Lineare Algebra II (Lehramt)

Florian Hanisch Universität Potsdam, Institut für Mathematik

21. April 2025

Das vorliegende Skript wird noch fortlaufend überarbeitet und verbessert. Ich bin für Hinweise auf Fehler und Verbesserungsvorschläge weiterhin sehr dankbar, bitte einfach direkt an fhanisch@uni-potsdam.de mailen. Bereits in der Vergangenheit wurde mir von verschiedener Seite "zugearbeitet", ich möchte mich dafür bei den Potsdamer Studierenden, Kolleginnen und Kollegen, insbesondere bei Tillmann Bewer, Claudia und Peter Grabs sowie Sophia Zscheischler bedanken!

Diese Vorlesung baut in großen Teilen auf dem Buch *Lineare Algebra und Analytische Geometrie* von Christian Bär (siehe [1]) auf, das aus Campusnetz der Universität Potsdam kostenlos heruntergeladen werden kann. Wir werden die interessierten Leser*innen an einigen Stellen auf dieses Buch verweisen, wenn wir mal ein Argument nicht oder nicht in allen Details ausführen; an anderen Stellen weichen wir allerdings davon ab. Ab & an lohnt sich also ein Blick ins Buch.

Inhaltsverzeichnis

6	Determinanten				
	6.1 Definition und Eigenschaften	3			
	6.2 Permutationen und die Leibnizformel	12			

6 Determinanten

In diesem Kapitel lernen wir die Determinante kennen - eine wichtige Kenngröße von Matrizen und allgemeiner linearen Abbildungen. Wir studieren zunächst algebraische Eigenschaften und Anwendungen, widmen uns dann später aber auch ihrer geometrischen Bedeutung, z.B. bei der Volumenberechnung.

6.1 Definition und Eigenschaften

Wir erinnern kurz an folgende

Notation 6.1 Für K ein Körper und V ein K-Vektorraum bezeichnen wir die Mengen der $n \times n$ -Matrizen bzw. Endomorphismen von V mit

$$Mat(n, K) := Mat(n \times n, K)$$
 $End_K(V) := \{ \varphi : V \to V \mid \varphi \text{ ist linear} \}.$

Wir verwenden nun einen neuen Zugang zur Einführung von mathematischen Strukturen: Wir geben zunächst Eigenschaften an, die die Determinante haben soll und beweisen dann, dass eine Determinante existiert und durch diese Eigenschaften eindeutig festgelegt wird.

Definition 6.2 Sei K ein Körper und $n \in \mathbb{N}$. Eine Abbildung

$$\det: \operatorname{Mat}(n, K) \to K, \quad A \mapsto \det(A)$$

heißt Determinantenabbildung, falls folgende Axiomen gelten:

- (D1) det ist linear in jeder Zeile
- (D2) det ist *alternierend*, d.h.: Stimmen zwei Zeilen in A überein, so gilt det(A) = 0.
- (D3) det ist *normiert*, d.h. $det(\mathbb{1}_n) = 1$.

In D1 ist noch der Ausdruck "linear in jeder Zeile" erklärungsbedürftig:

Definition 6.3 (Linearität in Zeilen) det heißt *linear in der i-ten Zeile*, falls für alle $A \in \text{Mat}(n,K)$ mit Zeilen $\tilde{a}_1, \dots, \tilde{a}_n \in (K^n)^t$ (und analog $\tilde{a}_i', \tilde{a}_i'' \in (K^n)^t$) gilt:

$$\det\begin{pmatrix}\tilde{a}_{1}\\\vdots\\\tilde{a}_{i-1}\\\lambda\tilde{a}_{i}\\\tilde{a}_{i+1}\\\vdots\\\tilde{a}_{n}\end{pmatrix}=\lambda\cdot\det\begin{pmatrix}\tilde{a}_{1}\\\vdots\\\tilde{a}_{i-1}\\\tilde{a}_{i}\\\tilde{a}_{i+1}\\\vdots\\\tilde{a}_{n}\end{pmatrix}\quad\text{und}\quad\det\begin{pmatrix}\tilde{a}_{1}\\\vdots\\\tilde{a}_{i-1}\\\tilde{a}'_{i}+\tilde{a}''_{i}\\\tilde{a}_{i+1}\\\vdots\\\tilde{a}_{n}\end{pmatrix}=\det\begin{pmatrix}\tilde{a}_{1}\\\vdots\\\tilde{a}_{i-1}\\\tilde{a}'_{i}\\\tilde{a}_{i+1}\\\vdots\\\tilde{a}_{n}\end{pmatrix}+\det\begin{pmatrix}\tilde{a}_{1}\\\vdots\\\tilde{a}_{i-1}\\\tilde{a}''_{i}\\\tilde{a}_{i+1}\\\vdots\\\tilde{a}_{n}\end{pmatrix}.$$

Bemerkung 6.4 Der Ausdruck "Linearität in Zeilen" erklärt sich wie folgt: Halten wir alle Zeilen außer der i-ten fest, so wird die Determinante eine Abbildung $K^n \to K$, wobei wir K^n hier als Zeilenvektoren interpretieren. Die Forderungen aus Definition 6.3 besagen dann gerade, dass diese Abbildung $\mathbb{R}^n \to \mathbb{R}$ linear ist. Die Abbildung det : $\mathrm{Mat}(n,K) \to K$ ist für n > 1 *nicht linear* (siehe D4 im nächsten Satz)!

Bevor wir Existenz und Eindeutigkeit von det klären, folgern wir aus D1 bis D3 weitere Eigenschaften, die eine solche Abbildung - sofern sie existiert - auch haben muss:

Satz 6.5 Erfülle det: Mat $(n, K) \to K$ (D1) bis (D3). Dann gilt für $A, B \in \text{Mat}(n, K)$ und $\lambda \in K$:

- (D4) $\det(\lambda \cdot A) = \lambda^n \cdot \det(A)$.
- (D5) Ist eine Zeile von A gleich 0, so ist det(A) = 0.
- (D6) Entsteht *B* aus *A* durch Vertauschen zweier Zeilen, dann gilt det(B) = -det(A).
- (D7) Entsteht B aus A durch Addition des Vielfachen einer Zeile zu einer **anderen** Zeile, so gilt det(B) = det(A).
- (D8) Ist A eine obere Dreiecksmatrix mit den Diagonaleinträgen $\lambda_1, \dots, \lambda_n$, d.h.

$$A = \begin{pmatrix} \lambda_1 & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \qquad \left(\text{ formal: } \forall 1 \le j < i \le n : A_{ij} = 0 \right), \tag{1}$$

dann gilt: $det(A) = \lambda_1 \cdot \cdots \cdot \lambda_n$.

