TESTE INTERMÉDIO DE MATEMÁTICA A

RESOLUÇÃO - VERSÃO 1

GRUPO I

1. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Como A e B são acontecimentos independentes, tem-se que $P(A\cap B)=P(A)\times P(B)$

Portanto, $P(A \cup B) = 0.4 + 0.5 - 0.4 \times 0.5 = 0.7$

Resposta B

2. $\log_5\left(\frac{5^{1000}}{25}\right) = \log_5\left(5^{1000}\right) - \log_5\left(25\right) = 1000 - 2 = 998$

Resposta D

3. Comecemos por observar que a função g não é contínua no ponto 2

$$\lim_{x \to 2^{-}} g(x) = 3^{2} - \sqrt{2} = 9 - \sqrt{2}$$
 e

$$\lim_{x \to 2^{+}} g(x) = 2 - 5 + \log_{2}(2 - 1) = -3 + \log_{2}(1) = -3$$

Como a função g não é contínua no ponto 2, não é contínua no intervalo [1,3], pelo que podemos excluir a opção B.

Como a função $\,g\,$ é contínua nos intervalos $\,[0,1],\,[3,5]\,$ e $\,[5,9],\,$ basta descobrir em qual destes intervalos as imagens dos extremos têm sinais contrários.

Como $g(0)=1, \quad g(1)=2, \quad g(3)=-1, \quad g(5)=2 \quad {\rm e} \quad g(9)=7,$ a opção correcta é a opção C.

Resposta C

4. $\lim_{x \to +\infty} \left[\frac{\ln x}{x} - f(x) \right] = 0 - 1 = -1$

Resposta A

5. A sucessão de termo geral $4-\frac{1000}{n}$ tende para 4, por valores inferiores a 4, pelo que $\lim_{x\to 4^-}h(x)=1$

Resposta **B**

GRUPO II

1.1. P(A|B) designa a probabilidade de os números saídos serem iguais, sabendo que a sua soma é igual a 1.

Se a soma dos números saídos é igual a 1, então uma das bolas extraídas da caixa tem de ter o número 0 e a outra tem de ter o número 1, pelo que é impossível os números saídos serem iguais.

Portanto,
$$P(A|B) = 0$$

1.2. A variável aleatória X pode tomar os valores 0, 1 e 2

Tem-se:

$$P(X=0) = \frac{{}^{3}C_{2} + 3 \times 3}{{}^{6}C_{2}} = \frac{3+9}{15} = \frac{12}{15} = \frac{4}{5}$$

$$P(X=1) = \frac{{}^{2}C_{2}}{{}^{6}C_{2}} = \frac{1}{15}$$

$$P(X=2) = \frac{2 \times 1}{{}^{6}C_{2}} = \frac{2}{15}$$

A tabela de distribuição de probabilidades da variável aleatória $\, X \,$ é, portanto,

x_i	0	1	2
$P(X=x_i)$	$\frac{4}{5}$	$\frac{1}{15}$	$\frac{2}{15}$

2. A resposta correcta é a do André: $^{25}C_2 - 15 imes 10$

De facto, o número de comissões com dois alunos do mesmo sexo é igual à diferença entre o número total de comissões com dois alunos e o número de comissões formadas por um rapaz e uma rapariga.

O número total de comissões com dois alunos é igual a $\ ^{25}C_{2}$

O número de comissões formadas por um rapaz e uma rapariga é igual a $~15 \times 10~$

Assim, o número de comissões com dois alunos do mesmo sexo é igual a $^{25}C_2-15 imes10$

Na resposta da Rita, o erro é o sinal $\, imes\,$, que deve ser $\,+\,$

De facto, o número de comissões com dois alunos do mesmo sexo é igual à soma do número de comissões formadas por dois rapazes com o número de comissões formadas por duas raparigas.

