UNIVERSITY OF TWENTE.

Mixed finite elements for port-Hamiltonian

models of von Kármán beams
7th IFAC Conference on Lagrangian and Hamiltonian method for non linear control

Andrea Brugnoli¹ Ramy Rashad¹ Federico Califano¹ Stefano Stramigioli¹ Denis Matignon²

¹University of Twente, Enschede (NL)

²ISAE SUPAERO, Toulouse (FR)

11-13 October, 2021

Overview

1 Von-Karman theory of thin beams/plates

Outline

1 Von-Karman theory of thin beams/plates

Linear vs Von-Kàrmàn plate theory

Non linearity allows to describe bifurcations, i.e. buckling.

The von-Karman assumption

Basic geometric assumption

Out of plane deflection comparable compared to the thickness: $w/h = \mathcal{O}(1)$.

Aspect ratio: $\delta = h/L$. The following terms are kept in the expansion:

$$w/L = \mathcal{O}(\delta),$$

 $u/L = \mathcal{O}(\delta^2),$

Stresses and Strains

Decomposition strain field

Membrane-bending problem for thin beams

For small deformations the membrane and bending behavior are uncoupled:

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_u \\ \alpha_{\varepsilon} \\ \alpha_w \\ \alpha_{\kappa} \end{pmatrix} = \begin{bmatrix} 0 & \partial_x & 0 & 0 \\ \partial_x & 0 & 0 & 0 \\ 0 & 0 & 0 & -\partial_{xx} \\ 0 & 0 & \partial_{xx} & 0 \end{bmatrix} \begin{pmatrix} e_u \\ e_{\varepsilon} \\ e_w \\ e_{\kappa} \end{pmatrix}$$

If the material is isotropic

References I