DS n° 10 : Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom : Note :

Porter directement les réponses sur la feuille, sans justification.

Algèbre linéaire.

Soit $A \in \mathscr{M}_n(\mathbb{R})$ et $f \in \mathscr{L}(\mathscr{M}_n(\mathbb{R}))$ définie par $f: M \mapsto AM + MA$.

Déterminer en fonction de A: $\operatorname{tr}(f) =$ (1)

Déterminer l'ensemble des paramètres $\lambda \in \mathbb{R}$ pour les quels $\begin{pmatrix} 1 & 4 & -3 \\ 2 & -1 & \lambda \\ 1 & \lambda & -2 \end{pmatrix}$ n'est pas inversible.

(2)

Permutations.

On considère la permutation de [1,9]: $\sigma = (1,3,8,6)(5,2,6)(7,4)(9,1,6,3)(3,5,7,4)(1,5)(6,3)$. Écrire les permutations suivantes comme produit de cycles à supports disjoints.

 $\sigma = \boxed{ \qquad \qquad (3) \qquad \sigma^{-1} = \boxed{ \qquad \qquad (4)}$

 ${\bf Calculer}$

$$\varepsilon(\sigma) = \tag{5}$$

Déterminants.

Calculer les déterminants suivants.

$$\begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & -1 & -1 \end{vmatrix} = \tag{6}$$

$$\begin{vmatrix} -5 & 12 & 3 \\ 7 & 6 & -8 \\ 11 & 4 & -3 \end{vmatrix} = \tag{7}$$

Soit $a, b \in \mathbb{R}$, $\theta \in]0, \pi/2[$ et $n \in \mathbb{N}^*$. Calculer les déterminants $n \times n$ suivants.

$$\begin{vmatrix} a & \dots & \dots & a \\ b & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ b & \dots & b & a \end{vmatrix} = \boxed{ (8)}$$

$$\begin{vmatrix} 2\cos(\theta) & 1 & 0 & \dots & 0 \\ 1 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 1 & 2\cos(\theta) \end{vmatrix} =$$
(9)

Espaces euclidiens.

On se place dans \mathbb{R}^3 muni du produit scalaire usuel. Soit \mathscr{B} la base $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 5 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix}$. Alors, l'orthonormalisée de Gram-Schmidt de \mathscr{B} est

Révisions.

Donner l'ensemble des racines septièmes de -1 + i.

Donner l'ensemble des solutions de l'équation différentielle $y' + \frac{2x}{1+x^2}y = \operatorname{Arctan}(x)$:

Donner le DL en 0 et à l'ordre 3 de $\frac{\operatorname{ch}(x)\ln(1+x)}{\cos(x)}$:

— **FIN** —