Artificial Intelligence: Naive Bayes Classification

Remember this slide...

History of AI

- 1980s-2010
- The rise of Machine Learning
 - More powerful CPUs-> usable implementation of neural networks
 - Big data -> Huge data sets are available
 - document repositories for NLP (e.g. emails)
 - billions on images for image retrieval
 - billions of genomic sequences, ...

Rules are now learned automatically!

40

Today

- YOU ARE HERE!
- 1. Introduction to ML
- 2. Naïve Bayes Classifier
- 3. Evaluation

Why Machine Learning?

Over 2.5 quintillion bytes of data are created every single day, and it is only going to grow from there. By 2020, it is estimated that 1.7MB of data will be created every second for every person on earth.

Why Machine Learning?

Machine Learning History

In 1959, Arthur Samuel first proposed the concept Machine Learning:

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

Machine Learning Process

Supervised Learning

Unsupervised Learning

Reinforcement Learning

The typical RL scenario: an agent takes actions in an environment, which is interpreted into a reward and a representation of the state, which are fed back into the agent.

Types of ML Algorithms

ML outside of AI

ML is widely used in Data Mining

- a.k.a. Knowledge Discovery in Databases (KDD)
- e.g. Clustering, Anomaly Detection,
 Association Rule Mining
- Example: predict if a customer is likely to purchase certain goods according to history of shopping activities.

Types of Machine Learning

	Supervised Learning	Unsupervised Learning	Reinforcement Learning
Definition	The machine learns by using labelled data	The machine is trained on unlabeled data without any guidance	An agent interacts with its environment by producing actions & discovers errors and rewards
Types of problems	Regression &Classification	Association & Clustering	Reward based
Type of data	Labelled data	Unlabelled data	No pre-defined data
Training	External supervision	No supervision	No supervision
Approach	Map labelled input to known output	Understand patterns and discover output	Follow trail and error method
Popular Algorithms	Linear Regression, Logistic Regression, KNN, etc	K-means, C-means, etc	Q-learning, etc

Today

- Naïve Bayes Classifier Evaluation

Motivation

- How do we represent and reason about non-factual knowledge?
 - It might rain tonight
 - If you have red spots on your face, you might have the measles
 - This e-mail is most likely spam
 - □ I can't read this character, but it looks like a "B"
 - These 2 pictures are very likely of the same person
 - **...**

Remember...

- P is a probability function:
 - \bigcirc 0 \leq P(A) \leq 1
 - $P(A) = 0 \Rightarrow$ the event A will never take place
 - $P(A) = 1 \Rightarrow$ the event A must take place

 - $P(A) + P(\sim A) = 1$

Joint probability

- intersection $A_1 \cap ... \cap A_n$ is an event that takes place if all the events $A_1,...,A_n$ take place
- \Box denoted P(A \cap B) or P(A,B)
- Sum Rule
 - union $A_1 \cup ... \cup A_n$ is an event that takes place if at least one of the events $A_1,...,A_n$ takes place
 - □ denoted $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Conditional Probability

- Prior (or unconditional) probability
 - Probability of an event before any evidence is obtained
 - P(A) = 0.1 $P(rain\ today) = 0.1$
 - i.e. your belief about A given that you have no evidence
- Posterior (or conditional) probability
 - Probability of an event given that you know that B is true (B = some evidence)
 - \neg P(A|B) = 0.8 P(rain today | cloudy) = 0.8
 - □ i.e. your belief about A given that you know B

Conditional Probability (con't)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A,B)}{P(B)}$$

Rolling two dice (together):

2	3	4	5	6	7	8	9	10	11	12
1/36	1/18	1/12	1/9	5/36	1/6	5/36	1/9	1/12	1/18	1/36

Rolling two dice one after the other, first dice rolled 1:

2	3	4	5	6	7	8	9	10	11	12
1/6	1/6	1/6	1/6	1/6	1/6	0	0	0	0	0

Chain Rule

With 2 events, the probability that A and B occur is:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$
 so $P(A,B) = P(A|B) \times P(B)$

- With 3 events, the probability that A, B and C occur is:
 - The probability that A occurs
 - Times, the probability that B occurs, assuming that A occurred
 - Times, the probability that Coccurs, assuming that A and B have occurred
- With n events, we can generalize to the Chain rule:

$$P(A_1, A_2, A_3, A_4, ..., A_n)$$
= $P(\cap A_i)$
= $P(A_1) \times P(A_2 | A_1) \times P(A_3 | A_1, A_2) \times ... \times P(A_n | A_1, A_2, A_3, ..., A_{n-1})$

So what?

