Unidade 4 - Teste U de Mann-Whitney

É um teste alternativo ao teste paramétrico t-Student para duas médias. Hipóteses:

 H_{\circ} : população 1 = população 2 (os tratamentos são iguais);

 H_1 : população 1 \neq população 2 (os tratamentos são diferentes).

Procedimento:

a) determinar os valores de n1 e n2, onde:

n1 = número de casos do grupo menor;

n2 = número de casos do grupo maior.

b) dispor em conjunto os escores dos dois grupos, atribuindo o posto 1 ao escore que for menor algebricamente. Os postos variam de 1 a n = n1 + n2;

Às observações empatadas atribuir a média dos postos correspondentes.

 c) determinar o valor de U, mediante contagem ou mediante aplicação das fórmulas:

$$U = n_1 \cdot n_2 + \frac{n_1(n_1+1)}{2} - R_1$$
 ou $U' = n_1 \cdot n_2 + \frac{n_2(n_2+1)}{2} - R_2$

Onde:

R1 = soma dos postos atribuídos ao grupo cujo tamanho da amostra é n1;

R2 = soma dos postos atribuídos ao grupo cujo tamanho da amostra é n2;

Para a realização do teste, consideraremos o U de menor valor.

Regras de decisão:

Dependem dos valores de n₁ e n₂.

- se n2 \leq 8, uma tabela específica mostra a probabilidade exata p. Se p-valor $\leq \alpha,$ rejeita-se H_0
- se $9 \le n2 \le 20$, utilizar outra tabela em que encontraremos um valor crítico de U. Se U calculado > U tabelado, não rejeitamos H_0
 - se n2 > 20, utilizar a aproximação pela normal:

$$Z = \frac{U - \frac{n_1 \cdot n_2}{2}}{\sqrt{\frac{n_1(n_2)(n_1 + n_2 + 1)}{12}}}$$

Exemplo:

São apresentados, na Tabela abaixo, os minutos que dois grupos diferentes levaram para completar um teste escrito para renovação de sua carteira de motorista. Aplique o teste U de Mann-Whitney para testar, ao nível de 5%, se existe diferença significativa entre os tempos que o grupo 1 e o grupo 2 levam para completar o teste escrito, respectivamente.

Grupo 1	Grupo 2
9,9	8,6
7,4	10,9
8,9	9,8
9,1	10,7
7,7	9,4
9,7	10,3
11,8	7,3
7,5	11,5
9,2	7,6
10,0	9,3
10,2	8,8
9,5	9,6
10,8	
8,0	
11,0	
-	

Resolução:

H₀: os grupos são iguais;

H₁: os grupos são diferentes.

Primeiramente vamos obter n_1e n_2 .

 $n_1 = 12$

 $n_2 = 15$

Agora vamos atribuir os postos a todas as observações em conjuntos. Não separaremos por grupos. Depois somaremos os postos do grupo 1(R1) e do grupo 2 (R2)

Grupo 1	Postos	Grupo 2	Postos		
9,9	18	8,6	7		
7,4	2	10,9	24		
8,9	9	9,8	17		
9,1	10	10,7	22		
7,7	5	9,4	13 21 1		
9,7	16	10,3			
11,8	27	7,3			
7,5	3	11,5	26		
9,2	11	7,6	4		
10,0	19	9,3	12		
10,2	20	8,8	8		
9,5	14	9,6	15		
10,8	23		R1 = 170		
8,0	6				
11,0	25				
	R2 = 208				

Obtendo os valores de U

$$U = 12 \times 15 + \frac{12(12+1)}{2} - 170 = 88$$
 e $U' = 12 \times 15 + \frac{15(15+1)}{2} - 208 = 92$

O U calculado será o menor, portanto U=88.

Pela tabela do teste:

Bilateral ($\alpha = 0.05$) Unilateral ($\alpha = 0.025$)

n_2 n_1	9	10	11	12	13	14	15	16	17	18	19	20
1												
2	0	0	0	1	1	1	1	1	2	2	2	2
3	2	3	3	4	4	5	5	6	6	7	7	8
4	4	5	6	7	8	9	10	11	11	12	13	13
5	7	8	9	11	12	13	14	15	17	18	19	20
6	10	11	13	14	16	17	19	21	22	24	25	27
7	12	14	16	18	20	22	24	26	28	30	32	34
8	15	17	19	22	24	26	29	31	34	36	38	41
9	17	20	23	26	28	31	34	37	39	42	45	48
10	20	23	26	29	33	36	39	42	45	48	52	55
11	23	26	30	33	37	40	44	47	51	55	58	62
12	26	29	33	37	41	45	49	53	57	61	65	69
13	28	33	37	41	45	50	54	59	63	67	72	76
14	31	36	40	45	50	55	59	64	67	74	78	83
15	34	39	44	49	54	59	64	70	75	80	85	90
16	37	42	47	53	59	64	70	75	81	86	92	98
17	39	45	51	57	63	67	75	81	87	93	99	105
18	42	48	55	61	67	74	80	86	93	99	106	112
19	45	52	58	65	72	78	85	92	99	106	113	119
20	48	55	62	69	76	83	90	98	105	112	119	127

Logo, $U_{0,05}$ = 49. Como o U calculado é maior que $U_{0,05}$ (88 > 49) não rejeitamos H_0 . Não existem evidências de que o tempo de execução do teste seja diferente nos dois grupos.