Planche nº 1. Logique. Corrigé

Exercice nº 1

- 1) a) $(f = 0 \Leftrightarrow \forall x \in \mathbb{R}, f(x) = 0)$ et $(f \neq 0 \Leftrightarrow \exists x \in \mathbb{R}/ f(x) \neq 0)$.
- b) L'équation f(x) = 0 a (au moins) une solution si et seulement si $\exists x \in \mathbb{R} / f(x) = 0$). L'équation f(x) = 0 n'a pas de solution si et seulement si $\forall x \in \mathbb{R}, f(x) \neq 0$.
- c) (L'équation f(x) = 0 a exactement une solution si et seulement si $\exists ! \ x \in \mathbb{R}/\ f(x) = 0$). L'équation f(x) = 0 n'a pas exactement une solution si et seulement si $(\forall x \in \mathbb{R}/\ f(x) \neq 0 \text{ ou } \exists (x, x') \in \mathbb{R}^2/\ (x \neq x' \text{ et } f(x) = f(x') = 0))$.
- d) La fonction f s'annule au moins une fois sur \mathbb{R} si et seulement si $\exists x \in \mathbb{R}/ f(x) = 0$. La fonction f ne s'annule pas sur \mathbb{R} si et seulement si $\forall x \in \mathbb{R}, f(x) \neq 0$.
- 2) a) f est l'identité de \mathbb{R} si et seulement si $\forall x \in \mathbb{R}$, f(x) = x. f n'est pas l'identité de \mathbb{R} si et seulement si $\exists x \in \mathbb{R} / f(x) \neq x$).
- b) Le graphe de f coupe la droite d'équation y = x si et seulement si $\exists x \in \mathbb{R} / f(x) = x$. Le graphe de f ne coupe pas la droite d'équation y = x si et seulement si $\forall x \in \mathbb{R} / f(x) \neq x$.
- c) f a au moins un point fixe si et seulement si $\exists x \in \mathbb{R}/f(x) = x$. f n'a pas de point fixe si et seulement si $\forall x \in \mathbb{R}, f(x) \neq x$.
- 3) a) f est croissante sur \mathbb{R} si et seulement si $\forall (x, x') \in \mathbb{R}^2$, $(x \le x' \Rightarrow f(x) \le f(x'))$. f n'est pas croissante sur \mathbb{R} si et seulement si $\exists (x, x') \in \mathbb{R}^2 / (x \le x' \text{ et } f(x) > f(x'))$.
- b) f est monotone sur \mathbb{R} si et seulement si $(\forall (x,x') \in \mathbb{R}^2, (x \leqslant x' \Rightarrow f(x) \leqslant f(x')))$ ou $(\forall (x,x') \in \mathbb{R}^2, (x \leqslant x' \Rightarrow f(x) \geqslant f(x')))$. f n'est pas monotone sur \mathbb{R} si et seulement si $(\exists (x,x') \in \mathbb{R}^2, (x \leqslant x' \text{ et } f(x) > f(x')))$ et $(\exists (x,x') \in \mathbb{R}^2, (x \leqslant x' \text{ et } f(x) < f(x')))$.

