Histogram of Gradient (HOG) Shape Context Template Matching

Computer Vision (CS0029)

Outline

Histogram of Gradients

Shape Context

Template Matching

Object Recognition

Want a descriptor that can be employed to reliably recognize objects

- Observation: local object appearance and shape often wellcharacterized by distribution of local orientation
 - Do not need precise knowledge (spatial position) of corresponding gradient or edge positions

Histogram of Gradients (HOG)

- Davide image into small cells
- Accumulate histogram of orientations of pixels within cells (from gradients)
- Concatenate histograms for final object representation

- Can improve accuracy by normalizing histogram for getter invariance to illumination
- Parameters vary depending on application

Gradient Computation

- Use simple 1-D mask [-1 0 1]
- Smoothing not used
- Compute gradients for each color channel separately
 - Use the color with largest magnitude as pixel's gradient

Input image

X gradient

Y gradient

Orientation Binning

- Each pixel contributes weighted vote for "edge orientation" histogram
 (1-D)
 - Edge orientation is orthogonal to gradient direction rotations of gradient angle by 90 degrees
 - Weighted vote based on gradient magnitude
 - Orientation bins evenly spaced between 0 and 180 degrees
- Votes accumulated over local spatial cells
- Group cells into larger spatial blocks

Rectangular Blocks

- Blocks generally square
- 3parameters
 - Number pixels per cell
 - Number cells per block
 - Number bins per gradient histogram
- Dalal:
 - Cell = 6x6 pixels
 - Block= 3x3 cells
 - 9 bin histogram (0-180 degrees)
- Reduce weight for pixels near border of block in cell histogram by applying Gaussian spatial windows over block

HOG Descriptor

- Local variations in illumination and foreground/background contrast cause gradient strengths to vary
 - Normalize each block descriptor separately
- HOG descriptor is concatenation of normalized block descriptors

- Blocks could overlap
 - Each cell could contribute to multiple blocks descriptors

Example of Object Detection using HOG

- Step1: to collect P positive images
- Step2: to collect N negative images (N>>P)
- Step3: calculate HOG from each positive and negative images
 - Feature vector of each images: its HOG
- Step4: label each feature vectors and use Adaboost, SVM, ... to train a classifier
- Step5: Given a test image, calculate HOG of sub-windows
 - Each HOG is sent to the classifier to get the prediction

Histogram of Optical Flow (HOF)

- HOG focuses on static appearance information
- What about local motion information
- Histogram of Optical Flow (HOF)
 - Analogous to HOG
 - Weighted quantization of flow vectors
 - Some approaches have separate bin for no motion

Outline

Histogram of Gradients

Shape Context

Template Matching

Which objects have similar shapes?

Shape Context

- Shape context is a descriptor to coarsely describe the distribution of points along shape boundary with respect to a given point
 - Inherently invariant to translation
 - Can make invariant to scale and rotation
 - Empirically shown to be invariant to small nonlinear transformations, occlusions and presence of outliers
- Corresponding points on similar shapes will have similar shape context
- Can be incorporated in shape similarity measurement
 - For object recognition

Feature points

- Represent shapes as discrete set of points on internal and external contours $P=\{p_1,p_2,\dots,p_n\}$
 - Randomly sample points, ensuring a minimum distance between points
 - Do not have to be key points (corners)

Shape Context

- For each point p_i compute coarse histogram h_i of the relative coordinates for the remaining n-1 points
 - $h_{i(k)} = \{q \neq p_i : (q p_i) \in bin(k)\}$
- Distribution of relative positions is robust, compact, and highly discriminative
- Use bins in log-polar space
 - 12 angular bins, 5 radial bins

Shape Context

Invariance and Robustness

- Representation is translation invariant
- Scale invariance achieved by normalizing all radial distance by mean distance of the point pairs
- Rotational invariance can be achieved by aligning shape contexts to tangent/gradient vectors for each point
 - Not always desirable (e.g., differentiating 6 from 9)
- Empirically shown to be robust to small nonlinear transformations, occlusions, and presence of outliers when transformation model is incorporated

