Outline Introduction Spatial Inference Temporal Inference Conclusion

Probabilistic Logical Networks Spatio-Temporal Inference

Nil Geisweiller

Novamente LLC

Xiamen University
AGI Summer School 2009

- 1 Introduction
- 2 Spatial Inference
- Temporal Inference
- 4 Conclusion

Outline

- Introduction
- Spatial Inference
- Temporal Inference
- Conclusion

Spatio-temporal PLN inference overview

- Extract Spatio-temporal predicates from the scene
 - Spatial: inside (ball, box)
 - Temporal: atTime(11pm, ring(bell))
 - Spatio-temporal: atTime(11pm, near(Jill, John))

Spatio-temporal PLN inference overview

- Extract Spatio-temporal predicates from the scene
 - Spatial: inside (ball, box)
 - Temporal: atTime(11pm, ring(bell))
 - Spatio-temporal: atTime(11pm, near(Jill, John))
- Based on Spatio-temporal laws and background knowledge infer new predicates
 - inside (X, Y) AND inside $(Y, Z) \Rightarrow inside(X, Z)$

Spatio-temporal PLN inference overview

- Extract Spatio-temporal predicates from the scene
 - Spatial: inside (ball, box)
 - Temporal: atTime(11pm, ring(bell))
 - Spatio-temporal: atTime(11pm, near(Jill, John))
- Based on Spatio-temporal laws and background knowledge infer new predicates
 - inside (X, Y) AND inside $(Y, Z) \Rightarrow inside(X, Z)$
- Laws and background knowledge are expressed in PLN
 - hand-coded
 - learned based on past experience
 - infered

Extract Spatio-temporal predicates

EvaluationLink <0.99>
 near
 ListLink
 yellow_cube
 green_cube
 EvaluationLink <0.85>
 externally_connected
 ListLink

green_cube

EvaluationLink <0.95>
externally_connected
ListLink
floor
yellow_cube

floor

Extract Spatio-temporal predicates

- EvaluationLink <0.99>
 near
 ListLink
 yellow_cube
 green_cube
- EvaluationLink <0.85>
 externally_connected
 ListLink
 floor
 green_cube
 - EvaluationLink <0.95> externally_connected ListLink floor yellow_cube
- Can be pre-processed independently (Computer Vision)

Extract Spatio-temporal predicates

- EvaluationLink <0.99>
 near
 ListLink
 yellow_cube
 green_cube
- - EvaluationLink <0.95> externally_connected ListLink floor yellow_cube
- Can be pre-processed independently (Computer Vision)
- or in tight interaction with PLN/OpenCog (feedback to correct predicate extraction)

2D or 3D SpaceMap

Grid, objects placed on the grid

t=1

- Grid, objects placed on the grid
- recorded over time

t=2

- Grid, objects placed on the grid
- recorded over time

t=3

- Grid, objects placed on the grid
- recorded over time

t=4

- Grid, objects placed on the grid
- recorded over time

t=5

- Grid, objects placed on the grid
- recorded over time


```
AtTime
5
EvaluationLink
near
ListLink
yellow_obj1
red_obj
```

- Grid, objects placed on the grid
- recorded over time
- Fixed set of spatial predicates (near, inside, above, etc) computed and timestamped

Outline Introduction Spatial Inference Temporal Inference Conclusion

Spatio-temporal Inference

Spatio-temporal PLN inference is not much different than other kind of PLN inference.

Spatio-temporal Inference

Spatio-temporal PLN inference is not much different than other kind of PLN inference.

In practice

- hand-coded Spatio-temporal inference rules in PLN (ImplicationLink)
- Dedicated inference control mechanism

Outline

- Introduction
- Spatial Inference
- Temporal Inference
- Conclusion

Spatial inference: Region Connection Calculus

Predefined set of topological spatial relationships

Spatial inference: Region Connection Calculus

Predefined set of topological spatial relationships

Rules to infer new relationships

Spatial inference: Region Connection Calculus

Predefined set of topological spatial relationships

2 Rules to infer new relationships

ImplicationLink
AND
 tangentialProperPart(\$X,\$Y)
 tangentialProperPart(\$Y,\$Z)
XOR
 tangentialProperPart(\$X,\$Z)
 nonTangentialProperPart(\$X,\$Z)

Spatial inference: extending Region Connection Calculus

- Adding more topological predicates
 - convex
 - inside
 - partly_inside C
 - outside
 - ...

