研究背景

- SNSやブログ上にはユーザーによる無数の商品レビュー文 ↔ ほとんどの情報は非構造化データ
- レビュー文を用いた分析および活用
 - → レビュー文と商品名をリンクさせたデータベース
 - ↔ 全ての商品名を網羅した辞書は存在しない
- コンピュータに人間のような文脈判断
 - → 機械学習による商品名抽出器が必要

関連研究: 商品名抽出

商品カテゴリ情報に着目した自動収集教師データによる商品名抽出[2012,渡邉]

- 教師データ作成はコスト大 & 大量のデータが必要 \rightarrow 自動的なデータ拡張が必要 \rightarrow うべル付けの例:「私は、iPhone 13を持っています。」
- 商品名とカテゴリ名の文脈は類似していることが多い
 - → カテゴリ名にもラベルを付与して教師データを拡張 文章例:
 - 商品名 … 先日、家電量販店でiPhone 13を購入した
 - カテゴリ名 … 電車内では<mark>スマホ</mark>でネットサーフィンをしている
 - → どちらもスマートフォンの話題でよく使われる単語で構成されている

関連研究: 商品名抽出

- 商品名教師データの作成
 - 文書集合から該当する商品名を含む文章を取得
 - 商品名にラベルを与える
- カテゴリ教師データの作成
 - 文書集合から該当するカテゴリ名を含む文章を取得
 - カテゴリ名にラベルを与える
- 商品名教師データとカテゴリ教師データの統合
 - → 統合された教師データを抽出器に与えて学習

研究目的

- データ拡張手法の有効性の調査
 - 先行研究は曖昧な性能差のみ
 - どのような条件で有効かについての実験は無し
- 先行研究の性能改善
 - データセットの作り方を工夫し性能向上
 - 本研究ではBERTを使用
- 未知の商品名に対する評価
 - 先行研究は学習データに存在しない商品名での評価は無し
 - 実用上は未知の商品に対する推論の方が重要

提案手法 (1/2)

- データ拡張
 - 先行研究をもとに実施
 - 商品名教師データとカテゴリ名教師データを作成・統合
 - カテゴリ名の置き換え
 - BERTは商品名の文字列パターンも学習
 - → カテゴリ名を商品名として学習してしまう可能性
 - カテゴリ名をランダムな商品名に変換 文章例:
 - 変換前 … 先日、家電量販店でスマートフォンを購入した。
 - 変換後 … 先日、家電量販店でGoogle Pixel 7を購入した。

提案手法 (2/2)

- データ選択
 - ECサイトで商品名を検索
 - → 上位5件までの検索結果にその商品名が含まれるかを調査
 - → 含まれている場合にのみ教師データに用いる
 - → そのカテゴリの商品名として使われている語句のみを教師データに用いる
- データ修正
 - データ選択でも排除できなかった商品名を人手で削除
 - 文書集合に含まれているブログなどの引用文を削除

→ 以上の手法をもとに実験を行う

実験設定

- 学習に用いる文書集合はツイートデータ
 - 教師データで用いる投稿時期は2011年, テストデータ は2012年
- 抽出対象の商品カテゴリは「ゲームタイトル」
 - 1980年から2012年までに発売された商品名を使用
- 商品名教師データの数を可変して実験
 - データ数が与える影響を調査
- 評価指標はF1-score
 - 固有表現抽出では最も一般的
 - 0~1の値で表現され、大きいほど性能が高い

実験結果

• データ拡張

データ拡張なし \rightarrow 0% データ拡張あり \rightarrow 数十%

商品名教師データ数	カテゴリ名教師データ数	全データ数	f1-score (%)	
3019 (100%)	0 (0%)	3019	56.6%	
3019 (37.2%)	5095 (62.8%)	8114	64.0%	$\rightarrow \bigcirc$
8242 (100%)	0 (0%)	8242	77.4%	
8242 (62.3%)	4978 (37.3%)	13220	77.7%	$\rightarrow \triangle$
24187 (100%)	0 (0%)	24187	71.6%	
24187 (80.8%)	5742 (19.2%)	29929	71.4%	\rightarrow ×

^{※()}の数値は全データ数に対する割合

→ 商品名教師データの比率が大きくなると、データ拡張の効果が小さくなる

実験結果

• データ選択・データ修正

商品名教師データ(件)	前処理	f1-score (%)
	なし	27.1%
24187	データ選択	58.1%
	データ選択 + データ修正	71.6%

[※] データ拡張はしていない

→ データ選択・データ修正ともに効果あり

実験結果

• 抽出例

データ拡張なし	データ拡張あり	
でも明日買うかな…雨ふってるから引き取り面倒だし、ソールトリガークリアしてないし	でも明日買うかな…雨ふってるから引き取り面倒だし、 [(GAME) ソールトリガー] クリアしてないし	
意外と [(GAME) エクストルーパー] ズが面白そうだぞ・・・	意外と [(GAME) エクストルーパーズ] が面白そうだぞ・・・	
[(GAME) <mark>那] 由</mark> [(GAME) <mark>多の軌跡</mark>] が7月26日って早くないか…?零Evo もあるし死ねる…。	[(GAME) <mark>那由多の軌跡</mark>] が7月26日って早くないか…?零Evoもあるし死 ねる…。	
[(GAME) <mark>大神 絶景] 版</mark> が美しすぎるのでふて寝	[(GAME) <mark>大神 絶景版</mark>] が美しすぎるのでふて寝	

※ GAMEタグの中身が抽出部分

結論

- 抽出性能は商品名教師データの比率に依存
 - 全データ数に対して商品名教師データ数が小さい場合に性能向上が見られる
 - → 商品名が取得しにくい分野ではデータ拡張が非常に有効である
- 教師データに用いる商品名の選定が非常に重要
 - データ選択・修正によって目的カテゴリのより適切な文脈が得られた
- 未知の商品名に対してもBERT商品名抽出器は有効

今後の課題

- 最新の文章に対する評価
 - 実験に用いたツイートは2011~2012年
- 複数カテゴリを同時に抽出するモデルの作成
 - 今回は「ゲームタイトル」のみに特化していた
- 性能に最も貢献する商品名教師データの比率の試算
 - 商品名教師データの数をより細かく変えて実験することで算出可能