

中华人民共和国国家计量技术规范

JJF 1101-2003

环境试验设备温度、湿度校准规范

Calibration Specification for the Equipment of the Environmental Testing for Temperature and Humidity

2003 - 05 - 12 发布

2003 - 09 - 12 实施

本规范主要起草人:

康志茹 (河北省计量科学研究院)

耿荣勤 (河北省计量科学研究院)

魏晓克 (河北省计量科学研究院)

参加起草人:

郭增军 (河北省计量科学研究院)

李淑香 (河南省计量测试研究所)

王素霞 (河北省气象局)

齐晓强 (河北省计量科学研究院)

目 录

1	-	范	围·	• • • •	• • •	• • • •	••••	•••	• • • •	• • •	• • • •	••••	•••	••••	• • •	- •	•••	• • • •	• • •	• • • •	• • •	• • • •	•••	••••	••••	• • • •	• • • •	• • • • •	• • • • •	••	()	L)
2	1	引	用)	文献	٠٠٠	• • • •	••••	•••			• • • •	•••		••••	• • •	• •	•••	• • • •			• • •		• • •	•••	• • • •	• • • •	,		• • • • •	••	(1	()
3		术	语·	• • • •				•••		• • •		•••		••••		• •	•••	• • •	•••	• • • •	• • •	• • • •	•••	· · · ·	•••	• • • •	• • • •	••••		••	(:	1)
3.	. 1		温月	医偏	差	<u></u>		•••				•••	· · · ·					• • •			• • •	• • • •	•••	• • • •	•••	• • •	• • • •	• • • •		••	(:	1)
3.	. 2		相又	寸湿	腹	偏	差·	•••													• • •		•••				• • • • •	• • • •		• •	(:	i)
3.	.3		标和	尔值	į		••••	•••				•••											•••				• • • •	••••			(:	i)
4	-	it	量物	寺性	<u>.</u>	• • • •	••••	•••				•••						•••			• • •		•••		• • • •		• • • •			••	(:	L)
5	;	校	准系	条件	٠.,		••••	•••		• • •	• • • •		· • •		• • •			• • • •					•••			• • • •	• • • •	••••	• • • • •	••	(:	L)
5.	. 1		环均	急条	4	· · · ·		•••		• • •	• • • •	•••				• •		• • •		• • • •	• • •	• • • •	•••		•••	• • • •		• • • •		••	(:	l)
5.	. 2		标片	生器	及	其	他i	2	<u>د</u>			•••					٠	• • •					•••		•••	• • • •	• • • •	••••		••	(:	2)
6	7	校	准工	页目	利	1校	准	方沒	<u>ţ</u>			•••				• •		• • •				• • • •	•••			• • •	• • • •	• • • •		••	(:	2)
6.	. 1		校片	主项	Ī	٠										• •					• • •		•••		•••	• • • •	• • • •	••••			(2	2)
6.	2		校게	主方	法	÷	••••	•••				•••			• • •	• •		• • • •			• • •		•••		•••	• • • •	• • • •	• • • •		• •	(3	3)
6.	.3		数排	居处	理	<u></u>	••••	•••		• • •	• • • •	•••		••••	• • •	• •		• • • •				· · · ·	•••		• • • •	• • •	• • • •	••••	· · · · · ·	• •	(4	t)
7	;	校	准组	吉果	表	达		•••			• • • •	•••					•••	• • •				• • • •	•••		•••	• • • •	• • • •	••••	• • • • •	••	(:	5)
8		复	校日	计间] ji]隔		•••			• • • •	•••					٠	• • •			• • •		• • • •				• • • •	• • • •		••	((5)
胏	茅	ŧ.	A	环	竟	试验	设	备	校	准	记录	参	考	格.	式								•••				• • • • •	• • • •		••	(:	7)
跅	遠	٤.	В	环	竟ì	武弘	设	备	校	生纪	吉昇	多	考	格	式	•	• • •				• • • •									• •	(8	3)
陈	身	ŧ,	С	干、	, ì	显玫	法	测:	量	相》	付渣	腹	的	方	去	•	• • •				• • •							• • • •			(9)
胏	뒭	ŧ :	D	环	竟	试验	设设	备	温	度	偏差	色校	准	结:	果	不	确	定	度	分	沂		•••		•••		• • • •	••••		••	(1	0)
账	ł-≅	Ļ.	F	环	音 i	士 张	公	久	相	zt)	記作	F値	羊	校	准名	结	果	不	確	定日	审 4	入村	ŕ.								(1	3)

