Câu 1a (đề 1) (... điểm).

Sử dụng định lý Rolle chứng minh rằng phương trình sau có đúng một nghiệm thực:

$$2x - 1 - \sin(x) = 0$$

Câu 1b (đề 2) (... điểm).

Sử dụng định lý Rolle chứng minh rằng phương trình sau có đúng một nghiệm thực:

$$x^3 + e^x = 0$$

GIẢI

	Dặt $f(x) = 2x - 1 - \sin(x)$ ta có $f(0) = -1 < 0$ và $f(\frac{3\pi}{2}) = 3\pi > 0$	0.25
	Vì f là tổng của hàm đa thức $2x-1$ và hàm lượng giác $-\sin(x)$,	0.5
	nên f liên tục trên $[0, \frac{3\pi}{2}]$. Đồng thời, $f(0).f(\frac{3\pi}{2}) < 0$	
	Suy ra, tồn tại $c \in (0, \frac{3\pi}{2})$ sao cho $f(c) = 0$	0.25
	Vậy phương đã cho có ít nhất một nghiệm (*)	
1a (đ)	Giả sử, phương trình đã cho có 2 nghiệm phân biệt a và b sao cho $a < b$	0.25
	ta có $f(a) = f(b) = 0$	
	Đồng thời, f liên tục với mọi $x \in \mathbb{R}$ nên f liên tục trên $[a,b]$	
	và $f'(x) = 2 - \cos(x)$ tồn tại và liên tục với mọi $x \in \mathbb{R}$	0.25
	nên f có đạo hàm (hay khả vi) trên (a,b) .	
Áp dụng định lý Rolle ta có được $r \in (a, b)$ sao cho $f'(r) = 0$.		0.25
Nhưng $f'(r) = 2 - \cos(r) = 0$ (vô lý vì $\cos(r) \le 1$)		
điều này cho thấy phương trình đã cho không thể có		
nhiều hơn hai nghiệm thực phân biệt (**)		
Từ (*	$^{\circ}$) và $(^{**})$ ta chứng minh được phương trình đã cho có đúng một nghiệm thực.	

Dặt $f(x) = x^3 + e^x$	0.25	
ta có $f(-1) = -1 + 1/e < 0$ và $f(0) = 1 > 0$		
Vì f là tổng của hàm đa thức x^3 và hàm mũ e^x ,	0.5	
nên f liên tục trên $[-1,0]$. Đồng thời, $f(-1).f(0) < 0$		
Suy ra, tồn tại $c \in (-1,0)$ sao cho $f(c) = 0$	0.25	
Vậy phương đã cho có ít nhất một nghiệm (*)	0.20	
Giả sử, phương trình đã cho có 2 nghiệm phân biệt a và b sao cho $a < b$	0.25	
ta có $f(a) = f(b) = 0$	0.23	
Đồng thời, f liên tục với mọi $x \in \mathbb{R}$ nên f liên tục trên $[a,b]$		
và $f'(x)=3x^2+e^x$ tồn tại và liên tục với mọi $x\in\mathbb{R}$		
nên f có đạo hàm (hay khả vi) trên (a,b) .		
Áp dụng định lý Rolle ta có được $r \in (a, b)$ sao cho $f'(r) = 0$.		
hưng $f'(r) = 3r^2 + e^r = 0$ (vô lý vì $3r^2 + e^r > 0$)		
diều này cho thấy phương trình dã cho không thể có		
nhiều hơn hai nghiệm thực phân biệt (**)	0.25	
Từ $(*)$ và $(**)$ ta chứng minh được phương trình đã cho có đúng một nghiệm thực.		

