BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

199 36 478.8

Anmeldetag:

03. August 1999

Anmelder/Inhaber:

Degussa-Hüls Aktiengesellschaft,

Frankfurt am Main/DE

Bezeichnung:

Sinterwerkstoffe

IPC:

C 03 C, C 04 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Anmeldung.

München, den 08. Juni 2000 Deutsches Patent- und Markenamt Der Präsident Im Auftrag

Wele

Wehner

Sinterwerkstoffe

Die Erfindung betrifft Sinterwerkstoffe (insbesondere Sintergläser), Verfahren zur Herstellung von Sinterwerkstoffen aus pyrogen hergestelltem Siliciumdioxid,

5 das mittels eines nachgeschalteten Verdichtungsschrittes zu Siliciumdioxidgranulaten verarbeitet wurde sowie die Verwendung entsprechender Siliciumdioxidgranulate zur Herstellung von Sinterwerkstoffen. Beispiele für derartige Herstellverfahren sind das Erzeugen einer wäßrigen

- 10 Granulatdispersion, das Umfüllen dieser Dispersion in eine Form und das Gelieren der Dispersion zu einem Gelkörper.

 Dieser kann durch einen Trocken- und einen Sinterprozeß zu Glasformkörpern von hoher Qualität verarbeitet werden. Ein weiteres Beispiel für derartige Verfahren ist das
- Trockenpressen von hochverdichtetem pyrogen hergestelltem Siliciumdioxidgranulat zu einem festen Formkörper und anschließendes Sintern dieses Formkörpers zu Sinterglas.

Es ist bekannt, Siliciumalkoxidlösungen durch Einwirken einer Säure zu Gelkörpern umzusetzen, die getrocknet und 20 anschließend einem Sinterschritt unterworfen werden (DE 30 01 792 C2). Derartige Verfahren werden allgemein als "Sol-Gel-Verfahren" bezeichnet. Auf diesem Wege erzeugte Gläser sollen erfindungsgemäß zur Herstellung von Vorformkörpern zur späteren Weiterverarbeitung zu Lichtleitfasern dienen.

- Es ist weiterhin bekannt, nanoskalige Pulver, wie zum Beispiel pyrogen erzeugtes Siliciumdioxid, zur Herstellung von Sinterglaskörpern zu verwenden (US-A 5,379,364). Dabei wird eine Ausgangskieselsäure mit einer Oberfläche von weniger als 100 m²/g eingesetzt und eine Dispersion mit einem Feststoffanteil von mehr als 30 Gew.% hergestellt.
 - Diese Dispersion wird nach dem Umfüllen in eine Form durch Herabsetzen des pH-Wertes geliert. Der Gelkörper wird anschließend zu einem Grünkörper getrocknet, dieser einem Reinigungsschritt unterzogen und danach gesintert. Im
- 35 Unterschied zum in DE 30 01 792 C2 erläuterten Verfahren

handelt es sich bei derartigen Verfahren wie US-A 5,379,364 um sogenannte "kolloidale Sol-Gel-Verfahren". Der Begriff "kolloidal" weist in diesem Zusammenhang auf das Vorhandensein feinteiliger, bereits vorverdichteter Siliciumdioxidteilchen hin. Die Vorverdichtung erfolgt während des Herstellprozesses der eingesetzten pyrogen erzeugten Kieselsäure.

Bestehende Verfahren, in denen Glasformkörper unter ausschließlicher Verwendung von Siliciumalkoxidlösungen entsprechend dem erwähnten einfachen "Sol-Gel-Verfahren" hergestellt werden, haben den Nachteil, daß der Gelkörper während des Trocknungs- und während des Sinterprozesses stark schrumpft. Dieser Schrumpf kann zwischen 60 und über 80% der ursprünglichen Ausmaße des Gelkörpers betragen.

- 15 Folge dieses starken Trocken- und Sinterschrumpfes sind feinste Blasen und Risse innerhalb des erzeugten Glaskörpers, die die Produkteigenschaften negativ beeinträchtigen. So wird durch derartige Blasen und Risse die optische Transmission derartiger Glasformkörper stark
- 20 herabgesetzt und die optische Homogenität beeinträchtigt. Aufgrund der entsprechend hohen optischen Dämpfung können derartige Glasformkörper nicht für die Herstellung hochwertiger Lichtleitfasern eingesetzt werden. Weiterhin haben derartige "Sol-Gel-Verfahren" den Nachteil, das der
 - Gelkörper extrem feine Kapillaren und Poren besitzt. Die im Gelkörper enthaltene Flüssigkeit übt während des Trocknungsprozesses auf die entsprechenden Kapillaren einen hohen hydrodynamischen Druck aus. Dieser innere Druck führt beim Trocknungsprozeß des Gelkörpers ebenfalls zum
- 30 Auftreten ultrafeiner Risse, Sprünge oder Blasen.

Sogenannte "kolloidale Sol-Gel-Verfahren" weisen gegenüber den einfachen "Sol-Gel-Verfahren" den Vorteil eines etwas verringerten Trocken- und Sinterschrumpfes auf. Ursache für diesen verringerten Schrumpf ist die Verwendung von pyrogen erzeugtem Siliciumdioxid, welches höhere Füllgrade dieses Oxides innerhalb von Dispersionen ermöglicht, die für die

Herstellung von Sintergläsern benutzt werden. Trotzdem weisen auch die bisherigen "kolloidalen Sol-Gel-Verfahren" einen erheblichen Trocken- und Sinterschrumpf auf. Der Schrumpf beträgt bei diesen Verfahren immer noch zwischen 5 35 bis 50% der Ausmaße des Gelkörpers vor der Trocknung. Eine weitere Verbesserung der optischen Eigenschaften von auf diesem Wege hergestellten Sintergläsern setzt jedoch die nochmalige Erhöhung der Füllgrade des Siliciumdioxidpulvers innerhalb des pulvertechnologischen 10 Herstellprozesses voraus. Diese benötigten hohen Füllgrade können jedoch mit bekannten pyrogen erzeugten Siliciumdioxidpulvern mit geringer Verdichtung nicht mehr erreicht werden. Folge ist eine schlechtere optische Transparenz des daraus hergestellten Vorformkörpers zur 15 späteren Lichtleitfaserherstellung, als dies für das endgültige Produkt wünschenswert wäre.

Bestehende "kolloidale Sol-Gel-Verfahren" besitzen gegenüber einfachen "Sol-Gel-Verfahren" eine etwas verbesserte Kapillar- und Porenstruktur des Gelkörpers. Bei der Trocknung von mittels "kolloidalen Sol-Gel-Verfahren" hergestellten Gelkörpern entstehen aus diesem Grund bereits weniger interne ultrafeiner Risse, Sprünge oder Blasen, als bei der Trocknung von mittels einfachem "Sol-Gel-Verfahren" hergestellten Gelkörpern. Trotzdem ist es wünschenswert, den Füllgrad beim "kolloidalen Sol-Gel-Verfahren" weiter zu erhöhen, um die Kapillar- und Porenstruktur weiter zu verbessern. Gleichzeitig kann eine Verbesserung der Kapillar- und Porenstruktur auch durch neuartige pyrogen erzeugte Siliciumdioxidpulver bewirkt werden, die in ihrer Partikelgröße oder in der Partikelstruktur verändert werden.