环境试验设备 温度、湿度校准规范

Calibration Specification for the Equipment of the Environmental Testing for Temperature and Humidity JJF 1101-2003

本规范经国家质量监督检验检疫总局于 2003 年 05 月 12 日批准,并自 2003 年 09 月 12 日起施行。

归口单位:全国温度计量技术委员会

主要起草单位:河北省计量科学研究院

环境试验设备温度、湿度校准规范

1 范围

本规范适用于环境试验设备温度、湿度(以下简称环境试验设备)计量性能的校准。

其他类似设备也可参照本规范进行校准。

2 引用文献

GB/T 2423.4—1993《电工电子产品基本环境试验规程》试验 Db: 交变湿热试验方法 GB 6999—1986《环境试验用相对源度查算表》

LIF 1071-2000《国家计量校准规范编写规则》

使用本规范时,应注意使用上述引用文献的现行有效版本。

3 术语

3.1 温度偏差

环境试验设备在稳定状态下,显示温度平均值与工作空间中心点实测温度平均值的 差值。

3.2 相对湿度偏差

环境试验设备在稳定状态下,显示相对湿度平均值与工作空间中心点实测相对湿度 平均值的差值。

3.3 标称值

当校准环境试验设备温度、湿度时,按试验方法要求所规定的参数值或按需要预先确定的参数值。

4 计量特性

环境试验设备的温度偏差、温度均匀度、温度波动度,相对湿度偏差、相对湿度均匀度、相对湿度波动度技术要求见表 1。

5 校准条件

5.1 环境条件

5.1.1 温度: (15~35)℃

湿度: (30~85)%RH

气压, (86~106) kPa

5.1.2 负载条件

一般在空载条件下校准,根据用户需要可以在负载条件下进行校准,但应说明负载 的情况。

表 1

设备	名称		温度试验设备		湿热试	验设备	交变湿热设备
	和湿度	(0 ~ 100) ℃	(- 60 ~ 0) ℃ (100 ~ 200) ℃	(200 ~ 300) °C	(10 ~ 60) ℃ (20 ~ 100) % RH	(10 ~ 60) ℃ (20 ~ 100) % RH	(20 ~ 60) ℃ (80 ~ 100) %RH
温度	偏差	±1.0℃	± 2℃	± 3℃	± 2℃	± 2°C	± 2℃
湿度	偏差	_		_	+ 2 - 3 RH	± 5% RH	+ 2 - 3 % RH
均.	温度	1.0℃	2℃	3℃	1℃	2℃	2℃
均匀度	湿度	_	_	-	3 % RH	5% RH	3% RH
波	温度	± 0.5℃	± 0.5℃	± 2℃	±0.5℃	±1℃	±1℃
波动度	湿度	_	_		± 2% RH	± 3% RH	± 3% RH

- 注: 1. 交变湿热设备应检查其交变能力。
 - 对于计量特性另有要求的温度、湿热试验设备,按有关技术文件规定的要求进行校准。
- 5.1.3 其他条件:设备周围应无强烈振动及腐蚀性气体存在,应避免其他冷、热源影响。
- 5.2 标准器及其他设备
- 5.2.1 温度测量标准

