Esame scritto di Geometria A

Università degli Studi di Trento Corso di laurea in Matematica A.A. 2015/2016

Appello di gennaio 2017

Esercizio 1

Al variare di $h \in \mathbb{R}$ sia $f_h \colon \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare rappresentata dalla matrice:

$$f_h \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} hx + hy + (h+1)^2 z + (3h^2 - 1)t \\ x - y + (h+1)z + (3h-2)t \\ 2hx + 3h(h+1)z + 3h(2h-1)t \end{pmatrix}$$

- (i) Calcolare per ogni $h \in \mathbb{R}$ il rango di f_h .
- (ii) Determinare, $\forall h \in \mathbb{R}$, equazioni parametriche del luogo U_h dei vettori v di \mathbb{R}^4 tali che

$$f_h(v) = \begin{pmatrix} 4h \\ 3 \\ 8h+1 \end{pmatrix}$$

(iii) Determinare per quali valori di h il luogo U_h è una retta parallela alla retta $\{x=y=t=\pi\}$

Esercizio 2

Sia $f: \mathbb{C}^4 \to \mathbb{C}^4$ l'applicazione definita sulla base canonica di \mathbb{C}^4 come

$$f(e_1) = e_1, \ f(e_2) = 2e_1 + e_2 - e_3 + e_4, \ f(e_3) = 2e_1 \ e \ f(e_4) = 4e_1 - 2e_3 + 2e_4.$$

Determinare se

- (i) f è iniettiva. Se non lo è, determinare il nucleo di f.
- (ii) f è suriettiva. Se non lo è, determinare l'immagine di f.
- (iii) f è diagonalizzabile. Se lo è, determinare una base \mathcal{B} di autovettori di f, altrimenti, determinarne la forma canonica di Jordan.
- (iv) Calcolare la dimensione dell'immagine dell'applicazione $(f Id_{\mathbb{C}^4}) \circ (f + Id_{\mathbb{C}^4})$

Esercizio 3

Si consideri lo spazio vettoriale $V = \mathbb{C}^4$ munito del sistema di coordinate standard (quindi x_0, \ldots, x_3 saranno le coordinate di \mathbb{C}^4). Sia $\mathbb{P}^3 = \mathbb{P}(V)$ lo spazio proiettivo con il sistema di coordinate proiettive indotto da quello su V. Si considerino i punti

$$A = [1, -1, 0, 2], \quad B = [1, 0, 1, 3], \quad C = [1, 1, 2, 4], \quad D = [1, -1, 2, 1].$$

- (i) Si dimostri che i punti A, B e C sono allineati e si calcoli un sistema di equazioni cartesiane per $L(\{A, B, C\})$;
- (ii) Si dimostri che il punto D non è allineato con A, B e C e si calcoli un sistema di equazioni cartesiane per un sottospazio vettoriale W di \mathbb{C}^4 tale che $L(\{A,B,C,D\}) = \mathbb{P}(W)$.

Si considerino, al variare del parametro a, le quadriche proiettive $Q_1, Q_2 \subset \mathbb{P}^3$ date dalle equazioni

$$Q_1: x_0^2 + 4x_2^2 - x_3^2 = 0$$
 $Q_2: i \cdot x_0^2 + 27x_1^2 + 4x_2^2 - 4ax_2x_3 + x_3^2 = 0.$

(iii) Si dica per quali valori di a le due quadriche sono proiettivamente equivalenti.

Esercizio 4

Sia \mathbb{P}^2 il piano proiettivo reale munito delle coordinate proiettive $[x_0, x_1, x_2]$. Si identifichino $U_0 = \mathbb{P}^2 \setminus \{x_0 = 0\}$ e $U_2 = \mathbb{P}^2 \setminus \{x_2 = 0\}$ con degli spazi affini di coordinate rispettivamente $(y_1, y_2) = (x_1/x_0, x_2/x_0)$ e $(w_0, w_1) = (x_0/x_2, x_1/x_2)$. In U_0 si considerino le curve \mathcal{C}_0 e \mathcal{D}_0 di equazione

$$C_0: f(y_1, y_2) = y_1 y_2 - 2 = 0$$
 $D_0: g(y_1, y_2) = -y_1^2 + y_1 y_2 + y_1 - 1 = 0$

e le relative chiusure proiettive $\mathcal C$ e $\mathcal D$ in $\mathbb P^2$. Siano infine $\mathcal C_2$ e $\mathcal D_2$ le tracce affini di $\mathcal C$ e $\mathcal D$ in U_2 .