Es bestand somit die Aufgabe, Sinterwerkstoffe zu entwickeln, bei deren Herstellung höhere Füllgrade von pyrogenen Siliciumdioxiden eingesetzt werden. Gleichzeitig 35 wurde die Veränderung der im Herstellprozeß verwendeten Partikelgröße des Siliciumdioxides angestrebt. Gegenstand der Erfindung sind Sinterwerkstoffe, insbesondere Sintergläser, die mittels eines Formgebungs- oder Verdichtungsverfahrens, ggf. einer anschließenden Reinigung und ggf. einem sich anschließenden

5 Sinterverfahren hergestellt werden und dadurch gekennzeichnet sind, daß **entweder** zu ihrer Herstellung pyrogen hergestelltes Siliciumdioxid verwendet wird, das mittels eines nachgeschalteten Verdichtungsschritts gemäß DE 196 01 415 Al zu Granulaten verdichtet wurde und eine

10 Stampfdichte von 150 g/l bis 800 g/l, vorzugsweise 200 bis 500 g/l, eine Granulatkorngröße von 10 bis 800 µm und eine BET- Oberfläche von 10 bis 500 m²/g, vorzugsweise 20 bis 130 m²/g besitzt,oder zu ihrer Herstellung Granulate nach DE 196 01 415 Al auf Basis von pyrogen hergestelltem

15 Siliciumdioxid mit den folgenden physikalisch-chemischen Daten verwendet werden: Mittlerer Korndurchmesser: 25 bis 120 μm, BET-Oberfläche: 40 bis 400 m²/g, Porenvolumen: 0,5 bis 2,5 ml/g, Porenverteilung: keine Poren < 5nm, nur Mesound Makroporen, pH-Wert: 3,6 bis 8,5, Stampfdichte: 220 bis 700 g/l.

Gegenstand der Erfindung sind oben erwähnte Sinterwerkstoffe, die dadurch gekennzeichnet sind, daß die erwähnten Granulate mittels eines Verfahrens der folgenden Art zum Sinterwerkstoff verarbeitet werden:

a) Herstellung einer Dispersion aus 10 Gew.% bis 85 Gew.%, vorzugsweise 25 Gew.% bis 70 Gew.% Feststoffanteil der Granulate und einer polaren oder unpolaren anorganischen oder organischen Flüssigkeit, vorzugsweise Wasser, Ethanol oder einem aliphatischen Kohlenwasserstoff; danach Umfüllen der Dispersion in eine Form oder Beschichtung von Oberflächen mit dieser Dispersion, Einleitung des Gelierens der Dispersion und Trocknung des Gelkörpers oder der gelkörperartigen Beschichtung. Der nach dem Trocknungsvorgang entstandene Grünkörper oder die grünkörperartige Beschichtung kann ggf. mit gasförmigen

Substanzen wie Chlor oder Thionylchlorid bei Temperaturen

zwischen 700...1000 °C gereinigt und danach ggf. durch einen Sinterschritt bei einer Temperatur zwischen 1000 bis 1800 °C, vorzugsweise 1100° bis 1600°C so gesintert werden, daß der entstehende Sinterkörper / die Sinteroberfläche 5 völlig dichtgesintert oder noch teilweise porös ist.

- b) Einbringen entsprechender Granulate ohne Zuhilfenahme einer Flüssigkeit in eine Form oder Aufbringen der Granulate auf eine Oberfläche, anschließend ggf. ein weiterer Verdichtungsschritt, innerhalb dessen der
- 10 Formkörper oder die Schicht unter hohem äußerem mechanischen Druck (Preßdruck z.B. 1...120 MPa) in Gegenwart von Atmosphärendruck oder bei vermindertem Druck verpreßt und weiter verdichtet werden. Der nach dem Preßvorgang entstandene Formkörper oder die verdichtete
- 15 Beschichtung kann ggf. mit gasförmigen Substanzen wie Chlor oder Thionylchlorid bei Temperaturen zwischen 700...1000 °C gereinigt und durch einen Sinterschritt bei einer Temperatur zwischen 1000 bis 1800 °C, vorzugsweise 1100° bis 1600°C so gesintert werden, daß der entstehende
- 20 Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist.
- c) Aufbringen von entsprechenden Granulaten auf Formkörper und Oberflächen durch thermische oder andere hochenergetische Verfahren wie z.B. Flammspritzen,
 Plasmabeschichtung oder Mikrowellensinterung, innerhalb derer ein fester Formkörper oder eine feste Beschichtung ensteht und der resultierende Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist.
- 30 Gegenstand der Erfindung sind ebenfalls Werkstoffe oder Gläser, dadurch gekennzeichnet, daß bei der Herstellung der Werkstoffe oder Gläser die bereits erwähnten Granulate mittels Einwirkung von thermischer, elektrischer oder elektromagnetischer Energie, so z.B. durch Brenner,
- 35 Plasmafackeln oder Mikrowellenstrahlung entweder vor dem

Erhitzen oder im Anschluß daran in eine beliebige Form gebracht und dann so gesintert werden, daß der entstehende Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist oder teilweise oder vollständig aufgeschmolzen werden, vor dem Erhitzen oder im Anschluß daran in eine beliebige Form gebracht werden und in dieser Form erstarren oder zum Beschichten anderer Werkstoffe wie z.B. Glas oder Metall genutzt werden und ggf. anschließend nachbehandelt werden.

10 Gegenstand der Erfindung sind Gläser die dadurch gekennzeichnet sind, daß die Sinterung zu einem transparenten Glaskörper oder einer transparenten Glasschicht innerhalb des Viskositätsbereiches des Glases zwischen 10⁸ bis 10¹² dPas, bevorzugt jedoch zwischen 10¹⁰ und 10¹¹ dPas erfolgt.

Gegenstand der Erfindung sind Gläser die dadurch gekennzeichnet sind, daß die Gläser mindestens wasserbeständig nach der hydrolytischen Klasse 2, vorzugsweise wasserbeständig nach der hydrolytischen Klasse 20 1 sind.

Gegenstand der Erfindung sind Gläser die dadurch

gekennzeichnet sind 'daß die Eigenschaften der aus entsprechenden, feinsten Pulverteilchen gesinterten oder erschmolzenen Gläser übereinstimmend sind mit den

25 Eigenschaften eines Glases mit identischer chemischer Zusammensetzung, welches über einen konventionellen Schmelzprozeß ohne die Verwendung der erwähnten Granulate hergestellt wurde. Die Herstellung derartiger Sintergläser erfordert deutlich niedrigere Sintertemperaturen,

30 verglichen mit der Schmelztemperatur, die zur Herstellung eines Glases mit identischer Zusammensetzung innerhalb eines konventionellen Schmelzprozesses benötigt wird.

Gegenstand der Erfindung sind überdies Dispersionen, die zur Herstellung von Sinterwerkstoffen verwendet werden und durch folgende Eigenschaften gekennzeichnet sind:

- a) Feststoffanteile der bereits erwähnten Granulate von 10 Gew.% bis 85 Gew.%, vorzugsweise 25 Gew.% bis 70 Gew.% innerhalb einer Dispersion mit einer polaren oder unpolaren anorganischen oder organischen Flüssigkeit, vorzugsweise 5 Wasser, Ethanol oder einem aliphatischen Kohlenwasserstoff.
- b) Feststoffanteile der bereits erwähnten Granulate von 10 Gew.% bis 85 Gew.%, vorzugsweise 25 Gew.% bis 70 Gew.% innerhalb einer wäßrigen Dispersion, die einen pH-Wert zwischen pH = 1...6 oder pH = 8...12 besitzt und auf den
 10 entsprechenden pH-Wert eingestellt wird mit organischen Säuren wie z.B. Ameisensäure, Citronensäure oder Trichloressigsäure, mit anorganischen Säuren wie z.B. Salpetersäure, Phosphorsäure oder Schwefelsäure, mit organischen Basen wie z.B. Triethylamin, Pyridin oder
 15 Tetramethylammoniumhydroxid und mit anorganischen Basen wie z.B. Kaliumhydroxid, Calciumhydroxid oder Ammoniumhydroxid.
- c) Feststoffanteile der bereits erwähnten Granulate von 10 Gew.% bis 85 Gew.%, vorzugsweise 25 Gew.% bis 70 Gew.% innerhalb einer wäßrigen Dispersion, die einen pH-Wert 20 zwischen pH = 1...6 oder pH = 8...12 besitzt und auf den entsprechenden pH-Wert eingestellt wird mit organischen oder anorganischen Säuren oder Basen und weitere Zusatzstoffe enthält, die erhöhte Granulatanteile und eine verbesserte Dispergierbarkeit ermöglichen wie z.B. Polymere oder ionische Verbindungen, die zu einer sterischen oder ionischen Stabilisierung der Dispersion beitragen und ein Absetzen von Feststoffanteilen verringern oder unterbinden und / oder ein vorzeitiges Gelieren verhindern.
- d) Feststoffanteile der bereits erwähnten Granulate von 10 30 Gew.% bis 85 Gew.%, vorzugsweise 25 Gew.% bis 70 Gew.% innerhalb einer wäßrigen Dispersion, die einen pH-Wert zwischen pH = 1...6 oder pH = 8...12 besitzt und auf den entsprechenden pH-Wert eingestellt wird mit organischen oder anorganischen Säuren oder Basen und weitere 35 Zusatzstoffe enthalten kann, die ein verbessertes

Dispergieren, Gelieren, Trocknen und Reinigen sowie Sintern des späteren Sinterwerkstoffes ermöglichen, wie z.B.

