

VARISCITE LTD.

VAR-SOM-MX8X V1.x Datasheet NXP i.MX 8QXPTM/8DXPTM - based System-on-Module

VARISCITE LTD.

VAR-SOM-MX8X Datasheet

© 2019 Variscite Ltd.

All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means whether, electronic, mechanical, or otherwise without the prior written permission of Variscite Ltd.

No warranty of accuracy is given concerning the contents of the information contained in this publication. To the extent permitted by law no liability (including liability to any person by reason of negligence) will be accepted by Variscite Ltd., its subsidiaries or employees for any direct or indirect loss or damage caused by omissions from or inaccuracies in this document.

Variscite Ltd. reserves the right to change details in this publication without notice. Product and company names herein may be the trademarks of their respective owners.

Variscite Ltd. 4, Hamelacha Street Lod P.O.B 1121 Airport City, 70100 ISRAEL

Tel: +972 (9) 9562910 Fax: +972 (9) 9589477

Document Revision History 1.

Revision	Date	Notes
1.0	Jan 27, 2019	Initial - Preliminary
1.01	Apr 01, 2019	Updated sections 9.4,10,11 Updated sections 7.4,9.2 Pins 31,33,35
1.02	Jun 03, 2019	Updated sections 4.3, 9.4
1.03	Jul 18, 2019	Updated block diagram section 4.3
1.04	Oct 16, 2019	Updated section 11.3
1.05	Nov 11, 2021	Added EEPROM section 5.8, Updated EEPROM in block diagram section 4.3
1.06	Apr 25, 2022	Added Ethernet PHY ADIN1300 – Updated sections 4.3, 5.6, 7.4, 8.3 Updated section 5.3 Following NXP iMX8QXP datasheet Rev 4: Removed MLB I/F from sections 4.3, 7.5, 8 Updated Table 70 Updated section 13 SMT spacer P/N
1.07	May 1, 2022	Updated sections: 4.2, 5.4, 8.4
1.08	May 17, 2022	Corrected note for pin 98 Following NXP iMX8QXP datasheet Rev 4: Removed Tamper I/F from sections 4.3, 7.5, 8 Updated note on PCIE sections 7.4, 8.10 Updated section 13 SMT Heat spreader P/N
1.09	Jun 15, 2022	Table 1 – Corrected description for EC assembly option
1.10	Sep 14, 2022	Updated section 13.2
1.11	Jan 3, 2023	Updated Key Features section 5.4
1.12	Feb 26, 2023	Updated section 12 Updated the eMMC sections 4.2, 5.2

2. Table of Contents

1.	Docume	ent Revision History	3
2.	Table of	f Contents	4
3.	List of T	ables	7
4.	Overvie	w	9
	4.1	General Information	9
	4.2	Feature Summary	10
	4.3	Block Diagram	11
5.	Main Ha	ardware Components	12
	5.1	NXP i.MX8QXP/i.MX8DXP	12
		5.1.1 Overview	12
		5.1.2 i.MX8X Block Diagram	13
		5.1.3 ARM Cortex-A35 Platform	14
		5.1.4 Arm Cortex-M4 Platform	14
	5.2	Memory	15
		5.2.1 RAM	15
		5.2.2 Non-volatile Storage Memory	15
	5.3	Audio (WM8904)	16
	5.4	Wi-Fi + BT (LWB5™)	17
	5.5	PMIC	17
	5.6	Dual Ethernet MAC and on-board 10/100/1000 Mbps Ethernet Transceiver	18
		5.6.1 Qualcomm Atheros AR8033 Ethernet Transceiver	18
		5.6.2 Analog Devices ADIN1300 Ethernet Transceiver	18
	5.7	Resistive Touch controller (TSC2046)	19
	5.8	EEPROM	19
6.	VAR-SO	M-MX8X Hardware Configuration	20
7.	Externa	l Connectors	21
	7.1	Board to Board Connector	21
	7.2	Wi-Fi & BT Connector	21
	7.3	JTAG Header	21
	7.4	VAR-SOM-MX8X Connector Pin-out	22
	7.5	VAR-SOM-MX8X Connector Pin Mux	30
8.	SOM's i	nterfaces	
	8.1	Display Interfaces	37
		8.1.1 MIPI-DSI/LVDS	37
		8.1.2 Parallel LCD	38
	8.2	Camera Interface	40
		8.2.1 MIPI CSI-2	40
		8.2.2 Parallel CSI	41
	8.3	Ethernet Interface	
	8.4	Wi-Fi & BT & MMC/SD/SDIO	46

		8.4.1 Interface implementation options	47
		8.4.2 Bluetooth Interface signals	48
		8.4.3 uSDHC1 Interface signals	48
	8.5	USB 2.0	49
		8.5.1 USB OTG interface signals	49
	8.6	USB 3.0	50
	8.7	Audio	51
		8.7.1 WM8904CGEFL Audio Codec	51
		8.7.2 Enhanced Serial Audio Interface	52
		8.7.3 Serial Audio Interface	53
		8.7.4 Sony Phillips Digital Interface In/Out	55
		8.7.5 Medium quality sound (MQS)	55
	8.8	Audio Clock Mux (ACM)	56
	8.9	Resistive Touch	56
	8.10	PCle	57
	8.11	UART	59
	8.12	Flexible Controller Area Network	61
	8.13	LPSPI	62
	8.14	QSPI	63
	8.15	Keypad	64
	8.16	PWM	65
	8.17	I2C	65
	8.18	Analog to Digital Converter	66
	8.19	General Purpose Timer	67
	8.20	Flex Timer (FTM)	67
	8.21	System Control Unit	68
	8.22	JTAG	69
	8.23	Cortex M4	70
	8.24	General Purpose IO	72
9.	Power a	and control	73
	9.1	Power	73
	9.2	Ground	73
	9.3	General System Control Signals	74
	9.4	Boot Configuration	74
10.	Assembl	ly options	75
	10.1	ADC	75
	10.2	Analog Audio Codec	75
	10.3	Resistive Touch	76
	10.4	Ethernet PHY	76
	10.5	Dual band Wi-Fi and BT/BLE combo	76
	10.6	Bluetooth	76
	10.7	LPDDR4	76

	10.8	eMMC	76
11.	Electrica	I specifications	77
	11.1	Absolute maximum ratings	77
	11.2	Operating conditions	77
	11.3	Power consumption	78
12.	Environr	nental Specifications	79
13.	Mechani	ical Drawings	80
	13.1	Carrier Board Mounting	80
	13.2	Thermal Management	Error! Bookmark not defined.
	13.3	SOM Dimensions	80
14.	Legal No	tice	81
15.	Warrant	y Terms	82
16.	Contact	Information	83

3. List of Tables

Table 1 Hardware Configuration Options	. 20
Table 2: VAR-SOM-MX8X J1 Pinout	. 22
Table 3: VAR-SOM-MX8X PINMUX	30
Table 4: SOM Signal Group Traces Impedance	.37
Table 5: MIPI-DSI/LVDS Signals	.38
Table 6: Parallel LCD Signals	
Table 7: MIPI-CSI2 Signals	
Table 8: Parallel CSI Signals	
Table 9: Gigabit Ethernet Magnetics	
Table 10: Ethernet0 PHY Signals	
Table 11: AR8033 Ethernet PHY LED Behavior	
Table 12: ADIN1300 Ethernet PHY LED Behavior	
Table 13: ENET1 Supply voltage input Signal	
Table 14: ENET1 RGMII Port 1 Signals	
Table 15: ENET1 RMII Port 1 Signals	
Table 16: MDIO & 1588 Signals	
Table 17: BT UART interface signals	
Table 18: uSDHC1 Signals	
Table 19: USB 2.0 Port 1 Signals	
Table 20: USB 2.0 Port 2 Signals	
Table 21: USB Port 1 & 2 OTG Interface signals	
Table 22: USB3 Signals	
Table 23: Analog audio Signals	51
Table 24: Enhanced Serial Audio Signals	52
Table 25: Serial Audio Interface 0 Signals	53
Table 26: Serial Audio Interface 1 Signals	53
Table 27: Serial Audio Interface 2 Signals	54
Table 28: Serial Audio Interface 3 Signals	
Table 29: SAI interface signals definition	
Table 30: S/PDIF Signals	
Table 31: MQS Signals	
Table 32: ACM Signals	
Table 33: Resistive Touch Signals	
	. 57
Table 34: PCIF Signals	
Table 34: PCIE Signals	_
Table 35: UARTO Signals	59
Table 35: UARTO Signals Table 36: UART1 Signals	. 59 . 59
Table 35: UARTO Signals Table 36: UART1 Signals Table 37: UART2 Signals	. 59 . 59 . 59
Table 35: UARTO Signals	. 59 . 59 . 59 . 60
Table 35: UARTO Signals Table 36: UART1 Signals Table 37: UART2 Signals Table 38: UART3 Signals Table 39: FLEXCANO Signals	. 59 . 59 . 59 . 60
Table 35: UARTO Signals Table 36: UART1 Signals Table 37: UART2 Signals Table 38: UART3 Signals Table 39: FLEXCANO Signals Table 40: FLEXCAN1 Signals	. 59 . 59 . 59 . 60 . 61
Table 35: UARTO Signals Table 36: UART1 Signals Table 37: UART2 Signals Table 38: UART3 Signals Table 39: FLEXCANO Signals Table 40: FLEXCAN1 Signals Table 41: FLEXCAN2 Signals	. 59 . 59 . 60 . 61 . 61
Table 35: UARTO Signals Table 36: UART1 Signals Table 37: UART2 Signals Table 38: UART3 Signals Table 39: FLEXCANO Signals Table 40: FLEXCAN1 Signals Table 41: FLEXCAN2 Signals Table 42: SPIO Signals	. 59 . 59 . 60 . 61 . 61 . 62
Table 35: UARTO Signals Table 36: UART1 Signals Table 37: UART2 Signals Table 38: UART3 Signals Table 39: FLEXCANO Signals Table 40: FLEXCAN1 Signals Table 41: FLEXCAN2 Signals Table 42: SPIO Signals Table 43: SPI1 Signals	. 59 . 59 . 60 . 61 . 61 . 62 . 62
Table 35: UARTO Signals Table 36: UART1 Signals Table 37: UART2 Signals Table 38: UART3 Signals Table 39: FLEXCANO Signals Table 40: FLEXCAN1 Signals Table 41: FLEXCAN2 Signals Table 42: SPIO Signals Table 42: SPIO Signals Table 43: SPI1 Signals	59 59 60 61 61 61 62 62 63
Table 35: UARTO Signals Table 36: UART1 Signals Table 37: UART2 Signals Table 38: UART3 Signals Table 39: FLEXCANO Signals Table 40: FLEXCAN1 Signals Table 41: FLEXCAN2 Signals Table 42: SPIO Signals Table 43: SPI1 Signals	59 59 60 61 61 61 62 62 63
Table 35: UARTO Signals Table 36: UART1 Signals Table 37: UART2 Signals Table 38: UART3 Signals Table 39: FLEXCANO Signals Table 40: FLEXCAN1 Signals Table 41: FLEXCAN2 Signals Table 42: SPIO Signals Table 42: SPIO Signals Table 43: SPI1 Signals	. 59 . 59 . 60 . 61 . 61 . 62 . 62 . 63
Table 35: UARTO Signals Table 36: UART1 Signals Table 37: UART2 Signals Table 38: UART3 Signals Table 39: FLEXCANO Signals Table 40: FLEXCAN1 Signals Table 41: FLEXCAN2 Signals Table 42: SPIO Signals Table 43: SPI1 Signals Table 44: SPI2 Signals Table 45: SPI3 Signals	. 59 . 59 . 60 . 61 . 61 . 62 . 63 . 63

Table 49: I2C1 Signals	65
Table 50: I2C2 Signals	65
Table 51: I2C3 Signals	66
Table 52: Parallel CSI I2C Signals	66
Table 53: MIPI CSI I2C Signals	66
Table 54: Analog to Digital Converter Signals	66
Table 55: General Purpose Timer Signals	67
Table 56: General Purpose Timer Signals	67
Table 57: System Control Unit Signals	68
Table 58: JTAG signals 10-pin Header Connector	69
Table 59: Cortex M4 GPIO Signals	71
Table 60: Cortex M4 UART Signals	
Table 61: Cortex I2CO M4 Signals	71
Table 62: Cortex M4 Timer and PWM Module Signals	72
Table 63: Power	73
Table 64: Digital Ground Pins	73
Table 65: General System Control Signals	74
Table 66: SOM boot options	74
Table 67: ADC assembly options	75
Table 68: AC assembly options	75
Table 69: TP assembly option	76
Table 70: Absolute Maximum Ratings	
Table 71: Operating Ranges	
Table 72: VAR-SOM-MX8X Power Consumption	78
Table 73: Environmental Specifications	79

4. Overview

4.1 General Information

The VAR-SOM-MX8X offers a high-performance processing for a low-power System-on-Module. The product is based on the NXP i.MX 8QuadXPlus and 8DualXPlus processors comprehensive multimedia device targeting high-end automotive and Infotainment market segments.

The i.MX 8X processors consist of three to five ARM® cores (two to four ARM Cortex®-A35 and one Cortex-M4F). All devices include separate GPU and VPU subsystems as well as a failover-ready display controller.

Advanced multicore audio processing is supported by the ARM cores and a high performance Tensilica® HiFi 4 DSP for pre- and post-audio processing as well as voice recognition. The i.MX 8X Family supports up to three displays with multiple display output options, including parallel, MIPI-DSI, and LVDS.

A wide range of peripheral I/Os such as CAN, parallel or MIPI CSI camera input, Gigabit Ethernet, USB 2.0 OTG, USB 3.0, ADC, and PCIe 3.0 provide impressive flexibility.

The VAR-SOM-MX8X provides an ideal building block for simple integration with a wide range of products in target markets requiring high-performance processing with low power consumption, compact size and a very cost-effective solution.

Supporting products:

- Symphony-Board evaluation board
 - ✓ Carrier Board, compatible with VAR-SOM-MX8X
 - ✓ Schematics
- VAR-DVK-MX8X full development kit, including:
 - ✓ Symphony-Board
 - ✓ VAR-SOM-MX8X
 - ✓ Display and touch
 - ✓ Accessories and cables
- O.S support
 - ✓ Linux BSP
 - ✓ Android

Contact Variscite support services for further information: mailto:support@variscite.com.

4.2 Feature Summary

- NXP i.MX8QXP/ i.MX8DXP series SOC
 - o 4x/2x Cortex A35 up to @ 1.2 GHz
 - o 1x Cortex M4 @ 264 MHz
 - o Up to 4GB LPDDR4 RAM @ 1200Mhz
 - 8-bit up to 128GB eMMC boot and storage
- Display Support
 - o 2x MIPI-DSI/LVDS interface 4-lane each, up to 1080p60
 - o 24-bit parallel LCD up to 720p60
- Networking
 - o 2x 10/100/1000 Mbit/s Ethernet Interface
 - o Certified Wi-Fi 802.11 ac/a/b/g/n
 - Bluetooth: 5.2/BLE
- Camera
 - 1x MIPI CSI CMOS Serial camera Interface 4 lanes.
 - 1x CSI CMOS Parallel camera 8-bit/10-bit Interface.
- Audio
 - o Analog Stereo line in
 - Analog headphones out
 - Digital microphone
 - o 7x Digital audio (SAI, ESAI, SPDIF, MQS)
- USB
 - o 1x USB 3.0/2.0 OTG
 - o 1x USB 2.0 Host/Device
- Other Interfaces
 - SDIO/MMC
 - o 1x PCle v3.0
 - o Resistive touch controller
 - o Serial interfaces (LPSPI, QSPI, I2C, UART, CAN, JTAG)
 - o ADC 6 x 12-bit
 - GPIOs
- Single power supply: 3.3V
- Dimensions (W x L x H): 67 mm x 51.6 mm x 4.87mm
- Industrial temperature range -40°C to 85°C

4.3 Block Diagram

Figure 1: VAR-SOM-MX8X Block Diagram

5. Main Hardware Components

This section summarizes the main hardware building blocks of the VAR-SOM-MX8X.

5.1 NXP i.MX8QXP/i.MX8DXP

5.1.1 Overview

The VAR-SOM-MX8X offers a high-performance processing for a low-power System-on-Module. The product is based on the NXP i.MX 8QuadXPlus and i.MX 8DualXPlus. These devices are fully comprehensive multimedia application processors targeting mid-range automotive and industrial market segments. The flexibility of the architecture allows for use in a wide variety of general embedded applications. These devices are designed to achieve both high performance and low power consumption. The computing power of these chips lies on the power efficient quad/dual (Cortex-A35 cluster. The Cortex-A35 provides full 64-bit ARMv8-A support while maintaining seamless backwards compatibility with 32-bit ARMv7-A software.

