RUDIN CHAPTER 5 SOLUTIONS

JOHN WANG

1. Problem 5.2

Theorem 1.1. Suppose f'(x) > 0 in (a,b). Prove that f is strictly increasing in (a,b), and let g be its inverse function. Prove that g is differentiable and that $g'(f(x)) = \frac{1}{f'(x)}$ for a < x < b.

Proof. First, we know f is continuous because of the existence of its derivative for all $x \in (a,b)$. Thus, we can use the specialized mean value theorem, which states that for some $x_1, x_2 \in (a,b)$, there exists an $x \in (a,b)$ such that $f(x_2) - f(x_1) = (x_2 - x_1)f'(x)$. Since f'(x) > 0 for all $x \in (a,b)$, we can see that:

(1.2)
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$$

Without loss of generality, if $x_2 > x_1$, we see that $f(x_2) - f(x_1) > 0$, which shows that f is strictly increasing because $f(x_2) > f(x_1)$.

Now, we shall show that g is continuous and differentiable. First, we will show that g is strictly increasing by contradiction. If we assume not, then there exists some z > w, where $z, w \in (f(a), f(b))$ such that $g(z) \leq g(w)$. We know there must exist corresponding values $x, y \in (a, b)$ such that x = g(z) and y = g(w). Thus, we see that $x \leq y$ but that z > w which implies that f(x) > f(y) because f(x) = f(g(z)) = z and f(y) = f(g(w)) = w. However, we have shown that f is strictly increasing which implies f(x) < f(y), which is a contradiction because f(x) > f(y) and f(x) < f(y) cannot both be true. Thus, we see that g is strictly increasing.

To show that g is continuous, we assume the contrary. We now note that strictly increasing functions can only have jump discontinuities. This would mean that there exists some $z \in (f(a), f(b))$ such that g(z-) < g(z+). Without loss of generality, assume that g(z) = g(z-). Then we must have a corresponding value of $x \in (a,b)$ such that f(x) = z. This implies that x = g(z) = g(z-) < g(z+). However, we must have the following:

(1.3)
$$g(z+) = \lim_{f(y) \to z^+} g(f(y)) = \lim_{y \to x^+} g(f(y)) = \lim_{y \to x^+} y = x$$

Thus, we have shown that x = g(z) < g(z+) = x, which is a contradiction. Therefore, g must be continuous. Since it is continuous, we obtain an expression for g'(f(x)) if it exists:

$$(1.4) g'(f(x)) = \lim_{f(t) \to f(x)} \frac{g(f(t)) - g(f(x))}{f(t) - f(x)} = \lim_{t \to x} \frac{t - x}{f(t) - f(x)} = \lim_{t \to x} \frac{1}{f'(x) + u(t, x)}$$

Where $\lim_{t\to x} u(t,x) = 0$. Thus, since f'(x) > 0 for all $x \in (a,b)$, we can see that the limit exists, and that $g'(f(x)) = \frac{1}{f'(x)}$.

2. Problem 5.5

Theorem 2.1. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.

Proof. Since f is differentiable on $(0, \infty)$, it must also be continuous. Therefore, we can use the mean value theorem for points x, x + 1 such that $x \in (0, \infty)$, which will ensure that x + 1 is also inside the domain. Therefore, by mean value theorem, we see that:

$$(2.2) f(x+1) - f(x) = (x+1-x)f'(y)$$

For some $y \in (x, x + 1)$. This shows that g(x) = f'(y) for some $y \in (x, x + 1)$. If we take the limit as $x \to +\infty$, we obtain:

(2.3)
$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} f'(y) = \lim_{y \to \infty} f'(y) = 0$$

This is because y has a lower bound of x, and as $x \to +\infty$, we also force $y \to +\infty$. Since $\lim_{y \to \infty} f'(y) = 0$, we can see that $g(x) \to 0$ and $x \to \infty$.

3. Problem 5.14

Theorem 3.1. Let f be a differentiable real function defined in (a,b). Prove that f is convex if and only if f' is monotonically increasing.

