

ICT1008 Data Structures and Algorithms

Lecture 2: Analysis of Algorithms

Agenda

- Mathematics for Algorithms
- Why analyse algorithms?
- Empirical analysis
- Mathematical models
- Asymptotic rules
- Theory of algorithms
- General plan for Algorithm analysis

SIT Internal

Recommended Reading

- 1. Algorithms by Robert Sedgewick and Kevin Wayne. Addison-Wesley Professional. 4th edition, 2011
 - Chapter 1.4

- 2. Runestone Interactive book: "Problem Solving with Algorithms and Data Structures Using Python"
 - Section: "Analysis"

Mathematics for Algorithms

SIT Internal

- Polynomials
- Combinations
- Logarithms
- Summation of Series

Polynomials

A polynomial of degree *n* is a function of the form

$$p(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$

with $c_n \neq 0$. The numbers c_i are called coefficients.

Example, a polynomial of degree 5.

$$p(x) = 3x^5 - 12x^3 + 9x + 4$$

Combinations

For $n \ge k \ge 0$, the number of k-element subsets of an n element set is given by

$$\binom{n}{k} = \frac{n!}{(n-k)!\,k!}$$

Example

$$\binom{5}{2} = \frac{5!}{3!2!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1) \times (2 \times 1)} = 10$$

The subsets are: { (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5) }

SIT Internal

Logarithm - Definition

if
$$b^x = n$$
 then $\log_b n = x$

Note: log2 is usually written as lg

e.g.
$$10^3 = 1000$$
, then $\log_{10} 1000 = 3$

e.g.
$$2^6 = 64$$
, then $\log_2 64 = 6$

Law of Logarithm

Suppose that b > 0, and $b \neq 1$, then

$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_b(\frac{x}{y}) = \log_b x - \log_b y$$

e.g.
$$\log_{10} (10*100) = \log_{10} 10 + \log_{10} 100$$

= 1 + 2 = 3

e.g.
$$\log_2 (64/8) = \log_2 64 - \log_2 8$$

= $6 - 3 = 3$

Law of Logarithm

Suppose that b > 0, and $b \neq 1$, then

if
$$a > 0$$
 and $a \ne 1$, $\log_a x = \frac{\log_b x}{\log_b a}$

e.g.
$$\log_{10} 32 = 1.505$$
, $\log_{10} 2 = 0.301$
 $\log_2 32 = \frac{\log_{10} 32}{\log_{10} 2} = \frac{1.505}{0.301} = 5$

SIT Internal

Summation of Series

Arithmetic Series:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

e.g.
$$1 + 2 + \dots + 100$$

= $\frac{100(100+1)}{2}$
= 5050

Summation of Series

Geometric Series:

$$\sum_{k=0}^{n} ar^{k} = a + ar + \dots + ar^{n} = \frac{a(r^{n+1} - 1)}{r - 1}$$

e.g.
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

= $1 + \frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + (\frac{1}{2})^4 + \dots$
= $\frac{1((\frac{1}{2})^{\infty} - 1)}{\frac{1}{2} - 1} = \frac{(0 - 1)}{-\frac{1}{2}} = 2$

α Mini Quiz

- Go to xSite -> assessments -> quizzes "INF1008 Lecture 2 Quiz"
- 5 mins
- NOT graded
- Password is inf1008lec2

SIT Internal

Analysis of Algorithms

To analyze an algorithm is to determine the amount of resources (such as time and storage) necessary to execute it.

$$(Time/Space) Complexity = f(n)$$

The running time of an algorithm typically grows with the input size n.

SIT Internal

Analysis of Algorithms

- There are two ways to analyze an algorithm
 - Empirical/Experimental studies
 - Theoretical analyses

Empirical Study method

- Write a program to implement the algorithm
 - Run the program with inputs of varying sizes and compositions
 - Get an accurate measure of the actual running time
- Plot the results

Problems with Empirical Data Analysis

- System dependent effects.
 - Hardware: CPU, memory, cache, ...
 - Software: compiler, interpreter,
 garbage collector, ...
 - System: operating system, network,
 other applications, ...

Theoretical Analysis

- To analyse the running time of algorithms, use a simple model of the underlying computer
- Aim: make simplifications to estimate resources to execute an algorithm
- Exact time, machine instructions for different machines are not relevant here
- We use a model of a Random Access Machine (RAM)
- Primary challenge: determine the frequency of execution statements

RAM Model

- Consider sequential 1-Processor architecture, no parallelism.
- All data are directly accessible in memory.
- All memory accesses take the same length.
- All elementary operations require constant time.
- Elementary operations are:
 - Value assignment;
 - Arithmetic operations such as addition, subtraction, multiplication;
 - Logical operations such as "and", "or";
 - Comparison operations such as "<", ">";
 - Commands to control the flow of instructions, such as "if then else".
- For simplicity, assume each elementary operation takes one time unit.

