

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 314 712 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 28.05.2003 Bulletin 2003/22
- (21) Application number: 02708696.6
- (22) Date of filing: 27.03.2002

- (51) Int CI.7: **C07C 65/24**, C07C 65/40, C07C 69/157, C07C 69/94, C07C 235/64, C07C 255/24, C07C 255/63, C07C 317/40, C07D 295/18, C07D 215/08, C07D 233/02, C07D 213/30, C07D 213/75, C07D 211/16, C07D 231/12, C07D 239/47
- (86) International application number: PCT/JP02/03017
- (87) International publication number: WO 02/076918 (03.10.2002 Gazette 2002/40)
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE TR
- (30) Priority: 27.03.2001 JP 2001091003
- (71) Applicants:
 - Dailchi Suntory Pharma Co., Ltd. Tokyo (JP)
 - Dailchi Suntory Biomedical Research Limited Mishima-gun, Osaka 618-8503 (JP)

- (72) Inventors:
 - SUZUKI, Kenji
 Osaka-shi, Osaka 538-0042 (JP)
 - NUNOKAWA, Youichi Toyonaka-shi, Osaka 560-0045 (JP)
 - OGOU, Naohisa Ibaraki-shi, Osaka 567-0887 (JP)
- (74) Representative: Ford, Michael Frederick et al MEWBURN ELLIS York House 23 Kingsway London WC2B 6HP (GB)
- (54) NF-KAPPA-B INHIBITOR CONTAINING SUBSTITUTED BENZOIC ACID DERIVATIVE AS ACTIVE INGREDIENT
- (57) A novel NF-κB inhibitor represented by the following formula (I) is provided.

Description

FIELD OF INVENTION

5 [0001] The present invention relates to a novel substituted benzoic acid derivative and, more specifically, the present invention relates to a preventive or therapeutic agent for diseases caused by the activation of NF-κB, which is an NF-κB inhibitor containing a substituted benzoic acid derivative or a hydroquinone form or a pharmaceutically acceptable salt thereof, as an active ingredient.

BACKGROUND ART

40

[0002] NF- κ B is a protein that regulates the gene expression and is one of the so-called transcription factors. When normal cells are stimulated by an inflammatory cytokine such as interleukin-1 (IL-1) and TNF- α or by lipopolysaccharide, or ultraviolet rays, NF- κ B is activated and migrates from the cytosol into the nucleus to bind to its specific nucleotide sequences on the genome DNA and thereby participate in the expression of various genes (see, T.S. Blackwell and J.W. Christman, Am. J. Respir. Cell. Mol. Biol., 17, 3-9 (1997)).

[0003] Among the genes of which the expression is under the control of NF-κB, many genes participate in an immunoinflammatory reaction, such as inflammatory cytokines (e.g., IL-1, IL-6, IL-8, TNF-α), cell adhesion molecules (e.g., ICAM-1, VCAM-1, ELAM-1) and inducible NO-synthase (iNOS) (see, T. Collins, M.A. Read, A.S. Neish, M.Z. Whitley, D. Thanos and T. Maniatis, Faseb. J.,899-909 (1995)). Furthermore, the inflammatory cytokine bound to its receptor is known to transduce a signal for activating NF-κB through various pathways and this is considered to make the inflammation worse. As such, in an inflammation, the activation of NF-κB is understood to be a cause or an exacerbation factor of a disease (see, P.A. Baeuerle and V.R. Baichwal, Adv. Immunol., 65, 111-137 (1997)).

[0004] In recent years, it has also been reported that HIV, HTLV-1, CMV and adenovirus activate NF-κB in host cells (see, B.J. Dezube, A.B. Pardee, L.A. Beckett, C.M. Ahlers, L. Ecto, J. Allen-Ryan, Z.A. Anisowicz, R. Sager and C.S. Crumpacker, J. Acquir. Immune Defic. Syndr., 5, 1099-1104 (1992); G. Nabel and D. Baltimore, Nature 326, 711-713 (1987); F. Fazely, B.J. Dezube, J. Allen-Ryan, A.B. Pardee and R.M. Ruprecht, Blood, 77, 1653-1656 (1991); and E. Munoz and A. Israel, Immunobiology, 193, 128-136 (1995)) and this activation of NF-κB is considered to participate in the self replication or increase of virus in the infected host cell.

[0005] Accordingly, the expression and induction of the inflammatory cytokines, the cell adhesion molecules gene and the viruses can be prevented altogether by inhibiting the activation of NF-κB and the NF-κB activation inhibitor is thought to be promising as a therapeutic agent for diseases directly or indirectly caused by the activation of NF-κB, particularly various inflammatory diseases and autoimmune diseases, or as a immunosuppressant or as a therapeutic agent for viral diseases.

[0006] At present, many antiinflammatory drugs are clinically used for the purpose of treating osteoarthritis, lumbago, rheumatoid arthritis and the like, however, there has been not found an effective for inhibiting the production of various inflammatory cytokines or the expression of cell adhesion molecules. NSAIDs (non-steroidal anti-inflammatory drugs), which are very often used, inhibit cyclooxygenase in the metabolic pathway of arachidonic acid cascade and thereby inhibit the production of prostaglendins, however, in general, they do not directly inhibit the production of cytokines. Steroids inhibit the production of a plurality of cytokines but these are known to bring about grave side effects such as undesired hormone activity, aggravation of infectious diseases, onset of peptic ulcers, and central effect and therefore are not amenable to a long-term administration.

[0007] It has also been reported in recent years that antiinframmatory drugs at high doses suppress the activation of NF-κB. (see, N. Auphan, J.A. DiDonato, C. Rosette, A. Helmberg and M. Karin, Science, 270, 286-290 (1995); R. E. Shackelford, P.B. Alford, Y. Xue, S.F. Thai, D.O. Adams and S. Pizzo, Mol. Phamacol., 52, 421-429 (1997); and V. Bitko, A. Velazquez, L. Yang, Y.C. Yang and S. Barik, Virology. 232, 369-378 (1997)). For example, benzoic acid derivatives such as salicylic acid and aspirin have been reported to inhibit the activation of NF-κB (see, Science, 265, 956-959 (1994)), however, insufficient efficacy and side effects due to various pharmacological actions have been pointed out as problems.

[0008] Accordingly, development of medicines capable of more specifically inhibiting the activation of NF-κB and having higher safety is required and many researchers are making investigations for NF-κB activation inhibitors.

[0009] As the NF-κB activation inhibitors, there have been recently proposed, for example, isocarbazole derivatives (see, Japanese Unexamined Patent Publication (Kokai) Nos. 8-319238 and 2000-169479), isoquinoline derivatives

(see, Kokai Nos. 10-87491 and 11-180873), benzoquinone derivatives (see, Kokai Nos. 7-291859 and 11-266872), β-lactam derivatives (see, Kokai No. 11-71278), lignan derivatives (see, Kokai No. 10-175861), benzylidene derivatives (see, PCT/JP98/04774), pyrimidine-5-carboxamide derivatives (see, WO97/09315 and WO97/09325), cyclopentabenzofuran derivatives (see, WO00/08007), benzene derivatives (see, WO00/15603), pyrrolidine dithiocarbonate (PDTC) (see, Eur. J. Immunol., 29, 1890-1900 (1999)), 3-deazaadenosine (DZA) (see, J. Biol. Chem., 274, 27, 18981-18988)

(1999)) and 2,2'-bi-1H-pyrrole derivatives (see, J. Immunol., 162, 7102-7109 (1999)).

[0010] In many cases, the mechanisms of action inhibiting the activation are not clearly known, however, as for the substances considered to inhibit the activation by antioxidant effects or activities of inhibiting protein phosphorylation, the stability or the specificity seems to be a problem. Furthermore, at present, drugs having a enough potency to inhibit transcription factor NF-kB activation are not found.

[0011] On the other hand, Kokai No. 7-291859 discloses the following benzoquinone derivative (A) as an NF-κB activation inhibitor:

MeO Me

$$C = C - COOH$$
 $C = C - COOH$
 $C = C - COOH$
 $C = C - COOH$

[0012] Also, Kokai No. 11-266872 discloses a novel method for screening substances capable of inhibiting the activation of NF-κB and a substance capable of inhibiting the activation of NF-κB found by the method, the following benzoquinone derivative (B) was described:

[0013] However, these compounds are not sufficiently high in efficacy as NF-κB activation inhibitors. A substance having a stronger NF-κB inhibitory activity is required.

DISCLOSURE OF THE INVENTION

10

15

20

35

40

55

[0014] The present invention provides a preventive and therapeutic agent for diseases caused by the activation of NF-xB such as, for example, diseases caused by the excess production of various inflammation mediators or increase of viruses, by inhibiting the activation of NF-xB. More specifically, the present invention provides a preventive and therapeutic agent for diseases considered caused by the excess production of NO or TNF- α , for example, septic shock, osteoarthritis, rheumatold arthritis, cachexia, multiple organ failure, inflammatory bowel disease, malaria, acquired immune deficiency syndrome, human T-cell leukemia, meningitis, hepatitis, myocarditis, type II diabetes, multiple sclerosis, Behcet disease, systemic lupus erythematosus and ischemic heart disease, and the like.

[0015] As a result of extensive investigations on substances capable of inhibiting the activation of NF- κ B, the present inventors have found that novel substituted benzoic acid derivatives represented by formula (I), or its hydroquinone forms, or pharmaceutically acceptable salts thereof, strongly inhibit the activation of NF- κ B. The present invention has been accomplished based on this finding.

[0016] More specifically, the present invention provides novel substituted benzoic acid derivatives represented by the following formula (I):

$$R^1$$
 X (I)

(wherein

5

10

15

20

25

30

35

40

45

50

55

R¹ is the following formula (II):

 R^3 R^5 CH_2 (II)

or the following formula (III):

 R^3 R^4 CH_2 (III)

[wherein R³, R⁴ and R⁵ each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbons or an alkoxy group having from 1 to 6 carbons, and R⁹ and R¹⁰ each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbons or an acyl group having from 2 to 11 carbons);

R² represents a hydrogen atom, a lower alkyl group having from 1 to 6 carbons, which may be substituted, an aryl group having from 6 to 12 carbons, which may be substituted, a heteroaryl group having from 4 to 11 carbons, which may be substituted, an aralkyl group having from 7 to 14 carbons, which may be substituted, a heteroarylalkyl group having from 5 to 13 carbons, which may be substituted, or an acyl group having from 2 to 11 carbons; and

X represents a carboxyl group which may be esterified or amidated],

NF- κ B inhibitors comprising the novel substituted benzoic acid derivatives or its hydroquinone form or pharmaceutically acceptable salts thereof as active ingredients, and application thereof to a preventive or therapeutic agent for inflammatory diseases, autoimmune diseases and viral diseases, which are used as an inhibitor of gene expression of one or more substances selected from the group consisting of IL-1, TNF- α , IL-2, IL-6, IL-8, iNOS, granulocyte colony-stimulating factor, interferon- γ , ICAM-1, VCAM-1, ELAM-1, major histocompatibility system class II, β -2 microglobulin, immunoglobulin light chain, serum amyloid A, angiotensinogen, complement B, complement C4, c-myc, HIV, HTLV-1, SV-40, CMV and adenovirus.

[0017] The present invention also provides a preventive or therapeutic agent for diseases caused by the activation of NF-κB, comprising a novel substituted benzoic acid derivative represented by formula (I), or its hydroquinone form, or pharmaceutically acceptable salt thereof, as an active ingredient.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018]

Fig. 1 shows the results when a 7-week-old C3H/HeN female mouse was intraperitoneally administered with GalN/LPS and immediately thereafter, administered with the compound of Example 112, the liver was removed 60 minutes after the stimulation and the TNF- α mRNA levels (center in the Figure) and the IL-1 β mRNA levels (right in the Figure) in liver were measured, in addition 90 minutes after the stimulation, blood was collected from the heart and the TNF- α levels (left in the Figure) in plasma were also measured.

Fig. 2 shows the results when a 7-week-old C3H/HeN female mouse was intraperitoneally administered with GalN/LPS and, 10 minutes before this, administered with the compound of Example 112, the liver was removed 60 minutes after the stimulation and the TNF-α mRNA levels were measured (right in the Figure) and, 90 minutes after the stimulation, blood was collected from the heart and the TNF-α levels (left in the Figure) in plasma were

also measured.

5

10

15

20

30

35

40

45

50

Fig. 3 shows the results when a 7-week-old C3H/HeN female mouse was intraperitoneally administered with GalN/LPS and, 10 minutes before this, administered with the compound of Example 157, the liver was removed 60 minutes after the stimulation and the TNF- α mRNA levels were measured (right in the Figure) and, 90 minutes after the stimulation, blood was collected from the heart and the TNF- α levels (left in the Figure) in plasma were also measured.

Fig. 4 shows the foot edema ratio when carrageenin was subcutaneously administered to the foot pat of the right hind leg of rat and immediately thereafter, 100 mg/kg of the compound of Example 112 or Example 157 was orally administered or 10 mg/kg of indomethacin as a positive control was also orally administered. The foot edma ratio was calculated according to the formula: (volume of foot after administration of carrageenin-volume of foot before administration)/volume of foot before administration × 100, and shown by the average of foot edma ratio +/-SE.

MODE FOR CARRYING OUT THE INVENTION

[0019] When the substituted benzoic acid derivative, as an active ingredient of the present invention, has a benzoquinone ring within the molecule, a corresponding hydroquinone form can be easily obtained by the reduction. Accordingly, in the present invention, a hydroquinone form resulting from the reduction of a benzoquinone ring of a substituted benzoic acid derivative as an active ingredient of the present invention can also be used as an active ingredient of the present invention. The "hydroquinone form" means a compound that is formed by converting an oxo at the 1-position and/or the 4-position of the benzoquinone ring of the benzoquinone derivative of the present invention to a hydroxy group chemically with a catalyst etc., or biochemically with an enzyme etc., or by converting with reduction in vivo and that still has an activity equivalent to that of the benzoquinone derivative.

[0020] As for the pharmaceutically acceptable salt for use in the present invention, examples thereof include salts with an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and hydrobromic acid, an organic acid such as maleic acid, fumaric acid, tartaric acid, lactic acid, citric acid, acetic acid, methanesulfonic acid, p-toluenesulfonic acid, adipic acid, palmitic acid and tannic acid, an inorganic metal such as alkali metal (e.g., lithium, potassium) and alkali earth metal (e.g., calcium, magnesium), and a basic amino acid such as lysine.

[0021] In the formula, R1 represents the following formula (II):

$$R^3$$
 R^5
 CH_2
(II)

or the following formula (III):

$$R^3$$
 R^5
 R^4
 CH_2
 CH_2
 (III)

[0022] In the formulae, R³, R⁴ and R⁵ each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbons or an alkoxy group having from 1 to 6 carbons. Preferred examples of the alkyl group include a straight or branched saturated aliphatic hydrocarbon group having from 1 to 6 carbons, such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl and n-hexyl, a saturated alicyclic hydrocarbon

group such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, and a saturated alicyclic hydrocarbon group-aliphatic hydrocarbon group such as cyclopropylmethyl, cyclopropylethyl and cyclobutylmethyl. The alkoxy group means a group resulting from bonding of the above-described alkyl group to an oxygen atom and preferred examples of the alkoxy group include a straight or branched alkoxy group having from 1 to 6 carbons, such as methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy.

[0023] R⁹ and R¹⁰ each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbons or an acyl group having from 2 to 11 carbons. Preferred examples of the alkyl group include a straight or branched saturated aliphatic hydrocarbon group having from 1 to 6 carbons, such as methyl, ethyl, propyl, isopropyl, n-butyl, secbutyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl and n-hexyl, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, and a saturated alicyclic hydrocarbon group-aliphatic hydrocarbon group such as cyclopropylmethyl, cyclopropylethyl and cyclobutylmethyl. Preferred examples of the acyl group include an acetyl group, a propanoyl group, a butanoyl group, a cyclopropylcarbonyl group, a cyclopentylcarbonyl group, a cyclohexylcarbonyl group, a benzoyl group, a 2-pyridinecarbonyl group, a 3-pyridinecarbonyl group and a 4-pyridinecarbonyl group.

[0024] R² represents a hydrogen atom, a lower alkyl group having from 1 to 6 carbons, which may be substituted, an aryl group having from 6 to 12 carbons, which may be substituted, a heteroaryl group having from 4 to 11 carbons, which may be substituted, an aralkyl group having from 7 to 14 carbons, which may be substituted, a heteroarylalkyl group having from 5 to 13 carbons, which may be substituted, or an acyl group having from 2 to 11 carbons.

[0025] In the present invention, specific examples of the substituent for a group "which may be substituted" include an aryl group, a heteroaryl group, a hydroxy group, an alkoxy group, an acyloxy group, a carboxyl group, an alkoxy-carbonyl group, an aryloxycarbonyl group, a carbamoyl group which may be substituted, an amino group which may be substituted, a cyano group and a halogen atom.

[0026] Accordingly, preferred examples of the alkyl group include those described above and preferred examples of the substituted lower alkyl group having from 1 to 6 carbons include a hydroxymethyl group, an alkoxymethyl group, an aminomethyl group, a mono- or di-substituted aminomethyl group (e.g., N-methylaminomethyl, N,N-dimethylaminomethyl), a cyanomethyl group, a carboxymethyl group, a methoxycarbonylmethyl group, an ethoxycarbonylmethyl group and a carbamoylmethyl group.

[0027] Preferred examples of the anyl group having from 6 to 12 carbons, which may be substituted, include a phenyl group, a 4-methoxyphenyl group, a 3,4-dimethoxyphenyl group, a 3,4-dimethoxyphenyl group, a 3,4-f-trimethoxyphenyl group, a 4-trifluoromethylphenyl group, a 4-morpholinophenyl group, a 4-cyanophenyl group, a 4-chlorophenyl group, a 4-nitrophenyl group and a 1-naphthyl group.

[0028] Preferred examples of the heteroaryl group having from 4 to 11 carbons, which may be substituted, include a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, a 2-furanyl group, a 2-thienyl group, a 2-pyrimidinyl group, a 2-quinolyl group and a 3-isoquinolyl group.

[0029] Preferred examples of the aralkyl group having from 7 to 14 carbons, which may be substituted, include a benzyl group, a 4-nitrobenzyl group, a 3-nitrobenzyl group, a 4-methoxybenzyl group, a 3-methoxybenzyl group, a 4-chlorobenzyl group, a 2-phenethyl group and a 3-phenylpropyl group.

[0030] Preferred examples of the heteroarylalkyl group having from 5 to 13 carbons, which may be substituted, include a 4-pyridylmethyl group, a 2-pyridylmethyl group, a 2-(pyridin-4-yl)ethyl group, a 2-(pyridin-3-yl)ethyl group, a 2-quinolylmethyl group and a 3-isoquinolylmethyl group.

[0031] Preferred examples of the acyl group having from 2 to 11 carbons include a straight or branched alkylcarbonyl group having from 2 to 11 carbons, an arylcarbonyl group having from 7 to 11 carbons, which may be substituted, and a heteroarylcarbonyl group having from 4 to 10 carbons, which may be substituted. In the arylcarbonyl group, the aryl group which may be substituted indicates an aromatic hydrocarbon group such as phenyl, naphthyl and indenyl, and in the heteroarylcarbonyl group, the heteroaryl group which may be substituted indicates an aromatic heterocyclic group such as 2-pyridyl, 3-pyridyl and 2-pyrimidyl (in this case, the aromatic ring may be substituted by one or two substituent(s) selected from a lower alkyl group such as methyl, ethyl and propyl, an alkoxy group such as methoxy and ethoxy, a halogen atom such as chlorine atom, fluorine atom, and a carboxyl group which may be esterified or amidated). Preferred examples thereof include an acetyl group, a propanoyl group, a butanoyl group, a pentanoyl group, a benzoyl group, a p-chlorobenzoyl group, a nicotinoyl group, an isonicotinoyl group and a picolinoyl group.

[0032] R² is preferably a hydrogen atom, a methyl group, an isopropyl group, a phenyl group, a 3-methoxyphenyl group, a 3-pyridyl group, a 4-pyridyl group, a benzyl group, a 3-pyridylmethyl group, a 4-pyridylmethyl group, an acetyl group, a carboxymethyl group, a methoxycarbonylmethyl group or a tert-butoxycarbonylmethyl group.

[0033] X represents a carboxyl group which may be esterified or amidated. Preferred examples of the carboxyl group which may be esterified or amidated include a group -COOR⁶ (wherein R⁶ represents a hydrogen atom, an alkyl group having from 1 to 6 carbons, which may be substituted, or an aralkyl group having from 7 to 14 carbons, which may be substituted), a group -CONR⁷R⁸ (wherein R⁷ and R⁸ each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbons, which may be substituted, an aryl group having from 6 to 12 carbons, which may be

substituted, a heteroaryl group having from 4 to 11 carbons, which may be substituted, an aralkyl group having from 7 to 14 carbons, which may be substituted, or a heteroarylalkyl group having from 5 to 13 carbons, which may be substituted, or R⁷ and R⁸, together with the nitrogen atom to which they are attached, represent a heterocyclic ring which may further contain a nitrogen atom, an oxygen atom, and or a sulfur atom or may be condensed) and a group -CONR⁷R⁸ (wherein R⁷ and R⁸, together with nitrogen atom to which they are attached represent a 5- to 8-membered nitrogen-containing heterocyclic ring which may contain from 1 to 3 heteroatoms selected from the group consist of a nitrogen atom, an oxygen atom and a sulfur atom, in addition to the carbon atom and nitrogen atom which may be substituted, and the carbon atom or sulfur atom on the ring may be converted into an oxide form).

[0034] Specific preferred examples of the substituents R⁶, R⁷ and R⁸ in these functional groups include the following. Preferred examples of the alkyl group having from 1 to 6 carbons include a straight or branched saturated aliphatic hydrocarbon group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl and hexyl, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclobutyl, cyclopentyl and cyclopexyl, and a saturated alicyclic hydrocarbon group-aliphatic hydrocarbon group such as cyclopropylmethyl, cyclopropylethyl, cyclobutylmethyl and cyclopentylmethyl.

[0035] Preferred examples of the substituted alkyl group having from 1 to 6 carbons include an alkyl group substituted by a group selected from the group consisting of a) an aryl group such as phenyl and naphthyl (in this case, the aromatic ring may be substituted by one or two substituent(s) selected from an alkyl group such as methyl, ethyl and propyl, a halogen atom such as chlorine atom and fluorine atom, and a carboxyl group which may be esterified or amidated), b) a heteroaryl group such as 2-pyridyl, 3-pyridyl and 2-pyrimidinyl, c) a carboxyl group which may be esterified or amidated, d) a hydroxyl group, e) an alkoxy group, f) an amino group which may be substituted and g) a cyano group. Particularly preferred specific examples thereof include a carboxymethyl group, a methoxycarbonylmethyl group, a carboxyethyl group, a 2-hydroxyethyl group, a 3-hydroxypropyl group, a 4-hydroxybutyl group, a 2-(diethylamino)ethyl group, a cyanomethyl group and a cyanoethyl group.

20

30

[0036] Preferred examples of the aralkyl group having from 7 to 14 carbons, which may be substituted, include a benzyl group, a 4-nitrobenzyl group, a 3-nitrobenzyl group, a 4-methoxybenzyl group, a 3-methoxybenzyl group, a 4-chlorobenzyl group, a 2-phenethyl group and a 3-phenylpropyl group.

[0037] Preferred examples of the aryl group having from 6 to 12 carbons, which may be substituted, include an aromatic hydrocarbon group such as phenyl, naphthyl and indenyl. In this case, the aromatic ring may be substituted by one, two or three substituent(s) selected from an alkyl group which may be substituted, such as methyl, ethyl, propyl, trifluoromethyl and cyanomethyl, an alkoxy group which may be substituted, such as methoxy, isopropoxy and trifluoromethoxy, a hydroxyl group, a nitro group, an amino group which may be substituted, such as amino, N-methylamino, N,N-dimethylamino, morpholino and alkoxycarbamoyl, a trifluoromethanesulfonyl group, a heterocyclic ring such as imidazol-1-yl and 1H-pyrazol-3-yl, a halogen atom such as chlorine atom and fluorine atom, and a carboxyl group which may be esterified or amidated.

[0038] Preferred examples of the heteroaryl group having from 4 to 11 carbons, which may be substituted, include an aromatic heterocyclic group such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl and pyrimidin-4-yl. In this case, the aromatic heterocyclic ring may be substituted by one, two or three substituent(s) selected from an alkyl group which may be substituted, such as methyl, ethyl, propyl, trifluoromethyl and cyanomethyl, an alkoxy group which may be substituted, such as methoxy, ethoxy, isopropoxy and trifluoromethoxy, a hydroxyl group, a nitro group, an amino group which may be substituted, such as amino, N-methylamino, N,N-dimethylamino, morpholino and alkoxycarbamoyl, a trifluoromethanesulfonyl group, a heterocyclic ring such as imidazol-1-yl and 1H-pyrazol-3-yl, a halogen atom such as chlorine atom and fluorine atom, and a carboxyl group which may be esterified or amidated.

[0039] For example, in the case of an amidated carboxyl group, when in the group -CONR⁷R⁸, R⁷ and R⁸, together with the nitrogen atom to which they are attached, represent a heterocyclic ring which may further contain a nitrogen atom, an oxygen atom and/or a sulfur atom or may be condensed, preferred specific examples of the heterocyclic ring include a piperidino group, a pyrrolidino group, a morpholino group, a thiomorpholino group, a piperazino group and a homopiperazino group.

[0040] The carbon atom or sulfur atom on this ring may be converted into an oxide or the ring may have thereon one or two substituent(s) selected from an alkyl group such as methyl, ethyl and propyl, an aryl group which may be substituted, such as phenyl, 4-methoxyphenyl, 4-chlorophenyl and naphthyl, a heteroaryl group which may be substituted, such as 2-pyridyl, 3-pyridyl and 2-pyrimidyl, a carboxyl group, a carbamoyl group which may be substituted, such as carbamoyl and dimethylaminocarbamoyl, and an aralkyl group which may be substituted, such as benzyl, 4-chlorobenzyl, 2-pyridylmethyl and 3-pyridylmethyl.

[0041] Examples of the amino group which may be substituted include a group -NRaRb (wherein Ra and Rb each independently represents a hydrogen atom or a lower alkyl group having from 1 to 6 carbons, which may be substituted, or Ra and Rb, together with the nitrogen atom to which they are attached represent a heterocyclic ring which may further contain a nitrogen atom, an oxygen atom or a sulfur atom or may be condensed), a group-NHCORc (wherein Rc represents a hydrogen atom, a lower alkyl group having from 1 to 6 carbons, which may be substituted, or an aryl

group having from 6 to 12 carbons, which may be substituted), a group -NHCOCH₂NR^dR^e (wherein R^d and R^e each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbons, which may be substituted, or an aryl group having from 6 to 12 carbons, which may be substituted, or R^d and R^e, together with the nitrogen atom to which they are attached represent a heterocyclic ring which may further contain a nitrogen atom, an oxygen atom or a sulfur atom or may be condensed), a group -NHSO₂R^f (wherein R^f represents a lower alkyl group having from 1 to 6 carbons, which may be substituted, or an aryl group having from 6 to 12 carbons, which may be substituted), a group -NR9COOR^h (wherein R^g represents a hydrogen atom or a lower alkyl group having from 1 to 6 carbons, which may be substituted, or an aryl group having from 6 to 12 carbons, which may be substituted), a group -NHCONRⁱR^j (wherein Rⁱ and R^j each independently represents a hydrogen atom, a lower alkyl group having from 1 to 6 carbons, which may be substituted, or an aryl group having from 6 to 12 carbons, which may be substituted, or R^l and R^j, together with the nitrogen atom to which they are attached represent a heterocyclic ring which may further contain a nitrogen atom, an oxygen atom or a sulfur atom or may be condensed), and a group -NHC (=NH) NR^kR^l (wherein R^k and R^l each independently represents a hydrogen atom or a lower alkyl group having from 1 to 6 carbons, which may be substituted).

[0042] Preferred examples of the lower alkyl group having from 1 to 6 carbons, which may be substituted, include a straight or branched saturated aliphatic hydrocarbon group such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl and n-hexyl, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclopentyl and cyclopexyl, and a saturated alicyclic hydrocarbon group-aliphatic hydrocarbon group such as cyclopropylmethyl, cyclopropylethyl and cyclobutylmethyl.

[0043] Preferred examples of the aryl group having from 6 to 12 carbons, which may be substituted, include a phenyl group, a 4-methoxyphenyl group, a 3-methoxyphenyl group, a 2-methoxyphenyl group, a 3,4-dimethoxyphenyl group, a 4-trifluoromethylphenyl group, a 4-morpholinophenyl group, a 4-cyanophenyl group, a 4-chlorophenyl group, a 4-nitrophenyl group and a 1-naphthyl group.

[0044] In this case, specific preferred examples include an amino group, a methylamino group, an ethylamino group, an n-propylamino group, a dimethylamino group, a diethylamino group, a (2-hydroxyethyl)amino group, a (3-hydroxypropyl)amino group, a (4-hydroxybutyl)amino group, a di(2-hydroxyethyl)amino group, a (2-diethylaminoethyl)amino group, a (carboxymethyl)amino group, a di(carboxymethyl)amino group, an (ethoxycarbonylmethyl)amino group, a di (ethoxycarbonylmethyl)amino group, a benzylamino group, a benzyl(methyl)amino group, an acetylamino group, an n-propionylamino group, a (2-chloroacetyl)amino group, a (2-aminoacetyl)amino group, a (2-morpholinoacetyl)amino group, a (2-pyrrolidinoacetyl)amino group, a (2-piperazinoacetyl)amino group, a (2-isopropylaminoacetyl)amino group, a (2-cyclohexylaminoacetyl)amino group, a (2-phenylaminoacetyl)amino group, a benzoylamino group, a (4-methylbenzoyl)amino group, a (4-chlorobenzoyl)amino group, a (4-aminobenzoyl)amino group, a (methoxycarbonyl)amino group, a (tert-butoxycarbonyl)amino group, a (benzyloxycarbonyl)amino group, an (aminocarbonyl)amino group, a (dimethylaminocarbonyl)amino group, an (anilinocarbonyl)amino group, a methanesulfonylamino group, a benzenesulfonylamino group and a toluenesulfonylamino group. For example, in the group - NRaRb, when Ra and Rb, together with the nitrogen atom to which they are attached represent a heterocyclic ring which may further contain a nitrogen atom, an oxygen atom or a sulfur atom or may be condensed, preferred specific examples of the heterocyclic ring include a piperidino group, a pyrrolidino group, a morpholino group, a thiomorpholino group, a piperazino group, an N-methylpiperazino group, an N-phenylpiperazino group and a homopiperazino group.

[0045] Preferred examples of the heteroaryl group having from 4 to 11 carbons, which may be substituted, include a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, a 2-furanyl group, a 2-thienyl group, a 2-pyrimidinyl group, a 2-quinolyl group and a 3-isoquinolyl group.

[0046] Preferred examples of the aralkyl group having from 7 to 14 carbons, which may be substituted, include a benzyl group, a 4-nitrobenzyl group, a 3-nitrobenzyl group, a 4-methoxybenzyl group, a 3-methoxybenzyl group, a 4-chlorobenzyl group, a 2-phenethyl group and a 3-phenylpropyl group.

[0047] Preferred examples of the heteroarylalkyl group having from 5 to 13 carbons, which may be substituted, include a 4-pyridylmethyl group, a 3-pyridylmethyl group, a 2-pyridylmethyl group, a 2-(pyridin-4-yl)ethyl group, a 2-quinolylmethyl group and a 3-isoquinolylmethyl group.

[0048] Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

[0049] The compounds of the present invention are preferably compounds where in the following formula (I):

$$R^1$$
 X (I)

35

wherein R1 is the following formula (II)

15

$$R^3$$
 R^5
 R^4
 CH_2
 CH_2

(wherein R³ and R⁴ each represents a methyl group or a methoxy group and R⁵ represents a methyl group); R² represents a hydrogen atom, a methyl group, an isopropyl group, a phenyl group, a 3-methoxyphenyl group, a 3-pyridyl group, a 4-pyridyl group, a benzyl group, a 3-pyridylmethyl group, a 4-pyridylmethyl group, an acety group, a carboxymethyl group, a methoxycarbonylmethyl group or tert-butoxycarbonylmethyl group; and X represents a carboxyl group which may be esterified or amidated).

[0050] Particularly preferred specific examples of the compounds include the following compounds:

```
4-(3.4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid,
           6-(3.4.5.6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid,
20
           5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid.
           3-(3.4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid,
           N-[4-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoyl]piperidine,
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoyl] piperidine,
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoyl] morpholine,
25
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoyl]-4-methoxyaniline,
           4-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoic acid,
           5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoic acid,
           3-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoic acid,
30
           4-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-acetoxybenzoic acid,
           5-(3.4.5.6-tetramethoxy-2-methylbenzyl)-2-acetoxybenzoic acid.
           3-(3.4.5.6-tetramethoxy-2-methylbenzyl)-2-acetoxybenzoic acid.
           methyl 5-(3.4.5.6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoate.
           5-(3.4.5.6-tetramethoxy-2-methylbenzyl)-2-methoxybenzoic acid.
           5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-isopropoxybenzoic acid,
35
           methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-phenoxybenzoate,
           methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-methoxyphenoxy)benzoate,
           methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-pyridylmethyloxy)benzoate,
           methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(4-pyridylmethyloxy)benzoate,
40
           methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(tert-butoxycarbonylmethyloxy)benzoate,
           5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-phenoxybenzoic acid,
           5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-methoxyphenoxy)benzoic acid,
           5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-pyridylmethyloxy)benzoic acid,
           5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(4-pyridylmethyloxy)benzoic acid,
45
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]piperidine,
           N-[5-(3.4.5.6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl] morpholine.
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-pyridylmethyloxy)benzoyl]piperidine,
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(4-pyridylmethyloxy)benzoyl]piperidine,
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-pyridyloxy)benzoyl]piperidine,
50
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(4-pyridyloxy)benzoyl]piperidine,
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(methoxycarbonylmethyloxy)benzoyl]piperidine,
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-tert-butoxycarbonylmethyloxy)benzoyl]piperidine,
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-pyridylmethyloxy)benzoyl]morpholine,
           N-[5-(3,4,5;6-tetramethoxy-2-methylbenzyl)-2-(4-(pyridylmethyloxy)benzoyl]morpholine,
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-pyridyloxy)benzoyl]morpholine,
55
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(4-pyridyloxy)benzoyl]morpholine,
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(methoxycarbonylmethyloxy)benzoyl] morpholine,
           N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(tert-butoxycarbonylmethyloxy)benzol]morpholine,
```

```
4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid,
           6-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid,
           5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid,
           3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid,
           4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid,
5
           5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid,
           3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid,
           4-(5.6-dimethoxy-3-methyl-1.4-benzoquinon-2-vl)methyl-2-hydroxybenzoic acid.
           5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoic acid,
10
           3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoic acid,
           5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzoic acid,
           5- (5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-isopropoxybenzoic acid,
           5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoic acid,
           5-(5, 6-dimethoxy-3-methyl-1, 4-benzoquinon-2-yl)methyl-2-(3-methoxyphenoxy)benzoic acid,
           5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid,
15
           5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridylmethyloxy)benzoic acid,
           N-[4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenonyl] piperidine,
           N-[4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]morpholine,
           N-[4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]-4-methoxyaniline,
           N-[6-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl )methyl-2-benzyloxybenzoyl]-4-methoxyaniline,
20
           N-[5-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]piperidine,
           N-[5-(5.6-dimethoxy-3-methyl-1.4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]morpholine,
           N-[5-(5,6-dimethoxy-3-methyl 4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]-4-methoxyaniline,
           N-[3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]piperidine.
           N-[3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]morpholine,
25
           N-[3-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]-4-methoxyaniline,
           N-[4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-methoxyaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]piperidine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]morpholine,
30
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-methoxyaniline,
           N-[3-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]piperidine,
           N-[3-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]morpholine,
           N-[3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-methoxyaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]piperidine.
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]morpholine,
35
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-methoxyaniline,
           N-[3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hycroxybenzoyl]piperidine,
           N-[3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]morpholine,
           N-[3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hycroxybenzoyl]-4-methoxyaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzoyl]piperidine,
40
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzoyl]morpholine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzoyl]-4-methoxyaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-isopropoxybenzoyl]piperidine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-isopropoxybenzoyl]morpholine,
45
           N-[5-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-isopropoxybenzoyl]-4-methoxyaniline,
           N-[5-(5.6-dimethoxy-3-methyl-1.4-benzoquinon-2-yl)methyl-2-phenoxybenzoyl]piperidine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoyl]morpholine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoyl]-4-methoxyaniline.
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-methoxyphenoxy)benzoyl]piperidine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-methoxyphenoxy)benzoyl]morpholine,
50
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-methoxyphenoxy)benzoyl]-4-methoxyaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]piperidine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]morpholine,
           N-[5-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-4-methoxyaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridylmethyloxy)benzoyl]piperidine,
55
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridylmethyloxy)benzoyl]morpholine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4 -benzoquinon-2-yl)methyl-2-(4-pyridylmethyloxy)benzoyl]-4-methoxyaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridyloxy)benzoyl]piperidine,
```

```
N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridyloxy)benzoyl]morpholine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridyloxy)benzoyl]piperidine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridyloxy)benzoyl]morpholine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(methoxycarbonylmethyloxy)benzoyl)piperidine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(methoxycarbonylmethyloxy)benzoyl]morpho-
5
     line.
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(tert-butoxycarbonylmethyloxy)benzoyl]piperid-
     ine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(tert-butoxycarbonylmethyloxy)benzoyl]morpho-
10
     line,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3,4-dimethoxyaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3,4,5-trimethoxyaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-acetylaniline,
           N- [5-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-chloroaniline,
15
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-morpholinoaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-cyanoaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-trifluoromethylaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3,5-bistrifluoromethylaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-3,4-dimethoxyaniline,
20
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-3,4,5-trimethoxyaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-acetylaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-chloroaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-morpholinoaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-cyanoaniline,
25
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-trifluoromethylaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-3,5-bistrifluoromethylaniline,
           N-[5-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-(S)-1-phenylethylamine,
           N-[5-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-vl) methyl-2-hydroxybenzoyl]-(R)-1-phenylethylamine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoyl]-1,2,3,4-tetrahydroquinoline,
30
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoyl ]-2-methylpiperidine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl)-1,2,3,4-tetrahydro-
     quinoline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-4-methylpiperidine,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-3,4,5-trimethoxy-
35
     aniline,
           N-[5-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-4-acetylaniline,
           methyl 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(tert-butoxycarbonylmethyloxy)benzoate,
           N-(6-chloropyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,
           N-(2-chloropyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,
40
           N-(2-chloropyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,
           N-(6-methoxypyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,
           N-(6-methoxypyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,
           N-[4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(trifluoromethylsulfonyl)ani-
     line,
45
           N-[4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-(trifluoromethylsulfonyl)ani-
     line,
           N-(pyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,
           N-(pyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,
           N-(pyridin-4-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,
50
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-fluoroaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-fluoroaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3-nitroaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-3-nitroaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-2-trifluoromethylaniline,
55
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-2-trifluoromethylaniline,
           ethyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-aminobenzoate,
           ethyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl ]-4-aminobenzoate,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl)-4-cyanomethylaniline,
```

```
N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-cyanomethylaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3-trifluoromethylaniline,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-3-trifluoromethylaniline,
           N-(5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-2-nitroaniline,
5
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-2-nitroaniline,
           N-(pyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,
           N-(pyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoguinon-2-yl)methyl-2-hydroxybenzamide,
           N-(pyridin-4-vl)-5-(5.6-dimethoxy-3-methyl-1.4-benzoquinon-2-vl)methyl-2-hydroxybenzamide.
           N-(pyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,
10
           N-cyclopropyl-5-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide.
           N-cyclopropyl-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-hydroxybenzamide,
           N-cyclohexyl-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzamide
           N-cyclohexyl-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide
           N-methyl-N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl-4-methoxyaniline,
15
           N-methyl-N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-methoxyaniline,
           N-[3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-trifluoromethylaniline,
           N-[3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl )methyl-2-hydroxybenzoyl]-4-trifluoromethylaniline,
           ethyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-4-aminoben-
     zoate,
20
           N-(pyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzamide,
           N-(pyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzamide,
           N-cyclopropyl-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzamide,
           N-cyclohexyl-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzamide,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-4-trifluoromethyl-
25
      aniline.
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(trifluoromethylsulfonyl)ani-
     line,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-(trifluoromethylsulfonyl)ani-
     line.
30
           N-[3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(trifluoromethylsulfonyl)ani-
      line.
           N- [3(5.6 -dimethoxy-3-methyl-1.4-benzoquinon-2-vl)methyl-2-acetoxybenzovl]-2.4-dichloroaniline,
           N-[3-(5,6-dimethoxy-3-methyl-1,4 -benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-2,4-dichloroaniline,
           N-[3-(5, 6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-morpholinoaniline,
35
           N-[3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-morpholinoaniline,
           N-(6-methoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,
           N-(6-methoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,
           N-(2,6-dimethoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,
           N-(2,6-dimethoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,
           N-(6-chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,
40
           N-(6-chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-hydroxybenzamide,\\
           N-(2-chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,
           N-(2-chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,
           tert-butyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-aminobenzoate,
45
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-aminobenzoic acid,
           N-[5-(5.6-dimethoxy-3-methyl-1.4-benzoquinon-2-v])methyl-2-hydroxybenzov]]-4-aminobenzoic acid,
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-nitroaniline.
           N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-2,6-dichloro-4-trifluoromethoxy-
     aniline,
50
           N-(3-tert-butoxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenza-
     mide,
           N-(3-hydroxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenza-
     mide,
           N-(3-hydroxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenza-
55
     mide,
           N-(5-tert-butoxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenza-
     mide.
```

N-(5-hydroxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenza-

mide,

5

10

15

20

25

30

35

40

45

50

N-(5-hydroxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide.

N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-tert-butoxycarbonylaminoaniline,

N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-tert-butoxycarbonylaminoaniline.

N-(pyricin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,

N-(pyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide (methanesul-fonate),

N-(pyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide (methanesulfonate),

N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-p-phenylenediamine,

N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-p-phenylenediamine (hydrochloride),

N-(pyridin-3-yl)-3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,
N-(pyridin-3-yl)-3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,
N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(imidazol-1-yl)aniline,
N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-(1H-pyrazol-3-yl)aniline,
N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(1H-pyrazol-3-yl)aniline,
N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-(1H-pyrazol-3-yl)aniline,
N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-(1H-pyrazol-3-yl)aniline,
N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-(1H-pyrazol-3-yl)aniline,

N-methyl-N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzoyl]-4-trifluoromethylaniline,

N-methyl-N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-hydroxybenzoyl]-4-trifluoromethyl-aniline,

t-butyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-aminobenzoate, N-(2-methoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybezamide, N-(2-methoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybezamide,

N-(2-dimethylaminopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybezamide, N-(2-dimethylaminopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybezamide,

N-[2-dimethylaminopyridin-3-yl]-5-[5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl]methyl-2-nydroxybezamic N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl]methyl-2-acetoxybenzoyl]-2.5-dimethoxyaniline.

N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-2,5-dimethoxyaniline,

N-(2-chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzamide,

N-(2-morpholinopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzamide,

N-(2-morpholinopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,

N-(6-morpholinopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzamide,

N-(6-morpholinopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,

N-(2-chloropyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzamide,

N-(2-chloropyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,

N-(6-methoxypyrimidin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzamide,

N-(6-methoxypyrimidin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-hydroxybenzamide,

N-(2-methoxypyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,

N-(2-methoxypyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,

5-(2,5-dimethoxy-3,4,6-trimethylbenzyl)-2-acetoxybenzoic acid,

5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid,

N-[5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-trifluoromethylaniline,

N-[5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl) methyl-2-hydroxybenzoyl]-4-trifluoromethylaniline,

N-(2-chloropyridin-3-yl)-5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide,

N-(2-chloropyridin-3-yl)-5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide,

N-(pyridin-4-yl)-5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide.

[0051] Examples of the production method of the compounds for practicing the present invention are described below. However, the production method of the compound as an active ingredient of the present invention is not limited thereto.

55 [General Production Method]

[0052] The substituted benzoic acid derivative represented by formula (I), which is used as an active ingredient of the present invention, can be produced using a synthetic intermediate which can be prepared according to the method

described in K. Suzuki, T. Tatsuoka, T. Ishihara, R. Ogino, T. Miyazaki, F. Satoh, S. Miyano and K. Sumoto, <u>Chem. Pharm. Bull.</u>, 45, 668-674 (1997), or a method based thereupon.

[0053] More specifically, an aldehyde compound represented by formula (IV):

$$R^3$$
 R^5
 R^4
 OR^{10}
 OR^{10}
 OR^{10}
 OR^{10}

(wherein R³ to R⁵, R⁹ and R¹⁰ are as defined above) is allowed to react with a Grignard reagent or an organic lithium reagent prepared from a bromophenol derivative to afford a compound represented by formula (V):

$$R^3$$
 R^4
 OR^9
 R^5
 OBn
 OR^16
 OH
 OB

(wherein R³ to R⁵, R9 and R¹0 are as defined above, and Bn represents a benzyl group, which may be substituted), and this compound is reduced with a reducing agent such as triethylsilane in the presence of catalyst such as Lewis acid or trimethylsilyl trifluoromethanesulfonate and then catalytically reduced by stirring it in a hydrogen stream in the presence of catalyst such as palladium-carbon to obtain a phenol derivative represented by formula (VI):

$$R^3$$
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5

(wherein R3 to R5, R9 and R10 are as defined above).

[0054] The obtained compound is stirred together with hexamethylenetetramine in a solvent such as trifluoroacetic acid at a temperature from room temperature to 100°C and then hydrolyzed to obtain a compound represented by formula (VIIa):

$$R^3$$
 R^5
 CHO
(VIIa)

(wherein R3 to R5, R9 and R10 are as defined above).