Proof. Given a monotonically increasing function f', assume by contradiction that f is not convex. Then there exists some $x, y \in (a, b)$ such that for some $\lambda \in (0, 1)$, we have $f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y)$. Let $p = \lambda x + (1 - \lambda)y$ so that $f(p) > \lambda f(x) + (1 - \lambda)f(y)$. Moreover, we can assume without loss of generality that y > x and we thus see that $p \in (x, y)$. We can use the mean value theorem, because f is differentiable by assumption and hence continuous. This shows that f(y) - f(p) = (y - p)f'(z) for some $z \in (p, y)$. Using the mean value theorem again, we can see that f(p) - f(x) = (p-x)f'(w) for some $w \in (x,p)$. Next, since $w \in (x, p)$ and $z \in (p, y)$, we can see that necessarily, w < z. Since f' is a monotonically increasing function, we must therefore have $f'(w) \leq f'(z)$. Combining this, we find:

(3.2)
$$f'(w) = \frac{f(p) - f(x)}{p - x} \le \frac{f(y) - f(p)}{y - p} = f'(z)$$

$$(3.3) \qquad (y - x)f(p) \le f(y)(p - x) + f(x)(y - p)$$

$$(3.3) (y-x)f(p) \le f(y)(p-x) + f(x)(y-p)$$

(3.4)
$$\lambda f(x) + (1 - \lambda)f(y) < f(p) \le \frac{f(y)(p - x) + f(x)(y - p)}{y - x}$$

(3.5)
$$0 < \frac{f(y)((p-x) - (y-x)(1-\lambda)) + f(x)((y-p) - (y-x)\lambda)}{y-x}$$

Since we have assumed y > x, we can divide by y - x in equation 3.4. Next, we know that $p = \lambda x + (1 - \lambda)y$, so substituting this into our expression and multiplying by the positive term y-x, we obtain:

$$(3.6) 0 < f(y)(\lambda x + (1 - \lambda)y - x - (1 - \lambda)y + (1 - \lambda)x) + f(x)(y - \lambda x - (1 - \lambda)y - y\lambda + x\lambda)$$

$$(3.7) 0 < f(y)(0) + f(x)(0) = 0$$

$$(3.8)$$
 0 < 0

Since this is a strict inequality, this cannot be the case and we have shown a contradiction. Thus, we see that given a monotonically increasing function f', then f is convex. To show the converse, we will assume that f is convex. Then, we must show that f' is monotonically increasing.

Assume that $x, y \in (a, b)$. Without loss of generality, suppose that y > x. Then, since the derivative exists everywhere, we have the following two limits due to the definition of the derivative:

(3.9)
$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{t \to x^{-}} \frac{f(t) - f(x)}{t - x}$$

(3.10)
$$f'(y) = \lim_{s \to y} \frac{f(s) - f(y)}{s - y} = \lim_{s \to y^+} \frac{f(s) - f(y)}{s - y}$$

Set t < x < y < s. We have shown in problem 5.23 of the last problem set that the following inequalities holds for convex functions, and hence for f:

(3.11)
$$\frac{f(x) - f(t)}{x - t} \le \frac{f(s) - f(t)}{s - t} \le \frac{f(s) - f(y)}{s - y}$$

Therefore, taking the left and right limits of x and y respectively, we obtain:

(3.12)
$$f'(x) = \lim_{t \to x^{-}} \frac{f(t) - f(x)}{t - x} leq \lim_{s \to y^{+}} \frac{f(y) - f(s)}{y - s} = f'(y)$$

Thus, we have shown that for x < y, we have $f'(x) \le f'(y)$ for all $x, y \in (a, b)$. Therefore, we have shown that f' is monotonically increasing.

RUDIN CHAPTER 5 SOLUTIONS

Theorem 3.13. Assume that f''(x) exists for every $x \in (a,b)$ and prove that f is convex if and only if $f''(x) \ge 0$ for all $x \in (a,b)$.

Proof. Since we have show that f is convex if and only if f' is monotonically increasing, we only must show that $f''(x) \geq 0$ if and only if f' is monotonically increasing. First, we will assume that $f''(x) \geq 0$. Then, since f' is differentiable everywhere on (a,b), we can use the mean value theorem since continuity is also required. Thus means that $f'(x_2) - f'(x_1) = (x_2 - x_1)f''(x)$ for some $x_2, x_1 \in (a,b)$ and $x \in (x_2, x_1)$. Assume without loss of generality that $x_2 > x_1$. Then this implies that

(3.14)
$$\frac{f'(x_2) - f'(x_1)}{x_2 - x_1} \ge 0$$

Which shows that for $x_2 \ge x_1$, we must have $f'(x_2) \ge f'(x_1)$. This shows that f' must be monotonically increasing. To prove the opposite way, assume that f' is monotonically increasing. Then for some t > x where $t, x \in (a, b)$, we must have $f'(t) \ge f'(x)$. Alternatively, this means $f'(t) - f'(x) \ge 0$. Since t > x implies that $t - x \ne 0$, we can divide by t - x to obtain:

(3.15)
$$\phi^{+}(t) = \frac{f'(t) - f'(x)}{t - x} \ge 0$$

We can also show for some t < x, where $t, x \in (a, b)$, we must have $f'(t) \le f'(x)$. Using the same method as above, we have:

(3.16)
$$\phi^{-}(t) = \frac{f'(t) - f'(x)}{t - x} \ge 0$$

Since f'' exists for every $x \in (a, b)$, we have:

(3.17)
$$\lim_{t \to x^+} \phi^+(t) = \lim_{t \to x^-} \phi^-(t) = f''(x) \ge 0$$

Since this holds for arbitrary $x \in (a, b)$, we have proven that $f''(x) \ge 0$ if and only if f' is monotonically increasing. Since we have also shown that f is convex if and only if f' is monotonically increasing, we have proven that f is convex if and only if $f''(x) \ge 0$.

4. Problem 5.15

Theorem 4.1. Suppose $a \in \mathbb{R}^1$, f is a twice differentiable real function on (a, ∞) , and M_0, M_1, M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|, respectively on (a, ∞) . Then $M_1^2 \leq 4M_0M_2$.

Proof. Since f is continuous on (a, ∞) by its differentiability, and since both f' and f'' exist for (a, ∞) , we can use Taylor's Theorem, which states that, setting $\alpha = x$ and $\beta = x + 2h$, we obtain

(4.2)
$$f(x+2h) = f(x) + f'(x)(2h) + \frac{f''(\xi)}{2}(2h)^2$$

This reduces down to the form:

(4.3)
$$f'(x) = \frac{1}{2h} [f(x+2h) - f(x)] - hf''(\xi)$$

For some $\xi \in (x, x + 2h)$ and h > 0. Therefore, since |f(x)| is bounded by M_0 and |f''(x)| is bounded by M_2 , we can obtain:

$$(4.4) |f'(x)| \le hM_2 + \frac{M_0}{h}$$

Since $\frac{M_0}{h}$ is obviously larger than $\frac{M_0}{2h}$. Next, we can rearrange the equation to obtain:

$$(4.5) 0 \le h^2 M_2 - h|f'(x)| + M_0$$

Since this holds for any h > 0, we can take $h = \sqrt{\frac{M_0}{M_2}}$, using the fact that M_0 and M_2 are positive. If $M_2 = 0$, then f'(x) is constant and f(x) is a linear function by the mean value theorem. We cannot have $f'(x) = c \neq 0$, or else M_0 would be infinite, a contradiction to the hypothesis. Then, if f'(x) = 0, then

3

 $M_1=0$, and the inequality is trivial. Moreover, if $M_0=0$, then the inequality is trivial. Therefore, we can take $M_0>0$ and $M_2>0$. Thus, substitute $h=\sqrt{\frac{M_0}{M_2}}$ into the expression:

$$(4.6) 0 \le \frac{M_0}{M_2} M_2 - \sqrt{\frac{M_0}{M_2}} |f'(x)| + M_0$$

Which leads to:

$$|f'(x)|^2 \frac{M_0}{M_2} \le 4M_0^2$$

Since we have let $x \in (a, \infty)$ be any arbitrary value, we can see that $|f'(x)| \leq M_1$, which gives us:

$$(4.8) M_1^2 \le 4M_0M_2$$

Theorem 4.9. We will show that the strict equality $M_1^2 = 4M_0M_2$ can occur.

Proof. Consider the following continuous function for a = -1 and $x \in (-1, \infty)$:

(4.10)
$$f(x) = \begin{cases} 2x^2 - 1 & (-1 < x < 0) \\ \frac{x^2 - 1}{x^2 + 1} & (0 \le x < \infty) \end{cases}$$

Since we know f(x) is differentiable everywhere, we can use the quotient and product rules (using right and left derivatives where appropriate) to obtain:

(4.11)
$$f'(x) = \begin{cases} 4x & (-1 < x < 0) \\ \frac{4x}{(x^2+1)^2} & (0 \le x < \infty) \end{cases}$$

