Chapter 8: Planning Representation And Algorithms

Hankui Zhuo April 12, 2019

Quick Review of Classical Planning

 Classical planning requires all eight of the restrictive assumptions:

A0: Finite

A1: Fully observable

A2: Deterministic

A3: Static

A4: Attainment goals

A5: Sequential plans

A6: Implicit time

A7: Offline planning

Representations: Motivation

- In most problems, far too many states to try to represent all of them explicitly as $s_0, s_1, s_2, ...$
- Represent each state as a set of features
 - ♦ e.g.,
 - » a vector of values for a set of variables
 - » a set of ground atoms in some first-order language L
- Define a set of *operators* that can be used to compute statetransitions
- Don't give all of the states explicitly
 - ◆ Just give the initial state
 - ◆ Use the operators to generate the other states as needed

Outline

- Representation schemes
 - ◆ Classical representation
 - ◆ Set-theoretic representation
 - ◆ State-variable representation
 - ◆ Examples: DWR and the Blocks World
 - **♦** Comparisons

Classical Representation

- Start with a *function-free* first-order language
 - ◆ Finitely many predicate symbols and constant symbols, but *no* function symbols
- Example: the DWR domain
 - ◆ Locations: 11, 12, ...
 - ◆ Containers: c1, c2, ...
 - ◆ Piles: p1, p2, ...
 - ◆ Robot carts: r1, r2, ...
 - ◆ Cranes: k1, k2, ...

Classical Representation

- *Atom*: predicate symbol and args
 - ◆ Use these to represent both fixed and dynamic relations

```
\begin{array}{lll} \operatorname{adjacent}(l,l') & \operatorname{attached}(p,l) & \operatorname{belong}(k,l) \\ \operatorname{occupied}(l) & \operatorname{at}(r,l) \\ \operatorname{loaded}(r,c) & \operatorname{unloaded}(r) \\ \operatorname{holding}(k,c) & \operatorname{empty}(k) \\ \operatorname{in}(c,p) & \operatorname{on}(c,c') \\ \operatorname{top}(c,p) & \operatorname{top}(\operatorname{pallet},p) \end{array}
```

- Ground expression: contains no variable symbols e.g., in(c1,p3)
- *Unground* expression: at least one variable symbol e.g., in(c1,x)
- Substitution: $\theta = \{x_1 \leftarrow v_1, x_2 \leftarrow v_2, ..., x_n \leftarrow v_n\}$
 - lacktriangle Each x_i is a variable symbol; each v_i is a term
- Instance of e: result of applying a substitution θ to e
 - lacktriangle Replace variables of e simultaneously, not sequentially

States

- *State*: a set *s* of ground atoms
 - lackloais The atoms represent the things that are true in one of Σ 's states
 - ◆ Only finitely many ground atoms, so only finitely many possible states

Figure 2.2: The DWR state s_1 ={attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1), on(c3,c1), on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2), occupied(loc2), unloaded(r1)}.

Operators

- *Operator*: a triple o = (name(o), precond(o), effects(o))
 - lack name(o) is a syntactic expression of the form $n(x_1,...,x_k)$
 - » n: operator symbol must be unique for each operator
 - x_1, \dots, x_k : variable symbols (parameters)
 - must include every variable symbol in o
 - ◆ precond(*o*): *preconditions*
 - » literals that must be true in order to use the operator
 - effects(*o*): *effects*
 - » literals the operator will make true

```
take(k, l, c, d, p)

;; crane k at location l takes c off of d in pile p

precond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)

effects: holding(k, c), \neg empty(k), \neg in(c, p), \neg top(c, p), \neg on(c, d), top(d, p)
```

Actions

 Action: ground instance (via substitution) of an operator


```
\mathsf{take}(k, l, c, d, p)
   ;; crane k at location l takes c off of d in pile p
   precond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)
              \mathsf{holding}(k,c), \neg \mathsf{empty}(k), \neg \mathsf{in}(c,p), \neg \mathsf{top}(c,p), \neg \mathsf{on}(c,d), \mathsf{top}(d,p)
   effects:
 take(crane1,loc1,c3,c1,p1)
    ;; crane crane1 at location loc1 takes c3 off c1 in pile p1
    precond: belong(crane1,loc1), attached(p1,loc1),
                empty(crane1), top(c3,p1), on(c3,c1)
               holding(crane1,c3), \negempty(crane1), \negin(c3,p1),
    effects:
                \neg top(c3,p1), \neg on(c3,c1), top(c1,p1)
```

