In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits
 from sklearn.model_selection import train_test_split

Out[2]:

	date	BEN	со	EBE	NМНС	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	station
0	2016-11- 01 01:00:00	NaN	0.7	NaN	NaN	153.0	77.0	NaN	NaN	NaN	7.0	NaN	NaN	28079004
1	2016-11- 01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.4	28079008
2	2016-11- 01 01:00:00	5.9	NaN	7.5	NaN	297.0	139.0	NaN	NaN	NaN	NaN	NaN	26.0	28079011
3	2016-11- 01 01:00:00	NaN	1.0	NaN	NaN	154.0	113.0	2.0	NaN	NaN	NaN	NaN	NaN	28079016
4	2016-11- 01 01:00:00	NaN	NaN	NaN	NaN	275.0	127.0	2.0	NaN	NaN	18.0	NaN	NaN	28079017
209491	2016- 07-01 00:00:00	NaN	0.2	NaN	NaN	2.0	29.0	73.0	NaN	NaN	NaN	NaN	NaN	28079056
209492	2016- 07-01 00:00:00	NaN	0.3	NaN	NaN	1.0	29.0	NaN	36.0	NaN	5.0	NaN	NaN	28079057
209493	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	1.0	19.0	71.0	NaN	NaN	NaN	NaN	NaN	28079058
209494	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	6.0	17.0	85.0	NaN	NaN	NaN	NaN	NaN	28079059
209495	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	2.0	46.0	61.0	34.0	NaN	NaN	NaN	NaN	28079060

209496 rows × 14 columns

In [3]: a.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 209496 entries, 0 to 209495 Data columns (total 14 columns): Column Non-Null Count Dtype --------------0 date 209496 non-null object BEN 50755 non-null float64 1 float64 2 CO 85999 non-null 3 EBE 50335 non-null float64 4 NMHC 25970 non-null float64 5 NO 208614 non-null float64 6 NO 2 208614 non-null float64 7 0 3 121197 non-null float64 8 PM10 102892 non-null float64 PM25 52165 non-null float64 9 86023 non-null float64 10 SO 2 float64 11 TCH 25970 non-null 50662 non-null float64 12 TOL 13 station 209496 non-null int64 dtypes: float64(12), int64(1), object(1) memory usage: 22.4+ MB

In [4]: b=a.fillna(value=86)
b

Out[4]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	station
0	2016- 11-01 01:00:00	86.0	0.7	86.0	86.00	153.0	77.0	86.0	86.0	86.0	7.0	86.00	86.0	28079004
1	2016- 11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.4	28079008
2	2016- 11-01 01:00:00	5.9	86.0	7.5	86.00	297.0	139.0	86.0	86.0	86.0	86.0	86.00	26.0	28079011
3	2016- 11-01 01:00:00	86.0	1.0	86.0	86.00	154.0	113.0	2.0	86.0	86.0	86.0	86.00	86.0	28079016
4	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	275.0	127.0	2.0	86.0	86.0	18.0	86.00	86.0	28079017
209491	2016- 07-01 00:00:00	86.0	0.2	86.0	86.00	2.0	29.0	73.0	86.0	86.0	86.0	86.00	86.0	28079056
209492	2016- 07-01 00:00:00	86.0	0.3	86.0	86.00	1.0	29.0	86.0	36.0	86.0	5.0	86.00	86.0	28079057
209493	2016- 07-01 00:00:00	86.0	86.0	86.0	86.00	1.0	19.0	71.0	86.0	86.0	86.0	86.00	86.0	28079058
209494	2016- 07-01 00:00:00	86.0	86.0	86.0	86.00	6.0	17.0	85.0	86.0	86.0	86.0	86.00	86.0	28079059
209495	2016- 07-01 00:00:00	86.0	86.0	86.0	86.00	2.0	46.0	61.0	34.0	86.0	86.0	86.00	86.0	28079060

209496 rows × 14 columns

```
In [5]: b.columns
```

In [6]: c=b.head(30)

