

# RESEARCH MEMORANDUM

PERFORMANCE OF PURE FUELS IN A SINGLE J33 COMBUSTOR

III - FIVE HYDROCARBON GASEOUS FUELS AND ONE

OXYGENATED-HYDROCARBON GASEOUS FUEL

By Arthur L. Smith and Jerrold D. Wear

Lewis Flight Propulsion Laboratory Cleveland, Ohio

# NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

February 29, 1956 Declassified June 20, 1957

#### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

#### RESEARCH MEMORANDUM

PERFORMANCE OF PURE FUELS IN A SINGLE J33 COMBUSTOR

III - FIVE HYDROCARBON GASEOUS FUELS AND ONE

OXYGENATED-HYDROCARBON GASEOUS FUEL

By Arthur L. Smith and Jerrold D. Wear

#### SUMMARY

Investigations of pure gaseous fuels, five hydrocarbons and one oxygenated hydrocarbon, were conducted in a single tubular-type combustor in order to determine possible relations between combustor performance and fuel properties. The fuels tested were propane, ethane, ethylene, acetylene, 1,3-butadiene, and ethylene oxide. Combustor temperature rise and combustion efficiency were determined for each fuel over a range of heat-input and air-flow rates at two inlet-air total-pressure conditions and one inlet-air total temperature. Data were obtained with two fuel-injector configurations. Combustor blow-out limits were obtained for some of the fuels over the range of test conditions.

At the more severe operating conditions investigated, the data indicated an increase in combustion efficiency with an increase in maximum burning velocity, an increase in flammability range, and a decrease in minimum spark-ignition energy. The fuels that exhibited the highest combustion efficiencies, in general, were ethylene oxide and acetylene; while those exhibiting the lowest combustion efficiencies were propane and ethane. Gaseous-fuel penetration and distribution in the primary combustion zone markedly altered combustion efficiencies; when fuelinjector capacity was varied, higher efficiencies were generally obtained with a smaller-capacity fuel injector.

#### INTRODUCTION

Research is being conducted at the NACA Lewis laboratory to obtain information on the relative effects of such factors as fuel-spray evaporation, turbulent-flame spreading, and chemical-reaction rate on the performance of turbojet combustors. Part of this research is designed to provide information on the combustion characteristics of pure liquid

and gaseous fuels and, particularly, to determine whether combustor performance can be related to physical or fundamental combustion properties of these fuels or both.

The present investigation is the final phase of a three-phase program on the performance of pure fuels in a single J33 combustor. In the first phase of this program (ref. 1), combustor performance was determined with five liquid hydrocarbon fuels, which represent a range of physical and fundamental combustion properties. The data indicated an approximately linear increase in temperature rise and combustion efficiency at constant heat input with increase in maximum burning velocity. However, the range of fuel properties considered was too small to establish a conclusive correlation. Accordingly, a second investigation (ref. 2) was conducted with 13 liquid hydrocarbon and nonhydrocarbon fuels having a wider range of physical and fundamental combustion properties. An approximate correlation was obtained between combustion efficiency at a constant heat input and the parameter  $u_{\rm x}/L_{\rm v}^{1/3}$ , where  $u_{\rm x}$  is the maximum burning velocity and  $L_{\rm v}$  is the latent heat of vaporization at the normal boiling point.

The results reported in reference 2 suggest that the rate-controlling process changes with fuel properties. For example, the combustion rate of a low-flame-speed fuel might be limited by its flame speed; whereas the combustion rate of a high-flame-speed fuel might be limited by its vaporization characteristics. For gaseous fuels, where the vaporization step is eliminated, the results of reference 2 suggest that the effect of fuel type on combustion efficiency might be treated solely in terms of maximum burning velocity. Accordingly, the present and final phase of the program on the performance of pure fuels in a single J33 combustor was conducted with gaseous fuels.

The combustion performances of propane, ethane, ethylene, acetylene, 1,3-butadiene, and ethylene oxide were investigated over a range of airflow and fuel-flow rates and at two inlet-air pressures (14.3 and 8.0 in. Hg abs). The inlet-air temperature was held constant at approximately 200° F. The effect of fuel-air distribution and mixing on combustor performance was investigated by using two different modified commercial nozzles.

The performances of the fuels are compared on the basis of combustion efficiency at a heat-input value of 200 Btu per pound of air. The effect of physical properties on combustor performance was minimized to some degree by using gaseous fuels; consequently, the variations in performance were considered only in terms of fundamental combustion properties of the fuels. The fundamental combustion properties examined for possible relations with performance are spontaneous-ignition temperature, minimum spark-ignition energy, flammability range, and maximum burning velocity. The results are compared with those obtained in references 1 and 2.

#### FUELS

Fundamental combustion properties of the six gaseous fuels used in the investigation are summarized in table I. Purity values listed in the table were obtained from the supplier.

#### . APPARATUS AND INSTRUMENTATION

With the exception of the fuel system and fuel nozzle, the apparatus and instrumentation used in this investigation were the same as those in reference 2.

A diagram of the general arrangement of the single J33 combustor and the auxiliary equipment is shown in figure 1. Air flow to the combustor was measured by a square-edge orifice plate installed according to A.S.M.E. specifications and located upstream of all regulating valves. The combustor inlet-air flow rate and pressure were regulated by remote-controlled valves in the laboratory air-supply and exhaust system. The air supplied to the combustor had a dew point of either -20° or -70° F.

A diagrammatic cross section showing the combustor and its auxiliary ducting, the position of the instrumentation planes, and the location of temperature- and pressure-measuring instruments in the instrumentation planes is presented in figure 2. Thermocouples and total-pressure tubes in each instrumentation plane were located at centers of equal annular area. Construction details of the temperature- and pressure-measuring instruments are shown in figure 3.

The fuel system used in the present investigation is illustrated schematically in figure 4. The gaseous fuels were drawn from cylinders, through a reducing valve and a steam-fed heat exchanger into the combustor. For tests with ethylene oxide, the reducing valve was replaced by a fine-mesh-screen flash-back arrester. A water-trap flash-back arrester was placed downstream of the reducing valve for tests with acetylene.

Fuel-flow rates to the combustor were measured by rotameters. The rotameters were calibrated with air at temperature and pressure conditions that provided densities approximately the same as those of the test fuels at the test conditions. Appropriate density corrections were then applied to the rotameter measurements.

Two fuel-nozzle-injector configurations were used to obtain a variation in injector characteristics. The swirl parts were removed from a commercial hollow-cone swirl-type nozzle. Six equally spaced holes were drilled at an angle  $\alpha$  from the axis of the nozzle (see the following illustration). The normal discharge orifice (0.016-in. diam.) was not altered.



The variations in injector design were as follows:

| ·                                                                               | Angle, α, deg | Hole diameter, in. |
|---------------------------------------------------------------------------------|---------------|--------------------|
| Configuration 1 (small-capacity nozzle) Configuration 2 (large-capacity nozzle) | 57<br>45      | 1/16<br>1/8        |

#### PROCEDURE

The performances of the six gaseous fuels were determined at the following combustor operating conditions:

| Inlet-air<br>total pressure,<br>in. Hg abs | Inlet-air mass flow, lb/sec | Inlet-air<br>total temperature,<br>OF | Inlet-air velocity, ft/seca |
|--------------------------------------------|-----------------------------|---------------------------------------|-----------------------------|
| 14.3                                       | 0.6<br>.8<br>1.0<br>1.3     | 200                                   | 79<br>105<br>132<br>170     |
| 8.0                                        | 0.36<br>.56<br>.73          | 200                                   | 80<br>130<br>170            |

<sup>a</sup>Based on combustor maximum cross-sectional area of 0.267 sq ft measured  $12\frac{1}{2}$  inches downstream of section B-B (fig. 2).

The procedures for establishing test conditions and recording data were identical to those described in reference 2. Reproducibility of the data was determined from occasional tests with propane and the small-capacity fuel nozzle. Tests with 1,3-butadiene were limited because of the small quantity of this fuel available.

#### CALCULATIONS

#### Combustor Temperature Rise

The combustor temperature rise was determined as the increase in gas temperature from section B-B to C-C (fig. 2). The temperature at B-B was the average indication of the two iron-constantan thermocouples; the temperature at C-C was the arithmetic average indication of the 16 chromel-alumel thermocouples. The indicated thermocouple readings were taken as true values of the total temperature.

#### Combustion Efficiency

Combustion efficiency was defined as

Actual enthalpy rise across combustor (Fuel-air ratio) (Lower heating value of fuel)

The equations and charts of reference 3 were used to calculate combustion efficiencies for the hydrocarbon fuels. The combustion efficiency for ethylene oxide was calculated by using the procedure presented for oxygenated-hydrocarbon fuels in reference 2.

#### RESULTS

Combustor performance data for the six gaseous fuels obtained in a single J33 combustor are presented in table II. In order to place the performances of the various fuels on a comparable basis, heat input (product of fuel-air ratio and lower heat of combustion of the fuel) was used in place of fuel-air ratio as one independent variable. Relations among heat input, combustor temperature rise, and combustion efficiency for each of the fuels are shown in figures 5 to 10. The curves of constant combustion efficiency were calculated for each fuel. Combustor blow-out points are also shown in these figures.

The reproducibility of the test data is indicated in figures 5(a) and (b). Combustor performance data were obtained periodically with propane fuel over a period of five months, during which time the combustor was disassembled and cleaned several times. The average percentage deviation of the combustion efficiency of individual data points from the curves faired through all the data was about ±1 percent; the maximum deviation was about 4 percent. Accordingly, differences greater than 2 percent among fuels may generally be considered as real differences, while differences less than 2 percent fall within the reproducibility range. Blow-out data could be checked closely at the time obtained, although comparable data obtained over a period of time varied to some degree.

The data of figures 5 to 10 show, in general, a progressive increase in temperature rise with heat input up to the rich blow-out point or facility limiting points. However, rich-blow-out points for propane (fig. 5), ethane (fig. 6), and 1,3-butadiene (fig. 7) sometimes occurred at a heat input higher than that required for maximum temperature rise. Heat input at rich blow-out decreased, in general, with increase in inlet-air mass-flow rates and with decrease in inlet-air total pressures. Rich-blow-out points were not obtained for some of the fuels because of limitations imposed by the facilities. These points and the rich-blow-out points determined are indicated by assigned symbols.

Maximum temperature rise usually increased with an increase in inletair total pressure and a decrease in inletair mass-flow rate. For a given fuel, the maximum temperature rise obtained with the small-capacity fuel nozzle was generally greater than that obtained with the large-capacity fuel nozzle. The highest combustor-temperature-rise value, about 2000°F, which represents an instrumentation limit, was obtained with ethylene and acetylene.

Combustion efficiencies increased, in general, with increase in inlet-air total pressure and with decrease in inlet-air mass-flow rates for all the fuels tested in this investigation. Representative combustionefficiency data, which illustrate the effect of fuel-injector configuration and heat input on combustion efficiency, are presented for one inlet-air reference velocity and two inlet-air total-pressure conditions in figure 11. The curves, which are presented for ethane, ethylene oxide, and acetylene, show the tendency toward lower combustion efficiencies with use of the large-capacity fuel injector. The one exception was ethylene oxide. For this fuel the small-capacity fuel injector tended to give lower combustion efficiencies. In figure 11, combustion efficiency passes through a sharp maximum with increase in heat input for ethane with the small-capacity fuel injector at the high inlet-air totalpressure condition, but the curve remains relatively flat for acetylene. The performance of propane was similar to that of ethane, while the performances of the remaining fuels were similar to that of acetylene. spread in combustion efficiency among fuels increased as the severity of the test conditions increased.

#### DISCUSSION

The objective of the investigation reported herein is to relate the combustion performances of the various fuels to fundamental combustion characteristics of the fuels. One representative combustion performance parameter, combustion efficiency at a heat-input value of 200 Btu per pound of air, was chosen for making comparisons among the fuels. The heat-input value of 200 Btu per pound of air was the maximum heat-input value at which data were available for all fuels.

#### Comparison of Combustion Efficiencies of Gaseous Fuels

In figure 12, combustion efficiency at a heat-input value of 200 Btu per pound of air is plotted against air-flow rate for each fuel. Data are presented for two inlet-air total pressures (8.0 and 14.3 in. Hg abs) and for two fuel-injector configurations. At low inlet-air massflow rates the combustion efficiencies of all the fuels are high, in most cases 90 percent or greater. Thus, differences in the fundamental combustion properties of the test fuels are of negligible importance at this condition. An increase in inlet-air mass-flow rate and, consequently, air velocity resulted in a decrease in combustion efficiency and an increase in the variation in combustion efficiency with fuel type. The high-performance fuels (ethylene oxide and acetylene) were less affected by changes in inlet-air mass-flow rates than the other fuels. At severe operating conditions the fuels that exhibited the lowest combustion efficiencies, in general, were propane and ethane, while those that exhibited the highest combustion efficiencies were ethylene oxide and acetylene. The difference between ethane and ethylene oxide was approximately 46 percent at the low inlet-air total pressure and with the large-capacity fuel nozzle and a high inlet-air mass flow rate. In figure 12 it may be seen that the performance order of the fuels changed with operating conditions; consequently, no single correlation between combustion efficiency and fuel properties would be effective over the entire combustor operating range.

The tests with different fuel injectors showed that changes in the fuel-distribution patterns in the combustor altered not only the combustion efficiency of the combustor but also the magnitude of the efficiency differences between the fuels. At the same fuel-flow rate, the small-capacity fuel injector with its wider cone angle and higher pressure drop may have distributed the gaseous fuel to form the more homogeneous fuel-air mixture pattern in the primary combustion zone that resulted in the higher combustion efficiencies observed.

#### Comparison of Combustion Efficiency with

#### Fundamental Combustion Properties

Some fundamental combustion properties of fuels that may affect combustor performance are spontaneous-ignition temperature, flammability range, minimum spark-ignition energy, and maximum burning velocity. An increase in flammability range or maximum burning velocity, or a decrease in minimum ignition energy or spontaneous-ignition temperature might be expected to effect increases in the rate of the combustion process. The variation in combustion efficiency at a heat-input value of 200 Btu per pound of air with fundamental combustion properties of the gaseous fuels is shown in figure 13. Minimum spark-ignition-energy data were estimated

from the curves of reference 4 at the pressures used in the combustor tests. Data are presented for two inlet-air total pressures (8.0 and 14.3 in. Hg abs), one inlet-air temperature (200° F), one inlet-air reference velocity (170 ft/sec), and two fuel-injector configurations. The data indicate an increase in combustion efficiency with an increase in maximum burning velocity (figs. 13(a) and (b)), a decrease in minimum spark-ignition energy (figs. 13(a) and (b)), and an increase in flammability range (figs. 13(c) and (d)). There is no satisfactory relation between spontaneous-ignition temperature and combustion efficiency (figs. 13(c) and (d)), although a slight trend toward a decrease in combustion efficiency with increase in spontaneous-ignition temperature is noted.

In references 1 and 2, similar combustion performance data were obtained with liquid hydrocarbon and nonhydrocarbon fuels in the same combustor but with a different fuel injector. In reference 1, there was some evidence of a relation between combustion performance of liquid hydrocarbon fuels and maximum burning velocity. No well-defined relation between combustion performance and minimum spark-ignition energy was indicated, although there was a qualitative trend toward increasing combustion efficiency with decreasing minimum spark-ignition energy. results are reported for liquid hydrocarbon and nonhydrocarbon fuels in reference 2. That is, of the fundamental combustion properties considered, maximum burning velocity provided the best correlation with combustion performance. Since minimum spark-ignition energy has been related to maximum burning velocity (refs. 4 and 5), relations similar to those established with maximum burning velocity would be expected. The fact that generally more satisfactory correlations have been observed with maximum burning velocity may be attributed to the greater inherent errors associated with obtaining minimum-spark-ignition-energy data.

Comparisons of the variation in combustion efficiency with maximum burning velocity for the gaseous and liquid hydrocarbon and nonhydrocarbon fuels for the same operating conditions are presented in figure The solid curve is faired through all the liquid-fuel data from references 1 and 2, while the broken curves are faired through all the gaseous-fuel data obtained in this investigation. Combustion efficiencies from references 1 and 2 were obtained at a heat-input value of 200 Btu per pound of air. Combustion efficiencies for both the liquid and the gaseous fuels increased with an increase in maximum burning velocity at severe conditions. At a given value of maximum burning velocity, the combustion efficiency obtained with a gaseous fuel was, in general, appreciably higher than that obtained with a liquid fuel. The improvement in combustion efficiency with the use of gaseous fuels might be attributed, at least partly, to the elimination of the fuel-vaporization step. The influence of the fuel-vaporization step on the over-all combustion process is also indicated by the correlation obtained with liquid fuels in reference 2 in which an improved correlation was obtained by considering both maximum burning velocity and latent heat of vaporization.

Since combustion efficiencies of the gaseous fuels were affected by changes in fuel-injector configurations, the differences in performance of the liquid and gaseous fuels cannot be attributed solely to the elimination of the fuel-vaporization step. The effectiveness of mixing apparently must also be considered.

#### SUMMARY OF RESULTS

The following results were obtained from an investigation of the effects of fundamental combustion properties of six pure gaseous fuels on the performance of a single tubular combustor.