- we can do probabilistic inference
 - □ i.e. infer new knowledge from observed evidence

Joint probability distribution:

P(Toothache ∩ Cavity)		evidence		
		Toothache	~Toothache	
hypothesis	Cavity	0.04	0.06	
	~Cavity	0.01	0.89	

$$P(H \mid E) = \frac{P(H \cap E)}{P(E)}$$

$$P(cavity \mid toothache) = \frac{P(cavity \cap toothache)}{P(toothache)} = \frac{0.04}{0.04 + 0.01} = 0.8$$

Getting the Probabilities

in most applications, you just count from a set of observations

$$P(A) = \frac{\text{count_of_}A}{\text{count_of_}all_\text{events}}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{count_of_A_and_B_together}{count_of_all_B}$$

Combining Evidence

- Assume now 2 pieces of evidence:
- Suppose, we know that
 - P(Cavity | Toothache) = 0.12
 - □ P(Cavity | Young) = 0.18
- A patient complains about Toothache and is Young...
 - what is P(Cavity | Toothache Young)?

Combining Evidence

	Tooth	nache	~Toothache		
	Young	~ Young	Young	~ Young	
Cavity	0.108	0.012	0.072	0.008	
~Cavity	0.016	0.064	0.144	0.576	

$P(Toothache \cap Cavity \cap Young)$

- But how do we get the data?
- In reality, we may have dozens, hundreds of variables
- We cannot have a table with the probability of all possible combinations of variables
 - \Box Ex. with 16 binary variables, we would need 2^{16} entries

Independent Events

- In real life:
 - some variables are independent...
 - ex: living in Montreal & tossing a coin
 - P(Montreal, head) = P(Montreal) * P(head)
 - probability of 2 heads in a row:
 - \Box P(head, head) = 1/2 * 1/2 = 1/4
 - some variables are not independent...
 - ex: living in Montreal & wearing boots
 - P(Montreal, boots) ≠ P(Montreal) * P(boots)

Independent Events

- Two events A and B are independent:
 - if the occurrence of one of them does not influence the occurrence of the other
 - \Box i.e. A is independent of B if P(A) = P(A|B)
- If A and B are independent, then:
 - $P(A,B) = P(A|B) \times P(B) \text{ (by chain rule)}$ $= P(A) \times P(B) \text{ (by independence)}$
- To make things work in real applications, we often assume that events are independent
 - $P(A,B) = P(A) \times P(B)$

Conditional Independent Events

- Two events A and B are <u>conditionally</u> independent given C:
 - Given that C is true, then any evidence about B cannot change our belief about A
 - $P(A, B \mid C) = P(A \mid C) \times P(B \mid C).$

Bayes' Theorem

given:
$$P(A|B) = \frac{P(A,B)}{P(B)}$$
 so $P(A,B) = P(A|B) \times P(B)$
 $P(B|A) = \frac{P(A,B)}{P(A)}$ so $P(A,B) = P(B|A) \times P(A)$

• then:
$$P(A|B) \times P(B) = P(B|A) \times P(A)$$

= and:
$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

So?

- We typically want to know: P(Hypothesis | Evidence)
 - P(Disease | Symptoms)... P(meningitis | red spots)
 - P(Cause | Side Effect)... P(misaligned brakes | squeaky wheels)
- But P(Hypothesis | Evidence) is hard to gather
 - ex: out of all people who have red spots... how many have meningitis?
- However P(Evidence | Hypothesis) is easier to gather
 - ex: out of all people who have the meningitis ... how many have red spots?
- So

$$P(Hypothesis | Evidence) = \frac{P(Evidence | Hypothesis) \times P(Hypothesis)}{P(Evidence)}$$

Assume we only have 1 hypothesis Assume:

- P(spots=yes | meningitis=yes) = 0.4
- P(meningitis=yes) = 0.00003
- P(spots=yes) = 0.05 P(meningitis = yes | spots = yes) = $\frac{P(spots = yes | meningitis = yes) \times P(meningitis = yes)}{P(spots = yes)}$ $= \frac{0.4 \times 0.00003}{0.05} = 0.00024$
- → If you have spots... you are more likely to have meningitis than if we don't know about you having spots

- Predict the weather tomorrow based on tonight's sunset...
- Assume we have 3 hypothesis...