温度测量由温度传感器 (通常用四线制铂热电阻) 和显示仪表组成,时间常数应小于 15s。

5.2.2 湿度测量标准

湿度测量可使用下列仪器:

数字通风干湿表和气压表 (通风速度应大于 2.5m/s)

数字湿度计(仅在湿度场不发生交变的情况下使用)

干、湿球温度计^① (在风速均匀情况下,适用于相对湿度均匀度的测量)

- 6 校准项目和校准方法
- 6.1 校准项目

校准项目见表 2。

注:①干、湿球温度计制作方法应符合附录 C 的要求。

表 2

设备 项 目	温度设备	湿热设备	交变湿热设备
温度偏差	+	+	+
湿度偏差	-	+	+
温度均匀度	+	+	+
湿度均匀度	_	+	+
温度波动度	+	+	+
湿度波动度		+	+

注: 1. "+"表示校准, "-"表示不校准。

2. 交变湿热设备应检查交变能力。

6.2 校准方法

6.2.1 校准温、湿度点的选择

校准温、湿度点一般应选择设备使用范围的下限、上限及中间点,也可根据用户需要选择实际常用的温、湿度点。

6.2.2 测试点的位置

测试点的位置应布放在设备工作室内的三个校准面上,简称上、中、下三层,中层为通过工作室几何中心的平行于底面的校准工作面,测试点与工作室内壁的距离不小于各边长的 1/10,遇风道时,此距离可加大,但不能大于 500mm。如果设备带有样品架或样品车时,下层测试点可布放在样品架或样品车上方 10mm 处。

6.2.3 测试点的数量

温度测试点用 A, B, C…字母表示, 湿度测试点用甲、乙、丙……文字表示。

a) 当设备容积小于 2m³ 时,温度测试点为 9 个,湿度测试点为 3 个, 0 点位于中层几何中心,如图 1 所示。

图 1

b) 当容积大于 2m³ 时,温度测试点为 15 个,湿度测试点为 4 个, E, O, N 分别位于上、中、下层的几何中心、如图 2 所示。

图 2

c) 当工作容积大于 50m3 时,测试点可适当增加。

6.2.4 温度的校准

按 6.2.2, 6.2.3 条规定布放温度传感器,将试验设备的温度控制器设定到所要求的标称温度,使设备正常工作。稳定后开始读数,每 2min 记录所有测试点的温度一次,在 30min 内共测试 15 次。

6.2.5 温、湿度的校准

按 6.2.2, 6.2.3 条规定布放温、湿度传感器,将试验设备的温、湿度控制器设定到所要求的标称温、湿度,使设备正常工作。稳定后开始读数,每 2min 记录所有测试点的温、湿度一次,在 30min 内共测试 15 次。

6.2.6 交变能力检查

交变能力的检查按 GB/T 2423.4—1993 中 5.2.2, 5.2.3 方法进行。

6.3 数据处理

6.3.1 温度偏差计算

$$\Delta t_{\rm d} = t_{\rm d} - t_{\rm o} \tag{1}$$

式中: Δt_d——温度偏差, ℃;

 t_0 中心点 n 次测量的平均值, \mathbb{C} ; t_d 一设备显示温度平均值, \mathbb{C} 。

6.3.2 温度均匀度计算

环境试验设备在稳定状态下,在 30min 内(每 2min 测试一次)每次测试中实测最高温度与最低温度之差的算术平均值。

$$\Delta t_{\rm u} = \sum_{i=1}^{n} \left(t_{i_{\rm max}} - t_{i_{\rm min}} \right) / n \tag{2}$$

