthonormal basis of a subspace W. One can extend this to an orthonormal basis of the entire space:

$$\{\vec{w}_1,\ldots,\vec{w}_k,\vec{v}_{k+1},\ldots,\vec{v}_n\}$$

where $\{\vec{v}_{k+1}, \dots, \vec{v}_n\}$ is an orthonormal basis of W^{\perp} .

Corollary 2.1.1.2 (Dimension of orthogonal complement).

$$\dim V = \dim W + \dim W^{\perp}$$

Corollary 2.1.1.3 (Duality of orthogonal complement).

$$\left(W^{\perp}\right)^{\perp} = W$$

Corollary 2.1.1.4 (Intersection of subspace and orthogonal complement).

$$W \cap W^{\perp} = (0)$$

Definition 2.1.2 (Projection onto a subspace). Let $W \subset V$ be a subspace and $\vec{v} \in V$. Then for $\Psi : V \to W \oplus W^{\perp}$ as defined in 2.1.1, we define the *projection of* \vec{v} *onto* W to be the first coordinate $\Psi(\vec{v})$, denoted:

$$\operatorname{proj}_{W}(\vec{v})$$

Remark. If $\{\vec{w}_1, \dots, \vec{w}_k\}$ is an orthonormal basis of W, then:

$$\operatorname{proj}_{W}(\vec{v}) = \sum_{i=1}^{k} \langle \vec{v}, \vec{w}_{i} \rangle \vec{w}_{i}$$

2.2 Adjoints

Definition 2.2.1 (Conjugate Transpose). For any matrix B, we define B^* to be the *conjugate transpose* given by taking the conjugate of each entry in B^{\dagger} , that is:

$$B^* = \overline{B^\intercal}$$

Lemma 2.2.2 (Unique inner product form of a linear transformation). Let $\mathcal{U}: V \to \mathbb{F}$ be a linear transformation, then there exists some unique $z \in V$ such that:

$$\mathcal{U}(\vec{v}) = \langle \vec{v}, \vec{z} \rangle \text{ for all } \vec{v} \in V$$

Proof. Let $\{\vec{v}_1,\ldots,\vec{v}_n\}$ be an orthonormal basis of V and define $\vec{z} \in V$ to be:

$$\vec{z} = \overline{\mathcal{U}(\vec{v}_1)}\vec{v}_1 + \ldots + \overline{\mathcal{U}(\vec{v}_n)}\vec{v}_n$$

Then we check that $\mathcal{U}(\vec{v}) = \langle \vec{v}, \vec{z} \rangle$ for all $\vec{v} \in V$:

$$\mathcal{U}(\vec{v}) = \mathcal{U}\left(a_1\vec{v}_1 + \ldots + a_n\vec{v}_n\right) \tag{2.7}$$

$$= a_1 \mathcal{U}(\vec{v}_1) + \ldots + a_n \mathcal{U}(\vec{v}_n) \tag{2.8}$$

$$\langle \vec{v}, \vec{z} \rangle = \left\langle \vec{v}, \overline{\mathcal{U}(\vec{v}_1)} \vec{v}_1 + \ldots + \overline{\mathcal{U}(\vec{v}_n)} \vec{v}_n \right\rangle$$
 (2.9)

$$= \mathcal{U}(\vec{v}_1) \langle \vec{v}, \vec{v}_1 \rangle + \ldots + \mathcal{U}(\vec{v}_n) \langle \vec{v}, \vec{v}_n \rangle$$
 (2.10)

$$= a_1 \mathcal{U}(\vec{v}_1) + \ldots + a_n \mathcal{U}(\vec{v}_n) \tag{2.11}$$

$$=\mathcal{U}(\vec{v})\tag{2.12}$$

To show that \vec{z} is unique, suppose that $\langle \vec{v}, \vec{z} \rangle = \langle \vec{v}, \vec{z}' \rangle$ for all $\vec{v} \in V$, then:

$$0 = \langle \vec{v}, \vec{z} \rangle - \langle \vec{v}, \vec{z}' \rangle = \langle \vec{v}, \vec{z} - \vec{z}' \rangle$$

Since this holds for all \vec{v} , we must have $\vec{z} - \vec{z}' = 0$ (indeed, $V^{\perp} = (0)$), we have $\vec{z}' = \vec{z}$ as required.