It is clear that for $x \in (-1,0)$, we have f'(x) < 0 and for $x \in (0,\infty)$, we have f'(x) > 0. At x = 0, f'(x) = 0. Therefore, on $x \in (-1,0)$, f(x) is monotonically decreasing and on $x \in (0,\infty)$, f(x) is monotonically increasing. Since we have:

(4.12)
$$\lim_{x \to -1^+} f(x) = 1, \quad \lim_{x \to \infty} f(x) = 1, \quad f(0) = -1$$

Therefore, $M_0 = 1$. Now, we will use the same analysis to show that $M_1 = 4$. Differentiate f'(x) using the appropriate right and left derivatives to obtain:

(4.13)
$$f''(x) = \begin{cases} 4 & (-1 < x < 0) \\ \frac{4(x^2 - 4x + 1)}{(x^2 + 1)^3} & (0 \le x < \infty) \end{cases}$$

On $x \in (-1,0)$ we see that f''(x) > 4 so that f'(x) is monotonically increasing. Since $\lim_{x\to 0^-} f'(x) = 0$ and $\lim_{x\to -1^+} f'(x) = -4$, we have |f'(x)| < 4 on $x \in (-1,0)$. On $x \in [0,\infty)$ we see that

$$(4.14) |f'(x)| = \frac{4x}{(x^2+1)^2} \le 4\frac{x}{x^2+1} \frac{1}{x^2+1} \le 4 \times \frac{1}{2} \times 1 = 2$$

Therefore, since f'(0) = 0 as well, we can see that $M_1 = 4$. Next, for $x \in [0, \infty)$, we have

$$|f''(x)| = \frac{4}{(x^2+1)^2} - \frac{16x}{(x^2+1)^3} \le \frac{4}{(x^2+1)^2} \le 4$$

For $x \in (-1,0)$, we can see that f''(x) = 4 is a constant function. Therefore $M_2 = 4$. Now, we can see that $M_1^2 = 4^2 = 16$ and $4M_0M_2 = 4 \times 1 \times 4 = 16$. Therefore, we see that $M_1^2 = 4M_0M_2 = 16$.

Theorem 4.16. The same result holds for real vector valued functions f.

Proof. Let $f = (f_1, \ldots, f_k)$ be a vector-valued function and fix

(4.17)
$$M_j = \sup_{x \in (a,\infty)} \left(\sum_{i=1}^k |f_i^{(j)}(x)|^2 \right)^{\frac{1}{2}}$$

If $M_1 = 0$, we know that $M_1^2 \le 4M_0M_2 = 0$. Otherwise, for any point $y \in (a, \infty)$, define $g(x) = f_1'(y)f_1(x) + \ldots + f_k'(y)f_k(x)$. Since g(x) for $x \in (a, \infty)$ is a twice differentiable function, we can use the first part of the exercise to find:

RUDIN CHAPTER 5 SOLUTIONS 5

$$(4.18) |g'(x)|^2 \le 4 \sup_{x \in (a,\infty)} |f_1'(y)f_1(x) + \ldots + f_k'(y)f_k(x)| \sup_{x \in (a,\infty)} |f_1'(y)f_1''(x) + \ldots + f_k'(y)f_k''(x)|$$

Using the Cauchy-Swarchz inequality, we obtain

$$(4.19) |g'(x)|^2 \le 4 \left(\sum_{i=1}^k |f_i'(y)|^2\right) M_0 M_2$$

Since we have defined M_j^2 in a specific manner, we can see that $|g'(x)|^2 \leq 4M_1^2M_0M_2$. Moreover, we have let this inequality hold for arbitrary values of $x, y \in (a, \infty)$. Therefore, we can set x = y and see that $|g'(x)| = |f'_1(x)|^2 + \dots + |f_k(x)|^2$. Thus, since this holds for any $x \in (a, \infty)$, we obtain:

(4.20)
$$\left(\sum_{i=1}^{k} |f_i'(x)|^2\right)^2 = M_1^4 \le 4M_1^2 M_0 M_2$$

This shows that $M_1^2 \leq 4M_0M_2$ by division because we know that $M_1 = 0$ is a trivial case.

5. Problem 5.16

Theorem 5.1. Suppose f is twice differentiable on $(0,\infty)$, f'' is bounded on $(0,\infty)$, and $f(x) \to 0$ as $x \to \infty$. Then $f'(x) \to 0$ as $x \to \infty$.

