Started on	Wednesday, 27 March 2024, 5:30 PM
State	Finished
Completed on	Wednesday, 27 March 2024, 6:14 PM
Time taken	43 mins 35 secs
Grade	10.00 out of 10.00 (100%)

Question 1

Correct

Mark 10.00 out of 10.00

Determine the minimum cost to provide library access to all citizens of HackerLand. There are n cities numbered from 1 to n. Currently there are no libraries and the cities are not connected. Bidirectional roads may be built between any city pair listed in cities. A citizen has access to a library if:

- · Their city contains a library.
- They can travel by road from their city to a city containing a library.

Example

The following figure is a sample map of HackerLand where the dotted lines denote possible roads:

$$\begin{array}{l} c_road = 2 \\ c_lib = 3 \\ cities = [[1,7],[1,3],[1,2],[2,3],[5,6],[6,8]] \end{array}$$

The cost of building any road is $cc_road = 2$, and the cost to build a library in any city is $c_lib = 3$. Build 5 roads at a cost of $5 \times 2 = 10$ and 2 libraries for a cost of 6. One of the available roads in the cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ is not necessary.

There are q queries, where each query consists of a map of HackerLand and value of c_lib and c_road . For each query, find the minimum cost to make libraries accessible to all the citizens.

Function Description

Complete the function *roadsAndLibraries* in the editor below. roadsAndLibraries has the following parameters:

- int n: integer, the number of cities
- int c_lib: integer, the cost to build a library
- int c_road: integer, the cost to repair a road
- int cities[m][2]: each cities[i] contains two integers that represent cities that can be connected by a new road

Returns

- int: the minimal cost

Input Format

The first line contains a single integer q, that denotes the number of queries.

The subsequent lines describe each query in the following format:

- The first line contains four space-separated integers that describe the respective values of n, m, c_lib and c_road , the number of cities, number of roads, cost of a library and cost of a road.
- Each of the next m lines contains two space-separated integers, u[i] and v[i], that describe a bidirectional road that can be built to connect cities u[i] and v[i].

Constraints

- $1 \le q \le 10$
- $1 \le n \le 10^5$
- $0 \leq m \leq min(10^5, \frac{n \cdot (n-1)}{2})$
- $1 \le c_road, c_lib \le 10^5$
- $1 \leq u[i], v[i] \leq n$
- · Each road connects two distinct cities.

For example:

Input				Result	
	2				4
	3	3	2	1	12
	1	2			
	3	1			
	2	3			
	6	6	2	5	
	1	3			
	3	4			
	2	4			
	1	2			
	2	3			
	5	6			

Answer: (penalty regime: 0 %)

Reset answer

```
1
    #include <bits/stdc++.h>
2
3
    using namespace std;
4
5
    string ltrim(const string &);
    string rtrim(const string &);
6
    vector<string> split(const string &);
8
9
     * Complete the 'roadsAndLibraries' function below.
10
11
12
     * The function is expected to return a LONG INTEGER.
     * The function accepts following parameters:
13
     * 1. INTEGER n
     * 2. INTEGER c_lib
15
16
     * 3. INTEGER c_road
17
     * 4. 2D INTEGER ARRAY cities
18
19
20 .
    long roadsAndLibraries(int n, int c_lib, int c_road, vector<vector<int>> cities) {
21
        if (c_lib <= c_road) {</pre>
            // If building libraries is cheaper than roads, build library in each city
22
            return (long)n * (long)c_lib;
23
24
25
26
        vector<vector<int>> adj(n + 1);
        vector<bool> visited(n + 1, false);
27
28
        long cost = 0;
29
        // Build adjacency list
30
31 ,
        for (auto& road : cities) {
            adj[road[0]].push_back(road[1]);
32
33
            adj[road[1]].push_back(road[0]);
34
35
36
        // DFS function
        function<void(int)> dfs = [&](int node) {
37
38
            visited[node] = true;
39 ,
            for (int neighbor : adj[node]) {
40
                if (!visited[neighbor]) {
41
                    dfs(neighbor);
42
43
44
        };
45
46
        // Count the number of connected components
        int components = 0;
47
48
        for (int i = 1; i <= n; ++i) {
49
            if (!visited[i]) {
50
                ++components;
51
                dfs(i);
52
```

	Input	Expected	Got	
~	2	4	4	~
	3 3 2 1	12	12	
	1 2			
	3 1			
	2 3			
	6 6 2 5			
	1 3			
	3 4			
	2 4			
	1 2			
	2 3			
	5 6			
~	5	805	805	~
	9 2 91 84	184	184	
	8 2	80	80	
	2 9	5	5	
	5 9 92 23	204	204	
	2 1			
	5 3			
	5 1			
	3 4			
	3 1			
	5 4			
	4 1			
	5 2			
	4 2			
	8 3 10 55			
	6 4			
	3 2			
	7 1			
	1 0 5 3			
	2 0 102 1			
~	1	15	15	~
	5 3 6 1			
	1 2			
	1 3			
	1 4			

Passed all tests! ✔

► Show/hide question author's solution (Cpp)

Correct
Marks for this submission: 10.00/10.00.