- (i) Scrivere un'affinità che riduce \mathcal{D}_0 a forma canonica e dire di che tipo di curva si tratta;
- (ii) Calcolare il risultante tra f e g rispetto alla variabile y_1 e determinare i punti di intersezione tra \mathcal{C} e \mathcal{D} con le relative molteplicità. Ci sono punti in cui le curve proiettive sono tangenti?
- (iii) Rappresentare qualitativamente le curve C_2 e D_2 nel piano affine U_2 evidenziando eventuali centri e punti di intersezione.

Il luogo U_h è definito, per ogni h, come insieme delle soluzioni del sistema lineare di tre equazioni in quattro incognite la cui matrice completa associata è

$$\begin{bmatrix} h & h & (h+1)^2 & 3h^2 - 1 & 4h \\ 1 & -1 & h+1 & 3h-2 & 3 \\ 2h & 0 & 3h(h+1) & 3h(2h-1) & 8h+1 \end{bmatrix}.$$

Trasformo tale matrice mediante operazioni elementari sulle righe come segue

$$\begin{bmatrix} h & h & (h+1)^2 & 3h^2 - 1 & 4h \\ 1 & -1 & h+1 & 3h-2 & 3 \\ 2h & 0 & 3h(h+1) & 3h(2h-1) & 8h+1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -1 & h+1 & 3h-2 & 3 \\ h & h & (h+1)^2 & 3h^2 - 1 & 4h \\ 2h & 0 & 3h(h+1) & 3h(2h-1) & 8h+1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -1 & h+1 & 3h-2 & 3 \\ 0 & 2h & h+1 & 2h-1 & h \\ 0 & 2h & h(h+1) & h & 2h+1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -1 & h+1 & 3h-2 & 3 \\ 0 & 2h & h+1 & 2h-1 & h \\ 0 & 0 & h^2 - 1 & 1-h & h+1 \end{bmatrix}$$

(i) Il rango di f_h , è uguale al rango della matrice dei coefficienti del sistema equivalente ottenuto, ossia di

$$\begin{bmatrix} 1 & -1 & h+1 & 3h-2 \\ 0 & 2h & h+1 & 2h-1 \\ 0 & 0 & h^2-1 & 1-h \end{bmatrix}$$

Per ogni $h \neq 0$ la matrice è a scalini e ne deduciamo che il rango è 3 a meno che h = 1 nel qual caso il rango è 2. Per h = 0 la somma delle ultime due righe è nulla e la matrice ha rango 2.

Quindi il rango di f_h è 2 se $h \in \{0,1\}$ mentre è uguale a 3 altrimenti.

(ii) U_0 e U_1 sono le soluzioni dei sistemi lineari di matrice completa rispettiva

$$\begin{bmatrix} 1 & -1 & 1 & -2 & 3 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -1 & 1 & -2 & 3 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad e \qquad \begin{bmatrix} 1 & -1 & 2 & 1 & 3 \\ 0 & 2 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

ambedue incompatibili, e quindi $U_0 = U_1 = \emptyset$.

