This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES.
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 18 April 2002 (18.04.2002)

PCT

(10) International Publication Number WO 02/30268 A2

A61B (51) International Patent Classification7:

Brisbane, CA 94005 (US). HEVEZI, Peter; 1360 11th Avenue, San Francisco, CA 94122 (US).

(21) International Application Number: PCT/US01/32045

(74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, 8th Floor, San Francisco, CA 94111-3834 (US).

(22) International Filing Date: 12 October 2001 (12.10.2001)

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(25) Filing Language: English

> MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(26) Publication Language: English

(30) Priority Data:

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

09/687,576 13 October 2000 (13.10.2000) US 09/733,742 8 December 2000 (08.12.2000) US 09/733,288 8 December 2000 (08.12.2000) US 60/263,957 24 January 2001 (24.01.2001) US 60/276,888 16 March 2001 (16.03.2001) US 60/276,791 16 March 2001 (16.03.2001) US 60/281,922 6 April 2001 (06.04.2001) US 60/286,214 24 April 2001 (24.04.2001) US 30 April 2001 (30.04.2001) 09/847,046 US 60/288,589 4 May 2001 (04.05.2001)

Published:

(71) Applicant: EOS BIOTECHNOLOGY, INC. [US/US]; 225A Gateway Boulevard, South San Francisco, CA 94080-7019 (US).

without international search report and to be republished upon receipt of that report

(72) Inventors: GISH, Kurt, C.; 40 Perego Terrace #2, San Francisco, CA 94131 (US). MACK, David, H.; 2076 Monterey Avenue, Menlo Park, CA 94025 (US). WILSON, Keith, E.; 219 Jeter Street, Redwood City, CA 94062 (US). AFAR, Daniel; 435 Visitacion Avenue,

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF DIAGNOSIS OF PROSTATE CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF PROSTATE CANCER

(57) Abstract: Described herein are genes whose expression are up-regulated or down-regulated in prostate cancer. Also described are such genes whose expression is further up-regulated or down-regulated in drug-resistant prostate cancer cells. Related methods and compositions that can be used for diagnosis and treatment of prostate cancer are disclosed. Also described herein are methods that can be used to identify modulators of prostate cancer.

METHODS OF DIAGNOSIS OF PROSTATE CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF PROSTATE CANCER

5

CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority from the following applications: USSN 09/687,576 filed October 13, 2000, USSN 60/276,791 filed March 16, 2001; USSN 60/288,589, filed May 4, 2001; USSN 09/733,742, filed December 8, 2000; USSN 09/733,288, filed December 8, 2000; USSN 09/847,046, filed April 30, 2001; USSN 60/276,888, filed March 16, 2001; USSN 60/286,214, filed April 24, 2001; USSN 60/281,922, filed April 6, 2001; USSN 60/263,957, filed January 24, 2001, which are incorporated herein by reference in their entirety.

15

20

25

10

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in prostate cancer; and to the use of such expression profiles and compositions in the diagnosis, prognosis and therapy of prostate cancer. The invention further relates to methods for identifying and using agents and/or targets that inhibit prostate cancer.

BACKGROUND OF THE INVENTION

Prostate cancer is the most commonly diagnosed internal malignancy and second most common cause of cancer death in men in the U.S., resulting in approximately 40,000 deaths each year (Landis et al., *CA Cancer J. Clin.* 48:6-29 (1998); Greenlee et al., *CA Cancer J. Clin.* 50(1):7-13 (2000)), and incidence of prostate cancer has been increasing rapidly over the past 20 years in many parts of the world (Nakata et al., *Int. J. Urol.* 7(7):254-257 (2000); Majeed et al., *BJU Int.* 85(9):1058-1062 (2000)). It develops as the

result of a pathologic transformation of normal prostate cells. In tumorigenesis, the cancer cell undergoes initiation, proliferation and loss of contact inhibition, culminating in invasion of surrounding tissue and, ultimately, metastasis.

Deaths from prostate cancer are a result of metastasis of a prostate tumor. Therefore, early detection of the development of prostate cancer is critical in reducing mortality from this disease. Measuring levels of prostate-specific antigen (PSA) has become a very common method for early detection and screening, and may have contributed to the slight decrease in the mortality rate from prostate cancer in recent years (Nowroozi et al., Cancer Control 5(6):522-531 (1998)). However, many cases are not diagnosed until the disease has progressed to an advanced stage.

5

10

15

20

25

Treatments such as surgery (prostatectomy), radiation therapy, and cryotherapy are potentially curative when the cancer remains localized to the prostate. Therefore, early detection of prostate cancer is important for a positive prognosis for treatment. Systemic treatment for metastatic prostate cancer is limited to hormone therapy and chemotherapy. Chemical or surgical castration has been the primary treatment for symptomatic metastatic prostate cancer for over 50 years. This testicular androgen deprivation therapy usually results in stabilization or regression of the disease (in 80% of patients), but progression of metastatic prostate cancer eventually develops (Panvichian et al., Cancer Control 3(6):493-500 (1996)). Metastatic disease is currently considered incurable, and the primary goals of treatment are to prolong survival and improve quality of life (Rago, Cancer Control 5(6):513-521 (1998)).

Thus, methods that can be used for diagnosis and prognosis of prostate cancer and effective treatment of prostate cancer, and including particularly metastatic prostate cancer, would be desirable. Accordingly, provided herein are methods that can be used in diagnosis and prognosis of prostate cancer. Further provided are methods that can be used to screen candidate bioactive agents for the ability to modulate, e.g., treat, prostate cancer. Additionally, provided herein are molecular targets and compositions for therapeutic intervention in prostate cancer and other cancers.

SUMMARY OF THE INVENTION

The present invention therefore provides nucleotide sequences of genes that are up- and down-regulated in prostate cancer cells. Such genes are useful for diagnostic purposes, and also as targets for screening for therapeutic compounds that modulate prostate cancer, such as hormones or antibodies. Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

5

10

15

20

25

30

In one aspect, the present invention provides a method of detecting a prostate cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16.

In one embodiment, the present invention provides a method of determining the level of a prostate cancer associated transcript in a cell from a patient.

In one embodiment, the present invention provides a method of detecting a prostate cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16.

In one embodiment, the polynucleotide selectively hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1-16. In another embodiment, the polynucleotide comprises a sequence as shown in Tables 1-16.

In one embodiment, the biological sample is a tissue sample. In another embodiment, the biological sample comprises isolated nucleic acids, e.g., mRNA.

In one embodiment, the polynucleotide is labeled, e.g., with a fluorescent label.

In one embodiment, the polynucleotide is immobilized on a solid surface.

In one embodiment, the patient is undergoing a therapeutic regimen to treat prostate cancer. In another embodiment, the patient is suspected of having metastatic prostate cancer.

In one embodiment, the patient is a human.

In one embodiment, the patient is suspected of having a taxol-resistant cancer.

In one embodiment, the prostate cancer associated transcript is mRNA.

In one embodiment, the method further comprises the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide.

5

10

15

20

30

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of prostate cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a prostate cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16, thereby monitoring the efficacy of the therapy. In a further embodiment, the patient has metastatic prostate cancer. In a further embodiment, the patient has a drug resistant (e.g., taxol resistant) form of prostate cancer.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the prostate cancer-associated transcript to a level of the prostate cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

Additionally, provided herein is a method of evaluating the effect of a candidate prostate cancer drug comprising administering the drug to a patient and removing a cell sample from the patient. The expression profile of the cell is then determined. This method may further comprise comparing the expression profile to an expression profile of a healthy individual. In a preferred embodiment, said expression profile includes a gene of Tables 1-16.

In one aspect, the present invention provides an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1-16.

In one embodiment, an expression vector or cell comprises the isolated nucleic acid.

In one aspect, the present invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1-16.

In another aspect, the present invention provides an antibody that specifically binds to an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1-16.

In one embodiment, the antibody is conjugated to an effector component, e.g., a fluorescent label, a radioisotope or a cytotoxic chemical.

In one embodiment, the antibody is an antibody fragment. In another embodiment, the antibody is humanized.

5

10

15

20

25

30

In one aspect, the present invention provides a method of detecting a prostate cancer cell in a biological sample from a patient, the method comprising contacting the biological sample with an antibody as described herein.

In another aspect, the present invention provides a method of detecting antibodies specific to prostate cancer in a patient, the method comprising contacting a biological sample from the patient with a polypeptide encoded by a nucleic acid comprising a sequence from Tables 1-16.

In another aspect, the present invention provides a method for identifying a compound that modulates a prostate cancer-associated polypeptide, the method comprising the steps of: (i) contacting the compound with a prostate cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16; and (ii) determining the functional effect of the compound upon the polypeptide.

In one embodiment, the functional effect is a physical effect, an enzymatic effect, or a chemical effect.

In one embodiment, the polypeptide is expressed in a eukaryotic host cell or cell membrane. In another embodiment, the polypeptide is recombinant.

In one embodiment, the functional effect is determined by measuring ligand binding to the polypeptide.

In another aspect, the present invention provides a method of inhibiting proliferation of a prostate cancer-associated cell to treat prostate cancer in a patient, the method comprising the step of administering to the subject a therapeutically effective amount of a compound identified as described herein.

In one embodiment, the compound is an antibody.

In another aspect, the present invention provides a drug screening assay comprising the steps of: (i) administering a test compound to a mammal having prostate cancer or to a cell sample isolated therefrom; (ii) comparing the level of gene expression of a

polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell sample or mammal, wherein a test compound that modulates the level of expression of the polynucleotide is a candidate for the treatment of prostate cancer.

In one embodiment, the control is a mammal with prostate cancer or a cell sample therefrom that has not been treated with the test compound. In another embodiment, the control is a normal cell or mammal.

5

10

15

20

25

30

In one embodiment, the test compound is administered in varying amounts or concentrations. In another embodiment, the test compound is administered for varying time periods. In another embodiment, the comparison can occur after addition or removal of the drug candidate.

In one embodiment, the levels of a plurality of polynucleotides that selectively hybridize to a sequence at least 80% identical to a sequence as shown in Tables 1-16 are individually compared to their respective levels in a control cell sample or mammal. In a preferred embodiment the plurality of polynucleotides is from three to ten.

In another aspect, the present invention provides a method for treating a mammal having prostate cancer comprising administering a compound identified by the assay described herein.

In another aspect, the present invention provides a pharmaceutical composition for treating a mammal having prostate cancer, the composition comprising a compound identified by the assay described herein and a physiologically acceptable excipient.

In one aspect, the present invention provides a method of screening drug candidates by providing a cell expressing a gene that is up- and down-regulated as in a prostate cancer. In one embodiment, a gene is selected from Tables 1-16. The method further includes adding a drug candidate to the cell and determining the effect of the drug candidate on the expression of the expression profile gene.

In one embodiment, the method of screening drug candidates includes comparing the level of expression in the absence of the drug candidate to the level of expression in the presence of the drug candidate, wherein the concentration of the drug

candidate can vary when present, and wherein the comparison can occur after addition or removal of the drug candidate. In a preferred embodiment, the cell expresses at least two expression profile genes. The profile genes may show an increase or decrease.

Also provided is a method of evaluating the effect of a candidate prostate cancer drug comprising administering the drug to a transgenic animal expressing or over-expressing the prostate cancer modulatory protein, or an animal lacking the prostate cancer modulatory protein, for example as a result of a gene knockout.

5

10

15

20

25

30

Moreover, provided herein is a biochip comprising one or more nucleic acid segments of Tables 1-16, wherein the biochip comprises fewer than 1000 nucleic acid probes. Preferably, at least two nucleic acid segments are included. More preferably, at least three nucleic acid segments are included.

Furthermore, a method of diagnosing a disorder associated with prostate cancer is provided. The method comprises determining the expression of a gene of Tables 1-16, in a first tissue type of a first individual, and comparing the distribution to the expression of the gene from a second normal tissue type from the first individual or a second unaffected individual. A difference in the expression indicates that the first individual has a disorder associated with prostate cancer.

In a further embodiment, the biochip also includes a polynucleotide sequence of a gene that is not up- and down-regulated in prostate cancer.

In one embodiment a method for screening for a bioactive agent capable of interfering with the binding of a prostate cancer modulating protein (prostate cancer modulatory protein) or a fragment thereof and an antibody which binds to said prostate cancer modulatory protein or fragment thereof. In a preferred embodiment, the method comprises combining a prostate cancer modulatory protein or fragment thereof, a candidate bioactive agent and an antibody which binds to said prostate cancer modulatory protein or fragment thereof. The method further includes determining the binding of said prostate cancer modulatory protein or fragment thereof and said antibody. Wherein there is a change in binding, an agent is identified as an interfering agent. The interfering agent can be an agonist or an antagonist. Preferably, the agent inhibits prostate cancer.

Also provided herein are methods of eliciting an immune response in an individual. In one embodiment a method provided herein comprises administering to an

individual a composition comprising a prostate cancer modulating protein, or a fragment thereof. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1-16.

Further provided herein are compositions capable of eliciting an immune response in an individual. In one embodiment, a composition provided herein comprises a prostate cancer modulating protein, preferably encoded by a nucleic acid of Tables 1-16, or a fragment thereof, and a pharmaceutically acceptable carrier. In another embodiment, said composition comprises a nucleic acid comprising a sequence encoding a prostate cancer modulating protein, preferably selected from the nucleic acids of Tables 1-16, and a pharmaceutically acceptable carrier.

5

10

15

20

25

30

Also provided are methods of neutralizing the effect of a prostate cancer protein, or a fragment thereof, comprising contacting an agent specific for said protein with said protein in an amount sufficient to effect neutralization. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1-16.

In another aspect of the invention, a method of treating an individual for prostate cancer is provided. In one embodiment, the method comprises administering to said individual an inhibitor of a prostate cancer modulating protein. In another embodiment, the method comprises administering to a patient having prostate cancer an antibody to a prostate cancer modulating protein conjugated to a therapeutic moiety. Such a therapeutic moiety can be a cytotoxic agent or a radioisotope.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and prognosis evaluation for prostate cancer (PC), including metastatic prostate cancer, as well as methods for screening for compositions which modulate prostate cancer. Also provided are methods for treating prostate cancer.

In addition to the other nucleic acid and peptide sequences, the present invention also relates to the identification of PAA2 as a gene that is highly over expressed in prostate cancer patient tissues. PAA2 sequence is identical to the zinc transporter ZNT4. Results presented herein demonstrate that PAA2/ZNT4 is highly expressed in prostate cancer

to accumulate zinc. Zinc uptake is regulated by prolactin and testosterone, which induce the expression of a member of the ZIP family of zinc transporters (Costello et al., 1999, J. Biol. Chem. 274:17499-17504). Zinc accumulation in the prostate functions to inhibit citrate oxidation, which results in a decrease in cellular ATP production (Costello and Franklin, 1998, Prostate 35:285-296). Cancer cells are more sensitive to decreased ATP production and have evolved to prevent zinc accumulation. Without wishing to be bound by theory, the up-regulation of ZNT4 in prostate cancer cells may result in protection of the cells from high zinc levels by its ability to pump accumulated zinc out of the cells.

5

20

25

30

The present invention also relates to nucleic acid sequencess encoding PBH1.

PBH1 is related to human TRPC7 (transient receptor potential-related channels, NP_003298), a putative calcium channel highly expressed in brain (Nagamine et al., Genomics 54:124-131 (1998)). Trp is related to melastatin, a gene down-regulated in metastatic melanomas (Duncan et al., Cancer Res. 58:1515-1520 (1998)), and MTR1, a gene locallized to within the Beckwith-Wiedemann syndrome/Wilm's tumor susceptability region (Prawitt et al., Hum.

Mol. Genet. 9:203-216 (2000)). Without wishing to be bound by theory, it is believed that PBH1 functions as a calcium channel.

As a calcium channel, PBH1 is an ideal target for a small molecule therapeutic, or a therapeutic antibody that disrupts channel function. CD20, the target of Rituximab in non-Hodgekin's lymphoma (Maloney et al., Blood 90:2188-2195 (1997); Leget and Czuczman, Curr. Opin. Oncol. 10:548-551 (1998)), is a plasma membrane calcium channel expressed in B cells (Tedder and Engel, Immunol. Today 15:450-454 (1994)). Similarly, a small molecule, or antibody that inhibits or alters a calcium signal mediated by PBH1, will result in the death of prostate cancer cells.

PBH1, and other genes of the invention, are also be useful as targets for cytotoxic T-lymphocytes. Genes that are tumor specific, or that are expressed in immune-privileged organs, are currently being used as potential vaccine targets (Van den Eynde and Boon, Int. J. Clin. Lab. Res. 27:81-86 (1997)). The expression pattern of PBH1 indicates that it is an ideal target for cytotoxic T-lymphocytes. Thus, therapies that utilize PBH1-specific cytotoxic T-lymphocytes to induce prostate cancer cell death are also provided by this invention. See, e.g., U.S. Patent No. 6,051,227 and WO 00/32231, the disclosures of which are herein incorporated by reference.

The present invention is also related to the identification of PAA3 as a gene that is important in the modulation of prostate cancer and or breast cancer.

Tables 1-16 provide unigene cluster identification numbers, exemplar accession numbers, or genomic nucleotide position numbers for the nucleotide sequence of genes that exhibit increased or decreased expression in prostate cancer samples.

Definitions

5

10

15

20

25

30

The term "prostate cancer protein" or "prostate cancer polynucleotide" or "prostate cancer-associated transcript" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologues that: (1) have a nucleotide sequence that has greater than about 60% nucleotide sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater nucleotide sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a nucleotide sequence of or associated with a unigene cluster of Tables 1-16; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1-16, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid sequence, or the complement thereof of Tables 1-16 and conservatively modified variants thereof or (4) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acid, to an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1-16. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or other mammal. A "prostate cancer polypeptide" and a "prostate cancer polynucleotide," include both naturally occurring or recombinant forms.

A "full length" prostate cancer protein or nucleic acid refers to a prostate cancer polypeptide or polynucleotide sequence, or a variant thereof, that contains all of the elements normally contained in one or more naturally occurring, wild type prostate cancer

polynucleotide or polypeptide sequences. For example, a full length prostate cancer nucleic acid will typically comprise all of the exons that encode for the full length, naturally ocurring protein. The "full length" may be prior to, or after, various stages of post-translation processing or splicing, including alternative splicing.

5

10

15

20

25

30

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, e.g., of a prostate cancer protein, polynucleotide or transcript. Such samples include, but are not limited to, tissue isolated from primates, e.g., humans, or rodents, e.g., mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, frozen sections taken for histologic purposes, blood, plasma, serum, sputum, stool, tears, mucus, hair, skin, etc. Biological samples also include explants and primary and/or transformed cell cultures derived from patient tissues. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention *in vivo*. Archival tissues, having treatment or outcome history, will be particularly useful.

The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 60% identity, preferably 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions

and/or additions, as well as those that have substitutions, as well as naturally occurring, e.g., polymorphic or allelic variants, and man-made variants. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

5

10

15

20

25

30

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of one of the number of contiguous positions selected from the group consisting typically of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 1995 supplement)).

Preferred examples of algorithms that are suitable for determining percent sequence identity and sequence similarity include the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402 (1977) and Altschul et al., J. Mol. Biol. 215:403-410 (1990). BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of

the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, e.g., for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

5

10

15

20

25

30

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001. Log values may be large negative numbers, e.g., 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.

An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, e.g., where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

5

10

15

20

25

30

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells *in vivo*, and the like. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (*see, e.g.*, the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "isolated," "purified," or "biologically pure" refer to material that is substantially or essentially free from components that normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein or nucleic acid that is the predominant species present in a preparation is substantially purified. In particular, an isolated nucleic acid is separated from some open reading frames that naturally flank the gene and encode proteins other than protein encoded by the gene. The term "purified" in some embodiments denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Preferably, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure. "Purify" or "purification" in other embodiments means removing at least one contaminant from the composition to be purified. In this sense, purification does not require that the purified compound be homogenous, e.g., 100% pure.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding

naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.

5

10

15

20

25

30

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions similarly to a naturally occurring amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. One of skill will recognize that in certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the

only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, often silent variations of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not with respect to actual probe sequences.

5

10

15

20

25

30

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid.

Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention typically conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5)

Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts et al., Molecular Biology of the Cell (3rd ed., 1994) and Cantor & Schimmel, Biophysical Chemistry Part I: The Conformation of Biological Macromolecules (1980). "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that often form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

"Nucleic acid" or "oligonucleotide" or "polynucleotide" or grammatical equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids and polynucleotides are a polymers of any length, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10,000, etc. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have alternate backbones, comprising, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, Carbohydrate Modifications in Antisense Research, Sanghui & Cook, eds.. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g. to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

5

10

15

20

25

30

A variety of references disclose such nucleic acid analogs, including, for example, phosphoramidate (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S. Patent No. 5,644,048), phosphorodithioate (Briu et al., J. Am. Chem. Soc. 111:2321 (1989), O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993); Carlsson et al., Nature 380:207 (1996), all

of which are incorporated by reference). Other analog nucleic acids include those with positive backbones (Denpcy et al., Proc. Natl. Acad. Sci. USA 92:6097 (1995); non-ionic backbones (U.S. Patent Nos. 5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4:395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994); Tetrahedron Lett. 37:743 (1996)) and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids (see Jenkins et al., Chem. Soc. Rev. (1995) pp 169-176). Several nucleic acid analogs are described in Rawls, C & E News June 2, 1997 page 35. All of these references are hereby expressly incorporated by reference.

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4°C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9°C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and

combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. "Transcript" typically refers to a naturally occurring RNA, e.g., a pre-mRNA, hnRNA, or mRNA. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus, e.g. the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

5

10

15

20

25

30

A "label" or a "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide. The radioisotope may be, for example, 3H, 14C, 32P, 35S, or 125I. In some cases, particularly using antibodies against the proteins of the invention, the radioisotopes are used as toxic moieties, as described below. The labels may be incorporated into the prostate cancer nucleic acids, proteins and antibodies at any position. Any method known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13:1014 (1974); Pain et al., J. Immunol. Meth., 40:219 (1981); and Nygren, J. Histochem. and Cytochem., 30:407 (1982). The lifetime of radiolabeled peptides or radiolabeled antibody compositions may extended by the addition of substances that stablize the radiolabeled peptide or antibody and protect it from degradation. Any substance or combination of substances that stablize the radiolabeled peptide or antibody may be used including those substances disclosed in US Patent No. 5,961,955.

An "effector" or "effector moiety" or "effector component" is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The "effector" can be a variety of molecules including, e.g., detection moieties including radioactive compounds, fluorescent compounds, an enzyme or substrate, tags such as epitope tags, a toxin; activatable moieties, a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" e.g., beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.

As used herein a "nucleic acid probe or oligonucleotide" is defined as a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not functionally interfere with hybridization. Thus, e.g., probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled as with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled such as with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence. Diagnosis or prognosis may be based at the genomic level, or at the level of RNA or protein expression.

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, e.g., recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed *in vitro*, in general, by the manipulation of nucleic acid, e.g., using polymerases and endonucleases, in a form not normally found in nature. In this manner, operably linkage of different sequences is achieved. Thus an isolated nucleic acid, in a linear

form, or an expression vector formed *in vitro* by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, i.e., using the *in vivo* cellular machinery of the host cell rather than *in vitro* manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered recombinant for the purposes of the invention. Similarly, a "recombinant protein" is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as depicted above.

5

10

15

20

25

30

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not normally found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences, e.g., from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein will often refer to two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

A "promoter" is defined as an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a

particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed operably linked to a promoter.

5

10

15

20

25

30

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence that is determinative of the presence of the nucleotide sequence, in a heterogeneous population of nucleic acids and other biologics (e.g., total cellular or library DNA or RNA). Similarly, the phrase "specifically (or selectively) binds" to an antibody or "specifically (or selectively) immunoreactive with," when referring to a protein or peptide, refers to a binding reaction that is determinative of the presence of the protein, in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay or nucleic acid hybridization conditions, the specified antibodies or nucleic acid probes bind to a particular protein nucleotide sequences at least two times the background and more typically more than 10 to 100 times background.

Specific binding to an antibody under such conditions requires an antibody that is selected for its specificity for a particular protein. For example, polyclonal antibodies raised to a particular protein, polymorphic variants, alleles, orthologs, and conservatively modified variants, or splice variants, or portions thereof, can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with the desired prostact cancer protein and not with other proteins. This selection may be achieved by subtracting out antibodies that cross-react with other molecules. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Antibodies, A Laboratory Manual (1988) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity).

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in

5

10

15

20

25

30

Tijssen, Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent conditions are selected to be about 5-10°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background; preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42°C, or, 5x SSC, 1% SDS, incubating at 65°C, with wash in 0.2x SSC, and 0.1% SDS at 65°C. For PCR, a temperature of about 36°C is typical for low stringency amplification, although annealing temperatures may vary between about 32°C and 48°C depending on primer length. For high stringency PCR amplification, a temperature of about 62°C is typical, although high stringency annealing temperatures can range from about 50°C to about 65°C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90°C - 95°C for 30 sec - 2 min., an annealing phase lasting 30 sec. - 2 min., and an extension phase of about 72°C for 1 - 2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.).

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize

under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 1X SSC at 45°C. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., and Current Protocols in Molecular Biology, ed. Ausubel, et al.

The phrase "functional effects" in the context of assays for testing compounds that modulate activity of a prostate cancer protein includes the determination of a parameter that is indirectly or directly under the influence of the prostate cancer protein or nucleic acid, e.g., a functional, physical, or chemical effect, such as the ability to decrease prostate cancer. It includes ligand binding activity; cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein expression in cells undergoing metastasis, and other characteristics of prostate cancer cells. "Functional effects" include *in vitro*, *in vivo*, and *ex vivo* activities.

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a prostate cancer protein sequence, e.g., functional, enzymatic, physical and chemical effects. Such functional effects can be measured by any means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the prostate cancer protein; measuring binding activity or binding assays, e.g. binding to antibodies or other ligands, and measuring cellular proliferation. Determination of the functional effect of a compound on prostate cancer can also be performed using prostate cancer assays known to those of skill in the art such as an *in vitro* assays, e.g., cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein

expression in cells undergoing metastasis, and other characteristics of prostate cancer cells. The functional effects can be evaluated by many means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, measurement of changes in RNA or protein levels for prostate cancer-associated sequences, measurement of RNA stability, identification of downstream or reporter gene expression (CAT, luciferase, β -gal, GFP and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

5

10

15

20

25

30

"Inhibitors", "activators", and "modulators" of prostate cancer polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules or compounds identified using in vitro and in vivo assays of prostate cancer polynucleotide and polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of prostate cancer proteins, e.g., antagonists. Antisense nucleic acids may seem to inhibit expression and subsequent function of the protein. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate prostate cancer protein activity. Inhibitors, activators, or modulators also include genetically modified versions of prostate cancer proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., expressing the prostate cancer protein in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of prostate cancer can also be identified by incubating prostate cancer cells with the test compound and determining increases or decreases in the expression of 1 or more prostate cancer proteins, e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more prostate cancer proteins, such as prostate cancer proteins encoded by the sequences set out in Tables 1-16.

Samples or assays comprising prostate cancer proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%,

preferably 50%, more preferably 25-0%. Activation of a prostate cancer polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.

The phrase "changes in cell growth" refers to any change in cell growth and proliferation characteristics *in vitro* or *in vivo*, such as formation of foci, anchorage independence, semi-solid or soft agar growth, changes in contact inhibition and density limitation of growth, loss of growth factor or serum requirements, changes in cell morphology, gaining or losing immortalization, gaining or losing tumor specific markers, ability to form or suppress tumors when injected into suitable animal hosts, and/or immortalization of the cell. *See, e.g.*, Freshney, *Culture of Animal Cells a Manual of Basic Technique* pp. 231-241 (3rd ed. 1994).

5

10

15

20

25

30

"Tumor cell" refers to precancerous, cancerous, and normal cells in a tumor.

"Cancer cells," "transformed" cells or "transformation" in tissue culture, refers to spontaneous or induced phenotypic changes that do not necessarily involve the uptake of new genetic material. Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene. Transformation is associated with phenotypic changes, such as immortalization of cells, aberrant growth control, nonmorphological changes, and/or malignancy (see, Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed. 1994)).

"Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. Typically, the antigen-binding region of an antibody or its functional equivalent will be most critical in specificity and affinity of binding. See Paul, Fundamental Immunology.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, e.g., pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'₂, a dimer of Fab which itself is a light chain joined to V_H-C_H1 by a disulfide bond. The F(ab)'₂ may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'₂ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554 (1990))

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many technique known in the art can be used (see, e.g., Kohler & Milstein, Nature 256:495-497 (1975); Kozbor et al., Immunology Today 4:72 (1983); Cole et al., pp. 77-96 in Monoclonal Antibodies and Cancer Therapy (1985); Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies, A Laboratory Manual (1988); and Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986)). Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that

specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348:552-554 (1990); Marks et al., Biotechnology 10:779-783 (1992)).

A "chimeric antibody" is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.

10

15

20

25

30

5

Identification of prostate cancer-associated sequences

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is characteristic of the state of the cell. That is, normal tissue (e.g., normal prostate or other tissue) may be distinguished from cancerous or metastatic cancerous tissue of the prostate, or prostate cancer tissue or metastatic prostate cancerous tissue can be compared with tissue samples of prostate and other tissues from surviving cancer patients. By comparing expression profiles of tissue in known different prostate cancer states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained.

The identification of sequences that are differentially expressed in prostate cancer versus non-prostate cancer tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated: does a chemotherapeutic drug act to down-regulate prostate cancer, and thus tumor growth or recurrence, in a particular patient. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Metastatic tissue can also be analyzed to determine the stage of prostate cancer in the tissue. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates with an eye to

mimicking or altering a particular expression profile; e.g., screening can be done for drugs that suppress the prostate cancer expression profile. This may be done by making biochips comprising sets of the important prostate cancer genes, which can then be used in these screens. These methods can also be done on the protein basis; that is, protein expression levels of the prostate cancer proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the prostate cancer nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense nucleic acids, or the prostate cancer proteins (including antibodies and other modulators thereof) administered as therapeutic drugs.

5

10

15

20

25

30

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in prostate cancer, herein termed "prostate cancer sequences." As outlined below, prostate cancer sequences include those that are up-regulated (i.e., expressed at a higher level) in prostate cancer, as well as those that are down-regulated (i.e., expressed at a lower level). In a preferred embodiment, the prostate cancer sequences are from humans; however, as will be appreciated by those in the art, prostate cancer sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other prostate cancer sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc.) and pets, e.g., (dogs, cats, etc.). Prostate cancer sequences from other organisms may be obtained using the techniques outlined below.

Prostate cancer sequences can include both nucleic acid and amino acid sequences. As will be appreciated by those in the art and is more fully outlined below, prostate cancer nucleic acid sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; e.g., biochips comprising nucleic acid probes or PCR microtiter plates with selected probes to the prostate cancer sequences can be generated.

A prostate cancer sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the prostate cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.

For identifying prostate cancer-associated sequences, the prostate cancer screen typically includes comparing genes identified in different tissues, e.g., normal and cancerous tissues, or tumor tissue samples from patients who have metastatic disease vs. non metastatic tissue. Other suitable tissue comparisons include comparing prostate cancer samples with metastatic cancer samples from other cancers, such as lung, breast, gastrointestinal cancers, ovarian, etc. Samples of different stages of prostate cancer, e.g., survivor tissue, drug resistant states, and tissue undergoing metastasis, are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art for the preparation of mRNA. Suitable biochips are commercially available, e.g. from Affymetrix. Gene expression profiles as described herein are generated and the data analyzed.

5

10

15

20

25

30

In one embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, preferably normal prostate, but also including, and not limited to lung, heart, brain, liver, breast, kidney, muscle, colon, small intestine, large intestine, spleen, bone and placenta. In a preferred embodiment, those genes identified during the prostate cancer screen that are expressed in any significant amount in other tissues are removed from the profile, although in some embodiments, this is not necessary. That is, when screening for drugs, it is usually preferable that the target be disease specific, to minimize possible side effects.

In a preferred embodiment, prostate cancer sequences are those that are upregulated in prostate cancer; that is, the expression of these genes is higher in the prostate cancer tissue as compared to non-cancerous tissue. "Up-regulation" as used herein often means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred. All unigene cluster identification numbers and accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, DA, et al., Nucleic Acids Research 26:1-7 (1998) and http://www.ncbi.nlm.nih.gov/. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ).

In another preferred embodiment, prostate cancer sequences are those that are down-regulated in prostate cancer; that is, the expression of these genes is lower in prostate

cancer tissue as compared to non-cancerous tissue (see, e.g., Tables 8, 12 and 14). "Down-regulation" as used herein often means at least about a 1.5-fold change more preferrably a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being most preferred.

5

10

15

20

25

30

Informatics

The ability to identify genes that are over or under expressed in prostate cancer can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, pharmacogenetics, protein structure, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with prostate cancer. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation (see Anderson, Pharmaceutical Proteomics: Targets, Mechanism, and Function, paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (see U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

Thus, in another embodiment, the present invention provides a database that includes at least one set of assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in substantially any form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for any assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample undergoing prostate cancer, i.e., the identification of prostate cancer-associated sequences described herein, provide an abundance of information, which can be correlated with pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, gene-disease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, prior data processing using high-speed computers is utilized.

10

15

20

25

30

5

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multidimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

See also Mount et al., Bioinformatics (2001); Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (Durbin et al., eds., 1999); Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (Baxevanis & Oeullette eds., 1998)); Rashidi & Buehler, Bioinformatics: Basic Applications in Biological Science and Medicine (1999); Introduction to Computational Molecular Biology (Setubal et al., eds 1997); Bioinformatics: Methods and Protocols (Misener & Krawetz, eds, 2000); Bioinformatics: Sequence, Structure, and Databanks: A Practical Approach (Higgins & Taylor, eds., 2000); Brown, Bioinformatics: A Biologist's Guide to Biocomputing and the Internet (2001); Han & Kamber, Data Mining: Concepts and Techniques (2000); and Waterman, Introduction to Computational Biology: Maps, Sequences, and Genomes (1995).

5

10

15

20

25

30

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, e.g., with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for prostate cancer. In another variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or characteristic separation coordinate (e.g., electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment,

the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

5

10

15

20

25

30

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the

degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC, MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

25

30

5

10

15

20

Characteristics of prostate cancer-associated proteins

Prostate cancer proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the prostate cancer protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such

proteins often results in unregulated or disregulated cellular processes (see, e.g., Molecular Biology of the Cell (Alberts, ed., 3rd ed., 1994). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

5

10

15

20

25

30

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of primary sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate. One useful database is Pfam (protein families), which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. Versions are available via the internet from Washington University in St. Louis, the Sanger Center in England, and the Karolinska Institute in Sweden (see, e.g., Bateman et al., Nuc. Acids Res. 28:263-266 (2000); Sonnhammer et al., Proteins 28:405-420 (1997); Bateman et al., Nuc. Acids Res. 27:260-262 (1999); and Sonnhammer et al., Nuc. Acids Res. 26:320-322-(1998)). ^{*}

In another embodiment, the prostate cancer sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described

for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

5

10

15

20

25

30

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 20 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein may be predicted (see, e.g. PSORT web site http://psort.nibb.ac.jp/). Important transmembrane protein receptors include, but are not limited to the insulin receptor, insulin-like growth factor receptor, human growth hormone receptor, glucose transporters, transferrin receptor, epidermal growth factor receptor, low density lipoprotein receptor, epidermal growth factor receptor, leptin receptor, interleukin receptors, e.g. IL-1 receptor, IL-2 receptor,

The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also

bind to cell-associated molecules. In this respect, they mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell, e.g., via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Prostate cancer proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities. Antibodies may be used to label such readily accessible proteins in situ. Alternatively, antibodies can also label intracellular proteins, in which case samples are typically permeablized to provide access to intracellular proteins.

It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, e.g., through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the prostate cancer proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; by virtue of their circulating nature, they serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor) or an endocrine manner (acting on cells at a distance). Thus secreted molecules find use in modulating or altering numerous aspects of physiology. Prostate cancer proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood, plasma, serum, or stool tests.

Use of prostate cancer nucleic acids

5

10

15

20

25

30

As described above, prostate cancer sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology or linkage to the prostate cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either

homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

The prostate cancer nucleic acid sequences of the invention, e.g., the sequences in Tables 1-16, can be fragments of larger genes, i.e., they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the prostate cancer genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, *et al.*, *supra*. Much can be done by informatics and many sequences can be clustered to include multiple sequences corresponding to a single gene, e.g., systems such as UniGene (see, http://www.ncbi.nlm.nih.gov/UniGene/).

5

10

15

20

25

30

Once the prostate cancer nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire prostate cancer nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant prostate cancer nucleic acid can be further-used as a probe to identify and isolate other prostate cancer nucleic acids, e.g., extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant prostate cancer nucleic acids and proteins.

The prostate cancer nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the prostate cancer nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, e.g., for gene therapy, vaccine, and/or antisense applications. Alternatively, the prostate cancer nucleic acids that include coding regions of prostate cancer proteins can be put into expression vectors for the expression of prostate cancer proteins, again for screening purposes or for administration to a patient.

In a preferred embodiment, nucleic acid probes to prostate cancer nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the prostate cancer nucleic acids, *i.e.* the target sequence (either the target

sequence of the sample or to other probe sequences, e.g., in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions, as outlined herein.

5

10

15

20

25

30

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally whole genes are not used. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a particular target. The probes can be overlapping (i.e., have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is meant one or more of electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical

equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

5

10

15

20

25

30

In general, the probes are attached to the biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silicabased materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. A preferred substrate is described in copending application entitled Reusable Low Fluorescent Plastic Biochip, U.S. Application Serial No. 09/270,214, filed March 15, 1999, herein incorporated by reference in its entirety.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, e.g., the biochip is derivatized with a chemical functional group including, but not limited to,

amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, e.g. using linkers as are known in the art; e.g., homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

5

10

15

20

25

30

In this embodiment, oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5' or 3' terminus may be attached to the solid support, or attachment may be via an internal nucleoside.

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized in situ, using well known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affimetrix GeneChipTM technology.

Often, amplification-based assays are performed to measure the expression level of prostate cancer-associated sequences. These assays are typically performed in conjunction with reverse transcription. In such assays, a prostate cancer-associated nucleic acid sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of prostate cancer-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for

quantitative PCR are provided, e.g., in Innis et al., PCR Protocols, A Guide to Methods and Applications (1990).

In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, e.g., literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu & Wallace, Genomics 4:560 (1989), Landegren et al., Science 241:1077 (1988), and Barringer et al., Gene 89:117 (1990)), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86:1173 (1989)), self-sustained sequence replication (Guatelli et al., Proc. Nat. Acad. Sci. USA 87:1874 (1990)), dot PCR, and linker adapter PCR, etc.

Expression of prostate cancer proteins from nucleic acids

5

10

15

20

25

30

In a preferred embodiment, prostate cancer nucleic acids, e.g., encoding prostate cancer proteins are used to make a variety of expression vectors to express prostate cancer proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (see, e.g., Ausubel, supra, and Gene Expression Systems (Fernandez & Hoeffler, eds, 1999)) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the prostate cancer protein. The term "control sequences" refers to DNA sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, e.g., include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.

Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the prostate cancer protein. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

5

10

15

20

25

30

In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

Promoter sequences encode either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, e.g. in mammalian or insect cells for expression and in a procaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating vector may be directed to a specific locus in the host cell by selecting the

appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art (e.g., Fernandez & Hoeffler, *supra*).

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

5

10

15

20

25

30

The prostate cancer proteins of the present invention are produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding a prostate cancer protein, under the appropriate conditions to induce or cause expression of the prostate cancer protein. Conditions appropriate for prostate cancer protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are Saccharomyces cerevisiae and other yeasts, E. coli, Bacillus subtilis, Sf9 cells, C129 cells, 293 cells, Neurospora, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the prostate cancer proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include retroviral and adenoviral systems. One expression vector system is a retroviral vector system such as is generally described in PCT/US97/01019 and PCT/US97/01048, both of which are hereby expressly incorporated by reference. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, e.g., Fernandez & Hoeffler, supra). Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory

regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenlyation signals include those derived form SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used.

Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

5

10

15

20

25

30

In a preferred embodiment, prostate cancer proteins are expressed in bacterial systems. Bacterial expression systems are well known in the art. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; e.g., the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the prostate cancer protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others (e.g., Fernandez & Hoeffler, supra). The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

In one embodiment, prostate cancer proteins are produced in insect cells.

Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

In a preferred embodiment, prostate cancer protein is produced in yeast cells.

Yeast expression systems are well known in the art, and include expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hansenula polymorpha, Kluyveromyces fragilis and K. lactis, Pichia guillerimondii and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.

The prostate cancer protein may also be made as a fusion protein, using techniques well known in the art. Thus, e.g., for the creation of monoclonal antibodies, if the desired epitope is small, the prostate cancer protein may be fused to a carrier protein to form an immunogen. Alternatively, the prostate cancer protein may be made as a fusion protein to increase expression, or for other reasons. For example, when the prostate cancer protein is a prostate cancer peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.

In a preferred embodiment, the prostate cancer protein is purified or isolated after expression. Prostate cancer proteins may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the prostate cancer protein may be purified using a standard anti-prostate cancer protein antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes, *Protein Purification* (1982). The degree of purification necessary will vary depending on the use of the prostate cancer protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the prostate cancer proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, etc.

10

15

20

25

Variants of prostate cancer proteins

5

10

15

20

25

30

In one embodiment, the prostate cancer proteins are derivative or variant prostate cancer proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative prostate cancer peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at any residue within the prostate cancer peptide.

Also included within one embodiment of prostate cancer proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the prostate cancer protein, using cassette or PCR mutagenesis or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant prostate cancer protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the prostate cancer protein amino acid sequence. The variants typically exhibit the same qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed prostate cancer variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, e.g., M13 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of prostate cancer protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger

insertions may be tolerated. Deletions range from about 1 to about 20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of the prostate cancer protein are desired, substitutions are generally made in accordance with the amino acid substitution relationships provided in the definition section.

5

10

15

20

25

30

The variants typically exhibit the same qualitative biological activity and will elicit the same immune response as the naturally-occurring analog, although variants also are selected to modify the characteristics of the prostate cancer proteins as needed. Alternatively, the variant may be designed such that the biological activity of the prostate cancer protein is altered. For example, glycosylation sites may be altered or removed.

Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those described above. For example, substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, for example the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, e.g. seryl or threonyl is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g. lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g. glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g. phenylalanine, is substituted for (or by) one not having a side chain, e.g. glycine.

Covalent modifications of prostate cancer polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a prostate cancer polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of a prostate cancer polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking prostate cancer polypeptides to a water-insoluble support matrix or surface for

use in the method for purifying anti-prostate cancer polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, e.g., esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-((p-azidophenyl)dithio)propioimidate.

5

10

15 .

20

25

30

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl, threonyl or tyrosyl residues, methylation of the amino groups of the lysine, arginine, and histidine side chains (Creighton, *Proteins: Structure and Molecular Properties*, pp. 79-86 (1983)), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the prostate cancer polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence prostate cancer polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence prostate cancer polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express prostate cancer-associated sequences can result in different glycosylation patterns.

Addition of glycosylation sites to prostate cancer polypeptides may also be accomplished by altering the amino acid sequence thereof. The alteration may be made, e.g., by the addition of, or substitution by, one or more serine or threonine residues to the native sequence prostate cancer polypeptide (for O-linked glycosylation sites). The prostate cancer amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the prostate cancer polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the prostate cancer polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330, and in Aplin & Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the prostate cancer polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

5

10

15

20

25

30

Another type of covalent modification of prostate cancer comprises linking the prostate cancer polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

Prostate cancer polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising a prostate cancer polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of a prostate cancer polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino-or carboxyl-terminus of the prostate cancer polypeptide. The presence of such epitope-tagged forms of a prostate cancer polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the prostate cancer polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of a prostate cancer polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 (Field et al., Mol. Cell. Biol. 8:2159-2165 (1988)); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto (Evan et al., Molecular and Cellular Biology 5:3610-3616 (1985)); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky et al.,

Protein Engineering 3(6):547-553 (1990)). Other tag polypeptides include the Flag-peptide (Hopp et al., BioTechnology 6:1204-1210 (1988)); the KT3 epitope peptide (Martin et al., Science 255:192-194 (1992)); tubulin epitope peptide (Skinner et al., J. Biol. Chem. 266:15163-15166 (1991)); and the T7 gene 10 protein peptide tag (Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA 87:6393-6397 (1990)).

Also included are other prostate cancer proteins of the prostate cancer family, and prostate cancer proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related prostate cancer proteins from humans or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include the unique areas of the prostate cancer nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. The conditions for the PCR reaction are well known in the art (e.g., Innis, PCR Protocols, supra).

Antibodies to prostate cancer proteins

5

10

15

20

25

30

In a preferred embodiment, when the prostate cancer protein is to be used to generate antibodies, e.g., for immunotherapy or immunodiagnosis, the prostate cancer protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller prostate cancer protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment; the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.

Methods of preparing polyclonal antibodies are known to the skilled artisan (e.g., Coligan, supra; and Harlow & Lane, supra). Polyclonal antibodies can be raised in a mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of the figures or fragment thereof or a fusion protein thereof. It

may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

. 5

10

15

20

25

30

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler & Milstein, Nature 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of Tables 1-16 fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (1986)). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two epitopes on the same antigen. In one embodiment, one of the binding specificities is for a

protein encoded by a nucleic acid Tables 1-16 or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

In a preferred embodiment, the antibodies to prostate cancer protein are capable of reducing or eliminating a biological function of a prostate cancer protein, as is described below. That is, the addition of anti-prostate cancer protein antibodies (either polyclonal or preferably monoclonal) to prostate cancer tissue (or cells containing prostate cancer) may reduce or eliminate the prostate cancer. Generally, at least a 25% decrease in activity, growth, size or the like is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

5

10

15

20

25

30

In a preferred embodiment the antibodies to the prostate cancer proteins are humanized antibodies (e.g., Xenerex Biosciences, Mederex, Inc., Abgenix, Inc., Protein Design Labs, Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a nonhuman species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992)). Humanization

can be essentially performed following the method of Winter and co-workers (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries (Hoogenboom & Winter, *J. Mol. Biol.* 227:381 (1991); Marks et al., *J. Mol. Biol.* 222:581 (1991)). The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., *Monoclonal Antibodies and Cancer Therapy*, p. 77 (1985) and Boerner et al., *J. Immunol.* 147(1):86-95 (1991)). Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, e.g., in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10:779-783 (1992); Lonberg et al., Nature 368:856-859 (1994); Morrison, Nature 368:812-13 (1994); Fishwild et al., Nature Biotechnology 14:845-51 (1996); Neuberger, Nature Biotechnology 14:826 (1996); Lonberg & Huszar, Intern. Rev. Immunol. 13:65-93 (1995).

By immunotherapy is meant treatment of prostate cancer with an antibody raised against prostate cancer proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. As appreciated by one of ordinary skill in the art, the antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic

acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the prostate cancer proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted prostate cancer protein.

5

10

15

20

25

30

In another preferred embodiment, the prostate cancer protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment, bind the extracellular domain of the prostate cancer protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The antibody may cause down-regulation of the transmembrane prostate cancer protein. As will be appreciated by one of ordinary skill in the art, the antibody may be a competitive, noncompetitive or uncompetitive inhibitor of protein binding to the extracellular domain of the prostate cancer protein. The antibody is also an antagonist of the prostate cancer protein. Further, the antibody prevents activation of the transmembrane prostate cancer protein. In one aspect, when the antibody prevents the binding of other molecules to the prostate cancer protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF-α, TNF-β, IL-1, INF-γ and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody belongs to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, prostate cancer is treated by administering to a patient antibodies directed against the transmembrane prostate cancer protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be any number of molecules, including labelling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of the prostate cancer protein. In another aspect the therapeutic moiety modulates the activity of molecules associated with or in close proximity to the prostate cancer protein. The therapeutic moiety

may inhibit enzymatic activity such as protease or collagenase or protein kinase activity associated with prostate cancer.

5

10

15

20

25

30

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to prostate cancer tissue or cells, results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with prostate cancer. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against prostate cancer proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane prostate cancer proteins not only serves to increase the local concentration of therapeutic moiety in the prostate cancer afflicted area, but also serves to reduce deleterious side effects that may be associated with the therapeutic moiety.

In another preferred embodiment, the prostate cancer protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the prostate cancer protein can be targeted within a cell, i.e., the nucleus, an antibody thereto contains a signal for that target localization, i.e., a nuclear localization signal.

The prostate cancer antibodies of the invention specifically bind to prostate cancer proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Selectivity of binding is also important.

Detection of prostate cancer sequence for diagnostic and therapeutic applications

In one aspect, the RNA expression levels of genes are determined for different cellular states in the prostate cancer phenotype. Expression levels of genes in normal tissue

(i.e., not undergoing prostate cancer) and in prostate cancer tissue (and in some cases, for varying severities of prostate cancer that relate to prognosis, as outlined below) are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state. While two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or cancerous tissue. This will provide for molecular diagnosis of related conditions.

5

10

15

20

25

30

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g., normal versus prostate cancer tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that expression is increased or decreased; i.e., gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip[™] expression arrays, Lockhart, *Nature Biotechnology* 14:1675-1680 (1996), hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, northern analysis and RNase protection. As outlined above, preferably the change in expression (i.e., upregulation or downregulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

Evaluation may be at the gene transcript, or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, e.g., with antibodies to the prostate cancer protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to prostate cancer genes, i.e., those identified as being important in a prostate cancer phenotype, can be evaluated in a prostate cancer diagnostic test.

5

10

15

20

25

30

In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In this embodiment, the prostate cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of prostate cancer sequences in a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity.

In a preferred embodiment nucleic acids encoding the prostate cancer protein are detected. Although DNA or RNA encoding the prostate cancer protein may be detected, of particular interest are methods wherein an mRNA encoding a prostate cancer protein is detected. Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed in situ. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a prostate cancer protein is detected by binding the digoxygenin with an anti-digoxygenin

secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

5

10

15

20

25

30

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The prostate cancer proteins, antibodies, nucleic acids, modified proteins and cells containing prostate cancer sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

As described and defined herein, prostate cancer proteins, including intracellular, transmembrane or secreted proteins, find use as markers of prostate cancer. Detection of these proteins in putative prostate cancer tissue allows for detection or diagnosis of prostate cancer. In one embodiment, antibodies are used to detect prostate cancer proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the prostate cancer protein is detected, e.g., by immunoblotting with antibodies raised against the prostate cancer protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the prostate cancer protein find use in *in situ* imaging techniques, e.g., in histology (e.g., *Methods in Cell Biology: Antibodies in Cell Biology*, volume 37 (Asai, ed. 1993)). In this method cells are contacted with from one to many antibodies to the prostate cancer protein(s). Following washing to remove nonspecific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label. In another method the primary antibody to the prostate cancer protein(s) contains a detectable label, e.g. an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of prostate cancer proteins. As will be appreciated by one of ordinary skill in the art, many other histological imaging techniques are also provided by the invention.

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing prostate cancer from blood, serum, plasma, stool, and other samples. Such samples, therefore, are useful as samples to be probed or tested for the presence of prostate cancer proteins.

Antibodies can be used to detect a prostate cancer protein by previously described immunoassay techniques including ELISA, immunoblotting (western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous prostate cancer protein.

In a preferred embodiment, in situ hybridization of labeled prostate cancer nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including prostate cancer tissue and/or normal tissue, are made. In situ hybridization (see, e.g., Ausubel, supra) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the prostate cancer proteins, antibodies, nucleic acids, modified proteins and cells containing prostate cancer sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to prostate cancer, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. As above, prostate cancer probes may be attached to biochips for the detection and quantification of prostate cancer sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

Assays for therapeutic compounds

5

10

15

20

25

30

In a preferred embodiment members of the proteins, nucleic acids, and antibodies as described herein are used in drug screening assays. The prostate cancer

proteins, antibodies, nucleic acids, modified proteins and cells containing prostate cancer sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al., Science 279:84-8 (1998); Heid, Genome Res 6:986-94, 1996).

5

10

15

20

25

30

In a preferred embodiment, the prostate cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified prostate cancer proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the prostate cancer phenotype or an identified physiological function of a prostate cancer protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, *supra*.

Having identified the differentially expressed genes herein, a variety of assays may be executed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene as up regulated in prostate cancer, test compounds can be screened for the ability to modulate gene expression or for binding to the prostate cancer protein. "Modulation" thus includes both an increase and a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing prostate cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in prostate cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in prostate cancer tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, e.g., through the use of antibodies to the prostate cancer protein and standard

immunoassays. Proteomics and separation techniques may also allow quantification of expression.

5

10

15

20

25

30

In a preferred embodiment, gene expression or protein monitoring of a number of entities, i.e., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein..

In this embodiment, the prostate cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of prostate cancer sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Expression monitoring can be performed to identify compounds that modify the expression of one or more prostate cancer-associated sequences, e.g., a polynucleotide sequence set out in Tables 1-16. Generally, in a preferred embodiment, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate prostate cancer, modulate prostate cancer proteins, bind to a prostate cancer protein, or interfere with the binding of a prostate cancer protein and an antibody or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the prostate cancer phenotype or the expression of a prostate cancer sequence, e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses a prostate cancer phenotype, e.g. to a normal tissue fingerprint. In another embodiment, a modulator induced a prostate cancer phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

Drug candidates encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of

more than 100 and less than about 2,500 daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides.

5

10

15

20

25

30

In one aspect, a modulator will neutralize the effect of a prostate cancer protein. By "neutralize" is meant that activity of a protein is inhibited or blocked and the consequent effect on the cell.

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to a prostate cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound

length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks (Gallop *et al.*, *J. Med. Chem.* 37(9):1233-1251 (1994)).

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, 5 peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka, Pept. Prot. Res. 37:487-493 (1991), Houghton et al., Nature, 354:84-88 (1991)), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio-oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs et al., Proc. Nat. Acad. Sci. USA 10 90:6909-6913 (1993)), vinylogous polypeptides (Hagihara et al., J. Amer. Chem. Soc. 114:6568 (1992)), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann et al., J. Amer. Chem. Soc. 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen et al., J. Amer. Chem. Soc. 116:2661 (1994)), oligocarbamates (Cho, et al., Science 261:1303 (1993)), and/or peptidyl phosphonates 15 (Campbell et al., J. Org. Chem. 59:658 (1994)). See, generally, Gordon et al., J. Med. Chem. 37:1385 (1994), nucleic acid libraries (see, e.g., Strategene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn et al., Nature Biotechnology 14(3):309-314 (1996), and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al., Science 274:1520-1522 (1996), and U.S. Patent No. 5,593,853), and small 20 organic molecule libraries (see, e.g., benzodiazepines, Baum, C&EN, Jan 18, page 33 (1993); isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506,337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA).

25

30

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka,

Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

5

10

15

20

25

30

The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of prostate cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.

High throughput assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins, U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

5

10

15

20

25

30

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

Modulators of prostate cancer can also be nucleic acids, as defined below. As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. For

example, digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In certain embodiments, the activity of a prostate cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide, *i.e.*, a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a prostate cancer protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

5

10

15

20

25

30

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the prostate cancer protein mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized *in vitro*. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for prostate cancer molecules. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, e.g., Stein & Cohen (Cancer Res. 48:2659 (1988 and van der Krol et al. (BioTechniques 6:958 (1988)).

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of prostate cancer-associated nucleotide sequences. A ribozyme is an

RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto et al., Adv. in Pharmacology 25: 289-317 (1994) for a general review of the properties of different ribozymes).

5

10

15

20

25

30

The general features of hairpin ribozymes are described, e.g., in Hampel et al., Nucl. Acids Res. 18:299-304 (1990); European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang et al., Proc. Natl. Acad. Sci. USA 90:6340-6344 (1993); Yamada et al., Human Gene Therapy 1:39-45 (1994); Leavitt et al., Proc. Natl. Acad. Sci. USA 92:699-703 (1995); Leavitt et al., Human Gene Therapy 5:1151-120 (1994); and Yamada et al., Virology 205: 121-126 (1994)).

Polynucleotide modulators of prostate cancer may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of prostate cancer may be introduced into a cell containing the target nucleic acid sequence, e.g., by formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

As noted above, gene expression monitoring is conveniently used to test candidate modultors (e.g., protein, nucleic acid or small molecule). After the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an in vitro transcription

with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

In a preferred embodiment, the target sequence is labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

5

10

15

20

25

30

As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.

5

10

15

20

25

30

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

Screens are performed to identify modulators of the prostate cancer phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, e.g., for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.

In addition screens can be done for genes that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress a prostate cancer expression pattern leading to a normal expression pattern, or to modulate a single prostate cancer gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated prostate cancer tissue reveals genes that are not expressed in normal tissue or prostate cancer tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for prostate cancer genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the

agent induced proteins and used to target novel therapeutics to the treated prostate cancer tissue sample.

5

10

15

20

25

30

Thus, in one embodiment, a test compound is administered to a population of prostate cancer cells, that have an associated prostate cancer expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (i.e., a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used.

Once the test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

Thus, e.g., prostate cancer tissue may be screened for agents that modulate, e.g., induce or suppress the prostate cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on prostate cancer activity. By defining such a signature for the prostate cancer phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "prostate cancer proteins" or a "prostate cancer modulatory protein". The prostate cancer modulatory protein may be a fragment, or alternatively, be the full length protein to the fragment encoded by the nucleic acids of Tables 1-16. Preferably, the prostate cancer modulatory protein is a fragment. In a preferred embodiment, the prostate cancer amino acid sequence which is used to determine

sequence identity or similarity is encoded by a nucleic acid of Tables 1-16. In another embodiment, the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid of Tables 1-16. In another embodiment, the sequences are sequence variants as further described herein.

5

10

15

20

25

30

Preferably, the prostate cancer modulatory protein is a fragment of approximately 14 to 24 amino acids long. More preferably the fragment is a soluble fragment. Preferably, the fragment includes a non-transmembrane region. In a preferred embodiment, the fragment has an N-terminal Cys to aid in solubility. In one embodiment, the C-terminus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, i.e., to cysteine.

In one embodiment the prostate cancer proteins are conjugated to an immunogenic agent as discussed herein. In one embodiment the prostate cancer protein is conjugated to BSA.

Measurements of prostate cancer polypeptide activity, or of prostate cancer or the prostate cancer phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the prostate cancer polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of prostate cancer associated with tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In the assays of the invention, mammalian prostate cancer polypeptide is typically used, e.g., mouse, preferably human.

Assays to identify compounds with modulating activity can be performed in vitro. For example, a prostate cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the prostate cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the prostate cancer

polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

5

10

15

20

25

30

Alternatively, a reporter gene system can be devised using the prostate cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "prostate cancer proteins." The prostate cancer protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the prostate cancer proteins can be used in the assays.

Thus, in a preferred embodiment, the methods comprise combining a prostate cancer protein and a candidate compound, and determining the binding of the compound to the prostate cancer protein. Preferred embodiments utilize the human prostate cancer protein,

although other mammalian proteins may also be used, e.g. for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative prostate cancer proteins may be used.

5

10

15

20

25

30

Generally, in a preferred embodiment of the methods herein, the prostate cancer protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g. a microtiter plate, an array, etc.). The insoluble supports may be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

In a preferred embodiment, the prostate cancer protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the prostate cancer protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the prostate cancer protein may be done in a number of ways. In a preferred embodiment, the compound is labeled, and binding determined directly, e.g., by attaching all or a portion of the prostate cancer protein to a solid support, adding a labeled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

5

10

15

20

25

30

In some embodiments, only one of the components is labeled, e.g., the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, e.g., ¹²⁵I for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor is a binding moiety known to bind to the target molecule (i.e., a prostate cancer protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40°C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In a preferred embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the prostate cancer protein and thus is capable of binding to, and potentially modulating, the activity of the prostate cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the prostate cancer protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the prostate cancer protein.

5

10

15

20

25

30

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activity of the prostate cancer proteins. In this embodiment, the methods comprise combining a prostate cancer protein and a competitor in a first sample. A second sample comprises a test compound, a prostate cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the prostate cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the prostate cancer protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native prostate cancer protein, but cannot bind to modified prostate cancer proteins. The structure of the prostate cancer protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of a prostate cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background

interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of a prostate cancer protein. The methods comprise adding a test compound, as defined above, to a cell comprising prostate cancer proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes a prostate cancer protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

5

10

15

20

25

30

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e. cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate prostate cancer agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the prostate cancer protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting prostate cancer cell division is provided. The method comprises administration of a prostate cancer inhibitor. In another embodiment, a method of inhibiting prostate cancer is provided. The method comprises administration of a prostate cancer inhibitor. In a further embodiment, methods of treating cells or individuals with prostate cancer are provided. The method comprises administration of a prostate cancer inhibitor.

In one embodiment, a prostate cancer inhibitor is an antibody as discussed above. In another embodiment, the prostate cancer inhibitor is an antisense molecule.

A variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art, as described below.

Soft agar growth or colony formation in suspension

Normal cells require a solid substrate to attach and grow. When the cells are transformed, they lose this phenotype and grow detached from the substrate. For example,

transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, regenerate normal phenotype and require a solid substrate to attach and grow. Soft agar growth or colony formation in suspension assays can be used to identify modulators of prostate cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A therapeutic compound would reduce or eliminate the host cells' ability to grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft.

5

10

15

20

25

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney, *Culture of Animal Cells a Manual of Basic Technique* (3rd ed., 1994), herein incorporated by reference. *See also*, the methods section of Garkavtsev *et al.* (1996), *supra*, herein incorporated by reference.

Contact inhibition and density limitation of growth

Normal cells typically grow in a flat and organized pattern in a petri dish until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. When cells are transformed, however, the cells are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, the transformed cells grow to a higher saturation density than normal cells. This can be detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with (³H)-thymidine at saturation density can be used to measure density limitation of growth. See Freshney (1994), supra. The transformed cells, when transfected with tumor suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with (³H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a prostate cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions. The percentage of cells labeling with (³H)-thymidine is determined autoradiographically. *See*, Freshney (1994), *supra*.

Growth factor or serum dependence

Transformed cells have a lower serum dependence than their normal counterparts (see, e.g., Temin, J. Natl. Cancer Insti. 37:167-175 (1966); Eagle et al., J. Exp. Med. 131:836-879 (1970)); Freshney, supra. This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of transformed host cells can be compared with that of control.

Tumor specific markers levels

5

10

15

20

25

30

Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, Angiogenesis, tumor vascularization, and potential interference with tumor growth. in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985)). Similarly, Tumor angiogenesis factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman, Angiogenesis and Cancer, Sem Cancer Biol. (1992)).

Various techniques which measure the release of these factors are described in Freshney (1994), supra. Also, see, Unkless et al., J. Biol. Chem. 249:4295-4305 (1974); Strickland & Beers, J. Biol. Chem. 251:5694-5702 (1976); Whur et al., Br. J. Cancer 42:305-312 (1980); Gullino, Angiogenesis, tumor vascularization, and potential interference with tumor growth. in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985); Freshney Anticancer Res. 5:111-130 (1985).

Invasiveness into Matrigel

The degree of invasiveness into Matrigel or some other extracellular matrix constituent can be used as an assay to identify compounds that modulate prostate cancer-associated sequences. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells.

Techniques described in Freshney (1994), *supra*, can be used. Briefly, the level of invasion of host cells can be measured by using filters coated with Matrigel or some

other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with ¹²⁵I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra.

5

Tumor growth in vivo

Effects of prostate cancer-associated sequences on cell growth can be tested in transgenic or immune-suppressed mice. Knock-out transgenic mice can be made, in which the prostate cancer gene is disrupted or in which a prostate cancer gene is inserted. Knock-out transgenic mice can be made by insertion of a marker gene or other heterologous gene into the endogenous prostate cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous prostate cancer gene with a mutated version of the prostate cancer gene, or by mutating the endogenous prostate cancer gene, e.g., by exposure to carcinogens.

15

20

10

A DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells partially derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi et al., Science 244:1288 (1989)). Chimeric targeted mice can be derived according to Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory (1988) and Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed., IRL Press, Washington, D.C., (1987).

25 can b Natl. mous 41:52

30

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, genetically athymic "nude" mouse (see, e.g., Giovanella et al., J. Natl. Cancer Inst. 52:921 (1974)), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley et al., Br. J. Cancer 38:263 (1978); Selby et al., Br. J. Cancer 41:52 (1980)) can be used as a host. Transplantable tumor cells (typically about 10⁶ cells) injected into isogenic hosts will produce invasive tumors in a high proportions of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing a prostate cancer-associated sequences are injected subcutaneously. After a

suitable length of time, preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.

5 Methods of identifying variant prostate cancer-associated sequences

10

15

20

25

30

Without being bound by theory, expression of various prostate cancer sequences is correlated with prostate cancer. Accordingly, disorders based on mutant or variant prostate cancer genes may be determined. In one embodiment, the invention provides methods for identifying cells containing variant prostate cancer genes, e.g., determining all or part of the sequence of at least one endogenous prostate cancer genes in a cell. This may be accomplished using any number of sequencing techniques. In a preferred embodiment, the invention provides methods of identifying the prostate cancer genotype of an individual, e.g., determining all or part of the sequence of at least one prostate cancer gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced prostate cancer gene to a known prostate cancer gene, i.e., a wild-type gene.

The sequence of all or part of the prostate cancer gene can then be compared to the sequence of a known prostate cancer gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the prostate cancer gene of the patient and the known prostate cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the prostate cancer genes are used as probes to determine the number of copies of the prostate cancer gene in the genome.

In another preferred embodiment, the prostate cancer genes are used as probes to determine the chromosomal localization of the prostate cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the prostate cancer gene locus.

Administration of pharmaceutical and vaccine compositions

5

10

15

20

25

30

In one embodiment, a therapeutically effective dose of a prostate cancer protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (e.g., Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery; Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992), Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); and Pickar, Dosage Calculations (1999)). As is known in the art, adjustments for prostate cancer degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art. U.S. Patent Application N. 09/687,576, further discloses the use of compositions and methods of diagnosis and treatment in prostate cancer is hereby expressly incorporated by reference.

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

The administration of the prostate cancer proteins and modulators thereof of the present invention can be done in a variety of ways as discussed above, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, e.g., in the treatment of wounds and inflammation, the prostate cancer proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise a prostate cancer protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the

biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

5

10

15

20

25

30

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that prostate cancer protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise a prostate cancer protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may

be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Goodman & Gillman, The Pharmacologial Basis of Therapeutics (Hardman et al., eds., 1996)).

Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., Remington's Pharmaceutical Science and Goodman and Gillman, The Pharmacologial Basis of Therapeutics, supra.

10

15

20

25

30

The compositions containing modulators of prostate cancer proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic

treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer.

It will be appreciated that the present prostate cancer protein-modulating compounds can be administered alone or in combination with additional prostate cancer modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

5

10

15

20

25

30

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in Tables 1-16, such as antisense polynucleotides or ribozymes, will be introduced into cells, in vitro or in vivo. The present invention provides methods, reagents, vectors, and cells useful for expression of prostate cancer-associated polypeptides and nucleic acids using in vitro (cell-free), ex vivo or in vivo (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Berger & Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 (Berger), Ausubel et al., eds., Current Protocols (supplemented through 1999), and Sambrook et al., Molecular Cloning - A Laboratory Manual (2nd ed., Vol. 1-3, 1989.

In a preferred embodiment, prostate cancer proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, prostate cancer genes (including both the full-length sequence, partial sequences, or regulatory sequences of the prostate cancer coding regions) can be administered in a gene therapy application. These prostate cancer genes can include antisense applications, either as gene therapy (i.e. for incorporation into the genome) or as antisense compositions, as will be appreciated by those in the art.

Prostate cancer polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL and antibody responses.. Such vaccine

compositions can include, e.g., lipidated peptides (see, e.g., Vitiello, A. et al., J. Clin. Invest. 95:341 (1995)), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, (1991); Alonso et al., Vaccine 12:299-306 (1994); Jones et al., Vaccine 13:675-681 (1995)), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875 (1990); Hu et al., Clin Exp Immunol. 113:235-243 (1998)), multiple antigen peptide systems (MAPs) (see, e.g., Tam, Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413 (1988); Tam, J. Immunol. Methods 196:17-32 (1996)), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, et al., In: Concepts in vaccine development (Kaufmann, ed., p. 379, 1996); Chakrabarti, et al., Nature 320:535 (1986); Hu et al., Nature 320:537 (1986); Kieny, et al., AIDS Bio/Technology 4:790 (1986); Top et al., J. Infect. Dis. 124:148 (1971); Chanda et al., Virology 175:535 (1990)), particles of viral or synthetic origin (see, e.g., Kofler et al., J. Immunol. Methods. 192:25 (1996); Eldridge et al., Sem. Hematol. 30:16 (1993); Falo et al., Nature Med. 7:649 (1995)), adjuvants (Warren et al., Annu. Rev. Immunol. 4:369 (1986); Gupta et al., Vaccine 11:293 (1993)), liposomes (Reddy et al., J. Immunol. 148:1585 (1992); Rock, Immunol. Today 17:131 (1996)), or, naked or particle absorbed cDNA (Ulmer, et al., Science 259:1745 (1993); Robinson et al., Vaccine 11:957 (1993); Shiver et al., In: Concepts in vaccine development (Kaufmann, ed., p. 423, 1996); Cease & Berzofsky, Annu. Rev. Immunol. 12:923 (1994) and Eldridge et al., Sem. Hematol. 30:16 (1993)). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

5

10

15

20

25

30

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bortadella pertussis* or *Mycobacterium tuberculosis* derived proteins. Certain adjuvants are commercially available as, e.g., Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides;

polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff *et. al.*, *Science* 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (*see*, *e.g.*, U.S. Patent No. 5,922,687).

5

10

15

20

25

30

For therapeutic or prophylactic immunization purposes, the peptides of the invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, e.g., as a vector to express nucleotide sequences that encode prostate cancer polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein (see, e.g., Shata et al., Mol Med Today 6:66-71 (2000); Shedlock et al., J Leukoc Biol 68:793-806 (2000); Hipp et al., In Vivo 14:571-85 (2000)).

Methods for the use of genes as DNA vaccines are well known, and include placing a prostate cancer gene or portion of a prostate cancer gene under the control of a regulatable promoter or a tissue-specific promoter for expression in a prostate cancer patient. The prostate cancer gene used for DNA vaccines can encode full-length prostate cancer proteins, but more preferably encodes portions of the prostate cancer proteins including peptides derived from the prostate cancer protein. In one embodiment, a patient is

immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from a prostate cancer gene. For example, prostate cancer-associated genes or sequence encoding subfragments of a prostate cancer protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

5

10

15

20

25

30

In a preferred embodiment, the DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the prostate cancer polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

In another preferred embodiment prostate cancer genes find use in generating animal models of prostate cancer. When the prostate cancer gene identified is repressed or diminished in cancer tissue, gene therapy technology, e.g., wherein antisense RNA directed to the prostate cancer gene will also diminish or repress expression of the gene. Animal models of prostate cancer find use in screening for modulators of a prostate cancer-associated sequence or modulators of prostate cancer. Similarly, transgenic animal technology including gene knockout technology, e.g. as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the prostate cancer protein. When desired, tissue-specific expression or knockout of the prostate cancer protein may be necessary.

It is also possible that the prostate cancer protein is overexpressed in prostate cancer. As such, transgenic animals can be generated that overexpress the prostate cancer protein. Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene. Animals generated by such methods find use as animal models of prostate cancer and are additionally useful in screening for modulators to treat prostate cancer.

Kits for Use in Diagnostic and/or Prognostic Applications

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In the diagnostic and research applications such kits

may include any or all of the following: assay reagents, buffers, prostate cancer-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense polynucleotides, ribozymes, dominant negative prostate cancer polypeptides or polynucleotides, small molecules inhibitors of prostate cancer-associated sequences *etc*. A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

In addition, the kits may include instructional materials containing directions (i.e., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of prostate cancer-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: a prostate cancer-associated polypeptide or polynucleotide, reaction tubes, and instructions for testing prostate cancer-associated activity. Optionally, the kit contains biologically active prostate cancer protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

5

10

15

20

EXAMPLES

Example 1: Tissue Preparation, Labeling Chips, and Fingerprints

5 Purifying total RNA from tissue sample using TRIzol Reagent

10

15

20

25

The sample weight is first estimated. The tissue samples are homogenized in 1 ml of TRIzol per 50 mg of tissue using a homogenizer (e.g., Polytron 3100). The size of the generator/probe used depends upon the sample amount. A generator that is too large for the amount of tissue to be homogenized will cause a loss of sample and lower RNA yield. A larger generator (e.g., 20 mm) is suitable for tissue samples weighing more than 0.6 g. Fill tubes should not be overfilled. If the working volume is greater than 2 ml and no greater than 10 ml, a 15 ml polypropylene tube (Falcon 2059) is suitable for homogenization.

Tissues should be kept frozen until homogenized. The TRIzol is added directly to the frozen tissue before homogenization. Following homogenization, the insoluble material is removed from the homogenate by centrifugation at 7500 x g for 15 min. in a Sorvall superspeed or 12,000 x g for 10 min. in an Eppendorf centrifuge at 4°C. The cleared homogenate is then transferred to a new tube(s). Samples may be frozen and stored at -60 to -70°C for at least one month or else continue with the purification.

The next process is phase separation. The homogenized samples are incubated for 5 minutes at room temperature. Then, 0.2 ml of chloroform per 1ml of TRIzol reagent is added to the homogenization mixture. The tubes are securely capped and shaken vigorously by hand (do not vortex) for 15 seconds. The samples are then incubated at room temp. for 2-3 minutes and next centrifuged at 6500 rpm in a Sorvall superspeed for 30 min. at 4oC.

The next process is RNA Precipitation. The aqueous phase is transferred to a fresh tube. The organic phase can be saved if isolation of DNA or protein is desired. Then 0.5 ml of isopropyl alcohol is added per 1ml of TRIzol reagent used in the original homogenization. Then, the tubes are securely capped and inverted to mix. The samples are then incubated at room temp. for 10 minutes an centrifuged at 6500 rpm in Sorvall for 20 min. at 4°C.

The RNA is then washed. The supernatant is poured off and the pellet washed with cold 75% ethanol. 1 ml of 75% ethanol is used per 1 ml of the TRIzol reagent used in the initial homogenization. The tubes are capped securely and inverted several times to loosen pellet without vortexing. They are next centrifuged at $<8000\,$ rpm ($<7500\,$ x g) for 5 minutes at 4° C.

5

10

15

20

25

The RNA wash is decanted. The pellet is carefully transferred to an Eppendorf tube (sliding down the tube into the new tube by use of a pipet tip to help guide it in if necessary). Tube(s) sizes for precipitating the RNA depending on the working volumes. Larger tubes may take too long to dry. Dry pellet. The RNA is then resuspended in an appropriate volume (e.g., 2 -5 ug/ul) of DEPC H₂0. The absorbance is then measured.

The poly A+ mRNA may next be purified from total RNA by other methods such as Qiagen's RNeasy kit. The poly A + mRNA is purified from total RNA by adding the oligotex suspension which has been heated to 37°C and mixing prior to adding to RNA. The Elution Buffer is incubated at 70°C. If there is precipitate in the buffer, warm up the 2 x Binding Buffer at 65°C. The the total RNA is mixed with DEPC-treated water, 2 x Binding Buffer, and Oligotex according to Table 2 on page 16 of the Oligotex Handbook and next incubated for 3 minutes at 65°C and 10 minutes at room temperature.

The preparation is centrifuged for 2 minutes at 14,000 to 18,000 g, preferably, at a "soft setting," The supernatant is removed without disturbing Oligotex pellet. A little bit of solution can be left behind to reduce the loss of Oligotex. The supernatant is saved until satisfactory binding and elution of poly A+ mRNA has been found.

Then, the preparation is gently resuspended in Wash Buffer OW2 and pipetted onto the spin column and centrifuged at full speed (soft setting if possible) for 1 minute.

Next, the spin column is transferred to a new collection tube and gently resuspended in Wash Buffer OW2 and centrifuged as described herein.

Then, the spin column is transferred to a new tube and eluted with 20 to 100 ul of preheated (70°C) Elution Buffer. The Oligotex resin is gently resuspended by pipetting up and down. The centrifugation is repeated as above and the elution repeated with fresh elution buffer or first eluate to keep the elution volume low.

The absorbance is next read to determine the yield, using diluted Elution Buffer as the blank.

Before proceeding with cDNA synthesis, the mRNA is precipitated before proceeding with cDNA synthesis, as components leftover or in the Elution Buffer from the Oligotex purification procedure will inhibit downstream enzymatic reactions of the mRNA. 0.4 vol. of 7.5 M NH4OAc + 2.5 vol. of cold 100% ethanol is added and the preparation precipitated at -20°C 1 hour to overnight (or 20-30 min. at -70°C), and centrifuged at 14,000-16,000 x g for 30 minutes at 4°C. Next, the pellet is washed with 0.5 ml of 80% ethanol (-20°C) and then centrifuged at 14,000-16,000 x g for 5 minutes at room temperature. The 80% ethanol wash is then repeated. The last bit of ethanol from the pellet is then dried without use of a speed vacuum and the pellet is then resuspended in DEPC H₂0 at 1ug/ul concentration.

Alternatively the RNA may be purified using other methods (e.g., Qiagen's RNeasy kit).

No more than 100 ug is added to the RNeasy column. The sample volume is adjusted to 100 ul with RNase-free water. 350 ul Buffer RLT and then 250 ul ethanol (100%) are added to the sample. The preparation is then mixed by pipetting and applied to an RNeasy mini spin column for centrifugation (15 sec at >10,000 rpm). If yield is low, reapply the flowthrough to the column and centrifuge again.

Then, transfer column to a new 2 ml collection tube and add 500 ul Buffer RPE and centrifuge for 15 sec at >10,000 rpm. The flowthrough is discarded. 500 ul Buffer RPE and is then added and the preparation is centriuged for 15 sec at >10,000 rpm. The flowthrough is discarded. and the column membrane dried by centrifuging for 2 min at maximum speed. The column is transferred to a new 1.5-ml collection tube. 30-50 ul of RNase-free water is applied directly onto column membrane. The column is then centrifuged for 1 min at >10,000 rpm and the elution step repeated.

The absorbance is then read to determine yield. If necessary, the material may be ethanol precipitated with ammonium acetate and 2.5X volume 100% ethanol.

First Strand cDNA Synthesis

5

10

15

20

25

30

The first strand can be make using using Gibco's "SuperScript Choice System for cDNA Synthesis" kit. The starting material is 5 ug of total RNA or 1 ug of polyA+ mRNAl. For total RNA, 2 ul of SuperScript RT is used; for polyA+ mRNA, 1 ul of SuperScript RT is used. The final volume of first strand synthesis mix is 20 ul. The RNA should be in a volume no greater than 10 ul. The RNA is incubated with 1 ul of 100 pmol T7-T24 oligo for 10 min at 70°C followed by addition on ice of 7 ul of: 4ul 5X 1st Strand Buffer, 2 ul of 0.1M DTT, and 1 ul of 10mM dNTP mix. The preparation is then incubated at 37°C for 2 min before addition of the SuperScript RT followed by incubation at 37°C for 1 hour.

10

15

20

25

5

Second Strand Synthesis

For the second strand synthesis, place 1st strand reactions on ice and add: 91 ul DEPC H₂0; 30 ul 5X 2nd Strand Buffer; 3 ul 10mM dNTP mix; 1 ul 10 U/ul E.coli DNA Ligase; 4 ul 10 U/ul E.coli DNA Polymerase; and 1 ul 2 U/ul RNase H. Mix and incubate 2 hours at 16°C. Add 2 ul T4 DNA Polymerase. Incubate 5 min at 16°C. Add 10 ul of 0.5M EDTA.

Cleaning up cDNA

The cDNA is purified using Phenol:Chloroform:Isoamyl Alcohol (25:24:1) and Phase-Lock gel tubes. The PLG tubes are centrifuged for 30 sec at maximum speed. The cDNA mix is then transferred to PLG tube. An equal volume of phenol:chloroform:isamyl alcohol is then added, the preparation shaken vigorously (no vortexing), and centrifuged for 5 minutes at maximum speed. The top aqueous solution is transferred to a new tube and ethanol precipitated by adding 7.5X 5M NH4OAc and 2.5X volume of 100% ethanol. Next, it is centrifuged immediately at room temperature for 20 min, maximum speed. The supernatant is removed, and the pellet washed with 2X with cold 80% ethanol. As much ethanol wash as possible should be removed before air drying the pellet; and resuspending it in 3 ul RNase-free water.

In vitro Transcription (IVT) and labeling with biotin

5

10

15

20

25

In vitro Transcription (IVT) and labeling with biotin is performed as follows: Pipet 1.5 ul of cDNA into a thin-wall PCR tube. Make NTP labeling mix by combining 2 ul T7 10xATP (75 mM) (Ambion); 2 ul T7 10xGTP (75 mM) (Ambion); 1.5 ul T7 10xCTP (75 mM) (Ambion); 1.5 ul T7 10xUTP (75 mM) (Ambion); 3.75 ul 10 mM Bio-11-UTP (Boehringer-Mannheim/Roche or Enzo); 3.75 ul 10 mM Bio-16-CTP (Enzo); 2 ul 10x T7 transcription buffer (Ambion); and 2 ul 10x T7 enzyme mix (Ambion). The final volume is 20 ul. Incubate 6 hours at 37°C in a PCR machine. The RNA can be furthered cleaned. Clean-up follows the previous instructions for RNeasy columns or Qiagen's RNeasy protocol handbook. The cRNA often needs to be ethanol precipitated by resuspension in a volume compatible with the fragmentation step.

Fragmentation is performed as follows. 15 ug of labeled RNA is usually fragmented. Try to minimize the fragmentation reaction volume; a 10 ul volume is recommended but 20 ul is all right. Do not go higher than 20 ul because the magnesium in the fragmentation buffer contributes to precipitation in the hybridization buffer. Fragment RNA by incubation at 94 C for 35 minutes in 1 x Fragmentation buffer (5 x Fragmentation buffer is 200 mM Tris-acetate, pH 8.1; 500 mM KOAc; 150 mM MgOAc). The labeled RNA transcript can be analyzed before and after fragmentation. Samples can be heated to 65°C for 15 minutes and electrophoresed on 1% agarose/TBE gels to get an approximate idea of the transcript size range.

For hybridization, 200 ul (10 ug cRNA) of a hybridization mix is put on the chip. If multiple hybridizations are to be done (such as cycling through a 5 chip set), then it is recommended that an initial hybridization mix of 300 ul or more be made. The hybridization mix is: fragment labeled RNA (50 ng/ul final conc.); 50 pM 948-b control oligo; 1.5 pM BioB; 5 pM BioC; 25 pM BioD; 100 pM CRE; 0.1 mg/ml herring sperm DNA; 0.5 mg/ml acetylated BSA; and 300 ul with 1xMES hyb buffer.

The hybridization reaction is conducted with non-biotinylated IVT (purified by RNeasy columns) (see example 1 for steps from tissue to IVT): The following mixture is prepared:

IVT antisense RNA; 4 μ g: μ l Random Hexamers (1 μ g/ μ l): 4 μ l H₂O: μ l 14 μ l

5 Incubate the above 14 μl mixture at 70°C for 10 min.; then put on ice.

The Reverse transcription procedure uses the following mixture:

The above solution is added to the hybridization reaction and incubated for 30 min., 42°C.

Then, 1 µl SSII is added and incubated for another hour before being placed on ice.

The 50X dNTP mix contains 25mM of cold dATP, dCTP, and dGTP, 10mM of dTTP and is made by adding 25 μl each of 100mM dATP, dCTP, and dGTP; 10 μl of 100mM dTTP to 15 μl H₂O.]

RNA degradation is performed as follows. Add 86 µl H2O, 1.5 µl 1M NaOH/2 mM EDTA and incubate at 65°C, 10 min.. For U-Con 30, 500 µl TE/sample spin at 7000 g for 10 min, save flow through for purification. For Qiagen purification, suspend u-con recovered material in 500 µl buffer PB and proceed using Qiagen protocol. For DNAse digestion, add 1 ul of 1/100 dilution of DNAse/30 ul Rx and incubate at 37°C for 15 min. Incubate at 5 min 95°C to denature the DNAse.

25

15

20

Sample preparation

For sample preparation, add Cot-1 DNA, 10 μ l; 50X dNTPs, 1 μ l; 20X SSC, 2.3 μ l; Na pyro phosphate, 7.5 μ l; 10 mg/ml Herring sperm DNA; 1 μ l of 1/10 dilution to 21.8 final vol. Dry in speed vac. Resuspend in 15 μ l H₂0. Add 0.38 μ l 10% SDS. Heat

95°C, 2 min and slow cool at room temp. for 20 min. Put on slide and hybridize overnight at 64°C. Washing after the hybridization: 3X SSC/0.03% SDS: 2 min., 37.5 ml 20X SSC+0.75ml 10% SDS in 250ml H₂O; 1X SSC: 5 min., 12.5 ml 20X SSC in 250ml H₂O; 0.2X SSC: 5 min., 2.5 ml 20X SSC in 250ml H₂O. Dry slides and scan at appropriate PMT's and channels.

Example 2: Taxol resistant Xenograft Model of Human Prostate Cancer

5

20

25

30

Treatment regimens that include paclitaxel (Taxol; Bristol-Myers Squibb

Company, Princeton, NJ) have been particularly successful in treating hormone-refractory prostate cancer in the phase II setting (Smith et al., Semin. Oncol. 26(1 Suppl 2):109-11 (1999)). However, many patients develop tumors which are initially, or later become, resistant to taxol. To identify genes that may be involved with resistance to taxol, or are regulated in response to taxol resistance, and therefore may be used to treat, or identify, taxol resistance in patients, the following experiments were carried out.

The androgen-independent human cell line CWR22R was grown as a xenograft in nude mice (Nagabhushan et al., Cancer Res. 56(13):3042-3046 (1996); Agus et al., J. Natl. Cancer Inst.91(21):1869-1876 (1999); Bubendorf et al., J. Natl. Cancer Inst. 91(20):1758-1764 (1999)). Initially, these xenograft tumors were sensitive to therapeutic doses of taxol. The mice were treated continuously with sub-therapeutic doses, and the tumors were allowed to grow for 3-4 weeks, before surgical removal of the tumors. The tumor from an individual mouse was then minced, and a small portion was then injected into a healthy nude mouse, establishing a second

passage of the tumor. This mouse was then treated continuously with the same sub-therapeutic dose of taxol. This process was repeated 14 times, and a portion of each generation of xenograft tumor was collected. There was increasing resistance to therapeutic doses of taxol with each generation. Bythe end of the process, the tumors were fully resistant to therapeutic doses of taxol. RNA from each generation of tumor was then isolated, and individual mRNA species were quantified using a custom Affymetrix GeneChip® oligonucleotide microarray, with probes to interrogate approximately 35,000

unique mRNA transcripts. Genes were selected that showed a statistically significant up-regulation, or down-regulation, during the subsequent generations of increasingly taxol-resistant tumors. Only one gene was significantly up-regulated, whereas 24 genes were down-regulated; these are presented in Table 10.

The gene sequences identified to be overexpressed in prostate cancer may be used to identify coding regions from the public DNA database. The sequences may be used to either identify genes that encode known proteins, or they may be used to predict the coding regions from genomic DNA using exon prediction algorithms, such as FGENESH (Salamov and Solovyev, 2000, Genome Res. 10:516-522). In addition, one of ordinary skill in the art would understand how to obtain the unigene cluster identification and sequence information according to the exemplar accession numbers provided in Tables 1-16. (see,

10 http://www.ncbi.nlm.nih.gov/UniGene/).

15

5

TABLE1: shows genes, including expression sequence tags, differentially expressed in prostate tumor tissue compared to normal tissue as analyzed using the Affymetrix/Eos Hu01
 GeneChip array. Shown are the relative amounts of each gene expressed in prostate tumor samples and various normal tissue samples showing the highest expression of the gene.

10	Pkey: ExAccn: UnigenelD:	Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number
	Unigene Title:	Unigene gene title
	R1:	Ratio of tumor to normal body tissue

15					
	Pkey	UnigenelD	ExAccn	Uningene Title	R1
	131919	Hs.272458	AA121266	ESTs .	37.2
	120328	Hs.290905	AA196979	ESTs; Weakly similar to (defline not ava	32.6
20		Hs.31412		ESTs	30.1
	101486	Hs.1852	M24902	acid phosphatase; prostate	25.2
	119073	Hs.279477	R32894	ESTs	24.8
	133428	Hs.183752	M34376	microseminoprotein; beta-	23.8
	128180	Hs.171995	AA595348	kallikrein 3; (prostate specific antigen	21.4
25	104080	Hs.57771	AA402971	Homo sapiens mRNA for serine protease (T	18.9
	127537	Hs.162859	AA569531	ESTs	18.6
	131665	Hs.30343	R22139	ESTs	17.4
	101050	Hs.1832	K01911	neuropeptide Y	17.3
	130771	Hs.1915	N48056	folate hydrolase (prostate-specific memb	17
30	108153	Hs.40808	AA054237	ESTs	16.9
	107485	Hs.262476		S-adenosylmethionine decarboxylase 1	16.7
		Hs.33287		ESTs	16.5
		Hs.11260	-	ESTs	16.4
~-				Antigen, Prostate Specific, Alt. Splice	16
35		Hs.181350		kallikrein 2; prostatic	15.4
		Hs.99872		fetal Alzheimer antigen	15
		Hs.62192	M27436	coagulation factor III (thromboplastin;	13.9
		Hs.8236	D62633	ESTs	12.7 12.5
40		Hs.7780	AA045870	ESTs	12.3
40		Hs.193380		ESTs	11.8
		Hs.2178	X57985	H2B histone family; member Q	11.8
		Hs.182339		ESTS	11.8
•		Hs.172129		yp 19h1.r1 Soares breast 3NbHBst Homo sap ESTs	11.6
45		Hs.102720			11.4
43		Hs.14846		ESTs actin; gamma 2; smooth muscle; enteric	11.7
		Hs.78045 Hs.268744		ESTs; Moderately similar to KIAA0273 [H.	10.9
		126645	Al167942	Homo sapiens BAC clone RG041D11 from 7q2	10.7
		Hs.95420	N40141	Homo sapiens mRNA for JM27 protein; comp	10.6
50		Hs.113314		ESTs -	10.6
30	118417	113314	N66048	ESTs; Weakly similar to polymerase [H.sa	10.5
		Hs.293960		ESTs	10.2
		Hs.8364	AA406542	ESTs	10.1
		Hs.92381		ESTs; Weakly similar to !!!! ALU CLASS A	10.1
55		Hs.30652		ESTs	10.1
55		Hs.15641	H28581	ESTs	10.1
		Hs.59622	AA416997	ESTs	10
		Hs.203270		ESTs	9.9
		Hs.121017		H2A histone family; member A	9.8
60		Hs.83883		ESTs	9.7
•		Hs.80296		Purkinje cell protein 4	9.7
		Hs.106778		ESTs	9.7
		Hs.22209		ESTs	9.4
		Hs.274509		T-cell receptor; gamma cluster	9.4
65		Hs.167133		ESTs	9.2
	121853	Hs.98502	AA425887	ESTs	9

	115764	Hs.91011	AA421562	anterior gradient 2 (Xenopus laevis; sec	8.9
		Hs.55999	W47380	ESTs	8.9
	100552	Hs.301946	HG2167-HT2237	Protein Kinase Ht31, Camp-Dependent	8.9
_	105627	Hs.23317	AA281245	ESTs	8.8
5		Hs.76422	M22430	phospholipase A2; group IIA (platelets;	8.7
		Hs.31146	AA456264	ESTs; Highly similar to (defline not ava	8.5
		Hs.293185		yz61c5.s1 Soares_multiple_sclerosis_2NbH	8.5
		Hs.49397	N67889	ESTs	8.2
10		Hs.76704	T68510	ESTs	8.2
10		Hs.334762		ESTs; Weakly similar to KIAA0319 [H.sapi	8.1 8
•		Hs.20415		ESTs; Weakly similar to GS3786 [H.sapien	8
		Hs.278695	D84276	ESTs CD38 antigen (p45)	8
		Hs.66052 Hs.24192	Z38688	ESTs	7.9
15		Hs.301527		tumor necrosis factor (ligand) superfami	7.7
13		Hs.23023	AA456135	ESTs	7.6
		Hs.105700		secreted frizzled-related protein 4	7.5
		Hs.72472	AA250737	ESTs	7.4
		Hs.22627	R43162	ESTs	7.1
20	102398		U42359	Human N33 protein form 1 (N33) gene, exo	7
	101201	Hs.2256	L22524	matrix metalloproteinase 7 (matrilysin;	6.9
	109272	Hs.288462	AA195718	ESTs	6.9
		Hs.169849		myosin-binding protein C; slow-type	6.9
05		Hs.155691		pre-B-cell leukemia transcription factor	6.8
25		Hs.302267		ESTs; Weakly similar to W01A6.c [C.elega	6.8
		Hs.257924		ESTs	6.8 6.7
		Hs.326416		ESTs ESTs: Weekly similar to (defline not aug.	6.7
		Hs.173684 Hs.171995		ESTs; Weakly similar to (defline not ava kallikrein 3; (prostate specific antigen	6.6
30		Hs.26691	AA219134	ESTs	6.6
50		Hs.16193	AA281591	Homo sapiens mRNA; cDNA DKFZp586B211 (fr	6.6
		Hs.59838	AA490969	ESTs	6.6
		Hs.323378		H.sapiens mRNA for transmembrane protein	6.6
		Hs.75746		aldehyde dehydrogenase 6	6.5
35	130343	Hs.278628	AA490262	ESTs; Moderately similar to APXL gene pr	6.5
	120215	Hs.108787	Z41050	Homo sapiens Mcd4p homolog mRNA; complet	6.5
	129215	Hs.126085	AA176867	ESTs	6.5
		Hs.3383	AA010163	upstream regulatory element binding prot	6.5
40		Hs.7232	T23670	ESTs	6.4
40		Hs.8768	AA236559	ESTs; Weakly similar to neuronal thread	6.4 6.4
		Hs.26289	AA009527	ESTS	6.3
		Hs.334786 Hs.15113	AF000573	Human HF.12 gene mRNA homogentisate 1;2-dioxygenase (homogenti	6.3
		Hs.278428		Homo sapiens mRNA for KIAA0896 protein;	6.3
45		Hs.250528		ESTs; Weakly similar to ANKYRIN; BRAIN V	6.3
		Hs.296638		prostate differentiation factor	6.3
		Hs.279923		ESTs; Weakly similar to similar to GTP-b	6.2
	101233	Hs.878	L29008	sorbitol dehydrogenase	6.2
=-		Hs.37744	AA011176	ESTs	6.2
50	127248		AA325029	EST27953 Cerebellum II Homo sapiens cDNA	6.2
•	127775	Hs.179902	H04106	ESTs; Weakly similar to (defline not ava	6.2
		Hs.222399		ESTs	6.1 - 6.1
		Hs.2714	X74142	forkhead (Drosophila)-like 1 ESTs	- 6.1
55		Hs.40289 Hs.203213		ESTS	5.9
<i>JJ</i>		Hs.72988	AA281793	ESTs	5.8
		Hs.301997		ESTs	5.7
		Hs.48948	AA491457	ESTs	5.7
		Hs.61539	AA034020	ESTs	5.7
60		Hs.125019		ESTs; Weakly similar to !!!! ALU SUBFAMI	5.6
-		Hs.289072		ESTs	5.6
	132550	Hs.170195	AA029597	bone morphogenetic protein 7 (osteogenic	5.6
		Hs.140237		ESTs; Weakly similar to neuronal thread	5.6
~~		Hs.337616		phosphodiesterase 3B; cGMP-inhibited	5.6
65		Hs.62354		Human beige-like protein (BGL) mRNA; par	5.5
		Hs.45107		ESTs	5.5
		Hs.281434		heat shock 70kD protein 1	5.5 5.5
		Hs.98732		Homo sapiens Chromosome 16 BAC clone CIT S-adenosylmethionine decarboxylase 1	5.5 5.5
	133/23	Hs.262476	MAUDODD1	о-виспозушночновне чесапохуказе т	3.3

	113938		W81598	ESTs	5.4
		Hs.246315		ESTs	5.4
		Hs.75722		ribophorin II	5.4
	107295	Hs.80120	T34527	UDP-N-acetyl-alpha-D-galactosamine:polyp	5.4
5		Hs.7780	AA056482	ESTs	5.3
•	100184	Hs.21223		calponin 1; basic; smooth muscle	5.3
		Hs.326392		Human guanine nucleotide exchange factor	5.3
	104033	Hs.98944	AA365031	ESTs	5.3
	110844	Hs.167531	N31952	ESTs; Weakly similar to (defline not ava	5.3
10	129056	Hs.108336	H70627	ESTs; Weakly similar to IIII ALU SUBFAMI	5.3
		Hs.25351	U90304	iroquois-class homeodomain protein	5.3
		Hs.194369		Homo sapiens chromosome 1 atrophin-1 rel	5.3
		Hs.109201		ESTs; Highly similar to (defline not ava	5.2
15		Hs.79428	U15174	BCL2/adenovirus E1B 19kD-interacting pro	5.2
15		Hs.159872		ESTS	5.2
	104787	Hs.108327	AA027317	ESTs; Weakly similar to !!!! ALU SUBFAMI damage-specific DNA binding protein 1 (1	5.2 5.2
		Hs.194228		ESTs; Moderately similar to IIII ALU SUB	5.2
		Hs.195850		keratin 5 (epidermolysis bullosa simplex	5.1
20		Hs.184598		ESTs; Weakly similar to !!!! ALU SUBFAMI	5.1
_0		Hs.281428		ESTs; Moderately similar to !!!! ALU SUB	5.1
		Hs.169119		ESTs	5.1
		Hs.54416	X91868	sine oculis homeobox (Drosophila) homolo	5.1
	128871	Hs.106778	AA400271	ESTs; Highly similar to (defline not ava	5.1
25	112681	Hs.148932	R87331	ESTs; Moderately similar to semaphorin V	5.1
		Hs.226434		ESTs	5.1
		Hs.47144		ESTs	5
		Hs.80342	X07696	keratin 15	5
30		Hs.326035		early growth response 1	5 5
30	126023	Hs.13804	H58881	yr36d09.r1 Soares fetal liver spleen 1NF	5 5
		Hs.39288	AA037316 N93839	ESTs ESTs; Weakly similar to !!!! ALU SUBFAMI	5
		Hs.89732	X78932	zinc finger protein 273	5
		Hs.23311	AB002365	Human mRNA for KIAA0367 gene; partial cd	4.9
35		Hs.3796	D83492	EphB6	4.9
		Hs.177537		ESTs	4.9
		Hs.74519		primase; polypeptide 2A (58kD)	4.8
	133330	Hs.71119	U42360	Human N33 mRNA; complete cds	4.8
40	104776		AA026349	ESTs	4.8
40		Hs.128749		Homo sapiens alpha-methylacyl-CoA racema	4.8
		Hs.143087		ESTS	4.8
		Hs.26009 Hs.3585	W86307	Homo sapiens mRNA for KIAA0860 protein;	4.8 4.8
		Hs.284186	AA233168	ESTs; Weakly similar to coded for by C. ESTs	4.8
45		Hs.183390		ESTS; Weakly similar to ZINC FINGER PROT	4.8
43		Hs.288126		ESTs	4.8
	125982	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	R98091	RAE1 (RNA export 1; S.pombe) homolog	4.8
		Hs.26243	W44682	ESTs	4.8
	103023	Hs.117950	X53793	multifunctional polypeptide similar to S	4.7
50	129735		W80701	ESTs; Weakly similar to HERV-E envelope	4.7
		Hs.106390		ESTs	4.7
	103731	11- 40	AA070545	zm7c3.r1 Stratagene neuroepithelium (#93	4.7
		Hs.127602		ESTs -	4.7
55		Hs.231500		Human glucose transporter-like protein-l glutamine-fructose-6-phosphate transamin	4.7 4.7
JJ		Hs.1674 Hs.91622	M90516 H06373	Homo sapiens clone 24456 mRNA sequence	4.7
		Hs.82007	D42084	Human mRNA for KIAA0094 gene; partial cd	4.7
		Hs.89576	A1479264	ESTs	4.7
		Hs.32990	AA610086	ESTs	4.7
60		Hs.239489		TIA1 cytotoxic granule-associated RNA-bi	4.7
	114542	Hs.91011	AA055768	ESTs	4.6
	103806		AA130614	zo1f2.r1 Stratagene neuroepithelium NT2R	4.6
	130529		AA173238	small inducible cytokine A5 (RANTES)	4.6
~=		Hs.82065	AA406546	ESTs	4.6
65		Hs.293798		ESTs	4.6
		Hs.29679	AA452411	ESTs	4.6
		Hs.14158	W86835	copine III	4.6
		Hs.100070 Hs.89603		EST Mucin 1, Epithelial, Alt. Splice 6	4.6 4.6
	100//4	113.03000	HG371-HT1063	March 1, Ehmann' vir ohice a	4.0

		440050	1100005 11500 10	D-AT	4.6
			and the second s	Ret Transforming Gene	4.6 4.6
		Hs.3731	D11900	ESTs yr73g01.r1 Soares fetal liver spleen 1NF	4.6
	126086	Hs.173094	H70975	ESTs	4.6
5		Hs.20166		Prostate stem cell antigen	4.6
5	126959	113.20100	AA199853	ESTs; Moderately similar to !!!! ALU SUB	4.5
		Hs.29117	X91648	H.sapiens mRNA for pur aipha extended 3'	4.5
		Hs.20953	AA039481	ESTs	4.5
	125661		R50319	ESTs	4.5
10	103171	Hs.234726	X68733	alpha-1-antichymotrypsin	4.5
	103928	Hs.199160	AA280085	ESTs	4.5
	102899	Hs.75730	X06272	signal recognition particle receptor (d	4.5
	100892	Hs.180789		Small Nuclear Ribonucleoprotein U1, 1snr	4.5
		Hs.7956	AA425906	ESTs	4.5
15		Hs.317584		ESTs	4.5
		Hs.24758	AA521354	ESTs	4.5
		Hs.44566	U28831	Human protein immuno-reactive with anti-	4.4 4.4
		Hs.38176 Hs.198760	T89386 Y15306	Homo sapiens mRNA for KIAA0606 protein; neurofilament; heavy polypeptide (200kD)	4.4
20		Hs.1846	M22898	tumor protein p53 (Li-Fraumeni syndrome)	4.4
20		Hs.284296		ESTs; Highly similar to surface 4 integr	4.4
		Hs.22514	AA383142	ESTs	4.4
		Hs.119394		ESTs	4.4
		Hs.29894		ESTs	4.4
25	121944	Hs.98518	AA429278	ESTs	4.4
		Hs.211577		ESTs; Highly similar to CG1 protein [H.s	4.4
•		Hs.288969		ESTs; Weakly similar to !!!! ALU SUBFAMI	4.4
		Hs.323966		ESTs; Moderately similar to !!!! ALU SUB	4.4
20		Hs.21941	AA187490	ESTS	4.3 4.3
30	127315	Hs.54424	AA640834 X87870	nr27b06.r1 NCI_CGAP_Pr3 Homo sapiens cDN H.sapiens mRNA for hepatocyte nuclear fa	4.3
		Hs.282990		ESTs: Weakly similar to F52C12.2 [C.eleg	4.3
		Hs.47567	N52876	EST (0.00g	4.3
		Hs.278427		cerebellar degeneration-related protein	4.3
35		Hs.114688		ESTs	4.3
		Hs.105130		EST	4.3
	109391	Hs.184245	AA219699	ESTs	4.3
	109175		AA180496	ESTs	4.3
40		Hs.173540		ESTs; Weakly similar to (defline not ava	4.3
40		Hs.46638	U57911	chromosome 11 open reading frame 8	4.3 4.3
		Hs.79993	U88871	peroxisomal biogenesis factor 7 solute carrier family 4; sodium bicarbon	4.3
		Hs.5462 Hs.18946	AF007216 AA094720	ESTs; Weakly similar to (defline not ava	4.3
		Hs.295923		seven in absentia (Drosophila) homolog 1	4.3
45		Hs.93872		ESTs (Croophing) inclining t	4.3
		Hs.334762		ESTs; Weakly similar to KIAA0319 [H.sapi	4.2
	122055	Hs.98747	AA431732	EST	4.2
	133136	Hs.6574	AF007165	suppressin (nuclear deformed epidermal a	4.2
~^		Hs.20843	H04649	ESTs	4.2
50		Hs.69997	R79723	H.sapiens mRNA for translin associated z	4.2
		Hs.83190	S80437	fatty acid synthase (3' region) [human,	4.2 4.2
		Hs.251064		NBR2 ESTs -	4.2
		Hs.27413 Hs.248210	AA436158	H.sapiens Mahiavu hepatocellular carcino	4.2
55		Hs.59815	W99362	EST	4.2
33		Hs.283978		ESTs; Highly similar to (defline not ava	4.2
		Hs.1179	D90359	TATA box binding protein (TBP)-associate	4.2
	106566		AA455921	ESTs; Weakly similar to IIII ALU SUBFAMI	4.2
	112605	Hs.29852	R79220	ESTs	4.2
60		Hs.279929		H.sapiens mRNA for gp25L2 protein	4.2
		Hs.57419	U25435	transcriptional repressor	4.2
		Hs.326292		ESTs	4.2
		Hs.94109		ESTs	4.2 4.1
65		Hs.105938		lactotransferrin yg95c6.r1 Soares infant brain 1NIB Homo	4.1
U)		Hs.108850 Hs.6641	N98707	kinesin family member 5C	4.1
		Hs.14051		ESTs	4.1
		Hs.45032	AA192157	ESTs	4.1
		Hs.327179		solute carrier family 17 (sodium phospha	4.1
				• • • •	

		Hs.100861		ESTs; Weakly similar to p60 katanin [H.s	4.1
		Hs.116774		ESTs	4.1
	105765	Hs.24183	AA343514	ESTs	4.1
	126529	Hs.26369	AA133237	ESTs	4.1
5	125928	Hs.181889	H29730	ESTs	4.1
	117280	Hs.172129	N22107	ESTs; Moderately similar to IIII ALU SUB	4.1
	100234	Hs.3085	D29677	KIAA0054 gene product	4.1
	100959	Hs.118127	J00073	actin; alpha; cardiac muscle	4.1
		Hs.12913	AA620582	ESTs; Weakly similar to (defline not ava	4.1
10		Hs.8859	AA128486	ESTs	4.1
10		Hs.226795		glutathione S-transferase pi	4.1
		Hs.8036	T26471	ESTs: Moderately similar to !!!! ALU SUB	4
				Homo sapiens myosin light chain kinase (4
		Hs.211582			4
15		Hs.26813	AA504631	ESTs; Weakly similar to (defline not ava	4
15		Hs.104207		ESTS	
		Hs.267967		ESTs; Weakly similar to !!!! ALU SUBFAMI	4
		Hs.22862		ESTs	4
		Hs.42736		ESTs	4
	120726	Hs.97293	AA293656	ESTs	4
20	103576	Hs.94560	Z26317	desmoglein 2	4
	127889	Hs.144941	AI147408	ESTS	4
		Hs.25320		ESTs	4
	128046		AA873285	ESTs	4
		Hs.114366		pyrroline-5-carboxylate synthetase (glut	4
25		Hs.27004		ESTs	4
25		Hs.86276	W27601	ESTs; Moderately similar to (defline not	4
		Hs.98314		ESTs; Weakly similar to !!!! ALU SUBFAMI	3.9
			H18836	ESTs	3.9
		Hs.31608	AA235303	ESTs	3.9
20		Hs.8645			3.9
30		Hs.301871		ESTS	3.9
		Hs.111496		EST's	
		Hs.79428		BCL2/adenovirus E1B 19kD-interacting pro	3.9
		Hs.167904		ESTs	3.9
		Hs.163960		ESTs	3.9
35	129565	Hs.198726	X77777	vasoactive intestinal peptide receptor 1	3.9
	103471	Hs.75216	Y00815	protein tyrosine phosphatase; receptor t	3.9
	133908	Hs.325474	M83216	caldesmon 1	3.9
	105635	Hs.301985	AA281508	ESTs	3.9
		Hs.81086	AA460012	solute carrier family 22 (organic cation	3.9
40		Hs.50421	R38102	KIAA0203 gene product	3.9
		Hs.241493		natural killer-tumor recognition sequenc	3.9
		Hs.186600		ESTs	3.9
				Caldesmon 1, Alt. Splice 6, Non-Muscle	3.9
		Hs.78771	D82614	ESTs	3.9
45		Hs.19978	H26417	ESTs	3.9
47					3.9
		Hs.289008		ESTS	3.9
		Hs.303193		zt87a9.r1 Soares_testis_NHT Homo sapiens	
		Hs.293960		ESTs	3.9
50		Hs.110445		ESTs; Moderately similar to unknown [M.m	3.9
50		Hs.18895	D50927	KIAA0137 gene product	3.8
		Hs.112110		ESTs	3.8
	104846	Hs.32478	AA040154	ESTs	3.8
	108921	Hs.71721	AA142913	ESTs	- 3.8
	115506	Hs.45207	AA292537	ESTs	3.8
55	100452	Hs.241552	D87742	Human mRNA for KIAA0268 gene; partial cd	3.8
	104454	Hs.129228	M84443	galactokinase 2	3.8
	108730	Hs.102859	AA126254	ESTs	3.8
		Hs.24427	AA247788	ESTs; Highly similar to (defline not ava	3.8
	-	Hs.269228		ESTs	3.8
60		Hs.73848	AA069549	ESTs	3.8
50		Hs.9394	AA495926	ESTs	3.8
		Hs.620	M69225	bullous pemphigoid antigen 1 (230/240kD)	3.8
				Homo sapiens mRNA for KIAA0286 gene; par	3.8
		Hs.14912	AA424524		3.8
6 F		Hs.269721		ESTs	
65		Hs.58694	W92051	ESTS	3.8
		Hs.50382	AA007489	zh98g04.r1 Soares_fetal_liver_spleen_1NF	3.8
		Hs.112969		EST	3.7
		Hs.17752	H95978	Homo sapiens phosphatidylserine-specific	3.7
	130577	Hs.162	M35410	insulin-like growth factor blnding prote	3.7

	117667	Hs.44708	N39214	ser-Thr protein kinase related to the my	3.7
		Hs.39712	N77278	ESTs; Weakly similar to BONE/CARTILAGE P	3.7
		Hs.278721		Homo sapiens mRNA for membrane protein w	3.7
		Hs.305971		ESTs	3.7
5		Hs.193700		ESTs; Moderately similar to IIII ALU SUB	3.7
	102162	Hs.1592	U18291	CDC16 (cell division cycle 16; S. cerevi	3.7
	128530	Hs.183475	AA504343	ESTs; Moderately similar to !!!! ALU SUB	3.7
	119940	Hs.272531	W86779	EST	3.7
••		Hs.23837	N22222	yw34b06.s1 Morton Fetal Cochlea Homo sap	3.7
10		Hs.60293	AA496037	ESTs	3.7
		Hs.15683		ESTs	3.7
		Hs.279952		ESTs; Highly similar to (defline not ava	3.7 3.7
		Hs.19347 Hs.291025		ESTs EST	3.7
15		Hs.22380		ESTs	3.7
1.5		Hs.75295	X66534	guanylate cyclase 1; soluble; alpha 3	3.7
		Hs.109390		ESTs	3.7
		Hs.54900		ESTs	3.7
	126801	Hs.7337	AA512902	ESTs	3.7
20		Hs.31707		ESTs	3.7
		Hs.194283		Homo sapiens putative GR6 protein (GR6)	3.7
		Hs.35699	R97219	ESTs	3.7
		Hs.105273		ESTS	3.6 3.6
25		Hs.6363	AA206625	ESTs Transcription Factor lia	3.6
23		Hs.166994		FAT tumor suppressor (Drosophila) homolo	3.6
	103520	110.100007	Y10511	H.sapiens mRNA for CD176 protein	3.6
		Hs.302738		ESTs	3.6
		Hs.75511	M92934	connective tissue growth factor	3.6
30	113702		T97307	ESTs; Moderately similar to !!!! ALU SUB	3.6
		Hs.48428	N59800	EST	3.6
		Hs.68554	C20780	EST	3.6
		Hs.22983	AA400517	ESTs; Moderately similar to UDP-GLUCOSE:	3.6
35		Hs.170291 Hs.27973	AA404090 AA806365	eSTs oc26h07.s1 NCl_CGAP_GCB1 Homo sapiens cD	3.6 3.6
55	101964	NS.2/9/3	S81578	dioxin-responsive gene (putative polyade	3.6
		Hs.326416		ESTs	3.6
		Hs.337434		ESTs	3.6
		Hs.142296		ESTs	3.6
40	100745	Hs.144630	HG3510-HT3704	V-Erba Related Ear-3 Protein	3.6
		Hs.164018		ESTs	3.6
		Hs.274265		talin	3.6
		Hs.44155	T52099	creatine kinase; mitochondrial 2 (sarcom	3.6
45		Hs.183639 Hs.184325		ESTs ESTs	3.6 3.6
40		Hs.270696		ESTS; Moderately similar to !!!! ALU SUB	3.6
		Hs.199067		v-erb-b2 avian erythroblastic leukemia v	3.6
		Hs.44829		ESTs: Moderately similar to !!!! ALU SUB	3.6
•		Hs.35841	AA436459	nuclear factor I/X (CCAAT-binding transc	3.6
50	131898	Hs.279780	N52232	ESTs	3.6
		Hs.73793	M27281	vascular endothelial growth factor	3.6
		Hs.334641		ESTs	3.6
		Hs.79572	AA235803	ESTs -	3.5
55	457951		Al369384	arylsulfatase D zm87h9.s1 Stratagene ovarian cancer (#93	3.5 3.5
55	108407		AA075519 T16245	a disintegrin and metalloproteinase doma	3.5
	126659	Hs.301804		ESTs	3.5
	125956	Hs.129014	N53276	ESTs	3.5
		Hs.79386	X54162	Human mRNA for a 64 Kd autoantigen expre	3.5
60		Hs.171921		sema domain; immunoglobulin domain (lg);	3.5
	131379	Hs.26176	R49035	ESTs	3.5
	126742	Hs.169359		yr57e06.r1 Soares fetal liver spleen 1NF	3.5
		Hs.306915		ESTs	3.5
65		Hs.42179	N66818	ESTS	3.5
65		Hs.30127	AA280895	ESTs; Highly similar to !!!! ALU SUBFAMI	3.5
		Hs.145807	AA172076 AA126472	ESTs; Moderately similar to IIII ALU SUB ESTs	3.5 3.5
		Hs.26771 Hs.18953		phosphodiesterase 9A	3.5
		Hs.155560		ESTs	3.5
	, , , , , ,	.,			

	400000	U= 100075	1170000	transacharia (impartia) hada O	0.5
		Hs.168075		karyopherin (importin) beta 2	3.5
		Hs.13531	AA442868	ESTs; Weakly similar to (defline not ava	3.5
		Hs.41119		ESTs	3.5
-		Hs.30696	AA599653	transcription factor-like 5 (basic helix	3.5
5	127862	Hs.163191	AA765305	EST	3.5
,	126995	Hs.189810	W26950	Human DNA sequence from PAC 388M5 on chr	3.5
	119071		R31180	ESTs	3.5
	103941	Hs.96593	AA282978	ESTs	3.5
	110721	Hs.31319	H97678	ESTs	3.5
10	126586	Hs.43086	AA011247	ESTs	3.5
	103106	Hs.1857	X62025	phosphodiesterase 6G; cGMP-specific; rod	3.5
		Hs.90797	AA504806	Homo sapiens clone 23620 mRNA sequence	3.5
		Hs.4104	AA233790	ESTs	3.5
		Hs.19525	R39390	ESTs	3.5
15		Hs.52184	AA167708	ESTs	3.5
13		Hs.2839	X65724	Norrie disease (pseudoglioma)	3.5
		Hs.301449		adenovirus 5 E1A binding protein	3.5
		Hs.49418	N67968	ESTs	3.5
		Hs.11223	U62389	Human putative cytosolic NADP-dependent	3.4
20		Hs.6456	T69868	chaperonin containing TCP1; subunit 2 (b	3.4
20				ESTs	3.4
		Hs.301997			
		Hs.211593		ESTs	3.4
		Hs.57787	AA456598	ESTs	3.4
25	122635	11-000440	AA454085	EST	3.4
25		Hs.260116		metalloprotease 1 (pitrilysin family)	3.4
		Hs.34956	AA283620	ESTs	3.4
		Hs.182793		ESTs	3.4
		Hs.292503		ESTs; Weakly similar to KIAA0601 protein	3.4
20		Hs.184298		cyclin-dependent kinase 7 (homolog of Xe	3.4
30		Hs.237658		ESTs; Highly similar to apolipoprotein A	3.4
	118475		N66845	ESTs; Weakly similar to !!!! ALU CLASS 8	3.4
		Hs.88959	R56678	ESTs; Weakly similar to !!!! ALU SUBFAMI	3.4
	128307	Hs.132005	Al453794	ESTs	3.4
~ =	112254	Hs.25829	R51831	ESTs	3.4
35	125408	Hs.89578	N72353	yv37e12.r1 Soares fetal liver spleen 1NF	3.4
	109834	Hs.175955	H00604	ESTs	3.4
	130844	Hs.20191	D12122	seven in absentia (Drosophila) homolog 2	3.4
	127143	Hs.20843	AA533553	nj68h04.s1 NCI_CGAP_Pr10 Homo saplens cD	3.4
	135309	Hs.42500	D25984	ESTs	3.4
40	125724	Hs.295978	AA083407	stimulated trans-acting factor (50 kDa)	3.4
	127692	Hs.187983	Al021912	ESTs	3.4
	116674	Hs.92127	F04816	ESTs	3.4
	134700	Hs.8868	AA481414	golgi SNAP receptor complex member 1	3.4
	114846	Hs.166196	AA234929	ESTs	3.4
45	103649	Hs.155983	Z70219	H.sapiens mRNA for 5'UTR for unknown pro	3.4
		Hs.89925	L04569	calcium channel; voltage-dependent; L ty	3.4
	130568	Hs.16085	AA232535	ESTs; Highly similar to (defline not ava	3.4
		Hs.15978	N78773	ESTs	3.4
		Hs.10653	AA412505	ESTs	3.4
50		Hs.21893	R45698	ESTs	3.4
		Hs.35828	R98192	ESTs	3.4
	127815	Hs.255015	AA876009	ob93c10.s1 NCI_CGAP_GCB1 Homo sapiens cD	3.4
		Hs.75616		KIAA0018 gene product	3.4
		Hs.247992		Homo sapiens DNA binding protein for sur	3.4
55		Hs.20621	T08287	ESTs	3.4
-		Hs.26994	AA489009	ESTs	3.4
		Hs.302267		ESTs	3.4
	125957	110.002207	H45213	yo03b08.r1 Soares adult brain N2b5HB55Y	3.3
		Hs.146085		ESTs	3.3
60		Hs.75354	F13702	ESTs	3.3
55		Hs.170098		ESTs; Highly similar to KIAA0372 [H.sapi	3.3
		Hs.143792		ESTs; Weakly similar to glioma amplified	3.3
			_	Human mRNA for Apo1_Human (MER5(Aop1-Mou	
		Hs.75454 Hs.30692	D49396	p21 (CDKN1A)-activated kinase 2	3.3
65			U24153	ESTs; Weakly similar to (defline not ava	3.3
UJ		Hs.88201	AA481256		3.3
	102034		U05291	fibromodulin	3.3
		Hs.14658	R99606	Human chromosome 5q13.1 clone 5G8 mRNA	3.3
		Hs.159456		ESTs; Highly similar to (defline not ava	3.3
	128707	Hs.104105	AA136474	Meis (mouse) homolog 2	3.3

	445040	U= 400007	A A050000	FOT-	
		Hs.190057		ESTS	3.3
		Hs.31110	H12084	ESTs	3.3
		Hs.24192	R31679	ESTs	3.3
-		Hs.2877	X63629	cadherin 3; P-cadherin (placental)	3.3
5		Hs.62604		ESTs	3.3
		Hs.79284		mesoderm specific transcript (mouse) hom	3.3
		Hs.301804		ESTs	3.3
		Hs.159627		Death associated protein 3	3.3
	126966	Hs.182575	R38438	solute carrier family 15 (H+/peptide tra	3.3
10	124839	Hs.140942	R55784	ESTs	3.3
	100709	Hs.100469	HG3264-HT3441	Af-6 (Gb:U02478)	3.3
	132967	Hs.61635	AA032221	Homo sapiens BAC clone RG041D11 from 7q2	3.3
	102927	Hs.65114	X12876	keratin 18	3.3
	132616	Hs.283558	AA386264	ESTs	3.3
15		Hs.129781		ESTs	3.3
		Hs.31652		ESTs	3.3
		Hs.87113		ESTs	3.3
		Hs.112227		ESTs	3.3
		Hs.12315		ESTs	3.3
20		Hs.178604		ESTs	3.3
20		Hs.155995		Homo sapiens mRNA for KIAA0643 protein;	3.3
		Hs.284294		ESTs	3.3
		Hs.7569	T26893	EST	3.3
		Hs.82318		Brush-1	3.3
25		Hs.333256		ESTs; Moderately similar to !!!! ALU SUB	3.3
2.5		Hs.294105		ESTs	3.3
		Hs.194215		ESTS	3.3
					3.3
		Hs.299867		hepatocyte nuclear factor 3; alpha	
20		Hs.190151		ESTS	3.3
30		Hs.47402		ESTs; Weakly similar to !!!! ALU SUBFAMI	3.3
		Hs.11500	AA437118	ESTS	3.3
		Hs.126494		ESTs	3.3
	127265		AA332751	EST37214 Embryo, 8 week I Homo sapiens c	3.3
25		Hs.41143	AA011027	Homo sapiens mRNA for KIAA0581 protein;	3.2
35		Hs.293691		ESTs	3.2
		Hs.250655		H.sapiens mRNA for Ptg-12 protein	3.2
		Hs.334334		ESTs	3.2
		Hs.251946		ESTs	3.2
40		Hs.44481		forkhead (Drosophila)-like 6	3.2
40		Hs.32425	AA488889	ESTs	3.2
		Hs.169780		homologous to yeast nitrogen permease (c	3.2
		Hs.292581		ESTs	3.2
		Hs.284207		ESTs	3.2
		Hs.105116		EST	3.2
45		Hs.63908	AA598745	ESTs	3.2
		Hs.194657		H.sapiens gene encoding E-cadherin, exon	3.2
	124006	Hs.270016	D60302	ESTs	3.2
		Hs.74137	L40391	Homo sapiens (clone s153) mRNA fragment	3.2
	101183	Hs.795	L19779	H2A histone family; member O	3.2
50	125596		R25698	yg44h11.r2 Soares infant brain 1NIB Homo	3.2
	127261		AA661567	nu86b02.s1 NCI_CGAP_Alv1 Homo sapiens cD	3.2
	120090	Hs.59554	W94591	ESTs	3.2
	129393	Hs.166982	D13435	phosphatidylinositol glycan; class F -	3.2
	120923	Hs.97129	AA382283	ESTs	3.2
55	118907	Hs.274256	N91003	ESTs	3.2
	111552	Hs.191185	R09411	ESTs	3.2
	104431	Hs.99913	J03019	adrenergic; beta-1-; receptor	3.2
	133551	Hs.278634	D63480	Human mRNA for KIAA0146 gene; partial cd	3.2
	131615	Hs.192803	D14533	xeroderma pigmentosum; complementation g	3.2
60		Hs.84072	U47732	transmembrane 4 superfamily member 3	3.2
••		Hs.116774		Integrin; alpha 1	3.2
		Hs.24095	W68845	ESTs	3.2
		Hs.70937	Z83735	H3 histone family; member K	3.2
		Hs.189716		ESTs	3.2
65		Hs.104696		ESTs .	3.2
33		Hs.6639	W28406	ESTs	3.2
		Hs.334335		ESTs	3.2
		Hs.185766		ESTs	3.2
		Hs.130760		Homo sapiens mRNA; cDNA DKFZp586N0318 (f	3.2
	10,012	. 13. 1307 00	* 47000 1 10	Liouin adhigita ministra contra pun efecciacio (c	7.2

	102214	Hs.32964	U23752	SRY (sex-determining region Y)-box 11	3.2
	123147		AA487961	ab11h6.s1 Stratagene lung (#93721) Homo	3.2
		U- 070400			3.2
		Hs.272138		ye87g03.r1 Soares fetal liver spleen 1NF	3.2
_		Hs.250646		ESTs; Highly similar to ublquitin-conjug	
5	105169	Hs.180789	AA180321	Homo sapiens (clone S164) mRNA; 3' end o	3.2
	134001	Hs.78344	AF001548	myosin; heavy polypeptide 11; smooth mus	3.2
		Hs.304389		ESTs	3.2
		Hs.67619	AA089559	Homo sapiens mRNA; chromosome 1 specific	3.2
					3.2
4.0		Hs.182378		colony stimulating factor 1 (macrophage)	
10	101232	Hs.242894	L28997	ADP-ribosylation factor-like 1	3.1
	132906	Hs.234896	AA142857	ESTs; Highly similar to geminin [H.sapie	3.1
	104281	Hs.5669	C14290	ESTs	3.1
		Hs.227933		ESTs; Highly similar to (defline not ava	3.1
					3.1
1 5		Hs.239720		ESTs; Weakly similar to Rga [D.melanogas	
15		Hs.16346	AA234100	ESTs	3.1
	100631	Hs.48332	HG2709-HT2805	Serine/Threonine Kinase (Gb:Z25431)	3.1
	130791	Hs.199263	AA259102	ESTs; Highly similar to (defline not ava	3.1
		Hs.300855		ESTs	3,1
		Hs.123642		ESTs	3.1
20					3.1
20			Al494372	ESTs	
	134110	Hs.79136	U41060	Human breast cancer; estrogen regulated	3.1
	132393	Hs.47334	W85888	ESTs; Moderately similar to !!!! ALU SUB	3.1
		Hs.296842	W27995	ESTs: Moderately similar to non-muscle m	3.1
		Hs.40719		Homo sapiens mRNA; cDNA DKFZp564M0916 (f	3.1
25				ESTs	3.1
23		Hs.286192			
		Hs.296141		ESTs .	3.1
		Hs.178294		ESTs	3.1
	107332	Hs.183297	T87750	ESTs	3.1
		Hs.109653		ESTs	3.1
30		Hs.90800	D83646	matrix metalloproteinase 16 (membrane-in	3.1
50					3.1
		Hs.38972	AA161043	tetraspan 1	
		Hs.182828		zinc finger protein 136 (clone pHZ-20)	3.1
	131839	Hs.33010	H80622	Homo sapiens mRNA for KIAA0633 protein;	3.1
	117606	Hs.44698	N35115	ESTs	3.1
35	418998	Hs.287849	F13215	ESTs	3.1
-		Hs.103120		ESTs	3.1
		113.100120			3.1
	100789	11 450440		Phosphoglucomutase 1, Alt. Splice	
		Hs.159440		ESTs	3.1
	132452	Hs.247324	AA005262	Homo sapiens DNA sequence from PAC 262D1	3.1
40	129077	Hs.108479	H78886	ESTs	3.1
	126563	Hs.181368	W26247	U5 snRNP-specific protein (220 kD); orth	3.1
		Hs.118258		ESTs	3.1
	123465	110.1110.000	AA599033	ESTs	3.1
		11-450046			3.1
46		Hs.152316		EST51345 Gall bladder II Homo sapiens cD	
45		Hs.167031		za36d05.r1 Soares fetal liver spleen 1NF	3.1
	118697	Hs.43234	N72094	ESTs	3.1
	103860	Hs.38057	AA203742	ESTs	3.1
	127968	Hs.124347	AA971439	ESTs	3.1
		Hs.223241		vb15c11.s1 Stratagene placenta (#937225)	3.1
50			AA249334	i312.seq.F Human fetal heart, Lambda ZAP	3.1
20		Hs.15220			
		Hs.22242		ESIS.	3.1
•	130892	Hs.20993	AA442604	ESTs; Weakly similar to Ydr374cp [S.cere	3
	114032	Hs.35014	W92779	ESTs -	3
	128835	Hs.106390	W15528	ESTs	3
55		Hs.247815		H.sapiens H4/I gene	3
55				yy13h06.r1 Soares melanocyte 2NbHM Homo	3
		Hs.250614			0
		Hs.21275		ESTs	3
	131107	Hs.75354	N87590	ESTs	3
	126780	Hs.5811	R12421	ESTs	3
60		Hs.22116	AA307744	Homo sapiens Cdc14B1 phosphatase mRNA; c	3
-		Hs.84063		ESTs	3
					3
		Hs.8867	U62015	Homo sapiens Cyr61 mRNA, complete cds	
	125144	Hs.24336	W37999	ESTs	3
	132977	Hs.301404	U28686	RNA binding motif protein 3	3
65		Hs.146170		ESTs	3
		Hs.79411	J05249	replication protein A2 (32kD)	3
		Hs.248177		Human histone H3 gene	3
					٥
		Hs.30738	AA257971	ESTs	3
	131137	Hs.33287	U85193	nuclear factor I/B	3

	127221	Hs.241551	AJ354332	ESTs	3
	411888	Hs.24104	R26708	ESTs	3
	131684	Hs.3066	U26174	granzyme K (serine protease; granzyme 3;	3
		Hs.21291	HG2706-HT2802	Serine/Threonine Kinase (Gb:Z25428)	3
5		Hs.58915	W86838	EST	3
_		Hs.118281		zinc finger protein 266	3
		Hs.76152	M14219	decorin	3
		Hs.14449	AA010889	ESTs	3
		Hs.304139		EST	3
10		Hs.116346		ESTs	3
		Hs.143880		ESTs	3
	435761	Hs.187555	AA701941	ESTs	3
		Hs.50748	T71561	ESTs	3
	124940	Hs.103804	R99599	heterogeneous nuclear ribonucleoprotein	3
15	128742	Hs.251531	D00763	proteasome (prosome; macropain) subunit;	3
	107147	Hs.10450	AA621125	Homo sapiens chromosome 2; 10 repeat reg	3
	112068	Hs.22545	R43910	ESTs	3
	105346	Hs.263727	AA235465	ESTs; Moderately similar to !!!! ALU SUB	3
	130972	Hs.21739	AA370302	Homo sapiens mRNA; cDNA DKFZp586l1518 (f	3
20	131230	Hs.274407	AA149987	thymus specific serine peptidase	3
		Hs.75847	N79435	ESTs	3
		Hs.227949		ESTs; Highly similar to SEC13-RELATED PR	3
		Hs.44189	N30426	ESTs	3
05		Hs.112699		ESTs	3
25 ·		Hs.63290	AA298588	EST114219 HSC172 cells II Homo sapiens c	3 3
		Hs.7367	AA112222	ESTs; Moderately similar to (defline not	2.9
		Hs.80975	AA255903	CD39-like 4	2.9
		Hs.89890 Hs.101810	S72370	pyruvate carboxylase ESTs; Weakly similar to !!!! ALU SUBFAMI	2.9
30		Hs.7980	F09570	ESTs	2.9
50		Hs.112575		ESTs	2.9
		Hs.32793	AA609943	ESTs	2.9
		Hs.88556	D50405	histone deacetylase 1	2.9
		Hs.82689	H99801	tumor rejection antigen (gp96) 1	2.9
35	134632	Hs.174139	AA398710	H. sapiens RNA for CLCN3	2.9
	106683	Hs.14512	AA461495	ESTs	2.9
	108555		AA084963	zn13e12.s1 Stratagene hNT neuron (#93723	2.9
		Hs.2110	HG945-HT945	Nucleic Acid-Binding Protein (Gb:L12693)	2.9
40	-	Hs.16492	AA173998	ESTs; Weakly similar to weakly similar t	2.9
40		Hs.139226		replication factor C (activator 1) 2 (40	2.9 2.9
	106636		AA459950	ESTs	2.9
		Hs.108708		calcium/calmodulin-dependent protein kin stromal cell-derived factor 1	2.9
		Hs.251871 Hs.9857	AA433946	ESTs; Weakly similar to (defline not ava	2.9
45		Hs.301636		peroxisomal biogenesis factor 6	2.9
73		Hs.98074	AA056263	ESTs; Moderately similar to !!!! ALU SUB	2.9
		Hs.9701	AA402224	Homo sapiens growth arrest and DNA-damag	2.9
	108552		AA084912	zn11c7.s1 Stratagene hNT neuron (#937233	2.9
		Hs.190057		16a11 Human retina cDNA randomly primed	2.9
50		Hs.79086	X06323	Human MRL3 mRNA for ribosomal protein L3	2.9
		Hs.211539	L19161	eukaryotic translation initiation factor	2.9
	100076	Hs.277422	AB000897	Homo sapiens mRNA for cadherin FIB3, par	2.9
		Hs.44104	N29862	ESTs	- 2.9
		Hs.36688	AA437258	ESTs; Moderately similar to WAP four-dis	2.9
55		Hs.250870		protein kinase; mitogen-activated; kinas	2.9
		Hs.32995		ESTs	2.9
		Hs.26267	AA458904	ESTs; Weakly similar to torsinA [H.sapie	2.9 2.9
	134087	Hs.173824	UCOTAS LITSOAS	thymine-DNA glycosylase Caldesmon 1, Alt. Splice 4, Non-Muscle	2.9
60	104602	115,102103	R86920	ESTs	2.9
00		Hs.42738		ESTs	2.9
		Hs.34073		BH-protocadherin (brain-heart)	2.9
		Hs.155212		methylmalonyl Coenzyme A mutase	2.9
		Hs.5724	AA279422	ESTs	2.9
65		Hs.287912		lectin; mannose-binding; 1	2.9
		Hs.19762		ESTs	2.9
		Hs.285728		H.sapiens mRNA for ArgBPIB protein	2.9
		Hs.132390		ESTs	2.9
	102772	Hs.161002	U83115	absent in melanoma 1	2.9

	131710	Hs.30985	AA233225	ESTs; Highly similar to (defline not ava	2.9
		Hs.268903	W84714	ESTs	2.9
	127380	Hs.15535	Al417137	Homo sapiens done 24582 mRNA sequence	2.9
_		Hs.61289	AB002346	inositol phosphate 5'-phosphatase 2 (syn	2.9
5		Hs.191385		ESTs	2.9
		Hs.303030		EST	2.9 2.9
		Hs.34578	AA187045 U14575	ESTs; Weakly similar to !!!! ALU SUBFAMI protein phosphatase 1; regulatory (inhib	2.9
		Hs.78961 Hs.107815		ESTs	2.9
10		Hs.303125		ESTs	2.9
		Hs.218329		heat shock 70kD protein 1	2.9
	133667	Hs.75462	U72649	Human BTG2 (BTG2) mRNA; complete cds	2.9
	105182	Hs.18271	AA191014	ESTs; Weakly similar to Ydr372cp [S.cere	2.9
٠		Hs.232068		Human mRNA for transcription factor AREB	2.9
15		Hs.336901		ESTS	2.9 2.9
		Hs.37637 Hs.11805	N59645 N66066	ESTs ESTs	2.9
		Hs.102897		ESTs	2.9
		Hs.79265	AA114183	ESTs; Moderately similar to glutamate py	2.9
20		Hs.267812		sorting nexin 4	2.9
		Hs.279609		pigment epithelium-derived factor	2.9
		Hs.106149		ESTs	2.9
		Hs.2128	U15932	dual specificity phosphatase 5	2.9
25	128104	11- 007004	AA971000	op67g11.s1 Soares_NFL_T_GBC_S1 Homo sapi nz22d08.s1 NCL_CGAP_GCB1 Homo sapiens cD	2.8 2.8
23		Hs.337631 Hs.180952		ESTs	2.8
		Hs.217916		ESTS	2.8
		Hs.93883	D10537	myelin protein zero (Charcot-Marie-Tooth	2.8
		Hs.68644	N45014	yy80g06.r1 Soares_multiple_sclerosis_2Nb	2.8
30		Hs.145696		ESTs	2.8
		Hs.98684	AA432141	ESTs	2.8
		Hs.322645		ESTs	2.8 2.8
		Hs.99915		androgen receptor (dihydrotestosterone r ESTs	2.8
35		Hs.129998 Hs.109019		ESTS	2.8
33		Hs.12186	R45480	cyclin K	2.8
		Hs.32149	H45968	ESTs	2.8
	104261	Hs.5409	AF008442	RNA polymerase I subunit	2.8
40		Hs.282093		ESTs	2.8
40		Hs.5957	AA417761	Homo sapiens clone 24416 mRNA sequence	2.8 2.8
		Hs.25960	M13241 R42714	v-myc avlan myelocytomatosis viral relat EST	2.8
		Hs.26255 Hs.250175		Homo sapiens clone 23904 mRNA sequence	2.8
		Hs.33130	H44825	ESTs	2.8
45		Hs.72085	AA236843	ESTs; Weakly similar to unknown [S.cerev	2.8
	128152		R20353	yg20f10.r1 Soares infant brain 1NIB Homo	2.8
		Hs.23740		ESTs	2.8
		Hs.97101	AA215333	ESTs	2.8
50		Hs.184510		stratifin	2.8 2.8
30		Hs.293845 Hs.292566		ESTs ESTs	2.8
		Hs.12372	H98141	ESTs	2.8
		Hs.98541	AA282787	ESTs; Highly similar to (defline not ava	2.8
	115119	Hs.46847	AA256524	Human DNA sequence from clone 30M3 on ch	2.8
55	133865	Hs.170290	F09315	discs; large (Drosophila) homolog 5	2.8
		Hs.110826		Homo sapiens CAGF9 mRNA; partial cds	2.8
		Hs.23767	Z38910 H09594	ESTs	2.8 2.8
		Hs.10299 Hs.66731	U81599	ESTs; Moderately similar to IIII ALU SUB homeo box B13	2.8
60	115008	Hs.336629		ESTs; Weakly similar to zinc finger prot	2.8
33		Hs.25067	R49116	EST	2.8
		Hs.173694		ESTs; Moderately similar to (defline not	2.8
	106241	Hs.6019	AA430108	ESTs	2.8
	131060	Hs.22564	AA160890	myosin VI	2.8
65		Hs.40919	N94527	ESTS	2.8
		Hs.1594	U14518	centromere protein A (17kD) Human clone 23560 mRNA sequence	2.8 2.8
		Hs.79981 Hs.274324	U79242 W92041	PCAF associated factor 65 alpha	2.8
	126663	Hs.181297	AA714635	ESTs	2.8

	404007	11-101010	U47400	ECTo Module similar to coverbe comprehen	2.8
		Hs.134342		ESTs; Weakly similar to seventransmembra	
	107316	Hs.193700	163174	ESTs; Moderately similar to IIII ALU SUB	2.8
	128059	Hs.145096	AA972446	ESTs	2.8
	124447		N48000	ESTs	2.8
5		Hs.125565		deafness; X-linked 1; progressive	2.8
5				chromatin assembly factor I (150 kDa)	2.8
		Hs.79018	U20979	• • • • • • • • • • • • • • • • • • • •	
		Hs.100912		ESTs	2.8
	112248	Hs.326416	R51361	ESTs	2.8
	121309	Hs.97312	AA402482	ESTs	2.8
10		Hs.75319	X59618	ribonucleotide reductase M2 polypeptide	2.8
10					2.8
		Hs.35198	AA609053	ESTs	
٠	104425	Hs.35380	H88496	ESTs ·	2.8
	132991	Hs.62245	AA446906	solute carrier family 25 (mitochondrial	2.8
		Hs.29669	AA084602	ESTs	2.8
15		Hs.97694	AA399640	ESTs	2.8
13					2.8
		Hs.243901		ESTs	
	109682	Hs.22869	F09299	ESTs	2.8
	131990	Hs.168818	H77734	ESTs; Moderately similar to roundabout 1	2.8
	132027	Hs.181444	N78844	ESTs; Weakly similar to R12C12.6 [C.eleg	2.8
20		Hs.190478		ESTs	2.8
20					
		Hs.530	M81379	collagen; type IV; alpha 3 (Goodpasture	2.8
		Hs.1313	L09753	tumor necrosis factor (ligand) superfami	2.8
	123000	Hs.105640	AA479347	ESTs	2.8
		Hs.1755	AA404324	ESTs ·	2.8
25			HG1098-HT1098		2.7
23					
		Hs.283683		ESTs	2.7
	110934	Hs.169001	N48708	ESTs; Weakly similar to cytochrome P-450	2.7
	432888		T86823	ESTs	2.7
		Hs.188898		ESTs	2.7
30				Human mRNA for KIAA0333 gene; partial cd	2.7
50		Hs.155313			
		Hs.97697	AA398936	ESTs; Weakly similar to (defline not ava	2.7
	131129	Hs.23240	R27296	ESTs	2.7
	130943	Hs.272429	D50855	calcium-sensing receptor (hypocalciuric	2.7
		Hs.87819		ESTs; Weakly similar to keratin 9; cytos	2.7
35		Hs.25318	R39044	ESTs	2.7
55					2.7
		Hs.173334		ESTs	
	126144	Hs.40639	N39696	yx92a07.r1 Soares melanocyte 2NbHM Homo	2.7
	103248	Hs.75262	X77383	cathepsin O	2.7
		Hs,274170	H30501	Homo saplens Opa-Interacting protein OIP	2.7
40		Hs.84072	M35252	transmembrane 4 superfamily member 3	2.7
40					2.7
		Hs.167489		ESTs	
	129689	Hs.77873	AA130156	ESTs	2.7
	132892	Hs.9973	W92797	ESTs	2.7
		Hs.132967	AA347717	ESTs .	2.7
45		Hs.85963	N23222	ESTs; Moderately similar to !!!! ALU SUB	2.7
1 3					2.7
		Hs.256301		ESTs	
	132037	Hs.332541	AA203649	ESTs; Weakly similar to HEM45 [H.sapiens	2.7
	130542	Hs.179825	U64675	Human sperm membrane protein BS-63 mRNA,	2.7
		Hs.99598	AA463627	ESTs	2.7
50		Hs.196384		prostaglandin-endoperoxide synthase 2 (p	2.7
50					2.7
		Hs.160422		ESTS	
	131036	Hs.174140	X64330	ATP citrate lyase	2.7
		Hs.211582		ESTs	2.7
		Hs.106529		zv81e01.r1 Soares_total_fetus_Nb2HF8_9w	2.7
55		Hs.306044		ESTs	2.7
<i>J</i> J		110.0000			2.7
	423239		AA323591	EST26392 Cerebellum II Homo sapiens cDNA	
		Hs.12321	AA127240	ESTs	2.7
	126021	Hs.187516	AA775894	ESTs	2.7
	102116		U13706	Human ELAV-like neuronal protein 1 isofo	2.7
60		Hs.237225		ESTs; Weakly similar to (defline not ava	2.7
50				ESTs	2.7
		Hs.278439			
		Hs.40241	AA004878	ESTs; Highly similar to (defline not ava	2.7
	129809	Hs.1259	X55283	asialoglycoprotein receptor 2	2.7
		Hs.283309		ESTs: Weakly similar to !!!! ALU SUBFAMI	2.7
65	128422		T85681	yd60c06.r1 Soares fetal liver spleen 1NF	2.7
0 5		No 40000		ESTs	2.7
		Hs.43899	AA233702		
		Hs.292284		Homo sapiens RNA polymerase III largest	2.7
	106053	Hs.36727	AA416963	ESTs; Highly similar to histone H2A [H.s	2.7
		Hs.284380		gamma-glutamyltransferase 1	2.7

	129426	Hs.111323	AA412087	EST; Highly similar to (defline not avai	2.7
	123798		AA620411	small inducible cytokine A5 (RANTES)	2.7
		Hs.238928		ESTs	2.7
		115.230320			
_	103663		Z78291	Z78291 Homo sapiens brain fetus Homo sap	2.7
5	114162	Hs.22265	Z38909	ESTs	2.7
•		Hs.5027	T32438	ESTs	2.7
		115.5027			
	127897		AA773857	af80c09.r1 Soares_NhHMPu_S1 Homo sapiens	2.7
	130621	Hs.16803	AA621718	ESTs; Weakly similar to (defline not ava	2.7
		Hs.42796	AA479958	ESTs; Highly similar to (defline not ava	2.7
10		NS.42/30			
10	125499		R11878	yl49d11.r1 Soares infant brain 1NIB Homo	2.7
	133960	Hs.77899	M19267	tropomyosin 1 (alpha)	2.7
		Hs.246358		ESTs; Weakly similar to Similar to colla	2.7
		Hs.92308	N46086	ESTs	2.7
	106803	Hs.284295	AA479114	ESTs	2.7
15	104899	Hs.285574	AA054726	ESTs	2.7
10				ESTs; Moderately similar to KIAA0350 [H.	2.7
		Hs.337585			
	111253	Hs.15768	N70042	ESTs; Moderately similar to !!!! ALU SUB	2.7
	118449	Hs.164478	N66413	ESTs; Weakly similar to (defline not ava	2.7
		Hs.84318	M63488	replication protein A1 (70kD)	2.7
20					
20	121609	Hs.98185	AA416867	EST	2.7
	113835	Hs.27475	W56590	ESTs	2.7
		Hs.285290		ESTs; Highly similar to (defline not ava	2.7
		Hs.98558	AA428062	ESTs	2.7
	108194	Hs.216717	AA057250	ESTs	2.7
25		Hs.12696	AA464273	ESTs	2.7
23					
		Hs.18166	AA489072	Homo saplens mRNA for KIAA0870 protein;	2.7
	103420	Hs.173497	X97065	SEC23-like protein B	2.7
	106186	Hs.6315	AA427398	acetylserotonin N-methyltransferase-like	2.7
			L77559	Homo sapiens DGS-B partial mRNA	2.7
20	101349			· · ·	
30	112954	Hs.6655	T16559	ESTs	2.7
	133054	Hs.291079	R07876	ESTs; Weakly similar to unknown [S.cerev	2.7
	128131	Hs.25640	Al283162	claudin 3	2.6
					2.6
		Hs.75777	M95787	transgelin	
	111948	Hs.26303	R40752	ESTs	2.6
35	130145	Hs.151051	1/07620	protein kinase mitogen-activated 10 (MAP	2.6
-				•	2.6
		Hs.23964		ESTs	
	117903	Hs.47111	N50740	ESTs .	2.6
	116345	Hs.199067	AA496981	ESTs	2.6
		Hs.4248	AA412620	ESTs	2.6
40	-				
40		Hs.274256		yj42b06.r1 Soares placenta Nb2HP Homo sa	2.6
	105073	Hs.89463	AA137034	ESTs	2.6
	102764		U82310	Homo sapiens unknown protein mRNA, parti	2.6
		Hs.173933		ESTs	2.6
	130792	Hs.19500	AA307896	nuclear localization signal deleted in v	2.6
45	107427	Hs.46736	W26975	ESTs	2.6
	117477	Hs.44175	N30328	ESTs	2.6
			AA435542		2.6
		Hs.16364		ESTs	
	126829	Hs.7910	R11547	ESTs	2.6
	118836	Hs.173001	N79820	ESTs	2.6
50		Hs.136348		osteoblast specific factor 2 (fasciclin	2.6
50					2.6
	104278	Hs.109253	CU2582	ESTs; Highly similar to (defline not ava	
	135051	Hs.83484	C15324	ESTs	2.6
		Hs.227835		collagen; type I; aipha 1	2.6
		113.22.7000			
~~	123579		AA608983	af5d4.s1 Soares_testis_NHT Homo saplens	2.6
55	130115	Hs.149923	M31627	X-box binding protein 1	2.6
	101434	Hs.1430	M20218	coagulation factor XI (plasma thrombopla	2.6
		Hs.104720		ESTs; Moderately similar to !!!! ALU SUB	2.6
				•	
		Hs.40808	AA324743	ESTs	2.6
	128925	Hs.21851	D61676	Homo sapiens mRNA; cDNA DKFZp586J2118 (f	2.6
60		Hs.103391		Insulin-like growth factor binding prote	2.6
50					
		Hs.154103		LIM protein (similar to rat protein kina	2.6
	128402	Hs.191637	AA457244	ESTs	2.6
		Hs.109968		ESTs	2.6
65		Hs.7788	F07759	ESTs	2.6
65	132953	Hs.321264	AAU29927	ESTs	2.6
	130963	Hs.21639	U57099	nuclear protein; marker for differentiat	2.6
		Hs.194154		ESTs; Weakly similar to !!!! ALU SUBFAM!	2.6
		Hs.103267		ESTs; Moderately similar to Rabin3 (R.no	2.6
	121710	Hs.96744	AA419011	ESTs	2.6

	125428		W74608	ESTs; Highly similar to (defline not ava	2.6
	115906	Hs.82302	AA436616	ESTs	2.6
	108432		AA076626	Homo sapiens clone 23851 mRNA sequence	2.6
_	126191	Hs.191911	H97728	ESTs	2.6
5	106164	Hs.281434	AA425773	ESTs	2.6
	111519	Hs.268615	R08165	ESTs	2.6
	134590	Hs.173840	W58612	ESTs	2.6
	102565		U59748	Human desert hedgehog (hDHH) mRNA, parti	2.6
		Hs.13109	AA194973	ESTs	2.6
10	114264	Hs.334609	Z40074	ESTs	2.6
	106236	Hs.21104	AA429951	ESTs	2.6
	135192	Hs.321709	AF000234	purinergic receptor P2X; ligand-gated io	2.6
	109833	Hs.29889	H00580	ESTs	2.6
	105756	Hs.8535	AA303088	ESTs; Weakly similar to transformation-r	2.6
15	121422	Hs.97967	AA406210	ESTs	2.6
	130417	Hs.155485	U58522	Human huntingtin interacting protein (HI	2.6
	124312	Hs.102329	H94647	ESTs	2.6
	108998	Hs.97199	AA156058	ESTs	2.6
	127081	Hs.180591	R88362	ESTs; Weakly similar to weak similarity	2.6
20	129574	Hs.11463	AA458603	ESTs; Weakly similar to (defline not ava	2.6
		Hs.26904	R61680	ESTs	2.6
		Hs.112981		ESTs	2.6
	122905	Hs.104835	AA470070	ESTs	2.6
		Hs.110637		Homo sapiens homeobox protein A10 (HOXA1	2.6
25		Hs.153934		core-binding factor; runt domain; alpha	2.6
		Hs.1435	M24470	guanosine monophosphate reductase	2.6
	100585	Hs.199160		Trithorax Homolog Hrx	2.6
		Hs.30177		ESTs	2.6
••		Hs.46485	N45201	EST	2.6
30		Hs.48712		ESTs	2.6
		Hs.74313		ESTs	2.6
		Hs.32971		phosphoinositide-3-kinase; class 3	2.6
		Hs.195614		KIAA0017 gene product	2.6
25		Hs.169977		ESTs	2.6
35	100858			Forkhead Family Afx1	2.6
		Hs.301927		T-cell receptor; alpha (V;D;J;C)	2.6
		Hs.133865		ESTs	2.6
		Hs.92137	AA428557	v-myc avian myelocytomatosis viral oncog	2.6
40		Hs.10247	U30999	Human (memc) mRNA, 3'UTR	2.6
40		Hs.191538		ESTs	2.6 2.6
		Hs.34136	AA307443	ESTs	2.6
		Hs.268601		ESTs; Weakly similar to (defline not ava	2.6
		Hs.21201	Z39338 H79310	ESTs; Highly similar to (defline not ava EST	2.6
45		Hs.40022	***	ESTs	2.6
43		Hs.306995 Hs.78202	U29175	SWI/SNF related; matrix associated; acti	2.6
				Caldesmon 1, Alt. Splice 3, Non-Muscle	2.6
		Hs.285996		ESTs	2.6
		Hs.6540	Z40861	ESTS	2.6
50		Hs.171391		C-terminal binding protein 2	2.5
50		Hs.60772	AA017258	EST EST	2.5
	100134		D13264	macrophage scavenger receptor 1	2.5
	133969		U13044	GA-binding protein transcription factor;	2.5
		Hs.74316	AA455001	ESTs	2.5
55		Hs.291701		oc39a08.s1 NCL_CGAP_GCB1 Homo sapiens cD	2.5
55		Hs.203961		ESTs	2.5
		Hs.44583	N34415	EST	2.5
		Hs.109654		ESTs	2.5
		Hs.2785	Z19574	keratin 17	2.5
60		Hs.5897	AA047151	ESTs	2.5
		Hs.82643	U02680	protein tyrosine kinase 9	2.5
		Hs.20159	AA454156	ESTs	2.5
		Hs.193784		ESTs	2.5
		Hs.24908	AA256042	ESTs	2.5
65		Hs.75275	D50916	homolog of yeast (S. cerevisiae) ufd2	2.5
	102959	Hs.121524		glutathione reductase	2.5
		Hs.6166	AA047616	ESTs	2.5
		Hs.2057	AA128100	uridine monophosphate synthetase (orotat	2.5
		Hs.118131		5:10-methenyltetrahydrofolate synthetase	2.5

WO 02/30268

	126399	Hs.83883	AA128075	zl16d08.r1 Soares_pregnant_uterus_NbHPU	2.5
	134069	Hs.78935	U29607	Homo sapiens eIF-2-associated p67 homolo	2.5
	109816	Hs.61960	F11013	ESTs; Weakly similar to KIAA0176 [H.sapi	2.5
	134801	Hs.89695	X02160	insulin receptor	2.5
5	104232	Hs.10587	AB002351	Human mRNA for KIAA0353 gene; partial cd	2.5
	107361	Hs.159486	U72513	Human RPL13-2 pseudogene mRNA; complete	2.5
	106057	Hs.289074	AA417067	ESTs	2.5
	134252	Hs.80720	AA031782	Homo sapiens mRNA; cDNA DKFZp586B1722 (f	2.5
	128062	Hs.105547	AA379500	ESTs	2.5
10	110009	Hs.6614	H10933	ESTs	2.5
	111375	Hs.20432	N93696	ESTs	2.5
	122642	Hs.99361	AA454186	ESTs	2.5
	127999	Hs.69851	AA837495	ESTs; Weakly similar to Wiskott-Aldrich	2.5
	105029	Hs.13268	AA126855	ESTs	2.5
15	105082	Hs.26765	AA143763	ESTs: Weakly similar to Similarity to S.	2.5

TABLE 1A show the accession numbers for those primekeys lacking unigeneID's for Table 1. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10	Pkey: CAT nur Accessio	mber: G	nique Eos probeset Identifier number ene cluster number enbank accession numbers
15	Pkey	CAT number	Accessions
20	126023 126086 102565 101964 125499	111555_1 1596090_1 1606216_1 32479_1 481587 1562851_1	AA071210 AA069899 AA071438 AA084912 AA084803 AA079371 AA079370 H57661 H58881 H75681 H70975 AB010994 U59748 AA064660 \$81578 H10543 R11878
25		1708455_1 37186_1	R25698 R56582 R56018 AF080229 AF080231 AF080230 AF080232 AF080233 AF080234 BE550633 Al636743 AW614951 BE467547 Al680833 Al633818 N29986 U87592 U87593 U87590 U87591 S46404 U87587 AA463992 AW206802 Al970376 Al583718 Al672574 N25695 AW665466 Al818326 AA126128 Al480345 AW013827 AA248638 Al214968 AA204735 AA207155 AA206262 AA204833 AW003247 AW496808 Al080480 Al631703 Al651023 Al867418 AW818140 AA502500 Al206199 Al671282 Al352545 BE501030 Al652535 BE465762 AA206331 AW451866 AA471088 AA206342 AA204834 AA206100 AW021661
30		327827_1 1583542_1	AA332922 N66048 AA703396 H92278 AW139734 H92683 U87589 U87595 H69001 U87594 BE466420 Al624817 BE466611 Al206344 AA574397 AA348354 Al493192 AA491830 R50173 R55192 R50320 Al732306 Al732305 Al820727 Al820728 R55191 R50319 R50227 H41694 H45213
35	125982 127248 103731 127261	1766315_1 227560_1 112052_1 231687_1	R98091 W92898 AA364195 AA325029 AW962050 AA070545 AA131490 AA131373 AA330501 AA661567
40	126659 127315 103806 128104	232391_1 1541209_1 37938_1 112618_1 502608_1 524482_2	AA331503 AA332751 AW962542 T16245 R19694 F13545 H10299 T66048 T65279 H18006 AF116622 Al114507 AA640834 AA377999 AA130614 AA071410 AA906093 AA971000 H47610 R86920
45	128152 128422 127897	297868_1 1811283_1 446527_1 120358_1	F07973 R20353 AA442660 T77794 T85681 AA773681 AA773857 BE298210 AI672315 AW086489 BE298417 AA455921 AA902537 BE327124 R14963 AA085210 AW274273 AI333584 AI369742 AI039658 AI885095 AI476470 AI287650 AI885299 AI985381 AW592624 AW340136 AI266556 AA456390
50	129735	44573_2	Al310815 AA484951 Al950087 N70208 R97040 N36809 Al308119 AW967677 N35320 Al251473 H59397 AW971573 R97278 W01059 AW967671 AA908598 AA251875 Al820501 Al820532 W87891 T85904 U71456 T82391 BE328571 T75102 R34725 AA884922 BE328517 Al219788 AA884444 N92578 F13493 AA927794 Al560251 AW874068 AL134043 AW235363 AA663345 AW008282 AA488964 AA283144 Al890387 Al950344 Al741346 Al689062 AA282915 AW102898 Al872193 Al763273 AW173586 AW150329 Al653832 Al762688 AA988777 AA488892 Al356394 AW103813 Al539642 AA642789
55			AA856975 AW505512 AI961530 AW629970 BE612881 AW276997 AW513601 AW512843 AA044209 AW856538 AA180009 AA337499 AW961101 AA251669 AA251874 AI819225 AW205862 AI683338 AI858509 AW276905 AI633006 AA972584 AA908741 AW072629 AW513996 AA293273 AA969759 N75628 N22388 H84729 H60052 T92487 AI022058 AA780419 AA551005 W80701 AW613456 AI373032 AI564269 F00531 H83488 W37181 W78802 R66056 AI002839 R67840 AA300207 AW959581 T63226 F04005
60	130529 123579 109175	2198022 158447_1 genbank_AA6089 genbank_AA1804 tigr_HT4163	
65	100858	tigr_HT4515	U10072

	123798	579959_1	AA620411 AA287491
	102116	entrez_U13706	U13706
	102398	entrez_U42359	U42359
	102764	entrez_U82310	U82310
5	118475	genbank_N66845	N66845
	104776	genbank_AA026349	AA026349
	104787	genbank_AA027317	AA027317
	113702	genbank_T97307	T97307
	113938	genbank_W81598	W81598
10	122635	genbank_AA454085	AA454085
	108407	genbank_AA075519	AA075519
	108432	genbank_AA076626	AA076626
	108555	genbank_AA084963	AA084963
	101349	entrez_L77559	L77559
15	124447	genbank_N48000	N48000
	119071	genbank_R31180	R31180
	103520	entrez_Y10511	Y10511
	103663	genbank_Z78291	Z78291
	128046	877605_1	AA873285 Al025762
20	126959	546044_1	AA199853 AA206355
	123465	genbank AA599033	AA599033

MISSING AT THE TIME OF PUBLICATION

TABLE 2: shows a preferred subset of the Accession numbers for genes found in Table 1 which are differentially expressed in prostate tumor tissue compared to normal prostate tissue.

5 Unique Eos probeset identifier number Pkev: Exemplar Accession number, Genbank accession number ExAcon: UnigenelD: Unigene number 10 Unigene Title: Unigene gene title Ratio of tumor to normal body tissue (Relaxed ratio (87/70) UnigeneiD Unigene Title R1 ExAccn Pkey 15 37.2 131919 AA121266 Hs.272458 ESTs Hs.290905 ESTs; Weakly similar to (defline not ava 32.6 120328 AA196979 25.2 101486 M24902 Hs.1852 acid phosphatase; prostate 24.8 119073 R32894 Hs.279477 ESTs 20 Hs.183752 microseminoprotein; beta-23.8 133428 M34376 Hs.171995 kallikrein 3; (prostate specific antigen 128180 AA595348 21.4 Hs.57771 Homo sapiens mRNA for serine protease (T 18.9 104080 AA402971 Hs.162859 18.6 127537 AA569531 **ESTs** 131665 R22139 Hs.30343 **ESTs** 17.4 25 101050 K01911 17.3 Hs.1832 neuropeptide Y folate hydrolase (prostate-specific memb 17 Hs.1915 130771 N48056 107485 W63793 Hs.262476 S-adenosylmethionine decarboxylase 1 16.7 16.5 106155 AA425309 Hs.33287 **ESTs** Hs.11260 16.4 **FSTs** 129534 R73640 Antigen, Prostate Specific, Alt. Splice 16 30 100569 HG2261-HT2351 Hs.181350 kallikrein 2; prostatic 15.4 101889 S39329 fetal Alzheimer antigen 15 135389 U05237 Hs 99872 12.5 **ESTs** 133944 AA045870 Hs.7780 130974 X57985 Hs.2178 H2B histone family; member Q 11.8 35 Hs.182339 ESTs 11.8 114768 AA149007 Hs.14846 11.4 **ESTs** 104660 AA007160 ESTs; Moderately similar to KIAA0273 [H. 10.9 131061 N64328 Hs.268744 126645 Al167942 Hs.61635 Homo sapiens BAC clone RG041D11 from 7q2 10.7 Homo sapiens mRNA for JM27 protein; comp 10.6 Hs.95420 135153 N40141 40 10.6 107033 AA599629 Hs.113314 **ESTs** 118417 N66048 ESTs: Weakly similar to polymerase [H.sa 10.5 Hs.293960 10.2 **ESTs** 126758 W37145 10.1 107102 AA609723 Hs.30652 **ESTs** 116787 H28581 Hs.15641 **ESTs** 10.1 45 10 115719 AA416997 Hs.59622 **ESTs** 99 123209 AA489711 Hs.203270 **ESTs** Hs.121017 H2A histone family; member A 9.8 101664 M60752 9.7 Hs.83883 112971 T17185 **ESTs** 9.7 117984 N51919 Hs.106778 ESTs 50 129523 M30894 Hs.274509 T-cell receptor, gamma cluster 9.4 132964 AA031360 Hs.167133 ESTs 9.2 121853 AA425887 Hs.98502 **ESTs** 9 119617 W47380 Hs.55999 **ESTs** 8.9 105627 AA281245 Hs.23317 8.8 **FSTs** 55 8.7 101461 M22430 Hs.76422 phospholipase A2; group IIA (platelets; 124526 N62096 Hs.293185 yz61c5.s1 Soares_multiple_sclerosis_2NbH 133845 T68510 8.2 Hs.76704 **ESTs** Hs.334762 ESTs; Weakly similar to KIAA0319 [H.sapi 133354 AA055552 8.1 119018 N95796 Hs.278695 ESTs 60 100394 D84276 Hs.66052 8 CD38 antigen (p45) 7.6 106579 AA456135 Hs.23023 **ESTs** 114965 AA250737 7.4 Hs.72472 **ESTs** 112033 R43162 7.1 Hs.22627 **ESTs**

7

6.9

6.8

6.8

Human N33 protein form 1 (N33) gene, exo

matrix metalloproteinase 7 (matrilysin;

Hs.155691 pre-B-cell leukemia transcription factor

Hs.302267 ESTs; Weakly similar to W01A6.c [C.elega

102398 U42359

101201 L22524

101803 M86546

120562 AA280036

Hs.2256

65

	100112	AA169379	Hs.257924	FSTe	6.8
		F10707	Hs.326416		6.7
		X07730		kallikrein 3; (prostate specific antigen	6.6
		AA219134	Hs.26691	ESTs	6.6
5		AA490969	Hs.59838	ESTs	6.6
5		U07919	Hs.75746	aldehyde dehydrogenase 6	6.5
		Z41050	Hs.108787	Homo sapiens Mcd4p homolog mRNA; compl	
		AA010163	Hs.3383	upstream regulatory element binding prot	6.5
		X07290		Human HF.12 gene mRNA	6.3
10		AA421714		Homo sapiens mRNA for KIAA0896 protein;	6.3
10		AA599267	Hs.250528		6.3
		AB000584		prostate differentiation factor	6.3
		AA609710	Hs.279923	•	6.2
		L29008	Hs.878	sorbitol dehydrogenase	6.2
15		AA011176	Hs.37744	ESTs	6.2
13		AA325029	110.077.44	EST27953 Cerebellum II Homo sapiens cDN/	
		AA256485	Hs.222399		6.1
		AA053400	Hs.203213		5.9
		AA281793	Hs.72988	ESTs	5.8
20		AA491457	Hs.48948	ESTs	5.7
٥		Z38839		ESTs; Weakly similar to !!!! ALU SUBFAMI	5.6
		AA443993	Hs.289072		5.6
		R41933		ESTs; Weakly similar to neuronal thread	5.6
		M83822	Hs.62354	Human beige-like protein (BGL) mRNA; par	5.5
25		N41002	Hs.45107	ESTs	5.5
		AA431407	Hs.98732	Homo sapiens Chromosome 16 BAC clone C	
		AA088851		S-adenosylmethionine decarboxylase 1	5.5
		W81598		ESTs	5.4
		AA047036	Hs.246315		5.4
30		AA056482	Hs.7780	ESTs	5.3
		N25110	Hs.326392	Human guanine nucleotide exchange factor	5.3
		AA365031	Hs.98944	ESTs	5.3
	110844	N31952	Hs.167531	ESTs; Weakly similar to (defline not ava	5.3
	129056	H70627	Hs.108336	ESTs; Weakly similar to !!!! ALU SUBFAMI	5.3
35	133493	AA284143	Hs.194369	Homo sapiens chromosome 1 atrophin-1 rel	5.3
	129184	W26769	Hs.109201	ESTs; Highly similar to (defline not ava	5.2
	101448	M21389	Hs.195850	keratin 5 (epidermolysis bullosa simplex	5.1
	116188	AA464728	Hs.184598	ESTs; Weakly similar to IIII ALU SUBFAMI	5.1
	105921	AA402613	Hs.169119	ESTs	5.1
40	103375	X91868	Hs.54416	sine oculis homeobox (Drosophila) homolo	5.1
	128871	AA400271	Hs,106778	ESTs; Highly similar to (defline not ava	5.1
		AA479362	Hs.47144	ESTs	5
		X07696	Hs.80342	keratin 15	5
		X52541		early growth response 1	5
45	118981	N93839	Hs.39288	ESTs; Weakly similar to IIII ALU SUBFAMI	5

5

TABLE 2A shows the accession numbers for those primekeys lacking unigeneID's for Table 2. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	Pkey: CAT number: Accession:		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers			
15	Pkey	CAT number	Accession			
20	118417	37186_1	AF080229 AF080231 AF080230 AF080232 AF080233 AF080234 BE550633 AI636743 AW614951 BE467547 AI680833 AI633818 N29986 U87592 U87593 U87590 U87591 S46404 U87597 AA463992 AW206802 AI970376 AI583718 AI672574 N25695 AW665466 AI818326 AA126128 AI480345 AW013827 AA248638 AI214968 AA204735 AA207155 AA206262 AA204833 AW003247 AW496808 AI080480 AI631703 AI651023 AI867418 AW818140 AA502500 AI206199 AI671282 AI352545 BE501030 AI652535 BE465762 AA206331 AW451866 AA471088 AA206342 AA204834 AA206100 AW021661 AA332922 N66048 AA703396 H92278 AW139734 H92683 U87589 U87595 H69001 U87594 BE466420 AI624817			
25	127248 107033 102398 113938	227560_1 235652_1 entrez_U42359 genbank_W815				

TABLE 3: shows genes, including expression sequence tags, differentially expressed in prostate tumor tissue compared to normal tissue as analyzed using the Affymetrix/Eos Hu02 GeneChip array. Shown are the relative amounts of each gene expressed in prostate tumor samples and various normal tissue samples showing the highest expression of the gene.

10	ExAccn: UnigeneID: Unigene Title: R1:		Exemplar A Unigene nu Unigene ge	Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Ratio of tumor to normal body tissue					
15				·					
	Pkey	ExAccn	UnigenelD	Unigene Title	R1				
20	100235 100570 100819	D12485 D29954 HG2261-HT23 HG4020-HT42	90	phosphodiesterase l/nucleotide pyrophosp KIAA0056 protein Hs.171995 Hs.2387	6.3 5.1 Antigen, Prostate Specific, Alt. Splice Transglutaminase 10.5	9			
25	101247 101416 101447 101485	L00354 L33801 M17254 M21305 M24736	Hs.89546	cholecystokinin glycogen synthase kinase 3 beta v-ets avian erythroblastosis virus E26 o Human alpha satellite and satellite 3 ju selectin E (endothelial adhesion molecul	8.5 4.7 4.7 11 9.8 6.2				
30	101626 101663 101758 101768	M28214 M57399 M60750 M77836 M81118 M88163	Hs.44 Hs.2178 Hs.79217 Hs.78989	RAB3B; member RAS oncogene family pleiotrophin (heparin binding growth fac H2B histone family; member A pyrroline-5-carboxylate reductase 1 SWI/SNF related; matrix associated; acti	8.4 4.9 5.4 7.5 5.5				
35	101888 102031 102052 102221	M99701 U04898 U07559 U24576 U26173	Hs.95243 Hs.2156 Hs.505 Hs.3844 Hs.79334	RAR-related orphan receptor A ISL1 transcription factor; LIM/homeodoma LIM domain only 4 nuclear factor; interleukin 3 regulated	5.7 13.2 8.9 5.6 7.4				
40	102302 102348 102457 102473	U33052 U37519 U48807 U49957	Hs.69171 Hs.87539 Hs.2359 Hs.180398	protein kinase C-like 2 aldehyde dehydrogenase 8 dual specificity phosphatase 4 LIM domain-containing preferred transfoc	8.2 5.9 5.1 5.7 9				
45	102698 102751 102823 102869	U71207 U75272 U80034 U90914 X02544	Hs.29279 Hs.1867 Hs.68583 Hs.5057 Hs.572	eyes absent (Drosophila) homolog 2 progastricsin (pepsinogen C) mitochondrial Intermediate peptidase carboxypeptidase D orosomucoid 1	10.6 15.6 4.9 22.6				
50	103043 103093 103376	X54667 X55733 X60708 X92098 X95240	Hs.123114 Hs.93379 Hs.44926 Hs.323378 Hs.54431	eukaryotic translation initiation factor dipeptidylpeptidase IV (CD26; adenosine coated vesicle membrane protein specific granule protein (28 kDa); cyste	4.7 4.9 5.8 - 5.2 7.4				
55	103677 103962 104084	Z46629 Z83806 AA298180 AA410529 AF006265	Hs.2316 Hs.83243 Hs.30732 Hs.9222	SRY (sex-determining region Y)-box 9 (ca H.saplens mRNA for exonemal dynein heavy ESTs ESTs estrogen receptor-binding fragment-assoc	5.2 4.9 6 6.4 6.8				
60	104301 104769 104851 104896	D45332 AA025887 AA040882 AA054228 AA074880	Hs.6783	ESTs ESTs; Weakly similar to !!!! ALU SUBFAMI U5 snRNP-specific 40 kDa protein (hPrp8-	10.5 6.3 4.9 5.8 6.4				
65	104957 104967 105099	AA074919 AA084506 AA150776 AA233459		ESTs; Weakly similar to ORF YJL063c [S.c	4.8 6.5 7 5.1				

	105304	AA233553	Hs.190325	ESTs	4.7
	105370	AA236476	Hs.22791	ESTs; Weakly similar to transmembrane pr	10.3
		AA251330	Hs.28248	ESTs	5
					8.8
~		AA261858		ESTs; Weakly similar to heat shock prote	
5		AA281251	Hs.79828	ESTs; Weakly similar to putative zinc fi	5.5
	105640	AA281623	Hs.6685	ESTs; Weakly similar to KIAA0742 protein	8
	105645	AA282138	Hs.11325	ESTs	14
		AA287097		transcription factor 4	6.3
		AA292701	Hs.5364	DKFZP5641052 protein	4.9
10					
10		AA393808		KIAA0438 gene product	7
	105826	AA398243		ESTs; Moderately similar to similar to N	5
	105903	AA401433	Hs.200016	ESTs; Weakly similar to diphosphoinosito	9.9
	105906	AA401633	Hs.22380	ESTs	11.5
			Hs.25206	ESTs	5.1
15			Hs.23317	ESTs	10.9
13		AA419461			
		AA425367	Hs.34892	ESTs	6.6
	106184	AA426643	Hs.10762	ESTs	8.5
	106211	AA428240	Hs.126083		8.4
	106213	AA428258	Hs.8769	Homo sapiens mRNA; cDNA DKFZp564E153 (fr	5.7
20	-	AA432074	Hs.323099		5.8
20		AA443828	Hs.288856		6.3
					5.4
		AA447621	Hs.94109	ESTs	
	106474	AA450212	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (fr	
	106507	AA452584	Hs.267819	protein phosphatase 1; regulatory (inhib.	5.6
25	106523	AA453441	Hs.31511	ESTs	4.7
		AA453628	Hs.37443	ESTs	4.7
		AA455087	Hs.22247	ESTs	5.7
					7.2
		AA456039	Hs.105421		
		AA459249	Hs.8715	ESTs; Weakly similar to Similarity with	5.6
30	106820	AA481037	Hs.12592	ESTs	5.4
	106846	AA485223	Hs.34892	ESTs	5.3
		AA505141	Hs.11923	Human DNA sequence from clone 167A19 on	7.5
		AA609952	Hs.12784	KIAA0293 protein	6.1
		AA620504	Hs.179898		7.1
25				ESTs; Weakly similar to ORF YKR081c [S.c	5.2
35		AA621340	Hs.10600		
		D51095	Hs.35861	DKFZP586E1621 protein	15.1
	107365	U78294	Hs.111256	arachidonate 15-lipoxygenase; second typ	4.7
	107630	AA007218	Hs.60178	ESTs	5.3
	107734	AA016225	Hs.7517	ESTs	4.8
40		AA018042	Hs.252085		7.6
70			Hs.82223	Human DNA sequence from clone 141H5 on c	10.5
		AA037388			6.5
		AA039616	Hs.173334		
	108520	AA084138	Hs.46786	ESTs	7.9
	108583	AA088276	Hs.68826	ESTs	5.6
45	108613	AA100967	Hs.69165	ESTs	6
	108664	AA113349	Hs.69588	EST	6.3
		AA115629	Hs.118531		5.9
				ESTs; Weakly similar to PROTEIN PHOSPHAT	
		AA129968	Hs.49376		5.0
50		AA136590		ESTs	
50		AA147224	Hs.337232		12.7
	108948	AA149579	Hs.118258	ESTs	6.8
	109014	AA156790	Hs.262036	ESTs	15.3
	109124	AA171529	Hs.183887	ESTs	6.1
		AA176438	Hs.41295		5.1
55		AA196332	Hs.86043	ESTs	5.5
JJ			113.00043	Hama coniona mDNA: aDNA DVE7aE06N14410 /	
		AA213620		Homo sapiens mRNA; cDNA DKFZp586M1418 (
	109562	F01811	Hs.187931	ESTs; Moderately similar to voltage-gate	10.8
	109565	F01930	Hs.23648	ESTs	7
	109648	F04600	Hs.7154	ESTs	9.9
60		F10770	Hs 180378	Homo sapiens clone 669 unknown mRNA; com	6.4
O O		H02308	Hs.20792	ESTs	5.3
		H20276	Hs.31742	ESTs	16.8
		N32919	Hs.27931	ESTs	10
		N47938	Hs.12940	yy84a09.s1 Soares_multiple_sclerosis_2Nb	5.6
65		N55514	Hs.318584	ESTs	6.9
		N59858	Hs.33032		5.2
		N66613	Hs.99364	ESTs	5
			He 122400	ESTs; Weakly similar to !!!! ALU CLASS C	5.6
		N66857			
	111221	N68869	Hs.15119	ESTs	6.2

	111348	N90041	Hs.9585	ESTs	5.4
		N90430	Hs.6616	ESTs	5.3
		R07210		ESTs	5.8
c		R08850		ESTs	6 10 c
5		R10657		KIAA0830 protein	12.6 7.1
		R10684 R25375	Hs.5794 Hs.128749	ESTS	6.2
		R37460	Hs.25231	ESTs	9.4
		R37778	Hs.18685	ESTs; Weakly similar to hypothetical pro	6.5
10		R40431	Hs.14846	Homo saplens mRNA; cDNA DKFZp564D016 (fr	
10		R42036	Hs.6763	KIAA0942 protein	6.4
		R49173	Hs.330242	•	5.6
		R53765		KIAA0981 protein	9.3
		R59740	Hs.5740	ESTs	4.7
15	112452	R63841	Hs.157461	ESTs	6
	112601	R79111	Hs.78225	annexin A1	5.4
		R93696	Hs.169882		5.8
		T09262	Hs.129190		5.1
20		T23457	Hs.289014		4.9
20		T23855		KIAA1028 protein	10.8 5.7
		T40530		ESTs; Weakly similar to heat shock prote	5. <i>t</i> 7.3
		T57773 T88878	Hs.10263 Hs.86538	ESTs ESTs	8.7
		W60439	Hs.8858	ESTs; Moderately similar to cbp146 [M.mu	4.9
25		W72382	Hs.11958	oxidative 3 alpha hydroxysteroid dehydro	4.7
25		W85765	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082 (fr	
		W87462	Hs.21894	ESTs	5.9
		W87544	Hs.268828	ESTs	4.7
	114124	Z38595	Hs.125019	ESTs; Highly similar to KIAA0886 protein	21.3
30		Z41395	Hs.143611		9.6
		Z41450	Hs.130489		5.2
		AA018216		Bicaudal D (Drosophila) homolog 1	7.4
		AA025370	Hs.40109	KIAA0872 protein	8.2 5.4
35		AA101416		ESTs; Weakly similar to PTB-ASSOCIATED S	4.8
33		AA131450 AA133527	Hs.103822	ESTs; Weakly similar to The KIAA0138 gen	5.1
		AA234362	Hs.87159	ESTs; Moderately similar to CGI-66 prote	5.5
		AA235112	Hs.42179	ESTs; Moderately similar to similar to m	6.3
		AA235811	Hs.293672		5.2
40		AA236177	Hs.76591	KIAA0887 protein	4.7
	114908	AA236545	Hs.54973	ESTs	5.2
		AA242751	Hs.16218	KIAA0903 protein	5.7
		AA255566	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (fr	
A E		AA258030		ESTs; Weakly similar to supported by GEN	5.9
45		AA287061	Hs.48499	ESTs; Highly similar to Bdeight protein	4.7 7.6
		AA398913 AA412519	Hs.45231 Hs.58279	LDOC1 protein ESTs	4.8
		AA423972	Hs.131740		5
		AA424029		ESTs; Moderately similar to dynamin; int	5.4
50		AA424038	Hs.81897	ESTs	5
		AA427528	Hs.130965	ESTs; Weakly similar to ZINC FINGER PROT	13.7
	115955	AA446121	Hs.44198	Homo sapiens BAC clone RG054D04 from 7g3	10.6
	116024	AA451748	Hs.83883	Human DNA sequence from clone 718J7 on c	6.8
~~		AA457566	Hs.28777	ESTs	6
55		AA459117	Hs.31575	SEC63; endoplasmic reticulum translocon	7.3
	-	AA460701	Hs.15423	ESTS	5.5
		AA489033	Hs.62601	Homo sapiens mRNA; cDNA DKFZp586K1318 (
		AA521472 AA599463	Hs.71252	ESTs protein phosphatase 2 (formerly 2A); reg	5.9 5.9
60		AA599463 AA599963	Hs.59698	ESTs	7.9
00		AA609219	Hs.39982	ESTs	9.2
		D59325	Hs.121429		5.2
		D80055	Hs.45140	ESTs	4.9
		F09156	Hs.66095	ESTs	7.2
65		F13654		HSFIH32 Stratagene cat#937212 (1992) Hom	5.5
-		H13260	Hs.95097	ESTs	5.9
	117453	N29568	Hs.108319	thyroid hormone receptor-associated prot	6.9
		N33920	Hs.44532	diubiquitin	4.8
	117708	N45114	Hs.126280	ESTs	6.3

	118001	N52151	Hs.47447	FSTs	11.4
		N62339		heat shock 90kD protein 1; alpha	6.2
	118599	N69207	Hs.203697	ESTs	5.8
_	118645	N70358	Hs.125180	growth hormone receptor	7.1
5	118873		Hs.44577	ESTs	6
		N94303	Hs.55028	ESTs	9.3
		R42424	Hs.63841	ESTS	6 17.9
		R45175	Hs.117183 Hs.65328		6
10	119367	T16387	Hs.250895		5
10		W69440	Hs.48376		15.4
		W70205		kinesin family member 3A	10.1
		W72967		ESTs; Weakly similar to hypothetical pro	5.3
	120217	Z41078	Hs.66035	ESTs	4.8
15		AA173939		ESTs; Weakly similar to inner centromere	8.8
		AA190888		ESTs; Highly similar to NY-REN-62 antige	4.9
		AA236010	Hs.26613	Homo sapiens mRNA; cDNA DKFZp586F1323 (f	4./ 5.6
		AA253400 AA261852	Hs.192905	turnor protein 63 kDa with strong homolog	4.9
20		AA280738	Hs.34892	ESTs	8.8
		AA282074	Hs.237323	•	6.2
		AA292655	Hs.96557	ESTs	9.9
	120992	AA398246	Hs.97594	ESTs	16.4
0.5		AA406293	Hs.41167	ESTs	6.9
25		AA412049	Hs.290347		7.6
		AA412105	Hs.193736		5.8
		AA424814 AA431302	Hs.48827 Hs.98721	EST; Weakly similar to N-copine [H.sapie	4.6 5.6
		AA437311	Hs.98927	ESTs	5.7
30		AA446859	Hs.99083	ESTs	6.5
		AA460158		KIAA1028 protein	12.4
		AA460225	Hs.99519	ESTs	5.1
		AA478539	Hs.104336		4.9
25		AA485724	Hs.27413	ESTS	5.4
35		AA485957 AA495981	Hs.250830	Homo sapiens clone 25032 mRNA sequence	5 4.7
		AA496252	Hs.105069		7.1 7.4
		AA609006	Hs.111240		9.1
		AA609200		ESTs	4.7
40	123645	AA609310	Hs.188691		4.8
		AA609651	Hs.112742		7
		C14333		damage-specific DNA binding protein 1 (1	5
•		H45996	Hs.97101	putative G protein-coupled receptor	6.8 10.2
45		N21626 N22401	Hs.102406	yw37g07.s1 Morton Fetal Cochlea Homo sap	10.6
73	-	N58172	Hs.109370		142
		R88992	Hs.174195		4.8
		W38419		ESTs	4.7
~~	125992	W01626		za36e07.r1 Soares fetal liver spleen 1NF	5.1
50		AA947601	Hs.97056	ESTs	5.1
		Z36290		ESTs; Weakly similar to NUCLEAR FACTOR 1	4.6
		AA662913	Hs.190173 Hs.334390		5 4.8
		AA507628 Al024352		immunoglobulin superfamily; member 4	4.7
55		Al457411	Hs.106728		4.8
		AA828760	Hs.292059		4.8
	128172	A1400862	Hs.265130		5
		Al039722	Hs.279009		5.8
60		Al088155	Hs.41296		17
60		AA176446	Hs.180428 Hs.10247	ESTs; Weakly similar to hypothetical 43. activated leucocyte cell adhesion molecu	4.8 7.9
		L38608 AA242816		ESTs; Weakly similar to KIAA0437 [H.sapi	8.1
		AA446990	Hs.103135		6.5
		AA215971		KIAA0992 protein	5.2
65	129136	N26391	Hs.250723		5.1
	129171	AA234048	Hs.7753	calumenin	5.8
		AA211941		polyadenylate binding protein-interactin	5.8
		N27524	Hs.260024 Hs.44208	Cdc42 effector protein 3	5.2
	12946/	AA410311	115.44400	ESTs	5.1

WO 02/30268

	129564	H22136	Hs.75295	guanylate cyclase 1; soluble; alpha 3	16.3
	129699	AA458578	Hs.12017	KIAA0439 protein; homolog of yeast ublqu	9.2
	129821		Hs.12696	cortactin SH3 domain-binding protein	8.6
_		X00948		relaxin 2 (H2)	9.1
5		W46767		ESTs; Weakly similar to RNA POLYMERASE I	5.4
	129912	AA047344	Hs.1378	ESTs; Highly similar to NY-REN-6 antigen annexin A3	6.5 5.1
	129977		Hs.1395	early growth response 2 (Krox-20 (Drosop	8.6
		U82256		arginase; type II	7.4
10		U78313		MyoD family inhibitor	4.9
	130466	N21679	Hs.180059	ESTs	5.8
		X05608		neurofilament; light polypeptide (68kD)	6.7
		AA477739	Hs.12532	ESTS	6.4
15		N71935		multiple PDZ domain protein	7.9 6.2
13		AA013250 H20332	Hs.21398	ESTs; Moderately similar to PUTATIVE GLU signal sequence receptor; gamma (translo	6.4
	131066		Hs.22588	ESTs	5
	131126			myotubularin related protein 2	6.4
	131310		Hs.2551	adrenergic; beta-2-; receptor; surface	7.9
20	131487	AA253220	Hs.27373	Homo sapiens mRNA; cDNA DKFZp564O1763 (
		X59841		pre-B-cell leukemia transcription factor	7.6
		U90551	Hs.28777	H2A histone family; member L	5.1 11
		N62922 AA442119	Hs.29088 Hs.238809	ESTs ESTe	4.9
25		AA428368	Hs.30654	ESTs	4.8
		R68657	Hs.90421	ESTs; Moderately similar to !!!! ALU SUB	6.5
	131795	N32724	Hs.32317	Sox-like transcriptional factor	5.6
		H93381	Hs.38085	ESTs; Weakly similar to putative glycine	7.2
20 .		U65092	Hs.40403	Cbp/p300-interacting transactivator; wit	5.6
30 ·		AA449431 AA608856	Hs.431	KIAA0741 gene product murine leukemia viral (bmi-1) oncogene h	8 5.5
		AA429478		ESTs; Highly similar to CGI-49 protein [6.6
		AA021608	Hs.172510		5.8
	132572	AA448297	Hs.237825	signal recognition particle 72kD	6.2
35		R42266	Hs.52256	ESTs; Weakly similar to beta-TrCP protei	16
		N47109	Hs.5521	ESTs	6.8
		AA279359 L41887	Hs.55220 He 184167	BCL2-associated athanogene 2 splicing factor; arginine/serine-rich 7	5.3 7.8
		N74897		DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	5.9
40		X75535		peroxisomal famesylated protein	8
		U76189	Hs.61152	exostoses (multiple)-like 2	5.2
		F03321	Hs.65874	ESTs	5.2
		U29589	Hs.7138	cholinergic receptor; muscarinic 3	10.3
45		AA278852 M68941	Hs.30212 Hs.73826	ESTs protein tyrosine phosphatase; non-recept	5.8 4.9
73		X74331	Hs.74519	primase; polypeptide 2A (58kD)	13.1
		T33873	Hs.74624	protein tyrosine phosphatase; receptor t	4.6
	133608	D13315	Hs.75207	glyoxalase I	4.8
50		H75939	Hs.75277	Homo sapiens mRNA; cDNA DKFZp586M141 (fr	
50		D21262	Hs.75337	nucleolar phosphoprotein p130	6.3
		S66431	Hs.76272 Hs.7766	retinoblastoma-binding protein 2 ubiquitin-conjugating enzyme E2E 1 (homo	6 5.4
		N34096 U47414	Hs.79069	cyclin G2	5.2
		N89827	Hs.80667	RALBP1 associated Eps domain containing	6.5
55	134321	AA418230	Hs.8172	ESTs	7
		X70683	Hs.83484	SRY (sex determining region Y)-box 4	4.7
		X57025	Hs.85112	Insulin-like growth factor 1 (somatomedi	7.7
		U66615 U82613	HS.172280	SWI/SNF related; matrix associated; acti Alu-binding protein with zinc finger dom	6.4 5.4
60		W23625	Hs.8739	ESTs; Weakly similar to ORF YGR200c [S.c	5
		AA482319	Hs.8752	putative type II membrane protein	5.4
		Z49099	Hs.89718	spermine synthase	6.7
		AA431480	Hs.169358		9.8
CE		X04602	Hs.93913	Interleukin 6 (Interferon; beta 2)	5.7
65		AA358268		ESTs; Moderately similar to transcriptio	4.9
		L10333 M10098	Hs.99947	reticulon 1 AFFX control: 18S ribosomal RNA	5.3 4.6
		AW079607	Hs.55610		7.8
		AW013907	Hs.167531	ESTs; Moderately similar to predicted us	11.5
				•	

	300319	AW157646	Hs.153506	ESTs; Weakly similar to microtubule-acti	8.5
	300566	H86709	Hs.326392	son of sevenless (Drosophila) homolog 1	5.8
		AI989417	Hs.134289		4.4
_		Al239706	Hs.93810	ESTs	7.9
5		AA039352		ESTs; Wealdy similar to ORF YDL040c [S.c	4.5
		AW468066 AI497778	Hs.24817 Hs.20509	ESTs; Weakly similar to KIAA0986 protein ESTs	5.2 6.4
		Al076890	Hs.146847		5.8
		AA406411		ESTs; Wealdy similar to KIAA0989 protein	10.6
10		A1863068	Hs.106823	ESTs; Wealdy similar to putative zinc fi	5.6
		AF109300	Hs.147924		6.7
	300923	AW136372	Hs.1852	ESTs	7.6
		AA593373	Hs.293744		5.5
1.5		AA947682	Hs.20252	ESTs; Weakly similar to Chain A; Cdc42hs	7
15		Al659131	Hs.197733	ESTS	24.9 11.8
		AW161535 Al049624	Hs.23782	EST cluster (not in UniGene) with exon h	4.3
		H29500	Hs.7130	ESTs; Moderately similar to N-copine [H.	4.3
		AA156879		ESTs; Weakly similar to ZINC FINGER PROT	6.6
20		Al802946	Hs.44208		5.7
	301656	AW008475		EST cluster (not in UniGene) with exon h	6.8
		Z44810		ESTs; Weakly similar to similar to C.ele	6.3
		AL046347		Homo sapiens PAC clone DJ1159004 from 7p	6.2
25		A1800004	Hs.142846 Hs.6823	ESTs; Weakly similar to MesP1 [M.musculu ESTs; Weakly similar to intrinsic factor	8.5 4.6
23		R20002 AF131855		Homo sapiens clone 25056 mRNA sequence	6.3
		A1869666	Hs.123119		36.8
		Al457532	Hs.30488		9.5
	302067	H05698	Hs.222399	ESTs; Weakly similar to protein-tyrosine	5.8
30		AL021397		ribosomal protein L34 pseudogene 1	8.8
		AB022660		KIAA0437 protein	5.9
		AJ001454 Al128606	Hs.159425 Hs.6557	Homo sapiens mRNA for testican-3	4.3 4.3
		D81150		zinc finger protein 161 EST cluster (not in UniGene) with exon h	5.5
35		NM_004917		EST cluster (not in UniGene) with exon h	26.8
		AC003682		multiple UniGene matches	8.2
	302582	NM_000522	Hs.249195	EST cluster (not in UniGene) with exon h	6.4
		AA425562	Hs.11065		5
40		AA343696	Hs.46821	ESTs; Weakly similar to putative [H.sapi	4.8 78.8
40		AA508353 N58545	Hs.42346	relaxin 1 (H1) histone deacetylase 3	8.5
		AW118352		EST cluster (not in UniGene) with exon h	7.4
		AW263124		EST cluster (not in UniGene) with exon h	5.5
	303029	AF199613		EST cluster (not in UniGene) with exon h	4.6
45		AF161352		EST cluster (not in UniGene) with exon h	5.8
		AI571580	Hs.170307		4.3
		AA215297 AL134164	Hs.61441 Hs.145416	EST cluster (not in UniGene) with exon h	6.4 6.6
		AA255977		ESTs; Highly similar to ubiquitin-conjug	19.5
50		AA298471		EST cluster (not in UniGene) with exon h	6.6
		AA758552	Hs.309497		6.8
	303525	AW516519	Hs.273294		4.8
		AA348111	Hs.96900	ESTS	12.1
55		AA355607		ESTs; Weakly similar to MMSET type I [H.	8.2 8.4
23		AW338520 AW500106	Hs.242540 Hs.23643	EST cluster (not in UniGene) with exon h	4.9
		D30891	Hs.19525	EST cluster (not in UniGene) with exon h	15.7
		AW500748	Hs.224961	ESTs; Weakly similar to 73 kDA subunit o	6.3
_	303718	AJ741397	Hs.114658		4.6
60	303722	AA521510	Hs.145010		12.5
		AW502405		ESTs; Weakly similar to tumor suppressor	4.3
		AA707750		ESTs; Weakly similar to cis-Golgi matrix	5.4
		AI017286 AW503733	Hs.5957 Hs.9414	EST cluster (not in UniGene) with exon h ESTs	5.3 13
65		AV2505755 AI275850		EST cluster (not in UniGene) with exon h	7.8
J J	304053	R00493		translocase of inner mitochondrial membr	4.8
	304218	N66373	Hs.27973	ESTs; Weakly similar to ZK354.7 [C.elega	6
	305200	AA668128	Hs.45207	EST singleton (not in UniGene) with exon	5.7
	306716	AI024916	Hs.251354	ESTS	5.7

	307848	Al364186		EST singleton (not in UniGene) with exon	7.3
		Al368665	He 21476	EST singleton (not in UniGene) with exon	5.4
		Al460004	Hs.31608		8.1
_		Al613519		EST singleton (not in UniGene) with exon	5.5
5	308923	Al863051	Hs.279815	ESTs	4.4
	309116	Al927149	Hs.29797	ribosomal protein L10	4.5
	200275	AW075342	Hs.9271	EST singleton (not in UniGene) with exon	7.4
		AW205604		ESTs; Weakly similar to !!!! ALU SUBFAMI	5
_	310095	Al921750	Hs.144871	ESTS	5
10	310098	Al685841	Hs.161354	ESTs	11.6
		AJ478629	Hs.158465		5.8
		Al262148	Hs.145569		9.7
					10.4
		Al734009		EST cluster (not in UniGene)	,
	310409	Al612775	Hs.145710		4.6
15	310431	A1420227	Hs.149358	ESTs	72.9
		AW292180	Hs.156142		7.6
		Al338013	Hs.140546		9.2
					4.5
		AW269082	Hs.175162		
	310787	AW262580	Hs.147674		4.9
20	310816	Al973051	Hs.224965	ESTs	7.6
	311251	A1655662	Hs.197698		41.3
		Al767957		ESTs; Weakly similar to Y38A8.1 gene pro	4.5
		A1679524		ESTs; Moderately similar to III! ALU SUB	4.6
	311515	AW136713	Hs.23862	ESTs	5.9
25	311574	Al824863	Hs.211420	ESTs	4.8
		AI828254	Hs.271019	ESTs	5.8
		AI682088	Hs.79375		26.4
		AI809519	Hs.27133		6.4
	311688	AW025661	Hs.240090	ESTs	7.4
30	311783	Al682478	Hs.13528	EST	4.6
		AA765470	Hs.85092	ESTs	6.7
		AW014013	Hs.107056		. 5.3
		R16890	Hs.137135		5.6
	311932	AW451654	Hs.257482	ESTs	4.3
35	312153	AA759250	Hs.118625	cytochrome b-561	11
		AA834800	Hs 326263	EST cluster (not in UniGene)	16.9
		Al380207	Hs.125276		4.7
		C01367	Hs.127128		5.3
	312407	R46180	Hs.153485	ESTs	6.2
40	312424	AA847398	Hs.291997	ESTs	4.8
		R49353	Hs.293892	ESTs	5.2
		R68651	Hs.144997		9.5
					6.3
		C17785	Hs.182738		
	312521	AA033609	Hs.239884		11.2
45	312527	A1695522	Hs.191271	ESTs	4.7
	312539	Al004377	Hs.200360	ESTs	7
		Al623511	Hs.118567		5.1
		AA976064			6.5
			Hs.180842		
~~		AA694607		EST cluster (not in UniGene)	10.8
50		AA772279	Hs.126914	ESTs	5
	312890	A1813654	Hs.5957	ESTs	5.8
		AA939266	Hs.278626		7.7
	212000	H92571	Hs.234478		6.5
	312903	H82371			
		AA836271	Hs.125830		4.6
55	312983	A1079278	Hs.269899	ESTs	5.1
	312996	AA249018	Hs.154331	EST duster (not in UniGene)	7
		N36417	Hs.144928		6.3
		Al801098			4.3
			Hs.151500		
		AI039702		collagen; type I; alpha 2	4.8
60	313218	AA827805	Hs.124296		5
	313226	Al200281	Hs.123910	ESTs	5.9
	313325	Al420611	Hs.127832		4.6.
		Al088120	Hs.122329		7.4
		AA745689		ESTs; Weakly similar to similar to zinc	6.3
65		AJ261390	Hs.146085		5.6
		A1797301	Hs.5740	ESTs	5.9
		AW467376	Hs.129640		4.3
			He 105140	ECTo: Wookly cimilar to 7V 10EQ E IC also	4.6
		Al273419	ns. 135 146	ESTs; Weakly similar to ZK1058.5 [C.eleg	
	313603	AW468119	HS.287631	EST cluster (not in UniGene)	6.8

		AW295194		DKFZP434N126 protein	5.2
		AW468402	Hs.254020		7.8
		AA688292	Hs.337786		4.4
~		AA507227	Hs.6390	ESTs	8.1
5	313638	A1753075	Hs.104627		6.7
	313670	C16690		EST cluster (not in UniGene)	4.4
		W49823	Hs.104613		4.4
	313676	AA861697	Hs.120591	EST duster (not in UniGene)	13.4
	313703	Al161293	Hs.280380	ESTs; Weakly similar to KIAA0525 protein	10
10	313712	AA768553	Hs.74170	ESTs	5.2
	313800	AW296132	Hs.55098	ESTs	5.4
	313979	AI535895	Hs.221024	ESTs	4.3
*		Al732100	Hs.187619		13.6
		AW245993	Hs.223394		6.4
15		Al821895	Hs.193481		29.4
		AL138431	Hs.164243	· ·	4.6
		AL036001	Hs.48376		5.7
		AA743396	Hs.189023		4.9
		AA732359	Hs.96264		4.4
20		AA731431		EST cluster (not in UniGene)	6.4
20		Al280112	Hs.125232		5.3
		Al754701		ESTs; Weakly similar to alternatively sp	6.2
		AI052358	Hs.193726		4.5
		AW207206	Hs.136319		17
25				•	8.9
23		AW502698	Hs.118152		9.4
		AI538226	Hs.32976		
		AA481027		ESTs; Weakly similar to ORF YGR245c [S.c	8
		AA493811	Hs.294068		6
20		Al672225	Hs.222886	=-:-	19.3
30	314916	AA548906 AA521381	Hs.122244		4.5
	314954	AA521381	Hs.187726		5.3
	314981	AA524953 AA533447	Hs.293334		4.6
				EST cluster (not in UniGene)	5.1
~~		AW292425	Hs.163484		15.5
35		AA876910	Hs.134427		20
	315073	AW452948	Hs.257631		5.3
	315084	Al821085		ESTs	8.2
	315214	Al915927	Hs.34771		5.4
	315220	Al420753		ESTs	5.1
40	315278	Al985544	Hs.12450		5.8
	315282	Al222165	Hs.144923	ESTs	4.5
	315368	AW291563	Hs.104696	ESTs	8
	315369	AA764918	Hs.256531	ESTs	4.8
	315378	Al263393	Hs.145008	ESTs	6.2
45	315379	Al378329	Hs.126629	ESTs	5.4
	315402	AW293424	Hs.75354	ESTs	5.1
		AA977935	Hs.127274	ESTs	6.6
		AW003416	Hs.160604		5.5
		R37257	Hs.184780	ESTs	8.1
50		AW198103	Hs.158154		9.9
		AA837085	Hs.220585		7.8
		AW449285	Hs.313636		8.9
		Al418055	Hs.161160		5.1
		AA744015		EST cluster (not in UniGene)	6.1
55		T05558		EST cluster (not in UniGene)	6.8
33		Al391470	Hs.158618		5.3
		AA744875	Hs.189413		5
		AA679430	Hs.191897	FSTe	5.7
		AI800041	Hs.190555		9.2
60			Hs.119898		4.3
5 0		AA764950 AA708016	Hs.190389	FSTe	5.9
				EST cluster (not in UniGene)	6.7
	310005	AA693880			
		AW517542	Hs.293273		5.5
65	316100	AW203986	Hs.213003		5.1
65		Al127483	Hs.120451		8.2
		AA760894	Hs.153023		17.1
		AA768025	Hs.186854	E01	4.6
		AW135854	Hs.132458	E015	4.3
	316667	AW015940	Hs.232234	EDIS	7.6

		AA831215		ESTs; Weakly similar to predicted using	5.1
	316905	AW138241	Hs.210846		6.4
		AW051597	Hs.143707	ESTs	4.4
	317019	AA864968	Hs.127699		11
5	317194	AW445167	Hs.126036		13.5
	317224	D56760	Hs.93029		8.7
	317404	AI806867	Hs.126594		8.7
		AA931245	Hs.137097	ESTs	11.1
	317548	Al654187	Hs.195704	ESTs	14.2
10	317651	AW292779	Hs.169799	ESTs	5.8
	317758	AI733277	Hs.128321	ESTs	5.4
	317850	N29974	Hs.152982	EST duster (not in UniGene)	11.4
	317869	AW295184	Hs.129142	ESTs; Weakly similar to DEOXYRIBONUCLEAS	
	317902	A1828602	Hs.211265		5.3
15	317916	AI565071	Hs.159983	ESTs	7.7
	318239	AI085198	Hs.164226		13.1
	318268	Al817736	Hs.182490	ESTs	6.2
		AW294013	Hs.200942		4.6
	318363	R45530	Hs.1440	gamma-aminobutyric acid (GABA) A recepto	6
20	318428	Al949409	Hs.194591	ESTs	12.3
		Al151010	Hs.157774	ESTs	4.3
	318524	AW291511	Hs.159066		25.9
	318540	T30280		EST cluster (not in UniGene)	7
	318591	AW206806	Hs.115325		4.8
25		Al133617	Hs.10177		5.5
		AW175665	Hs.278695		5.7
		AJ493742	Hs.165210		11
		W26276	Hs.136075		5.9
20		AA578265	Hs.7130	copine IV	5.5
30		Z45131	Hs.23023		16.9
		F06504		EST duster (not in UniGene)	4.6
		AF071538		prostate epithelium-specific Ets transcr	6.6
		R21054	Hs.180532		4.9
25		D78808	Hs.283683		8.2
35		AA621606	Hs.117956	ESTS	9.3 14.3
		AA460775 AA424266	Hs.6295	EST cluster (not in UniGene)	12.8
		AA337642		nuclear factor related to kappa B bindin	5.1
		AA179304		ESTs; Moderately similar to !!!! ALU SUB	4.3
40		T80579	Hs.290270		5.8
10		AI653733	Hs.271593		8.5
		AW296219		RAB7; member RAS oncogene family-like 1	9.8
		T99949		EST cluster (not in UniGene)	9.8
		AL039402		DEME-6 protein	7.9
45		AF071202		ATP-binding cassette; sub-family C (CFTR	56.2
	320455	R49889		EST cluster (not in UniGene)	8.3
	320464	Al089817	Hs.237146		5.4
	320561	NM_006953	Hs.159330	EST cluster (not in UniGene)	7
	320574	AL049443	Hs.161283	Homo sapiens mRNA; cDNA DKFZp586N2020 (4.4
50	320576	AL049977	Hs.162209	Homo sapiens mRNA; cDNA DKFZp564C122 (fr	6.7
	320654	AW263086	Hs.118112	ESTs	6
	320796	AF038966	Hs.31218	secretory carrier membrane protein 1	13.5
	320800	A1681006	Hs.71721	ESTs	6.2
	320813	AW360847	Hs.16578	ESTs	9.3
55	320853	Al473796	Hs.135904	ESTs	8.1
		D59945	Hs.65366	•	6
		AA633772	Hs.116796		9.2
		AW195012	Hs.293970		5
~		H19732	Hs.247917		5.9
60		AA018386	Hs.64341	ESTs	4.6
		H52462		EST cluster (not in UniGene)	5.8
		AB033041		EST duster (not in UniGene)	8.4
		AW372449		EST duster (not in UniGene)	7.3
CE		AW297633	Hs.118498		14.7
65		H80483	ris.46903	EST duster (not in UniGene)	9.2
		H86021		ESTs; Weakly similar to hMmTRA1b [H.sapl	4.8 5.5
		Al791838	Hs.193465		4.6
		Al356352 Al204177	Hs.108932 Hs.237396		6.6
	JE 1044	rueum 1 / /	110.201000	LUIO	

	321681	AA233821	Hs.190173	EST cluster (not in UniGene)	4.6
	321726	X91221	Hs.144465	EST cluster (not in UniGene)	5
		U29112		EST cluster (not in UniGene)	6.2
		AL109784		EST cluster (not in UniGene)	4.6
5		N55158	Hs.29468		4.6
9		AA746374	Hs.145010		8.2
		AW410646	Hs.164649		5.1
		AL137646		EST cluster (not in UniGene)	4.3
10		AF085833		EST cluster (not in UniGene)	4.3
10		AI890619	Hs.179662	nucleosome assembly protein 1-like 1	4.4
		AF086283		EST cluster (not in UniGene)	5.8
	322303	W07459	Hs.157601	EST cluster (not in UniGene)	22
	322437	AW393804	Hs.170253	ESTs; Weakly similar to rabaptin-4 [H.sa	4.4
	322493	AF143235	Hs.279819	EST cluster (not in UniGene)	7.2
15	322782	AA056060	Hs.202577	EST duster (not in UniGene)	18.4
	322811	AA782292	Hs.105872		6.9
		AW043782	Hs.293616		10.7
		Al807883	Hs.180059		5
		Al986306		ESTs; Weakly similar to KIAA0969 protein	11.9
20		AA081924	Hs.124918		7.1
20		AA669253	Hs.136075		4.5
		Al351191	Hs.128430		6.6
		AA422116	Hs.191461		4.7
		-		ESTS	
25		AA336609	Hs.10862		6.9
25		AL118747	Hs.26691	EST cluster (not in UniGene)	8.3
		AA148950	Hs.188836		4.6
		AL118923		EST cluster (not in UniGene)	7.5
		AA157726	Hs.264330		7.5
		AA157867	Hs.5722	ESTs	4.7
30	323097	Z44354		guanine nucleotide binding protein (G pr	4.9
		AA176982	Hs.270124	EST cluster (not in UniGene)	6.1
	323136	AL120351	Hs.30177	EST cluster (not in UniGene)	4.3
	323175	Al827137	Hs.336454	ESTs	6.2
	323218	AF131846	Hs.13396	Homo sapiens clone 25028 mRNA sequence	6.3
35	323226	AF055019	Hs.21906	Homo sapiens clone 24670 mRNA sequence	12.6
	323236	AA363148	Hs.293960		10.9
	323262	AI829770	Hs.190642	ESTs	7.6
	323276	AA836452	Hs.323822	ESTs	7.6
		AA639902	Hs.104215	ESTs	24.7
40	323335	Al655499	Hs.161712	ESTs	14.1
		AL134875	Hs.108646		5.3
		AL135067	Hs.117182		6.1
		C05278		ESTs; Moderately similar to [PYRUVATE DE	8.5
		Al826801	Hs.300700		4.5
45		H71721	Hs.128387		4.4
73		AI814405	Hs.224569		5.8
		AA314280		EST cluster (not in UniGene)	5.0
		AW263526	Hs.243023		7.7
				EST cluster (not in UniGene)	
50		AA317561			5.9 6.2
J0		AA740405	Hs.108806	CAT.	•
		AA337621	HS.13/635		5
		AA354940	Hs.145958		10.7
		AI636775	Hs.6831	ESTs	5.4
~~		AA367032	Hs.217882		5.8
55		AA844907	Hs.274454	EST duster (not in UniGene)	4.4
		AW177009		EST cluster (not in UniGene)	4.6
	324130	AL046575	Hs.130198		11
	324295	Al146686	Hs.143691	ESTs	13.7
		Al524039	Hs.192524	ESTs	6.8
60	324307	AA627642	Hs.4994	transducer of ERBB2; 2 (TOB2)	4.9
		AA884766		EST cluster (not in UniGene)	4.3
		F28212	Hs.284247	EST duster (not in UniGene)	4.7
		AA464018		EST cluster (not in UniGene)	13.6
		AW014022	Hs.170953		7.6
65		AW501974	Hs.74170	ESTs	5.6
J.		AW016378	Hs.292934		24.2
		AA508552	Hs.195839		54
		A1346282	Hs.87159		4.6
		AA448021	Hs.94109		5.7
	324020	rvrrrouz I	110.04100	For enough files in ourderies	J.7

```
9
        324626 Al685464
                                       ESTs
        324658 Al694767
                                                                                22
                            Hs.129179 ESTs
                                                                                 4.9
                            Hs.112451 ESTs
        324676 AW503943
                            Hs.293341 ESTs; Weakly similar to Pro-a2(XI) [H.sa
                                                                                 10.6
        324691 Al217963
                            Hs.257339 ESTs
 5
                                                                                 10.2
        324696 AA641092
        324713 AW340249
                            Hs.163440 ESTs
                                                                                 5.5
                            Hs.131798 EST cluster (not in UniGene)
                                                                                 7.2
        324715 AI739168
                                                                                 34.4
                            Hs.116467 ESTs
        324718 Al557019
        324720 AA578904
                            Hs.292437 ESTs
                                                                                 4.8
10
                                                                                 7.9
                            Hs.272072 ESTs; Moderately similar to IIII ALU SUB
        324752 Al279919
                            Hs.144871 EST cluster (not in UniGene)
                                                                                 5.2
        324753 AA612626
                             Hs.159337 ESTs
                                                                                 7.6
        324790 Al334367
                                                                                 12.6
                            Hs.14553 ESTs
        324801 Al819924
                                                                                 6.5
                                       ESTs
        324804 Al692552
15
                            Hs.337533 ESTs
                                                                                 4.5
        324845 AA361016
                            Hs.136102 KIAA0853 protein
                                                                                 4.4
        324888 Al564134
                                                                                 6.5
        324929 Al741633
                             Hs.125350 ESTs
                                       EST cluster (not in UniGene)
                                                                                 5.1
        324961 AA613792
                                                                                 7.1
                            Hs.22380
                                       ESTs
        325108 AA401863
20
                                       CH.20_hs gi[6552458
                                                                                 9.6
        326816
                                       CH.21_hs gij5867660
                                                                                 4.8
        326997
                                       CH.21_hs gi|6682516
                                                                                 4.3
        327098
                                       CH.07_hs gi|5868455
                                                                                 5.8
        328492
                                       CH.X_hs gi|5868837
                                                                                 4.3
        329362
25
                                       CH.16_p2 gi|6165201
                                                                                 5.5
        329929
                                                                                 7.6
                                       CH.16_p2 gi|5091594
        329960
                                       CH.16_p2 gi|6671887
                                                                                 6
         330020
                                                                                 12.6
                                       CH.05_p2 gi|6013592
         330211
         330384 M23263
                                       androgen receptor (dihydrotestosterone r
                                                                                                                           13.8
30
                                                                                 Antigen, Prostate Specific, Alt. Splice
                                       Hs.321110
         330430 HG2261-HT2352
                             Hs.299867 guanine nucleotide binding protein 4
         330546 U31382
                                       hepatocyte nuclear factor 3; alpha
                                                                                 4.9
         330551 U39840
                             Hs.30732
                                       ESTs
                                                                                 6
         330658 AA319514
                                                                                 5.5
         330700 AA037415
                             Hs.20999
                                       ESTs
                                                                                 5.1
35
                             Hs.6759
                                       ESTs
         330704 AA056557
                             Hs.157078 ESTs
                                                                                 11.7
         330705 AA102571
                             Hs.177576 ESTs: Moderately similar to kynurenine a
                                                                                  14.5
         330706 AA121140
                             Hs.52620
                                       ESTs
         330712 AA167269
                                                                                 7.2
                                       ESTs; Weakly similar to !!!! ALU SUBFAMI
         330725 AA252033
                             Hs.24052
40
                             Hs.35254
                                                                                 4.9
         330732 AA281092
                                       ESTs
                             Hs.15251
         330762 AA449677
                                       Human DNA sequence from clone 437M21 on
                                                                                 18.5
                                                                                 4.3
                             Hs.143187 FK506-binding protein 3 (25kD)
         330763 AA450200
                             Hs.11356
                                       ESTs
                                                                                 5.8
         330772 AA479114
                                                                                  4.6
                                        EST
         330786 D60374
45
                             Hs.91202
                                                                                  15.3
                                       ESTs
         330892 AA149579
                                                                                  10.3
         330949 H01458
                             Hs.142896 ESTs
                                                                                  4.4
         330977 H20826
                             Hs.315181 ESTs
                                                                                  11.8
                             Hs.108920 ESTs
         331017 N24619
                             Hs.14846 ESTs
                                                                                  11.6
         331099 R36671
50
                                                                                  4.8
                             Hs.268714 ESTs
         331128 R51361
                                                                                  13
         331151 R82331
                             Hs.268838 ESTs
                                                                                  4.9
                             Hs.168439 ESTs
         331195 T64447
         331320 AA262999
                             Hs.300141 ESTs
                                                                                  4.8
                                                                                 6.1
                             Hs.87929 ESTs
         331321 AA278355
55
                                                                                  92
                             Hs.118630 ESTs
         331337 AA287662
                             Hs.88143
                                       ESTs
                                                                                  9.9
         331348 AA400596
                                                                                  4.3
                             Hs.81897
                                       ESTs
         331359 AA416979
                                                                                  4.6
         331383 AA454543
                             Hs.43543
                                       ESTs
                             Hs.237339 ESTs; Moderately similar to !!!! ALU SUB
                                                                                  4.9
         331422 F10802
                                                                                  7.5
60
                             Hs.41223
                                       ESTs
         331442 H77381
         331466 N21680
                             Hs.43455
                                       ESTs
                                                                                  5.4
                             Hs.44076
                                        ESTs
                                                                                  6.5
         331479 N27154
                             Hs.291039 ESTs; Weakly similar to hypothetical 43.
                                                                                  12.5
         331490 N32912
         331493 N34357
                             Hs.93817 ESTs
                                                                                  4.6
65
                             Hs.48703
                                        ESTs
                                                                                  9.2
         331561 N62780
                                                                                 4.6
         331615 N92352
                             Hs.5472
                                        ESTs
         331659 W48868
                             Hs.334305 ESTs
                                                                                  8.7
                             Hs.65949 KIAA0888 protein
                                                                                  10.3
         331696 Z38907
                             Hs.187958 ESTs
                                                                                  4.8
         331811 AA404500
```

	331848	AA417039	Hs.98268	signal recognition particle 72kD	7.5
		AA429445	Hs.98640	ESTs	6.5
		AA431407	Hs.98802	Homo sapiens Chromosome 16 BAC clone CIT	33.6
5		AA460158	Hs.99589 Hs.105322	KIAA1028 protein	6.8 5.3
5		AA464518 AA490831	Hs.201591		10.8
		AA599477	Hs.291156		4.4
	332173		Hs.100725		5.5
		N58172		ESTs	14.2
10	332249	N62096	Hs.194140		7.2
		T79428	Hs.339667		5.6
		AA340504	LI- 007704	ESTs; Weakly similar to similar to human	21.2 15.3
		N75542 N95495	Hs.56729	transcription factor 4 ESTs; Highly similar to GTP-binding prot	7.1
15		L38503		glutathione S-transferase theta 2	6.6
10		AA281753	Hs.17731	inositol 1;4;5-triphosphate receptor; ty	5.8
		M31682	Hs.19280	inhibin; beta B (activin AB beta polypep	5.5
		M99487		folate hydrolase (prostate-specific memb	38.1
20		N48715	Hs.20991	ESTs	6.5
20		D84454	Hs.22587	solute carrier family 35 (UDP-galactose methyl CpG binding protein 2	4.8 5.6
		AA279313 AA412405	Hs.32951 Hs.40513	ESTs; Weakly similar to BETA GALACTOSIDA	5.6
		N95742	Hs.6390	ESTs	6.9
		T94885	Hs.75725	carboxypeptidase E	24.3
25		D26070	Hs.79306	inositol 1;4;5-triphosphate receptor, ty	9.9
		L00058	Hs.79630	v-myc avian myelocytomatosis viral oncog	5.6
		R72029	Hs.83428	synaptophysin-like protein	5
		AA233258		ESTs; Weakly similar to D1007.5 [C.elega CH22_FGENES.6_2	4.5 30.8
30	332797 332798			CH22_FGENES.6_5	66.8
50	332799			CH22_FGENES.6_6	19.8
	332933			CH22_FGENES.38_7	5.6 .
	332980			CH22_FGENES.54_1	5.5
35	332984 333168			CH22_FGENES.54_6 CH22_FGENES.94_1	4.9 4.7
JJ	333169			CH22_FGENES.94_2	4.4
	333452			CH22_FGENES.157_1	4.8
	333456			CH22_FGENES.157_5	4.3
40	333458			CH22_FGENES.157_7	4.6
40	333611 333621			CH22_FGENES.217_6 CH22_FGENES.219_5	4.7 5.5
	333814			CH22_FGENES.282_2	7.1
	333849			CH22_FGENES.290_8	6.2
	333949			CH22_FGENES.303_5	4.3
45	333951			CH22_FGENES.303_7	4.9
	333955			CH22_FGENES.303_11	5.6 5.1
	334150 334223			CH22_FGENES.339_1 CH22_FGENES.360_4	20.3
	334297			CH22_FGENES.372_3	9.4
50	334443			CH22_FGENES.387_2	4.6
	334444			CH22_FGENES.387_4	5.6
	334447			CH22_FGENES.387_7	13.1
	334570			CH22_FGENES.405_11	5.4
55	334749 334777			CH22_FGENES.427_1 CH22_FGENES.430_9	5.3 4.7
33	334960	•		CH22 FGENES.465_29	5.2
	335179			CH22_FGENES.504_9	8.8
	335293			CH22_FGENES.527_6	4.7
60	335550			CH22_FGENES.576_11	5.1
60	335581			CH22_FGENES.581_19 CH22_FGENES.581_25	5.7 4.3
	335586 335809			CH22_FGENES.617_6	6.2
	335810			CH22_FGENES.617_7	5.8
	335822			CH22_FGENES.619_7	7.1
65	335824			CH22_FGENES.619_11	8.5
	335853			CH22_FGENES.626_5	4.3
	335886			CH22_FGENES.632_4	4.3
	336034 336441			CH22_FGENES.678_5 CH22_FGENES.827_7	6.8 7.6
	330441			VI 166_[GC1160.061_[7.0

	336624	CH22_FGENES.6-3	43.3
	336625	CH22_FGENES.6-4	37.9
	336679	CH22_FGENES.43-7	5.3
	337577	CH22_C65E1.GENSCAN.8-1	4.9
5	338255	CH22_EM:AC005500.GENSCAN.276-3	13.4
_	338260	CH22_EM:AC005500.GENSCAN.279-10	4.6
	338561	CH22_EM:AC005500.GENSCAN.421-5	4.6
	338562	CH22_EM:AC005500.GENSCAN.421-6	4.3
	338759	CH22_EM:AC005500.GENSCAN.517-6	5.1
10	338763	CH22_EM:AC005500.GENSCAN.517-16	5.5
	338764	CH22_EM:AC005500.GENSCAN.517-17	7.1

TABLE 3A shows the accession numbers for those primekeys lacking unigeneID's for Table 3. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: Unique Eos probeset identifier number Gene cluster number Accession: Genbank accession numbers

5

	Accessi	on. Gendank accessi	Gendank accession numbers					
15	Pkey	CAT number	Accession					
	123619	371681_1	AA602964 AA609200					
		143512_1	Z24878 AA494098 F13654 AA494040 AA143127					
	103677	41847_1	Z83806 AJ132091 AJ132090					
20	125992	1589048_1	H48372 W01626					
	109342	genbank_AA213620	AA213620	•				
	125154	genbank_W38419	W38419					
	101447	entrez_M21305	M21305					
	124357	genbank_N22401	N22401					
25		genbank_AA136590	AA136590					
		47271_1	W69304 AF086283 W69200					
		350959_1	Al821085 AW973464 AA554802 Al821831 AA657438 AA640756 AA650339					
	324019	262792_1	AW177009 Al381610					
	324330	300543_1	AA884766 AW974271 AA592975 AA447312					
30	324626	336411_1	Al685464 AW971336 AA513587 AA525142					
	303029	37699_1	AF199613 AF108756					
	324804	398093_1	Al692552 Al393343 Al800510 Al377711 F24263 AA661876	•				
	324961		AA613792 AW182329 T05304 AW858385					
	329362	c_x_hs						
35		CH22_4071FG_6_3_						
	336625	CH22_4072FG_6_4_						
	336679	CH22_4157FG_43_7_						
	338255	CH22_6856FGLINK_EM:ACOC						
	338260	CH22_6863FGLINK_EM:AC00)					
40		c16_p2						
	329960	c16_p2						
		CH22_7294FGLINK_EM:ACO						
		CH22_7295FGLINK_EM:ACOC						
	338759	CH22_7581FGLINK_EM:ACO)					
45		CH22_7585FGLINK_EM:ACO						
		CH22_7586FGLINK_EM:ACO						
		CH22_400FG_94_1_LINK_EM:A						
		CH22_401FG_94_2_LINK_EM:A						
~ 0		CH22_702FG_157_1_LINK_EM:						
50		CH22_706FG_157_5_LINK_EM:						
ſ		CH22_708FG_157_7_LINK_EM:						
		CH22_872FG_217_6_LINK_EM:						
		CH22_882FG_219_5_LINK_EM:						
		CH22_1083FG_282_2_LINK_EN						
55 °		CH22_1118FG_290_8_LINK_EM						
		CH22_2515FG_504_9_LINK_EN			•			
		CH22_1225FG_303_5_LINK_EN						
		CH22_1227FG_303_7_LINK_EN						
		CH22_1231FG_303_11_LINK_E						
60	335293	CH22_2635FG_527_6_LINK_EN			•			
	326816	c20_hs						
	326997	c21_hs	•	,				
		CH22_2905FG_576_11_LINK_E						
		CH22_2938FG_581_19_LINK_E						
65	335586	CH22_2944FG_581_25_LINK_E						

	328492	c_7_hs	
	335809	CH22_3181FG_617_6_LINK_EM	Γ
	335810	CH22_3182FG_617_7_LINK_EM	
		CH22 3195FG 619 7 LINK EM	
5		CH22_3197FG_619_11_LINK_E	
. •		CH22_3228FG_626_5_LINK_EM	
		CH22 3261FG 632 4 LINK EM	
		c16_p2	
		c 5 p2	
10		CH22_5864FGLINK_C65E1.G	·
10		Al364186	
		CH22 13FG_6 2 LINK C4G1.G	
		CH22_14FG_6_5_LINK_C4G1.G	
		CH22 15FG 6 6 LINK C4G1.G	
15		CH22 1429FG 339 1 LINK EM	
1.5		CH22_154FG_38_7_LINK_C20H	
		CH22 204FG 54 1 LINK EM:A	
		CH22 208FG 54 6 LINK EM:A	· ·
		CH22_1507FG_360_4_LINK_EN	
20		CH22_1588FG_372_3_LINK_EN	
20		c21_hs	•
		CH22_1742FG_387_2_LINK_EN	
		CH22_1743FG_387_4_LINK_EN	
		CH22 1746FG 387 7 LINK EM	
25		CH22 1875FG 405 11 LINK E	
23		CH22 2061FG 427 1 LINK EM	
		CH22 2089FG 430 9 LINK EM	
	••••	CH22 3419FG 678 5 LINK DJ	
		CH22 2281FG 465 29 LINK E	
30		CH22 3861FG 827 7 LINK DJ	
		9851_2	U39840 NM_004496 AW135607 BE087458 BE087567 AA177116 AW195705 AW750756 Al811008 Al694151
			BE348594 AW971075 Al347950 Al201455 Al073898 AA652680 AA613671 Al318364 AA507550 AA693692
			Al032599 AA991871 Al269801 AW948974 T74639 AA532907 AW949173
	330786	53973_3	BE379594 Al192455 AL039862 Al744012 Al761735 AW243181 Al743687 Al928223 Al423022 Al627855
35		_	AI636059 AI651571 AW802044 AI826995 AI431733 AI539125 AA863056 AW270910 AI768930 AW008835
			AW615183 AW591147 Al695294 Al672106 AA506358 Al308060 AA011556 AA962437 Al935488 BE219625
			Al004356 AW151394 Al218466 N66178 Al419784 AW242519 AW946907 D60374 AA989263 Al698799
		•	AA470460 Al824167
	332247	372969_1	AA669097 AA513815 AA026798 AA676526 AA704429 AA704269 AW118292 AA579216 N58172
40	332396	20265_1	AW579842 BE156562 BE156690 BE156489 BE081033 AK001559 BE149402 M85387 AW367811 AW367798
		•	R17370 Al908947 AA382932 R58449 H18732 AA371231 AW962899 AA713530 AW892946 R53463 H11063
			AW068542 Z40761 BE176212 BE176155 W23952 W92188 AW374883 AA303497 AW954769 AA036808
			BE168063 AW382073 AW382085 AL041475 H80748 AI078161 BE463983 AI805213 AI761264 W94885
			N94502 AI623772 AI419532 AI610302 AI634190 AW002516 AW150777 AI352312 AI367474 AW204807
45			Al675502 Al337026 AW134715 BE328451 Al123157 Al560020 Al300745 Al608631 Al248873 AA742484
			AW051635 H18646 AI245045 AA507111 AI640510 AI925594 AA115747 AA143035 AA151106
	332781	32044_1	AK001764 BE313896 AA380199 AA380151 AA194996 AW118089 AA495871 AW975219 AW085598
			Al378909 AW992310 AW992409 Al911857 AA657643 Al804471 Al242589 Al623968 R09556 Al129100
~0			Al206500 AA680094 AA677784 Al023178 Al277519 AA424742 Al240654 AA232846 Al804273 Al382376
50			AA001729 W90790 BE090656 AW295015 Al674596 Al431734 Al420517 AW769185 Al128355 Al192474
			AI820001 AA001929 AA706925 AI076676 AI499119 AI200493 AI695919 AI376217 W69195 W69261
			AW305099 W90320 BE048357 Al658856 AA838534 AA233258 Al753393 AA709227 Al674387 Al872616
			•

TABLE 3B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 3. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Ref: publication entitled The Strand:	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.
----	---	--

5

						
Pkey	Ref	Strand	Nt_position			
333611	Dunham, I. et.al.	Plus	6548368-6548507			
	Dunham, I. et.al.		8597414-8597560			
	Dunham, I. et.al.		7894165-7894252			
	Dunham, I. et.al.		8018323-8018472			
	Dunham, I. et.al.		8589634-8589791	•		
	Dunham, I. et.al.		8592501-8592637			
	Dunham, I. et.al.		8597414-8597560	·.		
	Dunham, I. et.al.		10529221-10529854			
	Dunham, I. et al.		13420934-13421058			
	Dunham, I. et.al.		14298981-14299056			
	Dunham, I. et.al.		14306433-14306492			
			14308764-14308824			
	Dunham, I. et.al.					
	Dunham, I. et.al.		14994868-14994943			
	Dunham, I. et.al.		16259586-16260166			
	Dunham, I. et.al.		21634405-21634526			
	Dunham, I. et.al.		24976198-24976334			
	Dunham, I. et.al.		24990333-24990497			
	Dunham, I. et.al.		26310772-26310909			
	Dunham, I. et.al.		26314767-26314849			
	Dunham, I. et.al.		26364087-26364196			
	Dunham, I. et.al.		26376860-26376942			
	Dunham, I. et.al.		26934235-26934364			
	Dunham, I. et.al.		29014404-29014590			
	Dunham, I. et.al.		34187606-34187663			
	Dunham, I. et.al.		595377-595678			
	Dunham, I. et.al.		15458919-15459257			
			216964-216798			•
	Dunham, I. et.al.		232147-231974			
	Dunham, I. et.al.		232421-232307			
	Dunham, I. et.al.		2035790-2035681			
	Dunham, I. et.al.		5136165-5136019			
	Dunham, I. et.al.		2632606-2632457			
	Dunham, I. et.al.		3729896-3729788			
	Dunham, I. et.al.		3730864-3730767			
	Dunham, I. et.al.		5136165-5136019			
	Dunham, I. et.al.		2631933-2631797			
	Dunham, I. et.al.		5143942-5143806			
	Dunham, I. et.al.		12734365-12734269			
	Dunham, I. et.al.		16090686-16090106			
	Dunham, I. et.al.		20160968-20160795			
	Dunham, I. et.al.		22316408-22316275			•
	Dunham, I. et.al.		24668714-24668658			
	Dunham, I. et.al.		26614629-26614506			
	Dunham, I. et.al.		227714-227577		•	
	Dunham, I. et.al.		229124-229024			
	Dunham, I. et al.		2035790-2035681			
	Dunham, I. et.al.		15242294-15242231			
338561	Dunham, I. et.al.		22311966-22311856			
	Dunham, I. et al.		22312594-22312465		•	
338759	Dunham, I. et.al.		26582475-26582199			
338763	Dunham, I. et.al.	Minus	26628148-26628009			
	Dunham, I. et.al.		26641232-26641101			

	329960	5091594	Minus	1031-1162
	329929	6165201	Minus	156410-156553
	330020	6671887	Plus	172397-172491
_	326816	6552458	Plus	198354-198436
5	326997	5867660	Minus	71389-72147
	327098	6682516	Minus	1061684-1062361
	330211	6013592	Plus	59158-59215
	328492	5868455	Minus	46094-46241
	329362	5868837	Minus	65688-68173
10				

TABLE 4: shows a preferred subset of the Accession numbers for genes found in Table 3 which are differentially expressed in prostate tumor tissue compared to normal prostate tissue.

