REPORT

수강과목:다변량통계학(I)담당교수:최용석학 과:통계학과학 번:201611531이 름:정호재제출일자:2020.07.03.

HW3 for Multivariate Statistics I

June 25, 2020

Chapter 5. Cluster Analysis

Solve the problems (1) ~ (6) in Exercise 5.7.

5.7 [자료 5.8.1] (kellogg.txt)은 켈로그에 의해서 제조된 총 23종류의 시리얼에 대한 것으로 10가지 변수 X₁ ~ X₁₀으로 측정한 결과를 표준화한 자료이다. 여기서 변수들은 다음과 같다.

X1: 칼로리, X2: 단백질(g), X3: 지방(g), X4: 나트륨(mg),

X₅: 다이어트 식이섬유(g), X₆: 복합탄수화물(g), X₇: 당분(g), X₈: 칼륨(mg),

X₉: 비타민과 무기물(하루 권장량 (%): 0, 25, 100), X₁₀: 유형(온 또는 냉)

(1) 주관적 기준에 따라 이진수자료를 만들어 보라.

자료의 데이터가 평균보다 작으면 0 평균보다 크면 1으로 두고 X10은 데이터를 그대로 두어 이진수 자료를 만들었다.

> X										
	new_X1	new_X2	new_X3	new_X4	new_X5	new_X6	new_X7	new_X8	new_X9	new_X10
AllB	0	1	1	1	1	0	0	1	1	0
AllF	0	1	0	0	1	0	0	1	1	0
AppJ	1	0	0	0	0	0	1	0	0	0
CorF	0	0	0	1	0	1	0	0	0	0
CorP	1	0	0	0	0	0	1	0	0	0
Crac	1	1	1	0	1	0	0	1	1	0
Cris	1	0	0	1	0	1	0	1	0	0
Froo	1	0	1	0	0	0	1	0	0	0
FroF	1	0	0	1	0	0	1	0	0	0
FrMW	0	1	0	0	1	0	0	0	0	0
FruB	1	1	0	1	1	0	1	1	1	0
JRCN	1	0	1	0	0	1	0	1	0	1
JRFN	1	1	1	0	0	1	1	1	0	1
MuCB	1	1	1	0	1	1	1	1	1	0
Nut&	1	0	1	1	0	0	1	0	0	0
NGAR	1	1	1	1	1	1	0	1	1	0
NutW	0	1	0	0	1	1	0	1	0	0
Prod	0	1	0	1	0	1	0	1	0	1
RaBr	1	1	1	1	1	0	1	0	1	0
Rais	0	0	0	0	0	0	0	1	1	0
RiKr	1	0	0	1	0	1	0	0	0	0
Smac	1	0	1	0	0	0	1	0	0	0
Spec	1	1	0	1	0	1	0	0	0	0

(2) 유사성계수로 단순매칭계수를 이용하여 비유사성행렬을 구하라.

유클리드 거리에 의한 비유사성 d_{rs} 와 단순매칭계수에 의한 유사성 c_{rs} 와의 관계는 $d_{rs}=\sqrt{p(1-c_{rs})}$ 이 된다. 이를 이용하여 비유사성 행렬 d_{rs} 를 구하면 다음과 같다.

proxy 패키지를 이용하여 simple matching으로 c_{rs} 를 유클리드 거리를 사용하여 d_{rs} 를 구하고 이들 간의 관계를 비교해보았다.

