Neural Networks 9. Hopfield Networks

Center for Cognitive Science Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

Thursday 18th April, 2024

Hopfield network

- **network:** n neurons with ± 1 threshold activation
- **state:** one value for each neuron:

$$\mathbf{s} \in \{\pm 1\}^n$$

weights: connections for each pair of neurons:

$$\mathbf{W} \in \mathbb{R}^{n \times n}$$

no reflexive weights - diagonal is empty (zero)

Insider view: time slice

lacktriangle what happens inside the network - time step t o t+1

computation of new state:

$$s_i(t+1) = f(\mathbf{w}_i \cdot \mathbf{s}(t))$$

Outsider view

- neuron activations are initialized to the outputs
- ▶ network updates its states $\mathbf{s}(t)$ for τ timesteps
- outputs at the time t are the neuron activations at t

Operation modes

- only the current state influences the next state (Markov property)
- synchronous (parallel) dynamics:
 - $lackbox{ all neurons change state at once } {f s}
 ightarrow {f s}'$
- asynchronous (sequential) dynamics:
 - ▶ only one neuron "recomputes" at a time $\mathbf{s}_i \rightarrow \mathbf{s}'_i$

note: we use (s, s') and (s(t), s(t+1)) interchangeably

Transition Functions

conventional net; for the i-th neuron:

$$net_i = \mathbf{w}_i \cdot \mathbf{s}$$

▶ deterministic transition: "± sign" function

$$s_i' = sgn^*(net_i)$$
 $sgn^*(net_i) = egin{cases} +1 & net_i \geq 0 \ -1 & net_i < 0 \end{cases}$

stochastic (probabilistic) transition:

$$P[s_i'=1]=\frac{1}{1+e^{-\beta \cdot net_i}}$$

• depends on β -inverse temperature: $\beta = 1/T$

State space dynamics

energy of a state:

$$E_{\mathbf{W}}(\mathbf{s}) = -\frac{1}{2} \sum_{j} \left(\sum_{i \neq j} w_{i,j} s_{i} s_{j} \right)$$

- ▶ transitions $t \rightarrow t + 1$: moving in state space
- ▶ computation ≈ relaxation to states with lower energy
- possible outcomes (for deterministic synchronous):
 - fixed point (true or false attractor): s(t) = s(t-1)
 - cycles (even length):

$$\mathbf{s}(t) = \mathbf{s}(t-2k); \quad \exists k \in \mathbb{N}$$

Hopfield Auto-associative Memory

patterns: *P* points in *n* -dimensional space:

$$\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^P \in \mathbb{R}^n$$

- we "store" patterns in the weight matrix
- we want the stored patterns to be energy minima
- ▶ analytic training (\approx correlations):

$$w_{i,j} = \begin{cases} \frac{1}{P} \sum_{P} x_i^P x_j^P & i \neq j \\ 0 & i = j \end{cases}$$

Task

- hopfield.py
 - training compute W analytically
 - energy $E_{\mathbf{W}}(\mathbf{s})$
 - implement asynchronous dynamics
 - implement stochastic and deterministic transitions