Analyse de variance - Modèles à effets fixes

Mathieu Emily

Laboratoire de mathématiques appliquées Agrocampus Ouest, Rennes

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèles à 2 facteurs
 - Extensions

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

Quel est l'effet d'un traitement sur le poids de poussins?

- Poids : variable à expliquer quantitative
- Traitement : variable explicative qualitative ou facteur

Quel est l'effet du sexe sur le poids de poussins?

- Poids : variable à expliquer quantitative
- Sexe : variable explicative qualitative ou facteur
- Remarque : on utilise une autre représentation de la variabilité par des "boxplot"

Quel est l'effet du traitement et du sexe sur le poids de poussins?

- Poids : variable à expliquer quantitative
- Traitement et Sexe : 2 facteurs
- Interprétation des interactions : à faire avec précaution !

Objectifs généraux de l'Analyse de variance

- Expliquer une variable quantitative par 1 ou plusieurs facteurs.
- Expliquer une variable revient à expliquer sa variabilité ou variance.
 - La variabilité mesure la dispersion de la variable
 - La variabilité se quantifie par la somme des carrés des écarts par rapport à la moyenne.

Objectif de l'analyse de variance (Version 1)

Evaluer le fait de considérer les observations d'une même catégorie d'un facteur **égale à la moyenne empirique**, sur la variabilité de la variable à expliquer.

Caractéristiques fondamentales

Planification expérimentale

- Orthogonalité des facteurs
- Plan équilibré (mêmes effectifs pour chaque cellule du plan)
- Plan complet : toutes les combinaisons de facteurs ont été expérimentées
- Hypothèses de modélisation
 - Modèles paramétriques
 - Modèles non-paramétriques

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

La variabilité

- La variabilité est la notion de base de l'Analyse de variance.
 - ► Toute la complexité d'un phénomène est quantifiée par sa variabilité.
- Un objectif statistique de l'Analyse de variance est de rendre compte du maximum de variabilité d'un phénomène en tenant compte du minimum d'information.
 - L'information utilisée est caractérisée par la dimension des facteurs ou degrés de liberté.
 - Compromis classique en statistique entre qualité d'ajustement et parcimonie.

Objectif de l'analyse de variance (Version 2)

Evaluer la variabilité expliquée par un facteur en pondérant par rapport à la dimension (ou degré de liberté) de ce facteur.

Exemple jouet

• Considérons le phénomène de la visualisation d'une photo ¹.

- Le phénomène est caractérisé par la variabilité des pixels de l'image.
- La variabilité est mesurée par la Somme des Carrés des Ecarts (SCE) pour 256 couleurs vaut :

$$SCE_T = 9232$$
 et $ddl = 256 - 1 = 255$

^{1.} La photo "lena" sert d'image de test pour les algorithmes de traitement d'image et est devenue un standard industriel et scientifique.

Exemple jouet : modèle 1

- Un spécialiste connaît les zones de couleur moyenne.
 - ▶ Peut-on conserver une bonne visualisation du phénomène?
- Les pixels "de couleur moyenne" sont ramenés à leur moyenne empirique (et de même pour les autres pixels).

Image réelle

Modèle à 2 couleurs

Image résiduelle

 Pensez-vous que l'information donnée par le spécialiste est pertinente?

Exemple jouet : modèle 1

- Pour évaluer un modèle on compare la variabilité du modèle à celle de la résiduelle
- Evaluation numérique :

$$SCE_{M1} = 160$$

$$SCE_{R1} = 9072$$

$$F_{M1} = 4.48 \ p.val = 0.035$$

Exemple jouet : modèle 2

- Un autre spécialiste connaît les zones foncées.
 - ▶ Peut-on conserver une bonne visualisation du phénomène?

Image réelle

Modèle à 2 couleurs

Image résiduelle

$$SCE_{M2} = 6330 \ SCE_{R2} = 2901$$

$$F_{M2} = 554.23 \ p.val < 2.2e - 16$$

Exemple jouet 3

- Un non-spécialiste ne connaît rien et affecte des pixels foncés au hasard.
 - Peut-on conserver une bonne visualisation du phénomène?

Image réelle

Modèle à 2 couleurs

Image résiduelle

$$SCE_{M3} = 0.02 \ SCE_R = 9231$$

$$F_{M3} = 0.00076$$
 p.val = 0.97

Exemple jouet : bilan

- Dans les exemples précédents, nous avons cherché à modéliser (ou simplifier) un phénomène complexe (photo avec 256 couleurs) par un phénomène plus simple (photo à 2 couleurs)
 - La pertinence du modèle est évaluée par la part de variabilité conservée par le modèle.
 - Cette mesure s'effectue par le calcul de la somme des carrés des écarts.
- En détails on remarque que :
 - ▶ Modèle 1 : information pertinent mais non-linéaire.
 - ▶ Modèle 2 : information très pertinente.
 - Modèle 3 : information pas du tout pertinente.

- Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèles à 2 facteurs
 - Extensions

Exemple illustratif

- Espèce étudiée : Vache
- Taille d'échantillon : n = 30 observations
- Une variable à expliquer : le gain moyen de poids sur 30 jours.
- 2 variables explicatives :
 - Milieu à 3 modalités (Bon, médiocre et moyen)
 - Génotype à 2 modalités : Pur et Croise

Démarche à suivre

- L'étude de l'impact de facteurs sur une variable quantitative peut se faire à différents niveaux.
- Du point de vue statistique, il convient de respecter l'ordre du schéma d'analyse suivant :
 - Pertinence du modèle global
 - Effet de chaque facteur
 - Comparaison des modalités pour un facteur donné

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

Illustration : effet du Milieu sur le gain de poids

• Faire l'exemple sous R

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

Ecriture du modèle

$$\mathbf{Y_{ij}} = \mu + \alpha_{\mathbf{i}} + \varepsilon_{\mathbf{ij}}$$

- i représente le **niveau** du facteur (i = 1, ..., I)
- ullet j représente l'indice de répétition $(j=1,\ldots,n_i)$
 - Si le plan est **équirépété** : $n_i = J$
- Hypothèses de modélisation :
 - $\forall i, j, \varepsilon_{ii} \sim \mathcal{N}(0, \sigma)$
 - $\forall i' \neq i \text{ ou } j' \neq j : Cov(\varepsilon_{ij}, \varepsilon_{i'j'}) = 0$

Interprétation du modèle

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$

- ullet La variable Y_{ij} est la somme
 - \blacktriangleright d'un terme constant μ
 - d'un effet **spécifique** à chaque niveau du facteur α_i
 - un résidu aléatoire gaussien ε_{ii}
- Le modèle possède l+1 paramètres :
 - ► La dimension paramétrique du modèle est /!
 - Une contrainte de liaison doit être explicitée pour estimer les paramètres.