Metallalkoxide der Formel Me(OR)_x, wobei Me für ein Metall, vorzugsweise für Silicium, R für eine Alkylgruppe steht und "x" der Wertigkeit des Metallions entspricht. Derartige Dispersionen können auch mit anderen organischen Bindermaterialien wie z.B. Polymeren oder Harzen versetzt werden, die ebenfalls eine verbesserte Produktqualität des Sinterwerkstoffes ermöglichen wie z.B. Verbesserung der Porenfreiheit oder der optischen Transmission oder einen erleichterten Prozeß mit höheren Füllgraden und geringerem Trocken-/Sinterschrumpf.

- e) Feststoffanteile der bereits erwähnten Granulate von 1 Gew.% bis 75 Gew.%, vorzugsweise 5 Gew.% bis 50 Gew.% 15 innerhalb einer wäßrigen Dispersion, die einen pH-Wert zwischen pH = 1...6 oder pH = 8...12 besitzt und auf den entsprechenden pH-Wert eingestellt wird mit organischen oder anorganischen Säuren oder Basen und ggf. weitere Zusatzstoffe enthalten kann, wie z.B. Metallalkoxide der 20 Formel Me(OR)x, vorzugsweise Tetraethoxysilan. Derartigen Dispersionen können pyrogen erzeugte Oxide in einem Gewichtsanteil zwischen 1...65 Gew.%, vorzugsweise 1...50 Gew.% zugesetzt werden wie z.B. Siliciumdioxid, Titandioxid, Aluminiumoxid, Zirkondioxid oder Mischoxide 25 der entsprechenden Metalle. Die entsprechenden pyrogenen Oxide können der Dispersion sowohl unverdichtet als auch nach Durchführung einer andersartigen Vorverdichtung zugesetzt werden, als in DE 196 01 415 Al beschrieben.
- f) Feststoffanteile der bereits erwähnten Granulate von 1 30 Gew.% bis 75 Gew.%, vorzugsweise 5 Gew.% bis 50 Gew.% innerhalb einer wäßrigen Dispersion, die einen pH-Wert zwischen pH = 1...6 oder pH = 8...12 besitzt und auf den entsprechenden pH-Wert eingestellt wird mit organischen oder anorganischen Säuren oder Basen und weitere 35 Zusatzstoffe enthalten kann, die ein verbessertes Dispergieren, Gelieren, Trocknen und Reinigen sowie Sintern

des späteren Sinterwerkstoffes ermöglichen, wie z.B.

Metallalkoxide der Formel Me(OR)_x, vorzugsweise

Tetraethoxysilan. Derartige Dispersionen können
erfindungsgemäß mit Salzen oder Oxiden eines Metalloids und

5 / oder Metalls versetzt werden.

Gegenstand der Erfindung ist die Verwendung der oben erwähnten Granulate aus pyrogen erzeugtem Siliciumdioxid zur Herstellung von Sinterwerkstoffen, insbesondere Sintergläsern, dadurch gekennzeichnet, daß die eingesetzten 10 Granulate folgende Eigenschaften besitzen:

- a) die Granulate besitzen nach einem nachgeschalteten Verdichtungsschritt gemäß DE 196 01 415 Al eine Stampfdichte von 150 g/l bis 800 g/l, vorzugsweise 200 bis 500 g/l, eine Granulatkorngröße von 10 bis 800 μm und eine 15 BET- Oberfläche von 10 bis 500 m²/g, vorzugsweise 20 bis 130 m²/g.
 - b) die Granulate nach DE 196 01 415 A1 auf Basis von pyrogen hergestelltem Siliciumdioxid besitzen folgende physikalisch-chemische Daten:
- Mittlerer Korndurchmesser: 25 bis 120 μ m, BET-Oberfläche: 40 bis 400 m²/g, Porenvolumen: 0,5 bis 2,5 ml/g, Porenverteilung: keine Poren < 5nm, nur Meso- und Makroporen, pH-Wert: 3,6 bis 8,5, Stampfdichte: 220 bis 700 g/l.
- 25 Gegenstand der Erfindung sind Verfahren zur Herstellung von Sinterwerkstoffen insbesondere Sintergläsern, dadurch gekennzeichnet, daß man pyrogen hergestelltes Siliciumdioxid auf bekanntem Wege verdichtet und / oder granuliert, in eine Dispersion überführt, die Dispersion 30 geliert, trocknet, den entstehenden Grünkörper ggf. reinigt sowie anschließend sintert. Das Gelieren kann zu unterschiedlichen Formen wie z.B. Gelformkörpern, Gelfasern, gelierten Schichten oder Beschichtungen auf einem Substrat aus Glas oder Metall erfolgen. Diese 35 Gelformkörper oder Gelschichten können nach ihrer Trocknung

und Reinigung so gesintert werden, daß ein fester Formkörper oder eine feste Beschichtung ensteht und der resultierende Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist.

- 5 Gegenstand der Erfindung sind Verfahren zur Herstellung von Sinterwerkstoffen insbesondere Sintergläsern, dadurch gekennzeichnet, daß man pyrogen hergestelltes Siliciumdioxid auf bekanntem Wege verdichtet und / oder granuliert, und danach:
- a) die Granulate ohne Zuhilfenahme einer Flüssigkeit in eine Form einbringt oder auf eine Oberfläche aufbringt, anschließend ggf. einen weiteren Verdichtungsschritt vornimmt, innerhalb dessen der Formkörper oder die Schicht unter hohem äußerem mechanischen Druck (Preßdruck z.B.
- 15 1...120 MPa) in Gegenwart von Atmosphärendruck oder bei vermindertem Druck verpreßt und weiter verdichtet werden. Der nach dem Preßvorgang entstandene Formkörper oder die verdichtete Beschichtung kann ggf. mit gasförmigen Substanzen wie Chlor oder Thionylchlorid bei Temperaturen
- zwischen 700...1000 °C gereinigt und durch einen Sinterschritt bei einer Temperatur zwischen 1000 bis 1800 °C, vorzugsweise 1100° bis 1600°C so gesintert werden, daß der entstehende Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist.
- b) Granulate auf Formkörper und Oberflächen durch thermische oder andere hochenergetische Verfahren aufbringt, wie z.B. Flammspritzen, Plasmabeschichtung oder Mikrowellensinterung, innerhalb derer ein fester Formkörper oder eine feste Beschichtung ensteht und der resultierende 30 Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist.
 - c) die erwähnten Granulate mittels Einwirkung von thermischer, elektrischer oder elektromagnetischer Energie, so z.B. durch Brenner, Plasmafackeln oder
- 35 Mikrowellenstrahlung entweder vor dem Erhitzen oder im

Anschluß daran in eine beliebige Form bringt und dann so sintert, daß der entstehende Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist oder aber die Granulate teilweise oder vollständig aufschmilzt, diese vor dem Erhitzen oder im Anschluß daran in eine beliebige Form bringt und in dieser Form erstarren läßt oder zum Beschichten anderer Werkstoffe wie z.B. Glas oder Metall nutzt und sie ggf. anschließend nachbehandelt.

