Simpson's
$$\frac{1}{3}$$
 rule

 $y = f(\alpha)$
 y

$$\int_{\chi_0}^{\chi_0} \frac{h}{3} \left[y_0 + 4 \left(y_1 + y_3 + y_5 + \dots + y_{n-1} \right) + y_n \right] + 2 \left(y_2 + y_4 + y_6 + \dots + y_{n-2} \right) + y_n$$

R	7.47	7.48	7.49	7.50	7,51	7.52	
70-1(10)	1.93	1.95	1.98	2.01	2.03	2.06	
find oud		52 (x) dx	by.	applysi	ng the	Traf	rezofaal mule.

Evaluate
$$\int_0^1 \frac{dn}{1+n^2} dn$$
 using the simpson's 1/3 mule.

$$T = \int_{0}^{1} \frac{d\pi}{1+\pi^{2}} = \frac{1/6}{3} \left[y_{0} + 4(y_{1} + y_{3} + y_{5}) + 2(y_{2} + y_{4}) + y_{6} \right]$$

$$= 0.7853978$$