FORMULAE SHEET FOR INF1003 MATHEMATICS I

LOGICAL EQUIVALENCES – CONDITIONAL AND BICONDITIONAL STATEMENTS

$p \to q \equiv \neg p \lor q$	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
$p \to q \equiv \neg q \to \neg p$	$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
$p \lor q \equiv \neg p \to q$	$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
$p \land q \equiv \neg(p \to \neg q)$	$\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$
$\neg(p \to q) \equiv p \land \neg q$	

RULES OF INFERENCE – PROPOSITIONAL LOGIC

Modus	p	Hypothetical	$p \rightarrow q$	Addition	<u> </u>	Conjunction	p
ponens	$p \to q$	syllogism	$\underline{q} \rightarrow r$		$\therefore p \vee q$		<u>q</u>
	∴ q		$\therefore p \to r$				$\therefore p \land q$
Modus tollens	$\neg q$	Disjunctive syllogism	p∨q	Simplification	<u>p ∧ q</u>	Resolution	p∨q
	$p \to q$		<u>¬p</u> _		$\therefore p$		$\neg p \lor r$
	$\therefore \neg p$		∴ q				$\therefore q \vee r$

RULES OF INFERENCE – PREDICATE LOGIC

Universal instantiation	$\forall x P(x)$
	$\therefore P(c)$
Universal generalization	P(c) for an arbitrary element c
	$\therefore \forall x P(x)$
Existential instantiation	$\exists x P(x)$
	$\therefore P(c)$ for some element c
Existential generalization	P(c) for some element c
	$\therefore \exists x P(x)$

ARITHMETIC SERIES

$$a_n = a + (n-1)d$$

$$S_n = \frac{n}{2}[2a + (n-1)d]$$

GEOMETRIC SERIES

$$a_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{(1-r)}$$

$$S_{\infty} = \frac{a}{(1-r)}$$
 when $|r| < 1$

COMBINATION AND PERMUTATION

$$C(n,r) = \frac{n!}{r! (n-r)!}$$

$$P(n,r) = \frac{n!}{(n-r)!}$$