

Le configurazioni audio nei concerti Live

Amodei Simone Assenza Pierpaolo Russo Francesco

Indice

- Tipologie di impianti audio
- Configurazioni utilizzate nella disposizione dei subwoofer:
 - Broadside array
 - Gradient array
 - Endfire array
- Verifica sperimentale sul software (SoundVision) di tali configurazioni
- Microfoni di misura, FFT analyzer

Tipologie di impianti audio

Progetti
Informatica Musicale 2019/20

Tipologie di impianti audio

LINE ARRAY: sistema di diffusori sovrapposti in serie verticalmente aventi la forma trapezoidale che permette di direzionare il suono nelle aree desirate. Riproducono frequenze medio-alte.

Raggiungono un'elevata pressione sonora, infatti vengono utilizzati per coprire grandi luoghi sia aperti che chiusi.

Viene installato con una caratteristica forma a "J" dove:

- la parte superiore copre le aree distanti
- la parte inferiore le aree più vicine

SUBWOOFER: Riproducono basse frequenze da 20Hz a 140Hz grazie a crossover interni che bypassano la banda rimanente.

Per ottenere pressioni sonore elevate è necessario utilizzare più di un subwoofer con opportuni accorgimenti, altrimenti potrebbe rilevarsi controproducente.

Configurazioni utilizzate nella disposizione dei subwoofer

I subwoofer si comportano in maniera **omnidirezionale** in tutto il loro range operativo, ma appena si pongono in stack, il pattern di copertura polare diventa sempre più direzionale e più complesso nella forma, riscontrando diversi problemi :

- •Fenomeni di interferenza che creano punti di massima pressione e punti in cui questa si annulla.
- •Riverberazione che aggiunge i suoi effetti di confusione e colorazione nel dominio temporale.

Con configurazioni opportune si riesce ad ottenere :

- Bassi chiari, con un bilanciamento tonale costante su tutta l'area d'ascolto.
- Livello sonoro dei bassi adeguato rispetto alle restanti frequenze.
- Drastica riduzione degli effetti negativi della riverberazione e della riflessione.
- Massimizzazione dell'efficienza del sistema (potenza d'uscita rispetto ai costi).

Configurazioni utilizzate nella disposizione dei subwoofer

BroadSide Array: Woofer (eventualmente in stack) strutturati in linea(dritta, curva o a scala) avente un'emissione sonora diretta più o meno perpendicolare rispetto la linea stessa.

Si nota che:

- Array in linea dritta: pattern più stretto all'aumentare delle sorgenti riscontrando però una formazione di numerosi lobi.
- Array in linea curva: garantiscono una direttività più uniforme lungo l'area di ascolto, se sufficientemente lunghi.
- Array in scala: soluzione ottimale per avere un pattern ampio con assenza di lobi ma per problemi di spazio non sempre è utilizzata.
- Endfire Array: Subwoofer allineati sullo stesso asse, equi-spaziati e pilotati in modo da ottenere la propagazione del suono lungo quest' ultimo.

 Ogni subwoofer ha la stessa polarità di fase e un delay pari al tempo necessario affinché l'onda sonora passi dalla sorgente a quella successiva.

 Si nota che:
 - Al centro del palco si manifestano i punti di zero dei lobi
 - Con array endfire molto lunghi, è possibile proiettare bassi potenti e ben direzionati verso lunghe distanze.

Configurazioni utilizzate nella disposizione dei subwoofer

➢ Gradient Array: Struttura di diffusori pilotati con diverse ampiezze e fasi, così da cancellare la radiazione sonora verso determinate direzioni. Lavorano sul controllo delle differenze di pressione acustica tra diverse parti dell'onda sonora infatti devono essere posti a distanze sufficientemente piccole.

Con una coppia di diffusori si ha la possibilità di realizzare pattern a cardioide e ipercardioide di vario tipo agendo sul delay del modulo posteriore.

 Gradient Line Array: Subwoofer disposti in colonna la cui direttività mostra caratteristiche sia di tipo gradient sia broadside.

Applicando un delay di beamforming è possibile orientare il pattern nella direzione desiderata.