Se $h \notin \{0,1\}$, f_h è suriettiva e quindi U_h è non vuoto, ed è un sottospazio affine di dimensione 4-3=1, una retta. Possiamo in questo caso dividere per h e per 1-h, riducendo il sistema come segue

$$\begin{bmatrix} 1 & -1 & h+1 & 3h-2 & 3 \\ 0 & 2h & h+1 & 2h-1 & h \\ 0 & 0 & h^2-1 & 1-h & h+1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -1 & h+1 & 3h-2 & 3 \\ 0 & 1 & \frac{h+1}{2h} & \frac{2h-1}{2h} & \frac{1}{2} \\ 0 & 0 & -(h+1) & 1 & \frac{h+1}{1-h} \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -1 & (3h-1)(h+1) & 0 & \frac{3h^2+4h-5}{h-1} \\ 0 & 1 & (h+1) & 0 & \frac{3h^2+4h-5}{h-1} \\ 0 & 0 & -(h+1) & 1 & \frac{h+1}{1-h} \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 0 & 3h(h+1) & 0 & \frac{6h^3+11h^2-10h-1}{2h(h-1)} \\ 0 & 1 & (h+1) & 0 & \frac{3h^2-1}{2h(h-1)} \\ 0 & 0 & -(h+1) & 1 & \frac{h+1}{1-h} \end{bmatrix}$$

le cui soluzioni formano la retta di equazioni parametriche

$$\begin{bmatrix} \frac{6h^3 + 11h^2 - 10h - 1}{2h(h - 1)} \\ \frac{3h^2 - 1}{2h(h - 1)} \\ 0 \\ \frac{h + 1}{1 - h} \end{bmatrix} + t \begin{bmatrix} -3h(h + 1) \\ -(h + 1) \\ 1 \\ h + 1 \end{bmatrix}$$

(iii) La retta data ha vettore direzione (0,0,1,0). Quindi perché U_h sia una retta ad essa parallela serve innanzitutto che sia una retta, e quindi $h \notin \{0,1\}$. Inoltre (-3h(h+1), -(h+1), 1, h+1) deve essere proporzionale a (0,0,1,0), il che succede esattamente quando h=-1.

La matrice associata ad f rispetto alla base canonica è

$$\begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & -2 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$

il cui polinomio caratteristico è

$$\det\begin{bmatrix} 1 - T & 2 & 2 & 4 \\ 0 & 1 - T & 0 & 0 \\ 0 & -1 & -T & -2 \\ 0 & 1 & 0 & 2 - T \end{bmatrix} = (1 - T) \det\begin{bmatrix} 1 - T & 2 & 4 \\ 0 & -T & -2 \\ 0 & 0 & 2 - T \end{bmatrix} = (T - 1)^2 \det\begin{bmatrix} -T & -2 \\ 0 & 2 - T \end{bmatrix} = T(T - 1)^2 (T - 2)$$

per cui gli autovalori sono 0, 1 e 2 con molteplicità algebriche rispettive 1, 2 e 1.

(i) La nullità di una matrice è la molteplicità geometrica di 0, in questo caso 1, e quindi f non è iniettiva e il suo nucleo ha dimensione 1, generato quindi da un suo qualunque elemento

non nullo. È ora facile scegliere un tale vettore, per esempio $\begin{bmatrix} -2\\0\\1\\0 \end{bmatrix}.$

(ii) Per il teorema di Nullità più Rango l'immagine ha dimensione 4-1=3 ed è generata dalle colonne della matrice. Dal momento che la terza è un multiplo della prima, non è necessaria

per generare l'immagine e quindi un insieme di generatori per l'immagine è $\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$, $\begin{bmatrix} 2\\1\\-1\\1\end{bmatrix}$, $\begin{bmatrix} 4\\0\\-2\\2\end{bmatrix}$.

(iii) Per determinare la diagonalizzabilità, dal momento che il campo è \mathbb{C} , dobbiamo solo calcolare la molteplicità geometrica dell'unico autovalore (1) la cui molteplicità algebrica (2) è diversa da 1:

$$V_1 = N \begin{pmatrix} \begin{bmatrix} 0 & 2 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & -2 \\ 0 & 1 & 0 & 1 \end{bmatrix} \end{pmatrix} = N \begin{pmatrix} \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & -1 & -1 & -2 \\ 0 & 1 & 0 & 1 \end{bmatrix} \end{pmatrix} = N \begin{pmatrix} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ -1 \end{bmatrix} \rangle$$

