Sistemi Elettronici, Tecnologie e Misure Appello del 27/6/2019

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
c						
d						

- 1. Un amplificatore operazionale con amplificazione in continua pari a 60dB prodotto banda-guadagno pari a 2MHz, resistenze d'ingresso e uscita trascurabili (cioè $R_{\rm in,d} \to \infty, R_{\rm in,cm} \to \infty, R_{\rm out} = 0$), è collegato in configurazione voltage follower. La banda del voltage follower è pari a:
 - (a) 2kHz
 - (b) 2MHz
 - (c) 80kHz
 - (d) 20kHz
- 2. In un diodo ideale scorre una corrente $i_D \neq 0$. Quali delle seguenti affermazioni è falsa:
 - (a) il diodo è in conduzione
 - (b) la tensione ai capi del diodo è nulla
 - (c) il diodo si comporta come un circuito aperto
 - (d) la corrente scorre dall'anodo al catodo
- 3. Un amplificatore di transresistenza è ottenuto collegando in cascata un amplificatore di transresistenza descritto dai parametri $R_{\rm m,1}$, $R_{\rm in,1}$, $R_{\rm out,1}$, (tutti finiti e non nulli) ed un amplificatore di tensione descritto dai parametri $A_{\rm v,2}$, $R_{\rm in,2}$, $R_{\rm out,2}$ (tutti finiti e non nulli). La transresistenza complessiva R_m della cascata dei due stadi è data da

(a)
$$R_{\rm m,1}A_{\rm v,2} \frac{R_{\rm in,2}}{R_{\rm in,2} + R_{\rm out,1}}$$

(b)
$$\frac{A_{\text{v},2}}{R_{\text{m},1}} \frac{R_{\text{in},2}}{R_{\text{in},2} + R_{\text{out},1}}$$

(c)
$$A_{v,2} \frac{R_{m,1}}{R_{m,1} + R_{in,2}}$$

(d)
$$R_{\rm m,1}A_{\rm v,2} \frac{R_{\rm in,1}}{R_{\rm in,1} + R_{\rm out,2}}$$

- 4. La banda di un amplificatore destinato ad amplificare un segnale a banda limitata:
 - (a) deve essere la più ampia possibile, per ridurre il consumo di potenza
 - (b) deve essere più ampia della banda del rumore in ingresso, per evitare distorsione
 - (c) deve includere la banda del segnale con un margine limitato, per evitare di amplificare rumore fuori banda
 - (d) è opportuno che sia decisamente più stretta della banda del segnale
- 5. In un amplificatore di tensione non invertente realizzato utilizzando un amplificatore operazionale con amplificazione differenziale $A_{\rm d}$ finita, rispetto allo stesso circuito contenente un operazionale ideale :
 - (a) l'amplificazione di tensione è minore
 - (b) la resistenza d'ingresso è maggiore
 - (c) la resistenza d'uscita è minore
 - (d) la tensione differenziale dell'operazionale è non nulla in entrambi i casi
- 6. In un amplificatore di corrente basato su operazionale (configurazione canonica) tutti i resistori presenti hanno resistenza di 10kΩ e l'amplificatore operazionale presenta *input offset voltage* pari a 10mV nel caso peggiore. Nel caso peggiore, l'offset sulla corrente di uscita (in modulo), sarà pari a:
 - (a) 0
 - (b) 1mA
 - (c) dipende dal carico
 - (d) $1\mu A$

Esercizio 1.

Con riferimento al circuito in figura:

- 1. verificare la regione di funzionamento di MN e determinarne i parametri del modello per il piccolo segnale;
- 2. determinare $A_v = v_{out}/v_{in}$, la resistenza di ingresso R_{in} e la resistenza di uscita R_{out} (espressioni simboliche e valori numerici) e dare una rappresentazione dello stadio in termini di *amplificatore di tensione*;
- 3. determinare le funzioni di trasferimento nel dominio della frequenza del guadagno $A_v(s) = V_{out}/V_{in}$, dell'impedenza di ingresso $Z_{\rm in}(s)$ e dell'impedenza di uscita $Z_{\rm out}(s)$ della cascata in figura.
- 4. disegnare il diagramma di Bode del modulo e della fase del guadagno $A_v(s)$ ricavato al punto precedente.

Esercizio 2.

Con riferimento al circuito in figura, determinare:

- 1. l'espressione della tensione d'uscita v_{OUT} , assumendo che gli amplificatori operazionali siano ideali (riportare l'espressione per $R_1, \dots R_8$ generiche e per $R_1 = R_2 = \dots = R_8 = R$);
- 2. la minima dinamica d'uscita $(V_{\rm OUT,min},V_{\rm OUT,max})$ di OP1, di OP2 e di OP3 necessaria per il funzionamento del circuito, assumendo che la dinamica dei segnali d'ingresso sia (1V,2V) per entrambi i segnali v_1 e v_2 ;
- 3. i valori delle resistenze equivalenti $R_{\rm eq1}$ e $R_{\rm eq2}$ indicate in figura.