Example: 1-Sum


```
def count(a, N):
    sum = 0
    for i in range(N):
        if a[i] == 0:
            sum += 1
    return sum
```

How many instructions as a function of input size N?

Operation	Frequency
Assignment statement	1
For loop, "in range" comparison	N+1
"if equal" comparison	N
Array access []	N
Increment	N
Total	(3N+2) to (4N+2)

Example: 2-Sum

How many instructions as a function of input size N?

Operation	Frequency		
Assignment statement	1		
For loop "in range" comparison	$(N+1) + [N+(N-1)++1+0] = \frac{1}{2}N(N+3)+1$		
Equal comparison	$(N-1) + (N-2) + + 1 + 0 = \frac{1}{2}N(N-1)$		
Array access []	<i>N</i> (<i>N</i> -1)		
Increment	$0 \text{ to } \frac{1}{2}N(N-1)$		
Total	$N(2N+3)+2$ to $\frac{1}{2}N(5N+6)+\frac{3}{2}$		

Example: 2-Sum

Operation	Frequency [A] + [B]
Assignment statement	1
For loop "in range" comparison	$(N+1) + [N+(N-1)++1+0] = \frac{1}{2}N(N+3)+1$
Equal comparison	$(N-1) + (N-2) + + 1 + 0 = \frac{1}{2}N(N-1)$
Array access []	N(N-1)
Increment	$0 \text{ to } \frac{1}{2}N(N-1)$
Total	$N(2N+3)+2$ to $\frac{1}{2}N(5N+6)+\frac{3}{2}$

Asymptotic notations: Comparing algorithms

- Consider two algorithms, A and B, for solving a given problem.
- Let the running times of the algorithms be $T_a(n)$ and $T_b(n)$ for problem size n.
- Suppose the problem size is n_0 and

$$T_a(n_0) < T_b(n_0)$$

Then algorithm A is better than algorithm B for problem size n_O .

Comparing algorithms

If

$$T_a(n) < T_b(n)$$

for all $n \geq n_0$

Then algorithm A is better than algorithm B regardless of the problem size

Comparing algorithms

For algorithm analysis, we emphasize on the operation count's order of growth for <u>large input</u> sizes

To compare and rank the order of growth (for comparing the efficiency of different algorithms), we use Asymptotic notations.

Note: the difference in running times on small inputs cannot really distinguish efficient algorithms from inefficient ones. Interested in large values of input, n.

SIT Internal

Asymptotic notations

In comparing algorithms, consider the asymptotic behaviour of the two algorithms for large problem sizes, under worst-case.

Big-Oh notation: used to characterize the asymptotic behavior of functions.

SINGAPORE INSTITUTE OF TECHNOLOGY

(the "O" stands for "order of")

Big-Oh Example: 1-Sum


```
def count(a, N):
    sum = 0
    for i in range(N):
        if a[i] == 0:
            sum += 1
    return sum
```

Maximum total operations: 4n + 2.

Prove that (4n + 2) is O(n).

Proof

Need to prove this condition:

$$4n + 2 \le kn$$
 for all $n \ge n_0$.
Can we find $k (> 0)$ and n_0 ?

⇒
$$4n + 2 \le kn$$

⇒ $(k - 4)n \ge 2$
⇒ $n \ge \frac{2}{k - 4}$
⇒ Pick $k = 5$ and $n_0 = 2$, gives:
 $4n + 2 \le 5n$,
 $for \ all \ n \ge 2$.
∴ Proven.

We say that the worst case run-time of 1-Sum is O(n).

Big-Oh Example: 2-SUM


```
def count(a, N):
    sum = 0
    for i in range(N):
        for j in range (i+1,N):
            if a[i] +a[j] == 0:
                sum += 1
            return sum
```

Maximum

total operations:

$$\frac{1}{2}n(5n+6) + \frac{3}{2}$$

Prove that

$$\frac{1}{2}n(5n+6) + \frac{3}{2}$$
 is $O(n^2)$.

Proof

Need to prove this condition:

$$\frac{1}{2}n(5n+6) + \frac{3}{2} \le \text{kn}^2 \text{ for all } n \ge n_0.$$

i.e. $5n^2 + 6n + 3 \le 2kn^2.$
Can we find $k \ (> 0)$ and n_0 ?