- 10 Gegenstand der Erfindung ist die Verwendung von Sinterwerkstoffen insbesondere Sintergläsern oder Gläsern für die Herstellung von Glasformkörpern wie z.B. Lichtleitfaser-Vorformkörper (sog. "Overcladding Tubes" oder "Core Rods"), optische Linsen, optische Gitter,
- 15 Glastiegel (sog. "Crucibles"), elektrische Isolatoren, thermische Isolatoren, magnetische Isolatoren, Prismen, Behältnisse oder Apparate für die chemische oder pharmazeutische Industrie, Ingots, Formkörper für die Elektronikindustrie, Glasbarren als Rohstoff für die
- 20 Weiterverarbeitung, Formkörper mit hohen Anforderungen an die Formtreue nach dem Prozeß.

Gegenstand der Erfindung ist die Verwendung von Sinterwerkstoffen insbesondere Sintergläsern oder Gläsern zum Beschichten von anderen Werkstoffen wie Metall, 25 Kunststoff oder Glas mit Schichten aus Werkstoffen.

Gegenstand der Erfindung ist die Verwendung von Sinterwerkstoffen insbesondere Sintergläsern oder Gläsern zum Herstellen von faserigen Werkstoffen oder Fasern.

Gegenstand der Erfindung ist die Verwendung von Granulaten 30 für die Herstellung von Gläsern, insbesondere Sintergläsern, Keramiken, Verbundwerkstoffen, innerhalb derer die Granulate als Verstärkerfüllstoff wirken, als Verstärkerfüllstoffe in Metallen, Gläsern, Polymeren, Elastomeren, Lacken oder Flüssigkeiten.

Gegenstand der Erfindung ist die Verwendung von Dispersionen für die Herstellung von Gläsern, insbesondere Sintergläsern sowie zum Polieren von Halbleitermaterialien oder elektrischen Schaltkreisen.

- In einer bevorzugten Ausführungsform der Erfindung kann man ein pyrogen hergestelltes Siliciumdioxid, das auf bekannten Wege gemäß DE 196 01 415 Al granuliert beziehungsweise verdichtet wurde, zur Herstellung von Sinterwerkstoffen verwenden.
- Das derartig verdichtete beziehungsweise granulierte Siliciumdioxid kann ein pyrogen hergestelltes Oxid mit einer BET-Oberfläche von 10 bis 500 m 2 /g, mit einer Stampfdichte von 150 bis 800 g/l und einer Granulatkorngröße von 10 bis 800 µm sein.
- 15 Erfindungsgemäß können auch Mischungen von verdichtetem und unverdichtetem Siliciumdioxid eingesetzt werden.

Das verdichtete pyrogene Siliciumdioxid kann in einer Dispersion mit Salzen oder Oxiden eines Metalloids und / oder Metalls versetzt werden.

20 Innerhalb der Dispersion können auch Mischungen von verdichteten und unverdichteten pyrogen hergestellten Siliciumdioxiden hergestellt werden.

Unter den Begriffen "pyrogen erzeugter Kieselsäure",
"pyrogen erzeugtem Siliciumdioxid", "pyrogener Kieselsäure"

25 oder "pyrogenem Siliciumdioxid" sollen nachfolgend
feinstteilige, nanoskalige Pulver verstanden werden, die
durch Umsetzung von gasförmigem Siliciumtetrachlorid in
einer Hochtemperaturflamme hergestellt werden, wobei die
Flamme mit Wasserstoff und Sauerstoff gespeist wird und ihr
30 ggf. Wasserdampf zugeleitet werden kann.

Unter dem Begriff "Granulat" sollen nachfolgend pyrogen erzeugte Siliciumdioxidpulver verstanden werden, die mittels des in DE 196 01 415 Al beschriebenen

Verdichtungsverfahrens oder analog zu diesem Verfahren hochverdichtet werden.

Unter dem Begriff "Dispersion" soll nachfolgend die homogene, d.h. extrem gleichmäßige Verteilung von __ 5 unverdichtetem oder verdichtetem, d.h. "granuliertem" pyrogenen Siliciumdioxid in einer Flüssigkeit wie Wasser, Ethanol oder einem organischen Lösemittel verstanden werden.

Unter dem Begriff "Sinterwerkstoff" oder "Sintergläser"

10 sollen Werkstoffe oder Gläser verstanden werden, die aus feinstteiligen Pulvern mittels eines pulvertechnologischen Verfahrens und einem anschließenden Sinterschritt hergestellt werden.

Unter dem Begriff "Sinterverfahren" sollen Verfahren

15 verstanden werden, bei denen feinstteilige Pulver nach
Anwendung von Wärme oder Hitze in feste Formkörper oder

Schichten übergehen, die nur noch teilweise oder gar keine
Poren mehr besitzen.

Unter dem Begriff "Gelkörper" sollen Formkörper verstanden 20 werden, die nach dem Gelieren, d.h. nach dem Erstarren in nassem oder feuchtem Zustand auftreten und ein Skelett aus miteinander verbundenen Partikeln besitzen, das mit Flüssigkeit gefüllt ist.

Unter dem Begriff "Grünkörper" sollen getrocknete Gelkörper 25 verstanden werden, bei denen die Flüssigkeit aus dem Partikelskelett entfernt wurde und die eine hohe Porosität besitzen.

Vorteile der erfindungsgemäßen Sinterwerkstoffe, insbesondere Sintergläser sind die verbesserte optische 30 Transparenz von Gläsern, verbesserte optische Homogenität, verbesserte chemische oder mechanische Beständigkeit von Schichten auf Substratmaterialien sowie die verbesserte chemische oder mechanische Belastbarkeit von Formkörpern

oder Fasern gegenüber Werkstoffen oder Gläsern, die mit bisherigen "Sol-Gel-Verfahren", "kolloidalen Sol-Gel-Verfahren" oder aber mittels eines konventionellen Schmelzprozesses hergestellt wurden.

5 Das erfindungsgemäße Pulvergranulat weist folgende Vorteile auf:

Mit den hochverdichteten Pulvern läßt sich ein höherer Füllgrad der Dispersionen erzeugen.

Der höhere Füllgrad der Dispersion bewirkt bei den daraus

10 hergestellten Werkstoffen bessere Produkteigenschaften, wie

zum Beispiel bessere Transparenz, durch eine geringere

Anzahl von Blaseneinschlüssen und weniger Rissen.

Gleichzeitig ergeben sich durch die Verwendung

hochverdichteter Pulver auch verfahrenstechnische Vorteile:

15 So lassen sich beispielsweise Dispersionen mit Hilfe des hochverdichteten Pulvers einfacher herstellen.

Die verfahrenstechnischen Vorteile bei der Verwendung höhergefüllter Dispersionen bestehen außerdem bei Sinterwerkstoffen in der Verringerung des

20 Grünkörperschrumpfes oder des Sinterschrumpfes.

Die Verwendung derartiger Pulver bewirkt weitere verfahrenstechnische Vorteile. So kann durch die Beeinflussung der Feinteiligkeit der eingesetzten Pulver oder der Porosität des Grünkörpers die Sintertemperatur so abgesenkt werden, wie dies bei Verwendung anderer Pulver oder anderer Herstellprozesse nicht ohne Qualitätsverlust für die späteren Sinterwerkstoffe möglich ist.

Die erfindungsgemäße Verwendung der hochverdichteten Pulver führt außerdem zu einer besseren Verarbeitbarkeit innerhalb des pulvertechnologischen Herstellprozesses durch eine verbesserte Kapillar- und Porenstruktur des Gelkörpers.

