CP4 report: [TODO YOUR NAME HERE]

Collaboration Statement:

•	1' 1	• 1	• . 1	. 1		1	1 1	
	discussed	1/1/200	3371th	thaca	1110	113710	สารก I	C .
	HISCHSSEH	TUCAS	WILLI	111686	1110	11 V IU	mai	· •

- None
- . . .

I consulted the following resources:

- Bishop Textbook
- Piazza
- . . .

By submitting this assignment, I affirm this is my own original work that abides by the course collaboration policy.

Links: [CP4 instructions] [Course collaboration policy]

Contents

1a: EM Validation Likelihood vs. Iteration	2
1b: Visualization of best EM parameters with K=8	3
1c: Heldout scores versus K , with caption	4

1a: EM Validation Likelihood vs. Iteration

Fig. 1a: The model with K=16 seems to do best on this data because its EM validation likelihood across iterations is higher than all the other models.

1b: Visualization of best EM parameters with K=8

Fig. 1b: About 54.3 % is long sleeves, approximately 31.1 % is short sleeves, and 14.5 % is no sleeves.

1c: Heldout scores versus ${\cal K}$, with caption

	valid	test
K = 1	-0.320	-0.347
K = 4	-670.636	-841.881
K = 8	-2391.922	-2532.880
K = 16	-5453.575	-5594.154

Table 1: Computed log likelihood per pixel across different K for both the validation and test sets,