Zain Merchant

www.zain-merchant.com merchant.zain@columbia.edu

Education

Columbia University

New York, NY

Master of Science, Computer Engineering

Expected August 2023

The University of Texas at Dallas

Richardson, TX

Bachelor of Science, Computer Science

December 2019

Languages & Tools: C, C++, Python, Swift, SQL, FreeRTOS, GNU Make, Git, Docker, Xilinx Vivado, Flask

Experience

NASA Langley Research Center

Hampton, VA

Computer Engineer — Flight Software Systems Branch

January 2020 — Present

- Lead development of a high-fidelity simulator for the Navigation Doppler Lidar instrument. The simulator was used in software-in-the-loop testing during the creation and verification of ground / flight software.
- Awarded agency's Superior Accomplishment Award based on feedback from industry partners.
- Developed flight software modules / drivers in C to interface with various peripherals (MMIO, Iridium, actuators, sensors, etc.) over protocols such as SPI, I2C, UART, Ethernet, TCP/IP, and SpaceWire.
- Created tools in Python and C++ for ground system control, test automation, and data visualization.

Pathways Intern — Flight Software Systems Branch

May 2019 — July 2019

- Created a memory access driver in C / FreeRTOS, allowing for thread-safe allocation, wear leveling, etc.
- Developed command and telemetry GUIs for debugging and interfacing instrument subsystems using PyQt.

Pathways Intern — Flight Software Systems Branch

September 2018 — December 2018

- Wrote an equatorial mount control subsystem in C / FreeRTOS. Integrated within SAGE IV flight software.
- Created Ruby scripts to automate test procedures and verify multiple instrument subsystems.

The University of California, San Diego

La Jolla, CA

Undergraduate Researcher — Engineers for Exploration REU

June 2018 — August 2018

- Used C++ High Level Synthesis (HLS) to write FPGA overlays for acquiring I2C sensor data, PID control loop, and PWM signal generation for a Xilinx PYNQ (Zynq) development board. Used for creation of an RC drone flight controller. Used Jupyter Notebooks for debugging and functional demos.
- Developed similar functionality in software for a MicroBlaze soft-processor to compare resource utilization, performance, and complexity against HLS design. Published research paper reporting findings of approach.

NASA Johnson Space Center

Houston, TX

Intern — Integrated Guidance, Navigation, and Control Analysis Branch

August 2017 — December 2017

- Analyzed ascent abort procedures and assisted in creating models to characterize propellant slosh for the SpaceX Crew Dragon landing / orbit tanks. Generated data using NASA's Trick Simulation Environment.
- Created a Python to render propellant slosh for various tank geometries in 3D using simulation data.

Massachusetts Institute of Technology

Cambridge, MA

Undergraduate Researcher — Haystack Observatory REU

June 2017 — August 2017

- Evaluated SoCs, microcontrollers, and software frameworks for an initial avionics system design.
- Wrote software in C and C++ for a remote command / telemetry interface over Iridium, monitoring system resources, sensor data collection, and power reduction optimizations. Developed on FreeRTOS and Linux.

Publications

B. Cain, **Z. Merchant**, I. Avendano, D. Richmond and R. Kastner, "PynqCopter - An Open-source FPGA Overlay for UAVs," in *2018 IEEE International Conference on Big Data (Big Data)*, Dec. 2018, pp. 2491-2498. [Online]. Available: https://ieeexplore.ieee.org/document/8622102.