CMSE428 Task 1

November 11, 2020

0.0.1 Çağıl Peköz 17330172

1 Task 1

```
[149]: %matplotlib inline

import pandas as pd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

1.1 Dataset Loaded in

```
[150]: dataset = pd.read_csv('dataset.csv')
```

1.2 Original Dataset

[151]: dataset ClassLabel [151]: Gender Race Education FamilyHistory HighBloodSugar Age Negative 0 44 3 3.0 1 Negative 2 44 1 2.0 1 2 Negative 1 22 3 5.0 1 1 3 Negative 2 35 3 4.0 1 1 4 Negative 1 54 2 5.0 2 1 2 2 1498 Positive 59 3 3.0 1 1499 Positive 2 74 3 2 ${\tt NaN}$ 2 1500 Positive 80 3 2.0 1 1 1501 Positive 2 78 3 4.0 2 1 1502 2 3.0 Positive 80 1 BMI WaistCircumference SystolicBP DiastolicBP LDL HDL \ 0 29.10 106.6 119 88 113 37 1 25.06 82.3 130 138 63 86 2 28.07 94.5 120 87 96 57 20.29 71.9 110 64 93 89

4	36.32	116.4	92	42	110	62
•••	•••	•••	•••	 •••		
1498	26.67	103.0	110	60	132	47
1499	25.08	95.5	135	60	114	36
1500	NaN	119.3	121	40	111	38
1501	46.98	129.5	146	78	136	56
1502	27.14	96.7	154	30	128	65

[1503 rows x 14 columns]

1.3 Checking which columns have missing Data

By running the below code, we can see that Education and BMI has missing data.

[152]: dataset.isnull().sum()

[152]: ClassLabel Gender Age Race Education FamilyHistory ${\tt HighBloodSugar}$ BMI WaistCircumference SystolicBP DiastolicBP LDL HDL Triglycerides dtype: int64

1.4 For example, 150th row of BMI has no data

```
[153]: dataset.loc[150,'BMI']
```

[153]: nan

1.5 Filling in missing BMI data by Mean and Education by Most Frequent Value

BMI value can be a float, so we can use mean to impute missing data. By running the print command, we can see that the missing values are filled in with mean.

```
[154]: dataset['BMI'].fillna(dataset['BMI'].mean(), inplace=True)
dataset['Education'].fillna(dataset['Education'].value_counts().index[0],
inplace=True)
dataset.isnull().sum()
```

```
[154]: ClassLabel
                               0
       Gender
                               0
       Age
                               0
       Race
                               0
       Education
                               0
       FamilyHistory
       HighBloodSugar
                               0
       BMT
                               0
       WaistCircumference
                               0
       SystolicBP
                               0
       DiastolicBP
                               0
       LDL
                               0
       HDL
                               0
       Triglycerides
                               0
       dtype: int64
```

1.6 Checking the 150th row again

Name: ClassLabel, dtype: int64

```
[155]: dataset.loc[150,'BMI']
```

[155]: 28.41636546184739

1.7 Number of Positives and Negatives

1.8 Number of Positives and Gender==1 and Race==2

[157]: 40

1.9 Race that is most frequent in Negative samples

```
[158]: negativeData = dataset[(dataset['ClassLabel']=='Negative')]
negativeData
```

[158]:		ClassLabel	Gender	Age	Race	Education	FamilyHistory	HighBloodSugar	\
	0	Negative	1	44	3	3.0	1	1	
	1	Negative	2	44	1	2.0	2	1	
	2	Negative	1	22	3	5.0	1	1	
	3	Negative	2	35	3	4.0	1	1	
	4	Negative	1	54	2	5.0	2	1	
				•••			•••	•••	
	770	Negative	2	53	2	5.0	2	1	
	771	Negative	1	56	3	5.0	1	1	
	772	Negative	2	67	1	4.0	2	1	
	773	Negative	2	34	2	1.0	1	1	
	774	Negative	2	48	3	5.0	1	1	

	BMT	WaistCircumference	SystolicBP	DiastolicBP	LDL	HDL	\
0	29.10	106.6	119	88	113	37	
1	25.06	82.3	130	86	138	63	
2	28.07	94.5	120	87	96	57	
3	20.29	71.9	110	64	93	89	
4	36.32	116.4	92	42	110	62	
	•••	•••	•••				
770	20.09	75.0	94	60	148	67	
771	30.89	113.1	120	83	139	65	
772	20.37	71.6	150	80	95	60	
773	38.74	117.4	107	67	91	34	
774	21.66	71.5	102	61	88	72	

