12/04/2014

MD Project

I-Jou, Wang 8018706773 ijouwang@usc.edu

I. Part 1

Lattice constant: 1.587401

A. The relation between average pressure and temperature

B. The relation between Energy and temperature

C. The relation between Energy and temperature

D. Mean Square Displacement

1. Mean square displacement in solid state (below T=1.4)

2. Mean square displacement liquid state (above T=1.4)

Note:

For T=1.6, the slope is not easy see in the figure above.

According to the shape in the figure below, we can see that the state at T=1.6 is actually liquid.

E. B(T) and D(T)

F. g(r) and n(r)

1. Temperature = 0.4

2. Temperature = 1.0

3. Temperature = 1.6

12/04/2014

4. Temperature = 2.2

II. Part 2

1. Lattice constant: 1.587401

a₁: 1.60327501

a₂: 1.61914902

a₃: 1.63502303

a₄: 1.65089704

As running the temperature close to 0.8 at a4, I found out that it is closed to melting point.

2. The slope of Temperature and a(T)/a(0) at pressure is zero

As the figure showed that the slope is 0.1133.