Notes on Representation Theory

Apiros3

First Version : Jun 11, 2025 Last Update : Jun 17, 2025

Contents

1	Prelimina	aries		2		
	1.0.1	Linear Maps		. 2		
	1.0.2	Direct Sum		. 2		
	1.0.3	Tensor Product		. 2		
	1.0.4	Module Endomorphisms		. 4		
	1.0.5	•				
	1.0.6					
2	Definition	ns and Examples		5		
3	Representation of Finite Groups					
4	Decomposing Representations					
	4.1 Artin-	n-Weddernburn		. 13		
5	Constructing representations					
	5.0.1	Actions on Tensor		. 19		
6	Character	r Theory		22		
	6.1 Defini	itions and Basic Properties		. 22		
	6.2 Exam	nples of Character Table Computation		. 29		
	6.3 Burns	side's Theorem		. 31		
		ule vs Representation				
7	Techniques					
	7.0.1	Computing Conjugacy Classes		. 34		
	7.0.2	Finding Characters		. 34		

1 Preliminaries

1.0.1 Linear Maps

Definition 1.0.1. Let V be a vector space over a field k. Define GL(V) to be the set of invertible linear maps, with group operation defined by composition.

Proposition 1.0.2. Let $g \in GL(V)$ be an element of finite order and suppose that k is algebraically closed with 0 characteristic. Then g is diagonalizable.

Proof. Let n be the order of $g \in GL(V)$. Then $g^n = 1$, so g is annihilated by the polynomial $f(x) := x^n - 1$. The $m_g|f$, but as f splits in k and has no repeated roots, $m_g(x)$ splits into distinct linear factors. Hence g is diagonalizable by the Primary Decomposition Theorem.

Remark 1.0.3. The converse does not hold in general. Consider $k = \overline{\mathbb{F}_2}$, $V = k\{e_1, e_2\}$ and $g \in GL(V)$ be given by $g(e_1) = e_1$, $g(e_2) = e_1 + e_2$. Then $g^2 = 1$, and $m_g(x) = x^2 - 1 = (x - 1)^2$. This has repeated roots, hence not diagonalizable.

1.0.2 Direct Sum

Definition 1.0.4. Let V and W be vector spaces. The **external direct sum** is the vector space $V \oplus W := V \times W$.

Remark 1.0.5. The external direct sum is consistent with the internal direct sum by identifying V and W with their images $\{(v,0) \mid v \in V\}$ and $\{(0,w) \mid w \in W\}$ inside $V \times W$. The sum of their images is all of $V \times W$ and the intersection is $\{(0,0)\}$.

Definition 1.0.6. The dual space of a vector space V over \mathbb{F} is $\text{Hom}(V, \mathbb{F})$, where addition is defined pointwise and multiplication by composition.

Remark 1.0.7. Idempotent actions decompose vector spaces. That is, if $P: V \to V$ with $P^2 = P$, then we can write

$$V = P(V) \oplus \ker P$$

noting that we can write v = P(v) + (v - P(v)).

1.0.3 Tensor Product

Definition 1.0.8. Let V and W be two vectos spaces, with $\{v_1, \ldots, v_m\}$ and $\{w_1, \ldots, w_n\}$ as basis for V and W respectively. The **tensor product** of V and W, written $V \times W$ is the free vector space on the set of formal symbols

$$\{v_i \otimes w_j \mid 1 \le i \le m, 1 \le j \le n\}$$

If $v = \sum_{i=1}^{m} \lambda_i v_i$ and $w = \sum_{j=1}^{n} \mu_j w_j$ are elements of V and W respectively, we define the elementary tensor

$$v \otimes w := \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{i} \mu_{j} (v_{i} \otimes w_{j}) \in V \otimes W$$

Remark 1.0.9. We note the following results, which are immediate from definition.

- $\dim V \otimes W = (\dim V)(\dim W)$
- The elementary tensors span $V \otimes W$

• Not every element of $V \otimes W$ is an elementary tensor $v \otimes w$.

The free vector space does not depend on the choice of basis.

Lemma 1.0.10. Let $\{v'_1, \ldots, v'_m\}$ and $\{w'_1, \ldots, w'_n\}$ be any choice of basis for V and W. Then,

$$X' := \{v_i' \otimes w_i' \mid 1 \le i \le m, 1 \le j \le n\}$$

is a basis for $V \otimes W$.

Proof. We note that elementary tensors in $V \otimes W$ distribute, in the sense that

$$(v+v')\otimes(w+w')=(v\otimes w)+(v\otimes w')+(v'\otimes w)+(v'\otimes w')$$

for all $v, v' \in V$, $w, w' \in W$, and hence

$$(\lambda v) \otimes w = \lambda(v \otimes w) = v \otimes (\lambda w)$$

for all $v \in V, w \in W, \lambda \in k$. Hence, we can write each v_i as a linear combination of $\{v'_1, \ldots, v'_m\}$ and each w_j as a linear combination of $\{w'_1, \ldots, w'_n\}$, and see that the original basis vectors $v_i \otimes w_j$ of $V \otimes W$ all lie in the span of X'. As the size of this set is at most mn, it must be linearly independent, thus a basis.

Remark 1.0.11. The above proof also shows that the canonical map $\otimes : V \times W \to V \otimes W$ by $(v, w) \mapsto v \otimes w$ is bilinear, such that

$$(\lambda v_1 + v_2) \otimes (\mu w_1 + w_2) = \lambda \mu(v_1 \otimes w_1) + \lambda(v_1 \otimes w) + \mu(v_2 \otimes w_1) + (v_2 \otimes w_2)$$

Lemma 1.0.12 (Universal Property of Tensor Product). Let V and W be vector spaces. Then for every blinear map $b: V \times W \to U$ for some third vector space U, we have a unique linear map $\tilde{b}: V \otimes W \to U$ such that the following commutes:

Proof. Fix bases $\{v_1,\ldots,v_m\}$ for V and $\{w_1,\ldots,w_n\}$ for W. Fixing a bilinear map $b:V\times W\to U$, this forces any $\tilde{b}:V\otimes W\to U$ to be the unique linear map that sends the basis vector $v_i\otimes w_j\in V\otimes W$ to $b(v_i,w_j)$, if it exists. It thus suffices to show this map commutes with any element in $V\times W$. Taking any $v=\sum_i\lambda_iv_i\in V$ and $w=\sum_j\mu_jw_j\in W$, \tilde{b} sends the elementary tensor $v\otimes w=\sum_{i,j}\lambda_i\mu_jv_i\otimes w_j$ to

$$\sum_{i,j} \lambda_i \mu_j b(v_i, w_j) = b\left(\sum_i \lambda_i v_i, \sum_j \mu_j w_j\right) = b(v, w)$$

by using the bilinearity of b.

1.0.4 Module Endomorphisms

Definition 1.0.13. The **center** of the ring A is

$$Z(A) := \{ z \in A \mid az = za, for \ all \ a \in A \}$$

The center is a commutative unital subring of A.

Definition 1.0.14. Let A be a ring and V be an A-module. The **endomorphism ring** of V, denoted $\operatorname{End}_A(V)$ is the set of all A-module homomorphisms $\psi: V \to V$ equipped with pointwise addition of homomorphisms and composition as multiplication.

Remark 1.0.15. When V is an A-module, it is an $\operatorname{End}_A(V)$ -module via evaluation, $f \cdot v := f(v)$, for $f \in \operatorname{End}_A(V)$ and $v \in V$. The two actions of A and $\operatorname{End}_A(V)$ on V commute pointwise by definition. In particular, the action of any central element $z \in Z(A)$ on V is by an A-module endomorphism.

Definition 1.0.16. A ring A is an k-algebra if it contains k as a central subfield. If A is a semisimple ring, we say that A is a semisimple k-algebra. A homomorphism of k-algebra is a k-linear ring homomorphism.

k being inside the center allows it to 'act' like the scalar, making the definition of homomorphism the way we think of it naturally.

1.0.5 Group and Module Notations

Definition 1.0.17. Let G be a finite group and let $g \in G$. Define

• q^G to denote the **conjugacy class** of q in G,

$$g^G := \{g^x \mid x \in G\} \text{ where } g^x := x^{-1}gx$$

• $C_G(g)$ denotes the **centraliser** of g in G, with

$$C_G(g) := \{ x \in G \mid gx = xg \}$$

Remark 1.0.18. By The Orbit Stabilizer on the conjugation action, we have $|g^G| \cdot |C_G(g)| = |G|$ for any $g \in G$, where g^G is the conjugacy class, and the stabilizer of g is exactly the centraliser.

Definition 1.0.19. Let V be a $\mathbb{C}G$ -module. The invariant submodule of V is

$$V^G := \{ v \in V \mid g \cdot v = v, for \ all \ g \in G \}$$

1.0.6 Algebraic Numbers

Notation 1.0.20. We write \mathbb{A} for the set of algebraic integers over \mathbb{Q} . Note that the set of algebraic numbers is the union of all subfields of \mathbb{C} of finite dimension as a \mathbb{Q} -vector space.

Remark 1.0.21. Note the following:

- Any integer is an algebraic integer by the linear function
- Any root of unity is an algebraic integer

- If z is an algebraic number, then mz is an algebraic integer for some integer m
- $\mathbb{Q} \cap \mathbb{A} = \mathbb{Z}$ (by taking any element of the form r/s, taking it's monic polynomial, clearing denominators to show that s divides r).

Proposition 1.0.22. Let M be a finitely generated subgroup of $(\mathbb{C}, +)$. Then

$$\{z\in\mathbb{C}\mid zM\subseteq M\}\subseteq\mathbb{A}$$

2 Definitions and Examples

Definition 2.0.1. Let G be a finite group and let V be a finite dimensional vector space over k. A representation of G on V is a group homomorphism

$$\rho: G \to \mathrm{GL}(V)$$

The degree of a representation is $\dim V$.

Example 2.0.2. We record some examples of representations.

- The cyclic group $G = \langle g \rangle$ of order 2 acts on V = k by negation taking $\rho(g) = -1$, giving a representation of G degree 1.
- If $G = D_6$ is the symmetry group of a triangle and $k = \mathbb{R}$, then G acts by \mathbb{R} -linear transformations on the plane $V = \mathbb{R}^2$, giving a representation. In general, the symmetry group of the regular n-gon $G = D_{2n}$ acts on $V = \mathbb{R}^2$ by \mathbb{R} -linear transformations, giving a natural representation of G of degree 2.
- Let $k = \mathbb{R}$ and let $X \subseteq \mathbb{R}^3$ be the se tof vertices of a cube centered at the origin, and let G be the stabilizer of X in the rotation group $SO_3(\mathbb{R})$. Then G is isomorphic to the symmetry group S_4 , giving a degree 3 representation $S_4 \to GL(\mathbb{R}^3)$.

Example 2.0.3. Ex 1.6 from RT, gal group into base field automorphisms

3 Representation of Finite Groups

Definition 3.0.1. Let X be a finite set. The free vector space on X is the set

$$kX := \left\{ \sum_{x \in X} a_x x \mid a_x \in k \right\}$$

of **formal linear combinations** of members of X with coefficients a_x lying in k. Addition and scalar multiplication are taken as the natural ones.

Remark 3.0.2. Note that X is naturally a basis for kX.

Let X be a finite set equipped with a left-action of the finite group G. Each $g \in G$ gives a permutation $\rho(g): X \to X$ by $\rho(g)(x) = g \cdot x$. This permutation extends uniquely to an invertible linear map $\rho(g): kX \to kX$ by

$$\rho(g)\left(\sum_{x\in X}a_xx\right) = \sum_{x\in X}a_xg\cdot x$$

Since $g \cdot (h \cdot x) = (gh) \cdot x$ for any $g, h \in G$ and $x \in X$, we have $\rho(g)\rho(h) = \rho(gh)$ in GL(kX) for all $g, h \in G$. Thus $\rho : G \to GL(kX)$ is a representation.

Definition 3.0.3. Noting the remark above, given X is a finite set equipped with a left action by a finite group G, $\rho: G \to \operatorname{GL}(kX)$ is a representation, called the **permutation representation** associated with X.

Definition 3.0.4. The representation $\rho: G \to GL(V)$ is **faithful** if ker $\rho = \{1\}$.

Definition 3.0.5. Let G be a finite group. A matrix representation is a group homomorphism $\rho: G \to \operatorname{GL}_n(k)$, where $\operatorname{GL}_n(k) = M_n(k)^{\times}$ is the group of invertible $n \times n$ matrices under matrix multiplication.

Definition 3.0.6. Let $\mathcal{B} := \{v_1, \dots, v_n\}$ be a basis for V and let $\phi : V \to V$ be a linear map. The matrix of ϕ with respect to \mathcal{B} is $\mathcal{B}[\phi]_{\mathcal{B}} = (a_{ij})_{i,j=1}^n$ where

$$\phi(v_j) = \sum_{i=1}^n a_{ij} v_i$$

for all $j = 1, \ldots, n$.

