

Machine Learning

Machine Learning

- Automatically find patterns in data
- Create useful representations
- Supervised vs. unsupervised

Regression

Linear regression:

$$y = ax + b$$
input data output

Polynomial regression:

$$y = ax^2 + bx + c$$

Regression

Mean Squared Error

$$\frac{1}{N}\sum (y - (ax + b))^2$$

- +/- error same effect
- Penalizes very wrong predictions

Gradient Descent

Initialize parameters (*a*, *b*) randomly Iterate between:

- 1. Computing loss (mean squared error)
- 2. Updating parameters in direction of gradient

Gradient Descent

Regression

Polynomial degree: 01

Regularization

Lasso

Limar regression:

$$y = ax_1 + bx_2 + bx_3 + ax_4 + bx_5 + bx_6 + g$$

Regularization

- Constrain parameters:
 - To be sparse (L1/Lasso)
 - To be small (L2/ridge)

For neural networks, stop training early

Cross-Validation

- Train model parameters on training set
- Choose hyper-parameters with validation set
- Report error on test set

Overfitting

Classification

- Logistic Regression
- Support Vector Machine

Classification

- Logistic Regression
- Support Vector Machine
- Decision Trees
- Random Forests
- Neural Networks

x = 5

Unsupervised Learning

Clustering:

- K-means
- Mixture of Gaussians

Unsupervised Learning

Dimensionality Reduction:

- Principal Component Analysis
- Independent Component Analysis

