

Modelos de Avanzados de Computación (2017/18) 3º Grado en Ingeniería Informática 13 de julio de 2018

Normas para la realización del examen:

Duración: 3:00 horas

■ Los alumnos que tengan evaluación global tienen que responder las preguntas 1-11. El resto, las preguntas 1-8 (examen de teoría).

□ Ejercicio 1 Decidibilidad

[2 puntos]

Determinar cuales de los siguientes problemas son decidibles, semidecidibles o no semidecidibles (se supone que las MTs tienen a $\{0,1\}$ como alfabeto de referencia). Justifica las respuestas.

- 1. Dada una palabra u, determinar si la MT cuya codificación es u acepta a u como entrada.
- 2. Dadas dos MT, M_1 y M_2 , determinar si existe una palabra aceptada por M_1 que no sea aceptada por M_2 .
- 3. Dada una MT M y una palabra u, determinar si M no termina cuando tiene a u como entrada.
- 4. Dada una MT M y una palabra de entrada u, determinar si la MT se mueve como máximo una vez a la izquierda cuando tiene a u como entrada.

[1 punto]

Si el lenguaje L_1 se reduce al lenguaje L_2 , determina si las siguientes afirmaciones son verdaderas, falsas, o posibles (\overline{L} es el lenguaje complementario de L):

- 1. El lenguaje $\overline{L_1}$ se reduce al lenguaje $\overline{L_2}$.
- 2. El lenguaje $\overline{L_1}$ se reduce al lenguaje L_2 .
- 3. Siempre que L_2 sea recursivo, entonces L_1 es recursivamente enumerable.
- 4. L_1 es recursivo y L_2 no es recursivo.

□ Ejercicio 3 □ Tesis de Church-Turing

[1 punto]

Explica de forma breve como se simula un programa con variables mediante un programa Post Turing, de manera que realicen los mismos cálculos.

□ Ejercicio 4 □ Búsqueda de Caminos en Grafos

[1 punto]

¿Qué complejidad en espacio determinista tiene el problema de la búsqueda de caminos en grafos? Explica de forma breve un algoritmo que justifique la respuesta.

[1 punto]

Define el concepto de razón de eficacia δ de un algoritmo aproximado. Define el concepto de umbral de aproximación. Da un ejemplo de un problema para el que se conozca el umbral de aproximación.

□ Ejercicio 6 □ NP-completitud

[1 punto]

Define los problemas: clique máximo, conjunto independiente y cubrimiento por vértices. ¿Por qué es suficiente demostrar que el clique máximo es NP-completo para saber que los otros dos problemas son también NP-completos?

[1 punto]

Responde a las siguientes preguntas:

- 1. ¿Qué relación hay entre los problemas NP-completos y los CoNP-completos?
- 2. ¿Qué podemos afirmar si un problema NP-completo perteneciese a CoNP?
- 3. Da un ejemplo de problema que pertenezca a NP y a CoNP.

[2 puntos]

Define los siguientes problemas y especifica qué sabes sobre su complejidad:

- 1. Problema del palíndromo
- 2. Problema del flujo máximo
- 3. 2-SAT
- 4. MAX2SAT
- NAESAT

Modelos de Avanzados de Computación (2017/18) 3º Grado en Ingeniería Informática 13 de julio de 2018

⟨ Ejercicio 9 ⟩ Ejercicio Prácticas - Evaluación Global

[Prácticas: 4 puntos]

Demostrar que el siguiente problema es NP-completo:

Partición de conjuntos Dada una familia C de subconjuntos de un conjunto finito S ¿existe una partición de S en dos partes S_1 y S_2 tales que no hay un elemento $A \in C$ que esté contenido en S_1 o esté contenido en S_2 (o equivalentemente todo $A \in C$ debe de tener intersección no vacía con S_1 y con S_2)?

□ Ejercicio Prácticas - Evaluación Global

[Prácticas: 3 puntos]

Supongamos que una entrada es una palabra de paréntesis. Demostrar que determinar si están emparejados y anidados correctamente está en \mathbf{L} . Lo están (()()) y ((())), pero no lo están ()() () () () ()

Consideremos el problema anterior, pero ahora con dos tipos de paréntesis (,) y [,]. Demostrar que determinar si están bien escritos también está en \mathbf{L} . Aquí ([]()) está permitido, pero ([)] no.

\triangleleft Ejercicio $11 \triangleright$ Ejercicio Prácticas - Evaluación Global

[Prácticas: 3 puntos]

Diseñar una MT con varias cintas que dada una palabra u calcule una palabra formada por todos los símbolos que ocupan las posiciones pares de u seguidos por todos los símbolos que ocupan las posiciones impares de u. Por ejemplo para la entrada 0101 calcularía 1100.