Durch die Verwendung derartiger hochverdichteter Pulver kann somit die Trocknung des Gelkörpers vereinfacht und die spätere Produktqualität verbessert werden.

Die beschriebenen Sinterwerkstoffe, insbesondere Sintergläser oder Gläser können kommerziell genutzt werden zur Herstellung von Glasformkörpern wie z.B.
Lichtleitfaser-Vorformkörper (sog. "Overcladding Tubes"

5 oder "Core Rods"), optischen Linsen, optischen Gittern,
Glastiegeln (sog. "Crucibles"), elektrischen Isolatoren,
thermischen Isolatoren, magnetischen Isolatoren, Prismen,
Behältnissen oder Apparaten für die chemische oder
pharmazeutische Industrie, Ingots, Formkörpern für die

10 Elektronikindustrie, Glasbarren als Rohstoff für die
spätere Weiterverarbeitung, Formkörpern mit hohen
Anforderungen an die Formtreue nach dem Prozeß.

Derartige Sinterwerkstoffe können kommerziell überdies zum Beschichten von anderen Werkstoffen wie Metall, Kunststoff oder Glas mit Schichten aus Sinterglas oder Glas genutzt werden. Möglich ist die Verwendung von Sinterwerkstoffen, wie Sintergläsern oder Gläsern auch zum Herstellen von faserigen Werkstoffen oder Fasern.

Die beschriebenen Granulate können für die Herstellung von Gläsern, insbesondere Sintergläsern, Keramiken, oder Verbundwerkstoffen genutzt werden, innerhalb derer die Granulate als Verstärkerfüllstoff wirken sowie als Verstärkerfüllstoffe in Metallen, Gläsern, Polymeren, Elastomeren, Lacken oder Flüssigkeiten dienen.

25 Die beschriebenen Dispersionen können zur Herstellung von Gläsern, insbesondere Sintergläsern sowie zum Polieren von Halbleitermaterialien oder elektrischen Schaltkreisen eingesetzt werden.

Beispiel 1

Ein pyrogen erzeugtes Siliciumdioxid mit einer BET-Oberfläche von 90 m²/g und einer Schüttdichte von 35 g/l und einer Stampfdichte von 59 g/l wird nach DE 196 014 14 5 Al verdichtet.

Das verdichtete Siliciumdioxid besitzt eine BET-Oberfläche von 90 m^2/g und eine Stampfdichte von 246 g/l.

Zunächst werden 180 ml destilliertes Wasser in einem Gefäß vorgelegt und mit einer 30 Gew.% KOH-Lösung vor Beginn des Pulvereintrages auf den pH-Wert 11 eingestellt.

Anschließend werden mittels eines Dissolvers mit Dissolverscheibe nach und nach 120 g dieses hochverdichteten Pulvergranulates in das Wasser eingetragen; die Drehzahl des Dissolvers sollte dabei ca.1000 U/min betragen. Nachdem das hochverdichtete Pulver vollständig in die Suspension eingearbeitet wurde, wird die Suspension mittels Dissolver noch ca. 30 min vordispergiert.

Nach dieser Zeit wird die vordispergierte Suspension

20 mittels eines Ultra-Turrax Rotor-StatorDispergieraggregates bei 10000 U/min ca. 120 min lang
dispergiert und während dieser Dispergierung gekühlt. Nach
dem Dispergierschritt wird eine Dispersion erhalten, die
nach 24 Stunden Standzeit eine Viskosität im Bereich von

25 200 bis 250 mPas/s bei 50 U/min besitzt (gemessen mit einem
Brookfield-Viskosimeter mit Spindel 2).

Beispiel 2

Ein pyrogen erzeugtes Siliciumdioxid besitzt eine BET-Oberfläche von 90 m²/g und eine Stampfdichte von 59 g/l. 30 Dieses nicht hochverdichtete Pulver wird zum Vergleich mit Beispiel 1 eingesetzt.

Zunächst werden 180 ml destilliertes Wasser in einem Gefäß vorgelegt und mit einer 30 Gew.% KOH-Lösung vor Beginn des

Pulvereintrages auf den pH-Wert 11 eingestellt.

Anschließend wird mittels eines Dissolvers mit

Dissolverscheibe nach und nach das unverdichtete Pulver in
das Wasser eingetragen; die Drehzahl des Dissolvers sollte

5 dabei ca.1000 U/min betragen. Vom unverdichteten Pulver
lassen sich in die Suspension jedoch nur 96 g einrühren
ohne daß die Dispersion zu zähflüssig wird, verglichen mit
den 120 g aus Beispiel 1. Nachdem das Pulver vollständig in
die Suspension eingearbeitet wurde, wird die Suspension

10 mittels Dissolver noch ca. 30 min vordispergiert.

Nach dieser Zeit wird die vordispergierte Suspension mittels eines Ultra-Turrax Rotor-StatorDispergieraggregates bei 10000 U/min ca. 120 min lang dispergiert und während dieser Dispergierung gekühlt. Nach 15 dem Dispergierschritt wird eine Dispersion erhalten, die nach 24 Stunden Standzeit eine Viskosität im Bereich von 330 bis 460 mPas/s bei 50 U/min besitzt (gemessen mit einem Brookfield-Viskosimeter mit Spindel 2). Gegenüber Beispiel 1 mit einem Feststoffanteil von 40 Gew.% Granulat an der 20 Dispersion lassen sich vom unverdichteten Pulver nur ca. 35 Gew.% in eine Dispersion überführen. Überdies ist bei Beispiel 2 die Viskosität der Dispersion deutlich höher, als bei Beispiel 1, was das kolloidale-Sol-Gel-Verfahren erschwert.

25 Beispiel 3

Ein pyrogen erzeugtes Siliciumdioxid mit einer BET-Oberfläche von $50~\text{m}^2/\text{g}$ und einer Stampfdichte von 130~g/l wird nach DE 196 014 14 Al verdichtet.

Das verdichtete Siliciumdioxid besitzt eine BET-Oberfläche 30 von 50 m²/g und eine Stampfdichte von 365 g/l.

Zunächst werden 180 ml destilliertes Wasser in einem Gefäß vorgelegt und mit einer 30 Gew.% KOH-Lösung vor Beginn des Pulvereintrages auf den pH-Wert 11 eingestellt.
Anschließend werden mittels eines Dissolvers mit

Dissolverscheibe nach und nach 220 g dieses hochverdichteten Pulvergranulates in das Wasser eingetragen; die Drehzahl des Dissolvers sollte dabei ca.1000 U/min betragen. Nachdem das hochverdichtete Pulver vollständig in die Suspension eingearbeitet wurde, wird die Suspension mittels Dissolver noch ca. 30 min vordispergiert.

Nach dieser Zeit wird die vordispergierte Suspension mittels eines Ultra-Turrax Rotor-Stator-

10 Dispergieraggregates bei 10000 U/min ca. 120 min lang dispergiert und während dieser Dispergierung gekühlt. Die erhaltene Dispersion hat einen Feststoffanteil von ca. 55 Gew%. des hochverdichteten Granulates.

Beispiel 4

15 Ein pyrogen erzeugtes Siliciumdioxid besitzt eine BET-Oberfläche von 50 m²/g und eine Stampfdichte von 130 g/l. Dieses nicht hochverdichtete Pulver wird zum Vergleich mit Beispiel 3 eingesetzt.

Zunächst werden 180 ml destilliertes Wasser in einem Gefäß

20 vorgelegt und mit einer 30 Gew.% KOH-Lösung vor Beginn des
Pulvereintrages auf den pH-Wert 11 eingestellt.

Anschließend wird mittels eines Dissolvers mit
Dissolverscheibe nach und nach das unverdichtete Pulver in
das Wasser eingetragen; die Drehzahl des Dissolvers sollte

25 dabei ca.1000 U/min betragen. Vom unverdichteten Pulver
lassen sich in die Suspension jedoch nur 180 g einrühren
ohne daß die Dispersion zu zähflüssig wird, verglichen mit
den 220 g aus Beispiel 3. Nachdem das Pulver vollständig in
die Suspension eingearbeitet wurde, wird die Suspension

30 mittels Dissolver noch ca. 30 min vordispergiert.

