Controlli Automatici T Parte 7: Sistemi di controllo: progetto del regolatore

Prof. Giuseppe Notarstefano

Department of Electrical, Electronic, and Information Engineering
Alma Mater Studiorum Università di Bologna
giuseppe.notarstefano@unibo.it

Queste slide sono ad uso interno del corso Controlli Automatici T dell'Università di Bologna a.a. 22/23.

Schema di controllo in retroazione

Consideriamo il seguente schema di controllo in retroazione.

Riepilogo specifiche

Stabilità robusta rispetto a incertezze.

Stabilità in presenza di errori di modello o incertezze di parametri.

Esempio: massimo ritardo temporale au_{max} o massima incertezza sul guadagno statico $\Delta \mu_{max}$.

Precisione statica

Sia $e_\infty=\lim_{t\to\infty}e(t)$ il valore a regime dell'errore in risposta a riferimenti w(t) o disturbi in uscita d(t) "canonici"

(gradino
$$w(t) = W1(t)$$
, $d(t) = D1(t)$, o rampa $w(t) = t1(t)$, $d(t) = t1(t)$).

Specifica: $|e_{\infty}| \leq e^{\star}$ oppure $e_{\infty} = 0$.

Precisione dinamica

Tipicamente specifiche in termini di sovraelongazione e tempo di assestamento massimi:

Specifiche: $S\% \leq S^*$ e $T_{a,\epsilon} \leq T^*$.

Riepilogo specifiche

Attenuazione disturbo in uscita d(t)

Il disturbo in uscita d(t), con una banda limitata in un range di pulsazioni $[\omega_{d,\min},\omega_{d,\max}]$, deve essere attenuato di A_d dB. (Nota: $A_d>0$.)

Attenuazione disturbo di misura n(t)

Il disturbo di misura n(t), con una banda limitata in un range di pulsazioni $[\omega_{n,\min},\omega_{n,\max}]$, deve essere attenuato di A_n dB. (Nota: $A_n>0$.)

Nota: in applicazioni ingegneristiche in genere $\omega_{d,\max} \ll \omega_{n,\min}$.

Moderazione variabile di controllo u(t)

Contenimento dell'ampiezza della variabile di controllo u in ingresso al sistema fisico (impianto).

Fisica realizzabilità del regolatore R(s)

Il regolatore deve essere un sistema proprio, quindi il grado relativo (differenza poli-zeri) deve essere maggiore o uguale a zero.

Stabilità robusta rispetto a incertezze.

Stabilità in presenza di errori di modello o incertezze di parametri.

Esempio: massimo ritardo temporale au_{max} o massima incertezza sul guadagno statico $\Delta \mu_{max}$.

Specifica su $L(j\omega)$: $M_f \ge M_f^{\star}$.

Precisione statica

Per soddisfare tali specifiche va considerata l'analisi statica effettuata sulla funzione di sensitività S(s).

Esempio specifica: $|e_{\infty}| \leq e^{\star}$ in risposta a un gradino w(t) = W1(t), d(t) = D1(t) con $|W| \leq W^{\star}$ e $|D| \leq D^{\star}$.

$$e_{\infty} = \frac{W}{1+\mu} + \frac{D}{1+\mu} = \frac{D+W}{1+\mu} \approx \frac{D+W}{\mu}.$$

$$\mu = L(0) \ge \frac{D^* + W^*}{e^*}.$$

Precisione statica

Per soddisfare tali specifiche va considerata l'analisi statica effettuata sulla funzione di sensitività S(s).

Esempio specifica: $e_{\infty}=0$ in risposta a $W(s)=\frac{W}{s^k}$ e/o $D(s)=\frac{D}{s^k}$.

L(s) deve avere k poli nell'origine.

Nota: se $|e_{\infty}| \leq e^{\star}$ in risposta a $W(s) = \frac{W}{s^k}$ e $D(s) = \frac{D}{s^k}$ allora

$$k-1$$
 poli in $L(s)$ e $\mu \geq \frac{D^* + W^*}{s^*}$.

Precisione statica

Per soddisfare tali specifiche va considerata l'analisi statica effettuata sulla funzione di sensitività S(s).

Esempio specifica: $e_{\infty}=0$ in risposta a $W(s)=\frac{W}{s^k}$ e/o $D(s)=\frac{D}{s^k}$.

L(s) deve avere k poli nell'origine.