Beweis (D4): $\lambda \cdot A$ entsteht aus A, indem wir *alle* Zeilen mit λ multiplizieren. D4 folgt durch n-faches Anwenden von D1:

$$\det(\lambda \cdot A) = \det\begin{pmatrix} \lambda \cdot \tilde{a}_1 \\ \lambda \cdot \tilde{a}_2 \\ \vdots \\ \lambda \cdot \tilde{a}_n \end{pmatrix} \stackrel{(D1)}{=} \lambda \begin{pmatrix} \tilde{a}_1 \\ \lambda \cdot \tilde{a}_2 \\ \vdots \\ \lambda \cdot \tilde{a}_n \end{pmatrix} \stackrel{(D1)}{=} \cdots \stackrel{(D1)}{=} \lambda^n \begin{pmatrix} \tilde{a}_1 \\ \tilde{a}_2 \\ \vdots \\ \tilde{a}_n \end{pmatrix} \stackrel{(D1)}{=} \lambda^n \det(A)$$

(D5): Diese Eigenschaft folgt auf ähnliche Art und Weise aus D1:

$$\det(A) = \det\begin{pmatrix} \vdots \\ \mathbf{0} \\ \vdots \end{pmatrix} = \det\begin{pmatrix} \vdots \\ 0 \cdot \mathbf{0} \\ \vdots \end{pmatrix} \stackrel{(D1)}{=} 0 \cdot \det\begin{pmatrix} \vdots \\ \mathbf{0} \\ \vdots \end{pmatrix} = 0$$

(D6): Wir an, dass B aus $A \in Mat(n, K)$ durch Vertauschen der Zeilen i und j entsteht, ansonsten seien A und B identisch. Wir können also schreiben

$$A = \begin{pmatrix} \vdots \\ \tilde{a}_i \\ \vdots \\ \tilde{a}_j \\ \vdots \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} \vdots \\ \tilde{a}_j \\ \vdots \\ \tilde{a}_i \\ \vdots \end{pmatrix}$$

Nun berechnen wir mit Hilfe von D2 und D1:

$$0 \stackrel{(D2)}{=} \det \begin{pmatrix} \vdots \\ \tilde{a}_i + \tilde{a}_j \\ \vdots \\ \tilde{a}_j + \tilde{a}_i \\ \vdots \end{pmatrix} = \det \begin{pmatrix} \vdots \\ \tilde{a}_i \\ \vdots \\ \tilde{a}_i \\ \vdots \\ \tilde{a}_i \\ \vdots \end{pmatrix} + \det \begin{pmatrix} \vdots \\ \tilde{a}_j \\ \vdots \\ \tilde{a}_i \\ \vdots \\ \tilde{a}_i \\ \vdots \end{pmatrix} + \det \begin{pmatrix} \vdots \\ \tilde{a}_j \\ \vdots \\ \tilde{a}_i \\ \vdots \\ \tilde{a}_j \\ \vdots \end{pmatrix} + \det \begin{pmatrix} \vdots \\ \tilde{a}_j \\ \vdots \\ \tilde{a}_j \\ \vdots \\ \tilde{a}_j \\ \vdots \end{pmatrix} = 0 + \det(A) + \det(B) + 0$$

Also folgt D6. (D7) folgt in ähnlicher Weise, wenn wir $\lambda \tilde{a}_i$ zu \tilde{a}_i addieren:

$$\det(B) = \det\begin{pmatrix} \vdots \\ \tilde{a}_i + \lambda \tilde{a}_j \\ \vdots \\ \tilde{a}_j \\ \vdots \end{pmatrix} \stackrel{(D1)}{=} \det\begin{pmatrix} \vdots \\ \tilde{a}_1 \\ \vdots \\ \tilde{a}_j \\ \vdots \end{pmatrix} + \lambda \cdot \det\begin{pmatrix} \vdots \\ \tilde{a}_j \\ \vdots \\ \tilde{a}_j \\ \vdots \end{pmatrix} \stackrel{(D2)}{=} \det(A) + \lambda \cdot 0 = \det(A).$$

Im vorletzten Schritt tritt wegen $i \neq j$ die Zeile \tilde{a}_i im zweiten Summanden doppelt auf. \Box

Vor dem Beweis von (D8) zeigen wir, dass wir (D1) - (D7) bereits Determinanten berechnen können, wenn wir mal annehmen, dass diese existieren:

Beispiel 6.6 (Methode "Gauß-Algorithmus") Wir bestimmen die Determinante von

$$A = \begin{pmatrix} 0 & 1 & i \\ 1 & i & 1 \\ 2 & 3 & 4 \end{pmatrix} \in \operatorname{Mat}(3, \mathbb{C}), \tag{2}$$

indem wir A durch Zeilenumformungen modifizieren und (D1)–(D7) nutzen:

$$\det(A) \stackrel{(D6)}{=} - \det\begin{pmatrix} 1 & i & 1 \\ 0 & 1 & i \\ 2 & 3 & 4 \end{pmatrix}$$
Vertausche I und II
$$\stackrel{(D7)}{=} - \det\begin{pmatrix} 1 & i & 1 \\ 0 & 1 & i \\ 0 & 3 - 2i & 2 \end{pmatrix}$$
Addiere (-2)·I zu III
$$\stackrel{(D7)}{=} - \det\begin{pmatrix} 1 & i & 1 \\ 0 & 1 & i \\ 0 & 0 & -3i \end{pmatrix}$$
Addiere (2*i* - 3)·II zu III
$$\stackrel{(D1)}{=} 3i \cdot \det\begin{pmatrix} 1 & i & 1 \\ 0 & 1 & i \\ 0 & 0 & 1 \end{pmatrix}$$
Ziehe Faktor -3*i* aus III heraus
$$\stackrel{(D7)}{=} 3i \cdot \det\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Addiere (-*i*)·III zu II und (-1)·III zu II
Dann addiere (-*i*)·III zu II

Beweis (Fortsetzung von Satz 6.5) Im Beweis von (D8) unterscheiden wir 2 Fälle:

1.Fall: Alle Diagonaleinträge $\lambda_1, \ldots, \lambda_n$ sind ungleich Null. Wie in Beispiel 6.6 (4.Schritt) ziehen wir mit (D1) $\lambda_1, \ldots, \lambda_n$ aus der Determinante. Nun steht 1 auf der Hauptdiagonalen und wie im Beispiel (5.Schritt) eliminieren wir alle Einträge oberhalb der Diagonalen, nach (D7) ändert das ihren Wert nicht. Zusammen:

$$\det\begin{pmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \stackrel{(D1)}{=} \lambda_1 \cdots \lambda_n \cdot \begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \stackrel{(D7)}{=} \lambda_1 \cdots \lambda_n \det\begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \stackrel{(D3)}{=} \lambda_1 \cdots \lambda_n.$$