Theorem 2.2.3 (Existence of unique adjoint). Let $T: V \to V$ be a linear transformation on an inner product space V. There exists a unique linear transformation $T^*: V \to V$ satisfying:

$$\langle T\vec{x}, \vec{y} \rangle = \langle \vec{x}, T^*\vec{y} \rangle \text{ for all } \vec{x}, \vec{y} \in V$$

This T^* is called the adjoint of T.

Proof. For any $\vec{y} \in V$, define $g_{\vec{y}} : V \to \mathbb{F}$ (where \mathbb{F} is \mathbb{C} or \mathbb{R}), by:

$$g_{\vec{v}}(\vec{v}) = \langle T\vec{v}, \vec{y} \rangle$$

Then $g_{\vec{y}}$ is a linear transformation because:

$$g_{\vec{y}}(\vec{v} + \vec{w}) = \langle T(\vec{v} + \vec{w}), \vec{y} \rangle \tag{2.13}$$

$$= \langle T\vec{v} + T\vec{w}, \vec{y} \rangle \tag{2.14}$$

$$= \langle T\vec{v}, \vec{y} \rangle + \langle T\vec{w}, \vec{y} \rangle \tag{2.15}$$

$$=g_{\vec{y}}(\vec{v})+g_{\vec{y}}(\vec{w}) \tag{2.16}$$

$$g_{\vec{v}}(c\vec{v}) = \langle T(c\vec{v}), \vec{y} \rangle$$
 (2.17)

$$= c \langle T\vec{v}, \vec{y} \rangle \tag{2.18}$$

$$= cg_{\vec{y}}(\vec{v}) \tag{2.19}$$

Then we can define $T^*: V \to V$ by the map from $\vec{y} \in V$ to the unique \vec{z} generated by 2.2.2 for $g_{\vec{y}}$. Then, by definition of \vec{z} we have:

$$\langle T\vec{x}, \vec{y} \rangle = g_{\vec{y}}(\vec{x}) = \langle \vec{x}, \vec{z} \rangle = \langle \vec{x}, T^* \vec{y} \rangle$$

By uniqueness of \vec{z} , this mapping T^* is unique. Thus it remains only to show that T^* is linear. For all \vec{x} , \vec{y} , $\vec{z} \in V$ and $c \in \mathbb{F}$:

$$\langle \vec{x}, T^* (c\vec{y}) \rangle = \langle T\vec{x}, c\vec{y} \rangle$$
 (2.20)

$$= \overline{c} \langle T\vec{x}, \vec{y} \rangle \tag{2.21}$$

$$= \overline{c} \langle \vec{x}, T^* \vec{y} \rangle \tag{2.22}$$

$$= \langle \vec{x}, cT^* \vec{y} \rangle \tag{2.23}$$

By the same orthogonal complement dimension argument as in 2.2.2, since this holds for all \vec{x} , $T^*(c\vec{y}) = cT^*\vec{y}$ as required. Similarly:

$$\langle \vec{x}, T^* \left(\vec{y} + \vec{z} \right) \rangle = \langle T\vec{x}, \vec{y} + \vec{z} \rangle \tag{2.24}$$

$$= \langle T\vec{x}, \vec{y} \rangle + \langle T\vec{x}, \vec{z} \rangle \tag{2.25}$$

$$= \langle \vec{x}, T^* \vec{y} \rangle + \langle vecx, T^* \vec{z} \rangle \tag{2.26}$$

$$= \langle \vec{x}, T^* \vec{y} + T^* \vec{z} \rangle \tag{2.27}$$

Again, by the argument used in 2.2.2, since this holds for all \vec{x} , we have $T^*(\vec{y} + \vec{z}) = T^*\vec{y} + T^*\vec{z}$ as required. Thus T^* is unique and linear as required.

