Разделени разлики

Разделена разлика за функцията f(x) във възлите $x_0 < x_1 < \cdots < x_n$ се дефинира по следния

- B един възел $f[x_0] = f(x_0)$;
- Рекурентно в повече възли $f[x_0, x_1, ..., x_k] = \frac{f[x_1, x_2, ..., x_k] f[x_0, x_1, ..., x_{k-1}]}{x_k x_0}$

На лекции е доказана следната формула (1) за разделената разлика във всички интерполационни възли:

$$f[x_0, x_1, ..., x_n] = \sum_{k=0}^{n} \frac{f(x_k)}{\omega'(x_k)}$$
 (1)

Разделената разлика $f[x_0, x_1, ..., x_n]$ е равна на коефициента пред x^n в интерполационния полином на Лагранж $L_n(f;x)$ от n-та степен за f(x) с възли x_0,x_1,\dots,x_n .

От горното твърдение получаваме:

- 1) $f[x_0, x_1, ..., x_n] = 0$, sa $f(x) = x^m, m = 0, 1, ..., n 1$; 2) $f[x_0, x_1, ..., x_n] = 1$, sa $f(x) = x^n$.

Тези тъждества могат да бъдат написани в следния вид, използвайки формула (1):

1')
$$\sum_{k=0}^{n} \frac{x_k^m}{\omega'(x_k)} = 0, m = 0, 1, ..., n-1;$$

2')
$$\sum_{k=0}^{n} \frac{x_k^n}{\omega'(x_k)} = 1.$$

Задача 1. Да се намерят коефициентите A_k в разлагането $\frac{p(x)}{\omega(x)} = \sum_{k=0}^n \frac{A_k}{x-x_k}$, където $p(x) \in \pi_n$.

Решение:
$$p(x) \in \pi_n => p(x) = L_n(p;x) => p(x) = \sum_{k=0}^n \frac{\omega(x)}{(x-x_k)\omega'(x_k)} p(x_k)$$

Делим двете страни на равенството на $\omega(x)$ и получаваме:

$$\frac{p(x)}{\omega(x)} = \sum_{k=0}^{n} \frac{A_k}{x-x_k}$$
, където $A_k = \frac{p(x_k)}{\omega'(x_k)}$.

Задача 2. Да се разложи на елементарни дроби рационалната функция $\frac{x+2}{x(x-1)(x-2)}$

Решение: p(x) = x + 2; $\omega(x) = x(x - 1)(x - 2)$. Използвайки изведените в Задача 1. формули за коефициентите A_k получаваме:

$$A_0 = \frac{p(x_0)}{\omega'(x_0)} = \frac{p(0)}{\omega'(0)} = 1;$$

$$A_1 = \frac{p(x_1)}{\omega'(x_1)} = \frac{p(1)}{\omega'(1)} = -3;$$

$$A_2 = \frac{p(x_2)}{\omega'(x_2)} = \frac{p(2)}{\omega'(2)} = 2.$$

$$=>\frac{x+2}{x(x-1)(x-2)}=\frac{1}{x}-\frac{3}{x-1}+\frac{2}{x-2}.$$

Задача 3. Да се намери $\sum_{k=0}^{n} \frac{\omega''(x_k)}{\omega'(x_k)}$.

Решение: Търсим разделената разлика на функцията $f(x) = \omega''(x)$.

Но $\omega(x) \in \pi_{n+1} => \omega''(x) \in \pi_{n-1}$ и от твърдението 1) получаваме, че $\sum_{k=0}^n \frac{\omega''(x_k)}{\omega'(x_k)} = 0$.

Задача 4. Да се намери $\sum_{k=0}^{n} \frac{x_k \omega''(x_k)}{\omega'(x_k)}$.

Решение: Търсим разделената разлика на функцията $f(x) = x\omega''(x)$. Но $\omega(x) \in \pi_{n+1} = x\omega''(x) \in \pi_n$.

$$\begin{split} \omega(x) &= (x-x_0)(x-x_1) \dots (x-x_n) = x^{n+1} + a_1 x^n + \dots + a_{n+1}, \\ &=> \omega'(x) = (n+1)x^n + n. \, a_1 x^{n-1} + \dots \\ &=> \omega''(x) = (n+1)n. \, x^{n-1} + n(n-1)a_1 x^{n-2} + \dots \\ &=> x \omega''(x) = (n+1)n. \, x^n + n(n-1)a_1 x^{n-1} + \dots \\ &=> \sum_{k=0}^n \frac{x_k \omega''(x_k)}{\omega'(x_k)} = n(n+1). \end{split}$$

Задача 5. Да се докаже, че $\sum_{k=0}^n \frac{x_k^{n+1}}{\omega'(x_k)} = \sum_{k=0}^n x_k$.

