Occupation numbers: Example > neglecting spin! Let us consider three states 4, , 42, 43 single-particle Let us look at what 3-particle were functions we can construct, assuming our 3-particle energy is $E = \mathcal{E}_1 + \mathcal{E}_2 + \mathcal{E}_3$ with 4. $\Psi(x_1, x_2, x_3) = \frac{1}{3!} \det \begin{pmatrix} \varphi_1(x_1) & \varphi_1(x_2) & \varphi_1(x_3) \\ \varphi_2(x_1) & \varphi_2(x_2) & \varphi_2(x_3) \\ \varphi_3(x_1) & \varphi_3(x_2) & \varphi_3(x_3) \end{pmatrix}$ Bosons : one fully symmetrized wave fit. "per" stands for permanent - it's a determinant with the minns signs replaced by plas signs. This state would be characterized by the occupation unmbers on = 1, ne = 1, ns = 13 my each state holds one

Fermions:		
平(x,, x≥,	$(x_3) = \frac{1}{\sqrt{3}!}$ det	
	one fully syn	metrized state / wave fet.
	Nake is chau	rackrized by occupation unmbers
		te holds one fermion
Boltzmann par		
$ \Psi = \varphi_i(x_i) \varphi_i $		> {u,=1, uz=1, uz=1}
Ψ = Ψ, (x2) Ψ	02 (x,) 43 (x3)	-> } u=1, u=1, u=13
$\bar{\Psi} = \psi_i(x_i)$	(2 (x3) (x2)	-> same
Ψ = 9 (x2) 4	P2 (x3) 43 (x1)	-7 Same
Ψ = 4 (x3)	42(x,) 43(x2)	-> Same
\(\frac{1}{2} = \begin{picture}(x_3) \(\frac{1}{2}\)	2(x2) 43 (x1)	-> Same
		So, there exist N!
		States with this set of
		occupation numbers