Graphics processing is handled by a dedicated Graphics Processing Unit (GPU) supporting some of the latest graphic APIs. Video is managed by a dedicated video engine decoding formats, H.265 HEVC (Main Profile) up to 4K30 and H.264 up to 1080p60, as well as encoding up to 1080p30.

The i.MX 8QuadXPlus and i.MX 8DualXPlus provides additional computing resources and peripherals:

- A dedicated System Control Unit (SCU) and a dedicated Security subsystem which provides Secure Boot features and cryptographic acceleration
- An Audio DMA subsystem with a wide range of audio and general-purpose interfaces
- A general-purpose Cortex-M4 with its own set of peripherals
- A large set of peripherals that are commonly used in automotive and industrial markets
- A Tensilica Hi-Fi 4 DSP geared for efficient execution of audio and voice codecs and pre- and postprocessing modules to offload the ARM core

5.1.2 i.MX8X Block Diagram

Figure 2: i.MX 8QuadXPlus/8DualXPlus Block Diagram

5.1.3 ARM Cortex-A35 Platform

The i.MX8QXP/ i.MX8DXP family Applications Processors are based on the ARM Cortex-A35 platform, which has the following features:

- 32KB of L1 instruction cache per CPU core
- 32KB of L1 data cache per CPU core
- 512KB of L2 unified cache shared by the four CPUs with ECC protection mechanism (Single Error Correction and Double Error Detection)
- Advanced SIMD and FP
- Crypto acceleration

5.1.4 Arm Cortex-M4 Platform

Cortex-M4 core platform includes the following features:

- Cortex M4 Processor:
 - 16KB of Code Bus Cache with parity protection
 - 16KB of System Bus Cache with parity protection
 - 256KB of Tightly Coupled Memory with ECC
 - FPU (Floating Point Unit)
 - MPU (Memory Protection Unit)
 - Support for exclusive access on the system bus
 - MMCAU (Crypto Acceleration Unit)
 - MCM (Miscellaneous Control Module)
 - Nested Vector Interrupt Controller (NVIC)
- 2x MU (Messaging Unit)
- 1x LPIT (Low-power Periodic Interrupt Timer)
- 1x Watch dog
- 1x Wakeup Interrupt Controller (WIC)
- 1x GPIO module with 32 GPIO
- 1x UART with HW flow control
- 1x TPM (Timer PWM Module) with 2 channels

5.2 Memory

5.2.1 RAM

The VAR-SOM-MX8X is available with up to 4 GB of LPDDR4 memory capable of running up to 2400MTS.

5.2.2 Non-volatile Storage Memory

The VAR-SOM-MX8X is available with a non-volatile storage memory with optional densities. It is used for Flash Disk purposes, O.S. run-time-image, Boot-loader and application/user data storage.

The VAR-SOM-MX8X can arrive with up to 128GB MLC eMMC

5.3 Audio (WM8904)

The WM8904 is a high performance ultra-low power stereo CODEC optimized for portable audio applications.

The device features stereo ground-referenced headphone amplifiers using the Wolfson 'Class-W' amplifier techniques. It incorporates an innovative dual-mode charge pump architecture - to optimize efficiency and power consumption during playback.

The ground-referenced headphone output eliminates AC coupling capacitors, and both outputs include common mode feedback paths to reject ground noise. Control sequences for audio path setup can be preloaded and executed by an integrated control write sequencer to reduce software driver development and minimize pops and clicks via SilentSwitch™ technology. The input impedance is constant with PGA gain setting. A stereo digital microphone interface is provided, with a choice of two inputs. A dynamic range controller provides compression and level control to support a wide range of portable recording applications. Anti-clip and quick release features offer good performance in the presence of loud impulsive noises. ReTuneTM Mobile 5-band parametric equalizer with fully programmable coefficients is integrated for optimization of speaker characteristics. Programmable dynamic range control is also available for maximizing loudness, protecting speakers from clipping and preventing premature shutdown due to battery droop. Common audio sampling frequencies are supported from a wide range of external clocks, either directly or generated via the FLL.

Features:

- 3.0mW guiescent power consumption for DAC to headphone playback
- DAC SNR 96dB typical, THD -86dB typical
- ADC SNR 91dB typical, THD -80dB typical
- 2.4mW quiescent power consumption for analogue bypass playback
- Control write sequencer for pop minimized start-up and shutdown
- Single register writes for default start-up sequence
- Integrated FLL provides all necessary clocks Self-clocking modes allow processor to sleep All standard sample rates from 8kHz to 96kHz
- Stereo digital microphone input
- 2 single ended inputs per stereo channel
- Digital Dynamic Range Controller (compressor / limiter)
- Digital sidetone mixing
- Ground-referenced headphone driver

5.4 Wi-Fi + BT (LWB5™)

The VAR-SOM-MX8X contains LSR's pre-certified high-performance Sterling-LWB5™ Dual band 2.4/5 GHz Wi-Fi® and Bluetooth® Smart Ready Multi-Standard Module based upon the Cypress (formerly Broadcom) CYW43353 chipset supporting 802.11 ac/a/b/g/n, BT 2.1+EDR, and BLE 5.2 wireless connectivity.

The VAR-SOM-MX8X module realizes the necessary PHY/MAC layers to support WLAN applications in conjunction with a host processor over a SDIO interface.

The modules also provide a Bluetooth/BLE platform through the HCI transport layer. Both WLAN and Bluetooth share the same antenna port.

Key Features:

- IEEE 802.11 ac/a/b/g/n
- Bluetooth 2.1+EDR, and BLE 5.2
- U.F.L connector for external antenna
- Latest Linux and Android drivers supported directly by LSR and Cypress
- Wi-Fi/BT module Broad certifications with multiple antennas: FCC (USA), IC (Canada), ETSI (Europe), Giteki (Japan), and RCM (AU/NZ)
- Industrial operating Temperature Range: -40 to +85

5.5 PMIC

The VAR-SOM-MX8X features Freescale/NXP's PF8100 chip as a Power Management Integrated circuit (PMIC) designed specifically for use with NXP's i.MX8QXP/ i.MX8DXP series of application processors. The PF8100 regulates all power rails required on SOM from a single 3.3V power supply.

The PMIC is fully programmable via the I2C interface and associated register map. Additional communication is provided by direct logic interfacing including interrupt, watchdog and reset.

5.6 Dual Ethernet MAC and on-board 10/100/1000 Mbps Ethernet Transceiver

The SOM can be ordered with an Integrated Ethernet Transceiver connected to ENETO RGMII signals, Qualcomm Atheros AR8033 or Analog Devices ADIN1300.

Please contact <u>sales@variscite.com</u> for inquiries about P/N assembled on your SOM.

An additional Ethernet Transceiver can be connected to ENET1 signals exported from SOM connector pins. Connecting an external Ethernet Transceiver requires a single 1.8/2.5V power supply for RGMII interfaces or 3.3V for RMII interface.

5.6.1 Qualcomm Atheros AR8033 Ethernet Transceiver

Key features include:

- 10BASE-Te/100BASE-TX/1000BASE-T IEEE 802.3 compliant
- 1000BASE-T PCS and auto-negotiation with next page support
- Green ETHOS power saving modes with internal automatic DSP power saving scheme
- IEEE 802.3az EEE
- Fully integrated digital adaptive equalizers, echo cancellers, and Near End Crosstalk (NEXT) cancellers
- Robust Cable Discharge Event (CDE) protection of ±6 kV
- Robust operation over up to 140 meters of CAT5 cable
- Automatic Channel Swap (ACS)
- Automatic MDI/MDIX crossover
- Automatic polarity correction v IEEE 802.3u compliant auto-negotiation
- Jumbo frame supports up to 10 KB (full-duplex)
- Integrated termination circuitry at the line side

5.6.2 Analog Devices ADIN1300 Ethernet Transceiver

Key features include:

- 10BASE-Te/100BASE-TX/1000BASE-T IEEE® 802.3™ compliant MII, RMII, and RGMII MAC interfaces
- EEE in accordance with IEEE 802.3az
- Start of packet detection for IEEE 1588 time stamp support
- Enhanced link detection
- Configurable LED
- Integrated power supply monitoring and POR
- MII management interface (MDIO) compatible with the IEEE 802.3 Standard Clause 22 and Clause 45 management frame structures.
- Supports cable lengths up to 150 meters at Gigabit speeds and 180 meters when operating at 100 Mbps or 10 Mbps.
- Automatic MDI/MDIX crossover

- Autonegotiation capability in accordance with IEE 802.3 Clause 28
- Supports a number of power-down modes: hardware, software, and energy detect power-down, and EEE LPI mode
- On-chip cable diagnostics capabilities
- Transmit drivers are voltage mode with on-chip terminations

5.7 Resistive Touch controller (TSC2046)

The VAR-SOM-MX8X features on board a 4-wire resistive touch panel interface controller (TI TSC2046) with the following features:

- Compatible with 4-wire resistive touch screens
- Pen-detection and nIRQ generation
- Supports several schemes of measurement, averaging to filter noise

5.8 EEPROM

The SOM uses 4Kbit serial EEPROM to store memory calibration and manufacturing parameters. This EEPROM is connected to SCU I2C bus and intended only for holding the above information. The SOM may not boot if the contents of EEPROM device are corrupted.

6. VAR-SOM-MX8X Hardware Configuration

The table below lists the Hardware configurations options orderable for the VAR-SOM-MX8X.

Table 1 Hardware Configuration Options

Option	Description	
EC	Ethernet PHY assembled on SOM	
AC	Audio Codec assembled on SOM	
WBD	Dual band Wi-Fi and BT/BLE combo assembled on SOM	
TP	Resistive Touch controller assembled on SOM	
ADC	ADC balls exported via SOM connector pins	

<u>Note</u>: Other orderable options are available and are not part of this datasheet.

Please refer to Variscite official website for full list of configuration options.

7. External Connectors

7.1 Board to Board Connector

The VAR-SOM-MX8X exposes a 200-pin SO-DIMM connector.

- The recommended mating connectors for baseboard interfacing are:
 - 1. Concraft 0701A0BE52E
 - 2. Tyco Electronics -1565917-4

7.2 Wi-Fi & BT Connector

In Modules with Wi-Fi "WBD" Configuration - a combined Wi-Fi + BT antenna connector is assembled.

- Connector type: U.FL JACK connector
- Cable and antenna shall have a 50 Ohm characteristic impedance

7.3 JTAG Header

In addition to the 200-pin SO-DIMM interface, the SOM exposes JTAG interface via an optional 10-pin header.

7.4 VAR-SOM-MX8X Connector Pin-out

Table 2: VAR-SOM-MX8X J1 Pinout

Pin#	Assembly	Pin Name	Notes	GPIO	Ball
1		GND			
2		GND			
3	EC	ETHO_MDI_A_P			AR8033.11/ ADIN1300.12
4	EC	ETH0_MDI_C_P			AR8033.17/ ADIN1300.16
5	EC	ETH0_MDI_A_M			AR8033.12/ ADIN1300.13
6	EC	ETHO_MDI_C_M			AR8033.18/ ADIN1300.17
7		GND			
8		GND			
9	EC	ETHO_MDI_B_P			AR8033.14/ ADIN1300.14
10	EC	ETH0_MDI_D_P			AR8033.20/ ADIN1300.18
11	EC	ETH0_MDI_B_M			AR8033.15/ ADIN1300.15
12	EC	ETH0_MDI_D_M			AR8033.21/ ADIN1300.19
13		GND			
14		GND			
15	EC	ETHO_LED_ACT	Ethernet PHY Activity LED, active low		AR8033.23/ ADIN1300.21
16	EC	ETH0_LED_LINK_10_100_1000	Ethernet PHY Link LED, active low		AR8033.24_26/ ADIN1300.26 via inverting FET
17		MIPI_DSI0_GPIO0_00		GPIO1_IO27	AD32
18	AC	DMIC_CLK	Digital microphone clock output		WM8904CGEFL.1
18	No AC	FLEXCAN1_RX	Available in SOM without AC	GPIO1_IO17	AA33
19		GND			
20	AC	DMIC_DATA	Digital microphone data input		WM8904CGEFL.27
20	No AC	MCLK_OUT0	Available in SOM without AC	GPIO0_IO20	L29
21		SPIO_CSO		GPIO1_I008	R33
22		SPIO_CS1		GPIO1_I007	R35
23		SAI1_RXD		GPIO0_IO29	M32
24		SPI0_SDO		GPIO1_IO06	R31
25		SPIO_SCK		GPIO1_IO04	P30
26		SPIO_SDI		GPIO1_IO05	P34
27		GND			
28		GND			
29		MIPI_CSIO_MCLK_OUT		GPIO3_IO04	AN25

Pin#	Assembly	Pin Name	Notes	GPIO	Ball
30		ENETO_MDIO	Pin alternate function cannot be changed when using SOM with EC assembled	GPIO5_IO10	B32
31		NC			
32		VBAT			
33		NC			
34		VBAT			
35		NC			
36		LICELL	RTC back-up battery 1.8V/3.0V/3.3V supply voltage input		PF8100.46
37		GND			
38		VDD_ENET1_1P8_2P5_3P3_IN	VAR-SOM-MX8X 1.8V/2.5V/3.3V supply voltage input. The following SOM pins are referenced to this voltage: 40,54,55,56,57,71,73,81,96,113,120,122,177 When using the above pins for alternate functions of ENET1: • For RMII - connect to 3.3V • For RGMII - connect to 1.8V/2.5V		N25
39		SPI2_CS0		GPIO1_IO00	P28
40		SPDIFO_EXT_CLK	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO12	E35
41		MCLK_IN0		GPIO0_IO19	G35
42		USB_SS3_TC1	Pin Used for Boot mode setting, Please see Boot Configuration section.	GPIO4_IO04	H14
43		SPI2_SCK		GPIO1_IO03	R29
44		FLEXCAN2_TX		GPIO1_IO20	AA31
45		SPI2_SDO		GPIO1_IO01	P32
46		FLEXCAN2_RX		GPIO1_IO19	AB34
47		GND			
48		CSI_EN		GPIO3_IO02	AP28
49		SW_3P3	SOM Peripherals' 3.3v rail Output. Should be used to sequence carrier board peripherals' 3.3v supply. Connect to pin 38 in case of 3.3V supply.		
50		FLEXCANO_RX	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	GPIO1_IO15	Y34
51		FLEXCANO_TX	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	GPIO1_IO16	Y32

Pin#	Assembly	Pin Name	Notes	GPIO	Ball
52		UARTO_TX	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	GPIO1_IO22	AA29
53		UARTO_RX	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	GPIO1_IO21	AB32
54		ESAI0_TX1	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO05	B34
55		ESAIO_SCKT	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO03	E31
56		ESAIO_FST	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO01	G29
57		ESAIO_TXO	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO04	D32
58		GND			
59		GND			
60		USDHC1_CLK	Not connected when Wi-Fi is enabled	GPIO4_IO23	G23
61		USDHC1_DATA2	Not connected when Wi-Fi is enabled	GPIO4_IO27	D26
62		USDHC1_DATA0	Not connected when Wi-Fi is enabled	GPIO4_IO25	A27
63		USDHC1_DATA1	Not connected when Wi-Fi is enabled	GPIO4_IO26	B26
64		USDHC1_CMD	Not connected when Wi-Fi is enabled	GPIO4_IO24	C25
65		USDHC1_DATA3	Not connected when Wi-Fi is enabled	GPIO4_IO28	E25
66		GND			
67		GND			
68		UART1_CTS_B		GPIO0_IO24	K32
69		UART1_RTS_B			N29
70		CSI_MCLK		GPIO3_IO01	AM26
71		ESAIO_TX2_RX3	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO06	K28
72		ENETO_REFCLK_125M_25M		GPIO5_IO09	F28
73		ESAIO_TX4_RX1	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO08	F32
74		ENETO_MDC	Pin alternate function cannot be changed when using SOM with EC assembled	GPIO5_IO11	D30
75		SAIO_TXFS		GPIO0_IO28	L33
76		GND			
77		SAIO_TXC		GPIO0_IO26	J35
78		GND			
79		CSI_RESET		GPIO3_IO03	AR27
80		USDHC1_CD_B		GPIO4_IO22	E23
81		ESAIO_TX3_RX2	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO07	C33
82		USDHC1_WP		GPIO4_IO21	D24