Spatial inference: extending Region Connection Calculus

- Adding more topological predicates
 - convex
 - inside
 - partly_inside
 - outside C
 - ...
- 2 Adding metrical predicates
 - near 🛑 🔵
 - next 🔷 🔵
 - ...

Spatial inference: extending Region Connection Calculus

- Adding more topological predicates
 - convex
 - inside
 - partly_inside 🧲
 - outside
 - ...
- 2 Adding metrical predicates
 - near 🔷 🔵
 - next •
 - ...
- Probabilistic or Fuzzy extension (natural in PLN)

Outline

- Introduction
- Spatial Inference
- Temporal Inference
- Conclusion

Temporal Inference: Allen's Interval Algebra

Predefined set of topological temporal relationships

Temporal Inference: Allen's Interval Algebra

Predefined set of topological temporal relationships

2 Rules to infer new relationships


```
ImplicationLink
   AND
        meet($X,$Y)
        start($Y,$Z)
   meet($X,$Z)
```

Temporal Inference: Allen's Interval Algebra

Predefined set of topological temporal relationships

Rules to infer new relationships

Spatial inference: extending Allen's Interval Algebra

Spatial inference: extending Allen's Interval Algebra

Quantitatif time initiatedAt (0, \$X), terminatedAt (5, \$X).

```
initatedAt(4,$Y), terminatedAt(6,$Y),
initatedAt(7,$Z), terminatedAt(11,$Z)
```

Probabilistic and Fuzzy extension

Spatial inference: extending Allen's Interval Algebra

Ouantitatif time

X

Z

initiatedAt (0, \$X), terminatedAt (5, \$X), initatedAt (4, \$Y), terminatedAt (6, \$Y), initatedAt (7, \$Z), terminatedAt (11, \$Z)

Probabilistic and Fuzzy extension

Temporal logic, etc

Outline Introduction Spatial Inference Temporal Inference Conclusion

Example of Spatio-temporal Inference

Assessing the probability of being in the airport an hour before my flight considering I set my alarm clock at 5am.

Example of Spatio-temporal Inference

Assessing the probability of being in the airport an hour before my flight considering I set my alarm clock at 5am.

Axioms

atTime(5am, alarm_clock) <1>

Example of Spatio-temporal Inference

Assessing the probability of being in the airport an hour before my flight considering I set my alarm clock at 5am.

Axioms

```
atTime(5am, alarm_clock) <1>
ForAll $T
ImplicationLink <0.9>
atTime($T, alarm_clock)
atTime($T+5mn, waking_up)
```

Example of Spatio-temporal Inference

Assessing the probability of being in the airport an hour before my flight considering I set my alarm clock at 5am.

Axioms

Assessing the probability of being in the airport an hour before my flight considering I set my alarm clock at 5am.

Axioms

```
atTime(5am, alarm_clock) <1>
forAll $T
    ImplicationLink <0.9>
        atTime($T, alarm_clock)
        atTime($T+5mn, waking_up)

forAll $T
    ImplicationLink <0.9>
        atTime($T, waking_up)
        atTime($T, waking_up)
        atTime($T, grab_a_cab)

forAll $T
    ImplicationLink <0.8>
        atTime($T, grab_a_cab)
        atTime($T, grab_a_cab)
```

Assessing the probability of being in the airport an hour before my flight considering I set my alarm clock at 5am.

Axioms

Assessing the probability of being in the airport an hour before my flight considering I set my alarm clock at 5am.