Nach dieser Zeit wird die vordispergierte Suspension mittels eines Ultra-Turrax Rotor-Stator-Dispergieraggregates bei 10000 U/min ca. 120 min lang dispergiert und während dieser Dispergierung gekühlt.

Gegenüber Beispiel 3 mit einem Gewichtsanteil von 55 Gew.% Granulat an der Dispersion lassen sich vom unverdichteten Pulver nur ca. 50 Gew.% in eine Dispersion überführen.

Beispiel 5

5 Ein pyrogen erzeugtes Siliciumdioxid mit einer BET-Oberfläche von 90 m²/g und einer Schüttdichte von 35 g/l und einer Stampfdichte von 59 g/l wird nach DE 196 014 14 Al verdichtet.

Das verdichtete Siliciumdioxid besitzt eine BET-Oberfläche von 90 m^2/g und eine Stampfdichte von 246 g/l.

17,2 g dieses Pulvers werden mit 27 ml dest. Wasser und 2, 57 ml Tetramethylammoniumhydroxid zu einer homogenen Dispersion angerührt, wie in den Beispiele 1 bis 4 beschrieben.

15 Nach Fertigstellen der Dispersion werden 1 ml Essigsäureethylester zugegeben und die Dispersion sofort in eine Form gegossen.

Nach 12 Minuten ist die Dispersion geliert und der entstandene Gelkörper wird nach einer Stunde der Form 20 entnommen und bei Raumtemperatur 6 Tage getrocknet.

Durch die Trocknung entsteht ein mikroporöser Grünkörper.

Dieser wird mittels Zonensinterung unter Vakuum bei 1400 °C für vier Stunden gesintert. Es entsteht ein Sinterglaskörper ohne sichtbare Blasen oder Poren.

25 Beispiel 6

Ein pyrogen erzeugtes Siliciumdioxid mit einer BET-Oberfläche von 300 m^2/g und einer Schüttdichte von 30 g/l und einer Stampfdichte von 50 g/l wird nach DE 196 014 14 Al verdichtet.

Das verdichtete Siliciumdioxid besitzt eine BET-Oberfläche von $300~\text{m}^2/\text{g}$ und eine Stampfdichte von 289~g/l.

11,2 g dieses Pulvers werden mit 27 ml dest. Wasser und
2,57 ml Tetramethylammoniumhydroxid zu einer homogenen
5 Dispersion verarbeitet, wie in den Beispielen 1 bis 4
beschrieben. Nach Fertigstellen der Dispersion werden
dieser 1 ml Essigsäureethylester zugegeben und die
Dispersion sofort in eine Form gegossen.

Nach 20 Minuten ist die Dispersion geliert. Der entstandene 10 Gelkörper wird nach einer Stunde der Form entnommen und bei Raumtemperatur 7 Tage getrocknet.

Durch die Trocknung entsteht ein mikroporöser Grünkörper.

Dieser wird mittels Zonensinterung unter Vakuum bei 1400 C für vier Stunden gesintert. Es entsteht ein

15 Sinterglaskörper ohne sichtbare Blasen oder Poren.

Beispiel 7

Ein pyrogen erzeugtes Siliciumdioxid mit einer BET-Oberfläche von 200 m 2 /g und einer Schüttdichte von 35 g/l und einer Stampfdichte von 50 g/l wird nach DE 196 014 14

20 Al verdichtet.

Das verdichtete Siliciumdioxid besitzt eine BET-Oberfläche von 200 m^2/g und eine Stampfdichte von 219 g/l.

18 g dieses Pulvers werden im Trockenschrank bei 105 °C 24 Stunden lang getrocknet. Danach wird das Pulver trocken 25 uniaxial zu einen Formkörper mit 10 mm Durchmesser gepreßt.

Die Pressung erfolgt in einer Stahlform mit einem Preßdruck von 51,2 MPa und einer Preßdauer von 90 Sekunden.

Der Formkörper wird in einem Zonensinterofen unter Vakuum bei 1500 C 5 h lang gesintert. Es entsteht ein

30 Sinterglaskörper ohne sichtbare Blasen oder Poren.

10

Patentansprüche

1. Sinterwerkstoffe, insbesondere Sintergläser, die mittels eines Formgebungs- oder Verdichtungsverfahrens, ggf. einer anschließenden Reinigung und ggf. einem anschließenden Sinterverfahren hergestellt werden und dadurch gekennzeichnet sind, daß

a) zu ihrer Herstellung pyrogen hergestelltes

- Siliciumdioxid verwendet wird, das mittels eines nachgeschalteten Verdichtungsschritts gemäß DE 196 01 415 A1 zu Granulaten verdichtet wurde und eine Stampfdichte von 150 g/l bis 800 g/l, vorzugsweise 200 bis 500 g/l, eine Granulatkorngröße von 10 bis 800 µm und eine BET- Oberfläche von 10 bis 500 m²/g, vorzugsweise 20 bis 130 m²/g besitzt,
- 15 b) zu ihrer Herstellung Granulate nach DE 196 01 415 Al auf Basis von pyrogen hergestelltem Siliciumdioxid mit den folgenden physikalisch-chemischen Daten verwendet werden:
- Mittlerer Korndurchmesser: 25 bis 120 µm, BET
 Oberfläche: 40 bis 400 m²/g, Porenvolumen: 0,5 bis 2,5 ml/g, Porenverteilung: keine Poren < 5nm, nur Meso- und Makroporen, pH-Wert: 3,6 bis 8,5, Stampfdichte: 220 bis 700 g/l.
- Sinterwerkstoffe nach Anspruch 1), dadurch
 gekennzeichnet, daß die in Anspruch 1) erwähnten
 Granulate mittels eines Verfahrens der folgenden Art zum
 Sinterwerkstoff verarbeitet werden:
 - a) Herstellung einer Dispersion aus 10 Gew.% bis 85 Gew.%, vorzugsweise 25 Gew.% bis 70 Gew.%
- 30 Feststoffanteil der Granulate und einer polaren oder unpolaren anorganischen oder organischen Flüssigkeit, vorzugsweise Wasser, Ethanol oder einem aliphatischen Kohlenwasserstoff; danach Umfüllen der Dispersion in eine Form oder Beschichtung von Oberflächen mit dieser Dispersion, Einleitung des Gelierens der Dispersion und
- 35 Dispersion, Einleitung des Gelierens der Dispersion und Trocknung des Gelkörpers oder der gelkörperartigen

30

Beschichtung. Der nach dem Trocknungsvorgang entstandene Grünkörper oder die grünkörperartige Beschichtung kann ggf. mit gasförmigen Substanzen wie Chlor oder Thionylchlorid bei Temperaturen zwischen 700...1000 °C gereinigt und danach ggf. durch einen Sinterschrift bei einer Temperatur zwischen 1000 bis 1800 °C, vorzugsweise 1100° bis 1600°C so gesintert werden, daß der entstehende Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist.

