ASSIGNMENT-2

Data Summary:

Variable Name	New_Relapse Cases (Each)	TB_Mgmt Units (Each)
Description	Total of new and relapse cases and cases with	Number of TB Basic Management
	unknown previous TB treatment history (Time	Units in the country (Time series
	series data 2013-2019)	data 2013-2019)
Data Type	Discrete, Interval	Discrete, Interval
Observations	586	586
Mean	53840	429
Median	9082	93
Min	80	0
Max	2162323	9746
Range	2162243	9746
Standard	193212.6	1101.62
Deviation		

Planning & Analysis:

We test the Pearson coefficient of correlation(r) to determine whether the linear relationship in the sample data effectively models the relationship in the population.

Null Hypothesis (H₀): The correlation coefficient between number of Tuberculosis management units and, new and relapse Tuberculosis cases is not significantly different from 0.

ASSIGNMENT-2

Alternate Hypothesis (H_1): The correlation coefficient between number of Tuberculosis management units and, the new and relapse Tuberculosis cases is significantly different from 0.

Statistical Test: A two-tail t-test with significance level of 5% (p < 0.05 to be significant) is used for testing the correlation between the two variables.

Assumptions for this test are as follows:

Normality: The two variables have a normal distribution. We use a Shapiro-Wilk (S-W) test for confirming normality.

Null Hypothesis (H₀): The data are normally distributed.

Alternate Hypothesis (H_1) : The data are not normally distributed.

Both variables fail the normality test, hence we conclude that both variables are not normally distributed.

Test Results (from R console):

Pearson's product-moment correlation

```
data: New_Relapse Cases and TB_Mgmt Units
t = 14.898, df = 584, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.4634880    0.5810797
sample estimates:
        cor
0.524783</pre>
```


Conclusion:

The p-value from t-test of Pearson coefficient of correlation is less than 5%, which indicates that the results are significant and we can statistically reject the null hypothesis. Hence, there exists a correlation between the number of basic Tuberculosis management units and the number of new and relapsed Tuberculosis cases in a country. There is a moderate positive correlation between these two variables with a mean value of r = +0.525 and the population correlation coefficient lies between r = [0.463,0.581] with 95 % confidence. However, there's a caveat that the results from the test are not reliable as the data violated the test assumption and can be avoided by gathering more reliable data.