Pin#	Assembly	Pin Name	Notes	GPIO	Ball
83		SCU_GPIO0_00	Pin is routed via on SOM buffer, set as Input by default. Pin direction can be controlled by GPIO1_26: Low - Output from SoC High - Input to SoC	GPIO2_IO03	AF28
84		CSI_PCLK		GPIO3_I000	AK26
85		SCU_GPIO0_01	Pin is routed via on SOM buffer set as Output by default. Pin direction can be controlled by GPIO1_25: Low - Output from SoC High - Input to SoC		AH30
86		QSPIOB_SS1_B		GPIO3_IO24	AJ9
87		USB_SS3_TC2		GPIO4_IO05	G15
88		USB_SS3_TC0		GPIO4_IO03	F14
89		GND			
90		MIPI_DSI1_GPIO0_01		GPIO2_IO00	AF34
91		USB_SS3_RX_N			B18
92		MIPI_DSI1_GPIO0_00		GPIO1_IO31	AD30
93		USB_SS3_RX_P			A19
94		USB_OTG2_ID			F16
95		GND			
96		ESAIO_FSR	Referenced to pin 38 supply (1.8V/2.5/3.3V)		F30
97		USB_SS3_TX_P			B16
98		POR_B_3V3	System Reset Input. Active on falling edge. A logic low '0' on this pin will reset the system.		
99		USB_SS3_TX_N			A15
100		PCIE_REFCLK100M_N	PCIe compliant 100MHz reference clock. Can be exported from SOM or input to the SOM. The internal PCIe reference clock is not spread spectrum capable. For PCIe Gen 3.0 or EMC/EMI sensitive applications, it is recommended to connect to an external HCSL-compatible clock source.		D12
101		GND			
102		PCIE_REFCLK100M_P	PCIe compliant 100MHz reference clock. Can be exported from SOM or input to the SOM. The internal PCIe reference clock is not spread spectrum capable. For PCIe Gen 3.0 or EMC/EMI sensitive applications, it is recommended to connect to an external HCSL-compatible clock source.		E11

Pin#	Assembly	Pin Name	Notes	GPIO	Ball
103		VBAT			
104		USB_OTG1_VBUS	USB Host VBUS (5V) input		H18
105		VBAT			
106		USB_OTG2_VBUS	USB OTG VBUS (5V) input		H16
107		VBAT			
108		USB_OTG1_DN			E19
109		VBAT			
110		USB_OTG1_DP			D18
111		VBAT			
112		GND			
113		ESAIO_SCKR	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO02	H28
114		USB_OTG2_DN			D16
115		UART2_RX		GPIO1_IO24	AD34
116		USB_OTG2_DP			E17
117		QSPIOB_SSO_B		GPIO3_IO23	AH10
118		GND			
119		MIPI_CSI0_DATA0_P			AP22
120		SPDIF0_TX	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO11	D34
121		MIPI_CSI0_DATA0_N			AM22
122		SPDIFO_RX	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO10	G31
123		MIPI_CSI0_DATA1_N			AM20
124		UART1_TX		GPIO0_IO21	H34
125		MIPI_CSI0_DATA1_P			AP20
126		GND			
127		MIPI_CSI0_DATA2_P			AR23
128		PCIEO_TXO_N			A9
129		MIPI_CSI0_DATA2_N			AN23
130		PCIEO_TXO_P			B10
131		MIPI_CSIO_DATA3_N			AN19
132		GND			
133		MIPI_CSIO_DATA3_P			AR19
134		PCIEO_RXO_P			A13
135		MIPI_CSIO_CLK_P			AR21
136		PCIEO_RXO_N			B12
137		MIPI_CSIO_CLK_N			AN21
138		GND			
139		GND			
140	No ADC	QSPIOB_DATA2		GPIO3_IO20	AJ11

Pin#	Assembly	Pin Name	Notes	GPIO	Ball
140	ADC	ADC_IN0	Available in SOM with ADC (referenced to 1.8V)	GPIO1_IO10	U35
141	No ADC	QSPI0B_DATA1		GPIO3_IO19	AL9
141	ADC	ADC_IN2	Available in SOM with ADC (referenced to 1.8V)	GPIO1_IO12	V32
142	No ADC	QSPI0B_DATA0		GPIO3_IO18	AM10
142	ADC	ADC_IN1	Available in SOM with ADC (referenced to 1.8V)	GPIO1_IO09	U33
143	No ADC	QSPI0B_DATA3		GPIO3_IO21	AM8
143	ADC	ADC_IN3	Available in SOM with ADC (referenced to 1.8V)	GPIO1_IO11	V30
144		GND			
145	No ADC	QSPI0B_DQS		GPIO3_IO22	AK10
145	ADC	ADC_IN5	Available in SOM with ADC (referenced to 1.8V)	GPIO1_IO13	V34
146		SCU_BOOT_MODE1	Pin Used for Boot mode setting, Please see Boot Configuration section. (referenced to 1.8V)		AK32
147	No ADC	QSPI0B_SCLK		GPIO3_IO17	AR11
147	ADC	ADC_IN4	Available in SOM with ADC (referenced to 1.8V)	GPIO1_IO14	W29
148		CSI_D04			AN29
149		GND			
150		CSI_D00			AK28
151		CSI_D07			AM28
152		CSI_D01			AL29
153		CSI_D06			AJ25
154		CSI_HSYNC			AR29
155		CSI_D03			AJ27
156		CSI_D05			AM30
157		CSI_D02			AP30
158		GND			
159		GND			
160		MIPI_DSI0_DATA1_N			AJ17
161		MIPI_DSIO_DATAO_N			AJ21
162		MIPI_DSIO_DATA1_P			AK18
163		MIPI_DSIO_DATAO_P			AK22
164		MIPI_DSIO_DATA2_N			AJ23
165		MIPI_DSIO_DATA3_N			AJ15
166		MIPI_DSIO_DATA2_P			AK24
167		MIPI_DSIO_DATA3_P			AK16
168		MIPI_DSIO_CLK_N			AJ19
169		GND			

Pin#	Assembly	Pin Name	Notes	GPIO	Ball
170		MIPI_DSI0_CLK_P			AK20
171		UART2_TX		GPIO1_IO23	AC35
172		GND			
173		CSI_VSYNC			AL27
174		SPI3_CS1			K30
175		UART1_RX		GPIO0_IO22	L31
176		MCLK_IN1			M28
177		ESAIO_TX5_RX0	Referenced to pin 38 supply (1.8V/2.5/3.3V)	GPIO0_IO09	J29
178		GND			
179		GND			
180		MIPI_DSI1_CLK_N			AM16
181		MIPI_DSI1_DATA3_P			AP18
182		MIPI_DSI1_CLK_P			AP16
183		MIPI_DSI1_DATA3_N			AM18
184		MIPI_DSI1_DATA0_N			AN15
185		GND			
186		MIPI_DSI1_DATA0_P			AR15
187	TP	TS_X-			TSC2046.8
187	No TP	SPI3_SDO	Available in SOM without TP	GPIO0_IO14	F34
188		MIPI_DSI1_DATA1_N			AN17
189	TP	TS_X+			TSC2046.6
189	No TP	SPI3_SCK	Available in SOM without TP	GPIO0_IO13	H32
190		MIPI_DSI1_DATA1_P			AR17
191	TP	TS_Y+			TSC2046.7
191	No TP	SPI3_CSO	Available in SOM without TP	GPIO0_IO16	J31
192		MIPI_DSI1_DATA2_N			AM14
193	TP	TS_Y-			TSC2046.9
193	No TP	SPI3_SDI	Available in SOM without TP	GPIO0_IO15	G33
194		MIPI_DSI1_DATA2_P			AP14
195	AC	AGND	Audio interface ground reference		Audio AGND
196	AC	HPOUTFB	Headphone output ground loop noise rejection feedback		WM8904CGEFL.14
196	No AC	SAIO_RXD	Available in SOM without AC	GPIO0_IO27	M34
197	AC	LINEIN1_LP	Left channel input		WM8904CGEFL.26
197	No AC	SAIO_TXD	Available in SOM without AC	GPIO0_IO25	K34
198	AC	HPLOUT	Left headphone output (line or headphone output)		WM8904CGEFL.13
198	No AC	FLEXCAN1_TX	Available in SOM without AC	GPIO1_IO18	AA35
199	AC	LINEIN1_RP	Right channel input		WM8904CGEFL.24
199	No AC	SAI1_RXFS	Available in SOM without AC	GPIO0_IO31	N35

Rev. 1.12, 02/2023 Variscite Ltd.

Pin#	Assembly	Pin Name	Notes	GPIO	Ball
200	AC	HPROUT	Right headphone output (line or headphone output)		WM8904CGEFL.15
200	No AC	SAI1_RXC	Available in SOM without AC	GPIO0_IO30	L35

7.5 VAR-SOM-MX8X Connector Pin Mux

Table 3: VAR-SOM-MX8X PINMUX

Pin	Assembly	Ball	ALTO	ALT1	ALT2	ALT3	ALT4
17		AD32	MIPI_DSI0.GPIO0.IO00	ADMA.I2C1.SCL	MIPI_DSI0.PWM0.OUT		LSIO.GPIO1.IO27
18	No AC	AA33	ADMA.FLEXCAN1.RX	ADMA.SAI2.RXFS	ADMA.FTM.CH2	ADMA.SAI1.TXD	LSIO.GPIO1.IO17
20	No AC	L29	ADMA.ACM.MCLK_OUT0	ADMA.ESAI0.TX_HF_CLK	ADMA.LCD_CLK	ADMA.SPI2.SDO	LSIO.GPIO0.IO20
21		R33	ADMA.SPIO.CSO	ADMA.SAIO.RXD	M40.TPM0.CH1	M40.GPI00.I003	LSIO.GPIO1.IO08
22		R35	ADMA.SPIO.CS1	ADMA.SAIO.RXC	ADMA.SAI1.TXD	ADMA.LCD_PWM0	LSIO.GPIO1.IO07
23		M32	ADMA.SAI1.RXD	ADMA.SAIO.RXFS	ADMA.SPI1.CS1	ADMA.LCD_D21	LSIO.GPIO0.IO29
24		R31	ADMA.SPI0.SDO	ADMA.SAIO.TXFS	M40.I2C0.SDA	M40.GPI00.I001	LSIO.GPIO1.IO06
25		P30	ADMA.SPIO.SCK	ADMA.SAI0.TXC	M40.I2C0.SCL	M40.GPI00.I000	LSIO.GPIO1.IO04
26		P34	ADMA.SPI0.SDI	ADMA.SAI0.TXD	M40.TPM0.CH0	M40.GPIO0.IO02	LSIO.GPIO1.IO05
29		AN25	MIPI_CSI0.ACM.MCLK_OUT				LSIO.GPIO3.IO04
30		B32	CONN.ENETO.MDIO	ADMA.I2C3.SDA	CONN.ENET1.MDIO		LSIO.GPIO5.IO10
39		P28	ADMA.SPI2.CS0				LSIO.GPIO1.IO00
40		E35	ADMA.SPDIFO.EXT_CLK		ADMA.LCD_D12	CONN.ENET1.REFCLK_125M_25M	LSIO.GPIO0.IO12
41		G35	ADMA.ACM.MCLK_IN0	ADMA.ESAIO.RX_HF_CLK	ADMA.LCD_VSYNC	ADMA.SPI2.SDI	LSIO.GPIO0.IO19
42		H14	ADMA.I2C1.SCL	CONN.USB_OTG2.PWR			LSIO.GPIO4.IO04
43		R29	ADMA.SPI2.SCK				LSIO.GPIO1.IO03
44		AA31	ADMA.FLEXCAN2.TX	ADMA.SAI3.RXFS	ADMA.UART3.TX	ADMA.SAI1.RXC	LSIO.GPIO1.IO20
45		P32	ADMA.SPI2.SDO				LSIO.GPIO1.IO01
46		AB34	ADMA.FLEXCAN2.RX	ADMA.SAI3.RXD	ADMA.UART3.RX	ADMA.SAI1.RXFS	LSIO.GPIO1.IO19
48		AP28	CI_PI.CSI_EN	CI_PI.CSI_I2C.SCL	ADMA.I2C3.SCL	ADMA.SPI1.SDI	LSIO.GPIO3.IO02

Pin	Assembly	Ball	ALTO	ALT1	ALT2	ALT3	ALT4
50		Y34	ADMA.FLEXCANO.RX	ADMA.SAI2.RXC	ADMA.UARTO.RTS_B	ADMA.SAI1.TXC	LSIO.GPIO1.IO15
51		Y32	ADMA.FLEXCANO.TX	ADMA.SAI2.RXD	ADMA.UARTO.CTS_B	ADMA.SAI1.TXFS	LSIO.GPIO1.IO16
52		AA29	ADMA.UARTO.TX	ADMA.MQS.L	ADMA.FLEXCANO.TX	SCU.UARTO.TX	LSIO.GPIO1.IO22
53		AB32	ADMA.UARTO.RX	ADMA.MQS.R	ADMA.FLEXCANO.RX	SCU.UARTO.RX	LSIO.GPIO1.IO21
54		B34	ADMA.ESAI0.TX1		ADMA.LCD_D05	CONN.ENET1.RGMII_RXD3	LSIO.GPIO0.IO05
55		E31	ADMA.ESAIO.SCKT		ADMA.LCD_D03	CONN.ENET1.RGMII_TXD3	LSIO.GPIO0.IO03
56		G29	ADMA.ESAIO.FST		ADMA.LCD_D01	CONN.ENET1.RGMII_TXD2	LSIO.GPIO0.IO01
57		D32	ADMA.ESAI0.TX0		ADMA.LCD_D04	CONN.ENET1.RGMII_RXC	LSIO.GPIO0.IO04
60		G23	CONN.USDHC1.CLK		ADMA.UART3.RX		LSIO.GPIO4.IO23
61		D26	CONN.USDHC1.DATA2	CONN.NAND.WE_B	ADMA.UART3.CTS_B		LSIO.GPIO4.IO27
62		A27	CONN.USDHC1.DATA0	CONN.NAND.CE1_B	ADMA.MQS.L		LSIO.GPIO4.IO25
63		B26	CONN.USDHC1.DATA1	CONN.NAND.RE_B	ADMA.UART3.TX		LSIO.GPIO4.IO26
64		C25	CONN.USDHC1.CMD	CONN.NAND.CEO_B	ADMA.MQS.R		LSIO.GPIO4.IO24
65		E25	CONN.USDHC1.DATA3	CONN.NAND.ALE	ADMA.UART3.RTS_B		LSIO.GPIO4.IO28
68		K32	ADMA.UART1.CTS_B	LSIO.PWM3.OUT	ADMA.LCD_D17	LSIO.GPT1.COMPARE	LSIO.GPIO0.IO24
69		N29	ADMA.UART1.RTS_B	LSIO.PWM2.OUT	ADMA.LCD_D16	LSIO.GPT1.CAPTURE	LSIO.GPTO.CLK
70		AM26	CI_PI.CSI_MCLK	MIPI_CSI0.I2C0.SDA		ADMA.SPI1.SDO	LSIO.GPIO3.IO01
71		K28	ADMA.ESAI0.TX2_RX3	CONN.ENET1.RMII_RX_ER	ADMA.LCD_D06	CONN.ENET1.RGMII_RXD2	LSIO.GPIO0.IO06
72		F28	CONN.ENETO.REFCLK_125M_25M	CONN.ENETO.PPS	CONN.ENET1.PPS		LSIO.GPIO5.IO09
73		F32	ADMA.ESAI0.TX4_RX1		ADMA.LCD_D08	CONN.ENET1.RGMII_TXD0	LSIO.GPIO0.IO08
74		D30	CONN.ENETO.MDC	ADMA.I2C3.SCL	CONN.ENET1.MDC		LSIO.GPIO5.IO11
75		L33	ADMA.SAI0.TXFS	ADMA.SPI2.CS1	ADMA.SPI1.SCK		LSIO.GPIO0.IO28
77		J35	ADMA.SAI0.TXC	ADMA.SAI1.TXD	ADMA.SPI1.SDI	ADMA.LCD_D19	LSIO.GPIO0.IO26
79		AR27	CI_PI.CSI_RESET	CI_PI.CSI_I2C.SDA	ADMA.I2C3.SDA	ADMA.SPI1.CS0	LSIO.GPIO3.IO03
80		E23	CONN.USDHC1.CD_B	CONN.NAND.DQS_P	ADMA.SPI2.CS0	CONN.NAND.DQS	LSIO.GPIO4.IO22

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

Page 31

Variscite Ltd.

