DM Noé VINCENT

Apprentissage d'un langage régulier avec L^*

1 - Représentation des automates

1.1 -

- 1. (S_1, T_1) est correcte et complète.
- 2. (S_2, T_2) est **correcte**, en effet, a et ε ne sont pas T_2 -équivalents ($b \in \mathcal{L}$, $ab \notin \mathcal{L}$). Mais, elle **n'est pas complète** car ab (forme ua, $u = "a" \in S_2$, $a = "b" \in \Sigma$), n'est T équivalent avec aucun mot $v \in S_2$:

$$v = \varepsilon, b \in T_2 : abb \notin \mathcal{L}, b \in \mathcal{L}$$

$$v = a, \varepsilon \in T_2$$
: ab $\notin \mathcal{L}, a \in \mathcal{L}$

- 3. (S_3,T_3) n'est pas correcte car "b" et " ε " sont T_3 -équivalents, en effet:
 - pour $w = b \in T_3$, $\varepsilon.b \in \mathcal{L}$, $b.b \in \mathcal{L}$
 - pour $w = \varepsilon \in T_3, \varepsilon \in \mathcal{L}, b \in \mathcal{L}$

Cependant elle n'est pas complète il n'existe aucun mot de S qui soit T_3 -équivalent avec ab. (Même preuve que précedemment à laquelle on ajoute le cas $v=b, \varepsilon \in T_3$, ab $\notin \mathcal{L}, b \in \mathcal{L}$).

1.2 -

1.3 -

- 1. $A(S_1, T_1)$ est non représenté puisque vide (aucun état).
- 2. cf photo

1.4 -

On peut construire A(S,T), à l'aide d'appels à oracle en deux étapes:

- D'abord pour déterminer les états finaux.
- Ensuite pour construire les transitions à l'aide de la regle: $u \stackrel{a}{\to} v$ si ua et v sont T-equivalents. En effet, on peut utiliser oracle pour déterminer cette équivalence (cf implémentation de make_t_e-quivalence).

Pour connaître les états finaux on fait |S| appels à oracle.

Soit f une fonction qui à un couple de mots donne vrai s'ils sont T-équivalents. Pour chaque couple ordonné (u,v) de sommets, il est nécessaire de faire $|\Sigma|$ appels f.

Or cette fonction f fait 2*|T| appels à oracle (selon l'implémentation proposée). Ainsi, la construction nécéssite $2*|S|^2*|\Sigma|*|T|$ appels à oracle pour construire les transitions.

Ainsi pour construire A(S,T) il est nécessaire de faire : $2*|S|^2*|\Sigma|*|T|+|S|$ appels à oracle.

Définissons l'ensemble des questions posée à l'oracle ${\cal Q}$ sous la forme d'un ensemble de mots.

$$Q = Q_S \cup Q_T$$

où $Q_S = S$ correspond à l'ensemble des sommets dont on vérifie s'ils sont terminaux et Q_T correspond à l'ensemble des questions posée pour construire les transitions.

$$Q_T = \{ w \mid w \in (S \cup S.\Sigma).T \}$$

ďoù

$$|Q| = |S| + |(S \cup S.\Sigma).T| - |S \cap (S \cup S.\Sigma).T|$$

PROG 1 sur 2

DM Noé VINCENT

or $S \cap (S \cup S.\Sigma).T = S$ car $\varepsilon \in T$ (si T non vide).

$$|Q| = |S| + |(S \cup S.\Sigma).T| - |S| = |(S \cup S.\Sigma).T|$$

Si T est vide alors |Q|=|S| car $Q_T=\emptyset.$

On pose donc |S| ou $|(S \cup S.\Sigma).T|$ questions différentes à oracle en fonction respectivement de si T est vide ou non.

1.5 -

PROG 2 sur 2