Modul 1: Introduction

03 Supervised vs Unsupervised Classification

Masayu Leylia Khodra (masayu@informatika.org)

KK IF – Teknik Informatika – STEI ITB

Pengenalan Pola (*Pattern Recognition*)

Human-like Pattern Recognition

Capturing

Image (see)

Voice (listen)

Text (read)

Odor (smell)

Pressure (touch)

Heat (touch)

Data ...

Pattern recognition is the study of how machines can observe the environment, learn to distinguish patterns of interest from their background, and make sound and reasonable decisions about the categories of the pattern. (Jain, 1999)

Pattern Recognition

Supervised, Unsupervised classification

"category" or "class" of the pattern

Pattern

Palmprint

https://sciencestruck.com/identifying-types-of-fingerprints-patterns

https://indranilsinharoy.com/2014/12/05/dissertation_series/ https://www.bayometric.com/biometric-system-architecture/

Signature

Regex pattern in information extraction

```
import re
email = re.compile('\w+@\w+\.[a-z]{3}')
text = "To email Guido, try guido@python.org or the older address guido@google.com."
email.findall(text)
```

```
['guido@python.org', 'guido@google.com']
```


Pattern Class

https://www.groundai.com/project/fine-grained-visual-recognition-with-batch-confusion-norm/1

- A collection of similar object, not necessarily identical.
- Variability: intra-class variability, inter-class variability
- Problem: high intra-class variability, low inter-class variability

Intra-class Variability

Different appearances of different objects in the same category

high intra-class variability

Inter-class Variability

Different appearances of different objects for different category

low inter-class variability DUNEX ITB

Supervised Classification

• Labeled training samples for classifier design

Labeled Dataset

Structured dataset

user ID	time	price (\$)	purchased
4783	Jan 21 08:15.20	7.95	yes
3893	March 3 11:30.15	10.00	yes
8384	June 11 14:15.05	9.50	no
0931	Aug 2 20:30.55	12.90	yes

Image dataset

Text dataset

Unsupervised Classification

Training samples are unlabeled

Summary

Pattern class: variability

Supervised Classification

Unsupervised Classification

Next: Pattern Recognition as Intelligent Agent

Modul 1: Introduction

04 Pattern Recognition & Intelligent Agent

Pengenalan Pola (*Pattern Recognition*)

Masayu Leylia Khodra (masayu@informatika.org)

KK IF – Teknik Informatika – STEI ITB

Pattern Recognition

• Pattern recognition is the study of how machines can observe the environment, learn to distinguish patterns of interest from their background, and make sound and reasonable decisions about the categories of the pattern. (Jain, 1999)

P – the percept space

A – the action space

U – utility function: $S \rightarrow real$ (or $S^* \rightarrow real$)

Intelligent Agent

Agents:

- Anything that can be viewed as perceiving its environment through sensors and acting upon that environment through effectors.
- computational agents that behave autonomously

Rational Agent: For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

PEAS

- An agent is completely specified by the <u>agent function</u> mapping percept sequences to actions
- First specify the setting for intelligent agent design. PEAS: Performance measure, Environment, Actuators, Sensors

P: % fish in correct conveyor belt (B)

E: Conveyor belts (A & B) with fish

A: robot arm (C)

S: camera (D), robot arm sensors

Environment Types

Fully observable (vs. partially observable)

Deterministic (vs stochastic vs strategic)

Episodic (vs. sequential)

Static (vs. dynamic vs semidynamic)

Discrete (vs. continuous)

Single agent (vs. multiagent)

Environment Types: Examples

 Partially observable, single agent, stochastic, episodic, dynamic, continuous

 Fully observable, single agent, deterministic, sequential, static, discrete

Basic Types: Simple Reflex Agents

Basic Types: Model-based Reflex Agents

Basic Types: Goal-based Agents

Basic Types: Utility-based Agents

Leveling of Agent

Problem Solving Agent

Summary

PR & Agent

PEAS

Environment types

Agent Types

Agent Level

Next: Pattern Recognition Approaches

Modul 1: Introduction

05 Pattern Recognition Approaches

Masayu Leylia Khodra (masayu@informatika.org)

KK IF – Teknik Informatika – STEI ITB

Pengenalan Pola (*Pattern Recognition*)

Pattern Recognition Approaches

Knowledge-based

Template matching

 Recognition function: similarity measure

Statistical decision

 Recognition function:
 Discriminant function

Structural/syntactic

 Recognition function: rules, grammar

Neural Networks

Recognition function: neural networks

Machine learning

Template Matching Approach

https://pythonspot.com/object-detection-with-templates/

Python.

image (right)

Statistical Decision / Machine Learning Approach

income | student | credit_rating | buys_computer

N-feature vector

Class	Yes	No
Р	0.643	0.357
P(age<=30 Y)	0.222	0.6
P(age<=3140 Y)	0.445	
P(age>40 Y)	0.333	

Structural Approach

Example: Differentiate between square and triangle

https://www.byclb.com/TR/Tutorials/neural_networks/ch1_1.htm

A structural approach extracts morphological features and their interrelationships, encoding them in relational graphs;

Classification is performed by parsing the relational graphs with syntactic grammars.

Why Machine Learning?

Better Algorithm

Learning algorithm more effective and efficient

More Data

Machine Learning

More data (larger storage, IoT)

More Processing Power

Higher computing power (GPU, TPU, prosesor ANN)

Summary

PR Approaches

Templatematching approach

Statistical decision approach

Structural approach

Next: Classification and Pattern Recognition System