15

35

40

45

50

[0055] This compound is stirred together with an alkylating agent such as dimethyl sulfate or benzyl bromide at a temperature from room temperature to 50°C in the presence of a base such as potassium carbonate or sodium hydroxide in a solvent not participating in the reaction, such as acetone, to obtain a compound represented by formula (VIIb):

$$R^{3} \longrightarrow R^{5} \longrightarrow CHO$$

$$R^{4} \longrightarrow CHO$$

$$(VIIb)$$

(wherein R³ to R⁵, R⁹ and R¹⁰ are as defined above and R² represents a lower alkyl group having from 1 to 6 carbons or an aralkyl group having from 7 to 14 carbons).

[0056] The resulting compound is dissolved in a solvent not participating in the reaction, such as acetonitrile, and then stirred at a temperature of 0 to 50°C in the presence of an oxidizing agent such as sodium chlorite and aqueous hydrogen peroxide, in a mixed solution with a phosphate buffer solution to obtain a substituted benzoic acid derivative represented by formula (la):

$$R^{5}$$
 R^{5}
 R^{5}
 $COOH$
 $COOH$

(wherein R³ to R⁵, R⁹ and R¹⁰ are as defined above and R² represents a lower alkyl group having from 1 to 6 carbons or an aralkyl group having from 7 to 14 carbons).

[0057] This carboxylic acid compound is treated with diazomethane or (trimethylsilyl)diazomethane in a solvent not participating in the reaction, such as methanol, or condensed with an alcohol represented by formula (VIII):

(wherein R⁶ represents a lower alkyl group having from 1 to 6 carbons or an aralkyl group having from 7 to 14 carbons) or an amine represented by formula (IX):

$$H-N$$
 F^{ϵ}
(IX)

(wherein R⁷ and R⁸ are as defined above) using a condensing agent such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride or as an acid chloride form with oxalyl chloride or the like in the presence or absence of catalyst such as 4-dimethylaminopyridine in a solvent not participating in the reaction, such as methylene chloride, whereby a compound represented by formula (lb):

$$R^3$$
 R^5
 OR^9
 R^5
 OR^2
 OR^10
 OR^2
 OR^2
 OR^2
 OR^2

5

10

15

20

30

35

45

50

55

(wherein R² to R⁵, R⁹ and R¹⁰ are as defined above and X' represents an esterified or amidated carboxyl group) can be obtained.

25 [0058] The compound where in formula (lb), R² is a benzyl group which may be substituted is stirred at a temperature from room temperature to 50°C in a hydrogen stream in the presence of catalyst such as palladium-carbon, whereby a compound represented by formula (lc):

$$R^3$$
 OR^9
 R^5
 OH
 X'
 OR^{10}
 OH

(wherein R³ to R⁵, R⁹, R¹⁰ and X' are as defined above) can be obtained.
 [0059] The compound (Ic) is:

- 1) stirred together with an alkylating agent such as alkyl halide at a temperature of 0 to 100°C in the presence of a base such as potassium carbonate in a solvent not participating in the reaction, such as acetone,
- 2) stirred together with a boronic acid derivative represented by formula (X):

$$R^2 - B$$
OH (X)

(wherein R² represents an aryl group which may be substituted, or a heteroaryl group which may be substituted) in the presence of catalyst such as copper acetate in a solvent not participating in the reaction, such as methylene chloride or acetonitrile, or

3) stirred together with an alcohol represented by formula (XI):

(wherein R²' represents a lower alkyl group which may be substituted, an aralkyl group which may be substituted, or a heteroarylalkyl group which may be substituted) in the presence of, for example, triphenylphosphine (or tributylphosphine) and diethylazodicaroxylate (or N,N,N',N'-tetramethylazodicarboxylate) in a solvent not participating in the reaction, such as tetrahydrofuran, under the conditions of normal ^r Mitsunobu reactionsJ (or a modified method thereof), whereby a compound represented by formula (lb'):

$$R^3$$
 R^5
 QR^2
 QR^2
 QR^3
 QR^4
 QR^10
 QR^2
 QR^3
 QR^4
 QR^4

(wherein R^{2'} represents a lower alkyl group having from 1 to 6 carbons, which may be substituted, an aryl group having from 6 to 12 carbons, which may be substituted, a heteroaryl group having from 4 to 11 carbons, which may be substituted, an aralkyl group having from 7 to 14 carbons, which may be substituted, or a heteroarylalkyl group having from 5 to 13 carbons, which may be substituted, and R³ to R⁵, R⁹, R¹⁰ and X' are as defined above) can be obtained.

[0060] The compounds (Ia), (Ib) and (Ib') each is oxidized with an oxidizing agent such as ammonium cerium(IV) nitrate in a solvent not participating in the reaction, such as a mixed solvent of acetonitrile and water, whereby a benzoquinone derivative represented by formula (Id):

$$R^3$$
 R^5
 OR^2
 R^4
 OR^2
 OR^2
 OR^2

(wherein R2 to R5 and X are as defined above) can be obtained.

[0061] Also, the compound where in formula (la), R² is a benzyl group which may be substituted is stirred at a temperature from room temperature to 50°C in a hydrogen stream in the presence of catalyst such as palladium-carbon to remove benzyl group and then reacted with an acylating agent such as acetic anhydride or benzoic anhydride, whereby a compound represented by formula (le):

$$R^3$$
 R^5
 $COOH$
(Ie)

5

10

35

40

45

50

55

(wherein R³ to R⁵, R⁵ and R¹0 are as defined above and R¹¹ represents a lower alkyl group having from 1 to 6 carbons, which may be substituted, or an aryl group having from 6 to 12 carbons, which may be substituted) can be obtained. [0062] This compound is oxidized with an oxidizing agent such as ammonium cerium(IV) nitrate in a solvent not participating in the reaction, such as a mixed solvent of acetonitrile and water, whereby a carboxylic acid compound represented by formula (If):

(wherein R³ to R⁵ and R¹¹ are as defined above) can be obtained. Then, this carboxylic acid compound is condensed with an alcohol or an amine using a condensing agent in the presence or absence of catalyst such as 4-dimethylaminopyridine in a solvent not participating in the reaction, such as methylene chloride, whereby a compound represented by formula (Iq):

(wherein R^3 to R^5 and R^{11} are as defined above and X' represents an esterified or amidated carboxyl group) can be obtained.

[0063] Also, the compound of formula (Ic) is:

- reacted with an acid anhydride such as acetic anhydride in the presence of a base such as pyridine or triethylamine,
 - 2) condensed with a benzoic acid derivative which may be substituted or with a heteroaryl carboxylic acid derivative such as nicotinic acid or picolinic acid using a condensing agent in the presence or absence of catalyst such as 4-dimethylaminopyridine, or
 - 3) reacted with an acid chloride such as acetyl chloride or benzoyl chloride in the presence of a base such as pyridine or triethylamine, whereby a compound represented by formula (Ih):

$$R^{3} \longrightarrow R^{5} \longrightarrow C \longrightarrow R^{11}$$

$$R^{4} \longrightarrow C \longrightarrow C \longrightarrow R^{11}$$

5

15

20

25

30

35

40

45

50

55

(wherein R3 to R5, R9 and R10 are as defined above, R11' represents a lower alkyl group having from 1 to 6 carbons, which may be substituted, an aryl group having from 6 to 12 carbons, which may be substituted, or a heteroaryl group having from 4 to 11 carbons, which may be substituted, and X' represents an esterified or amidated carboxyl group) can be obtained.

[0064] This compound is oxidized with an oxidizing agent such as ammonium cenium(IV) nitrate in a solvent not participating in the reaction, such as a mixed solvent of acetonitrile and water, whereby a compound represented by formula (li):

(wherein R3 to R5, R111 and X' are as defined above) can be obtained.

[0065] The compounds (Ig) and (Ii) each is hydrolyzed by stirring it in the presence of a base such as sodium hydrogencarbonate in a solvent not participating in the reaction, such as a mixed solvent of methanol and water, whereby a compound represented by formula (lj):

$$R^3$$
 R^5
OH
 X'
 (Ii)

(wherein R3 to R5 and X' are as defined above) can be obtained.

[0066] The substances represented by formulae (Ia) to (Ij) of the present invention can inhibit the activation of NFκB and therefore, are useful as a preventive or therapeutic agent for diseases caused by the activation of NF-κB, for example, diseases caused by excess production of various inflammation mediators or viral propagation. More specifically, these substances are useful as a preventive or therapeutic agent for diseases considered to be caused by the excess production of NO or TNF-α, for example, septic shock, osteoarthritis, rheumatoid arthris, cachexia, multiple organ failure, inflammatory bowel disease, malaria, acquired immune deficiency syndrome, human T-cell leukemia, meningitis, hepatitis, myocarditis, type II diabetes, multiple sclerosis, Behcet disease, systemic lupus erythematosus and ischemic heart disease, and the like.

In the case of using the compound of the present invention as the above-described medical composition, the compound can be used orally in the preparation form of tablets, capsules, elixirs, microcapsules or the like, or parenterally in the preparation form of injections such as a solution with water or other pharmaceutically acceptable solution

or a suspension. For example, the medical composition can be produced by mixing the compound with physiologically acceptable carriers, flavoring agents, excipients, stabilizers and the like in a generally admitted form. Examples of the additive which can be mixed in tablets include a binder such as gelatin, swelling agents such as corn starch, excipients such as crystalline cellulose, and lubricants such as magnesium stearate. When formulated into capsules, the above-described composition may further contain liquid carriers. The aseptic composition for injection can also be formulated in the conventional manner.

[0067] Examples of the aqueous solution for injection include an isotonic solution containing glucose. An appropriate solubilizer such as polyethylene glycol may be used in combination. Also, buffer, stabilizers, preservatives, antioxidants, soothing agents and the like may be blended. The preparation thus obtained can be administered, for example, to mammals including humans. The dosage varies depending on the symptom and the like but in the case of oral administration, the daily dose for adult is generally from about 0.01 to 100 mg, preferably from about 0.1 to 50 mg, more preferably from about 1.0 to 25 mg. In the case of parenteral administration, for example, in the case of injection, the preparation is preferably administered by phleboclysis and the daily dose for adult is generally on the order from about 0.01 to 50 mg, preferably from about 0.01 to 25 mg, more preferably from about 0.1 to 10 mg.

[0068] The effect of NF-κB inhibition can be examined by directly or indirectly measuring the expression of genes regulated by the activation of NF-κB.

[0069] The effect of inhibiting the excess production of inflammatory proteins can be examined by directly or indirectly measuring the levels of inflammatory protein increasing in the culture medium or the body fluid when the cells or animals are stimulated with a cytokine such as IL-1 or TNF- α or with a lipopolysaccharide. As for the method of confirming the conventional anti-inflammatory effect, the effect of inhibiting the edema caused by carrageenin or dextran can be examined.

[0070] In these models, it is confirmed that the production of NO or TNF-α is effectively inhibited (see, M.C. Filion and N.C. Phillips, Br. J. Pharmacol., 122, 551-557 (1997); P.W. Tsao, T. Suzuki, R. Totsuka, T. Murata, T. Takagi, Y. Ohmachi, H. Fujiwara and I. Takata, Clin. immunol. Immunopathol., 83, 173-178 (1997); S. Cuzzocrea, B. Zingarelli, P. Hake, A.L. Salzman and C. Szabo, Free Radic. Biol. Med., 24, 450-459 (1998)).

[0071] For specific diseases, the efficacy as a therapeutic agent for sepsis can be evaluated by administering a lipopolysaccharide to an animal such as mice and measuring the effect of improving the survival retio or the levels of inflammatory cytokines in blood. The effect as a therapeutic agent for rheumatoid arthritis can be evaluated in animal models suffering from arthritis caused by adjuvant or collagen (see, Y. ligo et al., J. Immunol., 147, 4167 (1991)).

[0072] The effect as a therapeutic agent for intractable inflammation such as Crohn's disease, hepatitis and nephritis can be presumed using an animal model prepared by a known method or in accordance with the method (see, K. Nishikawa et al., J. Exp. Med., 180, 95 (1994); K. Kawasaki et al., J. Jmmunol., 150, 1074 (1992)). Furthermore, the effect as an organ transplant rejection inhibitor can be evaluated using, for example, GVH (Graft versus Host) disease or various organ transplant model animals (see. A.B. Cosimi et al., J. Immunol., 142, 2617 (1990); and M. Isobe et al., Science, 255, 1125 (1992)).

[0073] As such, the effect of the NF- κ B inhibitor as a therapeutic agent for diseases can be confirmed using various animal models which can be prepared by a known method or according to the method.

[0074] The present invention is described in more detail with reference to Examples and Experiments, however, it should be noted that the present invention is not limited by them in any way.

Reference Example 1

20

40

50

3-(Benzyloxy)bromobenzene

[0075] 3-Bromophenol (50 g, 0.289 mol) was dissolved in acetone (500 ml) and after adding thereto in sequence anhydrous potassium carbonate (80 g, 0.580 mmol) and benzyl bromide (59 g, 0.345 mol), the solution was refluxed under heating for 3 hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The obtained crude product was recrystallized (the recrystallization operation was performed twice using hexane as a solvent) to obtain the titled compound (45.0 g, 0.171 mol, 59%).

Reference Example 2

4-(Benzyloxy)bromobenzene

[0076] 4-Bromophenol (100 g, 0.587 mol) was dissolved in acetone (1,100 ml) and after adding thereto in sequence anhydrous potassium carbonate (159.53 g, 1.156 mmol) and benzyl bromide (103.78 g, 0.607 mol), the solution was refluxed under heating for 3 hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The obtained crude product was recrystallized (the recrystallization operation was performed using hexane

as a solvent) to obtain the titled compound (120.76 g, 0.459 mol, 79%).

Reference Example 3

5 2-(Benzyloxy)bromobenzene

[0077] 2-Bromophenol (50.0 g, 0.289 mol) was dissolved in acetone (400 ml) and after adding thereto in sequence anhydrous potassium carbonate (79.89 g, 0.578 mmol) and benzyl bromide (59.32 g, 0.347 mol), the solution was refluxed under heating for 3 hours. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (hexane: AcOEt = 95.5) to obtain the titled compound (30.0 g, 0.114 mol, 40%).

Reference Example 4

1-(3,4,5,6-Tetramethoxy-2-methylphenyl)-1-(3- benzyloxyphenyl) methanol

[0078] An anhydrous tetrahydrofuran (50 ml) solution of 3,4,5,6-tetramethoxy-2-methylbenzaldehyde (14 g, 0.058 mol) was added dropwise under ice cooling to a Grignard reagent (150 ml tetrahydrofuran solution) prepared from 3-(benzyloxy)bromobenzene (18.4 g, 0.070 mol) and magnesium (1.87 g, 0.077 mol), and the resulting solution was stirred for 2 hours. The reaction solution was poured in an aqueous solution of saturated ammonium chloride and extracted with ether. The extract was washed with saturated brine and then dried. The reaction solution was filtered, the filtrate was concentrated and the obtained crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 4:1) to obtain the titled compound (23.5 g, 0.055 mol, 95%).

25 Reference Example 5

30

35

40

50

1-(3,4,5,6-Tetramethoxy-2-methylphenyl-1-(4-benzyloxyphenyl)methanol

[0079] An anhydrous tetrahydrofuran (20 ml) solution of 3,4,5,6-tetramethoxy-2-methylbenzaldehyde (3.65 g, 0.015 mol) was added dropwise under ice cooling to a Grignard reagent (30 ml tetrahydrofuran solution) prepared from 4-(benzyloxy)bromobenzene (8.00 g, 0.030 mol) and magnesium (0.81 g, 0.033 mol), and the resulting solution was stirred for 2 hours. The reaction solution was poured in an aqueous solution of saturated ammonium chloride and extracted with ether. The extract was washed with saturated brine and then dried. The reaction solution was filtered, the filtrate was concentrated and the obtained crude product was purified by silica gel column chromatography (hexane : ethyl acetate = 4:1) to obtain the titled compound (5.93 g, 0.014 mol, 92%).

Reference Example 6

1-(3, 4,5, 6-Tetramethoxy-2-methylphenyl)-1-(2-benzyloxyphenyl)methanol

[0080] An anhydrous tetrahydrofuran (30 ml) solution of 3,4,5,6-tetramethoxy-2-methylbenzaldehyde (5.00 g, 0.021 mol) was added dropwise under ice cooling to a Grignard reagent (35 ml tetrahydrofuran solution) prepared from 2-(benzyloxy)bromobenzene (11.50 g, 0.044 mol) and magnesium (1.16 g, 0.048 mol), and the resulting solution was stirred for 2 hours. The reaction solution was poured in an aqueous solution of saturated ammonium chloride and extracted with ether. The extract was washed with saturated brine and then dried. The reaction solution was filtered, the filtrate was concentrated and the obtained crude product was purified by silica gel column chromatography (hexane: ethyl acetate = 4:1) to obtain the titled compound (8.80 g, 0.021 mol, 99%).

Reference Example 7

3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)phenol

[0081] A methylene chloride solution of the compound obtained in Reference Example 4 (25.3 g, 59.67 mmol) was added dropwise to a methylene chloride solution (1,000 ml) of triethylsilane (8.33 g, 71.64 mmol) and TMSOTf (2.65 g, 11.92 mmol) and the resulting solution was stirred at room temperature for 1 hour. The reaction solution was washed with water and then dried, and the solvent was removed by distillation. The residue was dissolved in ethanol (100 ml) and dioxane (150 ml) and then added to an ethanol suspension (50 ml) of 5% Pd-C (3 g) and thereafter, the solution was stirred at room temperature for 16 hours in a hydrogen stream. The reaction solution was filtered, the filtrate was

concentrated and the obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain the titled compound (18.4 g, 57.9 mmol, 97%).

Reference Example 8

5

15

20

4-(3,4,5.6-Tetramethoxy-2-methylbenzyl)phenol

[0082] A methylene chloride solution (70 ml) of the compound obtained in Reference Example 5 (3.00 g, 7.08 mmol) was added dropwise to a methylene chloride solution (80 ml) of triethylsilane (0.99 g, 8.52 mmol) and TMSOTf (0.31 g, 1.39 mmol) and the resulting solution was stirred at room temperature for 1 hour. The reaction solution was washed with water and then dried, and the solvent was removed by distillation. The residue was dissolved in ethanol (50 ml) and then added to an ethanol suspension (250 ml) of 5% Pd-C (500 mg) and thereafter, the solution was stirred at room temperature for 16 hours in a hydrogen stream. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 4:1) to obtain the titled compound (1.96 g, 6.15 mmol, 87%).

Reference Example 9

2-(3,4,5,6-Tetramethoxy-2-methylbenzyl)phenol

[0083] A methylene chloride solution (130 ml) of the compound obtained in Reference Example 6 (9.00 g, 21.23 mmol) was added dropwise to a methylene chloride solution (150 ml) of triethylsilane (2.95 g, 25.43 mmol) and TMSOTf (0.94 g, 4.23 mmol) and the resulting solution was stirred at room temperature for 1 hour. The reaction solution was washed with water and then dried, and the solvent was removed by distillation. The residue was dissolved in ethanol (50 ml) and then added to an ethanol suspension (350 ml) of 5% Pd-C (1.5 g) and thereafter, the solution was stirred at room temperature for 16 hours in a hydrogen stream. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 4:1) to obtain the titled compound (5.67 g, 17.83 mmol, 84%).

30 Reference Example 10

4-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzaldehyde (A) and 6-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzaldehyde (B)

35 [0084] 3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)phenol (11.17 g, 35.13 mmol) and hexamethylenetetramine (6.39 g, 0.046 mol) were dissolved in trifluoroacetic acid (100 ml) and the solution was stirred under heating at 80°C for 4 hours. After the completion of reaction, the solvent was removed by distillation and to the obtained residue, water (100 ml) was added. The resulting solution was stirred for 30 minutes and extracted with methylene chloride. The extract was washed with water and then dried, the solvent was removed by distillation and the obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 9:1) to obtain the titled compound A (3.35 g, 9.68 mmol, 28%) and compound B (2.03 g, 18%).

Reference Example 11

45 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzaldehyde

[0085] 4-(3,4,5,6-Tetramethoxy-2-methylbenzyl)phenol (14.5 g, 45.60 mmol) and hexamethylenetetramine (8.30 g, 59.29 mmol) were dissolved in trifluoroacetic acid (100 ml) and the solution was stirred under heating at 80°C for 4 hours. After the completion of reaction, the solvent was removed by distillation and to the obtained residue, water (100 ml) was added. The resulting solution was stirred for 30 minutes and extracted with methylene chloride. The extract was washed with water and then dried, the solvent was removed by distillation and the obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 4:1) to obtain the titled compound (12.20 g, 35.26 mmol, 78%).

55

Reference Example 12

3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzaldehyde

[0086] 2-(3,4,5,6-Tetramethoxy-2-methylbenzyl)phenol (8.64 g, 27.17 mmol) and hexamethylenetetramine (5.00 g, 35.67 mmol) were dissolved in trifluoroacetic acid (100 ml) and the solution was stirred under heating at 80°C for 4 hours. After the completion of reaction, the solvent was removed by distillation and to the obtained residue, water (100 ml) was added. The resulting solution was stirred for 30 minutes and extracted with methylene chloride. The extract was washed with water and then dried, the solvent was removed by distillation and the obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 4:1) to obtain the titled compound (2.50 g, 7.23 mmol, 27%).

Reference Example 13

4-(3,4,5,6-Tetramethoxv-2-methylbenzyl)-2-benzyloxybenzaldehyde

[0087] 4-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzaldehyde (743 mg, 2.14 mmol) was dissolved in acetone (50 ml) and after adding thereto anhydrous sodium carbonate (593 mg, 4.30 mmol) and benzyl bromide (477 mg, 2.79 mmol), the solution was stirred at room temperature for 16 hours. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain the titled compound (864 mg, 1.98 mmol, 93%).

Reference Example 14

25 6-(3,45,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzaldehyde

[0088] 6-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzaldehyde (187 mg, 0.54 mmol) was dissolved in acetone (20 ml) and after adding thereto anhydrous sodium carbonate (149 mg, 1.08 mmol) and benzyl bromide (120 mg, 0.70 mmol), the solution was stirred at room temperature for 16 hours. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain the titled compound (221 mg, 0.51 mmol, 94%).

Reference Example 15

35 5-(3,4,5,6-Tetramethoxy-2-methylbenyl)-2- benzyloxybenzaldehyde

[0089] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzaldehyde (0.100 g, 0.290 mol) was dissolved in acetone (10 ml) and after adding thereto anhydrous sodium carbonate (0.080 g, 0.579 mmol) and benzyl bromide (0.059 g, 0.347 mmol), the solution was refluxed under heating for 3 hours. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 4: 1) to obtain the titled compound (0.114 g, 0.261 mmol, 90%).

Reference Example 16

45 3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzaldehyde

[0090] 3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzaldehyde (1.16 g, 3.35 mol) was dissolved in acetone (5 ml) and after adding thereto anhydrous sodium carbonate (1.02 g, 7.38 mmol) and benzyl bromide (0.69 g, 4.02 mmol), the solution was refluxed under heating for 3 hours. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 2: 1) to obtain the titled compound (1.45 g, 3.32 mmol, 99%).

Reference Example 17

55 5-(3.4.5.6-Tetramethoxy-2-methylbenzyl)-2-methoxybenzaldehyde

[0091] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzaldehyde (0.500 g, 1.45 mmol) was dissolved in ethanol (15 ml) and after adding thereto in sequence sodium hydroxide (0.064 g, 1.59 mmol) and dimethyl sulfate (0.200

g, 1.59 mmol), the solution was stirred at room temperature for 12 hours. After the completion of reaction, the reaction solution was poured into a cold diluted hydrochloric acid solution and extracted with ethyl acetate. The extract was washed with water and then dried, the solvent was removed by distillation and the obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4:1) to obtain the titled compound (0.359 g, 0.998 mmol, 69%).

Reference Example 18

5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-isopropoxybenzaldehyde

[0092] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzaldehyde (0.500 g, 1.45 mmol) was dissolved in DMF (15 ml) and after adding thereto in sequence anhydrous potassium carbonate (0.359 g, 2.60 mmol) and isopropyl bromide (0.320 g, 2.60 mmol), the solution was refluxed under heating for 3 hours. The reaction mixture was filtered, the filtrate was concentrated and the obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4:1) to obtain the titled compound (0.530 g, 1.37 mmol, 94%).

Example 1

5

10

15

20

25

4- (3,4,5, 6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid

[0093] An aqueous solution (2 ml) of sodium dihydrogenphosphate (157 mg, 1.31 mmol), an aqueous solution (7 ml) of sodium chlorite (795 mg, 80%, 7.07 mmol) and aqueous hydrogen peroxide (0.5 ml, 30%) were added to an acetonitrile solution (5 ml) of 4-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzaldehyde (735 mg, 1.69 mmol) and the resulting solution was stirred at room temperature for 16 hours. The reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with an aqueous 10% sodium hydrosulfite ($Na_2S_2O_4$) solution and saturated brine, then dried and concentrated to obtain the titled compound (603 mg, 1.33 mmol, 79%).

Example 2

30 6-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2- benzyloxybenzoic acid

[0094] An aqueous solution (1 ml) of sodium dihydrogenphosphate (24 mg, 0.20 mmol), an aqueous solution (3.5 ml) of sodium chlorite (123 mg, 80%, 1.09 mmol) and aqueous hydrogen peroxide (0.08 ml, 30%) were added to an acetonitrile solution (2.5 ml) of 6-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzaldehyde (112 mg, 0.26 mmol) and the resulting solution was stirred at room temperature for 16 hours. The reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with an aqueous 10% sodium hydrosulfite ($Na_2S_2O_4$) solution and saturated brine, then dried and concentrated to obtain the titled compound (106 mg, 0.23 mmol, 91%).

40 Example 3

5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid

[0095] An aqueous solution (10 ml) of sodium dihydrogenphosphate,(12.0 g, 0.100 mol), an aqueous solution (30 ml) of sodium chlorite (5.19 g, 0.0577 mol) and aqueous hydrogen peroxide (1.701 ml, 30%) were added to an acetonitrile solution (30 ml) of 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzaldehyde (5.60 g, 0.0128 mol) and the resulting solution was stirred at room temperature for 5 hours. The reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with an aqueous saturated sodium hydrosulfite (Na₂S₂O₄) solution and saturated brine, then dried and concentrated to obtain the titled compound (5.20 g, 0.0115 mol, 90%).

Example 4

50

55

3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid

[0096] An aqueous solution (7 ml) of sodium dihydrogenphosphate (4.01 g, 33.42 mmol), an aqueous solution (7 ml) of sodium chlorite (1.74 g, 19.33 mmol) and aqueous hydrogen peroxide (1.89 ml, 30%) were added to an acetonitrile solution (12 ml) of 3-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzaldehyde (1.87 g, 4.28 mmol) and the

resulting solution was stirred at room temperature for 5 hours. The reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with an aqueous saturated sodium hydrosulfite ($Na_2S_2O_4$) solution and saturated brine, then dried and concentrated to obtain the titled compound (1.90 g, 4.20 mmol, 98%).

5 Example 5

N-[4-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoyl]piperidine

[0097] Piperidine (56 mg, 0.6576 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (169 mg, 0.8815 mmol) were added to a methylene chloride solution (20 ml) of 4-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid (173 mg, 0.3827 mmol) and the resulting solution was stirred at room temperature for 8 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by flash column chromatography (hexane: ethyl acetate = 2:1) to obtain the titled compound (129 mg, 0.2485 mmol, 65%).

Example 6

15

30

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoyl] piperidine

[0098] Piperidine (0.358 g, 4.20 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.21 g, 6.30 mmol) were added to a methylene chloride solution (50 ml) of 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid (0.95 g, 2.10 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (chloroform: methanol = 50:1) to obtain the titled compound (1.02 g, 2.09 mmol, 99%).

Example 7

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoyl] morpholine

[0099] Morpholine (0.451 g, 5.17 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.49 g, 7.76 mmol) were added to a methylene chloride solution (80 ml) of 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid (1.17 g, 2.59 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (chloroform: methanol = 50:1) to obtain the titled compound (1.27 g, 2.59 mmol, 99%).

Example 8

40 N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoyl-4-methoxyaniline]

[0100] p-Methoxyaniline (0.250 g, 2.03 mmol), triethylamine (0.206 g, 2.03 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.344 g, 2.03 mmol) were added to a methylene chloride solution (40 ml) of 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid (0.460 g, 1.02 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate: hexane = 1:2) and recrystallized from ether to obtain the titled compound (0.211 g, 0.379 mmol, 37%).

50 Example 9

4-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoic acid

[0101] 10% Pd-C (50 mg) was added to an ethanol (10 ml) and dioxane (10 ml) mixed solution of 4-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid (150 mg, 0.3554 mmol) and the resulting solution was stirred at room temperature for 16 hours in a hydrogen stream. The reaction solution was filtered, the filtrate was concentrated under reduced pressure, and the residue was washed with hexane to obtain the titled compound (97 mg, 0.2679 mmol, 75%).

Example 10

5-(3,4,5 6-Tetramethoxy-2-methylbenzyl-2-hydroxybenzoic acid

5 [0102] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid (159.53 g, 1.156 mmol) was dissolved in ethanol (20 ml) and after adding thereto an ethanol suspension (3 ml) of 5% Pd-C (0.250 g), the solution was stirred at room temperature for 16 hours in a hydrogen stream. The reaction solution was filtered, the filtrate was concentrated, and the obtained residue was recrystallized from ether to obtain the titled compound (0.630 g, 1.74 mmol, 79%).

10 Example 11

3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoic acid

[0103] 3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid (0.52 g, 1.15 mmol) was dissolved in ethanol (10 ml) and after adding thereto an ethanol suspension (3 ml) of 5% Pd-C (0.15 g), the solution was stirred at room temperature for 16 hours in a hydrogen stream. The reaction solution was filtered, the filtrate was concentrated, and the obtained residue was purified by silica gel column chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.41 g, 1.13 mmol, 98%).

20 Example 12

4-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-acetoxybenzoic acid

[0104] 4-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoic acid (97 mg, 0.2679 mmol) was dissolved in acetic anhydride (20 ml) and the resulting solution was refluxed under heating for 2 hours. The reaction solution was concentrated and the residue was purified by silica gel column chromatography (5% methanol-methylene chloride) to obtain the titled compound (65 mg, 0.1608 mmol, 60%).

Example 13

30 Exam

25

5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-acetoxybenzoic acid

[0105] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoic acid (1.30 g, 3.59 mmol) was dissolved in acetic anhydride (5 ml) and the resulting solution was stirred under heating at 65°C for 3 hours. The reaction solution was cooled and after adding thereto water (20 ml) and stirring at room temperature for 1 hour, extracted with ethyl acetate. The extract was washed with saturated brine and then dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.99 g, 2.45 mmol, 68%).

40 Example 14

45

3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-acetoxybenzoic acid

[0106] 3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoic acid (0.288 g, 0.795 mmol) was dissolved in acetic anhydride (5 ml) and the resulting solution was stirred under heating at 65°C for 3 hours. The reaction solution was cooled and after adding thereto water (20 ml) and stirring at room temperature for 1 hour, extracted with ethyl acetate. The extract was washed with saturated brine and then dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.245 g, 0.541 mmol, 68%).

Example 15

Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoate

55 [0107] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoic acid (0.800 g, 2.21 mmol) was dissolved in a mixed solvent of methanol (4 ml) and benzene (28 ml) and after adding thereto trimethylsilyldiazomethane (10% hexane solution) (0.303 g, 2.65 mmol), the solution was stirred at room temperature for 3 hours. The reaction solution was concentrated and the obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:

1) to obtain the titled compound (0.800 g, 2.13 mmol, 96%).

Example 16

5 5-(3,4,5, 6-Tetramethoxy-2-methylbenzyl-2-methoxybenzoic acid

[0108] An aqueous solution (5 ml) of sodium dihydrogenphosphate (1.06 g, 8.86 mmol), an aqueous solution (7 ml) of sodium chlorite (0.460 g, 5.11 mmol) and aqueous hydrogen peroxide (0.502 ml, 30%) were added to an acetonitrile solution (10 ml) of 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-methoxybenzaldehyde (0.409 g, 1.14 mmol) and the resulting solution was stirred at room temperature for 5 hours. The reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with an aqueous saturated sodium hydrosulfite ($Na_2S_2O_4$) solution and saturated brine, then dried and concentrated. The obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 2:1) to obtain the titled compound (0.260 g, 0.691 mmol, 61%).

15 Example 17

5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-isopropoxybenzoic acid

[0109] An aqueous solution (5 ml) of sodium dihydrogenphosphate (1.28 g, 10.65 mmol), an aqueous solution (7 ml) of sodium chlorite (0.533 g, 6.15 mmol) and aqueous hydrogen peroxide (0.18 ml, 30%) were added to an acetonitrile solution (5 ml) of 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-isopropoxybenzaldehyde (0.530 g, 1.37 mol) and the resulting solution was stirred at room temperature for 5 hours. The reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with an aqueous saturated sodium hydrosulfite (Na₂S₂O₄) solution and saturated brine, then dried and concentrated to obtain the titled compound (0.475 g, 1.18 mmol, 86%).

Example 18

Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-phenoxybenzoate

[0110] Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoate (0.510 g, 1.18 mmol) was dissolved in methylene chloride (12 ml) and after adding thereto in sequence copper acetate (0.215 g, 1.18 mmol), phenylboronic acid (0.289 g, 2.37 mmol), Molecular Sieves 4A (0.300 g), triethylamine (0.299 g, 2.96 mmol) and pyridine (0.234 g, 2.96 mmol), the solution was stirred at room temperature for 12 hours. The reaction solution was filtered and the filtrate was poured into water and then extracted with methylene chloride. The extract was washed with saturated brine, then dried and concentrated. The obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain the titled compound (0.220 g, 0.487 mmol, 41%).

Example 19

40 Methyl 5-(3,4.5,6-tetrcmethoxy-2-methylbenzyl)-2-(3-methoxyphenoxy)benzoate

[0111] Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoate (0.805 g, 2.14 mmol) was dissolved in methylene chloride (50 ml) and after adding thereto in sequence copper acetate (0.429 g, 2.36 mmol), 3-methoxyphenylboronic acid (0.651 g, 4.28 mmol), Molecular Sieves 4A (0.500 g), triethylamine (0.541 g, 5.35 mmol) and pyridine (0.423 g, 5.35 mmol), the solution was stirred at room temperature for 12 hours. The reaction solution was filtered and the filtrate was poured into water and then extracted with methylene chloride. The extract was washed with saturated brine, then dried and concentrated. The obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4:1) to obtain the titled compound (0.200 g, 0.414 mmol, 19%).

50 Example 20

Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-pyridylmethyloxy)benzoate

[0112] 3-Pyridinemethanol (0.084 g, 0.774 mmol), tri-n-butylphosphine (0.156 g, 0.774 mmol) and N,N,N',N'-tetramethylazodicarboxamide (0.133 g, 0.774 mmol) were added to a benzene solution of methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoate (0.194 g, 0.516 mmol) and the solution was stirred at room temperature for 12 hours. The reaction solution was poured into an aqueous 2N sodium hydroxide solution (15 ml) and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation.

The obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2:3) to obtain the titled compound (0.167 g, 0.358 mmol, 69%).

Example 21

5

15

25

40

Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(4-pyridylmethyloxy) benzoate

[0113] 4-Pyridinemethanol (0.232 g, 2.13 mmol), tri-n-butylphosphine (0.430 g, 2.13 mmol) and N,N,N',N'-tetramethylazodicarboxamide (0.366 g, 2.13 mmol) were added to a benzene solution of methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoate (0.500 g, 1.33 mmol) and the solution was stirred at room temperature for 12 hours. The reaction solution was poured into an aqueous 2N sodium hydroxide solution (15 ml) and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 2:3) to obtain the titled compound (0.610 g, 1.31 mmol, 98%).

Example 22

Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(tert-butoxycarbonylmethyloxy)benzoate

20 [0114] Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoate (1.09 g, 2.53 mmol) was dissolved in acetone (50 ml) and after adding thereto anhydrous sodium carbonate (0.420 g, 3.03 mmol) and tert-butyl bromoacetate (0.592 g, 3.03 mmol), the solution was refluxed under heating for 3 hours. The reaction solution was filtered, the filtrate was concentrated, and the obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 2:1) to obtain the titled compound (0.650 g, 1.33 mmol, 53%).

Example 23

5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-phenoxybenzoic acid

30 [0115] Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-phenoxybenzoate (0.220 g, 0.487 mmol) was dissolved in a mixed solution of an aqueous 1N NaOH solution (3 ml) and 1,4-dioxane (5 ml) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was diluted with water, rendered acidic with concentrated hydrochloric acid and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (hexane : ethyl acetate = 2:1) to obtain the titled compound (0.210 g, 0.479 mmol, 98%).

Example 24

5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(3-methoxyohenoxy)benzoic acid

[0116] Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-methoxyphenoxy)benzoate (0.200 g, 0.414 mmol) was dissolved in a mixed solution of an aqueous 1N NaOH solution (3 ml) and 1,4-dioxane (3 ml) and the resulting solution was stirred at room temperature for 6 hours. The reaction solution was diluted with water, rendered acidic with concentrated hydrochloric acid and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was recrystallized from ether to obtain the titled compound (0.190 g, 0.408 mmol, 99%).

Example 25

50 <u>5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(3-pyridylmethyloxy)benzoic acid</u>

[0117] Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(3-pyridylmethyloxy)benzoate (0.165 g, 0.353 mmol) was dissolved in a mixed solution of an aqueous 1N NaOH solution (3 ml) and 1,4-dioxane (3 ml) and the resulting solution was stirred at room temperature for 6 hours. The reaction solution was diluted with water, rendered acidic with concentrated hydrochloric acid and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 2:3) to obtain the titled compound (0.150 g, 0.331 mmol, 88%).

Example 26

5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(4-pyridylmethyloxy)benzoic acid

5 [0118] Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(4-pyridylmethyloxy)benzoate (0.600 g, 1.28 mmol) was dissolved in a mixed solution of an aqueous 1N NaOH solution (3 ml) and 1,4-dioxane (3 ml) and the resulting solution was stirred at room temperature for 6 hours. The reaction solution was diluted with water, rendered acidic with concentrated hydrochloric acid and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1:2) to obtain the titled compound (0.500 g, 1.10 mmol, 86%).

Example 27

15

20

25

30

35

40

45

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]piperidine

[0119] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoyl]piperidine (1.02 g, 2.09 mmol) was dissolved in ethanol (50 ml) and the resulting solution was added to an ethanol suspension (5 ml) of 5% Pd-C (0.200 g) and stirred at room temperature for 16 hours in a hydrogen stream. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was recrystallized from ether to obtain the titled compound (0.760 g, 1.95 mmol, 93%).

Example 28

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]morpholine

[0120] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoyl]morpholine (1.27 g, 2.59 mmol) was dissolved in ethanol (50 ml) and the resulting solution was added to an ethanol suspension (5 ml) of 5% Pd-C (0.200 g) and stirred at room temperature for 16 hours in a hydrogen stream. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was recrystallized from ether to obtain the titled compound (1.00 g, 2.49 mmol, 96%).

Example 29

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(3-pyridylmethyloxy)benzoyl]piperidine

[0121] 3-Pyridinemethanol (0.102 g, 0.932 mmol), triphenylphosphine (0.293 g, 1.12 mmol) and diethylazodicarbo-xylate (0.195 g, 1.12 mmol) were added to a benzene solution (30 ml) of N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]piperidine (0.320 g, 0.746 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into an aqueous 2N sodium hydroxide solution (15 ml) and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1.5:8.5) to obtain the titled compound (0.350 g, 0.673 mmol, 90%).

Example 30

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl-2-(4-pyridylmethyloxy)benzoyl]piperidine

[0122] 4-Pyridinemethanol (0.254 g, 2.33 mmol), triphenylphosphine (0.611 g, 2.33 mmol) and diethylazodicarboxylate (0.406 g, 2.33 mmol) were added to a benzene solution (30 ml) of N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl] piperidine (0.500 g, 1.17 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into an aqueous 2N sodium hydroxide solution (15 ml) and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 1:5) to obtain the titled compound (0.375 g, 0.721 mmol, 62%).

55

Example 31

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(3-pyridyloxy)benzoyl]piperidine

5 [0123] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]piperidine (0.150 g, 0.350 mmol) was dissolved in methylene chloride (3.5 ml) and after adding thereto in sequence copper acetate (0.064 g, 0.350 mmol), 3-pyridylboronic acid (0.114 g, 0.700 mmol), Molecular Sieves 4A (0.150 g), triethylamine (0.088 g, 0.874 mmol) and pyridine (0.069 g, 0.874 mmol), the solution was stirred at room temperature for 12 hours. The reaction solution was filtered and the filtrate was poured into water and then extracted with methylene chloride. The extract was washed with saturated brine, then dried and concentrated. The obtained residue was purified by silica gel column chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.063 g, 0.125 mmol, 36%).

Example 32

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(4-pyridyloxy)benzoyl]piperidine

[0124] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]piperidine (0.150 g, 0.350 mmol) was dissolved in methylene chloride (3.5 ml) and after adding thereto in sequence copper acetate (0.064 g, 0.350 mmol), 4-pyridylboronic acid (0.086 g, 0.700 mmol), Molecular Sieves 4A (0.150 g), triethylamine (0.088 g, 0.874 mmol) and pyridine (0.069 g, 0.874 mmol), the solution was stirred at room temperature for 12 hours. The reaction solution was filtered and the filtrate was poured into water and then extracted with methylene chloride. The extract was washed with saturated brine, then dried and concentrated. The obtained residue was purified by silica gel column chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.055 g, 0.109 mmol, 31%).

25 Example 33

N-[5- (3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(methoxycarbonylmethyloxy)benzoyl]piperidine

[0125] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl] piperidine (0.200 g, 0.465 mmol) was dissolved in acetone (30 ml) and after adding thereto anhydrous sodium carbonate (0.077 g, 0.558 mmol) and methyl bromoacetate (0.078 g, 0.512 mmol), the solution was refluxed under heating for 3 hours. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1:1) to obtain the titled compound (0.230 g, 0.459 mmol, 99%).

35 Example 34

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(tert-butoxycarbonylmethyloxy)benzoyl]piperidine

[0126] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]piperidine (0.200 g, 0.467 mmol) was dissolved in acetone (30 ml) and after adding thereto anhydrous sodium carbonate (0.078 g, 0.561 mmol) and tert-butyl bromoacetate (0.109 g, 0.561 mmol), the solution was refluxed under heating for 3 hours. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2:1) to obtain the titled compound (0.205 g, 0.378 mmol, 81%).

45 Example 35

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(3-pyridylmethyloxy)benzoyl]morpholine

[0127] 3-Pyridinemethanol (0.080 g, 0.731 mmol), triphenylphosphine (0.192 g, 0.731 mmol) and diethylazodicar-boxylate (0.127 g, 0.731 mmol) were added to a benzene solution of N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]morpholine (0.210 g, 0.487 mmol) and the solution was stirred at room temperature for 12 hours. The reaction solution was poured into an aqueous 2N sodium hydroxide solution (15 ml) and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1.5:8.5) to obtain the titled compound (0.195 g, 0.374 mmol, 77%).

Example 36

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(4-pyridylmethyloxy)benzoyl]morpholine

[0128] 4-Pyridinemethanol (0.253 g, 2.32 mmol), triphenylphosphine (0.609 g, 2.32 mmol) and ciethylazodicarboxylate (0.404 g, 2.32 mmol) were added to a benzene solution of N-[5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]morpholine (0.500 g, 1.16 mmol) and the solution was stirred at room temperature for 12 hours. The reaction solution was poured into an aqueous 2N sodium hydroxide solution (15 ml) and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 1:5) to obtain the titled compound (0.380 g, 0.728 mmol, 63%).

Example 37

5 N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl-2-(3-pyridyloxy)benzoyl]morpholine

[0129] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]morpholine (0.100 g, 0.232 mmol) was dissolved in methylene chloride (2.5 ml) and after adding thereto in sequence copper acetate (0.042 g, 0.232 mmol), 3-pyridylboronic acid (0.076 g, 0.464 mmol), Molecular Sieves 4A (0.100 g), triethylamine (0.059 g, 0.580 mmol) and pyridine (0.046 g, 0.580 mmol), the solution was stirred at room temperature for 12 hours. The reaction solution was filtered and the filtrate was poured into water and then extracted with methylene chloride. The extract was washed with saturated brine, then dried and concentrated. The obtained residue was purified by silica gel column chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.050 g, 0.0984 mmol, 42%).

25 Example 38

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(4-pyridyloxy)benzoyl]morpholine

[0130] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]morpholine (0.150 g, 0.348 mmol) was dissolved in methylene chloride (3.5 ml) and after adding thereto in sequence copper acetate (0.070 g, 0.383 mmol), 4-pyridylboronic acid (0.086 g, 0.696 mmol), Molecular Sieves 4A (0.150 g), triethylamine (0.088 g, 0.870 mmol) and pyridine (0.069 g, 0.870 mmol), the solution was stirred at room temperature for 12 hours. The reaction solution was filtered and the filtrate was poured into water and then extracted with methylene chloride. The extract was washed with saturated brine, then dried and concentrated. The obtained residue was purified by silica gel column chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.052 g, 0.102 mmol, 29%).

Example 39

40

50

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(methoxycarbonylmethyloxy)benzoyl]morpholine

[0131] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]morpholine (0.200 g, 0.465 mmol) was dissolved in acetone (30 ml) and after adding thereto anhydrous sodium carbonate (0.077 g, 0.558 mmol) and methyl bromoacetate (0.078 g, 0.512 mmol), the solution was refluxed under heating for 3 hours. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1:1) to obtain the titled compound (0.230 g, 0.398 mmol, 86%).

Example 40

N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(tert-butoxycarbonylmethyloxy)benzoyl]morpholine

[0132] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-hydroxybenzoyl]morpholine (0.200 g, 0.465 mmol) was dissolved in acetone (30 ml) and after adding thereto anhydrous sodium carbonate (0.077 g, 0.558 mmol) and tert-butyl bromoacetate (0.109 g, 0.558 mol), the solution was refluxed under heating for 3 hours. The reaction solution was filtered, the filtrate was concentrated and the obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2:1) to obtain the titled compound (0.198 g, 0.363 mmol, 78%).