Out[6]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	station
0	2016- 11-01 01:00:00	86.0	0.7	86.0	86.00	153.0	77.0	86.0	86.0	86.0	7.0	86.00	86.000000	28079004
1	2016- 11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.400000	28079008
2	2016- 11-01 01:00:00	5.9	86.0	7.5	86.00	297.0	139.0	86.0	86.0	86.0	86.0	86.00	26.000000	28079011
3	2016- 11-01 01:00:00	86.0	1.0	86.0	86.00	154.0	113.0	2.0	86.0	86.0	86.0	86.00	86.000000	28079016
4	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	275.0	127.0	2.0	86.0	86.0	18.0	86.00	86.000000	28079017
5	2016- 11-01 01:00:00	0.9	0.5	0.5	86.00	66.0	82.0	1.0	27.0	86.0	8.0	86.00	6.000000	28079018
6	2016- 11-01 01:00:00	0.7	0.8	0.4	0.13	57.0	66.0	3.0	23.0	15.0	4.0	1.35	5.000000	28079024
7	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	52.0	78.0	1.0	86.0	86.0	86.0	86.00	86.000000	28079027
8	2016- 11-01 01:00:00	86.0	1.2	86.0	86.00	205.0	85.0	6.0	86.0	86.0	86.0	86.00	86.000000	28079035
9	2016- 11-01 01:00:00	86.0	0.7	86.0	86.00	114.0	91.0	86.0	37.0	86.0	6.0	86.00	86.000000	28079036
10	2016- 11-01 01:00:00	2.5	86.0	3.3	86.00	166.0	114.0	86.0	45.0	27.0	8.0	86.00	16.299999	28079038
11	2016- 11-01 01:00:00	86.0	2.4	86.0	86.00	475.0	165.0	5.0	86.0	86.0	86.0	86.00	86.000000	28079039
12	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	74.0	109.0	86.0	38.0	86.0	8.0	86.00	86.000000	28079040
13	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	168.0	93.0	86.0	41.0	26.0	86.0	86.00	86.000000	28079047
14	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	150.0	85.0	86.0	31.0	21.0	86.0	86.00	86.000000	28079048
15	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	81.0	97.0	1.0	86.0	86.0	86.0	86.00	86.000000	28079049
16	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	307.0	134.0	86.0	55.0	35.0	86.0	86.00	86.000000	28079050
17	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	160.0	113.0	1.0	86.0	86.0	86.0	86.00	86.000000	28079054

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	station
18	2016- 11-01 01:00:00	1.4	86.0	1.3	0.20	72.0	84.0	86.0	21.0	86.0	86.0	1.50	6.900000	28079055
19	2016- 11-01 01:00:00	86.0	0.5	86.0	86.00	67.0	83.0	6.0	86.0	86.0	86.0	86.00	86.000000	28079056
20	2016- 11-01 01:00:00	86.0	1.0	86.0	86.00	181.0	109.0	86.0	42.0	86.0	13.0	86.00	86.000000	28079057
21	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	4.0	36.0	11.0	86.0	86.0	86.0	86.00	86.000000	28079058
22	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	99.0	66.0	7.0	86.0	86.0	86.0	86.00	86.000000	28079059
23	2016- 11-01 01:00:00	86.0	86.0	86.0	86.00	79.0	103.0	4.0	29.0	86.0	86.0	86.00	86.000000	28079060
24	2016- 11-01 02:00:00	86.0	0.6	86.0	86.00	116.0	65.0	86.0	86.0	86.0	6.0	86.00	86.000000	28079004
25	2016- 11 - 01 02:00:00	2.7	1.0	2.1	0.40	139.0	114.0	4.0	37.0	21.0	14.0	2.30	15.000000	28079008
26	2016- 11 - 01 02:00:00	4.7	86.0	5.6	86.00	111.0	97.0	86.0	86.0	86.0	86.0	86.00	16.700001	28079011
27	2016- 11-01 02:00:00	86.0	0.7	86.0	86.00	67.0	90.0	2.0	86.0	86.0	86.0	86.00	86.000000	28079016
28	2016- 11 - 01 02:00:00	86.0	86.0	86.0	86.00	99.0	84.0	2.0	86.0	86.0	13.0	86.00	86.000000	28079017
29	2016- 11-01 02:00:00	0.5	0.5	0.2	86.00	61.0	73.0	1.0	17.0	86.0	7.0	86.00	3.300000	28079018

Out[7]:

	BEN	СО	EBE	NMHC	NO_2	O_3	PM10	SO_2	TCH	TOL	station
0	86.0	0.7	86.0	86.00	77.0	86.0	86.0	7.0	86.00	86.000000	28079004
1	3.1	1.1	2.0	0.53	144.0	4.0	46.0	18.0	2.44	14.400000	28079008
2	5.9	86.0	7.5	86.00	139.0	86.0	86.0	86.0	86.00	26.000000	28079011
3	86.0	1.0	86.0	86.00	113.0	2.0	86.0	86.0	86.00	86.000000	28079016
4	86.0	86.0	86.0	86.00	127.0	2.0	86.0	18.0	86.00	86.000000	28079017
5	0.9	0.5	0.5	86.00	82.0	1.0	27.0	8.0	86.00	6.000000	28079018
6	0.7	8.0	0.4	0.13	66.0	3.0	23.0	4.0	1.35	5.000000	28079024
7	86.0	86.0	86.0	86.00	78.0	1.0	86.0	86.0	86.00	86.000000	28079027
8	86.0	1.2	86.0	86.00	85.0	6.0	86.0	86.0	86.00	86.000000	28079035
9	86.0	0.7	86.0	86.00	91.0	86.0	37.0	6.0	86.00	86.000000	28079036
10	2.5	86.0	3.3	86.00	114.0	86.0	45.0	8.0	86.00	16.299999	28079038
11	86.0	2.4	86.0	86.00	165.0	5.0	86.0	86.0	86.00	86.000000	28079039
12	86.0	86.0	86.0	86.00	109.0	86.0	38.0	8.0	86.00	86.000000	28079040
13	86.0	86.0	86.0	86.00	93.0	86.0	41.0	86.0	86.00	86.000000	28079047
14	86.0	86.0	86.0	86.00	85.0	86.0	31.0	86.0	86.00	86.000000	28079048
15	86.0	86.0	86.0	86.00	97.0	1.0	86.0	86.0	86.00	86.000000	28079049
16	86.0	86.0	86.0	86.00	134.0	86.0	55.0	86.0	86.00	86.000000	28079050
17	86.0	86.0	86.0	86.00	113.0	1.0	86.0	86.0	86.00	86.000000	28079054
18	1.4	86.0	1.3	0.20	84.0	86.0	21.0	86.0	1.50	6.900000	28079055
19	86.0	0.5	86.0	86.00	83.0	6.0	86.0	86.0	86.00	86.000000	28079056
20	86.0	1.0	86.0	86.00	109.0	86.0	42.0	13.0	86.00	86.000000	28079057
21	86.0	86.0	86.0	86.00	36.0	11.0	86.0	86.0	86.00	86.000000	28079058
22	86.0	86.0	86.0	86.00	66.0	7.0	86.0	86.0	86.00	86.000000	28079059
23	86.0	86.0	86.0	86.00	103.0	4.0	29.0	86.0	86.00	86.000000	28079060
24	86.0	0.6	86.0	86.00	65.0	86.0	86.0	6.0	86.00	86.000000	28079004
25	2.7	1.0	2.1	0.40	114.0	4.0	37.0	14.0	2.30	15.000000	28079008
26	4.7	86.0	5.6	86.00	97.0	86.0	86.0	86.0	86.00	16.700001	28079011
27	86.0	0.7	86.0	86.00	90.0	2.0	86.0	86.0	86.00	86.000000	28079016
28	86.0	86.0	86.0	86.00	84.0	2.0	86.0	13.0	86.00	86.000000	28079017
29	0.5	0.5	0.2	86.00	73.0	1.0	17.0	7.0	86.00	3.300000	28079018

In [8]: sns.pairplot(d)

Out[8]: <seaborn.axisgrid.PairGrid at 0x1d524e13b50>

In [9]: sns.distplot(a['NO_2'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='NO_2', ylabel='Density'>

In [10]: sns.heatmap(d.corr())

Out[10]: <AxesSubplot:>


```
In [11]: x=d[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2']]
y=d['TCH']
```

In [12]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

In [13]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)

Out[13]: LinearRegression()

```
In [14]: print(lr.intercept_)
          1.4748792800566548
In [15]: coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
          coeff
Out[15]:
                 Co-efficient
            BEN
                   0.134493
             CO
                   -0.000405
            EBE
                   -0.134567
          NMHC
                   0.981957
           NO_2
                   0.001019
In [16]: prediction=lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[16]: <matplotlib.collections.PathCollection at 0x1d52d895700>
           80
           60
           40
           20
                        20
                                           60
                                                     80
In [17]: print(lr.score(x_test,y_test))
          0.9999806673343318
In [18]: from sklearn.linear_model import Ridge,Lasso
In [19]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[19]: Ridge(alpha=10)
In [20]: rr.score(x_test,y_test)
```

