Einführung in Sage - Einheit 4 Matrizen, Vektorräume, Programmieren I

Jochen Schulz

Georg-August Universität Göttingen

- Vektoren
 - Matrizen
 - Vektorräume

- 1 Vektoren
 - Matrizen
 - Vektorräume

- Vektoren
 - Matrizen
 - Vektorräume

Matrizen

Eine $m \times n$ Matrix A über einen Körper K ist ein rechteckiges Schema mit Einträgen $a_{ij} \in K$, $1 \le i \le m$, $1 \le j \le n$ der Form

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

mit dem Zeilenindex i mit Werten zwischen 1 und m und Spaltenindex j mit Werten zwischen 1 und n. Man schreibt kurz $A = (a_{ij}) \in K^{m \times n}$.

Definitionen

- Die Transponierte von $A = (a_{ij})$ ist $A^T := (a_{ji})$.
- A heißt symmetrisch, wenn $A = A^T$ gilt.
- Für Matrizen $A=(a_{ij})\in\mathbb{C}^{m\times n}$ ist $A^*:=(\overline{a_{ji}})\in\mathbb{C}^{n\times m}$.
- Die Einheitsmatrix $I := I_n := (\delta_{ii}) \in K^{n \times n}$
- Seien $A = (a_{ij}), B = (b_{ij}) \in K^{n \times m}$. Dann ist die Addition definiert durch

$$C = (c_{ij}) := A + B \in K^{n \times m}$$

 $mit c_{ij} = a_{ij} + b_{ij}.$

Definitionen

• Seien $A = (a_{ij}) \in K^{m \times n}$ und $B = (b_{ij}) \in K^{n \times p}$. Dann ist die Multiplikation gegeben durch

$$C = (c_{ij}) := A \cdot B \in K^{m \times p}$$

mit
$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
.

- $A \in K^{n \times n}$ heißt orthogonal, wenn $A \cdot A^T = A^T \cdot A = I_n$ gilt.
- $A \in \mathbb{C}^{n \times n}$ heißt unitär, wenn $A \cdot A^* = A^* \cdot A = I_n$ gilt.
- $A \in K^{n \times n}$ heißt invertierbar, wenn eine Matrix $A^{-1} \in K^{n \times n}$ existiert mit $A \cdot A^{-1} = A^{-1} \cdot A = I_n$.

Definitionen und Bemerkungen

- Die Multiplikation ist assoziativ aber in der Regel nicht kommutativ.
- Die Matrizen aus $K^{m \times n}$ bilden einen Vektorraum über K (mit komponentenweiser Skalarmultiplikation).
- Die Menge der invertierbaren Matrizen aus $K^{n\times n}$ bilden bezüglich der Multiplikation eine Gruppe, die allgemeine lineare Gruppe $\mathrm{GL}(K,n)=\mathrm{GL}_n(K)=\mathrm{GL}(n,K).$

Definition und Bemerkungen

- Die Menge der orthogonalen Matrizen in $GL(\mathbb{R}, n)$ bilden eine Untergruppe von $GL(\mathbb{R}, n)$, die orthogonale Gruppe O(n).
- Die entsprechende Untergruppe der unitären Matrizen in $GL(\mathbb{C}, n)$ ist die unitäre Gruppe U(n).

Matrizen in Sage

- Matrizen werden in Sage mit Hilfe des Befehls matrix() konstruiert.
- Der Rückgabewert ist vom Typ matrix.
- Die Einträge der Matrix können beliebige Ausdrücke sein.
- Es ist auch möglich Matrizen über bestimmten Bereichen (z.B. \mathbb{R} , \mathbb{C} , \mathbb{Z}) zu konstruieren.
- Es gibt auch spezielle Datenstrukturen für quadratische Matrizen und für dünnbesetzte Matrizen.

