95% posterior CI:
gbeta (c(0.025, 0.975), x, B)
Aside: posteriors combine prior info. w/ data info.
ex: posterior mean of beta-binomial
Dly,,,yn ~ beta(x, B)
D 11
$\mathbb{E} \Theta \mid y_1, \dots, y_n = \frac{\alpha}{\alpha + \beta} = \frac{\alpha + 2y_1}{\alpha + b + n}$
Recall: $\ddot{y} = \dot{h} = \dot{y}$; $\Rightarrow n\ddot{y} = = \ddot{y}$;
Recair. 9- 2-3, -1 kg - 23,
$\mathbb{E} \Theta(y_1, \dots, y_n) = \frac{\alpha + ny}{\alpha + b + n}$
= <u>Q</u> ((a+b) + <u>N</u> y = a+b+n y =
$= \frac{a+b}{a+b+n} \cdot \frac{a}{a+b+n} \cdot \frac{a}{y}$
weight prior (1-w) Sample mean
1 143
臣的
Ĥ.

Laplace Approx Example:
Approximate beta-binomial posterior
$\rho(\theta)\vec{y} = c\theta^{\alpha-1}(1-\theta)^{\beta-1}$
$L(\theta) = \log \theta \vec{y} = \log c + (\alpha - 1) \log \theta + (\beta - 1) \log (1 - \theta)$
$L'(\Theta) = \frac{\kappa - 1}{\Theta} - \frac{(\beta - 1)}{(1 - \Theta)}$
$L''(\theta) = \frac{-(\alpha-1)}{\theta^2} - \frac{(\beta-1)}{(1-\theta)^2}$
Set $L'(\dot{\theta})=0$ to find $\widehat{\Theta}_{map}=\frac{\alpha-1}{\beta+\alpha-2}$
So
p(D1y) ≈ N(Ômap, -1/L"(Đmap))
where the relevant terms fimup & L''(0) are circled above.