Methods 2 – Portfolio Assignment 1

Type: Group assignmentDue: 13 March 2022, 23:59

Please submit your answers on GitHub Classroom. The best way to give your answers is in a LaTeX or R Markdown file, but you can also create a PDF in some other way.

- 1) Given the vectors $\vec{u} = (1, 1, 1)$, $\vec{v} = (2, 3, 1)$, and $\vec{w} = (-1, -1, 2)$, compute the following products:
 - a) $\vec{u} \cdot \vec{v}$
 - b) $\vec{u} \cdot \vec{w}$
 - c) $\vec{v} \cdot \vec{w}$
 - d) $\vec{u} \times \vec{v}$
 - e) $\vec{u} \times \vec{w}$
 - f) $\vec{v} \times \vec{w}$
- 2) Vectors are orthogonal (or perpendicular) when their dot product is zero: $\vec{x} \perp \vec{y} \iff \vec{x} \cdot \vec{y} = 0$. A unit vector is a vector with norm 1: $||\vec{x}|| = 1$.
 - a) Find a unit vector that is perpendicular to both $\vec{u} = (1,0,1)$ and $\vec{v} = (1,2,0)$.
 - b) Find a vector that is orthogonal both to $\vec{u}_1 = (1, 0, 1)$ and $\vec{u}_2 = (1, 3, 0)$, and whose dot product with the vector $\vec{v} = (1, 1, 0)$ is equal to 8.
- 3) Prove the geometric formula for the dot product $\vec{x} \cdot \vec{y} = ||\vec{x}|| ||\vec{y}|| \cos \varphi$, where φ is the angle between the vectors \vec{x} and \vec{y} .
- 4) For the matrix

$$X = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix},$$

calculate X^n for n=2,3,4,5. Write a rule for calculating higher values of n.