

Prova 2 de PRE

Variáveis aleatórias conjuntamente distribuídas e Distribuição Condicional

Lucas Costa Fontes

15 de Abril de 2024

Sumário

1. ENUNCIADO	3
2. RESOLUÇÃO	4
2.1. Determinando a PMF conjunta	
2.1.1. Tabela dos resultados	4
2.1.2. Tabela da PMF conjunta de X e Y	5
2.2. Determinando e esboçando as PMFs marginais de X e Y	7
2.2.1. Determinando PMFs marginais	7
2.2.2. Esboçando as PMFs marginais para X e Y	8
2.3. Determinando e esboçando $P_X(X Y=y)$. 10
2.3.1. Determinando $P_X(X Y=y)$	
2.3.2 Esbocando $P_{x}(X Y=y)$	11

1. ENUNCIADO

Sejam U1, U2 e U3 ~ Unif ($\{0,1,2\}$) variáveis aleatórias sorteadas independemente
mente. Sejam

$$X = U_1 + U_2 + U_3, (1)$$

$$Y = U_1 + U_2 - U_3, (2)$$

- (a) Determine a PMF conjunta de X e Y
- (b) Determine e esboce as PMFs marginais de X e Y
- (c) Determine e esboce as PMFs condicionais de X dado que Y=y, para dois valores de $y \in S_y$ à sua escolha.

2. RESOLUÇÃO

2.1. Determinando a PMF conjunta

Para que possamos descobrir a PMF conjunta entre duas variáveis aleatórias, primeiro precisamos de uma tabela com todos os resultados possíveis dos experimentos probabilísticos. Em seguida somam-se as probabilidades de X e Y assumirem conjuntamente um valor e faz-se a tabela da PMF conjunta de X e Y.

2.1.1. Tabela dos resultados

Os valores de X e Y foram dados pelas equações presentes no enunciado. Como as variáveis aleatórias U1, U2 e U3 assumem valores inteiros contidos no intervalo de 0 a 2 de maneira uniforme, a probabilidade é dada por $\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \left(\frac{1}{3}\right)^3 = \frac{1}{27}$ em todas as linhas da tabela

Tabela dos resultados								
U1	U2	U3 X Y P						
0	0	0	0	0	1/27			
0	0	1	1	-1	1/27			
0	0	2	2	-2	1/27			
0	1	0	1	1	1/27			
0	1	1	2	0	1/27			
0	1	2	3	-1	1/27			
0	2	0	2	2	1/27			
0	2	1	3	1	1/27			
0	2	2	4	0	1/27			
1	0	0	1	1	1/27			

Tabela dos resultados									
U1	U2	U3	X	Y	Pr				
1	0	1	2	0	1/27				
1	0	2	3	-1	1/27				
1	1	0	2	2	1/27				
1	1	1	3	1	1/27				
1	1	2	4	0	1/27				
1	2	0	3	3	1/27				
1	2	1	4	2	1/27				
1	2	2	5	1	1/27				
2	0	0	2	2	1/27				
2	0	1	3	1	1/27				
2	0	2	4	0	1/27				
2	1	0	3	3	1/27				
2	1	1	4	2	1/27				
2	1	2	5	1	1/27				
2	2	0	4	4	1/27				
2	2	1	5	3	1/27				
2	2	2	6	2	1/27				

2.1.2. Tabela da PMF conjunta de X e Y

Agora, com base na tabela onde todos os resultados do experimento probabilístico estão contidos, podemos fazer a PMF conjunta de X,Y para cada valor que as variáveis aleatórias podem assumir.

Analisando a tabela anterior, podemos listar os valores que X e Y po-

dem assumir. $X=(\{0,1,2,3,4,5,6\})$ e $Y=(\{-2,1,0,1,2,3,4\})$. Dadas essas constatações, a PMF conjunta para cada valor de X e Y é dada pela tabela abaixo:

$\mathbf{P}_{\mathbf{X},\mathbf{Y}}\left(\mathbf{x},\mathbf{y}\right)$										
	y = -2	y = -1	y = 0	y = 1	y = 2	y = 3	y = 4			
x = 0	0	0	1/27	0	0	0	0			
x = 1	0	1/27	0	2/27	0	0	0			
x = 2	1/27	0	2/27	0	3/27	0	0			
x = 3	0	2/27	0	3/27	0	2/27	0			
x = 4	0	0	3/27	0	2/27	0	1/27			
x = 5	0	0	0	2/27	0	1/27	0			
x = 6	0	0	0	0	1/27	0	0			

2.2. Determinando e esboçando as PMFs marginais de X e Y

Para determinarmos as PMFs marginais das variáveis X e Y, precisamos utilizar a definição dadas nas equações abaixo:

$$P_X(x) = \sum_{y \in S_Y} P_{X,Y}(x,y) \tag{3}$$

$$P_Y(y) = \sum_{x \in S_X} P_{X,Y}(x,y) \tag{4}$$

Desse modo, percebemos que, para encontrar as marginais de X, basta somar os valores contidos na linha em que se quer encontrar $P_X(x)$ e os valores contidos na coluna em que se quer encontrar $P_Y(y)$. Dadas essas constatações, podemos partir para a determinação das PMFs marginais de X e Y:

2.2.1. Determinando PMFs marginais

Primeiramente realizamos a determinação das PMFs marginais para X através da definição:

$$P_X(x=0) = \frac{1}{27}$$
• $P_X(x=1) = \frac{1}{27} + \frac{2}{27} = \frac{3}{27} = \frac{1}{9}$
• $P_X(x=2) = \frac{1}{27} + \frac{2}{27} + \frac{3}{27} = \frac{6}{27} = \frac{2}{9}$
• $P_X(x=3) = \frac{2}{27} + +\frac{3}{27} + \frac{2}{27} = \frac{7}{27}$
• $P_X(x=4) = \frac{3}{27} + \frac{2}{27} + \frac{1}{27} = \frac{6}{27} = \frac{2}{9}$
• $P_X(x=5) = \frac{2}{27} + \frac{1}{27} = \frac{3}{27} = \frac{1}{9}$

• $P_X(x=6) = \frac{1}{2}$

Em seguida realizamos o mesmo procedimento para determinarmos as PMFs de Y:

$$\begin{array}{ll} \bullet & P_Y(y=-2)=\frac{1}{27}\\ \bullet & P_Y(y=-1)=\frac{1}{27}+\frac{2}{27}=\frac{3}{27}=\frac{1}{9}\\ \bullet & P_Y(y=0)=\frac{1}{27}+\frac{2}{27}+\frac{3}{27}=\frac{6}{27}=\frac{2}{9}\\ \bullet & P_Y(y=1)=\frac{2}{27}+\frac{3}{27}+\frac{2}{27}=\frac{7}{27} \end{array}$$

$$\begin{array}{ll} \bullet & P_Y(y=2) = \frac{3}{27} + \frac{2}{27} + \frac{1}{27} = \frac{6}{27} = \frac{2}{9} \\ \bullet & P_Y(y=3) = \frac{2}{27} + \frac{1}{27} = \frac{3}{27} = \frac{1}{9} \\ \bullet & P_Y(y=4) = \frac{1}{27} \end{array}$$

E finalmente, temos a tabela contendo as PMFs conjuntas de X e Y e as marginais de cada variável aleatória para cada valor que a própria pode assumir:

$\mathbf{P}_{\mathbf{X},\mathbf{Y}}\left(\mathbf{x},\mathbf{y}\right)$										
	y = -2	y = -1	y = 0	y = 1	y = 2	y = 3	y = 4	$P_{X}(x)$		
x = 0	0	0	1/27	0	0	0	0	1/27		
x = 1	0	1/27	0	2/27	0	0	0	1/9		
x = 2	1/27	0	2/27	0	3/27	0	0	2/9		
x = 3	0	2/27	0	3/27	0	2/27	0	7/27		
x = 4	0	0	3/27	0	2/27	0	1/27	2/9		
x = 5	0	0	0	2/27	0	1/27	0	1/9		
x = 6	0	0	0	0	1/27	0	0	1/27		
P _Y (y)	1/27	1/9	2/9	7/27	2/9	1/9	1/27	1		

2.2.2. Esboçando as PMFs marginais para X e Y

Figura 1: PMF marginal de X

Figura 2: PMF marginal de Y

2.3. Determinando e esboçando $P_X(X|Y=y)$

2.3.1. Determinando $P_X(X|Y=y)$

Para determinarmos o valor de X dado que Y=y, podemos utilizar a definição da PMF Condicional, onde:

$$P_X(X|Y=y) = \frac{P_{X,Y}(x,y)}{P_Y(y)},$$
 (5)

Definida apenas se $P_Y(y) \neq 0$.

Para demosntração, iremos escolher os valores y = -2 e y = 4. Portanto, temos que:

$$P_X(X|Y=-2) = rac{P_{X,Y}(x,-2)}{P_Y(-2)}$$
 e $P_X(X|Y=4) = rac{P_{X,Y}(x,4)}{P_Y(4)}$

desse modo, já podemos aplicar as respectivas fórmulas para cada X e, logo após, fazer a tabela com os resultados:

Primeiramente começamos aplicando para Y = -2:

- $P_X(0|Y=-2)=0$
- $P_X(1|Y=-2)=0$
- $P_X(2|Y=-2)=1$
- $P_X(3|Y=-2)=0$
- $P_X(4|Y=-2)=0$
- $P_X(5|Y=-2)=0$
- $P_X(6|Y=-2)=0$,

Depois repetimos o mesmo procedimento para Y = 4:

- $P_X(0|Y=4)=0$
- $P_X(1|Y=4)=0$

•
$$P_X(2|Y=4) = 0$$

•
$$P_X(3|Y=4)=0$$

•
$$P_X(4|Y=4)=1$$

•
$$P_X(5|Y=4)=0$$

•
$$P_X(6|Y=4)=0$$
,

Por fim, após determinarmos os valores para cada X dado que Y ocorreu em –2 ou em 4, podemos partir para a tabela:

	x = 0	x = 1	x = 2	x = 3	x = 4	x = 5	x = 6
$P_X(X Y=-2)$	0	0	1	0	0	0	0
$P_X(X Y=4)$	0	0	0	0	1	0	0

2.3.2. Esboçando $P_X(X|Y=y)$

Figura 3: PMF de Px(X|Y=-2)

Figura 4: PMF de Px(X|Y=4)