Approved for public release; distribution is unlimited.

NON-THERMAL PLASMA TECHNIQUES FOR AIR TREATMENT

Author(s): Louis A. Rosocha, P-24

Submitted to:

5th International Conference on Advanced Oxidation Technologies for Water & Air Remediation (AOTs-5) Albuquerque, NM; May 23-28. 1999 Workshop on Advanced Oxidation Technologies: Fundamentals & Applications

Los Alamos

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)

DTIC QUALITY INSPECTED

19991202 121

	OCUMENTATION PA			ИВ No. 074-0188
maintaining the data needed, and completing and	mation is estimated to average 1 hour per response I reviewing this collection of information. Send con on Headquarters Services, Directorate for Informat perwork Reduction Project (0704-0188), Washingto	nments regarding this burden estimation Operations and Reports, 1215 con, DC 20503	lefferson Davis Highwa	y, Suite 1204, Arlington, VA 22202-4302,
1. AGENCY USE ONLY (Leave	2. REPORT DATE	3. REPORT TYPE AND		
blank)	1999	Conference Proceeding	ngs, May 23-28	, 1999
4. TITLE AND SUBTITLE Non-Thermal Plasma Techniques	s for Air Treatment		5. FUNDING N N/A	UMBERS
6. AUTHOR(S) Louis A. Rosocha				
7. PERFORMING ORGANIZATION I Los Alamos National Laboratory			8. PERFORMIN REPORT NU N/A	IG ORGANIZATION MBER
9. SPONSORING / MONITORING A SERDP 901 North Stuart St. Suite 303 Arlington, VA 22203	GENCY NAME(S) AND ADDRESS(E	S)		NG / MONITORING EPORT NUMBER
rights under the copyright claime	nited States under Title 17, U.S. cond herein for Government purposes	ode. The U.S. Governments. All other rights are re	nent has a royal	opyright owner.
12a. DISTRIBUTION / AVAILABILIT Approved for public release: dist				12b. DISTRIBUTION CODE A
more effective methods of destro treatment of recalcitrant water po- using non-thermal plasmas (NTP may even be reductive rather than Non-thermal or non-equilibrium	rom entering and spreading throug lying chemical pollutants are being follutants via hydroxyl radicals (OF s). In NTPs, chemical decomposi	g examined. Advanced of the state of the sta	oxidation proced to the treatment of the	esses, historically used for the ent of gas-phase pollutants ther than OH, some of which ectron (e.g., 1-1- eV) and low-
14. SUBJECT TERMS				15. NUMBER OF PAGES
SERDP, non-thermal plasma tech	hnique, pollutant, oxidation			43 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT unclass	18. SECURITY CLASSIFICATION OF THIS PAGE unclass	19. SECURITY CLASSIF OF ABSTRACT unclass	ICATION	N/A 20. Limitation of abstract UL

Form Approved

Non-Thermal Plasma Techniques for Air Treatment

AOTs-5 Workshop Advanced Oxidation Technologies: Fundamentals & Applications

Louis A. Rosocha Los Alamos National Laboratory

May 24, 1999 - Albuquerque, NM

LA-UR-99-2201 (Unclassified, Distribution Unlimited)

Non-Thermal Plasma Techniques for Air Treatment

AOTs-5 Workshop on Advanced Oxidation Technologies: Fundamentals & Applications May 24, 1999 - Albuquerque, NM

Louis A. Rosocha Los Alamos National Laboratory

Abstract

To prevent toxic substances from entering and spreading through the environment and to meet increasingly stringent regulations, more effective methods of destroying chemical pollutants are being examined. Advanced oxidation processes, historically used for the treatment of recalcitrant water pollutants via hydroxyl radicals (OH), are now being applied to the treatment of gas-phase pollutants using non-thermal plasmas (NTPs). In NTPs, chemical decomposition can also be initiated by radicals other than OH, some of which may even be reductive rather than oxidative.

gas conditions. Free radicals, particularly oxygen-atom radicals, are effectively generated by NTPs and play a key role in the process of ozone generation Non-thermal or non-equilibrium plasmas in gaseous media are characterized by combined energetic-electron (e.g., 1-10 eV) and low-temperature (the historical source of OH for water treatment):

$$e + O_2 \rightarrow O(^3P) + O(^1D) + e$$

 $O(^3P) + O_2 + M \rightarrow O_3 + M$.

