

MONASH ENGINEERING ENG1060

### ORDINARY DIFFERENTIAL EQUATIONS

Edited and Presented by Soon Foo Chong (Joseph)

Slides by Tony Vo

Assisted by Tham Lai Kuan & Christopher Ng





#### HOUSEKEEPING



- Weekly Moodle post
  - Week 10 Moodle announcement
- Lab-related items
  - Lab 7 marks and feedback available on Moodle Grade Book
  - Lab 8 solutions available on Gdrive > Labs
- PASS Sessions
  - 1) Monday (3:30-5:30pm MYT , 6:30-8:30pm AEDT): https://monash.zoom.us/j/89128532133?pwd=VVVOenhDbW5xZ3h6ZFRZR1dieVhldz09
  - 2) Tuesday (12-2pm MYT , 3-6pm AEDT): https://monash.zoom.us/j/85226581851?pwd=d0YxeWVHd0tudnplanFRYWU2ZGJRUT09

#### HOUSEKEEPING



- Assignment due next Friday (22 Jan 2021, 8pm MYT / 11pm AEDT)
  - Remember that it is an individual assessment
  - Use the support avenue available (e.g. discussion board, etc.)
  - Assignment-marking schedule release next week

|                      | Group 01 (Tuesday 9am MYT / 12 Noon AEDT) |            |           |
|----------------------|-------------------------------------------|------------|-----------|
|                      | Christopher Ng                            |            |           |
| Zoom link            |                                           |            |           |
| Zoom ID              |                                           |            |           |
| Time                 | Student ID                                | First Name | Last Name |
|                      | 1234567                                   | abc        | def       |
| 9.00am -             |                                           |            |           |
| 9.30am               |                                           |            |           |
|                      |                                           |            |           |
| 9.30am -             |                                           |            |           |
| 10.00am              |                                           |            |           |
|                      |                                           |            |           |
| 10.00am -            |                                           |            |           |
| 10.00am -            |                                           |            |           |
|                      |                                           |            |           |
| 40.00                |                                           |            |           |
| 10.30am -<br>11.00am |                                           |            |           |
| 11.000111            |                                           |            |           |
|                      |                                           |            |           |
| 11.00am -<br>11.30am |                                           |            |           |
| 11.50aill            |                                           |            |           |
| -                    |                                           |            |           |
| 11.30am -            |                                           |            |           |
| 12.00noon            |                                           |            |           |

#### HOUSEKEEPING



- SETU questionnaire is now open for a limited time
  - Please spend 5-10 minutes to complete this during the workshop
  - Always seeking feedback and striving for continuous improvement

#### IN THIS WORKSHOP



- 1. Understanding methods for solving ordinary differential equations (ODEs)
  - a. Euler's
  - b. Heun's
  - c. Midpoint
- 2. Creating function files for ODE-solving methods
- 3. Solving ODEs
- 4. Using ode45()



#### **RECAP: ODEs**



The generic 1<sup>st</sup>-order ODE is given as

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y)$$

- Starting with initial condition  $(t_0, y_0)$ 
  - Determine the next point  $(t_1, y_1)$  using slope  $\phi$  information

$$\int y_{i+1} \cong y_i + h\phi$$

- Then use  $(t_1, y_1)$  and slope  $\phi$  information to determine  $(t_2, y_2)$ 
  - Repeat until you get to your desired t value



#### **RECAP: ODE-SOLVING METHODS**



$$y_{i+1} \cong y_i + h\phi$$

| Method   | Evaluate derivative at                                                                             | Local error | Global error |
|----------|----------------------------------------------------------------------------------------------------|-------------|--------------|
| Euler    | Point $i$ $\phi = \frac{\mathrm{d}y_i}{\mathrm{d}t_i} = f(t_i, y_i)$                               | $O(h^2)$    | O(h)         |
| Heun's   | Point $i$ and predicted $i+1$ – then averaged $\phi = \frac{f(t_i,y_i) + f(t_{i+1},y_{i+1}^0)}{2}$ | $O(h^3)$    | $O(h^2)$     |
| Midpoint | Half way between point $i$ and $i+1$ $\phi = f(t_{i+1/2}, y_{i+1/2})$                              | $O(h^3)$    | $O(h^2)$ 7   |

