# AS/AD Model

Prof. Lutz Hendricks

Econ520

September 15, 2021

#### **Objectives**

#### In this section you will learn

- 1. how to put IS/LM and labor market clearing together
- 2. how to derive aggregate supply and demand curves
- 3. how to analyze policies and shocks
- 4. why the economy tends towards potential output in the long run

| Aggregate Supply (AS) |  |
|-----------------------|--|
|                       |  |

## Aggregate Supply

The aggregate supply curve is simply the labor market clearing condition

Recall

$$Y^{s} = F\left(W/P^{e}, z\right) \tag{1}$$

$$=F\left(\frac{P}{P^e}\frac{1}{1+m},z\right) \tag{2}$$

F is upward sloping in  $W/P^e$ .

## Properties of AS

Holding constant  $P^e$ :  $Y \uparrow \Longrightarrow P \uparrow$  Intuition:

Holding constant  $Y: P^e \uparrow \Longrightarrow P \uparrow$ Intuition:

When  $P = P^e$ :  $Y = Y_n$  and  $u = u_n$  these values define  $Y_n, u_n$ .

# Aggregate Supply



#### Shifters of AS

```
Labor market policies (z); e.g., unemployment insurance
Production costs + competition (m); e.g., oil prices
Price expectations (P^e)
```

| Aggregate | Demand (AD) |  |
|-----------|-------------|--|
|           |             |  |

#### Aggregate Demand

- AD combines IS and LM
- ► Recall:

► IS: 
$$Y = C(Y - T) + I(Y, i) + G$$

- ightharpoonup LM: M/P = YL(i)
- $\triangleright$  Combine the two, so that i is eliminated

**AD**: 
$$Y = Y(M/P, G, T)$$
 (3)

- ► This is downward sloping:  $P \uparrow \Longrightarrow Y \downarrow$
- Intuition: ...

#### Deriving AD

#### The linear case:

- ► IS:  $Y = Y_0 + a_1 Y a_2 i$
- ► LM:  $M/P = L_0 \alpha i$  (assuming that money demand does not depend on Y)

$$LM: i = (L_0 - M/P)/\alpha$$

ΑD

$$Y(1-a_1) = Y_0 - a_2(L_0 - M/P)/\alpha \tag{4}$$

$$Y = \frac{Y_0 + a_2(M/P - L_0)/\alpha}{1 - a_1} \tag{5}$$

## Deriving AD Graphically



Trace out intersection of IS/LM as  $P \uparrow$ .

#### **AD Shifters**

- Anything that shifts IS or LM left shifts AD left (towards lower Y)
- Examples
  - $\blacktriangleright$  IS:  $G\downarrow$ ,  $T\uparrow$ ,  $C_0\downarrow$
  - ► LM: *M* ↓
- ► These are exactly the shocks that reduce *Y* in the short-run model
- ▶ AD really collects all short-run equilibria, one for each *P*.



# Equilibrium summary

| Curve | Equation                                           | Shifters                            |  |  |
|-------|----------------------------------------------------|-------------------------------------|--|--|
| AS    | $Y = F\left(\frac{P}{P^e} \frac{1}{1+m}, z\right)$ | $m\uparrow,P^e\uparrow,z$           |  |  |
| AD    | Y = C(Y - T) + G + I(Y, i)<br>M/P = YL(i)          | $M/P\uparrow,G\uparrow,T\downarrow$ |  |  |

Short run:  $P^e$  given.

Medium run:  $P^e \rightarrow P$ .

# Short-run Equilibrium



Clear all markets for a given  $P^e$ 

#### Transition Towards Medium-run



#### Transition Towards Medium-run



Expectations adjust towards  $P^e = P$ AS shifts up  $Y \rightarrow Y_n$ 

#### Analyzing the Model

- 1. Start with the medium run:
  - 1.1 vertical supply:  $Y = Y_n$
  - 1.2 on the point of the AD curve where  $P = P^e$
- 2. Apply a shock
  - 2.1 find the new medium run  $(P^e = P)$
  - 2.2  $Y_n$  only changes if m or z were shocked
  - 2.3 find the new short-run ( $P^e$  unchanged)
- 3. Transition
  - 3.1 AS curve shifts towards new medium run equilibrium

#### Thinking about Expectations

What we have here is a form of adaptive expectations.