- 1. At severe operating conditions, the data indicated an increase in combustion efficiency with an increase in maximum burning velocity and flammability range and a decrease in minimum spark-ignition energy. The fuels exhibiting the highest performance were ethylene oxide and acetylene, while the fuels exhibiting the lowest performances were propane and ethane.
- 2. An increase in inlet-air mass-flow rate or decrease in inlet-air pressure generally decreased combustion efficiency and increased differences in combustion efficiencies among the fuels.
- 3. The combustion efficiencies obtained with a smaller-capacity fuel injector were higher, in general, than those obtained with a larger-capacity fuel injector.
- 4. Combustion efficiencies obtained with the gaseous fuels were generally higher than those obtained with liquid fuels in a previous investigation at the same combustor operating conditions.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, November 7, 1955

#### REFERENCES

- 1. Wear, Jerrold D., and Dittrich, Ralph T.: Performance of Pure Fuels in a Single J33 Combustor. I Five Liquid Hydrocarbon Fuels.

  NACA RM E52J03, 1952.
- 2. Smith, Arthur L., and Wear, Jerrold D.: Performance of Pure Fuels in a Single J33 Combustor. II Hydrocarbon and Nonhydrocarbon Fuels. NACA RM E55B02, 1955.

- 3. Huff, Vearl N., Gordon, Sanford, and Morrell, Virginia E.: General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions. NACA Rep. 1037, 1951. (Supersedes NACA TN's 2113 and 2161.)
- 4. Metzler, Allen J.: Minimum Ignition Energies of Six Pure Hydrocarbon Fuels of the C<sub>2</sub> and C<sub>6</sub> Series. NACA RM E52F27, 1952.
- 5. Metzler, Allen J.: Minimum Spark-Ignition Energies of 12 Pure Fuels at Atmospheric and Reduced Pressure. NACA RM E53H31, 1953.
- 6. Scott, G. S., Jones, G. W., and Scott, F. E.: Determination of Ignition Temperatures of Combustible Liquids and Gases. Anal. Chem., vol. 20, no. 3, Mar. 1948, pp. 238-241.
- 7. Anon.: Matheson Gas Data Book. Second ed., The Matheson Co., Inc. 1951.
- 8. Rossini, Frederick D., et al.: Selected Values of Properties of Hydrocarbons. Circular 461, Nat. Bur. Standards, Nov. 1947.
- 9. Simon, Dorothy Martin: Flame Propagation Active Particle Diffusion Theory. Ind. and Eng. Chem., vol. 43, no. 12, Dec. 1951, pp. 2718-2721.
- 10. Anon.: Survey of Bumblebee Activities. Rep. No. 113, Appl. Phys. Lab., The Johns Hopkins Univ., Nov. 1949. (Contract NOrd 7386 with Bur. Ord., U.S. Navy.)
- 11. Doss, M. P.: Physical Constants of the Principal Hydrocarbons. Third ed., The Texas Co., 1942.
- 12. Anon.: Chemical Safety Data Sheet SD-38, Manufacturing Chemists' Assoc., Inc., Washington (D. C.), June 1953.

TABLE I. - FUNDAMENTAL COMBUSTION PROPERTIES OF GASEOUS FUELS

| Fuel               | Estimated purity, percent | Lower heat of combus- tion, Btu/lb | Minimum ignition energy, joules (a) | Spontaneous ignition temperature in air, OF (b) | Flamma-<br>bility<br>range,<br>percent<br>stoichio-<br>metric,<br>(rich<br>minus<br>lean)<br>(c) | Maximum burning velocity, cm/sec |
|--------------------|---------------------------|------------------------------------|-------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|
| Propane            | 99.8                      | d <sub>19,929</sub>                | 2.50×10 <sup>-4</sup>               | 920                                             | 174.3                                                                                            | e <sub>39.0</sub>                |
| Ethane             | 95.0                      | d <sub>20,416</sub>                | 2.40                                | 882                                             | 165.0                                                                                            | . e <sub>40.1</sub>              |
| Ethylene           | 95.0                      | d <sub>20</sub> ,276               | 1.24                                | 914                                             | 440.9                                                                                            | e <sub>68</sub> .3               |
| Acetylene          | 100                       | <sup>d</sup> 20,734                | 0.51                                | 581                                             | 633.0                                                                                            | f <sub>140.0</sub>               |
| l,3-Buta-<br>diene | 98.0                      | g <sub>19</sub> ,180               | 1.60                                | 784                                             | 255.0                                                                                            | <sup>e</sup> 54.5                |
| Ethylene<br>oxide  | 99.5                      | h <sub>11</sub> ,748               | 0.87                                | 804                                             | 997.2                                                                                            | f <sub>90.0</sub>                |

aRefs. 4 and 5.

bRef. 6.

cRef. 7.

dRef. 8.

e<sub>Ref.9.</sub>

 $<sup>\</sup>dot{f}$  Data from ref. 10 corrected by a factor from ref. 9.

g<sub>Ref. 11.</sub>

hRef. 12.

TABLE II. - PERFORMANCE DATA FROM SINGLE COMBUSTOR OPERATING WITH HYDROCARBON AND OXYGENATED-HYDROCARBON GASEOUS FUELS

# Combustor-inlet total temperature, 660° R

# (a) Propane; fuel-nozzle configuration 1

| Run                              | Air<br>flow,<br>lb/sec                         | Combustor-<br>inlet<br>reference<br>velocity<br>(nominal),<br>ft/sec | Fuel<br>flow,<br>lb/hr                       | Fuel-<br>air<br>ratio                      | Fuel-<br>nozzle<br>differ-<br>ential<br>pressure,<br>lb/sq in. | Fuel<br>temper-<br>ature,<br>or  | Heat<br>input,<br>Btu/lb                          | Mean com-<br>bustor-<br>outlet<br>temper-<br>ature, | Mean tem-<br>perature<br>rise<br>through<br>combustor,<br>op | Combustion<br>efficiency,<br>percent           | Remarks                                                                   |
|----------------------------------|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------------------------|----------------------------------|---------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|
|                                  |                                                |                                                                      |                                              |                                            | Combu                                                          | stor-inle                        | t total                                           | pressure, 14                                        | 1.3 in. Hg at                                                | 98                                             |                                                                           |
| 1<br>2<br>3<br>4<br>5            | 0.597<br>.598<br>.599<br>.596                  | 79                                                                   | 15.5<br>19.8<br>25.1<br>32.1<br>45.7         | 0.0072<br>.0092<br>.0116<br>.0150<br>.0213 | 4.8<br>8.8<br>12.6<br>17.0<br>25.3                             | 99<br>92<br>91<br>89<br>87       | 143.7<br>183.2<br>231.4<br>298.4<br>424.7         | 1215<br>1410<br>1565<br>1730<br>2000                | 556<br>746<br>905<br>1073<br>1340                            | 97.9<br>104.9<br>102.3<br>95.9<br>87.0         | Inlet pressure unsteady<br>Resonance, blow-out<br>Inlet pressure unsteady |
| 6<br>7<br>8<br>9                 | 1.301<br>1.302<br>1.302<br>1.302<br>1.299      | 170                                                                  | 21.0<br>28.5<br>35.7<br>43.9<br>28.4         | .0045<br>.0061<br>.0076<br>.0094<br>.0061  | 10.3<br>14.2<br>19.1<br>25.5<br>16.0                           | 84<br>84<br>83<br>83<br>100      | 89.3<br>121.2<br>152.1<br>186.8<br>121.2          | 920<br>1045<br>1160<br>1270<br>1095                 | 262<br>385<br>500<br>613<br>435                              | 72.6<br>79.4<br>83.1<br>83.8<br>90.0           |                                                                           |
| 11<br>12<br>13<br>14<br>15       | 1.299<br>1.301<br>1.300<br>1.299<br>1.313      | ,                                                                    | 35.1<br>44.1<br>64.9<br>70.0<br>24.9         | .00751<br>.0094<br>.0139<br>.0150<br>.0053 | 19.5<br>25.1<br>39.7<br>45.3<br>12.9                           | 109<br>114<br>117<br>99<br>112   | 149.7<br>187.8<br>276.2<br>298.4<br>105.2         | 1175<br>1275<br>1345<br>1335<br>1005                | 515<br>615<br>688<br>675<br>3 <b>4</b> 3                     | 87.0<br>83.7<br>64.7<br>59.0<br>81.1           | Blow-out                                                                  |
| 16<br>17<br>18<br>19<br>20       | 1.297<br>1.296<br>1.295<br>1.295<br>1.297      |                                                                      | 36.9<br>51.0<br>58.0<br>66.0<br>67.9         | .0079<br>.0109<br>.0125<br>.0142<br>.0145  | 20.3<br>30.5<br>35.8<br>40.5<br>42.3                           | 109<br>99<br>84<br>83<br>81      | 157.7<br>217.9<br>248.1<br>282.4<br>289.8         | 1185<br>1350<br>1360<br>1355<br>1310                | 525<br>689<br>698<br>694<br>651                              | 84.3<br>81.6<br>72.9<br>64.0<br>58.4           | Blow-out                                                                  |
| 21<br>22<br>23<br>24<br>25       | .598<br>.598<br>.593<br>.593<br>.593           | 79                                                                   | 16.5<br>26.0<br>33.3<br>39.8<br>45.7         | .0077<br>.0121<br>.0156<br>.0187<br>.0214  | 5.8<br>13.8<br>19.2<br>22.8<br>27.2                            | 81<br>81<br>81<br>81<br>81       | 152.7<br>240.8<br>311.1<br>372.1<br>426.7         | 1265<br>1610<br>1825<br>1940<br>2030                | 601<br>949<br>1164<br>1279<br>1369                           | 100.1<br>103.5<br>100.5<br>93.8<br>88.7        | Resonance<br>Resonance, blow-out                                          |
| 26<br>27<br>28                   | .600<br>.600                                   |                                                                      | 15.3<br>26.8<br>40.5                         | .0071<br>.0124<br>.0187                    | 5.0<br>14.3<br>23.1                                            | 77<br>76<br>77                   | 140.9<br>247.0<br>373.5                           | 1220<br>1635<br>1940                                | 557<br>975<br>1279                                           | 100.0<br>104.0<br>93.4                         | Resonance                                                                 |
| 29<br>30<br>31                   | 1.305<br>1.302<br>1.300                        | 170                                                                  | 16.7<br>36.5<br>49.3                         | .0035<br>.0078<br>.0105                    | 6.0<br>20.3<br>30.0                                            | 77<br>75<br>7 <b>4</b>           | 70.6<br>155.1<br>209.9                            | 865<br>1180<br>1320                                 | . 204<br>526<br>660                                          | 71.2<br>85.8<br>80.9                           |                                                                           |
| 32<br>33<br>34                   | .597<br>.597<br>.597                           | 79                                                                   | 16.9<br>24.5<br>37.4                         | .0078<br>.0114<br>.0174                    | 6.0<br>12.8<br>20.8                                            | 73<br>73<br>73                   | 156.3<br>227.8<br>346.8                           | 1265<br>1555<br>1875                                | 608<br>901<br>1213                                           | 98.9<br>103.7<br>94.7                          | Resonance                                                                 |
| 35<br>36<br>37                   | 1.300<br>1.303<br>1.301                        | 170                                                                  | 22.8<br>34.0<br>46.7                         | .0049<br>.0072<br>.0100                    | 10.8<br>18.3<br>28.0                                           | 74<br>74<br>74                   | 97.1<br>144.2<br>199.3                            | 960<br>1145<br>1315                                 | 300<br>486<br>659                                            | 76.7<br>85.0<br>85.0                           |                                                                           |
| 38<br>39<br>40<br>41<br>42<br>43 | .799<br>.800<br>.801<br>.799<br>.799<br>.800   | 105                                                                  | 9.0<br>16.1<br>21.8<br>30.6<br>40.2<br>56.0  | .0031<br>.0056<br>.0076<br>.0106<br>.0140  | 1.6<br>5.0<br>10.0<br>16.0<br>23.2<br>33.7                     | 71<br>71<br>71<br>72<br>72<br>72 | 62.5<br>111.0<br>150.7<br>211.9<br>278.4<br>387.2 | 860<br>1075<br>1275<br>1470<br>1675<br>1845         | 201<br>- 417<br>617<br>812<br>1017<br>1187                   | 79.1<br>93.9<br>104.6<br>99.4<br>96.8<br>83.3  | Blow-out                                                                  |
| 44<br>45<br>46<br>47<br>48<br>49 | .598<br>.598<br>.598<br>.598<br>.597<br>.598   | 7 <del>9</del>                                                       | 8.5<br>14.4<br>20.0<br>24.6<br>33.6<br>42.6  | .0039<br>.0067<br>.0091<br>.0114<br>.0156  | 1.4<br>4.1<br>8.5<br>13.0<br>18.0<br>24.3                      | 74<br>74<br>74<br>73<br>73<br>73 | 78.3<br>133.0<br>181.3<br>228.0<br>311.7<br>394.2 | 935<br>1180<br>1390<br>1570<br>1785<br>1975         | 275<br>520<br>730<br>910<br>1126<br>1315                     | 86.8<br>98.7<br>103.5<br>104.4<br>96.8<br>91.5 | Slight resonance<br>Blow-out                                              |
| 50<br>51<br>52<br>53<br>54<br>55 | .997<br>.998<br>1.000<br>.999<br>.999<br>1.003 | 132                                                                  | 14.7<br>21.1<br>27.2<br>40.3<br>45.6<br>63.1 | .0041<br>.0059<br>.0076<br>.0112<br>.0127  | 3.1<br>9.6<br>14.5<br>22.7<br>27.2<br>37.4                     | 71<br>71<br>71<br>71<br>71<br>70 | 81.7<br>117.3<br>150.5<br>223.0<br>252.5<br>348.2 | 870<br>1110<br>1270<br>1480<br>1560<br>1615         | 213<br>453<br>613<br>820<br>900<br>959                       | 64.3<br>96.8<br>103.5<br>95.6<br>93.5<br>73.5  | Blow-out                                                                  |
| 56<br>57<br>58<br>59<br>60       | 1.299<br>1.297<br>1.301<br>1.305<br>1.303      | 170                                                                  | 22.5<br>34.4<br>52.8<br>67.5<br>69.4         | .0048<br>.0074<br>.0113<br>.0144<br>.0148  | 10.8<br>18.7<br>32.0<br>41.3<br>42.3                           | 71<br>71<br>71<br>71<br>71       | 95.7<br>147.0<br>224.6<br>286.4<br>295.0          | 955<br>1150<br>1345<br>1365<br>1360                 | 295<br>490<br>686<br>706<br>700                              | 76.4<br>84.1<br>78.8<br>64.3<br>61.9           | Blow-out                                                                  |
| 61<br>62<br>63<br>64             | 1.302<br>1.304<br>1.302<br>1.303               |                                                                      | 24.3<br>37.3<br>53.6<br>67.2                 | .0052<br>0079<br>.0114<br>.0143            | 11.8<br>20.1<br>31.3<br>39.7                                   | 72<br>72<br>72<br>72             | 103.4<br>158.2<br>227.8<br>285.6                  | 800<br>1005<br>1155<br>1120                         | 300<br>505<br>653<br>617                                     | 70.8<br>79.1<br>72.2<br>54.7                   | Resonance, blow-out                                                       |
| 65<br>66<br>67                   | .997<br>.997<br>.997                           | 132                                                                  | 17.5<br>24.0<br>31.3                         | .0049<br>.0067<br>.0087                    | 6.0<br>11.7<br>17.6                                            | 73<br>72<br>72                   | 97.4<br>133.0<br>173.9                            | 815<br>1020<br>1200                                 | 314<br>517<br>698                                            | 78.6<br>96.1<br>100.8                          |                                                                           |

TABLE II. - Continued. PERFORMANCE DATA FROM SINGLE COMBUSTOR OPERATING WITH HYDROCARBON AND OXYGENATED-HYDROCARBON GASEOUS FUELS