式中: Δt_{u} ——温度均匀度, \mathfrak{C} ;

n---测量次数:

 t_{imax} ——各校准点在第 i 次测得的最高温度, ℃;

 t_{imin} ——各校准点在第 i 次测得的最低温度, ∞ 。

6.3.3 温度波动度计算

环境试验设备在稳定状态下,工作空间中心点温度随时间的变化量,即中心点在30min内(每2min测试一次)实测最高温度与最低温度之差的一半,冠以"±"号。

$$\Delta t_f = \pm \left(t_{\text{omax}} - t_{\text{omin}} \right) / 2 \tag{3}$$

式中: Δt_{ϵ} ——温度波动度, ∞ ;

 t_{ama} ——中心点 n 次测量中的最高温度, ∞ ;

 t_{emin} ——中心点 n 次测量中的最低温度, ∞ 。

6.3.4 相对湿度偏差计算

$$\Delta h_{\rm d} = h_{\rm d} - h_{\rm o} \tag{4}$$

式中: Δh_a ——湿度的偏差,%RH;

h.——中心点 n 次测量的平均值, % RH;

h.——设备显示湿度平均值,%RH。

6.3.5 相对湿度均匀度计算

环境试验设备在稳定状态下,在 30min 内(每 2min 测试一次)每次测试中实测最高相对湿度与最低相对湿度之差的算术平均值。用干、湿球法校准相对湿度均匀度时,按 GB 6999—1986 查相对湿度表。具体方法见附录 C。

$$\Delta h_{\rm u} = \sum_{i=1}^{n} \left(h_{i \max} - h_{i \min} \right) / n \tag{5}$$

式中: Δh_{\parallel} ——湿度的均匀度,%RH;

h_{imax}----各校准点在第 i 次中测量的最高湿度,%RH;

 h_{--} ——各校准点在第 i 次中测量的最低湿度,%RH:

n---测量次数。

6.3.6 相对湿度波动度计算

环境试验设备在稳定状态下,工作空间中心点相对湿度随时间的变化量,即中心点在 30min 内(每 2min 测试一次)实测最高相对湿度与最低相对湿度之差的一半, 冠以"±"号。

$$\Delta h_{\rm f} = \pm \left(h_{\rm omax} - h_{\rm omin} \right) / 2 \tag{6}$$

式中: Δh . 一湿度的波动度, % RH;

 h_{amax} ——中心点 n 次测量中湿度的最高值, % RH;

 h_{--} 中心点 n 次测量中湿度的最低值, % RH。

7 校准结果表达

经校准的环境试验设备出具校准证书。校准证书应给出:温、湿度的偏差、均匀度、波动度及校准结果不确定度。

8 复校时间间隔

环境试验设备的复校间隔自定,建议最长不超过2年。

附录A

环境试验设备校准记录参考格式

委托单位:

仪器名称:

制造厂:

型号规格:

出厂编号:

校准地点:

环境温度:

℃ 环境湿度: %RH

温、湿度记录表

标称温度:

°C

标称湿度:

% RH

		, J. 1111. /. ~	• •			-											
Bif	次	仪表	示值		温度/℃								第i次		湿度		
时间	数数	C	% RH	A	В	С	D	0	E	F	G	Н	最大	最小	甲	乙	丙
	1																
	2																
	3																
																	_
	14																
	15																
第	修正值																
ポル点	最大值																
	最小值																

温度偏差:

°C

温度均匀度:

C

温度波动度:

C

湿度偏差:

%RH

湿度均匀度:

%RH

湿度波动度:

%RH

校准

年 月

日

复核 年

月

Ħ

附录B

环境试验设备校准结果参考格式

第页共页

校 准结果

1 测试点分布示意图(图 B1)

图 B1

2 测试点与壁距离 (mm)

前	后	左	右	上	下

3 校准结果的表达

温度偏差:

 $^{\circ}$

湿度偏差:

%RH

温度波动度:

C

湿度波动度:

%RH

温度均匀度:

