Sample Solution for Exercise: 1 Total Score: 15

Subtask	Sh	Points
1.1	+ high power density	0.5
	+ simple realization of linear movements	
	+ good controlability and regulation	0.5
	+ good time response due to low mass inertia	
	+ simple and reliable overload protection	
	+ good lubrication and removal of heat losses through the fluid	
	- energy consumption (losses through friction and internal leakage)	0.5
	- maintenance of the pressure medium (contamination and abrasion of the	
	components)	
	- environment (noise, leakage)	0.5
1.2	power transfer / pressure transfer, lubricant / friction reduction, corossion	1.5
	prevention, removal of heat energy	
1.3	fire resistant liquids	0.5
1.4	classes: ISO 4406: 17 / 14 / 10	3 x 0.5
	ISO 4406: number of particles / 1 ml (devide the number of particles	0.5
	through 17)	
		0.5
	ISO 4406: cumulative add up of the classes: < 4; < 6; < 14	
	F F	
1.5	$p = \frac{F}{A} \implies A = \frac{F}{p}$ $Q = v \cdot A$	1.0
	$Q = v \cdot \frac{F}{p} = 1 \frac{m}{s} \cdot \frac{15 \text{ kN}}{200 \text{ bar}} = 7.5 \cdot 10^{-4} \frac{m^3}{s} = 45 \frac{l}{\text{min}}$	0.5
	$\frac{\sqrt{-\sqrt{p}-1}}{s} = \frac{1}{200 \text{ bar}} = 7.3 \cdot 10 = \frac{1}{s} = 43 \frac{1}{min}$	0.5

Subtask	Sh	Points
1.6	orifice: $Q = \alpha_D \cdot A \cdot \sqrt{\frac{2}{\rho}} \cdot \sqrt{\Delta p}$	0.5
	throttle: $Q = \frac{\pi \cdot r^4}{8 \cdot \eta \cdot l} \cdot \Delta p$ Drossel $Q = \frac{\pi \cdot r^4}{8 \cdot \eta \cdot l} \cdot \Delta p$ characteristic curve with	0.5
	correct caption $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5
1.7	Orifices, because the flow law is predominantly independend of viscosity	0.5
	and temperature.	0.5
1.8	$p = \frac{F}{A_Z} \implies F = \Delta p \cdot A_Z$	0.5
	$A_Z = \frac{\pi}{4}(d_K^2 - d_Z^2) = 765.76 mm^2$	0.5
	$F = (p_P - p_{ND}) \cdot A_Z = 345 \ bar \cdot 7.6576 \cdot 10^{-4} \ m^2 = 26.42 \ kN$	0.5
1.9	$C_H = rac{Q}{\dot{p}}$	0.5
	balance of forces in the accumulator $p \cdot \left(\frac{d_K^2}{4} \cdot \pi\right) = c_F \cdot (x + x_0) \implies \dot{p} = \frac{c_F \cdot \dot{x}}{\left(\frac{d_K^2}{4} \cdot \pi\right)}$	1.0
	flow rate accumulator $Q = \dot{x} \cdot \left(\frac{d_K^2}{4} \cdot \pi\right)$	1.0
	fill in and simplify: $C_{H} = \frac{\dot{x} \cdot \left(\frac{d_{K}^{2}}{4} \cdot \pi\right)}{\frac{c_{F} \cdot \dot{x}}{\left(\frac{d_{K}^{2}}{4} \cdot \pi\right)}} = \frac{\left(\frac{d_{K}^{2}}{4} \cdot \pi\right)^{2}}{c_{F}} = \frac{A^{2}}{c_{F}}$	0.5
	Summation:	15