# Combustor-inlet total temperature, 660° R

# (a) Concluded. Propane; fuel-nozzle configuration 1

| Run                                           | Air<br>flow,<br>lb/sec                       | Combustor-<br>inlet<br>reference<br>velocity<br>(nominal),<br>ft/sec | Fuel<br>flow,<br>lb/hr                              | Fuel-<br>air<br>ratio                              | Fuel-<br>nozzle<br>differ-<br>ential<br>pressure,<br>lb/sq in. | Fuel<br>temper-<br>ature,<br>op      | Heat<br>input,<br>Btu/lb                                   | Mean com-<br>bustor-<br>outlet<br>temper-<br>ature, | Mean tem-<br>perature<br>rise<br>through<br>combustor, | Combustion<br>efficiency,<br>percent                 | Remarks                 |
|-----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|--------------------------------------|------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------|
|                                               |                                              |                                                                      |                                                     | Comb                                               | ustor-inlet                                                    | total pr                             | ressure,                                                   | 4.3 1n. Hg                                          | àbs - Conclu                                           | ded                                                  |                         |
| 68<br>69<br>70                                | 0.799<br>.797<br>.796                        | 105                                                                  | 14.1<br>19.4<br>36.8                                | 0.0050<br>.0068<br>.0129                           | 4.1<br>7.7<br>19.6                                             | 72<br>72<br>72                       | 97.5<br>135.0<br>256.0                                     | 855<br>1035<br>1445                                 | 355<br>534<br>944                                      | 89.0<br>97.9<br>94.9                                 | Inlet pressure unsteady |
| 71<br>72<br>73<br>74                          | .590<br>.599<br>.599<br>.598                 | 79                                                                   | 9.9<br>10.4<br>15.9<br>31.1                         | .0047<br>.0048<br>.0074<br>.0145                   | 1.9<br>1.9<br>4.6<br>15.8                                      | 72<br>73<br>73<br>73                 | 92.7.<br>96.5<br>146.6<br>288.2                            | 835<br>840<br>1085<br>1565                          | 335<br>340<br>586<br>1066                              | 88.3<br>86.1<br>99.3<br>96.3                         | Resonance               |
| 75                                            | 1.000                                        | 132                                                                  | 39.9                                                | .0111                                              | 23.2                                                           | 78                                   | 221.0                                                      | 1485                                                | 823                                                    | 96.8                                                 |                         |
| 76<br>77                                      | .600<br>.601                                 | 79                                                                   | 14.2<br>33.3                                        | .0066<br>.0154                                     | 4.1<br>18.6                                                    | 78<br>78                             | 131.2<br>307.3                                             | 1185<br>1800                                        | 524<br>1140                                            | 100.7<br>99.5                                        | Slight resonance        |
| 78<br>79<br>80                                | 1.303<br>1.304<br>1.304                      | 170                                                                  | 22.8<br>36.3<br>58.5                                | .0049<br>.0077<br>.0125                            | 11.3<br>19.5<br>34.7                                           | 99<br>101<br>105                     | 96.8<br>154.3<br>248.5                                     | 950<br>1170<br>1365                                 | 290<br>511<br>705                                      | 74.3<br>83.7<br>73.6                                 |                         |
| 81<br>82<br>83                                | .902<br>.902<br>.904                         | 132                                                                  | 14.3<br>21.6<br>71.6                                | .0044<br>.0066<br>.0220                            | 3.6<br>9.3<br>43.1                                             | 98<br>97<br>95                       | 87.9<br>132.3<br>438.2                                     | 900<br>1115<br>1635                                 | 240<br>454<br>974                                      | 67.5<br>86.2<br>60.2                                 | Blow-out                |
| 84<br>85<br>86                                | .798<br>.798<br>.798                         | 105                                                                  | 12.4<br>26.6<br>44.0                                | .0043<br>.0093<br>.0153                            | 2.8<br>14.1<br>25.0                                            | · 91<br>89<br>90                     | 85.7<br>184.7<br>305.3                                     | 960<br>1420<br>1710                                 | 299<br>760<br>1050                                     | 86.5<br>106.0<br>91.7                                |                         |
| 87<br>88<br>89<br>90                          | .598<br>.598<br>.596<br>.597                 | 79                                                                   | 10.8<br>16.9<br>33.9<br>48.3                        | .0050<br>.0078<br>.0158<br>.0225                   | 1.9<br>5.8<br>18.0<br>26.2                                     | 88<br>90<br>103<br>120               | 99.8<br>156.2<br>314.3<br>447.8                            | 1030<br>1275<br>1775<br>1985                        | 369<br>614<br>1113<br>1325                             | 92.1<br>100.0<br>94.9<br>81.8                        | Resonance, blow-out     |
|                                               |                                              |                                                                      |                                                     |                                                    | Combustor                                                      | -inlet to                            | tal press                                                  | ure, 8.0 in                                         | . Hg abs                                               | l <b></b>                                            | ·                       |
| 91<br>92<br>93<br>94<br>95                    | 0.718<br>.718<br>.717<br>.717<br>.716        | 105                                                                  | 17.9<br>24.4<br>27.1<br>30.3<br>28.7                | 0.0069<br>.0095<br>.0105<br>.0117<br>.0111         | 9.8<br>15.4<br>17.4<br>20.4<br>19.9                            | 82<br>82<br>82<br>82<br>82           | 138.1<br>188.6<br>208.8<br>233.4<br>222.0                  | 1035<br>1175<br>1180<br>1135<br>1160                | 380<br>520<br>523<br>475<br>500                        | 68.9<br>70.9<br>63.9<br>52.0<br>57.5                 | Blow-out                |
| 96<br>97<br>98<br>99                          | .727<br>.727<br>.727<br>.727                 |                                                                      | 15.2<br>22.3<br>25.3<br>29.2                        | .0058<br>.0085<br>.0097<br>.0111                   | 7.4<br>11.9<br>16.2<br>20.2                                    | 75<br>75<br>75<br>75                 | 115.8<br>169.8<br>192.5<br>222.6                           | 970<br>1115<br>1180<br>1160                         | 312<br>459<br>517<br>497                               | 67.1<br>68.3<br>68.4<br>57.0                         | Blow-out                |
| 100<br>101<br>102<br>103<br>104<br>105<br>106 | .562<br>.562<br>.562<br>.562<br>.562<br>.562 | 130                                                                  | 7.8<br>10.8<br>13.2<br>15.6<br>20.8<br>23.8<br>31.6 | .0038<br>.0053<br>.0065<br>.0077<br>.0103<br>.0118 | 2.5<br>4.2<br>5.4<br>7.8<br>12.1<br>15.9<br>19.6               | 74<br>74<br>74<br>75<br>75<br>75     | 76.7<br>106.3<br>129.9<br>153.7<br>204.7<br>234.4<br>311.3 | 845<br>970<br>1075<br>1185<br>1365<br>1400<br>1350  | 185<br>310<br>415<br>525<br>705<br>740<br>690          | 59:5<br>72:5<br>80:1<br>86:4<br>88:7<br>81:8<br>57:9 | Blow-out                |
| 107<br>108<br>109<br>110<br>111               | . 730<br>. 729<br>. 729<br>. 728<br>. 730    | 170                                                                  | 14.4<br>20.4<br>28.6<br>28.4<br>30.9                | .0055<br>.0078<br>.0109<br>.0108<br>.0118          | 7.1<br>11.6<br>18.9<br>18.7<br>20.5                            | 70<br>70<br>70<br>70<br>70           | 109.0<br>155.2<br>217.2<br>216.0<br>234.8                  | 925<br>1100<br>1140<br>1160<br>1120                 | 264<br>440<br>480<br>498<br>460                        | 60.2<br>71.4<br>56.3<br>58.8<br>50.0                 | Blow-out                |
| 112<br>113<br>114<br>115<br>116               | .354<br>.354<br>.353<br>.354<br>.354         | 80                                                                   | 8.2<br>10.7<br>14.0<br>18.0<br>22.4                 | .0064<br>.0084<br>.0110<br>.0141<br>.0176          | 2.7<br>4.2<br>6.7<br>9.8<br>13.6                               | 75<br>75<br>75<br>75<br>75           | 127.8<br>166.6<br>219.4<br>281.2<br>351.0                  | 1130<br>1280<br>1430<br>1630<br>1775                | 470<br>623<br>767<br>970<br>1112                       | 92.4<br>95.3<br>90.6<br>91.3<br>85.4                 | Blow-out                |
| 117<br>118                                    | .726<br>.727                                 | 170                                                                  | 20.3<br>28.3                                        | .0078<br>.0108                                     | 11.6<br>19.1                                                   | 79<br>79                             | 155.1<br>215.4                                             | 1090<br>1150                                        | 429<br>489                                             | 69.7<br>57.8                                         |                         |
| 119<br>120<br>121<br>122<br>123<br>124        | .561<br>.560<br>.544<br>.558<br>.558         | 130                                                                  | 12.9<br>20.7<br>9.2<br>9.8<br>15.3<br>27.4          | .0064<br>.0103<br>.0047<br>.0049<br>.0076          | 56.7<br>12.2<br>2.7<br>3.3<br>7.0<br>16.2                      | 79<br>79<br>106<br>104<br>104<br>104 | 127.2<br>204.7<br>94.1<br>97.1<br>151.6<br>271.8           | 1075<br>1375<br>915<br>930<br>1155<br>1405          | 412<br>712<br>254<br>269<br>494<br>742                 | 81.2<br>89.7<br>66.9<br>68.7<br>82.3<br>71.2         |                         |
| 125<br>126<br>127<br>128<br>129<br>130        | .747<br>.725<br>.725<br>.725<br>.725<br>.725 | 170                                                                  | 15.9<br>15.1<br>19.1<br>25.6<br>27.7<br>33.6        | .0059<br>.0058<br>.0073<br>.0098<br>.0106<br>.0129 | 7.7<br>4.0<br>10.7<br>16.7<br>18.2<br>21.6                     | 101<br>99<br>98<br>97<br>96<br>95    | 117.6<br>115.2<br>145.6<br>195.2<br>211.7<br>256.7         | 925<br>935<br>1060<br>1175<br>1160<br>1120          | 263<br>269<br>399<br>514<br>499<br>457                 | 55.7<br>58.1<br>68.9<br>67.0<br>60.1<br>45.6         | Blow-out                |

TABLE II. - Continued. PERFORMANCE DATA FROM SINGLE COMBUSTOR OPERATING WITH HYDROCARBON AND OXYGENATED-HYDROCARBON GASEOUS FUELS

# Combustor-inlet total temperature, 660° R

# (b) Propane; fuel nozzle configuration 2

| Run                                           | Air<br>flow,<br>lb/sec                             | Combustor-<br>inlet<br>reference<br>velocity<br>(nominal),<br>ft/sec | Fuel<br>flow,<br>lb/hr                               | Fuel-<br>air<br>ratio                                        | Fuel-<br>nozzle<br>differ-<br>ential<br>pressure,<br>lb/sq in. | Fuel<br>temper-<br>ature,<br>op              | Heat<br>input,<br>Btu/1b                                    | Mean com-<br>bustor-<br>outlet<br>temper-<br>ature,<br>op | Mean tem-<br>perature<br>rise<br>through<br>combustor,<br>op | Combustion efficiency, percent                        | Remarks                                    |
|-----------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|
|                                               |                                                    | l                                                                    |                                                      |                                                              | Combusto                                                       | r-inlet to                                   | tal pres                                                    | sure, 14.3                                                | in. Hg abs                                                   | •                                                     | · · · · · · · · · · · · · · · · · · ·      |
| 131<br>132<br>133<br>134<br>135<br>136<br>137 | 0.595<br>.599<br>.600<br>.598<br>.598<br>.598      | 79                                                                   | 30.6<br>16.5<br>23.2<br>32.0<br>40.3<br>47.1<br>33.3 | 0.0143<br>.0077<br>.0108<br>.0149<br>.0187<br>.0219<br>.0154 | 3.0<br>.15<br>.20<br>1:13<br>1.37<br>1.61<br>1.13              | 89<br>73<br>72<br>72<br>72<br>72<br>72<br>73 | 284.4<br>152.7<br>214.3<br>296.2<br>372.5<br>436.1<br>306.9 | 1675<br>1260<br>1475<br>1775<br>1930<br>2050<br>1770      | 1018                                                         | 94.9<br>99.4<br>98.4<br>100.7<br>93.0<br>88.1<br>96.7 | Inlet pressure unsteady Resonance Blow-out |
| 138<br>139<br>140<br>141<br>142<br>143        | 1.299<br>1.297<br>1.298<br>1.299<br>1.298<br>1.298 | 170                                                                  | 16.2<br>24.4<br>38.7<br>48.6<br>58.9<br>60.4         | .0035<br>.0052<br>.0083<br>.0104<br>.0126                    | 0<br>0<br>.44<br>1.61<br>3.13<br>3.35                          | 74<br>74<br>74<br>72<br>71<br>71             | 69.0<br>104.0<br>164.8<br>207.1<br>251.3<br>257.7           | 885<br>980<br>1095<br>1185<br>1245<br>1235                | 226<br>327<br>434<br>524<br>591<br>575                       | 80.7<br>78.1<br>66.5<br>64.6<br>60.6<br>57.5          | ₿low-out                                   |
| 144<br>145<br>146<br>147<br>148<br>149<br>150 | .600<br>.601<br>.598<br>.598<br>.597<br>.599       | 79                                                                   | 7.0<br>13.6<br>18.3<br>25.8<br>33.0<br>44.0<br>47.0  | .0032<br>.0063<br>.0085<br>.0120<br>.0154<br>.0204           | 0<br>.05<br>.15<br>.39<br>.73<br>1.61<br>1.71                  | 78<br>78<br>78<br>78<br>78<br>78<br>77<br>78 | 64.4<br>124.8<br>169.2<br>238.6<br>306.1<br>406.4<br>436.3  | 905<br>1125<br>1330<br>1530<br>1725<br>1965<br>2035       | 245<br>466<br>667<br>868<br>1064<br>1306<br>1375             | 93.7<br>93.8<br>100.8<br>95.1<br>92.8<br>88.2<br>87.2 | Resonance<br>Resonance, blow-out           |
| 151<br>152<br>153<br>154<br>155<br>156        | .781<br>.800<br>.800<br>.800<br>.796<br>.797       | 105                                                                  | 7.9<br>11.5<br>19.7<br>28.3<br>37.9<br>50.5<br>57.2  | .0028<br>.0040<br>.0068<br>.0098<br>.0132<br>.0176<br>.0199  | 0<br>0<br>0<br>.39<br>1.13<br>2.10<br>2.64                     | 79<br>79<br>79<br>79<br>78<br>78<br>78       | 56.0<br>79.3<br>136.1<br>195.7<br>263.3<br>350.6<br>396.0   | 880<br>950<br>1170<br>1360<br>1575<br>1755<br>1790        | 221<br>293<br>510<br>700<br>918<br>1097<br>1132              | 97.0<br>91.3<br>94.5<br>92.0<br>91.7<br>84.2<br>77.6  | Blow-out                                   |
| 158<br>159<br>160<br>161<br>162               | .997<br>1.000<br>1.000<br>.997<br>1.001            | 132                                                                  | 10.9<br>20.2<br>33.3<br>49.0<br>64.2                 | .0030<br>.0056<br>.0093<br>.0137<br>.0178                    | 0<br>0<br>.39<br>1.6<br>3.5                                    | 79<br>79<br>79<br>79<br>79                   | 60.6<br>112.0<br>184.5<br>272.2<br>355.1                    | 880<br>1060<br>1265<br>1460<br>1465                       | 224<br>401<br>607<br>800<br>883                              | 90.9<br>89.5<br>84.0<br>76.9<br>66.2                  | Blow-out                                   |
| 163<br>164<br>165<br>166<br>167               | 1.302<br>1.300<br>1.298<br>1.305<br>1.304          | 170                                                                  | 15.7<br>26.6<br>37.7<br>49.7<br>66.9                 | .0034<br>.0057<br>.0081<br>.0106<br>.0143                    | 0<br>0<br>.15<br>1.37<br>3.72                                  | 79<br>79<br>79<br>79<br>79                   | 66.8<br>113.2<br>160.8<br>210.9<br>284.0                    | 880<br>995<br>1090<br>1160<br>1225                        | 219<br>338<br>431<br>500<br>565                              | 80.8<br>74.4<br>67.6<br>60.5<br>51.5                  | Blow-out                                   |
|                                               |                                                    |                                                                      |                                                      |                                                              | Combusto                                                       | r-inlet to                                   | tal pres                                                    | sure, 8.0                                                 | in. Hg abs                                                   |                                                       |                                            |
| 168<br>169<br>170                             | 0.725<br>.725<br>.725                              | 170                                                                  | 14.2<br>20.2<br>26.2                                 | 0.0055<br>.0077<br>.0100                                     | 0.20<br>.29<br>1.03                                            | 72<br>73<br>73                               | 108.6<br>154.3<br>199.9                                     | 895<br>940<br>960                                         | 231<br>278<br>302                                            | 52.8<br>45.2<br>38.1                                  |                                            |
| 171<br>172<br>173<br>174<br>175               | .559<br>.559<br>.561<br>.560                       | 130                                                                  | 8.7<br>15.0<br>20.5<br>27.3<br>30.6                  | .0043<br>.0075<br>.0102<br>.0135<br>.0152                    | 0<br>.05<br>.54<br>1.03<br>1.22                                | 75<br>75<br>75<br>75<br>75                   | 86.5<br>148.9<br>202.7<br>269.8<br>301.9                    | 955<br>1060<br>1160<br>1225<br>1230                       | 295<br>399<br>499<br>564<br>569                              | 84.5<br>67.4<br>62.7<br>54.0<br>48.9                  | Blow-out .                                 |
| 176<br>177<br>178<br>179                      | .724<br>.725<br>.725<br>.729                       | 170                                                                  | 9.8<br>11.7<br>13.4<br>15.2                          | .0038<br>.0045<br>.0051<br>.0058                             | 0<br>0<br>0                                                    | 76<br>77<br>77<br>77                         | 74.9<br>89.1<br>102.2<br>115.2                              | 855<br>875<br>890<br>895                                  | 196<br>214<br>229<br>234                                     | 64.5<br>59.4<br>55.5<br>50.5                          | Blow-out                                   |
| 180<br>181<br>182<br>183<br>184               | .356<br>.356<br>.355<br>.352<br>.355               | 80                                                                   | 7.9<br>10.7<br>14.1<br>17.1<br>21.4                  | .0062<br>.0084<br>.0111<br>.0135<br>.0167                    | 0<br>.05<br>.29<br>.29<br>1.03                                 | 72<br>72<br>72<br>72<br>72<br>72             | 123.2<br>166.4<br>220.4<br>269.4<br>333.0                   | 1075<br>1230<br>1395<br>1535<br>1705                      | 416<br>572<br>751<br>874<br>1043                             | 84.6<br>87.3<br>85.8<br>85.2<br>83.9                  | Blow-out                                   |

TABLE II. - Continued. PERFORMANCE DATA FROM SINGLE COMBUSTOR OPERATING WITH HYDROCARBON AND OXYGENATED-HYDROCARBON GASEOUS FUELS

