Milestone 4 Regression Tree

Group 13

2023-11-10

Regression Question: How indicative are the prices of everyday commodities of a city's average income?

```
library(pacman)
p_load(MASS, tree, randomForest, gbm, dplyr, tidyverse)

train <- readRDS("C:/Users/abz20/OneDrive/Desktop/UVA Courses/Statistical Machine Learning (STAT 4630)/Statistical Machine
```

Parts A and B: Data Cleaning/Processing, Subsetting to Plausible Predictors

```
# exclude predictors related to each other or unrelated to question
train = train %>% dplyr::select(-city,
                                 -country,
                                 -beer.rest.domestic,
                                 -beer.rest.imported,
                                 -coffee,
                                 -soda,
                                 -water.rest,
                                 -taxi.km,
                                 -taxi.hr,
                                 -rent1.center,
                                 -rent1.outer,
                                 -rent3.center,
                                 -rent3.outer,
                                 -sqm.center,
                                 -sqm.outer,
                                 -quality)
test = test %>% dplyr::select(-city,
                                 -country,
                                 -beer.rest.domestic,
                                 -beer.rest.imported,
                                 -coffee,
                                 -soda,
                                 -water.rest,
                                 -taxi.km,
                                 -taxi.hr,
                                 -rent1.center,
                                 -rent1.outer,
                                 -rent3.center,
                                 -rent3.outer,
```

```
-sqm.center,
-sqm.outer,
-quality)
```

Excluded variables: - city and country because they're identifiers, neither predictor nor response - beer.rest.domestic, beer.rest.imported, coffee, soda, water.rest, because they're related to meal1, meal2, and mcmeal - taxi.km and taxi.hr because they're related to taxi.start - rent1.center because this was converted to a categorical variable, expensive, so it would be redundant to include this - rent1.outer, rent3.center, rent3.outer, sqm.center, and sqm.outer because they're closely related to "expensive" - quality because this isn't related to cost of living

Part C: Recursive Binary Splitting

text(tree.result, cex=0.4)

```
# fit tree model using training data with binary recursive splitting
tree.result = tree::tree(salary ~ ., data = train) # x54 is monthly salary
  i.
# see output
summary(tree.result)
##
## Regression tree:
## tree::tree(formula = salary ~ ., data = train)
## Variables actually used in tree construction:
                     "ticket"
## [1] "cinema"
                                  "meal1"
                                                "bread"
                                                             "cigarettes"
## [6] "pass"
                     "preschool"
## Number of terminal nodes: 8
## Residual mean deviance: 963400 = 3.334e+09 / 3461
## Distribution of residuals:
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
## -4158.0 -427.4 -166.9
                                0.0
                                      306.1 6412.0
  ii. 8 terminal nodes
 iii. Variables actually used in tree construction: "cinema" "ticket" "meal1" "bread" "cigarettes" "pass"
     "preschool"
 iv.
# decision tree built on training data with recursive binary splitting
plot(tree.result)
```


v. This answers our question of interest by selecting which predictors out of all our plausible predictors are most important in predicting the average monthly salary in a city.

vi.

```
# find predictions for test data
tree.pred.test = predict(tree.result, newdata=test)

# find test MSE
recursive_binary_test_mse = mean((test$salary - tree.pred.test)^2)

cat("Recursive Binary Test MSE:", recursive_binary_test_mse)
```

Recursive Binary Test MSE: 844078.3

Part D: Pruned Tree

Note: The pruned tree is the same as the tree from recursive binary splitting. I still answered the questions from Part C just in case we decide to redo this.

```
# use 10-fold CV to prune tree
cv.Dataset = tree::cv.tree(tree.result, K=10)
cv.Dataset
```

```
## $size
## [1] 8 7 6 5 4 3 2 1
##
## $dev
## [1] 3508114240 3588591761 3763517153 3803168613 4260552508 4260552508 4557538162
  [8] 7087947986
##
## $k
## [1]
             -Inf
                    86395274 123437701 131622376 244469163 254533571 349046227
## [8] 2555984694
##
## $method
## [1] "deviance"
##
## attr(,"class")
## [1] "prune"
                       "tree.sequence"
```

plot of residual mean deviance vs size of tree with pruning
plot(cv.Dataset\$size, cv.Dataset\$dev, type="b", xlab="Size of Tree", ylab="Res Mean Deviance")


```
# see size of tree which gives best tree based on pruning and 10-fold CV
trees.num = cv.Dataset$size[which.min(cv.Dataset$dev)]
trees.num
```