#### **RECAP: EULER'S METHOD**



$$y_{i+1} \cong y_i + h\phi$$

#### Steps for Euler's method:

$$y_{i+1} = y_i + hf(t_i, y_i)$$

- 1. Starting condition (i = 0) $y_1 = y_0 + hf(t_0, y_0)$
- 2. Euler's method for i = 1 $y_2 = y_1 + hf(t_1, y_1)$
- 3. Euler's method for i = 2 $y_3 = y_2 + hf(t_2, y_2)$



ACTIVITY: STEEPNESS

EULER.M, STEEPNESS.M

The gradient of a terrain is is described by  $\frac{dy}{dx}$ , where x is the horizontal distance and y is the vertical distance

#### Process:

- Understand Euler's method by hand
- 2. Write a function file for Euler's method
- 3. Solve the ordinary differential equation

#### Activity involves:

- 1. Hand calculations
- 2. Writing a function file

Equations:  $\frac{dy}{dx} = x - y^{2}$ y(0) = 2h = 0.5 $y_{i+1} \cong y_{i} + hf(t_{i}, y_{i})$ 

MATLAB commands:

for i = ...

for i = ...
y = ones(...)
error(...)

f = @(x,y) ...

where 
$$y_{i+1} \cong y_i + hf(t_i, y_i)$$

MATLAB commands:

[20 MINS]

The gradient of a terrain is is described by  $\frac{dy}{dx}$ , where x is the horizontal distance and y is the vertical distance

- 7 y? when x=1 = 0.25 1. Solve for y(1) by hand
- 2. Write a function with the following header: [t,y] = euler(dydt,tspan,y0,h)



Equations:

3. Use euler() to verify y(1) in step 1

$$\checkmark$$
 4. Modify the code so that it can solve for  $y(1.25)$  using  $h = 0.5$ 

#### **RECAP: MIDPOINT METHOD**



$$y_{i+1} \cong y_i + h\phi$$

#### Steps for the midpoint method:

$$y_{i+1/2} = y_i + \frac{h}{2}f(t_i, y_i)$$

$$y_{i+1} = y_i + hf(t_{i+1/2}, y_{i+1/2})$$

1. Starting condition (i = 0)

$$y_{0.5} = y_0 + \frac{h}{2}f(t_0, y_0) \leftarrow y_1 = y_0 + hf(t_{0.5}, y_{0.5})$$

2. Euler's method for i = 1

$$y_{1.5} = y_1 + \frac{h}{2}f(t_1, y_1)$$
$$y_2 = y_1 + hf(t_{1.5}, y_{1.5})$$



what.

ACTIVITY: OBJECT

MIDPOINT.M, OBJECT.M

An accelerating object is heavily resisted by an unknown fluid, which is described by  $\frac{\mathrm{d}v}{\mathrm{d}t}$ 

#### Process:

- 1. Understand the midpoint method by hand
- 2. Write the midpoint method function file
- 3. Solve the ordinary differential equation

#### Activity involves:

- 1. Hand calculations
- 2. Writing a function file

# Equations: $\frac{dv}{dt} = t - v$ v(0) = 1 h = 0.5 $y_{i+1/2} = y_i + \frac{h}{2}f(t_i, y_i)$ $y_{i+1} = y_i + hf(t_{i+1/2}, y_{i+1/2})$

MATLAB commands:

for i = ...

error(...)

y = ones(...)

$$f = Q(x,y) ...$$





#### **RECAP: HEUN'S METHOD**



$$y_{i+1} \cong y_i + h\phi$$

#### Steps for Heun's method:

$$y_{i+1}^{0} = y_i + hf(t_i, y_i)$$

$$y_{i+1} = y_i + \frac{h}{2} (f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0))$$

