Lemma (6.12). Let g be an integrable function over [0,1]. Suppose there exists M>0 such that

$$\left| \int fg \right| \le M \cdot \|f\|_p$$

for all f which are bounded, measurable functions. Then $g \in L^q$ and $||g||_q \leq M$.

Proof. We claim that $||g||_q \leq M$. We are done if we prove this because then $g \in L^q$. First, assume that $p \in (1, \infty)$ and so q is over the same region as well. Define the function g_n by

$$g_n(x) = \begin{cases} g(x) & |g(x)| \le n \\ 0 & |g(x)| > n. \end{cases}$$

Now define $f_n(x) = |g_n|^{q/p} \cdot (\operatorname{sgn} g_n)$. Now,

$$\|f_n\|_p = \left(\|g_n\|_q\right)^{q/p}$$

and also

$$|g_n|^q = f_n \cdot g_n = f_n \cdot g.$$

Hence,

$$\left(\left\|g_{n}\right\|_{q}\right)^{q} = \int f_{n} \cdot g \leq M \left\|f_{n}\right\|_{P} = M \left(\left\|g_{n}\right\|_{q}\right)^{q/p}.$$

Because $q - \frac{p}{q} = 1$, then for all $n \in N$,

$$\|g_n\|_q \leq M.$$

Note that as $n \to \infty$, $|g_n|^q \to |g|^q$ almost everywhere and so the above expression implies by Fatuo's lemma

$$\int |g_n|^q \le \lim_{n \to \infty} \int |g_n|^q \le M^q.$$

Theorem (6.13, Riesz Representation Theorem). Let F be a bounded linear functional on L^p . Then there exists $g \in L^q$ such that

$$F(f) = \int fg.$$

We also have $||F|| = ||g||_q$.

Proof. Our outline of the proof will be as follows:

Step I: Find g which is integrable.

Step II: Upgrade g to L^q .

Step III: Verify for all $f \in L^p$.

Let $\chi_s = 1_{[0,s]}$ and $\Phi(s) = F(\chi_x)$. We claim that $\Phi(s)$ is absolutely continuous. This means that there exists g integrable such that

$$\Phi(s) - \underbrace{\Phi(0)}_{=0} = \int_0^s g(t) dt = \int_0^1 g \cdot \chi_s.$$

Let $\varepsilon > 0$ be chosen. Let $\{(s_i, s'_i)\}$ be a disjoint collection of intervals over [0, 1] with

$$\sum_{i=1}^{k} s_i' - s_i < \delta.$$

We want to show that this implies that

$$\sum_{i=1}^{k} |\Phi(s_i') - \Phi(s)| < \varepsilon.$$

Note that

$$\sum_{i=1}^{k} |\Phi(s_i') - \Phi(s)| = F(f)$$

where

$$f = \sum_{i=1}^{k} (\chi_{s'_i} - \chi_{s_i}) \cdot \operatorname{sgn} (\Phi(s'_i) - \Phi(s))$$

$$\leq \sum_{i=1}^{k} (s'_i - s_i)$$

$$< \delta$$

and so this implies that $||f||_p < \delta$. By definition of Φ and F being a bounded linear functional, we know that

$$\sum_{i=1}^{k} |\Phi(s_i') - \Phi(s)| = F(f)$$

$$\leq M \cdot ||f||_p$$

$$< M \cdot \delta$$

$$< \varepsilon.$$

Thus Φ is absolutely continuous if we choose $\delta = \frac{\varepsilon}{M}$. So this tell us

$$\Phi(s) = \int_0^1 g \cdot \chi_s$$

for some integrable function g. Since every step function ϕ on [0,1] is a linear combination of ϕ'_s 's, we know that

$$F(\phi) = \int_0^1 g\phi$$

for every step function ϕ .

Now we claim that this function g is in L^q . To that end, let f be a bounded measurable function on [0,1]. Then there exists bounded step functions ϕ_n such that $\phi_n \to f$ almost everywhere. Thus the sequence $\{|f-\phi_n|^p\}$ is uniformly bounded and converges to 0 almost everywhere. This tells us that $\|f-\phi_n\|_p \to 0$. Since F is a bounded linear functional, we know that

$$|F(f) - F(\phi_n)| = |F(f - \phi_n)|$$

$$\leq M \cdot ||f - \phi_n||_p,$$

and so we know that $F(f) = \lim_{n \to \infty} F(\phi_n)$. Letting \tilde{M} be the uniform bound of the ϕ_n 's, we have $g\phi_n < |g| \cdot \tilde{M}$. By the Lebesgue dominated convergence theorem,

$$\int f \cdot g = \lim_{n \to \infty} \int g \cdot \phi_n$$
$$= \lim_{n \to \infty} F(\phi_n)$$
$$= F(f)$$

for all f which are bounded measurable functions. Thus, by the Hölder inequality,

$$\left| \int fg \right| = |F(f)| \le ||F|| \cdot ||f||_p.$$

By Lemma 6.12, $g \in L^q$, finishing our second claim.

Finally, we claim that

$$F(f) = \int g \cdot f$$

for all $f \in L^p$.

Let $f \in L^p$ be any function and fix $\varepsilon > 0$. By the density of step functions in L^p , there exists a step function ϕ such that

$$||f - \phi||_p < \varepsilon$$

and so

$$F(\phi) = \int \phi g.$$

Hence, we have by the linearity of F,

$$\begin{aligned} \left| F(f) - \int f \cdot g \right| &= \left| F(f) - F(\phi) + F(\phi) - \int f \cdot g \right| \\ &= \left| F(f - \phi) + \int g(\phi - f) \right| \\ &\leq \left| F(f - \phi) \right| + \left| \int g(\phi - f) \right| \\ &\leq M \cdot \|f - \phi\|_p + \left| \int g(\phi - f) \right| \\ &\leq M \cdot \underbrace{\|f - \phi\|_p}_{f - \phi} + \|g\|_q \cdot \underbrace{\|f - \phi\|_p}_{f - \phi} \end{aligned}$$

Hölder Inequality

Math 6421: Measure Theory Jose Nino: Lecture #19 November 2, 2023

This tells us that

$$F(f) = \int fg.$$

Chapter 11 Measure Spaces

The set up will be that we have any set X and \mathcal{B} which is a σ -algebra i.e., a collection of subsets of X such that

- 1. $\emptyset \in \mathcal{B}$
- 2. If $A \in \mathcal{B}$, then $A^{\mathfrak{C}} \in \mathcal{B}$.
- 3. Closed under countable union.

Define $\mu: \mathcal{B} \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ to be a set function such that $E \mapsto \mu(E) \in \overline{\mathbb{R}}$.

Definition. A couple (X, \mathcal{B}) is called a measurable space consisting of a set X and a σ -algebra \mathcal{B} subsets of X. A set $E \subset X$ is called **measurable** if $E \in \mathcal{B}$.

Definition. A set function $\mu: \mathcal{B} \to \overline{\mathbb{R}}$ is called a **measure** if we have the following:

- 1. $\mu(\emptyset) = 0$
- 2. Countable additivity i.e., $\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu\left(E_i\right)$ for any $E_i \cap E_j = 0$ with $i \neq j$.

We then call the triple (X, \mathcal{B}, μ) a **measure space**.

Remark. We know that countable additivity implies finite additivity. An example of this is the triple $(\mathbb{R}, \mathcal{M}, m)$ where \mathcal{M} is all Lebesgue measurable sets and m is the Lebesgue measure.