Proof. Suppose that $a \in (0,\infty)$. Then since f(x) for $x \in (a,\infty)$ is a twice differentiable function on (a,∞) , we can use the result from the last exercise. This states that for least upper bounds M_0, M_1, M_2 of |f(x)|, |f'(x)|, |f''(x)|, respectively, the following holds true: $M_1^2 \leq 4M_0M_2$. Moreover, as we take the limit as $a \to \infty$, we can see that $M_0 \to 0$. We know this because $x \in (a,\infty)$, so as $a \to \infty$, we must have $x \to \infty$. Moreover, we know from assumption that $f(x) \to 0$ as $x \to \infty$. Therefore, we have discovered the following:

(5.2)
$$\lim_{a \to \infty} M_0 = \lim_{a \to \infty} \sup |f(x)| = \lim_{x \to \infty} \sup |f(x)| = 0$$

Therefore, we take can our expression from the previous exercise and show that the right hand side converges to 0, because f''(x) is bounded on $(0, \infty)$.

(5.3)
$$\lim_{a \to \infty} M_1^2 \le \lim_{a \to \infty} 4M_0 M_2 = 0$$

This shows that $0 \le \lim_{n \to \infty} M_1 \le 0$, which by the squeeze law forces $\lim_{n \to \infty} M_1 = 0$. This means that:

$$0 = \lim_{x \to \infty} \sup |f'(x)| = \lim_{x \to \infty} \sup |f'(x)|$$

Since the supremum of the absolute value of f'(x) is forced to equal zero in the limit as $x \to \infty$, we must therefore have $f'(x) \to 0$ as $x \to \infty$. This completes the proof.

6. Problem 5.19

Theorem 6.1. Suppose f is defined in (-1,1) and f'(0) exists. Suppose $-1 < \alpha_n < \beta_n < 1$, $a_n \to 0$, and $b_n \to 0$ as $n \to \infty$. Define the difference quotients $D_n = \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}$. Then if $\alpha_n < 0 < \beta_n$, $\lim D_n = f'(0)$.

Proof. Because the derivative exists at x=0, we know the following to be true by the definition of derivative:

(6.2)
$$f'(0) = \lim_{n \to \infty} \frac{f(\alpha_n) - f(0)}{\alpha_n} - u(n)$$

(6.3)
$$f'(0) = \lim_{n \to \infty} \frac{f(\beta_n) - f(0)}{\beta_n} - v(n)$$

Here, the functions $u(t) \to 0$ and $v(t) \to 0$ as $n \to \infty$. Therefore, rearranging these, we can obtain:

(6.4)
$$\lim_{n \to \infty} f(\alpha_n) = \lim_{n \to \infty} f(0) + (f'(0) + u(n))\alpha_n$$

(6.5)
$$\lim_{n \to \infty} f(\beta_n) = \lim_{n \to \infty} f(0) + (f'(0) + v(n))\beta_n$$

Thus, since $\alpha < 0 < \beta$, we can determine the difference quotient by substituting values of $f(\beta_n)$ and $f(\alpha_n)$ that we have just derived.

(6.6)
$$D_n = \frac{f(0) + (f'(0) + v(n))\beta_n - f(0) - (f'(0) + u(n))\alpha_n}{\beta_n - \alpha_n}$$

$$= f'(0) + \frac{v(n)\beta_n - u(n)\alpha_n}{\beta_n - \alpha_n}$$

Since we have $\alpha_n < 0 < \beta_n$, we see that $|\alpha_n| \le \beta_n - \alpha_n$ and $\beta_n \le \beta_n - \alpha_n$. This allows us to use the triangle inequality and show:

$$(6.8) |D_n - f'(0)| = v(n) \frac{|\beta_n|}{|\beta_n - \alpha_n|} - u(n) \frac{|\alpha_n|}{|\beta_n - \alpha_n|}$$

$$(6.9) \leq v(n) - u(n)$$

Taking this limit as $n \to \infty$, we see that $D_n - f'(0) \to 0$, which shows that $D_n \to f'(0)$ as $n \to \infty$.

Theorem 6.10. If $0 < \alpha_n < \beta_n$ and $\{\beta_n/(\beta_n - \alpha_n)\}$ is bounded, then $\lim D_n = f'(0)$.