Contraintes sur les paramètres

• Nullité du terme constant : $\mu = 0$

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

Nullité de la somme des effets individuels

$$\sum_{i=1}^{l} \alpha_i = 0$$

Nullité de la somme pondérée des effets individuels

$$\sum_{i=1}^{l} n_i \alpha_i = 0$$

• Une modalité de référence : i*

$$\alpha_{i^*} = 0$$

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

Estimation des paramètres : principe des Moindres Carrés Ordinaires

 On cherche à minimiser l'écart entre les observations et le modèle :

$$\sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \widehat{Y}_{ij})^2$$

• Pour chaque modalité i, minimiser $\sum_{j=1}^{n_i} (Y_{ij} - \widehat{Y}_{ij})^2$ se fait par :

$$\widehat{\mu}_i = Y_{i.} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$$

L'estimation du modèle permet d'utiliser le modèle pour la prédiction

$$Y_{ij}$$
 est prédite par son **espérance** \widehat{Y}_{ij}

 Pour le modèle avec nullité de la constante, l'estimation des paramètres permet donc de prédire chaque modalité du facteur par sa fréquence observée.

Autres contraintes

Somme des effets individuels nulle

$$\widehat{\mu} = \frac{1}{I} \sum_{i=1}^{I} \mathbf{Y}_{i.}$$
 et $\forall i, \ \widehat{\alpha}_i = \mathbf{Y}_{i.} - \widehat{\mu}$

Somme pondérée des effets individuels nulle

$$\widehat{\mu} = Y_{\cdot \cdot \cdot} = \frac{1}{I} \sum_{i=1}^{I} n_i Y_{i \cdot \cdot} \quad \text{et} \quad \forall i, \ \widehat{\alpha}_i = Y_{i \cdot \cdot} - Y_{\cdot \cdot \cdot}$$

• Une modalité de référence : i*

$$\widehat{\mu} = Y_{i^*}$$
 et $\forall i, \ \widehat{\alpha}_i = Y_{i} - Y_{i^*}$

Estimation des résidus

- Degrés de liberté : n-l
 - n données
 - I paramètres estimés dans le modèle
- Un estimateur non biaisé de σ est donné par

$$\widehat{\sigma^2} = \frac{1}{n-l} \sum_{i=1}^{l} \sum_{j=1}^{n_i} (Y_{ij} - \widehat{Y}_{ij})^2$$

Sortie R

```
> options(contrasts=c("contr.sum", "contr.sum"))
> modele.simple <- lm(GMQ ~ Milieu,data=charolais)
                                                              > modele.simple.contrainte <- lm(GMQ ~ Milieu,data=charolais)
> summary(modele.simple)
                                                              > summary(modele.simple.contrainte)
Call:
lm(formula = GMO ~ Milieu, data = charolais)
                                                              lm(formula = GMO ~ Milieu, data = charolais)
Residuals:
                                                              Residuals:
  Min
          10 Median
                                                                 Min
                                                                         10 Median
-60.00 -25.25 2.50 24.75 58.00
                                                              -60.00 -25.25 2.50 24.75 58.00
Coefficients:
                                                              Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                                                          Estimate Std. Error t value Pr(>|t|)
(Intercept) 688.00
                         10.45 65.831 < 2e-16 ***
                                                              (Intercept) 739.333
                                                                                       6.034 122.531 < 2e-16 ***
MilieuMoven
              66.00
                         14.78 4.466 0.000128 ***
                                                              Milieu1
                                                                           -51.333
                                                                                       8.533 -6.016 2.03e-06 ***
MilieuBon
              88.00
                         14.78 5.954 2.39e-06 ***
                                                              Milieu2
                                                                            14.667
                                                                                       8.533 1.719 0.0971 .
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                              Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 33.05 on 27 degrees of freedom
                                                              Residual standard error: 33.05 on 27 degrees of freedom
Multiple R-squared: 0.5872. Adjusted R-squared: 0.5566
                                                              Multiple R-squared: 0.5872, Adjusted R-squared: 0.5566
F-statistic: 19.2 on 2 and 27 DF. p-value: 6.496e-06
                                                              F-statistic: 19.2 on 2 and 27 DF, p-value: 6.496e-06
```

Sortie SAS avec la proc glm

Results Viewer - sashtml . . Dependent Variable: GMQ DOL Somme des carrés Movenne quadratique Valeur F Pr > F Model 41946 66667 20973.33333 19.20 < .0001 Error 29490.00000 1092 22222 Corrected Total 71436.66667 r-carré Coef de Var Racine MSE GMQ Moyenne 0.587187 4.470079 33.04879 Source DDL Type ISS Moyenne quadratique Valeur F Pr > F 2 41946.66667 20973.33333 Source DDL Type III SS Moyenne quadratique Valeur F Pr > F 2 41946,66667 20973.33333 19.20 < .0001 Erreur Paramètre type Valeur du test t Pr > iti Intercept 754.0000000 B 10.45094360 72.15 < .0001 Milieu Bon 22 0000000 B 14 77986618 1.49 0.1482 Milieu Mediocre -66.0000000 B 14.77986618 4.47 0.0001 Milieu Moven

Utilisation d'un modèle d'ANOVA

- Un modèle d'ANOVA est rarement utilisé pour prédire un phénomène.
- Un modèle d'ANOVA est surtout utilisé pour savoir si le facteur considéré a un effet ou non sur la variable réponse.