Example 41

4-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid

[0133] 4-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid (312 mg, 0.6902 mmol) was dissolved in a mixed solution of acetonitrile (15 ml) and water (5 ml) and after adding thereto ammonium cerium(IV) nitrate (hereinafter simply referred to as "CAN") (946 mg, 1.7262 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was recrystallized from ether to obtain the titled compound (187 mg, 0.4431 mmol, 64%).

Example 42

15

25

30

35

40

45

6-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl methyl-2-benzyloxybenzoic acid

[0134] 6-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid (106 mg, 0.2345 mmol) was dissolved in a mixed solution of acetonitrile (6 ml) and water (2 ml) and after adding thereto CAN (321 mg, 0.5857 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was recrystallized from ether to obtain the titled compound (62 mg, 0.1469 mmol, 64%).

Example 43

5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid

[0135] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid (0.490 g, 1.08 mmol) was dissolved in a mixed solution of acetonitrile (15 ml) and water (3 ml) and after adding thereto CAN (1.48 g, 2.71 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was recrystallized from ether to obtain the titled compound (0.217 g, 0.514 mmol, 48%).

Example 44

3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid

[0136] 3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoic acid (0.55 g, 1.21 mmol) was dissolved in a mixed solution of acetonitrile (9 ml) and water (3 ml) and after adding thereto CAN (1.67 g, 3.03 mmol) at room temperature, the solution was stirred at room temperature for 2 hours. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was recrystallized from ether to obtain the titled compound (0.250 g, 0.592 mmol, 49%).

Example 45

4-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid

[0137] 4-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-acetoxybenzoic acid (60 mg, 0.1485 mmol) was dissolved in a mixed solution of acetonitrile (15 ml) and water (5 ml) and after adding thereto CAN (203 mg, 0.3704 mmol) at room temperature, the solution was stirred at room temperature for 3 hours. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was purified by preparative thin-layer chromatography (5% methanol-methylene chloride) to obtain the titled compound (38 mg, 0.1016 mmol, 68%).

Example 46

55 5-(5.6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid

[0138] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-acetoxybenzoic acid (0.200 g, 0.495 mmol) was dissolved in a mixed solution of acetonitrile (9 ml) and water (3 ml) and after adding thereto CAN (0.678 g, 1.24 mmol) at room

temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was recrystallized from ether to obtain the titled compound (0.160 g, 0.425 mmol, 86%).

5 Example 47

3-(5, 6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzoic acid

[0139] 3-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-acetoxybenzoic acid (0.300 g, 0.663 mmol) was dissolved in a mixed solution of acetonitrile (9 ml) and water (3 ml) and after adding thereto CAN (0.909 g, 1.658 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was recrystallized from ether to obtain the titled compound (0.248 g, 0.662 mmol, 99%).

5 Example 48

4-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoic acid

[0140] 4-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (22 mg, 0.059 mmol) was dissolved in methanol (2 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (12 mg, 0.0361 mmol, 61%).

Example 49

30

40

50

5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoic acid

[0141] 5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.150 g, 0.401 mmol) was dissolved in methanol (2 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.055 g, 0.166 mmol, 42%).

Example 50

3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoic acid

[0142] 3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.036 g, 0.0963 mmol) was dissolved in methanol (2 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (2 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 9:1) and then recrystallized from diisopropyl ether to obtain the titled compound (0.010 g, 0.0301 mmol, 31%).

Example 51

5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzoic acid

[0143] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-methoxybenzoic acid (0.257 g, 0.684 mmol) was dissolved in a mixed solution of acetonitrile (9 ml) and water (3 ml) and after adding thereto CAN (0.937 g, 1.71 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distil-

lation. The residue was recrystallized from ether to obtain the titled compound (0.237 g, 0.683 mmol, 99%).

Example 52

5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-isopropoxybenzoic acid

[0144] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-isopropoxybenzoic acid (0.472 g, 1.17 mmol) was dissolved in a mixed solution of acetonitrile (9 ml) and water (3 ml) and after adding thereto CAN (1.60 g, 2.92 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was recrystallized from ether to obtain the titled compound (0.364 g, 0.972 mmol, 83%).

Example 53

5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoic acid

[0145] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-phenoxybenzoic acid (0.220 g, 0.502 mmol) was dissolved in a mixed solution of acetonitrile (12 ml) and water (4 ml) and after adding thereto CAN (0.688 g, 1.26 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was recrystallized from ether to obtain the titled compound (0.100 g, 0.245 mmol, 49%).

Example 54

20

30

25 5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-methoxyphenoxy)benzoic acid

[0146] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(3-methoxyphenoxy)benzoic acid (0.194 g, 0.408 mmol) was dissolved in a mixed solution of acetonitrile (9 ml) and water (3 ml) and after adding thereto CAN (0.638 g, 1.02 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was recrystallized from ether to obtain the titled compound (0.159 g, 0.365 mmol, 89%).

Example 55

5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid

[0147] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(3-pyridylmethyloxy)benzoic acid (0.100 g, 0.221 mmol) was dissolved in a mixed solution of acetonitrile (9 ml) and water (3 ml) and after adding thereto CAN (0.303 g, 0.552 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (chloroform: methanol = 1:2) and then recrystallized from ether to obtain the titled compound (0.071 g, 0.168 mmol, 76%).

Example 56

5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridylmethyloxy) benzoic acid

[0148] 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(4-pyridylmethyloxy)benzoic acid (0.425 g, 0.938 mmol) was dissolved in a mixed solution of acetonitrile (18 ml) and water (6 ml) and after adding thereto CAN (1.29 g, 2.35 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (chloroform: methanol = 9:1) and then recrystallized from ether to obtain the titled compound (0.376 g, 0.868 mmol, 93%).

55

45

Example 57

N-[4-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]piperidine

[0149] N-[4-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-benzyloxybenzoyl]piperidine (129 mg, 0.2485 mmol) was dissolved in a mixed solution of acetonitrile (15 ml) and water (5 ml) and after adding thereto CAN (341 mg, 0.6222 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was purified by flash column chromatography (hexane : ethyl acetate = 2:1) to obtain the titled compound (85 mg, 0.1738 mmol, 70%).

Example 58

15

20

25

35

N-[4-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]morpholine

[0150] Morpholine (19 mg, 0.2183 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (55 mg, 0.2869 mmol) were added to a methylene chloride solution (10 ml) of 4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid (60 mg, 0.1421 mmol) and the resulting solution was stirred at room temperature for 16 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:2) to obtain the titled compound (55 mg, 0.1120 mmol, 79%).

Example 59

N-[4-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]-4-methoxyaniline

[0151] p-Methoxyaniline (26 mg, 0.2113 mmol), triethylamine (29 mg, 0.2871 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (48 mg, 0.2840 mmol) were added to a methylene chloride solution (10 ml) of 4-(5,6-dimethoxy-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid (60 mg, 0.1421 mmol) and the resulting solution was stirred at room temperature for 3 hours. The reaction solution was poured into ice water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:1) to obtain the titled compound (55 mg, 0.1143 mmol, 73%).

Example 60

N-[6-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]-4-methoxyaniline

40 [0152] p-Methoxyaniline (13 mg, 0.1056 mmol), triethylamine (15 mg, 0.1485 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (24 mg, 0.1420 mmol) were added to a methylene chloride solution (3 ml) of 6-(5,6-dimethoxy-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid (29 mg, 0.0687 mmol) and the resulting solution was stirred at room temperature for 3 hours. The reaction solution was poured into ice water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:1) to obtain the titled compound (20 mg, 0.0687 mmol, 55%).

Example 61

50 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]piperidine

[0153] Piperidine (0.025 g, 0.296 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.068 g, 0.355 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-benzyloxybenzoic acid (0.050 g, 0.118 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.025 g, 0.0511 mmol, 43%).

Example 62

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)-methyl-2-benzyloxybenzoyl]morpholine

5 [0154] Oxalyl chloride (0.150 g, 1.18 mmol) was added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid (0.050 g, 0.118 mmol) and the resulting solution was stirred at room temperature for 1 hour. The reaction solution was concentrated and after adding a THF solution of morpholine (0.036 g, 0.414 mmol) to the obtained residue, the solution was stirred at room temperature for 30 minutes. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:1) to obtain the titled compound (0.058 g, 0.117 mmol, 99%).

Example 63

15 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]-4-methoxyaniline

[0155] p-Methoxyaniline (0.038 g, 0.308 mmol), triethylamine (0.031 g, 0.308 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.052 g, 0.308 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid (0.065 g, 0.154 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:2) to obtain the titled compound (0.066 g, 0.125 mmol, 81%).

25 Example 64

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]piperidine

[0156] Piperidine (0.038 g, 0.45 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.129 g, 0.68 mmol) were added to a methylene chloride solution (10 ml) of 3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-benzyloxybenzoic acid (0.095 g, 0.23 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:1) to obtain the titled compound (0.060 g, 0.12 mmol, 55%).

Example 65

40

50

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]morpholine

[0157] Morpholine (0.033 g, 0.38 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.109 g, 0.57 mmol) were added to a methylene chloride solution (10 ml) of 3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-benzyloxybenzoic acid (0.080 g, 0.19 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:1) to obtain the titled compound (0.057 g, 0.12 mmol, 61%).

Example 66

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoyl]-4-methoxyaniline

[0158] p-Methoxyaniline (0.035 g, 0.28 mmol), triethylamine (0.029 g, 0.28 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.048 g, 0.28 mmol) were added to a methylene chloride solution (5 ml) of 3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-benzyloxybenzoic acid (0.060 g, 0.14 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:1) to obtain the titled com-

pound (0.038 g, 0.072 mmol, 51%).

Example 67

5 N-[4-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-methoxyaniline

[0159] p-Methoxyaniline (4.3 mg, 0.0349 mmol), triethylamine (5.9 mg, 0.0584 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (9.9 mg, 0.0585 mmol) were added to a methylene chloride solution (3 ml) of 4-(5,6-dimethoxy-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (11 mg, 0.0294 mmol) and the resulting solution was stirred at room temperature for 6 hours. The reaction solution was poured into ice water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:3) to obtain the titled compound (6 mg, 0.0125 mmol, 43%).

15 Example 68

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl] piperidine

[0160] Piperidine (0.027 g, 0.321 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.062 g, 0.321 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzoic acid (0.040 g, 0.107 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.008 g, 0.0181 mmol, 17%).

Example 69

25

30

40

45

50

N-{5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]morpholine

[0161] Morpholine (0.034 g, 0.385 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.074 g, 0.385 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.048 g, 0.128 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.017 g, 0.0383 mmol, 30%).

Example 70

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-methoxyaniline

[0162] p-Methoxyaniline (0.046 g, 0.374 mmol), triethylamine (0.038 g, 0.374 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.063 g, 0.374 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.070 g, 0.187 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.043 g, 0.0897 mmol, 48%).

Example 71

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl] piperidine

[0163] Piperidine (0.133 g, 1.56 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.448 g, 2.34 mmol) were added to a methylene chloride solution (30 ml) of 3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzoic acid (0.293 g, 0.783 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was

washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 30:1) to obtain the titled compound (0.152 g, 0.345 mmol, 44%).

5 Example 72

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]morpholine

[0164] Morpholine (0.176 g, 2.02 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.581 g, 3.03 mmol) were added to a methylene chloride solution (50 ml) of 3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzoic acid (0.380 g, 1.01 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 30:1) to obtain the titled compound (0.175 g, 0.394 mmol, 39%).

Example 73

20

30

45

50

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-methoxyaniline

[0165] p-Methoxyaniline (0.104 g, 0.845 mmol), triethylamine (0.085 g, 0.845 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.143 g, 0.845 mmol) were added to a methylene chloride solution (20 ml) of 3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.158 g, 0.422 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 30:1) and then recrystallized from isopropyl ether to obtain the titled compound (0.066 g, 0.138 mmol, 33%).

Example 74

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]piperidine

[0166] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]piperidine (0.040 g, 0.0906 mmol) was dissolved in methanol (2 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.025 g, 0.0626 mmol, 69%).

40 Example 75

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]morpholine

[0167] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]morpholine (0.045 g, 0.101 mmol) was dissolved in methanol (2 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.020 g, 0.0498 mmol, 49%).

Example 76

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-methoxyaniline

[0168] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-methoxyaniline (0.073 g, 0.152 mmol) was dissolved in methanol (2 ml) and after adding thereto an aqueous saturated sodium hydrogencar-bonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and

then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:1) and then recrystallized from ether to obtain the titled compound (0.043 q, 0.0983 mmol, 65%).

5 Example 77

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl] piperidine

[0169] N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]piperidine (0.050 g, 0.113 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.017 g, 0.0426 mmol, 38%).

Example 78

15

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-hydroxybenzoyl] morpholine

20. [0170] N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]morpholine (0.050 g, 0.113 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.022 g, 0.0542 mmol, 48%).

Example 79

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-methoxyaniline

[0171] N-3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-methoxyaniline (0.040 g, 0.0834 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 30:1) to obtain the titled compound (0.025 g, 0.0528 mmol, 69%).

Example 80

40 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzoyl]piperidine

[0172] Piperidine (0.027 g, 0.318 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.091 g, 0.477 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-methoxybenzoic acid (0.055 g, 0.159 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate) to obtain the titled compound (0.0175 g, 0.0423 mmol, 27%).

Example 81

45

50

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzoyl]morpholine

[0173] Morpholine (0.025 g, 0.289 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.083 g, 0.434 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzoic acid (0.050 g, 0.145 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate) to obtain the titled compound (0.033 g, 0.0794 mmol, 55%).

Example 82

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzoyl]-4-methoxyaniline

[0174] p-Methoxyaniline (0.043 g, 0.347 mmol), triethylamine (0.035 g, 0.347 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.059 g, 0.347 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzoic acid (0.060 g, 0.173 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate) to obtain the titled compound (0.044 g, 0.0975 mmol, 56%).

Example 83

15 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-isopropoxybenzoyl]piperidine

[0175] Piperidine (0.030 g, 0.353 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.101 g, 0.529 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-isopropoxybenzoic acid (0.066 g, 0.176 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:6) to obtain the titled compound (0.030 g, 0.068 mmol, 39%).

25 Example 84

20

30

35

40

45

50

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-isopropoxybenzoyl]morpholine

[0176] Morpholine (0.030 g, 0.348 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.100 g, 0.521 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-isopropoxybenzoic acid (0.065 g, 0.174 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:6) to obtain the titled compound (0.026 g, 0.0586 mmol, 34%).

Example 85

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl]methyl-2-isopropoxybenzoyl]-4-methoxyaniline

[0177] p-Methoxyaniline (0.077 g, 0.626 mmol), triethylamine (0.063 g, 0.626 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.106 g, 0.626 mmol) were added to a methylene chloride solution (10 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-isopropoxybenzoic acid (0.117 g, 0.313 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:2) to obtain the titled compound (0.095 g, 0.198 mmol, 63%).

Example 86

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoyl]piperidine

[0178] Piperidine (0.054 g, 0.634 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.182 g, 0.950 mmol) were added to a methylene chloride solution (10 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-phenoxybenzoic acid (0.129 g, 0.317 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:1) to obtain the titled compound (0.060 g, 0.126).

mmol, 40%).

Example 87

5 N- [5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoyl]morpholine

[0179] Morpholine (0.030 g, 0.343 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.099 g, 0.515 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoic acid (0.070 g, 0.172 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.040 g, 0.0839 mmol, 49%).

15 Example 88

20

25

30

35

40

50

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoyl]-4-methoxyaniline

[0180] p-Methoxyaniline (0.045 g, 0.368 mmol), triethylamine (0.037 g, 0.368 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.062 g, 0.368 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoic acid (0.075 g, 0.184 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.040 g, 0.0780 mmol, 42%).

Example 89

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-methoxyphenoxy) benzonyl]piperidine

[0181] Piperidine (0.096 g, 1.128 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.324 g, 1.692 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-(3-methoxyphenoxy)benzoic acid (0.247 g, 0.564 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.165 g, 0.327 mmol, 58%).

Example 90

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-methoxyphenoxy)benzoyl]morpholine

[0182] Morpholine (0.106 g, 1.225 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.352 g, 1.838 mmol) were added to a methylene chloride solution (50 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-methoxyphenoxy)benzoic acid (0.250 g, 0.613 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.173 g, 0.341 mmol, 51%).

Example 91

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-methoxyphenoxy)benzoyl]-4-methoxyaniline

[0183] p-Methoxyaniline (0.056 g, 0.457 mmol), triethylamine (0.046 g, 0.457 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.077 g, 0.457 mmol) were added to a methylene chloride solution (10 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-methoxyphenoxy)benzoic acid (0.100 g, 0.228 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted

with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 2:3) to obtain the titled compound (0.058 g, 0.107 mmol, 47%).

5 Example 92

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]piperidine

[0184] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(3-pyridylmethyloxy)benzoyl]piperidine (0.380 g, 0.731 mmol) was dissolved in a mixed solution of acetonitrile (12 ml) and water (4 ml) and after adding thereto CAN (1.00 g, 1.83 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.222 g, 0.453 mmol, 62%).

Example 93

15

30

35

40

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)-methyl-2-(3-pyridylmethyloxy)benzoyl)morpholine

20 [0185] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl-2-(3-pyridylmethyloxy)benzoyl]morpholine (0.263 g, 0.506 mmol) was dissolved in a mixed solution of acetonitrile (12 ml) and water (4 ml) and after adding thereto CAN (0.693 g, 1.26 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.153 g, 0.311 mmol, 61%).

Example 94

N-(5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-4-methoxyaniline

[0186] p-Methoxyaniline (0.078 g, 0.639 mmol), triethylamine (0.066 g, 0.639 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.108 g, 0.639 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid (0.135 g, 0.318 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 9:1) and then recrystallized from ether to obtain the titled compound (0.040 g, 0.0756 mmol, 24%).

Example 95

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridylmethyloxy)benzoyl]piperidine

[0187] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(4-pyridylmethyloxy)benzoyl]piperidine (0.550 g, 1.06 mmol) was dissolved in a mixed solution of acetonitrile (15 ml) and water (5 ml) and after adding thereto CAN (1.45 g, 2.64 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.320 g, 0.652 mmol, 62%).

50 Example 96

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridylmethyloxy)benzoyl]morpholine

[0188] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(4-pyridylmethyloxy)benzoyl]morpholine (0.460 g, 0.885 mmol) was dissolved in a mixed solution of acetonitrile (15 ml) and water (5 ml) and after adding thereto CAN (1.21 g, 2.21 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (chloroform: methanol =

9:1) to obtain the titled compound (0.270 g, 0.548 mmol, 62%).

Example 97

5 N-[5'-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridylmethyloxy)benzoyl]-4-methoxyaniline

[0189] p-Methoxyaniline (0.078 g, 0.639 mmol), triethylamine (0.066 g, 0.639 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.108 g, 0.639 mmol) were added to a methylene chloride solution (10 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridylmethyloxy)benzoic acid (0.135 g, 0.318 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methano! = 9:1) and then recrystallized from ether to obtain the titled compound (0.054 g, 0.102 mmol, 32%).

15 Example 98

20

25

40

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridyloxy)benzoyl]piperidine

[0190] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(3-pyridyloxy)benzoyl]piperidine (0.050 g, 0.099 mmol) was dissolved in a mixed solution of acetonitrile (12 ml) and water (4 ml) and after adding thereto CAN (0.135 g, 0.247 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform : methanol = 9:1) to obtain the titled compound (0.025 g, 0.0525 mmol, 53%).

Example 99

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridyloxy)benzoyl]morpholine

30 [0191] N- 5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(3-pyridyloxy)benzoyl] morpholine (0.022 g, 0.0435 mmol) was dissolved in a mixed solution of acetonitrile (6 ml) and water (2 ml) and after adding thereto CAN (0.060 g, 0.109 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: meth-anol = 9:1) to obtain the titled compound (0.012 g, 0.0251 mmol, 58%).

Example 100

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridyloxy)benzoyl]piperidine

[0192] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(4-pyridyloxy)benzoyl]piperidine (0.021 g, 0.0415 mmol) was dissolved in a mixed solution of acetonitrile (6 ml) and water (2 ml) and after adding thereto CAN (0.057 g, 0.104 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.013 g, 0.580 mmol, 66%).

Example 101

50 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(4-pyridyloxy)benzoyl]morpholine

[0193] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(4-pyridyloxy)benzoyl]morpholine (0.042 g, 0.0827 mmol) was dissolved in a mixed solution of acetonitrile (9 ml) and water (3 ml) and after adding thereto CAN (0.113 g, 0.207 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate : methanol = 3:6:1) to obtain the titled compound (0.025 g, 0.0523 mmol, 63%).

Example 102

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(methoxycarbonylmethyloxy)benzoyl]piperidine

5 [0194] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(methoxycarbonylmethyloxy)benzoyl]piperidine (0.260 g, 0.520 mmol) was dissolved in a mixed solution of acetonitrile (12 ml) and water (4 ml) and after adding thereto CAN (0.713 g, 1.30 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:3) to obtain the titled compound (0.180 g, 0.382 mmol, 73%).

Example 103

15

35

40

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(methoxycarbonylmethyloxy)benzoyl]morpholine

[0195] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(methoxycarbonylmethyloxy)benzoyl]morpholine (0.240 g, 0.478 mmol) was dissolved in a mixed solution of acetonitrile (12 ml) and water (4 ml) and after adding thereto CAN (0.655 g, 1.20 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:3) to obtain the titled compound (0.180 g, 0.381 mmol, 80%).

Example 104

25 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(tert-butoxycarbonylmethyloxy)benzoyl]piperidine

[0196] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(tert-butoxycarbonylmethyloxy)benzoyl]piperidine (0.292 g, 0.538 mmol) was dissolved in a mixed solution of acetonitrile (12 ml) and water (4 ml) and after adding thereto CAN (0.737 g, 1.34 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 2:1) to obtain the titled compound (0.175 g, 0.341 mmol, 63%).

Example 105

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(tert-butoxycarbonylmethyloxy)benzoyl]morpholine

[0197] N-[5-(3,4,5,6-Tetramethoxy-2-methylbenzyl)-2-(tert-butoxycarbonylmethyloxy)benzoyl]morpholine (0.290 g, 0.533 mmol) was dissolved in a mixed solution of acetonitrile (12 ml) and water (4 ml) and after adding thereto CAN (0.731 g, 1.33 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 2:1) to obtain the titled compound (0.170 g, 0.330 mmol, 62%).

45 Example 106

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3,4,5-trimethoxyaniline

[0198] 3,4,5-Trimethoxyaniline (0.216 g, 1.18 mmol), triethylamine (0.119 g, 1.18 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.199 g, 1.18 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.109 g, 0.202 mmol, 38%).

Example 107

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3,4-dimethoxyaniline

[0199] 3,4-Dimethoxyaniline (0.246 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethyl-imidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation.

The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:2) to obtain the titled compound (0.110 g, 0.216 mmol, 40%).

Example 108

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-acetylaniline

[0200] 4-Acetylaniline (0.159 g, 1.18 mmol), triethylamine (0.119 g, 1.18 mmol) and 2-chloro-1,3-dimethylimidazo-linium chloride (0.199 g, 1.18 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 1:2) to obtain the titled compound (0.160 g, 0.326 mmol, 61%).

25 Example 109

20

35

40

50

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-chloroaniline

[0201] 4-Chloroaniline (0.150 g, 1.18 mmol), triethylamine (0.119 g, 1.18 mmol) and 2-chloro-1,3-dimethylimidazo-linium chloride (0.199 g, 1.18 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:2) to obtain the titled compound (0.115 g, 0.238 mmol, 44%).

Example 110

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzoyl]-4-morpholinoaniline and the substitution of the

[0202] 4-Morpholinoaniline (0.286 g, 1.60 mmol), triethylamine (0.162 g, 1.60 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.60 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:2) and then recrystallized from ether to obtain the titled compound (0.077 g, 0.144 mmol, 27%).

Example 111

$\underline{\text{N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)}} \\ \text{methyl-2-acetoxybenzoyl]-4-cyanoaniline}$

[0203] 4-Cyanoaniline (0.189 g, 1.60 mmol), triethylamine (0.162 g, 1.60 mmol) and 2-chloro-1,3-dimethylimidazo-linium chloride (0.271 g, 1.60 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:2) to obtain the titled com-

pound (0.141 g, 0.297 mmol, 56%).

Example 112

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-trifluoromethylaniline

[0204] 4-Trifluoromethylaniline (0.258 g, 1.60 mmol), triethylamine (0.162 g, 1.60 mmol) and 2-chloro-1,3-dimethyl-imidazolinium chloride (0.271 g, 1.60 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:2) to obtain the titled compound (0.123 g, 0.238 mmol, 44%).

15 Example 113

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3,5-bistrifluoromethylaniline

[0205] 3,5-Bistrifluoromethylaniline (0.368 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:2) and then recrystallized from ether to obtain the titled compound (0.196 g, 0.335 mmol, 63%).

Example 114

25

30

35

40

50

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-3,4,5-trimethoxyaniline

[0206] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3,4,5-trimethoxyaniline (0.100 g, 0.185 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:2) and then recrystallized from ether to obtain the titled compound (0.050 g, 0.101 mmol, 55%).

Example 115

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-3,4-dimethoxyaniline and the sum of the sum

[0207] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3,4-dimethoxyaniline (0.100 g, 0.196 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:2) and then recrystallized from ether to obtain the titled compound (0.032 g, 0.0685 mmol, 35%).

Example 116

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-acetylaniline

[0208] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-acetylaniline (0.100 g, 0.204 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and

then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:2) and then recrystallized from ether to obtain the titled compound (0.060 q, 0.133 mmol, 65%).

5 Example 117

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-chloroaniline

[0209] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl)-4-chloroaniline (0.072 g, 0.149 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:2) and then recrystallized from ether to obtain the titled compound (0.046 g, 0.104 mmol, 70%).

Example 118

20

30

35

40

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-morpholinoaniline

[0210] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-morpholinoaniline (0.060 g, 0.110 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:2) and then recrystallized from ether to obtain the titled compound (0.037 g, 0.0752 mmol, 68%).

Example 119

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-cyanoaniline

[0211] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-cyanoaniline (0.100 g, 0.211 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:2) and then recrystallized from ether to obtain the titled compound (0.063 g, 0.146 mmol, 69%).

Example 120

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-trifluoromethylaniline

45 [0212] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-trifluoromethylaniline (0.087 g, 0.168 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:2) and then recrystallized from ether to obtain the titled compound (0.056 g, 0.118 mmol, 70%).

Example 121

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-3,5-bistrifluoromethylaniline

[0213] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3,5-bistrifluoromethylaniline (0.130 g, 0.222 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydro-

gencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:2) and then recrystallized from ether to obtain the titled compound (0.050 g, 0.0921 mmol, 41%).

Example 122

10

20

30

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-(S)-1-phenylethylamine

[0214] (S)-Phenethylamine (0.130 g, 1.07 mmol), dimethylaminopyridine (0.013 g, 0.107 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.308 g, 1.60 mmol) were added to a methylene chloride solution (30 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 2:1) and then recrystallized from ether to obtain the titled compound (0.135 g, 0.283 mmol, 53%).

Example 123

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-(R)-1-phenylethylamine

[0215] (R)-Phenethylamine (0.162 g, 1.337 mmol), dimethylaminopyridine (0.016 g, 0.134 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.384 g, 2.005 mmol) were added to a methylene chloride solution (30 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.250 g, 0.668 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 2:1) and then recrystallized from ether to obtain the titled compound (0.167 g, 0.350 mmol, 52%).

Example 124

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoyl]-1,2,3,4-tetrahydroquinoline

[0216] 1,2,3,4-Tetrahydroquinoline (0.049 g, 0.367 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.105 g, 0.550 mmol) were added to a methylene chloride solution (10 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoic acid (0.075 g, 0.183 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 9:1) to obtain the titled compound (0.050 g, 0.0955 mmol, 52%).

Example 125

45 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoyl]-2-methylpiperidine

[0217] 2-Methylpiperidine (0.039 g, 0.391 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.112 g, 0.587 mmol) were added to a methylene chloride solution (5 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-phenoxybenzoic acid (0.080 g, 0.196 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 9:1) to obtain the titled compound (0.045 g, 0.0919 mmol, 47%).

55

Example 126

5

15

25

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-1,2,3,4-tetrahydroquinoline

[0218] 1,2,3,4-Tetrahydroquinoline (0.126 g, 0.946 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.272 g, 1.42 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid (0.200 g, 0.473 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 9:1) to obtain the titled compound (0.100 g, 0.186 mmol, 39%).

Example 127

N-[5-(5,6-Dimethoxy-3-methyl-1 4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-4-methylpiperidine

[0219] 4-Methylpiperidine (0.094 g, 0.946 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.272 g, 1.42 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid (0.200 g, 0.473 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 9:1) to obtain the titled compound (0.100 g, 0.198 mmol, 42%).

Example 128

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-3,4,5-trimethoxyaniline

[0220] 3,4,5-Trimethoxyaniline (0.260 g, 1.42 mmol), triethylamine (0.144 g, 1.42 mmol) and 2-chloro-1,3-dimethyl-imidazolinium chloride (0.240 g, 1.42 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid (0.200 g, 0.473 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation.
 The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.050 g, 0.085 mmol, 18%).

Example 129

40 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-4-acetylaniline

[0221] 4-Acetylaniline (0.128 g, 0.946 mmol), triethylamine (0.096 g, 0.946 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.160 g, 0.946 mmol) were added to a methylene chloride solution (20 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid (0.200 g, 0.473 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.080 g, 0.148 mmol, 31%).

50 Example 130

Methyl 5-(5,6-Dimethoxy-3-methyl-1.4-benzoquinon-2-yl)methyl-2-(tert-butoxycarbonylmethyloxy)benzoate

[0222] Methyl 5-(3,4,5,6-tetramethoxy-2-methylbenzyl)-2-(tert-butoxycarbonylmethyloxy)benzoate (1.25 g, 2.56 mmol) was dissolved in a mixed solution of acetonitrile (30 ml) and water (10 ml) and after adding thereto CAN (3.50 g, 6.39 mmol) at room temperature, the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (hexane: ethyl

acetate = 2:1) to obtain the titled compound (0.800 g, 1.74 mmol, 68%).

Example 131

5 N-(6-Chloropyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0223] 2-Chloro-1,3-dimethylimidazolinium chloride (61 mg, 0.361 mmol), 5-amino-2-chloropyridine (46 mg, 0.361 mmol) and triethylamine (36 mg, 0.361 mmol) were added to a methylene chloride solution (3 ml) of 4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (45 mg, 0.120 mmol) in a nitrogen atmosphere and the resulting solution was stirred all the night through. The reaction solution was diluted with chloroform, then washed with water and dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain the titled compound (10 mg, 0.021 mmol, 17%).

Example 132

10

15

20

N-(2-Chloropyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzamide

[0224] 2-Chloro-1,3-dimethylimidazolinium chloride (89 mg, 0.524 mmol), 3-amino-2-chloropyridine (51 mg, 0.390 mmol) and triethylamine (53 mg, 0.524 mmol) were added to a methylene chloride solution (10 ml) of 4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (98 mg, 0.120 mmol) in a nitrogen atmosphere and the resulting solution was stirred all the night through. The reaction solution was diluted with chloroform, then washed with water and dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain the titled compound (29 mg, 0.060 mmol, 23%).

25 Example 133

N-(2-Chloropyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0225] An aqueous saturated sodium hydrogencarbonate solution (1 ml) was added to a methanol solution (2 ml) of N-(2-chloropyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (20 mg, 0.0412 mmol) and the resulting solution was stirred for 1 hour. The reaction solution was extracted with ethyl acetate, then washed with water and dried, and the solvent was removed by distillation. The residue was recrystallized from an ethyl acetate-diisopropyl ether mixed solvent to obtain the titled compound (18 mg, 0.0406 mmol, 99%).

35 Example 134

N-(6-Methoxypyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0226] 2-Chloro-1,3-dimethylimidazolinium chloride (93 mg, 0.555 mmol), 5-amino-2-methoxypyridine (55 mg, 0.440 mmol) and triethylamine (44 mg, 0.440 mmol) were added to a methylene chloride solution (5 ml) of 4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (137 mg, 0.366 mmol) in a nitrogen atmosphere and the resulting solution was stirred all the night through. The reaction solution was diluted with chloroform, then washed with water and dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3:1) to obtain the titled compound (31 mg, 0.065 mmol, 18%).

Example 135

N-(6-Methoxypyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

50 [0227] An aqueous saturated sodium hydrogencarbonate solution (4 ml) was added to a methanol solution (8 ml) of N-(6-methoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (48 mg, 0.100 mmol) and the resulting solution was stirred for 1 hour. The reaction solution was extracted with ethyl acetate, then washed with water and dried, and the solvent was removed by distillation. The residue was recrystallized from an ethyl acetate-diisopropyl ether mixed solvent to obtain the titled compound (29 mg, 0.066 mmol, 66%).

55

45

Example 136

N-[4-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(trifluoromethylsulfonyl)aniline

5 [0228] 2-Chloro-1,3-dimethylimidazolinium chloride (130 mg, 0.77 mmol), 4-(trifluoromethylsulfonyl)aniline (173 mg, 0.77 mmol) and triethylamine (78 mg, 0.77 mmol) were added to a methylene chloride solution (8 ml) of 4-[(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl)-2-acetoxybenzoic acid (240 mg, 0.64 mmol) in a nitrogen atmosphere and the resulting solution was stirred for 2 hours. The reaction solution was diluted with chloroform, then washed with water and dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography
10 (methylene chloride: methanol = 60:1) to obtain the titled compound (146 mg, 0.251 mmol, 39%).

Example 137

15

20

35

40

45

N-[4-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4- (trifluoromethylsulfonyl)aniline

[0229] An aqueous saturated sodium hydrogencarbonate solution (7 ml) was added to a methanol solution (15 ml) of N-[4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(trifluoromethylsulfonyl)aniline (114 mg, 0.196 mmol) and the resulting solution was stirred for 1 hour. The reaction solution was extracted with ethyl acetate, then washed with water and dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4:1) to obtain the titled compound (35 mg, 0.065 mmol, 33%).

Example 138

25 N-(Pyridin-3-yl)-4-(5, 6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0230] 2-Chloro-1,3-dimethylimidazolinium chloride (39 mg, 0.23 mmol), 3-aminopyridine (21 mg, 0.23 mmol) and triethylamine (23 mg, 0.23 mmol) were added to a methylene chloride solution (5 ml) of 4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (57 mg, 0.152 mmol) in a nitrogen atmosphere and the resulting solution was stirred all the night through. The reaction solution was diluted with chloroform, then washed with water and dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (benzene: acetone = 3:1) to obtain the titled compound (12 mg, 0.027 mmol, 18%).

Example 139

N-(Pyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-hydroxybenzamide

[0231] An aqueous saturated sodium hydrogencarbonate solution (4 ml) was added to a methanol solution (10 ml) of N-(pyridin-3-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (55 mg, 0.122 mmol) and the resulting solution was stirred for 1 hour. The reaction solution was extracted with ethyl acetate, then washed with water and dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (benzene: acetone = 3:1) to obtain the titled compound (28 mg, 0.0686 mmol, 56%).

Example 140

N-(Pyridin-4-yl)-4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0232] 2-Chloro-1,3-dimethylimidazolinium chloride (43 mg, 0.257 mmol), 4-aminopyridine (24 mg, 0.257 mmol) and triethylamine (26 mg, 0.257 mmol) were added to a methylene chloride solution (5 ml) of 4-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzolc acid (64 mg, 0.171 mmol) in a nitrogen atmosphere and the resulting solution was stirred all the night through. The reaction solution was diluted with chloroform, then washed with water and dried, and the solvent was removed by distillation. Subsequently, an aqueous saturated sodium hydrogencarbonate solution (10 ml) was added to a methanol solution (4 ml) of the obtained residue and the resulting solution was stirred for 1 hour. The reaction solution was extracted with ethyl acetate, then washed with water and dried, and the solvent was removed by distillation. The residue was purified by silica gel column chromatography (methylene chloride : methanol = 30:1) to obtain the titled compound (5 mg, 0.012 mmol, 7.2%).

Example 141

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-fluoroaniline

[0233] 4-Fluoroaniline (0.178 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (50 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:1) and then recrystallized from ether to obtain the titled compound (0.125 g, 0.268 mmol, 50%).

Example 142

15 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-fluoroaniline

[0234] N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-fluoroaniline (0.068 g, 0.145 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:2) and then recrystallized from ether to obtain the titled compound (0.030 g, 0.0705 mmol, 48%).

25 Example 143

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3-nitroaniline

[0235] 3-Nitroaniline (0.222 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazo-linium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (50 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:1) and then recrystallized from ether to obtain the titled compound (0.149 g, 0.301 mmol, 56%).

Example 144

35

40

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-3-nitroaniline

[0236] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3-nitroaniline (0.070 g, 0.142 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from ether to obtain the titled compound (0.060 g, 0.133 mmol, 94%).

Example 145

50 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-2-trifluoromethylaniline

[0237] 2-Trifluoromethylaniline (0.483 g, 3.000 mmol), triethylamine (0.304 g, 3.000 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.507 g, 3.000 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.374 g, 1.000 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.259 g, 0.500 mmol, 50%).

Example 146

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-2-trifluoromethylaniline

[0238] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-2-trifluoromethylaniline (0.100 g, 0.193 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.090 g, 0.189 mmol, 98%).

Example 147

5 Ethyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-aminobenzoate

[0239] Ethyl 4-aminobenzoate (-0.265 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (50 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:1) and then recrystallized from ether to obtain the titled compound (0.165 g, 0.316 mmol, 59%).

25 Example 148

Ethyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-aminobenzoate

[0240] Ethyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-aminobenzoate (0.060 g, 0.115 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform : methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.040 g, 0.0834 mmol, 73%).

Example 149

35

40

50

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-cyanomethylaniline

[0241] 4-Cyanomethylaniline (0.212 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (50 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:1) and then recrystallized from a mixed solvent of ether and hexane (3:1) to obtain the titled compound (0.110 g, 0.225 mmol, 42%).

Example 150

N-[5(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-cyanomethylaniline

[0242] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-cyanomethylaniline (0.060 g, 0.123 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.040).

g, 0.0897 mmol, 73%).

Example 151

5 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3-trifluoromethylaniline

[0243] 3-Trifluoromethylaniline (0.483 g, 3.000 mmol), triethylamine (0.304 g, 3.000 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.507 g, 3.000 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.374 g, 1.000 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.235 g, 0.454 mmol, 45%).

15 Example 152

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-3-trifluoromethylaniline

[0244] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-3-trifluoromethylaniline (0.100 g, 0.193 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.088 g, 0.185 mmol, 96%).

Example 153

25

30

35

40

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-2-nitroaniline

[0245] 2-Nitroaniline (0.222 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazo-linium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (50 ml) of 5-(5/6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:1) and then recrystallized from ether to obtain the titled compound (0.140 g, 0.283 mmol, 53%).

Example 154

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-2-nitroaniline

[0246] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-2-nitroaniline (0.070 g, 0.142 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from ether to obtain the titled compound (0.063 g, 0.139 mmol, 98%).

50 Example 155

N-(Pyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0247] 2-Aminopyridine (0.282 g, 3.000 mmol), triethylamine (0.304 g, 3.000 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.507 g, 3.000 mmol) were added to a methylene chloride solution (50 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.374 g, 1.000 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation.

The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:1) and then recrystallized from ether to obtain the titled compound (0.140 g, 0.311 mmol, 31%).

Example 156

5

20

25

30

40

50

N-(Pyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0248] N-(Pyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.050 g, 0.111 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from ether to obtain the titled compound (0.023 g, 0.0564 mmol, 51%).

15 Example 157

N-(Pyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0249] 4-Aminopyridine (0.282 g, 3.000 mmol), triethylamine (0.304 g, 3.000 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.507 g, 3.000 mmol) were added to a methylene chloride solution (50 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.374 g, 1.000 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.050 g, 0.123 mmol, 12%).

Example 158

N-(Pyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0250] 3-Aminopyridine (0.151 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (50 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.065 g, 0.159 mmol, 30%).

Example 159

N-Cyclopropyl-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzamide

[0251] Cyclopropylamine (0.0916 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (50 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:1) and then recrystallized from ether to obtain the titled compound (0.089 g, 0.215 mmol, 40%).

Example 160

N-Cyclopropyl-5-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0252] N-Cyclopropyl-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.050 g, 0.121 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (1.5 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and

then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:1) and then recrystallized from ether to obtain the titled compound (0.023 g, 0.0673 mmol, 56%).

5 Example 161

N-Cyclohexyl-5-(5, 6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0253] Cyclohexylamine (0.159 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (50 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:1) and then recrystallized from ether to obtain the titled compound (0.134 g, 0.294 mmol, 55%).

Example 162

20

25

N-Cyclohexyl-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0254] N-Cyclohexyl-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.070 g, 0.154 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (1.5 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from ether to obtain the titled compound (0.035 g, 0.0846 mmol, 55%).

Example 163

30 N-Methvl-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-methoxyaniline

[0255] N-Methyl-4-methoxyaniline (0.220 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (50 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane : ethyl acetate = 1:2) to obtain the titled compound (0.142 g, 0.288 mmol, 54%).

40 Example 164

45

50

N-Methyl-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-methoxyaniline

[0256] N-Methyl-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-methoxyaniline (0.070 g, 0.142 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (2 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:2) to obtain the titled compound (0.050 g, 0.111 mmol, 78%).

Example 165

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-trifluoromethylaniline

[0257] 4-Trifluoromethylaniline (0.159 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (50 ml) of 3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with

methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate = 1:1) and then recrystallized from ether to obtain the titled compound (0.140 g, 0.271 mmol, 51%).

5 Example 166

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-trifluoromethylaniline

[0258] N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-trifluoromethylaniline (0.150 g, 0.290 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (2 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from ether to obtain the titled compound (0.080 g, 0.168 mmol, 58%).

Example 167

15

Ethyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-(3-pyridylmethyloxy)benzoyl]-4-aminobenzoate

20 [0259] Ethyl 4-aminobenzoate (0.248 g, 1.500 mmol), triethylamine (0.152 g, 1.500 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.254 g, 1.500 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid (0.2115 g, 0.500 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.020 g, 0.0351 mmol, 7%).

Example 168

N-(Pyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzamide

[0260] 4-Aminopyridine (0.141 g, 1.500 mmol), triethylamine (0.152 g, 1.500 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.254 g, 1.500 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid (0.2115 g, 0.500 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10: 1) and then recrystallized from ether to obtain the titled compound (0.023 g, 0.0460 mmol, 9%).

40 Example 169

N-(Pyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzamide

[0261] 3-Aminopyridine (0.141 g, 1.500 mmol), triethylamine (0.152 g, 1.500 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.254 g, 1.500 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid (0.2115 g, 0.500 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10: 1) and then recrystallized from ether to obtain the titled compound (0.024 g, 0.0480 mmol, 10%).

Example 170

50

55

N-Cyclopropyl-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-(3-pyridylmethyloxy) benzamide

[0262] Cyclopropylamine (0.0857 g, 1.500 mmol), triethylamine (0.152 g, 1.500 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.254 g, 1.500 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid (0.2115 g, 0.500 mmol) and the resulting

solution was stirred at room temperature for 13 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10: 1) and then recrystallized from ether to obtain the titled compound (0.029 g, 0.0627 mmol, 13%).

Example 171

5

N-Cyclohexyl-5-(5,6-dimethoxy-3-methyl-1-4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzamide

[0263] Cyclohexylamine (0.149 g, 1.500 mmol), triethylamine (0.152 g, 1.500 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.254 g, 1.500 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid (0.215 g, 0.500 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation.

The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.032 g, 0.0634 mmol, 13%).

Example 172

20 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoyl]-4-trifluoromethylaniline

[0264] 4-Trifluoromethylaniline (0.242 g, 1.500 mmol), triethylamine (0.152 g, 1.500 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.254 g, 1.500 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-(3-pyridylmethyloxy)benzoic acid (0.215 g, 0.500 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10: 1) and then recrystallized from ether to obtain the titled compound (0.035 g, 0.0618 mmol, 12%).

30 Example 173

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(trifluoromethylsulfonyl)aniline

[0265] 4-(Trifluoromethylsulfonyl)aniline (0.452 g, 2.005 mmol), triethylamine (0.203 g, 2.005 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.339 g, 2.005 mmol) were added to a methylene chloride solution (70 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.250 g, 0.668 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.140 g, 0.241 mmol, 36%).

Example 174

45

55

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-(trifluoromethylsulfonyl) aniline

[0266] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(trifluoromethylsulfonyl) aniline (0.060 g, 0.103 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (2 ml), the solution was stirred at room temperature for 2 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.021 g, 0.0389 mmol, 38%).

Example 175

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(trifluoromethylsulfonyl)aniline

[0267] 4-(Trifluoromethylsulfonyl)aniline (0.361 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-

1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (50 ml) of 3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into Ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = I and then recrystallized from ether to obtain the titled compound (0.084 g, 0.144 mmol, 27%).

Example 176

10 N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoqulnon-2-yl)methyl-2-acetoxybenzoyl]-2,4-dichloroaniline

[0268] 2,4-Dichloroaniline (0.383 g, 2.366 mmol), triethylamine (0.239 g, 2.366 mmol) and 2-chloro-1,3-dimethylim-idazolinium chloride (0.400 g, 2.366 mmol) were added to a methylene chloride solution (100 ml) of 3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.295 g, 0.789 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.150 g, 0.289 mmol, 37%).

20 Example 177

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-2,4-dichloroaniline

[0269] N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-2,4-dichloroaniline (0.075 g, 0.145 mmol) was dissolved in methanol (2 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (1.5 ml), the solution was stirred at room temperature for 2 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.035 g, 0.0735 mmol, 51%).

Example 178

35

45

55

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl-4-morpholinoaniline

[0270] 4-Morpholinoaniline (0.214 g, 1.203 mmol), triethylamine (0.122 g, 1.203 mmol) and 2-chloro-1,3-dimethyl-imidazolinium chloride (0.203 g, 1.203 mmol) were added to a methylene chloride solution (40 ml) of 3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.150 g, 0.401 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate) and then recrystallized from ether to obtain the titled compound (0.109 g, 0.203 mmol, 51%).

Example 179

N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-morpholinoaniline

[0271] N-[3-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-morpholinoaniline (0.075 g, 0.145 mmol) was dissolved in methanol (5 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (1.5 ml), the solution was stirred at room temperature for 1.5 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate) and then recrystallized from ether to obtain the titled compound (0.048 g, 0.0975 mmol, 74%).