Konstruktion von Matrizen I

Es gibt in Sage verschiedene Möglichkeiten eine Matrix zu konstruieren. Beispiel:

$$A:=\left(egin{array}{ccc} 1 & 2 & 3 & 4 \ a & 0 & 1 & b \end{array}
ight), \quad a,b\in\mathbb{R}$$

• Eingabe der Einträge pro Zeile in eckigen Klammern [..]. Alle Spalten dann wieder in eckigen Klammern [..].

• Mit expliziter Größenangabe

Konstruktion von Matrizen II

ullet Erzeugen einer Nullmatrix der Größe n imes m

```
n = 3; m = 4; B = matrix(n,m)
```

• Erzeuge eine $n \times m$ - Matrix A mit Hilfe einer Funktion f(i,j) mit Einträgen $a_{ij} = f(i,j)$

```
f(i,j) = i*j
C = matrix([[f(i,j) for i in range(1,6)] for j in
    range(1,4)]); C
```

• Eingabe von Zeilen- und Spaltenvektoren (falls explizit nötig)

```
matrix(3,1,[1,2,3])
matrix(1,3,[4,5,6])
```

Zeilen- und Spaltenzahl

• Abfragen der Spaltenanzahl: <matrix>.ncols()

```
C.ncols()
```

5

• Abfragen der Zeilenanzahl: <matrix>.nrows()

```
C.nrows()
```

3

• Informationen über die Matrix: <matrix>.parent()

```
C.parent()
```

Full MatrixSpace of 3 by 5 dense matrices over Symbolic Ring

Zugriff auf die Einträge I

Abfragen von Einträgen in Zeile i und Spalte j:

```
i=1; j=2; C[i,j]
```

6

Ändern des Eintrags in Zeile i und Spalte j:

```
i=1; j=2; C[i,j]=22
```

• Extrahieren von Zeilen/Spalten

```
zeile = C.row(0)
spalte = C.column(4)
```

Zugriff auf die Einträge II

Extrahieren von Teilmatrizen

```
C[1:3,1:3]
```

• Erzeugen von Diagonalmatrizen

```
x = [1,2,3,4,5]
Diag = diagonal_matrix(x); Diag
```

Rechnen mit Matrizen

Addieren, Multiplizieren

```
var('a,b,c,d,g,h,f')
A = matrix([[a, b], [c,d]])
B = matrix([[e, f], [g,h]])
A+B; A*B
```

Bestimmung der Inversen und der Transponierten

```
A^(-1); A.transpose()
```

Rang von Matrizen

Sei $A \in K^{m \times n}$.

- Die Dimension der linearen Hülle der Spaltenvektoren nennt man den Spaltenrang von A. Er ist höchstens gleich n.
- Die Dimension der linearen Hülle der Zeilenvektoren nennt man den Zeilenrang von A. Er ist höchstens gleich m.
- Zeilenrang und Spaltenrang von Matrizen sind gleich und man spricht deshalb vom Rang einer Matrix.

Matrizen

Bestimmen des Ranges einer Matrix

```
S = matrix([[1,0,0],[0,1,1],[1,1,1]])
S.rank()
```

2

• ist S symmetrisch ? ist S invertierbar ?

```
S.is_symmetric()
S.is_invertible()
```

```
False False
```

Maps auf Matrizen

Mittels map_threaded(<function>,<matrix>) kann auf jeden Eintrag von der Matrix <matrix> die Funktion <function> angewendet werden (wie bei map())

Beispiel:

```
map_threaded(sqrt,matrix(RR,[[1,2],[3,4]]))
```

```
[1.00000000000000 1.41421356237310]
[1.73205080756888 2.00000000000000]
```

- Vektoren
 - Matrizen
 - Vektorräume

Vektorraum

Ein Tripel $(V,+,\cdot)$, bestehend aus einer nichtleeren Menge V und Verknüpfungen

$$+: V \times V \rightarrow V, \qquad \cdot: K \times V \rightarrow V$$

heißt Vektorraum über einem Körper K, wenn gilt:

- $oldsymbol{0}$ (V,+) ist eine abelsche Gruppe.
- ② Für alle $v, w \in V$ und alle $\lambda, \mu \in K$ gilt:

 - $(\lambda \mu) \cdot \mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v}).$
 - $0 1 \cdot v = v.$

Begriffe

- Die Elemente eines Vektorraums nennt man Vektoren.
- Die Abbildung $\cdot: K \times V \to V$ heißt Skalarmultiplikation. Die Elemente des Körpers K nennt man Skalare.
- Ist $U \subset V$ eine Teilmenge des Vektorraums V und gelten alle Vektorraumaxiome, so heißt U ein Untervektorraum oder Unterraum von V.
- Vorsicht! 0 ist nicht gleich 0, d.h. man muß zwischen der 0 des Körpers und der 0 des Vektorraums (Nullvektor) unterscheiden. Es gilt $0 \cdot v = 0$ für alle $v \in V$.

Beispiele für Vektorräume

- $K^n := \{(x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in K\}, n \in \mathbb{N}$
- Sei M eine beliebige Menge. Die Menge der Abbildungen von M in K, $\mathsf{Abb}(M,K)$, mit den punktweise definierten Verkn üpfungen

$$(f+g)(x) := f(x) + g(x), \forall x \in M$$

 $(\alpha \cdot f)(x) := \alpha \cdot f(x), \forall x \in M$

für $\alpha \in K$, $f, g : M \mapsto K$.

- Die Menge der Polynome bis zum Grad n.
- Die Menge aller Polynome.
- ullet R als \mathbb{Q} -Vektorraum.
- ullet C als \mathbb{R} -Vektorraum.

Vektoren in Sage

Konstruktion von Vektoren

```
a = vector([1,2,3,4]); b = vector([5,6,7]); a,b
((1, 2, 3, 4), (5, 6, 7))
```

Datentyp: vector_integer_dense (für dichte Vektoren)

```
type(a)
```

```
<type 'sage.modules.vector_integer_dense.
    Vector_integer_dense'>
```

Lineare Abhängigkeit

Sei V ein K-Vektorraum und (v_1, \ldots, v_r) eine Familie von Elementen aus V.

- $v \in V$ heißt Linearkombination von (v_1, \ldots, v_r) , falls $\exists \lambda_1, \ldots, \lambda_r \in K$ mit $v = \lambda_1 v_1 + \cdots + \lambda_r v_r$.
- Die Menge aller Linearkombinationen wird Lineare Hülle genannt und durch $span\{v_1,\ldots,v_n\}$ bezeichnet. Die Lineare Hülle ist ein Unterraum von V.
- (v_1, \ldots, v_r) heißen linear unabhängig, falls gilt: Sind $\lambda_1, \ldots, \lambda_r \in K$ und ist $\lambda_1 v_1 + \cdots + \lambda_r v_r = 0$ so folgt $\lambda_1 = \cdots = \lambda_r = 0$. Andernfalls sind sie linear abhängig.
- Ist $M \subseteq V$ eine unendliche Menge, dann ist M linear unabhängig falls alle endlichen Teilmengen von M lineare unabhängig sind.

Weitere Notationen und Bemerkungen

Sei V ein K-Vektorraum und (v_1,\ldots,v_r) eine Familie von Elementen aus V

- $(v_1, ..., v_r)$ sind genau dann linear unabhängig, wenn sich jeder Vektor $v \in span\{v_1, ..., v_r\}$ eindeutig linear kombinieren läßt.
- Gilt $V = span\{v_1, \ldots, v_r\}$, so ist (v_1, \ldots, v_r) ein Erzeugendensystem. Sind (v_1, \ldots, v_r) zusätzlich linear unabhängig, so ist (v_1, \ldots, v_r) eine Basis.
- Aus jedem Erzeugendensystem kann man eine Basis auswählen.

