seats
Russian (RUS)

Посадочные места

Вы планируете проводить международное соревнование по программированию в прямоугольном зале, в котором HW посадочных мест, они организованы в виде прямоугольника, содержащего H строк и W столбцов. Строки пронумерованы от 0 до H-1, а столбцы пронумерованы от 0 до W-1. Посадочное место в строке r и столбце c обозначается как (r,c). Вы пригласили HW участников, пронумерованных от 0 до HW-1. Вы также подготовили распределение участников по посадочным местам, в соответствии с которым участник с номером i $(0 \le i \le HW-1)$ занимает посадочное место (R_i,C_i) . В соответствии с распределением на каждом посадочном месте размещается ровно один участник.

Множество S посадочных мест в зале называется **прямоугольником**, если для некоторых целых чисел r_1 , r_2 , c_1 и c_2 выполнены следующие условия:

- $0 \le r_1 \le r_2 \le H 1$.
- $0 \le c_1 \le c_2 \le W 1$.
- ullet S состоит в точности из всех посадочных мест (r,c), для которых $r_1 \leq r \leq r_2$ и $c_1 \leq c \leq c_2.$

Прямоугольник, состоящий из k посадочных мест ($1 \le k \le HW$), называется **красивым**, если на местах из этого прямоугольника размещаются в точности участники с номерами от 0 до k-1. **Красотой** распределения участников по посадочным местам называется количество красивых прямоугольников для данного распределения.

После подготовки вашего распределения участников по местам, вы выполняете несколько запросов обмена двух участников посадочными местами. А именно, дано Q таких запросов, пронумерованных от 0 до Q-1 в хронологическом порядке. Запрос с номером j ($0 \le j \le Q-1$) состоит том, что участники с номерами A_j и B_j меняются посадочными местами. Вы немедленно обрабатываете каждый запрос и обновляете распределение участников по посадочным местам. После каждого обновления вам требуется вычислить красоту текущего распределения участников по посадочным местам.

Детали реализации

Вам необходимо реализовать следующие процедуры и функции:

give_initial_chart(int H, int W, int[] R, int[] C)

- H, W: количество строк и количество столбцов.
- ullet R, C: массивы длины HW, задающие исходное распределение участников по посадочным местам.
- Процедура будет вызвана ровно один раз до любого вызова swap_seats.

int swap seats(int a, int b)

- Эта функция описывает запрос обмена двух участников посадочными местами.
- а, b: участники, которые меняются посадочными местами.
- ullet Эта функция будет вызвана Q раз.
- Функция должна вернуть красоту распределения участников по посадочным местам после обмена.

Пример

Пусть
$$H=2$$
, $W=3$, $R=[0,1,1,0,0,1]$, $C=[0,0,1,1,2,2]$ и $Q=2$.

Проверяющий модуль (grader) вызывает give_initial_chart(2, 3, [0, 1, 1, 0, 0, 1], [0, 0, 1, 1, 2, 2]).

Исходно распределение участников по посадочным местам выглядит следующим образом.

0	3	4
1	2	5

Пусть затем проверяющий модуль вызывает swap_seats(0, 5). После запроса 0 распределение участников по посадочным местам выглядит следующим образом.

5	3	4
1	2	0

Множества посадочных мест, соответствующие множествам участников $\{0\}$, $\{0,1,2\}$ и $\{0,1,2,3,4,5\}$, являются красивыми прямоугольниками. Следовательно красота этого распределения участников по посадочным местам равна 3, и функция swap seats должна вернуть 3.

Пусть теперь проверяющий модуль снова вызывает swap_seats(0, 5). После запроса 1 распределение участников по посадочным местам возвращается к исходному состоянию. Множества посадочных мест, соответствующие множествам участников $\{0\}$, $\{0,1\}$, $\{0,1,2,3\}$ и $\{0,1,2,3,4,5\}$, являются красивыми прямоугольниками. Таким образом, красота этого распределения участников по посадочным местам равна 4, и функция swap_seats должна вернуть 4.

Файлы sample-01-in.txt и sample-01-out.txt в приложенном zip-архиве соответствуют этому примеру. В архиве есть также другие примеры ввода и вывода.

Ограничения

- $1 \leq H$
- 1 < W
- HW < 1000000
- $0 \le R_i \le H 1 \ (0 \le i \le HW 1)$
- $0 \le C_i \le W 1 \ (0 \le i \le HW 1)$
- $\bullet \ (R_i, C_i) \neq (R_j, C_j) \ (0 \leq i < j \leq HW-1)$
- $1 \le Q \le 50\,000$
- ullet 0 < a < HW-1 для всех вызовов swap seats
- ullet $0 \le b \le HW 1$ для всех вызовов swap seats
- ullet a
 eq b для всех вызовов swap seats

Подзадачи

- 1. (5 баллов) $HW \leq 100$, $Q \leq 5\,000$
- 2. (6 баллов) $HW < 10\,000$, $Q < 5\,000$
- 3. (20 баллов) $H \le 1\,000$, $W \le 1\,000$, $Q \le 5\,000$
- 4. (6 баллов) $Q \le 5\,000$, $|a-b| \le 10\,000$ для всех вызовов swap seats
- 5. (33 балла) H=1
- 6. (30 баллов) Нет дополнительных ограничений

Пример проверяющего модуля

Пример проверяющего модуля считывает входные данные в следующем формате:

строка 1: Н W Q

- ullet строка 2+i ($0\leq i\leq HW-1$): R_i C_i
- ullet строка 2+HW+j ($0\leq j\leq Q-1$): A_j B_j

Здесь A_j и B_j — параметры вызова swap_seats для запроса j.

Пример проверяющего модуля выводит ваши ответы в следующем формате:

ullet строка 1+j ($0\leq j\leq Q-1$) : возвращаемое значение swap_seats для запроса j