단순매칭계수에 의한 유사성 c_r s

```
AllB AllF AppJ CorF CorP Crac Cris Froo FroF FrMW FruB JRCN JRFN MuCB Nut& NGAR NutW Prod RaBr Rais RiKr Smac
AllF 0.8
    0.2
AppJ
CorF 0.4 0.4 0.6
CorP 0.2 0.4 1.0 0.6
         0.8
             0.4 0.2
Crac
    0.8
                     0.4
    0.4 0.4 0.6 0.8 0.6 0.4
Cris
Froo 0.3 0.3 0.9 0.5 0.9 0.5 0.5
FroF
    0.3
        0.3
             0.9 0.7
                     0.9 0.3
                              0.7
                                  0.8
FrMW 0.6 0.8 0.6 0.6 0.6 0.6 0.4 0.5 0.5
FruB 0.7 0.7 0.5 0.3 0.5 0.7 0.5 0.4 0.6 0.5
JRCN
    0.3
        0.3
             0.5
                 0.5
                     0.5
                          0.5
                              0.7
                                  0.6
                                       0.4 0.3
                              0.5 0.6 0.4 0.3 0.4 0.8
JRFN 0.3 0.3 0.5 0.3 0.5 0.5
MuCB 0.6 0.6 0.4 0.2 0.4 0.8 0.4 0.5 0.3 0.4 0.7 0.5 0.7
Nuta
     0.4
        0.2
             0.8
                 0.6 0.8
                          0.4
                              0.6
                                  0.9
                                       0.9
                                           0.4
                                               0.5 0.5
                                                       0.5 0.4
                                                           0.8 0.4
NGAR 0.8 0.6 0.2
                 0.4 0.2 0.8 0.6 0.3
                                      0.3 0.4 0.7 0.5 0.5
NutW 0.6 0.8 0.4 0.6 0.4 0.6 0.6 0.3 0.3 0.8 0.5 0.5 0.5 0.6 0.2 0.6
Prod
    0.5
        0.5
             0.3
                 0.7
                     0.3
                          0.3
                              0.7
                                  0.2
                                       0.4 0.5
                                               0.4 0.6 0.6 0.3
                                                                0.3
                                                                    0.5
RaBr 0.7
        0.5 0.5 0.3 0.5 0.7
                              0.3 0.6 0.6 0.5 0.8 0.2 0.4 0.7
                                                                0.7
                                                                    0.7 0.3 0.2
Rais 0.6 0.8 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.6 0.5 0.5 0.3 0.4 0.4 0.4 0.6 0.5 0.3
                                                                0.7
                                                                    0.5
                                                                        0.5
Rikr
    0.3 0.3
             0.7
                 0.9
                     0.7
                         0.3
                              0.9 0.6 0.8 0.5 0.4 0.6 0.4 0.3
                                                                             0.6 0.4 0.5
Smac 0.3 0.3 0.9 0.5 0.9 0.5 0.5 1.0 0.8 0.5 0.4 0.6 0.6 0.5 0.9 0.3 0.3 0.2 0.6 0.5 0.6
Spec 0.4 0.4 0.6 0.8 0.6 0.4 0.8 0.5 0.7 0.6 0.5 0.5 0.5 0.4 0.6 0.6 0.6 0.7 0.5 0.4 0.9 0.5
```

유클리드 거리에 의한 비유사성 d_{rs}

```
> round(drs.2)
    AllB AllF AppJ CorF CorP Crac Cris Froo FroF FrMW FruB JRCN JRFN MuCB Nut& NGAR NutW Prod RaBr Rais RiKr Smac
AllF 1.41
AppJ 2.83 2.45
CorF 2.45 2.45 2.00
CorP 2.83 2.45 0.00 2.00
Crac 1.41 1.41 2.45 2.83 2.45
Cris 2.45 2.45 2.00 1.41 2.00 2.45
Froo 2.65 2.65 1.00 2.24 1.00 2.24 2.24
FroF 2.65 2.65 1.00 1.73 1.00 2.65 1.73 1.41
FrMW 2.00 1.41 2.00 2.00 2.00 2.00 2.45 2.24 2.24
FruB 1.73 1.73 2.24 2.65 2.24 1.73 2.24 2.45 2.00 2.24
JRCN 2.65 2.65 2.24 2.24 2.24 2.24 1.73 2.00 2.45 2.65 2.83
JREN 2.65 2.65 2.24 2.65 2.24 2.24 2.24 2.00 2.45 2.65 2.45 1.41
MuCB 2.00 2.00 2.45 2.83 2.45 1.41 2.45 2.24 2.65 2.45 1.73 2.24 1.73
Nut& 2.45 2.83 1.41 2.00 1.41 2.45 2.00 1.00 1.00 2.45 2.24 2.24 2.24 2.45
NGAR 1.41 2.00 2.83 2.45 2.83 1.41 2.00 2.65 2.65 2.45 1.73 2.24 2.24 1.41 2.45
NutW 2.00 1.41 2.45 2.00 2.45 2.00 2.65 2.65 1.41 2.24 2.24 2.24 2.00 2.83 2.00
Prod 2.24 2.24 2.65 1.73 2.65 2.65 1.73 2.83 2.45 2.24 2.45 2.00 2.00 2.65 2.65 2.24 1.73
RaBr 1.73 2.24 2.24 2.65 2.24 1.73 2.65 2.00 2.00 2.24 1.41 2.83 2.45 1.73 1.73 1.73 2.65 2.83
Rais 2.00 1.41 2.00 2.00 2.00 2.00 2.00 2.24 2.24 2.00 2.24 2.65 2.45 2.45 2.45 2.00 2.24 2.65
RiKr 2.65 2.65 1.73 1.00 1.73 2.65 1.00 2.00 1.41 2.24 2.45 2.00 2.45 2.65 1.73 2.24 2.24 2.00 2.45 2.24
Smac 2.65 2.65 1.00 2.24 1.00 2.24 2.24 0.00 1.41 2.24 2.45 2.00 2.00 2.24 1.00 2.65 2.65 2.83 2.00 2.24 2.00
Spec 2.45 2.45 2.00 1.41 2.00 2.45 1.41 2.24 1.73 2.00 2.24 2.24 2.24 2.45 2.00 2.00 2.00 1.73 2.24 2.45 1.00 2.24
```

