





### **XNDL - Lab**

Regression

## Methodology

- For each problem
- Obtain a baseline (linear regression)
- Try to beat it with a MLP

- Deliver a 100 words report on the lessons learnt
- Include a table with baseline and MLP

## Regression problem

- Metrics
  - mean\_squared\_error (useful for loss)
  - root\_mean\_absolute\_error / mean\_absolute\_error (interpretable)
  - r2\_score (normalized)
- Output activation

### Baby steps

- Data nature & dimensionality
- Loss function & output
- Define a baseline
- Fix a batch size (stochasticity vs efficiency)
- Start small (as in one neuron)
  - Early stop (update)
  - LR
  - Act. Func. (weight init!)
  - Mom
- Grow

#### **Datasets**

- Try to beat linear regression on 3 datasets
  - Diabetes (sklearn)
  - California housing (sklearn)
  - Circle.py
- ♦ val split = 20%

# Tips

- relu -> he\_normal init
- tanh /sigmoid -> glorot\_init
- Beware of relu's loss explosions
- Explore data linearity

### Recommended imports

- import sys
- from keras.models import Sequential
- from keras.layers import Dense
- from keras.optimizers import SGD, Adam
- import numpy as np
- import matplotlib.pyplot as plt
- from sklearn.metrics import mean\_squared\_error, mean\_absolute\_error, r2\_score
- from sklearn.model\_selection import train\_test\_split
- from keras.callbacks import EarlyStopping
- import tensorflow as tf
- from keras.initializers import he\_normal, glorot\_normal
- from sklearn.linear\_model import LinearRegression







### The end