We have:

For all
$$n \ge 1$$
,
 $\Rightarrow 5n^2 + 6n + 3 \le 5n^2 + 6n^2 + 3n^2$
 $\Rightarrow 5n^2 + 6n + 3 \le 14n^2$

Compare $5n^2 + 6n + 3 \le 2kn^2$

$$\Rightarrow$$
 2k=14

$$\Rightarrow$$
 pick k = 7 & n_0 = 1, gives:

$$\frac{1}{2}n(5n+6) + \frac{3}{2} \le 7n^2 \text{ for all } n \ge 1.$$

∴ Proven.

Big-Oh Rules

If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$.

- Drop lower-order terms
- Drop constant factors

Example:

$$f(n) = 8n^6 + 7n^4 + 5n^2 + 2n + 16$$
$$f(n) = O(n^6)$$

Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the growth rate of a function.

The statement

"
$$f(n)$$
 is $O(g(n))$ "

means that the growth rate of f(n) is no more than the growth rate of g(n)

Common order-of-growth

SINGAPORE INSTITUTE OF TECHNOLOGY

Graphical illustration

The set of functions 1, logN, N, NlogN, N^2 , N^3 and 2^N suffices to describe the order of growth of most common algorithms.

Common order-of-growth

Numeric illustration

lg N	lg ² N	\sqrt{N}	N	N lg N	N Ig² N	N 3/2	N ²
3	9	3	10	30	90	30	100
6	36	10	100	600	3.600	1.000	10.000
9	81	31	1.000	9.000	81.000	31.000	1.000.000
13	169	100	10.000	130.000	1.690.000	1.000.000	100.000.000
16	256	316	100.000	1.600.000	25.600.000	31.600.000	10 Million
19	361	1.000	1.000.000	19.000.000	361.000.000	1 Million	1 Billion

In this table:

lg N means log₂ N.

 $\lg^2 N$ means $(\lg N)^2$ or $(\log_2 N)^2$.

Common order-of-growth

Algorithm or program code illustration

order of growth	name	typical code framework	description	example
1	constant	a = b + c;	statement	add two numbers
log N	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum
N log N	linea <mark>r</mark> ithmic	[see mergesort lecture]	divide and conquer	mergesort
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) {</pre>	double loop	check all pairs
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) {</pre>	triple loop	check all triples
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets

Growth Rate: Practical Implication

growth rate	name	description	effect on a program that runs for a few seconds	
			time for 100x more data	size for 100x faster computer
1	constant	independent of input size	-	-
log N	logarithmic	nearly independent of input size	u z a	-
N	linear	optimal for N inputs	a few minutes	100×
N log N	linearithmic	nearly optimal for N inputs	a few minutes	100×
N ²	quadratic	not practical for large problems	several hours	10x
N³	cubic	not practical for medium problems	several weeks	4-5x
2 ^N	exponential	useful only for tiny problems	forever	1x

Types of Analyses

- Worst case. Upper bound on cost.
 - Determined by "most difficult" input.
 - Provides a guarantee for all inputs.
- Best case. Lower bound on cost.
 - Determined by "easiest" input.
 - Provides a goal for all inputs.
- Average case. Expected cost for random input.
 - Needs a model for "random" input.
 - Provides a way to predict performance.

SIT Internal

Theory of Algorithms

- Upper bound.
 - Performance guarantee of algorithm for any input.
- Lower bound.
 - Proof that no algorithm can do better.
- Optimal algorithm.
 - Lower bound = upper bound (to within a constant factor).

Big-Oh Notation - upper bound

Big-Oh Notation - upper bound

pper bound

Big-Omega Notation - lower bound

Big-Theta Notation - optimal bound

Properties of Asymptotic

Suppose we know that

$$f_1(n) = O(g_1(n))$$

 $f_2(n) = O(g_2(n))$

What can we say about the asymptotic behavior of the sum and the product of $f_1(n)$ and $f_2(n)$?

Properties of Asymptotic

Suppose we know that

$$f_1(n) = {0 \choose g_1(n)}$$

 $f_2(n) = {0 \choose g_2(n)}$

Theorem 1:

$$f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$$

Consider the functions

$$f_1(n) = n^3 + n^2 + n + 1 = O(n^3)$$
 and $f_2(n) = n^2 + n + 1 = O(n^2)$

By Theorem 1, the asymptotic behavior of the sum

$$f_1(n) + f_2(n)$$
 is $O\left(\max(n^3, n^2)\right)$.
 $\Rightarrow f_1(n) + f_2(n)$ is $O(n^3)$.

