Data Structures and Algorithms

Which one is your favorite character in Harry

Potter?

Harry Potter

- Ron Weasley
- Hermione Granger
- The Sorting Hat
- Bilbo Baggins

My favorite Harry Potter character was the Sorting Hat. His job was to learn people's secrets and then judge them.

Today

- Sorting algorithms
 - BubbleSort
 - SelectionSort
 - InsertionSort
 - MergeSort
- Properties
 - Running time
 - Space usage
 - Stability

Before We Start

- Arithmetic progression
- Given a number n, what is

$$n + (n-1) + (n-2) + (n-3) + \dots + 1$$

• In Big O Notation?

$$n + (n-1) + (n-2) + (n-3) + \dots + 1$$

= $n (n+1)/2$
= $O(n^2)$

Sorting Problem Definition

- Input: an array A[1..n] of elements
- Output: array B[1..n] that is a permutation of A
 - such that:

$$B[1] \le B[2] \le ... \le B[n]$$

• E.g.

$$A = [9, 3, 6, 6, 6, 4] \rightarrow [3, 4, 6, 6, 6, 9]$$

Let's Try: BogoSort

BogoSort(A[1..n])

Repeat:

```
Choose a random permutation of the array A. If A is sorted, return A.
```

What is the expected running time?

Let's Try: QuantumBogoSort

```
QuantumBogoSort(A[1..n])
   Repeat:
      Choose a random permutation of the array A.
      If A is sorted, return A
```

else destroy the universe

- What is the expected running time?
- (Remember QuantumBogoSort when you learn about non-deterministic Turing Machines.)

Today

- Sorting algorithms
 - **BubbleSort**
 - SelectionSort
 - InsertionSort
 - MergeSort
- Properties
 - Running time
 - Space usage
 - Stability

BubbleSort (Version 1)

```
BubbleSort(A, n)
Repeat n times:
   for j ←1 to n - 1
    if A[j] > A[j+1] then swap(A[j], A[j+1])
```


• Given:

Repeat the first time

8	2	4	9	3	6
2	8	4	9	3	6
2	4	8	9	3	6
2	4	8	9	3	6
2	4	8	3	9	6
2	4	8	3	6	9

• From last iteration:

• From last iteration:

For the second time, I can stop here!

• After one iteration, the last item is "fixed"

After i iterations, the last i items are "fixed"!

BubbleSort (Version 1)

BubbleSort(A, n)

I don't have to go all the way to the **end** of the array

Repeat n times:

```
for j \leftarrow 1 to n - 1
```

if A[j] > A[j+1] then swap(A[j], A[j+1]

compare-and-swap

BubbleSort (Version 2)

```
BubbleSort(A, n)
  for i ←1 to n - 1
    for j ←1 to n - i
    if A[j] > A[j+1] then swap(A[j], A[j+1])
```

compare-and-swap

j j+1

What is the time complexity of BubbleSort?

```
BubbleSort(A, n)
  for i ←1 to n - 1
    for j ←1 to n - i
    if A[j] > A[j+1] then swap(A[j], A[j+1])
```

i	j = #inner loop iteration
1	n — 1
2	n – 2
3	n – 3
•••	•••
n – 1	1

Total running time = 1 + 2 + 3 + ... + (n-1) = n (n-1)/2= $O(n^2)$

• From last (second) iteration:

After the third iteration

And how many more iterations do I have to go?

