# An Insufficient Introduction to Spark

Part 2: RDDs and operations on them

Riccardo Murri <riccardo.murri@gmail.com>

# Spark

# What is Spark?

# Apache Spark is a general-purpose distributed computation framework.

- computation model based on directed acyclic graphs (DAG)
  - Spark does the mapping onto Map/Reduce stages
  - can do its own scheduling if no M/R engine available
- supports interactive use:
  - good for data exploration
- ► can keep data in-memory:
  - good for loop-intensive algorithms
- ► has a rich feature-set to make programming easier (in Scala, Java, Python, R)
  - including ML and graph-processing libraries

# Flexibility of Spark runtime

The spark runtime can be deployed on:

- ► a single machine (local)
- ▶ a set of pre-defined machines (stand-alone)
- ► a dedicated cluster (YARN/Mesos)

The development workflow is that you start small (local) and scale up to one of the other solutions, depending on your needs and resources.

Often, you don't need to change *any* code to go between these methods of deployment!

Recall what was hard about distributed computing:

- 1. distributing work to the available resources
- 2. orchestrating task execution
- 3. collecting results

This is what a "framework" like Spark does for us.

At its most basic, it consists of a **driver** and **workers**.

# **Spark Architecture Overview**

A running Spark system consists of a single **driver** and a set of **workers**.



#### **Driver**

- ► coordinates the work to be done
- ▶ keeps track of tasks
- communicates with the workers (and the user)



#### Workers

- ► receive tasks to be done from the driver
- ► store data in-memory or on disk
- ▶ perform calculations
- ► return results to the driver



# RDDs: basic data manipulation

# **Spark Context**

The user's entry point to Spark is the **Spark Context** which provides an interface to generate RDDs (i.e., inject data into the system).



# **Spark Context**

The user's entry point to Spark is the **Spark Context** which provides an interface to generate RDDs (i.e., inject data into the system).



rdd1 = sc.parallelize(data, 4)

```
rdd1 = sc.parallelize(data, 4)
```

This is the "Spark Context" Python object.

It is automatically available in our Jupyter notebooks and in the pyspark shell.

```
rdd1 = sc. parallelize (data, 4)
```

The .parallelize() method is used to copy data from Python into the Spark system.

```
rdd1 = sc.parallelize( data , 4)
```

Any Python sequence can be used as data.

rdd1 = sc.parallelize(data, 4)

This is the number of "partitions" to divide the data into. Each partition can be processed *independently* by a worker.

Variable sc.defaultParallelism holds the default number of executors; a good starting point for the number of partitions is sc.defaultParallelism\*4 — adjust up or down depending on size of the data.

# Loading data

```
rdd2 = sc.textFile('hdfs:///shakespeare.txt.qz')
```

For *actual*, *real* data processing you would rather read data from a file or another data source!

# Loading data

```
rdd2 = sc. textFile ('hdfs:///shakespeare.txt.gz')
```

# There are multiple functions for loading data in different ways:

- sc.textFile(): load and chunk a text file (possibly compressed)
- ▶ binaryFiles(): wholeTextFiles(): Read a directory of files. Each file is read as a single record and returned in a key-value pair, where the key is the path of each file, the value is the content of each file.
- ▶ binaryRecords(): read a binary file and chop it in records of the specified length.

# Loading data

```
rdd2 = sc.textFile(' hdfs:// /shakespeare.txt.gz')
```

All paths can be a local filesystem path (prefix file://), a HDFS location (prefix hdfs://), or any otherfilesystem visible from the *entire* Hadoop cluster.

```
rdd1 = sc.parallelize(data, 4)

rdd2 = sc.textFile('hdfs:///shakespeare.txt.gz')
```

An RDD is the result of entering unstructured data into Spark.

#### **RDD: Resilient Distributed Dataset**

An RDD is the primary interface of every Spark application:

- ▶ ordered immutable collection of arbitrary data
- provides an interface to the user to access and operate on the data
- ► keeps track of lineage
- ► tracks distribution of data across the workers

Spark applications feed data into RDDs and subsequently operate on them to compute the desired result.

#### **Transformations and Actions**

Once an RDD is created, it is **immutable**.

There are two classes of operations that can be applied to a given RDD:

- ► **transformations:** create a new (output) RDD by applying some operation on the data of the input RDD:
- ► **actions:** take data out of an RDD and into another data structure (e.g., list or dictionary)

#### Actions

Actions take data out of an RDD and into a host language data structure (e.g., list or dictionary)

- ▶ converts to host language native data structures
- ► output data is collected on the *driver* process: risk of a memory overflow!

#### **Actions on all RDDs**

#### Actions available on all RDDs include:

- ► collect return a list of all elements of the RDD to the driver (often a bad idea!!)
- ▶ count return the number of elements of an RDD
- countApproxDistinct return estimation of number of unique elements of an RDD
- ► take, takeOrdered, takeSample yield a desired number of items to the driver
- ► first returns the first element of the RDD to the driver

# Reducing an RDD to one element

There are multiple actions reducing a whole RDD to a single value.

```
val = rdd. reduce (f)
```

Go through partitions, applying *binary* function f(x,y) to the first two values, then to the result and the 3rd value, and so on – then apply the procedure again to combine results from partitions into one. Function f *must be* commutative and associative.

```
val = rdd. fold (start, f)
```

Like reduce, but combines first value of the RDD with provided start.

```
val = rdd. aggregate (start, f1, f2)
```

Like fold, but combines elements within a partition using f2, and combines results from different partitions using f1.

