1 Regression Loss Functions

1.1 L^p Norm

Let $y(w, b) : \mathbb{R}^n \to \mathbb{R}^m$ be a model defined by w and b that map $x \in \mathbb{R}^n$ into $y \in \mathbb{R}^m$. Mathematically the L^1 norm is

$$\| \boldsymbol{y}(\boldsymbol{w}, \boldsymbol{b}) - \hat{\boldsymbol{y}} \|_1 = \sum_{k=1}^m |y_k(\boldsymbol{w}, \boldsymbol{b}) - \hat{y}_k|$$

The L^p norm is

$$\|\boldsymbol{y}(\boldsymbol{w}, \boldsymbol{d}) - \hat{\boldsymbol{y}}\|_p = \left(\sum_{k=1}^m \left(y_k(\boldsymbol{w}, \boldsymbol{b}) - \hat{y}_k\right)^p\right)^{1/p}$$

The L^{∞} norm is

$$\|\boldsymbol{y}(\boldsymbol{w}, \boldsymbol{b}) - \hat{\boldsymbol{y}}\|_{\infty} = \max_{k} |y_k(\boldsymbol{w}, \boldsymbol{b}) - \hat{y}_k|$$

1.2 Mean Absolute Error(L^1 Loss)

Suppose there are N instances $\{x_i\}_{i=1}^N$. The MAE is defined by

$$L(\boldsymbol{w}, \boldsymbol{b}) = \frac{\sum_{n=1}^{N} \|\boldsymbol{y}^{n}(\boldsymbol{w}, \boldsymbol{b}) - \hat{\boldsymbol{y}^{n}}\|_{1}}{N}$$

1.3 Mean Square $Error(L^2 Loss)$

Suppose there are N instances $\{x_i\}_{i=1}^N$. The MSE is defined by

$$L(\boldsymbol{w}, \boldsymbol{b}) = \frac{\sum_{n=1}^{N} \|\boldsymbol{y}^{n}(\boldsymbol{w}, \boldsymbol{b}) - \hat{\boldsymbol{y}^{n}}\|_{2}^{2}}{N}$$

1.4 Regularization

Add new term

$$\tilde{L}(\boldsymbol{w}, \boldsymbol{b}) = L(\boldsymbol{w}, \boldsymbol{b}) + \lambda \|\boldsymbol{w}\|_2^2$$

The last term will make loss function smoother since we also minimize weights.