Remark 3.0.7. Let V be a vector space V with basis \mathcal{B} . Then,

- The map $\phi \mapsto_{\mathcal{B}} [\phi]_{\mathcal{B}}$ gives an isomorphism of groups $GL(V) \cong GL_n(k)$.
- Every representation $\rho: G \to \mathrm{GL}(V)$ gives rise to a matrix representation

$$\rho_{\mathcal{B}}(g) :=_{\mathcal{B}} [\rho(g)]_{\mathcal{B}}$$

for all $g \in G$.

• Every matrix representation $\sigma: G \to \operatorname{GL}_n(k)$ defines a representation $\underline{\sigma}: G \to \operatorname{GL}(k^n)$ on the space k^n of column vectors, taking $\underline{\sigma}: k^n \to k^n$ be the k-linear map

$$\sigma(q)(v) = \sigma(q)v$$

for all $g \in G, v \in k^n$ via matrix multiplication. By abuse of notation, the underline is sometimes omitted.

Example 3.0.8. Let $G = S_3$ act on $X = \{e_1, e_2, e_3\}$ by permutation of indices. This gives a degree 3 permutation representation $\rho: G \to \operatorname{GL}(kX)$ where for instance,

$$\rho_X((123)) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Definition 3.0.9. Let $\rho: G \to \operatorname{GL}(V)$ and $\sigma: G \to \operatorname{GL}(W)$ be two representations. A **homomorphism**, also known as the **intertwining operator** is a linear map

$$\psi:V\to W$$

such that

$$\sigma(q) \circ \psi = \psi \circ \rho(q)$$

for all $g \in G$. We say that ψ is an **isomorphism** if it is bijective.

Definition 3.0.10. Two matrix representations $\rho_1: G \to \operatorname{GL}_n(k)$ and $\rho_2: G \to \operatorname{GL}_n(k)$ are said to be **equivalent** if there exists $A \in \operatorname{GL}_n(k)$ such that

$$\rho_2(g) = A\rho_1(g)A^{-1}$$

for all $g \in G$.

Remark 3.0.11. If ρ_1 and ρ_2 are equivalent matrix representations, then the equality of products of matrices $\rho_2(g)A = A\rho_1(g)$ translates to an equality of linear maps

$$\rho_2(g) \circ \underline{A} = \underline{A} \circ \rho_1(g)$$

in $\mathrm{GL}(k^n)$, meaning that representations ρ_1 and ρ_2 are isomorphic. The converse is also true.

Definition 3.0.12. Let $\rho: G \to GL(V)$ be a representation, and let U be a linear subspace of V. Then,

- U is G-stable if $\rho(g)(u) \in U$ for all $g \in G$ and $u \in U$.
- Suppose that U is G-stable. Then the subrepresentation of ρ afforded by U is

$$\rho_U:G\to \mathrm{GL}(U)$$

given by $\rho_U(g)(u) := \rho(g)(u)$ for all $g \in G$, $u \in U$.

• Suppose that U is G-stable. The quotient representation of ρ afforded by U is

$$\rho_{V/U}: G \to \operatorname{GL}(V/U)$$

given by $\rho_{V/U}(g)(v+U) := \rho(g)(v) + U$ for all $g \in G$ and $v+U \in V/U$.

Note that the maps are well defined when U is G-stable.

Lemma 3.0.13 (First Isomorphism For Representations). Let $\psi : V \to W$ be a homomorphism between representations $\rho : G \to \operatorname{GL}(V)$ and $\sigma : G \to \operatorname{GL}(W)$. Then,

- 1. $\ker \psi$ is a G-stable is a subspace of V.
- 2. Im ψ is a G-stable subspace of W
- 3. There is a natural isomorphism

$$V/\ker\psi\cong\operatorname{Im}\psi$$

between G-representations $\rho_{V/\ker\psi}$ and $\sigma_{\operatorname{Im}\psi}$

Proof. We note the commutative diagram

$$V \xrightarrow{\rho(g)} V$$

$$\psi \downarrow \qquad \qquad \downarrow \psi$$

$$W \xrightarrow{\sigma(g)} W$$

Then the first two cases are clear. We note the quotient representation of ρ afforded by $\ker \psi$ and the subrepresentation of σ afforded by $\operatorname{Im} \psi$ induces a map $\Psi: V/\ker(\psi) \to \operatorname{Im} \psi$ with $v + \ker(\psi) \mapsto \psi(v)$ alongside a commutative diagram

$$V/\ker\psi \xrightarrow{\rho_{V/\ker\psi}(g)} V/\ker\psi$$

$$\downarrow^{\Psi} \qquad \qquad \downarrow^{\Psi}$$

$$\operatorname{Im}\psi \xrightarrow{\sigma_{\operatorname{Im}\psi}(g)} \operatorname{Im}\psi$$

In particular, $V/\ker\psi\cong\operatorname{Im}\psi$.

Definition 3.0.14. Let G be a group. The **trivial representation** of G on a vector space V, $\mathbb{1}: G \to \operatorname{GL}(V)$ given by

$$\mathbb{1}(g)(v) = v$$

for all $g \in G$, $v \in V$.

Example 3.0.15. A representation need not be trivial, even if the subrepresentation and quotient representation are both trivial.

Let $k = \mathbb{F}_p$ and $G = \langle g \rangle$ be the cyclic group of order p. Let $\rho : G \to \mathrm{GL}_2(k)$ be the matrix representation given by

$$\rho(g^i) = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$$

Let v_1, v_2 be the standard basis for $V = k^2$. Then $U := \langle v_1 \rangle$ is a G-stable subspace, as $\rho(g^i)(v_1) = v_1$ for all i. The subrepresentation $\rho_U : G \to \operatorname{GL}(U)$ and the quotient representation $\rho_{V/U} : G \to \operatorname{GL}(V/U)$ are both trivial, but ρ is clearly not trivial.

Definition 3.0.16. the representation $\rho: G \to \operatorname{GL}(V)$ to a nonzero V is **irreducible** or **simple** if U being a G-stable subspace of V implies that either $U = \{0\}$ or U = V.

Definition 3.0.17. Let $\rho: G \to \operatorname{GL}(V)$ be a representation and U be a G-stable subspace. A G-stable complement for U in V is a G-stable subspace W such that $V = U \oplus W$.

Example 3.0.18. Consider the permutation representation of $G = S_3$ afforded by kX, where $X = \{e_1, e_2, e_3\}$. Then

$$U := \langle e_1 + e_2 + e_3 \rangle$$

is a G-stable subspace, with G fixing every vector in U. So U is a trivial subrepresentation of V. Now let

$$W := \{a_1e_1 + a_2e_2 + a_3e_3 \mid a_1 + a_2 + a_3 = 0\}$$

This is a G-stable complement to U in V, provided $\operatorname{char}(k) \neq 3$. Let $\mathcal{B} = \{v_1, v_2\}$ be the basis for W, where $v_1 := e_1 - e_2$ and $v_2 = e_1 - e_3$. Then the degree 2 matrix representation $\sigma := (\rho_W)_{\mathcal{B}} : G \to \operatorname{GL}_2(k)$ afforded by W is determined by

$$\sigma((123)) = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \qquad \sigma((12)) = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$$

Proposition 3.0.19. The nontrivial S_n -stable subspaces of the permutation representation $\rho: S_n \to \operatorname{GL}(kX)$ are $V = \langle \sum_{i=1}^n x_i \rangle, W = \{\sum_{i=1}^n a_i x_i \mid \sum_i a_i = 0\}$

Proof. Sketch: dim V=1, so non nontrivial stable subspaces are contained in V. Taking any stable subspace U with nontrivial intersection with V, we show that this at least contains W. As dim W=n-1, either this is W or kX.

Proposition 3.0.20. Let X be a G-set and that the permutation representation $\rho: G \to \operatorname{GL}(kX)$ is irreducible. Then, the G-action on X is transitive. The converse need not hold.

Proof. Suppose for a contradiction the G-action on X is not transitive. Then there is an $x \in X$ whose G-orbit $G \cdot x$ is a proper subset of X. In particular, $\emptyset \subsetneq \{x\} \subsetneq G \cdot x \subsetneq X$. Thus,

$$\{0\} \nleq k(G \cdot x) \nleq kX$$

Given any $g \in G$, $h \cdot x \in G \cdot x \subseteq k(G \cdot x)$,

$$\rho(g)(h \cdot x) = g \cdot (h \cdot x) = (gh) \cdot x \in G \cdot x \subseteq k(G \cdot x)$$

Thus as $G \cdot x$ is a natural basis for $k(G \cdot x)$, this is $\rho(g)$ -invariant. This is a proper G-stable subspace, hence the permutation representation is reducible.

To see the converse is false, the permutation representation is reducible, but the S_n action on n elements is clearly transitive.

Theorem 3.0.21 (Maschke). Let G be a finite group and suppose that $|G| \neq 0$ in k. Let U be a G-stable subspace of a finite dimensional G-representation V. Then U admits at least one G-stable complement W in V.

Proof. Pick a basis for U and extend it to a basis for V such that we find some Z with $V = U \oplus Z$. Z is not G-stable in general, but we will replace this with a stable one. Let $\rho: G \to \mathrm{GL}(V)$ be our representation, writing $g \cdot v := \rho(g)(v)$ as ρ is a group homomorphism.

Let $\pi: V \to V$ be the projection map along the decomposition $V = U \oplus Z$ such that $\pi(u+z) = u$ for all $u \in U, z \in Z$. Now define a new linear map $\psi: V \to V$ by

$$\psi(v) := \frac{1}{|G|} \sum_{x \in G} \rho(x) \pi(\rho(x)^{-1}(v))$$

for all $v \in V$. Note that this is well-defined as |G| is invertible in the field k. Fixing a $g \in G$ and $v \in V$, we have

$$|G|\psi(g \cdot v) = \sum_{x \in G} x \cdot \pi(x^{-1} \cdot (g \cdot v))$$

Writing $y^{-1} = x^{-1}g$, noting that x runs over the entire group in the sum, we get

$$|G|\psi(g\cdot v) = \sum_{y\in G} (gy)\cdot \pi(y^{-1}\cdot v) = g\cdot \sum_{y\in G} y\cdot \pi(y^{-1}\cdot v) = g\cdot |G|\psi(v)$$

Cancelling |G|, we deduce that ψ is a homomorphism of representations. Also, for any $u \in U$,

$$\psi(u) = \frac{1}{|G|} \sum_{x \in G} x \cdot \pi(x^{-1} \cdot u) = \frac{1}{|G|} \sum_{x \in G} x \cdot (x^{-1} \cdot u) = u$$

noting that as U is G-stable, $\pi(x^{-1} \cdot u) = x^{-1} \cdot u$ for all $x \in G$. So the restriction of ψ to U is the identity map. As U is G-stable and $\pi(V) = U$, we have $\psi(V) \subseteq U$. As $\psi(U) = U$, we have $\psi(V) = U$. With $\operatorname{Im}(\psi) = U$, taking $W := \ker \psi$ gives a G-stable subspace of V. Noting that $\dim W + \dim U = \dim V$ by Rank Nullity and for any $v \in W \cap V$, $0 = \psi(v) = v$, we have $V = U \oplus W$, showing that W is a G-stable complement to U in V.

Remark 3.0.22. Maschke's Theorem fails if the characteristic of the ground field divides |G|, as in Example 3.0.15 (noting that the choice for W is $\langle v_2' \rangle$ where $v_2' = (a, b)$ for $b \neq 0$, which is never stable by ρ).

Definition 3.0.23. Let $\rho: G \to GL(V)$ be a representation. ρ is **completely reducible** if $V = \{0\}$, or there exist G-stable subspaces U_1, \ldots, U_m of V such that

$$V = U_1 \oplus \cdots \oplus U_m$$

and the subrepresentation of G afforded by each U_i is irreducible.

Corollary 3.0.24. Let G be a finite group and suppose that $\operatorname{char}(k) \nmid |G|$. Then every finite dimensional representation $\rho: G \to \operatorname{GL}(V)$ of G is completely reducible.

Proof. We proceed by induction on $\dim V$, where the case $\dim V = 0$ is true by definition. Let U_1 be a G-stable non-zero subspace of V of smallest possible dimension (which exists, as V is one such space). By construction, U_1 is irreducible. Then U_1 admits a G-stable complement W by Maschke's Theorem. Now $\dim W < \dim V$, so by induction $W = U_2 \oplus \cdots \oplus U_m$ for some G-stable irreducible subspaces U_2, \ldots, U_m . Hence $V = U_1 \oplus U_2 \oplus \cdots \oplus U_m$ is also completely reducible.