Notation

- Let S be a set of literals. Then
 - \bullet S^+ = {atoms that appear positively in S}
 - \bullet S^- = {atoms that appear negatively in S}
- More specifically, let a be an operator or action. Then
 - \bullet precond⁺(a) = {atoms that appear positively in a's preconditions}
 - \bullet precond⁻(a) = {atoms that appear negatively in a's preconditions}
 - \bullet effects⁺(a) = {atoms that appear positively in a's effects}
 - \bullet effects⁻(a) = {atoms that appear negatively in a's effects}

```
take(k, l, c, d, p)

;; crane k at location l takes c off of d in pile p

precond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)

effects: holding(k, c), \neg empty(k), \neg in(c, p), \neg top(c, p), \neg on(c, d), top(d, p)

\spadesuit effects+(take(k, l, c, d, p)) = {holding(k, c), top(d, p)}
```

 \bullet effects⁻(take $(k,l,c,d,p) = \{\text{empty}(k), \text{in}(c,p), \text{top}(c,p), \text{on}(c,d)\}$

Applicability

- An action a is applicable to a state s if s satisfies precond(a),
 - lacktriangle i.e., if precond⁺(a) \subseteq s and precond⁻(a) \cap s = \emptyset
- Here are an action and a state that it's applicable to:


```
take(crane1,loc1,c3,c1,p1)

;; crane crane1 at location loc1 takes c3 off c1 in pile p1
precond: belong(crane1,loc1), attached(p1,loc1),
empty(crane1), top(c3,p1), on(c3,c1)
effects: holding(crane1,c3), ¬empty(crane1), ¬in(c3,p1),
¬top(c3,p1), ¬on(c3,c1), top(c1,p1)
```

Result of Performing an Action

• If a is applicable to s, the result of performing it is

```
\gamma(s,a) = (s - \text{effects}^-(a)) \cup \text{effects}^+(a)
```

◆ Delete the negative effects, and add the positive ones

```
take(crane1,loc1,c3,c1,p1)

;; crane crane1 at location loc1 takes c3 off c1 in pile p1
precond: belong(crane1,loc1), attached(p1,loc1),
empty(crane1), top(c3,p1), on(c3,c1)
effects: holding(crane1,c3), ¬empty(crane1), ¬in(c3,p1),
¬top(c3,p1), ¬on(c3,c1), top(c1,p1)
```



```
move(r, l, m) • Planning domain: : robot r moves from location l to location m
```

- language plus operators
- ◆ Corresponds to a set of state-transition systems
 - Example: operators for the DWR domain

- ;; robot r moves from location l to location m precond: $\operatorname{adjacent}(l,m),\operatorname{at}(r,l),\neg\operatorname{occupied}(m)$ effects: $\operatorname{at}(r,m),\operatorname{occupied}(m),\neg\operatorname{occupied}(l),\neg\operatorname{at}(r,l)$
- load(k, l, c, r);; crane k at location l loads container c onto robot rprecond: belong(k, l), holding(k, c), at(r, l), unloaded(r)effects: empty(k), \neg holding(k, c), loaded(r, c), \neg unloaded(r)
- unload(k, l, c, r);; crane k at location l takes container c from robot r

effects:

- $\begin{array}{ll} \text{precond: } \mathsf{belong}(k,l), \mathsf{at}(r,l), \mathsf{loaded}(r,c), \mathsf{empty}(k) \\ \mathsf{effects:} & \neg\, \mathsf{empty}(k), \mathsf{holding}(k,c), \mathsf{unloaded}(r), \neg\, \mathsf{loaded} \end{array}$
- $\operatorname{put}(k,l,c,d,p)$;; crane k at location l puts c onto d in pile p
 - precond: belong(k, l), attached(p, l), holding(k, c), top(d, p) effects: \neg holding(k, c), empty(k), in(c, p), top(c, p), on(c, d), \neg top(d, p)
- take(k, l, c, d, p);; crane k at location l takes c off of d in pile pprecond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)

 $\mathsf{holding}(k,c), \neg \, \mathsf{empty}(k), \neg \, \mathsf{in}(c,p), \neg \, \mathsf{top}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{top}(d,p)$

