UE Fonctions nerveuses et intégrées

TD Vision

Yseult Héjja-Brichard (yseult.hejja@cnrs.fr)
Centre de recherche Cerveau et Cognition
CNRS – UPS – Toulouse

Modification profondeur de champ → Image plus nette

Le cristallin

Muscle ciliaire relâché
+ Fibres zonule étirant le cristallin

Muscle ciliaire contracté
+ Relâchement fibres zonule

Tâche aveugle : endroit de la rétine qui ne "voit" pas

Papille optique : point de sortie des vaisseaux sanguins et du nerf optique

Troubles visuels

Troubles visuels de la réfraction (amétropies) :

Myopie : image des objets lointains en avant de la rétine.
 Correction = lentille concave

Hypermétropie : image des objets proches en arrière de la rétine.
 Correction = lentille convexe

Astigmatisme : image **étalée** d'un point dans le sens antéro-postérieur

Troubles visuels

Troubles visuels de l'accommodation :

• Presbytie : durcissement du cristallin, lié au vieillissement

Troubles visuels

Troubles de la transparence de l'œil :

- Opacification de la cornée (taies cornéennes = points blancs)
- Opacification du cristallin (cataracte)

2) Photorécepteurs et transduction

Rhodopsine = Opsine + rétinal

2) Phototransduction : Changement du potentiel de membrane du photorécepteur

Diminution [cGMP] o fermeture canaux Na+/Ca2+ o Hyperpolarisation PR o peu de NT relâché

2) Photorécepteurs et transduction

Fig. 20. Graph to show rod and cone densities along the horizontal meridian.

2) Photorécepteurs et transduction

La rétine

3) Champs récepteurs

3) Champs récepteurs et cellules ON/OFF

PR Centre ON hyperpolarisé

1

Baisse du glutamate libéré

1

Moins d'inhibition des cellules bipolaires à centre ON → dépolarisées

1

Activation des cellules ganglionnaires à centre ON

Informations complémentaires:

Récepteurs glutamatergiques de la cellule bipolaire

- Centre ON: mGluR6 (glutamat = inhibiteur)
- Centre OFF: AMPA(glutamate = excitateur)

Pour la cellule ganglionnaire, le glutamate est toujours excitateur donc augmentation du taux de décharge de PA

3) Champs récepteurs et cellules ON/OFF

Signal de la périphérie indirect :

PR en périphérie

Cellule horizontale (GABA -)

PR au centre

Cellule Bipolaire

Cellule ganglionnaire

3) Champs récepteurs et cellules ON/OFF: Cellules ganglionnaires et PA

non-midget, non-parasol ganglion cell

Koniocellular cell

5% des cellules

mouvements

vision grossière

90% des cellules

formes et couleurs

vision fine

5% des cellules

vision des couleurs (jaune/bleu)

propriétés hétérogènes

3) Champs récepteurs et cellules ON/OFF: Cellules ganglionnaires et PA

4) Voies visuelles : De la rétine à V1

Chiasma optique : 60% des fibres croisent

Passage CGL → capsule interne → V1 (BA 17 = Cortex Visuel Primaire)

Voie rétino-géniculo-striée
→ Perception visuelle consciente

4) Voies visuelles : De la rétine à V1

Chiasma optique : 60% des fibres croisent

Passage CGL → capsule interne → V1 (BA 17 = Cortex Visuel Primaire)

Voie rétino-géniculo-striée

→ Perception visuelle consciente

Autres voies:

- Circuit de réflexe pupillaire à la lumière : relais ~ prétectum
- Voie rétino-hypothalamique : relais ~ noyau suprachiasmatique → rythme circadien
- Coordinations mouvements des yeux et de la tête : relais ~ colliculus supérieur

4) Voies visuelles : Corps Genouillé Latéral

4) Voies visuelles : Corps Genouillé Latéral

MIDGET SYSTEM

Voie parvocellulaire

Projection ~ couches dorsales CGL (3 à 6)

PARASOL SYSTEM

Voie magnocellulaire

Projection ~ couches ventrales CGL (1-2)

4) Voies visuelles

Champs récepteurs et cellules ON/OFF: Au niveau de V1

Couche 4 Couches 2, 3, 5 & 6

Petits RF RF moyens

Input monoculaire Input binoculaire

RF dans zones fixes Zone de réponse large

Architecture en colonnes au sein de V1

Champs récepteurs et cellules ON/OFF: Les cellules complexes de V1

Préférence pour stimuli dans RF avec une orientation donnée=> PA+++

5) Champ visuel et rétinotopie

Champ visuel

Hémichamp gauche

Cortex gauche

Cortex droit

5) Champ visuel et rétinotopie

Cortical Topography Cortical magnification

Champ visuel monoculaire = Partie antérieure V1

Champ visuel binoculaire = Partie médiane V1

Vision centrale
= Partie postérieure V1
→ 1/3 de V1
Surreprésentation
= Magnification corticale

6) Effet des lésions: Du nerf optique à V1

6) Effet des lésions: Du nerf optique à V1

Champ visuel normal

Hémianopsie bitemporale

HLH

Vision tubulaire (rétinite pigmentaire)

Scotome central (ex: DMLA)

Glaucome Ici: scotome arciforme

6) Effet des lésions: Au niveau des aires visuelles supérieures

Voie ventrale

Achromatopsie

Agnosie visuelle (aperceptive ou associative) Agnosie d'objet (eg : prosopagnosie)

Voie dorsale

Troubles visuo-moteurs
Syndrome de Balint
(ataxie optique + apraxie visuelle + simultagnosie)

Troubles visuo-perceptif

Troubles visuo-spatiaux Troubles de la perception du mouvement (eg : akinétopsie)