Forelæsning 3: Invers matrix, elementærmatricer og anvendelser LinAlgDat 2019/2020

Henrik Holm og Henrik L. Pedersen Institut for Matematiske Fag holm@math.ku.dk henrikp@math.ku.dk

27. april 2020 — Dias 1/20

7. april 2020 — Dias

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Kvadratiske matricer

Diagonalmatrix og enhedsmatrix

• En $n \times n$ matrix **D** er en diagonalmatrix hvis $d_{ij} = 0$ for $i \neq j$.

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$$

• Enhedsmatricen I_n er denne $n \times n$ diagonalmatrix

$$\mathbf{I}_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

• Enhedsmatricen opfylder $I_n A = AI_n = A$ for alle $n \times n$ matricer A.

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Oversigt

- Matricer
 Strategie
 Weight
- 2 Invers matrix
- 3 Elementærmatricer

Dias 2/20

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Matrixpotenser

- Når **A** er kvadratisk kan vi udregne $\mathbf{A}^k = \mathbf{A}\mathbf{A}\cdots\mathbf{A}$.
- Induktion kan bruges når man skal eftervise et generelt udtryk for \mathbf{A}^k , fx

$$\begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}^k = \begin{bmatrix} 2^k & 1-2^k \\ 0 & 1 \end{bmatrix}, \quad k = 1, 2, \dots$$

Matrixprodukter og -potenser elektronisk

A<-matrix(1:4,2) B<-matrix(c(1,0,0,1),2) for (j in (1:20)) {B<-A%*%B}

Web og potenser

Potenser af nabomatricen for et web kan bruges til at bestemme på hvor mange måder kan vi komme fra en side til en anden i et web ved at bruge et givet antal links.

Induktion - repetition

$$\begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}^k = \begin{bmatrix} 2^k & 1-2^k \\ 0 & 1 \end{bmatrix}, \quad k=1,2,\ldots$$

Induktions start: Golder formen for k=1? Ja!

Indukranskridt. Anteg at jornen gælde for k. Vis at den æges

INSTITUT FOR MATEMATISKE FAG

Regning med inverse matricer

1 Hvis A og B er invertible, så er AB også invertibel og der gælder

$$(AB)^{-1} = B^{-1}A^{-1}$$

- 2 Hvis **A** er invertibel, så er \mathbf{A}^T også invertibel og $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$
- **3** Hvis **A** er invertibel, så er \mathbf{A}^{-1} også invertibel og $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- 4 Hvis **A** er invertibel, og $s \neq 0$ så er s**A** også invertibel og $(sA)^{-1} = s^{-1}A^{-1}$

To spørgsmål - og svar

- Hvordan afgør vi om en given matrix er invertibel?
- Hvis en matrix er invertibel, hvordan kan vi så bestemme den inverse?
- Bruge rækkeoperationer og rang
- Udvikle teori for determinant (Kapitel 5)

Definition 2.7: invers matrix

KØBENHAVNS UNIVERSITET

En $n \times n$ matrix **A** er invertibel hvis der findes en $n \times n$ matrix **X** så

$$XA = AX = I_n$$

Matricen X kaldes en invers til A. En invertibel matrix A kaldes også regulær (eng. non singular), ellers kaldes den singulær.

Hvis både X₁ og X₂ er inverse til A så gælder

$$X_2 = X_2 I_n = X_2 (AX_1) = (X_2 A)X_1 = I_n X_1 = X_1.$$

Konklusion: den inverse er entydigt bestemt. Den betegnes A^{-1} .

Theorem 2.9 Highlight I: *n* ligninger med *n* ubekendte

Hvis **A** er invertibel så har ligningen $\mathbf{A}\mathbf{x} = \mathbf{y}$ netop en løsning $x = A^{-1}y$.

Bevis: Vi ganger med den inverse matrix fra venstre

$$\mathbf{A}\mathbf{x} = \mathbf{y} \quad \Leftrightarrow \quad \mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{y} \quad \Leftrightarrow \quad \mathbf{x} = \mathbf{I}_n\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$$

KØBENHAVNS UNIVERSITET

Illustration 2.2: Invers matrix og rækkeoperationer

Afgør, om

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 1 \end{bmatrix}$$

er invertibel og bestem i givet fald den inverse matrix.

