Die Erkennung von Leewellen in GPS -Dateien von Segelfügen in den Alpen

Prof. Dr. Alfred Ultsch Philip Ohrndorf

Databionics Research Group

Leewellen

Sind eine äußerst schöne Art die Energie der Natur im Segelflug zu nutzen

Automatische Erkennung

- Siehe nebenstehendes Bild aus den Anden
- ∠ (Farben = Stärke der Wellen)
- Mountain Wave Projekt
- ∠ [Heise/Ultsch 2008]

Frage: Kann die Erkennung auch in den Alpen aus IGC - Files (aus dem OLC) gelingen?

Die Daten

- Ca. 80 IGC Files, aus dem OLC

- Climbs im Hangaufwind
- Climbs in der Thermik
- Climbs in Wellen
- Andere Flugzustände:
 - Start / Gleitflug / Endanflug / Motorbenutzung auf Strecke

Vorgehensweise

- 1. Experte (PO) klassifiziert IGC-B-Records mittels "Ansehen" des Fluges im Gelände (StrePla)
- 2. Extraktion von klassifizierten Climbs aus den IGC-Dateien

- 3. Bau eines Klassifikators (in Arbeit)
- ∡ 4. Messung der Performanz (in Arbeit)

Beispiel: Barogramm mit Expertenklassen

1 = Start (Eigenstart / F-Schlepp / Windenstart)

∠ 2 = Gleitflug / Suche

∠ 3 = Thermik / Kurbeln

4 = Hangflug / Hangaufwind

 $\leq 6 = Endanflug$

- Nach Ultsch [2005 /2007]
- Unten: 8 Climbs identifiziert
- ∠ Grün = Thermik / Rot = Welle
- Berechnung für jedes Climb: min., max., mittlere Stärke / Dauer / Höhengewinn / Horizontalstrecke / Horizontalgeschwindigkeit

Berechnung von Eigenschaften

Berechnung für jedes Climb: min., max., mittlere Stärke / Dauer / Höhengewinn / Horizontalstrecke / Horizontalgeschwindigkeit

Liefert derzeit 1026 Climbs davon

Thermik n=316

 \angle Hang n=264

∠ Welle n=366

Untersuchung der Verteilungen

- Analyse mit Q/Q Plots und
- Pareto Density Estimation [Ultsch 2001]
- Beispiel: "ClimbTopHeight"

Bau eines Klassifikators (in Arbeit)

- **∠** 1. Ansatz: Bayes Klassifikator
- Gauss Mix von 2 Gauss in jeder Dimension

- Annahme: Variablen statistisch unabhängig
- => Bayes Klassifikator

- Bayes Klassifikator:
- ≤ 50 mal angelernt: Messung von
- Sensitivität, Spezifität und Korrektheit
- ∠ Gemessen auf dem Test Datensatz (Splitsample 80% / 20%):

=> Ca 80% korrekt!

Zusammenfassung

- Es wurde ein Datensatz von 80 Flügen kreiert und untersucht
- Zur Untersuchung der Flüge wurde ein Klassifikator entwickelt und dessen Performanz gemessen
- Ergebnis ~ 80% korrekt!

Ausblick

- Verbesserung des Verfahrens, angestrebte Genauigkeit ~ 95%
- Verwendung anderer Klassifikatoren:
 - Z CART Klassifikator
 - ∠ Neuronales Netz (?)
- Erweiterung des Datensatzes
- Erstellung einer "Wellenklimatologie" für den nördlichen Alpenraum

Offene Fragen

Sind die verwendeten Kriterien zur Auswertung (Stärke/Dauer/Höhengewinn/Strecke/ Geschwindigkeit) gut und ausreichend?

Welche Kriterien können noch hinzugefügt werden?

Anregungen / Kritik / Daten

Für Anregungen und Kritik sind wir dankbar!

ultsch@ulweb.de philip.ohrndorf@gmx.de