Planning Problems

- Given a planning domain (language *L*, operators *O*)
 - Statement of a planning problem: a triple $P=(O, s_0, g)$
 - » O is the collection of operators
 - s_0 is a state (the initial state)
 - » g is a set of literals (the goal formula)
 - The actual *planning problem*: $P = (\Sigma, s_0, S_g)$
 - s_0 and S_g are as above
 - » $\Sigma = (S, A, \gamma)$ is a state-transition system
 - $S = \{\text{all sets of ground atoms in } L\}$
 - $A = \{$ all ground instances of operators in $O\}$
 - » γ = the state-transition function determined by the operators
- I'll often say "planning problem" when I mean the statement of the problem

Plans and Solutions

- *Plan*: any sequence of actions $\sigma = \langle a_1, a_2, ..., a_n \rangle$ such that each a_i is a ground instance of an operator in O
- The plan is a *solution* for $P=(O,s_0,g)$ if it is executable and achieves g
 - lacktriangle i.e., if there are states $s_0, s_1, ..., s_n$ such that

```
  \gamma(s_0, a_1) = s_1
```

$$\gamma(s_1, a_2) = s_2$$

» ...

$$> \gamma(s_{n-1},a_n) = s_n$$

 $\gg s_n$ satisfies g

Example

- Let $P_1 = (O, s_1, g_1)$, where
 - ◆ *O* is the set of operators given earlier

 $ightharpoonup s_1=\{attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1), on(c3,c1), on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2), occupied(loc2), unloaded(r1)\}.$

Example (continued)

- Here are three solutions for P_1 :
 - ♦ (take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1), move(r1,loc1,loc2), move(r1,loc2,loc1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2))
 - \(\take(\text{crane1,loc1,c3,c1,p1}), \text{ move(r1,loc2,loc1),} \)
 \(\text{load(crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{ \text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{ \text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{ \text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{crane1,loc1,c3,r1} \)
 \(\text{crane1,loc1,loc2} \)
 \(\text{crane1,loc1,c3,r1} \)
 \(\text{crane1,loc1,c3,r1} \)
 \(\text{crane1,loc1,loc2} \)
 \(\text{crane1,loc1,c3,r1} \)
 \(\text{crane1,loc1,c3,r1} \)
 \(\text{crane1,loc1,loc2} \)
 \(\text{crane1,loc2,loc2} \)
 \(\text{cran
 - \[
 \left(\text{move}(r1,\loc2,\loc1), \text{ take}(\text{crane1},\loc1,\text{c3},\text{c1},\p1), \\
 \load(\text{crane1},\loc1,\text{c3},\text{r1}), \text{ move}(r1,\loc1,\loc2)\rangle
 \]
- Each of them produces the state shown here:

Example (continued)

- The first is *redundant*: can remove actions and still have a solution
 - ♦ (take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1), move(r1,loc1,loc2), move(r1,loc2,loc1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2))
 - \(\take(\text{crane1,loc1,c3,c1,p1}), \text{ move(r1,loc2,loc1),} \)
 \(\text{load(crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{ \text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{ \text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{ \text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{crane1,loc1,c3,r1), move(r1,loc1,loc2)} \)
 \(\text{crane1,loc1,c3,r1} \)
 \(\text{crane1,loc1,loc2} \)
 \(\text{crane1,loc1,c3,r1} \)
 \(\text{crane1,loc1,c3,r1} \)
 \(\text{crane1,loc1,loc2} \)
 \(\text{crane1,loc1,c3,r1} \)
 \(\text{crane1,loc1,c3,r1} \)
 \(\text{crane1,loc1,loc2} \)
 \(\text{crane1,loc2,loc2} \)
 \(\text{cran
- The 2nd and 3rd are *irredundant* and *shortest*

Set-Theoretic Representation

Like classical representation, but restricted to propositional logic

• States:

◆ Instead of a collection of ground atoms ...
{on(c1,pallet), on(c1,r1), on(c1,c2), ..., at(r1,l1), at(r1,l2), ...}
... use a collection of propositions (boolean variables):
{on-c1-pallet, on-c1-r1, on-c1-c2, ..., at-r1-l1, at-r1-l2, ...}