- Bestem en matrix X sådan at AX = I (højreinvers).
- Man kan vise, at **X** også opfylder at XA = I (venstreinvers).
- Dermed er X den inverse matrix til A.

$$\mathbf{AX} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Dette svarer til tre ligningsystemer, fx

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Disse skal løses hver for sig ved rækkeoperationer

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{totalmatrix:} \quad \begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 2 & 0 \\ 3 & 3 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \text{totalmatrix:} \quad \begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & 2 & 1 \\ 3 & 3 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \text{totalmatrix:} \quad \begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & 2 & 0 \\ 3 & 3 & 1 & 1 \end{bmatrix}$$

Smart at sætte dem sammen til en total totalmatrix

Dias 9/20

INSTITUT FOR MATEMATISKE FAG

Opgaveløsning

Opgewe (6 sung

[1 3 | 1 0] J-51, ~ [1 3 | 1 0] -1/8 ~ [5 7 | 0 1] J-51, ~ [0 -8 | 5 1] -1/8 ~ [1 3 | 1 0] -1/8 ~ [1 3 | 1 0] -1/8 ~ [1 0 | -7/8 3/8]

[1 3 | 1 0] 5/8 -1/8] 5-3/2 ~ [1 0 | -7/8 3/8]

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Bestemmelse af invers ved rækkeoperationer

Computation, p. 78

Lad **A** være en $n \times n$ matrix og lad $I = I_n$.

- Opskriv matricen [A|I].
- 2 Lav elementære rækkeoperationer på matricen [A|I] og bring den på reduceret rækkeechelonform.
- 3 Hvis den reducerede rækkeechelonform er [I|X] da er $A^{-1} = X$, hvis ikke da er A ikke invertibel.

Theorem 2.5 og 2.6

En $n \times n$ matrix **A** er invertibel hvis og kun hvis rank **A** = n.

Opgave

Brug "Computation" til at vise

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix}^{-1} = \begin{bmatrix} -7/8 & 3/8 \\ 5/8 & -1/8 \end{bmatrix}.$$

Dias 10/20

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Invers til 2×2 matrix, p. 80

Matricen

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

har en invers netop hvis det $\mathbf{A} = ad - bc \neq 0$ og der gælder da

$$\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Reglen er:

- divider med determinanten
- skift fortegn udenfor diagonalen
- byt om i diagonalen

Eksempel

$$\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix}^{-1} = \frac{1}{1 \cdot 7 - 3 \cdot 5} \begin{bmatrix} 7 & -3 \\ -5 & 1 \end{bmatrix} = \begin{bmatrix} -7/8 & 3/8 \\ 5/8 & -1/8 \end{bmatrix}.$$

Dias 12/20

Definition 2.9

En matrix er en elementærmatrix hvis den er resultatet af at udføre netop en af tre nedenstående rækkeoperationer på enhedsmatricen.

- tal gange en række lægges til en anden række
- en række ganges med et tal, forskellig fra 0
- to rækker ombyttes

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{3\mathbf{r}_1 + \mathbf{r}_3 \to \mathbf{r}_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\mathbf{r}_2 \leftrightarrow \mathbf{r}_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 5r_2 \rightarrow r_2 \\ \hline & & \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

INSTITUT FOR MATEMATISKE FAG

Example 4, p. 82

Eksemplet viser, at flere rækkeoperationer efter hinanden svarer til at gange flere elementærmatricer på i den rigtige rækkefølge!

Examply p.82
$$A = \begin{bmatrix} 456 \\ 123 \end{bmatrix} \longrightarrow A^* = \begin{bmatrix} 10 & -1 \\ 01 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 456 \\ 123 \end{bmatrix} \longrightarrow \begin{bmatrix} 123 \\ 456 \end{bmatrix} \begin{bmatrix} 01 \\ 123 \end{bmatrix} \begin{bmatrix} 456 \\ 101 \end{bmatrix} \begin{bmatrix} 123 \\ 456 \end{bmatrix} = \begin{bmatrix} 123 \\ 456 \end{bmatrix}$$

$$\begin{bmatrix} 123 \\ 456 \end{bmatrix} \begin{bmatrix} 1$$

$$\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -^{1}/3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Multiplikation med elementærmatrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & \cdot & \cdot \\ b & \cdot & \cdot \\ c & \cdot & \cdot \end{bmatrix} = \begin{bmatrix} a & \cdot & \cdot \\ c & \cdot & \cdot \\ b & \cdot & \cdot \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & \cdot & \cdot \\ b & \cdot & \cdot \\ c & \cdot & \cdot \end{bmatrix} = \begin{bmatrix} a & \cdot & \cdot \\ 5b & \cdot & \cdot \\ c & \cdot & \cdot \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & \cdot & \cdot \\ b & \cdot & \cdot \\ c & \cdot & \cdot \end{bmatrix} = \begin{bmatrix} a & \cdot & \cdot \\ b & \cdot & \cdot \\ c + 3a & \cdot & \cdot \end{bmatrix}$$

Theorem 2.7 (morale)

At lave en rækkeoperation på en matrix er det samme som at gange den tilsvarende elementærmatrix på matricen fra venstre.