4 Decomposing Representations

Definition 4.0.1. Let G be a finite group. The **group ring** of G (with coefficients in k) is the vector space kG with multiplication defined as

$$\left(\sum_{x \in G} a_x x\right) \cdot \left(\sum_{y \in G} b_y y\right) = \sum_{g \in G} \left(\sum_{x \in G} a_x b_{x^{-1}g}\right) g$$

The identity element is the formal sum with identity coefficient on the identity of G.

Remark 4.0.2. The group G embeds into the group ring via the map $g \mapsto g$. This embedding respects multiplication, thus realises G as a subgroup of the group of units kG^{\times} in the ring kG.

Example 4.0.3. Let $G = \langle x \rangle$ be a cyclic group of order n. Then kG has $G = \{1, x, \dots, x^{n-1}\}$ as a basis, so it is generated by k and x as a ring, and k commutes with x. Define a ring homomorphism $\psi : k[T] \to kG$ by $\psi(f(T)) = f(x)$ for each $f(T) \in k[T]$. Then ψ is surjective and $\ker \psi = \langle T^n - 1 \rangle$. So, by the first isomorphism theorem for rings, we get

$$kG \cong k[T]/\langle T^n - 1 \rangle$$

If k contains a primitive n-th root of unity ζ (such that T^n-1 splits), then it factors into a product of distinct linear factors $(T-1)(T-\zeta)\cdots(T-\zeta^{n-1})$. By the Chinese Remainder Theorem, this implies

$$kG \cong k[T]/\langle T^n - 1 \rangle \cong \underbrace{k \times k \times \cdots \times k}_{n \text{ times}}$$

Proposition 4.0.4. Let V be a vector space and G be a group.

1. Suppose that $\rho: G \to \operatorname{GL}(V)$ is a representation. Then V becomes a left kG-module via the action

$$\left(\sum_{x \in G} a_x x\right) \cdot v = \sum_{x \in G} a_x \rho(x)(v)$$

for all $a_x \in k$, $v \in V$

2. Suppose that V is a left kG-module. Then $\rho: G \to \mathrm{GL}(V)$ defined by

$$\rho(g)(v) := g \cdot v$$

for all $g \in G$, $v \in V$ is a representation.

3. This gives a bijection between the set of representations $\rho: G \to GL(V)$ and the set of kG-module structures $kG \times V \to V$ on V.

Remark 4.0.5. This correspondence of G-representations to kG-modules moves general theorems about modules into representations, including isomorphism theorems and correspondences.

Example 4.0.6. Let A be a ring. The **free** A-module of rank 1 is the abelian group A equipped with the left-multiplication action of A by

$$a \cdot b = ab$$

for all $a, b \in A$. A-submodules of this A-module are called **left-ideals**.

Definition 4.0.7. If A = kG, the representation $\rho : G \to GL(kG)$ corresponding to the free kG-module of rank 1 is called the **left regular representation**.

Remark 4.0.8. The left-regular representation coincides with the permutation representation of G on kG, where we extend from the natural action of G on G by left multiplication to kG.

Definition 4.0.9. An A-module M is irreducible or simple if M is nonzero, and if N is an A-submodule of M, $N = \{0\}$ or N = M.

An A-module V is **completely reducible** if it is either the 0-module, or is equal to a direct sum of finitely many irreducible submodules.

A homomorphism of representations is simply a map of kG-modules, known as a kG-linear map.

Definition 4.0.10. Let A be a ring. We say that A is **semisimple** if the free A-module of rank 1 is completely reducible.

Proposition 4.0.11. Let G be a finite group such that $|G| \neq 0$ in k. Then the group ring kG is semisimple.

Proof. Follows from correspondence and Maschke's Theorem.

Definition 4.0.12. Let V be an A-module. We say that V is **cyclic** if it can be generated by a single element $v: V = A \cdot v$. The **annihilator** of $v \in V$ is the left-ideal

$$\operatorname{Ann}_A(v) := \{ a \in A \mid av = 0 \}$$

Example 4.0.13. Simple modules are cyclic. This is because any span of a single element produces a submodule which must be the entire thing.

Lemma 4.0.14. Every cyclic A-module V is isomorphic to a quotient module of the free module of rank 1. If $V = A \cdot v$, then

$$V \cong A/\mathrm{Ann}_A(v)$$

Proof. The map $\psi: A \to V$ given by $a \mapsto a \cdot v$ is an A-module homomorphism. This is surjective, so by the first isomorphism theorem, we have

$$V = \operatorname{Im} \psi \cong A / \ker \psi$$

Now this follows as $\ker \psi = \operatorname{Ann}_A(v)$.

Lemma 4.0.15. Let V, W be simple A-modules. Then every non-zero A-linear map $\psi : V \to W$ is an isomorphism.

Proof. We know $\ker \psi$ is an A-submodule of V and that $\operatorname{Im} \psi$ is an A-submodule of W. As ψ is non-zero $\ker \psi$ is also not all of V and $\operatorname{Im} \psi$ is nonzero. As V and W are both simple, it must be the case that $\ker \psi = 0$ and $\operatorname{Im} \psi = W$. Hence ψ is bijective, and therefore is an isomorphism. \square

Proposition 4.0.16. Let A be a semisimple ring. Then A has only finitely many simple A-modules up to isomorphism.

Proof. Write $A = V_1 \oplus \cdots \oplus V_r$ for some simple A-submodules V_i of A. Let V be a simple A-module, pick a nonzero vector $v \in V$ and consider the A-module map $\psi : A \to V$ by $a \mapsto a \cdot v$. Let $\psi_i : V_i \to V$ be the restriction of ψ to V_i such that if $a = a_1 + \cdots + a_r$ is the decomposition of $a \in A$ with $a_i \in V_i$ for each i, then

$$\psi(a) = \psi_1(a_1) + \dots + \psi_r(a_r)$$

If ψ_i is the zero-map for all i, then ψ is the zero map. Hence ψ_i is nonzero for some i. In particular, V is isomorphic to one of the irreducible representations in the list V_1, \ldots, V_r .

Theorem 4.0.17. Let G be a finite group such that $|G| \neq 0$ in k. Then G has only finitely many irreducible representations up to isomorphism.

Proof. The ring kG is semisimple by Maschke's Theorem. By Proposition 4.0.16 and correspondence, the proof follows.

Definition 4.0.18. For a finite group G, we write $r_k(G)$ to denote the number of isomorphism classes of irreducible k-representations of G.

Theorem 4.0.19 (Schur's Lemma). Suppose that k is algebraically closed. Let V be a simple module over a finite dimensional k-algebra A. Then every A-submodule endomorphism of V is given by the action of some scalar $\lambda \in k$ such that

$$\operatorname{End}_A(V) = k1_V$$

Proof. By Lemma 4.0.14, V is isomorphic to a quotient module of A, so V is itself finite dimensional as a k-vector space. Let $\psi: V \to V$ be an A-module endomorphism. Then it is a k-linear map, so has at least one eigenvalue $\lambda \in k$ (because the characteristic polynomial splits). Hence $\psi - \lambda 1_V: V \to V$ is a homomorphism with nonzero kernel, and as V is simple, is the zero map. Thus $\psi = \lambda 1_V$ is the action of $\lambda \in k$.

Definition 4.0.20. Let A be a k-algebra and V be an A-module with $\operatorname{End}_A(V) = k1_V$. Then by Schur's Lemma, every $z \in Z(A)$ acts on V by a scalar, which is denoted by z_V . The ring homomorphism $Z(A) \to k$ via $z \mapsto z_V$ is called the **central character** of V.

4.1 Artin-Weddernburn

For this subsection, we fix A to be some semisimple ring, and V_1, \ldots, V_r will denote the complete list of representatives for the isomorphism classes of simple A-modules. We also fix a decomposition

$$A = \bigoplus_{i=1}^{r} \bigoplus_{j=1}^{n_i} L_{i,j}$$

of the A-module A into a direct sum of simple left ideals $L_{i,j}$ where $L_{i,j} \cong V_i$ for each i and j.

Note that we must have $n_1, \ldots, n_r \geq 1$, as each V_i occurs as a direct summand of A at least once. Also, the left-ideals are not unique in general.

Proposition 4.1.1. Let A be a finite dimensional semisimple k-algebra and suppose that k is algebraically closed. Then dim $Z(A) \leq r$.

Proof. By Schur's Lemma, we have $\operatorname{End}_A(V_i) = k1_{V_i}$ for all i, so we can define a k-linear map $\psi: Z(A) \to k^r$ by $\psi(z) := (z_{V_1}, \ldots, z_{V_r})$.

Suppose now that $\psi(z) = 0$ for some $z \in Z(A)$, such that $z_{V_i} = 0$ for all i. We show z = 0.

By the decomposition of $1 \in A$ along the decomposition, we have

$$1 = \sum_{i=1}^{r} \sum_{j=1}^{n_i} e_{i,j}$$

for some $e_{i,j} \in L_{i,j}$.

Then we must have

$$z = z1 = \sum_{i=1}^{r} \sum_{j=1}^{n_i} z e_{i,j} = \sum_{i=1}^{r} \sum_{j=1}^{n_i} z_{V_i} e_{i,j}$$

As $z_{V_i} = 0$ for all i, z = 0. Hence ψ is injective and so it follows that $\dim Z(A) \leq \dim k^r = r$.

Lemma 4.1.2. Each $B_i := \bigoplus_{j=1}^{n_i} L_{i,j}$ is a two-sided ideal of A, and $A = B_1 \oplus \cdots \oplus B_r$.

Proof. The second part of the statement follows from definition, and each B_i is a left ideal of A. Hence it suffices to show it is a right ideal in A. Fix $a \in A$ and consider $L_{i,j} \subseteq B_i$. Let $i' \neq i$ and $1 \leq j' \leq n_{i'}$ be another pair of indices, and consider the projection $\psi \twoheadrightarrow L_{i',j'}$ along the decomposition.

The restriction of $\phi \circ r_a : A \to L_{i',j'}$ to $L_{i,j}$ by right multiplication is an A-module homomorphism from $L_{i,j}$ to $L_{i',j'}$. As $i' \neq i$, these modules are not isomorphic, so the restriction must be the zero map. Varying i' and j', the projection of $L_{i,j}$ onto each B'_i with $i' \neq i$ is zero. Hence $L_{i,j}a \subseteq B_i$. As B_i is equal to the sum of all $L_{i,j}$, we have $B_ia \subseteq B_i$ for all $a \in A$.

Lemma 4.1.3. Let R be a k-algebra and suppose that $R = S_1 \oplus \cdots \oplus S_r$ for some non-zero two-sided ideals S_1, \ldots, S_r . Then dim $Z(R) \geq r$.

Proof. Write $1 = e_1 + \cdots + e_r$ for some $e_i \in S_i$. Let $a \in R$ and fix $i = 1, \ldots, r$. Since S_i is a left-ideal, $ae_i \in S_i$. As $a = ae_1 + \cdots + ae_r$, we see that ae_i is the component of a in S_i in the decomposition $R = S_1 \oplus \cdots \oplus S_r$. On the other hand, as S_i is a right ideal, e_ia is the component of a in S_i by the same decomposition. Hence $ae_i = e_ia$ for all i and $a \in R$, thus e_i is central.

If $i \neq j$, then $e_i e_j \in S_i \cap S_j = \{0\}$, so $e_i e_j = 0$. Hence $e_i = e_i \cdot 1 = e_i \sum_{j=1}^r e_j = e_i^2$. In particular, the set $\{e_1, \ldots, e_r\}$ forms a set of pairwise orthogonal idempotents such that $e_i e_j = \delta_{i,j} e_i$.

Now suppose that $\sum_{i=1}^{r} \lambda_i e_i = 0$ for some $\lambda_i \in k$. Multiplying by e_j gives $\lambda_j e_j = 0$. If $e_j = 0$, then for all $a \in S_j$ we have $a = ae_j = 0$, contradicting the assumption that $S_j \neq \{0\}$. Thus $e_j \neq 0$ for all j, giving $\{e_1, \ldots, e_r\}$ to be a linearly independent set over k. Thus $r \leq \dim Z(R)$.

Theorem 4.1.4. Let A be a finite dimensional semisimple k-algebra and suppose that k is algebraically closed. Then $r = \dim Z(A)$.

Proof. By Proposition 4.1.1, we have $r \ge \dim Z(A)$. By Lemma 4.1.2 $A = B_1 \oplus \cdots \oplus B_r$ for some two-sided ideals B_r , so by Lemma 4.1.3, $r \le \dim Z(A)$, so the proof follows.