Nota: se $e_\infty=0$ in risposta a un disturbo sull'attuatore $D_a(s)=\frac{D_a}{s^k}$, allora $D(s)=D_a(s)G(s)$ e $E(s)=S(s)G(s)D_a(s)$. Quindi

IMPORTANTE

k poli nell'origine in R(s).

Precisione dinamica

Specifiche: $S\% \leq S^*$ e $T_{a,\epsilon} \leq T^*$.

Se progettiamo $L(j\omega)$ in modo che $F(j\omega)$ abbia una coppia di poli c.c. dominanti in $\omega_n \approx \omega_c$ con coeff. smorzamento $\mathcal E$ allora

$$\xi \approx \frac{M_f}{100}$$
.

Perché $S\% \le S^\star$ allora $\xi \ge \xi^\star$ (con $S^\star = e^{\frac{-\pi \xi^\star}{\sqrt{1-(\xi^\star)^2}}})$ e quindi

$$M_f \ge 100\xi^*$$
.

Perché $T_{a,1} \leq T^*$ allora $\xi \omega_n \geq \frac{4.6}{T^*}$ e quindi

$$M_f \omega_c \ge \frac{460}{T^{\star}}.$$

Precisione dinamica

Specifiche: $S\% \leq S^*$ e $T_{a,\epsilon} \leq T^*$.

Nota

La zona proibita per il diagramma di fase va evitata solo a ω_c .

Attenuazione disturbo in uscita d(t)

Il disturbo in uscita d(t), con una banda limitata in un range di pulsazioni $[\omega_{d,\min},\omega_{d,\max}]$, deve essere attenuato di A_d dB. (Nota: $A_d>0$.)

Ricordiamo che se $d(t) = D\cos(\omega t + \varphi)$ allora

$$y(t) = |S(j\omega)|D\cos(\omega t + \varphi + \arg(S(j\omega)))$$

e che

$$|S(j\omega)|_{dB} \approx \begin{cases} -|L(j\omega)|_{dB} & \omega \leq \omega_c \\ 0 & \omega > \omega_c \end{cases}$$

Da specifica vogliamo $|S(j\omega)|_{dB} \leq -A_d \, \mathrm{dB}$. Poiché $\omega_{d,\max} \ll \omega_c$, si ha

$$|L(j\omega)|_{dB} \ge A_d \, \mathsf{dB}.$$

Esempio: se d(t) deve essere attenuato di 20dB allora $|L(j\omega)|_{dB} \geq 20$ dB.

Attenuazione disturbo in uscita d(t)

Il disturbo in uscita d(t), con una banda limitata in un range di pulsazioni $[\omega_{d,\min},\omega_{d,\max}]$, deve essere attenuato di A dB.

Attenuazione disturbo di misura n(t)

Il disturbo di misura n(t), con una banda limitata in un range di pulsazioni $[\omega_{n,\min},\omega_{n,\max}]$, deve essere attenuato di A_n dB.

Ricordiamo che se $n(t) = N\cos(\omega t + \varphi)$ allora

$$y(t) = |F(j\omega)|N\cos(\omega t + \varphi - \arg(F(j\omega)))$$

e che

$$|F(j\omega)|_{dB} \approx \begin{cases} 0 & \omega \leq \omega_c \\ |L(j\omega)|_{dB} & \omega > \omega_c \end{cases}$$

Da specifica vogliamo $|F(j\omega)|_{dB} \leq -A_n \, dB$. Poiché $\omega_{n,\min} \gg \omega_c$, si ha

$$|L(j\omega)|_{dB} \leq -A_n \, \mathsf{dB}.$$

Esempio: se n(t) deve essere attenuato di 20dB allora $|L(j\omega)|_{dB} \le -20$ dB.

Attenuazione disturbo di misura n(t)

Il disturbo di misura n(t), con una banda limitata in un range di pulsazioni $[\omega_{n,\min},\omega_{n,\max}]$, deve essere attenuato di A dB.

Moderazione variabile di controllo u(t)

Contenimento dell'ampiezza della variabile di controllo u in ingresso al sistema fisico (impianto).