Theorem 2.2.4 (Equivalence of conjugate transpose and adjoint). If B is an orthonormal basis of V, then:

$$[T]_B^* = [T^*]_B$$

Proof. Let $B = \{\vec{v}_1, \dots, \vec{v}_n\}$, $[T]_B = (a_{ij})$ and $[T^*]_B = (b_{ji})$. Then for any i, j:

$$b_{ij} = \langle T^* \vec{v}_j, \vec{v}_i \rangle = \langle \vec{v}_j, T \vec{v}_i \rangle = \overline{\langle T \vec{v}_i, \vec{v}_j \rangle} = \overline{a_{ji}}$$

2.3 Least Squares (example)

Say $\{(x_1, y_1), \dots, (x_m, y_n)\}$ is a set of points in \mathbb{R}^2 and we want to find the line that best fits the data. More precisely, we want to find $a, b \in \mathbb{R}$ such that the line y = ax + b minimizes the quantity:

$$E = \sum_{i=1}^{m} |y_i - (ax_i + b)|^2$$

Define the following:

$$A = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_m & 1 \end{bmatrix} \qquad \qquad \vec{x} = \begin{bmatrix} a \\ b \end{bmatrix} \qquad \qquad \vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

Then we can rewrite the error E as:

$$E = \left\| A\vec{x} - \vec{y} \right\|^2$$

This is minimized when $A\vec{x} = \operatorname{proj}_{\operatorname{im} A}(\vec{y})$, so we just need to find \vec{x} given $A\vec{x}$.

Remark (Author's Note). In the following section we will take the adjoint of A even though $A: \mathbb{R}^2 \to \mathbb{R}^n$ and we only defined the adjoint for endofunctions. You can justify this to yourself by imagining the extensions of A and \vec{x} given by:

$$A' = \begin{bmatrix} x_1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_m & 1 & 0 & \dots & 0 \end{bmatrix} \qquad \vec{x} = \begin{bmatrix} a \\ b \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

And convincing yourself that we have not fundamentally changed the problem. In general though, there is something called the Hermitian adjoint which properly describes this property for $A: H_1 \to H_2$ where H_1 and H_2 are Hilbert spaces that have an appropriate inner product. I don't know anything about Hilbert spaces, this just happens to be a thing that exists.

We know that $\langle A\vec{x}, \vec{y} \rangle = \langle \vec{x}, A^*\vec{y} \rangle$. Thus, if $A^*A\vec{x} = \vec{0}$ we have:

$$A^*A\vec{x} = \vec{0} \implies \langle A^*A\vec{x}, \vec{x} \rangle = 0 \tag{2.28}$$

$$\implies \langle A\vec{x}, A\vec{x} \rangle = 0 \tag{2.29}$$

$$\implies A\vec{x} = \vec{0} \tag{2.30}$$

This tells us that if $\ker A = (\vec{0})$, then $\ker(A^*A) = (\vec{0})$ meaning A^*A is invertible. In any practical case $\ker A = (\vec{0})$ since, otherwise, that would mean all of our x_i s are equal, so our line doesn't represent anything interesting. Thus, if \vec{x} is our best fit line, then:

$$A\vec{x} - \vec{y} \in (\operatorname{im} A)^{\perp} \tag{2.31}$$

$$\implies \langle A\vec{z}, A\vec{x} - \vec{y} \rangle = 0 \text{ for all } \vec{z} \in \mathbb{R}^2$$
 (2.32)

$$\implies \langle \vec{z}, A^* (A\vec{x} - \vec{y}) \rangle = 0 \tag{2.33}$$

$$\Longrightarrow A^* (A\vec{x} - \vec{y}) = 0 \tag{2.34}$$

$$\implies A^* A \vec{x} = A^* \vec{y} \tag{2.35}$$

$$\Longrightarrow \vec{x} = (A^*A)^{-1} A^* \vec{y} \tag{2.36}$$

Week 3

September 22 - September 27

3.1 Normal Operators

Definition 3.1.1. Let $T: V \to V$ be a linear transformation on an inner product space V. We say T is *normal* if:

$$T^*T = TT^*$$

Remark. If there exists an orthonormal basis B such that $[T]_B$ is diagonal, then $[T^*]_B = [T]_B^*$ is also diagonal thus:

$$[T]_{B}^{*}[T]_{B} = [T]_{B}[T]^{*}B \tag{3.1}$$

$$T^*T = TT^* \tag{3.2}$$

So T is normal.

Definition 3.1.2. Let $T: V \to V$ be a linear transformation on a vector space V, and let W be a subspace of V. We say W is T-invariant if, for all $\vec{w} \in W$, $T\vec{w} \in W$.

Lemma 3.1.3 (Schur). Let $T: V \to V$ be a linear transformation on an inner product space V. If the characteristic polynomial of T splits completely, then there is an orthonormal basis B of V such that $[T]_B$ is upper triangular.

