Database Management

Mr. Sandeep L Dhende

Assistant Professor, Dept. of E&TC, PICT, Pune

Relational algebra

- ► Entity Relationship Model Basic Concepts
- Entity Sets
- Relationship Sets and Weak Entity Sets
- ► Mapping Cardinalities
- Keys
- ► E-R Diagrams
- Design Issues
- Extended E-R Features- Specialization and Generalization
- ► Convert E-R and EER diagram into tables

Entity-Relationship model: Basic Concepts

- > Entity Relationship Model
- > Models an enterprise as a collection of *entities* and *relationships*
 - Entity: a "thing" or "object" in the enterprise that is distinguishable from other objects
 - Described by a set of attributes
 - * Relationship: an association among several entities
 - > Represented diagrammatically by an entity-relationship diagram

Entity-Relationship model: Basic Concepts

- ➤ The ER data model was developed to facilitate database design by allowing specification of an **enterprise schema** that represents the overall logical structure of a database.
- > The ER data model employs three basic concepts:
 - entity sets,
 - relationship sets,
 - * attributes.
- ➤ The ER model also has an associated diagrammatic representation, the ER diagram, which can express the overall logical structure of a database graphically.

Entity-Relationship model: Entity Sets

> An entity is an object that exists and is distinguishable from other objects.

Example: specific person, company, event, plant

> An entity set is a set of entities of the same type that share the same properties.

Example: set of all persons, companies, trees, holidays

> An entity is represented by a set of attributes; i.e., descriptive properties possessed by all members of an entity set.

Example:

```
instructor = (<u>ID</u>, name, salary )
course= (course_id, title, credits)
```

A subset of the attributes form a **primary key** of the entity set; i.e., uniquely identifying each member of the set.

Entity-Relationship model: Entity Sets

Entity Sets -- instructor and student

76766	Crick
45565	Katz
10101	Srinivasan
98345	Kim
76543	Singh
22222	Einstein

instructor

Representing Entity Sets

instructor

<u>ID</u>
name
salary

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

ID
name
tot_cred

Entity-Relationship model: Relationship Sets

> A relationship is an association among several entities

Example:

```
44553 (Peltier) <u>advisor</u> 22222 (<u>Einstein</u>)

student entity relationship set <u>instructor</u> entity
```

ightharpoonup A **relationship set** is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, ..., e_n) \mid e_1 \in E_1, e_2 \in E_2, ..., e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

Example:

$$(44553,22222) \in advisor$$

> Degree of RS- No. of participating entities in a relationship set.

Entity-Relationship model: Relationship Sets

- Example: we define the relationship set *advisor* to denote the associations between students and the instructors who act as their advisors.
- Pictorially, we draw a line between related entities.

Entity-Relationship model:

Representing Relationship Sets via ER Diagrams

Diamonds represent relationship sets.

Entity-Relationship model

- > Attribute types: Descriptive properties possessed by each member of an entity set.
- > Attribute types:
 - > Simple and composite attributes.
 - > Simple- An attribute composed of a single component with an independent existence
 - > composite attributes- An attribute composed of multiple components, each with an independent existence.
 - > Single-valued and multivalued attributes
 - > Example: multivalued attribute: phone_numbers
 - > **Derived** attributes
 - Can be computed from other attributes
 - > Example: age, given date_of_birth
- > Domain the set of permitted values for each attribute

Entity-Relationship model: Weak Entity Sets

- A weak entity set is one whose existence is dependent on another entity, called its identifying entity
- Instead of associating a primary key with a weak entity, we use the identifying entity, along with extra attributes called **discriminator** to uniquely identify a weak entity.
- > An entity set that is not a weak entity set is termed a strong entity set.
- ➤ Every weak entity must be associated with an identifying entity; that is, the weak entity set is said to be **existence dependent** on the identifying entity set.
- ➤ The identifying entity set is said to **own** the weak entity set that it identifies.

Entity-Relationship model: Weak Entity Sets

- > The relationship associating the weak entity set with the identifying entity set is called the identifying relationship.
- Note that the relational schema we eventually create from the entity set section does have the attribute course_id, for reasons that will become clear later, even though we have dropped the attribute course_id from the entity set section.
- Primary key for section (course_id, sec_id, semester, year)

Entity-Relationship model: Mapping Cardinality Constraints

- > Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- > For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

Entity-Relationship model: Primary key for Entity Sets

- > By definition, individual entities are distinct.
- > From database perspective, the differences among them must be expressed in terms of their attributes.
- > The values of the attribute of an entity must be such that they can uniquely identify the entity.
 - ❖ No two entities in an entity set are allowed to have exactly the same value for all attributes.
- > A key for an entity is a set of attributes that suffice to distinguish entities from each other.