Axioms

```
atTime(5am, alarm_clock) <1>
  ForAll $T
        ImplicationLink <0.9>
            atTime($T, alarm clock)
           atTime($T+5mn, waking up)
ForAll $T
       ImplicationLink <0.9>
            atTime($T, waking up)
            atTime($T+25mn, grab a cab)
4 ForAll $T
        ImplicationLink <0.8>
            atTime($T, grab_a_cab)
           atTime($T+30mn, inside(self, airport parking))
5 ForAll $T
       atTime($T, inside(airport parking, airport)) <1>
   atTime(7am, flight) <1>
```

Spatio-temporal rule

```
At T, if X is inside Y and Y is inside Z then X is inside Z

ForAll $T, $X, $Y, $Z

ImplicationLink

AND

atTime($T, inside($X,$Y))

atTime($T, inside($Y,$Z))

atTime($T, inside($X,$Z))
```

Target theorem

```
atTime(6am, inside(self, airport)) <?>
```

Target theorem

atTime(6am, inside(self, airport)) <?>

Sub-target theorem

atTime(6am, inside(self, airport_parking)) <?>

Inference Steps for the sub-target theorem

atTime(6am, inside(self, airport_parking)) <?>


```
atTime(6am, inside(self, airport_parking)) <?>
```

- Instantiate axiom 2 with \$T=5am
 ImplicationLink <0.9>
 atTime(5am, alarm_clock)
 atTime(5:05am, waking_up)
- 2 Apply axiom 1 as premise of previous inference step atTime (5:05am, waking_up) <0.9>

```
atTime(6am, inside(self, airport_parking)) <?>
```

- Instantiate axiom 2 with \$T=5am ImplicationLink <0.9> atTime(5am, alarm_clock) atTime(5:05am, waking_up)
- 2 Apply axiom 1 as premise of previous inference step
- 3 Instantiate axiom 3 with \$T=5:05am ImplicationLink <0.9> atTime(5:05am, waking_up) atTime(5:30am, grab a cab)

```
atTime(6am, inside(self, airport_parking)) <?>
```

- Instantiate axiom 2 with \$T=5am
 ImplicationLink <0.9>
 atTime(5am, alarm_clock)
 atTime(5:05am, waking_up)
- 2 Apply axiom 1 as premise of previous inference step atTime (5:05am, waking up) <0.9>
- 3 Instantiate axiom 3 with \$T=5:05am
 ImplicationLink <0.9>
- atTime (5:30am, waking_up)
 atTime (5:30am, grab_a_cab)
- 4 Apply the result of step 2 as premise of the previous step atTime (5:30am, grab_a_cab) <0.81>

```
atTime(6am, inside(self, airport_parking)) <?>
```

- Instantiate axiom 2 with \$T=5am ImplicationLink <0.9> atTime (5am, alarm_clock) atTime (5:05am, waking_up)
- 2 Apply axiom 1 as premise of previous inference step
- atTime(5:05am, waking_up) <0.9>
- Instantiate axiom 3 with \$T=5:05am ImplicationLink <0.9> atTime(5:05am, waking_up) atTime(5:30am, grab_a_cab)
- 4 Apply the result of step 2 as premise of the previous step atTime (5:30am, grab_a_cab) <0.81>
- Instantiate axiom 4 with \$T=5:30am
 ImplicationLink <0.8>
 atTime(5:30am, grab_a_cab)
 atTime(6dam, inside(self, airport parking))

```
atTime(6am, inside(self, airport_parking)) <?>
```

- Instantiate axiom 2 with \$T=5am
 ImplicationLink <0.9>
 atTime(5am, alarm_clock)
 atTime(5:05am, waking up)
- 2 Apply axiom 1 as premise of previous inference step atTime (5:05am, waking up) <0.9>
- (3) Instantiate axiom 3 with \$T=5:05am
 ImplicationLink <0.9>
 atTime(5:05am, waking_up)
 atTime(5:30am, grab a cab)
- Apply the result of step 2 as premise of the previous step atTime (5:30am, grab_a_cab) <0.81>
- Instantiate axiom 4 with \$T=5:30am
 ImplicationLink < 0.8>
 atTime(5:30am, grab_a_cab)
 atTime(6am, inside(self, airport_parking))
- Apply the result of step 4 as premise of the previous step atTime (6am, inside (self, airport_parking)) <0.73>


```
atTime(6am, inside(self, airport_parking)) < 0.73>
```