Pkey: Unique Eos probeset identifier number
ExAccn: Exemplar Accession number, Genbank accession number
UnigenelD: Unigene number

Unigene ID: Unigene number
Unigene Title: Unigene gene title
R1: Ratio of tumor to normal body tissue

5

15	Pkey	ExAccn	UnigeneiD	Unigene Title	R1
13	100210	HG4020-HT42	90Hs 2387	Transglutaminase	10.5
		U75272	Hs.1867	progastricsin (pepsinogen C)	10.6
		X02544	Hs.572	orosomucoid 1	22.6
		AA236476		ESTs; Weakly similar to transmembrane pr	10.3
20		AA282138	Hs.11325	ESTs	14
		AA419461	Hs.23317		10.9
		AA156790	Hs.262036		15.3
		F01811		ESTs; Moderately similar to voltage-gate	10.8
		T23855		KIAA1028 protein	10.8
25	114124	Z38595	Hs.125019	ESTs; Highly similar to KIAA0886 protein	21.3
	122791	AA460158		KIAA1028 protein	12.4
	124352	N21626	Hs.102406	ESTs	10.2
	301042	Al659131	Hs.197733	ESTs	24.9
	302005	Al869666	Hs.123119		36.8
30 .		NM_004917		EST cluster (not in UniGene) with exon h	26.8
		AA508353		relaxin 1 (H1)	78.8
		AA255977		ESTs; Highly similar to ubiquitin-conjug	19.5
		AW503733	Hs.9414	ESTs	13
25		Al420227	Hs.149358		72.9
35		Al655662	Hs.197698		41.3
		Al682088	Hs.79375	ESTs	26.4
		AA759250		cytochrome b-561	11
		AA033609	Hs.239884		11.2
40		AA861697		EST duster (not in UniGene)	13.4
40	•	Al821895	Hs.193481		29.4 19.3
		A1672225	Hs.222886 Hs.163484		15.5
		AW292425 AA876910	Hs.134427		20
		AI654187	Hs.195704		14.2
45		AW295184		ESTs; Weakly similar to DEOXYRIBONUCLE	
43		AI949409	Hs.194591		12.3
		AW291511	Hs.159066		25.9
	319080		Hs.23023		16.9
		AA460775	Hs.6295	ESTs	14.3
50		AF071202		ATP-binding cassette; sub-family C (CFTR	56.2
-		AW297633	Hs.118498		14.7
		W07459		EST cluster (not in UniGene)	22
		AA056060	Hs.202577	EST duster (not in UniGene)	18.4
		AW043782	Hs.293616		10.7
55		AA639902	Hs.104215	ESTs	24.7
		AW016378	Hs.292934		24.2
		AA508552	Hs.195839	ESTs	54
	324658	A1694767	Hs.129179	ESTs	22
	324691	Al217963	Hs.293341	ESTs; Weakly similar to Pro-a2(XI) [H.sa	10.6
60	324696	AA641092	Hs.257339	ESTs	10.2
	324718	Al557019	Hs.116467		34.4
	330211			CH.05_p2 gi 6013592	12.6
	330430	HG2261-HT23		O Antigen, Prostate Specific, Alt. Splice	13.8
		AA121140	Hs.177576	ESTs; Moderately similar to kynurenine a	14.5
65	330762	AA449677	Hs.15251	Human DNA sequence from clone 437M21 or	n 18.5
	330892	AA149579	Hs.91202	ESTs	15.3
	330949	H01458	Hs.142896	ESTs	10.3

	331099	R36671	Hs.14846	ESTs	11.6
	331151	R82331	Hs.268838	ESTs	13
	331889	AA431407	Hs.98802	Homo sapiens Chromosome 16 BAC clone	CIT 33.6
	332247	N58172		ESTs	14.2
5	332396	AA340504		ESTs; Weakly similar to similar to human	21.2
	332533	M99487	Hs.325825	folate hydrolase (prostate-specific memb	38.1
	332697	T94885	Hs.75725	carboxypeptidase E	24.3
	332797			CH22_FGENES.6_2	30.8
	332798			CH22_FGENES.6_5	66.8
10	332799			CH22_FGENES.6_6	19.8
	334223			CH22_FGENES.360_4	20.3
	336624			CH22_FGENES.6-3	43.3
	336625			CH22 FGENES.6-4	37.9

5

TABLE 4A shows the accession numbers for those primekeys lacking unigeneID's for Table 4. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	Pkey: CAT number: Accession:		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers		
15	Pkey	CAT number		Accession	
20	336625 330211 332797 332798 332799	CH22_14FG_ CH22_15FG_			
25	332247	372969_1 20265_1	3_300_4_LINN_EM	AA669097 AA513815 AA026798 AA676526 AA704429 AA704269 AW118292 AA579216 N58172 AW579842 BE156562 BE156690 BE156489 BE081033 AK001559 BE149402 M85387 AW367811 AW367798 R17370 Al908947 AA382932 R58449 H18732 AA371231 AW962899 AA713530 AW892946 R53463 H11063 AW068542 Z40761 BE176212 BE176155 W23952 W92188 AW374883 AA303497	
30				AW954769 AA036808 BE168063 AW382073 AW382085 AL041475 H80748 Al078161 BE463983 Al805213 Al761264 W94885 N94502 Al623772 Al419532 Al810302 Al634190 AW002516 AW150777 Al352312 Al367474 AW204807 Al675502 Al337026 AW134715 BE328451 Al123157 Al560020 Al300745 Al608631 Al248873 AA742484 AW051635 H18646 Al245045 AA507111 Al640510 Al925594 AA115747 AA143035 AA151106	

TABLE 4B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 4. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey: Ref: Strand:		Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (Gi) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted.					
	Nt_positi	ion:		positions of predicted exons.				
15	Pkey	Ref	Strand	Nt_position				

15	Pkey	Ref	Strand	Nt_position
20	332797	Dunham, I. et.al.	Minus	216964-216798
	332798	Dumham, I. et.al.	Minus	232147-231974
	332799	Dunham, I. et.al.	Minus	232421-232307
	334223	Dunham, I. et.al.	Minus	12734365-12734269
	336624	Dunham, I. et.al.	Minus	227714-227577
	336625	Dunham, I. et.al.	Minus	229124-229024
	330211	6013592	Plus	59158-59215

TABLE 5: 1170 GENES UP-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL ADULT TISSUES

Table 5 shows 1170 genes up-regulated in prostate cancer compared to normal adult tissues. These were selected from 59680 probesets on the Affymetrix/Eos Hu03 GeneChip array such that the ratio of "average" prostate cancer to "average" normal adult tissues was greater than or equal to 3.44. The "average" prostate cancer level was set to the 85th percentile amongst 73 prostate cancers. The "average" normal adult tissue level was set to the 85th percentile amongst 162 non-malignant tissues. In order to remove gene-specific background levels of non-specific hybridization, the 7.5th percentile value amongst the 162 non-malignant tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

	Pkey:	Unique Eos probeset identifier number
15	ExAcon:	Exemplar Accession number, Genbank accession number
	UnigenelD:	Unigene number
	Unigene Title:	Unigene gene title
	R1:	Ratio of tumor to normal tissue

20	Pkey	ExAcen	UnigenelD	Unigene Title .	R1
	446057	AJ420227	Hs.149358	ESTs, Weakly similar to A46010 X-linked	86.42
	400302	N48056	Hs.1915	folate hydrolase (prostate-specific memb	66.46
	414569	AF109298	Hs.118258	prostate cancer associated protein 1	58.36
25	417407	AA923278	Hs.290905	ESTs, Weakty similar to protease [H.sapi	56.16
_	431579	AW971082	Hs.222886	ESTs, Weakly similar to TRHY_HUMAN TRICH	53.38
	409361	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolo	48.28
	409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblast	45.24
	400298	AA032279	Hs.61635	six transmembrane epithelial antigen of	43.48
30	420154	Al093155	Hs.95420	JM27 protein	41.12
	433466	AA508353	Hs.105314	relaxin 1 (H1)	39.88
	400296	AA305627	Hs.139336	ATP-binding cassette, sub-family C (CFTR	38.42
	400292	AA250737	Hs.72472	ESTs	38.00
	432887	Al926047	Hs.162859	ESTs	36.48
35	439176	A1446444	Hs.190394	ESTs, Weakly similar to B28096 line-1 pr	36.45
	430722	AW968543	Hs.203270	ESTs, Weakly similar to ALU1_HUMAN ALU S	33.20
	437052	AA861697	Hs.120591	ESTs	33.02
	418396	A1765805	Hs.26691	ESTs	32.68
	434036	Al659131	Hs.197733	hypothetical protein MGC2849	32.44
40	407709	AA456135	Hs.23023	ESTs	32.10
	426747	AA535210	Hs.171995	kallikrein 3, (prostate specific antigen	31.80
	407168	R45175		ESTs	31.72
	440260	Al972867	Hs.7130	copine IV	30.52
	421513	X00949	Hs.105314	relaxin 1 (H1)	30.10
45	416370	N90470	Hs.203697	ESTs, Weakly similar to I38022 hypotheti	29.68
	407122	H20276	Hs.31742	ESTs	29.24
	400287	\$39329	Hs.181350	kallikrein 2, prostatic	28.90
	432244	A1669973	Hs.200574	ESTs	28.74
~^	451939	U80456	Hs.27311	single-minded (Drosophila) homolog 2	28.74
50	415989	Al267700	Hs.111128	ESTs	28.34
	418961	AW967646	Hs.23023	ESTs	27.34
	425628	NM_004476	Hs.1915	folate hydrolase (prostate-specific memb	27.32
	458509	AA654650	Hs.282906	ESTs	27.24
سر سے	448290	AK002107	Hs.20843	Homo sapiens cDNA FLJ11245 fis, clone PL	27.16
55	428336	AA503115	Hs.183752	microseminoprotein, beta-	26.17
	450096	Al682088	Hs.223368	holocarboxylase synthetase (biotin-[prop	25.60
	400299	X07730	Hs.171995	kallikrein 3, (prostate specific antigen	24.91
	437571	AA760894	Hs.153023	ESTs	24.74
	453160	Al263307	Hs.146228	H2B histone family, member L	24.66
60	453096	AW294631	Hs.11325	ESTs	24.46
	425075	AA506324	Hs.1852	acid phosphatase, prostate	24.23
	407202	N58172	Hs.109370	ESTs	24.18

	101010	********			
	424846	AU077324	Hs.1832	neuropeptide Y	23.57
	453370	A1470523	Hs.182356	ATP-binding cassette, sub-family C (CFTR	23.16
	422805	AA436989	Hs.121017	H2A histone family, member A	22.52
	444917	R68651	Hs.144997	ESTs	22.26
5	408826	AF216077	Hs.48376	Homo sapiens clone HB-2 mRNA sequence	22.02
_	413597	AW302885	Hs.117183	ESTs	21.76
	426429	X73114	Hs.169849		
	_			myosin-binding protein C, slow-type	21.32
	435981	H74319	Hs.188620	ESTs	21.12
10	432966	AA650114		ESTs	21.07
10	418848	Al820961	Hs.193465	ESTs	21.06
	405685			•	20.90
	443271	BE568568	Hs.195704	ESTs	19.98
	418819	AA228776	Hs.191721	ESTs	19.94
	420757	X78592	Hs.99915	androgen receptor (dihydrotestosterone r	19.72
15	418994	AA296520	Hs.89546	selectin E (endothelial adhesion molecul	19.56
15					
	429918	AW873986	Hs.119383	ESTs	19.04
	415539	Al733881	Hs.72472	ESTs	18.43
	450382	AA397658	Hs.60257	Homo sapiens cDNA FLJ13598 fis, clone PL	18.34
••	418829	AA516531	Hs.55999	NK homeobox (Drosophila), family 3, A	18.28
20	429984	AL050102	Hs.227209	hypothetical protein FLJ21617	17.82
	443822	Al087412	Hs.143611	ESTs, Weakly similar to 2004399A chromos	17.66
	431676	Al685464	Hs.292638	gb:tt88f04.x1 NCI_CGAP_Pr28 Homo sapiens	17.64
	410330	AW023630	Hs.46786	ESTs	17.52
	432441	AW292425	Hs.163484	ESTs	17.41
25			•		
23	452792	AB037765	Hs.30652	KIAA1344 protein	17.39
	445472	AB006631	Hs.12784	Homo sapiens mRNA for KIAA0293 gene, par	17.00
	414565	AA502972	Hs.183390	hypothetical protein FLJ13590	16.82
•	430487	D87742	Hs.241552	KIAA0268 protein	16.72
	431716	D89053	Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	16.60
30	419536	AA603305		gb:np12d11.s1 NCI_CGAP_Pr3 Homo sapiens	16.50
	439677	R82331	Hs.164599	ESTs	16.46
	449625	NM_014253	Hs.23796	odz (odd Oz/ten-m, Drosophila) homolog 1	16.32
	408430	S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	16.28
	447033				
35		AI357412	Hs.157601	ESTs	16.02
22	453006	Al362575	Hs.167133	ESTs	15.74
	431474	AL133990	Hs.190642	ESTs	15.70
	420218	AW958037	Hs.22437	ribosomal protein L4	15.64
	408000	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	15.54
	416208	AW291168	Hs.41295	ESTs, Weakly similar to MUC2_HUMAN MUCIN	15.48
40	430226	BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	15.40
	415263	AA948033	Hs.130853	ESTs	15.38
	432437	W07088	Hs.293685	ESTs	15.26
	428398	Al249368	Hs.98558	ESTs	
					15.21
15	429900	AA460421	Hs.30875	ESTs	14.90
45	449156	AF103907	Hs.171353	prostate cancer antigen 3	14.89
	411096	U80034	Hs.68583	mitochondrial intermediate peptidase	14.81
	435974	U29690	Hs.37744	Homo sapiens beta-1 adrenergic receptor	14.76
	444484	AK002126	Hs.11260	hypothetical protein FLJ11264	14.76
	422728	AW937826	Hs.103262	ESTs, Weakly similar to ZN91_HUMAN ZINC	14.60
50	418601	AA279490	Hs.86368	calmegin	14.56
	448999	AF179274	Hs.22791	transmembrane protein with EGF-like and	14.55
	445885	AJ734009	Hs.127699	KIAA1603 protein	14.44
	452712	AW838616	113.12/055	gb:RC5-LT0054-140200-013-D01 LT0054 Homo*	
					14.22
E E	432189	AA527941		gb:nh30c04.s1 NCI_CGAP_Pr3 Homo sapiens	14.12
55	424565	AW102723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	13.78
	429290	AF203032	Hs.198760	neurofilament, heavy polypeptide (200kD)	13.57
	419264	AA877104	Hs.293672	ESTs, Weakly similar to ALUB_HUMAN IIII	13.40
	416445	AL043004	Hs.300678	KIAA0135 protein	13.32
	407275	Al364186		gb:qw34h07.x1 NCI_CGAP_Ut4 Homo sapiens	13.24
60	408369	R38438	Hs.182575	solute carrier family 15 (H+/peptide tra	13.21
55	446720			ESTs	
		Al439136	Hs.140546	— - · -	13.06
	434988	Al418055	Hs.161160	ESTs	13.02
	448172	N75276	Hs.135904	ESTs	12.98
	416182	NM_004354	Hs.79069	cyclin G2	12.94
65	420544	AA677577	Hs.98732	Homo sapiens Chromosome 16 BAC clone CIT	12.79
	445413	AA151342	Hs.12677	CGI-147 protein	12.64
	452588	AA889120	Hs.110637	homeo box A10	12.62
	407819	R42185	Hs.274803	ESTs	12.60
	433444	AW975324	Hs.129816	ESTs	12.60
		ATTOTOGET	13.125010	EQ10	12.00

	404050	A10E 4100	Un 20040	thursid recentor internation protein 15	12.30
	421059	A1654133	Hs.30212	thyroid receptor interacting protein 15 ESTs	12.24
	420077 453930	AW512260 AA419466	Hs.87767	hypothetical protein FLJ10903	12.22
	441610	AW576148	Hs.36727 Hs.148376	ESTs	12.20
5	451009	AA013140	Hs.115707	ESTS	12.18
3	433764	AW753676	Hs.39982	ESTs	12.16
	440286	U29589	Hs.7138	cholinergic receptor, muscarinic 3	12.04
	443912	R37257	Hs.184780	ESTs	11.92
	419526	Al821895	Hs.193481	ESTs	11.91
10	423073	BE252922	Hs.123119	MAD (mothers against decapentaplegic, Dr	11.87
	452784	BE463857	Hs.151258	hypothetical protein FLJ21062	11.86
	414422	AA147224	Hs.71814	ESTs	11.76
	450203	AF097994	Hs.301528	L-kynurenine/alpha-aminoadipate aminotra	11.68
	436679	Al127483	Hs.120451	ESTs, Weakly similar to unnamed protein	11.60
15	440901	AA909358	Hs.128612	ESTs	11.60
	448045	AJ297436	Hs.20166	prostate stem cell antigen	11.51
	433887	AW204232	Hs.279522	ESTs	11.50
	434980	AW770553	Hs.293640	sterol O-acyltransferase (acyl-Coenzyme	11.38
	425905	AB032959	Hs.161700	novel C3HC4 type Zinc finger (ring finge	11.33
20	434680	T11738	Hs.127574	ESTs	11.32
	449650	AF055575	Hs.297647	calcium channel, voltage-dependent, L ty	11.18
	431173	AW971198	Hs.294068	ESTs	11.16
	434539	AW748078	Hs.214410	ESTs, Weakly similar to MUC2_HUMAN MUCIN	11.16
	410037	AB020725	Hs.58009	KIAA0918 protein	11.14
25	417708	N74392	Hs.50495	ESTs	11.14
	458332	Al000341	Hs.220491	ESTs	11.12
	420381	D50640	Hs.301782	phosphodiesterase 3B, cGMP-inhibited	11.10
	425665	AK001050	Hs.159066	hypothetical protein FLJ10188	11.08
20	425710	AF030880	Hs.159275	solute carrier family, member 4	11.08
30	428728	NM_016625	Hs.191381	hypothetical protein	11.04 11.02
	407021	U52077	11- 00050	gb:Human mariner1 transposase gene, comp	11.02
	410733	D84284	Hs.66052	CD38 antigen (p45)	10.90
	401714	AICOGE11	Un 110567	ESTs	10.89
35	434485	Al623511	Hs.118567 Hs.257924	hypothetical protein FLJ13782	10.87
55	415786	AW419196	Hs.505	ISL1 transcription factor, LIM/homeodoma	10.85
	452340 453628	NM_002202 AW243307	Hs.170187	hypothetical protein	10.72
	408063	BE086548	Hs.42346	calcineurin-binding protein calsarcin-1	10.67
	417687	Al828596	Hs.250691	ESTs	10.64
40	434666	AF151103	Hs.112259	T cell receptor gamma locus	10.53
	432374	W68815	Hs.301885	Homo sapiens cDNA FLJ11346 fis, clone PL	10.50
	428819	AL135623	Hs.193914	KIAA0575 gene product	10.48
	413409	Al638418	Hs.21745	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	10.44
	428775	AA434579	Hs.143691	ESTs	10.21
45	436556	Al364997	Hs.7572	ESTs	10.20
	441690	R81733	Hs.33106	ESTs	10.14
	419852	AW503756	Hs.286184	hypothetical protein dJ551D2.5	10.10
	421991	NM_014918	Hs.110488	KIAA0990 protein	10.04
	423698	AA329796	Hs.1098	DKFZp434J1813 protein	10.02
50	452039	Al922988	Hs.172510	ESTs	10.00
	433043	W57554	Hs.125019	ESTs	9.98
	433927	Al557019	Hs.116467	small nuclear protein PRAC	9.97
	445424	AB028945	Hs.12696	cortactin SH3 domain-binding protein	9.96
	432240	A1694767	Hs.129179	Homo sapiens cDNA FLJ13581 fis, clone PL	9.88
55	433104	AL043002	Hs.128246	ESTs, Moderately similar to unnamed prot	9.84
	452744	Al267652	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082 (fr	9.82
	431217	NM_013427	Hs.250830	Rho GTPase activating protein 6	9.75
	427398	AW390020	Hs.20415	chromosome 21 open reading frame 11	9.70
60	446896	T15767	Hs.22452	Homo sapiens mRNA for KIAA1737 protein,	9.70
60	421470	R27496	Hs.1378	annexin A3	9.64
	406554			·	9.60
	401424	A1 447/74	11- 44404	Home continue mDNA: aDNA DICETATOTO104 (f.	9.58
	407902	AL117474	Hs.41181	Homo sapiens mRNA; cDNA DKFZp727C191 (fr	9.56
65	423545	AP000692	Hs.129781	chromosome 21 open reading frame 5	9.54 0.51
65	439024	R96696	Hs.35598	ESTs	9.51
	431548	AI834273	Hs.9711	novel protein hypothetical protein FLJ20624	9.48
	409262	AK000631	Hs.52256	ESTs	9.45 9.42
	446271	D82484 AW013907	Hs.100469 Hs.224276	methylcrotonoyl-Coenzyme A carboxylase 2	9.26
	448692	VIIO 1030/	113.624610	monthology cooks and a continue 2	3.20

	414140	AA281279	Hs.23317	hypothetical protein FLJ14681	9.24
	435980	AF274571	Hs.129142	deoxyribonuclease II beta	9.24
	421246	AW582962	Hs.300961	CGI-47 protein	9.20
	427304	AA761526	Hs.163853	ESTs	9.16
5		AW188551	Hs.99519	hypothetical protein FLJ14007	9.16
J	442914				
	413627	BE182082	Hs.246973	ESTS	9.14
	439699	AF086534	Hs.187561	ESTs, Moderately similar to ALU1_HUMAN A	9.10
	437718	A1927288	Hs.196779	ESTs	9.07
	439820	AL360204	Hs.283853	Homo sapiens mRNA full length Insert cDN	9.06
10	447342	Al199268	Hs.19322	Homo saplens, Similar to RIKEN cDNA 2010	9.05
	446223	BE300091	Hs.119699	hypothetical protein FLJ12969	9.04
				kallikrein 11	9.03
	410001	AB041036	Hs.57771		
	424012	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog	9.03
	441791	AW372449	Hs.175982	hypothetical protein FLJ21159	9.02
15	448206	BE622585	Hs.3731	ESTs, Moderately similar to 138022 hypot	9.02
	414269	AA298489		olfactory receptor, family 51, subfamily	8.99
	442081	AA401863	Hs.22380	ESTs	8.98
	420092	AAB14043	Hs.88045	ESTs	8.85
				2011	8.80
20	411630	U42349	Hs.71119	Putative prostate cancer tumor suppresso	
20	421863	Al952677	Hs.108972	Homo sapiens mRNA; cDNA DKFZp434P228 (fr	8.80
	454141	AW138413	Hs.182356	ATP-binding cassette, sub-family C (CFTR	8.80
	418278	A1088489	Hs.83937	hypothetical protein	8.78
	428330	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin,	8.76
	432415	T16971	Hs.289014	ESTs, Weakly similar to A43932 much 2 p	8.75
25	424906	AI566086	Hs.153716	Homo sapiens mRNA for Hmob33 protein, 3'	8.74
2.5				ESTs	8.72
	415245	N59650	Hs.27252		
	442409	BE208843	Hs.129544	hypothetical protein MGC15438	8.70
	404571				8.66
	418033	W68180	Hs.259855	elongation factor-2 kinase	8.64
30	456497	AW967956	Hs.123648	ESTs, Wealdy similar to AF108460 1 ubinu	8.56
	405876			• • • • • • • • • • • • • • • • • • • •	8.54
	448807	Al571940	Hs.7549	ESTs	8.52
				ESTs	8.48
	445372	N36417	Hs.144928		
25	425171	AW732240	Hs.300615	ESTs	8.44
35	419968	X04430	Hs.93913	interleukin 6 (interferon, beta 2)	8.36
	407385	AA610150	Hs.272072	ESTs, Weakly similar to I38022 hypotheti	8.31
	433172	AB037841	Hs.102652	hypothetical protein ASH1	8.30
	422631	BE218919	Hs.118793	hypothetical protein FLJ10688	8.27
	412719	AW016610	Hs.129911	ESTs	8.24
40	418849	AW474547	Hs.53565	Homo saplens PIG-M mRNA for mannosyltran	8.22
40					8.22
	444922	Al921750	Hs.144871	Homo sapiens cDNA FLJ13752 fis, clone PL	
	427674	NM_003528	Hs.2178	H2B histone family, member Q	8.20
	432101	Al918950	Hs.11092	EphA3	8.17
	416288	H51299		gb:yp07c06.s1 Soares breast 3NbHBst Homo	8.15
45	404915				8.08
	440106	AA864968	Hs.127699	KIAA1603 protein	8.07
	442861	AA243837	Hs.57787	ESTs	8.06
	452259	AA317439	Hs.28707	signal sequence receptor, gamma (translo	8.06
				= ' ' ' ' ' '	8.06
50	443250	AI041530	Hs.132107	ESTs	
JU	437267	AW511443	Hs.258110	ESTS	8.04
	452891	N75582	Hs.212875	ESTs, Weakly similar to DYH9_HUMAN CILI	8.02
	422219	AW978073		regulator of mitotic spindle assembly 1	8.00
	453049	BE537217	Hs.30343	ESTs ·	8.00
	439731	Al953135	Hs.45140	hypothetical protein FLJ14084	7.98
55	408554	AA836381	Hs.7323	nuclear receptor co-repressor/HDAC3 comp	7.94
-	421154	AA284333	Hs.287631	Homo sapiens cDNA FLJ14269 fis, clone PL	7.94
		AA465293	Hs.105069	ESTs	7.94
	430107				
	433404	T32982	Hs.102720	ESTs	7.93
	450813	A1739625	Hs.203376	ESTs	7.90
60	416239	AL038450	Hs.48948	ESTs	7.85
	448212	Al475858		gb:tc87d07_x1 NCI_CGAP_CLL1 Homo sapiens	7.82
	449532	W74653	Hs.271593	ESTs, Moderately similar to A47582 B-cel	7.82
	413930	M86153	Hs.75618	RAB11A, member RAS oncogene family	7.80
				ESTs	7.80
65	458191	Al420611	Hs.127832		
65	444858	Al199738	Hs.208275	ESTs, Weakly similar to ALUA_HUMAN !!!!	7.78
	457498	A1732230	Hs.191737	ESTs	7.78
	407235	D20569	Hs.169407	SAC2 (suppressor of actin mutations 2, y	7.76
	433759	AA680003	Hs.109363	Homo sapiens cDNA: FLJ23603 fis, clone L	7.74
	433805	AA706910	Hs.112742	ESTs	7.74
				-	- • •

	400405	NINA COSSOT	Hs.170040	platelet-derived growth factor receptor-	7.72
	426485	NM_006207	Hs.106795	Homo sapiens cDNA FLJ13136 fis, clone NT	7.72
	446028	R44714			
	418555	Al417215	Hs.87159	hypothetical protein FLJ12577	7.70
_	447499	AW262580	Hs.147674	protocadherin beta 16	7.70
5	419839	U24577	Hs.93304	phospholipase A2, group VII (platelet-ac	7.68
	416857	AA188775	Hs.292453	ESTs	7.68
	413801	M62246	Hs.35406	ESTs, Highly similar to unnamed protein	7.66
	425480	AB023198	Hs.158135	KIAA0981 protein	7.66
	420120	AL049610	Hs.95243	transcription elongation factor A (SII)-	7.64
10	424099	AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	7.64
	446307	T50083	Hs.9094	ESTs	7.63
	429220	AW207206	Hs.136319	ESTs	7.59
	420345	AW295230	Hs.25231	ESTs	7.54
	429208	AA447990	Hs.190478	ESTs	7.54
15	447247	AW369351	Hs.287955	Homo sapiens cDNA FLJ13090 fis, clone NT	7.53
10	440995	T57773	Hs.10263	ESTs	7.53
	448706	AW291095	Hs.21814	interleukin 20 receptor, alpha	7.52
	410227	AB009284	Hs.61152	exostoses (multiple)-like 2	7.49
	431616	AA508552	Hs.195839	ESTs, Weakly similar to I38022 hypotheti	7.46
20			Hs.23349	ESTs	7.44
20	434217	AW014795		Homo sapiens mRNA; cDNA DKFZp434E0528 (f	7.42
	431467	N71831	Hs.256398	Homo sapiens prostein mRNA, complete cds	7.42
	448519	AW175665	Hs.244334		7.40
	446791	AI632278	Hs.34981	ESTS	7.39
05	419743	AW408762	Hs.127478	Homo sapiens clone 24416 mRNA sequence	
25	445855	BE247129	Hs.145569	ESTs	7.36
	425211	M18667	Hs.1867	progastricsin (pepsinogen C)	7.35
	419131	AA406293	Hs.301622	ESTs	7.34
	400294	N95796	Hs.179809	Homo sapiens prostein mRNA, complete cds	7.33
	441736	AW292779	Hs.169799	ESTs	7.28
30	427701	AA411101	Hs.221750	nuclear autoantigenic sperm protein (his	7.24
	457733	AW974812	Hs.291971	ESTs	7.24
	418432	M14156	Hs.85112	insulin-like growth factor 1 (somatomedi	7.22
	441201	AW118822	Hs.128757	ESTs	7.21
	419953	BE267154	Hs.125752	ESTs	7.20
35	419991	AJ000098	Hs.94210	eyes absent (Drosophila) homolog 1	7.20
-	425018	BE245277	Hs.154196	E4F transcription factor 1	7.20
	424560	AA158727	Hs.150555	protein predicted by clone 23733	7.18
	435380	AA679001	Hs.192221	ESTs	7.14
	420658	AW965215	Hs.130707	ESTs	7.12
40	408291	AB023191	Hs.44131	KIAA0974 protein	7.10
-10	409110	AA191493	Hs.48778	niban protein	7.10
	414485	W27026	Hs.182625	VAMP (vesicle-associated membrane protei	7.10
	430039	BE253012	Hs.153400	ESTs, Weakly similar to ALU1_HUMAN ALU S	7.10
	450832	AW970602	Hs.105421	ESTs	7.10
45			Hs.81343	collagen, type II, alpha 1 (primary oste	7.08
43	417153	X57010			7.07
	412446	Al768015	Hs.92127	ESTs	7.06
	412953	Z45794	Hs.238809	ESTs	7.06
	418051	AW192535	Hs.19479	ESTs	7.04
50	421566	NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	
50	446999	AA151520	Hs.279525	hypothetical protein MGC4485	7.04
	440529	AW207640	Hs.16478	Homo sapiens cDNA: FLJ21718 fis, clone C	7.04
	441111	Al806867	Hs.126594	ESTs	7.01
	451027	AW519204	Hs.40808	ESTs	7.00
	408432	AW195262		gb:xn67b05.x1 NCI_CGAP_CML1 Homo sapiens	7.00
55	432223	AA333283	Hs.285336	Homo sapiens, clone IMAGE:3460280, mRNA	7.00
	444805	AB007899	Hs.12017	homolog of yeast ubiquitin-protein ligas	6.99
	414212	AA136569	Hs.295940	KIAA0187 gene product	6.98
	431725	X65724	Hs.2839	Norrie disease (pseudoglioma)	6.98
	449685	AW296669	Hs.66095	ESTs	6.97
60	447313	U92981	Hs.18081	Homo sapiens clone DT1P1B6 mRNA, CAG rep	6.96
	424590	AW966399	Hs.46821	hypothetical protein FLJ20086	6.94
	449655	Al021987	Hs.59970	ESTs	6.92
	419563	AA526235	Hs.193162	Homo sapiens cDNA FLJ11983 fis, clone HE	6.90
	434163	AW974720	Hs.25206	group XII secreted phospholipase A2	6.89
65	415809	Z32789	Hs.46601	ESTs	6.86
UJ	425782	U66468	Hs.159525	cell growth regulatory with EF-hand doma	6.85
				ESTs	6.84
	417958	AA767382	Hs.193417	RAR-related orphan receptor A	6.79
	427408	AA583206	Hs.2156	poly(A)-binding protein, Cytoplasmic 1-i	6.74
	445873	AA250970	Hs.251946	book(v) outmin blomme chobigsum (1	0.14

	440710	A1920783	Hs.191435	ESTs .	6.74
	410718 432363	AA534489	DS. 13 1400	gb:nf76g11.s1 NCL_CGAP_Co3 Homo sapiens	6.74
	436521	AW203986	Hs.213003	ESTs	6.73
	435604	AA625279	Hs.26892	uncharacterized bone marrow protein BM04	6.73
5	419083	Al479560	Hs.98613	Homo sapiens cDNA FLJ12292 fis, clone MA	6.72
	418245	AA088767	Hs.83883	transmembrane, prostate androgen induced	6.70
	420714	BE172704	Hs.222746	KIAA1610 protein	6.70
	412707	AW206373	Hs.16443	Homo sapiens cDNA: FLI21721 fis, done C	6.67 6.66
10	421896	N62293 A1222020	Hs.45107 Hs.182364	ESTs CocoaCrisp	6.66
10	411078 452465	AA610211	Hs.34244	ESTs	6.66
,	422763	AA033699	Hs.83938	ESTs, Moderately similar to MAS2_HUMAN M	6.66
	444618	AV653785	Hs.300171	ELL-RELATED RNA POLYMERASE II, ELONGATIO	6.64
	450164	Al239923	Hs.30098	ESTs	6.63
15	431060	AF039307	Hs.249171	homeo box A11	6.62
	408031	AA081395	Hs.42173	Homo sapiens cDNA FLJ10366 fis, ctone NT	6.62
	420285	AA258124	Hs.293878	ESTs, Moderately similar to ZN91_HUMAN Z	6.62 6.62
	444670	H58373	Hs.37494	hypothetical protein MGC5370 ESTs	6.60
20	444489 445685	AJ151010 AW779829	Hs.157774 Hs.263436	gb:hn88a05.x1 NCI_CGAP_Kid11 Homo sapien	6.60
20	435677	AA694142	Hs.293726	ESTs, Weakly similar to TSGA RAT TESTIS	6.59
	452221	C21322	Hs.11577	hypothetical protein FLJ22242	6.59
	431510	AA580082	Hs.112264	ESTs	6.56
	415874	AF091622	Hs.78893	KIAA0244 protein	6.54
25	418405	AI868282	Hs.11898	ESTs, Highly similar to KIAA1370 protein	6.54
	452768	AW069459	Hs.61539	ESTs	6.54 6.52
	401451	W26333		ESTs	6.52
	416289 431778	AL080276	Hs.268562	regulator of G-protein signalling 17	6.51
30	409089	NM_014781	Hs.50421	KIAA0203 gene product	6.50
-	442833	AA328153	Hs.88201	ESTs, Weakly similar to A Chain A, Cryst	6.50
	431992	NM_002742	Hs.2891	protein kinase C, mu	6.49
	418833	AW974899	Hs.292776	ESTs	6.48
25	429163	AA884766	11-044000	gb:am20a10.s1 Soares_NFL_T_GBC_S1 Homo s	6.46 6.46
35	430403	AF039390 AW451642	Hs.241382 Hs.16732	tumor necrosis factor (ligand) superfami ESTs	6.46
	443058 418564	AA631143	Hs.179809	Homo sapiens prostein mRNA, complete cds	6.44
	432674	AA641092	Hs.257339	ESTs, Weakly similar to I38022 hypotheti	6.44
	423600	AI633559	Hs.29076	ESTs	6.44
40	404253				6.42
	433610	AA806822	Hs.112547	ESTs	6.42
	421552	AF026692	Hs.105700	secreted frizzled-related protein 4 ESTs, Weakty similar to Z223_HUMAN ZINC	6.41 6.40
	407118 408608	AA156790 N79738	Hs.262036 Hs.136102	KIAA0853 protein	6.40
45	421452	Al925946	Hs.104530	fetal hypothetical protein	6.40
	433285	AW975944	Hs.237396	ESTs	6.40
	434926	BE543269	Hs.50252	mitochondrial ribosomal protein L32	6.40
	446189	H85224	Hs.214013	ESTs	6.40
50	416806	NM_000288	Hs.79993	peroxisomal biogenesis factor 7	6.38
50	416467	H57585 BE466639	Hs.37467 Hs.61779	ESTs Homo sapiens cDNA FLJ13591 fis, clone PL	6.34
	453403 429769	NM_004917	Hs.218366	kallikrein 4 (prostase, enamel matrix, p	6.34
	423642	AW452650	Hs.157148	hypothetical protein MGC13204	6.32
	425843	BE313280	Hs.159627	death associated protein 3	6.32
55	439221	AA737106	Hs.32250	ESTs, Moderately similar to 178885 serin	6.32
	428194	AA765603	Hs.180877	H3 histone, family 3B (H3.3B)	6.30
	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	6.30 6.30
	439366	AF100143 AW081626	Hs.6540 Hs.242561	fibroblast growth factor 13 ESTs	6.30
60	452789 416836	D54745	Hs.80247	cholecystokinin	6.30
	436962	AW377314	Hs.5364	DKFZP564l052 protein	6.29
	433383	AF034837	Hs.192731	double-stranded RNA specific adenosine d	6.29
	418636	AW749855		gb:QV4-BT0534-281299-053-c05 BT0534 Homo	6.26
C F	450728	AW162923	Hs.25363	presenilin 2 (Alzheimer disease 4)	6.25
65	440293	A1004193	Hs.22123	ESTs	6.24 6.24
	453745 426505	AA952989 AW071080	Hs.63908 Hs.62402	hypothetical protein MGC14726 p21/Cdc42/Rac1-activated kinase 1 (yeast	6.24
	426595 444412	AW971980 Al147652	Hs.216381	Homo sapiens clone HH409 unknown mRNA	6.24
	413384	NM_000401	Hs.75334	exostoses (multiple) 2	6.22
				, , ,	

		1144====		4	6.00
	426320	W47595	Hs.169300	transforming growth factor, beta 2	6.22
	423349	AF010258	Hs.127428	homeo box A9	6.20
	429165	AW009886	Hs.118258	prostate cancer associated protein 1	6.18
_	424800	AL035588	Hs.153203	MyoD family inhibitor	6.18
5	409564	AA045857	Hs.54943	fracture callus 1 (rat) homolog	6.16
	438796	W67821	Hs.109590	genethonin 1	6.16
	425451	AF242769	Hs.157461	mesenchymal stem cell protein DSC54	6.14
	451663	A1872360	Hs.209293	ESTs	6.14
4.0	413623	AA825721	Hs.246973	ESTs	6.12
10	452232	AW020603	Hs.271698	radial spoke protein 3	6.12
	453390	AA862496	Hs.28482	ESTs	6.12
	435542	AA687376	Hs.269533	ESTs	6.12
	420424	AB033036	Hs.97594	KIAA1210 protein	6.11
	407103	AA424881	Hs.256301	hypothetical protein MGC13170	6.10
15	409734	BE161664	Hs.56155	hypothetical protein	6.10
	432686	BE223007	Hs.152460	Homo sapiens cDNA FLJ12909 fis, clone NT	6.10
	438361	AA805666	Hs.146217	Homo sapiens cDNA: FLJ23077 fis, clone L	6.10
	411479	AW848047		gb:lL3-CT0214-291299-052-A12 CT0214 Homo	6.10
00	438849	W28948	Hs.10762	ESTs	6.08
20	452726	AF188527	Hs.61661	ESTs, Weakly similar to AF174605 1 F-box	6.08
	445895	D29954	Hs.13421	KIAA0056 protein	6.08
	440774	Al420611	Hs.127832	ESTs	6.07
	422583	AA410506	Hs.118578	KIAA0874 protein	6.06
25	427500	AW970017	Hs.293948	ESTs, Weakly similar to S65657 alpha-1C-	6.04
25	443646	AI085198	Hs.298699	ESTs	6.04
	410566	AA373210	Hs.43047	Homo sapiens cDNA FLJ13585 fis, clone PL	6.02
	417845	AL117461	Hs.82719	Homo sapiens mRNA; cDNA DKFZp586F1822 (f	6.02
	430273	Al311127	Hs.125522	ESTs	6.02
20	434792	AA649253	Hs.132458	ESTs	6.01
30	442490	AW965078	Hs.30212	thyroid receptor interacting protein 15	6.01 6.00
	420026	AI831190	Hs.166676	ESTS	6.00
	437782	Al370876	Hs.123163	exportin 1 (CRM1, yeast, homolog)	6.00
	447359	NM_012093	Hs.18268	adenylate kinase 5 ESTs	6.00
35 -	447713	A1420733	Hs.207083 Hs.206063	ESTS	6.00
<i>JJ</i>	451073	A1758905		Human DNA sequence from clone 747H23 on	6.00
	451640	AA195601 X91662	Hs.26771 Hs.66744	twist (Drosophila) homolog (acrocephalos	5.97
	410889		Hs.44208	hypothetical protein FLJ23153	5.96
	441222 447732	Al277237 Al758398	Hs.161318	ESTs	5.96
40	437756	AA767537	Hs.197096	ESTs	5.95
40	408829	NM_006042	Hs.48384	heparan sulfate (glucosamine) 3-O-sulfot	5.94
	453911	AW503857	Hs.4007	Sarcolemmal-associated protein	5.94
	414085	AA114016	Hs.75746	aldehyde dehydrogenase 1 family, member	5.93
	408875	NM_015434	Hs.48604	DKFZP434B168 protein	5.92
45	439451	AF086270	Hs.278554	heterochromatin-like protein 1	5.92
	423853	AB011537	Hs.133466	slit (Drosophila) homolog 1	5.91
	453060	AW294092	Hs.21594	hypothetical protein MGC15754	5.91
	420407	AA814732	Hs.145010	lipopolysaccaride-specific response 5-li	5.91
	450480	X82125	Hs.25040	zinc finger protein 239	5.90
50	408446	AW450669	Hs.45068	hypothetical protein DKFZp434I143	5.88
	421039	NM_003478	Hs.101299	cullin 5	5.88
	451684	AF216751	Hs.26813	CDA14	5.88
	436063	AK000028	Hs.250867	ribosomal protein S24 -	5.86
	410507	AA355288	Hs.271408	transitional epithelia response protein	5.86
55	420179	N74530	Hs.21168	ESTs	5.84
	453878	AW964440	Hs.19025	DC32	5.84
	452270	AW975014	Hs.26	ferrochelatase (protoporphyria)	5.83
	435867	AA954229	Hs.114052	ESTs	5.82
<i>(</i> 0	417683	AW566008	Hs.239154	ankyrin repeat, family A (RFXANK-like),	5.82
60	432005	AA524190	Hs.120777	ESTs, Weakly similar to ELL2_HUMAN RNA P	5.81
	406815	AA833930	Hs.288036	tRNA isopentenylpyrophosphate transferas	5.80
	437980	R50393	Hs.278436	KIAA1474 protein	5.80
	425856	AA364908	Hs.98927	hypothetical protein FLJ13993	5.79 5.70
CE	400301	X03635	Hs.1657	estrogen receptor 1	5.78
65	446261	AA313893	Hs.13399	hypothetical protein FLJ12615 similar to	5.78
	410141	R07775	Hs.287657	Homo sapiens cDNA: FLJ21291 fis, clone C	5.77 5.76
	427258	AA400091	Hs.39421	ESTS	5.76 5.76
	419108	AA389724	Hs.191264	ESTs, Weakly similar to ALU7_HUMAN ALU S	5.76 5.76
	442029	AW956698	Hs.14456	neural precursor cell expressed, develop	5.76

		•			
	407783	AW996872	Hs.172028	a disintegrin and metalloproteinase doma	5.75
	434408	AI031771	Hs.132586	ESTs	5.74
	415077	L41607	Hs.934	glucosaminyl (N-acetyl) transferase 2, I	5.74
				<u> </u>	5.74
=	432435	BE218886	Hs.282070	ESTs	
5	433313	W20128	Hs.296039	ESTs	5.73
	431740	N75450	Hs.183412	ESTs, Moderately similar to AF116721 67	5.73
	412991	AW949013		gb:QV4-FT0005-110500-201-e12 FT0005 Homo	5.72
	418852	BE537037	Hs.273294	hypothetical protein FLJ20069	5.72
	418882	NM_004996	Hs.89433	ATP-binding cassette, sub-family C (CFTR	5.72
10	446867		Hs.16349		5.72
10		AB007891		KIAA0431 protein	
	437866	AA156781	Hs.83992	metallothionein 1E (functional)	5.72
	410232	AW372451	Hs.61184	CGI-79 protein	5.70
	414452	AA454038	Hs.29032	ESTs	5.70
	422762	AL031320	Hs.119976	Human DNA sequence from clone RP1-20N2 o	5.70
15	428730	AA625947	Hs.25750	ESTs	5.70
1.	431571	AW500486	Hs.180610	splicing factor proline/glutamine rich (5.70
	433393	AF038564	Hs.98074	itchy (mouse homolog) E3 ubiquitin prote	5.70
	450616	AL133067	Hs.25214	hypothetical protein	5.70
	443774	AL117428	Hs.9740	DKFZP434A236 protein	5.69
20	446100	AW967109	Hs.13804	hypothetical protein dJ462O23.2	5.69
	419168	Al336132	Hs.33718	Homo sapiens cDNA FLJ12641 fis, clone NT	5.68
	416653	AA768553	Hs.77496	metallothionein 1E (functional)	5.67
	452679	Z42387	Hs.4299	transmembrane, prostate androgen induced	5.66
					5.66
25	450244	AA007534	Hs.125062	ESTs	
25	408621	A1970672	Hs.46638	chromosome 11 open reading frame 8	5.65
	450325	A1935962	Hs.26289	ESTs	5.65
	439671	AW162840	Hs.6641	kinesin family member 5C	5.64
	452387	Al680772	Hs.4316	trinucleotide repeat containing 12	5.64
	413992	W26276	Hs.136075	RNA, U2 small nuclear	5.63
30	444151	AW972917	Hs.128749	alpha-methylacyl-CoA racemase	5.63
50		•			5.62
	417791	AW965339	Hs.111471	ESTs	
	410196	A1936442	Hs.59838	hypothetical protein FLJ10808	5.60
	415123	D60925		ESTs	5.60
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	5.60
35	434415	BE177494		gb:RC6-HT0596-270300-011-C05 HT0596 Homo	5.60
	440738	Al004650	Hs.225674	WD repeat domain 9	5.60
	443830	Al142095	Hs.143273	ESTs	5.60
	449603	Al655662	Hs.197698	ESTs	5.60
					5.59
40	414342	AA742181	Hs.75912	KIAA0257 protein	
40	422634	NM_016010	Hs.118821	CGI-62 protein	5.56
	435047	AA454985	Hs.54973	cadherin-like protein VR20	5.55
	400268				5.55
	452055	Al377431	Hs.293772	hypothetical protein MGC10858	5.54
	437073	Al885608	Hs.94122	ESTs .	5.54
45	434072	H70854	Hs.283059	Homo sapiens PRO1082 mRNA, complete cds	5.53
13	418339	AA639902	Hs.104215	ESTs, Moderately similar to SPCN_HUMAN S	5.52
				· · · · · · · · · · · · · · · · · · ·	5.52
	434551	BE387162	Hs.280858	ESTs, Highly similar to A35661 DNA excis	
	439569	AW602166	Hs.222399	CEGP1 protein	5.51
	441102	AA973905	Hs.16003	intermediate filament protein syncoilin	5.50
50	448310	Al480316		gb:tm26h09,x1 Soares_NFL_T_GBC_S1 Homo s	5.50
	413173	BE076928	Hs.70980	ESTs	5.48
	436246	AW450963	Hs.119991	ESTs	5.48
	449300	Al656959	Hs.222165	ESTs -	5.48
	452823	AB012124	Hs.30696	transcription factor-like 5 (basic helix	5.48
55				Homo sapiens cDNA FLJ14511 fis, clone NT	5.46
33	451403	AA885569	Hs.15727		
	417061	Al675944	Hs.188691	Homo sapiens cDNA FLJ12033 fis, clone HE	5.44
	429126	AW172356	Hs.99083	ESTs	5.44
	431316	AA502663	Hs.145037	ESTs	5.44
_	439192	AW970536	Hs.105413	ESTs	5.44
60	431938	AA938471	Hs.115242	specific granule protein (28 kDa); cyste	5.44
	451552	AA047233	Hs.33810	ESTs	5.43
				KIAA0226 gene product	5.42
	416991	N36389	Hs.295091		
	427638	AA406411	Hs.208341	ESTs, Weakly similar to KIAA0989 protein	5.42
	427718	A1798680	Hs.25933	ESTs	5.42
65	438710	AA833907	Hs.178724	ESTs, Weakly similar to ALU1_HUMAN ALU S	5.42
	406076	AL390179	Hs.137011	Homo sapiens mRNA; cDNA DKFZp547P134 (fr	5.40
	431263	AW129203	Hs.13743	ESTs	5.40
	421264	AL039123	Hs.103042	microtubule-associated protein 1B	5.38
			Hs.106778	ATPase, Ca++ transporting, type 2C, memb	5.37
	421685	AF189723	113.100770	THE WOOL DOLL BURNOLOUSE AND ENTITIONED	J.J1

	408460	AA054726	Hs.285574	ESTs	5.36
	409091	AW970386	Hs.269423	ESTs	5.36
	421987	Al133161	Hs.286131	CGI-101 protein	5.36
	428002	AA418703		gb:zv98c03.s1 Soares_NhHMPu_S1 Homo sapi	5.36
5	441217	Al922183	Hs.213246	ESTs	5.36
	426006	R49031	Hs.22627	ESTs	5.35
	422806	BE314767	Hs.1581	glutathione S-transferase theta 2	5.34
	432281	AK001239	Hs.274263	hypothetical protein FLJ10377	5.32
	451982	F13036	Hs.27373	Homo saplens mRNA; cDNA DKFZp56401763 (f	5.32
10	421129	BE439899	Hs.89271	ESTs	5.31
	444042	NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	5.31
	410150	AW382942	Hs.6774	ESTs	5.30
	423952	AW877787	Hs.136102	KIAA0853 protein	5.30
15	452822	X85689	Hs.288617	hypothetical protein FLJ22621	5.30 5.29
IJ	447752 441766	M73700 R53790	Hs.347 Hs.23294	lactotransferrin hypothetical protein FLJ14393	5.29
	431359	AW993522	Hs.292934	ESTs	5.27
	427212	AW293849	Hs.58279	ESTs, Weakly similar to ALU7_HUMAN ALU S	5.27
	449916	T60525	Hs.299221	pyruvate dehydrogenase kinase, isoenzyme	5.27
20	454014	AW016670	Hs.233275	ESTs	5.27
	419714	AA758751	Hs.98216	ESTs	5.26
	428845	AL157579	Hs.153610	KIAA0751 gene product	5.26
	417333	AL157545	Hs.42179	bromodomain and PHD finger containing, 3	5.24
	419986	Al345455	Hs.78915	GA-binding protein transcription factor,	5.24
25	407182	AA312551	Hs.230157	ESTs	5.22
	420111	AA255652		gb:zs21h11.r1 NCI_CGAP_GCB1 Homo saplens	5.22
	428058	AI821625	Hs.191602	ESTs	5.22
	459551	A1472808	U- 000007	gb:tj70e07.x1 Soares_NSF_F8_9W_OT_PA_P_S	5.22
30	432524	AI458020 AA334774	Hs.293287 Hs.12845	ESTs	5.22 5.22
30	436207 410870	U81599	Hs.66731	hypothetical protein MGC13159 homeo box B13	5.22
	451418	BE387790	Hs.26369	hypothetical protein FLJ20287	5.22
	409757	NM_001898	Hs.123114	cystatin SN	5.21
	441124	T97717	Hs.119563	ESTs	5.21
35	428593	AW207440	Hs.185973	degenerative spermatocyte (homolog Droso	5.21
	436401	A1087958	Hs.29088	ESTs	5.20
	437113	AA744693		gb:ny26c10.s1 NCI_CGAP_GCB1 Homo sapiens	5.20
	450947	Al745400	Hs.204662	ESTs	5.20
40	453279	AW893940	Hs.59698	ESTs	5.20
40	445467	Al239832	Hs.15617	ESTs, Weakly similar to ALU4_HUMAN ALU S	5.19
	448944	AB014605	Hs.22599	atrophin-1 interacting protein 1; activi	5.19 5.18
	412198 422646	AA937111 H87863	Hs.69165 Hs.151380	ESTs ESTs, Weakly similar to T16584 hypotheti	5.18
	438986	AF085888	Hs.269307	ESTs	5.18
45	453954	AW118336	Hs.75251	DEAD/H (Asp-Glu-Ala-Asp/His) box binding	5.18
	447541	AK000288	Hs.18800	hypothetical protein FLJ20281	5.18
	434029	AA621763	Hs.170434	Homo sapiens cDNA FLJ14242 fis, clone OV	5.16
	459294	AW977286	Hs.169531	RBP1-like protein	5.16
~~	429441	AJ224172	Hs.204096	lipophilin B (uteroglobin family member)	5.16
50	424692	AA429834	Hs.151791	KIAA0092 gene product	5.15
	427359	AW020782	Hs.79881	Homo sapiens cDNA: FLJ23006 fis, clone L	5.15
	419872	AI422951	Hs.146162	ESTS	5.15
	429422	AK001494	Hs.202596	Homo sapiens cDNA FLJ10632 fis, clone NT Homo sapiens mRNA; cDNA DKFZp76111912 (f	5.14
55	448902 459055	Z45998 N23235	Hs.22543 Hs.30567	ESTs, Weakly similar to B34087 hypotheti	5.14 5.14
<i>JJ</i>	431318	AA502700	Hs.293147	ESTs. Moderately similar to A46010 X-lin	5.14
	452953	Al932884	Hs.271741	ESTs, Weakly similar to A46010 X-linked	5.13
	428372	AK000684	Hs.183887	hypothetical protein FLJ22104	5.12
	434401	Al864131	Hs.71119	Putative prostate cancer tumor suppresso	5.12
60	416434	AW163045	Hs.79334	nuclear factor, interleukin 3 regulated	5.11
	410268	AA316181	Hs.61635	six transmembrane epithelial antigen of	5.10
	417517	AF001176	Hs.82238	POP4 (processing of precursor, S. cerev	5.10
	453616	NM_003462	Hs.33846	dynein, axonemal, light intermediate pol	5.10
6 E	427958	AA418000	Hs.98280	potassium intermediate/small conductance	5.09
65	407945	X69208	Hs.606	ATPase, Cu++ transporting, alpha polypep	5.08
	425154	NM_001851	Hs.154850	collagen, type IX, alpha 1	5.08
	412863	AA121673	Hs.59757	zinc finger protein 281 ESTs	5.06
	420807 430568	AA280627 AA769221	Hs.57846 Hs.270847	delta-tubulin	5.06 5.06
	400000	WAL 0366	110414041	ACIEL MEMBER	3.00

	433687	AA743991		gb:ny57g01.s1 NCI_CGAP_Pr18 Homo sapiens	5.06
	438375	AW015940	Hs.232234	ESTs	5.06
	418092	R45154	Hs.106604	ESTs	5.06
	418576	AW968159	Hs.289104	Alu-binding protein with zinc finger dom	5.05
5	413328	Y15723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	5.04
_	414271	AK000275	Hs.75871	protein kinase C binding protein 1	5.04
	432729	AK000292	Hs.278732	hypothetical protein FLJ20285	5.04
	433433	AI692623	Hs.121513	Homo sapiens clone Z'3-1 placenta expres	5.04
	439662	H97552	Hs.269060	ESTs	5.04
10	439743	AL389956	Hs.283858	Homo sapiens mRNA full length insert cDN	5.04
10	417511	AL049176	Hs.82223	chordin-like	5.02
	437814	Al088192	Hs.135474	ESTs, Weakly similar to DDX9_HUMAN ATP-D	5.02
		AF093419	Hs.169378	multiple PDZ domain protein	5.02
	426342		Hs.220689	Ras-GTPase-activating protein SH3-domain	5.02
15	429782	NM_005754		ESTs	5.02
13	429975	Al167145	Hs.165538 Hs.254020		5.02
	436209	AW850417		ESTs, Moderately similar to unnamed prot	5.02
	438571	AW020775	Hs.56022	ESTS	5.02
	450223	AA418204	Hs.241493	natural killer-tumor recognition sequenc	5.02 5.01
20	408267	AW380525	Hs.267705	tubulin-specific chaperone e	
20	417730	Z44761		gb:HSC28F061 normalized infant brain cDN	5.00
	425465	L18964	Hs.1904	protein kinase C, iota	5.00
	430599	NM_004855	Hs.247118	phosphatidylinositol glycan, class B	5.00
	450961	AW978813	Hs.250867	metallothionein 1E (functional)	5.00
~~	451386	AB029006	Hs.26334	spastic paraplegia 4 (autosomal dominant	5.00
25	420380	AA640891	Hs.102406	ESTs	4.99
	424947	R77952	Hs.239625	ESTs, Wealdy similar to alternatively sp	4.99
	442653	BE269247	Hs.170226	gb:601185486F1 NIH_MGC_8 Homo sapiens cD	4.98
	457211	AW972565	Hs.32399	ESTs, Weakly similar to S51797 vasodilat	4.97
	425851	NM_001490	Hs.159642	glucosaminyl (N-acetyl) transferase 1, c	4.97
30	446279	AA490770	Hs.182382	ESTs	4.96
	433377	Al752713	Hs.43845	ESTs	4.96
	450218	R02018	Hs.168640	ankylosis, progressive (mouse) homolog	4.96
	412715	NM_000947	Hs.74519	primase, polypeptide 2A (58kD)	4.94
	- 448164	R61680	Hs.26904	ESTs, Moderately similar to Z195_HUMAN Z	4.94
35	420121	AW968271	Hs.191534	ESTs, Weakly similar to ALU1_HUMAN ALU S	4.94
	421689	N87820	Hs.106826	KIAA1696 protein	4.93
	445808	AV655234	Hs.298083	ESTs, Moderately similar to PC4259 ferri	4.92
	416533	BE244053	Hs.79362	retinoblastoma-like 2 (p130)	4.92
	418049	AA211467	Hs.190488	Homo sapiens, Similar to nuclear localiz	4.92
40	436039	AW023323	Hs.121070	ESTs	4.92
	432653	N62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci	4.91
	420324	AF163474	Hs.96744	prostate androgen-regulated transcript 1	4.91
	403047	74 100111	1101001 11	F. Commission Commission	4.91
	436899	AA764852	Hs.291567	ESTs	4.90
45	431117	AF003522	Hs.250500	delta (Drosophila)-like 1	4.90
13	427617	D42063	Hs.179825	RAN binding protein 2	4.88
	428804	AK000713	Hs.193736	hypothetical protein FLJ20706	4.88
	433050	A1093930	Hs.163440	Homo sapiens cDNA: FLI21000 fis, clone C	4.88
	418575	AA225313	Hs.222886	ESTs, Weakly similar to TRHY_HUMAN TRICH	4.86
50	432615	AA557191	Hs.55028	ESTs, Weakly similar to I54374 gene NF2	4.86
50					4.86
	412652	Al801777 Al202703	Hs.6774 Hs.152414	ESTS	4.86
	432473		Hs.22960	breast carcinoma amplified sequence 2	4.86
	449071	NM_005872		Kruppel-type zinc finger protein	4.85
55	450654	AJ245587	Hs.25275	gb:yc11c07.s1 Stratagene lung (937210) H	4.85
JJ	418866	T65754	Hs.100489		4.84
	407596	R86913	11-000740	gb:yq30f05.r1 Soares fetal liver spleen	4.84
	456516	BE172704	Hs.222746	KIAA1610 protein	
	426501	AW043782	Hs.293616	ESTs	4.84
60	448730	AB032983	Hs.21894	KIAA1157 protein	4.84
60	458339	AW976853	Hs.172843	ESTs	4.83
	422083	NM_001141	Hs.111256	arachidonate 15-lipoxygenase, second typ	4.82
	420159	AI572490	Hs.99785	Homo saplens cDNA: FLJ21245 fis, clone C	4.82
	424103	NM_001918	Hs.139410	dihydrolipoamide branched chain transacy	4.82
~~	449535	W15267	Hs.23672	low density lipoprotein receptor-related	4.82
65	422048	NM_012445	Hs.288126	spondin 2, extracellular matrix protein	4.82
	416737	AF154335	Hs.79691	LIM domain protein	4.82
	419972	AL041465	Hs.294038	golgin-67	4.81
	420235	AA256756	Hs.31178	ESTs	4.81
	423412	AF109300	Hs.147924	prostate cancer associated protein 5	4.80

WO 02/30268

	400500	44044057	11-000740	PAT-	4.00
	429598	AA811257	Hs.269710	ESTs	4.80
	457114	Al821625	Hs.191602	ESTs	4.80
	421828	AW891965	Hs.289109	histone deacetylase 3	4.79
_	424602	AK002055	Hs.301129	hypothetical protein FLJ11193	4.78
5	428364	AA426565	Hs.160541	ESTs, Moderately similar to ALU1_HUMAN A	4.78
	452335	AW188944	Hs.61272	ESTs	4.78
	410765	A1694972	Hs.66180	nucleosome assembly protein 1-like 2	4.77
-	421040	AA715026	Hs.135280	ESTs	4.76
	421518	AI056392	Hs.208819	ESTs	4.76
10	452560	BE077084		ESTs	4.76
	409752	AW963990		gb:EST376063 MAGE resequences, MAGH Homo	4.75
	439703	AF086538	Hs.196245	ESTs	4.75
	418836	Al655499	Hs.161712	ESTs	4.74
	450642	R39773	Hs.7130	copine IV	4.74
15	419879	Z17805	Hs.93564	Homer, neuronal immediate early gene, 2	4.74
	411440	AW749402	110.0000	gb:QV4-BT0383-281299-061-c06 BT0383 Homo	4.74
	450649	NM_001429	Hs.297722	E1A binding protein p300	4.74
	408738	NM_014785	Hs.47313	KIAA0258 gene product	4.73
	435020	AW505076	Hs.301855	DiGeorge syndrome critical region gene 8	4.72
20	411624	BE145964	110.001000	KIAA0594 protein	4.72
20			Hs.55346	ribosomal protein L44	4.72
	439360	AA448488			4.72
	440491	R35252	Hs.24944	ESTs, Weakly similar to 2109260A B cell	4.72
	442611	BE077155	Hs.177537	hypothetical protein DKFZp761B1514	
25	443555	N71710	Hs.21398	ESTs, Moderately similar to A Chain A, H	4.72
25	453800	BE300741	Hs.288416	hypothetical protein FLJ13340	4.72
	457528	AW973791	Hs.292784	ESTs	4.72
	416795	Al497778	Hs.168053	HBV pX associated protein-8	4.71
	407302	R74206	Hs.268755	ESTs, Weakly similar to I78885 serine/th	4.71
20	404721				4.70
30	426261	AW242243	Hs.168670	peroxisomal famesylated protein	4.70
	431924	AK000850	Hs.272203	Homo sapiens cDNA FLJ20843 fis, clone AD	4.70
	435256	AF193766	Hs.13872	cytokine-like protein C17	4.70
	438295	Al394151	Hs.37932	ESTs	4.70
	442655	AW027457	Hs.30323	ESTs, Weakly similar to B34087 hypotheti	4.70
35	415788	AW628686	Hs.78851	KIAA0217 protein	4.69
	442760	BE075297	Hs.10067	ESTs, Weakly similar to A43932 much 2 p	4.69
	432432	AA541323	Hs.115831	ESTs	4.68
	454398	AA463437	Hs.11556	Homo sapiens cDNA FLJ12566 fis, clone NT	4.68
	452741	BE392914	Hs.30503	Homo sapiens cDNA FLJ11344 fis, clone PL	4.67
40	424853	BE549737	Hs.132967	Human EST clone 122887 mariner transposo	4.67
	419706	C04649	Hs.77899	tropomyosin 1 (alpha)	4.66
	412088	AI689496	Hs.108932	ESTs	4.65
	416276	U41060	Hs.79136	LIV-1 protein, estrogen regulated	4.64
	429281	AA830856	Hs.29808	Homo sapiens cDNA: FLJ21122 fis, clone C	4.64
45	448207	A1475490	Hs.170577	ESTs	4.64
••	408374	AW025430	Hs.155591	forkhead box F1	4.64
	447162	BE328091	Hs.157396	ESTs, Weakly similar to A46010 X-linked	4.64
	451900	AB023199	Hs.27207	KIAA0982 protein	4.63
	421437	AW821252	Hs.104336	hypothetical protein	4.63
50	418624	AI734080	Hs.104211	ESTs	4.63
50	426172	AA371307	Hs.125056	FAT-	4.62
	439831	AW136488	Hs.25545	ESTS	4.61
	452994	AW962597	Hs.31305	KIAA1547 protein	4.61
	452334 457726		Hs.194591	ESTs	4.60
55		AI217477		glioma-amplified sequence-41	4.60
JJ	434629	AA789081	Hs.4029	glioma-amplineo sequence-41	4.58
	403764	A100017E	Un coope	ESTs	4.58
	410659	AI080175	Hs.68826		
	432383	AK000144	Hs.274449	Homo sapiens cDNA FLJ20137 fis, clone CO	4.58
60	451246	AW189232	Hs.39140	cutaneous T-cell lymphoma tumor antigen	4.58
UU	433234	AB040928	Hs.65366	KIAA1495 protein	4.57
	424983	A1742434	Hs.169911	ESTs	4.56
	437812	Al582291	Hs.16846	ESTs, Weakly similar to O4HUD1 debrisoqu	4.56
	438447	AI082883	Hs.167593	hypothetical protein FLJ13409; KIAA1711	4.55
CE	434715	BE005346	Hs.116410	ESTs	4.55
65	447673	Al823987	Hs.182285	ESTs	4.54
	408897	N50204	Hs.283709	lipopolysaccharide specific response-7 p	4.54
	436645	AW023424	Hs.156520	ESTs	4.54
	421247	BE391727	Hs.102910	general transcription factor IIH, polype	4.53
	450377	AB033091	Hs.24936	KIAA1265 protein	4.53

	433644	AW342028	Hs.256112	gb:hb75d03.x1 NCI_CGAP_Ut2 Homo sapiens	4.53
	408321	AW405882	Hs.44205	cortistatin	4.53
	439225	AA192669	Hs.45032	ESTs	4.52
	440348	AW015802	Hs.47023	ESTs	4.52
5					4.52
J	446351	AW444551	Hs.258532	x 001 protein	
	451212	AW902672	Hs.287334	ESTs	4.52
	430294	AI538226	Hs.135184	guanine nucleotide binding protein 4	4.52
	435005	U80743	Hs.4316	trinucleotide repeat containing 12	4.52
	448072	Al459306	Hs.24908	ESTs	4.50
10		M403000	113.24300	LOIS	4.50
10	403721				
	451018	AW965599	Hs.247324	mitochondrial ribosomal protein S14	4.50
	453070	AK001465	Hs.31575	SEC63, endoplasmic reticulum translocon	4.49
	417412	X16896	Hs.82112	interleukin 1 receptor, type i	4.48
	439735	A1635386	Hs.142846	hypothetical protein	4.48
15				**	4.48
15	435663	AI023707	Hs.134273	ESTs	
	424036	AA770688	Hs.81946	H2A histone family, member L	4.48
	426386	AA748850	Hs.174877	bladder cancer overexpressed protein	4.48
	408622	AA056060	Hs.202577	Homo sapiens cDNA FLJ12166 fis, clone MA	4.47
	444269	AI590346	Hs.146220	ESTs	4.47
20	430187	AI799909	Hs.158989	ESTs	4.46
20					
	427761	AA412205	Hs.140996	ESTs	4.46
	430261	AA305127	Hs.237225	hypothetical protein HT023	4.46
	444169	AV648170	Hs.58756	ESTs	4.44
	430598	AK001764	Hs.247112	hypothetical protein FLJ10902	4.44
25	412903	BE007967	Hs.155795	ESTs	4.44
23					4.44
	417048	A1088775	Hs.55498	geranylgeranyl diphosphate synthase 1	
	442710	AI015631	Hs.23210	ESTs	4.44
	457413	AA743462	Hs.165337	ESTs	4.44
	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	4.42
30	443268	AI800271	Hs.129445	hypothetical protein FLJ12496	4.42
50		AL120659	Hs.6111	aryl-hydrocarbon receptor nuclear transl	4.42
	438209				4.41
	431724	AA514535	Hs.283704	ESTs	
	412280	AW205116	Hs.272814	hypothetical protein DKFZp434E1723	4.40
	440801	AA906366	Hs.190535	ESTs	4.40
35	452959	AI933416	Hs.189674	ESTs	4.40
	453861	AI026838	Hs.30120	ESTs, Weakly similar to NUCL_HUMAN NUCLE	4.40
				nuclear receptor subfamily 4, group A, m	4.40
	417421	AL138201	Hs.82120		
	447270	AC002551	Hs.331	general transcription factor IIIC, polyp	4.38
	433641	AF080229		gb:Human endogenous retrovirus K done 1	4.38
40	447078	AW885727	Hs.301570	ESTs .	4.38
	424242	AA337476		hypothetical protein MGC13102	4.37
	408170	AW204516	Hs.31835	ESTs	4.36
				TATA box binding protein (TBP)-associate	4.36
	448757	Al366784	Hs.48820		
	420021	AA252848	Hs.293557	ESTs	4.36
45	449694	A1659790	Hs.253302	ESTs	4.36
	453867	Al929383	Hs.108196	hypothetical protein DKFZp434N185	4.36
	458712	Al347502	Hs.173066	hypothetical protein FLJ20761	4.36
			Hs.99488	ESTs, Weakly similar to YK54_YEAST HYPOT	4.35
	417251	AW015242			4.35
50	434423	NM_006769	Hs.3844	LIM domain only 4	
50	423427	AL137612	Hs.285848	KIAA1454 protein	4.34
	415715	F30364		ESTs	4.33
	404561				4.32
•	422969	AA782536	Hs.122647	N-myristoyltransferase 2 -	4.32
	423685	BE350494	Hs.49753	uveal autoantigen with coiled coil domai	4.32
55				ESTs, Weakly similar to I38022 hypotheti	4.32
JJ	443977	AL120986	Hs.150627		
	425071	NM_013989	Hs.154424	deiodinase, lodothyronine, type II	4.32
	431583	AL042613	Hs.262476	S-adenosylmethionine decarboxylase 1	4.31
	411379	AI816344	Hs.12554	ESTs, Weakly similar to NPL4_HUMAN NUCLE	4.30
	421476	AW953805	Hs.21887	ESTs	4.30
60				ESTs	4.30
w	425178	H16097	Hs.161027		
	439262	AA832333	Hs.124399	ESTs	4.30
	442818	AK001741	Hs.8739	hypothetical protein FLJ10879	4.30
	421977	W94197	Hs.110165	ribosomal protein L26 homolog	4.29
	437114	AA836641	Hs.163085	ESTs	4.28
65	420195	N44348	Hs.300794	Homo sapiens cDNA FLJ11177 fis, done PL	4.28
0.5				ESTs	4.27
	418330	BE409405	Hs.94722		
	419750	AL079741	Hs.183114	Homo sapiens cDNA FLJ14236 fis, clone NT	4.26
	437065	AL036450	Hs.103238	ESTs	4.26
	455276	BE176479		gb:RC3-HT0585-160300-022-b09 HT0585 Homo	4.24
				-	

	416292	AA179233	Hs.42390	nasopharyngeal carcinoma susceptibility	4.24
	423740	Y07701	Hs.132243	aminopeptidase puromycin sensitive	4.24
	442023	Al187878	Hs.144549	ESTs	4.24
_	426764	AA732524	Hs.151464	ESTs, Weakly similar to ALUC_HUMAN !!!!	4.23
5	454058	Al273419	Hs.135146	hypothetical protein FLJ13984	4.23
	456511	AA282330	Hs.145668	ESTs	4.22
••	448330	AL036449	Hs.207163	ESTs	4.22
	424701	NM_005923	Hs.151988	mitogen-activated protein kinase kinase	4.21
10	432621	Al298501	Hs.12807	ESTs, Weakly similar to T46428 hypotheti	4.20
10	445707 419910	AI248720	Hs.114390	ESTS ESTS INJustice aimiliar to A 45010 V limited	4.20
	424085	AA662913 NM 002914	Hs.190173 Hs.139226	ESTs, Weakly similar to A46010 X-linked replication factor C (activator 1) 2 (40	4.20 4.20
	440749	W22335	Hs.7392	hypothetical protein MGC3199	4.20
	442787	W93048	Hs.227203	hypothetical protein MGC2747	4.20
15	443414	R54594	Hs.25209	ESTs	4.20
	443556	AA256769	Hs.94949	methylmatonyl-CoA epimerase	4.20
	444170	AW613879	Hs.102408	ESTs	4.20
	446751	AA766998	Hs.85874	Human DNA sequence from clone RP11-16L21	4.20
	421041	N36914	Hs.14691	ESTs, Moderately similar to I38022 hypot	4.19
20	447476	BE293466	Hs.20880	ESTs, Weakly similar to I38022 hypotheti	4.19
•	448543	AW897741	Hs.21380	Homo sapiens mRNA; cDNA DKFZp586P1124 (f	4.18
	410294	AB014515	Hs.288891	KIAA0615 gene product	4.18
	433607	AA602004	Hs.23260	ESTs	4.18
25	435552	Al668636	Hs.193480	ESTs, Moderately similar to ALU6_HUMAN A	4.18
25	447124	AW976438	Hs.17428	RBP1-like protein	4.18
	453308 439328	AW959731	Hs.32538	ESTs	4.17
	439326	W07411 AW130690	Hs.118212 Hs.299842	ESTs, Moderately similar to ALU3_HUMAN A ESTs	4.16 4.16
	437257	Al283085	Hs.290931	ESTS, Weakly similar to YFJ7_YEAST HYPOT	4.16
30	438018	AK001160	Hs.5999	hypothetical protein FLJ10298	4.16
	443857	AI089292	Hs.287621	hypothetical protein FLJ14069	4.15
	446711	AF169692	Hs.12450	protocadherin 9	4.15
	419103	Z40229	Hs.96423	hypothetical protein FLJ23033	4.14
	405403				4.14
35	407378	AA299264		ESTs, Moderately similar to I38022 hypot	4.14
	408986	AW298602	Hs.197687	ESTs	4.14
	418727	AA227609	Hs.94834	ESTs	4.14
	434400	Al478211	Hs.186896	Homo sapiens cDNA FLJ11417 fis, clone HE	4.14
40	438578	AA811244	Hs.164168	ESTs Homo sapiens cDNA: FLJ23597 fis, clone L	4.14 4.14
40	450459 429887	Al697193 AW366286	Hs.299254 Hs.145696	splicing factor (CC1.3)	4.14
	448148	NM_016578	Hs.20509	HBV pX associated protein-8	4.13
	450316	W84446	Hs.17850	hypothetical protein MGC4643	4.12
	417531	NM_003157	Hs.1087	serine/threonine kinase 2	4.12
45	431592	R69016	Hs.293871	hypothetical protein MGC10895s	4.12
	432463	AA548518	Hs.186733	ESTs	4.12
	433613	AA836126	Hs.5669	ESTs	4.12
	434739	AA804487	Hs.144130	ESTs	4.12
۲۵ .	438259	AW205969	Hs.131808	ESTs	4.12
50	425810	A1923627	Hs.31903	ESTs	4.10
	432672	AW9/3//5	HS.130/60	myosin phosphatase, target subunit 2	4.10
	433345	AI681545	Hs.152982	hypothetical protein FLJ13117	4.10 4.09
	432712 453020	AB016247 Al.162039	Hs.288031 Hs.31422	sterol-C5-desaturase (lungal ERG3, delta - Homo sapiens mRNA; cDNA DKFZp434M229 (fr	4.09
55	412045	AA099802	Hs.4299	transmembrane, prostate androgen induced	4.09
-	435114	AA775483	Hs.288936	mitochondrial ribosomal protein L9	4.08
	443204	AW205878	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	4.08
	445459	Al478629	Hs.158465	likely ortholog of mouse putative IKK re	4.08
~~	438938	H46212	Hs.137221	ESTs	4.07
60	454119	BE549773	Hs.40510	uncoupling protein 4	4.06
	411000	N40449	Hs.201619	ESTs, Weakly similar to S38383 SEB4B pro	4.06
	418926	AA232658	Hs.87070	UDP-glucose:glycoprotein glucosyltransfe	4.06
	424432	AB037821	Hs.146858	protocadherin 10	4.06
65	449673	AA002064	Hs.18920	ESTs	4.06
UJ	429299	A1620463	Hs.99197	hypothetical protein MGC13102	4.06
	422174 455497	AL049325 AA112573	Hs.112493	Homo sapiens mRNA; cDNA DKFZp564D036 (fr Homo sapiens prostein mRNA, complete cds	4.05 4.05
	415138	C18356	Hs.285691 Hs.78045	tissue factor pathway Inhibitor 2	4.03
	402791	3.000	. 10.1 5070	more man bearing amount a	4.04

				•••••	
	426792	AL044854	Hs.172329	KIAA0576 protein	4.04
	438660	U95740	Hs.6349	Homo sapiens, clone IMAGE:3010666, mRNA,	4.04
	442768	AL048534	Hs.48458	ESTs, Weakly similar to ALU8_HUMAN ALU S	4.04
	447568	AF155655	Hs.18885	CGI-116 protein	4.04
5	428342	Al739168	Hs.131798	Homo sapiens cDNA FLJ13458 fis, clone PL	4.04
	453439	Al572438	Hs.32976	guanine nucleotide binding protein 4	4.02
	453857	AL080235	Hs.35861	DKFZP586E1621 protein	4.02
					4.02
	428249	AA130914	Hs.183291	zinc finger protein 268	
10	432015	AL157504	Hs.159115	Homo sapiens mRNA; cDNA DKFZp586O0724 (I	4.02
10	445495	BE622641	Hs.38489	ESTs, Weakly similar to 138022 hypotheti	4.02
	451746	M86178		ESTs	4.02
	452211	Al985513	Hs.233420	ESTs	4.02
	453046	AA284040	Hs.219441	ESTs, Highly similar to CA5B_HUMAN CARBO	4.02
	456038	AA203285	Hs.294141	ESTs, Weakly similar to alternatively sp	4.02
15	452449	AW068658	Hs.20943	ESTs	4.02
10	407204	R41933	Hs.140237	ESTs, Weakly similar to ALU1_HUMAN ALU S	4.01
				· · · · · · · · · · _ · · · ·	4.01
	428046	AW812795	Hs.155381	ESTs, Moderately similar to I38022 hypot	
	438520	AA706319	Hs.98416	ESTs	4.01
00	443292	AK000213	Hs.9196	hypothetical protein	4.01
20	432715	AA247152	Hs.200483	ESTs, Weakly similar to KIAA1074 protein	4.00
	403797				4.00
	418347	AA216419	Hs.269295	gb:nc16e03.s1 NCI_CGAP_Pr1 Homo saplens	4.00
	419459	AW291128	Hs.278422	DKFZP586G1122 protein	4.00
	420911	U77413	Hs.100293	O-linked N-acetylglucosamine (GloNAc) tr	4.00
25	425176	AW015644	Hs.301430	TEA domain family member 1 (SV40 transcr	4.00
2.5					
	447505	AL049266	Hs.18724	Homo sapiens mRNA; cDNA DKFZp564F093 (fr	4.00
	453773	AL133761		gb:DKFZp761C1413_r1 761 (synonym: hamy2)	4.00
	434384	AA631910	Hs.162849	ESTs	3.99
	422471	AA311027	Hs.271894	ESTs, Weakly similar to 138022 hypotheti	3.99
30	427386	AW836261	Hs.177486	ESTs	3.98
	433394	Al907753	Hs.93810	cerebral cavernous malformations 1	3.98
	441269	AW015206	Hs.178784	ESTs	3.97
	419629	AB020695	Hs.91662	KIAA0888 protein	3.96
	435008	AF150262	Hs.162898	ESTs	3.96
35				poly(A)-binding protein, nuclear 1	3.96
JJ	456649	R74441	Hs.117176		
	418723	AA504428	Hs.10487	Homo sapiens, clone IMAGE:3954132, mRNA,	3.96
	428738	NM_000380	Hs.192803	xeroderma pigmentosum, complementation g	3.95
	430456	AA314998	Hs.241503	hypothetical protein	3.95
	422017	NM_003877	Hs.110776	STAT induced STAT inhibitor-2	3.95
40	409960	BE261944	Hs.153028	hexokinase 1	3.95
	455309	AW894017		gb:RC4-NN0027-150400-012-g04 NN0027 Homo	3.95
	450295	AI766732	Hs.201194	ESTs	3.94
	456660	AA909249	Hs.112282	solute carrier family 30 (zinc transport	3.94
	410908				3.94
45		AA121686	Hs.10592	ESTs	
43	447145	AA761073	Hs.192943	TRAF family member-associated NFKB activ	3.94
	449318	AW236021	Hs.108788	Homo sapiens, Similar to RIKEN cDNA 5730	3.94
	449869	W57990	Hs.60059	Homo sapiens cDNA FLJ11478 fis, clone HE	3.94
	411887	AW182924	Hs.128790	ESTs	3.93
	437531	Al400752 ·	Hs.112259	T cell receptor gamma locus	3.93
50	452238	F01811	Hs.187931	ESTs	3.93
	410486	AW235094	Hs.193424	zinc finger protein	3.92
	424882	Al379461	Hs.153636	far upstream element (FUSE) binding prot	3.92
	426269	H15302	Hs.168950	Homo sapiens mRNA; cDNA DKFZp566A1046 (f	3.92
55	427043	AA397679	Hs.298460	ESTs	3.92
JJ	440404	Al015881	Hs.125616	mitochondrial ribosomal protein S5	3.92
	452762	AW501435	Hs.171409	v-akt murine thyrnoma viral oncogene homo	3.92
	453058	AW612293	Hs.288684	Homo sapiens cDNA FLJ11750 fis, done HE	3.92
	423583	AL122055	Hs.129836	KIAA1028 protein	3.92
	408001	AA046458	Hs.95296	ESTs	3.92
60	419197	N48921	Hs.27441	KIAA1615 protein	3.91
	428695	Al355647	Hs.189999	purinergic receptor (family A group 5)	3.91
	401747	/110000777	. 10. 1 00000	harman Sing sandhar framm) u Stooth of	3.91
		AD000044	U. 57056	DETAIDE protoin kinom 4	
	410011	AB020641	Hs.57856	PFTAIRE protein kinase 1	3.91
<i>(</i> =	432205	AI806583	Hs.125291	ESTs	3.91
65	447857	AA081218	Hs.58608	Homo sapiens cDNA FLJ14206 fis, done NT	3.91
	446494	AA463276	Hs.288906	WW Domain-Containing Gene	3.91
	409928	AL137163	Hs.57549	hypothetical protein dJ473B4	3.90
	411598	BE336654	Hs.70937	H3 histone family, member A	3.90
	424790	AL119344	Hs.13326	ESTs, Weakly similar to 2004399A chromos	3.90
	00				_,,,,

WO 02/30268

	425707	AF115402	Hs.11713	E74-like factor 5 (ets domain transcript	3.90
	431325	AW026751	Hs.5794	ESTs, Weakly similar to 2109260A B cell	3.89
	451806	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	3.89
_	401045		•		3.89
5	433023	AW864793	Hs.34161	thrombospondin 1	3.89
	452160	BE378541	Hs.279815	cysteine sulfinic acid decarboxylase-rel	3.89
	437372	AA323968	Hs.283631	hypothetical protein DKFZp547G183	3.89
	417067	AJ001417	Hs.81086	solute carrier family 22 (extraneuronal	3.88
	410467	AF102546	Hs.63931	dachshund (Drosophila) homolog	3.88
10	422660	AW297582	Hs.237062	hypothetical protein FLJ22548 similar to	3.88
	431930	AB035301	Hs.272211	cadherin 7, type 2	3.88
	453047	AW023798	Hs.286025	ESTs	3.88
	433891	AA613792		gb:no97h03.s1 NCI_CGAP_Pr2 Homo sapiens	3.88
	401785				3.88
15	431088	AA491824	Hs.196881	ESTs	3.88
	451952	AL120173	Hs.301663	ESTs	3.87
	422089	AA523172	Hs.103135	ESTs, Weakly similar to SFR4_HUMAN SPLIC	3.87
	452277	AL049013	Hs.28783	KIAA1223 protein	3.87
	438279	AA805166	Hs.165165	HIV-1 rev binding protein 2	3.86
20	458229	Al929602	Hs.177	phosphatidylinositol glycan, class H	3.86
	406414				3.86
	417193	Al922189	Hs.288390	hypothetical protein FLJ22795	3.85
	413174	AA723564	Hs.191343	ESTs	3.85
	433332	Al367347	Hs.127809	Homo sapiens clone TCCCTA00151 mRNA sequ	3.85
25	411089	AA456454	Hs.118637	cell division cycle 2-like 1 (PITSLRE pr	3.85
	412494	AL133900	Hs.792	ADP-ribosylation factor domain protein 1	3.84
	413530	AA130158	Hs.19977	ESTs, Moderately similar to ALU8_HUMAN A	3.84
	459592	AL037421	Hs.208746	ESTs, Moderately similar to pot. ORF I	3.84
	418329	AW247430	Hs.84152	cystathionine-beta-synthase	3.83
30	451468	AW503398	Hs.210047	ESTs, Moderately similar to 138022 hypot	3.83
	434804	AA649530		gb:ns44f05.s1 NCI_CGAP_Alv1 Homo sapiens	3.83
	401819				3.82
	424179	F30712		Homo sapiens, clone IMAGE:4285740, mRNA	3.82
~~	424850	AA151057	Hs.153498	chromosome 18 open reading frame 1	3.82
35	426472	BE246138	Hs.30853	ESTs	3.82
	426625	T78300	Hs.171409	serologically defined colon cancer antig	3.82
	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	3.82
	427756	Al376540	Hs.15574	ESTs	3.82
40	444701	Al916512	Hs.198394	ESTs	3.82 3.82
40	423052	M28214	Hs.123072	RAB3B, member RAS oncogene family ESTs, Highly similar to S60712 band-6-pr	3.82
	429259	AA420450	Hs.292911	chromatin assembly factor 1, subunit A (3.82
	416111	AA033813 T85301	Hs.79018	gb:yd78d06.s1 Soares fetal liver spleen	3.81
	433586 438527	Al969251	Hs.143237	RAB7, member RAS oncogene family-like 1	3.81
45	430327	AA148710	Hs.159441	lumican	3.81
43	429898	AW117322	Hs.42366	ESTs	3.81
	409079	W87707	Hs.82065	interleukin 6 signal transducer (gp130,	3.80
	419423	D26488	Hs.90315	KIAA0007 protein	3.80
	429643	AA455889	Hs.187548	FYVE-finger-containing Rab5 effector pro	3.80
50	431499	NM_001514	Hs.258561	general transcription factor IIB	3.80
	445060	AA830811	Hs.88808	ESTs	3.80
	449419	R34910	Hs.119172	ESTs	3.80
	450584	AA040403	Hs.60371	ESTs -	3.80
	426137	AL040683	Hs.167031	DKFZP566D133 protein	3.79
55	420185	AL044056	Hs.158047	ESTs	3.79
	410076	T05387	Hs.7991	ESTs	3.78
	444078	BE246919	Hs.10290	U5 snRNP-specific 40 kDa protein (hPrp8-	3.78
	417318	AW953937	Hs.12891	ESTs	3.78
	414664	AA587775	Hs.66295	multi-PDZ-domain-containing protein	3.78
60	410275	U85658	Hs.61796	transcription factor AP-2 gamma (activat	3.77
	410503	AW975746	Hs.188662	KiAA1702 protein	3.77
	434170	AA626509	Hs.122329	ESTs	3.77
	421838	AW881089	Hs.108806	Homo sapiens mRNA; cDNA DKFZp566M0947 (f	3.77
. برر	425268	Al807883	Hs.156932	Homo sapiens cDNA FLJ20653 fis, clone KA	3.76
65	431696	AA259068	Hs.267819	protein phosphatase 1, regulatory (inhib	3.76
	411990	AW963624	Hs.31707	ESTs, Weakly similar to YEW4_YEAST HYPOT	3.76
	430291	AV660345	Hs.238126	CGI-49 protein	3.76
	448779	BE042877	Hs.177135	ESTs	3.76
	452682	AA456193	Hs.155606	progesterone membrane binding protein	3.75

	452598	Al831594	Hs.68647	ESTs, Weakly similar to ALU7_HUMAN ALU S	3.75
•	439498	AA908731	Hs.58297	CLLL8 protein	3.75
	440258	Al741633	Hs.125350	ESTs	3.74
	456848	AL121087	Hs.296406	KIAA0685 gene product	3.74
5	415082	AA160000	Hs.137396	ESTs, Weakly similar to JC5238 galactosy	3.74
5			Hs.88550	ESTs	3.74
	420653	A1224532			
	431637	Al879330	Hs.265960	hypothetical protein FLJ10563	3.74
	440411	N30256	Hs.156971	hypothetical protein DKFZp434G1415	3.74
	405917				3.74
10	419440	AB020689	Hs.90419	KIAA0882 protein	3.74
	451230	BE546208	Hs.26090	hypothetical protein FLJ20272	3.73
	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	3.73
	430144	AI732722	Hs.187694	ERGL protein; ERGIC-53-like protein	3.72
	438394	BE379623	Hs.27693	peptidylprolyl isomerase (cyclophilin)-l	3.72
15					
13	440527	AV657117	Hs.184164	ESTs, Moderately similar to S65657 alpha	3.72
	449433	A1672096	Hs.9012	ESTs, Weakly similar to S26650 DNA-bindi	3.72
	456228	BE503227	Hs.134759	ESTs	3.72
	448663	BE614599	Hs.106823	hypothetical protein MGC14797	3.72
	415075	L27479	Hs.77889	Friedreich ataxia region gene X123	3.72
20	433544	Al793211	Hs.165372	ESTs, Moderately similar to ALU1_HUMAN A	3.71
	418293	Al224483	Hs.16063	hypothetical protein FLJ21877	3.71
	449897	AW819642	Hs.24135	transmembrane protein vezatin; hypotheti	3.71
	420297	Al628272	Hs.88323	ESTs, Weakly similar to ALU1_HUMAN ALU S	3.70
	423065	R96158	Hs.194606	Homo sapiens, clone MGC:5406, mRNA, comp	3.70
25					-
23	429340	N35938	Hs.199429	Homo sapiens mRNA; cDNA DKFZp434M2216 (f	3.70
	437777	AA768098	Hs.189079	ESTs	3.70
	440351	AF030933	Hs.7179	RAD1 (S. pombe) homolog	3.70
	443603	BE502601	Hs.134289	ESTs, Weakly similar to KIAA1063 protein	3.70
•	446965	BE242873	Hs.16677	WD repeat domain 15	3.70
30	412350	A1659306	Hs.73826	protein tyrosine phosphatase, non-recept	3.70
	433852	Al378329	Hs.126629	ESTs	3.70
	433142	AL120697	Hs.110640	ESTs	3.69
	419994	AA282881	Hs.190057	ESTs	3.69
				hypothetical protein MGC2648	3.69
35	412628	A1972402	Hs.173902		
33	431416	AA532718	Hs.178604	ESTs	3.69
	439444	Al277652	Hs.54578	ESTs, Weakly similar to I38022 hypotheti	3.68
	414709	AA704703	Hs.77031	Sp2 transcription factor	3.68
	447397	BE247676	Hs.18442	E-1 enzyme	3.68
	405718			,	3.68
40	425217	AU076696	Hs.155174	CDC5 (cell division cycle 5, S. pombe, h	3.68
	442242	AV647908	Hs.90424	Homo sapiens cDNA: FLJ23285 fis, clone H	3.68
	424690	BE538356	Hs.151777	eukaryotic translation initiation factor	3.68
	421734	Al318624	Hs.107444	Homo sapiens cDNA FLJ20562 fis, clone KA	3.67
	427221	L15409	Hs.174007	von Hippel-Lindau syndrome	3.67
45					3.66
43	439864	A1720078	Hs.291997	ESTs, Weakly similar to A47582 B-cell gr	
	402408				3.66
	426327	W03242	Hs.44898	Homo sapiens done TCCCTA00151 mRNA sequ	3.66
	427119	AW880562	Hs.114574	ESTs	3.66
	427356	AW023482	Hs.97849	ESTs	3.66
50	452946	X95425	Hs.31092	EphA5	3.66
	419078	M93119	Hs.89584	Insulinoma-associated 1	3.66
	416295	AI064824	Hs.193385	ESTs	3.65
	427144	X95097	Hs.2126	vasoactive intestinal peptide receptor 2	3.65
	447500	Al381900	Hs.159212	ESTs	3.65
55					3.65
JJ	453127	Al696671	Hs.294110	ESTs	
	423396	Al382555	Hs.127950	bromodomain-containing 1	3.65
	419346	Al830417		polybromo 1	3.64
	441540	C01367	Hs.127128	ESTs	3.64
	446501	Al302616	Hs.150819	ESTs	3.64
60	459527	AW977556	Hs.291735	ESTs. Weakly similar to 178885 serine/th	3.63
	446320	AF126245	Hs.14791	acyl-Coenzyme A dehydrogenase family, me	3.63
	435706	W31254	Hs.7045	GL004 protein	3.63
		110.207	110.1040	acous protess	3.62
	400110	D1020E	Ha 405000	ECT-	
6 5	410313	R10305	Hs.185683	ESTs	3.62
65	414713	BE465243	Hs.12664	ESTs	3.62
	436279	AW900372	Hs.180793	ESTs, Weakly similar to S65657 alpha-1C-	3.62
	439818	AL360137	Hs.19934	Homo sapiens mRNA full length insert cDN	3.62
	451797	AW663858	Hs.56120	small inducible cytokine subfamily E, me	3.62
	451294	A1457338	Hs.29894	ESTs	3.62

	434194	AF119847	Hs.283940	Homo sapiens PRO1550 mRNA, partial cds	3.62
	404939				3.62
	408101	AW968504	Hs.123073	CDC2-related protein kinase 7	3.62
_	435846	AA700870	Hs.14304	ESTs	3.61
5	432833	N51075	Hs.47191	ESTs	3.61
	427276	AA400269	Hs.49598	ESTs	3.61
	433495	AW373784	Hs.71	alpha-2-glycoprotein 1, zinc	3.60
	403137				3.60
10	404165				3.60
5 10	409571	AA504249	Hs.187585	ESTs	3.60
	410561	BE540255	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone H	3.60
	412924	BE018422	Hs.75258	H2A histone family, member Y	3.60
	434228	Z42047	Hs.283978	Homo sapiens PRO2751 mRNA, complete cds	3.60
15	436797	AA731491	Hs.178518	hypothetical protein MGC14879	3.60
13	437162	. AW005505	Hs.5464	thyroid hormone receptor coactivating pr	3.60
	437444	H46008	Hs.31518	ESTs	3.60
	404210	DEGTOOO	Un 101740	Home conjuga eDNA: EL MOSCO fin eleca U	3.59 3.59
	446157	BE270828	Hs.131740	Homo sapiens cDNA: FLJ22562 fis, clone H	3.58
20	437587	AI591222	Hs.122421	Human DNA sequence from clone RP1-187J11	
20	423147	AA987927	Hs.131740	Homo sapiens cDNA: FLJ22562 fis, clone H ESTs	3.57 3.56
	452226	AA024898	Hs.296002		3.56
	443775	AF291664	Hs.204732	matrix metalloproteinase 26	3.56
	452501	AB037791	Hs.29716	hypothetical protein FLJ10980 ESTs	3.56
25	428647 422443	AA830050 NM 014707	Hs.124344 Hs.116753	histone deacetylase 78	3.55
23	447966	AA340605	Hs.105887	ESTs, Weakly similar to Homolog of rat Z	3.55
	420892	AW975076	Hs.172589	nuclear phosphoprotein similar to S. cer	3.55
	420230	AL034344	Hs.298020	forkhead box C1	3.55
	418428	Y12490	Hs.85092	thyroid hormone receptor interactor 11	3.54
30	428949	AA442153	Hs.104744	hypothetical protein DKFZp434J0617	3.54
50	444929	Al685841	Hs.161354	ESTs	3.54
	433339	AF019226	Hs.8036	glioblastoma overexpressed	3.54
	424369	R87622	Hs.26714	KIAA1831 protein	3.54
	433002	AF048730	Hs.279906	cyclin T1	3.53
35	435425	H16263	Hs.31416	ESTs	3.53
-	415621	Al648602	Hs.131189	ESTs	3.53
	416974	AF010233	Hs.80667	RALBP1 associated Eps domain containing	3.53
	405793				3.52
	409770	AW499536		gb:UI-HF-BR0p-ajj-c-12-0-UI.r1 NIH_MGC_5	3.52
40	425305	AA363025	Hs.155572	Human clone 23801 mRNA sequence	3.52
	428939	AW236550	Hs.131914	ESTs	3.52
	438388	AA806349	Hs.44698	ESTs	3.52
	443703	AV646177	Hs.213021	ESTs	3.52
	457940	AL360159	Hs.30445	Homo sapiens TRIpartite motif protein ps	3.52
45	402444				3.52
	409643	AW450866	Hs.257359	ESTs	3.51
	418250	U29926	Hs.83918	adenosine monophosphate deaminase (isofo	3.51
•	432745	Al821926	Hs.269507	gb:nt78f05.x5 NCI_CGAP_Pr3 Homo sapiens	3.51
50	414222	AL135173	Hs.878	sorbitol dehydrogenase	3.51
50	430061	AB037817	Hs.230188	KIAA1396 protein	3.51
	421491	H99999	Hs.42736	ESTs	3.50
	422384	AA224077	Hs.42438	Sm protein F	3.50
	434565	T52172	11- 474004	ESTs -	3.50
55	438379	N23018	Hs.171391	C-terminal binding protein 2	3.50
JJ	439741	BE379646	Hs.6904	Homo sapiens mRNA full length insert cDN	3.50
	447311	R37010	Hs.33417	Homo sapiens cDNA: FLJ22806 fis, clone K gemin4	3.50 3.50
	447805	AW627932 H03556	Hs.19614 Hs.300949	ESTs. Weakly similar to thyroid hormone	3.50
	454265 418838	AW385224	Hs.35198	ectonucleotide pyrophosphatase/phosphodi	3.50
60	448804	AW512213	Hs.42500	ADP-ribosylation factor-like 5	3.50
00	409617	BE003760	Hs.55209	Homo sapiens mRNA; cDNA DKFZp434K0514 (f	3.49
	434075	AW003416	Hs.160604	ESTs	3.49
	444190	A1878918	Hs.10526	cysteine and glycine-rich protein 2	3.49
	435017	AA336522	Hs.12854	angiotensin II, type I receptor-associat	3.48
65	423445	NM_014324	Hs.128749	alpha-methylacyi-CoA racemase	3.48
00	420271	A1954365	Hs.42892	ESTs	3.48
	443684	AI681307	Hs.166674	ESTs	3.48
	444168	AW379879		gb:RC1-HT0256-081199-011-f01 HT0256 Homo	3.48
	446074	AA079799	Hs.29263	hypothetical protein FLJ11896	3.48
				- St t	

WO 02/30268

5	452582 431542 432697 435572 407192 413435 447210 447958	AL137407 H63010 AW975050 AW975339 AA609200 X51405 AF035269 AW796524	Hs.29911 Hs.5740 Hs.293892 Hs.239828 Hs.75360 Hs.17752 Hs.68644	Homo sapiens mRNA; cDNA DKFZp434M232 (fr ESTs ESTs, Weakly similar to ALU4_HUMAN ALU S ESTs, Weakly similar to GAG2_HUMAN RETRO gb:af12e02.s1 Soares_testis_NHT Homo sap carboxypeptidase E phosphatidytserine-specific phospholipas Homo sapiens microsomal signal peptidase	3.48 3.48 3.47 3.47 3.46 3.46 3.46
10	425312 442007 417455 426931 408739 436024	AA354940 AA301116 AW007066 NM_003416 W01556 Al800041	Hs.145958 Hs.142838 Hs.18949 Hs.2076 Hs.238797 Hs.190555	ESTs nucleotar phosphoprotein Nopp34 ESTs, Weakly similar to CA2B_HUMAN COLLA zinc finger protein 7 (KOX 4, done HF.1 ESTs, Moderately similar to 138022 hypot ESTs	3.46 3.45 3.45 3.45 3.45 3.45
15	408418 409151 418626 420560 420686	AW963897 AA306105 AW299508 AW207748 AI950339	Hs.44743 Hs.50785 Hs.135230 Hs.59115 Hs.40782	KIAA1435 protein SEC22, vesicle trafficking protein (S. c ESTs ESTs ESTs	3.45 3.44 3.44 3.44 3.44
2025	428870 436754 437960 452300 421887	AA436831 Al061288 Al669586 AW628045 AW161450	Hs.36049 Hs.133437 Hs.222194 Hs.28896 Hs.109201	ESTs ESTs ESTs Homo sapiens mRNA full length insert cDN CGI-86 protein	3.44 3.44 3.44 3.44 3.44

TABLE 5A shows the accession numbers for those primekeys lacking a unigeneID in Tables 5, 6, and 7. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

	Pkey:		Unique Eos probeset identifier number
	CAT number:		Gene cluster number
10	Accession:		Genbank accession numbers
10 .	Pkey	CAT number	Accession
	407596	1003489_1	R86913 R86901 H25352 R01370 H43764 AW044451 W21298
	408432	1058667_1	AW195262 R27868 AW811262
15	409752	115301_1	AW963990 AA078196 AW749482 AA077468 BE151571 AA376917
	409770	1154048_1	AW499536 AW499553 AW502138 AW499537 AW502136 AW501743
	411440	124577_1	AW749402 AW749403 Z45743 R80376 AA093358
	411479	1247077_1	AW848047 AW848202 AW848631 AW848142 AW848702 AW848121 AW848632 AW848140 AW848571
			AW848009 AW848067 AW848069 AW848905 AW848214
20	411624	1252166_1	BE145964 BE146286 AW854564
	412991	134248_1	AW949013 AA126111
	414269	143133_1	AA298489 AA137165
	415123	1523390_1	D60925 D60828 D80787
25	415715	1548818_1	F30364 F36559 T15435
25	416288	1585983_1	H51299 H44619 H46391 R86024 H51892 T72744
	416289	1586037_1	W26333 R05358 H44682
	417730	1695795_1	Z44761 R25801 R11926 R35604
	418636	177402_1	AW749855 AA225995 AW750208 AW750206
30	419346	184129_1	AI830417 AA236612 AA603305 AA244095 AA244183
30	419536 420111	185688_1 190755 1	AA255652 AA280911 AW967920 AA262684
	422219	213547_1	AW978073 AW978072 AA807550 AA306567
	424179	236389_1	F30712 F35665 AW263888 Al904014 Al904018 AA336927 AA336502
	424242	237181_1	AA337476 AW966227 AA450376 AW960222 AA381051
35	428002	285602_1	AA418703 AA418711 BE071915 BE071920 BE071912
-	429163	300543 1	AA884766 AW974271 AA592975 AA447312
	432189	342819 1	AA527941 Al810608 Al620190 AA635266
	432340	345248_1	AA534222 AA632632 TB1234
	432363	345469_1	AA534489 AW970240 AW970323
40	432966	356839_1	AA650114 AW974148 AA572946
	433586	370470_1	T85301 AW517087 AA601054 BE073959
	433641	37186_1	AF080229 AF080231 AF080230 AF080232 AF080233 AF080234 BE550633 Al636743 AW614951 BE467547
			AI680833 AI633818 N29986 U87592 U87593 U87590 U87591 S46404 U87587 AA463992 AW206802 AI970376
			AI583718 AI672574 N25695 AW665466 AI818326 AA126128 AI480345 AW013827 AA248638 AI214968
45			AA204735 AA207155 AA206262 AA204833 AW003247 AW496808 Al080480 Al631703 Al651023 Al867418
			AW818140 AA502500 Al206199 Al671282 Al352545 BE501030 Al652535 BE465762 AA206331 AW451866
			AA471088 AA206342 AA204834 AA206100 AW021661 AA332922 N66048 AA703396 H92278 AW139734
			H92683 U87589 U87595 H69001 U87594 BE466420 Al624817 BE466611 Al206344 AA574397 AA348354
50			Al493192
50	433687	373061_1	AA743991 AA604852 AW272737
	433891	376239_1	AA613792 AW182329 T05304 AW858385
	434415	385931_1	BE177494 AW276909 AA632849
	434565	38898_1	T52172 AF147324 T52248
55	434804	393481_1	AA649530 AA659316 H64973
JJ	437113	433234_1	AA744693 AW750059
	444168 448212	593829_1 755000_1	AW379879 ANDCC013
	448212	755099_1 757918_1	Al475858 AW969013 Al480316 AW847535
	451746	757918_1 883303_1	M86178 Al813822 D56993
	401740	303303_1	
			160

	452560	922216_1	BE077084 AW139963 AW863127 AW806209 AW806204 AW806205 AW806206 AW806211 AW806212
			AW806207 AW806208 AW806210 AI907497
	452712	928309_1	AW838616 AW838660 BE144343 AI914520 AW888910 BE184854 BE184784
	453773	980699_1	AL133761 AL133767
5	455276	1272541_1	BE176479 BE176678 BE176357 BE176550 AW886079 BE176676 BE176615 BE176555 BE176489 BE176610
			BE176362
	455309	1278153 1	AW894017 AW893956 AW894032

TABLE 5B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Tables 5, 6, and 7. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey: Ref:	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.
	Strand: Nt position:	Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.

15

	Pkey	Ref	Strand	Nt_position
	401045	8117619	Plus	90044-90184,91111-91345
20	401424	8176894	Plus	24223-24428
	401451	6634068	Minus	119926-121272
	401714	6715702	Plus	96484-96681
	401747	9789672	Minus	118596-118816,119119-119244,119609-119761,120422-120990,130161-130381,130468-130593,131097-
۰.				131258,131866-131932,132451-132575,133580-134011
25	401785	7249190	Minus	165776-165996,166189-166314,166408-166569,167112-167268,167387-167469,168634-168942
	401819	7467933	Minus	28217-28486
	402408	9796239	Minus	110326-110491
	402444	9796614	Plus	28391-28517
	402791	6137008	Minus	51036-51207
30	403047	3540153	Minus	59793-59968
	403137	9211494	Minus	92349-92572,92958-93084,93579-93712,93949-94072,94591-94748,95214-95337
	403721	7528046	Minus	156647-157366
	403764	7717105	Minus	118692-118853
~~	403797	8099896	Minus	123065-125008
35	404165	9926489	Minus	69025-69128
	404210	5006246	Plus	169926-170121
	404253	9367202	Minus	55675-56055
	404561	9795980	Minus	69039-70100
40	404571	7249169	Minus	112450-112648
40	404721	9856648	Minus	173763-174294
	404915	7341766	Minus	100915-101087
	404939	6862697	Plus	175318-175476
	405403	6850244	Minus	37491-37670,40951-41031
	405685	4508129	Minus	37956-38097
45	405718	9795467	Plus	113080-113266
	405793	1405887	Minus	89197-89453
	405876	6758747	Plus	39694-40031
	405917	7712162	Minus	106829-107213
	406414	9256407	Plus	49593-49850
50	406554	7711566	Plus	106956-107121

TABLE 6:286 GENES ENCODING EXTRACELLULAR OR CELL SURFACE PROTEINS UP-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL ADULT TISSUES

Table 6 shows 286 genes up-regulated in prostate cancer compared to normal adult tissues that are likely to be extracellular or cell-surface proteins. These were selected as for Table 5 and the predicted protein contained a structural domain that is indicative of extracellular localization (e.g. egf, 7tm domains).

	Pkey: ExAccn:		Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number						
	Unigene Ti			Unigene number Unigene gene title					
	R1:	uo.		r to normal tissue					
			Trans or turnor	to nomia assec					
10	Pkey	ExAcon	UnigenelD	Uningene Title	R1				
	409361	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolo	48.28				
	409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblast	45.24				
	400298	AA032279	Hs.61635	six transmembrane epithelial antigen of	43.48				
15	420154	Al093155	Hs.95420	JM27 protein	41.12				
	426747	AA535210	Hs.171995	kallikrein 3, (prostate specific antigen	31.80				
	400299	X07730	Hs.171995	kallikrein 3, (prostate specific antigen	24.91				
	425075	AA506324	Hs.1852	acid phosphatase, prostate	24.23				
	424846	AU077324	Hs.1832	neuropeptide Y	23.57				
20	405685				20.90				
	420757	X78592	Hs.99915	androgen receptor (dihydrotestosterone r	19.72				
	418994	AA296520	Hs.89546	selectin E (endothelial adhesion molecul	19.56				
	452792	AB037765	Hs.30652	KIAA1344 protein	17.39				
	445472	AB006631	Hs.12784	Homo sapiens mRNA for KIAA0293 gene, par	17.00				
25	414565	AA502972	Hs.183390	hypothetical protein FLJ13590	16.82				
	431716	D89053	Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	16.60				
	408430	S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	16.28				
	408000	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	15.54				
	430226	BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	15.40				
30	444484	AK002126	Hs.11260	hypothetical protein FLJ11264	14.76	•			
	418601	AA279490	Hs.86368	calmegin	14.56				
	448999	AF179274	Hs.22791	transmembrane protein with EGF-like and	14.55				
	416182	NM_004354	Hs.79069	cyclin G2	12.94				
	420544	AA677577	Hs.98732	Homo sapiens Chromosome 16 BAC clone CIT	12.79				
35	445413	AA151342	Hs.12677	CGI-147 protein	12.64				
	453930	AA419466	Hs.36727	hypothetical protein FLJ10903	12.22				
	440286	U29589	Hs.7138	cholinergic receptor, muscarinic 3	12.04				
	452784	BE463857	Hs.151258	hypothetical protein FLJ21062	11.86				
	450203	AF097994	Hs.301528	L-kynurenine/alpha-aminoadipate aminotra	11.68				
40	448045	AJ297436	Hs.20166	prostate stem cell antigen	11.51				
	449650	AF055575	Hs.23838	calcium channel, voltage-dependent, L ty	11.18				
	420381	D50640	Hs.337616	phosphodiesterase 3B, cGMP-inhibited	11.10				
	425665	AK001050	Hs.159066	hypothetical protein FLJ10188	11.08				
	425710	AF030880	Hs.159275	solute carrier family, member 4	11.08	•			
45	428728	NM_016625	Hs.191381	hypothetical protein	11.04				
	407021	U52077		gb:Human mariner1 transposase gene, comp	11.02				
	410733	D84284	Hs.66052	CD38 antigen (p45)	11.02	•			
	452340	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	10.85				
	428819	AL135623	Hs.193914	KIAA0575 gene product	10.48				
50	421991	NM_014918	Hs.110488	KIAA0990 protein	10.04				
	431217	NM_013427	Hs.250830	Rho GTPase activating protein 6	9.75				
	421470	R27496	Hs.1378	annexin A3	9.64				
	409262	AK000631	Hs.52256	hypothetical protein FLJ20624	9.45				
	435980	AF274571	Hs.129142	deoxyribonuclease II beta	9.24				
55	421246	AW582962	Hs.102897	CGI-47 protein	9.20				
	410001	AB041036	Hs.57771	kalikrein 11	9.03				
	441791	AW372449	Hs.175982	hypothetical protein FLJ21159	9.02	•			
					,				

					0.00
	404571			FOT 111 At a tallent AF400400 4 of the	8.66
	456497	AW967956	Hs.123648	ESTs, Weakly similar to AF108460 1 ubinu	8.56
	419968	X04430	Hs.93913	interleukin 6 (interleron, beta 2)	8.36
_	433172	AB037841	Hs.102652	hypothetical protein ASH1	8.30 8.27
5	422631	BE218919	Hs.118793	hypothetical protein FLJ10688	8.20
	427674	NM_003528	Hs.2178	H2B histone family, member Q	8.08
	404915	A A047400	Hs.28707	signal sequence receptor, gamma (translo	8.06
	452259	AA317439 N75582	Hs.212875	ESTs, Weakly similar to DYH9_HUMAN CILIA	8.02
10	452891 439731	Al953135	Hs.45140	hypothetical protein FLJ14084	7.98
10	419839	U24577	Hs.93304	phospholipase A2, group VII (platelet-ac	7.68
	420120	AL049610	Hs.95243	transcription elongation factor A (SII)-	7.64
	424099	AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	7.64
	448706	AW291095	Hs.21814	interteukin 20 receptor, alpha	7.52
15	410227	AB009284	Hs.61152	exostoses (multiple)-like 2	7.49
	425211	M18667	Hs.1867	progastricsin (pepsinogen C)	7.35
	441736	AW292779	Hs.169799	ESTs	7.28
	419991	AJ000098	Hs.94210	eyes absent (Drosophila) homolog 1	7.20
	425018	BE245277	Hs.154196	E4F transcription factor 1	7.20
20	424560	AA158727	Hs.150555	protein predicted by clone 23733	7.18
	409110	AA191493	Hs.48778	niban protein	7.10
	421566	NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	7.04
	431725	X65724	Hs.2839	Norrie disease (pseudoglioma)	6.98
~~	425782	U66468	Hs.159525	cell growth regulatory with EF-hand doma	6.85
25	427408	AA583206	Hs.2156	RAR-related orphan receptor A	6.79
	435604	AA625279	Hs.26892	uncharacterized bone marrow protein BM04	6.73
	415874	AF091622	Hs.78893	KIAA0244 protein	6.54
	401451	41.000070	11- 000500	regulator of C protein planalling 17	6.52 6.51
30	431778	AL080276	Hs.268562	regulator of G-protein signalling 17 KIAA0203 gene product	6.50
30	409089	NM_014781	Hs.50421 Hs.2891	protein kinase C, mu	6.49
	431992	NM_002742	U27091	protein kinase o, mu	6.42
	404253 421552	AF026692	Hs.105700	secreted frizzled-related protein 4	6.41
	416806	NM_000288	Hs.79993	peroxisomal biogenesis factor 7	6.38
35	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	6.30
-	439366	AF100143	Hs.6540	fibroblast growth factor 13	6.30
	416836	D54745	Hs.80247	cholecystokinin	6.30
	433383	AF034837	Hs.192731	double-stranded RNA specific adenosine d	6.29
	450728	AW162923	Hs.25363	presenilin 2 (Alzheimer disease 4)	6.25
40	413384	NM_000401	Hs.75334	exostoses (multiple) 2	6.22
	423349	AF010258	Hs.127428	homeo box A9	6.20
	424800	AL035588	Hs.153203	MyoD family inhibitor	6.18
	425451	AF242769	Hs.157461	mesenchymal stem cell protein DSC54	6.14
4 =	447359	NM_012093	Hs.18268	adenylate kinase 5	6.00
45	410889	X91662	Hs.66744	twist (Drosophila) homolog (acrocephalos	5.97 5.94
	408829	NM_006042	Hs.48384	heparan sulfate (glucosamine) 3-O-sulfot	5.94 5.94
	453911	AW503857	Hs.4007	Sarcolemmal-associated protein OKFZP434B168 protein	5.92
	408875	NM_015434 X82125	Hs.48604 Hs.25040	zinc finger protein 239	5.90
50	450480 451684	AF216751	Hs.26813	CDA14	5.88
50	400301	X03635	Hs.1657	estrogen receptor 1	5.78
	415077	L41607	Hs.934	glucosaminyi (N-acetyl) transferase 2, I	5.74
	418852	BE537037	Hs.273294	hypothetical protein FLJ20069	5.72
	446867	AB007891	Hs.16349	KIAA0431 protein	5.72
55	410232	AW372451	Hs.61184	CGI-79 protein	5.70
	422762	AL031320	Hs.119976	Human DNA sequence from clone RP1-20N2 o	5.70
	450616	AL133067	Hs.302689	hypothetical protein	5.70
	408621	Al970672	Hs.46638	chromosome 11 open reading frame 8	5.65
	439671	AW162840	Hs.6641	kinesin family member 5C	5.64
60	410196	Al936442	Hs.59838	hypothetical protein FLJ10808	5.60
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	5.60
	440738	Al004650	Hs.225674	WD repeat domain 9	5.60
	414342	AA742181	Hs.75912	KIAA0257 protein	5.59
	422634	NM_016010	Hs.118821	CGI-62 protein	5.56
65	400268	414/400-1-00	11-00000	OFOR4	5.55
	439569	AW602166	Hs.222399	CEGP1 protein	5.51 5.49
	452823	AB012124	Hs.30696	transcription factor-like 5 (basic helix	5.48 5.44
	431938	AA938471	Hs.54431 Hs.208341	specific granule protein (28 kDa); cyste ESTs, Weakty similar to KIAA0989 protein	5.44 5.42
	427638	AA406411	113.600041	20.0, Hours online withwood proteil	3.75

	101001	61 000400	11- 400040	mboundaries to the second	E 00
	421264	AL039123	Hs.103042	microtubule-associated protein 1B	5.38
	421685	AF189723	Hs.106778	ATPase, Ca++ transporting, type 2C, memb	5.37
	421987	Al133161	Hs.286131	CGI-101 protein	5.36
	422806	BE314767	Hs.1581	glutathione S-transferase theta 2	5.34
-5	432281	AK001239	Hs.274263	hypothetical protein FLJ10377	5.32
	451982	F13036	Hs.27373	Homo sapiens mRNA; cDNA DKFZp56401763 (f	5.32
	444042	NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	5.31
	447752	M73700	Hs.105938	lactotransferrin	5.29
10	451418	BE387790	Hs.26369	hypothetical protein FLJ20287	5.22
10	428593	AW207440	Hs.185973	degenerative spermatocyte (homolog Droso	5.21
	447541	AK000288	Hs.18800	hypothetical protein FLJ20281	5.18
	459294	AW977286	Hs.17428	RBP1-like protein	5.16
	424692	AA429834	Hs.151791	KIAA0092 gene product	5.15
	416434	AW163045	Hs.79334	nuclear factor, interleukin 3 regulated	5.11
15	410268	AA316181	Hs.61635	six transmembrane epithelial antigen of	5.10
	417517	AF001176	Hs.82238	POP4 (processing of precursor, S. cerev	5.10
	453616	NM_003462	Hs.33846	dynein, axonemal, light intermediate pol	5.10
	427958	AA418000	Hs.98280	potassium intermediate/small conductance	5.09
	407945	X69208	Hs.606	ATPase, Cu++ transporting, alpha polypep	5.08
20	418576	AW968159	Hs.289104	Alu-binding protein with zinc finger dom	5.05
	413328	Y15723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	5.04
	432729	AK000292	Hs.278732	hypothetical protein FLJ20285	5.04
	426342	AF093419	Hs.169378	multiple PDZ domain protein	5.02
25	429782	NM_005754	Hs.220689	Ras-GTPase-activating protein SH3-domain	5.02
25	436209	AW850417	Hs.254020	ESTs, Moderately similar to unnamed prot	5.02
	430599	NM_004855	Hs.247118	phosphatidylinositol glycan, class B	5.00
	451386	AB029006	Hs.26334	spastic paraplegia 4 (autosomal dominant	5.00
	457211	AW972565	Hs.32399	ESTs, Weakly similar to S51797 vasodilat	4.97
	425851	NM_001490	Hs.159642	glucosaminyl (N-acetyl) transferase 1, c	4.97
30	421689	N87820	Hs.106826	KIAA1696 protein	4.93
	416533	BE244053	Hs.79362	retinoblastoma-like 2 (p130)	4.92
	432653	Ņ62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci	4.91
	403047				4.91
25	431117	AF003522	Hs.250500	delta (Drosophila)-like 1	4.90
35	427617	D42063	Hs.199179	RAN binding protein 2	4.88
	428804	AK000713	Hs.193736	hypothetical protein FLJ20706	4.88
	449071	NM_005872	Hs.22960	breast carcinoma amplified sequence 2	4.86
	407596	R86913	H- 000740	gb:yq30f05.r1 Soares fetal liver spleen	4.84 4.84
40	456516	BE172704	Hs.222746	KIAA1610 protein	4.83
40	458339	AW976853	Hs.172843	ESTS	4.82
	422083	NM_001141	Hs.111256	arachidonate 15-lipoxygenase, second typ	4.82
	449535	W15267	Hs.23672	low density lipoprotein receptor-related spondin 2, extracellular matrix protein	4.82
	422048	NM_012445	Hs.288126	hypothetical protein FLJ11193	4.78
45	424602 410765	AK002055 A1694972	Hs.151046 Hs.66180	nucleosome assembly protein 1-like 2	4.77
73	419879	Z17805	Hs.93564	Homer, neuronal immediate early gene, 2	4.74
	450649	NM_001429	Hs.25272	E1A binding protein p300	4.74
	411624	BE145964	Hs.103283	KIAA0594 protein	4.72
	404721	DE140304	115.100200	Mirrios piotelli	4.70
50	426261	AW242243	Hs.168670	peroxisomal famesylated protein	4.70
50	416276	U41060	Hs.79136	LIV-1 protein, estrogen regulated	4.64
	408374	AW025430	Hs.155591	forkhead box F1	4.64
	451900	AB023199	Hs.27207	KIAA0982 protein	4.63
	421437	AW821252	Hs.104336	hypothetical protein	4.63
55	434629	AA789081	Hs.4029	glioma-amplified sequence-41	4.60
33	403764	741700001	110.7020	giona ampinos solucitos 41	4.58
	421247	BE391727	Hs.102910	general transcription factor IIH, polype	4.53
	403721	DCOOTTET	113.102010	gonoida danos ipaon tactor in il porspo	4.50
	453070	AK001465	Hs.31575	SEC63, endoplasmic reticulum translocon	4.49
60	417412	X16896	Hs.82112	interleukin 1 receptor, type I	4.48
	439735	AI635386	Hs.142846	hypothetical protein	4.48
	430261	AA305127	Hs.237225	hypothetical protein HT023	4.46
	430598	AK001764	Hs.247112	hypothetical protein FLJ10902	4.44
	400303	AA242758	Hs.79136	LiV-1 protein, estrogen regulated	4.42
65	438209	AL120659	Hs.6111	arvi-hydrocarbon receptor nuclear transi	4.42
J -	417421	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m	4.40
	447270	AC002551	Hs.331	general transcription factor IIIC, polyp	4.38
	434423	NM_006769	Hs.3844	LIM domain only 4	4.35
•	404561		-	•	4.32

	422969	AA782536	Hs.122647	N-myristoyitransferase 2	4.32
	423685	BE350494	Hs.49753	uveal autoantigen with coiled coil domai	4.32
	425071	NM_013989	Hs.154424	delodinase, iodothyronine, type li	4.32
	431583	AL042613	Hs.262476	S-adenosylmethionine decarboxylase 1	4.31
5	442818	AK001741	Hs.8739	hypothetical protein FLJ10879	4.30
•	423740	Y07701	Hs.293007	aminopeptidase puromydn sensitive	4.24
	424701		Hs.151988	mitogen-activated protein kinase kinase	4.21
		NM_005923			4.20
+	424085	NM_002914	Hs.139226	replication factor C (activator 1) 2 (40	4.18
10	410294	AB014515	Hs.323712	KIAA0615 gene product	
10	447124	AW976438	Hs.17428	RBP1-like protein	4.18
	438018	AK001160	Hs.5999	hypothetical protein FLJ10298	4.16
	443857	Al089292	Hs.287621	hypothetical protein FLJ14069	4.15
	446711	AF169692	Hs.12450	protocadherin 9	4.15
	405403				4.14
15	448148	NM_016578	Hs.20509	HBV pX associated protein-8	4.13
	417531	NM_003157	Hs.1087	serine/threonine kinase 2	4.12
	433345	Al681545	Hs.152982	hypothetical protein FLJ13117	4.10
	432712	AB016247	Hs.288031	sterol-C5-desaturase (fungal ERG3, delta	4.09
	435114	AA775483	Hs.288936	mitochondrial ribosomal protein L9	4.08
20	445459	Al478629	Hs.158465	likely ortholog of mouse putative IKK re	4.08
20		M410023	115.130403	titletà ottitoioà ot tuoque barranaé tere la	4.04
	402791	11007/0	11- 0040	Homo sapiens, clone IMAGE:3010666, mRNA,	4.04
	438660	U95740	Hs.6349		
	447568	AF155655	Hs.18885	CGI-116 protein	4.04
~~	452211	Al985513	Hs.233420	ESTs	4.02
25	443292	AK000213	Hs.9196	hypothetical protein	4.01
	420911	U77413	Hs.100293	O-linked N-acetytglucosamine (GlcNAc) tr	4.00
	428738	NM_000380	Hs.192803	xeroderma pigmentosum, complementation g	3.95
	430456	AA314998	Hs.241503	hypothetical protein	3.95
	437531	Al400752	Hs.112259	T cell receptor gamma locus	3.93
30	428695	Al355647	Hs.189999	purinergic receptor (family A group 5)	3.91
	410011	AB020641	Hs.57856	PFTAIRE protein kinase 1	3.91
	446494	AA463276	Hs.288906	WW Domain-Containing Gene	3.91
	409928	AL137163	Hs.57549	hypothetical protein dJ473B4	3.90
	411598	BE336654	Hs.70937	H3 histone family, member A	3.90
35	425707	AF115402	Hs.11713	E74-like factor 5 (ets domain transcript	3.90
55				RNA 3'-terminal phosphate cyclase	3.89
	451806	NM_003729	Hs.27076	ruth o-termina: pricophiate cyclase	3.89
	401045	4.400000	LI= 000004	hymothetical acatain DI/E7nE47G109	3.89
	437372	AA323968	Hs.283631	hypothetical protein DKFZp547G183	3.88
40	417067	AJ001417	Hs.81086	solute carrier family 22 (extraneuronal	
40	410467	AF102546	Hs.63931	dachshund (Drosophila) homolog	3.88
	431930	AB035301	Hs.272211	cadherin 7, type 2	3.88
	453047	AW023798	Hs.286025	ESTs	3.88
	401785				3.88
	458229	A1929602	Hs.177	phosphatidylinositol glycan, class H	3.86
45	406414				3.86
	412494	AL133900	Hs.792	ADP-ribosylation factor domain protein 1	3.84
	418329	AW247430	Hs.84152	cystathionine-beta-synthase	3.83
	424850	AA151057	Hs.153498	chromosome 18 open reading frame 1	3.82
	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	3.82
50	423052	M28214	Hs.123072	RAB3B, member RAS oncogene family	3.82
-	416111	AA033813	Hs.79018	chromatin assembly factor 1, subunit A (3.82
	419423	D26488	Hs.90315	KIAA0007 protein	3.80
	429643	AA455889	Hs.167279	FYVE-finger-containing Rab5 effector pro	3.80
		NM 001514		general transcription factor IIB	3.80
55	431499		Hs.258561	U5 snRNP-specific 40 kDa protein (hPrp8-	3.78
22	444078	BE246919	Hs.10290		3.76
	430291	AV660345	Hs.238126	CGI-49 protein	
	431637	Al879330	Hs.265960	hypothetical protein FLJ10563	3.74
	440411	N30256	Hs.151093	hypothetical protein DKFZp434G1415	3.74
	405917				3.74
60	451230	BE546208	Hs.26090	hypothetical protein FLJ20272	3.73
	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	3.73
	415075	L27479	Hs.77889	Friedreich ataxia region gene X123	3.72
	440351	AF030933	Hs.7179	RAD1 (S. pombe) homolog	3.70
	443603	BE502601	Hs.134289	ESTs, Weakly similar to KIAA1063 protein	3.70
65	446965	BE242873	Hs.16677	WD repeat domain 15	3.70
	412350	Al659306	Hs.73826	protein tyrosine phosphatase, non-recept	3.70
	433852	Al378329	Hs.126629	ESTs	3.70
	447397	BE247676	Hs.18442	E-1 enzyme	3.68
	405718	ULATIVIV	110.10776	= . Simplifie	3.68
	-W/ 10				2.00

	425217	AU076696	Hs.155174	CDC5 (cell division cycle 5, S. pombe, h	3.68
	421734	Al318624	Hs.107444	Homo sapiens cDNA FLJ20562 fis, clone KA	3.67
	427221	L15409	Hs.174007	von Hippel-Lindau syndrome	3.67
	402408			•	3.66
5	452946	X95425	Hs.31092	EphA5	3.66
	419078	M93119	Hs.89584	insulinoma-associated 1	3.66
	427144	X95097	Hs.2126	vasoactive intestinal peptide receptor 2	3.65
	423396	Al382555	Hs.127950	bromodomain-containing 1	3.65
	446320	AF126245	Hs.14791	acyl-Coenzyme A dehydrogenase family, me	3.63
10	404939				3.62
	403137				3.60
	437162	AW005505	Hs.5464	thyroid hormone receptor coactivating pr	3.60
	404210			, , , , , , , , , , , , , , , , , , , ,	3.59
	443775	AF291664	Hs.204732	matrix metalloproteinase 26	3.56
15	452501	AB037791	Hs.29716	hypothetical protein FLJ10980	3.56
	422443	NM_014707	Hs.116753	histone deacetylase 7B	3.55
	420230	AL034344	Hs.284186	forkhead box C1	3.55
	418428	Y12490	Hs.85092	thyroid hormone receptor interactor 11	3.54
	433002	AF048730	Hs.279906	cyclin T1	3.53
20	405793			•	3.52
	457940	AL360159	Hs.306517	Homo sapiens TRIpartite motif protein ps	3.52
	402444				3.52
	418250	U29926	Hs.83918	adenosine monophosphate deaminase (isofo	3.57
	414222	AL135173	Hs.878	sorbitol dehydrogenase	3.51
25	422384	AA224077	Hs.42438	Sm protein F	3.50
	447805	AW627932	Hs.19614	gemin4	3.50
	454265	H03556	Hs.300949	ESTs, Weakly similar to thyroid hormone	3.50
	423445	NM_014324	Hs.128749	alpha-methylacyl-CoA racemase	3.48
	413435	X51405	Hs.75360	carboxypeptidase E	3.46
30	447210	AF035269	Hs.17752	phosphatidylserine-specific phospholipas	3.46
	426931	NM_003416	Hs.2076	zinc finger protein 7 (KOX 4, clone HF.1	3.45
	408418	AW963897	Hs.44743	KIAA1435 protein	3.45
	421887	AW161450	Hs.109201	CGI-86 protein	3.44

Table 7: 42 GENES ENCODING SMALL MOLECULE TARGETS UP-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL ADULT TISSUES

5 Table 7 shows 42 genes up-regulated in prostate cancer compared to normal adult tissues that are likely to be small molecule targets. These were selected as for Table 5 and the predicted protein contained a structural domain that is indicative of a drugable structure (e.g. protease, kinase, phosphatase, receptor). The functional domain is indicated for each gene.

Unique Eos probeset identifier number

ExAccn:

Exemplar Accession number, Genbank accession number

UnigenelD:

Unigene number

Unigene Title: PSDomain:

Unigene gene title Protein Structural Domain

15 R1: Ratio of tumor vs. normal tissue

	Pkey	ExAccn	UnigenelD	Unigene Title	PSDomain	R1	
20	426747	AA535210	Hs.171995	kallikrein 3, (prostate specific antigen	trypsin	31.80	
	400299	X07730	Hs.171995	kallikrein 3, (prostate specific antigen	trypsin	24.91	
	420757	X78592	Hs.99915	androgen receptor (dihydrotestosterone r	Androgen_recep,hormone_rec,zf-C4	19.72	
	408430	S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	DPPIV_N_term,Peptidase_S9	16.28	
		BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	7tm_1	15.40	
- 25	411096	U80034	Hs.68583	mitochondrial intermediate peptidase	Peptidase_M3	14.81	
		U29589	Hs.7138	cholinergic receptor, muscarinic 3	7tm_1	12.04	
		D50640	Hs.337616	phosphodiesterase 3B, cGMP-inhibited	PDEase	11.10	
		U52077		gb:Human mariner1 transposase gene, comp		11.02	
20	401424				arginase	9.58	
30		AB041036	Hs.57771	kallikrein 11	trypsin	9.03	
	428330		Hs.2256	matrix metalloproteinase 7 (matrilysin,	Peptidase_M10	8.76	
		AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	ABC_tran,ABC_membrane	7.64	
		AJ000098	Hs.94210	eyes absent (Drosophila) homolog 1	Hydrolase	7.20	
25		NM_002742	Hs.2891	protein kinase C, mu	pkinase,DAG_PE-bind,PH	6.49	
35		NM_012093	Hs.18268	adenylate kinase 5	adenylatekinase	6.00	
	400301		Hs.1657	estrogen receptor 1	Oest_recep,zf-C4,hormone_rec	5.78	
		AF189723		ATPase, Ca++ transporting, type 2C, memb	E1-E2_ATPase,Hydrolase	5.37 5.31	
		NM_004915		ATP-binding cassette, sub-family G (WHIT	ABC_tran	5.29	
40		M73700	Hs.606	lactotransferrin	transferrin,7tm_1	5.08	
40	407945	X692U8	FIS.000	ATPase, Cu++ transporting, alpha polypep	E1-E2_ATPase,Hydrolase,HMA trypsin	4.91	
	403047 427617	Dannes	No 100170	RAN binding protein 2	Ran_BP1,zf-RanBP,TPR,pro_isomeras	****	
		NM_001141		arachidonate 15-lipoxygenase, second typ	lipoxygenase,PLAT	4.82	
		W15267	Hs.23672	low density lipoprotein receptor-related	Idl_recept_b,ldl_recept_a,EGF	4.82	
45		NM_013989		deiodinase, lodothyronine, type II	T4_deiodinase	4.32	
43	423740			aminopertidase puromycin sensitive	Peptidase_M1	4.24	
		NM_005923		mitogen-activated protein kinase kinase	pkinase	4.21	
		NM 002914		replication factor C (activator 1) 2 (40	AAA,Viral_helicase1	4.20	
		NM_003157	Hs.1087	serine/threonine kinase 2	pkinase	4.12	
50		Al355647		purinergic receptor (family A group 5)	7tm_1	3.91	
50		AB020641		PFTAIRE protein kinase 1	pkinase	3.91	
		AA151057		chromosome 18 open reading frame 1	ldl_recept_a	3.82	
		Al659306	Hs.73826	protein tyrosine phosphatase, non-recept	Y_phosphatase,Band_41,PDZ	3.70	
		BE247676	Hs.18442	E-1 enzyme	Hydrolase	3.68	
55	452946		Hs.31092	EphA5	EPH_lbd,fn3.pkinase,SAM	3.66	
	427144		Hs.2126	vasoactive intestinal peptide receptor 2	7tm 2	3.65	
		AF291664		matrix metalloproteinase 26	Peptidase_M10	3.56	
		AL360159		Homo sapiens TRIpartite motif protein ps	SPRY,7tm_1	3.52	
	418250		Hs.83918	adenosine monophosphate deaminase (isofo		3.51	
60	413435		Hs.75360	carboxypeptidase E	Zn_carbOpept	3.46	
		AF035269	Hs.17752	phosphatidylserine-specific phospholipas	lipase	3.46	
					•		

TABLE 8: 136 GENES SIGNIFICANTLY DOWN-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL PROSTATE

Unique Economocat identifier number

5

10

Table 8 shows 136 genes significantly down-regulated in prostate cancer compared to normal prostate. These were selected from 59680 probesets on the Affymetrix/Eos Hu03 GeneChip array such that the ratio of "average" normal prostate to "average" prostate cancer tissues was greater than or equal to 2. The "average" normal prostate level was set to the mean amongst 4 normal prostate tissues. The "average" prostate cancer level was set to the 85th percentile amongst 73 tumor samples. In order to remove gene-specific background levels of non-specific hybridization, the 10th percentile value amongst all the tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

	Pkey:			Unique Eos probeset identifier number					
	ExAccn:		•	mplar Accession number, Genbank accession number					
15	Unigene		Unigene						
	Unigene	e Title:		gene title					
	R1:		Ratio of	normal prostate to prostate cancer					
	Pkey	ExAccn	(Hanonini)	Unigene Title	R1				
20	rkey	CANCOI	orngenero	·					
20	425932	M81650	Hs.1968	semenogelin I	57.69				
		N98529		Human mRNA for myosin light chain 3 (MLC	19.70				
		X69490	Hs.172004		15.25				
		R41823	Hs.7413	ESTs; calsyntenin-2	10.05				
25		X90568	Hs.172004		9.38				
		D60641	Hs.21739	Homo sapiens mRNA; cDNA DKFZp586l1518 (f	9.05				
		X51501	Hs.99949	prolactin-induced protein	8.18				
			Hs.183380	*ESTs, Moderately similar to ALU7_HUMAN	7.45				
	404567				5.62				
30	416030	H15261	Hs.21948	ESTs	5.51				
	444892	Al620617	Hs.148565	ESTs	5 <i>2</i> 7				
	444573	AW043590	Hs.225023	ESTs	5.20				
			Hs.233462		5.08				
	437440	AA846804	Hs.123694	ESTs	4.95 ·				
35	404113				4.75				
	452279	AA286844	Hs.61260	hypothetical protein FLJ13164	4.75				
			Hs.188181		4.63				
	445592	AV654382	Hs.17947	"ESTs, Weakly similar to K02F3.10 [C.ele	4.53				
	405163			•	4.49				
40	405227			•	4.45				
		NM_00315		statherin	4.45				
		A1138635	Hs.22968	ESTs	4.40				
		U35637		"gb:Human nebulin mRNA, partial cds"	4.03				
4 ~	403612				4.02				
45			Hs.135646		4.00				
				Homo sapiens clone TUA8 Cri-du-chat regi	3.98				
			Hs.128993	"ESTs, Weakly similar to KIAA0465 protei	3.95				
		BE148877		*gb:CM4-HT0244-111199-040-h12 HT0244 Hom	3.95				
50				zinc transporter	3.92				
50		AW860972		"gb:QV0-CT0387-180300-167-h07 CT0387 Hom	3.85 3.75				
			HS.87150	Human clone A9A2BR11 (CAC)n/(GTG)n repea	3.75 3.61				
		AF069478		*gb:AF069478 Homo sapiens astrocytoma li	3.60				
	403649			and the transfer of the first of the second state of the second st	3.58				
55		H13139	Hs.92282	•	3.51				
22		AA196241		"troponin T1, skeletal, slow"	3.45				
			Hs.46609		3.45				
	42/419	NM_00020	0Hs.177888	RISIAUN 3	3.35				
	420777	AA280223	Hs.130865	EOIS	3.33				
60			Hs.161008		3.30				
60		R02018		*Ank, mouse, homolog of	3.30 3.30				
				*EST, Highly similar to ubiquitin-protei	3.26				
			Hs.292776		3.16				
	400440	X83957	Hs.83870	HOUNIE	J. 10				

	413778	AA090235	Hs.75535	*myosin, light polypeptide 2, regulatory	3.06
					3.05
		AW838068		*gb:QV3-LT0048-010300-109-f02 LT0048 Hom	
	445060	AA830811	Hs.88808	ESTS	2.98
		Al476318			2.95
_			113.132400		
5	432456	H00093		"gb:ph8f12u_19/1TV Outward Alu-primed hn	2.92
	405678				2.85
		\$73840	Hs.931	*myosin, heavy polypeptide 2, skeletal m	2.81
				and the state of t	
	444105	AW189097	Hs.166597	ESIS	2.78
	433968	AL157518	Hs.90421	PRO2463 protein	2.73
10		AAB09431			2.73
10					
	436562	H71937	Hs.169756	"complement component 1, s subcomponent"	2.68
	412417	AA102268	Hs 42175	FSTs	2.67
				"gb:QV4-BT0536-271299-059-g04 BT0536 Hom	2.65
		BE072259			
	415380	F07953	Hs.16085	putative G-protein coupled receptor	2.65
15	428729	AI 162331	Hs.191436	hypothetical protein FLJ10619	2.64
				• • • • • • • • • • • • • • • • • • • •	2.63
		AW207734		"gb:UI-H-BI2-age-h-01-0-UI.s1 NCI_CGAP_S	
	424706	AA741336	Hs.152108	transcriptional unit N143	2.63
	413212	BE072092		"gb:PM4-BT0532-160200-003-b11 BT0532 Hom	2.63
			Ha 000	•	2.62
00	400704	M21665	Hs.929	"myosin, heavy polypeptide 7, cardiac mu	
20	437507	AA758538	Hs.246882		2.60
	410384	A1933794	Hs.42745	ESTs	2.58
			Hs.124764		2.58
					
	436653	AA829828	Hs.292402	ESIS	2.52
	458090	Al282149	Hs.56213	"ESTs, Highly similar to FXD3_HUMAN FORK	2.51
25					2.50
23		Al689154			
	436915	AA737400	Hs.142230	ESIS	2.50
	410028	AW576454	Hs 258553	ESTs	2.46
				alkylglycerone phosphate synthase	2.45
			115.22300		
	422046	A1638562		gb:ts50a10.x1 NCI_CGAP_Ut1 Homo sapiens	2.44
30	451122	AA015767	Hs.193587	ESTs	2.40
		H87863	Hs.151380		2.36
					2.36
		AW600293			
	400001			AFFX control: BioB-3	2.36
	415835	Z45365		"gb:HSC2NF061 normalized infant brain cD	2.36
35		AW872527	He 50761		2.36
55					2.36
		AW242394			
	436486	AA742221	Hs.120633	ESTs .	2.35
	407449	AJ002784		gb:Homo sapiens mRNA; fetal brain cDNA 5	2.33
		AA744550	He 1363/5		2.32
40		747	113,1000-0	2013	2.31
40	401974				
	443356	AL044498	Hs.133262		2.31
	430751	NM 01247	1Hs.247868	transient receptor potential channel 5	2.25
		Al949371			2.25
		R15337		"Homo sapiens cDNA FLJ10532 fis, clone N	2.25
45	451130	A1762250	Hs.211347	ESTs	2.24
	405420				2.23
		*******		ELL III O OTODOS ASSOSSOS DOS NICOS DICES	2.23
		AW851258		"gb:IL3-CT0220-160200-066-H06 CT0220 Hom	
	438224	AA933999		"gb:on91f04.s1 Soares_NFL_T_GBC_S1 Homo	2.23
	407764	BE008347		"gb:CM0-BN0154-080400-325-h04 BN0154 Hom	2.23
50				•	2.23
50		BE252470		"gb:601108292F1 NIH_MGC_16 Homo sapiens	
	437010	AA741368	Hs.291434	ESTs	2.23
	435111	Al914279	He 213740	FSTs	2.22
		74017270	110,2 10,40		2.21
	403375				
	455060	AW853441		*gb:RC1-CT0252-030100-023-g09 CT0252 Hom	2.21
55	409792	AW854153		"gb:RC3-CT0254-060400-029-d03 CT0254 Hom	2.20
-				*Homo sapiens cDNA FLJ14269 fis, clone P	2.19
		AA284333	HS.28/031	Hollio sapelis COMA PLD 14209 lis, Golie P	
	401963				2.18
		AF168711	Hs.159397	x 010 protein	2.18
					2.18
60				KIAA0553 protein	
60	436816	AW297599	Hs.255667		2.17
		Al733395			2.17
					2.16
		AA236233			
			Hs.124156		2.16
	423315	R54109	Hs.26096	ESTs .	2.16
65		AA988835			2.15
5 5					2.15
		Al133482	HS.165210		
	424770	AA425562		"gb:zw46e05.r1 Soares_total_fetus_Nb2HF8	2.15
		AA744518	Hs 120610		2.15
	400700	**************************************	Ha 000075	ECTs. Highly similar to college in 3.lik	2.15
	420/93	ACUU495/	H\$.2989/5	*ESTs, Highly similar to collapsin-2-lik	4.13

	415708	H56475		"gb:yt87d11.r1 Soares_pineal_gland_N3HPG	2.13
	459619				2.12
	427506	AK000134	Hs.179100	hypothetical protein FLJ20127	2.12
	452508				2.10
5	410881	AW809157		"gb:RC0-ST0118-041099-031-c07_1 ST0118 Homo sapiens cDNA, mRNA sequence"	2.10
•	403087				2.10
	403869				2.10
	445028	D81194	Hs.282499	ESTs	2.10
		H29505	***************************************	"gb:ym60d10,r1 Soares infant brain 1NIB Homo sapiens cDNA clone 5', mRNA sequence"	2.10
10		H11257	Hs.295233	·	2.09
	420351		Hs.190044		2.08
	426998			"qb:601121068F1 NIH_MGC_20 Homo sapiens cDNA clone 5', mRNA sequence"	2.08
	405455	DEE/ 4000		galout 12 tood 1 tim _indo_sol time out to the control of the cont	2.08
		AA332652		"gb:EST36627 Embryo, 8 week I Homo sapiens cDNA 5' end similar to similar to	
15				monoamine oxidase B, mRNA sequence"	2.08
	406135				2.07
		BE246180	Hs.121385	ESTs	2.07
	403493				2.05
		A1682905	Hs.270431	*ESTs. Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE	
20				CONTAMINATION WARNING ENTRY [H.sapiens]*	2.05
	435884	AA701443	Hs.192868		2.05
	419629	AB020695		KIAA0888 protein	2.03
	405900		110101000	The state of the s	2.03
	457350		Hs.194136	"ESTs, Moderately similar to AF091457 1 zinc finger protein RIN ZF [R.norvegicus]"	2.02
25	400007			AFFX control: BioDn-5	2.01
		M64358		"gb:Human rhom-3 gene, exon."	2.00

TABLE 8A shows the accession numbers for those primekeys lacking a unigeneID in Table 8. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	Pkey: CAT number: Accession:		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
15	Pkey	CAT number	Accessions
	407764	1014849_1	BE008347 BE008320 BE083307 BE083311 AW075968
	408537	1064753_1	AW207734 D60164 D81150 D81078 D61356 AW996804
	409792	1154677_1	AW854153 AW500210 BE145772 AW501310
20	410881	1225682_1	AW809157 AW812181 AW812175 AW812172 AW812161 AW812165
		1256906_1	AW860972 AW862598 AW862599 AW860988 AW860983 AW860898 AW860925 AW860922 AW860986 AW860989
		1353792_1	BE072092 BE072106 BE072096 BE072098 BE072103
		1375933_2	BE252470 BE147573
~~		1548209_1	H56475 F29401 F34552
25		1558511_1	Z45365 R25905 H05203 T77496
		210744_1	Al638562 T16929 H13401 F07773 R55836
		225415_1	AW838068 AW837986 AW838067 AA322487 AW837936
		232510_1	AA332652 AA331633 AW999369 AW902993 BE170475 AA378845 AW964175 AI475221
20		243504_1	AA425562 Al880208 AA346646 N22655 AW811775 AW811786
30		2742591	BE274360
		347718_2	H00093 H00079 H00070 H00054 H00049 H00063 AW905306 AW905241 AW905410 AW905307 AW905411 AW905240
	AW9052	210	AMORPOS AMORPOS AMORPOS AMORPOS AMORPOS AMORPOS
	400004	452656 1	AW905352 AW905304 AW905239 AW905242 AW905243 H00087 AA933999 AA781181
35		740749_1	H29505 R18575 Z43580 T48738 Al435454 BE004683
22		863269_1	AW600293 AI767468
		1249374_1	AW851258 AW851435 AW851106 AW851421
		1251259_1	AW853441 BE145228 BE145218 BE145162 BE145283
		1335127 1	BE072259 BE072230 BE007911
40		543550 1	AF069478 AF069479 AF069480
TU	430311	J-10000_1	AL MOREO AL MOREO AL MOREO

TABLE 8B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in table 8. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

5		·	•		
10	Pkey: Ref: Strand: Nt_position:		Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refe publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.		
15	Pkey	Ref	Strand	Nt_position .	
20	401963	3126783	Plus	51382-51521	
	401974	3126777	Plus	85330-85683	
	403087	8954241	Plus	169511-169795	
	403375	9255944	Minus	92554-92795	
	403493	7341425	Plus	157568-159084	
	403612	8469060	Minus	94723-94859	
	403649	8705159	Minus	27141-27247	
25	403869	7280046	Minus	34379-34583	
	404113	9588571	Minus	13446-13646	
	404567	7249169	Minus	101320-101501	
	405163	9966267	Minus	161171-161299	
	405227	6731245	Minus	22550-22802	
30	405420	7211837	Minus	13428-13582	
	405455	7656675	Plus	134112-134671	
	405678	4079670	Plus	151821-152027	
	405900	6758795	Minus	71181-71535	
	406135	9164918	Minus	65489-65715	

TABLE 9: 1001 GENES SIGNIFICANTLY UP-REGULATED IN NORMAL PROSTATE COMPATED TO PROSTATE CANCER

Table 9 shows 1001 genes significantly up-regulated in prostate cancer compared to normal prostate. These were selected from 59680 probesets on the Affymetrix/Eos Hu03 GeneChip array such that the ratio of "average" normal prostate to "average" prostate cancer tissues was greater than or equal to 8.14. The "average" normal prostate level was set to the mean amongst 4 normal prostate tissues. The "average" prostate cancer level was set to the 85th percentile amongst 73 tumor samples. In order to remove gene-specific background levels of non-specific hybridization, the 10th percentile value amongst all the tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

5

10

15	Pkey: ExAcon: 5 UnigeneID: Unigene Title: R1:		Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Ratio of prostate cancer to normal prostate				
20	Pkey	ExAcon	UnigenelD	Unigene Title	R1		
20	451002	AA013299	Hs.8018	ESTs, Weakly similar to ALU3_HUMAN ALU S	1684,00		
		AA689465	Hs.188999		738.00		
		A1078027	Hs.169338		246.86		
		AA928116	Hs.272065		245.20		
25		AK000185	110272000	gb:Homo sapiens cDNA FLJ20178 fis, clone	222.00		
25	405932	741000100		gon to the captorio con a fit care in the contra	221.33		
		AA864330	Hs.166520	FSTs	212.00		
		AI686550	Hs.174481		163.20		
		Al474866	Hs.193237		149.45		
30		NM_002118	Hs.1162	major histocompatibility complex, class	126.11		
50		M36860	Hs.9295	elastin (supravalvular aortic stenosis,	123.27		
		AW138330	Hs.233778		120.00		
		X02994	Hs.1217	adenosine deaminase	106.75		
	404407	702001			105.71		
35		Al652926	Hs.128395	ESTs	100.53		
-		AA608684		ESTs, Moderately similar to ALUC_HUMAN !	94.00		
		U83527		gb:HSU83527 Human fetal brain (M.Lovett)	89.18		
		F06495		gb:HSC1AB051 normalized infant brain cDN	87.73		
		M67439	Hs.143526	dopamine receptor D5	86.82		
40		AW747996	Hs.160999		86.43		
	401672				77.26		
		AW383947	Hs.246381	CD68 antigen	68.47		
		BE074959		gb:PM0-BT0582-310100-001-f08 BT0582 Homo	68.00		
		AI766053	Hs.188346	•	61.26		
45		BE540279		gb:601059857F1 NIH_MGC_10 Homo sapiens c	57.71		
		AW451693	Hs.220826		* 56.4Q		
	402964				54.67		
		N59027		gb:w59d11.r1 Soares fetal liver spleen	54.00		
		AA372275	Hs.279800	Homo sapiens cDNA FLJ1 1383 fis, clone HE	54.00		
50		R32704	Hs.301298	ESTs	52.96		
	405172				52.96		
		AW137088	Hs.144857	ESTs	52.32		
		AW592931	Hs.256298		51.63		
		AB028989	Hs.88500	mitogen-activated protein kinase 8 inter	50.98		
55		AA703679	Hs.106999	ESTs, Weakly similar to SYT5_HUMAN SYNAP	49.60		
	424385	AA339666		gb:EST44776 Fetal brain I Homo sapiens c	48.90		
	407172	T54095		gb:ya92c05.s1 Stratagene placenta (93722	47.98		
		AA424163	Hs.156895		46.83		
		Al700148	Hs.283626	ESTs	43.57		
60		AA485224		G protein-coupled receptor kinase-intera	43.00		
		AA837098	Hs.269933		42.70		
		AF074994	Hs.24240	ESTs	42.67		
					•		

	400404				40.42
	406134	A A 40000E	Un 201552	ESTs. Weakly similar to T17288 hypotheti	42.43 42.31
		AA480895 AA070266	NS.201002	gb;zm69d04.r1 Stratagene neuroepithelium	42.25
	401124	AAU/0200		gu.Zilosuo4.i i Ottatagene neuroepitiettum	41.61
5		Al371157	Hs.178538	ESTs	40.00
5	_	AB006628		KIAA0290 protein	39.64
		AW062439	113.00400	gb:MR0-CT0060-120899-001-f08 CT0060 Homo	39.60
		AA923278	Hs.290905	ESTs, Weakly similar to protease [H.sapi	38.73
		BE221682	Hs.178364		38.06
10	439602	W79114	Hs.58558	ESTs	36.69
	433686	AA604799	Hs.136528	ESTs, Moderately similar to ALU1_HUMAN A	36.29
	417993	AW963705	Hs.295806	ESTs, Weakly similar to ALU7_HUMAN ALU S	36.18
		AA936282	Hs.120397		36.10
1.5		AA333990	Hs.80424		36.08
15		BE314852		hypothetical protein FLJ10257	36.00
		H08796	Hs.124952		36.00
		AA076049		Homo sapiens cDNA FLJ10229 fis, clone HE	35.23 35.20
		NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	34.89
20	401468	Al220150	Hs.211195	·EQTe	34.60
20		BE350738		ESTs, Weakly similar to T00366 hypotheti	33.24
		AW848032	110.120000	ab:IL3-CT0214-231299-053-D11 CT0214 Homo	32.96
	402828	AMOTOGOL		gp. 25 0 102 1 20 1200 000 2 1 1 0 102 1 1 10 110	32.93
		AW518944	Hs.76325	Homo sapiens cDNA: FLJ23125 fis, clone L	31.76
25	402842			,	31.68
	421245	AA285363		gb:HTH280 HTCDL1 Homo sapiens cDNA 5/3	31.59
	401631	F05183	Hs.1799	CD1D antigen, d polypeptide	31.26
		AW139565		gb:UI-H-BI1-aea-d-04-0-UI.s1 NCI_CGAP_Su	31.24
		H81795		gb:ys68a10.r1 Soares retina N2b4HR Homo	31.20
30		T87479	Hs.291797		31.09
		AF103907		prostate cancer antigen 3	29.78
-		AU076734	HS.193665	solute carrier family 28 (sodium-coupled	29.76 29.59
		Al907039	Un noccod	gb:PM-BT134-020499-566 BT134 Homo sapien	29.53
35		BE244074 Al870175	Hs.13957	regulator of Fas-induced apoptosis ESTs	29.47
55		R07566	Hs.73817		29.22
		W07808	113.73017	gb:zb03a12.r1 Soares_fetal_lung_NbHL19W	29.20
		AW102670	Hs.122464		29.13
		U80456		single-minded (Drosophila) homolog 2	28.74
40		W84893	Hs.9305	angiotensin receptor-like 1	28.61
	457324	AB028990		KIAA1067 protein	28.24
		X14008		lysozyme (renal amyloidosis)	28.18
		Al279960	Hs.178140		28.12
45		AW972917		alpha-methylacyl-CoA racemase	28.06
45		AW104257		ESTs, Weakly similar to putative serine/	27.61 27.36
		AV650262	HS./5/05	GRO2 ancogene	27.33
	405495				27.25
	406516	AW135429	Hs.243577	FSTe	26.96
50		AW452332	Hs.257554		26.36
		T97490	Hs.50002	small inducible cytokine subfamily A (Cy	26.34
	402838		110.0000_		26.32
		Al979284	Hs.200552		26.21
	417153	X57010	Hs.81343	collagen, type II, alpha 1 (primary oste	26.20
55	439792	NM_014856	Hs.6684	KIAA0476 gene product	25.91
		A1682088	Hs.223368		25.60
		AL133660		Homo sapiens mRNA; cDNA DKFZp434M0927 (f	25.57
		BE391090	Hs.280278	EST	25.57
60		NM_005188		Cas-Br-M (murine) ecotropic retroviral t	25.48
60		AA251048	rts.153042	lymphocyte antigen 9 gb:zf70c08.s1 Soares_pineal_gland_N3HPG	25.42 25.25
		AA063426	He 21106		25.22
		AW083491 W28573	Hs.31196	gb:51f10 Human retina cDNA randomly prim	25.22
		W26573 T74588	Hs.8509	ESTs, Weakly similar to CO3_HUMAN COMPLE	24.85
65		BE077458	110,000	gb:RC1-BT0606-090500-015-b04 BT0606 Homo	24.76
55		AA760894	Hs.153023	• • • • • •	24.74
		AI014723	Hs.131770	ESTs	24.57
		BE019557	Hs.11900	Human DNA sequence from clone RP4-583P15	24.53
		AF026692	Hs.105700	secreted frizzled-related protein 4	24.49

	AAREAA	U25758	Hs.134584	FSTs	24.49
		AL035588		MyoD family inhibitor	24.10
		AA357001	Hs.34045		24.04
_	430565	AL122081	Hs.244343	cadherin related 23	24.00
5		Al208611	Hs.12066	Homo sapiens cDNA FLJ11720 fis, done HE	23.89
		AA215672		gb:zr96e09.s1 NCI_CGAP_GCB1 Homo saplens	23.83 23.73
		AW449674	Hs.47359 Hs.182982	ESTs	23.62
		AF204231 AA136301	HS. 102902	gb:zk93g04.s1 Soares_pregnant_uterus_NbH	23.39
10		NM_001327	Hs.167379	cancer/testis antigen	23.20
		AF123050	Hs.44532		22.68
	456076	BE243877	Hs.76941	ATPase, Na+/K+ transporting, beta 3 poly	22.65
		AA279530	Hs.83968	integrin, beta 2 (antigen CD18 (p95), ly	22.38
1.5		R68651	Hs.144997		22.26 22.08
15		BE387335 AW628686	Hs.283713 Hs.78851	KIAA0217 protein	22.04
		AW809637	115.70001	gb:MR4-ST0124-261099-015-b07 ST0124 Homo	22.00
			Hs.820	homeo box C6	21.95
		AV653846	Hs.126261	Homo sapiens Chromosome 16 BAC clone CIT	21.94
20		BE071874		gb:RC2-BT0522-120200-014-a06 BT0522 Homo	21.84
		J05500	Hs.47431	spectrin, beta, erythrocytic (includes s	21.26 21.24
		H14487 Al207936	Hs.7195	gb:ym18c10.r1 Soares infant brain 1NiB H gamma-aminobutyric acid (GABA) A recepto	21.14
		A1623698		Homo sapiens cDNA: FLJ23529 fis, clone L	21.11
25		X89887		HIR (histone cell cycle regulation defec	21.10
		AW502139		gb:UI-HF-BR0p-ajr-e-05-0-UI.r1 NIH_MGC_5	21.07
	405685				20.90
		Al983207		ESTs, Weakly similar to SYPH_HUMAN SYNAP	20.84 20.74
30		AA321355	Hs.285401 Hs.140	immunoglobulin heavy constant gamma 3 (G	20.74
30	422355 401201	AW403724	HS. 140	anningiopeian neavy constant gamma o (o	20.73
		W28912	Hs.129019	ESTs	20.68
		H66948		gb:yr86d10.r1 Soares fetal liver spleen	20.67
~~	414875	H42679	Hs.77522	major histocompatibility complex, class	20.66
35	400926			and the same to	20.66 20.64
		NM_004197 AW500221	Hs.444 Hs.43616	serine/threonine kinase 19 Homo sapiens mRNA for FLJ00029 protein,	20.61
		X60992	Hs.81226	CD6 antigen	20.61
	405777	7,00002			20.51
40		AW966158	Hs.58582	Homo sapiens cDNA FLJ12702 fis, clone NT	20.20
		X58288		protein tyrosine phosphatase, receptor t	20.10
		BE568568	Hs.195704	tumor necrosis factor, alpha-induced pro	19.98 19.98
		A1245432 AA228776	Hs.191721		19.94
45		AA584854	110.101121	gb:no09h11.s1 NCI_CGAP_Phe1 Homo sapiens	19.90
	404426				19.84
•		U43143	Hs.74049	fms-related tyrosine kinase 4	19.79
		NM_012211		integrin, alpha 11	19.62 19.57
50		NM_006732 AA296520	Hs.75678 Hs.89546	FBJ murine osteosarcoma viral oncogene h Selectin E (endothelial adhesion molecul	19.56
50		AW090198	Hs.4779	KIAA1150 protein	19.52
		AA156781	Hs.83992	ESTs	19.44
	417421	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m	- 19.34
		X15675	Hs.296832	Human pTR7 mRNA for repetitive sequence	19.22
55		AW449808		glucosamine (N-acetyl)-6-sulfatase (Sanf	19.21 18.77
		AA284477 A1247422	Hs.96618 Hs.129966	ESTs ESTs	18.76
		AL355743	Hs.56663	Homo sapiens EST from clone 41214, full	18.65
		AI807264	Hs.205442	ESTs, Weakly similar to AF117610 1 inner	18.64
60	437820	AA769062	Hs.16029		18.62
		AW043951	Hs.38449	ESTs	18.59
		AW247430	Hs.84152	cystathionine-beta-synthase	18.58 18.55
	424537 447749	Al673027 AF113925	Hs.143271 Hs.19405	caspase recruitment domain 4	18.52
65	415951	R42863	Hs.7124	ESTs	18.47
	440770	AA912815	Hs.222078		18.40
	407711	A1085846	Hs.25522	ESTs	18.32
		U51166		thymine-DNA glycosylase	18.28
	409847	AW501751	Hs.279733	EOIS	18.15

						40.40
	417240	N57568	Hs.176028			18.13
	435732	AF229178		leucine rich repeat and death domain con		18.12
	436896	AW977385	Hs.278615			18.12
	432485	N90866	Hs.276770	CDW52 antigen (CAMPATH-1 antigen)		17.90
5		Al971131		ESTs, Weakly similar to alternatively sp		17.82
3		AL050102		DKFZP586F1019 protein		17.82
		AI889114	Hs.195663			17.75
						17.72
		AK000596	Hs.3618	hippocalcin-like 1		
10		AW977724	HS./5968	thymosin, beta 4, X chromosome		17.71
10	401515					17.67
		Al097439	Hs.135548			17.58
	442754	AL045825	Hs.210197	ESTs		17.55
	426559	AB001914	Hs.170414	paired basic amino acid cleaving system		17.54
	432415		Hs.289014			17.50
15		Al188225	Hs.127462			17.50
10		R08003	Hs.188013			17.44
		AA152106	Hs.4859	cyclin L ania-6a		17.36
			115.4009			17.31
		T81668	11- 454450	gb:yd29c04.r1 Soares fetal liver spieen		
00		AW118683	Hs.154150			17.30
20		R06874	Hs.268628	ESTS		17.27
	453457	AL037103		ESTs, Weakly similar to unnamed protein		17.22
	424246	AW452533	Hs.143604	Kaiso		17.22
	419078	M93119	Hs.89584	insulinoma-associated 1		17.18
		BE241624	Hs.82401	.CD69 antigen (p60, early T-cell activati		17.14
25		AF003522		delta (Drosophila)-like 1		17.14
23		AW877015	11320000	gb:QV2-PT0010-250300-096-f12 PT0010 Homo		17.14
		• • • • • • • • • • • • • • • • • • • •	No 150525	cell growth regulatory with EF-hand doma		17.12
		U66468				17.12
		H08170	Hs.113755			
20		NM_000361		thrombomodulin		17.01
30 .		AB032959		KIAA1133 protein		17.00
	438867	AW451157	Hs.181157	ESTs		16.98
	420940	AA830664	Hs.143974			16.94
	459234	Al940425		gb:CM0-CT0052-150799-024-c04 CT0052 Homo		16.92
	404756					16.91
35		U18244	Hs.113602	solute carrier family 1 (high affinity a		16.90
55		F09247		protocadherin alpha 5		16.88
			Hs.269899			16.80
		A1076765				16.78
		Al803373	Hs.31599			
40		AW845985		gb:RC2-CT0163-200999-002-H08 CT0163 Homo		16.70
40	402895					16.69
	422538	NM_006441		5,10-methenyltetrahydrofolate synthetase		16.68
	447108	AW449602		ESTs, Moderately similar to NK-TUMOR REC		16.65
	448520	AB002367	Hs.21355	doublecortin and CaM kinase-like 1		16.54
	438567	AW451955	Hs.153065	ESTs		16.52
45		AW190902	Hs.40098			16.50
		R23534	Hs.2730	heterogeneous nuclear ribonucleoprotein		16.50
		AB018319	Hs.5460	KIAA0776 protein		16.40
			13.0400			16.32
		AA047854	11-100150	gb:zf49g04.r1 Soares retina N2b4HR Homo		16.30
50		A1080042		ribosomal protein S24		
50		AA534908	Hs.2860	POU domain, class 5, transcription facto		16.28
		AA847856	Hs.124565			16.20
	418277	AW135221	Hs.130812			16.09
	410688	AW796342		gb:PM2-UM0027-230200-002-h02 UM0027 Homo	-	16.04
		AL049610	Hs.95243	transcription elongation factor A (SII)-		16.04
55		NM_003816	Hs.2442	a disintegrin and metalloproteinase doma		16.02
		Al357412		EST - not in UniGene		16.02
		BE281591		hypothetical protein FLJ10511		15.94
			Hs.222933			15.93
		AA055800				
60		AV656098	пъ. 172382	hypothetical protein FLJ20001		15.86
60		AA076769		gb:7B02B10 Chromosome 7 Fetal Brain cDNA		15.85
	405934				•	15.84
		AA622037		programmed cell death 5		15.84
	416208	AW291168	Hs.41295	ESTs		15.48
		AA534370	Hs.154088	Homo sapiens cDNA: FLJ22756 fis, clone K		15.42
65		Al199268	Hs.19322	ESTs; Weakly similar to !!!! ALU SUBFAMI		15.38
45		AW807530		gb:CM0-ST0081-130999-054-d02 ST0081 Homo		15.37
				gb:IL3-CT0219-261099-023-D11 CT0219 Homo		15.36
		AW850140	Hs.194601			15.29
		AI916685				15.26
	416292	AA179233	Hs.42390	nasopharyngeal carcinoma susceptibility		1320

	406638	M13861		gb:Human T-cell receptor active beta-cha	15 <i>.</i> 26
	446686	AW138043	Hs.156307	ESTs	15 <i>.</i> 25
	434485	Al623511	Hs.118567	ESTs	15.24
		AW292830	Hs.255609		15.22
5		BE147740	Hs.104558		15.22
		BE244854		Homo sapiens mRNA for FLJ00020 protein,	15.16
		AA279956	Hs.88672		15.14
		AA410506		H.sapiens mRNA for ribosomal protein L18	15.14
10		AB023185		calcium/calmodulin-dependent protein kin	15.12
10	451118	Al862096	Hs.60640	ESTs	15.12
	437495	BE177778		gb:RC1-HT0598-310300-012-f07 HT0598 Homo	15.12
	445467	Al239832	Hs.15617	ESTs, Weakly similar to ALU4_HUMAN ALU S	15.06
		AW006783	Hs.6686	ESTs	15.03
	402812	/111000700	. 10.0000		15.02
15		AA732480	Hs.293581	ECT.	15.00
13		MA732400	113.233301	2313	
	400991				15.00
		BE314524	Hs.78776	Human putative transmembrane protein (nm	14.96
	429900	AA460421	Hs.30875	ESTs	14.90
	403683				14.84
20	430315	NM_004293	Hs.239147	guanine deaminase	14.80
		AL120173	Hs.301663		14.72
		J05070		matrix metalloproteinase 9 (gelatinase B	14.69
		BE617135	113.101700	gb:601441677F1 NIH_MGC_65 Homo sapiens c	14.67
			Un 450504		
25		AB021225		matrix metalloproteinase 17 (membrane-in	14.65
25		Al638449	Hs.173031		14.63
		BE041395	Hs.283676	ESTs, Weakly similar to unknown protein	14.60
	459145	A1903354		gb:RC-BT029-100199-117 BT029 Homo sapien	14.55
•	449650	AF055575	Hs.297647	ESTs, Moderately similar to calcium chan	14.54
	400952			•	14.46
30		A1734009	Hs 127699	EST cluster (not in UniGene)	14.44
-		AA905097	Hs.85050	phospholamban	14.42
		Al685464	Hs.292638		14.40
		AA311443		Homo sapiens mRNA; cDNA DKFZp586E2317 (f	14.36
25		AB023199		KIAA0982 protein	14.36
35		AA126419	Hs.301632		14.32
	412368	AW945992	Hs.181125	immunoglobulin lambda locus	14.31
	409055	AW304028	Hs.300578	ESTs	14.23
	408763	W57550	Hs.301526	Homo sapiens cDNA FLJ13181 fis, done NT	14.22
	446734	AL049278	Hs.16074		14.22
40		BE242639	Hs.75425	ubiquitin associated protein	14.22
		Al934365		osteoglycin (osteoinductive factor, mime	14.22
		AW838616	113.103403	gb:RC5-LT0054-140200-013-D01 LT0054 Homo	14.22
			U- 010047		
		AW503398	Hs.210047		14.16
A E'		Y14443	Hs.88219	zinc finger protein 200	14.14
45	424909	S78187	Hs.153752	cell division cycle 25B	14.07
	434078	AW880709	Hs.283683	EST	14.07
	415254	A1815831	Hs.184378	ESTs	14.05
	418196	AI745649	Hs.26549	ESTs, Weakly similar to T00066 hypotheti	14.02
	410020		Hs.728	ribonuclease, RNase A family, 2 (liver,	13.98
50		NM_002890	Hs.758	RAS p21 protein activator (GTPase activa	13.98
50	****	. =		chemokine (C-C motif) receptor 9	40.05
		AF145439	113.22.340		13.95
		BE159999		gb:QV1-HT0412-270300-123-d10 HT0412 Homo	13.90
	400125				- 13.88
		AW406289	Hs.96593	hypothetical protein	13.85
55	448272	A1479094	Hs.170786	ESTs	13.80
	422695	AA315158		gb:EST186956 HCC cell line (matastasis t	13.80
	424565	AW102723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	13.78
		H30340		Homo sapiens cDNA: FLJ22050 fis, clone H	13.78
		AI935400	Hs.217286		13.76
60			113.211200		
50		AW860158	Un 66744	gb:RC0-CT0379-290100-032-b04 CT0379 Homo	13.75
	410889		Hs.66744	twist (Drosophila) homolog (acrocephalos	13.74
		A1908236		gb:IL-BT166-180399-010 BT166 Homo sapien	13.72
	455131	AW857913		gb:RC0-CT0323-231199-031-b05 CT0323 Homo	13.69
	408364	AW015238	Hs.128453	ESTs	13.67
65	425907	AA365752	Hs.155965		13.62
	402359			•	13.60
	401044				13.53
		AW502498	He 157150	ESTs, Weakly similar to zinc finger prot	13.53
		AN302486 AA329648	Hs.23804	ESTs	13.49
	463030	WW59040	110.20004		13.43

	430685	A1690234	Hs.191666	ESTs, Wealdy similar to reverse transcri	13.47
		AW578849		ESTs, Weakly similar to unnamed protein	13.46
			Hs.211911		13.44
		AW080339			
_		Al573283	Hs.38458		13.44
5	439120	H56389		gb:yt87c03.r1 Soares_pineal_gland_N3HPG	13.43
	402788				13.40
	451591	AA886446	Hs.146278	ESTs	13.40
	405411				13.38
		AW188574	Hs.24218	ECTA	13.34
10					
10		AA132818		ESTs, Weakly similar to coded for by C.	13.33
	416445	AL043004		Human serine/threonine kinase mRNA, part	13.32
	457084	Al074149	Hs.150905	ESTs, Weakly similar to chondroitin 4-su	13.32
	403838				13.32
		Z46223	Hs.176663	Fc fragment of IgG, low affinity IIIb, r	13.30
15		AW207552		ESTs, Weakly similar to dJ134E15.1 [H.sa	13.28
13		N41359	Hs.218107		13.28
		AW451101		ESTs, Moderately similar to hexokinase I	13.27
	420626	AF043722	Hs.99491	RAS guanyl releasing protein 2 (calclum	13.26
	420052	AA418850	Hs.44410	ESTs	13.25
20	414020	NM_002984	Hs.75703	small inducible cytokine A4 (homologous	13.25
	403851			7	13.24
		W07492	Hs.157101	FSTc	13.21
				ESTs, Moderately similar to ALU2_HUMAN A	13.21
		A1762836			
~~		AB033113		KIAA1287 protein	13.20
25	435063	R21966	Hs.57734		13.19
	439367	BE386844	Hs.248746	ESTs	13.17
	451957	A1796320	Hs.10299	Homo sapiens cDNA FLJ13545 fis, clone PL	13.16
		AA278362		Homo sapiens cDNA FLJ12334 fis, clone MA	13.14
		BE262802	Hs.4909		13.07
30					13.06
30		NM_001621		aryl hydrocarbon receptor	
		AA155859	Hs.79708		13.05
	451418	BE387790	Hs.26369	ESTs	13.04
	443494	T99719	Hs.270404	Homo sapiens cDNA: FLJ22389 fis, clone H	13.03
	425878	AW964806	Hs.38085	ESTs, Weakly similar to putative glycine	13.02
35		Al660552		ESTs, Weakly similar to A56154 Abl subst	13.00
<i>JJ</i>		H20276	Hs.31742		13.00
					12.99
		AL137466		Homo sapiens mRNA; cDNA DKFZp434H1322 (f	
		N75276	Hs.135904		12.98
40	452144	AA032197	Hs.102558		12.96
40	419953	BE267154	Hs.125752	ESTs	12.96
	416182	NM_004354	Hs.79069	cyclin G2	12.94
		AA015879	Hs.33536	ESTs	12.93
		AW903830		gb:CM4-NN1037-250400-155-h04 NN1037 Homo	12.93
		AW161319	Hs.12915	ESTs	12.92
45		_		KIAA0146 protein	12.92
43		D63480		· · · · · · · · · · · · · · · · · · ·	
		NM_001259	Hs.38481	cyclin-dependent kinase 6	12.92
	439093	AA534163	Hs.5476	serine protease inhibitor, Kazal type, 5	12.90
	416098	H41324	Hs.31581	ESTs, Moderately similar to ST1B_HUMAN S	12.88
	424897	D63216	Hs.153684	frizzled-related protein	12.88
50		AU076649	Hs.76556	growth arrest and DNA-damage-inducible 3	12.88
-		AA587775	Hs.66295	Homo sapiens HSPC311 mRNA, partial cds	12.84
		BE077084	110.002.00	gb:RC5-BT0603-220200-013-C07 BT0603 Homo	12.84
			No 75506		- 12.80
		NM_000878	Hs.75596	Interleukin 2 receptor, beta	
ے ہے		BE167229	Hs.29206	Homo sapiens clone 24659 mRNA sequence	12.80
55	435886	BE265839	Hs.12126	hepatocellular carcinoma-associated anti	12.78
	445230	U97018	Hs.12451	echinoderm microtubule-associated protei	12.78
	412226	W26786		gb:15d7 Human retina cDNA randomly prime	12.77
		AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	12.76
		AW873704	Hs.48764	ESTs	12.76
60		Al306389	Hs.76240	- · · ·	12.76
UU					12.68
		D83407		Down syndrome critical region gene 1-lik	
		H85157	Hs.40696	ESTs	12.66
	405856				12.66
	412935	BE267045	Hs.75064	tubulin-specific chaperone c	12.65
65	402802			•	12.62
		AA889120	Hs 110637	Homeo box A10	12.62
		NM_001454	Hs.93974		12.62
		14IV_001454	113.33314	IUINIOGU DVA V I	12.60
	403137	DE0 /	H. Arra	administration of the contract of the contract	12.57
	430226	BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	12.07

	448076	AJ133123	Hs.20196	adenylate cyclase 9	12.56
		F07097	Hs.300828	Homo sapiens mRNA full length insert cDN	12.54
	405236			and the same of th	12.52
		AA071051		gb:zm58e05.s1 Stratagene fibroblast (937	12.47
5		AA767669	Hs.10242		12.47
•		AW978731	Hs.301824		12.44
		Al039201	Hs.54548		12.42
		BE077546	Hs.31447	ESTs	12.42
		AW984111	113.01777	gb:RC0-HN0007-160300-011-f09 HN0007 Homo	
10		Al926047	Hs.162859		12.40
10		M36564			12.37
			Hs.64016	protein S (alpha)	12.36
		R96696	Hs.35598	ESTS	12.36
		AW189232	Hs.39140		12.36
15		AL042615	Hs.15995	ESTs	12.35
15		Al348838	Hs.13073		12.35
		Al307802	Hs.279551		12.34
		BE410734		gb:601301619F1 NIH_MGC_21 Homo sapiens c	12 <i>2</i> 9
		AL048542	Hs.16291	ESTs	12.28
20	401286				12.26
20		AW962845	Hs.256527		12 <i>.</i> 24
	420077	AW512260	Hs.87767	ESTs	12.24
	443837	Al984625	Hs.9884	spindle pole body protein	12.24
	407519	X64979		gb:H.sapiens mRNA HTPCRX01 for olfactory	12.23
	435839	AF249744	Hs.25951	Rho guanine nucleotide exchange factor (12.22
25	448552	AW973653	Hs.20104	hypothetical protein FLJ00052	12.20
	405325	•		•	12.20
	451009	AA013140	Hs.115707	ESTs	12.18
	423066	Y18264	Hs.120171	ESTs	12.17
	439556	Al623752	Hs.163603	ESTs	12.16
30	443062	N77999	Hs.8963	Homo sapiens mRNA full length insert cON	12.15
	445873	AA250970	Hs.251946	Homo sapiens cDNA: FLJ23107 fis, clone L	12.14
		AW836724	Hs.33190		12.11
		AA864968	Hs.127699		12.10
		AF006609	Hs.82294		12.10
35		U29589	Hs.7138	cholinergic receptor, muscarinic 3	12.04
		AW024937	Hs.29410	ESTs	12.02
		Al022813	Hs.92679	Homo sapiens clone CDABP0014 mRNA sequen	11.96
		Al222658		ESTs, Weakly similar to la costa [D.mela	11.95
		U29926	Hs.83918	adenosine monophosphate deaminase (isofo	11.94
40		Al990287	Hs.270798		11.93
		D11928	Hs.76845	phosphoserine phosphatase-like	11.92
		AW075485		phosphoserine aminotransferase	11.92
		R37257	Hs.184780		11.92
		AA343936	110.104700	gb:EST49786 Gall bladder I Homo sapiens	11.90
45		AW014795	Hs.23349	ESTs	11.90
		NM_004657	Hs.26530	serum deprivation response (phosphatidy)	11.90
		AF283777		CD72 antigen	11.89
		AW386461	113.110-101	gb:PM4-PT0019-121299-004-F02 PT0019 Homo	11.89
		AB011537	He 133/66	slit (Drosophila) homolog 1	11.82
50		Al074413	Hs.14220	hypothetical protein FLJ20450	11.80
50		D80004		KIAA0182 protein	
	406538	D00004	113.73303	NIAO 102 piolesii	11.80
		AW450502	Hs.24218	ECTA	11.79
		BE247676	Hs.18442		- 11.79 11.78
55		AF216751	Hs.26813		
JJ					11.76
		R23765	Hs.23575		11.74
		NM_014363	Hs. 109492	spastic ataxia of Charlevoix-Saguenay (s	11.72
		AL048842	Hs.194019		11.72
60		NM_014158		HSPC067 protein	11.72
JU		BE293466	Hs.20880		11.72
		BE245374	Hs.27842	hypothetical protein FLJ11210	11.72
		M60721	Hs.74870	H2.0 (Drosophila)-like homeo box 1	11.72
		NM_005578	ris.180398	LIM domain-containing preferred transloc	11.69
65		BE548555	ns.118554	CGI-83 protein	11.68
65		AF097994	ns.301528	L-kynurenine/alpha-aminoadipate aminotra	11.68
		AW752953	11. 42545	gb:QV0-CT0224-261099-035-g02 CT0224 Homo	11.67
		W28517		Homo sapiens cDNA: FLJ23067 fis, clone L	11.66
		Al750878	Hs.87409	thrombospondin 1	11.64
	400557				11.62

	416188	BE157260	Hs.79070	v-myc avian myelocytomatosis viral oncog	11.60
	419047	AW952771	Hs.90043	ESTs	11.59
		Al986160	Hs.88446	ESTs	11.59
سر	400885				11.57
5		AW502327		gb:UI-HF-BROp-aka-a-07-0-UI.r1 NIH_MGC_5	11.56
	400802		11 .540.1	704 bas 19 1 day	11.56
		NM_016045	Hs.5184	TH1 drosophila homolog	11.55
		M55994		tumor necrosis factor receptor superfami	11.55 11.54
10		S55736		ESTs, Weakly similar to hypothetical pro KIAA0742 protein	11.53
10		AA460479 Z42047	Hs.4096	ESTs; KIAA0738 gene product	11.52
		AW964897	Hs.290825		11.52
		AA426080	Hs.98489		11.50
		AW204232	Hs.279522		11.50
15		X72755	Hs.77367		11.46
		F18572	Hs.22978		11.44
		AA453208		RAB9, member RAS oncogene family	11.42
	459029	AA131376	Hs.285203	fibroblast growth factor 12	11.42
	456267	Al127958	Hs.83393	cystatin E/M	11.39
20	433285	AW975944	Hs.237396	ESTs	11.38
	449186	AW291876	Hs.196986		11.37
		A1434593	Hs.164294		11.37
		R00028		gb:ye70a06.s1 Soares fetal liver spleen	11.36
05		A1277652	Hs.54578	ESTs	11.31
25	401163		11-040440	about the 10 matth VO acceptant	11.31
		L36149		chemokine (C motif) XC receptor 1 ESTs	11.28 11.28
		AW246803 AL044829	Hs.47289 Hs.29331		11.27
		NM_014253	Hs.23796		11.26
30		AA075687		epidermal growth factor receptor substra	11.24
50		W07411		ESTs, Moderately similar to ALU3_HUMAN A	11.24
		H28383		gb:yl52c03.r1 Soares breast 3NbHBst Homo	11.24
		AA631047	Hs.158761	Homo sapiens cDNA FLJ13054 fis, clone NT	11.23
		AA315267	Hs.23128	ESTs	11.22
35	429746	AJ237672	Hs.214142	5,10-methylenetetrahydrofolate reductase	11.21
	422858	R35398		gb:yg64g10.r1 Soares infant brain 1NIB H	11.20
		X84908	Hs.78060		11.20
		AV660122	Hs.282675		11.20
40		C21322	Hs.11577		11.20
40		W78902	Hs.293297		11.17
		AI367347	Hs.127809 Hs.214410		11.16 11.16
		AW748078 BE142098	NS.2 144 IV	gb:CM4-HT0137-220999-017-d11 HT0137 Homo	11.14
		AB020725	He 58009	KIAA0918 protein	11.14
45	405601	ADOLUIZO	113,0000	Na a a o to bloom	11.13
		Al000341	Hs.220491	ESTs	11.12
		AA410183	Hs.137475	ESTs	11.12
		N77624		phosphatidic acid phosphatase type 2B	11.10
•	431475	AJ567669	Hs.287316	• •	11.10
50	425710	AF030880	Hs.159275	solute carrier family, member 4	11.08
	413748	AW104057	Hs.19193	ESTs	11.07
		Y00093	Hs.51077	integrin, alpha X (antigen CD11C (p150),	11.07
		W92745	Hs.193324		- 11.03
~ ~		U52077	11 40404	gb:Human mariner1 transposase gene, comp	11.02
55		AF055581	Hs.13131	lymphocyte adaptor protein	11.02 10.95
		AW867079	Un OFOCO	gb:MR1-SN0033-120400-002-c10 SN0033 Homo	•
		BE382701 AW006969	Hs.25960 Hs.6311	v-myc avian myelocytomatosis viral relat hypothetical protein FLJ20859	10.95 10.94
		AW591783	Hs.36131	collagen, type XIV, alpha 1 (undulin)	10.94
60		AA530994		ghrelin precursor	10.92
50		AW246428	Hs.75355	ubiquitin-conjugating enzyme E2N (homolo	10.92
	400132				10.92
		AA443966	Hs.31595	ESTs	10.90
		NM_000328		retinitis pigmentosa GTPase regulator	10.88
65		D85782	Hs.3229	cysteine dioxygenase, type i	10.88
-		Al366213		KIAA1605 protein	10.87
		AW948126		gb:RC0-MT0013-280300-031-a12 MT0013 Homo	10.85
	400615				10.80
	425018	BE245277	Hs.154196	E4F transcription factor 1	10.80

	456011	BE243628		gb:TCBAP1D1053 Pediatric pre-B cell acut	1	10.79
	455982	BE176862		gb:RC4-HT0587-170300-012-a04 HT0587 Homo	•	10.74
		BE218418	Hs.201802	•		10.73
	412490	AW803564	Hs.288850	ESIS		10.72
5	436962	AW377314	Hs.5364	DKFZP564l052 protein	. '	10.70
-		Al383497	He 131811	ESTs, Weakly similar to ALU1_HUMAN ALU S		10.70
			Ha 074 400	ECTs Madamask similar to ALIM LIMAN A		10.70
		R40978		ESTs, Moderately similar to ALU1_HUMAN A		
	449590	AA694070	Hs.268835	ESTs	•	10.68
	446035	NM_006558	Hs.13565	Sam68-like phosphotyrosine protein, T-ST		10.68
10						10.66
10		U24578		complement component 4A		
	428600	AW863261	Hs.15036.	ESTs, Highly similar to AF161358 1 HSPC0		10.64
	420090	AA220238	Hs.94986	ribonuclease P (38kD)	-	10.64
		AF151879	Hs.26706	CGI-121 protein		10.62
				• • • • • • • • • • • • • • • • • • • •		
	438893	AF075031	Hs.29327	ESTs		10.62
15	459324	AW080953		gb:xc28c12.x1 NCI_CGAP_Co18 Homo sapiens		10.61
	439883	AL359652	Hs.171096	Homo sapiens EST from clone DKFZp434A041	•	10.58
			Hs.291205			10.57
		AA715328				
	407826	AA128423	Hs.40300			10.57
	419550	D50918	Hs.90998	KIAA0128 protein; septin 2	•	10.56
20		R10184		ESTs, Weakly similar to ALU1_HUMAN ALU S		10.56
20						
		Al142350	Hs.146735			10.55
	411448	AA178955	Hs.271439	ESTs		10.54
	410102	AW248508	Hs.279727	ESTs:	•	10.52
						10.52
25	406577	41/04/222	11- / /	handhalladan Fi HC 430		
25	408405	AK001332	Hs.44672	hypothetical protein FLJ10470		10.51
	428966	AF059214	Hs.194687	cholesterol 25-hydroxylase		10.50
	400880			•		10.48
		4.400.4070	11- 5007	and in the shade of AD (formed) (OO) and		
		AA894876	Hs.5687	protein phosphatase 1B (formerly 2C), ma		10.48
	434715	BE005346	Hs.116410	ESTs	•	10.46
30	406851	AA609784	Hs.180255	major histocompatibility complex, class		10.44
50		Al638418	Hs.21745	ESTs		10.44
	418489	U76421	Hs.85302	adenosine deaminase, RNA-specific, B1 (h		10.44
	419465	AW500239	Hs.21187	Homo sapiens cDNA: FLJ23068 fis, clone L	•	10.44
	A19544	Al909154		gb:QV-BT200-010499-007 BT200 Homo sapien		10.44
35			Un arranga	RuvB (E coli homolog)-like 1		10.44
ככ		Y18418				
	413822	R08950	Hs.272044	ESTs, Weakly similar to ALU1_HUMAN ALU S		10.42
	437446	AA788946	Hs.16869	ESTs, Moderately similar to CA1C RAT COL	•	10.41
		NM_003878	Hs.78619			10.41
				and Commune A avidence C homehod abol		
40		NM_003500	Hs.9795	acyl-Coenzyme A oxidase 2, branched chai		10.40
40 ·	458873	AW150717	Hs.296176	STAT induced STAT Inhibitor 3		10.38
	415082	AA160000	Hs.137396	ESTs	•	10.37
		AW505086		minor histocompatibility antigen HA-1		10.36
		AB011151	Hs.81505			10.34
	426827	AW067805	Hs.172665	methylenetetrahydrofolate dehydrogenase	•	10.34
45	424280	NM_000030	Hs 271366	alanine-glyoxylate aminotransferase homo		10.33
		_		ESTs		10.32
		T93096	Hs.17126			
	423445	NM_014324	Hs.128749	alpha-methylacyl-CoA racemase		10.31
	409995	AW860597	Hs.30164	ESTs	•	10.30
		AW022715	He 162160	ESTs, Weakly similar to ALU4_HUMAN ALU S		10.30
50		AA172106				10.30
JU			115.110930	Rag C protein		
	406189					10.29
		AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis		10.26
		AA172106		Rag C protein		10.26
						10.26
		T89832	Hs.170278			
55		NM_006762	Hs.79356	Lysosomal-associated multispanning membr		10.24
	427274	NM_005211	Hs.174142	colony stimulating factor 1 receptor, fo		10.24
	401384			totally controlled the second second		10.23
			11-00000	and the flame and a book of		
		D13168		endothelin receptor type B		10.22
_	426928	AF037062	Hs.172914	retinol dehydrogenase 5 (11-cisand 9-cis	•	10.21
60		Al684746	Hs.119274			10.20
,		Al364997		ESTs		10.20
		BE243026		KIAA0246 protein		10.19
	437401	AA757196	Hs.121190	ESTs		10.19
	403690					10.17
65		BE152393		gb:CM2-HT0323-171199-033-a08 HT0323 Homo		10.16
UJ			11. 00000			
		AA305599		hypothetical protein PRO2013		10.16
		AW975009	Hs.292274	ESTs		10.16
		Z68128	Hs.3109	Rho GTPase activating protein 4		10.16
	400000	Al288430				
	432660	MIZ0043U	Hs.64004	ESTs		10.14

	452234	AW084176	Hs.223296	ESTs		10.14
	_	Al245701		gb:qk31f05.x1 NCI_CGAP_Kid3 Homo sapiens		10.13
		AA626142		ESTs, Weakly similar to KPCE_HUMAN PROTE		10.13
5		A1174603		enolase 1, (alpha)		10.12
5		Al038989 NM_006056	NS.24009	hypothetical protein FLJ10826		10.12 10.12
		AA807346	Hs 288581	Homo sapiens cDNA FLJ14296 fis. clone PL		10.12
		AW118822	Hs.128757	•		10.10
		AW014605	Hs.179872			10.10
10	417308	H60720	Hs.81892	KIAA0101 gene product		10.09
		Al204266	Hs.179303			10.05
		A1433833		ESTs, Weakly similar to ALU1_HUMAN ALU S		10.04
		BE614599		H.sapiens gene from PAC 42616, similar t		10.04
15		BE552368 AA329796	Hs.1098	Homo sapiens cDNA FLJ13445 fis, done PL DKFZp434J1813 protein		10.04 10.02
13		AW206373	Hs.16443			10.00
		X58528	Hs.76781			10.00
	421832	NM_016098	Hs.108725	HSPC040 protein		10.00
••	423554	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin		10.00
20		Al922988	Hs.172510			10.00
		AW137442	Hs.136965			10.00
		AA418280 BE501815	Hs.180040	Homo saplens cDNA: FLJ22439 fis, clone H		10.00 9.99
		AA425310	Hs.155766			9.98
25		Al147652		Homo sapiens clone HH409 unknown mRNA		9.98
		N72394	Hs.44862			9.96
	427509	M62505	Hs.2161	complement component 5 receptor 1 (C5a I		9.96
		AB028945		cortactin SH3 domain-binding protein		9.96
30		AW009605	Hs.231923			9.96
30		AW474513 AA704703	Hs.77031	ESTs, Weakly similar to B48013 proline-r Sp2 transcription factor		9.94 9.94
	434596		113.77031	gb:yb65g12.s1 Stratagene ovary (937217)		9.94
		BE276115	Hs.144980	ESTs, Weakly similar to CA13_HUMAN COLLA		9.93
		AA033813	Hs.79018			9.92
35	423349	AF010258	Hs.127428	homeo box A9		9.92
		AW975531		minichromosome maintenance deficient (S.		9.92
		AW192307		dolichyl-P-Glc:Man9GlcNAc2-PP-dolichylgl		9.90
		AA481003 D87450	Hs.97128	KIAA0261 protein		9.90 9.90
40		AW976507	Hs.293515			9.90
		AW972187		hypothetical protein FLJ22215		9.89
	•	NM_005291	Hs.46453			9.88
		Al097570	Hs.71222			9.87
15		AW801383		H.sapiens mRNA for ribosomal protein L18		9.86
45		Al278802	Hs.25661 Hs.245484	ESTS		9.85
		AW117416 AL043002		ESTs, Moderately similar to unnamed prot		9.85 9.84
		Al962552	Hs.226765			9.84
		Al267652	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082 (fr		9.82
50	431066	AF026273	Hs.249175	Interleukin-1 receptor-associated kinase		9.82
		AW894667		chimerin (chimaerin) 1		9.80
		A1792888	Hs.145489			9.80
		AL050072 D13635	Un 155007	gb:Homo sapiens mRNA; cDNA DKFZp566E1346 KIAA0010 gene product	•	9.75 9.74
55		N67619	Hs.43687			9.74
55		AI590401	Hs.21213			9.73
		Al381659	Hs.267086			9.72
	437672	AW748265	Hs.5741	flavohemoprotein b5+b5R		9.72
60		AL120659	Hs.6111	KIAA0307 gene product		9.72
60		AA807228	Hs.225161			9.72
		AA311152		ESTs; Weakly similar to KIAA0226 [H.sapi		9.72
		Al289619 AK001451	Hs.13040	ESTs CD2-associated protein		9.72 9.70
	446896					9.70
65		AW977540	Hs.269254			9.70
		S67580	Hs.1645	cytochrome P450, subfamily IVA, polypept		9.67
		AW118645	Hs.160004			9.67
		Al393657	Hs.159750			9.66
	421044	AF061871	HS.101302	collagen, type XII, alpha 1		9.66

		•			
	414726	BE466863	Hs.280099	ESTs	9.66
		R91679			
			Hs.124981		9.66
	433480	X02422	Hs.181125	immunoglobulin lambda locus	9.65
	441530	Al248301	Hs.127112	FSTs	9.65
5					
J		D53304	Hs.65394		9.65
	421470	R27496	Hs.1378	annexin A3	9.64
	439613	C05569	He 243122	hypothetical protein FLJ13057 similar to	9.64
			11- 400046	in anti-ation and and a	
		AA488101		inactivation escape 1	9.62
	450244	AA007534	Hs.125062	ESTs	9.62
10	407660	AW063190	Hs.279101	FCTc .	9.61
10		7111000100	113210101	LOIG	
	406554				9.60
	426404	AA377607	Hs.273138	ESTs	9.58
	447045	AW392394	He 278560	KIAA0064 gene product	9.58
		AK001578		hypothetical protein FLJ10716	9.58
15	448376	Al494332	Hs.196963	ESTs	9.58
	407002	AL117474	Hs.41181	Homo sapiens mRNA; cDNA DKFZp727C191 (fr	9.56
	4465/2	AV659151	Hs.282961	ESIS	9.56
	459245	BE242623	Hs.31939	manic fringe (Drosophila) homolog	9.55
	422545	AP000692	He 120781	chromosome 21 open reading frame 5	9.54
20					
20		BE266134	Hs.76927		9.54
	410846	AW807057		gb:MR4-ST0062-031199-018-b03 ST0062 Homo	9.52
	491181	NM_005574	He 184585	LIM domain only 2 (rhombotin-like 1)	9.52
		_			
		D26067	MS.1749U5	KIAA0033 protein	9.52
	415995	NM_004573	Hs.994	phospholipase C, beta 2	9.51
25	434846	AW295389	Hs.119768		9.51
ريد					
	414342	AA742181	Hs.75912		9.50
	416959	D28459	Hs.80612	ubiquitin-conjugating enzyme E2A (RAD6 h	9.50
	443193	AA094538	Hs.6588	ESTs	9.50
		AA833902	Hs.270745		9.48
30	449375	R07114	Hs.271224	ESTs	9.48
	126357	AJ132085		gb:Homo sapiens mRNA for axonemal dynein	9.44
			Un 044050	ESTs, Moderately similar to laminin alph	9.44
		AW137726			
	457526	AW450584	HS.192131	ESTs, Weakly similar to RIBB [H.sapiens]	9.43
	404741				9.43
35	422409	NM_005428	Hs.116237	vav 1 oncogene	9.43
-	403708	000			9.42
	408806	AW847814	HS.289005	Homo sapiens cDNA: FLJ21532 fis, clone C	9.42
	417380	T06809		gb:EST04698 Fetal brain, Stratagene (cat	9.42
	422501	AA354690	Hs.144967	FSTs	9.42
40					9.42
40		AA004410		acyl-Coenzyme A oxidase 1, palmitoyl	_
	452624	AU076606	Hs.30054	coagulation factor V (proaccelerin, labi	9.42
	412110	AW893569		gb:RC0-NN0021-040400-021-c10 NN0021 Homo	9,41
		AA361623	Un 200775	•	9.41
				Homo sapiens cDNA FLJ13900 fis, clone TH	
	408101	AW968504	Hs.123073	CDC2-related protein kinase 7	9.40
45	414171	AA360328	Hs.865	RAP1A, member of RAS oncogene family	9.40
		U04045	Hs.78934		9.40
	426959	BE262745		gb:601153869F1 NIH_MGC_19 Homo sapiens c	9.39
	417519	A1689987	Hs.177669	ESTs, Weakly similar to RMS1_HUMAN REGUL	9.39
		BE514362		FK506-binding protein 3 (25kD)	9.39
50		JUJ 1400E	13.630466	· recognition B brocent o ferunal	
50	402835				9.38
	404632				9.38
	446566	H95741	He 1701/	Homo sapiens cDNA: FLJ22801 fis, clone K	9.37
			110.17014		
		AW903533		gb:CM1-NN1031-060400-178-d05 NN1031 Homo	- 9.37
	444001	Al095087	Hs.152299	ESTs, Moderately similar to ALU5_HUMAN A	9.36
55		AJ420611	Hs.127832		9.36
55					
		BE258532		CTP synthase	9.34
	429327	AA283981	Hs.199248	prostaglandin E receptor 4 (subtype EP4)	9.33
		X97748	·- · -	gb:H.sapiens PTX3 gene promotor region.	9.33
			11-00048		
C O		BE616731	Hs.80645	interferon regulatory factor 1	9.33
60	423013	AW875443	Hs.22209	secreted modular calcium-binding protein	9.33
		AA693960	Hs.103158		9.33
				Human DNA sequence from clone 967N21 on	9.32
		BE513731			
	422763	AA033699	Hs.83938	ESTs, Moderately, similar to MASP-2 [H.sa	9.32
	442730	NM_007274	Hs.8679	cytosolic acyl coenzyme A thioester hydr	9.32
65				Homo sapiens cDNA: FLJ23591 fis, clone L	9.32
UJ		Al300555	115.200100	HOTHO SAPISHS WHAT I MESSET IIS, GOING L	
	403237				9.32
	415000	AW025529	Hs.239812	ESTs. Weakly similar to CALM_HUMAN CALMO	9.31
				Homo sapiens cDNA: FLJ21016 fis, clone C	9.30
		AW976410			
	419066	Z98492	Hs.6975	PRO1073 protein	9.30

	448443	AW167128	Hs.231934	ESTs	9.30
	405125				9.30
	409768	AW499566		gb:UI-HF-BR0p-aji-h-03-0-UI.r1 NIH_MGC_5	9.28
_		Al191811	Hs.54629		9.28
5		AF000652	Hs.8180	syndecan binding protein (syntenin)	9.27
		AJ250839	Hs.58241		9.26
		AW013907		ESTs, Moderately similar to predicted us	9.26
		AF164142	Hs.82042		9.25
10		D29642	Hs.1528	KIAA0053 gene product	9.25
10		AA281279	Hs.23317		9.24
		AF274571		ESTs; Weakly similar to DEOXYRIBONUCLEAS	9.24
		BE395035	Hs.199889	ESTs, Weakly similar to KIAA0874 protein	9.24
	402585	4.4000700		-b05b44 -4 NOLOOAD OOD4 H	9.24
15		AA280700	U= 400004	gb:zs95h11.s1 NCL_CGAP_GCB1 Homo sapiens	9.23
13		AA431791	Hs.183001		9.22
		U42349	Hs.71119		9.22
		AW582962		ESTs, Highly similar to AF151805 1 CGI-4 coronin, actin-binding protein, 1A	9.20
		BE514514 AL039185	Hs.77558		9.19 9.18
20		Al206589	Hs.116243		9.17
20		U61412	Hs.51133		9.17
		H55709	Hs.2250	leukemia inhibitory factor (cholinergic	9.16
		AW080356		ESTs, Weakly similar to alternatively sp	9.15
		BE182082	Hs.246973		9.14
25		AA528402	Hs.74861	·	9.14
		AW151660	Hs.31444		9.14
		U54727	Hs.191445		9.14
	443622	Al911527	Hs.11805	ESTs	9.14
	413260	BE075281		gb:PM1-BT0585-290200-005-d07 BT0585 Homo	9.12
30	413450		Hs.75372	, , , , , , , , , , , , , , , , , , , ,	9.12
		BE221533	Hs.257858		9.12
		AA810021	Hs.136906		9.12
		M24283		Intercellular adhesion molecule 1 (CD54)	9.11
35		AA402307	Hs.73818		9.10
33		AA913736	Hs.126715		9.10
		NM_014720 AF086534		Ste20-related serine/threonine kinase ESTs, Moderately similar to ALU1_HUMAN A	9.10 9.10
		C19035	Hs.164259		9.09
		M88700		dopa decarboxylase (aromatic L-amino aci	9.08
40		AW190920	Hs.19928		9.08
	425844	T68073	Hs.159628	serine (or cysteine) proteinase inhibito	9.08
	434658	Al624436	Hs.194488		9.07
	453999	BE328153	Hs.240087	ESTs	9.06
	436490	R71543	Hs.18713		9.05
45		AA065131		ESTs, Weakly similar to ALU7_HUMAN ALU S	9.05
		BE300091		hypothetical protein FLJ12969	9.04
		AW369351		Homo sapiens cDNA FLJ13090 fis, done NT	9.04
		AI174947		Homo sapiens mRNA; cDNA DKFZp564D1164 (f	9.04
50		AW301344	Hs.195969		9.04
20		AU076730 BE386750	Hs.86978	kinesin 2 (60-70kD) prolyl endopeptidase	9.02 9.02
		M81590		5-hydroxytryptamine (serotonin) receptor	9.02
		AA326108	Hs.53631	ESTs (Service of the Control of the	- 9.02
		BE622585	Hs.3731	ESTs	9.02
55		AW572659		adenosine A2b receptor pseudogene	9.01
	443453	R99876	Hs.269882		9.01
	435472	AW972330	Hs.283022	triggering receptor expressed on myeloid	9.01
		AW295840	Hs.14555	Homo sapiens cDNA: FLJ21513 fis, clone C	9.00
60		AB008681	Hs.23994	activin A receptor, type IIB	9.00
60		AA902386	Hs.286	ribosomal protein L4	8.99
		AW341130		ESTs, Moderately similar to FGFE_HUMAN F	8.99
		AF051428		estrogen receptor 2 (ER beta)	8.97
		AA883316	Hs.255221		8.96
65		BE000707	Hs.29567		8.96
UJ		AI051313	Hs.143315		8.96 8.96
		BE614387 Al084125	Hs.47378	ESTs transcription factor	8.95
	438707		Hs.5326	porcupine	8.95
	402240		, 13.0020	harachina	8.95
					0.00

	444152	Al125694	Hs.149305	Homo sapiens cDNA FLJ14264 fis, done PL	8.95
	409842	AW501756		gb:UI-HF-BR0p-ajm-c-09-0-UI.r1 NIH_MGC_5	8.94
	416277	W78765	Hs.73580	ESTs	8.94
	456697	Al908006	Hs.111334	ferritin, light polypeptide	8.94
5	410762	AF226053	Hs.66170	HSKM-B protein	8.92
	412942	AL120344	Hs.75074	mitogen-activated protein kinase-activat	8.92
	442320	Al287817	Hs.129636		8.92
	449673	AA002064	Hs.18920		8.91
	411486	N85785		eukaryotic translation elongation factor	8.90
10		BE566249	Hs.20999	Homo sapiens cDNA: FLJ23142 fis, clone L	8.90
		AA257161	Hs.8658	hypothetical protein DKFZp434E0321	8.89
		NM_007019	Hs.93002	ubiquitin carrier protein E2-C	8.89
•		AW849292	***************************************	gb:IL3-CT0215-020300-090-E06 CT0215 Homo	8.89
		AW971228	Hs.290259	•	8.89
15		D00723	Hs.77631	glycine cleavage system protein H (amino	88.8
		Z37976	Hs.83337	latent transforming growth factor beta b	8.87
	406422			•	8.87
		NM_016102	Hs.121748	ring finger protein 16	8.87
		D50030	Hs.104	HGF activator	8.86
20	418203			CDC28 protein kinase 2	8.86
		AA744529	Hs.86575		8.85
		H66566	Hs.271711		8.85
		AA076049		Homo sapiens cDNA FLJ10229 fis, clone HE	8.84
		Al952797		Homo sapiens cDNA: FLJ21559 fis, clone C	8.83
25		T89839	Hs.119471		8.83
		U51333		hexokinase 3 (white cell)	8.82
		AL041465	Hs 294038	ESTs, Moderately similar to ALU2_HUMAN A	8.82
		Al683487	Hs 299112	Homo sapiens cDNA FLJ11441 fis, done HE	8.82
		D82520		Homo sapiens cDNA FLJ10952 fis, clone PL	8.82
30		AA435997	Hs.104930		8.82
-		R40611	Hs.137565		8.81
		N34145	Hs.250614		8.80
		AW043637	Hs.21766		8.80
		Al952677	Hs.108972	Homo sapiens mRNA; cDNA DKFZp434P228 (fr	8.80
35		AW292577	Hs.94445		8.80
		BE063380		gb:PM0-BT0275-291099-002-g10 BT0275 Homo	8.80
	403259	0_0000		3	8.78
		AW850473		gb:IL3-CT0219-280100-061-B11 CT0219 Homo	8.78
		BE264645	Hs.282093	Homo sapiens cDNA: FLJ21918 fis, clone H	8.77
40		AA331881	Hs.75454	peroxiredoxin 3	8.76
	401744			• •	8.76
		AL137477	Hs.155912	cadherin-like 24	8.76
		AI382555	Hs.127950	bromodomain-containing 1	8.75
	450649	NM 001429	Hs.297722	Human DNA sequence from clone RP1-85F18	8.75
45	408331	NM_007240	Hs.44229	dual specificity phosphatase 12	8.74
	423872	AB020316	Hs.134015	uronyl 2-sulfotransferase	8.74
	424906	AI566086	Hs.153716	Homo sapiens mRNA for Hmob33 protein, 3'	8.74
	427596	AA449506	Hs.179765	Homo sapiens mRNA; cDNA DKFZp586H1921 (f	8.73
	432488	AA551010	Hs.216640		8.72
50	448980	AL137527	Hs.22703	Homo sapiens mRNA; cDNA DKFZp434P1018 (f	8.72
	429455	Al472111	Hs.292507		8.71
	429855	AW385597	Hs.138902	ESTs, Weakly similar to B34087 hypotheti	8.71
	441746	H59955	Hs.127829		- 8.70
	411945	AL033527	Hs.92137	v-myc avian myelocytomatosis viral oncog	8.70
55	413492	D87470	Hs.75400	KIAA0280 protein	8.70
	435706	W31254	Hs.7045	GL004 protein	8.70
	433741	AA609019	Hs.159343	ESTs	8.70
	426340	Z97989	Hs.169370	FYN oncogene related to SRC, FGR, YES	8.69
	422779	AA317036	Hs.41989		8.67
60	449785	Al225235	Hs.288300	Homo sapiens cDNA: FLJ23231 fis, done C	8.67
	420144	AA811813	Hs.119421		8.66
	420235	AA256756	Hs.31178	ESTs	8.66
		NM_002104	Hs.3066	granzyme K (serine protease, granzyme 3;	8.66
		BE244076	Hs.159578	Homo sapiens mRNA for FLJ00020 protein,	8.65
65	427448	BE246449	Hs.2157	Wiskott-Aldrich syndrome (eczema-thrombo	8.64
		W68180	Hs.259855	Homo sapiens cDNA FLJ12507 fis, clone NT	8.64
	429084	AJ001443	Hs.195614	splicing factor 3b, subunit 3, 130kD	8.64
	417094	NM_006895	Hs.81182	histamine N-methyltransferase	8.64
		NM_004736	Hs.227656	xenotropic and polytropic retrovirus rec	8.63

		-			
	422631	BE218919	Hs.118793	hypothetical protein FLJ10688	8.63
		AW795196		ring finger protein 14	8.63
		BE242803		hypothetical protein FLJ10326	8.62
	401851				8.62
5	401866			•	8.62
J		AW996872	Hs 172028	a disintegrin and metalloproteinase doma	8.62
		AA251594		PIBF1 gene product	8.62
		AW408530	Hs 113823	ClpX (caseinolytic protease X, E. coli)	8.62
		BE550182	Hs 127826	RalGEF-like protein 3, mouse homolog	8.62
10		Al831594	Hs 68647	ESTs, Weakly similar to ALU7_HUMAN ALU S	8.62
10		AW749617	110.000	gb:RC3-BT0502-130100-012-g07 BT0502 Homo	8.60
		Al767756	Hs.82302		8.60
		AA829402	Hs.47939		8.60
		Al972094		Homo sapiens cDNA FLJ13741 fis, clone PL	8.60
15		Al692181		KIAA1634 protein	8.60
13		AF009746		ATP-binding cassette, sub-family D (ALD)	8.60
		X54136		immunoglobulin lambda locus	8.60
		U91939		G protein-coupled receptor 25	8.60
	405074	001000	110.2.40120	a promin occupios resopres.	8.59
20		Al479773	Hs.181679	ESTs	8.59
20		BE328882		ESTs, Moderately similar to U119_HUMAN U	8.58
		AA091228	113.100000	gb:cchn2152.seq.F Human fetal heart, Lam	8.57
		BE379749	Hs 85201	C-type (calcium dependent, carbohydrate-	8.56
		AL008637		neutrophil cytosolic factor 4 (40kD)	8.56
25		AW947164	Hs.195641		8.56
23		AW204272	Hs.199371		8.55
		H55883	110.100071	gb:yq94h03.r1 Soares fetal liver spleen	8.54
		BE007663	Hs 13503	Inactivation escape 2	8.54
	405876	DECOTOGO	110.10000	madaraadir dodapa =	8.54
30		D20569	Hs 169407	SAC2 (suppressor of actin mutations 2, y	8.54
50		Al738616		hydroxyprostaglandin dehydrogenase 15-(N	8.54
		AF193612		tunatic fringe (Drosophila) homolog	8.54
		AW082633	Hs.212715		8.54
		AA446183	Hs.91885		8.53
35		AI955765	Hs.146907		8.52
<i>JJ</i>		M31899		excision repair cross-complementing rode	8.51
	405552	MICTOCO	110171020	Chalcien topan areas armpromerning	8.51
		AW971155	Hs.293902	ESTs, Weakly similar to prolyl 4-hydroxy	8.50
		AA426117	Hs.14373		8.50
40		R68857	Hs.265499		8.50
		AI765890	Hs.16341		8.50
		AV659397	Hs.282948		8.50
		AW891873		gb:CM3-NT0090-040500-173-b02 NT0090 Homo	8.50
		Al927288	Hs.196779		8.48
45	420656	AA279098	Hs.187636	ESTs	8.48
	429303	AW137635	Hs.44238	ESTs	8.48
		AL043983	Hs.125063	Homo sapiens cDNA FLJ13825 fis, clone TH	8.48
	452573	Al907957	Hs.287622	Homo sapiens cDNA FLJ14082 fis, clone HE	8.48
	456341	AA229126	Hs.122647	N-myristoyltransferase 2	8.48
50	423024	AA593731	Hs.75613	CD36 antigen (collagen type I receptor,	8.47
	446985	AL038704	Hs.156827	ESTs, Weakly similar to ALU1_HUMAN ALU S	8.46
		AL080276	Hs.268562	regulator of G-protein signalling 17	8.46
	400268			•	⁻ 8.46
	421828	AW891965	Hs.289109	dimethylarginine dimethylaminohydrolase	8.45
55		NM_014737	Hs.80905	Ras association (RalGDS/AF-6) domain fam	8.44
	421029	AW057782	Hs.293053	ESTs	8.44
	425171	AW732240	Hs.300615		8.44
	459070	Al814302		gb:wj71c12.x1 NCI_CGAP_Lu19 Homo sapiens	8.42
	406006				8.42
60	412643	AW971239	Hs.293982		8.42
	424775	AB014540		SWAP-70 protein	8.42
	446848	AW136083	Hs.195266	ESTs, Weakly similar to S59501 interfero	8.42
	448043	Al458653	Hs.201881		8.41
	407183	AA358015		gb:EST66864 Fetal lung III Homo sapiens	8.40
65		AW978439	Hs.69504	ESTs	8.40
	419594	AA013051	Hs.91417		8.40
	430968	AW972830		gb:EST384925 MAGE resequences, MAGL Homo	8.40
		AA305688		UDP-Gal:betaGlcNAc beta 1,3-galactosyltr	8.40
	438582	Al521310	Hs.283365	ESTs, Weakly similar to ALU5_HUMAN ALU S	8.40

	447685	AL122043	Hs.19221	hypothetical protein DKFZp566G1424	8.40
		AW844498		Homo saplens LENG8 mRNA, variant C, part	8.38
	400817			, , ,	8.37
_	425265	BE245297		gb:TCBAP1E2482 Pediatric pre-B cell acut	8.37
5	409385	AA071267		gb:zm61g01.r1 Stratagene fibroblast (937	8.36
		BE047779	Hs.44701	ESTs	8.36
		X04430	Hs.93913	interleukin 6 (interferon, beta 2)	8.36
		AW182309	Hs.249963	ESTs, Highly similar to dJ1170K4.4 [H.sa	8.35
10	403976	A 4.070000		ch-ECT01000 Computal account Hama accion	8.34 8.33
10		AA379036	Hs.99519	gb:EST91809 Synovial sarcoma Homo sapien Homo sapiens cDNA FLJ14007 fis, clone Y7	8.33
		AW188551 AW997704	Hs.11493	Homo sapiens cDNA FLJ13536 fis, clone PL	8.32
		AF119847		Homo sapiens PRO1550 mRNA, partial cds	8.32
		AW937670	Hs.254379		8.32
15		NM_015698		T54 protein	8.30
		T70298		gb:yd26g02.s1 Soares fetal liver spleen	8.30
	416852	AF283776	Hs.80285	Homo sapiens mRNA; cDNA DKFZp586C1723 (f	8.30
		AF084866		gb:Homo sapiens envelope protein RIC-3 (8.30
20		Al732694	Hs.98520	ESTs	8.29
20		AW194962	Hs.199028		8.29
		BE266695		gb:601190242F1 NIH_MGC_7 Homo sapiens cD	8.29 8.28
	404946	AF054839	He 1995/0	tetraspan 2	8.28
		AA037675	Hs.152675		8.28
25		AA744488		ESTs, Moderately similar to ALU1_HUMAN A	8.28
		AU076484	Hs.9963	TYRO protein tyrosine kinase binding pro	8.27
	401930	AF106069	Hs.23168		8.26
		AA151730		ESTs, Weakly similar to similar to C.ele	8.26
20		AB007918		KIAA0449 protein	8.25
30		AA974411	Hs.18672	ESTS Weakly similar to TRHY_HUMAN TRICH	8.25 8.24
		AW958264 AI963740	Hs.46826		8.24
		AW020782	Hs.79881		8.24
		D87682		KIAA0241 protein	8.24
35	424429	U63830	Hs.146847	TRAF family member-associated NFKB activ	8.24
		BE263710	Hs.279904		8.22
		Al914699	Hs.13297	ESTs	8.22
		BE396283	Hs.173987 Hs.266390	eukaryotic translation initiation factor	8.22 8.21
40		BE222450 AA330214	ns.200390	gb:EST33935 Embryo, 12 week il Homo sapi	8.21
70		AA888624	Hs.19121	adaptor-related protein complex 2, alpha	8.20
		AA835868		Homo sapiens cDNA: FLJ20935 fis, clone A	8.20
		R40739	Hs.21326	ESTs	8.20
		W25760	Hs.77631	glycine cleavage system protein H (amino	8.20
45		AU077143		minichromosome maintenance deficient (S.	8.20
		AV654978	Hs.19904	cystathionase (cystathionine gamma-lyase	8.19 8.18
		Al828596 NM_015896	Hs.250691	BLu protein	8.18
		J04088		topoisomerase (DNA) II alpha (170kD)	8.18
50		M21305		Human alpha satellite and satellite 3 ju	8.18
		U42349		Putative prostate cancer tumor suppresso	8.18
	423397	NM_001838	Hs.1652	chemokine (C-C motif) receptor 7	8.18
		AL133017	Hs.2210	thyroid hormone receptor interactor 3	- 8.17
55	401519	1105105	11- 47004	Home contain abbit to too 40 feet along 00	8.17
55		H65423	Hs.17631	Homo sapiens cDNA FLJ20118 fis, clone CO	8.16
		AJ263293 AJ278120	Hs.152096 Hs.4996	cytochrome P450, subfamily IIJ (arachido DKFZP564D166 protein	8.16 8.14
		AU278120 AW885606	Hs.5064	ESTs	8.14
		AA278536	Hs.23262	ribonuclease, RNase A family, k6	8.14
60		Al139058	Hs.23296	ESTs	8.14
		Al018406	Hs.131284		8.14
	421129	BE439899	Hs.89271	ESTs	8.14

TABLE 9A shows the accession numbers for those primekeys lacking a unigeneID in Table 9. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10 Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers 15 **CAT number Accession** Pkey 408057 1035720_-1 AW139565 408069 103655_1 H81795 Z42291 R20973 AA046920 408182 104479 1 AA047854 AA057506 AA053841 20 408338 1052148_1 AW867079 AW867086 AW182772 408828 108463_1 BE540279 AW410659 AA057857 R77693 BE278674 AA063426 AW962323 AW408063 AA063503 AA772927 AW753492 BE175371 AA311147 409126 110159 1 AA071051 AA070584 AA069938 AA102136 AA074430 409292 111586_1 AA070266 AA084967 AA126998 409314 111841_1 25 409385 112523 1 AA071267 T65940 T64515 AA071334 AW386461 AW876408 AW386672 AW386599 AW876258 AW386619 AW386289 AW876136 AW876203 AW876213 AW876201 409398 1126716_1 AW876295 AW876349 AW876365 AW876160 AW876369 AW876352 AW876271 AA076769 AA076781 Al087968 409671 114731_1 409768 1154035_1 AW499566 AW502378 AW499522 AW502046 AW502671 AW501917 AW501868 AW501721 AW502813 30 AW502139 AW502432 AW502235 AW501683 AW502647 409841 1156088_1 AW501756 AW502096 AW502465 AW501715 409842 1156119_1 409853 1156226 1 AW502327 AW502488 AW501829 AW502625 AW502687 AW752953 H88044 BE156092 410531 1207200_1 410688 1216101_1 AW796342 AW796356 BE161430 35 AW807057 AW807054 AW807189 AW807193 AW807369 AW807429 AW807364 AW807365 AW807078 AW807256 AW807180 410846 1223902 1 AW807331 AW809637 AW809697 AW810554 AW809707 AW809885 AW810000 AW810088 AW809742 AW809816 AW809749 AW809639 410896 1226053_1 AW809722 AW809836 AW809774 AW810023 AW810013 AW809813 AW809660 AW809728 AW809768 AW809951 AW809657 AW809954 40 411079 123128_1 AA091228 H71860 H71073 AW845985 AW845991 AW845962 411424 1245497_1 AW849292 AW849431 AW849422 AW849428 AW849420 AW849424 AW849427 411499 1248105_1 411507 1248607_1 AW850140 AW850195 AW850192 411534 1248827 1 AW850473 AW850471 AW850431 AW850523 45 BE074959 AW880160 411972 1268491_1 AW893569 AW893571 AW893588 AW893593 412110 1277844_1 412226 1284289 1 W26786 AW998612 AW902272 412257 1285376_1 AW903830 BE071916 AW948126 AW948139 AW948196 AW948145 AW948162 AW948134 AW948127 AW948124 AW948153 AW948157 AW948125 412405 1293012_1 50 AW948131 AW948158 AW948164 AW948151 413260 1356003_1 BE075281 BE075219 BE075123 BE075119 BE075046 BE142098 BE142092 413471 1371778_1 413729 1385114_1 BE159999 BE160056 BE160107 BE160139 414182 142409_1 AA136301 Al381776 AA136321 55 T81668 C19040 C17569 414989 1511339_1 415354 1534763_1 F06495 R24336 R13046 416011 1566439_1 H14487 R50911 Z43216 416475 1596398_1 T70298 H58072 R02750 417380 1672461 1 T06809 N75735 60 419392 1843934_-1 W28573 AW749617 R64714 AA244138 AA244137 BE094019 419541 185724_1 Al909154 AA526337 AA244193 Al909153 419544 185760_2 420819 196721_1 AA280700 AW975494 AA687385 AA285363 AA285333 AA285359 AA285326 AA285350 421245 200620_1 65 N59027 AA314694 N53937 R08100 422673 219674_1

	400000	040006 4	AAGIESE AMBESTOO NITCOOT AMBOOTTO ADDOLOG MOAATA
		219996_1	AA315158 AW961298 N76067 AW802759 Al858495 W04474
		222209_1	R35398 BE252178 AA318153
		223106_1	BE077458 AA337277 AA319285
_		231462_1	AA330214 AW962519 T54709
5		232031_1	BE152393 AA330984 BE073904
		238731_1	AA339666 AW952809 AA349119
		241409_1	AA343936 AA344060 AW963081
		249175_1	BE245297 AA353976 AW505023
10		2738301	BE262745
10	430676	32168_1	AF084866 AF084870 AF084864 AF084867 AF084869 AF084865 AF084868 AW818206 AW812038 BE144813 BE144812
			AW812041 AW812040 AW812067 BE061583 BE061604 T05808 Al352469 AA580921 BE141783 BE141782 BE061601
			AW814393 AW885029
	430968	326269_1	AW972830 AA527647 AA489820 AA570362
	431180	328906_1	H55883 AW971249 AA493900 H55788
15	432093	341283_1	H28383 AW972670 H28359 AA525808
	434596	38937_1	T59538 T59589 T59598 T59542 AF147374
	436357	41842_1	AJ132085 Z83805
	437159	43393_1	AL050072 AW900148
		43765_1	BE177778 BE177779 AL390180 AA359908
20	439097	46858_1	H66948 AF085954 H66949
		46879_1	H56389 AF085977 H56173
	440134	48675_1	BE410734 BE560117 BE270054 BE296330 BE267957 Al003007 BE545259
	441896	52842_1	AW891873 AW891897 BE564764
		645767_1	Al245701 BE272724
25	447229	71288_1	BE617135 AW504051 AW504283
	448064	74761_1	AA379036 AA150589 Al696854 BE621316
	450783	84655_1	BE266695 BE265474 N53200 BE267333
	451045	85673_1	AA215672 Al696628 AA013335 H86334 AA017006
	452549	921802_1	Al907039 Al907081
30	452560	922216_1	BE077084 AW139963 AW863127 AW806209 AW806204 AW806205 AW806206 AW806211 AW806212 AW806207 AW806208
		_	AW806210 AI907497
	452712	928309_1	AW838616 AW838660 BE144343 Al914520 AW888910 BE184854 BE184784
	453758	980026_1	U83527 AL120938 U83522
	454093	1007366_1	AW860158 AW862385 AW860159 AW862386 AW862341 AW821869 AW821893 AW062660 AW062656
35	454563	1224342_1	AW807530 AW807540 AW807537 AW846086 BE141634 AW846089 AW807499 AW807533 AW838499
	454791	1234759_1	BE071874 BE071882 AW820782 AW821007
		1247099_1	AW848032 AW848630 AW848478 AW848623 AW848484 AW848169 AW848830 AW848149 AW848119 AW848893 AW848903
			AW848407
	455131	1254674_1	AW857913 AW857916 AW857914 AW861627 AW861626 AW861624
40		1259023_1	AW984111 AW863918 AW863856
	455254	1266449_1	AW877015 AW877133 AW876978 AW877071 AW876988 AW877069 AW877063 AW877013
	455369	1285173 16	AW903533 AW903516 AW903562 BE085202 BE085215 BE085214 BE085209 BE085172 BE085175 BE085193 BE085211
		_	BE085199
	455982	1396849_1	BE176862 BE176876 BE176947 BE176878
45		1410860_1	BE243628 BE246081 BE247016 BE241984 BE241534 BE246091 BE245679 BE243620 BE245998 BE242329 BE241417
			BE241457 BE242522 BE241989 BE241464
	456023	1416335_1	R00028 BE247630
		360505_1	AW062439 AW751554 AA579463
		3642251	AA584854
50		399422_1	Al908236 AA663731
		883688_1	AI814302 AI814428
		889426_1	W07808 AI822066
		918957_1	Al903354 Al903489 Al903488
		921149_1	BE063380 BE063346 Al906097
55		9452401	Al940425

TABLE 9B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 9. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

5	Pkey: Ref:		Seque	inique number corresponding to an Eos probeset equence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the ublication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.				
10	Strand: Nt_posit	ion:	Indica	tes DNA strand from which exons were predicted. tes nucleotide positions of predicted exons.				
	Pkey	Ref	Strand	Nt_position				
15	400452	8113550	Minus	90308-90505				
	400557	9801261	Plus	208453-208528,209633-209813				
	400615	9908994	Plus	118036-118166,118681-118807				
	400802	8567867	Minus	174571-174856				
	400817	8569994	Plus	170793-170948				
20	400880	9931121	Plus	29235-29336,36363-36580				
	400885	9958187	Minus	58242-58733				
	400926	7651921	Minus	52033-52158,53956-54120,54957-55052,55420-55480,56452-56666,57221-57718				
	400952	7658481	Plus	192667-192826,194387-194876				
	400991	8096825	Plus	159197-159320				
25	401044	8117619	Plus	73501-73674				
	401124	8570296	Minus	124181-124391 .				
	401163	6981820	Plus	5302-5545				
	401201	9743387	Minus	138534-138629,139234-139294,140121-140335,142033-142479				
_	401286	9801342	Minus	147036-147318				
80	401384	6850939	Minus	58360-58545				
		6433826	Plus	13056-13482				
		7630851	Plus	29929-30126				
		6649315	Plus	157315-157950				
		9838136	Plus	128526-128704,130755-130860				
35		2576349	Plus	14595-14751				
		7770425	Minus	146443-146664,147794-147971,148351-148480,148980-149111,149801-149949				
		8018106	Plus	73126-73623				
		7690131	Plus	104382-104527,106136-106372				
		9211204	Minus	40403-41961				
0		9908890	Minus	174893-175050,183210-183435				
	402788	9796102	Plus	98273-101430				

45

50

55

60

65

	405236 7249076	Minus	151699-151915
	405325 6094661	Minus	25818-26380
	405411 3451356	Minus	17503-17778,18021-18290
	405495 8050952	Minus	72182-72373
5	405552 1552506	Plus	45199-45647
_	405601 5815493	Minus	147835-147935.149220-149299
	405685 4508129	Minus	37956-38097
	405777 7263187	Minus	104773-105051
	405856 7653009	Plus	101777-102043
10	405876 6758747	Plus	39694-40031
	405932 7767812	Minus	123525-123713
	405934 6758795	Plus	159913-160605
	406006 8247801	Minus	42640-42776
	406134 9163473	Plus	153291-153452
15	406189 7289992	Minus	22007-22234
	406422 9256411	Plus	163003-163311
	406516 7711422	Minus	128375-128449.128560-128784
	406538 7711478	Plus	35196-35367,38229-38476,40080-40216,43522-43840
	406554 7711566	Plus	106956-107121
20	406577 7711730	Plus	11377-11509

TABLE 10: shows genes, including expression sequence tags differentially expressed in taxol resistant prostate tumor xenografts as compared to taxol sensitive prostate tumor
 xenografts. The genes are indicated as either being upregulated or downregulated during the induction of taxol resistance in sequential passages of the grafts.

10 15	UnigenelD: Unigene Title: Eos: F00-F14:		Exemplar A Unigene nu Unigene ge Internal Eos	Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Internal Eos name passage number																
					_	_									5 45	-14				
	Pkey	ExAcon	UnigenelD	UnigenTitle	Eos	Resp	.F00	F00	F02	F02	F05	F05	F07	F09	F10	FII	F13	F14		
20	117921	N51002	Hs.47170	Liprin A2	PM28	UP	1	9	8	9	32	20	34	122	105	82	71	111		
	112971	T17185	Hs.4299	ESTs	CHA ₁	down	290	281	267	335	270	284	150	157	83	89	49	75		
	126645	Al167942	Hs.61635	STEAP	PAA5	down	106	111	103	71	34	67	33	14	2	1	1	1		
	119018	N95796	Hs.179809	ESTs	PAB2	down	765	841	757	909	742	704	478	428	253	175	228	238		
	110844	N31952	Hs.167531	ESTs	PAV7	down	175	192	147	141	123	129	73	65	55	48	54	84		
25	100654	HG2841-HT29	169	Hs.75442	Albun	nin, A	PM0	l down	666	605	504	728	357	445	602	187	117	127	117	113
		HG2841-HT29		Hs.75442	Albun	nin, A	PM0	2down	620	653	486	688	368	386	606	175	101	95	115	97
	102076	U09579	Hs.252437	cyclin-dep	PM03	down	101	94	143	190	105	107	88	40	34	31	46	22		
	102208	U22961	Hs.75442	albumin	PM04	down	495	424	323	518	252	296	467	188	169	143	165	145		
		AA075779	-	mitochondr	PM05	down	75	190	606	230	378	106	218	88	69	192	69	99		
30		AA599690"	Hs.15725	SBBI48	PM06	down	87	124	115	188	132	111	66	71	49	70	38	50		
• •		AA062746	_	ESTs	PM07	down	14	20	252	13	22	43	193	10	10	104	21	18		
		AA065143	-	solute car	PM08	down	27	54	178	73	108	37	53	24	14	53	15	34		
		AA115963	_	beta-1-glo	PM09			893	1292	656	869	389	1	74	118	662	359	409		
		AA126313	Hs.107476	ATP syntha	PM10	down	10	19	185	25	60	1	32	3	7	14	1	1		
35		H89355	Hs.6598	adrenergic				334	237	239	231	220	119	145	93	64	56	124		
		AA283804	Hs.193552			down		316	282	271	340	334	115	238	100	196	83	207		
	115844	AA430124	Hs.234607	MDM2	PM13	down	49	93	94	154	132	91	23	54	23	76	14	41		
	120588	AA281591	Hs.16193	ESTs	PM14	down	80	157	58	141	159	127	39	83	35	37	16	46		
	132349	Y00705	Hs.181286	serine pro	PM15	down	146	217	214	150	106	128	177	85	54	63	66	56		
40	132888	AA490775	Hs.5920	N-acetylma	PM16	down	92	150	132	178	126	139	53	94	48	67	41	80		
	132967	AA032221	Hs.61635	STEAP	PM17	down	224	208	203	215	205	180	132	65	68	50	48	63		
		AA283085	Hs.64065	ESTs	PM18	down	85	148	161	150	92	108	42	99	42	65	29	126		
		D62633	Hs.8236	ESTs	PM19				194	212	231	189	89	123	107	95	68	91		
		M23263	Hs.99915		PM20)down	36	167	99	178	132	101	23	71	26	122	14	44		
45	**																			

TABLE 11: shows genes, including expression sequence tags that are up-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu01 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

	,	

	Pkey: ExAccn: UnigenelD: Unigene Title: R1:	Exemplar Accessi Unigene number Unigene gene title	eset identifier number ion number, Genbank a e eacted normal prostate :		
	Pkey	ExAcon	UnigenelD	Unigene Title	R1
	101336	L49169	Hs.75678	FBJ murine osteosarcoma viral oncogene homolog B	0.012
10	130642	M63438	Hs.156110	Immunoglobulin kappa variable 1D-8	0.015
	133512	X01677	Hs.195188	glyceraldehyde-3-phosphate dehydrogenase	0.017
	133436	H44631	Hs.737	immediate early protein	0.017
	129292	X13810	Hs.1101	POU domain; class 2; transcription factor 2	0.019
	100610	HG2566-HT4792		Microtubule-Associated Protein Tau, Alt. Splice 3, Exon 8	0.02
15	133448	M34516	Hs.170116	immunoglobulin lambda-like polypeptide 3	0.021
	125193	W67577	Hs.84298	CD74 antigen (invariant polypeptide of major histocompatibility	
				complex; class II antigen-associated)	0.022
	133456	T49257	Hs.183704	ubiquitin C	0.022
00	134546	AA459310	Hs.8518	Homo sapiens mRNA; cDNA DKFZp586L1722 (from clone	0.000
20			11 4400	DKFZp586L1722)	0.023 0.023
	102131	U15085	Hs.1162	major histocompatibility complex; class II; DM beta	0.023
	101375	M13560	Hs.84298	CD74 antigen (invariant polypeptide of major histocompatibility complex; class II antigen-associated)	0.023
	100074	HG3033-HT3194		Spliceosomal Protein Sap 62	0.023
25	100674 134365	R32377	Hs.82240	syntaxin 3A	0.027
23	132335	D60387	Hs.189885	ESTs	0.027
	110303	H37901	Hs.32706	ESTs	0.028
	131678	N59162	Hs.30542	ESTs	0.028
	116599	D80046	Hs.250879	ESTs	0.029
30	133769	M17733	Hs.75968	thymosin; beta 4; X chromosome	0.029
	107904	AA026648	Hs.61389	ESTs	0.03
	129427	T80746	Hs.111334	ferritin; light polypeptide	0.03
	105987	AA406631	Hs.110299	mitogen-activated protein kinase kinase 7	0.03
	131466	F03233	Hs.27189	ESTS	0.032
35	102859	X00274	Hs.76807	Human HLA-DR alpha-chain mRNA	0.032
	134626	S82198	Hs.8709	caldecrin (serum calcium decreasing factor; elastase IV)	0.032
	134170	M63138	Hs.79572	cathepsin D (lysosomal aspartyl protease)	0.033
	131713	X57809	Hs.181125	immunoglobulin lambda gene cluster	0.034
40	100748	HG3517-HT3711		Alpha-1-Antitrypsin, 5' End	0.034
40	118769	N74496	11 400040	ESTs	0.034
	111734	R25375	Hs.126916	ESTs	0.036
	109221	AA192755	Hs.85840	ESTs; Weakly similar to stac [H.sapiens]	0.036 0.036
	133846	AA480073 AA401575	Hs.76719	U6 snRNA-associated Sm-like protein ESTs	0.037
45	135281	R32894	Hs.97757 Hs.45514	v-ets avian erythroblastosis virus E26 oncogene related	0.037
43	119073 100760	HG3576-HT3779	F15.400 14	Major Histocompatibility Complex, Class II Beta W52	0.037
	101700	M19483	Hs.25	ATP synthase; H+ transpring; mitochindri F1 complex; beta polypept	0.038
	129568	AA428025	Hs.114360	transforming growth factor beta-stimulated protein TSC-22	0.038
	130900	Z38468	Hs.21036	ESTs; Moderately similar to F25965_3 [H.sapiens]	0.039
50	133879	M13829	Hs.77183	v-raf murine sarcoma 3611 viral oncogene homolog 1	0.039
	100627	HG2702-HT2798		Serine/Threonine Kinase (Gb:Z25424)	0.039
	129424	M55593	Hs.111301	matrix metalloproteinase 2 (gelatinase A; 72kD gelatinase;	
				72kD type IV collagenase)	0.039
	128652	AA621245	Hs.103147	ESTs; Weakly similar to similar to SP:YR40_BACSU [C.elegans]	0.039
55	129979	T72635	Hs.13956	ESTs	0.039
	133468	X03068	Hs.73931	major histocompatibility complex; class II; DQ beta 1	0.04
	102636	U67092		Human ataxia-telangiectasia locus protein (ATM) gene, exons	
				1a, 1b, 2, 3 and 4, partial cds	0.04
<i>(</i> 0	129536	M33493	Hs.184504	tryptase; alpha	0.04
60	133599	M64788	Hs.75151	RAP1; GTPase activating protein 1	0.041

	102104	U12139		Human alpha1(XI) collagen (COL11A1) gene, 5' region and exon 1	0.041
	131340	AA478305	Hs.25817	Homo sapiens chromosome 19; cosmid R27216	0.041
	130446	X79510	Hs.155693	protein tyrosine phosphatase; non-receptor type 21	0.042
	101352	L77701	Hs.16297	COX17 (yeast) homolog; cytochrome c oxidase assembly protein	
5	122593	AA453310			0.042
5			Hs.128749	alpha-methylacyl-CoA racemase	0.042
	130181	R39552	Hs.151608	Homo saplens clone 23622 mRNA sequence	0.042
	134071	Z14093	Hs.78950	branched chain keto acid dehydrogenase E1; alpha polypeptide	
				(maple syrup urine disease)	0.042
	108129	AA053252	Hs.185848	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING	
10				ENTRY II [H.sapiens]	0.043
	130511	L32137	Hs.1584	cartilage oligomeric matrix protein (pseudoachondroplasia;	0.0.0
			11011007	epiphyseal dysplasia 1; multiple)	0.043
	133336	AA291456	Hs.71190		
				ESTs	0.043
15	132982	L02326	Hs.198118	immunoglobulin lambda-like polypeptide 2	0.044
13	131880	AA047034	Hs.33818	RecQ protein-like 5	0.044
	130540	U35234	Hs.159534	protein tyrosine phosphatase; receptor type; S	0.044
	133467	AA258595	Hs.73931	major histocompatibility complex; class II; DQ beta 1	0.044
	101191	L20688	Hs.83656	Rho GDP dissociation Inhibitor (GDI) beta	0.044
	101860	M95610	Hs.37165	collagen; type IX; alpha 2	0.044
20	102799	U88898	110.01100	Human endogenous retroviral H protease/integrase-derived ORF1	0.044
20	102700	000000			
	407000	Dogge	11. #000	mRNA, complete cds, and putative envelope prot mRNA, partial cds	0.044
	107200	D20350	Hs.5628	ESTs	0.044
	101166	L14927	Hs.2099	lipocalin 1 (protein migrating faster than albumin; tear prealbumin)	0.044
~-	134289	M54915	Hs.81170	pim-1 oncogene	0.044
25	135329	AA436026	Hs.98858	ESTs	0.044
	124950	T03786	Hs.151531	protein phosphatase 3 (formerly 2B); catalytic subunit; beta isoform	
				(calcineurin A beta)	0.044
	102919	X12447	Hs.183760	aldolase A; fructose-bisphosphate	0.044
	100574	HG2279-HT2375	113.103700		
30			11- 00000	Triosephosphate Isomerase	0.045
50	131286	AA450092	Hs.25300	Homo sapiens clones 24718 and 24825 mRNA sequence	0.045
	102675	U72512		Human B-cell receptor associated protein (hBAP) atternatively	
	*			spliced mRNA, partial 3'UTR	0.045
	131332	R50487	Hs.25717	ESTs	0.045
	101634	M57731	Hs.75765	GRO2 oncogene	0.046
35	113118	T47906	Hs.220512	ESTs	0.046
	124884	R77276	Hs.120911	ESTs	0.046
	130523	W76097		ESTs	
			Hs.214507		0.046
	110244	H26742	Hs.25367	ESTs; Weakly similar to ALR [H.sapiens]	0.046
40	131932	AA454980	Hs.25601	chromodomain helicase DNA binding protein 3	0.046
40	132509	H09751	Hs.5038	neuropathy target esterase	0.046
	133372	AA291139	Hs.72242	ESTs	0.046
	100817	HG4011-HT4804	•	Dystrophin-Associated Glycoprotein, 50 Kda, Alt. Splice 2	0.047
	106746	AA476436	Hs.7991	ESTs	0.047
	135401	L14813	Hs.169271	carboxyl ester lipase-like (bile salt-stimulated lipase-like)	0.047
45	130479	R44163	Hs.12457	Homo sapiens clone 23770 mRNA sequence	0.047
1.5	102589	U62015			
			Hs.8867	cysteine-rich; angiogenic inducer; 61	0.047
	121521	AA412165	Hs.97358	EST	0.048
	135340	AA425137	Hs.99093	Homo sapiens chromosome 19; cosmid R28379	0.048
	132336	AA342422	Hs.45073	ESTs	0.048
50	115368	AA282133	Hs.88960	ESTs; Weakly similar to similar to collagen [C.elegans]	0.048
	101278	L38487	Hs.110849	estrogen-related receptor alpha	0.048
	103284	X80200	Hs.8375	TNF receptor-associated factor 4	0.048
	100564	HG2239-HT2324	11010010	Potassium Channel Protein (Gb:Z11585)	0.048
	133132	Z40883	Un eccon	ECTo: Months similar to discondens of the aminus	
55			Hs.65588	ESTs; Weakly similar to dJ393P12.2 [H.sapiens]	0.048
JJ	121811	AA424535	Hs.98416	ESTs	0.048
	129613	AA279481	Hs.238831	ESTs; Weakly similar to collagen alpha 1(XVIII) chain [M.musculus]	0.049
•	132468	S79854	Hs.49322	delodinase; lodothyronine; type III	0.049
	120111	W95841	Hs.136031	ESTs	0.049
_	103668	Z83741	Hs.248174	H2A histone family; member M	0.049
60	130386	F10874	Hs.234249	mitogen-activated protein kinase 8 interacting protein 1	0.049
	104275	C02170	Hs.39387	ESTs; Weakly smir to weak smirity to ribosomal prot L14 [C.elegans]	0.049
	106305	AA436146	Hs.12828	ESTs	
					0.05
	116431	AA609878	Hs.55289	ESTs; Weakly smir to 110 KD CELL MEMBRANE GLYCOPROTEIN [H.sapiens]	0.813
65	120339	AA206465	Hs.256470	EST	0.05
65	114427	AA017063		ESTs; Highly similar to Miz-1 protein [H.sapiens]	0.05
	118821	N79070	Hs.94789	ESTs	0.05
	118979	N93798	Hs.43666	protein tyrosine phosphatase type IVA; member 3	0.05
•	107495	W78776	Hs.90375	ESTs	0.051
	120240	Z41732	Hs.66049	ESTS	0.051
			110,00043	FOIR	0.031

	114331	Z41309	Hs.12400	ESTs ·	0.051
	130947	R40037	Hs.21506	ESTs ·	0.052
	129242	W81679	Hs.5174	ribosomal protein \$17	0.052
	131413	AA482390	Hs.26510	ESTs; Modly smlr to vacuolar prot sorting homolog r-vps33b [R.norvegicus]	0.052
5	112304	R54798	Hs.26239	ESTs	0.052
,	101416	M17254	Hs.45514	v-ets avian erythroblastosis virus E26 oncogene related	0.052
	131201	AA426304	Hs.24174	ESTs	0.052
			Hs.73933	Human MHC class II HLA-DQ-beta mRNA (DR7 DQw2); complete cds	0.052
	101054	K02405			0.053
10	101306	L41143	Hs.232069	T-cell leukemia translocation altered gene	0.055
10	129311	T55087		yb45c08.r1 Stratagene fetal spleen (#937205) Homo sapiens cDNA	0.050
				done IMAGE:74126 5', mRNA sequence.	0.053
	129942	U95301	Hs.144442	phospholipase A2; group X	0.053
	119210	R93340	Hs.92995	ESTs ·	0.053
	101046	K01160		Accession not listed in Genbank	0.053
15	114086	Z38266	Hs.12770	Homo sapiens PAC clone DJ0777O23 from 7p14-p15	0.053
	110171	H19964	Hs.31709	ESTs	0.053
	101004	J04101	Hs.248109	v-ets avian erythroblastosis virus E26 oncogene homolog 1	0.053
	129715	N58479	Hs.12126	ESTs; Weakly similar to LR8 [H.sapiens]	0.053
	101581	M34996	Hs.198253	major histocompatibility complex; class II; DQ alpha 1	0.053
20	113285	T66830	Hs.182712	ESTs	0.053
	127537	AA569531	Hs.162859	ESTs	0.054
	100813	HG3995-HT4265	, 10. 1 - 2 - 2 - 2	Cpg-Enriched Dna, Clone S19	0.054
	101841	M93107	Hs.76893	3-hydroxybutyrate dehydrogenase (heart; mitocfiondrial)	0.054
	135053	R77159	Hs.93678	ESTs	0.054
25		M17886	Hs.177592	ribosomal protein; large; P1	0.054
23	101419		Hs.47622	ESTs	0.055
	119724	W69468	175.47022	Human alternatively spliced B8 (B7) mRNA, partial sequence	0.055
	102673	U72509	Lla 40004	ESTs; Weakly similar to ORF YGR101w [S.cerevisiae]	0.055
	129877	AA248589	Hs.13094		0.055
20	114788	AA156737	Hs.103904	EST	0.055
30	123812	AA620607	Hs.111591	ESTs	0.055
	117669	N39237	Hs.44977	ESTs	
	123782	AA610111	Hs.162695	EST	0.055
	102395	U41767	Hs.92208	a disintegrin and metalloproteinase domain 15 (metargidin)	0.055
06	133795	M12529	Hs.169401	apolipoprotein E	0.055
35	123193	AA489228	Hs.136956	ESTs	0.056
	132595	AA253369	Hs.155742	glyoxylate reductase/hydroxypyruvate reductase	0.056
	104161	AA456471	Hs.7724	KIAA0963 protein	0.056
	115330	AA281145	Hs.88827	ESTs	0.056
4.0	112893	T08000	Hs.194684	bassoon (presynaptic cytomatrix protein)	0.056
40	133475	L29217	Hs.73987	CDC-like kinase 3	0.056
	128699	K03207	Hs.103972	proline-rich protein BstNl subfamily 4	0.056
	102940	X13956	Hs.24998	Hu 12S RNA induced by poly(rl); poly(rC) and Newcastle disease virus	0.056
	131299	AA431464	Hs.25426	ESTs; Weakly similar to unknown [H.sapiens]	0.057
	102495	U51240	Hs.79356	Lysosomal-associated multispanning membrane protein-5	0.057
45	129594	R70379	Hs.115396	Human germline IgD chain gene; C-region; C-delta-1 domain	0.057
•	118593	N69020	Hs.207689	EST	0.057
	126702	U54602	Hs.2785	keratin 17	0.057
	124386	N27368	Hs.212414	sema domain; immunoglobulin domain (Ig); short basic domain;	
				secreted; (semaphorin) 3E	0.057
50	130538	M20786	Hs.159509	alpha-2-plasmin inhibitor	0.057
	114299	Z40782	Hs.22920	similar to \$68401 (cattle) glucose induced gene	0.057
	115604	AA400378	Hs.49391	ESTs	0.057
	106052	AA416947	Hs.6382	ESTs; Highly similar to KIAA0612 protein [H.sapiens]	0.057
	131730	U05681	Hs.31210	B-cell CLL/lymphoma 3	0.057
55	131285	AA479498	Hs.25274	ESTs: Modly smlr to putative seven pass transmembrane prot [H.sapiens]	0.058
JJ		X78706	Hs.12068	camitine acetyltransferase	0.058
	129705			ESTs	0.058
	123175	AA489010	Hs.178400	chioride channel Kb	0.058
	103592	Z30644	Hs.123059	ESTs: Moderately similar to tumor necrosis factor-alpha	0.000
6 0	118196	N59478	Hs.48396		0.058
60	404000	A 4000040	11- 444000	-Induced protein B12 [H.sapiens]	0.058
	104886	AA053348	Hs.144626	growth differentiation factor 11	V.000
	104250	AF000575	Hs.105928	leukocyte immunoglobulin-like receptor; subfamily B (with TM	ט טבט
			** ****	and ITIM domains); member 3	0.058
15	113301	T67452	Hs.13104	EST	0.058
65	110441	H50302	Hs.19845	ESTs; Highly smlr to prot phosphatase 2A BR gamma subunit [H.saplens]	0.058
	125297	Z39215	Hs.159409	ESTs	0.058
	135258	AA292423	Hs.97272	ESTs; Weakly similar to dJ281H8.2 [H.sapiens]	0.058
	130633	T92363	Hs.178703	ESTs	0.058
	112006	R42607	Hs.22241	hypothetical protein	0.058

	130805	U12194	Hs.170238	sodium channel; voltage-gated; type I; beta polypeptide	0.058
	134907	D80002	Hs.178292	KIAA0180 protein	0.058
	132619	AA404565	Hs.53447	ESTs; Moderately similar to kinesin light chain 1 [M.musculus]	0.058
_	135115	N35489	Hs.94653	neurochondrin	0.058
5	100531	HG1872-HT1907		Major Histocompatibility Complex, Dg	0.058
	124530	N62256	Hs.102727	EST	0.058
	119960	W87533	Hs.32699	ESTs; Moderately similar to LIV-1 protein [H.sapiens]	0.058
	132793	AA478999	Hs.56966	KIAA0906 protein	0.058
	101076	L04270	Hs.1116	lymphotoxin beta receptor (TNFR superfamily; member 3	0.058
10	130655	N92934	Hs.17409	cysteine-rich protein 1 (Intestinal)	0.058
	134458	AA192614	Hs.83577	cysteine and glycine-rich protein 3 (cardiac LIM protein)	0.058
	105904	AA401452	Hs.32060	ESTs	0.059
	132878	AA026793	Hs.58679	ESTs; Weakly similar to 4F2/CD98 light chain [M.musculus]	0.059
	121828	AA425166	Hs.98497	ESTS	0.059
15	133418	U76366	Hs.172727	Treacher Collins-Franceschetti syndrome 1	0.059
	129317	N46244	Hs.110373	ESTs	0.059
	130153	D85815	Hs.15114	ras homolog gene family; member D	0.059
	124403	N31745	Hs.102493	ESTs	0.059
	127683	AA668123	Hs.134170	ESTs	0.059
20	129814	W20070	Hs.168625	KIAA0979 protein	0.059
	131770	D59682	Hs.31833	ESTs	0.06
	117557	N33920	Hs.44532	diubiquitin	0.06
	103522	Y10514		H.sapiens mRNA for CD152 protein	0.06
	120029	W91960	Hs.250640	sequence-specific single-stranded-DNA-binding protein	0.06
25	102135	U15460	Hs.41691	activating transcription factor B	0.06
	123617	AA609183	Hs.181131	ESTs	0.06
	112136	R46100	Hs.9739	ESTs	0.061
	133725	V00563	Hs.179543	immunoglobulin mu	0.061
	102069	U09196	Hs.82520	Hu 1.1 kb mRNA upregited in retinoic acid treated HL-60 neutrophilic cells	0.061
30	106555	AA455000	Hs.16725	ESTs	0.061
	123269	AA491226	Hs.105280	ESTs; Weakly similar to dJ963K23.2 [H.sapiens]	0.061
	109088	AA166837	Hs.72620	DKFZP434I114 protein	0.061
	129399	AA263028	Hs.111076	malate dehydrogenase 2; NAD (mitochondrial)	0.061
	129375	W79850	Hs.11081	ESTs; Weakly similar to HPBRII-7 protein [H.sapiens]	0.061
35	135271	AA397763	Hs.97562	ESTs	0.061
	132958	W90398	Hs.6147	KIAA1075 protein	0.061
	129364	AA477106	Hs.110757	DNA segment on chromosome 21 (unique) 2056 expressed sequence	0.061
	123427	AA598548	Hs.112471	ESTs	0.061
40	105236	AA219179	Hs.19105	translocase of inner mitochondrial membrane 17 (yeast) homolog B	0.061
40	101012	J04444	Hs.697	cytochrome c-1	0.062
	134791	L18983	Hs.89655	protein tyrosine phosphatase; receptor type; N	0.062
	133700	K01396	Hs.75621	protease inhibitor 1 (anti-elastase); alpha-1-antitrypsin	0.062
	123887	AA621065	Hs.112943	ESTs	0.062
4 50	129363	H05704	Hs.110746	H sapiens HCR (a-helix coiled-coil rod homologue) mRNA; complete cds	0.062
45	105719	AA291644	Hs.36793	ESTs	0.062
	124226	H62396	Hs.190266	ESTs	0.062
	117437	N27645		yw5e3.s1 Weizmann Olfactory Epithelium H sapiens cDNA clone	
				IMAGE:255676 3' smlr to contains L1.t3 L1 repetitive element;, mRNA seq	0.062
50	132741	AA394133	Hs.55898	ESTs; Highly similar to OASIS protein [M.musculus]	0.062
50	134437	M26041	Hs.198253	major histocompatibility complex; class II; DQ alpha 1	0.062
	107664	AA010594	Hs.5326	ESTs; Moderately similar to pim-1 protein [H.saplens]	0.062
	120844	AA349417	Hs.96917	ESTs	0.062
	101574	M34182	Hs.158029	protein kinase; cAMP-dependent; catalytic; gamma	0.062
55	131219	C00476	Hs.24395	small inducible cytokine subfamily B (Cys-X-Cys); member 14 (BRAK)	0.062
23	103495	Y09022	Hs.153591	Not56 (D. melanogaster)-like protein	0.062
	129607	AA404594	Hs.11607	ESTs	0.062
	106467	AA450040	Hs.154162	ADP-ribosylation factor-like 2	0.062
	128841	T16358	Hs.106443	ESTs	0.062
60	100515	HG1723-HT1729		Macrophage Scavenger Receptor, Alt. Splice 2	0.062
OU	119332	T54095	11-00440	ESTs; Weakly similar to I! ALU SUBFAMILY J WARNING ENTRY I! [H.sapiens]	0.062
	134516	AA171939	Hs.23413	ESTs	0.062
	135012	X73608	Hs.93029	sparc/osteonectin; cwcv and kazal-like domains proteoglycan (testican)	0.063
	103575	Z26256	U- FFAAA	H.sapiens isoform 1 gene for L-type calcium channel, exon 1	0.063
65	115514	AA297739	Hs.55609	ESTs; Weakly similar to ISOLEUCYL-TRNA SYNTHETASE;	0.000
UJ	102000	A 42012EF		CYTOPLASMIC [H.sapiens]	0.063
	103996	AA321355	Nº 3040E	EST2393 Bone marrow Homo sapiens cDNA 5' end, mRNA sequence	0.063
	110505	H55992	Hs.20495	DKFZP434F011 protein	0.063
	133912	X62744 M33600	Hs.77522 He 180255	major histocompatibility complex; class II; DM alpha	0.063
	129581	M33600	Hs.180255	major histocompatibility complex; class II; DR beta 1	0.063

	130139	R38280	Hs.150922	BCS1 (yeast homolog)-like	0.064
	105817	AA397825	Hs.5307	synaptopodin	0.064
	134658	AA410617	Hs.178009	ESTs	0.064
~	100306	D50495	Hs.80598	transcription elongation factor A (SII); 2	0.064
5	100277	D42053	Hs.75890	site-1 protease (subtilisin-like; sterol-regulated; cleaves sterol regulatory	
				element binding proteins)	0.064
	133116	D61259	Hs.6529	ESTs	0.064
	134909	AA521488	Hs.90998	KIAA0128 protein	0.064
	130319	X74794	Hs.154443	minichromosome maintenance deficient (S. cerevisiae) 4	0.064
10			Hs.173484	ESTs	0.064
10	132057	AA102489	FIS.173404		0.004
	108334	AA070473		zm7c8.s1 Stratagene neuroepithelium (#937231) Homo sapiens cDNA	
				clone IMAGE:5399 3', mRNA sequence	0.064
	129763	F10815	Hs.12373	KIAA0422 protein	0.064
	135112	T67464	Hs.94617	ESTs; Weakly similar to predicted using Genefinder [C.elegans]	0.064
15	122269	AA436856	Hs.98910	ESTs	0.064
	133082	AA457129	Hs.6455	RuvB (E coli homolog)-like 2	0.064
	113213	T58607		ya94a02.s1 Stratagene placenta (#937225) Homo sapiens cDNA clone	•
	110210	100007		IMAGE:69290 3', mRNA sequence.	0.065
	400000	A A 400000	Hs.17719	ESTs	0.065
20	106228	AA429290		=*··	
20	130192	Y12661	Hs.171014	VGF nerve growth factor inducible	0.065
	104894	AA054087	Hs.18858	phospholipase A2; group IVC (cytosolic; calcium-independent)	0.065
	103508	Y10141		H.sapiens DAT1 gene, partial, VNTR	0.065
	128474	U40671	Hs.100299	ligase III; DNA; ATP-dependent	0.065
	134012	AA417821	Hs.237924	ESTs; Highly similar to CGI-69 protein [H.sapiens]	0.065
25	134536	AA457735	Hs.850	IMP (inosine monophosphate) dehydrogenase 1	0.065
	111714	R23146	Hs.23466	ESTs	0.065
	110521	H57060	Hs.108268	ESTs	0.065
	103282	X80198	Hs.77628	steroidogenic acute regulatory protein related	0.065
					0.065
30	113921	W80730	Hs.28355	ESTS	0.065
30	129331	N93465	Hs.110453	ESTs; Highly similar to CGI-38 protein [H.saplens]	
	111316	N74597	Hs.180535	ESTs; Weakly similar to mitogen inducible gene mig-2 [H.sapiens]	0.065
	135138	AA036794	Hs.95196	ESTs; Weakly similar to T20B12.3 [C.elegans]	0.065
	107289	T10792	Hs.172098	ESTs	0.065
~ ~	121405	AA406083	Hs.98007	ESTs	0.065
35	124965	T16275	Hs.106359	ESTs	0.065
	106595	AA456933	Hs.174481	ESTs	0.066
	100106	AF015910		Homo sapiens unknown protein mRNA, partial cds	0.066
	134715	AA282757	Hs.89040	prepronociceptin	0.066
	135367	AA480109	Hs.9963	TYRO protein tyrosine kinase binding protein	0.066
40	111533	R08548	Hs.251651	EST	0.066
	128509	R53109	Hs.247362	dimethylarginine dimethylaminohydrolase 2	0.066
	101030	J05037	Hs.76751	serine dehydratase	0,066
	102753	U80226	113.70701	Human gamma-aminobutyric acid transaminase mRNA, partial cds	0.067
			Hs.821		0.067
45	126991	R31652		bigiycan	0.067
40	109583	F02322	Hs.26135	ESTs	
	119241	T12559	Hs.221382	ESTs	0.067
	130569	AA156597	Hs.256441	EST; Moderately similar to CGI-136 protein [H.sapiens]	0.067
	112926	T10316	Hs.4302	ESTs	0.067
	120495	AA256073	Hs.190626	ESTs	0.067
50	130931	AA278412	Hs.21346	ESTs; Weakly similar to F42C5.7 gene product [C.elegans]	0.067
	129982	M87789	Hs.140	immunoglobulin gamma 3 (Gm marker)	0.067
	133832	H03387	Hs.241305	estrogen-responsive B box protein	0.067
	110697	H93721	Hs.20798	ESTs	0.067
	121183	AA400138	Hs.97703	ESTs	0.067
55			Hs.2157	Wiskott-Aldrich syndrome (ecezema-thrombocytopenia)	0.067
33	130953	U12707			0.067
	102218	U24183	Hs.75160	phosphofructokinase; muscle	
	114181	Z39079	Hs.8021	KIAA1058 protein	0.067
	116581	D51287	Hs.82148	ribosomal protein S12	0.067
	132498	T87708	Hs.50098	ESTs	0.068
60	103788	AA096014	Hs.9527	ESTs; Highly similar to HSPC013 [H.saplens]	0.068
	102459	U48936		Human amiloride-sensitive epithelial sodium channel gamma subunit mRNA,	
				5' end, partial cds	0.068
	100373	D79999	Hs.77225	ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)-like 1	0.068
	132717	AA203321	Hs.151696	DKFZP727G051 protein	0.068
65	128863	D87462	Hs.106674	BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase)	0.068
	115193	AA262029	Hs.88218	ESTs	0.068
	124558	N66046	Hs.141605	ESTs	0.069
	117225	N20392	Hs.42846	ESTs	0.069
	110665	H83380	Hs.32757	ESTs	0.069
	110000	1100000	113.02101	EU (U	5.000

				•	
	420005	U70663	Hs.182965	Kruppel-like factor 4 (gut)	0.069
	132905	AA348910	Hs.153299	DOM-3 (C. elegans) homolog Z	0.069
	105778				0.069
	134770	R72079	Hs.89575	CD79B antigen (immunoglobulin-associated beta)	
_	123097	AA485869	Hs.105671	ESTs	0.069
5	100750	HG3523-HT4899		Proto-Oncogene C-Myc, Alt. Splice 3, Orf 114	0.069
	125091	T91518		ye20f05.s1 Stratagene lung (#937210) H sapiens cDNA clone IMAGE:	
				3' similar to contains Alu repetitive element; contains MER12 repetitive element;	
				mRNA sequence.	0.069
	100756	HG3565-HT3768		Zinc Finger Protein (Gb:M88357)	0.069
10	113483	T87768	Hs.16439	ESTs	0.069
10		L09708	Hs.2253	complement component 2	0.069
	101119				0.07
	102286	U31628	Hs.12503	interleukin 15 receptor; alpha	
	135349	D83174	Hs.9930	collagen-binding protein 2 (colligen 2)	0.07
	100991	J03764	Hs.82085	plasminogen activator inhibitor; type I	0.07
15	133675	AA443720	Hs.7551	ESTs; Weakly similar to T25G3.1 [C.elegans]	0.07
	105422	AA251014	Hs.12210	ESTs	0.07
	102932	X13334	Hs.75627	CD14 antigen	0.07
	119147	R58878	Hs.65739	ESTs	0.07
		AA055048	Hs.180481	ESTs; Weakly similar to ACROSIN PRECURSOR [H.sapiens]	0.07
20	104900			ESTs	0.07
20	133185	AA481404	Hs.6686		0.07
	115496	AA290674	Hs.71819	eukaryotic translation initiation factor 4E binding protein 1	
	121005	AA398332	Hs.97613	ESTs	0.07
	124869	R69088	Hs.28728	ESTs; Weakly similar to F55A12.9 [C.elegans]	0.071
	129154	N23673	Hs.108969	mannosidase; alpha; class 2B; member 1	0.071
25	112161	R48295		ESTs; Wkly smlr to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.071
	125251	W87486	Hs.141464	ESTs	0.071
•	134298	J00116	Hs.81343	collagen; type II; alpha 1 (primary osteoarthritis; spondyloepiphyseal	
	104230	000110	110.01010	dysplasia; congenital)	0.071
	440740	M770004	Ho 50000		0.071
20	119745	W70264	Hs.58093	ESTs	0.071
30	131306	AA232686	Hs.25489	ESTs	
	107776	AA018820	Hs.221147	ESTs	0.071
	134271	AA199630	Hs.184456	ESTs; Wkty smir to !! ALU SUBFAMILY SX WARNING ENTRY !! [H.sapiens]	0.071
	101798	M85220		Accession not listed in Genbank	0.071
	135402	S76942	Hs.99922	dopamine receptor D4	0.071
35	118742	N74052	Hs.50424	EST	0.071
	131867	N64656	Hs.3353	Homo sapiens done 24940 mRNA sequence	0.071
	102923	X12517	Hs.1063	small nuclear ribonucleoprotein polypeptide C	0.072
	100775	HG371-HT26388	110.1000	Mucin 1, Epithelial, Alt. Splice 9	0.072
		N54361	Hs.185726	ESTs	0.072
40	111020				0.072
40	134224	X80822	Hs.163593	ribosomal protein L18a	0.072
	124059	F13673	Hs.99769	ESTs	0.072
	133972	AA160743	Hs.78019	Homo sapiens clone 24432 mRNA sequence	
	129681	AA436009	Hs.178186	ESTs; Weakly similar to WASP-family protein [H.sapiens]	0.072
	103065	X58399	Hs.81221	Human L2-9 transcript of unrearranged immunoglobulin V(H)5 pseudogene	0.072
45	124966	T19271	Hs.155560	calnexin	0.072
	112270	R53021	Hs.203358	ESTs	0.072
	116704	F10183	Hs.66140	EST	0.072
	129890	M13699	Hs.111461	ceruloplasmin (lerroxidase)	0.072
	127345	AA972008	Hs.166253	ESTs; Highly similar to KIAA0476 protein [H.sapiens]	0.072
50				ESTs	0.072
20	112436	R63090	Hs.28391		0.072
	114531	AA053033	Hs.203330	ESTs	0.072
	135122	H99080	Hs.94814	ESTS	
	103934	AA281338	Hs.134200	Homo sapiens mRNA; cDNA DKFZp564C186 (from clone DKFZp564C186)	0.072
	109363	AA215369	Hs.185764	ESTs; Weakly similar to hypothetical protein [H.sapiens]	0.072
55	112647	R83329	Hs.33403	ESTs	0.073
	127083	Z44079	Hs.91608	otoferlin	0.073
	133027	AA402624	Hs.63236	synuclein; gamma (breast cancer-specific protein 1)	0.073
	122086	AA432121	Hs.250986	EST	0.073
	110405	H47542	Hs.33962	ESTs	0.073
60				KIAA0346 protein	0.073
UU	128697	AB002344	Hs.103915	· · · · · · · · · · · · · · · · · · ·	0.073
	112221	R50380	Hs.25670	ESTs	0.073
	100478	HG1067-HT1067		Mucin (Gb:M22406)	
	115598	AA400129	Hs.65735	ESTs	0.073
	132491	AA227137	Hs.4984	KIAA0828 protein	0.073
65	101655	M60299		Human aipha-1 collagen type II gene, exons 1, 2 and 3	0.073
	106018	AA411887	Hs.34737	ESTs	0.073
	129683	W05348	Hs.158196	DKFZP434B103 protein	0.073
	134137	F10045	Hs.79347	KIAA0211 gene product	0.073
		W89128	Hs.19872	ESTs	0.073
	114008	1103120	110.10012		<i>(</i> 10.00
				199	4
				177	

