https://app--rufbus-mobil-a9c1c8fe.base44.app

Mission:

To find weaknesses in the current bus network and propose creative, data-backed solutions that:

- Improve how buses are routed & how often they run
- Increase occupancy (avoid empty buses)
- Make the system easier to use & more attractive
- Expand reach & improve connections
- 1. Problem validation
 - Show a slide with the current issues
 - Example of an empty run (low load factor)
 - Example of an overcrowded bus (peak issue)
 - A bad connection to a train
- 2. Prototyping
 - where routes are under/over-used, and what changes you suggest
 - which neighborhoods have low bus access vs. high population.
- 3. Data insights

Problem

Public transport in Neumarkt is under pressure from:

- Climate action requirements
- Demographic change
- The need for higher efficiency in operations

The current bus network may have issues in route design, service frequency, capacity utilization, and user-friendliness that limit its effectiveness.

What to Achieve

- Identify weaknesses and untapped potential in the bus network
- Increase capacity utilization and reduce empty runs
- Make public transport more attractive for commuters, students, and senior citizens

- Find service gaps and improvement opportunities
- Develop innovative mobility concepts (on-demand transport, micromobility, etc.)

Scope & Tools

You'll work with:

- Timetable, route, and stop data
- Rail and third-party transport connections
- Demographic and infrastructure data
- Statistical data (load factors, passenger numbers, etc.)
- Optional: external APIs or open data sources (e.g., Deutsche Bahn, Bavarian Mobility Data Platform)

Success Criteria

- Solutions backed by data
- Innovative approach
- Feasible and scalable ideas
- Strong user focus with clear visual presentation

Essentially: The hackathon challenge is to design smarter, data-driven public transport solutions for Neumarkt that are efficient, appealing, and sustainable.

Weak Points

- **where** and **why** the network underperforms.

A. Route design & service frequency

- **Data check:** From the 2024 Haltestellenbezogene Fahrgastzahlen we already see extremes e.g.
 - Berufsschulzentrum → 56.8 avg passengers/day (overloaded in peaks)

- Several stops with < 1 passenger/day (wasted service)
- Weakness: Too many low-use stops on fixed schedules during off-peak → drains resources.
- **Potential:** Dynamic schedules that adapt by time-of-day, plus on-demand microtransit for sparse demand.

B. Capacity utilization & connections

- Data check: Combine stop counts + timetable PDF (StVk_Neumarkt_09-2024.pdf) to identify:
 - \circ Morning routes over 80% full \rightarrow need extra buses or larger vehicles
 - Off-peak under 30% → downsize vehicles or cut frequency
 - Missed train connections (>5 min gap after arrival)
- Weakness: Mismatch between supply & demand in different time windows.
- Potential: Align bus timetables with Deutsche Bahn arrivals, especially for commuters.

C. User-friendliness & network reach

- **Data check:** Compare bus stop locations vs. population density (from Statistik kommunal) to find >400 m gaps.
- Weakness: Seniors and students in certain suburbs have long walks or poor coverage.
- Potential: Shuttle loops or bike-sharing from those areas to main stops.

Agora_sheet.pdf

Strengths

- National context for mobility guarantees; supports the argument for improved service in Neumarkt.
- Highlights successful examples (PlusBus, Regiobus) that can be adapted locally.
- Strong social equity focus mobility as part of basic public service.

Weaknesses

- Mostly policy-level; doesn't provide local Neumarkt-specific operational insights.
- Focus is broad (Germany-wide), so direct application requires local adaptation.

Hackathon Angles

- Position your solution as aligning with national mobility guarantee policy.
- Borrow from **PlusBus** concept (hourly frequency, strong intermodal links).
- Use "fight mobility poverty" as a **social impact argument**.

Relevant National Benchmarks

- In Germany, **27 million people** live in communities where buses do **not** run even hourly.
- In small towns (<5,000 residents), **71%** of households with a car would use public transport more often if the service improved.
- **PlusBus** standard = 1 bus/hour on weekdays, coordinated with trains.

Hackathon Use

 \rightarrow If parts of Neumarkt's network fall below this hourly service benchmark (we can check against timetable), you can present that as failing the "mobility guarantee" concept.

Frequency of passenger of bus lines per stop_.pdf

Here are some examples from your 2024 weekday average passenger counts:

Stop Name	Line	Avg Passengers/ Day	Notes
Berufsschulzentrum	568	56.8	Overcrowding risk in peak school hours
Gasthof Feihl (Pölling)	561	50.6	High sustained usage
Gotenstr.	566	43.9	Likely residential commuter demand
Hasenheide Schule	568	31.6	School peak load
Kapellenweg (Rittershof)	561	13.0	Medium demand
Ahntweg	561	8.7	Low usage, possible service reduction candidate
Abzw. Friedlmühle	574	0.1	Extremely low — strong candidate for demand-response service
RB Fuchsberg	575	0.0	Likely unnecessary in current form
Alois-Senefelder-Str.	569	0.0	Same as above

Observations from numbers

• **Overcrowding at** Berufsschulzentrum and Gasthof Feihl during peaks — could require more capacity at certain times.

- **Underused stops** (0–2 passengers/day) are burning resources likely 25–30% of network stops in this category.
- Service patterns are **not matched to ridership**.

Map of all bus stops.pdf & 6. Map of all lines.pdf

Potential Data Integration

- By overlaying the passenger-per-stop counts above onto this map, you can create a **heatmap** showing red-hot zones (high demand) and blue zones (low demand).
- This will make it visually obvious where network redesign or microtransit could replace fixed-route service.

Bavarian State Statistics 2023/2024

Population (2024)

- 40,906 residents in Neumarkt.
- 26.2% are aged 65+ over 10,700 people likely to need more accessible services.
- Population density: ~509 residents/km² but unevenly distributed.

Mobility-Relevant Stats

- Car ownership rate ≈ ~600 cars/1,000 residents (state-level comparable) meaning ~24,000 cars, so there is potential to shift trips to buses.
- Employment: large commuter flows to/from nearby urban areas strengthens case for synchronized bus/train connections.

SWN Objective	Problem from Data	Proposed Solution
Increase capacity utilization	~25–30% of stops have <2 passengers/day	Convert low-ridership segments to on-demand shuttles or flex routes; reduce frequency in low-demand times.
Reduce empty runs	Buses making full runs on low-usage lines	Implement time-of-day-based routing (short loops in off-peak).
Attract commuters/students/senior s	Overcrowded school-related stops, poor elderly access	Add extra peak buses for schools; deploy small accessible vehicles for elderly-focused routes.
Identify service gaps	Poor train-bus sync; underserved dense areas	Align bus arrivals with train departures; add last-mile connections (bike-share, e-scooters, P+R).
Innovative mobility concepts	Static network, no real-time adaptation	Introduce app-based demand-responsive service for rural/peripheral zones; trial PlusBus model (hourly service + train coordination).