Example 180

N-(6-Methoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0272] 5-Amino-2-methoxypyridine (0.199 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate) and then recrystallized from ether to obtain the titled compound (0.109 g, 0.227 mmol, 42%).

Example 181

15 N-(6-Methoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0273] N-(6-Methoxypyndin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.065 g, 0.135 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (1.5 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate) and then recrystallized from ether to obtain the titled compound (0.050 g, 0.114 mmol, 84%).

25 Example 182

N-(2,6-Dimethoxypyndin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0274] 3-Amino-2,6-dimethoxypyridine hydrochloride (0.306 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.160 g, 0.313 mmol, 59%).

Example 183

35

40

50

N-(2,6-Dimethoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0275] N-(2,6-Dimethoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.100 g, 0.196 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (1.5 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.079 g, 0.169 mmol, 87%).

Example 184

N-(6-Chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0276] 5-Amino-2-chloropyridine (0.206 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol =

10:1) and then recrystallized from ether to obtain the titled compound (0.142 g, 0.293 mmol, 55%).

Example 185

N-(6-Chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0277] N-(6-Chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.070 g, 0.144 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (1.5 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.056 g, 0.126 mmol, 88%).

15 Example 186

N-(2-Chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0278] 3-Amino-2-chloropyridine (0.206 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate: hexane = 1:1) to obtain the titled compound (0.140 g, 0.289 mmol, 54%).

Example 187

25

30

35

40

50

N-(2-Chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0279] N-(2-Chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.070 g, 0.144 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (1.5 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate: hexane = 1:1) and then recrystallized from ether to obtain the titled compound (0.040 g, 0.0903 mmol, 63%).

Example 188

tert-Butyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-aminobenzoate

[0280] tert-Butyl 4-aminobenzoate (0.620 g, 6.209 mmol), triethylamine (0.325 g, 3.209 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.542 g, 3.209 mmol) were added to a methylene chloride solution (150 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.400 g, 1.070 mmol) and the resulting solution was stirred at room temperature for 6 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate: hexane = 1:2-1:0) to obtain the titled compound (0.302 g, 0.549 mmol, 57%).

Example 189

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzoyl]-4-aminobenzoic acid

[0281] tert-Butyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-aminobenzoate (0.250 g, 0.455 mmol) was dissolved in formic acid (3.0 ml) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was concentrated and the obtained residue was recrystallized from methanol to obtain the titled compound (0.129 g, 0.261 mmol, 57%).

Example 190

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-aminobenzoic acid

5 [0282] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-aminobenzoic acid (0.070 g, 0.142 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (1.5 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with a 2N hydrochloric acid solution and the aqueous layer was rendered acidic (pH = 1 to 2) and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform : methanol = 10:1) and then recrystallized from methanol to obtain the titled compound (0.049 g, 0.109 mmol, 77%).

Example 191

5 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-nitroaniline

[0283] 4-Nitroaniline (0.414 g, 3.000 mmol), triethylamine (0.304 g, 3.000 mmol) and 2-chloro-1,3-dimethylimidazo-linium chloride (0.507 g, 3.000 mmol) were added to a methylene chloride solution (100 ml) of 5-(5, 6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.374 g, 1.000 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (1.5 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.080 g, 0.177 mmol, 18%).

Example 192

Example to

20

30

35

40

45

55

N-[5-(5,6-Dimethoxy-3-methyl-1, 4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-2,6-dichloro-4-trifluoromethoxyaniline

[0284] 2,6-Dichloro-4-trifluoromethoxyaniline (0.395 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate: hexane = 1:2) and then recrystallized from ether to obtain the titled compound (0.099 g, 0.177 mmol, 33%).

Example 193

N-(3-tert-Butoxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoguinon-2-yl)methyl-2-acetoxybenzamide

[0285] tert-Butyl 2-aminonicotinate (0.311 g, 1.604 mmol), triethylamine (0.162 g, 1.604 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.271 g, 1.604 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1, 4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 15:1) to obtain the titled compound (0.157 g, 0.285 mmol, 53%).

Example 194

N-(3-Hydroxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0286] N-(3-tert-Butoxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxy-

benzamide (0.140 g, 0.254 mmol) was dissolved in formic acid (2.0 ml) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was concentrated and the obtained residue was purified by silica gel chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.110 g, 0.222 mmol, 87%).

Example 195

N-(3-Hydroxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0287] N-(3-Hydroxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.080 g, 0.162 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (2 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with a 2N hydrochloric acid solution and the aqueous layer was rendered acidic (pH = 3 to 4) and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from ether to obtain the titled compound (0.051 g, 0.113 mmol, 70%).

Example 196

20 N-(5-tert-Butoxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0288] tert-Butyl 6-aminonicotinate (0.467 g, 2.406 mmol), triethylamine (0.244 g, 2.406 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.407 g, 2.406 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.300 g, 0.802 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was punified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.240 g, 0.436 mmol, 54%).

30 Example 197

 $\underline{\text{N-}(5\text{-Hydroxycarbonylpyridin-2-yl)-5-}(5.6\text{-}dimethoxy-3\text{-}methyl-1,4\text{-}} benzoquinon-2\text{-}yl) methyl-2\text{-}acetoxybenzamide}$

[0289] N-(5-tert-Butoxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.170 g, 0.309 mmol) was dissolved in formic acid (3.0 ml) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was concentrated and the obtained residue was purified by silica gel chromatography (chloroform : methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.109 g, 0.220 mmol, 71%).

40 Example 198

N-(5-Hydroxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0290] N-(5-Hydroxycarbonylpyridin-2-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxyben-zamide (0.085 g, 0.172 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (2 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with a 2N hydrochloric acid solution and the aqueous layer was rendered acidic (pH = 3 to 4) and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from ether to obtain the titled compound (0.062 g, 0.137 mmol, 79%).

Example 199

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzouyl]-4-(tert-butoxycarbonyl)aminoaniline

[0291] N-(tert-Butoxycarbonyl)-p-phenylenediamine (0.209 g, 1.002 mmol), triethylamine (0.101 g, 1.002 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.279 g, 1.002 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.250 g, 0.668 mmol) and the

resulting solution was stirred at room temperature for 6 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ethanol to obtain the titled compound (0.180 g, 0.319 mmol, 48%).

Example 200

5

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-(tert-butoxycarbonyl)aminoaniline

10 [0292] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(tert-butoxycarbonyl)aminoaniline (0.140 g, 0.248 mmol) was dissolved in methanol (6 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (2 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from a mixed solvent of ether and hexane (3:1) to obtain the titled compound (0.095 g, 0.182 mmol, 73%).

Example 201

20 N-(Pyridin-3-yl)-5-(5, 6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0293] 3-Aminopyridine (0.424 g, 4.492 mmol), triethylamine (0.440 g, 4.342 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.735 g, 4.342 mmol) were added to a methylene chloride solution (200 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (1.120 g, 2.995 mmol) and the resulting solution was stirred at room temperature for 6 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.710 g, 1.576 mmol, 53%).

30 Example 202

N-(Pyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide (methanesulfonate)

[0294] Methanesulfonic acid (0.00732 g, 0.0762 mmol) was added to a methanol solution (2 ml) of N-(pyridin-3-yl)-35 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.0327 g, 0.0726 mmol), and the solvent was removed by distillation. The obtained residue was recrystallized from a mixed solvent of methanol, hexane and toluene (1:2:0.2) to obtain the titled compound (0.030 g, 0.0595 mmol, 82%).

Example 203

40

N-(Pyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide (methanesulfonate)

[0295] Methanesulfonic acid (0.00914 g, 0.0951 mmol) was added to a methanol: dichloromethane mixed solution (1:1, 2 ml) of N-(pyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide (0.0370 g, 0.0906 mmol), and the solvent was removed by distillation. The obtained residue was recrystallized from a mixed solvent of methanol, ether and ethyl acetate (2:1:0.5) to obtain the titled compound (0.019 g, 0.0377 mmol, 42%).

Example 204

50 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-p-phenylenediamine

[0296] Trifluoroacetic acid (0.5 ml) was added to a methylene chloride solution (10 ml) of N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-tert-butoxycarbonylaminoaniline (0.205 g, 0.309 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was concentrated and the obtained residue was purified by silica gel column chromatography (chloroform: methanol = 95:5) to obtain the titled compound (0.150 g, 0.355 mmol, 91%).

Example 205

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-p-phenylenediamine (hydrochloride)

5 [0297] A 4N hydrochloric acid-dioxane solution (0.045 g, 0.180 mmol) was added to a methylene chloride solution (3 ml) of N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-p-phenylenediamine (0.0724 g, 0.171 mmol) and the solvent was removed by distillation. The obtained residue was recrystallized from a methanol: ether mixed solvent (1:10) to obtain the titled compound (0.070 g, 0.153 mmol, 89%).

10 Example 206

N-(Pyridin-3-yl)-3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0298] 3-Aminopyridine (0.076 g, 0.802 mmol), triethylamine (0.081 g, 0.802 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.136 g, 0.802 mmol) were added to a methylene chloride solution (100 ml) of 3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.100 g, 0.222 mmol, 41%).

Example 207

25

35

45

50

N-(Pyridin-3-yl)-3-(5.6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0299] N-(Pyridin-3-yl)-3-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.060 g, 0.133 mmol) was dissolved in methanol (2 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (1.5 ml), the solution was stirred at room temperature for 2 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate: hexane = 4:1) and then recrystallized from methanol to obtain the titled compound (0.035 g, 0.0857 mmol, 64%).

Example 208

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(imidazol-1-yl)aniline

[0300] 4-(1H-Imidazol-1-yl)aniline (0.159 g, 1.003 mmol), triethylamine (0.101 g, 1.003 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.170 g, 1.003 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.250 g, 0.668 mmol) and the resulting solution was stirred at room temperature for 3 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from a mixed solvent of ethyl acetate and hexane (2:1) to obtain the titled compound (0.140 g, 0.272 mmol, 41%).

Example 209

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-(imidazol-1-yl) aniline

[0301] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(imidazol-1-yl)aniline (0.070 g, 0.136 mmol) was dissolved in methanol (5 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from ether to obtain the titled compound (0.063 g, 0.133 mmol, 98%).

Example 210

N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzoyl]-4-(1H-pyrazol-3-yl)aniline

[0302] 4-(1H -Pyrazol-3-yl)aniline (0.159 g, 1.003 mmol), triethylamine (0.101 g, 1.003 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.170 g, 1.003 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.250 g, 0.668 mmol) and the resulting solution was stirred at room temperature for 3 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.180 g, 0.350 mmol, 52%).

Example 211

15 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-(1H-pyrazol-3-yl)aniline

[0303] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-(1H-pyrazol-3-yl)aniline (0.090 g, 0.175 mmol) was dissolved in a mixed solvent of methanol (2 ml) and dichloromethane (1 ml), and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (2 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from a mixed solvent of ethyl acetate and hexane (1:1) to obtain the titled compound (0.049 g, 0.104,mmol, 59%).

Example 212

25

N-Methyl-N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-trifluoromethylaniline

30 [0304] N-Methyl-4-trifluoromethylaniline (0.200 g, 1.143 mmol), triethylamine (0.116 g, 1.143 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.193 g, 1.143 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.285 g, 0.762 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.140 g, 0.263 mmol, 35%).

Example 213

40 N-Methyl-N-[5-(5,6-dimethoxy-3-metyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-trifluoromethylaniline

[0305] N-Methyl-N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-trifluoromethyl-aniline (0.138 g, 0.260 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (2 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate: hexane = 1:2) to obtain the titled compound (0.075 g, 0.153 mmol, 59%).

Example 214

50

tert-Butyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-hydroxybenzoyl]-4-aminobenzoate

[0306] tert-Butyl N-[5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzoyl]-4-aminobenzoate (0.240 g, 0.437 mmol) was dissolved in methanol (5 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 95:5) and then recrystallized from ether to obtain the titled compound

(0.115 g, 0.227 mmol, 52%).

Example 215

5 N-(2-Methoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0307] 3-Amino-2-methoxypyridine (0.149 g, 1.203 mmol), triethylamine (0.122 g, 1.203 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.203 g, 1.203 mmol) were added to a methylene chloride solution (150 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.300 g, 0.802 mmol) and the resulting solution was stirred at room temperature for 4 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 50:1) to obtain the titled compound (0.250 g, 0.520 mmol, 65%).

15 Example 216

N-(2-Methoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0308] N-(2-Methoxypyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.150 g, 0.312 mmol) was dissolved in methanol (5 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate: hexane = 3:1) to obtain the titled compound (0.112 g, 0.255 mmol, 82%).

Example 217

25

N-(2-Dimethylaminopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0309] 3-Amino-2-dimethylaminopyridine (0.154 g, 1.125 mmol), triethylamine (0.114 g, 1.125 mmol) and 2-chloro1,3-dimethylimidazolinium chloride (0.190 g, 1.125 mmol) were added to a methylene chloride solution (100 ml) of
5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.281 g, 0.750 mmol) and the resulting solution was stirred at room temperature for 4 hours. The reaction solution was poured into ice water and then
extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed
by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol =
95:5) to obtain the titled compound (0.139 g, 0.282 mmol, 38%).

Example 218

40 N-(2-Dimethylaminopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0310] N-(2-Dimethylaminopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.074 g, 0.0933 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate: hexane = 1:1) to obtain the titled compound (0.042 g, 0.0930 mmol, 99%).

Example 219

50

 $\underline{\text{N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)}} \\ -2\text{-acetoxybenzoyl]-2,5-dimethoxyaniline}$

[0311] 2,5-Dimethoxyaniline (0.172 g, 1.125 mmol), triethylamine (0.114 g, 1.125 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.190 g, 1.125 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.281 g, 0.750 mmol) and the resulting solution was stirred at room temperature for 4 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 95:5) to obtain the

titled compound (0.149 g, 0.292 mmol, 39%).

Example 220

5 N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-2,5-dimethoxyaniline

[0312] N-[5-(5,6-Dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-2,5-dimethoxyaniline (0.075 g, 0.147 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from a mixed solvent of ether and hexane (1:1) to obtain the titled compound (0.048 g, 0.103 mmol, 70%).

Example 221

N- (2-Chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-methoxybenzamide

[0313] N-(2-Chloropyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide (0.050 g, 0.113 mmol) was dissolved in methanol (5 ml) and after adding thereto 10% trimethylsilyldiazomethane (hexane solution) (3.5 ml), the solution was stirred at room temperature for 2 hours. The reaction solution was concentrated and the obtained residue was recrystallized from a mixed solvent of ether and hexane (1:1) to obtain the titled compound (0.051 g, 0.112 mmol, 99%).

Example 222

25

35

50

10

15

N-(2-Morpholinopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0314] 3-Amino-2-morpholinopyridine (0.269 g, 1.500 mmol), triethylamine (0.197 g, 1.950 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.165 g, 0.975 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.281 g, 0.750 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (ethyl acetate: hexane = 2:1) to obtain the titled compound (0.249 g, 0.465 mmol, 62%).

Example 223

N-(2-Morpholinopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0315] N-(2-Morpholinopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.110 g, 0.205 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from ether to obtain the titled compound (0.100 g, 0.203 mmol, 99%).

Example 224

N-(6-Morpholinopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoguinon-2-yl)methyl-2-acetoxybenzamide

[0316] 3-Amino-6-morpholinopyridine (0.269 g, 1.500 mmol), triethylamine (0.197 g, 1.950 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.165 g, 0.975 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.281 g, 0.750 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.239 g, 0.446 mmol, 59%).

Example 225

N-(6-Morpholinopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0317] N-(6-Morpholinopyridin-3-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.100 g, 0.187 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from ether to obtain the titled compound (0.089 g, 0.180 mmol, 96%).

Example 226

15

20

25

45

50

N-(2-Chloropyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0318] 4-Amino-2-chloropyridine (0.103 g, 1.802 mmol), triethylamine (0.0812 g, 0.802 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.136 g, 0.802 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred in an oil bath at 50°C for 8 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.078 g, 0.161 mmol, 30%).

Example 227

N-(2-Chloropyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0319] N-(2-Chloropyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.079 g, 0.163 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from ether to obtain the titled compound (0.057 g, 0.129 mmol, 79%).

35 Example 228

N-(6-Methoxypyrimidin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0320] 4-Amino-6-methoxypyrimidine (0.134 g, 1.070 mmol), triethylamine (0.141 g, 1.390 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.118 g, 0.695 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.200 g, 0.535 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) to obtain the titled compound (0.120 g, 0.249 mmol, 47%).

Example 229

N-(6-Methoxypyrimidin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0321] N-(6-Methoxypyrimidin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.060 g, 0.125 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.040 g, 0.0910 mmol, 73%).

Example 230

N-(2-Methoxypyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl) methyl-2-acetoxybenzamide

[0322] 4-Amino-2-methoxypyridine (0.167 g, 1.340 mmol), triethylamine (0.176 g, 1.740 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.147 g, 0.869 mmol) were added to a methylene chloride solution (100 ml) of 5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.250 g, 0.668 mmol) and the resulting solution was stirred at room temperature for 10 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.200 g, 0.416 mmol, 62%).

Example 231

5 N-(2-Methoxypyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0323] N-(2-Methoxypyridin-4-yl)-5-(5,6-dimethoxy-3-methyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.100 g, 0.208 mmol) was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from ether to obtain the titled compound (0.050 g, 0.114 mmol, 55%).

25 Example 232

5-(2,5-Dimethoxy-3,4,6-trimethylbenzyl)-2-acetoxybenzoic acid

[0324] 5-(2,5-Dimethoxy-3,4,6-trimethylbenzyl)-2-hydroxybenzoic acid (0.150 g, 0.455 mmol) was dissolved in acetic anhydride (3 ml) and the resulting solution was stirred at 80°C for 1 hour. The reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (hexane : ethyl acetate = 2:1) to obtain the titled compound (0.170 g, 0.454 mmol, 99%).

35 Example 233

40

45

5-(3,5,6-Trimethyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid

[0325] 5-(2,5-Dimethoxy-3,4,6-trimethylbenzyl)-2-etoxybenzoic acid (1.25 g, 2.56 mmol) was dissolved in a mixed solution of acetonitrile (30 ml) and water (10 ml) and after adding thereto CAN (3.50 g, 6.39 mmol), the solution was stirred at room temperature for 1 hour. The reaction solution was diluted with water and then extracted with ether. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2:1) and then recrystallized from ether to obtain the titled compound (0.800 g, 1.74 mmol, 68%).

Example 234

N-[5-(3,5,6-Trimethyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-trifluoromethylaniline

[0326] 4-Trifluoromethylaniline (0.176 g, 1.096 mmol), triethylamine (0.111 g, 1.096 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.185 g, 1.096 mmol) were added to a methylene chloride solution (100 ml) of 5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.250 g, 0.730 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from a mixed solvent of ethyl acetate and hexane (1:2) to obtain the titled compound (0.220 g, 0.453 mmol, 62%).

Example 235

N-(5-(3,5,6-Trimethyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzoyl]-4-trifluoromethylaniline

[0327] N-[5-(3,5,6-Trimethyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoyl]-4-trifluoromethylaniline (0.070 g, 0.144 mmol) was dissolved in methanol (4 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from a mixed solvent of ethyl acetate and hexane (1:1) to obtain the titled compound (0.060 g, 0.135 mmol, 94%).

Example 236

15

20

25

N-(2-Chloropyridin-3-yl)-5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide

[0328] 3-Amino-2-chloropyridine (0.141 g, 1.096 mmol), triethylamine (0.111 g, 1.096 mmol) and 2-chloro-1,3-dimethylimidazolinium chloride (0.185 g, 1.096 mmol) were added to a methylene chloride solution (100 ml) of 5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.250 g, 0.730 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 10:1) and then recrystallized from a mixed solvent of ethyl acetate and hexane (2:1) to obtain the titled compound (0.149 g, 0.329 mmol, 45%).

Example 237

N-(2-Chloropyridin-3-yl)-5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl) methyl-2-hydroxybenzamide

[0329] N-(2-Chloropyridin-3-yl)-5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzamide (0.055 g, 0.121 mmol) was dissolved in methanol (4 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was recrystallized from a mixed solvent of ethyl acetate and hexane (1:1) to obtain the titled compound (0.035 g, 0.0852 mmol, 70%).

35 Example 238

N-(Pyridin-4-yl)-5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)methyl-2-hydroxybenzamide

[0330] 4-Aminopyridine (0.103 g, 1.096 mmol), thethylamine (0.111 g, 1.096 mmol) and 2-chloro-1,3-dimethylimida-zolinium chloride (0.185 g, 1.096 mmol) were added to a methylene chloride solution (100 ml) of 5-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)methyl-2-acetoxybenzoic acid (0.250 g, 0.730 mmol) and the resulting solution was stirred at room temperature for 12 hours. The reaction solution was poured into ice water and then extracted with methylene chloride. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was dissolved in methanol (3 ml) and after adding thereto an aqueous saturated sodium hydrogencarbonate solution (3 ml), the solution was stirred at room temperature for 3 hours. After the completion of reaction, the reaction solution was diluted with water and then extracted with ethyl acetate. The extract was washed with water and then dried, and the solvent was removed by distillation. The obtained residue was purified by preparative thin-layer chromatography (chloroform: methanol = 95:5) to obtain the titled compound (0.020 g, 0.049 mmol, 7%).

55

50

5	IR (cm ⁻¹)	3514, 1610, 1582 (KB/)	3568, 2933, 1509 (KB _r)	3500, 2937, 1599, 1464 (KBr)	1601, 1468 (KBr)
15	13. 6)	3.81 (3H. s), 3.85 (3H. 1, J=10.8 Hz), 5.05 3 Hz), 6.80-7.00 (3H.	1,80 (3H, s), 3,86 (3H. d, J=10,8 Hz), 5,05 1 Hz), 6,93 (2H, d, 8,60 Hz), 7,25–7,45	3.72 (3H. s). 3.75– 3.93 (3H. s). 5.03 (1H. 1. J=12.36 Hz). 6.31 H. d. J=8.12 Hz). 6.94 18 (3H. m).7.23–7.30 2 Hz)	.78 (3H, s), 3.91 (3H,), 5.00 (2H, s), 6.65– í, m)
20	NMR(CDCI, 6)	2.23 (3H, s), 3.27 (3H, s), 3.81 (3H, s), 3.85 (3H, s), 3.94 (3H, s), 4.03 (1H, d, J=10.8 Hz), 5.05 (2H, s), 5.93 (1H, d, J=10.8 Hz), 6.80-7.00 (3H, m),7.15-7.40 (6H, m)	2.23 (3H. s), 3.35 (3H. s), 3.80 (3H. s), 3.86 (3H. s), 3.94 (3H. s), 4.07 (1H. d. J=10.8 Hz), 5.05 (2H. s), 5.93 (1H. d. J=10.8 Hz), 6.93 (2H. d. J=8.69 Hz), 7.19 (2H. d. J=8.60 Hz), 7.25-7.45 (5H. m)	2.16 (3H, s), 3.38 (3H; s), 3.72 (3H, s), 3.75-3.79 (1H, m), 3.86 (3H, s), 3.93 (3H, s), 5.03 (1H, d, J=12.40 Hz), 5.09 (1H, d, J=12.36 Hz), 6.31 (1H, d, J=8.32 Hz), 6.83 (1H, d, J=8.12 Hz), 6.94 (1H, t, J=7.52 Hz), 7.11-7.18 (3H, m), 7.23-7.30 (3H, m), 7.36 (1H, d, J=7.52 Hz)	2.06 (3H, s), 3.67 (3H, s), 3.78 (3H, s), 3.91 (3H, s), 3.94 (3H, s), 3.98 (2H, s), 5.00 (2H, s), 6.65–6.80 (3H, m), 7.05–7.45 (6H, m)
	(m/z)				
30	FABMS(m/z)	424(M') 90 (100)	424(M°) 90 (100)	424(M°) 91 (100)	408 (M [*]) 91 (100)
35	Appearance	colorless powder 80-82°C	colorless powder 54-56°C	colorless	colorless powder 77-78°C
40	8				
45	Structure	OMe Me OH	owe one one	OMe OH O,	OMe
s Table 1		MeO	MeO Neo	MeO MeO	MeO MeO
55	No. Ex.	ref 4	ref. S	ref. 6	ref. 7a

EP 1 314 712 A1

5		IR (cm ⁻¹)	2935, 1513, 1406 (KBr)	2935, 1599, 1465 (NaCI)	3387, 1589 (NaCi)	3372, 1468, 1407 (KB~)
15		NMR(CDCI, &)	2.08 (3H, s), 3.69 (3H, s), 3.78 (3H, s), 3.91 (3H, s), 3.93 (3H, s), 3.94 (2H, s), 5.01 (2H, s), 6.86 (2H, d, J=8.52 Hz), 7.01 (2H, d, J=8.52 Hz), 7.30-7.42 (5H, m)	1.94 (3H, s), 3.59 (3H, s), 3.70 (3H, s), 3.84 (3H, s), 3.87 (3H, s), 3.06 (2H, s), 5.06 (2H, s), 6.65 (1H, d, J=7.52 Hz), 6.82 (1H, d, J=8.12 Hz), 7.71 (1H, t, J=8.08 Hz), 7.20 7.31 (3H, m), 7.38 (2H, d, J=7.32 Hz)	2.07 (3H, s), 3.70 (3H, s), 3.78 (3H, s), 3.91 (3H, s), 3.93 (3H, s), 3.93 (2H,s), 4.76 (1H, s), 6.54 (1H, s), 6.60 (1H, d), 6.68 (1H, d), 7.09 (1H, t)	2.08 (3H, s), 3.69 (3H, s), 3.78 (3H, s), 3.92 (3H, s), 3.93 (5H, s), 6.68 (2H, d, .I=8.52 Hz), 6.94 (2H, d, J=8.45 Hz)
25		NMF	2.08 (3H, s), 369 (3 s), 3.93 (3H, s), 3.94 (2H, d, J=8.64 Hz), 7 7.30-7.42 (5H, m)	1.94 (3H, s), 3.59 (3H, s), 3.70 (3H, s), 3.87 (3H, s), 3.98 (2H, s), 5.06 (2) (1H, d, J=7.8 (1H, d, J=8.12 Hz), 7.71 (1H, t, J=7.8 (1H, d, J=8.12 Hz), 7.03 (1H, t, J=8.12 Hz), 7.03 (1H, t, J=8.12 Hz), 7.03 (1H, t, J=8.12 Hz), 7.38 (2H, d, J=7.32 Hz)	2.07 (3H, s), 3,70 (3H, s), 3,93 (3H, s), 3,93 (1H, s), 6,60 (1H, d).	
30		FABMS(m/z)	408 (M [*]) 91 (100)	408 (M°, 100)	318 (M°. 100)	318 (A4-, 100)
35		Appearance	colorless	colorless	colorless	colorless powder 80.81°C
40		ture			₹	HO HO
45	Ο.	Structure	Owe	OMe	OMe OMe	OMe
50	Table 2		Me O Me O	MeO Meo	MeO O	MeO, MeO,
	-	ă.	88 68	93	Č.	c

EP 1 314 712 A1

5		IR (cm"1)
15		3. 8)
20		NMR(CDCI3, 8)
25		BMS(π/z)
30		Appearance FABMS(m/z)
35		App
40		Structure
45		Stru
50	Table 3	e.Ex.

Re.Ex.	Structure	Appearance	FABMS(m/z)	NMR(CDCI, 8)	IR (cm ⁻¹)
ref. 9	MeO OMe OH	colorless powder 72.5.74.5 °C	318 (M°, 100)	2.25 (3H, s). 3.74 (3H, s). 3.87 (2H, s). 3.90 (6H. s). 3.96 (3H, s). 6.79-6.85 (2H, m). 7.10 (1H, t. J=7.60 Hz). 7.21 (1H, d, J=7.48Hz). 7.63 (1H, br s)	3348, 1466, 1407 (KBr)
ref 10a	MeO Me CHO Me OH	colorless	346 (M°. 100)	2.06 (3H, s), 3.72 (3H, s), 3.79 (3H, s), 3.92 (3H, s), 3.95 (3H, s), 4.02 (2H, s), 6.68 (1H, s), 6.81 (1H, d, J=7.97 Hz), 9.82 (1H, s), 11.04 (1H, s)	3200, 1659, 1627 (KBr)
ref.10b	MeO Me MeO MeO MeO MeO MeO MeO MeO MeO M	colorless powder 95.98°C	346 (M°. 100)	2.06 (3H, s), 3.67 (3H, s), 3.81 (3H, s), 3.91 (3H, s), 3.96 (3H, s), 4.35 (2H, s), 6.28 (1H, d, J=7.6 Hz), 6.80 (1H, d, J=8.4 Hz), 7.31 (1H, t, J=8.0 Hz), 10.59 (1H, s)	3400, 1655 (KBr)
ref. 11	MeO Me CHO OM	colorless powder 72-73.5	346 (M°, 100)	2.10 (3H, s.), 3.73 (3H, s.), 3.79 (3H, s.), 3.93 (3H, s.), 3.94 (3H, s.), 3.96 (2H, s.), 6.89 (1H, d. J=8.53 Hz.), 7.24 (1H, s-like), 7.32 (1H, d-like), 9.81 (1H, s.), 10.84 (1H, br s.)	3232, 1664, 1486 (KBr)

EP 1 314 712 A1

2936, 1682, 1608 (KBr)

2.07 (3H, s), 3.71 (3H, s), 3.78 (3H, s), 3.92 (3H, s), 3.94 (3H, s), 3.95 (2H, s), 5.15 (2H, s), 6.93 (1H, d, J=8.60 Hz), 7.15-7.50 (6H, m), 7.64 (1H, d, J=2.23 Hz), 10.52 (1H, s)

436 (M*+1) 91 (100)

coloriess

OMe

MeO

MeO,

ref. 15

	_					
5		IR (cm ⁻¹)	3446, 1661, 1468 (KBr)	1688, 1605 (KBr)	1684, 1654 (KBr.)	
15		اک جات	3.80 (3H. s.). 3.93 (3H. s.). 6.86 (1H. t. J=7.56 iz). 7.39 (1H. d. ii.46 (1H. s)	3.79 (3H. s.). 391 (3H. s.). 5.10 (2H. s.). 6.76 Hz). 7.20-7.50 (5H. i. 10.47 (1H. s.)	3.79 (3H, s), 3.92 (3H. s), 5.17 (2H, s), 6.35 H, d, J=8.3 Hz), 7.20–)	
20 25		NMR(CDCI ₂ &)	2.03 (3H. s), 3.72 (3H. s), 3.80 (3H. s), 3.93 (3H. s), 3.96 (3H. s), 4.00 (2H. s), 6.86 (1H. t. J=7.56 Hz), 6.93 (1H. d. J=7.28 Hz), 7.39 (1H. d. J=7.28 Hz), 9.91 (1H. s), 11.46 (1H. s)	2.03 (3H, s), 3.64 (3H, s), 3.79 (3H, s), 3.91 (3H, s), 3.96 (3H, s), 4.01 (2H, s), 5.10 (2H, s), 6.76 (1H, s), 6.79 (1H, d, J=8.1 Hz), 7.20-7.50 (5H, m), 7.73 (1H, d, J=7.9 Hz), 10.47 (1H, s)	1.97 (3H, s), 3.68 (3H, s), 3.79 (3H, s), 3.92 (3H, s), 3.06 (3H, s), 4.40 (2H, s), 5.17 (2H, s), 6.35 (1H, d, J=7.8 Hz), 6.89 (1H, d, J=8.3 Hz), 7.20–7.50 (6H, m), 10.85 (1H, s)	
30		FABMS(m/z)	346 (M°. 100)	436 (M°) 154 (100)	436 (M°) 91 (100)	
35		Appearance	colorless powder 93-95°C	colorless powder 95-98°C	colorless powder 68-70°C	
40		re	СНО	CHO		
45	4	Structure	OMe OMe	OMe	OMe OMe CHO	
50	Table	×S.	MeO ref.12	MeO	MeO	-
55		Re.Ex.	ق ق	ref	je je	

55

EP 1 314 712 A1

10	
15	
20	
25	
30	
35	
40	

Re.Ex. No.	Structure	Appearance	FABMS(m/z)	NMR(CDCI ₂ , 6)	IR (cm ⁻¹)
ref.16	MeO OMe OMe OMe	colorless	436 (M²) 91 (100)	2.03 (3H, s), 3.69 (3H, s), 3.79 (3H, s), 3.92 (3H, s), 3.95 (3H, s), 4.06 (2H, s), 5.11 (2H, s), 7.00 (1H, d, J=7.64 Hz), 7.37-7.49 (5H, m), 7.69 (1H, d, J=7.60 Hz), 10.33 (1H, s)	2935, 1687, 1467 (NaCI)
ref 17	MeO Me CHO	colorless	360 (M°. 100)	2.07 (3H, s), 3.72 (3H, s), 3.78 (3H, s), 3.88 (3H, s), 3.96 (2H, s), 3.96 (2H, s), 6.88 (1H, d, J=8.60 Hz), 7.27 (1H, d, J=8.52 Hz), 7.62 (1H, s)	1609, 1464 (NaCI)
ref. 18	MeO Me OMe OMe OMe	colorless	388 (M°, 100)	1.37 (6H. d. J=6.00 Hz), 2.07 (3H. s.), 3.72 (3H. s.), 3.78 (3H. s.), 3.92 (3H. s.), 3.94 (3H. s.), 3.95 (2H. s.), 4.59-4.62 (1H. m.), 6.87 (1H. d. J=8.64 Hz), 7.24 (1H. d. J=8.48 Hz), 7.61 (1H. s.), 10.44 (1H. s.)	1684, 1468 (NaCI)

Table 5

EP 1 314 712 A1

5	IR (cm²¹)	- 3428, 1698, 1609 (KBr)	3200, 1732, 1704 (NaCi)	3300, 1736, 1466 (NaCI)	3064, 1694, 1469 (NaCI)
15	1, 8)	.80 (3H, s), 3.92 (3H, s), 5.20 (2H, s), 6.84 i1 ₂), 7.20-7 45 (5i1,	1.78 (3H. s.), 3.90 (3H. s.), 5.16 (2H. s.), 6.40 H. d. J=8.29 Hz.),	1.78 (3H. s), 3.92 (3H. s), 5.24 (2H. s) 7.00 H, d, J=8.52 Hz), 7.41 -10.87 (1H, br)	7.9 (3H. s), 3.93 (3H 2), 5.14 (2H. s), 6.97 H. t, J=7.68 Hz), 7.35- H=7.20 Hz), 7.91 (1H.
20	NMR(CDCJ, &)	2.04 (3H, s), 3.67 (3H, s), 3.80 (3H, s), 3.92 (3H, s), 3.96 (3H, s), 4.02 (2H, s), 5.20 (2H, s), 6.84 (1H, s), 5.90 (1H, d, J=8.1 Hz), 7.20-7 45 (5H, m), 8.06 (1H, d, J=8.0 Hz)	2.04 (3H.s), 3.65 (3H.s), 3.78 (3H.s), 3.90 (3H.s), 3.95 (3H.s), 4.14 (2H.s), 5.16 (2H.s), 6.40 (1H, d, J=8.29 Hz), 7.10-7.50 (6H, m)	2.07 (3H, s), 3.73 (3H, s), 3.78 (3H, s), 3.92 (3H, s), 3.94 (3H, s), 3.98 (2H, s), 5.24 (2H, s) 7.00 (1H, d, J=8.52 Hz), 7.41 (5H, d, J=8.52 Hz), 7.41 (5H, s), 8.03 (1H, s), 10.52-10.87 (1H, br)	198 (3H, s), 3.69 (3H, s), 3.79 (3H, s), 3.93 (3H, s), 3.95 (3H, s), 4.08 (2H, s), 5.14 (2H, s), 6.97 (1H, d, J=7.52 Hz), 7.09 (1H, t, J=7.68 Hz), 7.35 (3H, M), 7.55 (2H, d, J=7.20 Hz), 7.91 (1H, d, J=7.64 Hz)
30	FABMS(m/z)	452(MT) s 154 (100) (()	452 (M') s. 91 (100) 7	452 (M') s 91 (100) ((452 (M') S 91 (100) 7
35	Appearance	colorless powder ina. ins°C	colorless	colorless powder 70.0-71.5°C	colorless
40	ture	НОООН	H00:	HOOD HOOD	C000+
45 90 50 Q)	Structure	MeO OMe	MeO OMe C	MeO OMe OMe	MeO OMe MeO OMe
Table	Ex.No.		2 2	ς Σ	Ф
55	一四	<u> </u>	L	L	<u> </u>

EP 1 314 712 A1

	IR (cm ⁻¹)	1609 (CH3CI)	- 1635, 1471, 1406 (NaCl)	1634. 1464. 1406 (NaCI)	3345, 1663, 1513, 1464, 1239 (KBr)
15	Cı, 6)	31, \$1, 3.10-3.25 (2H. 5.6 (3H. \$1, 3.78 (3H. \$1, 3.78 (3H. \$1, 3.96 (2H. \$1, 5.01 (2H. \$1, 6.68 (1H. \$1, 6.7.7 Hz). 7.20-7.40	3H, s), 370–3.76 (7H, s), 3.94 (4H, d), 5.08 (1H, d, d)=9,12 Hz), 7.00–7.02	H m), 3,45-3,47 (2H, 11 (3H, s), 3,77 (3H, s), 3,94 (2H, s), 5,04 (2H, 0 Hz), 7,02-7,06 (2H,	3.77 (3H s.). 3.78 (3H, s.). 4.02 (2H, s.). 5.17 (10 Hz.). 7.00 (1H, d. d.). 7.44-7.50 (4H,
20	NMR(CDCI, 6)	1.25-1.65 (6H, m), 2.02 (3H, \$), 3.10-3.25 (2H, m), 3.60 (3H, \$), 3.78 (3H, \$), 3.91 (3H, \$), 3.95 (3H, \$), 3.96 (2H, \$), 5.01 (2H, q, J=11.8 and 19.5 Hz), 6.68 (1H, \$), 6.72 (1H, d, J=7.8 Hz), 7.11 (1H, d=7.7 Hz), 7.20-7.40 (5H, m)	1.26-1.56 (6H, m). 2.08 (3H, s). 3.70-3.76 (7H. m). 3.77 (3H, s). 3.91 (3H, s). 3.93 (3H, s). 3.93 (2H, s). 5.03 (1H, d, 12.08 Hz). 5.05 (1H, d, J=12.08 Hz). 6.82 (1H, d, J=9.12 Hz). 7.00-7.02 (2H, m). 7.28-7.38 (5H, m)	2.07 (3H. s.) 3.20-3.26 (2H. m.) 3.45-3.47 (2H. m.) 3.59-3.82 (4H. m.) 3.71 (3H. s.) 3.77 (3H. s.) 3.91 (3H. s.) 3.93 (3H. s.) 3.94 (2H. s.) 5.04 (2H. s. fike.) 6.84 (1H. d. J-8.40 Hz.) 7.02-7.06 (2H. m.) 7.28-7.38 (5H. m.)	2.10 (3H, s), 3.74 (3H, s), 3.77 (3H, s), 3.78 (3H, s), 3.93 (3H, s), 3.94 (3H, s), 4.02 (2H, s), 5.17 (2H, s), 6.75 (2H, d, J=9.00 Hz), 7.00 (1H, d, J=8.40 Hz), 7.14 - 7.25 (5H, m), 7.44 - 7.50 (4H, m), 8.17 - 8.18 (1H, br)
30	FABMS(m/z)	520 (M') 91 (100)	520 (M' +1) 91 (100)	522 (M' +1) 91 (100)	557 (M') 152 (100)
35	Appearance	colorless	colorless	colorless	colorless crystals 116-117°C
40	sture	Z-(2)			
45	Struc	OMe	OMe	Owe	The state of the s
20 Septemble 7		X X	MeO O	Me O	MeO
55	Ex. No.	ın	ω		α σ

EP 1 314 712 A1

5	IR (cm ⁻ ')	1659. 1622 (KBr)	3426, 1672, 145G (KBr)	3084, 1674, 1468 (N ₃ CI)	3200, 1772, 1617 (KBr.)
10		. s), 3.91 (3H, 6.75 (2H, m).	. s), 3.92 (3H,) Hz), 7.24-	s). 394 (3H. 1H. t. J=7.72 (1H. d. J=7.16	s) 3.79 (3H. 2H. s). 6.86 6 (1H. t.
15	NMR(CDCI, &)	3H, s), 3.78 (3H 88 (2H, s), 6.60- Hz)	3H s). 3.78 (3H 88 (1H, d, J=8 G((1H. s)	3H. s), 3.81 (3H 21 (2H. s), 5.76 (=7.02 Hz), 7.76 (3H, s), 369 (3H, 34 (3H, s), 4.04 (3, J=8,4 Hz), 7.91
20	2	2.05 (3H, s), 3.70 (3H, s), 3.78 (3H, s), 3.91 (3H, s), 3.93 (3H, s), 3.98 (2H, s), 6.60-6.75 (2H, m). 7.73 (1H, d, J=8.2 Hz)	2.09 (3H, s), 3.73 (3H, s), 3.78 (3H, s), 3.92 (3H, s), 3.94 (5H, s), 6.88 (1H, d, J=8 60 Hz), 7.24-7.25 (1H, m), 7.65 (1H, s)	204 (3H. s). 3.73 (3H. s). 381 (3H. s). 3.94 (3H. s). 3.96 (3H. s). 4.01 (2H. s). 6.76 (1H. t, J=7.72 Hz). 6.90 (1H, d, J=7.02 Hz). 7.76 (1H, d, J=7.16 Hz). 10.91 (1H, s)	2.08 (3H, s), 2.30 (3H, s), 3.69 (3H, s), 3.79 (3H, s), 3.91 (3H, s), 3.94 (3H, s), 4.04 (2H, s), 6.86 (1H, s), 7.07 (1H, d, J=8.4 Hz), 7.96 (1H, t, J=8.1 Hz)
25	(2,4				
	FABMS(m/z)	362 (M') 154 (100)	362 (M°) 154 (100)	362 (M°. 100)	404 (M°. 100)
30	Appearance	colorless powder 133-135°C	colorless powder 147-151 °C	colorless crystals 87-90°C	colorless powder 83-85°C
35	7	СООН	НОООН	НООО	СООН
40	Structure	Me	.Me	P P P	M.
45 M	Sti	OMe	OMe	OMe	OMe
rable 8		MeO	MeO MeO	MeO MeO	MeO MeO
E E	Ex.No.	6	10	=	12

EP 1 314 712 A1

Table 9 Structure		Appearance	96 FABMS(m/z)	25	NIMR(CDCI+ &)		5
MeO Me COOH COOH OME	color16 oil	S	404 (M°. 100)	2.10 (3H s). 2.30 (s). 3.92 (3H s). 3.3 (1H, d, J=8.36 Hz) (1H, s)	2.10 (3H. s). 2.30 (3H. s). 3.73 (3H. s). 3.79 (3H. s). 3.92 (3H. s). 3.94 (3H. s). 4.02 (2H. s). 6.99 (1H. d. J=8.36 Hz). 7.31 (1H. d. J=8.32 Hz). 7.90 (1H. s)	79 (3H, .6.99 z), 7.90	3200, 1770, 1716 (NaCI)
MeO Me colorless MeO OMe OAc	colorlo	20 20 40	404 (M°. 100)	2.02 (3H s), 2.39 (s), 3.92 (3H s), 3.6 (1H, d, J=7.56 Hz) (1H, d, J=7.68 Hz)	2.02 (3H, s), 2.39 (3H, s), 3.67 (3H, s), 3.80 (3H, s), 3.92 (3H, s), 3.93 (3H, s), 3.95 (2H, s), 7.03 (1H, d, J=7.56 Hz), 7.17 (1H, t, J=7.72 Hz), 7.93 (1H, d, J=7.68 Hz), 10.30-11.00 (1H, br, s)	80 (3H, . 7.03 (2), 7.93	3150, 1772, 1467 (NaCl)
MeO Me COOMe Colorless Crystals 74-76 °C OMe	colorl crysta 74-76	88.8° 0 .	376 (M°+1, 100)	2.09 (3H, s), 3.71 s), 3.92 (5H, s), 3 J=8.55 Hz), 7.19 (7.59 (1H, d, J=1.99	2.09 (3H, s), 3.71 (3H, s), 3.78 (3H, s), 3.91 (3H, s), 3.95 (3H, s), 3.94 (3H, s), 6.86 (1H, d, d, J=8.55 Hz), 7.19 (1H, dd, J=8.51 and 2.11 Hz), 7.59 (1H, d, J=1.98 Hz), 10.57 (1H, s)	3.91 (3H. 1. 1 Hz).	3426, 1672, 1469(KBr)
MeO Me colorless MeO OMe	colorie	0	376 (M°) 54 (100)	2.07 (3H. s), 3.73 (3H. s), s), 3.93 (3H. s), 3.93 (2H. d), 1-8.56 Hz), 7.23 (1H. d, 1-8.56 Hz), 7.23 (1H. br s)	2.07 (3H. s.). 3.73 (3H. s.). 3.78 (3H. s.). 3.92 (3H. s.). 3.93 (3H. s.). 3.98 (2H. s.). 4.03 (3H. s.). 6.93 (1H. d. J=8.56 Hz.). 7.23 (1H. d. J=8.60 Hz.). 8.01 (1H. s.). 10.72 (1H. br. s.)	92 (3H. . 6.93 . 8.01	3274, 1733, 1465 (NaCI)

