1. Akcelerator grafiki trójwymiarowej:

są to urządzenia odciążające jednostkę centralną w końcowym etapie obliczeń

2. Przetwarzanie strumienia grafiki komputerowej można podzielić na:

Przekształcenia geometryczne i rendering

3. Tworzenie obrazu szkieletowego wymaga określenia:

Rodzaju rzutu, parametrów rzutowania i powierzchni na której rzut zostanie wyświetlony

4. Planarne rzuty geometryczne to:

Rzuty na powierzchnie płaską, gdy promienie rzutujące są prostoliniowe

5. Pod pojęciem teksturowania rozumiemy:

Nakładanie na trójwymiarowy szkielet płaskich obrazków nazywanych teksturami

6. Pod pojęciem MIP mapping rozumiemy:

<u>Utworzenie przed renderowaniem sceny z każdej tekstury wzorcowej kilku pomniejszonych</u> bitmap

7. Mapowanie wybojów polega na:

<u>Nakładaniu na prymityw mapy obrazującej jasność poszczególnych pikseli po uprzednim</u> nałożeniu tekstury obrazu

8. Środowiskowe mapowanie wybojów:

Polega na nałożeniu podstawowej tekstury, mapy, wypukłości oraz mapy środowiska

9. Pojęcie wokseli rozumiemy:

Trójwymiarowe odpowiedniki tekseli umożliwiające mapowanie trójwymiarowe

10. Kalkulacja kolorów poszczególnych pikseli bufora ramki następuje z wykorzystaniem:

Algorytmów oświetlenia i cieniowania przy współudziale innych algorytmów

11. Model oświetlenie Warna zakłada:

Stosowanie klap i stożków

12. Odległość i kierunek źródła światła oraz pozycja obserwatora mają znaczeni przy:

Oświetleniu punktowym z odbiciem rozproszonym (tak naprawdę zwierciadlanym)

13. Interpolacja wartości węzłowych prymitywu trójkątnego ma znaczenie przy:

Cieniowaniu Phonga i cieniowaniu Gourauda

14. Cieniowanie Phonga zakłada, iż kolor i natężenie światła wewnątrz trójkąta

Są obliczane osobno dla każdego z pikseli trójkąta

15. Złudzenie gładkości sferycznych obiektów złożonych nawet z niewielkiej liczby trójkątów powstaje:

Zarówno przy cieniowaniu Gourauda , jaki i przy cieniowaniu Phonga

16. Algorytm śledzenia promieni pracuje poprawnie w przypadku:

Przeźroczystych i nie przeźroczystych obiektów sceny graficznej

17. Rasteryzacja to:

Zamiana wszystkich parametrów generowanej sceny na zbiór pikseli gotowych do wysłania na monitor

18. Pod pojęciem z-bufora rozumiemy obszar pamięci RAM karty graficznej odpowiadający swoją wielkością:

rozdzielczości ekranu i zastosowanej głębi sceny graficznej

19. Bufor szablonowy to:

Obszar pamięci służący do zmniejszania obciążenia procesora graficznego i magistrali pamięci

20. Dithering polega na:

<u>Symulacji koloru niedostępnego w systemie poprzez kompozycje kilku barw zbliżonych z</u> dostępnej palety

21. Kamera syntetyczna i scena graficzna:

Wymagają dwóch różnych niezależnych, niepowiązanych ze sobą układów współrzędnych

22. Ustawienie geometrii bryły widzenia to:

<u>Utworzenie "mapy" opisującej położenie wszystkich występujących na niej obiektów i ustalenie rozmiarów obiektów przy użyciu przekształceń elementarnych</u>

23. Środowiskowe mapowanie wybojów polega na:

Nałożeniu podstawowej tekstury, mapy wypukłości oraz mapy środowiska

24. Rendering można podzielić na:

Teksturowanie, oświetlenie i cieniowanie oraz dodawanie efektów specjalnych

25. Oświetlenie światłem otoczenia zakłada:

Stałe oświetlenie obiektów niezależne od ich pozycji i orientacji

26. Przy cieniowaniu Phonga decydujące znaczenie ma:

<u>Interpolacja normalnych do powierzchni obiektów w wierzchołkach prymitywów do ich</u> wnętrz

27. Cieniowanie Gourauda zakłada, iż pojedynczy odcień wnętrza każdego trójkąta powstaje:

Z uśrednienia kolorów i natężenia światła występujących w każdym z jego wierzchołków

28. Cieniowanie z odbiciem rozproszonym dotyczy:

Jedynie modelu Gourauda (tak naprawde w Gourouda i Phongu)

29. Sygnalizacja głębokości polega na:

Wykładniczej zmianie koloru i odcienia przedmiotu w zależności od dystansu od obserwatora

