1 Fragen zu Definitionen

1.) Definition topologischer Raum

Definition 1

Ein **topologischer Raum** ist ein Paar (X, \mathfrak{T}) bestehend aus einer Menge X und $\mathfrak{T} \subseteq \mathcal{P}(X)$ mit folgenden Eigenschaften

- (i) $\emptyset, X \in \mathfrak{T}$
- (ii) Sind $U_1, U_2 \in \mathfrak{T}$, so ist $U_1 \cap U_2 \in \mathfrak{T}$
- (iii) Ist I eine Menge und $U_i \in \mathfrak{T}$ für jedes $i \in I$, so ist $\bigcup_{i \in I} U_i \in \mathfrak{T}$

Die Elemente von $\mathfrak T$ heißen **offene Teilmengen** von X.

 $A \subseteq X$ heißt **abgeschlossen**, wenn $X \setminus A$ offen ist.

Ich glaube es ist unnötig in (i) zu fordern, dass $\emptyset \in \mathfrak{T}$ gilt, da man das mit (iii) bereits abdeckt:

Sei in (iii) die Indexmenge $I = \emptyset$. Dann muss gelten:

$$\bigcup_{i\in\emptyset}U_i=\emptyset\in\mathfrak{T}$$

4.) Knotendiagramm:

Definition 2

Ein **Knotendiagramm** eines Knotens γ ist eine Projektion $\pi: \mathbb{R}^3 \to E$ auf eine Ebene E, sodass $|\pi^{-1}(x) \cap C| \leq 2$ für jedes $x \in D$, wobei $C = \gamma(S^1)$.

Ist $(\pi|C)^{-1}(x) = \{y_1, y_2\}$, so **liegt** y_1 **über** y_2 , wenn $(y_1 - x) = \lambda(y_2 - x)$ für ein $\lambda > 1$ ist.

Sollte das jeweils $\pi|_C$ (sprich: " π eingeschränkt auf C") sein? Was ist D? Ich vermute, das sollte E sein. Ich würde die Definition eher so schreiben:

Definition 3

Sei $\gamma:[0,1]\to\mathbb{R}^3$ ein Knoten, E eine Ebene und $\pi:\mathbb{R}^3\to E$ eine Projektion auf E.

 π heißt **Knotendiagramm** von γ , wenn gilt:

$$\left| \left(\pi |_{\gamma([0,1])} \right)^{-1} (x) \right| \le 2 \quad \forall x \in E$$

Ist $(\pi|_{\gamma([0,1])})^{-1}(x) = \{y_1, y_2\}$, so **liegt** y_1 **über** y_2 , wenn gilt:

$$\exists \lambda > 1 : (y_1 - x) = \lambda (y_2 - x)$$

Ist meine Definition äquivalent zu der aus der Vorlesung?

5.) Isotopie/Knoten

Definition 4

Zwei Knoten $\gamma_1,\gamma_2:S^1\to\mathbb{R}^3$ heißen **äquivalent**, wenn es eine stetige Abbildung

$$H: S^1 \times [0,1] \to \mathbb{R}^3$$

gibt mit

$$H(z,0) = \gamma_1(z) \quad \forall z \in S^1$$

 $H(z,1) = \gamma_2(z) \quad \forall z \in S^1$

und für jedes feste $t \in [0, 1]$ ist

$$H_z: S^1 \to \mathbb{R}^2, z \mapsto H(z,t)$$

ein Knoten. Die Abbildung H heißt **Isotopie** zwischen γ_1 und γ_2 .

Fehlt hier nicht etwas wie " $\forall z \in S^{1}$ " (nun rot ergänzt).

6.) Basisbeispiele

- Kennst du ein Beispiel für eine Subbasis in einem Topologischen Raum, die zugleich eine Basis ist?
- Kennst du ein Beispiel für eine Subbasis in einem Topologischen Raum, die keine Basis ist?
- Kennst du ein Beispiel für eine Basis in einem Topologischen Raum, die keine Subbasis ist?

9.) Mannigfaltigkeit mit Rand

Definition 5

Sei X ein topologischer Raum und $n \in \mathbb{N}$.

- a) Eine n-dimensionale **Karte** auf X ist ein Paar (U, φ) , wobei $U \subseteq X$ offen und $\varphi : U \to V$ Homöomorphismus von U auf eine offene Teilmenge $V \subseteq \mathbb{R}^n$.
- b) Ein *n*-dimensionaler **Atlas** \mathcal{A} auf X ist eine Familie $(U_i, \varphi_i)_{i \in I}$ von Karten auf X, sodass $\bigcup_{i \in I} U_i = X$.
- c) X heißt (topologische) n-dimensionale **Mannigfaltigkeit**, wenn X hausdorffsch ist, eine abzählbare Basis der Topologie hat und ein n-dimensionalen Atlas besitzt.

Definition 6

Sei X ein Hausdorffraum mit abzählbarer Basis der Topologie. X heißt ndimensionale **Mannigfaltigkeit mit Rand**, wenn es einen Atlas (U_i, φ_i) gibt, wobei $U_i \subseteq X_i$ offen und φ_i ein Homöomorphismus auf eine offene
Teilmenge von

$$R_{+,0}^n := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_m \ge 0 \}$$

ist.

Wieso wird bei der Mannigfaltigkeit mit Rand nicht gefordert, dass sie eine abzählbare Basis haben soll? Sollte man nicht vielleicht hinzufügen, dass der Atlas n-dimensional sein soll?

11.) Produkttopologie

Definition 7

Seien X_1, X_2 topologische Räume.