Question statistique

La prise en compte des différents niveaux du facteurs contribue-t-elle significativement à expliquer la variabilité de *Y* ?

Retour sous R

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

Décomposition de la variabilité

$$SCE_{T} = \sum_{i=1}^{I} \sum_{j=1}^{n_{i}} (Y_{ij} - Y_{..})^{2}$$

$$\vdots$$

$$= \sum_{i=1}^{I} n_{i} (Y_{i.} - Y_{..})^{2} + \sum_{i=1}^{I} \sum_{j=1}^{n_{i}} (Y_{ij} - Y_{i.})^{2}$$

$$= SCE_{M} + SCE_{R}$$

- SCE_T (resp. SCE_M , SCE_R) : somme des carrés des écarts Totale (resp. Modèle, Résiduelle)
- SCE_M : variabilité inter-classe = variabilité expliquée par le modèle
- SCE_R : variabilité intra-classe = variabilité résiduelle

Hypothèses de test

- Pour tester l'effet d'un facteur on peut :
 - faire une comparaison de modèles :

$$\mathcal{H}_0: Y_{ij} = \mu + \varepsilon_{ij}$$
 contre $\mathcal{H}_1: Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$

ce qui revient à :

$$\mathcal{H}_0: \forall i \ \alpha_i = 0 \ \text{contre} \ \mathcal{H}_1: \exists i \ \alpha_i \neq 0$$

- Pour ce test, on va comparer la variabilité expliquée par le modèle, SCE_M, à la variabilité résiduelle, SCE_R.
 - Si les 2 variabilités sont du même ordre de grandeur il n'y a pas d'effet du facteur.
 - ▶ Pour comparer SCE_M et SCE_R, il faut diviser par leurs degrés de liberté et comparer CM_M et CM_R :

$$CM_M = \frac{SCE_M}{I-1}$$
 et $CM_R = \frac{SCE_R}{n-1}$

Test global

On peut montrer :

$$\mathbb{E}[CM_M] = \sigma^2 + \frac{1}{I-1} \sum_{i=1}^{I} n_i \alpha_i^2 \text{ et } \mathbb{E}[CM_R] = \sigma^2$$

• Sous \mathcal{H}_0 on a :

$$\mathbb{E}[CM_M] = \mathbb{E}[CM_R]$$

$$\frac{SCE_M}{\sigma^2} \sim_{\mathcal{H}_0} \chi_{l-1}^2 \text{ et } \frac{SCE_R}{\sigma^2} \sim_{\mathcal{H}_0} \chi_{n-l}^2$$

Ainsi:

$$\boxed{ \textbf{F}_{Obs} = \frac{\textbf{CM}_{\textbf{M}}}{\textbf{CM}_{\textbf{R}}} \sim_{\mathcal{H}_0} \mathcal{F}_{\textbf{n-I}}^{\textbf{I}-\textbf{1}} }$$

Tableau d'analyse de variance

Variabilité	SCE	ddl	CM	Statistique
Facteur	$\sum_{i} n_{i} (Y_{i.} - Y_{})^{2}$	<i>l</i> – 1	$SCE_M/(I-1)$	$F_{Obs} = CM_M/CM_R$
Résiduelle	$\sum_{ij}(Y_{ij}-Y_{i.})^2$	n – I	$SCE_R/(n-1)$	
Totale	$\sum_{i,j} (Y_{ij} - Y_{})^2$	n-1		

- Règle de décision :
 - ▶ Si $F_{Obs} < \mathcal{F}_{n-1}^{l-1}(1-\alpha)$, on accepte \mathcal{H}_0 au seuil α .
 - ▶ Si $F_{Obs} > \mathcal{F}_{n-1}^{l-1}(1-\alpha)$, on rejette \mathcal{H}_0 au seuil α .
- Remarque : le test est unilatéral. Pour rejeter \mathcal{H}_0 , on cherche à avoir $CM_M > CM_R$.

Tableau d'analyse de variance avec R

- On note donc un effet significatif du milieu sur le gain moyen de poids.
- Remarque : le tableau d'ANOVA ne dépend pas de la contrainte.

Tableau d'analyse de variance avec SAS

Test de conformité

- \mathcal{H}_0 : $\alpha_i = c$ vs \mathcal{H}_0 : $\alpha_i \neq c$
- Sous la contrainte de nullité de somme des effets on :

$$\widehat{\alpha}_i \sim \mathcal{N}\left(\alpha_i, \sigma_{\widehat{\alpha}_i}\right)$$

ullet On estime $\sigma_{\widehat{\alpha}_i}$ par :

$$\widehat{\sigma_{\widehat{\alpha_i}}^2} = \frac{I - 1}{I} \frac{\widehat{\sigma^2}}{J} = \frac{I - 1}{I} \frac{CM_R}{J}$$

Ainsi :

$$t_{Obs} = \frac{\widehat{\alpha}_i - c}{\widehat{\sigma_{\widehat{\alpha}_i}^2}} \sim_{\mathcal{H}_0} \mathcal{T}_{n-1}$$

- On peut donc construire un test de Student à partir de $|t_{Obs}|$:
 - ▶ Si $|t_{Obs}| < t_{n-1}(1-\alpha/2)$ on accepte \mathcal{H}_0 au seuil α
 - lacksquare Si $|t_{Obs}|>t_{n-I}(1-lpha/2)$ on rejette \mathcal{H}_0 au seuil lpha

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

Analyse Post-Hoc: comparaison de 2 moyennes • Si $\mathcal{H}_0: \forall i \ \alpha_i = 0$ est rejetée, on peut rechercher plus précisément les