#### **Actions on numeric RDDs**

These actions are defined for all RDDs, but will only work for an all-numeric one.

- ▶ max, mean, min, stdev basic statistics operations on numeric RDDs
- ▶ sum add all the elements in an RDD

**Exercise 2.A:** How many lines are there in text file hdfs://shakespeare.txt.gz?

**Exercise 2.B:** Compute the product of the sequence of numbers [1, 2, 3, 4, 5] using PySpark.

**Exercise 2.C** (*advanced*): A very simple technique for checksumming a stream of bytes is computing the "bit parity" of each bit position (i.e., number of "1" bits).

Compute the bit parity checksum of the above ASCII text file using PySpark.

*Hint:* you can compute parity of two bytes a and b by combining them with Python's a^b operator (XOR); it is a commutative and associative operation.

# Actions on Key/Value RDDs

A special place is taken by RDDs whose elements are key/value pairs.

- aggregateByKey Like aggregate but aggregate separately the values of each key.
- ► collectAsMap like collect but returns a dictionary to the driver which makes it easy to lookup the keys
- ► countByKey return the number of elements for each key
- ► countByValue return the count of each unique value
- ▶ lookup return the list of values for a key
- reduceByKey, foldByKey Merge the values of each key using a given operator

#### **Transformations**

Transformations create a new (output) RDD by applying some operation on the data of the input RDD.

# map transformation

Create a new RDD by applying a 1-1 function F to each element of a given RDD.



rdd2 = rdd1.map(F)

# flatMap transformation

Apply a (possibly one-to-many) function F to each element of a given RDD. Expect that F produces a list for each element of the input RDD, and make a new (output) RDD from the concatenation of such lists.

#### <u>flatMap</u>



rdd2 = rdd1.flatMap(F)

#### filter transformation

Create a new RDD by selecting elements from the input RDD on which function *F* takes a "true" value.



$$rdd2 = rdd1.filter(F)$$

# reduceByKey transformation

Group elements by key and reduce the resulting sequence of values to form a new RDD.

#### reduceByKey



# Other transformations on Key/Value RDDs

#### Other transformations include:

- rdd2 = rdd1.groupBy(f)
  Create a key/value RDD rdd2 using function f to compute the key corresponding to each value in rdd1.
- rdd2 = rdd1.keys()
  rdd2 = rdd1.values()
  rdd2 is the set of keys or values of rdd1
- rdd2 = rdd1.mapValues(f)
  Pass each value in rdd1 through function f without changing the keys.
- rdd1 = rdd2.zip(rdd3)
  rdd1 is the RDD of pairs whose first element
  comes from rdd2 and second element from rdd3

#### **Set-theoretic transformations**

#### Other transformations include:

▶ rdd3 = rdd1.cartesian(rdd2)
 rdd3 is the set of pairs (a, b) where a is an
 element of rdd1 an b is an element of rdd2

▶ rdd3 = rdd1.intersection(rdd2)
 rdd3 = rdd1.subtract(rdd2)
 rdd3 = rdd1.union(rdd2)
 rdd3 is the set-theoretic
 intersection/difference/union of rdd1 and rdd2

#### Other transformations

#### Other transformations include:

- rdd2 = rdd1.distinct()
  only retain the unique elements of the entire RDD
- ► rdd2, rdd3 = rdd1.randomSplit([w1, w2]) Split rdd1 into rdd2, rdd3 by randomly assigning elements with probabilities w1, w2.
- ► rdd2 = rdd1.sortBy(f)
  rdd2 has the same elements as rdd1, sorted so
  that f takes ascending values.

# Lineage

# Transformations are evaluated "lazily": only executed once an action is performed.

- ► When an RDD is transformed, this **transformation** is not automatically carried out.
- ▶ Instead, the system remembers how to get from one RDD to another and only executes whatever is needed for the **action** that is being done.
- ► This allows one to build up a complex "pipeline" and easily tweak/rerun it in its entirety.

**Exercise 2.D:** Implement a the "word count" algorithm using PySpark, and use it to count the words in file hdfs://shakespeare.txt.gz

What are the 5 most frequent words?

*Hint:* The "word count" algorithm is comprised of the following steps:

- ▶ Read lines of a text file into an RDD:
- ► Transform the RDD by splitting each line at blank spaces;
- ► Create a key/value RDD by pairing each word with the value 1;
- Sum the values associated with each word.

**Exercise 2.E:** Write a solution to Exercise 1.E using PySpark.

# Recap of RDD usage

- 1. Create a SparkSession object. 1
- 2. Inject data into Spark:

```
rdd = sc.parallelize(data)
```

3. Build a computation DAG by chaining transformations:

4. Extract final data with actions:

```
wc = step2.collectAsMap()
```

<sup>&</sup>lt;sup>1</sup>In Spark 1.x this was called SparkContext.
SciTS Training.
Spark