Quindi l'operatore è diagonalizzabile e una base di autovettori è unione di basi di V_0 , V_1 e V_2 . V_2 ha dimensione 1 ed è quindi generato da un suo vettore non nullo:

$$V_2 = N \left(\begin{bmatrix} -1 & 2 & 2 & 4 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -2 \\ 0 & 1 & 0 & 0 \end{bmatrix} \right) = N \left(\begin{bmatrix} -1 & 0 & 2 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & -2 \end{bmatrix} \right) = \left\langle \begin{bmatrix} 2 \\ 0 \\ -1 \\ 1 \end{bmatrix} \right\rangle,$$

e quindi una base di autovettori è

$$\begin{bmatrix} 0 \\ -2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -1 \\ 1 \end{bmatrix}.$$

(iv) Dal momento che -1 non appartiene allo spettro di f, $f + Id_{\mathbb{C}^4}$ è invertibile, e quindi il numero cercato è uguale al rango di $f - Id_{\mathbb{C}^4}$ che, essendo 1 autovalore di geometrica 2, è uguale a 4 - 2 = 2.

Dire che i punti sono allineati è equivalente a dire che i vettori associati generano uno spazio vettoriale di dimensione 2. Ci basta quindi verificare che la matrice

$$M := \begin{bmatrix} 1 & -1 & 0 & 2 \\ 1 & 0 & 1 & 3 \\ 1 & 1 & 2 & 4 \end{bmatrix}$$

abbia rango 2. Togliendo alla seconda e alla terza riga la prima si ottiene la matrice

$$\begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \end{bmatrix}$$

che, per come è stata costruita, ha lo stesso rango di M e da cui il calcolo del rango è evidente.

Il minimo sottospazio r che contiene i punti $A, B \in C$ non è altro che il minimo sottospazio che contiene i punti $A \in B$ per quanto mostrato. Un sistema di equazioni cartesiane per la retta r passante da $A \in B$ si può scrivere imponendo che la matrice

$$\tilde{M} = \begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & 1 & 3 \end{bmatrix}$$

abbia rango 2. Notando che il minore ottenuto cancellando la prima riga e le ultime due colonne è sempre non nullo, avremo che $\mathrm{Rk}(\tilde{M})=2$ se e solo se i due minori ottenuti cancellando prima la terza colonna nel primo caso e la quarta nel secondo caso sono nulli. Più precisamente un sistema di equazioni cartesiane per r è

$$\det \begin{bmatrix} x_0 & x_1 & x_2 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \det \begin{bmatrix} x_0 & x_1 & x_3 \\ 1 & -1 & 2 \\ 1 & 0 & 3 \end{bmatrix} = 0$$

cioè

$$r: \begin{cases} f_1 = -x_0 - x_1 + x_2 = 0 \\ f_2 = -3x_0 - x_1 + x_3 = 0 \end{cases}.$$

Andando a sostituire le coordinate di D nelle equazioni di r si vede subito che $D \notin r$ e quindi D non è allineato ad A, B e C. Consideriamo il fascio di iperpiani contenenti r che si può scrivere come

$$H_{\lambda,\mu}: \lambda f_1 + \mu f_2 = 0$$

al variare di (λ, μ) . Siccome D non annulla entrambe f_1 e f_2 esiste una sola scelta (a meno di fattori di proporzionalità) per (λ, μ) affinche $D \in H_{\lambda,\mu}$. Andando a sostituire abbiamo

$$\lambda(-1+1+2) + \mu(-3+1+1) = 0 \iff \mu = 2\lambda$$

quindi l'equazione cercata è

$$-7x_0 - 3x_1 + x_2 + 2x_3 = 0.$$

Siccome siamo in uno spazio proiettivo complesso, le due quadriche sono proiettivamente equivalenti se e solo se le matrici che le rappresentano hanno lo stesso rango. Se chiamiamo A e B_a le due matrici avremo che Rk(A)=3 e

$$B_a = \begin{bmatrix} i & 0 & 0 & 0 \\ 0 & 27 & 0 & 0 \\ 0 & 0 & 4 & -2a \\ 0 & 0 & -2a & 1 \end{bmatrix}.$$

Si vede facilmente che il rango di B_a è 2 più il rango della matrice

$$\begin{bmatrix} 4 & -2a \\ -2a & 1 \end{bmatrix},$$

il quale vale 2 se $a \neq \pm 1$ e 1 in caso contrario. Di conseguenza le quadriche sono proiettivamente equivalenti se e solo se $a = \pm 1$.