 \Box H_1 : weather will be nice

 $P(H_1) = 0.2$

 \Box H_2 : weather will be bad

 $P(H_2) = 0.5$

 \Box H_3 : weather will be mixed

 $P(H_3) = 0.3$

- And 1 piece of evidence with 3 possible values
 - E₁: today, there's a beautiful sunset
 - E₂: today, there's a average sunset
 - E₃: today, there's no sunset

P(E ₂	H ₁)

P(E _x H _i)	E ₁	E ₂	E ₃
H ₁	0.7	0.2	0.1
H ₂	0.3	0.3	0.4
H ₃	0.4	0.4	0.2

- Predict the weather tomorrow based on tonight's sunset...
- Assume we have 3 hypothesis...
 - \Box H_1 : weather will be nice $P(H_1) = 0.2$
 - H_2 : weather will be bad $P(H_2) = 0.5$
 - \Box H_3 : weather will be mixed $P(H_3) = 0.3$
- And 1 piece of evidence with 3 possible values
 - \Box E_1 : today, there's a beautiful sunset
 - □ E₂: today, there's a average sunset
 - □ E₃: today, there's no sunset

P(E _x H _i)	E ₁	E ₂	E ₃
H ₁	0.7	0.2	0.1
H ₂	0.3	0.3	0.4
H ₃	0.4	0.4	0.2

- Observation: average sunset (E₂)
- Question: how will be the weather tomorrow?
 - $P(H_1 \mid E_2)$?
 - predict the weather that maximizes the probability
 - \square select H_i such that $P(H_i \mid E_2)$ is the greatest

$$P(H_i | E_2) = \frac{P(H_i) \times P(E_2 | H_i)}{P(E_2)}$$

$$P(E_2) = P(H_1) \times P(E_2 \mid H_1) + P(H_2) \times P(E_2 \mid H_2) + P(H_3) \times P(E_2 \mid H_3)$$

= $.2 \times .2 + .5 \times .3 + .3 \times .4 = .04 + .15 + .12 = 0.31$

$$P(H_1 | E_2) = \frac{P(H_1) \times P(E_2 | H_1)}{P(E_2)} = \frac{.2x.2}{.31} = .129$$

$$P(H_2 | E_2) = \frac{P(H_2) \times P(E_2 | H_2)}{P(E_2)} = \frac{.5x.3}{.31} = .484$$

$$P(H_3 | E_2) = \frac{P(H_3) \times P(E_2 | H_3)}{P(E_2)} = \frac{.3x.4}{.31} = .387$$

 \Rightarrow H₂ is the most likely hypothesis, given the evidence P(H₂ | E₂) is the highest

Tomorrow the weather will be bad

$$H_{NB} = \underset{H_i}{\operatorname{argmax}} \frac{P(H_i) \times P(E|H_i)}{P(E)}$$

Bayes' Reasoning

- Out of n hypothesis...
 - we want to find the most probable H_i given the evidence E
- So we choose the H_i with the largest $P(H_i|E)$

$$H_{NB} = \underset{H_i}{\operatorname{argmax}} P(H_i \mid E) = \underset{H_i}{\operatorname{argmax}} \frac{P(H_i) \times P(E \mid H_i)}{P(E)}$$

- But... P(E)
 - \Box is the same for all possible H_i (and is hard to gather anyways)
 - so we can drop it
- So Bayesian reasoning:

$$H_{NB} = \operatorname{argmax} \frac{P(H_i) \times P(E|H_i)}{P(E)} = \operatorname{argmax} P(H_i) \times P(E|H_i)$$

