

CARBON CHEMISTRY

NAME:	TIME ALLOWED: 60 MINUTES

Goal Mark: /40 Actual Mark: /40

Part A: Multiple Choice Questions. (10 marks)

Q1. Which of the following formulae represent a pair of isomers?

$$H_3C$$
 CH CH_2 CI H_3C CH_2 CH_2 CH_3 CH_4 CH_5 CH_5

$$\begin{array}{c} \text{Cl} \\ \text{H}_{3}\text{C} \\ \text{C} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \begin{array}{c} \text{CH-CH-Cl} \\ \text{CH-CH}_{2} \\ \text{CH-CH}_{2} \\ \end{array}$$

- A. (I) and (II).
- B. (I) and (III)
- C. (I) and (IV)
- #D. (II) and (IV)
- Q2. When hot acidic potassium permanganate is used to oxidise an alkene, a colour change occurs.

What colour change would be observed?

- A. Colourless to purple
- B. Orange to brown
- C. Brown to colourless

#D. Purple to colourless

Q3. What is the IUPAC name for the compound whose structure is given below?

- A. 4-iodo-4-hexene
- #B. 3-iodo-2-hexene
- C. 4-iodo-5-hexene
- D. 2-iodo-2-hexene

Q4. Which of the following pairs of substances are **NOT** isomers?

- A. 2-pentanone and 3-methylbutanal
- B. butanoic acid and 1,2-cyclobutanediol
- C. 3-methylhexane and 2,2,3-trimethylbutane
- #D. methylcyclopentane and hexane

Q5. The structure of glycine is shown.

The functional group A is

- A. hydroxyl group
- B. ester group
- #C. carboxylic acid group
- D. amine group

Q6. Which of the following is a common use for ethyl pentanoate?

- #A. Flavouring
- B. Fuel
- C. Indicator
- D. Solvent

Q7. The four substances below have similar molar masses.

$$CH_3 - C - CH_3$$
propanone

The substance with the highest boiling point is

- A. butane
- В. propanol
- C. propanone
- #D. 1,2-ethanediol
- Q8. Chlorine gas is added to 2-pentene in the dark.
- #C What is the major organic product?

The type of polymerisation shown in the following reaction is Q9.

$$n\: \mathrm{HO} - \overset{\mathrm{O}}{\mathrm{C}} - \overset{\mathrm{O}}{\bigcirc} - \overset{\mathrm{O}}{\mathrm{C}} - \mathrm{OH} \: + \: n\: \mathrm{HO} - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{OH} \: \longrightarrow$$

- Addition A.
- #B. Condensation
- C. Esterification
- Hydrolysis D.

- Q10. A student was given the task of identifying a liquid organic compound that contains only carbon, hydrogen and oxygen. The following tests were carried out
 - **Test 1**: Some brown $Br_{2(aq)}$ was added to a sample of the compound. A reaction occurred and a colourless product formed.
 - **Test 2:** Some $Na_2CO_{3(s)}$ was added to a sample of the compound. A reaction occurred and a colourless gas was evolved.
- #B Based on the above test results, the compound could be

B.
$$H H O O H O O H$$

END OF PART A

PART B: SHORT ANSWER QUESTIONS (15 marks)

11.	You have carried out a first-hand investigation to compare the reactivity of an with its corresponding alkane.									
	A.	A. State the name of the alkene.								
	B.	B. Outline a procedure to compare the reactivity of this alkene with its corresponding alkane.								
			-							
			_							
			_							
	<u></u>	Describe the results obtained from this first-hand investigation and ir relevant chemical equations.	 (2 marks) nclude							
			-							
			_							
			— (3 marks)							
	releva	nt chemical equations	(J IIIai KS)							
			_							

A.	Deduce (work out) the number of carbon to carbon double b	onds in punicic a
		(1 mark)
В.	A triglyceride can be made from punicic acid and glycerol (pr	opan-1,2,3-triol)
	w the structure of this triglyceride. You should represent the hy icic acid as $C_{17}H_{29}$.	drocarbon chain
puiii	1010 acid as C ₁₇ 1 1 ₂₉ .	(1 mark)
Nam	ne the two types of functional groups in the triglyceride in R ah	OVA
Nam	ne the two types of functional groups in the triglyceride in B ab	ove.
Nam		
	&	(2 marks
Nam C.		(2 marks
	&	(2 marks

Q12. Punicic acid, C₁₇H₂₉COOH, is the main alkanoic (carboxylic) acid found in pomegranate

Using the two compounds above describe the formation of a peptide bond with a chemical equation.

(1 mark)

Clearly indicate the peptide bond by circling it

(1 mark)

PART C: EXTENDED ANSWER SECTION (15 marks)

Q14. Two different compounds A and B are isomers with the molecular formula C₃H₈O. A and B undergo a series of reactions as shown below.

Α.	Draw the structural formula for <i>C</i> and <i>E</i>		(2 marks)
С	E		
В.	How is compound A different from comp	oound <i>B</i> ?	(2 marks)
			-
	Describe the colour change seen in goin	g from A to C.	-
			_ (1 mark)
).	Draw the structural formula and give the and C react in the presence of a small an		
			(1 mark)
	Name:		(1 mark)

A sample of thiophene weighing 7.96 g was burned in oxygen, giving 16.65	g CO ₂ .
Another sample was subjected to a series of reactions that transformed all sulphur in the compound to barium sulfate. If 4.31 g of thiophene gave 11. barium sulfate, what is the empirical formula of thiophene?	
	(6 marks)
Thiophene's molecular mass is 84 amu. What is its molecular formula?	
	(1 mark)

Given that formula.	thiophene	is a	ring	or	cyclic	compound,	draw	а	possible	structu	ral
										(1 mark)	

END OF TEST

Ans: C₄H₄S, C₄H₄S