Proof. We induce on dim V. The case dim V=1 is trivial since all 1×1 matrices are upper triangular. So we assume the lemma holds for all inner product spaces W with dim $W<\dim V$. Since the characteristic polynomial splits completely, there is some eigenvector $\vec{v}\in V$ and corresponding eigenvalue λ satisfying:

$$T\vec{v} = \lambda \vec{v}$$

Thus, for any $\vec{x} \in V$:

$$0 = \langle (T - \lambda I) \, \vec{v}, \vec{x} \rangle \tag{3.3}$$

$$= \langle \vec{v}, (T^* - \overline{\lambda}I) \vec{x} \rangle \tag{3.4}$$

Which means that $\vec{v} \in (\text{im } (T^* - \overline{\lambda}I))^{\perp}$. Thus $(T^* - \overline{\lambda}I)$ is not surjective, so by rank-nullity theorem, there is some nonzero $\vec{z} \in \ker (T^* - \overline{\lambda}I)$, giving:

$$(T^* - \overline{\lambda}I)\,\vec{z} = 0\tag{3.5}$$

$$T^*\vec{z} = \overline{\lambda}\vec{z} \tag{3.6}$$

Without loss of generality, assume that $||\vec{z}|| = 1$, since the equality holds under scalar multiplication of \vec{z} . Let $W = \text{span } \{\vec{z}\}$, then W is T^* -invariant. Then, for all $\vec{y} \in W^{\perp}$:

$$\langle T\vec{y}, c\vec{z} \rangle = \bar{c} \langle \vec{y}, T^* \vec{z} \rangle \tag{3.7}$$

$$= \bar{c}\lambda \langle \vec{y}, \vec{z} \rangle \tag{3.8}$$

$$= 0 \text{ by choice of } \vec{y} \tag{3.9}$$

Thus W^{\perp} is T-invariant. This means $T|_{W^{\perp}}: W^{\perp} \to W^{\perp}$ is a linear transformation (whose characteristic polynomial splits completely, proof omitted in this class but this follows from the fact that T splits), and $\dim W^{\perp} = \dim V - 1$. Thus, by our inductive hypothesis there exists an orthonormal basis $\beta = \{\vec{v}_1, \ldots, \vec{v}_{n-1}\}$ of W^{\perp} such that $[T|_{W^{\perp}}]_P$ is upper triangular. Thus:

$$[T^*]_B = \begin{bmatrix} T^*|_{W^{\perp}} & 0\\ * & \lambda \end{bmatrix}$$
(3.10)

$$[T]_B = \begin{bmatrix} T |_{W^{\perp}} \\ 0 & \lambda \end{bmatrix}$$
 (3.11)

which is upper triangular.

Theorem 3.1.4 (Orthonormal Diagonalizability of Complex Linear Transformations). If $T: V \to V$ is a normal linear transformation on a complex inner product space V, then there exists an orthonormal basis B such that $[T]_B$ is diagonal.

Proof. Since all polynomials split over \mathbb{C} , by 3.1.3, there is an orthonormal basis:

$$B = \{\vec{v}_1, \dots, \vec{v}_n\}$$

such that $[T_B]$ is upper triangular. We will show that $[T]_B$ is also diagonal. Let $[T]_B = (a_{ij})$, we will show that $a_{ij} = 0$ if $i \neq j$ by induction on j. If j = 1, this is immediate from upper triangularity, so if the claim holds for all j' < j. If i < j then:

$$0 = \|T\vec{v}_i - \lambda \vec{v}_i\|^2 \text{ for } \lambda = a_{ii}$$
(3.12)

$$= \langle T\vec{v_i} - \lambda \vec{v_i}, T\vec{v_i} - \lambda \vec{v_i} \rangle \tag{3.13}$$

$$= \langle (T - \lambda I)\vec{v}_i, (T - \lambda I)\vec{v}_i \rangle \tag{3.14}$$

$$= \langle \vec{v}_i, (T - \lambda I)^* (T - \lambda I) \vec{v}_i \rangle \tag{3.15}$$

$$= \langle \vec{v}_i, (T - \lambda I)(T - \lambda I)^* \vec{v}_i \rangle \tag{3.16}$$

$$= \langle (T^* - \overline{\lambda}I)\vec{v_i}, (T^* - \overline{\lambda}I)\vec{v_i} \rangle \tag{3.17}$$