Definition 4.1.5. For a finite group G, let s(G) denote the number of conjugacy classes of G. Now let C_1, \ldots, C_s be the conjugacy classes of G. For each $i = 1, \ldots, s$, define the **conjugacy class** sum of C_i to be

$$\widehat{C_i} := \sum_{x \in C_i} x \in kG$$

Proposition 4.1.6. $\{\widehat{C}_1,\ldots,\widehat{C}_s\}$ is a basis for Z(kG) as a vector space, thus

$$\dim Z(kG) = s(G)$$

Proof. Let C_a be the conjugacy class of $a \in G$. Fix a $x \in G$, and define $\phi_x : G \to G$ by $y \mapsto x^{-1}yx$. This is a bijective function closed under conjugacy classes, we have

$$\widehat{C}_a = \sum_{y \in C_a} y = \sum_{z \in C_a} \phi_x(z) = \sum_{z \in C_a} x^{-1} z x = x^{-1} \left(\sum_{z \in C_a} z \right) x = x^{-1} \widehat{C}_a x$$

In particular, \widehat{C}_a commutes with any $x \in G$. Hence it commutes with any element in kG. Thus $\widehat{C} \in Z(kG)$ for any choice of conjugacy class.

Fix $z := \sum_{x \in G} a_x x \in Z(kG)$. We have

$$\sum_{x \in G} a_x x = z = g^{-1} zg = g^{-1} \left(\sum_{x \in G} a_x x \right) g = \sum_{x \in G} a_x (g^{-1} xg)$$

In particular, coefficients agree within any conjugacy class. Write λ_i for the coefficient in the conjugacy class C_i . Then, particular, we can write

$$z = \sum_{i=1}^{s} \sum_{x \in C_i} a_x x = \sum_{i=1}^{s} \lambda_i \sum_{x \in C_i} x = \sum_{i=1}^{s} \lambda_i \widehat{C}_i$$

Thus Z(kG) is spanned by the sums of conjugacy classes.

If $0 = \sum_{i=1}^{s} \lambda_i \widehat{C}_i = \sum_{i=1}^{s} \sum_{x \in C_i} \lambda_i x$. As G is a linearly independent set in kG, we have $\lambda_i = 0$ for all i. Thus the conjugacy classes are linearly independent.

Corollary 4.1.7. Let G be a finite group and k be an algebraicaly closed field with $|G| \neq 0$ in k. Then $r_k(G) = s(G)$.

Proof. By Maschke, kG is a semisimple k-algebra with $\dim Z(kG) = s(G)$ by Proposition 4.1.6. The proof follows from Theorem 4.1.4.

Corollary 4.1.8. Suppose that $|G| \neq 0$ in k and take $e := \frac{1}{|G|} \sum_{g \in G} g \in kG$. Then e is a central idempotent.

Proof. e is a kG-linear combination of all conjugacy class sums, so $e \in Z(kG)$ by Proposition 4.1.6. Now,

$$e^2 = \frac{1}{|G|} \sum_{g \in G} \left(\frac{1}{|G|} \sum_{h \in H} gh \right) = \frac{1}{|G|} \sum_{g \in G} \left(\frac{1}{|G|} \sum_{h \in G} h \right) = \frac{1}{|G|} \sum_{g \in G} e = e$$

Lemma 4.1.9. We note the following properties about the ring decomposition:

- 1. Each B_i is a ring with identity element e_i
- 2. A is isomorphic to the product of rings (B_i, e_i)

$$A \cong B_1 \times \cdots \times B_r$$

3. Each B_i is a semisimple ring with unique simple module V_i

Proof. (i) Lemma 4.1.2 shows that B_i is an additive subgroup of A stable under multiplication. In the proof of Lemma 4.1.3 we saw that for any $a \in A$, $ae_i = e_i a$ is the B_i component of a along the decomposition $A = B_1 \oplus \cdots \oplus B_r$. In particular, $ae_i = e_i a = a$ for all $a \in B_i$

- (ii) The isomorphism sends $a \in A$ to $(ae_1, \ldots, ae_r) \in B_1 \times \cdots \times B_r$.
- (iii) Fix $\ell = 1, ..., n_i$ and suppose that U is a B_i -submodule of $L_{i,\ell}$. Then,

$$A \cdot U = \left(\bigoplus_{j=1}^{r} B_j\right) \cdot U \le U$$

where the last equality follows from the fact $B_j \cdot U \leq B_j \cdot B_i = B_j e_j \cdot e_i B_i = 0$ if $j \neq i$, and $B_i \cdot U \leq U$ as U is a B_i -submodule. In particular, U is an A-submodule of $L_{i,\ell}$, thus U is either zero of all of $L_{i,\ell}$ as it is a simple A-module. Thus $L_{i,\ell}$ hence V_i are all simple B_i -modules. As $B_i = \bigoplus_{j=1}^{n_i} L_{i,j}$, it is a semisimple ring. In particular, by Proposition 4.0.16, V_i is the only simple B_i -module up to isomorphism.

Remark 4.1.10. Note that B_i is an additive subgroup of A stable under multiplication, but it is not a unital subring when $r \geq 2$, as the identity element e_i is not the identity element 1 in A.

Definition 4.1.11. Let A be a ring. The **opposite ring** to A, written A^{op} has the same abelian group as A, but multiplication defined as

$$a \star b = ba$$

for all $a, b \in A^{op}$

Proposition 4.1.12. For each $a \in A$, write $r_a : A \to A$ to be the left A-linear map given by $r_a(b) = ba$ for each $b \in A$. The map

$$r: A^{\mathrm{op}} \to \mathrm{End}_A(A) \qquad a \mapsto r_a$$

is an isomorphism of rings.

Proof. We note that r is a ring homomorphism, taking the structure from A.

For $a \in A$, if $r_a = 0$, then we have $a = 1_A a = r_a(1_A) = 0(1_A) = 0$, so the kernel of r is trivial. Take any $\psi \in \text{End}_A(A)$. For every $b \in A$, we have by A-linearity of ψ ,

$$\psi(b) = \psi(b1) = b\psi(1) = r_{\psi(1)}(b)$$

In particular $\psi = r_{\psi(1)}$. So we have an isomorphism of rings.

Proposition 4.1.13. Let V be an A-module. Suppose $D := \operatorname{End}_A(V)$ and let $n \geq 1$.

1. The inclusion maps and projection maps to each coordinate give a ring homomorphism $M_n(D) \cong \operatorname{End}_A(V^n)$

2. For any ring S, $M_n(S)^{op} \cong M_n(S^{op})$.

Proof. (i) Let $\sigma_j: V \to V^n$ be the inclusion maps and $\pi_j: V^n \to V$ be the projection maps. Define $\alpha: M_n(D) \to \operatorname{End}_A(V^n)$ by

$$(\phi_{i,j}) \mapsto \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_i \circ \phi_{i,j} \circ \pi_j$$

and $\beta : \operatorname{End}_A(V^n) \to M_n(D)$ by

$$\phi \mapsto (\pi_i \circ \psi \circ \sigma_j)$$

Now,

$$(\beta \circ \alpha)(\phi_{i,j}) = \beta \left(\sum_{i} \sum_{j} \sigma_{i} \circ \phi_{i,j} \pi_{j} \right)$$

And the i', j'-th coordinate of the evaluation is

$$\pi_{i'} \circ \left(\sum_i \sum_j \sigma_i \circ \phi_{i,j} \pi_j \right) \sigma_{j'} = \sum_i \sum_j (\pi_{i'} \circ \sigma_i) \circ \phi_{i,j} \circ (\pi_j \circ \sigma_{j'}) = \phi_{i',j'}$$

Noting that $\pi_i \circ \sigma_j = \delta_{i,j}$, thus α is injective.

Also,

$$(\alpha \circ \beta)(\phi) = \alpha((\pi_1 \circ \phi \circ \sigma_j)) = \sum_i \sum_j \sigma_i \circ (\pi_i \circ \phi \circ \sigma_j) \circ \pi_j = \left(\sum_i \sigma_i \circ \pi_i\right) \circ \phi \circ \left(\sum_j \sigma_j \circ \pi_j\right) = \psi$$

Noting that $\sum_k \sigma_k \circ \pi_k = 1_{\text{End}_A(V^n)}$. Finally, this is a unital ring homomorphism, induced by the linear structure of matrix multiplication and projection / inclusions.

(ii) This follows from the fact there is a natural isomorphism by transposing. \Box

Proposition 4.1.14. Let B be a semisimple ring with exactly one simple module V up to isomorphism. Suppose that $B \cong \underbrace{V \oplus \cdots \oplus V}_{n \text{ times}}$ as a left B-module, and let $D := \operatorname{End}_B(V)$. Then there is a

ring isomorphism

$$B \cong M_n(D^{\mathrm{op}})$$

Proof. We know from Proposition 4.1.12 that $B \cong \operatorname{End}_B(B)^{\operatorname{op}}$. Since $B = V^n$ as a left B-module, we have $\operatorname{End}_B(B) \cong M_n(D)$. Hence

$$B \cong \operatorname{End}_B(B)^{\operatorname{op}} \cong M_n(D)^{\operatorname{op}} \cong M_n(D^{\operatorname{op}})$$

Noting Proposition 4.1.13.

Theorem 4.1.15 (Artin-Weddernburn). Suppose that k is an algebraically closed field and that A is a finite dimensional semisimple k-algebra. Then there exist positive integers n_1, \ldots, n_r and a k-algebra isomorphism

$$A \cong M_{n_1}(k) \times \cdots \times M_{n_r}(k)$$

Proof. By Lemma 4.1.9, without loss of generality, we may assume that r=1, such that A has exactly one simple module V up to isomorphism. Then $A \cong M_n(D^{\operatorname{op}})$ where $D := \operatorname{End}_A(V)$ by Lemma 4.1.14. On the other hand, $D \cong k$ by Schur's Lemma.

Proposition 4.1.16. Suppose that $A = M_n(k)$ be the ring of $n \times n$ matrices with entires in k and let $V := k^n$ be the natural left A-module of $n \times 1$ column vectors. Then,

- 1. V is a simple A-module
- 2. A has no nonzero proper two sided ideals
- 3. $A = L_1 \oplus \cdots \oplus L_n$, where $L_i := M_n(k) \cdot E_{i,i}$ is a decomposition into simple left ideals.
- *Proof.* (i) First note that V is nonzero. Let W be an A-submodule of V and assume that $W \neq \{0\}$. Taking a nonzero $w \in W$, extend this to a basis for V. Consider the matrix that sends w to e_i a standard basis vector, and all other basis vectors to 0. Then we have $T(v) = e_i \in W$, so this forces W = V.
- (ii) Pick any two-sided nonzero ideal $I \subseteq M_n(k)$. As I is nonzero, choose $A = (a_{i,j}) \in I$ that is nonzero. Let $a_{i,j} \neq 0$. Then,

$$E_{ri}AE_{is} = a_{ij}E_{rs} \in I$$

as I is two sided. Scaling, $E_{rs} \in I$. Hence every elementary matrix E_{rs} belongs in I, forcing $I = M_n(k)$.

(iii) Note first that the set $E_{i,i}$ over i is a pairwise orthogonal idempotent. The span of $E_{i,i}$ by left-multiplication gives elements of the form $E_{j,i}$. In particular, as $1 = \sum_{i} E_{i,i}$,

$$A = A \cdot 1 = A \sum_{i} E_{i,i} = \sum_{i} (AE_{i,i}) \in \sum_{i} I_{i}$$

If $\sum_i A_i E_{i,i} = 0$, then right multiplication by $E_{j,j}$ forces $A_j E_{j,j} = 0$, hence direct. Finally, $I_i \simeq k^n$, so is simple.

Remark 4.1.17. Note that the decomposition above need not be unique. We can pick $E'_{i,i} = PE_{i,i}P^{-1}$ for some invertible matrix P (not diagonal, to change the matrix), then this is again a complete set of primitive orthogonal idempotent with a new decomposition $M_n(k) = \bigoplus_i M_n(k)E'_{i,i}$.

The main point is that $M_n(k)$ is semisimple, and the decomposition is unique up to isomorphism. Hence, permuting or conjugating maintains isomorphism.

Corollary 4.1.18. Suppose that k is algebraically closed. Let G be a finite group such that $|G| \neq 0$ in k and let V_1, \ldots, V_r be a complete list of pairwise non-isomorphic simple kG-modules. Then we have

1.
$$kG \simeq V_1^{\dim V_1} \oplus \cdots \oplus V_r^{\dim V_r}$$
 as a kG -module

2.
$$|G| = \sum_{i=1}^{r} (\dim V_i)^2$$

Proof. We know that kG is a semisimple ring by Maschke's Theorem, so by Artin Weddernburn, we can decompose

$$kG \cong M_{n_1}(k) \times \cdots \times M_{n_r}(k)$$

The matrix algebra $M_n(k)$ acts on the space of column vectors k^n by left-multiplication, and this forces k^n to be a simple $M_n(k)$ -module. On the other hand, $M_n(k)$ is isomorphic to a direct sum of n copies of k^n , so $n_i = \dim V_i$ for each $i = 1, \ldots, r$.

The second statement is then immediate from the first.