Other free radicals like the hydroxyl radical and nitrogen-atom radicals are also generated with NTPs in gases:

$$O(^{1}D) + H_{2}O \rightarrow 2OH$$

e+N₂ $\rightarrow N + N + e$.

In the past several years, there has been increased interest in innovative pollution-control techniques. Researchers have explored the treatment of gas-phase pollutants with AOPs. Electric-discharge and electron-beam generated non-thermal plasmas are considered a promising technology for some applications, e.g., the removal of oxides of nitrogen and sulfur (NO_x and SO_x) and hydro/chloro-carbon volatile organic compounds (VOCs) from air-

$$0 + NO + M \rightarrow NO_2 + M$$

 $OH + NO_2 + M \rightarrow HNO_3 + M$
 $N + NO \rightarrow N_2 + O$,
 $O(^3P)$ or $OH + C_2HCI_3 \rightarrow CO_2 + CO + HCI + CI_2 + COCI_2 +$

In this talk, we will discuss non-thermal plasmas in the context of an AOP - namely a tool for free-radical-initiated decomposition reactions. The main points covered are the motivation for and applications of the process, background of atmospheric-pressure, non-thermal plasma processing for airpollution control, figures-of-merit and cost examples, and representative application examples of the technology.

Thanks to

Prof. J.S. Chang & Dr. Kuniko Urashima. McMaster University

Dr. S.J. Kim, Korean Institute of Machinery and Materials

Dr. Andrzej Miziolek, Army Research Laboratory

and

the US Strategic Environmental Research & Development Program (SERDP)

Outline of talk

- Motivation for and applications of research
- Background of atmospheric-pressure, non-thermal plasma processing for environmental applications (air-pollution control)
- Basics of radical formation & decomposition chemistry
- Figures-of-merit & costs for decomposition of example pollutants
- remediation of VOCs and removal of NO_{x} from engine test Representative application examples: environmental facilities
- Future trends
- Summary

Technology-development motivators are regulatory, economic, and social

Regulatory

- Clean Air Act Amendment of 1990, Clean Water Act New and/or more stringent regulations Attendant MACT standards
- Enforcement of regulations

Economic

- Impact of regulations
- Costs associated with conventional methods

Social

- Environmental consciousness
- Health risks

The CAAA 1990 contains three titles closely related to new technologies (e.g., NTPs)

Title III (Air Toxics)

- Directly concerned with emission of hazardous air pollutants (HAPs)
 - Established standards for 189 listed chemicals

Title IV (Acid Rain)

Reduction of SOx/NOx emissions

Title VI (Stratospheric Ozone)

Phase out of VOCs

MACT (Max Achievable Control Technology) Standards

- Calls for state-of-art pollution control equipment
- Require changes in equipment, processes, treatment

Non-thermal plasmas (NTPs) are a type of advanced radicals to decompose pollutants in the gas phase. oxidation & reduction process which use free

Non-thermal plasmas are a type	Applications
of AOP making use of "cold	• Flue gases: e.g., NO _x & SO _x
combustion" Via Tree-radical	• VOCs: e.g., hydrocarbons &
reactions.	halocarbons
	• Odors: H ₂ S, others
The key idea is to direct	Potential Advantages
electrical energy into favorable	 In-situ generation of chemical
chemistry for oxidizing and/or	reactants
reducing pollutants to more	 No added fuel (greenhouse gases)
manageable forms (simpler or	 Simultaneous removal of multiple
mineralized terminal products).	pollutant species
•	 Electronic feedback for optimal
	process control.

Historically, Advanced Oxidation Processes (AOPs) have involved ozone (O₃) and hydroxyl-radical (OH) reactions.