2. Fall: Ein Diagonaleintrag und damit $\lambda_1 \cdot \ldots \cdot \lambda_n$ hat den Wert Null; also zu zeigen: $\det(A) = 0$. Dazu sei j der größte Index mit $\lambda_j = 0$. Gilt j = n, so ist die letzte Zeile der oberen Dreiecksmatrix A die Nullzeile, mit (D5) folgt $\det(A) = 0$. Ist j < n, so nutzen wir die Zeilen $j + 1, \ldots, n$, um mit Zeilenumformungen wie in (D7) alle Einträge der j-ten Zeile zu eliminieren:

$$A = \begin{pmatrix} \ddots & & & & & * \\ & \lambda_{j-1} & & & & \\ & & \lambda_{j+1} & & & \\ & & & & \lambda_{j+1} & & \\ 0 & & & & & \lambda_n \end{pmatrix} \longrightarrow \cdots \longrightarrow A' = \begin{pmatrix} \ddots & & & & * \\ & \lambda_{j-1} & & & & \\ & & \lambda_{j-1} & & & \\ & & & \lambda_{j+1} & & \\ & & & & \lambda_n \end{pmatrix},$$

Hier nutzen wir, dass $\lambda_{i+1}, \dots, \lambda_n \neq 0$! Aus (D7) und (D5) folgt $\det(A) = \det(A') = 0$.

Vor dem Existenz- und Eindeutigkeitsbeweis diskutieren wir das Verhältnis von Determinante und Invertierbarkeit von $A \in Mat(n, K)$. Dazu erinnern wir an Beispiel 4.18:

A ist invertierbar
$$\Leftrightarrow \exists B \in \text{Mat}(n, K) : B \cdot A = \mathbb{1}_n = A \cdot B.$$
 (3)

Mit Determinanten können wir dies einfacher als mit Verfahren 15 (1.Semester) prüfen:

Satz 6.7 Sei K ein Körper, $n \in \mathbb{N}$ und det: $Mat(n, K) \to K$ eine Determinantenabbildung. Dann sind für alle $A \in Mat(n, K)$ folgende Bedingungen äquivalent:

- i) $det(A) \neq 0$.
- ii) rg(A) = n.
- iii) *A* ist invertierbar, d.h. $A \in GL(n, K)$.

Beweis (von Satz 6.7) "i) \Leftrightarrow ii)": Bringen wir A mit D6- und D7-Operationen in Zeilenstufenform wie in (1), so folgt $\det(A) = \pm \lambda_1 \cdots \lambda_n$. Aus der Zeilenstufenform lesen wir nun ab:

$$rg(A) = n \Leftrightarrow \forall i = 1,..., n : \lambda_i \neq 0 \Leftrightarrow det(A) \neq 0.$$

" $ii)\Leftrightarrow iii)$ ": Wir verwenden die Abbildung $\varphi_A:K^n\to K^n$, $x\mapsto A\cdot x$ und folgern:

$$\operatorname{rg}(A) = n \Leftrightarrow \dim(\varphi_A(K^n)) = n$$
 (Bemerkung 5.72)
 $\Leftrightarrow \varphi_A \text{ ist surjektiv}$
 $\Leftrightarrow \varphi_A \text{ ist bijektiv}$ (Korollar 5.76)
 $\Leftrightarrow A \text{ ist invertierbar, i.e. } A \in \operatorname{GL}(n, K)$ (Korollar 5.97).

Wir beweisen nun Existenz und Eindeutigkeit von Determinantenabbildungen:

Satz 6.8 Für jeden Körper K und jedes $n \in \mathbb{N}$ gibt es **genau** eine Determinantenabbildung

det:
$$Mat(n, K) \rightarrow K$$
.

Im Beweis brauchen wir folgendes Konzept, das später noch nützlich sein wird:

Definition 6.9 Für $A \in \text{Mat}(n, K)$, $1 \le i, j \le n$ entsteht die *Streichungsmatrix*

$$A_{ij}^{\text{Str}} := \begin{pmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \ddots & & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & & \ddots & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{pmatrix} \in \text{Mat}(n-1, K)$$

durch Streichen der i-ten Zeile und j-ten Spalte.

Beweis (von Satz 6.8) Wir beginnen mit dem Beweis der Eindeutigkeit, seien also

$$\det: \operatorname{Mat}(n, K) \to K$$
 und $\widetilde{\det}: \operatorname{Mat}(n, K) \to K$

zwei Determinantenabbildungen, die D1–D3 und folglich D4–D8 erfüllen. Sei $A \in \text{Mat}(n,K)$. Wir überführen A mit Umformungen des Typs D7 und k Zeilenvertauschungen D6 (k=0 erlaubt) auf obere Dreiecksform

$$A' = \begin{pmatrix} \lambda_1 & \cdots & * \\ & \ddots & \vdots \\ 0 & & \lambda_n \end{pmatrix}.$$

Aus D6, D7 und D8, die für det und det gelten, folgt dann direkt:

$$\det(A) = (-1)^k \det(A') = (-1)^k \cdot \lambda_1 \cdots \lambda_n \qquad \widetilde{\det}(A) = (-1)^k \widetilde{\det}(A) = (-1)^k \cdot \lambda_1 \cdots \lambda_n.$$

Also stimmen det und det überein, es gibt höchstens eine Determinantenabbildung.

Wir zeigen die Existenz durch Induktion nach $n \in \mathbb{N}$ und nennen eine Determinante auf $\operatorname{Mat}(n,K)$ vorübergehend det_n . Der *Induktionsanfang* ist trivial, da $\operatorname{det}_1((a)) := a$ eine Abbildung definiert, die die Eigenschaften D1–D3 für 1×1 -Matrizen erfüllt.

 $Induktionsschritt (n-1 \rightarrow n)$: Wir nehmen an, dass wir $\det_{n-1} : Mat(n-1,K) \rightarrow K$ konstruiert haben und definieren $\det_n : Mat(n,K) \rightarrow K$ rekursiv. Dazu fixiere $j \in \{1,...,n\}$ und setze

$$\det_n : \operatorname{Mat}(n, K) \to K, \quad \det_n(A) := \sum_{i=1}^n (-1)^{i+j} \cdot a_{ij} \cdot \det_{n-1}(A_{ij}^{Str}).$$
 (4)

Hier ist A_{ij}^{Str} die Streichungsmatrix aus Definition 6.9.

Nach I.V. erfüllt \det_{n-1} D1–D3. Wir verifizieren, dass \det_n dann ebenfalls D1–D3 erfüllt.