# Combustor-inlet total temperature, 660° R

### (c) Ethane; fuel-nozzle configuration 1

| Run                                    | Air<br>flow,<br>lb/sec                        | Combustor-<br>inlet<br>reference<br>velocity<br>(nominal),<br>ft/sec | Fuel<br>flow,<br>lb/hr                               | Fuel-<br>air<br>ratio                                        | Puel-<br>nozzle<br>differ-<br>ential<br>pressure,<br>lb/sq in. | Fuel<br>temper-<br>ature,<br>Op        | Heat<br>input,<br>Btu/1b                                    | Mean com-<br>bustor-<br>outlet<br>temper-<br>ature,<br>OF | Mean tem-<br>perature<br>rise<br>through<br>combustor,<br>op | Combustion<br>efficiency,<br>percent                 | Remarks               |
|----------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-----------------------|
|                                        |                                               |                                                                      |                                                      | . с                                                          | ombustor-in                                                    | let total                              | pressur                                                     | e, 14.3 in.                                               | Hg abs                                                       |                                                      |                       |
| 185<br>186<br>187<br>188<br>189<br>190 | 0.598<br>.599<br>.598<br>.600<br>.601<br>.599 | 79                                                                   | 13.9<br>19.2<br>19.8<br>26.5<br>33.6<br>42.6<br>45.3 | 0.0065<br>.0089<br>.0092<br>.0123<br>.0155<br>.0197<br>.0209 | 5.6<br>10.3<br>10.6<br>16.8<br>21.8<br>28.7<br>32.3            | 78<br>78<br>79<br>79<br>78<br>78<br>78 | 131.6<br>181.3<br>187.8<br>250.3<br>317.0<br>402.9<br>426.8 | 1160<br>1355<br>1385<br>1575<br>1755<br>1975<br>2045      | 502<br>694<br>724<br>915<br>1095<br>1314<br>1388             | 96.2<br>98.3<br>99.2<br>96.1<br>92.7<br>89.7<br>90.1 | Fuel flow unsteady    |
| 192<br>193<br>194<br>195<br>196<br>197 | .797<br>.796<br>.797<br>.797<br>.797          | 105                                                                  | 14.5<br>21.2<br>30.7<br>41.8<br>53.4<br>56.1         | .0051<br>.0074<br>.0107<br>.0146<br>.0186                    | 5.6<br>12.0<br>19.8<br>28.0<br>36.5<br>38.9                    | 77<br>76<br>75<br>75<br>75<br>75       | 103.4<br>151.1<br>218.4<br>297.4<br>380.3<br>398.9          | 1045<br>1247<br>1475<br>1685<br>1875<br>1810              | 388<br>592<br>817<br>1027<br>1212<br>1147                    | 93.6<br>99.5<br>97.2<br>92.0<br>86.9<br>78.4         | Resonance<br>Blow-out |
| 198<br>199<br>200<br>201<br>202<br>203 | .999<br>.998<br>1.001<br>.997<br>.990         | 132                                                                  | 15.4<br>24.0<br>34.5<br>47.8<br>61.0<br>63.2         | .0043<br>.0067<br>.0096<br>.0133<br>.0170                    | 6.5<br>13.7<br>22.2<br>32.1<br>43.1<br>45.2                    | 75<br>75<br>75<br>75<br>75<br>75       | 87.2<br>136.1<br>195.4<br>271.5<br>346.4<br>358.8           | 965<br>1165<br>1375<br>1575<br>1645<br>1600               | 304<br>503<br>711<br>912<br>987<br>940                       | 86.4<br>93.2<br>93.7<br>88.5<br>76.3<br>70.1         | Blow-out              |
| 204<br>205<br>206<br>207<br>208        | 1.299<br>1.299<br>1.300<br>1.299<br>1.298     | 170                                                                  | 17.7<br>28.2<br>41.7<br>66.1<br>69.9                 | .0038<br>.0060<br>.0089<br>.0141<br>.0150                    | 8.0<br>17:3<br>28.5<br>47.3<br>50.4                            | 75<br>76<br>76<br>76<br>76             | 77.1<br>123.2<br>182.1<br>288.4<br>305.4                    | 860<br>1060<br>1265<br>1395<br>1355                       | 200<br>404<br>608<br>735<br>694                              | 64.0<br>82.1<br>85.3<br>66.7<br>59.5                 | Blow-out              |
|                                        |                                               |                                                                      |                                                      | С                                                            | ombustor-in                                                    | let total                              | pressur                                                     | e, 8.0 in. H                                              | g abs                                                        |                                                      |                       |
| 209<br>210<br>211<br>212               | 0.355<br>.354<br>.354<br>.352                 | 80                                                                   | 13.0<br>17.2<br>20.8<br>23.4                         | 0.0102<br>.0135<br>.0163<br>.0185                            | 7.9<br>11.2<br>14.2<br>15.9                                    | 79<br>79<br>78<br>79                   | 207.6<br>275.6<br>333.0<br>376.6                            | 1405<br>1595<br>1745<br>1760                              | 738<br>936<br>1083<br>1104                                   | 92.0<br>89.7<br>87.5<br>79.4                         | Blow-out              |
| 213<br>214<br>215<br>216               | .557<br>.558<br>.558<br>.558                  | 130                                                                  | 13.9<br>22.1<br>31.9<br>29.1                         | .0069<br>.0110<br>.0159<br>.0145                             | 8.4<br>15.5<br>23.5<br>21.0                                    | 80<br>80<br>80<br>80                   | 141.5<br>224.7<br>324.5<br>295.4                            | 1150<br>1390<br>1410<br>1430                              | 492<br>729<br>747<br>767                                     | 87.7<br>84.0<br>60.6<br>68.2                         | Blow-out              |
| 217<br>218<br>219<br>220               | .725<br>.726<br>.727<br>.727                  | 170                                                                  | 14.6<br>20.6<br>34.4<br>30.3                         | .0056<br>.0079<br>.0131<br>.0116                             | 12.4<br>22.4<br>25.0<br>22.3                                   | 80<br>79<br>78<br>77                   | 114.2<br>160.6<br>268.0<br>236.6                            | 1075<br>1175<br>1185<br>1215                              | 415<br>515<br>525<br>555                                     | 90.9<br>81.2<br>50.5<br>60.3                         | Blow-out              |

(d) Ethane; fuel-nozzle configuration 2

|                                        |                                       |     |                                              | C                                                   | ombustor-in                                | let total                              | l pressur                                          | e, 14.3 in                                   | . Hg abs                                  |                                              |                     |
|----------------------------------------|---------------------------------------|-----|----------------------------------------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------|---------------------|
| 221<br>222<br>223<br>224<br>225<br>226 | 0.600<br>.600<br>.598<br>.602<br>.602 | 79  | 14.5<br>12.3<br>21.7<br>29.5<br>36.6<br>48.1 | 0.0067<br>.0057<br>.0101<br>.0136<br>.0169<br>.0222 | 0.15<br>.05<br>.64<br>1.13<br>1.37<br>2.59 | 75<br>75<br>75<br>75<br>75<br>75<br>75 | 137.3<br>115.9<br>205.6<br>277.8<br>345.2<br>453.8 | 1175<br>1075<br>1310<br>1580<br>1815<br>2035 | 517<br>420<br>753<br>921<br>1158<br>1377  | 95.0<br>90.7<br>94.7<br>87.5<br>90.7<br>84.4 | Blow-out, resonance |
| 227<br>228<br>229<br>230<br>231        | .802<br>.797<br>.798<br>.800<br>.779  | 105 | 14.7<br>23.8<br>34.3<br>48.6<br>59.0         | .0051<br>.0083<br>.0120<br>.0169<br>.0205           | 0<br>.34<br>1.13<br>2.84<br>4.25           | 76<br>76<br>76<br>76<br>76             | 104.2<br>169.2<br>243.9<br>344.2<br>418.5          | 1030<br>1255<br>1490<br>1725<br>1810         | 370<br>- 598<br>- 830<br>- 1065<br>- 1153 | 88.5<br>. 90.0<br>88.9<br>83.2<br>75.3       | Blow-out            |
| 232<br>233<br>234<br>235               | .997<br>.997<br>1.000<br>1.000        | 132 | 15.5<br>29.7<br>44.2<br>67.1                 | .0043<br>.0083<br>.0123<br>.0187                    | 0<br>.64<br>1.91<br>5.62                   | 77<br>77<br>77<br>77                   | 88.0<br>168.7<br>250.5<br>380.7                    | 960<br>1195<br>1410<br>1595                  | 301<br>536<br>750<br>935                  | 84.8<br>80.7<br>77.9<br>65.9                 | Blow-out            |
| 236<br>237<br>238<br>239               | 1.302<br>1.297<br>1.298<br>1.297      | 170 | 17.3<br>40.6<br>64.8<br>73.0                 | .0037<br>.0087<br>.0139<br>.0156                    | 0<br>1.37<br>5.04<br>6.75                  | 78<br>78<br>78<br>78                   | 75.3<br>177.5<br>283.1<br>319.0                    | 885<br>1080<br>1270<br>1290                  | 228<br>425<br>610<br>633                  | 74.7<br>60.6<br>55.9<br>51.8                 | Blow-out            |
|                                        |                                       |     |                                              | С                                                   | ombustor-1n                                | let total                              | pressur                                            | e, 8.0 in.                                   | Hg abs                                    |                                              |                     |
| 240<br>241<br>242<br>243               | 0.560<br>.559<br>.559<br>.559         | 130 | 15.6<br>19.2<br>28.6<br>30.2                 | .0.0077<br>.0095<br>.0142<br>.0150                  | 0.39<br>.54<br>1.52<br>2.10                | 73<br>72<br>72<br>72<br>72             | 158.1<br>194.5<br>289.7<br>306.4                   | 1085<br>1165<br>1265<br>1260                 | 422<br>502<br>605<br>599                  | 67.3<br>65.7<br>54.3<br>50.9                 | Blow-out            |
| 244<br>245<br>246                      | .726<br>.725<br>.725                  | 170 | 16.3<br>21.5<br>27.8                         | .0063<br>.0083<br>.0107                             | .29<br>1.27<br>1.27                        | 71<br>71<br>71                         | 127.6<br>168.4<br>217.4                            | 920 -<br>955<br>985                          | 258<br>296<br>323                         | 50.4<br>44.2<br>37.7                         | Blow-out            |
| 247<br>248<br>249<br>250               | .354<br>.354<br>.354<br>.354          | 80  | 13.5<br>15.5<br>22.8<br>24.1                 | .0106<br>.0122<br>.0179<br>.0189                    | .29<br>.29<br>1.03<br>1.52                 | 78<br>78<br>78<br>78                   | 216.2<br>248.4<br>366.0<br>386.4                   | 1335<br>1470<br>1690<br>1670                 | 676<br>811<br>1032<br>1013                | 80.6<br>85.3<br>75.9<br>70.7                 | Blow-out            |

TABLE II. - Continued. PERFORMANCE DATA FROM SINGLE COMBUSTOR OPERATING WITH HYDROCARBON AND

OXYGENATED-HYDROCARBON GASEOUS FUELS

[Combustor-inlet total temperature,  $660^{\rm o}~{\rm R}$ ]

(e) Ethylene; fuel-nozzle configuration 1.

|                                                                      |                 | •                                                          |                                                          |                                          |                                  |                 |                                                             |                                                    |                                  |
|----------------------------------------------------------------------|-----------------|------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|----------------------------------|-----------------|-------------------------------------------------------------|----------------------------------------------------|----------------------------------|
| Remarks                                                              |                 | Resonance<br>Resonance, fuel flow limited                  | Resonance<br>Resonance<br>Resonance, temperature limited | Resonance, fuel flow limited             | Fuel flow 11m1ted                |                 | Blow-out<br>Blow-out                                        | Blow-out                                           | Blow-out                         |
| Combustion<br>efficiency,<br>percent                                 | abs             | 96.9<br>96.9<br>96.1<br>91.5<br>91.5<br>87.8               | 100.3<br>89.9<br>91.1<br>86.22                           | 91.3<br>97.2<br>92.6<br>91.1             | 84.4<br>90.4<br>97.0<br>86.8     | SI              | 91.7<br>88.7<br>84.5<br>82.8<br>80.4<br>80.7                | . 91.6<br>92.9<br>88.3<br>85.6<br>79.2             | 83.4<br>78.8<br>65.7<br>64.0     |
| Mean temperature rise through combustor,                             | 4.3 in. Hg      | 351<br>552<br>758<br>978<br>1223<br>1494<br>1649           | 462<br>1111<br>1419<br>1754<br>2001                      | 265<br>585<br>895<br>1210<br>1375        | 205<br>473<br>755<br>1074        | .0 in. Hg abs   | 667<br>867<br>1037<br>1277<br>1442<br>1562                  | 462<br>617<br>834<br>1044<br>1305                  | 340<br>637<br>870<br>938         |
| Mean combustor-<br>outlet<br>temper-<br>ature,                       | pressure, l     | 1010<br>1210<br>1420<br>16420<br>1885<br>2155              | 1125<br>1770<br>2080<br>2415<br>2660                     | 925<br>1245<br>1555<br>1870<br>2035      | 870<br>1130<br>1415<br>1735      | pressure, 8     | 1330<br>1530<br>1680<br>1940<br>2225<br>2225                | 1125<br>1280<br>1495<br>1705<br>1965               | 995<br>1295<br>1525<br>1595      |
| Heat<br>input,<br>Btu/lb                                             | t total         | 89.8<br>143.7<br>202.9<br>281.3<br>375.0<br>472.2<br>533.5 | 115.3<br>329.6<br>428.0<br>579.6<br>708.5                | 71.5<br>152.2<br>252.2<br>357.5<br>426.2 | 59.6<br>131.2<br>200.1<br>329.4  | t total         | 185.6<br>254.6<br>314.5<br>413.1<br>482.6<br>546.2<br>558.6 | 126.3<br>168.7<br>245.3<br>323.9<br>441.6<br>486.5 | 101.1<br>206.6<br>348.8<br>389.9 |
| Fuel<br>temper-<br>ature,<br>OF                                      | Combustor-inlet | 75<br>75<br>75<br>75<br>75<br>75                           | 77<br>78<br>77<br>77                                     | 76<br>75<br>74<br>73                     | 73<br>73<br>73<br>71             | Combustor-inlet | 79<br>79<br>79<br>79<br>80<br>80<br>80                      | 22<br>22<br>11<br>11<br>11                         | 72<br>72<br>71<br>68             |
| Fuel-<br>nozzle<br>differ-<br>ential<br>pressure,<br>lb/sq in.       | Combu           | 5.0<br>11.0<br>18.6<br>27.1<br>37.5<br>49.0                | 22.4.5<br>24.0<br>454.0<br>54.0<br>6.8                   | 17.0<br>30.9<br>56.0<br>55.6             | 19.5<br>34.5<br>55.7             | Сошри           | 6.5<br>10.5<br>13.4<br>18.9<br>22.8<br>25.8<br>25.4         | 7.1<br>11.1<br>17.4<br>23.9<br>33.0                | 8.2<br>17.9<br>27.7<br>40.2      |
| Fuel-<br>air<br>ratio                                                |                 | 0.0044<br>.0071<br>.0100<br>.0138<br>.0138                 | .0057<br>.0162<br>.0210<br>.0285                         | .0035<br>.0075<br>.0124<br>.0176         | .0029<br>.0064<br>.0098          |                 | 0.0091<br>.0125<br>.0154<br>.0203<br>.0237<br>.0268         | .0062<br>.0083<br>.0120<br>.0159                   | .0050                            |
| Fuel<br>flow,<br>lb/hr                                               |                 | 12.7<br>20.3<br>28.7<br>39.7<br>53.0<br>66.5               | 12.2<br>34.8<br>45.1<br>61.1<br>74.8                     | 12.8<br>26.9<br>44.6<br>63.0             | 13.7<br>30.1<br>45.8<br>75.5     |                 | 11.6<br>15.9<br>19.7<br>25.8<br>34.2                        | 12.6<br>16.8<br>24.1<br>322.0<br>43.4<br>48.1      | 13.0<br>26.5<br>44.7<br>49.9     |
| Combustor-<br>inlet<br>reference<br>velocity<br>(nominal),<br>ft/sec |                 | 105                                                        | 79                                                       | 132                                      | 170                              |                 |                                                             | 130                                                | 170                              |
| Air<br>flow,<br>lb/sec                                               |                 | 0.800<br>.798<br>.799<br>.797                              | . 599<br>. 598<br>. 597<br>. 597                         | 1.010<br>1.000<br>1.0001<br>.996         | 1.299<br>1.296<br>1.296<br>1.297 |                 | 0.354<br>353<br>354<br>354<br>354<br>354                    | . 553<br>. 556<br>. 558<br>. 558<br>. 558          | .725<br>.725<br>.725             |
| Run                                                                  |                 | 251<br>252<br>253<br>253<br>254<br>255<br>255<br>255       | 258<br>259<br>260<br>261<br>262                          | 263<br>264<br>265<br>265<br>267          | 268<br>269<br>270<br>271         |                 | 272<br>273<br>274<br>275<br>275<br>277                      | 279<br>280<br>281<br>282<br>283<br>283             | 285<br>286<br>287<br>288         |

TABLE II. - Continued. PERFORMANCE DATA FROM SINGLE COMBUSTOR OPERATING WITH HYDROCARBON AND OXYGENATED-HYDROCARBON GASEOUS FUELS