BubbleSort (Version 3)

```
BubbleSort(A, n)
  repeat until no more swapping
  for j ←1 to n - 1
  if A[j] > A[j+1] then swap(A[j], A[j+1])
```

- Running time?
 - Best-case: O(n)
 - Worst-case: $O(n^2)$

Is BS only limited to sorting numbers?

```
BubbleSort(A, n)
  repeat until no more swapping
  for j ← 1 to n - 1
   if A[j] > A[j+1] then swap(A[j], A[j+1])
```

 You can use this to sort any elements with a total ordering that is <u>transitive</u>

Non-transitive relationship

Sorting ANY type of elements

1: if (x>y)

```
BubbleSort(A, n)
  repeat until no more swapping
   for j \leftarrow 1 to n - 1
     if A[j].compareTo(A[j+1]) == 1 then swap(A[j], A[j+1])
• Such That:
     x.compareTo(y):
       -1: if (x < y)
        0: if (x == y)
```

Or you can just Overload the ">" operator

```
BubbleSort(A, n)
  repeat until no more swapping
  for j ←1 to n - 1
  if A[j] > A[j+1] then swap(A[j], A[j+1])
```

Let's Say We Want to Sort the class FOOD

```
class Food {
                                       return True or False
private:
                                          when we ask if
  string name;
  int cal;
                                          food1>food2
public:
  Food() { _name = ""; _cal = 0;
  Food(string, int);
  bool operator>(const Food&); \( \big| \)
  friend ostream &operator<<(ostream&, const Food&);</pre>
```

Usage

```
bool Food:: operator>(const Food& f) {
  return cal > f. cal;
int main() {
   Food dish1("Chicken", 100);
   Food dish2("Rice", 400);
  if (| dish1 > dish2 |) . . .
```

```
Food food1("Salad", 100);
Food food2("French Fries", 10000);
cout << "Among" << endl;</pre>
                                              Salad with 100 calories
cout << food1;</pre>
                                              French Fries with 10000 calories
                                              The food with more calories is
                                              French Fries with 10000 calories
cout << "and" << endl;</pre>
                                             Press any key to continue . .
cout << food2;</pre>
cout << "The food with more calories is" <<</pre>
endl;
cout << (food1 > food2 ? food1 : food2);
```

BubbleSort C++ Code for Every Class

```
template<class TypeT>
void bubble(TypeT a[], int n) {
  int i, j;
  for (i = 0; i < n - 2; i++)
    for (j = 0; j < n-i-1; j++)
      if (a[i]>a[i+1])
        swap(a[i],a[i+1]);
```

* In C++, we assume the array indices are from 0 to n-1

Today

- Sorting algorithms
 - BubbleSort
 - CocktailSort (http://sorting.at/)
 - SelectionSort
 - InsertionSort
 - MergeSort
- Properties
 - Running time
 - Space usage
 - Stability

Today

- Sorting algorithms
 - BubbleSort
 - <u>SelectionSort</u>
 - InsertionSort
 - MergeSort
- Properties
 - Running time
 - Space usage
 - Stability

SelectionSort

```
SelectionSort(A, n)
  for j ← 1 to n - 1:
    find index k s.t. A[k] is the smallest in A[j..n]
    swap(A[j], A[k])
```

SelectionSort Example:

• j = 1, find the smallest in A[1..n] and swap it into A[1]

• j = 2, find the smallest in A[2..n] and swap it into A[2]

• j = 3, find the smallest in A[3..n] and swap it into A[3]

SelectionSort Example:

• Given:

Loop Invariant:

• After j iterations, the subarray A [1..j] is sorted

• j = 2, A[5]=3 is the smallest in A[2..n]

• j = 3, A[3]=4 is the smallest in A[3..n]

SelectionSort Time Complexity?

```
SelectionSort(A, n)
  for j ← 1 to n - 1:
    find index k s.t. A[k] is the smallest in A[j..n]
    swap(A[j], A[k])
```

- Only loop n times, so O(n)?
- But how long does it take to search for the minimum in A [j . . n]?
 - O(n-j)
- Total complexity:

•
$$O(n-1) + O(n-2) + O(n-3) + ... + O(1) = O(n^2)$$

Today

- Sorting algorithms
 - BubbleSort
 - SelectionSort
 - InsertionSort
 - MergeSort
- Properties
 - Running time
 - Space usage
 - Stability

Loop Invariant:

- After j iterations, the subarray A[1..j] is sorted
- What is another way to maintain the loop invariant if I do not want to look for the minimum of the rest of the array?

