

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий

Кафедра математического обеспечения и стандартизации информационных технологий

ОТЧЁТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №2

по дисциплине «Распределенные системы управления базами данных»

Тема: «Знакомство с Apache Cassandra»

Выполнил студент группы	ИКБО-07-22	Буренин А. А.
Принял преподаватель		Красников С. А.
Работа выполнена	«»20	(Подпись студента)
Зачтено	«»20	(Подпись преподавателя)

1. Ход работы

1.1. Создание кластера Cassandra

Для создания кластера Cassandra можно воспользоваться docker compose. Нам необходимо создать 3 ноды, 2 в дата-центре 1 и одну в дата-центре 2. Использование docker compose в данном случае поможет избежать использование ip-адресов, а так же упростит поиск ошибок.

Листинг 1 — Файл compose.yaml

```
x-cassandra: &cassandra-commons
  image: 'cassandra:latest'
  expose:
    - 7000
    - 9042
  networks:
    - cassandra
x-common-environments: &cassandra-common-environments
  CASSANDRA SEEDS: cassandra-dc-1-node-1
  CASSANDRA_CLUSTER_NAME: burenin CASSANDRA_ENDPOINT_SNITCH: GossipingPropertyFileSnitch
  CASSANDRA DC: dc-1
  MAX HEAP SIZE: 500M
  HEAP NEWSIZE: 500M
services:
  cassandra-dc-1-node-1:
    <<: *cassandra-commons
    environment:
      <<: *cassandra-common-environments
      CASSANDRA_SEEDS: ""
    container_name: cassandra-dc-1-node-1
    hostname: cassandra-dc-1-node-1
  cassandra-dc-1-node-2:
    <<: *cassandra-commons
    container_name: cassandra-dc-1-node-2
    hostname: cassandra-dc-1-node-2
    environment:
      <<: *cassandra-common-environments
    depends on:
      - cassandra-dc-1-node-1
  cassandra-dc-2-node-1:
    <<: *cassandra-commons
    container_name: cassandra-dc-2-node-1
    hostname: cassandra-dc-2-node-1
    environment:
      <<: *cassandra-common-environments
      CASSANDRA_SEEDS: cassandra-dc-1-node-1
      CASSANDRA DC: dc-2
```

Продолжение листинга 1

```
depends_on:
    - cassandra-dc-1-node-1
networks:
    cassandra:
    driver: bridge
```

На листинге 1 представлен compose файл, в котором создаются 3 контейнера Cassandra.

Для создания и запуска кластера необходимо использовать команду docker compose up -d. Ниже на риснке можно увидеть результат работы этой команды

```
ПРОБЛЕМЫ ВЫХОДНЫЕ ДАННЫЕ КОНСОЛЬ ОТЛАДКИ <u>ТЕРМИНАЛ</u>

> docker compose up -d
[+] Running 3/3

✓ Container cassandra-dc-1-node-1 Running

✓ Container cassandra-dc-2-node-1 Running

✓ Container cassandra-dc-1-node-2 Running

✓ Container cassandra-dc-1-node-2 Running

✓ Container cassandra-dc-1-node-2 Running
```

Рисунок 1 — Результат запуска кластера

1.2. Проверка кластера

Для проверки работоспособности кластера, подключимся к одной из его нод и выполним команду nodetool status. На рисунке 2 можно увидеть, что созданы три ноды: две в dc-1 и одна в dc-2

```
> docker compose exec -it cassandra-dc-1-node-1 /bin/bash
root@cassandra-dc-1-node-1:/# nodetool status
Datacenter: dc-1
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
                          Tokens Owns (effective) Host ID
   Address
              Load
                                                                                         Rack
UN 172.18.0.4 124.88 KiB 16
                                  61.1%
                                                   aab07b85-75e7-499c-9b28-47bbd96e1233
                                                                                         rack1
UN 172.18.0.2 119.84 KiB 16
                                  59.6%
                                                   b63f9723-51bb-410f-9b3f-4cea93d37b7f rack1
Datacenter: dc-2
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
                          Tokens Owns (effective) Host ID
   Address
             Load
                                                                                         Rack
UN 172.18.0.3 114.69 KiB 16
                                                    6fddc60b-8755-41c0-ba56-d7fa1212edb9
                                  79.4%
                                                                                         rack1
```

Рисунок 2 — Состояние нод в кластере

1.3. Создание пространства ключей

Создадим пространство ключей, которое будет иметь по одной реплике в dc-1 и в dc-2. На рисунке 3.

```
root@cassandra-dc-1-node-1:/# cqlsh
Connected to burenin at 127.0.0.1:9042
[cqlsh 6.2.0 | Cassandra 5.0.3 | CQL spec 3.4.7 | Native protocol v5]
Use HELP for help.
cqlsh> CREATE KEYSPACE mykeyspace WITH replication = {'class': 'NetworkTopologyStrategy', 'dc-1': 1, 'dc-2': 1}
...;
cqlsh>
```

Рисунок 3 — Создание пространства ключей «keyspace»

1.4. Создание таблицы users

Создадим таблицу «users» с полями id, first_name и last_name и заполним её тестовыми данными.

Рисунок 4 — Создание таблицы «users» и заполнение ее данными

1.5. Выборка данных из другой ноды

Проверим, что данные успешно реплицировались на другую ноду, для этого подключимся cassandra-dc-2-node-1 и попробуем запросить таблицу «users».

Рисунок 5 — Выборка данных из таблицы «users» на другой ноде

2. Контрольные вопросы

Как Вы думаете, к какому типу РБД относится БД, реализованная в практической работе? Почему?

БД, реализованная в практической работе безусловно относится к типу гомогенных автономны, так как схема базы данных совпадает на всех нодах и все ноды «знают» о существовании всех остальных. В последнем можно убедиться, рассмотрев рисунок 2.

Какой командой устанавливается образ Cassandra с помощью Docker

Образ докер устанавливается командой docker compose pull cassandra:latest, однако эта команда не является обязательной. Если образа нет на машине во время выполнения команды docker run, он будет скачен автоматически.

3. Вывод

При выполнении практической работы был создан и настроен Cassndra кластер из трёх нод в двух дата-центрах. После этого была проверена работа репликации данных.