Properties of Asymptotic

Suppose we know that

$$f_1(n) = O(g_1(n))$$

 $f_2(n) = O(g_2(n))$

Theorem 2:

$$f_1(n) \times f_2(n) = O(g_1(n) \times g_2(n))$$

Consider the functions

$$f_1(n) = n^3 + n^2 + n + 1 = O(n^3)$$
 and $f_2(n) = n^2 + n + 1 = O(n^2)$

By Theorem 2, the asymptotic behavior of the product

$$f_1(n) \times f_2(n)$$
 is $O(n^3 \times n^2)$.

$$\Rightarrow f_1(n) \times f_2(n)$$
 is $O(n^5)$.

General Plan for Algo Run-time Analysis

- 1. Decide on parameter n indicating $input \ size$.
- 2. Identify algorithm's $basic\ operation-cost\ model$.
- 3. Set up a sum expressing the *number of times* the basic operation is executed.
- 4. Simplify the sum using standard formulas and rules to determine big-Oh of the running time.

Example 1: O(n)

 Provide a Big-oh notation (means an upper bound or a worst case analysis) for the run-time of the following algorithm

```
def funcA(n):
    sum = 0
    x = n*[100*random.random()]
    for i in range(n):
        sum += x[i]
    return sum
```

Example 1: O(n)


```
def funcA(n):
    sum = 0
x = n*[100*random.random()]
    for i in range(n):
        sum += x[i]
    return sum
```

- 1. Input size: *n*
- 2. Basic operations:Statements in the *for* loop
- 3. Number of times the basic operations are executed: *n*
- 4. According to Big-Oh rules, the runtime of the algorithm is O(n), i.e. *Linear* run-time

Example 2: O(lg(n))


```
def funcB(n):
    sum = 0
    x = n*[100*random.random()]
    count = 1
    while count<n:
        sum += x[count]
        count=count*2
    return sum</pre>
```

- 1. Input size: n
- 2. Basic operations:Statements in the *while*loop
- 3. Number of times the basic operations are executed: 2*lg(n)
- 4. According to Big-Oh rules, the runtime of the algorithm is $O(\lg(n))$, i.e. *Logarithmic* run-time

Example 3: O(n²)


```
def funcC(n):
    sum = 0
    x = [ n*[100*random.random()] for i in range(n)]
    for i in range(n):
        for j in range(n):
            sum += x[i][j]
    return sum
```

SIT Internal

- 1. Input size: n
- 2. Basic operations: Statements in the double nested *for* loop
- 3. Number of times the basic operations are executed: $n*n = n^2$
- 4. According to Big-Oh rules, the runtime of the algorithm is $O(n^2)$, i.e. *Quadratic* run-time

Example 4: O(n³)


```
def funcD(n):
    sum = 0
    x = [[ n*[100*random.random()] for i in range(n)] for i in range(n):
    for i in range(n):
        for j in range(n):
            for k in range(n):
                sum += x[i][j][k]
    return sum
```

SIT Internal

- 1. Input size: *n*
- 2. Basic operations: Statements in the triple nested *for* loop
- 3. Number of times the basic operations are executed: $n^*n^*n = n^3$
- 4. According to Big-Oh rules, the runtime of the algorithm is $O(n^3)$, i.e. *Cubic* run-time

SIT Internal

Example 5: O(n²)


```
def funcE(n):
    sum = 0
    x = [ n*[100*random.random()] for i in range(n)]
    for i in range(n):
        for j in range(i+1):
            sum += x[i][j]
    return sum
```

- 1. Input size: n
- 2. Basic operations: Statements in the doubly nested for loop
- 3. Number of times the basic operations are executed:

```
= 1+2+3+...+(n-2)+(n-1)+n
= \frac{1}{2}n(n+1)
= \frac{1}{2}(n^2+n)
```

1. According to Big-Oh rules, the runtime of the algorithm is $O(n^2)$, i.e. *Quadratic* run-time

Example 6: O(2ⁿ)


```
def fib(n):
    if n==1 or n ==2:
        return 1
    else:
        return fib(n-1)+fib(n-2)
```

- 1. Input size: *n*.
- Basic operations:Recursive call with two sub-branches.
- 3. The runtime of the algorithm is $O(2^n)$, i.e. *Exponential* run-time.

SIT Internal

Others

• Linearithmic $O(n \lg(n))$ – Merge Sort