Rendering Algorithms

Spring 2014 Matthias Zwicker Universität Bern

Today

- The Rendering Equation
- Monte Carlo path tracing

So far: reflection equation

- Given incident light L_i over hemisphere $H^2(\mathbf{n})$ and BRDF f at point \mathbf{x} , what is reflected light L_o
- L_o is a radiance distribution: reflected radiance at each point ${\bf x}$ and in direction ω_o

BRDF
$$f(\mathbf{x}, \omega_o, \omega_i)$$

$$L_o(\mathbf{x}, \omega_o) = \int_{\mathcal{H}^2(\mathbf{n})} f(\mathbf{x}, \omega_o, \omega_i) L_i(\mathbf{x}, \omega_i) \cos \theta_i d\omega_i$$

So far: reflection equation

 For example, incident radiance given by environment map or known light sources

 Evaluating the reflection equation using Monte Carlo integration

So far: reflection equation

Direct illumination from area and point lights

- Indirect illumination, "multiple bounces of light"
- Incident light at one point (a) depends on reflected light at other point (b)
 - Etc. etc. recursively

Direct only

Direct & indirect

Real photograph

- How to represent idea of "multiple bounces of light" compactly in an equation?
- Think of both reflected and incident radiance as unknown
- Reflection equation expresses equilibrium between incident and reflected radiance

$$L_o(\mathbf{x}, \omega_o) = \int_{\mathcal{H}^2(\mathbf{n})} f(\mathbf{x}, \omega_o, \omega_i) L_i(\mathbf{x}, \omega_i) \cos \theta_i d\omega_i$$
 reflected incident

Trick with notation

- Radiance doesn't change along ray
- Get rid of distinction between incident L_i and reflected radiance L_o
- Will denote reflected radiance with L

Light sources

- Light sources are represented by known function $L_e(\mathbf{x},\omega_0)$
- L_e is emitted radiance at each surface point ${\bf x}$ in each direction ω_o
- L_e is zero if point **x** is not on a light source

Rendering equation

http://en.wikipedia.org/wiki/Rendering_equation

$$L(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{\mathcal{H}^2(\mathbf{n})} f(\mathbf{x}, \omega_o, \omega_i) L(\mathbf{x}', -\omega_i) \cos \theta_i d\omega_i$$

Reflected radiance appears as unknown on both sides of equation

Conservation of energy: outgoing light is sum of emitted light and reflected light, which is integral of incident light weighted by BRDF and cosine term

Rendering equation

<u> http://en.wikipedia.org/wiki/Rendering_equation</u>

$$L(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{\mathcal{H}^2(\mathbf{n})} f(\mathbf{x}, \omega_o, \omega_i) L(\mathbf{x}', -\omega_i) \cos \theta_i d\omega_i$$

Reflected radiance appears as unknown on both sides of equation

Solution: find radiance $L(x, \omega_o)$ such that reflection equation is satisfied simultaneously at each point x and direction ω_o

Rendering equation

http://en.wikipedia.org/wiki/Rendering_equation

Reflection equation satisfied at each point

Incident radiance

Note

- Rendering equation due to Jim Kajiya http://en.wikipedia.org/wiki/Rendering_equation
- Still the defining model for photo-realistic rendering today
- "Ultimately, all rendering algorithms try to (approximately) solve the rendering equation"
- Remember
 - Rendering equation based on approximate physical model (geometric optics)
 - Cannot model wave effects such as polarization, diffraction

Today

- The Rendering Equation
- Monte Carlo path tracing

Solving the rendering equation

Naive approach

- Recursive ray tracing as for mirror reflection, but shoot many rays in each step
 - Distribute rays over hemisphere at each step
- Problem: exponential explosion of number of rays
 - Exponentially more longer paths than shorter paths
 - But longer paths contribute less to image than shorter ones

Solving the rendering equation

- Similar idea, but smarter
- Intuition: Compute radiance $L(\mathbf{x}, \omega_0)$ as "integral over all light paths that connect light sources and eye"
- Paths have different lengths (number of bounces)
 - Can formulate one integral for all paths of each length
- Approach
 - Sum over all path lengths
 - Integral of radiance transported along all paths of given length (use Monte Carlo integration)

Mathematical formulation

 Rendering equation is Fredholm integral equation of second kind

http://en.wikipedia.org/wiki/Fredholm_integral_equation

- Solution via series expansion
 - Neumann series

http://en.wikipedia.org/wiki/Neumann_series

- Liouville-Neumann series

http://en.wikipedia.org/wiki/Liouville-Neumann_series

```
Rendering equation
(*) L = E + 2(L)
             \mathcal{C}(L)(x,\omega_0) = \int f(x,\omega_i,\omega_0) L(x',-\omega_i) \cos\theta_i d\omega_i
             Transport operator, represents
     Series expansion by recursive substitution
     L_0 = E
L_1 = E + C(L_0) = E + C(E)
initial "guess", substitution (*)
     L_2 = E + 2(L_1) = E + 2(E + 2(E)) = E + 2(E) + 2(E)
    L_i = E + \mathcal{C}(E) + \mathcal{C}^2(E) + \dots + \mathcal{C}^i(E)  Transport operator
          Light sources, path leigth 0
                  One bounce path length 1 (direct illumination)
                           Two bounces, path kysth 2 (our bounce indirect illumination)
          = Z 2 K(E) if written out explicitly
2 k is a 2 k
dimensional integral
     Convergence
     Because of energy conservation (each bonne absorbs some 11947)
     " 7 11 2 h(E) 11 = 112 h+1 (E) 11 " with y < 1
     => 11 20 (E)1 = 0
     this Implies
                               Called Liouville-Neymann senes
```