- For the k^{th} iteration, I know that the left part is sorted, how to merge the <u>next</u> number into the green part?
- Insert the item into the "right" position in the sorted array!

• So we don't need to find the minimum like SelectionSort, so O(n)?

But When you "Insert"

You need to "shift" some elements to the right

- What will be the worst case scenario?
 - Or how many numbers do we shift for every iteration?
- Or what is the best scenario?

InsertionSort

```
InsertionSort(A, n)
  for j 		 2 to n
    key 		 A[j]
  Insert key into the sorted array A[1..j-1]
```


We can do "inverse" BubbleSort!

```
InsertionSort(A, n)
    for j \leftarrow 2 to n
     key \leftarrow A[j]
     Insert key into the sorted array A[1..j-1]
                  6
```

InsertionSort

```
InsertionSort(A, n)
     for j \leftarrow 2 to n
      key \leftarrow A[j]
      i \leftarrow j-1
      while (i > 0) and (A[i] > key)
             A[i+1] \leftarrow A[i]
              i \leftarrow i-1
      A[i+1] \leftarrow key
                                8
```

InsertionSort Example

InsertionSort Time Complexity

```
InsertionSort(A, n)
  for j \leftarrow 2 to n
    key \leftarrow A[j]
    i \leftarrow j-1
    while (i > 0) and (A[i] > key)
        A[i+1] \leftarrow A[i]
        i \leftarrow i-1
    A[i+1] \leftarrow key
```

- Worst-case: $O(n^2)$
- What is the best-case scenario?

Today

- Sorting algorithms
 - BubbleSort
 - SelectionSort
 - InsertionSort
 - MergeSort
- Properties
 - Running time
 - Space usage
 - Stability

Idea

Divide 3 9 5 7 1

MergeSort

```
MergeSort(A, n)
  if (n=1) then return;
else:
    X ← MergeSort(A[1..n/2], n/2);
    Y ← MergeSort(A[n/2+1, n], n/2);
  return Merge (X,Y, n/2);
    MergeSort(A[n/2+1, n], n/2);
```

Divide

```
X \leftarrow MergeSort(A[1..n/2], n/2);

Y \leftarrow MergeSort(A[n/2+1, n], n/2);
```


Merge (X,Y, n/2);

How to do Merge?

- Given two sorted lists, how to merge into one?
- Image there are two queues? How to merge into one?

- Given two sorted lists, how to merge into one?
- Image there are two queues? How to merge into one?
 - Which one should be the first in the array?

- Given two sorted lists, how to merge into one?
- Image there are two queues? How to merge into one?
 - Which one should be the first in the array?
- Then?
 - What is the rule to pick the next?

9 10 82

- Given two sorted lists, how to merge into one?
- Compare the two "heads" of the remaining queues
 - Pick the smaller one

- Given two sorted lists, how to merge into one?
- Compare the two "heads" of the remaining queues
 - Pick the smaller one

- Given two sorted lists, how to merge into one?
- Compare the two "heads" of the remaining queues
 - Pick the smaller one

- Given two sorted lists, how to merge into one?
- Compare the two "heads" of the remaining queues
 - Pick the smaller one

- Given two sorted lists, how to merge into one?
- Compare the two "heads" of the remaining queues
 - Pick the smaller one
- Until?

- Given two sorted lists, how to merge into one?
- Compare the two "heads" of the remaining queues
 - Pick the smaller one
- Until either one of the two queues is empty
 - Then append the non-empty one at the end

- Given two sorted lists, how to merge into one?
- Compare the two "heads" of the remaining queues
 - Pick the smaller one
- Until either one of the two queues is empty

- Running time merging two queues into one array with k elements?
 - O(k) because need constant time to move one element from the 2 queues

Time Complexity?