Sample Solution of Exercise: 2 Total Score: 10

Subtask	Ro			Points
2.1	ii. group: dire open/parti iii. group: pre	group: check valve: flow in just one direction group: directional control valve: one or more flow paths open/partially open/closed group: pressure control valve: control/regulation of pressure group: flow control valve: control/regulation of flow rate		
2.2	a) housing / ob) control edc) spoold) control gro	ge		1
2.3	Field of Operation Mechanic Electric Hydraulic	easy to realise no auxuliary energy necessary high precision possible high dynamic possible easy integration in the regulation/control high actuation forces possible remote transmission possible	Disadvantage actuation force limited relatively imprecise and slow Auxiliary energy necessary (danger in case of power blackout) additional sealing losses through leakage	1.5
2.4	because of good equipment	responsiveness to pressu	nstream pressure compensator are changes of the upstream act fast towards changes of the	1

Subtask	Ro	Points
2.5	$Q_A = \alpha_D \cdot A \sqrt{\frac{2 \cdot \Delta p}{\rho}} = 12.51 \frac{1}{\min}$	1.5
	$Q_E = Q_A + Q_T = 30.01 \frac{1}{\min}$	
2.6	$x = \frac{Q_T}{\alpha_D \cdot \pi \cdot d_{DW}} \sqrt{\frac{\delta}{2 \cdot \Delta p}} = 0.125 \text{ mm}$	1
2.7	$F_{Str} = \rho \cdot \frac{Q_T^2}{\pi \cdot d \cdot x} \frac{\cos 60^{\circ}}{\sin 60^{\circ}} = 22.24 \text{ N}$	1
	$[F_{Str} = 27.83 \text{ N}; F_{Str} = 17.78 \text{ N}]$ The flow force operates in closing direction, because it operates contrary to the impulse in axial direction.	
2.8	$F_F = (p_E - p_A) \cdot A_K - F_{Str} = 56.3 \text{ N}$ $[F_F(mit F_{Str} = 27.83 \text{ N}) = 50.71 \text{ N}]$ $[F_F(mit F_{Str} = 25 \text{ N}) = 58.54 \text{ N}]$	1
	Summation:	10

Sample Solution for Exercise: 3 Total Score: 10

Subtask	Sk	Points
3.1	variable radial piston pump	0.5
3.2	1. piston, 2. cylinder star, 3. slipper,4. stroke ring, 5. actuating piston	2.5
3.3	compression caused pulsation and kinetic pulsation	0.5
3.4	adjust pre-compression angle, throtteling grooves	0.5
3.5	external gear pump	0.5
3.6	$V = (\pi \cdot m^2) \cdot b \cdot 2 \cdot z_{driving-wheel}$ $V = \pi \cdot 8^2 mm^2 \cdot 2mm \cdot 2 \cdot 10 = 8042.5mm^3 = 8ccm$	1
3.7	Pressure port 4cm³ 4cm³ 120	1
3.8	Suction port $V = (\pi \cdot m^2) \cdot b \cdot z_{displace ment chambers - right} = \pi \cdot 8^2 mm^2 \cdot 2mm \cdot 20 = 8042.5 mm^3$ $Q_{leckage} = \Delta V \cdot n$ $\Delta V = V \cdot \frac{\Delta p}{E}$ $\Delta V = 8042.5 mm^3 \cdot \frac{100 bar}{16000 bar} = 50.3 mm^3$ $Q_{leckage} = 50.3 mm^3 \cdot 800 \frac{1}{\min} = 40.2 \frac{cm^3}{\min}$	2

Subtask	Sk	Points
3.9	High pressure Suction 0.5 0.5 Suction 100% to 200%.	1.5
	Summation:	10

Sample Solution for Exercise: 4 Total Score: 10

Subtask	Di	Points
4.1	Circuit system: closed circuit	0.5
	to enable the hydraulic braking of the motors and thereby transfer kinetic	
	energy into hydraulic energy	0.5
	adjustment: motor adjustment	
	because a pump adjustment with multiple consumers is not possible	0.5
	power output : parallel power output	0.5
	to control all consumers independently from each other	0.5
		0.5
4.2	Arbeitshydraulik	blue
		(dotted)
		1 Point
		each
		the other
	M = T	two
	Drehantrieb	colours
		0.5 each
	The same and the s	
4.2		4
4.3	Through so called load-sensing the pump only conveys as much as	1
	required. Hereby the flow rate that is conveyed by the pump and draines by	
	the pressure relief valve is avoided. Hence less energy is lost through the	
	pressure relief valve and less energy is needed for the pressure supply unit.	