D1: Für Zeilenvektoren $\tilde{a}_i, \tilde{a}'_k, \tilde{a}''_k \in K^n$ betrachten wir die Matrizen

$$A' = \begin{pmatrix} \tilde{a}_1 \\ \vdots \\ \tilde{a}'_k \\ \vdots \\ \tilde{a}_n \end{pmatrix}, \qquad A'' = \begin{pmatrix} \tilde{a}_1 \\ \vdots \\ \tilde{a}''_k \\ \vdots \\ \tilde{a}_n \end{pmatrix} \quad \text{und} \qquad A = \begin{pmatrix} \tilde{a}_1 \\ \vdots \\ \tilde{a}'_k + \tilde{a}''_k \\ \vdots \\ \tilde{a}_n \end{pmatrix}$$

Gilt $i \neq k$, so folgt aus der Induktionsvoraussetzung (D1 für det_{n-1}), dass

$$\det_{n-1}(A_{ij}^{Str}) = \det_{n-1}(A_{ij}^{Str}) + \det_{n-1}(A_{ij}^{Str})$$
 (5)

Da $a_{kj} = a'_{kj} + a''_{kj}$ liefert (4):

$$\det_{n}(A) = (-1)^{k+j} a_{kj} \det_{n-1}(A_{kj}^{Str}) + \sum_{i \neq k} (-1)^{i+j} a_{ij} \det_{n-1}(A_{ij}^{Str})$$

$$\stackrel{(5)}{=} (-1)^{k+j} (a'_{kj} + a''_{kj}) \det_{n-1}(A_{kj}^{Str}) + \sum_{i \neq k} (-1)^{i+j} a_{ij} \left(\det_{n-1}(A'_{ij}^{Str}) + \det_{n-1}(A''_{ij}^{Str}) \right)$$

$$\stackrel{(4)}{=} \det_{n}(A') + \det_{n}(A'')$$

Dies zeigt die Zeilenadditivität, die Homogenität (" λ rausziehen") zeigt man analog.

D2) $A \in \text{Mat}(n, K)$ habe zwei gleiche Zeilen $\tilde{a}_k = \tilde{a}_\ell$ und o.B.d.A $k < \ell$. Falls $i \neq k, \ell$, so hat A_{ij}^{Str} zwei gleiche Zeilen und nach Induktionsvoraussetzung (D2 für \det_{n-1}) folgt

$$\det_{n-1}(A_{i,i}^{Str}) = 0 (6)$$

Weiter entsteht $A_{\ell j}^{Str}$ aus A_{kj}^{Str} durch $\ell-k-1$ Zeilenvertauschungen: Wegen $\tilde{a}_{\ell}=\tilde{a}_{k}$ können wir nach Streichung der ℓ -ten Zeile die k-te Zeile an den Platz tauschen, an dem vormals die ℓ -te Zeile war. Dazu brauchen wir $\ell-k-1$ Vertauschungen (klar?). Wiederum nach Induktionsvoraussetzung (D6 für \det_{n-1}) folgt dann

$$\det_{n-1}(A_{ki}^{Str}) = (-1)^{\ell-k-1} \det_{n-1}(A_{\ell i}^{Str})$$
(7)

Wegen von $\tilde{a}_k = \tilde{a}_\ell$ sowie (6) und (7) liefert die rekursive Formel (4) für det_{n-1} nun:

$$\det_{n}(A) = \sum_{i \neq k, \ell} (-1)^{i+j} a_{ij} \underbrace{\det_{n-1}(A_{ij}^{Str})}_{=0}$$

$$+ (-1)^{k+j} a_{kj} \det_{n-1}(A_{kj}^{Str}) + (-1)^{\ell+j} \underbrace{a_{\ell j}}_{=a_{kj}} \det_{n-1}(A_{\ell j}^{Str})$$

$$= a_{kj} \cdot \left((-1)^{\ell+j-1} \det_{n-1}(A_{\ell j}^{Str}) + (-1)^{\ell+j} \det_{n-1}(A_{\ell j}^{Str}) \right) = 0$$

Also erfüllt \det_n ebenfalls die Eigenschaft D2.

D3) Dies ist die einfachste der drei Eigenschaften. $\det_n(\mathbb{1}_n) = 1$ folgt ziemlich direkt aus (4), indem wir $\det_{n-1}(\mathbb{1}_{n-1}) = 1$ aus der Induktionsvoraussetzung benutzen. Wir besprechen dies in den Begleitkursen oder lesen es im Buch (S.210/211) nach.

In Beweis von Satz 6.8 haben wir implizit gezeigt, dass die Determinante von $A \in \text{Mat}(n, K)$ vermöge (4) durch die Determinanten von $A_{ij}^{Str} \in \text{Mat}()n-1,K)$ ausgedrückt werden kann:

Korollar 6.10 (Spaltenentwicklungssatz von Laplace) Sei K ein Körper, $n \ge 2$ und $(a_{ij}) = A \in \text{Mat}(n, K)$. Dann gilt für jedes $j \in \{1, ..., n\}$:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{ij}^{Str}).$$

Die Vorzeichen $(-1)^{i+j}$, die in der Laplace-Entwicklung auftreten, können wir übersichtlich in einem Schachbrettmuster aufschreiben und uns so leicht merken:

+	_	+	_	+	_
_	+	-	+	1	+
+	-	+	_	+	_
_	+	_	+	-	+
+	_	+	_	+	_
_	+	_	+	_	+

Aus Korollar 6.10 erhalten wir für kleine n explizite Formeln für die Determinante:

n=1: Für $A = (a) \in \text{Mat}(1, K)$ erhalten wir direkt $\det((a)) = a$.

n=2: Entwicklung nach der ersten Spalte liefert:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot \det((d)) - c \cdot \det((b)) = ad - bc. \tag{8}$$

n=3: Entwicklung nach der ersten Spalte liefert nun:

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a \cdot \det \begin{pmatrix} e & f \\ h & i \end{pmatrix} - d \cdot \det \begin{pmatrix} b & c \\ h & i \end{pmatrix} + g \cdot \det \begin{pmatrix} b & c \\ e & f \end{pmatrix}$$

$$= a \cdot (ei - hf) - d \cdot (bi - hc) + g \cdot (bf - ec)$$

$$= aei + dhc + gbf - (ahf + dbi + gec). \tag{9}$$

Für die letzte Formel, die bereits 6 Summanden enthält, gibt es eine gute Merkregel:

Bemerkung 6.11 (Regel von Sarrus) Sei $A \in Mat(3, K)$. Die 6 Summanden aus (9) lassen sich vermöge folgendem Schema generieren:

blau: positives Vorzeichen rot: negatives Vorzeichen

Wir schreiben also die ersten und zweite Spalte von A nochmal rechts neben A und multiplizieren entlang der blauen und roten Linien. Die Produkte werden aufaddiert, wobei wir beiden den roten Linien ein Vorzeichen hinzufügen.

Vorsicht! Die Regel von Sarrus gilt nur für n = 3, für Matrizen anderer Größe erhalten wir falsche Resultate. Dies ist ein sehr "beliebter" Fehler!