 $^{\circ}$ 湿度均匀度: %RH

校准结果不确定度

附录 C

干、湿球法测量相对湿度的方法

- C.1 选用两支型号相同、特性基本一致的温度计,两支温度计传感器的轴心线应平行,温度计之间的距离应不小于湿球传感器总直径(包括湿球纱布套的厚度在内)的3倍。
- C.2 湿球纱布采用 120 号气象纱布或专用纱布,长约 100mm。湿球用水是蒸馏水或去离子水。
- C.3 水杯最好带盖并盛满蒸馏水,水杯中水面到湿球底部的距离约为 30mm。
- C.4 包扎湿球纱布时,应把手洗净,再用清洁水将湿球洗净,然后用纱布上的线把纱布服贴无皱折地包围在湿球上,重叠部分不应超过圆周长的 1/4,不要扎得过紧,以免影响吸水,并剪掉多余的纱线。
- C.5 湿球应保持清洁、柔软和湿润。
- C.6 分别读出干、湿球温度计的示值,算出干、湿球温度差值。根据 GB 6999—1986 查出该温度下的相对湿度值。

例 1: 用柱状干、湿球温度计(风速 0.5m/s)测得干球温度 t = 55.00°C,湿球温度 t = 53.40°C、大气压力 p = 101kPa、 在相对湿度 h。

在 GB 6999—1986 第 2.1 条表中,根据风速查出 $A = 0.815 \times 10^{-3}/\mathbb{C}$ 。按 $A = 0.815 \times 10^{-3}/\mathbb{C}$,p = 100kPa(个位数四舍五人), $t - t_w = 1.60\mathbb{C}$,在 GB 6999—1986 中查表 2a. 得 h = 91.8%。

例 2: 用柱状干、湿球温度计(风速 2.4m/s)测得干球温度 t = 40.60°C,湿球温度 $t_w = 38.40$ °C,大气压力 p = 98kPa,查 h_o 。

在 GB 6999—1986 第 2.1 条表中,查出 A = 0.662 × 10⁻³/℃。按 A = 0.662 × 10⁻³/℃, p = 100kPa(个位数四舍五人), t - t_w = 2.20℃,在 GB 6999—1986 中查表 2c 得 h = 87.1%。

附录D

环境试验设备温度偏差 校准结果不确定度分析

D.1 概述

温度测量设备由温度传感器和数字温度显示仪组成,该套设备具有温度修正值。温 度偏差是指设备温度显示仪表示值与中心点实际温度之差。

D.2 数学模型

$$\Delta t_{\rm d} = t_{\rm d} - t_{\rm o} - \Delta t_{\rm o} \tag{D1}$$

式中: Δt_a ——温度偏差, \mathfrak{C} ;

t。——被检设备温度显示仪表显示温度,℃;

 t_s ——数字温度显示仪读数, ∞ ;

 Δt_o ——温度测量装置的修正值(指整体检定), ℃ 。

D.3 方差与灵敏系数

式 (D1) 中 t_0 , t_d , Δt_0 互为独立, 因而得

$$c_1 = \frac{\partial \Delta t_d}{\partial t_d} = 1, \quad c_2 = \frac{\partial \Delta t_d}{\partial t_o} = -1, \quad c_3 = \frac{\partial \Delta t_d}{\partial \Delta t_o} = -1$$
$$u_c^2 = u^2 \quad (t_d) \quad + u^2 \quad (t_o) \quad + u^2 \quad (\Delta t_o)$$

故

D.4 不确定度来源及分析

D.4.1 由 t_a引入的不确定度

对环境试验设备作 15 次独立重复测量,从设备显示仪上读取 15 次显示值,记为 t_{ai} , t_{ao} , …, t_{ais} , 平均值记为 $\overline{t_a}$, 其测量列如表 D1 所示。

表 D

i (次数)	$t_{\mathrm{d}i}/\mathrm{^{\circ}\!\!C}$	i (次数)	$t_{\mathrm{d}i}/^{\circ}\!\!\mathrm{C}$	i (次数)	t _{di} /℃
1	59.9	6	59.9	11	60.0
2	60.0	7	59.9	12	59.9
3	60.0	8	59.9	13	60.0
4	60.0	9	60.0	14	60.0
5	60.0	10	60.0	15	60.0