Доказателство: Лявата страна на равенството е разделена разлика за функцията $f(x) = x^{n+1}$. Търсим коефициента пред x^n в интерполационния полином на Лагранж (ИПЛ) $L_n(f;x)$. Но той интерполира функцията във възлите $x_0, x_1, ..., x_n$. Следователно

$$f(x_i) - L_n(f; x_i) = 0, i = 0, 1, ..., n$$

=> $f(x) - L_n(f; x) = \omega(x)$

Приравняваме коефициентите пред x^n от двете страни на равенството. От дясната страна използваме формулите на Виет. Получаваме:

$$f[x_0, x_1, ..., x_n] = \sum_{k=0}^{n} x_k,$$

Следователно $\sum_{k=0}^n \frac{x_k^{n+1}}{\omega'(x_k)} = \sum_{k=0}^n x_k$.

Задача 6. Като използвате ИПЛ докажете тъждествата:

a)
$$\sum_{k=0}^{n} (-1)^{n-k} {n \choose k} {m \choose n} \frac{1}{m-k} = \frac{1}{m-n}, \forall m > n \ge 0;$$

6)
$$\sum_{k=0}^{n} (-1)^{n-k} {n \choose k} {m \choose n} \frac{k}{m-k} = \frac{m}{m-n}, \forall m > n \ge 1.$$

Решение: Нека $x_k = k, k = 0,1,...,n \Rightarrow \omega(x) = x(x-1)(x-2)...(x-n);$

$$\omega'(k) = \prod_{j=0, j\neq k}^{n} (k-j);$$

$$L_n(f;x) = \sum_{k=0}^n \frac{\omega(x)f(k)}{(x-k)\omega'(k)} = \sum_{k=0}^n \frac{x(x-1)\dots(x-n)f(k)}{(x-k)\cdot k(k-1)(k-2)\dots 1\cdot (-1)(-2)\dots(-(n-k))}.$$

Нека $x=m=>L_n(f;m)=\sum_{k=0}^n \frac{(-1)^{n-k}m(m-1)...(m-n)f(k)}{(m-k)k!(n-k)!}$. Умножаваме и делим на n! в дробта и получаваме:

$$L_n(f;m) = \sum_{k=0}^n \frac{(-1)^{n-k}(m-n)}{(m-k)} {n \choose k} {m \choose n} f(k).$$

- а) Нека $f(x) = 1 \in \pi_0 => f(m) = L_n(f;m) = 1$. Делим двете страни на равенството на $(m-n) \neq 0$ и получаваме $\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} \binom{m}{n} \frac{1}{m-k} = \frac{1}{m-n}$.
- б) Нека $f(x) = x \in \pi_1 => f(m) = L_n(f;m) = m$. Делим двете страни на равенството на $(m-n) \neq 0$ и получаваме $\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} \binom{m}{n} \frac{k}{m-k} = \frac{m}{m-n}$.

Интерполационна формула на Нютон с разделени разлики:

$$L_n(f;x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1}).$$

Задача 7. Да се намери полином
$$p(x) \in \pi_3$$
, такъв че $p(-1) = 3$, $p(0) = 1$, $p(1) = -1$, $p(2) = 3$.

Решение: Имаме 4 интерполационни възела. Можем да построим единствен полином от трета степен с тези условия по формулата на Нютон. За целта са ни необходими разделените разлики. Тях най-лесно можем да пресметнем от рекурентната връзка в следната таблица:

x_i	$p[x_i]$	$p[x_i, x_{i+1}]$	$p[x_i, x_{i+1}, x_{i+2}]$	$p[x_i x_{i+1}, x_{i+2}, x_{i+3}]$
-1	3	$\frac{1-3}{0-(-1)} = -2$	$\frac{-2 - (-2)}{1 - (-1)} = 0$	$\frac{3-0}{2-(-1)} = 1$
0	1	$\frac{-1-1}{1-0} = -2$	$\frac{4 - (-2)}{2 - 0} = 3$	
1	-1	$\frac{3 - (-1)}{2 - 1} = 4$		
2	3			

Оцветените в червено разделени разлики участват във формулата на Нютон. Заместваме в нея:

$$p(x) = \sum_{k=0}^{n} p[x_0, x_1, ..., x_k](x - x_0)(x - x_1) ... (x - x_{k-1})$$

= $\frac{3 - 2(x+1) + 0(x+1)(x-0) + 1(x+1)(x-0)(x-1) = x^3 - 3x + 1}{2}$