Subtask	Di	Points
4.4	$n_{wheel} = v/(2\pi r) = 39.79 \text{ U/min}$	0.5
	$Q = n \ V \ i \ / \ \eta_vol_motor = 88.43 \ l/min$	0.5
	$Q_{total} = 4 Q = 353.7 l/min$	0.5
	$\alpha = Q_total \ / \ (\eta_vol_pump \ n_pump \ V_max_pump)$ $\alpha^2 = Q_total \ / \ n_pump \ V_max_pump = 0.5607$	0.5
4.5	$M_required = m \ g \ sin(\alpha) \ r = 40884 \ Nm$ $Delta_p = 2\pi \ M_required \ / \ (V_motor \ \eta_hm_motor \ i) = 338 \ bar$	0.5 0.5
	Summation:	10

Sample Solution for Exercise: 5 Total Score: 15

Subtask	vG	Points		
5.1				
	X X			
	OR-element			
5.2	semi-rotary drive with linear axis semi-rotary vane drive rotary motor, geared belt drive, stepping motor	1,5		
5.3	O-ring quad ring groove ring	1,5		
5.4	$m \sim D^2 \cdot p_{before}$, from the equation for supercritical flow through a nozzle. with m = const, D ₁ = 6 mm, $p_{1,before}$ = 6 mm, D_2 = 3 mm, $p_{2,before}$ = ?, $D_1^2 \cdot p_{1,before} = D_2^2 \cdot p_{2,before} \Leftrightarrow p_{2,before} = \frac{D_1^2 \cdot p_{1,before}}{D_2^2} = 12bar$	1		
5.5	increase piston area inrease supply pressure	1		
5.6	pneumatically actuated 5/2-port switching valve	1,5		

Subtask	vG					Points
5.7						2
	chamber	1	2	3	4	
	pressure	p_{U}	$p_{ m Vers}$	PнD	<i>p</i> vers	
5.8	$\sum F = 0: p_{\text{N}}$ $\Leftrightarrow p_{\text{HD}} = \frac{p_{\text{N}}}{p_{\text{HD}}}$	orces around the $A_{\text{piston}} + A_{\text{piston}} + A_{\text{piston}} - A_{piston$	$(A_{\text{rod}} - A_{\text{rod}}) - p_{\text{HD}}$ $(A_{\text{rod}}) - p_{\text{U}} \cdot A_{\text{pisto}}$ $(A_{\text{rod}}) - A_{\text{rod}}$	<u>n</u>		2
5.9	$\Rightarrow p_{\rm HD} = \frac{6bar \cdot \left(2 \cdot 2400mm^2 - 80mm^2\right) - 1bar \cdot 2400mm^2}{2400mm^2 - 80mm^2} = 11,17bar$ At the beginning of a cycle the volume in the high pressure chamber (3) is at its maximum and filled with the supply pressure $p_{\rm Vers}$. Hereby the mass at the high pressure connection is provided. In the course of time the high pressure volume decreases and the chambers 2 and 4 also increase in their volume from zero to the maximum volume at supply volume. Because in all chambers the same pressure is given the accounting can be carried out through the volume. Same pressure in all chambers to accounting \Rightarrow volume ratio $V_{c1,\max} = A_{\rm piston} \cdot \left(l_{\rm chamber} - l_{\rm piston}\right) = 216cm^3$ $V_{c3,\max} = V_{c2,\max} = \left(A_{\rm piston} - A_{\rm rod}\right) \cdot \left(l_{\rm chamber} - l_{\rm piston}\right) = 208,8cm^3$ $\frac{\dot{m}_{\rm HD}}{\dot{m}_{\rm Vers}} = \frac{\dot{m}_{c2,\rm pVers}}{\dot{m}_{c1,\rm pVers} + \dot{m}_{c3,\rm pVers}} = \frac{V_{c2,\max}}{V_{c1,\max} + V_{c3,\max}} = 0,49$ Alternatively also an acounting through the masses is possible.				2	
5.10	$\frac{p_1}{p_2} = \left(\frac{T_1}{T_2}\right)^{\frac{n}{n-1}}$	nange of state w $\stackrel{\cdot}{=} \int_{n-1}^{n} \Leftrightarrow p_{HD} = T$		= 319,2 <i>K</i>		1,5
				S	Summation:	15