 $d_{rs} = \sqrt{p(1-c_{rs})}$ 관계식에 의해 이들의 값은 모두 같음을 알 수 있다.

(3) 계층 군집분석인 단일연결법, 평균연결법과 와드법의 덴드로그램을 통해 군집을 얻고 각 군집의 특성을 논하라.

drs hclust (*, "ward.D2")

덴드로그램을 통하여 각 5개의 군집을 얻었다. 이를 표로 나타내면 다음과 같다.

군집방법	C1	C2	C3	C4	C5
단일연결법	Prod	JRCN JRFN	Nut&, FroF AppJ, CorP Froo, Smac Spec, Cris CorF, RiKr	Rais, NutW NGAR, MuCB FrMW, Crac AIIB, AIIF	FruB RaBr
단일연결법 군집특성	나트륨과 지방이 낮은 냉시리얼	칼로리가 높은 냉 시리얼	칼로리가 높은 시리얼	칼로리가 낮은 시리얼	다이어트 식이섬유가 높은 시리얼
평균연결법	Prod, Spec Cris, CorF RiKr	Nut&, FroF AppJ, CorP Froo, Smac	JRCN JRFN	FruB, RaBr NGAR, MuCB	Rais, Crac AIIB, AIIF FrMW, NutW
평균연결법 군집특성	나트륨과 복합탄수화물이 높은 시리얼	칼로리와 칼륨이 높은 온시리얼	칼로리가 높은 냉 시리얼	단백질과 다이어트 식이섬유가 높은 시리얼	칼로리가 낮은 시리얼
와드연결법	FruB, RaBr NGAR, MuCB	Rais, Crac AIIB, AIIF FrMW, NutW	Nut&, FroF AppJ, CorP Froo, Smac	JRCN JRFN	Prod, Spec Cris, CorF RiKr
와드연결법 군집특성	단백질과 다이어트 식이섬유가 높은 시리얼	칼로리가 낮은 시리얼	칼로리와 칼륨이 높은 온시리얼	칼로리가 높은 냉 시리얼	나트륨과 복합탄수화물이 높은 시리얼

각 분석방법별로 군집이 조금씩 다르게 뽑혔지만 전체적으로 칼로리와 단백질, 지방, 나트륨, 유형으로 군집이 분류가 되어있다. 단일연결법에서는 군집의 특성을 명확하게 나누지 않았지만 평균연결법과 와드연결법의 경우에서는 조금 더 군집을 세분화 시켜서 분류되어있음을 알 수 있다.

(4) K-평균법과 K-대표개체법에 의한 군집분석을 서로 비교하라.

\$All.index
2 3 4 5 6 7 8
1.2736 1.0922 0.9844 0.9326 0.8309 0.7764 0.7044

Dindex에서는 급격하게 감소하는 지점이 군집의 수 5에 해당하므로 5개의 군집을 분석한다.