OH radicals were originally generated by the photolysis of O₃ and/or H₂O₂ in aqueous solution:*

$$hv + O_3 \rightarrow O(^1D) + O_2$$

 $O(^1D) + H_2O \rightarrow 2OH$
 $hv + H_2O_2 \rightarrow 2OH$

The field has expanded to gas-phase processes in which both oxidative and reductive radicals are generated by electron-induced dissociation:

e + O₂
$$\rightarrow$$
 2O(³P) and O(³P) + O(¹D)
O(¹D) + H²O \rightarrow 2OH
e + N₂ \rightarrow 2N + e

Not the whole story - O₃ & H₂O₂ can directly generate OH in water.

Prospective applications of NTP technology to off-gas treatment:

Direct processing (single-stage equipment)

- Remediation of solvents extracted from soil or groundwater
- Processing of industrial stack-gases or flue-gases
- Control of air emissions from waste processing (e.g., incinerators)
- Control of air emissions from diesel motor-generators, jet engine test facilities

Indirect processing (staged equipment)

- Destruction of hazardous organic liquids
- Treatment of heterogeneous wastes
- Processing of special materials

Via Active Species Generated in the Process Gas Non-thermal Plasmas Decompose Pollutants

depends on the gaseous electronics. Radical generation is mainly initiated by energetic-The radical production efficiency (G-value) electron collisions.

$$\vec{S} = f \left(\frac{k_{rad}}{\frac{E}{V_d E}} \right)$$

- E/N is the reduced field,
- V_a is the electron drift velocity, which depends on E/N,
- k_{rad} is the rate constant for radical formation (e.g., a dissociation rate constant, which depends on E/N), and/or other rate constants

Gas-phase plasma chemical decomposition is driven by electron impact and radical affack.

- (1) e + X → products
- (2) O, OH, N, etc. + X → products
- The first reaction is dominant at large pollutant mole fractions.
- The second dominates at smaller mole | Secondary treatment: fractions.

(More energy is directly absorbed by pollutant at high mole fraction, hence electron channel dominates.)

Plasma chemical decomposition of VOCs produces a variety of terminal products.

- e, O, OH, N, etc. + X → products
- Manageable products: CO₂, CO, CI₂, HCI, COCI₂
- Undesirable products: Other halocarbons, hazardous byproducts (e.g., DCAC - CHCl₂COCI); polymers
- Secondary treatment:
 CO₂ + NaOH → NaHCO₃
 CO + catalyst→ CO₂
 Cl₂ + NaHCO₃→ NaCl + HCl + ...
 HCl + NaOH → NaCl + H₂O
 COCl₂ + H₂O→ 2HCl + CO₂

Major de-NO_x Reactions in Moist Gas Mixtures w/o HCs

$$O + NO + M \rightarrow NO_2 + M$$
 $O + NO_2 \rightarrow NO + O_2$
 $O + NO_2 \rightarrow NO + O_2$
 $O + NO_2 \rightarrow NO + NO$
 $O + O_2 + M \rightarrow O_3 + M$
 $O + O_2 + M \rightarrow O_3 + M$
 $O + O_2 + M \rightarrow O_3 + M$
 $O + O_3 + NO_2 \rightarrow O_3 + M$
 $O + O_3 + NO_2 \rightarrow O_3 + O_2$
 $O + O_3 + O_2 \rightarrow O_3 + O_3$
 $O + O_3 + O_2 \rightarrow O_3 + O_3$
 $O + O_3 + O_2 \rightarrow O_3 + O_3$
 $O + O_3 + O_2 \rightarrow O_3 + O_3$
 $O + O_3 + O_3 \rightarrow O_3 + O_3$
 $O + O_3 + O_3 \rightarrow O_3 + O_3$
 $O + O_3 \rightarrow O_3 \rightarrow O_3 \rightarrow O_3$
 $O + O_3 \rightarrow O_3 \rightarrow O_3 \rightarrow O_3$
 $O + O_3 \rightarrow O_3 \rightarrow O_3 \rightarrow O_4$
 $O + O_3 \rightarrow O_3 \rightarrow O_4$
 $O + O_3 \rightarrow O_3 \rightarrow O_4$
 $O + O_3 \rightarrow O_4$
 $O + O_4 \rightarrow O_4$
 $O + O_5 \rightarrow O_5$
 $O + O_5 \rightarrow O_4$
 $O + O_5 \rightarrow O_5$
 $O + O_5 \rightarrow O$
 $O + O \rightarrow O$
 O