# Combustor-inlet total temperature, 660° R

# (f) Ethylene; fuel-nozzle configuration 2

| Run                                           | Air<br>flow,<br>lb/sec                       | Combustor-<br>inlet<br>reference<br>velocity<br>(nominal),<br>ft/sec | Fuel<br>flow,<br>lb/hr                               | Puel-<br>air<br>ratio                              | Fuel- nozzle differ- ential pressure, lb/sq in. | Fuel<br>temper-<br>ature,<br>Op        | Heat<br>input,<br>Btu/lb                                    | Mean com-<br>bustor-<br>outlet<br>temper-<br>ature,  | Mean tem-<br>perature<br>rise<br>through<br>combustor, | Combustion efficiency, percent                       | Remarks                          |
|-----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|----------------------------------------|-------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|----------------------------------|
|                                               |                                              |                                                                      |                                                      |                                                    | Combustor-i                                     | nlet tota                              | al pressu                                                   | re, 14.3 in                                          | . Hg abs                                               | •                                                    |                                  |
| 289<br>290<br>291<br>292<br>293               | 0.593<br>.596<br>.596<br>.597<br>.599        | 79                                                                   | 11.5<br>15.6<br>21.9<br>28.7<br>35.5                 | 0.0054<br>.0073<br>.0102<br>.0133<br>.0165         | 0<br>.4<br>.4<br>1.0<br>1.5                     | 73<br>73<br>74<br>74<br>74             | 109.9<br>148.5<br>207.6<br>271.6<br>335.7                   | 1075<br>1220<br>1425<br>1635<br>1800                 | 415<br>560<br>764<br>975<br>1140                       | 94:1<br>95.2<br>94.8<br>94.3<br>90.8                 |                                  |
| 294<br>295<br>296<br>297<br>298               | .600<br>.593<br>.591<br>.792<br>.793         | 105                                                                  | 43.5<br>52.9<br>64.4<br>12.1<br>20.2                 | .0201<br>.0248<br>.0303<br>.0042<br>.0071          | 2.4<br>3.6<br>5.5<br>0                          | 7 <b>4</b><br>75<br>75<br>76<br>76     | 410.3<br>504.6<br>617.9<br>86.1<br>144.1                    | 1995<br>2210<br>2460<br>1015<br>2215                 | 1335<br>1549<br>1800<br>354<br>558                     | 88.8<br>85.8<br>83.6<br>101.9<br>97.7                | Resonance<br>Temperature limited |
| 299<br>300<br>301<br>302<br>303               | .793<br>.794<br>.795<br>.793<br>.795         |                                                                      | 28.5<br>39.0<br>50.8<br>62.2<br>83.2                 | .0100<br>.0137<br>.0178<br>.0218<br>.0291          | .7<br>1.9<br>3.3<br>4.9<br>9.3                  | 77<br>77<br>77<br>78<br>80             | 203.3<br>278.1<br>361.8<br>443.9<br>592.2                   | 1420<br>1635<br>1855<br>2075<br>2440                 | 761<br>978<br>1194<br>1415<br>1781                     | 96.3<br>92.5<br>88.9<br>87.7<br>84.9                 | Resonance, blow-out              |
| 304<br>305<br>306<br>307<br>308               | .998<br>.998<br>.997<br>.997                 | 132                                                                  | 13.7<br>24.7<br>42.8<br>61.0<br>72.9                 | .0038<br>.0069<br>.0119<br>.0170<br>.0203          | 0<br>.1<br>2.1<br>4.6<br>7.5                    | 81<br>81<br>81<br>81<br>81             | 77.6<br>140.2<br>242.6<br>345.9<br>413.5                    | 955<br>1190<br>1485<br>1795<br>1995                  | 296<br>532<br>825<br>1135<br>1336                      | 94.2<br>95.6<br>88.2<br>87.9<br>88.2                 |                                  |
| 309<br>310<br>311<br>312<br>313               | .996<br>.996<br>1.300<br>1.300               | 170                                                                  | 94.1<br>96.3<br>21.1<br>33.9<br>50.5                 | .0262<br>.0269<br>.0045<br>.0072                   | 11.3<br>12.3<br>0<br>.6<br>2.8                  | 81<br>82<br>83<br>82<br>82             | 534.5<br>547.2<br>92.0<br>147.6<br>219.8                    | 2300<br>2335<br>980<br>1160<br>1365                  | 1641<br>1675<br>326<br>503<br>705                      | 86.5<br>86.5<br>87.7<br>85.7<br>82.4                 | Blow-out                         |
| 314<br>315<br>316                             | 1.298<br>1.299<br>1.300                      |                                                                      | 65.6<br>84.6<br>106.5                                | .0140<br>.0181<br>.0228                            | 5.5<br>9.3<br>13.8                              | 82<br>83<br>83                         | 285.8<br>368.7<br>463.4                                     | 1565<br>1785<br>1965                                 | 905<br>1126<br>1308                                    | 83.0<br>81.9<br>89.8                                 | Blow-out                         |
|                                               |                                              |                                                                      |                                                      |                                                    | Combustor-1                                     | nlet tota                              | l pressu                                                    | re, 8.0 in.                                          | Hg abs                                                 | <del></del>                                          |                                  |
| 317<br>318<br>319<br>320<br>321               | 0.558<br>.558<br>.557<br>.558<br>.558        | 130                                                                  | 14.2<br>18.5<br>24.0<br>31.1<br>35.0                 | 0.0071<br>.0092<br>.0120<br>.0155<br>.0175         | 0.3<br>.8<br>1.2<br>2.1<br>3.0                  | 71<br>71<br>71<br>71<br>71             | 144.1<br>187.7<br>244.0<br>315.1<br>356.3                   | 1095<br>1295<br>1445<br>1635<br>1770                 | 436<br>636<br>783<br>972<br>1108                       | 75.9<br>86.4<br>83.1<br>81.5<br>83.3                 |                                  |
| 322<br>323<br>324<br>325<br>326               | .556<br>.557<br>.726<br>.725<br>.723         | 170                                                                  | 43.3<br>48.0<br>15.6<br>25.8<br>32.9                 | .0216<br>.0239<br>.0060<br>.0099<br>.0126          | 4.5<br>4.9<br>0<br>.6<br>2.5                    | 71<br>71<br>72<br>72<br>73             | 440.6<br>486.9<br>121.6<br>201.5<br>257.5                   | 1940<br>1985<br>975<br>1160<br>1350                  | 1278<br>1322<br>316<br>499<br>690                      | 79.2<br>75.8<br>64.6<br>62.8<br>69.1                 | Blow-out                         |
| 327<br>328<br>329<br>330<br>331<br>332<br>333 | .725<br>.725<br>.356<br>.354<br>.354<br>.354 | 80 .                                                                 | 41.0<br>52.0<br>10.7<br>14.3<br>19.0<br>27.2<br>36.8 | .0157<br>.0199<br>.0083<br>.0113<br>.0149<br>.0213 | 3.7<br>5.9<br>.3<br>.5<br>1.0<br>1.8<br>3.0     | 73<br>73<br>81<br>80<br>80<br>80<br>80 | 320.2<br>406.2<br>169.6<br>229.4<br>303.9<br>434.7<br>585.9 | 1465<br>1575<br>1260<br>1445<br>1670<br>1975<br>2270 | 805<br>915<br>600<br>786<br>1012<br>1318<br>1611       | 65.8<br>60.0<br>89.8<br>88.6<br>88.0<br>82.9<br>77.8 | Blow-out Blow-out                |

TABLE II. - Continued. PERFORMANCE DATA FROM SINGLE COMBUSTOR OPERATING WITH HYDROCARBON AND OXYGENATED-HYDROCARBON GASEOUS FUELS.

# Combustor-inlet total temperature, $660^{\circ}$ $\overline{R}$

# (g) Acetylene; fuel-nozzle configuration 1

| Run                                                                                            | Air<br>flow,<br>lb/sec                                               | Combustor-<br>inlet<br>reference<br>velocity<br>(nominal),<br>ft/sec | Fuel<br>flow,<br>lb/hr                                                                       | Fuel-<br>air<br>ratio                                                                            | Fuel-<br>nozzle<br>differ-<br>ential<br>pressure,<br>lb/sq in.                                        | Fuel<br>temper-<br>ature,<br>Op                                      | Heat<br>input,<br>Btu/lb                                                                                               | Mean com-<br>bustor-<br>outlet<br>temper-<br>ature,<br>op                                                 | Mean tem-<br>perature<br>rise<br>through<br>combustor,<br>Op                                   | Combustion<br>efficiency,<br>percent                                                         | Remarks                                                                          |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                                |                                                                      |                                                                      |                                                                                              |                                                                                                  | Combust                                                                                               | or-inlet                                                             | total pr                                                                                                               | essure, 14.                                                                                               | 3 in. Hg abs                                                                                   |                                                                                              |                                                                                  |
| 334<br>335<br>336<br>337<br>338<br>339<br>340<br>341<br>342<br>343<br>344<br>345<br>346<br>347 | .802<br>.801<br>.800<br>.599<br>.509<br>.599<br>1.001<br>1.000       | 105<br>. 79<br>132                                                   | 13.2<br>19.6<br>22.5<br>23.8<br>11.6<br>16.6<br>21.5<br>25.1<br>12.2<br>17.6<br>24.5         | 0.0046<br>.0068<br>.0078<br>.0083<br>.0054<br>.0077<br>.0099<br>.0116<br>.0034<br>.0049<br>.0068 | 5.4<br>11.2<br>13.6<br>15.0<br>3.8<br>7.8<br>12.4<br>15.5<br>4.4<br>9.2<br>15.3<br>4.5<br>9.3<br>15.6 | 72<br>69<br>68<br>67<br>80<br>81<br>83<br>85<br>84<br>84<br>85<br>83 | 95.2<br>140.6<br>161.9<br>171.7<br>111.3<br>159.2<br>206.1<br>241.1<br>70.3<br>101.4<br>141.4<br>52.9<br>80.9<br>109.3 | 1025<br>1210<br>1280<br>1315<br>1075<br>1240<br>1400<br>1515<br>925<br>1015<br>1195<br>860<br>960<br>1070 | 365<br>550<br>619<br>655<br>414<br>580<br>740<br>855<br>266<br>391<br>536<br>205<br>301<br>411 | 94.8<br>98.1<br>96.5<br>96.6<br>92.3<br>91.7<br>91.7<br>91.4<br>92.9<br>95.5<br>95.0         | Fuel flow limited  Fuel flow limited  Fuel flow limited  Fuel flow limited       |
|                                                                                                |                                                                      |                                                                      |                                                                                              |                                                                                                  | Combust                                                                                               | or-inlet                                                             | total pr                                                                                                               | essure, 8.0                                                                                               | in. Hg abs                                                                                     | L                                                                                            |                                                                                  |
| 348<br>349<br>350<br>351<br>352<br>353<br>354<br>355<br>356<br>357<br>358<br>359               | .555<br>.558<br>.559<br>.729<br>.726<br>.726<br>.724<br>.354<br>.354 | 130<br>170<br>80                                                     | 13.2<br>18.0<br>21.7<br>23.1<br>13.3<br>16.4<br>21.6<br>22.9<br>25.6<br>19.0<br>14.4<br>10.6 | 0.0066<br>.0090<br>.0108<br>.0115<br>.0051<br>.0063<br>.0083<br>.0088                            | 8.6<br>12.4<br>15.9<br>17.8<br>8.6<br>11.1<br>15.9<br>17.5                                            | 67<br>66<br>65<br>65<br>65<br>65<br>65<br>64<br>99<br>98<br>98       | 136.6<br>186.8<br>223.9<br>238.2<br>105.1<br>130.4<br>171.3<br>182.5<br>415.7<br>308.7<br>234.7<br>172.5               | 1165<br>1330<br>1440<br>1490<br>1035<br>1125<br>1265<br>1310<br>1925<br>1680<br>1465<br>1295              | 506<br>671<br>781<br>831<br>377<br>468<br>606<br>650<br>1264<br>1021<br>807<br>638             | 92.6<br>91.1<br>89.4<br>69.8<br>88.8<br>89.5<br>89.5<br>90.2<br>81.7<br>86.7<br>88.3<br>93.5 | Fuel flow limited Fuel flow erratic Erratic fuel flow Fuel flow limited, erratic |

(h) Acetylene; fuel-nozzle configuration 2 Combustor-inlet total pressure, 14.3 in. Hg abs