K-평균법	K-대표개체법 > C1;C2;C3;C4;C5				
> C1;C2;C3;C4;C5;C5					
Cereals cluster	Cereals cluster				
JRCN JRCN 1	AllB AllB 1				
JRFN JRFN 1	AllF AllF 1				
Cereals cluster	Crac Crac 1				
CorF CorF 2	FrMW FrMW 1				
Cris Cris 2	FruB FruB 1				
Prod Prod 2	NutW NutW 1				
RiKr RiKr 2	Rais Rais 1				
Spec Spec 2	Cereals cluster				
Cereals cluster	AppJ AppJ 2				
AllF AllF 3	CorP CorP 2				
FrMW FrMW 3	FroF FroF 2				
NutW NutW 3	Cereals cluster				
Rais Rais 3	CorF CorF 3				
Cereals cluster	Cris Cris 3				
AllB AllB 4	JRCN JRCN 3				
Crac Crac 4	Prod Prod 3				
FruB FruB 4	RiKr RiKr 3				
MuCB MuCB 4	Spec Spec 3				
NGAR NGAR 4	Cereals cluster				
RaBr RaBr 4	Froo Froo 4				
Cereals cluster	Nut& Nut& 4				
AppJ AppJ 5	Smac Smac 4				
CorP CorP 5	Cereals cluster				
Froo Froo 5	JRFN JRFN 5				
FroF FroF 5	MuCB MuCB 5				
Nut& Nut& 5	NGAR NGAR 5				
Smac Smac 5	RaBr RaBr 5				

K-평균법의 군집별 특성

> aggregate(X, by=list(kmeans\$cluster),FUN=mean)

	Group.1	new_X1	new X2	new_X3	new_X4	new_X5	new_X6	new_X7	new_X8	new_X9	new_X10
1	1	1.0000000	0.50	1.0000000	0.0000000	0.00	1.0000000	0.5	1.0000000	0.0	1.0
2	2	0.6000000	0.40	0.0000000	1.0000000	0.00	1.0000000	0.0	0.4000000	0.0	0.2
3	3	0.0000000	0.75	0.0000000	0.0000000	0.75	0.2500000	0.0	0.7500000	0.5	0.0
4	4	0.8333333	1.00	0.8333333	0.6666667	1.00	0.3333333	0.5	0.8333333	1.0	0.0
5	5	1.0000000	0.00	0.5000000	0.3333333	0.00	0.0000000	1.0	0.0000000	0.0	0.0

K-대표개체법의 군집별 특성

> aggregate(X, by=list(kmedoids\$cluster),FUN=mean)

	Group.1	new X1	new X2	new X3	new X4	new X5	new X6	new X7	new X8	new X9	new X10
1	1	0.2857143	0.8571429	0.2857143	0.2857143	0.8571429	0.1428571	0.1428571	0.8571429	0.7142857	0.0000000
2	2	1.0000000	0.0000000	0.0000000	0.3333333	0.0000000	0.0000000	1.0000000	0.0000000	0.0000000	0.0000000
3	3	0.6666667	0.3333333	0.1666667	0.8333333	0.0000000	1.0000000	0.0000000	0.5000000	0.0000000	0.3333333
4	4	1.0000000	0.0000000	1.0000000	0.3333333	0.0000000	0.0000000	1.0000000	0.0000000	0.0000000	0.0000000
5	5	1.0000000	1.0000000	1.0000000	0.5000000	0.7500000	0.7500000	0.7500000	0.7500000	0.7500000	0.2500000

K-평균법과 K-대표개체법 각 5개의 군집을 얻었다. 이를 표로 나타내면 다음과 같다.

군집방법	C1	C2	C3	C4	C5
	JRCN	CorF, Cris	AllF, FrMW	AllB, Crac	AppJ, CorP
K-평균법		Prod, RiKr		FruB, MuCB	Froo, FroF
	JRFN	Spec	NutW, Rais	NGAR, RaBr	Nut&, Smac
V на Л на	카크리카 노ㅇ 내	나트륨과	칼로리와 지방,	단백질과 다이어트	칼로리와 칼륨이
K-평균법	칼로리가 높은 냉	복합탄수화물이	복합탄수화물이 나트륨이 낮은 식이섬유가 높은		
군집특성	시리얼	높은 시리얼	시리얼	시리얼	높은 온시리얼
	AllB, AllF	AppJ	CorF, Cris3	Froo	JRFN
V 디크카카버	Crac, FrMW				MuCB
K-대표개체법	FruB, NutW	CorP	JRCN, Prod	Nut&	NGAR
	Rais	FroF	RiKr, Spec	Smac	RaBr
V_다마 기취버	카크리카 나ㅇ	칼로리와 당이	나트륨과	3} = □]O}	칼로리, 단백질,
K-대표개체법	칼로리가 낮은	높지만 지방은	복합탄수화물이	칼로리와 당이	지방이 높은
군집특성	시리얼	낮은 시리얼	높은 시리얼	높은 시리얼	시리얼

K-평균법과 K-대표개체법을 비교하였을 때 군집이 조금씩 다르게 뽑혔지만 전체적으로 비슷한 경향으로 군집이 나누어져있다.