$$N(^{2}D) + H_{2}O \rightarrow NH + OH$$
 $NH + NO \rightarrow N_{2} + OH$
 $NH + O_{2} \rightarrow NO + OH$
 $NO + NO_{3} \rightarrow 2NO_{2}$
 $NO + OH + M \rightarrow HNO_{2} + M$
 $OH + HNO_{2} \rightarrow NO_{2} + H_{2}O$
 $OH + HNO_{2} \rightarrow NO_{2} + H_{2}O$
 $OH + NO_{2} + M \rightarrow HNO_{3} + M$
 $N + NO_{2} \rightarrow N_{2} + O_{2}$
 $N + NO_{2} \rightarrow NO + N_{2}$
 $O(^{1}D) + NO_{2} \rightarrow NO + O_{2}$
 $O(^{1}D) + NO_{2} \rightarrow NO + O_{2}$
 $O(^{1}D) + N_{2}O \rightarrow N_{2} + NO$
 $O(^{2}D) + N_{2}O \rightarrow N_{2} + NO$

Primary Acid-Formation Pathways:

$$NO + OH + M \rightarrow HNO_2 + M$$

 $OH + NO_2 + M \rightarrow HNO_3 + M$

The presence of SO₂ recycles OH radicals & reduces effective de-NO_x energy cost

OH + SO₂ + M
$$\rightarrow$$
 HSO₃ + M
HSO₃ + O₂ \rightarrow HO₂ + SO₃
HO₂ + NO \rightarrow NO₂ + OH

The OH radical then goes on to be used again in $de-NO_x$

OH + NO + M
$$\rightarrow$$
 HNO₂ + M
OH + HNO₂ \rightarrow NO₂ + H₂O
OH + NO₂ + M \rightarrow HNO₃ + M

Acid is also formed by the reaction

$$HSO_3 + H_2O \rightarrow H_2SO_4$$

With ammonia (NH₃) addition, useful particulates (fertilizer) can be formed from NO_x

$$e + NH_3 \rightarrow NH_2 + H + e$$
 $e + NH_2 \rightarrow NH + H + e$
 $NH + H \rightarrow N + H_2$
 $NH_2 + NO \rightarrow N_2 + H_2O$
 $NH + NO \rightarrow N_2 + OH$
 $N + NO \rightarrow N_2 + OH$
 $N + NO \rightarrow N_2 + OH$

OH + NH₃ \rightarrow NH₂ + H₂O OH + NO + M \rightarrow HNO₂ + M OH + HNO₂ \rightarrow NO₂ + H₂O OH + NO₂ + M \rightarrow HNO₃ + M NH₃ + HNO₃ \rightarrow NH₄NO₃ (Ammonium Nitrate fertilizer)

A generalized removal equation depends on plasma chemistry (radical yields), reaction chemistry, and applied plasma specific energy.

Generalized differential equation:

$$k[X] + \sum_{i} k_{S_i} [S_i]$$

$$k[X] = -G d\overline{\mathbf{E}}$$

Integration with limits [X]₆ → [X] and 0 → E gives:

$$\frac{[X]}{[X]_0} + \frac{\sum_{i} k_{S_i} [S_i]}{k [X]_0} \ln \frac{[X]}{[X]_0} - 1 = -\frac{G\overline{\mathsf{E}}}{[X]_0}$$

For low degree of removal (i.e., [X]/[X]₀ ~ 1 + ln { [X]/[X]₀}), an analytical solution is obtained:

$$[X]/[X]_0 = \exp(-\overline{\mathbf{E}}/\beta)$$

vhere

$$\beta = \frac{1}{G} \left([X]_0 + \frac{\sum_i k_{S_i} [S_i]}{k} \right)$$

When k [X] << Σ_l k_{Sl} [S_l], the β -value and, hence the degree of removal [X]/ [X]₀ shows no dependence on the initial concentration [X]₀.

