静电场中的电介质

- 1. 介质中的高斯定理: $\oint_S \vec{D} \cdot d\vec{S} = \sum_{(Sh)} q_{0i}$, 积分 $\oint_S \vec{D} \cdot d\vec{S}$ 的结果只与高斯面内包围的自由电荷有关; 但空间电位移矢量 \vec{D} 的分布与整个空间中的自由电荷有关。
- (A) 高斯面内不包围自由电荷,但高斯面外有自由电荷时,高斯面上各点电位移矢量 \vec{D} 不一定都为零。
- (B) 高斯面的 \vec{D} 通量 $\oint_{\vec{S}} \vec{D} \cdot d\vec{S}$ 仅与面内自由电荷有关。
- (C) 高斯面上处处 \vec{D} 为零,则 \vec{D} 的通量 $\oint_S \vec{D} \cdot d\vec{S} = 0$,说明高斯面内自由电荷代数和为零。 本题选(B)
- 2. 导体表面附近的电位移矢量: $D_{\bar{\mathbf{x}}} = \sigma_{\mathbf{0}}$, 其中 $\sigma_{\mathbf{0}}$ 为导体表面自由电荷面密度,则导体表面附近的电场强度:

$$E_{\bar{z}} = \frac{D_{\bar{z}}}{\varepsilon_{r}\varepsilon_{0}} = \frac{\sigma_{0}}{\varepsilon_{r}\varepsilon_{0}};$$
 本题中导体球表面附近的场强为 E ,则**球面上自由电荷面密度为**: $\sigma_{0} = \varepsilon_{r}\varepsilon_{0}E$. **选(A)**

3. 高斯定理始终成立, $\oint_{S} \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \sum_{(Sh)} q_i$,但由于空间电介质分布不对称,使得空间电场强度非对称分布,即

在图中闭合球面 S上各点场强 E大小不等,所以不能由高斯定理求出闭合球面 S上各点场强。 本题选(B)

- 4. 有电介质存在时,电介质发生极化,端面出现极化电荷(亦称束缚电荷),空间**总电场强度** \vec{E} **是由自由电荷与 本题选(C)**
- 5. 因为平行板电容器始终与电源相连,所以电容器两板的电压 U_0 不变。

当两板间为真空时, $U_0=E_0d$ ⇒ 电场强度大小: $E_0=\frac{U_0}{d}$, ⇒ 电位移: $D_0=\varepsilon_r\varepsilon_0E_0=\varepsilon_0\frac{U_0}{d}$;(真空 $\varepsilon_r=1$) 当两板间充满电介质时,电介质中场强均匀分布,且电压不变, $U_0=Ed$ ⇒ 电场强度大小: $E=\frac{U_0}{d}=E_0$,电位移: $D=\varepsilon_r\varepsilon_0E=\varepsilon_r\varepsilon_0\frac{U_0}{d}=\varepsilon_r\varepsilon_0E_0=\varepsilon_rD_0$.

6. 平行板电容器充电后,相邻两表面带等量异号电荷,设电荷面密度分别为 $+\sigma_0$ 和 $-\sigma_0$,则两板之间电位移矢

量
$$D=\sigma_0$$
,又两板之间为真空, $\varepsilon_r=1$,则两板之间场强为: $E=\frac{D}{\varepsilon_r\varepsilon_0}=\frac{\sigma_0}{\varepsilon_0}$;

充电后断开电源,两板上电荷电量保持不变,仍分别为 $+\sigma_0$ 和 $-\sigma_0$,此时,插入金属板,则金属板上表面感应出面密度为 $-\sigma_0$ 的负电荷,下表面感应出面密度为 $+\sigma_0$ 的正电荷,金属板内场强处处为零。

金属板上方和下方区域中电位移矢量 $D=\sigma_0$ 不变,则电场强度 $E=\frac{D}{\varepsilon_r\varepsilon_0}=\frac{\sigma_0}{\varepsilon_0}$ 也**不变**,且**与金属板位置无关**。

- 7. (1) 充满电介质的平行板电容器中电场均匀分布,设电介质中的电场强度大小为 E,由于电容器始终与电源相连,即 $U_0=Ed$ \Rightarrow 电介质中的电场强度大小为: $E=\frac{U_0}{d}$ \Rightarrow 电位移矢量: $D=\varepsilon_{r}\varepsilon_{0}E=\varepsilon_{r}\varepsilon_{0}\frac{U_0}{d}$.
- 8. 设水平向右为x轴正方向,电介质内部三个区域中的电场强度分别为: $E_{\rm I}=-\frac{E_0}{3}$, $E_{\rm III}=-E_0$, $E_{\rm III}=\frac{E_0}{3}$;

相应的电位移矢量为:
$$D_{\rm I} = \varepsilon_{\rm r} \varepsilon_0 E_{\rm I} = -\varepsilon_{\rm r} \varepsilon_0 \frac{E_0}{3}$$
, $D_{\rm II} = -\varepsilon_{\rm r} \varepsilon_0 E_0$, $D_{\rm III} = \varepsilon_{\rm r} \varepsilon_0 \frac{E_0}{3}$;

在区域 I 和 II 中作一底面积为 ΔS 的圆柱面,侧面垂直于 A 平板,如图,由 \vec{D} 的高斯定理:

$$\sigma_A$$
 σ_B (第8题图)

$$\oint_{\mathcal{C}} \vec{D} \cdot d\vec{S} = \sigma_{A} \Delta S \quad \Rightarrow \quad -D_{I} \cdot \Delta S + D_{II} \cdot \Delta S = \sigma_{A} \Delta S,$$

$$\Rightarrow$$
 $\varepsilon_{r} \varepsilon_{0} \frac{E_{0}}{3} \cdot \Delta S - \varepsilon_{r} \varepsilon_{0} E_{0} \cdot \Delta S = \sigma_{A} \Delta S \Rightarrow A$ 平板电荷面密度: $\sigma_{A} = -\frac{2}{3} \varepsilon_{r} \varepsilon_{0} E_{0}$;

