Devoir surveillé n°7 Version n°1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $f: x \mapsto (\cos x)^{\frac{1}{x}}$, définie sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}.$

Montrer que f est prolongeable par continuité en 0 et étudier la dérivabilité du prolongement de f.

II. Résolution d'une équation différentielle.

On cherche dans ce problème à résoudre l'équation différentielle linéaire réelle

$$y''' + y'' + y' + y = 0. (\mathscr{E})$$

On note $\mathcal S$ l'ensemble des solutions de $(\mathcal E)$:

$$\mathscr{S} = \{ y \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}) \mid y''' + y'' + y' + y = 0 \}.$$

- 1) Question préliminaire : Factoriser dans $\mathbb R$ et dans $\mathbb C$ le polynôme X^3+X^2+X+1 .
- 2) Montrer que $(\mathscr{S},+,\cdot)$ est un $\mathbb{R}\text{-espace}$ vectoriel stable par dérivation.
- 3) On considère $g: x \mapsto e^{-x}$.
 - a) Montrer que $g \in \mathscr{S}$.
 - **b)** En déduire que $\operatorname{Vect}(g) \subset \mathscr{S}$.
 - c) Déterminer une équation différentielle dont $\mathrm{Vect}(g)$ est exactement l'ensemble des solutions.
- **4)** On pose $\mathscr{T} = \{ y \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}) \mid y'' + y = 0 \}.$
 - a) Montrer que $\mathcal T$ est un sous-espace vectoriel de $\mathcal S.$
 - **b)** Déterminer deux fonctions c et s telles que $\mathscr{T} = \operatorname{Vect}(c, s)$.
- 5) Montrer que pour toute fonction $f \in \mathcal{S}$, on a $f'' + f \in \text{Vect}(g)$.
- 6) Montrer de même que pour toute $f \in \mathcal{S}$, on a $f' + f \in \mathcal{T}$.
- 7) Montrer que $\mathscr{S} = \operatorname{Vect}(g) \oplus \mathscr{T}$.
- 8) En déduire une expression explicite de \mathscr{S} , par exemple en fonction de g, c et s.

III. Étude asymptotique d'une suite définie implicitement.

1) Soit $n \ge 3$. Montrer que l'équation $x = n \ln x$ d'inconnue $x \in \mathbb{R}_+^*$ possède exactement deux solutions.

Indication: On pourra étudier les variations de la fonction $f_n: \mathbb{R}_+^* \to \mathbb{R}$, $x \mapsto x - n \ln x$.

On notera dorénavant x_n la plus petite de ces deux solutions et y_n la plus grande.

- 2) a) Montrer que pour tout $n \ge 3$ on a $1 \le x_n \le e$.
 - **b)** Soit $n \ge 3$. Montrer que pour tout $x \in [1, +\infty[$ on a $f_{n+1}(x) \le f_n(x)$ et en déduire que $f_n(x_n) \le f_n(x_{n+1})$,
 - c) En déduire le sens de variations de la suite $(x_n)_{n\geqslant 3}$.
 - d) En déduire l'existence de $\lim_{n\to+\infty} x_n$. On appellera ℓ cette limite.
 - e) On suppose $\ell > 1$. Montrer que l'on obtient alors une contradiction.
 - f) Quelle est donc la valeur de ℓ ?
 - g) Donner un équivalent le plus simple possible de x_n lorsque n tend vers $+\infty$.
 - h) En écrivant que $x_n = n \ln(1 + (x_n 1))$, déterminer un équivalent simple de $x_n 1$ lorsque n tend vers $+\infty$.
- 3) a) Montrer l'existence de $\lim_{n\to+\infty} y_n$ et calculer cette limite.
 - b) En remarquant que $\ln y_n = \ln n + \ln(\ln y_n)$, montrer que $\ln y_n \sim \ln n$.
 - c) En revenant à la définition de y_n , en déduire un équivalent simple de y_n lorsque n tend vers $+\infty$.
 - d) Montrer enfin que $y_n = n \ln n + n \ln(\ln n) + o(n)$.

— FIN —