BÀI 2

Đề 1. Tính:
$$\lim_{x\to 0} \frac{3^x x}{3^x-1}$$

Giåi

$$\lim_{x \to 0} \frac{3^x x}{3^x - 1} \stackrel{H}{=} \lim_{x \to 0} \frac{x 3^x \ln 3 + 3^x}{3^x \ln 3}$$

$$= \lim_{x \to 0} \frac{3^x (x \ln 3 + 1)}{3^x \ln 3}$$

$$= \lim_{x \to 0} \frac{x \ln 3 + 1}{\ln 3} = \frac{1}{\ln 3}$$

Đề 2. Tính:
$$\lim_{x\to 1} \frac{1-x+\ln x}{1+\cos(\pi x)}$$

Giåi

$$\lim_{x \to 1} \frac{1 - x + \ln x}{1 + \cos(\pi x)} \stackrel{H}{=} \lim_{x \to 1} \frac{-1 + 1/x}{-\pi \sin(\pi x)}$$

$$\stackrel{H}{=} \lim_{x \to 1} \frac{-1/x^2}{-\pi^2 \cos(\pi x)}$$

$$= -\frac{1}{\pi^2}$$

BÀI 3

Đề 1.

Cho

$$f(x) = e^x \cos x$$

- (a) Hãy tìm xấp xỉ của hàm f(x) bằng đa thức Taylor bậc 2 tại $x_0 = 0$.
- (b) Độ chính xác của xấp xỉ là bao nhiêu khi $0 \le x \le 1$.

Phương pháp giải:

(a) Ta có: khai triển Taylor bậc 2 là n = 2, $x_0 = 0$

$$P_2(x) = f(0) + \frac{f'(0)}{1!}(x-0) + \frac{f''(0)}{2!}(x-0)^2$$

= 1 + x.

Vậy xấp xỉ của f là

$$e^x \cos x \approx P_2(x) = 1 + x.$$

(b) Sử dụng bất đẳng thức Taylor với $n=2,\ x_0=0$

$$|R_2(x)| \le \frac{M}{3!} |x - 0|^3$$

với $\left|f^{(3)}\left(x\right)\right| \leq M.$ Ta c
ó $0 \leq x \leq 1$ nên $\left|x\right|^{3} \leq 1$ và

$$|f^{(3)}(x)| = 2|e^x(\sin x + \cos x)| \le 2e(\sin 1 + \cos 1) = 7.5121$$

vậy

$$|R_2(x)| \le \frac{7.5121}{3!} \cdot 1 = 1.2520.$$

Đề 2.

Cho

$$f(x) = (x - 1) \ln x,$$

- (a) Hãy tìm xấp xỉ của hàm f(x) bằng đa thức Taylor bậc 2 tại $x_0 = 1$.
- (b) Độ chính xác của xấp xỉ là bao nhiêu khi $\frac{1}{2} \leq x \leq \frac{3}{2}.$

Phương pháp giải:

(a) Ta có: khai triển Taylor bậc 2 là n = 2, $x_0 = 1$

$$P_2(x) = f(0) + \frac{f'(0)}{1!}(x-0) + \frac{f''(0)}{2!}(x-0)^2$$

= 0 + 0 + (x - 1)².

Vậy xấp xỉ của f là

$$(x-1) \ln x \approx P_2(x) = (x-1)^2$$
.

(b) Sử dụng bất đẳng thức Taylor với n = 2, x₀ = 1,

$$|R_2(x)| \le \frac{M}{3!} |x-1|^3$$

với $\left|f^{(3)}\left(x\right)\right| \leq M.$ Ta có $\frac{1}{2} \leq x \leq \frac{3}{2}$ nên

$$|x-1|^3 \le \left(\frac{1}{2}\right)^3$$

và

$$\left| f^{(3)}(x) \right| = \left| \frac{1}{x^2} + \frac{2}{x^3} \right| \le M = \left| \frac{1}{(1/2)^2} + \frac{2}{(1/2)^3} \right| = 20$$

vậy

$$|R_2(x)| \le \frac{20}{3!} \cdot \left(\frac{1}{2}\right)^3 = 0.4167.$$

BÀI 4

Đề 1

. (đ) Giả sử có mạch điện gồm hai biến trở mắc song song với trở kháng lần lượt là $R_1 = R_1(t)$ và $R_2 = R_2(t)$ (tính theo đơn vị Ω (ohms)) tại thời điểm t (thời gian tính theo phút). Khi đó, tổng trở trong mạch ở mỗi thời điểm t là R = R(t) và thỏa

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}.$$

Hãy giải quyết hai câu hỏi bên dưới với giả thiết độc lập.

