Quiz 1

Time: 2025/3/14, 15:00-15:45

- 2. (单选) 设 f(x), $g(x) \in F[x]$, 以下说法**错误**的是 ____.
 - A. 在 $F \perp (f(x), g(x)) = 1$ 的充要条件是在 $\mathbb{C} \perp f(x), g(x)$ 没有公共根.
 - B. 在 \mathbb{C} 上 f(x) 没有重根的充要条件是在 F 上 f(x) 没有重因式.
 - C. 在 F 上 f(x) 不可约的充要条件是在 \mathbb{C} 上 f(x) 没有重根.
 - D. 在 \mathbb{C} 上 $f(x) \mid g(x)$ 的充要条件是存在 $h(x) \in F[x]$,使得 g(x) = f(x)h(x).
- 3. 设 f(x), $g(x) \in F[x]$, a, b, c, $d \in F$ 且满足 $ad bc \neq 0$, 证明:

$$(af(x) + bg(x), cf(x) + dg(x)) = (f(x), g(x)).$$

- 4. 己知 $f(x) = x^3 + px^2 + qx + r \in \mathbb{R}[x]$ 的三个根是 $x_1, x_2, x_3 \in \mathbb{R}$.
 - (1) 证明: $p^2 \ge 3q$;
 - (2) 求**首一的**三次实系数多项式 g(x),使得 x_1^2, x_2^2, x_3^2 为其所有根。(要求 g(x) 的系数用 p,q,r 表示)

- 5. 设 $f(x) \in \mathbb{Z}[x]$, 证明:
 - (1) 若 f(x) 1 在 \mathbb{Z} 上有至少四个互异整数根,则 f(x) + 1 在 \mathbb{Z} 上无根;
 - (2) 若存在一个偶数 m 和奇数 n 使得 f(m), f(n) 均为奇数,则 f(x) 在 \mathbb{Z} 上无根。