Exercice nº 2

- 1) a) $(u_n)_{n\in\mathbb{N}}$ majorée $\Leftrightarrow \exists M \in \mathbb{R}/ \ \forall n \in \mathbb{N}, \ u_n \leqslant M.$ $(u_n)_{n\in\mathbb{N}}$ non majorée $\Leftrightarrow \forall M \in \mathbb{R}/ \ \exists n \in \mathbb{N}, \ u_n > M.$
- b) $(u_n)_{n\in\mathbb{N}}$ bornée $\Leftrightarrow \exists (m,M) \in \mathbb{R}^2 / \forall n \in \mathbb{N}, \ m \leqslant u_n \leqslant M.$ $((u_n)_{n\in\mathbb{N}} \text{ non bornée} \Leftrightarrow ((\forall M \in \mathbb{R} / \exists n \in \mathbb{N}, \ u_n > M) \text{ ou } (\forall m \in \mathbb{R} / \exists n \in \mathbb{N}, \ u_n < m)).$
- 2) a) $(u_n)_{n\in\mathbb{N}}$ décroissante $\Leftrightarrow \forall n \in \mathbb{N}/ u_{n+1} \leqslant u_n)$. $((u_n)_{n\in\mathbb{N}}$ non décroissante $\Leftrightarrow \exists n \in \mathbb{N}/ u_{n+1} > u_n)$.
- $\begin{array}{l} \mathbf{b)} \ (u_n)_{n \in \mathbb{N}} \ \mathrm{monotone} \Leftrightarrow ((\forall n \in \mathbb{N}/\ u_{n+1} \geqslant u_n) \ \mathrm{ou} \ (\forall n \in \mathbb{N}/\ u_{n+1} \leqslant u_n)). \\ (u_n)_{n \in \mathbb{N}} \ \mathrm{non} \ \mathrm{monotone} \Leftrightarrow ((\exists n \in \mathbb{N}/\ u_{n+1} < u_n) \ \mathrm{et} \ (\exists n \in \mathbb{N}/\ u_{n+1} > u_n)). \end{array}$

Exercice nº 3

- 1) a) $(f = Id_{\mathscr{P}} \Leftrightarrow \forall M \in \mathscr{P}, f(M) = M)$ et $(f \neq Id_{\mathscr{P}} \Leftrightarrow \exists M \in \mathscr{P}/f(M) \neq M)$.
- b) (f a au moins un point invariant $\Leftrightarrow \exists M \in \mathscr{P}/f(M) = M$) et (f n'a pas de point fixe $\Leftrightarrow \forall M \in \mathscr{P}, f(M) \neq M$).

Constatez que les phrases f(M) = M ou $f(M) \neq M$ n'ont aucun sens si elles ne sont pas accompagnées de quantificateurs.

2) $\forall M \in \mathscr{P}, (M \in \mathscr{C}(\Omega, R) \Leftrightarrow \Omega M = R)$. La négation de cette phrase est très compliquée et n'a aucun intérêt : $\exists M \in \mathscr{P}/(M \in \mathscr{C}(\Omega, R))$ et $\Omega M \neq R)$ ou $(\Omega M = R)$ et $M \notin \mathscr{C}(\Omega, R)$ (ce qui est faux) (pour nier, on a d'abord écrit : $(M \in \mathscr{C}(\Omega, R)) \Leftrightarrow \Omega M = R) \Leftrightarrow (M \in \mathscr{C}(\Omega, R)) \Rightarrow \Omega M = R$) et $(\Omega M = R) \Leftrightarrow (\Omega M = R)$.

Exercice nº 4

- 1) Le contraire de $x \ge 3$ est x < 3.
- 2) Le contraire de $0 < x \le 2$ (qui s'écrit plus explicitement 0 < x et $x \le 2$) est $((x \le 0)$ ou x > 2).

Exercice nº 5

- 1) Oui. Dans les deux cas, chaque fois que l'on se donne un réel x_0 , $f(x_0)$ et $g(x_0)$ sont tous deux nuls ou encore dans les deux cas, f est la fonction nulle et g est la fonction nulle.
- 2) Non. La deuxième affirmation implique la première mais la première n'implique pas la deuxième. La première phrase est la traduction avec des quantificateurs de l'égalité fg = 0. La deuxième phrase est la traduction avec quantificateurs de (f = 0 ou q = 0).

Voici un exemple de fonctions f et q toutes deux non nulles dont le produit est nul.

Pour chaque valeur de x, on a soit f(x) = 0 (quand $x \le 0$), soit g(x) = 0 (quand $x \ge 0$). On a donc : $\forall x \in \mathbb{R}$, (f(x) = 0) ou g(x) = 0) ou encore $\forall x \in \mathbb{R}$, f(x)g(x) = 0 ou enfin, fg = 0. Cependant, $f(1) = 1 \ne 0$ et donc $f \ne 0$, et $g(-1) = -1 \ne 0$ et donc $g \ne 0$. On n'a donc pas (f = 0) ou encore, on n'a pas $((\forall x \in \mathbb{R}, f(x) = 0))$ ou $(\forall x \in \mathbb{R}, g(x) = 0))$.