Zur Berechnung der Determinante von 3 × 3-Matrizen kennen wir also 2 Verfahren:

Beispiel 6.12 (Methode 1: Gauß-Algorithmus) Wir bestimmen die Determinante von

$$A = \begin{pmatrix} 0 & 1 & i \\ 1 & i & 1 \\ 2 & 3 & 4 \end{pmatrix} \in \operatorname{Mat}(3, \mathbb{C}), \tag{10}$$

indem wir A durch Zeilenumformungen in obere Dreiecksform bringen und D6, D7 und D8 nutzen. Dies entspricht größtenteils dem Vorgehen Beispiel 6.6, wir fassen zusammen:

$$\det(A) \stackrel{(D6)}{=} - \det\begin{pmatrix} 1 & i & 1 \\ 0 & 1 & i \\ 2 & 3 & 4 \end{pmatrix} \stackrel{(D7)}{=} - \det\begin{pmatrix} 1 & i & 1 \\ 0 & 1 & i \\ 0 & 0 & -3i \end{pmatrix} \stackrel{(D8)}{=} -1 \cdot 1 \cdot (-3i) = 3i$$

Vorsicht! Der Werte der Determinante kann sich bei Zeilenumformungen ändern, anders als bei LGS, dort ändert sich die Lösungsmenge nicht. Lediglich D7 lässt den Wert unverändert. "Zeilentausch"(D6) führt wie oben zu einem Vorzeichen, Multiplikation einer Zeile mit einem Faktor ändert die Determinante um diesen Faktor, z.B.:

$$\det\begin{pmatrix} 0 & 1 & i \\ 1 & i & 1 \\ \frac{1}{2} \cdot (2 & 3 & 4) \end{pmatrix} = \frac{1}{2} \cdot \det\begin{pmatrix} 0 & 1 & i \\ 1 & i & 1 \\ 2 & 3 & 4 \end{pmatrix}$$

Beispiel 6.13 (Methode 2: Regel von Sarrus) Schematisch lautet diese Regel:

$$\begin{pmatrix}
0 & 1 & \cancel{i} & \cancel{0} & \cancel{I} \\
1 & \cancel{i} & \cancel{1} & \cancel{i} \\
2 & \cancel{3} & \cancel{4} & \cancel{2} & \cancel{3}
\end{pmatrix}$$

Wir lesen also direkt ab:

$$\det(A) = 0 \cdot i \cdot 4 + 1 \cdot 1 \cdot 2 + i \cdot 1 \cdot 3 - 2 \cdot i \cdot i - 3 \cdot 1 \cdot 0 - 4 \cdot 1 \cdot 1 = 0 + 2 + 3i + 2 - 0 - 4 = 3i$$

In diesem Beispiel ist Anwendung von Sarrus etwas einfacher als die Gauß-Methode. Letztere ist aber nicht nur für n=3 anwendbar und im Allgemeinen – wie sollte es anders sein – vielen anderen Verfahren überlegen. Das Beherrschen dieser Technik ist und bleibt wichtig!

Wir zeigen jetzt schrittweise, dass D1,D2 und D4-D7 analog auch für Spalten gelten:

Korollar 6.14 (Spaltenlinearität) det ist linear in jeder Spalte, genauer:

Für alle Spaltenvektoren $a_1, ..., a_n, a_i', a_i'' \in K^n$ und $\lambda \in K$ gilt:

a)
$$\det(a_1 \ldots \lambda \cdot a_i \ldots a_n) = \lambda \cdot \det(a_1 \ldots a_i \ldots a_n)$$
.

b)
$$\det(a_1 \ldots a'_i + a''_i \ldots a_n) = \det(a_1 \ldots a'_i \ldots a_n) + \det(a_1 \ldots a''_i \ldots a_n)$$
.

Beweis Wir rechnen b) nach, a) geht ganz analog (siehe [1], Korollar 4.70). Gelte $a_j = a'_j + a''_j$. Wir entwickeln nach dieser j-ten Spalte und erhalten aus (4):

$$\det(a_1 \dots a'_j + a''_j \dots a_n) = \sum_{i=1}^n (-1)^{i+j} (a'_{ij} + a''_{ij}) \det(A^{Str}_{ij})$$

$$= \sum_{i=1}^n (-1)^{i+j} a'_{ij} \det(A^{Str}_{ij}) + \sum_{i=1}^n (-1)^{i+j} a''_{ij} \det(A^{Str}_{ij})$$

$$= \det(a_1 \dots a'_j \dots a_n) + \det(a_1 \dots a''_j \dots a_n) \quad \Box$$

Für $A \in Mat(n, K)$ gilt auch $A^t \in Mat(n, K)$, damit ist $det(A^t)$ definiert. Es gilt:

Satz 6.15 Sei K ein Körper und $n \in \mathbb{N}$. Dann gilt für alle $A \in \operatorname{Mat}(n, K)$:

$$\det(A) = \det(A^t). \tag{11}$$

Beweis Der Beweis dieser Aussage lässt sich sehr elegant auf die Eindeutigkeit der Determinantenabbildung zurückführen. Wir definieren die Abbildung

$$\widetilde{\det}$$
: Mat $(n, K) \to K$, $\widetilde{\det}(A) := \det(A^t)$.

Wenn wir zeigen können, dass det ebenfalls D1–D3 erfüllt, so impliziert die Eindeutigkeit für alle $A \in Mat(n, K)$: $det(A) = det(A) = det(A^t)$, also gerade (11).

Da Transposition die Rollen von Spalten und Zeilen tauscht und det nach Korollar 6.14 spaltenlinear ist, folgt die Zeilenlinearität von det, d.h D1 ist erfüllt. D3 rechnen wir nach:

$$\widetilde{\det}(\mathbb{1}_n) = \det(\mathbb{1}_n^t) = \det(\mathbb{1}_n) = 1.$$

Zum Nachweis von D2 habe nun $A \in \operatorname{Mat}(n,K)$ zwei gleiche Zeilen. Dann hat A^t zwei gleiche Spalten und folglich gilt $\operatorname{rg}(A^t) < n$. Nach Satz 6.7 folgt daraus aber $0 = \det(A^t) = \widetilde{\det}(A)$, d.h. $\widetilde{\det}$ erfüllt ebenfalls D2 und der Beweis ist komplett.

Wie können jetzt leicht zeigen, dass sich weitere Rechenregeln auf Spalten übertragen:

Korollar 6.16 Sei K ein Körper, $n \in \mathbb{N}$ und $A \in \operatorname{Mat}(n, K)$. Entsteht \hat{A} aus A durch Vertauschen zweier Spalten, so gilt die Spaltenversion von D6:

$$det(\hat{A}) = -det(A)$$
.

Analog übertragen sich auch D5 und D7 auf die die Spalten.