(5) (3)과 (4)의 결과를 서로 비교하라.

(3)과 (4)의 결과를 서로 비교해보았을 때 평균연결법, 와드연결법, K-평균법, K-대표개체법은 모두 크게는 칼로리와 에너지원, 칼륨과 다이어트 식이섬유 등으로 군집을 나누었다. 평균연결법과 와드연결법에 비해 와드연결법, K-평균법, K-대표개체법은 칼로리가 높고 낮은 집단에 추가적으로 다이어트 식이섬유, 지방, 나트륨 등의 변수를 추가적으로 더 비교해주었다.

(6) 시리얼 간의 유클리드 거리에 대한 K-평균법을 실시하고 (4)의 결과와 비교하라.

5 6 2.6740 2.2907 1.9678 1.7770 1.6539 1.4478 1.3226

Dindex에서는 급격하게 감소하는 지점이 군집의 수 6에 해당하므로 6개의 군집을 분석한다.

K-3	영균법		K-대표개	체법
> C1;C2;C	3;C4;C5;C6	> C1	C2;C3;C	C4;C5;C6
Crea	ls cluster	\$15 Aug 200	Creals	cluster
CorF Co	rF 1	AllB	AllB	1
Cris Cr	is 1	AllF	AllF	1
NutW Nu	tW 1	560.77-277	Creals	cluster
RiKr Ri	Kr 1	AppJ	AppJ	2
Crea	ls cluster	CorP	CorP	2
Spec Sp	ec 2	Froo	Froo	2
Crea	ls cluster	FroF	FroF	2
AllB Al	1B 3	Nut&	Nut&	2
Allf Al	1F 3	Smac	Smac	2
Crea	ls cluster	NOTE ACCES	Creals	cluster
Crac Cr	ac 4	CorF	CorF	3
FruB Fr	uB 4	Cris	Cris	3
MuCB Mu	CB 4	RiKr	RiKr	3
NGAR NO	AR 4	Spec	Spec	3
RaBr Ra	Br 4	W. 1874 S. 187	Creals	cluster
Crea	ls cluster	Crac	Crac	4
AppJ Ap	pJ 5	FruB	FruB	4
CorP Co		MuCB	MuCB	4
Froo Fr	00 5	NGAR	NGAR	4
FroF Fr		RaBr	RaBr	4
FrMW Fr		0.0000000	Creals	cluster
Nut& Nu	t& 5	FrMW	FrMW	5
Rais Ra	is 5	NutW	NutW	5
Smac Sn	ac 5	Rais	Rais	5
Crea	ls cluster	00000000000	Creals	cluster
JRCN JF	CN 6	JRCN	JRCN	6
JRFN JF	FN 6	JRFN	JRFN	6
Prod Pr	od 6	Prod	Prod	6

K-평균법의 군집별 특성

> aggregate(X, by=list(kmeans\$cluster),FUN=mean)

	Group.1	X1	X2	Х3	X4	X5	X6	X7	X8	X9	X10
1	1	0.4772750	0.2500000	0.0000000	0.7578500	0.08927500	0.8999750	0.16665	0.5	0.0887250	0
2	2	0.5455000	1.0000000	0.0000000	0.7188000	0.07140000	0.6000000	0.20000	0.0	0.1129000	0
3	3	0.0909000	0.6000000	0.1666500	0.6250000	0.82145000	0.0333500	0.16665	1.0	0.9838500	0
4	4	0.7273000	0.4000000	0.5333400	0.6000200	0.28570000	0.5466800	0.68002	0.9	0.5032200	0
5	5	0.5227500	0.1750000	0.1249875	0.3125125	0.08927500	0.3833375	0.72500	0.5	0.0947625	0
6	6	0.6060667	0.3333333	0.2222000	0.6875333	0.09523333	0.8000333	0.40000	1.0	0.1505000	1

