Introduction to Machine Learning Part 1 and Part 2

Yingyu Liang

yliang@cs.wisc.edu

Computer Sciences Department University of Wisconsin, Madison

What is machine learning?

Short answer: recent buzz word

Google

Facebook

Microsoft

Microsoft Researchers' Algorithm Sets ImageNet Challenge Milestone

Toyota

SEARCH

The New Hork Times

TECHNOLOGY

Toyota Invests \$1 Billion in Artificial Intelligence

By JOHN MARKOFF NOV. 6, 2015

Gill Pratt, a roboticist who will oversee Toyota's new research laboratory in the United States, at a news conference Friday in Tokyo. Yuya Shino/Reuters

Academy

 NIPS 2015: ~4000 attendees, double the number of NIPS 2014

Academy

- Science special issue
- Nature invited review

REVIEW

Deep learning

Yann LeCun^{1,2}, Yoshua Bengio³ & Geoffrey Hinton^{4,5}

Image

Image classification

Slides from Kaimin He, MSRA

Image

Object location

Slides from Kaimin He, MSRA

Image

Image captioning

Figure from the paper "DenseCap: Fully Convolutional Localization Networks for Dense Captioning", by Justin Johnson, Andrej Karpathy, Li Fei-Fei

Text

Question & Answer

I: Jane went to the hallway.

I: Mary walked to the bathroom.

I: Sandra went to the garden.

I: Daniel went back to the garden.

I: Sandra took the milk there.

O: Where is the milk?

A: garden

I: The answer is far from obvious.

Q: In French?

A: La réponse est loin d'être évidente.

Figures from the paper "Ask Me Anything: Dynamic Memory Networks for Natural Language Processing", by Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Richard Socher

Game

Google DeepMind's Deep Q-learning playing Atari Breakout

From the paper "Playing Atari with Deep Reinforcement Learning", by Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller

Game

The impact

- Revival of Artificial Intelligence
- Next technology revolution?

A big thing ongoing, should not miss

MACHINE LEARNING BASICS

What is machine learning?

 "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T as measured by P, improves with experience E."

----- Machine Learning, Tom Mitchell, 1997

Example 1: image classification

Task: determine if the image is indoor or outdoor

Performance measure: probability of misclassification

Example 1: image classification

Experience/Data: images with labels

Indoor outdoor

Example 1: image classification

- A few terminologies
 - Instance
 - Training data: the images given for learning
 - Test data: the images to be classified

Example 1: image classification (multi-class)

ImageNet figure borrowed from vision.standford.edu

Example 2: clustering images

Task: partition the images into 2 groups Performance: similarities within groups

Data: a set of images

Example 2: clustering images

- A few terminologies
 - Unlabeled data vs labeled data
 - Supervised learning vs unsupervised learning

Feature vectors

Feature space

Feature vectors

Feature space

Feature Example 2: little green men

The weight and height of 100 little green men

Feature Example 3: Fruits

From Iain Murray http://homepages.inf.ed.ac.uk/imurray2/

Feature example 4: text

- Text document
 - Vocabulary of size D (~100,000)
- "bag of word": counts of each vocabulary entry
 - To marry my true love → (3531:1 13788:1 19676:1)
 - I wish that I find my soulmate this year → (3819:1 13448:1 19450:1 20514:1)
- Often remove stopwords: the, of, at, in, ...
- Special "out-of-vocabulary" (OOV) entry catches all unknown words

UNSUPERVISED LEARNING BASICS

Unsupervised learning

in unsupervised learning, we're given a set of instances, without labels $x^{(1)}, x^{(2)}, ..., x^{(m)}$

goal: discover interesting regularities/structures/patterns that characterize the instances

Common tasks:

- clustering, separate the *n* instances into groups
- novelty detection, find instances that are very different from the rest
- dimensionality reduction, represent each instance with a lower dimensional feature vector while maintaining key characteristics of the training samples

Anomaly detection

Anomaly detection example

Let's say our model is represented by: 1979-2000 average, ±2 stddev Does the data for 2012 look anomalous?

Dimensionality reduction

given

• training set of instances $x^{(1)}, x^{(2)}, ..., x^{(m)}$

output

 model h that represents each x with a lower-dimension feature vector while still preserving key properties of the data

Dimensionality reduction example

We can represent a face using all of the pixels in a given image

More effective method (for many tasks): represent each face as a linear combination of *eigenfaces*

Clustering

given

• training set of instances $x^{(1)}, x^{(2)}, ..., x^{(m)}$

output

 model h that divides the training set into clusters such that there is intracluster similarity and inter-cluster dissimilarity

Example 1: Irises

Clustering irises using three different features (the colors represent clusters identified by the algorithm, not y's provided as input)

Example 2: your digital photo collection

- You probably have >1000 digital photos, 'neatly' stored in various folders...
- After this class you'll be about to organize them better
 - Simplest idea: cluster them using image creation time (EXIF tag)
 - More complicated: extract image features

Two most frequently used methods

- Many clustering algorithms. We'll look at the two most frequently used ones:
 - Hierarchical clustering
 Where we build a binary tree over the dataset
 - K-means clustering
 - Where we specify the desired number of clusters, and use an iterative algorithm to find them

HIERARCHICAL CLUSTERING

- Very popular clustering algorithm
- Input:
 - A dataset x_1, \dots, x_n , each point is a numerical feature vector
 - Does NOT need the number of clusters

Building a hierarchy

Initially every point is in its own cluster

Find the pair of clusters that are the closest

Merge the two into a single cluster

Repeat...

Repeat...

