CPE301 – SPRING 2019

Design Assignment DA3B

Student Name: Jett Guerrero Student #: 5002377713

Student Email: guerrj1@unlv.nevada.edu

Primary Github address: https://github.com/guerrj1/Submission_DA.git
Directory: DA3B - https://github.com/guerrj1/Submission_DA/tree/master/DA3B

Submit the following for all Labs:

- 1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.
- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS 1.

- -ATMega328p
- -FTDI Basic
- -Mini-USB Cable
- -Micro-USB Cable
- -Male to male wires
- -Breadboard
- -LM34

FTDI Chip Connection Diagram

2. **DEVELOPED CODE OF TASK 1 C CODE**

```
//DA3B
#define F_CPU 1600000UL
#define BAUD_RATE 9600
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
void usart_init ();
void usart_send (unsigned char ch);
int main (void)
        //usart_init ();
        /** Setup and enable ADC **/
        ADMUX = (0 << REFS1)
                                  // Reference Selection Bits
        (1<<REFS0) | // AVcc - external cap at AREF
        (0<<ADLAR) // ADC Left Adjust Result
(1<<MUX2) // Analog Channel Selection Bits
(0<<MUX1) // ADC5 (PC5 PIN27) temp is read
                         // ADC5 (PC5 PIN27) temp is read from here
        (1<<MUX0);
```

```
ADCSRA = (1 << ADEN) | // ADC ENable
       (0<<ADSC)
                      // ADC Start Conversion
       (0<<ADATE)
                      // ADC Auto Trigger Enable
       (0<<ADIF)
                      // ADC Interrupt Flag
       (0<<ADIE)
                      // ADC Interrupt Enable
       (1<<ADPS2)
                      // ADC Prescaler Select Bits
       (0<<ADPS1)
       (1<<ADPS0);
       //Timer initialization
                             //prescaler of 1024
       TCCR1B = 5;
       TIMSK1 = (1 << TOIE1);
       TCNT1 = 49911;
                           //timer counter
       usart_init ();
       sei();
                            //enable interrupt
       while (1)
       return 0;
}
ISR(TIMER1_OVF_vect)
{
       ADCSRA = (1<<ADSC);
                            //start conversion
       while((ADCSRA&(1<<ADIF))==0);//wait for conversion to finish</pre>
       ADCSRA |= (1<<ADIF);
       int a = ADCL;
       a = a \mid (ADCH < < 8);
       a = (a/1024.0) * 5000/10;
       usart_send((a/100)+'0');
       a = a \% 100;
       usart_send((a/10)+'0');
       a = a \% 10;
       usart_send((a)+'0');
       usart_send('\r');
       TCNT1 = 49911; //reset the timer counter to this value
}
void usart init (void)
       UCSROB = (1 << TXENO);
       UCSROC = (1 << UCSZO1) | (1 << UCSZOO);
       UBRRØL = F_CPU/16/BAUD_RATE-1;
}
void usart_send (unsigned char ch)
{
       while (! (UCSR0A & (1<<UDRE0)));</pre>
                                          //wait until UDR0 is empty
       UDR0 = ch;
                                                                   //transmit ch
}
void usart_print(char* str)
{
       int i = 0;
```

```
while(str[i] != 0)
    usart_send(str[i]);
}
```

3. Graph From Data Visualizer for Task 2

Data Visualizer Graph

4. SCHEMATICS

Atmega328P

Atmega328P and FTDI Schematic

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Displaying temperature from temperature sensor in Fahrenheit every 1 second on the Data Visualizer terminal.

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Atmega328P Connected with the FTDI Chip with LM34 on the breadboard.

7. VIDEO LINKS OF EACH DEMO

https://youtu.be/gGHhRtadBio

8. GITHUB LINK OF THIS DA

https://github.com/guerrj1/Submission_DA/tree/master/DA3B

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Jett Guerrero