Algorithms II Cheat Sheet

Tips

Apply an algorithm you know in a clever way, don't write a new algorithm.

Set notation

 $A \in [10] \equiv A \in [1..10]$

Big O

Notation	Intuitive meaning	Analogue
$f(n) \in O(g(n))$	f grows at most as fast as g	<u> </u>
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	\geq
$f(n) \in \Theta(g(n))$	f at the same rate as g	=
$f(n) \in o(g(n))$	f grows strictly less fast than g	<
$f(n) \in \omega(g(n))$	f grows strictly faster than g	>

Notation	Formal definition
$f(n) \in O(g(n))$	$\exists C, n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
$f(n) \in \Omega(g(n))$	$\exists c, n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$
$f(n) \in \Theta(g(n))$	$\exists c, C, n_0 : \forall n \geq n_0 : c \cdot g(n) \leq f(n) \leq C \cdot g(n)$
$f(n) \in o(g(n))$	$\forall C : \exists n_0 : \forall n \geq n_0 : f(n) \leq C \cdot g(n)$
$f(n) \in \omega(g(n))$	$\forall c \colon \exists n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$

Interval Scheduling

A **request** is a pair of integers (s, f) with $0 \le s \le f$. We call s the start time and f the finish time.

A set A of requests is **compatible** if for all distinct (s, f), $(s', f') \in A$, either s' > f or s > f' — that is, the requests' time intervals don't overlap.

Interval Scheduling Problem

Input: An array \mathcal{R} of n requests $(s_1, f_1), \ldots, (s_n, f_n)$.

Desired Output: A compatible subset of \mathcal{R} of maximum possible size.

Algorithm: GREEDYSCHEDULE

Input: An array \mathcal{R} of n requests.

Output: A maximum compatible subset of \mathcal{R} .

- Sort \mathcal{R} 's entries so that $\mathcal{R} \leftarrow [(s_1, f_1), \dots, (s_n, f_n)]$ where $f_1 \leq \dots \leq f_n$. Initialise $A \leftarrow []$, lastf $\leftarrow 0$.
- foreach $i \in \{1, \ldots, n\}$ do
- if $s_i \ge lastf$ then Append (s_i, f_i) to A and update lastf $\leftarrow f_i$.
- Return A

Complexity:

Step 2 takes O(n log n)

Steps 3–6 all take O(1) time and are executed at most n times.

 \therefore totalrunningtime = O(nlogn) + O(n)O(1) =O(nlogn).

interval scheduling proofs

ODEs

ODES —	
1st Order Linear	Use integrating factor, $I = e^{\int P(x)dx}$
Separable:	$\int P(y)dy/dx = \int Q(x)$
HomogEnEous:	$\frac{\int f(y)dy/dx}{dy/dx = f(x,y) = f(xt,yt)}$
nomeganae we.	sub $y = xV$ solve, then sub
	V = y/x
Exact:	If $M(x,y) + N(x,y)dy/dx =$
	0 and $M_y = N_x$ i.e.
	$\langle M, N \rangle = \overset{\circ}{\nabla} F$ then $\int_x M +$
	$\int_{\mathcal{U}} N = F$
Order Reduction	Let $v = dy/dx$ then check
	other types
	If purely a function of y,
	$\frac{dv}{dx} = v \frac{dv}{dy}$
Variation of Parameters:	When $y'' + a_1 y' + a_2 y = F(x)$
	F contains $\ln x$, $\sec x$, $\tan x$,
	÷
Bernoulli	$y' + P(x)y = Q(x)y^n$
	$\vdots y^n$
	$y^{-n}y' + P(x)y^{1-n} = Q(x)$
	Let $U(x) = y^{1-n}(x)$
	$\frac{dU}{dx} = (1-n)y^{-n}\frac{dy}{dx}$ $\frac{1}{1-n}\frac{du}{dx} + P(x)U(x) = Q(x)$
	$\frac{1}{1-n}\frac{du}{dx} + P(x)U(x) = Q(x)$
	solve as a 1st order $x^n y^n + a_1 x^{n-1} y^{n-1} + \dots +$
Cauchy- $Euler$	
	$a_{n-1}y^{n-2} + a_ny = 0$ guess $y = x^r$
3 Cases:	guess $y = x$
1) Distinct real roots	$y = ax^{r_1} + bx^{r_2}$
2) Repeated real roots	$y = Ax^r + y_2$
2) Teepearea real reese	$Guess \ y_2 = x^r u(x)$
	Solve for $u(x)$ and choose
	one $(A = 1, C = 0)$
3) Distinct complex roots	$y = B_1 x^a \cos(b \ln x) +$
	$B_2 x^a \sin(b \ln x)$

Laplace Transforms

$$\overline{L[f](s)} = \int_0^\infty e^{-sx} f(x) dx$$

$$f(t) = t^n, n \ge 0 \qquad F(s) = \frac{n!}{s^{n+1}}, s > 0$$

$$f(t) = e^{at}, a \text{ constant} \qquad F(s) = \frac{1}{s-a}, s > a$$

$$f(t) = \sin bt, b \text{ constant} \qquad F(s) = \frac{b}{s^2 + b^2}, s > 0$$

$$f(t) = \cos bt, b \text{ constant} \qquad F(s) = \frac{s}{s^2 + b^2}, s > 0$$

$$f(t) = t^{-1/2} \qquad F(s) = \frac{\pi}{s^{1/2}}, s > 0$$

$$f(t) = \delta(t - a) \qquad F(s) = e^{-as}$$

$$f' \qquad L[f'] = sL[f] - f(0)$$

$$f''(0) \qquad L[f''] = s^2 L[f] - sf(0) - f'(0)$$

Vector Spaces

- $v_1, v_2 \in V$
- 1. $v_1 + v_2 \in V$
- $2. k \in \mathbb{F}, kv_1 \in V$
- 3. $v_1 + v_2 = v_2 + v_1$
- 4. $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$
- 5. $\forall v \in V, 0 \in V \mid 0 + v_1 = v_1 + 0 = v_1$
- 6. $\forall v \in V, \exists -v \in V \mid v + (-v) = (-v) + v = 0$
- 7. $\forall v \in V, 1 \in \mathbb{F} \mid 1 * v = v$
- 8. $\forall v \in V, k, l \in \mathbb{F}, (kl)v = k(lv)$
- 9. $\forall k \in \mathbb{F}, k(v_1 + v_2) = kv_1 + kv_2$
- 10. $\forall v \in V, k, l \in \mathbb{F}, (k+l)v = kv + lv$