Stat 121 (Mathematical Statistics I)

Lesson 2.1. Random Variables and their Probability Distributions

Learning Outcomes

At the end of the lesson, students must be able to

- 1. Explain the intuitive and formal definition of a random variable,
- 2. Determine if a function defined on a sample space is a random variable, and
- 3. Construct the probability mass function and cumulative distribution function of a discrete random variable.

What is a random variable?

Intuitively, a random variable assigns a numerical value to each outcome in a sample space (Ω) . For example, if we toss a coin twice, then the sample space is given by $\Omega = \{HH, HT, TH, TT\}$. Suppose we are interested in the number of heads and label this variable as X. Then, for each outcome in Ω , X will take the following values:

$$HH \rightarrow X = 2$$

 $HT \rightarrow X = 1$
 $TH \rightarrow X = 1$
 $TT \rightarrow X = 0$

In short, X = 0, 1, 2. Because the values that X takes on are random, the variable X has a special name. It is called a **random variable**. For purposes of convention, we will use an uppercase letter, such as X, or Y, to denote a random variable and a lowercase letter, such as X or Y, to denote a particular value that a random variable may assume.

In the succeeding discussion we provide mathematical (formal) definitions of a random variable. In these definitions, \mathscr{F} is a sigma-algebra of subsets of Ω . In other words, \mathscr{F} is a collection of events defined on the sample space Ω . P is the probability function defined on these events. The triple (Ω, \mathscr{F}, P) is called a *probability space*.

Definition

Consider the probability space (Ω, \mathscr{F}, P) . A random variable is a real-valued function on Ω , that is $X : \Omega \to \mathbb{R}$, such that for any Borel set B of the real numbers, the set $\{\omega : X(\omega) \in B\}$ belongs to \mathscr{F} for every $\omega \in \Omega$.

Definition

Consider the probability space (Ω, \mathscr{F}, P) . Suppose X is a function from Ω to \mathbb{R} . Then X is called a random variable if, for every $r \in \mathbb{R}$, the set $\{\omega : X(\omega) \leq r\}$ belongs to \mathscr{F} for every $\omega \in \Omega$.

NOTE: The two definitions are equivalent, but we shall use the latter in showing that a function $X : \Omega \to \mathbb{R}$ is a random variable.

Example 2.1.1

Consider the experiment of tossing a single coin. We have $\Omega = \{head, tail\}$. Let the variable X denote the number of heads as follows,

$$X(\omega) = \begin{cases} 1, & \text{if } \omega = head \\ 0, & \text{if } \omega = tail \end{cases}$$

So, the variable X assigns a real number with each outcome of the experiment. Suppose we consider a trivial sigma-algebra such as $\mathscr{F} = \{\phi, \Omega, \{head\}, \{tail\}\}\$. Now,

- 1. If r < 0, then the event $\{\omega : X(\omega) \le r\} = \phi$ since there is no outcome in Ω where X assigns a negative real number. Note that $\phi \in \mathscr{F}$.
- 2. If $0 \le r < 1$, then $\{\omega : X(\omega) \le r\} = \{tail\}$ since there is one outcome in Ω where X assigns a value of zero, which is $\omega = tail$. Note that $\{tail\} \in \mathscr{F}$.
- 3. If $r \geq 1$, then $\{\omega : X(\omega) \leq r\} = \{head, tail\} = \Omega$. Also, $\Omega \in \mathscr{F}$.

Therefore, for each $r \in \mathbb{R}$, the event $\{\omega : X(\omega) \leq r\}$ belongs to \mathscr{F} so X is a random variable.

Example 2.1.2

Suppose we have the finite sample space $\Omega = \{a, b, c, d\}$ and the sigma algebra $\mathscr{F} = \{\phi, \Omega, \{a, b\}, \{c, d\}\}.$

1. Is the function X defined below a random variable?

$$X(\omega) = \begin{cases} 0, & \text{if } \omega = a, b \\ 2, & \text{if } \omega = c, d \end{cases}$$

2. Is the function Y defined below a random variable?

$$Y(\omega) = \begin{cases} 0, & \text{if } \omega = a \\ 2, & \text{if } \omega = b \\ 4, & \text{if } \omega = c \\ 5, & \text{if } \omega = d \end{cases}$$

Solution: Left as a classroom exercise!