Exercice nº 6

- 1) La proposition « $\exists x \in \mathbb{R}/\sin(x) = x$ » est vraie. En effet, soit $x_0 = 0$. Alors $\sin(x_0) = x_0$.
- 2) La proposition « $\forall x \in \mathbb{R}$, $x^2 + 1 \neq 0$ » est vraie. En effet, soit x un réel. $x^2 + 1 \geq 1$ et en particulier $x^2 + 1 \neq 0$. On a ainsi montré que pour tout réel x, $x^2 + 1 \neq 0$.
- 3) La proposition « $\forall x \in \mathbb{C}, \ x^2 + 1 \neq 0$ » est fausse. Pour le démontrer, on démontre que sa négation est vraie. La négation de cette proposition est « $\exists x \in \mathbb{C}, \ x^2 + 1 = 0$ ». Cette proposition est effectivement vraie car le complexe $x_0 = i$ vérifie $x_0^2 + 1 = 0$.

Exercice nº 7.

- 1) Puisque $\sin\left(\frac{\pi}{2}\right)\neq 0$, il existe un réel x tel que $\sin(x)\neq 0$. Donc, la fonction sin n'est pas nulle.
- 2) Une fonction est dérivable sur \mathbb{R} si et seulement si cette fonction est dérivable en chaque réel. Donc, une fonction n'est pas dérivable sur \mathbb{R} si et seulement si cette fonction n'est pas dérivable en au moins un réel. La fonction valeur absolue n'est pas dérivable sur \mathbb{R} .

Exercice nº 8.

- 1) Soit $x_0 = \frac{\pi}{2}$. Alors $\cos(x_0) = 0$. Donc la proposition « $\exists x \in \mathbb{R} / \cos x = 0$ » est vraie.
- Soit $x_1 = 0$. Alors $\sin(x_1) = 0$. Donc la proposition « $\exists x \in \mathbb{R} / \sin x = 0$ » est vraie.
- Puisque les deux propositions « $\exists x \in \mathbb{R}/\cos x = 0$ » et « $\exists x \in \mathbb{R}/\sin x = 0$ » sont vraies, la proposition : « ($\exists x \in \mathbb{R}/\cos x = 0$) et ($\exists x \in \mathbb{R}/\sin x = 0$) » est vraie.
- 2) Supposons par l'absurde que la proposition : « $(\exists x \in \mathbb{R}/\cos x = 0 \text{ et } \sin x = 0)$ soit vraie. Soit x_0 un réel tel que $\cos(x_0) = \sin(x_0) = 0$. Alors, $\cos^2(x_0) + \sin^2(x_0) = 0$. Ceci contredit le fait que pour tout réel x, $\cos^2(x) + \sin^2(x) = 1$. Donc, la proposition : « $(\exists x \in \mathbb{R}/\cos x = 0 \text{ et } \sin x = 0)$ est fausse.

Exercice nº 9.

Supposons par l'absurde que $\sqrt{2}$ soit rationnel. Il existe alors deux entiers naturels non nuls a et b tel que $\sqrt{2} = \frac{a}{b}$ ou encore tels que $a^2 = 2b^2$.

On peut poser $a = 2^{\alpha}3^{\beta}5^{\gamma}...$ et $b = 2^{\alpha'}3^{\beta'}5^{\gamma'}...$ où $\alpha, \beta, ...$ sont des entiers naturels.

a=1 est impossible car alors $2b^2\geqslant 2>a^2$ et en particulier $a^2\neq 2b^2$. b=1 est impossible car pour $a\geqslant 2$, $a^2\geqslant >2=2b^2$. Donc, $a\geqslant 2$ et $b\geqslant 2$.

