Identifiability with sparsity

Decompose a low-rank matrix with known coefficient sparsity.

$$\begin{cases} M = UV, \\ \operatorname{rank}(M) = \operatorname{rank}(U) = r, \\ \|V(:,j)\|_{0} \le k = r - s < r \,\forall j. \end{cases}$$

Identifiability with sparsity

Decompose a low-rank matrix with known coefficient sparsity.

$$\begin{cases} M = UV, \\ \operatorname{rank}(M) = \operatorname{rank}(U) = r, \\ \|V(:,j)\|_0 \le k = r - s < r \,\forall j. \end{cases}$$

Many existing theoretical results (see, e.g., [Gribonval 16]) and algorithms (Dictionary Learning). But:

- X Not many results specific to the low-rank case
- Only two deterministic identifiability results [Elad 06, Georgiev 05]
- \nearrow Not much in the NMF case except ℓ_1 regularization

Identifiability with sparsity: example

Example: p = 3, r = 3, s=sparsity=1, n = 9.

Identifiability with sparsity: example

Example: p = 3, r = 3, s=sparsity=1, n = 9.

Theorem

Let M = UV where $\operatorname{rank}(U) = \operatorname{rank}(M) = r$ and each column of V has at least s zeros. The factorization (U,V) is essentially unique if on each hyperplane spanned by all but one column of U, there are $\left\lfloor \frac{r(r-2)}{s} \right\rfloor + 1$ data points with spark r.

Theorem

Let M=UV where $\mathrm{rank}(U)=\mathrm{rank}(M)=r$ and each column of V has at least s zeros. The factorization (U,V) is essentially unique if on each hyperplane spanned by all but one column of U, there are $\left\lfloor \frac{r(r-2)}{s} \right\rfloor + 1$ data points with spark r.

For s = 1, this requires $r^3 - 2r^2 + r$ data points and it is tight up to the constant r (counter examples for any $n = r^3 - 2r^2$).

Theorem

Let M=UV where $\mathrm{rank}(U)=\mathrm{rank}(M)=r$ and each column of V has at least s zeros. The factorization (U,V) is essentially unique if on each hyperplane spanned by all but one column of U, there are $\left\lfloor \frac{r(r-2)}{s} \right\rfloor + 1$ data points with spark r.

- For s = 1, this requires $r^3 2r^2 + r$ data points and it is tight up to the constant r (counter examples for any $n = r^3 2r^2$).
- ✓ For s = r 1, this requires r data points and it is tight (one on each intersection of r 1 hyperplanes).

Theorem

Let M=UV where $\mathrm{rank}(U)=\mathrm{rank}(M)=r$ and each column of V has at least s zeros. The factorization (U,V) is essentially unique if on each hyperplane spanned by all but one column of U, there are $\left\lfloor \frac{r(r-2)}{s} \right\rfloor + 1$ data points with spark r.

- For s = 1, this requires $r^3 2r^2 + r$ data points and it is tight up to the constant r (counter examples for any $n = r^3 2r^2$).
- ✓ For s = r 1, this requires r data points and it is tight (one on each intersection of r 1 hyperplanes).
- ✓ It is tight up to constant factors for any $s = \beta r$ for any fixed constant β .

Theorem

Let M=UV where $\mathrm{rank}(U)=\mathrm{rank}(M)=r$ and each column of V has at least s zeros. The factorization (U,V) is essentially unique if on each hyperplane spanned by all but one column of U, there are $\left\lfloor \frac{r(r-2)}{s} \right\rfloor + 1$ data points with spark r.

- For s = 1, this requires $r^3 2r^2 + r$ data points and it is tight up to the constant r (counter examples for any $n = r^3 2r^2$).
- For s = r 1, this requires r data points and it is tight (one on each intersection of r 1 hyperplanes).
- It is tight up to constant factors for any $s = \beta r$ for any fixed constant β .
- Nonnegativity not taken into account in the analysis, it helps both in theory and in practice: further work.

Sparsity in action

Spectral unmixing, R = 6, s = 4

Sparsity in action

Spectral unmixing, R = 6, s = 4

✓ Sparsity is another way to obtain identifiability for matrix decompositions.

Sparsity in action

Spectral unmixing, R = 6, s = 4

- ✓ Sparsity is another way to obtain **identifiability** for matrix decompositions.
- Hard combinatorial problems to solve...

Pierre DH is exploring deep NMF $M \approx UV_1V_2...V_\ell$.

Nicolas N is exploring sparse separable NMF

Andersen is exploring unimodal NMF

Christophe is exploring linear-quadratic NMF

Linear-quadratic (LQ) model

$$M(:,j) \approx \underbrace{\sum_{k=1}^{r} U(:,k)V(k,j)}_{NMF} + \underbrace{\sum_{p=1}^{r} \sum_{l=p}^{r} \beta_{ipl} \Big(U(:,p) \odot U(:,l) \Big)}_{\text{double reflections}}.$$

Valentin is exploring constrained β -divergence NMF

Jasper Ridge Data set

François is exploring ℓ_1 symNMF for document classification

Data	SymNMF	ODsymNMF- ℓ_2	$ODsymNMF-\ell_1$
classic	63.67	63.67	66.33
ohscal	43.24	43.16	38.08
hitech	49.07	49.24	52.19
reviews	49.37	49.55	70.07
sports	51.46	51.41	48.81
la1	49.16	48.81	40.61
la2	48.94	48.62	39.45
k1b	57.18	58.68	66.45
tr11	59.66	59.90	51.21
tr23	35.29	35.29	36.76
tr41	46.70	47.15	47.04
tr45	42.90	42.61	43.04

Table 4: Accuracy (in %) for each data set. The bold values are the best of each line.

Maryam is exploring facet-based algorithms

Tim is exploring identifiability conditions

Hien is developing a general class of highly efficient algorithms for non-convex non-smooth optimization

Algorithm 1 TITAN with cyclic update to solve Problem (1)

Input: Choose x^{-1} , $x^0 \in \mathcal{X}$ (x^{-1} can be chosen equal to x^0). Output: x^k that approximately solves (1).

- 1: **for** $k = 0, 1, \dots$ **do**
- 2: Set $x^{k,0} = x^k$
- 3: for i = 1, ..., m do
- 4: Choose a block i surrogate function u_i of f and an extrapolation $\mathcal{G}_i^k(x_i^k, x_i^{k-1})$.
- 5: Update block i by

(3)
$$x_i^{k,i} \in \underset{x_i \in \mathcal{X}_i}{\operatorname{argmin}} u_i(x_i, x^{k,i-1}) - \langle \mathcal{G}_i^k(x_i^k, x_i^{k-1}), x_i \rangle + g_i(x_i),$$

and set $x_j^{k,i} = x_j^{k,i-1}$ for all $j \neq i$.

- 6: end for
- 7: Set $x^{k+1} = x^{k,m}$.
- 8: end for

Thank you for your attention!

Code and papers available from https://sites.google.com/site/nicolasgillis