Beweis Entsteht \hat{A} aus A durch Vertauschung zweier Spalten, so entsteht \hat{A}^t aus A^t durch Vertauschung zweier Zeilen. Anwendung von D6 und Satz 6.15 liefert dann direkt:

$$\det(\hat{A}) \stackrel{6.15}{=} \det(\hat{A}^t) \stackrel{(D6)}{=} -\det(A^t) \stackrel{6.15}{=} -\det(A).$$

Die anderen Eigenschaften ergeben sich analog.

Eine weitere Folgerung aus Satz 6.15 und dem Spaltenentwicklungssatz ist:

Korollar 6.17 (Zeilenentwicklungssatz von Laplace) Sei K ein Körper, $n \ge 2$ und $(a_{ij}) = A \in \text{Mat}(n, K)$. Dann gilt für jedes $i \in \{1, ..., n\}$:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{ij}^{Str}).$$

Beispiel 6.18 Wir berechnen die Determinante einer komplexe 4 × 4-Matrix:

$$\det\begin{pmatrix} 0 & i & 0 & 0 \\ i & \pi & 0 & i \\ \pi & \pi & i & \pi \\ i & \pi & 0 & -i \end{pmatrix} \stackrel{(i)}{=} (-i) \cdot \det\begin{pmatrix} i & 0 & i \\ \pi & i & \pi \\ i & 0 & -i \end{pmatrix} \stackrel{(ii)}{=} (-i) \cdot i \cdot \det\begin{pmatrix} i & i \\ i & -i \end{pmatrix} = 2$$

Hier haben wir in (i) nach der ersten Zeile und in (ii) nach der zweiten Spalte entwickelt, der letzte Schritt ist dann Formel (8) für 2×2 -Matrizen und etwas Rechnen in \mathbb{C} .

6.2 Permutationen und die Leibnizformel

In diesem Abschnitt beweisen wir die *Leibnizformel*, eine explizite Formeln für $\det(A)$ für beliebig große Matrizen. Sie beruht auf einer systematischen Diskussion der Vorzeichen, die beim Permutieren von Zeilen / Spalten resultieren. Dazu nutzen wir die *symmetrische Gruppe* vom Grad $n \in \mathbb{N}$ (siehe 4.19 ff), die aus allen Permutationen der Zahlen $1, \dots n$ besteht:

$$S_n = \{ \sigma : X_n \to X_n \mid \sigma \text{ ist bijektiv} \}$$
 wobei $X_n = \{1, ..., n\}$

Gruppenverknüpfung ist die Komposition von Abbildungen, neutrales Element ist id $_{X_n}$ und das Inverse von $\sigma \in S_n$ ist die Umkehrabbildung $\sigma^{-1}: X_n \to X_n$. Für $\sigma \in S_n$ schreiben wir

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}, \tag{12}$$

hier sehen wir direkt wie σ die Zahlen 1, ..., n permutiert. Eine besonders einfache Klasse von Permutation bildet die Transpositionen:

Definition 6.19 $\sigma \in S_n$ heißt *Transposition*, wenn es $i, j \in X_n$ mit $i \neq j$ gibt, so dass für alle $k \in X_n$ gilt:

$$\sigma(k) = \begin{cases} j & \text{für } k = i \\ i & \text{für } k = j \\ k & \text{sonst} \end{cases}$$

In Worten: Die beiden Zahlen *i*, *j* werden getauscht, alle anderen bleiben fest.

Unter Verwendung der Notation aus (12) hat eine Transposition also die Form

$$\sigma = \begin{pmatrix} 1 \cdots i - 1 & i & i + 1 \cdots j - 1 & j & j + 1 \cdots n \\ 1 \cdots i - 1 & j & i + 1 \cdots j - 1 & i & j + 1 \cdots n \end{pmatrix}$$

Beispiel 6.20 (Transpositionen in S_3) Für n=3 kennen wir die 6 Elemente aus S_3 explizit:

$$\begin{split} \mathrm{id}_{X_3} = & \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \sigma_1 := & \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \sigma_2 := & \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \\ \tau_1 = & \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \tau_2 := & \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \quad \tau_3 := & \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}. \end{split}$$

 τ_1 , τ_2 und τ_3 sind Transpositionen und id $_{X_3}$, σ_1 , σ_2 nicht. Allerdings lassen sich alle drei als Verknüpfung von Transpositionen schreiben (siehe Bsp. 4.21):

$$id_{X_3} = \tau_1 \circ \tau_1$$
 $\sigma_1 = \tau_1 \circ \tau_2$ $\sigma_2 = \tau_1 \circ \tau_3$.

Tatsächlich lässt sich jede Permutation $\sigma \in S_n$ in solche einfachen Bausteine zerlegen:

Lemma 6.21 Sei $n \in \mathbb{N}$. Jedes $\sigma \in S_n$ ist als Verkettung von Transpositionen darstellbar, d.h. es existieren Transpositionen $\tau_1, \ldots, \tau_N \in S_n$, so dass:

$$\sigma = \tau_1 \circ \cdots \circ \tau_N$$
.

Den Beweis diese Aussage behandeln wir in den Übungen, siehe auch [1], Seite 142/143. Hier geben wir ein Beispiel, das das Verfahren bereits illustriert:

Beispiel 6.22 Wir überführen eine Permutation $\sigma \in S_4$ durch Vertauschungen in id:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix} \stackrel{4 \leftrightarrow 2}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \stackrel{3 \leftrightarrow 2}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} \stackrel{2 \leftrightarrow 1}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = id$$
 (13)

Hier haben wir zuerst 4 mit 2, dann 3 mit 2 und schließlich 2 mit 1 vertauscht um so von hinten nach vorne die Permutation σ in die Identität zu überführen. Hieraus können wir direkt eine Zerlegung ("von links nach rechts") von σ in Transpositionen ablesen:

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 1 & 4 & 2
\end{pmatrix} = \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{pmatrix}}_{4 \mapsto 2} \circ \begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{pmatrix} = \begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{pmatrix} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 3 & 2 & 4
\end{pmatrix}}_{3 \mapsto 2} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{pmatrix}}_{2 \mapsto 1} \circ \underbrace{\begin{pmatrix}
1 &$$

Bemerkung 6.23 Zur Zerlegung in Transpositionen halten wir noch fest:

- a) Transpositionen sind selbstinvers, d.h.: Ist $\tau \in S_n$ Transposition, so gilt $\tau \circ \tau = \mathrm{id}_{X_n}$.
- b) Die Zerlegung in Transpositionen ist nicht eindeutig: Ist $\sigma = \tau_1 \circ \cdots \circ \tau_N \in S_n$ und τ Transposition, so gilt nach a) auch $\sigma = \tau_1 \circ \cdots \circ \tau_N \circ \tau \circ \tau$.
- c) Die Verkettung von null Transpositionen definieren wir als id X_n .