Representing the Evidence

- The evidence is typically represented by many attributes/features
 - beautiful sunset? clouds? temperature? summer?, ...
- so often represented as a feature/attribute vector

	evidence					hypothesis	
	sunset clouds		temp summe			weather	
	a_1	a_2	a ₃ .	a ₄		tomorrow	
e1	beautiful	no	high	yes		Nice	

- $e1 = \langle a_1, ..., a_n \rangle$
- e1 = <sunset:beautiful, clouds:no, temp:high, summer:yes>

Combining Evidence

toothache	young	cavity
yes	yes	2

 $P(Cavity = yes | Toothache = yes \cap Young = yes) = ?$ with Bayes Rule :

$$= \frac{P(Toothache = yes \cap Young = yes | Cavity = yes) \times P(Cavity = yes)}{P(Toothache = yes \cap Young = yes)}$$

with independence assumption:

$$= \frac{P(Toothache = yes \cap Young = yes | Cavity = yes) \times P(Cavity = yes)}{P(Toothache = yes) \times P(Young = yes)}$$

with conditional independence assumption:

$$= \frac{P(Toothache = yes|Cavity = yes) \times P(Young = yes|Cavity = yes) \times P(Cavity = yes)}{P(Toothache = yes) \times P(Young = yes)}$$

Now we have decomposed the joint probability distribution into much smaller pieces...

Combining Evidence

toothache	young	cavity
yes	yes	yes? or no?

But since we only care about <u>ranking</u> the hypothesis...

 $P(Cavity = no| Toothache = yes \cap Young = yes)$

$$\frac{P(Cavity = yes) \times P(Toothache = yes| Cavity = yes) \times P(Young = yes| Cavity = yes)}{P(Toothache = yes) \times P(Young = yes)}$$

$$\frac{P(Cavity = no) \times P(Toothache = yes | Cavity = no) \times P(Young = yes | Cavity = no)}{P(Toothache = yes) \times P(Young = yes)}$$

 $P(Cavity = no) \times P(Toothache = yes | Cavity = no) \times P(Young = yes | Cavity = no)$

$$H_{NB} = \underset{H_i}{argmax} \ \frac{P(H_i) \times P(E \mid H_i)}{P(E)} = \underset{H_i}{argmax} \ P(H_i) \times P(E \mid H_i) = \underset{H_i}{argmax} \ P(H_i) \times P(< a_1, a_2, a_3, ..., a_n > \mid H_i) = \underset{H_i}{argmax} \ P(H_i) \times \prod_{j=1}^n P(a_j \mid H_i) = \underset{H_i}{argmax} \ P(H_i) \times \prod_{j=1}^n P(a_j \mid H_i) = \underset{H_i}{argmax} \ P(H_i) \times \prod_{j=1}^n P(a_j \mid H_i) = \underset{H_i}{argmax} \ P(H_i) \times \prod_{j=1}^n P(a_j \mid H_i) = \underset{H_i}{argmax} \ P(H_i) \times \prod_{j=1}^n P(a_j \mid H_i) = \underset{H_i}{argmax} \ P(H_i) \times P(E \mid H_i) = \underset{H_i}{argmax} \ P(H_i) \times P(H_i) = \underset{H_i}{argmax} \ P(H_i)$$

evidence

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
Day1	Sunny	Hot	High	Weak	No
Day2	Sunny	Hot	High	Strong	No
Day3	Overcast	Hot	High	Weak	Yes
Day4	Rain	Mild	High	Weak	Yes
Day5	Rain	Cool	Normal	Weak	Yes
Day6	Rain	Cool	Normal	Strong	No
Day7	Overcast	Cool	Normal	Strong	Yes
Day8	Sunny	Mild	High	Weak	No
Day9	Sunny	Cool	Normal	Weak	Yes
Day10	Rain	Mild	Normal	Weak	Yes
Day11	Sunny	Mild	Normal	Strong	Yes
Day12	Overcast	Mild	High	Strong	Yes
Day13	Overcast	Hot	Normal	Weak	Yes
Day14	Rain	Mild	High	Strong	No