 $U \subseteq X_1 \times X_2$ sei offen, wenn es zu jedem $x = (x_1, x_2) \in U$ Umgebungen U_i um x_i mit i = 1, 2 gibt, sodass $U_1 \times U_2 \subseteq U$ gilt.

 $\mathfrak{T} = \{ U \subseteq X_1 \times X_2 \mid U \text{ offen } \}$ ist eine Topologie auf $X_1 \times X_2$. Sie heißt **Produkttopologie**. $\mathfrak{B} = \{ U_1 \times U_2 \mid U_i \text{ offen in } X_i, i = 1, 2 \}$ ist eine Basis von \mathfrak{T} .

Gibt es ein Beispiel, das zegit, dass nicht $\mathfrak{B} = \mathfrak{T}$ gilt?

12.) Δ^2 explizit

Wie sieht der Standard-Simplex der dim. 2, also Δ^2 , explizit notiert aus? Praktisch ist das ja die konvexe Hülle der Standard-Basisvektoren e_0, e_1, e_2

(also
$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$), also ein Polyeder mit vier Flächen im \mathbb{R}^3 (jedoch

kein regelmäßiges Tetraeder, oder?)

Das ist dann nur das Gitter dieses Polyeders, aber nicht die Flächen oder sogar etwas innerhalb vom Polyeder, oder?

13.) Normalenvektor

Definition 8

Sei $\gamma: I \to \mathbb{R}^2$ eine durch Bogenlänge parametrisierte Kurve.

a) Für $t \in I$ sei n(t) Normalenvektor an γ in t, d. h.

$$\langle n(t), \gamma'(t) \rangle = 0, \quad ||n(t)|| = 1$$

und $\det((\gamma_1(t), n(t))) = +1$

b) Nach ?? sind n(t) und $\gamma''(t)$ linear abhängig, d. h. es gibt $\kappa(t) \in \mathbb{R}$ mit

$$\gamma''(t) = \kappa(t) \cdot n(t)$$

 $\kappa(t)$ heißt **Krümmung** von γ in t.

Definition 9

Sei $\gamma:I\to\mathbb{R}^3$ eine durch Bogenlänge parametrisierte Kurve.

- a) Für $t \in I$ heißt $\kappa(t) := ||\gamma''(t)||$ die **Krümmung** von γ in t.
- b) Ist für $t \in I$ die Ableitung $\gamma''(t) \neq 0$, so heißt $\gamma''(t)$ Normalenvektor an γ in t.
- c) b(t) sei ein Vektor, der $\gamma'(t), n(t)$ zu einer orientierten Orthonormalbasis von \mathbb{R}^3 ergänzt. Also gilt:

$$\det(\gamma'(t), n(t), b(t)) = 1$$

b(t) heißt **Binormalenvektor**, die Orthonormalbasis

$$\{ \gamma'(t), n(t), b(t) \}$$

heißt begleitendes Dreibein.

Die beiden Definitionen eins Normalenvektors / der Krümmung scheinen mir äquivalent zu sein. Warum haben wir beide? Ich würde die zweite bevorzugen.

14.) Dimension von Simplizes

Gibt es 0-Dimensionale Simplizes?

15.) Existenz der Parallelen

Definition 10

§5) **Parallelenaxiom**: Für jedes $g \in G$ und jedes $P \in X \setminus g$ gibt es höchstens ein $h \in G$ mit $h \cap g = \emptyset$. h heißt **Parallele zu** g **durch** P.

Soll hier wirklich "mindestens" stehen? Wie beweist man, dass es genau eine gibt?

1.1 15.) Simpliziale Abbildungen

Wenn man Simpliziale Abbildungen wie folgt definiert

Definition 11

Seien K, L Simplizialkomplexe. Eine stetige Abbildung

$$f: |K| \to |L|$$

heißt **simplizial**, wenn für jedes $\Delta \in K$ gilt:

- a) $f(\Delta) \in L$
- b) $f|_{\Delta}: \Delta \to f(\Delta)$ ist eine affine Abbildung.

dann ist die Forderung " $f(\Delta) \in L$ " doch immer erfüllt, oder? Gibt es eine Abbildung

$$f: |K| \to |L|$$

mit $f(\Delta) \notin L$?

16.) ÜB 1, Aufgabe 2

<u>Vor.:</u> Es sei (X, d) ein metrischer Raum, $A \subseteq X$. Weiter bezeichne \mathfrak{T} die von d auf X erzeugte Topologie \mathfrak{T}' , die von der auf $A \times A$ eingeschränkten Metrik $d|_{A \times A}$ erzeugte Topologie.

Beh.: Die Topologie \mathfrak{T}' und $\mathfrak{T}|_A$ (Spurtopologie) stimmen überein.

Bew.:

$$,\mathfrak{T}|_A\subseteq\mathfrak{T}'''$$
:

Sei $U \in \mathfrak{T}|_A = \{ V \cap A \mid V \in \mathfrak{T} \}.$

Dann ex. also $V \in \mathfrak{T}$ mit $U = V \cap A$.

Sei $x \in U$.

Da $V \in \mathfrak{T}$, ex. nach Bemerkung 3 ein r > 0 mit

$$\mathfrak{B}_r(x) := \{ y \in X \mid d(x,y) < r \} \subseteq V$$
$$\{ y \in A \mid d(x,y) < r \} \subseteq V \cap A = U$$

also ist U offen bzgl. $d|_{A\times A}$.

Wieso ist U offen bzgl. $d|_{A\times A}$?

Da $x \in U$ beliebig gewählt war gilt: $\mathfrak{T}|_A \subseteq \mathfrak{T}'$