ECE 6310 - Advanced Electromagnetic Fields: Homework Set #2

Miguel Gomez

10 days - 0 hours - 5 min until deadline

ABCDEFGHIJKLMNOPQRSTUVWXYE ABCDEFGHIJKLMNOPQRSTUVWXYL

1 Preliminaries

In this document, we use standard notation for electromagnetic theory. Key equations and concepts are summarized below:

Vector Notation

- **%**: Electric field intensity
- **%**: Magnetic field intensity
- **2**: Electric flux density
- **3**: Magnetic flux density
- **J**: Current density
- ρ_v : Volume charge density

Differential Operators

- $\nabla \cdot$: Divergence of a vector field
- $\nabla \times$: Curl of a vector field

 \bullet ∇ : Gradient of a scalar field

ullet ∂_i : Partial derivative with respect to the independent basis element i

Maxwell's Equations

In integral form, Maxwell's equations are given by:

$$\oint_{\partial V} \mathcal{E} \cdot d\mathcal{E} = -\frac{d}{dt} \int_{V} \mathcal{B} \cdot d\mathcal{S} \qquad \text{(Faraday's Law of Induction)}$$

$$\oint_{\partial V} \mathcal{H} \cdot d\mathcal{E} = \int_{V} \mathcal{F} \cdot d\mathcal{S} + \frac{d}{dt} \int_{V} \mathcal{D} \cdot d\mathcal{S} \qquad \text{(Ampère's Circuital Law)}$$

$$(2)$$

$$\iint_{\partial V} \mathcal{D} \cdot d\mathcal{S} = \int_{V} \rho_{v} dV \qquad \text{(Gauss's Law for Electricity)}$$

$$\iint_{\partial V} \mathcal{B} \cdot d\mathcal{S} = 0 \qquad \text{(Gauss's Law for Magnetism)}$$

$$(4)$$

Other Relevant Equations

• Continuity Equation: $\nabla \cdot \mathbf{J} + \partial_t \rho_v = 0$

• Relationship between \mathcal{E} , \mathcal{D} : $\mathcal{D} = \epsilon \mathcal{E}$

• Relationship between \mathcal{H} , \mathcal{B} : $\mathcal{B} = \mu \mathcal{H}$

Boundary Conditions

Discuss the boundary conditions for \mathcal{E} , \mathcal{H} , \mathcal{D} , and \mathcal{B} at interfaces between different media.

Problem 1.3

(a) Electron charge density $q_{\rm ve}$.

- (b) Electron drift velocity v_e .
- (c) Electric current density J.
- (d) Electric current flowing through the square cross section of the wafer.
- (e) Electron density N_e .

Leave your answers in terms of ϵ_0, μ_0 .

References

[1] Constantine A. Balanis. advanced engineering electromagnetics, chapter 1, page 2–3. John Wiley & Sons, 2024.