Beispiele für Basen

- Seien $(e_i)_{i=1,...,n} \in \mathbb{R}^n$ die Einheitsvektoren. (e_1,\ldots,e_n) ist eine Basis des \mathbb{R}^n .
- Die Monombasis $(1, x, x^2, \dots, x^n)$ ist eine Basis des Vektorraums der Polynome n-ten Grades.
- (1, i) ist eine Basis von \mathbb{C} als \mathbb{R} -Vektorraum.
- ullet R als \mathbb{Q} -Vektorraum hat keine endliche Basis.

Basis und Dimension

- Sei (v_1, \ldots, v_n) eine Basis eines Vektorraums V. Dann ist die Dimension des Vektorraums V definiert durch die Anzahl der Basiselemente, also n.
- Jeder Vektorraum besitzt eine Basis.
- Seien W, Z Unterräume von V. Dann ist $W + Z := span(W \cup Z)$ die Summe von W und Z. Es gilt:

$$\dim(W+Z) = \dim(W) + \dim(Z) - \dim(W \cap Z)$$

Sage

• Bestimmen einer Basis von span(s1, s2, s3)

```
s1 = vector([1,0,0])
s2 = vector([0,1,1])
s3 = vector([1,1,1])
span([s1,s2,s3],QQ)
```

```
Vector space of degree 3 and dimension 2 over
   Rational Field
Basis matrix:
[1 0 0]
[0 1 1]
```

Sage

• Bestimmen des Schnitts von span(s1) und span(s2, s3)

```
span([s1],QQ).intersection(span([s2,s3],QQ))
```

```
Vector space of degree 3 and dimension 1 over
   Rational Field
Basis matrix:
[1 0 0]
```

Testen der linearen Unabhängigkeit

False

Normen auf Vektorräumen

Sei V ein Vektorraum über $K = \mathbb{R}$ oder $K = \mathbb{C}$. Eine Norm auf V ist eine Abbildung

$$\|\cdot\|:V\to\mathbb{R},v\mapsto\|v\|,$$

so dass für alle $\alpha \in K$, $u, v \in V$ gilt

$$\begin{array}{rcl} \|\mathbf{v}\| & \geq & 0 \\ \|\mathbf{v}\| & = & 0 \text{ impliziert } \mathbf{v} = 0 \\ \|\alpha\mathbf{v}\| & = & |\alpha|\|\mathbf{v}\| \\ \|\mathbf{u} + \mathbf{v}\| & \leq & \|\mathbf{u}\| + \|\mathbf{v}\| \text{ (Dreiecksungleichung)}. \end{array}$$

 $(V, \|\cdot\|)$ heißt normierter Raum.

Skalarprodukt

Eine skalarwertige binäre Abbildung

$$(\cdot,\cdot):V\times V:\to K$$

auf einem Vektorraum V über $K=\mathbb{R}$ oder $K=\mathbb{C}$ heißt Skalarprodukt, wenn für alle $x,y,z\in V,\ \alpha,\beta\in K$ gilt

$$\begin{array}{rcl} (x,x) & \geq & 0 \\ (x,x) & = & 0 \text{ implizient } x = 0. \\ (x,y) & = & \overline{(y,x)} \\ (\alpha x + \beta y,z) & = & \alpha(x,z) + \beta(y,z) \end{array}$$

Bemerkungen

- Ein VR V mit Skalarprodukt heißt Prä-Hilbert-Raum. Ist $K = \mathbb{R}$ so heißt der Raum auch euklidisch.
- Durch $\|v\|:=\sqrt{(v,v)}$, $v\in V$ läßt sich eine Norm definieren. Es gilt die Cauchy-Schwarzsche Ungleichung

$$|(u, v)| \leq ||u|| ||v||.$$

• Im euklidischen Raum ist der Winkel α zwischen zwei Vektoren $u,v\in V\smallsetminus\{0\}$ definiert durch