• Instead of operators like this one,

```
 \begin{array}{l} \mathsf{take}(k,l,c,d,p) \\ \mathsf{;;} \ \mathsf{crane} \ k \ \mathsf{at} \ \mathsf{location} \ l \ \mathsf{takes} \ c \ \mathsf{off} \ \mathsf{of} \ d \ \mathsf{in} \ \mathsf{pile} \ p \\ \mathsf{precond:} \ \mathsf{belong}(k,l), \mathsf{attached}(p,l), \mathsf{empty}(k), \mathsf{top}(c,p), \mathsf{on}(c,d) \\ \mathsf{effects:} \ \ \mathsf{holding}(k,c), \neg \, \mathsf{empty}(k), \neg \, \mathsf{in}(c,p), \neg \, \mathsf{top}(c,p), \neg \, \mathsf{on}(c,d), \mathsf{top}(d,p) \\ \end{array}
```

take all of the operator instances,

e.g., this one,

```
take(crane1,loc1,c3,c1,p1)

;; crane crane1 at location loc1 takes c3 off c1 in pile p1

precond: belong(crane1,loc1), attached(p1,loc1),

empty(crane1), top(c3,p1), on(c3,c1)

effects: holding(crane1,c3), ¬empty(crane1), ¬in(c3,p1),

¬top(c3,p1), ¬on(c3,c1), top(c1,p1)
```

and rewrite ground atoms as propositions

```
take-crane1-loc1-c3-c1-p1

precond: belong-crane1-loc1, attached-p1-loc1,
empty-crane1, top-c3-p1, on-c3-c1
delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1
add: holding-crane1-c3, top-c1-p1
```

Comparison

• A set-theoretic representation is equivalent to a classical representation in which all of the atoms are ground

Exponential blowup

♦ If a classical operator contains n atoms and each atom has arity k, then it corresponds to c^{nk} actions where $c = |\{\text{constant symbols}\}|$

State-Variable Representation

- Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2)
- For properties that can change, assign values to *state variables*
 - ◆ Like fields in a record structure
- Classical and state-variable representations take similar amounts of space
 - ◆ Each can be translated into the other in low-order polynomial time move(r, l, m); robot r at location l moves to an adjacent location m precond: rloc(r) = l, adjacent(l, m)

Example: The Blocks World

- Infinitely wide table, finite number of blocks
- Ignore where a block is located on the table
- A block can sit on the table or on another block
- Want to move blocks from one configuration to another

- Can be expressed as a special case of DWR
 - ◆ But the usual formulation is simpler
- I'll give classical, set-theoretic, and state-variable formulations
 - ◆ For the case where there are five blocks

Classical Representation: Symbols

- Constant symbols:
 - ◆ The blocks: a, b, c, d, e
- Predicates:
 - lack ontable(x) block x is on the table
 - \bullet on(x,y) block x is on block y
 - lacktriangle clear(x) block x has nothing on it
 - lack holding(x) the robot hand is holding block x
 - handempty the robot hand isn't holding anything

Classical Operators

unstack(x,y)

Precond: on(x,y), clear(x), handempty

Effects: $\sim \text{on}(x,y)$, $\sim \text{clear}(x)$, $\sim \text{handempty}$,

holding(x), clear(y)

stack(x,y)

Precond: holding(x), clear(y)

Effects: \sim holding(x), \sim clear(y),

on(x,y), clear(x), handempty

pickup(x)

Precond: ontable(x), clear(x), handempty

Effects: \sim ontable(x), \sim clear(x),

 \sim handempty, holding(x)

putdown(x)

Precond: holding(x)

Effects: \sim holding(x), ontable(x),

clear(x), handempty

Set-Theoretic Representation: Symbols

- For five blocks, there are 36 propositions
- Here are 5 of them:

ontable-a - block a is on the table

on-c-a - block c is on block a

clear-c - block c has nothing on it

holding-d - the robot hand is holding block d

handempty - the robot hand isn't holding anything

Set-Theoretic Actions

Fifty different actions

Here are four of them:

unstack-c-a

Pre: on-c,a, clear-c, handempty

Del: on-c,a, clear-c, handempty

Add: holding-c, clear-a

stack-c-a

Pre: holding-c, clear-a

Del: holding-c, clear-a

Add: on-c-a, clear-c, handempty

pickup-c

Pre: ontable-c, clear-c, handempty

Del: ontable-c, clear-c, handempty

Add: holding-c

putdown-c

Pre: holding-c

Del: holding-c

Add: ontable-c, clear-c, handempty

State-Variable Representation: Symbols

Constant symbols:

a, b, c, d, e of type block

0, 1, table, nil of type other

State variables:

pos(x) = y if block x is on block y

pos(x) = table if block x is on the table

pos(x) = nil if block x is being held

clear(x) = 1 if block x has nothing on it

clear(x) = 0 if block x is being held or has another block on it

holding = x if the robot hand is holding block x

holding = nil if the robot hand is holding nothing

State-Variable Operators

unstack(x : block, y : block)

