CÁLCULO DIFERENCIAL

LÍMITES DE FORMA GRÁFICA

INTRODUCCIÓN

Antes de iniciar con definiciones y fórmulas, es importante tener presente:

¿A qué "objeto" matemático se le puede calcular un límite?

CÁLCULO DIFERENCIAL

Trata sobre el estudio de:

Que trabajan con:

Que manipulan:

NOTA: En Cálculo, tanto para resolver límites como derivadas, se trabaja con funciones.

Por esta razón, iniciaremos explicando lo que es y lo que no es una función.

Una función maneja **variables**, es decir, entidades susceptibles a **cambios** o variación: A " \mathbf{x} " se le denota como *la variable independiente* A " \mathbf{y} " ó también f(x) se le denota como la *variable dependiente*

- ➤ Al **conjunto** de elementos x (en los cuales está definida una función) se le llama **Dominio**
- > Al conjunto de elementos y se le llama Rango

¿Qué es una función?

Una relación de correspondencia entre dos conjuntos: en donde a cada valor x (perteneciente al dominio) le corresponde un único valor de y (perteneciente al rango)

x - f(x) = 2xFunción 1 - 2(1) - 2 2 - 2(2) - 4 3 - 2(3) - 6Para un valor dei dominio existe un solo valor en el rango.

DE FORMA TABULAR...

Función

A un valor de X le corresponde un único valor en Y.

NO Función

A un valor de X le corresponden varios valores en Y.

DE FORMA GRÁFICA...

Prueba de la recta vertical

La prueba establece que una gráfica representa una función si y solo si al trazar rectas verticales sobre ella, ninguna la intercepta en más de un punto.

La gráfica sí representa a una función

Indeterminaciones en cálculo

NO INDETERMINADO (SÍ HAY RESULTADO EXACTO)				INDETERMINADO
$k + \infty = +\infty$		$k - \infty = -\infty$		$+\infty-\infty$
$+\infty + \infty = +\infty$ Suma de		$-\infty - \infty = -\infty$ de infinitos		Diferencia de infinitos
0		$\frac{0}{-} = 0$		0
$\frac{\sigma}{k} = 0$		$\frac{\infty}{}=0$		$\overline{0}$
Cero entre un número		Cero entre infinito		Cero entre cero
$\frac{k}{-}=0$	∞		k	∞
\sim	$\frac{1}{k} = \infty$		$\frac{1}{0} = \infty$	$\frac{\overline{\infty}}{}$
Un número entre infinito	Infinito		Un número entre	Infinito entre infinito
infinito número cero $k^0=1;\ donde\ k\neq 0$				O_0
Un número +, elevado a una potencia par, el resultado es +				U
Un número +, elevado a una potencia impar, el resultado es +				+ 0
Un número -, elevado a una potencia par, el resultado es +				₩,
Un número -, elev				

UNIDAD I. LÍMITES Y CONTINUIDAD

1.1. Límites

El límite

La expresión $\lim_{x\to a} f(x) = b$ quiere decir que si la variable independiente x toma valores próximos a un valor "a" (de referencia), la función f(x) se aproximará a otro valor b.

Entonces, ¿cómo leer matemáticamente la expresión: $\lim_{x\to 1} 3x - 1 = 2$?

"El límite de la función 3x -1, cuando x tiende a 1, es igual a 2"

¿Cómo interpretar la expresión anterior?

"Cuando la variable independiente x toma valores próximos a 1, la función 3x-1 se aproximará a 2."

El límite es una aproximación

Definiciones y notación

➤ Al conjunto de elementos x (en los cuales está definida una función) se le llama Dominio

> Al conjunto de elementos y se le llama Rango

Al correspondiente valor en "y" para un determinado valor x se llama Imagen

Abierto

La función no pasa por dicho valor

Cerrado

La función pasa por dicho valor

Asíntota: línea recta que puede ser vertical, horizontal u oblicua a la que se aproxima la gráfica de una función, pero sin llegar a cruzarla.

Regresando a la notación del límite...

$$\lim_{x \to a} f(x) = b$$

"a" es nuestro valor de referencia, "a" y "b" son 2 números reales

- significa analizar la aproximación de la función desde el lado izquierdo del valor "a" de referencia.
- a + significa analizar la aproximación de la función desde el lado derecho del valor "a" de referencia.

A este procedimiento se le llama *análisis de límites laterales*.

Si
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$
Límite lateral izquierdo

Límite lateral derecho

Entonces
$$\lim_{x\to a} f(x)$$
 existe

Conclusión: Para que el límite exista (de forma gráfica), los límites laterales deben coincidir.

$$\lim_{x\to 0^{-}} k(x) = +\infty \qquad f(x) \text{ crece indefinidamente}$$

$$\lim_{x\to 0^+} k(x) = -\infty \qquad f(x) \ decrece \ indefinidamente$$

¿Cuándo el límite no existe de forma gráfica?

EJEMPLO 2

Analizar la veracidad o falsedad de los siguientes incisos

a)
$$\lim_{x \to 1^{-}} f(x) = no \ existe$$

b)
$$\lim_{x \to 1} f(x) = 1$$

c)
$$\lim_{x\to 0} f(x) = existe$$

d)
$$\lim_{x \to 0} f(x) = 1$$

Decimos que x tiende a un valor x_0 , y lo escribimos $x \to x_0$, si se pueden tomar valores de \overline{x} tan próximos a $\overline{x_0}$ como se quiera, no necesariamente llegando a tomar el valor de $\overline{x_0}$.

EJEMPLO: ERRORES EN LA INTERPRETACIÓN DE GRÁFICAS

Por supuesto, para que exista el límite global de la función f(x) en el punto x_0 , debe existir tanto el límite por la izquierda, como el límite por la derecha, y ser iguales, es decir

$$\left| \lim_{x \to x_0^-} f(x) = L \right| \\
\lim_{x \to x_0^+} f(x) = L$$

$$\implies \lim_{x \to x_0} f(x) = L.$$

Barreno, N; Cachuput, J; Martínez, J; Román, M (2018). *Límites y Continuidad de una función Real*: Grupo Compás.