$$\cos(\alpha) = \frac{(u, v)}{\|u\| \|v\|}.$$

Bemerkungen

- Zwei Vektoren $u, v \in V$ heißen orthogonal, wenn (u, v) = 0 gilt.
- Eine Basis aus paarweise orthogonalen Vektoren heißt Orthogonalbasis.
- Eine Orthogonalbasis, bei der alle Vektoren die Norm 1 haben, nennt man Orthonormalbasis.
- Jeder endlichdimensionale Prä-Hilbert-Raum hat eine Orthonormalbasis.
- Ist *U* ein Unterraum von *V*, so ist

$$U^{\perp} := \{ v \in V \mid (v, u) = 0 \text{ für alle } u \in U \}$$

der Orthogonalraum zu *U*. Er ist ein Untervektorraum.

• Es gilt: dim $U + \dim U^{\perp} = \dim V$, insb. $U \cap U^{\perp} = 0$.

Sage

• Die *p*-Norm $||v|| := (\sum_{i=1}^n |v_i|^p)^{1/p}$, $p \in [1, \infty)$ auf dem K^n mit $K = \mathbb{R}, \mathbb{C}$ wird berechnet durch:

```
x = vector([1,2,3,4,5]); p=2
x.norm(p)
```

sind Vektoren orthogonal zueinander ?

```
a1 = vector([1,2,3])
a2 = vector([0,4,1])
a3 = vector([1,1,1])
X = matrix([a1,a2,a3])
X * X.transpose()
```

Sage

Berechnen des Skalarprodukts

```
a2.dot_product(a3), a2*a3
```

```
(5, 5)
```

• Berechnen des Winkels zwischen zwei Vektoren

```
float(acos(a2*a3/(abs(a2)*abs(a3))))
```

```
0.79520271328967818
```

• Berechnen der Determinante

```
A = matrix([[1,2,3],[4,5,6],[7,8,0]])
A.det()
```

- Vektoren
 - Matrizen
 - Vektorräume

Ein erstes Programm

```
def MyMax(a,b):
    """Maximum von a und b"""
    if a<b:
        return (b)
    else:
        return (a)</pre>
```

- Das erste Beispiel berechnet das Maximum zweier Zahlen a und b.
- Aufruf in Sage ist MyMax(a,b).
- Die Funktion gibt dann entweder den Wert a oder den Wert b zurück.
- in """ comment """ eingeschlossene Zeilen werden als Hilfetext abgespeichert und können durch MyMax? abgefragt werden.

Aufbau von Funktionen

- Eine Funktion beginnt mit def und dem Namen der Prozedur (hier: MyMax) gefolgt von den möglichen Übergabeparameter (a,b,c..)
- Jede Zeile, die einen folgenden Block einleitet, muss mit einem Doppelpunkt : abgeschlossen werden.
- Jede Zeile in diesem Block muss eine grössere Einrückung besitzen (typischerweise ein Tab)

Return

- Mittels return(a) wird die Funktion abgebrochen und der Wert a zurückgegeben.
- Wird innerhalb der Prozedur kein Befehl ausgeführt, so wird eine leere Variable des Typs NoneType zurückgegeben.

Erkärungen

- Kommentarzeilen: Diese beginnen mit #. Sie werden vom System ignoriert.
- Die durch if <bedingung>: eingeleitete Zeile ist eine sogenannte Verzweigung. Ist die Bedingung <bedingung> wahr, so wird der Block hinter : ausgeführt. Ist <bedingung> falsch, so wird die Alternative else: ausgeführt.
- Achtung: in Sage (und Python) wird der Block durch die Einrückung definiert.

Erstellen von Funktionen

Bei umfangreicheren Funktionen oder richtigen Programmen ist es evtl. sinnvoller dies mit einem Editor zu erstellen.

- Erstellen einer <name>.sage-Datei in ~/.sage. Diese mit Sage-Code füllen
- In sage diese mit attach <name>.sage an das Notebook anhängen \Rightarrow wird automatisch geladen und aktuell gehalten.
- als Editor empfehle ich zum Einstieg geany. Prinzipiell sind alle Editoren geeignet die Python unterstützen.