K-대표개체법의 군집별 특성

> aggregate(X, by=list(kmedoids\$cluster),FUN=mean)

	Group.1	X1	X2	Х3	X4	X5	X6	X7	X8	X9	X10
1	1	0.0909000	0.6000000	0.16665	0.6250000	0.82145000	0.0333500	0.1666500	1.0000000	0.9838500	0
2	2	0.5606500	0.1333333	0.16665	0.4166833	0.05950000	0.3444500	0.8222167	0.4166667	0.0349500	0
3	3	0.5227500	0.4000000	0.00000	0.8047250	0.05355000	0.8666500	0.1833250	0.2500000	0.0605000	0
4	4	0.7273000	0.4000000	0.53334	0.6000200	0.28570000	0.5466800	0.6800200	0.9000000	0.5032200	0
5	5	0.3939000	0.3333333	0.00000	0.1771000	0.19050000	0.5777667	0.3333333	0.8333333	0.2580667	0
6	6	0 6060667	0 3333333	0 22220	0 6875333	0.09523333	0.8000333	0.4000000	1 0000000	0 1505000	1

군집방법	C1	C2	C3	C4	C5	C6
단일연결법	Corf RiKr Cris NutW	Spec	AIIB AIIF	Crac, FruB RaBr, MuCB NGAR	FroF, Nut& Froo, Smac AppJ, CorP FrMW, Rais	Prod JRCN JRFN
단일연결법 군집특성	칼로리와 복합탄수화물이 낮은 시리얼	단백질이 높은 시리얼	칼로리와 복합탄수화물이 낮은 시리얼	칼로리와 지방이 높은 시리얼	나트륨이 적고 당 높은 시리얼	냉 시리얼
평균연결법	AIIB AIIF	FroF, Nut& Froo, Smac AppJ, CorP	Corf RiKr Cris Spec	Crac, FruB RaBr, MuCB NGAR	Prod JRCN JRFN	Prod JRCN JRFN
평균연결법 군집특성	칼로리와 복합탄수화물이 낮은 시리얼	단백질과 다이어트 식이섬유가 낮고 당분이 높은 시리얼	나트륨과 복합탄수화물이 높은 시리얼	칼로리와 지방이 높은 시리얼	나트륨과 지방이 낮은 시리얼	냉 시리얼

