

Esercitazioni per il corso di STRUMENTAZIONE SPAZIALE

prof. E. Lorenzini

USO DI MATLAB PER LA DETERMINAZIONE D'ASSETTO E L'ANALISI DI COVARIANZA

- Single-axis attitude determination
- Three-axis attitude determination

Giovanni Anese, Ph.D. student e-mail: giovanni.anese@phd.unipd.it

Materiale didattico preparato da ANDREA VALMORBIDA, Ph.D.

Univariate Normal or Gaussian distribution $\mathcal{N}(\mu, \sigma)$

Probability Density Function (PDF)

$$f(x) = \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

 $\mu \Rightarrow$ mean value

 $\sigma \Rightarrow \text{standard deviation}$

 $\sigma^2 \Rightarrow \text{variance}$

Cumulative Distribution Function (CDF)

$$F(x) = \int_{-\infty}^{x} f(t)dt = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right],$$

$$erf(y) = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{y} e^{-\frac{t^2}{2}} dt$$

 $F_X(x) = \Pr(X \le x) \Rightarrow$ probability that the random variable X takes on a value less than or equal to x.

https://en.wikipedia.org/wiki/Normal_distribution

The 3-sigma rule

univariate normal distribution				
r	p	p [%]		
1	0.6827	68.27		
2	0.9545	95.45		
3	0.9973	99.73		

Matlab functions:

- erf
- erfinv

See also:

- norminv
- normcdf
- tinv
- tcdf
- unifinv
- unifcdf

- $p \Rightarrow$ confidence level (livello di confidenza)
- $r \Rightarrow$ magnification or coverage factor (fattore di copertura)

Univariate Normal or Gaussian distribution

$$p = \operatorname{erf}\left(\frac{r}{\sqrt{2}}\right) \Rightarrow r = \sqrt{2} \operatorname{erf}^{-1}(p)$$

Multivariate Normal or Gaussian distribution $\mathcal{N}(\mu, \Sigma)$

Probability Density Function (PDF) f(x)

$$f(x) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

 $n \Rightarrow$ space dimensionality

 $\mu \in \mathbb{R}^n \implies \text{mean value}$

 $\Sigma \in \mathbb{R}^{n \times n} \Rightarrow$ covariance matrix

$$\Sigma_{i,j} = \begin{cases} var(x_i) & if \ i = j \\ cov(x_i, x_j) & if \ i \neq j \end{cases}$$

Cumulative Distribution Function (CDF) F(x)

probability that all components of X are less than or equal to the corresponding values in the vector x

$$F_X(x) = \Pr(X \le x)$$

There is no closed form for F(x); however, there are diverse algorithms to estimate it numerically.

Bivariate Normal or Gaussian distribution $\mathcal{N}(\mu, \Sigma)$

Bivariate normal distribution				
r	p p [%]			
1	0.3935	39.35		
2	0.8647	86.47		
3	0.9889	98.89		

 $p \Rightarrow$ confidence level (livello di confidenza)

 $r \Rightarrow$ magnification or coverage factor (fattore di copertura)

Bivariate Normal or Gaussian distribution

$$p = 1 - e^{-\frac{r^2}{2}} \implies r = \sqrt{-2\ln(1-p)}$$

Uncertainty ellipse

The covariance matrix $\Sigma \in \mathbb{R}^{2 \times 2}$ defines the uncertainty ellipse $\mathcal{E}(p)$:

- \checkmark the eigenvectors of **Σ** defines the principal axes x' and y' of the uncertainty ellipse \mathcal{E}
- \checkmark the eigenvalues of **Σ** defines the standard deviations σ_{x} , and σ_{y} ,
- \checkmark the semi-axes of the uncertainty ellipse for a given confidence level p are:
 - semi-major axis: $a = r(p) \sigma_{x}$,
 - semi-minor axis: $b = r(p) \sigma_{v}$

 \triangleright The principal axes x' and y' of the uncertainty ellipse \mathcal{E} can be found by computing eigenvectors and eigenvalues of the covariance matrix Σ

Trivariate Normal or Gaussian distribution $\mathcal{N}(\mu, \Sigma)$

Trivariate Normal or Gaussian distribution

- \checkmark There is not an explicit relation between the confidence level p and the magnification factor r, as for the univariate or bivariate Normal Distribution.
- ✓ There is instead a numeric algorithm, see for instance:

 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118537
- \checkmark Note: use interpolation data p-r to obtain the magnification factor r that corresponds to a given confidence level p.
- \triangleright the covariance matrix $\Sigma \in \mathbb{R}^{3\times 3}$ defines the error ellipsoid $\mathcal{E}(p)$:
 - \checkmark the eigenvectors of **Σ** defines the principal axes x', y' and z' of the error ellipsoid $\mathcal{E}(p)$;
 - ✓ the eigenvalues of Σ defines the standard deviations $\sigma_{x'}$, $\sigma_{y'}$ and $\sigma_{z'}$;
 - \checkmark the semi-axes of the error ellipse for a given confidence level p are:
 - semi axes: $a_i = r(p) \sigma_{x_i}$

Trivariate normal distribution				
r	p p [%]			
1	0.1987	19.87		
2	0.7384	73.85		
3	0.9707	97.07		

Magnification factor r vs. confidence level p vs. dimensionality

Confidence levels of scaled Standard Deviational Hyper-Ellipsoid (SDHE) vary with different magnification factors in spaces with the dimensionality ≤ 10 .