Scaling laws for pollutant removal

(1)
$$[X] = [X]_0 \exp(-\bar{\epsilon}/\beta)$$
,

where $[X]_0$ is the initial pollutant concentration, [X] is the resulting concentration, $\bar{\mathbb{E}}$ is the applied specific energy (or plasma power divided by gas flow rate, P/Q), and β is the e-fold energy density. Supplying one β to the reactor reduces the concentration by 1/e, 2β by 1/e², and so on.

A useful figure of merit for the decomposition of pollutants is defined by the energy delivered to the plasma per hazardous molecule removed from the gas stream. At any instant, this can be expressed as the following quantity obtained by solving Equation 1 for $\bar{\rm E}$ and taking the derivative:

(2)
$$\gamma_i = -\frac{d\bar{\mathbf{E}}}{d[X]} = -\frac{d[-\beta \ln(\frac{[X]}{[X]_0})]}{d[X]} = \frac{\beta}{[X]}$$
.

This is the instantaneous energy cost per molecule removed; a more practically-useful parameter is the integral, or average, energy cost γ

(3)
$$\gamma = \frac{\vec{\mathsf{E}}}{[X]_0 - [X]} = \frac{-\beta \ln(\frac{[X]}{[X]_0})}{[X]_0(1 - \frac{[X]}{[X]_0})}$$

Here, the energy cost per molecule is expressed in terms of the β -value, the degree of removal, and the initial concentration.

Scaling laws for pollutant removal (cont'd)

plasma specific energies of 50 J/liter and 20 J/liter. NO is one of several compounds whose β-value is not very sensitive to the initial concentration; therefore, the removal energy costs Energy costs and degree of removal for NO removal in an NO-air mixture with one e-fold decrease as the concentration increases (note 200 ppm case vs 100 ppm case).

Example: NO_x - removal power requirement depends on exhaust gas flow rate, characteristic specific energy, and desired degree of removal.

• Typical removal scaling: $[X]/[X]_0 = \exp(-E_s/\beta)$,

where $E_s = P/Q$, plasma power divided by gas flow rate and β = specific energy for one e-fold removal. For NO, $\beta \sim 10$ J/lit (e-beam); ~ 50 J/lit (electrical discharge).

• Power requirement for one e-fold removal: $P = Q \cdot \beta$.

L_
=
$\mathbf{\omega}$
5 \8 ≥
2 8 4 € 5 € 5
2 2 4
0 0 0
の当ま
$ a \geq a $
あ 止。 湯・
7 , 4
\square
7 4
*
1 7 3
12 4 1 5 A 1
– –
neck Control
445 %
100
min.)
, , , , , , , , , , , , , , , , , , ,
$0 \le 1$
じゅうしょう
3 の。二
0 0 2
$ \mathbf{z} = \mathbf{z}$
$\mathbf{m} = \mathbf{m}$
- CV - 1
@ 2: 0
ELLO
$\omega \cup \omega$
UJ - S
O M
) N
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
1 2 2 2 2
Oa
TE U. L.

Example NTP-equipment designs

- Pulsed Corona Plasma Reactor System
- Dielectric-Barrier (Silent Discharge) Plasma Reactor System
- **Electron-Beam Plasma Reactor System**
- Hybrid/NTP Reactor-Adsorber System: NTP reactor + activated carbon + electrostatic precipitator (ESP)
- Plasma-Catalytic System: NTP reactor + catalytic converter.
- Corona Radical Shower (CRS) System: Secondary NTP reactor injects radicals formed in bleed gas into main reactor.

Pulsed Corona System

Pulsed or DC corona

Dielectric-Barrier (Silent Discharge) System

Silent discharge (dielectric-barrier discharge)

Illustration of mobile dielectric-barrier NTP reactor system employed for VOC decomposition tests at McClellan AFB. Each plasma reactor tank operated at up to 10 kW of plasma power.

CRADAs with the Electric Power Research Institute (EPRI) & High Mesa Technologies (HMT) were an essential part of the development & fielding of this equipment.