Ricordiamo che se $w(t) = W\cos(\omega t + \varphi)$ allora

$$u(t) = |Q(j\omega)|W\cos(\omega t + \varphi + \arg(Q(j\omega)))$$

e che

$$|Q(j\omega)|_{dB} \approx \begin{cases} -|G(j\omega)|_{dB} & \omega \leq \omega_c \\ |R(j\omega)|_{dB} & \omega > \omega_c. \end{cases}$$

Poiché vogliamo contenere $|Q(j\omega)|_{dB}$ e non abbiamo controllo su $G(j\omega)$ dobbiamo

- limitare ω_c ,
- realizzare $R(j\omega)$ passa-basso.

Il limite superiore su ω_c può essere determinato dalle specifiche sulla variabile di controllo u(t).

Fisica realizzabilità del regolatore R(s)

Il regolatore deve essere un sistema proprio, quindi il grado relativo (differenza poli-zeri) deve essere maggiore o uguale a zero.

A pulsazioni elevate la pendenza $-k_L \mathrm{dB/dec}$ di $|L(j\omega)|_{\mathrm{dB}}$ è determinata dalla differenza tra poli (ciascuno contribuisce con pendenza $-20\mathrm{dB/dec}$) e zeri (ciascuno contribuisce con pendenza $20\mathrm{dB/dec}$).

Se a pulsazioni elevate $|G(j\omega)|_{\mathsf{dB}}$ ha pendenza $-k_G\mathsf{dB}/\mathsf{dec}$ allora

$$-k_L \leq -k_G$$
.

Specifiche in termini di guadagno d'anello: riepilogo

Sintesi del regolatore: "loop shaping"

Sintesi per tentativi o "loop shaping"

Consiste nel "dare forma" alla $L(j\omega)$ in modo che:

- il diagramma delle ampiezze non attraversi le "regioni proibite" in bassa e alta frequenza,
- per $\omega = \omega_c$ rispetti il vincolo sul margine di fase,

precedendo per tentativi basati su opportune considerazioni.

Sintesi del regolatore: struttura

È conveniente dividere il progetto in due fasi fattorizzando R(s) come

$$R(s) = R_s(s)R_d(s).$$

Regolatore statico

$$R_s(s) = \frac{\mu_s}{s^k}$$

progettato per soddisfare precisione statica e attenuazione disturbi d.

Regolatore dinamico

$$R_d(s) = \mu_d \frac{\prod_i (1 + \tau_i s) \prod_i (1 + 2 \frac{\zeta_i}{\alpha_{n,i}} s + \frac{s^2}{\alpha_{n,i}^2})}{\prod_i (1 + T_i s) \prod_i (1 + 2 \frac{\xi_i}{\omega_{n,i}} s + \frac{s^2}{\omega_n^2})}$$

progettato per soddisfare stabilità robusta, precisione dinamica, attenuazione disturbi n, moderazione controllo e fisica realizzabilità.

Nota: μ_d può essere scelto solo se μ_s non è stato imposto.

Sintesi del regolatore statico

Il guadagno μ_s e il numero di poli nell'origine in $R_s(s)$ dipende dalla specifica sull'errore a regime e_∞ in risposta a segnali canonici.

Esempio: $|e_{\infty}| \leq e^*$ in risposta a gradino su $w \in d$, con G(s) senza poli nell'origine.

Progetto: possiamo scegliere

$$R(s) = \mu_s \ge \mu^*$$

oppure

$$R(s) = \frac{\mu_s}{s}.$$

Nel secondo caso possiamo scegliere μ_d "liberamente" purché consenta di rispettare i vincoli sull'attenuazione di d.

Sintesi del regolatore dinamico: obiettivi

La progettazione di $R_d(s)$ mira a

- 1. imporre ω_c in un certo intervallo
- 2. garantire un dato margine di fase M_f (ovvero garantire che $\arg(L(j\omega_c)) \geq -180 + M_f$).
- 3. garantire una certa attenuazione e pendenza di $L(j\omega)$ (e $R(j\omega)$) a pulsazioni elevate.

Nota: per la terza specifica è sufficiente introdurre poli del regolatore a pulsazioni elevate.

Sintesi per tentativi

Procederemo individuando dei possibili scenari in base al diagramma di

$$G_e(s) = R_s(s)G(s),$$

che chiameremo sistema esteso.

Sintesi del regolatore dinamico: scenario A

Nell'intervallo ("centrale") di pulsazioni ammissibili per la pulsazione di attraversamento ω_c esiste un sotto-intervallo in cui la fase di $G_e(j\omega)$ rispetta il vincolo sul margine di fase.