Remark

Finding out that the event $\{\omega : X(\omega) \leq r\}$ does not belong to \mathscr{F} in one sub-interval is already sufficient to conclude that a function is not a random variable.

Distribution function of a random variable

With every random variable we will associate its **probability distribution**. The distribution of the random variable X refers to the assignment of probabilities to all events defined in terms of this random variable, that is, events of the form $\{\omega : X(\omega) \leq r\}$, for all $r \in \mathbb{R}$.

Definition

The **cumulative distribution function** (CDF), or simply **distribution function**, of a random variable X, denoted by $F_X(x)$ is defined as the function with domain the real line and range the interval [0,1] which satisfies

$$F_X(x) = P(X \le x) = P(\{\omega : X(\omega) \le r\}), \forall x \in \mathbb{R}.$$

Example 2.1.3

Suppose that in tossing a coin a person stands to win Php2.00 if he rolls heads, and to loss Php1.50 if he rolls tails. Let X represents the winnings of the person on a toss.

- 1. Show that X is a random variable.
- 2. Find the distribution function of X, assuming that the probability of heads is 0.6.

Solution

- 1. Left as a classroom exercise!
- 2. From the definition of the distribution function, we have

$$F_X(x) = P(\{\omega : X(\omega) \le r\}) = P(\phi) = 0$$
, if $x < -1.5$
 $F_X(x) = P(\{\omega : X(\omega) \le r\}) = P(\{tail\}) = 0.4$, if $-1.5 \le x < 2.0$
 $F_X(x) = P(\{\omega : X(\omega) \le r\}) = P(\Omega) = 1$, if $x \ge 2.0$

To summarize, the CDF of X is given by

$$F_X(x) = \begin{cases} 0, & x < -1.5 \\ 0.4, & -1.5 \le x < 2.0 \\ 1, & x \ge 2.0 \end{cases}$$

Theorem

Every CDF of a random variable X has the following properties:

- 1. $0 \le F_X(x) \le 1$
- 2. $F_X(x)$ is non-decreasing, that is, $F_X(a) \leq F_X(b), \forall a \leq b$.
- 3. $\lim_{x \to -\infty} F_X(x) = 0$; $\lim_{x \to \infty} F_X(x) = 1$
- 4. $F_X(x)$ is continuous from the right, that is, $F_X(t^+) = F_X(t)$.

NOTE: The proof of this theorem is left as your reading assignment. You can find this in a lot of books in mathematical statistics or even in the internet.

Probability mass function (PMF) of a discrete random variable

Definition

The support or domain of a random variable X is set of all possible values that it can assume. A random variable X whose support is countable (finitely or infinitely) is called a **discrete** random variable.

Example 2.1.4

Below are a few examples of discrete random variables and their domain.

- 1. The sum of the number of dots on the upturned faces when a pair of dice is rolled. The domain is the set $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$.
- 2. The number of heads when three coins are tossed. The domain is the set $\{0, 1, 2, 3\}$.
- 3. The total number of gadgets owned by students is the set $\{1, 2, 3, 4, \ldots\}$.

In the above examples, it is clear that a discrete random variable assumes values corresponding to the natural numbers or counting numbers, otherwise called the whole numbers.

Definition

Suppose that X is a discrete random variable. The function $p_X(x) = P(X = x)$ is called the probability mass function (PMF) for X.

Remarks

- 1. The PMF $p_X(x)$ consists of two parts:
 - a. the domain of X, and
 - b. a probability assignment $P(X = x), \forall x \in \mathbb{R}$.
- 2. For any discrete probability distribution, the following must be true:

a.
$$p_X(x) = P(X = x) \ge 0$$

b. $\sum_{\forall x} p_X(x) = 1$.

- 3. The PMF of a discrete random variable can be presented as a table, a graph, or a formula.
- 4. Given the PMF of a discrete random variable we can derive its CDF, and vice versa.