	107653	AA010210	Hs.47041	ESTs	0.073
	104798	AA029462	Hs.17235	ESTs	0.073
	134082	L16991	Hs.79006	deoxythymidylate kinase	0.073
	119180	R80413	Hs.92520	ESTs	0.073
5	107741	AA016982	Hs.64341	ESTs	0.073
-	133683	AA335223	Hs.75558	pepsinogen 5; group I (pepsinogen A)	0.073
	111694	R22035	Hs.23331	ESTs	0.073
		AA338729	Hs.133096	ESTS	0.073
	120764				0.074
10	119389	T88826	Hs.90973	ESTs	0.074
10	100929	HG688-HT688		Major Histocompatibility Complex, Class II, Dr Beta 2 (Gb:X65561)	
	119388	T88798		plasminogen activator inhibitor; type I	0.074
	133019	AF009674	Hs.184434	axin	0.074
	105185	AA191495	Hs.189937	ESTs	0.074
	133413	S72043	Hs.73133	metallothionein 3 (growth inhibitory factor (neurotrophic))	0.074
15	101017	J04599	Hs.821	biglycan	0.074
	132865	K02765	Hs.251972	complement component 3	0.074
	110882	N36001	Hs.17348	ESTs; Wkly smir to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	0.074
	129197	T90303	Hs.109308	ESTs; Wkly smlr to leucine-rich glioma-inactivated prot precursor [H.sapiens]	0.074
	101184	L19871	Hs.460	activating transcription factor 3	0.075
20	134910	AA431320	Hs.9100	ESTs	0.075
20	119411	T96621	Hs.203656	EST	0.075
	102000	U01824	Hs.380	solute carrier family 1 (glial high affinity glutamate transporter); member 2	0.075
		AA121893	Hs.103779	ESTs; Weakly similar to envelope protein [H.sapiens]	0.075
	114691	*			0.075
25	134179	U53204	Hs.79706	plectin 1; intermediate filament binding protein; 500kD	0.075
25	134503	U34880	Hs.84183	diptheria toxin resistance protein required for diphthamide	0.070
			11 400000	biosynthesis (Saccharomyces)-like 1	0.075
	129719	N66396	Hs.167766	ESTs; Moderately similar to Pro-a2(XI) [H.sapiens]	0.075
	113916	W80464	Hs.31928	ESTs; Wkly smlr to alternatively spliced product using exon 13A [H.sapiens]	0.075
	113897	W73926	Hs.4947	ESTs	0.075
30	129697	R00841	Hs.172069	DKFZP434C212 protein	0.075
	112078	R44155	Hs.112218	ESTs	0.075
	121980	AA429886	Hs.110407	ESTs; Weakly similar to coded for by C. elegans cDNA yk173c12.5 [C.elegans]	0.075
	100898	HG4638-HT5050		Spliceosomal Protein Sap 49	0.075
	121626	AA416974	Hs.98174	ESTs	0.075
35	133670	AA243416	Hs.75470	hypothetical protein; expressed in osteoblast	0.075
	131879	AA017161	Hs.33792	ESTs	0.075
	100254	D38037	Hs.77643	FK506-binding protein 1B (12.6 kD)	0.075
	133194	AA291726	Hs.67201	ESTs	0.075
	106081	AA418394	Hs.25354	ESTs	0.075
40	115544	AA351433	Hs.66187	Homo sapiens clone 23700 mRNA sequence	0.076
40	119955	W87460	Hs.58989	ESTs	0.076
	104407	H61361	Hs.102171	immunoglobulin superfamily containing feucine-rich repeat	0.076
	135019	X58431	Hs.98428	Human Hox2.2 gene for a homeobox protein	0.076
			Hs.103931	DKFZP434B0335 protein	0.076
45	114815	AA161488 W31352	Hs.55445	ESTs	0.076
47	119471			ESTs	0.076
	117788	N48292	Hs.46849		0.076
	119406	T95064	Hs.193771	EST	0.076
	130777	R61742	Hs.256554	ESTs	
50	130494	L13197	Hs.75874	pregnancy-associated plasma protein A	0.076
50	104107	AA424111	Hs.12598	T-cell lymphoma invasion and metastasis 2	0.076
	121483	AA411981	Hs.25274	ESTs; Modly smlr to putative seven pass transmembrane prot [H.sapiens]	0.076
	104451	M13299	Hs.102119	blue cone pigment	0.076
	118027	N52770	Hs.75968	thymosin; beta 4; X chromosome	0.076
	109419	AA227560	Hs.86987	receptor-interacting serine-threonine kinase 3	0.076
55	115783	AA424487	Hs.72289	ESTs; Weakly similar to LIV-1 protein [H.sapiens]	0.076
	110585	H62223	Hs.133526	ESTs; Wkly smlr to !!!ALU SUBFAMILY SB1 WARNING ENTRY !!![H.sapiens]	0.076
	123165	AA488863	Hs.105216	ESTs; Weakly smir to !!ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.077
	103966	AA303166	Hs.127270	ESTs	0.077
	109549	F01528	Hs.21192	Homo sapiens clone 25155 mRNA sequence	0.077
60	106730	AA465520	Hs.22313	ESTs	0.077
50	120310	AA193676	Hs.118926	DKFZP586K0919 protein	0.077
	104078	AA402801	Hs.222010	ESTs	0.077
	117624	N35978	Hs.82364	ESTs	0.077
				ESTS	0.077
65	112421	R62441	Hs.23127		0.077
υJ	106958	AA497026	Hs.22059	ESTS ESTS: Mankle similar to II ALLL SUBTAANI V I MADAIING ENTRY II IU coniensi	0.077
	129984	W92811	Hs.183927	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.saplens]	0.077
	122044	AA431456	Hs.98736	EST	0.077
	123280	AA491285	Hs.175144	ESTs	0.077
	115710	AA412535	Hs.55235	sphingomyelin phosphodiesterase 2; neutra	

				h d odalahtaran Parak	0.077
				I membrane (neutral sphingomyelinase)	0.077
	134129	D87444	Hs.79305	KIAA0255 gene product	0.077
	129321	AA224502	Hs.206501	Homo sapiens done 643 unknown mRNA; complete sequence	0.078
_	130513	AA460257	Hs.15866	ESTs	0.078
5	100996	J03909	Hs.14623	interferon; gamma-inducible protein 30	0.078
	128358	AI095718	Hs.135015	ESTs	0.078
	128544	R59352	Hs.119273	KIAA0296 gene product	0.078
	106040	AA412681	Hs.125139	ESTs	0.078
	106495	AA452113	Hs.32454	ESTs; Moderately similar to KIAA0544 protein [H.sapiens]	0.078
10	131833	R40899	Hs.32973	glycine receptor; beta	0.078
	119219	R97176	Hs.110783	ESTs	0.078
	135415	X60655	Hs.99967	even-skipped homeo box 1 (homolog of Drosophila)	0.078
	109457	AA232646	Hs.68061	ESTs; Weakly similar to sphingosine kinase [M.musculus]	0.078
	117137	H96670	Hs.42221	ESTs	0.078
15	107094	AA609614	Hs.5241	ESTs	0.078
13	130165	T90529	Hs.251613	EST	0.078
	124072	H05252	Hs.101637	EST; Weakly similar to hypothetical protein [H.sapiens]	0.078
	126151	AA324743	Hs.40808	ESTs	0.078
	119035	R01779	Hs.7740	ESTs	0.078
20		H18987	Hs.169731	ESTs	0.078
20	110157			ESTs; Highly similar to HYPOTHETICAL PROTEIN KIAA0195 [H.sapiens]	0.078
	128515	AA149044	Hs.10086	protein with polyglutamine repeat	0.078
	133069	U94836	Hs.6430		0.078
	112209	R49644	Hs.24865	ESTS	0.078
25	133361	R28279	Hs.71848	Human clone 23548 mRNA sequence	0.078
25	134714	U89922	Hs.890	tymphotoxin beta (TNF superfamily; member 3)	0.079
	129905	T86796	Hs.132875	ESTs; Weakly similar to predicted using Genefinder [C.elegans]	0.079
	120421	AA236166	Hs.132957	ESTs; Weakly similar to chondromodulin-I precursor [H.sapiens]	0.079
	100885	HG4490-HT4876		Proline-Rich Protein Prb4, Allela	
••	102789	U86759	Hs.158336	netrin 2 (chicken)-like	0.079
30	120139	Z39273	Hs.77876	Human DNA from chromosome 19-specific cosmid R30923; genomic sequence	0.079
	135238	U76343	Hs.96970	Human liver GABA transport protein mRNA; 3' end	0.079
	129618	N54845	Hs.173030	ESTs	0.079
	132960	AA609742	Hs.6150	KIAA0521 protein	0.079
	108751	AA127063	Hs.203717	ESTs	0.079
35	134060	D42039	Hs.78871	KIAA0081 protein	0.079
	111338	N79778	Hs.35094	extracellular matrix protein 2; female organ and adipocyte specific	0.079
	112345	R56880	Hs.26563	ESTs	0.079
	126456	W00881		za56d02.r1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone	
			•	IMAGE:296547 5', mRNA sequence.	0.079
40	128937	Z39939	Hs.10726	ESTs	0.079
	103485	Y08409	Hs.248415	thyroid hormone responsive SPOT14 (rat) homolog	0.079
	111202	N68280	Hs.107922	ESTs	0.079
	132625	AA429890	Hs.166066	cisplatin resistance associated	0.079
	103434	X98085	Hs.54433	tenascin R (restrictin; janusin)	0.079
45	102616	U65581	Hs.159191	ribosomal protein L3-like	0.079
	102667	U70867	Hs.83974	solute carrier family 21 (prostaglandin transporter); member 2	0.079
	111422	R01127	Hs.19104	ESTs	0.079
	101411	M16938	Hs.820	homeo box C6	0.08
	113267	T65058	Hs.12725	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.08
50	103559	Z19585	Hs.75774	thrombospondin 4	0.08
	131588	AA258613	Hs.29189	KIAA1021 protein	80.0
	107821	AA020991	Hs.172856	ESTs	80.0
	134278	H82839	Hs.81001	ESTs; Weakly similar to DY3.6 [C.elegans]	80.0
	120893	AA369800	Hs.97058	EST: Highly similar to CMP-N-acetylneuraminic acid hydroxylase [H.sapiens]	80.0
55	108786	AA128999	110.07000	zo8f12.s1 Stratagene neuroepithelium NT2RAMI 937234 Homo sapiens	
33	100700	M120000		cDNA clone IMAGE:567119 3', mRNA sequence	0.08
	106890	AA489245	Hs.88500	KIAA1066 protein; JSAP1 homolog (mouse); JiP3 homolog (mouse)	0.08
	119760	W72267	Hs.58219	ESTs	0.08
			Hs.624	interleukin 8	0.08
60	132999	Y00787		dolichyl-phosphate mannosyltransferase polypeptide 2; regulatory subunit	80.0
UU	129156	AA028195	Hs.108973		0.08
	121171	AA400008	Hs.161814	ESTs ESTs; Weakly similar to Miller-Dieker lissencephaly gene [H.sapiens]	0.08
	103864	AA207264	Hs.181077	COTs: Wester similar to Miller-Dieker isserkapitally gene (n. sapiens)	0.08
	128591	AA255537	Hs.102057	ESTs; Weakly similar to O-linked GlcNAc transferase [H.sapiens]	0.08
<i>(=</i>	122172	AA435753	Hs.161854	EST	0.08
65	112802	R97647	Hs.174855	EST	0.08
	107723	AA015967	Hs.60680	EST	
	113011	T23737	Hs.1600	chaperonin containing TCP1; subunit 5 (epsilon)	0.081
	131279	AA089853	Hs.25197	STIP1 homology and U-Box containing protein 1	0.081
	103190	X70083	Hs.58414	filamin C; gamma (actin-binding protein-280)	0.081

				•	
	103956	AA292411	Hs.233348	ESTs .	0.081
	112706	R89828	Hs.138493	ESTs	0.081
	126126	M85370		EST01884 Fetat brain, Stratagene (cat#936206) Homo sapiens cDNA	
	,,			clone HFBCH10, mRNA sequence.	0.081
5	130094	H43286	Hs.167017	gamma-aminobutyric acid (GABA) B receptor; 1	0.081
•	100800	HG3945-HT4215		Phospholipid Transfer Protein	0.081
	108675	AA115240	Hs.61816	ESTs	0.081
	129420	AA234259	Hs.99816	ESTs	0.081
	129666	M77349	Hs.118787	transforming growth factor; beta-induced; 68kD	0.081
10	101645	M59807	Hs.943	natural killer cell transcript 4	0.081
10	130536	T17045	Hs.159492	spastic ataxia of Charlevoix-Saguenay (sacsin)	0.081
	107732	AA016181	Hs.59752	ESTs	0.081
	123071	AA482593	Hs.104285	ESTs	0.081
	113537	T90457	Hs.191293	ESTs	0.081
15	101250	L34060	Hs.79133	cadherin 8	0.081
	122521	AA449433	Hs.149227	ESTs; Weakly similar to PROLINE-RICH PROTEIN MP-3 [M.musculus]	0.081
	133914	N32811	Hs.77542	ESTs	0.081
	102038	U05659	Hs.477	hydroxysteroid (17-beta) dehydrogenase 3	0.081
	110336	H40338	Hs.174094	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.081
20	118637	N70274	Hs.49822	ESTs	0.081
	117966	N51589	Hs.94012	ESTs	0.082
	104424	H87671	Hs.182320	ESTs; Weakly similar to Mouse 19.5 mRNA; complete cds [M.musculus]	0.082
	100361	D78361	Hs.125078	Human mRNA for omithine decarboxylase antizyme; ORF 1 and ORF 2	0.082
	112974	T17291	Hs.101174	microtubule-associated protein tau	0.082
25	132832	D63482	Hs.57734	KIAA0148 gene product	0.082
	132039	Z39489	Hs.3781	Homo sapiens BAC clone RG118D07 from 7q31	0.082
	113272	T65383	Hs.12807	ESTs	0.082
	104924	AA058532	Hs.28774	ESTs	0.082
	111061	N58054	Hs.36859	ESTs	0.082
30	129269	R45977	Hs.163593	ribosomal protein L18a	0.082
	102453	U48437	Hs.74565	amyloid beta (A4) precursor-like protein 1	0.082
	126204	AI080388	Hs.134296	ESTs	0.082
	116615	D80666	Hs.45203	ESTs	0.082
	128856	AA219552	Hs.204144	ESTs; Modly smlr to tumor necrosis factor-alpha-induced prot B12 [H.sapiens]	0.082
35	112776	R95850	Hs.34494	ESTs	0.082
	105494	AA256273	Hs.29288	Homo sapiens mRNA; cDNA DKFZp434P174 (from done DKFZp434P174)	0.082
	117000	H84718	Hs.112236	ESTs; Weakly similar to repressor protein [H.sapiens]	0.082
	112656	R85260	Hs.133151	transient receptor potential channel 7	0.082
40	128963	J03890	Hs.1074	surfactant; pulmonary-associated protein C	0.083
40	116957	H79292	Hs.39960	ESTs .	0.083
	101057	K03430		Human complement C1q B-chain gene, exon A+1	0.083
	121948	AA429452	Hs.98582	ESTs	0.083
	130822	M80647	Hs.2001	thromboxane A synthase 1 (platelet; cytochrome P450; subfamily V)	0.083
45	122743	AA458674	Hs.99478	EST	0.083
45	114569	AA063316		zm2d1.s1 Stratagene comeal stroma (#937222) Homo sapiens cDNA clone	
	:			IMAGE:512947 3' similar to TR:E198281 E198281 THIOREDOXIN	0.000
				REDUCTASE ;contains Alu repetitive element;, mRNA sequence	0.083
	132270	U70671	Hs.43509	ataxin 2 related protein	0.083 0.083
50	108126	AA052951	Hs.47413	ESTs	0.003
30	102880	X04325	Hs.2679	gap junction protein; beta 1; 32kD (connexin 32; Charcot-Marie-Tooth	0.083
	445005	A A000000	He occoo	neuropathy; X-linked) ESTs	0.083
	115365	AA282089	Hs.88599 Hs.206704	ESTS -	0.083
	114529	AA052980		ESTS; Weakly similar to NEURONAL OLFACTOMEDIN-RELATED	0.000
55	135017	AA249586	Hs.9315	ER LOCALIZED PROTEIN [H.sapiens]	0.083
55	123776	AA610071	Hs.112813	ESTs	0.083
	114454	AA021091	Hs.226208	ESTs	0.083
	101246	L33799	Hs.202097	procollagen C-endopeptidase enhancer	0.083
	107366	U78310	Hs.13501	pescadillo (zebrafish) homolog 1; containing BRCT domain	0.083
60	132779	T89601	Hs.95497	ESTs; Weakly similar to GLUCOSE TRANSPORTER TYPE 5;	
00	132773	103001	110.00401	SMALL INTESTINE [H.sapiens]	0.083
	129709	AA112209	Hs.1209	acyl-Coenzyme A dehydrogenase; long chain	0.083
	115244	AA278767	Hs.914	Human mRNA for SB classII histocompatibility antigen alpha-chain	0.083
	123253	AA490878	Hs.111334	ferritin; light polypeptide	0.083
65	128469	T23724	Hs.258677	EST .	0.083
JJ	132220	AA431847	Hs.42409	ESTs; Highly similar to CGI-146 protein [H.sapiens]	0.083
	111664	R17939	Hs.22344	ESTs	0.083
	102354	U38268		Human cytochrome b pseudogene, partial cds	0.084
	112828	R98774	Hs.194338	ESTs	0.084
				•	•

	110410	H47868	Hs.34024	ESTs	0.084
	102620	U66052		Human clone W2-6 mRNA from chromosome X	0.084
	102550	U58087	Hs.14541	cullin 1	0.084
	108417	AA075716	110.17071	zm89e5.s1 Stratagene ovarian cancer (#937219) H sapiens cDNA clone	
5	100417	MOISTIU		IMAGE:54512 3' similar to gb:X14723 CLUSTERIN PRECURSOR	
J				(HUMAN);, mRNA sequence	0.084
		~~~~	11- 40000		0.084
	113299	T67285	Hs.13089	ESTs	
	117869	N49947	Hs.46990	ESTs	0.084
	113734	T98484	Hs.18377	EST	0.084
10	133325	C00424	Hs.7101	periodontal ligament fibroblast protein	0.084
	123368	AA505022	Hs.124838	ESTs	0.084
	101615	M55153	Hs.8265	transglutaminase 2 (C polypeptide; protein-glutamine	
				-gamma-glutamyttransferase)	0.084
	119352	T65972	Hs.193365	ESTs; Moderately similar to atternatively spliced product	
15	HOOL	1000.2	110.10000	using exon 13A [H.sapiens]	0.084
13	123828	AA620686	Hs.112884	EST	0.084
	103611	Z38133	Hs.113973	myosin; heavy polypeptide 8; skeletał muscle; perinatal	0.084
				ESTs; Weakly similar to ION CHANNEL HOMOLOG RIC	Q.00 V
	131289	AA485697	Hs.25334		0.084
00				PRECURSOR [M.musculus]	0.084
20	128678	T15896	Hs.103535	ESTs	
	130814	AA256695	Hs.19813	ESTs	0.084
	133391	X57579	Hs.727	inhibin; beta A (activin A; activin AB alpha polypeptide)	0.084
	129322	AA437153	Hs.110407	ESTs; Weakly similar to coded for by C. elegans cDNA yk173c12.5 [C.elegans]	0.084
	109284	AA196995	Hs.86092	ESTs	0.084
25	116689	F09222	Hs.66099	ESTs	0.085
	100545	HG2147-HT2217		Mucin 3. Intestinal (Gb:M55405)	0.085
	102634	U66711	Hs.77667	lymphocyte antigen 6 complex; locus E	0.085
	111735	R25389	Hs.23856	ESTs: Weakly similar to FAST kinase [H.sapiens]	0.085
	105181	AA190676	Hs.10974	ESTs; Moderately similar to unknown [R.norvegicus]	0.085
30	122681	AA455350	Hs.99401	EST	0.085
50		AA056121	Hs.158419	ESTs	0.085
	114543			partner of RAC1 (arfaptin 2)	0.085
	133597	AA425908	Hs.75139	•	0.085
	121064	AA398647	Hs.97406	ESTS	0.085
0.5	122231	AA436369	Hs.197728	ESTs; Weakly similar to ZINC FINGER PROTEIN 135 [H.sapiens]	
35	100309	D50550	Hs.95659	lethal giant larvae (Drosophila) homolog 1	0.085
	101727	M73481	Hs.73883	gastrin-releasing peptide receptor	0.085
	131226	AA165400	Hs.24476	ESTs	0.085
	133580	AA095041	Hs.181073	ESTs	0.085
	102792	U87964	Hs.227576	GTP binding protein 1	0.085
40	104976	AA086480	Hs.183669	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.085
	120865	AA350631	Hs.96963	EST	0.085
	106080	AA418046	Hs.35124	ESTs	0.085
	128571	AA416619	Hs.101661	ESTs	0.085
	101838	M92934	Hs.75511	connective tissue growth factor	0.085
45	128514	H84261	Hs.100843	ESTs; Weakly similar to similar to GTP-binding protein [C.elegans]	0.085
15	123099	AA485931	Hs.79	aminoacylase 1	0.085
	134067	Y08200	Hs.78920	Rab geranylgeranyltransferase; alpha subunit	0.085
		H80336	Hs.40124	EST	0.085
	116967			nuclear cap binding protein 1; 80kD	0.085
50	110053	H12586	Hs.89563	ESTs	0.085
JU	114395	AA007313	Hs.110155 Hs.251385	murine retrovirus Integration site 1 homolog	0.085
	107465	W44681		<u> </u>	0.085
	101983	S85655	Hs.75323	prohibitin	0.086
	112544	R70948	Hs.29153	ESTs -	
	111423	R01165	Hs.188507	ESTs	0.086
55	127918	AA806043	Hs.115396	Human germline IgD chain gene; C-region; C-delta-1 domain	0.086
	107300	T40348	Hs.90488	ESTs	0.086
	134947	R51194		yj71a08.r1 Soares breast 2NbHBst Homo sapiens cDNA clone IMAGE:154166	
				5' similar to gb:L11284 DUAL SPECIFICITY MITOGEN-ACTIVATED PROTEIN	
		•		KINASE KINASE 1 (HUMAN);, mRNA sequence.	0.086
60	124579	N68345	Hs.127179	ESTs; Weakly similar to TERATOCARCINOMA-DERIVED GROWTH	
		. 100010		FACTOR 1 [H.sapiens]	0.086
	130471	Z68280	Hs.183706	adducin 1 (alpha)	0.086
			Hs.92955	ESTs	0.086
	116596	D60755		ESTs; Weakly similar to ZFOC1 gene product [H.sapiens]	0.086
65	105069	AA136345	Hs.23617	Human nicotinamide N-methyltransferase gene, exon 1 and 5' flanking region	0.086
UJ	102491	U51010	Un 4.40.400		0.086
	130069	AA055896	Hs.146428	collagen; type V; alpha 1	0.086
	130234	AA280413	Hs.157441	spleen focus forming virus (SFFV) proviral integration oncogene spi1	
•	120540	AA262992	Hs.96417	ESTs	0.086 0.086
	122508	AA449221	Hs.20432	ESTs	0.000

	128054	Al205718	Hs.125416	ESTs	0.086
	133020	AA053248	Hs.185182	ESTs; Highly similar to 40S RIBOSOMAL PROTEIN S10 [H.sapiens]	0.086
	130056	AA017356	Hs.171900	armadillo repeat gene deletes in velocardiofacial syndrome	0.086
	130504	U48865	Hs.158323	CCAAT/enhancer binding protein (C/EBP); epsilon	0.086
5	133978	W73859	Hs.78061	transcription factor 21	0.086
	105265	AA227941	Hs.26088	ESTs	0.086
	133035	T15965	Hs.6333	ESTs	0.086
	100768	HG3636-HT3846		Myosin, Heavy Polypeptide 9, Non-Muscle	0.086
	129338	T56800	Hs.47274	Homo sapiens mRNA; cDNA DKFZp564B176 (from clone DKFZp564B176)	0.086
10	132789	W23761	Hs.56876	ESTs	0.086
10	116099	AA456309	Hs.58831	regulator of Fas-induced apoptosis	0.086
	100721	HG3355-HT3532	100001	Peroxisome Proliferator Activated Receptor (Gb:Z30972)	0.087
			U- 70070		
	112569	R73150	Hs.75270	GTP-binding protein homologous to Saccharomyces cerevisiae SEC4	0.087
1.5	130645	AA020942	Hs.17200	STAM-like protein containing SH3 and ITAM domains 2	0.087
15	100751	HG3527-HT3721	44 07070	Luteinizing Hormone, Beta Subunit	0.087
	134550	M27161	Hs.85258	CD8 antigen; alpha polypeptide (p32)	0.087
	130885	AA338646	Hs.20912	adenomatous polyposis coli like	0.087
	101446	M21302	Hs.56306	small proline-rich protein 2A	0.087
	116287	AA487856	Hs.155829	KIAA0676 protein	0.087
20	134034	X89267	Hs.78601	uroporphyrinogen decarboxylase	0.087
	130860	U66061	Hs.241395	protease; serine; 1 (trypsin 1)	0.087
	109901	H04992	Hs.30499	ESTs	0.087
	107537	Z20777	Hs.9857	ESTs; Weakly similar to peroxisomal short-chain alcohol	
				dehydrogenase [H.saplens]	0.087
25	133232	AA496030	Hs.6845	ESTs	0.087
	108559	AA085161	11010010	zn12c5.s1 Stratagene hNT neuron (#937233) H sapiens cDNA clone	3.33
	100000	70.000101		IMAGE:54728 3' similar to TR:G1151228 G1151228 LPG1P.;, mRNA seq	0.087
	121288	AA401735	Hs.97340	EST	0.087
	108844	AA132916	Hs.177961	Human Chromosome 16 BAC clone CIT987SK-A-388D4	0.087
30		AA406488	Hs.181551	ESTs	0.087
50	129874			ESTS	0.088
	105139	AA164543	Hs.110082		0.088
	124789	R43803	Hs.78110	ESTs; Weakly similar to F17A9.2 [C.elegans]	
	115923	AA441929	Hs.38205	ESTs	0.088
25	123640	AA609292	Hs.112681	ESTs	0.088
35	131607	AA351409	Hs.172740	microtubule-associated protein; RP/EB family; member 3	0.088
	130064	T67053	Hs.181125	immunoglobulin lambda gene cluster	0.088
	108752	AA127070	Hs.71055	ESTs	0.088
	124249	H68077	Hs.108211	ESTs	0.088
40	100109	AJ000480	Hs.143513	phosphoprotein regulated by mitogenic pathways	0.088
40	104642	AA004662	Hs.184245	KIAA0929 protein Msx2 interacting nuclear target (MINT) homolog	0.088
	131752	AA453311	Hs.31566	ESTs	0.088
	114727	AA132545	Hs.190202	ESTs	0.088
	120965	AA398089	Hs.179715	ESTs	880.0
	100396	D84361	Hs.151123	Human mRNA for p52 and p64 isoforms of N-Shc; complete cds	0.088
45	106218	AA428451	Hs.91146	DKFZP586E0820 protein	0.088
	111562	R09567	Hs.187569	ESTs	0.088
	121219	AA400606	Hs.144344	EST	0.088
	101187	L20316	Hs.208	glucagon receptor	0.088
	101513	M28210	Hs.27744	RAB3A; member RAS oncogene family	0.088
50	116454	AA621071	Hs.42034	ESTs; Moderately similar to T-complex protein 10A [H.sapiens]	0.088
-	116171	AA463434	Hs.42658	ESTs	0.089
	117500	N31909	Hs.44278	ESTs	0.089
	119978	W88623	Hs.59190	EST -	0.089
	132005	D58231	Hs.173091	DKFZP434K151 protein	0.089
55			Hs.194704	leucine-rich; glioma inactivated 1	0.089
55	109914	H05529			0.089
	130370	M55265	Hs.155140	casein kinase 2; alpha 1 polypeptide	0.089
	104262	AF009801	Hs.105941	bagpipe homeobox (Drosophila) homolog 1	
	129708	AA417181	Hs.120858	ESTs	0.089
<b>60</b>	106398	AA447545	Hs.18268	adenylate kinase 5	0.089
60	120884	AA365356	Hs.97041	ESTs	0.089
	130404	X72012	Hs.76753	endoglin (Oster-Rendu-Weber syndrome 1)	0.089
	114072	Z38184	Hs.123633	ESTs	0.089
	131470	X54938	Hs.2722	Inositol 1;4;5-trisphosphate 3-kinase A	0.089
	124573	N67935	Hs.194703	adaptor-related protein complex 4; mu 1 subunit	0.089
65	114717	AA131240	Hs.252014	EST	0.089
	133806	M12759	Hs.76325	Human 1g J chain gene	0.09
	130470	AA398552	Hs.15711	KIAA0639 protein	0.09
	133182	Z80787	Hs.240135	H4 histone family; member J	0.09
	116036	AA452572	Hs.43866	ESTs	0.09
		· · - <del>- ·</del> · <del>-</del>			

	132404	AA393903	Hs.4768	ESTs	0.09
	122695	AA456048	Hs.99403	ESTs; Moderately similar to undulin 2 [H.sapiens]	0.09
	125975	AA495891	Hs.152290	ESTs; Highly similar to PACAP type-3/VIP type-2 receptor [H.sapiens]	0.09
_	110783	N23669	Hs.26407	ESTs	0.09
5	129860	AA410343	Hs.129826	tetraspan transmembrane 4 super family	0.09
	120740	AA302650	Hs.96654	EST	0.09
	119564	W38206		Accession not listed in Genbank	0.09
	134474	AA054746	Hs.8379	ESTs	0.09
	119014	N95435	Hs.55144	ESTs	0.09
10	109791	F10669	Hs.13228	DRE-antagonist modulator; calsenilin	0.09
	117605	N35073	Hs.44433	ESTs	0.09
	121589	AA416627	Hs.191598	ESTs	0.09
	104326	D81655	Hs.143067	ESTs	0.09
	129861	N69507	Hs.129849	DKFZP564M182 protein	0.09
15	102795	U88667	Hs.198396	ATP-binding cassette; sub-family A (ABC1); member 4	0.09
	119626	W49499	Hs.184456	ESTs; Wkly smir to II ALU SUBFAMILY SX WARNING ENTRY II [H.sapiens]	0.09
	110516	H56894	Hs.37368	EST	0.09
	105382	AA236853	Hs.111801	Homo sapiens mRNA; cDNA DKFZp564H2023 (from clone DKFZp564H2023)	0.09
	123754	AA609964	Hs.102021	ESTs	0.09
20	108008	AA039430	Hs.61920	ESTs	0.09
	121057	AA398619	Hs.142375	ESTs; Moderately similar to putative envelope protein [H.sapiens]	0.091
	123675	AA609474	Hs.112713	EST	0.091
	135194	C20975	Hs.9613	ESTs; Highly similar to angiopoletin-related protein [H.sapiens]	0.091
	127070	AA641812	Hs.190037	ESTs	0.091
25	134051	S67070	Hs.78846	heat shock 27kD protein 2	0.091
	133382	AA112532	Hs.7247	ESTs	0.091
	103615	Z46967	Hs.115460	calicin	0.091
	118457	N66593	Hs.49230	EST	0.091
	118504	N67334	Hs.50158	ESTs	0.091
30	112915	T10176	Hs.4254	ESTs	0.091
	132088	AA470121	Hs.243960	HLA-B associated transcript-3	0.091
	101504	M27288	Hs.248156	oncostatin M	0.091
	112550	R71391	Hs.29074	ESTs	0.091
	128551	H09058	Hs.237323	N-acetylglucosamine-phosphate mutase; DKFZP434B187 protein	0.091
35	112879	T03541	Hs.115960	ESTs	0.091
	127079	Al364691	Hs.128628	ESTs; Moderately similar to CL3BC [R.norvegicus]	0.091
	101993	U01062	Hs.77515	inositol 1;4;5-triphosphate receptor; type 3	0.091
	113020	T23830	Hs.7303	ESTs; Weakly similar to PROHIBITIN [H.sapiens]	0.091
	120465	AA251505	Hs.130861	ESTs	0.091
40	130152	U32645	Hs.151139	E74-like factor 4 (ets domain transcription factor)	0.091
	104941	AA065169	Hs.17805	ESTs	0.091
	110090	H16076	Hs.6915	ESTs	0.091
	135375	AA480888	Hs.99741	ESTs; Weakly similar to BRAIN PROTEIN H5 [H.sapiens]	0.091
	123799	AA620418	Hs.112861	ESTs	0.092
45	118966	N93438	Hs.76907	ESTs; Highly similar to HSPC002 [H.sapiens]	0.092
	116969	H80633	Hs.143038	ESTs	0.092
	125147	W38150		Accession not listed in Genbank	0.092
	100836	HG4113-HT4383		Olfactory Receptor Or17-201	0.092
	114726	AA132509	Hs.103827	EST	0.092
50	107311	T57738	Hs.174112	ESTs	0.092
	112863	T03148	Hs.4610	EST	0.092
	129290	AA521407	Hs.110095	ESTs	0.092
	103384	X92762	Hs.79021	tafazzin (cardiomyopathy; dilated 3A (X-linked); endocardial	
		•		fibroelastosis 2; Barth syndrome)	0.092
55	112508	R68213	Hs.28847	ESTs	0.092
	111863	R37495	Hs.23578	ESTs	0.092
	131184	AA452705	Hs.23954	ESTs; Weakly similar to KIAA0584 protein [H.sapiens]	0.092
	107420	W26567	Hs.4775	ESTs	0.092
	111768	R27606	Hs.24185	ESTs	0.092
60	112290	R53940	Hs.26016	ESTs .	0.092
	130581	AA481982	Hs.16258	ESTs; Weakly similar to RAS-RELATED PROTEIN RAB-5A [H.sapiens]	0.092
	120744	AA302772	Hs.228649	EST	0.093
	112226	R50761	Hs.25738	ESTs	0.093
	116154	AA460951	Hs.57100	ESTs	0.093
65	102640	U67674	Hs.194783	solute carrier family 10 (sodium/bile acid cotransporter family); member 2	0.093
	129797	X53595	Hs.1252	apolipoprotein H (beta-2-glycoprotein I)	0.093
	102705	U77180	Hs.50002	small Inducible cytokine subfamily A (Cys-Cys); member 19	0.093
	132408	AA035547	Hs.47822	KIAA0380 gene product; RhoA-specific guanine nucleotide exchange factor	0.093
	108441	AA079079		zm97c9.s1 Stratagene colon HT29 (#937221) Homo sapiens cDNA clone	

				IMAGE:545872 3' similar to contains element MER22 MER22 repetitive	
				element ;, mRNA sequence	0.093
	108145	AA054133	Hs.63085	ESTs	0.093
	106466	AA449990	Hs.76057	lysophospholipase II	0.093
5	101697	M64358		Human rhom-3 gene, exon	0.093
	121294	AA401958	Hs.240170	ESTs; Moderately similar to alternatively spliced product using	
				exon 13A [H.sapiens]	0.093
	117824	N49065	Hs.125201	ESTs; Weakly similar to B7 [M.musculus]	0.093
10	115771	AA422049	Hs.40780	ESTs .	0.093
10	102303	U33053	Hs.2499	protein kinase C-like 1	0.093 0.093
	131405	U79255	Hs.26468	amyloid beta (A4) precursor protein-binding; family A; member 2 (X11-like)	0.093
	112909	T10069	Hs.101094	ESTs ESTs	0.093
•	124173	H41281	Hs.107619	ESTs	0.093
15	112488 130554	R66896 X59303	Hs.28788 Hs.159637	valyHRNA synthetase 2	0.093
13	106413	AA447964	Hs.6311	ESTs	0.093
	111711	R22891	Hs.7093	ESTs	0.094
	117595	N34933	Hs.44664	EST	0.094
	113813	W45174	Hs.31382	ESTs	0.094
20	107769	AA018449	Hs.125220	Homo sapiens DNA from chromosome 19-cosmids R30102:R29350:R27740	
	1577.55			containing MEF2B; genomic sequence	0.094
	114966	AA250743	Hs.92198	ESTs; Highly similar to calcium-regulated heat stable protein	
				CRHSP-24 [H.sapiens]	0.094
	130297	H94949	Hs.171955	trophinin-assisting protein (tastin)	0.094
25	109589	F02429	Hs.6581	ESTs	0.094
	112592	R77631	Hs.29126	ESTs	0.094
	102314	U34038	Hs.154299	coagulation factor II (thrombin) receptor-like 1	0.094
	116128	AA459915	Hs.112193	mutS (E. coli) homolog 5	0.094
20	106809	AA479704	Hs.220324	Human DNA sequence from clone 283E3 on chromosome 1p36.21-36.33.	
30				Contains the alternatively spliced gene for Matrix Metalloproteinase in the Female Reproductive tract MIFR1; -2; MMP21/22A; -B and -C; a novel gene;	
				the alternatively spliced CDC2L2 gene for	0.094
	130607	AA043894	Hs.16603	ESTs	0.094
	120592	AA281929	Hs.143974	ESTs	0.094
35	117230	N20535	Hs.43265	melastatin 1	0.094
33	105948	AA404597	Hs.7133	ESTs	0.094
	101333	L47738	Hs.80313	p53 inducible protein	0.094
	101909	S69265		Homo sapiens mRNA for PLE21 protein; complete cds	0.094
	106959	AA497031	Hs.8657	ESTs: Highly similar to CTG7a [H.saplens]	0.094
40	127034	AA352389		ESTs; Wkly smir to glucose-6-phosphatase catalytic subunit [R.norvegicus]	0.095
	134430	H52105	Hs.8309	KIAA0747 protein	0.095
	120342	AA207105	Hs.45068	Homo sapiens mRNA; cDNA DKFZp4341143 (from clone DKFZp4341143)	0.095
	104450	L77564	Hs.103978	serine/threonine kinase 22B (spermiogenesis associated)	0.095
40	130902	AA424530	Hs.21061	ESTs	0.095
45	102708	U77594	Hs.37682	retinoic acid receptor responder (tazarotene induced) 2	0.095 0.095
	107373	U85773	Hs.154695	phosphomannomutase 2 ESTs; Weakly similar to RNA helicase HDB/DICE1 [H.saplens]	0.095
	123569	AA608952 U73379	Hs.195292 Hs.93002	ubiquitin carrier protein E2-C	0.095
	102687 128888	AA034951	Hs.106893	ESTs	0.095
50	100283	D43642	Hs.2430	transcription factor-like 1	0.095
50	100203	U79303	Hs.82482	protein predicted by clone 23882	0.095
*	107798	AA019346	Hs.60918	EST	0.095
	123565	AA608907	Hs.112614	EST -	0.095
	116010	AA449450	Hs.56421	ESTs; Weakly similar to Similarity to H.influenza ribonuclease PH [C.elegans]	0.095
55	117155	H97536	Hs.42391	EST	0.095
	133094	AA115572	Hs.64746	chloride intracellular channel 3	0.095
	113174	T54659	Hs.9779	ESTs	0.095
	102016	U03270	Hs.122511	centrin; EF-hand protein; 1	0.095
	130126	AB002318	Hs.150443	KIAA0320 protein	0.095
60	134813	X14767	Hs.89768	gamma-aminobutyric acid (GABA) A receptor, beta 1	0.095
	132055	N69440	Hs.38132	ESTs	0.095
	122229	AA436198	Hs.103902	ESTs	0.096 0.096
	127574	AA907314	Hs.188905	ESTs -	0.096
65	134432	AA053022	Hs.8312	ESTs ESTs	0.096
UJ	128052 101637	AA878398 M58285	Hs.190491	hematopoletic protein 1	0.096
	103386	M30205 X92972	Hs.132834 Hs.80324	protein phosphatase 6; catalytic subunit	0.096
	133079	AA477561	Hs.6449	ESTs	0.096
	120328	AA196979	Hs.104129	ESTs; Weakly similar to protease [H.sapiens]	0.096
				And the second of the second o	

		•			
	107640	AA009615	Hs.257808	ESTs	0.096
	123389	AA521176	Hs.221231	ESTs	0.096
	103222	· X74795	Hs.77171	minichromosome maintenance deficient (S. cerevisiae) 5 (cell division cycle 46)	0.096
	111704	R22450	Hs.23396	ESTs; Highly similar to ZINC FINGER PROTEIN 140 [H.sapiens]	0.096
5	126856	AA306523		EST177475 Jurkat T-cells VI Homo sapiens cDNA 5' end, mRNA sequence.	0.733
	127071	AA250806		ESTs	0.096
	114550	AA056755	Hs.151714	ESTs	0.096
	125955	Al356943	Hs.143761	ESTs .	0.096
	134363	M37033	Hs.82212	CD53 antigen	0.096
10	128550	W76492	Hs.170142	ESTs	0.096
	122598	AA453465	Hs.99329	ESTs	0.096
	118898	N90703	Hs.4236	KIAA0478 gene product	0.096
	117661	N39092	Hs.44940	ESTs	0.096
	120996	AA398281	Hs.143684	ESTs	0.096
15	123388	AA521172	Hs.134417	ESTs	0.096
	106700	AA463929	Hs.28701	ESTs	0.096
	112962	T16814	Hs.6828	ESTs	0.096
	121262	AA401372	Hs.97723	ESTs	0.096
••	134551	R44839	Hs.8526	i-beta-1;3-N-acetylglucosaminyltransferase	0.096
20	112060	R43754	Hs.21164	ESTs	0.096
	134678	AA039935	Hs.182595	dynein; axonemal; light polypeptide 4	0.096
	100855	HG4234-HT4504		Methylenetetrahydrofolate Reductase	0.097
	132414	N91193	Hs.48145	ESIS	0.097
05	112900	T08758	Hs.3813	ESTs	0.097
25	115989	AA447777	Hs.93135	ESTs	0.097
	103561	Z21488	Hs.143434	contactin 1 ESTs; Weakly similar to p160 myb-binding protein [M.musculus]	0.097 0.097
	131087 120293	AA009738 AA190859	Hs.22824 Hs.191428	ESTs. Weakly surman to proormyb-binding protein [windscales]	0.097
	111830	R36081	Hs.25085	EST	0.097
30	113654	T95770	Hs.17666	ESTs	0.097
50	132675	AA179338	Hs.5476	serine proteinase inhibitor	0.097
	120182	Z40125	Hs.91968	ESTs	0.097
	132879	U16282	Hs.5881	ELL gene (11-19 lysine-rich leukemia gene)	0.097
	134211	AA056681	Hs.80021	ESTs; Weakly similar to 62D9.p [D.melanogaster]	0.097
35	115448	AA284845	Hs.165051	ESTs	0.097
	118118	N56901	Hs.47995	ESTs	0.097
	107598	AA004528	Hs.169444	ESTs	0.097
	128933	H01824	Hs.760	GATA-binding protein 2	0.097
40	114892	AA235988	Hs.86024	ESTs	0.097
40	101922	S75168	Hs.274	megakaryocyte-associated tyrosine kinase	0.097
	105444	AA252374	Hs.19333	ESTs; Weakly similar to ATP(GTP)-binding protein [H.sapiens]	0.097 0.097
	128155	AA926843	Hs.143302	ESTs ESTs	0.097
	116276	AA485870	Hs.44914 Hs.21860	ESTs	0.097
45	111964 135100	R41227 AA398926	Hs.251108	Homo sapiens mRNA; chromosome 1 specific transcript KIAA0493	0.097
43	124872	R69251	Hs.101506	EST	0.097
	103084	X59932	Hs.77793	c-src tyrosine kinase	0.097
	124138	H23199	Hs.107010	ESTs ESTs	0.098
	130048	R31745	Hs.211612	SEC24 (S. cerevisiae) related gene family; member A	0.098
50	100208	D26129	Hs.78224	ribonuclease; RNase A family; 1 (pancreatic)	0.098
	123537	AA608775	Hs.112589	ESTs	0.098
	118999	N95019	Hs.55092	ESTs .	0.098
	119847	W80384	Hs.9853	ESTs -	0.098
	112819	R98618	Hs.35984	ESTs	0.098
55	131080	J05008	Hs.2271	endothelin 1	0.098
	127353	AA190853	Hs.155360	ESTs	0.098
	132068	X66365	Hs.38481	cyclin-dependent kinase 6	0.098
	105744	AA293436	Hs.12909	ESTs	0.098
<b>60</b>	133680	M92357	Hs.101382	tumor necrosis factor; alpha-induced protein 2	0.098
60	122899	AA469960	Hs.178420	ESTs; Highly similar to WASP Interacting protein [H.sapiens]	0.098
	128700	U59286	Hs.103982	small inducible cytokine subfamily B (Cys-X-Cys); member 11	0.098
	104393	H46486	Hs.226499	nesca protein	0.098
	123320	AA496792	Hs.139572	EST	0.098
65	129169	N31641	Hs.109058	ribosomal protein S6 kinase; 90kD; polypeptide 5	0.098 0.098
UJ	135093	U51333	Hs.159237	hexokinase 3 (white cell)	0.098
	113269	T65159	Hs.85044 Hs.194136	ESTs ESTs; Moderately similar to zinc finger protein RIN ZF [R.norvegicus]	0.098
	124283 114376	H86783 GMCSF	H2:104190	Accession not listed in Genbank	0.099
	100881	HG4458-HT4727		Immunoglobulin Heavy Chain, Vdjc Regions (Gb:L23563)	0.099
	100001	((QTTOV-11)T/6/		manageonami ricert ammit rale influence (manageon)	000

	116572	D45654	Hs.65582	DKFZP586C1324 protein	0.099
	123956	AA621747	Hs.112847	EST	0.099
	100818	HG4018-HT4288		Opioid-Binding Cell Adhesion Molecule	0.099
	132754	W47419	Hs.56007	Human DNA from chromosome 19-specific cosmid F25965; genomic sequence	0.099
5	112741	R93080	Hs.35035	ESTs	0.099
_	112748	R93299	Hs.166492	ESTs .	0.099
•	130858	S57235	Hs.246381	CD68 antigen	0.099
	124870	R69233	Hs.101504	ESTs	0.099
	125304	Z39833	Hs.124940	GTP-binding protein	0.099
10	121297	AA401995	Hs.97860	ESTs	0.099
	128602	AA046103	Hs.102367	ESTs	0.099
	124062	H00440	Hs.144524	ESTs; Weakly similar to signal transducer and activator of	
				transcription 2 [M.musculus]	0.099
	100547	HG2149-HT2219		Mucin (Gb:M57417)	0.099
15	105652	AA282505	Hs.19015	ESTs	0.099
	133390	AA459945	Hs.72660	KIAA0585 protein	0.099
	133503	M33195	Hs.743	Fc fragment of IgE; high affinity I; receptor for; gamma polypeptide	0.099
	109461	AA232667	Hs.58210	ESTs	0.099
	102068	U09117	Hs.80776	phospholipase C; delta 1	0.099
20	113464	T86931	Hs.16295	ESTs	0.099
	104240	AB002368	Hs.70500	KIAA0370 protein	0.099
	121113	AA399109	Hs.161813	ESTs	0.1
	122896	AA469952	Hs.97899	ESTs; Weakly similar to dal2; len:343; CAI: 0.17; ALC_YEAST P25335	
				ALLANTOICASE [S.cerevisiae]	0.1
25	102405	U43148	Hs.159526	patched (Drosophila) homolog	0.1
	103599	Z33905	Hs.81218	receptor-associated protein of the synapse; 43kD	0.1
	121079	AA398719	Hs.14169	EST's; Weakly similar to CREB-binding protein [H.sapiens]	0.1
	115820	AA427487	Hs.39619	ESTs; Weakly similar to RETICULOCALBIN 1 PRECURSOR [H.sapiens]	0.781
	125106	T95766	Hs.189760	ESTs	0.1
30	131373	N68116	Hs.26146	Down syndrome critical region gene 3	0.1
	120224	Z41239	Hs.106960	ESTs	0.1
	133090	AA448228	Hs.6468	ESTs	0.1
	132300	AA133244	Hs.44234	ESTs	0.1
	113129	T49384	Hs.8988	EST	0.1
35	110638	H73197	Hs.17241	ESTs	0.1
	131364	R53255	Hs.26010	ESTs	0.1
	105370	AA236476	Hs.22791	ESTs; Weakly similar to transmembrane protein with EGF-like and two	
				follistatin-like domains 1 [H.saplens]	0.238

5

TABLE 11A shows the accession numbers for those primekeys lacking unigeneID's for Table 11. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: CAT nur Accessi		Unique Eos probeset identifier number Gene duster number Genbank accession numbers
Pkey	CAT number	Accession
100610	19864_1	AW161357 Al879062 Al928938 AW161097 AW161167 BE314465 AA351715 F07096 AA179034 F08510 F00653 Al936671 AA476718 AW772454 Al807703 R44253 AA976667 Al985186 Al650254 H38942 R84829 AA018724 AA001000 H85934 AA019126 H85609 AA017000 AA339355 AW950556 D51397 AA213981 BE548002 Al056359 AA001560 AW952113 AA317769 Al857477 Al857475 AW249771 AW162661 H38943 AA018628 R85885 Al984613 Al934765 Al796172 AW157488 Al929191 R85523 D51221 D53851 H85610 Al749674 F21582 AA323145 AA019127 AA687444 T06745 Al699293 H29532 AA214029 AA223656 NM_016834 X14474 R19697 H09695 R17455 R13812 R19056 Al681231 Al590200 R37671 AA861828
		Al990023 Al935669 AW005821 AA324581 H17335 R37659 R42802 R46242 R60936 R59731 H28993 AA479907 R44570 Al890696 AA308884 AA507078 R41274 Al365507 T16348 Al560453 F03259 F04722 T16312 AA016081 AW073061 BE314824 W28930 R44098 R51045
100674	21517_2	AW403342 AW248986 BE561709 AA357312 BE311834 BE389496 BE294887 AW732696 BE047868 AI702383 BE019155 AI702367 BE408966 BE280458 BE313759 BE513492 BE535404 BE280258 AC005263 NM_007165 L21990 AW732711 AI564920 AW249094 BE265365 AW607186 AW607346 BE005217 H27211 U46230 BE260066 BE207043 BE546782
•		AW248659
	41469_9	AA085228 AA085161
	19818_1	L40904 NM_005037 X90563 AB005526 H21596 AA088517
	41861_1	X06096 X05826
100750	15759_1	BE157260 BE157265 R48118 H43827 Z17877 AW379070 AW291778 M20605 J03253 M14206 V00568 Al860465 AW296022 M13930 AL047400 J00120 BE018476 AW675223 T26980 F06694 R22709 R24720 H22753 Al903100 Al903094 AW937823 X00364 D10493 K01904 K01906 K00535 L00058 AA410662 AW384760 AA304930 Al680985 X00198 H58025 AW998901 AV653447 N31654 AW610357 AW610369 AW862480 BE223010 AW384172 AW384219 AW384171 AW384218 AA298522 BE140421 AW945162 AW751711 AA514409 AW747912 Al214214 W87741 AA972406 AA554513 BE302087 Al249030
		AA477850 AV653129 Al281360 Al274110 W87861 AA641366 X66258 Al051600 AA877139 AA527483 AA857219 Al250782 AA625531 AA807892 Al278811 Al224033 H24033 AA593396 AW129709 R45453 N22772 AA235530 T29737 Al016409 Al688907 AA568370 AA722760 Al539329 AA550843 AW674698 Al538452 Al538453 Al337957 AA477744 AA464600 Al140319 AW949294 Al339781 Al828736 AA923634 AA344094 Al278350 AA975567 AA908416 AA857170 AW023520
100751	24700_1	R43413 R48004 F02958 Al989439 R11207 AA737307 D10493 AW950652 Al093842 Al474024 AA703369 R11264 M13930 M13955 Al206390 H87574 R23494 Al186215 N30036 Al741512 J00117 NM_000737 Al453626 AA330974 Al188729 Al188604 Al188964 N30276 Al188947 Al188830 Al188303 Al200457 Al29166 Al182459 Al18280 Al18275 Al188639 Al186353 Al186366 Al184224 Al130720 Al188454 Al18839 Al186367 Al209155
		A1190013 Al206355 Al188721 A1189429 Al189364 Al186330 Al431595 Al189595 Al188781 Al148647 Al200022 Al221552 Al220923 Al188728 AA233034 Al189807 Al189641 Al219044 Al148774 Al200658 W71989 Al207360 Al188824 Al200559 Al200270 A6644163 Al199943 Al151301 Al189555 Al262724 Al148590 Al148595 Al126906 Al149163 K03183 K03183 K03189 Al189842 Al221014 N30608 Al186465 Al220865 Al188498 Al138226 Al189968 Al221019 Al138197 Al149426 Al148904 Al186218 Al188348 Al160579 Al198460 Al149039 Al160936 Al219055 Al184784 Al221580 Al161082 Al160814 Al123896 Al417614 Al126101 Al188872 Al149571 Al168533 Al149072 Al149467 Al331286 N30684 Al160705 Al160692 Al149559
		Al273580 Al189442 Al138448 Al149591 N27302 AA400910 Al138431 Al138435 Al128407 N30216 Al128296 Al219589 Al188492 Al149447 Al168482 H95374 Al219009 N31616 Al276216 N32233 Al291937 N30741 Al188689 N27111 R23214 Al221605 Al184348 Al200375 H94451 N26397 Al871881 AA232905 N30833 Al220780 H94446 N30822 H87464 R68815 N30290 Al128424 H12587 T47334 H87631 H87156 Al219133 Al868741 AA330859 H86993 AA330413 H93656 N30817
		T90191 H93668 Al200054 H95207 T47316 H95381 T49170 R00880 T49171 N27381 H94107 R63352 T85053 AW451899 H95142 N30313 H94015 H86987 T28278 N29701 C18834 AA331267 AA330939 Al654493 N27073 N29831 R68113 N30758 R26086 N32108 H95135 AA330414 AA330978 Al219422 Al189453 Al199951 X00264 NM_000894 AA371909 AA063496 T29543 AA371971 AA372026 AA371978 AA371346 Al051683 Al186418 Al220659 Al189068 Al219266 Al186552 Al186715 Al149156
	1334_7 18179_3	AW794626 M27126 M27014 J05581 M61170 T27692 M34088 M34089 AW860335 AW579047 AW610437 AW610386 AW610422 AW610473 AW579078 AW604897 AW860163 AW579067 AW862410 Al816584 AW177757 AW602769 Al909780 AW860331 Al909787 Al909811

5		AI909813 AW845083 AI905920 AW387919 BE140766 AI909279 AW369405 AA429321 AA429320 AA367451 AA847972 AW001137 AI567905 T84561 AI631295 AA151351 H02932 AI884519 AA367457 AW369421 AI678846 AW391803 AI610869 AW192838 AI922289 AI952140 AI910233 AI479474 AW001395 AA488073 AI985760 AW130017 AI558369 AA627845 AW081805 AA158865 AI624443 AA344985 AA569793 R72486 AI589329 AI903204 AI269893 AA641284 AI279932 AA149270 AI697120 AA729146 AI589353 AA480067 AI923310 AA530908 AI275395 AA425062 AA580280 AA889527 AA158866
		AW131341 AA573028 AA877326 T29335 AW951288 H04235 AA099243 AA994659 Al659618 AA887919 Al299297 AW001116 AW263844 Al270578 AA970828 AW572126 AA775299 AW369449 AW369398 AW369452 Al933677 Al870710 Al092911 Al582464 Al497674 AA937026 AA885865 L38597 AA908325 AW369432 AW026623 AA627778 Al264942 AA932409 Al187328 Al672970 Al886098 AW440471 AW138860 Al866858 Al802528 Al926172 AW243914 Al933690
10	100800 24735	AA996114 AA536189 AW009937 Al918060 Al270379 Al973169 AW175638 AW369413  1 NM_006227 L26232 R50649 AU077024 AL008726 AA411079 R35151 BE278153 BE278139 Al459777 R88036 Z43210  F07326 AF052157 R17844 BE615476 T82160 R71985 H21963 AA299158 AW368246 R48123 R50628 R70441 H27245  H72015 R72345 R39392 Al909738 BE612778 BE613234 D52116 D52136 D52132 D52067 D51922 D51995 D51905 N34249  N25459 AA464436 AA297350 AA297466 R81736 H02737 AW582505 R27523 Al834241 AW130867 W72668 W76426
15		AA358363 R50262 AW473860 H52335 H43953 H21964 T39505 AI887517 AW156925 AW839850 H02628 AW007705 AI561008 F22392 R71279 AA995433 R50725 W24462 R71931 AA464437 AW591731 R25667 R52695 R50810 AI560805 AI089266 H68386 H41353 H28590 AW001860 AI141623 AA250773 AI284778 AW511412 AW083975 AA130377 AW026047 R50551 R81494 AI357668 AI078272 F32666 F36981 AW304865 H43906 AA931068 R48010 AI540217 AI017339 AI291812
20		AI741954 AA458490 AI088378 AA298764 H61168 AA358362 AA298725 AA298515 AA464148 AA443538 R43046 AA084314 T40641 T47608 T48940 AI082477 AW470145 N92284 AI758958 AA298512 AA284586 AI597777 AA480277 AI932559 AI869081 AA476615 AA503651 AI656024 AW168522 AI682051 AI689106 AI274592 AI520917 BE258916 BE615861 BE280282 R53386 BE278255 BE278398 T47607 AA477662 H68385 100817 19648_1 L34355 L46810 NIM_000023 U08895 AA424260 AI097272 AAĀ24162 N79764 F19290 F25278 AI479385
		AA460662 AA432059 AW016935 F25770 F32549 F36677 F33016 F35992 F36010 AW172497 AA835076 F28727 AA211643
25	100818 19604	
	100881 458_1	AA296886 AW967001 T28889 R13451 T77331 AL119196 AL118830 H08459 AW892812 AW905838 H17585 R52878 BE561958 BE561728 BE397612 BE514391 BE269037 BE514207 BE562381 BE514256 BE514403 BE514250 BE397832 BE269598 BE559865 BE396881 BE560031 BE514199 BE560037 BE560454
30	100885 12707	
	100898 8542_	BE267438 NM_005850 L35013 BE540833 BE390902 BE391494 BE277459 BE385592 BE390612 BE384263 BE387779 BE388647 BE537373 BE547158 AW409585 AW374033 AW602185 AA355725 AW577548 AW935015 AW935160 W40232
35		AW938647 AW374332 AA434040 BE293488 AL138361 BE560260 AI745075 AA317980 AW949382 Al834311 Al653582 Al831042 Al361878 AA618606 AA729052 Al424969 AA199715 AW769374 Al828422 AW044307 Al862816 Al203583
		AW084461 AW514655 AA831883 AA290672 AA831286 AA578510 AW089965 AW150746 AA292743 H22232 AI469275 AW439312 AA292744 AW471443 AI473989 AA593336 AA464070 AI678937 AW069451 AA970763 AA610480 AA593328 AA464009 AA768985 AI298928 AA436600 AA464718 AA699361 D61482 D55935 AI369591 AA470695 AI809135 AA640627 AI568446 R51502 W45467 AI655316 AA463934 AW168609 AW518663 BE045525 Z41251 AI868091 AA908160 AI026697
40		AI886259 AI612932 AA215437 AI956014 BE541087 BE255652 BE265878 BE394102 W27502
	102459 3556_	
	126126 16300 102620 16821	
	102673 24986	
45	102675 5145_4	
	102753 2226_1 102799 34624	
	127034 51148	•
50	103522 21640	
		AA639610 Al769806 Al769746 AW014326 Al288611 -
55	127071 188097 126456 291969	
33	119388 17622	
	126856 20669	Alo84125 Alo83773 Al479687 Al939609 Al968662 AF129507 NM_013282 AW971840 AW298508 AA744240 AA811217 AA827671 AA811055 AA806567 AA488977 AA908902 Al637637 AA927056 Al870139 AW340492 AA488755 AA129794
60	400000 0045**	AA306523 AA354253 BE256277 AC053467 AW962084
OU	103996 22454	5_1 AA321355 AW964592 R23284 H73883 R23382 N47914 C01377 H04668 AW606248 R34447 AA847136 Al684489 Al523112 AW044269 Al379138 N29366 AA761543 N79248 AA960845 AA768316 Al147926 Al718599 Al880620 R67467 Al216016 Al738663 H04648
65	113213 23798	1 NM_001395 Y08302 Al434619 Al470328 Al261807 AW024965 Al806537 Al830549 Al640337 Al219065 AW271700 AW028488 Al133339 Al859205 R51175 U87167 BE379324 BE392008 AA340819 AA343110 T57275 D59164 AW299312 Al434422 Al936390 AW024975 R40262
		AW269126 R09430 T56590 Al367247 Al253132 BE464248 T58658 AW207785 T58607
	134947 844579 129311 16078	
	120311 100/8	ACCOCCE BESSOCIO 4 VISCOS AVIZ 1 1659 AVAT 1456 AIST 1551 AA222990 ACCEST 11610-16 DECCOC AT 16405 ACT 1659-36 AI721023 AI718944 AA146955 F18215 AA903890 AI700355 AI075430 AA411584 AA878210 AI476760 AW945637 AA630596

,			AAA31522 AA301989 AI909058 D12149 N41960 BE222214 AA609922 AA828176 AA393359 AA398693 AW024956	
	11//07	9724_2	BE467805 AW298623 AW264085 Al024454 Al024719 Al431927 T55087 Al611014 T54920 AA131253 Al436344 AA017176 Al359979 AA047836 AA017063 AA016303 AA001545	
		110077_1	AA063315 AA063316	
5		156215	AF015910	
	100515	342_1	AA305746 D90187 T63943 AW951154 T29182 AI734941 D13264 Al299239 Z18812 AW299859 W24476 AA933064 AA489759	
	100531	46038_1	AW888554 AW607282 AA319986 M28590	
4.0		22955_11	M55405 AW752552	
10	100574	17320_2	aa326895 M10036 NM_000365 N84665 H69414 N84657 aa380453 aa329743 aa357367 aa188770 aa376532 aa3	
			AA158953 AA083176 BE537313 AA181433 D53373 R57376 AA206698 R14807 H18899 H11191 H93892 R25593 T6 N93285 AA083081 AA831789 H13137 AA497014 AA079330 AA182861 H13138 W47161 R62913 AA687089 AA2111	
			AA429237 AL035923 AA100070 AW392898 Al566433 AA866006 AA214002 AW392865 N79454 AA197181 Al68037	
			AA176501 AA737967 Al089225 F34874 AW571437 Al620620 AA573489 AA423816 AA164917 AA458455 T47072 Al	569087
15			Al261656 AA730919 Al633441 AW195182 Al351622 AW243465 Al872649 Al359227 AA987941 Al693770 T47073 Al	
			AW510580 Al635626 AW627601 AA864326 AA953578 Al341418 BE222853 Al241963 Al094663 AA928380 AA49331	
			AW043762 AI377783 AW958987 BE619760 AA385240 BE277975 BE280095 AW631443 AA581048 BE618715 BE29 C14874 BE559858 BE378455 BE618290 BE544585 AI525575 BE548897 BE267110 AA804738 BE269821 AA91813:	
•			BE277647 AA599947 BE280735 BE390239 N74150 T12504 AI208197 AW955527 AA113897 N40081 H73835 H7035	
20			A1434041 W22950 A1192661 BE264461 W26486 AA626424 AA196694 T69209 AA857976 A1540287 AA410599 AA86	
			AW950564 AA013320 T49283 Al541438 AW804703 AA335534 AA335659 BE562269 BE618802 BE277850 BE54641	
			BE280994 AA204813 BE561694 BE543524 BE253647 AW001452 W19116 BE542508 AA205894 BE254875 BE2700	
	100627	tiar_HT2798	AI525906 BE251792 AA975700 BE272138 AW607671 N87686 M10036 BE515060 BE298607 AI745178 U47924 H03 725424	193
25		tigr_HT3768	M88357	
		tigr_HT3846	L29141 M69180 M81105	
		tigr_HT4265	L33999	
		tigr_HT4383 tigr_HT4504	U04688 U09806	
30			U12139 .	
		genbank_T91518		
		tigr_HT688	X65561	
		_entrez_W38150		
35		entrez_U38268 entrez_U51010		
55		entrez_U67092		
		genbank_N74496		
		entrez_K01160		
40		entrez_K03430 genbank_AA0704		
40		483241_1	AA070853 AA075749 AA075716	
		genbank_AA0790		
		genbank_AA1289		
45		entrez_M60299 entrez_M64358		
45		genbank_N27645		
		entrez_M85220		
			S69265	
50			Y10141	
30		entrez_Z26256 genbank_T54095	726256 154095	
		genbank_R48295		
	119564	NOT_FOUND_en	ez_W38206 W38206	
<i></i>		NOT_FOUND_en		
55		tigr_HT1067	M22406	
		tigr_HT2219 tigr_HT2324	M57417 Z11585	
		-8	<del></del>	

**TABLE 12:** shows genes, including expression sequence tags, that are down-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu01 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

10	Pkey: ExAccn: UnigeneID: Unigene Title: R1:	Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Background subtracted normal prostate : prostate tumor tissu
----	---------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

15	Pkey	ExAcon	UnigenelD	Unigene Title	R1
	100522	HG1763-HT17	<b>'80</b>	Protactin-Induced Protein	17.4
		M81650	Hs.1968	semenogelin I	16.785
		N53943	Hs.13743	ESTs	13.225
20		Z39898	Hs.21948	ESTs	12.7
		R46025	Hs.7413	ESTs	8.735
		M20642		Human alkali myosin light chain 3 mRNA; complete cds	8.175
		AA361094	Hs.221128		8.15
25		AA149204		ESTs; Highly similar to growth arrest inducible gene product [H.sapiens]	7.535
25		AA174173	Hs.12622	ESTs	7.212 7.175
		AA251741	Hs.25882	DKFZP586M1824 protein	6.701
		H29231 AA761378	Hs.27384 Hs.192013	ESTs	6.642
		N35229	Hs.7037	pallid (mouse) homolog; pallidin	6.411
30		N35229 U48807	Hs.2359	dual specificity phosphatase 4	6.395
50		W90385	Hs.15082	ESTs	6.15
		L33881	Hs.1904	protein kinase C: tota	6
		AA491209		ESTs; Weakly similar to reverse transcriptase [M.musculus]	6
		T49655		ESTs; Modily smir to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	5.95
35		M61906	Hs.6241	phosphoinositide-3-kinase; regulatory subunit; polypeptide 1 (p85 alpha)	5.925
		AA399218	Hs.92423	ESTs	5.7
	120590	AA281780	Hs.111441	ESTs; Wealdy similar to similar to Kruppel-like zinc finger protein [C.elegans]	5.7
	109748	F10192	Hs.248323	Tubulin; alpha; brain-specific	5.625
	134727	X80507	Hs.8939	yes-associated protein 65 kDa	5.5
40	129171	AA234048	Hs.7753	calumenin	5.486
	120390	AA233122	Hs.111460	ESTs; Highly similar to multifunctional calcium/calmodulin-dependent protein kinase II delta2 isoform [H.sapiens]	5.4
	121600	R68657	Hs.90421	ESTs; Modly smir to !! ALU SUBFAMILY SX WARNING ENTRY !! [H.sapiens]	5.279
		N71503	Hs.43087	ESTs; Weakly similar to dysferlin [H.sapiens]	5.266
45		U14528	Hs.29981	solute carrier family 26 (sulfate transporter); member 2	5.151
		AA196635	Hs.86081	ESTs	5.134
		F09739		Homo sapiens mRNA full length insert cDNA done EUROIMAGE 21920	5.075
		AA045709	Hs.40545	ESTs	5.075
	135006	M21665	Hs.929	myosin; heavy polypeptide 7; cardiac muscle; beta	5.055
50	119182	R80664	Hs.77067	ESTs	5.033
	129806	R62444	Hs.173373	KIAA0931 protein	4.675
		M20543	Hs.1288	actin; alpha 1; skeletal muscle	4.626
		R93943		yt72c12.r1 Soares retina N2b4HR Homo sapiens cDNA clone IMAGE:275735 5',	
سر سر		W87544	Hs.221184		4.559
55		J03460	Hs.99949	prolactin-induced protein	4.451
		R56068	Hs.4268	ESTs	4.45
		R16833	Hs.53106		4.45
		R40873		KIAA0432 gene product	4.301
60		AA448286	Hs.98074	ESTs; Highly similar to atrophin-1 interacting protein 4 [H.sapiens]	4.2
60		AA447006	11-44400	ESTs; Moderately similar to II ALU SUBFAMILY SQ WARNING	4.175 4.1
		N32787	Hs.11123		
		Z84483	Hs.26409	Human DNA sequence from PAC 46H23, BRCA2 gene region chromosome 13q1:	4.05
		Z40186 AA262491	Hs.186572		4.048
65		AA609749		ESTs; Highly similar to unknown protein [R.noryegicus]	4.040
<del>5</del> 5		H97993		ESTs; Weakly similar to KIAA0512 protein [H.sapiens]	4.028
	159 190	1101000	13.172700	mental annual annual to tritatorie biomit (1990) mist	7.020

	120217	Z41078	Hs.66035	ESTs	4.028
		AA084524		zn19d8.s1 Stratagene neuroepithelium NT2RAMI 937234 Homo sapiens cDNA	4.023
		AA400030		ESTs; Weakly similar to II ALU CLASS B WARNING ENTRY II [H.sapiens]	3.925
_	120418	AA236010	Hs.26613	Homo sapiens mRNA; cDNA DKFZp586F1323 (from cione DKFZp586F1323)	3.91
5		N74897	Hs.5683	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 15	3.889
		T80174		ESTs; Moderately similar to similar to NEDD-4 [H.sapiens]	3.85
		AA099585	Hs.41175	ESTS	3.833 3.818
		X61100 H06773	Hs.8248 Hs.93850	NADH dehydrogenase (ubiquinone) Fe-S protein 1 (75kD) (NADH-coenzyme protein kinase; AMP-activated; gamma 2 non-catalytic subunit	3.792
10		AA258144	Hs.221576		3.779
10		R37460	Hs.25231		3.768
		W86600	Hs.9842	ESTs	3.75
	131649	AA481254	Hs.30120		3.708
		R94659	Hs.12420		3.707
15		H20568		phospholipase A2-activating protein	3.7
		R87160	Hs.33665		3.7 3.674
		AA375791	Hs.131894	DKFZP434G162 protein	3.653
		W92797 AA252079	Hs.63931	dachshund (Drosophila) homolog	3.625
20		AA242751		KIAA0903 protein	3.62
		AA487228	Hs.19479	ESTs	3.614
		AA024664		NADH dehydrogenase (ubiquinone) 1 alpha subcomplex; 5 (13kD; B13)	3.613
		R42493	Hs.220839		3.6
0.5		AA025399	Hs.169737		3.592
25		AA211320	Hs.79404	neuron-specific protein	3.568
	104160	AA455706	Hs.99722	ESTs; Weakly similar to 78 KD GLUCOSE REGULATED PROTEIN	3.559
	105504	AA258158	He 22152	PRECURSOR ESTs; Weakly similar to KIAA0352 [H.sapiens]	3.542
		H19673	Hs.176586		3.525
30		AA233299	Hs.72158		3.522
20		F02367	Hs.27252		3.5
		AA257107	Hs.194331		3.5
		AA455653		ESTs; Weakly similar to HEAT SHOCK 70 KD PROTEIN 6 [H.sapiens]	3.459
25		AA261852	Hs.192905		3.45
35		H74330	Hs.150000		3.425 3.42
		AA256976 X05451		ESTs; Weakly similar to KIAA0579 protein [H.sapiens] Human alkali myosin light chain 3 mRNA; complete cds	3.417
		N70298	Hs.49829		3.407
		A1028384	Hs.127331		3.399
40		AA159953		ESTs; Weakly similar to aryisulfatase B precursor [H.sapiens]	3.325
	123502	AA600116	Hs.112526	ESTs	3.318
		N50866	Hs.47135		3.317
		AA287097	Hs.75356	transcription factor 4	3.315 3.309
45		H85897	Hs.27755 Hs.96777		3.3
43		AA342104 AA278824	Hs.19218		3.295
		AA946876	Hs.148376		3.292
		HG4020-HT4		Transglutaminase	3.288
		D29956		ubiquitin specific protease 8	3.273
50		AA608903	Hs.106220	KIAA0336 gene product	3.269
		L07515	Hs.89232	chromobox homolog 5 (Drosophila HP1 alpha)	3.266
		H29209		ESTs; Highly similar to FYVE finger-containing phosphoinositide kinase (M.muscu	3.212
		AA418880 R60523	Hs.185797 Hs.109087		3.197
55		AA970504	Hs.146103		3.179
33		R94500	Hs.108046		3.175
		AA448164	Hs.99153	ESTs; Highly similar to CGI-73 protein [H.sapiens]	3.151
	122027	AA431302	Hs.98721	EST; Weakly similar to N-copine [H.sapiens]	3.151
		X85134		retinoblastoma-binding protein 5	3.15
60		M95767		chitobiase; di-N-acetyl-	3.15
		AA057341		helicase-mol	3.15 3.125
		AA018219	Hs.226923		3.125
		AA421773 AA149007	Hs.161008	Ets homologous factor	3.12
65		N48818	Hs.46884		3.11
		AA485973	Hs.143947		3.104
		AA400080	Hs.97774		3.1
		T80620	Hs.186473	ESTs	3.075
	105909	AA401739	Hs.5111	ESTs	3.066

			11 50440	707	0.057
		W72562	Hs.58119	ESTs	3.057
		AA424038	Hs.58197	ESTs	3.056 3.05
		R22988	Hs.220950 Hs.43948		3.05
5		AA280047 N66412	Hs.49189		3.00
5		AA456598	Hs.256269		2.995
		H48239	Hs.29739	ESTs; Weakly similar to RAS-RELATED PROTEIN RAB-3A [H.sapiens]	2.979
		AA182030	Hs.8364	ESTs	2.978
		L07594	Hs.79059	transforming growth factor; beta receptor III (betaglycan; 300kD)	2.976
10	110543	H58383	Hs.258544		2.976
		R24464	Hs.202949	KIAA1102 protein	2.964
		HG4058-HT43	28	Oncogene Aml1-Evi-1, Fusion Activated	2.957
		AA481068	Hs.31835		2.95
1.5		D11930	Hs.3592	ESTs	2.95
15		N68869	Hs.15119		2.936 2.917
		T93795	Hs.17252 Hs.17212		2.917
		AA210695 AA490227	Hs.105252		2.904
		W87465		ESTs; Weakly similar to D2092.2 [C.elegans]	2.9
20		AA465160	Hs.63386	ESTs	2.9
		AA432243		ESTs; Weakly similar to OXYSTEROL-BINDING PROTEIN [H.sapiens]	2.896
	111712	R22905	Hs.113716	ESTs	2.895
	126589	W78107		ESTs; Weakly similar to Yer140wp [S.cerevisiae]	2.895
25		N64378		ESTs; Highly similar to unknown function [H.sapiens]	2.894
25		AA280300	Hs.191346		2.886
		AA152263		KIAA0849 protein	2.883
		H03686		Ras-GTPase-activating protein SH3-domain-binding protein	2.879 2.875
		W73788 R59881	Hs.43213 Hs.7503	ESTs	2.871
30		AA028171	Hs.153688		2.868
-		AI088155		ESTs; Weakly similar to unknown [H.sapiens]	2.866
	120571	AA280738	Hs.128679		2.863
		AA482019	Hs.238202		2.86
25		D84239		IgG Fc binding protein	2.856
35		W45491	Hs.172609	nucleobindin 1	2.854
		W01626	Hs.43635	za36e07.r1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone ESTs	2.852 2.85
		AA227972 AA142919	Hs.5558	ESTS	2.847
		R34531		KIAA0480 gene product	2.846
40		AA398720	Hs.177953		2.838
	112575	R73816	Hs.17385	ESTs	2.836
	130244	R26206	Hs.153293	KIAA0701 protein	2.825
		AA427783	Hs.77910	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble)	2.816
AE		AA504356		ESTs	2.813
45		AA280627	Hs.57846	ESTs serine/threonine-protein kinase PRP4 homolog	2.806 2.8
		U48736 H20332	Hs.28707	signal sequence receptor; gamma (translocon-associated protein gamma)	2.799
		AA252863	Hs.87729	ESTs	2.795
		AA063546	Hs.202968		2.792
50		H93575		Homo sapiens mRNA; cDNA DKFZp564J142 (from clone DKFZp564J142)	2.783
	125502	AA732329	Hs.191959		2.778
		AA159825		ESTs; Weakly similar to ORF YNL227c (S.cerevisiae)	2.768
		AA242816		ESTs; Weakly similar to KIAA0437 [H.sapiens]	2.766
55	130159	H51098		PDZ domain protein (Drosophila inaD-like)	2.75 2.742
55		AA620504 T90746	Hs.22119 Hs.15233		2.734
		AA004622	Hs.18214		2.727
		AA622559	Hs.150318		2.726
		AA490964		ESTs	2.725
60	124825	R52088		yg85c3.s1 Soares infant brain 1NiB Homo sapiens cDNA clone	2.725
	124333	H98683	Hs.154054	ESTs	2.708
	117634	N36421		ESTs; Weakly similar to SODIUM- AND CHLORIDE-DEPENDENTGLYCINE	
	404000	145400=	TRANSP		2.706
65	101609	M54927	Hs.1787	proteolipid protein 1 (Pelizaeus-Merzbacher disease; spastic paraplegia 2;	. 2.704
UJ	1171/0	H96908	uncomplica	_ <b>!</b>	2.7
		R79147	Hs.42251 Hs.203365		2.695
		AA481505	Hs.13797		2.68
		N25996	Hs.179833		2.675

	404000	10.1070		and an monthly a like	0 070
	101026	J04970		carboxypeptidase M	2.675
	124560	N66393 `	Hs.102754	ESTs	2.675
	124066	H02494	Hs.101615	ESTs	2.671
		R12777		ESTs; Weakly similar to ARGINYL-TRNA SYNTHETASE [H.sapiens]	2.66
5					
J		N49602	Hs.13308		2.65
	111031	N54839		ESTs; Highly similar to mediator (H.sapiens)	2.633
	121770	AA421714	Hs.11469	KIAA0896 protein	2.63
		U32519	Hs 220689	Ras-GTPase-activating protein SH3-domain-binding protein	2.626
		R62452	Hs.191265		2.625
10					
10		AA451679	Hs.194410		2.625
		X90568	Hs.172004	titin	2.624
	111114	N63391	Hs.9238	ESTs	2.619
		AA459242	Hs.44445	ESTs; Weakly similar to Kelch motif containing protein [H.sapiens]	2.615
		R44164	Hs.23014		2.6
15					
13		AA481271	Hs.193945		2.591
		H52617	Hs.144167		2.586
	125873	H14437		yl25a04.r1 Soares breast 3NbHBst Homo sapiens cDNA clone	2.58
	117684	N40184	Hs.45050	ESTs	2.575
		D30037	Hs 168326	phosphotidylinositol transfer protein; beta	2.575
20		AA215647	Hs.200332		2.568
20					
		U71203		Ric (Drosophila)-like; expressed in many tissues	2.564
	117690	N40467	Hs.93834		2.557
	118807	N78582	Hs.50732	protein kinase; AMP-activated; beta 2 non-catalytic subunit	2.552
		AA405657	Hs.128791	Human DNA sequence from clone 967N21 on chromosome 20p12.3-13. Contains	2.55
25		AA235112	He 106227	ESTs; Moderately similar to similar to murine RNA-binding protein [H.sapiens]	2.549
23					2.548
		AA426017		ESTs; Highly similar to DNA-REPAIR PROTEIN COMPLEMENTING	
		H20560	Hs.244624		2.548
	132573	AA045333	Hs.51743	ESTs; Weakly similar to !! ALU SUBFAMILY SB2 WARNING ENTRY !! [H.sapiens]	2.542
	109706	F09729	Hs.12780	ESTs	2.537
30		AA410391	Hs.94592		2.525
-		R37027	Hs.5737	KIAA0475 gene product	2.525
		R73588	Hs.101533		2.525
	103840	AA174190	Hs.50932		2.525
	119066	R22196	Hs.34492	ESTs	2.519
35	114833	AA234362	Hs.87310	ESTs; Moderately similar to CGI-66 protein [H.sapiens]	2.507
		T23555	Hs.103288		2.5
		AA496258	Hs.99601		2.499
		AA426270		splicing factor (CC1.3)	2.491
	123321	AA496884	Hs.23972		2.491
40	107760	AA018042	Hs.95078	EST	2.483
	102580	U60808	Hs.152981	CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) 1	2.481
		X56741	Hs.5947	mel transforming oncogene (derived from cell line NK14)- RAB8 homolog	2.475
			Hs.106294		2.475
46		T15665	Hs.6185	ESTs; Weakly similar to BcDNA.GH12174 [D.melanogaster]	2.475
45	125178	W58202	Hs.125731	ESTS	2.475
	112423	R62447	Hs.22123	ESTs	2.471
	123515	AA600323	Hs.112535	EST	2.462
		U95020		calcium channel; voltage-dependent; beta 4 subunit	2.457
		U42390		triple functional domain (PTPRF Interacting)	2.455
50				, , , , , , , , , , , , , , , , , , , ,	
50		T56056	Hs.9992	ESTs	2.452
	131687	L11066	Hs.3069	heat shock 70kD protein 9B (mortalin-2)	2.448
	115314	AA280583	Hs.256501	ESTs	2.437
		Al206427		ESTs; Highly similar to Ran-binding protein 2 [H.sapiens]	2.43
		L11005	Hs.81047	aldehyde oxidase 1	2.425
55				ESTs; Moderately similar to putative transcription factor CA150 [H.saplens]	
<i>JJ</i>		AA447709			2.425
		N90041	Hs.9585	ESTs	2.418
	129430	AA258842	Hs.197877	Homo sapiens clone 23777 putative transmembrane GTPase mRNA; partial cds	2.418
	133863	C13990	Hs.76930	synuclein; alpha (non A4 component of amyloid precursor)	2.417
		N66857		ESTs; Weakly similar to !! ALU CLASS C WARNING ENTRY !! [H.sapiens]	2.416
60					2.412
UU		AA257056	Hs.7972	KIAA0871 protein	
		M55047		synaptotagmin 1	2.408
	114219	Z39451	Hs.27389	ESTs	2.406
	117101	H94043	Hs.24341	DKFZP586l1419 protein	2.403
		AA034325	Hs.54320		2.4
65			Hs.21958		2.4
UJ.		N62506	113.21330	Home engine mONA for alpha laterate by the engine OO and the	
		AA195405		Homo sapiens mRNA for alpha integrin binding protein 80; partial	2.397
	118624	N69998	Hs.21801	ESTS	2.394
	123570	AA608955	Hs.109653	ESTs	2.389
		AA608893	Hs.190065		2.388

	404540	A A000001	U- 00570	managlabilia di /Porra a - Utila VIII a	
		AA262821 X66141	Hs.28578	muscleblind (Drosophila)-like	2.385
			Hs.75535		2.384
		AA609310	Hs.188691		2.383
5		AA001835		zinc finger protein 262	2.379
J		AA428368	Hs.30654	ESTs	2.378
		AA436666	Hs.59761	ESTs	2.375
		W45574	Hs.252497		2.372
		C14805	Hs.182151		2.361
10		U76456		Homo sapiens tissue inhibitor of metalloproteinase 4 mRNA, complete cds	2.357
10		N71545	Hs.184544		2.357
		AA016225	Hs.93386		2.354
		N69220	Hs.41381	ESTs; Weakly similar to ubiquitin hydrolyzing enzyme I [H.sapiens]	2.35
		N66850	Hs.17606	ESTs	2.348
15		R58877	Hs.22665	ESTs; Moderately similar to dJ83L6.1 [H.sapiens]	2.345
15		AA262179	Hs.169343		2.345
		R81509		splicing factor; arginine/serine-rich 11	2.341
		H13260	Hs.95097		2.336
		AA436853	Hs.34795		2.333
20		AA443752	Hs.10784		2.332
20		AA599814	HS.40037	ESTs; Weakly similar to cDNA EST yk289g5.5 comes from this gene [C.elegans]	2.332
		R06273		ESTs; Modly smir to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	2.322
		AA176688	Hs.221139		2.313
		AA304993		ESTs; Weakly similar to p60 katanin [H.sapiens]	2.307
25		AA252621 W74371	Hs.93842	ESTs	2.301
23		W74371 U33052	Hs.58383	protein kinase C-like 2	2.297
		N74353	Hs.69171 Hs.16475	ESTs	2.288
		Z38904	Hs.22385	ESTs; Weakly similar to KIAA0970 protein [H.sapiens]	2.282
		U64675	113.22.000	Human sperm membrane protein BS-63 mRNA, complete cds	2.278 2.277
30		N71513	Hs.39328	ESTs	2.275
50		H82527	113.03020	ys69e12.s1 Soares retina N2b4HR Homo sapiens cDNA clone	2.275
		AA370120	Hs.7870	ESTs; Weakly similar to Yir350wp [S.cerevisiae]	2.273
		AA129731	Hs.90424	ESTs	2.273
	101310		Hs.934	glucosaminyl (N-acetyl) transferase 2; I-branching enzyme	2.269
35		W19498	Hs.21085		2.255
		AA936428	Hs.128638	·	2.251
		N91947	Hs.125033		2.249
	127112	Al143906	Hs.125103	ESTs	2.247
	101973	S82597	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polypeptide	2.246
40	120999	AA398302	Hs.127437		2.245
	130225	AA599583	Hs.15299	HMBA-inducible	2.243
		W88678	Hs.249247	heterogeneous nuclear protein similar to rat helix destabilizing protein	2.243
		H61053	Hs.222844		2.24
45	129199		Hs.128629		2.236
45		AA479101		ESTs; Weakly similar to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	
	126160			ESTs; Weakly similar to transformation-related protein [H.sapiens]	2.229
		AA001976		ESTs	2.228
		AA450212		Homo sapiens mRNA; cDNA DKFZp564C053 (from clone DKFZp564C053)	2.226
50	113096		Hs.8345	ESTs	2.225
50		AA452822	Hs.99027		2.225
	135344		HS.168491	ESTs; Moderately similar to TRF1-Interacting ankyrin-related	2.225
		AA508354		ESTs; Moderately similar to AKT3 protein kinase [H.sapiens]	2.222
		AA397841		cofilin 2 (muscle)	2.218
55		AA026385		ESTs; Moderately similar to !! ALU SUBFAMILY SB2 WARNING	2.217
<i>J</i> J		AA033562 AA199828	Hs.151572		2.212
		AF006265	Hs.188662		2.212
	132932			estrogen receptor-binding fragment-associated gene 9	2.209
		AA262728	Hs.6093 Hs.14896	ESTS	2.204
60		AA004652		Homo sapiens clone 24590 mRNA sequence ESTs	2.204
-		AA449828		ESTs	2.2 2.195
	124307			proline synthetase co-transcribed (bacterial homolog)	2.193
	133601			transferrin	2.193
	119904			ESTs; Weakly similar to !! ALU SUBFAMILY SP WARNING ENTRY !! [H.sapiens]	2.100
65	100348		Hs.4994	transducer of ERBB2; 2 (TOB2)	2.185
		AA351779	Hs.200334		2.18
		Al298835		ESTs; Weakly similar to transcription regulator Staf-50 [H.sapiens]	2.178
		AA169253	Hs.8958	ESTs	2.177
	121367	AA405648		zw39g8.s1 Soares_total_fetus_Nb2HF8_9w H sapiens cDNA clone IMAGE:77247	8 2.177
				•	

				•	
	111836	R36228	Hs.25119	ESTs	2.175
	133394	R16759	Hs.237225	ribosomal protein S5 pseudogene 1	2.175
		AA489697	Hs.145053	ESTs	2.175
		F11087	Hs.239666	ESTs	2.175
5		X94612	Hs.41749	protein kinase; cGMP-dependent; type II	2.161
•		AA043223	Hs.4815	nudix (nucleoside diphosphate linked molety X)-type motif 3	2.157
		AA443828	Hs.25324	ESTs	2.157
		AA478446	Hs.69559	KIAA1096 protein	2.156
		M19309	Hs.73980	troponin T1; skeletal; slow	2.155
10		C06270	Hs.8078	Homo sapiens mRNA; cDNA DKFZp586L081 (from clone DKFZp586L081)	2.155
		AA056012	Hs.9552	binder of Arl Two	2.151
	104055	AA393755.	Hs.117211	ESTs; Highly similar to CGI-62 protein [H.sapiens]	2.15
	102313	U33921		HSU33921 Clontech adult lung cDNA library (HL1158a) Homo sapiens cDNA	2.15
	109788	F10638	Hs.12432	Homo sapiens clone 24407 mRNA sequence	2.15
15	103507	Y10032	Hs.159640	serum/glucocorticoid regulated kinase	2.15
	116000	AA448710	Hs.41327	ESTs	2.15
	105858	AA399164	Hs.227676	ESTs; Moderately similar to !! ALU SUBFAMILY SQ	2.137
	103153	X66534	Hs.75295	guanylate cyclase 1; soluble; alpha 3	2.137
	126202	AA652238	Hs.199726		2.135
20	115955	AA446121	Hs.44198	Homo sapiens BAC clone RG054D04 from 7q31	2.134
	104164	AA458770	Hs.27023	KIAA0917 protein	2.132
		AA121270	Hs.82960	ESTs	2.128
	122878	AA465341	Hs.99640		2.126
25	134771	L13939		adaptor-related protein complex 1; beta 1 subunit	2.125
25		D31120	Hs.40368		2.125
		AA039595		Homo sapiens mRNA; cDNA DKFZp586C1817 (from clone DKFZp586C1817)	2.125
		AA435798		ESTs; Moderately similar to putative ring zinc finger protein	2.125
		H01992		KIAA1102 protein	2.125
20		H17490	Hs.7905	ESTs; Highly similar to sorting nextn 9 [H.sapiens]	2.123
30		N69666		ESTs; Modity smlr to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	2.123 2.12
		AA621202	Hs.7946	DKFZP586D1519 protein	2.12
		N71935		multiple PDZ domain protein	2.12
		U63717	Hs.95821 Hs.181400	osteoclast stimulating factor 1	2.109
35		AA405263 H38148	Hs.32775		2.108
33		AA521186	Hs.94217		2.107
		U76189	Hs.61152	exostoses (multiple)-like 2	2.102
		N50073	Hs.84926		2.1
		AA419622	Hs 104800	ESTs; Weakly similar to Mouse 19.5 mRNA; complete cds [M.musculus]	2.096
40		Y09443	Hs.22580	alkylglycerone phosphate synthase	2.094
		AA406293	Hs.193498		2.093
		AA398710		chloride channel 3	2.091
		F10980	Hs.184780	ESTs	2.09
		N58193			2.089
45		AA129931	Hs.79081	protein phosphatase 1; catalytic subunit; gamma isoform	2.083
	132711	N73702	Hs.238927	ESTs	2.083
	133377	R05490	Hs.7239	SEC24 (S. cerevisiae) related gene family; member B	2.079
	124773	R40923	Hs.106604		2.078
	117759	N47587		ESTs; Weakly similar to TROPOMODULIN [H.sapiens]	2.076
50		Al457411	Hs.106728		2.076
·		L15309		zinc finger protein 141 (clone pHZ-44)	2.075
		F02582	Hs.14474	ESTs	2.074
		N29325	Hs.7535	ESTs; Highly similar to COBW-like placental protein [H:sapiens]	2.07
55		AA478609	Hs.47278	Human Chromosome 16 BAC done CIT987SK-A-735G6	2.07 2.069
55		R16667	Hs.24752	spectrin SH3 domain binding protein 1 ESTs; Weakly similar to line-1 protein ORF2 [H.sapiens]	2.067
	130557	T90830	Hs.15981	cAMP responsive element modulator	2.064
		D14826			2.063
		AA131866	Hs.61661	ESTs; Weakly similar to DY3.6 [C.elegans] KIAA0981 protein	2.063
60		R53765	HS. 100 100	zq49a01.r1 Stratagene hNT neuron (#937233) Homo sapiens cDNA clone	2.061
W		AA165411 N72200	Hs.13913	ESTs	2.058
		AA495830	Hs.87013		2.057
		R51361	Hs.23423		2.056
		AA424754	Hs.43149		2.056
65		AA599219	He 197/02	ESTs; Weakly similar to ALR [H.sapiens]	2.056
UJ.		H30270	Hs.165062		2.054
		AA262354	Hs.186648		2.054
		N59249	Hs.48349		2.052
		AA293194	Hs.3737	ESTs	2.052

	132617	AA171913	Hs.5338	carbonic anhydrase XII	2.05
		N36167	Hs.28274	ESTs	2.05
		T64438	Hs.11449	DKFZP564O123 protein	2.05
5		AA459978 D20426	Hs.99508 Hs.5656	ESTs EST	2.05 2.05
5		AA291321			2.03 2.046
		D82675		Homo sapiens clone 25007 mRNA sequence	2.042
		R43845	Hs.64595		2.04
4.0		AA600253	Hs.55601	, , , ,	2.04
10		AA526849	Hs.82109		2.039
		AA279442		protein kinase C; nu	2.037
		W70205 M21494	Hs.43670	kinesin family member 3A creatine kinase; muscle	2.037 2.036
		AA609943	Hs.32793		2.034
15		H89112	110.00.700	yw25e5.s1 Morton Fetal Cochlea Homo sapiens cDNA clone IMAGE:25328	2.034
	132906	AA142857	Hs.234896		2.031
	105479	AA255546	Hs.23467	ESTs	2.027
		U04898	Hs.2156		2.027
20		W80363	Hs.58446		2.024
20		R46482 AA041548	Hs.106875		2.024 2.023
		N50114	Hs.128704		2.023 2.017
		W37999	Hs.24336		2.017
		AA281257	Hs.125868	ESTs	2.014
25		AA062731			2.012
		AA278846	Hs.187634		2.011
		W81362 AA485041	Hs.30567 Hs.104308		2.011 2.009
		AA609323	Hs.112689		2.009 2.008
30		H67749	Hs.161022		2.003
		X69398		CD47 antigen (Rh-related antigen; integrin-associated signal transducer)	1.995
		Y07755	Hs.38991		1.995
		N53378	Hs.22543		1.995
35		AA251797 R53457	Un ocozo		1.989
55		Z38652			1.989 1.988
		AA151005			1.988
	106320	AA436608			1.988
40		AA147224	Hs.71814		1.986
40		AA401633	Hs.22380		1.982
		AA157911 N66769	Hs.72200 Hs.82781		1.982 1.975
		AA281886	Hs.88923		1.975
		AA279060			1.974
45 .		AA719776		zh38g04.s1 Soares_pineat_gland_N3HPG Homo sapiens cDNA clone IMAGE:4143	
	109547		Hs.26966		1.973
		AA805726 L36645	Hs.220509 Hs.73964		1.969 1.966
		AA037467	Hs.30340		1.965
50		AA428240	Hs.126083		1.962
	112753	R93696	Hs.169882		1.961
		AA255538	Hs.190504		1.959
		AA458578			1.956
-55	134740	AA251129	Hs.24416		1.953 1.95
.55		AA210700			1.95
		H93043	Hs.107070		1.95
		U36922			1.948
<b>60</b>		AA228100	Hs.86998		1.946
60		AA179573	Hs.90061		1.942
	130672	AA227498	Hs.3623 Hs.177		1.942 1.942
		D45332	Hs.6783		1.942
		R62589	Hs.167419		1.939
65		AA258063	Hs.23438	ESTs	1.937
		AA490969	Hs.168147		1.936
	118873		Hs.44577		1.936
		Z38595			1.934 1.933
	1100/0	AA255486	Hs.88045	LUIS	1.500

		H93463	Hs.124777	ESTs	1.931
		AA236209	Hs.187626		1.931
	124998	T56013	Hs.77910	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble)	1.929
_	121816	AA424814	Hs.187509	ESTs	1.927
5	111717	R23241	Hs.110776	STAT induced STAT inhibitor-2	1.925
	128874	H06245	Hs.106801	ESTs	1.925
	109391	AA219699	Hs.184245	KIAA0929 protein Msx2 interacting nuclear target (MINT) homolog	1.913
	126129	H82165	Hs.40334	ESTs	1.911
	115553	AA369027	Hs.71414	ESTs	1.905
10	113811	W44928	Hs.4878	ESTs	1.905
	108345	AA070906		zm66d1.s1 Stratagene neuroepithelium (#937231) Homo sapiens cDNA clone	1.904
	120472	AA251875	Hs.104472	ESTs; Weakly similar to Gag-Pol polyprotein [M.musculus]	1.903
	116602	D80063	Hs.241673		1.901
	121121	AA399371	Hs.189095	ESTs; Weakly similar to zinc finger protein SALL1 [H.sapiens]	1.9
15	125330	AA401804	Hs.114574	ESTs	1.896
	130095	F01831	Hs.14838	ESTs	1.894
	119782	W72982	Hs.58262	ESTs	1.894
	104115	AA428090	Hs.26102	ESTs	1.893
	131313	C17938	Hs.22370	Homo sapiens mRNA; cDNA DKFZp564O0122 (from clone DKFZp564O0122)	1.891
20	105583	AA278907	Hs.24549	ESTs	1.891
	122825	AA461195	Hs.99580	ESTs	1.887
	119495	W35390	Hs.55533	ESTs	1.886
	130309	AA134289	Hs.15423	Homo sapiens BAC clone RG114B19 from 7q31.1	1.886
	125628	AA418069	Hs.241493	natural killer-tumor recognition sequence	1.886
25	110611	H66947	Hs.14671	ESTs; Highly similar to gene ERCC5 protein [H.sapiens]	1.885
	117301	N22569	Hs.43215		1.884
	131406	N92239	Hs.26471	Wnt inhibitory factor-1	1.881
	126428	AA013312	Hs.64988		1.881
	120285	AA182882	Hs.111110	titin-cap (telethonin)	1.878
30	112724	R91753	Hs.17757		1.878
	103121	X63679	Hs.4147		1.875
		N26765	Hs.109008		1.875
		N20468		ESTs; Weakly similar to putative p150 [H.sapiens]	1.875
~~		AA279991		ESTs; Weakly similar to trithorax homologue 2 [H.sapiens]	1.875
35		N69113	Hs.110855		1.875
		AA285079	Hs.190474		1.873
		AA600012		ESTs; Moderately similar to KIAA0400 [H.sapiens]	1.872
		AA381902		RNA binding protein	1.872
40		AA258366		ras GTPase activating protein-like	1.872
40		U26726	Hs.1376	hydroxysteroid (11-beta) dehydrogenase 2	1.87
		M10098		ol: 18S ribosomal RNA	1.868
		AA191353		ESTs; Weakly similar to KIAA0970 protein [H.sapiens]	1.867
		S72869		DNA segment; single copy; probe pH4 (transforming sequence; thyroid-1;	1.867
15		R44479		KIAA0552 gene product	1.866
45		N26175	Hs.93405		1.864
		AA053027	Hs.191797		1.863
		AA608794	Hs.112592		1.863
		R78618		ESTs; Weakly similar to RAS-RELATED PROTEIN RAB-8 [H.sapiens]	1.862
50		AA233511	HS.194720	ATP-binding cassette; sub-family G (WHITE); member 2	1.861
50		Z20656	HS.182787	myosin; heavy polypept 6; cardiac muscle; alpha (cardiomyopathy; hypertrophic 1)	
		T33637	Hs.6841	ESTs	1.86
		AA235040	Hs.107283		1.859
		AA243523		ESTs -	1.858 1.857
55		AA620381	Hs.70488		1.857
JJ		AA084323	Hs.68138		1.856
		W85812	Hs.187554		1.856
		H97678	Hs.31319		1.853
		AA412087			1.852
60		R44840	Hs.21303 Hs.50150		1.852
w		N67317 AA004955		ESTS ()	1.851
		D87446			1.85
				KIAA0257 protein	1.85
		AA287312	Hs.191648 Hs.193767		1.843
65		AA417078 N26011			1.843
UJ		Y12394		ESTS (comparing slabs 4)	1.843
		N48593	Hs.3886	karyopherin alpha 3 (importin alpha 4)	1.841
		AA173440	Hs.121820 Hs.193919		1.838
		AA731036	Hs.3463	ribosomal protein S23	1.838
	121250	17/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	1132400	Innocuted biologic oco	

	111837	R36447	Hs.24453	ESTs	1.835
	128727	M64174	Hs.50651	Janus kinase 1 (a protein tyrosine kinase)	1.834
•	114439	AA018937	Hs.128629		1.833
	102332	U35637		Human nebulin mRNA, partial cds	1.83
5	126579	W72979	Hs.146082		1.83
_		U37122	Hs.8110	adducin 3 (gamma)	1.83
		Z39848	Hs.12079	ESTs	1.828
		D17532	Hs.316		1.823
				DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 6 (RNA helicase; 54kD)	
10		AA136521	Hs.71148	ESTs; Weakly similar to putative p150 [H.sapiens]	1.823
10		AA255566		Homo sapiens mRNA; cDNA DKFZp564C053 (from clone DKFZp564C053)	1.823
	131957	AA609008	Hs.183232	ESTs	1.822
	100131	D12485	Hs.11951	phosphodiesterase l/nucleotide pyrophosphatase	
				1 (homologous to mouse Ly-41 antigen)	1.822
	124163	H30539	Hs.189838		1.821
15	-	N59859	Hs.48443		1.821
		AA016021		DKFZP434K151 protein	1.82
		D78156		RAS p21 protein activator 2	1.82
		AA489016			
				ESTs; Highly similar to partial CDS; human putative tumor suppressor [H.sapiens]	
20	-	R54112	Hs.128697		1.817
20		AA453255	Hs.6968	ESTs	1.817
	114359	Z41589	Hs.153483	ESTs; Moderately similar to H1 chloride channel [H.sapiens]	1.815
	111289	N72253	Hs.238246	ESTs	1.813
	110826	N30068	Hs.15347	ESTs	1.812
	104106	AA422123	Hs.42457	ESTs	1.811
25		AA055404		ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	1.253
20		AA432080	Hs.81200		1.81
		AA056140	Hs.122684	•	1.81
		N53158	Hs.102682		1.809
20		HG3740-HT40		Basic Transcription Factor 2, 34 Kda Subunit	1.806
30		AA421053	Hs.34395		1.806
	115479	AA287596		zs52h09.s1 NCI_CGAP_GCB1 H sapiens cDNA done IMAGE:701153	1.804
	116104	AA456635	Hs.78524	ESTs	1.804
	114173	Z39050	Hs.21963	ESTs	1.804
	132632	N59764	Hs.5398	guanine-monophosphate synthetase	1.803
35		R49548		death effector domain-containing	1.802
		N91087		ESTs; Weakly similar to F55A12.9 [C.elegans]	1.801
		AA177138	Hs.161671		1.8
		N25427		and the second s	1.8
			Hs.108812	· · · · · · · · · · · · · · · · · · ·	
40		Z25535		nucleoporin 153kD	1.8
40		AA406367	Hs.15973		1.8
		H22372	Hs.163586		1.799
	133883	AA397915	Hs.77221	choline kinase	1.798
	105777	AA348412	Hs.23096	ESTs	1.797
	110166	H19480	Hs.174309	ESTs	1.796
45	105038	AA130273	Hs.7584	ESTs; Weakly similar to hypothetical protein; similar to [H.sapiens]	1.796
		AA251330	Hs.28248	ESTs	1.795
		AA279757	Hs.67466	ESTs; Weakly similar to BACN32G11.d [D.melanogaster]	1.794
		L13698	Hs.65029	growth arrest-specific 1	1.794
50		N48674		Human DNA sequence from done 1052M9 on chromosome Xq25. Contains the	1.792
20		D13540	Hs.22868	protein tyrosine phosphatase; non-receptor type 11	1.791
		AA331157		EST35035 Embryo, 6 week, subtracted (total cDNA) I Homo sapiens cDNA	1.79
	114157	Z38878	Hs.24979		1.79
	125601	Al096717	Hs.247043	KIAA0525 protein	1.788
	118472	N66818	Hs.42179	ESTs	1.787
55	112456	R63925	Hs.28464	ESTs	1.787
		N69682		SC35-interacting protein 1	1.786
		AA600057		KIAA0905 protein	1.784
		R40096	Hs.176578		
					1.784
60		T89386		KIAA0606 protein; SCN Circadian Oscillatory Protein (SCOP)	1.783
60		AA262710		KIAA0627 protein	1.783
		AA489020	Hs.193424		1.782
	106340	AA441792	Hs.22857	chord domain-containing protein 1	1.781
		HG2463-HT25	59	Guanine Nucleotide-Binding Protein G25k	1.779
		AA374532		EST86676 HSC172 cells I Homo sapiens cDNA 5' end, mRNA sequence	1.778
65		AA436475	Hs.190104		1.777
-		AA151771	He 760/1		1.776
		AA004636			1.776
			Hs.50223		
		W68255	rts.2/194	DKFZP434K171 protein	1.776
	116449	N66413	ms.172466	ESTs; Weakly similar to KIAA0775 protein [H.saplens]	1.776

	107060	AA034030	He 155010	mothylmologid Coopyrmo A mython	1.775
		AA342079	Hs.252055	methylmalonyl Coenzyme A mutase	1.775
		T16305	Hs.49349		1.775
		AA406105		beta-site APP-cleaving enzyme	
5			Hs.5344	adaptor-related protein complex 1; gamma 1 subunit	1.774
J		AA373091	Hs.93832	Homo sapiens clone 24483 unknown mRNA; parital cds	1.774
		AA428379	Hs.24870		1.773
		N26777	Hs.172635		1.773
		AA435664	Hs.8583	similar to APOBEC1	1.773
10		AA436705	Hs.28020		1.772
10		N93797	Hs.3090	EphB1	1.772
		AA479166	Hs.105633		1.772
		AA291946	Hs.42736	ESTs	1.771
	105168	AA180208	Hs.16606	ESTs; Highly similar to CGI-32 protein [H.sapiens]	1.767
	129153	AA188618	Hs.181461	ariadne; Drosophila; homolog of	1.766
15	105829	AA398290	Hs.21965	ESTs	1.764
	101811	M86917	Hs.24734	oxysterol binding protein	1.764
	100138	D13628	Hs.2463	angiopoietin 1	1.764
	124704	R07335		ye96c1.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone	1.763
	122314	AA442257	Hs.192076	ESTs	1.762
20		H02566		Homo sapiens mRNA; cDNA DKFZp434N174 (from clone DKFZp434N174)	1.761
		AA428069		KIAA1046 protein	1.758
		AA620782	Hs.23247		1.757
		AA338960	Hs.28170		1.756
		AA435536	Hs.24336	•	1.756
25		AA304566	Hs.3542	ESTs	1.756
23		AA234945	Hs.11360		1.756
		N50112	Hs.47023		1.754
		AA599472		succinate-CoA ligase; GDP-forming; beta subunit	1.754
		R45963		ESTs; Weakly similar to ORF2 [M.musculus]	1.753
30		D42047		KIAA0089 protein	1.753
50			N3.02432	yy84a09.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone	1.751
		N47938	Un 00404		1.751
		AF006082	Hs.62461	ARP2 (actin-related protein 2; yeast) homolog	
		AA455917	Hs.50785	SEC22; vesicle trafficking protein (S. cerevisiae)-like 1	1.75
25		N21671		ESTs	1.75
35		AA424515	Hs.33264		1.75
		U43701		ribosomal protein L23a	1.75
		AA432162		DKFZP586B2022 protein	1.749
		AA194075		nuclear receptor coactivator 4	1.747
40		W19222	Hs.7041	ESTs; Weakly similar to II ALU SUBFAMILY SQ WARNING ENTRY II [H.saplens]	
40		X98330	Hs.90821		1.745
•		T10132	Hs.4236	KIAA0478 gene product	1.744
		AB002346	Hs.61289	synaptojanin 2	1.743
		AA461556	Hs.202949	KIAA1102 protein	1.743
	115433	AA284252	Hs.58372	ESTs	1.743
45	114908	AA236545	Hs.54973	ESTs	1.742
	127425	AA470941	Hs.143162	ESTs ·	1.741
	131089	Z38807	Hs.22870	ESTs	1.739
	113498	T88908	Hs.189746	ESTs	1.738
	116710	F10577	Hs.70312	ESTs	1.735
50		R51476		yg76f04.r1 Soares infant brain 1NIB Homo sapiens cDNA clone	1.733
	120554	AA279654	Hs.194524	ESTs	1.733
		U18242	Hs.13572	calcium modulating ligand	1.732
		H88157	Hs.41105		1.731
		R22212	Hs.23361		1.731
55		H72240		ESTs; Moderately similar to KIAA0745 protein [H.sapiens]	1.731
-		AA412063	Hs.6065	ESTs	1.728
		AA101984		G-protein coupled receptor	1.726
		R12581	Hs.191146		1.726
		L76703		protein phosphatase 2; regulatory subunit B (B56); epsilon isoform	1.725
60		AA489086	Hs.36545		1.725
00					
		N52136	Hs.93828		1.725
		AA400422	Hs.55896		1.725
	121342	AA404995	Hs.192480		1.725
<b>4 E</b>		R27296	Hs.23240		1.725
65		AA479181	Hs.186726		1.725
		U44754		small nuclear RNA activating complex; polypeptide 1; 43kD	1.724
		H29050	Hs.24096		1.722
		AA127395	Hs.222414		1.722
	110672	H88477	Hs.191178	ESTs	1.721

		*******		PATE III. III. AND A THIS PHOTO PROPERTY AS ALL AND A	4
		AA176404		ESTs; Weakly similar to ZINC FINGER PROTEIN 136 [H.sapiens]	1.72
		D28915		Interferon-induced; hepatitis C-associated microtubular aggregate prot (44kD)	1.719
		W69459		sex comb on midleg (Drosophila)-like 1	1.719
_	134663	W73367	Hs.8750	ESTs	1.717
5	104902	AA055475	Hs.104143	clathrin; light polypeptide (Lca)	1.717
	120582	AA281290		ESTs; Weakly similar to BC331191_1 [H.saplens]	1.717
		F03517	Hs.90787		1.716
		AA428567		Homo sapiens mRNA; cDNA DKFZp586F1323 (from clone DKFZp586F1323)	1.715
				· · · · · · · · · · · · · · · · · · ·	1.713
10		AA521311	Hs.13854		
10		AA001870		N-acetylglucosamine-phosphate mutase; DKFZP434B187 protein	1.713
		AA427816	Hs.11803		1.712
	125136	W31479	Hs.129051	ESTs	1.712
	104973	AA085676	Hs.6763	KIAA0942 protein	1.712
	128710	J04813	Hs.104117	cytochrome P450; subfamily IIIA (niphedipine oxidase); polypeptide 5	1.711
15	123994	D20899	Hs.107127	Homo sapiens mRNA; cDNA DKFZp564G022 (from clone DKFZp564G022)	1.711
		AA766511	Hs.128848		1.71
		AA455933	Hs.41324		1.709
		AA504153		ESTs; Weakly similar to ORF YGL050w [S.cerevisiae]	1.708
		AA609200	Hs.162686		1.708
20					
20		AA026617		ESTs; Highly similar to BAI1-associated protein 1 [H.saplens]	1.707
		AA256468	Hs.88148		1.705
		N49408		KIAA0853 protein	1.705
	127644	T57570	Hs.77039	ribosomal protein S3A	1.704
	111359	N91273	Hs.27179	ESTs	1.702
25	131721	L36644	Hs.31092	EohA5	1.7
		F08925	Hs.48610		1.7
		N67192		Homo sapiens clone TUA8 Cri-du-chat region mRNA	1.7
		F02488		KIAA0768 protein	1.7
		AA487503	Hs.100636	•	1.698
30					
30		AA342337		ESTs; Modtly smlr to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	1.697
		L06133	Hs.606	ATPase; Cu++ transporting; alpha polypeptide (Menkes syndrome)	1.696
		U77948		general transcription factor II; i	1.696
		H11297	Hs.31050	ESTs	1.695
	134415	AA329274	Hs.82911	protein tyrosine phosphatase type IVA; member 2	1.694
35	102223	U24685	Hs.148226	Human anti-B cell autoantibody IgM heavy chain variable V-D-J region (VH4)	
		•		gene; done E11; VH4-63 non-productive rearrangement	1.694
	126712	AA205862	Hs.7942	ESTs	1.694
		M27492	Hs.82112	interleukin 1 receptor; type I	1.692
		AA435551	Hs.30824	ESTs	1.691
40			Hs.8215	ESTs; Weakly similar to double-stranded RNA-binding nuclear	1.001
40	110020	H58691	H8.0213		4.00
	405000	D.C.C.C.C	11- 407040	protein DRSBP76 [H.sapiens]	1.69
		D59269	Hs.127842	Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 783648	1.69
	118250	N62602		yz75b6.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone	
				IMAGE:288851 3' similar to contains Alu repetitive element;, mRNA sequence	1.689
45	106470	AA450116	Hs.186180	ESTs	1.688
	108203	AA057678	Hs.63408	ESTs	1.687
	119748	W70313	Hs.126906	ESTs	1.686
	116576	D51228		neuron-specific protein	1.683
		AA481392	Hs.105166		1.683
50		AA011616	Hs.184086		1.681
50		M28209		RAB1; member RAS oncogene family	1.678
		U76638		BRCA1 associated RING domain 1	1.677
		AA256386		Novel human gene mapping to chomosome 13; similar to rat RhoGAP	1.676
بر بے		N67277	Hs.9403	ESTs	1.676
55	105937	AA404342	Hs.173531		1.675
•	114118	Z38520	Hs.175930	ESTs	1.675
	109203	AA190634	Hs.108787	endoplasmic reticulum membrane protein	1.675
	125245	W86608	Hs.7243	ubiquitin specific protease 24	1.675
	102906	X06956		tubulin; alpha 1 (testis specific)	1.675
60		AA262925		cleavage stimulation factor, 3' pre-RNA; subunit 3; 77kD	1.674
		U63289		CUG triplet repeat; RNA-binding protein 1	1.674
		F10108			1.673
•		_	Hs.183333		
		D63876		KIAA0154 protein	1.673
<i>(</i> =		AA402937	Hs.103238		1.671
65		AA001386	Hs.59844		1.671
		AA243139	Hs.4863	Homo sapiens done 25088 mRNA sequence	1.669
		N58172	Hs.109370	ESTs	1.668
	124300	H92575	Hs.105959	ESTs; Weakly similar to II ALU SUBFAMILY SQ WARNING ENTRY II [H.sapiens]	1.668
		AA743475	Hs.171693		1.667

	106095	AA419547	Hs.11713	ESTs	1.66
	101754	M77142	Hs.239489	9 TIA1 cytotoxic granule-associated RNA-binding protein	1.66
	105188	AA192306	Hs.23926	ESTs	1.66
	113582	T91371	Hs.16824		1.66
5		W38197		Accession not listed in Genbank	1.66
_		W87535	Hs.59015	ring finger protein 9	1.65
		AA490890	Hs.105273	R ESTs	1.65
		N59230	Hs.186574		1.65
		T40528	Hs.8246	· <del></del>	1.65
10		W44692	Hs.124177		1.65
		D53639		ribosomal protein S26	1.65
		X59417	Hs.74077	proteasome (prosome; macropain) subunit; alpha type; 6	1.65
		N35314	Hs.107265		1.65
		AA096157		B ESTs; Weakly similar to 25 kDa trypsin inhibitor [H.sapiens]	1.65
15		T92767		ye27d06.s1 Stratagene lung (#937210) Homo sapiens cDNA clone	1.00
				IMAGE:118955 3', mRNA sequence.	1.65
	131631	AA486868	Hs 29802	slit (Drosophila) homolog 2	1.65
		N62339	Hs.180532	! heat shock 90kD protein 1; alpha	1.649
		N67954	Hs.49413		1.648
20		AA476307		KIAA0737 gene product	1.647
		X60708	Hs.44926	dipeptidylpeptidase IV (CD26; adenosine deaminase complexing protein 2)	1.647
		U69140	Hs.103419	fasciculation and elongation protein zeta 2 (zygin II)	1.646
		T15530	Hs.221439	ESTs	1.646
		AA056263	Hs.132747	,	1.645
25		AA579377		heat shock 90kD protein 1; alpha	1.644
		AA007595	Hs.220937		1.642
		N79820	Hs.50854		1.64
		D85423		Homo sapiens mRNA for Cdc5, partial cds	1.64
		AA284865	Hs.171228	KIAA1040 protein	1.639
30		AA460128	Hs.5074	similar to S. pombe dim1+	1.639
		AA034002	Hs.76359		1.639
	115968	AA447083	Hs.134522	ESTs	1.637
	116370	AA521256	Hs.236204	ESTs; Moderately similar to NUCLEAR PORE COMPLEX	
	•			PROTEIN NUP107 [R.norvegicus]	1.631
35	109644	F04477	Hs.204802	ESTs; Moderately similar to GLYCERALDEHYDE 3-PHOSPHATE	*****
				DEHYDROGENASE; LIVER [H.sapiens]	1.627
	103427	X97303		H.sapiens mRNA for Ptg-12 protein	1.627
	132186		Hs.221040	KIAA1038 protein	1.626
40	131428		Hs.26719	PR domain containing 2; with ZNF domain	1.626
40		AA649257	Hs.188602		1.625
		AA039568	Hs.188083		1.625
		AA400857	Hs.97509		1.625
		AA446885		ESTs; Moderately similar to ZINC FINGER PROTEIN 141 [H.sapiens]	1.625
AE	110632		Hs.171635		1.624
45	111389		Hs.169111	ESTs; Weakly similar to LB2A [D.melanogaster]	1.624
	112449			ring finger protein 2	1.623
	113070		Hs.6298	ESTs	1.622
	107229		Hs.34644		1.618
50	132710		HS.55279	protease Inhibitor 5 (maspin)	1.617
30	124664		HS.33540	ESTs; Weakly similar to KIAA0765 protein [H.sapiens]	1.617
		AA350690		KIAA0916 protein	1.616
	125040		Hs.199961		1.615
	132972			ESTs; Weakly similar to !! ALU SUBFAMILY SB WARNING ENTRY !! [H.sapiens]	1.615
55		AA433916		heat shock 70kD protein 4	1.611
))		AA235045	Hs.190151		1.61
		AA383773 AA279071	Hs.191500		1.61
	134330		Hs.8185	splicing factor 3b; subunit 1; 155kD	1.609
		AA256492		ESTs; Highly similar to CGI-44 protein [H.sapiens] poly(A) polymerase	1.607
60	125162		Hs.109896		1.606
00		AA285246			1.605
		AA265246 AA166917		ESTs; Weakly similar to Prt1 homolog [H.sapiens]	1.604
		AA342301			1.603
	129704		113,200728 He 12024	ESTs; Weakly similar to !! ALU CLASS B WARNING ENTRY !! [H.sapiens] ubiquitin specific protease 22	1.602
55		AA206800			1.602
-	130457		Hs.155976	ESTs; Moderately similar to zinc finger protein dp [H.sapiens]	1.601
		AA485211	Hs.190046		1.6
		AA256460	Hs.44610		1.6 1.6
	117731		Hs.46609		1.6
					•••

	123344	AA504338	Hs.171857		1.599
		X86098	Hs.3238	adenovirus 5 E1A binding protein	1.597
	125370	AA256743	Hs.151791	KIAA0092 gene product	1.596
	114918	AA236813	Hs.72324	ESTs; Highly similar to unknown [H.sapiens]	1.596
5	114807	AA160805	Hs.199832	ESTs	1.596
	105103	AA151593	Hs.10130		1.594
	125004	T60120		yb68f02.s1 Stratagene ovary (#937217) Homo sapiens cDNA clone	
				IMAGE:76347 3', mRNA sequence.	1.592
	105658	AA282914	Hs.10176	ESTs	1.589
10	110455	H52172		yt85e8.s1 Soares_pineal_gland_N3HPG Homo sapiens cDNA clone	
				IMAGE:23111 3' similar to contains Alu repetitive element, mRNA sequence	1.589
	119780	W72967	Hs.191381	ESTs; Weakly similar to hypothetical protein [H.sapiens]	1.587
	126983	AA211537		zn55d01.r1 Stratagene muscle 937209 Homo sapiens cDNA clone	
				IMAGE:562081 5', mRNA sequence.	1.586
15	134675	AA250745	Hs.87773	protein kinase; cAMP-dependent; catalytic; beta	1.584
		AA252033	Hs.15036	• •	1.584
		Z40251	Hs.56974		1.584
		AA428137	Hs.86434	ESTS	1.581
00		AA456311	Hs.93961	ESTs; Weakly similar to !! ALU CLASS A WARNING ENTRY !! [H.sapiens]	1.581
20		AA479295		Kelch motif containing protein	1.581
		W67569	Hs.44143	ESTs; Weakly similar to SNF2alpha protein [H.sapiens]	1.58
		D80948	Hs.34922		1.58 1.58
		AA424558	Hs.9302	phosducin-like	1.579
25		AA279422	Hs.5724	ESTs	1.577
25		R27598			1.575
		R98173	Hs.23763	Max-interacting protein ESTs	1.575
		N21680	Hs.43047		1.575
		M33772 AA459703		troponin C2; fast v-myc avian myelocytomatosis viral oncogene homolog	1.575
30			Hs.79070 Hs.58432	ESTs	1.575
50		W90625 N32157	Hs.82207		1.574
		AA452865		UDP-Gat:betaGlcNAc beta 1;4- galactosyltransferase; polypeptide 2	1.573
		AA609204	Hs.27973		1.573
		AA810215	Hs.189079		1.571
35		W72798		ESTs; Wkty smlr to cDNA EST EMBL:D32579 comes from this gene [C.elegans]	1.571
<b>J</b> J		AA135638	Hs.223756		1.571
		AA456112	Hs.99410		1.57
		H12636		ESTs; Weakly similar to reverse transcriptase [H.sapiens]	1.568
		AA609828	Hs.21015	ESTs: Highly similar to tetracycline transporter-like protein [M.musculus]	1.568
40		Z41366	Hs.40109		1.567
		N53076	Hs.5996	ESTs	1.567
		AA913491	Hs.189143	ESTs; Modrtly smlr to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	1.567
	112046	R43365	Hs.22273		1.566
		AA281770	Hs.184081	seven in absentia (Drosophila) homolog 1	1.566
45	111568	R10153	Hs.20561	ESTs	1.566
	127775	H04106	Hs.179902	ESTs; Weakly similar to NG22 [H.sapiens]	1.566
	115359	AA281936	Hs.88914	ESTs	1.566
	121845	AA425734	Hs.165066	ESTs; Weakly similar to hypothetical protein [H.sapiens]	1.565
~~	127854	AA769520		ESTs; Weakly similar to REGULATOR OF MITOTIC SPINDLE	
50				ASSEMBLY 1 [H.saplens]	1.564
		AA187679	Hs.111114		1.563
	114940	AA243012	Hs.75928	ESTs	1.562
		AA031700	Hs.251962		1.562
		U97188	Hs.79440	IGF-II mRNA-binding protein 3	1.561
55	125390	H95094	Hs.75187	translocase of outer mitochondrial membrane 20 (yeast) homolog	1.561
	115334	AA281244	Hs.65300	ESTs	1.559
		T97931	Hs.18190		1.558
		AA236177	Hs.76591	KIAA0887 protein	1.558
<i>6</i> 0		T62571		microtubule-associated protein 7	1.558
60		AA039616	Hs.61933	ESTs protein kinase; cAMP-dependent; regulatory; type II; alpha	1.558 1.557
	100000	AA156499	Hs.8454	syndecan 1	1.557
		R82074	Hs.82109	•	1.553
		D51401 AA490899	Hs.70333 Hs.24462		1.553
65					1.552
UJ		N74075 W20016	Hs.94293	ESTs; Weakly similar to ZINC FINGER PROTEIN 83 [H.sapiens]	1.55
		AA438720	Hs.65487		1.55
		AA025234	Hs.61260		1.55
		N21407	Hs.257325	FSTs	1.55
	104020	1451401	لنتان البحباء ا		

	400700	F00004	11-04700	FOT-W-11 1 H & OFFICE IS A L	
		F09684	Hs.24792	ESTs; Weakly similar to ORF YOR283w [S.cerevisiae]	1.55
		AA187938	Hs.55189	,,	1.548
		AA443277	Hs.31034		1.548
-		AA235627	Hs.11171	APG5 (autophagy 5; S. cerevisìae)-like	1.547
5		D11961	Hs.77823	ESTs	1.546
	128172	Al400862	Hs.142607		1.546
	114162	Z38909	Hs.22265		1.545
		M86546	Hs.155691	pre-B-cell leukemia transcription factor 1	1.544
	113617	T93630	Hs.17207	ESTs	1.542
10	104896	AA054228	Hs.23165	ESTs	1.541
	114477	AA032013	Hs.144260	EST	1.54
	110731	H98653	Hs.188006	KIAA0878 protein	1.54
	130367	Z38501	Hs.8768	ESTs; Wkly smlr to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	1.538
	130539	L07044	Hs.250857	Homo sapiens calcium/calmodulin-dependent protein kinase II mRNA; partial cds	1.538
15		W60186		Kreisler (mouse) maf-related leucine zipper homolog	1.537
		W24957		ESTs; Moderately similar to similar to C.elegans protein	
				encoded in cosmid T20D3 [H.sapiens]	1.537
	133723	AA088851	Hs.75744	S-adenosylmethionine decarboxylase 1	1.537
		AA449469	Hs.11859	ESTs	1.536
20		AA429838	Hs.89519	KIAA1046 protein	1.536
		HG1879-HT19		Ras-Like Protein Tc10	1.535
		R09049	Hs.17625		1.535
		AA279153	Hs.190049		1.535
		T03391	Hs.8087	ESTs	1.535
25		AA418662	Hs.44625	ESTs	1.535
23		AA286941	Hs.43691	ESTs	1.533
		T59442	Hs.100445		1.532
		U30888	Hs.75981	ubiquitin specific protease 14 (tRNA-guanine transglycosylase)	
		AA426299	Hs.98510	ESTs	1.532
30		Z41747	Hs.469		1.532
50		AA054515	Hs.6127	succinate dehydrogenase complex; subunit A; flavoprotein (Fp)	1.531
			Hs.29822	ESTs; Weakly similar to prostate-specific transglutaminase [H.sapiens]	1.53
		N68210			1.53
		T88878	Hs.258738		1.529
35		AA490882	Hs.112227		1.528
22		AA156049	Hs.65490		1.528
		AA027163	Hs.7942	ESTs	1.526
		AA279408	Hs.25866		1.526
		U67156		mitogen-activated protein kinase kinase kinase 5	1.526
40		Z40758		DKFZP434K151 protein	1.525
40		T03488	Hs.4842	ESTs	1.525
		AA525014	Hs.162115		1.525
				cadherin 19 (NOTE: redefinition of symbol)	1.525
		W80702	Hs.58461	ESTS	1.525
AF		L00389	Hs.1361	cytochrome P450; subfamily I (aromatic compound-inducible); polypeptide 2	1.524
45		N89670		ESTs; Wealdy similar to Su(P) [D.melanogaster]	1.523
		C13961	Hs.210115		1.523
			Hs.166459		1.522
			Hs.134173		1.522
50		X17059		N-acetyltransferase 1 (arylamine N-acetyltransferase)	1.521
50			Hs.12396	ESTs	1.521
	127093	AA768241		oa72d02.s1 NCI_CGAP_GCB1 Homo sapiens cDNA done	
				IMAGE:1317795 3', mRNA sequence.	1.521
			Hs.4113	S-adenosylhomocysteine hydrolase-like 1	1.521
	125303		Hs.107295		1.52
55	132697	AA281951	Hs.5518	Homo sapiens mRNA; cDNA DKFZp566J2146 (from clone DKFZp566J2146)	1.52
				ESTs	1.519
	113355	T79203	Hs.14480	ESTs	1.518
	108621	AA101811	Hs.69506	ESTs	1.518
	109384	AA219172	Hs.86849	EST	1.518
60	128510	X94703	Hs.100816	RAB28; member RAS oncogene family	1.517
	132968	N77151	Hs.61638	myosin X	1.515
	117035	H88798	Hs.41182	EŚTs	1.515
			Hs.52132		1.513
			Hs.118531		1.513
65				ESTs	1.513
				golgi SNAP receptor complex member 1	1.512
	116618			ESTs	1.508
	126257			tumor necrosis factor receptor superfamily; member 10b	1.508
				ubiquitin-conjugating enzyme E2D 3 (homologous to yeast UBC4/5)	1.508
				' - ' O O ' - ma a frammaBase to large and stal	

	113837	W57698	Hs.8888	ESTs	1.507
	114317	Z41038	Hs.469	succinate dehydrogenase complex; subunit A; flavoprotein (Fp)	1.507
	100311	D50640	Hs.184653	phosphodiesterase 3B; cGMP-inhibited	1.507
	126802	AA947601	Hs.97056	ESTs	1.506
5	128661	R82837	Hs.103329	KIAA0970 protein	1.506
	134194	AA233231	Hs.79828	ESTs	1.506
	108953	AA149652	Hs.42128	ESTs	1.504
	133240	D31161	Hs.68613	ESTs	1.502
	132671	X76302	Hs.54649	putative nucleic acid binding protein RY-1	1.501
10	132609	Z48923	Hs.53250	bone morphogenetic protein receptor; type II (serine/threonine kinase)	1.501
	105574	AA278678	Hs.258567		1.5
	113718	T97782	Hs.256268	ESTs	1.5
	127824	AI208365	Hs.127811	ESTs	1.5
	130132	U55936	Hs.184376	synaptosomal-associated protein; 23kD	1.5
15	127394	AA453224		ESTs; Wealty similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	1.5
	100485	HG1111-HT1111		Ras-Like Protein Tc21	1.5
	101078	L04510	Hs.792	ADP-ribosylation factor domain protein 1; 64kD	1.5
	128611	AA456845	Hs.102471	KIAA0680 gene product	15

TABLE 12A shows the accession numbers for those primekeys lacking unigeneID's for Table 12. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10	Pkey: CAT nui Accessi		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
15	Pkey	CAT number	Accession
20	117040	119811_1 46956_1 18457_1	AA084524 AA339253 AW966289 AW970600 AA503323 H89218 AF086031 H89112 AA355435 NM_001516 Z30093 T28405 AW949486 AA461142 AA410532 Al652073 AA521208 Al970141 Al968234 Al026102 AA713583 AW135876 AA936614 AA770300 Al242635 AA377033 AW960263 AW607683 Al273803 AA410287 Al040513 AA460838 Al803916 AW294095 AW449680 AW798677 AW675048 BE542116 AL120521
25	100819	3022_1 5_36	L34840 NM_003241 U31905 Al546931 Al791616 Al973065 Al792321 Al546937 Al685880 Al732835 Al682360 AA420653 AA564047 Al682323 Al824614 Al659889 Al680052 Al970887 Al623108 AA420692 Al418074 AA631018 Al810595 AW291463 AW449930 Al668908 Al970818 Al393237 Al521317 Al761348 AF025841 D43968 AW994987 L34598 AF025841 D89789 D89788 D89780 AW998932 Al971742 Al310238 X90976 AW139668 AW674280 Al365552 AA877452 AV657554 C75229 AA376077 Al798056 AW609213
30			W25586 H30149 BE075089 BE075190 AW580858 H99598 AA425238 AA133916 AW363478 BE158121 BE158127 AW467960 BE158135 BE158126 BE158145 N92860 AA847246 AI961688 AI361423 AA878154 AA043767 AI863712 AI559226 AW339007 AI371266 AI368901 AA046624 AA134739 AW449154 AA130232 AI458720 AA962511 AI700627 R70437 AW004008 AA045229 AI671572 H99599 AA043768 AI685454 AI871685 N29937 X90977 AA524240 AI142114 AI825750 AI567805 AI631365 AI347893 AA134740 F20669 AA046707 AW793216 AW963298 AW959380 AA363265
35		264197_1 27608_1 553_1	AI784593 AI268201 R69451 AV657618 AI695588 BE312163 AI230798 AA374482 AI926059 AA622653 AI860704 BE139185 AW296884 T60238 T60120 U33921 AI190489 AA573311 AI814663 AA806761 AA765241 AA019317 AA092255 AA035405 T85079 AA890151 AI373959 T85080 BE153728 AA740848 BE080682 AL048137 AW182316 AI699468 AW274481 AW407538 AA306562 AW950024 AW949943 AL045703 AW843196 W25132 BE612794 AA304266 AW958054 H25673 AV646563 AV646573 BE172990 AW593488 AA385181 AA164998
40			Al246476 AA345406 Al277554 AA134749 AA856624 BE613247 AA299003 AL048138 AA028121 T92510 Al923835 AW020440 Al401594 Al889401 N93290 AA044247 AA028100 Al582845 AA811151 Al741811 Al925878 AA448277 AA172221 Al214783 BE220793 AA022746 Al082882 AA022849 Al928385 AA573472 Al420686 AW072902 Al799493 Al873506 Al468977 Al192079 Al468976 AA044272 AW015701 AW316979 AA933042 AA609017 Al318393 Al424571 Al934945 AA172023 AW050917 AA846180 AA134748 Al003947 Al766769 AW006697 AA653517 AW575680 Al474214 AA401478
45			U36922 AA927064 AA868000 D62654 T91745 AW500202 AA194764 AA746346 AA130464 AW117498 AA054526 N26432 H02634 H04964 AW303367 BE300931 AI218049 AI208073 AW182749 AA983630 A147585 AA194765 AA054534 AA922720 AI436585 AI346535 AA194269 AA280923 AA897422 AA019559 AW274010 AA035406 AA917879 H959327 W32908 AI216046 AW496823 AA019414 H82288 W35284 AI936621 AI767113 AA866177 AW367874 H82398 AF032885 AW300151 AW467069 AA809346 AI188507 AI494178 AA872752 AI631631 U02310 NM_002015 AA815006 AI382453 AW197658 AI761654 AI804396 AI382221 AI813640 AI439635 AI523901 AW517242 AI221705 AW298104 AW204560 AW573095 AW028783
50	404704	000010 4	AW014650 Al766744 Al808294 Al698758 Al041809 Al766667 Al479103 AA872797 AA769305 AA765080 AA334166 Al472322
55	116988 124825 110455 126257	292319_1 185904_1 330773_1 46874_1 182217_1	R07335 R07640 AW953679 AW953680 AA244436 H82527 AA361046 AA244483 H82526 AA501669 R52088 H52576 AF085971 H52172 N99638 AW973750 AA328271 H90994 AA558020 AA234435 N59599 R94815
60	104038	154135_1 264235_1 43892_1	AW968363 AA465492 R34539 AA165411  AA374532 AA421255  BE514383 AA071273 AW247987 AW673286 BE312102 AW749824 BE071985 AW577383 BE071945 BE072005 AW577355  BE071965 AW239231 BE072000 BE071960 AW577360 AW749830 AW373020 X97303 AW999522 BE000192 BE562219  BE266655 BE264970
		113242_1 47721_1	AA074713 AA447006 AW977549 AA256038 AL365415 AW500455 AA768241 AW968097 Z17849 AA256104

	125873	10492_1	AW271838 AL133605 C01646 H29959 AA999896 D60676 AW999454 AW961176 AA315244 H14437 AW386118 N46512 AW272021 A168516 BE466421 Al082809 Al804454 AA905101 AW173368 N38942 AW614169 Al080483 N29489 Al500550
5	125954	4457_1	AA994475 AA614464 AA707368 AA593145 AA569473 AW627815 AI828244 N63226 N42300  NM_016353 AB023584 W44753 R09585 AA382865 R23772 AI814257 AA974046 AK001608 AI935638 AW440609 AI420022  AA777386 AA806969 AI554876 AI584006 AI688556 AI688634 AI697997 AI014540 AI806683 AI741202 AW263154  AW297238 AI149951 AI589076 AW082158 AW614265 AA931887 AA781969 R09490 AA484643 AI207121 AI088390  AI538065 AI619547 AI741925 AI702846 H40846 R93943 AW747979 AA461348 U30163 AA326023 AI535992 AW242870  AI244025 AI222558 W38425 AW473630 AI624599 AI921226 AI683152 AI096458 AI123822 AW170802 C16447 AI337674
10		1589048_1 15307_6	D25726 AW339366 AW771259 AA461174 H48372 W01626 AA305278 AA223833
			110924 6443_1 AW058463 AF195766 AA680145 T86901 W60373 W60281 NM_007222 AF106862 Al000795 AA167188 AW884503 AW891313 AW891332 AW891312 Al984924 Al123518 N75170 AA131614 H25330 Al913358 Al742277 W25576 R58771 AW445159 AW888628 AW888627 AW274674 Al088482 N52314 N34282 AW001769 Al338943 T66784 Al288963
15			AW468676 AW237528 H25289 N71690 AA610128 AI143458 AI082599 N49144 AA854773 AW663411 AW610151 N47938 AW601626 AA167189 AA918304 AA805205 BE069496 AA652836 BE069499 AI699298 AW249926 AW888578 BE567635 T10726 AW604715 D54245 D53062 D55610 D55555 AA301376 AI133498 N77788 AI936320 AW090734 AI269977 N50828 AA550814 AI421993 AI005384 N50813 D60292 D59349 AA131710 D81698 D81699
20		232161_1 29440_1	AA331156 AA331157 AA331155 U76456 NM_003256 AF057532 AA193414 AW293304 AW963378 AA313095 AI359841 AI969312 AI080163 AW448926 AI671136 BE466399 AI637967 AI671873 AW196583 AW071635 AI634427 AW296872 AW292470 AA193650
	127304	304844 1	RE161932 AAA53224 AAA95772
		1860_2	D90391 M55575 A1652268 AA719776
		171841_1	AA524886 AW971347 AA211537
25		188975_1	AW971327 AA524988 AW628653 AA251797
	127854	443883_1	AW976796 AA769520
	121367	280429_1	AA432071 AA405648 AW000908 T16347
	106320	6435_1	AB028957 AL120001 Al267678 H10928 R19844 AW970334 AA393182 F05472 F11711 H09908 N50250 Al815411 BE463679
			D61468 AW970253 D60889 C15548 D61011 D60867 AI815795 AA534831 D81386 AW235039 AI382158 D81174 AA416899
30			AA852310 H09789 H10929 H09813 F09369 R44721 D51515 Z38456 R14004 T66255 F12148 F12139 AW351702 M85350
	445470	004645 4	Al018713 AW972450 AW972645 AA514964 T66172 F09785 F09776 AA436608 T05327 T07118 AA339352
	•	201515_1	AW301608 N46706 AA649093 AA287595 AW811753 AA287596 N39260
	101020	11075_1	NM_001874 J04970 T91426 AW205201 T84979 AA255727 AA847837 R02164 T91339 AV651884 AV651835 AV651350
35	100/01	24827 1	AV650118 AV651338 Al272002 Al367796 AA830651 AA262112 AW151198 AU076696 AA219720 AL135197 AA305877 N56376 AA318063 AA130725 AW954903 BE541230 AW383312 U86753 D85423
33	100401	24027_1	Al679458 Al122932 AB007892 Al583919 BE160134 F08104 R34903 F13440 AA095444 AA262453 AA191036 R17895
•			T81266 BE149776 Al279537 Al143113 AA361072 AW959030 AW268817 AA811533 BE275179 Al221677 T65147 R49293 AA249176 BE000290 AA768053 F09494 BE092645 BE172099 Z41177 AA044750 Al909768 BE140795 BE140574 AW845210
			AW752452 BE243244 AA843664 AI300080 BE169032 AW189979 BE004869 AA621872 AI951772 AI678897 AI926598
40			N62813 Al350912 AW608791 Al309602 Al983138 AW875592 Al655073 AW875626 AA130606 Al370827 C75528 C75554
			AW263335 Al344426 BE004788 AA576220 AA604824 Al431405 AA749378 R38882 AW955075 AA173821 C75657
		•	AA219672 AW768408 R43141 Al431414 AA483343 Al673792 T17294 AW770187 N74285 Al476404 Al088288 AA654152
	400-40		AW974864 BE617311 BE243328 BE168049
45	130542	28089_3	U64675 AW167507 AW167508 BE218568 AA779360 W85722 AL044843 BE159404 AF012086 AW898611 AW898610
42			BE159405 BE092191 AW890826 AW369841 AW368064 AW606702 AL044731 R82691 AA419346 AA416558 H96045 AL040450 Al640531 Al808434 AL046613 AW855784 AW362469 AL048881 AL049015 AA094272 AA888908 AA417294 AW237786 R59793 AL044916 D82402 Al216854 Al079342 H96406 AL037845 Al915900 AA972133 Al478783 T31074 Z21135 Z21396 AA352182 R13918 AA430178 C17811 Al371824 Al742256 AA926801 N79156 AA350610 AA081971 N83639
			R35544 AA312292 AW952080 N42322 AA171957 AA565297 R89207 AA504106 Al630782 AA826482 Al301579 T36241
50			AW966618 Z28426 AL043480 Al124636 AA393449 T19504 AW887823 Al289814 N53979 AL043571 Al632764 Al859613
			Al986308 Al683212 Al984499 Al133258 C05898 AW512761 Al041260 BE466240 Z19161 Al351190 N67549 Al373374
			AA400873 AW440914 AW514879 AA770146 Al358754 R51113 Al283773 AA649886 T30543 D54358 R37750 T03358
			T15451 T15880 AA999689 N67396 Al056289 T85597 N62441 R89099 R00035 T85596 R61335 R00128 N63359 Al535964
55	100485	30576_2	Al207768 M31468 NM_012250 W01322 AA253280 AA253233 AA293148 AW582106 R79880 AA459547 AA363459
23	400045	440077 0	AA234396 N31669 H44468 AA434587 AW363088 AW993541
		112277_6 19669_1	AA070906 AA070934 VELECI NIN 002650 V10170 102460 A1701618 A1801472 AA016688 AA664006 AA016410 A1070006 ALADATO ALGOTOO
	100022	19009_1	X51501 NM_002652 Y10179 J03460 Al791618 Al821473 AA916588 AA564296 AA916110 Al972286 Al420470 Al568790 Al597724 AW205207 Al659305 Al791620 AA532383 Al821475 AA526498
	100533	32905. 1	NM_012249 M31470 AL043108 AA262561 AA178883 T29433 AA313329 W48807 AW404323 AA453560 AW403227 H94816
60			W17101 AA165152 W23989 AA091310
	100598	23902_2	AL121734 D54896 AA424269 BE242906 AA362118 BE018454 Al280348 AL048769 M35543 AA757734 Al128865 H20289
		· <del>-</del>	H23728 Al203445 H41481 H18237 H44081 H92839 Al928621 H75675 D51148 Al796198 AW390453 D55579 D54145 D53996
			D54015 R37664 H17541 AA668681 T65061 R15867 AW468123 R16049 H69030 AA054226 H16070 F09655 R92144 T03521
			R05473 H92840 AA018186 R91707
65	102332	14745_3	U35637 AA112989 Z19308
	118250	genbank_N62602	
		entrez_Z84483	
		genbank_T92767	
	119559	entrez_W38197	W38197
			$\cdot$

## MISSING AT THE TIME OF PUBLICATION

**TABLE 13:** shows genes, including expression sequence tags, up-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu02 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

5

10	Pkey: ExAcon: Unigene Unigene R1:	ID:	Exemplar A Unigene nu Unigene ge		
	Pkey	ExAccn	UnigenelD	Unigene Title	R1
15	333516 337954	Panaoo	11-004054	CH22_FGENES.173_1 CH22_EM.AC005500.GENSCAN.96-3	0.028 0.029
20	337944 334111	R73299	N5.204354	ras homolog gene family; member B CH22_EM:AC005500.GENSCAN.89-7 CH22_FGENES.330_10	0.03 0.033 0.033
20		AL137354		CH22_FGENES.241_2 CH.04_hs gi 6525284 CH22_FGENES.817_5 EST cluster (not in UniGene)	0.034 ~ 0.034 0.035 0.035
25	330096 335191	AW079607	Hs.188417	CH22_FGENES.821_5 ESTs; Weakly similar to ZnT-3 [H.sapiens] CH.19_p2 gi 6015278 CH22_FGENES.507_6	0.036 0.037 0.037 0.038
30	334040 333586 333295 313326	Al088120	Hs.122329	CH22_FGENES.322_8 CH22_FGENES.204_2 CH22_FGENES.132_2 ESTs	0.039 0.04 0.042 0.043
	329517 333403 335226		,	CH.10_p2 gi 3983513 CH22_FGENES.144_21 CH22_FGENES.513_11	0.043 0.043 0.044
35	335976 333637 334582 336437			CH22_FGENES.652_11 CH22_FGENES.229_2 CH22_FGENES.407_5 CH22_FGENES.826_4	0.045 0.046 0.046 0.047
40	337461 302892 338689 334721	N58545	Hs.6975	CH22_FGENES.782-1 histone deacetylase 3 CH22_EM:AC005500.GENSCAN.475-3 CH22_FGENES.421_32	0.047 0.049 0.049 0.049
45	305867 335498 311596	AA864572 Al682088	Hs.223368	EST singleton (not in UniGene) with exon hit CH22_FGENES.571_7 ESTs	0.049 0.05 0.05
		AW025661 Al922374	Hs.240090 Hs.158549		0.051 0.052 0.052 0.052
50	335844 325371 335667	AW247083		EST cluster (not in UniGene) CH22_FGENES.623_4 CH.12_hs gi[5866920 CH22_FGENES.590_18	0.053 0.053 0.054 0.054
55	333635 336736 335893 333170 329768			CH22_FGENES.228_2 CH22_FGENES.110-2 CH22_FGENES.635_1 CH22_FGENES.94_5 CH.14_p2 gi 6015501	0.054 0.055 0.055 0.055 0.055
60	334030 323359	AA234172 AW051431	Hs.137418 Hs.113029	CH22_FGENES.320_2	0.055 0.055 0.055 0.055
65	331087 338620 339045	Al000246 R22520 Al452732	Hs.23398	EST singleton (not in UniGene) with exon hit ESTs CH22_EM:AC005500.GENSCAN.450-18 CH22_DA59H18.GENSCAN.28-5 EST singleton (not in UniGene) with exon hit	0.055 0.055 0.056 0.056 0.057
				and a second sec	

				•	
	339067			CH22_DA59H18.GENSCAN.33-3	0.057
	335689			CH22_FGENES.596_4	0.057
	339069			CH22_DA59H18.GENSCAN.33-5	0.057
	338176			CH22_EM:AC005500.GENSCAN.219-4	0.057
5	328159			CH.06_hs gi 5868065	0.058
•	335655			CH22_FGENES.590_6	0.058
	336371			CH22_FGENES.820_1	0.058
	336558			CH22_FGENES.842_3	0.059
	337738			CH22_EM:AC000097.GENSCAN.100-4	0.059
10	334273	•		CH22_FGENES.369_2	0.059
10	335889			CH22_FGENES.633_3	0.059
	327807			CH.05_hs gij5867968	
				CH22_FGENES.138_7	0.059
	333315				0.059
15	338825 337612		•	CH22_DJ246D7.GENSCAN.4-6	0.06
13				CH22_C20H12.GENSCAN.22-5	0.06
	333897			CH22_FGENES 293_4	0.06
	335990			CH22_FGENES.655_4	0.06
	334264			CH22_FGENES.367_15	0.06
20	338653	14/07/450		CH22_EM:AC005500.GENSCAN.460-39	0.061
20		W07459		EST cluster (not in UniGene)	0.061
	333498			CH22_FGENES.168_8	0.061
	336522	*****	11. 400040	CH22_FGENES.839_3	0.061 _
	301357	AW295677	Hs.137840	ESTs; Moderately similar to HOMEOBOX	
05				PROTEIN SIX1 [H.sapiens]	0.062
25		AA876469	Hs.181357	laminin receptor 1 (67kD; ribosomal protein SA)	0.062
	336143			CH22_FGENES.705_5	0.063
	333493			CH22_FGENES.168_2	0.063
	332533	M99487	Hs.1915	folate hydrolase (prostate-specific membrane antigen) 1	0.063
~~	325844			CH.16_hs gi 6552453	0.063
30	336402			CH22_FGENES.823_17	0.063
	335767			CH22_FGENES.607_1	0.064
		T80334		EST cluster (not in UniGene) with exon hit	0.064
	324019	AW177009		EST cluster (not in UniGene)	0.064
~~	305801	AA845997		EST singleton (not in UniGene) with exon hit	0.064
35	335188			CH22_FGENES.507_3	0.065
	337533			CH22_FGENES.828-2	0.065
	333311			CH22_FGENES.138_3	0.065
	335668			CH22_FGENES.590_19	0.065
40	306786	Al041589		EST singleton (not in UniGene) with exon hit	0.066
40	306365	AA962086		EST singleton (not in UniGene) with exon hit	0.066
	306249	AA933840		EST singleton (not in UniGene) with exon hit	0.066
	335018			CH22_FGENES.474_6	0.066
	333594			CH22_FGENES.210_3	0.066
	333900			CH22_FGENES.293_7	0.066
45	325207			CH.10_hs gi 6552430	0.067
	329888			CH.15_p2 gi 6067149	0.067
	326238			CH.17_hs gil5867260	0.067
	333658			CH22_FGENES.241_4	0.067
	335809			CH22_FGENES.617_6	0.068
50	307427	Al243437		EST singleton (not in UniGene) with exon hit	0.068
	318428	Al949409	Hs.224583	,	0.069
	327005			CH.21_hs gij5867664	0.069
		HG998-HT998		Sulfotransferase, Phenol-Preferring	0.069
	333318		•	CH22_FGENES.138_10	0.07
55	333313			CH22_FGENES.138_5	0.07
	325937			CH.16_hs gl 5867132	0.07
	335663		·	CH22_FGENES.590_14	0.07
	335349			CH22_FGENES.539_2	0.07
		AA224470	Hs.25426	ESTs; Weakly similar to unknown [H.sapiens]	0.07
60	332603		Hs.33470	ESTs	0.07
00	333310	1100001	113.00410	CH22_FGENES.138_2	
		A34/240012			0.071
		AW340812		EST singleton (not in UniGene) with exon hit	0.071
	336340	ALAEGGOS	Lie 170000	CH22_FGENES.814_15	0.071
65		AI453365	ris. (72928	collagen; type I; alpha 1 EST singleton (not in UniGene) with exon hit	0.071
UJ		AI055966			0.071
	335499			CH22_FGENES.571_8	0.071
	329669	DOGGGG		CH.14_p2 gij6272129	0.071
	321666	<b>レ28390</b>		EST cluster (not in UniGene)	0.071
	338174			CH22_EM:AC005500.GENSCAN.219-2	0.072

	336556			CH22_FGENES.842_1	0.072
		AA738105	Hs.140	immunoglobulin gamma 3 (Gm marker)	0.072
	336684			CH22_FGENES.46-1	0.072
5	326943			CH.21_hs gi 6004446	0.073
5	333947			CH22_FGENES.303_1	0.074
	333214		11- 474005	CH22_FGENES.104_5	0.074
		AA446572	HS.174007	' ESTs; Moderately similar to !!!! ALU SUBFAMILY J WARNING	0.074
	339102			CH22_DA59H18.GENSCAN.44-9	0.074
10	328122	Menzin	Un noccoo	CH.06_hs gi[5868031	0.075
10	328506	N62712	HS.220223	KIAA0618 gene product	0.075
		AA291468	Hs.98504	CH.07_hs gi 5868471	0.075
	335193	M231400	115.56504		0.075
		AA971718	Hs.128141	CH22_FGENES.507_8	0.076
15		AA458708		hemoglobin; alpha 2	0.076
		Al565766	Hs.124960		0.076 0.076
	326145	/1000/00	1.0.12.1000	CH.17_hs gi 5867204	0.076
	336394			CH22_FGENES.823_6	0.070
		AA989542		EST singleton (not in UniGene) with exon hit	0.077
20		AA152119	Hs.155101	ATP synthase; H+ transporting; mitochondrial F1 complex; alpha s	
				isoform 1; cardiac muscle	0.077
	333160			CH22_FGENES.91_2	0.077
	337490			CH22_FGENES.799-5	0.077
	305403	AA723748		EST singleton (not in UniGene) with exon hit	0.077
25	331747	AA281765	Hs.193689	ESTs	0.077
	332792			CH22_FGENES.3_2	0.078
		M81057		carboxypeptidase B1 (tissue)	0.078
		A1859636	Hs.8102	ribosomal protein S20	0.078
20	337419			CH22_FGENES.759-4	0.078
30	333459			CH22_FGENES.157_8	0.078
•	334851			CH22_FGENES.440_3	0.078
	329046			CH.X_hs gi[5868569	0.078
	327879	4.4057005		CH.06_hs gi 5868142	0.079
35		AA857665		EST singleton (not in UniGene) with exon hit	0.079
33		AL137719	U- 110000	EST cluster (not in UniGene) with exon hit	0.079
	326390	AA136698	HS.113029	ribosomal protein S25	0.079
	335230			CH.19_hs gi 5867340	0.079
	334622			CH22_FGENES.514_2 CH22_FGENES.412_6	0.08
40	335331			CH22_FGENES.535_4	80.0 80.0
		AA578840	Hs.77961	major histocompatibility complex; class I; B	0.08
		Al418863		EST cluster (not in UniGene) with exon hit	0.081
	336561			CH22_FGENES.842_6	0.081
	335611			CH22_FGENES.583 5	0.081
45	305060	AA635771		EST singleton (not in UniGene) with exon hit	0.081
	306051	AA905130		EST singleton (not in UniGene) with exon hit	0.082
	308289	Al571211		EST singleton (not in UniGene) with exon hit	0.082
	334365			CH22_FGENES.378_13	0.082
~^	335496			CH22_FGENES.571_4	0.082
50	332634	S38953		Human unidentified gene complementary to P450c21	
				gene; partial cds	0.082
	337824			CH22_EM:AC005500.GENSCAN.13-18	0.082
	335822			CH22_FGENES.619_7	0.082
55	334758	41414.0.4000	11-000400	CH22_FGENES.428_7	0.082
JJ		AW194230	Hs.253100		0.082
	333064		•	CH22_FGENES.75_7	0.083
	338695	AA400400	U- 07010	CH22_EM:AC005500.GENSCAN.477-25	0.083
		AA402482	Hs.97312	ESTs	0.083
60	326138	•		CH.17_hs gi 5867203	0.083
50	328304 330570	HE027E	He 165/20	CH.07_hs gi[6004478 arsA (bacterial) arsenite transporter; ATP-binding; homolog 1	0.083
	334305	000270	113,100433	CH22 FGENES.373.8	0.083
	335885				0.083
	325839			CH22_FGENES.632_3 CH.16_hs gi 6552452	0.083
65	333531			CH.16_118 gip032432 CH22_FGENES.175_18	0.083 0.084
		AA449749	Hs.31386	ESTs; Highly similar to secreted apoptosis related protein	J.JO4
			* 10.0 1000	1 [H.sapiens]	0.084
	323305	AAB11351	Hs.25307	Homo sapiens clone 24812 mRNA sequence	0.084
	331698			ESTs	0.084
	J				3.004

	335888			CH22_FGENES.633_2		0.084
		AA894390		EST singleton (not in UniGene) with exon hit		0.084
	334249	********	11- 440440	CH22_FGENES.365_15		0.084
5		AW451197	Hs.113418			0.084
J	330171			CH.02_p2 gij6648220		0.084
	336662	Al815668	He 157476	CH22_FGENES.41-1 suc1-associated neurotrophic factor target 2		.0.003
	320000	A1013000	113.137770	(FGFR signalling adaptor)		0.085
	316974	Al740721	Hs.128292			0.085
10	336492			CH22_FGENES.832_9		0.085
	335750			CH22_FGENES.602_4		0.085
	335676			CH22_FGENES.594_1		0.086
	336093			CH22_FGENES.691_2		0.086
1.5		Al933861	Hs.222852			0.086
15	335160			CH22_FGENES.502_4 CH22_FGENES.373_9		0.086 0.086
	334306 334793			CH22_FGENES.433_5		0.086
	333936			CH22_FGENES.301_2		0.087
	336413			CH22_FGENES.823_35		0.087
20	333775			CH22_FGENES.272_6	• .	0.087
	335971			CH22_FGENES.652_4		0.087
		Al815981		EST cluster (not in UniGene) with exon hit		0.087
	339101			CH22_DA59H18.GENSCAN.44-6		0.087
25	327612			CH.04_hs gi 6525283		0.087
25	326241			CH.17_hs gi 5867260 CH22_EM:AC005500.GENSCAN.331-4		0.088 0.088
	338386 327762			CH.05_hs gi 5867961		0.088
		AA679772		EST singleton (not in UniGene) with exon hit		0.088
,	334359			CH22_FGENES.378_4		0.088
30	335500			CH22_FGENES.571_10		0.088
	329687			CH.14_p2 gi 6117856		0.088
	333654			CH22_FGENES.240_2		0.088
		AA464018		EST cluster (not in UniGene)		0.088
35	325999			CH.16_hs gi 5867073		0.089 0.089
33	334832 339115			CH22_FGENES.439_1 CH22_DA59H18.GENSCAN.49-3		0.089
		Al916902	Hs.213882			0.089
	328784			CH.07_hs gi 5868309		0.089
	335044			CH22_FGENES.480_1		0.089
40	329791			CH.14_p2 gi 6469354		0.089
	333656			CH22_FGENES.240_4		0.089
	326180			CH.17_hs gij5867211		0.089
	333391 338324		•	CH22_FGENES.144_6 CH22_EM:AC005500.GENSCAN.306-3		0.089 0.089
45		AA721052		EST singleton (not in UniGene) with exon hit		0.089
	337483			CH22_FGENES.795-7		0.09
	326424			CH.19_hs gi[5867369		0.09
	306454	AA977992		EST singleton (not in UniGene) with exon hit		0.09
<b>~</b> 0	338893			CH22_DJ32110.GENSCAN.7-6		0.09
50	327470			CH.02_hs gi 5867772		0.09
	333165	A1400700	Un 100400	CH22_FGENES.91_7		0.09 0.09
		Al186738 AA233926	Hs.23635	ribosomal protein S2 ESTs	•	0.09
	335334	AA233320	115.23033	CH22 FGENES.535_10		0.09
55	335907			CH22_FGENES.636_2		0.09
	333885			CH22_FGENES.292_7		0.09
	331034	N51868	Hs.31965	ESTs; Moderately similar to 40S RIBOSOMAL		
				PROTEIN S20 [H.sapiens]		0.09
60		AA534416	Hs.162185			0.09
60	328217			CH.06_hs glj5868096		0.091
	336068	A A205381	Hs.44423	CH22_FGENES.684_13		0.091 0.091
	302833	AA295381	115,44423	ESTs CH.07_hs gi 5868254		0.091
	335309			CH22_FGENES.532_2		0.091
65	338481			CH22_EM:AC005500.GENSCAN.377-5	-	0.091
		AA936892		EST singleton (not in UniGene) with exon hit		0.091
		AA639783		EST singleton (not in UniGene) with exon hit		0.091
		AA594811		ribosomal protein L13a		0.091
	303856	AA968589	Hs.944	glucose phosphate isomerase		0.091

	323789	Al459812	Hs.170460	ESTs; Weakly similar to KIAA0990 protein [H.sapiens]	0.092
	334910			CH22_FGENES.455_3	0.092
	326382			CH.19_hs gi 5867327	0.092
	332467	AA489630	Hs.119004	KIAA0665 gene product	0.092
5	338534			CH22_EM:AC005500.GENSCAN.402-7	0.092
	336449			CH22_FGENES.829_6	0.092
	333709			CH22_FGENES.250_24	0.092
	336559			CH22_FGENES.842_4	0.092
	333230			CH22_FGENES.107_10	0.093
10	333133			CH22_FGENES.83_9	0.093
	334885			CH22_FGENES.451_11	0.093
		X02419	Hs.77274	plasminogen activator; urokinase	0.093
	336392	X02413	110.77=74	CH22_FGENES.823_4	0.093
	334083			CH22_FGENES.327_38	0.093
15	325469			CH.12_hs gi 6017034	0.093
13	-	DODES4	Hs.19039	ESTs	0.093
		R09531	U2.19099		0.093
		AW500732		EST cluster (not in UniGene) with exon hit	0.093
	334218			CH22_FGENES.358_3	0.093
20	336542			CH22_FGENES.840_6	
20	337151			CH22_FGENES.546-1	0.093
	333642			CH22_FGENES.231_2	0.093
	336863			CH22_FGENES.297-4	0.093
	334680			CH22_FGENES.419_2	0.093
	326365			CH.18_hs gij5867297	0.093
25	338952			CH22_DJ32I10.GENSCAN.23-22	0.093
	337539			CH22_FGENES.832-4	0.094
	333546			CH22_FGENES.180_2	0.094
	335258			CH22_FGENES.518_3	0.094
	336786			CH22_FGENES.168-19	0.094
30	321644	Al204177	Hs.237396	ESTs	0.094
	335943			CH22_FGENES.646_17	0.094
	327918			CH.06_hs gi 5868165	0.094
		AA970548		EST singleton (not in UniGene) with exon hit	0.094
	335671			CH22_FGENES.592_3	0.094
35	335033			CH22_FGENES.475_11	0.094
<i></i>	338277			CH22_EM:AC005500.GENSCAN.290-2	0.094
		AA504812	Hs 192824	early B-cell factor	0.094
		AA654582	Hs.77039	•	0.094
	333880	771007306	113.77000	CH22_FGENES.292_2	0.094
40		Al864428	Hs.170880		0.094
70		AA648796	Hs.129771		0.095
		AA169345	115.120771	EST cluster (not in UniGene)	0.095
		AM (03340		CH22_FGENES.38_4	0.095
	332930			<del>-</del>	0.095
15	335368	D-700-70	U= 400404	CH22_FGENES.543_6 ESTs; Weakly similar to Similarity with yeast gene	0.000
45	303887	R72672	ITS. 193464		0.095
		•		L3502.1 [C.elegans]	0.095
	336223			CH22_FGENES.727_3	
		A1767957	Hs.197737	ESTs; Weakly similar to Y38A8.1 gene product [C.elegans]	0.095
<b>~</b> 0	337258			CH22_FGENES.648-3	0.095
50		Al819263		EST singleton (not in UniGene) with exon hit	0.095
	334659			CH22_FGENES.418_7	0.095
	335895			CH22_FGENES.635_3	0.095
	321697	AW388061	Hs.4953	golgi autoantigen; golgin subfamily a; 3	0.095
	336010			CH22_FGENES.668_8	0.096
55	302824	U21260		EST cluster (not in UniGene) with exon hit	0.096
	333612			CH22_FGENES.217_7	0.096
	304823	AA584837		EST singleton (not in UniGene) with exon hit	0.096
	335665			CH22 FGENES.590_16	0.096
	306518	AA989598		EST singleton (not in UniGene) with exon hit	0.096
60	335243			CH22_FGENES.516_4	0.096
00	335436			CH22_FGENES.559_5	0.096
	-	Al420256	Hs.161271		0.096
	332810			CH22_FGENES.7_12	0.097
		AI735634		EST singleton (not in UniGene) with exon hit	0.097
65	335818	A1100009		CH22 FGENES.618_6	0.097
UJ	325838			CH.16_hs gi 6552452	0.097
	_			CH22_FGENES.795-6	0.097
	337482			CH22_FGENES.26-1	0.097
	336645				0.098
	337293			CH22_FGENES.875-1	0.050

32983   CH.15, µ2 glp6525313   0.098   329553   334905   CH.22, µ2 glp6525313   0.098   334905   CH.22, µ2 glp6525314   0.098   305347   AA961144   CH.22, µ2 glp62458.42   0.098   335774   CH.22, µ2 glp6458.43   0.098   335774   CH.22, µ2 glp6458.67   CH.22, µ2 glp72906   CH.23,						•
334905   CH22_FGENES.452_20   C.0.98		329893			CH.15_p2 gi 6525313	0.098
303847 AA961144   EST singleton (not in UniGene) with exon hit   0.098   339166   CH22_PGENES.A92   0.0098   339161   CH22_PGENES.A92   0.0098   339216   CH22_PGENES.A92   0.0098   339211   CH22_PGENES.A92   0.0098   339311   CH22_PGENES.A92   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099   0.0099		326533			CH.19_hs gij5867441	0.098
5 339676 CH22_FGENES.43-4 0.698 339166 CH22_DAS9H16_GENSCAN.69-7 0.098 339216 CH22_FGENES.607_10 0.698 339311 CH22_FGENES.607_10 0.698 339311 CH22_FGENES.52.4 0.698 339311 CH22_FGENES.52.4 0.698 339312 AND9509 CH.07_he gliseR224 0.698 340628 CH.17_be gliseR224 0.698 340628 CH.17_be gliseR224 0.698 340628 CH.17_be gliseR224 0.698 340629 AND9509 CH.07_he gliseR224 0.698 340640 AND9509 CH.07_he gliseR224 0.698 24751 AND9509 CH.07_he gliseR234 0.698 24751 AND9509 CH.07_he gliseR237 0.699 24752 CH.07_he gliseR237 0.699 24752 CH.07_he gliseR237 0.699 24753 AND9509 CH.07_he gliseR237 0.699 24754 CH.07_he gliseR237 0.699 24754 CH.07_he gliseR237 0.699 24755 AND9509 CH.07_he g		334905			CH22_FGENES.452_20	0.098
5 339676 CH22_FGENES.43-4 0.698 339166 CH22_DAS9H16_GENSCAN.69-7 0.098 339216 CH22_FGENES.607_10 0.698 339311 CH22_FGENES.607_10 0.698 339311 CH22_FGENES.52.4 0.698 339311 CH22_FGENES.52.4 0.698 339312 AND9509 CH.07_he gliseR224 0.698 340628 CH.17_be gliseR224 0.698 340628 CH.17_be gliseR224 0.698 340628 CH.17_be gliseR224 0.698 340629 AND9509 CH.07_he gliseR224 0.698 340640 AND9509 CH.07_he gliseR224 0.698 24751 AND9509 CH.07_he gliseR234 0.698 24751 AND9509 CH.07_he gliseR237 0.699 24752 CH.07_he gliseR237 0.699 24752 CH.07_he gliseR237 0.699 24753 AND9509 CH.07_he gliseR237 0.699 24754 CH.07_he gliseR237 0.699 24754 CH.07_he gliseR237 0.699 24755 AND9509 CH.07_he g		306347	AA961144		EST singleton (not in UniGene) with exon hit	0.098
338714   CH22_FGENES.807_10   0.068   338311   CH22_FGENES.502_H   0.058   338311   CH22_FGENES.502_H   0.058   338312   CH22_FGENES.502_H   0.058   338312   CH22_FGENES.502_H   0.058   338324   A079690   CH22_FGENES.502_H   0.058   338324   A079690   33854   T30200   CH22_FGENES.502_H   0.058   EST singleton (not in UniGene) with exon hit   0.058   EST singleton (not in UniGene) with exon hit   0.058   CH22_FGENES.502_H   0.059   CH22_FGENES.5	5	336676				0.098
335714   CH22_FISENES.07_10   0.088   33511   0.098   33511   0.098   33511   0.098   33511   0.098   33511   0.098   33511   0.098   33512   4.079680   0.198   33523   4.079680   0.198   31524   4.079680   0.198   31524   4.079680   0.198   31524   4.079680   0.198   31524   4.079680   0.198   31524   4.079680   0.198   31524   4.079680   0.198   31524   4.079680   0.198   0.098   31524   4.079680   0.198   0.098   0.37760   3.00062   A.049075   0.098   0.098   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.0		339166	٠,		CH22 DA59H18.GENSCAN,69-7	0.098
333216   CH22_FFINSOAN.6-11   0.098   335311   CH22_FGENES.32					CH22 FGENES.607 10	0.098
10   338311   C 22_FGENES.52_4   0.098		339216				
10						
\$28695   CH.OT_hs_gif686224   C.098     315234   A079800   Hs.120770   ESTs   C.098     315234   A079800   Hs.120770   ESTs   C.098     316540   T30280   EST singleton (not in UniGene) with exon hit   C.088     316540   T30280   EST singleton (not in UniGene) with exon hit   C.098     320951   A344069   CH.OZ_LOS_GIGENSCAN2-1   C.099     320951   A344069   CH.OZ_LOS_GIGENSCAN2-1   C.099     321313   R67365   EST cluster (not in UniGene) with exon hit   C.099     321348   C.09971	10					
326928 A079580 Hs.12070 ESTS ingleton (not in UniGene) with exon hit 0.088 ESTS ingleton (not in UniGene) with exon hit 0.088 EST singleton (not in UniGene) with exon hit 0.088 EST singleton (not in UniGene) with exon hit 0.088 EST singleton (not in UniGene) with exon hit 0.088 EST singleton (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.089 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not in UniGene) with exon hit 0.01 CST cluster (not		-				
315224   A179680   Hs.120770   ESTs   Singleton (not in UniGene) with exon hit   0.098   ST 305710   AA826544   EST singleton (not in UniGene) with exon hit   0.098   ST 305705   AA844069   Hs.202699   neurexophilin   4   0.099   A898750   CH22_CAGI_GENSCAN2-5   0.099   A898750   CH22_DASHIBLE (not in UniGene) with exon hit   0.099   A898750   CH22_DASHIBLE (not in UniGene) with exon hit   0.099   CH22_DASHIBLE (not in UniGene) with exon hit   0.101   CH22_DASHIBLE (not in UniGene) with exon hit   0						
15   30502   AJ908508   EST singleton (not in UniGene) with exon hit   0.098   318540   730280   EST cluster (not in UniGene) with exon hit   0.098   337533   200851   AJ344068   Hs.202699   autenzeynhill   4 0.089   303845   760333   EST cluster (not in UniGene) with exon hit   0.099   CH22_C4G1_GENSCAN_2-1   0.099   CH22_C4G1_GENSCAN_2-1   0.099   CH22_D456H16_GENSCAN_2-1   0.010   CH22_D456H16			A1079680	Hs.120770		
15   305710   AA245644   EST singleton (not in UniGene) with exon hit   0.098   337553   20951   AA344069   Hs. 202699   neurexophilin 4   0.098   339561   339891   Hs. 30384   Hs. 202699   CH22_DA56H18.GENSCAN.2-1   0.099   329384   322201   H43938   Hs. 102682   EST weeks yiestimal to p532 [H.sapiens]   0.099   CH22_DA56H18.GENSCAN.2-5   0.099   CH27_DA56H18.GENSCAN.2-5   0.099   CH27_DA56H18.G					_ · · ·	
318540   T30280   EST cluster (not in UniGene)   0.098     32951   AA344069   Hs.202699   neurexophilin 4   0.098     303845   T00033   EST cluster (not in UniGene) with exon hit   0.098     329313   R97365   Hs.202695   EST cluster (not in UniGene) with exon hit   0.099     329313   R97365   Hs.202695   EST cluster (not in UniGene) with exon hit   0.099     32200   H49388   Hs.102082   EST cluster (not in UniGene) with exon hit   0.099     32200   AA60838   Hs.102082   EST cluster (not in UniGene) with exon hit   0.099     32200   AA60838   Hs.162861   EST cluster (not in UniGene) with exon hit   0.099     32200   AA60838   Hs.162861   EST cluster (not in UniGene) with exon hit   0.099     32200   AA60838   Ch22 FISENS 378   11   0.099     32200   AA60839   Ch22 FISENS 375   0.019     32200   AA60839   AA60839   0.019     32200   AA60839   Ch22 FISENS 375   0.019     32200   AA60839   Ch22 FISENS 375   0.019     32200   AA60839   Ch22 FISENS 383   0.01	15					
337553   A3544069   Hs.202699   neurexophilin 4   0.093   0.093   338981   Foreign 4   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093   0.093						
32951   AA544069   Hs.202699   neurexophilin 4   0.099   303845   T08033   EST cluster (not in UniGene) with exon hit   0.099   CH22_DAS9F116.GENSCAN2-5   0.089   321313   R97365   Hs.26059   EST c, weakly similar to p532 [H.sapiens]   0.099   32203   H48388   Hs.102082   EST c, weakly similar to p532 [H.sapiens]   0.099   33203   AA608838   Hs.102082   EST c, weakly similar to p532 [H.sapiens]   0.099   33203   AA608838   Hs.102082   EST c, weakly similar to p532 [H.sapiens]   0.099   332027   T3644   AA760894   Hs.162881   EST c, weakly similar to p532 [H.sapiens]   0.099   CH22_FGENES.375   0.099   CH22_FGENES.375   0.099   CH22_FGENES.375   0.099   326001   Hs.162891   EST c, weakly similar to p532 [H.sapiens]   0.099   CH22_FGENES.375   0.099   CH22_FGENE			100000			
200   333981			AA344069	Hs 202699		
338981				110.202000		-
321313 R87365	20		100000			
328348	20		R87365	He 26058		
322203   He3388			1107505	113.2.0000		
25   332025   332025   332027   316442   AA760894   AA760895   AA760894   AA760894   AA760895   AA760897   AA602697   A			HAGGER	He 102082		
255   332035   AA608838   Hs.162681   EST   0.099   332627   31842   AA760894   Hs.153023   ESTs   0.099   326001   334983   CH22_FGENES.376_11   0.099   327460   327460   327460   327460   327460   327460   327460   32726   CH22_BSSSTS   CH22_BSSSTS   0.099   327460   32780   Al351739   Hs.262575   ESTs ingleton (not in UniGene) with exon hit   0.1   EST singleton (not in UniGene) with exon hit   0.1   EST singleton (not in UniGene) with exon hit   0.1   CH22_FGENES.375_4   0.1   CH22_FGENES.375_4   0.1   CH22_FGENES.375_4   0.1   CH22_FGENES.375_5   0.1				113.102002	T. C	
338227	25			He 162601		
316442   AA760894   Hs.153023   ESTs   0.099   32001	23		MADUOOSO	115.102001		
326001 334363 CH.16_hs gils667073 0.099 334363 CH.22_FGENES.378_111 0.099 327460 322705 Ts9161 Hs.76293 trymosin; beta 10 0.1 307806 Al351739 EST1			A A 70000A	Un 152022		
34983			AA/00094	HS. 100020		
338895						
327460   Hs.76293	20					
332705   T59161   Hs.76293   thymosin; beta 10   C1	50					
307806   Al351739   EST singleton (not in UniGene) with exon hit   0.1			TC04C4	Un 70000		
32800   F25037   Hs.225175   ESTs   EST singleton (not in UniGene) with exon hit   0.1				NS.70283		
304918				Un 005175		
334327	35			115.220175		
318359 Al097439 Hs.135548 ESTS 0.1 326644 CH.20_hs g  5867559 0.1 334454 CH.20_hs g  5868210 0.1 327959 CH.06_hs g  5868210 0.1 329783 AA330586 Hs.131819 ESTS 0.1 339265 Hs.248038 major histocompatibility complex; class I; C 0.1 339265 AL049977 Hs.162209 Homo sapiens mRNA; cDNA DKFZp564C122 (from clone DKFZp564C122) 0.1 333183 CH.22_FGENES.91_5 0.101 337584 CH.22_FGENES.91_5 0.101 337584 CH.22_FGENES.91_5 0.101 337588 Al285535 EST singleton (not in UniGene) with exon hit 0.101 327535 CH.02_hs g  6508289 0.101 328732 CH.07_hs g  6508289 0.101 336686 CH.22_FGENES.46-3 0.101 335777 CH.22_FGENES.46-3 0.101 3358915 CH.22_FGENES.47_3 0.101 336380 CH.22_FGENES.47_3 0.101 33644 CH.22_FGENES.821_8 0.101 330571 U60800 Hs.79089 sema domain; inmunoglobulin domain (lg); cyloplasmic domain; (semaphorin) 4D 0.101 338915 CH.22_FGENES.821_8 0.101 336642 CH.22_FGENES.49_24 0.101	55		AAOOZOJI			
326644   CH.20_hs g  5867559   O.1			A1007/20	Uc 1955/0		
40 327959 CH.22_FGENES.388_3 O.1 327959 CH.06_hs gl 5868210 O.1 3293783 AA330586 Hs.131819 ESTs O.1 309198 AI955915 Hs.248038 major histocompatibility complex; class I; C O.1 339265 CH22_BA354112.GENSCAN.10-3 O.1 339265 CH22_BA354112.GENSCAN.10-3 O.1 338132 CH22_EM.AC005500.GENSCAN.200-2 O.1 333163 CH22_FGENES.91_5 O.101 337584 CH22_C20H12.GENSCAN.5-1 O.101 307588 AI285535 EST singleton (not in UniGene) with exon hit O.101 327535 CH.02_hs gl 6525279 O.101 328732 CH.02_hs gl 6525279 O.101 33686 CH22_FGENES.46-3 O.101 33686 CH22_FGENES.46-3 O.101 3368777 CH22_FGENES.46-3 O.101 336777 CH22_FGENES.46-3 O.101 333174 CH22_FGENES.47_3 O.101 333174 CH22_FGENES.95_1 O.101 333494 CH22_FGENES.95_1 O.101 33444 CH22_FGENES.92_4 O.101 33484 CH22_FGENES.92_4 O.101 334946 CH22_FGENES.92_4 O.101 334946 CH22_FGENES.92_4 O.101 334946 CH22_FGENES.49_24 O.			A1037433	115.150540		
40 327959						
323783 AA330586 Hs.131819 ESTs	40					
309198 Al955915	40		V V33UEBE	He 121810		
A						_
45   320576   AL049977   Hs.162209   Homo saplens mRNA; cDNA DKFZp564C122   (from clone DKFZp564C122)   0.1   338132   CH22_EM:AC005500.GENSCAN.200-2   0.1   333163   CH22_FGENES.91_5   0.101   337584   CH22_C20H12.GENSCAN.5-1   0.101   307588   Al285535   EST singleton (not in UniGene) with exon hit   0.101   327535   CH.02_hs gij6525279   0.101   328732   CH.07_hs gij5868289   0.101   336686   CH22_FGENES.46-3   0.101   335777   CH22_FGENES.607_13   0.101   335777   CH22_FGENES.46-3   0.101   335777   CH22_FGENES.47_3   0.101   33174   CH22_FGENES.47_3   0.101   330571   U60800   Hs.79089   sema domain; immunoglobulin domain (lg); cytoplasmic domain; (semaphorin) 4D   0.101   338915   CH22_FGENES.439_24   0.101   338915   CH22_FGENES.439_24   0.101   336642   CH22_FGENES.23-4   0.101   334844   CH22_FGENES.23-4   0.101   334964   CH22_FGENES.23-4   0.101   334965   CH22_FGENES.23-4   0.101   334966   CH22_FGENES.23-4   0.101   334967   CH22_FGENES.23-4   0.101   334968   CH22_FGENES.28-8   0.101   34408   CH22_FGENES.28-8   0.101   34508   CH22_FGENES.38-8   0.101   34508   CH22_FGENES.45-1   0.101   34			VI9999 19	115.240000		
45  338132			AI 040077	He 162200		0.1
338132	45	320310	ALU43371	113.102203		Λ1
333163	13	222122				
337584						
Substitution					<del>-</del>	
50       336969       CH22_FGENES.378-2       0.101         327535       CH.02_hs gi 6525279       0.101         328732       CH.07_hs gi 5868289       0.101         336686       CH22_FGENES.46-3       0.101         335777       CH22_FGENES.67_13       0.101         55       332944       CH22_FGENES.47_3       0.101         333174       CH22_FGENES.95_1       0.101         336380       CH22_FGENES.821_8       0.101         330571       U60800       Hs.79089       sema domain; immunoglobulin domain (lg); cytoplasmic domain; (semaphorin) 4D       0.101         338915       CH22_FGENES.421_8       0.101         334844       CH22_FGENES.439_24       0.101         334906       CH22_FGENES.439_24       0.101         65       333188       CH22_FGENES.98_8       0.101         300088       AW299993       EST cluster (not in UniGene) with exon hit       0.101         329373       CH.X_hs gi 6682537       0.102         331120       R46576       Hs.23239       ESTs			A1295535			
327535 CH.02_hs gi 6525279 0.101 328732 CH.07_hs gi 5868289 0.101 336686 CH22_FGENES.46-3 0.101 335777 CH22_FGENES.607_13 0.101 333174 CH22_FGENES.47_3 0.101 333174 CH22_FGENES.821_8 0.101 336380 CH22_FGENES.821_8 0.101 330571 U60800 Hs.79089 sema domain; immunoglobulin domain (lg); oytoplasmic domain; (semaphorin) 4D 0.101 338915 CH22_DJ32110.GENSCAN.12-1 0.101 334844 CH22_FGENES.439_24 0.101 334844 CH22_FGENES.439_24 0.101 334906 CH22_FGENES.439_24 0.101 334906 CH22_FGENES.23-4 0.101 334906 CH22_FGENES.23-4 0.101 334906 CH22_FGENES.88_8 0.101 330008 AW299993 EST cluster (not in UniGene) with exon hit 0.101 329373 CH.X_hs gi 6682537 0.102	50		A120000			
328732	30					
336686						
55 335777 CH22_FGENES.607_13 0.101 332944 CH22_FGENES.47_3 0.101 333174 CH22_FGENES.95_1 0.101 336380 CH22_FGENES.821_B 0.101 330571 U60800 Hs.79089 sema domain; immunoglobulin domain (lg); cytoplasmic domain; (semaphorin) 4D 0.101 338915 CH22_DJ32l10.GENSCAN.12-1 0.101 338944 CH22_FGENES.439_24 0.101 334844 CH22_FGENES.439_24 0.101 334642 CH22_FGENES.23-4 0.101 334906 CH22_FGENES.39-8 0.101					<del></del>	
55       332944       CH22_FGENES.47_3       0.101         333174       CH22_FGENES.95_1       0.101         336380       CH22_FGENES.95_1       0.101         330571       U60800       Hs.79089       sema domain; immunoglobulin domain (lg); cytoplasmic domain; (semaphorin) 4D       0.101         60       331789       AA398721       Hs.186749       ESTs       0.101         338915       CH22_DJ32!10.GENSCAN.12-1       0.101         334844       CH22_FGENES.439_24       0.101         336642       CH22_FGENES.23-4       0.101         333188       CH22_FGENES.452_21       0.101         300088       AW299993       EST cluster (not in UniGene) with exon hit       0.101         329373       CH.X_ hs gil6682537       0.102         331120       R46576       Hs.23239       ESTs					. <del>-</del>	
333174 CH22_FGENES.95_1 0.101 336380 CH22_FGENES.821_8 0.101 330571 U60800 Hs.79089 sema domain; immunoglobulin domain (lg); cytoplasmic domain; (semaphorin) 4D 0.101 338915 CH22_DJ32!10.GENSCAN.12-1 0.101 334844 CH22_FGENES.439_24 0.101 336642 CH22_FGENES.23-4 0.101 334906 CH22_FGENES.23-4 0.101 334906 CH22_FGENES.452_21 0.101 334906 CH22_FGENES.452_21 0.101 333188 CH22_FGENES.98_8 0.101 300088 AW299993 EST cluster (not in UniGene) with exon hit 0.101 329373 CH.X_hs gij6682537 0.102	55					
336380	55					
Same and the composition of th						
Cytoplasmic domain; (semaphorin) 4D 0.101 338915			LICOPOO	Un 70000		0.101
60 331789 AA398721 Hs.186749 ESTs 0.101 338915 CH22_DJ32I10.GENSCAN.12-1 0.101 334844 CH22_FGENES.439_24 0.101 336642 CH22_FGENES.23-4 0.101 334906 CH22_FGENES.23-4 0.101 333188 CH22_FGENES.88_8 0.101 300088 AW299993 EST cluster (not in UniGene) with exon hit 0.101 329373 CH.X_hs gilj6682537 0.102 331120 R46576 Hs.23239 ESTs 0.102		000071	000000	113.73003		0.101
338915 CH22_DJ32l10.GENSCAN.12-1 0.101 334844 CH22_FGENES.439_24 0.101 336642 CH22_FGENES.23-4 0.101 334906 CH22_FGENES.25-1 0.101 333188 CH22_FGENES.98_8 0.101 300088 AW299993 EST cluster (not in UniGene) with exon hit 0.101 329373 CH.X_hs gil 6682537 0.102 331120 R46576 Hs.23239 ESTs 0.102	60	221700	A A 3 0 9 7 9 1	He 1987/0	, , , , , , , , , , , , , , , , , , , ,	
334844 CH22_FGENES.439_24 0.101 336642 CH22_FGENES.23-4 0.101 334906 CH22_FGENES.452_21 0.101 65 333188 CH22_FGENES.98_8 0.101 300088 AW299993 EST cluster (not in UniGene) with exon hit 0.101 329373 CH.X_hs gi 6682537 0.102 331120 R46576 Hs.23239 ESTs 0.102	50		WW30141	1 10. 100/49		
336642 CH22_FGENES.23-4 0.101 334906 CH22_FGENES.452_21 0.101 65 333188 CH22_FGENES.98_8 0.101 300088 AW299993 EST cluster (not in UniGene) with exon hit 0.101 329373 CH.X_hs gl 6682537 0.102 331120 R46576 Hs.23239 ESTs 0.102						
65 334906 CH22_FGENES.452_21 0.101  65 333188 CH22_FGENES.98_8 0.101  300088 AW299993 EST cluster (not in UniGene) with exon hit 0.101  329373 CH.X_hs gi 6682537 0.102  331120 R46576 Hs.23239 ESTs 0.102					<b>→</b>	
65 333188 CH22_FGENES.98_8 0.101 300088 AW299993 EST cluster (not in UniGene) with exon hit 0.101 329373 CH.X_hs gi 6682537 0.102 331120 R46576 Hs.23239 ESTs 0.102						
300088       AW299993       EST cluster (not in UniGene) with exon hit       0.101         329373       CH.X_hs gi 6682537       0.102         331120       R46576       Hs.23239       ESTs       0.102	65				<del>-</del>	
329373 CH.X_hs gi 6682537 0.102 331120 R46576 Hs.23239 ESTs 0.102	UJ		AVAROCIOCO			
331120 R46576 Hs.23239 ESTs 0.102			WAASAAAA			
			DAGETE	Lla gonon		
333630 CHZZ_FGENC3.020_1 0.10Z			M400/0	FIS.23239		
		333856			טחבב_רשבווכס.סבס_ו	0.102

				·	
	331888	AA431337	Hs.98017		0.102
	333154			CH22_FGENES.89_4	0.102
	335989			CH22_FGENES.655_2	0.102
		AA235602		EST singleton (not in UniGene) with exon hit	0.102
5	338016			CH22_EM:AC005500.GENSCAN.133-1	0.102
9	335190			CH22_FGENES.507_5	0.102
		T39486	Hs.6137	ESTs	0.102
	333697	100400	113.0107	CH22_FGENES.250_11	0.102
		AA989713		EST singleton (not in UniGene) with exon hit	0.102
10	328734	AA303113		CH.07_hs gij5868289	0.103
10		A1005640	Hs.73742		0.103
		Al205612	115./3/42		0.103
	327424			CH.02_hs gij5867751	0.103
	335872			CH22_FGENES.630_3	
15	333572			CH22_FGENES.189_1	0.103
1,)	334774			CH22_FGENES.430_6	0.103
	338660			CH22_EM:AC005500.GENSCAN.462-1	0.103
	326713			CH.20_hs gij5867595	0.103
	333994			CH22_FGENES.310_18	0.103
20	335800	****		CH22_FGENES.613_4	0.103
20		Al187943	Hs.132322		0.103
	337278			CH22_FGENES.665-1	0.103
	336386			CH22_FGENES.822_6	0.103
	334790			CH22_FGENES.432_15	0.103
~~		AW505368		EST cluster (not in UniGene) with exon hit	0.104
25	336524			CH22_FGENES.839_5	0.104
	328936			CH.08_hs gi 5868500	0.104
	335102			CH22_FGENES.494_7	0.104
	300935	AA513644	Hs.222815	ESTs; Weakly similar to Wiskott-Aldrich Syndrome	
•				protein [H.sapiens]	0.104
30		Al284415		EST singleton (not in UniGene) with exon hit	0.104
	317301	AW291683	Hs.226056	ESTs	0.104
	335330			CH22_FGENES.535_3	0.104
	337968			CH22_EM:AC005500.GENSCAN.103-2	0.104
	335627			CH22_FGENES.584_7	0.104
35	336274			CH22_FGENES.762_2	0.104
	334730			CH22_FGENES.424_5	0.105
	334409			CH22_FGENES.383_6	0.105
	327237			CH.01_hs gi 5867544	0.105
40	333321			CH22_FGENES.138_13	0.105
40		AA452366		EST cluster (not in UniGene) with exon hit	0.105
	333738			CH22_FGENES.261_2	0.105
	338255	•		CH22_EM:AC005500.GENSCAN.276-3	0.105
	334282			CH22_FGENES.369_12	0.105
A ~	330190			CH.05_p2 gi[6165182	0.105
45		AW014249	Hs.158698		0.105
	338150			CH22_EM:AC005500.GENSCAN.207-2	0.105
	336719			CH22_FGENES.82-6	0.105
	330228			CH.05_p2 gi 6013527	0.105
~^	327801			CH.05_hs gi 5867924	0.105
50	330525	S75168	Hs.274	megakaryocyte-associated tyrosine kinase	0.105
	334972			CH22_FGENES.468_2	0.105
	335111			CH22_FGENES.494_19	0.106
	334483			CH22_FGENES.395_5	0.106
~ ~	328829			CH.07_hs gi 5868337	0.106
55	302753	M74299		EST cluster (not in UniGene) with exon hit	0.106
	334512			CH22_FGENES.398_10	0.106
	330024			CH.16_p2 gi 6671908	0.106
	321030	A1769930	Hs.233617	Homo sapiens (clone B3B3E13) Huntington's	
				disease candidate region	0.107
60	338410			CH22_EM:AC005500.GENSCAN.341-6	0.107
	334353			CH22_FGENES.376_5	0.107
	338276			CH22_EM:AC005500.GENSCAN.288-9	0.107
	329053			CH.X_hs gi 5868574	0.107
	336560			CH22_FGENES.842_5	0.107
65		AA621363	Hs.112980		0.107
	336447		,	CH22_FGENES.829_4	0.107
	333703			CH22_FGENES.250_17	0.107
	326207			CH.17_hs gi 5867222	0.107
	333232			CH22_FGENES.108_1	0.107

				Auto married ton	
	334802			CH22_FGENES.435_1	0.107
		AA704983		EST cluster (not in UniGene) with exon hit	0.107
	338847			CH22_DJ246D7.GENSCAN.10-2	0.107
_	339407			CH22_DJ579N16.GENSCAN.1-9	0.108
5	337635			CH22_C20H12.GENSCAN.32-8	0.108
	334650			CH22_FGENES.417_17	0.108
	308511	A1687580		EST singleton (not in UniGene) with exon hit	0.108
	333392			CH22_FGENES.144_8	0.108
	325840			CH.16_hs gi]6552452	0.108
10	315044	AW205664	Hs.129568	ESTs	0.108
	333298			CH22_FGENES.133_4	0.108
	335157			CH22_FGENES.501_7	0.108
	333305			CH22_FGENES.137_2	0.108
	326379			CH.19_hs gi 5867327	0.108
15	335050	•		CH22_FGENES.482_1	0.108
	305185	AA663985	Hs.248038	major histocompatibility complex; class I; C	0.108
	335658			CH22_FGENES.590_9	0.108
	323040	AA336609	Hs.10862		0.108
	337326			CH22_FGENES.699-6	0.108
20	339262			CH22_BA354I12.GENSCAN.9-6	0.108
		H54052	Hs.163639	ESTs; Weakly similar to INTERCELLULAR ADHESION	
				MOLECULE-1 PRECURSOR [H.sapiens]	0.109
	331792	AA398968	Hs.97548	EST	0.109
	333806			CH22 FGENES.278 2	0.109
25		AB033100		EST duster (not in UniGene)	0.109
		AA435513	Hs.178170	ESTs; Weakly similar to DUAL SPECIFICITY	
				PROTEIN PHOSPHATASE 3	0.87
	328775			CH.07_hs gi[5868309	0.109
	335105			CH22_FGENES.494_10	0.109
30		Al283548	Hs.149668		0.109
		T31940	***************************************	EST cluster (not in UniGene)	0.109
	333397			CH22_FGENES.144_15	0.109
	336484			CH22_FGENES.831_3	0.109
	335507			CH22_FGENES.571_22	0.109
35	336373			CH22_FGENES.820_3	0.109
	336188			CH22_FGENES.717_12	0.109
		AW081702	Hs.137329		0.109
	335185			CH22_FGENES.506_4	0.109
		AI066577		EST singleton (not in UniGene) with exon hit	0.109
40		AI632322	Hs.195306		0.109
		AW080339	Hs.211911		0.109
		Al346359	Hs.135209		0.11
		AW135925		biphenylhydrolase-like (serine hydrolase; breast epithelial	
				mucin-assoc.	0.11
45	325675			CH.14_hs gi 5867014	0.11
	330095			CH.19_p2 gi 6015278	0.11
	331942	AA453261	Hs.99309	ESTs	0.11
	334723			CH22_FGENES.421_34	0.11
	333614			CH22_FGENES.217_9	0.11
50	337316			CH22_FGENES.692-1	0.11
	305057	AA635626	Hs.62954	ferritin; heavy polypeptide 1	0.11
	338704			CH22_EM:AC005500.GENSCAN.480-3	0.11
	335385			CH22_FGENES.543_27 -	0.11
	338012			CH22_EM:AC005500.GENSCAN.128-10	0.11
55	329449			CH.Y_hs gi[5868886	0.11
	338980			CH22_DA59H18.GENSCAN.2-4	0.11
	336553			CH22_FGENES.841_10	0.111
	330021			CH.16_p2 qi 6671889	0.111
	327579			CH.03_hs gi 5867824	0.111
60	333099			CH22_FGENES.79_4	0.111
-	337076			CH22_FGENES.453-4	0.111
	331388	AA456852	Hs.43543		0.111
	306674	A1005542	Hs.180414	heat shock 70kD protein 10 (HSC71)	0.111
	305949	AA884409		EST singleton (not in UniGene) with exon hit	0.111
65	330748	AA419217	Hs.15911	DKFZP586E1422 protein	0.111
•	333780			CH22_FGENES.273_2	0.111
		AI702835		EST cluster (not in UniGene)	0.111
	308952	Al868157	Hs.224226		0.111
	309338	AW026946	Hs.181165	eukaryotic translation elongation factor 1 alpha 1	0.111
				·	

	329317			CH.X_hs gi 6381976	0.112
	333518			CH22_FGENES.173_3	0.112
	306982	Al127883		EST singleton (not in UniGene) with exon hit	0.112
	336225			CH22_FGENES.728_2	0.112
5	333698			CH22_FGENES.250_12	0.112
		Al417947	Hs.14068	ESTs	0.112
	335510			CH22_FGENES.571_25	0.112
	328042			CH.06_hs gi 5902482	0.112
10	336512			CH22_FGENES.834_7	0.112
10	328541			CH.07_hs gi 5868486	0.112
		AW205118			0.112
		AF131846		Homo sapiens clone 25028 mRNA sequence	0.112
		AF013956	Hs.123085	chromobox homolog 4 (Drosophila Pc class)	0.112
		AA557351		ESTs; Moderately similar to MULTIFUNCTIONAL PROTEIN ADE2	
15		Al937242	Hs.176590		0.112
		AW384710	Hs.125258		0.112
	333659			CH22_FGENES.241_5	0.113
	327510			CH.02_hs gi[6117815	0.113
00	336520			CH22_FGENES.839_1	0.113
20	338682			CH22_EM:AC005500.GENSCAN.472-1	0.113
	334508			CH22_FGENES.398_6	0.113
		T59538		EST cluster (not in UniGene)	0.113
		Al086929		EST singleton (not in UniGene) with exon hit	0.113
25	336040	<b></b>		CH22_FGENES.679_2	0.113 0.113
25		T23215	11- 407000	EST cluster (not in UniGene) with exon hit	
		AW294868	Hs.187226		0.113 0.113
	335186			CH22_FGENES.506_5	0.113
	333607	4 4970500		CH22_FGENES.216_2	0.113
30		AA773530		EST singleton (not in UniGene) with exon hit	0.113
30	333686			CH22_FGENES.249_4	0.113
	334352	·		CH22_FGENES.376_3 CH22_EM:AC005500.GENSCAN.233-18	0.114
	338195	•		CH22_FGENES.206_2	0.114
	333588			CH22_BA354I12.GENSCAN.2-3	0.114
35	339233 337455			CH22_FGENES.777-1	0.114
<i>JJ</i>		Al925108		EST singleton (not in UniGene) with exon hit	0.114
	328522	A1323 100		CH.07_hs gi 5868477	0.114
		Al537333	Hs.252782		0.114
	333517			CH22_FGENES.173_2	0.114
40	329935			CH.16_p2 gi 6165200	0.114
	326226			CH.17_hs gi 5867230	0.114
	335890			CH22_FGENES.633_4	0.114
	336715			CH22_FGENES.77-1	0.114
	327640			CH.04_hs gi 5867890	0.114
45	338842			CH22_DJ246D7.GENSCAN.7-1	0.114
	306534	AA991487		EST singleton (not in UniGene) with exon hit	0.114
	336597			CH22_FGENES.266_1	0.114
		Y17456		Homo sapiens LSFR2 gene; last exon	0.114
<b>50</b>		AA159213	Hs.5337	isocitrate dehydrogenase 2 (NADP+); mitochondrial	0.114
50		N44238	Hs.77515		0.114
	327358	******	11- 405400	CH.01_hs gi[6552411	0.114
		Al815153	HS.195188	glyceraldehyde-3-phosphate dehydrogenase	0.115 0.115
	325886			CH.16_hs gi 5867087 -	0.115
55	336850			CH22_FGENES.272-11 EST singleton (not in UniGene) with exon hit	0.115
ככ		AA863103		multiple UniGene matches	0.115
		AC004472		CH22_FGENES.707_2	0.115
	336158			CH.06_hs gil5868131	0.115
	327866			CH22 DA59H18.GENSCAN.67-3	0.115
60	339157			CH22 BA354112.GENSCAN.8-3	0.115
00	339258			CH22_FGENES.701_17	0.115
	336129			CH22 FGENES.249_2	0.115
	333684	AW190162	Hs.184776	ribosomal protein L23a	0.115
		AA954097	Hs.127523		0.115
65		AB035698		EST cluster (not in UniGene) with exon hit	0.115
<i></i>	328968	, 2000000		CH.08_hs gi 6456775	0.115
	327902			CH.08_hs gij5868158	0.115
		AJ223366		EST cluster (not in UniGene)	0.115
	335962			CH22_FGENES.651_4	0.115
	_				

	334927			CH22_FGENES.460_1	0.115
	330535	U11872		Human interleukin-8 receptor type B (IL8RB) mRNA,	
	•••••	•		splice variant IL8RB1	0.856
	200504				0.115
5	328591			CH.07_hs gij5868227	
3	334902			CH22_FGENES.452_16	0.115
	328525			CH.07_hs gi 5868482	0.115
	325870			CH.16_hs gi 6682492	0.116
	337522			CH22_FGENES.819-1	0.116
		AA641329		EST singleton (not in UniGene) with exon hit	0.116
10	327343	701071020		CH.01_hs gi[6017017	0.116
10				CH22 FGENES.296_7	0.116
	333918				
	333600			CH22_FGENES.213_2	0.116
	335846			CH22_FGENES.623_6	0.116
	333510			CH22_FGENES.171_4	0.116
15	327629			CH.04_hs gi 5867872	0.116
	333470			CH22_FGENES.161_6	0.116
	326855			CH.20_hs gi 6552460	0.116
	327008			CH.21_hs gi 5867664	0.117
	337480			CH22_FGENES.795-3	0.117
20					0.117
20	336425	44 00000	11. 474000	CH22_FGENES.824_10	
		AL079687	Hs.171065		0.117
	335651			CH22_FGENES.590_2	0.117
	308164	AJ521574	Hs.181165	eukaryotic translation elongation factor 1 alpha 1	0.117
	337927			CH22_EM:AC005500.GENSCAN.80-3	0.117
25		H45095	Hs.153524	ESTs	0.117
		Al245127	Hs.179331		0.117
		AA937331	110.110001	EST singleton (not in UniGene) with exon hit	0.117
		MASSISSI		CH.14_p2 gil6272129	0.117
	329670				
20	335612			CH22_FGENES.583_6	0.117
30		Al363450		EST singleton (not in UniGene) with exon hit	0.117
	330401	D28383		Human mRNA for ATP synthase B chain, 5'UTR (sequence from the	
				5'cap to the start codon)	0.117
	327127			CH.21_hs gi 6682520	0.117
	333843			CH22_FGENES.290_1	0.117
35	331083	R17762	Hs.22292	ESTs	0.117
	329140			CH.X_hs gi 6017060	0.117
	339338			CH22_BA354I12.GENSCAN 27-3	0.117
		AA464518	Hs.99616	ESTs	0.117
		77404010	113.55010	CH22_EM:AC005500.GENSCAN.454-2	0.117
40	338631			<del>-</del> .	0.117
40	330299			CH.06_p2 gi 2905881	
	330351			CH.09_p2 gi 3056622	0.117
		AA715714	Hs.181357	laminin receptor 1 (67kD; ribosomal protein SA)	0.117
	333106			CH22_FGENES.79_12	0.117
	338514			CH22_EM:AC005500.GENSCAN.392-4	0.117
45	327335			CH.01_hs gi 5902477	0.117
	301970	AB028962	Hs.120245	KIAA1039 protein	0.118
	326339		************	CH.17_hs gi 6056311	0.118
		X15673	Hs.93174		0.118
		V13013	110.00174	CH22_FGENES.350_6	0.118
50	334178				
<b>J</b> U	328008			CH.06_hs gi 5902482	0.118
	329976			CH.16_p2 gi]4878063	0.118
	320952	AA897432	Hs.130411		0.118
	305621	AA789095		EST singleton (not in UniGene) with exon hit -	0.118
	337850			CH22_EM:AC005500.GENSCAN.34-3	0.118
55	333626			CH22_FGENES.224_2	0.118
-	337672			CH22_EM:AC000097.GENSCAN.67-1	0.118
	328803			CH.07_hs gi 6004475	0.118
				CH.16_hs gij5867122	0.118
	325922				
<b>60</b>	334489			CH22_FGENES.397_1	0.118
60		R54766	Hs.101120		0.118
	321932	AA569229		EST cluster (not in UniGene)	0.118
	336958			CH22_FGENES.367-1	0.118
	332082	AA600176	Hs.112345		0.118
		AA889992		EST singleton (not in UniGene) with exon hit	0.118
65	336803			CH22_FGENES.194-1	0.118
		Al925823		EST singleton (not in UniGene) with exon hit	0.118
	336859	. 4000000		CH22_FGENES.293-9	0.118
				CH22_EM:AC005500.GENSCAN.85-6	0.118
	337935	•		CH.19_hs gi 5867422	0.118
	326492		•	ALTER ANDORSEE	J. 1 10

	327289			CH.01_hs gi 5867481	0.119
	325818			CH.14_hs gi 6682490	0.119
	310787	AW262580	Hs.159040	ESTs	0.119
	330028			CH.16_p2 gi]6671908	0.119
5	325317			CH.11_hs gi 5866878	0.119
•	335279			CH22_FGENES.523_7	0.119
		AA192173	Hs.221530		0.119
	329186	74132170	1 ISLET TOO	CH.X_hs gij5868711	0.119
		A A704000	Hs.119898		0.119
10		AA764950	U2'I 19090		0.119
10	338316			CH22_EM:AC005500.GENSCAN.304-2	0.119
	326033			CH.17_hs gi 5867178	
	334745			CH22_FGENES.426_3	0.119
	333051			CH22_FGENES.73_5	0.119
		R01279	-	EST duster (not in UniGene) with exon hit	0.12
15	304502	AA454809	Hs.172928	collagen; type I; alpha 1	0.12
	335680			CH22_FGENES.594_5	0.12
	304678	AA548556		EST singleton (not in UniGene) with exon hit	0.12
	335441			CH22_FGENES.560_4	0.12
	336187			CH22_FGENES.717_11	0.12
20		AW087175		EST singleton (not in UniGene) with exon hit	0.12
	336047			CH22_FGENES.679_9	0.12
		AW195850		EST singleton (not in UniGene) with exon hit	0.12
		Al695385	Hs.201903		0.12
		AA399444	113.201300	EST singleton (not in UniGene) with exon hit	0.12
25		AA399444		CH22_FGENES.746_3	0.12
23	336245	Lizonon			0.12
		H72333		EST duster (not in UniGene) with exon hit	0.12
	335690			CH22_FGENES.596_5	0.12
	328941			CH.08_hs gij6456765	
20	333873			CH22_FGENES.291_9	0.12
30		AW105092	Hs.155690		0.12
	339288			CH22_BA354I12.GENSCAN.16-6	0.12
	337996			CH22_EM:AC005500.GENSCAN.116-3	0.12
	333304			CH22_FGENES.137_1	0.121
	308332	Al591235		EST singleton (not in UniGene) with exon hit	0.121
35	329319			CH.X_hs gi 6381976	0.121
	302086	X57138		multiple UniGene matches	0.121
	333290			CH22_FGENES.129_2	0.121
	323825	Al793080	Hs.123525	ESTs; Weakly similar to NEUTROPHIL GELATINASE-ASSOCIATE	D
				LIPOCALIN PRECURSOR [R.norvegicus]	0.121
40	330575	U64105	Hs.252280	Rho guanine nucleotide exchange factor (GEF) 1	0.121
		AA679990		eukaryotic translation elongation factor 1 alpha 1	0.121
	333647			CH22_FGENES.235_2	0.121
		AA333340		EST cluster (not in UniGene) with exon hit	0.121
	329777			CH.14_p2 gi]6002090	0.121
45	333155			CH22_FGENES.89_5	0.121
	326122			CH.17_hs gij5867194	0.121
	335310			CH22_FGENES.532_3	0.121
	335453			CH22_FGENES.562_13	0.122
		AA643329	He 111334	ferritin; light polypeptide	0.122
50		771040023	113,111007	CH22_FGENES.667-2	0.122
50	337284			CH22_FGENES.758-4	0.122
	337418	Al963740	Hs.46826	ESTs	0.122
			115.40020	EST cluster (not in UniGene) with exon hit	0.122
		AW504164		E24 Crozes (not in currene) with even lift	U. 12E
55	300017	1422107		AFFX control: GAPDH	0.122
33	040705	M33197	U- 107004		0.122
		AW135084	Hs.127264		0.122
		AA293153	HS.120980	nuclear receptor co-repressor 2	
	336466			CH22_FGENES.829_25	0.122
<b>CO</b>	335956			CH22_FGENES.647_3	0.122
60	315308	AA780564	Hs.189053		0.122
	338925			CH22_DJ32I10.GENSCAN.14-3	0.122
	334969			CH22_FGENES.466_2	0.122
	322050	AL137589		EST cluster (not in UniGene)	0.122
	339084			CH22_DA59H18.GENSCAN.38-2	0.122
65	338323			CH22_EM:AC005500.GENSCAN.306-2	0.122
	337003			CH22_FGENES.419-7	0.122
	325470			CH.12_hs gi 6017034	0.123
	336503			CH22_FGENES.833_10	0.123
		D60374	Hs.258712		0.123
		•			

	329446			CH.Y_hs gij5868886	0.123
	303326	AA229433	Hs.222634	ESTs; Moderately similar to ubiquitin-like protein /	
				ribosomal protein S30	0.123
-		Al916313	Hs.212788	<del></del>	0.123
5		AA968472	Hs.130463		0.123
	328755			CH.07_hs gi 5868301	0.123
	326036			CH.17_hs gi 5867178	0.123
	327208			CH.01_hs gi 5867447	0.123
10	326124			CH.17_hs gi 5916395	0.123
10	327509			CH.02_hs gi 6117815	0.123 0.123
	338398	A A C 0 7 7 0 0	U= 04000	CH22_EM:AC005500.GENSCAN.336-5	0.123
	304032	AA527782	Hs.84298	CD74 antigen (Invariant polypeptide of major histocompatibility complex; class II antigen-associated)	0.123
	335797			CH22_FGENES.612_6	0.124
15	336714			CH22_FGENES.76-29	0.124
13	327204			CH.01_hs gi 5867447	0.124
		AA430672	Hs.123778		0.124
		Al126509		EST singleton (not in UniGene) with exon hit	0.124
	336174			CH22_FGENES.710_1	0.124
20	336126			CH22_FGENES.701_13	0.124
	329129			CH.X_hs gi 6588026	0.124
	303049	AW407562		EST cluster (not in UniGene) with exon hit	0.124
	335778			CH22_FGENES.607_14	0.124
	336601			CH22_FGENES.369_2	0.124
25	334340			CH22_FGENES.375_17	0.124
	337436			CH22_FGENES.767-1	0.124
		AA896990		EST singleton (not in UniGene) with exon hit	0.124
	339213			CH22_FF113D11.GENSCAN.6-8	0.124
30	335355			CH22_FGENES.541_2	0.124 0.124
50	336552 336384			CH22_FGENES.841_9 CH22_FGENES.822_4	0.124
		Al286202	Hs.149800		0.125
	335840	NIEUUEUE	113.170000	CH22_FGENES.622_3	0.125
	336444			CH22_FGENES.827_10	0.125
35		N36070		EST cluster (not in UniGene)	0.125
	327763			CH.05_hs gi 5867961	0.125
	336383			CH22_FGENES.822_3	0.125
	333496			CH22_FGENES.168_6	0.125
40	328662			CH.07_hs gi 6004473	0.125
40	338986			CH22_DA59H18.GENSCAN.5-1	0.125
	328311		•	CH.07_hs gi 5868371	0.125
	337241			CH22_FGENES.644-2	0.125 0.125
	336933	AW294432	Hs.144252	CH22_FGENES.350-7	0.125
45	326116	AW294432	NS. 144202	CH.17_hs gi 5867193	0.125
7.7		HG363-HT363		Epidermal Growth Factor Receptor-Related Protein	0.125
		Al268539		EST singleton (not in UniGene) with exon hit	0.125
•		AA418988	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120	*****
				(from clone DKFZp586L0120)	0.125
50	330462	HG944-HT944		Dopamine Receptor D4	0.125
	304410	AA284508		EST singleton (not in UniGene) with exon hit	0.125
	336385			CH22_FGENES.822_5	0.125
	336793			CH22_FGENES.176-3	0.125
ے ہے	326243			CH.17_hs gi 5867261	0.125
55	327266			CH.01_hs gi 5867462	0.125
		AF070579	Hs.181544	Homo sapiens clone 24487 mRNA sequence	0.125
	336960			CH22_FGENES.369-5	0.125
	329667			CH.14_p2 gi 6272129	0.125 0.125
60	328168			CH.06_hs gi 5868071	0.125
<del>UU</del>	336534 339289			CH22_FGENES.839_16 CH22_BA354112.GENSCAN.16-9	0.126
		Al970747		EST singleton (not in UniGene) with exon hit	0.126
٠	339190	F3010141		CH22_FF113D11.GENSCAN.1-2	0.126
	337086			CH22_FGENES.458-14	0.126
65		R21054	Hs.211522		0.126
	339396			CH22_BA232E17.GENSCAN.6-8	0.126
		AA449077	Hs.179765	Homo sapiens mRNA; cDNA DKFZp586H1921	
				(from clone DKFZp586H192	0.126
	308099	A1475914		EST singleton (not in UniGene) with exon hit	0.126

	338477			CH22_EM:AC005500.GENSCAN.373-5	0.126
	334286			CH22_FGENES.369_16	0.126
		AIOSEOSO	Un 191799		0.126
		Al025039	Hs.131732		
_	335249			CH22_FGENES.516_10	0.126
5	333327			CH22_FGENES.138_20	0.126
	304240	AA009802		EST singleton (not in UniGene) with exon hit	0.126
	335464			CH22_FGENES.562_26	0.126
				CH22_FGENES.515_8	0.126
	335236				
10	334154			CH22_FGENES.340_4	0.126
10	309257	Al984183		EST singleton (not in UniGene) with exon hit	0.126
	310015	Al220122	Hs.201981	ESTs; Weakly similar to breast carcinoma-associated antigen	
-				[H.sapiens]	0.126
	328280	•		CH.07_hs gi 5868352	0.126
		4 4 00 4 0 4 0			
1 =		AA831819		EST singleton (not in UniGene) with exon hit	0.126
15	327430			CH.02_hs gi 5867754	0.126
	328323			CH.07_hs gi 5868373	0.126
	333274			CH22_FGENES.123_2	0.126
	337193			CH22_FGENES.575-3	0.127
				<del></del>	0.127
20	334820			CH22_FGENES.437_2	
20	328706			CH.07_hs gi 5868270	0.127
	331228	W67267	Hs.174911	ESTs	0.127
	307205	Al192479	•	EST singleton (not in UniGene) with exon hit	0.127
	337123			CH22_FGENES.519-3	0.127
	326201			CH.17_hs gi 5867216	0.127
25					
25	335276			CH22_FGENES.523_2	0.127
		T81115	Hs.191136		0.127
	330532	U03187	Hs.121544	interleukin 12 receptor; beta 1	0.127
	321235	N49521		EST duster (not in UniGene)	0.127
		F12605	Hs 204529	ESTs; Weakly similar to reverse transcriptase [H.sapiens]	0.127
30	328175		110.201020	CH.06_hs gi[5868073	0.127
50		A 407100C			0.127
		AA971985		EST singleton (not in UniGene) with exon hit	
	327145			CH.01_hs gi 5867548	0.127
	327649			CH.04_hs gi[5867899	0.127
	335142			CH22_FGENES.498_12	0.127
35	333909			CH22_FGENES.295_2	0.127
55		X04325	Hs.2679	gap junction protein; beta 1; 32kD (connexin 32;	••••
	330000	A04020	113.2013		0.127
				Charcot-Marie-Tooth neuropathy; X-linked)	
	330158			CH.21_p2 gi[6580367	0.127
	320153	AF064594	Hs.120360	phospholipase A2; group VI	0.127
40	314407	AA098835	Hs.224432	ESTs	0.127
	333383			CH22_FGENES.143_22	0.127
		A1734242	Hs.244473		0.128
	326233	MIOTETE	113277770	CH.17_hs gi 5867232	0.128
	326598			CH.20_hs gi 5867634	0.128
45	335174			CH22_FGENES.504_4	0.128
	319843	H29920	Hs.99486	ESTs; Weakly similar to aralar1 [H.sapiens]	0.128
	335458			CH22_FGENES.562_18	0.128
	332997	•		CH22_FGENES.58_4	0.128
				CH22_FGENES.352_3	0.128
50	334188			<del>-</del>	0.128
20	329759			CH.14_p2 gi 6048280	
	330348			CH.09_p2 gi 4544475	0.128
	326958			CH.21_hs gi[6469836	0.128
	305263	AA679467		EST singleton (not in UniGene) with exon hit	0.128
	337693			CH22_EM:AC000097.GENSCAN.78-14	0.128
55	326812			CH.20_hs gi[6682504	0.128
55				CH22 FGENES.108 7	0.128
	333237				
	333699			CH22_FGENES-250_13	0.128
	311496	Al768677	Hs.209888	ESTs; Weakly similar to phosphatidylserine	
				synthase-2 [M.musculus]	0.128
60	336499			CH22_FGENES.833_4	0.128
		AF032387	He 112265	small nuclear RNA activating complex; polypeptide 4; 190kD	0.128
		Al184186	Hs.197813	•	0.128
	301490	AW298468	Hs.250461		0.128
	337011			CH22_FGENES.427-6	0.128
65		AA876910	Hs.134427	ESTs	0.128
		W22172	Hs.59038		0.128
				CH22_FGENES.833_2	0.129
	336497	V16000	No 100040		
		Y16280	ris. 132049	endothelin type b receptor-like protein 2	0.129
	334502			CH22_FGENES.397_18	0.129

	304332	AA158884		EST singleton (not in UniGene) with exon hit	0.129
	304522	AA465405		EST singleton (not in UniGene) with exon hit	0.129
		R46180	Hs.153485		0.129
_		Al685841	Hs.161354		0.129
5	301119	AF142579		EST duster (not in UniGene) with exon hit	0.129
	309268	Al985821	Hs.62954	ferritin; heavy polypeptide 1	0.129
		H42142		DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 19	
	00000	1176176	110122000	(Dbp5; yeast; homolog)	0.129
	000010			• • • • • • • • • • • • • • • • • • • •	
4.0	336949			CH22_FGENES.361-4	0.129
10	330115			CH.19_p2 gi 6015202	0.129
	339212			CH22_FF113D11.GENSCAN.6-7	0.129
,	326951			CH.21_hs gi 6004446	0.129
		AA662939		EST singleton (not in UniGene) with exon hit	0.129
a =		Al559492		EST singleton (not in UniGene) with exon hit	0.129
15	337140			CH22_FGENES.537-5	0.13
		U29112		EST duster (not in UniGene)	0.13
	304619	AA515554	Hs 119598	ribosomal protein L3	0.13
		AA745289	Hs.173088		0.13
		AA140203	113.113000		0.13
20	339017			CH22_DA59H18.GENSCAN.20-6	
20	330116			CH.19_p2 gi 6015202	0.13
	333312	•		CH22_FGENES.138_4	0.13
	338004			CH22 EM:AC005500.GENSCAN.121-1	0.13
		AA232134	Hs.190028		0.13
					0.13
05		A1239845	∏S. 120494	ESTs; Weakly similar to EG:95B7.2 [D.melanogaster]	
25	338530			CH22_EM:AC005500.GENSCAN.398-11	0.13
	335968			CH22_FGENES.652_1	0.13
	314121	Al732100	Hs.187619	ESTs	0.13
	337593			CH22_C20H12.GENSCAN.6-8	0.13
	332881			CH22_FGENES.33_1	0.13
20		4 4 0 5 0 0 4 0			
30		AA858043		EST singleton (not in UniGene) with exon hit	0.13
	339059			CH22_DA59H18.GENSCAN.30-5	0.13
	305610	AA782319		EST singleton (not in UniGene) with exon hit	0.13
	305852	AA862455		EST singleton (not in UniGene) with exon hit	0.13
	327409	70 1001 101		CH.02_hs gl 5867750	0.13
35		#104000Ô	No 104170		0.13
33		Al613089	Hs.164178		
	308726	A1799268	Hs.209929		0.13
	325961			CH.16_hs gi 5867147	0.13
	311159	AW025919	Hs.197636	ESTs	0.13
		AA057230	Hs.182135		0.13
40	336441	74 1007 200	1101102100	CH22_FGENES.827_7	0.13
40					
	336339			CH22_FGENES.814_12	0.13
	306911	Al095365		EST singleton (not in UniGene) with exon hit	0.13
	333613			CH22_FGENES.217_8	0.13
	338489			CH22_EM:AC005500.GENSCAN.384-17	0.131
45	326904			CH.21_hs gi 5867684	0.131
13	337337				0.131
				CH22_FGENES.717-1	
	326752			CH.20_hs gij5867615	0.131
	303977	AW512978		EST singleton (not in UniGene) with exon hit	0.131
	301373	AA595235		EST duster (not in UniGene) with exon hit	0.131
50	338448			CH22_EM:AC005500.GENSCAN.359-22	0.131
				ALIAA TATIITA ANA T	0.404
	333774			CH22_FGENES.272_5	0.131
	332986			CH22_FGENES.54_8	0.131
	335362			CH22_FGENES.541_12 -	0.131
	335896			CH22_FGENES.635_4	0.131
55	337825			CH22_EM:AC005500.GENSCAN.13-19	0.131
	325257			CH.11_hs gl 5866895	0.131
		TEODAO	Hs.167837		0.131
		T50240			
		Y08302		dual specificity phosphatase 9	0.131
	331760	AA292721	Hs.154434	ESTs; Weakly similar to unknown [H.sapiens]	0.131
60	322995	AA513829	Hs.29797		0.131
	335497			CH22_FGENES.571_5	0.131
	334824				0.131
		D00000	11-40	CH22_FGENES.437_6	
		R06933	Hs.184221		0.131
	334842			CH22_FGENES.439_21	0.131
65	333335			CH22_FGENES.139_4	0.131
-		AA905178	Hs.130124	<del>-</del>	0.131
	329034		. 101.00167		0.131
		4 400 4000		CH.X_hs gi[5868561	
		AA664230		EST singleton (not in UniGene) with exon hit	0.131
	335755			CH22_FGENES.604_4	0.131

	302143	H15270	Hs.189847	putative neuronal cell adhesion molecule	0.131
	334939			CH22_FGENES.465_3	0.131
		C15110	Hs.17802		0.131
		C15110	115.17002		
-	334498			CH22_FGENES.397_14	0.131
5	333413			CH22_FGENES.146_2	0.132
	329676			CH.14_p2 gi[6272128	0.132
	327277			CH.01_hs gij5867473	0.132
		AA627416		EST singleton (not in UniGene) with exon hit	0.132
		MA02/410			
10	336805			CH22_FGENES.196-3	0.132
10	320121	T93657		EST cluster (not in UniGene)	0.132
	334761			CH22_FGENES.428_10	0.132
	339400			CH22 BA232E17.GENSCAN.7-6	0.132
	330301			CH.06_p2 gi 2905862	0.132
		A A007004	No 400007	ESTs: Weakly similar to neuronal thread protein	U. 10L
15	310022	AA827691	FIS. 128807		0.400
15				AD7c-NTP [H.sapiens]	0.132
	328020			CH.06_hs gi 5902482	0.132
	325327			CH.11_hs gij5866875	0.132
		AA209530		EST cluster (not in UniGene)	0.132
		77 200000		CH22_FGENES.823_5	0.132
20	336393				
20	325905			CH.16_hs gi 5867104	0.132
	305237	AA676286	Hs.2186	eukaryotic translation elongation factor 1 gamma	0.132
	339046			CH22_DA59H18.GENSCAN.28-6	0.132
	325375			CH.12_hs gi 5866920	0.132
	333961			CH22 FGENES.304 7	0.132
25				· · · · · · · · · · · · · · · · · · ·	0.133
23	335450	D00400		CH22_FGENES.562_8	
		R58438		EST cluster (not in UniGene) with exon hit	0.133
	335116			CH22_FGENES.496_3	0.133
	327333			CH.01_hs gi 5902477	0.133
	308070	Al470948		EST singleton (not in UniGene) with exon hit	0.133
30		AI581855		EST singleton (not in UniGene) with exon hit	0.133
50		AW360847	Hs.208839		0.133
			113.200033		
		AW248307		EST cluster (not in UniGene)	0.133
	328318			CH.07_hs gl 5868373	0.133
	320603	R51419		EST cluster (not in UniGene)	0.133
35	332791			CH22_FGENES.3_1	0.133
		AA524725	Hs.162108		0.133
		AL134164	Hs.224868		0.133
		R39753	Hs.170187		0.133
	333944			CH22_FGENES.302_2	0.133
40	317992	Al733512	Hs.130901	ESTs	0.133
	330935	F02383	Hs.26492	beta-1;3-glucuronyitransferase 3 (glucuronosyitransferase i)	0.133
	336659			CH22_FGENES.36-5	0.133
	338887			CH22_DJ32I10.GENSCAN.6-10	0.133
		6 AC70070	Un 10116E	eukaryotic translation elongation factor 1 alpha 1	0.133
45		AA679979	HS. 101 103		
45	333566			CH22_FGENES.183_2	0.134
	316952	AW450033	Hs.163312	ESTs	0.134
	333818			CH22_FGENES.283_1	0.134
	328687			CH.07_hs gij5868262	0.134
		H11802		EST cluster (not in UniGene) with exon hit	0.134
50	336557			CH22_FGENES.842_2	0.134
50				OLICA FORUMO ALA	0.404
	335222			CH22_FGENES.513_5	0.134
	338094			CH22_EM:AC005500.GENSCAN.179-3	0.134
	337384			CH22_FGENES.745-1	0.134
	327360			CH.01_hs gi[6552411	0.134
55	328132			CH.06_hs gil5868038	0.134
		Al751438	He 192927	ESTs; Weakly similar to !!!! ALU SUBFAMILY SQ	••••
	323004	A170 1400	113.102027		0.404
				WARNING ENTRY !!!!	0.134
	337591			CH22_C20H12.GENSCAN.6-6	0.134
	307018	Al140639		EST singleton (not in UniGene) with exon hit	0.134
60	326896			CH.21_hs qi 5867680	0.134
	333479			CH22_FGENES.163_5	0.134
	337915			CH22_EM:AC005500.GENSCAN.61-3	0.134
				··· =	
	335110			CH22_FGENES.494_18	0.134
~	333481			CH22_FGENES.163_9	0.134
65	327512			CH.02_hs gi 6117815	0.134
	300098	AW328639	Hs.83575	ESTs; Weakly similar to ZC328.3 [C.elegans]	0.134
	330163			CH.02_p2 qi 6042042	0.135
	335752			CH22_FGENES.604_1	0.135
					0.135
	334857			CH22_FGENES.443_1	V. 130

	301872	H84730		EST cluster (not in UniGene) with exon hit	0.135
	337529	1.5		CH22_FGENES.823-29	0.135
	335734			CH22_FGENES.601_4	0.135
_	337551			CH22_FGENES.847-8	0.135
5	309078	Al920965	Hs.77961	major histocompatibility complex; class I; B	0.135
•	335513			CH22 FGENES.571 28	0.135
	339078				0.135
			11. 440700	CH22_DA59H18.GENSCAN.37-6	
	321907	N56660	HS.148/22	ESTs; Weakly similar to large tumor suppressor 1 [H.sapiens]	0.135
	337189			CH22_FGENES.571-32	0.135
10	329635			CH.12_p2 gi 5302817	0.135
		Al719930		EST singleton (not in UniGene) with exon hit	0.135
			11-0004		
	-	AA627248	Hs.2064	vimentin	0.135
	333894			CH22_FGENES.293_1	0.135
	322465	AA137152	Hs.3784	ESTs; Highly similar to phosphoserine aminotransferase	
15				[H.sapiens]	0.135
	205601	AA780975		EST singleton (not in UniGene) with exon hit	0.135
			11- 444004		0.100
	332186	H10781	H\$.141051	ESTs; Moderately similar to IIII ALU SUBFAMILY SB	
				WARNING ENTRY	0.135
	327822			CH.05_hs gi[5867968	0.135
20		Al393914	He 160624	ESTs; Weakly similar to similar to CR16; SH3 domain	
20	010007	711000011	110.100024		0.135
				binding protein	
	328752			CH.07_hs gi 5868298	0.135
	337611			CH22_C20H12.GENSCAN.19-4	0.135
	334470			CH22_FGENES.394_1	0.136
25	335115			CH22_FGENES.496_2	0.136
				<del></del> <del>-</del>	0.136
	328730			CH.07_hs gi[5868289	
	330350			CH.09_p2 gi 3056622	0.136
	336971			CH22_FGENES.378-6	0.136
	308258	Al565612		EST singleton (not in UniGene) with exon hit	0.136
30	326745			CH.20_hs gi 5867611	0.136
50				CH22_FGENES.560_3	0.136
	335440			<del> </del>	
	320257	AA330746		EST cluster (not in UniGene)	0.136
	328677			CH.07_hs gij5868256	0.136
	329731			CH.14_p2 gij6065783	0.136
35		AA700553	Hs.206974		0.136
55		A-1100000	113.200374		0.136
	330049			CH.17_p2 gi 4567182	
	337070			CH22_FGENES.448-3	0.136
	304095	H11324	Hs.31059	EST	0.136
	309304	AW005527	Hs.232820	EST	0.136
40	333458			CH22_FGENES.157_7	0.136
••	329899				0.136
				CH.15_p2 gi 6563505	
		Al275056	Hs.200133		0.136
	333991			CH22_FGENES.310_15	0.136
	318617	AW247252	Hs.75514	nucleoside phosphorylase	0.136
45		Al341586	Hs.195588		0.136
			Hs.3003	CD3E antigen; epsilon polypeptide (TiT3 complex)	0.136
		M23323	HS.3003		
		AW194694		EST singleton (not in UniGene) with exon hit	0.136
	331068	R00071	Hs.191199	ESTs	0.136
	334285			CH22_FGENES.369_15	0.136
50	332178	F13689	Hs.100725	<del>-</del>	0.136
			. 10.1507 20	EST singleton (not in UniGene) with exon hit	0.136
		AA827608	11. 0504		
		AL138110	Hs.8594	Homo sapiens mRNA containing (CAG)4 repeat; clone CZ-CAG-7	
	334543			CH22_FGENES.403_8 -	0.136
	335384			CH22_FGENES.543_26	0.136
55	336527			CH22_FGENES.839_8	0.136
	334951			CH22_FGENES.465_20	0.136
	325882			CH.16_hs gi 5867087	0.137
	305134	AA653159		EST singleton (not in UniGene) with exon hit	0.137
	307058	Al148709		EST singleton (not in UniGene) with exon hit	0.137
60		AA453418	Hs.178272	ESTs	0.137
		R44780	Hs.22634	ESTs	0.137
			113.22.004		
		AA908877		EST singleton (not in UniGene) with exon hit	0.137
	333561			CH22_FGENES.180_18	0.137
	321439	H61962		EST duster (not in UniGene)	0.137
65		AA497090		EST cluster (not in UniGene)	0.137
-		. 3 (70) 000		CH22_EM:AC005500.GENSCAN.77-4	0.137
	337926				
	337353			CH22_FGENES.726-1	0.137
	331836	AA412295	Hs.104774		0.137
	308981	AI873242		EST singleton (not in UniGene) with exon hit	0.137
	_			•	

				A1114 1 days	
	329424			CH.Y_hs gi 5868879	0.137
	325829			CH.15_hs gi 5867052	0.137
	331845	AA416863	Hs.98183	ESTs	0.137
	333854	74110000	110.00100	CH22_FGENES.290_13	0.137
5		41000040			
)		A1000248		EST singleton (not in UniGene) with exon hit	0.137
	328948			CH.08_hs gi 6456765	0.137
	338935			CH22_DJ32110.GENSCAN.18-12	0.137
	325960			CH.16_hs gi 5867147	0.137
					0.138
10	328377			CH.07_hs gi 5868390	
10	308851	Al829820		EST singleton (not in UniGene) with exon hit	0.138
	314620	AA424352	Hs.210586	ESTs	0.138
	337592			CH22_C20H12.GENSCAN.6-7	0.138
	338684			CH22_EM:AC005500.GENSCAN.472-3	0.138
		4.4.400.400	11-07540		
. ~	331800	AA400498	Hs.97543	ESTs	0.138
15	304587	AA505535		EST singleton (not in UniGene) with exon hit	0.138
	333981			CH22_FGENES.310_4	0.138
		AA040369	He 11170	SYT interacting protein	0.138
			113.11170		
		AA835278		EST singleton (not in UniGene) with exon hit	0.138
	311947	T65554	Hs.251591	EST	0.138
20	333783			CH22_FGENES.273_5	0.138
	337406			CH22_FGENES.754-14	0.138
	327976		•	CH.06_hs gi 5868212	0.138
	325593			CH.13_hs gi 5866992	0.138
	339425			CH22_DJ579N16.GENSCAN.14-4	0.138
25	304475	AA428879		EST singleton (not in UniGene) with exon hit	0.138
		AW131104		EST singleton (not in UniGene) with exon hit	0.138
		ATTIOTIO			0.138
	337532		11 400000	CH22_FGENES.827-6	
	317234	AA904448	Hs.126368		0.138
	312261	AA854425	Hs.144455	ESTs	0.138
30	328927			CH.08_hs gi 5868500	0.138
-	336424			CH22_FGENES.824_9	0.138
					0.138
	326667			CH.20_hs gi 6552455	
	325988			CH.16_hs gi 5867064	0.138
	318446	AW300287		EST cluster (not in UniGene)	0.139
35	336511	•		CH22_FGENES.834_6	0.139
	335204			CH22_FGENES.508_13	0.139
		4 4 4 4 7 4 7 0			
		AA147472		EST cluster (not in UniGene) with exon hit	0.139
	330870	AA115804	Hs.187593	ESTS	0.139
	329376			CH.X_hs gij5868859	0.139
40	304703	AA563898		EST singleton (not in UniGene) with exon hit	0.139
	333653	700000		CH22_FGENES.239_2	0.139
		41054000		<del></del> <del></del>	
		AI051696		EST singleton (not in UniGene) with exon hit	0.139
	304872	AA595289		EST singleton (not in UniGene) with exon hit	0.139
	330812	AA013001	Hs.60563	ESTs	0.139
45	329568			CH.10_p2 gi[3962490	0.139
15		A ADEODTA	Un 146061		0.139
		AA253074	Hs.146261		
	334320			CH22_FGENES.374_5	0.139
	300860	Al916949	Hs.149748	ESTs; Weakly similar to weak similarity to collagens [C.elegans]	0.139
		AA864533		EST singleton (not in UniGene) with exon hit	0.139
50		AA984364	Hs.119064		0.139
50				transducin-like enhancer of split 4; homolog of Drosophila E(sp1)	
		M99439			
	312708	A1076204	Hs.135440		0.139
	309366	AW072970		EST singleton (not in UniGene) with exon hit	0.139
		AA316069		EST duster (not in UniGene) with exon hit	0.139
55		AW274696	Hs.143921		0.139
JJ		M112/4030	113.140321		
	333239			CH22_FGENES.111_1	0.139
	307126	Al184951		EST singleton (not in UniGene) with exon hit	0.139
	316813	AA826505	Hs.124517	ESTs	0.139
		AA281365		ESTs; Weakly similar to KIAA0386 [H.saplens]	0.139
60					0.139
60		AI700145		poly(A)-binding protein; cytoplasmic 1	
	310784	AW086142	Hs.159017		0.139
	323831	AA335715	Hs.200299		0.139
		Al318342		EST singleton (not in UniGene) with exon hit	0.139
				EST cluster (not in UniGene)	0.139
65		Al318327			
65	327934			CH.06_hs gi[5868184	0.139
	305232	AA670052	Hs.195188	glyceraldehyde-3-phosphate dehydrogenase	0.139
	334756			CH22_FGENES.428_5	0.139
		AA451867	Hs.99255		0.139
				ESTs; Weakly similar to KIAA0644 protein [H.sapiens]	0.139
	301383	AI474722	113.130030	TO 19 HEARY SHIRES IN UNADOLA MORRIS (History Coll)	U. 103

	312005	T78450	Hs.13941	ESTs	0.139
	338431			CH22_EM:AC005500.GENSCAN.351-4	0.14
	331214	T90496	Hs.16757	ESTs	0.14
	333601			CH22_FGENES.213_4	0.14
5	323481	AA278449	Hs.137429	ESTs	0.14
	336911			CH22_FGENES.344-4	0.14
	338157			CH22_EM:AC005500.GENSCAN.209-5	0.14
	327845			CH.05_hs gi[6531962	0.14
		Z45662	Hs.90797		0.14
10	334763			CH22_FGENES.428_12	0.14
	329384			CH.X_hs gi 5868869	0.14
		AF054663		EST cluster (not in UniGene) with exon hit	0.14
		AW452656	Hs.209824		0.14
	329916	MITOLOGO	110200021	CH.16_p2 gi 6223624	0.14
15		N49826	Hs.18602		0.14
10	338129	1140020	110110000	CH22_EM:AC005500.GENSCAN.197-2	0.14
	325704			CH.14_hs gij5867028	0.14
	335656			CH22_FGENES.590_7	0.14
		W72366	Hs.40033		0.14
20				ESTs; Highly similar to transcription regulator [M.musculus]	0.14
20		AI018331	Hs.158665		0.14
		AW449754	ns. 130003		0.14
	326941			CH.21_hs gi 6004446	0.14
	328809		U- 400005	CH.07_hs gi 5868327	
25		Al653164	Hs.128665		0.14
25		AA564064		EST singleton (not in UniGene) with exon hit	0.14
	325666			CH.14_hs gij6469822	0.14
	333747			CH22_FGENES.265_6	0.14
		AW015616	Hs.143321		0.141
20	332972			CH22_FGENES.51_5	0.141
30		AA825266		EST singleton (not in UniGene) with exon hit	0.141
	-	AW182805	Hs.189183	ESTs; Weakly similar to Nod1 [H.sapiens]	0.141
	327296			CH.01_hs gi 5867492	0.141
	336400			CH22_FGENES.823_15	0.141
	321033	H26214	Hs.20733	ESTs; Weakly similar to IIII ALU SUBFAMILY SX	
35				WARNING ENTRY	0.141
		Al475995	Hs.122910		0.141
	335715			CH22_FGENES.599_15	0.141
	335959			CH22_FGENES.650_2	0.141
	333259			CH22_FGENES.118_7	0.141
40	337382			CH22_FGENES.744-8	0.141
	322346	AA227618	Hs.10882	HMG-box containing protein 1	0.141
	325378			CH.12_hs gi 5866920	0.141
	338500			CH22_EM:AC005500.GENSCAN.390-1	0.141
	338460			CH22_EM:AC005500.GENSCAN.362-5	0.141
45	315279	AW511138	Hs.256581	ESTs	0.141
	314439	AI539443	Hs.137447	ESTs	0.141
	333624			CH22_FGENES.222_3	0.141
	329237			CH.X_hs gi 5868729	0.141
	330117			CH.19_p2 gi[6015201	0.141
50	338017			CH22_EM:AC005500.GENSCAN.134-1	0.141
	337854			CH22_EM:AC005500.GENSCAN.38-12	0.142
	329984			CH.16_p2 gi 4646193	0.142
		AA622328	Hs.162762		0.142
		N40373		EST cluster (not in UniGene) with exon hit	0.142
55	327823			CH.05_hs gi 5867968	0.142
-	326753			CH.20_hs qi 5867616	0.142
		AA904482	Hs.197775	- 01	0.142
	334303	72.007.02		CH22_FGENES.373_6	0.142
	326453			CH.19_hs gi 5867399	0.142
60		Al864581	Hs.215477		0.142
OO		AI802711		EST; Weakly similar to aldolase A [H.sapiens]	0.142
		H63959	Hs.142722		0.142
	338010		110.176/66	CH22_EM:AC005500.GENSCAN.128-8	0.142
	336326			CH22_FGENES.812_4	0.142
65		R44308	Hs.242302		0.142
05		R55421	, 10-TLOUL	EST cluster (not in UniGene)	0.142
	325855			CH.16_hs gi 5867067	0.142
		HG1728-HT1	734	Non-Specific Cross Reacting Antigen (Gb:D90277),	** 1 TL
	O-JAPPED	11017201111	· VT	Alt. Splice Form 2	0.142
				rae opiiou i unii e	TL

		•			
	324583	AA425411	Hs.22581	ESTs	0.142
	326268			CH.17_hs gi 5867267	0.142
	331390	AA460341	Hs.45008	ESTs	0.142
_	338904			CH22_DJ32I10.GENSCAN.10-16	0.143
5	333096			CH22_FGENES.79_1	0.143
		AA446869	Hs.119316		0.143
		Al248004	Hs.125187		0.143
		AW179174	Hs.7984	ESTs	0.143 0.143
10		Al204001		ribosomal protein L31	0.143
10		AA885317	Hs.190511	CH22_FGENES.747-3	0.143
	337392 325543			CH.12_hs gi 6682452	0.143
		AA873085		EST singleton (not in UniGene) with exon hit	0.143
	332707		He 174185	phosphodiesterase l/nucleotide pyrophosphatase 2 (autotaxin)	0.143
15	337913	200004	113.174100	CH22 EM:AC005500.GENSCAN.59-10	0.143
10		AA961061	Hs.131696	<del></del>	0.143
	335078			CH22_FGENES.486_5	0.143
	338451			CH22_EM:AC005500.GENSCAN.359-39	0.143
		AJ230640		EST cluster (not in UniGene) with exon hit	0.143
20	330464		Hs.78223	N-acylaminoacyl-peptide hydrolase	0.143
	330988	H41411	Hs.33855	ESTs	0.143
	328939			CH.08_hs gi 6004481	0.143
	308015	Al440174	Hs.228907	EST; Weakly similar to GUANINE NUCLEOTIDE-BINDING	
~~				PROTEIN BETA SUBUNIT-LIKE PROTEIN	
25				12.3 [H.sapiens]	0.143
	328504			CH.07_hs gi 5868471	0.143
		AA402891	Hs.32951	solute carrier family 29 (nucleoside transporters); member 2	0.143 0.143
	335744	A F077000		.CH22_FGENES.601_15	0.143
30		AF077208		EST cluster (not in UniGene)	0.143
30		AL042661 Al939323	Uc 157714	EST cluster (not in UniGene) ESTs; Weakly similar to NEURONAL ACETYLCHOLINE	0.170
	310443	A1939323	115.131114	RECEPTOR PROTEIN; ALPHA-5 CHAIN PRECURSOR	
				[H.sapiens]	0.143
	336568			CH22_FGENES.843_7	0.143
35		H08815	Hs.159824		0.143
-	327672			CH.04_hs gi 5867843	0.143
	335900			CH22_FGENES.635_8	0.144
	336044			CH22_FGENES.679_6	0.144
	318845	Al815951	Hs.33183	ESTs; Weakly similar to estrogen-responsive finger protein;	
40			efp [H.sapi		0.144
	333483			CH22_FGENES.165_2	0.144 0.144
	333337	4 4 6 6 6 4 6 7		CH22_FGENES.139_6	0.144
		AA889197	i	EST singleton (not in UniGene) with exon hit	0.144
45	335719			CH22_FGENES.599_22 CH.14_hs gi]6138923	0.144
43	325682 327350			CH.01_hs gij6249563	0.144
	339291			CH22_BA354112.GENSCAN.18-1	0.144
	326358			CH.18_hs gi 5867293	0.144
	330316			CH.08_p2 gi 6007576	0.144
50		Al499346	Hs.174131	ribosomal protein L6	0.144
	338065			CH22_EM:AC005500.GENSCAN.164-1	0.144
	339009			CH22_DA59H18.GENSCAN.18-7	0.144
	327776			CH.05_hs gi 5867964	0.145
	336664		•	CH22_FGENES.41-8	0.145
55		AF070619		EST cluster (not in UniGene)	0.145
		T70147	Hs.12024	ESTs	0.145
		AA062892		EST singleton (not in UniGene) with exon hit	0.145
		Z45986	Hs.250178		0.145 0.145
60	327498			CH.02_hs gi 6017023	0.145
60	335227			CH22_FGENES.513_13 CH22_DA59H18.GENSCAN.22-1	0.145
	339022	MEECO1	Hs.33026		V. 170
	30208/	H55661	TRAB [C.el		0.145
	308550	AI697008	Hs.201811	·	0.145
65		AA262760		Homo saplens chromosome 19; cosmid R29381	0.145
		AA156760		EST cluster (not in UniGene) with exon hit	0.145
	337414			CH22_FGENES.757-2	0.145
		A1734009		EST duster (not in UniGene)	0.145
	329333			CH.X_hs gi 5868806	0.145

				OLDO FORNICO COA 7	0445
	336857	4.4004000	11-0000	CH22_FGENES.291-7	0.145
		AA234896	Hs.25272	E1A binding protein p300	0.145 0.145
		Al928098	Hs.156832		
_	336318	MOORES	11- 470040	CH22_FGENES.801_1	0.145
5		Al923551	Hs.170843		0.145
	335346	T07440	11- 40000	CH22_FGENES.537_2	0.145
		T65416	Hs.12826	ESTs	0.145
	337607	T04000	11-45004	CH22_C20H12.GENSCAN.17-3	0.146
10		T84096	Hs.15284	ESTs	0.146
10		T80698		EST cluster (not in UniGene) with exon hit	0.146
		AA210878		EST cluster (not in UniGene)	0.146
		Al695374	Hs.256231		0.146
		AA632554	Hs.163401		0.146
15		Al142359	Hs.155316		0.146
15		N70088	Hs.138467	T	0.146
	329276			CH.X_hs gi 5868762	0.146
	335887			CH22_FGENES.633_1	0.146
	338294			CH22_EM:AC005500.GENSCAN.297-1	0.146
20	336993			CH22_FGENES.409-4	0.146
20	334135			CH22_FGENES.336_2	0.146
	326251			CH.17_hs gi 5867263	0.146
	337396			CH22_FGENES.749-1	0.146
	339167	*****		CH22_DA59H18.GENSCAN.69-8	0.146
05		AW135418	Hs.161210		0.146
25	325313			CH.11_hs gi 5866865	0.146
		N66918	Hs.32205	ESTs	0.146
		AL043362		EST cluster (not in UniGene)	0.146
		AF062275		EST cluster (not in UniGene) with exon hit	0.146
20		AA947909		EST singleton (not in UniGene) with exon hit	0.146
30	334399			CH22_FGENES.382_5	0.146
	326472			CH.19_hs gij5867404	0.146
	333061		+	CH22_FGENES.75_4	0.146
	337072			CH22_FGENES.448-5	0.146
25	334328			CH22_FGENES.375_5	0.146
35	327039			CH.21_hs gi[6531965	0.146
	325576	11075004	11- 400000	CH.12_hs gi 6552443	0.147
		A1075804	Hs.132660		0.147
•	-	AA323758		EST cluster (not in UniGene)	0.147
40	334501			CH22_FGENES.397_17	0.147 0.147
40	338238	A1744000		CH22_EM:AC005500.GENSCAN.264-4	0.147
		A1744063		EST singleton (not in UniGene) with exon hit	0.147
	336567			CH22_FGENES.843_6	0.147
	335819			CH22_FGENES.619_2	0.147
45	336950	A14 40 477		CH22_FGENES.361-8 EST singleton (not in UniGene) with exon hit	0.147
<del>1</del> J		AJ148477	Hs.126714		0.147
		AW504854	N5.1207 14	CH22_ FGENES.621_1	0.147
	335834			- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.147
	327870	AA332011	He 250120	CH.06_hs gij5868131 protein phosphatase 2C; magnesium-dependent; catalytic subunit	
50	329412	MW32011	113-230 130	CH.X_hs gij6682553	0.147
50	222701	AA333068		EST cluster (not in UniGene)	0.147
		AA385315		EST duster (not in UniGene)	0.147
	327865	MO00010		CH.06_hs gi[5868130	0.147
	333445			CH22_FGENES.154_2	0.147
55		AA021351	He 159/07	KIAA0724 gene product	0.147
<i>JJ</i>	336744	ANDE 1331	113.100437	CH22_FGENES.118-9	0.147
		AA323414		EST duster (not in UniGene)	0.148
		H07989		EST cluster (not in UniGene)	0.148
		AA749000		EST singleton (not in UniGene) with exon hit	0.148
60		AA780594	Hs.62954	ferritin; heavy polypeptide 1	0.148
~~		H11295		EST singleton (not in UniGene) with exon hit	0.148
		AW296368		EST duster (not in UniGene)	0.148
	339034			CH22_DA59H18.GENSCAN.26-2	0.148
	334504			CH22_FGENES.398_2	0.148
65	334778			CH22_FGENES.431_2	0.148
		U77494	Hs.119687	RAN binding protein 8	0.148
		AW173759	Hs.203401	•	0.148
	325826			CH.15_hs gij5867048	0.148
	-	T55182	Hs.152571	ESTs; Highly similar to IGF-II mRNA-binding protein 2 [H.sapiens]	0.148

	325785			CH.14_hs gi]6381957	0.148
	333166			CH22_FGENES.91_8	0.148
	336548			CH22_FGENES.841_5	0.148
_	337552			CH22_C4G1.GENSCAN.1-4	0.148
5	331775	AA382742	Hs.97151	EST	0.148
	338936			CH22_DJ32I10.GENSCAN.19-6	0.148
		AA428554	Hs.104894	ESTs; Weakly similar to fibronectin precursor [H.sapiens]	0.148
	332865			CH22_FGENES.28_5	0.148
10	328663			CH.07_hs gi 6004473	0.148
10	328436			CH.07_hs gi 5868417	0.148
		A1634864	Hs.250789	ESTs; Highly similar to similar to NEDD-4 [H.sapiens]	0.148
	336942		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CH22_FGENES.354-2	0.148
		R53169	Hs.246091		0.149
15	333296		•	CH22_FGENES.132_3	0.149
15	333365		11- 05005 1	CH22_FGENES.142_2	0.149
		AW452392	Hs.252854		0.149
	337109		11. 400004	CH22_FGENES.489-2	0.149 0.149
		AW173300	Hs.190201		0.149
20	333454			CH22_FGENES.157_3	0.149
20	334784			CH22_FGENES.432_9	0.149
	333255			CH22_FGENES.118_3	0.149
	337518	A A 40000CD		CH22_FGENES.814-7 EST cluster (not in UniGene)	0.149
		AA489268		EST cluster (not in UniGene) EST cluster (not in UniGene)	0.149
25		AA287567		CH.07_hs gij5868302	0.149
23	328761 328787			CH.07_hs gi 5868309	0.149
	335261			CH22_FGENES.520_2	0.149
		R16689	Hs.106004		0.149
	339263		113.100007	CH22 BA354i12.GENSCAN.10-1	0.149
30	337412			CH22_FGENES.756-6	0.149
50	334414			CH22_FGENES.384_1	0.149
	332931			CH22_FGENES.38_5	0.149
		AW270980	Hs.106346	novel centrosomal protein RanBPM	0.149
		AA669056		EST singleton (not in UniGene) with exon hit	0.149
35		AA470122	Hs.190261		0.149
-	338414		•	CH22_EM:AC005500.GENSCAN.341-27	0.149
	303342	AW247361		EST cluster (not in UniGene) with exon hit	0.149
	337509			CH22_FGENES.806-4	0.149
	306631	Al001149		EST singleton (not in UniGene) with exon hit	0.149
40	302533	L36149	Hs.248116	chemokine (C motif) XC receptor 1	0.149
	336536			CH22_FGENES.839_18	0.149
		T32458	Hs.14285		0.149
		Al767433	Hs.170013		0.149
4.5	333595			CH22_FGENES.211_2	0.149
45	335975			CH22_FGENES.652_9	0.15
		A1003654		EST singleton (not in UniGene) with exon hit	0.15
	335025			CH22_FGENES.475_3	0.15
	328711			CH.07_hs gi 5868271	0.15 0.15
50	328274			CH.07_hs gi 5868219	0.15 0.15
50	325505			CH.12_hs gi 6682451	0.15
	329641	A A C 1 2 E O 4		CH.14_p2 gij6468233 EST singleton (not in UniGene) with exon hit	0.15
		AA613504		CH22_DA59H18.GENSCAN.44-10	0.15
	339103 329636			CH.12_p2 gij5302817	0.15
55		Al203293	Hs.157489		0.15
55	326056	MEGOEGO	. 20. 101 700	CH.17_hs gi[5867184	0.15
		AA769074		EST cluster (not in UniGene) with exon hit	0.15
		U09759	Hs.8325	mitogen-activated protein kinase 9	0.15
	555100				-

5

10

TABLE 13A shows the accession numbers for those primekeys lacking unigeneID's for Table 13. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	Pkey: CAT number: Accession:		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers			
15	Pkey	CAT number	Accession			
		24275_1 1599424_1	AL137589 AA423949 BE222949 BE222694 Al199615 AW873116 Al277950 AW044290 AW630096 H61962 W01567 N75711			
20		13653_22	BE259906 AA232518 AA013359 AL035788 AW160822 BE387134 BE002954 BE391839 AW161565 Al878841 BE616458 BE409981 BE387308 BE297436 BE315536 AA206924 R12012 AA214169 BE312812 BE387093 H11710 BE312009 BE260569 AA343566 AA219526 R34757 AA219749 BE336733 AA219751 AW411099 AA232408 BE018716 BE398089 AA206253 AA053487 AA114224 AV655868 AW732566 BE394087 AW732574 AA313442 BE336875 AA070548 BE259840			
25			BE019828 AW732341 AA299916 BE019253 BE018238 BE387109 AA232304 BE255589 AW732585 AA181436 AA308777 AA075802 AW732521 AA314526 AA226747 BE409513 AA206168 BE388292 BE298782 BE387086 AA305310 AV652723 AA314918 BE615510 AW951763 BE398104 BE385195 BE407165 BE391336 BE390187 BE389189 BE540650 BE249884 BE385985 BE274245 BE391124 BE260080 AA182600 BE512821 BE390090 BE279398 BE279589 BE263454 BE515194 BE293569 BE272531 BE388814 BE384659 BE271685 BE561043 BE278449 BE302572 AW239076 AI750583 AA376179 AA112632 BE266324 BE26614 R13105 AA132286 BE296305 Al220355 AA205606 AA219527 AA219519 AW804310			
30	322303	622937_1 704603_1	AA083286 BE171208 T19693 AA338328 BE185868 AA903024 T92162 AA330119 BE410404 BE314668 AW576245 BE207878 AW299993 AI199558 AI285442 AW299994 AW394242 AW394184 AI357412 AI870708 AI590539 W07459 AW068287 AA310079 BE336702 AA356318 AA306059 AA346785 AW402633 AA311210 AW402909 N76879 AW402913			
35	322394	27492_1	AW401920 AA321636 AA354474 C17297 C16938 AA311774 M29871 NM_002872 Z82188 AW405674 H94176 R89281 AA214723 AI014482 AW949347 T27749 AW804226 AW796964 AW404581 AF077208 NM_014029 W68830 W79652 AA353375 AW575218 AA552192 AA521232 AA702695 AA033975 AW407827 AA829948 N94402 AW628604 AI523308 N57605 AA641662 H42477 N52784 AI753478 AA768493 AA845729 W47391 N55270 AI090117 R89282 BE206172 AA076650 AA595650 AI218931 BE049397 AI433110 W74114 H94277 AI358627 AI085221 AI862818 AA835967 AW103905			
40		44275_1	AI640644 AA835507 AA856887 AA694392 AW337542 AI524410 BE045500 AI440060 AI358801 AW028238 AW205248 AI718264 R48618 AA357358 AI695002 AA897549 AW081065 AI433360 AI810783 AI620963 Z82188 AA360224 U29112 AI656540 AI364875 AI656246 AI990940 AA169345 AI762857 AI949997 AI809601 AI681948 AI221079 AW167404 AI347614 AI611090 AI023472 AI347683 AI027467			
	323109	155498_1	ANTISSAS AI/02637 AISSASSAS AIROSOT AIGHSAS AI221079 ANTISTAGA AIGHSAS AIC237/2 AIGHSAS AIC			
45	321921	38937_1 34680_1 21620_1	T59538 T59589 T59598 T59542 AF147374 AF070619 R20302 T80358 AJ223366 BE305086 AW820106 AA621983 BE305208 AI738475 AI380189 AW590847 AI127232 AA622706 AI380858 AA621975 AI587036 AA665743 AW204003 AI692234 AI002242 AI692219 AW137282 AW268783 AW295910 AI308015			
50			AW301462 Al318288 Al318575 Al318117 Al345591 Al249650 Al246934 Al246864 Al246971 AW268311 Al249654 BE041907 AW732776			
		265316_1 14694_7	N72324 N52825 W19526 BE143464 AA376060 M83667 NM_005195 S63168 M83667 AW068039 AW630649 Al338577 Al018125 Al269878 AW242440 Al887823 Al342581 BE222416 Al582847 Al651011 Al660815 Al699574 BE550201 Al926996 AW665855 Al827752 Al761857 BE328168 BE222451 Al762201 AW000929 AW007207 BE042962 BE551843 BE465373 Al279179 Al949945 BE551862 AW051667			
55			BE328076 BE222296 AW007229 AW072332 AI279801 AI334526 AI631938 AI770103 BE041412 AI417900 AI692655 AI869943 AW270119 AI431739 AI703347 AW770568 AW025473 AI701497 AI128026 BE328147 AW203980 BE046793 AW087704 AI674597 AI650732 AI813691 AI472092 AI695224 AI241217 AW207746 AI206840 AI271362 AI631788 AI911883 AI914619 AI380585 AI767501 AI823759 AI564116 AI190991 AI377369 AI614122 AI221623 AI354793 AI081988 AI391740 AI337435 BE467366 AI824347 AI565325 AI280038 AI640455 AI819744 BE467803 BE327524 AI149402 AI313187 BE219684			
60			AW611948 AW665821 Al091260 AW044492 BE220366 AW025381 AW183264 Al694865 Al498474 Al129780 Al202028 Al566792 BE220369 Al928040 Al830696 Al493021 AW612488 Al913152 BE042965 Al631837 Al693873 Al498925 Al768668 Al401544 BE327023 Al693383 Al769874 Al744003 AW082273 Al686501 Al798177 Al985196 Al090033 Al432342 Al689918 Al638308 BE468080 BE219588 Al912119 BE219787 AW005392 BE326564 Al589039 Al860187 Al758143 Al338168 Al702936 BE221985 Al498727 Al918196 Al279735 AW771497 Al860133 AW237834 AW661759 AW028111 BE503416			
65			Al360180 AW611715 Al871777 BE045447 BE326444 Al266547 Al800237 Al823315 Al478368 Al264281 Al675841 Al690041			

5	· .	Al498018 Al554124 Al239893 Al864054 Al280099 Al192815 Al620465 Al080201 AW002057 BE500986 Al341131 Al818991 Al566137 Al123403 BE219192 AW183844 Al499842 AW137971 AW138720 AW015526 AW138160 AW243163 AW138705 AW139927 AW140006 AW138810 AW137450 AW206970 AW135419 AW205974 AA043494 BE465106 AW139955 Al741112 BE326942 AA043506 Al079957 Al942432 Al392902 Al097047 Al470599 AA514553 AA984008 N47949 Al654114 AA884832 Al796752 Al765290 Al301155 AW470358 BE222764 Al823569 Al651188 Al692695 Al476643 BE504307 Al767573 BE219719 Al932249 AW467075 Al913633 BE221966 Al091025 AA969215 Al799810 AA931170 BE048559 Al809606 Al138614 Al739456 Al674605 AW772068 Al089286 Al625787 Al263418 AW008638 Al928389 AW628997 Al470010 Al914168 Al760003 Al203050 Al334069 Al694788 BE045337 Al948659 Al912982 Al867131 Al192102 Al767583 Al347518 Al566005 Al625884 Al215888 Al633904 AW182265 AW614357 Al128030 Al343685 Al914283 Al985003 Al823578 Al493053 Al380285 Al633895
10		Al267880 Al538162 Al991552 BE219479 BE219296 Al302178 AW779296 Al913805 Al631644 Al566772 Al985498 Al942289 Al935659 Al339092 Al247432 Al686472 Al766886 Al017228 Al333272 AW301668 Al972218 AW082027 Al632974 Al474761 Al766127 AW236578 AW000966 Al870734 Al222399 Al871249 Al703448 BE464210 Al768037 Al871585 Al767871 Al738757 Al220732 Al681633 Al768783 Al684463 Al307339 Al263203 AW665264 BE463969 Al768786 Al439118 Al127913 BE218324 Al672342 BE220052 Al796163 Al221662 AW197672 AW025300 Al769681 AW612448 BE219757 AW072420 Al669980
15		AI830418 AW204353 AA047011 AA913868 AI739146 AI669954 AW470507 AW614835 AW302151 AW772372 AI762427 AW339902 AW303370 BE464775 AW299818 AW236072 AW195060 AW274737 AW263062 AW183846 AI868894 AW300493 AW172509 AW516876 AW593773 AW299474 AW303546 AI817323 AI823624 AI694005 AI934589 AI343479 AI861825 AI962726 AI765845 AW080318 AI640227 AI763042 AI768903 AW235386 AA738489 AW341293 AA588585 BE221732 AI914179 AW611669 AI572789 AW194735 AW236122 AW236007 AW612789 AW197501 AW195046 AI797145 AI864423
20	•	A1458934 Al342848 A1693227 A1912642 A1689993 AA932572 AA740269 AW470392 AW086020 Al221701 T69326 T70461 A1765579 Al338263 A1431721 A1394249 A1186462 A1823571 A1953665 A1497954 A1761057 A1678228 A1640302 A1948742 AA594626 AA883155 A1972682 A1804774 A1300407 A1433524 AA897341 A1401175 A1291071 AA021213 A1126509 A1948955 A1218835 AA903938 AA502610 A1498320 AA584267 AA935285 A1476253 AA489658 AA975053 AA715326 AA557139 AA126417 AA971455 AA557319 A1499738 AA911438 A1913637 AA494506 N90793 A1990724 AA131667 AA128164
25		AA046840 Al262557 AA131729 AA594926 T59467 AA436907 AA044630 Al589177 Al279237 Al880498 Al431822 AA708934 AW612558 Al634069 W03610 Al192272 BE550862 Al400879 AA708507 Al128003 Al375308 Al271423 Al199552 AA125977 Al366498 AA458662 Al694382 AA044627 Al636263 Al796270 T90146 AW014724 Al870812 Al948781 AA369965 Al094721 AW271817 Al262898 Al244680 T69252 Al934148 AA046357 W19109 AA028157 AW021924 AA253491 Al189397 Al934388 D58282 W21323 W24288 Al682972 AA293683 AA284566 AV659511 AA434184 H87089 AA040038 N57464 AA343709
30	301119 33384_1	AW805815 R89837 BE621320 BE266806 BE276582 AW516729 AF142579 AW451687 AK000069 AA325236 BE168997 W73105 AA715365 BE278873 AA808894 AA386371 AW517942 AW750993 BE140314 BE392384 BE621757 AA318192 BE548173 AW152607 AW166898 AA352215 AW841506 T59802 AF147378 AA335719 AW956069 T59668 AA826362 AI961329 AI290469 AW197375 AI805651 AA160748 AA581089 AI968889 AA581100 AA501478 AI621069 AA468534 AA503715 AA658457
35	324019 262792_1 323437 189513_1	Al144504 BE387827 AA159880 AW177009 Al381610 AA287567 AA252404 AW967735 AA287568 AA761222 AA865644 AA831245
	307845 19804_10	BE514807 R43224 Al363450 AA450226 AF030942
40	324126 272259_1	AA385315 AI627453 AI050695 AI348281
40	309101 7570_1	AI340462 AI583268 AA079086 AI950777 AI301866 AI925108 AW876954 AW877000 AA525418 AA888549 AI934220 AW380220 AA804858 AI927576 T61151 AW384053 BE391691 AA533856 AA248400 T48202 N57156 R68346 R26020 AL050332 W30806 H61369 AA092592 AA230324 BE271217 AW372903 T48772 AA358002 AA094302 AA559856 AW373308 AW373315 AW373297 AW373311 AW373314 AW373309 AW877055 AW770140 AW379805 AI581609 AW364144 AA078921 AA715432 AA654210 AI004899 AA602209 W47464 AA506588 R26822 AU076528 AI535743 AI535704 AI535681
45	315703 119175_1	AAA02307 D60405 D61237 D59891 AW964877 AA325215 AI459739 N36070 N25658 AA083684 AW293368 AI761958 AI741205 AI693175 AW873603 AI143269 AI187124 N25199 H19323 AI650842 AW316825 AA083842 AA935650 AW298404 AI472001 AI648568 R17676 R41625 AI123237 R17677 AI206866 F36920 AI654713 F34084 AA618029 AI915139 AW275194 AW514577 D80420 AW149850 Z40953 AI867861 AA927547 AA974344 AI825793 AI635565 AI652157 BE504748 AW295759 F16800 AW839796 F01781 AA909730 AA984010
50	301373 368214_1	AA595235 AW973839 T03040
	323665 54093_1	AW248307 AA313452 AW951927 AA355961 BE566080
	323676 220254_1	AI702835 AI758919 AI685405 AI952108 AI299207 AI400767 AW105389 AI952710 AA845312 AI784118 AI537315
	302086 23306_1	X57138 NM_003514 Z98744 BE253911 BE256314 Al095013 Al138475
55	323731 226193_1	AA323414 AW664013 Al809377 Al276041 AW296883 Al798340 AA333068 AA331863 AA331838 AW962531 AA331442
22	323791 232336_1 325040 23854_1	AW296368 AA247632 AK002030 R15304 T08775 AW975664 Al186801 AA730688 AW190918 Al141176 AW513211
	324430 312113_1	Al275071 AA988601 BE042933 BE045713 AW087176 AA464018 AA464079 AA468142
	323892 477253 1	AA846318 W15478 AL042661
60	309488 1030131_1	AW131104 BE246610
	302251 27216_4	AA333340 AW955834 R49755 U33428
	302286 22717_6	R58438 AA358612
	323915 110063_1	AL043362 AA350031 AW751972 BE549118
~~	324594 330528_1	AA497090 Al351879 Al350914
65	301737 65_1	AI815981 AF287269 BE260960 BE263991 AA311733 F12145 F07345 Z43604 T29948 H64102 Z43611 T35364 N40667 AI909783 AW751045 AA160594 AI816064 AI307240 AI951554 AA641031 AA293045 AI942492 AI687077 R78689 H12368 AA894728 AI124930 AI423498 AA777759 AA614585 AW071822 T66288 AI418558 H21480 AI335011 AI051728 AA293436 AW302233 AW188628 N26393 AI076557 AI311022 AW451505 H62593 Z39666 H12315 AI761351 AI364142 F02935 AW571491 T35366 AI240745 H64151 AA503793 AA831948 AI627686 AI761531 F03591 F09782

		504670 B05000 T05500
	301763 1688575_1 301780 18597_2	R01279 R05896 T86522 R05735 BE349600 R37388 N79751 R10115 AA702039 AA836147 AA505716 Al049661 Al499239 R54072 Al023394 AA827710 W60285 W500038 Al884786 AA827191 AA810075 AW005088 R70248 Al858560 AW078678 AA631306 H52839 AW085835 Al656182 AA737178 AW136923 AA281028 AA570316 AA722871 AA362737 Al217268 BE242373 R01113
5		AA628946 Al394527 AW402308 Al361110 Al917585 T99639 AA805326 N44577 Al394021 AW403385 T23949 Al497766 T96602 AA834947 Al693908 Z33450 T92127 BE541896 Al933301 BE251540 BE252269 N50968 Al695531 AW575523 AW296889 N93796 N89924 Al361804 Al085251 AA810694 BE303011 AA743784 R13478 AA358771 AA325294 AW964880 BE258953 R54116 AW881039 AW602593
10	301793 239325_1 303049 102592_1 301863 19477_1	BE265837 AA340632 T96304 T96075 T72780 H51978 R09868 AW408042 AW407562 BE172835 BE396893 BE269184 AA045741 BE004187 AW751261 W74283 BE263301 Al418863 NM_005194 X52560 AW328683 BE298869 D63161
	301872 27494_4 301893 6561_1	H84730 T73262 T80334 BE292758 AK000854 H16996 BE253691 R88508 AA357663 AW955288 AW579550 N98864 AA595201 AI742967 AA602658 Al091433 AA813367 Al983217 AW298007 Al628490 AI708037 Al560654 Al032983 R88509 R38972 Al687783
15		Al560153 AW874581 N69891 AA993617 H51180 Al269042 Al281358 AW591213 Al017724 Al262859 H16997 R38991 Al804355 Al868988 Al669525 AW023081 AL047848
	310382 653318_1 303181 74060_2 302569 17513_2	Al734009 Al263076 AW272255 Al792912 AA452366 AA351338 BE262590 BE262591 AA074050 AA389667 BE161346 AC004472 BE312721 BE273942 F11928 T65358 BE612432 BE261576 BE179884
20	324893 4670_1	AA324119 AW246199 BE395368 BE261676 BE382334 BE394701 BE304548 T31940 BE398128 BE398019 BE296693 BE379564 BE269460 BE397065 Z42029 BE305028 AK000549 BE536182 BE314372 AW393349 T50987 AA069735 BE386997 AW381699 T51050 W95025 AA477678 AA348306 AW956831 AW062919 AL040397 BE305160 AA315419 AW249929 AA295944 AI635946 AI870259 AI951125 AW028250 AI885184 AW873113 AI077544 AW025091 AIB17594 AI401718 AW008245 AI499064 AA599687 AI016890 AA765638 W93340 AA588708 AW519173 R51917 AA676778 AI084871
25		AA687684 AI860840 AI811921 AW514730 AA477561 N78845 AA779894 AA778559 AI968953 T16188 T32828 AA991426 AI474472 AI473542 AI828972 AW247906 AA977415 AW591489 AA876008 AW191893 AA074278 AW874099 Z40196 AW083615 F01544 T55984 AI290413 AI972167 AI365049 T36028 AI042568 BE560076 W17119 AA196376 T47999 R54309 AK001269 AL354613 AA147472 AA490803 BE207628 AW816113 AA085574 AW503392 AA299910 AW750305 BE079539
30	303244 9334_1	BE079484 BE512838 AK001593 AW968772 AW967440 AW206280 AA251270 Al627868 AA303599 AA147473 BE206616 BA490611 AA715039 AW590866 AW590447 Al864512 AA204731 AA894490 BE001136 AA612785 AA237035 AA149960 Z44257 R12986 AA448446 Al734041 AA422167 BE220551 R66041 R32927 R32942 AA258773 AW386142 R53730 N54624 AW880296 AA253485 AW954441 H98989 AW614348 Al654838 AA779793 AW237213 N66635 Al186812 AA947479 BE158011 Al859480 AW805579 N52010 AA806305 Al628445 AW270990 AA778165 AA149949 Al650728 AA749108
35		AA687257 Al261661 AA747442 AA481351 AA206339 AA903407 AW473306 Al688930 AA262281 AA448310 AA748820 Al347430 BE465692 R32839 AW510564 AA436408 AA257971 AA253362 AA938330 AA513150 AA976840 AA687117 Al281547 AA046243 R32825 Al631554 AW139818 Al244536 R52946 AW235443 R40183 AA299909 AA811958 Al302918 Z40213 BE158047 BE158060 AA767245 AW748159 AW500735 AA094074
40	303252 149690_3 303273 67758_1 302640 21194_1	AW393348 AW393350 AW386713 AW384705  AA316069 BE274224 AL120803 BE170052 BE170039 Al906340 BE091310 AA491506 AW836675 AW863111  AW973784 AW843642 AA557573 AA578088 Al125161 AA349349 AK972794 BE312586 BE312777 T32148 AW239077  AL905357 Z42685 AW298772 R18578 AA780425 AA325971 AL372793 R10658 AA295021 AW885349 AW885288 BE271987  AW366519 AA349350 AA233207 R88464 AA434299 R02058 R00019 R54563 Z44886 R20150 AW368328 AW368321  AW802152 W79803 H12809 AA028951 AW367382 AA295247 H46355 AA905620 R54564 H12765 AW950608 AA028952  AA366908 A[085652 R43207 R77954 AI672848 T28547 AA427734 AA572853 AA769934 AI242108 R00020 R02059 R10659
45	303342 189722 1	A185270 Al041890 NM_000080 X66403 F03854 Al652442 Al766431 AA976913 Al989882 AA471024 Al802727 Al824112 F02169 Al890843 BE250876 BE252859 AL157418 R78326 AW068570 AW247361 AA252638 Al751982 BE260758 BE293073 AW293303
50	302703 7075_1	AB040951 AK002094 AA676593 W44644 N42376 Z45942 AW841844 BE541378 AA358274 AA213391 T88771 NM_015493 AL117489 N88248 N31714 N36273 N31721 AW576263 AA449380 Al366135 AA551576 AW149789 Z17418 AW474331 AA056181 AI753611 AA046428 AA488007 AA300764 N44732 AA377697 AA346752 AA485787 AA894546 AA115295
		AA299914 R88096 AA367342 AW884666 W84522 AA426325 AI983849 AA873315 AA873307 AI355170 AA534678 AA969227 AI127202 AW083323 AI338244 AW020877 AA780019 N33426 AW069314 N63079 AI926527 AA115270 AW886601 AI357402 AA599312 AI460358 AI926969 AA429402 N33197 AW886733 R88205 N52803 AW021988 AA213392
55		BE139656 Al142383 AA427844 AA954743 AA233622 AW073382 AA426326 AA493560 AA425133 N24819 Al419516 Al571515 Al147373 Al628677 Al214877 AA992123 H71599 AA029095 AA622262 AW117398 AW275286 Al911337 AA864950 T94173 Al475634 Al701411 Al287696 T94091 AA505746 Al184310 Al350967 Al083596 W74274 Al954381 Al832767 Al368443 AA195578 AW874416 Al005421 AW014339 AA908660 Al350791 AW241382 Al473104 Al275186 AA515528 AA194897 AA782801 AW089414 F20248 AA426011 Al305169 Al832109 Al570082 AW072984 Al492474
60	318446 604736_1 302815 42200_1	AA919076 AL049024 W79889 N42400 AA625435 AW963887 AA233420 AW7779971 AW300287 AW152002 AW069505 Al866447 Al298231 Al146920 Al692267 Al872876 BE397032 AJ292529 N40373 N34073 AA321112 AW959902 AA258103 AW860213 BE549059 BE296027 BE296657 AA300789 Al971491 AW513665 AA909530 Al951045 AW058103 Al971506 Al061239 AA600054 Al000807 AA969975 AA281492 AW593654 AA321111 AW298633 Al278754 Al863862 Al285506 AA989727 F33114 T16079 Al762625 Al492103 AW770346 AW026768 Al468710 Al499987 AA310412 AA622784 AA642297 Al866427
65	302879 36555_1 318540 1018709_2 302928 22118_1	H11802 T66097 AF042831 R42185 AW939055 T30280 Z43366 R54166 AA938905 AA574056 AA714466 AI805592 AI123431 AA229723 AA620759 AI004450 AW299820 AI949299 AW874308 AA626037 A974112 AA931563 AF073924 AA995769 AI766441 AI367730 AI081342 AA235800 AA235801 AI138970

		AA719797 AA759343 X89673 AA759344 AA312909 X87825 Y10529 AC006271 AA758739 BE501015 AA909905 AF065857
		AC006271 AA970044
	304332 28696_41	AA158883 AA171835 AA187049 AA143546 BE299538 BE614280 BE621705 BE299684 BE619550 BE613099 BE619558 BE514331 BE617716 BE612920 BE615742 BE258739 BE621539 A434511 BE546696 BE614324 BE378359 BE250106
5	•	BE250681 BE299592 BE300272 BE616805 BE397385 BE562024 BE271246 BE250556 BE280311 BE561995 BE618755
-		BE276126 BE546275 BE311547 BE262155 BE281082 BE513087 BE546891 BE514289 BE397389 BE267442 BE545455
		BE614483 BE293447 BE270710 BE281071 BE267458 BE542095 BE262701 BE513634 BE548116 BE299546 BE619604
		BE512885 BE616638 BE266173 BE258933 BE259710 BE268569 BE563861 BE614871 BE537509 BE250108 BE515323
10		BE538868 BE250081 BE277706 BE410127 BE619445 BE250753 BE304969 BE616348 BE546878 BE544962 BE410346 BE267256 X17206 NM_002952 BE304541 BE619171 BE259655 BE549186 BE314944 BE613101 BE378069 BE621110
10		BE542752 BE257029 BE531315 BE619306 BE267328 BE259439 BE297093 BE280651 BE407684 BE250201 BE312819
		BE535432 BE279917 BE312626 BE531118 BE378744 BE275370 BE250195 BE409980 BE274432 BE266637 BE279321
		BE622382 BE280232 BE263816 BE378977 BE300145 BE250204 BE547609 BE264377 BE266688 BE259746 BE260829
		BE619517 BE388097 BE264025 BE618945 BE614758 BE312249 BE294359 BE531121 BE622300 BE615109 BE544354
15		BE614998 BE393239 BE297520 BE393221 BE278818 BE279309 BE265476 BE618772 BE615185 BE265144 BE249837
		BE312230 BE407843 BE253884 BE407645 BE615804 BE619058 BE559512 BE383249 BE613497 BE294351 BE295062 BE622385 BE390654 BE535438 BE563186 BE396374 BE270842 BE386110 BE260368 BE250186 BE265875 BE537229
		BE253369 BE256997 BE269482 BE264959 BE279072 AA662160 BE280733 AA858428 BE561308 BE267285 BE561422
		BE563181 BE304614 BE295437 BE619424 BE275863 BE394315 BE408109 BE541866 BE253772 BE618236 BE533261
20		BE296490 BE278212 BE563154 BE257245 BE262274 BE513032 BE378567 BE394152 BE618947 BE269302 BE546516
		BE536792 BE615187 BE261186 BE615367 BE619289 BE261184 T49376 AL031671 BE273400 BE563457 BE545597
		BE615169 AA150323 AA158723 AA079033 BE313333 AA160100 BE271115 BE294302 BE273051 BE273048 BE622390 AA837947 BE387721 AW973277 AA808731 BE280792 AA160444 BE256723 Al745420 AA643017 BE549441 BE293858
		AW975249 AI620819 AW089494 AI434549 BE305231 AA081262 BE280101 AA522507 AI950880 AA187460 BE386860
25		AW859229 BE170489 BE620149 BE548218 AA316696 AA484426 AI567740 AA160605 AW939805 AA089573 BE300194
		BE391331 AW975419 H26808 BE545544 BE615974 AW800241 BE616222 W17343 BE387865 T53697 C03943 BE617637
		BE315130 T52942 T50588 N74693 AA187107 T59919 AW797397 AA206447 AA854619 T57175 Al570296 AW517964 AA158269 Al282220 W25297 Al580710 BE262453 Al185868 AA526485 Al288051 Al582513 AA100675 AW615567
		BE395354 AI472725 BE314881 BE621281 N99921 AI282689 AI432725 AW732011 AA872254 BE205807 T59435 AI282712
30		AA650505 Al004374 AA725260 BE313161 T60173 Al371260 BE385641 AW751812 AA078827 Al491858 Al433622
	•	AA219118 Al002092 AA996003 AA064604 Al250287 Al304397 Al453213 AA653630 Al524573 Al440306 H48802 AA157843
		AA715629 AW973788 AA932493 AI347563 AA181309 T67880 AA643033 AW467498 AA115904 AA935410 AA483032
		AA084568 W25246 Al567588 AA155732 AA158614 AA888319 AA158568 AA188422 Al309183 AA084817 AA157995 Al859659 AA188008 Al287379 Al540675 AA085212 AW028391 AA173297 BE256792 AA182854 BE378771 BE538571
35		AA079037 BE281597 AA643926 W81011 AA159344 AA320691 AA877597 T57107 AW263819 Al690413 Al619605 Al687579
33		AA970560 Al368942 Al927104 AW419220 Al620051 AA128490 AA120825 AA079520 AA199648 AW188403 BE045224
		AW265533 AA074338 AA102685 AW779399 AA192451 AA182771 AW366812 BE281418 AA211094 AA131073 AA487924
		AW674848 AI568103 AA171934 F30349 AW088785 AA581370 AA205482 AW352296 AW517565 AI376249 AA158884
40		Al340509 T59965 AA085193 AA071570 Al874045 AA852755 BE045217 AW189428 AA211141 AA652134 Al497729 AA994817 Al811459 BE535857 AW769697 AW167892 AW149305 Al864981 AW272126 AW023245 Al439266 Al953196
70		AA160912 AI718580 BE537547 AA501448 AA069308 L07393 AA353007 AA079235 AI539140 AA740154 W58341 AA888403
		BE299000 AA196413 BE613327 BE261523 AA866599 AW844713 Al691159 Al079975 AW327479 BE180731 AA984805
	303701 1155179_1	AW500732 AW504061
15	303759 447287_1	AA774672 AW504164
45	303773 356632_1 303778 174437 1	AA769074 AA570769 AA808585 AA808682 AW505368 AA218610 F11852 T65345 AA397806
•	303784 414659_1	BE297711 AW505574 AA704983
	303845 50211_2	F07942 T08033
50	303898 162688_3	BE386266 BE148823 T23215 Al906290 AA299906 BE207197 AW074114 AI760368 Al005358 AW662201 AA188988
50		Al690711 AA775103 AW072931 Al684269 AW129364 AW615634 Al049941 AW874040 Al352633 AA188989 Al287775 AA868774 AA59860
	20121 452027_1	AA780365 AA909233 Al275542
	319590 171338_1	AA210878 AA215684 R11101
بے ہے	305186 17456_1	M13560 AA336951 AA161015 R72814 T69687 R75705 T61319 AA158454 R50579 T56649 Al214156 T70375 R31655
55		H64997 AW800487 H49110 AA634206 H42384 H21783 AI560152 AA664230 H42302 R48708 AA013277 T61901 T92417 AA875985 T61962 T63055 AA430725 AA458964 AA578746 AI582385 T63000 AI499875 H64998 AA022538 AI364804
		Al865211 Al439714 Al224059 Al249917 T59258 AA477806 AA715834 AA916120 R38304 R35899 R82985 H25524 H82984
		AW516728 T54642 AA079866 H27555 AA455820 T63919 R79450 Al431241 AA937349 AA127213 AA421729 H61196
		T63894 AA013050 AA079133 W96364 AA487926 Al762796 H26377 Al433386 Al865423 AW371475 R98189 AA643978
60		AI718204 AW381954 AI862735
	319638 226485_1 320257 163534_1	AA323758 R12731 R14082 R17531 AW960899 AA338366 AW673294 BE047729 BE047722 AA330746 AW841797 H05030 Al142105 R12654
	320289 115941_1	H07989 AJ239462 H24544 AA078369 R74153
	304703 33971_42	BE512926 BE304794 AA129140 AA052922 AA092258 BE378058 BE615391 BE615218 BE616188 Al214126 H05675
65		W56857 Al028525 BE617241 BE531271 AW856227 T56489 AA322005 AW794148 AF170577 BE615738 AA005138 L76930
		L76932 L76933 X95410 AW389462 BE563092 AW997937 AA263158 AI520992 AW947350 AA522535 AW945921 AV653776 AW884835 AW947338 AI687178 AW945799 AI905627 AW948449 AV653751 AW945924 AA563898 AW945810 AW945832
		AW84835 AW947338 AB8/178 AW945/99 AI9USOZ7 AW948449 AV653/51 AW949922 AA900060 AW945809 AW371449 AW945864 AW948447 AW945910 AA643002 AA522680 AA522715 AA578840 AA523279 AA826150 AW945809
		AW405998 AA551909 R23173 AA595545 AW389497 AI933770 AI125053 AI471803 AW795856 AW796937 W30675 H70317

5	321039 26338_2	H68296 T59240 AA397650 H59852 AA338072 AA978010 R35643 T89735 AW361585 AW196153 Al538069 AA604540 Al434259 R49181 T58717 AW062486 AW796966 Al648384 R77733 Al623502 BE171342 BE171303 R35658 AW974883 AW149898 Al500045 Al540710 Al540392 AW009172 AW277199 Al371312 Al500096 Al470297 AW372940 AW844562 AW844560 AW797965 Al691146 X07062 AW799199 H60666 AA837684 AF130734 T25952 Al933771 Al914860 AW391925 AW793843 AW795012 AW366709 AW750987 AW750985 R35765 AW844942 AW750986 H64920 R34651 X86703 BE018103 BE018083 BE293253 AW247083 BE207643 BE514793 BE183238 AA376427 AW273850 AW043786 BE439973 AL045428 Al889050 AA026496 Al422924 Al884485 W96068 AA020872 F37119 AA714378 AA021107 AA011141 Al554001 Al375841 Al469097 AA335219 AW967315 Al692177 AA410448 Al568858 AA582647 AA026419 AA281639 AW515248 AW007777 AA010840 AW188439 Al805423 Al148210 BE301590 AA744414 AA745392 AW167423 AA622659 AW000878 Al432387 AA760930 BE047189 AA021605 AV658045 Al093347 AA588594 H63143 AA639556 Al308976 AA379270 AA633407 Al874329 Al206484 Al493895 Al694103 Al249682 AA973765 AA872445 Al125446 AA287272 AW069761 AA682569 AW009712 BE542774 R50167 BE301574 AA991202 AA502006 Al219819 AW074373 AA617996 Al521242 F25241 AW615812 R16774 AA335218 AW673800 H26778 Al468557 Al886986 Al560759 Al460075 AA502968 AA503273 AA610680 AA287274 AA554020 AA284889 AA916636 AW469457 AW273250 AW673708 AW512948 AL041071 Al446042 AA903535
15 20	306051 19085_3	BE172441 Al282411 AW265021 AA810799 Al559865 AA729332 AW004611 AW129451 AA659019 BE208239 AA610825 H03511 BE383995 R16474 AA281701 AW009244 AA287424 AA558139 AW364081 F08147 AW408359 AW949429 R23785 AW247442 AA305512 T29095 AA905130 BE246361 BE244981 AA220199 BE504058 X80878 AA533727 AA608601 AW005964 AI811627 AI387037 AI277885 AI493719 AI277848 AA854982 AW247298 AI216345 AI041295 AI887378 AA781241 AI674270 AW077678 AW877678 AW77678 A
20	321163 171122_1 321235 1102181_1 320603 4297_1	AW875262 AW875369 AW581540 AW875358 AW581568 R23735 AW134768 W03912 AW971410 AA506385 AA209530 H73495 H48629 W56149 H56752 AW340384 N49521 AA853680 AK001668 BE386425 BE563549 BE296124 BE298950 R51419 U46295 BE147292 AA360056 R48018 AW845348
25	, <del></del>	N47383 AI817280 AI671902 AA988104 AA479464 N56996 AI192374 AI927558 AA659888 AI799903 AA548397 AI161167 AI656333 AI418829 AW592671 BE327906 AW513346 AI888579 AW469410 AW512809 D25682 AA576079 AA479354 T30342 R51307 T16044 H29063 AW079357 AI339477 R47914 AI986068 AI870065 AI868489 AI521099 AI582732 AA995540 AW957299 AA352608 AA676752 AA410510 AA358874 AI865724 AA853679 AI699265 AW188789 N47380 AA233715
30	320641 185591_1 320651 58648_1 321325 28266_1	BE258194 R55421 R55643 H42362 AA243884 AW886407 AA489268 R57015 R58094 BE077459 BE077423 BE546995 AW849216 T69383 AW938111 H60337 BE221073 AB033100 AA347036 BE260325 AW961669 AL047207 AA347037 Al766894 AA601045 Al559897 AW139033 AW274622 AW172884 AW089070 AA804340 AW798925
	305704 4647591 322011 23158_1 306407	AW172664 AW069070 AA604545 AW1786925 AL137354 AL043375 AA971985
35	306454 306516 306518 306526	AA977992 AA989542 AA989598 AA989713
40	306534 306590 306591 306631	AA991487 A1000246 A1000248 A1001149
45	306654 306786 306799 308023 308070	A1003654 A1041589 A1051696 A1452732 A1470948
50	308099 306805 306814 306873	Al475914 Al055966 Al066577 Al086929
55	306911 306982 308238 308258	A1095365 A1127883 A1559492 A1565612
JJ	308289 308311 308332	AI571211 AI581855 AI591235
60	308511 308601 308612 308636 308814	AI687580 AI719930 AI735634 AI744063 AI819263
65	308851 308981 310570 1071946_1 305022 305060 .	AI829820 AI873242 AI318327 AI318328 AI318495 AA627416 AA635771 AA639783

	305079	AA641329
	305134	AA653159
	303977	AW512978
	305216	AA669056
5	305263	AA679467
_	305266	AA679772
	305396	AA721052
	305403	AA723748
	305488	AA749000
10	305549	AA773530
	305601	AA780975
	305610	AA782319
		· ·
	305621	AA789095
	305710	AA826544
15	305724	AA827608
	305744	AA831819
	305752	AA835278
		A1140639
	307018	
00	307055	Al148477
20	307058	Al148709
	305801	AA845997
	305830	AA857665
	305836	AA858043
	305852	AA862455
25		
25	305858	AA863103
	305866	AA864533
	305867	AA864572
	307126	Al184951
	305903	AA873085
30	328803	
50		
	328809	
		AA884409
	328829	c_7_hs
	330021	c16_p2
35	330024	
	330028	
	330049	
		AA889197
	330095	c19_p2 ·
40	330096	c19_p2
	307205	Al192479
	307427	Al243437
		Al268539
	307491	
45	307581	A1284415
45	307588	Al285535
	337672	CH22_6002FGLINK_EM:AC00
	337693	CH22_6030FGLINK_EM:AC00
		CH22_6083FG_LINK_EM:AC00
	307692	Al318342
50		Al351739
50	307806	1.122.22
	309107	A1925823
	309230	Al970747
	339338	CH22_8300FGLINK_BA354I1
	309257	Al984183
55	309366	AW072970
55		AW087175
	309422	***************************************
		c10_hs
	325257	c11_hs
	309646	AW194694
60	309651	AW195850
		c11_hs
		_
	309924	AW340812
		CH22_1308FG_320_2_LINK_EM
	334040	CH22_1318FG_322_8_LINK_EM
65		CH22_1361FG_327_38_LINK_E
		CH22_26FG_7_12_LINK_C65E1
	202010	32813_1 AF062275 L03830
	000750	99000 4 MT4000 MT4000 MT4000
	302/53	33029_1 M74299 M74302 M74303
	302777	33803_1 AJ230640 AJ230648

	304094	H11295
	302824 35372_1	U21260 U21258
	302996 41196_1	AF054663 AF124197 R70292
_	325870 c16_hs	
5	304240	AA009802
	304410	AA284508
	304443	AA399444
	304475	AA428879
	304522	AA465405
10	304678	AA548556
	304705	AA564064
	306004	AA889992
	306008	AA894390
	306013	AA896990
15	306082	AA908508
	336174 CH22_3567FG	
	306094	AA908877
	304823	AA584837
	304872	AA595289
20	304918	AA602697
	304955	AA613504
	306249	AA933840
	306286	AA936892
05	306295	AA937331
25	306317	AA947909
	306347	AA981144
	306365	AA962086
	306398	AA970548
30	330401 entrez_D28383	3 D28383 NM_001055 AA332948 U26309 U09031 L19955 L10819 Al366043 X84654 U71086 AV654451 AJ007418 AA053625
30	330463 460_2	MM_001055 AA332946 026339 009031 119935 110619 A1366045 X54654 07 1060 AV604461 A13667416 AA662625 BE168856 AA376730 H12694 AA610348 AA621972 Al818950 AV645367 Al819966 AA910602 AW512449 H67893 Al310497
		Al304330 Al339217 AW193588 AW438688 Al818970 AW316799 AA906527 AA777570 N47673 Al336428 AW945133
		AIO38606 R29692 AW194197 AI304748 H12639 AA053178 AA493213 AA676958 AA113154 AI313469 AI368239 R93183
		W24532 U52852 U54701 AL046864 AA365795
35	330535 13748	U11872
55	332634 10404 2	U24488 NM 007116
	332034 10404_2	OBTION INCOME.

**TABLE 13B** shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 13. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Ref: Strand:		Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.				
15	Pkey	Ref	Strand	Nt_position			
13	332792	Dunham, I. et.al Dunham, I. et.al	. Plus	72720-73315 73381-73768			

15	Pkey	Ref	Strand	Nt_position
	332791	Dunham, I. et.al.	Plus	72720-73315
	332792	Dunham, I. et.al.	Plus	73381-73768
	332810	Dunham, I. et.al.	Plus	304296-304384
	332944	Dunham, I. et.al.	Plus	2414825-2414932
20	332972	Dunham, I. et.al.	Plus	2572152-2572236
	333133	Dunham, I. et.al.	Plus	3360058-3360195
	333154	Dunham, I. et.al.	Plus	3615887-3616019
	333155	Dunham, I. et.al.	Plus	3616832-3617003
	333227	Dunham, I. et.al.	Plus	3992866-3992968
25	333230	Dunham, I. et al.	Plus	3995507-3996507
	333298	Dunham, I. et.al.	Plus	4581537-4581947
	333304	Dunham, I. et.al.	Pius	4629943-4630242
	333305	Dunham, I. et.al.	Plus	4630388-4630645
	333365	Dunham, I. et.al.	Plus	4786883-4787283
30	333383	Dunham, I. et.al.	Plus	4907179-4907277
	333391	Dunham, I. et.al.	Plus	4916697-4916780
	333392	Dunham, I. et.al.	Plus	4918294-4918433
	333397	Dunham, I. et.al.	Plus	4922466-4922635
0.5	333403	Dunham, I. et.al.	Plus	4925140-4925256
35	333413	Dunham, I. et.al.	Plus	4943824-4943974
	333445	Dunham, I. et.al.	Plus	5097827-5097885
	333479	Dunham, I. et al.	Plus	5272855-5272939
	333481	Dunham, I. et al.	Plus	5286358-5286505
40	333483	Dunham, I. et.al.	Plus	5297945-5298105
40	333516	Dunham, I. et al.	Plus	5570204-5570390
	333517	Dunham, I. et.al.	Plus	5570729-5570925
	333518	Dunham, I. et.al.	Plus	5571761-5572025
	333531	Dunham, I. et al.	Plus	5622622-5622684
45	333566	Dunham, I. et.al.	Plus	5954226-5954473
43	333572	Dunham, I. et al.	Plus	6026896-6027189
	333586	Dunham, I. et.al.	Plus	6246834-6247314
	333588	Dunham, I. et al.	Plus	6255445-6255779
	333594	Dunham, I. et.al.	Plus	6308990-6309450
50	333595	Dunham, I. et.al.	Plus	6323103-6323348
20	333600	Dunham, I. et al.	Plus	6355629-6355925
	333601	Dunham, I. et.al.	Plus	6360075-6360442
	333607	Dunham, I. et.al.	Plus Plus	6504431-6504690 6549563-6549697
	333612	Dunham, I. et al.		6550643-6550748
55	333613	Dunham, I. et al.	Plus	6551227-6551389
<i>J J</i>	333614	Dunham, I. et al.	Plus	6595146-6595244
	333624	Dunham, I. et.al.	Plus	6614174-6614467
	333626	Dunham, I. et.al.	Plus Plus	6663683-6663973
	333635	Dunham, I. et al.		6674968-6675134
60	333637	Dunham, I. et al.	Plus Plus	6708760-6709139
UU	333642	Dunham, I. et al.	Plus	6772502-6772779
	333647	Dunham, I. et.al.		6811130-6811392
	333653	Dunham, I. et al.	Plus	6816731-6816993
	333654	Dunham, I. et al.	Plus Plus	6822087-6822406
65	333656	Dunham, I. et al.		6831369-6831445
O)	333657	Dunham, I. et.al.	Plus	6835282-6835474
	333658	Dunham, I. et.al.	Plus	UUUUE02700334/4

5

	333659	Dunham, I. et.al.	Plus	6836179-6836248
	333684	Dunham, I. et.al.	Plus	7169561-7169742
	333686	Dunham, I. et.al.	Plus	7177117-7177302
	333697	Dunham, I. et.al.	Plus	7203859-7203934
5	333698	Dunham, I. et.al.	Plus	7205279-7205383
	333699	Dunham, I. et.al.	Plus	7206101-7206175
	333703	Dunham, I. et.al.	Plus	7215559-7215663
	333709	Dunham, I. et.al.	Plus	7229730-7229835
10	333747	Dunham, I. et.al.	Plus Plus	7605884-7606206 7716509-7716636
10	333774 333775	Dunham, I. et.al. Dunham, I. et.al.	Plus	7710303-7710030
	333806	Dunham, I. et.al.	Plus	7877475-7877666
	333843	Dunham, I. et.al.	Plus	7978762-7978887
	333854	Dunham, I. et.al.	Plus	8029446-8029524
15	333873	Dunham, I. et.al.	Plus	8133266-8133429
	333880	Dunham, I. et.al.	Plus	8151923-8152133
	333885	Dunham, I. et.al.	Plus	8154352-8154437
	333918	Dunham, I. et.al.	Plus	8307124-8307215
20	333947	Dunham, I. et.al.	Plus	8579888-8579966
20	333961	Dunham, I. et.al.	Plus	8617999-8618104
	333981	Dunham, I. et.al.	Plus Plus	8782374-8782643 8837419-8837551
	333991 333994	Dunham, I. et.al. Dunham, I. et.al.	Plus	8852749-8852894
	334030	Dunham, I. et.al.	Plus	9288463-9288782
25	334083	Dunham, I. et.al.	Plus	9837016-9837081
	334111	Dunham, I. et.al.	Plus	10279365-10279531
	334135	Dunham, I. et.al.	Plus	. 10457085-10457183
	334218	Dunham, I. et.al.	Plus	12680289-12680378
20	334249	Dunham, I. et.al.	Plus	13190430-13190574
30	334262	Dunham, I. et.al.	Plus	13231452-13231581
	334264	Dunham, I. et.al.	Plus	13234447-13234544 13577413-13577496
	334327 334328	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	13589868-13589936
	334340	Dunham, I. et.al.	Plus	13642407-13642522
35	334454	Dunham, I. et.al.	Plus	14326506-14326738
	334504	Dunham, I. et.al.	Plus	14510206-14510398
	334508	Dunham, I. et.al.	Plus	14514936-14515122
	334512	Dunham, I. et.al.	Plus	14545933-14546366
۱۵.	334582	Dunham, I. et.al.	Plus	15026255-15026371
40	334659	Dunham, I. et al.	Plus Plus	15460624-15460726 15796816-15796987
	334721 334723	Dunham, I. et.al. Dunham, I. et.al.	Plus	15805317-15805399
	334730	Dunham, I. et.al.	Plus	15967830-15967934
	334774	Dunham, I. et.al.	Plus	
45	334778	Dunham, I. et.al.	Plus	16276180-16276395
	334851	Dunham, I. et.al.	Plus	17820110-17820810
	334885	Dunham, I. et.al.	Plus	19233667-19233787
	334902	Dunham, I. et.al.	Plus	19317083-19317195
50	334905	Dunham, I. et.al.	Plus	19322553-19322680
50	334906	Dunham, I. et.al.	Plus	19323493-19323590 19398155-19398684
	334910 335018	Dunham, I. et al. Dunham, I. et al.	Plus Plus	20688288-20688415
	335025	Dunham, I. et.al.	Plus	20743941-20744050
	335033	Dunham, I. et.al.	Plus	20753188-20753314
55	335044	Dunham, I. et.al.	Plus	20842088-20842682
	335142	Dunham, I. et.al.	. Plus	21465105-21465186
	335157	Dunham, I. et.al.	Plus	21543302-21544341
	335160	Dunham, Letal.	Plus	21573388-21573497
60	335174	Dunham, I. et.al.	Plus	21631301-21631447
60	335188	Dunham, I. et al.	Plus	21669118-21669328
	335190 335191	Dunham, I. et.al.	Plus Plus	21680807-21680876 21681110-21681183
	335193	Dunham, I. et.al. Dunham, I. et.al.	Plus	21692208-21692362
	335204	Dunham, I. et.al.	Plus	21750636-21750726
65	335222	Dunham, I. et.al.	Plus	21885542-21885608
	335226	Dunham, I. et.al.	Plus	21890838-21890930
	335227	Dunham, I. et.al.	Pius	21892145-21892289
	335309	Dunham, I. et.al.	Plus	22500158-22500276
	335310	Dunham, I. et.al.	Plus	22500714-22500831

			<b>6</b> 1	00504000 00504070
	335311	Dunham, I. et.al.	Plus	22501602-22501676
	335355	Dunham, I. et.al.	Plus	22779222-22779516
	335362	Dunham, I. et.al.	Plus	22809167-22809461
	335368		Plus	22843040-22843184
~		Dunham, I. et.al.		
5	335384	Dunham, I. et.al.	Plus	22918150-22918263
	335385	Dunham, I. et.al.	Plus	22919072-22919339
	335436	Dunham, I. et.al.	Plus	23427793-23427923
	335440	Dunham, I. et.al.	Plus	23458702-23459017
	335441	Dunham, I. et.al.	Plus	23460632-23460724
10				
10	335450	Dunham, I. et.al.	Plus	23480190-23480270
	335453	Dunham, I. et.al.	Plus	23483333-23483459
	335458	Dunham, I. et.al.	Pius	23490034-23490143
	335464	Dunham, I. et.al.	Plus	23500331-23500496
	335496	Dunham, I. et.al.	Plus	24164386-24164545
15				24167666-24167869
13	335497	Dunham, I. et.al.	Pius	
	335498	Dunham, I. et.al.	Plus	24172082-24172161
	335499	Dunham, I. et.al.	Plus	24176698-24176869
	335500	Dunham, I. et.al.	Plus	24178236-24178326
	335507	Dunham, I. et.al.	Plus	24219973-24220039
20	335510	Dunham, I. et.al.	Plus	24222975-24223118
20				
	335513	Dunham, I. et.al.	Plus	24224272-24224498
	335627	Dunham, I. et.al.	Plus	25150005-25150061
	335651	Dunham, I. et.al.	Plus	25317560-25317696
	335655	Dunham, I. et.al.	Plus	25333211-25333369
25	335656	Dunham, I. et.al.	Plus	25333601-25333751
45		Dunham, I. et.al.	Plus	25336315-25336406
	335658			
	335663	Dunham, I. et.al.	Plus	25342680-25342802
	335665	Dunham, I. et.al.	Plus	25344096-25344287
	335667	Dunham, I. et.al.	Plus	25345735-25345856
30	335668	Dunham, I. et.al.	Plus	25346313-25346447
	335689	Dunham, I. et.al.	Plus ·	25454350-25454604
			Plus	25455442-25455625
	335690	Dunham, I. et.al.		
	335715	Dunham, I. et.al.	Plus	25565941-25566052
~~	335719	Dunham, I. et.al.	Plus	25593936-25594101
35	335734	Dunham, I. et.al.	Plus	25688723-25688869
	335744	Dunham, I. et.al.	Plus	25716483-25716615
	335809	Dunham, I. et.al.	Plus	26310772-26310909
	335819		Plus	26356341-26356470
		Dunham, I. et.al.		
40	335822	Dunham, I. et.al.	Plus	26364087-26364196
40	335872	Dunham, I. et.al.	Plus	26820760-26820943
	335885	Dunham, I. et.al.	Plus	26933436-26933534
	335968	Dunham, I. et.al.	Plus	27743843-27744029
	335971	Dunham, I. et.al.	Plus	27752808-27753017
	335975	Dunham, I. et.al.	Plus	27801321-27801391
45				
43	335976	Dunham, I. et.al.	Plus	27809041-27809187
	335989	Dunham, I. et al.	Plus	27983788-27983860
	335990	Dunham, I. et.al.	Plus	27988532-27988608
	336010	Dunham, I. et.al.	Plus	28570239-28570330
	336093	Dunham, I. et.al.	Plus	29556922-29557002
50	336126	Dunham, I. et.al.	Plus	30057891-30058105
-	336129	Dunham, I. et.al.	Plus	30062259-30062348
	336187	Dunham, I. et.al.	Plus	30433494-30433585
	336188	Dunham, I. et.al.	Plus	30434870-30435004
	336225	Dunham, I. et.al.	Plus	30833614-30833788
55	336371	Dunham, I. et al.	Plus	33968108-33968204
	336373	Dunham, I. et.al.	Pius	33976308-33976504
	336377	Dunham, I. et.al.	Plus	33994489-33994599
	336380	Dunham, I. et al.	Plus	33995323-33995434
	336383	Dunham, I. et al.	Plus	34005784-34005964
60	336384	Dunham, I. et al.	Plus	34007429-34007559
	336385	Dunham, I. et.al.	Plus	34007879-34008159
	336386	Dunham, I. et.al.	Plus	34012965-34013115
			Plus	34187606-34187663
	336441	Dunham, I. et.al.		
65	336444	Dunham, I. et.al.	Plus	34190585-34190718
65	336484	Dunham, I. et.al.	Plus	34237425-34237505
	336497	Dunham, I. et al.	Plus	34267190-34267245
	336499	Dunham, I. et.al.	Plus	34267504-34267572
	336503	Dunham, I. et.al.	Plus	34271306-34271372
		Dunham, I. et al.	Plus	34353881-34354826
	336548	Dumain, I. etal	1 142	J40200 1-04004020

	336552	Dunham, I. et.al.	Plus	34356420-34356527
	336553	Dunham, I. et.al.	Plus	34356683-34356753
	336567	Dunham, I. et.al.	Plus	34428228-34428395
•	336568	Dunham, I. et.al.	Plus	34428521-34428637
5	336659	Dunham, I. et.al.	Plus	1896402-1896478
	336715	Dunham, I. et.al.	Plus	3110198-3110314
	336803	Dunham, I. et.al.	Plus	6106904-6106990
	336805	Dunham, I. et.al.	Plus	6126661-6126786
	336850	Dunham, I. et.al.	Plus	7745284-7745355
10	336857	Dunham, I. et.al.	Plus	8130457-8130612
	336911	Dunham, I. et.al.	Plus	11035818-11035984
	336949	Dunham, I. et.al.	Plus	12818687-12818891
	336950	Dunham, I. et.al.	Plus	12875843-12875912
	336958	Dunham, I. et al.	Plus	13203550-13203973
15	336993	Dunham, I. et.al.	Plus	15096270-15096324
	337076	Dunham, I. et al.	Plus	19338177-19338679
	337109	Dunham, I. et.al.	Pius	21166580-21166650
	337123	Dunham, I. et al.	Plus	22052874-22052942
	337151	Dunham, I. et.al.	Plus	23106433-23106510
20	337189	Dunham, I. et.al.	Plus	24225887-24225954
	337241	Dunham, I. et.al.	Pius	27280182-27280313
	337337	Dunham, I. et al.	Plus	30395182-30395285
	337353	Dunham, I. et.al.	Plus	30804624-30804780
	337384	Dunham, I. et al.	Plus	31333399-31333580
25	337396	Dunham, I. et.al.	Plus	31585902-31586067
	337414	Dunham, I. et.al.	Plus	31953012-31953205
	337418	Dunham, I. et.al.	Plus	32014049-32014131
	337461	Dunham, I. et.al.	Plus	32803968-32804028
	337480	Dunham, I. et.al.	Plus	33219714-33219779
30	337482	Dunham, I. et.al.	Plus	33227865-33227946
	337483	Dunham, I. et.al.	Plus	33237292-33237427
	337490	Dunham, I. et al.	Plus	33318571-33318644
	337522	Dunham, I. et.al.	Plus	33963188-33963979
	337532	Dunham, I. et.al.	Plus	34187269-34187366
35	337552	Dunham, I. et al.	Plus	19497-19600
	337584	Dunham, I. et.al.	Plus	945236-945452
	337611	Dunham, i. et.al.	Plus	1482883-1483016
	337672	Dunham, I. et.al.	Plus	3331236-3331313
40	337693	Dunham, I. et.al.	Plus	3575975-3576153
40	337738	Dunham, I. et.al.	Plus	3865738-3865814
	337926	Dunham, I. et.al.	Plus	6286377-6286470
	337927	Dunham, I. et al.	Plus	6343033-6343172
	337935	Dunham, I. et.al.	Plus	6534661-6534782
15	337944	Dunham, I. et.al.	Plus	6589383-6589450
45	337954	Dunham, I. et.al.	Plus	6831483-6831620
	337996	Dunham, I. et al.	Plus	7445532-7445633
	338004	Dunham, I. et.al.	Plus	7601363-7601520
	338016	Dunham, I. et.al.	Plus	7863131-7863310
50	338174	Dunham, I. et.al.	Plus	12771102-12771268
<b>50</b>	338176	Dunham, I. et.al.	Plus	12774072-12774223 14661936-14662015
	338238	Dunham, I. et.al.	Plus	16167622-16167962
	338277	Dunham, I. et.al.	Plus	16463958-16464539
	338294	Dunham, I. et.al.	Plus	17089711-17089988
55	338316	Dunham, I. et al.	Plus	17154655-17154792
JJ	338323	Dunham, I. et.al.	Plus Plus	17155309-17155574
	338324	Dunham, I. et al.	Pius	18611213-18611407
	338386 338398	Dunham, I. et al.	Plus	18953492-18953581
		Dunham, I. et.al. Dunham, I. et.al.	Pius	19292807-19292916
60	338410		Plus	19345573-19345660
00	338414	Dunham, I. et.al.	Plus	20233372-20233488
	338460	Dunham, I. et al.	Plus	20942659-20942873
	338481 338489	Dunham, I. et.al. Dunham, I. et.al.	Plus	21142605-21143049
	338500		Plus	21253847-21253974
65	338500	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	21379420-21379655
<del>0</del> 5	338530	Dunham, I. et.al.	Plus	21636361-21636509
	338620	Dunham, I. et.al.	Plus	23540239-23540334
	338631	Dunham, I. et.al.	Plus	23711167-23711241
	338653	Dunham, I. et.al.	Plus	24219427-24219509
	~~~	Summerly to Vial.	1 140	