Precond: pos(x)=y, clear(y)=0, clear(x)=1, holding=nil

Effects: pos(x)=nil, clear(x)=0, holding=x, clear(y)=1

stack(x : block, y : block)

Precond: holding=x, clear(x)=0, clear(y)=1

Effects: holding=nil, clear(y)=0, pos(x)=y, clear(x)=1

pickup(x : block)

Precond: pos(x)=table, clear(x)=1, holding=nil

Effects: pos(x)=nil, clear(x)=0, holding=x

putdown(x : block)

Precond: holding=x

Effects: holding=nil, pos(x)=table, clear(x)=1

Expressive Power

- Any problem that can be represented in one representation can also be represented in the other two
- Can convert in linear time and space, except when converting to set-theoretic (where we get an exponential blowup)

Comparison

- Classical representation
 - ◆ The most popular for classical planning, partly for historical reasons
- Set-theoretic representation
 - ◆ Can take much more space than classical representation
 - ◆ Useful in algorithms that manipulate ground atoms directly » e.g., planning graphs (Chapter 6), satisfiability (Chapters 7)
 - ◆ Useful for certain kinds of theoretical studies
- State-variable representation
 - ◆ Equivalent to classical representation in expressive power
 - ◆ Less natural for logicians, more natural for engineers
 - Useful in non-classical planning problems as a way to handle numbers, functions, time

Planning Algorithms

Motivation

- Nearly all planning procedures are search procedures
- Different planning procedures have different search spaces
- State-space planning
 - ◆ Each node represents a state of the world
 - » A plan is a path through the space
- Plan-space planning
 - ◆ Each node is a set of partially-instantiated operators, plus some constraints
 - » Impose more and more constraints, until we get a plan

Outline

- State-space planning
 - ◆ Forward search
 - ◆ Backward search
 - **♦** Lifting
 - **♦** STRIPS
 - ♦ Block-stacking

Deterministic Implementations

• Some deterministic implementations of forward search:

- breadth-first search
- depth-first search
- ♦ best-first search (e.g., A*)
- greedy search

- Breadth-first and best-first search are sound and complete
 - ◆ But they usually aren't practical because they require too much memory
 - ◆ Memory requirement is exponential in the length of the solution
- In practice, more likely to use depth-first search or greedy search
 - ◆ In general, sound but not complete
 - » But classical planning has only finitely many states
 - » Thus, can make depth-first search complete by doing loop-checking

Branching Factor of Forward Search

- Forward search can have a very large branching factor
 - ◆ E.g., many applicable actions that don't progress toward goal
- Why this is bad:
 - ◆ Deterministic implementations can waste time trying lots of irrelevant actions
- Need a good heuristic function and/or pruning procedure

Backward Search

- For forward search, we started at the initial state and computed state transitions
 - new state = $\gamma(s,a)$
- For backward search, we start at the goal and compute inverse state transitions
 - new set of subgoals = $\gamma^{-1}(g, a)$
- To define $\gamma^{-1}(g,a)$, must first define *relevance*:
 - lacktriangle An action a is relevant for a goal g if
 - » a makes at least one of g's literals true
 - $g \cap \text{effects}(a) \neq \emptyset$
 - » a does not make any of g's literals false
 - $g^+ \cap \text{effects}^-(a) = \emptyset$ and $g^- \cap \text{effects}^+(a) = \emptyset$

Inverse State Transitions

- If a is relevant for g, then
 - $\gamma^{-1}(g,a) = (g \text{effects(a)}) \cup \text{precond}(a)$
- Otherwise $\gamma^{-1}(g,a)$ is undefined

- Example: suppose that
 - \bullet $g = \{on(b1,b2), on(b2,b3)\}$
- What is $\gamma^{-1}(g,a)$?

```
Backward-search(O, s_0, g)
   \pi \leftarrow the empty plan
    loop
        if s_0 satisfies g then return \pi
       A \leftarrow \{a | a \text{ is a ground instance of an operator in } O
                    and \gamma^{-1}(g,a) is defined}
       if A = \emptyset then return failure
        nondeterministically choose an action a \in A
        \pi \leftarrow a.\pi
       g \leftarrow \gamma^{-1}(g, a)
```