- ightharpoonup Workers target  $P^e = P$
- When they underpredict, they revise expectations upwards.

What would be a better way of modeling expectations?

# Applications

# Monetary Expansion: $M \uparrow$



# Monetary Expansion

Medium run:

Short run:

#### Transition:

 $\triangleright$  AS shifts toward  $Y_n$ .

## Monetary Expansion

#### Result

Money is neutral in the medium run:

- ► M affects prices, but not any real variables
- Doubling M doubles P

This is why we could ignore money in the long-run growth analysis.

#### Intuition



 $M \uparrow \Longrightarrow i \downarrow \Longrightarrow I \uparrow$  With fixed  $P: A \to B$  (IS/LM)  $P \uparrow$  dampens the short-run effect

## **Empirical Evidence**



Estimated macro models imply:

- the peak effect of monetary policy hits after nearly 1 year
- ▶ it takes several years for the real effects to wear off

## Why Monetary Policy Is Hard

Suppose the economy is hit by an adverse AD shock The Fed counters by expanding M There is a long lag between the increase in M and the shift in AD What happens?

# Why Monetary Policy Is Hard



## Why Monetary Policy is Hard

Policy options:

1. Do nothing

2. Raise M to shift the short-run equilibrium to  $Y_n$ 

3. Raise M, but by less

Note: This is why we may want some trend inflation.

#### The Role of Expectations

What does an anticipated monetary expansion look like?



#### The Role of Expectations

#### Key point

Unanticipated monetary policy has real effects. Anticipated monetary policy just changes prices.

This is an overstatement.

In reality, not all prices will adjust ahead of time.

#### But:

- In the long run, monetary policy is neutral.
- Even in the short run, anticipated monetary policy is weak.





#### Medium run:

- AS:
- AD:

#### Short run:

- AS:
- AD:

#### Transition:

 $\triangleright$  AS shifts towards  $Y_n$ 



With fixed  $P: A \rightarrow B$ . Short run:  $G \downarrow \Longrightarrow P \downarrow$  $\Longrightarrow M/P \uparrow \Longrightarrow i \downarrow$ Medium run:  $P \downarrow \Longrightarrow LM \downarrow$ 

#### Short run:

- $ightharpoonup Y \downarrow$
- ▶ I ambiguous  $(Y \downarrow \text{ but } i \downarrow)$

#### Medium run:

- Y returns to natural level
- $ightharpoonup I \uparrow$ : crowding in

#### Long run:

$$ightharpoonup K \uparrow \Longrightarrow Y \uparrow$$

This is the source of current disagreement: how to trade off the short run pain against the long run gain.

#### Summary

|              | Short run |          |          | Medium run |   |          |
|--------------|-----------|----------|----------|------------|---|----------|
|              | Y         | i        | P        | Y          | i | P        |
| $M \uparrow$ | <b>↑</b>  | <b>↓</b> | <b>↑</b> | _          | _ | <b>↑</b> |
| $G \uparrow$ | <b>↑</b>  | 1        | <b>↑</b> | _          | 1 | <b>↑</b> |

Short-run effects of shocks differ from medium-run effects.

Intuition: In the short run, wages do not fully adjust (b/c  $P^e$  is sticky).

# Adverse Supply Shock

- Example: permanent increase in the price of oil
- ▶ Main effect: given wages, prices must rise
- ▶ Model as increase in markup:  $m \uparrow$ .

# Adverse Supply Shock



# Adverse Supply Shock

Medium run:

Short run:

Transition: AS shifts towards  $Y_n$ .

## Stagflation

Demand shocks: output and prices move together. Supply shocks: output and prices move against each other. Stagflation:

adverse supply shock creates stagnation and inflation.

## Stabilization Policy

How should policy respond to recessions?

Case 1: Adverse demand shock



## Stabilization Policy

Case 2: Adverse supply shock Two policy options:

- 1. Stabilize prices
- 2. Stabilize output

# Stabilizing Prices



# Stabilizing Output



## Stabilization Policy

What happens if policy makers misdiagnose the source of the shock?

Historical examples?

# Reading

Blanchard/Johnson, Macroeconomics, 6th ed, ch. 7