	338660	Dunham, I. et.al.	Plus	24387122-24387266
	338704	Dunham, I. et al.	Pius	25230432-25230548
	338847	Dunham, I. et.al.	Plus	27995337-27995420
	338887	Dunham, I. et.al.	Plus	28465244-28465384
5	338895	Dunham, I. et.al.	Plus	28598893-28599135
	338915	Dunham, I. et.al.	Plus	28824881-28824977
	338925	Dunham, I. et.al.	Plus	28883892-28884036
	338936	Dunham, I. et.al.	Plus	29148022-29148160
	338952	Dunham, I. et.al.	Plus	29418831-29418968
10	338980	Dunham, I. et.al.	Plus	29896789-29896874
	338981	Dunham, I. et.al.	Plus	29897917-29898008
	338986	Dunham, I. et.al.	Plus	30007287-30007415
	339009	Dunham, I. et.al.	Plus	30348477-30348598
	339017	Dunham, I. et.al.	Plus	30420896-30421090
15	339045	Dunham, I. et al.	Plus	30744286-30744356
	339046	Dunham, I. et.al.	Plus	30746269-30746420
	339059	Dunham, I. et.al.	Plus	30814655-30814801
	339067	Dunham, I. et.al.	Plus	30869347-30869412
	339069	Dunham, I. et.al.	Plus	30880975-30881070
20	339078	Dunham, I. et.al.	Plus	30914310-30914423
200	339084	Dunham, I. et.al.	Plus	30944556-30944803
	339101	Dunham, I. et.al.	Plus	31158047-31158123
	339102	Dunham, I. et al.	Plus	31169321-31169563
	339103	Dunham, I. et.al.	Plus	31170343-31170454
25	339115	Dunham, I. et.al.	Plus	31459869-31459927
25	339157	Dunham, I. et.al.	Plus	32131701-32131833
	339166	Dunham, I. et.al.	Plus	32210902-32211006
	339167	Dunham, I. et.al.	Plus	32213567-32213730
	339288	Dunham, I. et.al.	Plus	33169611-33169691
30	339289	Dunham, I. et.al.	Plus	33186756-33186903
50	339291	Dunham, I. et.al.	Pius	33205057-33205247
	339407	Dunham, I. et.al.	Plus	34189461-34189620
	332865	Dunham, I. et.al.	Minus	1391482-1391218
	332881	Dunham, I. et.al.	Minus	1563520-1563184
35	332930	Dunham, I. et.al.	Minus	2022565-2022497
55	332931	Dunham, I. et.al.	Minus	2023651-2023562
	332984	Dunham, I. et.al.	Minus	2632606-2632457
	332986	Dunham, I. et.al.	Minus	2635398-2635206
	332997	Dunham, I. et.al.	Minus	2710509-2710375
40	333051	Dunham, I. et.al.	Minus	2991973-2991840
40	333061	Dunham, I. et.al.	Minus	3029631-3029527
	333064	Dunham, I. et.al.	Minus	3030722-3030623
	333096	Dunham, I. et.al.	Minus	3184234-3184118
	333099	Dunham, I. et al.	Minus	3206796-3206674
45	. 333106	Dunham, I. et.al.	Minus	3230744-3230547
43	333160	Dunham, I. et.al.	Minus	3654893-3654678
	333163	Dunham, I. et.al.	Minus	3665124-3664962
	333165	Dunham, I. et.al.	Minus	3674052-3673905
	333166	Dunham, I. et.al.	Minus	3694664-3694567
50	333170	Dunham, I. et.al.	Minus	3733394-3733299
50		Dunham, I. et.al.	Minus	3764284-3764210
	333188	Dunham, I. et.al.	Minus	3826990-3826863
	333214	Dunham, I. et.al.	Minus	3966559-3966437
	333232	Dunham, L et.al.	Minus	4001551-4001365
55	333237	Dunham, I. et.al.	Minus	4003326-4003219
23	333239	Dunham, I. et.al.	Minus	4095861-4094462
	333255	Dunham, I. et.al.	Minus	4297883-4297716
	333259	Dunham, I. et.al.	Minus	4306769-4306639
	333274	Dunham, I. et.al.	Minus	4389146-4388954
60	333290	Dunham, I. et.al.	Minus	4530734-4530554
00	333295	Dunham, I. et.al.	Minus	4549290-4549198
	333296	Dunham, I. et.al.	Minus	4550766-4550644
	333310	Dunham, I. et.al.	Minus	4637315-4637232
	333311	Dunham, I. et al.	Minus	4637933-4637844
65	333312	Dunham, I. et.al.	Minus	4638794-4638635
OJ.	333313		Minus	4639397-4639277
	333315		Minus	5405980-5405876
	333318		Minus	4642636-4642564
		Dunham, I. et al.	Minus	4649080-4648934
	333321	·	***************************************	-10-10-10-10-10-10-10-10-10-10-10-10-10-

	000007	Durken Latet	Maria	ACC7047 ACC7000
	333327	Dunham, I. et.al.	Minus	4657947-4657828
	333335	Dunham, I. et.al.	Minus	4672656-4672564
	333337	Dunham, I. et.al.	Minus	4677930-4677841
-	333454	Dunham, I. et.al.	Minus	5137007-5136880
5	333458	Dunham, I. et.al.	Minus	5143942-5143806
	333459	Dunham, I. et.al.	Minus	5144548-5144344
	333470	Dunham, I. et.al.	Minus	5223319-5223088
	333493	Dunham, I. et.al.	Minus	4637315-4637232
	333496	Dunham, I. et.al.	Minus	5404643-5404523
10	333498	Dunham, I. et al.	Minus	5405980-5405876
	333510	Dunham, I. et al.	Minus	5557628-5557469
	333546		Minus	5886643-5886442
		Dunham, I. et al.		5903659-5903590
	333561	Dunham, I. et al.	Minus	
15	333738	Dunham, I. et.al.	Minus	7552160-7552084
13	333780	Dunham, I. et.al.	Minus	7750367-7750277
	333783	Dunham, I. et.al.	Minus	7751850-7751777
	333818	Dunham, I. et.al.	Minus	7911959-7911762
	333894	Dunham, I. et.al.	Minus	8188855-8188709
	333897	Dunham, I. et.al.	Minus	8194390-8194284
20	333900	Dunham, I. et.al.	Minus	8200268-8200122
	333909	Dunham, I. et.al.	Minus	8229639-8229477
	333936	Dunham, I. et al.	Minus	8512805-8512564
	333944	Dunham, I. et.al.	Minus	8557051-8556936
	334040	Dunham, I. et.al.	Minus	9342995-9342934
25	334154	Dunham, I. et.al.	Minus	10570714-10570572
	334178	Dunham, I. et.al.	Minus	11755052-11754971
	334188	Dunham, I. et.al.	Minus	11925963-11925834
	334273	Dunham, I. et.al.	Minus	13265608-13265522
	334282	Dunham, I. et al.	Minus	13285293-13285178
30	334285	Dunham, I. et.al.	Minus	13289990-13289793
50	334286	Dunham, I. et al.	Minus	13291759-13291569
	334303		Minus	13454331-13454217
		Dunham, I. et al.	Minus	13456310-13456209
	334305	Dunham, I. et al.		
35	334306	Dunham, I. et al.	Minus	13461157-13461049
33	334320	Dunham, I. et.al.	Minus	13496857-13496717
	334352	Dunham, I. et.al.	Minus	13675908-13675828
	334353	Dunham, I. et.al.	Minus	13683722-13683596
	334359	Dunham, I. et.al.	Minus	13728664-13728534
40	334363	Dunham, I. et.al.	Minus	13740004-13739812
40	334365	Dunham, I. et al.	Minus	13742078-13741971
	334399	Dunham, I. et al.	Minus	14186289-14186163
	334409	Dunham, I. et.al.	Minus	14195181-14195075
	334414	Dunham, I. et al.	Minus	14234033-14233932
4.5	334470	Dunham, I. et.al.	Minus	14389581-14389442
45	334483	Dunham, I. et.al.	Minus	14428355-14428281
	334489	Dunham, I. et.al.	Minus	14455428-14454288
	334498	Dunham, I. et.al.	Minus	14483789-14483700
	334501	Dunham, I. et.al.	Minus	14487509-14487356
	334502	Dunham, I. et.al.	Minus	14488605-14488526
50	334543	Dunham, I. et.al.	Minus	14834496-14834116
	334622	Dunham, I. et.al.	Minus	15191678-15191609
	334650	Dunham, I. et.al.	Minus	15371251-15371178
	334680	Dunham, I. et.al.	Minus	15520047-15519887
	334745	Dunham, I. et.al.	Minus	16049960-16049653
55	334756	Dunham, I. et.al.	Minus	16128678-16128528
-	334758	Dunham, I. et.al.	Minus	16132368-16132233
	334761	Dunham, I. et.al.	Minus	16138424-16138319
	334763	Dunham, I. et.al.	Minus	16148136-16148077
				16294548-16294360
60	334784	Dunham, I. et al.	Minus	
UU	334790	Dunham, I. et.al.	Minus	16307576-16307509
	334793	Dunham, I. et.al.	Minus	16330748-16330681
	334802	Dunham, I. et.al.	Minus	16413158-16413026
	334820	Dunham, I. et.al.	Minus	16764338-16764249
	334824	Dunham, I. et.al.	Minus	16857777-16857674
65	334832	Dunham, I. et.al.	Minus	17173957-17173760
	334842	Dunham, I. et al.	Minus	17464352-17464181
	334844	Dunham, I. et.al.	Minus	17503891-17503768
	334857	Dunham, I. et.al.	Minus	18488368-18488242
	334927	Dunham, I. et.al.	Minus	19988711-19987853

	334939	Dunbom Late	1 Alimon	00101100 00101004
		Dunham, I. et.a		20131162-20131054
•	334951	Dunham, I. et.a		20147708-20147502
	334969	Dunham, I. et.a		20188176-20188020
٠, ـ	334972	Dunham, L et.a		20294734-20294611
5	335050	Dunham, I. et.a	ıl. Minus	20884109-20883951
	335078	Dunham, I. et.a	d. Minus	21059529-21059458
	335102	Dunham, I. et.a	ıl. Minus	21313841-21313598
	335105	Dunham, I. et.a		21320563-21320440
	335110	Dunham, i. et.a		21334136-21333811
10	335111	Dunham, I. et.a		21335946-21335809
10				21388250-21388146
	335115	Dunham, I. et.a		
	335116	Dunham, L et.a		21388573-21388414
	335185	Dunham, I. et.a		21651593-21651522
1.0	335186	Dunham, I. et.a		21656436-21656338
15	335230	Dunham, I. eta		21899517-21898678
	335236	Dunham, I. et.a	d. Minus	21915016-21914870
	335243	Dunham, I. et.a	d. Minus	21933519-21933365
	335249	Dunham, I. et.a	d. Minus	21950851-21950669
	335258	Dunham, I. et.a		22043431-22043262
20	335261	Dunham, I. et.a		22063937-22063772
	335276	Dunham, I. et.a		22154036-22153937
	335279	Dunham, I. et.a		22168834-22168638
	335330	Dunham, I. et.a		22556589-22556422
				22556823-22556708
25	335331	Dunham, I. et.a		
43	335334	Dunham, I. eta		22560390-22560136
	335346	Dunham, I. et.a		22641097-22640918
	335349	Dunham, I. eta		22661861-22661271
	335611	Dunham, I. et.a		25070825-25070706
••	335612	Dunham, I. et.a	ıl. Minus	25072328-25072142
30	335671	Dunham, I. et.a	d. Minus	25358629-25358533
	335676	Dunham, I. et.a	d. Minus	25395274-25395152
	335680	Dunham, I. et.a	d. Minus	25402437-25402361
	335750	Dunham, I. et.a	d. Minus	25732501-25731972
	335752	Dunham, I. et.a		25757026-25756890
35	335755	Dunham, I. et.a		25763806-25763747
	335767	Dunham, I. et.a		25819547-25819218
	335774	Dunham, I. et.a		25883733-25883572
	335777	Dunham, I. et.a		25885770-25885599
				25886469-25886334
40	335778	Dunham, I. et.a		
40	335797	Dunham, I. et.a		25958182-25958030
	335800	Dunham, I. et.a		25985373-25985280
	335818	Dunham, I. et.a		26323886-26323744
	335834	Dunham, I. et.a		26391707-26391530
4.5	335840	Dunham, I. et.a		26420596-26420538
45	335844	Dunham, I. et.a		26433427-26433344
	335848	Dunham, I. et.a	al. M inus	26436727-26436621
	335856	Dunham, I. et.a	al. Minus	26662452-26662346
	335887	Dunham, I. et.a	al. Minus	26939225-26938782
	335888	Dunham, I. et.a	al. Minus	26943037-26942820
50	335889	Dunham, I. et.a	d. Minus	26946988-26946901
	335890	Dunham, I, et.a		26949087-26948665
		Dunham, I. et.a		26973898-26973747
	335895	Dunham, I. et.a		26975307-26975239
	335896	Dunham, I. et.a		26977639-26977558
55	335900	Dunham, I. et.a		26980354-26980238
JJ				
	335907	Dunham, I. et.a		27013352-27013273
	335943	Dunham, I. et a		27446610-27446378
	335956	Dunham, I. et.a		27653729-27653635
~	335959	Dunham, I. et.a		27682313-27682145
60	335962	Dunham, I. et.a		27704276-27704144
	336040	Dunham, I. et.a		29036458-29036300
	336044	Dunham, I. et a		29043828-29043727
	336047	Dunham, I. et.a	al. Minus	29050617-29050466
_	336068	Dunham, I. et.a	al. Minus	29252077-29251969
65	336143	Dunham, I. eta		30135948-30135854
	336158	Dunham, I. et.a		30163730-30163610
	336174	Dunham, I. et.a		30241988-30241839
	336223	Dunham, I. et.a		30816306-30816195
	336245	Dunham, I. eta		31420569-31420509
	000240	Jaman, Leat	en iamino	C0003410-0003410

WO 02/30268

	336274	Dunham, I. et.al.	Minus	32085468-32085303
	336318	Dunham, I. et.al.	Minus	33364452-33364338
	336326	Dunham, I. et.al.	Minus	33567328-33567201
	336339	Dunham, I. et al.	Minus	33798479-33798330
5	336340	Dunham, I. et.al.	Minus	33812069-33811915
_	336355	Dunham, I. et.al.	Minus	33874750-33874649
	336392	Dunham, I. et.al.	Minus	34015868-34015736
	336393	Dunham, I. et.al.	Minus	34016145-34015951
	336394		Minus	34016457-34016298
10		Dunham, I. et.al.		34023437-34023298
10	336400	Dunham, I. et.al.	Minus	
	336402	Dunham, I. et.al.	Minus	34024090-34023981
	336413	Dunham, I. et.al.	Minus	34046702-34046576
	336424	Dunham, I. et.al.	Minus	34055549-34055491
1.5	336425	Dunham, I. et.al.	Minus	34058544-34058446
15	336437	Dunham, I. et.al.	Minus	34074154-34074090
	336447	Dunham, I. et.al.	Minus	34198207-34197996
	336449	Dunham, I. et.al.	Minus	34204707-34204577
	336466	Dunham, I. et.al.	Minus	34213195-34213046
	336492	Dunham, I. et.al.	Minus	34255578-34255437
20	336511	Dunham, I. et.al.	Minus	34277480-34277351
	336512	Dunham, I. et.al.	Minus	34278373-34278275
	336520	Dunham, I. et.al.	Minus	34319184-34319101
	336522	Dunham, I. et.al.	Minus	34320169-34320056
	336524	Dunham, I. et.al.	Minus	34321055-34320921
25	336527	Dunham, I. et.al.	Minus	34322071-34321966
23	336534	Dunham, I. et.al.	Minus	34326797-34326620
	336536	Dunham, I. et.al.	Minus	34327678-34327538
	336542	• • • • • • • • • • • • • • • • • • • •	Minus	34331316-34331183
		Dunham, I. et.al.		34375244-34374907
30	336556	Dunham, I. et.al.	Minus Minus	34375443-34375341
50	336557	Dunham, I. et.al.		
	336558	Dunham, I. et.al.	Minus	34375825-34375698
	336559	Dunham, I. et.al.	Minus	34376430-34376261
	336560	Dunham, I. et.al.	Minus	34376814-34376596
25	336561	Dunham, I. et.al.	Minus	34377168-34376928
35	336597	Dunham, I. et.al.	Minus	7627912-7627757
	336601	Dunham, I. et.al.	Minus	13265853-13265654
	336642	Dunham, I. et al.	Minus	1304281-1304212
	336645	Dunham, I. et.al.	Minus	1351268-1351168
40	336662	Dunham, I. et.al.	Minus	2158060-2157993
40	336664	Dunham, I. et.al.	Minus	1993558-1993481
	336676	Dunham, I. et.al.	Minus	2022565-2022497
	336684	Dunham, I. et al.	Minus	2158060-2157993
	336686	Dunham, I. et.al.	Minus	2160698-2160486
	336714	Dunham, I. et.al.	Minus	3094026-3093871
45	336719	Dunham, I. et.al.	Minus	3331631-3331503
	336736	Dunham, I. et.al.	Minus	4093128-4093041
	336744	Dunham, I. et.al.	Minus	4333001-4332848
	336786	Dunham, I. et.al.	Minus	5419973-5419873
	336793	Dunham, I. et.al.	Minus	5631345-5631237
50	336859	Dunham, I. et.al.	Minus	8201756-8201561
		Dunham, I. et.al.	Minus	8396673-8396425
	336933	Dunham, I. et.al.	Minus	11760045-11759981
	336942	Dunham, I. et.al.	Minus	12027537-12027455
	336960	Dunham, I. et.al.	Minus	13267243-13267172
55	336969	Dunham, I. et.al.	Minus	13725722-13725643
	336971	Dunham, I. et.al.	Minus	13732308-13732221
	337003	Dunham, I. et.al.	Minus	15523541-15523422
	337011	Dunham, I. et.al.	Minus	16106423-16106080
		Dunham, I. et.al.	Minus	19034423-19034321
60	337070			
vu	337072	Dunham, I. et.al.	Minus Minus	19077452-19077323 19657011-19656881
	337086	Dunham, I. et.al.		
	337140	Dunham, I. et.al.	Minus	22649450-22649388
	337193	Dunham, I. et.al.	Minus	24594969-24594874
65	337256	Dunham, I. et.al.	Minus	27659956-27659876
65	337278	Dunham, I. et.al.	Minus	28429017-28428848
	337284	Dunham, I. et.al.	Minus	28491414-28491094
	337293	Dunham, I. et.al.	Minus	28846334-28845873
	337316	Dunham, I. et.al.	Minus	29657129-29656997
	337326	Dunham, I. et.al.	Minus	30017199-30017069

	337382	Dunham, I. et.al.	Minus	31233666-31233579
	337392	Dunham, I. et.al.	Minus	31442311-31442229
	337406		Minus	31864840-31864588
	337412	Dunham, Letal.	Minus	31916487-31916312
5		Dunham, I. et.al.		32021496-32021170
5	337419 337436	Dunham, I. et.al.	Minus Minus	32257869-32257739
	337455	Dunham, I. et.al.	Minus	32434517-32434425
	337509	Dunham, I. et.al.	Minus	33414613-33414498
	337518	Dunham, I. et.al.	Minus	33796750-33796647
10	337529	Dunham, I. et.al. Dunham, I. et.al.	Minus	34043668-34043546
10	337533	Dunham, I. et al.	Minus	34193388-34193261
	337539	Dunham, I. et.al.	Minus	34254490-34254322
	337551	Dunham, I. et.al.	Minus	34524446-34524362
	337553	Dunham, I. et.al.	Minus	24230-24160
15	337591	Dunham, I. et.al.	Minus	1006414-1006184
	337592	Dunham, I. et.al.	Minus	1007791-1007634
	337593	Dunham, i. et.al.	Minus	1009460-1009291
	337607	Dunham, I. et.al.	Minus	1355719-1355637
	337612	Dunham, I. et.al.	Minus	1570235-1570142
20	337635	Dunham, I. et.al.	Minus	2169690-2169569
	337824	Dunham, I. et.al.	Minus	4559540-4559266
	337825	Dunham, I. et.al.	Minus	4567155-4567005
	337850	Dunham, I. et.al.	Minus	5077143-5076943
25	337854	Dunham, I. et.al.	Minus	5153435-5153272 6149843-6149786
23	337913	Dunham, I. et.al.	Minus Minus	5922748-5922690
	337915 337968	Dunham, I. et.al. Dunham, I. et.al.	Minus	7095797-7095680
	338010	Dunham, I. et.al.	Minus	7754282-7754184
	338012	Dunham, I. et.al.	Minus	7761421-7761351
30	338017	Dunham, I. et.al.	Minus	7864521-7864401
-	338065	Dunham, I. et.al.	Minus	7235048-7234950
	338094	Dunham, I. et.al.	Minus	9595602-9595440
	338129	Dunham, I. et.al.	Minus	10915338-10915237
~~	338132	Dunham, I. et.al.	Minus	10989617-10989530
35	338150	Dunham, I. et.al.	Minus	11478551-11478355
	338157	Dunham, I. et al.	Minus	11731444-11731375
	338195	Dunham, I. et.al.	Minus	13484103-13483972
	338255	Dunham, I. et.al.	Minus	15242294-15242231
40	338276 338431	Dunham, I. et.al.	Minus Minus	16109555-16109398 19747608-19747496
40	338448	Dunham, I. et.al. Dunham, I. et.al.	Minus	20151152-20151054
	338451	Dunham, I. et.al.	Minus	20174286-20174193
	338477	Dunham, I. et.al.	Minus	20821897-20821838
	338534	Dunham, I. et.al.	Minus	21771238-21771170
45	338682	Dunham, i. et.al.	Minus	24800712-24800461
	338684	Dunham, I. et al.	Minus	24827522-24827428
	338689	Dunham, I. et.al.	Minus	24893073-24892972
	338695	Dunham, I. et.al.	Minus	25104153-25104016
50	338825	Dunham, I. et al.	Minus	27664798-27664712
50	338842	Dunham, I. et.al.	Minus	27824238-27824079
	338893	Dunham, I. et.al.	Minus	28491807-28491631
	338904	Dunham, I. et.al.	Minus Minus	28766345-28766253 29071537-29071461
	338935	Dunham, I. et.al.	Minus	30523414-30523289
55	339022 339034	Dunham, I. et.al. Dunham, I. et.al.	Minus	30621603-30621422
33	339190		Minus	32403103-32402985
	339212	Dunham, I. et.al.	Minus	32494335-32494210
	339213		Minus	32496590-32496440
	339216	· · · · · · · ·	Minus	32504250-32504109
60	339233		Minus	32751331-32751238
	339258	Dunham, I. et.al.	Minus	32934756-32934615
•	339262	Dunham, I. et.al.	Minus	32971258-32971090
	339263		Minus	32974634-32974452
~~	339265		Minus	32975943-32975806
65	339338	•		33468728-33468606
	339396			34017306-34017205
	339400			34045024-34044940 34407911-34407798
	339425	•	Minus Plus	140049-140170
	325207	U00240U	1 143	1-100-10-1-10-170

	329568	3962490	Plus	36331-36750
	329517	3983513	Minus	53197-53269
	325313	5866865	Minus	27385-28192
	325327	5866875	Plus	75189-75264
5	325317	5866878	Minus	156551-156649
_	325257	5866895	Plus	10867-10955
		6729060	Plus	192813-193017
		5866920	Minus	1035422-1035536
		5866920	Minus	1165503-1165810
10		5866920	Minus	1187981-1188167
	325469	6017034	Plus	286823-286991
		6017034	Plus	287578-287663
	325576	6552443	Minus	137769-137894
	325505	6682451	Minus	240852-240946
15	325543	6682452	Plus	151873-152057
	329635	5302817	Minus	62522-62622
	329636	5302817	Minus	64969-65078
	325593	5866992	Minus	469726-469860
	325675	5867014	Plus ·	955517-955711
20	325704	5867028	Plus	156198-156387
	325682	6138923	Plus	370618-370763
	325785	6381957	Plus	61849-62003
	325666	6469822	Plus	16769-16857
	325818	6682490	Minus	120278-120559
25	329777	6002090	Minus	191389-191479
	329768	6015501	Plus	118315-118422
		6048280	Minus	37647-37730
	329731	6065783	Plus	158772-158900
	329687	6117856	Minus	22165-22288
30	329676	6272128	Minus	142207-142359
	329667	6272129	Plus	101355-101745
	329669	6272129	Plus	131223-131291
	329670	6272129	Plus	131351-131495
~ ~		6468233	Minus	105995-106107
35		6469354	Minus	131982-132089
		5867048	Minus	46361-46458
		5867052	Plus	232674-233060
		6067149	Minus	37227-37473
40		6525313	Minus	166123-166791
40		6563505	Minus	111058-111783
		5867064	Plus	17349-17606
		5867067	Plus	276141-276251
		5867073	Plus	149115-149192
45		5867073	Pius	155223-155348 194694-194915
43	325886	5867087	Plus	8178-8347
	325882	5867087	Minus	
	325905	5867104	Plus	78779-78876 329063-329134
	325922	5867122 5867132	Minus Minus	152633-152902
50	325937 325960	5867147	Minus	162506-162635
50	325961	5867147	Minus	165106-165209
	325838	6552452	Plus	171451-171532
	325839	6552452	Plus	181964-182037
	325840	6552452	Plus	184380-184547
55	325844	6552453	Minus	14188-14332
55	325870	6682492	Plus	228209-228297
	329984	4646193	Minus	139780-139890
	329976	4878063	Minus	62584-62691
	329935	6165200	Minus	69059-69127
60	329916	6223624	Plus	36396-37195
•	330021	6671889	Plus	120938-121032
	330024	6671908	Minus	1005-1270
	330028	6671908	Minus	30015-30144
	326033	5867178	Plus	37261-37333
65	326036	5867178	Minus	120215-120273
	326056	5867184	Minus	181553-181690
	326116	5867193	Plus	45548-45604
	326122	5867194	Plus	144397-144683
	326138	5867203	Minus	179374-179436

	326145	5867204	Minus	52599-52814
	326180	5867211	Minus	182758-183222
	326201	5867216	Minus	166168-166959
~	326207	5867222	Plus	48139-48219
5	326226	5867230	Plus	52644-52705
	326233 326238	5867232 5867260	Plus Plus	124788-124863 64282-64338
	326241	5867260	Minus	181648-181916
	326243	5867261	Plus	123838-123978
10	326251	5867263	Minus	82716-82822
	326268	5867267	Plus	122114-122765
	326124	5916395	Plus	407102-407560
	326339	6056311	Minus	164637-165251
15	330049 326358	4567182 5867293	Minus Plus	314662-315210 9122-9195
13	326365	5867297	Minus	96630-96764
	326379	5867327	Plus	32299-32402
	326382	5867327	Minus	50420-50503
	326390	5867340	Minus	108814-110592
20	326424		Minus	168329-168409
	326453		Plus	86222-86423
	326472 326492	5867404 5867422	Plus Plus	293739-293940 120768-120991
	326533		Minus	532153-532280
25	330117		Minus	7340-7680
	330115	6015202	Plus	11403-11677
	330116	6015202	Plus	12109-12418
	330095	6015278	Plus	15343-15814
20	330096		Plus Plus	49370-49458 42684-42819
30	326644 326713	5867559 5867595	Plus Plus	121511-121798
•	326745	5867611	Plus	127130-127318
	326752		Minus	1214-1562
	326753		Plus	12454-12511
35	326598		Plus	68955-69014
	326667	6552455	Plus	142311-142441
	326855 326812	6552460 6682504	Minus Plus	111390-111463 189811-189941
	327005	5867664	Plus	610847-610907
40	327008	5867664	Plus	928737-928811
	326896	5867680	Minus	12032-12122
	326904	5867684	Minus	9280-9606
	326951	6004446	Plus	193812-193998
45	326941	6004446 6004446	Pius Minus	62018-62896 89242-89427
73	326928		Minus	291007-291219
	326958		Minus	42952-43082
	326959	6469836	Minus	43159-43301
50	327039		Plus	694486-694998
50	327127 330158		Plus Plus	41925-42083 81966-82456
		5867447	Plus	165135-165239
	327208		Plus	180805-180864
	327266		Minus	82400-82615
55	327277	5867473	Minus	165616-165715
	327289		Plus	49296-49536
	327296		Plus	7627-8166 59702-59813
	327237 327145		Minus Minus	40482-40551
60	327333		Minus	141448-141609
00	327335		Minus	142979-143124
	327343	6017017	Minus	12288-12395
	327350		Minus	41890-41985
4 E	327358		Minus	3802-3950
65	327360		Minus	6255-6422 52949-53011
	327409 327424		Minus Plus	160442-160598
	327424		Plus	1320-1403
	327470		Plus	150910-150973

	327460	6004455	Plus	175245-175343
	327498	6017023	Minus	42178-42283
	327509	6117815	Minus	54882-55053
	327510	6117815	Minus	56824-56944
5	327512	6117815	Plus	176256-176325
_	327535	6525279	Plus	19105-19175
	330163	6042042	Minus	20321-20385
	330171	6648220	Plus	110889-111575
	327579	5867824	Minus	37229-38335
10	327672	5867843	Minus	69649-69740
	327629	5867872	Plus	49692-49811
	327640		Plus	9448-9566
	327649	5867899	Plus	205871-205927
	327612		Plus	2747-2924
15	327718		Plus	86123-86186
	327801	5867924	Plus	23239-23348
	327762		Minus	50303-50439
	327763		Plus	229347-229476
	327776	5867964	Minus	164308-164486
20	327822	5867968	Minus	168886-169633
	327823	5867968	Minus	170359-170433
	327807	5867968	Plus	33745-33811
	327845	6531962	Plus	193402-193549
	330228	6013527	Minus	.3719-3787
25	330190	6165182	Plus	36103-36243
	328122	5868031	Plus	158474-158656
	328132	5868038	Minus	126737-126839
	328159	5868065	Minus	52957-53162
	328168	5868071	Plus	60321-60479
30		5868073	Plus	208-271
	328217	5868096	Minus	3742-4362
	327865	5868130	Plus	61503-62205
	327866	5868131	Minus	2893-3046
25	327870	5868131	Plus	53558-53757
35	327879	5868142	Minus	77722-77793
	327902	5868158	Minus Plus	133339-133467 547530-547591
	327918 327934	5868165 5868184	Plus	41830-42036
	327959	5868210	Minus	46497-46682
40	327976	5868212	Minus	349301-349409
	328020	5902482	Minus	556386-556652
	328042	5902482	Minus	1985085-1986626
	328008		Plus	296663-297151
	330301	2905862	Minus	4420-5781
45	330299	2905881	Minus	1020-1382
	328274	5868219	Minus	31244-31439
	328595	5868224	Plus	148738-148967
	328591	5868227	Minus	237647-237726
	328668	5868254	Minus	10888-10984
50	328677	5868256	Minus	58708-58950
	328687	5868262	Plus	624479-624585
	328706	5868270	Plus	165501-165614
	328711	5868271	Minus	97797-97990
 .	328730	5868289	Plus	8068-8214
55	328732	5868289	Plus	37437-37550
	328734	5868289	Plus	50559-50747
		5868298	Minus	114911-115087
		5868301	Minus	145959-146446
<i>(</i> 0		5868302	Minus	239308-239412
60		5868309	Plus	12845-12920
		5868309	Minus	74523-74604
	328787		Plus	135772-135963
		5868327	Plus	91792-91849
~~	-	5868337	Plus	36309-36630
65	328280		Plus	160563-160631
	328311		Minus	170560-170826
	328318		Plus	414945-415620
	328323		Minus	1080089-1080235
	328348	5868383	Minus	260272-260379

	328377	5868390	Plus	16947-17023
	328436	5868417	Plus	203760-203904
	328504	5868471	Plus	47064-47217
	328506	5868471	Plus	60716-60830
5	328522	5868477	Plus	1972307-1972452
	328525	5868482	Plus	12387-14313
	328541	5868486	Plus	130956-131050
	328662	6004473	Plus	1184773-1184855
	328663	6004473	Plus	1185279-1186634
10	328803	6004475	Minus	291716-291948
	328304	6004478	Minus	3884-3952
	328927	5868500	Minus	428829-428893
	328936	5868500	Minus	1352202-1352259
	328939	6004481	Minus	131139-131320
15	328941	6456765	Minus	9817-9885
	328948	6456765	Plus	28227-28413
	328968	6456775	Plus	117442-118283
	330316	6007576	Minus	119761-119931
	330350	3056622	Minus	26413-26820
20	330351	3056622	Minus	27522-27614
	330348	4544475	Minus	19855-19962
	329034	5868561	Minus	32819-32939
	329046	5868569	Plus	18971-19030
	329053	5868574	Pius	426453-426541
25	329186	5868711	Minus	13108-13225
	329237	5868729	Plus	133238-133339
	329276	5868762	Minus	222629-222709
	329333	5868806	Plus	392666-392746
00	329376	5868859	Plus	52356-52694
30	329384	5868869	Minus	116524-116662
	329140	6017060	Plus	290842-290905
	329317		Plus	614823-615209
	329319	6381976	Plus	721390-721470
25	329129	6588026	Plus	144569-144712
35	329373	6682537	Minus	38950-39301
	329412	6682553	Minus	68948-69041
	329424	5868879	Plus	362196-362344
	329446	5868886	Plus	84776-84899
	329449	5868886	Plus	97697-97771

5

TABLE 14: shows genes, including expression sequence tags, down-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu02 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

10	Pkey: ExAccn: Unigene Unigene R1:	ID:	Exemplar A Unigene nu Unigene ge		
15	Pkey	ExAcen	UnigenelD	Unigene Title	R1
15	331328	AA281133	Hs.88808	ESTs	18.53
	320875	D60641	Hs.131921	ESTs	14.55
		Al251936	Hs.146298		12.17
	323461	AA418762	Hs.190044		10.55
20		AA947682		ESTs; Weakly similar to Chain A; Cdc42hs-Gdp Complex [H.sapiens]	10.17
		AA543096		ESTs; Highly similar to mitogen-induced [M.musculus]	9.2
	323486	C05278	Hs.166800	ESTs; Moderately similar to [PYRUVATE DEHYDROGENASE(LIPOAMIDE)] KINASE ISOZYME 4 PRECURSOR [H.sapiens]	8.87
_ :	324882	AW419080	Hs.250645	ESTs	8
25	330569	U57796	Hs.57679	zinc finger protein 192	7.88
	330126			CH.21_p2 gi 6093735	7.8
		AA737400	Hs.142230		7.7
		AA148950	Hs.188836		7.64
20		R58399	Hs.146217		7.4 7.15
30		AA465192	Hs.16514		7.15 7
		AI766732	Hs.201194		6.83
		AW341754	Hs.189305		6.74
		AW452118 AA743396	Hs.257533 Hs.189023		6.49
35	329192	AA/40000	115.105023	CH.X_hs gij5868716	6.1
23		AA627642	Hs.4994	transducer of ERBB2; 2 (TOB2)	5.99
	-	AW500106	11011004	EST cluster (not in UniGene) with exon hit	5.82
		AW452382	Hs.257564		5.8
		AA679001	Hs.192221		5.68
40		AA034364		ESTs; Weakly similar to !!!! ALU CLASS B WARNING ENTRY !!!! [H.sapiens]	5.43
	313533	AW298141	Hs.157975		5.4
	303494	F30712		EST cluster (not in UniGene) with exon hit	5.35
		A1627358	Hs.148367		5.31
4.5		D84454	Hs.21899	solute carrier family 35 (UDP-galactose transporter); member 2	5.25
45	334719			CH22_FGENES.421_30	5.25
		AA813958		ESTs; Moderately similar to KIAA0071 [H.sapiens]	5.22 5.22
		AI625304	Hs.190312		5.19
	•	AW511298	Hs.256067		5.11
50		H86747	ns.22/602	KIAA1116 protein EST cluster (not in UniGene)	4,97
50		Al739168 AW206435	Hs.146057		4.97
		N50080	Hs.117827		4.78
		AW197887	Hs.253353		4.63
		AA766825	11020000	EST cluster (not in UniGene)	4.58
55		AW270550	Hs.116957		4.53
		AF161350		EST cluster (not in UniGene) with exon hit	4.46
		AL134932	Hs.143607		4.4
	_	AA913591	Hs.126480	ESTs	4.35
		AW501678	Hs.164577		4.28
60	303480	AA331906		EST cluster (not in UniGene) with exon hit	4.25
	323591	AA301270		EST cluster (not in UniGene)	4.22
		AW468119		EST cluster (not in UniGene)	4.2
		A1733395	Hs.129124		4.1
<i>(</i>		R42049	Hs.195473		4.08
65		AW451570	Hs.126850		4.03
	319750	AA621606	Hs.117956	E318	4.03

	322520	T55958		EST cluster (not in UniGene)	4
		AW026761	Hs.134374		4
		A1990652	Hs.208973		4
	318473	A1939339	Hs.146883	ESTs	3.96
5		Al364186		EST singleton (not in UniGene) with exon hit	3.95
		AW449204	Hs.257125		3.94
		W60843	Hs.31570		3.93 3.9
	-	Al679131 AA541323	Hs.201424 Hs.115831		3.88
10		N53442	Hs.143443		3.83
10		AW203986	Hs.213003		3.79
		AA481027	Hs.127336	ESTs; Weakly similar to ORF YGR245c [S.cerevisiae]	3.75
	320856	D59945		EST cluster (not in UniGene)	3.74
		AI039702		collagen; type I; alpha 2	3.73
15		AA804409	Hs.118920		3.73 3.7
		AA765470 D81150	Hs.122826	EST cluster (not in UniGene) with exon hit	3.68
		Z38720	Hs.151014		3.66
		AA011603	110.101017	EST cluster (not in UniGene)	3.59
20		H95082	Hs.102332		3.52
	324771	AA631739		EST cluster (not in UniGene)	3.5
		AA317561		EST cluster (not in UniGene)	3.49
		AW516519	Hs.115130		3.47 3.46
25	300038	AW242630		EST singleton (not in UniGene) with exon hit AFFX control: MurlL4	3.38
2,5		Al088192	Hs 135474	ESTs; Weakly similar to ATP-DEPENDENT RNA HELICASE A [H.sapiens]	3.36
		AA731520	Hs.170504	•	3.35
	304356	AA196027	Hs.195188	glyceraldehyde-3-phosphate dehydrogenase	3.34
00		A1948688	Hs.191805		3.33
30	329815	41=4555	11. 000404	CH.14_p2 gi]6624888	3.32 3.31
		A1745387	Hs.239124 Hs.158932		3.3
	329218	N53574	113. 13033Z	CH.X_hs gij5869726	3.28
		AW440742	Hs.155556		3.28
35		AW503637		EST cluster (not in UniGene) with exon hit	3.25
	307783	Al347274		EST singleton (not in UniGene) with exon hit	3.25
		AA324975		ESTs; Weakly similar to KIAA0465 protein [H.sapiens]	3.25
		AA700439	Hs.188490		3.25 3.23
40	334061 336036			CH22_FGENES.327_14 CH22_FGENES.678_7	3.23
40		H67818	Hs.222059		3.21
		AW139383	Hs.245437		3.2
	316733	AA811713	Hs.163222		3.2
45		AW235248	Hs.79828		3.2
45		AA304986	Hs.145704	EST cluster (not in UniGene)	3.19 3.17
		AA740616 AA814859		EST cluster (not in Unidene)	3.16
		AI833131	Hs.179100		3.11
		AA258222	Hs.87757		3.1
50		A1989538	Hs.191074		3.08
		AA749062	Hs.180285		3.08
		H26953		EST cluster (not in UniGene) EST singleton (not in UniGene) with exon hit	3.08 3.08
		A1824829 AA236233	Hs.188716		3.07
55		AW015940	Hs.232234		3.07
	324614	AW503101		EST duster (not in UniGene)	3.07
		AW293046	Hs.255158		3.07
		A1239706	Hs.189886		3.06
60		AW297967	Hs.188181 Hs.236993		3.05 3.03
00		AW043620 AA247755	192200333	EST cluster (not in UniGene)	3.01
	316848	AA830053	Hs.126798		3.01
	313473	AA009660		ESTs; Moderately similar to T07D3.7 [C.elegans]	2.99
~=	318518	T27119		EST cluster (not in UniGene)	2.98
65		A1076370	Hs.134037		2.97
		AA458637	Hs.152207		2.96 2.95
		AA053294 AW340014		EST singleton (not in UniGene) with exon hit EST singleton (not in UniGene) with exon hit	2.95
		H08035	Hs.21398	ESTs; Moderately similar to PUTATIVE GLUCOSAMINE-6-PHOSPHATE	3.77

				ISOMERASE [H.sapiens]	2.95
	321253	A1699484		EST cluster (not in UniGene)	2.93
		AA149508	Hs.103288	· · · · · · · · · · · · · · · · · · ·	2.93
	332864			CH22_FGENES.28_4	2.92
5	300027				
		M11507		AFFX control: transferrin receptor	2.91
	324330	AA884766		EST cluster (not in UniGene)	2.88
	320014	AA137114	Hs.170291	ESTs	2.88
	333916			CH22_FGENES.296_5	2.88
10		Z43272		EST duster (not in UniGene)	2.87
		AI040125	Hs.150521	'	2.87
		AA233056	Hs.191518		2.85
		AA825148		F-box protein Fbw1b	2.84
	335862			CH22_FGENES.629_7	2.83
15		AW205409	Hs.127748		2.82
		AI610397	Hs.159560		2.81
		Al419909	Hs.160994		2.81
	324094	AA382603		EST duster (not in UniGene)	2.81
		R84237		EST cluster (not in UniGene)	2.8
20		AA864468	Hs.135646		2.8
		AA913887	Hs.126511		2.78
		AW277121	Hs.254881	ESTs	2.78
		AI950844	Hs.128738	ESTs; Weakly similar to non-lens beta gamma-crystallin like protein [H.sapiens]	2.77
	332808			CH22_FGENES.7_10	2.75
25	311824	AW293826	Hs.250610		2.75
	321992	C06003	Hs.116456	ESTs	2.73
	316074	AW517542	Hs.208382	ESTs	2.73
	309839	AW296076		EST singleton (not in UniGene) with exon hit	2.73
	312071	AA683529	Hs.143119	ESTs	2.73
30	312684	AW294020	Hs.117721		2.72
	332668	AA062971	Hs.181161	ESTs; Weakly similar to INHIBITOR OF APOPTOSIS PROTEIN 1 [M.musculus]	2.72
	322139	H53744		EST cluster (not in UniGene)	2.72
	304168	H77679		EST singleton (not in UniGene) with exon hit	2.72
~=	325602			CH.13_hs gi 5866994	2.71
35		R59096	Hs.136698		2.71
		N75450		EST cluster (not in UniGene) with exon hit	2.71
		AA831215		ESTs; Weakly similar to predicted using Genefinder [C.elegans]	2.69
		Al091458	Hs.134559		2.68 2.68
40		R38715		Homo sapiens clone 24540 mRNA sequence	2.68
40		AI823999	Hs.162000		2.67
		AA614308	Un 101704	EST singleton (not in UniGene) with exon hit	2.67
		A1431345	Hs.161784 Hs.136525		2.67
		AW193466 Al057369	Hs.122536		2.65
45		AA135565	Hs.250739		2.65
70		AI308989	Hs.156939		2.65
		AA704457		ESTs; Moderately similar to gag [H.sapiens]	2.65
		AW292417		ESTs; Moderately similar to high-risk human papilloma viruses E6	
	300330	MITEGERIT	113.233017	oncoproteins targeted protein E6TP1 alpha [H.sapiens]	2.64
50	917850	N29974		EST cluster (not in UniGene)	2.64
50	339047	1123314		CH22_DA59H18.GENSCAN.28-7	2.64
		AA492588		EST cluster (not in UniGene)	2.63
		Al817933	Hs.209584		2.62
		R06841	110.20000	EST cluster (not in UniGene)	2.62
55 .		Al248571	Hs.186837		2.61
		AA836116		EST cluster (not in UniGene)	2.6
	326505			CH.19_hs gi 5867435	2.6
		AW015506	Hs.130730	_ _ ••	2.6
		AF090948	110.1007.00	EST cluster (not in UniGene) with exon hit	2.59
60		H24244	Hs240763	ESTs; Weakly similar to /prediction	2.58
		Al209108	Hs.143946		2.57
	329224			CH.X. hs gi 5868728	2.56
	328018			CH.06_hs gi 5902482	2.56
		AA324437	Hs.177230		2.55
65		AW157377	Hs.132910		2.55
		AW136134	Hs.220277		2.55
		Al479011	Hs.170783		2.54
		AI743261	Hs.131860		2.54
		AW203174	He 252627		2.53

	313966	Al807551	Hs.189061		2.53
	331263	AA015718		ze31a12.s1 Soares retina N2b4HR Homo sapiens cDNA clone	
				IMAGE:36574 3', mRNA sequence .	2.51
	310683	AW055233	Hs.160870	ESTs	2.5
5		AA085996	Hs.248572	Human PAC clone DJ404F18 from Xq23	2.5
_		AJ001408	***************************************	EST cluster (not in UniGene) with exon hit	2.5
		Al613519		EST singleton (not in UniGene) with exon hit	2.49
		AF086538		EST cluster (not in UniGene)	2.49
		AA974253	Hs.120319		2.49
10					2,48
10		AA203415	Hs.136200		2.48
		W76005	Hs.32094		
		AA243617		ESTs; Highly similar to db83 [R.norvegicus]	2.48
		AA256675	Hs.200438	ESTs; Weakly similar to atypical PKC specific binding protein [R.norvegicus]	2.47
		A1624497		EST singleton (not in UniGene) with exon hit	2.47
15	328744			CH.07_hs gi 5868290	2.47
	332344	W45574	Hs.252497		2.47
	328121			CH.06_hs gl 5868031	2.47
	321915	A1670955	Hs.200151	ESTs	2.46
	314954	AA521381	Hs.187726		2.45
20	302821	AA188868	Hs.173933	ESTs; Weakly similar to NUCLEAR FACTOR 1/X [H.sapiens]	2.45
	329454			CH.Y_hs gi 5868887	2.45
	336605			CH22 FGENES.420_4	2.45
		Al444628	Hs.256809	_	2.44
		AL135067	Hs.117182		2.44
25		M10098		ot: 18S ribosomal RNA	2.44
45		AI871168	Hs.12285		2.43
		Al148353	Hs.120849	777.7	2.43
			Hs.119903		2.43
		AI765182			2.43
30		M78276	Hs.255917		2.43
30		AA041455	Hs.209312		2.42
		AW135854	Hs.132458		2.42
		R01342	11-005504	EST cluster (not in UniGene)	2.42
		Al744361	HS.205591	ESTs; Weakly similar to zinc finger protein Png-1 [M.musculus]	
25	327871			CH.06_hs gi 5868131	2.41
35	337173			CH22_FGENES.565-3	2.41
		AA465635		EST cluster (not in UniGene) with exon hit	2.41
		AL118754		EST cluster (not in UniGene)	2.4
	315527	Al791138	Hs.116768		2.4
	315979	AA830515	Hs.222917		2.4
40	331310	AA253351	Hs.44439	STAT induced STAT inhibitor-4	2.4
	321095	AA017595	Hs.32844	ESTs	2.4
	308561	AI701559		EST singleton (not in UniGene) with exon hit	2.39
	313035	N36417	Hs.144928	ESTs	2.37
	322114	AA643791	Hs.191740	ESTs	2.37
45		W49823	Hs.145553	ESTs	2.37
		AA099548		ESTs; Highly similar to dJ1118D24.4 [H.sapiens]	2.37
		AA932948	(101101100	EST cluster (not in UniGene) with exon hit	2.36
	338165			CH22_EM:AC005500.GENSCAN.212-3	2.36
		AA557952		EST duster (not in UniGene)	2.35
50		AA779704	Hs.168830		2.35
50		R41582		retinal degeneration B beta	2.35
			Hs.193162		2.35
		T48446			2.35
		AA663726	Hs.116922		2.34
E E		AA286678	11-051015	EST duster (not in UniGene) with exon hit	
55		AW292740	Hs.254815		2.34
		AA682305	Hs.133268		2.33
		AA642912		EST singleton (not in UniGene) with exon hit	2.33
		A1000320		EST singleton (not in UniGene) with exon hit	2.33
	300307	Al651016	Hs.246311	ESTs	2.33
60	321348	Z49979		EST cluster (not in UniGene)	2.33
	325112	Al903770	Hs.124344	ESTs .	2.32
	336679			CH22_FGENES.43-7	2.32
	321383	AJ002574		EST cluster (not in UniGene)	2.32
	337357			CH22 FGENES.730-6	2.31
65	300880	AW468066	Hs 257719	ESTs; Weakly similar to KIAA0986 protein [H.sapiens]	2.31
55	327120			CH.21_hs gij6531970	2.31
	202761	AW250553		EST duster (not in UniGene) with exon hit	2.3
	313133	A1475490	Hs.170577		2.3
	015500	AA827652	110.1100//	EST duster (not in UniGene)	2.3
	212022	AME I COL		בין איסיבו (ואנוו סוותפוום)	٠.٠

	312189	T95594	Hs.187435		2.3
	306537	AA991705	•	EST singleton (not in UniGene) with exon hit	2.3
	327061			CH.21_hs gi]6531965	2.3
	315391	AA759098	Hs.192007	ESTs	2.3
5	322384	Al968646	Hs.33862	ESTs	2.29
-		AA203339	Hs.220750	ESTs	2.29
		Al680915	Hs.201379		2.28
	335250			CH22_FGENES.516_11	2.28
		Z38907	Hs 91662	KIAA0888 protein	2.28
10		AW294013	Hs.200942		2.28
10		AA969121	Hs.254296		2.28
		A1608881		ESTs; Highly similar to junctional adhesion molecule [H.saplens]	2.28
		Al970543	Hs.192605		2.28
			HS. 192000	EST duster (not in UniGene)	2.28
15		Z43395	Un 104000		2.27
1,)		AA252753	Hs.164039		2.27
		AA342250		ubiquitin specific protease 16	2.27
		AW292127	Hs.144758	· · · · · · · · · · · · · · · · · · ·	2.27
		AA766025	Hs.238794		
20		Al697668	Hs.202241		2.26
20.		AA229781	Hs.221962		2.26
		Al004614	Hs.130577		2.26
		AW474196	Hs.221604		2.25
		AA769123		EST cluster (not in UniGene)	2.25
		AA968799	Hs.150289	·	2.25
25	322370	AA330095		EST cluster (not in UniGene)	2.25
	306620	A1000929		EST singleton (not in UniGene) with exon hit	2.24
	329109			CH.X_hs gi 5868626	2.24
	311043	Al871209	Hs.177128		2.24
	300228	Al458372	Hs.158748	ESTs; Weakly similar to synapsin lb [M.musculus]	2.24
30	307223	A1193698	Hs.184776	ribosomal protein L23a	2.24
	309023	AI888045		EST singleton (not in UniGene) with exon hit	2.23
	310749	A1493675	Hs.170332	ESTs	2.23
	316769	Al914939	Hs.212184	ESTs	2.22
	320409	AA356195		EST cluster (not in UniGene)	2.21
35	333149			CH22_FGENES.87_8	2.21
		M86125	Hs.137487	=	2.21
		A1791617	Hs.145068		2.2
		Al863952		arginyftransferase 1	2.2
		R67430	Hs.172787		2.2
40		D78667	***************************************	EST cluster (not in UniGene)	2.2
. •	328903	2.000		CH.08_hs gi 5868514	2.2
		T19204		EST cluster (not in UniGene) with exon hit	2.2
		T08845		EST cluster (not in UniGene)	2.2
		A1865455	Hs 211818	ESTs; Moderately similar to !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.sapin	ans] 2.19
45	335109	14000100		CH22_FGENES.494_15	2.18
		AA131471	Hs.71440		2.18
		Al971362	Hs.231945		2.18
		AA513456	113201010	EST singleton (not in UniGene) with exon hit	2.18
	337393	70-010-00		CH22_FGENES.747-4	2.18
50	332812			CH22_FGENES.7_14	2.18
50	327665			CH.04_hs gij5867839	2.18
		AMEGAREO	Hs.237849	FAT T	2.17
	326508	AW504859	113201010	CH.19_hs gi 6682496	2.17
		AW161535	Hs.258803		2.17
55		Al765651	Hs.172900		2.17
55		AW276810	Hs.254859		2.16
			Hs.223333		2.16
		AI880843	Hs.186895		2.16
		AI084182			2.16
<i>ζ</i> Λ		AI015203	Hs.118015		
60		AW139117	Hs.117494		2.15 2.15
		AA406539	Hs.190958		
		AA463262		EST cluster (not in UniGene)	2.15
		AF156548		EST cluster (not in UniGene)	2.15
15		C03864		EST cluster (not in UniGene)	2.15
65		AA002047		EST cluster (not in UniGene)	2.14
		AA353895	Hs.152983	HUS1 (S. pombe) checkpoint homolog	2.14
	337646		•	CH22_EM:AC000097.GENSCAN.11-2	2.13
	303084	AF174008		EST cluster (not in UniGene) with exon hit	2.13
	312185	AA654772	Hs.186564	ESTS	2.13

WO 02/30268

	000040	41000C 44		POT standako daskia ttalografia dikuma kit	0.40	
		A1066544	U- 400074	EST singleton (not in UniGene) with exon hit	2.13 2.12	
		AA602917 Al821782	Hs.156974	ESTS; Moderately similar to IIII ALU SUBFAMILY SC WARNING ENTRY IIII [H.sap		2.12
	-	Al800041	Hs.190555		2.11	4.14
5		R66867	115, 150000	EST cluster (not in UniGene)	2.11	
,		Al167877	Hs.143716		2.11	
		AW015206	Hs.178784		2.11	
		AA235482		ferritin; heavy polypeptide 1	2.11	
		AA399018	Hs.250835		2.1	
10		T72744		EST duster (not in UniGene)	2.1	
	328078			CH.06_hs gi]5868008	2.1	
	317354	AW090770	Hs.192271		2.1	
	308617	Al738720		EST singleton (not in UniGene) with exon hit	2.09	
	311568	AW439969	Hs.218177	ESTs	2.09	
15		Al761786	Hs.204674	ESTs	2.09	
		AA848118	Hs.221216		2.08	
	332933			CH22_FGENES.38_7	2.08	
	325498			CH.12_hs gi 5866967	2.08	
20		AW296067	Hs.124106		2.08	
20		AW149321	Hs.105411		2.08	
		AA640770		EST cluster (not in UniGene)	2.07 2.07	
		AA347452 AW450674	Un 114000	EST cluster (not in UniGene) with exon hit	2.06	
	326920	A11430074	Hs.114696		2.06	
25	327574			CH.21_hs gl 6456782 CH.03_hs gl 5867818	2.06	
בט		Al052795	Hs.192201		2.06	
		AW503733	Hs.170315		2.05	
		AA670480	110.170010	ESTs EST singleton (not in UniGene) with exon hit EST cluster (not in UniGene)	2.05	
		AA693880		EST cluster (not in UniGene)	2.05	
30		AW445167	Hs.126036	ESTs	2.05	
		AW408683	Hs.32922		2.05	
	335146			CH22_FGENES.499_2	2.05	
	301475	Al678183	Hs.170917	prostaglandin E receptor 3 (subtype EP3)	2.04	
25		AA120970	Hs.143199		2.04	
35		R62925	Hs.243665		2.04	
		AA290875	Hs.30120		2.04	
		Al215643	Hs.171381		2.03	
		W23285	11- 00000	EST cluster (not in UniGene)	2.03 2.03	
40		AA282197	HS.89002	ESTs; Highly similar to CGI-07 protein [H.sapiens]	2.03	
40		AA994530 Al298794	Hs.129130	EST singleton (not in UniGene) with exon hit	2.03	
		Al493742	Hs.165210		2.02	
		AW294522	Hs.149991		2.02	
		AW245528	Hs.134754		2.02	
45		AA137062	Hs.103853		2.01	
		Al989942	Hs.232150	ESTs	2.01	
	335601			CH22_FGENES.581_41	2.01	
	311351	Al682303	Hs.201274	ESTs	2.01	
		AA249018		EST cluster (not in UniGene)	2.01	
50	328190			CH.06_hs gi 5868077	2	
	338030			CH22_EM:AC005500.GENSCAN.148-16	2	
	333940			CH22_FGENES.301_6	2	
	328227			CH.06_hs gi 5868105	2	
55		N27448	Hs.43944	EST CHICA FOR A	2	
JJ	335288	Al274307		CH22_FGENES.527_1 EST singleton (not in UniGene) with exon hit	2	
		AL134620		EST cluster (not in UniGene)	2	
		R21945	Hs.256153		2	
		AA502583	Hs.197271		2	
60	327489	77 502500	110.101611	CH.02_hs gi 6004459	1.99	
00		AW175841	Hs.192183		1.99	
		AW168096		glyceraldehyde-3-phosphate dehydrogenase	1.99	
	337043			CH22_FGENES.439-19	1.98	
		Al828174	Hs.227049		1.98	
65		Al370434		EST singleton (not in UniGene) with exon hit	1.98	
	328656			CH.07_hs gi 6004473	1.98	
	314569	AA813784	Hs.123001		1.98	
		W45302		helicase-mol	1.98	
	315259	AA701499	Hs.148115	ESTs	1.98	

	313171	N67879	Hs.157695	ESTs	1.97
		Al241421	Hs.132236	ESTs	1.97
		N66393	Hs.102754		1.97
			Hs.226803		1.97
5		Al962180			1.97
5	335864			CH22_FGENES.629_9	
		W00545	Hs.171785		1.97
	314065	AA868267	Hs.85524		1.96
	323086	H15474	Hs.12214	Homo sapiens clone 23716 mRNA sequence	1.96
	323919	AA862973	Hs.220704	ESTs	1.96
10		Al373163	Hs.170333		1.96
10		AW090537	110.11.0000	EST singleton (not in UniGene) with exon hit	1.96
				EST cluster (not in UniGene) with exon hit	1.96
		AW028820			1.95
		AI820675	Hs.203804	ESIS	
	323787	AW373446	Hs.169885	ESTs; Weakly similar to cDNA EST EMBL:T02216 comes from this gene [C.elegan	
15	338112			CH22_EM:AC005500.GENSCAN.185-24	1.95
	313625	AW468402	Hs.254020	ESTs	1.95
•	325240			CH.10_hs gi 5866848	1.95
		AA412102	He 250911	interleukin 13 receptor; alpha 1	1.95
		N63882	113.2.00011	za21f9.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone	
20	332232	1403002		IMACCOCCOCC C mDMA nominano	1.95
20				IMAGE:293225 3', mRNA sequence	
	300279	AW237425	Hs.253817		1.95
	326023			CH.17_hs gi 5867245	1.95
	321609	H86021	Hs.198800	ESTs; Weakly similar to hMmTRA1b [H.sapiens]	1.94
		AA402453	Hs.113011		1.94
25	336276			CH22_FGENES.762_5	1.94
	334913			CH22_FGENES.456_3	1.94
				CH.12_hs gi 5866925	1.94
	325417	****	11 005000		1.94
		AW043590	Hs.225023		
	318455	Al148763		EST cluster (not in UniGene)	1.94
30	306890	Al092235		EST singleton (not in UniGene) with exon hit	1.94
	315073	AW452948	Hs.257631	ESTs	1.94
		R84687	Hs.226306	ESTs	1.94
		AI689808	110122000	EST singleton (not in UniGene) with exon hit	1.93
				EST singleton (not in UniGene) with exon hit	1.93
25		AA968967	11- 40700		1.93
35		AA262999	Hs.42788	ESTs	1.93
	324279	AA501412	Hs.191688	ESTs; Weakly similar to Pro-Pol-dUTPase polyprotein [M.musculus]	
	309577	AW168753		EST singleton (not in UniGene) with exon hit	1.93
	327014			CH.21_hs gi 5867664	1.93
	303488	AW025860		EST cluster (not in UniGene) with exon hit	1.93
40		AA995223	Hs.129559		1.92
		AA019806	Hs 108447	spinocerebellar ataxia 7 (olivopontocerebellar atrophy with retinal degeneration)	1.92
			Hs.159200		1.92
		N50545	HS. 109200		1.92
	327752			CH.05_hs gi 5867949	
	318674	AA295490		EST cluster (not in UniGene)	1.92
45	301267	AW297762	Hs.255690	ESTs	1.91
	332092	AA608787	Hs.112590	ESTs	1.91
	323509	AL036947		EST cluster (not in UniGene)	1.91
		AA317554		EST duster (not in UniGene)	1.91
			Hs.209128		1.91
50		Al765013			1.91
50		Al246374	Hs.185861		1.91
	323715	AA322155		EST cluster (not in UniGene)	
	313800	AW296132	Hs.166674		1.91
	332029	AA489697	Hs.145053		1.91
	304013	AW518573	Hs.156110	Immunoglobulin kappa variable 1D-8	1.91
55		AA354549	Hs.41181	Homo sapiens mRNA; cDNA DKFZp727C191 (from clone DKFZp727C191)	1.91
<i></i>	334150			CH22_FGENES.339_1	1.9
			Hs.235240	-	1.9
		AW450967			1.9
		AW207642	Hs.174021		
	324774	AI031771	Hs.132586		1.9
60	326507			CH.19_hs gi 5867435	1.9
		AA405696		EST cluster (not in UniGene)	1.9
	336268			CH22_FGENES.758_2	1.9
		AI985544	Hs.116429	-	1.9
			110.110429		1.9
~=	325824		LI- 040000	CH.15_hs gl 5867048	
65 -		AA737780	Hs.213392		1.9
	323181	AA418583	Hs.143621	ESTs	1.9
	301438	AA961643	Hs.127716	ESTs	1.89
		Al147341	Hs.146734	EST	1.89
		AI075803		EST singleton (not in UniGene) with exon hit	1.89

	302426	AL049925	He 225084	DKFZP547G0910 protein	1.89
		H72615	Hs.17268		1.89
		N/2013	NS.17200		1.89
	337736				
_		AA262755	Hs.194264		1.88
5		Al377505	Hs.158835		1.88
	314880	A1732169	Hs.105429		1.88
	312539	AI004377	Hs.200360	ESTs	1.88
		AW205604	Hs 168034	ESTs; Wealdy similar to !!!! ALU SUBFAMILY SP WARNING ENTRY !!!! [H.sapiens]	1.88
		Al627478	Hs.187670		1.88
10			Hs.192756	20.0	1.88
10		Al972146	NS. 192/30		1.88
		AA007374			
		U09060			1.88
	329511				1.88
	317140	AI699412	Hs.201925	ESTs	1.87
15	302598	AJ815985	Hs.129683	ubiquitin-conjugating enzyme E2D 1 (homologous to yeast UBC4/5)	1.87
		AA725670		ESTs: Weakly similar to serine/threonine kinase with SH3 domain; leucine	
	001100	70.000.0	1101120100		1.87
	221111	N28271	Hs.176618		1.87
	-		115.170010		1.87
20		AA055475		and all the best best best best best best best bes	
20		Al159863	Hs.143713		1.87
	314014	AW291847	Hs.121715	me tol trouted outside to the brown [troophone]	1.87
	300370	AI827817			1.86
	312329	R84768	Hs.13399	Homo sapiens clone 25032 mRNA sequence	1.86
	325587	•••		CH.12_hs gi[6682462	1.86
25		AI884313	Hs.158906	ar machine Bilanear rem	1.86
23			1 15. 100300		1.86
		R13085		(inter-emany)	1.86
		AA317915		Total Control	
	338427				1.86
	300452	Al352293	Hs.191098		1.85
30 .	321279	H85330	Hs.146060	ESTs	1.85
		F05865	Hs.249180		1.85
		AJ230822		EST singleton (not in UniGene) with exon hit	1.85
		Al679966	Hs.150603	To a confliction (not in other control of the contr	1.85
			Hs.157491		1.85
35		Al239811		20.0	1.84
دد		AW016437	Hs.233462	<u></u>	
		AA278347	Hs.126078		1.84
	335586			4,	1.84
	339209			01 mm_11 1100 1110 m110 01 1 1 1 1	1.84
	307954	Al419692		EST singleton (not in UniGene) with exon hit	1.84
40		AF055136	Hs.248162	tectorin alpha	1.84
		H87213	Hs.158092		1.84
		AA807558	110.100002		1.84
			Un 75956	20. 0.200. (0.000.000.000.000.000.000	1.84
		N75542	HS./3330	autoripaet taster.	1.83
4 =	327192			e. no i—no Bileces i i ie	
45	310214	A1220072	Hs.165893	20.0	1.83
	320516	R33857	Hs.181479	and the state of t	1.83
	324231	W60827		EST cluster (not in UniGene)	1.83
	336616	-		CH22_FGENES.613_5	1.83
	328799			CH.07_hs gi 5868316	1.83
50		AW504161			1.83
50			Hs.153039	201 0.20.00 (1.01.00 0.00)	1.83
		AA766707		2010	1.82
		L28168		personal reside greet dismined to reside to the residence of the residence	1.82
		AL021397	Hs.137576	115000 Francis Co. PooraceBarre 1	
	320187	T99949			1.82
55	320791	R78808	Hs.93961		1.82
	305733	AA829535	Hs.84298	CD74 antigen (invariant polypept of MHC; class II antigen-associated)	1.82
		AI569349		ribosomal protein S9	1.81
		W78877	Hs.40111		1.81
				20.0	1.81
60		Al915122		Total crown) amount to constitution formed and	1.81
UU		H90265	Hs.100636	2010	1.81
	329519			All the State of t	
		AA220982		(·······)	1.81
		N62937	Hs.139181		1.81
	329246			CH.X_hs gi[5868732	1.81
65		AA481271	Hs.193945		1.81
		A1420990	Hs.161303		1.81
	325866	MILLOOOU	. 10. 10 1000	20.0	1.81
		770242		S. 11.0 _ 10 S. 12.0 S. 1	1.8
		Z78343		Zot organic from company	
	333712			CH22_FGENES.251_1	1.8

	313457	AA576052	Hs.193223		8.
	321591	H85687	Hs.117927		8.1
	330260			CH.05_p2 gi 6671884	8.1
	311080	A1656320	Hs.197711		8.1
5	329522			CH.10_p2 gi[3983507	.8
	322889	AA081924	Hs.211417		8.1
		Al275011	Hs.204877	ESTs 1	1.8
	-	H20560	Hs.244624		1.8
		Al341180	Hs.196115		1.79
10		R17531		EST duster (not in UniGene)	1.79
		AA730673	Hs.188634		1.79
		AI400310	Hs.148958	· · · · · · · · · · · · · · · · · · ·	1.79
		AW292760	113.140000		1.79
	326506	MILOLIOU			1.79
15 [,]		AA649011	Hs.187902	a a a dance	1.79
13		Al623739	Hs.186387		1.79
					1.79
		Al248285	Hs.118348		1.79
		D81015	Hs.125382		1.78
20	330120			o 24-2 €4-2	1.78
20	328412	NILE COOFEE		O. 110. T. O. D. Joogs 100	1.78
		NM_000565			1.78
		Al475949	11-007544	To to an district the control of the	1.78
		AW205705	Hs.207514	2010	1.78
25	330282	=	11 04400	2 8.l. o o o	1.78
25		Z43011	Hs.21169		1.78
		AA845630	Hs.117904	24.0	1.78 1.78
	325450			- 11.12_10 \$(passes 1.	
		H54178	Hs.226469		1.78
20		H20826	Hs.31783		1.78
30		AA333666		De l'alcon (not il annount) min	1.77
		Al264671	Hs.164166		1.77
		Al540166	Hs.129563		1.77
		Al683782	Hs.128245		1.77
25		AL038841	Hs.163313	ESTs; Weakly similar to !!!! ALU SUBFAMILY SB WARNING ENTRY !!!! [H.sapiens]	1.//
35	336123			o. m.C. a.z.z.z.	1.77
		Al286182	Hs.208484		1.77
		AW451733	Hs.119824		1.77
		AA001811	Hs.83722	20.0	1.77
40	329941			21a.la 31a.	1.77
40	328329			arito. Tip 8/bosoc. a	1.77
		Al493054	Hs.158968		1.77
	325902				1.76
	322239	W01813			1.76
		A1274851	Hs.258744		1.76
45		A1025527	Hs.222097		1.76
		AA437300	Hs.178210		1.76
		H92449	Hs:116406		1.76
		T52760			1.76
		AA627356	Hs.163315		1.76
50	318511	T26528	Hs.227175	ESTs; Weakly similar to !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.sapiens]	1.76
	327183			a	1.76
		AA029058	Hs.135145		1.76
		· A1752482			1.76
		AA419617		and discour fraction are a second	1.76
55		AW451142	Hs.255628		1.76
	300437	AW449374	Hs.257149		1.75
	319775	AA504429	Hs.6211	mond, oh a care of a	1.75
	314775	Al149880	Hs.188809		1.75
	337460				1.75
60	309849	AW297444			1.75
	301471	AA995014	Hs.129544	and told troping outlines to one in the forest country	1.75
	312739	Al318426	Hs.155925	ESTs	1.75
		H15355	Hs.60887		1.75
_	326495			- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.75
65	337497			CH22_FGENES.801-4	1.75
	322633	AA004534	Hs.153981	ESTs	1.75
	332177	F10812	Hs.101433	ESTs	1.75
	326930			CH.21_hs g 6456782	1.75
		AA837332		EST duster (not in UniGene)	1.75

	324826	AA704806	Hs.143842	ESTs	1.75
	311269	Al656924	Hs.174257	ESTs	1.75
	309375	AW075342		EST singleton (not in UniGene) with exon hit	1.75
	314171	AI821895	Hs.193481	ESTs	1.75
5	311684	Al990741	Hs.252809	ESTs	1.75
-	334387			CH22_FGENES.380_1	1.75
		Al300101	Hs.252222		1.75
		AJ418055	Hs.161160	ESTs	1.74
		AW501470			1.74
10		Al762929	Hs 206134	20, 0.000. (1.74
		AW339340	1.0200101	motol atomic and antimos as a contract and a contra	1.74
		AW501336		as congress (norm concerns) man contract	1.74
		Z24981			1.74
		AF111178			1.74
15		W92924		40.1 0.00.00 (1.00.00 0.00)	1.74
13		H93199	Hs.33665		1.74
		AA737345	1132000		1.74
		N55484	He sausan	ESTs; Highly similar to ARYL HYDROCARBON RECEPTOR NUCLEAR	
	332243	1400404	1 ISZZZUJIO	TRANSLOCATOR [H.sapiens]	1.74
20	990051	H02566	He 101269	Homo sapiens mRNA; cDNA DKFZp434N174 (from clone DKFZp434N174)	1.74
20			Hs.211519	• • • • • • • • • • • • • • • • • • • •	1.73
		AL045752			1.73
		AA199847		EST cluster (not in UniGene)	1.73
	327288	41004007	H- 440000	CH.01_hs gi[5867481	1.73
25	•	Al201367	Hs.142860		1.73
23		H17255	Hs.144515		1.73
	326278	1140700		CH.17_hs gij5867269	1.73
		H49792		EST cluster (not in UniGene) with exon hit	1.73
		AF086431		EST duster (not in UniGene)	1.73
20	327075	41707500	11.445450	CH.21_hs gi 6531965	1.73
30		Al797588	Hs.145459		1.73
		Al076890	Hs.186949		1.73
		AA830893	Hs.119769		
		AA773580	Hs.193598		1.73
25		AA004699		putative translation initiation factor	1.73 1.73
35		AW296802	Hs.255580	 -	
		Al689617	Hs.200934		1.73
		F09774	Hs.175971		1.73
		Al984592	Hs.15088		1.73
40		AA663560	HS.2358/3	motol, tramming to trace in factors	1.73
40		AW303457			1.72
•		T71739	Hs.75442	C-C-111111	1.72
		AI033922	Hs.122517		1.72
	334379			CH22_FGENES.379_11	1.72
45		AA862733		EST singleton (not in UniGene) with exon hit	1.72
45		N34927	Hs.186566		1.72
	329728			2 — 84-2-2-2-2	1.72
		N57692	Hs.118064		1.72
		AL134875	Hs.192386		1.72
50	302077	AA310580	HS.132898	Homo sapiens chromosome 11; BAC CIT-HSP-311e8 (BC269730)	4 74
50		*****	11 450004	containing the hFEN1 gene	1.71
		Al971438	Hs.158824		1.71
		Al809985	Hs.203340		1.71
		AW238064	Hs.253909		1.71
55		H71999	11. 044500	EST cluster (not in UniGene)	1.71 1 4 74
55		T78791	HS.241569	ESTs; Moderately smir to IIII ALU SUBFAMILY SQ WARNING ENTRY IIII [H.sapier	
		R56151		EST cluster (not in UniGene) with exon hit	1.71
	329089			CH.X_hs gi 5868614	1.71
		AF086467		EST cluster (not in UniGene)	1.71
60		Al080361	Hs.134217		1.71
60		AA489792	11	EST singleton (not in UniGene) with exon hit	1.71
		Al028149		pyruvate dehydrogenase kinase; isoenzyme 3	1.71
		Al478629	Hs.158465		1.71
	338178			CH22_EM:AC005500.GENSCAN.219-6	1.71
	338910			CH22_DJ32I10.GENSCAN.11-2	1.71
65		AL080073		Homo sapiens mRNA; cDNA DKFZp564B1462 (from clone DKFZp564B1462)	1.7
		AA534550	Hs.539	ribosomal protein S29	1.7
		Al701489	Hs.202501	ESIS	1.7
		AW452420	Hs.248678		1.7
	314937	AA515602	Hs.152330	ESIS	1.7

	900590	AA761322	Hs.220538	ECT.	1.7
					1.7
	304398	AA262785		EST singleton (not in UniGene) with exon hit	
	313421	AW339515	Hs.163700	ESTS	1.7
	309763	AW270182		EST singleton (not in UniGene) with exon hit	1.7
5	322092	AF085833		EST cluster (not in UniGene)	1.7
_		AA764768	Hs.121158		1.7
	325031			EST cluster (not in UniGene)	1.7
	327157	100007			1.7
		41744404	11-404004	CH.01_hs gi 5866841	1.7
10		Al741461	Hs.161904		1.69
10		H67220	Hs.146406		
	324721	AW402302	Hs.43616	ESTS	1.69
	328624			CH.07_hs gi[5868246	1.69
	303344	AA255977	Hs.250646	ESTs; Highly similar to ubiquitin-conjugating enzyme [M.musculus]	1.69
	328960			CH.08_hs gi[6456775	1.69
15		AA657501	Hs.146315		1.69
		AJ224172		lipophilin B (uteroglobin family member); prostatein-like	1.68
		R14537	113201000	EST cluster (not in UniGene)	1.68
				EST singleton (not in UniGene) with exon hit	1.68
		AW137700	11- 57007	• • • • • • • • • • • • • • • • • • •	1.68
20		D84424		hyaluronan synthase 1	1.68
20		AA876905	Hs.125286		1.68
	328538	•		CH.07_hs gi[5868485	
	323923	AA354146		EST cluster (not in UniGene)	1.68
	320303	AL079289	Hs.137154	Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 35971	1.68
	302967	A1927068	Hs.110853	ESTs; Wealdy similar to R10D12.12 [C.elegans]	1.68
25	310695	Al472124	Hs.157757	ESTs	1.68
		Al273815	Hs.242463		1.68
	338506	7(127-001-0		CH22_EM:AC005500.GENSCAN.390-10	1.68
		AA195405	He 110247	Homo saplens mRNA for alpha integrin binding protein 80; partial	1.68
			H5.110347	EST cluster (not in UniGene) with exon hit	1.68
20		R05385	11: 04000		1.68
30		Z42977	Hs.21062		1.68
		AW244073	Hs.145946		
	317538	AW137772	Hs.185980		1.68
	325780			CH.14_hs gi 6381953	1.67
	321739	AL080280		EST cluster (not In UniGene)	1.67
35	319808	T58960		EST cluster (not in UniGene)	1.67
	313443	AA249037		EST cluster (not in UniGene)	1.67
		AA424754	Hs.43149		1.67
		AI797592	Hs.207407		1.67
		AA081820	(10.20) 10.	EST duster (not in UniGene)	1.67
40	-	77001020			1.67
40	330320			CH.08_p2 gi 5932415	1.67
	329081			CH.X_hs gi[5868602	1.67
	334026			CH22_FGENES.318_3	1.67
		Al801500	Hs.128457		
	322235	AF086106		EST cluster (not in UniGene)	1.66
45	331148	R73816	Hs.17385		1.66
	325452			CH.12_hs gi 5866941	1.66
	315106	AW452184	Hs.232100		1.66
	326014			CH.16_hs gi 5867160	1.66
		Al185234		EST singleton (not in UniGene) with exon hit	1.66
50		AA524545	Hs.224630		1.66
J		W21298	11022	EST duster (not in UniGene)	1.66
			He 170427	ESTs; Weakly similar to hyperpolarization-activated; cyclic	
	\$10009	Al457946	115.170407	nucleotide-gated channel 2 [H.sapiens]	1.66
		41.400440			1.66
		AL135118		EST duster (not in UniGene)	1.66
55	335568			CH22_FGENES.581_4	
		AW263086	Hs.118112		1.66
	338983			CH22_DA59H18.GENSCAN.3-1	1.65
	330002			CH.16_p2 gi 6623963	1.65
	315343	AW205477	Hs.179891	ESTs	1.65
60	334487		• •	CH22_FGENES.395_9	1.65
		AI064824	Hs.193385		1.65
	300668	AW204480	Hs.253414		1.65
		AW148928	Hs.248895		1.65
			13.240033	EST singleton (not in UniGene) with exon hit	1.65
6 5		AI421641	U= 400054		1.65
65		AW369770	Hs.130351		1.65
		AA401858	Hs.224843		
	338763			CH22_EM:AC005500.GENSCAN.517-16	1.65
		AA232729	Hs.154302		1.65
	313231	AW139993	Hs.163682	ESTs	1.65

	334073			CH22_FGENES.327_28	1.65	
	319901	T77136	Hs.8765	The thousand rolling process	1.65	
	326530			or it to _the gripe or the	1.65	
		Al802877	Hs.210843	Editor transportation of	1.65	
5		AA827082		To reason from a manney	1.65	
		AA236027		Zor angiotal (north one and and	1.65 1.65	
		AA099732		TO I MOOIGI (MOOILI)	1.64	
	337272	AA262768	He 2//3001	V. 122	1.64	
10		Z44266	113,240301	timetroes protess	1.64	
10		AW342028	Hs.256112		1.64	
		AW293704	Hs.122658	LOIG	1.64	
	318088	AW295409	Hs.137945		1.64	
٠.		Al538438	Hs.159087		1.64	_
15		AA378974	Hs.130720	ESTs; Weakly similar to CELLULAR NUCLEIC ACID BINDING PROTEIN (H.sapiens	sj 1. 1.63	0
		AW074330		201 of growth (list at of a constant)	1.63	
		AW402236 AA354940	Hs.145958	251 States (not in concesso)	1.63	
		AA885502	Hs.187032		1.63	
20	333942	7400000	110.101002		1.63	
	327469			CH.02_hs gi 5867772	1.63	
	301918	AA476777		COL ORDORI LIGITAL DIVIDIOLO VINCENTIA	1.63	
		AI744068	Hs.160712	20.0	1.63	
05		AA282572			1.63 1.63	
25		Al341594	Hs.157522	2010 thousand outline to any brown from the	1.63	
		F11623 Al962234	Hs.196102	Zer disere (norm embers)	1.63	
		Al348076	Hs.831	3-hydroxymethyi-3-methylglutaryi-Coenzyme A lyase (hydroxymethylglutaricaciduria		
		AA989230	113.001	EST singleton (not in UniGene) with exon hit	1.63	
30		AA086110	Hs.188536	Homo sapiens clone 24838 mRNA sequence	1.63	
	303710	Al269069	Hs.250852	Co.tol tuling and anima to ani	1.63	
	328291		*	011.01_1.0 8/1000000	1.63	
		W93278		201 angleton (not an oracles) may energy	1.63 1.63	
35		A)791700	Hs.127893	2010	1.62	
33		AW440133 AI028309	Hs.189690 Hs.114246		1.62	
	325326	A1020303	115.114240	EQ10	1.62	
		Al953261	Hs.169813		1.62	
	327526			CH.02 hs gil6381882	1.62	
40		AW449679	Hs.156739	CO 10' I tilling outlied to see our control transfer and free state of the second outlier and the second outlier a	1.62	
		AA663131		Lot ongood from the characters and the	1.62	
		Al021996	Hs.122138	2010	1.62 1.62	
	329666	A1744420	Hs.131201	Other Stockers	1.62	
45		Al744130 AL031709	NS.131201	LOIS	1.62	
13		Al307229	Hs.184304	·	1.62	
		AA496019	Hs.201591		1.62	
	307113	Al183686		Eot outhors from commons, man arrangement	1.62	
50		N49476			1.62	
50		R87650	Hs.33439	ESTS; Weakly similar to IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.sapiens]	1.61	
	338220	AME15070	Hs.118342	Of ILE_EMS (ODOSOO).GET(OO) THE TO	1.61	
		AW515270 AA984133		20.0	1.61	
		R28628	Hs.203669		1.61	
55		AA490934		EST singleton (not in UniGene) with exon hit	1.61	
	313179	Al076101	Hs.131704	2010	1.61	
	326858			01120710 810007 105	1.61	
		AI823847	Hs.129986		1.61 1.61	
60		AA350125	Hs.187499		1.61	
UU		AW451654 AA452310	Hs.257482 Hs.26090	2010	1.61	
		A1636253	Hs.196511	2010, reduity direction to 1202 to 1 [directions]	1.61	
		Al620617	Hs.148565	20.	1.61	
	337780			CH22_EM:AC000097.GENSCAN.121-2	1.61	
65	327796				1.61	
		Al610791	11- 40000-	Pot outlines in function of the property with	1.61	
		AI378032	Hs.125892		1.61 1.61	
	303232	AA437414		EST duster (not in UniGene) with exon hit	1.61	

		AA397546	Hs.119151	•	1.61
	303481	AA336839		EST duster (not in UniGene) with exon hit	1.61
		AA548589	Hs.105846	ESTs	1.61
_	300327	A1908894	Hs245893	ESTs	1.6
5	323473	AA262442		EST cluster (not in UniGene)	1.6
	326154			CH.17_hs gi 5867170	1.6
	331920	AA446885	Hs.99087 -	ESTs; Moderately similar to ZINC FINGER PROTEIN 141 [H.sapiens]	1.6
	323827	AW406878		EST cluster (not in UniGene)	1.6
	322452	W56710	•	EST cluster (not in UniGene)	1.6
10	310597	Al739071	Hs.158515	ESTs	1.6
	307871	Al368665		EST singleton (not in UniGene) with exon hit	1.6
	322215	AF088005		EST duster (not in UniGene)	1.6
	318420	Al139857	Hs.143837	ESTs	1.6
	332217	H98987	Hs.102383	EST	1.6
15	324937	M79230	Hs.192398	ESTs	1.6
	320543	AF052176	Hs.158529	Homo sapiens clone 24457 mRNA sequence	1.6
	300674	AW467388		EST cluster (not in UniGene) with exon hit	1.6
	315193	Al241331	Hs.131765	ESTs	1.6
	319713	R24204		EST cluster (not in UniGene)	1.6
20	301210	A1379982	Hs.158944	ESTs	1.6
	309365	AW072861		EST singleton (not in UniGene) with exon hit	1.6
	321403	AW451454	Hs.247568	adenylate kinase 3	1.6
	321908	AA376936	Hs.20998		1.6
	303349	AA382661		EST cluster (not in UniGene) with exon hit	1.6
25	324338	AL138357	Hs.247514	ESTs	1.6
	310599	AW300144		EST cluster (not in UniGene)	1.6
	333193			CH22_FGENES.98_15	1.6
	336433			CH22_FGENES.825_12	1.6
	312097	Al352096	Hs.157169		1.6
30		AW204237		ESTs; Weakly similar to !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.sapiens]	
		Al361722	Hs.192410		1.59
		Al498991		EST singleton (not in UniGene) with exon hit	1.59
		AA017492	Hs.135655		1.59
25		AA902488	Hs.122952		1.59
35	326983	********		CH.21_hs gi 5867657	1.59
		AW205298	Hs.202372		1.59
	328397	A A 404004	U= 407077	CH.07_hs gi 5868397	1.59
		AA461084	Hs.187677		1.59 1.59
40		N91419	Hs.12028		1.59
40		Al292181	Hs.150036		1.59
		Al147545 Al928242	Hs.114172 Hs.144383		1.59
		AA731518	115.144505	EST cluster (not in UniGene) with exon hit	1.59
		AI026836	Hs.114689		1.59
45		F07366	113.114003	EST cluster (not in UniGene)	1.59
		AW152263	Hs.249243		1.59
		AA883238	11022-102-10	EST singleton (not in UniGene) with exon hit	1.58
	330123			CH.19_p2 gi[6671869	1.58
	327819			CH.05_hs gij5867968	1.58
50		Al478814	Hs.134603		1.58
		AI034094		tubulin; alpha; ubiquitous	1.58
		AA220235	Hs.246836		1.58
		Al690269	Hs.201345		1.58
		AA703319	Hs.120967		1.58
55		AW292247	Hs.255052		1.58
-	334893			CH22_FGENES.452_7	1.58
		AA398215		EST duster (not in UniGene)	1.58
	315889	AW271639	Hs.221744		1.58
	303702	AW500748		ESTs; Weakly similar to 73 kDA subunit of cleavage and polyadenylation	
60				specificity factor [H.sapiens]	1.57
	315086	AJ492660	Hs.170935		1.57
		AA156499	Hs.8454	protein kinase; cAMP-dependent; regulatory; type II; alpha	1.57
	335549			CH22_FGENES.576_10	1.57
	329532			CH.10_p2 gi 3983505	1.57
65	323140	AA180467		EST duster (not in UniGene)	1.57
		AI801098	Hs.151500	ESTs	1.57
	337896			CH22_EM:AC005500.GENSCAN.56-3	1.57
		AA319514	Hs.211093	ESTs	1.57
	324585	AI823969	Hs.132678	ESTs	1.57

	317151	AW298195	Hs.255735	ESTs	1.57
	308818	Al819700	Hs.208231	EST	1.57
	326547			CH.19_hs gi[5867307	1.57
_	318833	H06234	Hs.24888	ESTs	1.57
5	320488	R31386		EST cluster (not in UniGene)	1.57
	306929	Al124514		EST singleton (not in UniGene) with exon hit	1.57
	338083			CH22_EM:AC005500.GENSCAN.174-1	1.57
	316868	A1660898	Hs.195602	ESTs	1.57
10	310937	Al472880	Hs.170480	ESTs	1.57
10	328638			CH.07_hs gi 6004473	1.57
		A1651039	Hs.148559	ESTs	1.56
	327058			CH.21_hs gi[6531965	1.56
		Al653733	Hs.204079		1.56
		AF086529	•	EST cluster (not in UniGene)	1.56
15	314731	A1745498	Hs.204579		1.56
		H49619	Hs.127301		1.56
		A1934464		EST duster (not in UniGene) with exon hit	1.56
		AJ009849	Hs.199297	Homo sapiens GNAS1 gene encoding NESP55	1.56
00		AF156271		EST duster (not in UniGene)	1.56
20		AI052093	Hs.133132		1.56
		AL039604		EST duster (not in UniGene) with exon hit	1.56
		AA833858		EST duster (not in UniGene)	1.56
	328369			CH.07_hs gi[5868388	1.56
25	329415	******		CH.Y_hs gi 5868874	1.56
25		AW468839	Hs.257767	- ·	1.56
	338794			CH22_EM:AC005500.GENSCAN.528-1	1.56
		AA243481	Hs.127320	ESTs; Weakly similar to KIAA0346 [H.sapiens]	1.56
		F08434		EST cluster (not in UniGene)	1.56
20	334287	******		CH22_FGENES.369_17	1.56
30		AW024798	Hs.233374		1.55
		AA505833	Hs.162017		1.55
		AA682913	HS.24/1/9	ESTs; Weakly similar to KIAA0319 [H.sapiens]	1.55
		AA603092	11-040070	EST singleton (not in UniGene) with exon hit	1.55
35		AW502851	Hs.249978		1.55
33		AW501163	U= 04074	EST cluster (not in UniGene)	1.55 1.55
		H86709	Hs.21371	son of seventess (Drosophila) homolog 1	1.55
		AA761265	Hs.221281		1.55
		AA157392	Un 154014	EST cluster (not in UniGene) with exon hit	1.55
40		Al299137	Hs.154214		1.55
+0	325389	AA417078	Hs.193767	CH.12_hs gi 5866921	1.55
		AA331732	Hs.137224		1.55
		AA258033	113.13/224	EST cluster (not in UniGene) with exon hit	1.55
		AA744875	Hs.189413		1.55
45		AA973297	Hs.126101		1.55
13		AI827065	Hs.224877		1.55
		T26438	11322-077	EST singleton (not in UniGene) with exon hit	1.55
		AW160507		EST cluster (not in UniGene)	1.54
		AW138174	Hs.130651		1.54
50		AF086386	115.100001	EST cluster (not in UniGene)	1.54
-		AW411383	Hs.169688		1.54
	325303			CH.11_hs gi]5866908	1.54
		AI457663	Hs.128127		1.54
		AA582678		EST singleton (not in UniGene) with exon hit	1.54
55		AA861571		EST singleton (not in UniGene) with exon hit	1.54
-		AA401367	Hs.128647		1.54
		Al381515	Hs.158381		1.54
		AA533505	Hs,185844		1.54
		AA513406	Hs.152307		1.54
60		Z44354		guanine nucleotide binding protein (G protein); q polypeptide	1.54
- -	325043	W27919		Inositol polyphosphate-4-phosphatase; type I; 107kD	1.54
		Al376086	Hs.158759		1.54
		AA491600	Hs.161942		1.54
		A1923673	Hs.212827		1.54
65		AA641092	Hs.257339		1.54
		AF098363	2, 700	EST cluster (not in UniGene) with exon hit	1.54
	317158	Al459140	Hs.129109		1.54
	309536	AW151933		EST singleton (not in UniGene) with exon hit	1.54
•		AI146423	Hs.146709		1.53

	315674	AA651923	Hs.191850	ESTs	1.53
		N79341			1.53
		Al184510	Hs.143728		1.53
	330036				1.53
5		AA843868	Hs.190567		1.53
		AA972712	Hs.174818		1.53
		R51361	Hs.23423		1.53
		AA663591			1.53
10	337685				1.53
10	335290				1.53
		Al858667			1.53
		Al418246			1.53
		AW340374	HS.121033		1.53
15	335320				1.53
13	329841	41505074	H- árosso	– •,	1.53
		Al565071	Hs.159983		1.53
	332901	AA724659			1.53 1.53
		AI016387	Hs.184406		1.53
20		AW469180	Hs.170651		1.53
20		AA922236	Hs.221037		1.53
		AF038966			1.53
		Al248615	110.101010		1.53
		A1679968	Hs.152060		1.53
25		N27515	Hs.40296		1.53
		Al023175	Hs.167022		1.53
	325958				1.53
		AA664265	Hs.230213		1.53
		AW015667	Hs.119427	ESTs	1.52
30	314117	AA224368	Hs.185164	ESTs	1.52
	301646	AA313954		= + · ·································	1.52
	338752				1.52
	309314	AW009312			1.52
25	301445	Al208364	Hs.128233	ESTs; Weakly similar to REGULATOR OF CHROMOSOME	
35					1.52
		Al685263	Hs.201150		1.52
		AA635305	Hs.121574		1.52
		Al018150	Hs.148781		1.52 1.52
40	336205 325701				1.52
70		AW189460	Hs.208358	***** • • • • • • • • • • • • • • • • •	1.52
		AW407585	Hs.27769	==:=	1.52
		Al986221	110.21100		1.52
	328385				1.52
45		Al318545			1.52
	314591	AW103292	Hs.245328		1.52
	304484	AA432067	Hs.258373	ESTs	1.52
	304382	AA232873		EST singleton (not in UniGene) with exon hit	1.52
	304232	W52674		EST singleton (not in UniGene) with exon hit	1.52
50	309853	AW298169	Hs.57553		1.52
	312504	AW207346	Hs.143202	ESTs :	1.52
		N63406	Hs.258697		1.52
		AF015950			1.52
EE .		AI873046	Hs.258775		1.51
55		AA887293	11-004455		1.51
	301165	N85789	MS.224155	ESTs; Weakly similar to PTERIN-4-ALPHA-CARBINOLAMINE	1 61
	200612	Al932294	Ho 240004		1.51 1.51
			Ho 105554	ESTS; Weakly similar to SERINE/THREONINE-PROTEIN KINASE NRK2 [H.sapiens	
60		Al554212 Al458207	Hs.174181		າງ 1.51 1.51
00			Hs.186257		1.51
		AL043148 AW139500	Hs.116135		1.51
		AI022056	110.110100		1.51
	337976	-11004000	•		1.51
65		A1083982			1.51
		AI569399	Hs.174746		1.51
		AA531082	Hs.240049		1.51
		AW025248	Hs.202445		1.51
		AW135924	Hs.224883		1.51

	310954	AW449044	Hs.171298	ESTs	1.51
	312019	T77046	Hs.188750	ESTs	1.51
	334773			CH22_FGENES.430_5	1.51
	332043	AA490831	Hs.125056		1.51
5	322950	AA296219		EST duster (not in UniGene)	1.51
	337920			CH22_EM:AC005500.GENSCAN.67-3	1.51
	328993	•		CH.09_hs gi 5868536	1.51
	309245	Al972447		EST singleton (not in UniGene) with exon hit	1.51
	312172	Al222168	Hs.191168	ESTs	1.51
10	304039	T47349		EST singleton (not in UniGene) with exon hit	1.5
	301329	Al149653	Hs.190496	ESTs	1.5
	313376	Al949246	Hs.200381	ESTs	1.5
	324248	AW504918		EST cluster (not in UniGene)	1.5
	308771	Al809301		EST singleton (not in UniGene) with exon hit	1.5
15	334935			CH22_FGENES.464_3	1.5
	319764	AA019827		EST cluster (not in UniGene)	1.5
	318519	T27135		EST cluster (not in UniGene)	1.5
	332807			CH22_FGENES.7_9	1.5
	322310	AF086376		EST cluster (not in UniGene)	1.5
20	324557	AA489166	Hs.156933	ESTs	1.5
	332118	AA609585	Hs.162689	EST	1.5
	319539	R09027		EST cluster (not in UniGene)	1.5
.	313149	AW291092	Hs.201058	ESTs	1.5
	329722			CH.14_p2 gi 6065785	1.5
25	323514	AA861209		EST cluster (not in UniGene)	1.5
	308078	Al472621		EST singleton (not in UniGene) with exon hit	1.5
	337965			CH22_EM:AC005500.GENSCAN.100-10	1.5
	335905			CH22_FGENES.635_13	1.5

5

10

TABLE 14A shows the accession numbers for those primekeys lacking unigeneID's for Table 14. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	Pkey:		Unique Eos probeset identifier number					
	CAT nu	mber:	Gene cluster number					
	Accessi	on:	Genbank accession numbers					
15		······································						
	Pkey	CAT number	Accession					
		234514_1	BE261397 Z78343 BE176419 AA383657 N90640 AA334052 AW955761 BE536232 AA374087 AA584776					
20	321409	197898_1	N71838 AA282003 T54072 AA761419 H92966 AI831371 AI095435 AI690247 R99331 AW964110 AA975590 AA346128 H94196 C03864					
	322092	46678_1	AF085833 R69689 AW341677 AA923375 BE327566 AW630415 R69601 AW615339					
		212379_2	AW962489 H64300 AA329527					
		199797_1	AA284333 AW468119 AA284334 AA810992					
		36098_1	AB040928 T94673 Al289313 Al536039 Z44366 BE141499 D60116 D61488 D59945 AA419503 R28090 R72986 H03255					
25			AI189112 AI912312 AW511018 AI401349 AW470144 C14624 AI335797 Z40300 AI014456 D60269 D60115 T16722 AI37067 D60270					
	322139	46806_1	H53744 AF075088 H53797					
		552826_1	BE004271 Al248023 Al022157 H71999					
		441212_1	AA766346 AA809877 AA836116 AW469598 AW977404					
30		47002_1	AF088005 N51816 N51731					
		47070_1	AF086106 Al193589 AW665594 N71795 AA722627 AW665373 Al300251					
		286374 1	AW812795 AA419617 H87827 AW299775 AW382168 AW382133 BE171659 AW392392 BE171641 AA541393					
	313833	120893_1	AA766825 AA811180 AA085906 Al762946 AW977820					
		47376 1	AF086376 W77804 W72689 AA837735					
35		47386_1	AF086386 W77947 W72708					
		47434_1	AF086431 AA886756 AI557237					
		47467_1	AF086467 W81444 W81445					
	322345	47537_1	W95298 AF086529 Al912190 AW294159 Al458747 W94782					
		47545_1	AF086538 W95969 Al631911 W95835					
40		187612_1	AA330095 W25112 AA249401					
		43998 1	AL080280 T73124 H02689 AL080281					
	321781	1511778_1	D78667 D78871 C18258					
		280469_1	AA904776 AA405696 AA405962					
		635249_1	AW028820 Al219068					
45		497108_2	A1147202 W56755 W56710					
		1651920 1	N79341 N99082 N47551					
		159551_1	AA180467 AA449184 AA464831 AA505048					
		38916 1	T55958 T57205 AF147346 -					
		85114_1	AA011603 N58604 N58611					
50		22297_1	NM_016102 AF156271 AA781868 AW152318 AW770403 AA909463 AA482996 AA758672					
		39412 1	AF156548 AA639797 AI675267 AI825497 AI823355					
		311451_1	AA463262 AA463615 AW160405 AW407583					
		.3910.2	AW136181 AA581939 AK001221 AA694538 AA424043 Al016272 AA098960 AA884473 Al356180 BE391633 AA437086					
			Al277866 AA098827 AA992680 BE172624 AA424101 AA320776 AW962967 N77431 AW858960 AW858897 T85649					
55			AA357743 Al827817 Al905672					
	322601	577912_1	AI082395 W92924 BE048524 AW005302 AI084474 AI369330 AI827710 AW135506 AW298694					
		34330_1	AW160507 NM 013367 AF191338 AA384939 AI445790 AA730309 BE397003 BE267753 AI979163 N50386 AW583671					
	0	0.000	AW583608 BE074466 BE074479 BE074471 AW976283 AA604393 AW162122 W73648 AI823475 N75898 W73713					
-			AW470099 AW513236 AW025055 AW613115 AI923379 W58081 AW664525 AW196795 AI143619 AI565152 AA025406					
60			AA505846 AI685494 AA829964 N59156 N59163 R15442 AA826919 AI610221 AI200120 AA603279 AW150822 AI189513					
			AI807122 AI016368 AI335868 AW583389 AI193892 AI956157 AI628879 AW591589 AW583446 AI955406 AW148396					
			Al340255 AlB67942 AA748525 AA876991 Z38516 Al874002 Al869474 N63100 AA429094 AA082443					
	316055	409389_1	AW105663 AA693880 AW517398 Al768507 BE220851 AW978538 AA831489					
	323316	981458_1	BE219300 BE327455 AL134620 R36741 R17996					
65	300492	25768_1	AL031709 Al249061 AA907658 Al420444					

	323371	423880_2 117336_2 30923_11	AW303457 AA972713 AA724265 N45114 N51465 BE087338 Al083551 AL135118 BE395609 BE280998 BE254670 BE294951 BE564979 AW405364 AA069256 AA129837 Al559667 BE281405 AW410850 BE041153 Al254811 AW301340 Al613335 AW301411 Al609469 Al611607 Al611616 Al377623 Al335509 Al613544 BE043165 Al371663
5			Al340452 Al612066 AW072890 Al254558 Al349884 Al370095 Al613383 Al611946 Al613353 Al307414 Al318229 Al612685 AW305327 AW268924 Al370063 Al349292 BE049068 Al369098 AW274098 Al344845 AW075187 Al053401 Al345220 BE138515 Al613386 Al583302 AW301955 Al349661 Al307432 Al054168 Al223913 Al612081 Al348942 Al334539 Al309366 Al370098 Al252360 AW086316 AW268911 AW073482 Al379802 Al224284 Al053661 Al334538 Al309369 Al309688 Al310023 Al492709 Al335418 Al053999 Al366989 AW073478 Al247058 Al249584 Al305875 Al308585 AW071272 Al271487 Al340719
10		·	Al366995 Al223673 AW271066 Al611936 AW071296 Al270796 Al254385 Al251393 Al252562 AW268236 Al254858 AW071317 Al309102 Al609897 AW268971 Al583267 Al792484 AW075168 BE138443 Al254126 Al309822 Al310872 Al611953 Al251054 AW276658 Al335405 AW075039 Al311768 Al612028 AW271895 Al612005 Al312240 AW271082 Al371642 Al334879 Al310194 Al310772 Al345419 Al334675 Al223914 Al284707 Al284813 Al349140 Al254853 Al313094 Al310170 Al309499 Al312476 Al376484 Al335467 Al340802 Al309815 Al310168 Al611446 Al345824 BE327775 Al318545
15			HISTOTY ADDRESS AIST2476 AIST0404 AISSS407 AIS40002 AIS03015 AIST0100 AIGT1440 AIS45024 BES27775 AIS10545 F17185 AW614950
		792518_1	AW998989 Al613519
		697809_1 427238_1	Al347274 AW844024 AA731518 AA765714
		270098_1	BE395109 AW663898 AW237041 Al492154 BE046906 Al651285 Al983290 AW002590 Al201040 F32424 AA992272
20	000000	4707.4	AW271836
	309023	4737_1	AF180681 NM_015313 AA229509 AA225792 AA216413 Al888045 BE005205 AB002380 T55518 BE276097 AW380669 BE142836 AW370976 AA479384 R96425 Al680999 AA595138 H54582 Al022709 T55440 Al041769 AA861144 AW392028 AA479287 AA824634 Al638446 H54691 R96382 AA770352 Al640467 AW293491 AA779138 R28298 AA970562 C15590 R84455 AA020769 AL036394 H80566 BE548861 AA301207 AW959414 Al284253 AA043173 W52429 BE544571 R24852
25			Z42603 F13120 R24340 R24326 T75305 H70110 N56255 AA334210 F11453 AW947285 H80345 AA298992 AW380931 A1267175 Z45421 AW380981 W86113 AA663590 AA167577 BE566760 BE169166 AA449904 AA459205 N31126 W03564 N31208 AW993277 N44765 AW605275 D61449 W68572 AA258190 D60496 AW992964 U46277 H04097 AA370360 AW957211 AA159775 Al631243 H83367 H21671 D61077 AW392712 N21112 H98522 N45298 N83629 AI393509 AW022043
30			AA744886 Al580482 AA723286 Al422244 Al423984 D62804 Al088349 AA587890 Al144172 N33275 BE074397 H03399 D62578 Al056639 Al829918 AA579584 Al089460 Al350124 W68573 Al580828 H98897 Al570468 H83715 W86114 AA923123
50			D57446 AA043174 AW337721 Al266551 Al140017 AW022356 D79855 D79650 D79393 D60495 AA788666 AA693443
			AW516977 W60139 Al628156 AW473223 Al608892 AA159670 AW440366 Al421529 T50751 Al174374 AA912234 AA724248
			AW780400 AA907218 H80514 D57452 AA863419 AA552618 D29614 R44556 T16452 R44935 Z41132 D29188 H69692 Al250176 Al078860 AA370359 AW183108 H74200 AA258183 F10723 C00323 R86148 AA860570 AW130073 AL079946
35			AA410327 AA532614 AA234500 AI151507 AA410288 AW969839 AA483232 AI383200 AA236540 AI807672 H73441
		193878_1 392767_1	AA262442 AA768862 AA262443 AA827650 AA827652 AW629526 BE044585 AW974451 AA761439 AA648505 AA765803
		117013_1	AA081820 AA082191 AA079811
40	301239	457668_1	AA807558 AA827117 AW629567
40	301256	16720_1	NM_016603 AF251038 AI124624 AA776579 AW298470 AI304868 AW082724 AI348442 BE218336 N20641 AI018013 AW858832 AW978157 AA815187 AA932948 AF157316 AI444958 W00848 W02935 AI434933 N26335 AA428681 AW371059
			Al651612 AW134937 AW968911 AA488815 AL157523 W48766 AW936954 AW936941 AW579205 AW936886 AW936889
			N74541 AW936953 AW578421 AW604352 AW367088 AW849258 AW849453 AW371606 AI554921 W49785 H99814
45			AA805957 AA904606 AW206696 BE169229 AA333951 AA190704 AW936944 AA463219 AA430306 AW805704 N48503 BE222307 Al638612 BE550045 Al805304 Al690987 AA776841 H12690 AW183731 Al380760 Al636261 AA812641
			AW592656 Al686132 AA843424 H99220 AW084996 AW128879 Al800871 AA610135 AA191524 Al150076 Al474530
	000044	007400 4	AA748461 N29013 AA746372 N59606
		337193_1 247225_2	N75450 AA877636 AW137945 W05248 AA514763 AW972399 AI758397 AW195051 AW402931 BE393099
50		967739_1	AL036947 T93676 T85475
		197787_1	AA641735 AA281881 AA861209 AA934756 AA835887 AA641795 AA748822 AW295703
		466093_1 39838 1	AW467388 AA826954 AF168711 AA099732 BE019157 Al380212 BE298159 AA249097 AA305112 AW962349 AW962353 AW401801 BE292961
			Al439469 AA442919 Al630537 AA724473 Al814288 AW966815 Al376871 Al860202 Al683132 AA099733 AW627633
55	000004	000007 4	AI754022 BE206347 AW183349 AI378222 BE178926 AI473282 W52944 AW752469 AW966817
		209807_1 10774 1	AA301270 AA301379 AA301366 R85652 AA114024 AA296219 AA375304 AW963796 AW885952 AW020969 AA114025 Al804930 BE350971 Al765355
			AW317067 AW974763 H85930 AW172600 Al310231 AW612019 D62908 D62864 AA652738 Al674617 Al494064 AW138666
60	222057	29014_1	Al147620 Al147629 AW611793 Al668922 Al971005 Al864742 AA174171 AK001701 AA134337 AA356202 BE163251 AW875175 AW875181 AW875177 BE163389 AK000741 AA247755 AA120819
00	322337	23014_1	AW868040 AA309118 AW962348 AA471267 AW996843 AK001452 BE005344 BE617899 AA186588 AA120820 AW363311 AA648105 N71529 BE168417 AW673900 AI858160 AA134338 AA659697 N22162 AI335437 AI311237 AI343171 AI336661 AW268074 AW274348 AA935005 AW576295 AW262626 AW593153 AA730055 AA662650 AA782687 AW894855 AI933533
65		:	AW193002 AW899448 AW890142 AW812670 AA085664 AA334191 BE178085 BE180553 AA389680 AA984772 AA442527 W26560 BE384359 AA847210 AW304931 AI669606 AA085613 AW197240 AI632828 AA581646 AW129348 AI017643 AW089030 D20893 AI382855 AI557148 AW499979
		975669_1	W60827 AL079968 AL047234 AW504918 N55410 AL118584 AW839266
		977901_1 221757_1	AA317561 AI793000 AW235111 AI793178 AA767397 AI263113 AA719462
		- -	200

	315858 406384 1	AA737345 AA682286 AI799378
	301431 569736 1	R05385 Al061251
	324303 233842 1	AL118754 AA333202 H38001
	324330 300543 1	AA884766 AW974271 AA592975 AA447312
5	300815 41537_2	BE152396 BE152395 AA287515 BE001834 AA286678 AW406477
5		
	324349 1154015_1	AW501470 AW502931 AW499500
	323715 225129_1	AA322155 AA326396 AA326538
	309314 232733	AW009312
	323758 229624_1	AA833858 AW978090 AA327679 AA810436
10	309375 127_1	AF286598 AW075342 AB028994 AL043713 AW378914 AA340650 N57166 AW956914 R17961 AA336481 BE393734
		AW977867 AW294638 AA927857 AA961627 AW303969 AW894416 AA812119 AA912758 AA424355 AA490582 W30941
		AA476693 AA131029 AA127777 AL043714 AA496984 T51117 AA127722 AA594012 Al492876 N76483 AW119061 BE464926
	-	AW303419 AI972370 AI768172 AI826550 AI435432 AI379516 AA778421 AI276089 AA424521 N59361 AA723153 AA723176
		AJ867487 AA090677 AJ827221 AJ351027 W02732 AJ810729 AA142848 AJ082110 N59379 N29744 AJ283747 AJ148665
15		AW779845 AI382967 F34319 AI369934 AI282438 AW183449 AA863467 AA813469 AI092645 AI870701 AA863119
13	205021 255272 0	T65475 R07576 T17017 F08143 Z43546
	325031 266373_2	***************************************
	325045 1534945_1	T08845 Z43538 F06691
	324473 38795_1	BE560824 BE513941 AW238907 AA580852 AW501176 BE241846 AW501163 AW751433 AW501340 BE241715 AI910774
-00	323827 235506_1	AW406878 AW966560 AW966151 AW966496 AA336174 AA335376 AA335537
20	302270 1734192_1	R56151 W91936
	301618 10967_5	T52761 T52760
	301646 42154_1	AJ277841 Al630669 Al804370 Z41939 AW751251 AA299456 Z44739 AW860471 Z30158 AW105391 H56997 W84688
	_	AA491201 W84636 AA706815 AI131055 AA483636 AI005075 AW340034 AI332372 AW118195 AI338932 AI191968
		AA693932 Al189982 Al193225 AA884163 AA594562 W37747 AA249754 AA746131 Al916540 Al832188 AW946555
25		AA833838 Z40564 AA861563 F01447 AA867937 Al933559 AW973250 AA566018 AA313954
	323923 249295 1	AA354146 Al184230 AA643525
	324580 328264 1	AA492588 AA492498 AA492571
	316774 463723 1	AA814859 AA814857 Al582623
	_	
30	309577 6483_6	AW902251 AW168753
30	302345 29533_1	X12830 NM_000565 AW503691 X58298 S72848 AA193347 AW503481 AW177946 AW178192 AW178188 AA285233
		AA410577 AA193465 AW177939 AW365459 BE221693
	302358 1064753_1	AW207734 D60164 D81150 D81078 D61356 AW996804
	324614 215437_1	AW503101 AA309184 N56323 R70998
	324661 385257_1	AW504161 AW503601 AW505509
35	324685 41003_1	AF226667 AA207032 AA100804 AA121287 AA488316 AI808218 AW419048 AI911097 AW132123 AA502311 AW089948
	_	AA100952 Al075431 AW083432 Al990554 BE466029 F28643 AF086422 W79581 AW439007 F37179 W79780 AW439035
		AA731381 AW750380 AA251012 AW589846 AA730238 AA329792 AW087255 AA220982 AA082469 AA877260 AA232380
		BE298910
	324692 351987_1	AA557952 AA677593 AA618150
40	316893 473541_1	AW979189 AA837332 AA856946 AA876935
40	303027 21796_1	AF111178 NM_005708 AF105267 AW590040 AI979280 AA001322 BE146329 AA702430 AA702429 AA694221 AI206348
	303027 21780_1	A1206285 AW770197 AA923032 A1379586 AA701165 AW594643 AA001909 AW002368
	201715 000005 0	AIZ00203 AW770197 AA923032 AI379360 AA701103 AW3594043 AA001909 AW002000 AI739168 AA426249 AI199636 AW505198 AW977291 AA824583 AA883419 AA724079 AI015524 AI377728 AW293682
	324715 290035_2	- · · · · · · · · · · · · · · · · · · ·
AE		Al928140 AA731438 Al092404 Al085630 AA731340
45	324771 385085_1	AA631739 AA768584 AW134477
	324783 389615_1	AA640770 Al683112 AA913009
	303114 37417_1	AF090948 Al064898 Al111182
	303124 21112_1	AB018257 BE148640 AA081832 AK001915 AF150217 AF161350 Al219174 AW074664 D60040 AA346065 H28750
		AW151783 BE613360 BE612628 BE502031 AW183790 AA992580 AA505815 Al310432 Al678015 AW592679 AA879181
50		AA806708 AI744110 H24681 C16064 D62900 AI285033 AA346064 AI865123 AW467798 BE221231 AL120676 N89877
_		Al928370 Al358387 AA748486 AV647478 AV647460 AA312313 Al279340 AW505099
	302552 82290_1	AA005122 H49792
	301918 316229 1	AA476777 T86049
	303232 20474_1	AA437414 AA131479 AA086182 AB037775 AW161063 AW514393 AA332331 AW136197 BE150789 AA425533 AA249605
55	000202 20414_1	N88308 Al016201 BE004662 AA291027 R57587 AA424277 AA476391 W07532 T97036 AA218898 AW162629 R57770
33		W01278 W90204 W90156 AL119197 R84513 AA280103 AA334994 AW965504 AA460868 AA447470 AW138594 W38898
	•	W90028 A1078353 W90078 AA699696 N35523 AA704225 AA035059 AW134892 AA115140 A1142854 H90084 AA826342
		AA460694 N46339 AA425344 N56953 AA035569 AI761083 AI658696 AI524818 AI338965 AW069249 AW299871 BE464061
		A1189720 AW340682 A1423380 Al275122 H17532 N80735 AA826343 A1039694 BE328398 A1192947 AW271286 A1623122
60		AI922902 AW293087 N22141 AA730657 AW316610 N26473 F06663 Z43610 H14783 R59761 H11540 AI265915 AI681773
		AI091748 BE220636 AW841861 AI702181 AI468447 AA907544 AI273941 AW244034 R37769 AA446663 T96929 BE045884
		AA476341 H89994 H29043 AW051211 N49522 AA306977
	302686 33570_1	AK000738 AA347452 AW961713 H70832 AI750643 AA362887 AW955588 W44974 AA279599 AW298762 AA452666
		AA443355 Al337273 AA446931 Al752977 AA661554 W42674 Al292172 R41163 AA621381 Al244157
65	302697 43219_1	AJ001409 AJ001410
	309917 57485_2	AW340014 AW866993 AV651649
	303347 192210_1	AA258033 AA459485
	303347 192210_1	AA382661 AW958642 AA259088
	310599 690880_1	AW300144 Al338491 Al798381 BE220076

		•
	303388 969232_1	AL039604 AL039497
	302761 45074_1	AW250553 L07876 Z36843 R30693 Al190097 AW965317
	318455 606341_1	Al148763 Al903763 Al903753 Al903762 Al903800 Al903801
~	317850 363835_1	AI681545 AI951714 AI570397 AW873588 AA836396 AI359986 AI499790 AA773477 AI951615 T07547 AW304709 AF114041
5		BE176629 Z44580 T30422 T32690 AW953065 H10602
	303431 32082_1	NM_000539 AA019013 AA019367 AA056154 H38735 AA057003 AA021051 H38102 AA015774 AA059291 AA019439 H84843
		H83375 AA019914 AA017288 R84449 W26519 H38258 AA018736 H84147 AA018577 AA059353 U49742 H38767 AA318341
		AA317553 H86646 H91989 AA317398 AA317378 W29024 W23034 T27877 AW950059 AA017195 R84262 AA057177
10		H89941 AA019904 H84662 AA015775 AA019368 AA020976 H37900 C20733 H38682 H85197 AA018578 AA017252
10		AA019440 AA059059 H38651 H84148 AA018560 W25754 C20752 AA317915 AW952115 AA317369 AA019845 R85402
		AA019492 AA017196 AA056093 AA056094 AA058836 AA056155 W25957 W23027 AA056159 W23043 W21890 W28951
	04040= 40=0040 4	AA317978 W26459 AA317265
	319127 1653640_1	N49476 Z45911 R21061
15	303480 232749_1	AA331906 AA332484 AK001952 AA336839 AW249271 BE247287 AF182002 BE613472 AW962673 AA332235 AW849937 AW849814 H49893
13	303481 31534_1	AAUT1952 AASS0639 AW249271 BE247207 AF162002 BE613472 AW962073 AASS2235 AW649937 AW649614 F48995 AAA77148 AW968944 AF182003 AW007897 BE246145 W76100 AI480141 AW410205 AA609339 AI209111 AW000979
	•	AA330280 AW961554 W72865 H49894 AA514317 AA620407 AA504522 AW472833 AA716609 AW129282 AA347351
		AASSOZED AVISEISSA W72883 FASBSA AASTASTY AAGZOUV AASONIZZ AVIA 2603 AAT 10003 AVI 123202 AASTAST AA628378 AW589860 Al636696 AA464632 AA464533 AW874189 AA757076 AA479654 AW517910 AW292357 AW872638
		AW262288 AN910666 AW513749 AW238771 AA215797 BE387073
20	303487 20890_1	BE143533 AW850432 AK000042 AA333666 AA385314 AW966616 AW793068 AW793414 AA361103 AW390841 AA040095
20	303-07 20030_1	AW385058 AW799162 Al383115 Al990745 Al653703 BE503693 AW150758 Al949919 AW190450 AW512348 Al625970
		AW501057 N52954 Al281378 Al401710 Al648409 AW002659 Al687639 Al093943 R33960 AA040062 Al926267 Al240425
		AI520911 AI093428 R52943
	303488 36085 1	AI040372 AB040915 W40569 BE158910 BE158914 D63226 AW025860 AW583088 AA334307 AA210942 AW753212
25		AW805322 AA362635 BE158911 AW891225 AW994862 AA805451 R28541 AA229347 N48266 AI377788 R28682 R36122
		AA811941 Al240742 Al632001 T99965 W01976 AW891205 AW891177 T97433 C15571 AA346850 AA504293 W07500
		AI694503 AA489216 AA327725 AW959917 AA694146 N68514 AI076285 AW016246 T07783 AA642400 AA716133 AA805332
		R00312 AA705021 AW498605 AW891723 AW891906 AA808025 N29039 N74897 W60393 AA810184 Al627460 AW057516
		AA807436 AA760966 At359295 N78642 N20662 AA830300 W81705 AA832258 AW891718 Al811796 AW515523 Z41735
30		AA449978 AW891714 AI684539 AW891896 AW071701 AI890916 AI924994 AI039743 AA888524 AA244214 AI015736
		Al270105 Al865077
	303494 236389_1	F30712 F35665 AW263888 Al904014 Al904018 AA336927 AA336502
	319142 164820_1	H08370 Z46168 F07366 AA193168 AA193138
35	302868 12593_1	AK000290 Al476034 AA465309 BE148761 AW303607 AW958665 AW469635 Al819365 Al243857 AW469326 AA157110
<i>3</i> 3		AA278626 AA496257 AA306656 F29732 AA831859 AA312210 AA564476 AA579065 AA769522 AA740386 Al205635
	040540 4005005 4	AA491643 AA810400 AA417708 Al567332 AA157392 N53817 AA374229
	318518 1205335_1	R68545 T27119 R25687 AW750672 H13364 T27135 R61679 AA746905
	318519 434741_1 304168 7249410	H77679
40	302948 21445_1	AB038995 NM_016530 AK001111 AA465635 AW968716 U66624 AA885459 AA703019 Al040266 Al018689 Al692886
-10	002040 21440_1	Al125372 Al376796 Al192040 N58161 AL133607 AW503673 AW505479 AA362265 AJ404671
	319250 244351 1	F11623 H17552 AA347728
	318644 17700_1	BE311816 AK000916 AW868037 AW868039 AF228527 AI752482 AW868041 AA077049 AI201537 W55873 AA206019
		AA077918 AW968729 AI978828 AW139620 AI093053 AW204025 AI418805 AA598926 AA586345 AA045669 BE314455
45		AA045668
	318674 204968_1	W01166 AW996900 BE184300 Z44887 T34535 R51495 AW886575 AA295490 AA295162 AA295163 AW937125 T56951
	304232 20640_2	BE386106 W52674
	303685 8088_1	AW500106 BE241915 AW503971 NM_016542 AB040057 AA313812 AK000556 W16504 Al822088 AA259107 AA191319
~ 0		BE085957 AA309584 BE122687 AW952435 T84469 BE088194 BE088132 AA328562 BE092674 AA263102 T39634
50		AW992380 R79391 R24392 H03060 AW675066 Al299952 AW020325 D25953 N75199 AA361425 AW612302 AW236333
		AW673897 AW953686 N22323 AA649166 AI377099 H03061 AI660072 AW276405 AA809779 AI803430 AW297484
		AW510384 AA814816 AA371522 D63035 AA953567 R79392 R24282 AA876831 AW297542 AI699023 AA992652 AI041436
	318704 799152_1	Al631602 AW589676 Z28684 Z24981
55	318730 275116_1	Z32887 BE349923 AA398215 AA399231
23	303714 1155758_1	AW501336 AW501337
	304387 183612_1	AA236027 BE003275 AA195509 BE394661 AV660757 AA489161 BE165972 AW503705 AA262785 AF123320 Z78357 NM_014171 AF161488
	304398 10169_1	AA189309 BE384061 AV000797 AA489161 BE103972 AW303709 AA202703 AF123320 276337 NW_014177 AF101400 AA248971 BE568575 AA461410 AA165108 AI637731 H75454 AA372934 AW339334 BE568754 BE564697 BE567299
		A/240971 BE508575 A/461410 AK105108 A/057751 H75454 A/C572554 AV1055554 BE506754 BE504057 BE507255 A/681606 BE537269 AW197204 AA290890 A/189393 AW292463 AW470227 F27399 AW611942 BE566888 AW301701
60		AIG575761 AIG28429 AA164711 AI797753 AIG56879 AI912690 AIG75277 AIG95099 AI094095 AW014158 BE091059 AI201748
OO		AW236961 AI038003 AI083606 AA401606 AI079405 AI073516 AI655537 AA401475 AI814532 AI079862 AI093789 AI422084
		AV230301 AIGS3003 AIGS3006 AA401000 AIG73403 AIG73516 AIG5537 AA401473 AIG14522 AIG73002 AIG83733 AA223044 AIG216476 AIG92760 AA926998 AA781782 Z25198 AIG86377 AI185511 AI185539 Z28843 AI223792 AIG78563 AA706253
		AI23798 AI921885 H75455 AW025269 AI224100 AI083611 AI225057 AW196334 AI572254 AA761628 AI472801 AA283784
	303751 468554 1	AA830149 AW978407 M85983 AW503637
65	319401 1323199_1	W00973 N56457 AW992226 T84921 R01342
	319402 1003489_1	R86913 R86901 H25352 R01370 H43764 AW044451 W21298
	318807 1536467_1	F08434 Z42573 H28810
	319478 765461_1	Al524124 R06841 R06842
	318872 1534581_1	Z43108 F06295 R13085
	_	

	•	·
	318885 94880_2	AA742999 Z43272 AA345258 AW956677 AA031942
	303841 79133_1	W19657 BE616760 BE259848 BE382680 BE615587 Al934464 AA322745 T07155 AW961174 AA307302 Z41888 AA621992
	000000 4777400 4	AA188400 AW770608 Al147458 Al148408 Al696291 AA972591
5	303889 1777183_1 319539 63198_1	T19204 T36109 T36107
J	318905 1536408_1	R09027 AA344892 AA329574 AW955648 AW978708 Al567804 Al378935 AW014657 Al804134 R08922 N92947 BE546788 F08365 Z43395 R54298
	320187 396254 1	T99949 AA654769 AA664550 AW975264
	318996 65715_1	Z44266 H06384 AV655948
	319635 163534_1	R17531 AW960899 AA338366 AW673294 BE047729 BE047722 AA330746 AW841797 H05030 Al142105 R12654
10	319699 747196_1	Al458682 H24240 R14537 R18426 AW867082
10	319713 1699356_1	R24204 R15712 T84695
	319761 75324 2	AW630974 BE005208 R84237 AA724997 AA334867 AW955777 R18816
	319764 88596_1	AA019827 R18947 H46852
	319808 7069_3	T58960 AA609180 AA621130 Al927236 AA431075
15	321040 193331_1	AA261830 AW967855 H26953 AA262478
	320409 43709_1	AA226869 AA296516 AW959753 AA186390 AL359619 AA356195 AA148427 R22748 Al033624 BE548853 H95327
		AW579751 BE561649 AA397533 BE617136 AA236444 T89946 AA247450 N55777 W38725 AI743846 AI808406 AA922229
		AI051464 W04713 R11251 W19656 AI042319 AA489276 AI224533 H95274 AW269958 T89311 AI890088 AI862754
20		AI830968 AI669336 AI589780 AA534557 AW273839 AI338155 AI126632 N83542 BE046048 AA807028 AA848107
20		AW167978 AA976930 AA148428 Al289304 Al524262 Al625961 AA773469 Al222288 Al280054 Al242371 AA227222
		AA973329 AA296517 AA829436 AA234526 AI149769 AI567865 AA936939 AI590681 AW469308 AI689531 AA486419 AI422051 AI057252 AA626941 AI475352 AW247913 AI222370 AA670122 AW198034 AA486418 AI363794 AA380739
	319881 1585983_1	A1422051 A1057252 AA626941 A1475352 AW247913 A1222370 AA670122 AW 19005 <u>4</u> AA466416 A1563794 AA560739 H51299 H44619 H46391 R86024 H51892 T72744
	320488 368456_1	AI817336 R32883 AA595590 AI743065 R31386
25	321121 1545647 1	W23285 H42714 F25381 F37215
20	321205 81249_1	AA002047 N72537 H54142 H81580
	321253 375160 1	AA610649 Al699484 H59558
	314043 155125 1	AA827082 AA732246 AA167611 AA830741
	320630 17685_2	AA199847 AA410224 R53323 AW936567 AW936569 AW936568 AW936571
30	313435 443527_1	AA769123 AA831715 AW977666 W92553
	313443 82292_1	AA005125 W95019 W93335 AA249037
	313472 82811_1	AA007374 AA007466 AI816886
	321348 41762_1	Z49979 D61703 U30168
35	314138 179960_1	AA740616 AA654854 AA229923
33	320712 57156_2	R66867 R65678 R82673 W73128 R83101 AW968556 AJ238555 AW968731 AJ002574 AA459446 H70260 AW977557 AA767351 AW268572 AA810719 Al698677
	321383 41924_1	Al300460 AA907450 AA649224 T07415 Al536896 BE018515 Al279865 BE047421
	312996 187327_1	AW368634 AI702169 AI245179 AW368646 BE545574 AA249018 AW368633 N27553
	306513	AA989230
40	306537	AA991705
	306557	AA994530
	306598	Al000320
	306620	A1000929
45	306700	A1022056
45	308078	Al472621
	306813 306830	AI066544 AI075803
	306855	AI083982
	329722 c14_p2	AUGGGE
50	329728 c14_p2	
	306890	A1092235
	308100	Al475949
	308147	Al498991
	306929	Al124514
55	308352	Al610791
	308383	Al624497
	308521	A1689808
	308561 308617	AI701559 AI738720
60	308771	A1809301
00	308828	A1824829
	308896	A1858667
	303019 41850_1	AF098363 AF098365
_	303084 44211_1	AF174008 AF174027 AF174106
65	305092 AA642912	
	305169	AA663131
	305177	AA663591
	305235	AA670480 .
	305413	AA724659

	305849	AA861571
	305854	AA862733
	307113	Al183686
	307130	Al185234
5	305937	AA883238
_	305977	AA887293
	307451	Al248615
	307513	Al274307
	307848	Al364186
10	307871	Al368665
	307881	AI370434
	307932	AJ230822
	307944	AI418246
	307954	Al419692
15	307965	Al421641
	309245	A1972447
	309271	Al986221
	309365	AW072861
	309372	AW074330
20	309435	AW090537
	309506	AW137700
	309536	AW151933
	309709	AW242630
	325417 c12_hs	•
25	325450 c12_hs	
	325452 c12_hs	•
	309815	AW292760
	309839	AW296076
	309849	AW297444
30	309906	AW339340
	302705 31765_1	U09060 U09061
	304037 ~	T26438
	304039	T47349
~~	304236	W93278
35	304257	AA053294
	304382	AA232873
•	304405	AA282572
	304561	AA489792
40	304569	AA490934
40	304787	AA582678
	304921	AA603092
	327819 c_5_hs	1 104 1000
	304968	AA614308
15	306382	AA968967
45	331263 47479_1	AW780192 AA015718 W02571
	332252 1663967 1	N63882 T91174

5

TABLE 14B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 14. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey: Ref: Strand: Nt position:	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.
----	--	---

15	Pkey	Ref	Strand	Nt_position
	332807	Dunham, I. et.al.	Plus	297686-297808
		Dunham, I. et.al.	Plus	298277-298360
		Dunham, I. et.al.	Plus	309688-310561
		Dunham, I. et.al.	Pius	1841954-1842090
20		Dunham, I. et.al.	Plus	3574317-3574413
		Dunham, I. et.al.	Plus	8298994-8299169
		Dunham, I. et.al.	Plus	9196549-9196681
		Dunham, I. et.al.	Plus	9686941-9687077
		Dunham, I. et.al.	Plus	9792201-9792374
25		Dunham, I. et.al.	Plus	10529221-10529854
		Dunham, I. et.al.	Plus	13908356-13908467
		Dunham, I. et.al.	Plus	15778859-15779026
		Dunham, I. et.al.	Plus	16235169-16235328
		Dunham, I. et.al.	Plus	19302753-19302881
30		Dunham, I. et.al.	Plus	20108247-20108373
		Dunham, I. et.al.	Plus	21491292-21491457
	335320	Dunham, I. et.al.	Plus	22542132-22542246
		Dunham, I. et.al.	Plus	24935021-24935655
	335586	Dunham, I. et.al.	Plus	24990333-24990497
35		Dunham, i. et.al.	Plus	25044923-25045157
	336036	Dunham, I. et.al.	Plus	29019796-29019877
	336123	Dunham, I. et.al.	Plus	30051089-30051186
	336268	Dunham, I. et.al.	Plus	31997555-31998040
40	337173	Dunham, I. et.al.	Plus	23624127-23624224
40	337460	Dunham, I. et.ai.	Plus	32536159-32536395
	337685	Dunham, I. et.al.	Plus	3547161-3547245
	337736	Dunham, I. et.al.	Pius	3850500-3850643
	337780	Dunham, I. et.al.	Plus	4113793-4113990
		Dunham, I. et.al.	Plus	7034267-7034392
45		Dunham, I. et.al.	Plus	7166011-7166119
		Dunham, I. et.al.	Plus	8072708-8072827
		Dunham, I. et.al.	Plus	10391398-10391600
		Dunham, I. et.al.	Plus	12205719-12205875
50		Dunham, I. et.al.	Plus	12800037-12800181
30		Dunham, I. et.ai.	Pius	19685043-19685354
		Dunham, I. et.al.	Plus	21221871-21221953
		Dunham, I. et.al.	Plus	27114697-27114763
		Dunham, I. et.al.	Plus	28795375-28795551
55		Dunham, I. et.al.	Plus	30760793-30760968
33		Dunham, I. et.al.	Minus	1390386-1390296
		Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	2035790-2035681 3832993-3832494
		Dunham, I. et.al.		7286177-7286073
		•	Minus	
60		Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	8523830-8523671 8552629-8552330
JU		Dunham, I. et.al.		13294116-13293871
		Dunham, I. et al.	Minus Minus	13946021-13945781
		Dunham, I. et.al.	Minus	14432191-14432132
		Dunham, I. et.al.	Minus	19463909-19463815
65		Dunham, I. et.al.	Minus	21325792-21325667
5 5		Dunham, L. et.al.	Minus	21952922-21952826

	335288	Dunham, I. et.al.	Minus	22304275-22303770
	335290	Dunham, I. et.al.	Minus	22309950-22309891
	335549		Minus	24666203-24666128
	335862		Minus	26690300-26690125
5	335864		Minus	26694537-26694382
				26988888-26988719
	335905		Minus	
	336205	•	Minus	30477456-30477311
	336276	Dunham, I. et.al.	Minus	32093320-32093181
10	336433		Minus	34067540-34067425
10	336605	Dunham, I. et.al.	Minus	15616509-15616358
	336616	Dunham, I. et.al.	Minus	26021027-26020848
	336679	Dunham, I. et.al.	Minus	2035790-2035681
	337043	Dunham, I. et.al.	Minus	17407330-17407251
	337272	Dunham, I. et.al.	Minus	28241476-28241307
15	337357	Dunham, I. et.al.	Minus	30906179-30906109
	337393	Dunham, I. et.al.	Minus	31471747-31471569
	337497	Dunham, I. et.al.	Minus	33371317-33371258
	337646	Dunham, I. et.al.	Minus	2648689-2648632
	337920	Dunham, I. et.al.	Minus	6051648-6051510
20		Dunham, I. et.al.	Minus	9318438-9318301
20				
	338220		Minus	14166440-14166104
	338752	Dunham, I. et.al.	Minus	26421374-26421135
	338763	- ·	Minus	26628148-26628009
~-	338983		Minus	29908865-29908702
25	339209	Dunham, I. et.al.	Minus	32492953-32492593
	325240	5866848	Minus	32301-32650
	329532	3983505	Pius	42937-43014
	329522	3983507	Minus	35265-35458
	329519	3983510	Plus	18407-18597
30	329511	3983514	Plus	20965-21325
	325326	5866875	Plus	47726-48024
	325303	5866908	Minus	73556-73630
	325389		Plus	239672-239759
	325417		Minus	110635-110745
35	325450		Minus	435379-435552
	325452	5866941	Minus	704103-704202
	325498		Plus	173372-173930
	325587	6682462	Plus	126724-126967
	325602	5866994	Plus	79122-79251
40				72936-73046
40	325701	5867028	Minus	63634-63873
	325780	6381953	Plus	
	329722	6065785	Minus	112713-112992
	329728		Minus	207544-207741
4	329666		Plus	98307-98446
45	329815		Minus	68431-68720
	329841	6672062	Minus	40181-40331
	325824	5867048	Minus	42450-42833
	325866	5867076	Minus	94358-94628
	325902	5867101	Minus	127729-127842
50	325958	5867142	Pius	53437-53550
	326014	5867160	Minus	10358-10447
	329941	6165199	Minus	34319-34411
	330002	6623963	Plus	46097-46158
	326154		Minus	7103-7179
55		5867245	Plus	171799-171896
		5867269	Plus	75250-75903
		6042048	Plus	117120-117216
		5867307	Minus	623677-623870
	326495		Pius	11843-11930
60		5867435		13038-13111
UU			Minus	
	320505	5867435	Minus	8818-8949
	326506	5867435	Minus	9368-9509
		5867441	Minus	303000-303122
~~	326508		Plus	78904-79112
65		6671864	Minus	127553-127656
	330123	6671869	Minus	35311-35406
		6552462	Minus	69337-69670
		5867657	Minus	16023-16581
	327014	5867664	Plus	1017630-1017788

	326930	6456782	Plus	606950-607705
	326920	V	Minus	42425-42519
	327058		Plus	2384268-2384835
	327061	6531965	Minus	3486389-3486673
5 .	327075	6531965	Plus	4041318-4041431
J.	327120		Minus	6-1088
	330126		Plus	82458-82623
	327157	5866841	Minus	4408-4746
		5867442	Plus	84317-84531
10	327192	****	Minus	194652-194764
10	327288	5867481	Pius	48583-48773
		5867772	Plus	145549-145708
	327489	*****	Minus	57796-58015
	327526		Minus	97010-97123
15		5867818	Plus	68767-69126
15		5867839	Plus	141736-141900
		5867949	Plus	93721-94421
		5867968	Minus	92202-92717
		5867982	Pius	85267-85405
20	330260	****	Plus	45203-45269
20	330282		Plus	3982-4114
		5868008	Plus	72807-72865
		5868031	Pius	153782-153850
		5868077	Pius	21082-21165
25	328227	5868105	Minus	21082-21242
23	327871	5868131	Minus	88889-89221
	328018	******	Minus	542547-543133
		5868246	Minus	120666-120836
		5868290	Plus	138639-138722
30		5868316	Minus	80771-80923
20	328291	5868363	Minus	144244-144434
	328329	5868375	Plus	191709-192239
_	328369	5868388	Plus	75371-75583
		5868395	Plus	369952-370155
35		5868397	Plus	344967-345063
	328412		Plus	86427-86519
		5868485	Plus	3814-4243
	328656		Plus	792616-792729
	328638	6004473	Plus	294618-294903
40		5868514	Plus	23625-24468
-	328960	6456775	Plus	38547-38837
	330320	5932415	Minus	54458-54697
	328993	5868536	Plus	49160-50084
	329081	5868602	Plus	93368-93510
45	329089	5868614	Plus'	25805-26923
	329109	5868626	Plus	102168-102273
	329192	5868716	Plus	166936-167020
		5868726	Minus	71408-71707
		5868728	Plus	27422-27664
50	329246	5868732	Minus	250541-250792
-		5868874	Plus	1011438-1011818
		5868887	Plus	51342-51593

TABLE 15: 169 GENES WITH SEQUENCE INFORMATION DEPICTED IN TABLE 16

Table 15 depicts UnigeneID, UnigeneTitle, Primekey, Predicted Cellular Localization, and Exemplar Accession for all of the sequences in Table 16. The information in Table 15 is linked by EosCode to Table 16.

Unique Eos probeset identifier number

Pkey: ExAccn: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number 10 Unigene Title: Unigene gene title Internal Eos name EosCode:

5

Predicted cellular localization of gene product Localization:

15	Pkey	ExAccn	UnigenelD	Unigene Title	EosCode	Localization
	100394	D84276	Hs.66052	CD38 antigen (p45)	PBC1	plasma membrane
	100452	D87742	Hs.241552	KIAA0268 protein	PAB7	not determined
	101249	L33881	Hs.1904	protein kinase C, lota	OAA1	cytoplasmic
20	101485	M24736		selectin E (endothelial adhesion molecul	ACC5	plasma membrane -
	101514	M28214	Hs.123072	RAB3B, member RAS oncogene family	PFJ2	cytoplasmic
	101851	M94250	Hs.82045	midkine (neurite growth-promoting factor	LBH9	secreted
	102398	U42359		gb:Human N33 protein form 1 (N33) gene,	PDG3	
	102522	U53347	Hs.183556	solute carrier family 1 (neutral amino a	PFJ4	plasma membrane
25	102669	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	LEM9	cytoplasmic
	103119	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	LBG2	plasma membrane
	103709	AA037316	Hs.13804	hypothetical protein d. 1462 O23.2	PDO6	
		AA402971		kallikrein 11	PBA6	secreted
	104144	AA447439	Hs.183390	hypothetical protein FLJ13590	PDM3	
30		AA011176		Homo sapiens beta-1 adrenergic receptor		plasma membrane
		AA236476		transmembrane protein with EGF-like and		plasma membrane
			Hs.256301		PDO8	
		AA456135		ESTs	PAA4	plasma membrane
0.5		AA609723	Hs.30652	KIAA1344 protein	PAA3	not determined
35		D51095		DKFZP586E1621 protein	PDG8	
		AA054237		ESTs	PBF1	plasma membrane
				ESTs, Weakly similar to Z223_HUMAN ZI		PDG7
				hypothetical protein FLJ13782	BCU4	not determined
40		H04649	Hs.20843	Homo sapiens cDNA FLJ11245 fis, clone I		PDG4
40		H18836	Hs.31608	hypothetical protein FLJ20041	PAV9	plasma membrane
		T17185	Hs.83883	transmembrane, prostate androgen induce		CHA1 not determined
		T23855		KIAA1028 protein	PDO3	-l
		AA236545		cadherin-like protein VR20	PFJ6 BCY2	plasma membrane mitochondrial
45		AA250737	Hs.72472	ESTs	PDV3	secreted
43		AA599463	Un nonno	hypothetical protein MGC2648 ESTs	OAB6	Secreted
		AA609219			PDT9	ER .
		N41002 N51919	Hs.45107	ATPase, Ca++ transporting, type 2C, mem		PAJS not determined
		N94303	Hs.55028		PDM8	1 ADS NOT determined
50		N95796		Homo sapiens prostein mRNA, complete of	vie Vie	-PAB2 plasma membrane
50		R45175	Hs.117183		PBF8	1 ADE Plastice (Hellandia)
		AA398246	Hs.97594		PDG5	
		AA419011	110.51354	prostate androgen-regulated transcript 1	PDV5	
		AA428062		ESTs; protease inhibitor 15 (PI15)	BCU7	vesicular
55			Hs.98732			PAZ1 not determined
55				alpha-methylacyl-CoA racemase	PDO1	
				ESTs, Weakly similar to ALU1_HUMAN A		PAA2 plasma membrane
		N62096		ESTs, Weakly similar to JC7328 amino ac		plasma membrane
		AA128075		transmembrane, prostate androgen induce		PDY4
60		Al167942	Hs.61635	six transmembrane epithelial antigen of	PAA5	plasma membrane
•		R38438		solute carrier family 15 (H+/peptide tra	PDO5	plasma membrane
			Hs.162859		PAA6	not determined
				secreted frizzled-related protein 4	BCX2	secreted
	129109	AA491295	Hs.108708	calcium/calmodulin-dependent protein kin		
65		W26769	Hs.109201	CGI-86 protein	PAV6	vesicular
		AA621604		spondin 2, extracellular matrix protein	CJA5	not determined
	,_			-t		

	129404	AA172056		ESTs	PAB4	
		R73640	Hs.11260	hypothetical protein FLJ11264	PAJ3	secreted
		AA128997	Hs.18953	phosphodiesterase 9A	PEE6	nuclear
		AA219134		ESTs	PBA7	
5	132964	AA031360		ESTs	PAA7	plasma membrane
	132967	AA032221	Hs.61635	six transmembrane epithelial antigen of	PM17	plasma membrane
	133179	U81599	Hs.66731	homeo box B13	PFJ5	nuclear
	133330	U42360	Hs.71119	Putative prostate cancer tumor suppresso	PDM1	plasma membrane
10		X74331	Hs.74519	primase, polypeptide 2A (58kD)	PDM2	
10		U07919	Hs.75746	aldehyde dehydrogenase 1 family, membe		PDT1 mitochondrial
		U07919	Hs.75746	aldehyde dehydrogenase 1 family, membe		PDT1 mitochondrial
		AA045870		Homo sapiens mRNA; cDNA DKFZp564A0	•	PAB9 cytoplasmic
		U41060	Hs.79136	LIV-1 protein, estrogen regulated	BCR4	plasma membrane
15		A1800004		hypothetical protein MAD (mothers against decapentaplegic, Dr	PEU4	nuclear
13		AI869666 AA508353			PBH3	cytoplasmic secreted
		AA340605		relaxin 1 (H1) ESTs, Weakly similar to Homolog of rat Z		Secretor
		D30891	Hs.19525	hypothetical protein FLJ22794	PBM4	not determined
		AW503733		KIAA1488 protein	PBY3	not determined
20	-	Al460004	Hs.31608		PEU5	plasma membrane
		A1734009		KIAA1603 protein	PCQ8	
	310431	A1420227		ESTs, Weakly similar to A46010 X-linked	PBH1	plasma membrane_
	310573	AW292180	Hs.156142	ESTs	PEN3	plasma membrane
	310598	Al338013	Hs.140546	ESTs	PCW3	
25	310816	A1973051	Hs.224965	ESTs	PET5	•
		A1682088		holocarboxylase synthetase (biotin-[prop	PBH8	
			Hs.120591		PBY2	•
		AI732100	Hs.187619		PBY1	
20			Hs.136319		BFF8	not determined
30		AI538226		guanine nucleotide binding protein 4	CB07	cytoplasmic PBM2not determined
		Al672225 AW292425	MS.222886	ESTs, Weakly similar to TRHY_HUMAN TO	PBM9	PDM2not determined
		• • • • • • • • • • • • • • • • • • • •	Hs.134427		PBJ7	plasma membrane
			Hs.153023		PBJ9	higania membrane
35		Al654187			PBQ6	
-				deoxyribonuclease II beta	PBQ7	
				hypothetical protein FLJ10188	PBJ1	cytoplasmic
		AF071538	•	prostate epithelium-specific Ets transcr	PEN1	
	319763	AA460775	Hs.6295	ESTs, Weakly similar to T17248 hypotheti	PEO7	
40	320324	AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	PBH5	plasma membrane
	320561	NM_00695	3Hs.159330		PEL9	plasma membrane
			Hs.31218		PBY4	not determined
				Homo sapiens LUCA-15 protein mRNA, sp		PBY8 not determined
45		W07459	Hs.157601		CBF9	secreted
45			Hs.293616	Homo sapiens cDNA FLJ12166 fis, clone N	AA PCQ7	PBQ1 not determined plasma membrane
				Homo sapiens clone 24670 mRNA sequen		PCi2 not determined
				ESTs, Moderately similar to SPCN_HUMA		PBJ5
			Hs.143691		PBQ9	not determined
50				Homo sapiens cDNA: FLJ23241 fis, clone		PBY6 not determined
			Hs.292934		РВМ3	
	324617	AA508552	Hs.195839	ESTs, Weakly similar to I38022 hypotheti	PBH4	cytoplasmic
	324626	Al685464		gb:tt88f04.x1 NCI_CGAP_Pr28 Homo sapi	ens '	PCW6
~~		A1694767		Homo sapiens cDNA FLJ13581 fis, clone F		PBJ4 plasma membrane
55		Al557019	Hs.116467	small nuclear protein PRAC	CBK1	nuclear
	330211				PBJ2	not determined
		U31382		guanine nucleotide binding protein 4	PEW4	cytoplasmic
		AA449677		hypothetical protein	PBM1	not determined
60		T48536		TMPRSS2, transmembrane protease, serin		PEL3 plasma membrane
UU		AA149579 R36671	Hs.91202 Hs.14846	ESTs Homo sapiens mRNA: cDNA DKFZp564D0	PBQ4	plasma membrane PCQ1cytoplasmic
		N32912	Hs.291039		PCI4	nudear
		AA431407		ESTs, Moderately similar to T14342 NSD1		not determined
		N58172	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	gb:za21f09.s1 Soares fetal liver spleen	PBQ5	nuclear
65		AA340504		gb:hw31a09.x1 NCI_CGAP_Kid11 Homo s	;	PBJ8 not determined
		T94885		transgelin 2	PBQ8	secreted
	332798				PBH2	nuclear
	334447		•		PBY9	not determined
	338255				PBY7	not determined

	401424				PFG2	mitochondrial
		H20276	Hs.31742	ESTs	PEW7	miconomica
		S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	PEZ3	plasma membrane
		AF216077		Homo sapiens clone HB-2 mRNA sequence		PEY1
5		AK000631		hypothetical protein FLJ20624	PFG1	nuclear
•		NM 00598		sine oculis homeobox (Drosophila) homolo		nuclear
		U80034	Hs.68583	mitochondrial intermediate peptidase	PEZ9	mitochondrial
		BE244589		glyoxalase I	PFJ3	cytoplasmic
			Hs.246973		OBH6	Cytopidaniic
10				Homeo box A13	PFC6	
10			Hs.130853		PEZ5	
		X57010	Hs.81343	"collagen, type II, alpha 1 (primary ost	PFJ1	secreted
		AA279490		calmegin	PFA1	ER
		AJ820961	Hs.193465		PEY4	.En
15		NM 00499		ATP-binding cassette, sub-family C (CFTR		
13		U24577	Hs.93304	"phospholipase A2, group VII (platelet-a	PFH9	secreted
				CGI-86 protein	PFH2	
			1Hs.111256	"arachidonate 15-lipoxygenase, second ty		plasma membrane cytoplasmic
		AW102723		guanylate cyclase 1, soluble, alpha 3	PFA3	Cytopiasinic
20			9Hs.154424	"delodinase, lodothyronine, type II"	PFH6	secreted
20		AF030880	3115. 134464	solute carrier family, member 4	PFD4	plasma membrane
		AA418000	He 09290	potassium intermediate/small conductance		plasma membrane
				KIAA0575 gene product	PFD6	nudear
		AA460421		ESTs	PEZ7	liuubai
25			Hs.119383		PEY5	
23		BE245562			PEZ4	plasma membrane
					PFG6	nuclear
		D89053			PEZ1	Hudodi
		NM_00274		protein kinase C. mu	PFH4	cytoplasmic
30		AA527941	LI 13.200 I	gb:nh30c04.s1 NCI_CGAP_Pr3 Homo sapi		PFA2
50		AI669973	Hs.200574		PEW8	1172
		W07088	Hs.293685		PFG3	•
			Hs.325198		PEY3	
		AI446444			PEW5	
35		AI972867	Hs.7130		PEW6	
		AA909358			PFC8	
		AB028945			PEZ6	
		AF126245	Hs.14791	"acyl-Coenzyme A dehydrogenase family, r		PFH7
		AF035269			PFH8	
40	449156	AF103907	Hs.171353	prostate cancer antigen 3, non-coding DD	PEZ8	
		NM_014253		odz (odd Oz/ten-m, Drosophila) homolog 1		plasma membrane
		AF055575		calcium channel, voltage-dependent, L ty		plasma membrane
	451939		Hs.27311		PFJ8	
	451982		Hs.27373	Homo sapiens mRNA; cDNA DKFZp56401		PFG9plasma membrane
45		AI922988		• •	PFD8	
. –		NM_002202	2Hs.505	ISL1 transcription factor, LIM/homeodoma		nuclear
					PFC5	cytoplasmic
	452946		Hs.31092		PFH3	plasma membrane
		- · - -		r		

TABLE 15A shows the accession numbers for those primekeys lacking a unigeneID in Table 15. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

1	U
_	v

Pkev:	Unique Eos probeset Identifier number
CAT number:	Gene cluster number
Accession:	Genbank accession numbers

15

65

	Pkey	CAT number	Accession
20	116393	131543_1	Al972402 Al634409 Al523716 Al799749 W44518 Al424438 Al688513 Al971048 Al686324 AW013854 AA588483 AA528111 Al627428 Al582200 Al669296 Al826926 Al620526 Al669958 Al972458 Al924500 AA512903 W44517 AA335363 AW238997 BE300165 BE250665 AA284195 AA523420 W52834 Al471970 Al952824 AW003820 AW009463 AA669796 AA114966 Al653342 AA115038 Al342150 Al092100 Al968211 W51994 Al804005 Al201420 Al123210 Al738405 Al674964 Al970341 AW027500 Al493316 Al333193 Al1393353 AA599463 Al656163 Al804200 Al365321 Al990213 Al657011 AA650025 Al968810 Al341978 AA599839 AW592602 AA644289 Al468578 Al565265 Al565228 BE221535 AW973052
25	101485	18113_1	AA296520 AL021940 M30640 NM_000450 M24736 M61894 AL047443 H39560 Al694691 AA916787 Al214796 AA939085 Al150616 AA412553 AA412545 Al051015 T27654 AA694430
	126399	17331_1	AA088767 AF224278 AA128075 AL035541 AA027926 AI761441 AI972096 AW071693 AI742327 AI377498 AI804815 AI640802 AI885001 AI921394 AA595115 N71820 AI921217 AW007283 AI467828 AI369306 AA917446 AI493698 AA088701 AA126899 AI936228 AW204238 AI039567 AI925027 BE138909 AW452945 AW135998 AA310984 AA027860 AW073519 AI537597 AA953976 AI521341
30			AW273569 AW050740 AA536113 AA559064 Al474392 AW135709 AA535181 AW572959 AA570597 AI905464 AI677810 AI587642 AW975102 AA424310 AA482527 N64192 AA658276 AW889117 AA486591 AW887172 AI381990 AI381991 AI673419 AI990950 AA487031 AI272934 AI150565 AA229168 AW316722 AI142707 BE222396 AA614168 AA122026 AW338227 AA632457 AI968726 AW369662 AA512956 AA541675 AA451748 AI250993 BE146418 AA122025
35		94346_1 21074_1	Al362575 Al805082 AW263421 Al432462 AA135870 AA031360 AA031604 AA298475 AA298464 NM_012445 AB027466 BE407510 BE047605 AA047125 AW084003 AA149494 AA149490 AA292528 AA570505 AA526186 AW006250 AW007762 Al341557 Al799666 Al972710 Al377966 Al962810 Al084783 Al458032 Al190971 AW148913 AA372354 AW970032 AW007426 AA650188 Al123203 Al122890 Al280975 W73595 W73495 Al863238 AA374109 AA603986 AW149089 AW957523 Al307748 Al921067 Al336463 F24537 Al380460 Al367500 Al189309 Al814701 Al766921 AW572106 AA037024 AW072576 AA578293
40			Al288103 AA235464 AW450842 AA574230 AW294024 AI589229 AI580733 AW512227 AA877009 AI660255 AW188597 AA558228 AI572782 AA658397 AI274828 AI866359 AA864573 AI264439 AA621604 AW515493 AW243333 Z39737 AI567038 AA573997 AA573559 AW236431 AI652870 AI684973 AA034505 AA047126
45		156454_1 9836_1	Al267700 Al720344 AA191424 Al023543 Al469633 AA172056 AW958465 AA172236 AW953397 AA355086 AL080235 AA031750 D81382 Al480231 Al095947 Al560953 BE010721 Al870290 AA374945 AA125792 D51527 D51556 Al685541 D51559 AW117286 AA195741 Al675138 AW593439 Al201885 T30590 AW952100 D51095 AA523864 W70043 AA987586 Al421515 Al205532 AA127069 Al337367 D51595 Al453785 AW075677 AW088359 C14287 C14284
		19266_1	AF163474 NM_016590 AF163475 AI761105 AI770098 AA410580 AA411616 AI590343 AI739050 AL050198 AI862645 AA419104 AA513809 AA333032 AI816915 AW139625 AA640889 AI311391 AI627693 AW135514 AA419011 AI269149 AI245259 AI970008 AI970017 AW139445 AA569503 AI761072 AI766179 AI759995 AI300776 AI870129 AW150770 AA226501 AA226220
50		291015_1 entrez_U4235	
	324626	347217_1 336411_1 16065_1	AW292425 BE467167 AI702953 BE550961 BE222309 AI299348 AI693336 AA541708 AI685464 AW971336 AA513587 AA525142 NM 012391 AF071538 AB031549 AI685592 AI745526 AA662204 AW130657 AA662164 AW971121 AI668916 AA513274 AI991223
55			AI979170 AW298436 AA639821 AI859010 AW513942 AI687669 AA662521 AA548598 AI345056 AI305374 BE043418 AI432856 AI334840 AI379796 AI492693 AI307915 BE042082 AI307834 AI307858 AI309488 BE042210 AI435670 AI371605 AI862491 AI284563 AI306872 AI255044 AI254601 AI251236 AI473073 AI473042 AI432760 AI435664 AI336826 AI289365 AI369096 AI862274 AI334871 AI349863 AI250405 AI377617 AI309895 AI313017 AI862291 AI311936 AI378718 AI305722 AI306769 AI308888 AI334565 AI862296
60			AI344230 AI435685 AI344087 AI378696 AI311209 AI435775 AI310611 AI311154 AI432289 AI431561 AI492681 AI432867 AI335288 AI492796 AI432769 AI310299 AI432273 AI379820 AI275319 AI435753 AI609441 AI432767 AI369100 AI311420 AI349974 AI247157 AI334677 AI270910 AI224320 AI305608 AI334489 AI377152 AI350012 AI370086 AI306781 AI306780 AI334849 AI374874 AI34697 AI277678 AI36674 AI366774 AI366779 AI311631 AI344974 AI366780 AI314691 AI34678 AI366780 AI314691 AI34678 AI366780 AI314691 AI34678 AI366780 AI314691 AI366780

AI340380 AI307876 AI305974 AI305972 AI311521 AI334872 AI862509 AI311498 AI335051 AI289684 AI310859 AI311862 AI862483 AI492775 AI307906 AI492708 AI289693 AI340373 AI307910 AI311359 AI435653 AI334865 AI311492 AI492809 AI492690 AI431576 AI862268 AI311879 AI308435 AI492792 AI862512 AI275321 AI431568 AI431564 AI307885 AI307926 AI435692 AI435778 AI310182 AI308894 AI492707 AI492713 AI308560 AI307829 AI343234 AI580598 AW472796 AI340918 AI310243 AI309368 AI307920 AI289665

			·
			Al306777 AW086318 AW086292 AW086378 Al310027 Al275293 Al369082 Al340900 Al306749 Al371558 AW086287 BE043803
			AI306793 AI306272 AI287948 AI270917 AI284816 AI336813 AI284546 AI308044 AI275290 AI270872 AI306795 AI289687 AI223570
			AI305303 AI289677 AI287742 AI275284 AI306812 AI336701 AI371554 AI378719 AI344988 AI223631 AI335141 AI343222 AI284568 AI305357 AI275270 AI345932 AI436549 AI307925 AI311502 AI344238 AI343182 AI308508 AI305988 AI270790 AI379792 AI305647
5			AI305410 AI432251 AI436517 AI343227 AI305534 AI340387 AI271043 AI305499 AI271046 AI305962 AI289465 AI305378 AI289725
•			AI310848 AI305848 AI289362 AI252964 AI307049 AI310831 AI306993 AI306796 AI224659 AI305969 AI348855 AI306164 AI306948
			Al284676 Al309155 Al343202 Al432785 Al306815 Al369081 Al270885 Al289699 Al435704 Al309647 Al305716 Al311281 Al287927
			Al472995 Al340423 Al270958 Al307069 Al305364 Al270807 Al275306 Al311890 Al275263 Al432750 Al289371 Al432861 Al255113
			AI305709 AI473008 AI311168 AI309711 AI377164 AI271201 AI289560 AI309710 AI306195 AI311201 AI287741 AI271066 AI432876
10			Al275281 Al379795 Al472972 Al311967 Al306826 Al305465 Al270792 Al473019 Al305340 Al270922 Al305995 Al305462 Al254144
			A1270969 A1473012 A1305390 A1275278 A1223644 A1289692 A1250318 A1305372 A1289691 A1250521 A1306283 A1306814 A1307933
			A1473160 A1432903 A1223720 A1254979 A1334862 A1306926 A1289541 A1432248 A1435722 A1435698 A1432859 A1310683 A1473175
			AI335144 AI289467 AI436489 AI306928 AI473033 AI305763 AI307868 AI307882 AI348959 AI435736 AI432857 AI432896 AI435735
15			Al432283 Al473086 Al432863 Al473081 Al432825 Al307840 Al473164 Al432885 Al473166 Al472982 Al435734 Al473060 Al473171 Al432279 Al432882 Al334670 Al436512 Al432827 Al432852 Al473051 Al473077 Al435697 Al271509 Al492781 Al472983 Al473018
1.5			AI432897 AI473043 AI432871 AI436536 AI473157 AI349715 AI432777 AI473016 AI473158 AI340369 AI307941 AI432773 AI377146
			AI492791 AI270950 AI305342 AI284604 AI306269 AI284811 AI270811 AI289347 AI334869 AI334852 AI311759 AI250382 AI309520
			AI289550 AI305721 AI340870 AI270901 AI308575 AI307904 AI340715 AI270941 AI309808 AI246867 AI473014 AI307039 AI289360
			Al473069 Al492786 Al344013 Al305876 Al436510 Al340742 Al473028 Al307891 BE041871 BE041268 BE042340 BE041946
20			BE041783 Al306173 Al201948 Al926972 Al275769
			G_LINK_EM:AC00
		c_5_p2	
			6_5_LINK_C4G1.G
25			G_887_7_LINK_EM AA669097 AA513815 AA026798 AA676526 AA704429 AA704269 AW118292 AA579216 N58172
23		372969_1 20265_1	AM009037 AM313615 AM020796 AM070326 AM704429 AM704269 AW110292 AM379216 N36172 AW579842 BE156562 BE156690 BE156489 BE081033 AK001559 BE149402 M85387 AW367811 AW367798 R17370 Al908947
	332380	20200_1	AA382932 R58449 H18732 AA371231 AW962899 AA713530 AW892946 R53463 H11063 AW068542 Z40761 BE176212 BE176155
			W23952 W92188 AW374883 AA303497 AW954769 AA038808 BE168063 AW382073 AW382085 AL041475 H80748 Ai078161
			BE463983 Al805213 Al761264 W94885 N94502 Al623772 Al419532 Al810302 Al634190 AW002516 AW150777 Al352312 Al367474
30			AW204807 Al675502 Al337026 AW134715 BE328451 Al123157 Al560020 Al300745 Al608631 Al248873 AA742484 AW051635
			H18646 Al245045 AA507111 Al640510 Al925594 AA115747 AA143035 AA151106
	332697	13699_1	X51405 NM_001873 T11322 AL118886 BE328175 AW136009 BE467445 AW470313 AA774852 BE504139 AW501046 AA082792
			AW389231 AA370044 R36841 AA371457 C04813 R25791 R25556 AW895854 AW903819 AW895671 AW895677 BE159723
35			AW895664 AW895597 AW895595 AW895665 AW888518 AI903724 F06081 F08503 AL119462 AW895730 AW888516 R26511 R26489 AA334126 AA327626 N85713 AW895998 AA223622 F05468 AA370749 W05590 M78202 AA371073 AW498607 R15017
33			T16991 AA001282 AA001138 AA551566 AA330159 AI922855 AA383512 AA029603 D82246 D82171 T94933 H56545 AA348060
			AA176888 R96764 AW451817 AA385766 AA452618 AI690057 AA988822 BE549928 AA150901 W57992 AW899925 C05281
			AA932042 AA370980 AW962877 W04741 AA369982 AW385948 AA922466 N75882 Al422070 Al361256 Al680224 D57122 T94885
			R53266 R46713 T19071 AW796277 AA325333 F04719 F02334 AA358146 AA626597 AA358304 AW028099 AL119570 D57290
40			D58273 D57796 N48555 Al361969 AA329457 D57225 AW024046 AA992606 AW022118 AW021538 AA935845 H89870 H56546
			AW961219 AA453239 AW837541 N45521 BE218029 AA318877 AA327740 AW961809 T92139 D53216 D52365 D53363 D53312
		•	D53116 Al547267 AA679935 AW026552 AW026418 AW190507 Al927710 AW244108 D50948 AW054991 AW021063 AW022511
			AA493436 Al365636 BE464751 AW149384 AA102442 AW771368 Al818251 Al126368 D51049 Al421542 Al559467 AW079779 AW021048 AW023969 AW044214 Al458264 AA027274 Al620254 AW028917 BE219511 AA326242 N67561 Al971273 AA878328
45		•	D57131 AA770662 Al309299 Al796767 AA613338 W58076 Al566287 Al445573 Al880260 AA001919 AW339259 Al492610 Al492611
			R97692 Al301425 AA722603 D58361 Al350323 AA973926 Al431263 AA516126 AA865467 Al925177 N39443 AA001943 Al299371
		•	A1082412 AA665090 AA583433 H89871 AA977231 A1362219 A1056096 A1270446 N67524 N22103 AW614224 AA744054 AW243622
			Al613188 Al929173 Al350243 Al362138 AA744004 AA176661 D56787 Al955625 Al393109 Al094769 Al479728 Al423107 Al955617
~~			A1034036 A1582196 AW264534 A1418961 AA570761 A1343538 AA650341 AA992503 AA770004 AL039666 A1862675 AW190335
50			AA610274 AW418627 BE467472 D56786 T28749 Al217610 Al359556 T23523 AL040189 AA846222 AA651636 D51280 Al888986
			AI521167 AI340177 AW612815 AI625285 AA621607 AA177059 AA229768 AA829788 AI749682 AW190631 N75299 AA230089
			AI915632 BE069542 AA890020 AA528397 AA995390 BE503860 AA570812 AW339396 AI197986 AI203725 AI282379 AA670375 AA461513 F01728 AW243599 C00856 N75567 R95995 AA150932 R95961 AA648060 AA933800 AA927073 AA101126 AA864190
			T93566 BE167472
- 55	425710	25529_1	AF030880 NM_000441 AC002467 AA385554 H23053 AW891838 AI139968 AA653057 AI695233
		342819_1	AAS27941 Al810608 Al620190 AA635266
		6391_1	AB028945 T77648 F13328 AL157605 Z46212 AA304736 F11855 T66098 T30174 AW954164 AW176301 AW748243 AA456428
		_	Al369958 AA938565 AW959613 Z42008 AA994779 Al683909 F11019 F10926 Al769597 Al752550 T65015 Al884314 AA643954
60			Z41838 AW020147 Al038822 AW571822 AA299781 AA894928 AF131790 BE005411 Al902476 AW082695 AA464384 R42750
60			AW902301 AA464273 R05837 Z38294 H41098 AL134507 M86079
	447210	7119_1	AF035269 AF035268 NM_015900 T96213 U37591 AA156832 AA299371 A1084325 H95977 A1765967 BE221465 AA156726 A1969563
			AW024539 Al436791 Al949451 AA843093 Al452756 AA824232 Al306667 T96131 AW207447 AW243556 AW957032 Al084332
	AAOROE	8113_1	H95978 U30998 NM 014253 AF100772 BE088769 AL022718 BE161779 AW863569 BE161640 AL039060 BE168542 AW296554 AA323193 AA235370
65	443060	0110_1	AW779760 N48674 AI375997 R45432 D59344 AI203107 F07491 R35360 R25094 AI913631 AI498402 T61382 AI016320 N45526
			T61415 AA331486
	452039	89513_1	Al922988 H05475 AA021608 AW169947 AA913750 Z41614 AW800012
	_	-	

TABLE 15B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 15. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey: Ref: Strand: Nt_position:	Sequence source. To publication entitled "To sequence of human of Indicates DNA strand	sponding to an Eos probeset he 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the The DNA chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I from which exons were predicted. positions of predicted exons.
15	Pkey Ref	Strand	Nt_position

5

15	Pkey Ref	Strand	Nt_position
20	334447 Dunham, i. et.al. 332798 Dunham, i. et.al. 338255 Dunham, i. et.al. 330211 6013592 401424 8176894	Minus	14308764-14308824 232147-231974 15242294-15242231 59158-59215 24223-24428

TABLE 11 AND SEQUENCE LISTING

SEQ ID NO:1 BCU4 DNA SEQUENCE

5	LGQNLSVRTG SNRIGCAIHA TDNLCFPGVT	RYRSILQLVK CQNMNVWGSV SNYLYWFK U7 Protein seque	VFPPAANMEY PWYDEVKDYA WRRAVYLVCN ICE Variant 2: none	FPYPQDCNPR	CPMRCFGPMC	THYTOMVWAT	120 180 240
10	1 -	11 	21 	31 	41 	51 	
15	YISQNDMIAI LGQNLSVRTG	LDYHNQVRGK RYRSILQLVK CQNMNVWGSV	TVVLLNSTDS VFPPAANMEY PWYDEVKDYA WRRAVYLVCN	MVWDENLAKS FPYPQDCNPR	AEAWAATCIW CPMRCFGPMC	DHGPSYLLRF THYTQMVWAT	60 120 180 240
20	Nucleic Acid Acco		NM_003014 238-1278 (underlir			DNA SEQUENCE nd stop codons)	
	1 11	21 31	41 51	•	•		
25	CGGAGCTCC AAACTCTCC GGCAGGAAC	G CGGCCGGA T GCGCCCCA(GA GAAGGCG(CC CCGCGGC GA AGATTTCT CTT TCTGTCTC	CCC GCTTTGC TC CTCGGCG GCC GGGGTCC	TIGC CGACTG AAG GGACAG GCAG CGCGAC	TGTG TGCCAGA GAGT TTGGGGG CGAA AGATGAC GAGGG CAGTGC	GAAG 120 GGGT 180 C <u>ATG</u> 240
30	GCGCCCTGC ATGCCCAAC GAGGAGCTC	G AGGCGGTG C ACCTGCAC GG TGGACGTC	CG CATCCCT/ CA CAGCACGO GAA CTGCAGC	ATG TGCCGGC CAG GAGAAC GCC GTGCTGC	ACA TGCCCTO GCCA TCCTGC CGCT TCTTCT	GGG CGTGCGCC GGAA CATCACG GCCAT CGAGCAC ICTG TGCCATG GCAA GTCGGTG	GCGG 360 GTAC 420 TAC 480
35	AGCCTGGCC ATCGTCACG CAGGAAAGC AAGGTGAAC	C GCGACGAC T GCGACGAG G ACCTCCCG GC CTCTTGAT GC CAACTTTG	TG CGAGCCO CT GCCTGTCT GA GGATGTTA GT TGACTGTA GC AACGTATO	CTC ATGAAGA TAT GACCGTG AAG TGGATAG AAA CGCCTAA CTC AGCAAAA	ATGT ACAACO GCG TGTGCA' BACA TCACAC GCC CCGATO AACT ACAGCT	CACAG CTGGCCC TTTC GCCTGAAC CAGA CATGATC GGTG CAAGTGT 'ATGT TATTCAT	CGAA 600 GCC 660 GGTA 720 CAAA 780 GCC 840
40	GAGATCTTC TCTTGCCAG CGTTCAAGG AAAAGATCC	A AGTECTEAT I GTECACACA A TGATGETT A TACAGTGG	TC ACCCATCC AT CCTGCCCC CT TGAAAATT GA AGAGAGG	CT CGAACTCA AT CAAGATGT GC TTAGTTGA CTG CAGGAA	AAG TCCCGCT FTC TCATCAT AAA AATGGA(.CAGC GGAGA	GTGGT GGATGT CAT TACAAATT GTG TTACGAGT GAGA TCAGCTT ACAGT TCAGG	TCT 960 TGG 1020 AGT 1080 ACAAG 1140
45	GCTCCCAAA AACCCGAAA GATGAGGCT ACTCACTGC	C CAGCCAGT A GAGTG <u>TGA</u> G GGCATTGO A GTGCTCTTO	CC CAAGAAG. GC TAACTAG CT GGGACAG A TAGACACA	AAC ATTAAA TTT CCAAAGO CCT ATGTAAC .TC TTGCAGC	ACTA GGAGTO CGGA GACTTO GGCC ATGTGC ATT TTTCTTA	AAGGG AAAGCC GCCCA GAAGAG CCGAC TTCCTTA CCCCT TGCCCTA AGG CTATGCTT	AACA 1260 CAG 1320 ACA 1380 CA 1440
50	GAGTTAAAG CTAGAAGAG AAATGCCAT TATCTGTTG	C TGGTGGAA IT AGGGAAAA A TTTCAAAC I TGCAATGTT	AA GGCTTAT ATA ATGCTTG AA AACACGTA A GTGATGTT	IGC ATTGCAT ITA CAATTCG VAT TTTTTTAC IT AAAATGTG	TCA GAGTAA GACC TAATAT CAG TATGTTT GAT GAAAATA	TGG TACAGAAG CCTG TGTGCAT GTGC ATTGTAA TAT TACCTTTT TAA TGTTTTA	ACT 1560 AAT 1620 GA 1680 AG 1740
55	TTTTTGTGAT TGTGTTTTT AATAATAAA GTTACCTGA	TGAAAGGGGA TACCAATGA G AAAAATAA TTTCCATGAT	AT TITTIGAA C TICAGIITO AT AAAAAGO C ATGATGCT	AA ATTAGAG. T GTTTTTAGG AGA GGCAGA IC TTGTCAAC	AAG TAGCATA CT AGAAACTT ACAAT GTCTG 'AC CCTCTTAA	GGTC TGCAGAA ATGG AAAATTA AA AAACAAAA GATTC CTGTTT AGC AGCACCAG GCTA ATGCTCAA	TAA 1860 AT 1920 TTTG 1980 AA 2040
60	ATTITATACO AATAATTIG TTAAATATT AAAGTTGAG	CACAAGAGA A CAAGCTTAA I TCTTTGCCTA T TCCACCTCT	AG GTATGTCA AA AATGGCC1 A AATACATG1 IG AAATGAGA	CT CATCTTAC TTC ATGTGAG TG AGAGGAGT AAT TACTTGA	CTT CCCAGGA TGC CAAATT ITA AATATAA CAG TTGGGA	CAT CCACCCTO FIGT TITTCTIC LATG TACAGAGA TACT TTAATCAG GGAC AATTGGAG	GAG 2160 AT 2220 AGG 2280 GAA 2340
65	ATTTATTTA AGGCATTCA ACTACACAG GCACTTATA	AAAAACAAT A TAAATGCA A GGTAATCA A AATGATTTO	IT TTATTGGC CA ACGCCCA CT ATTAGTAT 3A ACAAATAA	CT TTTGCTAA AAG'GAAATA TTT TGGCATA' AAA CTAGGAA	CA CAGTAAG AAAT CCTATC ITA TTCTCCA ACCT GTATAC	CAT GTATTITA' TAAT CCTACTO GGT GTTTGCTT. ATGT GTTTCAT.	TA 2460 TTCC 2520 AT 2580 AAC 2640
70	TCTCATTTC	AACAGCTGT	G TTATATTCC	CA TAGTATGC	AT TACTCAAG	CAA ACTGTTGTO	GC 2760
75 ·		X2 Protein sequer 1#: NP_003005.1				·	
	1 1 1	1 1	41 51 R GAPCEAVRI	P MCRHMPWN	IT RMPNHLHI	ist qenailaieq) 60

5 KKKTAGRTSR SNPPKPKGKP PAPKPASPKK NIKTRSAQKR TNPKRV SEQ ID NO:9 CBK1 DNA SEQUENCE Nucleic Acid Accession #: NM_032391 10 Coding sequence: 129-302 (underlined sequences correspond to start and stop codons) 11 21 31 51 15 GTCCTTCCTC TCCTAGCCTA AGGCGTGCAA ACAGAGCGCC ACTGGGAGGC TGAAACCTTT 60 AGGCCGATGC TTGCTTGCAA GGTCAGGCAA GCTGGATTCT GGTCCCCACC TTTGCAGAGA GAACAGCGAT GTTGTGCGCC CATTTCTCAG ATCAAGGACC GGCCCATCTT ACTACCTCCA 180 AGAGTGCTTT TCTCTCTAAT AAGAAAACAT CTACTTTGAA ACATCTACTG GGCGAGACCA 240 GGAGTGATGG CTCAGCCTGT AATTCTGGAA TTTCGGGAGG CCGAGGCAGG AAGATTCCTT 300 20 GAGCACAGGA GTTCCAGACC AGCCTGGGCA ATGTAGCAAG ACGCTGTCTC TATTTATACA 360 ATAAAATTTT TTTAAAAAAG G 25 SEQ ID NO:10 CBK1 Protein sequence: Protein Accession #: NP_115767 41 51 11 21 31 30 MLCAHFSDQG PAHLTTSKSA FLSNKKTSTL KHLLGETRSD GSACNSGISG GRGRKIP SEQ ID NO:11 CHA1 DNA SEQUENCE Nucleic Acid Accession #: NM_020182 35 Coding sequence: 96-854 (underlined sequences correspond to start and stop codons) 40 TCCTTGGGTT CGGGTGAAAG CGCCTGGGGG TTCGTGGCCA TGATCCCCGA GCTGCTGGAG 60 AACTGAAGGC GGACAGTCTC CTGCGAAACC AGGCAATGGC GGAGCTGGAG TTTGTTCAGA 120 TCATCATCAT CGTGGTGGTG ATGATGGTGA TGGTGGTGGT GATCACGTGC CTGCTGAGCC 180 ACTACAAGCT GTCTGCACGG TCCTTCATCA GCCGGCACAG CCAGGGGCGG AGGAGAGAAG ATGCCCTGTC CTCAGAAGGA TGCCTGTGGC CCTCGGAGAG CACAGTGTCA GGCAACGGAA 300 45 TCCCAGAGCC GCAGGTCTAC GCCCGCCTC GGCCCACCGA CCGCCTGGCC GTGCCGCCCT 360 TOGOCCAGOG GGAGOGOTTO CACOGOTTOC AGCCCACCTA TOCGTACCTG CAGCACGAGA 420 TCGACCTGCC ACCCACCATC TCGCTGTCAG ACGGGGAGGA GCCCCCACCC TACCAGGGCC 480 CCTGCACCCT CCAGCTTCGG GACCCCGAGC AGCAGCTGGA ACTGAACCGG GAGTCGGTGC 540 GCGCACCCC AAACAGAACC ATCTTCGACA GTGACCTGAT GGATAGTGCC AGGCTGGGCG 600 50 GCCCTGCCC CCCCAGCAGT AACTCGGGCA TCAGCGCCAC GTGCTACGGC AGCGGCGGGC 660 GCATGGAGGG GCCGCCCC ACCTACAGCG AGGTCATCGG CCACTACCCG GGGTCCTCCT 720 TCCAGCACCA GCAGAGCAGT GGGCCGCCCT CCTTGCTGGA GGGGACCCGG CTCCACCACA 780 CACACATCGC GCCCCTAGAG AGCGCAGCCA TCTGGAGCAA AGAGAAGGAT AAACAGAAAG 840 GACACCCTCT CTAGGGTCCC CAGGGGGGCC GGGCTGGGGC TGCGTAGGTG AAAAGGCAGA 900 55 ACACTCCGCG CTTCTTAGAA GAGGAGTGAG AGGAAGGCGG GGGGCGCAGC AACGCATCGT 960 GTGGCCCTCC CCTCCCACCT CCCTGTGTAT AAATATTTAC ATGTGATGTC TGGTCTGAAT GCACAAGCTA AGAGAGCTTG CAAAAAAAAA AAGAAAAAAG AAAAAAAAA ACCACGTTTC 1020 1080 TTTGTTGAGC TGTGTCTTGA AGGCAAAAGA AAAAAAATTT CTACAGTAAA AAAAAAAAA 60 SEQ ID NO:12 CHA1 Protein sequence: NP 064567 Protein Accession #: 65 21 31 41 51 MAELEFVQII IIVVVMMVMV VVITCLLSHY KLSARSFISR HSQGRREDA LSSEGCLWPS 60 ESTVSGNGIP EPOVYAPPRP TDRLAVPPFA QRERFHRFQP TYPYLQHEID LPPTISLSDG 120 EEPPPYQGPC TLQLRDPEQQ LELNRESVRA PPNRTIFDSD LMDSARLGGP CPPSSNSGIS 180 70 ATCYGSGGRM EGPPPTYSEV IGHYPGSSFQ HQQSSGPPSL LEGTRLHHTH IAPLESAAIW SKEKDKQKGH PL SEQ ID NO:13 CJA5 DNA SEQUENCE 75 Nucleic Acid Accession #: NM_012445 276-1271 (underlined sequences correspond to start and stop codons) Coding sequence: 21 41 51 11 31 80 305

YEELVDVNCS AVLRFFFCAM YAPICTLEFL HDPIKPCKSV CQRARDDCEP LMKMYNHSWP 120 ESLACDELPV YDRGVCISPE AIVTDLPEDV KWIDITPDMM VQERPLDVDC KRLSPDRCKC 180 KKVKPTLATY LSKNYSYVIH AKIKAVQRSG CNEVTTVVDV KEIFKSSSPI PRTQVPLITN 240 SSCQCPHILP HQDVLIMCYE WRSRMMLLEN CLVEKWRDQL SKRSIQWEER LQEQRRTVQD 300

```
GCACGAGGGA AGAGGGTGAT CCGACCCGGG GAAGGTCGCT GGGCAGGGCG AGTTGGGAAA
       GCGGCAGCCC CCGCCGCCCC CGCAGCCCCT TCTCCTCCTT TCTCCCACGT CCTATCTGCC
                                                                             120
       TCTCGCTGGA GGCCAGGCCG TGCAGCATCG AAGACAGGAG GAACTGGAGC CTCATTGGCC
                                                                             180
       GGCCCGGGGC GCCGGCCTCG GGCTTAAATA GGAGCTCCGG GCTCTGGCTG GGACCCGACC
                                                                             240
 5
       GCTGCCGGCC GCGCTCCCGC TGCTCCTGCC GGGTGATGGA AAACCCCAGC CCGGCCGCCG
       CCCTGGGCAA GGCCCTCTGC GCTCTCCTCC TGGCCACTCT CGGCGCCGCC GGCCAGCCTC
       TTGGGGGAGA GTCCATCTGT TCCGCCAGAG CCCCGGCCAA ATACAGCATC ACCTTCACGG
       GCAAGTGGAG CCAGACGGCC TTCCCCAAGC AGTACCCCCT GTTCCGCCCC CCTGCGCAGT
       GGTCTTCGCT GCTGGGGGCC GCGCATAGCT CCGACTACAG CATGTGGAGG AAGAACCAGT
10
       ACGTCAGTAA CGGGCTGCGC GACTTTGCGG AGCGCGGCGA GGCCTGGGCG CTGATGAAGG
                                                                             600
       AGATCGAGGC GGCGGGGGAG GCGCTGCAGA GCGTGCACGC GGTGTTTTCG GCGCCCGCCG
                                                                             660
       TCCCCAGCGG CACCGGGCAG ACGTCGGCGG AGCTGGAGGT GCAGCGCAGG CACTCGCTGG
                                                                             720
       TCTCGTTTGT GGTGCGCATC GTGCCCAGCC CCGACTGGTT CGTGGGCGTG GACAGCCTGG
                                                                             780
       ACCTGTGCGA CGGGGACCGT TGGCGGGAAC AGGCGGCGCT GGACCTGTAC CCCTACGACG
                                                                             840
15
       CCGGGACGGA CAGCGGCTTC ACCTTCTCCT CCCCCAACTT CGCCACCATC CCGCAGGACA
                                                                             900
       CGGTGACCGA GATAACGTCC TCCTCTCCCA GCCACCCGGC CAACTCCTTC TACTACCCGC
                                                                             960
       GGCTGAAGGC CCTGCCTCCC ATCGCCAGGG TGACACTGGT GCGGCTGCGA CAGAGCCCCA
       GGGCCTTCAT CCCTCCCGCC CCAGTCCTGC CCAGCAGGGA CAATGAGATT GTAGACAGCG
       CCTCAGTTCC AGAAACGCCG CTGGACTGCG AGGTCTCCCT GTGGTCGTCC TGGGGACTGT
                                                                            1140
20
       GCGGAGGCCA CTGTGGGAGG CTCGGGACCA AGAGCAGGAC TCGCTACGTC CGGGTCCAGC
                                                                            1200
       CCGCCAACAA CGGGAGCCCC TGCCCCGAGC TCGAAGAAGA GGCTGAGTGC GTCCCTGATA
                                                                            1260
       ACTGCGTCTA AGACCAGAGC CCCGCAGCCC CTGGGGGCCCC CGGAGCCATG GGGTGTCGGG
                                                                            1320
       GGCTCCTGTG CAGGCTCATG CTGCAGGCGG CCGAGGCACA GGGGGTTTCG CGCTGCTCCT
                                                                            1380
       GACCGCGGTG AGGCCGCGCC GACCATCTCT GCACTGAAGG GCCCTCTGGT GGCCGGCACG
                                                                            1440
25
       GGCATTGGGA AACAGCCTCC TCCTTTCCCA ACCTTGCTTC TTAGGGGCCC CCGTGTCCCG
                                                                            1500
       TCTGCTCTCA GCCTCCTCCT CCTGCAGGAT AAAGTCATCC CCAAGGCTCC AGCTACTCTA
       AATTATGGTC TCCTTATAAG TTATTGCTGC TCCAGGAGAT TGTCCTTCAT CGTCCAGGGG
                                                                            1620
       CCTGGCTCCC ACGTGGTTGC AGATACCTCA GACCTGGTGC TCTAGGCTGT GCTGAGCCCA
                                                                            1680
       CTCTCCCGAG GGCGCATCCA AGCGGGGGCC ACTTGAGAAG TGAATAAATG GGGCGGTTTC
                                                                            1740
30
       GGAAGCGTCA GTGTTTCCAT GTTATGGATC TCTCTGCGTT TGAATAAAGA CTATCTCTGT
                                                                           1800
       TGCTCAC
35
       SEQ ID NO:14 CJA5 Protein sequence;
       Protein Accession #:
40
       MENPSPAAAL GKALCALLLA TLGAAGOPLG GESICSARAP AKYSITFIGK WSOTAFPKOY
       PLFRPPAOWS SLLGAAHSSD YSMWRKNOYV SNGLRDFAER GEAWALMKEI EAAGEALOSV
                                                                             120
       HAVFSAPAVP SGTGQTSAEL EVQRRHSLVS FVVRIVPSPD WFVGVDSLDL CDGDRWREQA
                                                                             180
       ALDLYPYDAG TDSGFTFSSP NFATIPODTV TEITSSSPSH PANSFYYPRL KALPPIARVT
       LVRLRQSPRA FIPPAPVLPS RDNEIVDSAS VPETPLDCEV SLWSSWGLCG GHCGRLGTKS
                                                                             300
45
       RTRYVRVQPA NNGSPCPELE EEAECVPDNC V
                                                  SEQ ID NO:15 LBH9 DNA SEQUENCE
       Nucleic Acid Accession #: NM 002391
50
                         26-457 (underlined sequences correspond to start and stop codons)
       Coding sequence:
       CGGGCGAAGC AGCGCGGGCA GCGAGATGCA GCACCGAGGC TTCCTCCTCC TCACCCTCCT
55
       CGCCCTGCTG GCGCTCACCT CCGCGGTCGC CAAAAAGAAA GATAAGGTGA AGAAGGGCGG
                                                                             120
       CCCGGGGAGC GAGTGCGCTG AGTGGGCCTG GGGGCCCTGC ACCCCCAGCA GCAAGGATTG
                                                                             180
       CGGCGTGGGT TTCCGCGAGG GCACCTGCGG GGCCCAGACC CAGCGCATCC GGTGCAGGGT
                                                                             240
       GCCCTGCAAC TGGAAGAAGG AGTTTGGAGC CGACTGCAAG TACAAGTTTG AGAACTGGGG
                                                                             300
       TGCGTGTGAT GGGGGCACAG GCACCAAAGT CCGCCAAGGC ACCCTGAAGA AGGCGCGCTA
                                                                             360
60
       CAATGCTCAG TGCCAGGAGA CCATCCGCGT CACCAAGCCC TGCACCCCCA AGACCAAAGC
       AAAGGCCAAA GCCAAGAAAG GGAAGGGAAA GGACTAGACG CCAAGCCTGG ATGCCAAGGA
                                                                             480
       GCCCCTGGTG TCACATGGGG CCTGGCCACG CCCTCCCTCT CCCAGGCCCG AGATGTGACC
                                                                             540
       CACCAGTGCC TTCTGTCTGC TCGTTAGCTT TAATCAATCA TGCCCTGCCT TGTCCCTCTC
                                                                             600
       ACTCCCCAGC CCCACCCCTA ACTGCCCAAA GTGGGGAGGG ACAAGGGATT CTGGGAAGCT
                                                                             660
65
       TGAGCCTCCC CCAAAGCAAT GTGAGTCCCA GAGCCCGCTT TTGTTCTTCC CCACAATTCC
                                                                             720
       ATTACTAAGA AACACATCAA ATAAACTGAC TTTTTCCCCC CAATAAAAGC TCTTCTTTTT
       TAATAT
70
       SEQ ID NO:16 LBH9 Protein sequence:
       Protein Accession #:
                   11
                              21
                                         31
                                                    41
                                                                51
75
       MOHRGFLLLT LLALLALTSA VAKKKDKVKK GGPGSECAEW AWGPCTPSSK DCGVGFREGT
       CGAQTQRIRC RVPCNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLKKA RYNAQCQETI
       RVTKPCTPKT KAKAKAKKGK GKD
```

SEQ ID NO:17 LEM9 DNA SEQUENCE

1-1617 (underlined sequences correspond to start and stop codons) Coding sequence: 5 31 51 11 21 ATGGTAGAAC TAGTGATCTC ACCCAGCCTC ACTGTAAACA GCGATTGTCT GGATAAACTG 60 AAGITTAACC GIGCIGACGC IGCIGIGIGG ACTCIGAGIG ACAGACAAGG CATCACCAAA 120 10 TCGGCCCCC TGAGAGTGTC CCAGCTCTTC TCCAGATCTT GCCCACGTGT CCTCCCCCGC 180 CAGCCTTCCA CAGCCATGGC AGCCTACGGC CAGACGCAGT ACAGTGCGGG GATCCAGCAG GCTACCCCCT ATACAGCTTA CCCACCTCCA GCACAAGCCT ATGGAATCCC TTCCTACAGC 300 ATCAAGACAG AAGACAGCTT GAACCATTCC CCTGGCCAGA GTGGATTCCT CAGCTATGGC 360 TCCAGCTTCA GCACCTCACC CACTGGACAG AGCCCATACA CCTACCAGAT GCACGGCACA 420 15 ACAGGGTTCT ATCAAGGAGG AAATGGACTG GGCAACGCAG CCGGTTTCGG GAGTGTGCAC 480 CAGGACTATC CTTCCTACCC CGGCTTCCCC CAGAGCCAGT ACCCCCAGTA TTACGGCTCA 540 TCCTACAACC CTCCCTACGT CCCGGCCAGC AGCATCTGCC CTTCGCCCCT CTCCACGTCC 600 ACCTACGTCC TCCAGGAGGC ATCTCACAAC GTCCCCAACC AGAGTTCCGA GTCACTTGCT 660 GGTGAATACA ACACACACA TGGACCTTCC ACACCAGCGA AAGAGGGAGA CACAGACAGG 20 CCGCACCGGG CCTCCGACGG GAAGCTCCGA GGCCGGTCTA AGAGGAGCAG TGACCCGTCC 780 CCGCCAGGGG ACAATGAGAT TGAGCGTGTG TTCGTGTGGG ACTTGGATGA GACAATAATT 840 ATTITICACT CCTTACTCAC GGGGACATTT GCATCCAGAT ACGGGAAGGA CACCACGACG 900 TCCGTGCGCA TTGGCCTTAT GATGGAAGAG ATGATCTTCA ACCTTGCAGA TACACATCTG 960 TTCTTCAATG ACCTGGAGGA TTGTGACCAG ATCCACGTTG ATGACGTCTC ATCAGATGAC 1020 25 AATGGCCAAG ATTTAAGCAC ATACAACTTC TCCGCTGACG GCTTCCACAG TTCGGCCCCA 1080 GGAGCCAACC TGTGCCTGGG CTCTGGCGTG CACGGCGGCG TGGACTGGAT GAGGAAGCTG 1140 GCCTTCCGCT ACCGCCGGT GAAGGAGATG TACAATACCT ACAAGAACAA CGTTGGTGGG 1200 1260 ACAGACCTCT GGCTGACCCA CTCCCTGAAG GCACTAAACC TCATCAACTC CCGGCCCAAC 1320 30 TGTGTCAATG TGCTGGTCAC CACCACTCAA CTAATTCCTG CCCTGGCCAA AGTCCTGCTA 1380 TATGGCCTGG GGTCTGTGTT TCCTATTGAG AACATCTACA GTGCAACCAA GACAGGGAAG 1440 1500 GAGAGCTGCT TCGAGAGGAT AATGCAGAGA TTCGGCAGAA AAGCTGTCTA CGTGGTGATC GGTGATGGTG TGGAAGAGGA GCAAGGAGCG AAAAAGCACA ACATGCCTTT CTGGCGGATA 1560 TCCTGCCACG CAGACCTGGA GGCACTGAGG CACGCCCTGG AACTGGAGTA TTTA<u>TAG</u> 35 SEQ ID NO:18 LEM9 Protein sequence: Protein Accession #: NP 005235 40 41 51 11 21 31 MVELVISPSL TVNSDCLDKL KFNRADAAVW TLSDROGITK SAPLRVSQLP SRSCPRVLPR 60 QPSTAMAAYG QTQYSAGIQQ ATPYTAYPPP AQAYGIPSYS IKTEDSLNHS PGQSGFLSYG SSFSTSPTGO SPYTYQMHGT TGFYQGGNGL GNAAGFGSVH QDYPSYPGFP QSQYPQYYGS 180 45 SYNPPYVPAS SICPSPLSTS TYVLQEASHN VPNQSSESLA GEYNTHNGPS TPAKEGDTDR 240 PHRASDGKLR GRSKRSSDPS PAGDNEIERV FVWDLDETII IFHSLLTGTF ASRYGKDTTT 300 SVRIGLMMEE MIFNLADTHL FFNDLEDCDQ IHVDDVSSDD NGQDLSTYNF SADGFHSSAP 360 420 GANLCLGSGV HGGVDWMRKL AFRYRRVKEM YNTYKNNVGG LIGTFKRETW LQLRAELEAL TDLWLTHSLK ALNLINSRPN CVNVLVTTTQ LIPALAKVLL YGLGSVFPIE NIYSATKTGK 50 ESCFERIMOR FGRKAVYVVI GDGVEEEQGA KKHNMPFWRI SCHADLEALR HALELEYL SEQ ID NO:19 OAA1 DNA SEQUENCE Nucleic Acid Accession #: NM_002740 55 178-1968 (underlined sequences correspond to start and stop codons) Coding sequence: 31 51 60 CCGCGGTTCC GGCTGCTCCG GCGAGGCGAC CCTTGGGTCG GCGCTGCGGG CGAGGTGGGC AGGTAGGTGG GCGGACGGCC GCGGTTCTCC GGCAAGCGCA GGCGGCGGAG TCCCCCACGG CGCCCGAAGC GCCCCCGCA CCCCCGGCCT CCAGCGTTGA GGCGGGGGAG TGAGGAGATG 180 CCGACCCAGA GGGACAGCAG CACCATGTCC CACACGGTCG CAGGCGGCGG CAGCGGGGAC 240 CATTCCCACC AGGTCCGGGT GAAAGCCTAC TACCGCGGGG ATATCATGAT AACACATTTT 300 65 GAACCTTCCA TCTCCTTTGA GGGCCTTTGC AATGAGGTTC GAGACATGTG TTCTTTTGAC 360 420 AACGAACAGC TCTTCACCAT GAAATGGATA GATGAGGAAG GAGACCCGTG TACAGTATCA TCTCAGTTGG AGTTAGAAGA AGCCTTTAGA CTTTATGAGC TAAACAAGGA TTCTGAACTC 480 TTGATTCATG TGTTCCCTTG TGTACCAGAA CGTCCTGGGA TGCCTTGTCC AGGAGAAGAT 540 AAATCCATCT ACCGTAGAGG TGCACGCCGC TGGAGAAAGC TTTATTGTGC CAATGGCCAC 70 ACTITICCAAG CCAAGCGTTT CAACAGGCGT GCTCACTGTG CCATCTGCAC AGACCGAATA TGGGGACTTG GACGCCAAGG ATATAAGTGC ATCAACTGCA AACTCTTGGT TCATAAGAAG 720 TGCCATAAAC TCGTCACAAT TGAATGTGGG CGGCATTCTT TGCCACAGGA ACCAGTGATG 780 CCCATGGATC AGTCATCCAT GCATTCTGAC CATGCACAGA CAGTAATTCC ATATAATCCT 840 TCAAGTCATG AGAGTTTGGA TCAAGTTGGT GAAGAAAAG AGGCAATGAA CACCAGGGAA 900 75 AGTGGCAAAG CTTCATCCAG TCTAGGTCTT CAGGATTTTG ATTTGCTCCG GGTAATAGGA 960 AGAGGAAGTT ATGCCAAAGT ACTGTTGGTT CGATTAAAAA AAACAGATCG TATTTATGCA 1020 ATGAAAGTTG TGAAAAAAGA GCTTGTTAAT GATGATGAGG ATATTGATTG GGTACAGACA 1080 GAGAAGCATG TGTTTGAGCA GGCATCCAAT CATCCTTTCC TTGTTGGGCT GCATTCTTGC 1140 TTTCAGACAG AAAGCAGATT GTTCTTTGTT ATAGAGTATG TAAATGGAGG AGACCTAATG 1200 80 TITCATATGC AGCGACAAAG AAAACTTCCT GAAGAACATG CCAGATTTTA CTCTGCAGAA 1260