Pin	Assembly	Ball	ALTO	ALT1	ALT2	ALT3	ALT4
81		C33	ADMA.ESAI0.TX3_RX2		ADMA.LCD_D07	CONN.ENET1.RGMII_RXD1	LSIO.GPIO0.IO07
82		D24	CONN.USDHC1.WP	CONN.NAND.DQS_N	ADMA.SPI2.SDI		LSIO.GPIO4.IO21
83		AF28	SCU.GPIO0.IO00	SCU.UARTO.RX	M40.UART0.RX	ADMA.UART3.RX	LSIO.GPIO2.IO03
84		AK26	CI_PI.CSI_PCLK	MIPI_CSI0.I2C0.SCL		ADMA.SPI1.SCK	LSIO.GPIO3.IO00
85		AH30	SCU.GPIO0.IO01	SCU.UARTO.TX	M40.UART0.TX	ADMA.UART3.TX	SCU.WDOG0.WDOG_OUT
86		AJ9	LSIO.QSPI0B.SS1_B	LSIO.QSPI1A.SS1_B	LSIO.KPP0.ROW3		LSIO.GPIO3.IO24
87		G15	ADMA.I2C1.SDA	CONN.USB_OTG1.OC	CONN.USB_OTG2.OC		LSIO.GPIO4.IO05
88		F14	ADMA.I2C1.SCL	CONN.USB_OTG1.PWR	CONN.USB_OTG2.PWR		LSIO.GPIO4.IO03
90		AF34	MIPI_DSI1.GPIO0.IO01	ADMA.I2C2.SDA			LSIO.GPIO2.IO00
91		B18	CONN.USB_SS3.RX_M_LN_0				
92		AD30	MIPI_DSI1.GPIO0.IO00	ADMA.I2C2.SCL	MIPI_DSI1.PWM0.OUT		LSIO.GPIO1.IO31
93		A19	CONN.USB_SS3.RX_P_LN_0				
94		F16	CONN.USB_OTG2.ID				
96		F30	ADMA.ESAIO.FSR	CONN.ENET1.RCLK50M_OUT	ADMA.LCD_D00	CONN.ENET1.RGMII_TXC	CONN.ENET1.RCLK50M_IN
97		B16	CONN.USB_SS3.TX_P_LN_0				
99		A15	CONN.USB_SS3.TX_M_LN_0				
100		D12	HSIO.PCIE_IOB.EXT_REFCLK100M_N				
102		E11	HSIO.PCIE_IOB.EXT_REFCLK100M_P				
104		H18	CONN.USB_OTG1.VBUS				
106		H16	CONN.USB_OTG2.VBUS				
108		E19	CONN.USB_OTG1.DN				
110		D18	CONN.USB_OTG1.DP				
113		H28	ADMA.ESAIO.SCKR		ADMA.LCD_D02	CONN.ENET1.RGMII_TX_CTL	LSIO.GPIO0.IO02
114		D16	CONN.USB_OTG2.DM				
115		AD34	ADMA.UART2.RX	ADMA.FTM.CH0	ADMA.FLEXCAN1.RX		LSIO.GPIO1.IO24

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

Page 32

Variscite Ltd.

Pin	Assembly	Ball	ALT0	ALT1	ALT2	ALT3	ALT4
116		E17	CONN.USB_OTG2.DP				
117		AH10	LSIO.QSPI0B.SS0_B	LSIO.QSPI1A.SSO_B	LSIO.KPP0.ROW2		LSIO.GPIO3.IO23
119		AP22	MIPI_CSI0.DP0				
120		D34	ADMA.SPDIFO.TX	ADMA.MQS.L	ADMA.LCD_D11	CONN.ENET1.RGMII_RX_CTL	LSIO.GPIO0.IO11
121		AM22	MIPI_CSI0.DN0				
122		G31	ADMA.SPDIFO.RX	ADMA.MQS.R	ADMA.LCD_D10	CONN.ENET1.RGMII_RXD0	LSIO.GPIO0.IO10
123		AM20	MIPI_CSI0.DN1				
124		H34	ADMA.UART1.TX	LSIO.PWM0.OUT	LSIO.GPTO.CAPTURE		LSIO.GPIO0.IO21
125		AP20	MIPI_CSIO.DP1				
127		AR23	MIPI_CSI0.DP2				
128		A9	HSIO.PCIEO.TXO_N				
129		AN23	MIPI_CSI0.DN2				
130		B10	HSIO.PCIEO.TXO_P				
131		AN19	MIPI_CSI0.DN3				
133		AR19	MIPI_CSIO.DP3				
134		A13	HSIO.PCIEO.RXO_P				
135		AR21	MIPI_CSIO.CKP				
136		B12	HSIO.PCIEO.RXO_N				
137		AN21	MIPI_CSIO.CKN				
140	No ADC	AJ11	LSIO.QSPI0B.DATA2	LSIO.QSPI1A.DATA2	LSIO.KPPO.COL3		LSIO.GPIO3.IO20
140	ADC	U35	ADMA.ADC.IN0	M40.I2C0.SCL	M40.GPIO0.IO00		LSIO.GPIO1.IO10
141	No ADC	AL9	LSIO.QSPI0B.DATA1	LSIO.QSPI1A.DATA1	LSIO.KPPO.COL2		LSIO.GPIO3.IO19
141	ADC	V32	ADMA.ADC.IN2	M40.UARTO.RX	M40.GPIO0.IO02	ADMA.ACM.MCLK_IN0	LSIO.GPIO1.IO12
142	No ADC	AM10	LSIO.QSPI0B.DATA0	LSIO.QSPI1A.DATA0	LSIO.KPPO.COL1		LSIO.GPIO3.IO18
142	ADC	U33	ADMA.ADC.IN1	M40.12C0.SDA	M40.GPIO0.IO01		LSIO.GPIO1.IO09

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

Page 33

Variscite Ltd.

Pin	Assembly	Ball	ALTO	ALT1	ALT2	ALT3	ALT4
143	No ADC	AM8	LSIO.QSPI0B.DATA3	LSIO.QSPI1A.DATA3	LSIO.KPP0.ROW0		LSIO.GPIO3.IO21
143	ADC	V30	ADMA.ADC.IN3	M40.UARTO.TX	M40.GPIO0.IO03	ADMA.ACM.MCLK_OUT0	LSIO.GPIO1.IO11
145	No ADC	AK10	LSIO.QSPI0B.DQS	LSIO.QSPI1A.DQS	LSIO.KPP0.ROW1		LSIO.GPIO3.IO22
145	ADC	V34	ADMA.ADC.IN5	M40.TPM0.CH1	M40.GPIO0.IO05		LSIO.GPIO1.IO13
146		AK32	SCU.DSC.BOOT_MODE1				
147	No ADC	AR11	LSIO.QSPIOB.SCLK	LSIO.QSPI1A.SCLK	LSIO.KPPO.COLO		LSIO.GPIO3.IO17
147	ADC	W29	ADMA.ADC.IN4	M40.TPM0.CH0	M40.GPIO0.IO04		LSIO.GPIO1.IO14
148		AN29	CI_PI.CSI_D06		ADMA.SAI2.RXD		
150		AK28	CI_PI.CSI_D02		ADMA.SAIO.RXC		
151		AM28	CI_PI.CSI_D09		ADMA.SAI3.RXD		
152		AL29	CI_PI.CSI_D03		ADMA.SAIO.RXD		
153		AJ25	CI_PI.CSI_D08		ADMA.SAI3.RXC		
154		AR29	CI_PI.CSI_HSYNC	CI_PI.CSI_D00	ADMA.SAI3.RXFS		
155		AJ27	CI_PI.CSI_D05		ADMA.SAI2.RXC		
156		AM30	CI_PI.CSI_D07		ADMA.SAI2.RXFS		
157		AP30	CI_PI.CSI_D04		ADMA.SAIO.RXFS		
160		AJ17	MIPI_DSI0.DN1				
161		AJ21	MIPI_DSI0.DN0				
162		AK18	MIPI_DSI0.DP1				
163		AK22	MIPI_DSI0.DP0				
164		AJ23	MIPI_DSI0.DN2				
165		AJ15	MIPI_DSI0.DN3				
166		AK24	MIPI_DSI0.DP2				
167		AK16	MIPI_DSI0.DP3				
168		AJ19	MIPI_DSI0.CKN				

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

Page 34

Pin	Assembly	Ball	ALTO	ALT1	ALT2	ALT3	ALT4
170		AK20	MIPI_DSI0.CKP				
171		AC35	ADMA.UART2.TX	ADMA.FTM.CH1	ADMA.FLEXCAN1.TX		LSIO.GPIO1.IO23
173		AL27	CI_PI.CSI_VSYNC	CI_PI.CSI_D01			
174		K30	ADMA.SPI3.CS1	ADMA.I2C3.SCL	ADMA.LCD_RESET	ADMA.SPI2.CS0	ADMA.LCD_D16
175		L31	ADMA.UART1.RX	LSIO.PWM1.OUT	LSIO.GPTO.COMPARE	LSIO.GPT1.CLK	LSIO.GPIO0.IO22
176		M28	ADMA.ACM.MCLK_IN1	ADMA.I2C3.SDA	ADMA.LCD_EN	ADMA.SPI2.SCK	ADMA.LCD_D17
177		J29	ADMA.ESAI0.TX5_RX0		ADMA.LCD_D09	CONN.ENET1.RGMII_TXD1	LSIO.GPIO0.IO09
180		AM16	MIPI_DSI1.CKN				
181		AP18	MIPI_DSI1.DP3				
182		AP16	MIPI_DSI1.CKP				
183		AM18	MIPI_DSI1.DN3				
184		AN15	MIPI_DSI1.DN0				
186		AR15	MIPI_DSI1.DP0				
187	No TP	F34	ADMA.SPI3.SDO		ADMA.LCD_D14		LSIO.GPIO0.IO14
188		AN17	MIPI_DSI1.DN1				
189	No TP	H32	ADMA.SPI3.SCK		ADMA.LCD_D13		LSIO.GPIO0.IO13
190		AR17	MIPI_DSI1.DP1				
191	No TP	J31	ADMA.SPI3.CSO	ADMA.ACM.MCLK_OUT1	ADMA.LCD_HSYNC		LSIO.GPIO0.IO16
192		AM14	MIPI_DSI1.DN2				
193	No TP	G33	ADMA.SPI3.SDI		ADMA.LCD_D15		LSIO.GPIO0.IO15
194		AP14	MIPI_DSI1.DP2				
196	No AC	M34	ADMA.SAIO.RXD	ADMA.SAI1.RXFS	ADMA.SPI1.CS0	ADMA.LCD_D20	LSIO.GPIO0.IO27
197	No AC	K34	ADMA.SAI0.TXD	ADMA.SAI1.RXC	ADMA.SPI1.SDO	ADMA.LCD_D18	LSIO.GPIO0.IO25
198	No AC	AA35	ADMA.FLEXCAN1.TX	ADMA.SAI3.RXC	ADMA.DMA0.REQ_IN0	ADMA.SAI1.RXD	LSIO.GPIO1.IO18
199	No AC	N35	ADMA.SAI1.RXFS	ADMA.SAI1.TXFS		ADMA.LCD_D23	LSIO.GPIO0.IO31

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

Page 35

Pin	Assembly	Ball	ALT0	ALT1	ALT2	ALT3	ALT4
200	No AC	L35	ADMA.SAI1.RXC	ADMA.SAI1.TXC		ADMA.LCD_D22	LSIO.GPIO0.IO30

8. SOM's interfaces

Trace Impedance

SOM traces are designed with the below table impedance list per signal group. Table is a reference when you are updating or creating constraints in the PCB design tool to set up the impedances/trace widths.

Table 4: SOM Signal Group Traces Impedance

Signal Group	Impedance
All single ended signals	50 Ω Single ended
PCIe TX/RX data pairs	85 Ω Differential
USB Differential signals	90 Ω Differential
Differential signals including: Ethernet, PCIe clocks, MIPI (CSI and DSI), LVDS lines	100 Ω Differential

8.1 Display Interfaces

8.1.1 MIPI-DSI/LVDS

MIPI-DSI/LVDS combo subsystem

The i.MX8QXP/ i.MX8DXP MIPI consists of the DSI/ LVDS combo subsystem for interfacing MIPI-DSI or LVDS displays.

The MIPI DSI supports the following features:

- Can use up to 4-lane DSI Interface
- o Bi-direction Communication and Escape mode
- Programmable display resolutions, from 160x120(QQVGA) to 1920x1200(WUXGA) @ 60 fps, 24bpp
- o Multiple Peripheral Support capability, configurable virtual channels
- Video Mode Pixel Formats supported are 16bpp (RGB565), 18bpp(RGB666) packed, 18bpp (RGB666) loosely packed, 24bpp (RGB888).
- Support for End of Transmission packet (EoTp)
- Support for Ultra Low Power state Mode (ULPS)

The LVDS supports the following features:

- 4-lane LVDS Interface
- Support display resolutions up to 1920x1080 (FHD) @ 60fps, 24bpp
- Supports 18 bpp pixel format (RGB666) and 24 bpp pixel format (RGB888)
- Synchronization and control capabilities
- Arranging the data as required by the external display receiver and by the LVDS subsystem

Table 5: MIPI-DSI/LVDS Signals

Pin #	Assy	PIN Function	Notes	Ball
17		MIPI_DSI0_GPIO0_IO00		AD32
92		MIPI_DSI1_GPIO0_IO00		AD30
17		MIPI_DSI0_PWM0_OUT		AD32
92		MIPI_DSI1_PWM0_OUT		AD30
168		MIPI_DSI0_CLK_N		AJ19
170		MIPI_DSI0_CLK_P		AK20
161		MIPI_DSI0_DATA0_N		AJ21
163		MIPI_DSI0_DATA0_P		AK22
160		MIPI_DSI0_DATA1_N		AJ17
162		MIPI_DSI0_DATA1_P		AK18
164		MIPI_DSI0_DATA2_N		AJ23
166		MIPI_DSI0_DATA2_P		AK24
165		MIPI_DSI0_DATA3_N		AJ15
167		MIPI_DSI0_DATA3_P		AK16
180		MIPI_DSI1_CLK_N		AM16
182		MIPI_DSI1_CLK_P		AP16
184		MIPI_DSI1_DATA0_N		AN15
186		MIPI_DSI1_DATA0_P		AR15
188		MIPI_DSI1_DATA1_N		AN17
190		MIPI_DSI1_DATA1_P		AR17
192		MIPI_DSI1_DATA2_N		AM14
194		MIPI_DSI1_DATA2_P		AP14
183		MIPI_DSI1_DATA3_N		AM18
181		MIPI_DSI1_DATA3_P		AP18

8.1.2 Parallel LCD

Parallel LCDIF

The i.MX8QXP/ i.MX8DXP consists of the LCDIF block to drive a wide range of display devices varying in size and capability.

The LCDIF block supports the following:

- Displays with an asynchronous parallel MPU interface for command and data transfer to an integrated frame buffer.
- Displays that support moving pictures and require the RGB interface mode (DOTCLK interface).
- o VSYNC mode for high-speed data transfers.
- Digital video encoders that accept ITU-R BT.656 format 4:2:2 YCbCr digital component video and convert it to analog TV signals.
- Bus master interface to source frame buffer data for display refresh. This
 interface can also be used to drive data for "Smart" displays.
- o PIO interface to manage data transfers between "Smart" displays and SoC.
- o 8/16/18/24 bit LCD data bus support available depending on I/O mux options.
- Programmable timing and parameters for MPU, VSYNC, and DOTCLK LCD interfaces to support a wide variety of displays.
- ITU-R BT.656 mode (called Digital Video Interface or DVI mode here) including progressive-to-interlace feature and RGB to YCbCr 4:2:2 color space conversion to support 525/60 and 625/50 operation.