根据公式

$$s (\overline{t_d}) = \sqrt{\frac{\sum\limits_{i=1}^{n} (t_{di} - \overline{t_d})^2}{n (n-1)}}$$

计算得算术平均值 $\overline{t_a}$ 的实验标准差 $s(\overline{t_a})=0.01$ °。则由 15 次独立重复测量引入的标准不确定度分量 $u_1=s(\overline{t_a})=0.01$ °、自由度 $v_1=14$ 。

D.4.2 由 t。引入的不确定度

对环境试验设备作 15 次独立重复测量,从数字温度显示仪上读取 15 次显示值,记为 t_{ol} , t_{ol} , t_{ol} , t_{ol} , t_{ol} , v_{ol} ,

i (次数)	t₀i/℃	i (次数)	t oi / ℃	i (次数)	<i>t</i> _{ai} /℃
1	58.93	6	59.08	11	59.13
2	59.04	7	59.24	12	59.23
3	59.06	8	59.13	13	59.18
4	59.05	9	59.15	14	59.24
5	59.16	10	59.20	15	59.31

表 D2

根据公式

$$s(\overline{t_o}) = \sqrt{\frac{\sum_{i=1}^{n} (t_{oi} - \overline{t_o})^2}{n(n-1)}}$$

计算得算术平均值 $\overline{t_o}$ 的实验标准差 $s(\overline{t_o}) = 0.03 \, \mathrm{C}$ 。则由 15 次独立重复测量引入的标准不确定度分量 $u_2 = s(\overline{t_o}) = 0.03 \, \mathrm{C}$,自由度 $v_2 = 14$ 。

D.4.3 由 Δt_{o} 引入的不确定度

从检定证书知: 温度测量装置修正值 Δt_o 的扩展不确定度 $U_{95}=0.06$ ℃,以正态分布估计, $k_{95}=1.960$, $u_3=u$ (Δt_o) =0.06 ℃/1.960 =0.03 ℃, $\nu_3=\infty$ 。

D.5 不确定度分量一览表

不确定度分量如表 D3 所示。

表 D3

序号	来源	符号	u_i	自由度
1	被测设备仪表读数重复性	u_1	0.01℃	14
2	温度测量装置读数重复性	u_2	0.03℃	14
3	温度测量装置误差	<i>u</i> ₃	0.03℃	œ

D.6 合成标准不确定度

$$u_c = \sqrt{{u_1}^2 + {u_2}^2 + {u_3}^2} = 0.04$$
 °C

D.7 有效自由度

根据公式

$$v_{\rm eff} = u_c^4 / \left(\sum u_i^4 / v_i \right)$$

计算得

$v_{\rm eff} = 56.7$

D.8 扩展不确定度

3个不确定度分量大小接近,且相互独立,其合成仍接近正态分布,取置信水平 $p \approx 0.95$, 查 t 分布表得扩展因子 $k_{ss} = 2.01$,故得

$$U_{95} = ku_c = 0.08\%$$

附录E

环境试验设备相对湿度偏差 校准结果不确定度分析

E.1 概述

湿度测量标准用标准温湿度仪,相对湿度偏差是指被校准设备湿度显示仪表示值与 设备实际湿度之差。

E.2 数学模型

$$\Delta h_d = h_d - h_o + \Delta h_o \tag{E1}$$

式中: Δh_a ——湿度偏差,%RH;

h,——被测设备显示仪表显示湿度,%RH;

h。——标准温湿度仪读数,%RH;

 Δh_0 ——标准温湿度仪误差对测量结果的影响,%RH。

E.3 方差与灵敏系数

式 (E1) 中 h_a , h_a , Δh_a 互为独立, 因而得

$$c_1 = \frac{\partial \Delta h_d}{\partial h_d} = 1$$
, $c_2 = \frac{\partial \Delta h_d}{\partial h_o} = -1$, $c_3 = \frac{\partial \Delta h_d}{\partial \Delta h_o} = 1$

从而得出

$$u_{\rm c}^2 = u^2 (h_{\rm d}) + u^2 (h_{\rm o}) + u^2 (\Delta h_{\rm o})$$

E.4 不确定度来源及分析

E.4.1 由 h_d 引入的不确定度

在温度为 60%、湿度为 70% RH 测量湿热箱工作空间中心点湿度,同时从设备湿度显示仪上读取 15 次显示值,记为 $h_{\rm dl}$, $h_{\rm d2}$, … , $h_{\rm dl5}$, 平均值为 $\overline{h_{\rm d}}$, 其测量列如表 E1 所示。

表 E1

· (次数)	h _{di} / (%RH)	i (次数)	h _{di} / (%RH)	i (次数)	h _{di} / (%RH)
. 1	70	6	70	11	70
2	69	7	69	12	69
3	69	8	70	13	70
4	70	9	70	14	69
5	70	10	70	15	70

根据公式

$$s (\overline{h_d}) = \sqrt{\frac{\sum_{i=1}^{n} (h_{di} - \overline{h_d})^2}{n (n-1)}}$$

计算得出算术平均值 $\overline{h_a}$ 的实验标准差 s ($\overline{h_a}$) = 0.13% RH。则由 15 次独立重复测量引入的标准不确定度分量 $u_1 = s$ ($\overline{h_a}$) = 0.13% RH,自由度 $\nu_1 = 14$ 。

E.4.2 由 h。引入的不确定度

在温度为 60° C,湿度 70° RH,对湿热箱湿度作 15 次独立重复测量,从标准温、湿度仪上读取 15 次显示值,记为 h_{ol} , h_{o2} ,…, h_{o15} ,平均值记为 $\overline{h_o}$,其测量列如表 E2 所示。

		ऋ	E.Z		
i (次数)	h _{oi} / (%RH)	i (次数)	h _{oi} / (%RH)	i (次数)	h _{oi} / (%RH)
1	68.89	6	68.43	11	68.31
2	68.96	7	68.60	12	68.21
3	68.75	8	68.43	13	68.21
4	68.34	9	68.29	14	68.33
5	68.60	10	68.39	15	68.58

表 F.2

根据公式

$$s(\overline{h_o}) = \sqrt{\frac{\sum\limits_{i=1}^{n} (h_{oi} - \overline{h_o})^2}{n(n-1)}}$$

计算得出算术平均值 $\overline{h_o}$ 的实验标准差 $s(\overline{h_o}) = 0.01\%$ RH, 则由 15 次独立重复测量引入的标准不确定度分量 $u_2 = s(\overline{h_o}) = 0.01\%$ RH, 自由度 $v_2 = 14$ 。

E.4.3 由标准数字温湿度仪误差引入的不确定度

根据标准数字温湿度仪检定证书知: 其扩展不确定度为 1.5% RH, 包含因子 k=2,则 $u_3=1.5/2=0.75\%$ RH, 因证书未告知何种分布,故以正态分布估计, $\nu_3=\infty$ 。

E.5 不确定度分量一览表

不确定度分量如表 E3 所示。

表 E3

序号	来源	符号	u_i	自由度
1	被测设备仪表读数重复性	u_1	0.13%RH	14
2	标准温湿度仪读数重复性	u_2	0.01%RH	14
3	标准温湿度仪误差	u_3	0.75%RH	*

E.6 合成标准不确定度

$$u_c = \sqrt{u_1^2 + u_2^2 + u_3^2} = 0.76\% \text{ RH}$$

E.7 扩展不确定度

由于 u_3 在各不确定度分量中占比例较大,并且服从正态分布,因此其合成仍接近正态分布,故取 $k_{95}=1.960$,得

$$U_{95} = ku_c = 1.5\% \, \text{RH}$$