- Si \mathcal{H}_0 : $\forall i \; \alpha_i = 0$ est rejetée, on peut rechercher plus précisément les modalités du facteur qui diffèrent.
- Soit i et i', 2 modalités du facteur, on s'intéresse à tester l'hypothèse : \mathcal{H}_0 : $\forall i \; \mu_i = \mu_{i'}$.
- On utilise alors un principe de comparaison de moyennes :

$$\widehat{\mu_i} - \widehat{\mu_{i'}} \sim \mathcal{N}\left(\mu_i - \mu_{i'}, \sqrt{\left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)\sigma^2}\right)$$

• Il faut estimer σ^2 : on utilise l'hypothèse d'homoscédasticité et l'information de la **résiduelle** (et donc son degré de liberté : $ddl_R = n - I$):

$$t_{i,i'} = rac{\widehat{\mu}_i - \widehat{\mu}_{i'} - (\mu_i - \mu_{i'})}{\widehat{\sigma}\sqrt{rac{1}{n_i} + rac{1}{n_{i'}}}} \sim \mathcal{T}_{ddl_R}$$

- On pose alors : $LSD = t_{ddl_R} (1 lpha/2) \widehat{\sigma} \sqrt{rac{1}{n_i} + rac{1}{n_{i'}}}$
 - ▶ Si $|\mu_i \mu_{i'}| > LSD$, on rejette \mathcal{H}_0

Analyse Post-Hoc : comparaison de > 2 moyennes

- Attention : si l'on effectue plusieurs fois cette comparaison, le niveau α du test n'est plus respecté.
- Une stratégie consiste à corriger ce niveau α par une procédure de correction de tests multiples (Bonferroni par exemple)
- D'autres procédures s'appuient sur la statistique d'écart studentisé :

$$q_{r,ddl} = \frac{M_{r_1} - M_{r_2}}{\sqrt{\frac{1}{2} \left(\frac{\widehat{\sigma^2}}{n_r} + \frac{\widehat{\sigma^2}}{n_1}\right)}} = t_{r_1, r_2} \sqrt{2}$$

- $ightharpoonup r_1$ et r_2 sont les moyennes à comparer
- ddl est le nombre de degré de liberté de la résiduelle
- ightharpoonup pour l'ANOVA à 1 facteur : r = l 1 et ddl = n l.
- ► Tukey(-Kramer) HSD, Duncan (MRT), Newman-Keuls (SNK)
- La méthode de **Scheffé** s'appuie sur les contrastes.

Exemple avec sorties R

Retour sous R

```
> pairwise.t.test(charolais$GMO.charolais$Milieu.p.adiust="none")
                                                                       > require(multcomp)
                                                                      > modele.1way <- lm(GMO ~ Milieu.data=charolais)
   Pairwise comparisons using t tests with pooled SD
                                                                      > tuk <- glht(modele.1way,linfct=mcp(Milieu="Tukey"))</pre>
                                                                      > summary(tuk)
data: charolais$GMQ and charolais$Milieu
                                                                           Simultaneous Tests for General Linear Hypotheses
      Mediocre Moyen
Moyen 0.00013 -
                                                                      Multiple Comparisons of Means: Tukey Contrasts
Bon 2.4e-06 0.14820
P value adjustment method: none
                                                                       Fit: lm(formula = GMO ~ Milieu, data = charolais)
> pairwise.t.test(charolais$GMO.charolais$Milieu.p.adjust="bonferroni")
                                                                       Linear Hypotheses:
   Pairwise comparisons using t tests with pooled SD
                                                                                             Estimate Std. Error t value Pr(>|t|)
data: charolais$GMO and charolais$Milieu
                                                                       Moyen - Mediocre == 0
                                                                                                66.00
                                                                                                            14.78 4.466
                                                                                                                            <0.001 ***
                                                                       Ron - Mediocre == 0
                                                                                                88.00
                                                                                                            14.78
                                                                                                                   5.954
                                                                                                                            <0.001 ***
      Mediocre Moven
                                                                       Bon - Moven == 0
                                                                                                22.00
                                                                                                            14.78 1.489
                                                                                                                             0.312
Moyen 0.00038 -
Bon 7.2e-06 0.44461
                                                                      Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                       (Adjusted p values reported -- single-step method)
P value adjustment method: bonferroni
```

Exemple avec sorties R

- Retour sous R
- pairwise.t.test (pk stats) et glht (pk multicomp)

```
> pairwise.t.test(charolais$GMO.charolais$Milieu.p.adiust="none")
                                                                       > require(multcomp)
                                                                       > modele.1way <- lm(GMO ~ Milieu.data=charolais)
   Pairwise comparisons using t tests with pooled SD
                                                                       > tuk <- glht(modele.1way,linfct=mcp(Milieu="Tukey"))</pre>
                                                                       > summary(tuk)
data: charolais$GMQ and charolais$Milieu
                                                                           Simultaneous Tests for General Linear Hypotheses
      Mediocre Moyen
Moyen 0.00013 -
                                                                       Multiple Comparisons of Means: Tukey Contrasts
Bon 2.4e-06 0.14820
P value adjustment method: none
                                                                       Fit: lm(formula = GMO ~ Milieu, data = charolais)
> pairwise.t.test(charolais$GMO.charolais$Milieu.p.adjust="bonferroni")
                                                                       Linear Hypotheses:
   Pairwise comparisons using t tests with pooled SD
                                                                                             Estimate Std. Error t value Pr(>|t|)
                                                                                                66.00
data: charolais$GMO and charolais$Milieu
                                                                       Moyen - Mediocre == 0
                                                                                                            14.78 4.466
                                                                                                                            < 0.001 ***
                                                                       Bon - Mediocre == 0
                                                                                                88 00
                                                                                                            14.78
                                                                                                                    5.954
                                                                                                                            <0.001 ***
      Mediocre Moven
                                                                       Bon - Moyen == 0
                                                                                                22.00
                                                                                                            14.78 1.489
                                                                                                                             0.312
Moyen 0.00038 -
Bon 7.2e-06 0.44461
                                                                       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
                                                                       (Adjusted p values reported -- single-step method)
P value adjustment method: bonferroni
```

 Le package agricole permettent de créer des groupes entre les modalités.