Monte Carlo path tracing

- Approximate integrals using Monte Carlo integration
 - Sample individual paths randomly
 - Estimate is simply sum over all paths
- Remember: each sample/path weighted with its inverse probability!
 - Need to keep track of sample/path probabilities

Path tracing

- Want to compute radiance through each pixel in image
 - Sum of radiance over all light paths connecting light and camera
- Light paths have different lengths

21

Idea for improvement

- Could reuse each shorter subsequence of a path as a shorter path
- In each step during path construction, sample light once

Path tracing

- Construct paths incrementally starting at the eye
- Shoot shadow rays at each path vertex
- "Each eye ray contributes one path of each length"
- Each eye ray contributes one sample to integral for each path length

Russian roulette

- Issues
 - What should be the maximum path length?
 - Longer paths should be less likely, since they carry less radiance
- Introduce probability q to terminate path in each step
 - If termination: stop extending path (probability q)
 - Otherwise: sample next path segment as usual, probability of new path needs to be multiplied by 1-q

Pseudocode notes

- Computes pixel color using N primary rays, i.e., paths
- Sequence of termination probabilities (Russian roulette)
 q[k] for k-th vertex along path
- PDF p_w measures density over solid angle
 - If point on light x is sampled over area, probability $p_w(x)$ needs to include conversion to density over solid angle (see before)!
- alpha values
 - Store (*product of BRDFs and cosine factors*)/(*probability for path*)
 - Really are vectors with 3 components for RGB, here as scalar for simplicity
 - BRDF BRDF(w_o,w_i) with w_o = direction of previous path segment, w_i = direction of new path segment
 - cos is cosine of w_i to normal
- shade(hitRecord,x) includes multiplication of light (emission) with
 - BRDF at hit point with incident direction towards point x on light source
 - Cosine factor of direction towards point on light

Path tracing pseudocode

```
// in main rendering loop
color = 0
for i from 1 to N
  // in integrator
  alpha = 1
  hitRecord = shoot primary ray
  k = 0
  while(true)
    x = sample \ a \ point \ on \ a \ light \ source \ with \ pdf \ p_w(x)
    c = c + alpha*shade(hitRecord,x)/(p_w(x))
    break with probability q[k]
    hitRecord = shoot ray along w_i with pdf p_w(w_i)
    alpha = alpha*BRDF(w_o,w_i)*cos/(p_w(w_i)*(1-q[k]))
    k++
c = c/N
```

Notes: Russian roulette

- Never terminate at very first steps
- Usually $q_1 = q_2 = 0$
- Otherwise, constant probability q_i =0.5 should work fine

Notes: Probability densities

- PDF for sampling directions
 - Uniform $p_{\omega} = 1/2\pi$
 - Cosine weighted $p_{\omega}(\omega_i) = (\omega_i \cdot \mathbf{n})/\pi$
 - Advanced: importance sampling the BRDF
- Implementation in Material.getShadingSample
- Details on importance sampling in PBRT book by Pharr, Humphreys

http://www.pbrt.org/

Notes: Probability densities

- PDF for sampling light sources
 - Uniform sampling

```
p_{\omega}(x) = 1/(number\ of\ lights) * 1/(area\ of\ selected\ light) * conversion\ to\ pdf\ over\ directions
```

- Implementation
 - Select light in integrator
 - Sample location on selected light in LightGeometry.sample
- Advanced: multiple importance sampling

Notes: Probability densities

Sampling area light source

Conversion to solid angle

Notes: Refractive objects

- Pseudocode assumes reflective, refractive BRDFs are represented correctly
 - Including cosine factor in BRDF!
 - Cancels out with cosine factor in pseudocode

$$f(\mathbf{x}, \omega_o, \omega_i) = F_r(\omega_o) \frac{\delta(\omega_i - R(\omega_o, \mathbf{n}))}{\|\cos \theta_i\|}$$

- In practice, handle reflective/refractive objects as distinct case
 - Sampling directions: pick mirror reflection (refraction) with probability 1
 - Don't explicitly divide/multiply by cosine
 - Implementation: use flag in Material. Shading Sample

Notes: Refractive objects

- Randomly sample (trace) either reflected or refracted ray with given probability
 - Can pick constant probability
 - Can pick probability based on Fresnel reflection coefficient
- Need to include probability in overall pdf of path!
- Refractive objects tend to produce a lot of noise in path tracing...

Notes: Emitting surfaces

- Emitting surfaces (area lights) should be part of regular scene geometry
- If a ray (accidentally) hits emitting surface, don't add emission
 - Emission is taken care of by shadow rays
- Exception: need to add emission if
 - Eye ray hits emitting surface
 - Ray segment was generated from refractive surface (in this case, no shadow ray needs to be generated)

[Kajiya `86]

4 rays/pixel

[Kajiya `86]

8 rays/pixel

[Kajiya `86]

16 rays/pixel

[Kajiya `86]

32 rays/pixel

[Kajiya `86]

64 rays/pixel

[Kajiya `86]

128 rays/pixel

Path tracing: the good

Unbiased

Expected value for each pixel is the correct solution of the rendering equation, independent of number of samples

Consistent

If we shoot infinitely many rays, we will get the correct solution

10 paths/pixel

10 paths/pixel

100 paths/pixel

1000 paths/pixel

[Wann Jensen]

Light transport notation

- Light L
- Diffuse D
- Specular S
- Eye E
- Example

Summary

- Path tracing often used as reference algorithm
 - Generates "ground truth" image with enough samples (thousands)
- Not very practical because of noise issues
 - In particular for certain types of light paths (caustics)
 - Even with sophisticated sampling (multiple importance sampling, low-discrepancy sequences)

Next time

Photon mapping