

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Electromagnetic 1: GPR Theory

Instructor: Dikun Yang Feb – May, 2019

Radar

- Can we do the same thing to the subsurface?
- What are the differences between finding an object in the air and underground using EM waves?

EM Field at High Frequencies – Wave

Ground Penetrating Radar (GPR)

Recall...

Capacitive coupling

- High frequency EM field
- Dielectric constant (ε_r)
- Wave phenomenon

Wave Propagation

Medium characterized by three physical properties: σ (electrical conductivity), ε (electrical permittivity), μ (magnetic permeability)

$$V = \sqrt{rac{2}{\muarepsilon}} \left[\left(1 + \left(rac{\sigma}{\omegaarepsilon}
ight)^2
ight)^{1/2} \ + 1 \,
ight]^{-1/2}$$

Wave regime
$$V=rac{1}{\sqrt{\mu arepsilon}}=rac{c}{\sqrt{\mu_r arepsilon_r}}$$

Non-magnetic approximation $(\mu_r = 1)$:

$$V=rac{c}{\sqrt{arepsilon_r}}$$

Question: How does EM wave propagate in perfect conductors?

Dielectric Permittivity (ε):

How easily a material is electrically polarized

Electrical Conductivity (σ):

How easily electrical charges flow through a material

Magnetic Permeability (μ):

How strongly a material supports magnetism

Wave Attenuation

$$lpha = \omega \sqrt{rac{\mu arepsilon}{2}} \left[\left(1 + \left(rac{\sigma}{\omega arepsilon}
ight)^2
ight)^{1/2} - 1
ight]^{1/2} pprox \left\{ egin{align*} \sqrt{rac{\omega \mu \sigma}{2}} & ext{for } \omega arepsilon \ll arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \sigma \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \sigma \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ll \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \omega arepsilon \ \ \omega = 0 \ \ \omega \ \ \ \ \omega \ \ \ \ \ \omega \ \ \ \ \ \ \ \ \ \ \$$

- Quasi-Static ($\omega \epsilon << \sigma$): Conductive/Low-frequency
- Wave Regime ($\sigma \ll \omega \epsilon$): Resistive/High-frequency

Skin Depth and Probing Distance

- Skin Depth: Distance at which a wave is reduced to 37% (1/e) of its original amplitude
- The probing distance is approximated 3 skin depths.

$$\delta pprox \left\{ egin{array}{ll} 503 \sqrt{\dfrac{1}{\sigma f}} & ext{ for } \omega arepsilon \ll \sigma \ \\ 0.0053 \dfrac{\sqrt{arepsilon_r}}{\sigma} & ext{ for } \sigma \ll \omega arepsilon \end{array}
ight.$$

Table of relative dielectric permittivity (e_R), electrical conductivity (σ), and velocity.

Material	e _R	σ(mSeimens/m)	V avg (m/ns)
Air	1	0	.3
Distilled water	80	0.01	0.033
Fresh water	80	0.5	0.033
Sea water	80	3000	0.01
Dry sand	3 - 5	0.01	0.15
Saturated sand	20-30	0.1-1.0	0.06
Limestone	4-8	0.5-2.0	0.12
Shales	5-15	1-100	0.09
Silts	5-30	1-100	0.07
Clays	5-40	2- 1000	0.06
Granite	4-6	0.01-1.0	0.13
Dry salt	5-6	0.01-1.0	0.13
Ice	3-4	0.01	0.16

Reflection and Transmission

$$R = rac{ ext{Reflected Amplitude}}{ ext{Incident Amplitude}} = rac{\sqrt{arepsilon_1} - \sqrt{arepsilon_2}}{\sqrt{arepsilon_1} + \sqrt{arepsilon_2}}$$
 $T = rac{ ext{Transmitted Amplitude}}{ ext{Incident Amplitude}} = rac{2\sqrt{arepsilon_2}}{\sqrt{arepsilon_1} + \sqrt{arepsilon_2}}$

- If $\varepsilon_1 \approx \varepsilon_2$, most of the wave is transmitted
- If $\varepsilon_1 \ll \varepsilon_2$ or $\varepsilon_1 \gg \varepsilon_2$, most of the wave is reflected

Refraction

• Snell's Law:

$$rac{\sin\! heta_1}{V_1} = rac{\sin\! heta_2}{V_2}$$

$$V=c/\!\sqrt{arepsilon_r}$$

$$\sqrt{arepsilon_1} \sin\! heta_1 = \sqrt{arepsilon_2} \sin\! heta_2$$

Critical refraction

$${
m sin} heta_c=rac{V_1}{V_2}$$

Requires $V_1 < V_2$

Reflection, Transmission, Refraction, Scattering

EM Wave Propagation in a Two-layer Earth

GPR Anomaly on Radargram

- Determine background medium velocity
- Determine the depth of burial
- Determine the size of extended objects

GPR Source Signal

- Wavelet: A wave-like oscillation of short duration
- Bandwidth: Range of frequencies in the wavelet
- Pulse Width: Time-duration of wavelet
- Spatial Length: Wavelength of the wavelet
- Central Frequency: Operating frequency of GPR survey

$$f_c = rac{1}{\Delta t}$$

Typically 50 MHz to 1 GHz

Frequencies in Wavelet

GPR Source Signal: Spatial Length

 The spatial length (wavelength) of the GPR pulse is dependent on the central frequency and velocity

$$\lambda = rac{V}{f_c} = rac{c}{f_c\sqrt{arepsilon_r}} = rac{c\,\Delta t}{\sqrt{arepsilon_r}}$$

 When the GPR signal at some frequency is transmitted across an interface, it can be stretched or contracted

Lower velocity

Shorter spatial length

Lower frequency

Larger spatial length

Signal Stretched or Contracted?

Resolution of GPR

• ¼ wavelength rule:

The thickness of a layer must be at least ¼ the wavelength of the GPR signal.

$$L>rac{c}{4f_c\sqrt{arepsilon_r}}=rac{c\Delta t}{4\sqrt{arepsilon_r}}$$

For zero offset survey

$$L>\sqrt{rac{V\,d}{2f_c}}$$

Probing Distance vs. Resolution

- Want to find two buried tunnels.
- Using a zero offset survey configuration.
- Higher frequencies give better resolution
- Lower frequencies give larger probing distance

Radargram 200 MHz

- Little to no useful signal after 200 ns
- Can't see features from the tunnels

- Too much attenuation of signal
- Probing distance insufficient

Radargram 100 MHz

- Useful signals up to 300 ns
- See top of hyperbolas from tunnels

- Lower resolution
- Can see tunnels

Radargram 50 MHz

- Useful signals through 400 ns
- Well-defined hyperbolas from tunnels

- Lower resolution image
- Best frequency for what we want to observe

Depth vs. Resolution

Summary

- EM at high frequency: Wave regime
- Physical properties utilized by EM/GPR
- Reflection, transmission, refraction and scattering
- Signal length scale and resolution
- Depth vs. spatial resolution