위의 군집을 (4)의 결과와 비교해보면 전체적인 데이터 군집의 경향은 비슷하나 (4)의 결과에 비하여 군집의 수가 5개에서 6개로 늘어났다. 또한 지금의 데이터는 유형과 칼로리, 단백질에 대하여 더 민감하게 반응하고 있다.

```
#data
setwd("D:/2020 1학기 정호재/다변량통계학(1)/200625 다변량 실습 6/data")
Data5.8.1<-read.table("kellogg.txt", header=T)
X<-Data5.8.1[,-1]
cereal<-Data5.8.1[,1]
rownames(X)<-cereal
Χ
#5.7.1
dummy_var <- transform(X,</pre>
        new_X1 = ifelse(X1 > mean(X1), 1, 0),
        new_X2 = ifelse(X2 > mean(X2), 1, 0),
        new_X3 = ifelse(X3 > mean(X3), 1, 0),
        new_X4 = ifelse(X4 > mean(X4), 1, 0),
        new_X5 = ifelse(X5 > mean(X5), 1, 0),
        new_X6 = ifelse(X6 > mean(X6), 1, 0),
        new_X7 = ifelse(X7 > mean(X7), 1, 0),
        new_X8 = ifelse(X8 > mean(X8), 1, 0),
        new_X9 = ifelse(X9 > mean(X9), 1, 0),
        new_X10= X10)
X<-dummy_var[,-c(1:10)]
X < -as.matrix(X)
Χ
#5.7.2
n < -nrow(X)
p<-ncol(X)
drs<-dist(X, method="euclidean")</pre>
round(drs,2)
crs<-1-drs^2/p
crs
install.packages("proxy")
library(proxy)
summary(pr_DB)
crs<-1-dist(X, method = "simple matching")</pre>
drs < -sqrt(p*(1-crs))
drs
round(sqrt(p*(1-crs)),2) == round(drs,2)
```

```
#5.7.3
par(mfrow=c(2,2))
#단일연결법
single=hclust(drs, method="single")
plot(single, hang=-1, main="(a) Sinle Linkage")
rect.hclust(single,k=5)
#완전연결법
complete=hclust(drs, method="complete")
plot(complete,hang=-1, main="(b) Complete Linkage")
rect.hclust(complete,k=5)
#와드연결법
ward=hclust(drs, method="ward.D2")
plot(ward, hang=-1, main="(c) Ward Linkage")
rect.hclust(ward.k=5)
#5.7.4
install.packages("NbClust") #군집의 개수 정해줌
library(NbClust)
#Dindex Index
dindex<-NbClust(X, distance="euclidean", min.nc = 2, max.nc = 8,
               method = "kmeans", index = "dindex")
dindex
Cereals=Data5.8.1[,1]
kmeans \leftarrow kmeans(X, 5)
kmeans
cluster=data.frame(Cereals,cluster=kmeans$cluster)
C1=cluster[(cluster[,2]==1),]
C2=cluster[(cluster[,2]==2),]
C3=cluster[(cluster[,2]==3),]
C4 = cluster[(cluster[,2] == 4),]
C5=cluster[(cluster[,2]==5),]
C1;C2;C3;C4;C5
# Get cluster means
aggregate(X, by=list(kmeans$cluster),FUN=mean)
library(cluster)
kmedoids <- pam(X, 5, metric="euclidean")
cluster=data.frame(Cereals,cluster=kmedoids$cluster)
C1=cluster[(cluster[,2]==1),]
C2=cluster[(cluster[,2]==2),]
C3=cluster[(cluster[,2]==3),]
C4 = cluster[(cluster[,2] = = 4),]
C5=cluster[(cluster[,2]==5),]
C1;C2;C3;C4;C5
```

```
# Get cluster means
aggregate(X, by=list(kmedoids$cluster),FUN=mean)
#5.7.6
# Get cluster means
aggregate(X, by=list(kmedoids$cluster),FUN=mean)
Data5.8.1<-read.table("kellogg.txt", header=T)
X<-Data5.8.1[.-1]
cereal<-Data5.8.1[,1]
rownames(X)<-cereal
n < -nrow(X)
xbar<-t(X)%*%matrix(1.n.1)/n # 평균벡터
I<-diag(n)</pre>
J<-matrix(1.n.n)
H < -I - 1/n *J
                           # 중심화행렬
Y<-H%*%as.matrix(X)
                             # 중심화 자료행렬
S<-t(Y)%*%Y/(n-1)
                           # 공분산행렬
D<-diag(1/sqrt(diag(S)))
                          # 표준편차행렬의 역
Z<-Y%*%D
                          # 표준화자료행렬
colnames(Z)<-colnames(X)
rownames(Z)<-rownames(X)</pre>
install.packages("NbClust") #군집의 개수 정해줌
library(NbClust)
Cereals=Data5.8.1[,1]
#Dindex Index
dindex<-NbClust(Z, distance="euclidean", min.nc = 2, max.nc = 8,
               method = "kmeans", index = "dindex")
dindex
kmeans <- kmeans(Z, 6) # 6 cluster solution
kmeans
cluster=data.frame(Cereals,cluster=kmeans$cluster)
C1=cluster[(cluster[,2]==1),]
C2=cluster[(cluster[,2]==2),]
C3=cluster[(cluster[,2]==3),]
C4 = cluster[(cluster[,2] = = 4),]
C5=cluster[(cluster[,2]==5),]
C6=cluster[(cluster[,2]==6),]
C1;C2;C3;C4;C5;C6
# Get cluster means
aggregate(X, by=list(kmeans$cluster),FUN=mean)
```

```
library(cluster)
kmedoids <- pam(Z, 6, metric="euclidean") # 6 cluster solution
cluster=data.frame(Cereals,cluster=kmedoids$cluster)
C1=cluster[(cluster[,2]==1),]
C2=cluster[(cluster[,2]==2),]
C3=cluster[(cluster[,2]==3),]
C4=cluster[(cluster[,2]==4),]
C5=cluster[(cluster[,2]==5),]
C6=cluster[(cluster[,2]==6),]
C1;C2;C3;C4;C5;C6</pre>
# Get cluster means
```

aggregate(X, by=list(kmedoids\$cluster),FUN=mean)