同理,在区域 II 和 III 中作一底面积为 ΔS 的圆柱面,侧面垂直于 B 平板,如图,由 \vec{D} 的高斯定理:

$$\oint_{S} \vec{D} \cdot d\vec{S} = \sigma_{B} \Delta S \quad \Rightarrow \quad -D_{II} \cdot \Delta S + D_{III} \cdot \Delta S = \sigma_{B} \Delta S ,$$

$$\Rightarrow \quad \varepsilon_{r}\varepsilon_{0}E_{0}\cdot\Delta S + \varepsilon_{r}\varepsilon_{0}\frac{E_{0}}{3}\cdot\Delta S = \sigma_{\mathcal{B}}\Delta S \quad \Rightarrow \quad \mathbf{B} \ \mathbf{\Psi}$$
板电荷面密度: $\sigma_{\mathcal{B}} = \frac{4}{3}\varepsilon_{r}\varepsilon_{0}E_{0}$.

9. 设半径为 R_1 的内导体单位长度的电量(电荷线密度)为 λ ,则外导体在半径为 R_2 的内表面上感应出电荷线密度为 $-\lambda$ 的电荷。在介质中作一半径为 r ,高为 h 的圆柱面作为高斯面,由 \vec{D} 的高斯定理:

$$R_1 < r < R_2$$
, $\oint_{S} \vec{D} \cdot d\vec{S} = \lambda h \implies D \cdot 2\pi \ rh = \lambda h \implies D = \frac{\lambda}{2\pi \ r}$;

由 $D = \varepsilon_r \varepsilon_0 E \implies$ 电介质中的电场强度大小: $E = \frac{\lambda}{2\pi \varepsilon_r \varepsilon_0 r}$;

在
$$R_1 < r < R_2$$
 介质范围中, $r = R_1$ 时, 介质中场强最大: $E(R_1) = \frac{\lambda}{2\pi\varepsilon_r\varepsilon_0R_1} \le E_{\max}$, $\Rightarrow \frac{\lambda}{2\pi\varepsilon_r\varepsilon_0} \le E_{\max} \cdot R_1$;

电缆承受的电压:
$$U = \int_{R_{\rm l}}^{R_2} \vec{E} \cdot d\vec{r} = \int_{R_{\rm l}}^{R_2} \frac{\lambda}{2\pi\varepsilon_r\varepsilon_0 r} dr = \frac{\lambda}{2\pi\varepsilon_r\varepsilon_0} \int_{R_{\rm l}}^{R_2} \frac{1}{r} dr = \frac{\lambda}{2\pi\varepsilon_r\varepsilon_0} \ln\frac{R_2}{R_{\rm l}} \le E_{\rm max} \cdot R_{\rm l} \cdot \ln\frac{R_2}{R_{\rm l}} ,$$

所以,**电缆能够承受的最高电压**:
$$U_{\text{max}} = E_{\text{max}} \cdot R_1 \cdot \ln \frac{R_2}{R_1} = 110 \text{V}$$
.

10. 设半径为 R_1 的内导体圆筒单位长度的电量(电荷线密度)为 λ ,则外导体圆筒在半径为 R_2 的内表面上感应出电荷线密度为 $-\lambda$ 的电荷。在介质中作一半径为 r ,高为 h 的圆柱面作为高斯面,由 \vec{D} 的高斯定理:

$$R_1 < r < R_2$$
, $\oint_{S} \vec{D} \cdot d\vec{S} = \lambda h \implies D \cdot 2\pi \ rh = \lambda h \implies D = \frac{\lambda}{2\pi r}$;

由
$$D = \varepsilon_r \varepsilon_0 E$$
 \Rightarrow 电介质中的电场强度大小: $E = \frac{\lambda}{2\pi \varepsilon_r \varepsilon_0 r}$;

电缆承受的电压:
$$U_{12} = \int_{R_1}^{R_2} \vec{E} \cdot d\vec{r} = \int_{R_1}^{R_2} \frac{\lambda}{2\pi\varepsilon_x\varepsilon_0 r} dr = \frac{\lambda}{2\pi\varepsilon_x\varepsilon_0} \int_{R_1}^{R_2} \frac{1}{r} dr = \frac{\lambda}{2\pi\varepsilon_x\varepsilon_0} \ln\frac{R_2}{R_1} = 32V$$
,

A 点的电场强度为:
$$E_{\scriptscriptstyle A} = \frac{\lambda}{2\pi\,\varepsilon_{\scriptscriptstyle P}\varepsilon_{\scriptscriptstyle 0}R} = \frac{32\mathrm{V}}{R\cdot\ln\frac{R_{\scriptscriptstyle 2}}{R}} = 997.8\,\mathrm{V/m}$$
;

A 点与外圆筒的电势差为:
$$U_{\mathcal{A}2} = \int_{R}^{R_2} \vec{E} \cdot d\vec{r} = \int_{R}^{R_2} \frac{\lambda}{2\pi\varepsilon_r\varepsilon_0 r} dr = \frac{\lambda}{2\pi\varepsilon_r\varepsilon_0} \ln\frac{R_2}{R} = \frac{32\mathrm{V}}{\ln\frac{R_2}{R}} \ln\frac{R_2}{R} = 12.5\mathrm{V}$$
.