$$= ||T^*\vec{v_i} - \lambda \vec{v_i}|| \tag{3.18}$$

Thus $T^*\vec{v_i} = \overline{\lambda}\vec{v_i}$. Then consider:

$$T\vec{v}_j = a_{1j}\vec{v}_1 + \dots + a_{jj}\vec{v}_j$$

By orthonormality of our basis, it follows that:

$$a_{ij} = \langle T\vec{v}_i, \vec{v}_i \rangle \tag{3.19}$$

$$= \langle \vec{v}_i, T^* \vec{v}_i \rangle \tag{3.20}$$

$$= \left\langle \vec{v}_j, \overline{\lambda} \vec{v}_i \right\rangle \tag{3.21}$$

$$=0 (3.22)$$

As required, each entry a_{ij} with i < j is 0, and entries with i > j follow from upper triangularity.

Corollary 3.1.4.1. If $T: V \to V$ is a linear transformation on a complex inner product space V, then there exists an othonormal basis B such that $[T]_B$ is diagonal if and only if T is normal.

Remark. 3.1.4.1 does not apply to real inner product spaces. Consider $V: \mathbb{R}^2$ and $T: \mathbb{R}^2 \to R^2$ given by the rotation matrix:

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Then T^* describes the opposite rotation, thus $T^*T = TT^* = I$ so T is normal, however if $\theta \notin \pi \mathbb{Z}$, T has no real eigenvectors and is thus not diagonalizable.

3.2 Self-Adjoint Operators

Definition 3.2.1. A linear transformation T is self-adjoint (or Hermitian) if $T = T^*$.

Remark. If $T: V \to V$ is a linear transformation on a real inner product space V, and there exists an orthonormal basis B for which $[T]_B$ is diagonal, then:

$$[T]_B = [T]_B^*$$

So T is self-adjoint

Remark. If $T = T^*$, then $T^*T = TT^*$ so T is normal.

Theorem 3.2.2 (Orthonormal Diagonalizability of Real Linear Transformations). If $T: V \to V$ is a linear transformation on a real inner product space V, then T is self-adjoint if and only if there is an orthonormal basis B such that $[T]_B$ is diagonal.

Proof. Note that the characteristic polynomial of T must split over \mathbb{C} , so consider any eigenvector \vec{x} and eigenvalue $\lambda \in \mathbb{C}$ such that $T\vec{x} = \lambda \vec{x}$, then:

$$(T - \lambda I)\vec{x} = \vec{0} \implies (T^* - \overline{\lambda}I)\vec{x} = 0$$
(see proof of 3.1.4) (3.23)

$$\implies T^* \vec{x} = \overline{\lambda} x \tag{3.24}$$

So if T is self-adjoint:

$$\overline{\lambda}\vec{x} = T^*\vec{x} = T\vec{x} = \lambda\vec{x} \tag{3.25}$$

$$\overline{\lambda} = \lambda \tag{3.26}$$

Thus $\lambda \in \mathbb{R}$, so all eigenvalues of T are real. Thus the characteristic polynomial of T splits completely over \mathbb{R} , so invoking 3.1.3, there must exist an orthonormal basis B such that $[T]_B$ is upper triangular. However $[T]_B^* = [T^*]_B$ which must be lower triangular, so $[T]_B$ is both upper and lower triangular, meaning $[T]_B$ is diagonal.

Corollary 3.2.2.1 (Orthonormal Diagonalizability of Symmetric Real Matrices). A real matrix is orthogonally diagonalizable if and only if it's symmetric.

Proof. A real matrix that is *self-adjoint* is just a symmetric matrix, so this follows immediately from 3.2.2.

3.3 Isometries

Definition 3.3.1. A linear transformation $T: V \to W$ from an inner product space V to an inner product space W is an *isometry* if $\langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ for all $\vec{x}, \vec{y} \in V$.

Definition 3.3.2. An *isometry* T is *unitary* if T is surjective.

Remark. Every *isometry* T is injective because:

$$T\vec{x} = \vec{0} \implies \langle \vec{x}, \vec{x} \rangle = \langle T\vec{x}, T\vec{x} \rangle = 0$$
 (3.27)

$$\implies \vec{x} = 0 \tag{3.28}$$

Thus $\ker T = (0)$.

Remark (Author's Note). Again, in this section, we will use the adjoint of T even if T is not an endomorphism. In finite dimensional vector spaces, this exists, and the conjugate transpose of the matrix representation still works, you'll just have to convince yourself.