•
$$T(n) = T(n/2) + T(n/2) + c n$$

= $2 T(n/2) + c n$

$$T(n) = 2 T(n/2) + c n$$

$$T(n) = 2 T(n/2) + c n$$

$$T(n) = 2 T(n/2) + c n$$

$$T(n) = 2 T(n/2) + c n$$

• How many levels?

How many Levels?

 Each extra level we can handle a double number of elements

•
$$n = 2^h$$

• Therefore $h = \log n$

Level	Number
0	1
1	2
2	4
3	8
4	16
• • •	• • •
h	2^h

$T(n) = cn \times log n = O(n log n)$

How many levels?

Another way

```
• T(n) = 2 T(n/2) + cn
      = 2 (2 T(n/4) + c (n/2)) + cn
      = 4 T(n/4) + 2 c (n/2) + cn
      = 4 T(n/4) + 2 cn
      = 8 T(n/8) + 3 cn
      = 16 T(n/16) + 4 cn
      = 2^k T(n/2^k) + k cn
      = n T(1) + cn \log n
      = O(n \log n)
```

Finally
$$n/2^k = 1$$

 $k = \log_2 n$ (and $2^k = n$)

MergeSort Time Complexity: $O(n \log n)$

Sorting so far

- Sorting algorithms
 - BubbleSort
 - SelectionSort
 - InsertionSort
 - MergeSort

- Worst-case
 - $O(n^2)$
 - $O(n^2)$
 - $O(n^2)$
 - $O(n \log n)$

 Will there be a reason why we want to use InsertionSort rather than MergeSort?

MergeSort vs InsertionSort

- InsertionSort is faster when
 - When the array is almost sorted
 - When the array is small
- Because MergeSort needs
 - Caching performance, branch prediction, etc.
- In Practice:
 - Inside MergeSort, use InsertionSort when n < 1000 instead

Space Time Analysis?

- How about space usage for MergeSort?
- We noticed that we don't need extra space for BubbleSort, InsertionSort and SelectionSort
- If all these stay in the memory, how much space do we need?
 - $O(n \log n)$ (!!!)
- •Can we do better?

We Thought We need to keep all of these

Only O(n) space!

Can we do EVEN better?

Properties of Sorting Algorithms

Property of Sorting Algorithms: Stability

- When you sort elements that allow duplicates
- Will the "original" order be preserved?
- E.g. sorting the records on the right in Excel by scores, will the order of "Alan" and "Frank" always be preserved?

Stable Sort

Unstable Sort

Which ones are stable?

- BubbleSort
- InsertionSort
- SelectionSort
- MergeSort

BubbleSort (Stable)

```
BubbleSort(A, n)
  repeat until no more swapping
  for j ←1 to n - 1
  if A[j] > A[j+1] then swap(A[j], A[j+1])
```

InsertionSort (Stable)

```
InsertionSort(A, n)
  for j \leftarrow 2 to n
    key \leftarrow A[j]
    i \leftarrow j-1
  while (i > 0) and (A[i] > key)
        A[i+1] \leftarrow A[i]
    i \leftarrow i-1
    A[i+1] \leftarrow key
```

SelectionSort (Unstable)

```
SelectionSort(A, n)

for j \leftarrow 1 to n - 1:

find index k s.t. A[k] is the smallest in A[j...n]

swap(A[j], A[k])
```

• Thank of a case that is not stable

MergeSort (Stable)

Challenge: How to we make sure that it is stable?

Summary

Name	Best Case	Average Case	Worst Case	Memory	Stable?
Bubble Sort	n	n^2	n^2	1	Yes
Selection Sort	n^2	n^2	n^2	1	No*
Insertion Sort	n	n^2	n^2	1	Yes
Merge Sort	$n \log n$	$n \log n$	$n \log n$	N	Yes

^{*}Stable with O(n) extra space

- Sort at
 - http://sorting.at/
- BubbleSort Dance:
 - https://www.youtube.com/watch?v=lyZQPjUT5B4
- MergeSort Dance
 - https://www.youtube.com/watch?v=XaqR3G NVoo&t=4s