Proposition 4.1.19. Every representation $\rho: G \to \operatorname{GL}(V)$ extends to a k-algebra homomorphism $\tilde{\rho}: kG \to \operatorname{End}_k(V)$

Proof. As $\operatorname{End}_k(V)$ is a k-vector space and G is a basis for kG, $\rho: G \to \operatorname{GL}(V) \subseteq \operatorname{End}_k(V)$ extends uniquely to a k-linear map $\tilde{\rho}: kG \to \operatorname{End}_k(V)$. Now this acts like a homomorphism for elements in G, so it follows that

$$\tilde{\rho}(xy) = \tilde{\rho}\left(\sum_{g \in G} \sum_{h \in H} a_g b_h g h\right) = \sum_{g \in G} \sum_{h \in H} a_g b_h \tilde{\rho}(gh) = \tilde{\rho}(g) \tilde{\rho}(h) = \left(\sum_{g \in G} a_g \tilde{\rho}(g)\right) \left(\sum_{h \in H} b_h \tilde{\rho}(h)\right)$$

Also,
$$\tilde{\rho}(1_{kG}) = \rho(1_G) = 1_{\operatorname{End}_k(V)}$$
.

5 Constructing representations

Lemma 5.0.1. Let V be a vector space and let $G \times V \to V$ be a G-action on the set V. This extends to a kG-module structure on V if and only if the G-action on V is linear, such that

$$g \cdot (v + \lambda w) = (g \cdot v) + \lambda (g \cdot w)$$

for all $g \in G$, $v, w \in V$, $\lambda \in k$.

Definition 5.0.2. Let V and W be G-representations. The external direct sum $V \oplus W$ is a G-representation via

$$g \cdot (v \cdot w) = (g \cdot v, g \cdot w)$$

for all $g \in G$, $v \in V$, $w \in W$.

Definition 5.0.3. Let V be a G-representation. This induces a representation on the dual space V^* via

$$(g \cdot f)(v) := f(g^{-1} \cdot v)$$

for all $g \in G$, $f \in V^*$, $v \in V$. We call this the **dual representation**.

Definition 5.0.4. Let V, W be G-representations. The vector space Hom(V, W) of all linear maps from V to W admits a linear G-action by

$$(g \cdot f)(v) = g \cdot f(g^{-1} \cdot v)$$

for all $g \in G$, $f \in \text{Hom}(V, W)$, $v \in V$. When W is the trivial 1-dimensional representation, we recover the dual space $\text{Hom}(V, k) = V^*$.

Lemma 5.0.5. Let V be a finite dimensional G-representation. The biduality isomorphism between vector spaces by

$$\tau: V \to (V^*)^* \qquad \tau(v)(f) := f(v)$$

for all $f \in V^*, v \in V$ is an isomorphism of G-representations.

Proof. Noting that the map is a bijection, it suffices to check that this is indeed a homomorphism by the induced dual representations. Now,

$$(g \cdot \tau(v))(\psi) = \tau(v)(g^{-1} \cdot \psi) = (g^{-1} \cdot \psi)v = \psi(g \cdot v) = (\tau(g \cdot v))(\psi)$$

5.0.1 Actions on Tensor

Definition 5.0.6. Let V and W be finite dimensional kG-modules. Define a G-action on $V \otimes W$ by setting

$$q \cdot (v \otimes w) := (q \cdot v) \otimes (q \cdot w)$$

for all $g \in G$, $v \in V$, $w \in W$. This is called the **tensor product representation** $V \otimes W$.

This gives a well-defined G-representation as it is a linear G-action on $V \otimes W$.

Lemma 5.0.7. Let V and W be finite dimensional kG-modules. Then there is an isomorphism of kG-modules

$$V^* \otimes W \cong \operatorname{Hom}(V, W)$$

Proof. For every $f \in V^*$ and $w \in W$, we have a linear map $b(f, w) : V \to W$ given by b(f, w)(v) := f(v)w. The resulting map $b : V^* \times W \to \operatorname{Hom}(V, W)$ is blinear, so by the Universal Property on Tensors, extends to a linear map

$$\alpha: V^* \otimes W \to \operatorname{Hom}(V, W)$$

given by $\alpha(f \otimes w)(v) := f(v)w$ for all $f \in V^*, w \in W, v \in V$. Let $\{v_1, \ldots, v_n\}$ be a basis for V and let $\{v_1^*, \ldots, v_n^*\}$ be the corresponding dual basis for V^* . We define a linear map $\beta : \text{Hom}(V, W) \to V^* \otimes W$ by

$$f \mapsto \sum_{i=1}^{n} v_i^* \otimes f(v_i)$$

We first show that these maps are mutual inverses.

Let $f \in \text{Hom}(V, W)$ and $v \in V$. Then,

$$(\alpha \circ \beta)(f)(v) = \alpha(\beta(f))(v) = \sum_{i=1}^{n} \alpha(v_i^* \otimes f(v_i))(v) = \sum_{i=1}^{n} v_i^*(v)f(v_i) = f\left(\sum_{i=1}^{n} v_i^*(v)v_i\right) = f(v)$$

In particular, $\alpha \circ \beta = 1_{\text{Hom}(V,W)}$. Also, for any $v \in V$,

$$(\beta \circ \alpha)(v_i^* \otimes w_j) = \beta(\alpha(v_i^* \otimes w_j)) = \sum_{k=1}^n v_k^* \otimes \alpha(v_i^* \otimes w_j)(v_k) = \sum_{k=1}^n v_k^* \otimes v_i^*(v_k)w_j = v_i^* \otimes w_j$$

So $\beta \circ \alpha = 1_{V^* \otimes W}$ as each basis element is sent to the identity. Finally, to show that α is a homomorphism of kG-modules, as we know α is k-linear, it suffices to show G-equivariance. Taking any $g \in G$, $f \in V^*$, $w \in W$, we have

$$\alpha(g \cdot (f \otimes w))(v) = \alpha((g \cdot f) \otimes (g \cdot w))(v)$$

$$= (g \cdot f)(v)(g \cdot w)$$

$$= f(g^{-1} \cdot v)(g \cdot w)$$

$$= g \cdot (f(g^{-1} \cdot v)w)$$

$$= g \cdot \alpha(f \otimes w)(g^{-1} \cdot v)$$

$$= (g \cdot \alpha(f \otimes w))(v)$$

where the last line is an equality based on the homomorphism action induced by kG module actions on V and W.

Definition 5.0.8. Suppose that $char(k) \neq 2$ and let V be a finite dimensional vector space.

• For each $v, w \in V$, define

$$vw := \frac{1}{2}(v \otimes w + w \otimes v) \in V \otimes V$$

Then, the symmetric square of V is the subspace of $V \otimes V$ given by

$$S^2V := \langle \{vw \mid v, w \in V\} \rangle$$

• For each $v, w \in V$, define

$$v \wedge w := \frac{1}{2}(v \otimes w - w \otimes v) \in V \otimes V$$

The alternating square of V is the subspace of $V \otimes V$ defined by

$$\bigwedge^2 V := \langle \{ v \land w \mid v, w \in V \} \rangle$$

Note that vw = wv in S^2V and that $v \wedge w = -w \wedge v$ in $\bigwedge^2 V$ for all $v, w \in V$.

Lemma 5.0.9. Let dim V = n and suppose that char $(k) \neq 2$. Then,

- 1. $V \otimes V = S^2 V \oplus \bigwedge^2 V$
- 2. dim $S^2V = \frac{n(n+1)}{2}$ and dim $\bigwedge^2 V = \frac{n(n-1)}{2}$
- 3. If V is a G-representation, then so are S^2V and \bigwedge^2V via the actions

$$g \cdot (vw) = (g \cdot v)(g \cdot w)g \cdot (v \wedge w) = (g \cdot v) \wedge (g \cdot w)$$

for all $g \in G, v, w \in V$.

Proof. (i) Let $S_2 := \langle \sigma \rangle$ be the cyclic group of order 2. Since $\operatorname{char}(k) \neq 2$, the group ring kS_2 admits orthogonal idempotents $e_1 := \frac{1+\sigma}{2} \in kS_2$ and $e_2 := \frac{1-\sigma}{2} \in kS_2$, which gives rise to the decomposition

$$kS_2 = kS_2e_1 \oplus kS_2e_2 = ke_1 \oplus ke_2$$

by Lemma 4.1.2, where the last equality then follows from the fact $\sigma e_1 = e_1$ and $\sigma e_2 = -e_2$. Thus, every kS_2 -module M admits an even-odd decomposition

$$M = e_1 M \oplus e_2 M = \{ m \in M \mid \sigma m = m \} \oplus \{ m \in M \mid \sigma m = -m \}$$

Now, S_2 acts linearly on $V \otimes V$ by

$$\sigma \cdot (v \otimes w) = w \otimes v$$

Then $S^2V = e_1 \cdot (V \otimes V)$ is the even part of $V \otimes V$ and $\bigwedge^2 V = e_2 \cdot (V \otimes V)$ is the odd part of $V \otimes V$. Then the even-odd decomposition gives $V \otimes V = S^2V \oplus \bigwedge^2 V$.

(ii) If $\{v_1, \ldots, v_n\}$ is a basis for V, then $\{v_i \otimes v_j \mid 1 \leq i, j \leq n\}$ spans $V \otimes V$, so $\{e_1 \cdot (v_i \otimes v_j)\}$ spans S^2V . Now, $e_1 \cdot (v_i \otimes v_j) = v_i v_j = v_j v_i$, so $\{v_i v_j\}$ span S^2V . Hence,

$$\dim S^2 V \le \frac{n(n+1)}{2}$$

Similarly, $e_2 \cdot (v_i \otimes v_j) = v_i \wedge v_j$ spans $\bigwedge^2 V$, and therefore

$$\dim \bigwedge^2 V \le \frac{n(n-1)}{2}$$

On the other hand, dim $V \otimes V = n^2$, so decomposition implies the result.

(iii) We have two groups G and S_2 acting on $V \otimes V$. Now,

$$\sigma \cdot (g \cdot (v \otimes w)) = \sigma(g \cdot v \otimes g \cdot w) = g \cdot w \otimes g \cdot v = g \cdot (w \otimes v) = g \cdot (\sigma \cdot (v \otimes w))$$

for any $v, w \in V$ and $g \in G$. Hence, these actions commute pointwise, and so the actions preserve S^2V and $\bigwedge^2 V$. Hence these submodules inherit a linear G-action from $V \otimes V$ as claimed.

Remark 5.0.10. This idea extends to finding proper kG-submodules to the tensor $V^{\otimes n}$ as a direct sum of kG-submodules $S^{\lambda}(V)$, one for each irreducible representation λ of the symmetric group S_n . This construction $V \mapsto S^{\lambda}(V)$ is called the **Schur Functor**.

Corollary 5.0.11. Suppose $\operatorname{char}(k) \neq 2$ and V be a G-representation. The square tensor $V \otimes V$ is reducible when $\dim V \geq 2$.

Proof. By Lemma 5.0.9, $V \otimes V$ decomposes as $S^2V \oplus \bigwedge^2 V$, and these are both nontrivial by part (ii) of the Lemma. S^2V and $\bigwedge^2 V$ are both G-representations by (iii).

Lemma 5.0.12. Let V be a finite dimensional kG-module. Let W be a one-dimensional kG-module. Then, $V \otimes W$ is simple if and only if V is simple.

Proof. First note that $W \otimes W^* \cong k$, as

$$g \cdot (w \otimes w^*) = (g \cdot w) \otimes (g \cdot w^*) = \chi(g)w \otimes \chi(g)^{-1}w^* = 1 \cdot (w \otimes w^*)$$

Hence the group elements act trivially, and so in particular $W \otimes W^* \cong k$.

Hence it suffices to show one direction, as then we can use the congruence $V \cong V \otimes (W \otimes W^*)$.

Suppose that $V \otimes W$ is simple. Suppose for a contradiction that V is not simple. Then we have a nonzero proper kG-module U of V. Let $\mathcal{B}_U = \{u_1, \ldots, u_k\}$ be a basis for U and extend it to a basis \mathcal{B}_V of V. Let $\{w\}$ be a basis for the one dimensional space W. Then,

$$g \cdot (u \otimes w) = \underbrace{g \cdot u}_{\in U} \otimes \underbrace{g \cdot w}_{\in U} \in U \otimes W$$

Hence $U \otimes W$ is a proper G-stable subspace of $V \otimes W$, hence a kG module, a contradiction. Thus V is simple.

Proposition 5.0.13. Let V be a finite dimensional kG-module. Then, V is simple if and only if V^* is simple.

Proof. Note that it suffices to show \Rightarrow , as $V^{**} \cong V$. Suppose that V is simple. Take $U \subseteq V^*$ be a nonzero kG-module. Taking the annihilator of U, this is a G-stable subspace of V. As V is simple, noting $\mathrm{Ann}(U) = V$, we have U = 0 or $\mathrm{Ann}(U) = 0$. The first case is ruled out by the fact $U \neq 0$, so $\mathrm{Ann}(U) = 0$.