Remark. For every isometry $T: V \to W$, $T^*T = I$ since, for all $\vec{x}, \vec{y} \in V$:

$$\langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle \tag{3.29}$$

$$\langle \vec{x}, T^*T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle \text{ for any } \vec{x}$$
 (3.30)

Remark. If T is unitary, T is invertible so $TT^* = I = T^*T$, so T is also normal.

Lemma 3.3.3. Let $\mathcal{U}: V \to V$ be a self-adjoint linear transformation, and $\langle \vec{x}, \mathcal{U}\vec{x} \rangle = 0$ for all $\vec{x} \in V$, then $\mathcal{U} = 0$.

Proof. Suppose \vec{x} is an eigenvector of \mathcal{U} and λ be its corresponding eigenvalue, then:

$$0 = \langle \vec{x}, \mathcal{U}\vec{x} \rangle \tag{3.31}$$

$$= \langle \vec{x}, \lambda \vec{x} \rangle \tag{3.32}$$

$$= \overline{\lambda} \langle \vec{x}, \vec{x} \rangle \tag{3.33}$$

But $\vec{x} \neq \vec{0}$ by choice of \vec{x} being an eigenvector, so $\lambda = 0$. Since all eigenvalues of \mathcal{U} are 0 and \mathcal{U} is diagonalizable (since it is self-adjoint), $\mathcal{U} = 0$.

Theorem 3.3.4. Let $T: V \to V$ be a surjective linear transformation on a finite dimensional inner product space V, then the following are equivalent:

- i. $TT^* = T^*T = I$
- ii. $\langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ for all $\vec{x}, \vec{y} \in V$
- iii. If B is an orthonormal basis, then so is T(B)
- iv. There exists an orthonormal basis B such that T(B) is also orthonormal
- v. $||T\vec{x}|| = ||\vec{x}||$ for all $\vec{x} \in V$.

Proof. We will prove a ring of implications:

i. \implies ii. For all $\vec{x}, \vec{y} \in V$:

$$\langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, T^*T\vec{y} \rangle \tag{3.34}$$

$$= \langle \vec{x}, I\vec{y} \rangle \tag{3.35}$$

$$= \langle \vec{x}, \vec{y} \rangle \tag{3.36}$$

ii. \implies iii. Let B be a basis $\{\vec{v}_1, \ldots, \vec{v}_n\}$, then for any $\vec{v}_i, \vec{v}_j \in B$:

$$\langle T\vec{v}_i, T\vec{v}_j \rangle = \langle \vec{v}_i, \vec{v}_j \rangle = \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Thus T(B) is orthonormal. Recall from 1.3.6 that this is sufficient to show T(B) is linearly independent and thus a basis.

iii. \implies iv. Immediate from the fact that V is finite dimensional so an orthonormal basis exists.

iv. \implies v. For any $\vec{x} \in V$ write:

$$\vec{x} = a_1 \vec{v}_1 + \dots + a_n \vec{v}_n$$

where $\{\vec{v}_1, \dots, \vec{v}_n\}$ are a subset of the orthonormal basis B provided by the assumption. Then:

$$||T\vec{x}||^2 = ||T(a_1\vec{v}_1 + \dots + a_n\vec{v}_n)||^2$$
(3.37)

$$= \|a_1 T \vec{v}_1 + \dots + a_n T \vec{v}_n\|^2$$
 (3.38)

$$= |a_1|^2 + \dots + |a_n|^2 \tag{3.39}$$

$$= \left\| \vec{x} \right\|^2 \tag{3.40}$$

By non-negativity of the norm, v. holds.

v. \implies i. From our assumption, for all \vec{x} :

$$\|\vec{x}\| = \|T\vec{x}\| \tag{3.41}$$

$$= \langle T\vec{x}, T\vec{x} \rangle \tag{3.42}$$

$$= \langle \vec{x}, T^* T \vec{x} \rangle \tag{3.43}$$

We have $\langle \vec{x}, (T^*T - I)\vec{x} \rangle = 0$ for all \vec{x} . Note that $(T^*T - I)$ is self-adjoint because $(T^*T - I)^* = T^*T - I$. Thus by 3.3.3, $T^*T - I = 0$ so $T^*T = I$. Thus T^* is a left inverse of T, so since T is an endomorphism, $T^*T = I = TT^*$.