Proof. Since we have previously derived $D_n - f'(0)$, we can just use the expression from above to prove this theorem. First, we know that since $0 < \alpha_n < \beta_n$, we can say that $\alpha_n < \beta_n$. Therefore, we have:

(6.11)
$$D_n - f'(0) = v(n) \frac{\beta_n}{\beta_n - \alpha_n} - u(n) \frac{\alpha_n}{\beta_n - \alpha_n}$$

$$(6.12) \leq (v(n) - u(n)) \frac{\beta_n}{\beta_n - \alpha_n}$$

Since we know that $\{\beta_n/(\beta_n-\alpha_n)\}$ is bounded, we can see that as we take $n\to\infty$, we see that the right hand side goes to zero because $v(n) \to 0$ and $u(n) \to 0$ individually.

(6.13)
$$\lim_{n \to \infty} |D_n - f'(0)| \le \lim_{n \to \infty} |v(n) - u(n)| \left| \frac{\beta_n}{\beta_n - \alpha_n} \right| = 0$$

Thus, we see that $\lim D_n = f'(0)$.

Theorem 6.14. If f' is continuous in (-1,1), then $\lim D_n = f'(0)$.

Proof. We can apply the mean value theorem to the function f since it is both continuous and differentiable on (-1,1). Thus, for each $n \in \mathbb{N}$, there exists a t_n with $\alpha_n \leq t_n \leq \beta_n$ such that:

(6.15)
$$f'(t_n) = \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = D_n$$

Therefore, we see that $\lim \alpha_n \leq \lim t_n \leq \lim \beta_n$. Since both $\alpha_n \to 0$ and $\beta_n \to 0$, we see that $t_n \to 0$ as $n\to\infty$. Therefore, taking the limit as $n\to\infty$ in the above expression, we see that $\lim D_n=f'(0)$.

Theorem 6.16. There exists a function f which is differentiable in (-1,1) and in which α_n, β_n tend to 0 in such a way that $\lim D_n$ exists but is different from f'(0)

Proof. Consider the following function defined for $x \in ($

(6.17)
$$f = \begin{cases} x^2 \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$$

We can pick $\beta_n = \frac{2}{\pi(4n-1)}$ and $\alpha_n = \frac{1}{2\pi n}$. We see that both $\beta_n \to 0$ and $\alpha_n \to 0$ as $n \to \infty$. However, we also see that $f(\alpha_n) = 0$ for all $n \in \mathbb{N}$ and that $f(\beta_n) = -\beta_n^2$. Therefore, we have:

(6.18)
$$\lim_{n \to \infty} D_n = \lim_{n \to \infty} \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}$$

$$= \lim_{n \to \infty} -\frac{\beta_n^2}{\beta_n - \alpha_n}$$

(6.19)
$$= \lim_{n \to \infty} -\frac{\beta_n^2}{\beta_n - \alpha_n}$$

$$= \lim_{n \to \infty} -\frac{4}{\pi^2 (4n - 1)^2} \frac{2\pi n (4n - 1)}{1}$$

$$(6.21) \qquad \qquad = -\frac{2}{\pi}$$

Thus, since f'(0) = 0, and we can see that $0 \neq -\frac{2}{\pi}$, we have given an example for the theorem.

7

7. Problem 5.25

Theorem 7.1. Suppose f is twice differentiable on [a,b], f(a) < 0, f(b) > 0, $f'(x) \ge \delta > 0$, and $0 \le f''(x) \le \delta$ M for all $x \in [a,b]$. Let ξ be the unique point in (a,b) at which $f(\xi) = 0$. Choose $x_1 \in (\xi,b)$ and define x_n by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Interpret this goemetrically in terms of a tangent to the graph of f.

Proof. We see that the formula for x_{n+1} computes the intercept of the tangent line of the function at point x_n with the x axis. This will then be the next point, and the process will continue until x_n converges to the root of the function (when f = 0).

Theorem 7.2. Prove that $x_{n+1} < x_n$ and that $\lim_{n \to \infty} x_n = \xi$.

Proof. We will use induction to show that $\xi < x_{n+1} < x$. We can use the mean value theorem to show that for some $c_n \in (\xi, x_n)$, we have: $(x_n - \xi)f'(c_n) = f(x_n) - f(\xi) = f(x_n)$ because $f(\xi) = 0$. Moreover, we know that f' is increasing on [a, b], which means that $f'(c_n) < f'(x_n)$ because $c_n < x_n$. Thus,

(7.3)
$$f'(c_n) = \frac{f(x_n)}{(x_n - \xi)} < f'(x_n) = \frac{f(n)}{x_n - x_n + \frac{f(x_n)}{f'(x_n)}} = \frac{f(x_n)}{x_n - x_{n+1}}$$

Therefore, we can rearrange the inequality and see that $x_n - x_{n+1} < x_n - \xi$. This completes the first part of the inequality, because now we see that $\xi < x_{n+1}$. Next, we know that since f(x) > 0 and f'(x) > 0 for all $x \in [a, b]$, we see that $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} < x_n$. Thus, we have shown that $\xi < x_{n+1} < x_n$.

