8.1 Formules de trigonométrie

8.1.1 Formules d'addition

Propriétés 1.8.

Soient a et b deux réels.

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b) \tag{8.1}$$

$$\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a) \tag{8.2}$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \tag{8.3}$$

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a) \tag{8.4}$$

Démonstration. On démontre la première égalité.

Dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$ considérons deux vecteurs \overrightarrow{u} et \overrightarrow{v} unitaires (c'est-à-dire de norme 1) et tels que $(\overrightarrow{i}; \overrightarrow{u}) = a$ et $(\overrightarrow{i}; \overrightarrow{v}) = b$ (voir le schéma).

On sait que $(\overrightarrow{u}; \overrightarrow{v}) = (\overrightarrow{u}; \overrightarrow{\imath}) + (\overrightarrow{\imath}; \overrightarrow{v}) = \underline{\hspace{1cm}}$. Or on a $\overrightarrow{u}.\overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos(\overrightarrow{u}; \overrightarrow{v}) = \cos(b-a)$ donc $\overrightarrow{u}.\overrightarrow{v} = \cos(b-a) = \cos(a-b)$ car $\cos x = \underline{\hspace{1cm}}$.

donc $\overrightarrow{u} \cdot \overrightarrow{v} = \cos(b-a) = \cos(a-b)$ car $\cos x = \underline{\hspace{1cm}}$.

On sait aussi que $\overrightarrow{u} \begin{pmatrix} \cos a \\ \sin a \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} \cos b \\ \sin b \end{pmatrix}$. Et donc $\overrightarrow{u} \cdot \overrightarrow{v} = \cos a \cos b + \sin a \sin b$.

On en déduit que : $\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$.

Application 1.8. Calculer $\cos\left(\frac{7\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

8.1.2 Formules de duplication

Des formules d'addition précédentes, en prenant b = a, on en déduit les propriétés suivantes :

Propriétés 2.8.

Soit a un réel.

- $\cos(2a) = \cos^2(a) \sin^2(a)$ et $\sin(2a) = 2\sin(a)\cos(a)$
- $\cos(2a) = 2\cos^2(a) 1$ et $\cos(2a) = 1 2\sin^2(a)$
- $\cos^2(a) = \frac{\cos(2a) + 1}{2}$ et $\sin^2(a) = \frac{1 \cos(2a)}{2}$

Application 2.8.

- 1. Démonter que pour tout réel $x : \sin(x) \cos(x) = \sqrt{2}\sin\left(x \frac{\pi}{4}\right)$.
- 2. (a) Exprimer $\cos\left(x \frac{\pi}{6}\right)$ et $\sin\left(x \frac{\pi}{6}\right)$ en fonction de $\cos(x)$ et $\sin(x)$.
 - (b) En déduire les solutions dans $]-\pi$; π] de $\cos(x)-\sqrt{3}\sin(x)=-1$.

8.2 Forme exponentielle d'un nombre complexe

8.2.1 Notation $e^{i\theta}$

Définition 1.8.

Pour tout réel θ , $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.

Remarques.

- $e^{i\theta}$ est le nombre complexe de module 1 et d'argument θ .
- Cas particuliers : $e^{i0} = 1$, $e^{i\pi} = -1$ et $e^{i\frac{\pi}{2}} = i$.

Exemple 1.8.

Écrire la forme algébrique de ie $^{i\frac{\pi}{3}}$.

8.2.2 Relation fonctionnelle

Propriétés 3.8.

Soit θ et θ' deux nombres réels et n un entier relatif.

- $\bullet e^{i\theta} \times e^{i\theta'} = \underline{\hspace{1cm}}$
- $\bullet \left(e^{i\theta} \right)^n = \underline{ }.$
- $\bullet \ \frac{1}{e^{i\theta}} = \underline{\hspace{1cm}}.$
- $\bullet \ \frac{e^{i\theta}}{e^{i\theta'}} = \underline{\hspace{1cm}}.$

Application 3.8. Simplifier les écritures suivantes :

1.
$$\left(2e^{-i\frac{\pi}{2}}\right)\left(3e^{i\frac{\pi}{3}}\right)$$

2.
$$\left(3e^{-i\frac{\pi}{3}}\right)^4$$

8.2.3 Forme exponentielle d'un nombre complexe

Définition 2.8.

Soit z un nombre complexe non nul, r et θ deux réels avec r > 0. |z| = r et $\arg(z) = \theta$ $[2\pi] \iff z = re^{i\theta}$. L'écriture $re^{i\theta}$ est appelée forme exponentielle de z.

- **Application 4.8.** On donne $z = 1 + i\sqrt{3}$.
 - 1. Écrire z sous forme exponentielle.
 - 2. En déduire la forme exponentielle puis la forme algébrique de $\left(1+i\sqrt{3}\right)^{13}$.

8.3 Formules d'Euler et de De Moivre

8.3.1 Formules d'Euler

Propriété 1.8.

Pour tout réel θ ,

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \text{ et } \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

ightharpoonup Application 5.8. Démontrer que pour tout réel x,

$$\cos(2x)\sin(3x) = \frac{1}{2}(\sin(5x) + \sin(x)).$$

8.3.2 Formules de De Moivre

Propriété 2.8.

Pour tout réel θ et tout entier naturel n,

$$(\cos(\theta) + \mathrm{i}\sin(\theta))^n = \cos(n\theta) + \mathrm{i}\sin(n\theta)$$

Exemple 2.8.

Utiliser la formule de De Moivre pour n=2 et retrouver les formules de duplication