VAR-SOM-MX8X_V1.x Datasheet

Table 6: Parallel LCD Signals

Pin#	Assy	PIN Function	Notes	Ball
20	No AC	ADMA_LCD_CLK	Available in SOM without AC	L29
96		ADMA_LCD_D00	Referenced to pin 38 supply (1.8V/2.5/3.3V)	F30
56		ADMA_LCD_D01	Referenced to pin 38 supply (1.8V/2.5/3.3V)	G29
113		ADMA_LCD_D02	Referenced to pin 38 supply (1.8V/2.5/3.3V)	H28
55		ADMA_LCD_D03	Referenced to pin 38 supply (1.8V/2.5/3.3V)	E31
57		ADMA_LCD_D04	Referenced to pin 38 supply (1.8V/2.5/3.3V)	D32
54		ADMA_LCD_D05	Referenced to pin 38 supply (1.8V/2.5/3.3V)	B34
71		ADMA_LCD_D06	Referenced to pin 38 supply (1.8V/2.5/3.3V)	K28
81		ADMA_LCD_D07	Referenced to pin 38 supply (1.8V/2.5/3.3V)	C33
73		ADMA_LCD_D08	Referenced to pin 38 supply (1.8V/2.5/3.3V)	F32
177		ADMA_LCD_D09	Referenced to pin 38 supply (1.8V/2.5/3.3V)	J29
122		ADMA_LCD_D10	Referenced to pin 38 supply (1.8V/2.5/3.3V)	G31
120		ADMA_LCD_D11	Referenced to pin 38 supply (1.8V/2.5/3.3V)	D34
40		ADMA_LCD_D12	Referenced to pin 38 supply (1.8V/2.5/3.3V)	E35
189	No TP	ADMA_LCD_D13	Available in SOM without TP	H32
187	No TP	ADMA_LCD_D14	Available in SOM without TP	F34
193	No TP	ADMA_LCD_D15	Available in SOM without TP	G33
174		ADMA_LCD_D16		K30
69		ADMA_LCD_D16		N29
176		ADMA_LCD_D17		M28
68		ADMA_LCD_D17		K32
197	No AC	ADMA_LCD_D18	Available in SOM without AC	K34
77		ADMA_LCD_D19		J35
196	No AC	ADMA_LCD_D20	Available in SOM without AC	M34
23		ADMA_LCD_D21		M32
200	No AC	ADMA_LCD_D22	Available in SOM without AC	L35
199	No AC	ADMA_LCD_D23	Available in SOM without AC	N35
176		ADMA_LCD_EN		M28
191	No TP	ADMA_LCD_HSYNC	Available in SOM without TP	J31
22		ADMA_LCD_PWM0		R35
174		ADMA_LCD_RESET		K30
41		ADMA_LCD_VSYNC		G35

8.2 Camera Interface

8.2.1 MIPI CSI-2

The SOM consist of a CSI-2 Host Controller which implements all protocol functions defined in the MIPI CSI-2 specification, allowing communication with an MIPI CSI-2 compliant camera sensor.

The MIPI CSI-2 controller supports the following features:

- Implements all three CSI-2 MIPI layers (Pixel to byte packing, low level protocol, Lane management)
- Supports unidirectional Master operation
- · Transmitter and receiver versions
- Scalable data lane support, 1 to 4 Data Lanes
- Supports high speed mode(80Mbps 1.5Gbps) per lane, providing 4K@30fps capability for the 4 lanes
- Supports 10Mbps data rate in low power mode
- Includes high speed deserializers
- Loopback testability support
- Support for all CSI-2 data types
- Virtual Channel support
- Support for DPHY Ultra Low Power State (ULPS)
- Error collection support (Rx Only)
- Flexible pixel-based user interface
 - Supports user generated packets
 - Supports single, double, or quad pixel interface
 - Supports PHY Protocol Interface (PPI) compatible MIPI D-PHYs
 - o Delivered fully integrate and verified with target MIPI D-PHY
- RX Video Interface
- APB Control and Status Register (CSR) interface with IRQ support
- Easy configuration and control via core ports
- · Optimized for use in FPGAs and ASICs
- Provided with full-featured MIPI Test bench
 - Provides scripting, stimulus and data logging capabilities
 - Can be used for basic verification of user's design
- Source code option
- Provided with expert technical support
- Customization and integration services available

Table 7: MIPI-CSI2 Signals

Pin#	Assy	PIN Function	Notes	Ball
84		MIPI_CSIO_I2CO_SCL		AK26
70		MIPI_CSIO_I2CO_SDA		AM26
29		MIPI_CSIO_ACM_MCLK_OUT		AN25
137		MIPI_CSIO_CKN		AN21
135		MIPI_CSIO_CKP		AR21
121		MIPI_CSI0_DN0		AM22
119		MIPI_CSIO_DPO		AP22
123		MIPI_CSI0_DN1		AM20
125		MIPI_CSI0_DP1		AP20
129		MIPI_CSIO_DN2		AN23
127		MIPI_CSI0_DP2		AR23
131		MIPI_CSI0_DN3		AN19
133		MIPI_CSIO_DP3		AR19

8.2.2 Parallel CSI

The Parallel Capture Subsystem consists of the Parallel Capture Interface (BT 656) and associated peripherals. It interfaces to the Parallel CSI sensor.

The PWM module provides support for camera sensor interface clocking requirements and to control illumination or optical zoom.

The I2C module is used to control and interact with image capture sensors.

The GPIO module is used to control internal logic and provide user defined control logic for sensor capture interfaces.

Table 8: Parallel CSI Signals

Pin#	Assy	PIN Function	Notes	Ball
154		CI_PI_CSI_D00		AR29
173		CI_PI_CSI_D01		AL27
150		CI_PI_CSI_D02		AK28
152		CI_PI_CSI_D03		AL29
157		CI_PI_CSI_D04		AP30
155		CI_PI_CSI_D05		AJ27
148		CI_PI_CSI_D06		AN29
156		CI_PI_CSI_D07		AM30
153		CI_PI_CSI_D08		AJ25
151		CI_PI_CSI_D09		AM28
154		CI_PI_CSI_HSYNC		AR29
173		CI_PI_CSI_VSYNC		AL27
84		CI_PI_CSI_PCLK		AK26
70		CI_PI_CSI_MCLK		AM26
48		CI_PI_CSI_EN		AP28
79		CI_PI_CSI_RESET		AR27
48		CI_PI_CSI_I2C_SCL		AP28
79		CI_PI_CSI_I2C_SDA		AR27

8.3 Ethernet Interface

The iMX8QXP/iMX8DXP core implements a triple-speed 10/100/1000-Mbit/s Ethernet MAC compliant with the IEEE802.3-2002 standard. The MAC layer provides compatibility with half- or full duplex 10/100-Mbit/s and full-duplex gigabit Ethernet LANs.

The core consists of the IEEE1588 time-stamping module. The IEEE 1588 standard provides accurate clock synchronization for distributed control nodes for industrial automation applications. The MAC interface supports also AVB (Audio Video Bridging, IEEE 802.1Qav)

The VAR-SOM-MX8X features on SOM a Gigabit PHY (Atheros AR8033 or ADIN1300) connected to ENETO RGMII interface signals. External connector and magnetics should be implemented on carrier board complete the interface to the media.

ENET1 RGMII/RMII interface signals are exported through SO-DIMM connector. Signals, in conjunction to MDIO signals exported from SO-DIMM connector, can be used to interface an external Ethernet PHY.

ENET1 pins are referenced to SOM pin 38 VDD_ENET1_1P8_2P5_3P3_IN. Reference voltage should be supplied to SOM pin 38. For RMII - 3.3 V For RGMII - 1.8V or 2.5V

The Following External Gigabit magnetics are required to complete the ENETO RGMII interface to the media.

Table 9: Gigabit Ethernet Magnetics

Vendor	P/N	Package	Cores	Configuration
Pulse	H5007NL	Transformer	8	Auto-MDX
TDK	TLA-7T101LF	Transformer	8	Auto-MDX
Pulse	J0G-0009NL	Integrated RJ45	8	Auto-MDX

VAR-SOM-MX8X_V1.x Datasheet

Variscite Ltd.

Rev. 1.12, 02/2023

VAR-SOM-MX8X SYSTEM ON MODULE

Table 10: Ethernet0 PHY Signals

Pin#	Assy	PIN Function	Notes	Ball
5	EC	ETHO MDI A M		AR8033.12/
J		25		ADIN1300.13
3	EC	ETHO MDI A P		AR8033.11/
		E1110_14151_7(_1		ADIN1300.12
11	EC	ETHO MDI B M		AR8033.15/
11				ADIN1300.15
9	EC	ETHO MDI B P		AR8033.14/
9				ADIN1300.14
6	EC	ETHO MDI C M		AR8033.18/
0	EC	ETHO_MDI_C_M		ADIN1300.17
4	EC	ETHO MDI C P		AR8033.17/
4	EC	ETHO_MDI_C_P		ADIN1300.16
12	EC	ETHO MDI D M		AR8033.21/
12	LC			ADIN1300.19
10	EC	ETH0_MDI_D_P		AR8033.20/
10	EC	ETHO_MDI_D_P		ADIN1300.18
15	F.C.	ETIIO LED ACT	Ethernet PHY Activity LED,	AR8033.23/
15	5 EC E	ETHO_LED_ACT	active low	ADIN1300.21
			Ethernet PHY Link LED, active	AR8033.24_26/
16	EC	ETH0_LED_LINK_10_100_1000		ADIN1300.26 via inv.
			low	FET

Table 11: AR8033 Ethernet PHY LED Behavior

Symbol	10M link	10M active	100M link	100M active	1000M link	1000M active
LED_10_100_1000	OFF	OFF	ON	ON	ON	ON
LED_ACT	ON	BLINK	ON	BLINK	ON	BLINK
ON = active; OFF = inactive						

Table 12: ADIN1300 Ethernet PHY LED Behavior

Symbol	10M link	10M active	100M link	100M active	1000M link	1000M active
LED_10_100_1000	ON	ON	ON	ON	ON	ON
LED_ACT	ON	BLINK	ON	BLINK	ON	BLINK
ON = active; OFF = inactive						

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

Page 43

VAR-SOM-MX8X SYSTEM ON MODULE

Table 13: ENET1 Supply voltage input Signal

Pin#	Assy	PIN Function	Notes	Ball
			VAR-SOM-MX8X 1.8V/2.5V/3.3V supply voltage input.	
38		VDD_ENET1_1P8_2P5_3P3_IN	The following SOM pins are referenced to this voltage: 40,54,55,56,57,71,73,81,96,113,120,122,177	N25
			When using the above pins for alternate functions of ENET1: • For RMII - connect to 3.3V • For RGMII - connect to 1.8V/2.5V	

Table 14: ENET1 RGMII Port 1 Signals

Pin#	Assy	PIN Function	Notes	Ball
40		CONN_ENET1_REFCLK_125M_25M	Referenced to pin 38 supply (1.8V/2.5/3.3V)	E35
120		CONN_ENET1_RGMII_RX_CTL	Referenced to pin 38 supply (1.8V/2.5/3.3V)	D34
57		CONN_ENET1_RGMII_RXC	Referenced to pin 38 supply (1.8V/2.5/3.3V)	D32
122		CONN_ENET1_RGMII_RXD0	Referenced to pin 38 supply (1.8V/2.5/3.3V)	G31
81		CONN_ENET1_RGMII_RXD1	Referenced to pin 38 supply (1.8V/2.5/3.3V)	C33
71		CONN_ENET1_RGMII_RXD2	Referenced to pin 38 supply (1.8V/2.5/3.3V)	K28
54		CONN_ENET1_RGMII_RXD3	Referenced to pin 38 supply (1.8V/2.5/3.3V)	B34
113		CONN_ENET1_RGMII_TX_CTL	Referenced to pin 38 supply (1.8V/2.5/3.3V)	H28
96		CONN_ENET1_RGMII_TXC	Referenced to pin 38 supply (1.8V/2.5/3.3V)	F30
73		CONN_ENET1_RGMII_TXD0	Referenced to pin 38 supply (1.8V/2.5/3.3V)	F32
177		CONN_ENET1_RGMII_TXD1	Referenced to pin 38 supply (1.8V/2.5/3.3V)	J29
56		CONN_ENET1_RGMII_TXD2	Referenced to pin 38 supply (1.8V/2.5/3.3V)	G29
55		CONN_ENET1_RGMII_TXD3	Referenced to pin 38 supply (1.8V/2.5/3.3V)	E31

Table 15: ENET1 RMII Port 1 Signals

Pin#	Assy	PIN Function	Notes	Ball
96		CONN_ENET1_RCLK50M_IN	ENET1 RMII RCLK50M Input Clock (see note [1]). Referenced to pin 38 supply (1.8V/2.5/3.3V)	F30
96		CONN_ENET1_RCLK50M_OUT	ENET1 RMII RCLK50M Output Clock (see note [1]). Referenced to pin 38 supply (1.8V/2.5/3.3V)	F30
120		CONN_ENET1_RGMII_RX_CTL	ENET1 RMII_CRS_DV Referenced to pin 38 supply (1.8V/2.5/3.3V)	D34
122		CONN_ENET1_RGMII_RXD0	ENET1 RMII_RXD0 Referenced to pin 38 supply (1.8V/2.5/3.3V)	G31
81		CONN_ENET1_RGMII_RXD1	ENET1 RMII_RXD1 Referenced to pin 38 supply (1.8V/2.5/3.3V)	C33
71		CONN_ENET1_RMII_RX_ER	ENET1 RMII_RXER (see note [1]). Referenced to pin 38 supply (1.8V/2.5/3.3V)	K28
113		CONN_ENET1_RGMII_TX_CTL	ENET1 RMII_TXEN Referenced to pin 38 supply (1.8V/2.5/3.3V)	H28
73		CONN_ENET1_RGMII_TXD0	ENET1 RMII_TXD0 Referenced to pin 38 supply (1.8V/2.5/3.3V)	F32
177		CONN_ENET1_RGMII_TXD1	ENET1 RMII_TXD1 Referenced to pin 38 supply (1.8V/2.5/3.3V)	J29

Note:

^[1] Except for RCLK50M and RMII_RXER, all other RMII functions are using the same pin muxing mode of RGMII

Table 16: MDIO & 1588 Signals

Pin #	Assy	PIN Function	Notes	Ball
74		CONN_ENETO_MDC	Pin alternate function cannot be changed when using SOM with EC assembled	D30
30		CONN_ENETO_MDIO	Pin alternate function cannot be changed when using SOM with EC assembled	B32
74		CONN_ENET1_MDC	Pin alternate function cannot be changed when using SOM with EC assembled	D30
30		CONN_ENET1_MDIO	Pin alternate function cannot be changed when using SOM with EC assembled	B32
72		CONN_ENET1_PPS		F28

Wi-Fi & BT & MMC/SD/SDIO

The VAR-SOM-MX8X contains a certified high-performance Wi-Fi and Bluetooth (BT) module:

- IEEE 802.11 ac/a/b/g/n
- Bluetooth 2.1+EDR
- BLE 5.2 capabilities
- Modules have an antenna connection through a U.FL JACK connector
- Antenna cable connected to module must have $50-\Omega$ impedance

Figure 3 illustrates the VAR-SOM-MX8X internal Wi-Fi and BT connectivity.

Figure 3: VAR-SOM-MX8X Wi-Fi & BT Internal Connection

Rev. 1.12, 02/2023 Page 46 Variscite Ltd.

To allow the most flexible solution the following elements are added to the VAR-SOM-MX8X:

- Tristate buffer on the BT link based on UART interface.
 Will allow isolation from the LWB5 module and the use by external circuity via the SO-DIMM connector.
- Multiplexer is used on the Usdhc1 (SOC uSDHC1 interface) 4-bit bus controlled using an internal GPIO.

Notes:

- [1] BT UART tristate buffer controlled using MIPI_DSI1_I2CO_SCL pin alternate function GPIO1_29. A logic "Low" enables the buffer.
- [2] Multiplexer controlled using QSPIOA_DATAO alternate function GPIO3_9.
 A "High" connects the USDHC1 interface to the Wi-Fi SDIO lines.
 A "Low" connect the USDHC1 interface to the connector CONN USDHC1 lines.

8.4.1 Interface implementation options

8.4.1.1 Module configuration with "WBD" option

System use case:

Wi-Fi and Bluetooth.

o All external pins of the interfaces should float.

Wi-Fi and No BT.

- o In this case, disable the BT buffer and BT function.
- o BT UART interface pins can be used externally with any of the alternative functions.

BT and No Wi-Fi.

- In this case, SET the SDIO multiplexer to the connector state and disable the Wi-Fi interface.
- uSDHC1 lines can be connected externally.

8.4.1.2 Module configuration without "WBD" option

System use case:

No Wi-Fi and No BT.

- o SDIO signals bypassed and BT buffer not assembled.
- o All the interfaces are accessible externally with alternative functions.

A second interface, uSDHC0 is used by the on SOM internal eMMC for boot and storage.

8.4.1.3 SD Card recovery & development

To allow SD Card recovery and to ease the development process, booting from the SD card must be done with the kernel that does not have W-Fi module enabled i.e. Wi-Fi interface is not accessible when booting from SD card.

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

8.4.2 Bluetooth Interface signals

Table 17: BT UART interface signals

Pin#	Assy	PIN Function	Notes	Ball
50		ADMA_UARTO_RTS_B	UARTO Request to Send Output. Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	Y34
51		ADMA_UART0_CTS_B	UARTO Clear to Send Input. Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	Y32
53		ADMA_UARTO_RX	UARTO Receive Data Input. Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	AB32
52		ADMA_UARTO_TX	UARTO Transmit Data Output. Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	AA29

8.4.3 uSDHC1 Interface signals

The exposed controller uSDHC1 can only support up to a 4-bit interface designed to support:

- SD/SDIO standard, up to version 3.0.
- MMC standard, up to version 5.0.
- 1.8 V and 3.3 V operation
- 1-bit/4-bit SD and SDIO modes, 1-bit/4-bit MMC mode
- Up to SDR104 rate

The uSDHC controller uSDHC0 can support up to an 8-bit interface is used internally for the eMMC interface on the SOM.