Regolatore dinamico per lo scenario A

Obiettivo:

- attenuare (selettivamente) il diagramma delle ampiezze (traslarlo in basso) in modo che ω_c ricada nel sotto-intervallo in cui in vincolo sul margine di fase è rispettato;
- alterare meno possibile la fase.

Azioni possibili:

- 1. Se μ_d libero, allora scegliere $R_d(s) = \mu_d$ con $\mu_d < 1$.
- 2. Se μ_d bloccato (vincolato dalla scelta di μ_s), allora attenuare mediante inserimento di poli e zeri in $R_d(s)$.

Regolatore dinamico per lo scenario A: μ_d libero

Regolatore dinamico per lo scenario A: μ_d vincolato

Per attenuare solo nel range di pulsazioni selezionato progettiamo

$$R_d(s) = rac{1 + lpha au s}{1 + au s}$$
 $0 < lpha < 1$ Rete ritardatrice

Regolatore dinamico per lo scenario A: μ_d vincolato

Rete ritardatrice

Rete ritardatrice: tuning approssimato

Obiettivo:

calcolare α e τ in modo che $L(j\omega)$ abbia una pulsazione di attraversamento ω_c^\star e valga $\arg(L(j\omega_c^\star)) \approx \arg(G_e(j\omega_c^\star))$.

Procedura:

- scegliere α tale che $20\log\alpha\approx-|G_e(j\omega_c^\star)|_{\rm dB};$
- scegliere τ tale che $\frac{1}{\alpha \tau} \leq \frac{\omega_c^{\star}}{10}$.

Rete ritardatrice: formule di inversione

Obiettivo: calcolare α e τ in modo che alla pulsazione ω_c^\star (pulsazione a cui vorremmo $|L(j\omega)|_{\mathsf{dB}}=0$) la rete ritardatrice abbia una attenuazione $0 < M^\star < 1$ e uno sfasamento $-\frac{\pi}{2} < \varphi^\star < 0$, ovvero

$$R_d(j\omega_c^*) = M^* e^{j\varphi^*}.$$

Poniamo

$$\frac{1 + j\alpha\tau\omega_c^*}{1 + j\tau\omega_c^*} = M^*(\cos\varphi^* + j\sin\varphi^*)$$

$$1 + j\alpha\tau\omega_c^* = M^*(\cos\varphi^* + j\sin\varphi^*)(1 + j\tau\omega_c^*)$$

Uguagliando parte reale e parte immaginaria

$$1 = M^* \cos \varphi^* - M^* \tau \omega_c^* \sin \varphi^*$$
$$\alpha \tau \omega_c^* = M^* \tau \omega_c^* \cos \varphi^* + M^* \sin \varphi^*$$

Rete ritardatrice: formule di inversione

Obiettivo: calcolare α e τ in modo che alla pulsazione ω_c^\star (pulsazione a cui vorremmo $|L(j\omega)|_{\mathsf{dB}}=0$) la rete ritardatrice abbia una attenuazione $0 < M^\star < 1$ e uno sfasamento $-\frac{\pi}{2} < \varphi^\star < 0$, ovvero

$$R_d(j\omega_c^*) = M^* e^{j\varphi^*}.$$

Formule di inversione:

$$\tau = \frac{\cos \varphi^* - \frac{1}{M^*}}{\omega_c^* \sin \varphi^*}$$
$$\alpha \tau = \frac{M^* - \cos \varphi^*}{\omega_c^* \sin \varphi^*}$$

Nota: perché si abbia $\alpha > 0$ occorre che $M^{\star} < \cos \varphi^{\star}$.

Rete ritardatrice: formule di inversione

Obiettivo: imporre
$$|L(j\omega)|_{\mathrm{dB}}=0$$
 per $\omega=\omega_c^\star$

Procedura:

- Scegliere ω_c^\star e ricavare M_f^\star dalle specifiche.
- Calcolare M^* e φ^* imponendo

$$|G_e(j\omega_c^*)|_{\mathsf{dB}} + 20\log M^* = 0$$

$$M_f^* = 180^o + \arg(G_e(j\omega_c^*)) + \varphi^*$$

- verificare che $0 < M^\star < 1$, $-\frac{\pi}{2} < \varphi^\star < 0$, $M^\star < \cos \varphi^\star$
- calcolare α e τ mediante formule di inversione.