Schematic diagram of commercial Tecolytic™ modified dielectric-barrier NTP reactor system for de-NO_x/SO_x (flue-gas treatment)

Serial-Mode NTP-Adsorber System

Serial-mode NTP-absorber architecture. Disposal and/or regeneration economic advantage comes from reducing the load on the absorber or converting the pollutants to more easilyabsorbed compounds.

Regenerative-Mode NTP-Adsorber System

may be gained by regenerating the absorbers off-line from pollutant capture, but employing Regeneration-mode NTP-absorber architecture. Economic and performance advantages on-site, rather than off-site handling.

Corona Radical Shower System

that drive reactions leading to the formation of particulates; these particulates are then captured by the Schematic diagram of CRS reactor. Ammonia (NH₃) or methane (CH₄) are added to generate radicals electrostatic precipitator. Some of the captured products are useful for agricultural fertilizer (e.g., ammonium nitrate, NH4NO₃)

We have provided economic analyses for three hybrid NTP systems compared to conventional de-NO_x systems

				CRS)	
L	Pulsed Corona	Electron-Beam		Corona Radical Shower (CRS)	
tional particular properties of the contract o	Selective Catalytic Reduction (SCR) # Wet Scrubbers	SGR) + Electrostatic			
Convention	lective Catalytic Reducti (SCR.) + Wet Scrubbers	(SCR) + Electro	Precipitator (ESF)		
	Sel	D O			

Cost comparisons for various de-NO_x systems

CFM)
104 S
×
(5.89
Vm3/h
105
č
<u>~</u>
Rate
-low
Gas

				· :	
(k\$)	Pulsed	Corona	Electron	Wet	ESP+
	Corona	Shower	Веаш	Scrubber + SCR	SCR
Capital Recovery	345	410	718	36	104
Labor & Maintenance	218	246	377	273	273
Electric Power	66	116	11	123	83
Chemicals & Utilities	9	9	ဖ	1,291	1,192
Total Annual Cost	664	774	1,176	1,723	1,651
Fertilizer Recovery	4	4	4	0	0

Cost comparisons for various de-NO_x systems (cont'd.)

	ESP + SCR	3,123	4,641	1,403	20,247	29.414	0
	Wet Scrubber + SCR	3,802	4,641	2,082	21,935	32,459	0
Gas Flow Rate: 1.70 x 10 ⁶ Nm³/h (1.0 x 10 ⁶ SCFM)	Electron Beam	6,504	3,061	1,318	110	10,931	62
.70 x 10 ⁶ Nm³/h	Corona Shower	4,151	2,060	1,970	110	8,230	62
Gas Flow Rate: 1	Pulsed Corona	3,594	1,823	1,674	110	7,139	62
	(k\$)	Capital Recovery	Labor & Maintenance	Electric Power	Chemicals & Utilities	Total Annual Cost	Fertilizer Recovery

Comparison of SVE off-gas technology cost attributes by general technology type:

Cost Effectiveness Attribute as Tec

Advantageous at low concentrations: adsorption, free radical

Advantageous at higher concentrations: thermal, free radical

Advantageous at low flow rates: adsorption, free radical

Advantageous at higher flow rates: thermal, free radical

Low capital cost: adsorption, free radical

Low operational cost: thermal, free radical Recycling option: adsorption

Highest DRE: thermal, free radical

Performs well at high humidity: thermal

Easily scalable: free radic

hydrocarbons (~ 100 J/L β -value). Study from Cummings & Booth, LANL Free-radical (NTP) technologies show advantages for spanning a broad range of concentrations and gas flow rates in remediation of 1996).

