Chapitre 4

LES GRANDEURS SINUSOIDALES

I. Grandeur sinusoïdale

I.1. Présentation

La figure 1 ci-contre représente l'évolution temporelle d'une grandeur sinusoïdale. Une telle grandeur est représentée par la fonction :

$$x(t) = X_m \cos(\frac{2\pi}{T}t + \phi_0)$$
 avec T la période de la tension (s)

 φ_0 la phase à l'origine des dates (rad)

L'amplitude est positive. La phase permet de fixer la valeur de la grandeur sinusoïdale à t = 0 (cf I.2).

La pulsation est une grandeur définie par $\omega = \frac{2\pi}{T} = 2\pi \, \text{f.}$ Elle s'exprime en rad.s⁻¹. On peut donc écrire $x(t) = X_m \cos(\omega t + \phi_0)$

Une grandeur sinusoïdale est une grandeur alternative et périodique.

C'est l'amplitude qui détermine l'unité de la grandeur étudiée. Ainsi, pour une tension X_m s'exprimera en volt (V), pour une intensité X_m s'exprimera en ampère (A) etc...

Remarque: $X_m \cos(\omega t + \Phi_0) = X_m \sin(\omega t + \Phi_0 + \pi/2) = X_m \sin(\omega t + \Phi_0')$ avec $\Phi_0' = \Phi_0 + \pi/2$. Ainsi, pour représenter une tension sinusoïdale, il est possible d'utiliser soit la fonction cosinus, soit la fonction sinus. L'amplitude et la période (donc la pulsation) sont les mêmes, seule la phase à l'origine des dates est modifiée.

I.2 Phase à l'origine des dates et déphasage entre deux tensions synchrones

A t = 0 s, la tension n'est pas forcément maximale.

Elle peut-être nulle, minimale etc.... La phase à l'origine des dates permet de tenir compte des conditions initiales.

Le déphasage entre deux tensions synchrones (tensions de même pulsation donc de même fréquence) correspond à la différence de phase à l'origine des tensions.

Si V_E atteint son maximum avant V_S on dit que V_E est en avance de phase sur V_S . Dans le cas contraire, V_E est en retard de phase sur V_S .

Sur la figure 2, V_S est en avance de phase sur V_E . C'est l'inverse sur la figure 3. La valeur absolue du déphasage est définie par :

$$\Delta \phi = rac{d imes 2\pi}{D}$$
 ou $\Delta \Phi$ =

Remarque : - pour mesurer Δt , il faut prendre le plus

petit décalage temporel entre deux maxima consécutifs de v_s et v_F .

Si on a deux tensions : $V_1cos(wt + \phi_1)$ et $V_2cos(wt + \phi_2)$ (ou $V_1sin(wt + \phi_1)$ et $V_2sin(wt + \phi_2)$, le déphasage entre ces deux tensions est $\Delta \phi = \phi_2 - \phi_1$. On prend généralement $\Delta \phi$ dans $]-\pi, +\pi]$.

- Si $\Delta \varphi$ > 0 la tension 2 est en avance de phase sur la tension 1.
- Si $\Delta \varphi$ < 0 la tension 2 est en retard de phase sur la tension 1.
- Si $\Delta \varphi$ = 0 les deux tensions sont en phase.
- Si $\Delta \phi = \pm \pi$ les deux tensions sont en opposition de phase.
- Si $\Delta \phi$ = $\pm \pi/2$ les deux tensions sont en quadrature de phase.

I.3 Introduction d'une composante continue

Certaines tensions ne sont pas des tensions sinusoïdales « pures ». Elles possèdent une composante continue. On a alors dans ce cas : $V(t) = \langle V(t) \rangle + V\cos(\omega t + \phi)$ où $\langle V(t) \rangle$ représente la composante continue du signal (qui correspond à la valeur moyenne, cf II.1)

II. Valeur moyenne et valeur efficace

II.1 Valeur moyenne

Soit V(t) un signal périodique de période T. On note $\langle V(t) \rangle$ sa valeur moyenne. Par définition :

<V(†)> =

Application: calculer la valeur moyenne d'un signal sinusoïdal

On retiendra que $<\cos(\omega t + \phi)> = <\sin(\omega t + \phi)> = 0$ quelles que soient les valeurs de ω et de ϕ

II.2 Valeur efficace

Soit V(t) un signal périodique de période T. On note V_{eff} sa valeur efficace. Par définition :

 $V_{eff} =$

Application: calculer la valeur moyenne d'un signal sinusoïdal

La tension efficace correspond à la tension continue qui aurait, en moyenne, le même effet sur un récepteur résistif.