Sintesi del regolatore dinamico: scenario B

Nell'intervallo ("centrale") di pulsazioni ammissibili per la pulsazione di attraversamento ω_c NON esistono pulsazioni in cui la fase di $G_e(j\omega)$ rispetta il vincolo sul margine di fase.

Regolatore dinamico per lo scenario B

Obiettivo:

- modificare il diagramma delle fasi (aumentare la fase) nell'intervallo in modo che il vincolo sul margine di fase sia rispettato;
- amplificare meno possibile l'ampiezza.

Azioni possibili:

- 1. aggiungere uno o più zeri (a pulsazioni precedenti quella di attraversamento desiderata) per aumentare la fase;
- 2. aggiungere uno o più poli a pulsazioni più alte per la fisica realizzabilità e per evitare una eccessiva amplificazione.

Regolatore dinamico per lo scenario B: aggiunta zero

Regolatore dinamico per lo scenario B: aggiunta 2 zeri

Regolatore dinamico per lo scenario B

Tenendo conto dell'aggiunta di uno o due poli si può progettare $R_d(s)$ come segue.

Rete anticipatrice

$$R_d(s) = \frac{1+\tau s}{1+\alpha\tau s} \qquad 0 < \alpha < 1$$

In caso sia necessario un anticipo di fase maggiore (e.g., due zeri)

$$R_d(s) = \frac{1 + \tau_1 s}{1 + \alpha_1 \tau_1 s} \frac{1 + \tau_2 s}{1 + \alpha_2 \tau_2 s} \qquad 0 < \alpha_1 < 1, 0 < \alpha_2 < 1.$$

Regolatore dinamico per lo scenario B

Una volta realizzata una rete anticipatrice (singola o multipla) si possono verificare due casi:

- B_1 ω_c è nell'intervallo di specifica e il vincolo sul margine di fase è rispettato. In questo caso il progetto è terminato.
- B_2 ω_c è fuori dall'intervallo di specifica o in un intervallo in cui il vincolo sul margine di fase non è rispettato.

Ci siamo comunque ricondotti ad uno scenario A (esiste un sotto-intervallo in cui il vincolo sul margine di fase è rispettato).

Caso B_2

• Se μ_d libero allora scegliamo $\mu_d < 1$ per attenuare

$$R_d(s) = \mu_d \frac{1 + \tau_b s}{1 + \alpha_b \tau_b s}$$

• Se μ_d bloccato

$$R_d(s) = \frac{1 + \alpha_a \tau_a s}{1 + \tau_a s} \frac{1 + \tau_b s}{1 + \alpha_b \tau_b s}$$

Rete a ritardo-anticipo

$$R_d(s) = \frac{1 + \alpha_a \tau_a s}{1 + \tau_a s} \frac{1 + \tau_b s}{1 + \alpha_b \tau_b s}$$

Rete anticipatrice

Rete anticipatrice: formule di inversione

Obiettivo: calcolare α e τ in modo che alla pulsazione ω_c^\star (pulsazione a cui vorremmo $|L(j\omega)|_{\mathsf{dB}}=0$) la rete anticipatrice abbia una amplificazione $M^\star>1$ e uno sfasamento $0<\varphi^\star<\frac{\pi}{2}$, ovvero

$$R_d(j\omega_c^*) = M^* e^{j\varphi^*}.$$

Poniamo

$$\frac{1 + j\tau\omega_c^*}{1 + j\alpha\tau\omega_c^*} = M^*(\cos\varphi^* + j\sin\varphi^*)$$

$$1 + j\tau\omega_c^{\star} = M^{\star}(\cos\varphi^{\star} + j\sin\varphi^{\star})(1 + j\alpha\tau\omega_c^{\star})$$

Uguagliando parte reale e parte immaginaria

$$1 = M^* \cos \varphi^* - M^* \alpha \tau \omega_c^* \sin \varphi^*$$
$$\tau \omega_c^* = M^* \alpha \tau \omega_c^* \cos \varphi^* + M^* \sin \varphi^*$$

Rete anticipatrice: formule di inversione

Obiettivo: calcolare α e τ in modo che alla pulsazione ω_c^\star (pulsazione a cui vorremmo $|L(j\omega)|_{\mathsf{dB}}=0$) la rete anticipatrice abbia una amplificazione $M^\star>1$ e uno sfasamento $0<\varphi^\star<\frac{\pi}{2}$, ovvero

$$R_d(j\omega_c^{\star}) = M^{\star} e^{j\varphi^{\star}}.$$

Formule di inversione:

$$\tau = \frac{M^* - \cos \varphi^*}{\omega_c^* \sin \varphi^*}$$
$$\alpha \tau = \frac{\cos \varphi^* - \frac{1}{M^*}}{\omega_c^* \sin \varphi^*}$$

Nota: perché si abbia $\alpha > 0$ occorre che $\cos \varphi^{\star} > \frac{1}{M^{\star}}$.