[1] 8

```
# refit with training data
tree.train = tree::tree(salary ~ ., data = train)
prune.train = tree::prune.tree(tree.train, best=trees.num)

# decision tree with pruning, with training data
plot(prune.train)
text(prune.train, cex=0.4)
```


numerical summary of pruned tree prune.train

```
## node), split, n, deviance, yval
##
         * denotes terminal node
##
   1) root 3469 7.080e+09 1709.0
##
##
      2) cinema < 8.475 1984 1.129e+09 966.3
        4) ticket < 0.965 970 1.877e+08 600.1 *
##
##
        5) ticket > 0.965 1014 6.869e+08 1317.0
##
         10) meal1 < 8.98 512 1.265e+08 1028.0 *
##
         11) meal1 > 8.98 502 4.740e+08 1611.0 *
##
      3) cinema > 8.475 1485 3.395e+09 2701.0
##
        6) bread < 2.425 907 1.213e+09 2314.0
##
         12) cigarettes < 6.57 311 2.701e+08 1803.0 *
##
        13) cigarettes > 6.57 596 8.196e+08 2581.0 *
        7) bread > 2.425 578 1.832e+09 3308.0
##
```

```
##
         14) pass < 49.5 356 8.675e+08 2795.0 *
##
         15) pass > 49.5 222 7.205e+08 4132.0
           30) preschool < 1197.32 142 3.696e+08 3554.0 *
##
##
           31) preschool > 1197.32 80 2.192e+08 5158.0 *
  i.
# see output
summary(prune.train)
##
## Regression tree:
## tree::tree(formula = salary ~ ., data = train)
## Variables actually used in tree construction:
## [1] "cinema"
                    "ticket"
                                                             "cigarettes"
                                  "meal1"
                                               "bread"
## [6] "pass"
                    "preschool"
## Number of terminal nodes: 8
## Residual mean deviance: 963400 = 3.334e+09 / 3461
## Distribution of residuals:
      Min. 1st Qu. Median Mean 3rd Qu.
                                               Max.
## -4158.0 -427.4 -166.9
                              0.0 306.1 6412.0
  ii. 8 terminal nodes
 iii. Variables actually used in tree construction: "cinema" "ticket" "meal1" "bread" "cigarettes" "pass"
    "preschool"
 iv.
# decision tree built on training data with recursive binary splitting
plot(prune.train)
text(prune.train, cex=0.4)
```


v. This answers our question of interest by selecting which predictors out of all our plausible predictors are most important in predicting the average monthly salary in a city, but with less overfitting.

vi.

```
# find predictions for test data
tree.pred.test = predict(prune.train, newdata=test)

# find test MSE
pruned_tree_test_mse = mean((test$salary - tree.pred.test)^2)

cat("Pruned Tree Test MSE:", pruned_tree_test_mse)

## Pruned Tree Test MSE: 844078.3

Part E: Random Forests

rf.class = randomForest::randomForest(salary ~ ., data=train, mtry=2,importance=TRUE) # mtry = p/3 for
rf.class

## ## Call:
## randomForest(formula = salary ~ ., data = train, mtry = 2, importance = TRUE)
## Type of random forest: regression
```

```
## Number of trees: 500
## No. of variables tried at each split: 2
##
## Mean of squared residuals: 860748.3
## % Var explained: 57.82
```

importance(rf.class)

##		%IncMSE	IncNodePurity
##	meal1	14.796393	238157657
##	meal2	14.555734	231513905
##	mcmeal	10.542906	208272745
##	milk	10.073646	76271505
##	bread	8.307182	212960682
##	rice	7.304565	206929331
##	eggs	10.813562	147083314
##	cheese	6.790259	114821109
##	chicken	11.662435	206232536
##	beef	11.800918	159569640
##	apples	7.603433	176696830
##	bananas	7.800040	89183997
##	oranges	8.958266	193016431
##	tomatoes	10.629167	190210465
##	potatoes	9.006724	153877002
##	onions	4.359201	135731988
##	lettuce	8.351248	159743999
##	water.market	9.327800	186825412
##	wine	10.955881	134702886
##	beer.market.domestic	9.855623	128107771
##	beer.market.imported	7.591608	82697518
##	cigarettes	16.498616	248628321
##	ticket	20.752658	235921720
##	pass	18.050147	176864904
##	taxi.start	12.824204	161153177
##	gas	12.293727	90890057
##	volkswagen	8.215332	67562264
##	toyota	7.168431	68684274
##	basic	13.222801	161034169
##	mobile	5.762668	68554905
##	internet	12.232467	229309545
##	gym	10.798512	116429371
##	tennis	7.342126	67981890
##	cinema	15.214146	373675312
##	preschool	13.981132	255669862
##	school	6.635243	147370148
##	jeans	10.400378	94035021
##		5.354704	72567600
##	nikes	9.145872	76575927
##	shoes	6.946215	98066776
##	0 0	15.391919	143578180
##	expensive	14.552249	110945941
##	usa	7.668275	121307359

rf.class

i. ticket and cinema are most important predictors

```
# test accuracy with Random Forest
pred.rf<-predict(rf.class, newdata=test)

RF_test_mse = mean((test$salary - pred.rf)^2)

cat("Random Forest Test MSE:", RF_test_mse)

## Random Forest Test MSE: 673278.9

Part F: Conclusion

i.

cat("Recursive Binary Test MSE:", recursive_binary_test_mse, "\n", "Pruned Test MSE:", pruned_tree_test_mse, "\n", "Random Forest Test MSE:", RF_test_mse)

## Recursive Binary Test MSE: 844078.3

## Pruned Test MSE: 844078.3

## Random Forest Test MSE: 673278.9</pre>
```