Exemple avec sorties SAS: utilisation de l'option lsmeans

```
proc glm data=charolais
      class Milieu;
      model GMQ=Milieu / solution ss1 ss3;
      lsmeans Milieu / adjust = T;
      lsmeans Milieu / adjust = BON;
      lsmeans Milieu / adjust = TUKEY;
```

run;

Le Système SAS The GLM Procedure Least Squares Means			Le Système SAS The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Bonferroni					Le Système SAS The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Tukey								
Milieu	GMQ LSM	EAN I	Nombre L	SMEAN	Auju	sunent					Mili	eu	GMQ LSI	MEAN	Nombi	re LSMEA
Bon	776.00	0000	1		Milieu		GMQ LS	MEAN I	Nombre LSI	MEAN	Bon	,	776.000000		1	
Mediocre	688.00	0000	2		Bon		776.0	000000		1	Mor	liocre	688.000000		2	
loyen	754.00	0000		3	Me	ediocre	688.0	000000		2					3	
,					Me	oyen	754.0	000000		3	Moyen 754.000000		00000	3		
Pr > t	Squares Me for H0: LS ependent \	Mean(i)=LSMea			Pr >		.SMean(r effect Milie i)=LSMean(le: GMQ		1	Pr >	Squares Mo t for H0: L: Dependent	SMean(i)-LSI	Mean(j)
i/j	1		2	3		i/j	1		2	3	1	i/j	1		2	3
1		<.00	01 0.1	1482		1		< 00	01 0.44	46		1		<.00	001	0.3121
2	<.0001		0.0	0001		2	<.0001		0.00	04		2	<.0001			0.0004
3	0.1482	0.00	01			3	0 4446	0.00	104			3	0.3121	0.00	004	

Méthode des contrastes une combinaison linéaire des moyennes (par modalité) telle que la somme des coefficients (C_1, \ldots, C_l) valent 0 : $\sum_i C_i = 0.$

$$contraste = \sum_{i=1}^{I} C_i Y_{i.}$$

• La SCE expliquée par le contraste est donnée par :

$$SCE_{constraste} = \frac{\left(\sum_{i=1}^{I} C_i Y_i\right)^2}{\sum_{i=1}^{I} C_i^2 / n_i} = CM_{contraste} \text{ car 1 ddl}$$

En comparant à la résiduelle on a :

$$F_{Obs} = rac{CM_{contraste}}{CM_R} \sim_{\mathcal{H}_0} \mathcal{F}_{ddI_R}^1$$

• Par exemple $C_1 = 1$, $C_2 = 1$ et $C_3 = -2$ permet de savoir les 2 modalités "1" et "2" sont meilleurs que la modalité "3" :

$$\mathcal{H}_0: Y_1 + Y_2 - 2Y_3 = 0$$

Exemple de contrastes (1)

- Hypothèse nulle : La modalité "Bon" de Milieu a la même GMQ que les modalités combinées "Médiocre" et "Moyen".
- Cela revient à \mathcal{H}_0 : $Y_{1.}+Y_{2.}-2Y_{3.}=0$ d'où le contraste : $C_1=1$, $C_2=1$ et $C_3=-2$.
- Pour les logiciels, il faut faire attention à l'ordre des modalités interprété pour chaque variable :
 - ▶ Pour SAS, on peut utiliser l'option contrast 'a' Milieu 2 -1 1;

- Remarque: R propose un test t (Student) tandis que SAS propose un test F (Fisher)
 - $t_{Obs}^2 = F_{Obs}$ ici car ddl = 1

Exemple de contrastes (2)

- Hypothèse nulle : La modalité "Médiocre" de Milieu a la même GMQ que la modalité et "Moyen".
- Cela revient à \mathcal{H}_0 : $Y_{1.}-Y_{2.}=0$ d'où le contraste : $C_1=1$, $C_2=-1$ et $C_3=0$.
- Pour les logiciels, il faut faire attention à l'ordre des modalités interprété pour chaque variable :
 - ▶ Pour SAS, on peut utiliser l'option contrast 'a' Milieu 0 1 1;

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

Principales hypothèses

- Normalité des résidus :
 - Test de Shapiro par exemple : shapiro.test
- Homoscédasticité :
 - ► Test de Bartlett par exemple : bartlett.test
- Indépendence des observations :
 - Quasiment impossible à tester en pratique
- Variante non-paramétrique :
 - ► Test de Mann-Whitney si *I* = 2
 - ► Test de Kruskal-Wallis si I > 2

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

Illustration : effet du Milieu et du génotype sur le gain de poids

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

Ecriture du modèle

$$\mathbf{Y}_{\mathbf{i}\mathbf{j}\mathbf{k}} = \mu + \alpha_{\mathbf{i}} + \beta_{\mathbf{j}} + \varepsilon_{\mathbf{i}\mathbf{j}\mathbf{k}}$$

- i représente le niveau du premier facteur (i = 1, ..., I)
- j représente le niveau du deuxième facteur $(j = 1, \dots, J)$
- k représente l'indice de répétition $(k = 1, ..., n_{ij})$
 - Si le plan est équirépété : n_{ij} = K
- Hypothèses de modélisation :
 - $\forall i, j, k, \varepsilon_{iik} \sim \mathcal{N}(0, \sigma)$
 - $\forall i' \neq i \text{ ou } j' \neq j \text{ ou } k' \neq k : Cov(\varepsilon_{ikj}, \varepsilon_{i'j'k'}) = 0$

Interprétation du modèle

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$$

- La variable Y_{ijk} est la somme
 - ightharpoonup d'un terme constant μ
 - lacktriangle d'un effet spécifique à chaque niveau du premier facteur $lpha_i$
 - lacktriangle d'un effet spécifique à chaque niveau du **second** facteur eta_j
 - un résidu aléatoire gaussien ε_{ijk}
- Le modèle possède l + J + 1 paramètres :
 - La dimension paramétrique du modèle est I + J 1!
 - Une contrainte de liaison doit être explicitée pour estimer les paramètres.