• Goal: Given a new instance $X=\langle a_1,...,a_n\rangle$, classify as Yes/No

$$H_{NB} = \underset{H_{i}}{argmax} \ \frac{P(H_{i}) \times P(E \mid H_{i})}{P(E)} = \underset{H_{i}}{argmax} \ P(H_{i}) \times P(E \mid H_{i}) = \underset{H_{i}}{argmax} \ P(H_{i}) \times P(< a_{1}, a_{2}, a_{3}, ..., a_{n} > \mid H_{i}) = \underset{H_{i}}{argmax} \ P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \ P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \ P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \ P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \ P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \ P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{argmax} \ P(H_{i}) \times P(H_{i}) \times P(H_{i}) = \underset{H_{i}}{argmax} \ P(H_{i}) \times P(H_{i}) \times P(H_{i}) = \underset{H_{i}}{argmax} \ P(H_{i}) = \underset{H_{i}}{argmax} \ P(H_{i}) \times P(H_{i}) = \underset{H_$$

 Naïve Bayes: Assumes that the attributes/features are conditionally independent

• Goal: Given a new instance $X = \langle a_1, ..., a_n \rangle$, classify as Yes/No

$$H_{NB} = \underset{H_i}{\operatorname{argmax}} P(H_i) \times \prod_{j=1}^{n} P(a_j \mid H_i)$$

1st estimate the probabilities from the training examples:

- For each hypothesis H_i
 estimate P(H_i)
- $_{\rm b)}$ For each attribute value $a_{\rm j}$ of each instance (evidence)

estimate P(a_j | H_i)

TRAIN:

compute the probabilities from the training set

P(PlayTennis = yes) =
$$9/14 = 0.64$$

P(PlayTennis = no) = $5/14 = 0.36$ prior probabilities P(H_i)

$$P(Out = sunny | PlayTennis = yes) = 2/9 = 0.22$$

 $P(Out = sunny | PlayTennis = no) = 3/5 = 0.60$
 $P(Out = rain | PlayTennis = yes) = 3/9 = 0.33$
 $P(Out = rain | PlayTennis = no) = 2/5 = 0.4$
...
 $P(Wind = strong | PlayTennis = yes) = 3/9 = 0.3$

P(Wind = strong | PlayTennis = yes) = 3/9 = 0.33P(Wind = strong | PlayTennis = no) = 3/5 = 0.60 conditional probabilities $P(a_i \mid H_i)$

2. TEST:

```
classify the new case: X=(Outlook: Sunny, Temp: Cool, Hum: High, Wind: Strong)
      H_{NR} = \operatorname{argmax} P(H_i) \times P(X|H_i)
                    H<sub>i</sub>∈[yes,no]
              = argmax P(H_i) \times \prod P(a_i | H_i)
                  H<sub>i</sub>∈[yes,no]
              = \operatorname{argmax} P(H) \times P(\operatorname{Outlook} = \operatorname{sunny} | H_i) \times P(\operatorname{Temp} = \operatorname{cool} | H_i)
                  H;∈[yes,no]
                             \times P(Humidity = high | H_i) \times P(Wind = strong | H_i)
1) P(PlayTennis = yes)
  \times P(Outlook = sunny | PlayTennis = yes)\timesP(Temp = cool | PlayTennis = yes)\timesP(Hum = high | PlayTennis = yes)\timesP(Wind = strong | PlayTennis = yes)
 = 0.0053
2) P(PlayTennis = no)
  \times P(Outlook = sunny | PlayTennis = no)\timesP(Temp = cool | PlayTennis = no)\timesP(Hum = high | PlayTennis = no)\timesP(Wind = strong | PlayTennis = no)
  = 0.0206
\Rightarrow answer: PlayTennis(X) = no
```

Application of Bayesian Reasoning

- Categorization: P(Category | Features of Object)
 - Diagnostic systems: P(Disease | Symptoms)
 - Text classification: P(sports_news | text)
 - Character recognition: P(character | bitmap)
 - Speech recognition: P(words | acoustic signal)
 - Image processing: P(face_person | image features)
 - Spam filter: P(spam_message | words in e-mail)
 - **...**

