

Recap: Introduction to ARIMA

- Time Series forecasting model
- ARIMA: 'Auto Regressive Integrated Moving Average'

Recap: Introduction to ARIMA

- Time Series forecasting model
- ARIMA: 'Auto Regressive Integrated Moving Average'
- ARIMA has three parameters
 - Auto regressive p
 - Integrated d
 - Moving Average q

Recap: Parameters of ARIMA model

- ARIMA has three parameters
 - Auto regressive p
 - Integrated d
 - Moving Average q

p, d, q

Recap: Parameters of ARIMA model

- ARIMA has three parameters
 - Auto regressive p
 - Integrated d
 - Moving Average q

Differencing

ARIMA has three parameters

Auto regressive - p

o Integrated - d

Moving Average - q

ARIMA has three parameters

- Integrated d
- Moving Average q
 PACF (partial autocorrelation function) plot

 Some important concepts before we move over to determining the values of p, and q-

- Correlation
- Autocorrelation
- Partial Autocorrelation

Correlation

Correlation refers to the strength of mutual relationship between quantities.

32
36
44
25
30
37
27
11
10

t-1

Auto-Correlation Function (ACF)

Auto-Correlation Function (ACF)

Auto-Correlation Function (ACF)

AR(2)
$$y(t) = a1*y(t-1) + a2*y(t-2) + u$$

Lag = 2 have significant correlation

Summarizing - Auto-Correlation Function (ACF)

- Auto Correlation refers to how correlated is the series with its past self
- ACF plot shows the auto correlation values
- ACF plot can be used to select the value of p for ARIMA

AR(1)

y(t) = a1*y(t-1) + const.

AR(1)

y(t) = a1*y(t-1) + const.

AR(1)

$$y(t) = a1*y(t-1) + const.$$

AR(2)

y(t) = a1*y(t-1) + a2*y(t-2) + const.

 Amount of variance in y(t) which is not explained by y(t-1)

 Amount of variance in y(t) which is not explained by y(t-1)

2. Amount of variance in y(t-2), which is not explained by y(t-1)

Partial Auto-Correlation: Correlation between y(t) and y(t-k) after removing correlation of time steps in between

Partial Auto-Correlation Function (PACF)

Partial Auto-Correlation Function (PACF)

$$MA(2)$$

y(t) = E(t) + a1*E(t-1) + a2*E(t-2) + u

Lag = 2

Summarizing - Partial Auto-Correlation Function (PACF)

- Partial Auto Correlation refers to the correlation with the residuals of the lags.
- PACF plot shows the partial auto correlation values
- PACF plot can be used to select the value of q for ARIMA

Thank You

Autoregressive Models - ACF

$$y(t) = a1 * y(t-1) + a2 * y(t-2) + ... + ap * y(t-p) + E(t)$$

AR(1)

$$y(t) = a1*y(t-1) + E(t)$$

AR(2)

$$y(t) = a1*y(t-1) + a2*y(t-2) + E(t)$$

Autoregressive Models - PACF

$$y(t) = a1 * y(t-1) + a2 * y(t-2) + ... + ap * y(t-p) + E(t)$$

AR(1)

$$y(t) = a1*y(t-1) + E(t)$$

AR(2)

$$y(t) = a1*y(t-1) + a2*y(t-2) + E(t)$$

Moving Average Models - PACF

$$y(t) = u + E(t) + a1 * E(t-1) + a2 * E(t-2) + ... + aq * E(t-q)$$

MA(1)

$$y(t) = u + E(t) + a1*E(t-1)$$

MA(2)

$$y(t) = u + E(t) + a1*E(t-1) + a2*E(t-2)$$

Moving Average Models - ACF

$$y(t) = a1 * y(t-1) + a2 * y(t-2) + ... + ap * y(t-p) + E(t)$$

AR(1)

$$y(t) = a1*y(t-1) + E(t)$$

AR(2)

$$y(t) = a1*y(t-1) + a2*y(t-2) + E(t)$$

Summarizing - Auto-Correlation Function (ACF)

- Lag 1 has positive autocorrelation? AR model
- -ve correlation at lag 1? MA model
- ACF drops of at lag k = AR(k) model
- PACF Gradual decrease? MA model

Differencing - d

- Differencing
 - This is done to stabilize the mean by removing changes in the level
 - Differencing is performed by subtracting the previous observation from the present observation

$$[y(t) = x(t) - x(t-1)]$$