Assim, o número de comissões com dois alunos do mesmo sexo é igual a $\ ^{15}C_{2}+\ ^{10}C_{2}$

3.1. Tem-se:

•
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{x - 2}{x - \sqrt{2x}} \stackrel{\left(\frac{0}{0}\right)}{=} \lim_{x \to 2^{-}} \frac{(x - 2)\left(x + \sqrt{2x}\right)}{\left(x - \sqrt{2x}\right)\left(x + \sqrt{2x}\right)} =$$

$$= \lim_{x \to 2^{-}} \frac{(x - 2)\left(x + \sqrt{2x}\right)}{x^{2} - 2x} = \lim_{x \to 2^{-}} \frac{(x - 2)\left(x + \sqrt{2x}\right)}{x(x - 2)} =$$

$$= \lim_{x \to 2^{-}} \frac{x + \sqrt{2x}}{x} = \frac{2 + \sqrt{4}}{2} = 2$$

•
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (xe^{-x} + x + 1) = 2 \times e^{-2} + 2 + 1 = \frac{2}{e^2} + 3$$

Como $\lim_{x\to 2^-}f(x) \neq \lim_{x\to 2^+}f(x)$, conclui-se que não existe $\lim_{x\to 2}f(x)$, pelo que a função f não é contínua em x=2

3.2. Tem-se:

•
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x e^{-x} + x + 1}{x} = \lim_{x \to +\infty} \left(\frac{x e^{-x}}{x} + \frac{x}{x} + \frac{1}{x} \right) =$$
$$= \lim_{x \to +\infty} \left(e^{-x} + 1 + \frac{1}{x} \right) = e^{-\infty} + 1 + \frac{1}{+\infty} = 0 + 1 + 0 = 1$$

$$\lim_{x \to +\infty} [f(x) - x] = \lim_{x \to +\infty} (x e^{-x} + x + 1 - x) = \lim_{x \to +\infty} (x e^{-x} + 1) =$$

$$= \lim_{x \to +\infty} \left(\frac{x}{e^x} + 1 \right) = 0 + 1 = 1$$

Portanto, a recta de equação $\ y=x+1$ é assimptota do gráfico de $\ f$

3.3. As soluções da equação f(x)=g(x) são as abcissas dos pontos de intersecção dos gráficos de f e de g

Na figura, estão representadas parte do gráfico da função f e parte do gráfico da função g, bem como as abcissas, arredondadas às centésimas, dos pontos de intersecção dos dois gráficos.

Portanto, as soluções da equação f(x)=g(x) são 0.72 e 2.91

4.1. Como $9\,000\,$ são $9\,$ milhares, começamos por escrever a equação $\,f(t)=9\,$

$$f(t) = 9 \Leftrightarrow \frac{10}{3 - 2e^{-0.13t}} = 9 \Leftrightarrow 3 - 2e^{-0.13t} = \frac{10}{9} \Leftrightarrow$$

$$\Leftrightarrow -2e^{-0.13t} = \frac{10}{9} - 3 \Leftrightarrow -2e^{-0.13t} = -\frac{17}{9} \Leftrightarrow$$

$$\Leftrightarrow e^{-0.13t} = \frac{17}{18} \Leftrightarrow -0.13t = \ln\left(\frac{17}{18}\right) \Leftrightarrow t = \frac{\ln\left(\frac{17}{18}\right)}{-0.13}$$

Portanto, $t \approx 0.4397$

Como $0.4397 \times 7 \approx 3$, é ao fim de 3 dias, após a doença ter sido detectada, que o número de coelhos é igual a $9\,000$

4.2. Ao longo da primeira semana, morreram dois mil coelhos e não nasceu nenhum. Por isso, no instante em que a doença foi detectada, havia mais dois mil coelhos do que uma semana depois.

No instante em que a doença é detectada, o número de coelhos (em milhares) é igual a f(0). Ao fim de uma semana, o número de coelhos (em milhares) é igual a f(1)

Portanto,
$$f(0) - f(1) = 2$$

Tem-se:
$$f(0) = \frac{k}{3-2e^0} = \frac{k}{3-2} = k$$

$$f(1) = \frac{k}{3 - 2e^{-0.13}}$$

Vem, então

$$k - \frac{k}{3 - 2e^{-0.13}} = 2$$

Como $\ 3 \ - \ 2 \, e^{-0.13} pprox 1,2438 \, {\rm ,} \quad {\rm vem}$

$$k - \frac{k}{1.2438} = 2 \Leftrightarrow 1,2438 \, k - k = 2,4876 \Leftrightarrow 0,2438 \, k = 2,4876$$

$$\Leftrightarrow k = \frac{2,4876}{0,2438}$$

Tem-se, assim, $k \approx 10.2$