Naive Bayes Classifier

- A simple probabilistic classifier based on Bayes' theorem
 - with strong (naive) independence assumption
 - i.e. the features/attributes are conditionally independent
- The assumption of conditional independence, often does not hold...
- But Naïve Bayes works very well in many applications anyways!
 - ex: Medical Diagnosis
 - ex: Text Categorization (spam filtering)

Ex. Application: Spam Filtering

- Task: classify e-mails (documents) into a predefined class
 - □ ex: spam / ham
 - ex: sports, recreation, politics, war, economy,...
 - $extbf{ iny ex: customer email} o ext{order, complaint, support request,}$

• • •

Given

- N sets of training texts (1 set for each class)
- Each set is already tagged by the class name

Strictly speaking, what we will see is called a Multinomial Naïve Bayes classifier, because we will count the number of words, as opposed to just using binary values for the presence/absence of words...

e-mail Representation

- each e-mail is represented by a vector of feature/value:
 - feature = actual words in the e-mail
 - value = number of times that word appears in the e-mail
- each e-mail in the training set is tagged with the correct category.

data		features / evidence / X						
instance	offer	fer money viagra laptop exam study						
email 1	3	2	5	1	0	1	SPAM	
email 2	1	1	0	5	4	3	HAM	
email 3	0	3	2	1	0	1	SPAM	
•••								

task: correctly tag a new e-mail

	offer	money	viagra	laptop	exam	study	category
new email	2	1	0	1	1	2	;

Naïve Bayes Algorithm

```
// 1. training
for all classes c; // ex. ham or spam
     for all words w; in the vocabulary
                        P(w_j \mid c_i) = \frac{count(w_j, c_i)}{\sum count(w_j, c_i)}
           compute
for all classes c;
                    P(c_i) = \frac{\text{count}(\text{documents in } c_i)}{\text{count}(\text{all documents})}
     compute
// 2. testing a new document D
for all classes c; // ex. ham or spam
     score(c_i) = P(c_i)
     for all words w; in the D
           score(c_i) = score(c_i) \times P(w_i | c_i)
choose c^* = with the greatest score(c_i)
```

	W ₁	W ₂	W 3	W4	W 5	W ₆
c1 : SPAM	p(w ₁ c ₁)	p(w ₂ c ₁)	p(w ₃ c ₁)	p(w ₄ c ₁)	p(w ₅ c ₁)	p(w ₆ c ₁)
c2 : HAM	p(w ₁ c ₂)	p(w ₂ c ₂)	p(w ₃ c ₂)	p(w ₄ c ₂)	p(w ₅ c ₂)	p(w ₆ c ₂)

Dataset

□ c1: SPAM

doc1: "cheap meds for sale"

doc2: "click here for the best meds"

doc3: "book your trip"

doc4: "cheap book sale, not meds"

doc5: "here is the book for you"

Question:

- doc6: "the cheap book"
- should it be classified as HAM or SPAM?

Spam

Ham

?

Example (cont'd)

Assume

vocabulary = {best, book, cheap, sale, trip, meds}
If not in vocabulary, ignore word

1. Training:

```
    P(best|SPAM) = 1/7
    P(book|SPAM) = 1/7
    P(cheap|SPAM) = 1/7
    P(sale|SPAM) = 1/7
    P(sale|SPAM) = 1/7
    P(trip|SPAM) = 1/7
    P(trip|SPAM) = 1/7
    P(meds|SPAM) = 2/7
    P(meds|HAM) = 1/5
    P(meds|HAM) = 1/5
    P(meds|HAM) = 1/5
    P(meds|HAM) = 1/5
```

2. Testing: "the cheap book"

- □ Score(HAM)= $P(HAM) \times P(cheap|HAM) \times P(book|HAM)$
- □ Score(SPAM)= $P(SPAM) \times P(cheap|SPAM) \times P(book|SPAM)$

Be Careful: Smooth Probabilities

- normally: $P(w_i | c_j) = \frac{(frequency of w_i in c_j)}{total number of words in c_j}$
- what if we have a $P(w_i|c_j) = 0...?$
 - ex. the word "dumbo" never appeared in the class SPAM?
 - then P("dumbo" | SPAM) = 0
- so if a text contains the word "dumbo", the class SPAM is completely ruled out!
- to solve this: we assume that every word always appears at least once (or a smaller value)
 - add-1 smoothing:

$$P(w_i \mid c_j) = \frac{(frequency of w_i in c_j) + 1}{total number of words in c_j + size of vocabulary}$$

