B351/Q351 WORKSHEET 6: SEARCH II (Solutions)

(1) Prove that whenever A* chooses to expand a goal node, the path to this node is optimal. Sol:

Lets assume that $s_1(g)$ is a suboptimal goal state in the fringe and $s_2(n)$ is another state in the fringe where node 'n' lies on the optimal path to goal (g). Let us assume that the optimal cost to the goal (g) is C^* , and f=g+h

for a consistent heuristic $f(s_2(n))$ will always be less than C^* (as it never overestimates the optimal cost) And since $s_1(g)$ is a suboptimal state, $f(s_1(g)) > C^*$. So,

 $f(s_2(n)) \leq C^*$

 $f(s_1(g)) > C^*$

hence $f(s_1(g)) > f(s_2(n))$

f-value of suboptimal state is > f-value of any node n that lies on the optimal path, hence A* will never expand a suboptimal goal state from the fringe as it expands states with lower f-value.

(2) Consider the following graph.

(a) Is the heuristic admissible at nodes B and C? Yes/No and why? Sol: Yes, the heuristic admissible at nodes B and C because it never overestimates the actual cost to the goal node from B and C. $\{h_B(10) < C_B(1+4+9)\}$ and $h_C(10) < C_C(4+9)\}$

(b) Is the heuristic consistent at nodes B and C? Yes/No and why?

Sol: heuristic is NOT consistent at nodes B and C because:

for a consistent heuristic at B,C: $h_B \le C_{BC} + h_c$ {This equation doesn't hold true for $h_b = 10$, $C_{BC} = 1$ & $h_c = 7$ }

B351/Q351 WORKSHEET 6: SEARCH II (Solutions)

(3) Consider a hypothetical problem in which the state space is $S = \{0, 1, 2, ...100\}$, i.e. the set of integers between 0 and 100, inclusive, and the actual cost to the goal from any state $s \in S$ is given by $f(s) = s \cdot 4 - s \cdot 2 + s$. Suppose you could choose between three heuristic functions for A * search:

$$h1(s) = s, h2(s) = s^2, h3(s) = s^4$$

Which would you choose and why?

Sol:

h3(s) is not an admissible heuristic ($s^4 \le s^4 - s^2 + s$ doesn't hold true for s > 1)

Both h2(s) and h1(s) are admissible heuristics, we would choose h2(s) as it gives a better estimate of the actual cost without overestimating it $\{h2(s) > h1(s)\}$.

(4) Suppose we have a state graph with f = g + h and h is a consistent heuristic. Suppose that N' is a child of N for some vertices N, N' in the graph. Prove that $f(N') \ge f(N)$ sol:

Let's assume the cost from $N \rightarrow N'$ is $C_{NN'}$

 $f(N) = g + \mathbf{h_N}$

 $f(N') = g + C_{NN'} + h_{N'}$

h is a consistent heuristic function, so $h_N \le C_{NN'} + h_{N'}$

Hence, $f(N') \ge f(N)$