

# Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Correctness of Prim's Algorithm (Part I)

#### Cuts

Claim: Prim's algorithm outputs a spanning tree.

Definition: A <u>cut</u> of a graph G = (V, E) is a partition of V into 2 non-empty sets.



#### Quiz on Cuts

Question: Roughly how many cuts does a graph with *n* vertices have?

- A) n C)  $2^n$  (for each vertex, choose whether in A or in B)
- B)  $n^2$  D)  $n^n$

### **Empty Cut Lemma**

Empty Cut Lemma: A graph is not connected  $\iff \exists$  cut (A, B)with no crossing edges.

Proof: ( $\Leftarrow$ ) Assume the RHS. Pick any  $u \in A$  and  $v \in B$ . Since no edges cross (A, B) there is no u, v path in  $G. \Rightarrow G$  not connected.



 $(\Rightarrow)$  Assume the LHS. Suppose G has no u-v path. Define  $A = \{ \text{Vertices reachable from } u \text{ in } G \}$  (u's connected component)

 $B = \{All \text{ other vertices}\}\ (all \text{ other connected components})$ 

Note: No edges cross cut (A, B) (otherwise A would be bigger!)



## Two Easy Facts

Double-Crossing Lemma: Suppose the cycle  $C \subseteq E$  has an edge crossing the cut (A, B): then so does some other edge of C.



Lonely Cut Corollary: If e is the only edge crossing some cut (A, B), then it is not in any cycle. [If it were in a cycle, some other edge would have to cross the cut!]

#### Proof of Part I

Claim: Prim's algorithm outputs a spanning tree. [Not claiming MST yet]

Proof: (1) Algorithm maintains invariant that T spans X [straightforward induction - you check]



- (2) Can't get stuck with  $X \neq V$  [otherwise the cut (X, V X) must be empty; by Empty Cut Lemma input graph G is disconnected]
- (3) No cycles ever get created in T. Why? Consider any iteration, with current sets X and T. Suppose e gets added. Key point: e is the first edge crossing (X, V X) that gets added

Key point: e is the first edge crossing (X, V - X) that gets added to  $T \Rightarrow$  its addition can't create a cycle in T (by Lonely Cut Corollary). QED!