Classification des groupes d'ordre p^2

• Isenmann, Pecatte, L'oral à l'agrégation de mathématiques.

Lemme 1 : Soit G un groupe. Si G/Z(G) est monogène, alors G est abélien.

Démonstration. Comme G/Z(G) est monogène alors il existe $a \in G$ tel que $G/Z(G) = \langle \bar{a} \rangle$ où $\bar{a} = aZ(G)$. Soient $g, g' \in G$. Alors, il existe $k, k' \in \mathbb{N}$ tels que $\bar{g} = \bar{a}^k$ et $\bar{g'} = \bar{a}^{k'}$. Comme les éléments de Z(G) commutent alors $\bar{a}^k = a^k Z(G)$ et $\bar{a}^{k'} = a^{k'} Z(G)$. Ainsi, il existe $h, h' \in Z(G)$ tels que $g = a^k h$ et $g' = a^{k'} h'$. Donc

$$gg' = a^k h a^{k'} h' = a^{k+k'} h h' = a^{k'+k} h' h = a^{k'} h' a^k h = g'g$$

Donc G est abélien.

Lemme 2 : Soit p premier. Si G est un p-groupe alors $|Z(G)| \ge p$.

Démonstration.

On a $Z(G) = \{g \in G, \ \forall h \in G, \ gh = hg\} = \{g \in G, \ \forall h \in G, \ g = hgh^{-1}\}.$

Donc, Z(G) est l'ensemble des points fixes de l'action $G \curvearrowright G$ par conjugaison.

L'orbite de $x \in Z(G)$ par cette action est $\{x\}$. D'autre part, si $x \notin Z(G)$ alors $|G \cdot x| > 1$

et donc $|G \cdot x| = \frac{|G|}{|G_x|} = 0$ [p] (car $G_x \leq G$ donc par Lagrange, on a $|G_x|$ $|p^{\alpha}|$ avec p premier). D'après l'équation des classes, on a

$$|G| = \sum_{x \in \mathcal{O}} |G \cdot x| = \sum_{\substack{x \in \mathcal{O} \\ x \in Z(G)}} |G \cdot x| + \sum_{\substack{x \in \mathcal{O} \\ x \notin Z(G)}} |G \cdot x| = |Z(G)| \ [p]$$

où \mathcal{O} est un système de représentants.

Par conséquent, $|Z(G)| \equiv 0$ [p]. Comme $|Z(G)| \ge 1$ (car $e \in Z(G)$) alors $|Z(G)| \ge p$. Donc, Z(G) admet un élément non trivial.

Soit p premier. Si G est d'ordre p^2 alors G est abélien. De plus,

$$G \simeq \mathbb{Z}/p^2\mathbb{Z}$$
 ou $G \simeq (\mathbb{Z}/p\mathbb{Z})^2$

Démonstration. Par le théorème de Lagrange, Z(G) est d'ordre un diviseur de p^2 ie 1, p ou p^2 . D'après le lemme 2, $|Z(G)| \neq 1$.

- Si |Z(G)| = p alors G/Z(G) est d'ordre p. Tout élément différent du neutre est alors d'ordre p. Donc G/Z(G) est monogène et d'après le lemme 1, G est abélien.
- Si $|Z(G)| = p^2$ alors Z(G) = G. Donc, G est abélien.

Finalement, G est abélien dans tous les cas. Montrons les équivalents.

• S'il existe $x \in G$ tel que l'ordre de x soit p^2 .

Alors $G = \langle x \rangle$ est cyclique à p^2 éléments donc $G \simeq \mathbb{Z}/p^2\mathbb{Z}$.

• Sinon, tous les éléments de G sont d'ordre 1 ou p. Soit $x \in G$ d'ordre p. Posons $H = \langle x \rangle$. Alors, $H \simeq \mathbb{Z}/p\mathbb{Z}$. Et comme |H| < |G| alors il existe $y \in G \setminus \langle x \rangle$ également d'ordre p.

Posons alors $N = \langle y \rangle \simeq \mathbb{Z}/p\mathbb{Z}$. On a $N \triangleleft G$ et $H \triangleleft G$ (car G est abélien).

Et $N \cap H \leq H$ donc $|N \cap H| \in \{1, p\}$. L'inclusion est stricte car $x \in H$ et $x \notin N \cap H$. D'où $|N \cap H| = 1$. Par conséquent, $N \cap H = \{e\}$.

L'ensemble NH est un groupe car G est abélien et $N \subset NH$ et $x = ex \in NH$.

Par conséquent, $|NH| \ge p+1$. Or |NH| ||G|. D'où $|NH| = p^2$.

Ainsi, G = NH. Donc, par les propriétés du produit direct, $G \simeq N \times H \simeq (\mathbb{Z}/p\mathbb{Z})^2$. \square