EP 1 314 712 A1

5		ا"-1)	3244, 1738, 1467 (NaCl)	2936, 1735, 1486, 1243 (NBCI)	1712, 1599, 1486, 1147 (NaCl)	1727, 1465, 1406, 1259 (NaCl)
10			f, s), 3,73 (3H, 4(2H, s), 3,98 1H, d, J=8,60 I (1H, s), 11,23	H, s), 3.79 (3H, 1 (2H, s), 6.87- 1 (2H, s), 6.87- 1 H, t, J=8.80 Hz),	H. s), 3.77 (3H. 1(3H, s), 4.00 1H. dd. J=8.22 1H2), 7.09-7.19	H. s). 3.87 (3H. 5(2H. s). 5.12 7.15 (1H. dd. 1H. m). 7.64 1H. m). 7.6
20		NMR(CDCI ₃ , &)	145 (6H, d. J=6.08 Hz), 2.07 (3H, s), 3.73 (3H, s), 3.78 (3H, s), 3.78 (3H, s), 3.98 (3H, s), 3.98 (2H, s), 4.76–4.80 (1H, m), 6.92 (1H, d, J=8.60 Hz), 8.01 (1H, s), 11.23 (1H, br s)	2.11 (3H, s), 3.74 (3H, s), 3.75 (3H, s), 3.79 (3H, s), 3.99 (3H, s), 3.93 (3H, s), 4.01 (2H, s), 6.87- 452 (M*+1, 100) 6.92 (3H, m), 7.02 (1H, t, J=7.40 Hz), 7.17 (1H, dd, J=8.44 and 2.08 Hz), 7.26 (2H, t, J=8.80 Hz), 7.71 (1H, d, J=2.00 Hz)	2.10 (3H, s), 3.73 (3H, s), 3.75 (3H, s), 3.77 (3H, s), 3.79 (3H, s), 3.92 (3H, s), 3.94 (3H, s), 4.00 (2H, s), 6.41-6.50 (2H, m), 6.59 (1H, dd. J=8.22 and 2.16 Hz), 6.89 (1H, d. J=8.44 Hz), 7.09-7.19 (2H, m), 7.71 (1H, d. J=1.96 Hz)	2.09 (3H, s), 3,1 (3H, s), 3,78 (3H, s), 3,87 (3H, s), 3,92 (3H, s), 3,94 (3H, s), 3,96 (2H, s), 5,12 (2H, s), 6,90 (1H, d, J=8,56 Hz), 7,15 (1H, dd, J=8,56 and 2.00 Hz), 7,28-7,32 (1H, m), 7,84 (1H, d, J=2,04 Hz), 7,86 (1H, d, J=7,80 Hz), 8,55 (1H, d, J=4,32 Hz), 8,69 (1H, br s)
<i>25</i> <i>30</i>		FABMS(m/z)	404 (M°. 100)	452 (M*+1, 100)	482 (M°) 73 (100)	467 (M°) 89 (100)
<i>35</i>		Appearance	colorless oil	colorless	colorless	colorless
40		Structure	te COOH	COOME	MeO COOMe	N OWN
45	e 10	Stru	мео ОМе Мео ОМе	MeO OMe MeO OMe	MeO OMe OMe	Neo Owe Neo Owe
<i>50</i>	Table	EX.No.	2	82	e 5	50

EP 1 314 712 A1

5	IR (cm ⁻¹)	1727, 1467, 1406, 1260 (NaCi)	1732. 1467. 1155 (NaCl)	3300, 1698, 1486, 1241 (NaCi)	3450, 1698, 1605, 1486, 1140 (NaCI)
10		i. s), 3.89 (3H. (2H. s), 5.10 15 (1H. dd. J=5.48 Hz), d, J=5.72 Hz)	. s), 3.67 (3H, (3H, s), 3.85 =8.56 Hz), 7.51 (1H, d	(14, d, J=8.56 (14, dd, G,	(2H, s), 6.74 (3H, 12), 6.74 (1H, 14z), 7.16 (
15	NMR(CDCI, &)	(3H, s), 3.78 (3H, s), 3.78 (3H, d), 1.96 (4, 1.96 (4, 1.96), 7, 42), 7.42 (2H, d), 1.6 Hz), 8.59 (2H, d), 1.6 Hz), 8.59 (2H, d)	(3H, s), 3.60 (3H, s), 3.60 (3H, s), 3.83 (s), 6.65 (1H, d, J, 4, g), 48 and 1.40 Hz).	(3H, s), 3.78 (3H, s), 6.73 (3H, c), 00 (2H, s), 6.73 (4H, c), 7.15 (4H, t, d), 7.19 (4H, t, d), 7.98 (4H, t, d)	(3H s), 3.72 (3H 92 (3H, s), 3.97 (10 (1H, d, J=8.52 h 19 (1H, d, J=8.24 9 (1H, d like)
20		2.09 (3H. s), 3.72 (3H. s), 3.78 (3H. s), 3.89 (3H, s), 3.92 (3H. s), 3.92 (2H. s), 3.95 (2H. s), 5.10 (2H. s), 6.84 (1H. d. J=8.56 Hz), 7.15 (1H. dd. J=8.48 and 2.00 Hz), 7.42 (2H. d. J=5.48 Hz), 7.67 (1H. d. J=1.96 Hz), 8.59 (2H. d. J=5.72 Hz)	1.35 (9H, s), 1.98 (3H, s), 3.60 (3H, s), 3.67 (3H, s), 3.77 (3H, s), 3.81 (3H, s), 3.83 (3H, s), 3.85 (2H, s), 3.85 (2H, d, J=8.56 Hz), 7.03 (1H, dd, J=8.48 and 1.40 Hz), 7.51 (1H, dike)	2.08 (3H, s), 3.74 (3H, s), 3.78 (3H, s), 3.91 (3H, s), 3.93 (3H, s), 4.00 (2H, s), 6.73 (1H, d, J=8.56 (2H, s), 1.00) Hz), 7.05 (2H, d, J=7.88 Hz), 7.15 (1H, dd, J=7.40 Hz), 7.19 (1H, t, J=7.40 Hz), 7.37 (2H, t, J=7.88 Hz), 7.98 (1H, d, J=1.96 Hz)	2.07 (3H, s), 3.71 (3H, s), 3.72 (3H, s), 3.77 (3H, s), 3.90 (3H, s), 3.92 (3H, s), 3.97 (2H, s), 6.54-6.57 (2H, m), 6.44 (1H, d, J=8.52 Hz), 6.74 (1H, d, J=8.24 Hz), 7.09 (1H, d, J=8.24 Hz), 7.16 (1H, d, J=8.12 Hz), 7.89 (1H, d like)
25	FABMS(m/z)	468 (M°+1) 179 (100)	490 (M°) 54 (100)	138 (M* +1, 100)	468 (M°) 59 (1∩0)
30	Appearance	colorless	colorless	colorless	colorless
35		z=	- / ,	H000	, HOOO
40	Structure	Me O Ne) - 0 8 2	Me O O O	Me O O O O O O O O O O O O O O O O O O O
45	St	MEO ONNE ONNE ONNE	Meo O O O O O O O O O O O O O O O O O O O	Me O O Me O O Me	Me O O O O O O O O O O O O O O O O O O O
s rable 11		ž ž		2 2	
Ĕ	Ex.No	21	22	23	22

EP 1 314 712 A1

5	IR (cm ⁻¹)	3425, 1700, 1467, 1261 (KBr)	3427, 1693, 1468, 1257 (NaCt)	3430, 1568, 1469, 1408 (KBr)	3448. 1570, 1466 (KBr)
15	NMR(CDCI3, &)	2.08 (3H. s), 3.72 (3H. s), 3.78 (3H. s), 3.92 (3H. s), 3.94 (3H. s), 3.99 (2H. s), 5.23 (2H. s), 6.96 (1H. d. J=8.48 Hz), 7.19 (1H. d. J=7.80 Hz), 7.30-7.39 (1H. m), 7.77 (1H. d. J=7.64 Hz), 7.95 (1H. br. s), 8.60-8.75 (1H. br.), 8.90-9.00 (1H. br.)	6		2.07 (3H, s), 3.64 (8H, m), 3.72 (3H, s), 3.78 (3H, s), 3.91 (2H, s), 3.92 (3H, s), 3.93 (3H,s), 6.86 (1H, s), 6.91 (1H, d, J=8.44 Hz), 7.15 (1H, dd, J=8.36 and 2.12 Hz), 9.31 (1H, br s)
20	NMR(C	2.08 (3H, s), 3.72 (3H, s), 3.78 (3H, s), 3.92 (3H s), 3.94 (3H, s), 3.99 (2H, s), 5.23 (2H, s), 6.96 (1H, d, J=8.84 kz), 7.19 (1H, d, J=7.80 Hz), 7.30-7.39 (1H, m), 7.77 (1H, d, J=7.64 Hz), 7.99 (1H, br s), 8.60-8.75 (1H, br), 8.90-9.00 (1H, br),	2.07 (3H, s), 3.73 (3H, s), 3.78 (3H, s), 3.91 (3H s), 3.93 (3H, s), 3.98 (2H, s), 5.76 (2H, s), 6.87 (1H, d, J=8.56 Hz), 7.19 (1H, d, J=8.44 Hz), 7.3 (2H, d, J=5.24 Hz), 7.98 (1H, br s), 8 66 (2H, d J=5.56 Hz)	1.53–1.56 (4H, m), 1.62–1.65 (2H, m), 2.07 (3H, s), 3.52–3.54 (4H, m), 3.70 (3H, s), 3.78 (3H, s), 3.90 (3H, s), 6.90 (1H, s), 6.90 (1H, d, J=8.36 Hz), 7.15 (1H, d, J=8.36 Hz), 9.48 (1H, br s)	2.07 (3H, s), 3.64 (8H, m), 3.72 (3H, s), 3.78 (3 s), 3.91 (2H, s), 3.92 (3H, s), 3.93 (3H,s), 6.86 (1H, s), 6.91 (1H, d, J=8.44 Hz), 7.15 (1H, dd, J=8.36 and 2.12 Hz), 9.31 (1H, br s)
30	FABMS(m/z)	453 (M') 93 (100)	454 (M* +1) 179 (100)	430 (M° +1) 69 (100)	432 (M° +1) 154 (100)
35	Appearance	colorless crystals 129-132 °C	colorless crystals 174-176°C	colorless crystals 184-188°C	colorless crystals 185-188°C
40	ture	Z O F	z= 0 + 5	- Z	± ° z
50 Te 15	Struc	MEO OWE WEO OWE	MeO ONE MeO ONE	MeO OMe	MeO OMe MeO OMe
s Table	Ex.No.	52	26	27	28

10		
15		
20		
25		
30		
35		
40		
45		
50		

Table 13

55

Structure Appearance FABMS(m/z) NMR(CDCl ₃ d)	(2H, m), 1.45-1.60 (4H, m), 3.14-3.17 (2H, m), 3.66-3.77 (4H, m), 3.70 (3H, s), 3.78 (2H, m), 3.36-3.77 (4H, m), 3.70 (3H, s), 3.95 (2H, s), (3.95 (2H, m), 1.74 (1H, d. J=7.88 (2H, m), 1.74 (2H, d. J=7.88 (2H, m), 1.74 (2H, d. J=7.88 (2H, d.	1.24-1.27 (2H, m), 1.38-1.43 (4H, m), 2.07 (3H, s), 3.18 (2H, t, J=5.60 Hz), 3.66-3.89 (2H, m), 3.00 (3H, s), 3.18 (2H, s), 3.91 (3H, s), 3.93 (3H, s), 3.93 (3H, s), 3.93 (3H, s), 3.94 (2H, s), 5.05 (1H, d, J=13.56 Hz), 5.10 (2H, d, J=13.56 Hz), 8.58 (100) (1H, d, J=13.56 Hz), 3.31 (2H, d, J=5.56 Hz), 8.58 (2H, d, J=5.44 Hz)	1.55-1.63 (6H, m), 2.09 (3H, s), 3.22-3.26 (2H, m), 3.53 (2H, s), 3.22-3.26 (2H, m), 3.53 (2H, m), 3.73 (3H, s), 3.79 (3H, s), 3.99 (2H, s), 6.81 (1H, 2936. 1630. 1468 (NaCl) d, J=8.40 Hz), 7.08 (1H, d, J=8.40 Hz), 7.12 (1H, s), 7.20-7.28 (2H, m), 8.32 (1H, d, J=3.96 Hz), 8.32 (1H, d, J=3.96 Hz)	Colorless 507 (M') 3.55-357 (2H, m), 2.10 (3H, s), 3.20-3.21 (2H, s), 3.50-3.21 (2H, s), 3.50-3.21 (2H, s), 3.80 (3H, s), 3.80 (3H, s), 3.80 (3H, s), 3.80 (3H, s), 6.82 (2H, s), 6.82 (
EX.No.	29 MeO OMe	30 MeO OMe	31 MEO OWE	32 Med Owe

EP 1 314 712 A1

45	Table 14	Ex.No. Structure	33 NASO OME	34 Neo Owe	35 MeO OMe Ne OMe	MeO MeO OMe
40			**- ° ° -	-X_3,	=z	Z= 0,
35		Appearance	colorless	colorless	colorless	colorless
30		FABMS(m/z)	502 (M* +1) 54 (100)	544 (M* +1) 54 (100)	522 (M [*]) 431 (100)	523 (M* +1) 93 (100)
25			1.26-1.63 (6H. m) m). 3.29-3.75 (2H 3.77 (3H. s). 3.91 (2H. m). 6.65 (1H. m)	1.38-1.63 (6H. m) 3.17-3.29 (2H. m) s), 3.77 (3H. s), 3. (1H, d, J=16.24 H 6.62 (1H, d, J=8.8	2 07 (3H, s), 3.213.23 (2H, m), m), 3.60-3.75 (4H, m), 3.71 (3H, 3.91 (3H, s), 3.95 (3H, s), 3.95 (3H, s), 3.95 (4H, d, J=9.12 Hz), 7.05 (7.29-7.30 (1H, m), 7.73 (1H, d, J=4.44 Hz), 8.62 (1H, s)	2.07 (3H, s), 3.24-m), 3.71-382 (4H), 3.71-382 (4H), 3.92 (3H, s), 3.93 (2H, m), 6.78 (1H, m), 7.30 (2H, d. J. Hz)
15		NMR(CDCI, 8)	1.26-1.63 (6H, m). 2.07 (3H, s). 3.18-3.26 (2H, m). 3.29-3.75 (2H, m). 3.70 (3H, s). 3.75 (3H, s). 3.77 (3H, s). 3.93 (5H, s). 4.61-4.62 (2H, m). 6.65 (1H, d, J=9.00 Hz), 7.00-7.02 (2H, m).	1.38-1.63 (6H. m). 1.46 (9H. s). 2.07 (3H. s). 3.17-3.29 (2H. m). 3.61-3.81 (2H. m). 3.69 (3H. s). 3.77 (3H. s). 3.91 (3H. s). 3.93 (5H. s). 4.44 (1H. d. J=16.24 Hz). 5.01 (1H. d. J=16.08 Hz). 6.62 (1H. d. J=8.80 Hz). 6.99-7.01 (2H. m)	2 07 (3H. s), 3.21-3.23 (2H. m), 3.46-3.49 (2H. m), 3.60-3.75 (4H. m), 3.71 (3H. s), 3.78 (3H. s), 3.91 (3H. s), 3.95 (2H. s), 5.07 (2H. s), 6.86 (1H. d. J-9.12 Hz), 7.05-7.07 (2H. m), 7.29-7.30 (1H. m), 7.73 (1H. d. J=7.80 Hz), 8.56 (1H. d. J=4.44 Hz), 8.62 (1H. s)	207 (3H, s), 3.24-3.29 (2H, m), 3.51-3.54 (2H, m), 3.71-3.82 (4H, m), 3.71 (3H, s), 3.78 (3H, s), 3.93 (3H, s), 3.95 (2H, s), 5.08-5.09 (2H, m), 6.78 (1H, d, J=8.36 Hz), 7.04-7.06 (2H, m), 7.30 (2H, d, J=5.52 Hz), 8.59 (2H, d, J=5.60 Hz)
10		R.				
5		IR (cm ⁻¹)	1760, 1626, 1468, 1207 (NDCI)	1751, 1628, 1468, 1156 (N ₃ Cl)	2934, 1636, 1465 (NaCl)	2935, 1645, 1484 (NaCl)

EP 1 314 712 A1

5	IR (cm ⁻¹)	2933, 1631, 1468 (NaCI)	2931, 1631, 1467 (N _B CI)	1758, 1632, 1466, 1209 (NaCl)	1749, 1633, 1467, 1222 (NaCI)
10					
15	NMR(CDCI, 6)	2.02 (3H, s), 3.25-3.28 (2H, m), 3.53-3.72 (6H, m), 3.67 (3H, s), 3.72 (3H, s), 3.84 (3H, s), 3.86 (3H, s), 3.95 (3H, s), 5.74 (1H, d, J=8.40 Hz), 7.02 (1H, d, J=8.42 Hz), 7.08 (1H, s), 7.16-7.19 (2H, m), 8.27 (1H, d like), 8.29 (1H, d like)	2.10 (3H, s), 3.29–3.31 (2H, m), 3.59–3.70 (6H, m), 3.75 (3H, s), 3.80 (3H, s), 3.93 (3H, s), 3.94 (3H, s), 3.94 (3H, s), 3.96 (3H, d, J=6.12 Hz), 6.96 (1H, d, J=8.24 Hz), 7.17–7.20 (2H, m), 8.44 (2H, d, J=5.64 Hz)	2.07 (3H, s), 3.23-3.76 (8H, m), 3.71 (3H, s), 3.76 (3H, s), 3.76 (3H, s), 3.78 (3H, s), 3.91 (3H, s), 3.93 (5H, s), 4.64 (2H, s), 6.63 (1H, d, J=8.52 Hz), 7.05 (1H, d) (ik.e), 7.30 (1H, s)	1.46 (9H, s), 2.07 (3H, s), 3.20–3.78 (8H, m), 3.70 (3H, s), 3.93 (5H, s), 4.50–4.51 (2H, d), 6.61 (1H, d, J=8.52 Hz), 7.01–7.07 (2H, m)
20	NMR(C	2.02 (3H, s), 3.25-3.28 (2H, m), 3.53-3.72 (6i m), 3.67 (3H, s), 3.72 (3H, s), 3.84 (3H, s), 3.5 (3H, s), 3.92 (2H, s), 6.74 (1H, d, J=8.40 Hz), 7.02 (1H, d, J=8.42 Hz), 7.08 (1H, s), 7.16-7. (2H, m), 8.27 (1H, d like), 8.29 (1H, d like)	2.10 (3H, s), 3.29–3.31 (2H, m), 3.59–3.70 (6i m), 3.75 (3H, s), 3.80 (3H, s), 3.93 (3H, s), 3.5 (3H, s), 4.02 (2H. s), 6.81 (2H, d, J=6.12 Hz), 6.96 (1H, d, J=8.24 Hz), 7.17–7.20 (2H, m), 8 (2H, d, J=5.64 Hz)	2.07 (3H, s), 3.23–3.76 (3H, s), 3.78 (3H, s), 3.9 (4.64 (2H, s), 6.63 (1H, d) (4.6), 7.30 (1H, s)	1.46 (9H. s). 2.07 (3H. s). (3H. s). 3.78 (3H. s). 3.94 (3H. m). 6.61 (2H. m). 6.61 7.07 (2H. m)
	(2)			100)	
30	FABMS(m/z)	509 (M ⁻ +1) 73 (100)	509 (M*+1) 52 (100)	504 (M°+1,	545 (M ²) 54 (100)
35	Appearance	colorless	colorless	colorless	colorless
40			z - 0 - z - 0		، کے
45	Structure	N O O O O O O O O O O O O O O O O O O O	owe owe	Owe West	
g Table 15		MeO	WEO WEO	MeO MeO	WEO.
Ţ	S. No.	33	æ	39	04

EP 1 314 712 A1

5	10 (cm ⁻¹)	3450, 1703, 1644, 1605 (KBr)	3436, 1648, 1610 (KBr)	3448, 1736, 1654, 1612 (KBr)	3206, 1723, 1647, 1619 (KBr)
15	NMR(CDCI, &)	2.03 (3H. s). 3.85 (2H. s). 4.00 (3H. s). 4.01 (3H. s). 5.27 (2H. s). 6.90-7.00 (2H. m). 7.30-7.50 (5H. m). 8.08 (1H. d. J=8.2)	2.01 (3H, s), 3.96 (3H, s), 4.01 (3H, s), 4.03 (2H. s), 5.17 (2H, s), 6.59 (1H, d, J=7.8 Hz), 6.88 (1H, d, J=8.3 Hz), 7.20-7.50 (6H, m)	2.09 (3H, s), 3,83 (2H, s), 3,99 (3H, s), 4,00 (3H, s), 5,26 (2H, s), 7,04 (1H, d, J=8,00 Hz), 7,36-7,39 (1H, m), 7,97 (1H, d, J=2,40 Hz)	1.92 (3H, s), 3.91 (2H, s), 3.97 (3H, s), 4.00 (3H, s), 5.13 (2H, s), 7.13–7.17 (2H, m), 7.35–7.49 (5H, m), 7.92–7.93 (1H, m)
20	NMR	2.03 (3H. s). 3.85 (2H. s). 4. 5.27 (2H. s). 6.90-7.00 (5. (5H., m). 8.08 (1H. d. J=8.2)	201 (3H, s), 3.96 (3H, s), 4.01 s), 5.17 (2H, s), 6.59 (1H, d, J=7) d, J=8.3 Hz), 7.20-7,50 (6H, m)	2.09 (3H, s), 3.83 (2H, s), 5.26 (2H, s), 7.04 (° 7.39 (1H, m), 7.39-7.41 J=2.40 Hz)	1,92 (3H, s), 3,91 (2H, s), 3 s), 5,13 (2H, s), 7,13–7,17 ((5H, m), 7,92–7,93 (1H, m)
30	FABMS(m/z)	423(M ⁻ +1) 154 (100)	423(M*+1) 154 (100)	423 (M* +1) 154 (100)	423 (M* +1) 91 (100)
35	Popularion	yellow powder 139-140°C	yellow powder 129-130°C	yellov crystals 93.0-94.0°C	yellow crystals 154-156°C
40	1140	HOOOD	H0000	HOOO	
45	or to	MeO MeO	мео	MeO Me	MeO MeO
20 CT	TO ST.		,2 M M	£ 5 N	4

3464, 1646 (KBr)

2.02 (3H, s), 3.81 (2H, s), 3.96 (3H, s), 3.97 (3H, s), 6.55-6.70 (2H, s), 7.74 (1H, d, J=8.0 Hz)

333 (M*+1) 154 (100)

yellow powder 157-158°C

Ģ

=0

MeO,

48

ĊOOH

0=

MeO,

5	IR (cm ⁻¹)	3100, 1745, 1690, 1667. 1609 (KBr)	3428. 1772. 1687. 1612 (KBr)	3400, 1767, 1654, 1612 (KBr)
15	Cı _{s.} δ)	3.89 (2H. s). 4.00 (6H. d. J=8.1 Hz). 8.00 (1H.	3.88 (2H. s), 4.00 (6H. 2), 7.44 (1H. dd. J=8.32 3. J=2.08 Hz)	3.80 (2H. s.). 3.99 (3H. 2 (2H. m.). 7.93 (1H. d. H. br)
20	NMR(CDCI3, &)	2.09 (3H, s), 2.32 (3H, s), 3.89 (2H, s), 4.00 (6H, s), 6.94 (1H, s), 7.16 (1H, d, J=8.1 Hz), 8.00 (1H, d, J=8.1 Hz)	2.12 (3H s), 2.32 (3H. s), 3.88 (2H. s), 4.00 (6H. s), 7.03 (1H. d, J=8.28 Hz), 7.44 (1H. dd, J=8.32 and 2.16 Hz), 7.91 (1H, d, J=2.08 Hz)	1,97 (3H s), 2,32 (3H, s), 3,80 (2H, s), 3,99 (3H, s), 4,00 (3H, s), 7,21-7,32 (2H, m), 7,93 (1H, d, d, J=7,56 Hz), 9,30-9,80 (1H, br)
30	FABMS(m/z)	375 (M* +1) 154 (100)	375 (M' +1) 154 (100)	375 (M' +1) 154 (100)
35	Appearance	yellow crystals 80-81 °C	red crystals 108-110°C	red Crystals 83.85°C
40	ture	СООН	ОАС	COOH
45	Struc	0 = 0	0= 0 0= 0	0 = 0 = 0
s Table 17	, o	M We O	MeO MeO	M MeO
55	Ex.No	45	9 4	4 4 7

EP 1 314 712 A1

5	IR (cm ⁻¹)	3407, 1652, 1611 (KBr)	3450, 1653, 1614 (KBr)	3446, 1699, 1650, 1605 (KBr)	3246, 1736, 1648, 1611 (N3CI)
15	NMR(CDCI). 6)	2.06 (3H, s), 3.78 (2H, s), 3.95 (3H, s), 3.96 (3H, s), 6.76 (1H, d, J=8.48 Hz), 7.20 (1H, dd, J=8.44 and 2.00 Hz), 7.63 (1H, d, J=1.76 Hz) (in CD3OD)	1.99 (3H. s.), 3.82 (2H. s.), 4.00 (3H. s.), 4.01 (3H. s.), 7.23-7.27 (1H, m), 7.34-7.36 (1H, m), 7.98 (1H, d. J=7.64 Hz.)	2.09 (3H. s), 3.83 (2H. s), 3.98 (3H. s), 3.99 (3H. s), 4.05 (3H. s), 6.97 (1H. d. J=8.60 Hz), 7.41 (1H. dd, J=8.52 and 2.40 Hz), 7.95 (1H. d. J=2.32 Hz), 10.40-11.20 (1H. br)	146 (6H, d. J=6,12 Hz), 2.09 (3H, s), 3.82 (2H, s), 3.99 (6H, s), 4.79-4.85 (1H, m), 6.96 (1H, d. J=8.64 Hz), 7.38 (1H, dd. J=8.48 and 2.36 Hz). 7.96 (1H, d. J=2.36 Hz), 11.16 (1H, br. s)
25	NMR	2.06 (3H, s), 3.78 (2H, s), 3.95 (3H, s), 3.9 s), 6.76 (1H, d, J=8.48 Hz), 7.20 (1H, dd, and 2.00 Hz), 7.63 (1H, d, J=1,76 Hz) (in CD3OD)	(1.99 (3H. s.). 382 (2H. s). 7.23-7.27 (1H. m). (1H. d. J=7.64 Hz)	2.09 (3H. s). 3.83 (2H. s). s). 4.05 (3H. s). 6.97 (1H. (1H. dd, J=8.52 and 2.40 Hz). 10.40-11.20 (1H. br)	1.46 (6H, d. J=6.12 Hz), 2.09 (3H, s.), 3.8; s.) 3.99 (6H, s.), 4.79-4.85 (1H, m.), 6.96 (J=8.64 Hz), 7.38 (1H, dd, J=8.48 and 2.3 7.96 (1H, d. J=2.36 Hz), 11.16 (111, br s.)
30	FABMS(m/z)	333 (M ² +1) 154 (100)	333 (M. +1) 154 (100)	347 (M° +1) 154 (100)	375 (M* +1) 154 (100)
35	Appearance	yellow crystals 206-207°C	yellow crystals 109-111.5°C	yellow crystals 127-129°C	yellow oil
40	ucture	H000	Me COOH	Ме СООН	Me COOH
45 &	Struc	MeO MeO	MeO MeO	MeO MeO	MeO O O O
rable	EX.No.	0 V V	So Me	12 M M	52

EP 1 314 712 A1

	50	45	40	35	30	25	15		5	
Tat	Table 19									[
x.No.		Structure		Appearance	FABMS(m/z)	N.	NWR(CDCI, 6)		IR (cm ⁻¹)	\neg
53	MeO	W We	Соон	yellow crystals 102-105°C	409 (M° +1) 154 (100)	2.09 (3H, s), 3,83 (2 s), 6.77 (1H, d, J=8, Hz), 7.19 (2H, t, J=' Hz), 7.37 (2H, t, J='	209 (3H, s), 3,83 (2H, s), 3,98 (3H, s), 3,99 (3H, s), 6,17 (1H, d, J=8,56 Hz), 7,04 (2H, d, J=7,88 Hz), 7,19 (1H, d, J=7,36 Hz), 7,28 (1H, d, J=8,56 Hz), 7,37 (2H, t, J=7,60 Hz), 7,92 (1H, br s)	9 (3H. =7.88 J=8.56 s)	3415, 1652, 1613, 1487 (KBr)	487
54	MeO	O= No	HOOO2	yellow crystals 142-144°C	439 (M* +1) 154 (100)	2.10 (3H, s), 3.80 (3 s), 3.99 (3H, s), 6.6; (2H, m), 7.25-7.32 (2.10 (3H, s), 3.80 (3H, s), 3.84 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 6.63-6.66 (2H, m), 6.78-6.81 (2H, m), 7.95-7.98 (1H, m)	8 (3H,	3428. 1706. 1649. 1608. 1490 (KBr)	908.
55	MeO MeO	0=()=0	H000	yellow crystals 187-190°C	424 (M" +1) 154 (100)	2.11 (3H, s), 3.84 (2H, s), 3.99 (6H, s). s), 7.02 (1H, d, J=8.56 Hz), 7.38-7.44 (5 7.78 (1H, d, J=7.96 Hz), 7.94 (1H, d, J= 8.77 (1H, d, J=4.32 Hz), 8.98 (1H, br. s)	2.11 (3H, s), 3.84 (2H, s), 3.99 (6H, s), 5.26 (2H, s), 7.02 (1H, d, J=8.56 Hz), 7.38-7.44 (2H, m), 7.78 (1H, d, J=7.96 Hz), 7.94 (1H, d, J=2.24 Hz), 8.77 (1H, d, J=4.32 Hz), 8.98 (1H, br s)	26 (2H. m). 14 Hz).	3430, 1648, 1612 (KB/)	Br)
56	MeO MeO	Me Me	Z HOOOD	yellow crystals 178-181°C	- 424 (M* +1) 154 (100)	1.98 (3H, s), 3.77 (2 s), 5.35 (2H, s), 7.0 (1H, d, J=840 H2), 7.77-7.78 (2H, d lik	1.98 (3H, s), 3.77 (2H, s), 3.88 (3H, s), 3.89 (3H, s), 5.35 (2H, s), 7.07 (1H, d, J=8.60 Hz), 7.30 (1H, d, J=1.56 Hz), 7.30 (1H, d, J=1.56 Hz), 7.71-7,78 (2H, d like), 8.74-8.75 (2H, d like)		3414, 1718, 1658, 1612 (KBr.)	(KBr)

EP 1 314 712 A1

5	IR (cm ⁻¹)	1608 (NaCi)	1644, 1609 (KBr)	1654, 1608 (KBr)	1643. 1611 (KBr)
15	NMR(CDCL, 8)	1.20-1.90 (6H, m), 1.99 (3H, s), 3.05-3.30 (2H, m), 3.60-3.85 (2H, m), 3.79 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 5.00-5.15 (2H, m), 6.73 (1H, s), 6.78 (1H, d, J=7.7 Hz), 7.13 (1H, d, J=7.7 Hz), 7.20-7.45 (5H, m)	2.01 (3H, s), 3.10-3.35 (2H, m), 3.40-3.55 (2H, m), 3.55-3.90 (4Hm), 3.80 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 5.07 (2H, s), 6.77 (1H, s), 6.80 (1H, d, J=7.7 Hz), 7.17 (1H, d, J=7.7 Hz), 7.20-7.45 (5H, m)	2.09 (3H, s), 3.76 (3H, s), 3.89 (2H, s), 4.01 (6H, s), 5.20 (2H, s), 6.75 (2H, d, J=8.9 Hz), 6.93 (1H, d, J=8.0 Hz), 7.35-7.55 (5H, m), 8.21 (1H, d, J=8.0 Hz), 9.78 (1H, s)	2.09 (3H, s), 382 (3H, s), 3.05 (3H, s), 3.96 (2H, s), 3.99 (3H, s), 5.13 (2H, s), 6.58 (1H, d), 6.80-6.95 (3H, m), 7.19 (1H, t), 7.20-7.45 (5H, m), 7.51 (2H, d), 8.18 (1H, s)
25	NMR(1.20-1.90 (6H, m), 1.5 m), 3.60-3.85 (2H, m), 4.00 (3H, s.), 5.00-5.15 (1H, d. J=7.7 Hz), 7.13 7.45 (5H, m)	2.01 (3H, s), 3.10-3.3; m), 2.55-3.90 (4Hm), 3 4.00 (3H, s), 5.07 (2H, s) d, J=7.7 Hz), 7.17 (1H, (5H, m)	2.09 (3H, s), 3.76 (3H, s), 3.89 (2H, s), 4.01 s), 5.20 (2H, s), 6.75 (2H, d, J=8.9 Hz), 6.93 d, J=8.1 Hz), 6.98 (1H, s), 7.19 (2H, d), 7.35 (5H, m), 8.21 (1H, d, J=8.0 Hz), 9.78 (1H, s)	2.09 (3H, s), 382 (3H, s), 395 (3H, s), 3.96 s), 3.99 (3H, s), 5.13 (2H, s), 6.58 (1H, d), 6 6.95 (3H, m), 7.19 (1H, t), 7.20-7.45 (5H, m), 7.51 (2H, d), 8.18 (1H, s)
30	FABMS(m/z)	490 (M*+1) 154 (100)	492 (M*+1) 154 (100)	528(M'+1) 154 (100)	528(M*+1) 154 (100)
35	Appearance	Yellow Oil	yellow powder 58-60°C	yellow powder 149.150°C	yellow powder 129-130°C
40	Structure			D O O O O O O O O O O O O O O O O O O O	
45		MeO O MeO	мео	Me O Me	N.C.O.
s Table 20	_				
	Ex. No	53	88	88	09

EP 1 314 712 A1

5	IR (cm ⁻¹)	1644, 1614, 1456 (N ₃ C!)	1640, 1612, 1440 (NaCi)	3356, 1664, 1611, 1512 (KBr)	1628. 1610, 1436, 1267 (NaCI)
15	NMR(CDCI, 6)	1.38–1.90 (6H, m), 2.06 (3H, s), 3.11–3.21 (2H, m), 3.56–3.84 (4H, m), 3.98 (3H, s), 3.99 (3H, s), 5.04 (1H, d, 12.04 Hz), 5.09 (1H, d, J=12.12 Hz), 6.82 (1H, d, J=8.52 Hz), 7.03 (1H, d, J=2.12 Hz), 7.11 (1H, dd, J=8.48 and 2.12 Hz), 7.27–7.38 (5H, m)	199 (3H s), 3.12–3.18 (2H m), 3.40–3.42 (2H, m), 3.53–3.75 (6H, m), 3.91 (3H, s), 3.92 (3H, s), 4.98 (2H, s), 6.79 (1H, d, J=8.48 Hz), 7.00 (1H, d, J=2.20 Hz), 7.08 (1H, dd, J=8.52 and 2.16 Hz), 7.24–7.29 (5H, m)	2.11 (3H, s), 3.76 (3H, s), 3.85 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 5.17–5.18 (2H, m), 6.74 (2H, d, J=9.04 Hz), 7.18 (2H, d, J=8.52 Hz), 7.18 (2H, d, J=9.04 Hz), 7.33 (1H, d, J=8.44 Hz), 7.44–7.50 (5H m), 8.11 (1H, s), 9.84 (1H, br s)	1.38-1.62 (6H, m), 1.90 (3H, s), 3.14-3.19 (2H, m), 3.51-3.78 (2H, m), 3.79-3.90 (2H, m), 3.97 (3H, s), 3.99 (3H, s), 3.99 (3H, s), 4.98 (1H, d, 11.00 Hz), 5.09 (1H, d, J=7.16 Hz), 7.05 (1H, t, J=7.60 Hz), 7.17 (1H, d, J=7.20 Hz), 7.32-7.43 (5H, m)
25	NMR(C	1.38–1.90 (6H, m), 2.06 (3H, s), 3.11–3.21 (2h m), 3.55–3.84 (4H, m), 3.98 (3H, s), 3.99 (3H, 5.04 (1H, d, 12.04 Hz), 5.09 (1H, d, J=12.12 P 6.82 (1H, d, J=8.52 Hz), 7.03 (1H, d, J=2.12 P 7.11 (1H, dd, J=8.48 and 2.12 Hz), 7.27–7.38 (5H, m)	1.99 (3H, s), 3.12–3.18 m), 3.53–3.75 (6H, m), 4.98 (2H, s), 6.79 (1H, d J=2.20 Hz), 7.08 (1H, d	2.11 (3H, s), 3.76 (3H, s), 3.85 (2H, s), 3.99 (3H, s), 5.17–5.18 (2H, m), (J=9.04 H2), 7.03 (1H, d, J=8.52 H2), J=9.04 H2), 7.33 (1H, d, J=8.44 H2) (5H m), 8.11 (1H, s), 9.84 (1H, br s)	1.38–1.62 (6H, m), 1.90 (3H, s), 3.14–3.19 (2, m), 3.57–3.78 (2H, m), 3.79–3.90 (2H, m), 3.96 (2H, m), 3.96 (2H, d), 11.00 Hz), (3H, s), 3.99 (3H, d, 11.00 Hz), 6.94 (1H, d, J=7.16 Hz), 7.05 (1H, t, J=7.60 Hz), 7.17 (1H, d, J=7.20 Hz), 7.32–7.43 (5H, m)
30	FABMS(m/z)	490 (M° +1) 154 (100)	492 (M° +1) 91 (100)	528 (M° +1) 154 (100)	- 490 (M* +1) 154 (100)
35	Appearance	red-yellow oil	red-yellow oil	yellow crystals 113-115°C	yellow oil
40	Structure	0 2 2		O N N N N N N N N N N N N N N N N N N N	
45	Stru	Me We	We we	0==C	MeO MeO
rable :	Ex.No.	MeO	MeO 62 MeO	MeO MeO	₹ . ₹
	ă				<u> </u>

EP 1 314 712 A1

5		IR (cm ⁻¹)	1634, 1611, 1434 (NaCl)	3286, 1649, 1611, 1516 (KBr.)	1767, 1654, 1611 (KBr)	1766, 1650, 1614 (NaCI)
15		NMR(CDCI, 6)	1.92 (3H, s), 3.16–3.22 (2H, m), 3.48–3.85 (6H, m), 3.78–3.95 (6H, m), 3.98 (3H, s), 4.00 (3H, s), 5.03 (2H, s), 6.96 (1H, d, J=7.46 Hz), 7.08 (1H, t, J=7.40 Hz), 7.34–7.43 (5H, m)	193 (3H, s), 3.72 (3H, s), 3.89 (2H, s), 3.92 (3H, s), 3.95 (3H, s), 3.95 (3H, d, 3.95 (3H, d, 3.96) (3H, d, 3.97 (3H, d,	2.10 (3H, s.), 2.33 (3H, s.), 3.82 (3H, s.), 3.88 (2H, s.), 4.00 (6H, s.), 6.88 (2H, d.), 6.97 (1H, s.), 7.17 (1H, d.), 7.47 (2H, d.), 7.76 (1H, d.), 8.86 (1H, s.)	124-1.87 (6H, m), 2.07 (3H, s), 2.25 (3H, s), 3.18-3.20 (2H, m), 3.56-3.98 (4H, m), 3.99 (3H, s), 4.00 (3H, s) 6.84-7.10 (2H, m), 7.21 (1H, d, J=8.00 Hz)
20		NMR(C	1.92 (3H. s.). 3.16–3.22 m.). 3.78–3.95 (2H. m.). 3.03 (2H. s.). 6.96 (1H. J=7.64 Hz). 7.20 (1H. d.).	1.93 (3H, s), 3.72 (3H, s), 3.92 (3H, s), 5.01 (2Hz), 6.98 (1H, d, J=7.44Hz), 7.29-7.35 (7H, m), 9.38 (1H, br s)	2.10 (3H, s), 2.33 (3H, s), 4.00 (6H, s), 6.88 (2	1.24–1.87 (6H, m), 2.07 3.18–3.20 (2H, m), 3.56 s), 4.60 (3H, s) 6.84–7, J=8.00 Hz)
30		FABMS(m/z)	492 (M* +1) 91 (100)	528 (M* +1) 154 (100)	480 (M*+1) 154(100)	442 (M° +1) 154 (100)
35		Appearance	yellow oil	yellow crystals 138.5-140 °C	yellow crystals 147-148°C	red oil
40		cture		IZ	H OAc	0 V V
45	22	Stru	MEO O O O	MeO MeO	aw o	o Ž
50	Table 2	Ex.No.	2 2	Σ Σ 9	67 MeO	Me O Me O
		×	9	° ا	9	ک

EP 1 314 712 A1

5		IR (cm ⁻¹)	1766. 1644. 1612 (NaCI)	2.10 (3H, s), 2.31 (3H, s), 3.80 (3H, s), 3.86 (2H, s), 6.89 (2H, d, J=8.80 Hz), 7.05 (1H, d, J=8.24 and 1.72 3496, 1766, 1044, 1612 (KBA) Hz), 7.48 (2H, d, J=8.80 Hz), 7.64 (1H, s), 7.96 (1H, br s)	1766. 1636. 1610 (NeC!)	1766. 1644, 1613 (NaCI)
15		NNIR(CDCI, &)	2.09 (3H, s), 2.67 (3H, s), 3.20-3.30 (2H, m), 3.56-3.84 (8H, m), 3.99 (3H, s), 4.00 (3H, s), 7.05 (1H, d, J=8.40 Hz), 7.11 (1H, d, J=1.84 Hz), 7.24 (1H, dd, J=8.34 and 1.88 Hz)	2.10 (3H, s), 2.31 (3H, s), 3.80 (3H, s), 3.86 (2H, s), 3.99 (6H, s), 6.89 (2H, d, J=8.80 Hz), 7.05 (1H, d, J=8.24 and 1.72 Hz), 7.48 (2H, d, J=8.80 Hz), 7.64 (1H, s), 7.96 (1H, br s)	1.50-1.63 (6H, m), 1.97 (3H, s), 2.28 (3H, s), 3.15-3.25 (2H, m), 3.60-3.70 (2H, m), 3.76 (2H, s), 4.00 (3H, s), 4.01 (3H, s), 7.06-7.18 (3H, m)	1.98 (3H, s), 2.29 (3H, s), 3.31–3.39 (2H, m), 3.59–3.83 (6H, m), 3.77 (2H, S), 3.99 (3H, s), 4.00 (3H, s), 7.09–7,19 (3H, m)
20		RNN	2.09 (3H, s), 2.67 (3H, s), 3.20 3.56–3.84 (8H, m), 3.99 (3H, i (1H, d, J=8.40 Hz), 7.11 (1H, (1H, dd, J=8.34 and 1.88 Hz)	2.10 (3H. s). 2.31 (3H s). 3.99 (6H. s). 6.89 (1H, d. J=8.40 Hz), 7. Hz). 7.48 (2H. d. J=8. (1H. br. s)	1,50-1,63 (6H m), 1,5 3,15-3,25 (2H m), 3,1 s), 4,00 (3H, s), 4,01	1.98 (3H, s), 2.29 (3H, s), 3.31- 3.59-3.83 (6H, m), 3.77 (2H, S), 4.00 (3H, s), 7.09-7,19 (3H, m)
30		FABMS(m/z)	444 (M° +1) 154 (100)	480 (M°+1) 154 (100)	442 (M°+1) 136 (100)	444 (M° +1) 154 (100)
35		Appearance	red oil	yallow crystals 170-171.5°C	yellow 011	yellow oil
40		ture	OAC	OAC	O O O O O O	O-Ac O-Ac
45	23	Structure	O O O O O O O O O O O O O O O O O O O	W We	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e W
50	Table		MeO MeO	Me O	MeO MeO	MeO MeO
	Ta	Ex.No.	69	20	~	. 22

EP 1 314 712 A1

5	IR (cm ⁻¹)	3332, 1766, 1648, 1612 (KBr)	3198, 1642, 1607 (KBr)	3150, 1648, 1611 (KBr)	3322, 3076, 1648, 1610 (KBr)
15	NMR(CDC1, &)	1.98 (3H. s). 2.29 (3H. s). 3.78 (2H. s). 3.79 (3H. s). 3.98 (3H. s). 4.00 (3H. s). 6.88 (2H. d. J=8.84Hz). 7.17-7.21 (2H. m). 7.47 (2H. d. J=8.60 Hz). 7.55 (1H. d. J=7.00 Hz). 7.71 (1H. br s)	1.60-1.72 (6H, m), 2.10 (3H, s), 3.60-3.63 (4H, m), 3.75 (2H, s), 3.98 (6H, s), 6.89 (1H, d, J=8.40 Hz), 7.07 (1H, d, J=1.80 Hz), 7.14 (1H, dd, J=8.48 and 1.88 Hz), 9.49 (1H br s)	10H, m), 3,98 (3H, s), , J=8.40 Hz), 7.10-7.17	2.02 (3H, s), 3.66 (2H, s), 3.72 (3H, s), 3.86 (3H, S), 3.87 (3H, s), 6.78-6.82 (3H, m), 7.10 (1H, dd, J=8.40 and 1.68 Hz), 7.33 (2H, d, J=8.88 Hz), 7.33 (2H, d, b=s)
25	NMR(CI	1.98 (3H. s). 2.29 (3H. s). 3.78 (2H. s). 3.79 s). 3.98 (3H. S). 4.00 (3H. s). 6.88 (2H. d. J=8.84Hz). 7.17 -7.21 (2H. m). 7.47 (2H. d. J=8.60 Hz). 7.55 (1H. d. J=7.00 Hz). 7.71 (s)	1.60-1.72 (6H, m), 2.10 (3H, s), 3.60-3.53 (4H, m), 3.75 (2H, s), 3.98 (6H, s), 6.89 (1H, d, J=8.4 hz), 7.07 (1H, d, J=1.80 Hz), 7.14 (1H, dd, J=8.48 and 1.88 Hz), 9.49 (1H br s)	2.11 (3H, s), 3.70–3.74 (10H, m), 3.98 (3H, s), 3.99 (3H, s), 6.91 (1H, d, J=8.40 Hz), 7.10–7.17 (2H, m), 9.37 (1H, br s)	2.02 (3H, s), 3.66 (2H, s), 3.72 (3H, s), 3.53, 3.87 (3H, s), 6.78-6.82 (3H, m), 7.10 J=8.40 and 1.68 Hz), 7.33 (2H, d, J=8.7), 3.88 (1H, d, J=1.44 Hz), 8.22 (1H, br s)
30	FABMS(m/2)	479 (M') 154 (100)	400 (M° +1) 69 (100)	402 (M° +1) 154 (100)	438 (M* +1) 154 (100)
35	Appearance	red crystals 73-75 °C	Yellow crystals 131-134 °C	yellow crystals 145-146 °C	yellow crystals 121-122 °C
40	re	IZ DEO			O TO OH
45 C	Structure	O W W O	0 - O	O O O	o= w
50 C	g	MeO MeO	MeO.	M Me	Me O
	EX.No	7.3	74	7.5	76
55					

