Teoría de Gráficas 2020-2

Guía de ejercicios para la Evaluación Parcial 02

FECHA DE EVALUACIÓN PARCIAL 02 VIERNES 03-ABRIL-2020 12:00 HORAS

Instrucciones: La siguiente lista que fungirá como guía para el examen parcial, se recomienda resolver todos los ejercicios de la misma.

LISTA DE EJERCICIOS

- 1. a) Demostrar que toda gráfica autocomplementaria es conexa.
 - b) Demostrar que si G es una gráfica autocomplementaria entonces $|V(G)| \equiv x \mod 4$ donde $x \in \{0,1\}$.
 - c) Construir, para cada $k \in \mathbb{N}$, una gráfica autocomplementaria de orden 4k.
 - d) Construir, para cada $k \in \mathbb{N}$, una gráfica autocomplementaria de orden 4k+1.
- 2. Demostrar que la siguiente gráfica G no es una gráfica de intervalos:
 - $V(G) = \{P, Q, R, S, T, U\}$
 - $\bullet \ A(G) = \{ \{P,Q\}, \{Q,R\}, \{R,P\}, \{Q,S\}, \{S,T\}, \{T,Q\}, \{R,T\}, \{T,U\}, \{U,R\} \}$
- 3. Demostrar que si ${\it G}$ es una gráfica conexa de orden mayor que uno entonces
 - $1 \le c(G \{v\}) \le d_G(v)$ para cualquier $v \in V(G)$.
 - $\quad \blacksquare \ 1 \leq c(G \setminus \{a\}) \leq 2 \ \text{para cualquier} \ a \in A(G).$
- 4. Demostrar que toda gráfica puede expresarse como una suma de gráficas conexas.
- 5. Demostrar que si G es una gráfica donde $2 \le \delta(G)$ entonces G contiene un ciclo de longitud al menos $\delta(G)+1$.
- 6. Demostrar que las siguientes afirmaciones son equivalentes para una gráfica conexa G de orden al menos tres:
 - G es un bloque².
 - Para cualquier $\{u,v\} \subseteq V(G)$ con $u \neq v$ existe un ciclo C en G tal que $\{u,v\} \subset V(C)$.
 - Para cualquier $u \in V(G)$ y $a \in A(G)$ existe un ciclo C en G tal que $u \in V(C)$ y $a \in A(C)$.
 - Para cualquier $\{a,b\} \subseteq A(G)$ con $a \neq b$ existe un ciclo C en G tal que $\{a,b\} \subset A(C)$.

Evaluación Parcial 02 Marzo 2020

 $^{{}^1}G$ es una gráfica **autocomplementaria** si y solamente si $G\cong \overline{G}$.

 $^{^2}G$ es un **bloque** si y solamente si G es una gráfica conexa sin vértices de corte.

Teoría de Gráficas 2020-2

7. Demostrar que si G es un bloque tal que $3 \leq |V(G)|$, $\{u,v\} \subseteq V(G)$ tal que $v \neq u$ y T_{uv} es una trayectoria en G con extremos u y v entonces existe una trayectoria T_{uv}^* con extremos u y v tal que $V(T_{uv}) \cap V(T_{uv}^*) = \{u,v\}$.

- 8. Sea G una gráfica con cuatro bloques tal que $V(G)=\{v_1,v_2,v_3,v_4,v_5,v_6,v_7,v_8\}$. Demostrar que si para cualquier $1\leq i\leq 6$ se tiene que v_i pertenece a exactamente un bloque de G y que v_7 y v_8 pertenecen exactamente a dos bloques de G entonces G es disconexa.
- 9. Demostrar que si $v \in V(G)$ es vértice de corte en G entonces v no es vértice de corte en \overline{G}
- 10. Sea G una gráfica conexa con al menos un vértice de corte. Demostrar que G contiene, por lo menos, dos bloques cada uno de los cuales contiene exactamente un vértice de corte de G^3 .
- 11. Sea G una gráfica conexa con al menos un vértice de corte. Demostrar que G contiene un vértice de corte v con la propiedad de que, con a lo más una excepción, todos los bloques que contienen a v son bloques terminales.
- 12. Demostrar que si G es una gráfica que no contiene ciclos pares entonces todo bloque de G es isomorfo a K_2 o es un ciclo impar.
- 13. Demostrar que el número de bloques de una gráfica G es igual a

$$c(G) + \sum_{v \in V(G)} (b(v) - 1)$$

donde b(v) denota al número de bloques de G que contienen a v.

- 14. Demostrar que si G es una gráfica conexa con exactamente dos vértices que no son vértices de corte entonces G es una trayectoria.
- 15. Demostrar que en cualquier gráfica G si $a \in A(G)$ entonces $c(G) \le c(G \setminus \{a\}) \le c(G) + 1$.

Evaluación Parcial 02 Marzo 2020

 $^{^3}$ Los bloques de una gráfica que contienen exactamente un vértice de corte de dicha gráfica se llaman **bloques** terminales de G