Be Careful: Use Logs

- if we really do the product of probabilities...
 - \neg argmax_{cj} $P(c_j) \prod P(w_i | c_j)$
 - we soon have numerical underflow...
 - □ ex: 0.01 x 0.02 x 0.05 x ...
- so instead, we add the log of the probs
 - \square argmax_{cj} $\log(P(c_j)) + \sum \log(P(w_i|c))$
 - \square ex: log(0.01) + log(0.02) + log(0.05) + ...

Dataset

c1: COOKING	c2: SPORTS
doc ₁ : stove kitchen the heat doc ₂ : kitchen pasta stove	doc ₁ : ball heat doc ₂ : the referee player
doc ₁₀₀₀₀₀ : stoveheat ball	doc ₇₅₀₀₀ : goal injury

Assume:

- |V| = 100 vocabulary = {ball, heat, kitchen, referee, stove, the, ... }
- 500,000 words in Cooking
- 300,000 words in Sports
- 100,000 docs in Cooking
- □ 75,000 docs in Sports

Training - Unsmoothed / Smoothed probs:

```
    P(ball|COOKING) = P(ball|SPORTS) =
    P(heat|COOKING) = P(heat|SPORTS) =
    P(kitchen|COOKING) = P(kitchen|SPORTS) =
    P(referee|COOKING) = P(referee|SPORTS) =
    P(stove|COOKING) = P(stove|SPORTS) =
    P(the|COOKING) = P(the|SPORTS) =
    P(the|SPORTS) =
    P(SPORTS) =
```

- Testing: "the referee hit the blue bird"
 - Score(COOKING)= log() + log(P(the|COOKING)) + log(P(referee|COOKING)) + log(P(the|COOKING))
 - Score(SPORTS)= log() + log(P(the|SPORTS)) + log(P(referee|SPORTS)) + log(P(the|SPORTS))

Training - Unsmoothed / Smoothed probs:

```
P(ball|COOKING) =
                                                       P(ball|SPORTS) =
                                                                                  1,8000
P(heat|COOKING) =
                                                       P(heat|SPORTS) =
                             500,000
                            2,600 ??
500.000 ??
                                                       P(kitchen|SPORTS) = \frac{0}{300,000}
P(kitchen|COOKING) =
                                                       P(referee|SPORTS) = \frac{1,500}{300,000} \frac{??}{??}
P(referee | COOKING) =
                                                       P(stove|SPORTS) =
P(stove COOKING) =
                                                                                 19,000
300,000
                             400,000
P(the|COOKING) =
                                                       P(the|SPORTS) =
                             500.000
P(COOKING) = \frac{100,000}{175,000}
                                          P(SPORTS) = \frac{75,000}{175,000}
```

- Testing: "the referee hit the blue bird"
 - Score(COOKING)= $log(\frac{100,000}{175,000}) + log(P(the|COOKING)) + log(P(referee|COOKING)) + log(P(the|COOKING)) + log(P(the|COOKING))$
 - Score(SPORTS)= $log(\frac{75,000}{175,000}) + log(P(the|SPORTS)) + log(P(referee|SPORTS)) + log(P(the|SPORTS)) + log(P(the|SPORTS))$

Another Application: Postal Code Recognition

BAM BAM 42 T-REX RD. PANGAGA, RB 48016

FRED FLINSTONE
69 OLD SCHOOL AVE
BEDROCK, OLDEN-TOWN
77005

Digit Recognition

- MNIST dataset
- data set contains handwritten digits from the American Census Bureau employees and American high school students
- 28 x 28 grayscale images
- training set: 60,000 examples
- test set: 10,000 examples.
- Features: each pixel is used as a feature so:
 - □ there are 28x28 = 784 features
 - each feature = 256 greyscale value
- Task: classify new digits into one of the 10 classes