Nucleic Acid Accession #: NM_005244

5	GACAATGTA: GAAGGATTA: CCTGAAATT CTCATGTTTC CCTGACCAG. CCACGTTCT AAGGAACGA!	T TACTGGACTY GGCCAGGAGI TAAGAGGAGI AGATGATGGGA ACACAGAGGI TGTCTGTAAI TGGGTTGTC	TGAAGGCCAC A TACAACCAGC A AGATTATGGT C AGGAAGGTCT A TTATCTCTTC A AGCTGCAAGCA A TCCTCAAACA	ATTANACTCE ACTITCTGTY TTCAGTGTTY CCATTTGATE CAAGTTATT GTTCTGAAGA GGATTTGCTY	A CTGACTACGG GTACTCCTAI GACTGGTGGGGA TTGTTGGGAAAACI A GTTTTCTTAI GATATTCAGGG	A TTTGARACTG G CATGTGTRAG A TTACATTGCT TCTTGGAGTG G CTCCGATRAC A RATTCGCATA A TRAGGACCCTT G ACACCCGTTC C CTTTARACCA	1440 1500 1560 1620 1680 1740
10	AATATTTCT CAGCTCACT TTTGAGTAT AACCATGTA	G GGGAATTTGGCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TTTGGACAACA A TGACATTGTC TTTGATGTCT TTGCCATTI	C TTTGATTCTY G AGGAAGATTY G GCAGAAGAAT A ATGCATGGA	C AGTTTACTAL G ATCAGTCTGATY G GTGTCTGATY F AAACTTGCTY	A TGAACCTGTC A ATTTGAAGGT C CTCATTTTC G CAAGCCTGGA	1860 1920 1980 2040
15	ACTATATGA TCCAGACAA	A TCAATTATT F CATGTCAAA	A CATCTGTTT	ACTATGAAA) CTGGTTTTY	AAAATTAAAA A LAATTTTTDA C	r TCTCTTGTAG F ACTACTAGCT A AGGCCTACAG	
20	Protein Accessio	_)2731				
25	WIDEEGDPCT RRWRKLYCAN CGRHSLPQEP	VSSQLELEEA GHTFQAKRFN VMPMDQSSMH	21 AYYRGDIMIT FRLYELNKDS RRAHCAICTD SDHAQTVIPY LVRLKKTDRI	ELLIHVFPCV RIWGLGRQGY NPSSHESLDQ	PERPGMPCPG KCINCKLLVH VGEEKEAMNT	EDKSTYRRGA KKCHKLVTIE RESGKASSSL	60 120 180 240 300
30	SNHPFLVGLH HERGI IYRDL YGFSVDWWAL ASVLKSFLNK	SCFQTESRLF KLDNVLLDSE GVLMFEMMAG DPKERLGCHP	FVIEYVNGGD GHIKLTDYGM RSPFDIVGSS QTGFADIQGH IVRKIDQSEF	LMFHMQRQRK CKEGLRPGDT DNPDQNTEDY PFFRNVDWDM	LPEEHARFYS TSTFCGTPNY LFQVILEKQI MEQKQVVPPF	AEISLALNYL IAPEILRGED RIPRSLSVKA	360 420 480 540
35	_	ession #: L05628		·		DNA SEQUENCE	
40	Coding sequence		, 92 (underlined sec	ruences correspon	d to start and stop	codons)	
40					·	·	
40	1	11	21	31	41	51 1	
	1	Ī	21 GGCCCCGGCT	1	1	1	60
45	CCAGGCGGCG GCCGCCGCCG	TTGCGGCCCC CCGCCGCCAG	 GGCCCCGGCT CGCTAGCGCC	CCCTGCGCCG AGCAGCCGGG	CCGCCGCCGC CCCGATCACC	CGCCGCCCGC	120
	CCAGGGGGGG GCGCGGGGG TGCCGGGGGG	TTGCGGCCCC CCGCCGCCAG CGCCGCGCCC	 GGCCCCGGCT CGCTAGCGCC AGCAACCGGG	CCCTGCGCCG AGCAGCCGGG CCCGATCACC	CCGCCGCCGC CCCGATCACC CGCCGCCCGG	CGCCGCCGC CGCCGCCGG TGCCCGCCGC	120 180
	CCAGGCGGCG GCCGCCGCGC TGCCCGCGCC CGCCGGGCC CTGGGACTGG	TTGCGGCCCC CCGCCGCCAG CGCCGCGCC ACCGGCATGG AATGTCACGT	GGCCCCGGCT CGCTAGCGCC AGCAACCGGG CGCTCCGGGG GGAATACCAG	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCCGAC	CCGCCGCCGC CCCGATCACC CGCCGCCCGG GCCGATGGCT TTCACCAAGT	CGCCGCCGCC CGCCGCCGG TGCCCGCCGC CCGACCCGCT GCTTTCAGAA	120 180 240 300
45	CCAGGCGGCG GCCGCCGCGC TGCCCGCGCC CGCCCGCGCC CTGGGACTGG CACGGTCCTC	TTGCGGCCCC CCGCCGCCAG CGCCGCGCC ACCGGCATGG AATGTCACGT GTGTGGGTGC	GGCCCGGCT CGCTAGCGCC AGCAACCGGG CGCTCCGGGG GGAATACCAG CTTGTTTTTA	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCCGAC CCTCTGGGCC	CCGCCGCCGC CCCGATCACC CGCCGCCCGG GCCGATGGCT TTCACCAAGT TGTTTCCCCT	CGCCGCCGCC CGCCGCCGG TGCCCGCCGC CCGACCCGCT GCTTTCAGAA TCTACTTCCT	120 180 240 300 360
	CCAGGCGGCG GCCGCCGCGC TGCCCGCGCC CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC	TTGCGGCCCC CCGCCGCCAG CGCCGCGCC ACCGGCATGG AATGTCACGT GTGTGGGTGC CGACATGACC	GGCCCGGCT CGCTAGCGCC AGCAACCGGG CGCTCCGGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCCGAC CCTCTGGGCC TCAGATGACA	CCGCCGCCGC CCCGATCACC CGCCGCCCGG GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA	CGCCGCCGC CGCCGCCGG TGCCCGCCC CCGACCCGCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC	120 180 240 300
45	CAGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TTGCGGCCCC CCGCCGCCCC CGCCGCCGCC ACCGCCATGG AATGTCACGT GTGTGGGTGC CGACATGAC TTTTTGCTGT GGCATATTCC	GGCCCGGCT GGCTAGCGC GCTCCGGG GGATACCAG CTTGTTTTTA GAGCTACAT TGGCCCCAGT	CCTGCGCCG AGCAGCCGG CCGATCACC CTTCTGCAGC CAACCCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC	CCGCCGCCGC CCCGATCACC CCCCGCCCGG GCCGATCGCT TTCACCAAGT TGTTTCCCCT CCTCCAACA CTCTTCAACT AGCCCAACTC	CGCCGCCGC CGCCGCCGG TGCCCGCCG CCGACCGCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT	120 180 240 300 360 420 480 540
45	CAGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TTGCGGCCCC CCGCCGCAG CGCCGCGCC ACCGCGCTG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT	GGCCCGGCT GGCTAGCGCC AGCAACCGGG GGCATACCAG GGATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCTG TGGCCCAGT TTTTAATTCA	CCTGCGCCG AGCAGCCGGG CCGATCACC CTTCTGCAGC CAACCCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC CTTGGGCAGAC GTTTCTGGTC GCTGGAGAGAG	CCGCCGCCGC CCCGATCACC CGCCGCCGG GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGGAAGGGAG	CGCCGCCGC CGCCGCCGG CCGACCGCCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TCTAGTCTTC	120 180 240 300 360 420 480 540
45	CAGGCGGGG GCCGCCGCGC GCCCGCGCC CGCCCGCGC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGA AAGAATCGG AAGAATCGG AAGAATCATG	TTGCGGCCCC CCGCCGCAG CCGCCGCAG ACCGGCATGG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC CTTCACTTTCT	GGCCCCGGCT GGCTACCGGG CGCTCCGGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCTG TTTTAATTCA GGCTGGTAGC	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGTT	CCGCCGCCGC CCCGATCACC CCCCGCCCGG GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGGAAGGAG GCCCTAGCCA	CGCCGCCGC CGCCGCCGC TGCCCGCCG CCGACCCGCT TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGCAT TCTAGTCTTC TCCTGAGATC	120 180 240 300 360 420 480 540
45 50	CAAGCGGCG GCCGCCGCG CGCCGCGCC CGCCCGCGCC CTGGGACTGG CACGTTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGATCATG CAAAATTATG CTACGTCTAC	TTGCGGCCCC CCGCCAC CCGCCAC ACCGCCATGG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTTCT ACAGCCTTAAA TTTTCCCTCT	GGCCCGGCT GGCTAGCGC GCTCCGGG GGATACCAG CTTGTTTTTA GAGGCTACAT TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA	CCCTGCGCCG AGCAGCCGGG CCGATCACC CTTCTGCAGC CAACCCCGAC CTCGGGCAC CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTC	CCGCCGCCGC CCCGATCACC CCCGATCGCT TTCACCAAGT TCTTCCCCT CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG GCCCTAGCCA CTGTTTCTTGTTG TCCTGTTTCTT	CGCCGCCGC CGCCGCCGC CCGACCCGC CCGACCCGC CCTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCCC	120 180 240 300 360 420 480 540 600 660 720 780
45 50	CAGGCGGGG GCCGCCGCGC TGCCCGCGCC CGCCCGCGCC CTGGGACTGG CACGGTCCTC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG CAAAATTATG CAAAATTATAC	TTGCGGCCCC CCGCGCCAC CCGCCGCGCC ACCGCATGG AATGTCACGT TTTTGCTGT GGCATATTCC CTTGCTACCT CTTGCTACCT ACAGCCTTAA TTTTCCCTCT TCGGAAACCA	GGCCCGGCT GGCTACCGGG CGCTCCGGGG GGAATACCAG GGATCGATT GAGGCTACAT GGATCGTCT TGGCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC	CCTGCGCCG AGCAGCCGGG CCGATCACC CTTCTGCAGC CAACCCCGAC CTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTG TAATCCCTGC	CCGCCGCCGC CCCGATCACC CCCGATCGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGGAAGGAG GCCCTAGCCA CTCTTTCGTC TCCTGTTTCCT TCCAGGAGTCCA	CGCCGCCGC CGCCGCCGC CGCCCGC CCGACCCGC CCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGCAT TCTTGGCAT TCTGGCAT TCCTGAGATC ACATCACTTT CAGATCACTT GCGCTTCCTT	120 180 240 300 360 420 480 540 600 660 720 780 840
45 50 55	CAAGCGGCG GCCGCCGCGC GCCCGCGCC CGCCCGCGCC CTGGGACTGG CACGTCCTC CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTTC	TTGCGGCCCC CCGCCGCAG CCGCCGCAG ACCGCATGG AATGTCACGT CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTTTCT ACAGCCTTAA TTTTCCTCT TCGGAAACCA ATCACCTTCT	GGCCCGGCT GGCACCGGG GCAACCGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCTT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCACACACCC GGTGGATCAC	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCGAC CCTCTGGGCA CTGGGCAGAC CTTGGGCAGAC CCTAGTGTGT CCAGGTGGAC CCTAGTGTGT CCAGGTCGAC CCTCGTCTTG CCAGGTCGAC AGGGTTGAT AGGGTTGAT AGGGTTGAT AGGGTTGAT AGGGTTGAT AGGGTTGAT AGGGTTGAT	CCGCCGCCGC CCCGATCACC CCCCGCCCGG GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGGAAGGAG GCCTAGCCA CTGTTTCGTG TCCTGTTTCTA TCCAGAGTCCA GTCCGGGGCT	CGCCGCCGC CGCCGCCGC CGCCGCCGC CCGACCCGC CCGACCCGC CCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGCAT TCCTGAGATC TCCTGAGATC ACATCACTTT CAGATCGCTC ACACCCTCCTT ACCGCCAGCC	120 180 240 300 360 420 480 540 600 660 720 780
45 50	CCAGGCGGCG GCCGCCGCGCGCGCGCGCCGCGCCCCGCGCCCCGGGCCCC	TTGCGGCCCC CCGCCAGC CCGCCAGC ACCGCCATGG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT ACAGCCTTAA TTTTCCTCT ACAGCCTTAA ATCACCTTCT AGTGAACCA ATCACCTTCT AAGAACTGGA	GGCCCGGCT GGCTAGCGC GGCTCCGGG GGAATACCAG GGAGCTACAT GAGCTACAT TTTTAATTCA TGGCCCAGT TTTTAATTCA GGCTGGTAGC TACTCATTCA TCCACGACCC GGTGGATCA GGTCGTTAAA AGAAGGATTC	CCCTGCGCCG AGCAGCCGGG CCCAACCCGAC CTTCTGCAGC CAACCCCGAC CTGGGCAC CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTG AATCCCTGC AGGGTTGAT CAAGGAGGAC CGAGAGGAC CGAGAGAC CGCCAAGACT	CCGCCGCCGC CCCGATCACC CCCCATCGCT TCACCAAGT TCTTCCCCT CCTCTAACA CTCTTCTACT AGCCAACTC AGGAAGGAAG GCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA ACGCGGGATCA ACGCGGAACA AGGAAGCAGC	CGCCGCCGC CGCCGCCGC CCGACCCGC CCGACCCGC CCGACCCGC CCTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTAGGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCCAGCC AAGTCGTCGCC CGGTGAAGGT	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020
45 50 55	CAGGCGGGG GCCGCCGCGC CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTTC CCTGCAGGG CCTGGAGGGT TGTTTTGGTA TGTTTTTGTATC	TTGCGGCCCC CCGCGCCAG CCGCCGCGCC ACCGCATGG AATGTCACGT TTTTGCTGT GGCATATTAC CTTGCTACCT CTCACTTTCT ACAGCCTTAA TTTTCCCTCT TCGGAAACCA ATCACCTTCT AGTGACCTCT AGTGACCTCT AGTGACCTCT AGTGACCTCT AGTGACCTCT ATCACAGGATTC ATCACAGGATTC	GGCCCGGCT GGCTACCGGG GCTCCGGG GGAATACCAG GGTCCTACTTTTA GAGGCTACAT GGATCGTCT TGGCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGATCAC GGTCCTTAAA AGAAGGATGC CTGCCTAAC CGTGCCCAGCC	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCCGAC CTCTGGGCC TCAGATGACA CTGGGCAGAC CTTTCTGGTC CCTGGAGAGGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTG TAATCCCTGC AGGGTTGATT CAAGGAGGAC CGCCAAGACT GAAAGAGACT	CCGCCGCCGC CCCGATCACC CCCGATCACC CCCCACCCGG GCCGATCGCT TTCACCAACT CCTCTCAACA CTCTTCTACT AGCACACT AGGAAGGAG GCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA GTCCGGACC ACGTCGGAAC ACGTCGGAAC TCCAAGGTGG	CGCCGCCGC CGCCGCCGC CGGCCGCC CCGACCCGC CCGACCCGC CCTTCCAGAA TCTACTCCT AAACCAAAAC CTTTCTGGGA TCTTGGCAT TCCAGACTCTC TCCTGAGATC ACATCACTTT CAGATCGCTC GCGCTTCCTT ACCGCCAGCC AAGTCGTCCC AAGTCGTCACACTCACTTC CCGGTGAAAGGT ATGCGAATGA	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
45 50 55	CAAGGCGGGG GCCGCCGCGCC GCCCGCGCCC CGGCACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGA AAAATTATG CAAAATTATG CAAAATTATG CCTTCGAGG CCCTGTTCCCTTTCCCTTTCCTTT	TTGCGGCCCC CCGCCGCAG CCGCCGCAG ACCGCATGG AATGTCACGT GTGTGGGTGC CCACATGACC TTTTTGCTGT GCCATATTCC CTTGCTACCT ACAGCCTTAA TTTTCCTCT TCGGAAACCA ATCACCTTCT AGTGACCTTCT AGTGACCTCT GCTAAGGATC GCTTTGATCG GCTTTGATCG	GGCCCGGCT GGCACCGGG GGAATACCAG GGATCGTTTTA GAGGCTACAT GGATCGTCT TGTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACC GGTGGATCAC GGTCGTTAAA AGAAGGATCA TCCACGACC TCCACGCC TCCACGCC TCCACGCC TCAAGTCCCC	CCCTGCGCCG AGCAGCCGGG CCGATCACC CTTCTGCAGC CAACCCGAC CTCTGGGCA CTGGGCAGAC CTTGGTGTC CCTGGTGTGTC CCAGGTGGAC CCTGGTTGTT CAGGTGGAC AGGGTTGATT CAAGGAGGAC CGCCAAGACT CAAAGAGAGACA ACAGAAGGAAGAACAA	CCGCCGCCGC CCCGATCACC CCCCGCCCGG GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGGAAGGAG GCCTAGCCA CTGTTTCGTG TCCTGTTTCT TCCAGAGTCCA GTCCGGGCT ACGTCGAAC AGGAAGCAC TCCAAGGTGG TCCAAGGTGG TCCAAGGTGG	CGCCGCCGC CGGCCGCCGC CCGACCCGC CCGACCCGC CCGACCCGC CCTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGCAT TCAGTCTTC TCCTGAGATC ACATCACTT ACGCAGCC AGGTCTCCT ACCGCCAGCC AAGTCGTCC CGGTGAAGGT ATGCGAATGA CTCTGTTTAA	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140
45 50 55 60	CAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TTGCGGCCCC CCGCCCAG CCGCCCAG ACCGCATGG AATGTCACGT CGACATGACC TTTTTGCTGT GCGATATTCC CTCGCTACCT ACAGCCTTAA TTTTCCTCT ACGCATACAC ATGACCTTCT AGGAAACCA ATGACCTTCT AAGAACTGGA TCCAAGGATC AAGAACTGGA AAGACTGGA AAGACTGGA AAGACTGTT	GGCCCGGCT GGCAACCGGG CGCTCCGGGG GGAATACCAG GGATCGTTTTTA GGAGCTACAT GGATCGTCT TGTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCA GGTCCTTAAA AGAAGGATGC TCTGCCAGGC TCAGCCCCG TCAGCCCCC TCAAGTCCCC	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCGAC CCTCTGGGCAGAC CTGGGCAGAC CTTGGGCAGAC CCTAGTGTGT CCAGGTGGAC GCTCGTCTGC CAGGTGGAC GCTCGTCTGC CAGGTGGAC CAGGTTGAT CAAGGAGGAC CGCCAAGACT GAAAGAGAGT ACAGAAGGAG CCTCATGAG	CCGCCGCCGC CCCGATCACC CCCGCCCGG GCCGATCGCT TTCACCAAGT TTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGGAAGCACA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA AGGAAGCAGC ACGTCGGAAC ACGAAGCACC TCCAAGGTGC TCCAAAGGTGC TCGAAGGTGC TCGAAGGTGC TCGAAGGTGC	CGCCGCCGC CGCCGCCGC TGCCCGCC CCGACCCGC CCGACCCGC CCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TCCTGACATC TCCTGACATC CACCCTC CGCGTTCCTT ACCGCCAGCC AAGTCGTCC AAGTCGTCC CGGTGAAGGT ATGCGAATGA ATGCGAATGA ATGCGAATGA	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140
45 50 55	CAGGCGGGG GCCGCCGCGC CGCCCGCGCC CGCCCGCGCC CTGGGACTGG CACGGTCCTC TGCCTTGGGA AAGAAGTCG CACCACGCTG AGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTTC CCTGCAGGG CCTGCAGGG TGTTTTGGTA TGTTTACTCC GGAGGTGGAG GGTGTTATAC CGACCTGATG CACCAAGGCC	TTGCGGCCCC CCGCGCGCC CCGCCGCGCC ACCGCATGG AATGTCACGT TTTTGCTGT GGCATATACC CTTGCTACCT CTCACTTTCT ACAGCCTTAC ATTTCCCTCT ACAGCCTTCT AGAACTGA ATCACCTTCT AGAACTGGA ATCACGTTTGATCG AAGACTGGA ATCACCTTTGATCG AAGACTGGA ATCACCTTTG	GGCCCCGGCT GGCAACCGGG GGAATACCAG GGATCCATT GAGGCTACAT GGATCGTCT GGATCGTAG AGAGGATGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGATCAC GGTGCCAGCC TCAAGTCCCC GGCCCTACTT AGGGCTACTT AGGGCTACTT	CCCTGCGCCG CCCGACCACC CTTCTGCAGC CAACCCCGAC CTCTGGGCC TCAGATGACA CTGGGCAGAC CTTCTGGAC CTTCTGGAC CTTCTGGTC CCAGGTGGAC CCTAGTGTGT CCAGGTGGAC CCTCGTCTTG TAATCCCTGC AGGGTTGATT CAAGGAGGAC CGCCAAGACT GCAAGACT ACAGAAGGAG CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTTAAAGTTG CTACACCGTC	CCGCCGCCGC CCCGATCACC CCCCACCGG GCCGATCGCT TTCACCAAGT TCTTCCCCT CCTCTCAACA CTCTTCTACT AGCAAGGAG GCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA GTCCGGGGCT ACGTCGGAAC TCCAGCAGCAGC TCCAGCAGCAGC TCCAGCAGCAGC TCCAGCAGCAGC TCCACCAGCAGCTGG TCCACCAGCTGGAACCCCT TTCTTCTTCTTCTCTCTCTTCTACT	CGCCGCCGC CGCCGCCGC CGGCCGCC CCGACCGCT CCGACCGCT CCTTCCAGAA TCTACTAGAA TCTTCTGGCAA TCTTGGCAT TCAGTCTTC TCAGAATCACTTT CAGATCACTTT CAGATCACTTT ACCGCCAGCC AAGTCGTCCT ACGCCAGCC AAGTCGTTAAA AGGCCATCACTTTAA AGGCCATCACTTTAA AGGCCATCACTTTAA AGGCCATCACTTTAA AGGCCATCACTTTAA AGGCCATCACTTTAA AGGCCATCACTTTAAA AGGCCATCCACTCCTC	120 180 240 300 360 420 480 660 660 720 780 840 900 91020 1020 1140 1200 1260 1320
45 50 55 60	CACAGGCGGCG GCCGCCGCCGCGCCGCGCCGCCGCCCCGCGCCCCCGCGCCCC	TTGCGGCCCC CCGCCCAG CCGCCCAG ACCGCCATGG AATGTCACGT GTGTGGGTGC CCACATGACC TTTTTGCTGT ACAGCCTTAA TTTTCCTCT TCGGAAACCT AGTGACCTTCT CCTGTGACCC CCAGACTGCC CCAGACTGCC CCAGACTGCC CCTCGTGCTGC	GGCCCGGGCT GGCACCGGG GGAATACCAG GGATCGTTTTTA GAGGCTACAT GGATCGTCT GGCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCACGACCC GGTGGATCAC GGTCCTTAAA AGAAGGATGC TTGACCCC GGTCGATCAC CTGCCCAGCC CTGCCAGCC TCAGCTCCT ACAGTCCCT ACAGTCCCT ACAGTCCCT ACAGTCCCT ACAGTCCTT ACGCCTACTT ACGCCTACTT ACCAGTACTT ACCAGTACTT	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCGAC CTCTGGGCC TCAGATGACA CTGGGCAGAC CTTGGTGTG CCTGGTGTGT CCAGGTGGAC GCTCGTCTTG CAAGGAGGAC CGCCAAGACT CAAGGAGGAC CTCATGAGAC CGCCAAGACT ACAGAAGAGAC CCTCATGAC CCTCATGAC CCTCATGAC CCCACCGTC CCACACCTC CCACACCTC CCACACCTC CCACACCTC CCACACCTC	CCGCCGCCGC CCCGATCACC CCCCGCCCGG GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGGAAGGAG GCCTAGCCA CTGTTTCTT CCAGAGTCCA GTCCGGGCT ACGTCGAAC TCCTCGTACCA TCCTCGTCCA TCCACAGGTCC TCCACAGGTCC TCCACAGGTCC TCCACACTC TCTCTCTTCA	CGCCGCCGC CGGCCGCGC CGGCCGCC CCGACCCGC CCGACCCGC CCTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGCAT TCAGTCTT CAGATCACTT CAGATCACTT ACCGCCAGCC AAGTCGTCT ACCGCCAGCC AAGTCGTCT ACCGCCAGCC AAGTCGTCCT ACCGCCAGCC AAGTCGTCCT ATGCGAATGA CTCTGTTTAA AGGCCATCCA TCGTGAATGA TCGTGAATGA TCACTGCCTG GCATGACGT TCACTGCCTG	120 180 240 360 420 480 540 660 720 840 900 960 1020 1140 1200 1250 1320 1380
45 50 55 60	CAGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TTGCGGCCCC CCGCCCAG CCGCCCAG ACCGCATGG AATGTCACGT GTGTTGGTTGC CGACATGACC TTTTTGCTGT GCGATATTCC CTTGCTACCT ACAGCCTTAA TTTTCCTCT ACAGCCTTAA ATTACCTCT AGTGAACCC AGTGACCT AGTGACCTTCT AAGAACTGGA TCCAAGGAT TCCAAGGAT TCCAAGGAT CCAAGGAT CCAAGGAT CCAAGGAT ATGTTTCCG CCAGACTGG CTCGTGCTGC CTCGTGCTGC GTCATTGGGG	GGCCCGGCT GGCAACCGGG CGCTCCGGGG GGAATACCAG GGATCGTTTTTA GAGGCTACAT GGATCGTCT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGATCAC GGTCCTTAAA AGAAGGATGC TCAAGGACCC GGCCTACTT GGCCAGCC TCAAGTCCCC GGCCTACTT AGGGCTACTT AGCGCTACTT AGCGCTACTT AGCGCTACTT CCGGTACTT CCGGTACTT CCGGTACTT CCGGTACTT CCGGTACTT CTGTCTATCG	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCGAC CCTCTGGGCAGAC CTGGGCAGAC CTGGGCAGAC CTGGGCAGAC CCTAGTGTGT CCAGGTGGAC GCTAGTGTGT CAAGGAGGAC CGCCAAGACT GAAGAGGAG CCTCATGAGAG CCTCATGAGAG CCTCATGAC CCTCATGAC CCTCATGAC CCTCATGAC CTACACCCTGC CAAGCCTG CAAGCCTG CCAAGCTG CCACAGCTG CCACAGCTG CCACAGCTG CCACAGCTG CCACAGCG CCACAGCTG CCACAGCTG CCACAGCTG CCACAGCTG CCACAGCTG CCACATCTGC CAAGGCCCTG	CCGCCGCCGC CCCGATCACC CCCGATCACC CCCCCCCCCC	CGCCGCCGC CGCCGCCGC CGCCGCCGC CCGACCCGC CCGACCCGC CCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGCAT TCCTGACATC ACATCACTT CAGATCGCTC GCGCTTCCTT ACCGCCAGCC AAGTCGTGCC CGGTGAAGGA ATGCGAATGA ATGCGAATGA TCACTGCTG CGCTGCATCA TCGTGAATGA TCACTGCTG GCATGCATGA TCACTGCTG CGCTGCATGA TCACTGCTG GCATGAAGGA TCACTGCTG GCATGAAGGA TCACTGCCTG GCATGAAGGA TCACTGCCTG GCATGAAGGA TCACTGCCTG	120 180 240 300 360 420 480 660 660 720 780 840 900 91020 1020 1140 1200 1260 1320
45 50 55 60 65	CAGGCGGGGGGGCGCCGCCGCCGCCGCCCCCCCCCCCC	TTGCGGCCCC CCGCCGCAG CCGCCGCGCAG ACCGCCATGG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC CTCACTTTCT ACAGCCTTAA TTTTCCCTCT ACTACCTTCT AAGAACTGGA TCCAAGGATC GCTTTGATCG ATGACCTTTC AAGACTGGA TCCAAGGATC CCTAGTTTCCC CTAGTTTCCC AAGACTGGA ACGTTTCCC CCAGACTGGC CTCGTGCTGC ACGTCGGGG ACGTACATTA	GGCCCGGGCT GGCTAGCGGG GGAATACCAG GGCTCCGGGG GGAATACCAG CTTGTTTTTA GGATCGTCTT TGGCCCAGTT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGATCAC GGTGGATCAC GGTGGATCAC GGTGGATCAC GGTGGATCAC GGTGGATCAC GGTGGATCAC TCACGACCC TCAAGTCCCC GGCCCTACTT ACCAGTACTT	CCCTGCGCCG CCCGATCACC CTTCTGCAGC CAACCCCAC CTTCTGCAGC CTCTGGGCC TCAGATGACA CTGGCAGAC CTGGCAGAC CCTAGTGTGT CCAGGTGAC CCTAGTGTT CAGGTGAC CCTAGTGTT CAAGGAGAC CCTAGTGTT CAAGGAGAC CCAAGACT CAAAGAACT CAAAAGAC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCACGTC CAAAGCCCCC CCACGTCC CCACGTCC CCACGTCC CCACACCCCC CCCCCC CCCCCCC CCCCCCCC CCCCCC	CCGCCGCCGC CCCGATCACC CCCCCCCGG GCCGATCGCT TTCACCAAGT TTCATCACAAGT CCTCTCAACA CTCTTCTACT AGCCAACT AGCCAACT CCTTTTCTTC CCAGAGGAG GCCTAGCCA CTGTTTCTT CCAGAGTCCA GTCCGGACC TCCAGCAGC TCCAAGCTG TCCAGGAGC TCCAAGTTG TCCACAGTTG TCCTCTTTTC TTCATCACT CTGCTGTTTC TTCTCTTCTC	CGCCGCCGC CGCCGCCGC CGGCCGCGC CCGACCCGC CCGACCCGCT CCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTCTGGCAT TCCTGAGATC TCCTGAGATC ACATCACTTT ACGCCAGCC AAGTCGTCCT ACGCCAGCC AAGTCGTCATACACTTT ACGCCAGCC AAGTCGTCCC CGGTGAATGA TCTGTTTAA AGGCCATCCA TCACTGCCTG GCATGACTGATGA TCACTGCCTG GCATGACTGATGA TCACTGCCTG GCATGACTGATGA TCACTGCCTG GCATGACCAG ATTCACCCAG ACAGGTTCAT TCCTTCCTCT	120 180 240 300 360 420 480 660 660 720 780 840 900 1020 1080 1140 1200 1320 1380 1440 1500 1560
45 50 55 60	CAGGCGGGGGGGGCGCCGCCGCCGCCGCCGCCGCCCCCCC	TTGCGGCCCC CCGCCCAG CCGCCCAG ACCGCCATGG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT TCTGCTACCT TCGGAAACCAT ACACCTTCT AGGAAACTGCA AGGACTTTG ATGTTTTGCTGT AGGAACCGC CTTGTTGTTCCT AGTGACCTTCT AGGAACCGC CCTTGATTCC CCAGACTCG CCAGACTGGC CCAGACTGGC CCAGACTGGC CCAGACTGGC CCCGTCGTGCTGC GCGTCGGGG ACGTTCGATTA TGGCTGAATC TGGCTGAATC	GECCCEGET GECCCEGEG GEARTACCAG GEATCCAGEG GEATCCAT GEATCGTTTTA GEATCGTCT GEATCGTCT GEATCGTCAG GEATCGTCAG AGAGGATCC AAGAGGATCC GETGGATCAC GETGGATCAC GETGGATCAC GETGGATCAC GETGGATCAC GETGGATCAC GETGGATCAC GETGGATCAC TCAAGTCCC GECCCACGC TCAAGTCCC GECCCACGT TCAAGTCCC GECCCACGT TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCT TCATCTATCA AGATTGTCAA AGATTGTCAA ACATGATCTC TCGGCCCTTC	CCCTGCGCCG AGCAGCCGGG AGCAGCCGGC CCTCTGCAGC CAACCCGAC CTTCTGGACA CTGGGCAGAC CTTGGAGAG CTTGGAGAG CCTAGTGTT CAGGTGGAC AGGGTTGAT CAAGGAGGAC CGCCAAGACT ACAGGAGGAG CTTAAAGTGA CTTAAAGTG CCTAATGAC CTAAAGTG CCACATCTC CAAGGCCCC GCACATCTC CCACATCTC CCACATCTC CCACATCTC CCACATCTC CCACATCTC CCACATCTC CCTCATGCC CCTCATGCC CCTCATGCC CCTCATGCC CCTCATGCC CCTCATGCC CCTCATGCC CCTCATGCC CCTCATGCC CCTCCTGCCT CCCCGTCCTGCC CCCCTCCTGCC CCCCTCCTGCC CCCCGTCCTGCCC CCCCCCCC	CCGCCGCCGC CCCGATCACC CCCCGCCCGG GCCGATGGCT TTCACCAAGT TTCTCACCAAGT CCTCTCAACA CTCTTCTACT AGCCAACTC CTGTTTCGTG GCCCTAGCCA CTGTTTCGTG TCCAGAGTCCA GTCGGGGCT ACGTCGGAACCCT TTCTTCTTCA TCGAAGTCCA TCGAAGTCGA TCGAACACCT TTCTCTTCA CTCATCAAGT TTCGTCATTG TTCGTCAGTG GTGGACCCCT CTGCAAGTCA CTGGAAGTCA GTGGACCCCC CTGCAAGTCA GTGGACCCCC CTGCAAGTCA GGAGTCCA GGAGTGCCG	CGCCGCCGC CGGCCGCGC CGGCCGCGC CCGACCCGC CCGACCCGC CCGACCCGC CCGACCCGC CCTTCAGAA CCTTTCTGGGA TCTTCTGGGA TCTTGGCAT TCAGTCTT CAGATCCTC ACATCACTTT ACCGCCAGC AAGTCGTCCT ACCGCCAGCC AAGTCGTCTA ACGCCAGCC AAGTCGTCCT ACCGCCAGCC CGGTGAAGGA CTCTGTTTAA AGGCCATCCA TCGTGAATGA TCACTGCCTG GCATGACGAT ATCACCCGG GCATGACGAT ATCACCCAG ATCACCCAG ATCACCCAG CCATGACTCA TCACTGCCTCT TCATTGCTCT TCATTGCTCT TGATGGCTCT	120 180 240 300 360 420 540 660 720 780 840 960 1020 1140 1200 1140 1320 1380 1440 1560 1560
45 50 55 60 65	CAGGCGGGGGGGGGGGCGCGCGCGCGCGCGCGCGCGCGC	TTGCGGCCCC CCGCCCAG CCGCCCAG CCGCCCAG ACCGCATGG AATGTCACGT GTGTTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT ACAGCCTTAA TTTTCCGTCT ACAGCCTTA ATGACCTTCT AAGAACTGCA ATGACCTTCT AAGAACTGCT AAGAACTGCT AAGAACTGGC CCTTGATTCC CCAGACTGC CTCGTGCTGC GTCATTGGGG ACGTCGGGGGA ACGTCGGATAC TTGGCTGATTC GTCAATGCTC GTCAATGCTC GTCAATGCTC GTCAATGCTC GTCAATGCTC GTCAATGCTC GTCAATGCTC GTCAATGCTC	GGCCCGGCT GGCAACCGGG GGAATACCAG GGATCGTTTTTA GAGGCTACAT GGATCGTCT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGATCACC GGTCCTTAAA AGAAGGATGC TCAAGACCC GGCCTACTT GGCCCAGCC TCAAGTCCCC GGCCTACTT ACGGCTACTT ACGGCTACTT ACGGCTACTT ACGAGTACTT TCTGTCTATCG AGATTGTCAA ACATGATCTT TGGGCCCTTC TGGTGCCAGT	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCGAC CTTCTGGGCAGC CTTGGGCAGAC CTGGGCAGAC CTTGGGCAGAC CTGGGCAGAC CTTGGGCAGAC CTAGGTGTGT CAAGGTGAC CTAGTGTGT CAAGGAGGAC CTCATGAGAG CTCATGAGAG CCTCATGAGAG CTTAAAGTGG CTAAACCCTGC CAAGCCTG CAAGCCTG CAAGCCTG CAAGGCCTG CAAGCCTG CCAAGCTT CTAAACTTG CCACATCTGC CAAGCCCTG CGTCCTGGCCT CGTCCTGGCCT GAAGACCAAG	CCGCCGCCGC CCCGATCACC CCCGATCACC CCCCCCCGG GCCGATGGCT TTCACCAAGT TTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGCAAGTCC AGGAAGCACA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA AGGAAGCAGC ACGAAGCAGC TCCAAGGTGC TCCAAGGTGC TTCTTCTTCA CTCATCAAGT CTGCTGTTTC CTGCTGTTTC TTCGTCACTG CTGCTCACCA GTGGACCCC TTCTTCTTCA CTCATCAAGT CTGCTGTTTC CTGCTGTTTC CTGCTGTTTC CTGCTACCAG GTGGACGCCA GGGAGGCCG ACGTATCACG ACGTATCACG	CGCCGCCGC CGCCGCCGC CGCCCCGC CCGACCCGC CCGACCCGC CCGACCCGC CCGACCCGC CCTTCCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTACGTCT TCCTGACATC CACTCACTT CAGATCGCTC GCGCTTCCTT ACCGCCAGCC AAGTCGTCCC AAGTCGTCCC AGGTGAAGGA ATCGAATGA TCATGCAATGA TCATGCAATGA TCATGCAATGA TCATGCAATGA TCATGCAATGA TCATGCAATGA TCATGCATCA TCATGCATCT TGATGGATCA TCATGCTCT TGATGGTCCT TGATGGTCCT TGGCCCACAT	120 180 240 300 360 420 660 660 720 780 840 900 1020 1140 1200 1260 1380 1440 1560 1560 1620 1680
45 50 55 60 65	CAGGCGGGG GCCGCCGCCGCGCGCCGCGCCCGCGCCCCGCGCCCCGCGC	TTGCGGCCCC CCGCGCCCC CCGCCGCCCC ACCGCGCCC ACCGCATGG AATGTCACGT TTTTGCTGT GCATATTCC CTGCTTTCT ACAGCCTTAC ATTTCCCTCT TCGGAAACCA ATCACCTTCT AAGAACTGA TCTCACTTCT AAGAACTGA TCCTGTGTGCTC CTGGTGACCC CTGTGCTGC CTGTGCTGC CTGTGCTGC CTCATTTTCCG CAGACTGGC CTCATTTCCG CAGACTGGC CTCATTTCCG CTCATCGGG ACGTCGGGG ACGTACATTA TGGCTGAATC GTCAATCGGA	GGCCCGGCT GGCTAGCGC AGCAACCGGG GGAATACCAG GGTCCGGGG GGAATACCAG TTTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACC GGTGGATCAC GGTGGATCAC GGTGGATCAC TCCAGAC TCCAGAC TCAGACCC GGCCTACT TCAGACCC TCAAGTCCC TCAAGTCCT TCAAGTCAT TCAAGCCGAC TCAAGCCCTACT TCAGGCCAT TCAAGCCGAT TCAAGCCGAT TCAAGCTGAT	CCCTGCGCCG AGCAGCAGC CCAACCCGAC CTTCTGCAGC CAACCCGAC CTCTGGGCC TCAGATGACA CTGGGCAGAC CTTTCTGGTC GCTGGTGGTC CCTGGTGTGTC CAGGTGAC CTTACTCTGTC CAGGTGAC CTTACTCTTC CAAGACAC CGCCAAGACT CAAAGAGAGAC CTTAAACTTG CTACACCGTG CAAGACCTG CAAGACCTG CAAGACCTG CAAGACCTG CAAGACCTG CAAGACCTG CAAGACCTG CAAGACCTG CAAGACCTG CAAGACCAG GAACACAAGACT GAAGACCAAG GAACCAAG GAACCAAG GAACCAAG GAACCAAG CACCAGCACCAG CAACCCAG CAACCCAG CAACCCAG CAACCCAG CAACCCAG CAACCCAG CAACACCAG CAACCCAG CAACCAG CAACCCAG CAACCCAC CAACCCAG CAACCCAC CAA	CCGCCGCCGC CCCGATCACC CCCGCCCGG GCCGATGGCT TTCACCAAGT TTCACCAAGT CCTCTCAACA CTCTTCTACT AGGAAGGAG GCCTAGCCA CTGTTTCGTG TCCAGAGTCCA AGGAAGCAC TCCAAGGAG TCCAAGGTGCA TCCAAGGTGCA TCCAAGGTGCA TCCTCTTTCT TTCTTCTTC TTCGTCAGTG CTGATCACAGT CTGATCACAGT CTGATCACAGT CTGCTGATTC CTGATCACAGT CTGATCACAGT GTGATCACCA GTGGACCCTC CTGCAAGTCA GTGATCACAG CTCGAAGTCA GAGTGCGCA CTGCAAGTCA GAGTGCGCA CTCCAATGGG CTCAATGGG	CGCCGCCGC CGCCGCCGC CGCCCGCCGC CGGCCGCCG	120 180 240 300 360 420 540 600 660 720 780 840 900 1020 1140 1260 1320 1320 1340 1560 1560 1680 1740
45 50 55 60 65 70	CAGGCGGGGGGGGCGCCGCCGCGCGCCCCCGCGCCCCCCC	TTGCGGCCCC CCGCCGCAG CCGCCGCAG ACCGCCATGG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTTACT ACAGCCTTAA ATTTCCCTCT ACAGCCTTCT AAGAACTGGA ATCACCTTCT AAGAACTGGA ATCTTTTCCGCAAGATCC CTCAGTTTTCCC CTGGTCTGC CTCATTGGTG CTCATTGGGG ACGTCGGCG ACGTCATTGGGG ACGTACATTA TGGCTGAATCT TGGCTGAATCT ATGACTGAAGCTTTG CTCAATGCTG ACGTACATTA TGGCTGAATCGGA CCCTGGGAGC CCCTGGGAGC CCCTGGGAGC CCCTGGGAGC CCCTGGGAGC	GGCCCGGGCT GGCTAGCGGG GGAATACCAG GGCTCCGGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCTG TGGCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGATCAC GGTGGATCAC GGTGGATCAC GGCCTACTT ACCAGACCC TCAAGTCCCC GGCCCTACTT ACCAGTACTT ACCAGTACTT ACCAGTACTT TCCAGCCCTTC TGATGCCGAT TCAAGTTCTC TGATGCCGAT TCAAGTTCTA TCAAGCTGAT TCAAGCTGAT TCAAGCTGAT TCAGCTACAT TCAGCTGAT TCAGCTCAT TGGCATTCAA	CCCTGCGCCG CCCGACCAGC CAACCCGAC CTTCTGCAGC CAACCCGAC CTCTGGGCA CTGGGCAGAC CTGGGCAGAC CTAGTGTGT CCAGGTGGAC CCTAGTGTGT CAAGGAGAC CCTAGTGTGT CAAGGAGAC CCTAGTGTGT CAAGGAGAC CCTAGTGTGT CAAGGAGAC CCAAGACT CGAAAGACT CAAAGACGAC CTTAAAGTTG CTACACCGTG CCACATCTGC CAAAGGCCCC CGACATCTGC CAAAGCCCCC CGTCCTGGCT CAAAGCCAAGCT CAAAGCCAAAGCT CGAAAAGTTG CTCAAGCCCCC CGTCCTGGCT CAAAGCCAAACTT CGACAAAGGTT	CCGCCGCCGC CCCGATCACC CCCCGCCCGG GCCGATCGCT TTCACCAAGT TTCACCAAGT TCTTCTACT AGCCAACT AGCCAACT CCTCTACCA AGCAGGAG GCCTAGCCA CTGTTTCGT CCAGAGTCCA GTCCGGGGCT ACGTCGGAC TCCAAGCTG TCCAAGTTGT TCTCTTCTTC TCACAAGTTG TCATCACT TTCTTCTTCT TTCATCACT CTGCTGTTTC TTCGTCACT CTGCTACCA CTGCTACCA CTGCTACCA CTGCTACCA CTGCTACCA CTGCTACCA CTGCTACCA CTGCTACCA CTGCAAGTCA CTGCTACCA CTGCAAGTCA GCAGTGCGG CCTGCAAGTCA GCAGTGCGG CTCAATGGGA CTGCCATCA	CGCCGCCGC CGCCGCCGC CGCCCGCCGC CGGCCGCCG	120 180 240 300 360 420 660 660 720 780 840 900 1020 1140 1200 1260 1380 1440 1560 1560 1620 1680
45 50 55 60 65	CAGGCGGGG GCCGCCGCCGCGCGCGCGCGCGCGCGCGCG	TTGCGGCCCC CCGCCCAG CCGCCCAG CCGCCCAG ACCGCCATG AATGTCACGT GTGTTGGTTGC GCCATATTCC CTTGCTACCT TCTGCTACCT ACAGCCTTAA TTTTCCTCT ACAGCCTTAA TTTTCCTCT AGTGAACCC AGTGACCC AGTGACCC AGTGACCT AAGAACTGGA ACCATTTC AAGAACTGGA ACGACTGG CCTGTGCTGC GTCATTGGGG ACGTCGGGGG ACGTCGATAC GTCAATGCT GTCAATGCT GTCAATGCT GTCAATGCT GTCAATGCT CTCAATGCT GTCAATGCT GTCAATGCT GTCAATCGG CCTTGGAGAC CCTTGGAGAC CCTGGAGAC CCTGGAGAC CCTGGAGAC CCTGGAGAC CCTGAAGAAC CCTGAAGAAC CCTGGAGAC CCTGAAGAAC CCTGAAGAAC CCTGAAGAAC CCTGAAGAAC CCTGAAGAAC CCTGGGGCC CTGAAGAAC CCTGAAGAAC CCTGAAGAAC CCTGAAGAAC CCTGAAGAAC CCTGGGGCC CTGAAGAAC CCTGGGGCC CTGAAGAAC CCTGGGGCC CTGAAGAAC CCTGGGGCC CTGAAGAAC CCTGGGGCC CTGAAGAAC CCTGGGGCC CTGAAGAAC CCTGGGCCC	GGCCCGGCT GGCATCCGGG GGAATACCAG GGATCGTTTTTA GAGGCTACAT GGATCGTCT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCACGACCC GGTGGTACC GGTCCTTAAA AGAAGGATGC TCAAGACCC GGCCTACTT GGCCCAGCT TCAAGTCCC GGCCTACTT CTGCCAGCC TCAAGTCCCT TCAGTACTT TCGCCAGCT TCAGTACTT TCGCCAGCT TCGCCAGCT TCGCCAGTT TCGCCAGCT TCGCCAGTT TCGCCAGT TCGCCAGTT TCGCCAGT TCGCCATCCT TGGCCCTTC TGATGCCAT TCGACCTACTT TCGCCCTACCT TCGCCCCCC TCGCCCTACCT TCGCCCTACCT TCGCCCCCC TCGCCCCCCC TCGCCCCCCC TCGCCCCCCC TCCCCCCCC	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCGAC CCTCTGGGCAGAC CTTGGGCAGAC CTTGGGCAGAC CTTGGGCAGAC CTTGGGCAGAC CTTGGGCAGAC CTTGGGCAGAC CTTGGTGTGT CCAGGTGGAC CTATCTGTCT CAAGGAGGAC CCCAAGACT CAAGGAGGAG CCTCATGAG CCTCATGAGC CTAAAGTTG CAAGCCTG CAAGCCTG CAAGCCTG CAAGCCAGAC CTCATGAC CCACATCTGC CAAGCCCTG CGACACAGAC CTCATGACCCGT CTCAGCCCCT GAAGACCAAG GAACAAGTT GGACAAGATT GGACAAGCTT CTCACCCTGC CTCAGCCCTG CTCAGCCCTG CTCAGCCCTG CTCAGCCCTT CTCACCCTGC CAAGCCAAGC	CCGCCGCCGC CCCGATCACC CCCGATCACC CCCCCCCGG GCCGATGGCT TTCACCAAGT TTTCCCCT TCTTCACA AGCAAGTA AGCAAGTA AGCAAGTA CTCTTCTACT AGCCAAGTTCC CTGTTTCGTG TCCTGTTTCTAC AGGAAGCAC AGGAAGCAC ACGAAGTCCA ACGAAGTCCA ACGAAGTCCA ACGAAGTCCA ACGAAGTCCA TCCAAAGTTGC TCCATCAAGT CTGCTGTTTC CTGCTGTTTC CTGCTGTTTC CTGCTGTTTC CTGCAAGTCA GTGGACCCT CTGCAAGTCA GTGGACGCC CTGCAAGTCA GGAGTGCCG ACGTATCAGG ACGTATCAGG CTCAATGGCA CTGCCATTCA GTGACCTTCA GTGACCTTCA GTGACCTTCA GTGACCTTCA GTGACCTTCA	CGCCGCCGC CGCCGCCGC CGCCCCGC CCGACCCGC CCGACCCGC CCGACCCGC CCGACCCGC CCTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTACGTCT CCGAGATCGC ACATCACTTT CAGATCGCTC GCGCTTCCTT ACCGCCAGCC AAGTCGTCCC AAGTCGTCC ATGCGAATGA ATGCGAATGA ATGCGAATGA TCTTGTTTAA AGGCCATCCA TCGTGAATGA TCATGCATG GCATGAATGA TCTTGCTCT TGATGGTCT TGATGGTCT TGATGGTCT TGATGGTCCT TGGCCACAT TCAAAGTGCT CCTGGGTCG ACGAGAGGA ACCAGAGGA ACGAGAGACAA	120 180 240 300 360 420 660 660 720 780 840 900 1020 1140 1200 1380 1440 1500 1560 1680 1740 1860 1860 1920
45 50 55 60 65 70	CAGGCGGGG GCCGCCGCGC GCCGCGCCC CGCCGCGCC CGCCGC	TTGCGGCCCC CCGCGCCCC CCGCCGCCCC ACCGCGCCC ACCGCGCCC ACCGCCATGG AATGTCACGT TTTTGCTGT GCCATATTAC CTTGCTACCT CTCACTTTCT ACAGCCTTAA ATTTCCCTCT ACAGCCTTAA ATTTCCCTCT ACAGCCTTCA ATCACCTTCT AGAACTGA ATCACCTTCT AGAACTGA ATCACCTTCT CCAGACTGC CTCGTGCTGC CTCGTGCTGC CTCGTGCTGC GTCATTGGG ACGTCGGAATC GTCAATGCT GTCAATGCT GTCAATGCT CGCAATCGGA CCTGGAATC CTCAATGCT CTCAAGAACT CTCAATGCT CTCAATGCT CTCAATGCT CTCAAGAACT CTCCAGACACA	GGCCCGGCT GGCTAGCGC AGCAACCGGG GGAATACCAG GGCTCCGGGG GGAATACCAT GGATCGTTTTA GAGGCTACAT GGATCGTTCA TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGATCAC GGTGGATCAC TCAGGACCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCT TCTCTATC TGGCCTACT TCAAGCCGT TCAAGCGAT TCAAGCTGAT TCACCTACCT TGTGCACATT TCTCTCATTC TGTCCACCTTCCT TGTCCACCTTCCT TTTCGCCACCTT TCTGCCACCTT TCTGCCACCTT TCTGCCACCTTCCTTCCTTCTT TCTCTCACTTCCT TCTCCTACCT TCTTCCTTC	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCCGAC CTCTGGGCC TCAGATGACA CTGGGCAGAC CTTCTGGGC CTAGTGTGT CCAGGTGGAC GCTCGTCTTG TAATCCCTGC AGGGTTGATT CAAGGAGGAC CGCCAAGACT GAAAGAGAG CCTCATGAGC CTAAAGTGC CAAGACT GAAAGACT CAAGACT CAAGACT GAAAGCCCT GAAGGCCTC GTCATGACC GAAGGCCTC GTCATGACC GAAGGCCTC GTCAGCCCC CGTCCTGGCT GAAGACAAGT GGACAAGTT GGACAAGTT GTCAGCCCTT CTCAGCCCTC TAAGCCAGT GAACGAAATT GGACAAGGTG TCCACCCTTAC TTTGGCCTTC TTTGGCCTTC TTTGGCCTTC	CCGCCGCCGC CCCGATCACC CCCGCCCGG GCCGATCGCT TTCACCAAGT TTCACCAAGT TCTATCCCT CCTCTCAACA CTCTTCTACT AGCCAAGTCCA GCCCAACTC TCCTTCTTCTTC TCCTGTTTTCTT TCCAGAGTCCA AGGAAGCAGC TCCATCTACTC TTCTTCTTCT TTCGTCAGTG TTCGAAGTCA GGAGTGCGG CTGCAAGTCA GGAGTGCGG CTCAATGGGA CTCAATGGGA CTCACTCA TTCAACATCC TTCAACATCC	CGCCGCCGC CGCCGCCGC CGCCCCGC CGCCCCGC CCGCCCGC CCGACCCGC CCGACCCGC CCGACCCGC CCTTCCAGAA TCTACGTCA AAACCAAAAC CTTTCTGGGA TCTTGGGAT CAGTCTTC CAGATCACTTT ACACCAGC AAGTCGTCCC AAGTCGTCCT ACCGCCAGCC AAGTCGTTCAA ACGCCAGCC AAGTCGTTCAA ACGCCATCATTAA ACGCCATCACTTTAA ACGCCATCACTTTAA ACGCCATCACTTTAA ACGCCATCACTTTAA TCACTGCTTC CCATGAATGA TCACTGCTCT TCATGCTCT TCATGCTCT TCATGCTCT TCAAAGTCCT GCACGGACGA CCTGGGTCCT GCACGGACCA TCCAGGACCA TCCAGGACCA TCCAGGACCA TCCGGTTTCC	120 180 240 300 360 420 540 600 660 720 780 840 900 1020 11200 1260 1320 1320 1320 1440 1500 1680 1740 1860 1740 1800 1920 1980
45 50 55 60 65 70	CAGGCGGGG GCCGCCGCGC GCCGCGCCC CGCCGCGCC CGCCCGCGCC CTGGGACTGG CACGGTCCTC TGCCTTGGA AAGAATCATG CAAAATTATG CAAAATTATG CTACCTCTAC ACCCTGTAC GGAGTGAGGC TGTTTTGGAG GCTGTAGAG GGTTTTTATAC CAACACCGCC CAAGACCGCT AAAATCCTC GGACTGAGGC CATGCAGGCC CAAGACCGCT AAAATCCTC GGACTTGAC CACAGACGCC CAAGACCCTATAC CACAGACGCC CAAGACCCTATT CATCCTGCAGGCC CAAGACCCTATT CATCCTGAACATT CATCCTGAACATT CATCCTGGAT CATCCTGGAT CACACCTTTT CATCCTGGAT CACACCTTTT CATCCTGGAT CACACCATT CATCCTGGAT CCTGAACATT	TTGCGGCCCC CCGCCCAG CCGCCCAG ACCGCCATGG AATGTCACT GTGTGGGTGC CCACATGACC TTTTTGCTGT GCCACATTCC CTCACTTTCT ACAGCCTTCT ACAGCCTTCT AGGAACCA ATCACCTTCT AGGAACCA ATCACCTTCT AGGAACCA ATCACCTTCT AGGACCTTCA AGGACTGC CCTTGATCG CCTGTGCTGC CTCATTGGTGC GCCAGACTGGC CTCGTGCTGC GTCATTGGGG ACGTCGGG ACGTCGGGC CTCAATGCTG GACAATCGG GCCAGACTG CCCAGACGC CTGAAGACT GCCAGACGC CTGAAGACT GCCCAGACGC CTGAAGACT CTCCAGGACGC CTGAAGACT CTCCAGGACG CTGAAGACT CTCCCATGG	GGCCCGGCT GGCTAGCGC AGCAACCGGG GGAATACCAG GGATCCTGTTTTTA GAGGCTACAT GGATCGTCT GGATCGTAG AGAGGATGC TACTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA GGTCCTTAAA AGAAGGATGC TCACCAGCCC GGTCGTACAT ACAGTCCC GGCCTACTT ACCAGTCCT TCAGTCATT ACCAGTCTT ACCAGTCCT TCAGTCAT TCAGCTCTT TCAGCGCTTC TGAGTCCT TCATCGGCCTTC TGAGTCCT TCATCGCTCT TCATCGCTCT TCATCGCTCT TCATCGCTCT TCATCGCTCT TCATCGCTCT TCATCAGCACT TCATCAGCACT TCATCAGCACT TCATCAGCACT TCATCAGCACT TCATCAGCACT TCATCAGCACT TCATCAGCACT TCATCAGCACT TCATCAGCACACT TCATCAGCACCT TCATCAGCACCT TCATCAGCACCT TCATCAGCACCT TCATCAGCACCT TCATCAGCACCT TCATCAGCACCT TCATCAGCACCT TCATCAGCACCAC TCATCAGCAC TCATCA	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCCGAC CTTCTGGTC CTCTGGGCA CTGGGCAGAC CTGGGCAGAC CTGGGCAGAC CTGGGCAGAC CTAGTGTGT CAGGTGGAC AGGGTTGATT CAAGGAGGAC CGCCAAGACT GAAGAGAGAC CTAATGTGTT ACAGCAGAC CTAAAGTTG CCACATCTGC CACATCTGC C	CCGCCGCCGC CCCGATCACC CCCCGCCCGG GCCGATGGCT TTCACCAAGT TTCACCAAGT TCTTCTACT AGCCAACT CTCTTCTACT AGCCAAGT CCCTAGCA CTGTTTCGTG TCCTGTTTCGT ACCTGGGACC CTGCTAGCA ACGAGGTGCA ACGAGGTGCA CTCACAGGTGCA CTCACAGGTGC TCCAAGGTGG TCGACAGTCA CTGCTGTTTT CTCTCTTCTCT	CGCCGCCGCC CGGCCGCCGC CGGCCGCCGC CCGACCCGC CCGACCCGC CCGACCCGC CCTACATACC CTTTCAGAA TCTTCTGGGA TCTTGGCAT TCAGTCTT CCTGAGATC TCCTGAGATC ACATCACTT ACGCCAGCC AAGTCGTCC CGGTGAATGA TCTTGTAAA AGGCCATCCA TCATGACTT ACACTCCT GCATGAATGA TCATGCCTG GCATGAGTA TCACTGCTT TCACTCCT TGATGGCTCT TGATGGCTCT TGATGGCTCT TGATGGTCT TCACAGTGCT GCAGGAGGA CCTGGGTTCC CCTCAAACGC CCCTCAAACG	120 180 240 300 360 420 600 660 720 780 840 900 960 1020 1140 1200 1140 1500 1620 1680 1740 1860 1980 1980 2040
45 50 55 60 65 70	CAGGCGGGGGGGGGCGCCGCCGCCGCCGCCGCGCCCCCCC	TTGCGGCCCC CCGCCCAG CCGCCCAG ACCGCCATGG AATGTCACGT GTGTGGGTGC CCACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT TCGGAACCAT ACACCTTCT ACAGACTCT AAGAACTGGA ACCATCTTC AAGACTGGA TCCAAGGATC CTCAGTTTCC CAGACTGGC CCAGACTGGC GTCATTGGTACT TTGGTACTT CGCAACTGGC CTCGTGCTGC CTCGTGCTGC GTCAATGACT TTGCTGAATCC GCCTGAATCC GCCAGACTGG CCTCGGACTC GCCCAGACTGC CCCAGACTGC CCCAGACTGC CCCAGACTGC CCCAGACTGC CCCAGACTGC CCCCAGACTGC CTCCAGCTGC CTCCCAGCTGC TTTCTCCC	GECCCGGCT GGCTAGCGC AGCAACCGGG GGAATACCAG GGATCGTTTTTA GAGGCTACAT GGATCGTCT GGATCGTCT GGCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCACGACCC GGTGGATCAC GGTCCTTAAA AGAAGGATC CTGCCAGCC TCAGTCCC GGCCTACTT ACCAGTACTT ACCAGTACTT ACCAGTACTT TCAGTACTC TGGCCTACTT TCAGTACTC TGGCCCTTC TGATGGCGAT TCAAGCTCCC TGATGGCGAT TCAAGCTCCC TGATGGCGAT TCAAGCTCAC TCGCCTACCT TCGCCTACCT TCGCCTACCT TCGTCCTACCT TCTCCTTCT TCTTCGTCT TCATCAGCAG ATGAGGAGCT ATGAGGAGCT ATGAGGAGCT TCATCAGCAG ATGAGGAGCT ATGAGAGCAGC ATGAGGAGCT ATGAGGAGCT ATGAGAGCAGC ATGAGGAGCT ATGAGAGCAG ATGAGGAGCT	CCCTGCGCCG AGCAGCCGGG CCCGATCACC CTTCTGCAGC CAACCCGAC CTTCTGGGC CTCTGGGCAGC CTTGGGCAGC CTTGGGCAGC CCTAGTGTGT CCAGGTGACA CTGGTCTTG CCAGGTGACA CTCGTCTTG AAAGAGAGA CCTCATGACA CCTCATGACA CCTCATGACA CCTCATGACA CCTCATGAC CCTCATGAC CCACATCTGC CCAC	CCGCCGCCGC CCCGATCACC CCCGATCACC CCCCCCCGG GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCCAACT CTCTTCTACT AGCAAGTCCA CTGTTTCTTC CCAGAGTCCA CTGTTTCTT CTCAGAGTCCA AGGAAGCAGC TCCAGAGTCCA AGGAAGCAGC TCCATCACAGT TCTCTCTCACAGT CTCATCAAGT CTCATCAAGT CTGACATCA GGAGTGCGA AGGAGCCCT CTCACAAGT CTCACAAGT CTCACAAGT CTCAATGGA CTCAATGAG CTCAATGAG CTCAATGAG CTCAATGAG CTCAATGACATCA GGCACCTTCA GGCACCTTCA GGCACTTCA GGGAGTGTCT AGCATCGAC	CGCCGCCGC CGCCGCCGC CGCCCCGC CGCCCCGC CCGCCCGC CCGACCCGC CCGACCCGC CCGACCCGC CCTTCCAGAA TCTACGTCA AAACCAAAAC CTTTCTGGGA TCTTGGGAT CAGTCTTC CAGATCACTTT ACACCAGC AAGTCGTCCC AAGTCGTCCT ACCGCCAGCC AAGTCGTTCAA ACGCCAGCC AAGTCGTTCAA ACGCCATCATTAA ACGCCATCACTTTAA ACGCCATCACTTTAA ACGCCATCACTTTAA ACGCCATCACTTTAA TCACTGCTTC CCATGAATGA TCACTGCTCT TCATGCTCT TCATGCTCT TCATGCTCT TCAAAGTCCT GCACGGACGA CCTGGGTCCT GCACGGACCA TCCAGGACCA TCCAGGACCA TCCAGGACCA TCCGGTTTCC	120 180 240 300 360 420 600 660 720 780 840 900 960 1020 1140 1260 1380 1440 1500 1680 1740 1860 1920 1980 2040 2100

	CGTGGTGGGC	CAGGTGGGCT	GCGGAAAGTC	GTCCCTGCTC	TCAGCCCTCT	TGGCTGAGAT	2280
						CACAGCAGGC	2340
						TGGAGGAACC	2400
5						TCCTGCCCAG	2460
J						AGAAGCAGCG	2520
						ATGATCCCCT	2580
						GCCCCAAGGG	2640
						TGCCGCAGGT ACCAGGAGCT	2700 2760
10						CAGAGCAGGA	2820
10	GCAGGATGCA	CACCACAAACC	CCCTCACCC	CCTCACCGTACC	CCACCCAACC	AAGCAAAGCA	2880
	AATGGAGAAT	GGCATGCTGG	TGACGGACAG	TGCAGGGAAG	CAACTGCAGA	GACAGCTCAG	2940
						CAGAACTGCA	3000
						AGGCGCAGAC	3060
15		AAGCTTTCCG					3120
	CTTCCTCAGC	ATCTTCCTTT	TCATGTGTAA	CCATGTGTCC	GCGCTGGCTT	CCAACTATTG	3180
						CGAAAGTCCG	3240
	GCTGAGCGTC	TATGGAGCCC	TGGGCATTTC	ACAAGGGATC	GCCGTGTTTG	GCTACTCCAT	3300
20	GCCCGTGTCC	ATCGGGGGGA	TCTTGGCTTC	CCGCTGTCTG	CACGTGGACC	TGCTGCACAG	3360
20		TCACCCATGA					3420
						AGATGTTCAT	3480
		TTCAACGTCA					3540
		ATCCCGCCCC					3600
25						ATTCCCATTT	3660
23		TTGCTGGGGG					3720
		GACCTGAAGG CTGGCCGTGC					3780
		GTGATCTCCA					3840 3900
		CAGGTCACCA					3960
30		. GTGGCCGTGG					4020
		CAGGAGACAG					4080
		TGCCTGCGCT					4140
	CACGATCAAT	GGGGGAGAAA	AGGTCGGCAT	CGTGGGGCGG	ACGGGAGCTG	GGAAGTCGTC	4200
~~	CCTGACCCTG	GGCTTATTTC	GGATCAACGA	GTCTGCCGAA	GGAGAGATCA	TCATCGATGG	4260
35	CATCAACATC	GCCAAGATCG	GCCTGCACGA	CCTCCGCTTC	AAGATCACCA	TCATCCCCCA	4320
	GGACCCTGTT	TTGTTTTCGG	GTTCCCTCCG	AATGAACCTG	GACCCATTCA	GCCAGTACTC	4380
		GTCTGGACGT					4440
		CTAGACCATG					4500
40		TGCCTAGCCC					4560
40		GCCGTGGACC					4620
		TGCACCGTCC					4680
		GTCTTGGACA					4740
						GAGCCCCAGA GGAGTCAGTA	4800 4860
45		ACCAAGCCTC					4920
		TCAAAGCAGC					4980
		GAGACAGAGA			010001041.	0100010101	4500
50	SEO ID NO:22 O	8H2 Protein sequi	ance.				
		#: AAB46					•
		11					•
	1	11	21	31	41	51	
55	MAI.POPOGAP	GSDPLWDWNV	(Kanancarana	KCBOMMU17M	I CONTRACT	pover or core	60
JJ		NKTKTALGFL					120
		GVQSSGIMLT					180
		FSDRSPLFSE					240
		EQVVPVLVKN					300
60		PSLFKVLYKT		-			360
	WQGYFYTVLL	FVTACLQTLV	LHQYFHICFV	SGMRIKTAVI	GAVYRKALVI	TNSARKSSTV	420
	GEIVNLMSVD	AQREMDLATY	INMIWSAPLQ	VILALYLLWL	NLGPSVLAGV	AVMVLMVPVN	480
		QVAHMKSKDN					540
15	KSAYLSAVGT						600
65		VSLKRLRIFL					660
		GALVAVVGQV					720
		QLEEPYYRSV					780
		FDDPLSAVDA					840
70		SYQELLARDG					900
70		QRQLSSSSSY					960
		GLFISFLSIF FGYSMAVSIG					1020
		IKMFMGSLFN					1080 1140
							1200
		VYSHENETI.I.	(4APATKVKK)				
75	KRLESVSRSP	VYSHFNETLL VLFAALFAVI					
75	KRLESVSRSP VRLECVGNCI	VLFAALFAVI	SRHSLSAGLV	GLSVSYSLQV	TTYLNWLVRM	SSEMETNIVA	1260
75	KRLESVSRSP VRLECVGNCI VERLKEYSET	VLFAALFAVI EKEAPWQIQE	SRHSLSAGLV TAPPSSWPQV	GLSVSYSLQV GRVEFRNYCL	TTYLNWLVRM RYREDLDFVL	SSEMETNIVA RHINVTINGG	
75	KRLESVSRSP VRLECVGNCI VERLKEYSET EKVGIVGRTG SGSLRMNLDP	VLFAALFAVI EKEAPWQIQE AGKSSLTLGL FSQYSDEEVW	SRHSLSAGLV TAPPSSWPQV FRINESAEGE TSLELAHLKD	GLSVSYSLQV GRVEFRNYCL IIIDGINIAK FVSALPDKLD	TTYLNWLVRM RYREDLDFVL IGLHDLRFKI HECAEGGENL	SSEMETNIVA RHINVTINGG TIIPQDPVLF SVGQRQLVCL	1260 1320
75 80	KRLESVSRSP VRLECVGNCI VERLKEYSET EKVGIVGRTG SGSLRMNLDP ARALLRKTKI	VLFAALFAVI EKEAPWQIQE AGKSSLTLGL	SRHSLSAGLV TAPPSSWPQV FRINESAEGE TSLELAHLKD DLETDDLIQS	GLSVSYSLQV GRVEFRNYCL IIIDGINIAK FVSALPDKLD TIRTQFEDCT	TTYLNWLVRM RYREDLDFVL IGLHDLRFKI HECAEGGENL	SSEMETNIVA RHINVTINGG TIIPQDPVLF SVGQRQLVCL	1260 1320 1380

SEQ ID NO:23 PAA2 DNA SEQUENCE

Nucleic Acid Accession #: NM_013309 1-1290 (underlined sequences correspond to start and stop codons) Coding sequence: 21 11 31 51 ATGGCCGGCT CTGGCGCGTG GAAGCGCCTC AAATCTATGC TAAGGAAGGA TGATGCGCCG 60 10 CTGTTTTTAA ATGACACCAG CGCCTTTGAC TTCTCGGATG AGGCGGGGGA CGAGGGGCTT 120 TCTCGGTTCA ACAAACTTCG AGTTGTGGTG GCCGATGACG GTTCCGAAGC CCCGGAAAGG 180 CCTGTTAACG GGGCGCACCC GACCCTCCAG GCCGACGATG ATTCCTTACT GGACCAAGAC 240 TTACCTTTGA CCAACAGTCA GCTGAGTTTG AAGGTGGACT CCTGTGACAA CTGCAGCAAA 300 CAGAGAGAGA TACTGAAGCA GAGAAAGGTG AAAGCCAGGT TGACCATTGC TGCCGTTCTG 15 TACTTGCTTT TCATGATTGG AGAACTTGTA GGTGGATACA TTGCAAATAG CCTAGCAATC 420 ATGACAGATG CACTTCATAT GTTAACTGAC CTAAGCGCCA TCATACTCAC CCTGCTTGCT 480 TTGTGGCTAT CATCAAAATC ACCAACCAAA AGATTCACCT TTGGATTTCA TCGCTTAGAG 540 CTTTTGTCAG CTATGATTAG TGTGCTGTTG GTGTATATAC TTATGGGATT CCTCTTATAT 600 GAAGCTGTGC AAAGAACTAT CCATATGAAC TATGAAATAA ATGGAGATAT AATGCTCATC 660 20 ACCGCAGCTG TTGGAGTTGC AGTTAATGTA ATAATGGGGT TTCTGTTGAA CCAGTCTGGT 720 CACCGTCACT CCCATTCCCA CTCCCTGCCT TCAAATTCCC CTACCAGAGG TTCTGGGTGT GAACGTAACC ATGGGCAGGA TAGCCTGGCA GTGAGAGCTG CATTTGTACA TGCTTTGGGA GATTTGGTAC AGAGTGTTGG TGTGCTAATA GCTGCATACA TCATACGATT CAAGCCAGAA 900 TACAAGATTG CTGATCCCAT CTGTACATAC GTATTTTCAT TACTTGTGGC TTTTACAACA 960 25 TITCGAATCA TATGGGATAC AGTAGTTATA ATACTAGAAG GTGTGCCAAG CCATTTGAAT 1020 GTAGACTATA TCAAAGAAGC CTTGATGAAA ATAGAAGATG TATATTCAGT CGAAGATTTA 1080 AATATCTGGT CTCTCACTTC AGGAAAATCT ACTGCCATAG TTCACATACA GCTAATTCCT 1140 GGAAGTTCAT CTAAATGGGA GGAAGTACAG TCCAAAGCAA ACCATTTATT ATTGAACACA 1200 TTTGGCATGT ATAGATGTAC TATTCAGCTT CAGAGTTACA GGCAAGAAGT GGACAGAACT 1260 30 TGTGCAAATT GTCAGAGTTC TAGTCCCTGA SEQ ID NO:24 PAA2 Protein sequence: 35 Protein Accession #: NP 037441 21 31 41 51 MAGSGAWKRL KSMLRKDDAP LFLNDTSAFD FSDEAGDEGL SRFNKLRVVV ADDGSEAPER 40 PVNGAHPTLQ ADDDSLLDQD LPLTNSQLSL KVDSCDNCSK QREILKQRKV KARLTIAAVL YLLFMIGELV GGYIANSLAI MTDALHMLTD LSAIILTLLA LWLSSKSPTK RFTFGFHRLE 180 VLSAMISVLL VYILMGFLLY EAVORTIHMN YEINGDIMLI TAAVGVAVNV IMGFLLNOSG 240 HRESHSHSLP SNSPTRGSGC ERNHGGDSLA VRAAFVHALG DLVQSVGVLI AAY1IRFKFE YKIADPICTY VFSLLVAFTT FRIIWDTVVI ILEGVPSHLN VDYIKEALMK IEDVYSVEDL 300 360 45 NIWSLTSGKS TAIVHIQLIP GSSSKWEEVQ SKANHLLLNT FGMYRCTIQL QSYRQEVDRT CANCOSSSP SEQ ID NO:25 PAA3 DNA SEQUENCE 50 Nucleic Acid Accession #: AB037765 375-2798 (underlined sequences correspond to start and stop codons) Coding sequence: 11 21 31 55 GCCGAGTCGG TGGCGGCTGC AGGCTGGGAG GGAGAAGTGC TACGCCTTTG CAGGTTGGCG AAGTGGTTCC AGGCTACCCG GCTAGTCTGG CACGGCCCCG TCTTCTGCCT CCTCCTCCGT CGCGTGGCGG CGGGAACTGT TGGCCGCGCG GCCTCGGGAA CGGCCCAGGT CCCCGCCCGC 180 AGGTCCCGGG CAGATAACAT AGATCATCAG TAGAAAACTT CTTGAAGTTG TTCAAGAAAA 240 60 ATTTGAAAGT AGCAAAATAG AAAATAAAGA ATTAACAGCA GATACAGAGG ACAGCATGGA 300 AGTGTTGTCT TAGGAAACAG AACACAGCAG TGAAAAAACA GACAAAATCC GCTCAGATAC 360 AACTGCAGCT GATAATGTTT TCCGGCTTCA ATGTCTTTAG AGTTGGGATC TCTTTTGTCA 420 TAATGTGCAT TTTTTACATG CCAACAGTAA ACTCTTTACC AGAACTGAGT CCTCAGAAAT 480 ATTITAGTAC ATTGCAACCA GGTCTTGAAG AACTGAATGA GGCTGTTAGA CCTCTGCAGG 65 ACTATGGAAT TTCAGTTGCC AAGGTTAATT GTGTCAAAGA AGAAATATCA AGATACTGTG 600 GAAAAGAAAA GGATTTGATG AAAGCATATT TATTCAAGGG CAACATATTG CTCAGAGAAT 660 TCCCTACTGA CACCTTGTTT GATGTGAATG CCATTGTCGC CCATGTTCTC TTTGCTCTTC 720 TTTTTAGTGA AGTGAAATAT ATTACCAACC TGGAAGACCT TCAGAACATA GAAAATGCTC 780 TGAAAGGAAA AGCAAATATT ATATTCTCAT ATGTAAGAGC CATTGGAATA CCAGAGCACA 840 70 GAGCAGTCAT GGAAGCCGGT TTTGTGTATG GGACTACATA CCAATTTGTC TTAACCACAG 900 AAATTGCCCT TTTGGAAAGT ATTGGCTCTG AGGATGTGGA ATATGCACAT CTCTACTTTT 960 TTCATTGTAA ACTAGTCTTG GACTTGACCC AGCAATGTAG AAGAACACTA ATGGAACAGC CATTGACTAC ACTGAACATT CACCTGTTTA TTAAGACAAT GAAAGCACCT CTGTTGACTG AAGTTGCTGA AGATCCTCAA CAAGTTTCAA CTGTCCATCT CCAACTGGGC TTACCACTGG 1140 75 TTTTTATTGT TAGCCAACAG GCTACTTATG AAGCTGATAG AAGAACTGCA GAATGGGTTG 1200 CTTGGCGTCT TCTGGGAAAA GCAGGAGTTC TACTCTTGTT AAGGGACTCT TTGGAAGTGA 1260 ACATTCCTCA AGATGCTAAT GTGGTCTTCA AAAGAGCAGA AGAGGGAGTT CCAGTGGAAT 1320 TTTTGGTATT ACATGATGTT GATTTAATAA TATCTCATGT GGAAAATAAT ATGCACATTG 1380 AGGAAATACA AGAAGATGAA GACAATGACA TGGAAGGTCC AGATATAGAT GTTCAGGATG 1440 80 ATGAAGTGGC AGAAACTGTT TTCAGAGATA GGAAGAGAAA ATTACCTTTG GAACTTACAG

		AGAAGAAACA					1560
		TTGGCAAGCA					1620
		AGGCACATCT TAAGCAAAAT					1680 1740
5		ATCTTATGCT					1800
		TTCATATCCA					1860
		ATATAAAGAC					1920
		GAAAACAGCA TGGAATTTAT					1980 2040
10		AGCCCTGCTG					2100
		ACATGCACAA					2160
		CACTGTGGAA					2220
		TGATGGCACT					2280
15		CTTGCGGGCA					2340 2400
		TTCAGGTGGC					2460
		ATTGTGGCTG					2520
		AGAATGGAAA					2580
20		TCAACGTGGC TAAGGAACAA					2640 2700
~~		AAAGCATTGG					2760
		AGAGTTAGGA					2820
		GGCATGATAG					2880
25		ACTAGTGCCA AACTACATTA					2940 3000
25		CAGTAGTATA					3060
		TTTGTACCAA					3120
		AGTAGCCATA					3180
30		TCAGTACTAG TAAAATTAAA					3240 3300
50		TTGTTTTATT					3360
		AATTGTCGGG					3420
		AGGCCATGGA					3480
35		TGCCCGAAAT					3540
JJ		ATTAAAGATA					3600 3660
		TCTAATATTT					3720
		TTTTAAGTGA					3780
40		TGAACAGGGA					3840
70		CGTCTCTGAA GGCCTCATTC					3900 3960
		TTAGCTGTTA					4020
		TTTGAGACAT					4080
45		CTACTTGATA					4140
73		TTTATAACTG ATAACATAGA					4200 4260
		TGATGCCTGA					4320
		GAACTCTAAA					4380
50		ATTAAGTACC					4440
50		TTGACAGTCA CAAAAAAAAA		TCATAATTT	AAATAAAGTG	TCTGGGTTTC	4500
	AGAMINOCI.	Ciumouduut	100000				
	SEQ ID NO:26 P	AA3 Protein seque	nce:			•	
55	Protein Accession	n#: BAA92	582				
33	•	11	21	31	41	51	
	1	Ĭ	1	1	1 .	j.	
		GISFVINCIF					60
60		ISRYCGKEKD					120
UU		NIENALKGKA AHLYFFHCKL					180 240
		LGLPLVFIVS					300
		GVPVEFLVLH					360
65		PLELTVELTE					420
UJ		CADWSDVCTK AEEYLSGELY					480 540
		STKYAASLPA					600
		QKPLLILFSD					660
70		PLLVLVNLHS					720
70		LSMIDAATSQ		KETDVQENDK	EQHEDKSAVR	KEPIETLRIK	780
	HMNKSMALK	E AEKSFRRDI	CE LUCSKVN				
				SE	Q ID NO:27 PAA5	DNA SEQUENCE	
76		ession#: NM_0					
75	Coding sequence	: 66-108:	5 (underlined sequ	rences correspond	to start and stop o	odons)	
	1	11	21	31	41	51	
	î	ī	î	Ĭ.	ī	Ī	
90		CGGTCAAGCT					60
80	AATTA <u>ATG</u> GA	AAGCAGAAAA	GACATCACAA	ACCAAGAAGA	ACTITGGAAA	ATGAAGCCTA	120
					21	_	

```
GGAGAAATTT AGAAGAAGAC GATTATTTGC ATAAGGACAC GGGAGAGACC AGCATGCTAA
                                                                                180
       AAAGACCTGT GCTTTTGCAT TTGCACCAAA CAGCCCATGC TGATGAATTT GACTGCCCTT
                                                                                240
       CAGAACTTCA GCACACACA GAACTCTTTC CACAGTGGCA CTTGCCAATT AAAATAGCTG
                                                                                300
       CTATTATAGC ATCTCTGACT TTTCTTTACA CTCTTCTGAG GGAAGTAATT CACCCTTTAG
                                                                                360
 5
       CAACTTCCCA TCAACAATAT TTTTATAAAA TTCCAATCCT GGTCATCAAC AAAGTCTTGC
                                                                                420
       CAATGGTTTC CATCACTCTC TTGGCATTGG TTTACCTGCC AGGTGTGATA GCAGCAATTG
                                                                                480
       TCCAACTTCA TAATGGAACC AAGTATAAGA AGTTTCCACA TTGGTTGGAT AAGTGGATGT
                                                                                540
       TAACAAGAAA GCAGTTTGGG CTTCTCAGTT TCTTTTTTGC TGTACTGCAT GCAATTTATA
                                                                                600
       GTCTGTCTTA CCCAATGAGG CGATCCTACA GATACAAGTT GCTAAACTGG GCATATCAAC
                                                                                660
10
       AGGTCCAACA AAATAAAGAA GATGCCTGGA TTGAGCATGA TGTTTGGAGA ATGGAGATTT
       ATGTGTCTCT GGGAATTGTG GGATTGGCAA TACTGGCTCT GTTGGCTGTG ACATCTATTC
       CATCTGTGAG TGACTCTTTG ACATGGAGAG AATTTCACTA TATTCAGAGC AAGCTAGGAA
                                                                                840
       TTGTTTCCCT TCTACTGGGC ACAATACACG CATTGATTTT TGCCTGGAAT AAGTGGATAG
                                                                                900
       ATATAAAACA ATTTGTATGG TATACACCTC CAACTTTTAT GATAGCTGTT TTCCTTCCAA
                                                                                960
15
       TIGITGICCI GATATITAAA AGCATACTAT TCCTGCCATG CTTGAGGAAG AAGATACTGA
                                                                              1020
       AGATTAGACA TGGTTGGGAA GACGTCACCA AAATTAACAA AACTGAGATA TGTTCCCAGT
                                                                              1080
       TGTAGAATTA CTGTTTACAC ACATTTTTGT TCAATATTGA TATATTTTAT CACCAACATT
                                                                              1140
       TCAAGTTTGT ATTTGTTAAT AAAATGATTA TTCAAGGAAA AAAAAAAAA AAAAA
20
       SEQ ID NO:28 PAA5 Protein sequence
       Protein Accession #:
                         NP_036581
                               21
                                           31
                                                       41
                                                                   51
25
        MESRKDITNO EELWKMKPRR NLEEDDYLHK DTGETSMLKR PVLLHLHQTA HADEFDCPSE
                                                                                  60
        LQHTQELFPQ WHLPIKIAAI IASLTFLYTL LREVIHPLAT SHQQYFYKIP ILVINKVLPM
                                                                                 120
        VSITLLALVY LPGVIAAIVQ LHNGTKYKKF PHWLDKWMLT RKQFGLLSFF FAVLHAIYSL
                                                                                 180
        SYPMRRSYRY KLLNWAYQQV QQNKEDAWIE HDVWRMEIYV SLGIVGLAIL ALLAVTSIPS
        VSDSLTWREF HYIQSKLGIV SLLLGTIHAL IFAWNKWIDI KQFVWYTPPT FMIAVFLPIV
30
        VLIFKSILFL PCLRKKILKI RHGWEDVTKI NKTEICSQL
                                                   SEQ ID NO:29 PAA7 DNA SEQUENCE
       Nucleic Acid Accession #: NM 030774
       Coding sequence:
                         1-963 (underlined sequences correspond to start and stop codons)
35
       ATGAGTTCCT GCAACTTCAC ACATGCCACC TTTGTGCTTA TTGGTATCCC AGGATTAGAG
       AAAGCCCATT TCTGGGTTGG CTTCCCCCTC CTTTCCATGT ATGTAGTGGC AATGTTTGGA
                                                                                120
40
       AACTGCATCG TGGTCTTCAT CGTAAGGACG GAACGCAGCC TGCACGCTCC GATGTACCTC
                                                                                180
       TITCTCTGCA TGCTTGCAGC CATTGACCTG GCCTTATCCA CATCCACCAT GCCTAAGATC
                                                                                240
       CTTGCCCTTT TCTGGTTTGA TTCCCGAGAG ATTAGCTTTG AGGCCTGTCT TACCCAGATG
TTCTTTATTC ATGCCCTCTC AGCCATTGAA TCCACCATCC TGCTGGCCAT GGCCTTTGAC
                                                                                300
                                                                                360
       CGTTATGTGG CCATCTGCCA CCCACTGCGC CATGCTGCAG TGCTCAACAA TACAGTAACA
45
       GCCCAGATTG GCATCGTGGC TGTGGTCCGC GGATCCCTCT TTTTTTCCC ACTGCCTCTG
       CTGATCAAGC GGCTGGCCTT CTGCCACTCC AATGTCCTCT CGCACTCCTA TTGTGTCCAC
                                                                                540
       CAGGATGTAA TGAAGTTGGC CTATGCAGAC ACTTTGCCCA ATGTGGTATA TGGTCTTACT
                                                                               600
       GCCATTCTGC TGGTCATGGG CGTGGACGTA ATGTTCATCT CCTTGTCCTA TTTTCTGATA
                                                                               660
       ATACGAACGG TTCTGCAACT GCCTTCCAAG TCAGAGCGGG CCAAGGCCTT TGGAACCTGT
GTGTCACACA TTGGTGTGGT ACTCGCCTTC TATGTGCCAC TTATTGGCCT CTCAGTGGTA
                                                                               720
50
                                                                               780
       CACCGCTTTG GAAACAGCCT TCATCCCATT GTGCGTGTTG TCATGGGTGA CATCTACCTG
                                                                               840
       CTGCTGCCTC CTGTCATCAA TCCCATCATC TATGGTGCCA AAACCAAACA GATCAGAACA
                                                                               900
       CGGGTGCTGG CTATGTTCAA GATCAGCTGT GACAAGGACT TGCAGGCTGT GGGAGGCAAG
                                                                               960
       TGACCCTTAA CACTACACTT CTCCTTATCT TTATTGGCTT GATAAACATA ATTATTTCTA
                                                                              1020
55
       ACACTAGCTT ATTTCCAGTT GCCCATAAGC ACATCAGTAC TITTCTCTGG CTGGAATAGT
                                                                              1080
       AAACTAAAGT ATGGTACATC TACCTAAAGG ACTATTATGT GGAATAATAC ATACTAATGA
                                                                              1140
       AGTATTACAT GATTTAAAGA CTACAATAAA ACCAAACATG CTTATAACAT TAAGAAAAAC
                                                                              1200
       AATAAAGATA CATGATTGAA ACCAAGTTGA AAAATAGCAT ATGCCTTGGA GGAAATGTGC
                                                                              1260
       TCAAATTACT AATGATTTAG TGTTGTCCCT ACTTTCTCTC TCTTTTTTCT TTCTTTTTTT
60
       TTTATTATGG TTAGCTGTCA CATACAACTT TTTTTTTTT TGAGATGGGG TCTCGCTCTG
                                                                              1380
       TCACCAGGCT GGAGTGCAGT GGCGCGATCT CGGCTCACTG CAACCTCCAC ATCCCATGTT
                                                                              1440
       GAAGTAATTC TTCTGCCTCA GCCTCCCGAG TAGCTGGGAC TAGAGGAACG TGCCACCATG
                                                                              1500
       ACTGGCTAAT TTTCTGTATT TTTTAGTAGA GACAGAGTTT CACCATGTTG GCCAGGATGG
TCTCGATCTC CTGACCTTGT GATCCACCCG CCTCAGCCTC CCAAAGTGTT GGGATTACAG
                                                                              1560
                                                                              1620
65
       GTGTGAACCA CTGTGCCCGG CCTGTGTACA ACTTTTTAAA TAGGGAATAT GATAGCTTCG
                                                                              1680
       CATGGTGGTG TGCACCTATA GCCCCCACTG CCTGGAAAGC TGAGGTGGGA GAATCGCTTG
       AGTCCAGGAG TTTGAGGTTA CAGTGATCCA CGATCGTACC ACTACACTCC AGCCTGGGCA
       ACAGAGCAAG ACCCTGTCTC AAAGCATAAA ATGGAATAAC ATATCAAATG AAACAGGGAA
                                                                              1860
       AATGAAGCTG ACAATTTATG GAAGCCAGGG CTTGTCACAG TCTCTACTGT TATTATGCAT
                                                                              1920
70
       TACCTGGGAA TTTATATAAG CCCTTAATAA TARTGCCAAT GAACATCTCA TGTGTGCTCA
                                                                              1980
       CAATGTTCTG GCACTATTAT AAGTGCTTCA CAGGTTTTAT GTGTTCTTCG TAACTTTATG
                                                                              2040
       GAGTAGGTAC CATTTGTGTC TCTTTATTAT AAGTGAGAGA AATGAAGTTT ATATTATCAA
                                                                              2100
       GGGGACTAAA GTCACACGGC TTGTGGGCAC TGTGCCAAGA TTTAAAATTA AATTTGATGG
                                                                              2160
       TTGAATACAG TTACTTAATG ACCATGTTAT ATTGCTTCCT GTGTAACATC TGCCATTTAT
                                                                              2220
75
       TTCCTCAGCT GTACAAATCC TCTGTTTCT CTCTGTTACA CACTAACATC AATGGCTTTG
       TACTTGTGAT GAGAGATAAC CTTGCCCTAG TTGTGGGCAA CACATGCAGA ATAATCCTGT
                                                                              2340
       TTTACAGCTG CCTTTCGTGA TCTTATTGCT TGCTTTTTTC CAGATTCAGG GAGAATGTTG
       TTGTCTATTT GTCTCTTACA TCTCCTTGAT CATGTCTTCA TTTTTTAATG TGCTCTGTAC
       CTGTCAAAAA TTTTGAATGT ACACCACATG CTATTGTCTG AACTTGAGTA TAAGATAAAA
80
       TAAAATTTTA TTTTAAATTT T
```

PCT/US01/32045 WO 02/30268

SEQ ID NO:30 PAA7 PROTEIN SEQUENCE Protein Accession #: NP_110401

	Protein Accession	n#: NP_	110401			-	
5	1	11	21 	31	41 	51 	
	FLCMLAAIDL	ALSTSTMPK	E KAHFWVGFPL LALFWFDSRE	ISPEACLTOM	PFIHALSAIE	STILLAMAFD	60 120
10	QDVMKLAYAD VSHIGVVLAF	TLPNVVYGL' YVPLIGLSV	r aqigivavvr r aillvmgvdv v hrfgnslhpi	MFISLSYFLI	IRTVLQLPSK	SERAKAFGTC	180 240 300
	RVLAMFKISC	DKDLQAVGG	C				
15	Nucleic Acid Acc	occion#· VM	_050837	. SE	Q ID NO:31 PAVE	DNA SEQUENCE	
13	Coding sequence		20 (underlined sequ	ences correspond	to start and stop o	odons)	
	1	11	21 I	31	41	51 i	
20			r GTGGCTGCTG				60
			GGCTGACGGC AGCTGACTGAT				120 180
			TTACCAGTTG				240
^~			GGAAAGGGTG				300
25			TTTGCCCCTT				360
			GGAGTTTGGT				420
			CATGGATACC				480
			GTCCTTGACA TGTGAATAGC				540 600
30			GCATGCTCTC				660
-			AATAGTTTCT				720
			TGGAGAAGTC				780
			TCGTTGTGTG				840
35			AGAACAACCT				900 960
<i>33</i>			GATAACCAAC CTCTTCTTAT				900
	SEQ ID NO:32 P						
40	Protein Accession	n#: XIP_0	150837				
	1	11	21	31	41	51	
	1	1	 OLLRFLRADG	DIMITMARMO	CDD DEWEL MD)	60
			ARRVHELERV				120
45			MSORSLCMDT				180
			IGYCASKHAL				240
			SHKMTTSRCV			FLLVTYLWQY	300
~ 0	MPIWAWWII	IN KMGKKRI	ENF KSGVDAD	221 LYILK 1 K	W.		
50	Nucleic Acid Acce	ecion#• NM	006843	SE	Q ID NO:33 PBA6	DNA SEQUENCE	
	Coding sequence		4 (underlined seque	ences correspond	io start and stop co	odons)	
55	1	11	21	31	41	51	
<i>J J</i>	ACCA ATCTCC	CONCECTAN	CGCAGATGCA	GAGGTTGAGG	ACCUACUCC	ACTEGA ACTE	60
			CAGCCAAGGA				120
			TCCTGCTTGC				180
<i>c</i> 0			AGTGCAAGCC				240
60			GTGGGGCGAC				300
			GCTACATAGT GGACAGCCAC				360 420
			ACCGCAATGA				480
			GACCCCTCAC				540
65			GGGGCAGCAC				600
			CCATCATTGA				660
•			TGTGTGCCAG				720
			TGGTCTGTAA				780
70			CCCGAAAGCC				840
, 0			TGAAGAACAA GTTTGGTTCC				900 960
			CTTTGGGCCT				
			TCAGTGAGAC				1080
7 5				CTCTGTTGTA			1140
			TTCAATAAAT				

SEQ ID NO:34 PBA6 PROTEIN SEQUENCE Protein Accession 4: NP_006844

	1	11	21	31	41	51	
	1	1	1	i	1	1	
5	-		RIIKGFECKP EGCEQTRTAT				60 120
	SITWAVRPLT	LSSRCVTAGT	SCLISGWGST	SSPQLRLPHT	LRCANITIE	HQKCENAYPG	180
	NITDTMVCAS DWIQETMKNN	VQEGGKDSCQ	GDSGGPLVCN	QSLQGIISWG	QDPCAITRKP	GVYTKVCKYV	240
10							
10	Nucleic Acid Acc	ession#: NM_0	01775	SE	Q ID NO:35 PBC1	DNA SEQUENCE	
	Coding sequence		(underlined seque	ences correspond	to start and stop co	odons)	
1 ~	1	11	21	31	41	51	
15			AGCCTCCTGC	CCCCCCCCC	mmcccccx cc	(3)3)CCCCCCC	60
			CGAGTTCAGC				120
			CTGTCTTGGC				180
20			GAGGTGGCGC GGCGCGATGC				240 300
	AGACATGTAG	ACTGCCAAAG	TGTATGGGAT	GCTTTCAAGG	GTGCATTTAT	TTCAAAACAT	360
			AGACTATCAG TTGGAGCAGA				420 480
~ ~			CCTGGAGGAC				540
25			CACTTCCAAA				600
			TGTTTCAGTA				660 720
			TGTGGAAGTC				780
20			TGGTGGAAGA				840
30 .			GATTATAAGC TCTTCAGTGT				900 960
			CTGTGGTTGT				1020
			ACCTGCTGGT				1080
35			ACGGAAGCCT GATCTATCAA				1140 1200
			TTACTTCCTT		*****************	AIAAGAI IAG	
	SEQ ID NO:36 P	BC1 Protein seque	ence				
40	Protein Accession						
40		11	21	21	41		
	1	1	21 	31 	Ï	51 	
			RAQLCLGVSI				60
45			DCQSVWDAFK DMFTLEDTLL				120 180
15			CDVVHVMLNG				240
	WVIHGGREDS	RDLCQDPTIK	ELESIISKRN	IQFSCKNIYR	PDKFLQCVKN	PEDSSCTSEI	
50	Marie 4-13 4		10010	SE	Q ID NO:37 PBH1	DNA SEQUENCE	
50	Coding sequence	ession #: XM_0 : 1-3315	(underlined seque	nces correspond t	o start and stop co	odons)	
	1	11	21	31	41	51	
55	1	1	1	1	1	1	
23			GCTCAGCATG				60 120
			AAATTTTAAG				180
			GTGCAAGTGT		ACACCCACCA		240
60							
00	CACCCCCTTTG	ACCARAGTGA GGGATATTCA	GAAATGGAAC	TACAAGAAAC	ACACCAAGGA	TATACCTACC	300
	GACGCCTTTG	GGGATATTCA	GTTTGAGACA	CTGGGGAAGA	ACACCAAGGA AAGGGAAGTA	TATACGTCTG GCACCTGARA	360
	GACGCCTTTG TCCTGCGACA ACACCCAACC	GGGATATTCA CGGACGCGGA TGGTCATTTC	GTTTGAGACA AATCCTTTAC TGTGACCGGG	CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA	ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT	TATACGTCTG GCACCTGAAA GAAGCCGCGC	360 420 480
	GACGCCTTTG TCCTGCGACA ACACCCAACC ATGCGCAAGA	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG	GTTTGAGACA AATCCTTTAC TGTGACCGGG GCTCATCTAC	CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA ATCGCGCAGT	ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTGC	TATACGTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC	360 420 480 540
65	GACGCCTTTG TCCTGCGACA ACACCCAACC ATGCGCAAGA ACGGGAGGCA	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG	GTTTGAGACA AATCCTTTAC TGTGACCGGG	CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA ATCGCGCAGT TACATCGGGG	ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTGC AGGTGGTGAG	TATACGTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATAACACC	360 420 480
65	GACGOCTTTG TCCTGCGACA ACACCCAACC ATGCGCAAGA ACGGGAGGCA ATCAGCAGGA TCCAACCGGG	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGAGGA ACACCCTCAT	GTTTGAGACA AATCCTTTAC TGTGACCGGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGC	CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA ATCGCGCAGT TACATCGGGG GCCATTGGCA GATGCTGAGG	ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTGC AGGTGGTGAG TAGCAGCTTG GCTATTTTTT	TATACGTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATACACC GGGCATGGTC AGCCCAGTAC	360 420 480 540 600 660 720
65	GACGOCTTTG TCCTGCGACA ACACCCAACC ATGCGCAAGA ACGGGAGGCA ATCAGCAGGA TCCAACCGGG CTTATGGATG	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGAGGA ACACCCTCAT ACTTCACAAG	GTTTGAGACA AATCCTTTAC TGTGACCGGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGC AGATCCACTG	CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA ATCGCGCAGT TACATCGGGG GCCATTGGCA GATGCTGAGG TATATCCTGG	ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTGC AGGTGGTGAG TAGCAGCTTG GCTATTTTTT ACAACAACCA	TATACGTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC CACACATTTG	360 420 480 540 600 660 720 780
	GACGOCTTTG TCCTGCGACA ACACCCAACC ATGCGCAAGA ACGGGAGGCA ATCAGCAGGA TCCAACCGG CTTATGGATG CTGCTCGTGG CTTAGGAGAAGT	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGAGGA ACACCCTCAT ACACTCACAAG ACAATGGCTG ATATCTCTGA	GTTTGAGACA AATCCTTTAC TGTGACCGGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGC AGATCCACTG TCATGGACAT GCGCACTATT	CTGGGGAAGA GAGCTGCTGA ATCGCGCAGT TACATCGGGG GCCATTGGCA GATGCTGAGG TATATCCTGG CCCACTGTCG CAAGATTCCA	ACACCAAGGA AAGGGAAGTA CCCAGCACTC CCAAAGGTGC AGGTGGTGAG TAGCAGCTTG GCTATTTTTT ACAACAACAA AAGCAAAGCT ACTATGGTGG	TATACGTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC CACACATTTG CCGGAATCAG CAAGATCCCC	360 420 480 540 600 660 720
65 70	GACGOCTTTG TCCTGCGACA ACACCCAACC ATGCGCAGGA ACGGGAGGCA ATCAGCAGGA TCCAACCGGG CTTATGGATG CTGCTCGTGG CTTAGGAAGT ATTGTGTGTT	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGAGGA ACACCCTCAT ACTTCACAAG ACAATGGCTG ATATCTCTGA TTGCCCAAGG	GTTTGAGACA AATCCTTTAC TGTGACCGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGC TCATGGACAT TCATGGACAT AGGTGGAAAA	CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA ATCGCGCAGT TACATCGGGG GCCATTGGCA GATGCTGAGG TATATCCTGG CCCACTGTCG CAAGATTCCA GAGACTTTGA	ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTGC AGGTGGTGAA AGCATTTTTTT ACAACAACCA AAGCAAAGCT ACTATCGTGG AAGCCATCAA	TATACOTCTG GCACCTGARA GAAGCCCCGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC CACACTTTG CCGGAATCAG CAAGATCAC TACCTCCATC	360 420 480 540 600 660 720 780 840 900 960
	GACGOCTTTG TCCTGCGAC ACCCCAACC ATCGCAGGA ACGGGAGGCA ATCAGCAGGG TCCAACCGGG CTTATGGATG CTGCTGGTG TTGAGAGAGT ATTGTGTTT AAAATAAAA	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGAGG ACACCTCAT ACTTCACAAG ACAATGGCTG ATATCTCTGA TTGCCCAAGG TTCCTTGTGT	GTTTGAGACA AATCCTTTAC TGTGACCGGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGC AGATCACTG TCATGGACAT AGGTGGAAAA GGTGGTGGAAAA GGTGGTGGAAA	CTGGGAAGA GAGCTGCTGA GGGGCAGT TACATCGGGG GCCATTGGG GATGCTGAGG TATATCCTGG CCACTGTCG CAAGATTCGA GAGACTTTGA GAGACTTTGA GGGCTCGGGCC	ACACCAAGGA AAGGGAAGTA ACTCGCCCT CCAAAGGTGC AGGTGGTGAG TAGCAGCTTG ACAACAACCA AAGCAAACCA AAGCAAAGCT ACTATGGTGG AAGCCATCAA AAGCATCAA	TATACGTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC CACACATTTG CCGGAATCAG CAAGATCACC TACCTCCATC TGTGATCGCT	360 420 480 540 600 660 720 780 840 900 960 1020
	GACGOCTTTG TCCTGCGACA ACACCCAAGA ACGCGAGGCA ATCAGCAGGA ATCAGCAGGA TCCAACCGGG CTTATGGATG CTGCTCGTGG CTAGAGAAGAT ATTGTGTGTT AAAAATAAAA AGCCTGGTGG TTTTTACCCC	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGAGGA ACACCCTCAT ACTTCACAAG ACAATGGCTG ATATCTCTGA TTGCCCAAGG TTGCCCAAGG TGCCTTGTGT AGGTGGAGGA GCACGGTGTC	GTTTGAGACA AATCCTTTAC TGTGACCGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGC TCATGGACAT GCGCACTATT AGGTGGAAAA GGTGGTAGAAA TGCCCTGACA CCGGCTGCCT	CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA ATCGCGCAGT TACATCGGGG GCCATTGGCA GATGCTGAGG TATATCCTGG CCCACTGTCG CAAGATTTCA GGGACTTTTGA GGCTCGGGCC TCTTCTGCCG GAGGAGGAGA	ACACCAAGGA AAGGGAAGTA CCCAGCACTC CCAAAGGTGC AGGTGGTGAG AGGTGTTGT GCTATTTTTT ACAACAACCA AAGCAAAGCT ACTATGGTGG AAGCATCAA AGATCGCTGA AGATCGCTGA AGATCGCTGA ACAAGACTTG ACAAGACTTG	TATACGTCTG GCACCTGARA GAAGCCGCGC TTGGATTACACC GGGCATGGTC AGCCCAGTAC CACACATTG CCGGAATCAG CAAGATCCC TACCTCCATC TGTGATCGCT GCTGGTGCCG GATCAATGG GATCAATG	360 420 480 540 600 660 720 780 840 900 960
70	GACGOCTTTG TCCTGCGACA ACACCCAACC ATCCGCAGGA ACCAGGAACC ATCAGCAGGA TCCAACCGGG CTTATGGATG CTACTGTGG CTAGGAGAGT ATTGTGTTT AAAATAAAA AGCCTGGTGG TTTTTACCCC CTCAAAGAAA	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG CTTCAGAGGA ACACCTCAT ACTTCACAAG ACAATGGCTG ATTCCTGA TTCCCCAAGG TTCCTTGTGT AGGTGGAGGT TCCTTGGTT TCTCGAATG	GTTTGAGACA AATCCTTTAC TGTGACCGGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGC AGATCACTG TCATGGACAT AGGTGGAAAA GGTGGTGGAAA GCTGCTGCCTGCCT TCTCACCTA	CTGGGAAGA GAGCTGCTGA GGCGCCAGT TACATCGGGG GCATTGCA GATGCTGAGG TATATCCTGG CAAGATTCCA GAGACTTTGA GGCTCGGGCC TCTTCTGCCG GAGGAGGAGA TTAACAGTTA	ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTGC AGGTGGTGAG AGGTGGTGAG CCTATTTTTT ACAACAACCA AAGCAAACCA AAGCAAACCA AAGCAACCA AGATCGCTGA AGATCGCTGA TCAAGGAGAT CTGAGGAGTTT TTAAAATGGA	TATACOTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC CACACTTTG CACACATTTG CAGAATCAGC TACCTCCATC TGTGATCGCT GCTGGTCCGC GATCAATGG AGAAGCTCGG AGAAGCTCGG	360 420 480 540 600 660 720 780 900 960 1020 1080 1140 1200
	GACGOCTTTG TCCTGCGAC ACCCCAACA ATCGCAAGA ACGGGAGGCA ATCAGCAGGG CTTATGGATG CTGCTGGTGG CTAGAGAAGT ATTGTGTTT AAAATAAAA AGCCTGGTGG TTTTTACCCC CTCAAAGAAAT GATGAAAATTG	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGAGG ACACCTCAT ACTTCACAAG ACAATGGCTG ATATCTCTGA ATTACTCTGGA TTCCTTGTGT AGGTGGAGGA GCACGGTGTT TCTCGAATG TCAGGCAATGC	GTTTGAGACA AATCCTTTAC TGTGACCGGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGC AGATCACTG TCATGGACAT AGGTGGAAAA AGGTGGTGGAA TGCCCTGACA CCGGCTGCCT TTCTCACCTA CATCTCCTAC CATCTCCTAC	CTGGGAAGA GAGCTGCTGA GGGGCCAAGA ATCGCGCAGT TACATCGGGG GCCATTGGC GATGTCG CCACTGTCG CCACTGTCG GAGGATTCGA GGCTCGGGCC TCTTCTGCCG GAGGAGGAGAA TTAACAGTTA GCTCTATACA	ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTGC AGGTGGTGAG TAGCAGCTTG ACAACAACCA AAGCAAACCA AAGCAAAGCT ACTATGGTGG AAGCCATCAA AGATCGCTGA TCAAGGAGAA TCAAGGAGAA TCAAGGAGAA AGATCGCTGA AAGCCTTCAG AAGCCTTCAG	TATACOTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC CACACATTTG CCGGAATCAC CAAGATCACC TACCTCCATC TGTGATCGCT GCTGGTGCGC GATCAAATGG AGAAGCTCGG CACCAGTGAG CACAGTGAG	360 420 480 540 660 720 780 840 900 960 1020 1140 1200 1260
70	GACGOCTTTG TCCTGCGACA ACACCCAAGA ACAGGAAGCA ACGGGAGGCA ATCAGCAGGA TCCAACCGGG CTTATGGATG CTGCTCGTGG CTGCTGTGT ATTGTGTGTT ATAAAATAAA	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGAGGA ACACCTCAT ACTTCACAAG ACAATGGCTG ATATCTCGA ATATCTCTGA TTCCCCAAGG TTCCTTGTGT AGGTGGAGGA GCACGGTGTC TTCTCGAATG ATAACTCGAA	GTTTGAGACA AATCCTTTAC TGTGACCGGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGC AGATCACTG TCATGGACAT AGGTGGAAAA GGTGGTGGAAA GCTGCTGCCTGCCT TCTCACCTA	CTGGGGAAGA GAGCTGCTGA ATCGCGCAGT TACATCGGGG GCCATTGGCA GATGCTGAGG TATATCCTGG CCACTGTCG CAAGATTCCA GAGACTTTGA GGCTCGGGCC TCTTCTGCCG GAGGAGGAGTA TTAACAGTTA AGCTTCTGCA AAGCTTCTGCA AAGCTTCTGCA AAGCTTCTGCAAAAAGTTACA AAGCTTCTGC	ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTGC AGGTGGTGAG TAGCAGCTTG ACAACAACCA AAGCAAACCA AAGCAAAGCT ACTATGGTGG ACTATGGTGG TCAAGGAGATT TCAAGGAGAT TCAAGGAGAT TTAAAATGGA AAGCCTTCAG TGGAGTTGAA	TATACOTCTG GCACCTGARA GAAGCCGCG TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC CACACATTTG CCAGAATCAG CAAGATCCCC TACCTCCATC TGTGATCGCT GCTGGTGCGC GATCAAATGG AGAACCTGGG CACCAGTGAG CCAGCTGAG CCAGCTGAC	360 420 480 540 600 660 720 780 900 960 1020 1080 1140 1200
70	GACGOCTTTG TCCTGCGACA ACCCCAAGA ACAGGAGGCA ATCAGCAGGA TCCAACCGGG CTTATGGATG CTGCTGTGG CTAGGAGAGT ATTGTGTTT AAAATAAAA AGCCTGGTGG TTTTTACCCC CTCAAAGAAAA GATGAAATTG CAAGACAAGG TTAGACAAGG TTAGCCAATG TTAGCCATG	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGAGGA ACACCTCAT ACTTCACAAG ATATCTCTGA TTGCCCAAGG TTCCTTGTGT AGGTGAGGA TCCTTGTGT TCTCGAATG TTCTCGAATG TTCTCGAATG TCAGCAATGC TTCTCGAATG TCAGCAATGC ATAACTGGAA ATAACTGGAA ATGAGATTTT CGGCTCTCAT	GTTTGAGACA AATCCTTTAC TGTGACCGGG GCTCATCTAC CCTGATGACAG GAATATTGTG CAGGAATTGC AGATCACTG TCATGGACAT AGGTGGAAAA GGTGGTGGAA TGCCCTGACA CCGGCTGCCT TCTCACCTA CATCTCCTAC CAGCAATGAC AAAGGACAGA AAAGGACAGA	CTGGGAAGA GAGCTGCTGA GCGCCAGT TACATCGGGG GCCATTGGCA GATGCTGAGG TATATCCTGG CAAGATTCCA GAGACTTTGA GGCTCGGGCC TCTTCTGCCG GAGGAGGAGA TTAACAGTTA GCTCTATACA AAGCTTCTGC CGCCGATGGG CCCCAAGTTTG	ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTGC AGGTGGTGAG GCTATTTTTT ACAACAACCA AAGCAAACCA AAGCAAACCA AGGCAACCA CTAAAGGCG TCAAAGGAGA TCAAGGAGT TTAAAATGGA TTAAAATGGA AAGCCTTCAG TGAAGTGGA AAGCCTTCAG TGAAGTGGAA AGCCTTCAG TGAAGTGGAA AGTCTGCTGA TCCGCCTCTT	TATACOTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC CACACATTTG CCGGAATCAG CAAGATCACC TACCTCCATC TGTGATCGCT GCTGGTCGCC GATCAAATGG AGAAGCTGGG CACCAGTGAC CCACTGAGA CCACTGAC CCTTCAAGAA TCTGGAGAAT	360 420 480 540 600 660 720 780 840 960 1020 1080 1140 1200 1260 1320 1380 1440
70	GACGOCTTTG TCCTGCGAC ACCCCAAGA ACACCCAAGA ACGGGAGGCA ATCAGCAGGG CTTATGGATG CTGCTGTGG CTAGAGAAGT AATAATAAA AGCCTGGTGT TTTTACCCC CTCAAGAAAT GATGAAATT CAAGACAAG TTAGCAATG CTAGCAAGA GATGAAATT CAAGACAAG TTAGCCAATG GTCATGTTTA CGCTTGAACC	GGGATATTCA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGAGG ACACCTCAT ACTTCACAAG ACAATGGCTG ATATCTCTGA TTGCCCAAGG TTCCTTGTGT AGGTGGAGGA GCACGGTGTC TCTCGAATG TCTTGGAATG TGAGCAATGC ATAACTGGAA ATGAGATTTT CGGCTCTCAT TACGGAAGTT	GTTTGAGACA AATCCTTTAC TGTGACCGGG GCTCATCTAC CCTGATGAAGA GAATATTGTG CAGGAATTGC AGATCACTG TCATGGACAT AGGTGGAAAA GGTGGTGAAAA GGTGGTGAAA CCGGCTGCCT TTCTCACCTA CATCTCCTAC CATCTCCTAC CACCAATGACA CACCAATGACA CACCAATGACA CACCAATGAC	CTGGGAAGA GAGCTGCTGA GAGGCGCAGT TACATCGGGG GCCATTGGG GATGCTGAGG TATATCCTGG CCACTGTCG CAGATTCGA GGGAGAGTTTGA GGCTCGGGCC TCTTCTGCCG GAGGAGGAGT TTAACAGTTA GCTCTATACA AAGCTTCTGG CCCCATGGGC CCCCATGTCG GGCCCGATGGG CCCCATGTCG GATGTCTCT	ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTGC AGGTGGTGAG TAGCAGCTTG ACACAACCA AAGCAAACCA AAGCAAACCA ACTATGGTGG AAGCCATCAA AGATCGCTGA TCAAGGAGAA CTGAAGGTTG TAAAAATGGA AAGCCTTCAG TGGAGTTGGAAGCCTTCAG TGGACTGGAAGTGGAA AGTCTGCTGA	TATACOTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC CACACATTTG CCGGAATCAG CAAGATCACC TGTGATCGCT TGTGATCGCT GCTGGTCGCC GATCAAATCG AGAAGCTGGG CACCAGTGAG CCAGCTGGAC CCTTCAAGAA CCTCCAACCAC CTTCAAGAA	360 420 480 540 660 720 780 840 960 1020 1080 1140 1200 1260 1320 1380

10 15 20 25 30 35 40 45 50 65 70	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TTCTACATGG GAAAACTAC SEQ ID NO:38 P Protein Accession LI I SEQ ID NO:38 P Protein Accession SEQ ID NO:38 P Protein Accession LI I ATGCTTCGCC AGAGCAGTCC CGCGCGCAGG GATGCTCCTC GCAGACAGCC AGAGCACCC CTTGCTAATG GCAGACACC CTTGCTAATG CCTTCTCACATG GCAGACACCC CTTGCTAATG CCTTCTCACATG GCAGACACCC CTTGCTAATG CCTTCTCACATG CCTTC	TGTTATCCAC GCACGTCCA GCACGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAA TTGTCAAGAT AACTGATCA BHI Protein seque n *: XP_01 II RNRRNDTLDS GYAQSQHMEG ELLTOHWHLK YIGEVVRDNT YILDNINTTHL ETLKAINTSI EEETESWIKW KLLLEWQLD DVLTELFSNH HDVSPITRHP AGESEELANE OPGVONFLSK FTSPFVVFSW VNYFTDLMNV RNLGPKIIML MFGQVPSDVD LVNLLVAMFG CCCKEKNMES DLKGLLKEIA TGCCATTGG A TAGCTTTGAA TAGCTGCACT A ATCCTTCAGA A ATCCTTCAGA A ATCCTTCAGA A ATCCTTCAGA A ATCGTGCACT A ATGGTGCACT A TAGTTGTGA A TAGTGGCACT A TAGTGTGGA A TAGTGGCACT A TAGTGTGGA A TAGTGGCACT A TAGTGTGGA A TAGTGGGCACT A TAGTGTGGA NO:40 PI	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG GTGCACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNIVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL YETRAVELFT QWYGEISRDT NVUFYIAFLL HDTLGLFYFI QRMLIDVFFF GTTYDFAHCT STYUGTVQENN SVCCPKNEDN NKIK 11804 underlined sequen 21 CCACCTGCTF GAAGGACGAT GCACCAGTGGGC ACCAGTGGGAT CGACCAGTGGGAT CATCATTAACC ATTAAAATTAC GTTTGAGAAA BH3 PRO	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFFT CAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL ONKKELSKVL LGYSTDLAWGVK ESTOLL LFAYVLLMDF AGVIFILLSS LFIFAVWMVA FTGNESKPLC DQVWKFQRYF ETLAWEGVMK SE CCCCCCCCCC AGAATTCTGTT AGAATTCTGTT AGAATTCTGTTAAATT ACCTGGAGCC AAACTTAATCC AGAACTTCACTCC AAACTTAATT AGGCTTACC CAAACTTCACTCC CAACTCACTC	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKDR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA AILPLVGCGFV HSVFHPPELV NKSSLYSGRV FGVARQGILR LVQCFY EVPHPPELV LVQEYCSRLN ENYLVKINTK 0 ID NO:33 PBH3 stan and stop cod 41 TACTACTGAR TATGCGCCC AAAAGGTCTCT CATCCTTCAT CTGCCACCGGCC AAAAGGTCTCT CATCCTTCAT CTGCCACCGGC AATACTCATC ATTGGTTGTAC	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCCAT AGACATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL DAEGYFLAQY QDSNYGGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLFLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKKPUDKH LYSLVFVLFC LIFCLDYLIFT QNEQRWRWIF FPEWITIPLV ANDTSEEMTH DNA SEQUENCE	120 180 240 300 360 420 480
15 20 25 30 35 40 45 50 55 60 65 70	GGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGCACTGC GTGCACGTGG TGCATCTACA TACACGGTGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession I I MSFRAARLSM SKATENVCKC SCDTDABILY TGGTTYGLMK TGGTTYGLMK TLMDFTROPL IVCFAQGGK FLPRTVSRLP QDKDNWNGQL GLNLRKFLTH NGRDEMDIEL LAKVKNDINA VEATDQHFIA KKLLWYVAF DEVRQWYVNG LRLTHIFTVS RSVYTEPYLA CIYMLSTNIL FYMVVKCFK RFRQLDTKLN Nucleic Acid Acce Coding sequence 1 I ATGCCTCGCC AGAGCAGTCC CGCGCGCAGI GATTCCAATC GCAGACAGCI AGAGCAGCC CTTGCTAAAT	TGTTATCCAC GCACGTCCA GCACGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAA TTGTCAAGAT AACTGATCA BHI Protein seque n *: XP_01 II RNRRNDTLDS GYAQSQHMEG ELLTOHWHLK YIGEVVRDNT YILDNINTTHL ETLKAINTSI EEETESWIKW KLLLEWQLD DVLTELFSNH HDVSPITRHP AGESEELANE OPGVONFLSK FTSPFVVFSW VNYFTDLMNV RNLGPKIIML MFGQVPSDVD LVNLLVAMFG CCCKEKNMES DLKGLLKEIA TGCCATTGG A TAGCTTTGAA TAGCTGCACT A ATCCTTCAGA A ATCCTTCAGA A ATCCTTCAGA A ATCCTTCAGA A ATCGTGCACT A ATGGTGCACT A TAGTTGTGA A TAGTGGCACT A TAGTGTGGA A TAGTGGCACT A TAGTGTGGA A TAGTGGCACT A TAGTGTGGA A TAGTGGGCACT A TAGTGTGGA NO:40 PI	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG TCAACACAAAA AAAGCTTAAT 21 ! TRTLYSSASR TQINQSEKWN TPNLVISVTG ISRSSEENIV LLVUNGCHGH KNKIPCVVVE LKELLECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL VGTRAVELFT QWYGEISRDT NVVFYIAFLL MOTIGLFYFI QCMLIDVFFP GTTYDFAHCT YTVGTVQENN SVCCFKNEDN NKIK 11804 underlined sequen 21 CCGCCTGCTF GAAGGACGAC GACAGTGGCF GTTGGAATK ATTAAAATAC GTTTGAGAAA	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFFF GAKNFALKFR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL ONKKELSKVI LGYSEDEDLA KNWKILICLF LFAVVLLMDF AGVIFILLMS LFLFAVWMVA FTGNESKPLC DQVWKFQRYF ETLAWEGVHK SE CCC COMESPOND to A GAAATTCTGTT A GAAATTCTGTT A GAAATTGTAC A GAAATTGTAC A TTGCCTAATT A GAACTTAATTA A GAACTTAATTC A GAACTTAATTC A TTAGGCTTCC A TGTTGCCTAATTC A TTGCCTAATTC A TTGCCTAATTC A TTGCCTAATTC A TTGCCTAATTC A TTGCCTAATTC A TGTTGCCTAATTC	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLY SURPTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKOR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA IIPLVGCGFV HSVEHPPELV NKSSLYSGRV VELDEHNLPR LVQEYCSRLN ENYLVKINTK QID NO:33 PBH3 stan and stop cod 41 TACTACTGAA TATGCGCCCG AAAGGTCTCT CATCCTTCAT TGCCACCGGA ATACTTCAT TTGGTTGTAC OUENCE	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTACTT TGTCATGAAG AATGAGGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGELVR SSAVKERLVR ALYKAFSTSE PKFVRLFLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKKPUDKH LYSLVFVLFC ITCLDYIFT QNEORURWIF FPEWITIPLV IPFPFIVFAY ANDTSEEMRH DNA SEQUENCE OOS) 51	2940 3006 3120 3180 3240 3300 60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080
15 20 25 30 35 40 45 50 55 60 65 70	GGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGCACTGC GTGCACGTGG TGCATCTACA TACACGGTGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession I I MSFRAARLSM SKATENVCKC SCDTDABILY TGGTTYGLMK TGGTTYGLMK TLMDFTROPL IVCFAQGGK FLPRTVSRLP QDKDNWNGQL GLNLRKFLTH NGRDEMDIEL LAKVKNDINA VEATDQHFIA KKLLWYVAF DEVRQWYVNG LRLTHIFTVS RSVYTEPYLA CIYMLSTNIL FYMVVKCFK RFRQLDTKLN Nucleic Acid Acce Coding sequence 1 I ATGCCTCGCC AGAGCAGTCC CGCGCGCAGI GATTCCAATC GCAGACAGCI AGAGCAGCC CTTGCTAAAT	TGTTATCCAC GCACGTCCA GCACGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAA TTGTCAAGAT AACTGATCA BHI Protein seque n *: XP_01 II RNRRNDTLDS GYAQSQHMEG ELLTOHWHLK YIGEVVRDNT YILDNINTTHL ETLKAINTSI EEETESWIKW KLLLEWQLD DVLTELFSNH HDVSPITRHP AGESEELANE OPGVONFLSK FTSPFVVFSW VNYFTDLMNV RNLGPKIIML MFGQVPSDVD LVNLLVAMFG CCCKEKNMES DLKGLLKEIA TGCCATTGG A TAGCTTTGAA TAGCTGCACT A ATCCTTCAGA A ATCCTTCAGA A ATCCTTCAGA A ATCCTTCAGA A ATCGTGCACT A ATGGTGCACT A TAGTTGTGA A TAGTGGCACT A TAGTGTGGA A TAGTGGCACT A TAGTGTGGA A TAGTGGCACT A TAGTGTGGA A TAGTGGGCACT A TAGTGTGGA NO:40 PI	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG GTGCACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNIVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL YETRAVELFT QWYGEISRDT NVUFYIAFLL HDTLGLFYFI QRMLIDVFFF GTTYDFAHCT STYUGTVQENN SVCCPKNEDN NKIK 11804 underlined sequen 21 CCACCTGCTF GAAGGACGAT GCACCAGTGGGC ACCAGTGGGAT CGACCAGTGGGAT CATCATTAACC ATTAAAATTAC GTTTGAGAAA BH3 PRO	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSQIADVIA LTVIKMEEAG LTVIKMEEAG ETAKNSYNDAL LTVIKMEEAG ENKELSKVI ECYSSDEDLA KNWKILILCLF LFAYVLLMDF AGIVFRLHSS LFLFAVWMVA SUFFAVEN ETLAWEGVMK SE CCCS COTTCSPOND to A GAATTCTGTTA A GAGCTACACC A TATTGCTAAT C GAAACTTATTC C TTAGGCTTCA A TGTTGCCTAA	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKDR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA AILPLVGCGFV HSVFHPPELV NKSSLYSGRV FGVARQGILR LVQCFY EVPHPPELV LVQEYCSRLN ENYLVKINTK 0 ID NO:33 PBH3 stan and stop cod 41 TACTACTGAR TATGCGCCC AAAAGGTCTCT CATCCTTCAT CTGCCACCGGCC AAAAGGTCTCT CATCCTTCAT CTGCCACCGGC AATACTCATC ATTGGTTGTAC	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTACTT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGLEA ESTAVKERLVR PRRGFRKEDR ALYKAFSTSE PKFVRLPLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKPVDKH LYSLVFVLFC ITCLDYIFT QNEQNURWIF FPEWITIPLV IPFPFIVFAY ANDTSEEMRH DNA SEQUENCE OOS) 51 CCAATTTTCC CGAATTAGTT GAGCCAGGAA CCACAAAGAT CGACTAAAGAT ACGATGAAGCC TGCATTAAAG AAGTGAAGCC TTCAAAAAAAAG	2940 3006 3120 3180 3240 3300 60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080
15 20 25 30 35 40 45 50 55 60	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TTCTACATGG GAAAACTAC SEQ ID NO:38 P Protein Accession LI I SEQ ID NO:38 P Protein Accession SEQ ID NO:38 P Protein Accession LI I ATGCTTCGCC AGAGCAGTCC CGCGCGCAGG GATGCTCCTC GCAGACAGCC AGAGCACCC CTTGCTAATG GCAGACACC CTTGCTAATG CCTTCTCACATG GCAGACACCC CTTGCTAATG CCTTCTCACATG GCAGACACCC CTTGCTAATG CCTTCTCACATG CCTTC	TGTTATCCAC GCACGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAA TTGTCAAGAA TTGTCAAGAT AACTGATAC AATGA BHI Prolein seque II RINRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVVRDH YILDNINTHL ETLKAINTSI EEETESWIKW KLLLEWNQLD DVLTELFSNH HDVSPITRHP AGESEELANE QPGVQNFLSK FTSPFVVFSW VNYFTDLWNV RNLGPKIIML LYNLLVAMFG CCCKEKNMES DLKGLLKEIA CCKEKNMES DLKGLKEIA TGGCCAATGG ATAGCTTTGA AGACACCTAGA ATAGCTTTGA ATCCTTCAGA TAGCTGGA TATTGCTGA TATTGCTGA	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG TCAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNIVISVTG ISRSSEENIV LLVUNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL YETRAVELFT QWYGEISRDT NVVFYIAFILL MDTLGLFYFI QRMLIDVFFP GTTYDFAHCT TYTYDFVQENN SVCCFKNEDN NKIK 11804 underlined sequen 21 CCACCTGCTFF GAAGGACGAT GCAGCAGTGGCF GACGAGTGAGC ACCAGTGGCF ACCAGTGGCF ACCAGTTGCAATTAAC ATTAAAATAC GTTTGAGAAT	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSQIADVIA LTVIKMEEAG LTVIKMEEAG ETAKNSYNDAL LTVIKMEEAG ENKELSKVI ECYSSDEDLA KNWKILILCLF LFAYVLLMDF AGIVFRLHSS LFLFAVWMVA SUFFAVEN ETLAWEGVMK SE CCCS COTTCSPOND to A GAATTCTGTTA A GAGCTACACC A TATTGCTAAT C GAAACTTATTC C TTAGGCTTCA A TGTTGCCTAA	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKDR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA AILPLVGCGFV HSVFHPPELV NKSSLYSGRV FGVARQGILR LVQCFY EVPHPPELV LVQEYCSRLN ENYLVKINTK 0 ID NO:33 PBH3 stan and stop cod 41 TACTACTGAR TATGCGCCC AAAAGGTCTCT CATCCTTCAT CTGCCACCGGCC AAAAGGTCTCT CATCCTTCAT CTGCCACCGGC AATACTCATC ATTGGTTGTAC	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTACTT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGLEA ESTAVKERLVR PRRGFRKEDR ALYKAFSTSE PKFVRLPLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKPVDKH LYSLVFVLFC ITCLDYIFT QNEQNURWIF FPEWITIPLV IPFPFIVFAY ANDTSEEMRH DNA SEQUENCE OOS) 51 CCAATTTTCC CGAATTAGTT GAGCCAGGAA CCACAAAGAT CGACTAAAGAT ACGATGAAGCC TGCATTAAAG AAGTGAAGCC TTCAAAAAAAAG	2940 3006 3120 3180 3240 3300 60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080
15 20 25 30 35 40 45 50 55 60	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTCGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession I MSFRAARLSM SKATENVCKC SCDTDAELLY TGGTHYGLMK LMDDFTRDPL IVCFAQGGK FLPRTVSRLP QDKDNWNGQL GLNLRKFLTH NGRDEMDIEL LAKVKNDINA KKLLWYYAF DEVROWYVNG LRLLHIFTVS RSVTYBFYLA CIYMLSTNIL FYMVKKCFK RFRQLDTKLN Nucleic Acid Acce Coding sequence 1 ATGCCTCGCC AGAGCAGTCC CGCGCGCAGG GATGCTCCTK ACAGAAACTI GCCCTATCTC GATTCCAATC GCCCGACGC GATTCCCACC GAGCACCCC GAGCACCCC GAGCACCCC GAGCACCCC GAGCACACCC AGACGACCCC AGACCACCC AGACCACC A	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAAT TTGTCAAGAAT AATTGA BH1 Protein seque n *: XP_01 11 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVYRDNT YILDNNHTHL ETLKAINTSI EEETESWIKW KILLEWNOLD DVLTELFSNH HDVSPITRHP AGESEELANE QPGVQNFLSK FTSPFVVFSW VNYFTDLWNV VNYFTDLWNV LYNLLVAMFG CCCKEKNMEG LYNLLVAMFG CCCKEKNEG CCGGCCAAATG ATAGCTTTGTT CAGAGCAACC TTAGCTTTGAG ATCTTCAGA ATCTTCAGA ACGTGGCACT	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG TCAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNLVISVTG ISRSSEENIV LLVUNGCHGH KNKIPCVVVE LKELLECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL VETRAVELFT QWYGEISRDT NVVFYIAFLL MOTLGLFYFI QCALFIWAIL TYTUFYUFAHCT YTVGTVQENN NKIK 11804 underlined sequen 21 CCACCTGCTF GAAGGACGA CACCAGTGGCC ACCAGTGGCC ACCAGTGCC ACCAGTGGCC ACCAGTGCC ACCAGTG	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFFT CAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL ONKKELSKVL LGYSTDLAWGVK ESTOLL LFAYVLLMDF AGVIFILLSS LFIFAVWMVA FTGNESKPLC DQVWKFQRYF ETLAWEGVMK SE CCCCCCCCCC AGAATTCTGTT AGAATTCTGTT AGAATTCTGTTAAATT ACCTGGAGCC AAACTTAATCC AGAACTTCACTCC AAACTTAATT AGGCTTACC CAAACTTCACTCC CAACTCACTC	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLY SNRDTLIRNC LEKYISERTI DEIVSNAISY VMFTALIKOR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA IIPLVGCGFV HSVPHPPELV NKSSLYSGRV VELDEHNLPR LVQEYCSRLN ENYLVKINTK 41 TACTACTGAA TATGCGGCCG AAAGGTCTCT CATCCTTCAT TGCCACCGGA ATACTCATTCC GCAAATAGGCC ATACTCATTCC	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTACTT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGLEA ESTAVKERLVR PRRGFRKEDR ALYKAFSTSE PKFVRLPLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKPVDKH LYSLVFVLFC ITCLDYIFT QNEQNURWIF FPEWITIPLV IPFPFIVFAY ANDTSEEMRH DNA SEQUENCE OOS) 51 CCAATTTTCC CGAATTAGTT GAGCCAGGAA CCACAAAGAT CGACTAAAGAT ACGATGAAGCC TGCATTAAAG AAGTGAAGCC TTCAAAAAAAAG	2940 3006 3120 3180 3240 3300 60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080
15 20 25 30 35 40 45 50 65	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG AAAAATCA SEQ ID NO:38 P Protein Accession LATACATCA GUITACATA SEQ ID NO:38 P Protein Accession LATACATCA LATACATCA LATACATCA ATGCCTCGCC AGAGCAGTCC CCGCGCGCAG GATTCCAATC GCAGACAGCC GCTTCCAATC GCAGACAGCC GCATTCCAATC GCAGACAGCC TACATCA GCAGACAGCC GCATTCCAATC GCAGACAGCC GCATTCCAATC GCAGACAGCC GCATTCCAATC GCAGACAGCC TACATCA TACATCATCA TACACGACAGCC GCATTCCAATC GCAGACAGCC TACATCA TACACGACAGCC TACATCA TACACGACACACC TACATCA TACACC TACATCA TACACGACACACC TACATCA TACACGACACACC TACATCA TACACC TACATCA TACACC TACATCA TACACC TACACC TACATCA TACACC	TGTTATCCAC GCACCGTCCA AGCACCGTCCA TGGTGAAGAA TTGTCAAGAA TTGTCAAGAA TTGTCAAGAA AATGA BHI Protein seque n *: XP_01 11 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLA YILDNNHTHL ETLKAINTSI EESTESWIKW KLLEWNQLD DVLTELFSNH HUVSPITRHP AGESEELANE QPGVQNFLSK FTSPFVVFSW VNYFTDLWNV RNLGPKITML MFGQVPSDVD LVNLLVAMFG CCCKEKNMES DLKGLLKEIA 2550n *: XM_0 1 1 C TGTTCTTGTT C AGACACCTAGA A TAATTATCAT C AGACACCTAGA ATCCTTCAGA ATCCTTCAGA	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG TCAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNLVISVTG ISRSSEENIV LLVUNGCHGH KNKIPCVVVE LKELLECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL VETRAVELFT QWYGEISRDT NVVFYIAFLL MOTLGLFYFI QCALFIWAIL TYTUFYUFAHCT YTVGTVQENN NKIK 11804 underlined sequen 21 CCACCTGCTF GAAGGACGA CACCAGTGGCC ACCAGTGGCC ACCAGTGCC ACCAGTGGCC ACCAGTGCC ACCAGTG	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFFT CAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL ONKKELSKVL LGYSTDLAWGVK ESTOLL LFAYVLLMDF AGVIFILLSS LFIFAVWMVA FTGNESKPLC DQVWKFQRYF ETLAWEGVMK SE CCCCCCCCCC AGAATTCTGTT AGAATTCTGTT AGAATTCTGTTAAATT ACCTGGAGCC AAACTTAATCC AGAACTTCACTCC AAACTTAATT AGGCTTACC CAAACTTCACTCC CAACTCACTC	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLY SNRDTLIRNC LEKYISERTI DEIVSNAISY VMFTALIKOR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA IIPLVGCGFV HSVPHPPELV NKSSLYSGRV VELDEHNLPR LVQEYCSRLN ENYLVKINTK 41 TACTACTGAA TATGCGGCCG AAAGGTCTCT CATCCTTCAT TGCCACCGGA ATACTCATTCC GCAAATAGGCC ATACTCATTCC	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTACTT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGLEA ESTAVKERLVR PRRGFRKEDR ALYKAFSTSE PKFVRLPLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKPVDKH LYSLVFVLFC ITCLDYIFT QNEQNURWIF FPEWITIPLV IPFPFIVFAY ANDTSEEMRH DNA SEQUENCE OOS) 51 CCAATTTTCC CGAATTAGTT GAGCCAGGAA CCACAAAGAT CGACTAAAGAT ACGATGAAGCC TGCATTAAAG AAGTGAAGCC TTCAAAAAAAAG	2940 3006 3120 3180 3240 3300 60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080
15 20 25 30 35 40 45 50 65	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TTCTACATGG AATAAAATCA SEQ ID NO:38 P Protein Accession SEQ ID NO:38 P Protein Accession SKATENVCKC SCDTDAELLY TGGTHYGLMK LMDDFTRDPL LYCFAQGGGK FLPRTVSRLP QDKDNWNGQL LUVCFAQGGGK FLPRTVSRLP GLNLRKFLTH NGRDEMDIEL LAKVKNDINA VEATDQHFILL LAKVKNDINA VEATDQHFILL LAKVKNDINA VEATDQHFILL LAKVKNDINA VEATDQHFILL FYMVVKCFK RSVIYEPYLA CIYMLSTNIL FYMVVKCFK RFRQLDTKLN Nucleic Acid Acce Coding sequence 1 ATGCCTCGCC AGAGCAGTCC CGCGCGCGCAG GATGCTCCTC ACAGAAACTI GCCTTACTC GATTCCAATT	TGTTATCCAC GCACGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAA TTGTCAAGAT AACTGGATAC AATGA BHI Prolein seque ** ** ** ** ** ** ** ** ** ** ** ** *	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG TCAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNIVISVTG ISRSSEENIV LLVUNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL YETRAVELFT QWYGEISRDT NVVFYIAFILL MDTLGLFYFI QRMLIDVFFP GTTYDFAHCT TYTYGTVQENN SVCCFKNEDN NKIK 11804 underlined sequen 21 CCACCTGCTFF GAAGGACGAT GAAGGACGAT GCACAGTGGCF GTTGGAATTK AGAATTTAAC	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL LONKKELSKVI ECYSSDEDLA KNWKILCLP LFAYVLLMDF AGIVFRLHSS LFIFAVMVA AGIVFRLHSS LFIFAVMVA SE CCCS COTTCSPOND 1 GCCS COTTCSPOND 2 GAAATTCTGTT AGAGCTACACC GAAACTTATTC	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKOR LITFVWKLVAN WEQTRGCTLA EQLLVYSCEA RIPLVGCGFV HSVPHPPELV NKSSLYSGRV FGVARQGILR LVQEYCSRLN ENYLVKINTK Q ID NO:39 PBH3 stan and stop cod 41 TACTACTGAR TATGCGGCCC AAAAGGTCTCT CATCCTTCAT CAGCACCGGG AGTATGTACC CGCAATAGGCC	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGELVE SSAVKEKLVR ALYKAFSTSE PKFVRLFLEN PKRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKFVDKH LYSLVFVLFC IFCLDYIFT QNEQRWRWIF FPEWITIPLV IFFPIVFAY ANDTSEEMRH DNA SEQUENCE CGAATTAGTT CGAGCCAGGAA CCACAAAGAT CGCTGAAGGCA CTGCATTAAAG AAGTGAAGCC	2940 3000 3120 3120 3180 3240 3300 360 420 480 540 660 660 720 660 780 840 900 91020 1080
15 20 25 30 35 40 45 50 55	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTCTGC	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAT TTGTCAAGAT TTGTCAAGAT AACTGATCA BHI Protein seque n *: XP_01 IN	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNLVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTNL LANDEIFTNL LANDEIFTNL QWYGEISRDT NVVFYIAFLL MDTLGLFYFI QWYGEISRDT NVVFYIAFLL MDTLGLFYFI GTTYDFAHCT TYVGTVQENN SVCCFKNEDN NKIK 11804 underlined sequen 21 CCACCTGCTF GGAAGGACGAT GCGCATGAGGC CCGCATGAGGC CCGCCTGGAATTX GTGGAATTX	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAMGMV PTVEAKLRNQ GSQQIADVIA LTVIRMEEAG LTVIRMEEAG LTVIRMEEAG LTVIRMEEAG LTVIRMEAG ETHAVULMDF AGIUFRLHSS LFLFAVULMDF AGIUFRLHSS LFLFAVWVA FTGNESKPLC DQVWKFQRYF ETLAWEGVMK SE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNATSY VMFTALIKDR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA LIPLVGCGFV HSVPHPPELV NKSSLYSGRV FGVARQGILR VELDEHNLFR LVQEYCSRLN ENYLVKINTK 2 ID NO:39 PBH3 stan and stop cod 41 TACTACTGAA TATGCGGCCG AAAGGTCTCT CATCCTTCAT TGCCACCGGGT TGCCACCGGGT TGCCACCGGGT CCATCGTTCAT TGCCACCGGGT TGCCACCGGGT CCATCGTCAT TGCCACCGGGT TGCCACCGGGT TGCCACCGGGT TGCCACCGGGT TGCCACCGGGT TGCCACCGGGT TGCCACCGGT TGCCACCGT TGCCACCGGT TGCCACCGGT TGCCACCGGT TGCCACCGGT TGCCACCGGT TGCCACCGT TGCCACCGT TGCCACCGT TGCCACCGT TGCCACCGT TGCCACCGGT TGCCACCGT TGCCACCT TGCCACCT TGCCACCGT TGCCACCGT TGCCACCGT TGCCACCT TGCCACCACCACCACCC TGCA	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAOSKCAWIL LAOSKCAWIL LAOSKCAWIL LAOSKCAWIL DAEGYPLAQY QOSNYGGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLFLEN FRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKEPUKH LYSLVFVLFC IFCLDYIIFT QNEQRWRWIP FPEWITIPLV IPFPFIVFAY ANDTSEEMRH DNA SEQUENCE ONS) 51 CCAATTTTCC CGAACTAGGTA CAACAAGGAA CAACAAGGAA CAACAAGGAA	2940 3000 3120 3180 3120 3180 3240 3300 120 180 240 300 360 420 480 540 6600 6600 6600 6600 720 780 840 990 1020 1080
15 20 25 30 35 40 45 50 55	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG AAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession LATGATHOLI LATGATHOLI LATGATHOLI LARVENDINA VEATOOHTIA KKLLWYYVAP DEVROWYVNG LRLIHIPTVS RSVIYEPYLA CIYMLSTNIL FYMVVKCFK RFRQLDTKLN Nucleic Acid Acce Coding sequence 1 ATGCCTCGCC AGGCCGGCCGC GGAGGGGATGCTCCTX GTGCTCCTCC GCCGCGCGCAGG GATGCTCCTX	TGTTATCCAC GCACCGTCAA AGTACTGCAG TGGTGAAGAA TTGTCAAGAA TTGTCAAGAA TTGTCAAGAA AATGA BHI Protein seque n *: XP_01 11 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLA YILDNNHTHL ETLKAINTSI EEETESWIKW KLLLEWNQLD DULTELFSNH HDVSPITRH DVSPITRH DVSPITRH HDVSPITRH COGGCCAATGA LVNLLVAMFG CCKEKIMES DLKGLLKEIA ession *: XM_0 1 1-558 (cc) 11 CCGGCCAATGG CAGGCCAATGG CAGCCCAATGG CAGGCCAATGG CAGGCCAATGG CAGGCCAATGG CAGGCCAATGG CAGGCCAATGG CAGCCCATGG CAGGCCAATGG CAGCCAATGG CAGCCAATGG CAGGCCAATGG CAGGCCA	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG TCAACACAAAA AAAGCTTAAT 21 ! TRTLYSSASR TQINQSEKWN TPNIVISVTG ISRSSEENIV LLVUNGCHGH KNKIPCVVVE LKELLECSHL LANDEIFTND FSTLVYRNLL LANDEIFTND FSTLVYRNLFT QWYGEISRDT NVVFYIAFLL MDTLGLFYFI QRMLIDVFFP GTTYDFAHCT TYTGTVQENN NKIK 11804 underlined sequen 21 CCGCACTGCTF CGGCATGAGGC CGGCATGAGGC CGGCATGAGGC CGGCATGAGGC CGCCATGGCF CCGCATGAGGC CCGCATGAGC CCGCATGACC CCACTGCT CCACCATGCC CCACCACTGCC CCACCACCAC CCACCACTGCC CCACCACCAC CCACCACCAC CCACCACCAC CCACCA	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFFT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA KNWKILKUL LTVIKMEEAG RTWESADLOE IAKNSYNDAL LFAYVLLMDF AGVIKFLSVI LCYSSDEDLA KNWKIILCLF LFAYVLLMDF TGNESKPLC DQVWKFQRYF ETLAWEGVMK SE CCSCCOTESPOND to 31 GAGATTCTGTT TGTTATTAAAM A GAATTCTGTT C GTTATTAAAM A GAATTCTGTT C GTATTTAAAM A GAATTCTGTT A GAATTCTGTT A GAATTCTGTT A GAATTCTGTT A GAATTCTGTT A GAATTCTGTT	TGCTGGTCGC GGAAGTTCCA CGGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 } LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI DEIVSNAISY VMFTALIKOR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA IIPLVGCGFV HSVPHPPELV NKSSLYSGRV VELDEHNLPR LVQEYCSRLN ENYLVKINTK QID NO:39 PBH3 stan and stop cod 41 ; TACTACTGAA TAGGGCCCG AAAAGGTCTCT CATCCTTCAT	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL PSSAVKEKLVR ALYKAFSTSE PKFVRLFLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKKPVDKH LYSLVFVLFC LYSLVFVLFC QNEQRWRWIP FPEWITIPLV IPFPFIVFAY ANDTSEEMRH DNA SEQUENCE ons) 51 CCAATTTTCC CGAATTAGTT GGGCCAGGAA CACACAAGAT	2940 3000 3120 3120 3180 3240 3300 360 420 480 540 660 720 780 840 900 960 1020 1080
15 20 25 30 35 40 45 50 55	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTCACATGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession SKATENVCKC SCDTDAEILY TGGTHYGLM LMDDFTRDPL IVCFAQGGGK FLPRTVSRLP QDKDNWNGQL GLNLRKFLTH NGRDEMDIEL LAKVKNDINA VEATDQHFIA KKLLWYVAF DEVRQWYVNG LRLTHIFTVS RSVYTEPYLA CIYMLSTNIL FYMVVKKCFK RFRQLDTKLN Nucleic Acid Acco Coding sequence 1 ATGCCTCGCC AGAGCCAGTCC	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAT TTGTCAAGAT TTGTCAAGAT AACTGATCA BH1 Protein seque n *: XP_01 I1 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVVRDNT YILDNNHTHL ETLKAINTSI EEETESWIKW KLLLEWQLD DVLTELFSNH HDVSPITRHP AGESEELANE QPGVQNFLSK FTSPFVVFSW VNYFTDLMNV RNLGPKIIML MFGQVPSDVD LVNLLVAMFG CCCKEKNMES DLKGLLKEIA 25500 *: XM_0 2	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT TGAAGACAAT AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNLVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL TSTRAVELFT QWYGEISRDT NVVFYIAFLL HDTLGLFYFL HDTLGLFYFL GTTYDFAHCT YTVGTVQENN SVCCFKNEDN NKIK 11804 underlined sequen	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAMGMV PTVEAKLRNQ GSGQIADVIA LTVIRMEEAG LTVIRMEEAG LTVIRMEEAG LTVIRMEEAG LTVIRMEEAG LTVIRMEAG ECHAVULMDF AGIUFRLHSS LFLFAVWWA FTGNESKPLC DQVWKFQRYF ETLAWEGVMK SE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNATSY VMFTALIKDR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA IIPLVGCGFV HSVFHPPELV NKSSLYSGRV FGVARQGILR VELDEHNLFR LVQEYCSRLN ENYLVKINTK 2 ID NO:39 PBH3 stan and stop cod 41 TACTACTGAA	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKCAWIL LAQSKCAWIL LAQSKCAWIL DAEGYPLAQY QOSNYGGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLFLEN FRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKEPUKH LYSLVFVLFC IFCLDYIIFT QNEQRWRWIP FPEWITIPLV IPFPFIVFAY ANDTSEEMRH DNA SEQUENCE ons) 51 CCCAATTTTCC CGGAATTAGTT	2940 3000 3120 3180 3120 3180 3240 3300 120 180 240 300 360 420 480 540 6600 6600 6600 6600 720 780 840 900 1020 1080
15 20 25 30 35 40 45 50	CGTTCGGTCA GGTACCACGT GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTCGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession I MSFRAARLSM SKATENVCKC SCDTDABILLY TGGTHYGLMK LMDDFTRDPL IVCFAQGGGK FLPRTVSRLP ODKDINKNGQL GLNLRKFLTH NGRDEMDIEL LAKVKNDINL KKLLWYYAP DEVRCWYVNG LRLIHIFTVS RSVLYBFYLA CIYMLSTNIL FYMVVKKCFK RFRQLDTKLN Nucleic Acid Acce Coding sequence 1 ATGCCTCGCC	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA CTTTCAAAAA TTGTCAAGAT AACTGGATAC AATGA BH1 Protein seque n*: XP_01 11 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVVHLK YIGEVVHLK YIGEVHEN KILLEWNOLD DVLTELFSNH HDVSPITRHP AGESEELANE QPGVQNFLSK FTSPFVVFSW VNYFTDLWNV VNYFTDLWNV VNYFTDLWNV LVNLLVAMFG CCCKEKNMES DLKGLLKEIA 11 CTGTTCTTGTT	CCGCCTCAAT GTGCTTCAAG TGAGACAAT TGAAGACAAT AAAGCTTAAT 21 TRTLYSSASR TQINQSEKMI TENLUISVTG ISRSSEENIV LLVUNGCHGH KNKIPCVVVE LANDEIFTND FSTLVYRNLQ LQALFIWAIL VETRAVELFT QWYGEISRDT NVVFYIAFLL MDTLGLFYFI QRMLIDVFFF GTTYDFAHCT TTVGTVQENN SVCCPKNEDN NKIK 11804 underlined sequen	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPP GAKNFALKPP TVEAKLRNQ GSGQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL CNKKELSKVI LECYSSDEDLA KNWKIILCLF LFAYVLLMDF AGIVFRLHSS LFLFAVWWA FTGNESKPLC DCYWKFQRYF ETLAWEGVMK SE CCCCCCTCCTCTT AGAATTCTGTT	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALIT DEIVSNAISY VMFTALIKOR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA IIPLVGCGFV HSVPHPPELV NKSSLYSGRV VELDEHNLPR LVQEYCSRLN ENYLVKINTK Q ID NO:39 PBH3 stan and stop cod 41 TACTACTGAR	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGKLVR ALYKAFSTSE PKFVKLPLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKKPUDKH LYSLVFVLFC IFCLDYIFFT IFFLDYIFT PEWITIPLV IPFPFIVFAY ANDTSEEMRH DNA SEQUENCE (005) 51 CCCAATTTTCC	2940 3000 3120 3180 3240 3300 60 120 180 240 300 360 420 660 6720 780 840 900 960 1020 1080
15 20 25 30 35 40 45 50	CGTTCGGTCA GGTACCACGT GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTCGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession I MSFRAARLSM SKATENVCKC SCDTDAEILY TGGTHYGLMK LMDDFTRDPL IVCFAQGGGK FLPRTVSRLP QDKDNMNGQL GLNLKFLTH NGRDEMDIEL LAKVKNDINA KKLLWYYAF DEVRQWYVNG LRLLHIFTVS RSVTYBFYLA CIYMLSTNIL FYMVKKCFK RFRQLDTKLN Nucleic Acid Acco Coding sequence	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAA TTGTCAAGAT AACTGGAT AACTGGAT AACTGGAT AACTGGAT AATGA BH1 Protein seque ** ** ** ** ** ** ** ** ** ** ** ** *	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT TGAAGACAAT AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWIN TPNLVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKELLECSHL LANDEIFTND FSTLVYRNLQ LQALFIWALI LQALFIWALI QWYGEISRDT NVVFYIAFLL MOTLGLFYPI ORMLIDVFFF GTTYDFAHCT YTVGTVQENN SVCCFKNEDN NKIK 11804 underlined sequen	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 TOTTGCTGCA GATCTCAAGG 31 TOTTGCTGCA GATCTCAAGG 31 TOTTGCTGCA GATCTCAAGG 31 TOTTGCTGCA GATCTCAAGG 31 TOTTGCTGCAAGGA GATCTCAAGG 31 TOTTGCTAAGGA GATCTCAAGG GATCTCAAGG TOTTGCTAAGGA TOTTGCTAAGA TOTTGCTAAGA	TGCTGGTCGC GGAAGTTCCA CGTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALIY DEIVSNAISY VMFTALIKOR LTFVWKLVAN WEOTRGCTLA EQLLVYSCEA II PLVGCGFV HSVPHPPELV NKSSLYSGRV VELDEHNLFR LVQEYCSRLN ENYLVKINTK Q ID NO:39 PBH3 stan and stop cod	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL IAQSKGAWIL IAQSKGAWIL IAQSKGAWIL IAQSKGAWIL FRAGFRKEDR ALYKAFSTSE ALYKAFSTSE ALYKAFSTSE FKFVRLPLEN FRRGFRKEDR ALGASKILKT WGGSNCLELA SFFKKEVDKH LYSLVFVLFC IFCLDYIIFT QNEQRWIP FPEWTIPLV IPFPTIVFAY ANDTSEEMTH DNA SEQUENCE ORS)	2940 3000 3120 3180 3240 3300 60 120 180 240 360 420 480 540 660 660 720 780 840 900 960 1020
15 20 25 30 35 40 45 50	CGTTCGGTCA GGTACCACGT GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTCGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession I MSFRAARLSM SKATENVCKC SCDTDAEILY TGGTHYGLMK LMDDFTRDPL IVCFAQGGGK FLPRTVSRLP QDKDNMNGQL GLNLKFLTH NGRDEMDIEL LAKVKNDINA KKLLWYYAF DEVRQWYVNG LRLLHIFTVS RSVTYBFYLA CIYMLSTNIL FYMVKKCFK RFRQLDTKLN Nucleic Acid Acco Coding sequence	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAA TTGTCAAGAT AACTGGAT AACTGGAT AACTGGAT AACTGGAT AATGA BH1 Protein seque ** ** ** ** ** ** ** ** ** ** ** ** *	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT TGAAGACAAT AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWIN TPNLVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKELLECSHL LANDEIFTND FSTLVYRNLQ LQALFIWALI LQALFIWALI QWYGEISRDT NVVFYIAFLL MOTLGLFYPI ORMLIDVFFF GTTYDFAHCT YTVGTVQENN SVCCFKNEDN NKIK 11804 underlined sequen	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL CNKKELSKVI ECYSSDEDLA KNWKIILCLF LFAYVLLMDF AGIVFRLHSS LFLFAVWMVA FTGNESKPLC DQVWKFQRYF ETLAWEGVMK SE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TGCTGGTCGC GGAAGTTCCA CGTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALIY DEIVSNAISY VMFTALIKOR LTFVWKLVAN WEOTRGCTLA EQLLVYSCEA II PLVGCGFV HSVPHPPELV NKSSLYSGRV VELDEHNLFR LVQEYCSRLN ENYLVKINTK Q ID NO:39 PBH3 stan and stop cod	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL IAQSKGAWIL IAQSKGAWIL IAQSKGAWIL IAQSKGAWIL FRAGFRKEDR ALYKAFSTSE ALYKAFSTSE ALYKAFSTSE FKFVRLPLEN FRRGFRKEDR ALGASKILKT WGGSNCLELA SFFKKEVDKH LYSLVFVLFC IFCLDYIIFT QNEQRWIP FPEWTIPLV IPFPTIVFAY ANDTSEEMTH DNA SEQUENCE ORS)	2940 3000 3120 3180 3240 3300 60 120 180 240 360 420 480 540 660 660 720 780 840 900 960 1020
15 20 25 30 35 40 45 50	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGCACTGGAGCTGG TGCATCTACA TACACGGTGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG AAAAATCA SEQ ID NO:38 P Protein Accession 1	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATAC AATGA BHI Protein seque ** XP_01 11 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVVRDNT YILDNNHTHL ETLKAINTSI EEETESWIKW KLLLEWNQLD DVLTELFSNH HUVSPITRHP AGESEELANE QPGVQNFLSK FTSPFVVFSW VNYFTDLWNV RNLGPKIIML MFGQVPSOMFG LVNLLVAMFG CCCKEKNMES DLKGLLKEIA	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG TCAACACAAAA AAAGCTTAAT 21 ! TRTLYSSASR TQINQSEKWN TPNILVISVTG ISRSSEENIV LLVUNGCHGH KNKIPCVVVE LKELLECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL YETRAVELFT QWYGEISRDT NVVFYIAFLL MDTLGLFYFI QRMLIDVFFP GTTYDFAHCT TYTGTVQENN SVCCFKNEDN NKIK	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSQQIADVIA LTVIKMEEAG RRWESADLQE LTAKNSYNDAL CNKKELSKVI ECYSSDEDLA KNWKIILCLF LFAYVLLMDF AGIVFRLHSS LPLFAVWMVA FTGNEKFLC DQVWKFQRYF ETLAWEGVMK	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 } LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLIVEVEDALT DEIVSNAISY VMFTALIKOR EQLLVYSCEA IIPLVGCGFLV MKSSLYSCRV FGVARQGILR VELDEHNLPR LVQEYCSRLN ENYLVKINTK Q ID NO:39 PBH3	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCCAT AGACATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL DAEGYFLAQY QDSNYGGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLFLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKKPUDKH LYSLVFVLFC LIFCLDYLIFT QNEQRWRWIF FPEWITIPLV ANDTSEEMTH DNA SEQUENCE	2940 3000 3120 3180 3240 3300 60 120 180 240 360 420 480 540 660 660 720 780 840 900 960 1020
15 20 25 30 35 40 45	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTCTGC	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATCA AATGA BHI Prolein seque n#: XP_01 II RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVVRDIN YILDNNHTHL ETLKAINTSI EEETESWIKW KLLLEWNQLD DVLTELFSNH HDVSPITRHP AGESEELANE QPGVQNFLSK FTSPFVVFSW VNYFTDLWNV RNLGPKIINL LYNLEFSNH WRYFTDLWNV RNLGPKIINL LYNLEFSNH WRYFTDLWNV RNLGPKIINL LYNLEFSNH	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG TGAAGACAAT AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNLVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTND LANDEIFTND LYSTRAVELFT QWYGEISRDT NVVFYIAFLL MDTLGLFYPI QRMLIDVFFP GTTYDFAHCT TVTGTVQENN SVCCPKNEDN NKIK	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL CNKKELSKVI ECYSSDEDLA KNWKIILCLF LFAYVLLMDF AGIVFRLHSS LFLFAVWMVA FTGNESKPLC DQVWKFQRYF ETLAWEGVMK	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALIT DEIVSNAIST LUTFVWKLVAN WEQTRGCTLA EQLLVYSCEA II PLVGCGFV HSVPHPPELV NKSSLYSGRV VELDEHNLFR LVQEYCSRLN ENYLVKINTK	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL IAQSKGAWIL DAEGYPLAQY QDSNYGGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLPLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKRPUDKH LYSLVFVLFC IFCLDYIIFT QNEQRWRWIP FPEWITIPLV IPFPFIVFAY ANDTSEEMTH	2940 3000 3120 3180 3240 3300 60 120 180 240 360 420 480 540 660 660 720 780 840 900 960 1020
15 20 25 30 35 40 45	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG AAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession 1 MSFRAARLSM SKATENVCKC SCDTDAEILY TGGTHYGLMK LMDDFTRDPL IVCFAQGGGK FLPRTVSRLP QDKDNWNGQIL GLNLRKFLTH NGRDEMDIEL LAKVKNDINA VEATDQHFIA KKLLWYYVAF DEVRQWYVNG LRLIHIFTVS RSVIYEFYLA CIYMLSTNIL FYMVVKKCFK	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATAC AATGA BHI Prolein seque I XP_01 I XP_01 I VILONNHTLL STLANINTSI EESTESWIKW KLLLEWNQLD DVLTELFSNH HDVSPITRHP AGESEELANE QPGVQNFLSS VNYFTDLWNV RNLGPKI IML MFGQVPSDVL LVNLLVAMFG CCCKEKNMES	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG TCAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNILVISVTG ISRSSEENIV LLVUNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL YETRAVELFT QWYGEISRDT NVVFYLAFLL MDTLGLFYFI QRMLIDVFFF GTTYDFAHCT TYVGTVQENN SVCCFKNEDN	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL CNKKELSKVI ECYSSDEDLA KNWKIILCLF LFAYVLLMDF AGIVFRLHSS LFLFAVWMVA FTGNESKPLC DQVWKFQRYF ETLAWEGVMK	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALIT DEIVSNAIST LUTFVWKLVAN WEQTRGCTLA EQLLVYSCEA II PLVGCGFV HSVPHPPELV NKSSLYSGRV VELDEHNLFR LVQEYCSRLN ENYLVKINTK	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL IAQSKGAWIL DAEGYPLAQY QDSNYGGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLPLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKRPUDKH LYSLVFVLFC IFCLDYIIFT QNEQRWRWIP FPEWITIPLV IPFPFIVFAY ANDTSEEMTH	2940 3000 3120 3180 3240 3300 60 120 180 240 360 420 480 540 660 660 720 780 840 900 960 1020
15 20 25 30 35 40 45	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG TTCTACATGG AAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession 1 MSFRAARLSM SKATENVCKC SCDTDAEILY TGGTHYGLMK LMDDFTRDPL IVCFAQGGGK FLPRTVSRLP QDKDNWNGQIL GLNLRKFLTH NGRDEMDIEL LAKVKNDINA VEATDQHFIA KKLLWYYVAF DEVRQWYVNG LRLIHIFTVS RSVIYEFYLA CIYMLSTNIL FYMVVKKCFK	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATAC AATGA BHI Prolein seque I XP_01 I XP_01 I VILONNHTLL STLANINTSI EESTESWIKW KLLLEWNQLD DVLTELFSNH HDVSPITRHP AGESEELANE QPGVQNFLSS VNYFTDLWNV RNLGPKI IML MFGQVPSDVL LVNLLVAMFG CCCKEKNMES	CCGCCTCAAT GTGCTTCAAG GTGCTTCAAG TCAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNILVISVTG ISRSSEENIV LLVUNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL YETRAVELFT QWYGEISRDT NVVFYLAFLL MDTLGLFYFI QRMLIDVFFF GTTYDFAHCT TYVGTVQENN SVCCFKNEDN	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGLAMGMV PTVEAKLRNQ GSQQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL QNKKELSKVI ECYSSDEDLA KNWKILCLF LFAYVLLMDF AGIVFRLHSS LFLFAVWMVA FTGNESKPLC DQVWKFQRYP	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKDR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA LIPLVGCGFV HSVPHPPELV NKSSLYSGRV FGVARQGILR VELDEHNLPR LVQEYCSRLN	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51	2940 3000 3120 3180 3240 3300 60 120 180 240 360 420 480 540 660 660 720 780 840 900 960 1020
15 20 25 30 35 40 45	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTCTGC	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATCA AATGA BHI Protein seque 11 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVVRDNT YILDNNHTHL ETLKAINTSI EEETESWIKW KLLLEWNQLD DVLTELFSNH HDVSPITRHP AGESEELANE QPGVQNFLSK FTSPFVVFSW VNYFTDLWNV RNLGPKITHL MFGQVPSDVD LVNLLVAMFG	CCGCCTCAAT GTGCTTCAAG TGAAGACAAA AAAGCTTAAT CCCC T7118 21 TRTLYSSASR TQINQSEKWN TPNILVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL YETRAVELFT QWYGEISRDT NVVFYIAFLL MDTLGLFYFF GTTYDFAHCT YTVGTVQENN	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGLAMGMV PTVEAKLRNQ GSQQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL QNKKELSKVI ECYSSDEDLA KNWKILCLF LFAYVLLMDF AGIVFRLHSS LFLFAVWMVA FTGNESKPLC DQVWKFQRYP	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKDR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA LIPLVGCGFV HSVPHPPELV NKSSLYSGRV FGVARQGILR VELDEHNLPR LVQEYCSRLN	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51	2940 3000 3120 3180 3240 3300 60 120 180 240 360 420 480 540 660 660 720 780 840 900 960 1020
15 20 25 30 35 40	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTCGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession I MSFRAARLSM SKATENVCKC SCDTDABILLY TGGTHYGLMK LMDDFTRDPL IVCFAQGGK FLPRTVSRLP QDKDMWNGQL GLNLRKFLTH NGRDEMDIEL LAKVKNDINA VEATDQHFIA KKLLWYYAP DEVRQWYUNG LRLIHIPTVS RSVLYBFYLA	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAAT TTGTCAAGAT AACTGGAT AACTGGAT AATGA BH1 Protein seque *** *** *** *** ** ** ** **	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNLVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVG LKEILECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL QWIGEISRDT NVVFYIAFLL HDTLGLFYLL HDTLGLFYFF GTTYDFAHCT	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL CNKKELSKVI ECYSSDEDLA KNWKIILCLF LFAYVLLMDF AGIVFRLHSS LFLFAVWMVA FTGNESKPLC	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKOR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA IIPLVGCGFV HSVPHPPELV NKSSLYSGRV VELDEHNLFR	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL IAQSKGAWIL IAQSKGAWIL IAQSKGAWIL AGSKGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLFLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKKEVDKH LYSLVFVLFC IFCLDYIIFT QNEQRWIP FPEWITIPLV	2940 3000 3120 3180 3240 3300 60 120 180 240 300 360 420 660 6720 780 840 900 960
15 20 25 30 35 40	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGCACTGC TGCACCACGT TACACGGTGG TTCTACATGG TTCTACATGG TTCTACATGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession 1	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATAC AATGA BHI Prolein seque I RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVVRDNT YILDNNHTHL ETLKAINTSI EESTESWIKW KLLLEWNQLD UVLTELFSNH HDVSPITRHP AGESEELANE QPGVQNFLSK VNYFTDLWNV	CCGCCTCAAT GTGCTTCAAG GTGCTCAAG TCAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNIVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL YETRAVELFT QWYGEISRDT MVVFYIAFLL MDTLGLFYFI	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG RKWESADLQE LAKNSYNDAL QNKKELSKVI ECYSSDEDLA KNWKIILCLDF AGIVFRLHSS	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 } LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKOR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA IIPLVGCGFV NKSSLYSGRV	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCCAT AGACATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAYSKGAWIL ALYKAFSTSE PKFVRLFLEN FRRGFRKEDR ALYKAFSTSE PKFVRLFLEN SFRKKPUDKL LYSLVEVLFC LFCLDYLIFT	2940 3000 3120 3120 3180 3240 3300 60 120 180 240 360 420 480 540 660 720 780 840
15 20 25 30 35 40	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTCGGT GAAAACTACC GAAAACTACC GAATATAAAC SEQ ID NO:38 P Protein Accession MSFRAARLSM SKATENVCKC SCDTDAEILY TGGTHYGLM LMDDFTRDPL IVCFAQGGK FLPRTVSRLP QDKDNWNGQL GLNLRKFLTH NGRDEMDIEL LAKVENDINA KELLWYVAF	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAT TTGTCAAGAT AACTGGATAC AATGA BH1 Protein seque 11 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVVRDNT YILDNNHTHL ETLKAINTSI EEETESWIKW KLLLEWNQLD DVLTELFSNH HDVSPITRHP AGESEELANE QPGVQNFLSK FTSPFVVFSW	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNILVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKEILECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL CWYGEISRDT NVVFYIAFLL	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAMGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL QNKKELSKVI ECYSSDEDLA KNWKILCLF LFAYVLLMDF	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKDR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA IIPLVGCGFV HSVPHPPELV	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAOSKGAWIL LAOSKGAWIL DAEGYPLAQY QDSNYGGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLFLEN FRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKKPVDKH LYSLVFVLFC	2940 3000 3120 3180 3240 3300 60 120 180 240 300 360 420 480 540 6600 6600 720 780
15 20 25 30 35 40	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGCACTGG TGCATCTACA TACACGGTGG TTCTACATGG TTCTACATGG TTCTTCTCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession 1 MSFRAARLSM SKATENIVCK SCDTDAEILY TGGTHYGLMK LMDDFTRDPL IVCFACGGGG LIVFACGGGG QDKDNWNGQL GLNLRKFLTH NGRDEMDIEL LARVKNDINA VEATDQHFIA	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAA TTGTCAAGAT AACTGGATAC AATGA BH1 Protein seque n #: XP_01 I1 I RNRRNDTLDS GYAQSQHMEG ELLTQHWILD YILDNNHTHL ETLKAINTSI EEETESWIKW KILLEWNQLD DVLTELFSNH HDVSPITRHP AGESEELANE QPGVQNFLSK	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNLVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVG LKELLECSHL LKHLECSHL LKHLECSHL LKANDEIFTND FSTLVYRNLQ LQALFIWAIL QWIGEISRDT	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKFR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL OMKKELSKVI CMKKELSKVI ECYSSDEDLA KNWKIILCLF	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLTI SILVEVEDALT DEIVSNAISY VMFTALIKOR LTFVWKLVAN WEQTRGCTLA WEQTRGCTLA IPLVGCGFV	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL LAQSKGAWIL LAQSKGAWIL LAQSKGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLFLEN FRRGFRKEDR ALGASKLLKT WGGSNCLELA SFRKKPVDKH	2940 3000 3120 3180 3240 3300 60 120 180 240 300 360 420 480 540 660 720
15 20 25 30 35 40	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGCACTGG TGCATCTACA TACACGGTGG TTCTACATGG TTCTACATGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession 1	TGTTATCCAC GCACCGTCCA AGTACTGCAG AGTACTGCAG TGGTGAAGAA TTGTCAAGAT TAGTCAAGAT AACTGGATAC AATGA BHI Prolein seque 11 RNRRNDTLDS GYAQSQHMEG GYAQSQHMEG ELLTQHWHLK YIGEVVRDNT YILDNNHTHLL ETLKAINTSI EEETESWIKW KLLLEWNQLD DVLTELFSNH HUVSPITRHP AGESEELANB	CCGCCTCAAT GTGCTTCAAG GTGCTCAAG CAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TPNLVISVTG ISRSSEENIV LLVUNGCHGH KNKIPCVVVE LKELLECSHL LANDEIFTND FSTLVYRNLQ LQALFIWAIL YSTRAVELFT	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSQQIADVIA LTVIKMEEAG RRWESADLQE IAKNSYNDAL QNKKELSKVI ECYSSDEDLA	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 } LVNFIQANFK LVNFIQANFK SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKDR LTFVWKLVAN WEQTRGCTLA EQLLVYSCEA	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL DAEGYPLAQY QDSNYGGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLFLEN FRRGFRKEDR FRRGFRKEDR ALGASKLLKT WGGSNCLELA	2940 3000 3120 3120 3180 3240 3300 60 120 180 240 360 420 480 540 600
15 20 25 30 35 40	CGTTCGGTCA GGTACCACGT GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTCGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession I MSFRAARLSM SKATENVCKC SCDTDAELLY TGGTHYGLMK LMDDFTRDPL IVCFAQGGGK FLPRTVSRLP QDKDNWNGQL GLNLKKFLTH	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAT TAGTCAAGAT AACTGGATAC AATGA BH1 Protein seque ** XP_01 I1 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVURNT YILDNNHTHL ETLKAINTSI EEETESWIKW KLLLEWNQLD DVLTELFSNH	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNILVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKELECSHL LANDEIFTND FSTLVYRNLQ	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG LTVIKMEEAG IAKNSYNDAL LAKNSYNDAL	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKOR LTFVWKLVAN	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGKWILL LAQSKGKWILL DAEGYPLAQY QDSNYGGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLFLEN FRRGFRKEDR	2940 3000 3120 3180 3240 3300 60 120 180 240 300 360 420 480 540
15 20 25 30 35 40	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACAT TACACGGTGG TTCTACATGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession 1 MSFRAARLSM SKATENVCK SCDTDAEILY TGGTHYGLMK LMDDFTRDPL IVCFAQGGGI VICFAQGGGI QDKDNWNGQL QDKDNWNGQL	TGTTATCCAC GCACCGTCCA AGTACTGCAG AGTACTGCAG TGGTGAAGAA TTGTCAAGAT TAGTCAAGAT AACTGGATAC AATGA BHI Protein seque 11 RNRRNDTLDS GYAQSQHMEG GYAQSQHMEG ELLTQHWHLK YIGEVVRDNT YILDNNHTHL ETLKAINTSI EEETESWIKW KLLLEWNQLD	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWIN TPNLVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE LKELLECSHL LANDEIFTND	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA LTVIKMEEAG RRWESADLQE	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT DEIVSNAISY VMFTALIKOR	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAOSKCAWIL DAEGYPLAQY QDSNYGGKIP SSAVKEKLVR ALYKAFSTSE PKFVRLFLEN	2940 3000 3120 3120 3180 3240 3300 60 120 180 240 300 360 420 480
15 20 25 30 35	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TCTGCTACATGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEG ID NO:38 P Protein Accession 1 MSFRAARLSM SKATENVCKC SCDTDAEILY TGGTTYGLMK LMDDFTRDPL LIVCFAQGGGK	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATAC AATGA BH1 Prolein seque 11 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVVRDNT YILDNNHTHL ETLKAINTSI	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT PCCE 77718 21 TRTLYSSASR TQINQSEKWN TPNLVISVTG ISRSSEENIV LLVDNGCHGH KNKIPCVVVE	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ GSGQIADVIA	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 } LVNFIQANFK LVNFIQANFK DAFGDIQFFT MRKIFSRLIY SNRDTLIRNC LEKYISERTI SLVEVEDALT	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL DAEGYPLAQY QDSNYGGKIP SSAVKEKLVR	2940 3000 3120 3120 3180 3240 3300 60 120 180 240 300 360
15 20 25 30 35	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGCATCTACA TACACGGTGG CTGGTGCAGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession 1 MSFRAARLSM SKATENVCKC SCDTDAELLM TGGGTHYGLMK LMDDFTRDPL	TGTTATCCAC GCACCGTCCA GCACCGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAAAA TTGTCAAGAT AACTGGATAC AATGA BH1 Protein seque n #: XP_01 I1 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK YIGEVVRDNT YILDNNHTHL	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWN TPNILVISVIG ISRSSEENIV LLVDNGCHGH	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV PTVEAKLRNQ	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC LEKYISERTI	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQKKGKYIRL DAEGYPLAQY QDSNYGGKIP	2940 3000 3060 3120 3180 3240 3300 60 120 180 240 300
15 20 25 30 35	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGCATCTACA TACACGGTGG CTGGTCCAGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession 1 MSFRAARLSM SKATENVCKC SCDTDABILY TGGTTYGLMK	TGTTATCCAC GCACCGTCCA AGTACTGCAG AGTACTGCAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATAC AATGA BHI Protein seque 11 RNRRNDTLDS GYAQSQHMEG GYLLENGENGEN ELLTQHWHLK YJGEVVRDNT	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT 21 TRTLYSSASR TQINQSEKWIN TPNLVISVTG ISRSSEENIV	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR AIGIAAWGMV	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 LVNFIQANFK DAFGDIQFET MRKIFSRLIY SNRDTLIRNC	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGGCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL DAEGYFLAQY	2940 3000 3060 3120 3180 3240 3300
15 20 25 30 35	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGGAGCTGG TGCATCTACA TACACGGTGG TTCTACATGG TTCTACATGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession 1 MSFRAARLSM SKATENVCKC SCDTDAELLY	TGTTATCCAC GCACCGTCCA AGTACTGCAG AGTACTGCAG TGGTGAAGAA TTGTCAAGAT TAGTCAAGAT AACTGGATAC AATGA BH1 Protein seque 11 RNRRNDTLDS GYAQSQHMEG ELLTQHWHLK	CCGCCTCAAT GTGCTTCAAG GTGCAGAAAA CAACAAAA AAAGCTTAAT CCCC 7718 21 TRTLYSSASR TQINQSEKWN TPNLVISVIG	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD YKKHTKEFPT GAKNFALKPR	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41 } LVNFIQANFK LVNFIQANFK DAFGDIQFET MRKIFSRLTY	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCCAT AGAGATTGCT 51 KRECVFFTKD LGKKGKYIRL LAQSKGAWIL	2940 3000 3060 3120 3180 3240 3300
15 20 25 30	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGCATCTACA TACACGGTGG CTGGTGCAGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession 1 MSFRAARLSM	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA TTGTCAAGAA TTGTCAAGAT AACTGGATAC AATGA BH1 Protein seque n #: XP_01 11 RNARNDTLDS	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT 2002 7718 21 TRTLYSSASR	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31 STDLSYSESD	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA 41	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGCAT AGAGATTGCT 51 KRECVFFTKD	2940 3000 3060 3120 3180 3240 3300
15 20 25 30	CGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGCATCTACA TACACGGTGG CTGGTCCACGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession	TGTTATCCAC GCACCGTCCA AGTACTGCAG AGTACTGCAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATAC AATGA BH1 Protein seque n#: XP_01	CCGCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT 210	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG 31	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGASTCT TGTCATGAAG AATGAGGCAT AGAGATTGCT	2940 3000 3060 3120 3180 3240 3300
15 20 25 30	GGTTCGGTCA GGTACCACGT GTGGAGCTGG GTGCATCTACA TACACGGTGG CTGGTGCAGG TTCTACATGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P Protein Accession	TGTTATCCAC GCACCGTOCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT TAACTGGATAC AATGA BH1 Protein seque n#: XP_01	CCGCTCAAT GTGCTTCAAG TGAAGACAAA CAACACAAAA AAAGCTTAAT	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA GATCTCAAGG	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA GTCTTCTGAA	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGGCAT AGAGATTGCT	2940 3000 3060 3120 3180 3240
15 20 25 30	CGTTCGGTCA GGTACCACGT GTGGAGCTGG TGCATCTACA TACACGGTGG CTGGTCACGG TCTTACATGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATAC AATGA BH1 Protein seque	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGGCAT	2940 3000 3060 3120 3180 3240
15 20 25	CGTTCGGTCA GGTACCACGT GTGGAGCTGG TGCATCTACA TACACGGTGG CTGGTCACGG TCTTACATGG TCTGTCTGCT GAAAACTACC CGATTTAGAC AATAAAATCA SEQ ID NO:38 P	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATAC AATGA BH1 Protein seque	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA AAAGCTTAAT	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGGCAT	2940 3000 3060 3120 3180 3240
15 20 25	CGTTCGGTCA GGTACCACGT GTGGACCTGG TGCATCTACA TACACGGTGG CTGGTGCAGG TTCTACATGG TCTGTCTGCT GAAAACTACC CGATTTAGAC	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATAC	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGGCAT	2940 3000 3060 3120 3180 3240
15 20 25	CGTTCGGTCA GGTACCACGT GTGGACCTGG TGCATCTACA TACACGGTGG CTGGTGCAGG TTCTACATGG TCTGTCTGCT GAAAACTACC CGATTTAGAC	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT AACTGGATAC	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGGCAT	2940 3000 3060 3120 3180 3240
15 20	CGTTCGGTCA GGTACCACGT GTGGAGCTGG TGCATCTACA TACACGGTGG CTGGTGCAGG TTCTACATGG TCTGTCTGCT GAAAACTACC	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA GTTTCAAAAA TTGTCAAGAT	CCGCCTCAAT GTGCTTCAAG TGAAGACAAT CAACACAAAA	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA GAGACTCTGG GCCAACGACA	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA CATGGGAGGG CCTCAGAGGA	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT TGTCATGAAG AATGAGGCAT	2940 3000 3060 3120 3180 3240
15 20	CGTTCGGTCA GGTACCACGT GTGGAGCTGG TGCATCTACA TACACGGTGG CTGGTGCAGG TTCTACATGG	TGTTATCCAC GCACCGTCCA AGTACTGCAG TGGTGAAGAA	CCGCCTCAAT GTGCTTCAAG	CTGGTCAACC GACCAGGTCT ATCCCCTTCC TGTTGCTGCA	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT AGGAGAAAAA	CATGTTTGGC GAGGTACTTC CTTCGCTTAC CATGGAGTCT	2940 3000 3060 3120
15 20	CGTTCGGTCA GGTACCACGT GTGGAGCTGG TGCATCTACA TACACGGTGG CTGGTGCAGG	TGTTATCCAC GCACCGTCCA AGTACTGCAG	CCGCCTCAAT	CTGGTCAACC GACCAGGTCT ATCCCCTTCC	TGCTGGTCGC GGAAGTTCCA CCTTCATCGT	CATGTTTGGC GAGGTACTTC CTTCGCTTAC	2940 3000 3060
15 20	CGTTCGGTCA GGTACCACGT GTGGAGCTGG TGCATCTACA TACACGGTGG	TGTTATCCAC GCACCGTCCA		CTGGTCAACC GACCAGGTCT	TGCTGGTCGC GGAAGTTCCA	CATGTTTGGC GAGGTACTTC	2940 3000
15	CGTTCGGTCA GGTACCACGT GTGGAGCTGG						
15	CGTTCGGTCA GGTACCACGT						2000
15	CGTTCGGTCA			TTCACTGGGA			2820
15	TTTGGCGTGG	TCTACGAGCC	CTACCTGGCC	ATGTTCGGCC	AGGTGCCCAG	TGACGTGGAT	2760
				CAGAATGAGC			2700
				AGAAACTTAG CTGTTCCTCT			2580 2640
	AATAAAAGCT	CTTTGTATTC	TGGACGAGTC	ATTTTCTGTC	TGGACTACAT	TATTTTCACT	2520
10				GCAGGAATTG			2460
10				CTGTACTCGC GTGAATTATT			2340 2400
10				CTGTTTGCCT			2280
10	AAGAAGCTGC	TTTGGTACTA	TGTGGCGTTC	TTCACCTCCC	CCTTCGTGGT	CTTCTCCTGG	2220
				AAGAACTGGA TCATTTAGGA			2160
				CAGCCTGGGG AAGAACTGGA			2040 2100
	GAACAGCTGC	TGGTCTATTC	CTGTGAAGCT	TGGGGTGGAA	GCAACTGTCT	GGAGCTGGCG	1980
_				GAGTGTTACA			1920
5				GCCCTGGGAG GCTGGGGAGT			1800 1860
				CAGAATAAGA			1740
	AATGGCCGGG	ACGAGATGGA	CATAGAACTC	CACGACGTGT	CTCCTATTAC	TCGGCACCCC	1680
	CTCACGTTTG	TCTGGAAACT	GGTTGCGAAC	TTCCGAAGAG	GCTTCCGGAA	GGAAGACAGA	1620

DSNLSFEEFK KLIRNROSEA ADSNPSELKY LGLDTHSOKK RRPYVALFEK CCLIGCTKRS 5 **SEQ ID NO:41 PBH5 DNA SEQUENCE** Nucleic Acid Accession #: NM_005845 1-3978 (underlined sequences correspond to start and stop codons) 21 10 ATGCTGCCCG TGTACCAGGA GGTGAAGCCC AACCCGCTGC AGGACGCGAA CCTCTGCTCA CGCGTGTTCT TCTGGTGGCT CAATCCCTTG TTTAAAATTG GCCATAAACG GAGATTAGAG 120 GAAGATGATA TCTATTCAGT CCTGCCAGAA GACCGCTCAC AGCACCTTGG AGAGGAGTTG 180 CAAGGGTTCT GGGATAAAGA AGTTTTAAGA GCTGAGAATG ACGCACAGAA GCCTTCTTTA 240 15 ACAAGAGCAA TCATAAAGTG TTACTGGAAA TCTTATTTAG TTTTGGGAAT TTTTACGTTA 300 ATTGAGGAAA GTGCCAAAGT AATCCAGCCC ATATTTTTGG GAAAAATTAT TAATTATTTT 360 GAAAATTATG ATCCCATGGA TTCTGTGGCT TTGAACACAG CGTACGCCTA TGCCACGGTG CTGACTTTTT GCACGCTCAT TTTGGCTATA CTGCATCACT TATATTTTTA TCACGTTCAG 480 TGTGCTGGGA TGAGGTTACG AGTAGCCATG TGCCATATGA TTTATCGGAA GGCACTTCGT 540 20 CTTAGTAACA TGGCCATGGG GAAGACAACC ACAGGCCAGA TAGTCAATCT GCTGTCCAAT GATGTGAACA AGTTTGATCA GGTGACAGTG TTCTTACACT TCCTGTGGGC AGGACCACTG 600 660 CAGGCGATCG CAGTGACTGC CCTACTCTGG ATGGAGATAG GAATATCGTG CCTTGCTGGG 720 ATGGCAGTTC TAATCATTCT CCTGCCCTTG CAAAGCTGTT TTGGGAAGTT GTTCTCATCA 780 CTGAGGAGTA AAACTGCAAC TTTCACGGAT GCCAGGATCA GGACCATGAA TGAAGTTATA 840 25 ACTGGTATAA GGATAATAAA AATGTACGCC TGGGAAAAGT CATTTTCAAA TCTTATTACC AATTTGAGAA AGAAGGAGAT TTCCAAGATT CTGAGAAGTT CCTGCCTCAG GGGGATGAAT TTGGCTTCGT TTTTCAGTGC AAGCAAAATC ATCGTGTTTG TGACCTTCAC CACCTACGTG 1020 CTCCTCGGCA GTGTGATCAC AGCCAGCCGC GTGTTCGTGG CAGTGACGCT GTATGGGGCT 1080 GTGCGGCTGA CGGTTACCCT CTTCTTCCCC TCAGCCATTG AGAGGGTGTC AGAGGCAATC 1140 30 GTCAGCATCC GAAGAATCCA GACCTTTTTG CTACTTGATG AGATATCACA GCGCAACCGT 1200 CAGCTGCCGT CAGATGGTAA AAAGATGGTG CATGTGCAGG ATTTTACTGC TTTTTGGGAT 1260 AAGGCATCAG AGACCCCAAC TCTACAAGGC CTTTCCTTTA CTGTCAGACC TGGCGAATTG 1320 TTAGCTGTGG TCGGCCCCGT GGGAGCAGGG AAGTCATCAC TGTTAAGTGC CGTGCTCGGG 1380 GAATTGGCCC CAAGTCACGG GCTGGTCAGC GTGCATGGAA GAATTGCCTA TGTGTCTCAG 1440 35 CAGCCCTGGG TGTTCTCGGG AACTCTGAGG AGTAATATTT TATTTGGGAA GAAATACGAA 1500 AAGGAACGAT ATGAAAAAGT CATAAAGGCT TGTGCTCTGA AAAAGGATTT ACAGCTGTTG 1560 GAGGATGGTG ATCTGACTGT GATAGGAGAT CGGGGAACCA CGCTGAGTGG AGGGCAGAAA 1620 GCACGGGTAA ACCTTGCAAG AGCAGTGTAT CAAGATGCTG ACATCTATCT CCTGGACGAT 1680 CCTCTCAGTG CAGTAGATGC GGAAGTTAGC AGACACTTGT TCGAACTGTG TATTTGTCAA 1740 40 ATTTTGCATG AGAAGATCAC AATTTTAGTG ACTCATCAGT TGCAGTACCT CAAAGCTGCA 1800 AGTCAGATTC TGATATTGAA AGATGGTAAA ATGGTGCAGA AGGGGACTTA CACTGAGTTC 1860 CTAAAATCTG GTATAGATTT TGGCTCCCTT TTAAAGAAGG ATAATGAGGA AAGTGAACAA 1920 CCTCCAGTTC CAGGAACTCC CACACTAAGG AATCGTACCT TCTCAGAGTC TTCGGTTTGG 1980 TCTCAACAAT CTTCTAGACC CTCCTTGAAA GATGGTGCTC TGGAGAGCCA AGATACAGAG 2040 45 ANTERCOCAG TITACACTARC AGAGGAGAAC COTTCTGAAG GAAAAGTIGG TITTCAGGCC TATAAGAATT ACTTCAGAGC TGGTGCTCAC TGGATTGTCT TCATTTTCCT TATTCTCCTA 2100 2160 AACACTGCAG CTCAGGTTGC CTATGTGCTT CAAGATTGGT GGCTTTCATA CTGGGCAAAC AAACAAAGTA TGCTAAATGT CACTGTAAAT GGAGGAGGAA ATGTAACCGA GAAGCTAGAT 2280 CTTAACTGGT ACTTAGGAAT TTATTCAGGT TTAACTGTAG CTACCGTTCT TTTTGGCATA 2340 50 GCAAGATCTC TATTGGTATT CTACGTCCTT GTTAACTCTT CACAAACTTT GCACAACAAA 2400 ATGTTTGAGT CAATTCTGAA AGCTCCGGTA TTATTCTTTG ATAGAAATCC AATAGGAAGA 2460 ATTTTAAATC GTTTCTCCAA AGACATTGGA CACTTGGATG ATTTGCTGCC GCTGACGTTT 2520 TTAGATTICA TCCAGACATT GCTACAAGTG GTTGGTGTGG TCTCTGTGGC TGTGGCCGTG 2580 ATTCCTTGGA TCGCAATACC CTTGGTTCCC CTTGGAATCA TTTTCATTTT TCTTCGGCGA 55 TATTTTTGG AAACGTCAAG AGATGTGAAG CGCCTGGAAT CTACAACTCG GAGTCCAGTG 2700 TTTTCCCACT TGTCATCTTC TCTCCAGGGG CTCTGGACCA TCCGGGCATA CAAAGCAGAA 2760 GAGAGGTGTC AGGAACTGTT TGATGCACAC CAGGATTTAC ATTCAGAGGC TTGGTTCTTG 2820 TTTTTGACAA CGTCCCGCTG GTTCGCCGTC CGTCTGGATG CCATCTGTGC CATGTTTGTC 2880 ATCATCGTTG CCTTTGGGTC CCTGATTCTG GCAAAAACTC TGGATGCCGG GCAGGTTGGT 2940 60 3000 TTGGCACTGT CCTATGCCCT CACGCTCATG GGGATGTTTC AGTGGTGTGT TCGACAAAGT GCTGAAGTTG AGAATATGAT GATCTCAGTA GAAAGGGTCA TTGAATACAC AGACCTTGAA 3060 AAAGAAGCAC CTTGGGAATA TCAGAAACGC CCACCACCAG CCTGGCCCCA TGAAGGAGTG ATAATCTTTG ACAATGTGAA CTTCATGTAC AGTCCAGGTG GGCCTCTGGT ACTGAAGCAT 3180 CTGACAGCAC TCATTAAATC ACAAGAAAAG GTTGGCATTG TGGGAAGAAC CGGAGCTGGA 3240 65 AAAAGTTCCC TCATCTCAGC CCTTTTTAGA TTGTCAGAAC CCGAAGGTAA AATTTGGATT 3300 GATAAGATCT TGACAACTGA AATTGGACTT CACGATTTAA GGAAGAAAAT GTCAATCATA 3360 CCTCAGGAAC CTGTTTTGTT CACTGGAACA ATGAGGAAAA ACCTGGATCC CTTTAATGAG 3420 CACACGGATG AGGAACTGTG GAATGCCTTA CAAGAGGTAC AACTTAAAGA AACCATTGAA 3480 GATCTTCCTG GTAAAATGGA TACTGAATTA GCAGAATCAG GATCCAATTT TAGTGTTGGA 3540 70 CAAAGACAAC TGGTGTGCCT TGCCAGGGCA ATTCTCAGGA AAAATCAGAT ATTGATTATT 3600 GATGAAGCGA CGGCAAATGT GGATCCAAGA ACTGATGAGT TAATACAAAA AAAAATCCGG 3660 GAGAAATTTG CCCACTGCAC CGTGCTAACC ATTGCACACA GATTGAACAC CATTATTGAC 3720 AGCGACAAGA TAATGGTTTT AGATTCAGGA AGACTGAAAG AATATGATGA GCCGTATGTT 3780 TTGCTGCAAA ATAAAGAGAG CCTATTTTAC AAGATGGTGC AACAACTGGG CAAGGCAGAA 3840 75 GCCGCTGCCC TCACTGAAAC AGCAAAACAG GTATACTTCA AAAGAAATTA TCCACATATT 3900

GGTCACACTG ACCACATGGT TACAAACACT TCCAATGGAC AGCCCTCGAC CTTAACTATT

TTCGAGACAG CACTGTGA

DAPQTPRPVA EIVPSFINKD TETIIIMLEF IANLPPELKA ALSERQPSLP ELQQYVPALK

3960

SEQ ID NO:42 PBH5 PROTEIN SEQUENCE

```
Protein Accession #:
                           NP_005836
                    11
                                              31
                                                          41
 5
        MLPVYOEVKP NPLODANICS RVFFWWLNPL FKIGHKRRLE EDDMYSVLPE DRSOHLGEEL
                                                                                      60
        QGFWDKEVLR AENDAQKPSL TRAIIKCYWK SYLVLGIFTL IEESAKVIQP IFLGKIINYF
                                                                                     120
        ENYDPMDSVA LNTAYAYATV LTFCTLILAI LHHLYFYHVQ CAGMRLRVAM CHMIYRKALR
                                                                                     180
        LSNMAMGKTT TGQIVNLLSN DVNKFDQVTV FLHFLWAGPL QAIAVTALLW MEIGISCLAG
10
        MAVLIILLPL QSCFGKLFSS LRSKTATFTD ARIRTMNEVI TGIRIIKMYA WEKSFSNLIT
                                                                                     300
        NLRKKEISKI LRSSCLRGMN LASFFSASKI IVFVTFTTYV LLGSVITASR VFVAVTLYGA
        VRLTVTLFFF SAIERVSEAI VSIRRIQTFL LLDEISQRNR QLPSDGKKMV HVQDFTAFWD
                                                                                     420
        KASETPTLQG LSFTVRPGEL LAVVGPVGAG KSSLLSAVLG ELAPSHGLVS VHGRIAYVSQ
                                                                                     480
        QPWVFSGTLR SNILFGKKYE KERYEKVIKA CALKKDLQLL EDGDLTVIGD RGTTLSGGQK
                                                                                     540
15
        ARVNLARAVY QDADIYLLDD PLSAVDAEVS RHLFELCICQ ILHEKITILV THQLQYLKAA
                                                                                     600
        SQILILKDGK MVQKGTYTEF LKSGIDFGSL LKKDNEESEQ PPVPGTPTLR NRTPSESSVW
                                                                                     660
        SQQSSRPSLK DGALESQDTE NVPVTLSEEN RSEGKVGFQA YKNYFRAGAH MIVFIFLILL
NTAAQVAYVL QDWWLSYWAN KQSMLNVTVN GGGNVTEKLD LNWYLGIYSG LTVAFVLFGI
                                                                                     720
                                                                                     780
        ARSLLVFYVL VNSSQTLHNK MFESILKAPV LFFDRNPIGR ILNRFSKDIG HLDDLLPLTF
                                                                                     840
20
        LDFIQTLLQV VGVVSVAVAV IPWIAIPLVP LGIIFIFLRR YFLETSRDVK RLESTTRSPV
                                                                                     900
        FSHLSSSLQG LWTTRAYKAE ERCQELFDAH QDLHSEAWFL FLTTSRWFAV RLDATCAMFV
        IIVAFGSLIL AKTLDAGQVG LALSYALTLM GMFQWCVRQS AEVENMMISV ERVIEYTDLE
                                                                                   1020
        KEAPWEYOKR PPPAWPHEGV IIFDNVNFMY SPGGPLVLKH LTALIKSOEK VGIVGRTGAG
                                                                                   1080
        KSSLISALFR LSEPEGKIWI DKILTTEIGL HDLRKKMSII POEPVLFTGT MRKNLDPFNE
                                                                                   1140
25
        HTDEELWNAL OEVOLKETIE DLFGKMDTEL AESGSNFSVG OROLVCLARA ILRKNOILII
                                                                                   1200
        DEATANVDPR TDELIQKKIR EKFAHCTVLT IAHRLNTIID SDKIMVLDSG RLKEYDEPYV
                                                                                    1260
        LLONKESLFY KNVQQLGKAE AAALTETAKQ VYFKRNYPHI GHTDHMVTNT SNGQPSTLTI
        FETAL
30
                                                       SEQ ID NO:43 PBQ7 DNA SEQUENCE
        Nucleic Acid Accession #: NM_021233
        Coding sequence:
                           34-1119 (underlined sequences correspond to start and stop codons)
35
        ATGGGGAAAG TGTCCTGCTG TGGCATGAAA TAAATGAAAC AGAAAATGAT GGCAAGACTG
        CTAAGAACAT CCTTTGCTTT GCTCTTCCTT GGCCTCTTTG GGGTGCTGGG GGCAGCAACA
                                                                                     120
        ATTTCATGCA GAAATGAAGA AGGGAAAGCT GTGGACTGGT TTACTTTTTA TAAGTTACCT
        AAAAGACAAA ACAAGGAAAG TGGAGAGACT GGGTTAGAGT ACCTGTACCT AGACTCTACA
40
        ACTAGAAGCT GGAGGAAGAG TGAGCAACTA ATGAATGACA CCAAGAGTGT TTTGGGAAGG
                                                                                     300
        ACATTACAAC AGCTATATGA AGCATATGCC TCTAAGAGTA ACAACACAGC CTATCTAATA
                                                                                     360
        TACANTGATG GAGTCCCTAA ACCTGTGAAT TACAGTAGAA GATATGACA CACCAAAAGT
TTACTGCTGT GGAACAGAGT TCAAGGGTTC TGGCTGATTC ATTCCATCCC TCAGTTTCCT
                                                                                     420
                                                                                     480
        CCAATTCCGG AAGAAGGCTA TGATTATCCA CCCACAGGGA GACGAAATGG ACAAAGTGGC
                                                                                     540
45
        ATCTGCATAA CTTTCAAGTA CAACCAGTAT GAGGCAATAG ATTCTCAGCT CTTGGTCTGC
        AACCCCAACG TCTATAGCTG CTCCATCCCA GCCACCTTTC ACCAGGAGCT CATTCACATG
                                                                                     660
        CCCCAGCTGT GCACCAGGGC CAGCTCATCA GAGATTCCTG GCAGGCTCCT CACCACACTT
                                                                                     720
        CAGTCGGCCC AGGGACAAAA ATTCCTCCAT TTTGCAAAGT CGGATTCTTT TCTTGACGAC
                                                                                     780
        ATCTTTGCAG CCTGGATGGC TCAACGGCTG AAGACACACT TGTTAACAGA AACCTGGCAG
CGAAAAAGAC AAGAGCTTCC TTCAAACTGC TCCCTTCCTT ACCATGTCTA CAATATAAAA
                                                                                     840
50
                                                                                     900
        GCAATTAAAT TATCACGACA CTCTTATTTC AGTTCTTATC AAGATCACGC CAAGTGGTGT
                                                                                    960
        ATTTCCCAAA AGGGCACCAA AAATCGCTGG ACATGTATTG GAGACCTAAA TCGGAGTCCA
        CACCAAGCCT TCAGAAGTGG AGGATTCATT TGTACCCAGA ATTGGCAAAT TTACCAAGCA
        TTTCAAGGAT TAGTATTATA CTATGAAAGC TGTAAGTAAA CTTGGTGAAA GGACACAGGT
55
        SEQ ID NO:44 PBQ7 Protein sequence
        Protein Accession #:
                          NP 067056
                                             31
60
        MMARLLRTSF ALLFLGLFGV LGAATISCRN EEGKAVDWFT FYKLPKRONK ESGETGLEYL
        YLDSTTRSWR KSEQLMNDTK SVLGRTLQQL YEAYASKSNN TAYLIYNDGV PKPVNYSRKY
                                                                                     120
        GHTKGLLLWN RVQGFWLIHS IPQFPPIPEE GYDYPPTGRR NGQSGICITF KYNQYEAIDS
        QLLVCNPNVY SCSIPATFHQ ELIHMPQLCT RASSSEIPGR LLTTLQSAQG QKFLHFAKSD
                                                                                    240
65
        SPLDDIFAAW MAQRLKTHLL TETWORKROE LPSNCSLPYH VYNIKAIKLS RHSYFSSYOD
HAKWCISQKG TKNRWTCIGD LNRSPHQAFR SGGFICTQNW QIYQAFQGLV LYYESCK
                                                                                    300
                                                       SEQ ID NO:45 PCO8 DNA SEQUENCE
        Nucleic Acid Accession #: XIM_030453
70
                           89-1273 (underlined sequences correspond to start and stop codons)
        Coding sequence:
                    11
        CGGTGCCCTG GGGTGGAATA TCCCCTACGA ATTTAACCAA GCGGACTTTA ATGCCACTGT
75
        GCAGTTCATC CAAAACCACT TGGATGACAT GGATGTCAAA AAGGGTGTCT CCTGGACCAC
        CATCCGCTAC ATGATAGGAG AGATTCAATA TGGAGGCAGA GTCACTGACG ACTATGATAA
        GAGATTGTTG AACACATTTG CTAAGGTTTG GTTCAGTGAA AATATGTTTG GACCAGATTT
                                                                                    240
       CAGITITIAC CAAGGATACA ATATTCCAAA ATGCAGCACA GTGGATAACT ATCTTCAGTA
TATCCAGAGT TTGCCTGCCT ATGACAGCCC TGAGGTGTTT GGGCTGCACC CCAATGCTGA
                                                                                    300
                                                                                    360
```

	CATCACCTAC	CAGAGCAAGC	TGGCCAAGGA	CGTGCTGGAC	ACCATCCTAG	CCATCCAACC	420
					GTGGTGGCCC		480
	TGATATGCTG	GAGAAGCTGC	CCCCAGACTA	TGTCCCCTTT	GAAGTAAAAG	AGAGGCTGCA	540
-	GAAGATGGGG	CCATTCCAGC	CTATGAACAT	TTTCCTCAGG	CAGGAAATAG	ACAGAATGCA	600
5					AAACTTGCTA		660
					ATGTTTGATG		720
					GGTTTCTGGT		780
					GGCCGACCTC		840
10					ATGCGACAGG		900
10					AATGAAGTCA		960
					GTCTATGGCT TCAAAGCCAA		1020 · 1080
					ACTTTACGAG		1140
					TTGAACTACA		1200
15					CGTGGGGTTG		1260
					TTTGGAAAAT		1320
					GTATGTTAGG		1380
	AATTAATGAG	CTGCATAGGT	TTTCCCCACT	CCTTAATTGG	ATGCTTATAT	TTTACTTGTT	1440
00	TCATCATTAG	TGACCAATGT	CTGAGTTTGT	TGAAAATGTT	ATTTAGTGAT	ataaaagtaa	1500
20					GTAGTATATT		1560
					TTTGCATGTG		1620
•	AGATGGCAAG						1680
					ATATTAGACG		1740
25					GGAACTTTTC		1800
23					AACCTACTGA GTTAGCTCTG		1860 1920
	ACTGCATTTT						1980
					TCATGCTCAT		2040
					TGATACTGTT		2100
30					GTGAATTGTG		2160
					ATAGGAATTA		2220
	TTTACTAAAA						
	•						
25	SEQ ID NO:46 PC						
35	Protein Accession	#: BAB1:	5543				
	_						
	1	11	21	31	41	51	
		i menorene	I CONTENDED		WFSENMFGPD	Particompute	60
40							
				DIMVACUI NU	THE THREE CTA	DYDTCCCCDE	320
40					DVLDTILGIQ		120 180
10	TREAVVARLA	DDMLEKLPPD	YVPFEVKERL	QKMGPFQPMN	IFLRQEIDRM	QRVLSLVRST	180
40	TREAVVARLA LTELKLAIDG	DDMLEKLPPD TIIMSENLQD	YVPFEVKERL ALDCMFDARI	QKMGPFQPMN PAWWKKASWV	IFLRQEIDRM FSTLGFWFTE	QRVLSLVRST LIERNSQFTS	180 240
	TREAVVARLA LTELKLAIDG WVFNGRPHCF	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG	YVPFEVKERL ALDCMFDARI FLTAMRQEIT	QKMGPFQPMN PAWWKKASWV RANKGWALDN	IFLRQEIDRM FSTLGFWFTE	QRVLSLVRST LIERNSQFTS MKDDISTPPT	180
45	TREAVVARLA LTELKLAIDG WVFNGRPHCF	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRIY	IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW	QRVLSLVRST LIERNSQFTS MKDDISTPPT	180 240 300
	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL	OKMGPFOPMN PAWWKKASWV RANKGWALDN FELMPVIRIY L CDVK	IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP	180 240 300
	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI	OKMGPFOPMN PAWWKKASWV RANKGWALDN FELMPVIRIY L CDVK	IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP	180 240 300
	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION#: AB033	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI	OKMGPFOPMN PAWWKKASWV RANKGWALDN FELMPVIRIY L CDVK	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE	180 240 300
45	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION#: AB033	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI	OKMGPFOPMN PAWWKKASWV RANKGWALDN FELMPVIRIY L CDVK	IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE	180 240 300
	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVVYVGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence:	DDMLEKLFPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-334	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 1036 9 (underlined seque	QKMGPFQPMN PAWWKKASWV RANKGWALDIN FELMPVIRTY L CDVK SEC	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons)	180 240 300
45	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION#: AB033	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI	OKMGPFOPMN PAWWKKASWV RANKGWALDN FELMPVIRIY L CDVK	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE	180 240 300
45	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence:	DDMLEKLPPD TI IMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI ssion #: AB033 68-3349	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 6036 8 (underlined sequence)	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRIY L CDVK SEC ences correspond	IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop o	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCFIYKKP DNA SEQUENCE odons) 51	180 240 300 360
45	TREAVVARIA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCACCT	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI sslon #: AB033 68-334 11	YVPFEVKERL ALICMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 0036 9 (underlined sequence) 21 	OKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ences correspond 31 CACTACCCCT	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and slop o	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA	180 240 300
45	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVVYVGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCT AGATGACATG	DDMLEKLPPD TIIMSENLQD WMTGFFNFQG EGAGWDKRNM VDLRTAQTPI sslon #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAF	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 9 (underlined sequence) 21	OKMGPFQPMN PAWWKKASWV RANKGWALDW FELMPVIRIY L CDVK SEC ences correspond 31	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA	180 240 300 360 60 120
45	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCAC AGATGACATG ACAGCCCATA	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-334 11	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 9 (underlined sequence) 1 1 21 1 2AACCAGAAAAC ATGCTGGCAT TGGACAATC	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ences correspond 31 CACTACCCCT AGATTTCGGA CATGGTTAGT	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop o 41 CAGGGGTTGC TCCAGAAAAG GATCCACAAC	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCFIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATCAGCAGC	180 240 300 360 60 120
45	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCT AGATGACATG ACAGCCCATA AGATGACATTC AGATGACATTC AGATGCAGTT AAGCCTTTCT	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI sslon #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAF TCTGGAGCTC ACAACCCAAG	YVPFEVKERL ALICMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 9 (underlined sequi 21 AACCAGAAAC ATGCTGGCAT ATGGCAATTC AGAGACAGA AGGAGGCCAT	OKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ences correspond 31 CACTACCCCT AGATTTCGGA CATGGTTAGG TAGCCAGAGGT TCTCTCAGTA	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGC TCAGAAAAG GATCCACAAC TCTCTCTCAC	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCFIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGT	180 240 300 360 60 120 . 180 240 300
45	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCT AGATGACATG ACAGCCCATA AGATGCAGCT TATGAATCCT TATGAATCCT	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI sslon #: AB033 11 ACAACTTCAC GGAAGGAGAA CCTGAAAACA TCTGGAGCT ACAACCCAAG TCTCATATCC	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 9 (underlined sequence 1 1 AACCAGAAAC A ATGCTGGCAT TGGACAATTC G AGAAGACAGA AGGAGGCCAT C AGTTAGAAGA C AGTTAGAAGA	OKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRIY L CDVK SEC ences correspond 31 CACTACCCCT AGATTTCGGA CATGGTTAGT AGCCAGAGCT TCTCTCAGTA TCAAGAAGCT	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGC TCCAGAAAAG GATCCACAAC TCTCTCTCAGA GCAGCAGAGG TTCAGCAGGG TTCAGCAGGG TTCAGCAGGG TTCAGCAGGG TTCAGCAGGG TTCAGCAGGG	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGA ACTCAGGGTGTA ATTTACAAAA	60 120 180 240 300 360
45 50 55	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCTTA AGATGCATG AGATGCATTA AGATCACTT TATGAATCC GGCCCAATA	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAA CCTGAAAACA TCTGAAAACA TCTGAAAACA TCTCATAATCC AAAATGGAGT	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 0 (underlined sequi 1 21 1 AACCAGAAAC ATGCTGGCAT ATGACAATTC AGAAGACAGA AGGAGGCCAT AGTAGAAGA CAGCCCAGGA	QKMGFFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ences correspond 31 CACTACCCCT AGATTTCGGA CATGGTTAGT AGCCAGAGCT TCTCAGTAGT TCAAGAAGCT TGTTCAAGAACT	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGC TCCAGAAAAG GATCCACAAC TCTCTCTCAC GCAGCACAGG TTCAGCTTTG ATCTGCAAAAG	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCFIYKKP DNA SEQUENCE odons) 51 TITTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGA CTCAGGTGTT ATTTACAAAA AAAAGCCTTC	180 240 300 360 60 120 180 240 300 360 420
45	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nuclet Acid Acce Coding sequence: 1 GGAGCAGCCT ACATGACATG ACAGCCCATA ACATGCACCT TATGAATCCT TGGCCCAATCC TGGAAATCTT	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTFI SSION #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAR TCTGGAGCTC ACAACCCAAC TCTCATATCC AAAATGGAGT CACAGACCT CACAGACCT CACAGACCT CACAGACCT CACAGACCT CACAGACCT CACAGACCT	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAN 036 @ (underlined sequent 1 C AACCAGAAAC ATGCTGGCAT T TGGACAATC G AGAGACAGA G AGGAGGCCAT C AGTTAGAAGA C CAGCCCAGGA C TTACAGCAGA C TTACAGCAGAG C TTACAGCAGAG C TTACAGCAGAG C TTACAGCAGAG C TTACAGCAGAG C TTACAGCAGAG C TTACAGCAAG C TTACA	OKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SECONCES CONCESSOR 31 CACTACCCCT AGATTTCGGA AGCCAGAGCT TCTCTCAGTA TCAAGAACT TGTTTTGGGT	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41 1 CAGGGGTTGC TCAGARAAG GATCCACAAG GATCACAGG TTCAGCTTG ATTGAGCTTG ATTGACATGAAAG ATGACAAGTA	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCFIYKKP DNA SEQUENCE odons) 51	180 240 300 360 60 120 180 240 300 360 420 480
45 50 55	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCT AGATGACATG ACAGCCCTATC TATGAATCCT TGGAAATGTT AGGAGATGTTT AGGAGATGTTTT AGGAGATGTTTT AGGAGATGTTTT AGGAGATGTTT	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI sslon #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAA TCTCGAAGCT ACAACTCAAG TCTCATATCC AAAATGGAGCT CACCAGACCT TATGCCAAGA	YVPFEVKERL ALICMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 9 (underlined sequi 1 1 21 1 2ACCAGAAAC ATGCTGCCAT AGAGACCAGA AGAGACCAGA AGGAGGCCAGA AGGCCAGGA C TTACAGCAAG A TTACAGCAAG A CTCTGCCTCC	OKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC Ences correspond 31 CACTACCCCT AGATTTCGGA CATGGTTAGC TCTCAGGTA TCAGAAGCT TGTTCAAGT TGTTTCAGGT TGTTTCAGGT TGTTTAGGGT CAGAAGCCTT	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGC TCTCTCTCAC GCAGCAGAGG TTCAGCTTG ATCAGCAAGTA ATGACAAGTA TTTCAGTCCT	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCFIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGTT ATTTACAAAA AAAAGCCTTC CTACAGCAGC CAAAGGAAGCC CAAAGGAAGCC	180 240 300 360 60 120 120 240 300 360 420 480 540
45 50 55	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCCT AGATGACATG ACAGCCCATA AGATGCAGCT TATGAATCCT TGGAAATGT TGGAAATGT TGATGCTGAA	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAA CCTGAAAACP TCTGAGGCTG ACACCCAAGC TCTCATATCC AAAATGGAGT TATGCCAAGG GAAGTCTCCT	YVPFEVKERL ALICMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 9 (underlined sequi L AACCAGAAAC ATGCTGGCAT TGGACAATTCA AGGAGGCCAT AGGAGGCCAT CAGTTAGAAGA CTCTGCCTCC CAGATTCAGA	OKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRIY L CDVK SE ences correspond 31 CACTACCCCT AGATTTCGGA CATGGTTAGT TCTCTCAGTA TCTCAGTA TCTTCAGTA TCAGAAGCCT TGTTTTTGGGT CAGAAGCCTT GGAAGCCTT GGAATATTCCT	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGA TGATGGTGGA CTCAGGTGTT ATTTACAAAA AAAAGCCTTC CTACAGCCAC CATGAGCAGC ATGGTTCTGA	180 240 300 360 60 120 180 240 360 420 480 540 600
45 50 55 60	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCAT ACATGCATG ACATGCATG ACAGCCATTA AGATGCAGCT TATGAATCCT TGGCAATGT AGGAGATGTT AGGAGATGTT AGGAGATGTT TGGAAATGTT TGGAAATGTT AGGAGATGTT TATGCATGCT TGGAAATGTT AGGAGATGTT AGGAGATGTT AGAACTGGCT	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-3349 11 ACAACTTCAC GGAAGAAGA CCTGAAAACA TCTGAGACT ACAACCCAAGA TCTCATATCC AAAATGGAGCT CACCAGACCT TATGCCAAGA GAAGTCTCCT CATGGTCACT	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 0 (underlined sequence) 1 1 21 1 20 AACCAGAAAC ATGCTGGCAT A TGGACAATTC AGAAGACAGA AGGAGGCCAT AGTTAGAAG CAGCCAGGA TTACAGCAAG CTGCCTCCC CCAGTCCCAGCA CTTCCCAGTC	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ences correspond 31 CACTACCCCT AGATTCCGA AGATTCCGA TCTTCTCAGTA TCAAGAAGCT TCTTCTAAGAAGC TGTTTAGGT TGTTTAAACT TGTTTTAGGT CAGAAGCCTT GAATATCCCT CATGGGGAAGC CTTGGGGAAGC CTTGGGGAAGC CTTGGGGAAGC CTTGGGGAAGC CTTGGGGAAGC CTTGGGGAAGC	IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41 1 2 CAGGGGTTGC TCCAGAAAG GATCACAAAC TCTCTCTCAC GAGCAGAGG TTCAGCTTTG ATCTGCAAAG ATGACAAGTA TTTCAGTCGT TGAGGAGGGGG TTTTGAAGATG	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCFIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGA CTCAGGTGTT ATTTACAAAA AAAAGCCTTC CTACAGCCAA CAAGGAAGCC ATGGTTCTGA AACAAGAAGT	180 240 300 360 60 120 120 240 300 360 420 480 540 660
45 50 55 60	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCT AGATGACATG ACAGCCCTATC TATGAATCCT GGCCCAATCT TATGAATCT TGGAGATGT AGAGGTTT TGGAGATGTT TGATGCTGAA AGACTGCCT CTTCTCAGAA	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTFI \$\$\text{Scale}\$ AB033 68-334 11 ACAACTTCAC GGAAGGAGAAC TCTGGAGCTC ACAACCCAAG TCTCATATCC AAAATGGACT CACCAGACCT TATGCCAAGA GGAAGTCTCCT TCAGAGCTC CATGGTCCCT TCAGAACTTCACT TCAGAACTTCACT TCAGAACTTCACT TCAGAACTTCACT TCAGAAAACTT	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 9 (underlined sequi L ACCAGAAAC ATGCTGGCAT AGAGACAGA AGGAGACAGA AGGAGGCCAGA AGGAGCCAGA AGGAGCCAGA CAGCCCAGGA CTTACAGCAAG CTTCTCCCAGTC TTGTTGAGGA	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SE ences correspond 31 CACTACCCCT AGATTTCGGA AGCCTGAGT AGCCAGAGCT TCTCTCAGTA TCTTCAGTA TGTTTTAGGT CAGAAGCCTT GAATATTCCT GAATATTCCT CTTGGGGAAG CTTGAGCAG CTTGAGCAG	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51	180 240 300 360 60 120 240 300 360 420 540 600 660 720
45 50 55	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCT AGATGACATG ACAGCCCTATC TATGAATCCT TGGAAATGTT TGATGCTGAA AGACTGCT CTTCTCAGAA CAGACTCTC CTTCTCAGAA CAGACTGCT CTTCTCAGAA CAGACTGCT CAGAATGCT CTTCTCAGAA CAGACTGCCT CAGAATGCCT CTTCTCAGAA CAGATGCCTCC	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI sslon #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAA TCTCATATCC AAAATGGACT CACCAGACCT TCACCAGACCT TCACGAGCT TCACTAGTACCT TCACAGAGT GAAGTCTCCT TCACAGAGT TCACAGGTCT TCACAGGTCT TCACAGGTCT TCACAGGTCT TCACAGGTCT TCACAGGCTT TCCCAGGCTT TCCCAGGCTT	YVPFEVKERL ALICMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 9 (underlined sequi L ARCCAGAAAC ARGCAGAAAC ARGCAGAAAC ARGAGACCAGA ARGAGACCAGA CAGACCAGA CAGACCAGA CAGCCAGGA CTTACAGCA CTTCCCAGTC CTTCCCAGTC TTGTTGAGGA TAGAGGAGCC	OKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRIY L CDVK SEC Ences correspond 31 CACTACCCCI AGATTTCGGA CATGGTTAGI TCTCTCAGTA TCTCAGTA TCTTCAGGTA TCTTCAGGTA TCTTCAGGTA CAGAAGCCTT GGAAGACCTT GAATATTCCI CTTGGGGAGC CTTGAGCAGC TGAAGATGCA	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCFIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGA CTCAGGTGTT ATTTACAAAA AAAAGCCTTC CTACAGCCAA CAAGGAAGCC ATGGTTCTGA AACAAGAAGT	180 240 300 360 60 120 180 240 300 360 420 600 600 720 780
45 50 55 60	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCCATA AGATGACATG AGATGACATC TAGGAATCCT TAGGAATCCT TAGGAATCT TAGGAATCT TAGGAGTTTT AGGAGTTTT TGATGCTCAAA AGAACTGCCT CTTCTCAGAA CAGATGCCTC CAGTTATGTT	DDMLEKLPPD TIIMSENLQD MITGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 11 ACAACTTCAC GGAAGGAGAA CCTGAAAACA TCTGGAGCTC ACAACACCAC TCTATATCC AAAATGGAGT TATGCCAAGA GAAGTCTCCT TATGCCAAGA CATGGAGTCTCCT TATGCCAAGA GAAGTCTCCT TCAAAAAGTT TCCCAGGCTC TCAAAAAGTACA GAAGTCTCCT GAAAAAGTACA	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 21 AACCAGAAAC ATGCTGGCAT A TGGACAATTC AGAGAGCAGA CAGGAGCCAGA CAGCTAGCAGA CTTCTGCCTCC CAGATTCAGA CTTCTCAGCA CTTCTTAGAGCA CTTGTTGAGGA TAGAGGAGCC TTGTTGAGGA ACACTTCTGA	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ences correspond 31 CACTACCCCT AGATTTCGGA AGCCAGAGCT TCTCTCAGTT TCAAACAT TGTTTTGGGT TGATATTCCT GAATATTCCT GAATATTCCT CTTGGGGAAG CTTGAGCAGCTT GATATTCCT TGAGAAGCTT TGATTTGAGT TGATTTGAGT TGAGAAGCTT TGAGAATGCA TGATTGCAGC	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCFIYKKP DNA SEQUENCE odons) 51	180 240 300 360 60 120 180 240 300 420 480 540 660 720 780 840
45 50 55 60	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCT AGATGACATG ACAGCCCTATCATGACATG AGACCTTCT TATGAATCTT TGGAGATGTT TGGAGATGTT TGGAGATGTT TGGAGATGTT TCTCAGAA CAGTTATGTT TCTCAGAA TCTCAGACAC TTCCAGACAC TTCCAGATATAT	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAA CTCTGAAACP TCTGGAGCTC ACAACCCAAG TCTCATATCC CATGGAGTCACA TCAAAACP TCAAAAACT TCAAAAACT TCAAAAACT TCCAGGCT TCAAAAACT TCCAGGCT TCAAAAACT TCCAGGCT CATGGTCAGC ACTCCTGAAACACP ACTCCTGAAACACP ACTCCTGAAACACP TCAACACCT TCAAAAACT TCCAAGGCT TCAAAAACT TCCAAGGCT TCAAAAACT TCCAGGCT ACTCCTGAAACACP ACTCCTGAAGA	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAN 036 9 (underlined sequi L ACCAGAAAC ATGCTGGCAT AGAGACAGA AGGAGACAGA AGGAGCCAGA CAGCCAGGA CAGCCAGGA CAGCCCAGGA CACACTTCGA CACCTTCGGAAA CACCTTGGGAAA CACCTTGGGAAA CACCTCTGGCAAA CACCTCTGGCAAA CACCTCTGGCAAA	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SECOND 31 CACTACCCCT AGATTTCGGA AGCTAGGTAGT AGCCAGAGCT TCTTCAGTA TCAAGAAGCT TGTTTTAGGGT CAGAAGCCTI GAATATTCGGA CTTGAGCAGC TGAAGATGCAGC TGATTGCAGC	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of the start and start an	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51	180 240 300 360 60 120 240 300 360 420 660 720 780 840 900 960
45 50 55 60 65	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCT AGATGACATG ACAGCCCTATCT TATGAATCCT TGGAAATGTT TGATGCTGAA AGACTGCTCT CTTCTCAGAA CAGACTGCT CTTCTCAGAA CAGATGCTCT CTTCTCAGAA TTCTCAGAATGTT TCTCAGAATGTT TCTCAGAATAAT TTCTCAGCCCC	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI sslon #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAA CCTGAAAC TCTGAGGCTC AAAATGGAC TCATGTCAC TCATGTCAC TCAGGCTT TCAAAAAGTT TCCCAGGCTT TCAAAAAGTT TCCCAGGCTT TCAAAAAGTAC AAAAGTAC AAAAGTAC AAAAGTAC ACTCCTGAAG ACTCCTGAAG ATTATGAATC	YVPFEVKERL ALICMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 9 (underlined sequi L ARCCAGAAAC ARGCAGAAAC ARGCAGAAAC ARGAGACCAGA CAGACCAGA CAGACCAGA CAGACCAGA CAGACCAGA CAGACCAGA CAGACCAGA CACTACCAGAC TTACAGCA TTACAGCA TTACAGCA TTACAGCA CAGATTCAGA TAGAGGAGCC TTGTTGCAGAC TAGAGGAGCC ACCTTCGGAA CCTTGGGAA CCTAGGAATGA	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ENCES CONTESPOND 31 CACTACCCCTI AGATTTCGGA CATGGTTAGT TCACAGAAGCTI TGTTCAAGTA TCAGAAGCCTI GAATATTCCTI GAATATTCCTI CATGAGCAGC CTTGAGCAGC TGTAGCAGC TGTAGCAGC TGTAGCAGC TGAAGATGCA GCCAAAAGTC GCCAAAAGTC GCCAAAAGTC GCCAAAAGTC GCCAAAAGTC GCCAAAAGTC GCCAAAAGTC GCCAAAAGTC	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCFIYKKP DNA SEQUENCE odons) 51	180 240 300 360 60 120 180 240 300 360 420 600 660 720 780 840 900 960 1020
45 50 55 60	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCATA AGATGCATG AGATGCATT ATGAATCCT TATGAATCCT TGGACATGT AGACTGCTA AGACTGCTA AGACTGCTA CAGATGCTT TCTAGACA CAGATGCT TCTCAGAA CAGATGCT TCTCAGAA TTCTCAGACA TTCAAATAAT TTCTCAGCCC TTCTATAAAA	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAA CCTGAAAACA TCTGAAAACA TCTGAAACA TCTGAAACA CACCAAGACCA TATGCCAAGA CATGGTCACT TCAAAAAGTT TCCAGGCTT GAAAAGTACA CCTGCTCAGC ACTCCTGAGA ATTATGAATC CAGGCCATT	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 0 (underlined sequi 1 AACCAGAAAC ATGCTGGCAT AGGAGACAGA CTACCAGGA CTACCAGGA CTTGTTCAGGA CTTGTTCAGGA CTACTAGGAGCC AGACTTCTGA ACACTTCTGAGGA CTACTGGGAAA CTACTGGGAAA CTACTGGGAAA CCTTGGGAAA CCTTGGGAAA CCTTGGGAAA CCTTGGGAAA CCTGGGAGCC CCGGGAGCC CCGGGAGCC	QKMGFFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ENCES CORESPOND 31 CACTACCCCT AGATTTCGGA CATGGTTAGT AGCCAGAGCT TCTCCAGTAGT TCTTCAGTAGT TGTTTAGGGA CTTGAGAAGCT TGTTTAGGGAAGCT TGTTGAGAAGCT TGTTGAGAAGCT TGAGAAGCT TGAGAAGCT TGAGAAGCT TGAGAAGCT TGAGATGCA TGATTGCAG CTTGAGCAGC TGAAGATGCA TGATTGCAGC GCCCAAAAAC TTTTATCCAG GCAACAAGTC AATCCCTCCA	IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of the start and st	QRVLSLVRST LIERNSOFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TITTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGA CTCAGGTGTT CTACAGCAAC AAGGAAGCA CATGGAGCAC AACAAGAAGA AACAGAAGC ATGGTTCTGA AACAAGAAGA AAGAACCTGCC CAGATCACC TCTCCTCTCC	60 120 180 240 300 360 60 120 180 240 300 420 480 540 660 720 780 960 1020
45 50 55 60 65	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nuclet Acid Acce Coding sequence: 1 GGAGCAGCCT ACATGACATG ACAGCCATA AGATGACATG TATGAATACT TGGAAATGTT AGGAGATGTT TGGAGATGTT TGATGCTGA AGATGCTC CAGTTATT TCTCAGAAC TTCAGACAC TTCAGACAC TTCTAGACAC TTCTAGACACC TTCTAGACACC TTCTAGACACC TTCTAGACACC TTCTAGACACC TTCTAGACACC TTCTAGACACC TTCTAGACCCC TGGAACCCCT	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTFI \$\$\text{School} \text{CASACTTCAC} \text{GASACTTCACACCTCAAAACTTCACAGACCT} CACAGACCTTCATACCAGACCTTCATACCAGACTTCCAAAACTTCCAAGACTTCCAGGGTCACCTCCAGACTCCCAGACTTCCAAAAACTTTCCAAGACTTCCCAGGCTTATATGAATCCAGGCTAGAAAGTACACCTGCAGACATTATGAATCCAGGGTTAAAGTTGAAACTTAGAAAGTTAGAATCCAGAGCGATTAAAGTGGAGCGATTAAAGTGGAGCGATTAAAGTGGAGCGATTAAAGTGAATCCAGAGCGATTAAAGTGGAGCGATTAAAGTGGAGCGATTAAAGTGGAGCGATTAAAGTGGAGCCAGAGGATTAAAGTGGAGCAGAGAGAG	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 0 (underlined sequit AACCAGAAAC ATGCTGGCAA AGGAGGCCAT AGGAGACCAGA AGGTTAGAAG CTGCCTGCC CAGATTCAGA CTGTCCAGTC TTGTTGAGGA CTGTTGCAGA CTTCTCCAGTC ACACTTCTGA ACACTTCTCA ACACTTCA ACACTTCTCA ACACTTCA ACACT	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC Ences correspond 31 CACTACCCCT AGATTTCGGT AGCAGAGCT TCTCTCAGTA TCAAGAAGCT TGTTTTAGGGT CATGAGAAGC CTTGAGCAGC TGAGAGATCCC GATATCCCT GATATCCCT GATATCCCT CATTGAGAAGA CTTTTATGCAG GCCAAAAAAC TTTTATGCAG CATCCCTCCA	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 1 1 2 CAGGGGTTGC TCCAGAAAG TCTCACCAGA GGATCACAAG TTCAGCTTGC TTCAGCTTGC TTCAGCTAG TTCAGCTTGC TTCAGCTGC TTTCAGCTGC TTTCAGCTGC TTTCAGCTGC TTTCAGCTGC TTTCAGCTGC TTTCAGCTGC TTTCAGCAGG CACCAGAGG CAACAACAGG CAACAACAGG CAACACCAGTT AGAACCCTT AAGAGCATGGC AGCACCCCTT AAGAGCATGG	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51	180 240 300 360 60 120 180 240 300 360 540 660 720 780 900 960 1020 1080 1140
45 50 55 60 65	TREAVVARLA LTELKLAIDE WYFNGRPHCF EGYVYYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCT AGATGACATG ACAGCCCATG AAGCCTTCT TATGAATCTT TATGAATCTT TATGACTGAA AGAACTGCTT CTTCTCAGAA CAGTTATGTT TCTCAGCAC TTCAAATAAT TTCTCAGCCC TTCTAATAAT TTCTCAGCCC GGGAACCCT GGAGACCCT GGAGACCCT GGAGACCCT GGAGACCCT GGAGACCCT GGAGACCCT GGAGACCCT GGAGACCCT GGAGACCCT GGGAACCCT GGGAACCCT GGGAACCCT GAGCACTTTCT	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAA TCTCGAGCTC ACAACCCAAG TCTCATATCC CATGGAGCTC TCAAAAAACT TCCAGGCTI TCAAAAAGTT TCCAGGCTI TCAAAAAGTT TCCAGGCTI AAAATGAATC CATGGTCAGG ACTCCTGAAG ATTATGAATC AAGACGAT AAAGTGGAGC ACTCCTGAAG ATTATGAATC AAGACGAT AAAGTGGAGC ATGAAGCCTC AATGAAGCCTC AATGAAGCCTC ACTCCTGAAG ATTATGAATC AAGGCGAGC ATGAAGCCTC AATGAAGCCTC ATGAAGCCTC ATGAAGACCTC ATGAAGCCTC ATGAAGCCTC ATGAAGACCTC ATGAAGCTC ATGAAGCCTC ATGAAGCCTC ATGAAGCCTC ATGAAGCCTC ATGAAGCTC ATGAAGCTC ATGAAGCTC ATGAAGCTC ATGAAGCTC ATGAAGCTC ATGAAGCT AT	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 0 (underlined sequit AACCAGAAAC ATGCTGGCAT AGAGACAGA AGGAGGCCAGA CAGTTAGAAGA CAGCCAGGA CTTCCAGGA CTTCCAGGA CTTCTGGGAA CTTCTGGGAA CAGCTTCTGG ACACTTCTG AGAGACTGT CAGTTGGGAA CCTTGGGAA CCTGGGAA CCTGGGAA CCTGTGGAC CAGAAGTTTC CAGGAAGTTTC CAGGAAGTTTC CAGGAAGTTTC CAGGAAGTTTC CTGCTGGCAA	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SE ences correspond 31 CACTACCCCT AGATTTCGGA AGCTGAGT TCTCTCAGTA TCTAAGAAGCT TGTTTTAGGGT CAGAAGCCT GAATATTCCT GAATATTCCAGC CTTGAGCAGC TGATTGGGGAAG CTTGAGCAGC TGAAGATGCA TGTTTTAGGGGAAGC TGAAGATGCA CTTGAGCAGC TGAAGATGCA CTTGAGCAGC TGAAGATGCA CTCATCTCCA ACTCTTTIGCA ACTCTTTIGCA ACTCTTTIGCA	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of the start and star	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51	180 240 300 360 120 120 240 300 360 420 660 720 780 840 900 960 1020 1020 1140 1200
45 50 55 60 65	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCT AGATGACATG ACAGCCCTATC TATGAATCCT TGGAAATGTT TGATGCTGAA AGACTGCTC CTCTCAGAA CAGATGCTC CTTCTCAGAA TTCTCAGAA TTCTCAGAA TTCTCAGCC TTCTAAATAAT TTCTCAGCCC TTCTAATAAAA GGTGAACTCT TCTAATAAAA GGTGAACTCT TCTAAATAAT TTCTCAGCCC TTCTATAAAAA GGTGAACTCT GAGCATTTCT AGACCACTTCTATAAAAA GGTGAACTCCT GAGCATTTCT AGTTCAACAA	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAA CCTGAAAC TCTGAGGCTC AAAATGGAC TCAGGTCCCT TCAGGCTT TCAGAGCTT TCAGGCTT AAATGGATC ACTCTGAAG ATTATGAATC AAGTGGACC AACATGTTCT	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 9 (underlined sequi L ARCCAGAAAC ARGCAGAAAC ARGCAGAAAC ARGAGACCAGA CAGACACAGA CAGACACAGA CAGACACAGA CAGACACAGA CAGACACAGA CACTTCCCAGT TTGCAGAT TAGAGGAGCC TTGTTGCAGAC TAGAGGAGCC ACACTTCTGA CAGATTCTGA CAGATTCAGA CAGATTCAGA CAGATTCAGA CAGATTCAGA CAGATTCAGA CAGACTTCC TTGTTGGAGC CAGATTCAGA CAGATTCAGA CAGATTCAGA CAGATTCAGA CAGATTCAGA CAGATTCAGA CAGATTCAGA CAGGTTCAGA CAGGTTCAGA	OKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ENCES CONTESPOND 31 CACTACCCCT AGATTTCGGA CATGGTTAGI TCTCTCAGTA TCTCAGTA TCTTCAGGA CTTGAGCAGC TGATATTCCT CTTGGGGAGC TGAGATGCAGC TGAGATGCAGC TGAGATGCAGC TGAGATGCAGC TGAGATGCAGC TGAGATGCAGC TGAGATGCAGC CTTGAGCAGC TGAAGATGCAGC TGAAGATGCAGC CTTGAGCAGC CTTGAGCAGC CTCATCTCCA ACTCCTTCGG GGACATTGCT	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41	QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGA CTCAGGTGTT ATTTACAAAA AAAGCCTTC CTACAGCAGC ATGGTTCTGA AACAGAAGC CTGGTGGACCT CCAGATCAGC CTGGTGGACCT CCAGATCAGC CCAGATCCAGC CCAGTGGCAC CCAGTGGCAC CCAGTGGCAC CCAGTGGCAC CCAGTGGCAC CCAGTGGCAC CTCTTGCAGCATG CTGTTGGAAG TCATTTCTGT	180 240 300 360 60 120 120 240 300 360 420 720 780 840 900 1020 1080 1140 1200 1200
45 50 55 60 65 70	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCATR AGATGACATG AGATGACATG TATGAATCCT TGGAAATGT TGAAGCTATA AGACTGCTA AGACTGCTA CAGATGCTT TCTCAGAA CAGATGCTT TCTCAGAATATT TCTCAGACAC TTCTAATAAT TTCTCAGCCC TTCTATAAAA GGTGAACCCTT GGCACATTCT TATAAAAA GGTGAACCCT TATAAAAA GGTGAACCCT GAGCATTCT AGTTCAACAA GGAGCCACTA	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 11 ACAACTTCAC GGAAGGAGAA CCTGAAAACA TCTGAAAACA TCTGAGACCA AAAATGGAGCT TATGCCAAGA CATGGTCACT TCAAAAAGTT TCCAGGCTT TCCAGGCT TCAAAAAGTT TCCAGGCT TATGCAAGA ATTATGAACA ATTATGAACC CAGGCGATT AAAGTGGAGC ACACTGTTCA ACATGTTCI CCTCCCAGAT	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 0 (underlined sequi 1 ARCCAGAAAC ATGCTGGCAT AGGAGACAGA CTACCAGGA CTACTGGAAAA CTACTGTAGGA CTACTGGAAAA CTACTGTAGGA CTACTGGAAAAC CAGGATTCC AGAGAATTC CCGGGAGCC AGAGATTC CCGGGAGCC AGAGAGTTC CTGCCTCAAA CAGGTTCAGA CAGGTTCAGA CAGGTTCAGA CAGGTTCAGA	QKMGFFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ENCES CORESPOND 31 CACTACCCCT AGATTTCGGA CATGGTTAGT AGCCAGAGCT TCTCCAGTA TCAGAAGCT TGTTTAGGAAGCT TGAGAAGCT TGAGAAGCT TGAGAAGCT TGAGATCCT CATGAGAAGCT TGAGAAGCT TGAGAAGCT TGAGAAGCT TGAGAAGCT CATGAGAAGCT TGAGAAGCT CATGAGAAGCT TGAGAAGCT CATGAGAAGCT CATGAGAAGCT TGAAGAAGCT CATGAGAAGCT TGAAGATCCA CCTCATCTCCA ACTTCTTCA ACTTCTTCACA GGACATTGCC GGCCTTGACA	IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of the start and st	QRVLSLVRST LIERNSOFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TITTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGA CTCAGGTGTT ATTTACAAAA AAAAGCATTC CTACAGCAAC AAGAAGCAGC ATGGTTCTGA AACAAGAAGT AGGTGGACCT CAGAATCAAG AAGAACCTGCC CCAGTTGCCC CCAGTTGGCCA TCTCTCTGC CCAGTTGGCAC TCCAGCATG CTGTTGAAGA TGAATCCTAA TCATTCTGT TCCGGCAAAT TCCGGCAAAT	60 120 180 240 300 360 60 120 180 240 300 420 480 540 900 960 1020 1080 1140 1200 1320
45 50 55 60 65	TREAVVARLA LTELKLAIDE WYFNGRPHCF EGYVYYGLYL VRTDLNYIAA Nuclet Acid Acce Coding sequence: 1 GGAGCAGCCT ACATGACATG ACAGCCATA AGATGCACCT TATGAATCCT TGGAAATGTT AGGAGATGTT AGGAGATGTT TCTCAGAA CAGTTATTT TCTCAGCAC TTCTAGAACAC TTCTAGAACAC TTCTAGACAC GGGCATTCT GAGCACCCT TCTAGAACAC GAGCATTCT AGTTATAAAC TTCTCAGAACAC TTCTAGAACAC GAGCATTCT AGTTATAACAA GATGAACCCT GAGCATTCT AGTTACAACAA GGTGAACCCT GAGCACTACCACTA CTCAGAAAGC CTCAGAAAGC CTCAGAAAGC CTCAGAAAGC	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-3349 11 ACAACTTCAC GGAAGAGAA TCTGAAAACPI TCTGAAAACPI TCTGAAACPI CACAGACCTI TATGCCAAGACTI TCAAAAGPI TCCCAGGCTTI TCAAAAGPI TCCCAGGCTTI TCAAAAGPI TCCCAGGCTTI TCAAAAGPI TCCAGGCTTAGACACPI CAGGCGATI AAAGTGCAAGACPI CAGGCGATI AAAGTGGTAAGACPI CAGGCGATI AAAGTGGTAAGACPI CAGAGCCTAGAGACCTI CAGAGCCTAGAGACCTI AAAAGTGTTAGAATCC CAGAGGCGATI AAAAGTGTTAGATCC CAGAGCCTAGAGACCTI CACCCCAGATI AAAGTGTTAGATCC CTCCCCAGATI ACAGCTGTTAGACCTI CCTCCCCAGATI ACAGCTGTTAGACCTI CCTCCCCAGATI ACAGCTGTTAGACCTI CCTCCCCCAGATI ACAGCTGTTAGACCTI CCTCCCCCAGATI ACAGCTGTTAGACCTI CCTCCCCCAGATI ACAGCTGTTAGACCTI CCTCCCCCAGATI ACAGCTGTTAGACCTI CCTCCCCCAGATI ACAGCTGTTAGACCTI CCTCCCCCAGATI ACAGCTGTTAGACCTI CCTCCCCAGATI CCTCCCCCAGATI CCTCCCCCAGATI CCTCCCCCAGATI CCTCCCCCAGATI CCTCCCCCAGATI CCTCCCCCAGATI CCTCCCCCAGATI CCTCCCCAGATI CCTCCCCCAGATI CCTCCCCAGATI CCTCCCCAGATI CCTCCCCAGATI CCTCCCCCAGATI CCTCCCCAGATI CCTCCCAGATI CCTCCCAGATI CCTCCCCAGATI CCTCCCCAGATI CCTCCCAGATI CCT	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 0 (underlined sequi L AACCAGAAAC ATGCTGGCAI AGGAGACCAGA AGGAGGCCAT AGGATCAGA CTGCCTCCA CTGCTCCAGC CTGCTGCAGA CTTCTGGGAAA AGCAGAATGA CTTCTGGGAAA AGCAGAATGA CTTCTGGGAAA AGCAGAATGA CTTCTGGGAAA AGCAGATTGGCAGA CTTCTGGAGA CTTCTGGAGA CTTCTGGAGA CTTCTCTAA AGCAGATTCCAA AGCAGATTCCAA AGCAGATTCCAA AGCAGATTCCAA AGGAGGCCC AGGACTTCCAA CAGTTCCAA CAGGTTCCAA ATCTCTCAA AGGAAGGCAC AGGAAGGCAC AGGAAGGCAC	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ENCES CORRESPOND 31 CACTACCCCT AGATTTCGGT AGCAGAGCT TCTCTCAGTA TCAAGAAGCT TGTTTTGGGT CAGAAGACT CTTGGGGAAG CTTGAGCAGC TGTTGGGGAAG CTTGAGAGATCCA GCCAAAAAC TTTTATGCAG GCCAAAAAC TTTTATGCAG GCCAAAAAC TTTTATGCAG ATCCTTCA ACTCCTTCACA ACTCCTTCACA TTATGTGGAA TTATGTGGAA TTATGTGGAA TTATGTGGAA	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41	QRVLSLVRST LIERNSOFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51	180 240 300 360 60 120 180 240 300 360 420 480 540 600 720 780 900 960 1020 1020 1140 1200 1320 1380
45 50 55 60 65 70	TREAVVARLA LTELKLAIDE WYFNGRPHCF EGVYYYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCT AGATGACATG ACAGCCCATGAAATGCTCT TATGAATCT TCTCAGAAA CAGTACTT TCTCAGAAA TTCTCAGACAC TTCTAATAAT TTCTCAGCCC TTCTAATAAT TTCTCAGCCC TTCTAATAAT TTCTCAGCAC CAGCACTTCT AGTCAACAC CTCTAATAAT TTCTCAGCAC TTCTAATAAT TTCTCAGCAC TTCTATAATAAT TTCTCAGCAC TTCTAATAAT TTCTCAGCAC TTCCAGCACC TTCCAGCACC TTCCAGCACC TTCCCAGCCC TTCCCAGCCC TTCCCAGCCC	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-334 11 ACAACTTCAC GGAAGGAGAAC TCTGAAAC TCTGAACC ACAACTCCAAG GAAGTCTCCA TCAGAGCCT ACATGTCC ACATGTCC ACATGTCC ACATGTCT ACAGTCTT ACAGTGTTC ACAGTCTT TCGGAGGGGGCT TCGGAGGGGGGCT TCGGAGGGGGGGGGG	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 9 (underlined sequi L ACCAGAAAC ATGCTGGCAT AGAGACAGA AGGAGGCCAGA CAGTTAGAGA CAGCCAGGA CTTCCCAGTC TTGTTGAGGA CTTCCCAGTC TTGTTGAGGA CACTTCTGC AGACTTCCC AGACTTCCC CAGTCGGAAAC CACTTCTGC CAGTCGGAAAC CACTTCTGC CAGACTTCAGA AGCAGAATGA CCTGGCAAA CCTGGCAAA CCTGGCAAA CCTGGGAAAC CCTGGGAAAC CCTGGGAAC CCTAGTTCAGA AGCAGATTCC CTAGGTTCAGA ATTTCTCCTAA AGGAAGGCAC CTAAGTTCCCT AGGAAGGCAC CTAAGTTCCCT CTGAGACCAC CCTAAGTTCCCT CTAAGTTCCCT CTAAGTTCCT CTAAGTTCT CTAAGT	QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SE ences correspond 31 CACTACCCCT AGATTTCGGA AGCTGAGT TCTCTCAGTA TCTTCAGTA TCTTCAGTA TCTTCAGTA TGTTTTAGGG CATGAGACCT GAATATTCCT GAAGATTCCAGC CTTGAGCAGC TGAAGATTCCAGC TGAAGATTCCAGC GCCCAAAAAC TTTTATGCAG GCAACAAGTC AATTCCTTCCA ACTTCTTTGG GACATTGCT GTCCTTGAGC TGATCCTCCA ACTTCTTTGG GGACATTGCT TTATGTGGAA GGACTCAATG GGACTCAATG	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of the start and star	QRVLSLVRST LIERNSOFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51	180 240 300 360 60 120 180 240 300 360 420 780 840 900 960 1020 1020 1140 1200 1320 1380 1440
45 50 55 60 65 70	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCCTATA AGATGCCATA AGATGCAGCT TATGAAATCCT TGGAAATGTT TGAAGCTTTCT TGAAGCCTTCTCAGAAA CAGATGCCTTCTCAGAAAGCT TTCTCAGATGCTTTCTCAGATGCTTCTCAGATGCTTTCTCAGATGCTTCTCAGATGCTTCTCAGATGCTTCTCAGATGCTTCTCAGATGCTTCTCAGATGCTTCTCAGATGCTTCTCAGATGCTTCTCAGATGCCTCTCAGATGCCTCTCAGAAAGCCTTCCAGAAAGCCTTCCAGAAAGCCTTCCAGAAAGCCTTCCAGAAAGCCTTCCAGAAAGCCTTCCAGAAAGCCTTCCAGACACCCCAGTCCTTCTG	DDMLEKLPPD TIIMSENLQD MITGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 11 ACAACTTCAC GGAAGGAGAA CCTGAAAACA TCTGGAGCTC TATGCCAGAG GAAGTCTCCT GAAAACTTCCC CATGGTCACT TCACAAGCT TCACAAGCT TCACAAGCT TCACAAGCT CACAGCCT AAAATTGAAACA CCTGCTCAGC ACTCTCAGAG ACTCTCAGAG ACTCTCAGAG ACTCTCAGAG ACTCTCAGAG ACTCTCAGAG ACTCTCAGAG ACTCTCAGAG ACTACTCTCAGAG ACTACTCTCCCCAGAI ACAGCTCTTCC CTCCCCAGAI ACAGCTCTTCC CTCCCCAGAI ACAGCTCACAC GCACCAACAC	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 21 AACCAGAAAC ATGCTGGCAT AGAAGACAGA CAGAGCCAGA CAGACCAGA CTTACAGAGA CTTCCCAGTC ACACTTCTG ACACTTCTG CAGACGAGAG CTTGCTAGA CCTAGAGTTCTA CCGTGGAGCC CAGAGTTCAGA CTAGATTCTCAAATA	QKMGFFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ENCES COTTESPOND 31 CACTACCCCT AGATTTCGGA AGCCAGAGCT TCTCTCAGTT TGATATTCCT CAGAGCCTT GATATTCCT CAGAGCCTT GATATTCCT CAGAGCCTT GATATTCCT CAGAGAGCT TGATTGCAGA CTTTAGGAAGCT TGATTGCAGC CCTAGAGAGCT TGATTGCAGC GCAAAAAAC TTTATTGCAGC GCAACAAGTC AATCCCTCCA CTTCTTCAG ACTTCTTCAG ACTTCTTCACA CTTCTTCACA CTTCTTCACA CTTCTTCACA CTTCTTCACA CTCCTTCACA CTCCTTCACA CTCCTTCACA CTCCTTCCCCC CTCATCCCCC CTCATCCCCC CTCATCCCCC CTCATCCCCCC CTCATCCCCCCC CTCATCCCCCC CTCATCCCCCC CTCATCTCCCCCC CTCATCTCCCCCCCC	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41	QRVLSLVRST LIERNSOFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TITCAGATAA CATCAGCAGA CATCACAGGA CATACCATGA AGAGGAGC ATGATTACATAA AAAAGCCTTC CAGAGGTACAAG AACAAGAAGT AGCTGGACT CAGATCAGC ATGCTGGACT CAGATCAGC TCCAGCTGC TCCAGCTGC TCCAGCTGC TCCAGCTGC TCCAGCATGC TCCAGCATGC TCCAGCATG	60 120 180 240 300 360 120 180 240 300 480 540 660 720 780 960 1020 1080 1140 1220 1380 1440 1250 1380 1440 1500
45 50 55 60 65 70	TREAVVARLA LTELKLAIDG WVFNGRPHCF EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence: 1 GGAGCAGCCATCA AGATGCATCA AGATGCATCA AGATGCATCT TATGAATCCT TGGAAATCT TCAGACACC CAGATGCTC TCTCAGAACA CTTCAGAATCT TCTCAGACAC TTCAAATAAT TTCTCAGCCC TTCTATAAAA GGTGAACCCT GGCATTCTCACAA GGTGAACCCT CAGTTATTCT TCTCAGACAC TTCAAATAAT TTCTCAGCCC TTCTATAAAA GGTGAACCCT CAGCCCTTCTCACAAACC TTCCCAGCCC TTCTATAAAA CGAGCCACTA CTCAGAAACC TTCCCAGCCC TTCCAGAAACC TTCCCAGCCC TTCTCAGAAACC TTCCCAGCCC TTCTCAGAAACC TTCCCAGCCC TTCTCGGAAACC TTCCCAGCCC TTCTCGGAAACCC TTCCAGAAACC TTCCCAGCCC TTCTGTGTATAAAA	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 11 ACAACTTCAC GGAAGGAGAA CCTGAAAACA TCTGAGAGCAC TATGCCAAGA CAAACCAAGA CAAACCAAGA CAAAAGTACA CAAAAAGTACA CAAAAAGTACA CAAAAAGTACA CATGGTCACT TCAAAAAGTAC CCTGCTCAGC AATTTGAAAA ATTATGAAAAGTACA CCTGCTCAGG ATTATGAAACA ATTATGAATC CAGAGCGATI AAAGTGGAGC ATGAACCT CAGAGCGATI CAGAGCGATI CAGAGCGATI CAGAGCGATI CACACTGTTCAC CTCCCCAGAT CTCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCCAGAT CTCCCAGAT CTCCCAGAT CTCCCCAGAT CTCCCAGAT CTCCCA	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 036 0 (underlined sequit ARCCAGAAAC ARCCAGAAAC ARGCAGAAAC ARGAGACAGA CRACCAGGA CRACCAGGA CRACCAGGA CRACCAGGA CRACCAGGA CRACTACGGA CRACTACGGA CRACTACGGA CRACTACGGA CRACTACGGA CRACTACGGA CRACTACGGA CRACTACTGGA CRACTACTGA CRACTACTGA CRACTACTGA CRACTACTGA CRACTACTCAGA CRACTACTGA CRACTACTGA CRACTACTGA CRACTACTGA CRACTACTGA CRACTACTGA CRACTACTGA CRACTACTGA CRACTACTGA CRACTACTCAGA CRACTACTGA CRACTACTCAGA CRACTACTCAG CR	QKMGFFQPMN PAWWKKASWV RANKGWALDN FELMPVIRTY L CDVK SEC ENCES CORRESPOND 31 CACTACCCCT AGATTTCGGA CATGGTTAGT AGCCAGAGCT TCTCTCAGTAGT TCTTCAAGAAGCT TGTTTAGGAAGCT TGTTTAGGAAGCT TGAGAAGCT TGAGAAGCT TGAGAAGCT TGAGAAGCT TGAGAAGCT TGAAGATCCT CATGAGAAGCT TGAGAAGCT TGAAGATCCT CATCACCA GCCAAAAAC TTITATGCAG GCAACAAGT AATCCTCCA CTCATCTCCA ACTTCTTTGC GGACATTGCT GGACATTGCT GGACATTGCT GGACATTGCC CACTTCCCCC AGAAAGCACC AGAAAGCACCT AGAAAGCACCT AGAAAGCACCT AGAAAGCACCT	IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of the start and	QRVLSLVRST LIERNSOFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TITCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGA CTCAGGTGTT ATTTACAAAA AAAAGCATTC CTACAGCAA AACAAGAAGC AACGAAGCA TCAGTCTGC CAGATCAAG TCAGTGGCC TCTCCTCTGC CCAGATCAC TCCAGCATG CTGTTGAAGA TCATCTTCTGT CCAGATCAGC TCCAGCATG CTGTTGAAGA TCATTCTGT TCCGGCAAAT CCAGATGCCT CAGAATCAGC TCCAGCATG CTCAGATGCT CCAGATGCCT CCAGATGCCT CAGAATCAGC TCCAGATGCT CCAGAATGCAT CCAGAATGCAT CCAGAATGCAT CCAGAATGCT CAGAATGCAT CCAGAATGCT CAGAATGCAT CCAGAATGCT CAGAATGCAT CCAGAATGCT CAGAATGCAT CCAGAATGCT CAGAATGCAT AAGGAATGCT CAGAATGCAT CCCCTAAATT CCAGAATTTC	180 240 300 360 60 120 120 120 420 480 540 660 720 780 960 1020 1080 1140 1200 1380 1440 1560
45 50 55 60 65 70	TREAVVARLA LTELKLAIDE WYFNGRPHCF EGYVYYGLYL VRTDLNYIAA Nuclet Acid Acce Coding sequence: 1 GGAGCAGCCT ACATGCATC TATGAATCATC TGGCCCAATCC TGGAAATGTT AGGAGATGTT TATGATTCT CAGATCCT CAGTTATTTTCTCAGCAC TTCTAGAACAC TTCCAGAAACC TTCCAGAAACC TTCCAGAAACC TTCCAGAAACC TTCCAGAAACC TTCCAGAAACC TTCCAGAAACC TTCCAGAAACC TTCCAGAAACC TTCCAGAACC TTCAGAAACC TTCAGAAACC TTCCAGCACC TTCAGAAACC TTAGGAACCC	DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033 68-3349 11 ACAACTTCAC GGAAGAGCT CCTGAAAACP TCTGAACCT AAAATGGACT CACCAGACCT TATGCCAAGAT TCCCAGGTTT TCCCAGGTTT TCCAGGTTAC CATGGTCACT CAGACTACT CAGACTACT CAGACTACT CAGACTACT CAGACTACT TCCAGGTTT TCCAGGTTT CCAGGTTT CCAGGTTT CCAGGTTT CCAGGTTT CAGACTATCAACT CTGCCCAGAT AAACTGTTCT CTCCCCAGAT CTGCCCAGAT CTGCCCAGAT CTCCCCAGAT CTGCCCAGAT CTGCCCAGAT CTGCCCAGAT CTGCCCAGAT CTGCCCAGAT CTGCCCAGAT CTGCTCAGC CTGCTCCCC CTGCTCCCCC CTGCTTCCCC CTGCTCCCCCC CTGCTCCCCC CTGCTCCCCC CTGCTTCCCCC CTGCTTCCCCCC CTGCTTCCCCC CTGCTTCCCCC CTGCTTCCCCC CTGCTTCCCCC CTGCTTCCCCC CTGCTTCCCCC CTGCTTCCCCC CTGCTTCCCCC CTGCTTCCCCC CTGCTTCCCCCCCC	YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVAI 3036 G (underlined sequit AACCAGAAAC ATGCTGGCAA CAGACCAGAA CACACTCTCAA CAGGTTCAGA AACCTCCTAA CAGGTTCAGA CAGGTTCAGA CAGGTTCAGA CAGGTTCAGA CAGGTTCAGAA CAGCACCAC CAGGACCAC CAGGACCAC CAGGACCAC CAGGACCAC CAGGACCAC CAGGACCAC CAGGACCAC CAGGACCAC CAGCACCAC CACACCAC CAGCACCAC CAGCACCACC CAGCACCAC CAGCAC CAGCACCAC CAGCAC CA	QKMGPFQPMN PAWWKKASWV RANKGWALINN FELMPVIRTY L CDVK SEC Ences correspond 31 CACTACCCCT AGATTTCGGT AGCCAGAGCT TCTCTCAGTA TCAAGAAGCT TGTTTTGGGT CAGAAGCCTT GAGAAGTCT GATTTCGGGAAG CTTGAGCAGC TGTTGGGGAAG CTTGAGCAGC TGTTTATGCAG GCCCAAAAAC TTTTATGCAG GCCCAAAAAC TTTTATGCAG GCCCAAAAAC TTTTTTTGGGAAGCTCCA ACTCCTTCCA ACTCCTTCACA TTATTTTTGGAA GGACATTGCC TGTCTTTAGCAG GGACATTGCC ACTTCTTCCA ACTTCTTCCA ACTTCTTCCA ACTTCTTCACA TTATTTGGAA GGACTCAATC CACTTCCCC ACATTCCCC ACATTCCCC ACATTCCCC ACATTCCCC ACATTCCCC CCAGTTGACC CCAGTTCACC CCAGTTGACC CCAGTTGACC CCAGTTCACC CCAGTTCA	IFLROEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDG5 to start and stop of 41	QRVLSLVRST LIERNSOFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TITCAGATAA CATCAGCAGA CATCACAGGA CATACCATGA AGAGGAGC ATGATTACATAA AAAAGCCTTC CAGAGGTACAAG AACAAGAAGT AGCTGGACT CAGATCAGC ATGCTGGACT CAGATCAGC TCCAGCTGC TCCAGCTGC TCCAGCTGC TCCAGCTGC TCCAGCATGC TCCAGCATGC TCCAGCATG	180 240 300 360 120 120 180 240 300 360 420 480 540 600 720 780 900 960 1020 1140 1200 1320 1380 1440 1560 1560 1620