- Repeat...until the whole dataset is one giant cluster
- You get a binary tree (not shown here)

Hierarchical Agglomerative Clustering

Input: a training sample $\{\mathbf{x}_i\}_{i=1}^n$; a distance function d().

- 1. Initially, place each instance in its own cluster (called a singleton cluster).
- 2. while (number of clusters > 1) do:
- 3. Find the closest cluster pair A, B, i.e., they minimize d(A, B).
- 4. Merge A, B to form a new cluster.

Output: a binary tree showing how clusters are gradually merged from singletons to a root cluster, which contains the whole training sample.

• Euclidean (L2) distance

$$d(x_i, x_j) = ||x_i - x_j|| = \sqrt{\sum_{s=1}^d (x_{is} - x_{js})^2}$$

 How do you measure the closeness between two clusters?

- How do you measure the closeness between two clusters? At least three ways:
 - Single-linkage: the shortest distance from any member of one cluster to any member of the other cluster. Formula?
 - Complete-linkage: the greatest distance from any member of one cluster to any member of the other cluster
 - Average-linkage: you guess it!

- The binary tree you get is often called a dendrogram, or taxonomy, or a hierarchy of data points
- The tree can be cut at various levels to produce different numbers of clusters: if you want k clusters, just cut the (k-1) longest links
- Sometimes the hierarchy itself is more interesting than the clusters
- However there is not much theoretical justification to it...

K-MEANS CLUSTERING

Clustering: What if we want k prototypical examples?

Very popular clustering method

- Input:
 - A dataset x_1, \dots, x_n , each point is a numerical feature vector in \mathbb{R}^d
 - Assume the number of clusters k is given

Input: dataset, k = 5

Randomly picking 5 positions as initial cluster centers (not necessarily a data point)

K-means clustering

Each point finds which cluster center it is closest to. The point is assigned to that cluster.

K-means clustering

Each cluster computes its new centroid, based on which points belong to it

- Each cluster computes its new centroid, based on which points belong to it
- And repeat until convergence (cluster centers no longer move)...

K-means algorithm

- Input: points x_1, \dots, x_n , number of clusters k
- Select k centers c_1, \dots, c_k
- Step 1: for each point x, determine its cluster: find the closest center in Euclidean distance
- Step 2: update all cluster centers as the centroids

$$c_i = \sum_{x \text{ in cluster } i} x / \text{SizeOf(cluster } i)$$

 Repeat step 1, 2 until the centers don't/slightly change

Questions on k-means

- What is k-means trying to optimize?
- Will k-means stop (converge)?
- Will it find a global or local optimum?
- How to pick starting cluster centers?
- How many clusters should we use?

Distortion

- Clustering as summarization: replace a point x with its center $c_{y(x)}$. How far are you off?
- The distortion of x is measured by squared Euclidean distance:

$$||x - c_{y(x)}||^2 = \sum_{i=1}^d [x_i - (c_{y(x)})_i]^2$$

The distortion of the whole dataset is

$$\sum_{x} \left\| x - c_{y(x)} \right\|^2$$

The optimization objective

Minimize the distortion of the dataset

$$\min_{\substack{y(x_1),...,y(x_n) \\ c_1,...,c_k}} \sum_{x} ||x - c_{y(x)}||^2$$

Step 1

- Suppose we fix the cluster centers
- Assigning x to its closest cluster center y(x) minimizes the distortion

$$\left\|x-c_{y(x)}\right\|^2$$

Step 2

- Suppose we fix the assignment of points. All you can do is to change the cluster centers
- This is a continuous optimization problem!

$$\min_{c_1, \dots, c_k} \sum_{x} \|x - c_{y(x)}\|^2$$

Step 2

- Suppose we fix the assignment of points. All you can do is to change the cluster centers
- This is a continuous optimization problem!

$$\min_{c_1, \dots, c_k} \sum_{x} \|x - c_{y(x)}\|^2$$

Set the gradient to 0 leads to

$$c_i = \frac{\sum_{y(x)=i} x}{n_i}$$

Repeat (step1, step2)

- Both step1 and step2 minimizes the distortion
- Step1 changes the assignments y(x)
- Step2 changes the cluster centers c_z

- However there is no guarantee the distortion is minimized over all... need to repeat
- This is hill climbing (coordinate descent)
- Will it stop?

Repe

There are finite number of points

- Both step1 an
- Step1 change
- Step2 change
- However the is minimized
- This is hill clin
- Will it stop?

Finite ways of assigning points to clusters

In step1, an assignment that reduces distortion has to be a new assignment not used before

Step1 will terminate

So will step 2

So k-means terminates

Will find global optimum?

Sadly no guarantee

Will find global optimum?

- Sadly no guarantee
- Example (even for k = 3)

Will find global optimum?

- Sadly no guarantee
- Example (even for k = 3)

Picking starting cluster centers

- Which local optimum k-means goes to is determined solely by the starting cluster centers
 - Be careful how to pick the starting cluster centers.
 Many ideas. Here's one neat trick:
 - 1. Pick a random point x_1 from dataset
 - 2. Find the point x_2 farthest from x_1 in the dataset
 - 3. Find x_3 farthest from the closer of x_1 , x_2
 - 4. ... pick k points like this, use them as starting centers
 - Run k-means multiple times with different starting cluster centers (hill climbing with random restarts)

Picking the number of clusters

- Difficult problem
- Domain knowledge?
- Otherwise, shall we find k which minimizes distortion?

Picking the number of clusters

- Difficult problem
- Domain knowledge?
- Otherwise, shall we find k which minimizes distortion? k = n, distortion = 0
- Need to regularize. E.g., the Schwarz criterion

distortion + λ (#param) log n = distortion + $\lambda dk \log n$ #dimensions #clusters #points