Now, the proof follows from the fact

$$U \cong \operatorname{Hom}_k(V/\operatorname{Ann}(U), k) \cong \operatorname{Hom}_k(V, k) \cong V^*$$

6 Character Theory

6.1 Definitions and Basic Properties

Definition 6.1.1. Let $\rho: G \to GL(V)$ be a complex representation of G. The **character** of ρ is the function

$$\chi_{\rho}: G \to \mathbb{C} \quad g \mapsto \operatorname{tr}(\rho(g))$$

The degree of a character χ_{ρ} is the degree of the representation ρ .

We write χ_V to denote the character of the representation afforded by a $\mathbb{C}G$ -module V, when the $\mathbb{C}G$ -module structure on V is understood.

Remark 6.1.2. Note that the character χ_V only depends on the isomorphism class of the $\mathbb{C}G$ module V, and the isomorphism class of the representation ρ . TODO!! more?

Definition 6.1.3. A function $f: G \to \mathbb{C}$ is said to be a **class function** if it is constant on the conjugacy classes of G. That is,

$$f(xgx^{-1}) = f(g)$$

for all $g, x \in G$. We denote the space of all class functions on G by $\mathcal{C}(G)$.

Note that $\mathcal{C}(G)$ is a commutative ring via pointwise multiplication of functions.

Lemma 6.1.4. The character χ_V of any finite dimensional kG-module V is a class function.

Proof. If $\rho: G \to GL(V)$ is the corresponding representation, then the linear endomorphism $\rho(g)$ of V is conjugate to $\rho(xqx^{-1})$ in GL(V). But the conjugate linear maps have the same trace, as

$$\operatorname{tr}(ABA^{-1}) = \operatorname{tr}((AB)A^{-1}) = \operatorname{tr}(A^{-1}(AB)) = \operatorname{tr}(B)$$

for any $A, B \in GL(V)$.

Proposition 6.1.5. Let G be a finite group and let V, W be finite dimensional $\mathbb{C}G$ -modules. Then we have the following equalities in $\mathcal{C}(G)$:

- 1. $\chi_{V^*} = \overline{\chi_V}$
- 2. $\chi_{V \oplus W} = \chi_V + \chi_W$
- 3. $\chi_{V \otimes W} = \chi_V \chi_W$
- 4. $\chi_{\text{Hom}(V,W)} = \overline{\chi_V} \chi_W$
- 5. $\chi_{S^2V}(g) = \frac{1}{2}(\chi_V(g)^2 + \chi_V(g^2))$ for all $g \in G$
- 6. $\chi_{\Lambda^2 V}(g) = \frac{1}{2}(\chi_V(g)^2 \chi_V(g^2))$ for all $g \in G$.

Proof. Fix $g \in G$. The action $g_V \in GL(V)$ of g on V is diagonalizable. Fix a basis of g_V -eigenvectors $\{v_1, \ldots, v_n\}$ for V with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$, and fix a basis of g_W -eigenvectors $\{w_1, \ldots, w_m\}$ for W with eigenvalues μ_1, \ldots, μ_m . Then,

$$\chi_V(g) = \text{tr}(g_V) = \sum_{i=1}^n \lambda_i \quad \chi_W(g) = \text{tr}(g_W) = \sum_{j=1}^m \mu_j$$

(i) Let $\{v_1^*, \ldots, v_n^*\}$ be the dual basis for V^* relative to $\{v_1, \ldots, v_n\}$. Then,

$$(g \cdot v_i^*)(v_j) = v_i^*(g^{-1} \cdot v_j) = v_i^*(\lambda_j^{-1}v_j) = \lambda_j^{-1}\delta_{ij} = (\lambda_i^{-1}v_i^*)(v_j)$$

where the last line equality follows from the fact the given equation is 0 unless i = j. Hence,

$$g \cdot v_i^* = \lambda_i^{-1} v_i^*$$

for all i = 1, ..., n. On the other hand, as λ_i is a root of unity, we have $g \cdot v_i^* = \overline{\lambda_i} v_i^*$, thus

$$\chi_{V^*}(g) = \operatorname{tr}(g_{V^*}) = \sum_{i=1}^n \overline{\lambda_i} = \overline{\operatorname{tr}(g_V)} = \overline{\chi_V(g)}$$

(ii) The action is defined by

$$g_{V \oplus W} = \begin{pmatrix} g_V & 0 \\ 0 & g_W \end{pmatrix}$$

so the trace is exactly the sum of traces.

(iii) By definition, the elementary tensors form a basis for $V \otimes W$. We note

$$g \cdot (v_i \otimes w_j) = (g \cdot v_i) \otimes (g \cdot w_j) = (\lambda_i v_i) \otimes (\mu_j w_j) = \lambda_i \mu_j (v_i \otimes w_j)$$

In particular, the elementary tensors form a basis of eigenvectors for the g-action on $V \otimes W$ with eigenvalue $\lambda_i \mu_j$. Hence,

$$\chi_{V \otimes W}(g) = \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i \mu_j = \left(\sum_{i=1}^{n} \lambda_i\right) \left(\sum_{j=1}^{m} \mu_j\right) = \chi_V(g) \chi_W(g)$$

(iv) We note the isomorphism $V^* \otimes W \cong \text{Hom}(V, W)$, hence

$$\chi_{\operatorname{Hom}(V,W)} = \chi_{V^* \otimes W} = \chi_{V^*} \chi_W = \overline{\chi_V} \chi_W$$

(v) Noting that $v_i v_j$ is a basis for $S^2 V$, we compute

$$g \cdot (v_i v_j) = (g \cdot v_i)(g \cdot v_j) = (\lambda_i v_i)(\lambda_j v_j) = \frac{1}{2}(\lambda_i v_i \otimes \lambda_j v_j + \lambda_j v_j \otimes \lambda_i v_i) = \lambda_i \lambda_j v_i v_j$$

In particular, the set $\{v_i v_j \mid 1 \le i \le j \le n\}$ form an eigenbasis for S^2V , thus

$$\chi_{S^{2}V}(g) = \sum_{1 \le i \le j \le n} \lambda_{i}\lambda_{j} = \sum_{1 \le i < j \le n} \lambda_{i}\lambda_{j} + \sum_{i} \lambda_{i}^{2} = \frac{1}{2} \left(\sum_{i} \lambda_{i}\right)^{2} + \frac{1}{2} \sum_{i} \lambda_{i}^{2} = \frac{1}{2} \chi_{V}(g)^{2} + \frac{1}{2} \chi_{V}(g^{2})$$

(vi) By the same reasoning from (v), the set $\{v_i \wedge v_j \mid 1 \leq i < j \leq n\}$ form an eigenbasis for $\bigwedge^2 V$. Expanding,

$$\chi_{\bigwedge^{2} V}(g) = \sum_{1 \le i \le j \le n} \lambda_{i} \lambda_{j} = \frac{1}{2} \left(\sum_{i} \lambda_{i} \right)^{2} - \frac{1}{2} \sum_{i} \lambda_{i}^{2} = \chi_{V}(g)^{2} - \chi_{V}(g^{2})$$

Definition 6.1.6. Let G be a finite group and let $\{g_1, \ldots, g_s\}$ be a set of representatives for the conjugacy classes of G. Let V_1, \ldots, V_r be a complete list of representatives for the isomorphism classes of simple $\mathbb{C}G$ -modules.

The character table of G is the $r \times s$ array with the (i, j)-th entry given by $\chi_{V_i}(g_j)$

Remark 6.1.7. As $r = r_{\mathbb{C}}(G)$ and s = s(G), the character table is always square. Also, $\chi(1) = \operatorname{tr}(\operatorname{Id}_V) = \dim V$.

Proposition 6.1.8. Let $\rho: G \to GL(V)$ be a finite dimensional representation. Then,

- $\chi_V(g) = \chi_V(1)$ if and only if $\rho(g) = 1$
- If dim V = 1 then χ is a group homomorphism.

Proof. $(i) \Rightarrow \text{If } \chi_V(g) = \chi_V(1) = \dim V$, then we note by the finite order of G that $\rho(g)^m = \rho(g^m) = \rho(1) = I_V$ for some m. Hence $\rho(g)$ satisfies the polynomial $X^m - I = 0$, hence the eigenvalues of $\rho(g)$ satisfy $\lambda^m = 1$. In particular, $|\lambda| = 1$. As the trace is then the sum of these eigenvalues which equals dim V, by the triangle inequality we must have $\lambda = 1$ for any eigenvalue. In particular, $\rho(g) = I_V$.

 \Leftarrow If $\rho(g) = 1$, then we have

$$\chi_V(g) = \operatorname{tr}(1) = \dim V = \chi_V(1)$$

(ii) If dim V=1, then $\chi(g)=\rho(g)$, so the proof follows immediately from the fact ρ is a group homomorphism.

Lemma 6.1.9. Suppose that k is algebraically closed.

- 1. Suppose further that G is abelian. Every smiple kG-module is one-dimensional.
- 2. The converse of the above holds provided that $|G| \neq 0$ in k.

Proposition 6.1.10. Let χ be a character of G. Then $\chi(g^{-1}) = \overline{\chi(g)}$ for all $g \in G$.

Proposition 6.1.11. Let $g \in G$. Then the following are equivalent:

- 1. g is conjugate to g^{-1}
- 2. for every character χ of G, we have $\chi(g) \in \mathbb{R}$.

Definition 6.1.12. Characters of degree 1 are called linear characters.

Proposition 6.1.13. Let χ_1, \ldots, χ_r be the complete list of characters of the irreducible complex representations of the finite group G. Then,

$$\chi_1(1)^2 + \dots + \chi_r(1)^2 = |G|$$

Proof. Suppose that the simple kG-module V_i affords the character χ_i . Then, $\chi_i(1) = \dim V_i$, thus the proof follows by Artin Weddernburn.

Definition 6.1.14. Let N be a normal subgroup of the finite group G and let $\rho: G/N \to GL(V)$ be a representation. The **inflated representation** of G,

$$\dot{\rho}: G \to \mathrm{GL}(V)$$

is defined by $\dot{\rho} := \rho(gN)$ for all $g \in G$.

Definition 6.1.15. Let G be a finite group. The **derived subgroup** G' is the subgroup of G generated by all **commutators** $[x, y] := xyx^{-1}y^{-1}$ in G, such that

$$G' := \langle xyx^{-1}y^{-1} \mid x, y \in G \rangle$$

Remark 6.1.16. The derived subgroup is a normal subgroup of G. The commutator also satisfies $[g,h]^{-1} = [g^{-1},h^{-1}]$ and $\phi([g,h]) = [\phi(g),\phi(h)]$ where $\phi:G\to H$ is a group homomorphism.

Proposition 6.1.17. Suppose that N is a normal subgroup of G, and suppose further that G/N is abelian. Then G' is a normal subgroup of N.

Proof. If G/N is abelian, then we know that for any $x, y \in G$, we have $xyN = (xN) \cdot (yN) = (yN) \cdot (xN) = yxN$. In particular, $xyx^{-1}y^{-1} \in N$. Hence we have $G' \subseteq N$, and as G' is normal in G, it is normal in N.

Proposition 6.1.18. Every group homomorphism from G to an abelian group A is trivial on the commutator subgroup G' and hence factors through G/G'

Proof. Let $\phi: G \to A$ be a group homomorphism where A is abelian. Then every commutator in A is equal to the identity, so every commutator [g,h] of G lies in ker ϕ . In particular, $G' \leq \ker \phi$. Hence there is an induced map $\tilde{\phi}: G/G' \to A$ by sending $gG' \mapsto \phi(g)$, such that ϕ factors as $\tilde{\phi} \circ q_{G'}$ where $q_{G'}$ is the canonical quotient map.

Proposition 6.1.19. Suppose that G is abelian. Then every simple kG-module is one-dimensional. The converse holds provided that $|G| \neq 0$ in k.

Proof. Let V be a simple kG-module. Then we can find a nonzero vector $v \in V$. As k and G are abelian, so is kG.

The action of every $z \in Z(kG) = kG$ on V lies in $\operatorname{End}_{kG}(V)$. As k is algebraically closed and V is simple, by Schur's Lemma, we have $\operatorname{End}_{kG}(V) = k1_V$. As $k \cdot v \subseteq V$ is closed under actions by scalars, it follows that $k \cdot v$ is a nonzero kG-submodule of V. As V is simple, we must have $V = k \cdot v$, which is one dimensional over k.

If $|G| \neq 0$ in k, by Maschke's Theorem, kG is semisimple, and there is a complete list V_1, \ldots, V_r of representatives for the isomorphism classes of simple kG-modules. Hence by Artin Weddernburn, we have $kG \simeq M_{\dim V_1}(k) \times \cdots \times M_{\dim V_r(k)}$ as k-algebras. By assumption $\dim V_i = 1$ for all i, so we have $kG \simeq k^n$ as a commutative ring. In particular $G \leq kG^\times \simeq (k^n)^\times$ is abelian.