EP 1 314 712 A1

red-yellow 414 (M* +1, 100) 3.99 (3H, s), 3.12-3.17 (2H, m), 3.71-3.84 (4H, m), 3.78 (3H, s), 3.98 (3H, s), 3.99 (3H, s), 6.79 (1H, d, J=8.48 Hz), 7.00 (1H, d, J=8.20 Hz), 7.20 (1H, d, J=8.50 and 2.24 Hz)

Re

MeO

Meo/

8

5		IR (cm ⁻¹)	3300, 1650, 1610 (NaCl)	3692, 1645, 1612 (KBr)	3372, 1639, 1610 (KBr.)
15		I ₃ . δ)	s) 3.62-3.77 (4H. s) 3.99 (3H. s). 6.72- d, m). 9.99 (1H. br s)	. J=7.68 Hz), 7.98 (3H. . J=7.68 Hz), 7.09 (1H. J=7.50 Hz), 9.85 (1H.	88 (2H s), 3.98 (3H. . J=7.76 Hz), 6.92 (2H. J=884 Hz), 7.38 (1H. J=8.96 Hz), 7.91 (1H.
20		NMR(CDCI, &)	1.51-1.71 (6H m). 2.06 (3H, s). 3.62-3.77 (4H. m). 3.86 (3H, s). 3.98 (2H, s). 3.99 (3H, s). 6.72- 6.75 (1H, m). 7.09-7.24 (2H, m). 9.99 (1H, br s)	2.07 (3H, s), 3.72 (8H, s), 3.86 (2H, s), 3.98 (3H, s), 4.00 (3H, s), 6.76 (1H, t, J=7.68 Hz), 7.09 (1H, d, J=7.50 Hz), 9.85 (1H, br s)	2.06 (3H, s), 3.81 (3H, s), 3.89 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 6.80 (1H, t, 1=7.75 Hz), 6.92 (2H, d, 1=7.92 Hz), 7.24 (1H, d, 1=8.84 Hz), 7.38 (1H, d, 1=8.95 Hz), 7.91 (1H, br s)
30		FABMS(m/z)	400 (M' +1) 154 (100)	- (- (10D) 54 (10D) 54 (10D) 15	438 (M* +1)
35		Appearance	yellow	yellow crystals 128-129°C	yellow crystals 109-110.5°C
40		ıre	_z =0 _T	O	IZ =0
45	S	Structure	N N N N N N N N N N N N N N N N N N N	о — — о — о — о — о — о — о — о — о — о	M Me
50	Table 25		MeO MeO	Me O Me O	Meo Oo Oo
55	H	Ex.No.	17	78	67

EP 1 314 712 A1

Ta	s rable 26	45	40	35	30	25	20	15	10	5
Ex. No.		Structure		Appearance	FABMS(m/z)		NMR(CDC), 8)		[R (cm ⁻¹)	
25	Me O O	We	OMe	red-yellow	416 (M* +1) 154 (100)	2.07 (3H, s), 3.21- m), 3.61-3.92 (6H 3.99 (3H, s), 6.80 J=2.12 Hz), 7.17 (2.07 (3H, s), 3.21-3.24 (2H, m), 3.57-3.59 (2H, m), 3.61-3.82 (6H, m), 3.80 (3H, s), 3.98 (3H, s), 3.99 (3H, s), 6.80 (1H, d, J=8.52 Hz), 7.04 (1H, d, J=2.12 Hz), 7.17 (111, dd, J=8.40 and 2.24 Hz)	-3.59 (2H. 3.98 (3H. s). 7.04 (1H. d. 3.2.24 Hz)	1644, 1611, 1263 (N _B CI)	3 (NaCI)
82	Me O	Me N	OMe	red-yellow oil	452 (M° +1) 154 (100)	2.11 (3H, s), 3.81 s), 4.01 (3H, s), 6. J=8.56 and 2.40H 2.08 Hz), 8.07 (1H	2.11 (3H, s), 3.81 (3H, s), 3.85 (2H, s), 3.98 (6H, s), 4.01 (3H, s), 6.88-6.95 (3H m), 7.32 (1H, dd. J=8.56 and 2.40Hz), 7.55 (2H, dd. J=6.94 and 2.08 Hz), 8.07 (1H, d, J=2.36 Hz), 9.63 (1H br s)	3.98 (6H. .32 (1H. dd. -6.94 and 53 (1H br s)	3356, 1654, 1610, 1512, 1245 (NaCl)	0. 1512. Ci)
83	M MeO		9, (red-yellow oil	442 (M° +1, 100)	1,26-1,62 (6H, m), 1,60- s), 3,10-3,19 (2H, m), 3, (3H, s), 3,99 (3H, s), 4,4, d, J=8,56 H2), 6,99 (1H, dd, J=8,35 and 2,12 H2)	1.26-1.62 (6H, m), 1.60-1.64 (6H, m), 2.06 (3H, ced-yellow 442 (M* +1, 100) (3H, s), 3.10-3.19 (2H, m), 3.10-3.82 (4H, m), 6.77 (1H, cill 442 (M* +1, 100) (3H, s), 3.99 (3H, s), 4.45-4.49 (1H, m), 6.77 (1H, cill 442 (M* +1, 100) (4, J=8.56 Hz), 6.39 (1H, cill 4, J=2.20 Hz), 7.11 (1H, cill 4, J=2.20 Hz), 7	. m). 2.06 (3H. . m). 3.98 m). 6.77 (1H. 2). 7.11 (1H.	1636, 1610, 1285 (NaCI)	S (NaCI)
48	M Meo	We we will be a second of the	\	red-yellow oil	-444 (M° +1) 154 (100)	1.27-1.33 (6H m) m), 3.57-3.85 (8H 4.47-4.53 (1H m) (1H, d, J=2.20 Hz) Hz)	1.27-1.33 (6H, m). 2.07 (3H, s). 3.18-3.27 (2H, m). 3.57-3.85 (8H, m). 3.98 (3H, s). 3.99 (3H, s). 4.47-4.53 (1H, m). 6.78 (1H, d, J=8.50 Hz). 7.03 (1H, d, J=8.50 and 2.20 Hz).		3346, 1645, 1611, 1264 (NeCl)	284 (N ₆ CI)

EP 1 314 712 A1

	IR (cm²¹)	1662, 1610, 1511, 1260 (NaCl)	1636. 1612. 1485 (NaCI)	1645, 1510, 1484 (NRCI)	3374, 1659, 1610, 1512 (NaCA)
15	NMR(CDCI3. &)	1.48 (6H, d, J=6.04 Hz), 2.11 (3H, s), 3.81 (3H, s), 3.84 (2H, s), 3.99 (6H, s), 4.73–4.79 (1H, m), 6.88–6.93 (3H, m), 7.29 (1H, d, J=6.52 Hz), 7.57 (2H, d, J=8.96 Hz), 8.07 (1H, d, J=2.35 Hz), 10.05 (1H br s)	1.47-1.62 (6H, m), 2.08 (3H, s), 3.21-3.24 (2H, m), 3.57-3.75 (2H, m), 3.75-3.88 (2H, m), 3.99 (3H, s), 6.76 (1H, d, J=9.12 Hz), 6.91 (2H, d, J=7.32 Hz), 7.07-7.13 (3H, m), 7.27-7.33 (2H, m)	2.08 (3H, s), 3.33-3.47 (2H, m), 3.61-3.88 (8H, m), 3.99 (3H, s), 4.00 (3H, s), 6.79 (1H, d, J=8.28 Hz), 6.95 (2H, d, J=8.12 Hz), 7.10-7.17 (3H, m), 7.30-7.35 (2H, m)	2.12 (3H, s), 3.78 (3H, s), 3.87 (2H, s), 3.99 (6H, s), 6.80 (1H, d, J=8.44 Hz), 6.85 (1H, d, J=8.84 Hz), 6.85 (1H, d, J=8.84 Hz), 7.08 (2H, d, J=8.04 Hz), 7.19–7.27 (3H, m), 7.39 (2H, d, J=8.04 Hz), 7.48 (2H, d, J=8.92 Hz), 8.10 (1H, d, J=1.84 Hz), 9.48 (1H, br s)
25	NMR(1.48 (6H, d, J=6.04 Hz), 2.11 (3H, s), 3.81 (s), 3.84 (2H, s), 3.99 (6H, s), 4.73-4.79 (1H, 6.88-6.93 (3H, m), 7.29 (1H, d, J=8.52 Hz), (2H, d, J=8.96 Hz), 8.07 (1H, d, J=2.36 Hz), 10.05 (1H br s)	1.47–1.62 (6H, m), 2.0 m), 3.57–3.75 (2H, m), (3H, s), 4.00 (3H, s), 6 6.97 (2H, d, J=7.92 Hz, 7.33 (2H, m)	2.08 (3H, s), 3,33-3,4; m), 3,99 (3H, s), 4,00 (Hz), 6,95 (2H, d, J=B.? 7,30-7,35 (2H, m)	2.12 (3H, s), 3.78 (3H, s), 3.87 (2H, s), 3.5, 6.80 (1H, d, J=8.44 Hz), 6.85 (1H, d, Hz), 7.08 (2H, d, J=8.04 Hz), 7.19-7.27, 7.39 (2H, d, J=8.04 Hz), 7.48 (2H, d, J=8.04 Hz), 7.48 (2H, d, J=8.10 (1H, d, J=1.84 Hz), 9.48 (1H, br s)
30	FABMS(m/z)	480 (M ⁻ +1) 154 (100)	476 (M° +1, 100)	478 (M* +1) 154 (100)	514 (M* +1, 100)
35	Appearance	red-yellow	yellow	yellow	yellow
40	cture) o v			Nith Nith
45 LZ	Struct	- O= \O	MeO O O	MeO O	MeO O O
rable 2	Ex.No.	88 8 A A	990	87	88
55	ă		8		

α	
C	١
٥	
7	
E	,

Ex.No.	Structure	Appearance	FABMS(m/z)	NWR(CDCI, 6)	1R (cm ⁻¹)
89	MeO MeO	yellow oil	506 (M' +1) 54 (100)	1,43-1,63 (6H, m), 2.08 (3H, s), 3.21-3.33 (2H, m), 3.57-3.71 (2H, m), 3.76 (3H, s), 3.71-3.82 (2H, m), 3.99 (3H, s), 4.00 (3H, s), 6.54-6.56 (2H, m), 6.64 (1H, d, J=7.72 Hz), 6.80 (1H, d, J=5.68 Hz), 7.12-7.14 (2H, m), 7.19 (1H, t, J=7.18 Hz)	1642, 1609, 1484 (NaCI)
06	MeO	yellow oil	507 (M°) 154 (100)	2.09 (3H, s), 3.31-3.39 (2H, m), 3.57-3.84 (8H, m), 3.76 (3H, s), 4.00 (3H, s), 6.52-6.54 (2H, m), 6.65 (1H, dd, J=7.72 and 2.32 Hz), 6.82 (1H, dd, J=5.68 and 3.52 Hz), 7.14-7.23 (3H, m)	1643, 1610, 1485 (NaCI)
-60	MeO	yellow crystals 128-130 °C	544 (M° +1) 154 (100)	2.12 (3H, s), 3.78 (3H, s), 3.79 (3H, s), 3.88 (2H, s), 3.99 (6H, s), 6.62-6.66 (2H, m), 7.75 (1H, d, J=8.40 Hz), 6.82-6.87 (3H, m), 7.24-7.31 (2H, m), 7.48 (2H, d, J=8.88 Hz), 8.09 (1H, d, J=2.12 Hz), 9.42 (1H, br s)	3376, 1684, 1608, 1513 (KB/)
92	Meo Meo Me	yellow oil	491 (M* +1) 154 (100)	1.40–1.41 (2H, m), 1.57–1.59 (4H, m), 2.06 (3H, s), 3.13–3.15 (2H, m), 3.68–3.70 (2H, m), 3.71–3.85 (2H, m), 3.99 (3H, m), 5.08 (2H, s), 6.85 (1H, d, J=848 Hz), 7.04 (1H, d, J=2.08 Hz), 7.04 (1H, d, J=2.08 Hz), 7.04 (1H, d, J=2.08 Hz), 7.30–7.32 (1H, m), 7.73 (1H, d, J=7.80 Hz), 8.56 (1H, d, J=3.72 Hz), 8.62 (1H, d, J=1.24 Hz)	1650, 1611, 1266 (NaCl)

EP 1 314 712 A1

5	IR (cm ⁻¹)	1644, 1611, 1265 (NaC!)	JJ57, 1658, 1611, 1513 (KBr)	1660, 1610, 1265 (NaCI)	1660, 1610, 1265 (NaCI)
15)Cı, δ)	2.07 (3H, s), 3.21–3.24 (2H, m), 3.47–3.64 (2H, m), 3.56–3.84 (6H, m), 3.98 (3H, s), 3.99 (3H, m), 5.08 (2H, s), 6.88 (1H, d, J=8.52 Hz), 7.08 (1H, d, J=2.12 Hz), 7.18 (1H, dd, J=8.52 and 2.20 Hz), 7.30–7.33 (1H, m), 7.73 (1H, d, J=7.88 Hz), 8.58 (1H, dd, J=4.72 and 1.24 Hz), 8.63 (1H, d, J=1.76 Hz)	2.12 (3H, s), 3.77 (3H, s), 3.86 (2H, s), 3.99 (6H, s), 5.23 (2H, s), 6.78 (2H, d, J=8.92 Hz), 7.03 (1H, d, J=8.92 Hz), 7.03 (1H, d, J=9.00 Hz), 7.34 -7.41 (2H, m), 7.83 (1H, d, J=7.84 Hz), 8.09 (1H, d, J=7.84 Hz), 8.78 (1H, d, J=4.80 Hz), 8.78 (1H, br s), 9.55 (1H, br s)	1.42-1.44 (2H, m), 1.60-1.64 (4H, m), 2.07 (3H, s), 3.16-3.20 (2H, m), 3.72-3.74 (2H, m), 3.74-3.85 (2H, m), 3.99 (3H, s), 4.00 (3H, s), 5.07-5.09 (2H, m), 6.78 (1H, d, J=8.48 Ftz), 7.05 (1H, d, J=2.00 Hz), 7.13 (1H, dd, J=8.52 and 2.12 Hz), 7.30 (2H, d, J=5.58 Hz), 8.59 (2H, d, J=5.92 Hz)	2.07 (3H, s), 3.25–3.28 (2H, m), 3.53–3.55 (2H, m), 3.70–3.84 (6H, m), 3.98 (3H, s), 3.99 (3H, m), 5.09 (2H, s), 5.09 (1H, d, J=8.52 Hz), 7.09 (1H, d, J=1.44 Hz), 7.16 (1H, d, J=8.48 Hz), 7.29 (2H, d, J=6.56 Hz), 8.61 (2H, d, J=5.56 Hz)
25	NMR(CDC1,	207 (3H, s). 3.21–3.24 (2H, m). 3.47–3.64 (2H, m). 3.65–3.84 (6H, m). 3.98 (3H, s). 3.99 (3H, m). 5.08 (2H, s). 6.88 (1H, d, J=8.52 Hz). 7.08 (1H, d, J=8.52 Hz). 7.18 (1H, dd, J=8.52 and 2.20 Hz). 7.30–7.33 (1H, m). 7.73 (1H, d, J=7.88 Hz). 8.58 (1H, dd, J=4.72 and 1.24 Hz). 8.63 (1H, d, J=1.76 Hz).	2.12 (3H, s), 3.77 (3H, s), 3.86 (2H, s), 3.99 (6H, s), 5.23 (2H, s), 6.78 (2H, d, J=8.92 Hz), 7.03 (1H, d, J=8.92 Hz), 7.03 (1H, d, J=9.00 Hz), 7.34 (2H, d, J=7.84 Hz), 8.09 (1H, d, J=7.84 Hz), 8.09 (1H, d, J=7.84 Hz), 8.70 (1H, d, J=4.80 Hz), 8.78 (1H, br s), 9.55 (1H, br s)	1.42-1.44 (2H, m), 1.60-1.64 (4H, m), 2.07 (3H, s), 3.16-3.20 (2H, m), 3.72-3.74 (2H, m), 3.74-3.85 (2H, m), 3.99 (3H, s), 4.00 (3H, s), 5.07-5.0 (2H, m), 6.78 (1H, d, J=8.48 Hz), 7.05 (1H, d, J=2.00 Hz), 7.13 (1H, dd, J=8.52 and 2.12 Hz), 7.30 (2H, d, J=5.58 Hz), 8.59 (2H, d, J=5.92 Hz)	2.07 (3H s), 3.25-3.28 (2H, m), 3.53-3.55 (2H, m), 3.10-3.84 (6H, m), 3.98 (3H, s), 3.99 (3H, s), 3.09 (2H, s), 6.80 (1H, d, 1=8.55 Hz), 7.09 (1H, d, 1=8.48 Hz), 7.15 (1H, d, 1=8.48 Hz), 7.29 (2H, d, 1=6.56 Hz), 8.61 (2H, d, 1=5.56 Hz)
30	FABMS(m/z)	493 (M ⁻ +1) 154 (100)	529 (M' +1) 154 (100)	491 (M° +1) 154 (100)	493 (M° +1) 154 (100)
35	Appearance	yellow	yellow crystals 128-130 °C	yellow oil	yellow,
40	exn			2=	Z=
45 0	Structure	Meo o	3	Meo Meo	Mes O
50 E Q E T			Oaw We		
55	EX.No	93	26	26	96

EP 1 314 712 A1

5	IR (cm ⁻¹)	3374, 1654, 1608, 1512 (KBr)	1640, 1611, 1264 (N ₃ CI)	1638, 1611, 1263 (NeC!)	1636, 1611, 1264 (NeCl)
15	NMR(CDCI, 6)	2.11 (3H, s), 3.78 (3H, s), 3.86 (2H, s), 3.99 (6H, s), 5.23 (2H, s), 6.82 (2H, d, J=8.92 Hz), 6.94 (1H, d, J=8.48 Hz), 7.31 - 7.34 (3H, m), 7.40 (2H, d, J=5.68 Hz), 8.08 (1H, d, J=2.32 Hz), 8.69 (2H, d, J=5.76 Hz), 9.50 (1H, br s)	1.40–1.62 (6H, m), 2.11 (3H, s), 3.19–3.23 (2H, m), 3.54–3.60 (2H, m), 3.86 (2H, d, J=14.24 Hz), 4.00 (3H, s), 6.82 (2H, d, J=6.08 Hz), 6.97 (1H, d, J=8.36 Hz), 7.18 (1H, d, J=2.04 Hz), 7.24–7.26 (1H, m), 8.44 (2H, d, J=5.36 Hz)	2.12 (3H, s), 3.25–3.40 (2H, m), 3.60–3.69 (6H, m), 3.85–3.88 (2H, m), 4.00 (3H, s), 4.01 (3H, s), 6.81 (2H, d, J=5.50 Hz), 6.98 (1H, d, J=8.36 Hz), 7.25 (1H, d, J=2.08 Hz), 7.26–7.30 (1H, m), 8.46 (2H, d J=5.88 Hz)	1.50-1.72 (6H, m), 2.09 (3H, s), 3.23-3.29 (2H, m), 3.60-3.65 (2H, m), 3.83 (2H, d, J=14.12 Hz), 3.99 (3H, s), 6.81 (1H, d, J=8.32 Hz), 7.14-7.17 (4H, m), 8.35 (1H, dd, J=5.56 and 2.11Hz), 8.39 (1H, d, J=1.92 Hz)
20	AMN.	2.11 (3H. s). 3.78 (3H s). 5.23 (2H. s). 6.82 (1H. d. J=8.48 Hz). 7. d. J=5.68 Hz). 808 (1 d. J=5.76 Hz). 9.50 (1	1.40-1.62 (6H, m), 2.7 m). 3.54-3.60 (2H, m) 4.00 (3H, s), 4.01 (3H Hz), 6.97 (1H, d, J=8, Hz), 7.24-7.26 (1H, m	212 (3H s), 325-34 m), 385-3.88 (2H m) 6.81 (2H d, J=5.50 7.23 (1H d, J=2.08 H (2H d J=5.68 Hz)	1.50-1.72 (6H, m). 2.09 (3H, s). ; m). 3.60-3.65 (2H, m). 3.83 (2H, s). 3.99 (3H, s). 4.00 (3H, s). 6.81 (1 Hz). 7.14-7.17 (4H, m). 8.35 (1H, 2, 11Hz). 8.39 (1H, d, J=1.92 Hz)
30	FABMS(m/z)	529 (M' +1) 69 (100)	477 (M* +1) 52 (100)	479 (M° +1) 52 (100)	477 (M° +1) 52 (100)
<i>35</i>	Appearance	yellow crystals 131-134°C	yellow oil	yellow	yellow oil
40	cture	Z O NH			
45 0	Struc	Me O I I've	Nec O	0 W 0 0 W	Muso One One One One One One One One One One
s Table 30	<u>.</u>		m		0
6	Ex. No.	97	88	66	100

10		
15		
20		
25		
30		
35		
40		
45		
50		
55		

Table 31

Ex.No.	Structure	Appearance	FABMS(m/z)	NMR(CDCI, 6)	IR (cm ⁻¹)
101	NAPO O O O O O O O O O O O O O O O O O O	yellow oil	479 (M°+1) 154 (100)	2.10 (3H, s), 3.33-3.37 (2H, m), 3.61-3.85 (8H, m), 3.98 (3H, s), 4.00 (3H, s), 6.82 (1H, d, J=8.08 Hz), 7.19-7.26 (5H, m), 8.37 (1H, d, J=8.08 Hz)	1641, 1611, 1263 (NaCi)
102	MeO We O We O We	yellow crystals 89-92 °C	472 (M [.] +1) 154 (100)	1.40-1.60 (6H, m), 2.06 (3H, s), 3.14-3.30 (2H, m), 3.70-3.84 (4H, m), 3.77 (3H, s), 3.98 (3H, s), 3.99 (3H, s), 4.60-4.63 (2H, m), 6.65 (1H, d, J=8.48 Hz), 7.04 (1H, d, J=2.12 Hz), 7.12 (1H, d, B.56 and 2.20 Hz)	1748. 1649. 1630. 1610 (KBr.)
601	Meo Charles Meo Ch	yellow crystals 4 - 43°C	474 (M° +1) 154 (100)	2.03 (3H, s), 3.23-3.26 (1H, m), 3.39-3.43 (1H, m), 3.57-3.99 (3H, s), 3.77 (3H, s), 3.99 (3H, s), s, 4.00 (3H, s), 4.64 (2H, s), 6.64 (1H, d, J=8.56 Hz), 7.08 (1H, d, J=2.04 Hz), 7.15 (1H, dd, J=8.52 and 2.08 Hz)	1751, 1668, 1634, 1610 (KBr)
104	Meso Meso Meso Meso Meso Meso Meso Meso	yellow oil	514 (M ⁻ +1) 54 (100)	1.45-1.64 (6H, m), 1.47 (9H s), 2.06 (3H, s), 3.18-3.29 (2H, m), 3.65-3.84 (4H, m), 3.98 (3H, s), 3.99 (3H, s), 4.3-4.54 (2H, m), 6.53 (1H, d, d)=8.52 Hz), 7.04 (1H, br s), 7.12 (1H, d, d)=8.40 Hz)	1748, 1646, 1456, 1264 (NBCI)

EP 1 314 712 A1

5	IR (cm²¹)	1750, 1641, 1611, 1267 (NaCi)	3300, 1766, 1652, 1609 . (NaCi)	3338, 1766, 1649, 1510 (NaCi)	3322, 1766, 1652, 1594 (NaCl)
15	1 ₃ . 8)	220-3.25 (1H, m), 84 (8H, m), 3.98 (3H, (2H, m), 6.62 (1H, d, 22.12 Hz), 7.15 (1H,	3.83 (3H, s), 3.87 (6H, s), 6.80-6.90 (2H, m), 33 (1H, dd, J=8.28 7.94 (1H, br s)	1.88 (6H. S). 3.91 (2H. S). 6.83 (1H. d. J=8.60 and 2.24 Hz). 7.05 H. dd. J=8.32 and 2.04 b). 7.64 (1H. d. J=1.56	2.59 (3H. s.), 3.88 (2H. d. J=8.40 Hz), 7.36 lz), 7.66-7.71 (3H. m.), 27 (1H. br. s.)
20	NMR(CDCI, &)	1.47 (9H. s). 2.07 (3H. s). 3.20-3.25 (1H. m). 3.43-3.47 (1H. m). 3.56-3.84 (8H. m). 3.98 (3H. s). 3.99 (3H. s). 4.50-4.52 (2H. m). 6.62 (1H. d. J=8.56 Hz), 7.08 (1H. d. J=2.12 Hz), 7.15 (1H. dd. J=8.56 and 2.12 Hz)	2.10 (3H, s), 2.32 (3H, s), 3.83 (3H, s), 3.87 (6H, S), 3.99 (3H, s), 4.00 (3H, s), 6.80-6.90 (2H, m), 7.05 (1H, dd, J=8.28 and 1.88 Hz), 7.61 (1H, s), 7.94 (1H, br s)	2.11 (3H, s), 2.32 (3H, s), 3.88 (6H, S), 3.91 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 6.83 (1H, d, J=8.60 Hz), 6.89 (1H, dd, J=8.60 and 2.24 Hz), 7.05 (1H, d, J=8.32 Hz), 7.34 (1H, dd, J=8.32 and 2.04 Hz), 7.46 (1H, d, J=1.96 Hz), 7.64 (1H, d, J=1.56 Hz), 7.54 (1H, d, J=1.56 Hz), 7.55 (1H, d, J=1.	2.11 (3H, s), 2.32 (3H, s), 2.59 (3H, s), 3.88 (2H, s), 3.99 (6H, S), 7.07 (1H, d, J=8.40 Hz), 7.36 (1H, dd, J=8.32 and 2.12 Hz), 7.66-7.71 (3H, m), 7.97 (2H, d, J=8.64 Hz), 8.27 (1H, br s)
30	FABMS(m/z)	516 (M* +1) 154 (100)	539 (M* +1) 183 (100)	510 (M* +1) 154 (100)	492 (M* +1)
35	Appearance	yellow	yellow	yellow oil	yellow crystals 176-179°C
40	11.0		OAC N N OWE	O N O O O O O O O O O O O O O O O O O O	o Iz
45 2 50 0	Structure	W O O O O O O O O O O O O O O O O O O O	MeO O O O O O O O O O O O O O O O O O O		MeO MeO
rable	Ex.No.	105	001 2 A	MeO 107 MeO	801 S 8
55					

10
15
20
25
30
35
40
45
50

Table 33

2	Structure	Appearance	FABMS(m/z)	NMR(CDCI, 6)	IR (cm ⁻¹)
109	MeO Neo OAC	yellow oil	484 (M' +1) 69 (100)	2.09 (3H, s), 2.30 (3H, s), 3.85 (2H, s), 3.98 (6H, S), 7.06 (1H, d, J=8.90 Hz), 7.26-7.34 (3H, m), 7.53 (2H, d, J=8.60 Hz), 7.62 (1H, s), 8.13 (1H, br s)	3320, 1766, 1648, 1610 (N ₃ CI)
110	MeO OAC OAC OAC OAC OAC OAC OAC OAC OAC OA	yellow crystals 173-177°C	535 (M +1) 154 (100)	2.11 (3H, s), 2.31 (3H, s), 3.10-3.15 (4H, m). 3.84-3.88 (6H, m), 3.99 (3H, s), 4.00 (3H, s), 6.90 (2H, d, J=8.88 Hz), 7.04 (1H, d, J=8.40 Hz), 7.32 (1H, dd, J=8.24 and 1.88 Hz), 7.48 (2H, d, J=8.88 Hz), 7.65 (1H, s), 7.89 (1H, br s)	3300, 1766, 1650, 1611 (NaCI)
Ē	MeO Me OAC Neo OAC	yellow	475 (M* +1) 154 (100)	2.11 (3H, s), 2.31 (3H, s), 3.87 (2H, s), 3.99 (6H, S), 7.07 (1H, d, J=8.44 Hz), 7.36 (1H, d, J=8.32 Hz), 7.61-7.66(3H, m), 7.69-7.76 (2H, m), 8.28 (1H, br s)	3323, 2224, 1767, 1648. 1610 (NaCi)
12	MeO Me OAC MeO	yellow crystals 127-128 °C	518 (M° +1) 476 (100)	2.13 (3H, s), 2.32 (3H, s), 3.89 (2H, s), 4.00 (3H, s), 4.01 (3H, s), 7.08 (1H, d, J=8.32 Hz), 7.37 (1H, dd, J=8.32 and 2.20 Hz), 7.62 (2H, d, J=8.60 Hz), 7.66 (1H, s), 7.72 (2H, d, J=8.56 Hz), 8.17 (1H, br. s)	3320, 1767, 1648, 1610, 1322 (NaCi)

EP 1 314 712 A1

5	·	IR (cm ⁻¹)	3339, 1768, 1649, 1612. 1382 (NaCI)	3300, 1648, 1610 (N _B CI)	3350, 1647, 1610 (NaCl)	3326, 1651, 1610 (NACI)
15		. م)	88 (2H, s), 3.99 (3H, f, J=8.32 Hz), 7.37 2), 7.60-7.65 (2H, m). or s)	85 (3H, s), 3.89 (6H, 6.87 (1H, s), 6.92 (4, J.=8.28 Hz), 7.27 H, br s), 11.81 (1H,	90 (3H, s), 3.92 (3H, 6, 86-6.94 (2H, m), 40 Hz), 7.21 (1H, dd, 7.27 (1H, m), 7.42 (1s), 11.91 (1H, s)	80 (2H, s), 3.98 (3H,) –8.52 Hz), 7.24 1, d, J=1.72 Hz), 7.73 1, d, J=8.68 Hz), 8.22
20)	NMR(CDCI, &)	2.12 (3H, s), 2.33 (3H, s), 3.88 (2H, s), 3.99 (3H, S), 4.00 (3H, s), 7.09 (1H, d, J=8.32 Hz), 7.37 (1H, dd, J=8.36 and 2.12 Hz), 7.60-7.65 (2H, m). 8.10 (2H, d like), 8.35 (1H, br s)	2.15 (3H, s), 3.79 (2H, s), 3.85 (3H, s), 3.89 (6H, s), 3.89 (3H, s), 6.92 (1H, d, J=8.52 Hz), 7.20 (1H, d, J=8.28 Hz), 7.20 (1H, d, J=8.28 Hz), 7.20 (1H, s), 7.44 (1H, s), 8.02 (1H, br s), 11.81 (1H, br s)	2.15 (3H. s), 3.79 (2H. s), 3.90 (3H. s), 3.92 (3H. s), 3.98 (3H. s), 6.86-6.94 (2H. m), 7.00 (1H. dd, J=8.60 and 2.40 Hz), 7.21 (1H. dd, J=8.60 and 2.40 Hz), 7.21 (1H. dd, 1.54 Hz), 7.26-7.27 (1H. m), 7.42 (1H. d, J=1.56 Hz), 7.95 (1H. s), 11.91 (1H. s)	2.16 (3H, s.), 2.61 (3H, s.), 3.80 (2H, s.), 3.98 (3H, s.), 3.99 (3H, s.), 6.94 (1H, d. J=8.52 Hz.), 7.24 (1H, d. J=8.52 Hz.), 7.48 (1H, d. J=1.72 Hz.), 7.73 (2H, d. J=8.68 Hz.), 8.01 (2H, d. J=8.68 Hz.), 8.22 (1H, br.s.), 11.56 (1H, br.s.)
		FABMS(m/z)	586 (M° +1) S) 544 (100) (1	2. 498 (M° +1) (1 183 (100) (1	2. 468 (M* +1) 3. 154 (150) 7. (1)	2. 450 (M* +1) (1 154 (100) (2
<i>30</i>		Appearance FAE	yellow crystals 586 127-129°C 54	yellow crystals 496 68-70°C 18	yellow crystals 466 72-75°C 11	yellow crystals 45 158-160°C 19
40			OAC GF.	N OWE	TZ =0	£ IZ
45	34	Structure		o de la constant de l	2	
50	Table	o.	MeO MeO	Oaw WeO	MeO o	Weo weo
		ZX.No.	113	114	115	911

EP 1 314 712 A1

5	IR (cm ')	3250, 1647, 1609 (NaCI)	3250, 1647, 1610 (NaCI)	3326, 2224, 1648, 1610 (NaCl)	3250, 1648, 1610 (NaCI)
15	NMR(CDCI, 6)	2.13 (3H, s), 3.76 (2H, s), 3.95 (3H, s), 3.96 (3H, s), 5.90 (1H, d, J=8.48 Hz), 7.20 (1H, dd, J=8.48 Hz), 7.20 (1H, dd, J=8.48 dd, J=8.48 Hz), 7.46 (1H, d, J=1.68 Hz), 7.52 (2H, d, J=8.84 Hz), 8.26 (1H, br s), 11.55-11.85 (1H, br)	2.15 (3H. s.), 3.15–3.18 (4H. m), 3.79 (2H. s.), 3.79–3.89 (4H. m), 3.98 (3H. s.), 3.99 (3H. s.), 6.90–6.95 (3H. m), 7.21 (1H. dd. J=8.52 and 1.96 Hz), 7.40–7.47 (3H. m), 7.87 (1H. br s.), 11.96 (1H. s.)	2.16 (3H, s), 3.79 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 6.94 (1H, d, J=8.52 Hz), 7.23-7.26 (1H, m), 7.49 (1H, s), 7.68 (2H, d, J=8.56 Hz), 7.77 (2H, d, J=8.60 Hz), 8.32 (1H, br s), 11.28-11.36 (1H, br)	2.16 (3H, s), 3.80 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 6.92 (1H, d, J=8.52 Hz), 7.24 (1H, dd, J=8.60 Hz), 7.48 (1H, d, J=1.56 Hz), 7.65 (2H, d, J=8.60 Hz), 7.74 (2H, d, J=8.56 Hz), 8.21 (1H, br. s), 11.56 (1H, s)
20	NMR(2.13 (3H, s), 3.76 (2H, s), 3 s), 6.90 (1H, d, J=8.48 Hz) and 1.88 Hz), 7.33 (2H, d, d, J=1.68 Hz), 7.52 (2H, d, br s), 11.55-11.85 (1H, br)	2.15 (3H, s), 3.15–3.18 (4H, m), 3.79 (2H, s), 3.79–3.89 (4H, m), 3.98 (3H, s), 5.50–5.95 (3H, m), 7.21 (1H, dd, J=8.52 and Hz), 7.40–7.47 (3H, m), 7.87 (1H, br s), 11.96 (1H, s)	2.16 (3H, s.), 3.79 (2H, s.), 6.94 (1H, d. J=8.52 7.49 (1H, s.), 7.68 (2H, J=8.60 Hz), 8.32 (1H, b	2.16 (3H, s), 3.80 (2H, s), 6.92 (1H, d, J=8.52 and 1.96 Hz), 7.48 (1H d, J=8.60 Hz), 7.74 (2H br s), 11.56 (1H, s)
30	FABMS(m/z)	442 (M' +1) 154 (100)	493 (M°+1) 154 (100)	433 (M* +1) 154 (100)	476 (M* +1) 154 (100)
35	Appearance	yellow crystals 138-141°C	yellow crystals 184-186°C	yellow crystals 149-151°C	yellow crystals 169,5-173 °C
40	re	o z z z z z z z z z z z z z z z z z z z	₽ NEO	T IZ	o =o
45	Structure	₩ •₩	Ne N	§	J. J
s Table 35		MeO MeO	Meo Meo	Me O	MeO MeO
Ħ	X. No.	11.7	1.8	119	120

EP 1 314 712 A1

	-				
5	IR (cm ⁻¹)	3250, 1648, 1611, 1381 (NaCJ)	3300, 1644, 1610 (NaCI)	3358, 1643, 1611 (NaCl)	1645, 1610, 1486, 1264 (NaCl)
15	NMR(CDCI3, 8)	2.16 (3H s), 380 (2H, s), 3.97 (3H, S), 3.99 (3H, s), 6.95 (1H, d, J=8.52 Hz), 7.24–7.27 (1H, m), 7.51 (1H, s), 8.14 (2H, s), 8.44 (1H, br s), 11.32 (1H, s)	1.63 (3H, d, J=6.92 Hz), 2.11 (3H, s), 3.75 (2H, s), 3.96 (3H, s), 3.96 (3H, s), 5.20-5.23 (1H, m), 6.48 (1H, d, J=7.36 Hz), 6.87 (1H, d, J=8.52 Hz), 7.14 (1H, dd, L=8.56 and 1.92 Hz), 7.27-7.39 (6H, m), 12.14 (1H, br s)	1.63 (3H, d, J=684 Hz), 2.11 (3H, s), 3.75 (2H, s), 3.96 (3H, s), 3.97 (3H, s), 5.22-5.33 (1H, m), 6.50 (1H, d, J=6.64 Hz), 6.87 (1H, d, J=8.52 Hz), 7.14 (1H, d, J=8.48 Hz), 7.26-7.39 (6H, m), 12.15 (1H, br s)	1,54-1,97 (2H, m), 2,05 (3H, s), 2,41-2,75 (2H, b), 3,32-3,64 (1H, br), 3,81 (2H, s), 4,00 (3H, s), 5,24 (M' +1, 100) 4,01 (3H, s), 4,20-4,59 (1H, br), 6,26-6,89 (6H, m), 6,90-7,10 (4H, m), 7,11-7,26 (2H, m), 7,27-7,33 (1H, br)
20	NMR	2.16 (3H, s), 3.80 (2H, s), 6.95 (1H, d, J=8.52 7.51 (1H, s), 7.70 (1H, br s), 11.32 (1H, s)	1.63 (3H, d, J=6.92 Hz), 3, 3.96 (3H, s), 3.96 (3H, ed, d, d	1.63 (3H, d, J=6.84 Hz) 8.9, 3.96 (3H, s), 3.97 (3 6.50 (1H, d, J=6.64 Hz) 7.14 (1H, d, J=8.48 Hz) (1H, br.s)	1.54-1.97 (2H, m), 2.05 br), 3.32-3.64 (1H, br), 4.01 (3H, s), 4.20-4.59 m), 6.90-7.10 (4H, m), 7.33 (1H, br)
30	FABMS(m/z)	544 (M°+1) 154 (100)	436 (M° +1) 154 (100)	436 (M° +1) 154 (100)	524 (M° +1, 100)
35	Appearance	yellow crystals 168-171°C	Yellow crystals 54-56 °C	yellow crystals 53-55°C	yellow oil
40	ure	HN O HN O O O O O O O O O O O O O O O O	H IN	I IZ	
45	Structure	Me o	a a a a a a a a a a a a a a a a a a a	§ 0=0	Meo O Meo
os Table 36		Meo	Oaw We O	Ne oo	žŽ
E+ 55	Ex. No	121	122	123	124

7
C
Ø
_
Ω
Ø
H

IR (cm ⁻¹).	1650, 1612, 1485, 1266 (NaCl)	1648, 1610, 1492, 1265 (NaCl)	1650, 1612, 1451, 1265 (NaCl)	3356, 1654, 1608, 1508 (NaCl)
NMR(CDCI, 8)	1.03-1.72 (8H, m), 2.07-2.09 (3H, m), 2.77-3.19 (2H, m), 3.35-3.94 (1H, m), 3.74-3.95 (2H, m), 3.90-4.00 (6H, m), 4.54-4.98 (1H, m), 6.72-6.94 (1H, m), 6.97-7.00 (2H, m), 7.04-7.21 (3H, m), 7.26-7.33 (2H, m)	1.70-1.96 (4H, br). 2.02 (3H, s). 2.37-2.68 (1H. br). 3.38-3.56 (1H, br). 3.78 (3H, s). 3.99 (3H, s). 4.00 (3H, s). 4.12-4.52 (1H, br). 4.73-5.03 (1H, br). 6.22-6.51 (1H, br). 6.51-6.81 (2H, br). 6.89-7.08 (2H, br). 7.11 (1H, d, J=8.12 Hz). 7.18 (1H, d, J=2.04 Hz). 7.20-7.27 (1H, m). 7.42-7.60 (1H, br). 8.30-8.48 (1H, br). 8.56 (1H, d, J=4.12 Hz)	0.72-1.99 (8H, m), 2.07 (3H, s), 2.63-2.95 (2H, m), 3.39-3.43 (1H, m), 3.70-3.85 (2H, m), 3.99 (3H, s), 4.00 (3H, s), 4.60-4.71 (1H, m), 5.07 (2H, s), 6.80-6.89 (1H, m), 7.01-7.07 (1H, m), 7.13-7.17 (1H, m), 7.28-7.33 (1H, m), 7.69-7.79 (1H, m), 8.50-8.64 (2H, m)	2.12 (3H, s), 3.74 (3H, s), 3.79 (3H, s), 3.88 (3H, s), 4.00 (6H, s), 5.22 (2H, s), 6.62 (2H, s), 7.07 (1H, d, J=8.52 Hz), 7.36-7.42 (2H, m), 7.38-7.44 33 (2H, m), 7.86 (1H, d, J=7.80 Hz), 8.11 (1H, d, J=7.20 Hz), 8.68 (1H, dd, J=4.68 and 1.16 Hz), 8.84 (1H, d, J=1.52 Hz), 9.63 (1H, br s)
ce FABMS(m/z)	490 (M' +1) 154 (100)	539 (M* +1) 92 (100)	505 (M° +1) 219 (100)	589 (M°+1) 154 (100)
Appearance	yellow	yellow oil	yellow oil	yellow crystals 130-132 °C
Structure	aw O-iw	Med O O O O O O O O O O O O O O O O O O O	Med O O O O O O O O O O O O O O O O O O O	Naco Ones
Ex.No.	125	126	127	128

Table 38

EX.No.	Structure	Appearance	FABMS(m/z)	NMR(CDCI3. 8)	IR (cm²¹)
129	WEST OF THE CONTRACT OF THE CO	yellow crystals 152-155°C	541 (M* +1) 92 (100)	2.13 (3H, s), 3.55 (3H, s), 3.88 (2H, s), 4.00 (6H, s), 5.24 (2H, s), 7.06 (1H, d, J=8.52 Hz), 7.32 (2H, d, J=8.68 Hz), 7.38-7.44 (2H, m), 7.83-7.86 (3H, m), 8.10 (1H, d, J=2.20 Hz), 8.45 (1H, dd, J=4.64 and 1.28 Hz), 8.81 (1H, d, J=1.64 Hz), 9.90 (1H, br s)	3340, 1673, 1609, 1530 (NaCI)
130	weo — weo	yellow	461 (M* +1) 405 (100)	1.47 (9H, s), 2.08 (3H, s), 3.79 (2H, s), 3.89 (3H, s), 3.99 (6H, s), 4.56 (2H, s), 6.75 (1H, d, J=8.60 Hz), 7.25 (1H, dd, J=8.64 and 1.64 Hz), 7.61 (1H, d, J=8.64 And 1.64 Hz)	1731, 1648, 1611, 1264 (NaCi)

EP 1 314 712 A1

	45	40	35	30	25		20	15	10	5
39										
1 1		Structure		Appear- ance	(၁°) dm	IR (cm-)	Z	NMR (ppm)		FAB MS
	£-0 of	£ 4	D Z	ozange crystals	200.2-2019	3334, 1684, 1652, 1612, 1552, 1497, 1265, (KBr)	2.08 (3H, s), 3. 6.79 (1H, s), 6. J=8.70 Hz), 7.4 7.96 (1H, s), 8. Hz), 8.47 (1H, s)	2.08 (3H, s), 3.85 (2H, s), 4.00 (6H, s), 1684, 6.79 (1H, s), 6.80 (1H, s), 7.37 (1H, d, 1652, 1612, J=8.70 Hz), 7.44 (1H, d, J=8.7 Hz), 1552, 1497, 7.36 (1H, s), 8.17 (1H, dd, J=8.7, 2.8), 1265 (KBt) Hz), 8.47 (1H, d, J=2.7 Hz), 11.78 (1H, d, J=2.7 Hz)		
	10-0 Jr	£	=z -5	orange crystals	113.5-115.1	1782, 1649. 1611, 1586. 1521, 1389. 1268 (KBA)	2.11(3H, s), 2.4 4.00 (6H, s), 6. 7.90 (1H, d, J= m), 8.78-8.79 (J=8.2, 1.6 Hz)	2.11(3H, s), 2.40 (3H, s), 3.91 (2H, s), 4.00 (6H, s), 6.82 (1H, s), 7.03 (1H, s), 7.90 (1H, d, J=8.2 Hz), 8.17-8.18 (1H, m), 8.78-8.79 (1H, m), 8.92 (1H, dd, J=8.2, 1.6 Hz)		485 (M+ +1)
	f-0 o	£ 5		orange crystals	200.2-202.6	3280, 1649. 1611, 1586. 1534, 1432. 1267 (KBr)	2.09 (3H, s), 3, 6, 6.62 (1H, s), 6, 7, 47 ((1H, m), 7,47 ((1H, d, J=4.7 H (1H, d, J=8.2 H	2.09 (3H, s), 3.87 (2H, s), 4.01 (6H, s), 6.82 (1H, s), 6.84 (1H, s), 7.33-7.34 (1H, d, j=8.3 Hz), 8.19 (1H, d, j=8.3 Hz), 8.19 (1H, d, j=8.3 Hz), 8.50 (1H, s), 8.78 (1H, d, j=8.2 Hz), 11.77 (1H, s)	5).	443 (M+ +1)
1	<u>5</u> -0	2 5	5 o >=≥	orango crystals	124.7-125.5	1768, 1654. 1611, 1529. 1500, 1269 (KBr)		2.03 (3H, s), 2.26 (3H, s), 3.82 (2H, s), 3.87 (3H, s), 3.93 (6H, s), 6.70-6.71 (1H, d), 7.12 (1H, d), 1.97 (1H, d), 7.88-7.83 (1H, m), 7.88-7.83 (1H, m), 7.84-7.85 (1H, m), 6.13 (1H, s)	s). 7.83 4. s)	481 (M+ +1)