Rete anticipatrice: formule di inversione

Obiettivo: imporre $|L(j\omega)|_{\mathrm{dB}}=0$ per $\omega=\omega_c^\star$

Procedura:

- Scegliere ω_c^{\star} e ricavare M_f^{\star} dalle specifiche.
- Calcolare M^{\star} e φ^{\star} imponendo

$$|G_e(j\omega_c^*)|_{\mathsf{dB}} + 20\log M^* = 0$$

$$M_f^* = 180^o + \arg(G_e(j\omega_c^*)) + \varphi^*$$

- verificare che $M^\star>1$, $0<\varphi^\star<\frac{\pi}{2}$, $\cos\varphi^\star>\frac{1}{M^\star}$
- calcolare α e τ mediante formule di inversione.

Controllori PID

PID "ideale"
$$R(s) = K_p \bigg(1 + \frac{1}{T_i s} + T_d s \bigg)$$

 T_i Tempo integrale T_d Tempo derivativo

Ingresso di controllo:

$$U(s) = R(s)E(s)$$

$$= K_pE(s) + \frac{K_p}{T_i} \frac{E(s)}{s} + K_pT_dsE(s)$$

Controllori PID

Ingresso di controllo nel dominio del tempo:

$$u(t) = \mathcal{L}^{-1}[U(s)] = \begin{bmatrix} K_p e(t) \\ T_i \end{bmatrix} + \begin{bmatrix} K_p \\ T_i \end{bmatrix}_0^t e(\tau) d\tau + \begin{bmatrix} K_p T_d \frac{de(t)}{dt} \\ T_i \end{bmatrix}_0^t e(\tau) d\tau$$
 termine termine Proporzionale Integrale Derivativo

Attenzione

Il PID ideale non è fisicamente realizzabile. Infatti, sviluppando i calcoli, si vede che la funzione di trasferimento del controllore ha un numeratore con grado più elevato del denominatore:

$$R(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) = \frac{K_p T_i s + K_p + K_p T_i T_d s^2}{T_i s}$$

Il PID "reale" (fisicamente realizzabile) richiede di aggiungere un polo in alta frequenza:

$$R^{\mathsf{fr}}(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) \frac{1}{1 + T_p s}$$

Diagramma di Bode dei PID

Raccogliendo i termini e definendo opportunamente au_1, au_2 possiamo vedere che il PID reale è una combinazione di una rete anticipatrice e di una rete ritardatrice:

$$R^{fr}(s) = \underbrace{\frac{K_p}{T_i}}_{:=\mu} \frac{T_i s + 1 + T_i T_d s^2}{s} \frac{1}{1 + T_p s}$$
$$= \mu \frac{(1 + \tau_1 s)(1 + \tau_2 s)}{s} \frac{1}{1 + T_p s}$$

Casi speciali

Regolatori P: se $T_i \to \infty$ e $T_i = 0$ (no termine integrale e derivativo), si ottiene un regolatore proporzionale $R(s) = K_p$

Regolatori I: in assenza di termine proporzionale e derivativo, si ottiene un regolatore puramente integrale $R(s)=\frac{K_i}{s}$. Si può interpretare come una rete ritardatrice con il polo posto nell'origine e con lo zero all'infinito.

Regolatori PI: se $T_d=0$ (no termine derivativo), si ottiene un regolatore proporzionale integrale $R(s)=K_p(1+\frac{1}{T_is})$. Possono essere visti come reti ritardatrici con polo nell'origine e zero in $-1/T_i$.

Regolatori PD: se $T_i \to \infty$ (no termine integrale), si ottiene un regolatore proporzionale derivativo $R(s) = K_p(1+T_ds)$. Possono essere visti come reti anticipatrici con zero in $-1/T_d$ e polo posto all'infinito (nel caso ideale)