HomeWork 1

Submitted by: Agrima Jindal

Problem 1:

1. Description:

Perform Chi Square Test on numbers to check if numbers are Uniformly distributed.

2. Parameters and Values:

Parameters	Meaning	Values
SIZE	The number of random	400
	number variate	
NUM	Number of Intervals	10
A	Lower bound of range	0
В	Upper Bound of range	1

3. Random Number Generator:

Set seed=1234567 for Uniform (0,1).

4. Computation:

Chi Square= $\sum_i (O_i - E_i)^2 / E_i$

Where $O_{i=}$ Observed number of values in Bin and $E_{i=}$ Expected Values in a Bin

H0: Numbers are Uniform across all bins against the alternate H1.

H1: Numbers are not uniformly distributed, at some already specified significance level α .

 $P(Z>c_{\alpha})=\alpha$, Where c_{α} is the critical value that depends on Alpha.

If Chi Square>C_a then it rejects H0 else fail to reject H0.

5. Output:

Reject H0.

Problem 1B:

1. Description:

Test expon function with graph using probability density (i.e. Histogram).

2. Parameters and Values:

Parameters	Meaning	Values
SIZE	The number of random	2000
	number variate	
NUM	Number of Intervals	100
A	Lower bound of range	0

В	Upper Bound of range	100
EXPMEAN	Expected Mean	10

3. Random Number Generator:

Set seed=1234567 for Exponential (Expected Mean).

4. Histogram:

5. Output:

Mean is 9.925 and Expected mean is 10.

Problem 2:

1. Description:

Simulate an M/M/1 FIFO queue with infinite capacity. E[S]=1, m distinct values of λ and let m=10. ρ = λ/μ , Where 0< ρ <1. Plot two graphs ρ vs. Average number in System and ρ vs. Average waiting time in system.

2. Parameters and Values:

Parameters	Meanings	values
NCUSTOMER	The number of customer per run	2000
RUNPERVALUE	The run times for each p	10
NVALUE	The number of distinct values of p in the	10
	interval (0,1)	
EXPARRIVAL	The expected value or mean of	10.0, 5.0, 3.33,
	interarrival time E[A].	2.5, 2, 1.6, 1.4,
		1.2, 1.1,7.14
EXPSERVICE	The expected value or mean of service	1

time E[S].

3. Random Number generator and seed:

Set seed differently (1234567,2334567,·····) for the expected mean.

4. Basic Flow Chart and Algorithm:

5. Output:

1. ρ vs. Average number in Queue System:

2. ρ vs. Average waiting time in System:

6. Conclusion:

The average number in system and average delay in system increased as the p increased.

Problem 3:

1. Description:

Modify the program to simulate an M/M/1 system with infinite capacity of which the server will goes off on a vacation whenever the queue is empty. Graph the average number in system and average delay time for mean vacation time.

2. Parameters and Values:

Parameter	Meaning	Values
NCUSTOMER	The number of customer per run	2000
RUNPERVALUE	The run times for each p	10
NVALUE	The number of distinct values of p in	10
	the interval (0,1)	
EXPARRIVAL	The expected value or mean of	10
	interarrival time E[A].	
EXPSERVICE	The expected value or mean of	1
	service time E[S].	
INTERVAL	The interval of mean vacation time	1
	E[V]	
MINVALUE	The minimal mean vacation time	1

3. Output:

Vacation time mean vs. number in queue system:

Vacation time mean vs. delay in queue system:

4. Conclusion:

As the mean vacation time E[v] increases, the average number in queue system increases a little, the average delay in system increases much.