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

Table 18: uSDHC1 Signals

Pin#	Assy	PIN Function	Notes	Ball
82		CONN_USDHC1_WP		D24
80		CONN_USDHC1_CD_B		E23
60		CONN_USDHC1_CLK	Not connected when Wi-Fi is enabled	G23
64		CONN_USDHC1_CMD	Not connected when Wi-Fi is enabled	C25
62		CONN_USDHC1_DATA0	Not connected when Wi-Fi is enabled	A27
63		CONN_USDHC1_DATA1	Not connected when Wi-Fi is enabled	B26
61		CONN_USDHC1_DATA2	Not connected when Wi-Fi is enabled	D26
65		CONN_USDHC1_DATA3	Not connected when Wi-Fi is enabled	E25

8.5 USB 2.0

The SOM consists of a two USB controller blocks which provides 2 high-performance USB functionality USB ports that conform to the USB 2.0 specification.

Port 1 supports Host/Peripheral modes.

Port 2 supports OTG functionality as well as Host/Peripheral modes.

Table 19: USB 2.0 Port 1 Signals

Pin #	Assy	PIN Function	Notes	Ball
108		CONN_USB_OTG1_DN		E19
110		CONN_USB_OTG1_DP		D18
104		CONN_USB_OTG1_VBUS	USB Host VBUS (5V) input	H18

Table 20: USB 2.0 Port 2 Signals

Pin #	Assy	PIN Function	Notes	Ball
114		CONN_USB_OTG2_DN		D16
116		CONN_USB_OTG2_DP		E17
106		CONN USB OTG2 VBUS	USB OTG VBUS (5V) input	H16

8.5.1 USB OTG interface signals

The VAR-SOM-MX8X exposes pins, which can be optionally used to implement a complete OTG functions.

Table 21: USB Port 1 & 2 OTG Interface signals

Pin #	Assy	PIN Function	Notes	Ball
87		CONN_USB_OTG1_OC		G15
88		CONN_USB_OTG1_PWR		F14

VAR-SOM-MX8X_V1.x Datasheet

VAR-SOM-MX8X SYSTEM ON MODULE

Pin #	Assy	PIN Function	Notes	Ball
94		CONN_USB_OTG2_ID		F16
87		CONN_USB_OTG2_OC		G15
88		CONN_USB_OTG2_PWR		F14

USB 3.0 8.6

The SOM includes a Super-speed USB 3.0 core consisting of:

- Super Speed (5 Gbps), High Speed (480 Mbps), full speed (12 Mbps) and low speed (1.5 Mbps)
- Fully compatible with the USB 3.0 specification (backward compatible with USB
- Fully compatible with the USB On-The-Go supplement to the USB 2.0 specification
- Hardware support for OTG signaling
- Host Negotiation Protocol (HNP) and Session Request Protocol (SRP) implemented in hardware, which can also be controlled by software

Table 22: USB3 Signals

Pin#	Assy	PIN Function	Notes	Ball
91		CONN_USB_SS3_RX_M_LN_0		B18
93		CONN_USB_SS3_RX_P_LN_0		A19
99		CONN_USB_SS3_TX_M_LN_0		A15
97		CONN_USB_SS3_TX_P_LN_0		B16

Rev. 1.12, 02/2023 Page 50 Variscite Ltd.

8.7 **Audio**

The SOM features three audio interfaces

- WM8904CGEFL Audio codec interfaces:
 - o Analog outputs & inputs: stereo line-in & Stereo HP out.
 - Digital microphone input
- **Enhanced Serial Audio Interface**
- Serial Audio Interface
- S/PDIF in/out
- MQS (Medium Quality Sound)

Analog audio signals are part of the SOM WM8904 audio codec, available with "AC" Configuration only. The codec interfaces the SoC via SAI1 lines, when not assembled, SoC balls are exported to SOM connector instead of Analog codec interface pins.

The Codec features stereo ground-referenced headphone amplifiers using the Wolfson 'Class-W' amplifier techniques -incorporating an innovative dual-mode charge pump architecture - to optimize efficiency and power consumption during playback. The groundreferenced headphone and line outputs eliminate AC coupling capacitors, and both outputs include common mode feedback paths to reject ground noise.

The following figure illustrates the connectivity for no large AC coupling capacitors implemented on SOM.

Figure 4: WM8904 Headphone connectivity

8.7.1 WM8904CGEFL Audio Codec

Table 23: Analog audio Signals

Pin#	Assy	PIN Function	Notes	Ball
195	AC	AGND	Audio interface ground reference	Audio AGND
18	AC	DMIC_CLK	Digital microphone clock output	WM8904CGEFL.1
20	AC	DMIC_DATA	Digital microphone data input	WM8904CGEFL.27
198	AC	HPLOUT	Left headphone output (line or headphone output)	WM8904CGEFL.13

Rev. 1.12, 02/2023 Page 51 Variscite Ltd.

Pin#	Assy	PIN Function	Notes	Ball
196	AC	НРОИТЕВ	Headphone output ground loop noise rejection feedback	WM8904CGEFL.14
200	AC	HPROUT	Right headphone output (line or headphone output)	WM8904CGEFL.15
197	AC	LINEIN1_LP	Left channel input	WM8904CGEFL.26
199	AC	LINEIN1_RP	Right channel input	WM8904CGEFL.24

8.7.2 Enhanced Serial Audio Interface

The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for serial communication with a variety of serial devices, including industry-standard codecs, SPDIF transceivers, and other processors. The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. All serial transfers are synchronized to a clock. Additional synchronization signals are used to delineate the word frames. The normal mode of operation is used to transfer data at a periodic rate, one word per period. The network mode is also intended for periodic transfers; however, it supports up to 32 words (time slots) per period. This mode can be used to build time division multiplexed (TDM) networks. In contrast, the on-demand mode is intended for non-periodic transfers of data and to transfer data serially at high speed when the data becomes available.

Table 24: Enhanced Serial Audio Signals

Pin#	Assy	PIN Function	Notes	Ball
96		ADMA_ESAI0_FSR	Referenced to pin 38 supply (1.8V/2.5/3.3V)	F30
56		ADMA_ESAI0_FST	Referenced to pin 38 supply (1.8V/2.5/3.3V)	G29
113		ADMA_ESAI0_SCKR	Referenced to pin 38 supply (1.8V/2.5/3.3V)	H28
55		ADMA_ESAI0_SCKT	Referenced to pin 38 supply (1.8V/2.5/3.3V)	E31
57		ADMA_ESAI0_TX0	Referenced to pin 38 supply (1.8V/2.5/3.3V)	D32
54		ADMA_ESAI0_TX1	Referenced to pin 38 supply (1.8V/2.5/3.3V)	B34
71		ADMA_ESAI0_TX2_RX3	Referenced to pin 38 supply (1.8V/2.5/3.3V)	K28
81		ADMA_ESAI0_TX3_RX2	Referenced to pin 38 supply (1.8V/2.5/3.3V)	C33
73		ADMA_ESAI0_TX4_RX1	Referenced to pin 38 supply (1.8V/2.5/3.3V)	F32
177		ADMA_ESAI0_TX5_RX0	Referenced to pin 38 supply (1.8V/2.5/3.3V)	J29
41		ADMA_ESAIO_RX_HF_CLK		G35
20	No AC	ADMA_ESAIO_TX_HF_CLK	Available in SOM without AC	L29

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

Page 52

8.7.3 Serial Audio Interface

SAI module provides a synchronous audio interface that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces.

Table 25: Serial Audio Interface O Signals

Pin#	Assy	PIN Function	Notes	Ball
22		ADMA_SAIO_RXC		R35
150		ADMA_SAIO_RXC		AK28
196	No AC	ADMA_SAI0_RXD	Available in SOM without AC	M34
21		ADMA_SAI0_RXD		R33
152		ADMA_SAI0_RXD		AL29
23		ADMA_SAIO_RXFS		M32
157		ADMA_SAIO_RXFS		AP30
77		ADMA_SAI0_TXC		J35
25		ADMA_SAI0_TXC		P30
197	No AC	ADMA_SAI0_TXD	Available in SOM without AC	K34
26		ADMA_SAI0_TXD		P34
75		ADMA_SAIO_TXFS		L33
24		ADMA_SAI0_TXFS		R31

Table 26: Serial Audio Interface 1 Signals

Pin#	Assy	PIN Function	Notes	Ball
197	No AC	ADMA_SAI1_RXC	Available in SOM without AC	K34
200	No AC	ADMA_SAI1_RXC	Available in SOM without AC	L35
44		ADMA_SAI1_RXC		AA31
23		ADMA_SAI1_RXD		M32
198	No AC	ADMA_SAI1_RXD	Available in SOM without AC	AA35
196	No AC	ADMA_SAI1_RXFS	Available in SOM without AC	M34
199	No AC	ADMA_SAI1_RXFS	Available in SOM without AC	N35
46		ADMA_SAI1_RXFS		AB34
50		ADMA_SAI1_TXC	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	Y34
200	No AC	ADMA_SAI1_TXC	Available in SOM without AC	N35
77		ADMA_SAI1_TXD		J35
22		ADMA_SAI1_TXD		R35
18	No AC	ADMA_SAI1_TXD	Available in SOM without AC	AA33
51		ADMA_SAI1_TXFS	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	Y32
199	No AC	ADMA_SAI1_TXFS	Available in SOM without AC	L35

Table 27: Serial Audio Interface 2 Signals

Pin#	Assy	PIN Function	Notes	Ball
50		ADMA_SAI2_RXC	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	Y34
155		ADMA_SAI2_RXC		AJ27
51		ADMA_SAI2_RXD	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	Y32
148		ADMA_SAI2_RXD		AN29
18	No AC	ADMA_SAI2_RXFS	Available in SOM without AC	AA33
156		ADMA_SAI2_RXFS		AM30

Table 28: Serial Audio Interface 3 Signals

Pin#	Assy	PIN Function	Notes	Ball
198	No AC	ADMA_SAI3_RXC	Available in SOM without AC	AA35
153		ADMA_SAI3_RXC		AJ25
46		ADMA_SAI3_RXD		AB34
151		ADMA_SAI3_RXD		AM28
44	·	ADMA_SAI3_RXFS		AA31
154		ADMA_SAI3_RXFS		AR29

The following table details the SAI interface signals definition.

Table 29: SAI interface signals definition

Name	Function	DIR
SAI_TXC	Transmit Bit Clock. The bit clock is an input when externally generated and an output when internally generated.	I/O
SAI_TXFS	Transmit Frame Sync. The frame sync is an input sampled synchronously by the bit clock when externally generated and an output generated synchronously by the bit clock when internally generated.	1/0
SAI_TXD	Transmit Data. The transmit data is generated synchronously by the bit clock and is tristate whenever not transmitting a word	0
SAI_RXC	Receive Bit Clock. The bit clock is an input when externally generated and an output when internally generated.	I/O
SAI_RXFS	Receive Frame Sync. The frame sync is an input sampled synchronously by the bit clock when externally generated and an output generated synchronously by the bit clock when internally generated.	1/0
SAI_RXD	Receive Data. The receive data is sampled synchronously by the bit clock.	I

Rev. 1.12, 02/2023 Variscite Ltd. Page 54

8.7.4 Sony Phillips Digital Interface In/Out

Sony/Philips Digital Interface (SPDIF) audio block is a stereo transceiver that allows the processor to receive and transmit digital audio. The SPDIF transceiver allows the handling of both SPDIF channel status (CS) and User (U) data and includes a frequency measurement block that allows the precise measurement of an incoming sampling frequency.

Table 30: S/PDIF Signals

Pin#	Assy	PIN Function	Notes	Ball
40		ADMA_SPDIF0_EXT_CLK	Referenced to pin 38 supply (1.8V/2.5/3.3V)	E35
122		ADMA_SPDIF0_RX	Referenced to pin 38 supply (1.8V/2.5/3.3V)	G31
120		ADMA_SPDIF0_TX	Referenced to pin 38 supply (1.8V/2.5/3.3V)	D34

8.7.5 Medium quality sound (MQS)

Medium quality sound (MQS) is used to generate medium quality audio via a standard GPIO in the Pin mux, allowing the user to connect stereo speakers or headphones to a power amplifier without an additional DAC chip. MQS accepts the following inputs:

- 2-channel, LSB-valid 16-bit, MSB shift-out first serial data (sdata)
- Frame sync asserting with the first bit of the frame (fs)
- Bit clock used to shift data out on the positive clock edge (bclk)

Table 31: MQS Signals

Pin#	Assy	PIN Function	Notes	Ball
120		ADMA_MQS_L	Referenced to pin 38 supply (1.8V/2.5/3.3V)	D34
52		ADMA_MQS_L	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	AA29
62		ADMA_MQS_L	Not connected when Wi-Fi is enabled	A27
122		ADMA_MQS_R	Referenced to pin 38 supply (1.8V/2.5/3.3V)	G31
53		ADMA_MQS_R	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	AB32
64		ADMA_MQS_R	Not connected when Wi-Fi is enabled	C25

8.8 Audio Clock Mux (ACM)

The SOM exports the Audio Clock Mux signals for connecting to Audio peripherals.

Table 32: ACM Signals

Pin#	Assy	PIN Function	Notes	Ball
41		ADMA_ACM_MCLK_IN0		G35
141	ADC	ADMA_ACM_MCLK_IN0	Available in SOM with ADC (referenced to 1.8V)	V32
176		ADMA_ACM_MCLK_IN1		M28
20	No AC	ADMA_ACM_MCLK_OUT0	Available in SOM without AC	L29
143	ADC	ADMA_ACM_MCLK_OUT0	Alternate function can be used in SOM without AC Available in SOM with ADC (referenced to 1.8V)	V30
191	No TP	ADMA_ACM_MCLK_OUT1	Available in SOM without TP	J31

8.9 Resistive Touch

The VAR-SOM-MX8X features on board a 4-wire resistive touch panel interface controller (TI TSC2046) with the following features:

- Compatible with 4-wire resistive touch screens
- Pen-detection and nIRQ generation
- Supports several schemes of measurement, averaging to filter noise

The Resistive Touch is available only in SOMs with the "TP" assembly option

Table 33: Resistive Touch Signals

Pin#	Assy	PIN Function	Notes	Ball
187	TP	TS_X-		TSC2046.8
189	TP	TS_X+		TSC2046.6
191	TP	TS_Y+		TSC2046.7
193	TP	TS_Y-		TSC2046.9

VAR-SOM-MX8X_V1.x Datasheet

8.10 PCle

The VAR-SOM-MX8X exposes a single PCI Express Gen 3.0 single lane interface.

The following list the key features of the PCIe PHY:

- 1.5 / 2.5 / 3.0 / 5.0 / 6.0 Gbps Serializer / Deserializer
- 100 MHz Reference Clock
- K28.5 Detection for Word Alignment
- 8B/10B Encoding / Decoding
- Supports Spread Spectrum Clocking in Transmitter and Receiver

The PCIe controller implements the following standards:

- PCI Express Base Specification, Revision 4.0, Version 0.7
- PIPE Specification for PCI Express, Version 4.3, Intel Corporation
- PCI Local Bus Specification, Revision 3.0
- PCI Bus Power Management Specification, Revision 1.2
- PCI Express Card Electromechanical Specification, Revision 1.1

Note: Access to the above specification requires membership in PCI-SIG.

Table 34: PCIE Signals

Pin#	Assy	PIN Function	Notes	Ball
100		HSIO_PCIE_IOB_EXT_REFCLK100M_N	PCIe compliant 100MHz reference clock. Can be exported from SOM or input to the SOM. The internal PCIe reference clock is not spread spectrum capable. For PCIe Gen 3.0 or EMC/EMI sensitive applications, it is recommended to connect to an external HCSL-compatible clock source.	D12
102		HSIO_PCIE_IOB_EXT_REFCLK100M_P	PCIe compliant 100MHz reference clock. Can be exported from SOM or input to the SOM. The internal PCIe reference clock is not spread spectrum capable. For PCIe Gen 3.0 or EMC/EMI sensitive applications, it is recommended to connect to an external HCSL-compatible clock source.	E11
136		HSIO_PCIEO_RXO_N		B12
134		HSIO_PCIEO_RXO_P		A13
128		HSIO_PCIEO_TXO_N		A9
130		HSIO_PCIEO_TXO_P		B10

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

8.11 UART

- High-speed TIA/EIA-232-F compatible, up to 5.0 Mbit/s
- Serial IR interface low-speed, IrDA-compatible (up to 115.2 Kbit/s)
- 9-bit or multi drop mode (RS-485) support (automatic slave address detection)
- 7, 8, 9, or 10-bit data characters (7-bits only with parity), 1 or 2 stop bits
- Programmable parity (even, odd, and no parity)
- Hardware flow control support for RTS and CTS signals

Table 35: UARTO Signals

Pin#	Assy	PIN Function	Notes	Ball
51		ADMA_UARTO_CTS_B	UARTO Clear to send input. Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	Y32
50		ADMA_UART0_RTS_B	UARTO Request to send Output. Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	Y34
53		ADMA_UARTO_RX	UARTO Receive Data Input. Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	AB32
52		ADMA_UARTO_TX	UARTO Transmit Data Output. Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	AA29

Table 36: UART1 Signals

Pin#	Assy	PIN Function	Notes	Ball
68		ADMA_UART1_CTS_B	UART1 Clear to send Input	K32
69		ADMA_UART1_RTS_B	UART1 Request to send Output	N29
175		ADMA_UART1_RX	UART1 Receive Data Input	L31
124		ADMA_UART1_TX	UART1 Transmit Data Output	H34

Table 37: UART2 Signals

Pin#	Assy	PIN Function	Notes	Ball
115		ADMA_UART2_RX	UART2 Receive Data Input	AD34
171		ADMA_UART2_TX	UART2 Transmit Data Output	AC35

Rev. 1.12, 02/2023 Page 59 Variscite Ltd.

