# Position-sensitive device

### Bodo Kaiser

### Ludwig-Maximilians-Universität München

bodo.ka iser@physik.uni-muenchen.de

## April 6, 2019

#### **Contents**

| 1 | Intro | oductio      | uction               |     |  |  |  |  |
|---|-------|--------------|----------------------|-----|--|--|--|--|
| 2 | Posi  | ition-se     | ensitive detector    | 3   |  |  |  |  |
| 3 | Prea  | Preamplifier |                      |     |  |  |  |  |
|   | 3.1   | Offset       |                      | . 4 |  |  |  |  |
|   |       | 3.1.1        | Input offset voltage | . 4 |  |  |  |  |
|   |       | 3.1.2        | Input current        | . 5 |  |  |  |  |
|   | 3.2   | Bandw        | width and stability  | . 6 |  |  |  |  |

## 1 Introduction

### 2 Position-sensitive detector

[1]

|                           | Symbol | Values  |         | TT                 |
|---------------------------|--------|---------|---------|--------------------|
| Parameter                 |        | Typical | Maximum | Unit               |
| Dark current              | $I_d$  | 0.5     | 10      | nA                 |
| Interelectrode resistance | $R_e$  | 7       | 15      | $\mathrm{k}\Omega$ |
| Terminal capacitance      | $C_t$  | 150     | 300     | pF                 |

Table 1: Important parameters of the S5990 extracted from the datasheet [2].

### 3 Preamplifier



Figure 1: Simple transimpedance amplifier circuit.



Figure 2: Equivalence between transimpedance and inverting amplifier using source transformation.

#### 3.1 Offset

#### 3.1.1 Input offset voltage

[3, p. 54]



Figure 3: Input current offset compensation.

#### 3.1.2 Input current



(a) Equivalent current sources as reported in the (b) Alternative equivalent current sources. datasheet.

Figure 4: Non-zero input current from the operational amplifier.

$$I_{+} = I_{\text{bias}} + \frac{1}{2}I_{\text{offset}} \qquad I_{\text{offset}} = I_{+} - I_{-} \qquad (2)$$

$$I_{-} = I_{\text{bias}} - \frac{1}{2}I_{\text{offset}} \qquad I_{\text{bias}} = \frac{I_{+} + I_{-}}{2} \qquad (3)$$



Figure 5: Input current offset compensation.

[3, p. 57] [4, p. 25]

$$R_c = \frac{R_{\rm in}R_f}{R_{\rm in} + R_f} \tag{4}$$

### 3.2 Bandwidth and stability

 $[5,\,\mathrm{p.}\ 693]\ [6,\,\mathrm{p.}\ 183]\ [7,\,\mathrm{Ch.}\ 5]\ [4,\,\mathrm{Ch.}\ 3]$ 

#### **Glossary**

**\$5990** Hamamatsu two-dimensional PSD. 3

#### References

- [1] Date Noorlag. "Lateral-photoeffect position-sensitive detectors". PhD thesis. Delft University of Technology, 1974.
- [2] S5990 2D PSD. Hamamatsu. URL: https://www.hamamatsu.com/resources/pdf/ssd/s5990-01\_etc\_kpsd1010e.pdf (visited on 03/03/2019).
- [3] Walt Jung. Op Amp Applications Handbook. Elsevier, 2005. ISBN: 9780750678445.
- [4] Jerald Graeme. *Photodiode Amplifiers. Op Amp Solutions*. McGraw Hill Professional, 1996. ISBN: 9780070242470.
- [5] Philip Hobbs. Building Electro-Optical Systems. Making it all Work. John Wiley & Sons, 2011. ISBN: 9781118211090.
- [6] Art Kay. Operational Amplifier Noise. Techniques and Tips for Analyzing and Reducing Noise. Elsevier, 2012. ISBN: 9780750685252.
- [7] Ron Mancini Bruce Carter. Op Amps for Everyone. Elsevier, 2002. ISBN: 9780750677011.