Statistics II: Introduction to Inference

Problem set 2

1. Let X_1, \ldots, X_n be an i.i.d. sample from the $N(\mu, \sigma^2)$ distribution. Find the Fisher information matrix, $\mathbf{I}_n(\boldsymbol{\theta})$, for the parameter $\boldsymbol{\theta} = (\mu, \sigma^2)$.

[Note: The Fisher information matrix for a vector valued parameter $\boldsymbol{\theta}$ is defined as

$$\mathbf{I}_{n}(\boldsymbol{\theta}) = E\left[\left(\frac{\partial}{\partial \boldsymbol{\theta}} \log f_{\mathbf{X}}(\mathbf{X}; \boldsymbol{\theta})\right) \left(\frac{\partial}{\partial \boldsymbol{\theta}} \log f_{\mathbf{X}}(\mathbf{X}; \boldsymbol{\theta})\right)^{\top}\right] = -E\left[\left(\frac{\partial^{2}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}} \log f_{\mathbf{X}}(\mathbf{X}; \boldsymbol{\theta})\right)\right]\right]$$

Further, from the above definition of $\mathbf{I}_n(\boldsymbol{\theta})$ show that, when X_1, \ldots, X_n are i.i.d., then $\mathbf{I}_n(\boldsymbol{\theta}) = n\mathbf{I}_1(\boldsymbol{\theta})$, where $\mathbf{I}_1(\boldsymbol{\theta})$ is the Fisher information matrix for one sample.

- 2. Let X_1, \ldots, X_n be an i.i.d. sample from the following distributions. In each case, find the method of moments estimator (MOME) for $g(\theta)$:
 - (a) $Gamma(\alpha, \beta)$, and $g(\theta) = (\alpha, \beta)^{\top}$.
 - (b) Beta (α, β) and $g(\theta) = \alpha/\beta$.
 - (c) Poisson(λ) and $g(\theta) = \exp{-\lambda}$.
 - (d) Location-scale Exponential (μ, σ) with p.d.f.

$$f_{\mathbf{X}}(x; \mu, \sigma) = \begin{cases} \sigma^{-1} \exp\{-\sigma^{-1}(x - \mu)\} & x > \mu, \\ 0 & \text{otherwise,} \end{cases}$$

and $g(\theta) = (\mu, \sigma)$.

- 3. Let X_1, \ldots, X_n be an i.i.d. sample from the following distributions. In each case, find the MLE for $g(\theta)$:
 - (a) Binomial (m, θ) , and $q(\theta) = \theta$.
 - (b) Binomial (θ, p) , and $g(\theta) = \theta$ when n = 1.
 - (c) Binomial (m, θ) , and $g(\theta) = P(X_1 + X_2 = 0)$.
 - (d) Hypergeometric (m, r, θ) with p.m.f.

$$f_X(x; m, r, \theta) = \frac{\binom{m}{x} \binom{\theta - m}{r - x}}{\binom{\theta}{r}}, \quad \theta = m + 1, m + 2, \dots; \quad \max\{0, r + m - \theta\} \le x \le \min\{m, r\},$$

 $g(\theta) = \theta$ and n = 1.

(e) Double exponential: pdf $f_X(x;\theta) = 2^{-1} \exp\{-|x-\theta|\}$; with $x \in \mathbb{R}$ and $\theta \in \mathbb{R}$.

1

- (f) Uniform (α, β) , and $g(\theta) = \alpha + \beta$.
- (g) Normal (θ, θ^2) , and $g(\theta) = \theta$.
- (h) Inverse $Gaussian(\theta_1, \theta_2)$ and $g(\boldsymbol{\theta}) = (\theta_1, \theta_2)$.

- 4. Suppose that the random variables Y_1, \ldots, Y_n satisfy $Y_i = \beta x_i + \epsilon_i$, $i = 1, \ldots, n$ where x_1, \ldots, x_n are fixed constants, and $\epsilon_1, \ldots, \epsilon_n$ are iid N $(0, \sigma^2)$, σ^2 unknown.
 - (a) Find a two-dimensional sufficient statistic for (β, σ^2) .
 - (b) Find the MLE of β , and show that it is an unbiased estimator of β .
 - (c) Find the distribution of the MLE of β .
 - (d) Show that $\sum Y_i / \sum x_i$ is an unbiased estimator of β .
 - (e) Calculate the exact variance of $\sum Y_i / \sum x_i$ and compare it to the variance of the MLE.
 - (f) Show that $\left[\sum (Y_i/x_i)\right]/n$ is also an unbiased estimator of β .
 - (g) Calculate the exact variance of $\left[\sum (Y_i/x_i)\right]/n$ and compare it to the variances of the estimators in the previous two estimates.
- 5. Let W_1, \ldots, W_k be unbiased estimators of a parameter θ with known variances $\operatorname{var}(W_i) = \sigma_i^2$, $i = 1, \ldots, k$. Find the best unbiased estimator of θ of the form $\sum_{i=1}^k a_i W_i$.
- 6. Suppose that when the radius of a circle is measured, a random error is made, which is modeled as $N(0, \sigma^2)$. If n repeated independent measurements are made, then find an unbiased estimator of area of the circle. Is it the UMVUE?