EP 1 314 712 A1

15		
20		
25		
30		
35		
40		
45		
50		

FAB MS	439 (M+ +1)	582 (M++1)	540 (M+ +1)	451 (M++1)
NMR (ppm)	2.08 (3H, s), 3.85 (2H, s), 3.96 (3H, s), 4.00 (3H, s), 4.01 (3H, s), 6.73-6.82 (3H, m), 7.48 (1H, d, J=8.6 Hz), 7.91-8.00 (2H, m), 8.28 (1H, s), 11.91 (1H, br s)	1773, 1652, 2.11 (3H, s), 2.34 (3H, s), 3.91 (2H, s), 1612, 1586, 4.00 (6H, s), 7.02 (1H, s), 7.22 (1H, d, d, 1526, 1365, J=8.0 Hz), 7.76 (1H, d, J=8.0 Hz), 7.91 (2H, d, J=8.9 Hz), 8.02 (2H, d, J=8.8 (KBr) Hz), 8.02 (2H, d, J=8.8 (KBr)	3138, 1679, 2.09 (3H, s), 3.86 (2H, s), 4.00 (3H, s), 1652, 1612, 4.01 (3H, s), 6.81 (1H, d, J=8.8 Hz). 1438, 1341, 6.82 (1H, s), 7.46 (1H, d, J=8.8 Hz), 1292, 1264, 7.93 (2H, d, J=8.8 Hz), 8.05 (2H, d, KBr)	1769, 1654, 4.00 (3H, s), 2.34 (3H, s), 3.85 (2H, s). 1611, 1530, (1H, m), 6.80 (1H, s), 7.38-7.40 (1H, 1530, 1172, m), 7.59 (1H, d, J=8.2 Hz), 8.29-8.31 (1H, m), 8.32-8.39 (2H, m), 8.78 (1H, s)
IR (cm-)	3335, 1651. 1812, 1552. 1497, 1266 (KBr)	1773, 1652, 1612, 1588, 1526, 1365, 1267, 1217 (KBr)	3138, 1679, 1652, 1612, 1638, 1341, 1292, 1264 (KBr)	1769, 1654, 1611, 1530, 1500, 1272, 1206 (KBr)
(°C)	194.3-196.5		186.9-187.5	158.2-160.0
Appear-	orange crystals	orange	orange crystals	orange crystals
Structure	H ₃ C ₀ C ₁ , 0 C ₁ ,	4,C,S,S,OO,OO,OO,OO,OO,OO,OO,OO,OO,OO,OO,OO	H,C. OH	H2 CH3 CO4
Ex.No.	135	136	137	138

EP 1 314 712 A1

5		FAB MS	409 (M++1)	409 (M+ +1)	468 (M++1). 154 (100)	426 (M+ +1. 100)
10		n)	7, 4.00 (3H, s), 6.84 (1H, d, d, d), 6.84 (1H, d, d, d), 9.00 (1H, s); 9.99 (1H, s); 9.99	, 4.01 (3H, s). 2H, m), 7 60- (2H, m), 8.87- 11 (1H, br s)	3.87 (2H. s). 1, 7.03-7.08 n), 7.34 (1H. 14.7.65 (1H.	, 3.98 (3H, s). J=2.08 Hz). (1H, dd, J=8.56 ; J=1.64 Hz). (1H br s).
15		NMR (ppm)	2.07 (3H, s), 3.88 (2H, s), 4.00 (3H, s), 4.01 (3H, s), 6.80 (1H, s), 6.84 (1H, d, J=8.4 Hz), 7.63-7.70 (1H, m), 8.10 (1H, d, J=8.3 Hz), 8.35-8.38 (1H, m), 9.00 (1H, d, J=9.3 Hz), 9.49 (1H, s), 9.99 (1H, s), 11.58-11.80 (1H, br s)	3298, 1648, 2.11 (3H, s), 3.97 (2H, s), 4.01 (3H, s), 1611, 1542, 4.02 (3H, s), 7.19-7.21 (2H, m), 7 60-1430, 1266 7.71 (2H, m), 8.09-8.11 (2H, m), 8.87-(KBr)	2.11 (3H, s), 2.31 (3H, s), 3.87 (2H, s), 1751, 1651, 3.99 (3H, s), 4.00 (3H, s), 7.03-7.08 (1611, 1515, (3H, m), 7.25-7.56 (2H, m), 7.34 (1H, 1268 (KBf) dd, J=8.32, 2.16 Hz), 7.64-7.65 (1H, m), 7.96 (1H br s)	2.15 (3H, s), 3.79 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 7.08 (1H, d, J=2.08 Hz), 7.10-7.13 (2H, m), 7.22 (1H, dd, J=8.56 426 (M++1, and 1.84Hz), 7.43 (1H, d, J=1.64 Hz), 100) 7.51-7.55 (2H, m), 7.93 (1H br s), 11.75 (1H, s)
20				2.11 (3) 4.02 (3) 7.71 (2) 8.90 (2)	2.11 (3) 3.99 (3) (3H, m) dd, J=8 m), 7.96	
		IR (cm-)	3297, 1648. 1611, 1544. 1430, 1267 (KBr)	3298, 1648, 1611, 1542, 1430, 1266 (KBr)		3359, 1648, 1615, 1511, 1266 (KBr)
25		(၄) dш	138.1-139.7	181.4-183.3	128.5-130.5	125-127
30		Appear- ance	orange crystals	oranga crystals	yellow	yellow Grystals
35	i		Z J	Z=	· ·	ų
40		Structure	£ S	5	5 2	P Z
45			ř Ď	0 0 0 0 0 T	£-0 0-5	£-0 0-5
50	ble 41	Ex.No.	139	140	14	142

EP 1 314 712 A1

518 (M+ +1). 476 (100) 495 (M+ +1). 154 (100) 476 (M+ +1. 453 (M+ +1). FAB MS 5 54 (100) 2.12 (3H, s), 2.34 (3H, s), 3.89 (2H, s).
3.99 (3H, s), 4.00 (3H, s), 7.09 (1H, d, J=8.32 Hz), 7.38 (1H, dd, J=8.28, 2.04 d).
Hz), 7.54 (1H, t, J=8.16 Hz), 7.66 (1H, 1), d, J=1.72 Hz), 7.98-8.02 (2H, m), 8.26-8.27 (1H, m), 8.45 (1H br s) 3056, 1653, 2.15 (3H, s), 3.80 (2H, s), 3.98 (3H, s), 1610, 1555, 3.99 (3H, s), 6.94 (1H, d, J=8.56 Hz), 1336, 1270, 7.23-7.26 (1H, m), 7.46-7.55 (3H, m), 7.80 (1H, d, J=7.88 Hz), 7.88-7.89 (1H, m), 8.12 1H bx s), 11.57 (1H, s) 3.98 (3H, s), 7.09 (1H, d, J=8.52 Hz), 7.24-7.27 (1H, m), 7.52 (1H, d, J=1.68 Hz), 7.57 (1H, t, J=8.24 Hz), 8.00-8.06 (2H, m), 8.36 (1H br s), 8.44-8.45 (1H, 2.12 (3H, s), 2.31 (3H, s), 3.89 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 7.09 (1H, d, J=8.32 Hz), 7.26-7.29 (1H, m), 7.40 (1H, m), 7.58-7.71 (3H, m), 8.30-8.32 2.16 (3H, s), 3.81 (2H, s), 3.96 (3H, s). 10 NMR (ppm) (1H, m), 8.39 (1H br s) 15 m), 11.46 (1H. S) 20 3337, 1642, 1610, 1549, 1530, 1271 (KBr) 1768, 1660, 1610, 1548, 1337, 1268 (K8r) 1764, 1654, 1612, 1530, 1268 (KBr) IR (cm-) 25 152-153.5 (၁) dш 57.5-60 111-114 153-154 yellow crystals yellow crystals yellow crystals yellow crystals 30 35 Structure ર્કે 40 45 ಕ್g-0 IJ-Table 42 50 Ex.No. 145 146 143 144

113

EP 1 314 712 A1

	_					
5		FAB MS	522 (M+ +1). 120 (100)	480 (M++1). 154 (100)	489 (M+ +1). 154 (100)	447 (M+ +1). 154 (100)
10		pm)), 2.12 (3H, s), s, 3.398 (3H, s), q, J=14.24, 7.08 32 H2), 7.36 (1H, 7.65-7.68 (3H, 0 Hz), 8.19 (1H), 2.15 (3H, s), , s), 3.98 (3H, s), 7.12 Hz), 6.93 22-7.26 (1H, m), 2), 7.69 (2H, d, d, J=8.64 Hz), 1H, s)	. s). 3.74 (2H, s). . s). 4.00 (3H, s). t). 7.31-7.36 (3H. . 8.05 (1H br s)	. s). 3.80 (2H. s). , s), 6.93 (1H. d. dd, J=8.60 1.88 40 Hz), 7.44 (1H. H, d, J=8.44 Hz). (1H, s)
15		NMR (ppm)	1.40 (3H, 1, J=7.08 Hz), 2.12 (3H, s). 2.31 (3H, s), 3.88 (2H, s), 3.98 (3H, s). 3.99 (3H, s), 4.37 (2H, q, J=14.24, 7.08 Hz), 7.07 (1H, d, J=8.32 Hz), 7.36 (1H, d), 2.84 Hz), 7.55-7.68 (3H, m), 8.05 (2H, d, J=8.60 Hz), 8.19 (1H br s)	141 (3H, t, J=7.12 Hz), 2.15 (3H, s), 3.79 (2H, s), 3.97 (3H, s), 3.98 (3H, s), 4.39 (2H, q, J=14.24, 7.12 Hz), 6.93 (1H, q, J=8.52 Hz), 7.22-7.26 (1H, m), 7.47 (1H, d, J=1.44 Hz), 7.69 (2H, d, J=8.64 Hz), 8.08 (2H, d, J=8.64 Hz), 8.08 (2H, s), 11.58 (1H, s)	2.11 (3H, s), 2.31 (3H, s), 3.74 (2H, s), 3.88 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 7.06 (1H, d, J=8.32 Hz), 7.31-7.36 (3H, m), 7.60-7.65 (3H, m), 8.05 (1H br s)	2.15 (3H, s), 3.77 (2H, s), 3.80 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 6.93 (1H, d, J=8.56 Hz), 7.23 (1H, dd, J=8.50 1.88 Hz), 7.35 (2H, d, J=8.40 Hz), 7.44 (1H, d, J=1.64 Hz), 7.51 (2H, d, J=8.44 Hz), 8.03 (1H br s), 11.70 (1H, s)
20						2.1 1, J=1 1, J=
		IR (cm-)	1749, 1713. 1652, 1609. 1278, 1203 (KBr)	3351, 1702, 1648, 1608, 1534, 1285, (KBr)	2946, 1762, 1656, 1612, 1518, 1268, 1206 (KBr)	3380, 2950, 1648, 1611, 1538, 1518, 1265, (KBr)
25		سه (_گ C)	. 154-156.5	176-179	125-128	164.5-166
30		Appear- ance	yellow crystals	yellow crystals	yellow	yellow
35						2
40		Structure	5, 2	\$ \$\disp\{\din\{\disp\{\disp\{\disp\{\disp\{\disp\{\disp\{\disp\{\disp\{\din\{\disp\{\disp\{\disp\{\disp\{\disp\{\disp\{\din\{\\\\\\\\\\		₹
45	43		56	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	±	5-0-5
50	able 4	Ex.No.	147	148	149	150

EP 1 314 712 A1

5	0,000	FAB MS	518 (M++1). 476 (100)	476 (M+ +1. 100)	495 (M+ +1). 154 (100)	453 (M+ +1). 154 (100)
10		۳)), 3.89 (2H. s),), 7.09 (1H. d. H, m), 7.40 j), 7.58-7.56 m), 8.30-8.32	, 3.99 (3H, s), , J=8.56 Hz), (1H, t, J=8.04 Hz), 8.25-8.29), 3.91 (2H. s).), 7.12 (1H. d. H. m), 7.42 7.73 (2H. m), 8.87 (1H. d.), 4.01 (3H. s), J=8.48 H2), (1H. t. J=7.90 2, 1.40 H2), 11.94 (1H br
15		NMR (ppm)	2.12 (3H, s), 2.32 (3H, s), 3.89 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 7.09 (1H, d, J=8.40 Hz), 7.26-7.30 (1H, m), 7.40 (1H, dd, J=8.40, 2.20 Hz), 7.58-7.66 (2H, m), 7.70-7.71 (1H, m), 8.30-8.32 (1H, m), 8.39 (1H br s)	2.14 (3H. s), 3.82 (2H. s), 3.99 (3H, s), 4.00 (3H. s), 6.97 (1H, d, J=8.56 Hz), 7.27-7.35 (3H. m), 7.63 (1H. t, J=8.04 Hz), 7.69 (1H, d, J=7.84 Hz), 8.25-8.29 (2H, m), 11.53 (1H. s)	2. i3 (3H, s), 2.33 (3H, s), 3.91 (2H, s), 4.00 (3H, s), 4.01 (3H, s), 7.12 (1H, d, J=8.36 Hz), 7.21-7.25 (1H, m), 7.42 (1H, d, J=8.36 Hz), 7.67-7.73 (2H, m), 8.23 (1H, d, J=8.36 Hz), 8.87 (1H, d, J=8.90 Hz), 11 04 (1H br s)	2.14 (3H, s), 3.86 (2H, s), 4.01 (3H, s), 4.02 (3H, s), 5.98 (1H, d, J=8.48 Hz), 7.24-7.42 (3H, m), 7.72 (1H, t, J=7.90 Hz), 8.28 (1H, dd, J=8.52, 1.40 Hz), 8.86 (1H, d, J=7.88 Hz), 11.94 (1H br s), 11.59 (1H, s)
20	-	\dashv				
	إ	IR (cm-)	1757, 1654. 1612, 1529, 1322, 1271 (KBr)	3310, 1655, 1612, 1540, 1332, 1271 (KBr)	1780, 1666. 1613, 1500. 1341, 1265 (KBr)	3334, 1654, 1612, 1502, 1349, 1269 (KBr)
25	é	(C) dm	98-100	127.5-130	97.5-100	155-156
30	- A COUCK	Appear- ance	yellow crystals	yellow crystals	yellow	yellow crystals
35						-
40		Structure	₫, , , , , , , , , , , , , , , , , , ,		ž z=o	ō _ z _ z=0
45	4			5-0 0-5	£ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0-5
50	rable 4	EX.No.	151	152	153	154

EP 1 314 712 A1

	_		·			
5		FAB MS	451 (M++1. 100)	409 (M++1. 100)	409 (M+ +1). 154 (100)	409 (M+ +1), 154 (100)
10		n)	, 3.89 (2H, s), , 7.05-7.11 1.28 Hz), 7.71- 2H, m), 8.95	. 3.98 (3H, s). J=8.56 Hz), 7.26 (1H, m). 7.80 (1H, m). 9.08 (1H, m).		. 3.98 (3H. s). J=8.52 H2). .38 (1H. m). 8.20-8.22 (1H. G4 (1H br s).
15		NMR (ppm)	2.12 (3H. s), 2.39 (3H. s), 3.89 (2H. s), 3.99 (3H. s), 4.00 (3H. s), 7.05-7.11 (2H. m), 7.38 (1H. d, J=8.28 Hz), 7.71- 7.80 (2H. m), 8.27-8.32 (2H. m), 8.95 ((1H br s)	2.13 (3H, s), 3.80 (2H, s), 3.98 (3H, s), 3281, 1683, 3.99 (3H, s), 6.91 (1H, d, J=8.56 Hz), 1665, 1610, 7.11-7.15 (1H, m), 7.21-7.26 (1H, m), 1439, 1309, 7.56-7.57 (1H, m), 7.77-7.80 (1H, m), 1264 (KBf) 8.32-8.34 (2H, m), 9.07-9.08 (1H, m), 11.99 (1H br s)	2.15 (3H, s), 3.79 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 6.94 (1H, d, J=8.52 Hz), 7.22-7.26 (1H, m), 7.58 (1H, s like), 7.64 (2H, dd, J=4.88, 1.44 Hz), 8.56 (2H, dd, J=4.80, 1.44 Hz), 8.78 (1H br s)	2.14 (3H, s), 3.79 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 6.94 (1H, d, J=8.52 Hz), 7.22-7.26 (1H, m), 7.34-7.38 (1H, m), 7.56 (1H, d, J=1.80 Hz), 8.20-8.22 (1H, m), 8.41-8.43 (1H, m), 8.64 (1H br s), 8.69 (1H, d, J=2.40 Hz)
20				2.13 (; 3.99 (; 7.11-7 7.56-7 8.32-8		2.14 (C 3.99 (C 7.22-7 7.56 (I m), 8.4 8.69 (C
		IR (cm-)	1764, 1655, 1612, 1436, 1267, 1204 (KBr)	3281, 1683, 1665, 1610, 1439, 1309, 1264 (KBr)	3446, 1650, 1611, 1510, 1266, 1206 (KBr)	3430, 1651, 1611, 1547, 126, 1206 (KBr)
25		(၃) dш	124-126.5	180-183	171-172.5	119-122.5
30		Appear-	yellow crystals	yellow	yellow crystals	yellov crystals
35					·	
40		Structure	£	Z Z	Į Ž	**************************************
45	45		£ £	£	£-0 0-5	£-0 0-£
50	I	Ex.No.	155	156	157	158

EP 1 314 712 A1

						
5		FAB MS) 414 (M++1), 154 (100)	372 (M+ + 1). 154 (100)	456 (M++1), 154 (100)	414 (M++1). 154 (100)
10		(m)	-0.89 (24, m), s), 2.83-2.87 s9 (34, s), 4.00 m), 6.98 (14, d, 114, m), 7.51-	0.93 (2H, m). 11H, m). 3 73 39 (3H, s). 6.40. d, J=9.04 Hz). 0 (1H, s)	1,75 (3H, m). (3H, s), 2,31 (0-3.95 (1H, m).), 6.07-6.10 8.32 Hz), 7.25- d, J=2.00 Hz)	1 82 (3H, m) (3H, s), 3.75 n), 3.99 (3H, s), 1H, m), 6.86 (1H, dd, IH, d, J=1.76
15		NMR (ppm)	0.53-0.57 (2H, m), 0.83-0.89 (2H, m), 2.09 (3H, s), 2.30 (3H, s), 2.83-2.87 (1H, m), 3.84 (2H, s), 3.99 (3H, s), 4.00 (414 (M++1), (3H, s), 6.28-6.29 (1H, m), 6.98 (1H, d J-8.32 Hz), 7.26-7.28 (1H, m), 7.51- 7.52 (1H, m)	0.65-0.69 (2H, m), 0.88-0.93 (2H, m), 2.12 (3H, s), 2.83-2.87 (1H, m), 3.73 (2H, s), 3.99 (3H, s), 6.40 (1H, m), 6.87 (1H, d, J=9.04 Hz), 7.14-7.17 (2H, m), 12.20 (1H, s)	1.31-1.46 (5H, m), 1.55-1.75 (3H, m), 1.98-2.01 (2H, m), 2.09 (3H, s), 2.31 (3H, s), 3.84 (2H, s), 3.80-3.95 (1H, m), 456 (M++1), 3.99 (3H, s), 4.00 (3H, s), 6.07-6.10 (1H, m), 6.98 (1H, d, J=8.32 Hz), 7.25- 7.27 (1H, m), 7.53 (1H, d, J=2.00 Hz)	1.20-1.48 (5H, m), 166-182 (3H, m) 2.00-2.04 (2H, m), 2.13 (3H, s), 3.75 (2H, s), 3.93-3.97 (1H, m), 3.99 (3H, s), 4.14 (M++1), 4.00 (3H, s), 6.08-6.10 (1H, m), 6.86 (1H, d, J=8.48 Hz), 7.13 (1H, dd, J=8.52, 1.92 Hz), 7.20 (1H, d, J=1.76 Hz), 12.30 (1H, s)
20		IR (cm-)	1759, 1642. [1611, 1264. [1708 (KB/)]	3365, 1642, 2 1611, 1536, (C	1766, 1638, 1 1610, 1534, ((1265, 1218, 3 (KBr)	1 2 2 1615, 1644, (7 1615, 1543, 4 1265 (KBr) (1)
25		(၃) dш	95.5-98	111-112	137,5-140	107-109
30		Appear-	yellow crystals	yellow Crystals	yellow crystals	yellow Grystals
35	i					
40		Structure	F. O	₹ o z	\$\int_{\inttileftinteta\int_{\inttileftinteta\int_{\inttileftint{\inttileftinteta\int_{\inttileftint{\inttileftinteta\intitileftinteta\inttileftint\inttileftinintileftint\inttileftint\inttileftint\inttileftinteta\inttileftileftint\inttileftileftileftileftileftileftileftile	
45	46		P-0 0-P	£-0 0-£	£-0 0-£	£
50	Table 4	EX.No.	159	160	161	162

EP 1 314 712 A1

5	FAB MS	494 (M+ +1), 154 (100)	452 (M++1). 154 (100)	518 (M+ +1). 154 (100)	476 (M+ +1). 154 (100)
10	m)	s). 3.39 (3H, s (3H, s like), s), 6.63-6.74 m)	(5H, m), 3.77 00 (3H, s), 6.50 a (2H, d, J=8.88 4 H2), 6.95 (2H, dd, J=8.48.	s), 3.79 (2H. s), s), 7.21-7.29 m), 7.71 (2H. d, s)	s), 3.99 (3H, s), i, J=7.76 Hz), i (1H, d, J=7.64 0 Hz), 7.74 (2H,
15	NMR (ppm)	1766, 1646, 1,85 (3H, s), 2,30 (3H, s), 3,39 (3H, s) 1610, 1511, like), 3,59 (2H, s), 3,71 (3H, s like), 1249 (NeCl) 3,99 (3H, s), 4,01 (3H, s), 6,63-6,74 (3H, m)	1.76 (3H, s), 3.38-3.40 (5H, m), 3.77 3350; 1647, (3H, s), 3.98 (3H, s), 4.00 (3H, s), 6.50 1610, 1510, (1H, d, J=1.76 Hz), 6.74 (2H, d, J=8.88 1248 (NaCl) [Hz), 6.84 (1H, d, J=8.44 Hz), 6.95 (2H, d, J=8.84 Hz), 7.04 (1H, dd, J=8.48, 2.12 Hz), 10.68 (1H, s)	2.00 (3H, s), 2.31 (3H, s), 3.79 (2H, s), 4.00 (3H, s), 4.01 (3H, s), 7.21-7.29 518 (M++ (2H, m), 7.56-7.63 (3H, m), 7.71 (2H, d, 154 (100) J=8.52 Hz), 7.87 (1H br s)	2.10 (3H, 9), 3.89 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 6.86 (1H, t, J=7.76 Hz), 7.29-7.31 (1H, m), 7.48 (1H, d, J=7.64 Hz), 7.65 (2H, d, J=8.60 Hz), 7.74 (2H, d, J=8.52 Hz), 8.32 (1H br s), 11.93 (1H, s)
20		1.85 like) 3.99 (3H,	1.76 (3H, (1H, Hz). d, J= 2.12	2.00 4.00 (2H, J=8.	
20	IR (cm-)	1766, 1646, 1610, 1511, 1249 (NaCI)	3350, 1647, 1610, 1510, 1248 (NaCi)	1764. 1667. 1614. 1533. 1319 (KBr)	3384, 1640, 1608, 1537, 1336 (KBr)
25	(2°) qm			163-166	129-131.5
30	Appear-	yellow oil	yallow	yellow crystals	yellow crystals
35		£	-£		
40	Structure	5 5-z	£ − × − 0	E P	£ 5
45 L L 7		, r r	25 t	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	o o o o o o o o o o o o o o o o o o o
rable 4	Ex.No.	163	164	165	166

EP 1 314 712 A1

20		
25		
30		
35		
40		
45		
50		Table 48

FAB MS	. 571 (M++1). 0 154 (100)	500 (M++1). 154 (100)	500 (M++1). 154 (100)	463 (M+ +1). 154 (100)
NMR (ppm)	1.38 (3H, I, J=7.08 Hz), 2.12 (3H, s), 3.87 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 4.32-4.37 (2H, m), 5.24 (2H, s), 7.06 (1H, d, J=8.52 Hz), 7.30 (2H, d, J=8.60 Hz), 7.38-7.43 (2H, m), 7.84-7.93 (3H, m), 8.10 (1H, d, J=1.56 Hz), 8.74-8.80 (2H, m), 9.87 (1H, bt s)	2.13 (3H. s), 3.87 (2H. s), 3.99 (3H. s), 4.00 (3H. s), 5.24 (2H. s), 7.07 (1H. d. J=8.56 Hz), 7.14 (2H. d. J=5.16 Hz), 7.40-7.45 (2H. m), 7.83-7.86 (1H. m), 8.08 (1H. s like), 8.40 (2H. d. J=5.32 Hz), 8.76 (1H. d. J=4.72 Hz), 8.81 (1H br s), 9.82 (1H br s)	2.12 (3H, s), 3.88 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 5.25 (2H, s), 7.06 (1H, d, j=8.48 Hz), 7.20-7.24 (1H, m), 7.38-7.45 (2H, m), 7.85 (1H, d, j=7.76 Hz), 8.09-8.11 (3H, m), 8.29 (1H, d, j=4.52 Hz), 8.73-8.79 (2H m), 9.75 (1H, br s)	0.27-0.29 (2H, m), 0.71-0.73 (2H, m). 2.10 (3H, s), 2.84-2.87 (1H, m), 3.83 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 5.13 (2H, s), 6.94 (1H, d, J=8.48 Hz), 7.26-7.40 (2H, m), 7.70-7.76 (2H, m), 8.00 (1H, s like), 8.67-8.68 (2H, m)
IR (cm-)	1710, 1654. 1610, 1537. 1277 (KBr)	1677, 1648. 1610, 1590. 1517, 1264 (KBr)	1672, 1609. 1543, 1425. 1264 (KBr)	1651, 1610. 1498, 1264 (KBr)
(C)	83-85.5	116-119	135-137	87-89.5
Appear- ance	yellov crystals	yellow crystals	yellow	yellow
Structure	1, C, O, C, 1, T, C, C, T, T, C, C, C, T, C, C, C, T, C, C, C, T, C,	NO ON THE PROPERTY OF THE PROP	2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H,C,O,H
Ex.No.	167	168	169	170

EP 1 314 712 A1

5	FABMS	100)	567 (M+ +1). 154 (100)	582 (M+ +1). 540 (100)	540 (M+ +1), 154 (100)
10	1	1.80 (2H, m) 13.3.84-3.98 100 (3H, s), 5.13 100 (3H, p), 7.26- 11H, m), 7.78 (1H, d, J=2.32	1, 3.99 (3H, s). 3, 7.06 (1H, d, 5H, m), 7.82- d J=2.36 Hz). (1H, br s)	1, 3.88 (2H, s), 2, 7.09 (1H, d, 3, J=8.40, 2.16 (Hz), 7.90 (2H, d, J=8.76 Hz),), 3.99 (3H, s), 1H, m), 7.50- d, J=8.52 Hz), 8.40-8.42 (1H,
15	(mac) NMN	0.94-1.47 (8H, m), 1.77-1.80 (2H, m). 2.10 (3H, s), 3.84 (2H, s), 3.84-3.98 (1H, m), 3.99 (3H, s), 4.00 (3H, s), 5.13 505 (M++1, (2H, s), 6.96 (1H, d, J=8.52 Hz), 7.26-100) 7.39 (2H, m), 7.58-7.60 (1H, m), 7.78 (1H, d J=7.76 Hz), 8.00 (1H, d, J=2.32 Hz), 8.66-8.73 (2H, m)	2.13 (3H, s), 3.88 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 5.24 (2H, s), 7.06 (1H, d, J=8.48 Hz), 7.34-7.49 (6H, m), 7.82-7.85 (1H, m), 8.10 (1H, d J=2.36 Hz), 8.74-8.81 (2H, m), 9.85 (1H, br s)	2.13 (3H, s), 2.33 (3H, s), 3.88 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 7.09 (1H, d, J=8.40, 2.16 Hz), 7.39 (1H, dd, J=8.40, 2.16 Hz), 7.65 (1H, d, J=2.16 Hz), 7.90 (2H, d, J=8.92 Hz), 8.02 (2H, d, J=8.76 Hz), 8.42 (1H, br s)	3325, 1656, 2.17 (3H, s), 3.80 (2H, s), 3.99 (3H, s), 1613, 1584, 4.00 (3H, s), 6.95-6.97 (1H, m), 7.50-1537, 1211 7.52 (1H, m), 7.97 (2H, d, J=8.52 Hz), 8.06 (2H, d J=8.76 Hz), 8.40-8.42 (1H, br s) m), 11.00 (1H, br s)
20	IB (cm.)	2933, 1630. 1610, 1289 (KBr)	1676, 1610. 1541, 1324. 1265 (KBr)	1770, 1652, 1612, 1588, 1525, 1217 (KBr)	3325, 1656, 1613, 1584, 1537, 1211 (KBr)
25		•	173-176	84.5-87	223-225.5
30	Appear-	yellow crystals	yellow	yellow	yellow
35					
40					5 - z
45	49		, , , , , , , , , , , , , , , , , , ,	£ 5 5	£
50	able 4	171	172	173	174

EP 1 314 712 A1

	г					
5		FAB MS	582 (M+ +1). 154 (100)	519 (M+ +1), 154 (100)	477 (M+ +1). 154 (100)	534 (M+). 154 (100)
10		pm)	s), 3.80 (2H, s), s), 7.24-7.30 =7.36 Hz), 7.90 H (2H, d J=8.76	5). 3.80 (2H. s). 5). 7.21-7.31 =2.36 H2). 7.65 9 (1H. br s).	s), 3.99 (3H. s), t, J=7.76 H2), 5-7.48 (2H. m),), 8.66 (1H. br	s), 3.12-3.15 1.85-3.88 (4H, 3H, s), 6.89-6.92 .m), 7.46-7.49 .m)
15		NMR (ppm)	2.01 (3H, s), 2.33 (3H, s), 3.80 (2H, s), 3.99 (3H, s), 4.02 (3H, s), 7.24-7.30 (2H, m), 7.58 (1H, d. J=7.36 Hz), 7.90 (2H, d. J=8.88 Hz), 8.01 (2H, d. J=8.76 Hz), 8.19 (1H, br.s)	- 2.01 (3H, s), 2.35 (3H, s), 3.80 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 7.21-7.31 (3H, m), 7.42 (1H, d, J=2.36 Hz), 7.65 (1H, d, J=7.56 Hz), 8.29 (1H, br s), 8.48 (1H, d, J=8.92 Hz)	3422, 1651, 2.09 (3H, s), 3.89 (2H, s), 3.99 (3H, s), 1610, 1530, 4.00 (3H, s), 6.87 (1H, t, J=7.76 Hz), 1529, 1269, 7.29-7.33 (2H, m), 7.45-7.48 (2H, m), (KB ₁) 8.39 (1H, d, J=8.88 Hz), 8.66 (1H, br s), 12.00 (1H, s)	2.00 (3H, s), 2.31 (3H, s), 3.12-3.15 (4H, m), 3.78 (2H, s), 3.85-3.88 (4H, 534 (M+), 4.00 (3H s), 4.01 (3H, s), 6.89-6.92 154 (100) (2H, m), 7.19-7.25 (2H, m), 7.46-7.49 (2H, m), 7.56-7.60 (2H, m)
20		IR (cm-)	1770, 1653. 1612, 1589. 1365, 1216 (KBr)	1769, 1651, 1610, 1507, 1269, 1194 ((KBr)	3422, 1651, 1610, 1590, 1529, 1269, (KBr)	1762, 1650, 1612, 1451, 1269 (KBr)
25		(ک) سه (څ	87-89		147.150	168-171
30		Appear-	yellow crystals	yellow	yellow crystals	yellow crystals
35				5	ō	
40		Structure	0,000	3—————————————————————————————————————	5—z	
45	0		5-0-5	£-0 0-5	£	
50	rable 50	Ex.No.	175	176	177	178

EP 1 314 712 A1

5	FAB MS	492 (M+). 154 (100)	481 (M++1). 154 (100)	439 (M++1). 154 (100)	510 (M+). 154 (100)
10	(mdc	7 (4H, m), 3,85- 4, s), 4 00 (3H, s), 2), 6,93 (1H, d, (1H, m), 7,38 14 (2H, d, J=8,92 2,44 (1H, s)	. s) 3.87 (2H, s). . s) 4.00 (3H, s). 2), 7.06 (1H, d. dd, J=8.32, 1.96 .95-8 03 (2H, m). 2)	. s), 3.95 (3H, s), . s), 6.79 (1H, d, d, J=8.56 Hz), 1.72 Hz), 7.87 (1H, dd, 7.87 (1H, s ike), 8.23	. s). 3.89 (2H. s). . s). 4.00 (3H. s). . d. J=8.52 H2). 2). 7.35 (1H. dd. (1H. d. J=2.04 66 (1H. d.
15	NMR (ppm)	2.07 (3H. s), 3.14-3.17 (4H. m), 3.85- 3.89 (6H. m), 3.99 (3H. s), 4.00 (3H. s), 492 (M+), 6.81 (1H. 1, 1=7.84 Hz), 6.93 (1H. d, 1-8.96 Hz), 7.24-7.26 (1H. m), 7.38 (1H. d J=7.88 Hz), 7.44 (2H. d, 1=8.92 Hz), 7.89 (1H. br s), 12.44 (1H. s)	2.11 (3H, s), 2.32 (3H, s), 3.87 (2H, s), 3.93 (3H, s), 4.00 (3H, s), 5.93 (3H, s), 4.00 (3H, s), 5.93 (3H, d,	2.14 (3H. s). 3.78 (2H. s). 3.95 (3H. s). 3.97 (3H. s). 3.98 (3H. s). 6.79 (1H. d. J=8.84 Hz). 6.92 (1H. d. J=8.56 Hz). 7.22 (1H. dd. J=8.56, 1.72 Hz). 7.46(1H. d. J=1.32 Hz). 7.87 (1H. dd. J=8.80, 2.64 Hz). 8.06 (1H. s ike). 8.23 (1H. d. J=2.60 Hz). 11.77 (1H. s)	2.12 (3H. s), 2.38 (3H. s), 3.69 (2H. s), 3.91 (3H. s), 3.99 (3H. s), 4.00 (3H. s), 4.03 (3H. s), 6.35 (1H. d, J=8.52 Hz), 7.08 (1H. d, J=8.36 Hz), 7.35 (1H. dd, J=8.36, 2.24 Hz), 7.81 (1H. d, J=2.04 Hz), 8.60 (1H. dr, br. s), 8.66 (1H. dr, J=8.56 Hz)
20	IR (cm-)	3422, 1648, 3, 1611, 1518, 6, 1266 (KBr)	1761, 1654, 3 1612, 1495, 6 1286, 1205, J. (KBr)	2 2 3 1608, 1639. 3 1608, 1492. 7 1267 (KBr) 7 1 ((1773, 1663, 4 1610, 1522, 7 1265 (KBr)
25	(၁°) dm	177.5-180.5	104.5-107.5	169-170	
30	Appear-	yellow crystals	yallow crystals	yellow	yellow
30 35	Appear-	yellow	yellow	yellow crystals	yellow
	Structure Appear-		yellow rerystals crystals	yellow grastals crystals	yellow oil
35		Cry Cry Stals	ē. 0, S=-	o_ 5	²-ĕ

EP 1 314 712 A1

5		FAB MS	469 (M++1), 154 (100)	485 (M++1). 154 (100)	443 (M++1). 154 (100)	485 (M++1). 154 (100)
10		(c	1, 3,92 (3H, s). 1, 4,07 (3H, s). 6,92 (1H, d, J=1,60 Hz). br s), 8,46	. 3.88 (2H. s), . 7.08 (1H. d. H. m), 7.66 . m), 8.41 (1H.	, 3.98 (3H, s), J=8.56 H2), 1H, d, J=8.64 -8.18 (2H, m).	, 3.90 (2H s). , 7.11 (1H, d. H, m), 7.42 (1H, d. J=2 04 (81 (1H, br s). 6 Hz)
15		NMR (ppm)	2.17 (3H, s), 3.82 (2H, s), 3.92 (3H, s), 3.99 (3H, s), 4.00 (3H, s), 4.07 (3H, s), 6.36 (1H, d, 1=8.52 Hz), 6.92 (1H, d, 1=8.56 Hz), 7.24 (1H, d, 1=1.60 Hz), 7.24 (1H, br s), 8.20 (1H, br s), 8.46 (1H, br s), 11.85 (1H, s)	2.12 (3H, s), 2.33 (3H, s), 3.88 (2H s), 3.99 (3H, s), 4.00 (3H, s), 7.08 (1H d. J=8.36 Hz), 7.33-7.38 (2H, m), 7.56 (1H, br s), 8.14-8.26 (2H, m), 8.41 (1H, br s)	3451, 1651, 2.16 (3H, s), 3.80 (2H, s), 3.98 (3H, s), 1611, 1537, 3.99 (3H, s), 6.94 (1H, d, J=8.56 Hz), 1464, 1268 7.24-7.26 (1H, m), 7.38 (1H, d, J=8.64 Hz), 7.48 (1H, br s), 8.12-8.18 (2H, m), 8.52 (1H, br s), 11.40 (1H, br s)	2.13 (3H, s), 2.39 (3H, s), 3.90 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 7.11 (1H, d, J=8.40 Hz), 7.26-740 (1H, m), 7.42 (1H, d, J=2.12 Hz), 7.79 (1H, d, J=2.04 Hz), 8.14 8.16 (1H, m), 8.81 (1H, br s), 8.91 (1H, dd, J=8.16, 1.36 Hz)
20			2.17 (31 3.99 (31 6.36 (11 5.36 (11 7.34 (11, br		2.16 (3) 3.99 (3) 7.24-7.7 Hz), 7.4 8.52 (1)	2.13 (3) 3.99 (3) J=8.40 (1H, d, Hz), 8.1
		IR (cm-)	3234, 1651. 1611, 1563, 1265 (KBr)	1768, 1649, 1611, 1525, 1464, 1203 (KBr)	3451, 1651, 1611, 1537, 1464, 1268 (KBr)	1770, 1669, 7 1609, 1517, 1273, 1201 (KBr)
25		(C) dw	119-121.5	74.5-77.5	166-169	128.5-130
30	i	Appear-	yellow crystals	yellow crystals	yellow crystals	yellow crystals
35					5	
40		Structure	ō		¥ Z	5 2
45	2		5-0 0-5	€ 0 0 - €	£-0 0-£	5-0-5
50	Table 52	Ex.No.	183	184	185	186

EP 1 314 712 A1

5	FABMS	443 (M++1). 154 (100)	550 (M++1). 154 (100)	494 (M++1), 154 (100)	452 (M++1). 154 (100)
10	(wc	s). 3.99 (3H. s). d. J=8.56 H2). 8 (1H. s like). 44 Hz). 8.60 i. J=8.16. 1.48	s), 2.31 (3H s), s), 4.00 (3H s), i, 7.35 (1H, dd 7.67 (3H m), i, 8.16 (1H, br s)	s), 3.88 (2H, s), s), 7.08 (1H, d, id, J=8.52, 1.64 8.11 (2H, d, ir s)	s), 3.88 (3H. s). d, J=8.36 Hz). i, 7.67 (1H. br Hz), 7.93 (2H. d. br s), 11.28 (1H.
15	NMR (ppm)	2.15 (3H. s), 3.83 (2H. s), 3.99 (3H. s). 4.00 (3H. s), 6.96 (1H. d. J=8.56 Hz), 7.31-7.35 (2H. m), 7.43 (1H. s iike). 8.19 (1H. dd. J=4.56, 1 44 Hz), 8.60 (1H. br s), 8.80 (1H. dd. J=8.16, 1.48 Hz), 11.33 (1H. br s)	1769, 1709, 1.60 (9H, s), 2.12 (3H, s), 2.31 (3H, s), 1651, 1611, 3.88 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 1529, 1294, 7.07 (1H, d, J=8.32 Hz), 7.35 (1H, dd, J=8.40, 7.63 (3H, m), 1164 (KBr) J=8.40, 2.08 Hz), 7.63-7.67 (3H, m), 7.99 (2H, d, J=8.60 Hz), 8.16 (1H, br s)	2.12 (3H, s), 2.33 (3H, s), 3.88 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 7.08 (1H, d, J=8.46 Hz), 7.36 (1H, dd, J=6.52, 1.64 Hz), 7.56-7.72 (3H, m), 8.11 (2H, d, J=8.20 Hz), 8.28 (1H, br s)	2.00 (3H. S), 3.76 (2H. S), 3.88 (3H. S), 3.89 (3H. S), 3.89 (3H. S), 6.91 (1H. d. J=8.36 Hz), 7.20 (1H. d. J=8.08 Hz), 7.67 (1H. br. s), 7.82 (2H. d. J=8.44 Hz), 7.93 (2H. d. J=8.48 Hz), 10.56 (1H. br. s), 11.28 (1H. br. s), 12.76 (1H. br. s)
20			1.60 3.88 7.07 J=8. 7.99		2.00 3.89 7.20 5), 7 J=8. br s)
	IR (cm-)	3280. 1652. 1612, 1534. 1502, 1267. 1209 (KBr)	1769, 1709, 1651, 1611, 1529, 1294, 1164 (KBr)	3256, 1749, 1720, 1653, 1608, 1533, 1270, 1202 (KBr)	3139, 1700, 1641, 1611, 1552, 1431, 1263 (KBI)
25	mp (°C)	. 152-154	78.5-81	199-201.5	257-260
30	Appear-	yellow	yellow crystals	yellow crystals	yellow crystals
35				·	
40	Structure	E 2 0	20 5 20 5 20 5	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	
45	5.6	5-0 0-5	6	£	5-0-5
	EX.No.	187	188	189	190

EP 1 314 712 A1

_		ان	~		<u> </u>	÷
5		FAB MS.	453 (M++1). 154 (100)	560 (M+). 154 (100)	551 (M++1). 154 (100)	495 (M++1), 154 (100)
. 10		pm)	s), 3.99 (3H, s), d, J=8.52 Hz), 0 (1H, s lke),), 8.29 (2H, d, br s), 11.32 (1H,	- d, J=8.56 Hz). 3 (1H, d, J=1.48 .37 (1H, s)		s), 3.85 (2H. s), s), 7.10-7.16 =6.72 Hz), 7.56 J=6.32 Hz),
15		NMR-(ppm)	2.17 (3H, s), 3.81 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 6.95 (1H, d, J=8.52 Hz), 7.55.7.26 (1H, m), 7.50 (1H, s ièe), 7.83 (2H, d, J=9.04 Hz), 6.29 (2H, d, J=9.04 Hz), 6.29 (2H, d, J=9.04 Hz), 6.29 (2H, d, J=9.04 Hz), 6.25 (1H, br s), 11.32 (1H, br s)	- 3.99 (3H, s), 3.82 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 6.96 (1H, d, J=8.56 Hz), 7.28-7.36 (3H, m), 7.53 (1H, d, J=1.48 Hz), 7.72 (1H, br s), 11.37 (1H, s)	1.64 (9H, s), 2.14 (3H, s), 2.29 (3H, s), 3.89 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 6.94-7.15 (3H, m), 7.37-7.71 (2H, m), 8.26-8.70 (2H, m)	3402, 1768, 2.02 (3H, s), 2.16 (3H, s), 3.85 (2H, s), 1654, 1610, 3.89 (3H, s), 3.90 (3H, s), 7.10-7.16 1492, 1266, (2H, m), 7.36 (1H, d, J=6.72 Hz), 7.56 1201 (KB) (1H, br s), 8.22 (1H, d, J=6.32 Hz), 8.35-8.36 (1H, m)
20						2.02 3. 3.89 5. (2H, (1H, 8.36
		IR (cm-)	3328, 1651, 1614, 1560, 1503, 1332 (KBr)	3324, 1651, 1610, 1510, 1268, 1224 (KBr)	1764, 1712, 1651, 1610, 1306, 1265, 1123 (NaCI)	3402, 1768. 1654, 1610. 1492, 1266. 1201 (KBr)
25		(၃) dш	213.5-215.5	138-141		148-151
30		Appear-	yellow crystals	yellow orystals	yellow	yellow crystals
35						
40		Structure	, z=0	5-2-5	\$	£
45	54		£-0-£	£-0 0-£		5-0-5
50	able 5	Ex.No.	191	192	193	194

EP 1 314 712 A1

		_				
5		FAB MS	453 (M++1). 154 (100)	551 (M++1). 154 (100)	495 (M++1). 154 (100)	453 (M++1), 154 (100)
10) m)	5). 3.88 (3H. 5). d. J=8.36 Hz). 7.32-7.36 (1H 4 (1H. d. J=7 68 3 Hz). 11.58	5), 2.39 (3H, s), 3), 3.99 (3H, s), 7.39 (1H, dd, 1H, d, J=1 60 8.82.8.84 (1H,), 3.85 (2H, s),), 7.14 (1H, d, d, J=8.40, 1 92 i Hz), 8.18-8.30 m), 11.08 (1H,), 3.88 (3H. s). 1, J=8.36 Hz). (1H. d. J=1.88 8.84 (1H. s). 11.80 (1H. m).
15		NMR (ppm)	2.01 (3H, s), 3.76 (2H, s), 3.88 (3H, s), 3.89 (3H, s), 6.93 (1H, d, J=8.36 Hz), 7.25 (1H, d, J=8.48 Hz), 7.32-7.36 (1H, m), 7.75 (1H, br s), 8.24 (1H, d, J=7.68 Hz), 8.57 (1H, d, J=4.68 Hz), 11.58 (1H, br s)	1.60 (9H, s), 2.12 (3H, s), 2.39 (3H, s), 3.88 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 2.11 (1H, d, 3.98.36 Hz), 7.39 (1H, dd, J=8.28, 1.64 Hz), 7.81 (1H, d, J=1 60 Hz), 8.26-8.38 (2H, m), 8.82·8.84 (1H, m), 8.29 (1H, br s)	2.02 (3H, s), 2.18 (3H, s), 3.85 (2H, s), 3.89 (3H, s), 3.90 (3H, s), 7.14 (1H, d, J=8.36 Hz), 7.38 (1H, dd, J=8.40, 1 92 Hz), 7.52 (1H, d, J=1.88 Hz), 8.18-8.30 (2H, m), 8.83-8.84 (1H, m), 11.08 (1H, s), 12.90-13.50 (1H, br s)	3280, 2954, 3.89 (3H, s), 3.77 (2H, s), 3.88 (3H, s), 1654, 1611, 7.25-7.28 (1H, m), 7.82 (1H, d, J=1.88 1533, 1311, 142), 8.30-8.38 (2H, m), 8.84 (1H, s), 1267 (KBt) 11.16 (1H, br s), 11.60-11.80 (1H, m), 13.77-13.20 (1H, m)
20		IR (cm-)	2.0 2.0 1656, 1609, 7.2 1268 (KBr) (m) Hz	1769. 1650. 1448.	2.0 1769, 1698, 3.8 1654, 1612, Hz 1267 (KBr) (21 8),	3280, 2954, 3.8 1654, 1611, 7.2 1533, 1311, Hz; 1267 (KBr) 111,
		٦ (3410, 1656,	2980, 1687, 1610, 1265, (NaCI)	3410, 1769, 1654,	3280, 1654, 1533, 1267
25		mp (°C)	134-136.5		123-125	238-241
30		Appear-	yellow crystals	yellow	yellow	yellow crystals
35						
40		Structure	₹	δ . Σ ¹ .	£ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ \$\\ \frac{1}{2} \\
45	55		£	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	£	£ £
50	rable 5	Ex.No.	195	196	197	198