30. W trakcie rasteryzacji każdemu punktowi sceny graficznej przyporządkowywane są:

Trzy współrzędne, z których dwie pierwsze są wykonane w buforze ramki

31. Do określenia wymiarów i kątów obiektów sceny graficznej wymagane są:

Jeden, dwa lub trzy różne rzuty prostokatne

32. Mapy MIP to:

Tekstury o różnych rozmiarach, które są wynikiem skalowania tekstury wyjściowej

33. Do przedstawienia pełnej palety RGB i półprzezroczystości wymagany jest:

24 bitowy obszar pamięci (tak naprawdę 32 bitowy)

34. Pod pojęciem "alpha blending" rozumiemy:

Technikę określania stopnia przezroczystości tekstury z wykorzystaniem oddzielnego kanału

35. Jasność obiektu zmienia się w zależności od kierunku i odległości od źródła światła przy:

Oświetleniu punktowym

36. Model oświetlenia Warna zakłada stosowanie:

Programowych odpowiedników klap i stożków

37. Podobne efekty wizualne uzyskuje się stosując:

Cieniowanie Phonga i cieniowanie Gourauda

38. Algorytm śledzenia promieni analizuje

<u>Promienie odbite i załamane w kierunku od źródła światła do obserwatora (tak naprawdę od obserwatora do źródła światła)</u>

39. Głębia ostrości w scenach generowanych sztucznie to:

Zjawisko pożądane które wymaga zastosowania specjalnych algorytmów rozmywania wybranego obszaru

40. Złudzenia optyczne w grafice komputerowej

Czasami pomagają, a czasami przeszkadzają

Mogą być i na ogół są wykorzystywane w tworzeniu realizmu wirtualnego, ale czasami powodują artefakty

41. Obraz wygenerowany komputerowo

Może być realistyczny w stopniu nie pozwalającym na odróżnienie go od fotografii (OK)

42. Generowanie grafiki komputerowej

Przy udziale procesor centralnego i układu graficznego, lub z pominięciem jednej z wymienionych jednostek (chyba OK)

Autor: Muszkieterowie Chaosu 3

43. Kamera syntetyczna to

<u>Program komputerowy symulujący kamerę rzeczywistą, a obiekty umieszczone są w układzie od niej niezależnym</u>

Program który symuluje kamerę rzeczywistą, a obiekty są zbiorami punktów, odcinków i powierzchni

44. Obraz szkieletowy sceny graficznej

Jest tworem pomocniczym i nie ma potrzeby go wykreślać (OK)

45. Tłoczenie wybojów

<mark>Jest rodzajem mapowania wybojów (OK)</mark>

46. DOT3 mapping wymaga nałożenia na obiekt:

Tekstury podstawowej i sześciu różnych map środowiska. (OK)

47. Algorytm śledzenia promieni pracuje poprawnie w przypadku

Przeźroczystych i nieprzeźroczystych obiektów sceny graficznej

48. Do tworzenia mgły volumentarycznej wykorzystywane są

Półprzezroczyste tekstury trójwymiarowe

<u>Tekstury trójwymiarowe. Mgła zbudowana jest z warstw o różnej gęstości, co pozwala na wyjątkowo realne odwzorowanie otaczającego nas świata</u>

49. Do tworzenia mgły wykładniczej wykorzystywane są

Nieliniowe funkcje obliczające na bieżąco stopień zamglenia

Funkcja wykładnicza na bieżąco obliczająca stopień zamglenia (raczej to wyżej, bo to niżej pewnie było zbyt łatwą wersją)

50. Antyaliasing krawędziowy polega na usuwaniu "schodkowatości" sceny graficznej

<u>Poprzez odpowiednie rozmywanie krawędzi wzdłuż niektórych rysowanych linii czy granic</u> kolorów

51. Modelowanie powierzchni w grafice trójwymiarowej polega na:

<u>Wykorzystanie szeregu metod – najczęściej siatek wielokątów, powierzchni parametrycznych i powierzchni drugiego stopnia</u>

52. Modelowanie obiektów nie rzeczywistych polega na tym, iż:

Obiekt przybliża dokładnie swoja reprezentację, gdyż stanowi jedyne jej urzeczywistnienie

53. Wielomianowe krzywe parametryczne definiują punkty na krzywych za pomocą

<u>Trzech wielomianów parametru t, oddzielne dla każdej współrzędnej</u>

54. Dla tego samego stopnia aproksymacji liczba płatów wielomianowych jest:

Znacznie mniejsza niż płatów wielokątowych

55. Wielokąt stosowany w grafice 3D jest ograniczony

Zamknietą sekwencją krawedzi

4

57. Wśród siatek wielokątowych reprezentacja bezpośrednia relacji pomiędzy wierzchołkami, krawędziami i wielokątami wymaga:

Najkrótszych czasów operacji i najwięcej miejsca w pamięci

58. Reprezentacja siatki wielokątowej w postaci wskaźników na listę wierzchołków jest:

Mniej złożona nić reprezentacja w postaci wskaźników na listę krawędzi i wymaga algorytmów o dłuższych czasach obliczeń (tak naprawdę algorytmów o krótszych czasach obliczeń)

59. Metoda rzutów wielokąta na płaszczyzny prostopadłe do osi układu współrzędnych pozwala na:

Na wyznaczenie równania płaszczyzny aproksymującej płaszczyznę dowolnego wielokąta

60. Krzywe Hermita są opisane iloczynem:

Macierzy geometrii, macierzy bazowej Hermite'a o stałych elementach i wektora kolejnych potęg parametru

61. Wielomiany Bernstein'a sa:

Funkcjami wagowymi krzywych Bezier'a i wszystkie są dodatnio określone

62. Płaty bikubiczne to przestrzenne rozwinięcie:

Dowolnych parametrycznych krzywych wielomianowych

63. Krzywe stożkowe są do celów grafiki komputerowej modelowane przy pomocy:

Parametrycznych wielomianów trzeciego stopnia (tak naprawdę parametrycznych krzywych wymiernych trzeciego stopnia)

64. Metody fraktalne i gramatyki grafowe to:

<u>Specjalizowane metody grafiki komputerowej zakładające dokładne lub statyczne samo podobieństwo generowanych obiektów</u>

65. Modele oparte o gramatyki grafowe wymagają:

Zawsze reprezentacji gramatycznej i geometrycznej, a w niektórych przypadkach rejestracji wieku

66. Graftalami nazywamy:

<u>Obiekty zbudowane przy pomocy opisu roślin opartej o metajęzyk równoległych gramatyk grafowych</u>

67. Modelowanie obiektów rzeczywistych:

Jest na ogół aproksymacją ich kształtów

68. Model powierzchni znanego z OpenGL czajniczka Martina Newella jest reprezentowany przez:

Zbiór gładkich powierzchni krzywoliniowych

69. Siatka wielokatowa to:

Zbiór połączonych powierzchni płaskich granicznych zamkniętymi łamanymi

70. Złożoność algorytmów opisujących płaty wielomianowe jest

Znacznie większa od złożoności algorytmów opisujących płaty wielokątowe

71. W przypadku siatek wielokątowych:

Każda krawędź łączy dwa wierzchołki i jest wspólna przynajmniej dla dwóch wielokątów

72. Reprezentacja bezpośrednia relacji pomiędzy wierzchołkami, krawędziami i wielokątami zakłada, iż:

<u>Każdy wielokąt jest opisany przez listę współrzędnych wierzchołków zapamiętanych w</u> kolejności, w jakiej napotyka się je poruszając się wokół wielokąta

73. Reprezentacja siatki wielokątowej za pomocą wskaźników na listę wierzchołków jest:

<u>Bardziej złożona od reprezentacji bezpośredniej i mniej złożona od reprezentacji na listę</u> <u>krawędzi</u>

74. Metoda rzutów wielokąta na płaszczyzny prostopadłe do osi układu współrzędnych wyznacza

Współczynniki płaszczyzny aproksymującą układ węzłów prymitywu wielokątowego

75. Równania opisujące krzywe Beziera różnią się od równań opisujących krzywe Hermite'a:

Macierzami bazowymi, macierzami geometrii i wektorem potęg parametru (tak naprawdę macierzami bazowymi i macierzami geometrii)

76. Funkcje wagowe krzywych Hermite'a:

Są symetryczne i w większości dodatnio określone

77. Koncepcja krzywych NURBS zakłada:

<u>Podział krzywych na segmenty o równych bądź nierównych zakresach parametru i dowolnych wagach węzłów</u>

78. Krzywe stożkowe to krzywe powstałe z przecięcia stożka:

Płaszczyznami o dowolnych nachyleniach

79. Modele fraktalye i gramatyki grafowe są generowane w trakcie:

Skończonych procesów iteracyjnych z udziałem funkcji losowych

80. System funkcji iterowanych (IFS) w grafice komputerowej to:

Rodzina funkcji, za pomocą których konstruuje się fraktale samopodobne

81. Gramatyki Reffey'a:

<u>Są narzędziem do budowy roślinnych obiektów graficznych w oparciu o gramatyki grafowe</u> uwzględniając informację biologiczną

82. Teksel to:

Najmniejszy, dyskretny punkt tekstury

Autor: Muszkieterowie Chaosu 6