CS 254: Computability and Complexity

Problem Set #10

Anonymous submission

November 19, 2019

3. (a) Show that the negation of any \neq -assignment to \emptyset is also an \neq -assignment

Proof: Each clause contains at least one literal assigned true and one literal assigned false. Therefore flipping them would still result in one literal being assigned true and one being assigned false.

(b) Let \neq SAT be the collection of 3cnf-formulas that have an \neq -assignment show we can polynomial time reduce 3SAT to \neq SAT by replacing clause c_i ($y_1 \lor y_2 \lor y_3$) with two clauses ($y_1 \lor y_2 \lor z_i$) and ($\bar{z_i} \lor y_3 \lor b$)

Proof: For the reduction to be correct we need it to be that \emptyset is mapped to \emptyset_2 then \emptyset is satisfiable iff \emptyset_2 has an \neq -assignment. We can obtain an \neq -assignment if \emptyset satisfiable and we extend the assignment to \emptyset so that z_1 is 1 if both literals y_1 and y_2 in clause c_i are 0 or z_1 is 0 if both literals y_1 and y_2 in clause c_i are 1. We simply assign 0 to b.

Going the other way if \emptyset_2 has an \neq -assignment there is a satisfying assignment to \emptyset because we know b is assigned to 0 and therefore y_1 y_2 y_3 cannot all be assigned to 0. Therefore this will have a satisfying assignment.

(c) Conclude that \neq is NP-complete

Proof: Since we have shown that 3SAT is reducible to \neq SAT all other languages must also be mapping reducible to \neq SAT. Since we have show that this reduction is possible in polynomial time it must also be the case that \neq SAT \in NP. Therefore \neq SAT is NP-complete