						CCTCACGACT	
						GTCCGACCCA	1800
						TTAAGAGGGG AGCCTGAAGT	1860 1920
5						TTTCTTCAAA	1980
3						CACAGAAAGT	
						AGCTGTCTCC	2100
	CAGGCAGCTT	TCCCAGGCCT	TGAGGAAACC	TGAGTATGAG	CAAAAAGTCT	CCCCTGTTTC	2160
10						AACATTCTTC	2220
10						CAGTGAATGT	2280
						TCCAGCAACA GCAATTCTGA	2340 2400
						TCAGCCAAGG	2460
						AGTTCACCAT	2520
15						AAGATCTTGA	2580
						ATGTTGAAAA	2640
						GTGAGAAACA	2700
						CTGTAGGCAG ACCTCACCAA	2760 2820
20						TGGCCAAGAA	2880
						ATGCTGTCTC	2940
	AGAGCCGGTT	TGGATAACTA	TGGCAAAGCA	GAAGCAGAAG	AGTTTCAAGG	CCCACATTTC	3000
						AGGAGCCTAA	3060
25						CTTCCAGTGT	3120
23						CAGTTGGATT	3180 3240
						TCTCACTGGC	3300
						GAGCTCTTGT	3360
20						GAGACAGAGT	3420
30			GGAGTGCAGT				3480
						TACAGGCGCC	3540
						TTTCACCATG CTCCCAAAAG	3600 3660
						AATGATAATT	3720
35						GTATTAAGCA	3780
						TAAGCAAAAT	3840
						ATGAATGCTT	3900
						TTAAAACTAT	3960 4020
40						CCCTCAACCA	4080
						CCTTTAGGTT	4140
			CGCAATTATT				4200
						CACAGCCAGT	4260
45						GCCCCTGATG	4320 4380
73						ACGCAGAATG	4440
						GCTTCTTGTC	4500
						ATATATCCTG	4560
50						TGTACTTTCC	4620
JU			ACTGCCTTGA			TCCCCTCAGC	4680 4740
						CCACAGAGAA	4800
						CTCTCATTCC	4860
						GTGACCCACT	4920
55						GAGGATGAGA	4980
						CTCCTCGGCT	5040 5100
			CTTTACCCCC				5160
			ATCTCATCTA				5220
60	TCTCTGTCTT	TCTCTTCATT	CCATCCCCCA	AACCCACCAA	ACACTAAGGG	AGAGCTCCCT	
	TTGGATGTCT	GGGCAGTAAA	CCTAGCTCAT	TTTTCTAGGA	GACCCAGAAG	TGACTTCTGA	5340
	GTAGTTATCA	CTGTGTCTGC	CTCTGTTACA	CTGTGCTGCT	TTGCTTAAAC	AGAAATGCAG	
						GCAAAAAAAT TGATGCTGGT	5460 5520
65						AACATCTATT	5580
						GAATTTTATT	5640
						TGGGTACTCC	5700
						TTCAGTTATT	
70						CAGCTGTTAC	
70						TGAGAACTCT GAAGAGATTA	
						TAACTTTTTT	
			CAAATAAATT				
75							
75	SEQ ID NO:48 PD						
	Protein Accession	#: BAA865	2 4				
	1 :	11 ;	21 :	31	41 !	51	
00	Ī				ļ ·	1	
80	EQPTTSQPET	PTPQGLLSDK 1	DDMGRRNAGI 1	DPGSRKASAA (OPIPENMONS I	MVSDPQPYHE	60
					210	`	

120

```
AQSKMESAQD VQTICKEKPS GNVHQTFTAS VLGMTSTTAK GDVYAKTLPP RSLFQSSRKP
                                                                                180
        DAEEVSSDSE NIPEEGDGSE ELAHGHSSOS LGKFEDEOEV FSESKSFVED LSSSEEELDL
                                                                                240
        RCLSOALEEP EDAEVFTESS SYVEKYNTSD DCSSSEEDLP LRHPAQALGK PKNOOEVSSA
                                                                                300
 5
        SWNTPEEOND FMOOLPSRCP SOPIMNPTVQ QQVPTSSVGT SIKQSDSVEP IPPRHPFQPW
                                                                                360
        VNPKVEQEVS SSPKSMAVEE SISMKPLPPK LLCQPLMNPK VQQNMFSGSE DIAVERVISV
        EPLLPRYSPQ SLTDPQIRQI SESTAVEEGT YVEPLPPRCL SQPSERPKFL DSMSTSAEWS
        SPVAPTPSKY TSPPWVTPKF EELYQLSAHP ESTTVEEDIS KEQLLPRHLS QLTVGNKVQQ
        LSSNFERAAI EADISGSPLP PQYATQPLKR SKVQEMTSRL EKMAVEGTSN KSPIPRRPTQ
10
        SFVKFMAQQI FSESSALKRG SDVAPLPPNL PSKSLSKPEV KHQVFSDSGS ANPKGGISSK
                                                                                660
        MLPMKHPLQS LGRPEDPQKV FSYSERAPGK CSSFKEQLSP RQLSQALRKP EYEQKVSPVS
                                                                                720
        ASSPKEWRNS KKQLPPKHSS QASDRSKFQP QMSSKGPVNV FVKQSSGEKH LPSSSPFQQQ
                                                                                780
        VHSSSVNAAA RRSVFESNSD NWFLGRDEAF AIKTKKFSQG SKNPIKSIPA PATKPGKFTI
                                                                                840
        APVROTSTSG GIYSKKEDLE SGDGNNNQHA NLSNQDDVEK LFGVRLKRAP PSQKYKSEKQ
                                                                                900
15
        DNFTQLASVP SGPISSSVGR GHKIRSTSQG LLDAAGNLTK ISYVADKQQS RPKSESMAKK
                                                                                960
        QPACKTPGKP AGOOSDYAVS EPVWITMAKQ KOKSFKAHIS VKELKTKSNA GADAETKEPK
                                                                               1020
        YEGAGSANEN QPKKMFTSSV HKQEKTAQMK PPKPTKSVGF EAQKILQVPA MEKETKRSST
        LPAKFONPVE PIEPVWFSLA RKKAKAWSHM AEITO
20
                                                   SEQ ID NO:49 PAB7 DNA SEQUENCE
        Nucleic Acid Accession #: D87742
        Coding sequence:
                         208-3582 (underlined sequences correspond to start and stop codons)
25
        GCTTTCCTTT CTAAAGTAGA AGAGGATGAT TATCCCTCTG AAGAACTACT AGAGGATGAA
        AACGCTATAA ATGCAAAACG GTCTAAAGAA AAAAACCCTG GGAATCAGGG CAGGCAGTTT
        GATGTTAATC TGCAAGTCCC TGACAGAGCA GTTTTAGGGA CCATTCATCC AGATCCAGAA
        ATTGAAGAAA GCAAGCAAGA AACTAGTATG ATTTTGGATA GTGAAAAAAC AAGTGAGACT
                                                                                240
30
        GCTGCCAAAG GGGTCAACAC AGGAGGCAGG GAACCAAATA CAATGGTGGA AAAAGAACGC
                                                                                300
       CCTCTGGCAG ATAAGAAAGC ACAGAGACCA TTTGAACGAA GTGACTTTTC TGACAGCATA
AAAATTCAGA CTCCAGAATT AGGTGAAGTG TTTCAGAATA AAGATTCTGA TTATCTGAAG
AACGACAACC CTGAGGAACA TCTGAAGACC TCAGGGCTTG CAGGGGAGCC TGAGGGAGAA
                                                                                360
                                                                                420
                                                                                480
        CTCTCAAAAG AGGACCATGG GAACACAGAG AAGTACATGG GCACAGAAAG CCAGGGGTCT
                                                                                540
35
        GCTGCTGCAG AACCTGAAGA TGACTCGTTC CACTGGACTC CACATACAAG TGTAGAGCCA
        GGGCATAGTG ACAAGAGGGA GGACTTACTT ATCATAAGCA GCTTCTTTAA AGAACAACAG
                                                                                660
        TCTTTGCAGC GGTTCCAGAA GTACTTTAAT GTCCATGAGC TGGAAGCCTT GCTACAAGAA
                                                                                720
                                                                                780
       ATGTCATCAA AACTGAAGTC AGCGCAGCAG GAGAGCCTGC CCTATAATAT GGAAAAAGTC
        CTAGATAAGG TCTTCCGTGC TTCTGAGTCA CAAATTCTGA GCATAGCAGA AAAAATGCTT
                                                                                840
40
        GATACTOGTG TGGCTGAAAA TAGAGATCTG GGAATGAACG AAAATAACAT ATTTGAAGAG
                                                                                900
        GCTGCAGTGC TTGATGACAT TCAAGACCTC ATCTATTTTG TCAGGTACAA GCACTCCACA
                                                                                960
        GCAGAGGAGA CAGCCACACT GGTGATGGCA CCACCTCTAG AGGAAGGCTT GGGTGGAGCA
        ATGGAAGAGA TGCAACCACT GCATGAAGAT AATTTCTCAC GAGAGAAGAC AGCAGAACTT
                                                                               1080
        AATGTGCAGG TTCCTGAAGA ACCCACCCAC TTGGACCAAC GTGTGATTGG GGACACTCAT
                                                                               1140
45
        GCCTCAGAAG TGTCACAGAA GCCAAATACT GAGAAAGACC TGGACCCAGG GCCAGTTACA
                                                                               1200
        ACAGAAGACA CTCCTATGGA TGCTATTGAT GCAAACAAGC AACCAGAGAC AGCCGCCGAA
                                                                               1260
       GAGCCGGCAA GTGTCACACC TTTGGAAAAC GCAATCCTTC TAATATATTC ATTCATGTTT
                                                                               1320
       TATTTAACTA AGTOGCTAGT TGCTACATTG CCTGATGATG TTCAGCCTGG GCCTGATTTT
TATGGACTGC CATGGAAACC TGTATTTATC ACTGCCTTCT TGGGAATTGC TTCGTTTGCC
                                                                               1380
                                                                               1440
50
        ATTITCTTAT GGAGAACTGT CCTTGTTGTG AAGGATAGAG TATATCAAGT CACGGAACAG
                                                                               1500
        CAAATTTCTG AGAAGTTGAA GACTATCATG AAAGAAAATA CAGAACTTGT ACAAAAATTG
                                                                               1560
        TCAAATTATG AACAGAAGAT CAAGGAATCA AAGAAACATG TTCAGGAAAC CAGGAAACAA
                                                                               1620
       AATATGATTC TCTCTGATGA AGCAATTAAA TATAAGGATA AAATCAAGAC ACTTGAAAAA
                                                                               1680
       ARTCAGGAAA TTCTGGATGA CACAGCTAAA AATCTTCGTG TTATGCTAGA ATCTGAGAGA
                                                                               1740
55
        GAACAGAATG TCAAGAATCA GGACTTGATA TCAGAAAACA AGAAATCTAT AGAGAAGTTA
                                                                               1800
        AAGGATGTTA TITCAATGAA TGCCTCAGAA TTTTCAGAGG TTCAGATTGC ACTTAATGAA
                                                                               1860
        GCTAAGCTTA GTGAAGAGAA GGTGAAGTCT GAATGCCATC GGGTTCAAGA AGAAAATGCT
                                                                               1920
       AGGCTTAAGA AGAAAAAAGA GCAGTTGCAG CAGGAAATCG AAGACTGGAG TAAATTACAT
                                                                               1980
        GCTGAGCTCA GTGAGCAAAT CAAATCATTT GAGAAGTCTC AGAAAGATTT GGAAGTAGCT
                                                                               2040
60
        CTTACTCACA AGGATGATAA TATTAATGCT TTGACTAACT GCATTACACA GTTGAATCTG
                                                                               2100
        TTAGAGTGTG AATCTGAATC TGAGGGTCAA AATAAAGGTG GAAATGATTC AGATGAATTA
                                                                               2160
                                                                               2220
        GCAAATGAGA AAGTGGAGA TGACCGGAAT GAGAGAGA AAAATCAAAT TAAGCAGAGA
       ATGGATGTCT CTCGGACACA GACTGCAATA TCGGTAGTTG AAGAGGATCT AAAGCTTTTA
                                                                               2280
        CAGCTTAAGC TAAGAGCCTC CGTGTCCACT AAATGTAACC TGGAAGACCA GGTAAAGAAA
                                                                               2340
65
       TTGGAAGATG ACCGCAACTC ACTACAAGCT GCCAAAGCTG GACTGGAAGA TGAATGCAAA
                                                                               2400
        ACCTTGAGGC AGAAAGTGGA GATTCTGAAT GAGCTCTATC AGCAGAAGGA GATGGCTTTG
                                                                               2460
        CAAAAGAAAC TGAGTCAAGA AGAGTATGAA CGGCAAGAAA GAGAGCACAG GCTGTCAGCT
                                                                               2520
        GCAGATGAAA AGGCAGTTTC GGCTGCAGAG GAAGTAAAAA CTTACAAGCG GAGAATTGAA
                                                                               2580
        GAAATGGAGG ATGAATTACA GAAGACAGAG CGGTCATTTA AAAACCAGAT CGCTACCCAT
                                                                               2640
70
       GAGAAGAAG CTCATGAAAA CTGGCTCAAA GCTCGTGCTG CAGAAAGAGC TATAGCTGAA
GAGAAAAGGG AAGCTGCCAA TTTGAGACAC AAATTATTAG AATTAACACA AAAGATGGCA
                                                                               2700
                                                                               2760
       ATGCTGCAAG AAGAACCTGT GATTGTAAAA CCAATGCCAG GAAAACCAAA TACACAAAAC
        CCTCCACGGA GAGGTCCTCT GAGCCAGAAT GGCTCTTTTG GCCCATCCCC TGTGAGTGGT
        GGAGAATGCT CCCCTCCATT GACAGTGGAG CCACCCGTGA GACCTCTCTC TGCTACTCTC
                                                                               2940
75
        AATCGAAGAG ATATGCCTAG AAGTGAATTT GGATCAGTGG ACGGGCCTCT ACCTCATCCT
                                                                               3000
        CGATGGTCAG CTGAGGCATC TGGGAAACCC TCTCCTTCTG ATCCAGGATC TGGTACAGCT
                                                                               3060
        ACCATGATGA ACAGCAGCTC AAGAGGCTCT TCCCCTACCA GGGTACTCGA TGAAGGCAAG
                                                                               3120
        GTTAATATGG CTCCAAAAGG GCCCCCTCCT TTCCCAGGAG TCCCTCTCAT GAGCACCCCC
                                                                               3180
                                                                               3240
        ATGGGAGGCC CTGTACCACC ACCCATTCGA TATGGACCAC CACCTCAGCT CTGCGGACCT
80
       TTTGGGCCTC GGCCACTTCC TCCACCCTTT GGCCCTGGTA TGCGTCCACC ACTAGGCTTA
                                                                               3300
```

DAASGAEKTE ARASLSLMVE SLSTTOEEAI LSVAAEAOVF MNPSHIOLED OEAFSFDLOK

	AGAGAATTTG	CACCAGGGGGT	TCCACCAGGA	AGACGGGACC	TO CONCINCON	CCCMCCCCCA	3360
			ATTTAGACCT				3420
			ACCCCCAACC				3480
			GTCAGGCTCT				
5							3540
5						CCTCTGAGGT	3600
			CTGTGCATTA				3660
			AAAAGGTTTG				3720
			CAAAAATGTC				3780
10	AGCTAGAGCG	TCCTTACAAC	TTTGAAATGT	GCAATAAAGA	ATACCTGTGT	TTTAGCTAAT	3840
10	GTAGCATATG	TAATTGCAAA	ATGATTTAGA	ATGTCATGAA	AAATATGAAC	ATTTCCTGTG	3900
	GAAATGCTTT	AAGAACATGT	ATTTCCATTA	TCCTATTTTT	AGTGTACACC	AGCTGAATAC	3960
	GGAGCAATGG	TGTTTATAAG	CGTTTTTTTA	AACTATCTGG	TCACAAAGAC	TGTTACGCTA	4020
			ACTAAACTAT				4080
			ATTAATATTT				4140
15			GGAACATGTA				4200
10 .			GCTCCTCCGT				4260
			CCCACTTGTA				
							4320
			TTTCTGAGAG				4380
20						AGAAAAATGA	4440
20			AAAAGTATAG				4500
			CCTTGCCACT				4560
	AAGAGTATAA	TGCCATGAGA	AAGAATGATT	TAGGACTGTG	AGGGTTATAA	CATGCCCTAG	4620
	GTCAGCAACC	AAGGGTTGAA	ATCAGTTCTG	TTTTAGGGGG	AAATGGGGGG	GGCGACAGAT	4680
~ -	ATTATTCCAA	AATTAATATT	AATTAATATT	TAAACGTTGG	TGTTTTTATT	TAAAAATCAG	4740
25	TAACTAACCA	TCTGGAATTG	CACCATACTT	AAAGTCTTAT	CCATTACTAC	ACTGTCTTTA	4800
			CTCTACAACG				4860
						TAAAATCATA	4920
			GCTGCTAGGC				4980
			GTGTATGTCT				5040
30						TTTATACTAA	5100
50						ACTCTGTCAA	5160
			ATTCTTCAGG				5220
			AAATTAAGAG				5280
25						CTGTCAATAT	5340
35						ATGTCATTTA	5400
			GGAAGGTAAG				5460
			TTTCCCCTCT				5520
						GAGAAGTTGT	5580
40	GAGCCAGTCC	ATAACTGCTT	CCTCACATCC	ATCTGATTGC	ACCATTTCTG	CAGCAAACCC	5640
40	CAAAGCAGGG	TGCCAATATG	CAGATGGCAT	AGGGAGTATC	ATCCCTCAGC	CAAATCACTT	5700
	TTCCATCTCT	AAAGTTTCAT	CTATTTTGGA	AGTCATCTCC	AACTAATTGT	GTCTGGATTT	5760
						AAGCATTTCT	5820
						AGTAAATTTA	5880
						CATTTTCTCG	5940
45							
	כארצייימיימייי	CTCTCAATTA	AAGTTAAGTT	AA'IX'AC'			
-13	TTATATTCAG	GTCTGAATTA	AAGTTAAGTT	AATCAC			
-10	TTATATTCAG	GTCTGAATTA	AAGTTAAGTT	AATCAC			
- T J				AATCAC			
- T J	SEQ ID NO:50 P	AB7 Protein seque	ence	AATCAC			
		AB7 Protein seque	ence	AATCAC			
50	SEQ ID NO:50 P. Protein Accession	AB7 Protein seque 1 #: BAA13	ence 448		41	E-1	
	SEQ ID NO:50 P	AB7 Protein seque	ence	31	41	51	
	SEQ ID NO:50 P. Protein Accession	AB7 Protein seque 1 #: BAA13	21	31 	1	Ī	.
	SEQ ID NO:50 P. Protein Accession 1 AFLSKVEEDD	AB7 Protein seque 1 #: BAA13 11 1 YPSEELLEDE	ence 448 21 NAINAKRSKE	31 KNPGNQGRQP	 DVNLQVPDRA	 VLGTIHPDPE	60
50	SEQ ID NO:50 P. Protein Accession 1 AFLSKVEEDD IEESKQETSM	ABT Protein seque 16: BAA13 11 1 YPSEELLEDE ILDSEKTSET	ence 448 21 NAINAKRSKE AAKGVNTGGR	31 KNPGNQGRQF EPNTMVEKER	 DVNLQVPDRA PLADKKAQRP	 VLGTIHPDPE FERSDFSDSI	120
	SEQ ID NO:50 P. Protein Accession APLSKVEEDD IEESKQETSM KIQTPELGEV	AB7 Protein seque 14: BAA13 11 YPSEELLEDE ILDSEKTSET FQNKDSDYLK	21 NAINAKRSKE AAKGUNTGGR	31 KNPGNQGRQP EPNTMVEKER SGLAGEPEGE	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE	VLGTIHPDPE FERSDFSDSI KYMGTESQGS	120 180
50	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELGEV AAREPEDDSF	AB7 Protein seque 1#: BAA13 11 1 YPSEELLEDE 1LLDSEKTSET FQNKDSDYLK HWTPHTSVEP	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE IISSFFKEQQ	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN	VLGTIHPDPE FERSDPSDSI KYMGTESQGS VHELEALLQE	120 180 240
50	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSF MSSKLKSAQQ	AB7 Protein seque 1 *: BAA13 11 i YPSEELLEDE ILDSEKTSET FONKDSDYLK HWTPHTSVEP ESLPYNMEKV	21 	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE !ISSFFKEQQ QILSIAEKML	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL	VLGTIHPDPE FERSDFSDSI KYMGTESQGS VHELEALLQE GMNENNIFEE	120 180 240 300
50	SEQ ID NO:50 P. Protein Accession APLSKVEEDD IEESKQETSM KIQTPELGEV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL	AB7 Protein seque 1#: BAA13 11 i ypseellede ILDSEKTSET FQNKDSDYLK HWTPHTSVEP ESLPYNMEKV TYFVRYKHST	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA	31 KNPGNQGRQP EPNTMVEKER SGLAGEPEGE IISSFFKEQQ QILSIAEKML PPLEEGLGGA	DVNLQVPDRA PLADKKAQRP LSKEDHGMTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED	VLGTIHPDPE FERSDFSDSI KYMGTESQGS VHELEALLQE GMNENNIFEE NFSREKTAEL	120 180 240
50 55	SEQ ID NO:50 P. Protein Accession APLSKVEEDD IEESKQETSM KIQTPELGEV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL	AB7 Protein seque 1#: BAA13 11 i ypseellede ILDSEKTSET FQNKDSDYLK HWTPHTSVEP ESLPYNMEKV TYFVRYKHST	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA	31 KNPGNQGRQP EPNTMVEKER SGLAGEPEGE IISSFFKEQQ QILSIAEKML PPLEEGLGGA	DVNLQVPDRA PLADKKAQRP LSKEDHGMTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED	VLGTIHPDPE FERSDFSDSI KYMGTESQGS VHELEALLQE GMNENNIFEE NFSREKTAEL	120 180 240 300
50	SEQ ID NO:50 P. Protein Accession APLSKVEEDD IEESKQETSM KIQTPELGEV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH	AB7 Protein seque 1#: BAA13 11 11 YPSEELLEDE ILDSEKTSET FQNKDSDYLK HWTPHTSVEP ESLFYNMEK TYFVRYKHST LDQRVIGDTH	21 	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE IISSFFKEQQ QILSIAEKM PPLEEGLGGA EKDLDPGFVT	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID	VLGTIHPDPE FERSDFSDSI KYMGTESQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETAAE	120 180 240 300 360
50 55	SEQ ID NO:50 P. Protein Accession 1 AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEN	AB7 Protein seque 18: BAA13 11 i YPSEELLEDE ILDSEKTSET FQNKDSDYLK HWTPHTSVEP ESLPYNMEKV IYFVRYKHST LDQRVIGDTH AILLIYSFMF	21 NAINAKRSKE AAKGUNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATL	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE LISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID YGLPWKPVFI	VLGTIHPDPE FERSDFSDSI KYMGTESQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETAAE TAFLGIASFA	120 180 240 300 360 420
50 55	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEN IFLWRTVLVV	AB7 Protein seque 18: BAA13 11 i YPSEELLEDE ILDSEKTSET FONKDSDYLK HWTPHTSVEP ESLPYNMEKV IYFVRYKHST LDORVIGDTH AILLIYSTHF KDRVYQVTEQ	21	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE !ISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGFVT PDDVQPGPDF KENTELVQKL	DVNLQVPDRA PLADKKAQRP PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID YGLPWKPVFI SNYEQKIKES	VLGTIHPDPE FERSDFSDSI KYMGTESQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETAAE TAFIGIASPA KKHVQETRKQ	120 180 240 300 360 420 480 540
50 55	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELGEV AAAEPEDDST MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEM IFLWRTVLVV NMLSDEAIK	AB7 Protein seque 1#: BAA13 11 1 YPSEELLEDE ILDSEKTSET FQNKDSDYLK HWTPHTSVE ESLPYNMEKV IYFVRYKHST LDQRVIGDTH AILLIYSPM KDRVYQVTEQ YKDKIKTLEK	21 MAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLIKKSLVATI NQEILDDTAK	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE GILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDT PDDVQPGPDT KENTELVQKL NLRVMLESER	UNILQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTFMDAID YGLFWKFVFI SNYEQKIKES EQNVKNQDLI	VLGTIHPDPE FERSDFSDSI KYMGTBSQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETAAE TAFLGIASPA KKHVQETRKQ SENKKSIEKL	120 180 240 300 360 420 480 540
50 55	SEQ ID NO:50 P. Protein Accession APLSKVEEDD IEESKQETSM KIQTPELGEV AAAEPEDDSF MSSKLKSAQQ AAVLIDDIQDL NVQVPEEPTH EPASVTPLEN IFLWRTVLVV MMILSDEAIK KDVISMNASE	AB7 Protein serve 1#: BAA13 11	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATL QISEKLKTIM NQEILDDTAK ARLSEEKVKS	31 KNPGNQGRQP EPNTMVEKER SGLAGEPEGE IISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTFMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ	VLGTIHPDPE FERSDFSDSI KYMGTESQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETAAE TAPIGIASPA KKHVQETRKQ SENKKSIEKL QEIEDWSKLH	120 180 240 300 360 420 480 540 600 660
50 55 60	SEQ ID NO:50 P. Protein Accession 1 AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMIASE AELSEQIKSF	AB7 Protein serve 18: BAA13 11 	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATL QISEKLKTIM NQEILDDTAK AKLSEEKVKS LTHKDDNINA	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE ILSSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID YGLFWKFVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ	VLGTIHPDPE FERSDFSDSI KYMGTBSQGS VHELEALLQE GMNENNIFEE NFSREKTAEL ANKQPETAAE TAFLGIASFA KKHVQETRKQ SENKKSIEKL QEIEDMSKLH NKGGNDSDEL	120 180 240 300 360 420 480 540 600 660 720
50 55	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH IFLWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN	AB7 Protein seque 1#: BAA13 11 i YPSEELLEDE ILDSEKTSET FÇNKDSDYLK HWTPHTSVEP ESLPYNMEKV IYFVRYKHST LDQRVIGDTH ALLLIYSTMF KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKOLEVA EKMKNQIKQM	21	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE IISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGFVT PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEEN LTNCITQLAIL SVVEEDLKLL	DVNLQVPDRA PLADKKAQRP PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKEQLQ LECESESEGQ QLKLRASVST	VLGTIHPDPE FERSDFSDSI KYMGTBSQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETAAE TAFLGIASFA KKHVQETRKQ SENKKSIEKL QEIEDWSKLH MKGGNDSDEL KCNLEDQVKK	120 180 240 300 360 420 480 540 600 660 720 780
50 55 60	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDST MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH BEPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKST ANGEVGGDRN LEDDRNSLQA	AB7 Protein seque 1#: BAA13 11 i YPSEELLEDE ILDSEKTSET FQNKDSDYLK HWTPHTSVEP ESLPYNMEKV IYFVRYKHST LDQRVIGDTH AILLIYSFM KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKKGKDLEVA AKAGLEDECK	21 MAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLT LDKVFRASES AEETATLVMA ASEVSOKPNT YLTKSLVATL QISEKLKTIM NQEILDDTAK ARLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE CILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEEYE	VLGTIHPDPE FERSDFSDSI KYMGTESQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETAAE TAFIGIASPA KKHVQETRKQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA	120 180 240 300 360 420 480 540 600 660 720 780 840
50 55 60	SEQ ID NO:50 P. Protein Accession APLSKVEEDD IEESKQETSM KIQTPELGEV AAAEPEDDSF MSSKLKSAQQ AAVLIDDIQDL NVQVPEEPTH EPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE	ABY Protein serve 1#: BAA13 11 1 YPSEELLEDE ILDSEKTSET FONKDSDYLK HWTPHTSVEP ESLPYNMEKV ITYFVRYKHST LDORVIGDTH AILLIYSFMF KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKDLEVA AKAGLEDECK EVKTYKRRIE	21 MAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATL QISEKLKTIM NQEILDDTAK ARLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE IISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL TEDTFMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQESYE EKKAHENWLK	VLGTIHPDPE FERSDPSDSI KYMGTESGGS VHELEALLQE GMNENNIFEE NFSREKTAEL ANKQPETAAE TAPLGIASPA KKHVQETRKQ SENKKSIEKL QEIEDMSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAE	120 180 240 300 360 420 480 540 600 660 720 780 840 900
50 55 60	SEQ ID NO:50 P. Protein Accession 1 AFLSKVEEDD IEESKQETSM KIQTPELIEN AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH BEPASVTPLEN IFLWRTVLVV NMTLSDEAIK KDVISMASE ARESEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREANALRH	AB7 Protein seque 11 11 YPSEELLEDE ILDSEKTSET FQNKDSDYLK HWTPHTSVEP ESLFYNMEKV IYFVRYKHST LDQRVIGDTH AILLIYSFMF KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKDLEVA EKMKNQIKQM AKAGLEDECK EVKTYKRKIE KULELITQKMA	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEBTATLVMA YLTKSLVATL QISEKLKTIM NQBILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILM MDELQKTE MLQEEPVIVK	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE LISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL ESFKNQIATH PMPGKPNTQN	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID YGLFWKFVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEEYE ERKAHENWLK PPRRGPLSQN	VLGTIHPDPE FERSDFSDSI KYMGTBSGGS VHELEALLQE GMNENNIFEE NFSREKTAEL ANKQPETAAE TAFLGIASFA KKHVQETRKQ SENKKSIEKL QEIEDMSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAE GSFGPSPVSG	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
50 55 60 65	SEQ ID NO:50 P. Protein Accession APLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSP MSSKIKSAQQ AAVLDDIQDL NVQVPEEPTH IEPASVTPLEN IFILMTVLVV NMILSDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPPLTVE	ABY Protein sequence is: BAA13 11 † PSEELLEDE ILDSEKTSET FONKDSDYLK HWTPHTSVEP ESLPYNMEKV IYFVRYKHST LDQRVIGDTH ADLLIYSFMF KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKDLEVA EKMKNQIKQM AKAGLEDECK EVKTYKRIE EVKLELTQKMA PPURPLSATL	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATL QISEKLKTIM NQEILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVK NRRDMPRSEF	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE ILSSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL NLRVMLESER BCHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHP	DVNLQVPDRA PLADKKAQRP PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEYE EKKAHENWLK PPRRGPLSQN RWSAEASGKP	VLGTIHPDPE FERSDFSDSI KYMGTESQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETAAE TAFLGIASFA KKHVQETRKQ SENKKSIEKL QEIEDWSKLH MKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERALAE GSFGPSPVSG SPSDFGSGTA	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
50 55 60	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDST MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEM IFLWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKST ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRM GGCSPPLTVE TMMNSSRGS	ABY Protein seque 1#: BAA13 11 1 YPSEELLEDE ILDSEKTSET FQNKDSDYLK HWTPHTSVEN ESLPYNMEKV IYFVRYKHST LDQRVIGDTH AILLIYSFME KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKDLEVA AKAGLEDECK EVKTYKRRIE KLLELTQKME KLLELTQKME SPTRVLDEGK	21 MAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATI NQEILDDTAK ARLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVK MRCDMPRSEP VNMAPKGPPP	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE IISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPFDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHP PPGVPLMSTP	DVNILQVPDRA PLADKKAQRP PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL TEDTFMDAID TEDTFMDAID TEDTFMDAID SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ QLKLRASVST QKKLSQEEYE EKKAHENWLK PPRRGPLSQN MGGFVPPPIR	VLGTIHPDPE FERSDFSDSI KYMGTESQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETAAE TAFIGIASPA KKHVQETRKQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAE GSFGPSFVSG SPSDPGSGTA YGPPPQLCGP	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
50 55 60 65	SEQ ID NO:50 P. Protein Accession 1 AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMIASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPFLTVE TMMNSSRGS FGPRPLPPPF	ABT Protein server 18: BAA13 11	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATL QISEKLKTIM NQBILDDTAK ARLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVK NRRDMFRSEP VNMAPKGPPP REFAPGVPPG	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE LISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHP PPGVPLMSTP RRDLPLHPRG	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTFMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQESYE QKKLSQESYE EKKAHENWLK PPRGPLSQN RWSAEASGKP MGGPVPPPIR FLPGHAPFRP	VLGTIHPDPE FERSDPSDSI KYMGTESGGS VHELEALLQE GMNENNIFEE NFSREKTAEL ANKQPETAAE TAPLGIASPA KKHVQETRKQ SENKKSIEKL QEIEDMSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020
50 55 60 65	SEQ ID NO:50 P. Protein Accession 1 AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMIASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPFLTVE TMMNSSRGS FGPRPLPPPF	ABT Protein server 18: BAA13 11	21 MAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATI NQEILDDTAK ARLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVK MRCDMPRSEP VNMAPKGPPP	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE LISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHP PPGVPLMSTP RRDLPLHPRG	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTFMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQESYE QKKLSQESYE EKKAHENWLK PPRGPLSQN RWSAEASGKP MGGPVPPPIR FLPGHAPFRP	VLGTIHPDPE FERSDPSDSI KYMGTESGGS VHELEALLQE GMNENNIFEE NFSREKTAEL ANKQPETAAE TAPLGIASPA KKHVQETRKQ SENKKSIEKL QEIEDMSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
50 55 60 65	SEQ ID NO:50 P. Protein Accession 1 AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMIASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPFLTVE TMMNSSRGS FGPRPLPPPF	ABT Protein server 18: BAA13 11	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATL QISEKLKTIM NQBILDDTAK ARLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVK NRRDMFRSEP VNMAPKGPPP REFAPGVPPG	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE IISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHP PPGVPLMSTP RRDLPLHPRG RDEPPPASQS	DVNLQVPDRA PLADKKAQRP PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEYE EKKAHENWLK PPRRGPLSQN RWSAEASGKP MGGPVPPPIR FLPGHAPFRP TSQDCSQALK	VLGTIHPDPE FERSDFSDSI KYMGTBSQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETAAE TAPLGIASFA KKHVQETRKQ SENKKSIEKL QEIEDWSKLH MKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERALAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF QSP	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
50 55 60 65 70	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDST MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEM IFLWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKST ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPPLTVE TMMSSSRGS FGPRPLPPPF IPGTRLPPPT	ABY Protein seques 1#: BAA13 11 1 YPSEELLEDE ILDSEKTSET FONKDSDYLK HWTPHTSVEN ESLPYNMEKV IYFVRYKHST LDORVIGDTH AILLIYSFME KDRUYQVTEQ YKDKIKTLEK FSEVQIALNE EKSKOKDLEVA AKAGLEDECK EVKTYKRRIE KLLELTQKMA SPIRVLDEGK GPGMRPPLGL HGPQEYPPPP	21 MAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATI NQEILDDTAK ARLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVE MRQMPRSEP VNMAPKGPPP REFAPGVPGG	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE IISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHP PPGVPLMSTP RRDLPLHPRG RDEPPPASQS	DVNLQVPDRA PLADKKAQRP PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEYE EKKAHENWLK PPRRGPLSQN RWSAEASGKP MGGPVPPPIR FLPGHAPFRP TSQDCSQALK	VLGTIHPDPE FERSDPSDSI KYMGTESGGS VHELEALLQE GMNENNIFEE NFSREKTAEL ANKQPETAAE TAPLGIASPA KKHVQETRKQ SENKKSIEKL QEIEDMSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
50 55 60 65	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDST MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEM IFLWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKST ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPPLTVE TMMSSSRGS FGPRPLPPPF IPGTRLPPPT	ABT Protein server 18: BAA13 11	21 MAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATI NQEILDDTAK ARLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVE MRQMPRSEP VNMAPKGPPP REFAPGVPGG	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE IISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHP PPGVPLMSTP RRDLPLHPRG RDEPPPASQS	DVNLQVPDRA PLADKKAQRP PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEYE EKKAHENWLK PPRRGPLSQN RWSAEASGKP MGGPVPPPIR FLPGHAPFRP TSQDCSQALK	VLGTIHPDPE FERSDFSDSI KYMGTBSQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETAAE TAPLGIASFA KKHVQETRKQ SENKKSIEKL QEIEDWSKLH MKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERALAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF QSP	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
50 55 60 65 70	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDST MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEM IFLWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKST ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPPLTVE TMMSSSRGS FGPRPLPPPF IPGTRLPPPT	ABT Protein server 11 11 YPSEELLEDE ILDSEKTSET FONKDSDYLK HWTPHTSVEP ESLPYNMEKV IYFVRYKHST LDORVIGDTH AILLIYSFMF KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKDLEVA EKMKNQIKOM AKAGLEDECK EVKTYKRRIE KLLELTQKMA PPVRPLSATL SPTRVLDEGK GPCMRPPLGL HGPQEYPPPP SSION #: NM_0	21 MAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATI NQEILDDTAK ARLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVE MRQMPRSEP VNMAPKGPPP REFAPGVPGG	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE LISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHP PFGVPLMSTP RRDLPLHPRG RDEPPPASQS	DVNILQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTFMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEEYE EKKAHENWLK PPRGPLSQN RWSAEASGKP MGGPVPPPIR FLPGHAPFRP TSQDCSQALK Q ID NO:51 PAB9	VLGTTHPDPE FERSDPSDSI KYMGTESGGS VHELEALLQE GMNENNTFEE MFSREKTAEL ANKQPETAAE TAPLGIASPA KKHVQETRKQ SENKKSIEKL QEIEDWSKLH MKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF QSP DNA SEQUENCE	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
50 55 60 65 70	SEQ ID NO:50 P. Protein Accession 1 AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMINASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPFLITVE TMMNSSRGS FGPRPLPPPF IPGTRLPPPT Nucleic Acid Acce	ABT Protein server 11 11 YPSEELLEDE ILDSEKTSET FONKDSDYLK HWTPHTSVEP ESLPYNMEKV IYFVRYKHST LDORVIGDTH AILLIYSFMF KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKDLEVA EKMKNQIKOM AKAGLEDECK EVKTYKRRIE KLLELTQKMA PPVRPLSATL SPTRVLDEGK GPCMRPPLGL HGPQEYPPPP SSION #: NM_0	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKF GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATL QISEKLKTIM NQBILDDTAK ARLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVK NRRDMFRSEF VNMAPKGPPP REFAPGVPPG AVRDLLPSGS	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE LISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHP PFGVPLMSTP RRDLPLHPRG RDEPPPASQS	DVNILQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTFMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEEYE EKKAHENWLK PPRGPLSQN RWSAEASGKP MGGPVPPPIR FLPGHAPFRP TSQDCSQALK Q ID NO:51 PAB9	VLGTTHPDPE FERSDPSDSI KYMGTESGGS VHELEALLQE GMNENNTFEE MFSREKTAEL ANKQPETAAE TAPLGIASPA KKHVQETRKQ SENKKSIEKL QEIEDWSKLH MKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF QSP DNA SEQUENCE	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
50 55 60 65 70	SEQ ID NO:50 P. Protein Accession 1 AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH EPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMINASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPFLITVE TMMNSSRGS FGPRPLPPPF IPGTRLPPPT Nucleic Acid Acce	ABT Protein server 11 11 YPSEELLEDE ILDSEKTSET FONKDSDYLK HWTPHTSVEP ESLPYNMEKV IYFVRYKHST LDORVIGDTH AILLIYSFMF KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKDLEVA EKMKNQIKOM AKAGLEDECK EVKTYKRRIE KLLELTQKMA PPVRPLSATL SPTRVLDEGK GPCMRPPLGL HGPQEYPPPP SSION #: NM_0	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKF GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATL QISEKLKTIM NQBILDDTAK ARLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVK NRRDMFRSEF VNMAPKGPPP REFAPGVPPG AVRDLLPSGS	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE LISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHP PFGVPLMSTP RRDLPLHPRG RDEPPPASQS	DVNILQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTFMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEEYE EKKAHENWLK PPRGPLSQN RWSAEASGKP MGGPVPPPIR FLPGHAPFRP TSQDCSQALK Q ID NO:51 PAB9	VLGTTHPDPE FERSDPSDSI KYMGTESGGS VHELEALLQE GMNENNTFEE MFSREKTAEL ANKQPETAAE TAPLGIASPA KKHVQETRKQ SENKKSIEKL QEIEDWSKLH MKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF QSP DNA SEQUENCE	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
50 55 60 65 70	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELGBV AAAEPEDDSF MSSKLKSAQQ AAVLDDIQDL NVQVPEEPTH IFLMTVLVV NMILSDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAG ECKEVANLE GECSPFLTVE TMINSSSRGS FGPRPLPPPT Nucleic Acid Acce Coding sequence	ABY Protein sequence of the bands of the ban	21 i NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEETATLVMA ASEVSQKPNT YLTKSLVATL QISEKLKTIM NQEILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE NRRDMPRSEF VNMAPKGPPP REFAPGVPG AVRDLLPSGS 06457 4 (underlined sequ	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE ILSSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT FDDVQPGPDF KENTELVQKL NLRVMLESER BCHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL ESFKNQIATH PMPGKPNTQN GSVDGPLPHP FPGVPLMSTP RRDLPLHPRG RDEPPPASQS SE ences correspond	DVNLQVPDRA PLADKKAQRP LSKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTPMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI LECESESEGQ QLKLRASVST QKKLSQEEYE EKKAHENWLK PPRRGPLSQN RWSAEASGKP MGGFVPPPIR FLPGHAPFRP TSQDCSQALK IO Start and stop of	VLGTIHPDPE FERSDFSDSI KYMGTBSQGS VHELEALLQE GMNENNIFEE MFSREKTAEL ANKQPETRAE TAFLGIASFA KKHVQETRKQ SENKKSIEKL NKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAE GSFGPSFVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF QSP DNA SEQUENCE	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
50 55 60 65 70	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELIEN MSSKLKSAQQ AAVLDDIQDL INVQVPEEPTH EPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMINASE AREJSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPPLTVE TMMNSSRGS FGPRPLPPPF IPGTRLPPPT Nucleic Acid Acco Coding sequence	AB7 Protein serves 11 Page	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEBTATLVMA ASEVSOKPNT YLTKSLVATL QISEKLKTIM NOBILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILM MEMEDELQKTE MLQEEPVIVK NRRDMFRSEF VNMAPKGPPP REFAPGVPPG AVRDLLPSGS 06457 4 (undefined sequall	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE LISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL MLRVMLESER LTNCITQLNL SVVEEDLKLL ELYQQKEMAL LTNCITQLNL SVVEEDLKLL ELYQQKEMAL PMPGKPNTQN GSVIGPLPHP PPGVPLMSTP RRDLPLHPRG RDEPPPASQS SE ences correspond	DVNLQVPDRA PLADKKAQRP LAKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTFMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQESYE EKKAHENWLK PPRGPLSQN RWSAEASGKN MGGPVPPPIR FLPGHAPFRP TSQDCSQALK QID NO:51 PAB9	VLGTTIHPDPE FERSDPSDSI KYMGTESGGS VHELEALLQE GMNENNIFEE NFSREKTAEL ANKQPETAAE TAPLGIASPA KKHVQETRKQ SENKKSIEKL QEIEDMSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA VGPPPQLCGP LGSLGPREYF QSP DNA SEQUENCE	120 180 240 300 360 420 480 600 660 720 840 900 960 1020 1080 1140
50 55 60 65 70	SEQ ID NO:50 P. Protein Accession AFLSKVEEDD IEESKQETSM KIQTPELIEN MSSKLKSAQQ AAVLDDIQDL INVQVPEEPTH EPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMINASE AREJSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPPLTVE TMMNSSRGS FGPRPLPPPF IPGTRLPPPT Nucleic Acid Acco Coding sequence	AB7 Protein serves 11 Page	21 NAINAKRSKE AAKGVNTGGR NDNPEEHLKT GHSDKREDLL LDKVFRASES AEBTATLVMA ASEVSOKPNT YLTKSLVATL QISEKLKTIM NOBILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILM MEMEDELQKTE MLQEEPVIVK NRRDMFRSEF VNMAPKGPPP REFAPGVPPG AVRDLLPSGS 06457 4 (undefined sequall	31 KNPGNQGRQF EPNTMVEKER SGLAGEPEGE LISSFFKEQQ QILSIAEKML PPLEEGLGGA EKDLDPGPVT PDDVQPGPDF KENTELVQKL MLRVMLESER LTNCITQLNL SVVEEDLKLL ELYQQKEMAL LTNCITQLNL SVVEEDLKLL ELYQQKEMAL PMPGKPNTQN GSVIGPLPHP PPGVPLMSTP RRDLPLHPRG RDEPPPASQS SE ences correspond	DVNLQVPDRA PLADKKAQRP LAKEDHGNTE SLQRFQKYFN DTRVAENRDL MEEMQPLHED TEDTFMDAID YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQESYE EKKAHENWLK PPRGPLSQN RWSAEASGKN MGGPVPPPIR FLPGHAPFRP TSQDCSQALK QID NO:51 PAB9	VLGTTHPDPE VLGTTHPDPE FERSDPSDSI KYMGTESQGS VHELEALLQE GMNENNTFEE MFSREKTAEL ANKQPETRAE TAPLGIASPA KKHVQETRKE QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF QSP DNA SEQUENCE codons) 51	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080

```
TTGGACTTTG AGCCATTAGA ACCATGAGCA ACTACAGTGT GTCACTGGTT GGCCCAGCTC
                                                                              120
        CTTGGGGTTT CCGGCTGCAG GGCGGTAAGG ATTTCAACAT GCCTCTGACA ATCTCTAGTC
                                                                              180
        TANAAGATGG CGGCAAGGCA GCCCAGGCAA ATGTAAGAAT AGGCGATGTG GTTCTCAGCA
        TTGATGGAAT AAATGCACAA GGAATGACTC ATCTTGAAGC CCAGAATAAG ATTAAGGGTT
                                                                              300
 5
        GTACAGGCTC TTTGAATATG ACTCTGCAAA GAGCATCTGC TGCACCCAAG CCTGAGCCGG
        TTCCTGTTCA AAAGGGAGAA CCTAAAGAAG TAGTTAAACC TGTGCCCATT ACATCTCCTG
                                                                              420
        CTGTGTCCAA AGTCACTTCC ACAAACAACA TGGCCTACAA TAAGGCACCA CGGCCTTTTG
                                                                              480
        GTTCTGTGTC TTCACCAAAA GTCACATCCA TCCCATCACC ATCGTCTGCC TTCACCCCAG
                                                                              540
        CCCATGCGAC CACCTCATCA CATGCTTCCC CTTCACCCGT GGCTGCCGTC ACTCCTCCCC
                                                                              600
10
        TGTTCGCTGC ATCTGGACTG CATGCTAATG CCAATCTTAG TGCTGACCAG TCTCCATCTG
                                                                              660
        CACTGAGGGC TGGTAAAACT GCAGTTAATG TCCCACGGCA GCCCACAGTC ACCAGCGTGT
                                                                              720
        GTTCCGAGAC TTCTCAGGAG CTAGCAGAGG GACAGAGAAG AGGATCCCAG GGTGACAGTA
                                                                              780
        AACAGCAAAA TGGCCCACCA AGAAAACACA TTGTGGAGCG CTATACAGAG TTTTATCATG
                                                                              840
        TACCCACTCA CAGTGATGCC AGCAAGAAGA GACTGATTGA GGATACTGAA GACTGGCGTC
                                                                              900
15
        CAAGAACTGG AACAACTCAG TCTCGCTCTT TCCGAATCCT TGCCCAGATC ACTGGGACTG
                                                                              960
        AACATTTGAA AGAATCTGAA GCCGATAATA CAAAGAAGGC AAATAACTCT CAGGAGCCTT
                                                                             1020
        CTCCGCAGTT GGCTTCCTTG GTAGCTTCCA CACGGAGCAT GCCCGAGAGC CTGGACAGCC
                                                                             1080
        CAACCTCTGG CAGACCAGGG GTTACCAGCC TCACAACTGC AGCTGCCTTC AAGCCTGTAG
                                                                             1140
        GATCCACTGG CGTCATCAAG TCACCAAGCT GGCAACGGCC AAACCAAGGA GTACCTTCCA
                                                                             1200
20
        CTGGAAGAAT CTCAAACAGC GCTACTTACT CAGGATCAGT GGCACCAGCC AACTCAGCTT
                                                                             1260
        TGGGACAAAC CCAGCCAAGT GACCAGGACA CTTTAGTGCA AAGAGCTGAG CACATTCCAG
                                                                             1320
        CAGGGAAACG AACTCCGATG TGCGCCCATT GTAACCAGGT CATCAGAGGA CCATTCTTAG
                                                                             1380
        TGGCACTGGG GAAATCTTGG CACCCAGAAG AATTCAACTG CGCTCACTGC AAAAATACAA
                                                                             1440
        TGGCCTACAT TGGATTTGTA GAGGAGAAAG GAGCCCTGTA TTGTGAGCTG TGCTATGAGA
                                                                             1500
25
        AATTCTTTGC CCCTGAATGT GGTCGATGCC AAAGGAAGAT CCTTGGAGAA GTCATCAATG
                                                                             1560
        CGTTGAAACA AACTTGGCAT GTTTCCTGTT TTGTGTGTGT AGCCTGTGGA AAGCCCATTC
                                                                             1620
        GGAACAATGT TITTCACTTG GAGGATGGTG AACCCTACTG TGAGACTGAT TATTATGCCC
                                                                             1680
        TCTTTGGTAC TATATGCCAT GGATGTGAAT TTCCCATAGA AGCTGGTGAC ATGTTCCTGG
                                                                             1740
        AAGCTCTGGG CTACACCTGG CATGACACTT GCTTTGTATG CTCAGTGTGT TGTGAAAGTT
                                                                             1800
30
        TGGAAGGTCA GACCTTTTTC TCCAAGAAGG ACAAGCCCCT GTGTAAGAAA CATGCTCATT
                                                                             1860
        1920
        AAATTAAAAT TACTAATTAA TTTTTAGATT CAATATTTAT ATGGAGTTTT GAAAAATAAT
                                                                             1980
        AGTGGCCCTG AAGGAATAAA TTCCAGCTTT AAAAACCAAG TCTGAGGAAA TATTTGGCTT
                                                                            2040
        CATAAAGTAA AGAGACGGTT TGGCATTTAT TATTACTTTT TCCTGTATTT TATGCCCATA
                                                                            2100
35
        AAATAAGCTT TATAAAAACC AATTTCCTGA TGGACTATTA AATTCATCTT AGAATAAATT
                                                                            2160
        AGTGAAGAAT TTAATTTTAG AATAAATAAT CCAATCTGAA ATAATTATAC CTTCTTTCCT
                                                                             2220
        TGTTAGGTAG TTATGAGTAA ATCTGCAAAA GGCAATGAAA ATGCCTTAAA TTTTATCAAT
                                                                             2280
        AACAGAATTA TTGTATTTAA AAAAAAACTA ATACTTATCT TTAAAATAGT AAATAGGATT
                                                                             2340
        TTANACAGAG AATTTTATCA GTAATAGGTG TCAGTTTTTA AAAAATTGCT TGTAGGCTGA
                                                                             2400
40
        GCGCGGTGGC TCACGCCTGT AATCCCAGCA CTTTGGGAGG CCAAGGTGGG TGGACCACAT
                                                                             2460
        GAGGTCAGGA GTTTGAGATC AGCCTGGCCA ACATGGTGAA ACCCCATCTC TACTAAAAAT
                                                                            2520
        ACAAAAATTA GCCGGACGCA GTGGCACGCG CCTGTAATCC CAGCTACTCA AGAGGCTGAG
                                                                            2580
        GCACGAGAAT CACTTGAACC CGGGAGGGAG AGGTTGCAGT GAGCCAAGAT CGTACCACTG
                                                                             2640
        CACTCCAGCC TGGGTGACAG AGTGAGACTC CGTCTCCAAA AAAAAACTTT GCTTGTATAT
                                                                            2700
45
        TATTTTTGCC TTACAGTGGA TCATTCTAGT AGGAAAGGAC AATAAGATTT TTTATCAAAA
                                                                            2760
        TGTGTCATGC CAGTAAGAGA TGTTATATTC TTTTCTTATT TCTTCCCCAC CCAAAAATAA
        GCTACCATAT AGCTTATAAG TCTCAAATTT TTGCCTTTTA CTAAAATGTG ATTGTTTCTG
                                                                            2880
        TTCATTGTGT ATGCTTCATC ACCTATATTA GGCAAATTCC ATTTTTTCCC TTGCGCTAAG
                                                                            2940
        GTAAAGATTT AATTAAATAA TTTTGGCCTC TCATAGTTTT CTCTCTCTTT AAAGAGAATA
                                                                            3000
50
        AATAGAGGC CAGGTGTGGT GGCTCACGCC TGTGATCCCA GCACTTTGGG AGGCCAAGAC
                                                                            3060
        GGGCGGATCA TGAGGTCAAG AGATCAAGAT CATCCTGGCC AACATGGTGA AACCCTGTCT
                                                                            3120
        CTACTAAAAA TACAAAAATG AGCTGGGCAT GGTGGGGCGT GCCTGTAGTC CCATGTACTT
                                                                            3180
        GGGAGGCTGA GGCAGGAAAA TTCTTGAACC CAGGAGACGG AAGTTGCAGT GAGCTGAGAT
        CACACCACTG CACTCCAGCC TGGTGACAGA GCAAGACTCC GGCTCTT
55
       SEQ ID NO:52 PAB9 Protein sequence
       Protein Accession #:
                        NP 006448
                                    21
                                               31
                                                                     51
60
           1 MSNYSVSLVG PAPWGFRLQG GKDFNMPLTI SSLKDGGKAA QANVRIGDVV LSIDGINAQG
          61 MTHLEAQNKI KGCTGSLNMT LQRASAAPKP EPVPVQKGEP KEVVKPVPIT SPAVSKVTST
         121 NNMAYNKAPR PFGSVSSPKV TSIPSPSSAF TPAHATTSSH ASPSPVAAVT PPLFAASGLH
                                                                                   180
         181 ANANI.SADOS PSALSAGKTA VNVPROPTVT SVCSETSQEL ABGORGSQG DSKQQNGPPR
241 KHIVERYTEF YHVPTHSDAS KKRLIEDTED WRPRTGTTQS RSFRILAQIT GTEHLKESEA
                                                                                   240
65
                                                                                   300
         301 DNTKKANNSO EPSPOLASLV ASTRSMPESL DSPTSGRPGV TSLTTAAAFK PVGSTGVIKS
                                                                                   360
         361 PSWQRPNQGV PSTGRISNSA TYSGSVAPAN SALGQTQPSD QDTLVQRAEH IPAGKRTPMC
                                                                                   420
         421 AHCNOVIRGP FLVALGKSWH PEEFNCAHCK NTMAYIGFVE EKGALYCELC YEKFFAPECG
                                                                                   480
         481 RCQRKILGEV INALKQTWHV SCFVCVACGK PIRNNVFHLE DGEPYCETDY YALFGTICHG
70
         541 CEFPIEAGDM FLEALGYTWH DTCFVCSVCC ESLEGQTFFS KKDKPLCKKH AHSVNF
                                                  SEQ ID NO:53 PBH7 DNA SEQUENCE
       Nucleic Acid Accession #: AA431407
                        1-864 (underlined sequences correspond to start and stop codons)
       Coding sequence:
75
                   11
                              21
                                          31
                                                                51
        ATGGCCAACT GTAAAATGAC CAAAAGCATC AGGTTCCCTG CCCTGGAGCA CTGCTATACT
        GGCGGGGAGG TCGTGTTGCC CAAGGATCAG GAGGAGTGGA AAAGACGGAC GGGCCTTCTG
                                                                             120
80
        CTCTACGAGA ACTATGGGCA GTCGGAAACG GGACTAATTT GTGCCACCTA CTGGGGAATG
```

5 10	GAGGCCTCA GGCATCACA AACACAGAA TGCTATGAG GGGGACAGA ATCATTAAT CACCCAGCG GTGAAGGCCC AAGGAACTG GAGTTTGTC AAAAAGGAG	TTGAAAACTY ACAGCCTCT ACAGCCTCT GAAACATTGG GAAGATGG GAAGATGG TGGCGGAGT TTATTGTCC CAGAGCTGC CAGAGCTGCAACACACACACACACACACACACACACACAC	G CATTATTOM GCTACAGAT GCTACAGAT GCTACAGAT TCAAGAGGG A TCGCATCGG C AGCCCACA GACCCACAG C AAAACCAT C CAAATCAGT C TAATCGGC TGAATCGGC	G AGCATGAACI C ATTGATGACI C AAACTGTCC T AAAGTGGAA C TACATTTGT G CCTGCAGAGG G GCCAGCCCAG G TCCTGTCCC ACAGCCCAG C ACTGGCAAG C ACTGGCAAG A GTGAACTCAG	A CCGCTGACCA A AGGCCAGCA A GGGCAGCA A GGCCTGTGA A GGCCTGTGA A GGCCTGTGACAGGGACT TTGAAAGGGA A CCCGATTCA A TTGAACGGA A ACGCACTGG A ACGCACTGG A ACGCACTGG	A GTTTCATATG C TGGCAGCCAG C CCTGCCACCT G CCTCTTCATG GAGTGATGAC TTTGGTGGAG A TCAGCTGAC A TCAGCACGTC A GGAACTTCAG A GGAACTTCAG A ACACCTGAGG C ACACCTGAGG	300 360 420 480 540 600 720 780 840 900
15	TGTTGATTTY AATTCAGTTY	G GGAAAGTAT	AGGAGTGCC TCCAAGTCC	A TGATTCCAAT F CTGTATCTT	r GTTTTCCTTY	GCATTGAGAG TTTTAAATTA AGGTGAGCAC	1020
20	Protein Accession		SH predicted			•	
25	KIKPGFMGKA NTEGNIGIRI IINASGYRIG	TPPYDVQFHM KPVRPVSLFM PAEVESALVE	EASVENCIIV CYEGDPEKTA HPAVAESAVV	SMNTADPGSQ	GITHSLLLQV GDRGKMDEEG VKAFIVLTPQ	51 GLICATYWGM IDDKGSILPP YICFLGRSDD FLSHDKDQLT	60 120 180 240
20			•	SE	Q ID NO:55 PBJ5	DNA SEQUENCE	
30	Nucleic Acid According sequence	ession #: AF388 9: 33-137		ences correspond	to start and stoo c	odons)	
			•	,	•	•	
	1	11	21 	31 	41 	51 	
35	TGGTTTTGAA TGGAAAAGGG ATTTGCAACA	AATGGAGAAA TCACTGAAAT TGAAGAAAGC	AAGAGTGAGG GGGACGACAT TTATCTGGAG	CGATGTGCTG AACTGAGAAA GAACTCAAGG TGAAAGTAAA	CATGGATGGC AGGCTATTTA TGAGACCAAC	CTTGGGAACG TGACCATGTC AGAGATAAGA	60 120 180 240
40	TAATACAAAA AGAAACTTGA CACGGGGAAT	TAATAGTAAT CTAAGAGACA GTGAAAGGTA	AATCCCTCTG ATATAAGAAC TATGAGTCCC		TTATGCCAAC ATTAAGAAAG GCGATGTCAT	TTCAACAAAA AACTCTCCAC	300 360 420 480
45	SEQ ID NO:56 P Protein Accession	BJ5 Protein seque n #: AAK8					
	1 .	11	21	31	41	51	
50	1			1	1	i	
50	MCCETYYRLL	VLKMEKKSEE	LRNMDGLGNV	EKGH			
	Atuataia Aaid Aaa	ession#: AA876	210	SE	Q ID NO:57 PBJ7	DNA SEQUENCE	
	Coding sequence			ences correspond t	to start and stop or	odons)	
55	•	11		34	44	-1	
	1	11	21 	31 	41	51 	
				CTACTTTACC			60
60				GACTCCACTA CCTGATCTTC			120 180
				AGCTTCCTCG			240
				AATCCCACAT CAGGAAGGAC			300 360
65	TGGAGGGCCG	GTACCTCCAA	GGAAGTCTCC	TTTGCAGTTG	ATTTATGTGT	ACTGTTCCCA	420
03				AATTTGCCGG AGCCAAACTG			480 540
	GCAGAAAAAG	GGCTCCAAAA	TGTTGACTTT	TACCTCTGTC	CTGGAAATCA	CCCTGACGCT.	
				CCTGATTGGA CTTTCCATAA			660 720
70				ACTATAACTG			780
				AGACTTTATA			840
				GTCTCATGGA CAGAAACACC			900 960
55	GTTCCTCTGC	CATTCTTAGT	TCCTAGACCC	CAGCTACAAC	AACAACATCT	TCAACCCAGC	1020
<i>75</i>				CTCCTTAACC			1080
				CCCCCTTATT			1140 1200
	GATGTGTCTG	GAAATGCTTC	CTGTCTGATT	AGTACCGGGT	ATAACTTATC	TGCTTCTCCT	1260
80	TTTCAGGCTA	CTTGTAATCA	GTCCCTGCTT	ACTTCCATAA	GCACCTCAGT	CTCTTACCAA	1320
ου	GCACCCAACA	ATACCTGGTT	GGCCTGCACC	TCAGGTCTCA	CICGCTGCAT	TAATGGAACT	1380

			CGTGTTAGTT				1440
			CATCGCTCCC				1500 1560
_			AGAAACTGGA				1620
5			TGCCATAGAT				1680
			CCGATGCTTA				1740
			TTGTTGCTTC AAATCTAGAT				1800 1860
			TAACTGGAAC				1920
10	GCTGGACCTC	TCCTCATCCT	ACTATTAAGT	TTAATTTTTG	GGCCTTGTAT	ATTAAATTCG	1980
			ACGCATAGCT	TCTGTCAAAC	TTACGTATCT	TAAGACTCAA	2040
	TATGACACCC	TTGTTAATAA	C <u>TGA</u>				
	SEQ ID NO:58 P	BJ7 Protein seque	nce	•			
15	Protein Accession	n#: FGENE	SH predicted				
	1	11	21 .	31	41	51	
	ī	î	ī	ĭ	ī	Ĭ	
20			LNPATLLPDP				60
20			VSFPQPDLPD EPARTHEEQH				120 180
			SCRDTYQFFC				240
	LCTRKNCNPL	TITVHDPNAA	QWYYGMSWGL	RLYIPGFDVG	TMFTIQKKIL	VSWSSPKPIG	300
25			VPLPFLVPRP ATLKRGPLSC				360 420
23			APINTWLACT				480
	GPEGRQLIAP	PELHPRLHQA	VPLLVPLLAG	LSIAGSAAIG	TAALVQGETG	LISLSQQVDA	540
			EVVLQNCRCL				600
30		SVKLTYLKTQ	PWYQSMFNWN YDTLVNN	PWLTTLTTGL	AGPLLILLS	LIFGPCILMS	660
			10101111				
	Alustain Anid Ann		10005	SE	Q ID NO:59 PCQ	DNA SEQUENCE	•
	Coding sequence	ession #: NM_0 182-18	19005 85 (underlined sec	illences corresnor	d to start and ston	codons)	
35	o o o o o o o o o o o o o o o o o o o	. 102.10	00 (0.1001	100.1000 00.100	а то отт. т.е отор	000012,	
	1	11	21	31	41	51	
	TGATGGTGGA	P State Annual Company of P	AACCGCTCTC	[CTAATTTCCC	ACCTICATOR	CCAAATTATTYC	60
40			AGCATGGCTT				120
40			GTGAATGGAC				180
			ATATTTTATG TTTATCATGT				240 300
			AAGACTCTGC				360
45			CCTGGTATCT				420
43			TTGTACTTAC AGTTTGTTCC				480 540
			ACTGGCTAGC				600
			TCTGCAGCAA				660
50			AAACTGAAAC GTCTGTCTCT				720 780
-			ACCTAGCTAT				840
			TTCAGGGTGT				900
			AGGTTGCAAT CAAAACCCTT				960 1020
55			CAAGGGATAG				1080
	TACACCCACT	CCCATTGGGG	ATGAAACTGA	ACCCACAATA	ATTGAAAGAA	GTGTGCAACC	1140
			CCTTTGCGTG TGTCAGACTT				1200 1260
			TGTGGGCTTG				1320
60	AGAAAATGAT	AATTCTTTAG	AAAAAGATAT	AGCAACGAAG	ATGCGTCTTC	GGGCTTTATC	1380
			AGCAGGTGTG GGTATACTCT				1440
			ACAAAGGATC				1500 1560
· C E	AAAGTCATCG	TTGGGAATGG	TGGAAAGCAG	CAGACATAAT	TGGAGTGGGT	TGGATAAGCA	1620
65			ATGAAGAGAG				1680
			ACGTGGGGCC TGGCATTGTT				1740 1800
	CCTGAATGAA	GGGGCATCTT	CTGAAAAAGG	CAGGAGATCT	GAATCTCAAT	GTGGTAGCAA	1860
70			GATGAGAAGA				1920
70			CCGTATTTGT TTGTATGAAA				1980 2040
			GATACTCAGA				2100
	GAGGCTGGAA	ATTTGGAAGG	AATTTTGCTT	ACAGGCCTTA	CTAAAGATGG	AGTGGACTTA	2160
75			AACTGGAGAT				2220
			TAAAGATGAA GTTTTGGCAT				2280 2340
	AAGTTGGATC	CCAGTTCCAA	GCCTTTAGCA	CAAGTTTTTG	TGAGTTGCAA	TTTCTGTGGC	2400
			TTCAGCTGTG				2460
80			GAAATCTAAA TCTCATTAAT				2520 2580

5	AACTGGTTTA TGGTTCAGGG GATACAACGG AGAGAACCCT	CATGGTGTCA ACCATGCAGA GGAATCTGGT TCAAGTGTGG CCATTCATGA	TAATTGCAGG GTGCCCTGTG ACCTGCAGAG AGCTTTCTAG	CACGGTGGAC TCTGCATGCA ACTGTCCAGC TAGGTGTCCT	AAAAATTAGC ATGCTGGACA CGTGTAAATG CATAAAATGT TCATAGCTCA AAATCATTCT	TATGCTTAGT TATGCAGTTG TACCACCTTA GAAACATACC	2640 2700 2760 2820 2880 2940
10	SEQ ID NO:60 Protein Accession	CQ1 Protein sequents: NP_06					
	1	11	21	31	41	51	
15	PYMKCVAWYL WNPLDSNWLA LGQNDACLSL ASFYEGQVAI	NYDPECLLAV AGLDKHRADF CWLPRDQKLL WDLRKFEKPV	GQANGRVVLT SVLIWDICSK LAGMHRNLAI LTLTEQPKPL	SLGQDHNSKF YTPDIVPMEK FDLRNTSQKM TKVAWCPTRT	GSLRLSEDSA KDLIGKEFVP VKLSAGETET FVNTKAVQGV GLLATLTRDS	KHARQCNTLA TLLVTKPLYE TVDPYFHDRV NIIRLYDMQH	60 120 180 240 300
20	SPITSLMWAC POLKSLWYTL	GRHLYECTEE HFMKQYTEDM ILALQLCGWI	ENDNSLEKDI DQKSPGNKGS KKGTDVDVGP	ATKMRLRALS LVYAGIKSIV	VTPNRTMSDF RYGLDTEQVW KSSLGMVESS WERAAAVALF	RNHILAGNED RHNWSGLDKQ	360 420 480 540
25				SE	Q ID NO:61 PDG3	DNA SEQUENCE	
	Nucleic Add Acce Coding sequence			ences correspond	to start and stop c	odons)	
30	1	11	21	31	41	51	
	GATCAGCCCA GAGTCCTGGC	CAGTACACAT TTTGTAAAAT	CATTGATGAG GACTTATAAA	AATTTCACTO	GTCTCAACCT TTTAGAGATG	ATGGTGTGAT TTCTCATGCT ATTAAGAGAT TAAAGAATGT	60 120 180 240
35	CCATATTGTT TGTGATTTGG CTGAGCCTCA	GTATTTCATT CATGGCAC CATGCCACA CATTTCCTCA	GTGGTGTATI TTAAAAACTC TTTTTCAAAT	GGAAAGTGAT TATAACCTCA ATAGAGAGTA	CTGGACTTTG GGCAAGTCTT TAACATTTAT	ATTATTTTT AGTGAGAAGA TTAATCTTCT CTCATAAGAC AGATTCCATA	360 420 480
40	TTCCAGTCTT TACCAAAAGA CAAATATACT AAATATTTTT	CTGACACGTO TTCTTTAACT	GTTTATCTGC GAGTTAATCA TCTGTGTGGG TTAGGAAAAA	CACAGGGAGA TTTGACAGAT TATCACTTAG TTGTAGNCAA	AGTCCTCAGA GCAAATGCTT GGAAAAAAAG ATCTTTTNT	TAAAAATGTC CCACCCCAA GCAGGCAACA CCCATTAACA AAACAGGTAA	600 660 720 780
45	CTTACTTGAZ		Chrooco	, AIMMMIN	. AMAGICIACO	mmunogim	040
	SEQ ID NO:62 P						
50	1	11	21	31	41	51	
		DKFRKFIKAP	PRNYSMIVMF	TALQPQRQCS	VCRQANEEYQ	ILANSWRYSS	60 120
55	WIADRTDVHI AMTSGQMWNH	RVFRPPNYSG IRGPPYAHKN	TIALALLVSL PHNGQVSYIH	VGGLLYXRRN	KRADTFDLOR NLEFIYNKTG SHIILVLNAA PYSDLDFE	WAMVSLCIVE	180 240 300
60	Nucleic Acid Acce	secion #: AT 090	225	SEC	2 ID NO:63 PDG8	DNA SEQUENCE	
00	Coding sequence			•	to start and stop o	odons) -	
	1 	11 	21 	31 	41 	51 	
65	GGGGCGCCCA CAGGGCGAGC CCGGGCTGGC	CCGCGCTGCC CGCTGCATTI	AGCCTACCCC CTGCTGCCTA TAAGCCCATT	GCGGCCGAGC GACTTCAGCC GAGTCCACGC	GCGCCGCCGCCGCCCCCCCCCCCCCCCCCCCCCCCCCC	CGCCACCGCC GCTGTGGCTG GCAGGGCGAG CTTCATGACC CATCGCCGGC	180 240
70	TTCCTGCCCA GCCGCAGTGC GCGGCCGTCA CTGTGTCCGC	ACGGCATGGA CCGCAGGGAC CTTCGGGGGT GCGCGCGGGT	ACAGCGCCGG CACCGCAGCC GGCGACCAAG GCCTTTCCCG	ACCACCGCCA GCCGCCGCCG TGACCCGCTC	GCACCACCGC CCGCCGCTGC CGCTCCTCCC	AGCCACCCC CGCCGCCGCC TGTGTCCGTC CTTCGTGCTG	360 420 480 540
75	AAGCAAGGTT GGGTGGGATC CATCCCCCTG CCAAATCCTG	TGTGCTGCGC GCAGCTCCGA CCCGACTCCT TGTATTTGTT	TTCCAGTTCC AGACGGAGAG TCCCCGCACC TTATATATTT	GAAAAGCAGA GAGGGAAATG CACGTGCCCT AATAACTGTT	GGGCCCTTTC AGATTCATGG TTAAATGAAA	CGCCTTTGAA CTTGGACTGA CCCTCTATTG CAGAAAATGA GTTTTAGTAA	660 720 780 840
80						CTCTTTGTAT GGGGGGAGGG	900 960

	TCCAAGTTG		GACGTGGCC	r GGTGGGCGT	r tettettet	r atgaaccttt A cttatgtggt 3	1020 1080
5	SEQ ID NO:64 P	DG8 Protein sequents: CAB4					
	1	11	21	31	41	51	
10	CDDWCDI.DDA	 AAPSAAAATA	CAPTALDAYE	A A EDDCDI.WI	CORRESPONDE	 DEST.EET.OGE	60
10	PGWRLNRKPI	ESTLVACEMT A AAAAAAAA	LVIVVWSVAA	LIWPVPIIAG			120
15	Nuclaic Acid Acco	ession#: NM 0	06765	SE	Q ID NO:65 PDM1	DNA SEQUENCE	
13	Coding sequence		95 (underlined sec	quences correspor	d to start and stop	codons)	
20 ,	1	11	21 .	31	41	51	
20 `	l 	CCGGGTCCCT	CCCPFCCC		CCACCCCCA		60
		TGGCCGGGCA					120
		AGACACTGCC					180
25		CGGCGGCTGC					240 300
		CAGCTGATGG					360
		AAATTTATAA					420
		CCTCAGCGGC TCCTGGCGCT					480 540
30		GAGGGGACAG					600
		CCTCCAAAAG					660
		GCTGAGCAACT					720 780
		CTTTATTNGA					840
35		TCTCTGTGTA					900
		CCATATGCTC				ACATTCATGG	960 1020
						TTGGAAAAAG	1080
40		TGCCTAGTGG					1140
40						AGTGAGAAGA TAAATGAAGC	1200 1260
						TGACTTTATA	1320
	CTATTTTGAA	TTCATTCATT	TCATTGTGAT	CAGCTAGCTT	ATTCTTGTGT	ACTTTTTTTA	1380
45		TTTCCTAGTA				TTAGTAATCT	1440 1500
75		CAATGTAATT		CIGITALATI	CAGIGIGIAC	CACAGGAIIG	1300
50	SEQ ID NO:66 P Protein Accession	DM1 Protein sequents: NP_00					
	1	11	21	31	41	51	
	1	Į.	1	Ī	1	Ī	
55		ROAGRRLRYL					60 120
33		DKFRKFIKAP VDYDEGTDVF					180
		RVFRPPNYSG					240
						ITMGMVLLNE	300
60	AATSKGDVGK	RRIICLVGLG	LVVFFFSFLL	SIFRSKINGI	PYSDLDFE		
						<u>-</u>	
	Musicia Asid Asse	ession#: NM_0	00047	ŞE	Q ID NO:67 PDM2	DNA SEQUENCE	
	Coding sequence		7 (underlined sequ	iences correspond	l to start and stop	codons)	•
65	٠,		•	·	•	•	
	1 .	11	21	31	41	51	
	i	ī	Ī	ĭ	ĭ	Ĭ	
70		GAACTCTCCC					60
70						GAGGAAGCTG	120 180
						TTACTTGCAG TAGAGTTAAA	240
	TTGTTAAAAT	CAGTTGAAAA	TCTTGGAGTG	AGCTATGTGA	AAGGAACTGA	ACAATACCAG	300
75						GCTAGAAGAT	360
<i>7</i> 5						TGCTTATTGC TCGATTTAGA	420 480
						ATTGCAGTTT	540
	GAGGCTATAA	GTGATGAAGA	GAAGACTCTT	CGAGAACAGG	AGATTGTTGC	CTCATCACCA	600
80						TGCTGATGCT	660
50	CIGGATITGT	LICUMUGAAG	GAMAGICTAT	1 TGGAAGATG	GCTPTGCTTA	CGTACCACTT	720

	AAGGACATTG	TGGCAATCAT	CCTGAATGAA	TTTAGAGCCA	AACTGTCCAA	GGCTTTGGCA	780
				TCTGATGAAA			840
				TACAGTACCC			900
				AAATCCTTCC			960
5				CGTCATGGAG			1020
•				CAGGCATTGC			1080
				GATAAAGGTT			1140
				TATACACCTT			
							1200
10				CATGGGTGCC			1260
10				AAGATCTCTC			1320
				GTAGCCTGTC			1380
				AATCATCCTA			1440
				AAGAAGGAAC			1500
15				GATGCATCAT			1560
13				GAAGATTACT			1620
				TTTCCTGTTT			1680
				TAGTGCAGTG			1740
				CCTACCTCAG			1800
20				TTTTTCAATT			1860
20				ACTCCTGGGC			1920
	AGCGTCCCAG						1980
				GCATCCCAAT			2040
				AGAGACTTTC			2100
05				TGTCACTTGA			2160
25				GGTTAAAGTC			2220
	AACAACTTTT	GITTTAACTC	TTAATCACTT	TGTAATTTTG	ACTCAATCCT	TTTCTGGACC	2280
	ATTTTTGTTA	ATAAATATCA	AAGTGT				
00							
30	SEQ ID NO:68 PI						
	Protein Accession	#: NP_00	0938				
	1	11	21	31	41	51	
	1	I	1	1	1	1	
35	MEFSGRKRRK	LRLAGDORNA	SYPHCLOPYL	OPPSENISLT	EFENLAIDRV	KLLKSVENLG	60
	VSYVKGTEQY	QSKLESELRK	LKFSYREKLE	DEYEPRRRDH	ISHFILRLAY	CQSEELRRWF	120
	IQQEMDLLRF	RFSILPKDKI	QDFLKDSQLQ	FEAISDEEKT	LREQUIVASS	PSLSGLKLGF	180
	ESTYKIPFAD	ALDLFRGRKV	YLEDGFAYVP	LKDIVAIILN	EFRAKLSKAL	ALTARSLPAV	240
	QSDERLQPLL	NHLSHSYTGQ	DYSTQGNVGK	ISLDQIDLLS	TKSFPPCMRQ	LHKALRENHH	300
111							
40	LRHGGRMQYG	LFLKGIGLTL	EQALQFWKQE	FIKGKMDPDK	FDKGYSYNIR		360
40	LRHGGRMQYG DYTPFSCLKI					HSFGKEGKRT	360 420
40	DYTPFSCLKI	ILSNPPSQGD	YHGCPFRHSD	PELLKQKLQS	YKISPGGISQ	HSFGKEGKRT ILDLVKGTHY	
40		ILSNPPSQGD IHNVDDCGFS	YHGCPFRHSD LNHPNQFFCE	PELLKQKLQS	YKISPGGISQ	HSFGKEGKRT ILDLVKGTHY	420
	DYTPFSCLKI QVACQKYFEM	ILSNPPSQGD IHNVDDCGFS	YHGCPFRHSD LNHPNQFFCE	PELLKQKLQS	YKISPGGISQ	HSFGKEGKRT ILDLVKGTHY	420
45	DYTPFSCLKI QVACQKYFEM	ILSNPPSQGD IHNVDDCGFS	YHGCPFRHSD LNHPNQFFCE	PELLKQKLQS SQRILNGGKD	YKISPGGISQ IKKEPIQPET	HSFGKEGKRT ILDLVKGTHY	420
	DYTPFSCLKI QVACQKYFEM	ILSNFPSQGD IHNVDDCGFS NSSLEMDMEG	YHGCPFRHSD LNHPNQFFCE LEDYFSEDS	PELLKQKLQS SQRILNGGKD	YKISPGGISQ IKKEPIQPET	HSFGKEGRRT ILDLVKGTHY PQPKPSVQKT	420
	DYTPFSCLKI QVACQKYFEM KDASSALASL	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG ssion#: NM_02	YHGCPFRHSD LNHPNQFFCE LEDYFSEDS	PELLKQKLQS SQRILNGGKD	YKISPGGISQ IKKEPIQPET 1 ID NO:69 PDM3	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE	420
	DYTPFSCLKI QVACQKYFEM KDASSALASL Nucleic Acid Acce	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG ssion#: NM_02	YHGCPFRHSD LNHPNQFFCE LEDYFSEDS	PELLKOKLOS SORILNGGKD SEC	YKISPGGISQ IKKEPIQPET 1 ID NO:69 PDM3	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE	420
45	DYTPFSCLKI QVACQKYFEM KDASSALASL Nucleic Acid Acce	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG ssion#: NM_02	YHGCPFRHSD LNHPNQFFCE LEDYFSEDS	PELLKOKLOS SORILNGGKD SEC	YKISPGGISQ IKKEPIQPET 1 ID NO:69 PDM3	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE	420
	DYTPFSCLKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence:	ILSNFPSQGD IHNVDDCGFS NSSLEMDMEG ssion#: NM_02 108-491	YHGCPFRHSD LNHPNQFFCE LEDYFSEDS 24840 (underlined seque	PELLKQKLQS SQRILNGGKD SEC	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop c	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons)	420
45	DYTPFSCLKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence:	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG ssion#: NM_02 108-491	YHGCPFRHSD LANHPNOFFCE LEDYFSEDS 24840 (underlined sequents)	PELLKQKLQS SQRILNGGKD SEC	YKISPGGISQ IKKEPIQPET 2 ID NO:69 PDM3 to start and stop c 41	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51	420
45	DYTPFSCLKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA	ILSNFPSQGD IHNVDDCGFS NSSLEMDMEG ssion#: NM_02 108-491 11	YHGCPFRHSD LANHPNOFFCE LEDYFSEDS 24840 (underlined sequent of the company of the	PELLKQKLQS SQRILNGGKD SEC ences correspond 31	YKISPGGISQ IKKEPIQPET 2 ID NO:69 PDM3 to start and stop c 41	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA	420 480
45	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG ssion#: NM_07 108-491 11	YHGCPFRHSD LANHPNOFFCE LEDYFSEDS 4840 (underlined sequence) 21 CATATATATAG AGAGAGTTCA	PELLKQKLQS SQRILNGGKD SEC ences correspond 31	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop c 41	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT	420 480
45 50	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG ssion #: NM_07 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA	YHGCPFRHSD LINHPNOFFCE LEDYFSEDS A840 (underlined sequence) 21 CATATATATAT AGAGAGTTCA AAAGGTCCAG	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop c 41 GGAAAAGGCT AAACCACATG CACCAGAGAA	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT	420 480 60 120
45	DYTPFSCLKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAGAAGCCC	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG ssion #: NM_02 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA TATGAATGCA	YHGCPFRHSD LANHPNOFFCE LEDYFSEDS A840 (underlined sequence of the company of the	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop c 41 GGAAAAGGCTT AAACCACATG CACCAGAGAA CGCTGGAAATG	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CTCATACAGG CACAGCTCAA	420 480 60 120 180
45 50	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAAGAACC TGCACATCAG	ILSNPPSQGD IHNVDDCGFS NSSLEHDMEG ssion #: NM_07 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA TATGAATGCA AAAGCTCACA	YHGCPFRHSD LANHPNOFFCE LEDYFSEDS 4840 (underlined sequent of the common	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTC	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop c 41 GGAAAAGGCT AAACCACATG CACCAGAAA CGCTGGAAAT TGCCGTGATT	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CTCATACAGG CACAGCTCAA	420 480 60 120 180 240
45 50	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAGAAGCCC TGCACATCAG CTTCATTCAG TATATGCAAT	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG ssion #: NM_0X 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA TATGAATGCA AAAGCTCACA AAAGCTCACA AAAGCTCACA AAGGAAATC GAATGTGGAA	YHGCPFRHSD LINHPNOFFCE LEDYFSEDS A840 (underlined sequence CATATATATA AGAGAGTTCA AAAGGTCCAG CTGAATGTACA AAGGCTTCAT AAAGGTTCAA AAAGGTTCAA AAAGGTTCAA	PELLKQKLQS SQRILNGGKD SEC ences correspond 31	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop c 41 GGAAAAGGCT AAACCACATG CACCAGGAA CGCTGGAAAT CGCTGGAAAT CGCTGGAAT TGCCGTGATT CATACTGGAG AACCTCCTTA	HSPGKEGKRT ILDLVRGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CATACAGG CACAGCTCAA GTGGAAAAGG AAAAACCCTA TTCATCGACG	420 480 60 120 180 240 300
45 50	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAGAAGCCC TGCACATCAG CTTCATTCAG TATATGCAAT	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG ssion #: NM_0X 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA TATGAATGCA AAAGCTCACA AAAGCTCACA AAAGCTCACA AAGGAAATC GAATGTGGAA	YHGCPFRHSD LINHPNOFFCE LEDYFSEDS A840 (underlined sequence CATATATATA AGAGAGTTCA AAAGGTCCAG CTGAATGTACA AAGGCTTCAT AAAGGTTCAA AAAGGTTCAA AAAGGTTCAA	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTAC GTCATATATA	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop c 41 GGAAAAGGCT AAACCACATG CACCAGGAA CGCTGGAAAT CGCTGGAAAT CGCTGGAAT TGCCGTGATT CATACTGGAG AACCTCCTTA	HSPGKEGKRT ILDLVRGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CATACAGG CACAGCTCAA GTGGAAAAGG AAAAACCCTA TTCATCGACG	420 480 60 120 180 240 300 360
45 50 55	DYTPFSCIKI CVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAGAAGCCC TGCACATCAG CTTCATCAG TATATGCAAT TACTCACACT	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG ssion #: NM_00 108-491 11 GAGAGAAAGT ATTAATCATC GCCTTCTCCA TATGAATGCA AAAGCTCACA AAAGCTCACA AAAGCTACA CGAATGTGGAA GGAGAAAAC	YHGCPFRHSD LINHPNOFFCE LEDYFSEDS A840 (underlined sequence of the common sequence of the c	PELLKQKLQS SQRILNGGKD SEC ences correspond 31	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop c 41 GGAAAAGGCT CACCACAGAA CGCTGGAAAT CGCTGGAAAT TGCCGTGAT AACCTCTTA ACCTCTTA	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51	60 120 180 240 300 420
45 50	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAAGACC TTCATTCAG CTTCATTCAG TATATGCAAT TACTCACACT GACATGTTTA	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG SSION #: NM_07 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA TATGAATGCA AAAGGTCACA AAAGGTCACA AAAGGAAAC GGAGAGAAAC ATATCCCATC	YHGCPFRHSD LANHPNOFFCE LEDYFSEDS A840 (underlined sequently against a	PELLKQKLQS SQRILNGGKD SEC ences correspond 31	YKISPGGISQ IKKEPIQPET DID NO:69 PDM3 to start and stop c 41 GGAAAAGGCT AAACCACATG CACCAGGAA TGCCGTGAATT CATACTGGAG AACCTCTTA GGGAAAGGCT AACCTCTTTG	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CTCATACAGG CACAGCTCAA GTGGAAAAGG AAAACCCTA TTCATCGACG TCAGCCAGAA TATGTACTGA	60 120 180 240 300 360 420 480
45 50 55	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAGAAGCCC TGCACATCAG TATATCAGAT TACTCACACT GACATGTTAG GACATGTTAG GTGTGGAAAA	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG SSION #: NM_OX 108-491 11	YHGCPFRHSD LANHPNOFFCE LEDYFSEDS A840 (underlined sequence CATATATATG AGAGAGTTCA AAAGGTCCAG CTGAATGGAA TCATTGTACA AAGGCTTCAT CCTATGAATG AGAGATTCA AGAGATTCA AGAGATTCA ACAGTTCAG ACAGTTCAG	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTC GTCATATATA TCAGCGAATT CCAAAAGGGC CAATGAATG CAATGAATG CAAAGGAAG TCTCATTAAC	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop c 41 GGGAAAAGGCT AAACCACATG CACCAGAGAA CGCTGGAAAT TGCCGTGAAT CATACTGGAG AACCTCTTA GGGAAAGGCT ACACCTTTG CACACCAGAGAA	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CTCATACAGG CACAGCTCAA GTGGAAAAGG AAAACCCTA TTCATCGACG TCAGCCAGAA TATGTACTGA	420 480 60 120 240 300 360 420 540
45 50 55	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAGAAGCCC TGCACATCAG TATATGCAAT TACTCACATTA GACATCTTTA GTGTGGAAAA AGAGAAACCCC	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG ssion #: NM_00 108-491 11	YHGCPFRHSD LINHPNOFFCE LEDYFSEDS A840 (underlined sequing seq	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTC GTCATATATA TCAGCGAATT CCAAAAGGGC CAATGAATG CAATGAATG CAAAGGAAG TCTCATTAAC	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop c 41 GGAAAAGGCT AAACCACATG CACCAGAGAA CGCTGGAAAT TGCCGTGATT CATACTGGAG AACCTCTTA GGGAAAGGCT ACACCCTTGAT CACCCCTGAT CACCCCTGAT CACCCCTGAT CACCCCTGAT ACACCCTTA	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCTT CTCATACAGG CACAGCTCAA GTGGAAAAGC AAAACCCTA TTCATCGACG TCAGCCAGAA TATGTACTGA TTCATCAGG CATGTCTCAA	420 480 60 120 180 240 300 420 480 540 600
45 50 55	DYTPFSCIKI QVACQKYFEM KDASSALASI Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAGAAGCCC TCCACATCAG TATATCAAT TACTCACACT GACATCTAG GTGTGGAAAA AGAGAACCC CAGACATCG	ILSNPPSQGD IHNVDDCGFS NSSLEHDMEG SSION#: NM_07 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA AAAGCTCACA AAAGCTCACA AAAGTCACA GGAGAAAC GGAGAGAAC GGAGAGAAC TATACATCAC ATATCCATC TCTGCTCACA AGAACTCATA	YEGCPFRHSD LANHPNOFFCE LEDYFSEDS 4840 (underlined sequent of the control of the	PELLKQKLQS SQRILNGGKD SEC ences correspond 31	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop of the start and sta	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCT CTCATACAGG CACAGCTCAA GTGGAAAAGC TATCATCGACG TCAGCCAGAA TTCATCGACG TCAGCCAGAA TTCATCAACAGG CATGTCACACAGG CATGTCTCAA GTGGAAAAGC TTCACACAGG	420 480 60 120 180 240 300 420 480 540 600 660
45 50 55 60	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG SSION #: NM_07 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA TATGAATGC AAAGGTCACA AAAGGTCACA AAAGGTCACA GAATGTCGAA GGAGAAAC TCCTGCTCAC TCCTGCTCAC TATACATGCA AGAACTCATA TTGTCATGCC	YHGCPFRHSD LINHPNOFFCE LEDYFSEDS A840 (underlined sequently agagestical agage	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTC GTCATTATAA TCAGCGAATG CAAAGAGGT CACAGGAAGG TCTCATTAAC GAAAGCTTTC ACCGTATGGA TCACTAGAAGG TCTCATTAAC GAAAGCTTTC CACCGTATGGA TAAGGGAATG	YKISPGGISQ IKKEPIQPET DID NO:69 PDM3 to start and stop c 41 GGARARGGCT ARACCACATG CACCAGAGAA TGCCGTGAATT CATACTGGAG ARCCTCTTA AGGGARAGGCT ACACCCTTTG CACCAGAGAA AGGATAAAT TGCCTGATT CTGCATGCAA	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CTCATACAGG CACAGCTCAA GTGGAAAAGC TATCATCGACG TCAGCAGAA TATCTACTGA TTCACACGG CATGTCTCAA GTGGGAAAGC GAGGAAAATG	420 480 60 120 180 240 300 360 420 480 540 600 720
45 50 55	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAGAAGCCC TGCACATCAG TATATCAGAT TACTCACACT GACATGTTAG GTGTGGAAAA AGAGAAACCC CAGACATCG TTTCTCCCCAC TGTAGGTTCA	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG SSION #: NM_OX 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS A840 (underlined sequence CATATATATG AGAGAGTTCA AAAGGTCCAG CTGAATTGTACA AAGGTTCAT CATATATATG AGAGTTCAT CATATATATG AGAGTTCAT CATATATATG AGAGTTCAT CATATATATG AGAGTTCAT CATATATATG AGAGTTCAT AGAGTTCAT AGAGTTCAT AGAGTTCAT AGAGTTCAG AGAGTTCAG AGAGTTCAG AGAGTTCAG AGAGTTCAG AGAGTTCAG AGAGTTCAG ATGTTTATCA AAAATCCTTG	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA TACAGGAATG CCAAAAGCATTC CCAAAAGGGC CAATGAATTAC CCAAAAGGGC CAATGAATG CCACAGGAAG TCTCATTAAC GAAAGCTTTC ACCGTATGGA ATAAGGGAATG ACCGTATGGA TAAGGGAATG CTCAGAGAGT CTCAGAGAGT	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop c 41 GGAAAAGGCT AAACCACATG CACCAGAGAA CGCTGGAAAT TGCCGTGAAT CATACTGGAG AACCTCTTA GGGAAAGGCT ACACCTTG CACCACTGAA AGAGATAAAT TGCTCTGAT CTGCATGCAA CTGCTTGAT CTGCATGCAA CATAGCTTAT	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCTA CACAGCTCAA GTGGAAAGG AAAACCCTA TTCATCGACG TCAGCCAGAA TATGTACTGAC TTCACAGG TCAGCAGAA TATGTACTGA GTGGAAAGC CATGCTCCAA GTGGGAAAGC CAGGAAATG CACATACACG CACAGAAATG CACATACACG	420 480 60 120 180 240 420 420 480 600 600 720 780
45 50 55 60	DYTPFSCIKI CVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG ssion #: NM_00 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS A840 (underlined sequing sequ	PELLKQKLQS SQRILNGGKD SEC SCRILNGGKD 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTC CCAAAAGCATTC CCAAAAGGAT CCAAAAGGAC CAACGAAAG TCACAGAAAG TCACTATTAAC GAAAGCTTTC ACCGTATGA TAAGGAAT CACGAAAG CTCACTAGAA CAAAGGAAG CTCACAGAGAG CTCACAGAGAG CCTCAGAGAGT CCTCAGAGAGT CATGGTGACT	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop of the start and	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51	420 480 60 120 180 240 300 420 480 540 660 720 780 840 900
45 50 55 60	DYTPFSCIKI QVACQKYFEM KDASSALASI Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG SSION#: NM_07 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA AAAGCTCACA AAAACTCATC TCTGCTCAC TCTGCTCAC TATACATGCA AGAACTCATA TTGTCATGCC GTCAAATTGGC CAGGATAAAG TCATTAACTA	YHGCPFRHSD LINHPNOFFCE LEDYFSEDS A840 (underlined sequent of the control of the	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTC CCAAAAGGAT CCAAAAGGG CAATGAATGT CACAGGAAAG TCTCATTAAC GAAAGCTTC ACCGTATTGGA TAAGGGAAT TCACAGGAAT CACAGGAAAG TCTCATTAGA TAAGGGAAT CACAGGAAT CACAGGAAT CACAGGAAT TAAGGGAAT CACAGGAAT CACAGGAAT CACAGGAAT CACAGGAAT CACAGGAAT CACAGGAAT CCACAGAGAT CATGGTACT	YKISPGGISQ IKKEPIQPET DID NO:69 PDM3 to start and stop of the start and st	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51	420 480 60 120 180 240 300 420 480 540 660 720 780 840
45 50 55 60	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG SSION #: NM_07 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS A840 (underlined sequence CATATATATO AGAGATTCA AAAGGTCCAG CTGAATGTACA AAAGGTTCAG CATATATACA AAAGGTTCAG CAGAGAGAA TCATTGTACA AAAGGTTCAG GTGACTTGAG CAGGGGAAG TTGTTTATCA AAAATCCTTG ACTCTGTTGA ACAGTCGGT ACTCTGTTGA CTGTGTGGG CAGGGGAAGAG CAGGGGAAGAG CAGGGGAAGAG CAGGGGAAGAG CAGGGGAAGAG CAGGGGAAGAG CAGTCTTGTTACA AAAATCCTTG ACTCTGTTAG ACAGTCGGTT CAGTCTCAGC	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTA TCAGCGAATT CCAAAAGGGC CAATGATGT CACAGGAAGG TCTCATTAAC GAAAGCTTTC ACCGTATGGA TCTCATTAAC TACAGGAAGG TCTCATTAAC CACGTATGGA TCTCATTAAC CACGTATGGA TCTCAGTAGGA TCTCAGAGGT CACGGAAGG CACGGAAGG CACGGAAGG CCAGAGGAAGG CCAGAGAGGT CCAGAGAGGT CCAGAGAGGT CCAGAGAGGT CCAGAGAGGAAGG AGATAGTAGA	YKISPGGISQ IKKEPIOPET DID NO:69 PDM3 to start and stop c 41 GGARARAGGCT ARACCACATG CACCAGAGAA CGCTGGAAAT CGCTGAATT CATACTCGAG ARACCTCTTA ACACCCTTTG CACCAGAGAA AGAGATAAATT CTGCAGAGAT CTGCAGAGAT CTGCAGAGAT CTGCAGAGAT CTGCAGAGAT CTGCAGAGAT CTGCAGAGAT CTGCAGAGAT CTGCAGAGAT CTGCAGAGTAG ACATAGCTTAT CTGCAGAGTAG ACATAGCTAAT CTGCAGAGTAG ACTTGCAGAGTAG ATTTGCACAG	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCTCAA GATGCAACCTA TTCATCACAGA TATCATCACAG TACACCAGA TATCATCACAG TACACCAGA TATCTACTGAC GAGAGAAAT CACACTGCACAGA CATGCTCTCAA GTGGGAAAGC CACATACACG CTTCTGTGGC CCCATTGTGGA AATAAAAACC AATAAAAACC	420 480 60 120 180 240 420 420 420 660 720 840 900 1020
45 50 55 60	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAGAAGCCC TGCACATCAG TATATCAGATT TACTCACACT GACATCTTA GTGTGGAAAA AGAGAAACCC CAGACATCGG TTTCTCCCAC TGTAGGTTCA TGATCTCAT AGCTCACAC CCAGCCTGTT AGCTCACAC CCAGCCTGTT ATATGAATGC ATATGAATGC CAGCCTGTT ATATGAATGC ATATGAATGC	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG SSION #: NM_OX 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS A840 (underlined sequitarian sequ	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTC CCAAAAGGGC CAATGATCA TCAGGAAGG TCTCATATAAC GAAAGCTTTC ACCGTATGGA TAGGAAGG TCTCATATGGA TAGGAAGG CCAGGAAGG CCAGGAAGG TCTCAGGAAGG CCAGGAAGG CCAGGAAGG CCAGGAAGG CCAAGCAGGA CAGGAAGG CCAAGCAGGA CAGGAAGG CCAAGCAGGA CAGGAAGG CCAAGCAGGA CAGGAACG CCAAGCAGGA CAGGAACG CCAAGCAGAG CAGGAACG CAGCAACG CAGGAACG CAGAACG CAGGAACG CA	YKISPGGISQ IKKEPIQPET DID NO:69 PDM3 to start and stop c 41 GGARARGECT ARACCACATG CACCAGAGAA CACCATGAT CATACTGGAG ARACCACATTG CACCAGAGAA CACCATTG CACCAGAGAA CACCATTG CACCAGAGAA CACCATTG CACCAGAGAA CAGCATTAT CTGCATGCAA CATAGCTTAT CTGCAGGATA CAGCAGAGAA CATAGCTTAT CTGCAGGATAG AGCARAGTAG ATTTGCACAG ÄTTACACAG	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCTT CTCATACAGG AAAAACCCTA TTCATCGAGG TATGTACTGA TTCATCGAGG CATGTCTCAA GTGGGAAAGC CATGTCTCAA GTGGGAAAGC CATGTCTCAA GTGGGAAAGC CATGTCTCAA GTGGGAAAGC CATGTCTCAA GTGGGAAAGC CATGTCTGAA GTGGGAAAGC CATGTCTGAA GTGGGAAAGC CACATACACG CACATACACG CTTCTGTGGC CACATACACAC TTCTCTGTGGC CATTACAAAA	420 480 60 120 180 240 300 420 480 540 660 720 780 960 900 960 1020
45 50 55 60	DYTPFSCIKI CVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG SSION #: NM_00 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS A840 (underlined sequitarian sequ	PELLKQKLQS SQRILNGGKD SEC SCRILNGGKD 31	YKISPGGISQ IKKEPIQPET ID NO:69 PDM3 to start and stop of the start and s	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCTA CACAGCTCAA GTGGAAAAGG AAAACCCTA TTCATCGACG TCAGCCAGAA TTCATCAAGA TTCATCGACG CACTGCTCAA GTGGAAAAGC CATGTCTCAA GTGGAAAAGC CACATACACG CACATACACG CACTTGTGGC CCATTGTGGC CCATTGTGAAA ACCTTATGGC	420 480 60 120 180 240 300 420 480 540 660 720 780 900 960 1020 1080 1140
45 50 55 60	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG SSION#: NM_07 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA AAAGCTCACA AAAGCTCACA AAAGCTCACA AAAGCTCACA AAAGCTCACA TATACATGCA AAAACTCAATC TCTGCTCAC TATACATGCA TGTCAATCGC GTCAAATTGGC GTCAAATTGGC CAGGATAAAG TCATTAACTA GCCAGAAGTT AGTCAATCTA GCCAGAAGTT AGTCAATCTA GCAGAAAGTA AGTCAATCTA GCAGAAACTGA AACAAACTGA AATACTCAGAG	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS A840 (underlined sequent of the control of the c	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTC GTCATTATA TCAGCGAATT CCAAAAGGG CTCATTATA CACAGGAAGG TCTCATTAC GAAAGCTTC GAAGCTTC CACGGAATG CACGGAATG CACGTATGGA TCAGAGAGT CATGGTGACT CATGGTGACT CCAAGCAGAG CAGTGATGAA CAGTGATCAA AGATGATGAA CAGTGATACAA AGATGATGAA	YKISPGGISQ IKKEPIOPET DID NO:69 PDM3 to start and stop of the start and st	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CACAACACAG AAAAACCCTA TTCATCACAGA TTCATCACAGA TTCATCACAGA TTCATCACAGA TTCACACAGA CAGGAAAATC CACATACACA GAGGAAAATC CACATACACA CTTCTGTGGC CCATTGTGGC CCATTGTGAC AATAAAACC TTTCACACAGG AATAAAAACC TCTCACAAGA ACCTTATGGC TCTTTTATGGC	420 480 60 120 180 240 300 360 420 780 840 900 1020 1080 1140 1200
45 50 55 60	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG SSION #: NM_07 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS 4840 (underlined sequitarian sequ	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTC CCAAAAGGGC CAATGATTATA CCAAATGAATG CAAAGGATG CAATGAATG CAAAGGATG CAAAGGATG CAAAGGATG CAAAGGAAGG TCTCATTAAC GAAAGCTTTC ACCGTATGA TAAGGGAATG CACGTGATGA CATGGTGAA CAGTGATCAA CAGTGATCAA CAGTGATCAA CTGGAAAGCC TGAAGGGAAG CAGTGATCAA CTGGAAAGCC TGAAGGGAAG CAGTGATCAA CTGAAGGGAAG CTGAAGGGAAG CAGTGATCAA	YKISPGGISQ IKKEPIOPET DID NO:69 PDM3 to start and stop of the start and	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CTCATACAGG CACAGCTCAA GTGGAAAAGC TTCATCAGAG TCAGCCAGAA TATTACTGAC GCAGAAATC CACATACAGG CATTCTCAC GAGAGAAATC CACATACACG CATTCTGTGGC CATTGTGGA AATAAAACC TTCTGTGGG AATAAAACC TGTCACAAAA ACCTTATGGC CTTTTATGG ATAGTTGGTA ATAGTTGGTA	420 480 60 120 180 240 420 420 420 660 720 840 900 1020 1080 1140 1200 1200 1260
45 50 55 60	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1 AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAGAAGCCC TGCACATCAG TATATCAGATT TACTCACACT GACATCTAG TATTCTCCAC TTTCTCCAC TGTAGGTTCA TGACTCAGA AGACATCTAA AGACATCTCAC TGTAGGTTCA TGATCTCACAC TGTAGGTTCA TGATCTCACAC TGATAGGTTCA TGATCTCACAC CCAGCCACC CAGCCACC CAGCCACT ATATGAATAC AACACAGAGG TAATAACAAT GAAATATAAT	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG SSION #: NM_OX 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS A840 (underlined sequitary and analysis and analysis analysis and analysis ana	PELLKQKLQS SQRILNGGKD SEC ences conespond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTC CCAAAAGGGC CAATGATTG CACAGGAAGG TCTCATATAAC GAAAGCTTTC ACCGTATGGA TACAGGAAGG CTCACTAGGA TACAGGAAGG CTCAGGAAGG CTCAGGAAGG CTCAGGAAGG CTCAGGAAGG CTCAGGAAGG CTCAGAGGGT CATGGTGACT CCAGGAAGG CTGAGAGGG AGATGAGAG CAGTGATCAA GTGAAAGGC TGAAATGGA GTGAAAGGC TGAAATGGA AGATGAGAG AGATGAAACAG ATCACATCTT TCAGAAACAG	YKISPGGISQ IKKEPIQPET DID NO:69 PDM3 to start and stop c 41 GGARARAGGCT ARACCACATG CACCAGAGAA CACCATGATT CATACTGGAG ACCTCTTA GGARARAGCT ACACCATTG CACCAGAGAA CACCATTG CACCAGAGAA CAGCATTAT CTGCATGCAA CATAGCTTAT CTGCATGCAA CATAGCTTAT CTGCAGAGAA CATAGCTTAT CTGCAGAGAA CATAGCTTAT CTGCAGATAC CATGAGATAC ACTTGCAGAA CATAGCTTAT CTGCAGATAC CATGAGATAAA CATGGAAATAAA CCTTGAATAAA CCTTGAATAAA CCTTGAATAAA CCTTGAATAAA CCTTGAATAAA CCTTGAATAAA	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51	420 480 60 120 180 240 300 420 480 540 660 720 780 960 1020 1080 1140 1200 1260 1320
45 50 55 60	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLEHDMEG SSION#: NM_07 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA AAAGCTCACA AAAGCTCACA AAAGTCACA AAAGTCACAC AAACTCACA ATTCCATCA TCCTGCTCAC AGAACTCATA TGTCAATGCA AGACTCATA TGTCAATGCA AGACTCATA AGACTCATA TGTCAATGCA AGACTCATA AGTCAATTGC ACCAGAGTTA GCCAGAAGTT AGTGAATGCA AATACTGAA ATACTCAGAG CTTCTCATCA ATACTCAGAG CTTCTCATCA GGAGAGAAAC GGAGAGAAAC GGAGAGAAAC GGAGAGAAAC	YEGCPFRHSD LANHPNOFFCE LEDYFSEDS A840 (underlined sequent of the control of the	PELLKQKLQS SQRILNGGKD SER ences correspond 31 CAGTGATTGT CAGTGATGGA GGTCACTGAA CAAAGCATTC CAAAAGGGC CAATGAATGT CACAGGAAAG TCTCATTAAC GAAAGCTTTC ACCGTATGGA TAAGGGAATG CTCAGAGGGT CATGGAAGGTT CAGGGAATG CAGGAAGG TCAGAGGGAT CATGGAAGGT CATGGAAAGGC TGAAGGAAGG TCAGAGGAT CATGGAAAGGC TGAAGGAGG TCAGAGGAGG TCAGAGGAGG TCAGAGGAGG ATACTGAA GTGGAAAGC TGAAGTGAC TTAAGGAAAGC TTAAGTGAAC CTTTTGAAGGG CCTTTGAAGGG	YKISPGGISQ IKKEPIOPET DID NO:69 PDM3 to start and stop of the start and st	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CTCATACAGG CACAGCTCAA TTCATCGACG TCAGCCAGAA TTCATCAAGA TTCATCGACG CATGTCTCAA GTGGAAAACC CATACACG CACAGAAAT CATCACACG CACTTCTTGTGGC CCATTGTGGC CTCTTATGGC TCTCAAAA ACCTTATGGC TCTTTATGG ATTATAGGC TCTTTTATGG ATTATAGGGG ATTATAGGC TCTTTTATGG ATTATAGGGG GGCAGGGTTG	420 480 60 120 180 240 300 420 480 540 900 960 1020 1140 1200 1200 1320 1380
45 50 55 60 65 70	DYTPFSCIKI QVACQKYFEM KDASSALASI Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG SSION #: NM_07 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS A840 (underlined sequent of the control of the c	PELLKQKLQS SQRILNGGKD SEC SCRICKS COMESPOND 31 CAGTGATTGT CAGTGATGT CAGAGGAGG GCTCACTGAA CAAAGCATTC CAAAAGGGC CAATGAATGT CACAGGAAAG TCACTATAAC GAAAGCTTC CACAGGAAG CTCACTAGAA CACGTATGAA CACGTATGAA CACGTATGAA CACGTATGAA CACGTATGAA CACGTATGAA CACGTATGAA CACGTATGAA CAGGAATCT CACAGCAGAG CATGATACAA CAGGAAAC CAGTGAAAC CAGTGAAACAG CTGAAACAG CTGAAACAG CTGAAACAG CCTTTAAAGG CCTTTAAAGA CCTTTAAAGG CCTTTAAAGAACAAG CCTTTAAAGAACAAG CCTTTAAAACAAG CCTTTAAAACAAG CCTTTAAAACAAGAACAAG CCTTTAAAACAAAAAAAAAA	YKISPGGISQ IKKEPIOPET DID NO:69 PDM3 to start and stop of the start and st	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CTCATACAGG AAAAACCCTA TTCATCACG TCAGCAGAAATG TATGTACTGA GAGGAAAATG CACAGTACACG CACAGTACACG CACATACACG CACATACACG CACATACACG CATTCTGTGC CTCATCAAAA ACCTTATGGAC AATAAAACC TTCACAAAAA CTCTCACAAAA ACCTTATGGAC AATAAAACC TCTTCACAAAA ACCTTATGGC CTATTATGGG ATACACGG GAGGGTTG CGCAGGGTTG CGCAGGGTTG CGCAGGGTTG CGCAGGGTTG CGTATGAAAAT	420 480 60 120 180 240 420 420 420 660 720 780 840 900 1020 1080 1120 1260 1320 1440
45 50 55 60	DYTPFSCIKI QVACQKYFEM KDASSALASI Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG SSION #: NM_00 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS A840 (underlined sequitarian sequ	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTCT CCAAAAGGGC CAATGATTGT CACAGGAAAG TCTCATTAAC GAAAGCTTTC ACCGTATTGA ACCGTATGA CATGGTGAT CCAAGGAAGG TCTCATTAAC GCAATGAATG CCTAGGAGG TCTCAGAGAGG CCTTGAGGAGG AGATAGTAGA CCTTTGAAGG AGATACTAT TCAGAAACAG GGGAATCATAT TCAGAAACAG GGGAATCATAT AGAACACACG GGGAATCATAT	YKISPGGISQ IKKEPIOPET DID NO:69 PDM3 to start and stop of the start and st	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCT CTCATACAGG CACAGCTCAA GTGGAAAAGG AAAAACCCTA TTCATCGACG TCACACAGA TATTACTGAC GAGAGAAATG CATTCTCACAGG CATTCTCACAGA ATTCATCGAC CATTCTGTGC CCATTGTGGC CCATTGTGGG AATAAAAACC TGTCACAAAA ACCTTATGGG ATTATGGG ATTATGGG ATTATGGG CCATTGTGGG CCATTGTGGG CCATTGTGGG CCATTGTGGG CCATTGTGGG CCATTGTGGG CTATTGTGGA ACCTTATGGG CTATGAAAAT GCCCTGTGAA	420 480 60 120 180 240 420 420 480 540 660 720 1020 1080 1140 1200 1200 1320 1320 1320 1440 1500
45 50 55 60 65 70	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG SSION #: NM_OX 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS A840 (underlined sequitary and analysts analysts and analysts analysts and analysts analysts and analysts an	PELLKQKLQS SQRILNGGKD SEC SCRILNGGKD 31 CAGTGATTGT TACAGGAAGA GCTCACTGAA CAAAGCATTC CCAAAAGGGC CAATGATTC CCAAAAGGC CCAATGAAT CCACAGAAG TCTCATATGAA TAAGGAATG CTCAGGAAGG CTCAGGAAGG TCTCAGGAAGG TCTCAGGAAGG CCTGAGAGGT CCAGGAAGG CCTGAGAGGT CCAGGAAGG CCTGAGAGGT CCAGGAAGG CCTTTGAAGG AGATGATAGA GTGAACACG TCAGAACAGG ATCATTT TCAGAAACAG CCTTTGAAGG GGAATCATAG AGAACACAG CCTTTGAAGG GGAATCATAG AGAACACAG CCTTTAACATCA TCTAACATCA	YKISPGGISQ IKKEPIQPET DID NO:69 PDM3 to start and stop of the start and	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51	420 480 60 120 180 240 300 420 480 540 660 720 780 900 900 1080 1140 1200 1380 1440 1500 1500
45 50 55 60 65 70	DYTPFSCIKI CVACQKYFEM KDASSALASI Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLEHDMEG SSION #: NM_07 108-491 11 GGAGAGAAGT ATTAATCATC GCCTTCTCCA AAAGCTCACA AAAGCTCACA AAAGCTCACA AAAGCTCACA AAACTCATC TCTGCTCAC TATACATGCA AGAACTCATA TGTCAATGCA AGAACTCATA TGTCAATGCA AGAACTCATA CAGGATAAAG CAGGATAAG CAGGATAACTA AGACTCATCATCA CAGGATAAG CAGGATAAG ATACTCAGAG ATACTCAGAG ATACTCAGAG ATACTCAGAG ATACTCAGAG ATACTCAGAG CTTCTCATCA GGAGAAACT TAGGACATT CATCTTCATC CATCTT	YEGCPFRHSD LINHPNOFFCE LEDYFSEDS A840 (underlined sequent of the control of the	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT CAGAGAGAG GCTCACTGAA CAAGCATTC CAAAAGGAT CCAAAAGGA CAAGCATTC CAAAAGGAT CCAAAAGGAT CCAAAGAAG CACTATTAAA CACGGAAAG CACTATTAAC CACAGGAAAG CACAGGAAAG CACAGGAAG TCCACAGAGAG CCAATCAGAGAG CCAAGGAAT CACAGGAAAG CTGAAAAGG CCAAGGAAG CACAGGAAG CCAGGAAAG CCAGGAAAG CCAAGCACGAG CAGAACACG CCAGAAACACG CCTTTGAAGG CCTTTGAAGG CCTTTGAAGG CCTTTGAAGG CCTTTGAAGG CTCTAACACACG CTCTAACACACACG CTCTAACACACCA CACACACACACACACACACC CTCTAACACACCA CACACACA	YKISPGGISQ IKKEPIOPET DID NO:69 PDM3 to start and stop of the start and st	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCCTAACAGG CACAGCTCAA TTCATCAAGA TTCATCAAGA TTCATCACGG AAAAACCCTAA TTCATCACAGG CATGTCTCAA GAGGAAAAG CATGTCTCAA CATGCAAAA CCTTATGGGC CCATTGTGGC CTTTTTTGG TTCACAGG CTTTTTTGGG CTCTTATGGG ATTAGTAGGC TCTTTTATGG ATTAGTAGGC CTTTTTATGG CCCAGGGTTG CTATGAAAA CCTTATGAGG GCCAGGGTTG CTATGAAAAT GCCCTGTGGA ATTAATATAC ATGACTAATT	420 480 60 120 180 240 300 360 420 780 840 900 960 1020 11200 1260 1320 1440 1500 1620
45 50 55 60 65 70	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: AATTCATACA GTCTCGGCTC GTGTGGGAAG AGAGAAGCC CTTCATTCAG TATATGCAAT TACTCACACT GACATGTTA GTGTGGAAAA AGAGAACCC CTGCACATCAC TGTAGGTTAA AGATCAGAT AGATCAGAT GACATGTGT ATATGAATGC ATATGAATGC TATATGAATGC AACACAGAG CCAGCCTGTT ATATGAATGC TAATAACCAT GAAATATAAT GGTTTAACA CCAGCTGTT ATATGAATGC TAATTAACA CAGAGGTATT AGAATTAACA CTAGTGTTAC GTAACTAGAA AAGGAGTATT AGGATTGTTA AGAATGTGTTA AGAATGTGTTA AGAATGTGTTA AGAATGTGTTA AAAAGGGGTT	ILSNPPSQGD IHNVDDCGFS NSSLEMDMEG SSION #: NM_07 108-491 11	YEGCPFRHSD LINHPNOFFCE LEDYFSEDS A840 (underlined sequent of the control of the	PELLKQKLQS SQRILNGGKD SEC SCRICKS COMESPOND 31 CAGTGATTGT CAGAGGAGG GCTCACTGAA CAAAGCATTC CAAAAGGGC CAATGAATGT CACAGGAAGG TCTCATTAAC GAAAGCTTTC CACAGGAAGG CTCACTAGAA TAAGGGAATG CACGTATGAA CAGGAAGG CACGTATGAA CAGGAAAGG CTCAGAGAGT CACAGGAAGG CACTTAGAA CAGGAAAGG CACTTAGAA CAGGAAAGG CAGTGATACAA AGTGAAACAG CAGTAATAT TCAGAAACAG CATTAGAAACAG CATTAGAAACAG CATTAACATCA AGAACACACG TCTAACTAGT AGAACACACG CATTAACTTAT AGAACACACG CATTAACTTAT AGAACACACG CATTAACTTAT AGAACACACG CATTAACTTAT AGAACACACG CTTAACTTAT AGAACACACG CTTAACTTAT AGTTAACTTAT AGTTAACTTTA	YKISPGGISQ IKKEPIOPET DID NO:69 PDM3 to start and stop of the start and st	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 1 TCATCAAGAA GATGCAGCCT CTCATACAGG CACAGCTCAA TTCATCGACG TTAGCACGGAAAAGC TATGTACTGAC GAGAGAAATG CACATACACG CATGTCTCAA AGTGGGAAAACC CTTCTGTGGC CCATTGTGGC CTTTTTATGG ATTAAAAACC TCTTCACAAAA ACCTTATGGC CTTTTTATGG ATTACAGGG ATTACAGGG CTTTTTATGG CTTTTTATGG ATTACAGGA GGCAGGTTG CTTATGAGAAA CCTTATGGAG ATTACAGGA GGCAGGTTG CTTATGAAAAT CCCCTGTGAA CCTTGTGAAAAT CCCCTGTGAA CATGACAATT TACCTCTTCC	420 480 60 120 180 240 420 420 420 600 600 720 780 840 900 1020 1080 11200 1260 1320 1320 1320 1440 1500 1620 1680
45 50 55 60 65 70	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG SSION #: NM_OR 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS 4840 (underlined sequitary and addressed and addresse	PELLKQKLQS SQRILNGGKD SEC ences correspond 31 CAGTGATTGT TACAGGAGAG GCTCACTGAA CAAAGCATTCT CCAAAAGGGC CAATGATTGT CCAAAAGGC TCTCATTAAC GAAAGCTTTC ACCGTATTGA ACCGTATGA CATGGTGATCA CCTAGGAGGT CCTCAGAGAGGT CCTCAGAGAGGT CCTCAGAGAGGT CCTCAGAGAGGT CCTCAGAGAGGT CCTCAGAGAGGT CCTCAGAAACGG AGATACTAGA CCTTTGAAGGG GGAATCATAT TCAGAAACAG CCTTTTAACGT GGGAAACAGG GGGAATCATAT AGAACACACG TCTAACATCAT AGTAAATTTA AGCAAGATCA AATCACTAGT GTTAAATTTA ACCAAGATCA	YKISPGGISQ IKKEPIOPET ID NO:69 PDM3 to start and stop of the start and of the start and start	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCTT CTCATACAGG CACAGCTCAA GTGGAAAAGC TATGTACTGA TCATCACAGG CATGTCTCAA GTGGAAAGC GAGAAATC CACATACACG CATGTCTCAA GTGGAAAGC CATGTCTCAA CTCTTGTGGC CATTGTGGC CATTGTAGGC CATTGTAGGG ATAAAAAC CTTTTTATGG ATAGTAGTA GCCTTGTGAA GCTATGGAAAT GCCCTGTGAA GATAATATAC ATGACTAATT TACCTCTTCC AGCTCTTTCC AGCTCTTCTCC AGCTCTCTCC AGCTCTTCTCC AGCTCTCTCTCC AGCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCTCC AGCTCTCTCTCTCTCTCC AGCTCTCTCTCTCTCTCC AGCTCTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC	420 480 60 120 180 240 420 420 420 420 480 900 900 1020 1140 1260 1320 1320 1440 1500 1680 1740
45 50 55 60 65 70	DYTPFSCIKI QVACQKYFEM KDASSALASL Nucleic Acid Acce Coding sequence: 1	ILSNPPSQGD IHNVDDCGFS NSSLENDMEG SSION #: NM_OR 108-491 11	YHGCPFRHSD LNHPNOFFCE LEDYFSEDS 4840 (underlined sequitary and addressed and addresse	PELLKQKLQS SQRILNGGKD SEC SCRICKS COMESPOND 31 CAGTGATTGT CAGAGGAGG GCTCACTGAA CAAAGCATTC CAAAAGGGC CAATGAATGT CACAGGAAGG TCTCATTAAC GAAAGCTTTC CACAGGAAGG CTCACTAGAA TAAGGGAATG CACGTATGAA CAGGAAGG CACGTATGAA CAGGAAAGG CTCAGAGAGT CACAGGAAGG CACTTAGAA CAGGAAAGG CACTTAGAA CAGGAAAGG CAGTGATACAA AGTGAAACAG CAGTAATAT TCAGAAACAG CATTAGAAACAG CATTAGAAACAG CATTAACATCA AGAACACACG TCTAACTAGT AGAACACACG CATTAACTTAT AGAACACACG CATTAACTTAT AGAACACACG CATTAACTTAT AGAACACACG CATTAACTTAT AGAACACACG CTTAACTTAT AGAACACACG CTTAACTTAT AGTTAACTTAT AGTTAACTTTA	YKISPGGISQ IKKEPIOPET ID NO:69 PDM3 to start and stop of the start and of the start and start	HSPGKEGKRT ILDLVKGTHY PQPKPSVQKT DNA SEQUENCE odons) 51 TCATCAAGAA GATGCAGCTT CTCATACAGG CACAGCTCAA GTGGAAAAGC TATGTACTGA TCATCACAGG CATGTCTCAA GTGGAAAGC GAGAAATC CACATACACG CATGTCTCAA GTGGAAAGC CATGTCTCAA CTCTTGTGGC CATTGTGGC CATTGTAGGC CATTGTAGGG ATAAAAAC CTTTTTATGG ATAGTAGTA GCCTTGTGAA GCTATGGAAAT GCCCTGTGAA GATAATATAC ATGACTAATT TACCTCTTCC AGCTCTTTCC AGCTCTTCTCC AGCTCTCTCC AGCTCTTCTCC AGCTCTCTCTCC AGCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCC AGCTCTCTCTCTCTCC AGCTCTCTCTCTCTCTCC AGCTCTCTCTCTCTCTCC AGCTCTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTC	420 480 60 120 180 240 420 420 420 600 600 720 780 840 900 1020 1080 11200 1260 1320 1320 1320 1440 1500 1620 1680

AAAATGTATT TAATTTAATA ATGTAACACA ACAAGTTTGG ATGTGTTTAA CTTTATAAAT 1860 AATCACCCCA GAGGAATGAA GTTCAAAACT TGTGAATAAC C

5	SEQ ID NO:70 P Protein Accession		equence; P_079116				
10			21 TR ELIQERSPMN IL EKNPIYAMNV				60 120
15	Nucleic Acid Acc		/_018455 I-955 (underlined sec			B DNA SEQUENCE	i
20	AAGCCGACTG	ACATAAGC	21 AG GCACAGTGAG CA GGTCCTAACG	GAGCCTATGT	GTAAGTCCAC	TACTGGTGCA	60 120
25	CCCCGTGCA TTGGAGGCGG GAGGAGTGAG GTTCATCAAG	GTCCCTG CGGGAACT ACTGCAGG AGGACCAT	AA GAGCGGCGTG TG CCCAAGACAC GC AATTGGTGGC AG ATGTGGGCCG CT TGAAAATCCC AA ATCAACTGCA	AGCCTGATGC TTTGAAGGGC TGCCAAAGAG CATGAATGAA	TTGTGCTCCG GGCGAGCGGG ATGGATGAGA CTGACAACAA	GTGGGCGGAC AACAGCTCTT CTGTTGCTGA TCCTGAAGGC	180 240 300 360 420 480
30	TGTAGTTCAG CCTGTTAGAC GATGAGTAAA GTTCAAGAAA	CACTTGAT ATCATTTA GGACCAGG ATTCTTCA	CC ATCTGTGTGA TA TGCAATTTCA TG AAGATGTTGA GA GAGCATTAAA TC GAATTGCCTG	GGAAAAGCGT TCAGCACCAG CCTTTTTGAT AAATGTGACA	GCAAGTATCA AAAGTTTGGG ATGAAACAAT GTCAGCTTCA	GTGATGCTGC ATGTTTTCA TTAAAAATTC GAGAAACTGA	540 600 660 720 780
35	GCTGAGGCGC CCGACAAGAG	AATACACO GAGATCAT	GT ACTACTCCCA GC TTCTGGGTCA TT TAGATATTAC TT CCTCACAGTC	GGAGTTAGAA CGAAATGAAG	GCTACTGGGA AAAGCTTGCA	AAATCTACCT	840 900 960
40	SEQ ID NO:72 P Protein Accession		equence; 2060925 21	31	41	51	
45	ASISDAALLD	IIYMQFHQ VWIRLAWG	 NE LTTILKAWDF HQ KVWDVFQMSK TQ YTKPNQYKPT MK KACN	GPGEDVDLFD	MKQFKNSFKK	ILQRALKNVT	60 120 180
50	Nucleic Acid Acor Coding sequence		1_016192 125 (underlined sequ			DNA SEQUENCE odons)	
55	TGGCTGCTGC TTCCCTACCT	TGCTGCCC	21 CC GCGGCAGTGC GT CATGCTACTC GA CTGCCAAACG TT CCTCTGTGAC	ATCGTAGCCC CCCACCGGCT	GCCCGGTGAA GGAATTGCTC	GCTCGCTGCT TGGTTATGAT	60 120 180 240
60	TTAAGAATTG CCTGTGTGTG TGCAAACAGC TCAGGATCTG	GAGACACT GCTCCAAT AGAGTGAG GAGATGGA	GT GACTTGCGTC GG GGAGAGCTAC AT ACTTGTGGTG GT CCATGAAGGC TT TGGTGCAGAA	TGTCAGTTCA CAGAATGAGT TCAGAAGGAT TCTGGAGAAA	AGTGCAACAA GTTACCTGCG CATGTGCCAC CTAGTCAAAA	TGACTATGTG ACAGGCTGCA AGATGCAGGA GGAGACATCC	300 360 420 480 540
65	TCTTATGATA GTCATGTCTT CATTATGCAA	ATGCATGC TGGGTCGA GAACAGAT	TC TCAAACCAAC CA AATCAAAGAA TG TCAAGATAAC TA TGCAGAGAAT	GCATCGTGTC ACAACTACAA GCTAACAAAT	AGAAACAGGA CTACTAAGTC TAGAAGAAAG	GAAAATTGAA TGAAGATGGG TGCCAGAGAA	600 660 720 780
70	TCTATCAATA GAAAAAAGG TTAATCGCAG ATCACAAGGA	TGCAGGAGA ACTACAGTA CTGTGATTA AATGCCCC	GA ACATTACAAT CC ATCTTGCAGG GT TCTATACGTT GG AACAATTCAG AG AAGCAACAGA AC AAGAGCGTCC	TGTGATGCTG GTTCCCGGTC ATTGCTGTCA ATTCACAGAC	GTTATACTGG CTGTACGATT TCTGTGTGGT AGAAGCAAAA	ACAACACTGT TCAGTATGTC GGTCCTCTGC	900 960 1020 1080

	SEQ ID NO:74 PDM9 F Protein Accession #:	Protein sequence: NP_057276		•		•	
5	1	11	21 1	31 I	41	51 !	
10	61 DRENDLFL 121 CKQQSEIL 181 VCNIDCSQ	QC SSWTLCEGFC CD TNTCKFDGEC VV SEGSCATDAG TN FNPLCASDGK EN ANKLEESARE	LRIGDTVTCV SGSGDGVHEG SYDNACQIKE	CQFKCNNDYV SGETSQKETS ASCQKQEKIE	PVCGSNGESY TCDICQFGAE VMSLGRCQDN	QNECYLRQAA CDEDAEDVWC TTTTTKSEDG	120 180 240
10		YV VPGPVRFQYV		IAVICVVVLC		IHRQKQNTGH	
15	Nucleic Acid Accession Coding sequence:	89-1237 (underli	ned sequences cor	respond to start a	nd stop codons)		
	1 11	21 I	31 J	41	51 I		
20	GGCGCCGGGA TTG		GCAGG CTGCTG				
	TTCCTTCAGC GGG						
	GTCCGGCCTG GCC GGTACGCGTG GAC						
	CTCGCTAGTG CTG						
25	GGTCGGATGT GCT						
	CAGAGATTCT GCA						
	AGTTCAGGAA AGC TGTTCTCTCA AAA						
	TGACTTTGCT GGT						
30	CACACGCACT GAC	AAGGGTC AGGTC	ATTGA TGCAA!	TATG GTGGA	AGGAA CAGCA!	PATTT 660	
	AAGTTCTTTT CTG						
	CATGITGGAT GGT GGCTGTTGGA GCA						
	GTCTGATGAA CTT						
35	TGCAGATGTA TTT	GCAAAGA AGACG	AAGGC AGAGT	GTGT CAAAT	CTTTG ACGGC	ACAGA 960	
	TGCCTGTGTG ACT						
	ACGGGGCTCG TTT GTTAAACACC CCA						
	GGAGATACTT GAA						
40	AATCATTGAA AGT	AATAAGG TAAAA	GCTAG TCTCTI	ACTT CCAGG	CCAC GGCTC	AAGTG 1260	
	AATTIGAATA CIG						
	GAGGAACAGT ATT CTACAGTGAT GAT						
	TGGGTACTTA TAC						
45	TGATATTAAG ATT	CTTGACT TATAT	TTTGA ATGGG7	TTCTA GTGAAI	AAAGG AATGA	FATAT 1560	
	TCTTGAAGAC ATC						
	GGCCTTTTGT CTT						
~~	TATCACACTT TGT						
50	CTGAAAAAA CAT						
	GGGACAGTCA GTT CTCTGGGCTG TCA						
	TTCTGGATCT TAT						
~ ~	AAAAAAAAA AAA						
55	SEQ ID NO:76 PDO1 F	Protein sequence: NP_055139					
60	1,	11 2	1 3:	և 4:	ւ 5։	1	
00	1 MALOGISU	VE LSGLAPGRXC	 AMVLADEGAR	VVRVDRPGSR	YDVSRLGRGK	RSINLDLKOP	60
	61 REPRAAAS	VQ AVGCAAGALP	PRCHGETPAG	PRDSAAGKSK	AYLCQAEWIW	PVQESFCRLA	120
	121 GHDINYLA	LS GVLSKIGRSG	ENPYAPLNLV	ADFAGGGLMC	ALGIIMALFD	RTRTDKGQVI	180
65	181 DANMVEGT	AY LSSFLWKTQK GL KSDELPNOMS	SSLWEAPRGQ	NMLDGGAPFY	TTYRTADGEF	MAVGALEPQF	240 300
05	301 EEVVHHDH	NK ERGSFITSEE	ODVSPRLAPL	LLNTPAIPSS	KGDPFIGEHT	EEILEEFGFS	360
		SD KIIESNKVKA					
				CEO ID NO.	E DOOS DUA CE	OUTHOR	
70	Nucleic Acid Accession	#: AB028951		SEG ID NO:	77 PDO3 DNA SE	KOENCE	
	Coding sequence:		ned sequences co	respond to start a	nd stop codons)		
	1 11	21	31	41	51		
75 -	 GTTAAATCCT TAC	TTTACCA GATTC	 TTGAT GGTATY	CATT ACCTO	I CATGC AAATTY	GGGTG 60	
-	CTTCACAGAG ACT	TGAAACC AGCAA	ATATC CTAGT	ATGG GAGAA	EGTCC TGAGA	GGGGG 120	
	AGAGTCAAAA TAG						
	GCAGATTTGG ATC						
80	GCAAGGCATT ATA TTGACTTCGG AAC						

	CATCATGATC	AACTGGATCG	GATATTTAGT	GTCATGGGGT	TTCCTGCAGA	TAAAGACTGG	420
			AGAATATCCC				480
	TATGCCAACA	GTAGCCTCAT	AAAGTACATG	GAGAAACACA	AGGTCAAGCC	TGACAGCAAA	540
_	GTGTTCCTCT	TGCTTCAGAA	ACTCCTGACC	ATGGATCCAA	CCAAGAGAAT	TACCTCGGAG	600
5			TTTTCAGGAG				660
			CAAACGAGAA				720
			GCAGCAGAAC				780
			GGCGCCCCA				840
10			CGGGGTCGGG				900
10			GCCTCCAAAC				960
			GCCCTCGGAT				1020
			CTCTCAGTCC				1080
			CCCATCTCAC				1140
15			AGAGCACAGG				1200
13			TGCCATTTAA TGATAGCTCT				1260
			CCTGCATGTG				1320 1380
			GTAACCTTCA				1440
			ACTATGGTTT				1500
20			CCAGTGGTGT				1560
20			TTTTAAAGCA				1620
			AACTGTTACT				1680
			GTCTAATAAA				1740
			TTTGCAGTTA				1800
25			ATTCATATGG				1860
			ATTACAATTT				1920
			ACAGTCTCGA				1980
			TAAGGAGTAA				2040
			GTATTGTACA				2100
30	TTCTTCACAT	CTGGGTCTGC	GTGAGTAACT	TTCTTGCATA	ATCAAGGTTA	CTCAAGTAGA	2160
	AGCCTGAAAA	TTAATCTGCT	AATAAAATTT	AGAGCAGTGT	TCTCCATTCG	TATTTGTATT	2220
	AGATATAGAG	TGACTATTTT	TAAAGCATGT	ATTTAAAAAT	GGTTTTATIC	ATGTTTAAAG	2280
	TATGTATTAT	GTATGCATAA	TTTTGCTGTT	GTTACTGAAA	CTTAATTCTA	TCAAGAATCT	2340
25	TTTTCATTGC	ACTGAATGAT	TTCTTTTGCC	CCTAGGAGAA	AACTTAATAA	TTGTGCCTAA	2400
35			AAGACTATAC				2460
			TTCTTTCTTA				2520
			CTTAGAGCTC				2580
			CAGCACCAGC				2640
40			TGCAAATTAC				2700
40			CTGTGGGTCC				2760
			TTGATGTGAT				2820
			TAATGAAGTC				2880
			TTGGAAGGAG				2940
45			ATTAGCAGCC CTCACTGTCC				3000 3060
43			CCCTGCTGGG				3120
			TCTGTGACAG				3180
			GTCTTATAAT				3240
			CAAATCTGTT				3300
50			GCCAGTGATT				3360
			TTAACAACAA				3420
			TTGCAAGGAA				3480
			ACAAACCCAG				3540
			TTGTTAAATA				3600
55	CCTGTTTTCC	TIGTATATAA	TGACTTTTGC	TGGCAGAACT	GAAATATAAA	CTGTAAGGGG	3660
	ATTTCGTCAG	TTGCTCCCAG	TATACAATAT	CCTCCAGGAC	ATAGCCAGAA	ATCTCCATTC	3720
	CACACATGAC	TGAGTTCCTA	TCCCTGCACT	GGTACTGGCT	CTTTTCTCCT	CTTTCCTTGC	3780
	CTCAGGGTTC	GTGCTACCCA	CTGATTCCCT	TTACCCTTAG	TTTTAATAAT	GGATCATTTT	3840
~	CTTTCCTTTA	AAGGGGAACA	AAGCCTTTTT	TTTTTTTGAG	ACGGAGTGTT	GCTCTGTCAC	3900
60	CCAAGCTGGA	GTGCAGTGGC	ACGATCTTGG	CTCACTCCAA	CCTCCACCTT	CCAGGTTCAA	3960
	GTGATTCTCC	TGCCTCAGCC	TCCCGAGTAG	CTGGGACTAC	GGGCACGCAC	CACCACGTCT	4020
						GCTGGTCTTG	4080
						ATTATAGGTG	
6 5						CCCTCAAACC	
65						TIGTGGTCCC	
						AAGGGTACAG	
						ACAGGAAGGA	
						AGTTAGCTTT	
70						AGCTCAAGGT	
70						TGATGAAGTA	
						CIGIGGITTT	
						ACGAACATAA	
						ATTCCTGGTG	
75						GCTAAAGGTA	
13						TTTGAGTAAA	
						AATCCAAAAC	
						TAGACCAACA TTTAGGTCCC	
						TTTTTAAAAA	
80						GGGTGATATG	
				nivini			2200

5	TTAATACTA: ATCTGGACTA AGTATATCC ACCTGTTCT GAGATGACTA AGCGAGGCC TTTTGAGTTA	TTAATTTT G AAGGTGTCC TTCTAAACN G GTCTCTTTC G TAGCTTTTC T GCTCCATGG	TAAAGATTY TTTTAACAA CCTAGTTYG TCAGTCATT GTGCTCCACT AGTGCAGGAC CTTCTTGAA	G TCTGTGTAGA C AATTTAAAG T ATATTCCTA T TCTGCACGCC G CGAGGTTTG G AGCTACTGC A TGACTGTTA	A CACTAAAAG T ACTTTTAT. T AATTCCTAT A TCCCCCTTT. T GCTCAGAGC T TTGGAGCGA A AACTAAAAT	I ATTTAGTARA I ATTACACARA A TATGTTATGT I TGTGARAGTGT A TATGGTTATG C GCTGCACCCC G GGTTTCCTGC A AATTACATTG	5280 5340 5400 5460 5520 5580
	SEQ ID NO:78 Protein Accession	DO3 Protein sequ n #: BAA8					
15	ADLDPVVV	TF WYRAPELL	LG ARHYTKAI	DI WAIGCIFA	EL LTSEPIFH	51 FA RLPNSPLKP CR QEDIKTSNP	F 120
20	VFLLLQKLI GDKNQQQQ	LT MDPTKRIT: ON QHQQPTAP! PN KKPRLGPS(SE QALQDPYF PQ QAAAPPQA	QE DPLPTLDVI PP PQQNSTQTI	FA GCQIPYFK NG TAGGAGAG	YM EKHKVKPDS RE FLNEDDPEE VG GTGAGLQHS QS QSTLGYSSS	K 240 Q 300
25	Nucleic Acid Acc Coding sequence	ession #: XM_0 e: 1-2190		SE ences correspond		DNA SEQUENCE	
	1	11	21	31	41	51	
30	GAGGTACCAC AACTATCCAC	TCCAGAAAAA CTCGACCACC TGAGCATTGC AAGCTGTGCT	TAGCCCTCCA CTTCATTGTG	AAGAAGCCAT GTGAATGAAT	CTCCGACAAT TCTGCGAGCG	CTGTGGCTCC	60 120 180 240
35	GCAGCCATTG TATGTGCTTG GTACACACAG	CTATATACCA CTGACTCGTG GCCATGTGAT TCCTATCATT TGGCAGCTTT	GTTGGGAAAA CAAGTCCTTG GATCGGCCTG	TTCAAGACAA GGTGCCTTAC AGTCTAATAG	TCATCTATCT CAATACTGGG CTTTGGGGAC	CTCCTTGGTG AGGACAAGTG AGGAGGCATC	300 360 420 480 540
40	ATCACACCCA TTTGGAGTTC ATATACAATA	TCTCAGTCTT TGCTGAGAGG CAGGACTGCT AACCACCCCC CCAATCGTTT	AGATGTGCAA CATGGTAATT TGAAGGAAAC	TGTTTTGGAG GCACTTGTTG ATAGTGGCTC	AAGACTGCTA TGTTTGCAAT AAGTTTTCAA	TGCATTGGCT GGGAAGCAAA	600 660 720 780 840
45	CTAGACTGGG AGGGTACTAT TCACGATGGA CCGGACCAGA	CAGCTGAGAA TCCTTTATAT CTTTGCAAGC TGCAGGTTCT ATCGTCTGGT	ATATCCAAAG CCCATTGCCC CATCAGGATG AAATCCCTTT	CAGCTCATTA ATGTTCTGGG AATAGGAATT CTGGTTCTTA	TGGATGTAAA CTCTTTTGGA TGGGGTTTTT TCTTCATCCC	GGCACTGACC TCAGCAGGGT TGTGCTTCAG GTTGTTTGAC	900 960 1020 1080 1140
50	ATAAATGAAA CTGGCAGATG GAGTCCATCA AGCCAGGATT	ATGAGGTGAA AATCCTTTCA TTCACTTCCA	CCAGTCAGGT GGTGACAGTG GAAAACACCA CCTGAAATAT	CCCCAGGAGG GTGGGAAATG CACTATTCCA CACAATTTGT	TTTTCCTACA AAAACAATTC AACTGCACCT CTCTCTACAC	AGTCTTGAAT TCTGTTGATA GAAAACAAAA TGAGCATTCT	1200 1260 1320 1380 1440
55	ATGATGGTAA AACACTTTGC GAAGACTATG TGTAGAACAG	AGAACTGGTA AGGATACAGA ATAAAGATGT GTGTGTCTGC AAGATAAGAA	AAGCAAAACA CAACATCTCC TTATAGAACT CTTTTCTCTG	ACCAATGGGA CTGAGTACAG GTGCAAAGAG AATTTGGGTC	TGACAACCGT ATACCTCTCT GAGAATACCC TTCTAGACTT	GAGGTTTGTT CAATGTTGGT TGCAGTGCAC TGGTGCAGCA	1500 1560 1620 1680 1740
60	ATTCCAGCCA GGGGAGGTCA ATGAAATCTG CTTGTTGTGG	CACAGTTCAG	CATTGCGTGG CACAGGTCTT AGCTTGGCTA TGGCCTGGTA	CAGCTACCAC GAGTTTTCTT TTGACAATTG CAGTGGGCCG	AATATGCCCT ATTCTCAGGC CAGTTGGGAA AATTCATTTT	GGTTACAGCT TCCCTCTAGC TATCATCGTG GTTTTCCTGC	
65	ACAGAGGATA AAACTAGAGA	TGCGGGGTCC CCAAGAAGAC	AGCAGATAAG AAAACTCTGA			TCCTGTAAAG GAACATGATC	
70	Protein Accession		12922	••	41	51	
75	YGMKAVLILY	11 ETLFSPVSIE FLYFLHWNED GALPILGGQV	TSTSIYHAFS	SLCYFTPILG	AAIADSWLGK	FKTIIYLSLV	60 120 180
13	TRYFSVFYLS IYNKPPPEGN RVLFLYIPLP	INAGSLISTF IVAQVFKCIW MFWALLDQQG	ITPMLRGDVQ FAISNRFKNR SRWTLQAIRM	CFGEDCYALA SGDIPKRQHW NRNLGFFVLQ	FGVPGLLMVI LDWAAEKYPK PDQMQVLNPF	ALVVFAMGSK QLIMDVKALT LVLIFIPLFD	240 300 360
80 ·		GINFSSLRKM VGNENNSLLI					420 480

5	EDYGVSAYRT IPANKMSIAW	VQRGEYPAVH QLPQYALVTA	CRTEDKNFSL GEVMFSVTGL	TNGMTTVRFV NLGLLDFGAA EFSYSQAPSS IMGYYYVPVK	YLFVITNNTN MKSVLQAAWL	QGLQAWKIED LTIAVGNIIV	540 600 660 720
		ession#: NM_0				DNA SEQUENCE	
10	Coding sequence	1-1221	(unaeninea sequi	ences correspond	to start and stop c	poons)	
	1	11	21	31	41	51	
	ATGGACGGAT	CCCACAGCGC	AGCCCTGAAG	CTGCAGCAGC	TGCCTCCCAC	AAGTAGCTCC	60
15				AAGGAAAACC			120
13				CTTAACCTCC TTCAAGACCA			180 240
	TTCCTGATGC	TTCTGGGCGA	GCTGGGTGTG	TTCGCCTCCT	ACGCCTTCGC	GCCGCTGTCA	300
				ATAGCTAGTG			360
20				CTGAGGCGCT CTGGTGACAT			420 480
	AAGATGACAG	GCGAGAATGT	CACCAGGCAC	CTCGTGAGCT	GGCCTTTCCT	TTTGTACATG	540
				CTCTACTTCT			600
				TTACTTGGCT ATTCAAGGGA			660 720
25	ATCTTCTACG	TGATGTTCGT	GTGCATGGTG	GCAACCGCCG	TCTATCAGGC	TGCGTTTTTG	780
	AGTCAAGCCT	CACAGATGTA	CGACTCCTCT	TTGATTGCCA	GTGTGGGCTA	CATTCTGTCC	840
				TTTTACCTGG CTCATTGCAT			900 960
20	ACGCGTAACA	GGAAGAAGCC	CATTCCATTT	GAGCCCTATA	TTTCCATGGA	TGCCATGCCA	1020
30				ACTGTCCAGC			1080
				ATTICTGAGA		TGCCACCCTG	1140 1200
		AGAAGGAATG		2010001010	OGGICCCCIA	·	1200
35	SEQ ID NO:82 Protein Accession	DO6 Protein sequent n#: NP_06					
	1	11	21	31	41	51	
40	MDGSHSAALK	LOOLPPTSSS	SAVSEASFSY	 KENLIGALLA	IFGHLVVSIA	INLOKYCHIR	60
••				FASYAFAPLS			120
				LVTFAPNSHE			180
				LIASVGYILS			240 300
45	LHICHFALGC	LIAFLGVFLI	TRNRKKPIPF	EPYISMDAMP SASGVPYRVL	GMQNMHDKGM		360
				SE	2 ID NO:83 PDO8	DNA SEQUENCE	
50	Nucleic Acid Acce Coding sequence	ession#: NM_0		ences correspond	to etart and eion r	enchore)	
	oomil andrewe		o (estacimina acqu	CIDO CONCEPTIO	to start and stap t	, delication	
	1	11	21	31	41	51	
	CACTCATTAA	GAACAGAGGA	GCTGCCTGT	TACTCCTGGT	FTTGCATCCC	TCCAGACACT	60
55				CCATGGCTAG			120
				GCAGGGACAC			180
				GGTCCTGCAG GCCGGGTGAC			240 300
60	GCCATCTTCA	GCTACCACTG	CAAGGCCCTG	AGGGCAACAG	CAGCACGGCA	CTGCCCACCC	360
60				TCCTCCCGGC			420
				GGTATCCAGC TGCCTGTTAC			480 540
				CCGTCTTGGA			600
65				CCAGGCCACC			660
05				ACACACCCAG AGCCACCCCC			720 780
				GTGAGACCTG			840
				AGCAGGCCAG			900
				CATGGTAGGG GTCGAGCTAG			960 1020
, ,				CCCAACCTCC			1080
	GATGTCATGA	GGGAAGCAGG	CCTTGTGAGT	GGACACTGAC	CATGAGTCCC	TGGGGGGAGT	1140
						TGGGTGGGTA	1200
				AAGCTTTTAA		AAGCAGGGCA AAAAAA	1260
		008 Protein seque 1#: NP_11					
80	1	11	21	31	41	51	
					33	2	

	1	1		l	1	ł	
	MTVLEAVLEI						60
	CRLGEEPPPL	PYCDQAYGEE	LSIKHREIWA I	WLSRTDTAWP	GAPGVKQARI	LGELLLV	
5				SEC	ID NO:85 PDT1	DNA SEQUENCE	
_	Nucleic Acid Acce	ssion#: NM_00	0693	-			
	Coding sequence:	53-1591	(underlined seque	ences correspond	to start and stop c	odons)	
	, .	11	21	31	41	51	
10	i	i	Î .	1	1	1	•
	AGCCGGTGCG	CCGCAGACTA	GGCGCCTCG	GCCAGGGAG	CGCGGAGGAG	CCATGGCCAC	60
		GCCGTGGAAA					120
		CTGGAGGTCA					180 240
15						TATGTGAAGT	300
10						TGCACCAGCT	360
						TGGATACAGG	420
						CCCTCAGATA	480
20		TGGGCAGACA AGGCATGAGC					540 600
20		CTGGTGTGGA					660
	GAAGCCTGCG	GAGCAGACAC	CTCTCACCGC	CCTTTATCTC	GGCTCTCTGA	TCAAAGAGGC	720
						TGGGAGCAGC	780
25						AGGTTGGAAA AGCTGGGGGG	840 900
20						AGTGTGCCCA	960
						TGTTCGTGGA	1020
		TACTCTGAGT					1080
30		TTCGATGTCA					1140 1200
J 0		GAGCTGATCG				AAGTCACAGA	1260
						TGAAGTTCAA	1320
		GAAGTGATAA					1380
35		AATCTCGACA					1440
22		TGCTACAACG AGAGAACTAG					1500 1560
		CTTGGCGACA					1620
	CGGACGGCGG	AATGTGGCAG	ATGAAATGTG	CTGGAGGAAA	AAAATGACAT	TTCTGACCTT	1680
40		ATTCTTCTGG					1740
40		GGGAGGGAGC				TGAAATCGCA	1800 1860
						TCCAGCAGTT	1920
						CCTGTGTGTT	1980
45		GGCTCTTGCA					2040
43						CAGTAAGGTT	2100 2160
						TTGACATTGA	2220
						AATAGCCCAG	2280
50						TTAAGCAGAA	2340
50		AGGTTACCTT GGATAATTCA				CAACAGCATA	2400 2460
		TTTCTATCAC					2520
		CTGTTACCCA					2580
55						ATTAGTTAGT	2640
55		TGGATTCTAT GTGAATTTTT					2700 2760
		TTGGGAAACT					2820
		GGATACTTTT					2880
60		CAAATTAAGT					2940
60						AGAGATATAA	3000
						CCAATAACTT AGTAGATATA	3060 3120
						ACGATAATGT	
~=	CTTTAATATG	AAATGCTACA	TTATTTATAA	TTGGTAGAGT	TATTGTATCT	TTTTATAGTT	3240
65						GAAATGGAAA	
						GTTTAAAAAT GAGAATGATA	
		GGATATTTGA		CAGAICGCAI	CCCHGHIIGO	onomitanin	5420
70	SEQ ID	NO:86 PD	T1 PROT	TEIN SEC	UENCE		
, ,	Protein Accession			22,020	021,02		
	. Topon recogniti	500	·				
	1				41	51	
75				[60
15	MATANGAVEN CEVEEGDKPD						60 120
	DTGKPFLHAF						180
	NFPLLMLVWK	LAPALCCGNT	MVLKPAEQTP 1	LTALYLGSLI	Keagpppgvv	NIVPGFGPTV	240
	GAAISSHPQI	nkiaftgste '	VGKLVKEAAS I	RSNLKRVTLE	LGGKNPCIVC	ADADLDLAVE	300

5	QFDKILELIE KFKSIEEVIK	SGKKEGAKLE RANSTDYGLT	FVEEQVYSEF CGGSAMEDKG AAVFTKNLDK KTVTIKLGDK	LFIKPTVFSE ALKLASALES	VTDNMRIAKE	EIFGPVQPIL	360 420 480
•	Shretata Aatal Aura		20442	SE	Q ID NO:87 PDV3	DNA SEQUENCE	
	Coding sequence	ession #: NM_0 : 184-12	32642 63 (underlined sec	quences correspor	d to start and stop	codons)	
10	1	11	21	31	41	51	
	(1)				1		
			GCCTGTCTTT CAGGACCAGA				60 120
15			GAAACTGTCA				180
13			GCTGTTCACG GTGGTCATTA				240 300
	TTTATCATCG	GTGCCCAGCC	CGTGTGCAGT	CAGCTTCCCG	GGCTCTCCCC	TGGCCAGAGG	360
			GGAGCACATG GTTCCGGCAG				420 480
20			CATGCAGATA				540
			CAACGCCATC				600
			GGCGCGGCCC				660 720
~~			CAAAGGATCA				780
25			CAGGGCTGTG				840
			CAGCCTCAAG GGAGAAGTAC				900 960
			CAACAGCCGC				1020
30			CTACTGCCTG				1080
30			GACCTCGGAG CAAGAGCGTG				1140 1200
			TAAGAAGTGC				1260
			CCCCCCCC				1320
35			TTTATATTTG AAGAGCTTAT				1380 1440
55			CTTGGTGGGT				1500
			GACTTGGAAA				1560
			GGAGGAGATG				1620 1680
40			TCTTCAGGGT				1740
			CTTTCATCCA				1800
			ATGAGAAGTC				1860 1920
			AAGAGGAAAG				1980
45			CCTGGGCTGC				2040
			CACCCCCGGG				2100 2160
			CCCAGGTGTA				2220
50	TGGAAAAAA	AAAAAGAAAA	AAAAAAAA	AA			
50	SEQ ID NO:88 P	DV3 Protein seque			÷		
	1	11	21	31	41	51	
55	î	Î ·	Ĩ.	Ĩ	Ĩ	ĭ	
			TDANSWWSLA				60
			KECQHQFRQR CGCSRTARPK				120 180
<i>c</i> o			NNEAGRRAVY				240
60			GRLELVNSRF				300
	GRLCNKISEG	MIGCELACCG	RGYNQFKSVQ	VERCHCKFHW	CCFVRCRCT	PIADOIICK-	
				SE	Q ID NO:89 PDT9	DNA SEQUENCE	
65	Coding sequence	ession #: NM_0 : 58-636	33280 (underlined seque	ences correspond (to start and stop o	odons)	
	1	11	21	31	41	51	
	1	1	1	1	1	1	
70			AGAGCCGGCG GGCTCATCTC				60 120
,,			CCAGCTCTAT				180
	TCTTCTGCAC	TCATGATATG	GAAAGGCTTG	ATCGTGCTCA	CAGGCAGTGA	GAGCCCCATC	240
			TATGGAGCCG				300
75			AATCAGAGCT CAGAGTAATC				360 420
	AAATTTCTGA	CTAAAGGAGA	TAATAATGAA	GTTGATGATA	GAGGCTTGTA	CAAAGAAGGC	480
			GGACGTGGTG				540
			GAATGACTAT AAAACGTGAA				600 660
80			AAAAAGAGAA				720
						_	

	TGTATAAAAG AAAAAAAAAA		GGAGATGTTT	TTGTCTTGTC	CAAATAAAAG	ATTCACCAGT	780			
5	SEQ ID NO:90 PDT9 Protein sequence Protein Accession #: NP_150596									
	1	11	21	31	41	51				
10	MVRAGAVGAH IVVVLSGSME	LPASGLDIFG PAFHRGDLLF EVDDRGLYKE	 DLKKMNKRQL LTNFREDPIR	YYQVLNFAMI AGEIVVFKVE VGRARGFLPY	 VSSALMIWKG GRDIPIVHRV	 LIVLTGSESP IKVHEKDNGD	60 120 180			
15	Abushsia Aaid Aaa	neelee #r NTM O	16500	SE	Q ID NO:91 PDV5	DNA SEQUENCE				
13	Nucleic Acid Accession #: NM_016590 Coding sequence: 691-975 (underlined sequences correspond to start and stop codons)									
	1	11	21	31	41	51				
20	İ	.!		1	<u> </u>					
20				TCAGCTATTT			60			
				CATTAAGGCA ACGCTGGGCT			120 180			
				AACAAGTCTA			240			
				ATTCTACACA			300			
25				ACAGCTTCCT			360			
				GAGCAAGGTC			420			
				GTCCCAGAAA			480			
				CTATATGAGA			540			
30				CAGAGATAAC			600 660			
50				CACAGACTCC ATGTTCAAAT			720			
				AGTCATTTCA			780			
				CTCCGAAGAA			840			
0 5				TGGAAGCTTT			900			
35				TCCCCTGGCT			960			
				CTCATCTGTT			1020			
				GACCAGCACT			1080 1140			
				GGGGCAACCT			1200			
40				CATAATATGC			1260			
				AAACTAAAAA			1320			
				CACGTCAGTC			1380			
				TCTGGCTAGA			1440			
45				CAGGCCCTAT			1500 1560			
				AAAAATTGCT			1620			
				ATTAGAGCAA			1680			
				GGTCCATAAG			1740			
50				AGTAAACTAT			1800			
30				CAGGGTATTA AGCCTCTACC			1860			
				AGCTTCAATG			1920 1980			
				GCTTTTTAAA			2040			
				TAATTCAAAT			2100			
55	AAAAAAA									
		OV5 Protein seque								
	Protein Accession	n#: NP_05	7674							
60	1	11	21	31	41	51				
•	ī	i	ĩ	Ĭ	ĩ	ĭ -				
	MQCQLFRTE	T ŠKAVSELNY	D YICIKAGTG	R PQGTPTIGL	V LLVRWAIIY	E TELQSQPIT				
					a m 110 aa a					
65	Nucleic Acid Acc	ession#: NM_0	02606	SE	Q ID NO:93 PEE6	DNA SEQUENCE				
	Coding sequence			uences correspond	to start and stop	codons)				
	1	11	21	31	41	51				
70	Ī	Ī	1	1	Ī	Ī				
70				AAAAGTCCGA			60			
				AAGGCCATCT			120			
				AACTCCAGCG			180			
				ATCTCCCTGC TCAGAACGCA			240 300			
75				GAGGACAAGA			360			
				GTTGTGGGCC			420			
				AGGCCCAGAG			480			
	GAAGGCCAGC	GCATCCCTCC	AGAGAGAGAA	GAATTAATCC	AGAGCGTGCT	GGCGCAGGTT	540			
90				AATGAACTGA			600			
80	TTGGCTGTCC	TAGAGAAACG	CGTGGAATTG	GAAGGACTAA		-	660			
					22	-				

5 10 15 20	TGCCCTGTA CCCACTTACC TTTGACGTCT GACCTCGGGC TGTGTCCACG GCCCAGATGA AACACGTACC CTGGAGAACC TTCTCCAACA TTGGCCACTG TAGTGCACTG TAGTGATATCT TTAGAGGAAT TTCATGGACC CTGATGACC AATTTGACC TTCATGGACC CTGATCCCAA CAGCACTTT AAAGAGTTAC AGAAGAGGAG CTGCAGTTCT	ACATTAAGAA AGTACAGTTT CCAAGTACCT GGCTTTGGGA TGGTCAGGGA ACAACTACAG ACATACAGCA AGATCAATGC ACCACCTGGC TCCCACCTGG ACAGGAACAAGA ACAGGAACGA ACAGGAACGA ATTTATGCA AGGACAAGGT AGTTTGAAAC GGGAATCCCG ATGTGAAAAA GGACGGCTG	TTTGGATAAC GCTCTCTCCA GCCCAATGAG CTTCAGCATC AAACAACCCC GGTCTGGCTC CGCACAGAG CGTGGCCTTC TGGGTTCAAG AGAGCACATG CGGCCATC CGGACAGAG AGAGCACATG CAGCCAAGG AGACCATG AGACCAAGG AGACCATG CACCAAGGC AGTGACCAAG AGATCGCTAC AGACCACGCT TGACCAAGG AGATCGCTAC AGATCGCTAC AGATCGCTAC AGATCGCTAC AGATCGCTAC AGATCGCTGC CACTGAAGGA CACTGAAGGA CACGACTGC	CACAAGAAGT GAGACCATCG ATGCTGAGCT TACCACAACT TECACACTCTCC TGCCACGATC CAGATCCTCC CAGATCCTCG CAGATCCTCG ATTATGGATT ACCCTGCTGA GAGATCACG GAGAAGTCAG CTCTTCCCCA GAGAGCTCAG ACACCTCTCCCCA GAGGACCTGA GACTCTCCCCC GAGGACCTCA GACGACCTCAG CACTCTCCCCC GACGACCCCC GACGACCCCC GCCGGATCCT GCCCCGCCCC	TGACTCCTCG AGGCCTTGGG GCCTGGAGGA CCCTCAGGAG TCCGGCACTG AGGAGAAGTT TGGACCATCA CCGAGCCTGA AGGGAATGAT CTTTCAAAGA AGATGATTTT AGCCTTGGGT AAGGCCTTCA TTGGTTCAT TGGTTCAT TGGTTGAGGA ACCGGATAGA ACCGGATAGA ACCGGATAGA TCTGCAGGGA TGTGCAGGGA	ACGCGATGTT GAAGCCGACC CATGTACCAC GTGGCTGTTC CTTCTGCGTG CTCACAAACG CGGCTACAAC CATCTCACCG GTGCAACATC CACATTAATC GAAAATGGAG GATAAAATGC GGACTGTTTA TGTGGCACCG CAAGTTTGTC GATCATCCTG TGACGCCATG GGCCGCGAGAG GGGGGCCTGCC AAGAGCTGCCC	720 780 840 900 960 1020 1140 1200 1380 1440 1500 1620 1680 1740 1860 1920	
	AAAAAAAAAA	GCACCACAAG A	ACCATGTTT	CTAAGAACCA	TTTTGTTCAC	TGATACAAAA	1980	
25	SEQ ID NO:94 P	EE6 Protein seque						
	1	11	21 ·	31	41	51		
30	VSIDPTMPAN GAFESGQVEP LAVLEKRVEL	KAIYLDIDGR SERTPYKVRP RPREPQGCYQ EGLKVVEIEK ETIEALRKPT	VAIKQLSAGV EGQRIPPERE CKSDIKKMRE	EDKRTTSRGQ ELIQSVLAQV ELAARSSRTN	SAERPLRDRR AEQFSRAFKI CPCKYSFLDN	VVGLEQPRRE NELKAEVANH HKKLTPRRDV	60 120 180 240 300	
35	CVHDNYRNNP NTYQINARTE LATDMARHAE LEEYFMQSDR	FHNFRHCFCV LAVRYNDISP IMDSFKEKME EKSEGLPVAP	AQMMYSMVWL LENHHCAVAF NFDYSNEEHM FMDRDKVTKA	CSLQEKFSQT QILAEPECNI TLLKMILIKC TAQIGFIKFV	DILILMTAAI FSNIPPDGFK CDISNEVRPM LIPMFETVTK	CHDLDHPGYN QIRQGMITLI EVAEPWVDCL LFPMVEEIML	360 420 480 540	
40	QPLWESRDRY	EELKRIDDAM	KELQKKTDSL					
	SEQ ID NO:95 PEG4 DNA SEQUENCE Nucleic Acid Accession #: none							
45	Coding sequence	: 41-559	(underlined seque	•	•	•	-	
45 50	Coding sequence 1 CAGTCACAGG TGCCCTCCTG TTTCAGCACC	11 CGAGAGCCYT GGGGGCCCCA ACTGAAGACT	21 GGGATGCACC CCTGGGCAGG ACGACCATGA	31 GGCCAGAGGC GAAGATGTAT AATCACAGGG	41 ATGCTGCTGC GGCCCTGGAG CTGCGGGTGT	51 TGCTCACGCT GAGGCAAGTA CTGTAGGTCT	60 120 180 240	
50	Coding sequence 1	11 CGAGAGCCYT GGGGGCCCCA ACTGAAGACTA AAAAGTGTCC AAATACCAGG CAAGCTTTCC AAGCTTGATG	21 GGGATGCACC CCTGGGCAGG ACGACCATGA AGGTGAAACT AAGTCACCT TCCGGGGTAT GCCAGATCTC	31 GGCCAGAGGC GAAGATGTAT AATCACAGGG TGGAGGACTCC GCAGCCAGGC GGTCATGTAC CTCTGCCTAC	41 ATGCTGCTGC GGCCCTGGAG CTGCGGGTGT TGGGACGTGA GAATACATCA ACCAGCAAGG CCCAGCCAAG	51 TGCTCACGCT GAGGCAAGTA CTGTAGGTCT AACTGGAGC CAAAAGTCTT ACCGCTATTT ACGGCCAGGT	120 180 240 300 360 420	
	Coding sequence 1	11 	21 GGGATGCACC CCTGGGCAGG ACGACCATGA AGGTGAACCT TCCGGGGTAT GCCAGATCTC AGTATCAACTA GTGCACCACTGA GTGACCACTGA GTGACCACTGA GTGACCACTGA	31 GGCCAGAGGC GAAGATGTAT AATCACAGGG GGAGCCAGGC GGTCATGTAC CTCTGCCTAC CCTTGGCATC GCCACCAGTT GGGCCATCCG CGGGACGCTG	41 ATGCTGCTGC GGCCCTGGAG CTGCGGGTGT TGGGACGTGA ACCAGCAAGG CCCAGCCAAG AAGAGCATTG AATCTCACAT AGCTGAGGCC	51 TGCTCACGCT GAGGCAAGTA CTGTAGGTCT AACTGGGAGC CAAAAGTCTT ACCGCTATTT AGGGCCAGGT GCTTTGAATG ACTCAGCAAA ATCTGTGTGG	120 180 240 300 360	
50	Coding sequence 1	11	21	31 GGCCAGAGGC GAAGATGTAT AATCACAGGG GGAGCCAGGC GGTCATGTAC CTCTGCCTAC CCTTGGCATC GCCACCAGTT GGGCCATCCG CGGGACGCTG	41 ATGCTGCTGC GGCCCTGGAG CTGCGGGTGT TGGGACGTGA ACCAGCAAGG CCCAGCCAAG AAGAGCATTG AATCTCACAT AGCTGAGGCC	51 TGCTCACGCT GAGGCAAGTA CTGTAGGTCT AACTGGGAGC CAAAAGTCTT ACCGCTATTT AGGGCCAGGT GCTTTGAATG ACTCAGCAAA ATCTGTGTGG	120 180 240 300 360 420 480 540 600	
50 55	Coding sequence 1	11	21	31 GGCCAGAGGC GAAGATGTAT AATCACAGGC GCAGCCAGGC GCCAGCCAGCC GCTCATGTAC CCTTGGCATC GCCACCAGTT GGGCCATCCG CGGGACGCTG A 31 TEDYDHEITG QAFLRGMVMY	41 ATGCTGCTGC GGCCCTGGAG CTGCGGGTGT TGGGACGTGA GAATACATCA ACCAGCAAGG AAGAGCATTG AATCTCACAT AGCTGAAGCC AATCTGAATC 41 LRVSVGLLLV TSKDRYFYFG	51 TGCTCACGCT GAGGCAAGTA CTGTAGGTCT AACTGGGAGC CAAAAGTCTT ACGCTATTT ACGCTATTT ACGCTATTT ACGCAAA ATCTGTAGAG ACTCAGCAAA ATCTGTAGAG ACTCAGCAAA ATCTGTAGAG CACCAATAAA	120 180 240 300 360 420 480 540 600	
50 55 60	Coding sequence 1	11	21	31 GGCCAGAGGC GAAGATGTAT GGAGCCAGGC GCAGCCAGGC GCTCATGTAC CCTTGGCATC GCCACCAGTT GGGCCATCC GGGACGCTG A 31 TEDYDHEITG QAFLRGMVMY LEEPTTEPFV	41 ATGCTGCTGC GGCCCTGGAG CTGCGGGTGT TGGGACGTGA ACAGCAAGG CAAGCAATG AATCTCACAT AGCTGAAGCC AATCTGAATC 41 LRVSVGLLLV TSKDRYFYFG NLTYSANSFV	51 TGCTCACGCT GAGGCAAGTA CTGTAGGTCT AACTGGGAGC CAAAAGTCTT ACGCTATTT ACGCTATTT ACGCTATTT ACGCAAA ATCTGTAGAG ACTCAGCAAA ATCTGTAGAG ACTCAGCAAA ATCTGTAGAG CACCAATAAA	120 180 240 300 360 420 480 540 600 660	
50 55 60 65	Coding sequence 1	11	21 GGGATGCACC CCTGGGCAGG ACGACCATGA AGGTGAAACT AAGTCACCCT TCCGGGGTAT GCCAGATCTC GGACCACTGA GTGGGGTATG GTAACTGAGT TGAAAAAAAA ECG SH predicted 21 GPGGGKYFST EYITKVFVAF KSIGPEWNYP	31 GGCCAGAGGC GAAGATGTAT AATCACAGGG TGGAGACTCC GCAGCCAGGC GGTCATGTAC CCTTGCCTAC CCTAGCCATC GCCACCAGTT GGGCCATCCG CGGGACGCTG A 31 TEDYDHEITG OAFLRGMVMY LEEPTTEPFV SE	41 ATGCTGCTGC GCCCTGGAG CTGCGGGTGT TGGGACGTGA ACCAGCAAG ACCAGCAAG AAGAGCATTG AATCTCACAT AGCTGAATC AATCTGAATC 41 LRVSVGLLLV TSKDRYFYFG NLTYSANSPV Q ID NO:97 PEL9	51 TGCTCACGCT GAGGCAAGTA CTGTAGGTCT ACTGGAGC CAAAAGTCTT ACCGCTATTT ACGGCAATA ACTCTAGCAAA ATCTGTGTGG CACCAATAAA 51 KSVQVKLGDS KLDGQISSAY GR DNA SEQUENCE	120 180 240 300 360 420 480 540 600 660	
50 55 60 65	Coding sequence 1	11	21	31 GGCCAGAGGC GAAGATGTAT AATCACAGG TGGAGACTCC GCAGCCAGGC CCTCTGCCTAC CCTTGCCTAC CCCACCAGTT GGGCCATCCG CGGGACGCTG A 31 TEDYDHEITG QAFLRGMVMY LEEPTTEPFV SE noces correspond to 31 GGATGCCTCC ACCTGCAGCC ACCTGCAGCC	41 ATGCTGCTGC GCCCTGGAG CTGCGGGTGT TGGGACGTGA GAATACATCA ACCAGCAAG AAGAGCATTG AATCTCACAT AGCTGAAGCC AATCTGAATC 41 LRVSVGLLLV TSKDRYFYFG NLTYSANSPV 0 ID NO:97 PEL9 0 start and stop co 41 GCTCTGGGCC CCAACTGGCC CCCAACTGCCC	TGCTCACGCT GAGGCAAGTA ACTGGAGTC CAAAAGTCTT ACGGCTATTT ACGGCAGAA ACTCTGAGAA S1 CCGCTGGCCC AGTGTGACTT	120 180 240 300 360 420 480 540 600 660	

```
TACAAACAGA GGGTGGGAGG ACAGGTCCCT ACAAAGCTGT GGCCTTTGAC CTGATCCCCT
       GCAGTGACCT GCCCAGCCTG GATGCCATTG GGGATGTGTC CAAGGCCTCA CAGATCCTGA
                                                                              420
       ATGCCTACCT GGTCAGGGTG GGTGCCAACG GGACCTGCCT GTGGGATCCC AACTTCCAGG
                                                                              480
       GCCTCTGTAA CGCACCCTG TCGGCAGCCA CGGAGTACAG GTTCAAGTAT GTCCTGGTCA
                                                                              540
 5
       ATATGTCCAC GGGCTTGGTA GAGGACCAGA CCCTGTGGTC GGACCCCATC CGCACCAACC
                                                                              600
       660
       TCATCACTTC CATCCTGGGC TCCCTGCCCT TCTTTCTACT TGTGGGTTTT GCTGGCGCCA
                                                                              720
       TTGCCCTCAG CCTCGTGGAC ATGGGGAGTT CTGATGGGGA AACGACTCAC GACTCCCAAA
                                                                              780
       TCACTCAGGA GGCTGTTCCC AAGTCGCTGG GGGCCTCGGA GTCTTCCTAC ACGTCCGTGA
                                                                              840
10
       ACCGGGGGCC GCCACTGGAC AGGGCTGAGG TGTATTCCAG CAAGCTCCAA GACTGAGCCC
                                                                              900
       AGCACCACCC CTGGGCAGCA GCATCCTCCT CTCTGGCCTT GCCCCAGGCC CTGCAGCGGT
       GGTTGTCACA CCCTGACTTC AGGGAAGGTG AAACAGGGCT TGTCCCTCCA ACTGCAGGAA
                                                                             1020
       AACCCTTAAT AAAATCTTCT GATGAGTTCT AAAAAAAAA
15
       SEQ ID NO:98 PEL9 Protein sequence
       Protein Accession #:
                         NP_008884
                                          31
                                                      41
                                                                 51
20
       MPPLWALLAL GCLRFGSAVN LOPOLASVTF ATMNPTLTTV ALEKPLOMED SKEALTGTHE
                                                                               60
       VYLYVLVDSA ISRNASVQDS TNTPLGSTFL QTEGGRTGPY KAVAFDLIPC SDLPSLDAIG
                                                                              120
       DVSKASQILN AYLVRVGANG TCLWDPNFQG LCNAPLSAAT EYRFKYVLVN MSTGLVEDQT
       LWSDPIRTNQ LTPYSTIDTW PGRRSGGMIV ITSILGSLPF FLLVGFAGAI ALSLVDMGSS
                                                                              240
       DGETTHDSQI TQEAVPKSLG ASESSYTSVN RGPPLDRAEV YSSKLQD
25
                                                   SEQ ID NO:99 PEN1 DNA SEQUENCE
       Nucleic Acid Accession #: NM_012391
                         416-1423 (underlined sequences correspond to start and stop codons)
       Coding sequence:
30
                                          31
       GTCTGACTTC CTCCCAGCAC ATTCCTGCAC TCTGCCGTGT CCACACTGCC CCACAGACCC
       AGTCCTCCAA GCCTGCTGCC AGCTCCCTGC AAGCCCCTCA GGTTGGGCCT TGCCACGGTG
                                                                              120
       CCAGCAGGCA GCCCTGGGCT GGGGTAGGG GACTCCCTAC AGGCACGCAG CCCTGAGACC
                                                                              180
35
       TCAGAGGGCC ACCCCTTGAG GGTGGCCAGG CCCCCAGTGG CCAACCTGAG TGCTGCCTCT
                                                                              240
       GCCACCAGCC CTGCTGGCCC CTGGTTCCGC TGGCCCCCCA GATGCCTGGC TGAGACACGC CAGTGGCCTC AGCTGCCCAC ACCTCTTCCC GGCCCCTGAA GTTGGCACTG CAGCAGACAG CTCCCTGGGC ACCAGGCAGC TAACAGACAC AGCCGCCAGC CCAAACAGCA GCGGCA<u>TC</u>GG
                                                                              300
                                                                              360
                                                                              420
       CAGCGCCAGC CCGGGTCTGA GCAGCGTATC CCCCAGCCAC CTCCTGCTGC CCCCCGACAC
40
       GGTGTCGCGG ACAGGCTTGG AGAAGGCGGC AGCGGGGGCA GTGGGTCTCG AGAGACGGGA
       CTGGAGTCCC AGTCCACCCG CCACGCCCGA GCAGGGCCTG TCCGCCTTCT ACCTCTCCTA
                                                                              600
       CTTTGACATG CTGTACCCTG AGGACAGCAG CTGGGCAGCC AAGGCCCCTG GGGCCAGCAG
                                                                              660
       TCGGGAGGAG CCACCTGAGG AGCCTGAGCA GTGCCCGGTC ATTGACAGCC AAGCCCCAGC
                                                                              720
       GGGCAGCCTG GACTTGGTGC CCGGCGGGCT GACCTTGGAG GAGCACTCGC TGGAGCAGGT
                                                                              780
45
                                                                              840
       GCAGTCCATG GTGGTGGGCG AAGTGCTCAA GGACATCGAG ACGGCCTGCA AGCTGCTCAA
       CATCACCGCA GATCCCATGG ACTGGAGCCC CAGCAATGTG CAGAAGTGGC TCCTGTGGAC
                                                                              900
       AGAGCACCAA TACCGGCTGC CCCCCATGGG CAAGGCCTTC CAGGAGCTGG CGGGCAAGGA
       GCTGTGCGCC ATGTCGGAGG AGCAGTTCCG CCAGCGCTCG CCCCTGGGTG GGGATGTGCT
                                                                             1020
       GCACGCCCAC CTGGACATCT GGAAGTCAGC GGCCTGGATG AAAGAGCGGA CTTCACCTGG
                                                                             1080
50
       GGCGATTCAC TACTGTGCCT CGACCAGTGA GGAGAGCTGG ACCGACAGCG AGGTGGACTC
                                                                             1140
       ATCATGCTCC GGGCAGCCCA TCCACCTGTG GCAGTTCCTC AAGGAGTTGC TACTCAAGCC
                                                                             1200
       CCACAGCTAT GGCCGCTTCA TTAGGTGGCT CAACAAGGAG AAGGGCATCT TCAAAATTGA
                                                                             1260
       GGACTCAGCC CAGGTGGCCC GGCTGTGGGG CATCCGCAAG AACCGTCCCG CCATGAACTA
                                                                             1320
       CGACAAGCTG AGCCGCTCCA TCCGCCAGTA TTACAAGAAG GGCATCATCC GGAAGCCAGA
                                                                             1380
55
       1440
                                                                             1500
       GGGGAAAACG GGCAGTCTGC TCTGCTGCTC TGACCTTCCA GAGCCCAAGG TCAGGGAGGG
                                                                             1560
       GCAACCAACT GCCCCAGGGG GATATGGGTC CTCTGGGGCCC TTCGGGACCA TGGGGCAGGG
                                                                             1620
       GTGCTTCCTC CTCAGGCCCA GCTGCTCCCC TGGAGGACAG AGGGAGACAG GGCTGCTCCC
                                                                             1680
60
       CAACACCTGC CTCTGACCCC AGCATTTCCA GAGCAGAGCC TACAGAAGGG CAGTGACTCG
                                                                             1740
       ACAAAGGCCA CAGGCAGTCC AGGCCTCTCT CTGCTCCATC CCCCTGCCTC CCATTCTGCA
                                                                             1800
       CCACACCTGG CATGGTGCAG GGAGACATCT GCACCCCTGA GTTGGGCAGC CAGGAGTGCC
       CCCGGGAATG GATAATAAAG ATACTAGAGA ACTG
65
       SEQ ID NO:100 PEN1 Protein sequence
       Protein Accession #:
                         NP_036523
                                          31
                                                      41
70
       MGSASPGLSS VSPSHLLLPP DTVSRTGLEK AAAGAVGLER RDWSPSPPAT PEQGLSAFYL
       SYFDMLYPED SSWAAKAPGA SSREEPPEEP EQCPVIDSQA PAGSLDLVPG GLTLEEHSLE
                                                                              120
       OVOSMVVGEV LKDIETACKL LNITADPMDW SPSNVOKWLL WTEHQYRLPP MGKAFQELAG
       KELCAMSEEQ FRORSPLGGD VLHAHLDIWK SAAWMKERTS PGAIHYCAST SEESWTDSEV
                                                                              240
       DSSCSGOPIH LWOPLKELLL KPHSYGRFIR WLNKEKGIFK IEDSAQVARL WGIRKNRPAM
75
       NYDKLSRSIR QYYKKGIIRK PDISQRLVYQ FVHPI
                                                  SEQ ID NO:101 PEN3 DNA SEQUENCE
       Nucleic Acid Accession #: NM_000742
                         555-2144 (underlined sequences correspond to start and stop codons)
80
```

	1	11	21	31	41	51	
	GAGAGAACAG	CGTGAGCCTG	4/34/3/44/34/3	TYCOTGAGCCC	TO BAYCOCOTYC	CTGGGGGCCAG	60
_		CACCTGCAGA					120
5	CTGCATGAAG	CCGTTCTGGC	TGCCAGAGCT	GGACAGCCCC	AGGAAAACCC	ACCTCTCTGC	180
		CAGCTGTCCC					240
		CTAAACCCTC GTACCTGCCA					300 360
		CIGGITCICI					420
10		GAGGAAGCCT					480
	TCTGCTGGGG	ACATGGTCCA	TGGTGCAACC	CACAGCAAAG	CCCTGACCTG	ACCTCCTGAT	540
		AGCCATGGGC					600
		CCCACTCTCC					660 720
15		GGACCGGCTC					780
		CACTTCAGAC					840
		TGAGAAGAAC					900
		ACTGCGCTGG					960
20		GATCTGGATC CATGACCAAG					1020 1080
20		CAAGAGCTCC					1140
						CTGGAGCAGA	1200
						ATCGTCAATG	1260
25						CCCGACGTCA	1320
23		CTCCTCCCTC				TGCGGCGAGA	1380 1440
		GTGCATTTCG					1500
	AGATCATCCC	GTCCACCTCG	CTGGTCATCC	CGCTCATCGG	CGAGTACCTG	CTGTTCACCA	1560
30		CACCCTGTCC					1620
30		CCACACCATG					1680 1740
		CTCTTATCAC					1800
		GGAGGACAGA					1860
25		CGGCCACCTG					1920
35		GCTGCTGCTA					1980
		CCTGCGGTCT					2040 2100
		CTTTCTGCCT					2160
40						CAATGTTTAG	2220
40		GAGCCCAAAG					2280
						CGAGTTTGCA	2340
		CTGTATGGTC					2400 2460
						ATTTGAGCCT	2520
45	CCAGGCTTCT	CCTTGACGTC	ATTCCTCTCC	TTCCTTGCTG	CAAAATGGCT	CTGCACCAGC	2580
		GAGGTCTGGC		GCCATGGCCT	GCAGGGGCTC	CATATGTCCC	2640
	TACGCGTGCA	GCAGGCAAAC	AAGA				
	SEQ ID NO:102 F	EN3 Protein segu	ence				
50	Protein Accession						
	_						
	1	11	21	31	41	51	
	MGPSCPVFLS	PTKLSLWWLL	I TPAGGEEAK	RPPPRAPCOP	LSSPSPTALP	OGGSHTETED	60
55		NRWARPVPNT					120
	RWNPADFGNI	TSLRVPSEMI	WIPDIVLYNN	ADGEFAVTHM	TKAHLFSTGT	VHWVPPAIYK	180
		PFDQQNCKMK					240
		IYPDVTYAFV LLLITEIIPS					300 360
60		LGCVPRWLLM					420
		PSVGTLCSHG					480
	RSEDADSSVK	EDWKYVAM	VI DRIFLWLFI	I VCFLGTIGLF	LPPFLAGMI		
				OF.	N ID NO.403 BCI I	I DNA OCOUCNOC	
65	Nucleic Acid Acce	ssion#: NM_0	18670	250	1 ID NO: 103 FED	I DNA SEQUENCE	
00	Coding sequence		(underlined seque	nces correspond to	o start and stop co	idons)	
			(==			•	
	1	11	21	31	41	51	
70	01 001 00000			. [
7.5						CGCCGGCCGC CTCTCCGAGT	60 120
						GACAAGGACT	
	CCGCCCCCTC	CCTCGTCTCG	TCCCCAGACT	CATGGGGCAG	CACCCCAGCC	GACAGCCCCG	240
75	TGGCGAGCCC	CGCGCGGCCA	GGCACCCTCC	GGGACCCCCG	CGCCCCCTCC	GTAGGTAGGC	300
<i>7</i> 5						GAGCGGGAGA	
						CTACCGCCGT GCTATCCGCT	
						CGCCGGTGCC	
00	GGCAGCGCGG	TGACGCGGGG	TCCCCTCGGG	GCTGCCCGCT	GTGCCCCGAC	GACTGCCCCG	600
80	CGCAGATGCA	GACACGGACG	CAGGCTGAGG	GGCAGGGGCA	GGGGCGCGG	CTGGGCCTGG	660
					22	^	

						GGAGCCCGAG	720
						CCGGAAGGGC	780 840
						GCTCTGTTGG TGACAAGGGA	
5						CGAAGTGGTT	
-						GCATTCCTGC	1020
						r ggagggaccc	1080
						TATTTATTTG	1140
10	TGAATAAAC	r Graciggig	r Caaaaaaaa	A AAAAAAAA	A A		
10	SEQ ID NO:104	PEU4 Protein seq	Jence .				
	Protein Accessio						
	_						
15	1	11	21	31	41	51	•
1.5	MAOPI CPPLS	ESWMI.SAAWG	PTRRPPPSDK	DCGRSLVSSP	DSWGSTPADS	 PVASPARPGT	60
			SGOROSASER				120
			GLSEESLQRR				180
20			WGSPPACPGA	RAAPEPRDPP	ALPAEAACPE	GQAMEPSPPS	240
20	PLLPGDVLAL	LETWMPLSPL	EMTLEELK				
				SE	2 ID NO:105 PEU	DNA SEQUENCE	
	Nucleic Acid Acc	ession#: NM_0	17636				
25	Coding sequence	: 324-33	74 (underlined sec	uences correspor	d to start and stop	codons)	
23	1	11	21	21	41	51	
	i	11	1 .	31 1	1	1	
	CCACGGAGAA	GCCCACCGAT	GCCTACGGAG	AGCTGGACTT	CACGGGGGCC	GGCCGCAAGC	60
20			TCTGACCGAA				120
30			GCCCCGAACC				180
			GTCACTGGGG				240 300
			CAGATGGCCA				360
25			GTCCGGAATA				420
35			CGCGGTGACC				480
			CTGGTGGACG				540 600
			CTGCTCCTCC				660 ·
40	GAATAGAGAA	CGCCACCCAG	GCTCAGCTCC	CATGTCTCCT	CGTGGCTGGC	TCAGGGGGAG	720
40			ACCCTGGAAG				780
			CGAATCAGGC				840 900
			GAGACCATAG				960
45			CTGGATGAGC				1020
45			TTTCGGGGGG				1080
			CTGAATGACC				1140 1200
			CGCAACCTTT				1260
5 0	AAGCCCCAGC	CCTAAAAGGG	GGAGCTGCGG	AGCTCCGGCC	CCCTGACGTG	GGGCATGTGC	1320
5 0			ATGTGCGCGC				1380
			GGGGAGAGCA CTCGGGCAGG				1440 1500
			ATGGCCATGT				1560
55			TTGCTGCTCC				1620
55			GACCTGGCGT				1680 1740
			AGTGAGGTGA TGCCTCCAGC				1800
			TCTCTGCTGA				1860
60			GTTCTCGCCT				1920
60			GAAGAGGAGC				1980
			GGCCTCTCG				2040 2100
			CACTTCTGGG				2160
C =			TTGCTGCTTT				2220
65			GAGCTGCTGC				2280
			AGCGGAGGCG CAGCGCCTGC				2340 2400
			TGCTTCCTCC				2460
70	TGTACCACCT	GGGCCGCACT	GTCCTCTGCA	TCGACTTCAT	GGTTTTCACG	GTGCGGCTGC	2520
70			AAACAGCTGG				2580
			CTCTTCTTCC				2640 2700
			ATCTTCGGGC				2760
75			TCGTCGGAGC				2820
7 5			CAGTATGCCA				2880
			CTGCTGGTCA AGCGATCTCT				2940 3000
			GCGCTGGCCC				3060
00						CCGGCCCTCG	
80	AGCATTTCCG	GGTTTACCTT	TCTAAGGAAG	CCGAGCGGAA	GCTGCTAACG	TGGGAATCGG	3180

```
TGCATAAGGA GAACTITCTG CTGGCACGCG CTAGGGACAA GCGGGAGAGC GACTCCGAGC 3240
        GTCTGGAGCG CACGTCCCAG AAGGTGGACT TGGCACTGAA ACAGCTGGGA CACATCCGCG
                                                                                 3300
        AGTACGAACA GCGCCTGAAA GTGCTGGAGC GGGAGGTCCA GCAGTGTAGC CGCGTCCTGG
                                                                                 3360
        GGTGGGTGAC GTAGGCCGTT AGCAGCTCTG CCATGTTGCC CTCAGGTGGG CCGCCACCCC
                                                                                 3420
        TTGACCTGCA TGGGTCCAAA GAGTGAGCCA TGCTGGCGGA TTTTAAGGAG AAGCCCCCAC
                                                                                 3480
        AGGGGATTTT GCTCTTAGAG TAAGGCTCAT GTGGGCCTCG GCCCCCGCAC CTGGTGGCCT
                                                                                 3540
        TGTCCTTGAG GTGAGCCCCA TGTCCATCTG GGCCACTGTC AGGACCACCT TTGGGAGTGT
                                                                                 3600
        CATCCTTACA AACCACAGCA TGCCCGGCTC CTCCCAGAAC CAGTCCCAGC CTGGGAGGAT
                                                                                 3660
        CAAGGCCTGG ATCCCGGGCC GTTATCCATC TGGAGGCTGC AGGGTCCTTG GGGTAACAGG
                                                                                 3720
10
        GACCACAGAC CCCTCACCAC TCACAGATTC CTCACACTGG GGAAATAAAG CCATTTCAGA
        GGAAAAAAA AAAAAAAAA AAAAAAAA
        SEQ ID NO: 106 PEU5 Protein sequence
        Prolein Accession #:
                          NP_060106
15
                    11
                                21
                                            31
                                                        41
                                                                    51
        MASTGGTKVV AMGVAFWGVV RNRDTLINPK GSFPARYRWR GDPEDGVQFP LDYNYSAFFL
                                                                                   60
        VDDGTHGCLG GENRFRLRLE SYISQOKTGV GGTGIDIPVL LLLIDGDEKM LTRIENATQA
                                                                                  120
20
        QLPCLLVAGS GGAADCLAET LEDTLAPGSG GARQGEARDR IRRFFPKGDL EVLQAQVERI
                                                                                  180
        MTRKELLTVY SSEDGSEEFE TIVLKALVKA CGSSEASAYL DELRLAVAWN RVDIAQSELF
        RGDIOWRSFH LEASLMDALL NDRPEFVRLL ISHGLSLGHF LTPMRLAQLY SAAPSNSLIR
                                                                                  300
        NLLDQASHSA GTKAPALKGG AAELRPPDVG HVLRMLLGKM CAPRYPSGGA WDFHPGQGFG
                                                                                  360
        ESMYLLSDKA TSPLSLDAGL GQAFWSDLLL WALLLNRAQM AMYFWEMGSN AVSSALGACL
                                                                                  420
25
        LLRVMARLEP DAEEAARRKD LAFKFEGMGV DLFGECYRSS EVRAARLLLR RCPLWGDATC
                                                                                  480
        LQLAMQADAR AFFAQDGVQS LLTQKWWGDM ASTTPIWALV LAFFCPPLIY TRLITFRKSE
                                                                                  540
        EEPTREELEF DMDSVINGEG PVGTADPAEK TPLGVPRQSG RPGCCGGRCG GRRCLRRWFH
                                                                                  600
        FWGAPVTIFM GNVVSYLLFL LLFSRVLLVD FQPAPPGSLE LLLYFWAFTL LCEELRQGLS
        GGGGSLASGG PGPGHASLSQ RLRLYLADSW NQCDLVALTC FLLGVGCRLT PGLYHLGRTV
                                                                                  720
30
        LCIDFMVFTV RLLHIFTVNK QLGPKIVIVS KMMKDVFFFL FPLGVWLVAY GVATEGLLRP
                                                                                  780
        RDSDFPSILR RVFYRPYLQI FGQIPQEDMD VALMEHSNCS SEPGFWAHPP GAQAGTCVSQ
                                                                                  840
        YANWLUVLLL VIFLLVANIL LVNLLIAMFS YTFGKVQGNS DLYWKAQRYR LIREFHSRPA
LAPPFIVISH LRLLLRQLCR RPRSPQPSSP ALEHPRVYLS KEAERKLLTW ESVHKENFLL
                                                                                  900
                                                                                  960
        ARARDKRESD SERLERTSOK VDLALKOLGH IREYEORLKV LEREVOOCSR VLGWVT
35
                                                    SEQ ID NO:107 PEW3 DNA SEQUENCE
        Nucleic Acid Accession #: NM_005982
                          276-1130 (underlined sequences correspond to start and stop codons)
        Coding sequence:
40
                                            31
        GGTAGCAGCA TCCACCGGGC GGGAGGTCGG AGGCAGCAAG GCCTTAAAGG CTACTGAGTG
                                                                                   60
       CGCCGGCCGT TCCGTGTCCA GAACCTCCCC TACTCCTCCC CCTTCTCTTC CTTGGCCGCC CACCGCCAAG TTCCGACTCC GGTTTTCGCC TTTGCAAAGC CTAAGGAGA GGTTAGGAAC
                                                                                  120
                                                                                  180
45
        AGCCGCGCCC CCCTCCCTGC GGCCGCCGCC CCCTGCCTCT CGGCTCTGCT CCCTGCCGCG
        TECECCTEGE CCETECECC CEGCAGGCGC CAGCCATGTC GATGCTGCCG TCGTTTGGCT
        TTACGCAGGA GCAAGTGGCG TGCGTGTGCG AGGTTCTGCA GCAAGGCGGA AACCTGGAGC
                                                                                  360
        GCCTGGGCAG GTTCCTGTGG TCACTGCCCG CCTGCGACCA CCTGCACAAG AACGAGAGCG
                                                                                  420
        TACTCAAGGC CAAGGCGGTG GTCGCCTTCC ACCGCGGCAA CTTCCGTGAG CTCTACAAGA
                                                                                  480
50
       TCCTGGAGAG CCACCAGTTC TCGCCTCACA ACCACCCCAA ACTGCAGCAA CTGTGGCTGA AGGCGCATTA CGTGGAGGCC GAGAAGCTGC GCGGCCGACC CCTGGGCGCC CTGGGCAAAT
                                                                                  540
                                                                                  600
        ATCGGGTGCG CCGAAAATTT CCACTGCCGC GCACCATCTG GGACGGCGAG GAGACCAGCT
                                                                                  660
        ACTGCTTCAA GGAGAAGTCG AGGGGTGTCC TGCGGGAGTG GTACGCGCAC AATCCCTACC
        CATCGCCGCG TGAGAAGCGG GAGCTGGCCG AGGCCACCGG CCTCACCACC ACCCAGGTCA
55
        GCAACTGGTT TAAGAACCGG AGGCAAAGAG ACCGGGCCGC GGAGGCCAAG GAAAGGGAGA
                                                                                  840
        ACACCGAAAA CAATAACTCC TCCTCCAACA AGCAGAACCA ACTCTCTCT CTGGAAGGGG
                                                                                  900
        960
        ACTOGGTOOT TOTGCTGCAG GGCAATATGG GCCACGCCAG GAGCTCAAAC TATTCTCTCC
                                                                                1020
       CGGGCTTAAC AGCCTCGCAG CCCAGTCAG GCCTGCAGAC CCACCAGCAT CAGCTCCAAG ACTCTCTGCT CGGCCCCCTC ACCTCCAGTC TGGTGGACTT GGGGTCC<u>TAA</u> GTGGGGAGGG
                                                                                1080
60
                                                                                 1140
        ACTGGGGCCT CGAAGGGATT CCTGGAGCAG CAACCACTGC AGCGACTAGG GACACTTGTA
                                                                                 1200
        AATAGAAATC AGGAACATTT TTGCAGCTTG TTTCTGGAGT TGTTTGCGCA TAAAGGAATG
                                                                                1260
        GTGGACTITC ACAAATATCT TITTAAAAAT CAAAACCAAC AGCGATCICA AGCTTAATCT
                                                                                1320
        CCTCTTCTCT CCAACTCTTT CCACTTTTGC ATTTTCCTTC CCAATGCAGA GATCAGGG
65
        SEQ ID NO:108 PEW3 Protein sequence
        Protein Accession #:
                          NP 005973
                                            31
70
        MSMLPSFGFT QEQVACVCEV LQQGGNLERL GRPLWSLPAC DHLHKNESVL KAKAVVAFHR
        GNFRELYKIL ESHQFSPHNH PKLQQLWLKA HYVEAEKLRG RPLGAVGKYR VRRKFPLPRT
                                                                                  120
        IWDGEETSYC FKEKSRGVLR EWYAHNPYPS PREKRELAEA TGLTTTQVSN WFKNRRQRDR
                                                                                  180
        AAEAKERENT ENNNSSSNKQ NQLSPLEGGK PLMSSSEEEF SPPQSPDQNS VLLLQGNMGH
                                                                                  240
75
        ARSSNYSLPG LTASQPSHGL QTHQHQLQDS LLGPLTSSLV DLGS
                                                     SEQ ID NO:109 PFJ8 DNA SEQUENCE
        Nucleic Acid Accession #: NM_005069
                          57-2060 (underlined sequences correspond to start and stop codons)
        Codina sequence:
80
```

WO 02/30268

PCT/US01/32045

51 11 21 31 41 GGGGCTCCGC GGGCCTGGAG CACGGCCGGG TCTAATATGC CCGGAGCCGA GGCGCG<u>ATG</u>A 60 AGGAGAAGTC CAAGAATGCG GCCAAGACCA GGAGGGAGAA GGAAAATGGC GAGTTTTACG 120 AGCTTGCCAA GCTGCTCCCG CTGCCGTCGG CCATCACTTC GCAGCTGGAC AAAGCGTCCA 180
TCATCCGCCT CACCACGAGC TACCTGAAGA TGCGCGCCGT CTTCCCCGAA GGTTTAGGAG 240 5 ACGCGTGGGG ACAGCCGAGC CGCGCCGGGC CCCTGGACGG CGTCGCCAAG GAGCTGGGAT 300
CGCACTTGCT GCAGACTTTG GATGGATTTG TTTTTGTGGT AGCATCTGAT GGCAAAATCA 360 TGTATATATC CGAGACCGCT TCTGTCCATT TAGGCTTATC CCAGGTGGAG CTCACGGGCA 420 10 ACAGTATITA TGAATACATC CATCCTTCTG ACCACGATGA GATGACCGCT GTCCTCACGG 480 COCACCAGCC GCTGCACCAC CACCTGCTCC AAGAGTATGA GATAGAGAGG TCGTTCTTTC 540 TTCGAATGAA ATGTGTCTTG GCGAAAAGGA ACGCGGGCCT GACCTGCAGC GGATACAAGG 600 TCATCCACTG CAGTGGCTAC TTGAAGATCA GGCAGTATAT GCTGGACATG TCCCTGTACG 660 ACTOCTGCTA CCAGATTGTG GGGCTGGTGG CCGTGGCCA GTCGCTGCCA CCCAGTGCCA 720 15 TCACCGAGAT CAAGCTGTAC AGTAACATGT TCATGTTCAG GGCCAGCCTT GACCTGAAGC 780 TGATATTCCT GGATTCCAGG GTGACCGAGG TGACGGGTTA CGAGCCGCAG GACCTGATCG 840
AGAAGACCCT ATACCATCAC GTGCACGGCT GCGACGTGTT CCACCTCCGC TACGCACACC 900 ACCTCCTGTT GGTGAAGGGC CAGGTCACCA CCAAGTACTA CCGCCTGCTG TCCAAGCGGG 960
GCGCTGGGT GTGGGTGCAG AGCTACGCCA CCGTGGTGCA CAACAGCGC TCGTCCCGGC 1020
CCCACTGCAT CGTGAGTGTC AATTATGTAC TCACGGAGAT TGAATACAAG GAACTTCAGC 1080
TGTCCCTGGA GCAGGTGTCC ACTGCCAAGT CCCAGGACTC CTGGAGGACC GCCTTGTCTA 1140
CCTCACAAGA AACTAGGAAA TTAGTGAAAC CCAAAAATAC CAAGATGAAG ACAAAGCTGA 1200 20 GAACAAACCC TTACCCCCCA CAGCAATACA GCTCGTTCCA AATGGACAAA CTGGAATGCG 1260 GCCAGCTCGG AAACTGGAGA GCCAGTCCCC CTGCAAGCGC TGCTGCTCCT CCAGAACTGC 1320 25 AGCCCCACTC AGAAAGCAGT GACCTTCTGT ACACGCCATC CTACAGCCTG CCCTTCTCCT 1380 ACCATTACGG ACACTTCCCT CTGGACTCTC ACGTCTTCAG CAGCAAAAAG CCAATGTTGC 1440 CGGCCAAGTT CGGGCAGCCC CAAGGATCCC CTTGTGAGGT GGCACGCTTT TTCCTGAGCA 1500 CACTGCCAGC CAGCGGTGAA TGCCAGTGGC ATTATGCCAA CCCCTAGTG CCTAGCAGCT 1560 CGTCTCCAGC TAAAAATCCT CCAGAGCCAC CGGCGAACAC TGCTAGGCAC AGCCTGGTGC 1620 30 35 TGGCCTGCGC TCCCGGCGGC CCCGAGGCGG CGACCGGCGC GCTGCGGCTC CGGCACCCGA 1980 GCCCCGCCGC CACCTCCCCG CCCGGCGCGC CCCTGCCGCA CTACCTGGGC GCCTCGGTCA 2040 TCATCACCAA CGGGAGGTGA CCCGCTGGCC GCCCGCGCCA GGAGCCTGGA CCCGGCCTCC 2100 CGGGGCTGCG GCGCCACCGA GCCCGGCAAA TGCGCACGAC CTACATTAAT TTATGCAGAG 2160 ACAGCTGTTT GAATTGGACC CCGCCGCCGA CTTGCGGATT TCCACCGCGG AGGCCCCGCG 2220 40 CGCCGGTGCC GAGGGCCGAG GAGCGCCCGG GTCCGGGCAG GTGACCGCCC GCCTCTGTCC 2280 TGCGAGGGCC GGTGCGACCC AGTTGCTGGG GGCTTGGTTT CCTCACCTTG AAATCGGGCT 2340 TCACGCGTCT TGCCTTGTCC CCAACGTTCC ACAACAGTCC CGCTGGGGGA TTGAAGCGGT 2400 TTCACTCCGC AAATATCCTC CACTTTCAGG AGGGAAAACC CACCCTACCA CAGTCCGCTC 2460 TTCCAAGTGG ACGGCAGACC TGGGAGGGGA CGCCTGTGTC ACGAGCCCTT TTAGATGCTT 2520 45 AGGTGAAGGC AGAAGTGATG ATTGTAAGTC CCATGAATAC ACAACTCCAC TGTCTTTAAA 2580 AGTCATTCAA GAGTCTCATT ATTTTTGTTT TTATTTAACC CTTTCTTCAA TACAAAAAGC 2640 CAACAAACCA AGACTAAGGG GGTGACCATG CAATTCCATT TTGTGTCTGT GAACATAGGT 2700 GTGCTTCCCA AATACATTAA CAAGCTCTTA CTTCCCCCTA ACCCCTATGA ACTCTTGATA 2760 ACACCAAGAG TAGCACCTTC AGAATATATT GAATAGGCAT TAAATGCAAA AATATATATG 2820 50 TAGCCAGACA GTTTATGAGA ATGACCCTGT CAAGCTTCAT TATTACGTGG CAAAATCCCT 2880 CTGGCCCACA CAGATCTGTA ATTCACTAGG CTCGTGTTTG CTACAAATAG TGCTAATAAA 2940 GTTAAATTIG ACGTGCAATA CGGAACACTI TCAATGGACT GCACCTTIGTG AAGGAAAAAC 3000
ATGCTTAAGG GGGTGTAATG AAAATGATGT AGACATTTTA AGCACTTTTCT ACACAGCGAG 3060
AAAACTTCGT AAGAACATGT TACGTGTGCA ACAGGTAAAC AGAAATCCTT TCATAAAGCA 3120
CCAGCAGTGT TTAAAAAAATG AGCTTCCATT AATTTTTACT TTTTATGGGT TTTGCTTAAA 3180 55 GATCTCAACA TGGAAAAATC CTGTCATGGC TCTGAACTGC ACAATGCATT GAACCGCCGT 3240 CCTTCAATTT TCTTCACACT ATCAACACTG CAGCATTTTG CTGCTTTATC AAAATGGTTT 3300 ATTTTAGGAA ACTTTTCCA CCTTCTGAA TGGAAAGAGG TTTTCACAAA TGTTTTAAAC 3360 TCATCGTTCT AAAATCAAGT GCACCTACAC CAACTGCTCT CAAAATGTGA ACTGACTTTT 3420 60 TTTTTTTTT TTTTGCCAAC CCTGTGTCAC TTAGTGAGGA CCTGACACAA TCCCTACAGG 3480 GTGTCTGTCA GTGGGCCTCA TGGTAAGAGT CACAATTTGC AAATTTAGGA CCGTGGGTCA 3540 TGCAGCGAAG GGGCTGGATG GTAGGAAGGG ATGTGCCCGC CTCTCCACGC ACTCAGCTAT 3600 ACCTCATTCA CAGCTCCTTG TGAGTGTGTG CACAGGAAAT AAGCCGAGGG TATTATTTTT 3660 TTATGTTCAT GAGTCTTGTA ATTAAACCGT GATTCTTGAA AGGTGTAGGT TTGATTACTA 3720 GGAGATACCA CCGACATTTT TCAATAAAGT ACTGCAAAAT GCTTTTGTGT CTACCTTGTT 3780 65 ATTAACTTTT GGGGCTGTAT TTAGTAAAAA TAAATCAAGG CTATCGGAGC AGTTCAATAA 3840 CAAAGGTTAC TGTTGAGAAA AAAGACCCTA TCATAGATTT ACAAG 70 SEQ ID NO:110 PFJB Protein sequence: Protein Accession #: NP 005060.1 51 75

MKEKSKNAAK TRREKENGEF YELAKLLPLP SAITSQLDKA SIIRLTTSYL KMRAVFPEGL 60 GDAWGQPSRA GPLDGVAKEL GSHLLQTLDG FVFVVASDGK IMYISETASV HLGLSQVELT 120 GNSIYEYIHP SDHDEMTAVL TAHQPLHIHL LQEYEIERSF FLRMKCVLAK RNAGLTCSGY 180 KVIHCSGYLK IRQYMLDMSL YDSCYQIVGL VAVGQSLPPS AITEIKLYSN MFMFRASLDL 240 KLIFLDSRVT EVTGYEPQDL IEKTLYHHVH GCDVFHLRYA HHLLLVKGQV TTKYYRLLSK 300 RGGWVWVQSY ATVVHNSRSS RPHCIVSVNY VLTEIEYKEL QLSLEQVSTA KSQDSWRTAL 360 STSQETRKLV KPKNTKMKTK LRTNPYPPQQ YSSFQMDKLE CGQLGNWRAS PPASAAAPPE 420 LQPHSESSDL LYTFSYSLPF SYHYGHFPLD SHVFSSKKPM LPAKFGQPQG SPCEVARFFL 480 STLPASGECQ WHYANPLVPS SSSPAKNPPE PPANTARHSL VPSYEAPAAA VRRFGEDTAP 540 PSFPSCGHYR EEPALGPAKA ARQAARDGAR LALARAAPEC CAPPTPEAPG APAQLPFVLL 600 NYHRVLARRG PLGGAAPAAS GLACAPGGPE AATGALRLRH PSPAATSPPG APLPHYLGAS 660 VIITNGR

10

75

5

SEQ ID NO:111 PFJ7 DNA SEQUENCE

Nucleic Acid Accession #: NM 006549 15 1-1254 (underlined sequences correspond to start and stop codons) Coding sequence: 21 31 41 ATG AACGGAC GCTGCÁTCTG CCCGTCCCTG CCCTACTCAC CCGTCAGCTC CCCGCAGTCC 60 20 TCGCCTCGGC TGCCCCGGCG GCCGACAGTG GAGTCTCACC ACGTCTCCAT CACGGGTATG 120 CAGGACTGTG TGCAGCTGAA TCAGTATACC CTGAAGGATG AAATTGGAAA GGGCTCCTAT 180 GGTGTCGTCA AGTTGGCCTA CAATGAAAAT GACAATACCT ACTATGCAAT GAAGGTGCTG 240 TCCAAAAAGA AGCTGATCCG GCAGGCCGGC TTTCCACGTC GCCCTCCACC CCGAGGCACC 300
CGGCCAGCTC CTGGAGGCTG CATCCAGCCC AGGGGCCCCA TTGAGCAGGT GTACCAGGAA 360
ATTGCCATCC TCAAGAAGCT GGACCACCCC AATGTGGTGA AGCTGGTGGA GGTCCTGGAT 420
GACCCCAATG AGGACCATCT GTACATGGTG TTCGAACTGG TCAACCAAGG GCCCGTGATG 480 25 GAAGTGCCCA CCCTCAAACC ACTCTCTGAA GACCAGGCCC GTTTCTACTT CCAGGATCTG 540 ATCAAAGGCA TCGAGTACTT ACACTACCAG AAGATCATCC ACCGTGACAT CAAACCTTCC 600 AACCTCCTGG TCGGAGAAGA TGGGCACATC AAGATCGCTG ACTTTGGTGT GAGCAATGAA 660 30 TTCAAGGGCA GTGACGCGCT CCTCTCCAAC ACCGTGGGCA CGCCCGCCTT CATGGCACCC 720 GAGTCGCTCT CTGAGACCCG CAAGATCTTC TCTGGGAAGG CCTTGGATGT TTGGGCCATG 780 GGTGTGACAC TATACTGCTT TGTCTTTGGC CAGTGCCCAT TCATGGACGA GCGGATCATG 840 TGTTTACACA GTAAGATCAA GAGTCAGGCC CTGGAATTTC CAGACCAGCC CGACATAGCT 900 GAGGACTTGA AGGACCTGAT CACCCGTATG CTGGACAAGA ACCCCGAGTC GAGGATCGTG 960 35 GTGCCGGAAA TCAGCTGCA CCCCTGGGTC ACGAGGCATG GGGCGGAGCC GTTGCCGTCG 1020
GAGGATGAGA ACTGCACGCT GGTCGAAGTG ACTGAAGAGG AGGTCGAGAA CTCAGTCAAA 1080
CACATTCCCA GCTTGGCAAC CGTGATCCTG GTGAAGACCA TGATACGTAA ACGCTCCTTT 1140 GGGAACCCAT TCGAGGGCAG CCGGCGGGAG GAACGCTCAC TGTCAGCGCC TGGAAACTTG 1200 CTCACCAAAA AACCAACCAG GGAATGTGAG TCCCTGTCTG AGCTCAAGAC CTAGAAAATA 1260 40 AGTECECTTC CTGCCTGTTG CAAAGTAACG TAAGAGTTCC CTCACCCGAG TGGATGCAGA 1320 CGTTCTTGCT GTCAGCCACC TTCCTTCATA CACATAGCCA GCCCAGGGTG ACCAGAACGT 1380 CCCAGGACAG ATGAGGCTTT GTGTCCTTAT GAGAGTGGGA GAACCTGGTG GGCACCCCTG 1440 GTGCAGGTGC TGTGGTGGGT GGGGACCCCA CTGCCTTTCC CACTGAGCAC ATCATGGCTA 1500 CCTGACTTGG TGGGAGTTCC ATTCAGTCAC TICTGTTTCT TAAACATAGC TTTACTGAGG 1560
TACAATTCAC ATACCATGTA ATTCACCCAC GGGAAGTGTA TGATTCAGTG GTTTCTAATA 1620
CACACTTCTG CAGCCATTAC CACCGTCAAC TTTACGACAT TTTCATCAGC CCAAGAAGAC 1680
ACCCTACACT CCTTAGCTGT CCCCATCCAA CTCCCCCACC CCAGTAACCA CTCAGAATAG 1740 45 GTATGGATTT GCCTATTCTG GACGTTTCGT ATAAATGGCG TCATACACTA AAAAAAAAA 1800 AAAA 50 SEQ ID NO:112 PFJ7 Protein sequence: NP_006540.1 55 21 31 41 51 MNGRCICPSL PYSPVSSPOS SPRLPRRPTV ESHHVSITGM ODCVOLNOYT LKDEIGKGSY 60 GVVKLAYNEN DNTYYAMKVL SKKKLIRQAG FPRRPPPRGT RPAPGGCIQP RGPIEQVYQE 120 60 IAILKKLDHP NVVKLVEVLD DPNEDHLYMV FELVNQGPVM EVPTLKPLSE DQARFYFQDL 180 IKGIEYLHYQ KIIHRDIKPS NLLVGEDGHI KIADFGVSNE FKGSDALLSN TVGTPAFMAP 240 ESLSETRKIF SGKALDVWAM GVTLYCFVFG QCPFMDERIM CLHSKIKSQA LEFPDQPDIA 300 EDLKDLITRM LDKNPESRIV VPEIKLHPWV TRHGAEPLPS EDENCTLVEV TEEEVENSVK 360 HIPSLATVIL VKTMIRKRSF GNPFEGSRRE ERSLSAPGNL LTKKPTRECE SLSELKT 65 SEQ ID NO:113 PFJ6 DNA SEQUENCE Nucleic Acid Accession #: NM 021810 70 1-429 (underlined sequences correspond to start and stop codons) Coding sequence: 11 21 31 41 ATGAAACCTC TGATATGGAC ATGGTCAGAT GTTGAAGGCC AGAGGCCGGC TCTGCTCATC 60

TGCACAGCTG CAGCAGGACC CACGCAGGGA GTTAAGGGTT ATGGCAAGCC CTTTGAGCCA 120
AGAAGTGTGA AAAACATACA CTCTACTCCT GCTTACCCAG ATGCCACAAT GCACAGACAA 180
CTCCTGGCTC CGGTGGAAGG AAGGATGGCA GAAGCATTGA ATCAGAAACT CCATGTTTGCC 240
AATGTGCTGG AAGATGACCC CGGCTACCTA CCTCACGTCT ACAGCGAGGA AGGGGAGTGT 300
GGAGGGGCCC CATCCCTCAG CTCTCTGGCC AGCTTTGGAAC AGGAGTTTGCA ACCTGATTTG 360

CTGGACTCTT TGGGTTCAAA AGCGACTCCG TTTGAGGAAA TATATTCAGA GTCAGGTGTT 420 CCTTCCTAA 5 SEQ ID NO:114 PFJ6 Protein sequence: Protein Accession #: NP 068582.1 31 41 10 MKPLIWTWSD VEGORPALLI CTAAAGPTQG VKGYGKPFEP RSVKNIHSTP AYPDATMHRQ 60 LLAPVEGRMA ETLNQKLHVA NVLEDDPGYL PHVYSEEGEC GGAPSLSSLA SLEQELQPDL 120 LDSLGSKATP FEETYSESGV PS 15 SEQ ID NO:115 PFJ5 DNA SEQUENCE Nucleic Acid Accession #: NM_006361 Coding sequence: 131-985 (underlined sequences correspond to start and stop codons) 20 41 51 31 CGAATGCAGG CGACTTGCGA GCTGGGAGCG ATTTAAAACG CTTTGGATTC CCCCGGCCTG GGTGGGGAGA GCGAGCTGGG TGCCCCCTAG ATTCCCCGCC CCCGCACCTC ATGAGCCGAC 120 CCTCGGCTCC ATGGAGCCCG GCAATTATGC CACCTTGGAT GGAGCCAAGG ATATCGAAGG 180 25 CTTGCTGGGA GCGGGAGGGG GGCGGAATCT GGTCGCCCAC TCCCCTCTGA CCAGCCACCC 240 AGCGGCGCCT ACGCTGATGC CTGCTGTCAA CTATGCCCCC TTGGATCTGC CAGGCTCGGC 300 GGAGCCGCCA AAGCAATGCC ACCCATGCCC TGGGGTGCCC CAGGGGACGT CCCCAGCTCC 360 CGTGCCTTAT GGTTACTTTG GAGGCGGGTA CTACTCCTGC CGAGTGTCCC GGAGCTCGCT 420 GAAACCCTGT GCCCAGGCAG CCACCCTGGC CGCGTACCCC GCGGAGACTC CCACGGCCGG 480 30 GGAAGAGTAC CCCAGTCGCC CCACTGAGTT TGCCTTCTAT CCGGGATATC CGGGAACCTA 540 CCACGCTATG GCCAGTTACC TGGACGTGTC TGTGGTGCAG ACTCTGGGTG CTCCTGGAGA ACCGCGACAT GACTCCCTGT TGCCTGTGGA CAGTTACCAG TCTTGGGCTC TCGCTGGTGG 660 CTGGAACAGC CAGATGTGTT GCCAGGGAGA ACAGAACCCA CCAGGTCCCT TTTGGAAGGC 720 AGCATTTGCA GACTCCAGCG GGCAGCACCC TCCTGACGCC TGCGCCCTTTC GTCGCGGCCG 780
CAAGAAACGC ATTCCGTACA GCAAGGGGCA GTTGCGGGAG CTGGAGCGGG AGTATGCGGC 840
TAACAAGTTC ATCACCAAGG ACAAGAGGCG CAAGATCTCG GCAGCCACCA GCCTCCGGA 900 35 GCGCCAGATT ACCATCTGGT TTCAGAACCG CCGGGTCAAA GAGAAGAAGG TTCTCGCCAA 960 GGTGAAGAAC AGCGCTACCC CTTAAGAGAT CTCCTTGCCT GGGTGGGAGG AGCGAAAGTG 1020 GGGGTGTCCT GGGGAGACCA GAAACCTGCC AAGCCCAGGC TGGGGCCAAG GACTCTGCTG 1080 40 AGAGCCCCT AGAGACAACA CCCTTCCCAG GCCACTGGCT GCTGGACTGT TCCTCAGGAG 1140 CGGCCTGGGT ACCCAGTATG TGCAGGGAGA CGGAACCCCA TGTGACAGGC CCACTCCACC 1200 AGGGTTCCCA AAGAACCTGG CCCAGTCATA ATCATTCATC CTCACAGTGG CAATAATCAC 1260 GATAACCAGT 45 SEQ ID NO:116 PFJ5 Protein sequence: Protein Accession #: NP 006352.1 50 21 31 41 51 11 MEPGNYATLD GAKDIEGLLG AGGGRNLVAH SPLTSHPAAP TLMPAVNYAP LDLPGSAEPP 60 KQCHPCPGVP QGTSPAPVPY GYFGGGYYSC RVSRSSLKPC AQAATLAAYP AETPTAGEEY 120 PSRPTEFAFY PGYPGTYHAM ASYLDVSVVQ TLGAPGEPRH DSLLPVDSYQ SWALAGGWNS 180 55 QMCCQGEQNP PGPFWKAAFA DSSGQHPPDA CAFRRGRKKR IPYSKGQLRE LEREYAANKF 240 ITKDKRRKIS AATSLSERQI TIWFQNRRVK EKKVLAKVKN SATP 60 SEQ ID NO:117 PFJ4 DNA SEQUENCE NM_005628 Nucleic Acid Accession #: 591-2216 (underlined sequences correspond to start and stop codons) Coding sequence: 21 51 65 GTAACCGCTA CTCCCGGACA CCAGACCACC GCCTTCCGTA CACAGGGGCC CGCATCCCAC 60 CCTCCCGGAC CTAAGAGCCT GGGTCCCCTG TTTCCGGAGG TCCGCTTCCC GGCCCCCAGA 120 TICTGGCATC CCAGCCCTCA GTGTCCAAGA CCCAGGCAGC CCGGGTCCCC GCCTCCCGGA 180
TCCAGGCGTC CGGGATCTGC GCCACCAGAA CCTAGCCTCC TGCAGACCTC CGCCATCTGG 240
GGGCACTCAA CCTCCTGGAG CCAACGGCCC CACGTCCCAC CCAGAGAAAC TCTCGTATTC 300
CCAGCTCCTA GGCCCAAGGA ACCCGGGCGC TCCGAACTCC CAGCTTTCCGA ACTCTGCA 360
CACGGGCAG AGCAGAGAAG CTCAGCGCCC AGCCTGGGGA ATTTAAACAACTCTCCA 420
AAGAGCCAAG GAACTTCAGT GCTGTGAACT CACAACTCTA AGGACCCCTC CAAAGTTCCA 480 70 AAGAGCCAAG GAACTTCAGT GCTGTGAACT CACAACTCTA AGGAGCCCTC CAAAGTTCCA 480
GTCTCCAGGT GCTGTTACTC AACTCAGTCC TAGGAACGTC GGGTCCTGGG AAGGAGCCCA 540 75 AGCGCTCCCA GCCAGCTTCC AGGCGCTAAG AAACCCCGGT GCTTCCCATC ATGGTGGCCG 600 ATCCTCCTCG AGACTCCAAG GGGCTCGCAG CGGCGGAGCC CACCGCCAAC GGGGGCCTGG 660

CGCTGGCCTC CATCGAGGAC CAAGGCGCGG CAGCAGGCGG CTACTGCGGT TCCCGGGACC 720 AGGTGCGCCG CTGCCTTCGA GCCAACCTGC TTGTGCTGCT GACAGTGGTG GCCGTGGTGG 780 CCGGCGTGGC GCTGGGACTG GGGGTGTCGG GGGCCGGGGG TGCGCTGGCG TTGGGCCCGG 840 WO 02/30268

AGCGCTTGAG CGCCTTCGTC TTCCCGGGCG AGCTGCTGCT GCGCTCGCTG CGGATGATCA 900
TCTTGCCGCT GGTGGTGTGC AGCTTGATCG GCGGCGCCGC CAGCCTGGAC CCCGGCGCGC 960
TCGGCCGTCT GGGCGCCTGG GCGCTGCTCT TTTTCCTGGT CACCACGCTG CTGGCGTCGG 1020
CGCTCGGAGT GGGCTTGGCG CTGGCTCTGC AGCCGGGCGC CGCCTCCGCC GCCATCAACG 1080
CCTCCGTGGG AGCCGCGGGC AGTGCCGAAA ATGCCCCCAG CAAGGAGGTG CTCGATTCGT 1140
TCCTGGATCT TGCGAGAAAT ATCTTCCCTT CCAACCTGGT GTCAGCAGCC TTTCCGCTCAT 1200 5 ACTCTACCAC CTATGAAGAG AGGAATATCA CCGGAACCAG GGTGAAGGTG CCCGTGGGGC 1260 AGGAGGTGGA GGGGATGAAC ATCCTGGGCT TGGTAGTGTT TGCCATCGTC TTTGGTGTGG 1320 CGCTGCGGAA GCTGGGGCCT GAAGGGGAGC TGCTTATCCG CTTCTTCAAC TCCTTCAATG 1380 10 AGGCCACCAT GGTTCTGGTC TCCTGGATCA TGTGGTACGC CCCTGTGGGC ATCATGTTCC 1440 TGGTGGCTGG CAAGATCGTG GAGATGGAGG ATGTGGGTTT ACTCTTTGCC CGCCTTGGCA 1500 AGTACATTCT GTGCTGCCTG CTGGGTCACG CCATCCATGG GCTCCTGGTA CTGCCCCTCA 1560 TCTACTTCCT CTTCACCCGC AAAAACCCCT ACCGCTTCCT GTGGGGGCATC GTGACGCCGC 1620 TGGCCACTGC CTTTGGGACC TCTTCCAGTT CCGCCACGCT GCCGCTGATG ATGAAGTGCG 1680 TGGAGGAGAA TAATGGCGTG GCCAAGCACA TCAGCCGTTT CATCCTGCCC ATCGGCGCCA 1740 15 CCGTCAACAT GGACGGTGCC GCGCTCTTCC AGTGCGTGGC CGCAGTGTTC ATTGCACAGC 1800
TCAGCCAGCA GTCCTTGGAC TTCGTAAAGA TCATCACCAT CCTGGTCACG GCCACAGCGT 1860 CCAGCGTGGG GGCAGCGGGC ATCCCTGCTG GAGGTGTCCT CACTCTGGCC ATCATCCTCG 1920 AAGCAGTCAA CCTCCCGGTC GACCATATCT CCTTGATCCT GGCTGTGGAC TGGCTAGTCG 1980 20 ACCGGTCCTG TACCGTCCTC AATGTAGAAG GTGACGCTCT GGGGGCAGGA CTCCTCCAAA 2040 ATTATGTGGA CCGTACGGAG TCGAGAAGCA CAGAGCCTGA GTTGATACAA GTGAAGAGTG 2100 AGCTGCCCT GGATCCGCTG CCAGTCCCCA CTGAGGAAGG AAACCCCCTC CTCAAACACT 2160 ATCGGGGGCC CGCAGGGGAT GCCACGGTCG CCTCTGAGAA GGAATCAGTC ATG<u>TAA</u>ACCC 2220 CGGGAGGGAC CTTCCCTGCC CTGCTGGGGG TGCTCTTTGG ACACTGGATT ATGAGGAATG 2280 25 GATAAATGGA TGAGCTAGGG CTCTGGGGGT CTGCCTGCAC ACTCTGGGGA GCCAGGGGCC 2340 CCAGCACCCT CCAGGACAGG AGATCTGGGA TGCCTGGCTG CTGGAGTACA TGTGTTCACA 2400 AGGGTTACTC CTCAAAACCC CCAGTTCTCA CTCATGTCCC CAACTCAAGG CTAGAAAACA 2460 30 AACACCATGC TGGTTATTTT GGCGGCTGTA GTTGTGGGGG GATGTGTGTG TGCACGTGTG 2640 TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTCTGTGACC TCCTGTCCCC ATGGTACGTC 2700 CCACCCTGTC CCCAGATCCC CTATTCCCTC CACAATAACA GAAACACTCC CAGGGACTCT 2760 GGGGAGAGGC TGAGGACAAA TACCTGCTGT CACTCCAGAG GACATTTTTT TTAGCAATAA 2820 AATTGAGTGT CAACTATTTA AAAAAAAAAA AAAAAA 35 SEQ ID NO:118 <u>PFJ4 Protein sequence</u>; Protein Accession #: NP_005619.1 31

55 SEQ ID NO:119 PEJS DNA SEQUENCE Nucleic Acid Accession #: NM_006708 88-642 (underlined sequences correspond to start and stop codons) Coding sequence: 21 31 41 51 60 CTAGTTAAGG CGGCACAGGG CCGAGGCGTA GTGTGGGTGA CTCCTCCGTT CCTTGGGTCC 60 CGTCGTCTGT GATACTGCAG TTCAGCCATG GCAGAACCGC AGCCCCCGTC CGGCGGCCCCC 120
ACGGACGAGG CCGCCCTCAG TTGCTGCTCC GACGCGGACC CCAGTACCAA GGATTTTCTA 180
TTGCAGCAGA CCATGCTACG AGTGAAGGAT CCTAAGAAGT CACTGGATTT TTATACTAGA 240
GTTCTTGGAA TGACGCTAAT CCAAAAATGT GATTTTCCCA TTATGAAGTT TTCACTCTAC 300
TTCTTGGCTT ATGAGGATAA AAATGACATC CCTAAAGAAA AAAGACAAAA AATAGCCTGG 360 65 GCGCTCTCCA GAAAAGCTAC ACTTGAGCTG ACACACAATT GGGGCACTGA AGATGATGCG 420 ACCCAGAGTT ACCACAATGG CAATTCAGAC CCTCGAGGAT TCGGTCATAT TGGAATTGCT 480 GTTCCTGATG TATACAGTGC TTGTAAAAGG TTTGAAGAAC TGGGAGTCAA ATTTGTGAAG 540 70 AAACCTGATG ATGGTAAAAT GAAAGGCCTG GCATTTATTC AAGATCCTGA TGGCTACTGG 600

AGGGGAACAA GGACCCAGAG GGGATCGTGG TGACAAAGGT GAAAAAGGTG CCCCTGGACC 600 TCGTGGCAGA GATGGAGAAC CTGGGACCCC TGGAAATCCT GGCCCCCCTG GTCCTCCCGG 660 CCCCCCTGGT CCCCCTGGTC TTGGTGGAAA CTTTGCTGCC CAGATGGCTG GAGGATTTGA 720 TGAAAAGGCT GGTGGCGCCC AGTTGGGAGT AATGCAAGGA CCAATGGGCC CCATGGGACC 780
TCGAGGACCT CCAGGCCCTG CAGGTGCTCC TGGGCCTCAA GGATTTCAAG GCAATCCTGG 840 5 TGAACCIGGT GAACCIGGTG TCTCTGGTCC CATGGGTCCC CGTGGTCCTC CTGGTCCCC 900 TGGAAAGCCT GGTGATGATG GTGAAGCTGG AAAACCTGGA AAAGCTGGTG AAAGGGGTCC 960 GCCTGGTCCT CAGGGTGCTC GTGGTTTCCC AGGAACCCCA GGCCTTCCTG GTGTCAAAGG 1020 TCACAGAGGT TATCCAGGCC TGGACGGTGC TAAGGGAGAG GCGGGTGCTC CTGGTGTGAA 1080 10 GGGTGAGAGT GGTTCCCCGG GTGAGAACGG ATCTCCGGGC CCAATGGGTC CTCGTGGCCT 1140 GCCTGGTGAA AGAGGACGGA CTGGCCCTGC TGGCGCTGCG GGTGCCCGAG GCAACGATGG 1200 TCAGCCAGGC CCCGCAGGTC CTCCGGGTCC TGTCGGTCCT GCTGGTGGTC CTGGCTTCCC 1260 TGGTGCTCCT GGAGCCAAGG GTGAAGCCGG CCCCACTGGT GCCCGTGGTC CTGAAGGTGC 1320 TCAAGGTCCT CGCGGTGAAC CTGGTACTCC TGGGTCCCCT GGGCCTGCTG GTGCCTCCGG 1380 15 TAACCCTGGA ACAGATGGAA TTCCTGGAGC CAAAGGATCT GCTGGTGCTC CTGGCATTGC 1440 TGGTGCTCCT GGCTTCCCTG GGCCACGGGG TCCTCCTGGC CCTCAAGGTG CAACTGGTCC 1500 TCTGGGCCCG AAAGGTCAGA CGGGTGAACC TGGTATTGCT GGCTTCAAAG GTGAACAAGG 1560 CCCCAAGGGA GAACCTGGCC CTGCTGGCCC CCAGGGAGCC CCTGGACCCG CTGGTGAAGA 1620 AGCACAGAGA GGTGCCCGTG GAGAGCCTGG TGGCGTTGGG CCCATCGGTC CCCCTGGAGA 1680
AAGAGGTGCT CCCGGAAACC GCGGTTTCCC AGGTCAAGAT GGTCCCCAAGGG 1740
AGCCCCTGGA GAGCGAGGC CCAGTGGTCT TGCTGGCCCC AAGGGAGCCA ACGGTGACCC 1800
TGGCCGTCCT GGAGAACCTG GCCTTCCTGG AGCCCGGGGT CTCACTGGCC GCCCTGGTGA 1860 20 TGCTGGTCCT CAAGGCAAAG TTGGCCCTTC TGGAGCCCCT GGTGAAGATG GTCGTCCTGG 1920 ACCTCCAGGT CCTCAGGGGG CTCGTGGGCA GCCTGGTGTC ATGGGTTTCC CTGGCCCCAA 1980 25 AGGTGCCAAC GGTGAGCCTG GCAAAGCTGG TGAGAAGGGA CTGCCTGGTG CTCCTGGTCT 2040 GAGGGGTCTT CCTGGCAAAG ATGGTGAGAC AGGTGCTGCA GGACCCCCTG GCCCTGCTGG 2100 ACCTGCTGGT GAACGAGGCG AGCAGGGTGC TCCTGGGCCA TCTGGGTTCC AGGGACTTCC 2160 TGGCCCTCCT GGTCCCCCAG GTGAAGGTGG AAAACCAGGT GACCAGGGTG TTCCCGGTGA 2220 AGCTGGAGCC CCTGGCCTCG TGGGTCCCAG GGGTGAACGA GGTTTCCCAG GTGAACGTGG 2280 30 CTCTCCCGGT GCCCAGGGCC TCCAGGGTCC CCGTGGCCTC CCCGGCACTC CTGGCACTGA 2340 TGGTCCCAAA GGTGCATCTG GCCCAGCAGG CCCCCCTGGC GCACAGGGCC CTCCAGGTCT 2400 TCAGGGAATG CCTGGCGAGA GGGGAGCAGC TGGTATCGCT GGGCCCAAAG GCGACAGGGG 2460
TGACGTTGGT GAGAAAGGCC CTGAGGGAGC CCCTGGAAAG GATGGTGGAC GAGGCCTGAC 2520
AGGTCCCATT GGCCCCCCTG GCCCAGCTGG TGCTAACGGC GAGAAGGGAG AAGTTGGACC 2580
TCCTGGTCCT GCAGGAAGTG CTGGTGCTCG TGGCGCTCCG GGTGAACGTG GAGAGACTGG 2640 35 CCCCCCGGA CCAGCGGGAT TTGCTGGGCC TCCTGGTGCT GATGGCCAGC CTGGGGCCAA 2700 GGGTGAGCAA GGAGAGGCCG GCCAGAAAGG CGATGCTGGT GCCCCTGGTC CTCAGGGCCC 2760 CTCTGGAGCA CCTGGGCCTC AGGGTCCTAC TGGAGTGACT GGTCCTAAAG GAGCCCGAGG 2820 TGCCCAAGGC CCCCGGGAG CCACTGGATT CCCTGGAGCT GCTGGCCGCG TTGGACCCCC 2880 40 AGGCTCCAAT GGCAACCCTG GACCCCCTGG TCCCCTGGT CCTTCTGGAA AAGATGGTCC 2940 CAAAGGTGCT CGAGGAGACA GCGGCCCCCC TGGCCGAGCT GGTGAACCCG GCCTCCAAGG 3000
TCCTGCTGGA CCCCCTGGCG AGAAGGGAGA GCCTGGAGAT GACGGTCCCT CTGGTGCCGA 3060
AGGTCCACCA GGTCCCCAGG GTCTGGCTGG TCAGAGAGGC ATCGTCGGTC TGCCTGGGCA 3120
ACGTGGTGAG AGAGGATTCC CTGGCTTGCC TGGCCCATCG GGTGAGCCCG GCAAGCAGGG 3180
TGCTCCTGGA GCATCTGGAG ACAGAGGTCC TCCTGGCCCC GTGGGTCCTC CTGGCCTGAC 3240 45 GGGTCCTGCA GGTGAACCCG GACGAGAGGG AAGCCCCGGT GCTGATGGCC CCCCTGGCAG 3300 AGATGGCGCT GCTGGAGTCA AGGGTGATCG TGGTGAGACT GGTGCTGTGG GAGCTCCTGG 3360 AGCCCCTGGG CCCCCTGGCT CCCCTGGCCC CGCTGGTCCA ACTGGCAAGC AAGGAGACAG 3420 AGGAGAAGCT GGTGCACAAG GCCCCATGGG ACCCTCAGGA CCAGCTGGAG CCCGGGGAAT 3480 50 CCAGGGTCCT CAAGGCCCCA GAGGTGACAA AGGAGAGGCT GGAGAGCCTG GCGAGAGAGG 3540 CCTGAAGGGA CACCGTGGCT TCACTGGTCT GCAGGGTCTG CCCGGCCCTC CTGGTCCTTC 3600 TGGAGACCAA GGTGCTTCTG GTCCTGCTGG TCCTTCTGGC CCTAGAGGTC CTCCTGGCCC 3660 TGGAGACCAA GGTGCTTCTG GTCCTGCTGG TCCTTCTGGC CCTAGAGGTC CTCCTGGCCC 3660
CGTCGGTCCC TCTGGCAAGA ATGGTGCTAA TGGAATCCCT GGCCCCATTG GGCCTCCTTGG 3720
TCCCCGTGGA CGATCAGGCG AAACCGGTCC TGCTGGTCCT CCTGGAAATC CTGGGCCCC 3780
TGGTCCTCCA GGTCCCCCTG GCCCTGGCAT CGACATGTCC GCCTTTGCTG GCTTAGGCCC 3840
GAGAGAGAG GGCCCCGACC CCCTGCAGTA CATGCGGGCC GACCAGGCAG CCGGTGGCCT 3900
GAGACAGCAT GACGCCGAGG TGGATGCCAC ACTCAAGTCC CTCAACAACC AGATTGAGAG 3960
CATCCGCAGC CCCGAGGGCT CCCGCAAGAA CCCTGCTCGC ACCTGCAGAG ACCTGCAAACT 4020 55 CTGCCACCCT GAGTGGAAGA GTGGAGACTA CTGGATTGAC CCCAACCAAG GCTGCACCTT 4080 60 GGACGCCATG AAGGTTTTCT GCAACATGGA GACTGGCGAG ACTTGCGTCT ACCCCAATCC 4140 AGCAAACGTT CCCAAGAAGA ACTGGTGGAG CAGCAAGAGC AAGGAGAAGA AACACATCTG 4200 GTTTGGAGAA ACCATCAATG GTGGCTTCCA TTTCAGCTAT GGAGATGACA ATCTGGCTCC 4260 CAACACTGCC AACGTCCAGA TGACCTTCCT ACGCCTGCTG TCCACGGAAG GCTCCCAGAA 4320 CATCACCTAC CACTGCAAGA ACAGCATTGC CTATCTGGAC GAAGCAGCTG GCAACCTCAA 4380 65 GAAGGCCCTG CTCATCCAGG GCTCCAATGA CGTGGAGATC CGGGCAGAGG GCAATAGCAG 4440 GTTCACGTAC ACTGCCCTGA AGGATGGCTG CACGAAACAT ACCGGTAAGT GGGGCAAGAC 4500 GTICACGTAC ACTGCCCTGA AGGATGGCTG CACGAAACAT ACCGGTAAGT GGGGCAGGAC 4500
TGTTATCGAG TACCGGTCAC AGAAGACCTC ACGCCTCCCC ATCATTGACA TTGCACCCAT 4560
GGACATAGGA GGGCCCGAGC AGGAATTCGG TGTGGACATA GGGCCGGTCT GCTTCTTGTA 4620
AAAACCTGAA CCCAGAAACA ACACAATCCG TTGCAAACCC AAAGGACCCA AGTACTTTCC 4680
AATCTCAGTC ACTCTAGGAC TCTGCACTGA ATGGCTGACC TGACCTGATG TCCATTCATC 4740
CCACCCTCTC ACAGTTCGGA CTTTTCTCCC CTCTCTTTCT AAGAGACCTG AACTGGGCAG 4800
ACTGCAAAAT AAAATCTCGG TGTTCTATTT ATTTATTGTC TTCCTGTAAG ACCTTCGGGT 4860
CAAGGCAGGCA GAAGGAACCT AACTGGTGTG AGTGCAAATGC CCCCTGAGTG ACTGCCCCCA 4920 70 GCCCAGGCCA GAAGACCTCC CTTCAGGTGC CGGGCGCAGG AACTGTGTGT GTCCTACACA 4980 75 ATGGTGCTAT TCTGTGTCAA ACACCTCTGT ATTTTTTAAA ACATCAATTG ATATTAAAAA 5040 TGAAAAGATT ATTGGAAAGT