Out[20]: 0.9999768962712836

```
In [21]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[21]: Lasso(alpha=10)

In [22]: la.score(x_test,y_test)

Out[22]: 0.999678913074025

In [23]: a1=b.head(7000)
a1

Out[23]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	station
0	2016-11- 01 01:00:00	86.0	0.7	86.0	86.00	153.0	77.0	86.0	86.0	86.0	7.0	86.00	86.0	28079004
1	2016-11- 01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.4	28079008
2	2016-11- 01 01:00:00	5.9	86.0	7.5	86.00	297.0	139.0	86.0	86.0	86.0	86.0	86.00	26.0	28079011
3	2016-11- 01 01:00:00	86.0	1.0	86.0	86.00	154.0	113.0	2.0	86.0	86.0	86.0	86.00	86.0	28079016
4	2016-11- 01 01:00:00	86.0	86.0	86.0	86.00	275.0	127.0	2.0	86.0	86.0	18.0	86.00	86.0	28079017
6995	2016-11- 13 04:00:00	86.0	0.7	86.0	86.00	96.0	71.0	5.0	86.0	86.0	86.0	86.00	86.0	28079039
6996	2016-11- 13 04:00:00	86.0	86.0	86.0	86.00	45.0	70.0	86.0	26.0	86.0	9.0	86.00	86.0	28079040
6997	2016-11- 13 04:00:00	86.0	86.0	86.0	86.00	87.0	70.0	86.0	28.0	23.0	86.0	86.00	86.0	28079047
6998	2016-11- 13 04:00:00	86.0	86.0	86.0	86.00	66.0	59.0	86.0	33.0	26.0	86.0	86.00	86.0	28079048
6999	2016-11- 13 04:00:00	86.0	86.0	86.0	86.00	98.0	53.0	1.0	86.0	86.0	86.0	86.00	86.0	28079049

7000 rows × 14 columns

```
In [25]: f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [26]: h=StandardScaler().fit transform(f)
In [27]: logr=LogisticRegression(max iter=10000)
         logr.fit(h,g)
Out[27]: LogisticRegression(max iter=10000)
In [28]: | from sklearn.model_selection import train_test_split
         h train,h test,g train,g test=train test split(h,g,test size=0.3)
In [29]: | i=[[10,20,30,40,50,60,15,26,37,47,58]]
In [30]: prediction=logr.predict(i)
         print(prediction)
         [28079059]
In [31]: logr.classes_
Out[31]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
               dtype=int64)
In [32]: logr.predict_proba(i)[0][0]
Out[32]: 0.0
In [33]: logr.predict_proba(i)[0][1]
Out[33]: 0.0
In [34]: logr.score(h_test,g_test)
Out[34]: 0.9452380952380952
In [35]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[35]: ElasticNet()
In [36]: print(en.coef_)
         [ 0.00000000e+00 -4.53645120e-04 5.21275022e-04 9.79350801e-01
           0.0000000e+00]
In [37]: print(en.intercept )
         1.7459678449370415
```

```
In [38]: prediction=en.predict(x test)
         print(en.score(x test,y test))
         0.9999713903612383
In [39]: | from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(h_train,g_train)
Out[39]: RandomForestClassifier()
In [40]: parameters={'max_depth':[1,2,3,4,5],
           'min_samples_leaf':[5,10,15,20,25],
           'n estimators':[10,20,30,40,50]
In [41]: | from sklearn.model_selection import GridSearchCV
          grid search=GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring=<mark>"accuracy"</mark>)
         grid_search.fit(h_train,g_train)
Out[41]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min samples leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [42]: grid_search.best_score_
Out[42]: 0.9936734693877551
In [43]: rfc_best=grid_search.best_estimator_
In [44]: from sklearn.tree import plot tree
          plt.figure(figsize=(80,50))
         plot_tree(rfc_best.estimators_[2],filled=True)
```

Conclusion: from this data set i observed that the ridge has the highest accuracy of 0.9999768962712836

In []: