CS6301 MACHINE LEARNING LAB WEEK – 6 SVM SRIHARI. S – 2018103601

Date: 29-03-2021 Monday

Aim: To implement Support Vector Machine with different datasets and measure the performance metrics.

Dataset-1: MNIST Dataset

The MNIST database is a large database of handwritten digits that is commonly used for training various image processing systems which contains 60,000 training images and 10,000 testing images. Half of the training set and half of the test set were taken from NIST's training dataset, while the other half of the training set and the other half of the test set were taken from NIST's testing dataset.

Input:

ile	Edit	t Fo	rmat	View	Help													
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	3	18	18	18	126	136	175	26	166	255
24	7 1	27	0	0	0	0	0	0	0	0	0	0	0	0	30	36	94	154
17	0 2	253	253	253	253	253	225	172	253	242	195	64	0	0	0	0	0	0
	0	0	0	0	0	49	238	253	253	253	253	253	253	253	253	251	93	82
8	32	56	39	0	0	0	0	0	0	0	0	0	0	0	0	18	219	253
25	3 2	253	253	253	198	182	247	241	0	0	0	0	0	0	0	0	0	9
	0	0	0	0	0	0	0	0	80	156	107	253	253	205	11	0	43	154
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
	0	14	1	154	253	90	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	139	253	190	2	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
	0	0	0	0	0	11	190	253	70	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35	241
22	5 1	160	108	1	0	0	0	0	0	0	0	0	0	0	0	0	0	9
	0	0	0	0	0	0	0	0	0	81	240	253	253	119	25	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	45	186	253	253	150	27	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	16	93	252	253	187

Output:

LINEAR KERNEL

SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)

array([[5	165,	4,	38,	12,	15,	29,	50,	5,	17,	0],
[1,	5946,	22,	12,	7,	8,	4,	11,	24,	12],
[71,	67,	4880,	84,	61,	15,	54,	47,	62,	11],
]	43,	57,	184,	4770,	13,	230,	8,	43,	120,	46],
]	21,	26,	64,	10,	4824,	8,	23,	19,	14,	257],
]	82,	56,	54,	244,	63,	4141,	82,	10,	105,	38],
]	54,	19,	65,	5,	38,	69,	5062,	3,	15,	1],
]	13,	54,	90,	40,	120,	6,	1,	5130,	11,	194],
[44,	176,	104,	192,	34,	190,	42,	29,	4417,	36],
[27,	22,	37,	67,	200,	26,	2,	185,	41,	4750]])

0.9089814814814815

ACCURACY =

reconver –	precision	recall	f1-score	support
0	0.94	0.97	0.95	5335
1	0.93	0.98	0.95	6047
2	0.88	0.91	0.90	5352
3	0.88	0.87	0.87	5514
4	0.90	0.92	0.91	5266
5	0.88	0.85	0.86	4875
6	0.95	0.95	0.95	5331
7	0.94	0.91	0.92	5659
8	0.92	0.84	0.88	5264
9	0.89	0.89	0.89	5357
accuracy			0.91	54000
macro avg	0.91	0.91	0.91	54000
weighted avg	0.91	0.91	0.91	54000

NON-LINEAR KERNEL

SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)

0.927962962962963

ACCURACY =

	precision	recall	f1-score	support
0	0.07	0.06	0.07	E23E
0	0.97	0.96	0.97	5335
1	0.96	0.98	0.97	6047
2	0.83	0.94	0.88	5352
3	0.92	0.89	0.91	5514
4	0.94	0.92	0.93	5266
5	0.92	0.90	0.91	4875
6	0.95	0.95	0.95	5331
7	0.93	0.92	0.93	5659
8	0.93	0.89	0.91	5264
9	0.92	0.91	0.91	5357
accuracy			0.93	54000
macro avg	0.93	0.93	0.93	54000
weighted avg	0.93	0.93	0.93	54000

SVC(C=1, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)

92.78703703703704 %

[[5	140	1	35	7	10	25	60	6	48	3]
[1	5936	47	13	8	7	6	11	12	6]
[34	35	4972	63	48	7	59	56	69	9]
[9	35	219	4900	10	138	10	64	94	35]
[7	25	88	3	4880	14	26	25	11	187]
[34	24	57	142	27	4399	92	19	44	37]
[27	20	74	0	27	58	5098	2	25	0]
[6	45	128	17	76	0	1	5225	8	153]
[23	105	82	114	25	133	36	19	4672	55]
Γ	19	19	43	69	104	21	1	167	31	4883]]

Code:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import linear_model
from sklearn.model_selection import train_test_split
import gc
import cv2
read the dataset
digits = pd.read_csv("/content/drive/MyDrive/mnist_train.csv")
digits.info()
four = digits.iloc[3, 1:]
four.shape

```
four = four.values.reshape(28, 28)
plt.imshow(four, cmap='gray')
# Summarise the counts of 'label' to see how many labels of each digit are present
digits.label.value counts()
# Summarise count in terms of percentage
100*(round(digits.label.astype('category').value counts()/len(digits.index), 4))
# missing values - there are none
digits.isnull().sum()
description = digits.describe()
# Creating training and test sets
# Splitting the data into train and test
X = digits.iloc[:, 1:]
Y = digits.iloc[:, 0]
# Rescaling the features
from sklearn.preprocessing import scale
X = scale(X)
# train test split with train_size=10% and test size=90%
x_train, x_test, y_train, y_test = train_test_split(X, Y, train_size=0.10, random_state=101)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
from sklearn import svm
from sklearn import metrics
#LINEAR KERNEL
svm linear = svm.SVC(kernel='linear')
# fit
svm linear.fit(x train, y train)
# predict
predictions = svm_linear.predict(x_test)
predictions[:10]
# evaluation: accuracy
# C(i, j) represents the number of points known to be in class i
# but predicted to be in class j
confusion = metrics.confusion_matrix(y_true = y_test, y_pred = predictions)
confusion
# measure accuracy
metrics.accuracy_score(y_true=y_test, y_pred=predictions)
# class-wise accuracy
class wise = metrics.classification report(y true=y test, y pred=predictions)
print(class_wise)
# run gc.collect() (garbage collect) to free up memory
# else, since the dataset is large and SVM is computationally heavy,
# it'll throw a memory error while training
gc.collect()
```

#NON-LINEAR KERNEL

```
# rbf kernel with other hyperparameters kept to default
svm rbf = svm.SVC(kernel='rbf')
svm_rbf.fit(x_train, y_train)
predictions = svm rbf.predict(x test)
# accuracy
print(metrics.accuracy_score(y_true=y_test, y_pred=predictions))
# conduct (grid search) cross-validation to find the optimal values
# of cost C and the choice of kernel
from sklearn.model_selection import GridSearchCV
parameters = {'C':[1, 10, 100], 'gamma': [1e-2, 1e-3, 1e-4]}
svc grid search = svm.SVC(kernel="rbf")
# create a classifier to perform grid search
clf = GridSearchCV(svc_grid_search, param_grid=parameters,return_train_score=True, scori
ng='accuracy')
clf.fit(x_train, y_train)
cv_results = pd.DataFrame(clf.cv_results_)
# converting C to numeric type for plotting on x-axis
cv_results['param_C'] = cv_results['param_C'].astype('int')
plt.figure(figsize=(16,6))
plt.subplot(131)
gamma 01 = cv results[cv results['param gamma']==0.01]
plt.plot(gamma_01["param_C"], gamma_01["mean_test_score"])
plt.plot(gamma_01["param_C"], gamma_01["mean_train_score"])
plt.xlabel('C')
plt.ylabel('Accuracy')
plt.title("Gamma=0.01")
plt.ylim([0.60, 1])
plt.legend(['test accuracy', 'train accuracy'], loc='lower right')
plt.xscale('log')
plt.subplot(132)
gamma 001 = cv results[cv results['param gamma']==0.001]
plt.plot(gamma_001["param_C"], gamma_001["mean_test_score"])
plt.plot(gamma 001["param C"], gamma 001["mean train score"])
plt.xlabel('C')
plt.ylabel('Accuracy')
plt.title("Gamma=0.001")
plt.ylim([0.60, 1])
plt.legend(['test accuracy', 'train accuracy'], loc='lower right')
plt.xscale('log')
plt.subplot(133)
gamma_0001 = cv_results[cv_results['param_gamma']==0.0001]
plt.plot(gamma 0001["param C"], gamma 0001["mean test score"])
plt.plot(gamma_0001["param_C"], gamma_0001["mean_train_score"])
```

```
plt.xlabel('C')
plt.ylabel('Accuracy')
plt.title("Gamma=0.0001")
plt.ylim([0.60, 1])
plt.legend(['test accuracy', 'train accuracy'], loc='lower right')
plt.xscale('log')
plt.show()
best C = 1
best_gamma = 0.001
svm_final = svm.SVC(kernel='rbf', C=best_C, gamma=best_gamma)
svm final.fit(x train, y train)
predictions = svm_final.predict(x_test)
confusion = metrics.confusion_matrix(y_true = y_test, y_pred = predictions)
test_accuracy = metrics.accuracy_score(y_true=y_test, y_pred=predictions)
print(test_accuracy*100, "%\n")
print(confusion)
```

DATASET 2: 2020/W36: Calories and Sugar in Cereals; dataset in makeover Monday

Link: 2020/W36: Calories and Sugar in Cereals - dataset by makeovermonday | data.world

We determine the type of cereal (Hot/Cold) based on the amount of proteins, fats, sodium, fiber, carbohydrates, sugar, potassium, vitamins, weight, cups and rating. Both hot and cold cereals have nutritional benefits, however the type of hot or cold cereal you choose may make a difference. Often times cold cereals are coated with sugar and have lost many of their nutrients through the milling process. Choosing a low-sugar, high-fiber cereal will help to improve nutritional values. Hot cereal, such as oatmeal, contains large amounts of fiber. The high fiber content of hot cereal aids in keeping you full longer and increases the amount of time until your next meal, which may also aid in weight loss.

Hence by adopting linear and non-linear SVM we identify the type of cereal as hot or cold.

INPUT

cereal - Copy - Notepad

File Edit Fgrmat View Help
name;mfr;calories;protein;fat;sodium;fiber;carbo;sugars;potass;vitamins;shelf;weight;cups;rating;type
String;Categorical;Int;Int;Int;Int;Float;Float;Int;Int;Int;Int;Float;Float;Float;Float;Categorical
100% Bran;N;70;4;1;130;10;5;6;280;25;3;1;0.33;68.402973;C
100% Natural Bran;Q;120;3;5;15;2;8;8;135;0;3;1;1;33.983679;C
All-Bran;K;70;4;1;260;9;7;5;320;25;3;1;0.33;59.425505;C
Quaker Oatmeal;Q;100;5;2;0;2.7;-1;-1;110;0;1;1;0.67;50.828392;H
Ragi Oatmeal;Q;100;5;2;0;2.7;-1;-1;110;0;1;1;0.67;50.828392;H

OUTPUT

LINEAR KERNEL – OUTPUT

SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)

PREDICTIONS:

CONFUSION MATRIX:

ACCURACY:

1 metrics.accuracy_score(y_true=y_test, y_pred=predictions)

0.9375

	precision	recall	f1-score	support
C	1.00	0.91	0.95	34
Н	0.82	1.00	0.90	14
accuracy			0.94	48
macro avg	0.91	0.96	0.93	48
weighted avg	0.95	0.94	0.94	48

NON LINEAR KERNEL

SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)

ACCURACY:

```
1 # predict
2 predictions = svm_rbf.predict(x_test)
3 # accuracy
4 print(metrics.accuracy_score(y_true=y_test, y_pred=predictions))
```

0.9791666666666666

	precision	recall	f1-score	support
C H	0.97 1.00	1.00 0.93	0.99 0.96	34 14
accuracy macro avg	0.99	0.96	0.98 0.97	48 48
weighted avg	0.98	0.98	0.98	48

	mean_fit_time	etd_fit_time	mean_score_time	std_score_time	param_c	paran gama	barant	splite_test_score	spliti_test_score	spliti_test_score	splits_test_score
6	0.000796	0.000225	0.000443	0.000133	1	0.01	(101: 1, 'gamma'; 0.01)	0.8	0.9	0.9	1,000000
1	0.000677	0.000023	0.000454	0.000146	,1	0.001	['C': 1, 'gamma') 0.001]	0.8	0.8	0.0	0.888889
2	0.000678	0.000048	0.000441	0.000085	1	0.0001	('C': 1, 'gamma': 0.0001)	0.0	0.0	0.0	0.888889
3	0.000659	0.000018	0.000423	0.000037	10	0.01	(C): 10, 'gamma' 0.01)	1.0	0.9	0.9	1.000000
4	0.000648	0.000012	0.000383	9,000020	10	0.001	(C': 10, 'gamma' 0.001)	0.8	0.9	0.9	1,000000
5	0.000652	0.000023	0.000393	0.000024	10.	0.0001	(107: 10, 'gamma' 0:0001]	0.8	0.8	0.8	0,888889

SVC(C=100, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)

We see that the best values for C and Gamma is 100 and 0.001 respectively.

CODE

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import linear model from sklearn.model_selection import train_test_split import gc import cv2 # read the dataset digits = pd.read_csv('/content/cereal - Copy.csv',sep=";") digits.head() X = digits.iloc[1:, 3:]Y = digits.iloc[1:, 2]# Rescaling the features from sklearn.preprocessing import scale X = scale(X)# train test split with train size=10% and test size=90%

train test split with train_size=10% and test size=90%
x_train, x_test, y_train, y_test = train_test_split(X, Y, train_size=0.5, random_state=101)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
from sklearn import svm

```
from sklearn import metrics
svm_linear = svm.SVC(kernel='linear')
svm_linear.fit(x_train, y_train)
predictions = svm_linear.predict(x_test)
predictions
confusion = metrics.confusion_matrix(y_true = y_test, y_pred = predictions)
confusion
metrics.accuracy_score(y_true=y_test, y_pred=predictions)
class_wise = metrics.classification_report(y_true=y_test, y_pred=predictions)
print(class_wise)
# NON LINEAR KERNEL
# rbf kernel with other hyperparameters kept to default
svm_rbf = svm.SVC(kernel='rbf')
svm_rbf.fit(x_train, y_train)
# predict
predictions = svm_rbf.predict(x_test)
# accuracy
print(metrics.accuracy_score(y_true=y_test, y_pred=predictions))
class_wise = metrics.classification_report(y_true=y_test, y_pred=predictions)
print(class_wise)
from sklearn.model_selection import GridSearchCV
parameters = {'C':[1, 10, 100],
       'gamma': [1e-2, 1e-3, 1e-4]}
# instantiate a model
svc_grid_search = svm.SVC(kernel="rbf")
# create a classifier to perform grid search
clf = GridSearchCV(svc_grid_search, param_grid=parameters,return_train_score=True, scoring='accuracy'
# fit
clf.fit(x_train, y_train)
cv_results = pd.DataFrame(clf.cv_results_)
cv_results
# converting C to numeric type for plotting on x-axis
cv_results['param_C'] = cv_results['param_C'].astype('int')
## plotting
plt.figure(figsize=(16,6))
# subplot 1/3
plt.subplot(131)
gamma_01 = cv_results[cv_results['param_gamma']==0.01]
plt.plot(gamma_01["param_C"], gamma_01["mean_test_score"])
plt.plot(gamma_01["param_C"], gamma_01["mean_train_score"])
plt.xlabel('C')
plt.ylabel('Accuracy')
plt.title("Gamma=0.01")
```

```
plt.ylim([0.60, 1])
plt.legend(['test accuracy', 'train accuracy'], loc='lower right')
plt.xscale('log')
# subplot 2/3
plt.subplot(132)
gamma_001 = cv_results[cv_results['param_gamma']==0.001]
plt.plot(gamma_001["param_C"], gamma_001["mean_test_score"])
plt.plot(gamma_001["param_C"], gamma_001["mean_train_score"])
plt.xlabel('C')
plt.ylabel('Accuracy')
plt.title("Gamma=0.001")
plt.ylim([0.60, 1])
plt.legend(['test accuracy', 'train accuracy'], loc='lower right')
plt.xscale('log')
# subplot 3/3
plt.subplot(133)
gamma_0001 = cv_results[cv_results['param_gamma']==0.0001]
plt.plot(gamma_0001["param_C"], gamma_0001["mean_test_score"])
plt.plot(gamma_0001["param_C"], gamma_0001["mean_train_score"])
plt.xlabel('C')
plt.ylabel('Accuracy')
plt.title("Gamma=0.0001")
plt.ylim([0.60, 1])
plt.legend(['test accuracy', 'train accuracy'], loc='lower right')
plt.xscale('log')
plt.show()
# optimal hyperparameters
best C = 100
best_gamma = 0.001
# model
svm_final = svm.SVC(kernel='rbf', C=best_C, gamma=best_gamma)
# fit
svm_final.fit(x_train, y_train)
# predict
predictions = svm_final.predict(x_test)
# evaluation: CM
confusion = metrics.confusion_matrix(y_true = y_test, y_pred = predictions)
# measure accuracy
test_accuracy = metrics.accuracy_score(y_true=y_test, y_pred=predictions)
print(test accuracy*100, "%\n")
print(confusion)
```

TABULAR INFERENCE

DATASET	MNIST	CEREAL
LINEAR KERNEL		
PRECISION	0.91	0.91
RECALL	0.91	0.96
F1-SCORE	0.91	0.91
ACCURACY	90.9 %	90.75 %
NON-LINEAR KERNEL		
PRECISION	0.92	0.97
RECALL	0.91	0.93
F1-SCORE	0.91	0.96
ACCURACY	92.8 %	91.66 %

DATASET 1 – MNIST

KERNEL	ACCURACY (%)	PRECISION	RECALL	F1-SCORE
Linear	90.9	0.91	0.91	0.91
Non-Linear	92.8	0.92	0.91	0.91

ACCURACY IN NON - LINEAR KERNEL HYPERPARAMETER TUNING WHILE TRAINING

Gamma\C	1	10	100
0.01	100% accuracy	100% accuracy	100% accuracy
0.001	97% accuracy	100% accuracy	100% accuracy
0.0001	92% accuracy	96% accuracy	99% accuracy

NON – LINEAR KERNEL HYPERPARAMETER TUNING WHILE TESTING

Gamma\C	1	10	100
0.01	73% accuracy	75% accuracy	75% accuracy
0.001	93% accuracy	94% accuracy	94% accuracy
0.0001	89% accuracy	93% accuracy	93% accuracy

DATASET 2 – CEREAL

KERNEL	ACCURACY (%)	PRECISION	RECALL	F1-SCORE
Linear	90.75	0.91	0.96	0.91
Non-Linear	91.66	0.97	0.93	0.96

ACCURACY IN NON - LINEAR KERNEL HYPERPARAMETER TUNING WHILE TRAINING

Gamma\C	1	10	100
0.01	94% accuracy	98% accuracy	100% accuracy
0.001	83% accuracy	94% accuracy	99% accuracy
0.0001	83.5% accuracy	83% accuracy	94% accuracy

NON – LINEAR KERNEL HYPERPARAMETER TUNING WHILE TESTING

Gamma\C	1	10	100
0.01	92% accuracy	95% accuracy	100% accuracy
0.001	84% accuracy	91.5% accuracy	95.5% accuracy
0.0001	83% accuracy	83% accuracy	92% accuracy

Inference: Thus, Support Vector Machine is implemented on the 2 datasets using linear and non-linear kernels and the results obtained are tabulated. Hyperparameters (C and gamma) are tuned to obtain a good accuracy.