L'égalité $\alpha^2 = 2b^2$ s'écrit encore $2^{2\alpha}3^{2\beta}5^{2\gamma}... = 2^{2\alpha'+1}3^{2\beta'}5^{2\gamma'}...$ Par unicité de la décomposition en produit de facteur premier, on en déduit que l'exposant 2α est égal à l'exposant $2\alpha' + 1$. Cette égalité est impossible car 2α est un entier pair et $2\alpha' + 1$ est un entier impair.

Il était donc absurde de supposer $\sqrt{2}$ rationnel. On a montré que $\sqrt{2}$ est irrationnel.

Exercice nº 10.

Soient k_0 et k_1 deux entiers naturels tels que $b=k_0\alpha$ et $\alpha=k_1b$. Alors, $b=k_0k_1b$ puis $k_0k_1=1$ car b n'est pas nul. k_0 et k_1 ne sont donc pas nuls. Supposons par l'absurde que l'un des deux entiers naturels k_0 ou k_1 ne soit pas égal à 1. Alors, $(k_0\geqslant 2$ et $k_1\geqslant 1)$ ou $(k_0\geqslant 1$ et $k_1\geqslant 2)$. Dans les deux cas, on a $k_0k_1\geqslant 2$ et en particulier $k_0k_1\ne 1$. On a montré par l'absurde que $k_0=k_1=1$. Mais alors, $\alpha=b$.

Exercice nº 11.

- 1) $\forall n \in \mathbb{N}$, $((\exists k \in \mathbb{N}/\ n = 2k)\ ou\ (\exists k \in \mathbb{N}/\ n = 2k+1))$. Cette proposition est vraie car pour chaque n, l'une des deux propositions « n est pair » ou « n est impair » est vraie.
- 2) $(\forall n \in \mathbb{N}, \exists k \in \mathbb{N}/ n = 2k)$ ou $(\forall n \in \mathbb{N}, \exists k \in \mathbb{N}/ n = 2k + 1))$. Cette proposition est fausse car chacune des deux propositions « tout entier naturel n est pair » et « tout entier naturel n est impair » est fausse.
- 3) $\forall n \in \mathbb{N}, \exists m \in \mathbb{N}/\ m > n$. Cette proposition est vraie. En effet, si n est un entier naturel, l'entier m = n + 1 est strictement plus grand que n.
- 4) $\exists m \in \mathbb{N} / \forall n \in \mathbb{N}, m > n$. Cette proposition est fausse.

Exercice no 12.

Ecrire avec des quantificateurs les propositions suivantes :

- 1) f est constante sur \mathbb{R} si et seulement si $\exists C \in \mathbb{R} / \forall x \in \mathbb{R}, \ f(x) = C$. On peut donner une définition plus simple. f est constante sur \mathbb{R} si et seulement si $\forall x \in \mathbb{R}, \ f(x) = f(0)$.
- 2) f n'est pas constante sur \mathbb{R} si et seulement si $\exists x \in \mathbb{R}, \ f(x) \neq f(0)$.

Exercice nº 13.

- 1) Faux. 9 est impair et 9 n'est pas premier. (L'implication de l'énoncé est : (\mathfrak{n} premier $\Leftarrow \mathfrak{n}$ impair) ou encore (\mathfrak{n} impair $\Rightarrow \mathfrak{n}$ premier).
- 2) Vrai. L'implication de l'énoncé est (pour $n \ge 3$) : (n premier \Rightarrow n impair).
- 3) Faux. (L'implication de l'énoncé est : $(x^2 = 4 \Rightarrow x = 2)$).
- 4) Vrai. (L'implication de l'énoncé est : $(x^2 = 4 \Leftarrow x = 2)$ ou encore $(x = 2 \Rightarrow x^2 = 4)$).
- 5) Vrai. (L'implication de l'énoncé est : $(x > 3 \Rightarrow x > 2)$).
- **6)** Faux. (L'implication de l'énoncé est : $(x > 3 \Leftarrow x > 2)$ ou encore $(x > 2 \Rightarrow x > 3)$).