- Instantiate axiom 2 with \$T=5am ImplicationLink <0.9> atTime (5am, alarm_clock) atTime (5:05am, waking_up)
- 2 Apply axiom 1 as premise of previous inference step atTime (5:05am, waking up) <0.9>
- 3 Instantiate axiom 3 with \$T=5:05am ImplicationLink <0.9>
 - atTime(5:05am, waking_up)
 atTime(5:30am, grab_a_cab)
- 4 Apply the result of step 2 as premise of the previous step atTime (5:30am, grab_a_cab) <0.81>
- Instantiate axiom 4 with \$T=5:30am ImplicationLink <0.8> atTime(5:30am, grab_a_cab) atTime(6am, inside(self, airport_parking))
- 6 Apply the result of step 4 as premise of the previous step atTime (6am, inside (self, airport_parking)) <0.73>

Inference steps for the target theorem

```
atTime(6am, inside(self, airport)) <?>
```

0

Instantiate axiom 5 with \$T=6am
atTime(6am, inside(airport_parking, airport)) <1>

```
atTime(6am, inside(self, airport)) <?>
```

- Instantiate axiom 5 with \$T=6am atTime(6am, inside(airport_parking, airport)) <1>
- Apply sub-target theorem and previous step (standard probability theory)
 AND <0.73>
 atTime(6am, inside(self,airport_parking))
 atTime(6am, inside(airport parking,airport))

Inference steps for the target theorem

```
atTime(6am, inside(self, airport)) <?>
```

- Instantiate axiom 5 with \$T=6am atTime(6am, inside(airport_parking, airport)) <1>
- 2 Apply sub-target theorem and previous step (standard probability theory)

 AND <0.73>

```
atTime(6am, inside(self,airport_parking))
atTime(6am, inside(airport_parking,airport))
```

3 Instantiate spatio-temporal rule 1, with \$T=6am, \$X=self, \$Y=airport_parking and \$Z=parking ImplicationLink <1>
AND

```
AND
atTime(6am, inside(self,airport_parking))
atTime(6am, inside(airport_parking,airport))
atTime(6am, inside(self,airport))
```

Inference steps for the target theorem

```
atTime(6am, inside(self, airport)) <?>
```

- Instantiate axiom 5 with \$T=6am
 atTime(6am, inside(airport_parking, airport)) <1>
- 2 Apply sub-target theorem and previous step (standard probability theory)

```
atTime(6am, inside(self,airport_parking))
atTime(6am, inside(airport_parking,airport))
```

3 Instantiate spatio-temporal rule 1, with \$T=6am, \$X=self, \$Y=airport_parking and \$Z=parking ImplicationLink <1>
ann
ann

```
atTime(6am, inside(self,airport_parking))
atTime(6am, inside(airport_parking,airport))
atTime(6am, inside(self,airport))
```

4 Apply step 2 as premise of previous step atTime(6am, inside(self, airport)) <0.73>

Inference steps for the target theorem

```
atTime(6am, inside(self, airport)) <0.73>
```

- Instantiate axiom 5 with \$T=6am
 - atTime(6am, inside(airport_parking, airport)) <1>
 2 Apply sub-target theorem and previous step (standard probability theory)
 AND <0.73>

```
atTime(6am, inside(self,airport_parking))
atTime(6am, inside(airport parking,airport))
```

[3] Instantiate spatio-temporal rule 1, with \$T=6am, \$X=self, \$Y=airport_parking and \$Z=parking ImplicationLink <1>ann

```
atTime(6am, inside(self,airport_parking))
atTime(6am, inside(airport_parking,airport))
atTime(6am, inside(self,airport))
```

4 Apply step 2 as premise of previous step atTime(6am, inside(self, airport)) <0.73>

Outline

- Introduction
- Spatial Inference
- Temporal Inference
- 4 Conclusion

Conclusion

- Coding Spatio-temporal laws in the atomSpace
- Getting spatio-temporal knowledge (computer vision)
- In practice, inference control will play a great role to lead to efficient inference