Lecture 7

Rigid body kinematics: Euler angle sequence

18-24 August, 2021

Euler angles

- I. Any rotation tensor R requires <u>three</u> independent pieces of information: $\hat{\mathbf{n}}$, θ .
- II. **Euler angle representation**. Any R may be represented as <u>three</u> successive rotations θ_i about three <u>known</u> axes $\hat{\mathbf{a}}_i$, i = 1...3:
 - 1. $R = R_3 (\hat{\mathbf{a}}_3, \theta_3) \cdot R_2 (\hat{\mathbf{a}}_2, \theta_2) \cdot R_1 (\hat{\mathbf{a}}_1, \theta_1)$.
 - 2. Rotation axes can *not* be parallel.
 - 3. Euler angle sequence: $\{\hat{\mathbf{a}}_i, \theta_i\}$, i = 1...3.
 - 4. *Infinite* Euler angle sequences possible.
- III. **Equivalently**, a rigid body can go from one orientation to another through *three* successive rotations θ_i about axes $\hat{\mathbf{a}}_i$.
- IV. **Equivalently**, in order to take a rigid body from one orientation to another, rotate its BFCS through *three successive* rotations θ_i about axes $\hat{\mathbf{a}}_i$.

Euler angles

Example Relate CCS $\{\mathscr{E}_0, G, \hat{\mathbf{E}}_i\}$ and $\{\mathscr{E}, G, \hat{\mathbf{e}}_i\}$

- 1. *Application*: Relating orientations of a rigid body, or global CS and BFCS.
- 2. Can find R: $\{\mathscr{E}_0, G, \hat{\mathbf{E}}_i\} \stackrel{\mathsf{R}}{\to} \{\mathscr{E}, G, \hat{\mathbf{e}}_i\}$.
- 3. Find an Euler angle sequence for R.
- I. Step 0. Select an Euler angle sequence.

Use z-x-z or 3-1-3 Euler angle sequence:

- 1. Step 1. Set $\{\hat{\mathbf{a}}_1, \theta_1\} = \{\hat{\mathbf{E}}_3, \varphi\}$.
 - i. Find CCS $\{\mathscr{E}', G, \hat{\mathbf{e}}'_i\}$: $\hat{\mathbf{e}}'_i = \mathsf{R}_{\varphi}(\hat{\mathbf{E}}_3, \varphi) \cdot \hat{\mathbf{E}}_i$
- 2. Step 2. Set $\{\hat{\mathbf{a}}_2, \theta_2\} = \{\hat{\mathbf{e}}'_1, \theta\}$.
 - i. Find CCS $\{\mathscr{E}'', G, \hat{\mathbf{e}}_i''\}$: $\hat{\mathbf{e}}_i'' = \mathsf{R}_{\theta}(\hat{\mathbf{e}}_1', \theta) \cdot \hat{\mathbf{e}}_i'$
- 3. Step 3. Set $\{\hat{\mathbf{a}}_3, \theta_2\} = \{\hat{\mathbf{e}}_3'', \psi\}$.
 - i. Find CCS $\{\mathscr{E}, G, \hat{\mathbf{e}}_i\}$: $\hat{\mathbf{e}}_i = \mathsf{R}_{\psi}(\hat{\mathbf{e}}_3'', \psi) \cdot \hat{\mathbf{e}}_i''$

$$\{\mathscr{E}_{0}, \hat{\mathbf{E}}_{i}\} \xrightarrow{\mathsf{R}_{\varphi}} \{\mathscr{E}', \hat{\mathbf{e}}'_{i}\} \xrightarrow{\mathsf{R}_{\theta}} \{\mathscr{E}'', \hat{\mathbf{e}}''_{i}\} \xrightarrow{\mathsf{R}_{\psi}} \{\mathscr{E}, \hat{\mathbf{e}}_{i}\}$$

$$\mathsf{R} = \mathsf{R}_{\psi}(\hat{\mathbf{e}}''_{3}, \psi) \cdot \mathsf{R}_{\theta}(\hat{\mathbf{e}}'_{1}, \theta) \cdot \mathsf{R}_{\varphi}(\hat{\mathbf{E}}_{3}, \varphi)$$

Euler angles

Aim. Find φ, θ, ψ for $\{\mathscr{E}_0, G, \hat{\mathbf{E}}_i\} \stackrel{\mathsf{R}}{\to} \{\mathscr{E}, G, \hat{\mathbf{e}}_i\}$.

- I. Compute $[R]_{\mathscr{E}_0}$ directly: $R_{ij} = \hat{\mathbf{e}}_j \cdot \hat{\mathbf{E}}_i$.
- II. Compute $[R]_{\mathcal{E}_0}$ for Euler angle sequence:
 - 1. $[R]_{\mathscr{E}_0} = [R_{\psi}(\hat{\mathbf{e}}_3'')]_{\mathscr{E}_0} [R_{\theta}(\hat{\mathbf{e}}_1')]_{\mathscr{E}_0} [R_{\varphi}(\hat{\mathbf{E}}_3)]_{\mathscr{E}_0}$
 - i. Don't know $[R_{\psi}(\hat{\mathbf{e}}_{3}^{"})]_{\mathcal{E}_{0}}$ and $[R_{\theta}(\hat{\mathbf{e}}_{1}^{'})]_{\mathcal{E}_{0}}!$
 - 2. $[R]_{\mathscr{E}_0} = [R_{\varphi}(\hat{\mathbf{E}}_3)]_{\mathscr{E}_0} [R_{\theta}(\hat{\mathbf{e}}_1')]_{\mathscr{E}'} [R_{\psi}(\hat{\mathbf{e}}_3'')]_{\mathscr{E}''}$
 - i. Ordering is <u>reversed</u>. See also Tut. 3.5.
 - 3. Each rotation about a coordinate axis:

$$[\mathsf{R}_{\varphi}]_{\mathscr{E}_0} = \begin{pmatrix} \cos\varphi & -\sin\varphi & 0 \\ \sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ [\mathsf{R}_{\theta}]_{\mathscr{E}'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix},$$

$$[\mathsf{R}_{\boldsymbol{\psi}}]_{\boldsymbol{\mathcal{E}}''} = \begin{pmatrix} \cos \boldsymbol{\psi} & -\sin \boldsymbol{\psi} & 0\\ \sin \boldsymbol{\psi} & \cos \boldsymbol{\psi} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

III. Equate components of $[R]_{\mathcal{E}_0}$ to get φ, θ, ψ

