

TEXTBOOK SOLUTIONS EXPERT Q&A PRACTICE NEW!

Search

 $home \ / \ study \ / \ engineering \ / \ mechanical \ engineering \ questions \ and \ answers \ / \ let \ x = the \ time \ between \ two \ successive \ .$

Question: Let X = the time between two successive arrivals at the drive-...

(12 bookmarks)

Let X = the time between two successive arrivals at the drive-up window of a local bank. If X has an exponential distribution with ? = 1, (which is identical to a standard gamma distribution with? = 1), compute the following. (If necessary, round your answer to three decimal places.)

- (a) The expected time between two successive arrivals
- (b) The standard deviation of the time between successive arrivals
- P(X ? 4)
- P(3?X?5)

Expert Answer

Was this answer helpful?

0

General guidance

Concepts and reason

Exponential distribution: It explains about the time between events or distance between two random events. Moreover, the occurrence of the events is continuous and independent. Also, the average rate is constant.

Fundamentals

Let X be the continuous random variable with the parameter λ . Then, the probability density function X is,

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0\\ 0 & \text{elsewhere} \end{cases}$$

The cumulative distribution function of X is,

$$P(X \le x) = 1 - e^{-\lambda x}$$

Lack on memory property:

$$P(X>a+t \mid X>t) = P(X>a)$$
 where $t>0$ and $a>0$

The formula for P(X > x) is,

$$P(X>x)=1-P(X\leq x)$$

Note: Units = Hours/minutes/seconds.

Show less ^

Step-by-step

FIRST STEP | ALL STEPS | ANSWER ONLY

Step 1 of 4 ^

The expected time between two successive arrivals is the mean of the distribution.

From the given information X has an exponential distribution with $\lambda = 1$.

$$E(X) = \frac{1}{\lambda}$$

$$=\frac{1}{1}$$

Part a

The expected time between two successive arrivals is 1unit.

Explanation | Common mistakes | Hint for next step

Post a question

Answers from our experts for your tough homework questions

Enter question

CONTINUE TO POST

20 questions remaining

My Textbook Solutions

Fluid...

Probability... Machine... 8th Edition

5th Edition

Engineeri 11th Edition

View all solutions

Mechanical Engineering

Chegg tutors who can help right now

Femin G. Loyola University C

Nikunj G. Politecnico di Mila

Vaibhav S.

FIND ME A TUTOR

The expected time between two successive arrivals at the drive-up window of a local bank is 1unit. (Units = Hours/minutes/seconds).

Step 2 of 4 ^

The standard deviation of the time between successive arrivals is computed as follows:

$$SD(X) = \frac{1}{\lambda}$$

= 1(since $\lambda = 1$)

Part b

The standard deviation of the time between successive arrivals is 1.

Explanation | Hint for next step

Approximately the deviation from the mean for two successive arrivals at the drive-up window of a local bank is 1 unit.

Step 3 of 4 ^

Compute
$$P(X \le 4)$$

 $P(X \le x) = 1 - e^{-\lambda x}$

$$P(X \le 4) = 1 - e^{-1 \times 4}$$

$$=1-e^{-4}$$

$$=1-0.0183$$

$$=0.9817$$

The probability that the time gap between two successive arrivals at the drive-up window of a local bank less than 4 units is 0.9817.

Explanation | Hint for next step

There is 98.17% chance that the time gap between two successive arrivals at the drive-up window of a local bank for less than 4 units.

Step 4 of 4 ^

Compute
$$P(3 \le X \le 5)$$

 $P(3 \le X \le 5) = P(X \le 5) - P(X \le 3)$
 $= (1 - e^{-(1)(5)}) - (1 - e^{-(1)(3)})$
 $= (1 - 0.0067)(1 - 0.0498)$
 $= 0.9933 - 0.9502$
 $= 0.0431$

Part d

The probability between two successive arrivals from 3 and 5units at a bank door is 0.0431.

Explanation

The chance that, an arrival at the drive-up window of a local bank between 3 and 5 is 4.31%.

Answer

Part a

The expected time between two successive arrivals is 1unit.

Part b

The standard deviation of the time between successive arrivals is 1.

The probability that the time gap between two successive arrivals at the drive-up window of a local bank less than 4 units is **0.9817.**

Part d

The probability between two successive arrivals from 3 and 5units at a bank door is 0.0431.

Questions viewed by other students

Q: Let X denote the distance (m) that an animal moves from its birth site to the first territorial vacancy it encounters. Suppose that for banner-tailed kangaroo rats, X has an exponential distribution with parameter ? = 0.01327. (a) What is the probability that the distance is at most 100 m? At most 200 m? Between 100 and 200 m? (Round your answers to four decimal places...

A: See step-by-step answer

100% (11 ratings)

Q: A system consists of five identical components connected in series as shown: As soon as one components fails, the entire system will fail. Suppose each component has a lifetime that is exponentially distributed with ? = 0.01 and that components fail independently of one another. Define events $Ai = \{ith component lasts at least t hours\}, i = 1, ..., 5, so$ that the Ais...

A: See step-by-step answer

100% (3 ratings)

Show more Y

Media Center College Marketing US Privacy Policy Your CA Privacy Rights International Privacy Policy Terms of Use General Policies Cookie Notice

ABOUT CHEGG

Mobile Publishers Join Our Affiliate Program Advertising Choices Intellectual Property Rights

RESOURCES

Site Map

TEXTBOOK LINKS Return Your Books

Textbook Rental eTextbooks Used Textbooks Cheap Textbooks College Textbooks Sell Textbooks

STUDENT SERVICES

Chegg Play

Study 101

Chegg Coupon Scholarships Career Search Internships College Search College Majors Scholarship Redemption

COMPANY

Jobs Customer Service Give Us Feedback Chegg For Good Become a Tutor

LEARNING SERVICES

Online Tutorina Chegg Study Help Solutions Manual Tutors by City GPA Calculator Test Prep

Investor Relations Corporate Development **Enrollment Services**

© 2003-2018 Chegg Inc. All rights reserved.