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

Estimation des paramètres : principe des Moindres Carrés Ordinaires

- On se place dans le cas **équilibré** $n_{ij} = K$.
- On cherche à minimiser l'écart entre les observations et le modèle :

$$\sum_{i=1}^{J} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (Y_{ijk} - \widehat{Y_{ijk}})^2$$

• Nullité de la somme des effets individuels $(\sum_{i=1}^{J} \alpha_i = 0)$ et $\sum_{j=1}^{J} \beta_i = 0$

$$\widehat{\mu} = Y_{...}$$
 et $\forall i, \ \widehat{\alpha}_i = Y_{i..} - Y_{...}$ et $\forall j, \ \widehat{\beta}_j = Y_{.j.} - Y_{...}$

- Pour les résidus :
 - ▶ Degrés de liberté : n l J + 1
 - **E**stimateur sans biais de σ :

$$\widehat{\sigma^2} = \frac{1}{n - I - J + 1} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{ijk} - \widehat{Y}_{ijk})^2$$

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

La variabilité du modèle

 Dans le cas complet (toutes les combinaisons des facteurs sont testés) et équilibré (chaque combinaison est testée un même nombre de fois), on a :

$$\begin{split} \sum_{i,j,k} (Y_{ijk} - Y_{...})^2 &= \sum_{i,j,k} (Y_{i..} - Y_{...})^2 + \sum_{i,j,k} (Y_{.j.} - Y_{...})^2 + \sum_{i,j,k} (Y_{ijk} - (Y_{i..} + Y_{.j.} - Y_{...}))^2 \\ & \text{SCE}_{\textbf{T}} &= \text{SCE}_{\textbf{F}_{\textbf{2}}} + \text{SCE}_{\textbf{F}_{\textbf{2}}} + \text{SCE}_{\textbf{R}} \end{split}$$

Variabilité	Somme des carrés	ddl		
Facteur 1	$SCE_{F_1} = KJ \sum_{i}^{I} (Y_{i} - Y_{})^2$	I-1		
Facteur 2	$SCE_{F_2} = KI \sum_{j}^{J} (Y_{.j.} - Y_{})^2$	J-1		
Résiduelle	$SCE_R = \sum_{i,j,k} (Y_{ijk} - (Y_{i} + Y_{.j.} - Y_{}))^2$	IJK - I - J - 1		
Totale	$SCE_T = \sum_{i,j,k} (Y_{ijk} - Y_{})^2$	IJK-1		

Test global

On peut montrer que :

$$\mathbb{E}[CM_{F_1}] = \sigma^2 + \frac{JK}{I - 1} \sum_{i=1}^{I} \alpha_i^2, \ \mathbb{E}[CM_{F_2}] = \sigma^2 + \frac{JK}{J - 1} \sum_{j=1}^{J} \beta_j^2, \ \mathbb{E}[CM_R] = \sigma^2$$

 Pour tester l'effet d'un facteur (Facteur 1 par exemple), on utilise le même principe qu'une ANOVA à 1 facteur :

$$F_{Obs}^{F_1} = \frac{CM_{F_1}}{CM_R} \sim_{\mathcal{H}_0} \mathcal{F}_{n-I-J+1}^{I-1}$$

- ► Règle de décision :
 - Si $F_{Obs}^{F_1} < \mathcal{F}_{n-l-J+1}^{l-1}(1-\alpha)$, on accepte \mathcal{H}_0 au seuil α .
 - Si $F_{Obs}^{F_1} > \mathcal{F}_{n-l-J+1}^{l-1}(1-\alpha)$, on rejette \mathcal{H}_0 au seuil α .

- 1 Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

Notion d'interaction

- Dans le modèle simple on suppose que les effets des deux facteurs s'ajoutent simplement :
 - L'effet d'une modalité d'un facteur (α_i par exemple) est la même quelle que soit la modalité du second facteur.
- Cette hypothèse est vraie lorsque les effets des 2 facteurs sur la variable réponse sont indépendants.

Interaction

En analyse de variance, il y a **interaction** lorsque les effets de 2 facteurs appliqués simultanément ne peuvent pas être déduits des **moyennes** des réponses des 2 facteurs pris **séparément**.

Illustration : effet du Milieu et du Génotype sur le gain de poids

Ecriture du modèle

$$\mathbf{Y}_{ijk} = \mu + \alpha_{i} + \beta_{j} + \alpha \beta_{ij} + \varepsilon_{ijk}$$

- i représente le niveau du premier facteur $(i=1,\ldots,I)$
- ullet j représente le niveau du premier facteur $(j=1,\ldots,J)$
- k représente l'indice de répétition $(k = 1, ..., n_{ij})$
 - Si le plan est équirépété : $n_{ij} = K$
- Hypothèses de modélisation :
 - $\forall i, j, k, \varepsilon_{ijk} \sim \mathcal{N}(0, \sigma)$ $\forall i' \neq i \text{ ou } i' \neq j \text{ ou } k' \neq k : Cov(\varepsilon_{ikj}, \varepsilon_{i'i'k'}) = 0$
- $\alpha \beta_{ij}$ correspond à l'**effet spécifique de l'interaction** des facteurs.
- Dans ce modèle le nombre de degré de liberté des résidus est donné par :

$$n-1-(I-1)-(J-1)-(I-1)(J-1)=\mathbf{n}-\mathbf{IJ}$$

Estimation

- On utilise le principe des Moindres Carrés Ordinaires.
- Avec comme contrainte la nullité de la somme des effets :

$$\sum_{i=1}^{I} \alpha_{i} = 0, \quad \sum_{i=j}^{J} \beta_{j} = 0, \quad \forall i : \sum_{j=1}^{J} \alpha \beta_{ij} = 0 \quad \forall j : \sum_{i=1}^{I} \alpha \beta_{ij} = 0$$

et dans le cas complet et équirépété, on a

$$\widehat{\mu} = Y_{...}, \quad \widehat{\alpha}_i = Y_{i..} - Y_{...}, \quad \widehat{\beta}_j = Y_{.j.} - Y_{...}$$

$$\widehat{\alpha\beta_{ij}} = Y_{ij.} - Y_{i..} - Y_{.j.} + Y_{...}$$

• Pour les **résidus**, on a :

$$\widehat{\sigma^2} = \frac{1}{n - IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} (Y_{ijk} - \widehat{Y_{ijk}})^2 = \frac{1}{n - IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \varepsilon_{ijk}^2$$