```
773
                       60
       774
                       50
       [775 rows x 14 columns]
[159]: negativeData['Race'].value_counts()
[159]: 3
            404
            127
       1
       4
            117
       2
            86
       5
             41
      Name: Race, dtype: int64
           Average BMI of samples with Education==3
[160]: education_ft = dataset[(dataset['Education']==3)]
       education_ft['BMI'].mean()
[160]: 29.276166255235008
      1.11 Average BMI of Gender==1
[161]: gender filter = dataset[(dataset['Gender']==1)]
       gender_filter['BMI'].mean()
[161]: 28.49773850117451
```

1.12 Average BMI of Gender==2

```
[162]: gender_filter = dataset[(dataset['Gender']==2)]
gender_filter['BMI'].mean()
```

[162]: 28.347488282367802

2 Task 2

2.1 Seperating Categorical and Numerical

Because that datatypes of columns are given not correctly, the columns are seperated manually.

Seperating Categorical Columns

```
[163]: categorical_dataset = 

dataset[['ClassLabel', 'Gender', 'Race', 'Education', 'FamilyHistory', 'HighBloodSugar']]

categorical_dataset
```

[163]:		${\tt ClassLabel}$	Gender	Race	Education	FamilyHistory	HighBloodSugar
	0	Negative	1	3	3.0	1	1
	1	Negative	2	1	2.0	2	1
	2	Negative	1	3	5.0	1	1
	3	Negative	2	3	4.0	1	1
	4	Negative	1	2	5.0	2	1
	•••	•••				•••	•••
	1498	Positive	2	3	3.0	2	1
	1499	Positive	2	3	4.0	2	1
	1500	Positive	2	3	2.0	1	1
	1501	Positive	2	3	4.0	2	1
	1502	Positive	1	2	3.0	1	1

[1503 rows x 6 columns]

Seperating Numerical Values

[164]:		Age	BMI	WaistCircumference	SystolicBP	DiastolicBP	LDL	HDL	\
	0	44	29.100000	106.6	119	88	113	37	
	1	44	25.060000	82.3	130	86	138	63	
	2	22	28.070000	94.5	120	87	96	57	
	3	35	20.290000	71.9	110	64	93	89	
	4	54	36.320000	116.4	92	42	110	62	
			•••	•••		•••			
	1498	59	26.670000	103.0	110	60	132	47	
	1499	74	25.080000	95.5	135	60	114	36	
	1500	80	28.416365	119.3	121	40	111	38	
	1501	78	46.980000	129.5	146	78	136	56	
	1502	80	27.140000	96.7	154	30	128	65	

	Triglycerides
0	235
1	61
2	111
3	58
4	71
•••	•••
1498	190
1499	270
1500	131
1501	144
1502	108

[1503 rows x 8 columns]

2.2 Boxplots for Classes with respect to each Variable

Age

```
[165]: sns.set_style("darkgrid") sns.boxplot(data=dataset, x='ClassLabel', y=numerical_dataset.columns[0])
```

[165]: <AxesSubplot:xlabel='ClassLabel', ylabel='Age'>