Lemma 6.1.20. Let G be a finite group. There is a bijective correspondence between complex linear characters of G and irreducible complex characters of G/G'. Hence G has precisely |G:G'| distinct complex linear characters.

Proof. Let χ be a complex linear character of G afforded by the complex representation $\rho: G \to \operatorname{GL}(V)$. Then $\operatorname{GL}(V) \cong \operatorname{GL}_1(\mathbb{C}) \cong \mathbb{C}^{\times}$, which is abelian, thus ρ induces a representation $\tilde{\rho}: G/G' \to \operatorname{GL}(V)$, such that $\tilde{\rho} \circ q_{G'} = \rho$. As dim V = 1, we have $\tilde{\rho}$ is irreducible, and thus χ descends to an irreducible character $\tilde{\chi}$ of G/G' afforded by $\tilde{r}ho$ with $\tilde{\rho} \circ q_{G'} = \chi$.

On the other hand, suppose that ϕ is an irreducible complex character of G/G' afforded by the representation $\tau: G/G' \to \operatorname{GL}(V)$. As G/G' is abelian and $\mathbb C$ is algebraically closed, the simple $\mathbb C(G/G')$ -module is 1-dimensional. Hence, the inflated representation $\dot{\tau}: G \to \operatorname{GL}(V)$ is also of degree 1, thus ϕ lifts to a linear character $\dot{\phi}$ of G afforded by $\cdot \tau$.

The bijection comes from the fact $\chi = \tilde{\chi} \circ \pi = \tilde{\chi}$

As G/G' is abelian, |G/G'| = |G:G'| is the number of conjugacy classes of G/G', which is the number of isomorphism classes of simple $\mathbb{C}(G/G')$ -modules, which is the number of complex linear characters of G by correspondence.

Example 6.1.21. Let $G = A_4$ be the alternating group of order 12. We know that V_4 is a normal subgroup of order 4, written

$$V_4 := \{1, (12)(34), (14)(23), (13)(24)\}\$$

Since A_4/V_4 has order 3, it must be a cyclic group of order 3, hence abelian. In particular, $A'_4 \leq V_4$, forcing $|A'_4| \in \{1, 2, 4\}$. No subgroup of order 2 in V_4 is normal in A_4 , and A'_4 is nontrivial as it is not abelian, so it must be the case that $A'_4 = V_4$. In particular, by Lemma 6.1.20, A_4 admits 3 distinct linear characters inflated from $A_4/V_4 \cong C_3$.

Definition 6.1.22. Let G be a finite group. The inner product on class functions

$$\langle -, - \rangle : \mathcal{C}(G) \times \mathcal{C}(G) \to \mathbb{C}$$

is defined as

$$\langle \phi, \psi \rangle := \frac{1}{|G|} \sum_{g \in G} \overline{\phi(g)} \psi(g)$$

Remark 6.1.23. It is routine to verify that this is a complex inner product on C(G), satisfying our usual notions of sesquilinear, positive definite, and conjugate symmetry.

Proposition 6.1.24 (Fixed Point Formula). Let G be a finite group and let V be a finite dimensional $\mathbb{C}G$ -module. Then

$$\dim V^G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g) = \langle \mathbb{1}, \chi_V \rangle$$

Proof. Let $e := \frac{1}{|G|} \sum_{g \in G} g \in \mathbb{C}G$ Then ge = eg = e for all $g \in G$, so we have $e^2 = e$. We call e to be the **principal idempotent of** $\mathbb{C}G$.

Now we have a decomposition

$$V = e \cdot V \oplus (1 - e) \cdot V$$

If $g \in G$, then $g \cdot (e \cdot v) = (ge) \cdot v = e \cdot v$ so $e \cdot V \leq V^G$. On the other hand, if $v \in V^G$, then $g \cdot v = v$ for all $g \in G$, so $|G|e \cdot v = \sum_{g \in G} g \cdot v = |G|v$, giving $v = e \cdot v$, hence $v \in e \cdot V$. In particular, $e \cdot V = V^G$.

The action of $e \in \mathbb{C}G$ on V is a linear map $e_V : V \to V$ which is an idempotent with image $e \cdot V$. So, writing $\rho : G \to \mathrm{GL}(V)$ for the representation afforded by V, we have

$$\dim V^G = \dim e \cdot V = \operatorname{tr}(e_V) = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr} \rho(g) = \frac{1}{|G|} \sum_{g \in G} \chi_V(g)$$

Proposition 6.1.25. Let V and W be finite dimensional $\mathbb{C}G$ -modules. Then,

- 1. $\operatorname{Hom}_{\mathbb{C}G}(V, W) = \operatorname{Hom}(V, W)^G$
- 2. $\langle \chi_V, \chi_W \rangle = \dim \operatorname{Hom}_{\mathbb{C}G}(V, W)$

Proof. (i) Let $f \in \text{Hom}(V, W)$. Then f is fixed by the G-action if and only if

$$g \cdot f(g^{-1} \cdot v) = f(v)$$

for all $g \in G$ and $v \in V$. In particular, we rewrite that

$$g_W \circ f = f \circ g_V$$

for all $g \in G$. By definition, this is exactly the functions $fin \operatorname{Hom}_{\mathbb{C}G}(V, W)$.

(ii) Noting the Fixed Point Formula, we have

$$\dim \operatorname{Hom}(V,W)^G = \frac{1}{|G|} \sum_{g \in G} \chi_{\operatorname{Hom}(V,W)}(g) = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_V(g)} \chi_W(g) = \langle \chi_V, \chi_W \rangle$$

Theorem 6.1.26 (Row Orthogonality). Let ϕ and ψ be irreducible characters of the finite group G. Then,

$$\langle \phi, \psi \rangle = \begin{cases} 1 & \text{if } \phi = \psi \\ 0 & \text{if } \phi \neq \psi \end{cases}$$

Proof. Let V and W be the simple $\mathbb{C}G$ -modules whose characters are $\phi = \chi_V$ and $\psi = \chi_W$. As V and W are simple, if they are not isomorphic, the only map is the 0 map. If the two are isomorphic, by Schur's Lemma we have

$$\dim \operatorname{Hom}_{\mathbb{C}G}(V,W) = \dim \operatorname{End}_{\mathbb{C}G}(V) = 1$$

Hence,

$$\dim \operatorname{Hom}_{\mathbb{C}G}(V, W) = \begin{cases} 1 & \text{if } V \cong W \\ 0 & \text{if } V \not\cong W \end{cases}$$

Hence by Proposition 6.1.25,

$$\langle \phi, \psi \rangle = \langle \chi_V, \chi_W \rangle = \dim_{\mathbb{C}G} \operatorname{Hom}(V, W) \in \{0, 1\}$$

Suppose that $\chi_V = \chi_W$. Then,

$$\langle \chi_V, \chi_W \rangle = ||\chi_V||^2 = \frac{1}{|G|} \sum_{g \in G} |\chi_V(g)|^2 \ge \frac{(\dim V)^2}{|G|} > 0$$

as $\chi_V(1) = \dim V$. Hence $\langle \chi_V, \chi_V \rangle = 1$. If $\chi_V \neq \chi_W$, then V cannot be isomorphic to W as isomorphic representations have the same characters, hence $\langle \phi, \psi \rangle = \dim \operatorname{Hom}_{\mathbb{C}G}(V, W) = 0$.

Remark 6.1.27. Let V be a finite dimensional kG-module, χ_1, \ldots, χ_r be the complete list of characters of the irreducible complex representations of G, and suppose that V_i is the simple kG-module with character χ_i . By Maschke's Theorem, we know that V is a direct sum of simple kG-modules. Since V_1, \ldots, V_r are the only possible simple kG-modules up to isomorphism, we can find nonnegative integers a_1, \ldots, a_r such that

$$V \cong V_1^{a_1} \oplus \cdots \oplus V_r^{a_r}$$

We call a_i the **multiplicity** of V_i in V.

Corollary 6.1.28. Let V and W be two finite dimensional kG-modules. Then V is isomorphic to W if and only if $\chi_V = \chi_W$.

Proof. Decompose V into simple kG-modules, such that

$$V \cong V_1^{a_1} \oplus \cdots \oplus V_r^{a_r}$$

Passing to characters, we have

$$\chi_V = a_1 \chi_1 + \dots + a_r \chi_r$$

Thus by row orthogonality, we can recover a_i from χ_V by

$$\langle \chi_i, \chi_V \rangle = \langle \chi_i, \sum_{j=1}^r a_j \chi_j \rangle = \sum_{j=1}^r a_j \delta_{ij} = a_i$$

If $\chi_V = \chi_W$, decomposing $W = V_1^{b_1} \oplus \cdots \oplus V_r^{b_r}$ as a kG-module, then for any i, $a_i = \langle \chi_i, \chi_V \rangle = \langle \chi_i, \chi_W \rangle = b_i$. Hence $V \cong W$. The converse is straightforward.

Corollary 6.1.29. The irreducible characters of G form an orthonormal basis for C(G).

Proof. By row orthogonality, the characters are pairwise orthogonal elements in the inner product space $\mathcal{C}(G)$. On the other hand, $\dim \mathcal{C}(G) = s(G) = r_{\mathbb{C}} = r$, so $\{\chi_1, \ldots, \chi_r\}$ form a basis for $\mathcal{C}(G)$.

Theorem 6.1.30 (Column Orthogonality). Let G be a finite group. Let χ_1, \ldots, χ_r be the irreducible characters of G and let $g, h \in G$. Then,

$$\sum_{i=1}^{r} \overline{\chi_i(g)} \chi_i(h) = \begin{cases} |C_G(g)| & \text{if } g \text{ is conjugate to } h \\ 0 & \text{otherwise} \end{cases}$$

Proof. Let $\{g_1, \ldots, g_r\}$ be a complete list of representatives for the conjugacy classes of G. Suppose that $g \in g_j^G$ and $h \in g_k^G$ for some j, k. As the characters χ_i are class functions, we will assume without loss of generality that $g = g_j$ and $h = g_k$.

Define

$$x_{i,j} = \chi_i(g_j) \cdot c_j$$
 where $c_j := \sqrt{|g_j^G|/|G|}$

Then we can compute,

$$\sum_{j=1}^{r} \overline{x_{i,j}} x_{k,j} = \sum_{j=1}^{r} \overline{\chi_i(g_j)} c_j \chi_k(g_j) c_j$$

$$= \sum_{j=1}^{r} \overline{\chi_i(g_j)} \chi_k(g_j) c_j^2$$

$$= \frac{1}{|G|} \sum_{j=1}^{r} |g_j^G| \overline{\chi_i(g_j)} \chi_k(g_j)$$

$$= \frac{1}{|G|} \sum_{g \in G} \overline{\chi_i(x)} \chi_k(x)$$

$$= \langle \chi_i, \chi_k \rangle = \delta_{i,k}$$

Where the last line comes from row orthogonality. Hence the $r \times r$ matrix $X := (x_{i,j})$ is unitary:

$$\overline{X} \cdot X^T = I$$

So \overline{X} is the left-inverse (and the right-inverse) of X^T in $GL_r(\mathbb{C})$. Applying complex conjugation, we have

$$\overline{X}^T \cdot X = I$$

In particular,

$$(\overline{X}^T \cdot X)_{j,k} = \sum_{i=1}^r \overline{x_{i,j}} x_{i,k} = \sum_{i=1}^r \overline{\chi_i(g_j)} c_j \chi_i(g_k) c_k = \delta_{j,k}$$

Dividing both sides by $c_j c_k$ and taking j = k, we have $1/c_j^2 = |G|/|g_j^G| = |C_G(g_j)|$.

6.2 Examples of Character Table Computation

When the explicit representations are known, computing the character tends to be straightforward.

Example 6.2.1. The character table for the cyclic group of order 3, $G = \{1, x, x^2\}$ is where $\omega :=$

$$\begin{array}{c|ccccc}
 & 1 & x & x^2 \\
\hline
1 & 1 & 1 & 1 \\
\chi & 1 & \omega & \omega^2 \\
\chi^2 & 1 & \omega^2 & \omega
\end{array}$$

 $\exp(2\pi i/3)$ is a primitive cube root of unity. To see explicitly where these choices of representations came from, note that we have $\rho(g)^3 = \rho(g^3) = \rho(e) = 1$, so we must have $\rho(g)$ be sent to a primitive cube root of unity, and this determines all possible representations.

Example 6.2.2. Let $G = S_3$. Alongside the trivial character, we have a sign character $\epsilon : S_3 \to \{\pm 1\} \subseteq \mathbb{C}^{\times}$ by

$$\epsilon(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even} \\ -1 & \text{if } \sigma \text{ is odd} \end{cases}$$

We also have the two-dimensional irreducible representation W of S_3 from Example 3.0.18, we get the character table of S_3 as

	1	(123)	(12)
1	1	1	1
ϵ	1	1	-1
χ_W	2	-1	0

We can use inflation to find character tables as well.