Efficiency of Backward Search

- Backward search can *also* have a very large branching factor
 - igoplus E.g., an operator o that is relevant for g may have many ground instances a_1 , a_2 , ..., a_n such that each a_i 's input state might be unreachable from the initial state
- As before, deterministic implementations can waste lots of time trying all of them

Lifting

foo(x,y) precond: p(x,y) effects: q(x)

- Can reduce the branching factor of backward search if we *partially* instantiate the operators
 - ♦ this is called *lifting*

$$\begin{array}{c}
\text{foo}(a_1, y) \\
p(a_1, y)
\end{array} \qquad q(a_1)$$

Lifted Backward Search

- More complicated than Backward-search
 - ◆ Have to keep track of what substitutions were performed
- But it has a much smaller branching factor

```
Lifted-backward-search(O, s_0, g)
    \pi \leftarrow the empty plan
    loop
        if s_0 satisfies g then return \pi
        A \leftarrow \{(o,\theta)|o \text{ is a standardization of an operator in } O,
                     \theta is an mgu for an atom of g and an atom of effects<sup>+</sup>(o),
                     and \gamma^{-1}(\theta(g), \theta(o)) is defined}
        if A = \emptyset then return failure
        nondeterministically choose a pair (o, \theta) \in A
        \pi \leftarrow the concatenation of \theta(o) and \theta(\pi)
        g \leftarrow \gamma^{-1}(\theta(g), \theta(o))
```

The Search Space is Still Too Large

- Lifted-backward-search generates a smaller search space than Backward-search, but it still can be quite large
 - Suppose actions a, b, and c are independent, action d must precede all of them, and there's no path from s_0 to d's input state
 - ◆ We'll try all possible orderings of *a*, *b*, and *c* before realizing there is no solution

Plan-space planning

Motivation

State-Space Planning

Problem with state-space search

◆ In some cases we may try many different orderings of the same actions before realizing there is no solution

• Least-commitment strategy: don't commit to orderings, instantiations, etc., until necessary

Outline

- Basic idea
- Open goals
- Threats
- The PSP algorithm
- Long example
- Comments

Plan-Space Planning - Basic Idea

- Backward search from the goal
- Each node of the search space is a *partial plan*
 - » A set of partially-instantiated actions
 - » A set of constraints
- Types of constraints:
 - precedence constraint:a must precede b
 - binding constraints:
 - » inequality constraints, e.g., $v_1 \neq v_2$ or $v \neq c$
 - » equality constraints (e.g., $v_1 = v_2$ or v = c) and/or substitutions
 - causal link:
 - » use action a to establish the precondition p needed by action b

Plan-Space Search

- Start with an initial plan (will explain this later)
- Make more and more refinements to the plan, until a solution is found
- If there are no refinements to a plan during search, then backtrack
- Questions:
 - ◆ How to tell we have a solution?
 - » No more *flaws* in the plan
 - ◆ How to refine a plan?
 - » Resolve the existing *flaws*

Flaws: 1. Open Goals

- Open goal:
 - ◆ An action a has a precondition p that we haven't decided how to establish

foo(x)
Precond: ...
Effects: p(x)

 $\begin{array}{c|c} p(z) \\ \hline baz(z) \\ Precond: p(z) \\ Effects: \dots \end{array}$

- Resolving the flaw:
 - Find an action b
 - (either already in the plan, or insert it)
 - that can be used to establish p
 - can precede a and produce p
 - Instantiate variables and/or constrain variable bindings
 - Create a causal link

Flaws: 2. Threats

- Threat: a deleted-condition interaction
 - lacktriangle Action a establishes a precondition (e.g., pq(x)) of action b
 - lacktriangle Another action c is capable of deleting pq
- Resolving the flaw:
 - impose a constraint toprevent c from deleting pq
- Three possibilities:
 - lacktriangle Make b precede c
 - lacktriangle Make c precede a
 - ◆ Constrain variable(s) to prevent c from deleting pq

The PSP Procedure

```
di
PSP(\pi)
    flaws \leftarrow \mathsf{OpenGoals}(\pi) \cup \mathsf{Threats}(\pi)
    if flaws = \emptyset then return(\pi)
    select any flaw \phi \in flaws
    resolvers \leftarrow \mathsf{Resolve}(\phi, \pi)
    if resolvers = \emptyset then return(failure)
    nondeterministically choose a resolver \rho \in resolvers
    \pi' \leftarrow \mathsf{Refine}(\rho, \pi)
    return(PSP(\pi'))
end
```

- PSP is both sound and complete
- It returns a partially ordered solution plan
 - ◆ Any total ordering of this plan will achieve the goals
 - Or could execute actions in parallel if the environment permits it

Initial plan

Fail!