VAR-SOM-MX8X SYSTEM ON MODULE

Table 38: UART3 Signals

Pin#	Assy	PIN Function	Notes	Ball
61		ADMA_UART3_CTS_B	UART3 Clear to send Input. Not connected when Wi-Fi is enabled	D26
65		ADMA_UART3_RTS_B	UART3 Request to send Output. Not connected when Wi-Fi is enabled	E25
46		ADMA_UART3_RX	UART3 Receive Data Input.	AB34
83		ADMA_UART3_RX	UART3 Receive Data Input. Pin is routed via on SOM buffer, set as Input by default. Pin direction can be controlled by GPIO1_26: Low - Output from SoC High - Input to SoC	AF28
60		ADMA_UART3_RX	UART3 Receive Data Input. Not connected when Wi-Fi is enabled	G23
44		ADMA_UART3_TX	UART3 Transmit Data Output.	AA31
85		ADMA_UART3_TX	UART3 Transmit Data Output. Pin is routed via on SOM buffer set as Output by default. Pin direction can be controlled by GPIO1_25: Low - Output from SoC High - Input to SoC	AH30
63		ADMA_UART3_TX	UART3 Transmit Data Output Not connected when Wi-Fi is enabled	B26

8.12 Flexible Controller Area Network

The Flexible Controller Area Network (FLEXCAN) module is a communication controller supporting CAN-FD (CAN Flexible Data Rate) and CAN2.0B specification. Signal Description:

- CAN Rx: The receive pin from the CAN bus transceiver. Dominant state is represented by logic level '0'. Recessive state is represented by logic level '1'.
- CAN Tx: The transmit pin to the CAN bus transceiver. Dominant state is represented by logic level '0'. Recessive state is represented by logic level '1'.

Table 39: FLEXCANO Signals

Pin#	Assy	PIN Function	Notes	Ball
50		ADMA_FLEXCANO_RX	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	Y34
53		ADMA_FLEXCANO_RX	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	AB32
51		ADMA_FLEXCANO_TX	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	Y32
52		ADMA_FLEXCANO_TX	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	AA29

Table 40: FLEXCAN1 Signals

Pin#	Assy	PIN Function	Notes	Ball
18	No AC	ADMA_FLEXCAN1_RX	Available in SOM without AC	AA33
115		ADMA_FLEXCAN1_RX		AD34
198	No AC	ADMA_FLEXCAN1_TX	Available in SOM without AC	AA35
171		ADMA_FLEXCAN1_TX		AC35

Table 41: FLEXCAN2 Signals

Pin#	Assy	PIN Function	Notes	Ball
46		ADMA_FLEXCAN2_RX		AB34
44		ADMA_FLEXCAN2_TX		AA31

Rev. 1.12, 02/2023 Page 61 Variscite Ltd.

8.13 LPSPI

The LPSPI is a low power Serial Peripheral Interface (SPI) module that supports an efficient interface to an SPI bus, either as a master and/or as a slave. The LPSPI supports:

- Word size = 32 bits
- Configurable clock polarity and clock phase
- Master operation supporting up to 4 peripheral chip select
- Slave operation
- Command/transmit FIFO of 64 words
- Receive FIFO of 64 words
- Flexible timing parameters in master mode, including SCK frequency and delays between PCS and SCK edges
- Support for full duplex transfers supporting 1-bit transmit and receive on each clock edge
- Support for half duplex transfers supporting 1-bit transmit or receive on each clock edge
- Support for half duplex transfers supporting 2-bit or 4-bit transmit or receive on each clock edge (master only)
- Host request input can be used to control the start time of an SPI bus transfer (master only)
- Receive data match logic supporting wakeup on data match

Table 42: SPIO Signals

Pin#	Assy	PIN Function	Notes	Ball
21		ADMA_SPI0_CS0		R33
22		ADMA_SPI0_CS1		R35
25		ADMA_SPIO_SCK		P30
26		ADMA_SPI0_SDI		P34
24		ADMA_SPI0_SDO		R31

Table 43: SPI1 Signals

Pin#	Assy	PIN Function	Notes	Ball
196	No AC	ADMA_SPI1_CS0	Available in SOM without AC	M34
79		ADMA_SPI1_CS0		AR27
23		ADMA_SPI1_CS1		M32
75		ADMA_SPI1_SCK		L33
84		ADMA_SPI1_SCK		AK26
48		ADMA_SPI1_SDI		AP28
70		ADMA_SPI1_SDO		AM26

VAR-SOM-MX8X_V1.x Datasheet

Table 44: SPI2 Signals

Pin #	Assy	PIN Function	Notes	Ball
39		ADMA_SPI2_CS0		P28
80		ADMA_SPI2_CS0		E23
75		ADMA_SPI2_CS1		L33
43		ADMA_SPI2_SCK		R29
82		ADMA_SPI2_SDI		D24
20	No AC	ADMA_SPI2_SDO	Available in SOM without AC	L29
45		ADMA_SPI2_SDO		P32

Table 45: SPI3 Signals

Pin#	Assy	PIN Function	Notes	Ball
191	No TP	ADMA_SPI3_CS0	Available in SOM without TP	J31
174		ADMA_SPI3_CS1		K30
189	No TP	ADMA_SPI3_SCK	Available in SOM without TP	H32
193	No TP	ADMA_SPI3_SDI	Available in SOM without TP	G33
187	No TP	ADMA_SPI3_SDO	Available in SOM without TP	F34

8.14 QSPI

The VAR-SOM-MX8X exports one QSPI channel for connection of up to 4 external devices supporting Single/Dual/Quad/ mode data transfer (1/2/4 bidirectional data lines). The QSPI is available only in SOMs with the "No ADC" assembly option

Key features of QSPI are:

- Flexible sequence engine to support various flash vendor devices.
- Support for FPGA interface
- Single, dual, quad, mode of operation.
- DDR/DTR mode wherein the data is generated on every edge of the serial flash clock.
- Support for flash data strobe signal for data sampling in DDR and SDR mode.
- Two identical serial flash devices can be connected and accessed in parallel for data read operations, forming one (virtual) flash memory with doubled readout bandwidth.
- Multi-master accesses with priority
- Flexible and configurable buffer for each master
- Thirteen interrupt conditions
- Memory mapped read access to connected flash devices.
- Programmable sequence engine to cater to future command/protocol changes and able to support all existing vendor commands and operations.
- Supports 3-byte and 4-byte addressing.
- LUT size is 512B

Table 46: QSPIOB Signals

Pin #	Assy	PIN Function	Notes	Ball
142	No ADC	LSIO_QSPIOB_DATA0		AM10
141	No ADC	LSIO_QSPI0B_DATA1		AL9
140	No ADC	LSIO_QSPI0B_DATA2		AJ11
143	No ADC	LSIO_QSPIOB_DATA3		AM8
145	No ADC	LSIO_QSPI0B_DQS		AK10
147	No ADC	LSIO_QSPIOB_SCLK		AR11
117		LSIO_QSPI0B_SSO_B		AH10
86		LSIO_QSPI0B_SS1_B		AJ9

8.15 Keypad

The VAR-SOM-MX8X exports a 4x4 Keypad matrix available on SOM with "No ADC" assembly option.

Keypad Key Features:

- Supports up to an 8 x 8 external key pad matrix
- Port pins can be used as general purpose I/O
- Open drain design
- Glitch suppression circuit design
- Multiple-key detection
- Long key-press detection
- Standby key-press detection
- Synchronizer chain clear
- Supports a 2-point and 3-point contact key matrix

Table 47: Keypad Signals

Pin#	Assy	PIN Function	Notes	Ball
147	No ADC	LSIO_KPPO_COLO		AR11
142	No ADC	LSIO_KPPO_COL1		AM10
141	No ADC	LSIO_KPPO_COL2		AL9
140	No ADC	LSIO_KPPO_COL3		AJ11
143	No ADC	LSIO_KPPO_ROW0		AM8
145	No ADC	LSIO_KPP0_ROW1		AK10
117	·	LSIO_KPP0_ROW2		AH10
86		LSIO_KPP0_ROW3		AJ9

8.16 PWM

The VAR-SOM-MX8X exports 4 General purpose Pulse Width Modulators (PWM) signals. In addition, there are 2 dedicated PWM signals for DSI0, DSI1, LCD interfaces. PWM Features:

- 16-bit up-counter with clock source selection (bus clock, baud clock, or 32K)
- 4 x 16 FIFO to minimize interrupt overhead
- 12-bit prescaler for division of clock
- Sound and melody generation
- Active high or active low configured output
- Can be programmed to be active in low-power mode
- Can be programmed to be active in debug mode
- Interrupts at compare and rollover

Table 48: PWM Signals

Pin#	Assy	PIN Function	Notes	Ball
124		LSIO_PWM0_OUT		H34
175		LSIO_PWM1_OUT		L31
69		LSIO_PWM2_OUT		N29
68		LSIO_PWM3_OUT		K32
22		ADMA_LCD_PWM0		R35
17		MIPI_DSI0_PWM0_OUT		AD32
92		MIPI_DSI1_PWM0_OUT		AD30

8.17 I2C

The SOM consists of 3 I2C Interface connectivity peripherals which provides serial interface for external devices. Data rates of up to 400 kbps are supported.

In addition, there are dedicated low-speed I2C non-DMA I2C busses for MIPI-CSI, CSI.

Table 49: I2C1 Signals

Pin#	Assy	PIN Function	Notes	Ball
17		ADMA_I2C1_SCL		AD32
88		ADMA_I2C1_SCL		F14
42		ADMA_I2C1_SCL	Pin Used for Boot mode setting, Please see Boot Configuration section.	H14
87		ADMA_I2C1_SDA		G15

Table 50: I2C2 Signals

Pin#	Assy	PIN Function	Notes	Ball
92		ADMA_I2C2_SCL		AD30
90		ADMA_I2C2_SDA		AF34

VAR-SOM-MX8X_V1.x Datasheet

Table 51: I2C3 Signals

Pin#	Assy	PIN Function	Notes	Ball
174		ADMA_I2C3_SCL		K30
48		ADMA_I2C3_SCL		AP28
74		ADMA_I2C3_SCL	Pin alternate function cannot be changed when using SOM with EC assembled	D30
176		ADMA_I2C3_SDA		M28
79		ADMA_I2C3_SDA		AR27
30		ADMA_I2C3_SDA	Pin alternate function cannot be changed when using SOM with EC assembled	B32

Table 52: Parallel CSI I2C Signals

Pin#	Assy	PIN Function	Notes	Ball
48		CI_PI_CSI_I2C_SCL		AP28
79		CI_PI_CSI_I2C_SDA		AR27

Table 53: MIPI CSI I2C Signals

Pin#	Assy	PIN Function	Notes	Ball
84		MIPI_CSI0_I2C0_SCL		AK26
70		MIPI_CSI0_I2C0_SDA		AM26

8.18 Analog to Digital Converter

The VAR-SOM-MX8X exports 6 channels of 12-bit successive approximation ADC interface. ADC SoC balls are exported only in SOM configurations with "ADC" assembly option ADC inputs are referenced to 1.8v.

Table 54: Analog to Digital Converter Signals

Pin#	Assy	PIN Function	Notes	Ball
140	ADC	ADMA_ADC_IN0	Available in SOM with ADC (referenced to 1.8V)	U35
142	ADC	ADMA_ADC_IN1	Available in SOM with ADC (referenced to 1.8V)	U33
141	ADC	ADMA_ADC_IN2	Available in SOM with ADC (referenced to 1.8V)	V32
143	ADC	ADMA_ADC_IN3	Available in SOM with ADC (referenced to 1.8V)	V30
147	ADC	ADMA_ADC_IN4	Available in SOM with ADC (referenced to 1.8V)	W29
145	ADC	ADMA_ADC_IN5	Available in SOM with ADC (referenced to 1.8V)	V34

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

Page 66 Variscite Ltd.

8.19 General Purpose Timer

Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock.

Table 55: General Purpose Timer Signals

Pin#	Assy	PIN Function	Notes	Ball
124		LSIO_GPT0_CAPTURE		H34
69		LSIO_GPT0_CLK		N29
175		LSIO_GPT0_COMPARE		L31
69		LSIO_GPT1_CAPTURE		N29
175		LSIO_GPT1_CLK		L31
68		LSIO_GPT1_COMPARE		K32

8.20 Flex Timer (FTM)

The SOM exports a 3 channel Flex timer module (FTM) supporting input capture, output compare, and generation of PWM signals.

Table 56: General Purpose Timer Signals

Pin#	Assy	PIN Function	Notes	Ball
115		ADMA_FTM_CH0		AD34
171		ADMA_FTM_CH1		AC35
18	No AC	ADMA_FTM_CH2	Available in SOM without AC	AA33

8.21 System Control Unit

The System Controller Unit (SCU) is made of a Cortex-M4 processor running at 266MHz with 256KB of TCM and a set of peripherals and interfaces to connect to external PMIC and to control internal subsystems. The SCU Cortex-M4 is the first processor to boot the chip (see System Boot). The SCU is responsible for:

- Booting the system
- Interfacing with the external PMIC through a dedicated I2C and dedicated pins
- Managing power, clocking, and reset of internal subsystems
- Controlling pin multiplexing and IO control (drive strength and pull up/down)
- Managing resource partitioning through isolation (see xRDC chapter)
- Managing thermal

Table 57: System Control Unit Signals

Pin#	Assy	PIN Function	Notes	Ball
146		SCU_DSC_BOOT_MODE1	Pin Used for Boot mode setting, Please see Boot Configuration section. (referenced to 1.8V)	AK32
83		SCU_GPIO0_IO00	Pin is routed via on SOM buffer, set as Input by default. Pin direction can be controlled by GPIO1_26: Low - Output from SoC High - Input to SoC	AF28
85		SCU_GPIO0_IO01	Pin is routed via on SOM buffer set as Output by default. Pin direction can be controlled by GPIO1_25: Low - Output from SoC High - Input to SoC	AH30
53		SCU_UARTO_RX	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	AB32
83		SCU_UARTO_RX	Pin is routed via on SOM buffer, set as Input by default. Pin direction can be controlled by GPIO1_26: Low - Output from SoC High - Input to SoC	AF28
52		SCU_UARTO_TX	Used internally in SOM with "WBD" Configuration. Interface can be released by GPIO control.	AA29
85		SCU_UARTO_TX	Pin is routed via on SOM buffer set as Output by default. Pin direction can be controlled by GPIO1_25: Low - Output from SoC High - Input to SoC	AH30

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

Page 68

8.22 JTAG

The SOM consists of the System JTAG Controller (SJC) which provides debug and test control with maximum security. The test access port (TAP) is designed to support features compatible with the IEEE standard 1149.1 v2001 (JTAG). Support IEEE P1149.6 extensions to the JTAG standard are for AC testing of selected IO signals.