Nach b) ist die Zahl der Transpositionen, die wir benötigen, um $\sigma \in S_n$ zu darzustellen, nicht eindeutig bestimmt. Allerdings legt σ fest, ob diese Zahl gerade oder ungerade ist:

13

Notation 6.24 Für $x \in \mathbb{R} \setminus \{0\}$ bezeichne $sign(x) := \frac{x}{|x|} \in \{-1, 1\}$ das Vorzeichen von x.

Nun ordnen wir auch Permutationen ein "Vorzeichen" zu:

Definition 6.25 Sei $n \in \mathbb{N}$ und $\sigma \in S_n$. Ein Paar $(i, j) \in X_n \times X_n$ heißt *Fehlstand* von σ falls

$$i < j$$
 und $\sigma(i) > \sigma(j)$.

Das Signum von σ ist definiert als

$$\operatorname{sgn}(\sigma) := \prod_{1 \le i < j \le n} \operatorname{sign}\left(\frac{\sigma(j) - \sigma(i)}{j - i}\right) = (-1)^{\#\operatorname{Fehlstände}} \sigma \in \{-1, 1\}.$$

Beispiel 6.26 (Signum einer Transposition) Wir berechnen das Signum von $\tau_2 \in S_3$:

$$sgn(\tau_2) = sign\left(\frac{\tau_2(2) - \tau_2(1)}{2 - 1}\right) \cdot sign\left(\frac{\tau_2(3) - \tau_2(1)}{3 - 1}\right) \cdot sign\left(\frac{\tau_2(3) - \tau_2(2)}{3 - 2}\right) = (-1)^3 = -1$$

Dieses Ergebnis ist kein Zufall, wir formulieren es als Teil a) des nächsten Satzes:

Satz 6.27 Für alle $n \in \mathbb{N}$ gilt:

- a) Ist $\tau \in S_n$ eine Transposition, so gilt $sgn(\tau) = -1$.
- b) Für alle $\sigma, v \in S_n$ gilt: $sgn(\sigma \circ v) = sgn(\sigma) \cdot sgn(v)$.

Teil b) besagt, dass sgn ein sog. Gruppenhomomorphismus ist. Wir haben diesen Begriff bisher nicht eingeführt, das erfolgt in der Vorlesung "Algebra und Zahlentheorie".

Beweis a) Wir könnten uns systematisch überlegen, dass sich für eine Transposition τ , die $k < \ell$ vertauscht, die Vorzeichen aus dem Produkt in Def. 6.25 gegenseitig aufheben bis auf eines, das zum Fehlstand (k, ℓ) gehört. So ergibt sich sign $(\tau) = -1$, wir verzichten auf Details.

b) Wir erweitern zuerst den Bruch aus Definition 6.25:

$$\frac{(\sigma \circ v)(j) - (\sigma \circ v)(i)}{i - i} = \frac{\sigma(v(j)) - \sigma(v(i))}{v(j) - v(i)} \cdot \frac{v(j) - v(i)}{i - i}$$

$$(14)$$

Weiter gilt für $x, y \in \mathbb{R} \setminus \{0\}$: $sign(x \cdot y) = sign(x)sign(y)$. Aus (14) folgt

$$\operatorname{sgn}(\sigma \circ v) = \prod_{i < j} \operatorname{sign}\left(\frac{\sigma(v(j)) - \sigma(v(i))}{j - i}\right) = \prod_{i < j} \operatorname{sign}\left(\frac{\sigma(v(j)) - \sigma(v(i))}{v(j) - v(i)}\right) \cdot \prod_{i < j} \operatorname{sign}\left(\frac{v(j) - v(i)}{j - i}\right).$$

Der zweite Faktor ist $\operatorname{sgn}(v)$. Im ersten Faktor setzen wir $k := v(i), \ell := v(j)$ falls v(i) < v(j) und $k := v(j), \ell := v(i)$ falls v(i) < v(j). In beiden Fällen gilt

$$\operatorname{sign}\left(\frac{\sigma(v(j)) - \sigma(v(j))}{v(j) - v(i)}\right) = \operatorname{sign}\left(\frac{\sigma(\ell) - \sigma(k)}{\ell - k}\right).$$

Damit erhalten wir

$$\prod_{i < j} \operatorname{sign} \left(\frac{\sigma(v(j)) - \sigma(v(i))}{v(j) - v(i)} \right) = \prod_{k < \ell} \operatorname{sign} \left(\frac{\sigma(\ell) - \sigma(k)}{\ell - k} \right) = \operatorname{sgn}(\sigma),$$

denn die Permutation v ist bijektiv und ändert in dem Produkt nur die Reihenfolge der Faktoren, nicht aber das Produkt als Ganzes. Das beendet den Beweis.

Als direkte Schlussfolgerung ergibt sich:

Korollar 6.28 Sei $\tau_1 \circ \cdots \circ \tau_N = \sigma \in S_n$ eine Zerlegung von σ in N Transpositionen dann gilt:

$$\operatorname{sgn}(\sigma) = \operatorname{sgn}(\tau_1 \circ \cdots \circ \tau_N) = \operatorname{sgn}(\tau_1) \cdot \cdots \cdot \operatorname{sgn}(\tau_N) = (-1)^N.$$

Insbesondere ist durch $sgn(\sigma)$ festgelegt, ob N gerade oder ungerade ist.

Als Abschluss bestimmen wir das Signum der Permutation aus Beispiel 6.22:

Beispiel 6.29 Wir haben bereits $\sigma \in S_4$ durch Vertauschungen in id überführt:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix} \stackrel{4 \leftrightarrow 2}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \stackrel{3 \leftrightarrow 2}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} \stackrel{2 \leftrightarrow 1}{\sim} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = id$$
 (15)

So konnten wir σ als Produkt von 3 Transpositionen schreiben, Korollar 6.28 impliziert nun

$$sgn(\sigma) = (-1)^3 = -1.$$

Diese Beispiel zeigt, wie wir $sgn(\sigma)$ effektiv bestimmen können: Wir brauchen nur das Analogon zu (15) zu betrachten und festhalten, ob die Zahl der Vertauschungen gerade oder ungerade war. Die explizite Zerlegung aus Beispiel 6.22 brauchen wir dabei nicht.

Nun können wir die Leibnizformel der Determinante besprechen:

Satz 6.30 (Leibnizformel) Sei K ein Körper, $n \in \mathbb{N}$ und $A = (a_{ij}) \in \operatorname{Mat}(n, K)$. Dann gilt:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \cdot a_{1,\sigma(1)} \cdot \dots \cdot a_{n,\sigma(n)}. \tag{16}$$

Bemerkung 6.31 Für n = 1, 2, 3 sieht man leicht, dass (16) sich auf (8) und (9) reduziert. Für beliebiges $n \in \mathbb{N}$ hat die Summe in (16) nach Satz 4.22 n! Summanden, diese Zahl wächst sehr schnell mit n. Bei einer 6×6 -Matrix sind es bereits 720 Summanden, die Leibnizformel ist für explizite Berechnungen daher oft unnütz.