| 360                                                                                                                                                | 0.596                                                                                                                              | 79  | 11.8                                                                                                                                 | 0.0055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                          | 111                                                                                                                                   | 114.2                                                                                                                                                              | 1100                                                                                                                                                                        | 439                                                                                                                                                                  | 95.6                                                                                                                                         |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 361                                                                                                                                                | .596                                                                                                                               | , • | 18.5                                                                                                                                 | .0086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .05                                                                                                                                                        | 110                                                                                                                                   | 178.3                                                                                                                                                              | 1305                                                                                                                                                                        | 644                                                                                                                                                                  | 91.4                                                                                                                                         |                       |
| 201                                                                                                                                                |                                                                                                                                    |     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                             | 044                                                                                                                                                                  |                                                                                                                                              | 1                     |
| 362                                                                                                                                                | .597                                                                                                                               |     | 29.2                                                                                                                                 | .0136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .88                                                                                                                                                        | 110                                                                                                                                   | 281.6                                                                                                                                                              | 1610                                                                                                                                                                        | 950                                                                                                                                                                  | 87.8                                                                                                                                         |                       |
| 363                                                                                                                                                | .597                                                                                                                               |     | 41.5                                                                                                                                 | .0193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.10                                                                                                                                                       | 112                                                                                                                                   | 400.4                                                                                                                                                              | 1920                                                                                                                                                                        | 1259                                                                                                                                                                 | 84.3                                                                                                                                         | Í                     |
| 364                                                                                                                                                | .597                                                                                                                               |     | 54.5                                                                                                                                 | .0253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.81                                                                                                                                                       | 115                                                                                                                                   | 525.0                                                                                                                                                              | 2260                                                                                                                                                                        | 1598                                                                                                                                                                 |                                                                                                                                              |                       |
|                                                                                                                                                    |                                                                                                                                    |     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                      | 84.1                                                                                                                                         | 1                     |
| 365                                                                                                                                                | .597                                                                                                                               |     | 72.9                                                                                                                                 | .0339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.51                                                                                                                                                       | 116                                                                                                                                   | 702.5                                                                                                                                                              | 2655                                                                                                                                                                        | 1993                                                                                                                                                                 | 81.3                                                                                                                                         | Temperature limited   |
|                                                                                                                                                    | - 1                                                                                                                                |     |                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            | l                                                                                                                                     | 1                                                                                                                                                                  |                                                                                                                                                                             | ł                                                                                                                                                                    |                                                                                                                                              | 1                     |
| 366                                                                                                                                                | .799                                                                                                                               | 105 | 12.5                                                                                                                                 | .0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                          | 109                                                                                                                                   | 90.2                                                                                                                                                               | 1030                                                                                                                                                                        | 370                                                                                                                                                                  | 101.4                                                                                                                                        | 1 .                   |
| 367                                                                                                                                                | .800                                                                                                                               |     | 21.1                                                                                                                                 | 1 .0073 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .05                                                                                                                                                        | 107                                                                                                                                   | 152.0                                                                                                                                                              | 1240                                                                                                                                                                        | 582                                                                                                                                                                  | 96.3                                                                                                                                         |                       |
| 368                                                                                                                                                | 800                                                                                                                                |     | 35.3                                                                                                                                 | .0123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.13                                                                                                                                                       | 105                                                                                                                                   | 254.2                                                                                                                                                              | 1545                                                                                                                                                                        | 885                                                                                                                                                                  | 90.1                                                                                                                                         |                       |
|                                                                                                                                                    |                                                                                                                                    |     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                      |                                                                                                                                              | 1                     |
| 369                                                                                                                                                | .800                                                                                                                               |     | 50.4                                                                                                                                 | .0175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.08                                                                                                                                                       | 104                                                                                                                                   | 362.9                                                                                                                                                              | 1870                                                                                                                                                                        | 1210                                                                                                                                                                 | 88.8                                                                                                                                         |                       |
| 370 i                                                                                                                                              | .800                                                                                                                               |     | 68.1                                                                                                                                 | .0237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.46                                                                                                                                                       | 102                                                                                                                                   | 490.4                                                                                                                                                              | 2210                                                                                                                                                                        | 1550                                                                                                                                                                 | 86.8                                                                                                                                         |                       |
|                                                                                                                                                    |                                                                                                                                    |     |                                                                                                                                      | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                    | 1                                                                                                                                                                           | l                                                                                                                                                                    |                                                                                                                                              | ļ                     |
| 371                                                                                                                                                | .995                                                                                                                               | 132 | 13.1                                                                                                                                 | .0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                          | 88                                                                                                                                    | 75.7                                                                                                                                                               | 940                                                                                                                                                                         | 277                                                                                                                                                                  | 90.0                                                                                                                                         |                       |
| 372                                                                                                                                                | .996                                                                                                                               |     | 24.6                                                                                                                                 | .0069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ŏ                                                                                                                                                          | 89                                                                                                                                    | 142.2                                                                                                                                                              | 1180                                                                                                                                                                        | 519                                                                                                                                                                  | 91.4                                                                                                                                         |                       |
|                                                                                                                                                    |                                                                                                                                    |     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                      |                                                                                                                                              |                       |
| 73                                                                                                                                                 | .998                                                                                                                               |     | 47.9                                                                                                                                 | .0133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.84                                                                                                                                                       | 95                                                                                                                                    | 276.6                                                                                                                                                              | 1590                                                                                                                                                                        | 929                                                                                                                                                                  | 87.3                                                                                                                                         | 1                     |
| 74                                                                                                                                                 | .996                                                                                                                               |     | 58.2                                                                                                                                 | .0162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.30                                                                                                                                                       | 97                                                                                                                                    | 336.7                                                                                                                                                              | 1800                                                                                                                                                                        | 1139                                                                                                                                                                 | 89.5                                                                                                                                         | 1                     |
| 75                                                                                                                                                 | .995                                                                                                                               |     | 75.7                                                                                                                                 | .0211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.91                                                                                                                                                       | 96                                                                                                                                    | 437.7                                                                                                                                                              | 2060                                                                                                                                                                        | 1400                                                                                                                                                                 |                                                                                                                                              | 1                     |
| 12                                                                                                                                                 | . 555                                                                                                                              |     | 13.7                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            | 30                                                                                                                                    |                                                                                                                                                                    | 2000                                                                                                                                                                        | 1400                                                                                                                                                                 | 86.7                                                                                                                                         | 1                     |
| 76                                                                                                                                                 | .997                                                                                                                               |     | 90.3                                                                                                                                 | .0252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.01                                                                                                                                                      | 95                                                                                                                                    | 521.5                                                                                                                                                              | · 2285                                                                                                                                                                      | 1624                                                                                                                                                                 | 86.1                                                                                                                                         | •                     |
| 77                                                                                                                                                 | .997                                                                                                                               |     | 102.4                                                                                                                                | .0286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.31                                                                                                                                                      | 105                                                                                                                                   | 592.0                                                                                                                                                              | 2470                                                                                                                                                                        | 1809                                                                                                                                                                 | 85.9                                                                                                                                         | Temperature limited   |
| ٠,١                                                                                                                                                |                                                                                                                                    |     | 1                                                                                                                                    | 1.2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                            | 1                                                                                                                                     | ,                                                                                                                                                                  |                                                                                                                                                                             | 1 -300                                                                                                                                                               | 1 20.0                                                                                                                                       | temperature timited   |
| 78                                                                                                                                                 | 1.295                                                                                                                              | 170 | 16.9                                                                                                                                 | .0036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                          | 105                                                                                                                                   | 75.1                                                                                                                                                               | 960                                                                                                                                                                         | 299                                                                                                                                                                  | 98.0                                                                                                                                         |                       |
|                                                                                                                                                    |                                                                                                                                    | 110 |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                      |                                                                                                                                              | 1                     |
| 79                                                                                                                                                 | 1.296                                                                                                                              |     | 31.8                                                                                                                                 | .0068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .15                                                                                                                                                        | 107                                                                                                                                   | 141.4                                                                                                                                                              | 1160                                                                                                                                                                        | 499                                                                                                                                                                  | 88.3                                                                                                                                         |                       |
| 80                                                                                                                                                 | 1.293                                                                                                                              |     | 46.7                                                                                                                                 | .0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.10                                                                                                                                                       | 110                                                                                                                                   | 208.2                                                                                                                                                              | 1370                                                                                                                                                                        | 710                                                                                                                                                                  | 86.9                                                                                                                                         |                       |
| 81                                                                                                                                                 | 1.295                                                                                                                              |     | 62.9                                                                                                                                 | .0135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.28                                                                                                                                                       | 115                                                                                                                                   | 279.7                                                                                                                                                              | 1585                                                                                                                                                                        | 925                                                                                                                                                                  | 86.0                                                                                                                                         | •                     |
| 21                                                                                                                                                 |                                                                                                                                    |     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                      |                                                                                                                                              |                       |
| 82                                                                                                                                                 | 1.297                                                                                                                              |     | 76.3                                                                                                                                 | .0163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.11                                                                                                                                                       | 117                                                                                                                                   | 338.8                                                                                                                                                              | 1765                                                                                                                                                                        | 1105                                                                                                                                                                 | . 86.2                                                                                                                                       | 1                     |
| 83                                                                                                                                                 | 1.299                                                                                                                              |     | 95.1                                                                                                                                 | .0203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.11                                                                                                                                                      | 116                                                                                                                                   | 421.7                                                                                                                                                              | 2010                                                                                                                                                                        | 1350                                                                                                                                                                 | 86.4                                                                                                                                         | Fuel flow limited     |
|                                                                                                                                                    |                                                                                                                                    |     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                      |                                                                                                                                              |                       |
|                                                                                                                                                    | 1.298                                                                                                                              |     | 1 45.9                                                                                                                               | .0098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.59                                                                                                                                                       | l 110                                                                                                                                 | 203.4                                                                                                                                                              | 1365                                                                                                                                                                        | 705                                                                                                                                                                  | 88.3                                                                                                                                         | ]                     |
|                                                                                                                                                    | 1.298                                                                                                                              |     | 45.9                                                                                                                                 | .0098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.59                                                                                                                                                       | 110                                                                                                                                   | 203.4                                                                                                                                                              | 1365                                                                                                                                                                        | 705                                                                                                                                                                  | 88.3                                                                                                                                         |                       |
| 384                                                                                                                                                | 1                                                                                                                                  | 105 | 1                                                                                                                                    | ı i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ٠.                                                                                                                                                         | l ·                                                                                                                                   |                                                                                                                                                                    | 1                                                                                                                                                                           | 1                                                                                                                                                                    |                                                                                                                                              |                       |
| 384<br>385                                                                                                                                         | .798                                                                                                                               | 105 | 57.8                                                                                                                                 | .0201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.55                                                                                                                                                       | 105                                                                                                                                   | 416.8                                                                                                                                                              | 2005                                                                                                                                                                        | 1344                                                                                                                                                                 | 87.0                                                                                                                                         | Torrogo time 14-44 ad |
| 384<br>385<br>386                                                                                                                                  | 1                                                                                                                                  | 105 | 1                                                                                                                                    | ı i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ٠.                                                                                                                                                         | l ·                                                                                                                                   |                                                                                                                                                                    | 1                                                                                                                                                                           | 1                                                                                                                                                                    |                                                                                                                                              | Temperature limited   |
| 384<br>385                                                                                                                                         | .798                                                                                                                               | 105 | 57.8                                                                                                                                 | .0201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.55<br>9.71                                                                                                                                               | 105<br>103                                                                                                                            | 416.8<br>594.2                                                                                                                                                     | 2005<br>2470                                                                                                                                                                | 1344                                                                                                                                                                 | 87.0                                                                                                                                         | Temperature limited   |
| 384<br>385<br>386                                                                                                                                  | .798                                                                                                                               |     | 57.8<br>82.6                                                                                                                         | .0201<br>.0287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.55<br>9.71<br>Combus                                                                                                                                     | 105<br>103<br>cor-inlet                                                                                                               | 416.8<br>594.2<br>total pr                                                                                                                                         | 2005<br>2470<br>essure, 8.0                                                                                                                                                 | 1344<br>1808<br>1n. Hg abs                                                                                                                                           | 87.0<br>85.5                                                                                                                                 | Temperature limited   |
| 84<br>85<br>86                                                                                                                                     | .798<br>.800                                                                                                                       | 105 | 57.8<br>82.6                                                                                                                         | .0201<br>.0287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.55<br>9.71<br>Combust                                                                                                                                    | 105<br>103<br>cor-inlet                                                                                                               | 416.8<br>594.2<br>total pr                                                                                                                                         | 2005<br>2470<br>essure, 8.0                                                                                                                                                 | 1344<br>1808<br>1n. Hg abs                                                                                                                                           | 87.0<br>85.5                                                                                                                                 | Temperature limited   |
| 84<br>85<br>86<br>87<br>88                                                                                                                         | .798<br>.800                                                                                                                       |     | 57.8<br>82.6                                                                                                                         | .0201<br>.0287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.55<br>9.71<br>Combust<br>0.05<br>.78                                                                                                                     | 105<br>103<br>cor-inlet<br>64<br>65                                                                                                   | 416.8<br>594.2<br>total pr                                                                                                                                         | 2005<br>2470<br>essure, 8.0<br>1095<br>1280                                                                                                                                 | 1344<br>1808<br>1 1n. Hg abs                                                                                                                                         | 87.0<br>85.5<br>90.0<br>88.9                                                                                                                 | Temperature limited   |
| 84<br>85<br>86<br>87<br>88                                                                                                                         | .798<br>.800                                                                                                                       |     | 57.8<br>82.6                                                                                                                         | .0201<br>.0287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.55<br>9.71<br>Combust<br>0.05<br>.78                                                                                                                     | 105<br>103<br>cor-inlet                                                                                                               | 416.8<br>594.2<br>total pr                                                                                                                                         | 2005<br>2470<br>essure, 8.0                                                                                                                                                 | 1344<br>1808<br>0 1n. Hg abs<br>435<br>620                                                                                                                           | 87.0<br>85.5                                                                                                                                 | Temperature limited   |
| 85<br>86<br>87<br>88<br>89                                                                                                                         | .798<br>.800                                                                                                                       |     | 57.8<br>82.6<br>11.7<br>17.1<br>23.0                                                                                                 | 0.0058<br>.0085<br>.0115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.55<br>9.71<br>Combust<br>0.05<br>.78<br>1.22                                                                                                             | 105<br>103<br>cor-inlet<br>64<br>65<br>79                                                                                             | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4                                                                                                              | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450                                                                                                                         | 1344<br>1808<br>0 1n. Hg abs<br>435<br>620<br>789                                                                                                                    | 87.0<br>85.5<br>90.0<br>88.9<br>85.3                                                                                                         | Temperature limited   |
| 84<br>85<br>86<br>87<br>88<br>89                                                                                                                   | .798<br>.800                                                                                                                       |     | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5                                                                                         | 0.0058<br>.0085<br>.0115<br>.0152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.55<br>9.71<br>Combust<br>0.05<br>.78<br>1.22<br>2.25                                                                                                     | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82                                                                                       | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6                                                                                                     | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685                                                                                                                 | 1344<br>1808<br>1 in. Hg abs<br>435<br>620<br>789<br>1024                                                                                                            | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1                                                                                                 | Temperature limited   |
| 84<br>85<br>86<br>87<br>88<br>89                                                                                                                   | .798<br>.800                                                                                                                       |     | 57.8<br>82.6<br>11.7<br>17.1<br>23.0                                                                                                 | 0.0058<br>.0085<br>.0115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.55<br>9.71<br>Combust<br>0.05<br>.78<br>1.22                                                                                                             | 105<br>103<br>cor-inlet<br>64<br>65<br>79                                                                                             | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4                                                                                                              | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450                                                                                                                         | 1344<br>1808<br>0 1n. Hg abs<br>435<br>620<br>789                                                                                                                    | 87.0<br>85.5<br>90.0<br>88.9<br>85.3                                                                                                         | Temperature limited   |
| 85<br>86<br>87<br>88<br>89<br>90                                                                                                                   | .798<br>.800<br>0.559<br>.558<br>.558<br>.557                                                                                      |     | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5                                                                                 | 0.0058<br>.0085<br>.015<br>.0152<br>.0192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.55<br>9.71<br>Combus 1<br>0.05<br>.78<br>1.22<br>2.25<br>3.47                                                                                            | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86                                                                                 | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7                                                                                            | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685<br>1870                                                                                                         | 1344<br>1808<br>0 in. Hg abs<br>435<br>620<br>789<br>1024<br>1208                                                                                                    | 90.0<br>90.0<br>90.9<br>85.3<br>85.1<br>81.2                                                                                                 | Temperature limited   |
| 85<br>86<br>87<br>88<br>89<br>90<br>91                                                                                                             | .798<br>.800<br>0.559<br>.558<br>.557<br>.557                                                                                      |     | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0                                                                         | 0.0058<br>.0085<br>.015<br>.0152<br>.0192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.55<br>9.71<br>Combus<br>0.05<br>.78<br>1.22<br>2.25<br>3.47                                                                                              | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86                                                                                 | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4                                                                                   | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065                                                                                                 | 1344<br>1808<br>D in. Hg abs<br>435<br>620<br>789<br>1024<br>1208                                                                                                    | 90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4                                                                                                 |                       |
| 94<br>85<br>86<br>87<br>88<br>89<br>90<br>91                                                                                                       | .798<br>.800<br>0.559<br>.558<br>.558<br>.557                                                                                      |     | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5                                                                                 | 0.0058<br>.0085<br>.015<br>.0152<br>.0192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.55<br>9.71<br>Combus 1<br>0.05<br>.78<br>1.22<br>2.25<br>3.47                                                                                            | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86                                                                                 | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7                                                                                            | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685<br>1870                                                                                                         | 1344<br>1808<br>0 in. Hg abs<br>435<br>620<br>789<br>1024<br>1208                                                                                                    | 90.0<br>90.0<br>90.9<br>85.3<br>85.1<br>81.2                                                                                                 |                       |
| 94<br>85<br>86<br>87<br>38<br>39<br>90<br>91                                                                                                       | .798<br>.800<br>0.559<br>.558<br>.558<br>.557<br>.557                                                                              |     | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5                                                                 | 0.0058<br>.0085<br>.0085<br>.0115<br>.0152<br>.0192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.55<br>9.71<br>Combus 1<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83                                                                            | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86                                                                                 | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2                                                                          | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640                                                                                         | 1344<br>1808<br>1 1n. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978                                                                                    | 90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7                                                                                         | Temperature limited   |
| 94<br>85<br>86<br>87<br>38<br>39<br>90<br>91                                                                                                       | .798<br>.800<br>0.559<br>.558<br>.557<br>.557                                                                                      |     | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0                                                                         | 0.0058<br>.0085<br>.015<br>.0152<br>.0192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.55<br>9.71<br>Combus<br>0.05<br>.78<br>1.22<br>2.25<br>3.47                                                                                              | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86                                                                                 | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4                                                                                   | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065                                                                                                 | 1344<br>1808<br>D in. Hg abs<br>435<br>620<br>789<br>1024<br>1208                                                                                                    | 90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4                                                                                                 |                       |
| 84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94                                                                                     | . 798<br>.800                                                                                                                      | 130 | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8                                                         | 0.0058<br>.0085<br>.0085<br>.0115<br>.0152<br>.0192<br>.0224<br>.0346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.55<br>9.71<br>Combust<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65                                                                     | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99                                                                     | 116.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7                                                                 | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245                                                                                 | 1344<br>1808<br>0 in. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583                                                                            | 90.0<br>88.9<br>88.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4                                                                                 |                       |
| 84<br>85<br>86<br>87<br>88<br>89<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                                                 | . 798<br>.800                                                                                                                      |     | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6                                                 | 0.0058<br>.0085<br>.0115<br>.0152<br>.0192<br>.0224<br>.0346<br>.0263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.55<br>9.71<br>Combust<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65                                                                     | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100                                                              | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7                                                                 | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245                                                                                 | 1344<br>1808<br>1 in. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583                                                                            | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4                                                                 |                       |
| 84<br>85<br>86<br>87<br>888<br>89<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                                                | .798<br>.800                                                                                                                       | 130 | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6<br>18.6                                         | 0.0058<br>.0085<br>.0015<br>.0152<br>.0192<br>.0224<br>.0346<br>.0263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.55<br>9.71<br>Combust<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65                                                                     | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99                                                                     | 116.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7                                                                 | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170                                                                 | 1344<br>1808<br>1 1n. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509                                                              | 90.0<br>88.9<br>88.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4                                                                                 |                       |
| 84<br>85<br>86<br>87<br>888<br>89<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                                                | .798<br>.800                                                                                                                       | 130 | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6<br>18.6                                         | 0.0058<br>.0085<br>.0015<br>.0152<br>.0192<br>.0224<br>.0346<br>.0263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.55<br>9.71<br>Combus 1<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65                                                                    | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100                                                              | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7<br>99.7<br>147.4                                                | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170                                                                 | 1344<br>1808<br>1 1n. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509                                                              | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4                                                                 |                       |
| 84<br>85<br>86<br>87<br>88<br>89<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                                                 | .798<br>.800                                                                                                                       | 130 | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6<br>18.6<br>32.0                                 | .0201<br>.0287<br>0.0058<br>.0085<br>.0115<br>.0152<br>.0192<br>.0244<br>.0346<br>.0263<br>.0048<br>.0071<br>.0122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.55<br>9.71<br>Combus 1<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.98<br>9.83<br>6.65                                                                    | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100                                                              | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7<br>99.7<br>147.4<br>253.4                                       | 2005<br>2470<br>essure, 8.6<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465                                                         | 1344<br>1808<br>1 1n. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806                                                       | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4<br>88.5<br>86.5<br>86.5                                         |                       |
| 84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>996<br>997                                                                 | 798<br>.800<br>0.559<br>.558<br>.557<br>.557<br>.557<br>.558<br>.558<br>.724<br>.726<br>.728                                       | 130 | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6<br>18.6<br>32.0<br>46.2                         | 0.0058<br>.0085<br>.0155<br>.0152<br>.0192<br>.0224<br>.0346<br>.0263<br>.0048<br>.0071<br>.0122<br>.0177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.55<br>9.71<br>Combus 1<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65                                                                    | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100                                                              | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7<br>99.7<br>147.4<br>253.4<br>366.8                              | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465<br>1770                                                 | 1344<br>1808<br>1 1n. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806<br>1110                                               | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4<br>88.5<br>86.5<br>81.9<br>80.2                                 | Temperature limited   |
| 84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97                                                                   | .798<br>.800                                                                                                                       | 130 | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6<br>18.6<br>32.0                                 | .0201<br>.0287<br>0.0058<br>.0085<br>.0115<br>.0152<br>.0192<br>.0244<br>.0346<br>.0263<br>.0048<br>.0071<br>.0122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.55<br>9.71<br>Combus 1<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.98<br>9.83<br>6.65                                                                    | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100                                                              | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7<br>99.7<br>147.4<br>253.4                                       | 2005<br>2470<br>essure, 8.6<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465                                                         | 1344<br>1808<br>1 1n. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806                                                       | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4<br>88.5<br>86.5<br>86.5                                         |                       |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98                                                                   | 798<br>800<br>0.559<br>.558<br>.557<br>.557<br>.557<br>.558<br>.558<br>.724<br>.726<br>.728<br>.725                                | 170 | 11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6<br>18.6<br>32.0<br>46.2<br>56.1                                 | 0.0058<br>.0058<br>.0085<br>.0152<br>.0192<br>.0224<br>.0348<br>.0071<br>.0192<br>.0048<br>.0071<br>.0192<br>.0177<br>.0214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.55<br>9.71<br>Combus 1<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65<br>.44<br>.29<br>2.74<br>4.94<br>8.22                              | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100<br>93<br>90<br>89<br>91<br>122                               | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>5315.6<br>397.7<br>475.4<br>717.2<br>544.7<br>99.7<br>147.4<br>253.4<br>366.8<br>444.1                    | 2005<br>2470<br>essure, 8.6<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465<br>1770<br>1980                                         | 1344<br>1808<br>10 1n. Hg abs<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806<br>8110<br>1320                                             | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4<br>88.5<br>86.5<br>81.9<br>80.2<br>80.3                         | Temperature limited   |
| 85<br>86                                                                                                                                           | 798<br>.800<br>0.559<br>.558<br>.557<br>.557<br>.557<br>.558<br>.558<br>.724<br>.726<br>.728                                       | 130 | 57.8<br>82.6<br>11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>52.8<br>12.6<br>18.6<br>32.0<br>46.2                                         | 0.0058<br>.0085<br>.0155<br>.0152<br>.0192<br>.0224<br>.0346<br>.0263<br>.0048<br>.0071<br>.0122<br>.0177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.55<br>9.71<br>Combus 1<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65                                                                    | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100                                                              | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7<br>99.7<br>147.4<br>253.4<br>366.8                              | 2005<br>2470<br>essure, 8.0<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465<br>1770                                                 | 1344<br>1808<br>1 1n. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806<br>1110                                               | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4<br>88.5<br>86.5<br>81.9<br>80.2                                 | Temperature limited   |
| 84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98                                                             | 798<br>.800<br>0.559<br>.558<br>.558<br>.557<br>.557<br>.557<br>.558<br>.724<br>.726<br>.728<br>.728                               | 170 | 57.8<br>82.6<br>111.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6<br>18.6<br>32.0<br>46.2<br>56.1                | 0.0058<br>.0085<br>.0085<br>.0152<br>.0152<br>.0152<br>.024<br>.0263<br>.0048<br>.0271<br>.0177<br>.0214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.55<br>9.71<br>Combust<br>0.05<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65<br>44<br>.29<br>2.74<br>4.94<br>8.22                                       | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100<br>93<br>99<br>1122<br>88                                    | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7<br>99.7<br>147.4<br>253.4<br>366.8<br>1476.2                    | 2005<br>2470<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465<br>1770<br>1980                                                        | 1344<br>1808<br>0 1n. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806<br>1110<br>1320<br>620                                | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4<br>88.5<br>86.5<br>81.9<br>80.2<br>80.3                         | Temperature limited   |
| 84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>99<br>99<br>99<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 798<br>.800<br>0.559<br>.558<br>.558<br>.557<br>.557<br>.557<br>.558<br>.728<br>.728<br>.725<br>.725<br>.725                       | 170 | 11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6<br>18.6<br>32.0<br>46.2<br>56.1<br>10.8                         | 0.0058<br>.0085<br>.0085<br>.0015<br>.0152<br>.0192<br>.0224<br>.0346<br>.0263<br>.0011<br>.0127<br>.0127<br>.0214<br>.0085<br>.0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.55<br>9.71<br>Combust<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65<br>44<br>.29<br>2.74<br>4.94<br>8.22                                | 105<br>103<br>.or-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100<br>93<br>90<br>91<br>122<br>88<br>87                         | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7<br>147.4<br>253.4<br>366.8<br>444.1                             | 2005<br>2470<br>essure, 8.6<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465<br>1770<br>1980                                         | 1344<br>1808<br>1 1n. Hg abs<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806<br>1110<br>1320<br>620<br>814                                | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4<br>88.5<br>86.5<br>81.9<br>80.2<br>80.3                         | Temperature limited   |
| 84<br>85<br>86<br>87<br>88<br>89<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                                                 | .798<br>.800                                                                                                                       | 170 | 11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>52.8<br>12.6<br>18.6<br>32.0<br>46.2<br>56.1                                                 | 0.0058<br>.0058<br>.0085<br>.0015<br>.0115<br>.0152<br>.0192<br>.0224<br>.0346<br>.0263<br>.0048<br>.0071<br>.0122<br>.0177<br>.0214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.55<br>9.71<br>Combust<br>0.05<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65<br>44<br>.29<br>2.74<br>4.94<br>8.22                                       | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100<br>93<br>90<br>89<br>91<br>122<br>88<br>87<br>87             | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7<br>99.7<br>147.4<br>253.4<br>566.8<br>444.1<br>176.2<br>247.8   | 2005<br>2470<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465<br>1770<br>1980                                                        | 1344<br>1808<br>0 1n. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806<br>1110<br>1320<br>620<br>814<br>1052                 | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4<br>88.5<br>86.5<br>86.5<br>81.9<br>80.2<br>80.3                 | Temperature limited   |
| 84<br>85<br>86<br>87<br>88<br>89<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                                                 | 798<br>.800<br>0.559<br>.558<br>.558<br>.557<br>.557<br>.557<br>.558<br>.728<br>.728<br>.725<br>.725<br>.725                       | 170 | 11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6<br>18.6<br>32.0<br>46.2<br>56.1<br>10.8                         | 0.0058<br>.0058<br>.0085<br>.0015<br>.0115<br>.0152<br>.0192<br>.0224<br>.0346<br>.0263<br>.0048<br>.0071<br>.0122<br>.0177<br>.0214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.55<br>9.71<br>Combust<br>0.05<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65<br>44<br>.29<br>2.74<br>4.94<br>8.22                                       | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100<br>93<br>90<br>89<br>91<br>122<br>88<br>87<br>87             | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>544.7<br>147.4<br>253.4<br>366.8<br>444.1                             | 2005<br>2470<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465<br>1770<br>1980                                                        | 1344<br>1808<br>0 1n. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806<br>1110<br>1320<br>620<br>814<br>1052                 | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4<br>88.5<br>86.5<br>86.5<br>81.9<br>80.2<br>80.3                 | Temperature limited   |
| 84<br>85<br>86<br>87<br>88<br>89<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                                                 | 0.559<br>558<br>558<br>557<br>.557<br>.557<br>.557<br>.558<br>.724<br>.728<br>.725<br>.725<br>.725<br>.725<br>.725<br>.725<br>.725 | 170 | 11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6<br>18.6<br>32.0<br>46.2<br>56.1<br>10.8<br>15.1<br>20.3<br>31.1 | 0.0058<br>.0085<br>.0085<br>.0115<br>.0152<br>.0192<br>.0224<br>.0346<br>.0263<br>.0071<br>.0122<br>.0177<br>.0214<br>.0085<br>.0107<br>.0120<br>.0177<br>.0214<br>.0085<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195 | 4.55<br>9.71<br>Combust<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65<br>.44<br>.29<br>2.74<br>4.94<br>8.22<br>.29<br>.34<br>1.03<br>2.25 | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100<br>95<br>90<br>89<br>91<br>122<br>88<br>87<br>87<br>87<br>92 | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>3397.7<br>475.4<br>717.2<br>544.7<br>147.4<br>253.4<br>253.4<br>176.2<br>247.8<br>330.6<br>508.6 | 2005<br>2470<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465<br>1770<br>1980                                                        | 1344<br>1808<br>1 1n. Hg abs<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806<br>1110<br>1320<br>620<br>814<br>1052<br>1452                | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4<br>88.5<br>86.5<br>81.9<br>80.2<br>80.3                         | Temperature limited   |
| 84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>99<br>99<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 798<br>.800<br>0.559<br>.558<br>.557<br>.557<br>.557<br>.558<br>.726<br>.728<br>.725<br>.728<br>.352<br>.354<br>.352               | 170 | 11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>52.8<br>12.6<br>32.0<br>46.2<br>56.1<br>10.8<br>15.1<br>20.3<br>31.1<br>20.3                 | 0.0058<br>0.0058<br>0085<br>0015<br>0152<br>0192<br>0224<br>0348<br>0071<br>0122<br>0177<br>0214<br>0085<br>0120<br>0129<br>0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.55<br>9.71<br>Combust<br>0.05<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65<br>.44<br>.29<br>2.74<br>4.94<br>8.22<br>.29<br>.34<br>1.03<br>2.25        | 105<br>103<br>cr-inlet<br>64<br>79<br>82<br>86<br>93<br>91<br>100<br>93<br>93<br>91<br>122<br>88<br>87<br>87<br>92<br>97              | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>397.7<br>475.4<br>717.2<br>253.4<br>366.8<br>176.2<br>247.8<br>508.6<br>497.6                    | 2005<br>2470<br>essure, 8.6<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465<br>1770<br>1980<br>1285<br>1470<br>1715<br>2115<br>2115 | 1344<br>1808<br>0 in. Hg abs<br>435<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806<br>1110<br>1320<br>620<br>814<br>1052<br>1452<br>1453 | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.1<br>88.5<br>86.5<br>81.9<br>80.2<br>80.3<br>89.0<br>84.5<br>83.8<br>78.2 | Temperature limited   |
| 84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98                                                             | 0.559<br>558<br>558<br>557<br>.557<br>.557<br>.557<br>.558<br>.724<br>.728<br>.725<br>.725<br>.725<br>.725<br>.725<br>.725<br>.725 | 170 | 11.7<br>17.1<br>23.0<br>30.5<br>38.5<br>46.0<br>69.5<br>52.8<br>12.6<br>18.6<br>32.0<br>46.2<br>56.1<br>10.8<br>15.1<br>20.3<br>31.1 | 0.0058<br>.0085<br>.0085<br>.0115<br>.0152<br>.0192<br>.0224<br>.0346<br>.0263<br>.0071<br>.0122<br>.0177<br>.0214<br>.0085<br>.0107<br>.0120<br>.0177<br>.0214<br>.0085<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195<br>.0195 | 4.55<br>9.71<br>Combust<br>0.05<br>.78<br>1.22<br>2.25<br>3.47<br>4.94<br>9.83<br>6.65<br>.44<br>.29<br>2.74<br>4.94<br>8.22<br>.29<br>.34<br>1.03<br>2.25 | 105<br>103<br>cor-inlet<br>64<br>65<br>79<br>82<br>86<br>93<br>99<br>100<br>95<br>90<br>89<br>91<br>122<br>88<br>87<br>87<br>87<br>92 | 416.8<br>594.2<br>total pr<br>120.3<br>176.2<br>237.4<br>315.6<br>3397.7<br>475.4<br>717.2<br>544.7<br>147.4<br>253.4<br>253.4<br>176.2<br>247.8<br>330.6<br>508.6 | 2005<br>2470<br>1095<br>1280<br>1450<br>1685<br>1870<br>2065<br>2640<br>2245<br>1015<br>1170<br>1465<br>1770<br>1980                                                        | 1344<br>1808<br>1 1n. Hg abs<br>620<br>789<br>1024<br>1208<br>1403<br>1978<br>1583<br>357<br>509<br>806<br>1110<br>1320<br>620<br>814<br>1052<br>1452                | 87.0<br>85.5<br>90.0<br>88.9<br>85.3<br>85.1<br>81.2<br>80.4<br>78.7<br>80.4<br>88.5<br>86.5<br>81.9<br>80.2<br>80.3                         | Temperature limited   |

