Project Report: Brain Tumor Segmentation using UNet++

■ By Sreekar Balagoni

Introduction

This project focuses on identifying and segmenting brain tumors from MRI scans using a deep learning model. Medical image segmentation helps doctors analyze scans more easily by marking the regions where tumors are present. In this project, I used a model called UNet++ along with data from the BraTS 2021 dataset.

Dataset

The dataset consists of 3D MRI scans of brains and corresponding segmentation masks. These files are stored in `.nii.gz` format, which is commonly used in medical imaging. Each scan has different types of images (modalities), but for simplicity, I used the FLAIR modality and its corresponding tumor segmentation mask. The dataset was downloaded using kagglehub, and I selected 200 patients to work with.

Tools and Libraries Used

- Python Programming language used
- PyTorch For building and training the deep learning model
- Albumentations For data augmentation like flipping, rotating, and resizing
- segmentation_models_pytorch Provided the UNet++ model with a ResNet34 backbone
- nibabel For reading `.nii.gz` medical image files
- matplotlib For visualizing results
- scikit-image For resizing the images
- CUDA Used GPU for faster training

Model Used: UNet++

UNet++ is an improved version of the popular UNet model. It has extra skip connections that help it better understand image features. I used a version of UNet++ with a ResNet34 encoder, which helps the model learn better from image patterns and gives the output precisely with exact boundaries, which UNet could not do.

Data Preprocessing

- Selected the middle slice from each 3D brain scan (to simplify the data)
- Resized all images and masks to 128x128 pixels
- Normalized the image intensity values between 0 and 1
- Converted tumor masks into binary format: 1 for tumor, 0 for background

Data Augmentation

To help the model learn better, I applied random augmentations using Albumentations:

- Horizontal and vertical flips
- Random rotations
- Brightness and contrast changes
- Shifts and scale variations

These help simulate real-world variations in the scans and reduce overfitting.

Training the Model

- Loss Function: Binary Cross Entropy with Logits (BCEWithLogitsLoss)
- Optimizer: Adam
- Learning Rate: 0.0001
- Epochs: Trained for 100 epochs
- Mixed Precision Training: Used torch.amp for faster training with less memory
- Used 180 patients for training and 20 for testing

```
Saved checkpoint: unetpp epoch80.pth
Epoch 81/100 | Loss: 0.3802
Epoch 82/100 | Loss: 0.3765
Epoch 83/100 | Loss: 0.3798
Epoch 84/100 | Loss: 0.3878
Epoch 85/100 | Loss: 0.3775
Epoch 86/100 | Loss: 0.3684
Epoch 87/100 | Loss: 0.3617
Epoch 88/100 | Loss: 0.3570
Epoch 89/100 | Loss: 0.3616
Epoch 90/100 | Loss: 0.3631
Saved checkpoint: unetpp epoch90.pth
Epoch 91/100 | Loss: 0.3519
Epoch 92/100 | Loss: 0.3465
Epoch 93/100 | Loss: 0.3575
Epoch 94/100 | Loss: 0.3823
Epoch 95/100 | Loss: 0.3406
Epoch 96/100 | Loss: 0.3460
Epoch 97/100 | Loss: 0.3340
Epoch 98/100 | Loss: 0.3362
Epoch 99/100 | Loss: 0.3278
Epoch 100/100 | Loss: 0.3147
Saved checkpoint: unetpp epoch100.pth
```

Evaluation Metrics

To check how well the model works, I used:

- Dice Coefficient: Measures how much the predicted tumor area overlaps with the actual tumor
- IoU (Intersection over Union): Measures the common area between prediction and ground truth

These metrics were calculated on test images after thresholding predictions.

```
Average Dice Coefficient: 0.8230
Average IoU Score: 0.7491
```

Results and Visualizations

After training:

- The model was able to identify tumor regions on new test images
- I visualized results by showing:
- 1. Input MRI slice
- 2. Ground truth tumor mask
- 3. Predicted mask from the model

The predicted masks showed a good match with the real masks in most cases.

Output Files

- unetpp_epochXX.pth Saved model weights after training 10 epochs.
- Google Colab Notebook Contains the complete code for downloading data, preprocessing, training, and evaluating the model

Conclusion

This project shows how deep learning can be used for medical image segmentation. Using UNet++ and Albumentations helped improve the performance of the model. Even though I started with limited knowledge, the project was successful in training a working brain tumor segmentation model.