- (a) Giả sử điện trở thứ nhất luôn không đổi $R_1=8\Omega$ và tốc độ tăng của điện trở thứ 2 là $R_2'(t)=0.7\Omega/{\rm phút}$. Tính tốc độ tăng của tổng trở R khi $R_2=10\Omega$.
- (b) Giả sử tốc độ tăng của các điện trở lần lượt là $R_1'(t) = 0.7\Omega/\text{phút}$ và $R_2'(t) = 0.3\Omega/\text{phút}$. Tính tốc độ tăng của tổng trở R khi $R_1 = 8\Omega$ và $R_2 = 10\Omega$.

Lời giải. Lấy đạo hàm hai vế đẳng thức liên hệ R, R_1 và R_2 , ta nhận được

$$-\frac{R'(t)}{[R(t)]^2} = -\frac{R'_1(t)}{[R_1(t)]^2} - \frac{R'_2(t)}{[R_2(t)]^2}.$$

Hay

$$R'(t) = [R(t)]^2 \left[\frac{R'_1(t)}{[R_1(t)]^2} + \frac{R'_2(t)}{[R_2(t)]^2} \right]$$

- (a) Với $R_1 = 8\Omega$, $R_2 = 10\Omega$, $R_1'(t) = 0$, $R_2'(t) = 0.7\Omega$ /phút, ta có $R = \frac{R_1R_2}{R_1 + R_2} = \frac{40}{9}\Omega$, $R'(t) = \frac{56}{405}\Omega$ /phút.
- (b) Với $R_1 = 8\Omega$, $R_2 = 10\Omega$, $R_1'(t) = 0.7\Omega/\text{phút}$, $R_2'(t) = 0.3\Omega/\text{phút}$, ta có $R = \frac{40}{9}\Omega$ và $R'(t) = \frac{223}{810}\Omega/\text{phút}$.

(đ) Giả sử điểm M di chuyển trên trục Ox và điểm N di chuyển trên trục Oy nhưng chúng không trùng với gốc tọa độ O. Tại mỗi thời điểm t s (giây), ta gọi x=x(t), y=y(t) lần lượt là hoành độ của điểm M, tung độ của điểm N và h là chiều cao kẻ từ O của tam giác vuông OMN (các độ dài tính theo cm). Khi đó, ta có hệ thức $\frac{1}{h^2}=\frac{1}{x^2}+\frac{1}{v^2}$.

Hãy giải quyết hai câu hỏi bên dưới với giả thiết độc lập.

- (a) Giả sử M có hoành độ là −3 và N di chuyển trên trục Oy theo hướng dương với tốc độ 0.2cm/s. Hãy cho biết tốc độ thay đổi chiều cao khi N ở vị trí có tung độ bằng 4.
- (b) Giả sử M di chuyển trên trục hoành theo hướng âm với tốc độ là 0.4cm/s và N di chuyển trên trục Oy theo hướng dương với tốc độ 0.2cm/s. Hãy cho biết tốc độ thay đổi chiều cao khi N ở vi trí có tung đô bằng 4 và M ở vi trí hoành đô bằng -3.

. Lời giải. Lấy đạo hàm hai vế đẳng thức liên hệ h, x và y theo thời gian, ta nhận được

$$-\frac{2h'(t)}{[h(t)]^3} = -\frac{2x'(t)}{[x(t)]^3} - \frac{2y'(t)}{[y(t)]^3}.$$

Hay

$$h'(t) = [h(t)]^3 \left[\frac{x'(t)}{[x(t)]^3} + \frac{y'(t)}{[y(t)]^3} \right].$$

- (a) Với x = -3, y = 4, x'(t) = 0cm/s, y'(t) = 0.2cm/s, ta có $h = \frac{xy}{\sqrt{x^2 + y^2}} = \frac{12}{5}$ cm, $h'(t) = \frac{27}{625}$ cm/s.
- (b) Với x = -3, y = 4, x'(t) = -0.4cm/s, y'(t) = 0.2cm/s, ta có $h = \frac{xy}{\sqrt{x^2 + y^2}} = \frac{12}{5}cm$, $h'(t) = \frac{31}{125}cm/s$.