WS 2019/20 Shestakov

Übungsaufgaben zur Vorlesung "Analysis I" Blatt 10

Aufgabe 1. Beweisen Sie, dass die Gleichung $x = 2e^{-x}$ genau eine Lösung in \mathbb{R} besitzt. Veranschaulichen Sie es geometrisch.

Aufgabe 2.

a) Sei f eine stetige Selbstabbildung des Intervalls [a, b], d.h. die Funktion $f: [a, b] \to [a, b]$ ist stetig. Zeigen Sie, dass es ein $\xi \in [a, b]$ gibt, so dass $f(\xi) = \xi$ gilt. ξ heißt Fixpunkt von f.

Hinweis: Wenden Sie den Zwischenwertsatz auf g(x) = f(x) - x an.

b) Gilt die Behauptung in a) für nicht abgeschlossene Intervalle?

Aufgabe 3. Seien $f, g: [a, b] \to (0, +\infty)$ stetig. Beweisen oder widerlegen Sie:

- a) ? Es gibt ein $\mu > 0$ derart, dass $\frac{1}{f(x)} \ge \mu$ für alle $x \in [a,b]$ gilt. ?
- b) Ist $f: \mathbb{R} \to \mathbb{R}$ monoton wachsend, so ist -f monoton fallend.?

Aufgabe 4. Sei a eine positive reelle Zahl, $a \neq 1$, und $f: \mathbb{R} \to (0, +\infty)$, $f(x) = a^x$. Zeigen Sie:

- a) Die Funktion f ist streng monoton wachsend für a > 1 und streng monoton fallend für 0 < a < 1.
- b) Die Funktion f ist stetig.
- c) Die Funktion f ist bijektiv. Argumentieren Sie die Existenz der Umkehrfunktion f^{-1} und bestimmen Sie eine Formel für diese, indem Sie die Gleichung $y=a^x$ nach x auflösen. Die Umkehrfunktion wird mit $\log_a x$ bezeichnet und $Logarithmus\ zur\ Basis\ a$ genannt.
- d) $\log_a(x^y) = y \log_a x$ für $x > 0, y \in \mathbb{R}$.
- e) $\log_a(xy) = \log_a x + \log_a y$ für x, y > 0.

Abgabe: Bis 10. Januar vor Vorlesungsbeginn in das Postfach Ihrer Tutorin bzw. Ihres Tutors.

Aufgabe	1	2		3		4					
		a	b	a	b	a	b	c	d	е	
Punkte	3	3	2	3	2	1,5	1,5	2	1,5	1,5	21

Präsenzaufgaben

- 1. Zwei Studenten haben vor, ein unregelmäßig mit Schinken belegtes kreisförmiges Brot zu verspeisen. Zeigen Sie, dass es sich gerecht teilen lässt.
- 2. Untersuchen Sie folgende Funktionen auf Stetigkeit auf ihren Definitionsbereichen:

$$a) f(x) = \begin{cases} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} b) f(x) = \frac{\sin(\ln(\sqrt{x} - 1))}{x - 3} c) f(x) = \begin{cases} x, |x| \leq 1 \\ 1, |x| > 1 \end{cases}$$

- 3. Zeigen Sie, dass die Gleichung $x^3 3x^2 + 6x 1 = 0$ mindestens eine Lösung in $\mathbb R$ hat.
- 4. Bestimmen Sie $\ln \frac{1}{e}, \log_3 27, \log_{\sqrt{4}} 4.$
- 5. Seien a, b positive reelle Zahlen, $a, b \neq 1$. Zeigen Sie:
 - a) Für alle x, y > 0 gilt $\log_a \frac{x}{y} = \log_a x \log_a y$.
 - b) Es gilt folgende Umrechnungsformel für Logarithmen zu verschiedenen Basen: $\log_a x = \frac{\log_b x}{\log_b a}, \ x>0.$
- 6. Beweisen oder widerlegen Sie:
 - a) ? Sind $f, g: \mathbb{R} \to \mathbb{R}$ Funktionen mit g(0) = 0 und ist f unstetig in 0 und ist g stetig in 0, so ist die Komposition $f \circ g$ unstetig in 0. ?
 - b) ? Gilt $\exists L > 0 \ \forall x, y \in D(f) : |f(x) f(y)| \le L|x y|$, so ist f stetig auf seinem Definitionsbereich D(f). ?
 - c) ? ? Sind $f, g: \mathbb{R} \to \mathbb{R}$ monoton wachsende Funktionen, so ist f+g monoton wachsend.?
 - d) ? Ist $f: \mathbb{R} \to \mathbb{R}$ stetig und gilt $f(x) \to +\infty$ für $x \to \pm \infty$, so nimmt f sein Minimum an. ?

Frohe Weihnachten und ein gutes neues Jahr!