Tutorial 7: MA1E01

Analysis of Functions

- 1. For each of the following functions, find (a) the intervals on which f is increasing, (b) the intervals in which f is decreasing, (c) the open intervals on which f is concave up, (d) the open intervals on which f is concave down, and (e) the x-coordinates of all inflection points:
 - (a) $f(x) = x^2 3x + 8$
 - (b) $f(x) = x^4 5x^3 + 9x^2$
 - (c) $f(x) = \frac{x-2}{(x^2-x+1)^2}$
- 2. Show that $x<\tan x$ if $0< x<\pi/2$. (HINT: Show that the function $f(x)=\tan x-x$ is increasing on $[0,\pi/2)$.)
- 3. For each of the following functions, locate the critical points and identify which critical points are stationary points:
 - (a) $f(x) = 4x^4 16x^2 + 17$
 - (b) $f(x) = \frac{x^2}{x^3 + 8}$
 - (c) $f(x) = |\sin x|$
- 4. For the polynomial $p(x) = x(x^2 1)^2$, find
 - (a) the coordinates of the x and y-intercepts,
 - (b) the stationary points,
 - (c) the intervals over which f is increasing and decreasing,
 - (d) the intervals over which f is concave up and concave down and
 - (e) any inflection points.

Hence sketch the graph of p(x).

- 5. For the rational function $f(x) = x^2/(x^2 4)$, find
 - (a) the symmetries of the function,
 - (b) the coordinates of the x and y-intercepts,
 - (c) the horizontal and vertical asymptotes,
 - (d) the stationary points,
 - (e) the intervals over which f is positive and negative,
 - (f) the intervals over which f is increasing and decreasing,
 - (g) the intervals over which f is concave up and concave down and
 - h) any inflection points. 1

Honce sketch the graph of f(x).