```
[166]: sns.boxplot(data=dataset, x='ClassLabel', y=numerical_dataset.columns[1])
```

[166]: <AxesSubplot:xlabel='ClassLabel', ylabel='BMI'>

[167]: sns.boxplot(data=dataset, x='ClassLabel', y=numerical_dataset.columns[2])

[167]: <AxesSubplot:xlabel='ClassLabel', ylabel='WaistCircumference'>

[168]: sns.boxplot(data=dataset, x='ClassLabel', y=numerical_dataset.columns[3])

[168]: <AxesSubplot:xlabel='ClassLabel', ylabel='SystolicBP'>

[169]: sns.boxplot(data=dataset, x='ClassLabel', y=numerical_dataset.columns[4])

[169]: <AxesSubplot:xlabel='ClassLabel', ylabel='DiastolicBP'>

[170]: sns.boxplot(data=dataset, x='ClassLabel', y=numerical_dataset.columns[5])

[170]: <AxesSubplot:xlabel='ClassLabel', ylabel='LDL'>

[171]: sns.boxplot(data=dataset, x='ClassLabel', y=numerical_dataset.columns[6])

[171]: <AxesSubplot:xlabel='ClassLabel', ylabel='HDL'>

[172]: sns.boxplot(data=dataset, x='ClassLabel', y=numerical_dataset.columns[7])

[172]: <AxesSubplot:xlabel='ClassLabel', ylabel='Triglycerides'>

2.3 Table of Quartiles (Q1,Q2/Median,Q3) for each numerical value

```
[173]: q1_list = [] ; q2_list = [] ; q3_list = []
      for column in numerical_dataset:
          q1 = dataset[column].quantile(0.25)
          q2 = dataset[column].mean()
          q3 = dataset[column].quantile(0.75)
          q1_list.append(q1)
          q2_list.append(q2)
          q3_list.append(q3)
      quartiles = {}
      quartiles['index']=numerical_dataset.columns.tolist()
      quartiles['Q1']=q1_list
      quartiles['Q2']=q2_list
      quartiles['Q3']=q3_list
      quartiles_df = pd.DataFrame(quartiles, index=quartiles['index'],__
       quartiles_df
[173]:
                                                  QЗ
                             Q1
                                         Q2
```

63.000

49.231537

34.00

Age

```
BMI
                    24.16
                            28.416365
                                        31.715
WaistCircumference
                    86.50
                            97.555888 106.350
SystolicBP
                    108.00 120.359947 130.000
DiastolicBP
                    61.00
                           68.152362
                                       76.000
LDL
                    94.00 118.815702 140.000
HDL
                    44.00
                            55.480373
                                        65.000
Triglycerides
                    75.00 117.979375 146.000
```

2.4 Number of Outliers for each continous variable

---Amount of Outliers---

Age: 0 BMI: 42

WaistCircumference: 22

SystolicBP: 32 DiastolicBP: 30

LDL: 19 HDL: 24

Triglycerides: 59

3 Task 3

3.1 BarPlot for each categorical variable

```
[175]: sns.barplot(x=categorical_dataset.iloc[:, 0].value_counts().index, 

→y=categorical_dataset.iloc[:, 0].value_counts())
```

[175]: <AxesSubplot:ylabel='ClassLabel'>

[176]: sns.barplot(x=categorical_dataset.iloc[:, 1].value_counts().index, →y=categorical_dataset.iloc[:, 1].value_counts())

[176]: <AxesSubplot:ylabel='Gender'>

[177]: <AxesSubplot:ylabel='Race'>

[178]: <AxesSubplot:ylabel='Education'>

[179]: <AxesSubplot:ylabel='FamilyHistory'>


```
[180]: sns.barplot(x=categorical_dataset.iloc[:, 5].value_counts().index, 

→y=categorical_dataset.iloc[:, 5].value_counts())
```

[180]: <AxesSubplot:ylabel='HighBloodSugar'>

4 Task 4

[181]: sns.pairplot(numerical_dataset)

[181]: <seaborn.axisgrid.PairGrid at 0x16891c8bbb0>