Next, we must show that $\lim x_n = \xi$. First, we know that $\{x_n\}$ is a bounded, strictly decreasing sequence. This means that its limit λ exists. Therefore, we have the following:

$$\lambda = \lim_{n \to \infty} x_{n+1}$$

(7.5)
$$\lambda = \lim_{n \to \infty} x_n - \frac{f(x_n)}{f'(x_n)}$$

$$\lambda = \lambda - \frac{f(\lambda)}{f'(\lambda)}$$

$$(7.7) 0 = f(\lambda)$$

Since $f(\xi) = 0$ is the unique point in (a, b) for which $f(\xi) = 0$, we must have $\lambda = \xi$. Therefore, $\lim x_n = \xi$.

Theorem 7.8. Use Taylor's theorem to show that $x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$ for some $t_n \in (\xi, x_n)$.

Proof. Using Taylor's theorem for some $t_n \in (\xi, x_n)$, we can obtain:

(7.9)
$$f(\xi) = f(x_n) + f'(x_n)(\xi - x_n) + \frac{f''(t_n)}{2}(\xi - x_n)^2$$

(7.10)
$$0 = \frac{f(x_n)}{f'(x_n)} + (\xi - x_n) + \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$

(7.11)
$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$

We can divide by $f'(x_n)$ because we know that f'(x) > 0 for all $x \in (a, b)$. We also know that $(x_n - \xi)^2 = (\xi - x_n)^2$, so we can substitute one for the other.

Theorem 7.12. If $A = M/2\delta$, deduce that $0 \le x_{n+1} - \xi \le \frac{1}{4} [A(x_1 - \xi)]^{2^n}$.

Proof. First, since we have shown that $\xi < x_{n+1}$, we see that $0 \le x_{n+1} - \xi$. Also, since f''(x) < M and $f'(x) \ge \delta$ for all $x \in (a,b)$, we see that $\frac{f''(t_n)}{2f'(x_n)} \le \frac{M}{2\delta} = A$ for $t_n \in (\xi,x_n)$. We have found that $x_{n+1} - \xi \le A(x_n - \xi)^2$. Then we can use mathematical induction. For the base case, we have $x_2 - \xi \le A(x_1 - \xi)^2 = \frac{1}{A}[A(x_1 - \xi)]^2$. Now assume that the inequality has been proven for all cases up to x_n . We shall prove that it works for x_{n+1} :

$$(7.13) x_{n+1} - \xi \le A(x_n - \xi)^2$$

$$= A \left(\frac{1}{A}[A(x_1 - \xi)]^{2^{n-1}}\right)^2$$

$$= \frac{1}{A}[A(x_1 - \xi)]^{2^n}$$

This proves the inequality.

Theorem 7.16. Show that Newton's method amounts to finding a fixed point of the function g defined by $g(x) = x - \frac{f(x)}{f'(x)}$.

Proof. We want to show that Newton's method finds x_0 such that $g(x_0) = x_0$, or that $x_0 - \frac{f(x_0)}{f'(x_0)} = x_0$ which implies $f(x_0) = 0$. Therefore, we only must show that Newton's method finds $f(x_0) = 0$, because $f'(x_0) > 0$ for all $x \in (a, b)$.

Since we have previously shown that $\lim x_n = \xi$, we know that $\lim f(x_n) = f(\xi) = 0$. Thus, Newton's method finds an approximation to x_0 , where $f(x_0) = 0$ as we take larger and larger $n \in \mathbb{N}$ for $\{x_n\}$. This is what we wanted to show.

As x approaches ξ , we see that $g'(x) = \frac{f(x)f''(x)}{f'(x)^2}$, so that $0 \le g'(x) \le f(x)\frac{M}{\delta^2}$. Thus, we see that as x approaches ξ , we have g'(x) approaching 0.

Theorem 7.17. Put $f(x) = x^{1/3}$ on $(-\infty, \infty)$ and try Newton's method.