SEQ ID NO:127 PFH8 DNA SEQUENCE 5 Nucleic Acid Accession #: NM_015900 Coding sequence: 32-1402 (underlined sequences correspond to start and stop codons) 51 21 31 10 CACGAGCGC ACGAGGATTT CCAGCTCAGC GATGCCCCCA GGTCCCTGGG AGAGCTGCTT 60 CTGGGTGGGG GGCCTCATTT TGTGGCTCAG CGTTGGAAGT TCAGGGGATG CACCTCCTAC 120 CCCACAGCCA AAGTGCGCTG ACTTCCAGAG CGCCAACCTT TTTGAAGGCA CCGATCTCAA 180 AGTCCAGTTT CTCCTCTTTG TCCCTTCGAA TCCTAGCTGT GGGCAGCTAG TAGAAGGAAG 240 CAGTGACCTC CAAAACTCTG GGTTCAATGC CACTCTGGGA ACCAAACTAA TTATCCATGG 300 15 ATTCAGGGTT TTAGGAACAA AGCCTTCCTG GATTGACACA TTTATTAGAA CCCTTCTGCG 360 TGCAACGAAT GCTAATGTGA TTGCCGTGGA CTGGATTTAT GGGTCTACAG GAGTCTACTT 420 CTCAGCTGTG AAAAATGTGA TTAAGTTGAG CCTCGAGATC TCCCTTTTCC TCAATAAACT 480 CCTGGTGCTG GGTGTGTCGG AATCCTCAAT CCACATCATT GGTGTTAGCC TGGGGGCCCA 540 CGTTGGGGGC ATGGTGGGAC AGCTCTTCGG AGGCCAGCTG GGACAGATCA CAGGCCTGGA 600 20 CCCCGCTGGA CCTGAGTACA CCAGGGCCAG TGTGGAAGAG CGCTTGGATG CTGGAGATGC 660 CCTCTTCGTG GAAGCCATCC ACACAGACAC CGACAATTTG GGTATTCGGA TTCCCGTTGG 720 ACATGTGGAC TACTTCGTCA ACGGAGGCCA AGACCAACCT GGCTGCCCCA CCTTCTTTTA 780
CGCAGGTTAT AGTTATCTGA TCTGTGATCA CATGAGGGCT GTGCACCTCT ACATCAGGGC 840
CCTGGAGAAT TCCTGTCCAC TGATGGCCTT TCCCTGTGCC AGCTACAAGG CCTTCCTTGC 900
TGGACGCTGT CTGGATTGCT TTAACCCTTT TCTGCTTTCC TGCCCAAGGA TAGGACTGGT 960
GGAACAAGGT GGTGTCAAGA TAGAGCCGCT CCCCAAGGAA GTGAAAGTCT ACCTCCTGAC 1020 25 TACTTCCAGT GCTCCGTACT GCATGCATCA CAGCCTCGTG GAGTTTCACT TGAAGGAACT 1080 GAGAAACAAG GACACCAACA TCGAGGTTAC CTTCCTTAGC AGTAACATCA CCTCTTCATC 1140 TAAGATCACC ATACCTAAGC AGCAACGCTA TGGGAAAGGA ATCATAGCCC ATGCCACCCC 1200 30 ACAATGCCAG ATAAACCAAG TGAAATTCAA GTTTCAGTCT TCCAACCGAG TTTGGAAAAA 1260 AGACCGGACT ACCATTATTG GGAAGTTCTG CACTGCCCTT TTGCCTGTCA ATGACAGAGA 1320 AAAGATGGTC TGCTTACCTG AACCAGTGAA CITACAAGCA AGTGTGACTG TTTCCTGTGA 1380 CCTGAAGATA GCCTGTGTG<u>T AG</u>TTTAACCT GGGCAGGACA CATCTCCCTG CATTTTTTT 1440 TITITITITT GAGAGAGAGG TGTGATGAGG GATGTGTGTG TGCAGCTTAT TGTAGACCAT 1500
TACTACTAAG GAGAAAAGCA AAGCTCTTTC TTATTTTCCT CATAATCAGC TACCCTGGAG 1560
GGGAGGGAGA ACTCATTTTA CAGAACTTGG TTTCCTTTGC CGATCTTATG TACATACCCA 1620
TTTTAGCTTT CCCATGCATA CTTAACTGCA CTTGCTTTAT CTCCTTGGGC ATTCGTACTT 1680 35 AGGATTCAAT AGAAACATGT ACAGGGTAAA CAATTTTTTA AAAATAAAAC TTCATGGAGT 1740 ΑΛΑΛΑΛΑΑ ΑΛΑΛΑΛΑ 40 SEQ ID NO:128 PFH8 Protein sequence Protein Accession #: NP 056984.1 45 51 11 21 31 41 MPPGPWESCF WVGGLILWLS VGSSGDAPPT POPKCADFOS ANLFEGTDLK VOFLLFVPSN 60 PSCGQLVEGS SDLQNSGFNA TLGTKLIIHG FRYLGTKPSW IDTFIRTILIR ATNANVIAVD 120 WIYGSTGVYF SAVKNVIKLS LEISLFLNKL LVLGVSESSI HIIGVSLGAH VGGMVGOLFG 180 50 GQLGQITGLD PAGPEYTRAS VEERLDAGDA LFVEAIHTDT DNLGIRIFVG HYDYFVNGGQ 240 DQPGCPTFFY AGYSYLICDH MRAVHLYISA LENSCPLMAF PCASYKAFLA GRCLDCFNPF 300 LLSCPRIGLY EQGGVKIEPL PKEVKVYLLT TSSAPYCMHH SLVEFHLKEL RNKDTNIEVT 360 FLSSNITSSS KITIPKQQRY GKGIIAHATP QCQINQVKFK FQSSNRVWKK DRTTIIGKFC 420 TALLPVNDRE KMVCLPEPVN LQASVTVSCD LKIACV 55 SEQ ID NO:129 PFH7 DNA SEQUENCE Nucleic Acid Accession #: NM_014384 60 Coding sequence: 89-1336 (underlined sequences correspond to start and stop codons) 21 31 41 51 65 CGTTGCCGGG TCGCAGGTCC CGCCAGTGCG AGCGCAACGG AGGTCGAAGG CGTTCAGACT 60 CTTGCCGGA CGCCGGGCCTAT GCTGTGGAGG GGCTGCAGGG GTTCCGGGG 120
CTCTAGCTGAA CGCGGAGCTG CGGCGGCTAT GCTGTGGAGG GGCTGCCGGG GTTTCGGGGC 120
CGCCTCGGC TGCCTGCCCG GCGGTCTCCG GGTCCTCGTC CAGACCGCC ACCGGAGCTT 180
GACCTCCTGC ATCGACCCTT CCATGGGACT TAATGAAGAG CAGAAAGAAT TTCAAAAAGT 240
GGCCTTTGAC TTTGCTGCCC GAGAGATGGC TCCAAATATG GCAGAGTGGG ACCAGAAGGA 300
GCTGTTCCCA GTGGATGTGA TGCGGAAGGC AGCCCAGCTA GGCTTCGGAG GGGTCTACAT 360
ACAAACAGAT GTGGGGCGGT CTGGGCTGTC ACGTCTTGAT ACCTCTGTCA TTTTTGAAGC 420 70 CTTGGCTACA GGCTGCACCA GCACCACAGC CTATATAAGC ATCCACAACA TGTGTGCCTG 480 GATGATTGAT AGCTTCGGAA ATGAGGAACA GAGGCACAAA TTTTGCCCAC CGCTCTGTAC 540 CATGGAGAAG TTTGCTTCCT ACTGCCTCAC TGAACCAGGA AGTGGGAGTG ATGCTGCCTC 600 75 TCTTCTGACC TCCGCTAAGA AACAGGGAGA TCATTACATC CTCAATGGCT CCAAGGCCTT 660 CATCAGTGGT GCTGGTGAGT CAGACATCTA TGTGGTCATG TGCCGAACAG GAGGACCAGG 720 CCCCAAGGGC ATCTCATGCA TAGTTGTTGA GAAGGGGACC CCTGGCCTCA GCTTTGGCAA 780 GAAGGAGAAA AAGGTGGGGT GGAACTCCCA GCCAACACGA GCTGTGATCT TCGAAGACTG 840

TGCTGTCCCT GTGGCCAACA GAATTGGGAG CGAGGGGCAG GGCTTCCTCA TTGCCGTGAG 900

AGGACTGAAC GGAGGGAGGA TCAATATTGC TTCCTGCTCC CTGGGGGCTG CCCACGCCTC 960
TGTCATCCTC ACCCGAGACC ACCTCAATGT CCGGAAGCAG TTTGGAGAGC CTCTGGCCAG 1020 TAACCAGTAC TICGAAGACC ACCICAATGI CCGGAAGAGAGTITGGAGAGGCTCTIGGCCAG 1020
TAACCAGTAC TICGACATTCA CACTGGCTGA TATGGCAACA AGGCTGGTGG CCGCGCGCGT 1080
GATGGTCCGC AATGCAGCAG TGGCTCTGCA GGAGGAGGG AAGGATGCAG TGGCCTTGTG 1140
CTCCATGGCC AAGCTCTTTG CTACAGATGA ATGCTTTGCC ATCTGCAACC AGGCCTTGCA 1200
GATGCACGGG GGCTACGGCT ACCTGAAGGA TTACGCTGTT CAGCAGTACG TGCGGGACTC 1260 5 CAGGGTCCAC CAGATTCTAG AAGGTAGCAA TGAAGTGATG AGGATACTGA TCTCTAGAAG 1320 CCTGCTTCAG GAGTAGAACC CACACTTGTT CTGGCCTGGT GTTCAGTGCG ACTGCAGTCA 1380 GTGTTGAGTG GTGCCATGTG GGCCGCTCTA TTCCAAAGGA ATCATGGATT AGACCCAAGG 1440 10 GCTGAGCTCC TCTAGGGCAG GACCTGCACC CTGTGTGTTG GCACCAGCAT CGGGTCTTGG 1500 ACTGGGGCAG AATCCCCAGT GGAACCGGAA GAGCTGGACT GATGAGAAAC ATCAGAAGAA 1560 CACATACTAC CTTGTTTTCC TAATGCCAGA AGGGTGACCA GTGAAGATTC ACCGTCAAAC 1620 CATGAAAGTC CTTTCTTGGA TCCACTTTAT CTTGATTAGT CTGCATTTTA CTAGTTCACT 1680 GGATCCCTCC TCTAGGGGCC TGGGGACTTT CACTGATGCT CTTCCTGATT CTAGAGCAAA 1740 15 GGTGTGGGAA GGGGAAATGG AGGAATGCCC TCCTGTCTGT GTCGTTCTCT GTGCCACAGC 1800 TACAGATGCA GAAGGTTTCT CTGGATAGCA CACCTCTGAA TGTAAATCAT GATAAAATGG 1860 ATATTTGGAA ACTTACTCCT AAGCTGTGAT GTAGGGTGTA TTTCTACTTC TGGACTGCCT 1920 CAATATCAAG GGCTGAGACT TTTGAATGTT GAATATTCGT TGGGTTCAT GTTAAGACGC 1980
CTGTGGTCCA GGAGTGCTAT TCAGTGTTTC TGTTCCTGAT AAACACTTTG AATATTTTT 2040
TGTGTTTTG TTTCCTTTTC TGAAGCTGTT CCTCCTTTTA AATATTTTTA ATCACATTGA 2100
TAAAATCTAT CCTTCATCCA CCTCTGGTTC TACTATAGTT GATTTTTATT TTAAATGTTT 2160
AATTGTATTT GATTAAACAC TTAACTGGAT TTTGGAATAA TAAAACTCTC GTCCAATTTG 2220 20 **GCTTTTAAAA AAAAAAAA** 25 SEQ ID NO:130 PFH7 Protein sequence: Protein Accession #: 30 11 21 31 41 51 MLWSGCRRFG ARLGCLPGGL RVLVQTGHRS LTSCIDPSMG LNEEQKEFOK VAFDFAAREM 60 APNMAEWDQK ELFPVDVMRK AAQLGFGGVY IQTDVGGSGL SRLDTSVIFE ALATGCTSTT 120 AYISIHNMCA WMIDSFGNEE QRHKFCPPLC TMEKFASYCL TEPGSGSDAA SLLTSAKKQG 180 35 DHYILNGSKA FISGAGESDI YVVMCRTGGP GPKGISCIVV EKGTPGLSFG KKEKKVGWNS 240 QPTRAVIFED CAVPVANRIG SEGQGFLIAV RGLNGGRINI ASCSLGAAHA SVILTRDHLN 300 VRKQFGEPLA SNQYLQFTLA DMATRLVAAR LMVRNAAVAL QEERKDAVAL CSMAKLFATD 360 ECFAICNQAL QMHGGYGYLK DYAVQQYVRD SRVHQILEGS NEVMRILISR SLLQE 40 SEQ ID NO:131 PFH6 DNA SEQUENCE Nucleic Acid Accession #: NM 013989 707-1105(underlined sequences correspond to start and stop codons) Coding sequence: 45 GCCTGCAGAG AGAGGCACTT TGCACCACAG ACAGATAGCA AGAAGGGAAA GACAGAGAGT 60 GAGAAAAAG AGGAGTCAGT CGCTCCTGGG GAAGGGAGAG AGTGAGACTG GGAGAAAGAG 120 50 AAGCACAGAA AGTGTGTGTA AAACGGAGTA AAGAAAGAAA AAAAAAAAC TACCCTTAAA 180 GCACATTTAA AAAAAAAAA CTCTGGCAAT TCAAGAAAGA AACAGGCTAC GTTTAAAGAG 240 55 CTCCAACTGC TGGGCTGGAG AGACTGGACT TAGTCTTGCC ATTTCTGCTT CTTTGAAAGA 540 GGAGACAACT TGGGCTTCCT TTTAATTTAG TTTTTTTTCC CCTTCTCCCC CAACCCCCAA 600 CCTTCCCCCT TACCTCCCCC ACCCCCTTTA TCACCACCCC CCTTTTAAAT AAGAGGGTGA 660 AGGGGAACCA GAGCGCACAA GGGAACTGAC TCAGGAGGCA GAGAAGATGG GCATCCTCAG 720 60 CGTAGACTTG CTGATCACAC TGCAAATTCT GCCAGTTTTT TTCTCCAACT GCCTCTTCCT 780 GGCTCTCTAT GACTCGGTCA TTCTGCTCAA GCACGTGGTG CTGCTGTTGA GCCGCTCCAA 840 GTCCACTCGC GGAGAGTGGC GGCGCATGCT GACCTCAGAG GGACTGCGCT GCGTCTGGAA 900 GAGCTTCCTC CTCGATGCCT ACAAACAGGT GAAATTGGGT GAGGATGCCC CCAATTCCAG 960 GAGCHICCH CHUGATGCCT ACAACAGGT GAAATHUGGT GAGGATGCCC CCAATHUAG 960
TGTGGGTGCAT GTCTCCAGTA CAGAAGGAG TGACAACAGT GGCAATGGTA CCCAGGAGAA 1020
GATAGCTGAG GGAGCCACAT GCCACCTTCT TGACTTTGCC AGCCCTGAGC GCCCACTAGT 1080
GGTCAACTTT GGCTCAGCCA CTTGACCTCC TTTCACGAGC CAGCTGCCAG CCTTCCGCAA 1140
ACTGGTGGAA GAGTTCTCCT CAGTGGCTGA CTTCCTGCTG GTCTACATTG ATGAGGCTCA 1200
TCCATCAGAT GGCTGGCCGA TACCGGGGGA CTCCTCTTTTG TCTTTTTGAGG TGAAGAAGCA 1260
CCAGAACCAG GAAGATCGAT GTGCAGCAGC CCAGCAGCTT CTGGAGCGTT TCTCCTTGCC 1320 65 70 GCCCCAGTGC CGAGTTGTGG CTGACCGCAT GGACAATAAC GCCAACATAG CTTACGGGGT 1380 AGCCTTTGAA CGTGTGTGCA TTGTGCAGAG ACAGAAAATT GCTTATCTGG GAGGAAAGGG 1440 CCCCTTCTCC TACAACCTTC AAGAAGTCCG GCATTGGCTG GAGAAGAATT TCAGCAAGAG 1500 ATGAAAGAAA ACTAGATTAG CTGGTTAAAG GTATGATTAT AAGAGAGCTT ATTGTTTTAA 1560 AAAGTTATAT AAAGGCAAGG AAATTAAGAA CTGAATCCAT ATTTCAACAG AGCCCTATTG 1620 75

GCTTACTGAA AGACAGGAGT TTATCTATCG GAAGAACATG AATCTCTAAC AGCTCCATAC 1680 TTCTTTCACT ACTCAAATGG CATTGGGCTG AGTAAGTAAC CATATCACCT CTCTTCTTAG 1740 TAAAAAGCCC TATGTGAAAA GATCCCAAGA TGGAGGAA GAACTGATAA TTCAGCATGT 1800 GTTCATTCTG CATTGAGAAG GAACTGATAC ATCTGATGAC TGCTTTAGGA CCAGAAGAAA 1860 AGACTTACCT GAATAATTAC TACATTAGGG AAGCTACTGT CTACGTTAAG ATAAAGGGTA 1920

TTGCCTTGGC TCTATTTGGC ATGGATGGAG CCCAGTTGGA AAATTCCCAA ATATTACAAC 1980 AAGTCCTTGA ACCCAGGCCA TGTGGTTAGA CGTTGGTGTT AAGGTTAGAC CTTATGTTAG 2040 AGTCATTTCT GATGTTCCAG CTTCTAGCCA TGTAGTGCTC TCAGTCTTCA TACCCCAGAA 2100 ATTATTGGTA TATTTGTAGA TACCGAGAAT GATCCCTCAG TCTGAGAGGT TAGAATGATC 2160 ATCTGTAATC TGAGGGTTAA TTTCTAGGCA GGTGGAGAGA GTGGTAAAAA AGAAATGAAA 2220
TTGACAAGCT AGGAAAGAGG AGGCAGAAAG ATTTGGAAAA TTCACCAGAGT TTCACCCTTA 2280
AGCTGTAGAG AGTGGGTCAC ATTTGTTAGC CACGGAAACA TAGAAACATA CACAAGGCCA 2340
GAAAAAGAAG AAGGAGCTCA ACTAAAAGTG GCATAGAGAA TACACATATA AAAACAATAT 2400 5 ATTTGTCATA TGCTCCTAGA GAGGAGAAG GGGTGATTGA AAGAAAAAA AATACTTAAA 2460
TATTTGTAAT TGTGAGGGGT TTCTTTTGGA AATAATTACT TTTGAACCAT GTATGTGGTA 2520
TGTATATTTT CAGTGGGTTA ATTATACCCC ATGATACCTA TTAAAGGAAA ACCAGTGGGT 2580 10 CTGGTGGTGC TGGTCTTTTC CTCCCCATTC CTACAATTTC TATGTGGCCC AAGTCATTCC 2640 TAATCTTGGT CTCTATAGCA GTGTTCTCTC TGAATGCTGA GCTGAAGAAA TTATACGTAC 2700 ATACACACAT ACATACATAC ATACAAATAT ATGTATATAT ATTCTCAGCT GCTGCGGGAG 2760 15 GTAGGTACCA TGGCCATTCA GCACAGCCTT GATTTCCTCC CAAAGTAGGT GAGCTATAGT 2820 GAAGAATAGG TGCAAACAAA CAAGCTTACT TCCATTGCAA AATAGAAGAA GAGGAAGTTA 2880 GAGATAATTC TGATCAATCA TTTTGGAGGC TTTGTTATAA GGCAACCCCC GGTATATCAT 2940 GGAATTTCCA TTGACATTTG AATTTGGACT TGGATCTTCC CTTGGTCCCA TTAGCTGAGG 3000 TITAGTAATC TAAAGTCCCT ATAGTATATG ATTATAATGC TATTTTAAAA AATATATATA 3060 TAAAATATIT TITICTTTTT AAATAGACA CTATAGITTT ACCCATAAGT AATATITAAA 3120
GATTATAGCT CCCAAAAGAA TGGACCAACC ACTITICGTAT CATAATTTCT TITTIGGTAAA 3180
TATGAGACTA TTATGAAATC ATAGTATATG ATTGTATTTA AAGGTACAAT CAAAGGATCT 3240
TITGTCCATT CCATTAATAA CTGAATAAAA AATAAATAAA ATGGATAGAA AAAAACTAAA 3300
GTTGAAAATA CATTCTTAAA CTAGTTGTCT GAAATGAGAA AAGAGTGAGA ACTAGGTGTG 3360
CAAGAACCAA ACGTATTTTA TTTTATTTTT TAAATGGGAG CAACATATCA GTCGTGTCAC 3420 20 25 CAGCTGGTAT ATTGTGTAAA TATTAAAGCT CCATTGGGAC TGATTTTTCA TGGCAACATC 3480 AGCTTTCTAA TGTTCTAAAT TCTATAAAAA CCACCCACAA AGAAACAAAG CAAATTTCAT 3540 TATCTAATGA GTTGCTGGAA AATCATATTG AGAATAATTA TTTCAGATTC CTCAGTTGTT 3600 AACTICTACA TICAAGGGCT TATCTCTGCC CCCATTGATT TITAACCTCA AAATGGTGTG 3660 30 AGATTTACTG TGGAACCCTA AAGCAGTAAA ATAAAAAACC TGGTTGCAGC ACATTCACAC 3720 TGTTGTCCTT-AAAATTCCCC TTTTTTCTCT ATGTACGATA AAGTAACAGT ATGTCAGATA 3780 AGCCGGTGGG GGGATGAGAT TAGGCTGAGG CAGTGCTAGT CAACTGGGGG AAAAGGATGA 3840 TGGAAAAATC ACCCAGTTGT GCTATATTTT TAAAGAAGGA GGTCGTTTAT GTGTGCAGAC 3900
AATTCTCCCT GAGGTTAGCC CAATGGAGAA ATGAAGCAGA GGAAGGAAAC ATAGAAAGAC 3960
ATGGGCTATC AGGGAGGAAG ATGTTCAATA GAACATGCAA GAATTTCTGG AAGAAAGGCT 4020
GTGGAAGGGC CAATGGAGAA AATGAATGGA CAAAGCTCAG GAATCCCTAC GCTATGTAGA 4080
ATGTTCTTGG TGTTATCAGG GTTAAGCCCT GTAATTATGT AACCTATTTA TCGCAACATG 4140 35 AATTITTATG ATTICTTGTG ATGTATICTT TTATGAAATT AACAAGAACT CATTATTTTG 4200 AGGTAGAGGA AAATCAATGC TTTATCTGAT ATGCTGAGAA ATTATTAGAT TGCCAATACT 4260 40 CATGTGCGTT TCATGTGTTT TATAAGGTTT GTTCCTTTGA AGAATTGTAG TTCTTAGTCC 4320 CACAGGGAAA TGTGTATCTA TTTATATATC ATAGTATAAA TCTATGATAT ATTTATATCA 4380 TATATAAAAG TCTGAGTTCT CTTTCTTAGT CCCTAATCAT GTTTCTCCCA TAGGCTGTGT 4440 TTACATGGAG CTATCGGTTT. AGCCTTTTAA GCTTCATTAG CTTGTCTATT ATTGAAATAG 4500 TTTCCAAGAA ATTITTAGATA TTATCATAAC ATCTGGGTCT ACTCAAACAC TTATTGTTTG 4560
AAAGACTTAT GTCTTGGACC TATCAAAAAC TGACTTATT TATTGCTTAG TGAAAAATACT 4620
AGTGGGATCA ACAATGATTT TCTTGAATGG GCATGAATGG AGATGCCCGC ACAGTAATGT 4680
AGAAATGTTT CATACAGCTA TTAAAATGTA ACTGACCTCC TTAGAGGCAG ATTAGTAACT 4740 45 TTGGGTCTCT GGTCCTGTGT CTTCACCTCA TTTATAGCAC GTCTCCTTGA TTTTTGGTAG 4860 50 TATCAACTTC CCAGTGATCT GTTCAGTTAA GTTCTTCTCC CGTTAACCAG GAAGTGCTTA 4920 TTCTCTCATC ACAGTGGGAA GAATAGCCTA TTGTCTTTCA TTTTGCCTGA GTGTATTTTA 4980 CTATTTGGGC TCTGAAATAA AAATTATGAA ATATGGTGAG GTCACATGTT GGTGCTGCCT 5040 55 60 TICCCCTAAA TGGTATGGCC AAAAGTCAGA GTTAAAATAT ATATAGTTAG ATTCCAACTT 5520 CCTCCTTCAC TCTAAAAATA GAATCCAAAC CCACTCTTCA TATATGCTTC CAGAATGGGG 5580 CTTAAGTACC AATCTCTGCT TTGCAATGGG CACAATCTTG GTCATGTCCT GAGGCTCTCT 5640 AAGAAAAGAG AGGATCTAGG ATGGGAGAGC TAGAAAGTTG CTAACTGGGA AGAACAAGGC 5700 AAGAAAAGAG AGGATCTAGG ATGGGAGAGC TAGAAAGTTG CTAACTGGGA AGAACAAGC 5700
CCTGAGGGGT TGGTCTACCA ATCTGGGAA ATTTGAAAAC AAACTTCTCG CAACTGAAGG 5760
AAGGCTGAAG GCTGCCAA GTCATTGAGT GACTTTAGGA TGAGCAAAAC ATTGGGCCAC 5820
TTCCTAATGC CCTATGTGTA TAGTACCAGA AGCAAGGTCT CAGACTTAAC AGACCCAGCT 5880
CTGTTCCAAG GTGAGTCTGA ACCAATAGAA AGCAAACATG TGCAGATATC CAAACAAGAC 5940
TGCTCATGCA AGTCCGGGCT GGCTACCCGT CTTAGGCAGC AACAGCAGAG CTCCAGGGAG 6000
CTTATTCAAT ATTTACTGAG ACTTCGAAGA CCCAGCAGAT GTTTAATGAA GTCACTATTT 6060
TGGCTCAAAC CCTCCACTTC TCCCCCCTCCC CTCAAAAAGC CAACAGGTAA ACACTATAAAT 6120
GAAAGAAACC CACAGAAGGG GATGGGAAAT AAAGAAAATT CTCTCAAGAC TTCTCCAGGC 6180
CCATGTCACT GGTCAGCGTG GTTTTTATATGT GTATTAGGAT TGGGGGATGG GAAGAATAAA 6240 65 70 GTATCCAGTA CTTTATAACC AAAGCAATTA AATGATATTG GGGTAGGGAA TGTTGGCCAG 6300 TTTTGTTTAG TTTTGCCATC ACATTGTCAC CCAGACCTCA CCTAGCCCCA AGTAATCGGG 6360 75 CGCCCCGAAG AGGGAGACAG AGATGTGCCA GAGTTGACCC AGTGTGCGGA TGATAACTAC 6420 TGACGAAAGA GTCATCGACC TCAGTTAGTG GTTGGATGTA GTCACATTAG TTTGCCTCTC 6480 CCCATCTTTG TCTCCCTGGC AAGGAGAATA TGCGGGACAT GATGCTAAGA GCCCTGGGTA 6540 AATGTGGTGA GAATGCACGC GTGCATATGC TACACATATG TGCTTCTCAG TTGCAGAAAA 6600 TGAACTGCTT TGGGAGATTA TCAGTAGAAA GAGTGTTATC ATATTGGTGC TGAGTGCTAT 6660

GTGTGCTTAT ACAATTTGTT CTTGTATTTT AATAAACTTT GAATAAAAGA ATAAAAAAA 6720 AAAAAAAAA AAAAA

NANFYLQAGS AFAEMKIKGL LDRKGLWRSL NEMKRIFNFR RTPAAEHAFE HWQEDAFFAS 240 QFLNGLNPVL IRRCHYLPKN FPVTDAMVAS LLGPGTSLQA ELEKGSLFLV DHGILSGIQT 300 NVINGKPQFS AAPMTLLYQS PGCGPLLPLA IQLSQTPGPN SPIFLPTDDK WDWLLAKTWV 360 RNAEFSFHEA LTHILLHSHLL PEVFILATLR QLPHCHPLFK LLIPHTRYTL HINTLARELL 420 IVPGQVVDRS TGIGIEGFSE LIQRNMKQLN YSLLCLPEDI RTRGVEDIPG YYYRDDGMQI 480 WGAVERFVSE IIGIYYPSDE SVQDDRELQA WVREIFSKGF LNQESSGIPS SLETREALVQ 540 YVTMVIFTCS AKHAAVSAGQ FDSCAWMPNL PPSMQLPPPT SKGLATCEGF IATLPPVNAT 600 CDVILALWLL SKEPGDQRPL GTYPDEHFTE EAPRRSIATF QSRLAQISRG IQERNRGLVL 660 PYTYLDPPLI ENSVSI

SEQ ID NO:135 PFH4 DNA SEQUENCE

Nucleic Acid Accession #: NM_002742

Coding sequence: 236-2974 (underlined sequences correspond to start and stop codons)

15

5

10

41 31 GAATTECTTC TETECTCCTC CTCGCCCTTC TCCTCGCCCT CCTCCTCCTC CTCGCCCTCC 60 CCTCCCGATC CTCATCCCCT TGCCCTCCCC CAGCCCAGGG ACTTTTCCGG AAAGTTTTTA 120 20 TTTTCCGTCT GGGCTCTCGG AGAAAGAAGC TCCTGGCTCA GCGGCTGCAA AACTTTCCTG 180
CTGCCGCGCC GCCAGCCCCC GCCCTCCGCT GCCCGGCCCT GCGCCCCGCC GAGCGATGAG 240 CGCCCTCCG GTCCTGCGGC CGCCCAGTCC GCTGCTGCCC GTGGCGGCGG CAGCTGCCGC 300 AGCGGCCGCC GCACTGGTCC CAGGGTCCGG GCCCGGGCCC GCGCCGTTCT TGGCTCCTGT 360 25 CGCGGCCCCG GTCGGGGGCA TCTCGTTCCA TCTGCAGATC GGCCTGAGCC GTGAGCCGGT 420 GCTGCTGCTG CAGGACTCGT CCGGGGACTA CAGCCTGGCG CACGTCCGCG AGATGGCTTG 480 CTCCATTGTC GACCAGAAGT TOCCTGAATG TGGTTTCTAC GGAATGTATG ATAAGATCCT 540 GCTTTTTCGC CATGACCCTA CCTCTGAAAA CATCCTTCAG CTGGTGAAAG CGGCCAGTGA 600 TATCCAGGAA GGCGATCTTA TIGAAGTGGT CTIGTCACGT TCCGCCACCT TTGAAGACTT 660 TCAGATTCGT CCCCACGCTC TCTTTGTTCA TTCATACAGA GCTCCAGCTT TCTGTGATCA 720 CTGTGGAGAA ATGCTGTGGG GGCTGGTACG TCAAGGTCTT AAATGTGAAG GGTGTGTCT 780 30 GAATTACCAT AAGAGATGTG CATTTAAAAT ACCCAACAAT TGCAGCGGTG TGAGGCGGAG 840 AAGGCTCTCA AACGTTTCCC TCACTGGGGT CAGCACCATC CGCACATCAT CTGCTGAACT 900 CTCTACAAGT GCCCCTGATG AGCCCCTTCT GCAAAAATCA CCATCAGAGT CGTTTATIGG 960 35 TCGAGAGAAG AGGTCAAATT CTCAATCATA CATTGGACGA CCAATTCACC TTGACAAGAT 1020 TTTGATGTCT AAAGTTAAAG TGCCGCACAC ATTTGTCATC CACTCCTACA CCCGGCCCAC 1080 AGTGTGCCAG TACTGCAAGA AGCTTCTGAA GGGGCTTTTC AGGCAGGGCT TGCAGTGCAA 1140 AGATTGCAGA TTCAACTGCC ATAAACGTTG TGCACCGAAA GTACCAAACA ACTGCCTTGG 1200 CGAAGTGACC ATTAATGGAG ATTTGCTTAG CCCTGGGGCA GAGTCTGATG TGGTCATGGA 1260 40 AGAAGGGAGT GATGACAATG ATAGTGAAAG GAACAGTGGG CTCATGGATG ATATGGAAGA 1320 AGCAATGGTC CAAGATGCAG AGATGGCAAT GGCAGAGTGC CAGAACGACA GTGGCGAGAT 1380 GCAAGATCCA GACCCAGACC ACGAGGACGC CAACAGAACC ATCAGTCCAT CAACAAGCAA 1440 CAATATCCCA CTCATGAGGG TAGTGCAGTC TGTCAAACAC ACGAAGAGGA AAAGCAGCAC 1500 AGTCATGAAA GAAGGATGGA TGGTCCACTA CACCAGCAAG GACACGCTGC GGAAACGGCA 1560 45 CTATTGGAGA TTGGATAGCA AATGTATTAC CCTCTTTCAG AATGACACAG GAAGCAGGTA 1620 CTACAAGGAA ATTCCTTTAT CTGAAATTTT GTCTCTGGAA CCAGTAAAAA CTTCAGCTTT 1680 AATTCCTAAT GGGGCCAATC CTCATTGTTT CGAAATCACT ACGGCAAATG TAGTGTATTA 1740 TGTGGGAGAA AATGTGGTCA ATCCTTCCAG CCCATCACCA AATAACAGTG TTCTCACCAG 1800 TGGCGTTGGT GCAGATGTGG CCAGGATGTG GGAGATAGCC ATCCAGCATG CCCTTATGCC 1860 50 CGTCATTCCC AAGGGCTCCT CCGTGGGTAC AGGAACCAAC TTGCACAGAG ATATCTCTGT 1920 GAGTATTTCA GTATCAAATT GCCAGATTCA AGAAAATGTG GACATCAGCA CAGTATATCA 1980 GATTITICCT GATGAAGTAC TGGGTTCTGG ACAGTTTGGA ATTGTTTATG GAGGAAAACA 2040
TCGTAAAACA GGAAGAGATG TAGCTATTAA AATCATTGAC AAATTACGAT TTCCAACAAA 2100
ACAAGAAAGC CAGCTTCGTA ATGAGGTTGC AATTCTACAG AACCTTCATC ACCCTGGTGT 2160
TGTAAATTTG GAGTGTATGT TTGAGACGCC TGAAAGAGTG TTTGTTGTTA TGGAAAAACT 2220 55 CCATGGAGAC ATGCTGGAAA TGATCTTGTC AAGTGAAAAG GGCAGGTTGC CAGAGCACAT 2280 AACGAAGTTT TTAATTACTC AGATACTCGT GGCTTTGCGG CACCTTCATT TTAAAAATAT 2340 COTTCACTGT GACCTCAAAC CAGAAAATGT GTTGCTAGCC TCAGCTGATC CTTTTCCTCA 2400 GGTGAAACIT TGTGATTTTG GTTTTGCCCG GATCATTGGA GAGAAGTCTT TCCGGAGGTC 2460 60 AGTGGTGGGT ACCCCCGCTT ACCTGGCTCC TGAGGTCCTA AGGAACAAGG GCTAÇAATCG 2520 CTCTCTAGAC ATGTGGTCTG TTGGGGTCAT CATCTATGTA AGCCTAAGCG GCACATTCCC 2580 ATTTAATGAA GATGAAGACA TACACGACCA AATTCAGAAT GCAGCTTTCA TGTATCCACC 2640
AAATCCCTGG AAGGAAATAT CTCATGAAGC CATTGATCTT ATCAACAATT TGCTGCAAGT 2700
AAAAATGAGA AAGCGCTACA GTGTGGATAA GACCTTGAGC CACCCTTGGC TACAGGACTA 2760
TCAGACCTGG TTAGATTTGC GAGAGCTGGA ATGCAAAATC GGGGAGCGCT ACATCACCCA 2820 65 TGAAAGTGAT GACCTGAGGT GGGAGAAGTA TGCAGGCGAG CAGGGCTGC AGTACCCCAC 2880 ACACCTGATC AATCCAAGTG CTAGCCACAG TGACACTCCT GAGACTGAAG AAACAGAAAT 2940 GAAAGCCCTC GGTGAGCGTG TCAGCATCCT CTGAGTTCCA TCTCCTATAA TCTGTCAAAA 3000 CACTGTGGAA CTAATAAATA CATACGGTCA GGTTTAACAT TTGCCTTGCA GAACTGCCAT 3060 70 TATTTTCTGT CAGATGAGAA CAAAGCTGTT AAACTGTTAG CACTGTTGAT GTATCTGAGT 3120 TGCCAAGACA AATCAACAGA AGCATTTGTA TTTTGTGTGA CCAACTGTGT TGTATTAACA 3180 AAAGTTCCCT GAAACACGAA ACTTGTTATT GTGAATGATT CATGTTATAT TTAATGCATT 3240 AAACCTGTCT CCACTGTGCC TTTGCAAATC AGTGTTTTTC TTACTGGAGC TTCATTTTGG 3300 TAAGAGACAG AATGTATCTG TGAAGTAGTT CTGTTTGGTG TGTCCCATTG GTGTTGTCAT 3360 75 TGTAAACAAA CTCTTGAAGA GTCGATTATT TCCAGTGTTC TATGAACAAC TCCAAAACCC 3420 ATGTGGGAAA AAAATGAATG AGGAGGGTAG GGAATAAAAT CCTAAGACAC AAATGCATGA 3480 ACAAGTTTTA ATGTATAGTT TTGAATCCTT TGCCTGCCTG GTGTGCCTCA GTATATTTAA 3540 ACTCAAGACA ATGCACCTAG CTGTGCAAGA CCTAGTGCTC TTAAGCCTAA ATGCCTTAGA 3600
AATGTAAACT GCCATATATA ACAGATACAT TTCCCTCTTT CTTATAATAC TCTGTTGTAC 3660

PCT/US01/32045 WO 02/30268

TATGGAAAAT CAGCTGCTCA GCAACCTTTC ACCTTTGTGT ATTTTTCAAT AATAAAAAAT 3720 ATTCTTGTCA AAAAAAAAAA AA

5

SEQ ID NO:136 PFH4 Protein sequence: Protein Accession #: NP. 002733.1 51 11 21 31 41 . 10 MSAPPVLRPP SPLLPVAAAA AAAAAALVPG SGPGPAPFLA PVAAPVGGIS FHLQIGLSRE 60 PVLLLQDSSG DYSLAHVREM ACSIVDQKFP ECGFYGMYDK ILLFRHDPTS ENILQLVKAA 120 SDIQEGDLIE VVLSRSATFE DFQIRPHALF VHSYRAPAFC DHCGEMLWGL VRQGLKCEGC 180 GLNYHKRCAF KIPNNCSGVR RRRLSNVSLT GVSTIRTSSA ELSTSAPDEP LLQKSPSESF 240 IGREKRSNSQ SYIGRPIHLD KILMSKVKVP HTFVIHSYTR PTVCQYCKKL LKGLFRQGLQ 300
CKDCRFNCHK RCAPKVPNNC LGEVTINGDL LSPGAESDVV MEEGSDDMDS ERNSGLMDDM 360
EEAMVQDAEM AMAECQNDSG EMQDPDPDHE DANRTISPST SNNIPLMRVV QSVKHTKRKS 420
STVMKEGWMV HYTSKDTLRK RHYWRLDSKC ITLFQNDTGS RYYKEIPLSE ILSLEPVKTS 480 15 ALIPNGANPH CFEITTANVV YYVGENVVNP SSPSPNNSVL TSGVGADVAR MWEIAIQHAL 540 MPVIPKGSSV GTGTNLHRDI SVSISVSNCQ IQENVDISTV YQIFPDEVLG SGQFGIVYGG 600 KHRKTGRDVA IKIIDKLRFP TKQESQLRNE VAILQNLHHP GVVNLECMFE TPERVFVVME 660 20 KLHGDMLEMI LSSEKGRLPE HITKFLITQI LVALRHLHFK NIVHCDLKPE NVLLASADPF 720 PQVKLCDFGF ARIIGEKSFR RSVVGTPAYL APEVLRNKGY NRSLDMWSVG VIIYVSLSGT 780 FPFNEDEDIH DQIQNAAFMY PPNPWKEISH EAIDLINNLL QVKMRKRYSV DKTLSHPWLQ 840 25 DYOTWLDLRE LECKIGERYI THESDDLRWE KYAGEQRLQY PTHLINPSAS HSDTPETEET 900 EMKALGERVS IL 30 SEQ ID NO:137 PFH3 DNA SEQUENCE Nucleic Acid Accession #: X95425 712-3825 (underlined sequences correspond to start and stop codons) Coding sequence: 41 35 GCACACATAA TGACTCACTG CTGGAAGAAG GGTGCATCAG TGAATTAAAA AATGTCCCTC 120
CCCTCTTCAG CACTCAGCGC GCAGCTATTT CCTTCTGCCA GTCTCTTTGA ACTCTGGATC 180
TTTGCTTTTG CTCGCTGCTC TCCTGTTTTT CATTCTCCAC ATTTTCTCAA TCCTCTTTCT 240
TTATCCTTAG CCACCCTGCT TTTTTCCTCC TTTTTTAAAA AATCGGAGAT TTCGTCTTAA 300 40 AATGATTTGT CTTCCTTACC TTCGTCCATT TCAACACTGA AGGCTGCAAA GAACTTCACC 360 TITCCCCTAG TGGTATTTAA AAATTCTCAA TCCGTAAAAA GTCTTTTTGA AAGGCAAAGG 420 AACAGGACCC AGACCCTCTC GACACCCTTG ATCCGAGTCA GATCTGCACT AGCAACCAGA 480 ACTAATATT CATTTAACCC ACCAAAAGGG GGAGGCGAGA GGAGCCAGAA GCAAACTTCA 540 ACIDATATI CATTACCE ACCAMANGO GOAGCCAGA GUAGCCAGA GUAGCCAGA GAGACTACA SATECTICITA CATTACAG ACGGATCOGT ACATTAGAGAG COGCCTGTCA GAAGGCGTAG 600
GACCCCAAGG GGGACACAGG AGGACTCCCC AGTCCCCTT CTCCGCTCTC CGAGACCGAA 660
GAGGTGGACT GAGCCGCTCG GGACAGCGGC ACCCGAGGAG GCTCGGAGAA GATGCGGGGC
T20
TCGGGGCCCC GGGGTGCGGG ACACCGGCGG CCCCCAAGCG GCGCGCGA CACCCCCATC 780 45 ACCCCAGCGT CCCTGGCCGG CTGCTACTCT GCACCTCGAC GGGCTCCCCT CTGGACGTGC 840 50 CTTCTCCTGT GCGCCGCACT CCGGACCCTC CTGGCCAGCC CCAGCAACGA AGTGAATTTA 900 TTGGATTCAC GCACTGTCAT GGGGGACCTG GGATGGATTG CTTTTCCAAA AAATGGGTGG 960 GAAGAGATTG GTGAAGTGGA TGAAAATTAT GCCCCTATCC ACACATACCA AGTATGCAAA 1020 GTGATGGAAC AGAATCAGAA TAACTGGCTT TTGACCAGTT GGATCTCCAA TGAAGGTGCT 1080 TICAGAATCT TCATAGAACT CAAATTTACC CTGCGGGACT GCAACAGCT TCCTGGAGGA 1140
TCCAGAATCT TCATAGAACT CAAATTTACC CTGCGGGACT GCAACAGCT TCCTGGAGGA 1140
CTGGGGACCT GTAAGGAAAC CTTTAATATG TATTACTTTG AGTCAGATGA TCAGAATGGG 1200
AGAACATCA AGGAAAACCA ATACATCAAA ATTGATACCA TTGCTGCCGA TGAAAGCTTT 1260
ACAGAACTTG ATCTTGGTGA CCGTGTTATG AAACTGAATA CAGAGGTCAG AGATGTAGGA 1320
CCTCTAAGCA AAAAGGGATT TTATCTTGCT TTTCAAGATG TTGGTGCTTG CATTGCTCTG 1380
GTTTCTGTGC GTGTATACTA TAAAAAAATGC CCTTCTGTGG TACGACACTT GGCTGTTCT 1440 55 60 CCTGACACCA TCACTGGAGC TGATTCTTCC CAATTGCTCG AAGTGTCAGG CTCCTGTGTC 1500 AACCATTCTG TGACCGATGA ACCTCCCAAA ATGCACTGCA GCGCCGAAGG GGAGTGGCTG 1560 GTGCCCATCG GGAAATGCAT GTGCAAGGCA GGATATGAAG AGAAAAATGG CACCTGTCAA 1620 GTGTGCAGAC CTGGGTTCTT CAAAGCCTCA CCTCACATCC AGAGCTGCGG CAAATGTCCA 1680 GTGGCAGAC CIGGGI ICTI CAAAGCCTCA CCICACATCC AGAGCIGCGG CAAATGICCA 1880 CCTCACAGTT ATACCCATGA GGAAGCTTCA ACCTCTTGTG TCTGTGAAAA GGATTATTTC 1740 AGGAGAGAGT CTGATCCACC CACAATGGCA TGCACAAGAC CCCCCTGGC TCCTCGGAAT 1800 GCCATCTCAA ATGTTAATGA AACTAGTGTC TTTCTTGGAAT GGATTCCGCC TGCTGACACT 1860 GGTGGAAGGA AAGACGTGTC ATATTATATT GCATGCAAGA AGTGCAACTC CCATGCAGGT 1920 GTGTGTGAGG AGTGTGGCGG TCATGTCAGG TACCTTCCCC GGCAAAGCGG CCTGAAAAAC 1980 65 ACCTCTGTCA TGATGGTGGA TCTACTCGCT CACACAAACT ATACCTTTGA GATTGAGGCA 2040 70 GTGAATGGAG TGTCCGACTT GAGCCCAGGA GCCCGGCAGT ATGTGTCTGT AAATGTAACC 2100 ACAAATCAAG CAGCTCCATC TCCAGTCACC AATGTGAAAA AAGGGAAAAT TGCAAAAAAC 2160 AGCATCTCTT TGTCTTGGCA AGAACCAGAT CGTCCCAATG GAATCATCCT AGAGTATGAA 2220 ATCAAGCATT TTGAAAAGGA CCAAGAGACC AGCTACACGA TTATCAAATC TAAAGAGACA 2280 ACTATTACTG CAGAGGGCTT GAAACCAGCT TCAGTTTATG TCTTCCAAAT TCGAGCACGT 2340 75 ACAGCAGCAG GCTATGGTGT CTTCAGTCGA AGATTTGAGT TTGAAACCAC CCCAGTGTTT 2400 GCAGCATCCA GCGATCAAAG CCAGATTCCT GTAATTGCTG TGTCTGTGAC AGTAGGAGTC 2460 ATTTIGTTGG CAGTGGTTAT CGGCGTCCTC CTCAGTGGAA GTTGCTGCGA ATGTGGCTGT 2520
GGGAGGGCTT CTTCCCTGTG CGCTGTTGCC CATCCAATCC TAATATGGCG GTGTGGCTAC 2580
AGCAAAGCAA AACAAGATCC AGAAGAGGAA AAGATGCATT TTCATAATGG GCACATTAAA 2640 WO 02/30268

CTGCCAGGAG TAAGAACTTA CATTGATCCA CATACCTATG AGGATCCCAA TCAAGCTGTC 2700 CACGAATTTG CCAAGGAGAT AGAAGCATCA TGTATCACCA TTGAGAGAGT TATTGGAGCA 2760 GGTGAATTTG GTGAAGTTTG TAGTGGACGT TTGAAACTAC CAGGAAAAAG AGAATTACCT 2820 GTGGCTATCA AACCCTTAA AGTAGGCTAT ACTGAAAAGC AACGCAAGAG ATTTCCTAGGT 2880
GAAGCAAGTA TCATGGGACA GTTTGATCAT CCTAACATCA TCCATTTAGA AGGTGTGGTG 2940
ACCAAAAGTA AACCAGTGAT GATCGTGACA GAGTATATGG AGAATGGCTC TTTAGATACA 3000
TTTTGAAGA AAAACGATGG GCAGTTCACT GTGATTCAGC TTGTTGGCAT GCTGAGAGGT 3060
ATCTCTGCAG GAATGAAGTA CCTTTCTGAC ATGGGCTATG TGCATAGAGA TCTTGCTGCC 3120 AGAAACATCT TAATCAACAG TAACCTTGTG TGCAAAGTGT CTGACTTTGG ACTTTCCCGG 3180 10 GTACTGGAAG ATGATCCCGA GGCAGCCTAC ACCACAAGGG GAGGAAAAAT TCCAATCAGA 3240 TGGACTGCCC CAGAAGCAAT AGCTTTCCGA AAGTTTACTT CTGCCAGTGA TGTCTGGAGT 3300 TATGGAATAG TAATGTGGGA AGTTGTGTCT TATGGAGAGA GACCCTACTG GGAGATGACC 3360 AATCAAGATG TGATTAAAGC GGTAGAGGAA GGCTATCGTC TGCCAAGCCC CATGGATTGT 3420 CCTGCTGCTC TCTATCAGTT AATGCTGGAT TGCTGGCAGA AAGAGCGAAA TAGCAGGCCC 3480 15 AAGTTTGATG AAATAGTCAA CATGTTGGAC AAGCTGATAC GTAACCCAAG TAGTCTGAAG 3540 ACGCTGGTTA ATGCATCCTG CAGAGTATCT AATTTATTGG CAGAACATAG CCCACTAGGA 3600 TCTGGGGCCT ACAGATCAGT AGGTGAATGG CTAGAGGCAA TCAAGATGGG CCGGTATACA 3660 GAGATTTTCA TGGAAAATGG ATACAGTTCA ATGGACGCTG TGGCTCAGGT GACCTTGGAG 3720 GATTTGAGAC GGCTTGGAGT GACTCTTGTC GGTCACCAGA AGAAGATCAT GAACAGCCTT 3780 CAAGAAATGA AGGTGCAGCT GGTAAACGGA ATGGTGCCAT TG<u>TAA</u>CTTCA TGTAAATGTC 3840 20 GCTTCTTCAA GTGAATGATT CTGCACTTTG TAAACAGCAC TGAGATTTAT TTTAACAAAA 3900 AAA 25 SEQ ID NO:138 PFH3 Protein sequence: Protein Accession #: CAA64700.1 30 11 21 31 41 51 MRGSGPRGAG HRRPPSGGGD TPITPASLAG CYSAPRRAPL WTCLLLCAAL RTLLASPSNE 60 VNLLDSRTVM GDLGWIAFPK NGWEEIGEVD ENYAPIHTYQ VCKVMEQNQN NWLLTSWISN EGASRIFIEL KFTLRDCNSL PGGLGTCKET FNMYYFESDD QNGRNIKENQ YIKIDTIAAD 180 35 ESFTELDLGD RVMKLNTEVR DVGPLSKKGF YLAFQDVGAC IALVSVRVYY KKCPSVVRHL 240 AVFPDTITIGA DSSQLLEVSG SCVNHSVTDE PPKMHCSAEG EWLVPISKCM CKAGYEEKNG 300
TCQVCRPGFF KASPHIQSCG KCPPHSYTHE EASTSCVCEK DYFRRESDPP TMACTRPPSA 360
PRNAISNVNE TSVFLEWIPP ADTGGRKDVS YYIACKKCNS HAGVCEECGG HVRYLPRQSG 420
LKNTSVMMVD LLAHTNYTFE IEA VNGVSDL SPGARQYVSV NVTTNQAAPS PVTNVKKGKI 480 40 AKNSISLSWO EPDRPNGIIL EYEIKHFEKD OETSYTIIKS KETTITAEGL KPASVYVPOI 540 RARTAAGYGV FSRRFEFETT PVFAASSDQS QIPVIAVSVT VGVILLAVVI GVILLSGSCCE 600 CGCGRASSLC AVAHPILIWR CGYSKAKQDP EEEKMHFHNG HIKLPGVRTY IDPHTYEDPN 660 QAVHEFAKEI EASCITIERV IGAGEFGEVC SGRLKLPGKR ELPVAIKTLK VGYTEKQRRD 720 FLGEASIMGQ FDHPNIIHLE GVVTKSKPVM IVTEYMENGS LDTFLKKNDG QFTVIQLVGM 780 LRGISAGMKY LSDMGYVHRD LAARNILINS NLVCKVSDFG LSRVLEDDPE AAYTTRGGKI 840
PIRWTAPEAI AFRKFTSASD VWSYGIVMWE VVSYGERPYW EMTNQDVIKA VEEGYRLPSP 900
MDCPAALYQL MLDCWQKERN SRPKFDEIVN MLDKLIRNPS SLKTLVNASC RVSNLLAEHS 960
PLGSGAYRSV GEWLFAIKMG RYTEIFMENG YSSMDAVAQV TLEDLRRLGV TLVGHQKKIM 1020 45 NSLQEMKVQL VNGMVPL 50 SEQ ID NO:139 PFH2 DNA SEQUENCE 55 Nucleic Acid Accession #: NM_016029 78-1097 (underlined sequences correspond to start and stop codons) Coding sequence: 51 60 CTGCGATCCC GCAGGGCAGC GACGCGACTC TGGTGCGGGC CGTCTTCTTC CCCCCGAGCT 60 GGGCGTGCGC GGCCGCAATG AACTGGGAGC TGCTGCTGTG GCTGCTGGTG CTGTGCGCGC 120 TGCTCCTGCT CTTGGTGCAG CTGCTGCGCT TCCTGAGGGC TGACGGCGAC CTGACGCTAC 180 TGCTCTGCT CTTGGTGCAG CTGCTGCGCTTCCTGAGGGCTGACGGGACCCTGACGCTAC 180
TATGGGCCGA GTGGCAGGGA CGCCCCAG AATGGGAGCT GACTGATATG GTGGTGTGGG 240
TGACTGGAGC CTCGAGTGGA ATTGGTGAGG AGCTGGCTTA CCAGTTGTCT AAACTAGGAG 300
TTTCTCTTGT GCTGTCAGCC AGAAGAGTGC ATGAGCTGGA AAGGGTGAAA AGAAGATGCC 360
TAGAGAATGG CAATTTAAAA GAAAAAGATA TACTTGTTTT GCCCCTTGAC CTGACCGACA 420
CTGGTTCCCA TGAAGCGGCT ACCAAAGCTG TTCTCCAGGA GTTTGGTAGA ATCGACATTC 480
TGGTCAACAA TGGTGGAATG TCCCAGCGTT CTCTGTGCAT GGATACCAGC TTGGATGTCT 540 65 ACAGAAAGCT AATAGAGCTT AACTACTTAG GGACGGTGTC CTTGACAAAA TGTGTTCTGC 600 70 CTCACATGAT CGAGAGGAAG CAAGGAAAGA TTGTTACTGT GAATAGCATC CTGGGTATCA 660 TATCTGTACC TCTTTCCATT GGATACTGTG CTAGCAAGCA TGCTCTCCGG GGTTTTTTTA 720 ATGGCCTTCG AACAGAACTT GCCACATACC CAGGTATAAT AGTTTCTAAC ATTTGCCCAG 780 GACCTGTGCA ATCAAATATT GTGGAGAATT CCCTAGCTGG AGAAGTCACA AAGACTATAG 840
GCAATAATGG AGACCAGTCC CACAAGATGA CAACCAGTCG TTGTGTGCGG CTGATGTTAA 900
TCAGCATGGC CAATGATTTG AAAGAAGTTT GGATCTCAGA ACAACCTTTC TTGTTAGTAA 960
CATATTTGTG GCAATACATG CCAACCTGGG CCTGGTGGAT AACCAACAAG ATGGGGAAGA 1020 75

AAAGGATTGA GAACTTTAAG AGTGGTGTGG ATGCAGACTC TTCTTATTTT AAAATCTTTA 1080 AGACAAAACA TGACTGAAAA GAGCACCTGT ACTTTTCAAG CCACTGGAGG GAGAAATGGA 1140 AAACATGAAA ACAGCAATCT TCTTATGCTT CTGAATAATC AAAGACTAAT TTGTGATTTT 1200 ACTITITIANT AGATATGACT TIGCTTCCAA CATGGAATGA AATAAAAAAT AAATAATAAA 1260 AGATTGCCAT GAATCTTGCA AA

ATGCGCGCCG TGCCGCTGCC CGCCCCGCTC CTGCCGCTGC TGCTGCTCGC GCTCCTGGCC 60 GCTCCCGCCG CCCGCGCCAG CAGAGCCGAG TCCGTCTCCG CGCCGTGGCC CGAACCCGAG 120 CGCGAGTCGC GGCCACCGCC CGGCCCGGGG CCCGGGAACA CCACCCGGTT TGGGTCTGGG 180 5 GCGGCGGCG GCAGCGGCAG CTCCAGCTCC AACAGCAGTG GCGACGCCTT GGTGACCCGC 240 ATTTCCATCC TCCTCCGCGA CCTACCCACC CTCAAGGCAG CCGTGATCGT GGCGTTCGCC 300 TTTACCACCC TCCTCATCGC CTGCCTGCTG CTGCGCGTCT TCAGGTCGGG AAAGAGGTTA 360 AAGAAGACAC GCAAGTATGA TATCATCACC ACTCCAGCAG AGCGAGTGGA AATGGCGCCA 420
CTAAATGAAG AGGATGATGA AGATGAGGAC TCCACAGTAT TCGACATCAA ATACAGAGTG 480
TCCTTGCCGG CTGCACTGAG ACGTCAGCTG CCAGGGTGCC AGACGCTACT GACAGTTCCT 540
GTGCCCCCAC CCTTCATCCT CGACATTGAC CTTCCAGCAA GATGCAGTGG AAGGCCTGAT 600
GGTGGAATCA GACCTGGTAA AACCTGTTTC CCAGCCTGGT GGCATCCTGT GGAAAGTTGG 660 10 TCAGCTGCAA CCTGGGGTGT GAAGGACTGG ACCTGGAAGC CCTCTTGCGT CGGAGGTGTT GAAACCAAAA CGAACGTTAT GTATAAAACC CCAGCTCCAT CGTGCGTGTC AGGCATCTGC 780 15 TCAGACTGTC ACTGGCAAGC TCGTTTCCAC GTCACCACAA TGGAGTTGCT TCTGCCACCC 840 TTTGGGCATC CCTTTAAAGT GCCCCCTACT TCTACTCCCC ATGGTTTTCG ACAACTGCAG 900 CTGAATCTCA TGGAAAAGCT GGATTCCTCT GCCTTACGCA GAAACACCCG GGCTCCATCT 960 GCCAGGTGCT TGCCACTGGT CCTGGCAGAA ATGGCGGCTG CTGAAAGTGA CCTTCCAAAT 1020 CCTTGGTGGC ACTTCAGCGC CACAGGCTCT CCAATAAAAA CCCTTTACAC ACAAACCATG 1080 20 AGTACCTTGG GCTTGGATGT TTTCTGTGGT GCCGGCCAGC GGGGCACCTT TTGTGAAGAC 1140 AGAGCAGTGA CTAAGGTTCT CCAGGGTAGC TCTTTCTCCA AACAGCTGCG CTGGAAGCCA 1200 GCCCTAGAGA GTGGGTTTCC CCATCATCTC AGGCTTCTCA GAGAGTGTCC TCCGCTGAGC 1260 ACCCATCCTG TCAGGTTGGC TCGTTCAGAT GCCCGGGGAC AAGCCAGCCT GACGGGGAGG 1320 AGGGTGTTTC GGCGTCCGCG GCAGTCTCTG CATGGCGGAG GGTCAGCGGG TACCGCAACT 1380 25 TGCCTTTTGG TTTTGAAGAT TCTGTTGAGG CGCCATCCTC ACCTTGACCT CTTCTACAAA 1440 ATCTGTCTCC CCTGCTGTGC CGTGGAACAC CTACGGGAAG CCAAGAGAAG CTCAGTGACT 1500 GTOCTTGCGT CATTTGAGCA GAGCCCACAA AAGGCAGCTG CTGCCCACGG GGAGCCTGTC 1560 AAACGAGGC CCAGTGGCCA ATTGACCAGA CACACATGCC CTGGCTGGGG GATCACACAT 1620 GCGAACCTGC AGACAATTCC AGATACCCAA GGCCAGGAAG GCCCACGTGA GGATGTCACT 1680 30 CACCCTGGAG GAGACTTGGA TGGGGTGGCA AATTTCTATT TGGAGGAAGA GGGTTTCCAG 1740 GATGGCAGAT GCCAGAAGAT GGTCCTGATG TCTGAGGAAG GGCCACCTAG TTTGACAGGA 1800 TGTGAGAGGC TCACAGGTTC CCATCACTTC TCCAGCCATT CCAAGTCTTG GTCCTTCCTT 1860 TCCCCCGAC AGCCCCTGTT TCTGTCCAGG CCCTGA 35 SEQ ID NO:144 PFG9 Protein sequence:

Protein Accession #: none available, FGENESH predicted 40 MRAVPLPAPL LPLLLLALLA APAARASRAE SVSAPWPEPE RESRPPPGPG PGNTTRFGSG 60 AAGGSGSSSS NSSGDALVTR ISILLRDLPT LKAAVIVAFA FITLLIACLL LRVFRSGKRL 120 KKTRKYDIIT TPAERVEMAP LNEEDDEDED STVFDIKYRV SLPAALRRQL PGCQTLLTVP 180 VPPPFILDID LPARCSGRPD GGIRPGKTCF PAWWHPVESW SAATWGVKDW TWKPSCVGGV 240 45 ETKTNVMYKT PAPSCVSGIC SDCHWQARFH VTTMELLLPP FGHPFKVPPT STPHGFRQLQ 300 LNLMEKLDSS ALRRNTRAPS ARCLPLVLAE MAAAESDLPN PWWHFSATGS PIKTLYTQTM 360 STLGLDVFCG AGQRGTFCED RAVTKVLQGS SFSKQLRWKP ALESGFPHHL RLLRECPPLS 420 THPVRLARSD ARGQASLTGR RVFRRPRQSL HGGGSAGTAT CLLVLKILLR RHPHLDLFYK 480 ICLPCCAVEH LREAKRSSVT VLASFEQSPQ KAAAAHGEPV KRGPSGQLTR HTCPGWGTTH 540 ANLQTIPDTQ GQEGPREDVT HPGGDLDGVA NFYLEEEGFQ DGRCQKMVLM SEEGPPSLTG 600 50 CERLTGSHHF SSHSKSWSFL SPRQPLFLSR P **SEQ ID NO:145 PFG6 DNA SEQUENCE** 55 Nucleic Acid Accession #: NM_013427 Coding sequence: 875-3799 (underlined sequences correspond to start and stop codons) 31 51 60 GGCTGGGCTG CGAATAGCGT GTTCCTCTCC GGCGGAACAC ACACACCCGG CCTTGGGGCT 60 GGCTGGGCTG CGAATAGCGT GTTCCTCCTC GGCGGACAC ACACACCCCGG CCTTGGGGCT 60
GTCTCCTGAA GCTCCCTCCT CCACGGAGAG CGCTGAGCGC CGCCGGGAAT TCCATCCCAC 120
CGTGGGCACG CAGTCTTTGG AGGTCCCGGG CGCAGCACGC TCGGTGTCCC CACACTGCAG 180
CAAGACAGAG ACCCCGCGGG AACCTTGAGC TTGGAACAAC CCTTGAGCCT CTGCAGTCGG 240
AAGAGTGGGC GCAGCAGCCC AGCGGAGGCC AGGCGCCAA CCTCGGGCGC CGGGCAAGG 300 65 AGAGAGTGCA GGGAGGCGCA GCTCAGGCGC CCGGCTCAGG AGCGGGAGGA AGTTCTCGCG 360 GCGCCGGGAG CGCGCTGGAC GCGCCCTGGG CGCACGCCCA GGCAGCCTTC TCCCTGGCCC 420 TCGGGACTGT CCTCGGGCGG CAAGGAGGAG CTTGCTGGAG TCTTAGAGGC CATCCAGAGC 480 CAGCGAGCAG GAGCGCTGCG TCTCCCGCCT CAGCTAGGAA GGGGGAGTGG CGCTGGCAGG 540 CTIGGAGCTIGG GAACCCAGCG AGCGCCTIGAC CTTCCTCCTC CTCTTCCTGA CCCTCTTCCC 600
GTCTTGGGCT CCGGAGGAAG GTTCTAGCGG CTGCAGGAGG TCCCCAGACC CATTTTCCTA 660
GAAGGCTGGT GATGGATCTG CTGCTCCTGC CGCCGCCGGG GCACTTGGAG CGCACCGGCG 720
GCGCGTGAGC TGGGCTTTGC TCTCCACCGC CCTGGGCAAAGC CCACGCGC CAGGGGGA 840
GCAGCGTTGC CTGAGTTCCT TCCGTTCCC GACCCAAAGC CAGCACCC CAGGGGGA 840
GCAGGGGTG GTCCTCAGCT GCACCCCCG CCAGGATCTCCCACAGCC TGCTCCACAG 70 GGAGGAGGTG GTCCTCAGGT GCAGCCCCGC CGAGATGTCC GCGCAGAGCC TGCTCCACAG 900
CGTCTTCTCC TGTTCCTCGC CCGCTTCAAG TAGCGCGGCC TCGGCCAAGG GCTTCTCCAA 960 75 GAGGAAGCTG CGCCAGACCC GCAGCCTGGA CCCGGCCCTG ATCGGCGGCT GCGGGAGCGA 1020 CGAGGCGGGC GCGGAGGGCA GTGCGCGGGG AGCCACGGCG GGCCGCCTCT ACTCCCCATC 1080 ACTOCCAGOC GAGAGTOTOG GCCCTCGCTT GGCGTCCTCT TCCCGGGGTC CGCCCCCCAG 1140 GGCCACCAGG CTACCGCCTC CTGGACCTCT TTGCTCGTCC TTCTCCACAC CCAGCACCCC 1200

70 SEQ ID NO:146 PFG6 Protein sequence: Protein Accession #: NP_038286.1

AMSVDSITDL DDNQSRLLEA LQLSLPAEAQ SKKEKARDKK LSLNPIYRQV PRLVDSCCQH 420 LEKHGLQTVG IFRVGSSKKR VRQLREEFDR GIDVSLEEEH SVHDVAALLK EFLRDMPDPL 480 LTRELYTAFI NTLLLEPEEQ LGTLQLLIYL LPPCNCDTLH RLLQFLSIVA RHADDNISKD 540 GQEVTGNKMT SLNLATIFGP NLLHKQKSSD KEFSVQSSAR AEESTAIIAV VQKMIENYEA 600 5 LFMVPPDLQN EVLISLLETD PDVVDYLLRR KASQSSSPDM LQSEVSFSVG GRHSSTDSNK 660 ASSGDISPYD NNSPVLSERS LLAMQEDAAP GGSEKLYRVP GQFMLVGHLS SSKSRESSPG 720 PRLGKDLSEE PFDIWGTWHS TLKSGSKDPG MTGSSGDIFE SSSLRAGPCS LSQGNLSPNW 780 PRWQGSPAEL DSDTQGARRT QAAAPATEGR AHPAVSRACS TPHVQVAGKA ERPTARSEQY 840 LTLSGAHDLS ESELDVAGLQ SRATPQCQRP HGSGRDDKRP PPPYPGPGKP AAAAAWIQGP 900 10 PEGVETPTDQ GGQAAEREQQ VTQKKLSSAN SLPAGEQDSP RLGDAGWLDW QRERWQIWEL 960 LSTDNPDALP ETLV 15 SEQ ID NO:147 PFG4 DNA SEQUENCE Nucleic Acid Accession #: NM_002202 Coding sequence: 240-1289 (underlined sequences correspond to start and stop codons) 20 11 21 41 51 31 CCCCCGAGCC GCGCCGAGTC TGCCGCCGCC GCAGCGCCTC CGCTCCGCCA ACTCCGCCGG 60 ATTGGCAACC CCAGGGGCCA ATATTTCCCA CTTAGCCACA GCTCCAGCAT CCTCTCTGTG 180 GGCTGTTCAC CAACTGTACA ACCACCATTT CACTGTGGAC ATTACTCCCT CTTACAGATA 240

CTTAAATTGG ACTCCTAGAT CCGCGAGGGC GCGGCGCAGC CGAGCAGCGG CTCTTTCAGC 120 25 TGGGAGACAT GGGAGATCCA CCAAAAAAA AACGTCTGAT TTCCCTATGT GTTGGTTGCG 300 GCAATCAGAT TCACGATCAG TATATTCTGA GGGTTTCTCC GGATTTGGAA TGGCATGCGG 360 CATGITTGAA ATGTGCGGAG TGTAATCAGT ATTTGGACGA GAGCTGTACA TGCTTTGTTA 420 GGGATGGGAA AACCTACTGT AAAAGAGATT ATATCAGGTT GTACGGGATC AAATGCGCCA 480 30 AGTGCAGCAT CGGCTTCAGC AAGAACGACT TCGTGATGCG TGCCCGCTCC AAGGTGTATC 540 ACATCGAGTG TTTCCGCTGT GTGGCCTGCA GCCGCCAGCT CATCCCTGGG GACGAATTTG 600 CGCTTCGGGA GGACGGTCTC TTCTGCCGAG CAGACCACGA TGTGGTGGAG AGGGCCAGTC 660
TAGGCGCTGG CGACCCGCTC AGTCCCCTGC ATCCAGCGCG GCCACTGCAA ATGGCAGCGG 720
AGCCCATCTC CGCCAGGCAG CCAGCCCTGC GGCCCCACGT CCACAAGCAG CCGGAGAAGA 780
CCACCCGCGT GCGGACTGTG CTGAACGAGA AGCAGCTGCA CACCTTGCGG ACCTGCTACG 840 35 CCGCAAACCC GCGGCCAGAT GCGCTCATGA AGGAGCAACT GGTAGAGATG ACGGGCCTCA 900 GTCCCCGTGT GATCCGGGTC TGGTTTCAAA ACAAGCGGTG CAAGGACAAG AAGCGAAGCA 960 TCATGATGAA GCAACTCCAG CAGCAGCAGC CCAATGACAA AACTAATATC CAGGGGATGA 1020 CAGGAACTCC CATGGTGGCT GCCAGTCCAG AGAGACACGA CGGTGGCTTA CAGGCTAACC 1080 40 CAGTGGAAGT ACAAAGTTAC CAGCCACCTT GGAAAGTACT GAGCGACTTC GCCTTGCAGA 1140 GTGACATAGA TCAGCCTGCT TTTCAGCAAC TGGTCAATTT TTCAGAAGGA GGACCGGGCT 1200 CTAATTCCAC TGGCAGTGAA GTAGCATCAA TGTCCTCTCA ACTTCCAGAT ACACCTAACA 1260 GCATGGTAGC CAGTCCTATT GAGGCATGAG GAACATTCAT TCTGTATTTT TTTTCCCTGT 1320 TGGAGAAAGT GGGAAATTAT AATGTCGAAC TCTGAAACAA AAGTATTTAA CGACCCAGTC 1380 45 AATGAAAACT GAATCAAGAA ATGAATGCTC CATGAAATGC ACGAAGTCTG TTTTAATGAC 1440 AAGGTGATAT GGTAGCAACA CTGTGAAGAC AATCATGGGA TTTTACTAGA ATTAAACAAC 1500 AAACAAAACG CAAAACCCAG TATATGCTAT TCAATGATCT TAGAAGTACT GAAAAAAAA 1560 GACGITTITA AAACGTAGAG GATITATATT CAAGGATCTC AAAGAAAGCA TITTCATITC 1620 ACTGCACATC TAGAGAAAAA CAAAAATAGA AAATTTTCTA GTCCATCCTA ATCTGAATGG 1680 50 TGCTGTTTCT ATATTGGTCA TTGCCTTGCC AAACAGGAGC TCCAGCAAAA GCGCAGGAAG 1740 AGAGACTGGC CTCCTTGGCT GAAAGAGTCC TTTCAGGAAG GTGGAGCTGC ATTGGTTTGA 1800 TATGTTTAAA GTTGACTTTA ACAAGGGGTT AATTGAAATC CTGGGTCTCT TGGCCTGTCC 1860 TGTAGCTGGT TTATTTTTA CTTTGCCCCC TCCCCACTTT TTTTGAGATC CATCCTTTAT 1920 CAAGAAGTCT GAAGCGACTA TAAAGGTTTT TGAATTCAGA TTTAAAAACC AACTTATAAA 1980

55 CAAGAAGTCT GAAGCGACTA TAAAGGTTTT TGAATTCAGA TITAAAAACC AACTTATAAA 1980
GCATTGCAAC AAGGTTACCT CTATTTTGCC ACAAGCGTCT CGGGATTGTG TTTGACTTGT 2040
GTCTGTCCAA GAACTTTTCC CCCAAAGATG TGTATATGTTA TTGGTTAAAA TGACTGTTT 2160
TGCAAAAATT ATAAAGTAAA AGGAAAAAA AAAGGAAAAC TTTTTTTGTTT GCTCTTGCAT 2160
TGCAAAAAATT ATAAAGTAAA TTATTATTTTA TTGTCGGAAG ACTTGCCACT TTTCATGTCA 2220
TTTGACATTT TTTGTTTGCT GAAGTGAAAA AAAAAGATAA AGGTTGTACG GTGGTCTTTG 2280
AATTATATGT CTAATTCTAT GTGTTTTGTC TTTTTCTTAA ATATTATGTG AAATCAAAGC 2340
GCCATATGTA GAATTATATC TTCAGGACTA TTTCACTAAT AAACATTTGG CATAGAT

65 SEQ ID NO:148 PFG4 Protein sequence: Protein Accession #: NP_002193.1

WO 02/30268

SEQ ID NO:149 PFG2 DNA SEQUENCE

Nucleic Acid Accession #: NM 001172 39-1103 (underlined sequences correspond to start and stop codons) Coding sequence: 5 GCGGAGCTCT GCCTTGGAGA TTCTCAGTGC TGCGGATCAT GTCCCTAAGG GGCAGCCTCT 60 CGCGTCTCCT CCAGACGCGA GTGCATTCCA TCCTGAAGAA ATCCGTCCAC TCCGTGGCTG 120 TGATAGGAGC CCCGTTCTCA CAAGGGCAGA AAAGAAAAGG AGTGGAGCAT GGTCCCGCTG 180 10 CCATAAGAGA AGCTGGCTTG ATGAAAAGGC TCTCCAGTTT GGGCTGCCAC CTAAAAGACT 240 TTGGAGATTT GAGTTTTACT CCAGTCCCCA AAGATGATCT CTACAACAAC CTGATAGTGA 300 ATCCACGCTC AGTGGGTCTT GCCAACCAGG AACTGGCTGA GGTGGTTAGC AGAGCTGTGT 360 CAGATGGCTA CAGCTGTGTC ACACTGGGAG GAGACCACAG CCTGGCAATC GGTACCATTA 420 GTGGCCATGC CCGACACTGC CCAGACCTTT GTGTTGTCTG GGTTGATGCC CATGCTGACA 480 15 TCAACACACC CCTTACCACT TCATCAGGAA ATCTCCATGG ACAGCCAGTT TCATTTCTCC 540 TCAGAGACT CCTTACCACT TCATCAGGAA ATCICCATGG ACAGCCAGTT TCATTTCTC 540
TCAGAGAACT ACAGGATAAG GTACCACCAC TCCCAGGATT TTCCTGGATC AAACCTTGTA 600
TCTCTTCTGC AAGTATTGTG TATATTGGTC TGAGAGACGT GGACCCTCCT GAACATTTTA 660
TTTTAAAGAA CTATGATATC CAGTATTTTT CCATGAGAGA TATTGATCGA CTTGGTATCC 720
AGAAGGTCAT GGAACGAACA TTTGATCTGC TGATTGGCAA GAGACAAAGA CCAATCCATT 780
TGAGTTTTGA TATTGATGCA TTTGACCCTA CACTGGCTCC AGCCACAGGA ACTCCTGTTG 840
TCGGGGGGACT AACCTATCGA GAAGGCATGT ATATTGCTGA GGAAATACAC AATACAGGGT 900 20 TGCTATCAGC ACTGGATCTT GTTGAAGTCA ATCCTCAGTT GGCCACCTCA GAGGAAGAGG 960 CGAAGACTAC AGCTAACCTG GCAGTAGATG TGATTGCTTC AAGCTTTGGT CAGACAAGAG 1020 AAGGAGGGCA TATTGTCTAT GACCAACTTC CTACTCCCAG TTCACCAGAT GAATCAGAAA 1080 25 ATCAAGCACG TGTGAGAATT TAGGAGACAC TGTGCACTGA CATGTTTCAC AACAGGCATT 1140 CCAGAATTAT GAGGCATTGA GGGGATAGAT GAATACTAAA TGGTTGTCTG GGTCAATACT 1200 GCCTTAATGA GAACATTTAC ACATTCTCAC AATTGTAAAG TTTCCCCTCT ATTTTGGTGA 1260 CCAATACTAC TGTAAATGTA TTTGGTTTTT TGCAGTTCAC AGGGTATTAA TATGCTACAG 1320 TACTATGTAA ATTTAAAGAA GTCATAAACA GCATTTATTA CCTTGGTATA TCATACTGGT 1380 30 CTIGTTGCTG TTGTTCCTTC ACATTTAAGT GGTTTTTCAT CTTTCCTCCC TCCTCCCACA 1440 GCCTGGCTAT ACAGTGCATC CTTGAACTGT CAGCCCACAG CAGCAATATG CTTATTCTAT 1500 CCACATCCCT AACATCATGC ATTCACAAGG TCAAAGTTCT GGTCCACAAA CCCTTCCCTA 1560 TAGAAGTTCA ATGGCTGCGA AAGAATTTGT AGTAAACCAG GCCTCCCAGG ATGGCGAGCT 1620 CCAGTAAGAT GATAATGGAA AGCAGCAGCT TGTTGGTTGT CACTCTACAA AGAGAAGCAA 1680 35 AGTGGGGAGT AGTCAGAAGT TTGGATAACC TTCCTTCTAA ACATTTGGGG GTTAGACCTG 1740 GGACCACGC TGGATACTCT GAGGCTGTAT GTTTGATCAC ACAGCCACTT AGCAGGAAGT 1800 ACTCATAAGG TTCTTTAGCT GTCACTTAGG GATAACACTG TCTACCTCAC AGAAATGTTA 1860 AACTGAGACA ATAAAACCCA AAGCAT 40 SEQ ID NO:150 PFG2 Protein sequence:
Protein Accession #: NP_001163.1 31 45 MSLRGSLSRL LQTRVHSILK KSVHSVAVIG APFSQGQKRK GVEHGPAAIR EAGLMKRLSS 60 LGCHLKDRGD LSFTPVPKDD LYNNLIVNPR SVGLANQELA EVVSRAVSDG YSCVTLGGDH 120 SLAIGTISGH ARHCPDLCVV WVDAHADINT PLTTSSGNLH GQPVSFLLRE LQDKVPQLPG 180 FSWIKPCISS ASIVYIGLRD VDPPEHFILK NYDIQYFSMR DIDRLGIQKV MERTFDLLIG 240 KRQRPIHLSF DIDAFDPTLA PATGTPVVGG LTYREGMYIA EEIHNTGLLS ALDLVEVNPQ 300 50 LATSEEEAKT TANLAVDVIA SSFGQTREGG HIVYDQLPTP SSPDESENQA RVRI 55 SEQ ID NO:151 PFG1 DNA SEQUENCE Nucleic Acid Accession #: NM_017906 Coding sequence: 80-1255 (underlined sequences correspond to start and stop codons) 51 60 AATTATATAT TITTACTCTA TGTTTCTCTA CATGTTTTTT TCTTTCCGTT GCTGGCGGAA 60
GAGGCACGTG CGCTGCTGAA TGGAGCTGGT CGCTGGTTGC TACCAGCAGG TCCTCTTTGG 120
GTTCGCTGTA CACCCGGAGC CCAAGGCTTG CGGCGACCAC GAGCAATGGA CTCTTGTGGC 180
TGACTTCACT CACCATGCTC ACACTGCCTC CTTGTCAGCA GTAGCTGTAA ATAGTCGTTT 240
TGTGGTCACT GGGAGCAAGA ATGAAACAAT TCACATTTAT GACATGAAAA AGAAGATTGA 300
GCATGGGGCT CTAGTGCATC ACAGTGGTAC AATAACTTGC CTGAAAATTCT ATGGCAACAG 360 65 GCATTTAATC AGTGGAGCGG AAGATGGACT CATCTGTATC TGGGATGCAA AGAAATGGGA 420 ATGCCTGAAG TCAATTAAAG CTCACAAAGG ACAGGTGACC TTCCTTTCTA TTCACCCATC 480 TGGCAAGTTG GCCCTGTCGG TTGGTACAGA TAAAACTTTA AGAACGTGGA ATCTTGTAGA 540 70 AGGAAGATCA GCATTCATAA AAAATATAAA ACAAAATGCT CACATAGTAG AATGGTCCCC 600 AAGAGGAGAG CAGTATGTAG TTATCATACA GAATAAAATA GACATCTATC AGCTTGACAC 660 TGCATCCATT AGTGGCACCA TCACAAATGA AAAGAGAATT TCCTCTGTTA AATTTCTTTC 720 AGAGTCTGTC CTTGCAGTGG CTGGAGATGA AGAAGTTATA AGGTTTTTTG ACTGTGATTC 780 ACTAGTGTGC CTCTGCGAAT TTAAAGCTCA TGAAAACAGG GTAAAGGACA TGTTCAGTTT 840 75 TGAAATTCCA GAGCATCATG TTATTGTTTC AGCATCGAGT GATGGTTTCA TCAAAATGTG 900 GAAGCTTAAG CAGGATAAGA AAGTTCCCCC ATCTTTACTC TGTGAAATAA ACACTAATGC 960 CAGGCTGACG TGTCTTGGAG TGTGGCTAGA CAAAGTGGCA GACATGAAAA GCCTTCCTCC 1020
AGCTGCAGAG CCTTCTCCTG TAAGTAAAGA ACAGTCCAAA ATTGGCAAAA AGGAGCCTGG 1080
TGACACAGTG CACAAAGAAG AAAAGCGGTC AAAACCTAAC ACAAAGAAAC GCGGTTTAAC 1140

AGGTGACAGT AAGAAAGCAA CAAAAGAAAG TGGCCTGATA TCAACCAAGA AGAGGAAAAT 1200 GGTAGAAATG TTGGAAAAGA AGAGGAAAAA GAAGAAAATA AAAACAATGC AGTGAATCAC 1260 AGATGTCTCC TGAAAGAACT CTTTTTAGATG AAATCATTCT ACTCAAATGT ACCTTAATTT 1320 TTTTTTTTCC CTGAGTAAAA GCAAGAAATT TCTTCCTTTG GAAAAAAATA TATATATAAA 1380 AAACCACTTI TAGATGGTTT TTTTTAAAAA AAAAAAAAA ACTGGTAAAA TTACTTTTGG 1440 CAGACAGTGT TTTATGAATT ATGTATCATG TTGATATATA ATATGTTAAT GTGTCATGTA 1500 ATTTTTACTT TGTACAAAGC AAATAAAGAT CTTTCTCAAA AAAAAAAAA AAAA

10 <u>SEQ ID NO:152 PFG1 Protein sequence:</u> Protein Accession #: NP_060376.1

TKESGLISTK KRKMVEMLEK KRKKKKIKTM Q

25

35

50

60

65

70

75

SEQ ID NO:153 PFD6 DNA SEQUENCE

Nucleic Acid Accession #: NM_014668
Coding sequence: 110-2953 (underlined sequences correspond to start and stop codons)

30 I 11 21 31 41 51
| | | | | | | |
GATGTCTTGG ACATGCTCTG GCTGGCTAAT CTCCATGTTC TAGCCGACTG AAAATACGGT 60

GGCCAAGTGG ATGGTGTGCT TATTTGCAGT CTAAAGAAAT TICCTTTTGA TGTGGCAGAA 120
AATCGAGGAT GTGGAGTGGA GACCCCAGAC TTACTTGGAG CTGGAGGGTC TGCCTTGCAT 180
CCTGATCTTC AGTGGGATTGG ACCCGCATGG GGAGTCCTTG CCGAGGTCTT TGAGGTACTG 240
TGACCTGCGA TTGATAAACT CCTCCTGCTT GGTGAGAACA GCCTTGGAGC AGGAGCTGGG 300
CCTGGCTGCC TACTTTGTGA GCAACGAGGT TCCCTTGGAG AAGGGGGCTA GGAACGAGGC 360
CTTGGAGAGT GATGCTGAGA AGCTGAGCAG CACAGACAAC GAGGATGAGG AGCTGGGGAC 420
AGAAGGCTCT ACCTCGGAGA AGAGAAGCCC CATGAAAAGG GAGAGGTCCC GCTCCCACGA 480

40

AGAAGGCTCT ACCTCGGAGA AGAGAAGCCC CATGAAAAGG GAGAGGTCCC GCTCCCACGA 480

CTCAGCATCC TCATCCCTCT CCTCCAAGGC TTCCGGTTCA GCGCTCGGTG GCGAGTCCTC 540

GGCTCAGCCC ACAGCACTCC CCCAGGGAGA GCATGCCAGG TCCCCCCAGG CCCGTGGCCC 660

CGCAGAGGAG GGCAGAGCCC CTGGTGAGAA ACAGAGGCCC CGGGCAAGTC AGGGGCCACC 660

CTCGGCCATC AGCAGGCACA GTCCCGGGCC GACGCCCCAG CCCGACTGTA GCCTCAGGAC 720

45 CGGCCAGAGG AGCGTCCAGG TGTCGGTCAC CTCGTCGTGC TCCCAGCTGT CCTCCTCCTC 780
GGGCTCATCC TCCTCATCCG TGGCGCCCGC TGCCGGCACG TGGGTCCTGC AGGCCTCCCA 840
GTGCTCCTTG ACCAAAGGCT GCCGCCAGCC ACCCATTGTC TTCTTGCCCA AGCTCGTGTA 900
CGACATGGTT GTGTCCACTG ACAGCAGTGG CCTGCCCAAG GCCGCCTCCC TCCTGCCCTC 960
CCCCTCGGTC ATGTGGGCCA GCTCTTTCCG CCCCCTGCTC AGCAAGACCA TGACATCCAC 1020
CGAGCAGTCC CTCTACTACC GGCAGTGGAC GGTGCCCCGG CCCAGCCACA TGGACTACCG 1080

CAACCGGGCC GAGGGCCGCG TGGACGGCTT CCACCCCCGC AGGCTGCTGC TCAGCGGCCC 1140 CCCTCAGATC GGGAAGACAG GTGCCTACCT GCAGTTCCTC AGTGTCCTGT CCAGGATGCT 1200 TGTTCGGCTC ACAGAAGTGG ATGTCTATGA CGAGGAGGAG ATCAATAAA ACCTCAGAGA 1260 AGAATCTGAC TGGCATTATC TCCAGCTTAG CGACCCCTGG CCAGACCTGG AGCTGTTCAA 1320 GAAGTTGCCC TTTGACTACA TCATTCACGA CCCGAAGTAT GAAGATGCCA GCCTGATTTG 1380

GGAGAGCATG CGACTACCCC TCGTGACAGA CAAGAGCCAT GAATATATAA AAAGTCCGAC 1740 ATTCACTCCA ACCACCGGCC GTCACGAACA TGGGCTCTTT AATCTGTACC ACGCAATGGA 1800 CGGTGCCAGC CATTTGCACG TGCTGGTTGT CAAGGAATAC GAGATGGCAA TTTATAAGAA 1860 ATATTGGCCC AACCACATCA TGCTGGTGCT CCCCAGTATC TTCAACAGTG CTGGAGTTGG 1920

TGCTGCTCAT TTCCTCATCA AGGAGCTGTC CTACCATAAC CTGGAGCTCG AGCGGAACCG 1980 GCAGGAGGAG CTGGGAATCA AGCCGCAGGA CATCTGGCCT TTCATTGTGA TCTCTGATGA 2040 CTCCTGCGTG ATGTGGAACG TGGTGGATGT CAACTCTGCT GGGAGAA GCAGGGGGTGT 2100 CTCCTGGTCG GAAAGGAACG TGTCTTTGAA GCACATCATG CAGCAATCA GAGCGCCCC 2160 CGACATCATG CACTACGCCC TGCTGGGCCT GCGGAAGTGG TCCAGCAAGA CCCGGGCCAG 2220 CGAGGTGCAA GAGCCCTTCT CCCGCTGCCA CGTGCACAAC TTCATCATCC TGAACGTGGA 2280

CGACATCATG CACTACGCCC TGCTGGGGCCT GOGGAAGTGG TCCAGCAAGA CCCGGGCCAG 2220
CGAGGTGCAA GAGGCCCTTCT CCCGCTGCCA CGTGCACACAC TTCATCATCC TGAACGTGGA 2220
CCTGACCCAG AACGTGCAGT ACAACCAGAA CCGGTTCCTG TGTGACGATG TAGACTTCAA 2340
CCTGCGGGTG CACAGCGCCG GCCTCCTGCT CTGCCGGTTC AACGCGTCA GCGTGATGAA 2400
GAAGCAGATC GTGGTGGGCG GCCACAGGTC CTTCCACATC ACATCCAAGG TGTCTGATAA 2460
CTCTGCCGCG GTCGTGCCGG CCCAGTACAT CTGTGCCCCG GACAGCAAGC ACACGTTCCT 2520

CGCAGCGCCC GCCCAGCTCC TGCTGGAGAA GTTCCTGCAG CACCACAGCC ACCTCTTCTT 2580 CCCGCTGTCC CTGAAGAACC ATGACCACCC AGTGCTGTCT GTCGACTGTT ACCTGAACCT 2640 GGGATCTCAG ATTTCTGTTT GCTATGTGAG CTCCAGGCCC CACTCTTTAA ACATCAGCTG 2700 CTCGGACTTG CTGTTCAGTG GGCTGCTTG TTACCTCTGT GACTCTTTTTT TGGAGACTAG 2760 CTTTTTGAAA AAGTTTCATT TTCTGAAAAGG TGCGACGTTG TGTGTCATCT GTCAGGACCC 2820 GAGCTCACTG CGCCAGACCG TCGTCCGCCT GGAGCTCGAG GACGAGTGGC AGTTCCGGCT 2880

GCGCGATGAG TTCCAGACCG CCAATGCCAG GGAAGACCGG CCGCTCTTTT TTCTGACGGG 2940 ACGACACATC TGAGGAAGAC AGCGGCGAGT TTTCTGAAGA GATGAGTGCT CAGAGCCCTC 3000 ATGCTGTTGA GGCTAAAGGG AGGCCTGGAA CGGTGGGGGCG TTTGACTGGA ATGGACCCCA 3060 GGGACTGTCC AGGTGCAGCC CCTCCTAGTA CACATGGGCC CCCGAGGCCG TGGTCCTGGG 3120 5 AGCCAGGAAG ACTCCGCAGT GGGTGAGAAT GAAAACTTGA GACTCCCAAG TTCTGGGCCA 3180 GCCCATTGCT CTGGGCTGTT TTAAAGCCCA TTTCACGAGG AACAAAGATT TACTTCCTGT 3240 CCTGCCATTC GTGTGCTTCC ATGGACAAAC CTGATTTTTT TCTCTTAGTT CTAAAGAATC 3300 TTGGGTTATT TTGTAGCGGT GCCAGTATTT CAGTAGATGG GATTTCAGCC AAGTAGGTTC 3360 CCCTGTAACC TCCTACAAAG CAATATTCCA AAGGAACATT TTAACTGTAA AGGCTGGAGA 3420 10 CAAGAAAAA TAAGTAGATC GTTTTAATAA CAATTATTTA ATTGCCTATA AGTTTGCTGT 3480 TTCAGAGGCT AGCCCAAAGG CATCAAATTT AATAAAGTTA AACAAATTGA TITACTTCAG 3540 AGCAAATATG ATCCTATTAA AATAATATAG GGTAAATACC CTACCTCTTA GAAAGGGCAA 3600 AAATGCAAAG AAGCTTTCTT TAAAACTAAA AGGGTTTTTT GGGGGGGGAG TTGGCGGGGA 3660 GGAAATAAGG CTAACAGAGG TTGACCTAAA ATTAGCCTTA CAAAGGAGAA AGGACCACAT 3720 15 TGCTTACTTG AAACAGACAA TGAAAACAAC CAAAGTGATA TATAAAATAG TTGATGAGAA 3780 CTAGACTTAT GACTGTAGTT TACTAGAGTT TAGTTTTCAG TTGCTGAAGT AGCTCATTTT 3840 CTCTTACTAA TGTTTGGTTC CTCAGGGAAG AATCTCACTT GACTAGAGAG GAGGTGGGAA 3900 CAGAAGAGA AAGGAGGCAG GGAGATGTAT TTCTTAGGGC TCACCCCTTC ACAGACTGAC 3960 AGAATGGTTT TGTTTTGTTT TGTTTTGTTT TGTTTTGTTT TTGAGATGGA CTCTAGCTCT 4020 20 GTCACCCAGG CTGGAGTGCA GTGGTGCGAT CTCGGCTCAC TGCAAGCTCC GCCTCCCGGG 4080 TICTCACCAT TCTCCTGCCT CAGCCTCCCG AGTAGCTGGG ACTACAGGCG CCCACCACCA 4140
CGCCCGGCTA ATTTTTTTGTA TTTTTTAGTA GAGACGGGGT TTCACCATGT TAGCCAGGAT 4200
GGTCTCGATC TCCTGACCTC GTGATCCGCC CGCCTCGGCC TCCCAAAGTG CTGGGATTAC 4260
AGGCGTGAGC CACCGTGCCT GCCCCAGAAT GGTTTTTAAA GCCACAGTTG AGAGGCCACC 4320
CATTGCCCGG CGCCTGGACA GTGATCATCT TGTTCATCTT GTTCAGTCCT TTCTTGTGTG 4380 25 ATTGGAATTA TTCATCCCCT TTGAAAGATG AGAAGGTTGA GATGCAAAGA GTCTACCTTT 4440 CCAAGTTCTC ACTGCTGGAA AGAGCTAGAA GCACAGTTCA AAGTTCTGGC TTCTGGACTC 4500 TGCAGTCCAG GTCTCCCTTC TCCCACTTGC CTACCCTCAA TGCCACACTG TTTTTGAAGT 4560 GGCCCATAAC TTGAAGGAAA AGTTTAAAGA CAGTTCAATT TAATCATCAG AATGCATTCT 4620 GGCCCATAAC TIGAAGGAAA AGTTIAAAGA CAGTICAATT TAATCATCAG AATGCATTCT 4020
TTTTTTTTTC GGAGACGGAG TTTCACTCTT GCTGCCCAGG CTGGAGTGCA ATGGTGCAAT 4680
GATCTCGGCT CACTGCAACC TCTGCCTCCT GGGTTCAAGT GATTCTCCAG CCTCAGCCTC 4740
CCGAGTAGCT GGGATTATGG GCGCCCACCA CCATGCCCAG CTAATTTTTG TATTTTTTT 4800
TTTTAGTAGA GATGGGGTTT CGCCAGGTTG GCCAGGCTGG TCTTGTGAAC TCCTGGCCTC 4860
AGGTGATCTG CCCACCTCAT CCTCCAAAAG TGCTGGGATT ACAGGCATGA GCCACTGCGC 4920
CTGGCCTCAG AATGCATTCT TACACATCTA TCCTAGACAT TTATAAGCAC TCTAATGGAT 4980 30 35 AACAATCCAA GAATAAATGA TTGTAAAAGA TGATGCCGAA GAGTTGATGT CAATCTTTTT 5040 TTCCTAAGAA AAAAAGTCCG CGAGTATTAA ATATTTAGAT CAATGTTTAT AAAATGATTA 5100 CTTTGTATAT CTCATTATTC CTATTTTGGA ATAAAAACTG ACCTTCTTTA ATCATATACT 5160 TGTCTTTTGT AAATAGCAGC TTTTGTGTCA TTCTCCCCAC TTTATTAGTT AATTTAAATT 5220 40 GGAAAAACC CTCAAACTAA TATTCTTGTC TGTTCCAGTC TTATAAATAA AACTTATAAT 5280 **GCATG**

45 SEQ ID NO:154 PFD6 Protein sequence: Protein Accession #: NP_055483.1

60

1 11 21 31 41 51

50 MWQKIEDVEW RPQTYLELEG LPCILIFSGM DPHGESLPRS LRYCDLRLIN SSCLVRTALE 60
QELGLAAYFV SNEVPLEKGA RNEALESDAE KLSSTDNEDE ELGTEGSTSE KRSPMKRERS 120
RSHDSASSSL SSKASGSALG GESSAQPTAL PQGEHARSPQ PRGPAEEGRA PGEKQRPRAS 180
QGPPSAISRH SPGPTPQPDC SLRTGQRSVQ VSVTSSCSQL SSSSGSSSSS VAPAAGTWVL 240
QASQCSLTKA CRQPPIVFLP KLVYDMVVST DSSGLPKAAS LLPSPSVMWA SSFRPLLSKT 300

QASQCSLTKA CRQPPIVFLP KLVYDMVVST DSSGLPKAAS LLPSPSVMWA SSFRPLLSKT 300
MTSTEQSLYY RQWTVPRPSH MDYGNRAEGR VDGFHPRRLL LSGPPQIGKT GAYLQFLSVL 360
SRMLVRLTEV DVYDEFEINI NLREESDWHY LQLSDPWPDL ELFKKLPFDY IIHDPKYEDA 420
SLICSHYQGI KSEDRGMSRK PEDLYVRRQT ARMRLSKYAA YNTYHHCEQC HQYMGFHPRY 480
QLYESTLHAF AFSYSMLGEE IQLHFIIPKS KEHHFVFSDP GGQLESMRLP LVTDKSHEYI 540

SLICSHYQGI KSEDRGMSRK PEDLYVRRQI ARMRISKYAA YNIYHHCEQC HQYMGFHPYY 480
QLYESTLHAF AFSYSMLGEE IQLHFIIPKS KEHHFVFSQP GGQLESMRLP LVTDKSHEYI 540
KSPITFIPTIG RHEHGLFNLY HAMDGASHLH VLVVKEYEMA IYKKYWPNHI MLVLPSIFNS 600
AGVGAAHFLI KELSYHNLEL ERNRQEELGI KPQDIWPFIV ISDDSCVMWN VVDVNSAGER 660
SREFSWSERN VSLKHIMQHI EAAPDIMHYA LLGLRKWSSK TRASEVQEPF SRCHVHNFII 720
LNVDLTQNVQ YNQNRFLCDD VDFNLRVHSA GLLLCRFNRF SVMKKQIVKG GHRSFHITSK 780
VSDNSAAVVP AQVICAPDSK HTFLAAPAQL LLEKFLQHHS HLFFPJSLKN HDHPVLSVDC 840
YLNLGSQISV CYVSSRPHSL NISCSDLLFS GLLLYLCDSF VGASFLKKFH FLKGATLCVI 900

65 CQDRSSLRQT VVRLELEDEW QFRLRDEFQT ANAREDRPLF FLTGRHI

SEQ ID NO:155 PFC6 DNA SEQUENCE

Nucleic Acid Accession #: NM_000522
Coding sequence: 1-1167 (underlined sequences correspond to start and stop codons)

51

41

31

75
ATGACAGCCT COGTGCTCCT CCACCCCGC TGGATCGAGC CCACCGTCAT GTTTCTCTAC 60
GACAACGGCG GCGGCCTGGT GGCCGACGAG CTCAACAAGA ACATGGAAGG GGCGGCGGCG 120
GCTGCAGCAG CGGCTGCAGC GGCGGCGGCT GCCGGGGCG GGCTGCCCCAC 180
CCGGCGGCTG CGGCGCAGG GGGAACTTC TCGGTGGCGG CCGGCCGCC GGCTGCGGCG 240
GCCGCCGCG CCAACCAGTG CCGCAACCTG ATGGCGCACC CGGCGCCCTT GGCGCCAGGA 300
GCCGCGTCCG CCTACAGCAG CGCCCCCGGG GAGGCGCCCC CGTCGGCTGC CGCCGCTGCT 360

GCCGCGGCTG CCGCTGCAGC CGCCGCCGCC GCCGCCGCGT CGTCCTCGGG AGGTCCCGGC 420 CCGGCGGGCC CGGCGGCGGC AGAGGCGGCC AAGCAATGCA GCCCCTGCTC GGCAGCGGCG 480 CAGAGCTCGT CGGGGCCCGC GGCGCTGCCC TATGGCTACT TCGGCAGCGG CTACTACCCG 540 CAGAGCTCGT CGGGGCCCGC GGCGCTGCCC TATGGCTACT TCGGCAGCGG CTACTACCCC 540
TGCGCCCGCA TGGGCCCGCC CCCCAACGCC ATCAAGTCGT GCCCCCAGCC CTCCTCGGCC 600
GCCGCCGCCG CCGCCTTCGC GGACAAGTAC ATGGATACCG CCGGCCCAGC TGCCGAGGAG 660
TTCAGCTCCC GCGCTAAGGA GTTCGCGTTC TACCACCAGG GCTACGCAGC CGGGCCTTAC 720
CACCACCATC AGCCCATGCC TGGCTACCTG GATATGCCAG TGGTGCCGGG CCTCGGGGGC 780
CCCGGCGAGT CGCGCCACGA ACCCTTGGGT CTTCCCATGG AAAGCTACCA GCCCTGGGCG 840
CTGCCCAACG GCTGGAACGG CCAAATGTAC TGCCCCAAAG AGCAGCGCA GCCTCCCCAC 900
CTCTGGAAGT CCACTCTGCC CGACGTGGTC TCCCATCCT CGGATGCCAG CTCCTATAGG 960
AGGGGGAGAA AGAAGCGCCT GCCTTATACC AAGGTGCAAT TAAAAGAACT TGAACGGGAA 1020 10 TACGCCACGA ATAAATTCAT TACTAAGGAC AAACGGAGGC GGATATCAGC CACGACGAAT 1080 CTCTCTGAGC GGCAGGTCAC AATCTGGTTC CAGAACAGGA GGGTTAAAGA GAAAAAAGTC 1140 ATCAACAAAC TGAAAACCAC TAGT<u>TAA</u> 15 SEQ ID NO:156 PFC6 Protein sequence: Protein Accession #: 20 41 51 11 21 31 MTASVLLHPR WIEPTVMFLY DNGGGLVADE LNKNMEGAAA AAAAAAAAA AGAGGGGFPH 60 PAAAAAGGNF SVAAAAAAA AAAANQCRNL MAHPAPLAPG AASAYSSAPG EAPPSAAAAA 120 AAAAAAAAA AAASSSGGPG PAGPAAAEAA KQCSPCSAAA QSSSGPAALP YGYFGSGYYP 180
CARMGPPPNA IKSCPQPPSA AAAAAFADKY MDTAGPAAEE FSSRAKEFAF YHQGYAAGPY 240 25 HIHOPMPGYL DMPVVPGLGG PGESRHEPLG LPMESYQPWA LPNGWNGOMY CPKEQAQPPH 300 LWKSTLPDVV SHPSDASSYR RGRKKRVPYT KVQLKELERE YATNKFITKD KRRRISATTN 360 LSEROVTIWF ONRRVKEKKV INKLKTTS 30 SEQ ID NO:157 PFA3 DNA SEQUENCE Nucleic Acid Accession #: AW102723 Coding sequence: 523-2676 (underlined sequences correspond to start and stop codons) 35 51 CCCTTATGGC GATTGGGCGG CTGCAGAGAC CAGGACTCAG TTCCCCTGCC CTAGTCTGAG 60 CCTAGTGGGT GGGACTCAGC TCAGAGTCAG TTTTCAGAAG CAGGTTTCAG TTGCAGAGTT 120 40 TTCCTACACT TTTCCTGCGC TAGAGCAGCG AGCAGCCTGG AACAGACCCA GGCGGAGGAC 180 ACCTGTGGGG GAGGGAGCGC CTGGAGGAGC TTAGAGACCC CAGCCGGGCG TGATCTCACC 240 ATGTGCGGAT TTGCGAGGCG CGCCCTGGAG CTGCTAGAGA TCCGGAAGCA CAGCCCCGAG 300 GTGTGCGAAG CCACCAAGAC TGCGGCTCTT GGAGAAAGCG TGAGCAGGGG GCCACCGCGG 360 TCTCCGGCCT GTCTGCACCC TGTCGCCTGA GCTGCCTGAC AGTGACAATG ACATCCCAGT 420
TACCAGTGTC CTTGAATTGA TAGTGGCTTC TGTTTGTCAG TCTCATATAA GAACTACAGC 480
TCATCAGGAG GAGATCGCAG CAGGGTAAGA GACACCAACA CCATGTTCTG CACGAAGCTC 540
AAGGATCTCA AGATCACAGG AGAGTGTCCT TTCTCCTTAC TGGCACCAGG TCAAGTTCCT 600 45 AACGAGTCTT CAGAGGAGGC AGCAGGAAGC TCAGAGAGCT GCAAAGCAAC CGTGCCCATC 660 TGTCAAGACA TTCCTGAGAA GAACATACAA GAAAGTCTTC CTCAAAGAAA AACCAGTCGG 720 50 AGCCGAGTCT ATCTTCACAC TTTGGCAGAG AGTATTTGCA AACTGATTTT CCCAGAGTTT 780 GAACGGCTGA ATGTTGCACT TCAGAGAACA TTGGCAAAGC ACAAAATAAA AGAAAGCAGG 840 AAATCTTTGG AAAGAGAAGA CTTTGAAAAA ACAATTGCAG AGCAAGCAGT GCAGCAGAGT 900 CCAGTGGAGT TATCAAAGAA TCTCTTGGTG AAGAGGTTTT TAAAATATGT TACGAGGAAG 960 ATGAAAACAT CCTTGGGGTG GTTGGAGGCA CCCTTAAAGA TTTTTAAACA GCTTCAGTAC 1020
CCTTCTGAAA CAGAGCAGCC ATTGCCAAGA AGCAGGAAAA AGGGCAGCT TGAGGACGCC 1080
TCCATTCTAT GCCTGGATAA GGAGGATGAT TTTCTACATG TTTACTACTT CTTCCCTAAG 1140
AGAACCACCT CCCTGATTCT TCCCGGCATC ATAAAGGCAG CTGCTCACGT ATTATATGAA 1200
ACGGAAGTGG AAGTGTCGTT AATGCCTCCC TGCTTCCATA ATGATTGCAG CGAGTTTGTG 1260 55 AATCAGCCCT ACTTGTTGTA CTCCGTTCAC ATGAAAAGCA CCAAGCCATC CCTGTCCCCC 1320 60 AGCAAACCCC AGTCCTCGCT GGTGATTCCC ACATCGCTAT TCTGCAAGAC ATTTCCATTC 1380 CATTTCATGT TTGACAAAGA TATGACAATT CTGCAATTTG GCAATGGCAT CAGAAGGCTG 1440 ATGAACAGGA GAGACTITICA AGGAAAGCCT AATTITIGAAT ACTITIGAAAT TCTGACTCCA 1500 AAAATCAACC AGACCTTTAG CGGGATCATG ACTATGTTGA ATATGCAGTT TGTTGTACGA 1560 GTGAGGAGAT GGGACAACTC TGTGAAGAAA TCTTCAAGGG TTATGGACCT CAAAGGCCAA 1620 65 ATGATCTACA TTGTTGAATC CAGTGCAATC TTGTTTTTGG GGTCACCCTG TGTGGACAGA 1680 TTAGAAGATT TTACAGGACG AGGGCTCTAC CTCTCAGACA TCCCAATTCA CAATGCACTG 1740 AGGATGTGG TCTTAATAGG GGAACAAGCC CGAGCTCAAG ATGCCATTCA CAATGCACTO 1740
AGGGATGTGG TCTTAATAGG GGAACAAGCC CGAGCTCAAG ATGCCCTAAA GAAGAGGCTG 1800
GGGAAGCTGA AGGCTACCCT TGAGCAAGCC CACCAAGCCC TGGAGGAGGA GAAGAAAAAG 1860
ACAGTAGACC TTCTGTGCTC CATATTTCCC TGTGAGGTTG CTCAGCAGCT GTGGCAAGGG 1920
CAAGTTGTGC AAGCCAAGAA GTTCAGTAAT GTCACCATGC TCTTCTCAGA CATCGTTGGG 1980
TTCACTGCCA TCTGCTCCCA GTGCTCACCG CTGCAGGTCA TCACCATGCT CAATGCACTG 2040
TACACTCCCT TCGACCAGCA GTGTGGAGAG CTGGATGTCT ACAAGGTGGA GACCATTGCG 2100 70 ATGCCTATTG TGTGGCTTGG GGGATTACAC AAAGAGAGTG ATACTCATGC TGTTCAGATA 2160
GCGCTGATGG CCCTGAAGAT GATGGAGCTC TCTGATGAAG TTATGTCTCC CCATGGAGAA 2220 75 CCTATCAAGA TGCGAATTGG ACTGCACTCT GGATCAGTTT TTGCTGGCGT CGTTGGAGTT 2280 AAAATGCCCC GTTACTGTCT TTTTGGAAAC AATGTCACTC TGGCTAACAA ATTTGAGTCC 2340

TGCAGTGTAC CACGAAAAAT CAATGTCAGC CCAACAACTT ACAGATTACT CAAAGACTGT 2400 CCTGGTTTCG TGTTTACCCC TCGATCAAGG GAGGAACTTC CACCAAACTT CCCTAGTGAA 2460 ATCCCCGGAA TCTGCCATTT TCTGGATGCT TACCAACAAG GAACAACTC AAAACCATGC 2520

SEQ ID NO:158 PFA3 Protein sequence:
Protein Accession #: NP_000847.1

15

5

- 10

30

35

11 21 31 41 51 MFCTKLKDLK ITGECPFSLL APGQVPNESS EEAAGSSESC KATVPICODI PEKNIQESLP 60 QRKTSRSRVY LHTLAESICK LIFPEFERLN VALQRTLAKH KIKESRKSLE REDFEKTIAE 120 20 QAVQQSPVEL SKNLLVKRFL KYVTRKMKTS LGWLEAPLKI FKQLQYPSET EQPLPRSRKK 180 GOLEDASILC LDKEDDFLHV YYFFPKRTTS LILPGIIKAA AHVLYETEVE VSLMPPCFHN 240 DCSEFVNQPY LLYSVHMKST KPSLSPSKPQ SSLVIPTSLF CKTFPFHFMF DKDMTILQFG 300 NGIRRLMNRR DFQGKPNFEY FEILTPKINQ TFSGIMTMLN MQFVVRVRRW DNSVKKSSRV 360 MDLKGQMIYI VESSAILFLG SPCVDRLEDF TGRGLYLSDI PIHNALRDVV LIGEQARAQD 420 25 GLKKRLGKLK ATLEQAHQAL EEEKKKTVDL LCSIFPCEVA QQLWQGQVVQ AKKFSNVTML 480 FSDIVGFTAI CSQCSPLQVI TMLNALYTRF DQQCGELDVY KVETIAMPIV WLGGLHKESD 540 THAVQIALMA LKMMELSDEV MSPHGEPIKM RIGLHSGSVF AGVVGVKMPR YCLFGNNVTL 600 ANKFESCSVP RKINVSPTTY RLLKDCPGFV FTPRSREELP PNFPSEIPGI CHIFLDAYQQG 660 TNSKPCFQKK DVEDASQFFR QSIRNRLATY IPIYKSLGFD SLKMCRASES TLGIVDG

SEQ ID NO:159 PFA1 DNA SEQUENCE

Nucleic Acid Accession #: NM_004362
Coding sequence: NM_004362
102-1934 (underlined sequences correspond to start and stop codons)

CGCCGGCGG ACTGGTCTGA AGAGACGCGG GGACAAAGTG GCAACGACTT GGACATCTGA 60 GCTGTCACTG CCGAAAACAG GCCGCAAGAG AGATAATCAA TATGCATTTC CAAGCCTTTT 120 40 GGCTATGTTT GGGTCTTCTG TTCATCTCAA TTAATGCAGA ATTTATGGAT GATGATGTTG 180
AGACGGAAGA CTTTGAAGAA AATTCAGAAG AAATTGATGT TAATGAAAGT GAACTTTCCT 240
CAGAGATTAA ATATAAGACA CCTCAACCTA TAGGAGAAGT ATATTTTGCA GAAACTTTTG 300
ATAGTGGAAG GTTGGCTGGA TGGGTCTTAT CAAAAGCAAA GAAAGATGAC ATGGATGAGG 360 AAATTTCAAT ATACGATGGA AGATGGGAAA TTGAAGAGTT GAAAGAAAAC CAGGTACCTG 420 45 GTGACAGAGG ACTGGTATTA AAATCTAGAG CAAAGCATCA TGCAATATCT GCTGTATTAG 480 CAAAACCATT CATTTTTGCT GATAAACCCT TGATAGTTCA ATATGAAGTA AATTTTCAAG 540 ATGGTATTGA TTGTGGAGGT GCATACATTA AACTCCTAGC AGACACTGAT GATTTGATTC 600 TGGAAAACTT TTATGATAAA ACATCCTATA TCATTATGTT TGGACCAGAT AAATGTGGAG 660 AAGATTATAA ACTTCATTTT ATCTTCAGAC ATAAACATCC CAAAACTGGA GTTTTCGAAG 720 50 AGAAACATGC CAAACCTCCA GATGTAGACC TTAAAAAGTT CTTTACAGAC AGGAAGACTC 780 ATCTTTATAC CCTTGTGATG AATCCAGATG ACACATTTGA GGTGTTAGTT GATCAAACAG 840 TTGTAAACAA AGGAAGCCTC CTAGAGGATG TGGTTCCTCC TATCAAACCT CCCAAAGAAA 900 TTGAAGATCC CAATGATAAA AAACCTGAGG AATGGGATGA AAGAGCAAAA ATTCCTGATC 960 CTTCTGCCGT CAAACCAGAA GACTGGGATG AAAGTGAACC TGCCCAAATA GAAGATTCAA 1020 55 GTGTTGTTAA ACCTGCTGGC TGGCTTGATG ATGAACCAAA ATTTATCCCT GATCCTAATG 1080 CTGAAAAACC TGATGACTGG AATGAAGACA CGGATGGAGA ATGGGAGGCA CCTCAGATTC 1140 TTAATCCAGC ATGTCGGATT GGGTGTGGTG AGTGGAAACC TCCCATGATA GATAACCCAA 1200 AATACAAAGG AGTATGGAGA CCTCCACTGG TCGATAATCC TAACTATCAG GGAATCTGGA 1260 GTCCTCGAAA AATTCCTAAT CCAGATTATT TCGAAGATGA TCATCCATTT CTTCTGACTT 1320 60

AAGGGCACCC ATGGCTTTGG TTGATTTATC TTGTGACAGC AGGAGTGCCA ATAGCATTAA 1560
TTACTTCATT TTGTTGGCCA AGAAAAGTAA AGAAAAACA TAAAGATACA GAGTATAAAA 1620
AAACCGACAT ATGTATACCA CAAACAAAAG GAGTACTAGA GCAAGAAGAA AAGGAAGAGA 1680
AAGCAGCCCT GGAAAACCA ATGGACCTGG AAGAGGAAAA AAAGCAAAAT GATGGTGAAA 1740
TGCTTGAAAA AGAAGAGGAA AGTGAACCTG AGGAAAAAG TGAAGGAAGAA ATTGAAATCA 1800
TAGAAGGGCA AGAAGAAAGT AATCAATCAA ATAAGTCTGG GTCAGAGGAT GAGATGAAAG 1820
AAGCAGATTGA GAGCACAGGA TCTGGAGATT GGCCGATAAA GTCAGTACGC AAAAGAAGAG 1920
TACGAAAGGA CTAAACTAGA TTGAAATATT TTTAATTCCC GAGAGGATGT TTGGCATTGT 1980
AAAAATCAGC ATGCCAGACC TGAACTTTAA TCAGTCTGCA CATCCTGTTT CTAATATCTA 2040

CTTTCAGTGC TCTTGGTTTA GAGCTTTGGT CTATGACCTC TGATATCTAC TTTGATAATT 1380 TTATTATCTG TTCGGAAAAG GAAGTAGCAG ATCACTGGGC TGCAGATGGT TGGAGATGGA 1440 AAATAATGAT AGCAAATGCT AATAAGCCTG GTGTATTAAA ACAGTTAATG GCAGCTGCTG 1500

GCAACATTAT ATICTITCAG ACATTTATIT TAGTCCTTCA TITCCGAGGA AAAAGAAGCA 2100
ACTITIGAAGT TACCTCATCT TIGAAATTTAG AATAAAAGTG GCACATTACA TATCGGATCT 2160
AAGAGATTAA TACCATTAGA AGTTACACAG TITTAGTTGT TIGGAGATAG TITTGGTTTG 2220
TACAGAACAA AATAATATGT AGCAGCTTCA TIGCTATTGG AAAAATCAGT TATTGGAATT 2280
TCCACTTAAA TGGCTATACA ACAATATAAC TGGTAGTTCT ATAATAAAAA TGAGCATATG 2340
TICTGTTGTG AAGAGCTAAA TGCAAATAAAG TTTCTGTATG GTTGTTTGAT TCTATCAACA 2400
ATTGAAAGTG TIGTATATGA CCCACATTTA CCTAGTTTGT GTCAAATTAT AGTTACAGTG 2460
AGTTGTTTGC TIAAATTATA GATTCCTTTA AGGACATGCC TTGTTCATAAA AATCACTGGA 2520

WO 02/30268

PCT/US01/32045

LADFVKIAHP EPAFREAAEE ACRSIGTMVE KLNTNVDLYQ SLQKLLADKK LVDSLDPETR 180
RVAELFMFDF EISGIHLDKQ KRKRAVDLNV KILDLSSTFL MGTNIFPNKIE KHLLPEHIRR 240
NFTSAGDHII IDGLHAESPD DLVREAAYKI FLYPNAGQLK CLEELLSSRD LLAKLVGYST 300
FSHRALQGTI AKNPETVMOF LEKLSDKLSE RTLKDFEMIR GMKMKLNAQN SEVMPWDPPY 360
YSGVIRAERY NIEPSLYCPF FSLGACMEGL NILLNRILLGI SLYAEQPAKG EVWSEDVRKL 420
AVVHESEGLL GYIYCDFFQR ADKPHQDCHF TIRGGRLKED GDYQLPLVVL MLNLPRSSRS 480
SPILLTPGMM ENLFHEMGHA MHSMLGRTRY QHVTGTRCPT DFAEVPSILM EYFANDYRVV 540
NQFARHYQTG QPLPKNMVSR LCESKKVCAA ADMQLQVFYA TILDQIYHGKH PILRNSTTDIL 600
KETQEKFYGL PYVPNTAWQL RFSHLVGYGA RYYSYLMSRA VASMVWKECF LQDPFNRAAG 660
ERYRREMLAH GGGREPMLMV EGMLQKCPSV DDFVSALVSD LDLDFETFLM DSE

SEQ ID NO:163 PEZ8 DNA SEQUENCE

Nucleic Acid Accession #: AF103907
Coding sequence: none (underlined sequences correspond to start and stop codons)

15

21 31 20 ACAGAAGAAA TAGCAAGTGC CGAGAAGCTG GCATCAGAAA AACAGAGGGG AGATTTGTGT 60 GGCTGCAGCC GAGGGAGACC AGGAAGATCT GCATGGTGGG AAGGACCTGA TGATACAGAG 120 GAATTACAAC ACATATACTT AGTGTTTCAA TGAACACCAA GATAAATAAG TGAAGAGCTA 180 GTCCGCTGTG AGCTCCCTCA GTGACACAGG GCTGGATCAC CATCGACGGC ACTTTCTGAG 240
TACTCAGTGC AGCAAAGAAA GACTACAGAC ATCTCAATGG CAGGGGTGAG AAATAAGAAA 300
GGCTGCTGAC TTTACCATCT GAGGCCACAC ATCTGCTGAA ATGGAGATAA TTAACATCAC 360
TAGAAACAGC AAGATGACAA TATAATGTCT AAGTAGTGAC ATGTTTTTGC ACATTTCCAG 420 25 CCCCTTTAAA TATCCACACA CACAGGAAGC ACAAAAGGAA GCACAGAGAT CCCTGGGAGA 480 AATGCCCGGC CGCCATCTTG GGTCATCGAT GAGCCTCGCC CTGTGCCTGG TCCCGCTTGT 540 GAGGGAAGGA CATTAGAAAA TGAATTGATG TGTTCCTTAA AGGATGGGCA GGAAAACAGA 600 30 TCCTGTTGTG GATATTTATT TGAACGGGAT TACAGATTTG AAATGAAGTC ACAAAGTGAG 660 CATTACCAAT GAGAGGAAAA CAGACGAGAA AATCTTGATG GCTTCACAAG ACATGCAACA 720 AACAAAATGG AATACTGTGA TGACATGAGG CAGCCAAGCT GGGGAGGAGA TAACCACGGG 780 GCAGAGGGTC AGGATTCTGG CCCTGCCC TAAACTGTGC GTTCATAACC AAATCATTTC 840
ATATTTCTAA CCCTCAAAAC AAAGCTGTTG TAATAATCTGA TCTCTACGGT TCCTTCTGGG 900
CCCAACATTC TCCATATATC CAGCCACACT CATTTTTAAT ATTTAGTTCC CAGATCTGTA 960
CTGTGACCTT TCTACACTGT AGAATAACAT TACTCATTTT GTTCAAAGAC CCTTCGTGTT 1020
GCTGCCTAAT ATGTAGCTGA CTGTTTTTCC TAAGGAGTGT TCTGGCCCAG GGGATCTGTG 1080 35 AACAGGCTGG GAAGCATCTC AAGATCTTTC CAGGGTTATA CTTACTAGCA CACAGCATGA 1140 TCATTACGGA GTGAATTATC TAATCAACAT CATCCTCAGT GTCTTTGCCC ATACTGAAAT 1200 40 TCATTTCCCA CTTTTGTGCC CATTCTCAAG ACCTCAAAAT GTCATTCCAT TAATATCACA 1260 GGATTAACIT TITITTTTAA CCTGGAAGAA TTCAATGTTA CATGCAGCTA TGGGAATTTA 1320 ATTACATATT TTGTTTTCCA GTGCAAAGAT GACTAAGTCC TTTATCCCTC CCCTTTGTTT 1380 AGATTTTTTT CCAGTATAAA GTTAAAATGC TTAGCCTTGT ACTGAGGCTG TATACAGCAC 1440
AGCCTCCCC CATCCCTCCA GCCTTATCTG TCATCACCAT CAACCCCTCC CATACCACCT 1500
AAACAAAATC TAACTTGTAA TTCCTTGAAC ATGTCAGGAC ATACATTATT CCTTCTGCCT 1560
GAGAAGCTCT TCCTTGTCTC TTAAATCTAG AATGATGTAA AGTTTTGAAT AAGTTGACTA 1620 45 TCTTACTTCA TGCAAAGAAG GGACACATAT GAGATTCATC ATCACATGAG ACAGCAAATA 1680 CTAAAAGTGT AATTTGATTA TAAGAGTTTA GATAAATATA TGAAATGCAA GAGCCACAGA 1740 GGGAATGTTT ATGGGGCACG TTTGTAAGCC TGGGATGTGA AGCAAAGGCA GGGAACCTCA 1800 50 TAGTATCTTA TATAATATAC TTCATTTCTC TATCTCTATC ACAATATCCA ACAAGCTTTT 1860 CACAGAATTC ATGCAGTGCA AATCCCCAAA GGTAACCTTT ATCCATTTCA TGGTGAGTGC 1920 GCTTTAGAAT TTTGGCAAAT CATACTGGTC ACTTATCTCA ACTTTGAGAT GTGTTTGTCC 1980 TTGTAGTTAA TTGAAAGAAA TAGGGCACTC TTGTGAGCCA CTTTAGGGTT CACTCCTGGC 2040 AATAAAGAAT TTACAAAGAG CTACTCAGGA CCAGTTGTTA AGAGCTCTGT GTGTGTGTGT 2100 GTGTGTGTGT GAGTGTACAT GCCAAAGTGT GCCTCTCTCT CTTGACCCAT TATTTCAGAC 2160 55 TTAAAACAAG CATGTTTTCA AATGGCACTA TGAGCTGCCA ATGATGTATC ACCACCATAT 2220 CTCATTATTC TCCAGTAAAT GTGATAATAA TGTCATCTGT TAACATAAAA AAAGTTTGAC 2280 TTCACAAAAG CAGCTGGAAA TGGACAACCA CAATATGCAT AAATCTAACT CCTACCATCA 2340 GCTACACACT GCTTGACATA TATTGTTAGA AGCACCTCGC ATTTGTGGGT TCTCTTAAGC 2400 AAAATACTTG CATTAGGTCT CAGCTGGGGC TGTGCATCAG GCGGTTTGAG AAATATTCAA 2460 60 TTCTCAGCAG AAGCCAGAAT TTGAATTCCC TCATCTTTTA GGAATCATTT ACCAGGTTTG 2520 GAGAGGATTC AGACAGCTCA GGTGCTTTCA CTAATGTCTC TGAACTTCTG TCCCTCTTTG 2580
TGTTCATGGA TAGTCCAATA AATAATGTTA TCTTTGAACT GATGCTCATA GGAGAGAATA 2640
TAAGAACTCT GAGTGATATC AACATTAGGG ATTCAAAGAA ATATTAGATT TAAGCTCACA 2700
CTGGTCAAAA GGAACCAAGA TACAAAGAAC TCTGAGCTGT CATCGTCCCC ATCTCTGTGA 2760
GCCACAACCA ACAGCAGGAC CCAACGCATG TCTGAGATCC TTAAATCAAG GAAACCAGTG 2820 65 TCATGAGTTG AATTCTCCTA TTATGGATGC TAGCTTCTGG CCATCTCTGG CTCTCCTCTT 2880 GACACATATT AGCTTCTAGC CTTTGCTTCC ACGACTTTTA TCTTTTCTCC AACACATCGC 2940 TTACCAATCC TCTCTCTGCT CTGTTGCTTT GGACTTCCCC ACAAGAATTT CAACGACTCT 3000 70 CAAGTCTTTT CTTCCATCCC CACCACTAAC CTGAATGCCT AGACCCTTAT TTTTATTAAT 3060 TTCCAATAGA TGCTGCCTAT GGGCTATATT GCTTTAGATG AACATTAGAT ATTTAAAGCT 3120 CAAGAGGTTC AAAATCCAAC TCATTATCTT CTCTTTCTTT CACCTCCCTG CTCCTCTCCC 3180 TATATTACTG ATTGCACTGA ACAGCATGGT CCCCAATGTA GCCATGCAAA TGAGAAACCC 3240
AGTGGCTCCT TGTGGTACAT GCATGCAAGA CTGCTGAAGC CAGAAGGATG ACTGATTACG 3300
CCTCATGGGT GGAGGGGACC ACTCCTGGGC CTTCGTGATT GTCAGGAGCA AGACCTGAGA 3360
TGCTCCCTGC CTTCAGTGTC CTCTGCATCT CCCCTTTCTA ATGAAGATCC ATAGAATTTG 3420
CTACATTTGA GAATTCCAAT TAGGAACTCA CATGTTTTATA CTGCCCTATC AATTTTTTAA 3480 75 ACTIGCTGAA AATTAAGTTT TITCAAAATC TGTCCTTGTA AATTACTTTT TCTTACAGTG 3540 TCTTGGCATA CTATATCAAC TTTGATTCTT TGTTACAACT TTTCTTACTC TTTTATCACC 3600

AAAGTGGCTT TTATTCTCTT TATTATTATT ATTTTCTTTT ACTACTATAT TACGTTGTTA 3660 TTATTTTGTT CTCTATAGTA TCAATTTATT TGATTTAGTT TCAATTTATT TTTATTGCTG 3720 ACTTTTAAAA TAAGTGATTC GGGGGGTGGG AGAACAGGGG AGGGAGAGCA TTAGGACAAA 3780 TACCTAATGC ATGTGGGACT TAAAACCTAG ATGATGGGTT GATAGGTGCA GCAAACCACT 3840 ATGGCACACG TATACCTGTG TAACAAACCT ACACATTCTG CACATGTATC CCAGAACGTA 3900 AAGTAAAATT TAAAAAAAAG TGA

PEZ8 Protein sequence:

10 Protein Accession #: none SEQ ID NO:164 PEZ6 DNA SEQUENCE Nucleic Acid Accession #: AB028945 Coding sequence: 1-3765 (underlined sequences correspond to start and stop codons) 15 ATGATGATGA ACGTCCCCGG CGGAGGAGCG GCCGCGGTGA TGATGACGGG CTACAATAAT 60 GGTCGCTGTC CCCGGAATTC TCTCTACAGT GACTGCATTA TTGAGGAGAA GACGGTGGTC 120 CTGCAGAAAA AAGACAATGA GGGCTTTGGA TTCGTGCTTC GAGGGGCCCAA AGCTGACACA 180 CCCATTGAAG AATTCACACC AACACCGGCT TTCCCAGCCC TACAGTACCT GGAGTCCGTG 240 20 GATGAAGGTG GGGTGGCGTG GCAAGCCGGA CTAAGGACCG GGGACTTCTT GATTGAGGTT 300 AACAATGAGA ATGTTGTCAA AGTCGGCCAC AGGCAGGTGG TGAACATGAT CCGGCAGGGA 360 GGGAATCACC TGGTCCTTAA GGTGGTCACG GTGACCAGGA ATCTGGACCC CGACGACACC 420 25 GCCAGGAAGA AAGCTCCCCC GCCTCCAAAG CGGGCACCGA CCACAGCCCT CACCCTGCGC 480 TCCAAGTCCA TGACCTCGGA GCTGGAGGAG CTCGTGGATA AAGATAAACC CGAGGAGATA 540 GTCCCGGCCT CCAAGCCCTC CCGCGCTGCT GAGAACATGG CTGTGGAACC GAGGGTGGCG 600 ACCATCAAGC AGCGGCCCAG CAGCCGGTGC TTCCCGGCGG GCTCAGACAT GAACTCTGTG TACGAACGCC AAGGAATCGC CGTGATGACG CCCACTGTTC CTGGGAGCCC AAAAGCCCCG 720 30 TITCTGGGCA TOCCTCGAGG TACGATGCGA AGGCAGAAAT CAATAGACAG CAGAATCTTT CTATCAGGAA TAACAGAGGA AGAGCGGCAG TTTCTGGCTC CTCCAATGCT GAAGTTCACC 840 AGAAGCCTGT CCATGCCGGA CACCTCTGAG GACATCCCCC CTCCACCGCA GTCTGTGCCC 900 CCGTCCCCAC CACCACCTTC CCCAACCACT TACAACTGCC CCAAGTCCCC AACTCCAAGA 960 GTCTACGGGA CGATTAAGCC TGCGTTCAAT CAGAATTCTG CCGCCAAGGT GTCCCCCGCC 1020 35 ACCAGGTCCG ACACCGTGGC CACCATGATG AGGGAGAAGG GGATGTACTT CAGGAGAGAG 1080 CTGGACCGCT ACTCCTTGGA CTCTGAAGAC CTCTACAGTC GGAATGCCGG CCCGCAAGCC 1140 AACTTCCGCA ACAAGAGAGG CCAGATGCCA GAAAACCCAT ACTCAGAGGT GGGGAAGATC 1200 GCCAGCAAAG CCGTCTACGT CCCCGCCAAG CCCGCCAGGC GGAAGGGGAT GCTGGTGAAG 1260 CAGTCCAACG TGGAGGACAG CCCCGAGAAG ACGTGCTCCA TCCCTATCCC GACCATCATC 1320 40 GTGAAGGAGC CGTCCACCAG CAGCAGCGGC AAGAGCAGCC AGGGCAGCAG CATGGAGATC 1380 GACCCCCAGG CCCCGGAGCC ACCGAGCCAG CTGCGGCCTG ACGAAAGCCT GACCGTCAGC 1440
AGCCCCTTTG CCGCCGCAT CGCCGGAGCC GTCCGCGACC GTGAGAAGCG GCTGGAAGCC 1500 AGGAGGAACT CCCCGGCCTT CCTCCACA GACCTGGGG ATGAGGATGT GGGCCTGGGG 1560
CCACCGCCC CCAGGACGC GCCCTCCATG TTCCCCGAGG AGGGGGATTT TGCTGACGAG 1620
GACAGCGCTG AGCAGCTGTC ATCCCCCATG CCGAGTGCCA CGCCCAGGGA GCCCGAAAAC 1680
CATTTCGTGG GTGGCGCCGA GGCCAGTGCT CCGGGTGAGG CTGGGAGGCC GCTGAATTCC 1740
ACGTCCAAAG CCCAGGGGCC CGAGAGCAGC CCAGCAGTGC CCTCCGCGAG CAGCGGCACA 1800 45 GCCGGCCCCG GGAATTATGT CCACCCACTC ACAGGGCGGC TGCTTGATCC CAGCTCCCCG 1860 CTGGCCCTGG CACTCTCCGC AAGGGACCGA GCCATGAAGG AGTCTCAACA GGGACCCAAA 1920 50 GGGGAGGCCC CCAAGGCCGA CCTCAACAAA CCTCTTTACA TTGATACCAA AATGCGGCCC 1980 AGCCTGGATG CCGGCTTCCC TACGGTCACC AGGCAGAACA CCCGGGGACC CCTGAGGCGG 2040 CAGGAGACGA GAACAAGTA CGAGACCGAC CTGGGCCGAG ACCGGAAAAG CGATGACAAG 2100
AAGAACATGC TGATCGACAT CATGGACACG TCCCAGCAGA AGTCGGCTGG CCTGCTGATG 2160
GTGCACACCG TGGACGCCAC TAAGCTGGAC AACGCCCTGC AGGAAGAGAG CGAGAAGGCA 2220
GAGGTGGAG 55 GAAGGTGCTT TACAGATCTC CGCTGCCCCC GAGCCCACCA CCGTGCCCGG CAGAACCATC 2340 GTCGCGGTGG GCTCCATGGA AGAGGCGGTG ATTTTGCCAT TCCGCATCCC TCCTCCCCCT 2400
CTGGCATCCG TGGACTTGGA TGAGGATTTT ATTTTTACAG AGCCATTGCC TCCTCCCCTG 2460 GAATTTGCAA ATAGTTTTGA TATCCCCGAT GACCGGCAG CTTCTGTCCC GGCTCTCTCA 2520 60 GACTTAGTGA AGCAGAAGAA AAGCGACACC CCTCAGTCCC CTTCGTTGAA CTCCAGCCAA 2580 CCAACCAACT CTGCAGACAG CAAGAAGCCA GCCAGTCTTT CAAACTGTCT GCCTGCCTCA 2640 TTCCTGCCAC CCCTGAAAG CTTTGACGCC GTCGCCGACT CTGGGATCGA GGAGGTGGAC 2700 AGCCGGAGTA GCAGCGACCA CCACCTCGAG ACGACCAGCA CTATCTCCAC CGTGTCTAGC 2760 ATCTCCACCC TGTCTTCCGA AGGTGGAGAG AATGTGGACA CCTGCACAGT CTATGCAGAT 2820 GGGCAGCAT TTATGGTTGA CAAACCCCCA GTACCTCCTA AGCCAAAAT GAAGCCCATC 2880
ATTCACAAAA GCAATGCACT TTATCAAGAC GCGCTCGTGG AAGAAGATGT AGATAGCTTT 2940
GTTATCCCCC CGCCCGCTCC CCCGCCCCCG CCGGGCAGTG CCCAGCCTGG GATGGCCAAG 3000
GTTCTCCAGC CAAGGACCTC CAAGTTGTGG GGCGACGTCA CAGAGATCAA AAGCCCGATT 3060 65 CTCTCAGGCC CAAAGGCAAA CGTTATTAGT GAATTGAACT CTATCCTACA GCAAATGAAC 3120 70 CGAGAGAAAT TGGCAAAGCC GGGGGAAGGA CTGGATTCAC CAATGGGAGC CAAGTCCGCC 3180 AGCCTCGCTC CAAGAAGCCC GGAGATCATG AGCACCATCT CAGGTACACG GAGCACGACG 3240 GTCACCTTCA CTGTTCGCCC CGGCACCTCC CAGCCCATCA CCCTGCAGAG CCGGCCCCCC 3300 GACTATGAAA GCAGGACCTC AGGAACAAGA CGTGCCCCAA GCCCTGTGGT CTCGCCAACA 3360 GAGATGAACA AAGAGACCCT GCCCGCCCCC CTGTCTGCTG CCACCGCCTC TCCTTCTCCC 3420 75 GCTCTCTCAG ATGTCTTTAG CCTTCCAAGC CAGCCCCCTT CTGGGGATCT ATTTGGCTTG 3480 AACCCAGCGG GACGCAGTAG GTCGCCATCC CCCTCGATAC TGCAACAGCC AATCTCAAAT 3540 AAGCCTTTTA CAACTAAACC TGTCCACCTG TGGACTAAAC CAGATGTGGC CGATTGGCTG 3600

GAAAGTCTAA ACTTGGGTGA ACATAAAGAG GCCTTCATGG ACAATGAGAT CGATGGCAGT 3660 CACTTACCAA ACCTGCAGAA GGAGGACCTC ATCGATCTTG GGGTAACTCG AGTCGGGCAC 3720

AGAATGAACA TAGAAAGGGC TTTGAAACAG CTGCTGGACA GA<u>TAA</u>GGACG GCTGCTCTCC 3780 ACCTCGCAGA CTGCTCTTGT TATAAGTAGA GATGGGCTCG TGCTGAAACA TCTGAATGCC 3840 AAGCGAAGTC TGTGAGCATC AACCCCACTC CATGGGTTTG TCTCCTGGTA CCCAAAGAAA 3900 TACTGAGTTG TGTCCACAAC ATGGCTGGGT CTTCAGACCC CTGGCTCACC ATGTGGGTGT 3960 5 CTTGGGCAGT TTCTATCACA CATGGGACAA GGGGAGGGAG TTTTTCTAAC ATGGAAAAAG 4020 ATTCCCAGCC TGCCGCCCAG CATGCAGGTG GCCTCGCTTT GCCGGGTCCG AGAGGCTCCC 4080 CGTCAATTTT GCACGGGATC CTAGCTCTTG TAGGCAGACA CCAGTGCACT CTAGATACCT 4140 CCTGAGACCT CCGTCCTCTG CTTTCCGGGC AGCTCTCACC ACCCCAGGCC CCGGCATGAG 4200 GCCTTTCCTC AGTCCTGTGG CCTCTCAGAG GACACCTGAT GCTCACCTGC CCCTCTTTCT 4260 CCTGCACTTG GCTTGCAGTG AGATGCTCCC AGATGCATTT GTCCAGTGCC CCATCATGGG 4320 10 CCTGAAAGGC AGAGAAACTT TTTCCTACAC AGATTCTTTT CCCCATCTCC TCCTGTGGTT 4380 TGCATCCATG GCTCTTTGGC CATGAGGTTC CTGGCAGTGC TGGGAGTTTG GATGGGATCG 4440 TGCCCAGCTT TGCTTAGCTT TCTTTATTTC TGCAAATCTG TTAGCATAAT TCCAAGGTGG 4500 CCAAGCAGAT GTCACATGGA GTTAGTCAAA GCACAAAGTC ACGATTCCAC AATGGAGGGG 4560 15 AGACCTGGCC AAGGGAGCCA GCCAGCGTGC AACTGCCCAA GCTCCAGGTC TCCAGGACAA 4620 GAGCAGTTGT CTGCCATGAG CACCCATCCA GGATGGAGAA TAAGGGCTTC TCTGCCTCTC 4680 AGAATTCTTT TTAATTGAAG ATGTCTTGAG CTCTGCAAAG ATCAGAGCAG GTGAGCATCC 4740 ACTTTGACAT GAAGGACAAG AAGACGCATG GCTCATGGCG GGCACATGCG GCTGCCAGTG 4800 AGACAGCGTC TCCTCTGGGA GCTGGGCGGG CACAGCATCC TCAGTTCTGT GCCCAGCCAA 4860 20 GGGTGAGCAT CTCTGCTGAG ACAGTCCTTT TGCTCTCGGA GGCCAGGGAA GATGGTACTT 4920 AGAGGCTTTT CCCCTATCGC TCTGGGTGTC TAGGAATCCC ACCAGCTTGT CTTAACAGTA 4980 CAACAGCTTC TTTGAGGACC CAGTGGGTAT GGAGTATAGA CAGAACCCAG GGTTGAGAAC 5040 AGAAGGTGGG CGGCAGGATC AGAGTGAAAG CAGAGGCGTG AGGAGAGGAA AGCAGGGAGG 5100 TCTCCTGGGC TGCCAGGTCA GCCTCTCTGG CAAGGCTTTC TTGAGCCCCG CCCCTTTCTT 5160
TCCCCGGAGT CCCTCCACCC CATAACAATA CCTCGAATTT CCAAAAGAGG TCACCAGATG 5220
CACATGGGCC GCAAAACACA CAGTCAGGCT TCCAGCACAT TCTCCCCCAT TTGGAGGATA 5280
CTCGAATGTC AGGTTTTTGG TTTTATTATT ATTTCAGAAC TAGCTCAGCC CATCTCTAAT 5340
TATAAAACAT GGTTTTGTTT TTTTTTTTC CTTTTTTTCT TGATTAGGTC TGGAACAGCT 5400 25 CTAGAATGAA CACATAAAAT TTAGCAATTT AAAATCTTIC TTTACTGCAA GTTTAAATAG 5460 30 TTGTACAGAT AGTTTATAAG CACAATATTT TAAGAAAAAA AAGTGGCTGG TCTACTAGGC 5520 AGCCTTTGTG CCACTTCAGT GCTAGAAAGT TAAAGAAAAA AAAACTTTTG TGATTTAATA 5580 ATACTATTTC TGTGGAATAA TTATAAAAGT ATGACCTTTT TAAATCAACC TTATTTGGAT 5640 GCATCTGAAC CAGCAGAGCT GTGTTATATT TTCTATCTTT GCTAGAACTT CGTCATTGAA 5700 GGACAATTTC TTCAAAGTGG TTACAATTCA TAATGCAGCA GTTTCTCCAA AAACAAAAAC 5760 GACACTTIC TICAAAGIGG TIACAATICA IAAIGCAGCA GI ICICCAA AAACAAAAAC 5760
AAAACACAA CCACACACAC GCGCTTTTCC AGTCACACAC CCCTGATGTI GGAACCAAGT 5820
TITTGGACCT TCTGTTCCAA AACCTTTTGC AGGTCAATCT TIGTATITGA AATGATCCAA 5880
TCCAACTTGA AGTCAATTGA ATATTAAGGC GCTTTACTTC CGTGTGCTTT CAGTTTTTCC 5940
ATCATGAGAT GAATGAGCAT TACTCTAGAT AAATTTCAAG ACAGGATACT ACAGGTGGCC 6000
TGCTGAGGCT GCCCCATATT TTAGAAAATG TAAAAATGGT GGTTTGGCCA TTAATTTGTC 6060
TTCCATTTGA TGATACCGCA AAATTCCGTG AGTCCATTCC TTTGGCCATGG CACTTTCCCT 6120 35 40 GGGCCTACAG TTGGTATTAC CTCTGTGCTC AGTGCCAGGC AAAACACTAG CTCAAAGGAG 6180 AGTCAAGGAA ACCGCTGGCA GACGATAACC AGTCGAAACT CGTGACTTCG GTTTGTTGAA 6240 CTTTGGCAGC CAGTTGGTGA GGGCCAGATG TTATTCCCTT TCTTAAAGAT ACTCCAAGCC 6300 ACATGCCACT AACCACAAGC AAGCTGGCTG CAAGACTAAA GAGCTGATAA CATAGTTTAT 6360 ACAGCCACT AACCAACC AAGCTIGGCTO CAAGACTIAAA GAGCTIGATA CATACTTATA 6560
ATTATACACTG TCTTATTATA GAGAAGTAAT AGACCTATCA GAACCTGCAC TGACCAACAA 6420
ATAAACACAT GTTGCCAAGA TGAATCGGTC TCTTATCTCTA TCTGCTTATT TTGGTACTGA 6480
AAGCAATAGT TCCTCATTCA AATCACCACC CACTGTTCTC CCCCTTTGGG ACATGTTAGG 6540
ACGAGGCCCT ATTCCATGCC CCTCTTTAAT GGTGGAACAA ATGTTAAACT GCTCATCTAA 6660
AGATCATGTT GATATTATTC CAGGTTTTAA GATCAACTTT TGTTACATAC TGTAATTTAA 6660
ATAAACTGCA TTTACATGCC TAGTTTCTGT AATATTGTGT ATACAAAACC CAAATCTCTC 6720 45 50 AAAATGTAAA TTATGTATAC CTGCCAAGAT ACCTITTCCA GGGTGTCTGC GCACATTTTA 6780 AGTTAATTCA CATAATATAA AAATTACTCA ATGTGACTGT TGATTTGCTG AACTTTACAT 6840 ATCACAAAGT GAATTATTTG TGATACTTTA GTTAATAAAA TGGTAAATTT TTTTCTCAGT 6900 TATTGAACAA GCAAGCATTA TCCAGTTGAT CTGGCAATGA CTTTTTGTGT GTGGGCCACA 6960 55 ATATTGATTT TCCCATTAAC AATTTTTTTT TGTTTTTTAA ATACTAATAT GTTTCACACT 7020 ATAGTTTGTG TAACAACACG TGTTCGCATT ATCTATGTTG CTGTTACTTT TGTGCTTTTA 7080 ATAGITTGTG TAACAACACG TGTTCGCATT ATCTATUTIG CTGTTACTIT TGGCTTTA 7880
TICTTTTTAG ACTITATAAA AAAAAAAAA AGCTCCTGTA ATTTGCACTT TGTCCCAATC 7140
CTTAAATCTC TTGTATGGCA ACCAAAATTA CTGTAAAAAAA ATAAATATAC TATTGCACTA 7200
AGGTTGTGGGT TCTGATTGCA AACAACACT GAACACTGTC TGAATTAAAC AAAAAGCTGC 7260
CCGACTTGCA ATCTAATGTA GATTATCTCA GGCATTGTGG CCAGCTCTGC CTCTCTAAAA 7320
CTGACCAGAA AAATCTCTCT CATCGAGTAA ACAGGCTCCT GTCACTGAGC TAATCTGCCT 7380
TGGTTCCATT TCCTTATTCT CAATTTATCA ATGGATACGT GCATGTTATT TCAGAATTAT 7440 60 GCAAAACGTC AAAATCTGCT TCTGTGACCG CTGCTATAGG CGTGGAGCTG AGGCTCGGCT 7500 TTTCCTTTTG TTCTGGGTGG AAGCAGCGGT GCCGCGGAGG GCCAGCCAGA TCCGGACCCT 7560 65 TCCCTTAGGG TCCAGTCTCC CCACACCCCA GCAGGGTGTC TTCTAGCCAT AAGGCCAAGG 7620 GAGTGGCAGA ACTGGGCCGC CTCTCTGGTT GACAAGCAAA CCACATGCTA AGGCTTGGAG 7680 CAAGAGAGAA TTTGTGTCTA TTGGCAAAGA ACTAAGCCAG GAAGACATGG GCCATCCCTC 7740 CGCTTTAGGG AAGCATATTT TAAACCTAAA CGTTGAACTT CTTCTTTGGC CTCACCAGTG 7800 AAAACTTGTT GTCTTTAGTT CCTAAAGTTT CTTCTACTTT GGCACATTCC CCAGTTGAGC 7860 AGCAGCCTCT ATGCTTCCAC GTTCAGGAAA AATTCCAGTC CTCATATCTT TTGTAGTTCA 7920 70 CCCTCAAGCT CTCCCGCTTC ACCATCCAAT AGTTTCTCCC AAACCTTGGC ACCCCCTAG 7980 ACTTGCTTC CAATGGTTTC TTCCAGACCA CTTTTCCTAG ATGAATATAT TCGTTTACCT 8040 TACTAGGAAA ATTATTGGAA GATTITTCT TTTACTTGAA ATTGGAGGCA TTTTAACT 8040
TACTAGGAAA ATTATTGGAA GATTITTCT TTTACTTGAA ATTGGAGGCA TTTTAATAC 8100
TGGCGAACTG GAATGTGTTT CTGTATTTGT AGACAACCAT GTACCCATGC AAGTAGGTGA 8160
ACATTCCACA GTGGCTGGGT GACCACAGCA GCTGCATGCA GACAGGACTG CCCGTGCTTT 8220
GTGGGGAATC AGAGAATTTC CAAACTTGTT TCTCAGACTT CCGCAGATCT CATCACTTTG 8280 75 ATTICTAATC CATGCTGTAT TGGTGATTIT GTTTATCGTT CCTGTAACTT GTTCTACATT 8340 CCACAGTCTT TACCGTTTTA TGTTCAAAAT TACAACAATC CCTGTCCATT GATTCCACTC 8400 TGGAACTCTT TGTTCATGCC AATTTTGAAA TTTTAATACG AGCCTTCAAA TAAACACAGA 8460

ΑΛΑΓΑΛΑΛΑ ΑΛΑΛΑΛΑΛΑ ΑΛΑΛΑΛΑΛ

5 SEQ ID NO:165 PEZ6 Protein sequence; Protein Accession #: BAA82974.1

31 41 51 10 MMMNVPGGGA AAVMMTGYNN GRCPRNSLYS DCIIEEKTVV LQKKDNEGFG FVLRGAKADT 60 PIEEFTPTPA FPALQYLESV DEGGVAWQAG LRTGDFLIEV NNENVVKVGH RQVVNMIRQG 120 GNHLVLKVVT VTRNLDPDDT ARKKAPPPPK RAPTTALTLR SKSMTSELEE LVDKDKPEEI 180 VPASKPSRAA ENMAVEPRVA TIKQRPSSRC FPAGSDMNSV YERQGIAVMT PTVPGSPKAP 240 FLGIPRGTMR RQKSIDSRIF LSGITEEERQ FLAPPMLKFT RSLSMPDTSE DIPPPPQSVP 300 PSPPPPSPTT YNCPKSPTPR VYGTIKPAFN QNSAAKVSPA TRSDTVATMM REKGMYFRRE 360
LDRYSLDSED LYSRNAGPQA NFRNKRGQMP ENPYSEVGKI ASKAVVYPAK PARRKGMLVK 420
QSNVEDSPEK TCSIPIPTII VKEPSTSSSG KSSQGSSMEI DPQAPEPPSQ LRPDESLTVS 480
SPFAAAIAGA VRDREKRLEA RRNSPAFLST DLGDEDVGLG PPAPRTRPSM FPEEGDFADE 540 15 DSAEQLSSPM PSATPREPEN HFVGGAEASA PGEAGRPLNS TSKAQGPESS PAVPSASSGT 600 20 AGPGNYVHPL TGRLLDPSSP LALALSARDR AMKESQQGPK GEAPKADLNK PLYIDTKMRP 660 SLDAGFPTVT RONTRGPLRR QETENKYETD LGRDRKGDDK KNMLIDIMDT SQQKSAGLLM 720 VHTVDATKLD NALQEEDEKA EVEMKPDSSP SEVPEGVSET EGALQISAAP EPTTVPGRTI 780 VAVGSMEEAV ILPFRIPPPP LASVDLDEDF IFTEPLPPPL EFANSFDIPD DRAASVPALS 840 DLVKQKKSDT PQSPSLNSSQ PTNSADSKKP ASLSNCLPAS FLPPPESFDA VADSGIEEVD 900 25 SRSSSDHHLE TTSTISTVSS ISTLSSEGGE NVDTCTVYAD GQAFMVDKPP VPPKPKMKPI 960 IHKSNALYQD ALVEEDVDSF VIPPPAPPPP PGSAQPGMAK VLQPRTSKLW GDVTEIKSPI 1020 ILSGPKANVIS ELINSILQQMN REKLAKPGEG LDSPMGAKSA SLAPRSPEIM STISGTRSTT 1080
VTFTVRRGTS QPTILQSRPP DYESRTSGTR RAPSPVVSPT EMPIKETLPAP LSAATASPSP 1140
ALSDVFSLPS QPPSGDLFGL NPAGRSRSPS PSILQQPISN KPFTTKPVHL WTKPDVADWL 1200
ESLNLGEHKE AFMDNEIDGS HLPNLQKEDL IDLGVTRVGH RMNIERALKQ LLDR 30

SEQ ID NO:166 PEZ4 DNA SEQUENCE

Nucleic Acid Accession #: NM_000024
Coding sequence: NM_000024
220-1461 (underlined sequences correspond to start and stop codons)

40

| Coccoded Castesta Castesca Castes

51

45

AGCGCCTTCT TGCTGGCACC CAATAGAAGC CATGCGCCGG ACCACGACGT CACGCAGCAA 300
AGGGACGAGG TGTGGGTGGT GGGCATGGGC ATCGTCATGT CTCTCATCGT CCTGGCCATC 360
GTGTTTGGCA ATGTGCTGGT CATCACAGCC ATTGCCAAGT TCGAGCGGTC GCAGACGGTC 420
ACCAACTACT TCATCACTTC ACTGGCCTGT GCTGATCTGG TCATGGCCT GGCAGTGGTG 480
CCCTTTGGGG CCGCCCATAT TCTTATGAAA ATGTGGACTT TTGGCAACTT CTGGTGCGAG 540
TTTTGGACTT CCATTGATGT GCTGTGCGTC ACGGCCAGCA TTGAGACCCT GTGCGTGATC 600

GCAGTGGATC GCTACTTTGC CATTACTTCA CCTTTTCAAGT ACCAGAGCCT GCTGACCAAG 660
AATAAGGCCC GGGTGATCAT TCTGATGGTG TGGATTGTGT CAGGCCTTAC CTCCTTCTTG 720
CCCATTCAGA TGCACTGGTA CCGGGCCACC CACCAGGAAG CCATCAACTG CTATGCCAAT 780
GAGACCTGCT GTGACTTCTT CACGAACCAA GCCTATGCCA TTGCCTCTTC CATCGTGTCC 840
TTCTACGTTC CCCTGGTGAT CATGGTCTTC GTCTACTCCA GGGGTCTTTCA GGAGGCCAAA 900

AGGCAGCTCC AGAAGATTGA CAAATCTGAG GGCCGCTTCC ATGTCCAGAA CCTTAGCCAG 960
GTGGAGCAGG ATGGGCGGAC GGGGCATGGA CTCCGCAGAT CTTCCAAGTT CTGCTTGAAG 1020
GAGCACAAAG CCCTCAAGAC GTTAGGCATC ATCATGGCA CTTTCACCCT CTGCTGGCTG 1080
CCCTTCTTCA TCGTTAACAT TGTGCATGTG ATCCAGGATA ACCTCATCCG TAAGGAAGTT 1140
TACATCCTCC TAAATTGGAT AGGCTATGTC AATTCTGGTT TCAATCCCCT TATCTACTGC 1200

60 CGGAGCCCAG ATTICAGGAT TGCCTTCCAG GAGCTTCTGT GCCTGCGCAG GTCTTCTTTG 1260
AAGGCCTATG GGAATGGCTA CTCCAGCAAC GGCAACACAG GGGAGCAGAG TGGATATCAC 1320
GTGGAACAGG AGAAAGAAAA TAAACTGCTG TGTGAAGACC TCCCAGGCAC GGAAGACTTT 1380
GTGGGCCATC AAGGTACTGT GCCTAGCGAT AACATTGATT CACAAGGGAG GAATTGTAGT 1440
ACAAATGACT CACTGCTGTA AAGCAGTTTT TCTACTTTTA AAGACCCCCC CCCCCCAAC 1500

AGAACACTAA ACAGACTATT TAACTTGAGG GTAATAAACT TAGAATAAAA TTGTAAAAAT 1560
TGTATAGAGA TATGCAGAAG GAAGGGCATC CTTCTGCCTT TTTTATTTTT TTAAGCTGTA 1620
AAAAGAGAGA AAACTTATTT GAGTGATTAT TTGTTATTTG TACAGTTCAG TTCCTCTTTG 1680
CATGGAATTT GTAAGTTTAT GTCTAAAGAG CTTTAGTCCT AGAGGACCTG AGTCTGCTAT 1740
ATTTTCATGA CTTTTCCATG TATCTACCTC ACTATTCAAG TATTAGGGGT AATATATTGC 1800

TGCTGGTAAT TTGTATCTGA AGGAGATTTT CCTTCCTACA CCCTTGGACT TGAGGATTTT 1860
GAGTATCTCG GACCTTTCAG CTGTGAACAT GGACTCTTCC CCCACTCCTC TTATTTGCTC 1920
ACACGGGGTA TTTTAGGCAG GGATTTGAGG AGCAGCTTCA GTTGTTTTCC CGAGCAAAGG 1980
TCTAAAGTTT ACAGTAAATA AAATGTTTGA CCATG

75 SEQ ID NO:167 PEZ4 Protein sequence; Protein Accession #: NP_000015.1

PCT/US01/32045 WO 02/30268

MGQPGNGSAF LLAPNRSHAP DHDVTQQRDE VWVVGMGIVM SLIVLAIVFG NVLVITAIAK 60 FERLQTVTNY FITSLACADL VMGLAVVPFG AAHILMKMWT FGNFWCEFWT SIDVLCVTAS 120 IETLCVIAVD RYFAITSPFK YQSLLTKNKA RVIILMVWIV SGLTSFLPIQ MHWYRATHQE 180 5 AINCYANETC CDFFTNQAYA IASSIVSFYV PLVIMVFVYS RVFQEAKRQL QKIDKSEGRF 240 HVQNLSQVEQ DGRTGHGLRR SSKFCLKEHK ALKTLGIIMG TFTLCWLPFF IVNIVHVIQD 300 NLIRKEVYIL LINWIGYVING FINPLIYCRSP DFRIAFQELL CLRRSSLKAY GNGYSSIGNT 360 GEQSGYHVEQ EKENKLLCED LPGTEDFVGH QGTVPSDNID SQGRNCSTND SLL 10 SEQ ID NO:168 PEZ1 DNA SEQUENCE Nucleic Acid Accession #: NM_004457 15 Coding sequence: 143-2305 (underlined sequences correspond to start and stop codons) 21 31 41 51 20 GAATTCGTTG TTGGGAAGGA CTGGGGAAAC AGCTGTAACA TTTGCCACCC TCAGAAGCTG 60 CTGGTCCTGT GTCACACCAC CTTAGCCTCT TGATCGAGGA AGATTCTCGC TGAAGTCTGT 120 TAATTCTACT TTTTGAGTAC TTATGAATAA CCACGTGTCT TCAAAACCAT CTACCATGAA 180 GCTAAAACAT ACCATCAACC CTATTCTTTT ATATTTTATA CATTTTCTAA TATCACTTTA 240 TACTATTITA ACATACATTC CGTTTTATTT TTTCTCCGAG TCAAGACAAG AAAAATCAAA 300 25 CCGAATTAAA GCAAAGCCTG TAAATTCAAA ACCTGATTCT GCATACAGAT CTGTTAATAG 360 TTTGGATGGT TTGGCTTCAG TATTATACCC TGGATGTGAT ACTTTAGATA AAGTTTTTAC 420 ATATGCAAAA AACAAATTTA AGAACAAAAG ACTCTTGGGA ACACGTGAAG TTTTAAATGA 480 GGAAGATGAA GTACAACCAA ATGGAAAAAT TTTTAAAAAG GTTATTCTTG GACAGTATAA 540 TTGGCTTTCC TATGAAGATG TCTTTGTTCG AGCCTTTAAT TTTGGAAATG GATTACAGAT 600 30 GTTGGGTCAG AAACCAAAGA CCAACATCGC CATCTTCTGT GAGACCAGGG CCGAGTGGAT 660 GATAGCTGCA CAGGCGTGTT TTATGTATAA TTTTCAGCTT GTTACATTAT ATGCCACTCT 720 AGGAGGTCCA GCCATTGTTC ATGCATTAAA TGAAACAGAG GTGACCAACA TCATTACTAG 780 TAAAGAACTC TTACAAACAA AGTTGAAGGA TATAGTTTCT TTGGTCCCAC GCCTGCGGCA 840 CATCATCACT GTTGATGGAA AGCCACCGAC CTGGTCCGAC TTCCCCAAGG GCATCATTGT 900 35 GCATACCATG GCTGCAGTGG AGGCCCTGGG AGCCAAGGCC AGCATGGAAA ACCAACCTCA 960 TAGCAAACCA TTGCCCTCAG ATATTGCAGT AATCATGTAC ACAAGTGGAT CCACAGGACT 1020 TCCAAAGGGA GTCATGATCT CACATAGTAA CATTATTGCT GGTATAACTG GGATGGCAGA 1080 AAGGATTICA GAACTAGGAG AGGAAGATGT CTACATTGGA TATTTGCCTC TGGCCCATGT 1140
TCTAGAATTA AGTGCTGAGC TTGTCTGTCT TTCTCACGGA TGCCGCATTG GITACTCTTC 1200
ACCACAGACT TTAGCAGATC AGTCTTCAAA AATTAAAAAA GGAAGCAAAG GGGATACATC 1260 40 CATGTTGAAA CCAACACTGA TGGCAGCAGT TCCGGAAATC ATGGATCGGA TCTACAAAAA 1320 TGTCATGAAT AAAGTCAGTG AAATGAGTAG TTTTCAACGT AATCTGTTTA TTCTGGCCTA 1380 TAATTACAAA ATGGAACAGA TITCAAAAGG ACGTAATACT CCACTGTGCG ACAGCTTTGT 1440 TTTCCGGAAA GTTCGAAGCT TGCTAGGGGG AAATATTCGT CTCCTGTTGT GTGGTGGCGC 1500 45 TCCACTITCT GCAACCACGC AGCGATTCAT GAACATCTGT TICTGCTGTC CTGTTGGTCA 1560 GGGATACGGG CTCACTGAAT CTGCTGGGGC TGGAACAATT TCCGAAGTGT GGGACTACAA 1620 TACTGGCAGA GTGGGAGCAC CATTAGTTTG CTGTGAAATC AAATTAAAAA ACTGGGAGGA 1680 AGGTGGATAC TITAATACTG ATAAGCCACA CCCCAGGGGT GAAATTCTTA TTGGGGGCCA 1740 AAGTGTGACA ATGGGGTACT ACAAAAATGA AGCAAAAACA AAAGCTGATT TCTCTGAAGA 1800 TGAAAATGGA CAAAGGTGGC TCTGTACTGG GGATATTGGA GAGTTTGAAC CCGATGGATG 1860 50 CTTAAAGATT ATTGATCGTA AAAAGGACCT TGTAAAACTA CAGGCAGGGG AATATGTTTC 1920 TCTTGGGAAA GTAGAGGCAG CTTTGAAGAA TCTTCCACTA GTAGATAACA TTTGTGCATA 1980 TGCAAACAGT TATCATTCTT ATGTCATTGG ATTTGTTGTG CCAAATCAAA AGGAACTAAC 2040 TGAACTAGCT CGAAAGAAAG GACTTAAAGG GACTTGGGAG GAGCTGTGTA ACAGTTGTGA 2100 55 AATGGAAAAT GAGGTACTTA AAGTGCTTTC CGAAGCTGCT ATTTCAGCAA GTCTGGAAAA 2160 GTTTGAAATT CCAGTAAAAA TTCGTTTGAG TCCTGAACCG TGGACCCCTG AAACTGGTCT 2220 GGTGACAGAT GCCTTCAAGC TGAAACGCAA AGAGCTTAAA ACACATTACC AGGCGGACAT 2280 TGAGCGAATG TATGGAAGAA AA<u>TAA</u>TTATT CTCTTCTGGC ATCAGTTTGC TACAGTGAGC 2340
TCACATCAAA TAGGAAAATA CTTGAAATGC ATGTCTCAAG CTGCAAGGCA AACTCCATTC 2400
CTCATATTAA ACTATTACTT CTCATGACGT CACCATTTTT AACTGACAGG ATTAGTAAAA 2460
CATTAAGACA GCAAACTTGT GTCTGTCTCT TCTTTCATTT TCCCCGCCAC CAACTTACTT 2520
TACCACCTAT GACTGTACTT GTCAGTATGA GAATTTTTCT GAATCATATT GGGGAAGCAG 2580

TAACTITITA AAAGTITGGA TGTATAGAGG GATAAATAGG AAATATAAGA ATTGGTTATT 2700 65 TGGGGGCTIT TTTACTTACT GTATTTAAAA ATACAAGGGT ATTGATATGA AATTATGTAA 2760 ATTTCAAATG CTTATGAATC AAATCATTGT TGAACAAAAG ATTTGTTGCT GTGTAATTAT 2820 TGTCTTGTAT GCATTTGAGA GAAATAAATA TACCCATACT TATGTTTTAA GAAGTTGAGA 2880 TCTTGTGAAT ATATGCCTGT CAGTGTCTTC TTTATATATT TATTTTTTAT TAGAAAAAT 2940 GAAGTTTGGT TGGTGATGCA TGAAACAAAA TAGCAAGAGA GGGTTATAGT TTAATAGTAA 3000 70 GGGAGATAAC ACAGCATGTG TAGCACCAGT TGATAATTGG TCTCTAGTAG CTTACTGTCA 3060 AAATGTTCAA TGAAGTCTTC TGTTCATCTG TTGAAACTAG GAAAATACCC AAACTTAAAT 3120 AAAIGITCAA IGAAGICTIC IGTICATCIG TIGAAACIAG GAAAATACCC AAACITAAAT 3120
GGAAGAATIC TGAAAGAGAG GATAGAATIT AAAGAACAAG AGTATATAAA GITATTCITT 3180
GAATATITCG TIGACTATAT GTACAATIGAG TTATCTATAT TIGTAAACAA ATTAGTCATG 3240
GAAAATTATT CTATTCCAAA GTCTCCTTTT AGTCTAGATA ATCATTATTT CATTITAAAA 3300
TTAGTGTTTT TCATAGTTTG CACTGATGCG TGTATGGATG TGTGGAGTC AGTGGTAGCT 3360
TATTTAAAAA GCACCTTATC CTTTCTCCCA TAACCCTTTGT ACACTAAAAA ATGAAAGAAT 3420
TTAGAATGTA TTTGATGATA GCATTCTCAC TAAGACACAT GAGAATTTAA CTTTATAACC 3480
GCGTGAGTTA AGATTTAATT CATAGGTTTT GATGTCATTG TTGAAGTTAT TTGTAATTCA 3540 75 GAAACCTTGC TTGTGTGATA CATAGTAAGT CTCTTCATTT ATTACTGCTT GCCTGTTGTT 3600

TGATTTTAAA ACCTCAAGTT TITAAACATG ATTTATATGT TCTGTATAAT GTTCAGTTTG 2640

60

ATATCTGGAT TATCAAAAGC AATAGTGCAC CAATTAAGAT GTGCTCAAAT CAGGACTTAA 3660 ATCATAGGCA CCACATTTTT CATGTCAGAC TAGTTACTTT GTTGATTCTC AGTTACTGTA 3720 GGCATCAAAA GGCAAAAATC A

5

```
SEQ ID NO:169 PEZ1 Protein sequence:
        Protein Accession #:
10
        MNNHVSSKPS TMKLKHTINP ILLYFIHFLI SLYTILTYIP FYFFSESRQE KSNRIKAKPV 60
        NSKPDSAYRS VNSLDGLASV LYPGCDTLDK VFTYAKNKFK NKRLLGTREV LNEEDEVQPN 120
        GKIFKKVILG QYNWLSYEDV FVRAFNFGNG LQMLGQKPKT NIAIFCETRA EWMIAAQACF 180
        MYNFQLVTLY ATLGGPAIVH ALNETEVTNI ITSKELLQTK LKDIVSLVPR LRHIITVDGK 240
        PPTWSDFPKG IIVHTMAAVE ALGAKASMEN QPHSKPLPSD IAVIMYTSGS TGLPKGVMIS 300
HSNIIAGITG MAERIPELGE EDVYIGYLPL AHVLELSAEL VCLSHGCRIG YSSPQTLADQ 360
15
        SSKIKKGSKG DTSMLKPTLM AAVPEIMDRI YKNVMNKVSE MSSFORNLFI LAYNYKMEOI 420
        SKGRNTPLCD SFVFRKVRSL LGGNIRLLLC GGAPLSATTO RFMNICFCCP VGOGYGLTES 480
        AGAGTISEVW DYNTGRVGAP LVCCEIKLKN WEEGGYFNTD KPHPRGEILI GGQSVTMGYY 540
20
        KNEAKTKADF SEDENGORWL CTGDIGEFEP DGCLKIIDRK KDLVKLOAGE YVSLGKVEAA 600
        LKNLPLVDNI CAYANSYHSY VIGFVVPNQK ELTELARKKG LKGTWEELCN SCEMENEVLK 660
        VLSEAAISAS LEKFEIPVKI RLSPEPWTPE TGLVTDAFKL KRKELKTHYQ ADIERMYGRK
                                                    SEQ ID NO:170 PCQ7 DNA SEQUENCE
25
        Nucteic Acid Accession #:
                                             none found
                                   38-1075(underlined sequence corresponds to start and stop codon)
                 Coding sequence:
30
        AGCAACGACG CCGGGCAGCG GGAGCGGCGGC CCGCGCCATG TGGCTGCTGG GGCCGCTGTG
                                                                                  60
        CCTGCTGCTG AGCAGCGCCG CGGAGAGCCA GCTGCTCCCC GGGAACAACT TCACCAATGA
                                                                                 120
        GTGCAACATA CCAGGCAACT TCATGTGCAG CAATGGACGG TGCATCCCGG GCGCCTGGCA
                                                                                 180
        GTGTGACGGG CTGCCTGACT GCTTCGACAA GAGTGATGAG AAGGAGTGCC CCAAGGCTAA
                                                                                 240
35
        GTCGAAATGT GGCCCAACCT TCTTCCCCTG TGCCAGCGGC ATCCATTGCA TCATTGGTCG
                                                                                 300
        CTTCCGGTGC AATGGGTTTG AGGACTGTCC CGATGGCAGC GATGAAGAGA ACTGCACAGC
        AAACCCTCTG CTTTGCTCCA CCGCCGGCTA CCACTGCAAG AACGGCCTCT GTATTGACAA
                                                                                 420
        GAGCTTCATC TGCGATGGAC AGAATAACTG TCAAGACAAC AGTGATGAGG AAAGCTGTGA
                                                                                 480
        AAGTTCTCAA GAACCCGCCA GTGGGCAGGT GTTTGTGACT TCAGAGAACC AACTTGTGTA
                                                                                 540
40
        TTACCCCAGC ATCACCTATG CCATCATCGG CAGCTCCGTC ATTTTTGTGC TGGTGGTGGC
                                                                                 600
       CCTGCTGGCA CTGGTCTTGC ACCACCAGCG GAAGCGGAAC AACCTCATGA CGCTGCCCGT
                                                                                 660
        GCACCGGCTG CAGCACCCTG TGCTGCTGTC CCGCCTGGTG GTCCTGGACC ACCCCCACCA
                                                                                 720
        CTGCAACGTC ACCTACAACG TCAATAATGG CATCCAGTAT GTGGCCAGCC AGGCGGAGCA
        GAATGCGTCG GAAGTAGGCT CCCCACCCTC CTACTCCGAG GCCTTGCTGG ACCAGAGGCC
                                                                                 840
45
        TGCGTGGTAT GACCTTCCTC CACCGCCCTA CTCTTCTGAC ACGGAATCTC TGAACCAAGC
                                                                                 900
       CGACCTGCCC CCCTACCGCT CCCGGTCCGG GAGTGCCAAC AGTGCCAGCT CCCAGGCAGC
                                                                                 960
       CAGCAGCCTC CTGAGCGTGG AAGACACCAG CCACAGCCCG GGGCAGCCTG GCCCCCAGGA
GGGCACTGCT GAGCCCAGGG ACTCTGAGCC CAGCCAGGGC ACTGAAGAAG TATAAGTCCC
                                                                                1020
                                                                                1080
        AGTTATTCCA AAGTCCATAT GGGTTAATCT GCTCTGACTT GTTGCCATTC TAACAATTTG
                                                                                1140
50
        TGCTCATGGG AAGCTCTTTA AGCACCTGTA AGGATGTCTC AAGTTACAGT TTGGGATATT
                                                                                1200
       AACTATCTCT GCATTCCCCT CCTCCCCCAG ACTTCAGAGA TGTTTTTCTG GCGTCTCAGT
                                                                                1260
        TGACATGATC TGTTGTGCGT CTTTTCTGTC AGGTCACTCT TCCCTTGGGA CCCGAGATCA
                                                                                1320
        CACCCTCATT TTTCACATTA TTCTGTTTCT GTTGGAGAGA CAGCATATAA AACAGTATTG
                                                                                1380
       AAATAGGCTG GGAGAGACA ATGTTTCTGT GCTATATTGG ATGCTCAGAA GTGCAGGAGA
                                                                                1440
55
       CGCTGGACCC AATTCTCTCT GCTGGGTAGT TACCTTATAG CATTTGGGGA TTTGGGTTAG
                                                                                1500
       ATGATCTAAC CAGGAGGCCA TCACTGGATG GTCACCCCCC CAAAAAAATT CCATTTGAGC
                                                                                1560
       ATCAAAACCT GCTTTGCACA ATCCTATTTG ATGCCCCCAG TTCAGCAGAG TCAGTGGCCA
                                                                                1620
       AAGAAAACTT TGGACGTGAG TAACACCCTT CAGCAGTCGC AACGTTATTT TGGTTTTGTG
                                                                                1680
        AAGGACTCTG AAACCATCTA CCCTGTATAA ATTCTGGCTT TAGAAATTTG CCCAAGAATG
                                                                                1740
60
        CTCATTCTGA GAGCTTTCCT CAGCAGCATA TATCATCAGC CTCATCCTAA AATAGGCAGG
                                                                                1800
       GAGCCCCTCC CATGAGTTTA TCCAAGTTCT CAGCTCCTAA AATGCAGGCT GCCAAGACCC
                                                                                1860
       TACACCTGCC CTGGCTCTAC AGCCACTTAC CTGGTTTCTG GACTGTCACC CTCCCAGCTG
                                                                                1920
       ACCTGCCCGT AGCCAAGGAA TGAGGACCTA ACTTGAGTTG GCCCAAAGTC TGACCTGGCT
                                                                                1980
        GTATGTCCCT GTGGCCCACA CCCAGCCTGT CTTGCTCATT CATGCAGCCT CAACACTGGC
                                                                                2040
65
        CTCCAAAGTT CCCTTAACAC TTGCAAAGTC CTTTTTACCT GTGCATTTGG ACTTGAGGAC
                                                                                2100
        ACTGGTTTCT ATCACAGGTG AGAGCCATGT TCAATACCTC CAGCAAGCTC TCCTGGCTCC
                                                                                2160
        CTGCACTGTG CACGCTCCTC TTCCCAAGGT CCCAATACCA GCACCTCTAG TTAGAGTTAG
                                                                                2220
        GGTCAGGGTC AGGCCTCTCC CAACATCCCA GTAGTTTCTC CTCTGAGACA CATGGGCAAG
                                                                                2280
        AGACAATTTG GAGTCAAGAT TITCCATTTG GATCTATTTT AAATCTTTTA GAAATGCATT
                                                                                2340
70
        TGAAACAGTG TGTTTGTTTT TTCCCTTCTA GTTAAGGGAC TATTTATATG TGTATAGGAA
                                                                                2400
       AGCTGTCTCT TTTTTTGTTT TTCCTTTAAC AAGGTCCAAA GAAAGATCCA AAAGGAGATC ACACCCTTGC CCCGCTGAGC CCCGTGATAA CAAGTCACTC CAGACTAACC TGTGTGCCAG ACATTTGTGC ATTGTTGCAC TTTGAGGTTA TTATTTATCA AGTTCTTGAA GGAAGCAGAA
                                                                                2460
                                                                                2520
                                                                                2580
       AGAGGGACTC CTCTCTCCCT CCGTGTATAG TCTCTATGTT TGTGCTAGTT TTTCTTTTTT
                                                                                2640
75
        TTCTCTGTGT CCAGTCAGCC ACAGGGCCCG CCTCCCTGCA GGAATAAGGG GTAAAACGTT
                                                                                2700
       AGGTGTTGTT TGGCAAGAAA CCACACTGAC TGATGAGGGG TAAAATGGAA CCAGGTAGAG
                                                                                2760
        CCACTCCGGG CAGCTGTCAC CCATTCAGAA CTTCTTTCCG CAGCTGAAGA AATGTTCAGT
       AACCTGTTTG ACGCTAATTA AAACAGAGCC TGCAGGAAGT GGGGCTAAAG TGGCATTCAG
                                                                                2880
       TGATCCTGTT CTGTAGACTT TTCTTTCTTT TTTTAACCAA ATCCAAAGGA TGTTACAGAA
```

5 10 15 20	AACGGAAAGG CTGAGTAATCT TTTCTGGTGC GAGTTAATCT TTTTTGGGGG TTTTTTAACTC AAAATAGTCT AGTTAACACTG TTTTTTAACACTG TTTTTTAACACTG TTTTTTAACACTG TTTTTTAACACTG TTTTTTAACACTG TTATACACTG TTATACACTG GAAAGGTTGT TTATACTTTC AAMMAAAAAC TGGGCGGGG GAAACCCCGG GGAAACCGCA	AACCTAGCTG CAATAAAGAA CCTGTGAGTC TCTGGAGTT TGCCTACTAA AATGAATGTT GAGGGGGTTT TGATGACTAC CATCTCTTTT TGATGACTGC ATGCAACTAA GTGTCGTTGC TAATAAATTT AWWTTGGGG GGGCCACGT CCAAGAAAAA GAGTGTTGCC	CCTGTATCTT CTTTTGATGA AGAAGGCTT GTTTAGAGA TCTGCTTCCA TGCTTTTTA TTTAAAATTA GTTTTCCAAC GGAAGCTTTT TTTCTCAAT CCTATTACT GTGGTTAATA TTTTTGTGTT GCAGTTCAT GGGCTTAGGC AGGTACGGCG AGGTACGGCG AGGTACGGCG AGGTACGGCG AGGTACGACACACACAC	AAAAAAAAA TCATTTTTAA CAGCCAGAAT TATTTCTCC AAGAATCTAG GAATCATAG TATAAATAG TCAAGATGGC TTATACATTG GAGATCGTG GACTCAGCTG GTTGTTAGGC TTGGTTAGGC TCTTCTGTT CTCGGAAAAA ACCACCGGG ATTCTCCACA CCGAAGAGAG GATAGAGTAC	AATAGCACTT GTGTTAGAAC TTTGATGGGG ATTTTAATTA GAAAAACAAA GGACATTTTT ACACCAAAGC CCTAAATCTA TTTTATTTTA	GAGTTATTT TCTGGCTGAA CCCCTTCTTC ATTGCGCAGT TGGTTTTAGT ATTATAGATT CCAGCAATAT CGCCAACCAG GCATTAAATT GAAATTGAC ATGTAAACTG TTTTTAATTT GWMCTAMARM CCACTTCGGA ACCCAGAGA ACGCGCCGGG	3000 3060 3120 3120 3240 3300 3480 3540 3600 3600 3720 3780 3780 3840 3900 4020 4080
25	SEQ ID NO:171 Protein Accession	PCQ7 Protein seq n #:	uence:	none found			
30 35	EKECPKAKSK KNGLCIDKSF VIFVLVVALL YVASQAEQNA	CGPTFFPCAS ICDGQNNCQD ALVLHHQRKR SEVGSPPSYS	GIHCIIGRFR NSDEESCESS NNLMTLPVHR EALLDQRPAW	31 IPGNFMCSNG CNGFEDCPDG QEPGSGQVFV LQHPVLLSRL YDLPPPFYSS AEPRDSEPSQ	SDEENCTANP TSENQLVYYP VVLDHPHHCN DTESLNQADL	LLCSTARYHC SITYAIIGSS VTYNVNNGIQ	60 120 180 240 300
40	Nucleic Acid Acc				Q ID NO:172 PEL:	B DNA SEQUENCE	
					-		•
45				31 TACTCGATGC		51 AGCAAG <u>ATG</u> G	60
45	GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT	ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG	TACCTATCAT CCAGCTATTG CAGCCCACTG GTGCCCCAGT CCCAAATCCC	1.	TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGACG AGTGTGCACC	51 AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA	
45 50	GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CTGGCCTACT CCTCAGGTAC GGGAGGACGA	ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTGCATCACC CTGGAAGTTC CTGCATCAAC GAATCGGTGT	TACCTATCAT CCAGCTATTCA CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGCAGCA CCCTCTAACT GTTCGCCTCT	TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCGAG CATCCGGGAC	TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGACG AGTGTGCACC CGTGGGAGCT CTCTGGGATA CGTGTCACAC CTTCATCCTT	51 AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA GCGCTGGCCG GAGTGCGACT TGCCCCGGCG CAGATGTACT	60 120 180 240 300
	GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCGTCGT AGAAAGCACT CTCAGGTACT CCTCAGGTAC CATCTCAGAG GGGCGGCCTG ATGACAGGG ATAAAAAACT TAGCCTGCGG	ACATTCCAGA ACGGTCACCA CTATCCCGCA CCCGTCCCC CTGCACGCAG CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC CAGGGACATTC GAAGTCCTGG CAGGGACATG ATCCACCACG CTACCACACTG GGCCTGACCTG GGCCTGGCCCC	TACCTATCAT CAGCTATTG CAGCCACTG GTGCCCAGT CCCAAATCCC TTGACCTGG ATGGCAGCA CCCTCTAACT GTTCGCCTCT CACCCTGTGT CGCTATAAGA TTTATGAAAC GATGCCTGTT AACTCAAGCC TGGCAGGTCA	TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCGAG CATCCGGAC ACGCCTTCCT AGTGCTCCAA ACGGACCAAA GCCAAGACGA ATAATTTTTA TGAACACAAG GCCAGAGCG GCCAGAGCG GCCTGCACGT	TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGACG AGTGTGCACC CGTGGGATA CGTGTCACAC CTTCATCCTT CTGGAACGAG CTCTAGCCAA TGCCGGCAAT AGTGGTTTTCT GGATCGGC CCAGAACGTC CCAGAACGTC	51 AGCAAGATEG GGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA GCGCTGGCCG GAGTGCGACT TGCCCCGGCG CAGATGTACT TTACGCTGTTTC GTGAGAGCG CGGATATCT TTACGCTGTTTC GGTGAGAGCG CACGTGTGCG	60 120 180 240 300 360 420 480 540 660 720 780 840 900
50	GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTACT CCTCAGGTACT CCTCAGGTAC CATCTCAGAG GGGCGGCCTG ATGACAGGG ATAAAAAACT TAGCCTGCGG GAGGCTCCAT TTAACAATC ATGACGGG AGAACAATGA	ACATTCCAGA ACGGTCACCA CTGTCACCGCA CCCGTCCCC CTGCACGCAG CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC GAAGTCCTGG CAGGGACATG ATCCACCACG CTACCACACTG GGCCTGGCCC CATCACCCC ATGGCATTGC CATCACAGTA CATTGCGCTG CATTGCCCTG	TACCTATCAT CAGCTATTG CAGCTATTG CAGCCAGT CCCAAATCCC TTGACCTGG ATGGCAGCA CCCTCTAACT CACCCTGTGT CACCCTGTGT CACCCTGTGT CACCTGTGT AACTCAAGC TTATGAAAC GATGCTGTT AACTCAAGCC TGGCAGGTCA GAGTGGATCG ACGGCATTTG CAAAAAGTGA ATGAAGCTCC	TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCGAG CATCCGGAGC GGACCTTCCT AGTGCTCCAA GGTGTGATGG ACCGACCAA ACGACCAC ATAATTTTTA TGAACACAAG CTTCAAAAGC CCCAGAGCAG	TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGACG AGTGTGCACC CGTGGGATA CGTGTCACAC CTTCATCCTT CTGGAACGAG CTCTAGCCAA TGCCGGCAAT AGTGGTTTCAT GGATCAGCC CCAGAACGTC CCACTGCGTG GAGACAATC AAATTATGAC GACTTCAAC	51 AGCAAGATEG GGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA GCGCTGGCCG GAGTGCGACT TGCCCGGCG GAATAGTACT TTACGCTGTT TTACGCTGTT TTACGCTGTT TTACGTGTT TCAAGACCA GACCTAGTGA GACCTAGTGA	60 120 180 240 300 360 420 480 540 600 660 720 780 840
50 55	GTCATATTGA CTTTGAACTC CGGARAACCC CTCAGTACTA ACCCGTCGT AGAAAGCACT CCTCAGGTACT CCTCAGGTACT CCTCAGGTAC GGGAGGACGA CATCTCAGGT ATGACAGCG ATGACAGCG GAGGCTCCAT TTACCAGTCAT TTACAATCC ATGGAGCCG AGACCATGAT ACCAGTGTC CCGGTTGGGG TCCTTCTCACT CCAGCCATGAT CAGCCATGAT CAGCCATGAT GAGGCCCTCT	ACATTCCAGA AGGGTCACCA CCGTCCCCC CTGCACGCAC CTGCACGCAC CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC CAGGGACATT ATCCACCAC GTACCACAGT GTACCACAGT GTACCACAGT CGCTCACCTCC CATCACCCC ATGCCATTGC CATTGCCCTG TCTGCCCAAC GCCACCGAG CTGCCCACCGAC CTGCCCACCGAC CTGCCCACCGAC CTGTGCCCGCC CTGTCCCGCC CTGTCCCGCC CTGTCCCGCC CTGTCCCGCC CTGTCCCGCC CTGTCCCGCC CTGTCCCGCC CTGCCCGCC CTGTCCCGCC CGTCACTTCCC	TACCTATCAT CCAGCTATTCAT CCAGCTATTG CAGCCCAGT CCCAAATCCC TTGACCTGG ATGGCCACTG ATGGCCTCT CACCCTGTGT CACCCTGTGT CACCCTGTGT CACCCTGTTAACT CATCAACT CATCAACT CATCAACT CATCAACT CAGCATTCA CCAGCATCA CCAGCATCA CCAGCATCA CCAGCATCA CCAGCATCA CCAGCATCA CCAGCATCA CACCACCAC CCAGCATCA CACCACCAC CCAGCATCA CACCACCAC CCAGCATCA CCACCACCAC CCACCAC CCACCAC CCACCAC CCACCA	TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCGAG CATCCGGAC GGACCTTCCT AGTGCTCCAA GGTGTGATGG ACGGACCAAA GCCAAGACGA ATAATTTTA TGAACACAG GCCAGAGCG GCCTGCACGT TGACAGCGC CGGGGATTT TTTCTCATACC AGAAGCCTC	I TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGACG AGTGTGCACC CGTGGGAGAC CGTGGAACGAG TGCCGGCAAT AGTGGTTCCT GAACGAG CCAGAACGTC CCAGAACGTC CCAGAACGTC CCAGTGCTC AAATTATGAC AGAACAGCTC AGAACAGCTC AGAACGCTC AGAACAGCTC TGCTGAACGTC TGCTTCAACCTTCAAC AGAACAGCTC AGAACAGCTC AGAACAGCTC AGAACAGCTC AGAACAGCTC TTCTTGCCAG GATAGGGGAT	51 AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCAG CAGGCTGCCG GAGTGCGACT CAGATGTACT AACTACGGGC GGAATACTGG GTGCATTCT TACCGCTTTACCTTTACCCTCTT GGTGAGACCG CACATGTTCCT TCCAAGACCA GACCTAGTGG CTGCTAGTGT GCTGCCAAGG CTGATCAC CTGCTAGTGAC CTGCTAGTGACAGG CTGATCACAC CTGCCAAGG CTGATCACAC CTGCCAAGG CTGATCACAC CTGATCAC CTGATCACAC CTGATCAC CTGATCA	60 120 180 240 300 420 480 540 660 720 780 900 960 1020 1080 1140
50 55 60	GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCGTCGT AGAAAGCACT CTGGCCTACT CTGGCCTACT CTGGCCTACT CATCAGGGAC GGGAGGACGA ATAAAAACC ATGAACACT ATGAACACT ATGAACACT ATGAACACT ATGAGGCC TCCTCT TTACCAT GAGGCCTCT ATGACT CATCTTTACAA ACCTGTTT CATTTACAA ATGATTCA	ACATTCCAGA ACGGTCACCA CCGTCCCC CTGCACGCAC CCGTCCCC CTGCACGCAC CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC CTGCATCACC CTACCACCAG CTACCACCAGT GTACCACCAGT GTACCACAGT CATTGCCCAAC TTGCCAAC TCGCCAAC TCGCCAAC TCGCCAAC TGCACACTCG GTCACTTCG GTCACTTCG TCCCAACGT TCGCCAAC CTGTCCCAAC TGCACAACT TCCACAACT TCCACAACT TCCACAACT TCCACAACT TCCACAACT TCCACAACT TCCACAACT TCCACAACT TCCACAACT TCGCCAAACCT TCGCCAAACCT TCGCCAAACCT TCGCCAAACCT TCGCCAAACCT TCGCCAAACCT TCGACAAACCT TCGACAAACCT TCGACAAACCT TCGACAAACCT TCGACAAACCT TCGACACTCC TCGACACTCC TCGACACTCC TTCCACACCTCC TCGACAACCT TCGACAAACCT TCGACACTCC TTCCACACCTCC TCGCCACTCC TCGCCCC TCGCCC TCGCCCC TCGCCC TCGCC TCGCCC TCGCCC TCGCC TCG	TACCTATCAT CAGCTATTG CAGCCACTG GTGCCCAGT CCCAAATCCC ATGGCAGCA CCCTCTAACT GTTCGCCTCT CACCCTGTGT CACCCTGTGT GGCTATAGA TTTATGABAC GATGCCTGTT AACTCAAGCC TGCAGGATTG CAAAAAGTGA ATGAAAGTGA ATGAAAGTGA TTCTGCAGG AGGAAAGGA AGATGCACA TCCTGCAGG AGAAAAGTA TACAGACAACA TTCCTGCAGG AACAAAATA TACAGACCAG AAGGCAACA TTCTTATTATAAAACGCACA AAGGCAAACA TTCTTTATTATAAAAGTCAC	TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCGAG CATCCGGAC GGACCTTCCT AGTGCTCCAA GGTGTGATGG ACGGACCAAA GCCAAGACGA ATAATTTTA TGAACACAG GCCTGCACGT TGACAGCCGC CGGGATTTT TTCTCATCC TGCTGCACGC TGCTGACGC TGCTGCACGT TGCTGCACCT TCCTGCTGCCT	TGTTGATAAC TGATAACCAT TGTCTACGAG GGTCCTGACG AGTGTGCACC CGTGGGAGCT CTCTGGGATA CGTGTCACAC CTTCATCCTT CTGGAACGAG CTCTAGCCAA TGCCGGCAAT TGCCGGCAAT TGCTGGGACAT CACTGCTTCATCCTC CAACTGCTC CAACTGCTC AAATTATGAC GACTTTCAAC TCTTGCCAG GATAGGGGAT TCTTGCCAG GATAGGGGAT TCTTGCCAG GATAGGGGAT TCTTGCCAG TGCATGATTC TGCATGATTT TGCTTGCTTGCTTGCTTCG TGCATGATTT TGCTTGCCTT	51 AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA GCGCTGGCCG GAGTGCGACT TGCCCCGGCG CAGATGTACT AACTACGGGC GGAATAGTAC GTCGATATCT TTACGGTGTTC GGTGAGACCG GAAAACCTC TCATGTTCT TCCAAGACCA GACCTAGTGT TCCTGGATTT GCTGCCAAGG CTGATCACAC GGTGACAGT CTGATCACAC GGTGACAGT TCTTCATCTT TCCAAGACCA GCTTGACTT TCCTGCATGT TCCTTGACTT TCTTTACAGG TCCTTTGACGT TCCTTTGACGT TCCTTTTACAG TTGGCCTTCT AACCCCTTGT	60 120 180 240 360 420 480 660 660 720 780 840 900 1020 1080 1140 1260 1380 1440

5	CATTGGGTGG TCCTAGCACC ATGTCGGCCT	GGCTCCTGGG CTGGAGAGTG CTTCAGGCCT TAAGGTACAC	AACTTGCCCT AGGGAGACTC AATGCCCCTT GATAGTCATT TGTTTCCATG	AGCCTTCCTC GGTCCCTGGC GGAAATTGAG	CTCATCCTCC AGGGCGCCAA GTCCATGGGG	CTGACCCTGC GTTTGGCACC GAAATCAAGG	2280 2340 2400	
10	SEQ ID NO:173 Protein Accession	PEL3 Prolein sequ n #:	ence:	NP_005647.1		•		
15	SNPVVCTQPK DSSGTCINPS	SPSGTVCTSK NWCDGVSHCP	21 QPENPYPAQP TKKALCITLT GGEDENRCVR	LGTFLVGAAL LYGPNFILQM	AAGLLWKFMG YSSQRKSWHP	SKCSNSGIEC VCQDDWNENY		·
20	CLACGVNLNS PLNNPWHWTA VKFVCLPNPG	SRQSRIVGGE FAGILRQSFM MMLQPEQLCW QGNVDSCQGD	VDDSGSTSFM SALPGAWPWQ FYGAGYQVQK ISGWGATEEK SGGPLVTSNN	VSLHVQNVHV VISHPNYDSK GKTSEVLNAA	CGGSIITPEW TKNNDIALMK KVLLIETQRC	IVTAAHCVEK LQKPLTFNDL NSRYVYDNLI	240 300 360 420 480	
25								
	Nucleic Acid Acc	ession #:		SE Al694767	Q ID NO:174 PBJ4	DNA SEQUENCI	E	
			Co	ding sequence:		1	30-1086	underlined sequences correspond to start and stop codons)
30	1	11	21	31	41	51		
	 CAGAGAGGCT	GTATTTCAGT	GCAGCCTGCC	AGACCTCTTC	 TGGAGGAAGA	CTGGACAAAG	60	
	GGGGTCACAC	ATTCCTTCCA	TACGGTTGAG	CCTCTACCTG	CCTGGTGCTG	GTCACAGTTC	120	,
35	ATAGGCCTCC	CTGGTTTAGA	TCCCAATGGC AGAGGCTCAG	TTCTGGTTGG	CCTTCCCATT	GTGCTCCCTC	180 240	
	TACCTTATTG	CTGTGCTAGG	TAACTTGACA	ATCATCTACA	TTGTGCGGAC	TGAGCACAGC	300	·
			ATTTCTTTGC GCTGGCCATC				360 420	
40	GATGCTTGTC	TGCTACAGAT	GTTTGCCATC	CACTCCTTAT	CTGGCATGGA	ATCCACAGTG	480	
40			CCGCTATGTG				540 600	
	CTGATGGCAC	CCCTTCCTGT	CTTCATCAAG	CAGCTGCCCT	TCTGCCGCTC	CAATATCCTT	660	
			CCAAGATGTC CGTCATCATC				720 780	
45			TCTTAAGACT				840	
			CTCTCATGTG				900	
			TCGCTTTAGC				960 1020	
50	ACAAAGGAGA	TTCGACAGCG	CATCCTTCGA	CTTTTCCATG	TGGCCACACA	CGCTTCAGAG	1080	
50			ACTTCTTTTC TATTCAGAAA				1140 1200	
	ATCCTTCAAA	TATGAAACTG	GTTGGGGAAT	CTCCATTTTT	TCAATATTAT	TTTCTTCTTT	1260	
			TATTAATACC CCAAATCTAA				1320	
55			AGAGAACATT				1380 1440	
			ATGAGATAAT					
			TCAGAAAAAT ACTAGCACTT				1560 1620	
60	AGAGTACATT	TACCTACGTT	AATGAAAGTT	GACACACTGT	TCTGAGAGTT	TTCACAGCAT	1680	
00			TTAATTTTCT ATGGGAAAAT					
	GGGGTCATAC	AAGTATAAAA	AAAAAATTA	AAAGACTTCA	TGCCCAATCT	CATATGATGT	1860	
			CAACAGGGTA TTCTTCTCAC					
65	GCAACAGAAC	TCATGGCTTT	AATCCCACTA	GCTATTGCTT	ATTGTCCTGG	TCCAATTGCC	2040	
			AAGTGATTTC					
			ATAGCAAGTT GAGCCACCAG					•
70	TGAAGATAAC	ATTGGCCTTT	TGAGTGTGAC	TCGTAGCTGG	AAAGTGAGGG	AATCTTCAGG	2280	•
70			TTGTGCAGTA TCAGGCATTT					
	ATAGGTTTCA	TCTTCAACAG	GATATGACAA	CAGTCTTAAC	CAAGAAACTC	AAATTACATA	2460	
			TATGTGGTAA CATGCTTTCA					•
75			ATTTGCTGCT					
	TATTGAATGT	CATCTCTGTT	CATCATTGAC	TGCTCTTTGC	TCATCATTGA	ATCCCCCAGC	2700	
			GTGCTTATGC TAGCCAGGCA					
οΛ	ATTTTAAATT	GCCATTACTT	CCAATGTGAG	TGGAAGTGAC	ATGTGCAATT	TTTATACCTG	2880	
80	GCTCATAAAA	CCCTCCCATG	TGCAGCCTTT	CATGTTGACA	TTAAATGTGA	CTTGGGAAGC	2940	

	TGGCCNNGAG	ACAGAGTTAA GCCCNCAACC GTTGGATAAG	CTTTTTNNNA	ATTTGGCAAN	NTCCCACTTT		3000 3060
5					•		
	Protein Accession	1#:		SEQ t not available, c		ROTEIN SEQUENC	Œ
10							
	1.	11	21	31	41	51	
]]	1]	<u></u>	<u> </u>	
		ATYFILIGLP IDILISTSSM					60 120
15		PLRHATVLTL					180
		CDDIRVNVVY			_		240
		IFYVPFIGLS	MVHRFSKRRD	SPLPVILANI	YLLVPPVLNP	IVYGVKTKEI	300
	RQRILRLFHV	ATHASEP					
20				SEC	ID NO:176 PM7	DNA SEQUENCE	
-	Nucleic Acid Acce	ession#:		NM_004624.1			
	Coding sequence	:		57-1544 (under	lined sequences c	orrespond to start a	nd stop codons)
25	TCGGAGCCTC	CGGAGGGTGG	TGGTGGTGG	r GGTGGTGGCC	CTCGCCCGCC	TCACTCATGC	60
						GTTACGCGGC	120
						CGCGGCGCAG	180
						GAGGTGCAGC	240 300
30						AGCAAGATGT	360
						TTGGCCTGTC	420
						AGCTGCACCG	480
						TTGGATGACA ACCGGCTACA	540 600
35						CTGAGCCTGT	660
						TCCTTCATCC	720
						GAGTCGGACC	780
						TATTGTGTCA CTTGCCGTCT	840 900
40						GGGGTACCCA	960
						GGTCTGCTCA	1020
						CAGAAACTGC	1080 1140
						AGGTCCACAC	1200
45						CCGGACAATT	1260
						GGTTTTGTGG	1320
						CGGAAGTGGC CCGTCGGGAG	1380 1440
						AGCCCAGGTG	1500
50						GGATCCCAGC	1560
						AGGCCTGCCC TCTCTGGTCC	1620
						: AAGTGAGAGA	1680 1740
						CCTCCTCCAA	1800
55						CTCTGCCCCC	1860
						: AACACTGGTG : CACGGTAGTG	1920 1980
						TCAGGCATTT	2040
60						GCTTTTTAAA	
60						CCCCACCGAA	
						CTGAGGGACT GGACTAAGCC	
						ACACCAGCCA	
C =	TTCTTATCTC	CTCTGTGCTGT	GGAAGCAACA	GGAATCAAGA	GACTGCCCTC	CTTGTCCACC	2400
65						CTCTGACAGA	
						TGATAGGAAT ATCCTCTTGG	
						TGCCACCCCA	
70	CCCTCCCTGC	AGTGTGGCTG	AGGAGGCCTC	CATCTCATGT	T ATCATCTGGA	TAGGAGCCTG	2700
70						CCTACCCACA	
	GGAAAAAAA		CAGGACTGC	ACAGGCTTGT	· GCAACAATAA	ATGTTGGCTT	2820
	JUNNAMA						
75		M72 Protein sequ	ence:				
75	Protein Accession	1#:		JC2195			
	1	11	21	31	41	51	
	1	1	1	1	Ī	1	
80		RLGGGWSAVT					60
50	rannaanda	ECDYVQMIEV	CUVOCTREVO	PERETTACSK	MUNITUMPA	TEMOUVVVIA	120

```
CPLIFKLFSS IQGRNVSRSC TDEGWTHLEP GPYPIACGLD DKAASLDEQQ TMFYGSVKTG
       YTIGYGLSLA TLLVATAILS LFRKLHCTRN YIHMHLFISF ILRAAAVFIK DLALFDSGES
                                                                                 240
       DQCSEGSVGC KAAMVFFQYC VMANFFWLLV EGLYLYTLLA VSFFSERKYF WGYILIGWGV
                                                                                 300
       PSTFTMVWTI ARIHFEDYGL LRCWDTINSS LWWIIKGPIL TSILVNFILF ICIIRILLQK
                                                                                360
       LRPPDIRKSD SSPYSRLARS TLLLIPLFGV HYIMFAFFPD NFKPEVKMVF ELVVGSFQGF
                                                                                 420
       VVAILYCFLN GEVQAELRRK WRRWHLQGVL GWNPKYRHPS GGSNGATCST QVSMLTRVSP
                                                                                 480
       GARRSSSFQA EVSLV
                                                    SEQ ID NO:178 BFF8 DNA SEQUENCE
10
                                            AL133619
       Nucleic Acid Accession #:
                                   1-2070 (underlined sequences correspond to start and stop codons)
                 Coding sequence:
                   11
15
       ATGAGCGGTG CGGGGGTGGC GGCTGGGACG CGGCCCCCA GCTCGCCGAC CCCGGGCTCT
                                                                                  60
       CGGCGCCGCC GCCAGCGCCC CTCTGTGGGC GTCCAGTCCT TGAGGCCGCA GAGCCCGCAG
                                                                                 120
       CTCAGGCAGA GCGACCCGCA GAAACGGAAC CTGGACCTGG AGAAAAGCCT GCAGTTCCTG
                                                                                 180
       CAGCAGCAGC ACTCGGAGAT GCTGGCCAAG CTCCATGAGG AGATCGAGCA TCTGAAGCGG
                                                                                 240
       GAAAACAAGG GTGAGCCGGC GCGGGGCCCT AGGCCGGCCC TGCCTCCCCA GGCACACTCA
                                                                                 300
20
       ACACTGCCGC TCCCGCAGCA CAGAAACACA GCCATCAACT CCAGCACACG CCTGGGCTCA
       GGGGGAACAC AGGACGGGGA GCCCCTCCAG ACTGTCCTTG CCCACCTGGC TGCACTGGCC
                                                                                 420
       CCTGTATGCC AACCCAGTGG GTACAGGTTC TGGGGGACCT GGACAGATGC CGCTACCTCT
                                                                                 480
       AGCCGTGGCT GGACGATGTT ATGCAGCCAA GCACAGCACG TGCTGCTCTC GGGAAGCCCA
                                                                                 540
       GGGCCTGAGG TCATTGCAGG GCGGCAGGTG GCCACAGGGT GCTCCCCAGA CCTCCCTCCT
                                                                                 600
25
       660
                                                                                 720
       ATGCTGGGGG CCCAGGGGAT ATGGACACAC TCCATCCAGG GATCCCTTCC TGCCATCTGG
                                                                                 780
       GCAGCAACCA TGGGGACAAA GGGAGGAAGC AGAGTCCTGT TTCCTTGCCA CTTGTCCAAG
       GCACTTCCCC ATCCTGACAG CGGCCCCCAC CCAGCCCAGG ATCCTGGGCT GTGGTCTCAA
                                                                                 900
30
       GCTCACTTCC CATTATCTTT GGGGCTGGGG CTGACATCAG GAGGACATCT GACTGGTGGA
                                                                                960
       TGGAGCCAGC CTGGGAACAT CGCAGCTGGG GCAGTGCCTA GGGCTCTCCC TTCCCAGGGA
                                                                               1020
       GACATGGAGA AGGGGGTTGA GGGAGGGCCC TTCCCTAGCC GCTGTGGCAA CTCCAGTGAG
CTGTTCTGGG CAAAGTGTGG CCCAAGTCGG CAGCCCCAGC CCTGCAGTGC TGGGGACGCT
                                                                               1080
                                                                                1140
       GACAGGACAC GGGAAGAGGC CATGCTTTCC CTCGGGACCT GCTGTTCCAT GTGTCCCAAG
                                                                                1200
35
       CCCTCCTGCT TTCCAGATGG CCCCTCAGGA AACCACCTTT CCAGGGCCTC TGCTCCCTTG
       GGCGCTCGCT GGGTCTGCAT CAACGGAGTG TGGGTAGAGC CGGGAGGACC CAGCCCTGCC
       AGGCTGAAGG AGGGCTCCTC ACGGACACAC AGGCCAGGAG GCAAGCGTGG GCGTCTTGCG
                                                                                1380
       GGCGGTAGCG CCGACACTGT GCGCTCTCCT GCAGACAGCC TCTCCATGTC AAGCTTCCAG
                                                                               1440
       1500
40
                                                                               1560
       CCCCTACTTC ACAACAGCAA GCTGGACAAA GTTCCTGGGG TACAAGGGCA GGCCAGAAAG
                                                                               1620
       GAGAAAGCAG AGGCCTCTAA TGCAGGAGCT GCCTGTATGG GGAACAGCCA GCACCAGGGC
                                                                               1680
       AGGCAGATGG GGGCGGGGC ACACCCCCCA ATGATCCTGC CCCTTCCCCT GCGAAAGCCC
       ACCACACTTA GGCAGTGCGA AGTGCTCATC CGCGAGCTGT GGAATACCAA CCTCCTGCAG
                                                                               1800
45
       ACCCAAGAGC TGCGGCACCT CAAGTCCCTC CTGGAAGGGA GCCAGAGGCC CCAGGCAGCC
                                                                               1860
       CCGGAGGAAG CTAGCTTTCC CAGGGACCAA GAAGCCACGC ATTTCCCCAA GGTCTCCACC AAGAGCCTCT CCAAGAAATG CCTGAGCCCA CCTGTGGCGG AGCGTGCCAT CCTGCCCGCA CTGAAGCAGA CCCCGAAGAA CAACTTTGCC GAGAGGCAGA AGAGGCTGCA GGCAATGCAG
                                                                               1920
                                                                               1980
                                                                               2040
       AAACGGCGCC TGCATCGCTC AGTGCTTTGA
50
       SEQ ID NO:179 BFF8 Protein sequence:
       Protein Accession #:
                                            T43457
55 '
                               21
                                           31
                                                       41
                   11
       MSGAGVAAGT RPPSSPTPGS RRRRORPSVG VQSLRPQSPQ LRQSDPOKRN LDLEKSLQFL
                                                                                  60
       OOOHSEMLAK LHEEIEHLKR ENKGEPARGP RPALPPOAHS TLPLPOHRNT AINSSTRLGS
                                                                                120
       GGTQDGEPLQ TVLAHLAALA PVCQPSGYRF WGTWTDAATS SRGWTMLCSQ AQHVLLSGSP
                                                                                 180
60
       GPEVIAGROV ATGCSPDLPP PSRAEMGRNP WDSPCPARSL PQIAAVARPR ISSFMALSPH
       MLGAQGIWTH SIQGSLPAIW AATMGTKGGS RVLFPCHLSK ALPHPDSGPH PAQDPGLWSQ
                                                                                300
       AHFPLSLGLG LTSGGHLTGG WSQPGNIAAG AVPRALPSQG DMEKGVEGGP FPSRCGNSSE
                                                                                360
       LFWAKCGPSR QPQPCSAGDA DRTREEAMLS LGTCCSMCPK PSCFPDGPSG NHLSRASAPL
                                                                                420
       GARWCINGV WVEPGGPSFA RLKEGSSRTH RPGGKRGRLA GGSADTVRSP ADSLSMSSFQ
SVKSISNSAN SQCKARPQPG SPNKQDSKAD VSQKADLEEE PLLHNSKLDK VPGVQGQARK
                                                                                480
65
                                                                                540
       EKAEASNAGA ACMGNSQHQG ROMGAGAHPP MILPLPLRKP TTLROCEVLI RELWNTNLLO
                                                                                600
       TQELRHLKSL LEGSQRPQAA PEEASFPRDQ EATHFPKVST KSLSKKCLSP PVAERAILPA
                                                                                660
       LKQTPKNNFA ERQKRLQAMQ KRRLHRSVL
70
                                                   SEQ ID NO:180 BCR4 DNA SEQUENCE
       Nucleic Acid Accession #:
                                            NM_012319.2
                                        Coding sequence:
                                                                             138-2405 (underlined sequences correspond to start and stop codons)
75
                   11
                                           31
                                                       41
       CTCGTGCCGA ATTCGGCACG AGACCGCGTG TTCGCGCCTG GTAGAGATTT CTCGAAGACA
       CCAGTGGGCC CGTGTGGAAC CAAACCTGCG CGCGTGGCCG GGCCGTGGGA CAACGAGGCC
                                                                                120
```

```
TCTCTGTCAC AAATCCCCTT CATGAACTAA AAGCAGCTGC TTTCCCCCAG ACCACTGAGA
       AAATTAGTCC GAATTGGGAA TCTGGCATTA ATGTTGACTT GGCAATTTCC ACACGGCAAT
       ATCATCTACA ACAGCTTTTC TACCGCTATG GAGAAAATAA TTCTTTGTCA GTTGAAGGGT
                                                                                360
       TCAGAAAATT ACTTCAAAAT ATAGGCATAG ATAAGATTAA AAGAATCCAT ATACACCATG
                                                                                 420
       ACCACGACCA TCACTCAGAC CACGAGCATC ACTCAGACCA TGAGCGTCAC TCAGACCATG
                                                                                 480
       AGCATCACTC AGACCACGAG CATCACTCTG ACCATGATCA TCACTCTCAC CATAATCATG CTGCTTCTGG TAAAAATAAG CGAAAAGCTC TTTGCCCAGA CCATGACTCA GATAGTTCAG
                                                                                540
                                                                                600
       GTAAAGATCC TAGAAACAGC CAGGGGAAAG GAGCTCACCG ACCAGAACAT GCCAGTGGTA
                                                                                660
10
       GAAGGAATGT CAAGGACAGT GTTAGTGCTA GTGAAGTGAC CTCAACTGTG TACAACACTG
                                                                                720
       TCTCTGAAGG AACTCACTTT CTAGAGACAA TAGAGACTCC AAGACCTGGA AAACTCTTCC
       CCAAAGATGT AAGCAGCTCC ACTCCACCCA GTGTCACATC AAAGAGCCGG GTGAGCCGGC
       TGGCTGGTAG GAAAACAAAT GAATCTGTGA GTGAGCCCCG AAAAGGCTTT ATGTATTCCA
       GAAACACAAA TGAAAATCCT CAGGAGTGTT TCAATGCATC AAAGCTACTG ACATCTCATG
15
       GCATGGGCAT CCAGGTTCCG CTGAATGCAA CAGAGTTCAA CTATCTCTGT CCAGCCATCA
                                                                               1020
       TCAACCAAAT TGATGCTAGA TCTTGTCTGA TTCATACAAG TGAAAAGAAG GCTGAAATCC
                                                                               1080
       CTCCAAAGAC CTATTCATTA CAAATAGCCT GGGTTGGTGG TTTTATAGCC ATTTCCATCA
                                                                               1140
       TCAGTTTCCT GTCTCTGCTG GGGGTTATCT TAGTGCCTCT CATGAATCGG GTGTTTTTCA
                                                                               1200
       AATTICTCCT GAGTTTCCTT GTGGCACTGG CCGTTGGGAC TTTGAGTGGT GATGCTTTTT
                                                                               1260
20
       TACACCTTCT TCCACATTCT CATGCAAGTC ACCACCATAG TCATAGCCAT GAAGAACCAG
                                                                               1320
       CANTGGAAAT GAAAAGAGGA CCACTTTTCA GTCATCTGTC TTCTCAAAAC ATAGAAGAAA
                                                                               1380
       GTGCCTATTT TGATTCCACG TGGAAGGGTC TAACAGCTCT AGGAGGCCTG TATTTCATGT
       TTCTTGTTGA ACATGTCCTC ACATTGATCA AACAATTTAA AGATAAGAAG AAAAAGAATC
                                                                               1500
       AGAAGAAACC TGAAAATGAT GATGATGTGG AGATTAAGAA GCAGTTGTCC AAGTATGAAT
                                                                               1560
25
       CTCAACTTTC AACAAATGAG GAGAAAGTAG ATACAGATGA TCGAACTGAA GGCTATTTAC GAGCAGACTC ACAAGAGCCC TCCCACTTTG ATTCTCAGCA GCCTGCAGTC TTGGAAGAAG
                                                                               1620
                                                                               1680
       AAGAGGTCAT GATAGCTCAT GCTCATCCAC AGGAAGTCTA CAATGAATAT GTACCCAGAG
                                                                               1740
       GGTGCAAGAA TAAATGCCAT TCACATTTCC ACGATACACT CGGCCAGTCA GACGATCTCA
                                                                               1800
       TTCACCACCA TCATGACTAC CATCATATTC TCCATCATCA CCACCACCAA AACCACCATC
30
       CTCACAGTCA CAGCCAGCGC TACTCTCGGG AGGAGCTGAA AGATGCCGGC GTCGCCACTT
       TGGCCTGGAT GGTGATAATG GGTGATGGCC TGCACAATTT CAGCGATGGC CTAGCAATTG
                                                                               1980
       GTGCTGCTTT TACTGAAGGC TTATCAAGTG GTTTAAGTAC TTCTGTTGCT GTGTTCTGTC
                                                                               2040
       ATGAGTTGCC TCATGAATTA GGTGACTTTG CTGTTCTACT AAAGGCTGGC ATGACCGTTA
                                                                               2100
       AGCAGGCTGT CCTTTATAAT GCATTGTCAG CCATGCTGGC GTATCTTGGA ATGGCAACAG
                                                                               2160
35
       GAATTTCAT TGGTCATTAT GCTGAAAATG TTTCTATGTG GATATTTGCA CTTACTGCTG
                                                                               2220
       GCTTATTCAT GTATGTTGCT CTGGTTGATA TGGTACCTGA AATGCTGCAC AATGATGCTA
                                                                               2280
       GTGACCATGG ATGTAGCCGC TGGGGGTATT TCTTTTTACA GAATGCTGGG ATGCTTTTGG
                                                                               2340
       GTTTTGGAAT TATGTTACTT ATTTCCATAT TTGAACATAA AATCGTGTTT CGTATAAATT
       TCTAGTTAAG GTTTAAATGC TAGAGTAGCT TAAAAAGTTG TCATAGTTTC AGTAGGTCAT
                                                                               2460
40
       AGGGAGATGA GTTTGTATGC TGTACTATGC AGCGTTTAAA GTTAGTGGGT TTTGTGATTT
TTGTATTGAA TATTGCTGTC TGTTACAAAG TCAGTTAAAG GTACGTTTTA ATATTTAAGT
                                                                               2520
                                                                               2580
       TATTCTATCT TGGAGATAAA ATCTGTATGT GCAATTCACC GGTATTACCA GTTTATTATG
                                                                               2640
       TAAACAAGAG ATTTGGCATG ACATGTTCTG TATGTTTCAG GGAAAAATGT CTTTAATGCT
                                                                               2700
       TTTTCAAGAA CTAACACAGT TATTCCTATA CTGGATTTTA GGTCTCTGAA GAACTGCTGG
45
       TGTTTAGGAA TAAGAATGTG CATGAAGCCT AAAATACCAA GAAAGCTTAT ACTGAATTTA
                                                                               2820
       AGCAAAGAAA TAAAGGAGAA AAGAGAAGAA TCTGAGAATT GGGGAGGCAT AGATTCTTAT
                                                                               2880
       AAAAATCACA AAATTTGTTG TAAATTAGAG GGGAGAAATT TAGAATTAAG TATAAAAAGG
                                                                               2940
       CAGAATTAGT ATAGAGTACA TTCATTAAAC ATTTTTGTCA GGATTATTTC CCGTAAAAAC
                                                                               3000
       GTAGTGAGCA CTCTCATATA CTAATTAGTG TACATTTAAC TTTGTATAAT ACAGAAATCT
                                                                               3060
50
       AAATATATTT AATGAATTCA AGCAATATAC ACTTGACCAA GAAATTGGAA TTTCAAAATG
                                                                               3120
       TTCGTGCGGG TTATATACCA GATGAGTACA GTGAGTAGTT TATGTATCAC CAGACTGGGT
       TATTGCCAAG TTATATATCA CCAAAAGCTG TATGACTGGA TGTTCTGGTT ACCTGGTTTA
       CAAAATTATC AGAGTAGTAA AACTTTGATA TATATGAGGA TATTAAAACT ACACTAAGTA
                                                                               3300
       TCATTIGATT CGATTCAGAA AGTACTITGA TATCTCTCAG TGCTTCAGTG CTATCATTGT
                                                                               3360
55
       GAGCAATTGT CTTTATATAC GGTACTGTAG CCATACTAGG CCTGTCTGTG GCATTCTCTA
                                                                              3420
       GATGTTTCTT TTTTACACAA TAAATTCCTT ATATCAGCTT G
                                                 SEQ ID NO:181 BCR4 PROTEIN SEQUENCE
60
       Protein Accession #:
                                            NP_036451
                   11
                               21
                                           31
                                                      41
65
       MARKLSVILI LTFALSVTNP LHELKAAAFP OTTEKISPNW ESGINVOLAI STRQYHLQQL
       FYRYGENNSL SVEGFRKLLQ NIGIDKIKRI HIHHDHDHHS DHEHHSDHER HSDHEHHSDH
                                                                                120
       EHHSDHDHHS HENHAASGKN KRKALCPDHD SDSSGKDPRN SQGKGAHRPE HASGRRNVKD
       SVSASEVTST VYNTVSEGTH FLETIETPRP GKLFPKDVSS STPPSVTSKS RVSRLAGRKT
       NESVSEPRKG FMYSRNTNEN PQECFNASKL LTSHGMGIQV PLMATEFNYL CPAILNQIDA
70
       RSCLIHTSEK KAEIPPKTYS LQIAWVGGFI AISIISPLSL LGVILVPLMN RVFFKFLLSF
                                                                                360
       LVALAVGTLS GDAFLHLLPH SHASHHHSHS HEEPAMEMKR GPLFSHLSSQ NIEESAYFDS
                                                                                420
       TWKGLTALGG LYFMFLVEHV LTLIKQFKDK KKKNQKKPEN DDDVEIKKQL SKYESQLSTN
                                                                                480
       EEKVDTDDRT EGYLRADSQE PSHFDSQQPA VLEEEEVMIA HAHPQEVYNE YVPRGCKNKC
HSHFHDTLGQ SDDLIHHHHD YHHILIHHHH QNHHPHSHSQ RYSREELKDA GVATLAWMVI
                                                                                540
                                                                                600
75
       MGDGLHNFSD GLAIGAAFTE GLSSGLSTSV AVFCHELPHE LGDFAVLLKA GMTVKQAVLY
                                                                                660
       NALSAMLAYL GMATGIFIGH YAENVSMWIF ALTAGLFMYV ALVDMVPEML HNDASDHGCS
                                                                                720
       RWGYFFLQNA GMLLGFGIML LISIPEHKIV FRINF
```

GCGGAGACGA AGGCGCAATG GCGAGGAAGT TATCTGTAAT CTTGATCCTG ACCTTTGCCC


```
CAGGAAGTGA AGGCAAGAAT CAAGAGGATG GTTTTCAAAG GAGGGCGCAC GGAGACGGAA
                                                                             720
      CTTGCTCTGA AATACCTTCT GCACAGAGGG TTGCCTGGAG GCAGAAATGC TTCTGTGCCC
      CAGATCCTCA TCATCGTCAC TGATGGGAAG TCCCAGGGGG ATGTGGCACT GCCATCCAAG
      CAGCTGAAGG AAAGGGGTGT CACTGTGTTT GCTGTGGGGG TCAGGTTTCC CAGGTGGGAG
                                                                             900
      GAGCTGCATG CACTGGCCAG CGAGCCTAGA GGGCAGCACG TGCTGTTGGC TGAGCAGGTG
                                                                             960
                                                                            1020
      GAGGATGCCA CCAACGGCCT CTTCAGCACC CTCAGCAGCT CGGCCATCTG CTCCAGCGCC
                                                                            1080
      ACGCCAGACT GCAGGGTCGA GGCTCACCCC TGTGAGCACA GGACGCTGGA GATGGTCCGG
      GAGTTCGCTG GCAATGCCCC ATGCTGGAGA GGATCGCGGC GGACCCTTGC GGTGCTGGCT
                                                                            1140
      GCACACTGTC CCTTCTACAG CTGGAAGAGA GTGTTCCTAA CCCACCCTGC CACCTGCTAC
                                                                            1200
.0
      AGGACCACCT GCCCAGGCCC CTGTGACTCG CAGCCCTGCC AGAATGGAGG CACATGTGTT
                                                                            1260
      CCAGAAGGAC TGGACGGCTA CCAGTGCCTC TGCCCGCTGG CCTTTGGAGG GGAGGCTAAC
                                                                            1320
      TGTGCCCTGA AGCTGAGCCT GGAATGCAGG GTCGACCTCC TCTTCCTGCT GGACAGCTCT
                                                                            1380
      GCGGGCACCA CTCTGGACGG CTTCCTGCGG GCCAAAGTCT TCGTGAAGCG GTTTGTGCGG
                                                                            1440
      GCCGTGCTGA GCGAGGACTC TCGGGCCCGA GTGGGTGTGG CCACATACAG CAGGGAGCTG
.5
      CTGGTGGCGG TGCCTGTGGG GGAGTACCAG GATGTGCCTG ACCTGGTCTG GAGCCTCGAT
                                                                            1560
      GGCATTCCCT TCCGTGGTGG CCCCACCCTG ACGGGCAGTG CCTTGCGGCA GGCGGCAGAG
                                                                            1620
      CGTGGCTTCG GGAGCGCCAC CAGGACAGGC CAGGACCGGC CACGTAGAGT GGTGGTTTTG
                                                                            1680
      CTCACTGAGT CACACTCCGA GGATGAGGTT GCGGGCCCAG CGCGTCACGC AAGGGCGCGA
                                                                            1740
      GAGCTGCTCC TGCTGGGTGT AGGCAGTGAG GCCGTGCGGG CAGAGCTGGA GGAGATCACA
                                                                            1800
20
                                                                            1860
      GGCAGCCCAA AGCATGTGAT GGTCTACTCG GATCCTCAGG ATCTGTTCAA CCAAATCCCT
      GAGCTGCAGG GGAAGCTGTG CAGCCGGCAG CGGCCAGGGT GCCGGACACA AGCCCTGGAC
                                                                            1920
      CTCGTCTTCA TGTTGGACAC CTCTGCCTCA GTAGGGCCCG AGAATTTTGC TCAGATGCAG
                                                                            1980
      AGCTTTGTGA GAAGCTGTGC CCTCCAGTTT GAGGTGAACC CTGACGTGAC ACAGGTCGGC
      CTGGTGGTGT ATGGCAGCCA GGTGCAGACT GCCTTCGGGC TGGACACCAA ACCCACCCGG
                                                                            2100
25
      2160
      ACCGCCCTGC TGCACATCTA TGACAAAGTG ATGACCGTCC AGAGGGGTGC CCGGCCTGGT
                                                                            2220
      GTCCCCAAAG CTGTGGTGGT GCTCACAGGC GGGAGAGGCG CAGAGGATGC AGCCGTTCCT
                                                                            2280
      GCCCAGAAGC TGAGGAACAA TGGCATCTCT GTCTTGGTCG TGGGCGTGGG GCCTGTCCTA
                                                                            2340
      AGTGAGGGTC TGCGGAGGCT TGCAGGTCCC CGGGATTCCC TGATCCACGT GGCAGCTTAC
                                                                            2400
      GCCGACCTGC GGTACCACCA GGACGTGCTC ATTGAGTGGC TGTGTGGAGA AGCCAAGCAG
30
      CCAGTCAACC TCTGCAAACC CAGCCCGTGC ATGAATGAGG GCAGCTGCGT CCTGCAGAAT
                                                                            2520
      GGGAGCTACC GCTGCAAGTG TCGGGATGGC TGGGAGGGCC CCCACTGCGA GAACCGTGAG
                                                                            2580
      TGGAGCTCTT GCTCTGTATG TGTGAGCCAG GGATGGATTC TTGAGACGCC CCTGAGGCAC
                                                                            2640
      ATGGCTCCCG TGCAGGAGGG CAGCAGCCGT ACCCCTCCCA GCAACTACAG AGAAGGCCTG
                                                                            2700
35
                                                                            2760
      GGCACTGAAA TGGTGCCTAC CTTCTGGAAT GTCTGTGCCC CAGGTCCTTA GAATGTCTGC
      TTCCCGCCGT GGCCAGGACC ACTATTCTCA CTGAGGGAGG AGGATGTCCC AACTGCAGCC
                                                                            2820
      ATGCTGCTTA GAGACAAGAA AGCAGCTGAT GTCACCCACA AACGATGTTG TTGAAAAGTT
                                                                            2880
      ATTGATGTTA AGTAAATACC CACTITICTGT ACCIGCTGTG CCTTGTTGAG GCTATGTCAT
CTGCCACCTT TCCCTTGAGG ATAAACAAGG GGTCCTGAAG ACTTAAATTT AGCGGCCTGA
                                                                            3000
10
      CGTTCCTTTG CACACAATCA ATGCTCGCCA GAATGTTGTT GACACAGTAA TGCCCAGCAG
                                                                            3060
      AGGCCTTTAC TAGAGCATCC TTTGGACGGC GAAGGCCACG GCCTTTCAAG ATGGAAAGCA
                                                                            3120
      GCAGCTTTTC CACTTCCCCA GAGACATTCT GGATGCATTT GCATTGAGTC TGAAAGGGGG
                                                                            3180
                                                                            3240
      CTTGAGGGAC GTTTGTGACT TCTTGGCGAC TGCCTTTTGT GTGTGGAAGA GACTTGGAAA
       GGTCTCAGAC TGAATGTGAC CAATTAACCA GCTTGGTTGA TGATGGGGGA GGGGCTGAGT
                                                                            3300
15
      TGTGCATGGG CCCAGGTCTG GAGGGCCACG TAAAATCGTT CTGAGTCGTG AGCAGTGTCC
      ACCTTGAAGG TCTTC
                                                                                             SEQ ID NO:185 CBF9 Protein sequence
                                                                                                                none found
                                                                                     Protein Accession #:
50
                              21
                                         31
                                                     41
                                                                51
      MPPPLLLEAV CVFLFSRVPP SLPLQEVHVS KETIGKISAA SKMMWCSAAV DIMFLLDGSN
      SVGKGSFERS KHFAITVCDG LDISPERVRV GAPQFSSTPH LEFPLDSFST QQEVKARIKR
55
      MVFKGGRTET ELALKYLLHR GLPGGRNASV PQILIIVTDG KSQGDVALPS KQLKERGVTV
                                                                             180
      FAVGVRFPRW EELHALASEP RGQHVLLAEQ VEDATNGLFS TLSSSAICSS ATPDCRVEAH
                                                                             240
       PCEHRTLEMV REFAGNAPCW RGSRRTLAVL AAHCPFYSWK RVFLTHPATC YRTTCPGPCD
                                                                             300
      SQPCQNGGTC VPEGLDGYQC LCPLAFGGEA NCALKLSLEC RVDLLFLLDS SAGTTLDGFL
                                                                             360
50
       RAKVFVKRPV RAVLSEDSRA RVGVATYSRE LLVAVPVGEY QDVPDLVWSL DGIPFRGGPT
                                                                             420
       LTGSALRQAA ERGFGSATRT GQDRPRRVVV LLTESHSEDE VAGPARHARA RELLLLGVGS
                                                                             480
       EAVRAELEEI TGSPKHVMVY SDPQDLFNQI PELQGKLCSR QRPGCRTQAL DLVFMLDTSA
       SVGPENFAQM QSFVRSCALQ FEVNPDVTQV GLVVYGSQVQ TAFGLDTKPT RAAMLRAISQ
                                                                              600
      APYLGGVGSA GTALLHIYDK VMTVQRGARP GVPKAVVVLT GGRGAEDAAV PAQKLRNNGI
                                                                              660
65
       SYLVYGYGPV LSEGLRRLAG PROSLIHVAA YADLRYHQDV LIEWLCGEAK QPVNLCKPSP
                                                                              720
      CMNEGSCVLQ NGSYRCKCRD GWEGPHCENR EWSSCSVCVS QGWILETPLR HMAFVQEGSS
                                                                              780
       RTPPSNYREG LGTEMVPTFW NVCAPGP
70
       SEQ ID NO:186 PAV1 DNA sequence
       Nucleic Acid Accession #:
                                  AF272890 °
                                  87-1520 (underlined sequences correspond to start and stop codons)
       Coding Sequence:
                              21
                                         31
                                                                51
75
       TGCTACCCGC GCCCGGGCTT CTGGGGTGTT CCCCAACCAC GGCCCAGCCC TGCCACACCC
       CCCGCCCCG GCCTCCGCAG CTCGGCATGG GCGCGGGGT GCTCGTCCTG GGCGCCTCCG
AGCCCGGTAA CCTGTCGTCG GCCGCACCGC TCCCCGACGG CGCGGCCACC GCGGCCGCGC
```

	TGCTGGTGCC	CGCGTCGCCG	CCCGCCTCGT	TGCTGCCTCC	CGCCAGCGAA	AGCCCCGAGC	240	
			GCGGGCATGG				300	
			GTGATCGTGG TCCCTGGCCA				360	
5.			GTGGTGTGGG				420 480	
_			GTGCTGTGCG				540	•
			GCCATCACCT				600	
			GTGTGCACCG				660	
10			TGGCGGGCGG				720 780	
10			ATCATGGCCT				840	
			GACAGCTGCG				900	
			CCCGTCCCCG				960	
15			GCCCCGCTGG				1020	
13			GAGCAGAAGG CCCTTCTTCC				1080 1140	
			TTCGTCTTCT				1200	
			CGCAGCCCCG				1260	
20			CGCCGGCGCC				1320	
20			GGACCCCCGC				1380	
			ACGCCGCCCG AGCGACTCGA				1440 1500	•
			GGCCCGGCGC				1560	
25			TTACTTAAGA				1620	•
25						AAAAGGAAAG	1680	
	TTTGGGAAGG	GATGGGAGAG	TGGCTTGCTG	ATGTTCCTTG	TTG			
	-							
								SEQ ID NO:187 PAV1 Protein sequence
30							Protein Accession #:	AA011176
	1	11	21	31	41	51		
	Ī	1	1	1	Ĭ	j.		
35	MGAGVLVLGA	SEPGNLSSAA	PLPDGAATAA	RLLVPASPPA	SLLPPASESP	EPLSQQWTAG	60	
			VAIAKTPRLQ				120	
			CVTASIETLC AESDEARRCY				180 240	
			CERRFLGGPA				300	
40			KALKTLGIIM				360	
			${\tt PDFRKAFQGL}$				420	
	PPSPGAASDD	DDDDDVVGATP	PARLLEPWAG	CNGGAAADSD	SSLDEPCRPG	FASESKV		
45	SEQ ID NO:188 I	BCO2 DNA sequer	nce					
	Nucleic Acid Acce		AJ400877					
		Coding	sequence:	6	1-3080 (underline	d sequences corres	spond to start and stop co	dons)
	, ,,	21 21	41 61					
50	1 11	21 31 4	41 51 I					
-	GCCTCCCC	G CACACCTCC	c cococco	CG CCGCCAC	CGC CCGCACT	reeg eegeett	CTGC 60	
						CGGG GCGGCC		
						GGG GCCGTCC		
55						STGCC CAAGG		-
55						CAAG TGCTCCT LATGT GGAAA		
						CGT TGCACTT		
	TTGATGGCT	CATGTTGGC	T CATGACGG	C ATAATTGT	CT TGATGTG	GAC GAGTGCC	TGG 480	•
60 ·						CTAT GAGTGC		
60						CGC TCGGAA		
						GGAG GCCCCA CCAG AGAGAC		
						GAT ACAGCC		
~ ~						GAGG AGCTG		
65						CAGTG GTGGA		
						CAAT GGAGGC		
						GTT GGATTCA		
						CCGC AATGGA 'AAG AAAGGA'		
70						TTG GATAGG		
						AAC CGAGGGT		
	CCCTGTATGC	CTTCACCCA	C TGTGGAGAG	CA CCAATGA	GTG CAGCATO	AAC AACGGA	GGCT 1320	
						CCAC CCTGGG		
75						GCCC ACAAGT		
13						GTGC TTCCTC/ AGT GTAACCT		
						GAG GGTCTG		
						CGTA AACCTT		
90		G CAAGCAAGT						•
80						GCT TCTTGTG		

TGAGCTGCAT CGTAAAGCGA ACCGAGAAGC GGCTCCGTAA AGCCATCCGC ACGCTCAGAA 1860 AGGCCGTCCA CAGGGAGCAG TTTCACCTCC AGCTCTCAGG CATGAACCTC GACGTGGCTA 1920 AAAAGCCTCC CAGAACATCT GAACGCCAGG CAGAGTCCTG TGGAGTGGGC CAGGGTCATG 1980 CAGAAAACCA ATGTGTCAGT TGCAGGGCTG GGACCTATTA TGATGGAGCA CGAGAACGCT 2040 GCATTTTATG TCCAAATGGA ACCTTCCAAA ATGAGGAAGG ACAAATGACT 1GTGAACCAT 2100 GCCCAAGACC AGGAAATTCT GGGGCCCTGA AGACCCCAGA AGCTTGGAAT ATGTCTGAAT 2160 GTGGAGGTCT GTGTCAACCT GGTGAATATT CTGCAGATGG CTTTGCACCT TGCCAGCTCT 2220
GTGCCCTGGG CACGTTCCAG CCTGAAGCTG GTCGAACTTC CTGCTTCCCC TGTGGAGGAG 2280
GCCTTGCCAC CAAACATCAG GGAGCTACTT CCTTTCAGGA CTGTGAAACC AGAGTTCAAT 2340
GTTCACCTGG ACATTTCTAC AACACCACCA CTCACCGATG TATTCGTTGC CCAGTGGGAA 2400 10 CATACCAGCC TGAATTTGGA AAAAATAATT GTGTTTCTTG CCCAGGAAAT ACTACGACTG 2460 ACTITGATGG CTCCACAAAC ATAACCCAGT GTAAAAACAG AAGATGTGGA GGGGAGCTGG GAGATTTCAC TGGGTACATT GAATCCCCAA ACTACCCAGG CAATTACCCA GCCAACACCG 2580 AGTGTACGTG GACCATCAAC CCACCCCCA AGCGCCGCAT CCTGATCGTG GTCCCTGAGA 2640 15 TCTTCCTGCC CATAGAGGAC GACTGTGGGG ACTATCTGGT GATGCGGAAA ACCTCTTCAT 2700 CCAATTCTGT GACAACATAT GAAACCTGCC AGACCTACGA ACGCCCCATC GCCTTCACCT 2760 CCAGGTCAAA GAAGCTGTGG ATTCAGTTCA AGTCCAATGA AGGGAACAGC GCTAGAGGGT 2820 TCCAGGTCCC ATACGTGACA TATGATGAGG ACTACCAGGA ACTCATTGAA GACATAGTTC 2880 GAGATGGCAG GCTCTATGCA TCTGAGAACC ATCAGGAAAT ACTTAAGGAT AAGAAACTTA 2940 20 TCAAGGCTCT GTTTGATGTC CTGGCCCATC CCCAGAACTA TTTCAAGTAC ACAGCCCAGG 3000 AGTCCCGAGA GATGTTTCCA AGATCGTTCA TCCGATTGCT ACGTTCCAAA GTGTCCAGGT 3060
TTTTGAGACC TTACAAA<u>TGA</u> CTCAGCCCAC GTGCCACTCA ATACAAATGT TCTGCTATAG 3120
GGTTGGTGGG ACAGAGCTGT CTTCCTTCTG CATGTCAGCA CAGTCGGGTA TTGCTGCCTC 3180
CCGTATCAGT GACTCATTAG AGTTCAATTT TTATAGATAA TACAGATATT TTGGTAAATT 3240
GAACTTGGTT TTTCTTTCCC AGCATCGTGG ATGTAGACTG AGAATGGCTT TGAGTGGCAT 3300 25 CAGCTTCTCA CTGCTGTGGG CGGATGTCTT GGATAGATCA CGGGCTGGCT GAGCTGGACT 3360 TTGGTCAGCC TAGGTGAGAC TCACCTGTCC TTCTGGGGTC TTACTCCTCC TCAAGGAGTC 3420 TGTAGTGGAA AGGAGGCCAC AGAATAAGCT GCTTATTCTG AAACTTCAGC TTCCTCTAGC 3480 CCGGCCCTCT CTAAGGGAGC CCTCTGCACT CGTGTGCAGG CTCTGACCAG GCAGAACAGG 3540 30 CAAGAGGGGA GGGAAGGAGA CCCCTGCAGG CTCCCTCCAC CCACCTTGAG ACCTGGGAGG 3600 ACTCAGTTTC TCCACAGCCT TCTCCAGCCT GTGTGATACA AGTTTGATCC CAGGAACTTG 3660 AGTTCTAAGC AGTGCTCGTG AAAAAAAAA GCAGAAAGAA TTAGAAATAA ATAAAAACTA 3720 AGCACTTCTG GAGACAT 35 SEQ ID NO:189 BCO2 Protein sequence CAB92285 Protein Accession #: 21 31 40 MGVAGRNRPG AAWAVILLL LIPPLLILAG AVPPGRGRAA GPQEDVDECA QGLDDCHADA 60 LCQNTPTSYK CSCKPGYQGE GRQCEDIDEC GNELNGGCVH DCLNIPGNYR CTCFDGFMLA 120 HDGHNCLDVD ECLENNGGCQ HTCVNVMGSY ECCCKEGFFL SDNQHTCHR SEEGLSCMNK 180 DHGCSHICKE APRGSVACEC RPGFELAKNQ RDCILTCNHG NGGCQHSCDD TADGPECSCH 240 PQYKMHTDGR SCLEREDTVL EVTESNTTSV VDGDKRVKRR LIMETCAVNN GGCDRTCKDT 300 45 STGVHCSCPV GFTLOLDGKT CKDIDECOTR NGGCDHFCKN IVGSFDCGCK KGFKLLTDEK 360 SCODVDECSL DRTCDHSCIN HPGTFACACN RGYTLYGFTH CGDTNECSIN NGGCQQVCVN 420 TVGSYECQCH PGYKLHWNKK DCVEVKGLLP TSVSPRVSLH CGKSGGGDGC FLRCHSGIHL 480 SSDVTTIRTS VTFKLNEGKC SLKNAELFPE GLRPALPEKH SSVKESFRYV NLTCSSGKQV 540 50 PGAPGRPSTP KEMFITVEFE LETNQKEVTA SCDLSCIVKR TEKRLRKAIR TLRKAVHREQ 600 FHIQLSGMNL DVAKKPPRTS ERQAESCGVG QGHAENQCVS CRAGTYYDGA RERCILCPNG 660
TFQNEEGQMT CEPCPRFGNS GALKTPEAWN MSECGGLCQP GEYSADGFAP CQLCALGTFQ 720
PEAGRTSCFP CGGGLATKHQ GATSFQDCET RVQCSPGHFY NTTTHRCIRC PVGTYQPEFG 780
KNNCVSCPGN TTTDFDGSTN ITQCKNRRCG GELGDFTGYI ESPNYPGNYP ANTECTWTIN 840
PPPKRILIV VPEIFLPIED DCGDYLVMRK TSSSNSVTTY ETCQTYERPI AFTSRSKKLW 900 55 IOFKSNEGNS ARGFOVPYVT YDEDYOELIE DIVRDGRLYA SENHOEILKD KKLIKALFDV 960 LAHPONYFKY TAQESREMFP RSFIRLLRSK VSRFLRPYK SEQ ID NO:190 BFG1 DNA sequence 60 AF007170 Nucleic Acid Accession #: Coding sequence: 1-1725 (underlined sequences correspond to stop codon) 41 31 AAGGAGGCGG CCTCCGGGAA AAGCGACCGC AGGACTCCTG AGAGCAGCCT CCATGAGGCC 60
CTGGACCAGT GCATGACCGC CCTGGACCTC TTCCTCACCA ACCAGTTCTC AGAAGCACTC 120
AGCTACCTCA AGCCCAGAAC CAAGGAAAGC ATGTACCACT CACTGACATA TGCCACCATC 180
CTGGAGATGC AGGCCATGAT GACCTTTGAC CCTCAGGACA TCCTGCTTGC CGGCAACATG 240
ATGAAGGAGG CACAGATGCT GTGTCAGAGG CACCGGAGGA AGTCTTCTGT AACAGATTCC 300 65 70 TTCAGCAGCC TGGTGAACCG CCCCACGCTG GGCCAATTCA CTGAAGAAGA AATCCACGCT GAGGTCTGCT ATGCAGAGTG CCTGCTGCAG CGAGCAGCCC TGACCTTCCT GCAGGACGAG 420 AACATGGTGA GCTTCATCAA AGGCGGCATC AAAGTTCGAA ACAGCTACCA GACCTACAAG 480
GAGCTGGACA GCCTTGTTCA GTCCTCACAA TACTGCAAGG GTGAGAACCA CCCGCACTTT 540 GAAGGAGGAG TGAAGCTTGG TGTAGGGGCC TTCAACCTGA CACTGTCCAT GCTTCCTACT 600 AGGATCCTGA GGCTGTTGGA GTTTGTGGGG TTTTCAGGAA ACAAGGACTA TGGGCTGCTG 660 CAGCTGGAGG AGGGAGCGTC AGGGCACAGC TTCCGCTCTG TGCTCTGTGT CATGCTCCTG 720 75 CTGTGCTACC ACACCTTCCT CACCTTCGTG CTCGGTACTG GGAACGTCAA CATCGAGGAG 780 GCCGAGAAGC TCTTGAAGCC CTACCTGAAC CGGTACCCTA AGGGTGCCAT CTTCCTGTTC 840 TTTGCAGGGA GGATTGAAGT CATTAAAGGC AACATTGATG CAGCCATCCG GCGTTTCGAG 900

WO 02/30268

GAGTGCTGTG AGGCCCAGCA GCACTGGAAG CAGTTTCACC ACATGTGCTA CTGGGAGCTG 960 ATGTGGTGCT TCACCTACAA GGGCCAGTGG AAGATGTCCT ACTTCTACGC CGACCTGCTC 1020 AGCAAGGAGA ACTGCTGGTC CAAGGCCACC TACATTTACA TGAAGGCCGC CTACCTCAGC 1080 ATGITTGGGA AGGAGGACCA CAAGCCGTTC GGGGACGACG AAGTGGAATT ATTTCGAGCT 1140
GTGCCAGGCC TGAAGCTCAA GATTGCTGGG AAATCTCTAC CCACAGAGAA GTTTGCCATC 1200
CGGAAGTCCC GGCGCTACTT CTCCTCCAAC CCTATCTCGC TGCCAGTGCC TGCTCTGGAA 1260 5 ATGATGTACA TCTGGAACGG CTACGCCGTG ATTGGGAAGC AGCCGAAACT CACGGATGGG 1320 ATACTTGAGA TTATCACTAA GGCTGAAGAG ATGCTGGAGA AAGGCCCAGA GAACGAGTAC 1380 TCAGTGGATG ACGAGTGCTT GGTGAAATTG TTGAAAGGCC TGTGTCTGAA ATACCTGGGC 1440 10 CGTGTCCAGG AGGCCGAGGA GAATITTAGG AGCATCTCTG CCAATGAAAA GAAGATTAAA 1500 TATGACCACT ACTTGATCCC AAACGCCCTG CTGGAGCTGG CCCTGCTGCT TATGGAGCAA 1560 GACAGAAACG AAGAGGCCAT CAAACTTTTG GAATCTGCCA AGCAAAACTA CAAGAATTAC 1620 TOCATGGAGT CAAGGACACA CTTTCGAATC CAGGCAGCCA CACTCCAAGC CAAGTCTTCC 1680 CTAGAGAACA GCAGCAGATC CATGGTCTCA TCAGTGTCCT TGTAGCTTTG TGCAGCAGTT 1740 CCGGGCTGGA AGACAGAGAC AGCTGGACAG AGCTCCTGAA AACATTTCAA AATACCCCCT 1800
CCCCCTGCCC TGCCCTGCCT TTGGGGTCCA CCGGCACTCC AGTTGGATGG CACAACATAG 1860
TGTATCCGTG CAGAAGCCGA GCTGGCATTT TCACCAGTGT AGCCAAGGGC CTTTGCCAAG 1920
GGCAGAGCAG GTGGAGCCCT CTGCCTGCCC TATCACACAT ACGGGTACTT GCTTTTCACT 1980 15 GTGATGTTTA AGAGAATGTA TGAACAGTTT ACATTTTCCT TAGAAATACA TTGATGGGAT 2040 20 CACAGTTGGC TITAAAAACC AACAACAATC AACCACCTGT AAGTCTTTGT CTTCACCTAT 2100 TATCATCTGG AGGTAAATCT CTTTATATGA TGATGCCAAA GGGCAAATTG CTTTTCAAAT 2160 TCAGCAAGTT CTCAGCTTGT GTGACGGAAG GTCCTTCAGA GGACCTGAGG AATGCCTGGG 2220 AGAGGCTAAG CCTCAGGCTT CAATGCTTCT GGGGTTGGGC ATGAGGATGT ACACAGACAC 2280 CCACTACCTT ACTACTCACA CTTCATTTCA CTCCTTTTGT AAATTTCCAA TTTAAAAATC 2340 25 AAGCACGTCT TTTTAGTGAG ATAAAATCTG AGCTCTTCTG TAGAAAAATC AATCTCTACC 2400 AGTAGAAAAT GCCAGGGCTT GATGGAAGAG CTGTGTAGCC CTTTCTATGC CAAAGCCAGG 2460 AAATTTGGGG GGCAGGAGGA GGTTCTCAGA ATCCAGTCTG TATCTTTGCT GTATGCCAAA 2520 CTGAAACCAC TGGGAATAAT TTATGAAACA TAAAAATCTT CTGTACTTCA CTCCAAGGTA 2580 CATTIGCTTA CIGACAGCAT TITIGTTAAA ACTGTTATTC TIGAAAAAAA AAAAAAAAA 2640 30 SEQ ID NO:191 BFG1 Protein sequence AAC39582 Protein Accession #: 35 MTALDLFLTN QFSEALSYLK PRTKESMYHS LTYATILEMQ AMMTFDPQDI LLAGNMMKEA 60 OMLCQRHRRK SSVTDSFSSL VNRPTLGQFT EEEHAEVCY AECLLQRAAL TFLQDENMVS 120
FIKGGIKVRN SYQTYKELDS LVQSSQYCKG ENHPHFEGGV KLGVGAFNLT LSMLPTRILR 180
LLEFVGFSGN KDYGLLQLEE GASGHSFRSV LCVMLLLCYH TFLTFVLGTG NVNIEEAEKL 240
LKPYLNRYPK GAIFLFFAGR IEVIKGNIDA AIRRFEECCE AQQHWKQFHH MCYWELMWCF 300 40 TYKGQWKMSY FYADLLSKEN CWSKATYIYM KAAYLSMFGK EDHKPFGDDE VELFRAVPGL 360 KLKIAGKSLP TEKFAIRKSR RYFSSNPISL PVPALEMMYI WNGYAVIGKQ PKLTDGILEI 420 45 ITKAEEMLEK GPENEYSVDD ECLVKLLKGL CLKYLGRVQE AEENFRSISA NEKKIKYDHY 480 LIPNALLELA LLLMEQDRNE EAIKLLESAK QNYKNYSMES RTHFRIQAAT LQAKSSLENS 540 SRSMVSSVSL 50 SEQ ID NO:192 BFO6 DNA sequence NM 032583 Nucleic Acid Accession #: Coding sequence: 1-4044 (underlined sequences correspond to start and stop codons) 21 31 41 55 ATGACTAGGA AGAGGACATA CTGGGTGCCC AACTCTTCTG GTGGCCTCGT GAATCGTGGC 60 ATCGACATAG GCGATGACAT GGTTTCAGGA CTTATTTATA AAACCTATAC TCTCCAAGAT 120 GGCCCCTGGA GTCAGCAAGA GAGAAATCCT GAGGCTCCAG GGAGGGCAGC TGTCCCACCG 180 TGGGGGAAGT ATGATGCTGC CTTGAGAACC ATGATTCCCT TCCGTCCCAA GCCGAGGTTT 240 60 CCTGCCCCC AGCCCCTGGA CAATGCTGGC CTGTTCTCCT ACCTCACCGT GTCATGGCTC 300
ACCCCGCTCA TGATCCAAAG CTTACGGAGT CGCTTAGATG AGAACACCAT CCCTCCACTG 360
TCAGTCCATG ATGCCTCAGA CAAAAATGTC CAAAGGCTTC ACCGCCTTTG GGAAGAAGAA 420
GTCTCAAGGC GAGGGATTGA AAAAGCTTCA GTGCTTCTGG TGATGCTGAG GTTCCAGAGA 480
ACAAGGTTGA TTTTCGATGC ACTTCTGGGC ATCTGCTTCT GCATTGCCAG TGTACTCGGG 540 65 CCAATATIGA TIATACCAAA GATCCTGGAA TATTCAGAAG AGCAGTTGGG GAATGTTGTC 600 CATGGAGTGG GACTCTGCTT TGCCCTTTTT CTCTCCGAAT GTGTGAAGTC TCTGAGTTTC 660 TCCTCCAGTT GGATCATCAA CCAACGCACA GCCATCAGGT TCCGAGCAGC TGTTTCCTCC TTTGCCTTTG AGAAGCTCAT CCAATTTAAG TCTGTAATAC ACATCACCTC AGGAGAGGCC 780 ATCAGCTTCT TCACCGGTGA TGTAAACTAC CTGTTTGAAG GGGTGTGCTA TGGACCCCTA 840 70 GTACTGATCA CCTGCGCATC GCTGGTCATC TGCAGCATTT CTTCCTACTT CATTATTGGA 900 TACACTGCAT TTATTGCCAT CTTATGCTAT CTCCTGGTTT TCCCACTGGC GGTATTCATG 960 ACAAGAATGG CTGTGAAGGC TCAGCATCAC ACATCTGAGG TCAGCGACCA GCGCATCCGT 1020 GTGACCAGTG AAGTTCTCAC TTGCATTAAG CTGATTAAAA TGTACACATG GGAGAAACCA 1080

TTTGCAAAAA TCATTGAAGG TATGGAAAGT CTGACTTTCT GCTCCAAACC TGGTGATGGC 1140
ATGGCCTTCA GCATGCTGGC CTCCTTGAAT CTCCTTCGGC TGTCAGTGTT CTTTGTGCCT 1200
ATTGCAGTCA AAGGTCTCAC GAATTCCAAGA TCTGCAGTGA TGAGGTTCAA GAAGTTTTC 1260
CTCCAGGAGA GCCCTGTTT CTATGTCCAG ACATTACAAG ACCCCAGCAA AGCTCTGGC 1320
TTTGAGGAGG CCACCTTGTC ATGGCAACAG ACCTGTCCCG GGATCGTCAA TGGGGCACTG 1380

GAGCTGGAGA GGAACGGGCA TGCTTCTGAG GGGATGACCA GGCCTAGAGA TGCCCTCGGG 1440

75

CCAGAGGAAG AAGGGAACAG CCTGGGCCCA GAGTTGCACA AGATCAACCT GGTGGTGTCC 1500 AAGGGGATGA TGTTAGGGGT CTGCGGCAAC ACGGGGAGTG GTAAGAGCAG CCTGTTGTCA 1560 GCCATCCTGG AGGAGATGCA CTTGCTCGAG GGCTCGGTGG GGGTGCAGGG AAGCCTGGCC 1620 TATGTCCCCC AGCAGGCCTG GATCGTCAGC GGGAACATCA GGGAGAACAT CCTCATGGGA 1680 5 GGCGCATATG ACAAGGCCCG ATACCTCCAG GTGCTCCACT GCTGCTCCCT GAATCGGGAC 1740 CTGGAACTTC TGCCCTTTGG AGACATGACA GAGATTGGAG AGCGGGGCCT CAACCTCTCT 1800 GGGGGGCAGA AACAGAGGAT CAGCCTGGCC CGCGCCGTCT ATTCCGACCG TCAGATCTAC 1860 CTGCTGGACG ACCCCCTGTC TGCTGTGGAC GCCCACGTGG GGAAGCACAT TTTTGAGGAG 1920 TGCATTAAGA AGACACTCAG GGGGAAGACG GTCGTCCTGG TGACCCACCA GCTGCAGTAC 1980 10 TTAGAATTTT GTGGCCAGAT CATTTTGTTG GAAAATGGGA AAATCTGTGA AAATGGAACT 2040 CACAGTGAGT TAATGCAGAA AAAGGGGAAA TATGCCCAAC TTATCCAGAA GATGCACAAG 2100 GAAGCCACTT CGGACATGTT GCAGGACACA GCAAAGATAG CAGAGAAGCC AAAGGTAGAA 2160 AGTCAGGCTC TGGCCACCTC CCTGGAAGAG TCTCTCAACG GAAATGCTGT GCCGGAGCAT 2220 CAGCTCACAC AGGAGGAGGA GATGGAAGAA GGCTCCTTGA GTTGGAGGGT CTACCACCAC 2280 TACATCCAGG CAGCTGGAGG TTACATGGTC TCTTGCATAA TTTTCTTCTT CGTGGTGCTG 2340 15 ATGGTCTTCT TAACGATCTT CAGCTTCTGG TGGCTGAGCT ACTGGTTGGA GCAGGGCTCG 2400
GGGACCAATA GCAGCCGAGA GAGCAATGGA ACCATGGCAG ACCTGGGCAA CATTGCAGAC 2460
AATCCTCAAC TGTCCTTCTA CCAGCTGGTG TACGGGCTCA ACGCCCTGCT CCTCATCTGT 2520
GTGGGGGTCT GCTCCTCAGG GATTTTCACC AAAGTCACGA GGAAGGCATC CACGGCCCTG 2580 20 CACAACAAGC TCTTCAACAA GGTTTTCCGC TGCCCCATGA GTTTCTTTGA CACCATCCCA 2640 ATAGGCCGGC TTTTGAACTG CTTCGCAGGG GACTTGGAAC AGCTGGACCA GCTCTTGCCC 2700 ATCITITCAG AGCAGTICCT GGTCCTGTCC TTAATGGTGA TCGCCGTCCT GTTGATTGTC 2760 AGTGTGCTGT CTCCATATAT CCTGTTAATG GGAGCCATAA TCATGGTTAT TTGCTTCATT 2820 TATTATATGA TGTTCAAGAA GGCCATCGGT GTGTTCAAGA GACTGGAGAA CTATAGCCGG 2880 25 TCTCCTTTAT TCTCCCACAT CCTCAATTCT CTGCAAGGCC TGAGCTCCAT CCATGTCTAT 2940 GGAAAAACTG AAGACTTCAT CAGCCAGTTT AAGAGGCTGA CTGATGCGCA GAATAACTAC 3000 CTGCTGTTGT TICTATCTTC CACACAGTTT AAGAGCTGA CUGTIGGCAA GAATAACTAC 3000
CTGCTGTTGT TICTATCTTC CACACGATGG ATGGCATTGA GGCTGGAGGAT CATGACCAAC 3060
CTTGTGACCT TGGCTGTTTGC CCTGTTCGTG GCTTTTTGGCA TTTCCTCCAC CCCCTACTCC 3120
TTTAAAGTCA TGGCTGTCAA CATCGTGCTG CAGCTGGCGT CCAGCTTCCA GGCCACTGCC 3180
CGGATTGGCT TGGAGACAGA GGCACAGTTC ACGGCTGTAG AGAGGATACT GCAGTACATG 3240
AAGATGTGT TCTCGGAAGC TCCTTTACAC ATGGAAGGCA CAAGTTGTCC CCAGGGGTGG 3300
CCACAGCATG GGGGAATCAT ATTTCAGGAT TATCACATGA AATACAGAGA CAACACCCC 3360 30 ACCGTGCTTC ACGGCATCAA CCTGACCATC CGCGGCCACG AAGTGGTGGG CATCGTGGGA 3420 AGGACGGGCT CTGGGAAGTC CTCCTTGGGC ATGGCTCTCT TCCGCCTGGT GGAGCCCATG 3480 35 GCAGGCCGGA TTCTCATTGA CGGCGTGGAC ATTTGCAGCA TCGGCCTGGA GGACTTGCGG 3540 TCCAAGCTCT CAGTGATCCC TCAAGATCCA GTGCTGCTCT CAGGAACCAT CAGATTCAAC 3600 CTAGATCCCT TTGACCGTCA CACTGACCAG CAGATCTGGG ATGCCTTGGA GAGGACATTC 3660 CTGACCAAGG CCATCTCAAA GTTCCCCAAA AAGCTGCATA CAGATGTGGT GGAAAACGGT 3720 GGAAACTTCT CTGTGGGGGA GAGGCAGCTG CTCTGCATTG CCAGGGCTGT GCTTCGCAAC 3780 40 TCCAAGATCA TCCTTATCGA TGAAGCCACA GCCTCCATTG ACATGGAGAC AGACACCCTG 3840 ATCCAGCGCA CAATCCGTGA AGCCTTCCAG GGCTGCACCG TGCTCGTCAT TGCCCACCGT 3900 GTCACCACTG TGCTGAACTG TGACCACATC CTGGTTATGG GCAATGGGAA GGTGGTAGAA 3960 TTTGATCGGC CGGAGGTACT GCGGAAGAAG CCTGGGTCAT TGTTCGCAGC CCTCATGGCC 4020 ACAGCCACTT CTTCACTGAG ATAAGGAGAT GTGGAGACTT CATGGAGGCT GGCAGCTGAG 4080 45 CTCAGAGGTT CACACAGGTG CAGCTTCGAG GCCCACAGTC TGCGACCTTC TTGTTTGGAG 4140 ATGAGAACTT CTCCTGGAAG CAGGGGTAAA TGTAGGGGGG GTGGGGATTG CTGGATGGAA 4200 ACCCTGGAAT AGGCTACTTG ATGGCTCTCA AGACCTTAGA ACCCCAGAAC CATCTAAGAC 4260 ATGGGATTCA GTGATCATGT GGTTCTCCTT TTAACTTACA TGCTGAATAA TTTTATAATA 4320 AGGTAAAAGC TTATAGTTTT CTGATCTGTG TTAGAAGTGY TGCAAATGCT GTACTGACTT 4380 50 TGTAAAATAT AAAACTAAGG AAAACTCAAA AAAAAAAAA AAAAAAA SEQ ID NO:193 BFO6 Protein sequence NP_115972_1 Protein Accession #: 55 31 41 51

MTRKRTYWYP NSSGGLVNRG IDIGDDMVSG LIYKTYTLQD GPWSQQERNP EAPGRAAVPP 60 WGKYDAALRT MIPFRPKPRF PAPQPLDNAG LFSYLTVSWL TPLMIQSLRS RLDENTIPPL 120 SVHDASDKNV QRLHRLWEEE VSRRGIEKAS VLLVMLRFQR TRLIFDALLG ICFCIASVLG 180 SVHDASDKNV QRLHKLWEEE VSRRGIEKAS VILVMIKFQR IKLIFDALLG ICCLIASVLG
PILIPKILE YSEEQLGNVV HGVGLCFALF LSECVKSLSF SSSWINQRT AIRFRAAVSS _240
FAFEKLIQFK SVIHITSGEA ISFFTGDVNY LFEGVCYGPL VLITCASLVI CSISSYFIIG 300
YTAFIAILCY LLVFPLAVFM TRMAVKAQHH TSEVSDQRIR VTSEVLTCIK LIKMYTWEKP 360
FAKIIEGMES LTFCSKPGDG MAFSMLASLN LLRLSVFFVP IAVKGLTNSK SAVMRFKKFF 420
LQESPVFYVQ TLQDPSKALV FEEATLSWQQ TCPGIVNGAL ELERNGHASE GMTRPRDALG 480
PEEEGNSLGP ELHKINLVVS KGMMLGVCGN TGSGKSSILS AILEEMHILLE GSVGVQGSLA 540 60 65 YVPQQAWIVS GNIRENILMG GAYDKARYLQ VLHCCSLNRD LELLPFGDMT EIGERGLNLS 600 GGOKORISLA RAVYSDROIY LLDDPLSAVD AHVGKHIFEE CIKKTLRGKT VVLVTHQLOY 660 LEFCGQIILL ENGKICENGT HSELMQKKGK YAQLIQKMHK EATSDMLQDT AKIAEKPKVE 720 SQALATSLEE SLNGNAVPEH QLTQEEEMEE GSLSWRVYHH YIQAAGGYMV SCIIFFFVVL 780 70 IVFLTIFSFW WLSYWLEQGS GTNSSRESNG TMADLGNIAD NPQLSFYQLV YGLNALLLIC 840 VGVCSSGIFT KVTRKASTAL HNKLFNKVFR CPMSFFDTIP IGRILNCFAG DLEQLDQLLP 900 IFSEQFLVLS LMVIAVLLIV SVLSPYILLM GAIMVICFI YYMMFKKAIG VFKRLENYSR 960 IFSEQFLVI.S LMVIAVILLIV SVI.SPYILLM GAIMVICH YYMMFAKAIG VFAKLENTOK 500
SPLFSHILNS LQGLSSIHVY GKTEDFISQF KRLTDAQNNY LLLFLSSTRW MALRLEIMTN 1020
LVTLAVALFV AFGISSTPYS FKVMAVNIVL QLASSFQATA RIGLETEAQF TAVERILQYM 1080
KMCVSEAPLH MEGTSCPQGW PQHGEIIFQD YHMKYRDNTP TVLHGINLITI RGHEVVGIVG 1140
RTGSGKSSLG MALFRLVEPM AGRILIDGVD ICSIGLEDLR SKLSVIPQDP VLLSGTIRFN 1200
LDPFDRHTDQ QIWDALERTF LTKAISKFPK KLHTDVVENG GNFSVGERQL LCIARAVLRN 1260
SKIILDEAT ASIDMETDTL IQRTIREAFQ GCTVLVIAHR VTTVLNCDHI LVMGNGKVVE 1320
ENDBEVI BWW 2521 EA ALMA TATSSI D 75 FDRPEVLRKK PGSLFAALMA TATSSLR

	Nucleic Acid Acc	ecciuu s.	AA983251				
5	Coding sequence			dodinad samone	e correctional to ct	art and stop codon	e)
5	County Sequence	5.	1-1745 (UII	ucianica sequence	s conceptorio io si	an and stop coods	5)
	1	11	21	31	41 .	51	
	î	1	1 .			31	
	NANCOMORPOMO	GCTTCTTGAT		1	CACCACACMA	CACOCCCCA	60
10							
10		TTCCGTGGGA					120
		GGGAGAGCCG					180
		AGAAGGGGAA					240
		CGCCAGCTGG					300
15		CTGGACGTTC					360
13	TCCGGACGAC	AGCCCCGGGG	GCCTTCTGAC	TGCATCCCGA	GATTTCCATC	AGCGAGTGCA	420
		CAGTCCCTAA					480
		CTAGGGCCCG					540
		AGCGCCGCGG					600
20		ACCGTCCTGC					660
20		TCGCCGCTCG					720
		TGCGCTGCTG					780
		CGCAGGGCGT					840
		CCATCTGCTG					900
25		ACCAGGGCGG					960
25	CGGGCGGACA	AAGACGGGCC	CCGACGGCTC	GGCAGGGCTT	CATGTCTTAG	GGGTACCCAA	1020
	GGAGACGGCG	AGGGTGCGCC	CCCACCCGTG	AGGGCCTGGC	AGCGGTGCTC	CCCTGAAGGC	1080
		GAAGGCAGCT					1140
		CATCTTCTCC					1200
20		CGTTCCTCAT					1260
30		CCTGTTGCTG					1320
		GTAACCGCTT					1380
		CCTCACGCCA					1440
		CGCCCCCAAC					1500
35		ATGTCAACAT					1560
33		CACATCAAGG					1620
	CACGACTCTG	TGCCCATGAC	AGCTGTGCCA	CCTTTCATGG	ACGGCCTGCA	GCCTGGCTAC	1680
		AGTCCCCCTT					1740
		CGAGAGTCAC					1800
40		GTGGAAGTCC					1860
40		CCCCAGACT					1920
		ATCATTGATT					1980
	TIGCIGATGG	GTGTATAACA	AATGCTIGAG	TCCGAAGTGC	CCTTGAGATA	TGGTTGACGA	2040
		TAAACTGATA					2100
45		CTGCACAGGA					2160
73		TTTTTTTAA					2220
		TCGGCTCACT					2280
		GTGGCTGGGA GGGTTTCACC					2340
		TCAGCCTCCC					2400 2460
50		TTTTTTTTTT					2520
50		GAAACCTGTT					2520 2580
		AATTTCATTG					2640
	CCCCCMARROW	TGTGCTTTTT	THANNAGATA	IMIMIMITIT.	GICINITITI	AGUMMANA	2700
	GGGCCIAIII	ACTGAAATAA	ACCULATOL	MGAGAICTIA	TIACAMAGIG	MULTICIACA	2760
55		TTAATCTTGA					2820
55		CTTAATTTTC					
		TCATAAACTA					2880 2940
		TTGGCGTTTC					3000
60		AATTACTATA					3060
OO		TTGTCTTAGT					3120
`		GCCATAACCT					3180
		AGGCTTTTTA					3240
		AGAAAAGCTT					3300
65		TCTTTCAGGC					3360
UJ		TGAATTTATT					3420
		ACATTTCCAA					3480
		GTCTTCTACA					3540
		CTGAATAATG					3600
70		ACCAAAGGCA AAAAAAAAAA		ATTTACTTA	ATAAATA	LITIATGATG	3660
. •	Managaran	ANNANANA	AAAAAAAAA				

SEQ ID NO:194 BHB8 DNA sequence

SEQ ID NO:195 BHB8 Protein sequence

	Protein Accession	. 4-	none found	ı				
_	T TOTAL PROCESSION	1 W.	TRACE TOUTE	•				
5								
_	1	11	21	31	41	51		
	1	1	1	1	1	1		
	MLSGFLMSPS	TOHRAQYTPG	GKKLPWEASI	GAHTSRGRGS	DRERESRPEA	AGLLWDRAAA	60	
10			PRPPPAGQAP				120	
10			THKAVPKGTG				180	
			LLGDRPALSG				240	
			WLDAQGVWRI				300	
			RADKDGPRRL				360 420	•
15			RGFPSSPRGG APGGNRLMET				480	
1.			NNVYVNMPTN		-		540	
			RQIQSPFPHT			MILIAGITAĞ		
								•
••				. SEC	2 ID NO:196 CQA	5 DNA SEQUENCI	Ė	•
20	Nucleic Acid Acce	ession#:		AA088458	*			
			Co	ding sequence:		8	62-1995 (1	underlined sequences correspond to start and stop codons)
								•
	•	11	21	21	41	51		
25	1	11	1	31	1	7		•
22	GCCCTTGGAC		ACTGAAGGAG	TAGAATGGAG	CACGAGGACA	CTGACATGGA	60	
			GCAGGAGAAG				120	
			CCAGCAGCAG				180	
			CGCCGACTTT				240	
30	CGGCTACTGC	CCAAGGTACA	AGAGGTGGCC	CGGTGCCTGG	GGGAGCTGCT	GGCTGCAGCC	300	
			CCCGTCCTCC				360	
			GCAGCAGACC				420	
			GAAGAGTGAG				480	
35			TGAGGCCCGC				540 600	
<i>JJ</i>			CTTGTGGGCC				660	
			TEGECECCTT				720	
			CGCACCGAGC				780	
4.0			TGAGTCCGCA				840	
40	TGGACAGTGG	GGTACCCCTC	CATGAGTTAG	CGTCCCCCCG	TTTCCAGCGG	TGCCGCCCTG	900	
			GCACTGCCCA				960	
			GACGCGGGTC				1020	
			TCGGACGGAC				1080	
45			TGGCTGGGGA CTGGCTGCAG				1140 1200	•
7.7			AGACCCTGGG				1260	•
			CACAACATCC				1320	
			TAGGCAAAGC				1380	
50	CTGGGGTCCT	GCTCACCCCC	CTTTGCTCTC	ACGCCCAGCC	TGTCCCCAGG	TTTCAGCTGG	1440	
50			CAAGGAAAAC				1500	
			ACTCCCTCAG				1560	•
			GGCCCTGCTC				1620	•
			GCATCGATGG GCCTCCGAT				1680 1740	
55			TGGGGGGCGC				1800	
-			TGTCTCAGAG				1860	
			TGCTAACCTG				1920	
			GGTGTCCCAG				1980	
60			GGAGTGGGCT				2040	
60			TGCAGGTCCT				2100	
			GGTGGGCCAG					
			GGCCTCCCCA ACTGGACTGG					
			GCCCACATAG					
65			GAAAAACTGC					
•			TTTACAGCTT				2460	
			GCCCCGGCTG				2520	
			GCCCTAGGAC				2580	
70			ATCCGCGAGG				2640	
70			CCCGGAAATG				2700	
			AATCTGCCCC				2760	
			AAGGAAAAGG				2820	
			GCCAGGAGTT AAAAAGAAAG					
75			CAATACACTA				3000	
			ATCAGAGAGA					
			GAAACATGAA					
								

SEQ ID NO:197 LBG2 DNA SEQUENCE

54-2543 (start and stop codons are underlined) Coding sequence: 5 11 GCGGAACACC GGCCCGCCGT CGCGGCAGCT GCTTCACCCC TCTCTCTGCA GCC<u>ATG</u>GGGC 60 TCCCTCGTGG ACCTCTCGCG TCTCTCCTCC TTCTCCAGGT TTGCTGGCTG CAGTGCGCGG 120 CCTCCGAGCC GTGCCGGGCG GTCTTCAGGG AGGCTGAAGT GACCTTGGAG GCGGGAGGCG 180
CGGAGCAGGA GCCCGGCCAG GCGCTGGGA AAGTATTCAT GGGCTGCCCT GGGCAAGAGC 240
CAGCTCTGTT TAGCACTGAT AATGATGACT TCACTGTGCG GAATGGCGAG ACAGTCCAGG 300
AAAGAAGGTC ACTGAAGGAA AGGAATCCAT TGAAGATCTT CCCATCCAAA CGTATCTTAC 360 10 GAAGACACAA GAGAGATTGG GTGGTTGCTC CAATATCTGT CCCTGAAAAT GGCAAGGGTC 420
CCTTCCCCCA GAGACTGAAT CAGCTCAAGT CTAATAAAGA TAGAGACACC AAGATTTTCT 480 15 ACAGCATCAC GGGGCCGGGG GCAGACAGCC CCCCTGAGGG TGTCTTCGCT GTAGAGAAGG 540 AGACAGGCTG GTTGTTGTTG AATAAGCCAC TGGACCGGGA GGAGATTGCC AAGTATGAGC 600 TCTTTGGCCA CGCTGTGTCA GAGAATGGTG CCTCAGTGGA GGACCCCATG AACATCTCCA 660 TCATCGTGAC CGACCAGAAT GACCACAAGC CCAAGTTTAC CCAGGACACC TTCCGAGGGA 720 GTGTCTTAGA GGGAGTCCTA CCAGGTACTT CTGTGATGCA GGTGACAGCC ACAGATGAGG 780 20 ATGATGCCAT CTACACCTAC AATGGGGTGG TTGCTTACTC CATCCATAGC CAAGAACCAA 840 AGGACCCACA CGACCTCATG TTCACAATTC ACCGGAGCAC AGGCACCATC AGCGTCATCT 900 CCAGTGGCCT GGACCGGGAA AAAGTCCCTG AGTACACACT GACCATCCAG GCCACAGACA 960 TGGATGGGGA CGGCTCCACC ACCACGGCAG TGGCAGTAGT GAGATCCTT GATGCCAATG 1020
ACAATGCTCC CATGTTTGAC CCCCAGAAGT ACGAGGCCCA TGTGCCTGAG AATGCAGTGG 1080
GCCATGAGGT GCAGAGGCTG ACGGTCACTG ATCTGGACGC CCCCAACTCA CCAGCGTGGC 1140
GTGCCACCTA CCTTATCATG GGCGGTGACG ACGGGGACCA TTTTACCATC ACCACCCACC 1200
CTGAGAGCAA CCAGGGCATC CTGACAACCA GGAAGGGTTT GGATTTTGAG GCCAAAAACC 1260 25 AGCACACCCT GTACGTTGAA GTGACCAACG AGGCCCCTTT TGTGCTGAAG CTCCCAACCT 1320 CCACAGCCAC CATAGTGGTC CACGTGGAGG ATGTGAATGA GGCACCTGTG TTTGTCCCAC 1380 30 CCTCCAAAGT CGTTGAGGTC CAGGAGGGCA TCCCCACTGG GGAGCCTGTG TGTGTCTACA 1440 CTGCAGAAGA CCCTGACAAG GAGAATCAAA AGATCAGCTA CCGCATCCTG AGAGACCCAG 1500 CAGGGTGGCT AGCCATGGAC CCAGACAGTG GGCAGGTCAC AGCTGTGGGC ACCCTCGACC 1560 GTGAGGATGA GCAGTTTGTG AGGAACAACA TCTATGAAGT CATGGTCTTG GCCATGGACA 1620 ATGGAAGCCC TCCCACCACT GGCACGGGAA CCCTTCTGCT AACACTGATT GATGTCAACG 1680
ACCATGGCCC AGTCCCTGAG CCCCGTCAGA TCACCATCTG CAACCAAAGC CCTGTGCGCC 1740
ACGTGCTGAA CATCACGGAC AAGGACCTGT CTCCCCACAC CTCCCCTTTC CAGGCCCAGC 1800
TCACAGATGA CTCAGACATC TACTGGACGG CAGAGGTCAA CGAGGAAGGT GACACAGTGG 1860 35 TCTTGTCCCT GAAGAAGTTC CTGAAGCAGG ATACATATGA CGTGCACCTT TCTCTGTCTG 1920 ACCATGGCAA CAAAGAGCAG CTGACGGTGA TCAGGGCCAC TGTGTGCGAC TGCCATGGCC 1980 40 ATGTCGAAAC CTGCCCTGGA CCCTGGAAAG GAGGTTTCAT CCTCCCTGTG CTGGGGGCTG 2040 TCCTGGCTCT GCTGTTCCTC CTGCTGGTGC TGCTTTTGTT GGTGAGAAAG AAGCGGAAGA 2100 TCAAGGAGCC CCTCCTACTC CCAGAAGATG ACACCGTTGA CAACGTCTTC TACTATGGCG 2160 AAGAGGGGG TGCCGAAGAG GACCAGGACT ATGACATCAC CCAGCTCCAC CGAGGTCTGG 2220 AGGCCAGGCC GGAGGTGGTT CTCCGCAATG ACGTGGCACC AACCATCATC CCGACACCCA 2280 45 TGTACCGTCC TAGGCCAGCC AACCCAGATG AAATCGGCAA CTTTATAATT GAGAACCTGA 2340 AGGCGGCTAA CACAGACCCC ACAGCCCCGC CCTACGACAC CCTCTTGGTG TTCGACTATG 2400 AGGGCAGCGG CTCCGACGCC GCGTCCCTGA GCTCCCTCAC CTCCTCCGCC TCCGACCAAG 2460 ACCAAGATTA CGATTATCTG AACGAGTGGG GCAGCCGCTT CAAGAAGCTG GCAGACATGT 2520 ACGGTGGCGG GGAGGACGAC TAGGCGGCCT GCCTGCAGGG CTGGGGACCA AACGTCAGGC 2580 50 CACAGAGCAT CTCCAAGGGG TCTCAGTTCC CCCTTCAGCT GAGGACTTCG GAGCTTGTCA 2640 GGAAGTGGCC GTAGCAACTT GGCGGAGACA GGCTATGAGT CTGACGTTAG AGTGGTTGCT 2700 TCCTTAGCCT TTCAGGATGG AGGAATGTGG GCAGTTTGAC TTCAGCACTG AAAACCTCTC 2760 CACCTGGGCC AGGGTTGCCT CAGAGGCCAA GTTTCCAGAA GCCTCTTACC TGCCGTAAAA 2820 55 GAAGGGTGAG GACAATCGTG TATATGTACT AGAACTTTTT TATTAAAGAA A 60 SEQ ID NO: 198 LBG2 Protein sequence: CAA45177 Protein Accession #: 65 41 51 21 31 MGLPRGPLAS LLLLOVCWLO CAASEPCRAV FREAEVTLEA GGAEOEPGOA LGKVFMGCPG 60 OEPALFSTON DDFTVRNGET VQERRSLKER NPLKIFPSKR ILRRHKRDWV VAPISVPENG 120 70 KGPFPQRLNQ LKSNKDRDTK IFYSITGPGA DSPPEGVFAV EKETGWLLLN KPLDREEIAK 180 YELFGHAVSE NGASVEDPMN ISIIVTDOND HKPKFTODTF RGSVLEGVLP GTSVMQVTAT 240 DEDDAIYTYN GVVAYSIHSQ EPKDPHDLMF TIHRSTGTIS VISSGLDREK VPEYTLTIQA 300 TDMDGDGSTT TAVAVVEILD ANDNAPMFDP QKYEAHVPEN AVGHEVQRLT VTDLDAPNSP 360 AWRATYLIMG GDDGDHFTTT THPESNQGIL TTRKGLDFEA KNQHTLYVEV TNEAPFVLKL 420 75 PTSTATIVVH VEDVNEAPVF VPPSKVVEVQ EGIPTGEPVC VYTAEDPDKE NQKISYRILR 480 DPAGWLAMDP DSGQVTAVGT LDREDEQFVR NNIYEVMVLA MDNGSPPTTG TGTLLLTLID 540 VNDHGPVPEP RQITICNQSP VRHVLNITDK DLSPHTSPRQ AQLTDDSDIY WTAEVNEEGD 600 TVVLSLKKFL KQDTYDVHLS LSDHGNKEQL TVIRATVCDC HGHVETCPGP WKGGFILPVL 660

GAVLALLFIL LVLLLLVRKK RKIKEPLLLP EDDTRDNVFY YGEEGGGEED QDYDITQLHR 720

Nucleic Acid Accession #:

X63629

GLEARPEVVL RNDVAPTIIP TPMYRPRPAN PDEIGNFIIE NLKAANTDPT APPYDTLLVF 780 DYEGSGSDAA SLSSLTSSAS DQDQDYDYLN EWGSRFKKLA DMYGGGEDD

			•	0.00	a := 110 400 0mi		
5	Nucleic Acid Acce	ession #:	NM_012		O ID NO:199 ORE	DNA SEQUENCE	
	Coding sequence				ences correspond	to start and stop co	dons)
		•				•	
10	1	11	21	31	41	51	
10	(Macamana a a	TTTCTTTCTA	CCAMOTTON	mmommomoo.	CAAMCAAMCA	CTCTC A CTTAT	60
		TGGACTTTTT					120
		TTGTGATTGT					180
1.5		TGGTCATCGC					240
15		CTAATTTAGC					300 360
		CAGGCCCAGT				CGCCGTGGAG	420
		CAATCATGAG					480
00		TGCTTGTCTG					540
20		TCTGCAACAT					600
		TCTGGACAGT ACGTGTACGT					660 720
		GCCGGAGGAC					780
		TATGCTGGAC					840
25		GCGTGCAGCA					900
		CCATCATCTA					960
		GCTTCTCTCA GGAGTGACAC					1020 1080
		AAAGCACTTC					1140
30	GTCTTAGG						
	•						
	SEO ID NO.200	OBIS Protein segui	onar.				
	Protein Accession		NP_036	284			
35							
	1	11	21	31	41	51	
	NAME OF THE OWNER O	DFFYNRSNTD	UN ELDINAMICADA I	UTUI CUCTER	CI ETEPCNICI.		60
		NLAAADFFAG					120
40		IMRMRVHSNL					180
		wtvsnlmafl					240
		CWTPGLVVLL C FSQENPERR					300
	IOIMAAMIC	C 13QENTERO	r Skirs i v Lok	3D1G3Q1HD	SISQUATCAN	.313	
45				SE	Q ID NO:201 PAA	6 DNA SEQUENCE	
	Nucleic Acid Acc		AA569531		manand to stad a	nd cton ondono)	
	Coding sequence	.	1-304 (unuenn	ien sedne wes en	rrespond to start a	ila stob coodis)	
50	1	11	21	31	41	51	
3 0	30030000303	GTTACTCATT	# CCCC	CACTTCATC	יייים אייים אייים	 መለአመመአመሮመው	60
		CCAACAGGAG					120
	GATGAAACCT	CTGGACTAAG	CACACATCTT	CCTTGTTTAT	CTCTCTCAAA	GGAGTGTGGA	180
55	GTGCTTCATC	TGGACATCCA	CGGGAAGAAG	GAAGACATGA	GAATCACCCA	ACAGTCTTCC	240
.33	CAGCTATACC	TGTGGGACAT GGAACAAACG	GGGTGGTTTT	ACAATATITA	AGAACCIGIG	GATGAGCCTC	300 360
	ATACCCAGAG	AAAGTTCAAA	GATCCAAGAG	GAGAGACGAA	GAGAGTCTGC	AGGACCAAAC	420
	CTCTCTTCAT	TCTGGTTTGT	GGGGAATGCT	GGAAGAGGAG	ACAGGCCCCA	GATTTGGGCA	480
60	GGAAGTAAAC	AGTTTTCAGG	CTGAGGCCAA	TCTGAGCAGG	AACATTCCAA	TATTTCTTCA	540
60	GCTACGTTGT	CCCAGCACTT CAATGGTGAA	CACTGGTTAA	CCTTTTATGT	CCACCATTIG	CTACCATATC	600 660
	CACCTACTICE	CTTGCATGTT	CTTCATTATT	TTCTCAACAC	TCAGCATATT	TGCAATATGT	720
		CACAGACAAG					780
<i>CE</i>		GAACAATGAA					840
65	GGTCCTTTTT	CACTCTGATA	TGCTGCAATT	AAAAAGCCAT	TTCTAAGACT	GT	
		D1400					
70	SEQ ID NO:202 Protein Accession	<u>PAA6 Protein seq</u> i n #:	<u>sence:</u> none found				
, ,	. 10000170000310		INVINO INVIIN				
	1	11	21	31	41	51	
	 www.cvcppp	 	U UCEANDDWY	 	L DETSCLETH	l L PCLSLSKECG	60
75						K RVTETILRDF	
		E ERRRESAGP					

SEQ ID NO:203 PAB2 DNA SEQUENCE

				SEC	ID NO:203 PAB	DNA SEQUENCE	
	Nucleic Acid Acce Coding sequence		XM_050197 310-1971 (und	erlined sequences	correspond to sta	rt and stop codons)	
5	1	11	21 	31 	41	51 1	
	TCACACGTGC	CAAGGGGCTG	GCTCAGCGGA	ACCAGCCTGC	ACGCGCTGGC	TCCGGGTGAC	60
	AGCCGCGCGC	CTCGGCCAGG	ATCTGAGTGA	TGAGACGTGT	CCCCACTGAG	GTGCCCCACA	120
10			GCTGAGAAGC				180
10			GCAGTTGGCG				240
			GTTCTGGAGT				300
			GCTGTGGGTG AACCTTTGGC				360 420
			GGAAGTGGGG				480
15			CCTGGTCTGT				540
			CCCCCCCCC				600
			AAGGCCGGC				660
			GCTCATCCTG				720
20			GGCCCTGCTC				780
20			TGCCTTCATG				840 900
			CCTCATCTTC				960
			CCCCACCGAG				1020
			CCGGGCCCGC				1080
25			CTGCCGCATG				1140
			ACTCATGACC				1200
			GCCCAGAGCT				1260 1320
			CAGCCTGGGG GCTGGTGCAG				1380
30			GGCTGCCGGT				1440
			CACCGGGTTC				1500
•			CCGGGAGAAG				1560
			GGACAGCCTG				1620
35			ACACGTGGGT				1680 1740
23			TGCCTGTGAT GGGCCGGGGC				1800
			GGCCCCATCC				1860
			GGTGTCTGCC				1920
40	GCTACACAGG	TAGTATTTGA	CAAGAGCGAC	TTGGCCAAAT	ACTCAGCGTA	GAAAACTTCC	1980
40			CTGCCTCACT				2040
			GCCAGTTTCT				2100
			TGCGTAGCTG TGCCTGACTG				2160 2220
			GGCTCCATGC				2280
45			GCTAGCCTCC				2340
	GGGAGCTGAA	TAAACTCAGT	CACCTGGTTT	CCCATCTCTA	AGCCCCTTAA	CCTGCAGCTT	2400
			TGGGAGTTTC				2460
			GGGGAAGAGT				2520
50	CCTCAGCCCC	ACAGGCACTG	GTCTTTTTTG	CINGANICCA	CCCCCCCCT	CTTTACCCTT	2580
JU .	TT				•		
	SEO ID NO:204 F	PAB2 Protein segu	ence:				
سر س	Protein Accession		XP_050197				
55							
		••	23	31	41	E1	
	1	11	21	31 	41 	51 	
	I MVORLWVSRI	LRHRKAOLLI	VNLLTFGLEV	CLAAGITYVI	PLLLEVGVE	E KFMTMVLGIG	60
60						GLLCPDPRPL	120
	ELALLILGVO	LLDFCGQVCF	TPLEALLSDI	FRDPDHCRQ#	YSVYAFMISI	L GGCLGYLLPA	180
						glsapslsph	240
						L FYTDFVGEGL 3 TRAVYLASVA	
65						P LPKYRGDTGG	420
						/ RVVVGEPTEA	
						L GLVAIYFATQ	
	VVFDKSDLAF	YSA					
70							
70	Mindala Aald Aaa	anton de	AK002126	SEC	Q ID NO:205 PAJ:	3 DNA SEQUENCE	
	Nucleic Acid Acce Coding sequence			ined sequences co	recent to etact	lenchon code bas	
	county sequence	•	1-1000 (UHUEH	anca acquerices CC	mosporiu to stati t	min acob cocoria)	
<i>7</i> 5	1	11	21	31	41	51 .	
	1	1	ŀ	ı	i	1	
						F GGTGCTCCTC	60
						A CGAGGAGCAG	120
80						C CGTCCTTCAG F CGCACAGCTC	180 240
	on a coord						
					20	Z.	

