Dimensionality Reduction and Reduced Order Modeling for Traveling Wave Physics

Ariana Mendible

University of Washington Dept. of Mechanical Engineering

APS Division of Fluid Dynamics

November 2019

Steven L. Brunton, Aleksandr Y. Aravkin, Wes Lowrie, J. Nathan Kutz

UNIVERSITY of WASHINGTON

We want to understand, predict, and control multi-scale, chaotic, and nonlinear fluids systems at large time and space scales

SVD/POD Inappropriate for Traveling Waves

Background

Main concept: move waves into traveling frame where they appear stationary

Current methods:

- Utilize underlying equations or templates
- Highly supervised
- Not adapted to non-constant wave speeds
- Not adapted to rapidly-changing wave shapes

Reiss et al, 2018

Kirby and Armbruster, 1992 Rowley and Marsden, 2000 Lucia et al., 2014 Mojgani and Balajewicz, 2017 Cagniart, Maday, Stamm, 2019

Desired methods:

- + Equation-free
- + Unsupervised
- + Handle non-constant wave speeds
- + Handle rapidly-changing wave shapes
- + Interpretable

Rim, Moe, LeVeque, 2018

Our Approach: UnTWIST

Unsupervised Traveling Wave Identification with Shifting and Truncation

Leverage machine learning to detect interpretable wave speeds Simultaneous separation and model discovery

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix}$$

$$u$$
 x

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix}$$

Solve:
$$\mathbf{x} - c\mathbf{t} = 0$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix}$$

$$\mathbf{c} = [c_1, c_2, c_3, \dots]$$
 $\mathbf{T} = \begin{bmatrix} -1 - \\ -t - \\ -t^2 - \\ \vdots \end{bmatrix}$

Solve:
$$\mathbf{x} - \mathbf{CT} = 0$$

Step 1: Input

$$\theta_1(\tau) = 1$$

$$\theta_2(\tau) = \tau$$

$$\theta_3(\tau) = \sqrt{\tau} \qquad n = 2$$

$$\vdots$$

$$\theta_k(\tau) = \tau^2$$

Step 2: Initialization

Step 2: Initialization

Step 3: Optimization

$$\min_{\mathbf{C}, \mathbf{W} \in \Omega} \frac{1}{2} \mathbf{W} \odot \|\mathbf{X} - \mathbf{T}\mathbf{C}\|^2$$

Library of models applied to our data

Step 3: Optimization

$$\min_{\mathbf{C}, \mathbf{W} \in \Omega} \frac{1}{2} \mathbf{W} \odot \|\mathbf{X} - \mathbf{T}\mathbf{C}\|^2$$

Weights assign points to waves

Step 3: Optimization

$$\min_{\mathbf{C}, \mathbf{B}, \mathbf{W} \in \Omega} \frac{1}{2} \mathbf{W} \odot \|\mathbf{X} - \mathbf{T}\mathbf{C}\|^2 + \lambda R(\mathbf{B}) + \frac{1}{2\zeta} \|\mathbf{C} - \mathbf{B}\|^2$$

Step 4: ROMs

Shift in one coordinate frame for each wave

Step 4: ROMs

Shift in one coordinate frame for each wave

Traditional method (SVD)

$$u = \sum_{\substack{r_1 \\ + \sum_{r_2}}} \alpha_1(t) \phi_1(x - c_1 t)$$

Low-rank models in shifted frames

Rank-2 Reconstructions

Original Data, full rank

UnTWIST+sRPCA

Singular Value Decay

Rank-2 Reconstructions

Original Data, Full rank

UnTWIST+POD

21

Singular Value Decay

Conclusions and Future Work

Pre-print available arXiv:1911.00565v1

Created unsupervised machine learning method for automatically identifying interpretable models for translationally symmetric systems

ROMs are promising, though more work must be done to ensure energy is captured properly

Use machine learning to discover physics-based symmetries:

$$u(x,t) = \sum_{r} \phi_r(x; c(t))$$
$$\dot{c} = f(c)$$

We acknowledge the support from the Defense Threat Reduction Agency (DTRA) HDTRA1-18-1-0038 and the Army Research Office (W911NF-19-1-0045).