Image Classification

Comments on Naïve Bayes Classification

- Makes a strong assumption of conditional independence
 - that is often incorrect
 - ex: the word ambulance is not conditionally independent of the word accident given the class SPORTS

BUT:

- surprisingly very effective on real-world tasks
- basis of many spam filters
- fast, simple
- gives confidence in its class predictions (i.e., the scores)
- Fast, easy to apply
 - often used as a baseline algorithm before trying other methods

Today

- Introduction to MI
 Naïve Baye
 Evaluation

Evaluation of Learning Model

- How do you know if what you learned is correct?
- You run your classifier on a data set of unseen examples (that you did not use for training) for which you know the correct classification
- Split data set into 3 sub-sets
 - Actual training set (~80%)
 Validation set (~20%)
 Test set ~20%

Standard Methodology

- 1. Collect a large set of examples (all with correct classifications)
- 2. Divide collection into training, validation and test set Loop:
 - 3. Apply learning algorithm to training set to learn the parameters
 - 4. Measure performance with the validation set, and adjust hyper-parameters* to improve performance
- 5. Measure performance with the test set

■ DO NOT LOOK AT THE TEST SET until step 5.

Parameters:

basic values learned by the ML model. eg.

- for NB: prior & conditional probabilities
- for DTs: features to split
- for ANNs: weights

Hyper-parameters: parameters used to set up the ML model. eg.

- for NB: value of delta for smoothing,
- for DTs: pruning level
- for ANNs: nb of hidden layers, nb of nodes per layer...

Metrics

- Accuracy
 - % of instances of the test set the algorithm correctly classifies
 - when all classes are equally important and represented
- Recall, Precision & F-measure
 - when one class is more important than the others

Accuracy

- % of instances of the test set the algorithm correctly classifies
- when all classes are equally important and represented
- problem:
 - \Box when one class C is more important than the others
 - eg. when data set is unbalanced

Target	system 1
X1 √	X1 ×
X2 √	X2 ×
X3 √	X3 ×
X4 √	X4 ×
X5 √	X5 ×
X6 ×	X6 ×
X7 ×	X7 ×
X500 ×	X500 ×

Accuracy = 495/500 = 99%

Recall, Precision, Accuracy

- Recall: How many % of instances of C were found correctly?
- Precision: Of the detected instances of C, how many % were correct?
- Accuracy: How many % were correct overall (both C and not C)?
- See confusion matrix:

	In reality, t	he instance is		
	in class C Is not in class C			
Model says				
instance is in class C	True Positive	False Positive		
	(TP)	(FP)		
instance is NOT in class C	False Negative	True Negative		
	(FN)	(TN)		

Precision =
$$\frac{TP}{TP+FP}$$
 Recall=

	Target	system 1	system 2	system 3
	X1 √	X1 ×	X1 √	X1 √
	X2 √	X2 ×	X2 ×	X2 √
	X3 √	X3 ×	X3 √	X3 √
	X4 √	X4 ×	X4 √	X4 √
	X5 √	X5 ×	X5 ×	X5 √
	X6 ×	X6 ×	X6 ×	X6 √
	X7 ×	X7 ×	X7 ×	X7 √
	×		×	×
	×		×	×
	X500 ×	X500 ×	X500 ×	X500 ×
Accuracy		495/500 = 99% !	498/500 = 99.6%	498/500 = 99.6%
Precision		0/0	3/3 = 100%	5/7 = 71%
Recall		0/5 = 0%	3/5 = 60%	5/5 = 100%

Error Analysis

- Where did the learner go wrong?
- Use a confusion matrix / contingency table

correct class (that should have been assigned)	classes assigned by the learner							
	<i>C</i> 1	C2	<i>C</i> 3	C4	<i>C</i> 5	<i>C</i> 6		Total
<i>C</i> 1	94	3	0	0	3	0		100
C2	0	93	3	4	0	0		100
<i>C</i> 3	0	1	94	2	1	2		100
C4	0	1	3	94	2	0		100
<i>C</i> 5	0	0	3	2	92	3		100
<i>C</i> 6	0	0	5	0	10	85		100
•••								

Today

- Introduction to ML
- 2. Naïve Bayes Classifier
- 3. Evaluation