TABLE II. - Continued. PERFORMANCE DATA FROM SINGLE COMBUSTOR OPERATING WITH HYDROCARBON AND OXYGENATED-HYDROCARBON GASEOUS FUELS

Combustor-inlet total temperature, 660° R

#### (i) 1,3-Butadiene; fuel-nozzle configuration 1

| Run                                    | Air<br>flow,<br>lb/sec                    | Combustor - inlet reference velocity (nominal), ft/sec | Puel<br>flow,<br>lb/hr                       | Fuel-<br>air<br>ratio                               | Fuel-<br>nozzle<br>differ-<br>ential<br>pressure,<br>lb/sq in. | Fuel<br>temper-<br>ature,<br>op       | Heat<br>input,<br>Btu/lb                           | Mean com-<br>bustor-<br>outlet<br>temper-<br>ature,<br>op | Mean tem-<br>perature<br>rise<br>through<br>combustor,<br>op | Combustion<br>efficiency,<br>percent           | Remarks                                                                                                                                                                                    |
|----------------------------------------|-------------------------------------------|--------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|---------------------------------------|----------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                           |                                                        |                                              |                                                     | Combu                                                          | stor-inle                             | t total                                            | pressure, 1                                               | 4.3 in. Hg a                                                 | bs                                             |                                                                                                                                                                                            |
| 407<br>408<br>409<br>410<br>411<br>412 | 0.604<br>.609<br>.602<br>.601<br>.599     | 79                                                     | 21.7<br>28.6<br>40.2<br>48.4<br>65.1<br>16.6 | 0.0100<br>.0130<br>.0186<br>.0224<br>.0302<br>.0077 | 0<br>12.3<br>19.1<br>25.1<br>34.3<br>4.3                       | 89<br>. 89<br>101<br>91<br>117<br>100 | 191.7<br>250.2<br>356.3<br>429.6<br>579.1<br>147.2 | 1400<br>1625<br>1890<br>2135<br>2450<br>1255              | 741<br>964<br>1233<br>1473<br>1784<br>593                    | 99.1<br>100.8<br>93.1<br>94.3<br>87.6<br>101.8 | Blow-out, inlet pressure unsteady                                                                                                                                                          |
| 413<br>414<br>415<br>416<br>417<br>418 | 1.303<br>1.304<br>1.302<br>1.302<br>1.302 | 170                                                    | 60.3<br>51.0<br>44.9<br>31.1<br>22.8<br>18.4 | .0129<br>.0109<br>.0096<br>.0066<br>.0049           | 31.8<br>26.7<br>22.4<br>17.1<br>9.1<br>5.6                     | 105<br>97<br>91<br>119<br>117<br>111  | 246.6<br>208.6<br>183.8<br>127.0<br>93.3<br>75.2   | 1485<br>1400<br>1275<br>1170<br>965<br>875                | 826<br>741<br>615<br>514<br>305<br>215                       | 86.8<br>91.2<br>85.0<br>101.5<br>80.9<br>70.3  |                                                                                                                                                                                            |
| 419<br>420<br>421<br>422               | .799<br>.803<br>.803<br>.801              | 105                                                    | 71.1<br>54.8<br>45.8<br>18.7                 | .0247<br>.0190<br>.0159<br>.0065                    | 37.0<br>29.2<br>24.3<br>6.0                                    | 117<br>101<br>94<br>96                | 474.7<br>364.2<br>304.3<br>124.5                   | 2160<br>1545<br>1770<br>1160                              | 1500<br>1284<br>1107<br>500                                  | 87.4<br>95.2<br>96.6<br>100.6                  | Resonance, inlet pressure unsteady<br>Resonance, inlet pressure unsteady<br>Resonance, inlet pressure unsteady                                                                             |
| 423<br>424<br>425<br>426<br>427        | 1.001<br>1.001<br>.998<br>1.002<br>1.001  | 132                                                    | 65.5<br>47.2<br>47.7<br>32.0<br>20.4         | .0182<br>.0131<br>.0133<br>.0089<br>.0057           | 35.1<br>24.7<br>24.4<br>16.1<br>6.9                            | 129<br>131<br>125<br>107<br>96        | 348.7<br>251.2<br>254.8<br>170.2<br>108.6          | 1850<br>1600<br>1590<br>1345<br>1080                      | 1194<br>941<br>931<br>685<br>420                             | 91.8<br>97.8<br>95.4<br>102.5<br>96.3          | Resonance, inlet pressure unsteady<br>Resonance, inlet pressure unsteady<br>Resonance, inlet pressure unsteady<br>Resonance, inlet pressure unsteady<br>Resonance, inlet pressure unsteady |
|                                        |                                           |                                                        |                                              |                                                     | Combu                                                          | stor-inle                             | t total                                            | pressure, 8                                               | .0 in. Hg ab                                                 | 8                                              |                                                                                                                                                                                            |
| 428<br>429<br>430<br>431<br>432        | 0.723<br>.723<br>.723<br>.726<br>.727     | 170                                                    | 36.1<br>46.9<br>41.7<br>29.5<br>18.9         | 0.0139<br>.0180<br>.0160<br>.0113<br>.0072          | 29.9<br>26.4<br>24.0<br>22.9<br>8.7                            | 110<br>109<br>101<br>95<br>95         | 266.3<br>345.8<br>307.8<br>216.6<br>138.4          | 1355<br>1340<br>1370<br>1360<br>1090                      | 698<br>678<br>712<br>699<br>429                              | 67.6<br>51.0<br>60.0<br>82.7<br>77.6           | Blow-out                                                                                                                                                                                   |
| 433<br>434<br>435<br>436<br>437        | .560<br>.565<br>.566<br>.553              | 130                                                    | 23.9<br>29.1<br>44.1<br>35.4<br>19.8         | .0119<br>.0143<br>.0216<br>.0177<br>.0099           | 12.5<br>16.5<br>24.5<br>22.7<br>9.8                            | 114<br>115<br>115<br>111<br>111       | 227.4<br>274.6<br>415.3<br>338.9<br>189.4          | 1440<br>1620<br>1710<br>1735<br>1345                      | 781<br>961<br>1048<br>1075<br>684                            | 88.6<br>91.8<br>67.7<br>84.4<br>• 92.2         | Inlet pressure unsteady<br>Inlet pressure unsteady, blow-out                                                                                                                               |
| 438<br>439<br>440<br>441<br>442        | .354<br>.353<br>.353<br>.353<br>.353      | 80                                                     | 14.4<br>19.1<br>22.7<br>26.8<br>36.1         | .0113<br>.0150<br>.0178<br>.0211<br>.0284           | 6.2<br>8.6<br>11.9<br>15.3<br>18.9                             | 93<br>95<br>98<br>105<br>109          | 217.6<br>288.4<br>342.0<br>404.5<br>545.4          | 1455<br>1625<br>1805<br>2005<br>2185                      | 794<br>960<br>1142<br>1342<br>1513                           | 94.1<br>87.5<br>89.3<br>90.3<br>77.6           | Puel flow erratic<br>Fuel flow erratic<br>Blow-out                                                                                                                                         |