Soluzione dell'esercizio 4

La matrice che rappresenta la conica \mathcal{D}_0 è

$$\begin{bmatrix}
-1 & 1/2 & 0 \\
1/2 & -1 & 1/2 \\
0 & 1/2 & 0
\end{bmatrix}$$

e ha determinante non nullo mentre la sottomatrice dei termini quadratici ha determinante negativo: la conica è un'iperbole non degenere con equazione canonica $X^2 - Y^2 = 1$. Essendo a centro determiniamo il centro per semplificarne la scrittura. Il sistema corrispondente è

$$\begin{cases} -y_1 + y_2/2 = -1/2 \\ y_1/2 = 0 \end{cases}$$

e ha soluzione (0, -1). Questo suggerisce il raccoglimento

$$g = -y_1^2 + y_1y_2 + y_1 - 1 = -y_1^2 + y_1(y_2 + 1) - 1 = -y_1^2 + y_1y_2' - 1$$

da cui possiamo completare i quadrati con facilità:

$$-y_1^2 + y_1 y_2' - 1 = -y_1^2 + y_1 y_2' + (y_2'/2)^2 - (y_2'/2)^2 - 1 = -(y_1 - y_2'/2)^2 + (y_2'/2)^2 - 1.$$

Se consideriamo il cambio di coordinate

$$\begin{cases} Y_1 = y_2'/2 = (y_2 + 1)/2 \\ Y_2 = y_1 - y_2'/2 = y_1 - (y_2 + 1)/2 \end{cases}$$

abbiamo che $g(y_1, y_2) = Y_1^2 - Y_2^2 - 1$, cioè \mathcal{D}_0 è in forma canonica.

Il risultante tra f e g rispetto alla variabile y_1 è

$$\operatorname{Res}_{y_1}(f,g) = \left| \begin{bmatrix} 0 & y_2 & -2 & 0\\ 0 & 0 & y_2 & -2\\ \hline -1 & y_2 + 1 & -1 & 0\\ 0 & -1 & y_2 + 1 & -1 \end{bmatrix} \right| = y_2^2 + 2y_2 - 4.$$

Il grado del risultante è minore del prodotto dei gradi (4) quindi ci saranno dei punti di intersezione tra le chiusure delle due curve che non vediamo nell'affine. Le radici del risultante sono $y_{2,\pm}=-1\pm\sqrt{5}$ per le quali vale

$$f(y_1, y_{2,\pm}) = (-1 \pm \sqrt{5})y_1 - 2$$

che si annulla solo per $(1 \mp \sqrt{5})/2$. Questo vuol dire che le uniche intersezioni tra \mathcal{C}_0 e \mathcal{D}_0 sono i punti

$$P_{+} = ((1+\sqrt{5})/2, -1+\sqrt{5})$$
 $P_{-} = ((1-\sqrt{5})/2, -1-\sqrt{5}).$