Cost Comparisons for Soil-Vapor Extraction (SVE) Off-Gas Treatment Technologies

High Flow Rate, Short-term Remedial Action

High Flow Rate, Long-term Remedial Action

CST-97-247

Figure 1. Cost Comparison at Low Flow Rate, Short-term Remedial Action

Figure 2. Cost Comparison at Low Flow Rate, Long-term Remedial Action

- **Figure 1** shows adsorption and free radical technologies are competitive at the low flow rate across a range of concentrations, over the short term
- The high capital cost of thermal technologies makes them an impractical choice for remediation under these conditions
- Figure 2 shows adsorption technologies are cost effective only at low concentrations over the long term
- Free radical technologies are the most cost effective alternatives at concentrations above 200 ppm

Figure 3. Cost Comparison at High Flow Rate, Short-term Remedial Action

Figure 4. Cost Comparison at High Flow Rate, Long-term Remedial Action

- Figure 3 shows adsorption and free radical technologies are competitive at the high flow rate only at low VOC concentrations over the short term
- Thermal technologies become competitive with adsorption at higher VOC concentrations
- Free radical technologies are the most cost effective alternatives at concentrations above 200 ppm
- Figure 4 shows thermal and free radical technologies are the most cost effective choices at the higher flow rate over the long term
- The high operational costs associated with adsorption technologies causes them to lose cost effectiveness over the long-term schedule as concentrations increase

Assembling two 5-SCFM (142 lit/min) SDP processor units, each containing two 10-cell modules, in the equipment trailer at McClellan Air Force Base. The plasma power for each 5-SCFM unit is about 10 kW.

Los Alamos CST-95-1151

Los Alamos

Results from VOC tests at McClellan AFB (with prototype SDP equipment)

Notes	Wet	Wet	Wei	Wet	· Wet	_ 1e/M √	- Je∭∵	∵ je∭	∵јем/³Ң		' /Mp//H	_tew/ ^z H_
DRE (%)	93.5	88.1	926	0.08	- 60:0		080	62.5	92.5	- 60 z		. 2 96
Energy density (J/lit)	4162	4193	4185	9144	4068	4494	4034	2012	. 2186	4083	5734	96£7
Gas flow (SCEM)	10:0	10.0	10.0	9.5	10.4	25	1 2 4	1	177	1. 1.9	3.7	2.9
Gas. temperature (C)	32	29	- 28	99		20	38	38	99	20	- 18	7, 24
Total [VOC] (ppmv)	542	462	328	333	363	460		464	532	629	869	7-697
Sample #		C 1	ഹ			9		(C)	6	40		

From LA-UR-96-729

Ideas for the future.

Finding market niches where NTP technology has significant advantages over conventional technologies in terms of:

- Increased efficiency and/or economics
- Increased selectivity or throughput
- Better control of final products and/or process
 - Unique process streams

Potential examples:

- environmental remediation and other air-pollution control Regeneration of adsorbers (e.g., activated carbon) for applications
- Treatment of specialized radiochemical wastes

Two-Stage Thermal/Non-Thermal Hybrid Process for Hazardous Waste Destruction

considerable flexibility in waste feeds and feed Example: The two-stage process allows gases.

variety of waste-feed surrogates, including those with high water The operating conditions of the packed-bed reactor stage are flexible. We have demonstrated the ability to handle a wide content and different types of slurries.

In the non-thermal plasma stage, the yields of active species depend on the gas mixture. A feed gas can be chosen to optimize the production of active species and the destruction of the waste.

Summary

- phenomenological descriptions of reactor performance and, in most cases, does not provide a consistent way to compare and/or predict the scaling and optimization Most technical literature on treating air emissions with NTPs mainly presents properties of different NTP systems.
- active volume) required to remove a particular pollutant to a prescribed level in a defined A simple way of comparing different types of NTP reactors, is based on the concept of: the plasma specific energy (electrical energy per unit volume deposited in the reactor exhaust-gas mixture and the associated yield (electrical energy cost per mass of pollutant removed.
- exist. Also, for many emissions applications, the present forms of NTP technology are NTP is an emerging air-emissions control technology. Very few commercial systems equipment (e.g., scrubbers) that may be necessary to handle treatment byproducts. expected to be expensive (in terms of electrical power consumption) - and ancillary
- Realizing the performance and economic shortcomings of stand-alone NTP reactors, the use of staged or hybrid systems to better match particular air-emissions control applications is proposed.
- Present trends for emerging NTP technologies are favorable. However, rigorous pilotplant tests are required to provide further data and operating experience to more fully evaluate economic and performance projections.