

AQUA-FAANG: Bioinformatic analysis of regulatory elements

ChIP-seq Practical

Ilias Lavidas, Garth Ilsley, David Urbina

Objectives

- Familiarize with ChIP-seq data analysis workflow
- Call Peaks from Alignments
- Visualize output

Introduction

~/train-aquafaang-bioinf/chip-seq/data

https://hub.docker.com/u/juettemann

https://github.com/FAANG/train-aquafaang-bioinf.git

Introduction

Source: Zhang B et al., Widespread Enhancer Dememorization and Promoter Priming during Parental-to-Zygotic Transition. Mol Cell. 2018 Nov 15;72(4):673-686.e6. doi: 10.1016/j.molcel.2018.10.017. PMID: 30444999.

ChIP-seq Analysis Workflow

Read Files

Read Files – FASTQ

@SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC +SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345

```
==> SRR001666 1.fastq <==
@SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=36
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC
+SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=36
@SRR001666.2 071112 SLXA-EAS1 s 7:5:1:801:338 length=36
GTTCAGGGATACGACGTTTGTATTTTAAGAATCTGA
+SRR001666.2 071112 SLXA-EAS1 s 7:5:1:801:338 length=36
```

```
==> SRR001666 2.fastq <==
@SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=36
AAGTTACCCTTAACAACTTAAGGGTTTTCAAATAGA
+SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=36
@SRR001666.2 071112 SLXA-EAS1 s 7:5:1:801:338 length=36
AGCAGAAGTCGATGATAATACGCGTCGTTTTATCAT
+SRR001666.2 071112 SLXA-EAS1 s 7:5:1:801:338 length=36
```

Line 1: sequence identifier, begins with @

Line 3: begins with +, optionally followed by seq. id.

Line 2: raw sequence

Line 4: encoded quality values

Quality Control – FastQC

Quality Control – FastQC

QC

Align

Source: https://training.galaxyproject.org/training-material/topics/sequence-analysis/images/mapping/mapping.png

Align - SAM & BAM

SAM: Header section & Alignment section

Col	Field	Brief description
1	QNAME	Query template NAME
2	FLAG	bitwise FLAG
3	RNAME	References sequence NAME
4	POS	1- based leftmost mapping POSition
5	MAPQ	MAPping Quality
6	CIGAR	CIGAR string
7	RNEXT	Ref. name of the mate/next read
8	PNEXT	Position of the mate/next read
9	TLEN	observed Template LENgth
10	SEQ	segment SEQuence
11	QUAL	ASCII of Phred-scaled base QUALity+33

BAM: binary, compressed SAM

More QC - SAMtools

Alignment metrics

This module parses the output from samtools stats. All numbers in millions.

1 Warning: 6 samples hidden. See toolbox.

Hover over a data point for more information								
Total sequences	0	25	50	• • 75	100	125	150	
Mapped & paired	0	25	50	• • 75	100	125	150	
Properly paired	0	25	50 •	75	100	125	150	
Duplicated		25	50	75	100	125	150	
QC Failed	•	25	50	75	100	125	150	
Reads MQ0	0	25	50	75	100	125	150	
Mapped bases (CIGAR)	0	2.5k	5k	7. %	• 10k	12.5k	15k	
Bases Trimmed	•	2.5k	5k	7.5k	10k	12.5k	15k	
Duplicated bases		2.5k	5k	7.5k	10k	12.5k	15k	
Diff chromosomes	0 • •	25	50	75	100	125	150	
Other orientation	•	25	50	75	100	125	150	
Inward pairs	0	• • 25	50	75	100	125	150	
Outward pairs	0	25	50	75	100	125	150	

More QC - Picard

Deduplicate

Reads with the same start position are considered duplicates.

- "Good" duplicates: Some level of duplication is expected when sequencing a small part of the genome.
- "Bad" duplicates: Overamplification of low starting material leads to artificially enriched regions

Landt et al, Genome Res. 2012

Good quality peaks: multiple overlapping reads with offsets

Low quality peaks: perfectly stacked reads, PCR artifacts

Genrich can remove duplicates on the fly!

Data

Sort

Command	samtools sort		
Parameters	-n	sort by read name	
	-0	output file	
	-0	number of threads	
	-m	required memory per thread	

Input Files [BAM]

sperm_H3K4me3_rep1.roi.bam
sperm_H3K4me3_rep2.roi.bam

Output Files [BAM]

sperm_H3K4me3_rep1.roi.sorted.bam
sperm_H3K4me3_rep2.roi.sorted.bam

Documentation

```
$ export data_dir="/home/training/train-aquafaang-bioinf/chip-seq/data/sperm_H3K4me3/"
$ export mnt_dir="type=bind,source=$data_dir,target=/mnt"
$ docker run --mount $mnt_dir juettemann/samtools sort -n -@ 7 -m 2G \
-o /mnt/roi/bam/sperm_H3K4me3_rep1.roi.sorted.bam /mnt/roi/bam/sperm_H3K4me3_rep1.roi.bam
```