- 10 b) Einbringen der Granulate gemäß Anspruch 1) ohne Zuhilfenahme einer Flüssigkeit in eine Form oder Aufbringen der Granulate auf eine Oberfläche, anschließend ggf. ein weiterer Verdichtungsschritt, innerhalb dessen der Formkörper oder die Schicht unter 15 hohem außerem mechanischen Druck (Preßdruck z.B. 1...120 MPa) in Gegenwart von Atmosphärendruck oder bei vermindertem Druck verpreßt und weiter verdichtet werden. Der nach dem Preßvorgang entstandene Formkörper oder die verdichtete Beschichtung kann ggf. mit 20 qasförmigen Substanzen wie Chlor oder Thionylchlorid bei Temperaturen zwischen 700...1000 °C gereinigt und durch einen Sinterschritt bei einer Temperatur zwischen 1000 bis 1800 °C, vorzugsweise 1100° bis 1600°C so gesintert werden, daß der entstehende Sinterkörper / die 25 Sinteroberfläche völlig dichtgesintert oder noch
 - c) Aufbringen von Granulaten gemäß Anspruch 1) auf Formkörper und Oberflächen durch thermische oder andere hochenergetische Verfahren wie z.B. Flammspritzen, Plasmabeschichtung oder Mikrowellensinterung, innerhalb derer ein fester Formkörper oder eine feste Beschichtung ensteht und der resultierende Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist.

teilweise porös ist.

35 3. Werkstoffe oder Gläser, dadurch gekennzeichnet, daß bei der Herstellung der Werkstoffe oder Gläser die in Anspruch 1) erwähnten Granulate mittels Einwirkung von

10

thermischer, elektrischer oder elektromagnetischer Energie, so z.B. durch Brenner, Plasmafackeln oder Mikrowellenstrahlung

- a) vor dem Erhitzen oder im Anschluß daran in eine beliebige Form gebracht und dann so gesintert werden, daß der entstehende Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist
- b) teilweise oder vollständig aufgeschmolzen werden, vor dem Erhitzen oder im Anschluß daran in eine beliebige Form gebracht werden und in dieser Form erstarren oder zum Beschichten anderer Werkstoffe wie z.B. Glas oder Metall genutzt werden und ggf. anschließend nachbehandelt werden.
- 4. Gläser der Ansprüche 1) bis 3) dadurch gekennzeichnet, . 15 daß die Sinterung zu einem transparenten Glaskörper oder einer transparenten Glasschicht innerhalb des √ Viskositätsbereiches des Glases zwischen 10⁸ bis 10¹² dPas, bevorzugt jedoch zwischen 10¹⁰ und 10¹¹ dPas erfolgt.
 - 20 5. Gläser der Ansprüche 1) bis 3) dadurch gekennzeichnet, daß die Gläser mindestens wasserbeständig nach der hydrolytischen Klasse 2, vorzugsweise wasserbeständig nach der hydrolytischen Klasse 1 sind.
 - 6. Gläser der Ansprüche 1) bis 3) dadurch gekennzeichnet, 25 daß die Eigenschaften der aus entsprechenden, feinsten Pulverteilchen gesinterten oder erschmolzenen Gläser übereinstimmend sind mit den Eigenschaften eines Glases mit identischer chemischer Zusammensetzung, welches über einen konventionellen Schmelzprozeß ohne die Verwendung der Granulate gemäß Anspruch 1) hergestellt wurde. Die 30 Herstellung derartiger Sintergläser erfordert deutlich niedrigere Sintertemperaturen, verglichen mit der Schmelztemperatur, die zur Herstellung eines Glases mit identischer Zusammensetzung innerhalb eines 35 konventionellen Schmelzprozesses benötigt wird.

25

30

- 7. Dispersionen nach Anspruch 2), die zur Herstellung von Sinterwerkstoffen nach Anspruch 1) verwendet werden und durch folgende Eigenschaften gekennzeichnet sind:
 - a) Feststoffanteile von Granulaten nach Anspruch 1) von 10 Gew.% bis 85 Gew.%, vorzugsweise 25 Gew.% bis 70 Gew.% innerhalb einer Dispersion mit einer polaren oder unpolaren anorganischen oder organischen Flüssigkeit, vorzugsweise Wasser, Ethanol oder einem aliphatischen Kohlenwasserstoff.
- b) Feststoffanteile von Granulaten nach Anspruch 1) von 10 Gew.% bis 85 Gew.%, vorzugsweise 25 Gew.% bis 70 Gew.% innerhalb einer wäßrigen Dispersion, die einen pH-Wert zwischen pH = 1...6 oder pH = 8...12 besitzt und auf den entsprechenden pH-Wert eingestellt wird mit organischen Säuren wie z.B. Ameisensäure, Citronensäure oder Trichloressigsäure, mit anorganischen Säuren wie z.B. Salpetersäure, Phosphorsäure oder Schwefelsäure, mit organischen Basen wie z.B. Triethylamin, Pyridin oder Tetramethylammoniumhydroxid und mit anorganischen
 Basen wie z.B. Kaliumhydroxid, Calciumhydroxid oder Ammoniumhydroxid.
 - c) Feststoffanteile von Granulaten nach Anspruch 1) von 10 Gew.% bis 85 Gew.%, vorzugsweise 25 Gew.% bis 70 Gew.% innerhalb einer wäßrigen Dispersion, die einen pH-Wert zwischen pH = 1...6 oder pH = 8...12 besitzt und auf den entsprechenden pH-Wert eingestellt wird mit organischen oder anorganischen Säuren oder Basen und weitere Zusatzstoffe enthält, die erhöhte Granulatanteile und eine verbesserte Dispergierbarkeit ermöglichen wie z.B. Polymere oder ionische Verbindungen, die zu einer sterischen oder ionischen Stabilisierung der Dispersion beitragen und ein Absetzen von Feststoffanteilen verringern oder unterbinden und / oder ein vorzeitiges Gelieren verhindern.
- d) Feststoffanteile von Granulaten nach Anspruch 1) von 10 Gew.% bis 85 Gew.%, vorzugsweise 25 Gew.% bis 70 Gew.% innerhalb einer wäßrigen Dispersion, die einen pH-

10

15

20

25

30

Wert zwischen pH = 1...6 oder pH = 8...12 besitzt und auf den entsprechenden pH-Wert eingestellt wird mit organischen oder anorganischen Säuren oder Basen und weitere Zusatzstoffe enthalten kann, die ein verbessertes Dispergieren, Gelieren, Trocknen und Reinigen sowie Sintern des späteren Sinterwerkstoffes ermöglichen, wie z.B. Metallalkoxide der Formel Me(OR), wobei Me für ein Metall, vorzugsweise für Silicium, R für eine Alkylgruppe steht und "x" der Wertigkeit des Metallions entspricht. Derartige Dispersionen können auch mit anderen organischen Bindermaterialien wie z.B. Polymeren oder Harzen versetzt werden, die ebenfalls eine verbesserte Produktqualität des Sinterwerkstoffes ermöglichen wie z.B. Verbesserung der Porenfreiheit oder der optischen Transmission oder einen erleichterten Prozeß mit höheren Füllgraden und geringerem Trocken-/Sinterschrumpf.

e) Feststoffanteile von Granulaten nach Anspruch 1) von

- 1 Gew.% bis 75 Gew.%, vorzugsweise 5 Gew.% bis 50 Gew.% innerhalb einer wäßrigen Dispersion, die einen pH-Wert zwischen pH = 1...6 oder pH = 8...12 besitzt und auf den entsprechenden pH-Wert eingestellt wird mit organischen oder anorganischen Säuren oder Basen und ggf. weitere Zusatzstoffe enthalten kann, wie z.B. Metallalkoxide der Formel Me(OR)x, vorzugsweise Tetraethoxysilan.

 Derartigen Dispersionen können pyrogen erzeugte Oxide in einem Gewichtsanteil zwischen 1...65 Gew.%, vorzugsweise 1...50 Gew.% zugesetzt werden wie z.B. Siliciumdioxid, Titandioxid, Aluminiumoxid, Zirkondioxid oder Mischoxide der entsprechenden Metalle. Die entsprechenden pyrogenen Oxide können der Dispersion sowohl unverdichtet als auch nach Durchführung einer andersartigen Vorverdichtung zugesetzt werden, als in DE 196 01 415 A1 beschrieben.
- f) Feststoffanteile von Granulaten nach Anspruch 1) von
 1 Gew.% bis 75 Gew.%, vorzugsweise 5 Gew.% bis 50 Gew.%
 innerhalb einer wäßrigen Dispersion, die einen pH-Wert
 zwischen pH = 1...6 oder pH = 8...12 besitzt und auf den

entsprechenden pH-Wert eingestellt wird mit organischen oder anorganischen Säuren oder Basen und weitere Zusatzstoffe enthalten kann, die ein verbessertes Dispergieren, Gelieren, Trocknen und Reinigen sowie Sintern des späteren Sinterwerkstoffes ermöglichen, wie z.B. Metallalkoxide der Formel Me(OR)_x, vorzugsweise Tetraethoxysilan. Derartige Dispersionen können erfindungsgemäß mit Salzen oder Oxiden eines Metalloids und / oder Metalls versetzt werden.