¹Wenn Ihnen diese Indexsubstitution nicht geheuer ist schreiben Sie sich einmal ein Beispiel für n = 3 (3 Faktoren) oder n = 4 (6 Faktoren) hin. Dann sehen Sie ganz konkret, was passiert.

Bemerkung 6.32 Für $K = \mathbb{R}$ hat Satz 6.30 andere Anwendungen. Identifizieren wir Mat(\mathbb{R} , n) mit \mathbb{R}^{n^2} (die Vektorräume sind isomorph, denn diese Matrizen haben genau n^2 Einträge) so besagt (16), dass det : $\mathbb{R}^{n^2} \to \mathbb{R}$ eine Polynomfunktion (in n^2 Variablen) ist und damit u.a. stetig ist. Anwendung des Zwischenwertsatz sagt uns: Hängt die Matrix A(t) stetig von $t \in [0,1]$ ab und gilt $\det(A(0)) > 0$ sowie $\det(A(1)) < 0$, so gilt $\det(A(t_0)) = 0$ für ein $t_0 \in (0,1) - A(t)$ war also "unterwegs" bei t_0 nicht invertierbar!

Beweis (der Leibnizformel) Wir zeigen, dass (16) D1, D2 und D3 erfüllt. Für D1 verweisen wir auf [1] (S.220/221). D3 ist leicht einzusehen, denn für die Diagonalmatrix $\mathbb{1}_n$ trägt nur der Summand für σ = id in (16) bei, er hat den Wert 1. In D2 werden die Vorzeichen $\operatorname{sgn}(\sigma)$ relevant, hier gehen wir ins Detail.

Sei $A \in \operatorname{Mat}(n,K)$ eine Matrix, deren k-te und ℓ -te Zeile übereinstimmen; es gelte $k < \ell$. Sei $\tau \in S_n$ die Transposition, die k und ℓ vertauscht. Wir betrachten die Abbildung

$$K_{\tau}: S_n \to S_n, \quad \sigma \mapsto \sigma \circ \tau$$

Wegen $K_{\tau}(K_{\tau}(\sigma)) = \sigma \circ \tau \circ \tau = \sigma$ ist diese Abbildung ihre eigene Inverse, also bijektiv. Insbesondere bildet sie die Permutation mit Signum +1 bijektiv auf diejenigen mit Signum -1 ab und wir erhalten eine Zerlegung von S_n in disjunkte Mengen:

$$S_n = \underbrace{\left\{\sigma \in S_n \mid \operatorname{sgn}(\sigma) = +1\right\}}_{=:A_n} \cup \left\{\sigma \in S_n \mid \operatorname{sgn}(\sigma) = -1\right\} = A_n \cup \left\{\sigma \circ \tau \mid \sigma \in A_n\right\}$$

Sei nun $\sigma \in A_n$. Wir vereinfachen den Summanden zu $\sigma \circ \tau$ aus der Leibnizformel:

$$\operatorname{sgn}(\sigma \circ \tau) \cdot a_{1,\sigma \circ \tau(1)} \cdots a_{k,\sigma \circ \tau(k)} \cdots a_{\ell,\sigma \circ \tau(\ell)} \cdots a_{n,\sigma \circ \tau(n)}$$

$$= \operatorname{sgn}(\sigma) \cdot \underbrace{\operatorname{sgn}(\tau) \cdot a_{1,\sigma(\tau(1))} \cdots \underbrace{a_{k,\sigma(\ell)} \cdots a_{\ell,\sigma(k)} \cdots a_{n,\sigma(\tau(n))}}_{=a_{\ell,\sigma(\ell)}} \cdots \underbrace{a_{\ell,\sigma(k)} \cdots a_{n,\sigma(\tau(n))}}_{=a_{k,\sigma(k)}} \cdots a_{n,\sigma(\tau(n))}$$

$$= -\operatorname{sgn}(\sigma) \cdot a_{1,\sigma(1)} \cdot \dots \cdot a_{n,\sigma(n)}.$$

$$(17)$$

Im letzten Schritt benutzen wir, dass die k-te und ℓ -te Zeile von A gleich sind. Wir erhalten also gerade das Negative des Summanden zu σ . Die Summe aus (16) zerfällt also in zwei Summen, eine über A_n und eine über $\{\sigma \circ \tau \mid \sigma \in A_n\}$:

$$\begin{split} \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \cdot a_{1,\sigma(1)} \cdot \ldots \cdot a_{n,\sigma(n)} \\ &= \sum_{\sigma \in A_n} \operatorname{sgn}(\sigma) \cdot a_{1,\sigma(1)} \cdot \ldots \cdot a_{n,\sigma(n)} + \sum_{\sigma \in A_n} \operatorname{sgn}(\sigma \circ \tau) \cdot a_{1,\sigma(\tau(1))} \cdot \ldots \cdot a_{n,\sigma(\tau(n))} \\ &\stackrel{(17)}{=} \sum_{\sigma \in A_n} \operatorname{sgn}(\sigma) \cdot a_{1,\sigma(1)} \cdot \ldots \cdot a_{n,\sigma(n)} - \sum_{\sigma \in A_n} \operatorname{sgn}(\sigma) \cdot a_{1,\sigma(1)} \cdot \ldots \cdot a_{n,\sigma(n)} \\ &= 0 \end{split}$$

Das beweist D2, wegen der Eindeutigkeit der Determinanten folgt die Leibnizformel (16). □

Literatur

- [1] C. Bär, *Lineare Algebra und analytische Geometrie*, 1.Auflage, Wiesbaden: Springer Spektrum, 2018.
- [2] C. Bär et.al, *Interaktive Aufgaben*. https://cbaer.eu/joomla/index.php/de/mathematik/interaktive-webseiten/ueben
- [3] Wikipedia, *Mathematik Wikipedia*, *die freie Enzyklopädie*, 2023. https://de.wikipedia.org/w/index.php?title=Mathematik&oldid=235074398 [Online; Stand 14. Oktober 2023]
- [4] S. Waldmann, *Lineare Algebra 1*, 2.Auflage, Berlin/Heidelberg: Springer Spektrum, 2021
- [5] K. Bryan und T. Leise, *The \$25,000,000,000 eigenvector: The linear algebra behind Google*, SIAM Rev. 48 (2006), 569–581, DOI 10.1137/050623280.
- [6] S. Bosch, *Lineare Algebra*, 6.Auflage, Berlin/Heidelberg: Springer 2021