HomeCredit ScoreCard Model

Ridwan Akmal

Home Credit Indonesia Data Scientist Virtual Internship Program Rakamin Academy

Problem Research

Home Credit Indonesia as a company provides financing services in shopping. This multipurpose financing makes it very easy to shop from online or offline. Here Home Credit seeks to classify clients who have difficulty paying loans and those who have no problems. In this case Home Credit uses a variety of alternative data including telecommunication and transactional information.

Main Goals

Model Evaluation

Here Home Credit want to minimize the numer of client who have a problem with repay the loan

Dataset & Description

application_{train|test}.csv HOME Main tables – our train and test **CREDIT** samples Target (binary) Info about loan and loan applicant at application time -SK_ID_CURR- —SK_ID_CURR -SK_ID_CURR previous_application.csv bureau.csv Application data of client's Application data from previous previous loans in Home Credit loans that client got from other Info about the previous loan institutions and that were parameters and client info at reported to Credit Bureau time of previous application SK_ID_CURR One row per client's loan in One row per previous Credit Bureau application SK_ID_PREV-SK_ID_BUREAU SK_ID_PREV POS_CASH_balance.csv credit_card_balance.csv bureau_balance.csv instalments_payments.csv Past payment data for each Monthly balance of Monthly balance of Monthly balance of installments of previous credits credits in Credit client's previous client's previous in Home Credit related to loans loans in Home Credit Bureau credit card loans in in our sample Behavioral data Behavioral data Home Credit Behavioral data Behavioral data

Exploratory Data Analysis

The visualization shows that there is an imbalance in the data where more clients have no problems paying off loans, then will do sampling before modeling

Here we also get insight where clients are mostly dominated by women and clients who dont have children

From here we can see that a group in a range youngest old & group range shortest year employed have a problem which is failure to repay the loan

Most of the clients owned realty but dont have a car

Data Preprocessing

RAW DATA

Data Cleaning

- 1. Replace XNA values with NaN
- 2. Detect & Handling Missing values
- 3. Detect redundant data

Feature Engineering

- 2. Calculating
 number of
 documents, IAP,
 & EITC
- 3. Scalling the numerical features
- 4. Encoding the categorical features
- 5. Drop features with VIF>10

Model Building

- 1. Oversampling smote with ratio 2:1
- 2. Build model with various algorithm like Logistic Regression, Adaboost, & KNN
- 3. Model evaluation, compare all model which one is the best then all

Model Comparasion

	Training acc score	Testing acc score	Area under ROC
Logistic Regression	0.715	0.843	0.63
XGBOOST	0.936	0.919	0.5
Adaptive Boosting	0.830	0.907	0.54

As previously mentioned we make a area under ROC as a model eval then with the highest score it can be ascertained that the winner is logistics regression, but i feel there is an overfit model

We can see here that five most important features is INCOME_ANNUITY_PERCENT, TOTAL_DOCUMENT, AMT_ANNUITY, CNT_CHILDREN, CODE_GENDER

Business Recomendation

- 1. From the visualizations we know that the feature NAME_INCOME_TYPE with values stuedent and Business Man have no problems to repay the loan(100% application approved) and next one is feature OCCUPATION_TYPE with values Managers, High skill tech staff, and Accountants so we can create campaign for Student, Business Man, Managers High skill tech staff, and Accountants so that more can be interested & apply for loan.
- 2. Next, we can see that clients with maternity leave and unemployed status have a difficult tendency to repay loans, where both reach a percentage of more than 30%, for that we can recommend other types of loan contracts that are suitable for both clients like that.

Get in touch and let's have a chat!

https://github.com/RidwendDev