#### 1. Starting condition (i = 0)

$$y_1^0 = y_0 + hf(t_0, y_0)$$
  
$$y_1 = y_0 + \frac{h}{2}(f(t_0, y_0) + f(t_1, y_1^0))$$

#### 2. Euler's method for i = 1

$$y_2^0 = y_1 + hf(t_1, y_1)$$
  
$$y_2 = y_1 + \frac{h}{2}(f(t_1, y_1) + f(t_2, y_2^0))$$





#### ADAPTIVE STEP-SIZE METHODS

- Function gradients can change rapidly
  - For most of the range of t, y changes gradually,
     so a large step size can be used
  - In regions where the solution undergoes an abrupt change, a much smaller step size is required for accuracy
- Adaptive step-size methods dynamically adjust their step size based on an estimate of the local gradient of the solution



#### IN-BUILT MATLAB ODE SOLVERS



- MATLAB provides several built-in functions for adaptive methods
  - Most common are ode23, ode45, ode113 (there are others)
- ode45() simultaneously uses 4<sup>th</sup> and 5<sup>th</sup>-order Runge-Kutta methods
  - Algorithm developed by Dormand and Prince (1980)
  - Use ode45 first if the characteristics of the system are not well known







[T, Y] = ode45(odefun, tspan, Y0)

| odefun | A function handle that evaluates the RHS of the differential equation                                                                                                                                    |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tspan  | A vector specifying the interval in ascending order $[t_0 \ t_f]$ – displays solution at the adaptive independent values $[t_0 \ t_1 \ t_2 \ \ t_f]$ – displays solution at specified independent values |
| Y0     | Initial condition                                                                                                                                                                                        |
| T      | Column vector of the independent variable                                                                                                                                                                |
| Y      | Solution array. Each row in Y corresponds to the solution at a time returned in the corresponding row of T                                                                                               |

# ACTIVITY: OBJECT II

HEUN.M, OBJECT2.M

An accelerating object heavily resisted by an unknown fluid is described by  $\frac{\mathrm{d}v}{\mathrm{d}t}$ 

#### Process:

- 1. Understand the Heun's method by hand
- 2. Write the Heun's function file
- 3. Solve the ordinary differential equation

## Activity involves:

- 1. Writing a function file
- 2. Using ode45()

```
Equations: \frac{dv}{dt} = t - v^{2}
v(5) = 1
h = 0.5
y_{i+1}^{0} = y_{i} + hf(t_{i}, y_{i})
y_{i+1} = y_{i} + \frac{h}{2} \left( f(t_{i}, y_{i}) + f(t_{i+1}, y_{i+1}^{0}) \right)
```

MATLAB commands:

for i = ...
 error(...)
 y = ones(...)
 f = @(x) ...
[t, y] = ode45(...)

#### [20 MINS] ACTIVITY: OBJECT II

HEUN.M, OBJECT2.M

- Write a function with the following header: [t,y] = heun(dydt,tspan,y0,h)
- 2. Plot v for t = 5 to 10 using
  - a. Euler's, Heun's and midpoint methods
- ode45



v(5) = 1h = 0.5 $y_{i+1}^0 = y_i + hf(t_i, y_i)$  $y_{i+1} = y_i + \frac{h}{2} (f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0))$ 

MATLAB commands:

$$f = @(x,y) ...$$
  
[t, y] = ode45(...)

**Equations:** 

#### **NOT-EXAMINABLE**: 4th-ORDER RUNGE-KUTTA

The 4<sup>th</sup>-order Runge-Kutta method uses a weighted average of four slopes.

$$y_{i+1} = y_i + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} + O(h^5)$$

$$\bullet \quad k_1 = hf(x_i, y_i)$$

• 
$$k_2 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}\right)$$

$$k_4 = hf(x_i + h, y_i + k_3)$$



#### IN THIS WORKSHOP



- 1. Understanding methods for solving ordinary differential equations (ODEs)
  - a. Euler's
  - b. Heun's
  - c. Midpoint
- 2. Creating function files for ODE-solving methods
- 3. Solving ODEs
- 4. Using ode45()



#### PART B: NUMERICAL METHODS



- 7. Roots and optimisation
- 8. Curve fitting
- 9. Numerical integration
- 10. Ordinary differential equations
- 11. Linear systems
- 12. Exam information

You can now complete lab 10!