La variabilité du modèle

 Dans le cas complet (toutes les combinaisons des facteurs sont testés) et équilibré (chaque combinaison est testée un même nombre de fois), on a :

$$\begin{split} \sum_{i,j,k} (Y_{ijk} - Y_{...})^2 &= \sum_{i,j,k} (Y_{i..} - Y_{...})^2 + \sum_{i,j,k} (Y_{.j.} - Y_{...})^2 \\ &+ \sum_{i,j,k} (Y_{ij.} - (Y_{i..} + Y_{.j.} - Y_{...}))^2 + \sum_{i,j,k} (Y_{ijk} - Y_{ij.})^2 \\ \mathbf{SCE_T} &= \mathbf{SCE_{F_1}} + \mathbf{SCE_{F_2}} + \mathbf{SCE_{F_{12}}} + \mathbf{SCE_R} \end{split}$$

Variabilité	Somme des carrés	ddl		
Facteur 1	$SCE_{F_1} = KJ \sum_{i}^{I} (Y_{i} - Y_{})^2$	I-1		
Facteur 2	$SCE_{F_2} = KI \sum_{j}^{J} (Y_{.j.} - Y_{})^2$	J-1		
Interaction	$SCE_{F_{12}} = K \sum_{i}^{I} \sum_{j}^{J} (Y_{.j.} - Y_{})^{2}$	(I-1)(J-1)		
Résiduelle	$SCE_R = \sum_{i,j,k} (Y_{ijk} - Y_{ij.})^2$	IJ(K-1)		
Totale	$SCE_T = \sum_{i,j,k} (Y_{ijk} - Y_{})^2$	IJK – 1		

Test global

On peut montrer que :

$$\mathbb{E}[CM_{F_1}] = \sigma^2 + \frac{JK}{I - 1} \sum_{i=1}^{I} \alpha_i^2, \quad \mathbb{E}[CM_{F_2}] = \sigma^2 + \frac{JK}{J - 1} \sum_{j=1}^{J} \beta_j^2,$$

$$\mathbb{E}[CM_{F_{12}}] = \sigma^2 + \frac{K}{(I-1)(J-1)} \sum_{i=1}^{I} \sum_{j=1}^{J} \alpha_i \beta_j^2, \quad \mathbb{E}[CM_R] = \sigma^2$$

• Les tests sur l'effet d'un facteur sont :

$$F_{Obs}^{F_1} = \frac{CM_{F_1}}{CM_R} \sim_{\mathcal{H}_0} \mathcal{F}_{IJ(K-1)}^{(I-1)} , \quad F_{Obs}^{F_2} = \frac{CM_{F_2}}{CM_R} \sim_{\mathcal{H}_0} \mathcal{F}_{IJ(K-1)}^{(J-1)}$$

• Pour tester l'effet d'interaction :

$$F_{Obs}^{F_{12}} = \frac{CM_{F_{12}}}{CM_R} \sim_{\mathcal{H}_0} \mathcal{F}_{IJ(K-1)}^{(I-1)(J-1)}$$

• Les règles de décision des tests s'appuient sur l'unilatéralité du test.

- Introduction de la problématique
 - Des questions "types"
 - Notion de variabilité
- 2 Modèles à effets fixes
 - Modèles à 1 facteur
 - Modèle
 - Estimation
 - Test global
 - Analyse Post-Hoc
 - Hypothèses du modèle et tests non paramétriques
 - Modèles à 2 facteurs
 - Modèles
 - Estimation
 - Test global
 - Interaction
 - Extensions

ANOVA à n > 2 facteurs

- Les modèles d'analyse de variance se généralise facilement à un nombre plus important de facteurs (ANOVA à n facteurs).
 - Les principes de test des effets sont identiques
 - Le nombre de paramètres augmente fortement avec des interactions d'ordre élevé
 - Interprétation très complexe d'interaction d'ordre > 2
- On peut alors utiliser une écriture matricielle qui donne des résultats généraux qui permette de :
 - ► lier l'ANOVA à la régression linéaire multiple (Voir TD)
 - avoir des formules générales des estimateurs
 - traiter le cas des données déséquilibrées

Voir Exemple Code R

Décomposition de la variabilité (cas déséquilibré)

$$y_{ijk} - y_{...} = (y_{ijk} - y_{ij.}) + (y_{i..} - y_{...}) + (y_{.j.} - y_{...}) + (y_{ij.} - y_{i...} - y_{.j.} + y_{...})$$

$$(y_{ijk} - y_{...})^{2} = (y_{ijk} - y_{ij.})^{2} + (y_{i...} - y_{...})^{2} + (y_{.j.} - y_{...})^{2} + (y_{ij.} - y_{i...} - y_{.j.} + y_{...})^{2}$$

$$+ \sum_{\ell=1}^{6} DP_{\ell}(ijk)$$

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (y_{ijk} - y_{ij.})^{2} + \sum_{i=1}^{I} n_{i}(y_{i...} - y_{...})^{2} + \sum_{j=1}^{J} n_{j}(y_{.j.} - y_{...})^{2}$$

$$+ \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} \sum_{\ell=1}^{6} DP_{\ell}(ijk)$$

Décomposition de la variabilité (cas déséquilibré) - Les doubles produits

• Etant donné que $\forall x_{ij}$ indépendant de k:

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} x_{ij} (y_{ijk} - y_{ij.}) = \sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} \left(\sum_{k=1}^{n_{ij}} (y_{ijk} - y_{ij.}) \right) = 0,$$

nous avons : $DP_1 = DP_2 = DP_3 = 0$.