Sample Solution for Exercise: 6 Total Score: 10

Subtask	Rn		Points			
6.1	0,5 Points each for	exhaust air throttle and valve	1,5			
6.2	p2: pressure at the rod side					
	exhaust air flow co	exhaust air flow control valve: $b = p_U / p_2 \implies p_2 = p_U / b = 2.5 \ bar$				
	balance of forces:					
	$p_1 A_1 - p_2 A_2 - p_U $	$A_I - A_2) = F$	0,5			
	$ => p_1 = (F + p_2 A_2)$	$(A_1 - A_2)/A_1 = 5,75 \ bar$	0,5			
6.3	mass flow rate:	$dm/dt = p_1 v A_1 / (R_0 T_1)$	0,5			
	flow state:	subcritical case because 6 bar / 10 bar > 0,4				
		$=> p_{\text{operation}} / p_{\text{bottle}} > b$	0,5			
	C-value:	$ \rho_0 = p_0 / (R_0 T_0) = 1,1845 \text{ kg/m}^3 $	0,5			
		$C = p_1 v A_1 / (p_F p_0 \psi) \qquad \text{with } \psi = \text{sqrt}(8/9)$	0,5			
		=> <u>0,019092066 Nl/min bar</u>	0,5			
6.4	Determine air mass pressure and T_U) dm = dV (p/RT)	s consumption from cylinder volumes (at operating				
	$= (50 mm^2 + 25)$	5 mm²)*30 mm*6 bar / (288 Nm/kgK *293K)				
	=>dm=0.01599	83 g / cycle	0,5			
		ent of nitrogen bottle from 200 bar to 10 bar at T_U = $50 \ bar * 0.5 \ l / (288 \ Nm/kgK *293K) = 29,626469 \ g$				
	$m_{end} = p_{end}V/RT =$	$10 \ bar * 0.5 \ l / (288 \ Nm/kgK * 293K) = 5.9252938 \ g$	0,5			
	quantity of cycle:	$n = (m_{start} - m_{end})/dm = 1481 \text{ cycles}$	0,5			
6.5	$V_1 = 10 \text{ cm}^3$					
	$V_2 = 50 \text{ mm}^2 * 30$	$mm = 1.5 \text{ cm}^3$	0,5			
	$\left p_U V_1^{\kappa} = p_2 V_2^{\kappa} \right =>$	$p_2 = p_U (V_1 / V_2)^{\kappa} = \underline{14,24 \ bar}$	0,5			

Subtask	Rn	Points
6.6	Mechanical energy from compression work	
	$W = m * R/(\kappa-1) * (T2-T1)$	0,5
	$T2 = T1 * (p2/p1)^{(\kappa-1)/\kappa} = 626,130 \text{ K}$	0,5
	$m = pV/RT = 1bar * 10 cm^3 / (288 Nm/kgK *293K) = 1,1845e-5 kg$	0,5
	$\underline{W = 2,840 J}$	0,5
	Summation:	10