# SUPPLEMENTARY SLIDES

#### **RECAP: EULER'S METHOD**



#### Steps for Euler's method:

$$y_{i+1} \cong y_i + hf(t_i, y_i)$$

- 1. Starting condition (i = 0) $y_1 \cong y_0 + hf(t_0, y_0)$
- 2. Euler's method for i = 1 $y_2 \cong y_1 + hf(t_1, y_1)$
- 3. Euler's method for i = 2 $y_3 \cong y_2 + hf(t_2, y_2)$



#### RECAP: ERROR IN EULER'S METHOD



#### Local truncation error:

$$y_{i+1} \cong y_i + hf(t_i, y_i)$$

- Arises from the application of Euler's method over a single step
- A consequence of the method only being approximate
- The error in a single step of Euler's method given by

$$\varepsilon_{\text{loc}} \cong \frac{h^2}{2} \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} \bigg|_{t=t_i}$$

- Error decreases quadratically
  - Smaller step size = smaller error
  - E.g. ½ step size = ¼ error



#### RECAP: ERROR IN EULER'S METHOD



- Propagated truncation error:
  - Accumulation of local truncation errors from the previous steps
- Global truncation error
  - Arises from an accumulation of local errors
     PLUS propagation of error in the solution from previous steps

Errors:  $\varepsilon_{loc} \sim O(h^2)$  and  $\varepsilon_{global} \sim O(h)$ 

$$y_{i+1} \cong y_i + hf(t_i, y_i)$$



#### **RECAP: HEUN'S METHOD**



- Heun's method averages
  - The slope at the beginning of the step and
  - The slope at the end of the step
- Predictor step:  $y_{i+1}^0$ 
  - Estimated using Euler's method

$$y_{i+1}^0 = y_i + hf(t_i, y_i)$$

Averages slopes at t<sub>i</sub> and t<sub>i+1</sub>

$$\frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0)}{2}$$

$$y_{i+1} \cong y_i + h\phi$$



#### **RECAP: HEUN'S METHOD**



- Corrector step:  $y_{i+1}$ 
  - Uses the averaged slope at  $t_i$  and  $t_{i+1}$

$$y_{i+1} = y_i + \frac{h}{2} (f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0))$$

That is, the slope is given by

$$\phi = \frac{h}{2} \left( \frac{dy_i}{dt_i} + \frac{dy_{i+1}^0}{dt_{i+1}} \right) = \frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0)}{2}$$

• Errors:  $\varepsilon_{\text{loc}} \sim O(h^3)$  and  $\varepsilon_{\text{global}} \sim O(h^2)$ 

$$y_{i+1} \cong y_i + h\phi$$



#### **RECAP: MIDPOINT METHOD**



• Midpoint method uses the slope at the midpoint

$$y_{i+1} \cong y_i + h\phi$$

- Predictor step:  $y_{i+1/2}$ 
  - Estimated using Euler's method with half step size

$$y_{i+1/2} = y_i + \frac{h}{2}f(t_i, y_i)$$

Slope at midpoint is given by

$$f(t_{i+1/2}, y_{i+1/2})$$



#### **RECAP: MIDPOINT METHOD**



- Corrector step:  $y_{i+1}$ 
  - Uses the slope at  $t_{i+1/2}$  for the full step h

$$y_{i+1} = y_i + hf(t_{i+1/2}, y_{i+1/2})$$

Slope is given by

$$\phi = \frac{\mathrm{d}y_{i+1/2}}{\mathrm{d}t_{i+1/2}} = f(t_{i+1/2}, y_{i+1/2})$$

• Errors:  $\varepsilon_{\text{loc}} \sim O(h^3)$  and  $\varepsilon_{\text{global}} \sim O(h^2)$ 

$$y_{i+1} \cong y_i + h\phi$$