Passiamo quindi alla chiusura proiettiva delle curve omogeneizzando:

$$C: F(x_0, x_1, x_2) = x_1 x_2 - 2x_0^2 = 0$$

$$\mathcal{D}: G(x_0, x_1, x_2) = -x_1^2 + x_1 x_2 + x_1 x_0 - x_0^2 = 0.$$

Le due curve si intersecheranno in

$$P_{\pm} = [1, (1 \mp \sqrt{5})/2, -1 \pm \sqrt{5}]$$

e, eventualmente, in alcuni punti all'infinito. Se intersechiamo con la retta $x_0 = 0$ infatti ricaviamo

$${F = G = x_0 = 0} = {x_1x_2 = -x_1^2 = x_0 = 0}$$

la cui soluzione ci da il punto Q = [0, 1, 0]. Siccome $\mathcal{C} \cap \mathcal{D}$ si devono intersecare in 4 punti contati con molteplicità e siccome il risultante che abbiamo calcolato prima ha grado 2 possiamo concludere che la molteplicità di intersezione tra \mathcal{C} e \mathcal{D} in Q è 2 e le coniche (entrambe non degeneri e quindi lisce) sono tangenti (solo) in Q.

Deomogeneizziamo rispetto a x_2 per ottenere le equazioni delle tracce affini:

$$C_2: f'(w_0, w_1) = w_1 - 2w_0^2 = 0$$

$$\mathcal{D}_2: g'(w_0, w_1) = -w_1^2 + w_1 + w_1 w_0 - w_0^2 = 0.$$

Si vede subito che C_2 è una parabola e quindi non è a centro. Invece, siccome il determinante della matrice dei termini quadratici di D_2 è positivo, avremo che D_2 è un'ellisse a punti reali (in particolare, a centro). Il centro dell'ellisse si ottiene andando a risolvere il sistema

$$\begin{cases}
-w_1 + w_2/2 = -1/2 \\
-w_2 + w_1/2 = 0
\end{cases}$$

dal quale otteniamo che il centro è

$$C = (2/3, 1/3).$$

I punti di intersezione delle due curve sono i tre punti $(P_{\pm} \in Q)$ ricavati prima infatti tutti appartengono a U_2 . Siccome

$$P_{\pm} = [1, (1 \pm \sqrt{5})/2, (-1 \pm \sqrt{5})] = [(1 \pm \sqrt{5})/4, (3 \pm \sqrt{5})/4, 1]$$

nelle coordinate affini (w_1, w_2) avremo

$$P_{\pm} = ((1 \pm \sqrt{5})/4, (3 \pm \sqrt{5})/4).$$

Per completare il grafico qualitativo ci basta osservare che le due coniche sono tangenti in Q che ha coordinate (0,0).

Esame scritto di Geometria II

Università degli Studi di Trento Corso di laurea in Matematica A.A. 2014/2015

Appello di gennaio 2017

Esercizio 5

Si consideri lo spazio vettoriale $V = \mathbb{C}^4$ munito del sistema di coordinate standard (quindi x_0, \ldots, x_4 saranno le coordinate di \mathbb{C}^4). Sia $\mathbb{P}^3 = \mathbb{P}(V)$ lo spazio proiettivo con il sistema di coordinate proiettive indotto da quello su V. Si considerino i punti

$$A = [1, -1, 0, 2], \quad B = [1, 0, 1, 3], \quad C = [1, 1, 2, 4], \quad D = [1, -1, 2, 1].$$

- (i) Si dimostri che i punti A, B e C sono allineati e si calcoli un sistema di equazioni cartesiane per $L(\{A, B, C\})$;
- (ii) Si dimostri che il punto D non è allineato con A, B e C e si calcoli un sistema di equazioni cartesiane per un sottospazio vettoriale W di \mathbb{C}^4 tale che $L(\{A,B,C,D\}) = \mathbb{P}(W)$.

Si considerino, al variare del parametro a, le quadriche proiettive $Q_1, Q_2 \subset \mathbb{P}^3$ date dalle equazioni

$$Q_1: x_0^2 + 4x_2^2 - x_3^2 = 0$$
 $Q_2: i \cdot x_0^2 + 27x_1^2 + 4x_2^2 - 4ax_2x_3 + x_3^2 = 0.$

(iii) Si dica per quali valori di a le due quadriche sono proiettivamente equivalenti.

Esercizio 6

Si consideri la funzione $f: \mathbb{R} \to [-1, 1]$ tale che

$$f(x) = \begin{cases} -x & \text{se } x \in [-1, 1] \\ 1 & \text{se } x > 1 \\ -1 & \text{se } x < -1 \end{cases}$$

e supponiamo di munire [-1,1] della topologia euclidea.