- 10 8. Verwendung von Granulaten aus pyrogen erzeugtem Siliciumdioxid zur Herstellung von Sinterwerkstoffen, insbesondere Sintergläsern gemäß Anspruch 1), dadurch gekennzeichnet, daß die eingesetzten Granulate folgende Eigenschaften besitzen:
- a) die Granulate besitzen nach einem nachgeschalteten Verdichtungsschritt gemäß DE 196 01 415 Al eine Stampfdichte von 150 g/l bis 800 g/l, vorzugsweise 200 bis 500 g/l, eine Granulatkorngröße von 10 bis 800 µm und eine BET- Oberfläche von 10 bis 500 m²/g,
- 20 vorzugsweise 20 bis 130 m²/g
 - b) die Granulate nach DE 196 01 415 A1 auf Basis von pyrogen hergestelltem Siliciumdioxid besitzen folgende physikalisch-chemische Daten:

Mittlerer Korndurchmesser: 25 bis 120 µm, BETOberfläche: 40 bis 400 m²/g, Porenvolumen: 0,5 bis 2,5 ml/g, Porenverteilung: keine Poren < 5nm, nur Meso- und Makroporen, pH-Wert: 3,6 bis 8,5, Stampfdichte: 220 bis 700 g/l.

- 9. Verfahren zur Herstellung von Sinterwerkstoffen
 insbesondere Sintergläsern nach Anspruch 1), dadurch
 gekennzeichnet, daß man pyrogen hergestelltes
 Siliciumdioxid auf bekanntem Wege verdichtet und / oder
 granuliert, in eine Dispersion überführt, die Dispersion
 geliert, trocknet, den entstehenden Grünkörper ggf.
- reinigt sowie anschließend sintert. Das Gelieren kann zu unterschiedlichen Formen wie z.B. Gelformkörpern,

Gelfasern, gelierten Schichten oder Beschichtungen auf einem Substrat aus Glas oder Metall erfolgen. Diese Gelformkörper oder Gelschichten können nach ihrer Trocknung und Reinigung so gesintert werden, daß ein fester Formkörper oder eine feste Beschichtung ensteht und der resultierende Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist.

- 10. Verfahren zur Herstellung von Sinterwerkstoffen

 insbesondere Sintergläsern nach Anspruch 1), dadurch
 gekennzeichnet, daß man pyrogen hergestelltes
 Siliciumdioxid auf bekanntem Wege verdichtet und / oder
 granuliert, und danach:
- a) die Granulate gemäß Anspruch 1) ohne Zuhilfenahme einer Flüssigkeit in eine Form einbringt oder auf eine Oberfläche aufbringt, anschließend ggf. einen weiteren Verdichtungsschritt vornimmt, innerhalb dessen der Formkörper oder die Schicht unter hohem äußerem mechanischen Druck (Preßdruck z.B. 1...120 MPa) in
- Gegenwart von Atmosphärendruck oder bei vermindertem Druck verpreßt und weiter verdichtet werden. Der nach dem Preßvorgang entstandene Formkörper oder die verdichtete Beschichtung kann ggf. mit gasförmigen Substanzen wie Chlor oder Thionylchlorid bei
- Temperaturen zwischen 700...1000 °C gereinigt und durch einen Sinterschritt bei einer Temperatur zwischen 1000 bis 1800 °C, vorzugsweise 1100° bis 1600°C so gesintert werden, daß der entstehende Sinterkörper / die Sinteroberfläche völlig dichtgesintert oder noch teilweise porös ist.
 - b) Granulate gemäß Anspruch 1) auf Formkörper und Oberflächen durch thermische oder andere hochenergetische Verfahren aufbringt, wie z.B. Flammspritzen, Plasmabeschichtung oder
- Mikrowellensinterung, innerhalb derer ein fester Formkörper oder eine feste Beschichtung ensteht und der resultierende Sinterkörper / die Sinteroberfläche völlig

10

15

dichtgesintert oder noch teilweise porös ist.

- c) die in Anspruch 1) erwähnten Granulate mittels
 Einwirkung von thermischer, elektrischer oder
 elektromagnetischer Energie, so z.B. durch Brenner,
 Plasmafackeln oder Mikrowellenstrahlung entweder vor dem
 Erhitzen oder im Anschluß daran in eine beliebige Form
 bringt und dann so sintert, daß der entstehende
 Sinterkörper / die Sinteroberfläche völlig
 dichtgesintert oder noch teilweise porös ist oder aber
 die Granulate teilweise oder vollständig aufschmilzt,
 diese vor dem Erhitzen oder im Anschluß daran in eine
 beliebige Form bringt und in dieser Form erstarren läßt
 oder zum Beschichten anderer Werkstoffe wie z.B. Glas
 oder Metall nutzt und sie ggf. anschließend
 nachbehandelt.
- 11. Verwendung von Sinterwerkstoffen insbesondere
 Sintergläsern oder Gläsern entsprechend den Ansprüchen
 1) bis 6) für die Herstellung von Glasformkörpern wie
 z.B. Lichtleitfaser-Vorformkörper (sog. "Overcladding
 Tubes" oder "Core Rods"), optische Linsen, optische
 Gitter, Glastiegel (sog. "Crucibles"), elektrische
 Isolatoren, thermische Isolatoren, magnetische
 Isolatoren, Prismen, Behältnisse oder Apparate für die
 chemische oder pharmazeutische Industrie, Ingots,
 Formkörper für die Elektronikindustrie, Glasbarren als
 Rohstoff für die Weiterverarbeitung, Formkörper mit
 hohen Anforderungen an die Formtreue nach dem Prozeß.
- 12. Verwendung von Sinterwerkstoffen insbesondere
 Sintergläsern oder Gläsern zum Beschichten von anderen
 30 Werkstoffen wie Metall, Kunststoff oder Glas mit
 Schichten aus Werkstoffen entsprechend den Ansprüchen 1)
 bis 6).
 - 13. Verwendung von Sinterwerkstoffen insbesondere Sintergläsern oder Gläsern entsprechend den Ansprüchen

- 1) bis 6)zum Herstellen von faserigen Werkstoffen oder Fasern.
- 14. Verwendung von Granulaten entsprechend Anspruch 1) für die Herstellung von Gläsern, insbesondere Sintergläsern, Keramiken, Verbundwerkstoffen, innerhalb derer die Granulate als Verstärkerfüllstoff wirken, als Verstärkerfüllstoffe in Metallen, Gläsern, Polymeren, Elastomeren, Lacken oder Flüssigkeiten.
- 15. Verwendung von Dispersionen entsprechend den Ansprüchen
 2) und 7) für die Herstellung von Gläsern, insbesondere
 Sintergläsern entsprechend den Ansprüchen 1) bis 6)
 sowie zum Polieren von Halbleitermaterialien oder
 elektrischen Schaltkreisen.

Zusammenfassung

Sinterwerkstoffe

Sinterwerkstoffe, insbesondere Sintergläser, hergestellt aus pyrogen erzeugtem Siliciumdioxid, das innerhalb eines

Verdichtungsschrittes zu Siliciumgranulaten verarbeitet wurde sowie die Verwendung derartiger Granulate zur Herstellung von Glasformkörpern.