Se gestiti correttamente permettono il controllo della radiazione retroversa in bassa frequenza al fine di evitare :

- Troppi bassi sullo stage
- Radiazione retroversa indesiderata.

Soundvision: Software apposito che permettere di progettare e simulare le diverse configurazioni dei subwoofer mostrando graficamente i livelli di SPL nei vari punti della venue.

N.B.: per tutte le configurazioni abbiamo realizzato uno **stage** di larghezza 15m, profondità 12m, altezza 1.2m e una **venue** di larghezza 60m e lunghezza 90m.

Configurazioni realizzate :

Broadside array 3Left & 3Right:

6 subwoofer disposti 3 a destra dello stage e 3 a sinistra, uno accanto all'altro:

Left	Delay(ms)	Gain(dB)	Right	Delay(ms)	Gain(dB)
1	0	0/1	1	4	0/1
2	1.5	0/1	2	1.5	0/1
3	4	0/1	3	0	0/1

Broadside array 3Left & 3Right

Broadside array 12 sub front stage:

12 subwoofer disposti 6 a destra e 6 a sinistra uno accanto all'altro davanti lo stage

Left	Delay(ms)	Gain(dB)	Right	Delay(ms)	Gain(dB)
1	0	0	1	12	0
2	1	0	2	7	0
3	2	0	3	4	0
4	4	0	4	2	0
5	7	0	5	1	0
6	12	0	6	0	0

Weight: kg

Air absorp.: ON

Verifica sperimentale sul software (SoundVision) di tali configurazioni

Broadside array 12 sub front stage

Gradient array «Ipercardiode back-to-back»:

2 diverse configurazioni con 2 subwoofer posti back-to-back distanti tra loro 10cm.

Le due configurazioni strutturalmente sono identiche ma la differenza sta nell'impostazione del delay che creerà un pattern nettamente diverso

A:	Delay(ms)	Gain(dB)	Phase
Front	0	0	OFF
Rear	2.3	0	ON

B:	Delay(ms)	Gain(dB)	Phase
Front	0	0	OFF
Rear	0	0	ON

Gradient array «Ipercardiode back-to-back»

Endfire array 6 sub:

6 subwoofer uno davanti all' altro distanziati tra loro 60cm. Il subwoofer primario è quello più vicino alla stage.

Center	Delay(ms)	Gain(dB)
1	0	0
2	4	0
3	8	0
4	12	0
5	16	0
6	20	0

Endfire array 6 sub

Microfoni di misura, FFT analyzer

Per le misure acustiche si utilizzano il microfono a condensatore e l'analizzatore di spettro.

Il **microfono a condensatore** sfrutta l'effetto di *variazione capacitiva*, ovvero le due lamine che compongono la capsula microfonica sono sollecitate dalla variazione di pressione che il suono genera nel mezzo di propagazione, provocando una differenza di potenziale.

Sono *molto sensibili* ma necessitano di un pre-amplificatore incorporato poiché il *segnale in uscita* è *molto debole*.

 Gli analizzatori di spettro ricevono il segnale audio proveniente dai microfoni di misura e applicandovi la trasformata di Fourier ne forniscono le componenti in frequenza.

Sulla base di queste misurazioni il progettista calibrerà adeguatamente l'impianto.

Conclusioni

Le verifiche effettuate tramite Soundvision hanno rispettato fedelmente i vantaggi discussi teoricamente per le varie configurazioni.

Grazie a questo progetto siamo riusciti a comprendere e apprezzare il lavoro che sta dietro la realizzazione di un palco.

Ovviamente il progetto è puramente illustrativo e non scende nei minimi dettagli in quanto gli argomenti sarebbero troppo complessi da trattare.

Per questo motivo esistono corsi di studi atti a formare tecnici e ingegneri del suono per operare nel settore.

E noi (purtroppo) non siamo tra questi ...

Assenza Pierpaolo Russo Francesco Amodei Simone o45001099@studium.unict.it designer09@live.com simoneamodei98@gmail.com

GRAZIE PER L'ATTENZIONE