

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Hence $\tan \phi = -\tan \psi$, and $\phi + \psi = \pi$; that is, the opposite angles of the maximum quadrilateral are supplementary and hence the quadrilateral is cyclic.

Again, it is shown by elementary geometry, that when three sides of a maximum quadrilateral are given, the fourth side is the diameter of the circumscribing circle of the figure. Hence, to find this diameter AD, let AD = x, AB = a, BC = b, CD = c; and let the angles subtended by a, b, c, at the center be 2α , 2β , 2γ .

Then

$$\alpha + \beta + \gamma = \frac{\pi}{2} \tag{1}$$

and

$$\sin (\alpha + \beta + \gamma) = 1,$$

that is,

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + 2 \sin \alpha \sin \beta \sin \gamma = 1. \tag{2}$$

But $\sin \alpha = a/x$; $\sin \beta = b/x$; $\sin \gamma = c/x$. Substituting these values in (2), we have

$$x^3 - x(a^2 + b^2 + c^2) - 2abc = 0. (3)$$

This cubic has two negative roots and one positive root, as may be seen by putting $x = 0, -a, -\infty$. The positive root is the value of x required. We can then describe a semicircle having this root as a diameter and place in it the chords a, b, c, in any order; for the equation (3) involves a, b, c, symmetrically.

Note.—The cubic (3) can also be derived as follows:

Draw the diagonals AC and BD. Then

$$AC = \sqrt{x^2 - c^2}, \quad BD = \sqrt{x^2 - a^2}.$$

Hence, by *Ptolemy's Theorem* we have

$$\sqrt{x^2 - c^2} \cdot \sqrt{x^2 - a^2} = ac + bx,$$

whence

$$x^3 - (a^2 + b^2 + c^2)x - 2abc = 0,$$

as before.

Also solved by Elijah Swift, Elmer Schuyler, and A. M. Harding.

MECHANICS.

273. Proposed by F. P. MATZ, Reading, Pa.

A person is placed on a perfectly smooth surface. How may he get off.

SOLUTION BY S. W. REAVES, University of Oklahoma.

He should throw some object, for example his hat, in the opposite direction to that in which he wishes to go. The reaction, or "recoil," will cause him to slide to the edge of the smooth surface.

284. Proposed by C. N. SCHMALL, New York, N. Y.

A cylindrical vessel standing upright on a horizontal plane is kept constantly full of water by an automatic device. Determine at what height in its side a small orifice should be made,