Command

samtools view

Input Files [BAM]

sperm_H3K4me3_rep1.roi.sorted.bam
sperm_H3K4me3_rep2.roi.sorted.bam

\$ docker run --mount \$mnt_dir juettemann/samtools view \
/mnt/roi/bam/sperm H3K4me3 rep1.roi.sorted.bam | head

Peak Calling – Genrich method

- 1. Parse alignments for the experimental sample and create an experimental "pileup" by counting the DNA fragments that cover each position of the genome.
- 2. Create a control pileup using the control sample (if available) and background level.
- 3. Calculate *p*-values for each genomic position.
- Calculate the "area under the curve" (AUC) for all regions reaching statistical significance.
- 5. Combine nearby regions and call peaks whose total AUC is above a threshold.

Source: https://raw.githubusercontent.com/jsh58/Genrich/master/figures/figure1.png

Peak Calling

Command	genrich		
Parameters	-t	input experimental files	
	-r	remove PCR duplicates	
	-0	output narrowPeak file	
	-е	list of excluded chromosomes	

Input Files [BAM]

sperm_H3K4me3_rep1.roi.sorted.bam
sperm_H3K4me3_rep2.roi.sorted.bam

Output File [narrowPeak]

sperm_H3K4me3.roi.narrowPeak


```
$ export excluded_chrs="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25"
$ docker run --mount $mnt_dir juettemann/genrich -r -v -e $excluded_chrs \
   -t /mnt/roi/bam/sperm_H3K4me3_rep1.roi.sorted.bam,/mnt/roi/bam/sperm_H3K4me3_rep2.roi.sorted.bam \
   -o /mnt/roi/bed/sperm_H3K4me3.roi.narrowPeak
```


Peak Calling – Genrich Output - narrowPeak

\$ head ~/train-aquafaang-bioinf/chip-seq/data/sperm H3K4me3/roi/bed/sperm H3K4me3.roi.narrowPeak 36444 37763 peak_0 1000 1909.176392 5.103715 1009 -1 41216 peak 1 1000 6766.594727 19 39540 8.691507 248 -1 49840 51068 peak 2 1000 8880.161133 15.587051 788 -1 peak 3 58149 59795 1000 8931.702148 12.211674 758 -1 83435 83835 peak 4 958 383.198547 3.614118 277 -1 peak 5 131426 132172 385 287.046326 3.212096 -1 447 19 146393 148042 peak 6 1000 10245.839844 12.903536 -1 695 19 161093 162067 peak 7 1000 1197.003662 4.899028 -1 565 19 5.823216 166597 167530 peak 8 1000 2016.466919 341 -1

11.894626

1. chrom	Name of the chromosome
2. chromStart	Starting position of the peak (0-based)
3. chromEnd	Ending position of the peak (not inclusive)
4. name	peak_N , where N is the 0-based count
5. score	Average AUC (total AUC / bp) × 1000, rounded to the nearest int (max. 1000)
6. strand	. (no orientation)
7. signalValue	Total area under the curve (AUC)
8. pValue	Summit -log ₁₀ (p-value)
9. qValue	Summit - $\log_{10}(q$ -value), or -1 if not available (e.g. without $-q$)
10. peak	Summit position (0-based offset from chromStart): the midpoint of the peak interval with the highest significance (the longest interval in case of ties)

181269

182503

6792.544434

543

Peak Calling

QC - FRiP score

Fraction of Reads in Peaks

Good quality: FRiP score > 5%

BAM to bigWig

Command	bamCoverage	
Parameters	- b	input BAM file
	-0	output bigWig file
	-p	number of processors
	-bs	bin size, in bases

Input Files [BAM]

sperm_H3K4me3_rep1.roi.bam
sperm_H3K4me3_rep2.roi.bam

Output Files [bigWig]

sperm_H3K4me3_rep1.roi.bw
sperm_H3K4me3_rep2.roi.bw

© Documentation

\$ docker run --mount \$mnt_dir juettemann/deeptools bamCoverage -p 7 -bs 100 \
-b /mnt/roi/bam/sperm_H3K4me3_rep1.roi.bam -o /mnt/roi/bw/sperm_H3K4me3_rep1.roi.bw

Visualization options

b <u>Documentation</u>

Documentation

Visualize - IGV

\$ bash /usr/local/IGV_Linux_2.9.4/igv.sh

Regions of interest

- 21:4011945-4143755
- 19:44630790-44930711

QC

Visualize

Tasks

- 1. Generate peaks for sperm H3K27ac and oocyte H3K27ac samples. How many did you get for each sample?
- 2. Visualize your peaks in IGV. Can you spot the differences between the two samples as indicated in the publication figure?
- 3. Explore Genrich features! Find a way to:
 - Ignore reads that have low mapping quality.
 - Not report peaks that have a very short length.
 - Consider unpaired alignments. (by default, Genrich ignores them)