Table 58: JTAG signals 10-pin Header Connector

Pin#	Assy	PIN Function	Notes	Ball
1		JTAG_VTREF	JTAG reference voltage (3.3v)	
2		JTAG_TMS	JTAG Test Mode select	AG35
3		GND	Digital Ground	
4		JTAG_TCK	JTAG Test Clock	AE31
5		GND	Digital Ground	
6		JTAG_TDO	JTAG Test Data Out	AF32
7		RTCK	JTAG Return clock	
8		JTAG_TDI	JTAG Test Data In	AH34
9		JTAG_TRST_B_CONN	JTAG TAP reset	
10		JTAG_SRST_B	JTAG System reset	

8.23 Cortex M4

The SOM features one configurable Cortex-M4 subsystem and a dedicated Cortex-M4 subsystem within the SCU. The modular set of Cortex-M4 platform components offer a low-latency execution environment with real-time and low-power processing capability. Along with the processor components, the Cortex-M4 subsystem features several off platform components. These off-platform components and subsystem features include:

- WDOG (watchdog) timer
- LPIT (Low-power Periodic Interrupt Timer) for periodic timer services
- TPM (Timer PWM Module) for timer and PWM services
 - 32-bit counters
- LPCG (Low-Power Clock Gating) for local clock management
- TSTMR (Timestamp Timer) for global timer services
 - Receives system time bus driven by system counter
- Power mode control
 - o Programming model for power mode request
 - Low-power bus connected to SC to support power mode transitions
- Reset control and status
- MU (Messaging Unit) for inter-processor communication
 - o MU0 with 4 channels inside the GP CM4 domain
 - MU1 with 1 channel which is inside the DSC. The latter is talked to over an asynchronous bus.
- LPI2C (Low-Power I2C) for serial communication
 - Standard features (FEATURE_EN = 1)
 - Slave mode logic enabled (SLAVE_EN = 1)
 - TX FIFO size of 4 entries (TXFIFO SZ = 2)
 - RX FIFO size of 4 entries (RXFIFO_SZ = 2)
- LPUART (Low-Power UART) for serial communication and debug
 - Standard functionality with MODEM/IrDA (FEATURE_EN = 2)
 - TX FIFO size of 32 entries (TXFIFO_SZ = 5)
 - RX FIFO size of 5(RXFIFO_SZ = 5)
- RGPIO (Rapid General-Purpose Input/Output) for fast pin I/O capability
 - Dual access (AIPS and AHB access from system peripheral address space)
- INTMUX (Interrupt Mux) to select local interrupts routed outside of the subsystem
- SEMA42 (hardware semaphore) for HMP synchronization to shared resources

VAR-SOM-MX8X SYSTEM ON MODULE

Table 59: Cortex M4 GPIO Signals

Pin#	Assy	PIN Function	Notes	Ball
25		M40_GPIO0_IO00		P30
140	ADC	M40_GPIO0_IO00	Available in SOM with ADC (referenced to 1.8V)	U35
24		M40_GPIO0_IO01		R31
142	ADC	M40_GPIO0_IO01	Available in SOM with ADC (referenced to 1.8V)	U33
26		M40_GPIO0_IO02		P34
141	ADC	M40_GPIO0_IO02	Available in SOM with ADC (referenced to 1.8V)	V32
21		M40_GPIO0_IO03		R33
143	ADC	M40_GPIO0_IO03	Available in SOM with ADC (referenced to 1.8V)	V30
147	ADC	M40_GPIO0_IO04	Available in SOM with ADC (referenced to 1.8V)	W29
145	ADC	M40_GPIO0_IO05	Available in SOM with ADC (referenced to 1.8V)	V34

Table 60: Cortex M4 UART Signals

Pin #	Assy	PIN Function	Notes	Ball
141	ADC	M40_UART0_RX	Available in SOM with ADC (referenced to 1.8V)	V32
83		M40_UART0_RX	Pin is routed via on SOM buffer, set as Input by default. Pin direction can be controlled by GPIO1_26: Low - Output from SoC High - Input to SoC	AF28
143	ADC	M40_UART0_TX	Available in SOM with ADC (referenced to 1.8V)	V30
85		M40_UART0_TX	Pin is routed via on SOM buffer set as Output by default. Pin direction can be controlled by GPIO1_25: Low - Output from SoC High - Input to SoC	AH30

Table 61: Cortex I2CO M4 Signals

Pin#	Assy	PIN Function	Notes	Ball
25		M40_I2C0_SCL		P30
140	ADC	M40_I2C0_SCL	Available in SOM with ADC (referenced to 1.8V)	U35
24		M40_I2C0_SDA		R31
142	ADC	M40_I2C0_SDA	Available in SOM with ADC (referenced to 1.8V)	U33

Rev. 1.12, 02/2023 Variscite Ltd. Page 71

Table 62: Cortex M4 Timer and PWM Module Signals

Pin #	Assy	PIN Function	Notes	Ball
26		M40_TPM0_CH0		P34
147	ADC	M40_TPM0_CH0	Available in SOM with ADC (referenced to 1.8V)	W29
21		M40_TPM0_CH1		R33
145	ADC	M40_TPM0_CH1	Available in SOM with ADC (referenced to 1.8V)	V34

8.24 General Purpose IO

The SOM provides IO pins which can be used as GPIOs. See Chapter 7 for a complete SOM connectors' signal list and GPIO multiplexing.

9. Power and control

9.1 Power

Table 63: Power

Pin#	PIN Function	Notes
32,34,103,105,107,109, 111	VBAT	VARS-SOM-MX8X single 3.3V supply voltage input
36	LICELL	RTC back-up battery 1.8V/3.0V/3.3V supply voltage input
38	VDD_ENET1_1P8_2P5_3P3_IN	VAR-SOM-MX8X 1.8V/2.5V/3.3V supply voltage input. The following SOM pins are referenced to this voltage: 40,54,55,56,57,71,73,81,96,113,120,122,177 When using the above pins for alternate functions of ENET1: • For RMII - voltage supply should be 3.3V • For RGMII - voltage supply should be 1.8V/2.5V
104	USB_OTG1_VBUS	USB Host VBUS (5V) input
106	USB_OTG2_VBUS	USB OTG VBUS (5V) input

9.2 Ground

Table 64: Digital Ground Pins

Pin #	PIN Function	Notes
1,2,7,8,13,14,19,27,28, 37,47,58,59,66, 67,76, 78,89,95,101,112, 118,126,132,138,139, 144,149,158,159,169, 172,178,179,185	GND	Digital ground
195	AGND	Audio Interface ground reference

Page 73

9.3 General System Control Signals

Table 65: General System Control Signals

Pin #	PIN Function	Notes
49	SW_3P3	SOM Peripherals' 3.3v rail Output. Should be used to sequence carrier board peripherals' 3.3v supply. Connect to pin 38 in case of 3.3V supply.
98	POR_B_3V3	System Reset Input. Active on falling edge. A logic low '0' on this pin will reset the system.

9.4 Boot Configuration

Table 66: SOM boot options

	Pin # 146 (SCU_BOOT_MODE1)	Pin # 42 (USB_SS3_TC1)	Notes
Fuse boot	0	1 or float	Pin 42 is pulled High internally on SOM,
Serial Boot	0	0	referenced to 3.3V. 2) Pin 146 is pulled high internally on SOM,
eMMC Boot	1 or float	1 or float	referenced to 1.8V. 3) To set to logic '1' or '0' externally use strong pull -
SD Boot	1 or float	0	1K Ohm or less.

10. Assembly options

To make the solution as Flexible as possible the following assembly options were added. The assembly options help customers to order the SOM subversion that include only the needed interfaces with a lower cost.

10.1 ADC

The SOM can be ordered with ADC interface exposed, this allows connection to ADC inputs. In this special configuration SOM pins exported are referenced to 1.8V.

Table 67: ADC assembly options

Pin #	Default SOM option		Special SOM option	
Pin#	Pin name	Ball	Pin name	Ball
140	QSPI0B_DATA2	AJ11	ADC_IN0	U35
141	QSPI0B_DATA1	AL9	ADC_IN2	V32
142	QSPI0B_DATA0	AM10	ADC_IN1	U33
143	QSPI0B_DATA3	AM8	ADC_IN3	V30
145	QSPI0B_DQS	AK10	ADC_IN5	V34
147	QSPI0B_SCLK	AR11	ADC_IN4	W29

10.2 Analog Audio Codec

The SOM can be ordered without Audio Codec chip assembled, it allows reducing the overall cost of the product in case the Analog Audio is not used.

When not assembled, the SoC balls which are normally connected to Codec are routed to SOM connector and exported on Analog codec interface pins.

Table 68: AC assembly options

Pin#	Default So	OM option	Special SOM option		
PIII#	Pin name	Ball	Pin name	Ball	
18	DMIC_CLK	WM8904CGEFL.1	FLEXCAN1_RX	AA33	
20	DMIC_DATA	WM8904CGEFL.27	MCLK_OUT0	L29	
196	HPOUTFB	WM8904CGEFL.14	SAI0_RXD	M34	
197	LINEIN1_LP	WM8904CGEFL.26	SAI0_TXD	К34	
198	HPLOUT	WM8904CGEFL.13	FLEXCAN1_TX	AA35	
199	LINEIN1_RP	WM8904CGEFL.24	SAI1_RXFS	N35	
200	HPROUT	WM8904CGEFL.15	SAI1_RXC	L35	

Rev. 1.12, 02/2023 Page 75 Variscite Ltd.

10.3 Resistive Touch

The SOM can be ordered without Resistive Touch controller assembled, it allows reducing the overall cost of the product in case the Resistive Touch is not used. When not assembled, the SoC balls which are normally connected to Resistive Touch are routed to SOM connector and exported on Resistive Touch interface pins.

Table 69: TP assembly option

Pin #	Default SOM option		Special SOM option		
	Pin name	Ball	Pin name	Ball	
187	TS_X+	TSC2046.6	SPI3_SDO	F34	
189	TS_Y+	TSC2046.7	SPI3_SCK	H32	
191	TS_X-	TSC2046.8	SPI3_CS0	J31	
193	TS_Y-	TSC2046.9	SPI3_SDI	G33	

10.4 Ethernet PHY

The SOM can be ordered without Ethernet0 PHY chip assembled, it allows reducing the overall cost of the product in case the Ethernet Interfaces are not used.

10.5 Dual band Wi-Fi and BT/BLE combo

The SOM can be ordered without the Dual band Wi-Fi and BT/BLE combo chip assembled, it allows reducing the overall cost of the product in case the Wi-Fi and BT/BLE is not used.

10.6 Bluetooth

The SOM can be ordered with UARTO interface not connected to WiFi/Bluetooth module. In this case the Bluetooth interface will not be available. For testing purposes same operation can be achieved by pulling GPIO1_29 high. It will disable ON-SOM level translator and allow UARTO operation externally.

10.7 LPDDR4

The SOM can be ordered with different RAM size capacities, it allows reducing the overall cost of the product in case lower RAM size is sufficient.

10.8 eMMC

The SOM can be ordered with different eMMC size capacities, it allows reducing the overall cost of the product in case lower eMMC size is sufficient.

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023

11. Electrical specifications

11.1 Absolute maximum ratings

Table 70: Absolute Maximum Ratings

Pin#	Min	Max	Units	Comments
VBAT	-0.3	3.6	٧	
LICELL	-0.3	5.5	V	
USB_OTG1_VBUS/ USB_OTG2_VBUS	-0.3	5.5	٧	
USB_OTG1_DP/USB_OTG1_DN USB_OTG2_DP/USB_OTG2_DN	-0.3	3.63	V	
VDD_ENET1_1P8_2P5_3P3_IN	-0.3	3.8	V	
ADC_Inx I/O Voltage	-0.1	2.1	V	
Vin/Vout input/output voltage range (GPIO Type Pins)	-0.3	Refer to i.MX8X Datasheet section 4.6.1	V	OVDD is the I/O supply voltage
ESD damage immunity Human Body Model (HBM)	_	2000	V	PCIe differential pairs and USB3 (including OTG2) interfaces are 1000V HBM instead of 2000V
ESD damage immunity Charge Device Model (CDM)	_	500	V	PCIe differential pairs and USB3 (including OTG2) interfaces are 250V HBM instead of 500V

11.2 Operating conditions

Table 71: Operating Ranges

Parameter	Min.	Тур.	Max.	Unit	
VBAT	3.25	3.3	3.45	V	
LICELL	-	-	4.2	V	
	1.8	1.65	1.8	1.95	
VDD_ENET1_1P8_2P5_3P3_IN	2.5	2.4	2.5	2.6	V
	3.3	3	3.3	3.6	

Rev. 1.12, 02/2023 Page 77 Variscite Ltd.

11.3 Power consumption

Table 72: VAR-SOM-MX8X Power Consumption

Mode	Voltage	Current	Power	Conditions
Run	3.3V	0.77A	2.54W	Linux up, Wi-Fi connected and Iperf is running 802.11 ac 5GHz
Run	3.3V	0.64A	2.11W	Linux up, Wi-Fi connected and Iperf is running 802.11 n 2.4GHz
Run	3.3V	0.44A	1.45W	Linux up
Standby	3.3V	TBD	TBD	Memory retention mode
Off (RTC)	3V	0.12mA	0.36mW	All power rails are Off, only Internal SOC RTC is powered

NOTE

Setup:

HW: VAR-SOM-MX8XQP_1200C_2048R_16G_AC_EC_TP_WBD_ET_REV1.11

SW: imx8x-var-som-emmc-wifi.dtb

DISCLAIMER:

The power consumption measurements apply only to limited operation scenarios. Actual power consumption may vary depending on the interfacing peripherals and user application modes; Users must conduct testing per their specific operation scenarios.

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023 Page 78 Variscite Ltd.

12. Environmental Specifications

Table 73: Environmental Specifications

Parameter	Min	Max
Extended Operating Temperature Range	-25°C	85°C
Industrial Operating Temperature Range	-40°C	85°C
Storage temperature	-40°C	85°C
Relative humidity (operation)	10%	90%
Relative humidity (storage)	05%	95%
Referring Telcordia Technologies Special Report SR-332, Issue 4 Reliability Prediction Method Model: 25Deg Celsius, Class B-1, GM	TBD	

Note: Industrial Temperature is only based on the operating temperature grade of the SoM components. Customer should consider specific thermal design for the final product based upon the specific environmental and operational conditions.

VAR-SOM-MX8X_V1.x Datasheet

Rev. 1.12, 02/2023 Page 79 Variscite Ltd.

13. Mechanical Drawings

13.1 Carrier Board Mounting

The SOM has four mounting holes for mounting it to the carrier board which are plated holes and connected to GND.

Customers requiring a mechanical solution for mounting in harsh vibration environments can use the following standoff:

Manufacturer: MAC8

PN: TH-1.6-2.5-M2-B

13.2 Thermal Management

Certain operation scenarios may prompt the use of an external heat dissipation solution. To handle intensive applications where thermal management is required, Variscite offers a heat sink designed for the VAR-SOM-MX8/X:

Variscite PN: VHP-MX8

DISCLAIMER:

Implemented solution may vary depending on the device operation scenario as well as its mechanical design. Thermal solution must be evaluated.

13.3 SOM Dimensions

Figure 5: VAR-SOM-MX8X Mechanics in millimeters [mils]

Page 80 Variscite Ltd.

Rev. 1.12, 02/2023

14. Legal Notice

Variscite Ltd. ("Variscite") products and services are sold subject to Variscite terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Variscite warrants performance of its products to the specifications in effect at the date of shipment. Variscite reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant product information from Variscite to verify that their reference is current.

Testing and other quality control techniques are utilized to the extent that Variscite deems necessary to support its warranty.

Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimize risks associated with customer applications, the customer must use adequate design and operating safeguards to minimize inherent or procedural hazards. Variscite is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Variscite products. Variscite is not liable for such selection or use or for use of any circuitry other than circuitry entirely embodied in a Variscite product.

Variscite products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Variscite does not grant any license (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Variscite covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Variscite's approval, license, warranty or endorsement thereof. Any third-party trademarks contained in this document belong to the respective third-party owner.

Reproduction of information from Variscite datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Variscite is not liable for any un-authorized alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Variscite's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Variscite is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

15. Warranty Terms

Variscite guarantees hardware products against defects in workmanship and material for a period of one (1) year from the date of shipment. Your sole remedy and Variscite's sole liability shall be for Variscite, at its sole discretion, to either repair or replace the defective hardware product at no charge or to refund the purchase price. Shipment costs in both directions are the responsibility of the customer. This warranty is void if the hardware product has been altered or damaged by accident, misuse or abuse.

Disclaimer of Warranty

THIS WARRANTY IS MADE IN LIEU OF ANY OTHER WARRANTY, WHETHER EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL VARISCITE BE LIABLE FOR ANY LOSS, DAMAGE OR EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT. IN NO EVENT SHALL VARISCITE BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY PRODUCT. BY ORDERING THE SOM, THE CUSTOMER APPROVES THAT THE VARISCITE SOM, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS.

VAR-SOM-MX8X_V1.x Datasheet

16. Contact Information

Headquarters:

Variscite Ltd.

9, Hamelacha Street Lod P.O.B 1121 Airport City, 70100 ISRAEL

Tel: +972 (9) 9562910 Fax: +972 (9) 9589477

Sales: sales@variscite.com

Technical Support: support@variscite.com

Corporate Website: www.variscite.com