Solution!

d

Example

- Similar (but not identical) to an example in Russell and Norvig's *Artificial Intelligence: A Modern Approach* (1st edition)
- Operators:
 - **♦** Start

Precond: none

Start and **Finish** are dummy actions that we'll use instead of the initial state and goal

Effects: At(Home), sells(HWS,Drill), Sells(SM,Milk), Sells(SM,Banana)

Finish

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)

Effects: none

♦ Go(*l*,*m*)

Precond: At(I)

Effects: At(m), \neg At(I)

♦ Buy(*p*,*s*)

Precond: At(s), Sells(s,p)

Effects: Have(*p*)

- Need to give PSP a plan π as its argument
 - ◆ Initial plan: **Start**, **Finish**, and an ordering constraint

```
PSP(\pi)
    flaws \leftarrow \mathsf{OpenGoals}(\pi) \cup \mathsf{Threats}(\pi)
    if flaws = \emptyset then return(\pi)
    select any flaw \phi \in flaws
    resolvers \leftarrow \mathsf{Resolve}(\phi, \pi)
    if resolvers = \emptyset then return(failure)
    nondeterministically choose a resolver \rho \in resolvers
    \pi' \leftarrow \mathsf{Refine}(\rho, \pi)
    return(PSP(\pi'))
end
```

Start

At(Home), Sells(HWS,Drill), Effects:

Sells(SM,Milk), Sells(SM,Bananas)

Have(Drill) Have(Milk) | Have(Bananas) Precond:

At(Home)

Finish

- The first three refinement steps
 - ◆ These are the only possible ways to establish the Have preconditions

- Three more refinement steps
 - ◆ The only possible ways to establish the Sells preconditions

- Two more refinements: the only ways to establish At(HWS) and At(SM)
 - ◆ This time, several threats occur

- Finally, a nondeterministic choice: how to resolve the threat to $At(s_1)$?
 - Our choice: make Buy(Drill) precede Go(SM)
 - This also resolves the other two threats

- Nondeterministic choice: how to establish $At(l_1)$?
 - We'll do it from Start, with l_1 =Home

- Nondeterministic choice: how to establish $At(l_2)$?
 - We'll do it from Go(Home, HWS), with l_2 = HWS

- The only possible way to establish At(Home) for Finish
 - ◆ This creates a bunch of threats

- To remove the threats to At(SM) and At(HWS), make them precede $Go(l_3, Home)$
 - ◆ This also removes the other threats

Final Plan

• Establish At(l_3) with l_3 =SM

Discussion

- How to choose which flaw to resolve first and how to resolve it?
 - ◆ There are lots of things!!!
- PSP doesn't commit to orderings and instantiations until necessary
 - ◆ Avoids generating search trees like this one:

- Problem: how to prune infinitely long paths?
 - ◆ In state-space planning, loop detection is based on recognizing states we've seen before
 - ◆ In a partially ordered plan, we don't know the states
- Can we prune if we see the same *action* more than once?

$$\dots$$
 go(b,a) — go(a,b) – go(b,a) — at(a)

◆ No. Sometimes we might need the same action several times in different states of the world (see next slide)

Example

• 3-digit binary counter starts at 000, want to get to 110

$$s_0 = \{d3=0, d2=0, d1=0\}$$

 $g = \{d3=1, d2=1, d1=0\}$

Operators to increment the counter by 1:

incr0

Precond: $d_1=0$

Effects: $d_1=1$

incr01

Precond: $d_2 = 0$, $d_1 = 1$

Effects: $d_2=1$, $d_1=0$

incr011

Precond: $d_3=0$, $d_2=1$, $d_1=1$

Effects: $d_3=1$, $d_2=0$, $d_1=0$

A Weak Pruning Technique

- Can prune all partial plans of *n* or more actions, where $n = |\{\text{all possible states}\}|$
 - ◆ This doesn't help very much
- There's no good pruning technique for plan-space planning
 - ◆ Russell and Norvig's *Artificial Intelligence: A Modern Approach* describes a preliminary approach
 - ◆ In early 90's, researchers have looked at learning pruning rules during PSP planning

Thanks and Questions!