

Data Structures and Analysis of Algorithms CST 225-3

Introduction to Graphs

What is a Graph?

 A graph is a non-linear data structure that consists of vertices(or nodes) and edges which connect a pair of nodes.

What is a Graph?

- Graph: a data structure containing
 - a set of vertices V
 - a set of edges E, where an edge represents a connection between
 2 vertices
- The graph at right:
 - $V = \{a, b, c\}$
 - \triangleright E = {(a, b), (b, c), (c, a)}

Directed vs. Undirected Graphs

- When the edges in a graph have a direction, the graph is called directed (or digraph).
- When the edges in a graph have no direction, the graph is called undirected.

Undirected Graph

Directed Graph

Graph Terminology

- The followings are some terminologies associated with graphs;
- Vertex- Each node of the graph is called as a vertex.
- Edge Edge represents a path between two vertices or a line between two vertices.
- Adjacency Two node or vertices are adjacent if they are connected to each other through an edge.
- Path Path represents a sequence of edges between the two vertices.

Graph Terminology cont'd

- Order of graph |V| = 5
- Size of graph |E|= 7

Weighted Graphs

 A weighted graph is a graph in which each branch is given a numerical weight.

Mixed Graph

 A graph with both undirected and directed edges is said to be mixed graph.

Graphs with Self Loop Edges

Vertices can have edges directed to itself.

Graphs with Multi Edges

Nodes can have many parallel edges between them.

 Graphs with no multi edges and self loops are simple graphs which can be directed or undirected.

Graph Representation

- There are two ways to represent graphs.
 - 1. Adjacency Matrix
 - 2. Adjacency List

Adjacency Matrix

- Adjacency Matrix is a 2D array of vertices where each row and column represents a vertex.
- If a value of any element in the 2D array is 1, it represents that there is an edge connecting the vertices.

- The Adjacency Matrix A=(i,j) of a graph G=(V,E) with |V| nodes/vertices is an |V| X |V| matrix.
- A=[i][j] = 1 if i & j are adjacent= 0 otherwise

Adjacency Matrix - Undirected Graph

Index	Vertex Name	
1	А	
2	В	
3	С	
4	D	
5	E	

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Vertex List

Adjacency Matrix

Adjacency Matrix - Directed Graph

Adjacency Matrix of a Weighted Graph

 The weight of the edge can be shown in the matrix when the vertices are adjacent.

• A nil value (0 or α) depending on the problem is used when they are

not adjacent.

Adjacency List

- An Adjacency list is an array of lists, each list showing the vertices a given vertex is adjacent to.
- Each vertex is represented by a linked list.
- In this representation, every vertex of a graph contains list of its adjacent vertices.

Adjacency List - Example

Adjacency List of a Weighted Graph

Graph Traversals

- Graph traversals provide a way to search for a vertex in a graph.
- They can be used to decide the order of vertices to be visited in the search process.
- There are two graph traversal techniques;
 - 1. Depth First Search
 - 2. Breadth First Search

Depth-First-Search (DFS)

- Travel as far as you can down a path
- DFS can be implemented efficiently using a stack
- Produces a spanning tree as the final result after traversal
- Spanning tree: a sub-graph of an undirected connected graph, which includes all the vertices of the graph with a minimum possible number of edges

Depth-First-Search (DFS): Steps

- 1. Start from an arbitrary node to start traversal
- 2. Visit (Explore) an unvisited adjacent edge
- If the node visited is a dead end, go back to the previous node (Backtrack)
- 4. Stop when no unvisited nodes are found and no backtracking can be done

Depth-First-Search (DFS) - Example

Breadth-First-Search (BFS)

- Look at all possible paths at the same depth before you go at a deeper level
- BFS can be implemented efficiently using a queue
- Produces a spanning tree as the final result after traversal

.1/07/2024

Breadth-First-Search: Steps

- Starts from a node
- Visit neighbouring nodes
- For each nearest node, explores their unexplored neighbour nodes until it finds the goal

Breadth-First-Search (BFS) - Example

Applications of Graphs

- Undirected graphs can be used in social networks like LinkedIn, Facebook.
- Undirected weighted graphs can be used to represent transportation networks among cities.
- Directed graphs can be used to represent relationship among web pages.(World Wide Web)
- To model electrical circuits.
- To model computer network, nodes are workstations and the edges are network connections.

.1/07/2024

Shortest Path

- The shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
- Algorithms: Dijkstra's Algorithm, Kruskal's Algorithm, Prim's Algorithm

Questions?