# Unity Developer Bootcamp

#### Lesson 03

Introduction to Game Development with Unity



## Learning Objectives

- Set up lighting in a Unity scene
- Create custom components in Unity
- Use Unity components to create gameplay



Lecture



### Environment



#### Lighting

To calculate how a lit object looks, the shaders must know information about the lights in the scene. This information is provided by **Light** components.

There are three main types of lights in Unity.





#### **Lighting | Point Lights**

They are located at a point in space and send out light omnidirectionally.

Example: a light bulb





#### **Lighting | Spot Lights**

They are similar to a point lights, but are constrained to an angle, resulting in a cone shape.

Example: a stage light



#### **Lighting | Directional Lights**

They represents a light source that is infinitely far away from the scene.

Example: sunlight



#### Skybox

A skybox represents the background of the entire scene.

It is drawn behind all of your GameObjects to make the scene seem larger than it actually is.



#### **Post Processing**

Post Processing includes **image filters** and effects that can be added to your scene to improve the look and feel.

- These could be used to simulate real camera properties. As is the case with: Motion Blur, Depth of Field, and Chromatic Aberration.
- They can also be used stylistically, to change the look of your scene.
  As is the case with: Colour Wheels, Lift Gamma Gain, and Color Lookup.



A scene with no post processing applied.



The same scene with post processing applied.

