Tema VI: Евклидовы и унитарные пространства

4. Линейные функционалы

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2024/2025 учебный год

Линейные функционалы на векторных пространствах

Пусть V — векторное пространство над произвольным полем F.

Линейный функционал на V — это линейный оператор $g\colon V \to F$.

Пример 1: Пусть $V=F^n$ — пространство строк длины n над F. Отображение $g\colon V\to F$, определенное правилом $g(x_1,\dots,x_n):=x_1+\dots+x_n$, является линейным функционалом.

Пример 2: Пусть V — пространство всех функций из $\mathbb R$ в $\mathbb R$. Отображение $g\colon V\to F$, которое сопоставляет функции f(x) число f(0), является линейным функционалом. (Это — так называемая δ -функция Дирака.)

Пример 3: На пространстве многочленов $\mathbb{R}[x]$ отображение, сопоставляющее многочлену $f\in\mathbb{R}[x]$ число $\int\limits_0^1 f(t)dt$, — линейный функционал.

Пример 4: На любом пространстве V отображение, сопоставляющее каждому вектору из V элемент $0 \in F$, — линейный функционал.

Линейные функционалы на пространствах со скалярным произведением

Пусть V — пространство со скалярным произведением, а — фиксированный вектор из V. В силу свойств скалярного произведения отображение $\mathbf{x}\mapsto\mathbf{x}\mathbf{a}$ является линейным функционалом на V. Оказывается, что в конечномерном пространстве со скалярным произведением любой линейный функционал устроен именно так.

Теорема (строение линейного функционала)

Пусть V — конечномерное пространство со скалярным произведением над полем $F \in \{\mathbb{R}, \mathbb{C}\}$, а $\Phi \colon V \to F$ — линейный функционал. Тогда существует единственный вектор $\mathbf{a} \in V$ такой, что $\Phi(\mathbf{x}) = \mathbf{x}\mathbf{a}$ для каждого вектора $\mathbf{x} \in V$.

Доказательство. Единственность вектора, определяющего функционал, сразу следует из ослабленного закона сокращения (см. первый раздел темы): если вектора $\mathbf{a}, \mathbf{b} \in V$ таковы, что для любого вектора $\mathbf{x} \in V$ выполняется равенство $\mathbf{xa} = \mathbf{xb}$, то $\mathbf{a} = \mathbf{b}$. Докажем существование. Если $\Phi(\mathbf{x}) = 0$ для всех $\mathbf{x} \in V$, то в роли \mathbf{a} со свойством $\Phi(\mathbf{x}) = \mathbf{xa}$ годится вектор $\mathbf{0}$. Поэтому будем считать, что Φ принимает не только значение $\mathbf{0}$.

Строение линейного функционала

Тогда по теореме о сумме ранга и дефекта $\mathrm{Ker}(\Phi)$ — подпространство размерности $\dim V-1$, а его ортогональное дополнение $(\mathrm{Ker}(\Phi))^\perp$ — одномерное подпространство в V. Фиксируем ненулевой вектор

 $\mathbf{b} \in (\mathrm{Ker}(\Phi))^{\perp}$ и пусть $\beta := \Phi(\mathbf{b})$. Положим $\mathbf{a} := \frac{\beta}{\mathbf{b}^2}\mathbf{b}$ и проверим, что $\Phi(\mathbf{x}) = \mathbf{x}\mathbf{a}$ для каждого $\mathbf{x} \in V$. Для этого представим \mathbf{x} в виде $\mathbf{x} = \mathbf{c} + \gamma \mathbf{b}$ для некоторого $\mathbf{c} \in \mathrm{Ker}(\Phi)$ и $\gamma \in F$. Такое представление возможно, так как $V = \mathrm{Ker}(\Phi) \oplus (\mathrm{Ker}(\Phi))^{\perp}$, а одномерное подпространство $(\mathrm{Ker}(\Phi))^{\perp}$ порождается вектором \mathbf{b} . Тогда

$$\Phi(\mathbf{x}) = \Phi(\mathbf{c} + \gamma \mathbf{b}) = \Phi(\mathbf{c}) + \Phi(\gamma \mathbf{b}) = \gamma \Phi(\mathbf{b}) = \gamma \beta,$$

поскольку $\Phi(\mathbf{c}) = 0$. С другой стороны,

$$\mathbf{x}\mathbf{a} = (\mathbf{c} + \gamma \mathbf{b}) \frac{\overline{\beta}}{\mathbf{b}^2} \mathbf{b} = \mathbf{c} \frac{\overline{\beta}}{\mathbf{b}^2} \mathbf{b} + \gamma \mathbf{b} \frac{\overline{\beta}}{\mathbf{b}^2} \mathbf{b} = \gamma \beta,$$

поскольку $\mathbf{cb} = 0$.

Заключительные замечания

В бесконечномерных пространствах со скалярным произведением некоторые линейные функционалы представимы в виде скалярного произведения с подходящим вектором, а некоторые нет.

Например, в евклидовом пространстве $\mathbb{R}[x]$ всех многочленов над полем \mathbb{R} со скалярным произведением $(f,g):=\int\limits_0^1 f(t)g(t)dt$ функционал, сопоставляющий многочлену $f\in\mathbb{R}[x]$ число $\int\limits_0^1 f(t)dt$, представим как скалярное произведение многочлена f с многочленом 1. А вот функционал, сопоставляющий многочлену f его свободный член, в виде скалярного произведения представить нельзя; другими словами, нет такого многочлена g, что для любого многочлена f выполняется равенство $\int\limits_0^1 f(t)g(t)dt = f(0)$. Попробуйте обосновать это утверждение!