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Theorem 2.8

Elementærmatricer er invertible

Hvorfor er det nu sådan?

- Har byttet om på to rækker, så byt om igen
- Har du ganget en række med $t \neq 0$, så gang den med 1/t
- Har du lagt s gange række i til række j, så læg -s gange række *i* til række *j*

Example 5, p. 83

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1/2 \end{bmatrix}, \ \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$$

Illustration 2.3

KØBENHAVNS UNIVERSITET

Skriv $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix}$ som et produkt af elementærmatricer.

Opgave

1 Hvilke af følgende matricer er elementære?

$$\textbf{E}_1 = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \textbf{E}_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

2 Hvilke af følgende matricer er invers til matricen E₁?

$$\textbf{F}_1 = \begin{bmatrix} 1 & 0 & ^{1}\!/_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \textbf{F}_2 = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \textbf{F}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

Dias 17/20

INSTITUT FOR MATEMATISKE FAG

Produkter af elementærmatricer

- Antag, at A er invertibel.
- 2 Lav rækkeoperationer (k stk i alt) sådan, at $[\mathbf{A}|\mathbf{I}] \sim [\mathbf{I}|\mathbf{A}^{-1}]$.
- **3** Rækkeoperationerne svarer til $\mathbf{E}_k \cdots \mathbf{E}_1 \mathbf{A} = \mathbf{I}$.
- 4 Dette giver: $\mathbf{A} = \mathbf{E}_1^{-1} \cdots \mathbf{E}_k^{-1}$.
- **5** Da er **A** et produkt af elementærmatricer.

Theorem 2.9 Highlight II

Lad **A** være en $n \times n$ matrix. Da er følgende betingelser ensbetydende:

- 1 A er invertibel
- 2 Ligningen Ax = b har netop en løsning for hvert **b**
- **3** Ligningen $\mathbf{A}\mathbf{x} = \mathbf{0}$ har kun løsningen $\mathbf{x} = \mathbf{0}$
- Rangen af A er lig n
- 5 Den reducerede rækkeechelonform af A er I
- 6 A er et produkt af elementære matricer

 $\frac{Illustration 2.3}{A = \begin{bmatrix} 13 \\ 57 \end{bmatrix} \begin{bmatrix} -51 \\ -8 \end{bmatrix} \begin{bmatrix} 13 \\ 0-8 \end{bmatrix} \begin{bmatrix} 13 \\ 0-8 \end{bmatrix} \begin{bmatrix} 13 \\ 0 \end{bmatrix} }$ $E_{1} = \begin{bmatrix} 15 \\ -15 \end{bmatrix} \qquad E_{2} = \begin{bmatrix} 10 \\ 0-16 \end{bmatrix} \qquad E_{3} = \begin{bmatrix} 137 \\ 01 \end{bmatrix}$ $E_{3} = \begin{bmatrix} 137 \\ 0-16 \end{bmatrix} \qquad E_{3} = \begin{bmatrix} 137 \\ 01 \end{bmatrix}$ $A = \begin{bmatrix} 13 \\ 25 \end{bmatrix} \begin{bmatrix} 11 \\ 25 \end{bmatrix} \begin{bmatrix} 11 \\ 25 \end{bmatrix} \begin{bmatrix} 11 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 13 \\ 25 \end{bmatrix} \begin{bmatrix} 11 \\ 25 \end{bmatrix} \begin{bmatrix} 11 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 13 \\ 25 \end{bmatrix} \begin{bmatrix} 11 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix} \begin{bmatrix} 137 \\ 25 \end{bmatrix}$ $A = \begin{bmatrix} 137 \\ 25 \end{bmatrix}$

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

INSTITUT FOR MATEMATISKE FAG

Højre- og venstreinverse

Theorem 2.9 Highlight III

Lad **A** være en $n \times n$ matrix. Da er følgende ensbetydende:

- 1 A er invertibel
- A har en venstreinvers
- 3 A har en højreinvers

En ikke kvadratisk matrix kan ikke have nogen invers matrix. Der kan dog godt være højre- eller venstreinverse:

- X er en venstreinvers til $m \times n$ matricen A hvis $XA = I_n$
- **X** er en højreinvers til $m \times n$ matricen **A** hvis $\mathbf{AX} = \mathbf{I}_m$

Theorem 2.10: generelle inverse

Lad **A** være en $m \times n$ matrix med rank **A** = r. Da gælder

- **1** A har en højreinvers netop hvis $r = m \le n$
- **2** A har en venstreinvers netop hvis $r = n \le m$

Dias 20