Point Correspondence

• Compute cost of matching point p_i on first shape to point q_j on second shape using χ^2 statistic between normalized histogram

•
$$C(p_i, q_i) = \frac{1}{2} \sum_{k=1}^{n} \frac{\left(h_i(k) - h_j(k)\right)^2}{h_i(k) + h_j(k)}$$

- Minimize total matching cost having one-to-one mapping constraint
 - $H(\pi) = \sum_{i} C(p_i, q_{\pi}(i))$
 - Can add dummy nodes for outliers and when unequal number of points in shapes
 - Solve using Hungarian algorithm

Hungarian Algorithm (Allocation Problem)

	P1	P2	Р3	P4
P1	80	40	50	46
P2	40	70	20	25
Р3	30	10	20	30
P4	35	20	25	30

• Step1:

- subtract each row's minimum value from each row
- subtract each column's minimum value from each column

• Step2:

 Cover the zero elements with minimum number of lines. If this minimum number is same as the size of the matrix, then go to step 4

• Step3:

 Let m be the minimum uncovered element. The matrix is augmented by reducing all uncovered elements by m and increasing all elements covered by two lines by m. Return to step 2

• Step3:

There is a maximal match using only zeros.

Point Correspondence

Key Takeaways

- Shape context: match the similar shape objects
- Sample points on object edges. Check the samples points of two candidates are similar or not
 - Use shape context: 2D histogram defined in log-polar space
 - Calculate shape context on each points (an objects have multiple shape contexts)
- Match points between two candidates (rough idea: find the point with the most similar shape context)
 - Use Hungarian Algorithm to solve it as an allocation problem

Outline

Histogram of Gradients

Shape Context

Template Matching

Introduction

 Want to find areas of a search image that are similar to given template image T

Template T

Search image

Best Matching Patch in Search Image

General Approaches

- Template-based:
 - Utilize raw template (pixels) and find best matching patches in search image
 - Sum-of-absolute differences (SAD)
 - Sum-of-squared differences (SSD)
 - Normalized cross-correlation (NCC)

Sum-of-Absolute Differences (SAD)

 Compute absolute differences of pixels intensities of template T and image patch P extracted from search image (note that P is same size as template T)

•
$$SAD(P,T) = \sum_{R,G,B} \sum_{x,y} |P(x,y) - T(x,y)|$$

Compute SAD for all unique patch locations within the search image

 Keep patch with minimum SAD or patches with SAD less than given threshold

SAD Example

Template Image T

Search Image

Negative SAD
Origin is in center of patch

SAD Example

• k^{th} best matching patch

Sum-of Squared Differences

Similar to SAD, but replace absolute differences with squared difference

• SSD(P,T)=
$$\sum_{R,G,B} \sum_{x,y} (P(x,y) - T(x,y))^2$$

Compute SSD for all unique patches within the search image

Keep patch with minimum SDD

SSD Example

Template Image T

Search Image

Negative SSD Origin is in center of patch

SSD Example

• k^{th} best matching patch

Illumination Changes

- SAD and SSD can work well if the template and search images have the same brightness
 - Problem: images can have varying illumination condition

Template Image T

Search Image

k^{th} best matching patch

Normalized Cross-Correlation (NCC)

Normalize image to remove variations from illumination condition

Mean of pixel values in patch (each color computed independently)

$$NCC(P,T) = \sum_{R,G,B} \frac{1}{n-1} \sum_{x,y} \frac{(P(x,y)-\overline{P})(T(x,y)-\overline{T})}{\sigma_p \sigma_T}$$

Standard deviation of pixel values in patch (each color computed independently)

Larger values of NCC is better!

NCC Example

Template Image T

Search Image

NCC Origin is in center of patch

NCC Example

 k^{th} best matching patch

Key Takeaways

- SAD, SSD and NCC to calculate the similarity/difference between two image patches
- SAD: not robust
- SSD: Not good at illumination change
- NCC: the most robust among these three metric