0.1 Equalizers and Coequalizers

0.1.1 Equalizers

Proposition 1. In any category, if $e: E \to A$ is an equalizer of some pair of arrows, then e is monic.

Proof. Consider the diagram

$$E \xrightarrow{e} A \xrightarrow{f} B$$

$$X \downarrow y \qquad z$$

$$Z$$

in which we assume e is the equalizer of f and g. Supposing ex = ey, we want to show x = y. Put z = ex = ey. Then fz = fex = gex = gz, so there is a unique $u: Z \to E$ such that eu = z. So from ex = z follows that x = u = y.

In SETS, the equalizer would just be the set $x \in A | f(x) = g(x)$.

Suppose $f, g: R^2 \to R$ where $f(x,y) = x^2 + y^2$ and g = 1. We take the equalizer, say in TOP, which is the subspace $S = (x,y) \in R^2 | X^2 + y^2 = 1 \to R^2$ which is the unit circle in the plane!

Awodey: In abelian groups though, using the fact that

$$f(x) = g(x)$$

iff

$$(f-g)(x) = 0$$

we know that the equalizer of f and g is the same as that of the homomorphism (f-g) and the zero homomorphism $0:A\to B$, so it suffices to consider equalizers of the special form $A(h,0)\mapsto A$ for arbitrary homomorphisms $h:A\to B$. This subgroup of A sis the kernel.

Cook: In abelian groups: $G \xrightarrow{Hom\phi} H$

$$E = \{g \in G | \phi(g) = f(g)\} = \{g \in G | \phi(g) = 1_{+1}\}$$

Is the kernel of a homomorphism by definition, also equalizers don't have to exist.

0.1.2 Coequalizers

$$A \longrightarrow B \xrightarrow{c} Q$$

$$\downarrow u$$

$$Z$$

$$Z$$

This is the weakest equivalence relation that forces f(a) relates $g(a) \forall a \in A$