LES SUITES NUMÉRIOUES E02

Suite et relation de récurrence : 1er contact EXERCICE N°1

 $\begin{cases} u_0 = 7 \\ \forall n \in \mathbb{N} , u_{n+1} = 4u_n + 7 \end{cases}$ On donne la suite u définie par :

- 1) Identifier la fonction f du cours.
- 2) Déterminer, si possible, u_1 , u_2 , u_8 et u_{1000} .

EXERCICE N°2 Suite et relation de récurrence : 2ème contact

On donne la suite
$$v$$
 définie par :
$$\begin{cases} v_0 = 2 \\ \forall n \in \mathbb{N} , v_{n+1} = \frac{2v_n - 2}{v_n - 3} \end{cases}$$

(On admet que $\forall n \in \mathbb{N}$, $v_n \neq 3$ et donc que la suite est correctement définie)

- 1) Identifier la fonction f du cours.
- 2) Déterminer v_1 , v_2 et v_{15} .

EXERCICE N°3 Suite définie par un algorithme (Python)

On donne la suite $(w_n)_{n \in \mathbb{N}}$ définie par : $w_0 = 3$

Pour un terme W_n ,

 w_{n+1} s'obtient de la façon suivante : • Multiplier w_n par 2.

□ Enlever 5 au résultat.

- 1) Écrire une fonction «premiers termes de w» en Python qui prend comme argument un entier n et qui renvoie une liste contenant les valeurs des n+1 premiers termes de la suite.
- 2) Écrire une fonction $\langle w \rangle$ en Python qui prend comme argument un entier n et qui renvoie la valeur de w_{n+1} . (On pourra utiliser la question 1)

EXERCICE N°4 Triangle de Sierpinski

On considère un triangle équilatéral de côté 1 colorié en gris (n=0).

À chaque étape, on trace dans chaque triangle gris, un triangle blanc qui a pour sommets les milieux des côtés du triangle gris.

- 1) Il y a un triangle gris à l'étape 0, puis trois à l'étape 1...
- Combien y a-t-il de triangles gris, à l'étape 2 ?
- Combien y a-t-il de triangles gris, à l'étape 3 ? 1.b)
- 1.c) Combien y a-t-il de triangles gris, à l'étape 4?
- 2) Pour tout $n \in \mathbb{N}$, on note u_n le nombre de triangles gris à l'étape n.
- 2.a) Exprimer u_{n+1} en fonction de u_n .
- Exprimer u_n en fonction de n. 2.b)
- 3) Déterminer le nombre de triangles gris à la 10^e étape.
- Déterminer u_{10} .

LES SUITES NUMÉRIOUES E02

Suite et relation de récurrence : 1er contact EXERCICE N°1

 $\begin{cases} u_0 = 7 \\ \forall n \in \mathbb{N} , u_{n+1} = 4u_n + 7 \end{cases}$ On donne la suite u définie par :

- 1) Identifier la fonction f du cours.
- 2) Déterminer, si possible, u_1 , u_2 , u_8 et u_{1000} .

EXERCICE N°2 Suite et relation de récurrence : 2ème contact

On donne la suite
$$v$$
 définie par :
$$\begin{cases} v_0 = 2 \\ \forall n \in \mathbb{N} , v_{n+1} = \frac{2v_n - 2}{v_n - 3} \end{cases}$$

(On admet que $\forall n \in \mathbb{N}$, $v_n \neq 3$ et donc que la suite est correctement définie)

- 1) Identifier la fonction f du cours.
- 2) Déterminer v_1 , v_2 et v_{15} .

EXERCICE N°3 Suite définie par un algorithme (Python)

On donne la suite $(w_n)_{n \in \mathbb{N}}$ définie par : $w_0 = 3$

Pour un terme W_n ,

 w_{n+1} s'obtient de la façon suivante : • Multiplier w_n par 2.

□ Enlever 5 au résultat.

- 1) Écrire une fonction «premiers termes de w» en Python qui prend comme argument un entier n et qui renvoie une liste contenant les valeurs des n+1 premiers termes de la suite.
- 2) Écrire une fonction $\langle w \rangle$ en Python qui prend comme argument un entier n et qui renvoie la valeur de w_{n+1} . (On pourra utiliser la question 1)

EXERCICE N°4 Triangle de Sierpinski

On considère un triangle équilatéral de côté 1 colorié en gris (n=0).

À chaque étape, on trace dans chaque triangle gris, un triangle blanc qui a pour sommets les milieux des côtés du triangle gris.

- 1) Il y a un triangle gris à l'étape 0, puis trois à l'étape 1...
- Combien y a-t-il de triangles gris, à l'étape 2 ?
- Combien y a-t-il de triangles gris, à l'étape 3 ? 1.b)
- 1.c) Combien y a-t-il de triangles gris, à l'étape 4?
- 2) Pour tout $n \in \mathbb{N}$, on note u_n le nombre de triangles gris à l'étape n.
- 2.a) Exprimer u_{n+1} en fonction de u_n .
- Exprimer u_n en fonction de n. 2.b)
- 3) Déterminer le nombre de triangles gris à la 10^e étape.
- Déterminer u_{10} .