(j) 1,3-Butadiene; fuel-nozzle configuration 2

|                   |                         |     |                      |                          | Combu            | stor-inle         | t total                 | pressure, l          | 4.3 in. Hg a        | bs                   |                    |
|-------------------|-------------------------|-----|----------------------|--------------------------|------------------|-------------------|-------------------------|----------------------|---------------------|----------------------|--------------------|
| 443<br>444<br>445 | 0.601<br>.601<br>.600   | 79  | 16.8<br>33.3<br>44.1 | 0.0078<br>.0154<br>.0204 | 0<br>.88<br>1.22 | 114<br>126<br>134 | 148.9<br>295.3<br>392.0 | 1195<br>1735<br>1890 | 536<br>1076<br>1232 | 90.7<br>96.4<br>84.9 | Fuel flow limited  |
| 446<br>447<br>448 | 1.303<br>1.296<br>1.297 | 170 | 17.0<br>33.7<br>39.8 | .0036<br>.0072<br>.0085  | 0<br>0<br>.15    | 119<br>128<br>134 | 69.5<br>138.7<br>163.7  | 895<br>1080<br>1100  | 235<br>420<br>443   | 83.2<br>75.7<br>67.9 | Puel flow limited  |
| 449<br>450        | . 799<br>. 799          | 105 | 17.3<br>35.7         | .0060<br>.0124           | o<br>.73         | 128<br>133        | 115.1<br>237.8          | 1085<br>1470         | 429<br>809          | 92. g<br>88. 1       | Fuel flow unsteady |
|                   |                         |     |                      |                          | Combu            | stor-inl          | t total                 | pressure, 8          | .O in. Hg ab        | 5                    |                    |
| 451<br>452<br>453 | 0.557<br>.567<br>.567   | 130 | 22.2<br>27.1<br>54.7 | 0.0111<br>.0134<br>.0271 | 1.0              | 86<br>94<br>96    | 212.8<br>256.9<br>519.8 | 1310<br>1405<br>1760 | 651<br>746<br>520   | 78.2<br>75.0<br>57.5 | Blow-out           |
| 454<br>455        | . 729<br>. 729          | 170 | 16.5<br>32.3         | .0063<br>.0123           | 0 .8             | 100<br>110        | 120.7<br>236.0          | 985<br>1145          | 121<br>236          | 66.3<br>52.5         |                    |

TABLE II. - Concluded. PERFORMANCE DATA FROM SINGLE COMBUSTOR OPERATING WITH HYDROCARBON AND OXYGENATED-HYDROCARBON GASEOUS FUELS

# Combustor-inlet total temperature, 6600 R

# (k) Ethylene oxide; fuel-nozzle configuration 1

| Run                             | Air<br>flow,<br>lb/sec               | Combustor-<br>inlet<br>reference<br>velocity<br>(nominal),<br>ft/sec | Fuel<br>flow,<br>lb/hr               | Fuel-<br>air<br>ratio                     | Fuel<br>nozzle<br>differ-<br>ential<br>pressure,<br>lb/sq in. | Fuel<br>temper-<br>ature,<br>op | Heat<br>input,<br>Btu/lb                  | Mean com-<br>bustor-<br>outlet<br>temper-<br>ature,<br>op | Mean tem-<br>perature<br>rise<br>through<br>combustor, | Combustion<br>efficiency,<br>percent | Remarks                 |
|---------------------------------|--------------------------------------|----------------------------------------------------------------------|--------------------------------------|-------------------------------------------|---------------------------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|--------------------------------------|-------------------------|
|                                 |                                      |                                                                      |                                      |                                           | Combustor-                                                    | inlet tot                       | al press                                  | ure, 14.3 1                                               | n. Hg abs                                              |                                      |                         |
| 456<br>457<br>458               | 1.310<br>1.310<br>1.311              | 170                                                                  | 26.5<br>30.1<br>22.4                 | 0.0056<br>.0064<br>.0048                  | 10.8<br>13.2<br>8.6                                           | 90<br>113<br>112                | 66.0<br>75.1<br>55.8                      | 885<br>920<br>850                                         | 223<br>259<br>189                                      | 80.1<br>83.1<br>85.7                 | Fuel flow limited       |
| 459<br>460<br>461<br>462        | .596<br>.600<br>.596<br>.596         | 79                                                                   | 19.4<br>25.6<br>31.1<br>13.5         | .0090<br>.0118<br>.0145<br>.0063          | 7.8<br>10.3<br>14.3<br>3.3                                    | 100<br>97<br>96<br>103          | 106.1<br>139.1<br>170.5<br>74.0           | 1080<br>1175<br>1285<br>960                               | 417<br>515<br>625<br>298                               | 87.2<br>94.9<br>93.6<br>96.6         | Fuel flow limited       |
| 463<br>464<br>465<br>466        | .809<br>.809<br>.809<br>.804         | 105                                                                  | 32.8<br>27.2<br>20.5<br>12.5         | .0113<br>.0093<br>.0070<br>.0043          | 15.3<br>11.2<br>6.7<br>2.4                                    | 118<br>109<br>103<br>99         | 132.3<br>109.8<br>82.5<br>50.6            | 1155<br>1070<br>965<br>860                                | 497<br>411<br>306<br>193                               | 93.5<br>92.5<br>87.2<br>84.3         | Fuel flow limited       |
| 467<br>468<br>469               | 1.007<br>1.003<br>1.008              | 132                                                                  | 33.6<br>26.6<br>19.2                 | .0093<br>.0074<br>.0053                   | 16.2<br>11.2<br>7.3                                           | 95<br>102<br>1 <b>04</b>        | 109.0<br>86.5<br>62.0                     | 1080<br>985<br>900                                        | 415<br>321<br>236                                      | 94.6<br>84.0<br>91.6                 |                         |
|                                 |                                      |                                                                      |                                      |                                           | Combustor-                                                    | inlet tot                       | al press                                  | ure, 8.0 in                                               | . Hg abs                                               |                                      |                         |
| 470<br>471<br>472<br>473        | 0.750<br>.750<br>.751<br>.751        | 170                                                                  | 22.0<br>33.7<br>28.3<br>14.8         | 0.0082<br>.0125<br>.0105<br>.0055         | 11.6<br>19.3<br>15.6<br>6.9                                   | 107<br>111<br>111<br>108        | 95.8<br>146.4<br>122.9<br>64.1            | 985<br>1160<br>1070<br>870                                | 326<br>501<br>411<br>210                               | 82.1<br>84.4<br>87.1<br>79.5         | Fuel flow limited       |
| 474<br>475<br>476<br>477<br>478 | .559<br>.560<br>.558<br>.559<br>.559 | 130                                                                  | 30.2<br>25.5<br>21.2<br>11.7<br>17.1 | .0150<br>.0127<br>.0106<br>.0058<br>.0085 | 15.9<br>13.3<br>10.4<br>4.0<br>8.0                            | 108<br>110<br>110<br>105<br>105 | 176.6<br>148.7<br>123.9<br>68.3<br>99.9   | 1280<br>1185<br>1105<br>895<br>1035                       | 621<br>524<br>443<br>231<br>376                        | 90.0<br>88.8<br>87.2<br>79.7<br>95.1 | Fuel flow limited       |
| 479<br>480<br>481<br>482<br>483 | .352<br>.351<br>.352<br>.351<br>.351 | 80                                                                   | 29.8<br>24.2<br>19.0<br>11.9<br>16.8 | .0235<br>.0192<br>.0150<br>.0094<br>.0133 | 16.2<br>12.2<br>9.6<br>4.5<br>7.9                             | 110<br>108<br>105<br>102<br>102 | 276.4<br>225.1<br>175.8<br>110.7<br>155.8 | 1560<br>1415<br>1305<br>1075<br>1240                      | 898<br>755<br>6 <b>44</b><br><b>41</b> 5<br>579        | 86.1<br>89.3<br>95.1<br>94.4<br>95.3 | Inlet pressure unsteady |

(1) Ethylene oxide; fuel-nozzle configuration 2

|                                        | Combustor-inlet total pressure, 14.3 in. Hg abs |     |                                              |                                                    |                                           |                                        |                                                   |                                             |                                         |                                               |                                                                    |  |
|----------------------------------------|-------------------------------------------------|-----|----------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------|---------------------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|--|
| 484<br>485<br>486<br>487<br>488        | 0.595<br>.596<br>.596<br>.598<br>.599           | 79  | 40.3<br>59.0<br>73.4<br>24.5<br>13.0         | 0.0188<br>.0275<br>.0342<br>.0114<br>.0060         | 1.86<br>3.57<br>5.28<br>.39<br>.39        | 106<br>105<br>96<br>93<br>92           | 221.1<br>323.1<br>401.7<br>133.7<br>71.0          | 1455<br>1742<br>1950<br>1190<br>947         | 797<br>1079<br>1293<br>528<br>288       | 95.9<br>90.7<br>89.4<br>99.9<br>104.8         | Fuel flow limited                                                  |  |
| 489<br>490<br>491<br>492<br>493        | 1.307<br>1.308<br>1.294<br>1.303<br>1.303       | 170 | 12.6<br>55.5<br>73.3<br>36.6<br>22.7         | .0027<br>.0118<br>.0157<br>.0078<br>.0048          | 0<br>2.59<br>4.79<br>.39                  | 90<br>108<br>123<br>114<br>106         | 31.5<br>138.4<br>184.8<br>91.8<br>56.7            | 775<br>1156<br>1280<br>1001<br>866          | 122<br>497<br>624<br>. 343<br>209       | 109.6<br>97.8<br>87.8<br>92.1<br>94.3         |                                                                    |  |
| 494<br>495<br>496<br>497<br>498        | .997<br>.999<br>.997<br>.999<br>1.002           | 132 | 64.5<br>47.7<br>34.5<br>24.0<br>9.9          | .0180<br>.0133<br>.0096<br>.0067<br>.0028          | 3.57<br>1.37<br>.39<br>0                  | 125<br>120<br>115<br>111<br>108        | 211.0<br>146.4<br>106.3<br>74.9<br>33.8           | 1310<br>1158<br>1025<br>913<br>786          | 752<br>572<br>426<br>295<br>151         | 93.1<br>93.9<br>94.1<br>95.5<br>104.5         | Fuel flow limited                                                  |  |
| 499<br>500<br>501<br>502<br>503        | .799<br>.799<br>.799<br>.798<br>.798            | 105 | 74.2<br>55.8<br>34.8<br>23.6<br>13.0         | .0258<br>.0194<br>.0121<br>.0082<br>.0045          | 4.79<br>2.35<br>.64<br>0                  | 114<br>116<br>114<br>107<br>104        | 277.0<br>215.4<br>137.3<br>85.3<br>48.4           | 1535<br>1358<br>1135<br>981<br>839          | 1036<br>810<br>537<br>375<br>206        | 91.4<br>94.5<br>96.6<br>88.5<br>91.4          |                                                                    |  |
|                                        |                                                 |     |                                              |                                                    | Combustor-                                | inlet to                               | tal press                                         | sure, 8.0 in                                | n. Hg abs                               |                                               | <del>'</del>                                                       |  |
| 504<br>505<br>506<br>507<br>508        | 0.560<br>.556<br>.556<br>.555<br>.555           | 130 | 84.1<br>57.1<br>35.9<br>22.8<br>12.1         | 0.0417<br>.0286<br>.0179<br>.0114<br>.0061         | 9.10<br>5.43<br>1.76<br>.29               | 104<br>111<br>112<br>110<br>108        | 490.1<br>335.4<br>210.5<br>134.2<br>71.0          | 2114<br>1733<br>1378<br>1146<br>917         | 1453<br>1056<br>716<br>482<br>254       | 83.5<br>87.5<br>86.4<br>89.9<br>85.2          | Fuel flow limited                                                  |  |
| 509<br>510<br>511<br>512<br>513<br>514 | .727<br>.727<br>.727<br>.730<br>.727<br>.727    | 170 | 77.5<br>54.4<br>36.1<br>22.4<br>11.2<br>59.5 | .0296<br>.0208<br>.0138<br>.0085<br>.0043<br>.0023 | 8.12<br>4.69<br>2.01<br>2.93<br>0<br>5.43 | 113<br>111<br>108<br>106<br>104<br>104 | 348.1<br>244.5<br>161.8<br>100.1<br>50.3<br>266.8 | 1700<br>1436<br>1209<br>1012<br>850<br>1490 | 1042<br>778<br>551<br>353<br>187<br>828 | 81.5<br>84.5<br>87.5<br>87.8<br>97.5<br>84.2  | Fuel flow limited                                                  |  |
| 515<br>516<br>517<br>518<br>519        | .355<br>.355<br>.352<br>.354<br>.352            | 80  | 42.3<br>31.4<br>23.9<br>12.0<br>16.6         | .0332<br>.0246<br>.0189<br>.0094<br>.0131          | 7.4<br>4.7<br>2.7<br>5.4<br>1.5           | 120<br>127<br>112<br>107<br>109        | 389.4<br>288.9<br>221.6<br>110.9<br>153.4         | 1820<br>1620<br>1425<br>1085<br>1260        | 1160<br>962<br>770<br>426<br>604        | 82.2<br>. 89.3<br>. 93.6<br>. 95.6<br>. 101.8 | Fuel flow limited  Inlet pressure unsteady Inlet pressure unsteady |  |



Figure 1. - Single-combustor installation and auxiliary equipment. Instrumentation planes, A-A, B-B, and C-C.



Figure 2. - Cross section of single-combustor installation showing auxiliary ducting and location of temperature- and pressure-measuring instruments in instrumentation planes.



Figure 3. - Construction details of temperature- and pressure-measuring instruments.



Figure 4. - Schematic diagram of gaseous-fuel system.



Figure 5. - Variation of average combustor temperature rise and combustion efficiency with heat input for propane. Inlet-air temperature, 200° F.



Figure 6. - Variation of average compustor temperature rise and combustion efficiency with heat input for ethane. Inlet-air temperature, 200 F.



Figure 7. - Variation of average combustor temperature rise and combustion efficiency with heat input for 1,3-butadiene. Inlet-air temperature, 200<sup>0</sup> F.



Figure 8. - Variation of average combustor temperature rise and combustion efficiency with heat input for ethylene oxide. Inlet-air temperature, 200° F.



Figure 9. - Variation of average combustor temperature rise and combustion efficiency with heat input for ethylene. Inlet-air temperature, 200° F.



Figure 10. - Variation of average combustor temperature rise and combustion efficiency with heat input for acetylene. Inlet-air temperature, 2000 F.



(b) Inlet-air total pressure, 14.3 inches of mercury absolute.

Figure 11. - Variation of combustion efficiency with heat input for three fuels and two fuel-injector configurations. Inlet-air reference velocity, 170 feet per second.



(b) Inlet-air pressure, 14.3 inches of mercury absolute; fuel-nozzle-hole diameter, 1/16 inch.

Figure 12. - Variation of combustion efficiency at heat-input value of 200 Btu per pound of air with inlet-air mass flow for five gaseous hydrocarbon fuels and one oxygenated-hydrocarbon gaseous fuel. Inlet-air temperature, 200° F.



(d) Inlet-air pressure, 14.3 inches of mercury absolute; fuel-nozzle-hole diameter, 1/8 inch.

Figure 12. - Concluded. Variation of combustion efficiency at heat-input value of 200 Btu per pound of air with inlet-air mass flow for five gaseous hydrocarbon fuels and one oxygenated-hydrocarbon gaseous fuel. Inlet-air temperature, 200° F.



(b) Maximum burning velocity and minimum spark-ignition energy. Inlet-air total pressure, 14.3 inches of mercury absolute.

Figure 13. - Variation in combustion efficiency at heat-input value of 200 Btu per pound of air with fundamental combustion properties. Inlet-air temperature, 200° F; reference velocity, 170 feet per second.



(d) Flammability range and spontaneous-ignition temperature. Inlet-air total pressure, 14.3 inches of mercury absolute.

Figure 13. - Concluded. Variation in combustion efficiency at heat-input value of 200 Btu per pound of air with fundamental combustion properties. Inletair temperature, 200° F; reference velocity, 170 feet per second.



Figure 14. - Variation of combustion efficiency with maximum burning velocity for gaseous and liquid fuels. Inlet-air total pressure, 14.3 inches of mercury absolute; inlet-air temperature, 200° F; inlet-air reference velocity, 170 feet per second.