EMG Sensors

Luke Cohen Ian Fan Yuguo Sheng **EMG: Origin and Characteristics**

EMG Definition

Generation of EMG

When the membrane potential is depolarized beyond threshold, action potential is generated, and travels along the axon.

Similar action potential also travels along the muscle fiber

Detect EMG with differential amplifier

Cannot probe individual neuron activity

⇒ Surface EMG: stick electrodes to the skin, amplifies the difference

Detect EMG with differential amplifier

Unipolar action potential signal becomes bipolar signal after differential amplifier. Signals from multiple muscle fibres superpose together

Superposition and EMG Characteristics

Recorded EMG signals waveforms are **random** and **non-reproducible**, But the difference between active and rest are significant.

Magnitude and Spectrum of EMG

Raw surface FMG: $+/-5000 \mu V$ (athletes) Frequency: 6~500Hz, majority of power in: 20~150Hz

Setup to work with EMG signals

Inside EMG Sensor: Amplification and signal processing

EMG-Amplification

- Electrodes attached to EMG-amplifier
- Acts as differential amplifier
 - Detects differences between electrodes
- Cancel external noise at both electrodes
 - "Common mode" signals
 - E.g. 60Hz power noise
- Preamp near electrodes to buffer original signal

Bandpass filter

- EMG signal generally between 20 Hz and 250 Hz
- Frequency range should start from 10 Hz highpass to 500 Hz lowpass

A/D Conversion

- Signal must be converted from analog to digital
- Sampling rate: 1000Hz
 - Nyquist Theorem
- Signal after filter: 10~500Hz

Sampling frequency

Signal Processing

- Full wave rectification
 - Allows for average, max, and area measurements
- Smoothing
 - Moving average vs. Root Mean Square
- Digital filtering
 - Generally not needed with newer tech
- Amplitude Normalization
 - Use of MVC-normalization (Maximum Voluntary Contraction) is most common

Smoothing

Signal Processing

Blue:

Raw EMG

Red:

Processed Signal

Signal Baseline Quality Inspection

- Power hum
 - Make sure ground is connected and clean
- Baseline offset
 - Offset correction/calibration required shortly before recording of data
- Baseline shift
 - o Proper electrode/cable fixation
 - Good skin preparation

Power hum

Baseline shift

Work with EMG Sensor: MyoWare

MyoWare: Built-in signal processing

Demo Video

MyoWare EMG Sensor

Parameter	Min	ТҮР	Max
Supply Voltage	+2.9V	+3.3V or +5V	+5.7V
Adjustable Gain Potentiometer	0.01 Ω	50 kΩ	100 kΩ
Output Signal Voltage EMG Envelope Raw EMG (centered about +Vs/2)	0V 0V	1 1	+Vs +Vs
Input Impedance		110 GΩ	
Supply Current		9 mA	14 mA
Common Mode Rejection Ratio (CMRR)		110	
Input Bias		1 pA	

MyoWare Electrodes

- Middle Electrode (1):
 - Placed in the belly of the muscle
- End Electrode (2):
 - Placed such that the length of the device is parallel to muscle fibers
- Reference Ground (wire):
 - Placed away from middle and end electrodes
 - Often placed on boney area near the muscle

MyoWare Placement

Innervation Zone

Midline Offset

Correct Placement

Myotendon Junction

Myoware Output: Rectified EMG Envelope

- Signal Processing done on board
- Output is an ADC friendly signal

Rectified & Integrated EMG Signal

Myoware Output: Raw EMG Waveform

- New Myoware offers Raw EMG output (already amplified) from the board
- Enable user to do different signal processing techniques

RAW EMG Signal

Reference:

"The ABC of EMG: A Practical Introduction to Kinesiological Electromyography" By Peter Konrad, Noraxon INC (2005).

"MyoWare™ Muscle Sensor (AT-04-001) DATASHEET"

Thanks Q & A