- > Identify the entities
- Determine the attributes for each entity.
- > Select the primary key for each entity.
- > Establish the relationship between the entities.
- > Draw an entity model.
- > Test the relationships and the keys.

- > Rectangles Entity set
- > Double rectangles-weak entity set
- Diamonds relationship sets
- Ellipses Attributes
- > Double ellipses represent multivalued attributes.
- > Dashed ellipses denote derived attributes.
- > Lines link attributes to entity sets and entity sets to Relationship sets.
- Underline indicates primary key attributes

Entity-Relationship model: Alternative ER Notations

Entity-Relationship model: Example of Weak Entity Set

Loan_no	Amount	
L1	1,00,000	
L2	2,00,000	
L3	3,00,000	

Payment_no	Payment_date	Payment_amount
1	05-06-2020	5000
1	08-07-2020	10000
1	10-08-2020	15000
2	05-07-2020	5000
2	08-08-2020	10000
2	10-09-2020	15000

Entity-Relationship model: Roles

> Roles are indicated in E-R diagrams by labeling the lines that connect diamonds to rectangles

Entity-Relationship model: Different Attributes of Student

Entity-Relationship model: Different Attributes of Student

> E-R Diagram with a Ternary Relationship

Entity-Relationship model: E-R Diagram for a University

➤ The notions of an entity set and a relationship set are not precise, and it is possible to define a set of entities and the relationships among them in a number of different ways. The basic designs issues are

1. Use of Entity Sets versus Attributes

- Consider the entity set instructor with the additional attribute phone number.
- ➤ It can easily be argued that a phone is an entity in its own right with attributes phone number and location; the location may be the office or home where the phone is located, with mobile (cell) phones perhaps represented by the value "mobile." We create:
- > A phone entity set with attributes phone number and location.
- ➤ A relationship set *inst_phone*, denoting the association between *instructors* and the *phones* that they have.

2. Use of Entity Sets versus Relationship Sets

- > It is not always clear whether an object is best expressed by an entity set or a relationship set.
- > We showed the entity sets *section* and *student in earlier example with* the *takes* relationship set replaced by one entity set and two relationship sets:
- > registration, the entity set representing course-registration records.
- > section reg, the relationship set relating registration and course.
- > student reg, the relationship set relating registration and student.

- 3. Binary versus *n*-ary Relationship Sets
- > Relationships in databases are often binary.
- > Some relationships that appear to be non-binary could actually be better represented by several binary relationships.

4. Placement of Relationship Attributes

- > The cardinality ratio of a relationship can affect the placement of relationship attributes.
- > The attributes of one-to-one or one-to-many relationship sets can be associated with one of the participating entity sets, rather than with the relationship set.
- For instance, let us specify that *advisor* is a one-to-many relationship set such that one instructor may advise several students, but each student can be advised by only a single instructor.
- In this case, the attribute *date*, which specifies when the instructor became the advisor of a student, could be associated with the *student* entity set

Entity-Relationship model: Extended E-R Features

Specialization

- > Top-down design process;
 - * we designate sub-groupings within an entity set that are distinctive from other entities in the set.
- ➤ These sub-groupings become lower-level entity sets that have attributes or participate in relationships that do not apply to the higher-level entity set.
- > Depicted by a triangle component labeled ISA (e.g., instructor "is a" person).
- Attribute inheritance a lower-level entity set inherits all the attributes and relationship participation of the higher-level entity set to which it is linked.

Entity-Relationship model: Extended E-R Features

> Generalization

- > A bottom-up design process
 - combine a number of entity sets that share the same features into a higher-level entity set.
- > Specialization and generalization are simple inversions of each other; they are represented in an E-R diagram in the same way.
- > The terms specialization and generalization are used interchangeably.

Entity-Relationship model: Converting ER to Tables

- > Convert Entity Sets, Relationships to tables
- > Convert all attributes to columns
- > Assign all Primary attributes of Entity Sets to Relationship table as columns

Thank You...!!