

Centrul Național De Evaluare și Examinare

Országos Magyar Matematikaolimpia Megyei szakasz, 2019. január 26. X. osztály

1. Feladat (10 pont)

- a) Tudva, hogy $x = \log_a(bc)$, $y = \log_b(ca)$, $z = \log_c(ab)$, $a, b, c \in (0, 1) \cup (1, \infty)$, igazold, hogy $x + y + z + 2 = x \cdot y \cdot z$.
- b) Adj példát olyan *a*, *b* és *c* páronként különböző természetes számokra, amelyekre az *x*, *y* és *z* is természetes számok!

2. Feladat (10 pont)

Legyen $z \in \mathbb{C} \setminus \mathbb{R}$. Igazold, hogy $\omega = \frac{1+z+z^2}{1-z+z^2} \in \mathbb{R}$ akkor és csak akkor, ha |z|=1.

3. Feladat (10 pont)

Az ABC háromszögben $\frac{a}{b} = 2 + \sqrt{3}$ és a C szög mértéke 60° .

- a) Igazold, hogy 1+tgAtgB=0.
- b) Számítsd ki az A és a B szög mértékét!

4. Feladat (10 pont)

Oldd meg a $2^{[4x-1]} = \left[\frac{x^2 - 2x + 3}{x^2 + x + 1}\right]$ egyenletet a valós számok halmazán, ahol [x] az x valós szám egész részét jelöli.