Dimensionality		Magnification factor						
	1	2	3	4	5	6	7	
1	0.6827	0.9545	0.9973	0.9999	1.0000	1.0000	1.0000	
2	0.3935	0.8647	0.9889	0.9997	1.0000	1.0000	1.0000	
3	0.1987	0.7385	0.9707	0.9989	1.0000	1.0000	1.0000	
4	0.0902	0.5940	0.9389	0.9970	0.9999	1.0000	1.0000	
5	0.0374	0.4506	0.8909	0.9932	0.9999	1.0000	1.0000	
6	0.0144	0.3233	0.8264	0.9862	0.9997	1.0000	1.0000	
7	0.0052	0.2202	0.7473	0.9749	0.9992	1.0000	1.0000	
8	0.0018	0.1429	0.6577	0.9576	0.9984	1.0000	1.0000	
9	0.0006	0.0886	0.5627	0.9331	0.9970	1.0000	1.0000	
10	0.0002	0.0527	0.4679	0.9004	0.9947	0.9999	1.0000	

Magnification ratios of scaled SDHE corresponding to different specified confidence levels with space dimensionality ≤ 10 .

Dimensionality	Confidence Level (%)						
	80.0	85.0	90.0	95.0	99.0	99.9	
1	1.2816	1.4395	1.6449	1.9600	2.5758	3.2905	
2	1.7941	1.9479	2.1460	2.4477	3.0349	3.7169	
3	2.1544	2.3059	2.5003	2.7955	3.3682	4.0331	
4	2.4472	2.5971	2.7892	3.0802	3.6437	4.2973	
5	2.6999	2.8487	3.0391	3.3272	3.8841	4.5293	
6	2.9254	3.0735	3.2626	3.5485	4.1002	4.7390	
7	3.1310	3.2784	3.4666	3.7506	4.2983	4.9317	
8	3.3212	3.4680	3.6553	3.9379	4.4822	5.1112	
9	3.4989	3.6453	3.8319	4.1133	4.6547	5.2799	
10	3.6663	3.8123	3.9984	4.2787	4.8176	5.4395	

doi:10.1371/journal.pone.0118537.t002

Magnification factor r vs. confidence level p vs. dimensionality

Covariance Analysis with Montecarlo Methods

Covariance Analysis with Montecarlo Methods

Esercitazione 5/1 di Strumentazione Aerospaziale

> Prima esperienza: Single-Axis Attitude Determination

- ✓ Metodo di Grubin per la determinazione ad asse singolo
- ✓ Analisi di Covarianza con metodo Montecarlo per la stima dell'incertezza d'assetto
- ✓ File Matlab:
 - ✓ main: «Esercitazione_single_axis_determination_Montecarlo.m»

In questo script di Matlab, dovrete seguire le istruzioni ed implementare la chiamata alla funzione con il metodo di Grubin e la parte di analisi di covarianza. Nelloscript avrete il testo con la consegna sottoforma di testo, mentre nelle varie celle dovrete implementare il codice richiesto nei commenti.

- ✓ subfunction: «SingleAxisAttDetAlgo.m» che implementa il metodo Grubin
- ✓ funzioni aggiuntive (built-in) di Matlab: deg2rad, rad2deg, eig, cov

Esercitazione 5/2 di Strumentazione Aerospaziale

- ✓ Seconda esperienza: Three-Axes Attitude Determination
 - ✓ Metodo-q di Davenport => routine QUEST
 - ✓ File Matlab:
 - ✓ main: «Esercitazione three axes determination quest.m»

Come nell'esercitazione precedente, sarete guidati nell'implementazione del metodo di Davenport e dell'analisi di covarianza.

✓ subfunctions: «quest.m» (scaricata dal Matlab File Exchange)

Chiamerete questa routine per la generazione delle matrici di rotazione per poi trovare gli angoli di Eulero

- ✓ altre funzioni: libreria «matGeom» scaricabile da Matlab File Exchange, trasm, trasfg, pltassi, freccia, drawEllipsoidV2
- ✓ funzioni aggiuntive (built-in) di Matlab: unifrnd, deg2rad, rad2deg, eul2rotm, rotm2eul, sph2cart, cart2sph, randn, rms, eig, cov