Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática – ICEI Arquitetura de Computadores I

ARQ1 - Preparação 01

Tema: Sistemas de Numeração e circuitos combinatórios

Exercícios:

01.) Dada tabela-verdade e o mapa de Veitch-Karnaugh abaixo:

n	m	М	f(a,b,c,d)				
0	a'b'c'd'	A+B+C+D	0				
1	a'b'c'd	A+B+C+D'	0				
2	a'b'c d'	A+B+C'+D	1				
3	a'b'c d	A+B+C'+D'	0				
4	a'b c'd'	A+B'+C+D	0				
5	a'b c'd	A+B'+C+D'	1				
6	a'b c d'	A+B'+C'+D	1				
7	a'b c d	A+B'+C'+D'	1				
8	a b'c'd'	A'+B+C+D	0				
9	a b'c'd	A'+B+C+D'	0				
Α	a b'c d'	A'+B+C'+D	0				
В	a b'c d	A'+B+C'+D'	0				
С	a b c'd'	A'+B'+C+D	1				
D	a b c'd	A'+B'+C+D'	1				
Е	a b c d'	A'+B'+C'+D	0				
F	abcd	A'+B'+C'+D'	1				

Marcar os termos:

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
mintermos																
	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
MAXTERMOS																

Determinar e implementar os circuitos equivalentes em Verilog e no Logisim:

- a.) expressão canônica para SoP(a,b,c,d)
- b.) expressão canônica para PoS(A,B,C,D)
- c.) simplificação de mintermos pelo mapa de Veitch-Karnaugh
- d.) simplificação de MAXTERMOS pelo mapa de Veitch-Karnaugh
- e.) expressão SoP equivalente com portas NAND (usar dupla negação)
- f.) expressão PoS equivalente com portas NOR (usar dupla negação)

02.) Implementar e testar a função lógica descrita em Verilog e no Logisim para obter a tabela-verdade:

```
module f ( output s, input x, input y );
wire w1, w2, w3, w4, w5;
not NOT_1 (w1, x);
not NOT_2 (w2, y);
and OR__1 (w3, y, w2);
or OR__2 (w4, w1, x);
not NOT_3 (w5, w4);
and AND_1 (s, w3, w5);
endmodule // s = f (x,y)
```

03.) Implementar no Verilog e no Logisim a expressão abaixo para obter a tabela verdade:

DICA: Usar MUX(a,b,chave). Se chave=0, (a); senão, (b).

```
MUX ( MUX(a,b,c), MUX(NOT(b),NOT(a),c), NOT(c) )
```

- 04.) Dado o valor negativo, já em complemento de 2, 2310₍₄₎, com 01 byte de representação, encontrar a soma binária desse valor com 67₍₈₎. Completar com zeros, se necessário.
- 05.) Implementar no Verilog e no Logisim a expressão abaixo para obter a expressão por mintermos equivalente:

NAND (XNOR (a, b), NOR (NOT(a), NOT (b)))