Proof. We see that $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{3x^{1/3}}{x^{-2/3}} = x_n - 3x_n = -2x_n$. Thus, we see that $x_2 = -2x_1$. Using induction, we can assume that $x_n = (-2)^{n-1}x_1$ has been proven up to x_n . Then, we can show that

(7.18)
$$x_{n+1} = -2x_n = -2(-2)^{n-1}x_1 = (-2)^n x_1$$

With mathematical induction, we have shown that $x_n = (-2)^{n-1}x_1$. Therefore, we see that for any choice of x_1 , x_n does not converge.

8. Problem 5.26

Theorem 8.1. Suppose f is differentiable on [a,b], f(a)=0, and there is a real number A such that $|f'(x)| \le A|f(x)|$ on [a,b]. Prove that f(x)=0 for all $x \in [a,b]$.

Proof. If A=0, then we can see that f'(x)=0, which implies that f(x)=f(a)=0 for all $x\in [a,b]$. Moreover, A cannot be negative because |.| cannot be negative. Thus, we can assume A>0. Next, fix $x_0\in [a,b]$ and let $M_0=\sup|f(x)|$ and $M_1=\sup|f'(x)|$ for $a\leq x\leq x_0$. Next, we can use the mean value theorem, because f is differentiable and hence continuous, to obtain:

(8.2)
$$f'(x) = \frac{f(x_0) - f(a)}{x_0 - a}$$

(8.3)
$$f'(x)(x_0 - a) = f(x_0)$$

Therefore, since $|f'(x)| \leq \sup |f'(x)| = M_1$, we see that $f(x_0) \leq M(x_0 - a)$. Next, since we have $|f'(x)| \leq A|f(x)|$, we find that

$$|f(x)| \le M_1(x_0 - a) \le AM_0(x_0 - a)$$

Since we can pick any value for x_0 , we can choose $x_0 - a < \frac{1}{A}$ such that $A(x_0 - a) < 1$. Then we see that $|f(x)| < A(x_0 - a)M_0$ for all $x \in [a, x_0]$. However, we can only have $M_0 = 0$ because otherwise a number strictly smaller than the supremum would be an upper bound, which shows that f = 0 on $[a, x_0]$. To show that f = 0 on $[x_0, b]$, we note that we can fix $x_0^1 \in [x_0, b]$ such that $|f(x)| \le AM_0(x_0^1 - x_0)$. Repeating the same argument, we see that f = 0 on $[a, x_0] \cup [x_0, x_0^1]$. Since $[x_0, x_0^1]$ is a fixed interval, we can see that using the Archimedean principle, we will eventually cover [a, b] with enough intervals $[x_0^n, x_0^{n+1}]$. Thus, we see that f(x) = 0 for all $x \in [a, b]$.

9. Problem 5.27

Theorem 9.1. Let ϕ be a real function defined on a rectangle R in the plane, given by $a \le x \le b$, $\alpha \le y \le \beta$. A solution of the initial value problem $y' = \phi(x,y), y(a) = c, (\alpha \le c \le \beta)$ is by definition a differentiable function f on [a,b] such that $f(a) = c, \alpha \le f(x) \le \beta$, and $f'(x) = \phi(x,f(x))$ for $(a \le x \le b)$. Prove that such a problem has at most one solution if there is a constant A such that $|\phi(x,y_2) - \phi(x,y_1)| \le A|y_2 - y_1|$ whenever $(x,y_1) \in \mathbb{R}$ and $(x,y_2) \in \mathbb{R}$.

Proof. Assume we have two solutions $f_1(x)$ and $f_2(x)$. We will show that they are equal by defining the function $g(x) = f_2(x) - f_1(x)$. Then since both of the solutions are such that $f_2(a) = f_1(a) = c$, we know that $g(a) = f_2(a) - f_1(a) = 0$. Next, since we have $f'_1(x) = \phi(x, f_1(x))$ and $f'_2(x) = \phi(x, f_2(x))$, we know that by the assumed condition, we have:

$$|g'(x)| = |\phi(x, f_2(x)) - \phi(x, f_1(x))| = |f'_2(x) - f'_1(x)| \le A|f_2(x) - f_1(x)|$$

RUDIN CHAPTER 5 SOLUTIONS 9

Thus, we see that $|g'(x)| \leq A|g(x)|$, so that g satisfies the conditions of problem 5.26 above. This means that we have g(x) = 0 for all $x \in [a, b]$. Thus, we see that $f_2(x) = f_1(x)$ for all $x \in [a, b]$, and that the two solutions are actually the same. Therefore, the problem has at most one solution.