EP 1 314 712 A1

5		FAB MS	565 (M++1). 154 (100)	523 (M++1). 154 (100)	451 (M++1). 154 (100)	409 (M++1). 154 (100)
10) m)	s), 2.29 (3H. s), s), 3.99 (3H. s), (1H. dd, (1H. d, J=1.76 80, 1.68 Hz), 8 (1H. br s)	s), 3.79 (2H. s). s), 6.50 (1H, br :19-7.25 (1H, 7.97 (1H, br s).	s), 3.87 (2H, s), s), 7.06-7.09 m), 7.65 (1H, , 8.57-8.58 (1H,	s), 3.85 (2H s). s), 6.91 (1H, d, . J=7.32 H2). (1H, br s), 8.41 1 (1H, d, J=8.88
15		NMR (ppm)	1.59 (9H, S), 2.14 (3H, S), 2.29 (3H, S), 3.89 (2H, S), 3.98 (3H, S), 3.99 (3H, S), 3.99 (3H, S), 3.99 (3H, S), 3.97 (1H, dd, J=8.32, 1.88 Hz), 7.70 (1H, d, J=1.76 Hz), 8.27 (1H, dd, J=7.80, 1.68 Hz), 8.27 (1H, dd, J=7.80, 1.68 Hz), 8 64-8.66 (1H, m), 11.48 (1H, br s)	1.53 (9H, s), 2.14 (3H, s), 3.79 (2H, s), 3.98 (3H, s), 3.89 (3H, s), 6.50 (1H, br, s), 6.89-6.92 (1H, n), 7.19-7.25 (1H, m), 7.38-7.25 (1H, br, s), 7.38-7.50 (5H, m), 7.97 (1H, br, s), 11.86 (1H, s)	2.10 (3H, s), 2.32 (3H, s), 3.87 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 7.06-7.09 (1H, m), 7.27-7.36 (2H, m), 7.65 (1H, br s), 8.25-8.38 (3H, n), 8.57-8.58 (1H, m)	2.11 (3H, s), 2.94 (3H, s), 3.85 (2H, s), 3.98 (3H, s), 6.91 (1H, d, J=8.56 Hz), 7.16 (1H, d, J=7.32 Hz), 7.79-7.83 (1H, m), 8.02 (1H, br s), 8.41 (1H, d, J=4.72 Hz), 9.24 (1H, d, J=8.88 Hz), 9.53 (1H, br s), 11.04 (1H, br s)
20				3.9 (m).		
		IR (cm-)	1764, 1654, 1611, 1520, 1268, 1163 (KBr)	3352, 1699. 1648, 1610. 1520. 1269. 1159 (KBr)	1764, 1651. 1609, 1538. 1264 (NaCi)	3416, 3080, 1672, 1649, 1612, 1549, 1150 (KBr)
25		ကp (ီင)	188.5-191	127-129		149.5-152
30	,	Appear- ance	yellow crystals	yellow Crystals	yellow	yellow orystals
35						
40		Structure	£ 45	£ \$ 5		0=N=0
45	26			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	£-0 0-£	₹ ₹ ₹ ₹ ₹ ₹
50	able 5	Ex.No.	199	200	201	202

EP 1 314 712 A1

5	FAB MS	409 (M++1). 154 (100)	423 (M++1). 108 (100)	423 (M++1). 108 (100)	451 (M++1). 154 (100)
10	m)	3, 3.76 (2H, s). 3), 6.95 (1H, d, 1H, m), 7.53 J-6 76 H2),	3, 3.93 (3H, s), 1, J=8.68 Hz), 7, 16-7,27 (3H, Hz), 8,14 (1H,	s), 3.96 (3H, s), f, J=8.28 Hz), -7.85 (3H, m)), 3.79 (2H, s), 7, 7.19-7.33 7.04 H2), 8.15 7-8.04 H2), 8.58 (1H, d,
15	NMR (ppm)	1.99 (3H, s). 2.29 (3H, s). 3.76 (2H, s). 3.88 (3H, s). 3.89 (3H, s). 6.95 (1H, d, J=8.48 Hz). 7.25-7.27 (1H, m). 7.53 (1H, br s), 8.16 (2H, d, J=6.76 Hz). 8.71 (2H, d, J=6.88 Hz)	3366, 2944, 2.10 (3H, s), 3.75 (2H, s), 3.93 (3H, s), 1648, 1609, 3.94 (3H, s), 6.66 (2H, d. J=8.68 Hz), 1516, 1265 6.88 (1H, d. J=8.48 Hz), 7.16-7.27 (3H, 108 (100) (181) m), 7.43 (1H, d. J=1.16 Hz), 8.14 (1H, Dr. s)	3366, 2940. 1650, 1613, 2.07 (3H, s), 3.84 (2H, s), 3.96 (3H, s), 1513, 1268 3.97 (3H, s), 6.89 (1H, d, J=8.28 Hz). (KBr) 7.24-7.38 (3H, m), 7.78-7.85 (3H, m)	2.00 (3H, s), 2.31 (3H, s), 3.79 (2H, s). 1760, 1648, 3.98 (3H, s), 4.01 (3H, s), 7.19-7.33 1610, 1540, (3H, m), 7.57 (1H, d, J=7.04 Hz), 8.15 1196 (NeCr) (1H, br s), 8.24 (1H, d, J=8.04 Hz), 8.37 (1H, d, J=4.68 Hz), 8.58 (1H, d, J=2.20 Hz)
20	IR (cm-)	3246, 2948, 1702, 1613, 1513, 1139 (KBr)	3366, 2944. 1648, 1609. 1516, 1265 (KBr)	3366, 2940. 1650, 1613. 1513, 1268 (KBr)	1760, 1648. 1610, 1540, 1196 (NaCl)
25	(°C)	199 5.201 5		162-164	
30	Appear-	yellow Grystals	yellow	yellow crystals	yellow
35		<u> </u>	H,	÷	2
40	Structure	£ \$\frac{1}{2}\frac{1}	Į į		
45 L S		5	\$ 0-\$	£	£ 0 0 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
s Table 5	Ex.No.	203	204	205	206

EP 1 314 712 A1

10	
15	
20	
25	
30	
35	
40	
45	
50	Pable 58

Ex.No.	Structure	Appear ance	(C) dw	IR (cm-)	NMR (ppm)	FAB MS
207	15-00-15	yellow	169-171	3258, 1651, 1611, 1544, 1269 (KBr)	2.10 (3H, s), 3.89 (2H, s), 3.99 (3H, s), 3.258, 1651, 4 00 (3H, s), 6.86 (1H, t, J=7.76 H2), 1611, 1544, H2), 8.73 (2H, di, J=8.20, 1.60 H2), 1269 (KBr) (8.28 (1H, br s), 8.43 (1H, di, J=3.72 H2), 8.68 (1H, di, J=2.44 H2), 11.95 (1H, s)	409 (M++1). 154 (100)
208	5 5 5-0.0-5	yellow crystals	116.5-118.5	3135, 1767, 1653, 1611, 1523, 1267 (KBr)	2.12 (3H s), 2.33 (3H, s), 3.89 (2H, s). 3.99 (3H, s), 4.00 (3H, s), 7.06-7.09 (1H, m), 7.20-7.27 (2H, m), 7.34-7.44 (3H, m), 7.66 (1H, br s), 7.72 (2H, d, J=8.80 Hz), 7.75-7.83 (1H, m), 8.18 (1H, br s)	516 (M++1). 154 (100)
509		yellow crystals	119-121.5	3324, 3124, 1651, 1611, 1522, 1267 (KBr)	2.16 (3H, s), 3.81 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 6.95 (1H, d, J=8.56 Hz), 7.22-7.29 (3H, m), 7.43 (2H, d, J=8.76 Hz), 7.53 (1H, d, J=1.76 Hz), 7.74 (2H, d, J=8.80 Hz), 7.87 (1H, s), 8.42 (1H, s), 11.50-11.90 (1H, br s)	474 (M++1). 154 (100)
210		yellow:		3346, 1768, 1648, 1611, 1267, 1188 (KBr)	3346, 1768, 2.12 (3H, s), 2.34 (3H, s), 3.90 (2H, s). 1648, 1611, 3.97 (3H, s), 3.99 (3H, s), 6.82-6.84 1267, 1188 (1H, m), 7.07 (1H, d, J=8.28 Hz), 7.20-(KBr) 7.46 (2H, m), 7.62-7.81 (5H, m), 8.10-8.20 (1H, m), 8.38 (1H, br s)	516 (M+ +1). 154 (100)

EP 1 314 712 A1

30		
35		
40		
45		

Table 59

NS		Ē.	Ę.	Ė.
FAB MS	474 (M++1). 154 (100)	532 (M++1), 154 (100)	100)	508 (M++1). 154 (100)
NMR (ppm)	2.01 (3H. s), 3.77 (2H, s), 3.89 (3H, s), 3.90 (3H, s), 6.80 (1H, m), 6.90 (1H, d, J=8.40 Hz), 7.18-7.21 (1H, m), 7.72-7.82 (5H, m), 10.39-10.41 (1H, br s), 11.48-11.49 (1H, br s), 12.80-12.83 (1H, br s)	1.89 (3H, S), 2.29 (3H, S), 3.44 (3H, S), 3.63 (2H, S), 3.89 (3H, S), 4.00 (3H, S), 3.88-6.89 (1H, m), 6.97 (1H, d, J=8.36H2), 7.11-7.13 (1H, m), 7.26-7.29 (2H, m), 7.49 (2H, d, J=8.16 Hz)	1.76 (3H, s), 3.35 (2H, s), 3.48 (3H, s), 3322, 1636, 3.96 (3H, s), 3.98 (3H, s), 6.53 (1H, d, 46), 1325, J=1.80 Hz), 6.86 (1H, d, J=8.56 Hz), 7.20 (2H, dd, J=8.56, 1.96 Hz), 7.20 (2H, d, J=8.32 Hz), 7.58 (2H, d, J=8.36 H	1.61 (9H, s), 2.15 (3H, s), 3.79 (2H, s). 3322, 2982, 3.97 (3H, s), 3.98 (3H, s), 6.93 (1H, d, d, 18.56 (1H, d, 18.5))
IR (cm-)	3200, 2946. 1653, 1610, 1540, 1268 (KBr)	1767, 1636, 1611, 1325, 1125 (NaCI)	3322, 1636. 1610, 1325, 1126 (NaCl)	3322, 2982, 1706, 1653, 1610, 1297, 1268 (KBr)
mp (°C)	182-185.5			200.5-202
Appear- ance	yellow	yellow oil	yellow oil	yellow Crystals
Structure	\$ 0 2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 0 10 0 10 0 10 0 10 0 10 0 10 0 10	10 to
	5-0 0-5	3-3 8-3		€€

EP 1 314 712 A1

5	FAB MS	481 (M++1). 184 (100)	439 (M++1). 154 (100)	494 (M++ 1). 315 (100)	452 (M++1). 136 (100)
. 10	(md	s), 3.89 (2H. s), s), 4.05 (3H. s), 9 (1H. d, J=8.36 4.42), 7.81 (1H, 5.04 Hz), 8.75 f8 (1H, s like)	s), 3.99 (3H, s). s), 6.93-6.97 . m), 7.36 (1H, s), 8.52 (1H, s 88 Hz), 11.70		s), 3.82 (2H, s), s), 6.95 (1H, d, (1H, m), 7.30- d, J=4.88 Hz), 9, 8.61 (1H, d, (1H, br s)
15	NMR (ppm)	2.12 (3H, s), 2.38 (3H, s), 3.89 (2H, s), 1686, 3.99 (3H, s), 4.00 (3H, s), 4.05 (3H, s), 16811, 1526, 6.93-6.96 (1H, m), 7.09 (1H, d, J=8.36 s), 1266 (NaCl) (NaCl	2.17 (3H, s), 3.82 (2H, s), 3.99 (3H, s). 4.00 (3H, s), 4.11 (3H, s), 6.93-6.97 (2H, m), 7.26-7.29 (1H, m), 7.36 (1H, s) like), 7.92-7.94 (1H, m), 8.52 (1H, s) like), 8.60 (1H, d, J=7.88 Hz), 11.70 (1H, s)	2.13 (3H, s), 2.36 (3H, s), 2.76 (6H, s), 1773, 1665, 3.90 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 1611, 1508, 7.04-7.11 (2H, m), 7.38 (1H, d, J=8.36 (1H, c), 17.38 (1H, s like), 8.10-8.12 (1H, s), 8.88 (1H, d, J=8.00 Hz), 9.10 (1H, s), 11ke)	2.16 (3H, s), 2.82 (6H, s), 3.82 (2H, s), 3.84, 1548, 3.99 (3H, s), 4.00 (3H, s), 6.95 (1H, d, 1510, 1522, J=8.52 Hz), 7.07-7.10 (1H, m), 7.30-1266 (NaCı) 7.39 (2H, m), 8.14 (1H, d, J=4.88 Hz), 8.59 (1H, d, J=1.44 Hz), 8.61 (1H, d, J=1.48 Hz), 9.04-9.06 (1H, br s)
20	IR (cm-)	1773. 1666. 1611, 1526. 1266 (NaCI)	3186, 1654, 1632, 1611. 1250 (KBr)	1773, 1665. 1611, 1508. 1266 (NaCI)	3284, 1648, 1610, 1522, 1266 (NaCI)
25	(C)	111-112	112-114		
зо ·	Appear-	yellow crystals	yellow crystals	yellow	yellow
35					
40	Structure	£ 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	To Z		5
45	0.9	\$\\ \delta_{-\circ}\\ \delta_{	£ 5	5-0-5	\$\\\ \frac{1}{5}-\times \cdot -\frac{1}{5}\\\ \frac{1}{5}-\times \cdot -\frac{1}{5}-\times \cdot -\frac{1}{5}-\ti
	Table Ex.No.	215	216	217	218

EP 1 314 712 A1

10		
15		
20		
25		
30		
35		
40		
45		
50		

55

5

FABMS	510 (M++1). 154 (100)	468 (M++1), 154 (100)	457 (M++1). 154 (100)	536 (M++1). 154 (100)
NMR (ppm)	2.11 (3H, s), 2.34 (3H, s), 3.80 (3H, s), 3.86 (3H, s), 3.88 (2H, s), 3.99 (3H, s), 4.00 (3H, s), 6.59-6.62 (1H, nt), 6.32 (1H, d, J=8.36 Hz), 7.07 (1H, d, J=8.36 154 (100) Hz), 7.33-7.36 (1H, mt), 7.79 (1H, s like), 8.27-8.28 (1H, mt), 8.91-8.92 (1H, mt)	3324, 1661, 3.94 (3H, s), 3.80 (3H, s), 3.81 (3H, s), 1608, 1540, 6.64 (1H, d, 1-8.92 Hz), 6.85 (1H, d, 1-8.92 Hz), 6.85 (1H, d, 1-8.92 Hz), 6.85 (1H, d, 1-8.92 Hz), 6.93 (1H, d, 1-8.52 Hz), 7.26-7.36 (2H, m), 8.09-8.11 (1H, m), 8.70 (1H, s) (1H, s)	1673, 1612, 4.00 (3H, s), 3.86 (2H, s), 3.99 (3H, s), 1530, 1494, 1=8.52 Hz), 7.26-7.40 (2H, m), 8.07-1271 (KBr) 8.12 (2H, m), 9.00 (1H, d, J=8.16 Hz), 10.58 (1H, s like)	2.14 (3H, s), 2.31 (3H, s), 3.08-3.12 (4H, m), 3.86-3.90 (6H, m), 3.99 (3H, s), 4.00 (3H, s), 7.07-7.12 (2H, m), 7.38 536 (M++1), (1H, dd, J=32, 2.08 Hz), 7.73 (1H, d, J=1.58 Hz), 8.14 (1H, dd, J=4.80, 1.56 Hz), 8.68 (1H, d, J=7.72 Hz), 8.88 (1H, s like)
IR (cm-)	1789, 1660, 1610, 1530, 1486, 1269 (KBr)	3324, 1661. 1608, 1540, 1500, 1264 (KBr)	1673, 1612, 1530, 1494, 1271 (KBr)	1768, 1653, 1611, 1508, 1266, 1200 (KBr)
mp (°C)	118.5-120	130-132	178-180	
Appear-	yellow crystals	yellow	yellow	yellow
Structure	\$\frac{1}{2} \\ \frac{1}{2} \\ \frac			
Ex.No.	219	220	221	222

EP 1 314 712 A1

10	
15	
20	
25	
30	
35	
40	
45	
50	

55

FAB MS	494 (M++1). 154 (100)	536 (M++1). 154 (100)	494 (M++1). 154 (100)	485 (M++1), 154 (100)	
NMR (ppin)	2.17 (3H s), 3.12-3.15 (4H, m), 3.82 (2H s), 3.98-4.02 (10H, m), 6.95 (1H, d. J=8.52 Hz), 7.12-7.16 (1H, m), 7.26-7.30 (1H, m), 7.49 (1H, s like), 8.18 (1H, dd, J=4.80, 1.44 Hz), 8.64 (1H, dd, J=8.00, 1.32 1!2), 9.07 (114, s like), 11.94 (1H, s)	2.09 (3H, s), 2.31 (3H, s), 3.45-3.48 1654, 1611 1526, 1492 142, 7.05 (1H, d, J=8.36 142), 7.05 (1H, d, J=8.12 142), 7.05 (1H, d, J=8.12 142), 7.05 (1H, d, J=8.12 142), 7.05 (1H, s), 8.13-8.20 (2H, m)	2.15 (3H, S), 3.49-3.53 (4H, m), 3.81-3400, 1646, 3.98 (6H, m), 3.98 (3H, S), 3.99 (3H, S), 494 (MA++1), 1611, 1495, 6.68 (1H, d, J=9.04 Hz), 6.92 (1H, d, J=8.60 Hz), 7.20-7.25 (1H, m), 7.43 (1H, S like), 7.80-7.84 (2H, m), 8.25 (1H, S like), 11.83 (1H, S)	1768, 1648, 2.10 (3H, s), 2.33 (3H, s), 3 86 (2H, s), 1612, 1582, 3.98 (3H, s), 3.99 (3H, s), 7.07 (1H, d, 1267, 1200 J=8.44 Hz), 7.35-7.42 (2H, m), 7.61 (KBr) (1H, s like), 8.70 (1H, s like), 8.28 (1H, d, J=5.56 Hz), 8.40-8.42 (1H, br s)	
IR (cm-)	3296, 1648. 1609, 1518. 1266 (KB1)	3313, 1768, 1654, 1611, 1526, 1492 (KBr)	3400, 1646. 1611, 1495. 1266 (KBr)	1768, 1648. 1612, 1582. 1267, 1200 (KBr)	
(2°) qm	210-212,5		102.5-105		
Appear- ance	yellow crystals	yellow	yellow crystals	yellow oil	
A	yellow crysta	ye) oij	yell crys	Ye.	
Structure Ar	Yell Name of the control of the con	5-0-5	Poly Service Control of the Service Control o	To a second seco	

EP 1 314 712 A1

10	
15	
20	
25	
30	
35	
40	
45	
50	

55

5

FAB MS	. 443 (M++1). 154 (100)			3 481 (M++1). 154 (100)
NMR (ppm)	3272, 1653, 2.15 (3H, s), 3.79 (2H, s), 3.97 (3H, s). 1611, 1582, 3.99 (3H, s), 6.95 (1H, d, J=8.52 Hz), 1501, 1266 7.26-7.28 (1H, m), 7.48-7.50 (2H, m), 7.74 (1H, s like), 8.27 (1H, s like), 8.35 (1H, s) (1H, d, J=5.60 Hz), 11.16 (1H, s)	1772, 1700, 2.12 (3H. s), 2.40 (3H. s), 3.89 (2H. s), 1633, 1611, 3.99 (3H. s like), 7.11 (1H. d, J=6.40), 1570, 1517, Hz), 7.39 (1H. dd, J=8.40, 2.24 Hz), 1267, 1207, 7.66 (1H. s like), 7.79 (1H. d, J=2.16), Hz), 8.46 (1H. s like), 9.00-9.02 (1H. br. s), 1612, 1690, 13.99 (3H. s), 3.80 (2H. s), 6.93 (1H. d, 1612, 1590, J=8.56 Hz), 7.24-7.26 (1H. m), 7.31, 1500, 1269, (1H. s like), 7.50-7.51 (1H. m), 8.52, 1194 (KB1) (1H. s like), 8.88-8.90 (1H. br. s), 11.4-11.51 (1H. br. s)		2.12 (3H, s), 2.40 (3H, s), 3.89 (2H, s), 1773, 1701, 3.994.01 (9H, m), 7.11 (1H, d. J=8.48 1550, 1611, Hz), 7.26-7.27 (1H, m), 7.39 (1H, d. 1506 (KB1), s ike), 7.56 (1H, s ike), 7.79 (1H, s ike), 7.86 (1H, s ike), 7.99 (1H, s ike), 8.98-8.99 (1H, s ik
IR (cm-)	3272, 1653. 1611, 1582. 1501, 1266 (KBr)	1772, 1700. 1653, 1611. 1570, 1517, 1267, 1207 (KBr)	2920, 1686. 1612, 1590, 1500, 1269. 1194 (KBr)	1773, 1701, 1650, 1611, 1570, 1267, 1206 (KBr)
(°C)	142-144	138.5-141		138-140.5
1	1.8	18	ls	18
Appear- ance	yellow crysta	yellow crystals	yellov crystals	yellow crystals
Structure Appear	o crystals	yellow Crysta	Or Or Or Crysta	o', o o', o o', o o', o o', o', o', o',

EP 1 314 712 A1

5	FAB MS	439 (M++1). 154 (100)	372 (M+. 100)	343 (M++1), 154 (100)	486 (M++1), 154 (100)
	(mdo	. s), 3.98 (3H, s). . s), 6.93 (1H, d. (1H, m), 7.51 s like), 8.52 (1H, br s), 11.50-	, s), 2.22 (3H, s), , s), 3.64 (3H, s), , d, J=8.32 H2), z), 7.89 (1H, d,	. s). 2.13 (3H, s). 1, s), 7.02 (1H, d. dd, J=8.32. 1.48 08 Hz)	. s). 2.12 (3H, s). . s). 7.06 (1H, d, dd, J=8.24, 2.04), 7.71 (2H, d, s)
15	NMR (ppm)	2.13 (3H s), 3.80 (2H, s), 3.98 (3H, s), 3.99 (3H, s), 4.02 (3H, s), 6.93 (1H, d, d, J=8.48 kr2), 7.23-7.26 (1H, m), 7.51 (1H, s like), 7.66 (1H, s like), 8.52 (1H, s like), 8.85-8.87 (1H, br s), 11.50-11.52 (1H, br s)	2.11 (3H, s), 2.21 (3H, s), 2.22 (3H, s), 2.30 (3H, s), 3.57 (3H, s), 3.64 (3H, s), 4.08 (2H, s), 6.97 (1H, d, J=8.32 Hz), 7.27 (1H, d, J=2.00 Hz), 7.89 (1H, d, J=1.76 Hz)	2951, 1756, 2.02 (3H, s), 2.03 (3H, s), 2.13 (3H, s), 1683, 1648, 2.32 (3H, s), 3.89, (2H, s), 7.02 (1H, d, 1913 (KBr) J=8.28 Hz), 7.44 (1H, dd, J=8.32, 1.48 Hz), 7.91 (1H, d, J=2.08 Hz)	2.02 (3H, s), 2.03 (3H, s), 2.12 (3H, s), 2.31 (3H, s), 3.90 (2H, s), 7.06 (1H, d, J=8.40 Hz), 7.36 (1H, dd, J=8.24, 2.04 Hz), 7.06-7.65 (3H, m), 7.71 (2H, d, J=8.56 Hz), 8.16 (1H, s)
20	IR (cm-)	1686. 1567. 1195	2992, 2827, 2 1770, 1695, 1 1210 (KB1)	2951, 1756, 2 1683, 1648, 3 1213 (KBT)	1758, 1668. 1644, 1526. 1327 (KBr)
	IR (3269. 1611. 1503. (KBr)	2992. 1770, 1210	2951, 1683, 1213	1758 1644 1327
25	mp (°C)	218-220.5	110-112	157-159.5	180-181
30	Appear- ance	yellow crystals	white	yellow	yellow crystals
35			ਨੂੰ o	£, 0, -	a.
40	Structure		o → ₹	£	
45		₹ <u></u>	£ 5		5
64		5-0-5	2 f	υ υ τ π i	,

EP 1 314 712 A1

5		FAB MS	444 (M++1). 154 (100)	453 (M++1). 154 (100)	411 (M++1), 154 (100)	377 (M++1). 154 (100)
10		(-	. 2.17 (3H, s). J=8.56 Hz). 1H, d. J=1.44 Hz), 7.75 (2H, s), 11.52 (1H,	. 2.14 (3H. s). . 7.10 (1H. d. 1. m). 7.40 7.78 (1H. d. J=4.64, 1.64 8.91 (1H. dd,	2.15 (3H s), J=8.52 Hz), 1H, d, J=1.52 1.64 Hz), I, dd, J=8.16,	. 2 02 (3H. s). J=8.44 H2). S61-7.70 (3H. I2), 10.58- I.18(1H. br s)
15		(Indd) NMN	2.02 (3H, s), 2.03 (3H, s), 2.17 (3H, s), 3.82 (2H, s), 6.93 (1H, d, J=8.56 Hz), 7.22-7.28 (1H, m), 7.46 (1H, d, J=1.44 Hz), 7.66 (2H, d, J=8.56 Hz), 7.75 (2H, d, J=8.52 Hz), 8.16 (1H, s), 11.52 (1H, s)	2.02 (3H, s), 2.03 (3H, s), 2.14 (3H, s), 2.39 (3H, s), 3.92 (2H, s), 7.10 (1H, d, J=8.40 Hz), 7.29-7.33 (1H, m), 7.40 (1H, dd, J=8.36 1.44 Hz), 7.78 (1H, d, J=1.92 Hz), 8.15 (1H, dd, J=4.64, 1.64 Hz), 8.78-8.80 (1H, ds, S), 8.91 (1H, dd, J=8.12, 1.08 Hz)	2.03 (3H, s), 2.04 (3H, s), 2.15 (3H, s), 3.85 (2H, s), 6.96 (1H, d, J=8.52 Hz), 7.31-7.35 (2H, m), 7.42 (1H, d, J=1.52 Hz), 8.18 (1H, dd, J=4.68 1.64 Hz), 8.57 (1H, s like), 8.80 (1H, dd, J=8.16, 1.64 Hz), 11.32 (1H, s)	3250, 2414, 1.95 (3H, s), 1.96 (3H, s), 2.02 (3H, s), 1.96 (3H, s), 2.02 (3H, s), 377 (M++1676, 1642, 3.78 (2H, s), 6.91 (1H, d, 1-8.40 Hz), 7.51-7.70 (3H, 154 (100)), 1302 (KBf) m), 8.46 (2H, d, 1-5.96 Hz), 10.58, 10.59 (1H, br s), 11.16-11.18(1H, br s)
		IR (cm-)	3168, 1676, 3 1642, 1544, 7 1321 (KBr)	1768, 1670, 1648, 1518, (1302 (KB/))	3270, 1675, 2 1639, 1531, 1505, 1310 H (KBr)	3250, 2414, 1 1676, 1642, 3 1589, 1513, 7 1302 (KBf) 1
25		(၁ ₎ dш	233-235	130-131	199-201	245-247
30		Appear-	yellow crystals	yellow crystals	yellow crystals	yellow crystals
35					·	
40		Structure	2 2 Z	ξ · · · · · · · · · · · · · · · · · · ·	£ 0 2 5	ā. z
45	2			5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	p p p p p p p p p p p p p p p p p p p	r r
50	able 65	Ex.No.	235	236	237	238

Experiment 1

Effect on Human Lung Cancer-Derived Cell A549 (A549/NF-κBluc) Containing Stably Introduced Luciferase Plasmid (pNFκB-Luc, Stratagene, U.S.A.) Regulated by NF-κB Binding Sequence

[0331] Using Lipofectamine (Lifetech Oriental, Tokyo), pNFκB-Luc and pSV2neo (Clontech, U.S.A.) were co-transfected into the A549 cell (ATCC CCL185) and G418 sulfate (1 mg/ml, Lifetech Oriental) was added to the culture medium to select cells containing stably introduced pNFκB-Luc A549/NF-κBLuc.

[0332] The compound obtained in Examples each was added to A549/NF- κ BLuc and one hour after that, IL-1 β capable of activating NF- κ B was added. The incubation was further continued for 3 hours. As indexed by the luciferase activity, the compounds obtained in Examples were revealed to suppress the activation of NF- κ B stimulated with of IL-1 β . The IC₅₀ values thereof are shown in Table below.

NF-κB Inhibitory Activity (IC	5 ₅₀) of Substituted Be	enzoic Acid Derivatives:
Example 57		29 μΜ
Example 60		19 μΜ
Example 61		31 μΜ
Example 64		33 μΜ
Example 65		37 μΜ
Example 70		15 μΜ
Example 71		36 μΜ
Example 72		43 μM
Example 73		31 μΜ
Example 76		7 μΜ
Example 77		35 μΜ
Example 78		57 μΜ
Example 79		27 μΜ
Example 80		82 µM
Example 82		84 μΜ
Example 84		63 μM
Example 85		65 μM
Example 86		27 μΜ
Example 87		19 μΜ
Example 89		45 μM
Example 92		49 μΜ
	(HCI)	46 μM
Example 94		45 μM
Example 95		35 μΜ
	(pTsOH)	51 μM
Example 104		29 μМ
Example 106		70 μM
Example 107		84 μM
Example 108		67 μM
Example 109		46 μM

(continued)

NF-κB Inhibitory A	Activity (IC ₅₀) of Substituted Benzoic Acid Derivatives:
Example 11	10 34 μΜ
Example 11	11 25 μΜ
Example 11	12 14 μΜ
Example 11	14 48 μΜ
Example 11	15 36 μΜ
Example 11	16 17 μΜ
Example 1	17 20 μΜ
Example 1	18 8.3 μM
Example 1	19 13 μΜ
Example 12	20 1.7 μΜ
Example 12	21 64 μΜ
Example 12	24 46 μΜ
Example 12	25 19 μΜ
Example 12	26 24 μΜ
Example 12	27 24 μΜ
Example 12	28 19 μΜ
Example 1	30 59 μΜ
Example 1	42 9 μg/ml
Example 1	46 11 μg/mi
Example 1	47 19 μg/ml
Example 1	48 3 μg/ml
Example 1	49 25 μg/ml
Example 1	50 4 μg/ml
Example 1	57 7 μg/ml
Example 1	58 7 μg/ml
Example 1	63 30 μg/ml
Example 1	64 20 μg/ml
Example 1	71 26 μg/ml
Example 1	73 9 μg/ml
Example 1	74 6 μg/ml
Example 1	80 23 μg/ml
Example 1	81 11 μg/ml
Example 1	84 56 μg/ml
Example 1	85 11 μg/ml
Example 1	86 2 μg/ml
Example 1	87 2 μg/ml
Example 1	88 9 μg/ml
Example 1	91 4 μg/ml

(continued)

Example 199	16 μg/ml
Example 200	17 μg/ml
Example 201	16 μg/ml
Example 202	20 μg/ml
Example 203	30 μg/ml
Example 204	47 μg/ml
Example 205	50 μg/ml
Example 206	87 μg/ml
Example 207	98 μg/ml
Example 208	19 μg/ml
Example 214	10 μg/ml
Example 216	10 μg/ml
Example 220	66 μg/ml
Example 221	46 μg/ml
Example 222	77 μg/ml
Example 223	81 μg/ml
Example 224	24 μg/ml
Example 225	24 μg/ml
Example 226	19 μg/ml
Example 227	20 μg/ml
Example 228	64 μg/ml
Example 229	59 μg/ml
Example 235	5 μg/ml
Example 237	5 μg/ml

40 Experiment 2

Effect on in vivo Sepsis Model

[0333] A mixed solution of N-acetyl galactosamine (GalN, 20 mg, Sigma) and lipopolysaccharide (LPS, 5 μ g, Sigma) was intraperitoneally administered as a stimulant to a 7-week-old C3H/HeN female mice and immediately thereafter, the compound of Example 112 suspended in a vehicle (0.5% hydroxypropyl cellulose (HPC), produced by Nippon Soda Co., Ltd.) was intraperitoneally administered to give a dose of 10 mg/kg, 30 mg/kg or 100 mg/kg. The TNF- α mRNA levels and the IL-1 β mRNA levels in liver 60 minutes after the administration of stimulant each was measured by the real-time PCR method, and the TNF- α levels in plasma after 90 minutes were measured using the mouse TNF- α ELISA kit (Biosource). In the real-time PCR using PRISM7700 (PE Biosystems Japan) according to the protocol of PCR quantitative System (PE Biosystems Japan), mRNA was extracted from the liver and the TNF- α and IL-1 β were detected with cDNA obtained by Superscript Preamplification System (Lifetech Orient) as a template. For the detection, the following primers and TagMan probes were used.

 $TNF-\alpha$

5

10

15

35

40

55

Forward: CAT CTT CTC AAA ATT GGA GTG ACA A

Reverse: TGG GAG TAG ACA AGG TAC AAC CC

Probe: CAC GTC GTA GCA AAC CAC CAA GTG GA

IL-1B

Forward: CAA CCA ACA AGT GAT ATT CTC CAT G

Reverse: GAT CCA CAC TCT CCA GCT GCA

Probe: CTG TGT AAT GAA AGA CGG CAC ACC CAC C

[0334] The RNA level in each sample was corrected by the expression level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene.

[0335] ELISA was performed according to the manual included in the kit. The comparison with the vehicle group was performed by the Dunnett's Multiple Comparison test using Stat-View (SAS Institute).

[0336] As shown in Fig. 1, in the vehicle group, the TNF- α mRNA levels in liver were markedly increased and the TNF- α levels in plasma were also increased. Furthermore, the IL-1 β mRNA levels in liver were increased. On the other hand, in the group administered with the compound of Example 112, the TNF- α mRNA in liver and the TNF- α levels in plasma were suppressed dose dependently. Also, the IL-1 β mRNA levels in liver were suppressed.

25 Experiment 3

Effect on Sepsis Model in Oral Administration

[0337] Similarly to Experiment 2, a mixed solution of GalN (20 mg) and LPS (2 μg) was intraperitoneally administered as a stimulant to a 7-week-old C3H/HeN female mice. Ten minutes before that, the compound of Example 112 or the compound of Example 157 each suspended in a vehicle (0.5% HPC) was orally administered to give a dose of 10 mg/kg, 30 mg/kg or 100 mg/kg. The TNF-α mRNA levels in liver 60 minutes after the administration of stimulant were measured by the real-time PCR method, and the TNF-α levels in plasma after 90 minutes were measured using the mouse TNF-α ELISA kit. The comparison with the vehicle group was performed by the Dunnett's Multiple Comparison test using Stat-View.

[0338] Also in the group where the compound of Example 112 (Fig. 2) or the compound of Example 157 (Fig. 3) was orally administered, the TNF- α mRNA levels in liver and the TNF- α levels in plasma were suppressed dose dependently.

Experiment 4

Effect on Acute Inflammation in Oral Administration Model

[0339] On the footpad of the right hind leg of a 5-week-old Wister male rat, 0.1 ml of 1 w/v% λ -carrageenin (Sigma) was subcutaneously administered. Immediately thereafter, the compound of Example 112 or the compound of Example 157 each suspended in a vehicle (0.5% HPC) was orally administered to give a dose of 100 mg/kg. As a positive control, indomethacin (sigma) was orally administered to give a dose of 10 mg/kg. The foot edema ratio was calculated according to the formula: (volume of foot 2 hours after administration of carrageenin - volume of foot before administration)/volume of foot before administration \times 100, using a volume meter (TK-101, manufactured by Unicom). For the comparison between the vehicle group and the drug administered group, a variance test was performed by the F-test and thereafter, Student's t test was performed when the variance was equal, or Aspin-Welch's t test was performed when the variance was not equal.

[0340] As shown in Fig. 4, the compound of Example 112 and the compound of Example 157 significantly suppressed the acute inflammation (foot edema) caused by carrageenin through their oral administration.

Claims

1. A novel substituted benzoic acid derivative represented by the following formula (I):

$$R^1$$
 X (I)

[wherein

5

10

15

20

25

30

35

40

45

50

55

R1 is the following formula (II):

$$R^3$$
 R^5
 CH_2
(II)

or the following formula (III):

$$R^3$$
 CH_2
 CH_2
 CH_2

(wherein R^3 , R^4 and R^5 each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbons, and R^9 and R^{10} each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbons or an acyl group having from 2 to 11 carbons);

R² represents a hydrogen atom, a lower alkyl group having from 1 to 6 carbons, which may be substituted, an aryl group having from 6 to 12 carbons, which may be substituted, a heteroaryl group having from 4 to 11 carbons, which may be substituted, an aralkyl group having from 7 to 14 carbons, which may be substituted, a heteroarylalkyl group having from 5 to 13 carbons, which may be substituted, or an acyl group having from 2 to 11 carbons; and

X represents a carboxyl group which may be esterified or amidated].

2. The novel substituted benzoic acid derivative according to claim 1, wherein R1 is the following formula (II):

$$R^3$$
 R^5
 CH_2
 CH_2

(wherein R³ and R⁴ each independently represents a hydrogen atom, a methyl group or a methoxy group).

3. The novel substituted benzoic acid derivative according to claim 1 or 2, wherein R1 is the following formula (II):

$$R^3$$
 R^5
 CH_2
 CH_2

(wherein R5 represents a hydrogen atom or a methyl group).

- 4. The novel substituted benzoic acid derivative according to any one of claims 1 to 3, wherein R² is a hydrogen atom, a methyl group, an isopropyl group, a phenyl group, a 3-methoxyphenyl group, a 3-pyridyl group, a 4-pyridyl group, a benzyl group, a 3-pyridylmethyl group, a 4-pyridylmethyl group, a methoxycarbonylmethyl group or tert-butoxycarbonylmethyl group.
- 5. The novel substituted benzoic acid derivative according to any one of claims 1 to 4, wherein X is a group -COOR⁶ (wherein R⁶ represents a hydrogen atom, an alkyl group having from 1 to 6 carbons, which may be substituted, or an aralkyl group having from 7 to 14 carbons, which may be substituted)
 - 6. The novel substituted benzoic acid derivative according to any one of claims 1 to 4, wherein X is a group -CONR⁷R⁸ (wherein R⁷ and R⁸ each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbons, which may be substituted, an aryl group having from 6 to 12 carbons, which may be substituted, a heteroaryl group having from 4 to 11 carbons, which may be substituted, an aralkyl group having from 7 to 14 carbons, which may be substituted, or a heteroarylalkyl group having from 5 to 13 carbons, which may be substituted, or R⁷ and R⁸, together with the nitrogen atom to which they are attached, represent a heterocyclic ring which may further contain a nitrogen atom, an oxygen atom, and/or a sulfur atom or may be condensed).
 - 7. The novel substituted benzoic acid derivative according to any one of claims 1 to 4, wherein X is a group -CONR⁷R⁸ (wherein R⁷ and R⁸, together with the nitrogen atom to which they are attached, represent a 5-to 8-membered nitrogen-containing heterocyclic ring which may contain from 1 to 3 heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, in addition to the carbon atom and the nitrogen atom which may be substituted, wherein the carbon atom or sulfur atom on the ring may be an oxide form).
 - 8. The novel substituted benzoic acid derivative according to any one of claims 1 to 7, wherein in the following formula (I):

$$R^1$$
 X (I)

R1 is the following formula (II):

55

50

5

10

25

30

35

40

$$R^3$$
 R^5
 CH_2
(II)

(wherein R³ and R⁴ each represents a methyl group or a methoxy group, and R⁵ represents a methyl group); R² represents a hydrogen atom, a methyl group, an isopropyl group, a phenyl group, a 3-methoxyphenyl group, a 3-pyridyl group, a 4-pyridyl group, a benzyl group, a 3-pyridylmethyl group, a 4-pyridylmethyl group, an acetyl group, a carboxymethyl group, a methoxycarbonylmethyl group or a tert-butoxycarbonylmethyl group; and X represents a carboxyl group which may be esterified or amidated.

- An NF-κB inhibitor comprising the novel substituted benzoic acid derivative according to any one of claims 1 to 8
 or a hydroquinone form or pharmaceutically acceptable salt thereof as an active ingredient.
- 10. The NF-κB inhibitor according to claim 9, which is an inhibitor of a gene expression of one or more substances selected from the group consisting of IL-1, TNF-α, IL-2, IL-6, IL-8, iNOS, granulocyte colony-stimulating factor, interferon-γ, ICAM-1, VCAM-1, ELAM-1, major histocompatibility system class I, major histocompatibility system class II, β-2 microglobulin, immunoglobulin light chain, serum amyloid A, angiotensinogen, complement B, complement C4, c-myc, HIV, HTLV-1, SV-40, CMV and adenovirus.
- 11. The NF-κB inhibitor according to claim 9 or 10, which is a preventive or therapeutic agent for inflammatory diseases.
- 12. The NF-κB inhibitor according to claim 9 or 10, which is a preventive or therapeutic agent for autoimmune diseases.
- 13. The NF-κB inhibitor according to claim 9 or 10, which is a preventive or therapeutic agent for viral diseases.
- 14. A preventive or therapeutic agent for diseases caused by the activation of NF-κB, comprising as an active ingredient a novel substituted benzoic acid derivative represented by the following formula (I):

$$R^1$$
 X (I)

(wherein

5

10

15

20

25

30

35

40

45

50

55

R1 is the following formula (II):

$$R^3$$
 R^5
 CH_2
 CH_2

or the following formula (III):

$$R^3$$
 CH_2
 $CIII)$

(wherein R³, R⁴ and R⁵ each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbons or an alkoxy group having from 1 to 6 carbons, and R⁹ and R¹⁰ each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbons or an acyl group having from 2 to 11 carbons);

R² represents a hydrogen atom, a lower alkyl group having from 1 to 6 carbons, which may be substituted, an aryl group having from 6 to 12 carbons, which may be substituted, a heteroaryl group having from 4 to 11 carbons, which may be substituted, an aralkyl group having from 7 to 14 carbons, which may be substituted, a heteroarylalkyl group having from 5 to 13 carbons, which may be substituted, or an acyl group having from 2 to 11 carbons; and

X represents a carboxyl group which may be esterified or amidated), or a hydroquinone form, or a pharmaceutically acceptable salt thereof.

Fig.4

- □ vehicle
- EXAMPLE 112
- EXAMPLE 157
- M INDOMETHACIN

International application No. INTERNATIONAL SEARCH REPORT PCT/JP02/03017 A. CLASSIFICATION OF SUBJECT MATTER Int.Cl⁷ C07C65/24, 65/40, 69/157, 69/94, 235/64, 255/24, 255/63, 317/40, C07D295/18, 215/08, 233/02, 213/30, 213/75, 211/16, 231/12, 239/47, A61K31/192, 31/216, 31/235, 31/4406, According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C07C65/24, 65/40, 69/157, 69/94, 235/64, 255/24, 255/63, 317/40, C07D295/18, 215/08, 233/02, 213/30, 213/75, 211/16, 231/12, 239/47, A61K31/192, 31/216, 31/235, 31/4406, Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), CAOLD (STN), REGISTRY (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category.* Citation of document, with indication, where appropriate, of the relevant passages MANDER L. N. and WOOLIAS M., "Studies on Reductive Alkylation.", Aust. J. Chem., 1981, Vol.34, pages 1,4,5 2,3,6-14 Α 2249 to 2252; compounds 4, 5 1-14 A JP 7-291859 A (Eisai Co., Ltd.), 07 November, 1995 (07.11.95), Claims (Family: none) 1-14 EP 955372 A2 (Suntory Ltd.), A 10 November, 1999 (10.11.99), Claims; Fig. 11 & JP 11-266872 A & US 6156516 A A WO 99/48491 Al (Suntory Ltd.), 1-14 30 September, 1999 (30.09.99), Claims & EP 1008346 A1 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing considered govel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other document member of the same patent family document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 25 June, 2002 (25.06.02) 12 June, 2002 (12.06.02) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/03017

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl⁷ 31/4409, 31/4453, 31/4545, 31/47, 31/4709, 31/5377, 31/605, 31/167, 31/609, 31/625, 31/277, 31/616, 31/5375, 31/44, 31/445, 31/415, 31/506, A61P29/00, 31/12, 37/00, 43/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED
Minimum Documentation Searched(International Patent Classification (IFC))

Minimum documentation searched (classification system followed by classification symbols)

Form PCT/ISA/210 (extra sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/03017

Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
JP 4-226937 A (Suntory Ltd.), 17 August, 1992 (17.08.92), Claims (Family: none)	1-14
JP 62-286949 A (Suntory Ltd.), 12 December, 1987 (12.12.87), Claims	1-14
· ·	
·	
•	
	JP 4-226937 A (Suntory Ltd.), 17 August, 1992 (17.08.92), Claims (Family: none) JP 62-286949 A (Suntory Ltd.), 12 December, 1987 (12.12.87),