- (i) Si ricavi la topologia τ su \mathbb{R} in modo che sia la meno fine che rende f continua;
- (ii) Si dica se $X = (\mathbb{R}, \tau)$ è compatto;
- (iii) Dire se X è T_2 e ricavare quali sono gli elementi dell'insieme

$$\left\{P \in X \mid \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = P\right\}.$$

Si veda la soluzione dell'esercizio 3.

Soluzione dell'esercizio 6

La topologia cercata è

$$\tau = \{ f^{-1}(A) \, | \, A \in \tau_e \}.$$

Se f è continua infatti è necessario che tutti gli insiemi del tipo $f^{-1}(A)$ con $A \in \tau_e$ siano aperti. Rimane da mostrare che τ è effettivamente una topologia ma questo segue facilmente dal fatto che l'unione (rispettivamente l'intersezione) di controimmagini è la controimmagine dell'unione (rispettivamente dell'intersezione). Più in dettaglio, la topologia è composta da tutti gli aperti della topologia euclidea che sono contenuti in (-1,1) e degli insiemi del tipo

- $A \operatorname{con} A \in \tau_e \operatorname{e} A \subset (-1,1);$
- $A \cup (1, +\infty)$ con $A \in \tau_e$ che non contiene 1 ma che contiene -1;
- $A \cup (-\infty, -1)$ con $A \in \tau_e$ che non contiene -1 ma che contiene 1;
- $A \cup (-\infty, -1) \cup (1, +\infty)$ con $A \in \tau_e$ che contiene $\{\pm 1\}$.

Sia $\mathcal{U} = \{U_i\}_{i \in I}$ un ricoprimento aperto di $X = (\mathbb{R}, \tau)$. Si ha quindi $U_i = f^{-1}(A_i)$ con $A_i \in \tau_e$. Siccome \mathcal{U} è un ricoprimento avremo che gli A_i devono coprire l'immagine di f, cioè [-1, 1]. Siccome [-1, 1] è compatto per (\mathbb{R}, τ_e) , esisterà una collezione finita A_{i_1}, \ldots, A_{i_n} che costituisce un ricoprimento finito. Questo mostra che $\{f^{-1}(A_{i_j})\}_{j=1..n}$ è un sottoricoprimento finito di \mathcal{U} : (\mathbb{R}, τ) è compatto.

Per convincersi che X non è T_1 basta considerare il punto P=2. Il suo complementare non è un insieme dei tipi elencati prima e quindi non è aperto. di conseguenza $\{P\}$ non può essere chiuso: X non è T_1 e quindi nemmeno T_2 . Occupiamoci di ricavare i limiti della successione $x_n=1-1/n$. Sia $x\in (-1,1)$ e sia $\delta=\min(|1-x|,|x+1|)$ (il minimo delle distanze euclidee di x da 1 e -1). Posto $\epsilon=\delta/2$ si ha che $(x-\epsilon,x+\epsilon)$ è un aperto di X (controimagine di $(-x-\epsilon,-x+\epsilon)$) che contiene x e al più un numero finito di elementi della successione: questo mostra che nessun elemento di (-1,1) è limite della successione. Analoga conclusione se x=-1 o x>1: l'intorno aperto $U=f^{-1}((1/2,3/2))=[-1,-1/2)\cup(1,+\infty)$ di x è disgiunto dai punti della successione. Sia invece x un punto in $(-\infty,-1)\cup\{1\}$. Ogni intorno U di x è del $U=f^{-1}(V)$ con $-1\in V\in\tau_e$. In particolare, esiste ϵ tale che $(-1-\epsilon,-1+\epsilon)\subset V$. Quindi $(1-\epsilon,1]$ è contenuto in U. Questo ci dice che per n>>0 $x_n\in U$. Di conseguenza

$$\left\{P \in X \mid \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = P\right\} = (-\infty, -1) \cup \{1\}.$$