Example 6.2.3. Let $G = A_4$. Then $A'_4 = V_4$, and G has 3 distinct linear characters. The representatives for the conjugacy classes in A_4 are 1, $g_2 := (12)(34)$, $g_3 := (123)$ and $g_4 := (132)$. Hence noting there are 4 conjugacy classes, our character table for A_4 looks as follows: where ω is

g	1	g_2	g_3	g_4
$ g^G $	1	3	4	4
$ C_G(g) $	12	4	3	3
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
χ_3	1	1	ω^2	ω
χ_4	d	a	b	c

a primitive third root of unity. As the sum of squares on the identity class is |G| = 12, we deduce that $d^2 = 3$. This equals dim $V \in \mathbb{N}$, so we get d = 3.

Now by row orthogonality, we get

$$0 = |G|\langle \chi_1, \chi_4 \rangle = \sum_{g \in G} \overline{\chi_1(g)} \chi_4(g) = 1 \cdot 1 \cdot 3 + 3 \cdot 1 \cdot a + 4 \cdot 1 \cdot b + 4 \cdot 1 \cdot c = 3 + 3a + 4b + 4c$$

$$0 = |G|\langle \chi_2, \chi_4 \rangle = 3 + 3a + 4b\omega + 4c\omega^2$$

$$0 = |G|\langle \chi_3, \chi_4 \rangle = 3 + 3a + 4b\omega^2 + 4c\omega$$

Solving this gives a = -1, b = c = 0, so the full character table follows by substituting these values.

Example 6.2.4. Let G be the symmetric group S_4 . The conjugacy class representatives are $g_1 = 1$, $g_2 = (12)(34)$, $g_3 = (123)$, $g_4 = (12)$, $g_5 = (1234)$, with conjugacy classes of sizes 1, 3, 8, 6, 6 respectively. We know that $V_4 \leq S_4$ and $S_4/V_4 \cong S_3$. Hence, this gives irreducible characters $\tilde{\mathbb{I}}, \tilde{\epsilon}, \chi_W^2$ obtained by inflation from S_3 .

This gives a partial table:

g	1	g_2	g_3	g_4	g_5
g^G	1	3	8	6	6
$ C_G(g) $	24	8	3	4	4
ĩ	1	1	1	1	1
$ ilde{\epsilon}$	1	1	1	-1	-1
$\chi \tilde{W}$	2	2	-1	0	0
χ_4	d_4	α_4	β_4	γ_4	δ_4
χ_5	d_5	α_5	β_5	γ_5	δ_5

Now noting that $d_4^2 + d_5^2 = 24 - 1^2 - 1^2 - 2^2 = 18$, the only solutions with positive integers to this is $d_4 = d_5 = 3$ by column orthogonality. By applying this again to the first pair of columns and the second column, we obtain

$$1 + 1 + 4 + 3\alpha_4 + 3\alpha_5 = 0$$
 $1^2 + 1^2 + 2^2 + |\alpha_4|^2 + |\alpha_5|^2 = 8$

Hence $\alpha_4 + \alpha_5 = -2$ and $|\alpha_4|^2 + |\alpha_5|^2 = 2$, which solves to $\alpha_4 = \alpha_5 = -1$.

Applying this to the third column we get

$$1^2 + 1^2 + (-1)^2 + |\beta_4|^2 + |\beta_5|^2 = 3$$

Thus $\beta_4 = \beta_5 = 0$.

Similar considerations give $\gamma_5 = -\gamma_4$ and that $|\gamma_4| = 1$. As $g_4 = (12)$ has order 2, it acts with eigenvalues ± 1 in any representation. Hence γ_4 is the sum of these eigenvalues, and is a real number, so the choices are $\gamma_4 = \{1, -1\}$. Without loss of generality, we may assume that $\gamma_4 = 1$, otherwise swapping χ_4 with χ_5 . Row orthogonality gives $\delta_4 = -1$ and $\delta_5 = 1$, completing our table.

6.3 Burnside's Theorem

Proposition 6.3.1. $\chi(g)$ is an algebraic integer for all $g \in G$.

Proof. $\chi(g)$ is a sum of ord-g-th roots of unity, why are all algebraic integers. These form a subring of $\mathbb C$

Lemma 6.3.2. Let G be a finite group and let C_1, \ldots, C_r be the conjugacy classes in G. Let S be the additive subgroup of $\mathbb{C}G$ generated by the conjugacy class sums. Then S is a subring of $\mathbb{Z}(\mathbb{C}G)$.

Proof. Sketch. Show stability under multiplication (as we know it is stable under addition.) (show coef is the same in the same conjugacy class) \Box

Theorem 6.3.3. Let V a simple $\mathbb{C}G$ -module with $g \in G$.

- 1. The conjugacy class sum $\widehat{g^G}$ acts on V by the scalar $\frac{|g^G|_{X_V(g)}}{\chi_V(1)} \in \mathbb{C}$
- 2. The scalar above is an algebraic integer

Proof. As V is a simple $\mathbb{C}G$ -module and the conjugacy class sum $z := \widehat{g^G}$ is central in $\mathbb{C}G$, it acts by a scalar $z_V \in \mathbb{C}$ on every simple $\mathbb{C}G$ -module by Schur's Lemma. Taking the trace of this action, we get

$$z_V \dim V = |g^G| \chi_V(g)$$

Hence (i) follows from the fact dim $V = \chi(1)$.

Now let $\rho: G \to \operatorname{GL}(V)$ be the representation afforded by V. Then ρ extends to a \mathbb{C} -algebra homomorphism $\tilde{\rho}: \mathbb{C}G \to \operatorname{End}(V)$. The restriction of this homomorphism to the center is the central character of V, so $\tilde{\rho}(\mathbb{C}G) \subseteq \mathbb{C}$. Hence $\tilde{\rho}(S)$ is a finitely generated abelian subgroup of \mathbb{C} . It is also a subring of \mathbb{C} as $\tilde{\rho}$ is a ring homomorphism and S is a subring of $Z(\mathbb{C}G)$. Hence $z_V \cdot \tilde{\rho}(S) \subseteq \tilde{\rho}(S)$.

Corollary 6.3.4. If V is a simple $\mathbb{C}G$ -module, then dim V divides |G|.

Proof. By row orthogonality,

$$\sum_{i} \chi_{V}(g^{-1}) \frac{|g_{i}^{G}| \chi_{V}(g_{i})}{\chi_{V}(1)} = \frac{|G|}{\chi_{V}(1)}$$

Now the left side is an algebraic integer, and the right side shows it is a rational number. Hence this is an integer. \Box

Definition 6.3.5. Let G be a finite group and let p be a prime. Write $|G| = p^{\alpha}m$ where $p \nmid m$ A sylow p-subgroup of G is a subgroup P of G order p^{α} .

Theorem 6.3.6 (Sylow). Let G be a finite group.

- 1. G contains at least one Sylow p-subgroup.
- 2. Any two sylow p-subgroups are conjugate in G
- 3. The number of Sylow p-subgroups of G is congruent to 1 mod p, and this number divides $m = |G|/p^{\alpha}$.

Lemma 6.3.7. Let G be a group of order $p^{\alpha}q^{\beta}$ where p and q are distinct primes with $\alpha, \beta \geq 1$. Let g be a central element of a Sylow p-subgroup P of G. Then $|g^G|$ is a power of q.

Proof. As P centralises g, we have $P \leq C_G(g)$. Hence $|G:C_G(g)|$ divides $|G|/|P| = q^{\beta}$. However, this index equals $|g^G|$.

Lemma 6.3.8. Let $\alpha = \frac{\zeta_1 + \cdots + \zeta_n}{n}$ be sums of roots of unity, and α is an algebraic integer. Then either $\alpha = 0$ or $\alpha = \zeta_1 = \cdots = \zeta_n$.

Theorem 6.3.9. Let G be a finite group and suppose that the size of a conjugacy class of a non central element $g \in g$ is a power of q. Then G is not a simple group.

Corollary 6.3.10 (Burnside). Let G be a non-abelian group of order $p^{\alpha}q^{\beta}$ where p, q are primes. Then G is not a simple group.

6.4 Module vs Representation

Example 6.4.1. Consider the representation $\rho : \mathbb{Z} \to \mathrm{GL}(V)$ via the extension of $n \mapsto (M \mapsto M^n)$. Then,

$$k\mathbb{Z} = \bigoplus_{n \in \mathbb{Z}} kT^n = k[T, T^{-1}]$$

- $\rho: G \to \mathrm{GL}(V) \leftrightarrow kG$ -module V
- ρ completely reducible $\leftrightarrow kG$ is completely reducible
- subrepresentations correspond exactly to submodules
- If $V = U \oplus W$ (subreps) correspond
- semisimple (kG as a kG module is completely reducible)
- Noting that $V^* \otimes V \cong \operatorname{End}(V)$, the left ideals of $\operatorname{End}(V)$ (are of the form $U \otimes V$, $U \subseteq V^*$) correspond to subspaces of V^* .

Example 6.4.2. Let $G = C_3 = \langle x \rangle$. Suppose that $\operatorname{char}(k) \neq 3$ and that k contains a primitive cube root of unity.

Then, kG is generated by kx, with the two commuting with each other. Thus, we have a surjective evaluation homomorphism from $k[t] \to kG$ sending $t \mapsto x$. Now by the first isomorphism theorem, $\ker \phi = (t^3 - 1)$. This induces an isomorphism

$$kC_3 \cong k[t]/(t^3 - 1) \cong k[t]/(t - 1) \times k[t]/(t - \omega) \times k[t]/(t - \omega^2)$$

by the chinese remainder theorem.

Lemma 6.4.3. Let χ be a character of G. The set $N := \{g \in G \mid \chi(g) = \chi(1)\}$ is a normal subgroup of G, and is exactly the kernel of the representation.

Proof. Let χ be a character of the complex representation $\rho: G \to \operatorname{GL}(V)$. If $g \in N$, $\rho(g)$ is diagonalizable, so we can find a basis of $\rho(g)$ -eigenvectors $\{v_1, \ldots, v_n\}$ for V with eigenvalues $\lambda_1, \ldots, \lambda_n$ where each λ_i is a order-g-th root of unity. Now,

$$\chi(g) = \operatorname{tr}\rho(g) = \lambda_1 + \dots + \lambda_n = n$$

The argument then follows by Cauchy-Schwarz.

Proposition 6.4.4. G is simple if and only if $\chi(g) \neq \chi(1)$ for all $g \neq 1$ and every irreducible $\chi \neq 1$.

$$Proof. \Rightarrow \Box$$

Proposition 6.4.5. Let χ be a character of G. $\chi(g^{-1}) = \overline{\chi(g)}$ for all $g \in G$.

Proof. Sketch. Take the eigenvalues, these are on roots of unity, the inverse forms a set of $\chi(g^{-1})$, the inverse is the conjugate.

Proposition 6.4.6. $g \in G$ is conjugate to g^{-1} if and only if $\chi(g) \in \mathbb{R}$ for every character χ of G.

Proof. (\Rightarrow) Characters are class functions so $\chi(g^{-1}) = \chi(g) = \overline{\chi(g)} \in \mathbb{R}$.

 (\Leftarrow) If all $\chi_i \in \mathbb{R}$ for irreducible characters but g is not conjugate to g^{-1} , by column orthogonality, we have

$$0 = \sum_{i} \overline{\chi_i(g^{-1})} \chi_i(g) = \sum_{i} \chi_i(g)^2$$

As each component is real, this forces $\chi_i(g) = 0$. On the other hand by column orthogonality on itself,

$$0 = \sum_{i} \overline{\chi_i(g)} \chi_i(g) = |C_G(g)| \ge 1$$

Hence a contradiction, showing that g is conjugate to g^{-1} .

Proposition 6.4.7. The following things can be found from the character table:

- |G|
- |G:G'| thus also |G'|
- \bullet |Z(G)|

Proof. Note first that $|G| = \sum_i \chi_i(1)^2$ and that $|G: G'| = |\{i \mid \chi_i(1) = 1\}|$, and we use these to find |G'| = |G|/|G:G'|.

Finally, elements in the center are exactly those with trivial conjugacy classes, hence g is in the center if and only if $C_G(g) = G$. By column orthogonality, this is exactly when $\sum_i |\chi_i(g)|^2 = |C_G(g)| = |G|$ by column orthogonality. This gives an explicit method to compute the size of the center.

7 Techniques

7.0.1 Computing Conjugacy Classes

- 1. By the orbit stabilizer, we always have $|g^G||C_G(g)| = |G|$
- 2. The elements in the center each form their own conjugacy class. Then we can use the fact $|G| = |Z(G)| + \sum |C_i|$
- 3. For S_n , use cycle-type analysis
- 4. Normal subgroups are unions of conjugacy classes

7.0.2 Finding Characters

1.