Après quelques lignes de calculs simples mais (très) fastidieux :

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} DP_4(ijk) + DP_5(ijk) + DP_6(ijk) = 2 \left(ny_{...}^2 - \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} y_{i..} y_{.j.} \right)$$

Décomposition de la variabilité (cas déséquilibré) - Réécriture

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} (y_{ijk} - y_{ij.})^{2} + \sum_{i=1}^{I} n_{i}(y_{i..} - y_{...})^{2} + \sum_{j=1}^{J} n_{j}(y_{.j.} - y_{...})^{2}$$

$$+ \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{n_{ij}} \sum_{\ell=1}^{6} DP_{\ell}(ijk)$$

$$= SSE + SSF_{1} + SSF_{2} + SSF_{12} + SDP$$

- Pour un plan équilibré $(n_{ij} = n_0 \ \forall (ij))$: SDP=0.
- Si $SDP \neq 0$, il n'est pas possible d'affecter SDP à une unique source de variation parmi :
 - F₁
 - ► F₂
 - ► F₁₂

Décomposition de la variabilité (cas déséquilibré)

- Dans un plan qui n'est pas complet-équilibré la somme des SCE n'est pas nécessairement égale à la SCE_T.
- On distingue alors plusieurs types de sortie dont :
 - Somme des carrés de Type I qui correspondent à la variabilité expliquée par un effet sachant que les effets précédemment écrits sont déjà dans le modèle.
 - Somme des carrés de Type III qui correspondent à la variabilité expliquée par l'apport d'un effet sachant que tous les autres effets sont déjà présents dans le modèle.
- L'ordre d'inclusion des facteurs est donc importante dans l'analyse de Type I
- Remarque : Type I et Type III sont équivalentes dans un plan complet-équilibré

Calcul des SC pour l'interaction

• Type I : différence des SC résiduels entre

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \alpha\beta_{ij} + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \varepsilon_{ijk}$$

Calcul des SC pour l'interaction

• Type I : différence des SC résiduels entre

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \alpha\beta_{ij} + \varepsilon_{ijk}$$

• Type III : différence des SC résiduels entre

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$$

$$Y_{iik} = \mu + \alpha_i + \beta_i + \alpha\beta_{ii} + \varepsilon_{iik}$$

Type I et Type III donnent les mêmes résultats

• Type I : différence des SC résiduels entre

$$Y_{ijk} = \mu + \alpha_i + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \alpha \beta_{ij} + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \varepsilon_{ijk}$$

• Type I : différence des SC résiduels entre

$$Y_{iik} = \mu + \varepsilon_{iik}$$

$$Y_{ijk} = \mu + \alpha_i + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \beta_j + \alpha \beta_{ij} + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \varepsilon_{ijk}$$

Exemple 2 : modèle sans facteur d'interaction

• On reprend les données de Vache sans les 2 premières observations.

```
> mod1 <- lm(GMO ~ Milieu,data=charol)
                                                         > mod2 <- lm(GMO ~ Milieu+Genotype,data=charol)
                                                         > anova(mod2)
> anova(mod1)
Analysis of Variance Table
                                                          Analysis of Variance Table
                                                          Response: GMO
Response: GMO
                                                                  Df Sum Sa Mean Sa F value
         Df Sum Sq Mean Sq F value Pr(>F)
                                                          Milieu 2 34537 17268.7 18.5835 1.331e-05 ***
Milieu 2 34537 17268.7 16.845 2.33e-05 ***
                                                          Genotype 1 3327 3327.5 3.5808 0.07057 .
Residuals 25 25629 1025.2
                                                          Residuals 24 22302 929.2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
                                                        1 Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> sum((mean(charol$GMO)-predict(mod1))^2)
                                                          > sum((mean(charol$GMO)-predict(mod2))^2)-sum((mean(charol$GMO)-predict(mod1))^2)
                                                          [1] 3327.5
Γ17 34537.5
> mod1_bis <- lm(GMQ ~ Genotype,data=charol)</pre>
                                                                > require(car)
                                                                > Anova(mod2, type="III")
> anova(mod1_bis)
                                                                Anova Table (Type III tests)
Analysis of Variance Table
                                                                Response: GMO
                                                                             Sum Sq Df
                                                                                         F value
                                                                (Intercept) 14964183 1 16103.5061 < 2.2e-16 ***
Response: GMO
                                                                Milieu
                                                                              35883 2
                                                                                         19.3073 1.006e-05 ***
             Df Sum Sa Mean Sa F value Pr(>F)
                                                                             3327 1
                                                                                          3.5808 0.07057 .
                                                                Genotype
Genotype 1
                  1982 1982.4 0.8859 0.3553
                                                                Residuals
                                                                              22302 24
Residuals 26 58185 2237.9
                                                               Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Anova Type I et Type III - SAS

• Type I : différence des SC résiduels entre

$$Y_{ijk} = \mu + \alpha_i + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \beta_i + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \alpha \beta_{ij} + \varepsilon_{ijk}$$

$$Y_{iik} = \mu + \alpha_i + \beta_i + \alpha \beta_{ii} + \varepsilon_{iik}$$

• Type I : différence des SC résiduels entre

$$Y_{ijk} = \mu + \alpha_i + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$$

• Type III : différence des SC résiduels entre

$$Y_{ijk} = \mu + \alpha_i + \alpha \beta_{ij} + \varepsilon_{ijk}$$

$$Y_{iik} = \mu + \alpha_i + \beta_i + \alpha \beta_{ii} + \varepsilon_{iik}$$

• Type I et III donnent les mêmes résultats

• Type I : différence des SC résiduels entre

$$Y_{ijk} = \mu + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \beta_j + \varepsilon_{ijk}$$

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$$

$$SS_{F1} = 58185 - 22302 = 35883$$

Démarche à suivre

- Du point de vue statistique, il convient de respecter l'ordre du schéma d'analyse suivant :
 - Pertinence du modèle global
 - Modèle global vs. modèle constant
 - Effet de chaque facteur
 - On commence par les effets d'interaction
 - 3 Comparaison des modalités pour un facteur donné
 - Comparaisons multiples
 - Test sur les contrastes