WO 02/30268

	AAGGAGGAGC TGCAG GCTGCTGGCC TGGGT TTCCTGCACT CGCAG	CTGGA CAGGAGCCC GTGGA CAAGGCAGA	CCAGAGAAAA GTGAATGCTG	CCCAGGCCGA GCGTCAAGCT	CCTCCTGGCC GGCCACAGAG	300 360 420
5	TATGCAGCAG TGCCT CTTACCCGCC ACCCC GCCATTGAAT CAGCC CCTTACACGG CCTCT TTGTATGAGC TCACC	GAGGA GAAGCCTGTV TTGGA GACCCTGAA GATTT CATAGAAGG TTCAA AGGGGACCA	AGGAAGGACA AATCCTGCAG ATCTACCGAA AAACACGAAT	AGCGGGATGA AGAACAGCCC CAGAAAGGGA TCAAACGGCT	GTTGGTGGAA CAATCACCGT CAAAGGGACA CATCTTATTT	480 540 600 660 720
10	CGACCATTCG GCCCC ATCAATGTTA TCGTG TTCAGGGAGA TGTGC AAGAAGAAAT TAAAT AGGAACTTTA CCTTC GGAGCCCGCT TCTGG	CCTCT AGCAAAAAG CATTGA GCAGGATGG CGAAGT CAAAGGAAT CATCCA GCTGAATGG	G GTGGACAAGT G AGAGTCCATC A CTTGAAAACA A GAATTTCTC	TCCGGCAGTT TCACTGTTGT CTTCCAAAGC GGGGAAAGGG	CATGCAGAAT TTACTTTGGG TGCCAACTTC ACTTGATGTT	780 840 900 960 1020 1080
15	TTCACATCIG AATTC TATCCAGTIC TTTTC CCTCCCTIGG AACAG TTTGGGATGA CGTGT ATCAAAGGCT GGGGG	CTCAA TACGTGTAG CAGTCA GTACAATCC CAGCT GGTCATAAA CAGTA TCGGTCAGA	G CTGAATACAC T GGCATAATAT G AAGGAAACTG C TTCATCAATA	AGCCAGGGAA ACGGCCACCA GATTTTGGAG TAGGTGGGTT	GAAGGTATTT TGATGCAGTC AGACTTTGGA TGATCTGGAC	1140 1200 1260 1320 1380
20	ATAGTGGTAC GGACG GACGAGCTGA CCCCC TCCCACGGCC AGCTG CAGAAACAGA AGACA	CCTGT GCGAGGACTY GAGCA GTACAAGATY GGCAT GCTGGTGTTY	TTCCACCTCT TGCATGCAGT AGGCACGAGA	GGCATGAGAA CCAAGGCCAT	GCGCTGCATG GAACGAGGCA	1440 1500 1560
25	SEQ ID NO:206 PAJ3 Prote Protein Accession #:	NP_060841				
30	1 11 MVRRGLLAWI SRVVVL EWEEQHRNYV SSLKRQ FLHSQVDKAE VNAGVK AIESALETIN NPAENS	IAQL KEELQERSEQ LATE YAAVPFDSFT	ACTPKGDEEQ LRNGQYQASD LQKVYQLETG	 LALPRANSPT (AAGLGLDRSP : LTRHPEEKPV :	PEKTQADLLA RKDKRDELVE	60 120 180 240
35	RPFGPIMKVK NEKLNM KEEINEVKGI LENTSK FTSEFLNTCR LNTQPG FGMTCQYRSD FINIGG DELTPEQYKM CMQSI	AANTL INVIVPLAKR CAANF RNFTFIQLNG CKKVF YPVLFSQYNP CFDLD IKGWGGEDVH	VDKFRQFMQN EFSRGKGLDV GIIYGHHDAV LYRKYLHSNL	FREMCIEQDG GARFWKGSNV PPLEQQLVIK IVVRTFVRGL	RVHLTVVYFG LLFFCDVDIY KETGFWRDFG FHLWHEKRCM	300 360 420 480
40	DECIFEQ I KM CMQSI	MANNEY SUOCION	CALKHEIEVHT	ICCIADAD AM	ZK1	
	Nucleic Acid Accession #: Coding sequence:		SEQ ned sequences cor	ID NO:207 PAJ5 respond to start ar		
45						
	Coding sequence:	1-2712 (underl 21 	ned sequences cor	respond to start at	nd stop codons) 51	60
45 50	Coding sequence: 1 11 ATGATTCCTG TATTG ATTCTCCAAG CTGAT TTTCATGGCT GGAAT TCTCAGTTTA AAAAT ATGCATCAGT TTGAT	1-2712 (under 1 21	31 AGTGAATTAC AACAAATGTG GAACATGAGTC CTTCTGGCTT	41 CAGTCAGTGA AAGTTAGTCA CACTGTGGAA CTGCAGTCAT TACTTATCGT	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA	60 120 180 240 300
50	1 11	1-2712 (under 21	31 AGTGAATTAC AACAAATGTG GAAGATGAGCTT CTCTTGGCTA TCTCTTGAAG TTGGACCATA GGATAGAGTTC GATAGAGTTC AGCTTGAAG ATTGGACATAC TAGGACATAC AGTTGAAGAGTTC AGCTTGAAGAGTTC AGCTTGAAGAGTTC AGCTTGAAGAGTTC AGCTTGAAGAGTTC AGCTTGAAGAGTTC	41 CAGTCAGTGA AAGTTAGTCA CACTGTGGAA CTGCAGTCAT TACTTATCGT AATTGAGTAA CACTTGCCCG CTGCTGACTTGCCCG CTGCTGACAT TTGCAGTCAT TTGCATCGAG	51 51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA ACTTGTGCA AGACTTGTTCA AGACTTGTTT ACGCTTGTTT ACGCTTGTTT ACGCTTGTTT AAGTAACATT	120 180 240 300 360 420 480 540 600
50	1 11	1-2712 (under 21	31 AGTGAATTAC AACAAATGTG GAAGATGAGC TTCTGGCTA ACTCTTGAAG TTGGAGCATA GATAGAGTTC AGCTTGACAG AATGAGAGC AATGAGAAG AAACAACTTT CTGGAAAAG AAACAACTTT CTGGGAAAAG CCTGAAGGTC	41 CAGTCAGTGA AAGTTAGTCA CACTGTGGAA CTGCAGTCAT TACTTATCGT AATTGAGTAA CACTTGCCCG CTGCTGACTT GTGAGACAAC TTGCATCAT GTGAGACAAC GTGTTGTCAT CAGAAGAGGC CCTTTTTACT ATTACCTGGA TCCCCATTGT	51 STAGGCGAGCC GAAGTATATT CAGTGTTTACAGTT ACTGTGCCA AGACTTGGTT ACGCTTGTTT ACGCTTGTTT ACGCTTGTTT CCCTTGTTCT CCCTTGTTCT CCCTTGTTCT AGGACAGGA ACCAAAAACC CTTTGGTAACAT GGTCACAGTG	120 180 240 300 360 420 480 540 660 720 780 840 900
50	1 11	1-2712 (under 21 IACATC ARABARAGO CTTCA GRATGGTCT GRATT TGATATAGT CCCCT TATTATAGT CCCCT TATTATAGT TATCG TCAGARARA ETGCG TGARGGARAI TATCG TCAGTAGAGT CCAGC AGCTGCAGT CTGGT CAGATGTGGC CTGGT CAGATGTGGC TTGGT CAGATGTGG GGTGT AGCAGCATT GGTTAT GAGAAGAT GGTTAT GAGAATGGT GGTTAT CAGATATTT CAATT TGGGGAAGT CAATT TGGGGAAGT CAATT TGGGGAAGT AGCAG AATTGTTGAG	31 AGTGAATTAC AACAAATGTG GAAGATGAGC CTTCTGGCAA TCTCTTGAAG TCTCTGAAG TCTCTGAAGTTC AGCTTGAAGGATC AAGCAAAAGG AATGAAGATC AAAGCAAAGG AAACAACTTT CTGGAAAAGG CCTGAAGGTC AAGAAAAGGG ATTTCTTCAG ACTTCAGATG ATTTCTTCAG ACTTCAGATG	41 CAGTCAGTGA AAGTTAGTCA CACTGTGGAG CACTTGTGGAG AATTGAGTAA CACTTGCCG CTGCTGACTT GTGAGACAAC TTGCATCAG GTGTTGTCAT CAGAAGAGGC CCTTTTACTC ATATCCTGA ATATCCTGA ATACCTGAA TCCCCATTGT CCATTGTGAA ATAAAACTGG GTCTGCATGC GTCTGCATGT TGTGCAATGA	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA TGTTACAGTT ACGCTTGTTCT ACGCTTGTTCT ACGAACAGCA ACACAAAAACC CTTTGGTATA AATGTTTACT GGTCACAGTG AAAGCTGCCT AAACACT GGTCACAGT AAAGCTTGCTT TCATGGACAGT TCATGGTTACT TCATGGATTACT TCATGGATTACT TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATTC	120 180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200
50 55 60	1 11	1-2712 (under 21	31 AGTGAATTAC AACAAATGTG GAAGATGAGC TTTCTGGCTT ACTGTGGACAT TTGGACCATA TCTCTTGAGC TTGGACATGAGGTC AAGCAAAGG AATGAGGTC AAGAAAAGG ATTCTTCAGGT ATTCTTGAG ATTCTTGAG ATTCTTGAG ATTCTTGAG ATTCTTCAG ACTTCAGATG ACTTCAGATAG ACCCAAACAC ACCCAACAC ATTAAGTACT AGAGATGTGT	41 CAGTCAGTGA AAGTTAGTCA CAGTGAGTCAT CAGTGAGTCAT TACTTATCGT AATTGAGTAA CACTTGCCGG CTGCTGACTT GTGAGACAAC CTGCAGTCAT TCCATTGTCAT CAGAAGAGGC CCTTTTACTC ATATCCTGA ATAACTGG GTCTCACATGT TCCATTGT ATATCCTGAT ATAAACTGG GTCACATGA TAATTGCTCT CTGAATCACATCA TAATTGCTCT CTGAATCACATCA ACCAACAAGA ACCAACAAGA ACCAACAAGA	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA TGTTACAGTT ACTTGTCCA AGACTTGTTT ACGTTGTTC AAGTAACATT TGGAACAGGA ACACAGAACAC CTTTGGTATA AATGTTTACT GGTCACAGTG TCATGGTAC TCATGGTAC TCATGGTAC TCATGGATC TCAGAGCACA TTTTAGCTCT ACCAGAGCAAA GAAGCACCC	120 180 240 300 360 420 480 660 720 840 900 900 1020 1080 1140 1260 1320 1380 1500
50 55 60 65	1 11	1-2712 (under 21 ACATC AAAAAAAGC: CTTCA GAATGGTCT: GAGTT TGATATTAGT CCCCT TATTATGCTC GATCC CGTCAGTATI TATCG TTCAGAAAAA GTCG TGAAGGAAAA TGCCT TGATGAGGTC CAGCC AGCTGCAACT CTGGT CAGATGTGGC GGGGA GGTTTTTAAG ATGGA CCTCTTAGGE TTGGT TGGCTGGTT: GCTGT AGCAGCAAT GCTGT AGCAGCAAT GTTAC TCACATATTT CAATT TGGGGAGGA ATGGG GAAGCCAACA CTTCA ACAAGACTAC GCTGT TAAGTGTGTI CCTTCA ACAAGACTAC GCTTA CGAACAAGTT CCTTCA CAGACAAGTT CTTAC TCAGCAGCAC CTCAG AGTTCTTCCT GTGGG AATCATTGAT TCAGG AGTTCTACAT ATGGG AATCATTAAT TCAGG AGTTCTACACAGCAC CTCAG AGTTCTACACAGCAC CTCAG AGTTCTACACACACT CTGGGATTCAACACT CTGGGATTCAACACACT CTGGGATTCAACACACT CTGGGATTCAACACACT CTGGGATTCAGCACACACC CTCAG AGTTCTACACACACC CTCAG AGTTCTACACACC CTCAG AGTTCTACACC CTCAGCAGCACC CTCAG AGTTCTACACT CTGGGATTCAACT ATGGA TGTTCAGCACACC CTCAG AGTTCTACCACC CTCAG AGTTCTACCACC CTCAG AGTTCTACCACC CTCAG AGTTCTACACCACC CTCAG AGTTCTACCACCACC CTCAG AGTTCTACACCACC CTCAG AGTTCTACACCACC CTCAG AGTTCACCACC CTCAG AGTTCTACACCACC CTCAG AGTTCACACCACC CTCAG AGTTCTACACCACC CTCAG AGTTCACCACC CTCAG AGTTCACCACC CTCAG AGTTCACCACC CTCACCACCACCACC CTCAG AGTTCACCACC CTCAG AGTTCACCACC CTCAG AGTTCACCACCACC CTCAG AGTTCACACC CTCAG AGTTCACCACC CTCAG AGTTCACCACC CTCAGCACCACC CTCAG AGTTCACCACC CTCAG AGTTCACC CT	31 AGTGAATTAC AACAAATGTG GAAGATGAGC CTTCTGAGG TTCTGAGGACATAC AATGAGATTAC ACTGTGACATA GATAGAGTTC AGTGAGATT CAGGAGAAAG AATGAGATC AAGAAAAG AATGAGATC AAGAAAAG ATGATCAAA CTTTCAGATG AAGAAAAGG ATTGTTGATG CTGGAAAAG ATTGTTGATG ATTATTGATG CACCGAACAC ATTAAGTGT TATCACAAA AAAAATGATT TTGGCTTCTG CCACCTAGAA AAAAATGATTA TTTCCAAAA TTTTCCAAAA	41 CAGTCAGTGA AAGTTAGTCA CACTGTGGAA CACTGTGGAA CACTGTGGCAT TACTTATCGT AATTGAGTAA CACTGCCGC CTGCTGACTT GTGAGACAC CTGCATCGAC CTGCATCGAC CTGTGTGAT CAGAAGAGGC CTTTTACTC ATATCCTGA ATAAACTGG GTCTGCATGC GTGATGTTGT CATTGCATCA ATAAACTGG GTCTGCATGC GTGATGTTGT CAGAGAGACAC GTGATGTTGT CTGAATACCC AGCAGGACAG GTCTGCAACAC GTCATCACACAAGA GTCCTGAACT CTGGAGATTC CTTGCAGTC CTTCCAGTC TAGTACCAA	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA TGTTACAGTT ACGTTGTCA AGACTTGTTCT AAGTACATT GCCATAGTATATT GCCATAGTATAT TGGAACAGA ACCAAAAACC CTTTGGTATA AATGTTTACT GGTCACAGTG AAAGCTGCCT AACACTGACG TGAGGTTACT TCCAGAGCATA TCCAGAGCATA CAGAGCATA CAGAGCATA CAGAGCATA CAGAGCATA CAGAGCAGC GGGACAGCTG AGAGCAGCTG AGTCTCAGGA GGTTGCAGTA	120 180 240 300 360 420 480 660 720 1080 1140 1260 1320 1380 1440 1560 1560 1620 1680 1740 1800

5 10 15	CTAGTGGATC AATAACATTI ATCTCATTAGT ATCTAATATTI GATGTCATTC CTTAAAATAC GAGCTACGAC TTTTTTGACI GGACTCTGC CTAGTTATTT GATCTTTTTG	ATGATTTTC: A AAAATTTCA; A TAATGATGATGG C GTAAACCTCC C TTGTTTCATT A TGTTCATTCATT A TGTTCAATGGATGG A GTAATAGAATG A GTAATAGAATG T ACTTTCTTTGGG A GGAGCAGGGG A GGAGCAGGGG	A ARCATARTO TAGATTOCAC TAGATTTCCAC GAACTITCCAC TAGCACCACC TAGCACCACC ANTARTCATT TACACCACCAC ACTACACTACCACCACCACCACCACCACCACCACCACCAC	TCTGCAATCG CTGAGCACCA CTGAGCACCACACACACACACACACACACACACACACACA	AAGAGGGTAI GTATAGCAGG ATGCCATGCI GAGTAGAACC TTTTGACTAG TGACCTTCAG CCAAGTCTCAG CCAAGTCTCAG CTAGGAGCCC TAGTGGCAGG	AGACATGATC AGGGATTTAT AGATTTACTTTA AGATTTAGTG AGTGGATAAA AAACTTGATA CTTCTGGCGT ATGCTTTGTG GGTTTGAGATT GGGACAATTA AAGCATACTG AATTATAAAG ATCATCTTTT	1980 2040 2100 2160 2220 2340 2400 2460 2520 2580 2640 2700
	SEQ ID NO:208 Protein Accession	PAJ5 Protein sequ n #:	ence; AAF27813				
oo	1	11	21	31	41	51	
20		1	1	1	1		
05	SQFKNPLIML PECHCVREGK KVTAPQPAAT	LLASAVISVL LEHTLARDLV NGDLASRSNI	ILQADLQNGL MHQFDDAVSI PGDTVCLSVG AFMGTLVRCG	TVAILIVVTV DRVPADLRLF KAKGVVIGTG	AFVQEYRSEK EAVDLSIDES ENSEFGEVFK	SLEELSKLVP SLTGETTPCS MMQAEEAPKT	60 120 180 240
25			IGIIMLVGWL				300
			IVETLGCCNV				360
			YNPAVSRIVE EQKWMAVKCV				420 480
•			MGSAGLRVLA				540
30			AVAIASRLGL				600
			SVVAMTGDGV				660
	LVDDDFQTIM	SAIEEGKGIY	NNIKNFVRFQ	LSTSIAALTL	ISLATLMNFP	NPLNAMQILW	720
	INIIMDGPPA	QSLGVEPVDK	DVIRKPPRNW	KDSILTKNLI	LKILVSSIII	VCGTLFVFWR	780
25			FFDMFNALSS				840
35	LVIYFPPLQK LEV	VFQTESLSIL	DLLFLLGLTS	SVCIVAEIIK	KVERSREKIQ	KHVSSTSSSF	900
40	Nucleic Acid Acco Coding sequence		N62096 1-1284			IANT 1 DNA SEQUE o start and stop code	
	•	11	21	31	41	51	
	1						
	1 	î	1		Ī	1	
45	ATGGGCTACC] AGAGGCAGGA	 GCCTGTCATC		 GAGGATTGCC		. 60
45	ATGGGCTACC AAGCAAGCTG	 AGAGGCAGGA GGTTTCCTTT	GGGAATATTG	CTTTTATTCT	 GAGGATTGCC GGGTTTCATA	TGTTACAGAC	120
45	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG	 AGAGGCAGGA GGTTTCCTTT TTTTATTGAT	GGGAATATTG AAAAGGAGGG	CTTTTATTCT GCCCTCTCTG	 GAGGATTGCC GGGTTTCATA GAACAGATAC	TGTTACAGAC CTACCAGTCT	120 180
45	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTGGTCAATA	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG	GGGAATATTG AAAAGGAGGG CTTTCCAGGG	CTTTTATTCT GCCCTCTCTG TATCTGCTCC	 GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT	TGTTACAGAC CTACCAGTCT TCAGTTTTTG	120 180 240
	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTGGTCAATA TATCCTTTTA	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT	GGGAATATTG AAAAGGAGGG CTTTCCAGGG AAGTTACAAT	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTG	 GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT	120 180 240 300
45 50	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTGGTCAATA TATCCTTTTA TTTCAAAGAA	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT TCCCAGGAGT	GGGAATATTG AAAAGGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA	 GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT	120 180 240 300 360
	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTGGTCAATA TATCCTTTTA TTTCAAAGAA GGACTTTCCA	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT TCCCAGGAGT CAGTTACCTT	GGGAATATTG AAAAGGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TTATCCTTGT	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT	120 180 240 300
	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTGGTCAATT TATCCTTTTA TATCCTTTAAAGAA GGACTTTCCA GGAAAGGTCT	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT TAACTTTCGG TAGCAATGAT TCCCAGGAGT CAGTTACCTT CCCTCATCTC	GGGAATATTG AAAAGGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TTATCCTTGT ACAACTCTGA	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGGCA	120 180 240 300 360 420
50	ATGGGCTACC ARGCAGGTG TTTTCCCTTG TTGGTCAATA TATCCTTTTA TTTCAAAGAA GGAACTTTCCA GGAAAGGTCT AGGGCAATTT	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT TCCCAGGAGT CAGTTACCTT CCCTCATCTC CACTGGGTCC	GGGAATATTG AAAAGGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TTATCCTTGT ACAACTCTGA AAAACAGAAG	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAGCTT TGTAATGGCA ATTTGCAAAG	120 180 240 300 360 420 480
	ATGGCTACC AAGCAAGCTG TTTTCCCTTG TTGGTCAATA TATCCTTTTAA TTTCAAAGAA GGACTTTCCA GGAAAGGTCT AGGGCAATTT CCCAATGCCA TTCTTAGTTT	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT TCCCAGGAGT CCATTACCTT CCCTCATCTC CACTGGGTCC TTCAAGCGGT ACAGTTCTCTCT	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG AGAAGAACCC	CTTTTATTCT GCCCTCTCTG TATCTGCTCC AACGTGTTTA TTATCCTTGT ACAACTCTGA AAAACAGAA TCTTTTGCAT TATCGTAGT	GAGGATTGCC GAGCATAC GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TATTTTGCCA	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGGCA ATTTCCAAAG CCATAACTCC CCCTTATCCAT	120 180 240 300 360 420 480 540 600 660
50	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTGGTCAATA TATCCTTTTAA TTTCAAAGAA GGACTTTCCA GGAAAGGTCT AGGGCAATTT CCCAATGCCA TTCTTAGTTT ATGTCCATCC	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT TCCCAGGAGT CCCTCATCTC CACTGGGTCC TTCAAGCGGT ACAGTTCTCTGG TACAGTTCTCTGGTTCC TGATTCTCTGGTTCC	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CACATACCA CAGAGGATCAC CAGAGGATCAC CAGAGGACCC CATTTATCTGT	CTTTTATTCT GCCCTCTCTG TATCTGCTCG AACATAGCTG AACATCTGT ACAACTCTGA AAAACAGAAC TCTTTTGCAT ACAGTAGCTR ATATTCTTTG	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTTGCA AGTGGTCCCC	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGGCA ATTTCCAAAG CCATAACTCC CCCTTATCCAT ATACTTCC	120 180 240 300 360 420 480 540 600 660 720
50	ATGGGCTACC ARGCARGCTG TTTTCCCTTG TTGGTCAATA TATCCTTTTA TATCCATTTCAAAGAA GGACTTTCCA GGAAAGGTCT AGGGCAATTT CCCAATGCCA TTCTTAGTT ATGTCCATCC TTTACTGGCT	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT TCCCAGGAGT CCGTTACCTT CACTGGTCC TTCAAGCGGT TACAGTCTCT TGATTTCTCT TGATTTCTCT TGACCCAAGC	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG AGAGAACC ATTLATCTGG GGACTTATTI	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTCT AACGTGTTTA TTATCCTTGT ACAACTCGA AAAACAGAAG TCTTTTGCAT ACAGTAGCTT ACATTCTTTC GAAAATTCTTTC GAAAATTCCTTC GAAAATTCCT	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGAT TTATTTGCCA AGTGGTCCCC CTACATGTGG GCAGAAATGT	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGGCA ATTTCCAAAG CCATAACTCC CCTTATCCAT ATACTGACA TGACCTGGTA	120 180 240 300 360 420 480 540 600 720 780
50	ATGGCTACC AAGCAAGCTG TTTTCCCTTG TTGGTCAATA TATCCTTTTCA TTTCAAGAA GGACTTTCCA GGAAAGGTCT CCCAATGCCA TTCTTAGTTT ATGTCCATCC TTTACTGGCT	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT CCCTCATCTC CACTGGGTCC TTCAAGCGGT ACAGTTCTCT ACAGTTCTCT TCACCCAAGC AGATTTTCTT	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCAT TACAGGTTTA ACACATACCA CGGGGTTATG AGAAGAACCC ATTTATCTCT GGGCTTATTCTCT GGGCTTATTTA	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TTATCCTTGT ACAACTCTGA AAACAGAAG TCTTTTGCAT ACAGTAGCTA ATATTCTTTGC GAAAATTACT GAAAATTACT GAAAATTACT	GAGGATTGCC GAGGATTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCA ACCGAAATAT TTCTTGGAAT TCTTTGGAT ACGCTTGGGT TATTTTGCA AGTGGTCCCC CTACATGTGC GCAGAAATGJ CATACCCTA	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATACTTGACA TGACCTGGTA TGGAATGCTTT	120 180 240 300 360 420 480 540 600 660 720 780 840
50 55	ATGGCTACC AAGCAAGCTG TTTTCCCTTG TTGGTCAATA TATCCTTTTA TTTCAAAGAA GGACTTTCCA GGAAAGGTCT AGGCAATTT CCCAATGCCA TTCTTAGTGCT ATGTCCATCGCT ACATTTGGAA	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT TCCCAGGACT CCCTCATCTC CACTGGGTCC TTCAAGCGGT ACAGTTCTCT TCACCAAGCGGT TACACCAAGCGGT TCACCCAAGCGGT ACAGTTCTCTG ACAGTTCTCTG ACAGTTCTTGTTACCAAGCGGT AGATTTTGTTAG AGGTAATTGCT	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG AGAAGAACCC ATTTATCTCT ATGGCTTATTTTTTTTTT	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ARACTGGTA ACACTCGTA ACAACTCGTA ACACACAGA TCTTTTGCAT ACAGTAGCTA ACAGTAGCTA GGAAATTACT GGAAATTACT GGTCATTTTGCAT TTTGGTGGGA	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT TTCTTGGAAT TTATTTGCCA AGTGGTCCCC CTACATGTG GCAGAAATAC CATACCCTAT AGTCTCATC	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGCCA ATTTCCAAAG CCATAACTCC CCTTATCCAT ATACTTGACA ATACTTGACA TGACCTGGTA TGGAATGCTTT CGGAATGCTTT CGGATTCCAC	120 180 240 300 360 420 480 540 660 720 780 840 900
50	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGGTCAATA TATCCTTTTAA TATCAAAGAA GGACTTTCCA GGAAAGGTCT AGGGCAATTT CCCAATGCCA TTCTTACATGTT ATGTCCATCC TTTACTGGCT ACATTTGGAT ACATTTGGAT ACATTTGGAT ACATTTGGAT ATGTCAAGACA ATGTTGTATA	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT CCCTCATCTC CACTGGGTCC TTCAACCGGT ACAGTTCTCTG TACACCGGT TACACCGGT TACACCGGT TACACCCAAGG AGATTTCTGT AGATTTCTGT AGATTTTCTGT AGATTTTTGT AGATTACTGT AGATTTTTGT AGATTTTTGT AGATTACTGT AGATTTTTGT AGATTACTGT AGATTACTGT	GGGAATATTG AAAAGAAGG CTTTOCAGG AAGTTACAAT TGATCCTGAA TACTCTGCT TACAGGTTTA ACACATACCA CGGGGTTATG AGAAGACCC ATTTATCTGG GGACTTATTG TGGGTTACT CGATGTGTTA CGATGTGTTA	CTTTTATTCT GCCCTCTCTT TATCTGCTC ATAATAGCTG AACTGTTTA ACACTCTGT ACACTCTGA AAACAGAAG TCTTTTGCAT ACAGTAGCTA ATATTCTTTG GAAAATTACT GTCATTTTGG TTTGGTGGGA GCCACCCTTC	GAGGATTGCC GGGTTTCATA GAACAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTGCA AGTGGTCCCC CTACATGTG CTACATGTG ATTCTTCATA TTTTTCATAT TTTTTTCATAT TTTTTTTT	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATACTTGACA TGACCTGGTA TGGAATGCTTT	120 180 240 300 360 420 480 540 600 660 720 780 840
50 55	ATGGCTACC ARCAGCTG TTTTCCTTG TTTGCTCATA TATCCTTTTA TATCCTTTTA GGAATGCTA GGAATGCTA TCCAATGCCA TCTTACTGCT TTTTTATTTTA	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT TCCCAGGAGT CCGTTACCTT CACTGGGTCC TTCAAGCGGT TAGCATTTCTCT TAGCTTTCTCT TAGCTTTCTCT TAGCTTTCTCT TAGCTAGTACT AGGTATTCTCT AGGTATTCTCT AGGTATTGTTA AGGTATTGTTA AGGTATTGTTA CAGTGATGGT TTCTAGAACT	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG AGAAGAACCC ATTATCTGG GGACTTATTTA TGGTGTCACT CAATGACTTT CATCACTGTT CATCACTGTT CAATGACTCT	CTTTTATTCT GCCCTCTCTG GCCCTCTCTG ATATAGCTG AACGTGTTTA TTATCCTTGT ACACTCTGA AAAACAGAAG TCTTTTGCAT ACAGTAGCTA ATATTCTTTG GAAAATTACT GTCATTTTGAT TTTTGGTGGGT GCCACGCTTG CTCTGTGCAA	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA TCTTTGGAAT TCTTGGAAT ACGCTTGGGT TTATTTGCCA AGTGGTCCCC CTACATGTGC CCTACATGTGC CATACCCTAA ATCTTTCATC TGTCATTGCCA CTCCCTCAT	TGTTACAGAC CTACCAGTCT TCAGCTATTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATACTGCAA TGACACTGGTA TGACATGGTA TGACATGGTA GGATTGCTCC GGTTTTCCAC GGTTTCCACT GATTGATTGC	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
50 55	ATGGCTACC AAGCAAGCTG TTTTCCCTTG TTGGTCAATA TATCCTTTTAA TTTCAAAGAA GGACTTTCCA GGAAAGGTCT AGGCAATTT CCCAATGCCA TTCTTAGTTT ATGTCCATCC TTTACTGGCT ACTTTGGAAAGAA ATTGTTGTAC CTCGGGATAC CTCGGGATAC CTCTTGTGTCC TTTGTGTCC	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT CCCAGGAGT CCATTACCTT CCCTCATCTC CACTGGGTCC TTCAAGCGGT TACACCAAGG GATTTCTGT AGGTAATTGTT AGGTAATTGGT CAGTGATGGT CTCTCAGAACT TCTAGAACT TCTAGAACT TGTTATCTGAA	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG AGAAGAACCC ATTTATCTCT ATGGTGTATT ATGGTGTCACT CCAATGGTCTT CCATCACTGTT ACTGTCTCACT ACTGTCTCACT ACTGTCTCACT TGGTGCCTGTC	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ARACTCTGA ARACTCTGA ARACACATGA TCTTTTGCAT ACAGTAGCTA ACAGTAGCTA GAAATTCTTCC GTCATTTTTGCAT TTTGGTGGGA GCCACGCTTCA CTCTTGTCGGA GAACCAAGGA GAACCAAGGA GTGATGGTTT	GAGGATTGCC GAGGATTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TATTTTCCCA AGTGGTCCCC CTACATGTCC CATACCCTAT ATCTTTCATA TGTCATTCCT CACACTCCCCTCAT CACACTCCCCTCAT CACACTCCCG TTGGATTCCT	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGCCA CCATAACTCC CCTTATCCAT ATACTTGACA TGACCTGGTA TGGATGCTTT CGAATGCTT CGAATGCTTT CGAATGCTTT CGATTATCAC TGACTTATCAC TTTTATCAT TAACATTATC CATGGCTATT	120 180 240 300 360 420 480 540 660 720 780 840 900 1020
50 55 60	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGGTCAATA TATCCTTTTAA TATCAATGCA GGAAAGGTCT AGGGCAATTT CCCAATGCCA TTCTTAGTTT ATGTCCATCC TTTACTGGCT ACATTTGGAA ATTGTTTGTAA CTCGGGATAC CTCGGGATAC CTCGGGATAC CTCTGTGTCT ACAATACCT TCTTGTGTC	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT CCCTCATCTC CACTGGGTCC TTCAACCGGT TACCCAAGG TACCCAAGG TACCCAAGG TACCCAAGG TACCCAAGG TACCCAAGG TACCCAAGG TACTCTCTGT TACCCAAGG TACTCTCTGT TACCCAAGG TACTCTAGAACT TACTAGAACT TACTCCCAA	GGGAATATTG AAAAGAGGG AAGTTACAAAT TGATCCTGCAT TACAGGTTAA ACACATACCA CGGGGTTATG AGAAGACCC ATTTATCTGGT GGACTTATTT CGATGCTTT CAATGGTTAT CAATGGTTAT CAATGGTTAT CAATGGTTAT CAATGGTTCCAC CAATGTGTTCCACCCCCCCCCC	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TATCCTTGT ACAACTCTGA AAACAGAAG TCTTTTGCAT ATATTCTTTG GAAATTACT GAAATTACT GCAACTTTGG CTCTTTGGTGGGA GCCACGCTTC CTCTGTGCAA GAACCAAGGA GTGATGGTTC GAAATTCTTC	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTGCCA CTACATGTGC CTACATGTGC ATTCTTCATA TGTCATTGCT ACCCCTCATA CTCCCCTCATA CTCCCCTCATA CACACTCCGC TTGGATTCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCTCATA ACTGCTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGCTTTCCGCTCATA ACTGCTTTCCGCT ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATATACCCTCATATACCCTCATATACCTCTCCCTCATATACCTCTCTCCCTCATATACCTCTCCCTCATATACCTCTCCTC	TGTTACAGAC CTACCAGTCT TCACTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATACTTGCA TGACATGCA TGACTGTA CGATTTCCAC CGATTGCTCC TTTTTACATT ATACATTACT TTTACATT TGACAATTCC CCATGGCTATT CCACGCTATT CCACGCTATT CTACACTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTTC CTACACTTTTTC CTACACTTTTTC CTACACTTTTTTC CTACACTTTTTTC CTACACTTTTTTC CTACACTTTTTTT CTACACTTTTTT CTACACTTTTT CTACACTTTT CTACACTTTT CTACACTTTT CTACACTTTT CTACACTTT CTACACTTT CTACACTTT CTACACTTT CTACACTTT CTACACTT CTACACT CTACACTT CTACACT CTACACTT CTACACT CTACACTT CTACACT CTACACTT CTACACTT CTACACTT CTACACTT CTACACTT CTACACTT CTACACTT CTA	120 180 240 300 360 420 540 600 660 720 780 840 960 1020 1080 1140 1200
50 55	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGTCAATA TATCCTTTCA TTTCAAAGAA GGACTTTCCA GGAAAGGTCT ATGTCATCA TTTCTAGTT ATGTCATCA TTTTAGTT ATGTCATCCATCC TTTACTGCT ACATTTGGA GTGACAAGAA ATTGTTCTA CTCGGGATAC CCATCAGCCT TCTTGTGTCC ACAAATACTC ACAAATACTC	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATAT CCCTCATCTC CACTGGGTC TTCAAGCGGT ACAGTTCTCT TGATTTCTCT GGTATTCTCT AGGTATTCTCT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTCT CCTTCAGAACT CTTCTAGAACT ATACCTCAGA ATACCTCAGA	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG GGACTTATTA TGGTGTCAC CAATGTGTTA CATCACTGTC CAATGTCTCA ACTGTCTCAA CCATGTCTCAA CCATGTCTCAA CCATGTCTCAA CCATGTCTCAA CCATGTGTCAC	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TATCCTTGT ACAACTCTGA AAACAGAAG TCTTTTGCAT ATATTCTTTG GAAATTACT GAAATTACT GCAACTTTGG CTCTTTGGTGGGA GCCACGCTTC CTCTGTGCAA GAACCAAGGA GTGATGGTTC GAAATTCTTC	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTGCCA CTACATGTGC CTACATGTGC ATTCTTCATA TGTCATTGCT ACCCCTCATA CTCCCCTCATA CTCCCCTCATA CACACTCCGC TTGGATTCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCTCATA ACTGCTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGCTTTCCGCTCATA ACTGCTTTCCGCT ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATATACCCTCATATACCCTCATATACCTCTCCCTCATATACCTCTCTCCCTCATATACCTCTCCCTCATATACCTCTCCTC	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGCCA CCATAACTCC CCTTATCCAT ATACTTGACA TGACCTGGTA TGGATGCTTT CGAATGCTT CGAATGCTTT CGAATGCTTT CGATTATCAC TGACTTATCAC TTTTATCAT TAACATTATC CATGGCTATT	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140
50 55 60	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGTCAATA TATCCTTTCA TTTCAAAGAA GGACTTTCCA GGAAAGGTCT ATGTCATCA TTTCTAGTT ATGTCATCA TTTTAGTT ATGTCATCCATCC TTTACTGCT ACATTTGGA GTGACAAGAA ATTGTTCTA CTCGGGATAC CCATCAGCCT TCTTGTGTCC ACAAATACTC ACAAATACTC	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT CCCTCATCTC CACTGGGTCC TTCAACCGGT TACCCAAGG TACCCAAGG TACCCAAGG TACCCAAGG TACCCAAGG TACCCAAGG TACCCAAGG TACTCTCTGT TACCCAAGG TACTCTCTGT TACCCAAGG TACTCTAGAACT TACTAGAACT TACTCCCAA	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG GGACTTATTA TGGTGTCAC CAATGTGTTA CATCACTGTC CAATGTCTCA ACTGTCTCAA CCATGTCTCAA CCATGTCTCAA CCATGTCTCAA CCATGTCTCAA CCATGTGTCAC	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TATCCTTGT ACAACTCTGA AAACAGAAG TCTTTTGCAT ATATTCTTTG GAAATTACT GAAATTACT GCAACTTTGG CTCTTTGGTGGGA GCCACGCTTC CTCTGTGCAA GAACCAAGGA GTGATGGTTC GAAATTCTTC	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTGCCA CTACATGTGC CTACATGTGC ATTCTTCATA TGTCATTGCT ACCCCTCATA CTCCCCTCATA CTCCCCTCATA CACACTCCGC TTGGATTCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCTCATA ACTGCTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGCTTTCCGCTCATA ACTGCTTTCCGCT ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATATACCCTCATATACCCTCATATACCTCTCCCTCATATACCTCTCTCCCTCATATACCTCTCCCTCATATACCTCTCCTC	TGTTACAGAC CTACCAGTCT TCACTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATACTTGCA TGACATGCA TGACTGTA CGATTTCCAC CGATTGCTCC TTTTTACATT ATACATTACT TTTACATT TGACAATTCC CCATGGCTATT CCACGCTATT CCACGCTATT CTACACTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTTC CTACACTTTTTC CTACACTTTTTC CTACACTTTTTTC CTACACTTTTTTC CTACACTTTTTTC CTACACTTTTTTT CTACACTTTTTT CTACACTTTTT CTACACTTTT CTACACTTTT CTACACTTTT CTACACTTTT CTACACTTT CTACACTTT CTACACTTT CTACACTTT CTACACTTT CTACACTT CTACACT CTACACTT CTACACT CTACACTT CTACACT CTACACTT CTACACT CTACACTT CTACACTT CTACACTT CTACACTT CTACACTT CTACACTT CTACACTT CTA	120 180 240 300 360 420 540 600 660 720 780 840 960 1020 1080 1140 1200
50 55 60	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGTCAATA TATCCTTTCA TTTCAAAGAA GGACTTTCCA GGAAAGGTCT ATGTCATCA TTTCTAGTT ATGTCATCA TTTTAGTT ATGTCATCCATCC TTTACTGCT ACATTTGGA GTGACAAGAA ATTGTTCTA CTCGGGATAC CCATCAGCCT TCTTGTGTCC ACAAATACTC ACAAATACTC	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATAT CCCTCATCTC CACTGGGTC TTCAAGCGGT ACAGTTCTCT TGATTTCTCT GGTATTCTCT AGGTATTCTCT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTCT CCTTCAGAACT CTTCTAGAACT ATACCTCAGA ATACCTCAGA	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG GGACTTATTA TGGTGTCAC CAATGTGTTA CATCACTGTC CAATGTCTCA ACTGTCTCAA CCATGTCTCAA CCATGTCTCAA CCATGTCTCAA CCATGTCTCAA CCATGTGTCAC	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TATCCTTGT ACAACTCTGA AAACAGAAG TCTTTTGCAT ATATTCTTTG GAAATTACT GAAATTACT GCAACTTTGG CTCTTTGGTGGGA GCCACGCTTC CTCTGTGCAA GAACCAAGGA GTGATGGTTC GAAATTCTTC	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTGCCA CTACATGTGC CTACATGTGC ATTCTTCATA TGTCATTGCT ACCCCTCATA CTCCCCTCATA CTCCCCTCATA CACACTCCGC TTGGATTCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCTCATA ACTGCTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGCTTTCCGCTCATA ACTGCTTTCCGCT ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATATACCCTCATATACCCTCATATACCTCTCCCTCATATACCTCTCTCCCTCATATACCTCTCCCTCATATACCTCTCCTC	TGTTACAGAC CTACCAGTCT TCACTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATACTTGCA TGACATGCA TGACTGTA CGATTTCCAC CGATTGCTCC TTTTTACATT ATACATTACT TTTACATT TGACAATTCC CCATGGCTATT CCACGCTATT CCACGCTATT CTACACTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTC CTACACTTTTTC CTACACTTTTTC CTACACTTTTTC CTACACTTTTTTC CTACACTTTTTTC CTACACTTTTTTC CTACACTTTTTTT CTACACTTTTTT CTACACTTTTT CTACACTTTT CTACACTTTT CTACACTTTT CTACACTTTT CTACACTTT CTACACTTT CTACACTTT CTACACTTT CTACACTTT CTACACTT CTACACT CTACACTT CTACACT CTACACTT CTACACT CTACACTT CTACACT CTACACTT CTACACTT CTACACTT CTACACTT CTACACTT CTACACTT CTACACTT CTA	120 180 240 300 360 420 540 600 660 720 780 840 960 1020 1080 1140 1200
50 55 60	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGGTCAATA TATCCTTTTTA TTTCAAAGAA GGACTTTCCA GGAAAGGTCT AGGCAATTCC ATGTCCATCCA TTCTTAGTGT ATGTCCATCGG ACATTTGGAA ATTGTTGTAA CTCGGGATAA CTCGGGATAA CTCGGGATAA CTCTTGTGTCI ACAAATACTC TCTCTCACAA ATTAGTACTC	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT TCCCAGGAGT CCACTGGGTCC TTCAACCGGTC TAGCATTCTGT TACCCAAGGGT CAGTTTCTGT CAGTTATCTGT CAGTGATTGTT AGGTAATTGGT TGTTATCTGAACCG TTCTAGAACT TGTTATCTGAACT TGTTATCTGAACT AGGTTCCCAG	GGGAATATTG AAAAGAAGG CTTTOCAGG AAGTTACAAT TGATCCTGAA TACTCTGCAT TACAGGTTAA ACACATACCA CGGGGTTATG GGACTTATCTGG CGACTTATCTGG CGACTTATTT CAATGGTCACT CAATGTCTTT CAATGCTCTCACT T CAATGCTCTCACTCACACTCA	CTTTTATTCT GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TATCCTTGT ACAACTCTGA AAACAGAAG TCTTTTGCAT ATATTCTTTG GAAATTACT GAAATTACT GCAACTTTGG CTCTTTGGTGGGA GCCACGCTTC CTCTGTGCAA GAACCAAGGA GTGATGGTTC GAAATTCTTC	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTGCCA CTACATGTGC CTACATGTGC ATTCTTCATA TGTCATTGCT ACCCCTCATA CTCCCCTCATA CTCCCCTCATA CACACTCCGC TTGGATTCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCTCATA ACTGCTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGCTTTCCGCTCATA ACTGCTTTCCGCT ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATATACCCTCATATACCCTCATATACCTCTCCCTCATATACCTCTCTCCCTCATATACCTCTCCCTCATATACCTCTCCTC	TGTTACAGAC CTACCAGTCT TCACTTTTG GAGCAAAGCTT AGCAAAGCTT AGTATAGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATACTTGCAA TGACTTGCAA TGACTGGTA TGACTTGCAC TGATTTCCAC TGATTTCCAC TGATTTCCAC TTTTTACATT ATACATTACT TGACAATTCC TGACAATTCC TGACAATTTC	120 180 240 300 360 420 540 600 660 720 780 840 960 1020 1080 1140 1200
50 55 60	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGTCAATA TATCCTTTCA TTTCAAAGAA GGACTTTCCA GGAAAGGTCT ATGTCATCAT ATGTCATCAT CCCAATGCCA TTCTTAGTT ATGTCATCATCCATCC TTTACTGCT ACATTTGGAAAGAA ATTGTTCTAA CCCAGGCATAC CCATCAGCCT TCTTGTGTCC ACAAATACTA ATTAGTATCT ATTAGTATCT ACAAATACTA ATTAGTATCT SEQ ID NO:210	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATCAT CCCTCATCTC CACTGGGTCC TTCAAGCGGT ACAGTTCTCT TGATTCTCT GGTATTCTCT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTCA ATTCTTCAACTCAAC	GGGAATATTG AAAAGAAGG CTTTOCAGG AAGTTACAAT TGATCCTGAA TACTCTGCAT TACAGGTTAA ACACATACCA CGGGGTTATG GGACTTATCTGG CGACTTATCTGG CGACTTATTT CAATGGTCACT CAATGTCTTT CAATGCTCTCACT T CAATGCTCTCACTCACACTCA	CTTTTATTCT GCCCTCTCTG GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TTATCCTTGT ACAACTCTGA AAAACAGAAG TCTTTTGCAT GAAAATTACT GTCATTTTGGTGGA GCCACGCTTC GCACGCTTC GCACGCTTC GAAACTAGGA GCACCAGGA GAACGAAGGA GAACGAAGGA GAACGAAGGA	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTGCCA CTACATGTGC CTACATGTGC ATTCTTCATA TGTCATTGCT ACCCCTCATA CTCCCCTCATA CTCCCCTCATA CACACTCCGC TTGGATTCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCTCATA ACTGCTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGCTTTCCGCTCATA ACTGCTTTCCGCT ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATATACCCTCATATACCCTCATATACCTCTCCCTCATATACCTCTCTCCCTCATATACCTCTCCCTCATATACCTCTCCTC	TGTTACAGAC CTACCAGTCT TCACTTTTG GAGCAAAGCTT AGCAAAGCTT AGTATAGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATACTTGCAA TGACTTGCAA TGACTGGTA TGACTTGCAC TGATTTCCAC TGATTTCCAC TGATTTCCAC TTTTTACATT ATACATTACT TGACAATTCC TGACAATTCC TGACAATTTC	120 180 240 300 360 420 540 600 660 720 780 840 960 1020 1080 1140 1200
50556065	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGGTCAATA TATCCTTTTTA TTTCAAAGAA GGACTTTCCA GGAAAGGTCT AGGCAATTCC ATGTCCATCCA TTCTTAGTGT ATGTCCATCGG ACATTTGGAA ATTGTTGTAA CTCGGGATAA CTCGGGATAA CTCGGGATAA CTCTTGTGTCI ACAAATACTC TCTCTCACAA ATTAGTACTC	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATCAT CCCTCATCTC CACTGGGTCC TTCAAGCGGT ACAGTTCTCT TGATTCTCT GGTATTCTCT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTCA ATTCTTCAACTCAAC	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG GGACTTATTA TGGTGTCACT CAATGTGTCACT CAATGTCTTA CATCACTGTC ACTGTCTCAA CTGTGTCTCAA GTAA CGTAA CGT	CTTTTATTCT GCCCTCTCTG GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TTATCCTTGT ACAACTCTGA AAAACAGAAG TCTTTTGCAT GAAAATTACT GTCATTTTGGTGGA GCCACGCTTC GCACGCTTC GCACGCTTC GAAACTAGGA GCACCAGGA GAACGAAGGA GAACGAAGGA GAACGAAGGA	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTGCCA CTACATGTGC CTACATGTGC ATTCTTCATA TGTCATTGCT ACCCCTCATA CTCCCCTCATA CTCCCCTCATA CACACTCCGC TTGGATTCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCTCATA ACTGCTTTCCGCT ACTGGTTTCCGCT ACTGGTTTCCGCT ACTGCTTTCCGCTCATA ACTGCTTTCCGCT ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATA ACTGCTTTCCCCTCATATACCCTCATATACCCTCATATACCTCTCCCTCATATACCTCTCTCCCTCATATACCTCTCCCTCATATACCTCTCCTC	TGTTACAGAC CTACCAGTCT TCACTTTTG GAGCAAAGCTT AGCAAAGCTT AGTATAGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATACTTGCAA TGACTTGCAA TGACTGGTA TGACTTGCAC TGATTTCCAC TGATTTCCAC TGATTTCCAC TTTTTACATT ATACATTACT TGACAATTCC TGACAATTCC TGACAATTTC	120 180 240 300 360 420 540 600 660 720 780 840 960 1020 1080 1140 1200
50556065	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGTCAATA TATCCTTTTAA TATCCATTCCA GGAAAGGTCT AGGCAATTTCCA AGGCAATTTCCATCGCATCCATCACTTTACTGCTA ACATTTCCACCACCACCACCACCACCACCACCACCACCCATCACCCCATCACCCCATCACCCATCACCAC	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT CCCTCATCTC CACTGGGTCC TTCAAGCGGT ACAGTTCTCT TACCCAAGCGGT TACACCAAGCGGT ACAGTTCTCT TACACCAAGCGGT TACACCAAGCGGT TACACCAAGCGGT TACACCAAGCGT TACACCAAGCGT TACACCAAGCGT TACACCACGA ATACCTCCAGA ATACCTCCAGA ATACCTCCAGA PAVA Variant 1 Pro #*:	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG GGACTTATTA TGGTGTCACT CAATGTGTCACT CAATGTCTTA CATCACTGTC ACTGTCTCAA CTGTGTCTCAA GTAA CGTAA CGT	CTTTTATTCT GCCCTCTCTG GCCCTCTCTG TATCTGCTCC ATAATAGCTG AACGTGTTTA TTATCCTTGT ACAACTCTGA AAAACAGAAG TCTTTTGCAT GAAAATTACT GTCATTTTGGTGGA GCCACGCTTC GCACGCTTC GCACGCTTC GAAACTAGGA GCACCAGGA GAACGAAGGA GAACGAAGGA GAACGAAGGA	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTGCCA CTACATGTGC CTACATGTGC ATTCTTCATA TGTCATTGCT CTCCCCTCAT CTCCCCTCAT CTCGCTTCGGT ACTGGTTTCCGT ACTGGTTTCCGT ACTGGTTTCCGT ACTGGTTTCCGT ACTGGTTTCCGT ACTGCTTTCCGT ACTGGTTTCCGT ACTGCTTTCCGT ACTGCTTTCCGT ACTGCTTTCCGT ACTGCTTTCCGT ACTGCTTTCCGT ACTGCTTTCCGT ACTGCTTTCCGT ACTGCTTTCCGT	TGTTACAGAC CTACCAGTCT TCACTTTTG GAGCAAAGCTT AGCAAAGCTT AGTATAGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATACTTGCAA TGACTTGCAA TGACTGGTA TGACTTGCAC TGATTTCCAC TGATTTCCAC TGATTTCCAC TTTTTACATT ATACATTACT TGACAATTCC TGACAATTCC TGACAATTTC	120 180 240 300 360 420 540 600 660 720 780 840 960 1020 1080 1140 1200
50556065	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTGGTCAATA TATCCTTTTTA TTTCAAAGAA GGACTTTCCA GGAAAGGTCT AGGGCAATTT CCCAATGCCA TTCTTAGTTT ATGTCCATCC TTTACTGGCT ACTGTGTTACTGGACAAGAA ATTGTTGTACTAGCCT TCTTGTGTCT ACAAATACTC TCTCTCACAA ATTAGTATCT SEQ ID NO:2101 Prolein Accession	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT TCCCAGGAGT CCACTGGGTCC TTCAAGCGGTC TAGATTCTCT TACCCAAGGG TAGATTTCTGT AGATTTCTGT AGATTTCTGT AGGTAATTGC AGGTAATTGC AGGTAATTGC AGGTAATTGC AGGTAATTGC ATACCTCAA ATACCTCAA	GGGAATATTE AAAAGAGGG CTTTCCAGG AAGTTACAAT TGATCCTGAA TACTCTGCT TACAGGTTTA ACACATACCA CGGGGTTATG AGAAGACCC ATTTATCTGT CGAATGTGTTA CAATGTGTTA CAATGTGTTA CAATGTGTTA CAATGTGTTA CAATGTGTTA CAATGTGTTA CAATGTGTTA CAATGTGTTA CCATGGCAG AGTCTATTT CCATGGCAG AGTCTATTT COATGGCAG AGTCTCATGTT AGTAA Olgin sequence: none for	CTTTTATTCT GCCCTCTCTG GCCCTCTCTG TATCTGCTG AACGTGTTTA ACACTCTGT ACACTCTGA AAACAGAAG TCTTTTGCAT ACAGTAGCTA ATATTCTTTG GAAAATTACT GCAACTTTTGG CTCTTTTGGTGGA GCCACGCTTC GCACGCTTC GCAACGAGACAA GAAACAAGGA GTGATGTTTTTC GAAACAAGGA GTGATGGTTT GAAACAAGGA GTGATGGTT	GAGGATTGCC GAGGATTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TATATTTGCCA AGTGGTCCCC CTACATGTG CATACCCTATA ATCTTTCATC TGTCATTGCT ATCTTTCATC TTGCATTCCT CACACTCCG TTGGATTCCT ACTGCTTCCCC CACACTCCG CACACTCCG CACACTCCG CACACTTTCC	TGTTACAGAC CTACCAGTCT TCAGTATTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATACTCAT ATACTCAT GATACTCAT GATACTCAT CGGATTCTCT CGGTTTTCAC TTACATTCAC TTACATTACA	120 180 240 300 360 420 540 600 660 720 780 840 960 1020 1080 1140 1200
5055606570	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGCTCATTA TATCCTTTTCA TTTCAAGAA GGACTTTCCA GGAAAGGTCT ATGCCATCC TTTACTAGTT ATGTCCATCC TTTACTGGCT ACATTTGCATCC TTTACTGGCT ACATTGTTTATTCTACTGCT ACATTGTTCTACTC ACATTGTTCTACT ACATTGTTCTACT ACATTGTTCTC ACAAATACTC TCTTGTGTCT ACAAATACTC TCTCTCACAA ATTAGTATCT SEQ ID NO:210 I Prolein Accession	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT CCATGAGTT CCATCACTC CACTGGGTCC TTCAAGCGGT ACAGTTCTCT ACAGTTCTCT ACAGTTCTCT ACAGTATTCTCT AGGTATTCTTT AGGTATTCTTT AGGTATTCTCT AGGTATTCCCA AGGTATTCCCA AGGTATTCCCA AGGTATCCCA ATACCTCAGA TTCAACTCAGA TTCAACTCAGA ATACCTCAGA TTCAACTCAGA ATACCTCAGA ATACCTCAGA ATACCTCAGA TTCAACTCGA ATACCTCAGA ATACCTCAGA TTCAACTCGA ATACCTCAGA AT	GGGAATATTE AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG GAGAGAACCC CAATTATTATCTGT CATACCTGAT CATACCTG	CTTTTATTCT GCCCTCTCTG GCCCTCTCTG CTCTCTGCTCT AAACTCTGA ACACTCTGA ACACTCTGA ACACTCTGA ACACTCTGA ACACTCTGA ACACTCTGA ACACTCTGA ACACTCTGA ACACTCTGA ACACTCTTTGCAT CTCTTTTGCAT CTCACTTTTGA CTCACTTTTGA CTCACTTTTGA CTCACTTTTGA CTCACTTTGA CTCACTTTTGA CTCACTTTTGA CTCACTTTTGA CTCACTTTTGA CTCACTTTTGA CTCACTTTTGA CTCACTTTTGA CTCACTTTGA CTCACTTTTGA CTCACTTTTGA CTCACTTTGA CTCACTTTGA CTCACTTTGA CTCACTTTGA CTCACTTTGA CTCACTTTGA CTCACTTGA C	GAGGATTGCC GAGGATTCATA GAACAGATAC TCTCTGTTCT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT TTATTTGCCA AGTGGTCCCCA CTACATGTGC CTACATGTGC CTACATGTCCA ATCTTCATA CCCCCCAA CTCCCCCCAA CTCCCCCCAA CTCCCTCAA CACACTCCGA CACACTCCGAACTTTCCAACACTTCCAACACTTTCCAACACTTTCCAACACTTTCCAACACTTTCCAACACTTCCAACACTTCCAACACTTCCAACACTTCCAACACTTCCAACACTTCCAACACTTCCAACACTTCCAACACTTCCAACACTTCCAACACTTCCAACACTTCCAACACTTCCAACACACACACACACACACACACACACACACACACACA	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGGCA ATTTCCAAAG CCATAACTCC CCTTATCCAT ATGACTCATACTCCAAG CCATAACTCC CCTTATCCAT CAGAATGCTTT CAGAATGCTTT CAGAATGCTTT CAGATTACATT ATAACATTACAT TAACATTACAT TAACATTACAT TAACATTACAT TAACATTACAT TAACATTACAT TAACATTTCC TACTTTAAAT	120 180 240 300 360 420 540 600 660 720 780 840 960 1020 1080 1140 1200
50556065	ATGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGCTCAATA TATCCTTTTTA TATCCTTTCCA GGAAAGGTCT AGGGCAATTT CCCAATGCCA TTCTTAGTT ATGTCATCA ATGTCATCA ATGTCATCC TTTACTGGA ATTGTTTGTA CTCGGGATAC CCATCAGCCT TCTTGTGTCT ACAAATACTA TCTTCTCACAC SEQ ID NO:2101 Protein Accession 1 MGYQRQEPVI	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTCGG TAGCAATGAT CCACAGGACT CACTGGGTCC TACAGCGGT ACAGTTCTCT ACAGTACTCT ACAGTACTCT ACAGTACTCT ACAGTACTCT ACAGTACTCT ACAGTACTCT ACAGTACTCT ACAGTACTCT ACAGTACTCT ACAGTACTCCAA ATACCTCAAA ATACCTCAAA ATACCTCAAAA ATACCTCAAAAA ATACCTCAAAAAA ATACCTCAAAAAAAA	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG GAGAGAACCC CAATGTCTGAT CAATGTGTTA CAATGCTTA CAAT	CTTTTATTCT GCCCTCTCTG GCCCTCTCTG TATCTTGCTCC ATAATAGCTG AACGTGTTTA TTATCCTTGT ACAACTCTGA AAAACAGAAG TCTTTTGCAT GAAAATTACTTG GAAAATTACT GTCATTTTGA GCCACGCTTG GCACCTTG GAAATTTCT GAAATTTCTT GCACGCTTG GAAATTTCT GAAATGTTT GAAATGTTT GAAACAAGGA GTGATGGTTT CAGCAGACAA	GAGGATTGCC GAGGATTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT TTCTTGGAAT ACGCTTCGGT AGTGGTCCCC CTACATGTGG CGAGAAATGI ATCTTTCATC ATCTTTCATC CTCCCCTCAT CACACTCCGI ACTGCTTCCC CACACTTCCI CACACTTCCI CACACTTCCI CACACTTTCCCCCACACTTCCI CACACTTTCCCCCTCATCCCCCCCCCC	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGGCA ATTTCCAAAG CCATAACTCC CCTTATCCAT ATGACTACTTCACAT ATGACTACATCC CGATTTCCAC TGGAATGCTTT CAGATTGACA TGACTTGACA TGACTGACATTTC TAAGATTATC TAAGATTATC TAACATTTC TACATTTAAAT 51 ALSGTDTYQS	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080 11400 1260
5055606570	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGTCATTA TATCCTTTTCA TATCCTTTCA GGAAAGGTCT AGGGCAATTT CCCAATGCCA TTCTTAGTT ATGTCATCGCT ATGTCATCGCT ACATTTGGAAAGAA ATTGTTCTAC CCATCAGCCT ACATTTGTTATA CCTGGGATAA CCTGGGATAAC ACATTAGTATCT ACAAATACTA ATTAGTATCT ACTAGTACT ATTAGTATCT SEQ ID NO:210 I Prolein Accession 1 MGYQRQEPVI LVNKTFGFPG GLSTVIFFTLP	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATAT CCCTCATCTC CACTGGGTC TTCAAGCGGT ACAGTTCTCT TGATTCTCT GGTATTCTCT AGGTATTCTCT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTCA AGGTATTCTCA ATACTCCAG TTCTAGAACT TTCAACTCGA ATACCTCAGA TTCAACTCGA PAV4 Variant 1 Pr 1 #: 1 PPQRGLPYSM YLLLSVLQFL LSLYRNIAKL	GGGAATATTG AAAAGAGGG AAGTTACAAAT TGATCCTGAA TACTCTGCAT TACAGGTTTAA ACACATACCA CGGGGTTATG AGAAGAACCC AATTATCTGG CAATGTGTATT CAATGTGTATT CAATGTGTATT CAATGTGTAT CAATGTGTAT CCATGGGCAG AGTTATTT CCATGACTGTAA CCCATGGGCAG AGTCTCATGTT AGTAA CCCATGGGCAG AGTCTCATGTT AGTCTCATGT AG	CTTTTATTCT GCCCTCTCTG TATCTTGCTCC ATAATAGCTG AACGTGTTTA TTATCCTTGT ACAACTAGTA AAAACAAAG TCTTTTGCAT GAAAATTACT GAAAATTACT GTCATTTTGGTGGAA GCACCGCTTC GCACCCTTC GCACCGCTTC GCACCGCTC GCACCGCTTC GCACCGCTTC GCACCGCTTC GCACCGCTTC GCACCGCTTC GCACCGCT	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTGCCA CTACATGTGCC CTACATGTGCC CTACATGTGCC CTACATGTCCC CTACATGTCCC CTACATGTCCC CTACATGTCCC CTACATGTCCC CTACATTTCATC CTACATCTCCT CACACTCCGC CTACATCTCCTCATC CACACTCCGC CTACATTTCCCTCATCCCCCCCCCC	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATGACTTGCAA TGACTTGCAC TGATTTCCAC TGATTATCAT TAAGATTAC TTTTATCATT TAAGATTATC CTATCATTCC TTTTTATCATT TAAGATTATC TTACATTTC TACTTTAAAT 51 ALSGTDTYQS ALSGTDTYQS NVFIGRHFII KTEDAWFAK	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080 1140 1260
5055606570	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGTCATTA TATCCTTTTCA TATCCTTTCA GGAAAGGTCT AGGGCAATTT CCCAATGCCA TTCTTAGTT ATGTCATCGCT ATGTCATCGCT ACATTTGGAAAGAA ATTGTTCTAC CCATCAGCCT ACATTTGTTATA CCTGGGATAA CCTGGGATAAC ACATTAGTATCT ACAAATACTA ATTAGTATCT ACTAGTACT ATTAGTATCT SEQ ID NO:210 I Prolein Accession 1 MGYQRQEPVI LVNKTFGFPG GLSTVIFFTLP	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATAT CCCTCATCTC CACTGGGTC TTCAAGCGGT ACAGTTCTCT TGATTCTCT GGTATTCTCT AGGTATTCTCT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTT AGGTATTCTCA AGGTATTCTCA ATACTCCAG TTCTAGAACT TTCAACTCGA ATACCTCAGA TTCAACTCGA PAV4 Variant 1 Pr 1 #: 1 PPQRGLPYSM YLLLSVLQFL LSLYRNIAKL	GGGAATATTE AAAAGAGGE CTTTCCAGG AAGTTACAAT TGATCCTGAA TACTCTGCT TACAGGTTTA ACACATACCA CGGGGTTATG GAGAGACCC ATTTATCTGT CCATGGTCACT CCATGGTCACT CCATGGTCACT CCATGGTGTA CCATGGTGTA CCATGGTGTA CCATGGTGTA CCATGGGCAG AGTCTCATGT CCATGGGCAG AGTCTCATGT AGTAA CCATGGCAGA CCATGGGCAGA CCATGGAGAA CCATGAGAAA CCATGGAGAA CCATGAGAA CCATGGAGAA CCATGGAA CCATGGAGAA CCATGGAAA CCATGAAA CCATGGAAA CCATGGAAA CCATGGAAA CCATGGAAA CCATGGAAAA CCATGGAAAA CCATGGAAA	CTTTTATTCT GCCCTCTCTG TATCTTGCTCC ATAATAGCTG AACGTGTTTA TTATCCTTGT ACAACTAGTA AAAACAAAG TCTTTTGCAT GAAAATTACT GAAAATTACT GTCATTTTGGTGGAA GCACCGCTTC GCACCCTTC GCACCGCTTC GCACCGCTC GCACCGCTTC GCACCGCTTC GCACCGCTTC GCACCGCTTC GCACCGCTTC GCACCGCT	GAGGATTGCC GGGTTTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TTATTTGCCA CTACATGTGCC CTACATGTGCC CTACATGTGCC CTACATGTCCC CTACATGTCCC CTACATGTCCC CTACATGTCCC CTACATGTCCC CTACATTTCATC CTACATCTCCT CACACTCCGC CTACATCTCCTCATC CACACTCCGC CTACATTTCCCTCATCCCCCCCCCC	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATGACTTGCAA TGACTTGCAC TGATTTCCAC TGATTATCAT TAAGATTAC TTTTATCATT TAAGATTATC CTATCATTCC TTTTTATCATT TAAGATTATC TTACATTTC TACTTTAAAT 51 ALSGTDTYQS ALSGTDTYQS NVFIGRHFII KTEDAWFAK	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1140 1200 1260
5055606570	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGTCAATA TATCCTTTTTA TATCCTTTCA GGAAAGGTCT AGGGCAATTT CCCAATGCCA TTCTTAGTT ATGTCATCA ATGTCATCC TTTACTGGCA ACATTTGGAA ACTTTTGTAC CCACAGCCA TCTTGGGATAC CCATCAGCCA TCTTGTGTCA ACATATCTCACCCA TCTTGTGTCA ACATATCCATCCACCCACCACACACCACCACCCACC	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTCGG TAGCAATGAT TCCCAGGAGT CAGTTACCTT CACTAGCTCC TTCAAGCGGT ACAGTTCTCT GTATTCTCT AGGTATTCTCT AGGTATTCTCT AGGTATTCTCT AGGTATTCTCT AGGTATTCTCT AGGTATCCCAGG ATACCTCCAG ATACCTCCAG ATACCTCAGA ATACCTCAGA PAVA Variant 1 Pr 11 PPQRGLFYSM YLLLSVLQFL LSLYRNIAKL SFAFICHHNS ENYCRNDDLV	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG GAGAGAACCC CATTTATCTGT CATCACTGTT CATCACTGTT CATCACTGTT CATCACTGTT CATCACTGTT CATCACTGTT CATGGCTCTCAT CCATGGCTCTCAT CCATGGCTCTCAT CCATGGCTCTCAT CCATGGCTCTCATGGCTCTCATGGCTCTCCATGGCTCTCCATGGCTCTCCCATGGCTCTCCATGGCTCTCCATGGCTCCCATGGCTCTCCCATGGCTCTCCCATGGCTCTCCCATGGCTCTCCCATGGCTCTCCCATGGCTCCCCATGGCTCTCCCATGGCTCTCCCATGGCTCTCCCATGGCTCTCCCATGGCTCTCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCCATGGCTCCCATGGCTCCCATGGCTCCCATGGCTCCCATGGCTCCCATGGCTCCCATGGCTCCCATGCTCCCATGCTCATGCTCCATGCTCCATGCTCCATGCTCCATGCTCCATGCTCCATGCTCCATGCTCCATGCTATGCTCAT	CTTTTATTCT GCCCTCTCTG GCCCTCTCTG GCCTCTCTG AACTCTGC AACTCTGA ACACTCTGA ACACCAAGGA ACCAAGGA ACCAAGACAAA ACCAAGGA ACCAAGACAAA ACCAAGACAAA ACCAAGACAAA ACCAAGACAAA ACCAAGACAAA ACCAAGACAAA ACCAAGACAAA ACCAAGACAAAA ACCAAGACAAAA ACCAAGACAAAAAAAA	GAGGATTGCC GAGGATTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCA ACCGAAATAT TTCTTGGAAT ACGCTTCGGT AGTGGTCCCC CTACATGTGC CTACATGTGC CTACATGTGC CTACATGTCC CTACATTCCATC ATCTTTCATC CTCCCTCAT CACACTCCG CACACTCCGC CACACTTCCC CACACTTCCCCTCATCCCCCCCCCC	TGTTACAGAC CTACCAGTCT TCAGTTTTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATGGCA ATTTCCAAAG CCATAACTCC CCTTATCCAT ATGACTACTTCAT ATGACTACTTCACAT ATGACTACTTTACAT CGATTTCCAC TGTATTCCAC TGTATTCCAC TTTTTATCATT TAAGATTAT TAAGATTAT TAAGATTAT TAACATTTC TACTTTAAAT 51 ALSGTDTYQS NVFIGRHFII KTEDAWFAK IFFATCGYLT FGGNLSSVFH	120 180 240 300 360 420 480 540 600 720 780 840 900 1020 1080 1140 1260
5055606570	ATGGGCTACC AAGCAAGCTG TTTTCCCTTG TTTGTCAATA TATCCTTTTTA TATCCATTTCA GGAAAGGTCT AGGCAATTTC AGGCAATTTC ATGTCCATC ATTTCAAGCA ATTTTACTGCCT TTTACTGGCT ACATTTGGAA ATTGTTGTAC CCATCAGCCT TCTTGTGTCT ACAAATACTC ACAAATACTC ACTAAATACTC TCTCACCAT ATTAGTATCT ACTAAATACTC ACTAAATACTC TCTCTCACCAT ATTAGTATCT ACTAAATACTC TCTTCTCACCAT ACTAAATACTC TCTTCTCACCAT ATTAGTATCT LUMKTFGFPG GLSTVTFTLP PNAIQAVGWL FTGFTQGDLF IVVTVMVITV	AGAGGCAGGA GGTTTCCTTT TTTTATTGAT AAACTTTCGG TAGCAATGAT CCCTCATCTC CACTGGGTCC TTCAAGCGGT TACCTATCTG TACCTAAGCGGT TACACCAGGGTC CAGTTCTCTG ACAGTTCTCTG ACAGTTCTCTG AGGTATTCTG AGGTATTCTG AGGTATTCTG ATTCTAGAAC ATACCTCAGA TTCAACTCG PAVA Variant 1 Pro #: 11	GGGAATATTG AAAAGAGGG CTTTCCAGGG AAGTTACAAT TGATCCTGAA TACTCTGCCT TACAGGTTTA ACACATACCA CGGGGTTATG GGACTTATTA CATTATCTGCT CAATGTCTCAC CAATGTCTCAC CAATGTCTCAC CAATGTCTCAA CTGTCCTGAA CTGTCTCAATGTCTCAC CAATGTCTCAA CTGTCTCAATGTCTCAC CCATGGGCCAC CCATGGCCAC CCATGGCCAC CCATGGGCCAC CCATGGGCCAC CCATGGCCAC CCATGGGCCAC CCATGGCCAC CCATGCCAC CCATGGCCAC CCATGGCCAC CCATGCCAC CCAT	CTTTTATTCT GCCCTCTCTG GCCCTCTCTG TATCTGCTG AAACTGTGT ACACTCTGT ACACTCTGT ACACTCTGT ACACTCTGCT ACACTCTGCT ACACTCTGCT ACACTCTGCT ACACTCTGCT ACACTCTGCT ACACTCTGCT ACACTCTTTGCT ACACTCTTTTGCT ACACTCTTTTGCT ACACTCTTTTGCTGCT ACACTCTTTTGCTGCT ACACTCTTTTGCTGCT ACACTCTTTTGCTGCT ACACTCTTTTTGCTGCT ACACTCTTTTTGCTGCT ACACTCTTTTTGCTGCT ACACTCTTTTTGCTGCT ACACTCTTTTTGCTGCT ACACTCTTTTTGCTGCT ACACTCTTTTTTTTTT	GAGGATTGCC GAGGATTCATA GAACAGATAC TCTCTGTTCT GAGATACTTT TTGGTCGCCA ACCGAAATAT TTCTTGGAAT ACGCTTGGGT TATATTTGCCA AGTGGTCCCC CACATCTCATA ACTCTTCATA ACTCTTCATA ACTCTTCATA ACTCTTCATA ACTCCTTCATA ACTCCTTTCATA ACTCCTTTCATA ACTCCTTTCATA CACACTCCG CACACTTTCATA CACACTCCG CACACTTTCATA ACTGCTTTCCATA CACACTCCG CACACTTTCATA ACTGCTTTCCATA CACACTCCG CACACTTTCATA ACTGCTTTCCATA A ACTGCTTTCCATATA ACTGCTTTCATATATATATATATATATATATATATATATA	TGTTACAGAC CTACCAGTCT TCAGTATTTG GAGCAAAGTT CTTCATTATT AGCAAAGCTT TGTAATAGCA ATTTGCAAAG CCATAACTCC CCTTATCCAT ATGCATAC TGAATGCTA TGACATGCAT TGACATGCAT CGATTGCATA CGATTGCATA CGATTGCATC TACATTACAT	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080 11200 1260

ISIFQLE

_			SEQ ID NO:211 PAV4 VARIANT 2 DNA SEQUENCE						
5	Nucleic Acid Acce		N62096		near correspond t	a atast and atan and	one)		
	Coding sequence	4	1-1203	(unoeninea seque	nces correspond r	o start and stop cod	onsy		
				•					
10	1	11	21	31	41	51			
10)	ACACCCACCA	CCCTCTCTATAC	CCGCCGCAGT		mmmammera ma	60		
				TACCAGTCTT			120		
				CAGTTTTTGT			180		
1.5				AGCAAAGTTT			240		
15				TTCATTATTG			300		
				GCAAAGCTTG GTAATGGCAA			360		
				TTTGCAAAGC			420 480		
				CATAACTCCT			540		
20				CTTATCCATA			600		
				TACTTGACAT			660		
				GACCTGGTAA			720		
				GAATGCTTTG GTTTTCCACA			780 840		
25				ATTGATTGCC			900		
				TTTATCATTC			960		
	CTGTCTGAAG	AACCAAGGAC	ACACTCCGAT	AAGATTATGT	CTTGTGTCAT	GCTTCCCATT	1020		
				ATGGCTATTA			1080		
30				GACAATTTCT			1140		
50	TAA	AGCAGACAAC	ACAACTTICT	ACTTTAAATA	TTAGTATCTT	TCAACTCGAG	1200		
	<u> </u>		•						
25	SEQ ID NO:212 I								
35	Protein Accession	1#:	none fo	und					
	1	11	21	31	41	51			
	ī	1	ĭ	ĭ	ī	ĭ			
40	MGYQRQEPVI	PPQFSLVLLI	KGGALSGTDT	YQSLVNKTFG	FPGYLLLSVL	QFLYPFIAMI	60		
				FIIGLSTVTF			120		
				FAKPNAIQAV			180		
				YLTFTGFTQG			240 300		
45				VFHIVVTVMV KIMSCVMLPI			360		
				S TLNISIFQLE		Intramagno.	500		
			*****		0:213 PAV4 VAR	IANT 3 DNA SEQU	ENCE		
50	Nucleic Acid Acce		N62096			a atom and alon and	ana)		
50	Coding sequence	5	1-1140	fautaenmea seque	nces correspond t	o start and stop cod	Olisj		
	1	11	21	31	41	51			
E E	1	1	1	1	ł	1			
55				CCGCCGCAGG			60		
				TTTTTGTATC AAAGTTTTTC			120 180		
				ATTATTGGAC			240		
				AAGCTTGGAA			300		
60				ATGGCAAGGG			360		
				GCAAAGCCCA			420		
				AACTCCTTCT			480		
				ATCCATATGT			540		
65				TTGACATTTA CTGGTAACAT			600 660		
05				TGCTTTGTGA			720		
				TTCCACATTG			780		
				GATTGCCTCG			840		
70				ATCATTCCAT			900		
70				ATTATGTCTT			960		
				GCTATTACAA			1020		
				AATTTCTCTC			1080		
	CATGITCAGC	AGACAACACA	ACTITCTACT	TTAAATATTA	GTATCTTTCA	ACTUGAGTAA			
75				-					
	SEQ ID NO:214	PAV4 Variant 3 Pr	oteln sequence:						
	Protein Accession		none to	und					
	_		0.4		44				
80	1	11	21	31	41	51 			
30	ı	•	1	1		•			
				-	38	9			

5	PENVFIGRHF IPKTEDAWVF ICIFFATCGY VFFGGNLSSV	PPQVNKTFGF IIGLSTVTFT AKPNAIQAVG LTFTGFTQGD FHIVVTVMVI IMSCVMLPIG LNISIFQLE	LPLSLYRNIA VMSFAFICHH LFENYCRNDD TVATLVSLLI	KLGKVSLIST NSFLVYSSLE LVTFGRFCYG DCLGIVLELN	GLTTLILGIV EPTVAKWSRL VTVILTYPME GVLCATPLIF	MARAISLGPH IHMSIVISVF CFVTREVIAN IIPSACYLKL	60 120 180 240 300 360
10				SEQ ID N	0:215 PAV4 VAR	ANT 4 DNA SEQUE	NCE:
	Nucleic Acid Acc Coding sequence		N62096 1-1389	i		o start and stop code	
15	1	11	21	31	41	51	
	ACCCTTGTT	r ctgaacatg	A GTATAAAGAG	AAAACCTGT	CAGTCTGCTGC	TGACAGAGAA TCTTTTTAAT	120
20	GGGTTTCCT	TGGGAATAT	CCTTTTATIO	TGGGTTTCA	T ATGTTACAGE	CAAGCAAGCT	180 240
						TTTGGTCAAT GTATCCTTTT	300 360
	ATAGCAATG	A TAAGTTACA	A TATAATAGC	r ggagatact	r TGAGCAAAG?	TTTTCAAAGA	420
25						TGGACTTTCC TGGAAAGGTC	480 540
						AAGGGCAATT CCCCAATGCC	600 660
	ATTCAAGCG	TCGGGGTTA	r GTCTTTTGC	TTTATTTGC	CACCATAACTO	CTTCTTAGTT	720
30						TATGTCCATC ATTTACTGGC	780 840
	TTCACCCAA	G GGGACTTAT	TGAAAATTAC	TGCAGAAAT	ATGACCTGGT	AACATTTGGA	900
						TGTGACAAGA CATTGTTGTA	960 1020
35	ACAGTGATG	TCATCACTG	r agccacgct	GTGTCATTG	TGATTGATTC	CCTCGGGATA	1080
33						TCCATCAGCC	1140 1200
	ATGCTTCCC	A TIGGIGCIG	GGTGATGGTT	TTTGGATTC	TCATGGCTAT	TACAAATACT	1260
						TATTAGTATC	1320 1380
40 45	SEQ ID NO:216 Protein Accession	PAV4 Variant 4 Pro n #:	o <u>tein sequence:</u> none fo	Und			
	1	11	21	31	41	51	
	MGYOROEPUT	PPQRDLDDRE	TLUSEREVKE	KTCOSAALFN	VVNSTIGSGT	TGI.PYSMKOA	60
50	GFPLGILLLF	WVSYVTDFSL	VLLIKGGALS	GTDTYQSLVN	KTFGFPGYLL	LSVLQFLYPF	120
		GDTLSKVFQR ILGIVMARAI					180 240
	YSSLEEPTVA	KWSRLIHMSI	VISVFICIFF	ATCGYLTFTG	FTQGDLFENY	CRNDDLVTFG	300
55	VLELNGVLCA	TYPMECFVTR TPLIFIIPSA YCFPDNFSLT	CYLKLSEEPR	THSDKIMSCV	MLPIGAVVMV		360 420
				SEC	2 ID NO:217 PAVS	DNA SEQUENCE	
60	Nucleic Acid Acce Coding sequence		NM_017		nese correspond to	start and stop codo	ne\
••	County sequence	•	1-35011	farractimica sedac	noco conceptant to	siant and stop cood	iio)
•	1	11	21	31	41	51	
65	 NTCGACGATG	CCTTCGGGGC	ACCCCTRCCTRC)	ACAGCGATCG)	60
Ų.	GAGAAGCCCA	CCGATGCCTA	CGGAGAGCTG	GACTTCACGG	GGGCCGGCCG	CAAGCACAGC	120
		GGCTCTCTGA					180
- 0		TCCGTGCCCC					240 300
70	ACAGGAGCCT	GGATTGTCAC	TGGGGGTCTG	CACACGGGCA	TCGGCCGGCA	TGTTGGTGTG	360
		ACCATCAGAT GTGTGGTCCG					420 480
	GCGAGGTACC	GGTGGCGCGG	TGACCCGGAG	GACGGGGTCC	AGTTTCCCCT	GGACTACAAC	540
7 5		TCTTCCTGGT					600
. –	TTCCGCTTCC	GCCLACCACAAA	CTACATCTCA	しかじしかじかかいか			
		CTGTCCTGCT	CCTCCTGATT	GATGGTGATG	AGAAGATGTT	GACGCGAATA	660 720
	ATTGACATCC GAGAACGCCA	CTGTCCTGCT CCCAGGCTCA	CCTCCTGATT GCTCCCATGT	GATGGTGATG CTCCTCGTGG	AGAAGATGTT CTGGCTCAGG	GACGCGAATA GGGAGCTGCG	720 780
80	ATTGACATCC GAGAACGCCA GACTGCCTGG	CTGTCCTGCT	CCTCCTGATT GCTCCCATGT GGAAGACACT	GATGGTGATG CTCCTCGTGG CTGGCCCCAG	AGAAGATGTT CTGGCTCAGG GGAGTGGGGG	GACGCGAATA GGGAGCTGCG AGCCAGGCAA	720

	GCCTCTCACC	AATTCGAGAC	CATAGTTTTG	AAGGCCCTTTG	TENAGEMENT	TOGGRAGOTOG	1020
			TGAGCTGCGT				1080
			GGGGGACATC				1140
			TGACCGGCCT				1200
5							
9			GACCCCGATG				1260
			CCTTTTGGAC				1320
			TGCGGAGCTC				1380
			CGCGCCGAGG				1440
10	CCAGGCCAGG	GCTTCGGGGA	GAGCATGTAT	CTGCTCTCGG	ACAAGGCCAC	CTCGCCGCTC	1500
10	TCGCTGGATG	CTGGCCTCGG	GCAGGCCCCC	TGGAGCGACC	TGCTTCTTTG	GGCACTGTTG	1560
	CTGAACAGGG	CACAGATGGC	CATGTACTTC	TGGGAGATGG	GTTCCAATGC	AGTTTCCTCA	1620
	GCTCTTGGGG	CCTGTTTGCT	GCTCCGGGTG	ATGGCACGCC	TGGAGCCTGA	CGCTGAGGAG	1680
			GGCGTTCAAG				1740
			GGTGAGGGCT				1800
15			CCAGCTGGCC				1860
10			GCTGACACAG				1920
			CGCCTTCTTT				1980
			GGAGCCCACA				2040
20			TGTCGGGACG				2100
20			TCCGGGTTGC				2160
			CTGGGGGGGG				2220
			GCTTTTCTCG				2280
	CCGCCCGGCT	CCCTGGAGCT	GCTGCTCTAT	TTCTGGGCTT	TCACGCTGCT	GTGCGAGGAA	2340
	CTCCCCCAGG	GCCTGAGCGG	AGGCGGGGC	AGCCTCGCCA	GCGGGGGCCC	CGGGCCTGGC	2400
25	CATGCCTCAC	TGAGCCAGCG	CCTGCGCCTC	TACCTCGCCG	ACAGCTGGAA	CCAGTGCGAC	2460
			CCTCCTGGGC				2520
			CTGCATCGAC				2580
			GCTGGGGCCC				2640
			CTTCCTCGGC				2700
30			GGACAGTGAC				2760
50			CGGGCAGATT				2820
			GGAGCCCGGC				2880
			TGCCAACTGG				2940
35			GGTCAACTTG				3000
33			TCTCTACTGG				3060
			GCCCCCCCC				3120
			ACCCCGGAGC				3180
			GGAAGCCGAG				3240
40	AAGGAGAACT	TTCTGCTGGC	ACGCGCTAGG	GACAAGCGGG	AGAGCGACTC	CGAGCGTCTG	3300
40	AAGCGCACGT	CCCAGAAGGT	GGACTTGGCA	CTGAAACAGC	TGGGACACAT	CCGCGAGTAC	3360
	GAACAGCGCC	TGAAAGTGCT	GGAGCGGGAG	GTCCAGCAGT	GTAGCCGCGT	CCTGGGGTGG	3420
		TGAAAGTGCT CCCTGAGCCG					3420 3480
	GTGGCCGAGG	CCCTGAGCCG	CTCTGCCTTG				
	GTGGCCGAGG		CTCTGCCTTG				
45	GTGGCCGAGG	CCCTGAGCCG	CTCTGCCTTG				
45	GTGGCCGAGG CTGCCTGGGT	CCCTGAGCCG CCAAAGAC <u>TG</u>	CTCTGCCTTG A				
45	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I	CCCTGAGCCG CCAAAGAC <u>TG</u> PAV9 Protein sequ	ETCTGCCTTG	CTGCCCCAG			
45	GTGGCCGAGG CTGCCTGGGT	CCCTGAGCCG CCAAAGAC <u>TG</u> PAV9 Protein sequ	CTCTGCCTTG A	CTGCCCCAG			
45	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession	CCCTGAGCCG CCAAAGAC <u>TG</u> PAV9 Protein sequ n#:	CTCTGCCTTG A lence: none fo	CTGCCCCAG	GTGGGCCGCC	ACCCCCTGAC	
	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I	CCCTGAGCCG CCAAAGAC <u>TG</u> PAV9 Protein sequ	ETCTGCCTTG	CTGCCCCAG			
45 50	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequent: 11	CTCTGCCTTG A lence: none fo	CTGCCCCAG und 31	GTGGGCCGCC	ACCCCCTGAC	3480
	GTGCCGAGG CTGCCTGGGT SEQ ID NO:218 ! Protein Accession 1 MEDAFGAAVV	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 1 TVWDSDAHTT	ence: none fo	CTGCCCCAG und 31 DFTGAGRKHS	GTGGGCCGCC 41 NFLRLSDRTD	ACCCCTGAC 51 PAAVYSLVTR	3480 60
	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 i Protein Accession 1 MEDAFGAAVV TWGFRAFNLV	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 1 TVWDSDAHTT VSVLGGSGGP	CTCTGCCTTG A none fo 21 EKPTDAYGEL VLQTWLQDLL	und 31 i DFTGAGRKHS RRGLVRAAQS	GTGGGCCGCC 41 NFLRLSDRTD TGAWIVTGGL	ACCCCTGAC 51 PAAVYSLVTR HTGIGRHVGV	60 120
	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST	PAV9 Protein sequents: 11 1 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV	ence: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRRD	und 31 i DFTGAGRKHS RRGLVRAAQS TLINFKGSFP	GTGGGCCGCC 41 NFLRLSDRTD TGAWIVTGGL ARYRWRGDFE	ACCCCTGAC 51 PAAVYSLVTR HTGIGRHVGV DGVQFFLDYN	60 120 180
50	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession 1 MEDAFGAAVV TWGFRAFNLV TWGFRAFNLV AVRDHQMAST YSAFFLVDDG	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 TVWDSDAHTT VSVLGGSGGT GGTKVVAMGV THGCLGGERIR	ence: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVURND FRLRLESYIS	und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSFP QQKTGVGGTG	GTGGGCCGCC 41 NFLRLSDRTD TGAMIVTGGL ARYRWRGDPE IDIFVLLLII	ACCCCTGAC 51 PAAVYSLVTR HTGIGRHGV DGVQFPLDYN DGDEKMLTRI	60 120 180 240
	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218: Protein Accession MEDAFGAAVV TWGFRAPRILV AVRDHQMAST YSAFFLVDDG ENATQAQLPC	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 I TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAA	ence: none fo 21 EKPTDAYGEL VLOTWLODLL APWGVVRNRD APKGVVRNRD FRLRLESYIS DCLAETLEDT	UND 31 DFTGAGRKHS RRGLVRAAQS TLINFKGSFP QQKTGVGGTG LAPGSGGARQ	GTGGGCCGCC 41 NFLRLSDRTD TGAMIVTGGL ARYRWRGDPE IDIPVLLLLI GEARDRIRRF	ACCCCTGAC 51 PAAVYSLVTR HTGIGRHVGV DGVQFPLDYN DGDERMUTRI FFKGDLEVLQ	60 120 180 240 300
50	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATQAQLIPC AQVERIMTRK	CCCTGAGCCG CCAAAGACTG PAV9 Protein secunds: 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV TEGCLGGENR LLVAGSGGAA ELLTVYSSED	CTCTGCCTTG A lence: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRRD FRLRLESYIS DCLAETLEDT GSEEFETIVL	und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS	GTGGGCCGCC 41 NFLRLSDRTD TGAWIVTGGL ARYRWRGDPE IDIPVLLLLI GEARDRIRRF EASAYLDELR	51 	60 120 180 240
50	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATQAQLIPC AQVERIMTRK	CCCTGAGCCG CCAAAGACTG PAV9 Protein secunds: 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV TEGCLGGENR LLVAGSGGAA ELLTVYSSED	ence: none fo 21 EKPTDAYGEL VLOTWLODLL APWGVVRNRD APKGVVRNRD FRLRLESYIS DCLAETLEDT	und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS	GTGGGCCGCC 41 NFLRLSDRTD TGAWIVTGGL ARYRWRGDPE IDIPVLLLLI GEARDRIRRF EASAYLDELR	51 	60 120 180 240 300
50	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATOAQLIFC AQVERIMTRK AQSELFRGDI	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR LLVAGSGGAR ELLTVYSSED QWRSFHLEAS	CTCTGCCTTG A lence: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRRD FRLRLESYIS DCLAETLEDT GSEEFETIVL	und 31 DFTGAGRKHS RRGLVRAAQS TLINFKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG	GTGGGCCGCC 41 NFLRLSDRTD TGAWIVTGGL ARYRWRGDPE LDIPVLLLLI GEARDRIRRE EASAYLDELR LSLGHFLTFM	51 PAAVYSLVTR HTGIGRHVGV DGVQFFLDYN DGDEKMLTRI FFKGDLEVLQ LAVAWNRVDI RLAQLYSAAP	60 120 180 240 300 360
50 55	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession 1	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 1 TVWDSDAHTT VSVLGGSGGF GGTKVVAMGV THGCLGGENR LLVAGSGGAA ELLTVYSSER QWRSFHLEAS QASHSAGTKA	ence: none fo 21 EKPTDAYGEL VLQTWLQDL APWGVVNND FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL	Und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGRVLR	GTGGGCCGCC 41 NFLRLSDRTD TGAMIVTGGL ARYRWRGDPE IDIFVLLLI GEARDRIRRF EASAYLDEL LSLGHFLTPM MLLGKMCAPR	51 PAAVYSLVTR HTGIGRHGV DGVQFPLDYN DGDEKMLTRI FPKGDLEVLQ LAVANNRVDI LAVANNRVDI RLAQLYSAAP YPSGGAWDPH	60 120 180 240 300 360 420
50	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218! Protein Accession MEDAFGAAVV TWGFRAPRILV AVRDHQMAST YSAFFLVDDG ENATQAQLPC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 1 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAA ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSPL	ence: none fo 21 EKPTDAYGEL VLQWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP	Und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR WSDLLLWALL	41 INFLRESTED MFLRESTED MFLRES	51	60 120 180 240 300 360 420 480
50 55	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession 1 MEDAFGAAVV TWOFRAPRILV AVRDHQMAST YSAFFLVDDG ENATQAQLPC AQVERIMTRK AQSELFRGDI SNSLIRNLLD SNSLIRNLLD BCGGFGESMY ALGACLLLRV	PAV9 Protein sequents: 11 1 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAA ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSPL MARLEPDAEE	ence: none fo 21 EKPTDAYGEL VICTWICDLL APWGVVRND FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL LMDALLNDRP PALKGGAAEL AARRKDLAFK	und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSPP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR WSDLLLWALL FEGMGVDLFG	GTGGGCCGCC 41 NFLRLSDRTD TGAWIVTGGL ARYRWRGDPE IDIFVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLLGKMCAPR MLLGKMCAPR LNRAQMAMYF ECYRSSEVRA	51 PAAVYSLVTR HTGIGRHYGV DGVQFPLDYN DGDERMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGAMDPH WEMGSNAVSS ARLLERCPL	60 120 180 240 300 360 420 480 540 600
50 55	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATOAQLIFC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY MLGACLLLRV WGDATCLQLA	CCCTGAGCCG CCAAAGACTG PAV9 Protein secunities 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ELLITVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSFL MARLEPDAEE MQADARAFFA	ence: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP FALKGGAAEL SLDAGLGGAF AARKQLAF QDGVQSLLTQ	und 31 DFTGAGRKHS RRGLVRAAQS TLINFKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR WSDLLLWALL FEGMGVDLFG KWWGDMASTT	GTGGGCCGCC 41 NFLRLSDRTD TGAWIVTGGL ARYRWRGDPE LDIPVLLLLI GEARDRIRR EASAYLDELR LSLGHFLTPM MLLGKMCAPR LNRAQMAWIX ECYRSSEVRA PIWALVLAFF	51 PAAVYSLVTR HTGIGRHVGV DGVQFFLDYN DGDEKMLTRI FFKGDLEVIQ LAVAWNRVDI RLAQLYSAAP YPSGGAWDPH WEMGSNAVSS ARLLLRRCPL CPPLIYTRLI	60 120 180 240 300 420 480 540 600 660
50 55	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession 1	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 TVWDSDAHTT VSVLGGSGFP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ELLTVYSSED QWASFHLEAS QASHSAGTKA LLSDKATSPLE MARLEPDAEL MQADARAFFA REELEFDMDS	CTCTGCCTTG A ence: none to 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAF AARRKDLAFT QDGVQSLLTQ VINGEGPVGT	und 31 DFTGAGRKHS RRGLVRAAQS RTLINPKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EPVRLLISHG RPPDVGHVLR WSDLLLWALL FEGMGVDLFG KWWGDMASTT ADFAEKTPLG	41 INFLRLSDRTD TGAMUVTGGL ARYRWRGDPE IDIFVLLLI GEARDRIRRF EASAYLDELL LSLGHFLTPM MLLGKMCAPR LNRAQMAMYF ECYRSSEVRA FIWALVLAFF VFRQSGRPGC	51 PAAVYSLVTR HTGIGRHVGV DGVQFPLDYN DGDEKMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGAWDPH WEMGSNAVSS ARLLLRRCPL CPPLITYRLI CGGRCGGRRC	60 120 180 240 300 420 480 540 600 720
50 55	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218! Protein Accession 1	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 1 VSVLGGSGGA ELLVAGSGGAA ELLVAYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSPL MARLEPDAEE MQADARAFFA REELEFDMDS PVTIFMGNVV	ence: none fo 21 EKPTDAYGEL VLOTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARRKDLAFK QDGVQSLLTQ VINGEGFVGT SYLLFLLFS	UND 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR WSDLLLWALL FEXMGUNLAST ADPAEKTPLG RVLLVDFQPA	41 INFLRLSDRTD TGAMIVTGGL EARPRWRGDPE IDIFVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLLGKMCAPR LNRAQMAMYF ECYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLLY	51	60 120 180 240 300 360 420 480 540 660 6720 780
50 55 60	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession 1 MEDAFGAAVV TWOFRAPHLV AVRDHQMAST YSAFFLVDDG ENATQAQLPC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY ALGACLLLRV WGDATCLQLA TFRKSEEEPT LRWFHFWGA LRQGLSGGGG	PAV9 Protein sequents: 11 1 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAA ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSPL MARLEPDADES MQADARAFFA REELEFDMDS PVTIFMGNVV SLASGGGPGPG	ence: none fo 21 EKPTDAYGEL VICTWICDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARKKDLAFK QDGVQSLLTQ VINGEGPVGT SYLLFLLLFS HASLSQRLRL	und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSPP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR WSDLLLWALL FEGMGVDLFG KWWGDMASTT ADPAEKTPLG RVLLVDFQPA YLADSWNQCD	41 NFLRLSDRTD TGAWIVTGGL ARYRWRGDPE IDIPVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLIGKMCAPR LINRAQMAMYF ECYRSSEVRA PIWALVLAFF VPRQSGRPGC PGSLELLLY LVALTCFLLG	51 PAAVYSLVTR HTGIGRHYGV DGVQFPLDYN DGDERMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGANDPH WEMGSNAVSS ARLLLRCPL CPPLIYTRLI CGGRCGGRC FWAFTLLCEE VGCRLTPGLY	60 120 180 240 300 360 420 480 540 660 720 780 840
50 55	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATQAQLPC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGGGFGESMY WGDATCLQLA TFRKSEEEPT LRWGHFWGG LRWGHFWGGG HLGRTVLCID	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ALLVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSFL MARLEPDAFE MQADARAFFA REELEFDMDS PVTIFMGNVP SLASGGPGVPG FMVFTVRLLH	CTCTGCCTTG A Innone for the control of the contro	und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR WSDLLLWALL FEGMGVDLFG KWWGDMASTT ADPAEKTPLG RVLLVDFVGC KIVLVSKMMK	41 INFLRLSDRTD TGAMIVTGGL ARYRWRGDPE IDIPVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLLGKMCAPR LNRAQMAMYF ECYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLLL LVALTCLLLL DVFFFLFFLG	51 PAAVYSLVTR HTGIGRHVGV DGVQFPLDYN DGDERMLTRI FPKGDLEVLQ LAVAWNVUDI RLAQLYSAAP YPSGGAWDPH WEMGSNAVSS ARLLLRRCPL CPPLIYTRLI CGGRCGGRC FWAFTLLCEE WGCRLTPGLY VWLVAYGVAT	60 120 180 240 300 420 480 540 660 720 780 840 900
50 55 60	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218:1 Protein Accession 1 MEDAFGAAVV TWGFRAFNLV AVRDHQMAST YSAFFLVDDG ENATOAQLPC ENATOAQLPC AQUERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY ALGACLLLRA TFRKSEEPT LRWHHFWGA LRQGLSGGG HLGRTVLCID EGLLRPRDSD	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 TVWDSDAHTT VSVLGGSGPP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ELLTVYSSED QWASFHLEAS QASHSAGTKA LLSDKATSPL MARLEPDAEL MQADARAFFA REELEFDMDS PVTIFMGNVV SLASGGPGPV FMVFTVRLLH FPSILRRVFY	CTCTGCCTTG A cence: none to 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SUARKGLAPK QDGVQSLLTQ VINGEGFVGT SYLLFLLERS LFTVNKQLGP RPYLQIFGQI	UND STATE OF THE S	41 NFLRLSDRTD TGAMUYGGL ARYRWRGDPE IDIFVLLLI GEARDRIRRF EASAYLDELL LSLGHFLTPM MLLGKMCAPR LNRAQMAMYF ECYRSSEVRA FIWALVLAFF VPRQSGRPGC PPGSLELLLY LVALTCFLLG EHSNCSSEPG EHSNCSSEPG	51 PAAVYSLVTR HTGIGRHVGV DGVQFPLDYN DGDEKMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGAWDPH WEMGSNAVSS ARLLLRRCPL CPPLITYRLI CGGRCGGRRC FWAFTLLCEE VGCRLTPGLY VWLVAYGVAT FWAHPPGAQA	60 120 180 240 300 420 480 540 600 720 780 840 900 960
50 55 60	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession MEDAFGAAVV TWGFRAPHLV AVRDHQMAST YSAFFLVDDG ENATQAQLEC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGGGFGESMY ALGACLLRV WGDATCLQLA TFRKSEEPT LRRWFHFWGA LRQGLSGGGG HLGRTVLCID GTCVSQYANW	CCCTGAGCCG CCAAAGACTG PAV9 Protein sector #: 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAA ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSPL MARLEPDAEE MQADARAFFA MRELEPDMDS PVTIPMGNVV SLASGGPGPG FMVFTVRLLH FPSILRRVFY LVVLLLVIFL	CTCTGCCTTG A lence: none fo 21 EKPTDAYGEL VIQTWIQDIL APWGVVRNRD FRIRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARKDLAFK QDGVQSLLTQ VINGEGFVGT SYLLFLLEFS HASLSQRLRL IFTVNKQLGP RPYLQIFGQI LVANILLVNL	und 31 DFTGAGRKHS RRGLVRAAQS TLINFKGSFP QQKTGVGGTG KALVKACGSS EFVRLLISHG RPPDVGHVLR WSDLLLWALL FEGMGVDLFG KWWGDMASTT ADFAEKTPLG RVLLVDFQPA YLADSWNQCD KIVIVSKMMK RQEDMDVALM LIAMFSYTFG	41 NFLRLSDRTD TGAWIVTGGL ARYRWRGDPE IDIPVLLLLI GEARDRIRF EASAYLDELR LSLGHFLTPM MLLGKMCAPR LINRAQMAMYF ECYRSSEVRA PIWALVLAFF PYRQSGRPGC PPGSLELLLY LVALTCFLLG DVFFLFFLLG EHSNCSSEPG KVQGNSDLYW	51	60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020
50 55 60	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession 1 MEDAFGAAVV TWGFRAPHLV AVRDHQMAST YSAFFLVDDG ENATOAQLIE AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY ALGACLLLRV WGDATCLQLA TFRKSEEEPT LRWHHFWGA LRQGLSGGGG HLGRTVLCID EGLLRPRDSD EGLLRPRDSD EGTCVSQYANW FHSRPALAPP	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ELLITVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSPL MARLEPDADE MQADARAFFA REELEFDMDS PVTIPMGNVV SULASGGPGPG FMVFTVRLLH FPSILRRVFTY LVVLLLVIFL PIVISHLRLL	ence: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARKQLAFK QDGVQSLLTQ VINGEGPVGS YLLFLLLFL IFTVNKQLGP RPYLQIFGQI LVANILLVNL LKQLCRPRS	und 31 i DFTGAGRKHS RRGLVRAAQS TLINFKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR FREMGVDLFG KWWGDMASTT ADPAEKTPLG RVLLVDFQPA YLADSWNQCD KIVIVSKMMK PQEDMDVALM LIAMFSYTFG PQPSSPALEH	41 NFLRLSDRTD TGAMIVTGGL ARYRWRGDPE IDIPVLLLLI GEARDRIRRI EASAYLDELR LSLGHFLTPM MLIGKMCAPR ENRAQMAMYF ECYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLY LVALICFLLG DVFFFLFFLG EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE	51 PAAVYSLVTR HTGIGRHYGV DGVQFPLDYN DGDERMLTRI PPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGANDPH WEMGSNAVSS ARLLLRRCPL CPPLIYTRLI CGGRCGGRC FWAFTLLCEE VGCRLTEGLY VWLVAYGVAT FWAHPPCAQA KAQRYRLIRE RKLLTWESVH	60 120 180 240 300 420 480 540 660 720 780 840 900 960 1020 1080
50556065	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATQAQLPC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY WGDATCLQLA TFRKSEEEPT LRRWHFWGG HLGRTVLCID EGLLRPRDSD GTCVSQYAND FHSRPALAPP KENFLLARAR	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ALLVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSFH MARLEPDAFE MQADARAFFA REELEFDMDS PVTIPMGNVP SLASGGPGPVG FMVFTVRLH FPSILRRVFY LVVLLLVIFL DKRESDSERL	CTCTGCCTTG A IGNC6: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFBTIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP PARKGDLAFK QDGVQSLLTQ VINGEGPVGT SYLLFLLELT IFTVNKQLGP RPYLQIFGQI LVANILLVNL LRQLCRPRS KRTSQKVDLA	und 31 i DFTGAGRKHS RRGLVRAAQS TLINFKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR FREMGVDLFG KWWGDMASTT ADPAEKTPLG RVLLVDFQPA YLADSWNQCD KIVIVSKMMK PQEDMDVALM LIAMFSYTFG PQPSSPALEH	41 NFLRLSDRTD TGAMIVTGGL ARYRWRGDPE IDIPVLLLLI GEARDRIRRI EASAYLDELR LSLGHFLTPM MLIGKMCAPR ENRAQMAMYF ECYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLY LVALICFLLG DVFFFLFFLG EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE	51	60 120 180 240 300 420 480 540 660 720 780 840 900 960 1020 1080
50 55 60	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATQAQLPC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY WGDATCLQLA TFRKSEEEPT LRRWHFWGG HLGRTVLCID EGLLRPRDSD GTCVSQYAND FHSRPALAPP KENFLLARAR	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ELLITVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSPL MARLEPDADE MQADARAFFA REELEFDMDS PVTIPMGNVV SULASGGPGPG FMVFTVRLLH FPSILRRVFTY LVVLLLVIFL PIVISHLRLL	CTCTGCCTTG A IGNC6: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFBTIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP PARKGDLAFK QDGVQSLLTQ VINGEGPVGT SYLLFLLELT IFTVNKQLGP RPYLQIFGQI LVANILLVNL LRQLCRPRS KRTSQKVDLA	und 31 i DFTGAGRKHS RRGLVRAAQS TLINFKGSFP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR FREMGVDLFG KWWGDMASTT ADPAEKTPLG RVLLVDFQPA YLADSWNQCD KIVIVSKMMK PQEDMDVALM LIAMFSYTFG PQPSSPALEH	41 NFLRLSDRTD TGAMIVTGGL ARYRWRGDPE IDIPVLLLLI GEARDRIRRI EASAYLDELR LSLGHFLTPM MLIGKMCAPR ENRAQMAMYF ECYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLY LVALICFLLG DVFFFLFFLG EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE	51 PAAVYSLVTR HTGIGRHYGV DGVQFPLDYN DGDERMLTRI PPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGANDPH WEMGSNAVSS ARLLLRRCPL CPPLIYTRLI CGGRCGGRC FWAFTLLCEE VGCRLTEGLY VWLVAYGVAT FWAHPPCAQA KAQRYRLIRE RKLLTWESVH	60 120 180 240 300 420 480 540 660 720 780 840 900 960 1020 1080
50556065	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATQAQLPC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY WGDATCLQLA TFRKSEEEPT LRRWHFWGG HLGRTVLCID EGLLRPRDSD GTCVSQYAND FHSRPALAPP KENFLLARAR	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ALLVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSFH MARLEPDAFE MQADARAFFA REELEFDMDS PVTIPMGNVP SLASGGPGPVG FMVFTVRLH FPSILRRVFY LVVLLLVIFL DKRESDSERL	CTCTGCCTTG A IGNC6: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFBTIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP PARKGDLAFK QDGVQSLLTQ VINGEGPVGT SYLLFLLELT IFTVNKQLGP RPYLQIFGQI LVANILLVNL LRQLCRPRS KRTSQKVDLA	und 31 DFTGAGRKHS RRGLVRAAQS TLINFKGSPP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR FEGMGVDLFG KWWGDMASTT ADPAEKTPLG KWWGDMASTT ADPAEKTPLG KVLLVDFQPA YLADSWNQCD KIVIVSKMMK PQEDMDVALM LIAMFSYTFG PQFSSPALEH LKQLGHIREY	GTGGGCCGCC 41 NFLRLSDRTD TGAWIVTGGL ARYRWRGDPE IDIFVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLIGKMCAPF ECYRSSEVRA PIWALVLAFF VPROSGRPGC PPGSLELLLY LVALTCFLLG DVFFFLFFLG EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE EQRLKVLERE	51 PAAVYSLVTR HTGIGRHYGV DGVQFPLDYN DGDERMLTRI PKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGANDHY RMGSNAVYS ARLLRRCPL CPPLIYTRLI CGGRCGGRRC CFWAFTLLCEE VGCRLTPGLY VWLVAYGVAT FWAHPPGAQA KAQRYRLIRE RKLLTWESVH VQQCSRVLGW	60 120 180 240 300 360 420 480 660 720 840 900 960 1020 1080 1140
50556065	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATOAQUEE AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY ALGACLLLRV WGDATCLQLA TFRKSEEEPT LRWHHFWGA LRQGLSGGGG HLGRTVLCID EGLLRPRDSD GTCVSQYANW PHSRPALAPP KENFLLARAR VAEALSRSAL	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 1 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR LLVAGSGGAR LLSDKATSPL MARLEPDADE MQADARAFFA REELEFDMDS PVTIPMGNVV SVLASGGGPGF FWFTVRLLH FPSILRRVFTY LIVLLLVIFL LIVLLLVIFL LIVLSGERL LPPGGPPPPD	ence: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARKQLAFK QDGVQSLLTQ VINGEGPVGT SYLLFLLLFS SYLLFLLLFS HASLSQRLFL IFTVNKQLGP RPYLQIFGQI LVANILLVNL LRQLCRPRS KRTSQKVDLA LPGSKD	und 31 DFTGAGRKHS RRGLVRAAQS TLINFKGSPP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR FEGMGVDLFG KWWGDMASTT ADPAEKTPLG KWWGDMASTT ADPAEKTPLG KVLLVDFQPA YLADSWNQCD KIVIVSKMMK PQEDMDVALM LIAMFSYTFG PQFSSPALEH LKQLGHIREY	GTGGGCCGCC 41 NFLRLSDRTD TGAWIVTGGL ARYRWRGDPE IDIFVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLIGKMCAPF ECYRSSEVRA PIWALVLAFF VPROSGRPGC PPGSLELLLY LVALTCFLLG DVFFFLFFLG EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE EQRLKVLERE	51 PAAVYSLVTR HTGIGRHYGV DGVQFPLDYN DGDERMLTRI PPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGANDPH WEMGSNAVSS ARLLLRRCPL CPPLIYTRLI CGGRCGGRC FWAFTLLCEE VGCRLTEGLY VWLVAYGVAT FWAHPPCAQA KAQRYRLIRE RKLLTWESVH	60 120 180 240 300 360 420 480 660 720 840 900 960 1020 1080 1140
50556065	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATOAQLFC AQVERIMTRK AQSELFRGDI SNSLIRNLLD FGQGFGESMY WGDATCLQLA TFRKSEEEPT LRRWFHFWGA LRQGLSGGGG HLGRTVLCID EGLLRPRDSD GTCVSQYANW FHSRPALAPP KENFLLARAR VAEALSRSAL Nucleic Acid Acce	CCCTGAGCCG CCAAAGACTG PAV9 Protein secunities 11 1 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSFL LLSTATE MQADARAFFA REELEFDMDS PVTIPMGNVD SVLASGGFGPV FWVFTVRLLH FPSILRRVFY LVVLLLVIFL PTVISHLRLL DKRESDSERL LPPGGPPPPD	CTCTGCCTTG A IGNC6: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARKOLAFK QDGVQSLLTQ VINGEGPVGT SYLLFLLELT IFTVNKQLGP RPYLQIFGQI LVANILLVNL LRQLCRPRS KRTSQKVDLA LPGSKD AA054237	und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSFP QQKTGVGGTG LAPGSGGARQ QKTGVAGTG RPPDVGHVLR WSDLLLWALLISHG RWGDMASTT ADPAEKTPLG RVLLVDFQPA YLLADSWQPA YLLADSWQPA KIVIVSKMK PQEDMDVALM LIAMFSYTFG PQPSSPALEH LKQLGHIREY	41 INFLRLSDRTD TGAMIVTGGL ARYRWRGDPE LDIPVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLLGKMCAPR LNRAQMAWTS FCYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLLY LVALTCFLLY LVALTCFLLY LVALTCFLLY EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE EQRLKVLERE	S1 PAAVYSLVTR HTGIGRHVGV DGVQFFLDYN DGDEKMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGAWDPH WEMGSNAVSS ARLLLRRCPL CPPLIYTRLI CGGRCGGRRC FWAFTLLCE FWAFTLLCE KAQRYELIPE KAQRYELIPE KKLLTWESVH VQQCSRVLGW DNA SEQUENCE	60 120 180 240 300 360 420 480 660 720 840 900 960 1020 1080 1140
5055606570	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:2181 Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATOAQUEE AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY ALGACLLLRV WGDATCLQLA TFRKSEEEPT LRWHHFWGA LRQGLSGGGG HLGRTVLCID EGLLRPRDSD GTCVSQYANW PHSRPALAPP KENFLLARAR VAEALSRSAL	CCCTGAGCCG CCAAAGACTG PAV9 Protein secunities 11 1 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSFL LSDKATSFL	CTCTGCCTTG A IGNC6: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARKOLAFK QDGVQSLLTQ VINGEGPVGT SYLLFLLELT IFTVNKQLGP RPYLQIFGQI LVANILLVNL LRQLCRPRS KRTSQKVDLA LPGSKD AA054237	und 31 DFTGAGRKHS RRGLVRAAQS TLINFKGSPP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR FEGMGVDLFG KWWGDMASTT ADPAEKTPLG KWWGDMASTT ADPAEKTPLG KVLLVDFQPA YLADSWNQCD KIVIVSKMMK PQEDMDVALM LIAMFSYTFG PQFSSPALEH LKQLGHIREY	41 INFLRLSDRTD TGAMIVTGGL ARYRWRGDPE LDIPVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLLGKMCAPR LNRAQMAWTS FCYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLLY LVALTCFLLY LVALTCFLLY LVALTCFLLY EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE EQRLKVLERE	S1 PAAVYSLVTR HTGIGRHVGV DGVQFFLDYN DGDEKMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGAWDPH WEMGSNAVSS ARLLLRRCPL CPPLIYTRLI CGGRCGGRRC FWAFTLLCE FWAFTLLCE KAQRYELIPE KAQRYELIPE KKLLTWESVH VQQCSRVLGW DNA SEQUENCE	60 120 180 240 300 360 420 480 660 720 840 900 960 1020 1080 1140
50556065	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATQAQLFC AQVERIMTRK AQSELFRGDI SNSLIRNLLD FGQGFGESMY WGDATCLQLA TFRKSEEEPT LRWFHFWGA LRQGLSGGGG HLGRTVLCID EGLLRPRDSD GTCVSQYANW FHSRPALAPP KENFLLARAR VAEALSRSAL Nucleic Acid Acce	CCCTGAGCCG CCAAAGACTG PAV9 Protein secunities 11 1 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSFL LSDKATSFL	CTCTGCCTTG A IGNC6: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARKOLAFK QDGVQSLLTQ VINGEGPVGT SYLLFLLELT IFTVNKQLGP RPYLQIFGQI LVANILLVNL LRQLCRPRS KRTSQKVDLA LPGSKD AA054237	und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSFP QQKTGVGGTG LAPGSGGARQ QKTGVAGTG RPPDVGHVLR WSDLLLWALLISHG RWGDMASTT ADPAEKTPLG RVLLVDFQPA YLLADSWQPA YLLADSWQPA KIVIVSKMK PQEDMDVALM LIAMFSYTFG PQPSSPALEH LKQLGHIREY	41 INFLRLSDRTD TGAMIVTGGL ARYRWRGDPE LDIPVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLLGKMCAPR LNRAQMAWTS FCYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLLY LVALTCFLLY LVALTCFLLY LVALTCFLLY EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE EQRLKVLERE	S1 PAAVYSLVTR HTGIGRHVGV DGVQFFLDYN DGDEKMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGAWDPH WEMGSNAVSS ARLLLRRCPL CPPLIYTRLI CGGRCGGRRC FWAFTLLCE FWAFTLLCE KAQRYELIPE KAQRYELIPE KKLLTWESVH VQQCSRVLGW DNA SEQUENCE	60 120 180 240 300 360 420 480 660 720 840 900 960 1020 1080 1140
5055606570	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATQAQLFC AQVERIMTRK AQSELFRGDI SNSLIRNLLD FGQGFGESMY WGDATCLQLA TFRKSEEEPT LRWFHFWGA LRQGLSGGGG HLGRTVLCID EGLLRPRDSD GTCVSQYANW FHSRPALAPP KENFLLARAR VAEALSRSAL Nucleic Acid Acce	CCCTGAGCCG CCAAAGACTG PAV9 Protein secunities 11 1 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSFL LSDKATSFL	CTCTGCCTTG A IGNC6: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARKOLAFK QDGVQSLLTQ VINGEGPVGT SYLLFLLELT IFTVNKQLGP RPYLQIFGQI LVANILLVNL LRQLCRPRS KRTSQKVDLA LPGSKD AA054237	und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSFP QQKTGVGGTG LAPGSGGARQ QKTGVAGTG RPPDVGHVLR WSDLLLWALLISHG RWGDMASTT ADPAEKTPLG RVLLVDFQPA YLLADSWQPA YLLADSWQPA KIVIVSKMK PQEDMDVALM LIAMFSYTFG PQPSSPALEH LKQLGHIREY	41 INFLRLSDRTD TGAMIVTGGL ARYRWRGDPE LDIPVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLLGKMCAPR LNRAQMAWTS FCYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLLY LVALTCFLLY LVALTCFLLY LVALTCFLLY EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE EQRLKVLERE	S1 PAAVYSLVTR HTGIGRHVGV DGVQFFLDYN DGDEKMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGAWDPH WEMGSNAVSS ARLLLRRCPL CPPLIYTRLI CGGRCGGRRC FWAFTLLCE FWAFTLLCE KAQRYELIPE KAQRYELIPE KKLLTWESVH VQQCSRVLGW DNA SEQUENCE	60 120 180 240 300 360 420 480 660 720 840 900 960 1020 1080 1140
5055606570	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession I MEDAFGAAVV TWGFRAPRILV AVRDHQMAST YSAFFLVDDG ENATQAQLPC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY ALGACLLRV WGDATCLQLA TFRKSEEPT LRRWFHFWGA LRQGLSGGGG HLGRTVLCID GTCVSQYANW FHSRPALAPP KENFLLARAR VAEALSRSAL Nucleic Acid Acce Coding sequence	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAA ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSPL MARLEPDAEE MQADARAFFA REELEPDMDS PVTIFMGNVV SLASGGPGPG FMVFTVRLLH FPSILRRVFY LVVLLLVIFL PIVISHLRLL DKRESDSERL LPPGGPPPPD ESSION #:	ence: none fo 21 EKPTDAYGEL VILOTWILODIL APWGVVRNRD FRIRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGABEL SLDAGLGQAP AARKDLAFK QDGVQSLLTQ VINGEGFVGT SYLLFLLFS HASLSQRLRL IFTVNKQLGP LVANILLVNL LRQLCRPRS KRTSQKVDLA LPGSKD AA054237 1-894 (undefir	und 31 DFTGAGRKHS RRGLVRAAQS TLINFKGSPP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLL FEGMGVDLFG KWGDMASTT ADPAEKTPLG RVLLVDFQPA YLADSWNQCD KIVIVSKMMK PQEDMDVALM LIAMFSYTFG PQFSSPALEH LKQLGHIREY sed sequences core	41 INFLRLSDRTD TGAWIVTGGL ARYRWRGDPE IDIPVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLIGKMCAPR LINRAQMAMYF ECYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLLY LVALTCFLLG DVFFIFFLG EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE EQRLKVLERE ID NO:219 PBF1 respond to start an	51 PAAVYSLVTR HTGIGRHYGV DGVQFPLDYN DGDERMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGAVDPH WEMGSNAVSS ARLLRRCPL CPPLIYTRLI CCGRCGGRRC FWAFTLLCEE VGCRLTPGLY VWLVAYGVAT FWAHPPGAQA KAQRYRLIRE RKLLTWESVH VQQCSRVLGW DNA SEQUENCE	60 120 180 240 300 360 420 480 660 720 840 900 960 1020 1080 1140
5055606570	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession 1 MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATQAQLFC AQVERIMTRK AQSELFRGDI SNSLIRNLLD FGQGFGESMY WGDATCLQLA TFRKSEEEPT LRRWHHFWGA LRQGLSGGGG HLGRTVLCID EGLLRPRDSD GTCVSQYAND FHSRPALAPP KENFLLARAR VAEALSRSAL Nucleic Acid Acce Coding sequence 1	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents: 11 1 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ALLVAGSGGAR ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSFH MQADARAFFA REELEFDMDS PVTIPMGNVD SLASGGPGPGF FMVFTVRLLH FPSILRRVFY LVVLLLVIFL PTVISHLRLL DKRESDSERL LPPGGPPPPD ESSION #: 11	CTCTGCCTTG A IGNC6: none fo 21 EKPTDAYGEL VLQTWLQDLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARKDLAFK QDGVQSLLTQ VINGEGPVGT SYLLFLLELL IFTVNKQLGP RPYLQIFGQI LVANILLVNL LRQLCRPRS KRTSQKVDLA LPGSKD AA054237 1-894 (undefir	und 31 DFTGAGRKHS RRGLVRAAQS TLINPKGSFP QQKTGVGGTG LAPGSGGARQ QKTGVKGUS EFVRLLISHG RPPDVGHVLR WSDLLLWALL FEGMGVDLFG KWWGDMASTT ADPAEKTPLG RVLLVDFWQPD KIVIVSKMMK PQEDMDVALM LIAMFSYTFG PQPSSPALEH LKQLGHIREY sed sequences cor 31	41 INFLRLSDRTD TGAMIVTGGL ARYRWRGDPE LDIPVLLLLI GEARDRIRRF EASAYLDELR LSIGHFLTPM MLIGKMCAPR LNRAQMAWTS FEVYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLLY LVALTCFLLY LVALTCFLLY LVALTCFLLY EHSNCSSEPG KVQGNSDLYA FRUYLSKEAE EQRLKVLERE ID NO.219 PBF (respond to start and s	S1 PAAVYSLVTR PAAVYSLVTR PAAVYSLVTR PAGUENCE PAGUENCE	60 120 180 240 300 360 420 480 660 720 840 900 960 1020 1080 1140
505560657075	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218 I Protein Accession MEDAFGAAVV TWGFRAPNLV AVRDHQMAST YSAFFLVDDG ENATOQALIPC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGGGFGESMY ALGACLLRV WGDATCLQLA TFRKSEEPT LRRWFHFWGA LRQGLSGGGG HLGRTVLCID GTCVSQYANW FHSRPALAPP KENFLLARP VAEALSRSAL Nucleic Add Acce Coding sequence 1 ATGGAGCCCGC	CCCTGAGCCG CCAAAGACTG PAV9 Protein section #: 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAR ELLTVYSSED GWRSFHLEAS QASHSAGTKA LLSDKATSPL MARLEPDAEE MQADARAFFA MRELEPDMDS PVTIPMGNVV SLASGGPGPG FMVFTVRLLV LVVLLLVIFL PIVISHLRLL LPPGGPPPPD SSION #: 11 GGGCGCCTCGT	CTCTGCCTTG A Lence: none fo 21 EKPTDAYGEL VIQTWIQDLL APWGVVRNRD FRLRLESYIS CLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARKDLAFK QDGVQSLLTQ VINGEGFVGT SYLLFLLFS HASLSQRLRL IFTVNKQLGP LVANILLVNL LRQLCRRPRS KRTSQKVDLA LPGSKD AA054237 1-894 (underlin 21 CACGGCGCCTC	und 31 DFTGAGRKHS RRGLVRAAQS TLINFKGSFP QOKTGVGGTG RAPEVGEAVG RALVKACGSS EFVRLLISHG RPPDVGHVLR WSDLLLWALL FEGMGVDLFG KWWGDMASTT ADPAEKTPLG RVLLVDFQPA YLADSWNQCD KIVIVSKMMK PQEDMDVALM LIAMFSYTFG PQFSPALEH LKQLGHIREY SEC	41 INFLRESDRTD TGAMIVTGGL ARYRWRGDPE IDIPVLLLLI GEARDRIRF EASAYLDELR LSLGHFLTPM MLLGKMCAPR LINRAQMAMYF ECYRSSEVRA PIWALVLAFF EYRGSRPGC PPGSLELLLY LVALTCFLLG DVFFFLFFLG KVQGNSDLYW FRVYLSKEAE EQRLKVLERE 2 ID NO:219 PBF1 respond to start at 41 TCAGCCTGTG	51 PAAVYSLVTR HTGIGRRIVGV DGVQFPLDYN DGDERMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGAWDPH WEMGSNAVSS ARLLRRCPL CPPLIYTRLI CGGRCGGRRC FWAFTLLCEE VGCRLTFGLY VWLVAYGVAT FWAHPPGRQA KAQRYRLIRE RKLLTWESVH VQQCSRVLGW DNA SEQUENCE ad stop codons) 51 CTCCCTGGGG	60 120 180 240 300 420 480 540 660 720 780 900 960 1020 1080 1140
505560657075	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218:1 Protein Accession 1 MEDAFGAAVV TWGFRAFNLV AVRDHQMAST YSAFFLVDDG ENATQAQLPC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY MGDATCLQLA TFRKSEEEPT LRWFHFWGA LRQGLSGGGG HLGRTVLCID GTCVSQYANW PHSRPALAPP KENFLLARAR VAEALSRSAL Nucleic Add Acce Coding sequence 1 ATGGAGCCGC CTGCTCGTCA	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAA ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSPL MQADARAFFA REELEFDMDS PVTIFMGNVV SLASGGPGPG FMVFTVRLH FPSILRRVFY LUVLLLVIFL PIVISHLRLL DKRESDSERL LPPGGPPPPD ESSION #: 11 GGGCGCCTCGT CGGCCATCTT	CTCTGCCTTG A Lence: none fo 21 EKPTDAYGEL VICTWICOLL APWGVVRNRD FRLRLESYIS DCLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL LMDALLNDRP AARKGLAFK QDGVQSLLTQ VINGEGPVGT SYLLFLLLFS HASLSQRLR LFTUNKQLGP RPYLQIFGQI LVANILLVNL LRQLCRPRS KRTSQKVDLA LPGSKD AA054237 1-894 (undedir 21 CACGGCGCGCTC CACCGACCAC	und 31 DFTGAGRKHS RRGLVRAAQS TLINFKGSPP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR WSDLLLWALL FEGMGVDLFG KWWGDMASTT ADFAEKTPLG KULVDFQPA YLADSWNQCD KIVIVSKMMK PQEDMDVALM LIAMFSYTFG PQFSSPALEH LKQLGHIREY sed sequences cor 31 AGCCTCGGCC TGGTACGAGA	41 NFLRLSDRTD TGAMIVTGGL ARYRWRGDPE IDIFVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLIGKMCAPR ELNRAQMAMYF ECYRSSEVRA PIWALVLAFF VPRQSGRPGC PPGSLELLLY LVALTCFLLG DVFFFLFFLG EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE EQRLKVLERE 10 NO:219 PBF1 (espond to start at 41 TCAGCCTGTG CCGACCCCCG	51 PAAVYSLVTR HTGIGRHYGV DGVQFPLDYN DGDERMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGANDPH WEMGSNAVSS ARLLRRCPL CPPLIYTRLI CCGRCGGRCC FWAFTLLCEE VGCRLTPGLY VWLVAYGVAT FWAHPPGAQA KAQRYRLIRE RKLLTWESVH VQCCSRVLGW DNA SEQUENCE dd slop codons) 51 CTCCCTGGGG GCCCCCACAG	3480 60 120 180 240 300 360 420 480 660 720 840 900 960 1020 1080 1140
5055606570	GTGGCCGAGG CTGCCTGGGT SEQ ID NO:218:1 Protein Accession 1 MEDAFGAAVV TWGFRAFNLV AVRDHQMAST YSAFFLVDDG ENATQAQLPC AQVERIMTRK AQSELFRGDI SNSLIRNLLD PGQGFGESMY MGDATCLQLA TFRKSEEEPT LRWFHFWGA LRQGLSGGGG HLGRTVLCID GTCVSQYANW PHSRPALAPP KENFLLARAR VAEALSRSAL Nucleic Add Acce Coding sequence 1 ATGGAGCCGC CTGCTCGTCA	CCCTGAGCCG CCAAAGACTG PAV9 Protein sequents 11 TVWDSDAHTT VSVLGGSGGP GGTKVVAMGV THGCLGGENR LLVAGSGGAA ELLTVYSSED QWRSFHLEAS QASHSAGTKA LLSDKATSPL MQADARAFFA REELEFDMDS PVTIFMGNVV SLASGGPGPG FMVFTVRLH FPSILRRVFY LUVLLLVIFL PIVISHLRLL DKRESDSERL LPPGGPPPPD ESSION #: 11 GGGCGCCTCGT CGGCCATCTT	CTCTGCCTTG A Lence: none fo 21 EKPTDAYGEL VIQTWIQDLL APWGVVRNRD FRLRLESYIS CLAETLEDT GSEEFETIVL LMDALLNDRP PALKGGAAEL SLDAGLGQAP AARKDLAFK QDGVQSLLTQ VINGEGFVGT SYLLFLLFS HASLSQRLRL IFTVNKQLGP LVANILLVNL LRQLCRRPRS KRTSQKVDLA LPGSKD AA054237 1-894 (underlin 21 CACGGCGCCTC	und 31 DFTGAGRKHS RRGLVRAAQS TLINFKGSPP QQKTGVGGTG LAPGSGGARQ KALVKACGSS EFVRLLISHG RPPDVGHVLR WSDLLLWALL FEGMGVDLFG KWWGDMASTT ADFAEKTPLG KULVDFQPA YLADSWNQCD KIVIVSKMMK PQEDMDVALM LIAMFSYTFG PQFSSPALEH LKQLGHIREY sed sequences cor 31 AGCCTCGGCC TGGTACGAGA	41 NFLRLSDRTD TGAMIVTGGL ARYRWRGDPE IDIFVLLLLI GEARDRIRRF EASAYLDELR LSLGHFLTPM MLIGKMCAPR EXSEVRA PIWALVLAFF CYRSSEVRA PIWALVLAFF UFRQSGRPGC PPGSLELLLY LVALTCFLLG DVFFFLFFLG EHSNCSSEPG KVQGNSDLYW FRVYLSKEAE EQRLKVLERE 10 NO:219 PBF1 (espond to start at 41 TCAGCCTGTG CCGACCCCCG	51 PAAVYSLVTR HTGIGRHYGV DGVQFPLDYN DGDERMLTRI FPKGDLEVLQ LAVAWNRVDI RLAQLYSAAP YPSGGANDPH WEMGSNAVSS ARLLRRCPL CPPLIYTRLI CCGRCGGRCC FWAFTLLCEE VGCRLTPGLY VWLVAYGVAT FWAHPPGAQA KAQRYRLIRE RKLLTWESVH VQCCSRVLGW DNA SEQUENCE dd slop codons) 51 CTCCCTGGGG GCCCCCACAG	60 120 180 240 300 420 480 540 660 720 780 900 960 1020 1040

5	GGCCCGGGC GCCGAGTGCG CTGGGCATGC GCCATCAAGT AAGACCATAC CTCGGCATGG TGGGAGGAGA TGCACCATTT AAGCTAATTT GCCTGGTGCA	ACCTGCCGCT GCGCCCGACCC GCCGGCCCCT ACCGGGACAT ACCACTTTTC AGCAAGATGA CCGTAGCCGT GCTTGACCCA ATAGCCTGCC GTTTAGGCTTCC CCAAGATTGC	CGAGTCCTGG CTTCGCCACC CGACACCCTC TCAGCACCTG CTTGCCACCTG CCTTCTCTGC GCACGTGGCT TTATGCCGCC TGCTGATGTG TATTGTGGCA	CGCTCGCTCC TACTCGGGCC ATCCTGAAAG CGCTTGCGAA CTTCATTTAA GGCTGCATTG GGACTCCTGT GAACATGGTT GCTGGAGGTC	TGGGGCTCGG TCTGGAGGAA GTATTGCGCA ACATTCCTTT GAAGAATCAC TGGCCACAGT TCCTCATGAC ATGATTGAA ACAGCTGGTC TCTGCATCGC	CGGGCTGGAC GTGCTACTTC GCGATGCACG TRATTTAACC TGCTGGCTTC CAGTTTCTTC AGGGATATTT CCGGCTCCCA CATCTTTTGC TTATCCGTTT	240 300 360 420 480 540 600 660 720 780 840
15	SEQ ID NO:220 I Protein Accession	PBF1 Protein sequ n#:	none found				
20 25	PLSHLPLRDS LGIDRDIDTL LGMAVAVLLC	11 SLGLSLCSLG PPLGRRLLPG ILKGIAQRCT GCIVATVSFF EHGYSWSIFC	GPGRADPESW AIKYHFSQPI WEESLTQHVA	RSLLGLGGLD RLRNIPFNLT GLLFLMTGIF	AECGRPLFAT KTIQQDEWHL CTISLCTYAA	YSGLWRKCYF LHLRRITAGF SISYDLNRLP	60 120 180 240
25				SF	O ID NO:221 PCI	DNA SEQUENCE	
	Nucleic Acid Acco		NM_016570 1- 1134 (under	fined sequences o			
30	υ,		,	•	·	, ,	
	1	11	21 	31 	41	51 	
35	AAGGTTCCTG TTTACAACTA AAGTATGAAT ACTGTTGCCA	TGAATCGGAA AGAGCTATGT TGGCTTTATT ACGAAGTAGA TGAAGTGTCA	AGAGACTTCA AACCATAATG CAAGGATTTT ATATGTTGGA	GCCAGTGGAG GAATTCTCAG TCTAGCAAAT GCGGATGTAT	GTACAGTTTC TATATCAAGA TAAGAATTAA TGGATTTAGC	TGCCTTTCCG TCTAATAGCA TACATGGATG TATAGATATT AGAAACAATG	60 120 180 240 300
40	AAAGAGTGGC CAAGATGTGA GATGATTCAT GTAGCAGGGA	CAGATGGTTT AGAGGATGCT TATTTAAAAG CACAGTCTCC ATTTTCACAT	GCAGCTGATT TGCTTTTAAA AAATGCATGC AACAGTGGGC	CAGAGTAGGC AGTACATCAA AGAATTCATG AAGGCAATTC	TACAAGAAGA CAGCTCTTCC GCCATCTATA CACATCCTCG	GCATTCACTT ACCAAGAGAA TGTCAATAAA TGGTCATGCA	360 420 480 540 600
45	TCTTTTGGAG ATAGATCACA TATAAAATAT CATGCTGCAG	CACTTGTCAA AGCTTGTTCC ACCAGATGTT CAGCAGACAC GCAGCCATGG	AGCAATTATT CCAATATTTT CCATCAGTTT AGTCTCTGGG	AATCCTTTAG ATTACAGTTG TCTGTGACAG ATATTTATGA	ATGGAACTGA TGCCAACAAA AAAGGGAACG AATATGATCT	AAAAATTGCT ACTACATACA TATCATTAAC CAGTTCTCTT	660 720 780 840 900
50	ATTGTTGGAG GAAATAATTT	TTACTGAGGA GAATCTTTTC GCTGTCGTTT ACACAGACAA	AACAACAGGC CAGACTTGGA	ATGTTACATG TCCTATAAAC	GAATTGGAAA CTGTCAATTC	ATTTATAGTT TGTTCCTTTT	960 1020 1080
55	SEQ ID NO:222 Protein Accession	PC14 Protein sequ n #:	ence: NP_057654				
	1	11	21	31	41	51 !	
60	KYEYEVDKDF KEWQRMLQLI VAGNFHITVG	KAIPHPRGHA	TVAMKCQYVG QDVIFKSAFK HLAALVNHES	ADVLDLAETM STSTALPPRE YNFSHRIDHL	VASADGLVYE DDSSQSPNAC SFGELVPAII	PTVFDLSPQQ RIHGHLYVNK NPLDGTEKIA	60 120 180 240 300
65		ITVVPTKLHT FWQFFVRLCG LLENNTH					360
				SE	Q ID NO:223 PEZ:	3 DNA SEQUENCE	į
70	Nucleic Acid According sequence		NM_001935.1 76-2301 (unde		correspond to star	t and stop codons)	
75	1	11	21	31	41	51	
	GAGGAGACGC GCGCTTGTCA ACAGCTGACA	CGCCGCCCGC CGACGATGAA CCATCATCAC GTCGCAAAAC	GACACCGTGG CGTGCCCGTG TTACACTCTA	AAGATTCTTC GTTCTGCTGA ACTGATTACT	TGGGACTGCT ACAAAGGCAC TAAAAAATAC	GGGTGCTGCT AGATGATGCT TTATAGACTG	60 120 180 240
80	AAGTTATACT	CCTTAAGATG	GATTTCAGAT	CATGAATATC	TCTACAAACA		300

		TCAATGCTGA					360
		GACATTCTAT					420
		ACTACGTGAA					480
~		AAAGGCAGCT					540
5		CAGTGGGTCA					600
		ATTTACCAAG					660
		CTGACTGGGT					720
		ACGGCACTTT					780
10		CCTTCTACTC					840
10		CAGGAGCTGT					900
		TCACCAATGC					960
		ACTTGTGTGA					1020
		TTCAGAACTA					1080
15		GCTTAGTGGC					1140
13		CTTCAGAACC					1200 1260
		AAGGCACCTG					1320
		GTAATGAATA					1380
		ATACAAAAGT					1440
20		TGTCATTCAG					1500
20		TCTATACTCT					1560
		CTTTGGATAA					1620
		TGAATGAAAC					1680
						TCAAAAAGCA	1740
25		TCAGACTGAA					1800
		ATGGCAGAGG					1860
		GAACATTTGA					1920
						AGGGTACGTA	1980
	ACCTCAATGG	TCCTGGGATC	GGGAAGTGGC	GTGTTCAAGT	GTGGAATAGC	CGTGGCGCCT	2040
30	GTATCCCGGT	GGGAGTACTA	TGACTCAGTG	TACACAGAAC	GTTACATGGG	TCTCCCAACT	2100
		ACCTTGACCA					2160
		AGTACCTCCT					2220
		TCTCCAAAGC					2280
25		ACCATGGAAT					2340
35		TAAAACAATG					2400
		AAACTCATTT					2460
		AATACACACT					2520
		TCTTAAGTAG					2580
40		CGGTCGGGTT					2640 2700
70		GACTGGTTCA					2760
		CTAGGGCAGG					2820
		CCCAAGTCCA					2880
		TTCACCACGA					2940
45		AATATCGAAA					3000
		AAGGGAAACT					3060
		ACACAGCAAG					3120
	TACTGATGTT	CCTAGTGAAA	GAGGCAGCTT	GAAACTGAGA	TGTGAACACA	TCAGCTTGCC	3180
5 0	CTGTTAAAAG	ATGAAAATAT	TTGTATCACA	AATCTTAACT	TGAAGGAGTC	CTTGCATCAA	3240
50	TTTTTCTTAT	TTCATTTCTT	TGAGTGTCTT	AATTAAAAGA	ATATTTTAAC	TTCCTTGGAC	3300
						ATTCTACATA	3360
	CTATGGAATT	TCTCCCAGTC	ATTTAATAAA	TGTGCCTTCA	TTTTTTC		
55		DC-7-0					
JJ		PEZ3 Protein sequ					
	Protein Accession	1 #:	NP_001926.1	•			
		11	24	31	41	51	
	1	11	21	31	1	1	
60	MANDAMENT I'C	LLGAAALVTI	TORRESONAL TANK	COUDANADED	POVOTATION I	NTVDI.VI.VCI.	60
00		KQENNILVFN					120
		SYDIYDLNKR					180
		EDITYNGITD					240
		TVRVPYPKAG					300
65		ISLQWLRRIQ			_		360
		FYKIISNEEG					420
	EYKGMPGGRN	LYKIQLIDYT	KVTCLSCELN	PERCOYYSVS	FSKEAKYYQL	RCSGPGLPLY	480
	TLHSSVNDKG	LRVLEDNSAL	DKMLQNVQMP	SKKLDFIILN	ETKFWYQMIL	PPHFDKSKKY	540
70		CSQKADTVFR					600
70		RQFSKMGFVD					660
		MGLPTPEDNL				VHFQQSAQIS	720
	KALVDVGVDF	QAMWYTDEDH	GIASSTAHQH	IYTHMSHFIK	QCFSLP		
				0=	n ID NO-005 BD I	DAIA OFOUTNOC	
75	Mustala Asid Asso	scelon #1	(-		2 IU NO:223 PBJ2	2 DNA SEQUENCE	
13	Nucleic Acid Acce Coding sequence		none fo		noe compensant to	start and stop code	ine)
	Annual sering sec	•	ן ועברו	wweimen sednen	oo oonospona to	wie swp cool	1.07
						•	
	1	11	21	31	41	51	
80	i		1	1.	1	1	
	•					•	
					39	1	
					57	-	

5 .	AGAAGTGTGA AGAAACCCTC GTGGAAATGA	TTAAAGTGCG AGGAGCTCTG	GGAGCCAAAC TGCTAACCAG GATGGGCCTG AGTCTGGTCC A	TGTTCCCTGC CTCCTCTTGA	ATGAGGCAGA TGGGGGTCCT	AAGTGAATCC AGAAGCATGT	60 120 180 240
10	SEQ ID NO:226 Protein Accession	PBJ2 Protein sequ n #:	ence: none fo	und			
10			21 RSVIKVRANQ	31 CSLHEAESES	41 RNPQELWMGL	51 LLLMGVLEAC	60
15	VEMKPLSVW	S LRDDKEQSI	H QPILDV	SE	0 ID NO:227 PBM	2 DNA SEQUENCE	
	Nucleic Acid Acc Coding sequence		none fo 1-462 (und		start and stop codo	
20							
25	CTCATACTT	CTGTATGTT	TGGATCAGC	A AATATAGTC	A GCCCTCTAC	51 AAAAACTGCT TGAGCAAAAT TCTAGTCATC	60 120 180
30	TTTATGGCT/ AACCTGACT/ AGCAGAACA(A TTGAAGAAGA A ATGGTGCCGG C CTGAAAGCC	A AATGAAGAAG C TGCTGGCAAG A GCAATTCC	G CACGGAAGTY F GGTGATGATY F GACACTGAGY	A CTCATGTGGG G GATTAATTCG A ATGAAGAGT	A GCTAGAAGAT G ATTCCCAGAA C TCCAAGGAAG A TCACAGGTTT	300 360
50		PBM2 Protein seq	PAGATATGCG6 <u>Jence:</u> none fo		r GA		
35		•					
JJ	1	11	21	31	41	51	
40			 LILAVCCGSA FMATEREMEK			RPESMLFLVI GDDGLIPPRK	60 120
40	SRTPESQQFP		VKDQIVVDM				
40		DTENEEYHRF	VKDQIVVDM	R RYF		2 DNA SEQUENCE	
40	Nucleic Acid Acc	DTENEEYHRF	VKDQIVVDM NM_014253	R RYF SE	Q ID NO:229 PEZ:		
40		DTENEEYHRF	VKDQIVVDM NM_014253	R RYF SE	Q ID NO:229 PEZ:	2 DNA SEQUENCE and stop codons)	
	Nucleic Acid Acc Coding sequence	DTENEEYHRF ession #: .: 11	NM_014253 65-8242 (under	R RYF SEC	Q ID NO:229 PEZ: correspond to start	and stop codons) 51	
45	Nucleic Acid According sequences	DTENEEYHRF ession #: : 11 attraaagac	NM_014253 65-8242 (under 21 TTCCTCATCC	R RYF SECTION OF THE PROPERTY	Q ID NO:229 PEZ: correspond to start 41 J GAAACTGAGC	and stop codons) 51 TTGCTTAATC	60
	Nucleic Acid Acco Coding sequence 1 GACTGCTTGC AGAGATGGAG	DTENEEYHRF ession #: 11 I ATTAAAGGAC CAAACTGACT	NM_014253 65-8242 (under	R RYF SECTION ASSECTION AS	Q ID NO:229 PEZ: correspond to start 41 GAAACTGAGC CCAAAAGTCA	and stop codons) 51 TTGCTTAATC AGCATGAAAT	
45	Nucleic Acid Acce Coding sequence 1	DTENEEYHRF ession #: 11 I ATTARAGGACT CARACTGACT TACACCAGTT AGGGAGACCC	VKDQIVVDM NM_014253 65-8242 (under 21 TTCCTCATCC GCAAACCCTA CTTCTGATGA TGCACGAGTA	R RYF SECTION OF THE PROPERTY	Q ID NO:229 PEZ: correspond to start 41 	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG	60 120 180 240
45	Nucleic Acid Acce Coding sequence 1	DTENEEYHRF ession #: 11 ATTAAAGGAC CAAACTGACT TACACCAGT TACACCAGT AGGGAGACCC AAGAGGAAAG	VKDQIVVDM NM_014253 65-8242 (under 21 TTCCTCATCC GCAAACCCTA CTTCTGATGA TGCACGAGTA AAGTAGAAAA	R RYF SECTION OF THE PROPERTY	Q ID NO:229 PEZ: correspond to start 41 GAAACTGAGC CCAAAGTCA GGAAGAAAA CTGAGGATGA GAGATGGAAT	and stop codons) 51 TTGCTTAATC AGCATCAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC	60 120 180 240 300
45	Nucleic Acid Acce Coding sequence 1	DTENEEYHRF ession #: 11 ATTANAGGAC TACACCAGTT AGGGAGACC AAGAGGARAC CTGTGCTCTG ATGGGATCTG ATGGGATCTG	NM_014253 65-8242 (under 21 TTCCTCATCC TCCAACCCTA CTTCTGATGA TGCACGAGTA AAGTAGAAAA GCTACCAAAC ATGTGGACAA	R RYF SECTION OF THE PROPERTY	Q ID NO:229 PEZ: correspond to stand 41 GAAACTGAGC CCAAAAGTCA GGAAGAAAAC CTGAGGATGA GAGATGAAC AGCGTTTCTC GGTGCTGCCT	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGGCTA CACCTGACCA	60 120 180 240
45 50	Nucleic Acid Acce Coding sequence 1	DTENEEYHRF ession #: 11 ATTAAAGGAC CAAACTGACT TACACCAGTT AGGGAGACC AAGAGGAAAG CTGTGCTCTG ATGGGATCTG ATGGGATAA	NM_014253 65-8242 (under 21 TTCCTCATCC GCAAACCCTA TGCACGAGTA AAGTAGAAAA GCTACCAAAA CATGCGACAAA GCGGAATGAAAA	R RYF SECTION OF THE PROPERTY	Q ID NO:229 PEZ: correspond to stand 41	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGGCTA CACCTGACCA TGTCCAGCCG	60 120 180 240 300 360 420 480
45 50	Nucleic Acid Acco Coding sequence 1	DTENEEYHRF ession #: 11 ATTAAAGGAC CAAACTGACT TACACCAGTT TACACCAGTT TAGGAGGACCC AAGAGGAAAG CTGTGCTCTG ATGGGATCTG ATGTGGATCTA GCATTATCCT	NM_014253 65-8242 (under 21 TTCCTCATCC GCAAACCCTA CTTCTGATGA CTTCTGATGA AGTAGAAAA GCTACCAAAC ATGTGGACAC GGGGAATGAA TGACTGACAC	R RYF SECTION OF THE PROPERTY	Q ID NO:229 PEZ: correspond to start 41 	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGACA TGTCCAGCCG ATGGCGAAAA	60 120 180 240 300 360 420 480 540
45 50 55	Nucleic Acid Acce Coding sequence 1	DTENEEYHRF ession #: 11 ATTANAGGAC TACACCAGTT AGGGAGACC AAGAGGARAC CTGTGCTCTG ATGTGATTA ACGATTATCCTT ATTCTCTCTG AGCCACACA	NM_014253 65-8242 (under 21 TTCCTCATCC GCAAACCCTA TGCACGAGTA AAGTAGAAAA ATGTGGACAA ATGTGGACAA ATGTGGACAC ATGTGGACAA ATGTGGACAC ACAGTTCAC	R RYF SECTION OF THE PROPERTY	Q ID NO:229 PEZ: correspond to stand 41 GAAACTGAGC CCAAAAGTCA GGAAGAAAAC CTGAGGATGA GAGATGAGT AGCGTTTCTC GGTGCTGCCT AGTACCTGTT AGGAAGTCTG CAAGCTGGGT CTCCACCGC	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG GCCATGGCTA CACCTGACCA TGTCCAGCCG ATGGGGAAAA CACCTCAACA CACCTCACCA CACCTCAACA CACCTCCGCC	60 120 240 300 360 420 480 540 600 660
45 50	Nucleic Acid Acce Coding sequence 1	DTENEEYHRF ession #: 11 I ATTAAAGGAC CAAACTGACT TACACCAGTT AGGGAGACC AAGAGGAAAG CTGTGCTCTG ATGGGATTA ATGTGGATAA GCATTATCCT TTCTCTCTGT AGCCCACACA TGCACCTGTG	NM_014253 65-8242 (under 21 TTCCTCATCC GCAAACCCTA TGCACGAGTA AAGTAGAAAA GCTACCAAAA GCTACCAAAA GCGGAATGAA TGCGGGAATGAA TGCTGTACAC TGCGGAATGAA TGCTGTACAC CCAGGAAGCC	R RYF SEC dined sequences of the sequence of the sequen	O ID NO:229 PEZ: comespond to stand 41	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGGCTA CACCTCACCA TGTCCAGCCG ATGGGGAAAA CTACTCAAGA CACCTCCGCC TTCAGAGGAG	60 120 180 240 300 360 420 480 540 660 720
45 50 55	Nucleic Acid Acco Coding sequence 1	DTENEEYHRF 255ion #: 11 ATTAAAGGAC CAAACTGACT TACACCAGTT TACACCAGTT TACGATACT ATGGATACT ATGGATATA GCATTATCCT TTCTCCTG AGCCCACCA AGCCCACCA ACCCGCAGCC	NM_014253 65-8242 (under 21 TTCCTCATCC GCAAACCCTA TGCACGAGTA AAGTAGAAAA GCTACCAAAA GCTACCAAAA GCGGAATGAA TGCGGGAATGAA TGCTGTACAC TGCGGAATGAA TGCTGTACAC CCAGGAAGCC	R RYF SE difined sequences of the sequence of the seque	Q ID NO:229 PEZ: correspond to start 41 GARACTGAGC CCARAGTCA GGAGATGA AGGATTGA AGGATTCTC GGTGCTGCTT AGGAGTCTCCTGTT AGGAGTCTGCT CAAGCTCGGT CTCCCACGC GCGGACTCTC GCTCCCCCAA	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGGCTA CACCTGACCA ATGCGGGAAAA CTACTCAAGA CACCTCCGCC TTCAGAGGG CACCACCCA	60 120 240 300 360 420 480 540 600 660
45 50 55	Nucleic Acid Acce Coding sequence 1	DTENEEYHRF ession #: 11 ATTANAGGAC CANACTGACT TACACCAGTT AGGGAGAAAG CTGTGCTCTG ATGTGGATAA GCATTATCCT ATGTGGATAA GCACTGTTCTCCTG AGCCCACACA TGCACCTGTG ACCCGCACCC CATCTGCACTA TTCAAACATG	NM_014253 65-8242 (under 21 TTCCTCATCC GCABACCCTA CTTCTGATGA AGTACABA AGTACABA AGTACABA ATGTGGACA ATGTGGACAC CGGGATGA ACCTGATGA ACCAGTTCAC CCAGGAGCC ACCCAGCC GACCCAGCC GACCCAGCC GACCTGCCT GATCTGCTTC	R RYF SEI Ifined sequences of the sequence of the seque	O ID NO:229 PEZ: comespond to stand di GARACTGAGC CCARAGATCA GGARGARARA CTGAGGATGA AGCATTCTC GGTGCTGCCT AGTACTGGTC CARGCTGGGT CTCCACCGC CCGGACTCTC GCTGCCCCACCGC GCGGACTCTC AGTACCACCGC TTCCACCGC TTCAGTGCAC	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG GCCATGGCTA CACCTGACCA TGTCCAGCCG ATGGGGAAAA CACCTCCAGC TTCAGAGGAG CACCTCAGCA TGGGGAAGACCAG CCAGTCAGAA CCAGTCAGAA	60 120 180 240 360 420 480 540 660 720 780 840 900
45 50 55 60	Nucleic Acid Acce Coding sequence 1	DTENEEYHRF ession #: 11 I ATTANAGACT CANACTAGCT TACACCAGTT AGGGAGACC AAGAGGANAG CTGTGCTCTG ATGTGGATAA GCATTATCCT TTCTCCTCTG AGCCCACACA TGCACCACACA TGCACCTGTG ACCCGCAGCC CATCTGCATA ATCANACATG ACATCCAATA	VKDQIVVDM NM_014253 65-8242 (under 21 TCCTCATCC GCAAACCCTA CTTCTGATGA TGCACGAGTA AAGTAGAAAA CTACCAACA GCGGAATGA TGACTAGA TGACTGACAC CGGGAATGA TGACTGACAC CCAGGAAGCC ACAGCTGGGC ACAGCTGGGT CCGTGTACTC CCGTGTACTC	R RYF SEC dined sequences of the seque	O ID NO:229 PEZ: comespond to stand 41	and stop codons) 51 TEGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGGCTA CACCTGACCA ATGCGCAAAA CACCTCACCA TTACTCAAGA CACCTCCGCC TCAGAGGAG CCAGCACGCA TGGAGACCAG CCAGCACGCA TGGAGACCAG CCAGCACCAA CCACCACCAC CCAGCACCAC CCCAGCACCAC CCAGCACCAC CCCAGCACCAC CCCAGCACCAC CCCAGCACCAC CCCAGCACCAC CCCAGCACCAC CCCAGCACCAC CCCAGCACCAC CCCAGCACCAC CCCACACCAC CCCACACCAC CCCACACCAC CCCACACCAC	60 120 180 240 300 360 420 480 540 600 720 780 840 960
45 50 55	Nucleic Acid Acce Coding sequence 1	DTENEEYHRE ession #: 11 ATTANAGGAC CANACTGACT TACACCAGTT AGGGAGACAC AGGAGGANAC CTGTGGATAN GCATTATCCT TTCTCTCTG AGCCACACA TGCACCTGTG ACCCGCAGCC CATCTGCATA TCTAAACATG ACATCAATA CCTGCCTTTA CCTGCCTTTA CCTGCCTTAA	NM_014253 65-8242 (under 21 TTCCTCATCC GCAAACCTA AGTAGAAA AGTAGAAA AGTAGAAA ATGTGGACAC ATGTGGACAC ATGTGGACAC ATGTGGACAC CAGGAATGAA ACAGTTCAC CCAGGAAGCC ACAGCTGGCC ACAGCTGGGT GATCTGGTTC CCGTGTACTC CCTTTAACAA TCACAGTGAC	R RYF SE dined sequences of the sequence of the seque	O ID NO:229 PEZ: correspond to stant di GARACTGAGC CCARARGTCA GGARGARAA GGARTGARA AGGATTCTC GGTGCTGCT AGTTCCTGTT CARGCTGGGT CTCCCCAC GCTGCACCGC GCGGACTCTC GCTCCCCAC AACATACCAT TTCAGTGCAG AGGCTCTTC TGCTGCAACT TTCAGTGCAG TTCAGTGCACT TTCAGTTGCACT TTCAGTTGCACT TTCAGTTGCACT TTCAGTTGCACT TTCAGTTAGCCT TTTACTAGCCT	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTAAAC GCATGCCTA CACCTGACCA TGTCCAGCCG TGTCCAGCCG TCAGAGGAG CCAGTCAGAA CCTCAGACGAC CCAGTCAGAA CCTGAACCAC CCAGTCAGAA CTGCAACCAC ATGTCAACCAC ATGTCAATTGC	60 120 180 240 360 420 480 540 660 720 780 840 900
45 50 55 60	Nucleic Acid Acce Coding sequence 1	DTENEEYHRF ession #: 11 ATTANAGGAC CANACTGACT TACACCAGTT AGGGAGAAAG CTGTGCTCTG ATGTGATAA GCATTATCCT TTCTCCTG AGCCACACA TGCACCTGTG ACCCGCAGCAC TTCANACATG ACATCCATAA CCTGCCTTTAACATG ACATCCATAA CCTGCCTTTAACATG ACATCCATAA	NM_014253 65-8242 (under 21 TTCCTCATCC GCABACCCTA CTTCTGATGA AGTAGABA AGTAGABA AGTAGABA ATGTGGACA ATGTGGACA ACGGCAAA CCAGTTCAC CCAGGAAGCC ACCCAGCC GGCAAGCC GGCAAGCC ACCCAGCC CCAGCTCAC CCTTGATTAC CCTTTACTA CCTTTACTA CCTTTACTA CCTTTGACA CCTTGGCAGTT CCTTGGCAGTT CCTTGGCAGTT	R RYF SE dined sequences 31 TTTTTTTCAT CCAGCCTCTA GAGTGAAGAT TAACCAGGAG ATCTACTCAA AGACATGCAC AGAGACAGAA ATCAGAGCAT TGAGCCT CTTCAGACCC ACCTGCTA AGCTGCTCCC ACCTTCAGACCC TCTGCGATC GCCCCTCCC ACCTTACAG TTTGGCGTTT GCAACCAGTT GCAACCAGTT	O ID NO:229 PEZI comespond to stant 41 GARACTGAGC CCARAGATCA GGARGARARA CTGAGGATGA AGGATCTTCTC GGTGCTGCCT AGTACTGGT CARGCTGGT CTCCCACCGC GCGGACTCTC GCTGCACCAC ATCACCAC ATCACCAC ATCACCAC ATCACCAC ATCACTGCAC AGGCCTCTTC TCCTGCAACC TTCAGTGCAG AGGCCTCTTC TCAGTGCAG AGGCCTCTTC TGCAACC TTACTAGCCT GAAGGAGAGC	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGCCTA CACCTGACCA TGTCCAGCCG TTCAGAGGAG CACCTCAGCAGC TGGAGCACGCA CCAGTCAGAA CTGGAACCAG CCAGTCAGAA CTGGAAGCAC GGAAGTGCAC TGGAAGCAC GGAAGTGCAC TGTATGCAAA	60 120 180 240 300 420 480 540 600 660 720 780 900 960 1020
45 50 55 60	Nucleic Acid Acci Coding sequence 1 GACTGCTTGC AGAGATGGAG GGATCTAGCT ATACAACTCC CCAGAGTAGA CTCTCACACT TGCATCAGAG GGCCAACTCT TGGTTTCAAA TGTCCAGGCC ATCAATGACT GGATTCAGTC GCATTCCCTG GCATTCCCTG CTACCCTCTG CTACCTCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCTCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCTCTCTCTCTCTC CTACCTCTCTCTCTCTCTCTC	DTENEEYHRF ession #: 11 ATTAAAGGAC CAAACTGACT TACACCAGTT AGGGAGACC AAGAGGAAAG CTGTGCTCTG ATGTGGATAA GCATTATCCT TTCTCTCTG AGCCCACACA AGCCCACACA TCCACCTGTG ACCCGCAGCC CATCTGCATA CCTGCCTTA ACATCCAATA CCTGCCTTTA ACATCCAATA CCTGCCTTAA ACATCCAATA ACAGCGCACA AAAGGGAACA AAAGGGAACA	VKDQIVVDM NM_014253 65-8242 (under 21 TTCCTCATCC GCAAACCCTA CTTCTGATGA AGTAGAAAA CTACTGATGA AGTAGAAAA CTACTGATGA AGTAGAAAA CCAGGAATGA ACTGGTGACAC CCAGGAAGCC ACAGTTCAC ACAGTAGCC ACAGCTGGGT CCGTGTACTC CCTTTAACAA TCACAGTGAC CTTGGCAGTT CCTTGGAGT CCTTGGAGT CCTTGGAGAC CCTGGCAGCT CCTGGAGAGC CCTGGCAGCT CCGTGTACTC CCTTTAACAA TCACAGTGGA CTTGGCAGTT CGGGGGACCGA	R RYF SEC dined sequences of the sequence of the sequ	O ID NO:229 PEZ: comespond to stand 41 GAAACTGAGC CCAAAAGTCA GGAAGAAAAC CTGAGGATGA AGCGTTTCT AGGAAGTCAT AGGAAGTCAT AGGAAGTCAT AGGAAGTCTG CAAGCTGGGT TCCCACCGC GCGGACTCTC GCTCCCCAA AACATACCAA TTCAGTGCAG AGGCCTCTTC TGCTGCAACT TTACTAGCCAC TGAAGGAGAC ACTACTTACT	and stop codons) 51 TEGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGGCTA CACCTCACCA ATGCGCGAAAA CTACTCAAGA CTACTCAAGA CTACTCAAGA CACCTCCGCC TCAGGAGACCAG CCAGCACGCA TGGAGACCAG CCAGCACGCA TGGAGACCAC GGAAGTCACA ATGTGATTGC TGTATGCAAA CTCCAAATTGG	60 120 180 240 300 360 420 600 660 720 780 840 900 900 960 1020 1080 1140 1200
45 50 55 60	Nucleic Acid Acco Coding sequence 1	DTENEEYHRE ESSION #: 11 ATTANAGGAC CANACTGACT TACACCAGTT AGGGAGAAG CTGTGCTCTG ATGGGATAC ATGTGGATAA GCACTATCCTG AGCCAACAA ACCGGAGCC CATCTGCATA TCAAACATG ACCTGCATA CCTGCCTTTA CCTGCCTTTA ACCGCCTGCA ACACCATA ACTGGCATA TCCGACTCCAA TTCGGCCTGA AAAGGGAACA TCTGGATAAAT	NM_014253 65-8242 (under 21	R RYF SE difined sequences of the sequence of the seque	O ID NO:229 PEZ: correspond to stant 41 GAAACTGAGC CCAAAAGTCA GGAAGAAAAC CTGAGGATGA AGCGTTTCTC GGTGCTGCT AGTTCCTGTT AGTACCACGC CCGAACTCCCCAA AACATACCAT TTCAGTGCAG AGCCTCTTC TGCTGCACCT TTCAGTGCAG AGCCTCTTC TGCTGCAACT TTCAGTGCAG AGGCCTCTTC TACTAGCACT TACTAGCCT AAGGAAGAGC CAAAGGAAGAGC AAAGGAAGAGC AAAGGACGGG	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGCCTA CACCTGACCA TGTCCAGCCG TTCAGAGGAG CACCTCAGCAGC TGGAGCACGCA CCAGTCAGAA CTGGAACCAG CCAGTCAGAA CTGGAAGCAC GGAAGTGCAC TGGAAGCAC GGAAGTGCAC TGTATGCAAA	60 120 180 240 300 420 480 540 600 660 720 780 900 960 1020
45 50 55 60 65	Nucleic Acid Acce Coding sequence 1	DTENEEYHRE ession #: 11 ATTANAGGAC CANACTGACT TACACCAGTT AGGGAGAAAG CTGTGCTCTG ATGTGATAA GCATTATCCT TTCTTCTG AGCCACACA TGCACCTGAC ACCTGCACACA TCCACTGACACA ACTCCATAA CCTGCCTTTA ACATCCACTA TCCACTGACACA TCCGCCTCAA TCCGCTTCAA TCCGCTTCAA TCCGCTTCAA TCCGCTTCAA TCCGCTTCAA TCTGCTTCAAACAT TCCGCTTCAA TCTGCTTCAAACAT TCTGCTTCAAACAT TCTGCTTCAAACAT TCTGCTTCAAACAT TCTGCTTCAAACAT TCTGCTTCAAACAT TCTGATAAAT ACATTCGACCAC ACTATCCACC	NM_014253 65-8242 (under 21 TTCCTCATCC GCABACCCTA CTTCTGATGA TGCACGAGTA AGTAGABA AGTAGABA ATGTGGACA ATGTGGACA CGGGATGABA CCAGTTCAC CCAGGAGTA ACCAGTTCAC CCAGGAGTC CCTTGATGA CCAGGTTCAC CCTGTACTC CCTTTACTC CCTTTACTC CCTTTACTC CCTTTACTC CCTTTGCAGT GGGGGACCGA CTTGGCAGTT CACAGGTCAC CACAGGTCAA ATCCAATATA	R RYF SEI dined sequences of the sequence of the seque	O ID NO:229 PEZI comespond to stand 41 GARACTGAGC CCAARAGTCA GCAGGATGA GAGATGAGA AGCTTCTC GCTCCTCCT AGTACTGCT AGTACTGCT AGTACCTGCACCGC GCGGACTCTC ACTCCCCAA ACATACCAT TTCAGTGCAG AGCCTCTCT TTCAGTGCAG AGGCTCTTC CAAGGAGGAC ACTACTTACT AAGGAAGGC ACTACTTACT AAGGAAGGC ACTACTTACT AAGGAAGGG ACTACTTACT AAGGAACGG ACCCTGGGT AATATTTCTT	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGCTA CACCTGACCA TGTCCAGCCG ATGGGAAAA CACCTCAGCA CCACCAGCAGCAC CCAGCACGCA CCAGCACGCA CCAGCACGCA CTGAAGCAC CCAGTCAGAA CTCGAAGCAC TGGAAGCAC TGTATGCCATTCGC TGTATGCAAA CTCCAATTGG TATTCTGCG TATTCTGCGC TAGCCAAGGA TATTCTGCGC TAGCCAAGGA TAGCCAAGGA	60 120 180 240 360 420 480 540 660 720 780 960 1020 1140 1200 1250 1320 1380
45 50 55 60 65	Nucleic Acid Acci Coding sequence 1 GACTGCTTGC AGAGATGGAG GGATCTAGCT ATACAACTCC CCAGAGTAGA CTCTCACACT TGCATTCAAGA GGCCAACTCT TGGTTTCAAGA TGCCATGGCC ATCAATGACT GCATTCAGTC CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG CTACCTCTG TGGAGTTAGC AGGAAAAGTT TGGAGAAAGTT TTTCCAGATT	DTENEEYHRE 255ion #: 11 ATTAAAGGAC CAAACTGACT TACACCAGTT TACACCAGTT TACACCAGTT TACACCAGTT TACACCAGTT TACACCAGTT TACACCAGTT AGGGATACA CTGTGCATCA ACACCAGCACCA ACACCAGCACCA CATCTGCATA ACCCGCAGCC CATCTGCATA CCTGCCTTTA CCTGCCTTTA CCTGCCTGCATA TTCGACCATA TCGCCTGCATA TCGCCTGCATA TCGCCTGCATA TCGCCTGCATA TCGCCTGCATA TCGCCTGCATA TCGCCTGCATA TCGCCTGCATA TCGCCTGCATA TCTGATAAAT GACATTGCTC GGAATTTATG	NM_014253 65-8242 (under 21 TTCCTCATCC GCAAACCCTA CTTCTGATGA ACTACAAAC ATGTGACAAC GGGAATGAA TGACTGACAC CCAGGTAGA ACCAGTTCAC CAGGAAGCC ACAGTTCAC CCGTGTTCTC CCTTTAACAA TCACAGTGAC CCGTGGTC CCGTGTACTC CCTTTACAA CCACAGTCAC CGGGGACCA CAGACAAAAA CACAGGTCAC CAGGACAAAAAA CACAGGTCAT CACAGGTCAAAAAAAAAA	R RYF SE difined sequences of the sequence of the sequ	O ID NO:229 PEZI COMESPOND IO SIZI 41 GARACTGAGC CCARANGTCA GGARGATGA AGCGTTTCTC GGTGCTGCTT AGGARGTCT AGGAGTCTC CARCGC CCCCCAR ACATACCAT TCCACCGC GCTCCCCCCAR ACATACCAT TCCAGTGCAC TTCAGTGCAC TTCAGTGCAC AGGCCTCTC TACTGAGCAC AGGCCTCTC AAGGAGAC ACTACTAC AAGGAGAGC CCACCTGGTT AATATTCTT ACACATACTC AATATTTCTT ACACATACTC	and stop codons) 51 TEGCTTAATC AGCATGAAAT CAAGACAGTC ATTACATTAG TCTGTGAAAC GGCATGGCTA CACCTCAGCA ATGCGGGAAAA CTACTCAAGA CACTCAGCA TCAGGAGACAGC ATGGGAACAGC CCAGCACGCA TGGAGACCAG GCAGTCAGAA CTCGACCAC GGAAGTCACA ATGTGATTGC TGTATGCAAA CTCCAATTGG CAATTGGCG TAGCCAAGGA AGTTTCAGTT	60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1020 1140 1260 1320 1380 1440
45 50 55 60 65 70	Nucleic Acid Acce Coding sequence 1	DTENEEYHRE ESSION #: 11 ATTAAAGGAC CAAACTGACT TACACCAGTT AGGGAGAAG CTGTGCTCTG ATGGGATAC ATGTGGATAA GCATTATCCTT AGCCCACTGA ACCCGCAGCC CATCTGCATA TCCAACATA CCTGCCTTTA CCTGCCTTTA CCCGCCTGA TCGGCCTGA TCGGCCTGA TCGGCCTGA TCGGCCTGA TCGGCCTGA TCGGCTGCA TCGGCTGCA TCTGGTGTGATAAAT GCAATTGGTG ACATTGGTG ACGTATCACC ATGTGTGATACC ATGTGTTCC ATGGTTCCA ATGGTTCCAC ATGGTTCCAC ATGGTTCCAC ATGGTTCCC ATGGTTGCCA	NM_014253 65-8242 (under 21 TTCCTCATCC GCARACCTA CTTCTGATGA TGCACGAGTA AAGTAGAAAA ATGTGGACAC ATGTGGACAC TTTGTTGTGA ACCAGTTCAC CCAGGAAGCC ACAGTTCAC CCAGGAAGCC ACAGTTCAC CCTTTAACAA TCACAGTGAC TTTGTGTGTAC CCTTTAACAA TCACAGTGAC CCTTGGCACT CCGTGACTC ACAGTGAC TCACAGTGAC ACAGGAAAAA ACAGGTCAT ACCAATATAA AACAGCTGGT	R RYF SE dined sequences of the sequence of the sequenc	O ID NO:229 PEZ: correspond to stant 41 GAAACTGAGC CCAAAAGTCA GGAAGAAAAC CTGAGGATGA AGGATGTCTCTCT GGTGCTGCT AGTTCCTGTT CAAGCTGGT CTCCACCGC GCGGACTCTC GCTCCCCAA AACATACCAT TTCAGTGCAG AGGCCTTTC TTACTAGCCT GAAGGAGAGC CAAGGAGAGC CAAGGAGAGC CAAGGAGAGAGC CAACTACTTACTACTACTACTACTACTACTACTACTACTA	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGCTA CACCTGACCA TGTCCAGCCG ATGGGAAAA CACCTCAGCA CCACCAGCAGCAC CCAGCACGCA CCAGCACGCA CCAGCACGCA CTGAAGCAC CCAGTCAGAA CTCGAAGCAC TGGAAGCAC TGTATGCCATTCGC TGTATGCAAA CTCCAATTGG TATTCTGCG TATTCTGCGC TAGCCAAGGA TATTCTGCGC TAGCCAAGGA TAGCCAAGGA	60 120 180 240 360 420 480 540 660 720 780 960 1020 1140 1200 1250 1320 1380
45 50 55 60 65	Nucleic Acid Acce Coding sequence 1	DTENEEYHRE ession #: 11 ATTAAAGGAC CAAACTGACT TACACCAGTT AGGGAGAAAG CTGTGCTCTG ATGTGGATAA GCATTATCCT TACTCTCTCTCTGAACCACACA TGCACCTGTG ACCCGCACACA TCCACACACA TCCACTGCATTA CCTGCCTTGAACATG ACATCCACTA TCGGCCTGA AAAGGGAACA TCTGATAGATG ACATTCACC GGAATTTATG ACTTCGACC GGAATTTATG ACTTCGACC GGAATTTATG ACTTCGACC GGAATTTATG ACTGGAACC GGACCTTGGAACC GGACCTTGGACC GGACCTTGGACC GGACCTTGGT	NM_014253 65-8242 (under NM_014253 65-8242 (under 21 TTCCTCATCC GCARACCCTA CTTCTGATGA TGCACGAGTA AAGTAGAAAA ATGTGGACAC CGGGAATGAA ATGTGGACAC CCAGGTCAC CCAGGTTCAC CCAGGTTCAC CCTGTACTC CCTGTACTC CCTTTACCAC CCTGGCAGTT CCTTGGCAGTT CCGGGGACGA CTTGGCAGTT CCGGGAAGAAAA ACAGGTGGT ATCCAATATA GCAGAAGAAAA AACAGCTGGT TGATCTTAAC ATCTGGCGTT TGATCTTAAC ATCTGGCGTT	R RYF SEI dined sequences of the sequence of the seque	O ID NO:229 PEZI comespond to stant 41 GARACTGAGC CCARAGATCA GGARGARARA CTGAGGATGA GAGATGAGA CAGAGGATCA GAGAGTCAC GAGAGTCAC GAGAGTCAC CTCCACCGC CAGCCTCCCACCGC GCGACTCTC TCCACCGC GAGAGTCAC ATCACACAT TTCAGTGCAG AGGCCTCTTC TCAGAGGCC CACTGCTACTT TACAGGCC CAAGGGAGAGC CCACCTGGTT ACACATACTT ACACATACTC TCCAAGGGCT TCCAAGGGCT TCCAAGGGCT TCCAAGGGTT ACACATACTC TCCAAGGGCT GAGACAGGTT GAGACAGATACACA GAAAAAAAAAA	and stop codons) 51 TEGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG TCTGTGAAAC GGCATGGCTA CACCTGACCA ATGCGCAAAAA CACCTCCGCC TCAGGAGAAA CACCTCCGCC TCAGAGGAG CCAGCACGCA TGGAGACCAG CCAGTCAGAA CCTCATCAGA CCAGTCAGAA CCTCAGCA TGGAGACCAC GGAAGTCACA TGTATTGCATA CTCAATTGG CGATTGGATAC TATTCTGGCG TAGCCAAGGA AGTTTGATTT CTGATGATAC TCATAGAGTA TCGGAGCAAGT TCTGATGATAC TCTATAGAGTA TCGGAGCAAGT	60 120 180 240 360 420 480 540 660 720 780 960 1020 1140 1200 1250 1320 1320 1440 1560 1620
45 50 55 60 65 70	Nucleic Acid Acci Coding sequence 1	DTENEEYHRE 25500 #: 11 ATTAAAGGAC CAAACTGACT TACACCAGTT AGGGAGAAC CTGTGCTCTG ATGGATTAT AGCACTAT AGCCACTAT AGCCACTAT AGCCACTAT ACCCACTAT ACCCACTAT ACCCACTATA CCTGCCTTTA ACCCACTATA CCTGCCTTTA GCACTGCAATA CTGCCTTTA GCACTGCAA TTCGACCAATA CTGGCCTGAACC CTGGAACC CGAATTTATCG GCATTGATCACC GGAATTTATC CGGACTC GCACTTGGAACC CCTGGAACC GCACTTGGTAAAAT ACTGGTCGC ACCCTGGAACC CCTCGGAACC CCGACCTGCAACAC ACTACAGCAA	NM_014253 65-8242 (under 21 TTCCTCATCC GCARACCTA CTTCTGATGA TGCACAGATA ACTACCAAAC ATGTGACAC ATGTGACAC CCAGGATCA ACCAGTTCAC CCAGGATCA ACCAGTTCAC CCAGGAGCC ACAGCTGGC ACAGCTGGCT CCCTTTAACAA TCACAGTTCAC CCTTTACAA TCACAGTACT CCTTTACAA TCACAGTACT CCTTTACAA TCACAGTACT CCAGGAAAAA ACACGGTCAT ACCAGAAAAA ACACGGTCAT ACCAGAAAAA ACACGGTCAT ACCAGAAAAA ACACGGTCAT TGAAATAAT	R RYF SE difined sequences of the sequence of the sequ	O ID NO:229 PEZZ correspond to start 41 GARACTGAGC CCAAAAGTCA GGAAGATGA GGAAGATGA AGCGTTTCTC GGTGCTGCT AGTTCCTGTT AGGAGCTGGT CTCCACCGC GCGGACTCTC GCTCCCCCAA AACATACCAT TTCAGTGCAG AGGCCTCTC TACTGCACCT TACTAGCCT TACTAGCCT AAGGAGACCT TACTAGCT TACTAGCCT TACTAGCCT TACTAGCCT TACTAGCCT TACTAGCCT TACTAGCCT CAAGGACAGCT AAGGACAGGT AACATACTC TCCAAGGGCT GAGACAGGTT TCCAAGGGCT GGAAAAAAGA TCAACCAATT	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAGCATGAAAT CAGCATGAAC CTCTGTGAAAC GCCTGACCA ATGCCGC ATGCGGAAAA CTACTCAAGA CACCTCAGCC ATGGGAAAA CTACTCAAGA CACCTCGCC TCAGAGGAG CCAGCACGCA TGGAGACCAC GGAAGTCAGA ATGTGATTGC TGTATGCAAA CTCCAATTGG CGATTCAGGA AGTTTCTGGCG TAGCCAAGGA AGTTTCATTT CTGATGATAC TCATAGAAAT TCGATGATAC TCATAGAAAT TCATAGAAAAT TGGAGCAAGT GCAATGGAAA	60 120 180 240 360 420 480 660 660 720 780 840 960 1020 1140 1260 1320 1320 1380 1440 1500 1560 1620 1680
45 50 55 60 65 70	Nucleic Acid Acce Coding sequence 1	DTENEEYHRE ESSION #: 11 ATTAAAGGAC CAAACTGACT TACACCAGTT AGGGAGACAC AGGGAAAC ATGGGATCA ATGGGATCA ATGGGATCA ATGGGATCA ATGGGATCA ACACCTGTG AGCCCACACA ACACCTGTG ACCCGTGC CATCTGCATA TCAACATA CCTGCCTTA GCCACTCCAA TCGGCCTGA ATGGGCTGA ATGGGCTGA ATGGGCTGA ATGGGCTGA ATGGTGTG ACATTCACC GGAACTTGGTC ACTACCACA CCTGGGACC CCTCGGAACC CCTCGGAACC CCTCGGAACC ACTCCAA ATCTCTGGCCA ATCTCTGGCCA ATCTCTGGCCA ATCTCTGGCCA ATCTCTGGCCA ATCTCTGGCCA ATCTCTGGCCA ATCTCTGGCCA	NM_014253 65-8242 (under NM_014253 65-8242 (under 21 TTCCTCATCC GCARACCTA CTTCTGATGA TGCACGAGTA AAGTAGAAAA CATGTGGACAC ATGTGGACAC ATGTGGACAC ATGTGGACAC ACAGTTCAC CCAGGAAGCC ACAGCTGGGT GATCTGGCAGT CCTTTAACAA TCACAGTGAC CCTTGGCAGT GGGGGACCGA CACAGGTACAC CAGAGGAAAAA ACAGGTCAT ATCACAATATA AACAGCTGGT TGATCTTAACA ATCTGGCGT TGATCTTAACA ATCTGGCTT TGATCTTAACA ATTTGACATTT ATTTGACATTT ATTTGACATTT	R RYF SE dined sequences of the sequence of the sequen	O ID NO:229 PEZ correspond to stant di GARACTGAGC CCARAGGAGA GGARGARAA AGCGTTTCTC GGTGCTGCT AGTTCCTGTT AGGAGTCTA AGGAGTCTA CCACCGC GCGGCTCTC CARCTGGTT TTCAGTGCAG AGCCTCTTC TTACTAGCT GAAGGAGTCT TTCAGTGCAC AACATACCAT TTCATACT AAGGAGGGC CCACCTGGTT AATATTTCTT ACACATACT TCCAAGGGCT GGAAAAAAGA TCAACCAATT TTCCTTGGAC TTCCAATTCT TCCAAGGGCT TTCCAAGGGCT TTCCAAGGGCT TTCCAAGGGCT TTCCAAGGGCT TCCAAGGGCT TCCAAGGCT TTCCAATTCT TTCCTTGGAC	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAAGACAGTC ATTACAATAG CCATGGCTA CACCTGACCA TGTCCAGCCA TGTCCAGCCG TTCAGAGGAG CCAGTCAGAA CTACTCAAGA CCAGTCAGAA CTGATCAGAA CTCAATTGG CCAGTCAGAA CTCAATTGG CGATAGACAC TGTGATTGC TGTATCCAAT CTCAATTGG TGTATCCAAT CTCAATTGG TGTATTCAAT CTCAATTGG TGGTAGACAC TATTCTGGCG TAGCCAAGGA AGTTTGATTT CTGATGATAC TCATAGAGAAA CTCAATTGG CGATAGACAC TATTCTGGCG TAGCCAAGGA AGTTTGATTT CTGATGATAC TCATAGAGAA CTGATTGATAC TCATAGAGAA CTGATTGGCAAGAA CTGATTGCC	60 120 180 240 360 420 480 540 660 720 840 900 900 1140 1260 1320 1320 1320 1320 1440 1500 1620 1680 1740
45 50 55 60 65 70	Nucleic Acid Acce Coding sequence 1	DTENEEYHRE ession #: 11 ATTANAGGAC CANACTGACT TACACCAGTT AGGAGACAC AGGAGACCC AGGAGACCC ATGGGATCAC ATGGGATCAC ATGGGATCAC ATGCACCACAC TGCACCTGTG ACCCGCAGCC CATCTGCATA ACATCCACTA TCAACCATTA CCTGCCTTTA ACCATCCACA TCGGCTTTA ACATCCACAC AAAGGGAACA TCGGCTTTA GCCACTGCAA TCTGGATAAAT TCTGATAAAT GCAATTGGTG ACTATCCACC GGAATTTATG ACTATCACC GGACTTGGTC ACTACAGCAA ACTACAGCAA ACTCTCGCC TGCCCTTGC TGCCCTTGCC TGCCCTTGCC TGCCCTTGCC TGCCCTTGCC TGCCCTTGCC TCCCCTGCC TCCCCTGTCC TCCCCTTGCC TCCCCTTGCC TCCCCTTGCC TCCCCTTGCC TCCCCTTGCC TCCCCTTGCC TCCCCTTGCC TCCCCTTCCC TCCCCTTCC TCCCTTCC TCCCCTTCC TCCCCTTCC TCCCCTTCC TCCCTTCC TCCCTTCTC TCCCTTCTC TCCCTTCTC TCCCTTCTC TCCCTTCTC TCCCTTCTC TCCCTTCTC TCCCTTCT TCCCTTCTC TCCCTTCTC TCCCTTCTC TCCCTTCT TCCCTTC	VKDQIVVDM NM_014253 65-8242 (under 21 TTCCTCATCC GCAAACCTA AGTAGAAAC ATGTGGACAC ATGTGGACAC ATGTGGACAC ATGTGGACAC ATGTGGACAC ATGTGGACAC CCAGGTACAC ACCCTACCC ACAGCTGGCC ACAGCTGGCC ACAGCTGGCC CCTTTAACAC TCACAGTGAC CTTGGCAGT CTTGGCAGT ACAGGGAAAAA ACAGGTCAT ATCAAATATA CCAGAAGAAA AACAGGTCAT TTGAAATATA TTGAAATATA TTGAAATATA ATTGTCATTG TGTGTGGTGG TGTTGTGGTGG TGTTGTGGTGG	R RYF SEI dined sequences of the sequence of the seque	O ID NO:229 PEZ correspond to stand di GARACTGAGC CCARAGATCA GGAGAGAGAGA AGGATGGAT AGGATGTAT AGGAGTTCT AGGAGTTCT AGGAGTTCT AGGAGTTCT AGTACTGTT AGGAGTTCT AGTACTGGT TTCCCCACCGC GCGGACTCTC CAAGCTGCT TTCAGTGCAG AGGCCTCTTC TCAGTGCAG AGGCCTCTTC CAAGGAGAGC CCACCTGGTT AATATTCTT ACAAGAGTT TCAAGGGT TCAAGCAGT TCAAGCAGT TCAAGCAGT TCAAGCAGT TCAAGCAGT TCAAGCAAT TCAAGGATT TCAAGGATT TCAAGGAAAAGA TCAACCAATT TCACTTGGAC TACGAGAAAAGA TCAACCAATT TCCTTGGAC TACGAGAAAAGA	and stop codons) 51 TTGCTTAATC AGCATGAAAT CAGCATGAAAT CAGCATGAAC CTCTGTGAAAC GCCTGACCA ATGCCGC ATGCGGAAAA CTACTCAAGA CACCTCAGCC ATGGGAAAA CTACTCAAGA CACCTCGCC TCAGAGGAG CCAGCACGCA TGGAGACCAC GGAAGTCAGA ATGTGATTGC TGTATGCAAA CTCCAATTGG CGATTCAGGA AGTTTCTGGCG TAGCCAAGGA AGTTTCATTT CTGATGATAC TCATAGAAAT TCGATGATAC TCATAGAAAT TCATAGAAAAT TGGAGCAAGT GCAATGGAAA	60 120 180 240 360 420 480 660 660 720 780 840 960 1020 1140 1260 1320 1320 1380 1440 1500 1560 1620 1680

WO 02/30268

PCT/US01/32045

						ATGGCATCTG	1980
						AAACACCACT	2040
						CTGGAGTATG	2100
5						CCATGGAGTG	2160
5						GGGTAGGACC	2220
						GCAAAGATGG	2280
						ACTACTTAGA	2340
						CCCTGGATCA	2400
10						ATGTTGTCAT	2460
10						ACTGTGTGGA	2520
						GCTCACCAGA	2580
						CAAGACTTTT	2640
						CTCCTGAGGT	2700
15						TAGATGGAAC	2760
13						TTACCATCAG TCTTAATCTT	2820
						ATCAGTTTAT	2880 2940
		AAAGTCACCA					3000
						TTGGAGGGTC	3060
20						AAATTCCCAT	3120
						ATAAAACCCT	3180
						TACACCTCAC	3240
•						ATCTTGTCTA	3300
						TGGCAGAGGC	3360
25						GGGAGCAAAG	3420
						GGTCTTTGAA	3480
						GAGAAAATAT	3540
						ACCAAAGGAG	3600
						CTCCTGTCGC	3660
30						TAAGGAGAAT	3720
						CTCACAAATA	3780
	CTATCTGGCT	ATGGACCCTG	TGTCTGAATC	ACTCTATCTA	TCAGACACCA	ATACTCGCAA	3840
						TTGAAGTGGT	3900
25	GGCAGGAACT	GGTGATCAGT	GCCTTCCCTT	TGACCAGAGT	CATTGTGGAG	ATGGTGGGAG	3960
35		GCTTCACTGA					4020
		GATGGGACTA					4080
						GAATGGACAT	4140
		CGATTAGAGT					4200
40		GATAACAACA					4260
1 0		CCCATTCACT					4320
		TCCACTCTAG GAAACAGACG					4380
		ATCATCGCTG					4440 4500
		TCAGGTGATG					4560
45		TCGCCTGATG					4620
		AGGAACCAAG					4680
						CCCTGAACTT	4740
		GACTATGTTT					4800
		AATGGCAATT					4860
50	GCTTGTGGTG	CCTGGCGGAC	AAGTATACTG	GCTGACTATA	AGCAGCAATG	GAGTCCTGAA	4920
	AAGAGTGTCA	GCCCAAGGCT	ATAATCCGGC	CTTAATGACC	TATCCAGGAA	ACACAGGGCT	4980
	TCTGGCTACC	AAAAGTAACG	AAAATGGATG	GACAACCGTT	TATGAGTATG	ACCCCGAGGG	5040
	ACACCTGACC	AATGCAACGT	TTCCCACTGG	AGAGGTCAGC	AGCTTCCACA	GTGACCTGGA	5100
F F						TGTCAACCAA	5160
55						GTACCTATCG	5220
						TCGGCCTCAG	5280
						GCAACATCTC.	
						AGCAAAACAA	
60						TACTCTCCAT	
UU		CATATAACCC					5520
							5580
						GAGGAACGTG	
						GGGCTGATGG	
65		TTTGAGTATG				ACAGCCAGCG	5760
03		AGCTTACAAA					5820 5880
						TGCTACAGAC	
		GGGACAGGGC					6000
						CTGGAGTGAT	6060
70						GGCAAACAGG	6120
. •						ATGCACGGTT	6180
		TACAACAATT					6240
						AGTTTGGAAA	6300
						TGAAACACAC	
75	CAAAATCTTC						6420
						TGTGCATAAG	6480
						ATGGGCAACT	6540
						TGAATGGAGA	
						ATGACCTCCG	6660
80 ·	AGACCGCATC						6720
	•						

	0010100001	3 % mC 3 M 3 Mmm					
			TTGAATATAA				
			TGCAGTATTA				
			ACCTTCAGTT				
_			ACACAAGCTC				
5			AGTTAAGCAG				
			TGTTCAGCAG				
			ATCATGACAC				
	TCATGGAGGA	CTCTATGATT	TCCTTACTAA	ATTAGTGCAC	CTGGGGCAAA	.GGGATTATGA	7200
	TGTTGTTGCT	GGCAGATGGA	CAACGGCCTA	TCATCACATA	TGGAAACAGT	TGAACCTCCT	7260
10			ACTCCTTTGA				
			ACATCAGAAG				
			CCAAACCTGA				
			CTCAAGAGTG				
			TCAGGAATTT				7560
15			GCCTTGAAGG				
13			TAAAATTTGC				7620
			ATAGCAGGCG				7740
			CCATAGAGGG				
20			TGCTCATCGG				
20			CCCAGATGAC				7920
			ATGGAGCCCT				7980
			TGTTGGAGAT				8040
	GACTAAGGAA	CAAAGAAGGC	TGCAAGAGGG	GGAAGAGGGG	ATTAGGGCAT	GGACAGAAGG	8100
~~	GGAAAAGCAG	CAGCTTTTGA	GCACTGGGCG	GGTACAAGGT	TACGATGGGT	ATTTTGTTTT	8160
25			AACTTTCTGA				8220
			AACAAAAATA				8280
			TTTATTGTAT				8340
			TCCAACTGCC				8400
			AAGAAATGAC				8460
30			TCAAACAGCT				8520
			GTTCCAATAT				8580
			CTTAACTGTT				8640
			TGCCTTTCGA				8700
			AACAGGTGTA				8760
35			TCTTGATTAT				8820
55			GTGTGGTGGC				
			GCCGCTATTT				8880
			ACGACCTGTT				8940
							9000
40			ACATAGCTTT				9060
40			ATAGTTTCAC				9120
			CGGTAATTTA				9180
			ACGTGTCTGG				9240
			ACCTTAAAAA				9300
45			ATCACAGCAG				9360
43			TTCTGTATTG				9420
			CCGAAAACAT				9480
			AGTTAGTTAT				9540
	TATTTAATCG	TCTCTACTGC	CTAGGAAAAT	AACTATTTTC	CAGGACGGGT	TATTTGTTCT	9600
50	GCGATCATTT	AAAATTTGGA	GAAAGGTCAG	GATTAGTGTT	AATATCAGCT	GCAGTTTCTC	9660
50	AATCTCTAGG	AATCCTGCAG	TAAAACAAGC	CCCTTGGTGA	GCTGGAAGAT	TTGTGCCCAG	9720
	TGACAAAGAG	ATAGTTTGTA	AAATGCTGTG	TAATTGTAAG	TTACCACAAA	TGAAAATACA	9780
	TGACAGCACA	ATGTGGCCCG	TAGAAAATTC	CCCTGAGCCA	GCTTCTGCAC	TTTCATCACC	9840
			TCTGAAGGCA				9900
	TTCCAGATGC	TACCTARATG	CAGTGTGGGG	TCATTGCCTT	GCTTTGCGAT	GACAGTTTCT	9960
55			AAGCTCATGT				
			AGGAAATGAC				
			TTCGGGTTAG				
			CTCTCTTTAT				
	TAATCCATAC	TAAAATCATA	TTATTGGGTT	THEFT	CAGGCCTGTA	TTAATGGTAC	10260
60			TTCTAAAATT				
			GACCTTAAGT				
			CTGTATATAG				
			CAATATTAGA				
			TGATGTATCA				
65							
UJ			CTTAATAGTG				
			GTGCCTTTAG				
			TTACAGCTGT				
			CTTGAGGGAG				
70			ATTTTGGCAT				
7 0	TATCACTTCC	TATTCAGCTG	AATAGAAAGA	ATGCCTTCAT	TGACTTGCAG	TTCTGCAGTT	10920
	TAAATTATTG	AAAGAACAAT	TCGTTTGCAT	TTCCTGATGA	AAGTAAAAGC	ATTTTTCAGA	10980
			ACCCAGCAGA				
			GAGCATAGTA				
75	CTGGAGGCAG	GGAATACTCC	ATGGTTGTTT	CTTTTTCCTA	CTTAAGCCCA	TTTTGTTTGT	11160
75	GCTTTTCTGT	TTTGTTTTGT	TTTCACTCTT	GCACTACAGT	CTAGAGATCC	AAATGAACTG	11220
	AAAAGTTCAA	AGTTTAACAC	ATTTAAATAT	GTTTACTTTT	AGTTGTCATT	CTAATCGTTA	11280
			TGAAGGAAAG				
			TAAATAAGTA				
			TGTCAATTTA				
80			AGCCAAATGT				
						_	

```
TCACATGCTA CCTATGTAGA CAGGTATGAA ATTAAGTTAT AATTTTCATG AGACATTTC 11580
        ATCACTGTTG ACACAGTTTC AAGGCATTCC ATCATGTTAT TTTGACTCTT TTTCTTTTTT 11640
        TTTTCTTTAA AAATATATTT TTAACTAGAC CAGGCCCCAC TATAATATCA CTTAAGAGAG 11700
        TCAGGGCAAA GTTTTTGCAT TTATGAAGAT GTGTTCATGT AAGGGTGATT GTAATGGAGT 11760
  5
        TCATTGGTAA TAGAAGCAAA AGTACAGTAA CGAAGTATTG AAAAGAAAAT TTTGGAGACA 11820
        TTGGAGCATA TTATATATAG CTTGTGGAAA GACATAAGGC TACAGATGGA ATGGAACATT 11880
        CCTGTTTTCT TGAAGAAATT CACATACACA TAGCTGACCT GACTAGTACT TCAGCTCTTC 11940
        ААААААААС АААААААСС СААААААСАА ААААСАААА ААААССАААС ТААААТТТАА 12060
10
        AAATACAGAA AACAAACAAC AAAAAAGAAT TCAACCATAA ATAGTGACTA TTATTTTCAG 12120
        TGTGTCCTTC ATGTGAAAGC TATTAAGGAC CAAATATACT ACTGTTCATA AGAAGAAATT 12180
        ACTITCTAAA CAGTAACTGA AAATACTTAG AGTTAAACTT GCTGTGGATT TTGTCTTGGC 12240
        AGTTGTCATC TTACATTATT TGTCAAAGGA AATGTGTTTG GCAGTTAAAA ATCTTTCCTT 12300
        AGATTAGTG GTGGACTTTA ACCTCTTAAA TAAATGTTAG TATATCAGAT TGTGTCCTTG 12360
AAAAATATTT TACTTGTATG AATCATGACA ACGTCTAAAT CTTTACTATT CTTCTGGCAA 12420
15
        AAGCATCAGT AAGAAAGAAG GCGAAAAAGA GAAGTATAGC CTTTATGTCA GAAAAACATT 12480
        CTTTTTAGCT GCTTACTTTC TCATGAAAAG TAAAGATGTT TACAGTGTAT GCCAAGTTTT 12540
        CAGTITCTGT ATAACAACAG GTAGAGGTTC TAATCATATT GAAAATTGTG TTATAATGGT 12600
        CTGAGCCATG TIGCTAGGAA ACAATAGGTT CCAATTTIGT ATTCCTGCTC TCCTGTGCTG 12660
20
        AAAAGTGACT GGATACTGTA CAGGTTCATG TTCTCTGGCT GCAGTTAAAT GGTCTTTTGC 12720
        ATTTTGCTCT GGCTTCAGG CCAGAAGCAT GCATTTTTCT ACAAGAGCAT CACAACAACA 12780
        TGCTGTAAAT ATTTAAAGTT AAACATTATG TGTTGATATT TGAAAGAAAA GTACTTTGAA 12840
        TATTICATIT TIAAAAAATA AAATIGCCAA IGAAAAAAA
25
        SEQ ID NO:230 PEZ2 Protein sequence:
        Protein Accession #:
                                NP_055068
30
                   11
                               21
                                                                  51
                                          31
        MEOTOCKPYO PLPKVKHEMD LAYTSSSDES EDGRKPROSY NSRETLHEYN OELRMNYNSO
        SRKRKEVEKS TOEMEFCETS HTLCSGYQTD MHSVSRHGYQ LEMGSDVDTE TEGAASPDHA
                                                                                120
        LRMWIRGMKS EHSSCLSSRA NSALSLTDTD HERKSDGENG FKFSPVCCDM EAQAGSTQDV
35
        QSSPHNQFTF RPLPPPPPPP HACTCARKPP PAADSLQRRS MTTRSQPSPA APAPPTSTQD
        SVHLHNSWVL NSNIPLETRH SLFKHGSGSS AIFSAASQNY PLTSNTVYSP PPRPLPRSTF
                                                                               300
        SRPAFTFNKP YRCCNWKCTA LSATAITVTL ALLLAYVIAV HLFGLTWQLQ PVEGELYANG
                                                                               360
        VSKGNRGTES MDTTYSPIGG KVSDKSEKKV FQKGRAIDTG EVDIGAQVMQ TIPPGLFWRF
                                                                               420
        QITIHHPIYL KFNISLAKDS LLGIYGRRNI PPTHTQFDFV KLMDGKQLVK QDSKGSDDTQ
HSPRNLILTS LQETGFIEYM DQGPWYLAFY NDGKKMEQVP VLTTAIEIMD DCSTNCNGNG
                                                                               480
40
                                                                               540
        ECISCHCHCF PGFLGPDCAR DSCPVLCGGN GEYEKGHCVC RHGWKGPECD VPEEQCIDPT
                                                                               600
        CFGHGTCIMG VCICVPGYKG EICEEEDCLD PMCSNHGICV KGECHCSTGW GGVNCETPLP
        VCQEQCSGHG TFLLDAGVCS CDPKWTGSDC STELCTMECG SHGVCSRGIC QCEEGWVGPT
        CEERSCHSHC TEHGQCKDGK CECSPGWEGD HCTIAHYLDA VRDGCPGLCF GNGRCTLDQN
45
        GWHCVCQVGW SGTGCNVVME MLCGDNLDND GDGLTDCVDP DCCQQSNCYI SPLCQGSPDP
                                                                               840
        LDLIOOSOTL FSOHTSRLFY DRIKFLIGKD STHVIPPEVS FDSRRACVIR GOVVAIDGTP
                                                                               900
        LVGVNVSFLH HSDYGFTISR QDGSFDLVAI GGISVILIFD RSPFLPEKRT LWLPWNQFIV
                                                                               960
        VEKVTMORVV SDPPSCDISN FISPNPIVLP SPLTSFGGSC PERGTIVPEL OVVQEEIPIP
                                                                              1020
        SSFVRLSYLS SRTPGYKTLL RILLTHSTIP VGMIKVHLTV AVEGRLTQKW FPAAINLVYT
                                                                              1080
50
        FAWNKTDIYG QKVWGLAEAL VSVGYEYETC PDFILWEQRT VVLQGFEMDA SNLGDWSLNK
        HHILMPQSGI IHKGNGENMF ISQQPPVIST IMGNGHQRSV ACTNCNGPAH NNKLFAPVAL
                                                                              1200
        ASGPDGSVYV GDFNFVRRIF PSGNSVSILE LSTSPAHKYY LAMDPVSESL YLSDTNTRKV
                                                                              1260
        YKLKSLVETK DLSKNFEVVA GTGDQCLPFD QSHCGDGGRA SEASLNSPRG ITVDRHGFIY
FVDGTMIRKI DENAVITTVI GSNGLTSTQP LSCDSGMDIT QVRLEWPTDL AVNPMDNSLY
                                                                              1320
                                                                              1380
55
        VLDNNIVLQI SENRRVRIIA GRPIHCQVPG IDHFLVSKVA IHSTLESARA ISVSHSGLLF
                                                                              1440
        IAETDERKVN RIQQVTTNGE IYIIAGAPTD CDCKIDPNCD CFSGDGGYAK DAKMKAPSSL
                                                                              1500
        AVSPDGTLYV ADLGNVRIRT ISRNQAHLND MNIYEIASPA DQELYQFTVN GTHLHTLNLI
                                                                              1560
        TRDYVYNFTY NSEGDLGAIT SSNGNSVHIR RDAGGMPLWL VVPGGQVYWL TISSNGVLKR
        VSAQGYNPAL MTYPGNTGLL ATKSNENGWT TVYEYDPEGH LTNATFPTGE VSSFHSDLEK
                                                                              1680
60
        LTKVELDTSN RENVLMSTNL TATSTIYILK QENTQSTYRV NPDGSLRVTF ASGMEIGLSS
                                                                              1740
        EPHILAGAVN PTLGKCNISL PGEHNANLIE WRORKEONKG NVSAFERRLR AHNRNLLSID
                                                                              1800
        FDHITRTCKI YDDHRKFTLR ILYDQTGRPI LWSFVSRYNE VNITYSPSGL VTFIQRGTWN
EKMEYDQSGK IISRTWADGK IWSYTYLEKS VMLLLHSQRR YIFFYDQSDC LLSVTMPSMV
                                                                              1860
                                                                              1920
        RHSLQTMLSV GYYRNIYTPP DSSTSFIQDY SRDGRLLQTL HLGTGRRVLY KYTKQARLSE
                                                                              1980
65
        VLYDTTQVTL TYEESSGVIK TIHLMHDGFI CTIRYRQTGP LIGRQIFRFS EEGLVNARFD
        YSYMNFRVTS MQAVINETPL PIDLYRYVDV SGRTEQFGKF SVINYDLNQV ITTTVMKHTK
                                                                              2100
        IPSANGQVIE VQYEILKAIA YWMTIQYDNV GRHGNMCIRV GVDANITRYF YEYDADGQLQ
                                                                              2160
        TVSVNDKTQW RYSYDLNGDI NLLSHGKSAR LTPLRYDLRD RITRLGEIQY KMDEDGFLRQ
                                                                              2220
        RGNDIFEYNS NGLLOKAYNK ASGWTVQYYY DGLGRRVASK SSLGQHLQFF VDATANPIRV
                                                                              2280
70
        THLYNHTSSE ITSLYYDLOG HLIAMELSSG EFYYVACDNT GTPLAVFSSR GOVIKEILYT
                                                                              2340
        PYGDIYHDTY PDFQVIIGFH GGLYDFLTKL VHLGQRDYDV VAGRWITAYH HIWKQLNLLP
                                                                              2400
        KPFNLYSFEN NYPVGKIQDV AKYTTDIRSW LELFGFQLHN VLPGFPKPEL ENLELTYELL
                                                                              2460
        RLOTKTOEWD PGKTILGIQC ELQKQLRNFI SLDQLPMTPR YNDGRCLEGG KQPRFAAVPS
                                                                              2520
        VFGKGIKFAI KDGIVTADII GVANEDSRRL AAILNNAHYL ENLHFTIEGR DTHYFIKLGS
75
        LEEDLVLIGN TGGRRILENG VNVTVSQMTS LLNGRTRRFA DIQLQHGALC FNIRYGTTVE
        EEKNHVLEIA RORAVAQAWT KEORRLOEGE EGIRAWTEGE KOOLLSTGRV OGYDGYFVLS
        VEOYLELSDS ANNIHFMROS EIGRR
                                                   SEQ ID NO:231 PFD4 DNA SEQUENCE:
```

Coding sequence:

225-2567 (underlined sequences correspond to start and stop codons)

5	1	11	21 	31 	41	51	
•	CTCAGCCTTC	CCGGTTCGGG	AAAGGGGAAG	AATGCAGGAG	GGGTAGGATT	TCTTTCCTGA	60
		TGGGAAAGAC					120
		AATAAAACGT					180
10		GGCATTCCGG					240
10		GCCGCCGCAG					300
		GCTCGCTTTC					360 420
		GCCCATCTTG					480
_		TTCGGGAGTT					540
15		TGCAGTTCCT					600
	CATACTTTAT	CTTTGGAACA	TCAAGACATA	TCTCAGTTGG	ACCTTTTCCA	GTGGTGAGTT	660
		ATCTGTTGTT					720
		TGTATTAAAT					780
20		CAGTGCCCTG					840
20		ATTCATAGTG CCAAGTGCTG					900 960
		AGTTCTCTCT					1020
		TGCTGATTTC					1080
~-		TGATCGGTTT					1140
25	TGACGATAAT	TGCTACTGCC	ATTTCATATG	GAGCCAACCT	GGAAAAAAAT	TACAATGCTG	1200
		ATCCATCCCA					1260
		GCTGGCTGCA					1320
		AGTATATGCC					1380 1440
30		GATCAGCAAC CACGGCCGTC					1500
50		GATTGTGATG					1560
		CTTGGCAGCT					1620
	GTGACATTCC	TCGTCTGTGG	AGACAGAATA	AGATTGATGC	TGTTATCTGG	GTGTTTACGT	1680
25		CATCATTCTG					1740
35		GGTCCTGAGA					1800
		CTACAAAAGT					1860
		ATTTTCCAGT					1920
		AGTTGGATTT GAAACTAATA					1980 2040
40		TTCAACAAAT					2100
		CCCAACCAAG					2160
		CGTTCCCAAA					2220
		CGTTGTTGGA					2280
45		TGTGTATTTT					2340
73		TGACGACAAC ACAGAACCAA					2400 2460
		TCAGGATTGT					2520
		TGTCCAGGAT					2580
		GAGCAAGGAA					2640
50		ACTCATTCTT					2700
		ATTTATAAAA					2760
		TTTGGCAGCG					2820
		GCTAATAATG AACAGCCTCT					2880 2940
55		ACTGACCTGG					3000
		TGAAATAAAA					3060
		ATTGGAGTTT					3120
		GCCGGAATTG					3180
60		CCAATATATT					3240
UU		ATAAAAATCT					3300 3360
		GACAGATTAT GCATGGAGGC					3420
		GAGTGAAAAT					3480
		TTCTCAAAAA					3540
65	TGACCACTTA	AAAAAAAATC	TAAAAATTGA	ACTACCTATA	GTAGTCTGTG	TTTAAAGTGA	3600
		ACAAAGCATT					3660
		ATACAGGTTT					3720
		GTGCCAACAA					3780
70		ATATATTTCA GGTCCCCAAT					3840 3900
70		GGGATTGGTT					3960
		ACCCCTGCCT					4020
		TGTGTCTATT					4080
75		GGTTGTAAAT					4140
<i>7</i> 5		ACTTGCTTAT					4200
		GCTCATGCCT					4260
		GATCGAGACC AAATTAGCCT					4320 4380
						GAGCCGAGGT	
80						AAAAAAAAA	

80	Nucleic Acid Acc	ession #:	NM_000450	SEC	2 ID NO:235 ACC	5 DNA SEQUENCE	•
15			SHKMTTSRCV KSGVDADSSY		TYEAMIZEÜL	EPPATIFMÄI	300
70 75	 MNWELLLWLL GIGEELAYQL ATKAVLQEFG KQGKIVTVNS	VICALLLLLV SKLGVSLVLS RIDILVNNGG ILGIISVPLS	QLLRFLRADG ARRVHELERV MSQRSLCMDT IGYCASKHAL	 DLTLLWAEWQ KRRCLENGNL SLDVYRKLIE RGFFNGLRTE	 GRRPEWELTD KEKDILVLPL LNYLGTVSLT LATYPGIIVS	 MVVWVTGASS DLTDTGSHEA KCVLPHMIER NICPGPVQSN	60 120 180 240
65	SEQ ID NO:234 Protein Accession	PFH2 Protein sequ n #: 11	NP_057	7113	41	51	٠
65		GAATCTTGCA					
60	AGACAAAACA AAACATGAAA ACTTTTTAAT	TGACTGAAAA ACAGCAATCT AGATATGACT	GAGCACCTGT TCTTATGCTT TTGCTTCCAA	ACTTTTCAAG CTGAATAATC	CCACTGGAGG AAAGACTAAT	GAGAAATGGA TTGTGATTTT	1140 1200 1260
55	GCAATAATGG TCAGCATGGC CATATTTGTG	AGACCAGTCC CAATGATTTG GCAATACATG	CACAAGATGA AAAGAAGTTT CCAACCTGGG AGTGGTGTGG	CAACCAGTCG GGATCTCAGA CCTGGTGGAT	TTGTGTGCGG ACAACCTTTC AACCAACAAG	CTGATGTTAA TTGTTAGTAA ATGGGGAAGA	900 960 1020 1080
	CTCACATGAT TATCTGTACC ATGGCCTTCG	CGAGAGGAAG TCTTTCCATT AACAGAACTT	CAAGGAAAGA GGATACTGTG GCCACATACC GTGGAGAATT	TTGTTACTGT CTAGCAAGCA CAGGTATAAT	GAATAGCATC TGCTCTCCGG AGTTTCTAAC	CTGGGTATCA GGTTTTTTTA ATTTGCCCAG	660 720 780 840
50	TAGAGAATGG CTGGTTCCCA TGGTCAACAA	CAATTTAAAA TGAAGCGGCT TGGTGGAATG	GAAAAAGATA ACCAAAGCTG TCCCAGCGTT AACTACTTAG	TACTTGTTTT TTCTCCAGGA CTCTGTGCAT	GCCCCTTGAC GTTTGGTAGA GGATACCAGC	CTGACCGACA ATCGACATTC TTGGATGTCT	420 480 540 600
45.	TGCTCCTGCT TATGGGCCGA TGACTGGAGC	CTTGGTGCAG GTGGCAGGGA CTCGAGTGGA	CTGCTGCGCT CGACGCCCAG ATTGGTGAGG AGAAGAGTGC	TCCTGAGGGC AATGGGAGCT AGCTGGCTTA	TGACGGCGAC GACTGATATG CCAGTTGTCT	CTGACGCTAC GTGGTGTGGG AAACTAGGAG	180 240 300 360
40			21 GACGCGACTC AACTGGGAGC				60 120
35	Nucleic Acid Acc Coding sequence		NM_01 228-10	6029		2 DNA SEQUENCE d to start and stop o	
30	DCGAISFLDV	VGVRSLRVIV	KEFQRIDVNV SILETITLIQ	YFASLQDYVI	EKLEQCGFFD	DNIRKDTFFL	720 780
25	YAIAVSVGKV QVAGIISAAI IWVFTCIVSI EPQGVKILRF	YATKYDYTID VMIAILALGK ILGLDLGLLA SSPIFYGNVD	GNQEFIAFGI LLEPLQKSVL GLIFGLLTVV GFKKCIKSTV IEDLEELDIP	SNIFSGFFSC AAVVIANLKG LRVQFPSWNG GFDAIRVYNK	PVATTALSRT MFMQLCDIPR LGSIPSTDIY RLKALRKIQK	AVQESTGGKT LWRQNKIDAV KSTKNYKNIE LIKSGQLRAT	420 480 540 600
20	AFGVLKTLVP FFPILTYFIF RDTARVLIAS NVSTKNYNGV	ILEWLPKYRV GTSRHISVGP ALTLLVGIIQ LSIIYTLVEI	MVSRPVYSEL KEWLLSDVIS FPVVSLMVGS LIFGGLQIGF FQNIGDTNLA KNYNAGIVKS	GVSTGLVATL VVLSMAPDEH IVRYLADPLV DFTAGLLTIV	QGMAYALLAA FLVSSSNGTV GGFTTAAAFQ VCMAVKELND	VPVGYGLYSA LNTTMIDTAA VLVSQLKIVL RFRHKIPVPI	60 120 180 240 300 360
15	1 	11	21 	31	41	51 	
10	SEQ ID NO:232 Protein Accession	PFD4 Protein sequ n #:	<u>Jence:</u> O43511	I			
5	GGCTAGAGTT TACTGTCTCT GAAAATTTCA TCCAGTATTG	TGTAAATTCT TCTATGTATT CTTGAAATTA TATATGAGTT TTTAAAAATA	ACTITITIGA GGGTTCATIT TIGIGAATAG AAGCIGCCTT TTAACAAATT AATGTAAAGT	GTGATGACAT TAAGCATAAT TTGTTATATT AAAAAATCAA	AAGTCAGCAA TTTAGTTTTG TTTAACCTAT ATCATGTACA	ACTGCGGGAA TATTATCAAT AGGATAAGAT TTTGAAAATA	4620 4680 4740 4800 4860 4920
	алалалала	AGAGTGAATG	TAATAGTCTT	GCAGAAAATG	AATGAATACC	TTTGTTCAAT	4560

	Coding sequence	æ	1-1833 (under	lined sequences c	оrrespond to start	and stop codons)	
	1	11 	21 i	31 ·	41	51	
5		CACAGTTTCT ACAACACCTC					60 120
	CAGCAAAGGT	ACACACACCT	GGTTGCAATT	CAAAACAAAG	AAGAGATTGA	GTACCTAAAC	180
•		GCTATTCACC TAGGAACCCA					240 300
10	GAACCCAACA	ATAGGCAAAA	AGATGAGGAC	TGCGTGGAGA	TCTACATCAA	GAGAGAAAA	360
		TGTGGAATGA					420
		CCAATACATC					480 540
15		AATCCCCTGA					600
13		CTTCCTGCTC					660 720
	GAGTGTGATG	CTGTGACAAA	TCCAGCCAAT	GGGTTCGTGG	AATGTTTCCA	AAACCCTGGA	780
		GGAACACAAC TTCAGTGTAC					840 900
20	GCTGTGACAT	GCAGGGCCGT	CCGCCAGCCT	CAGAATGGCT	CTGTGAGGTG	CAGCCATTCC	960
		AGTTCACCTT CAGCCCAGGT					1020
		CTTTCCAGTG					1080 1140
25		CTTCTGGCAG					1200
23		TGAAGGGATC CATGTGAAGC					1260 1320
	GTGAGGTGTG	CTCATTCCCC	TATTGGAGAA	TTCACCTACA	AGTCCTCTTG	TGCCTTCAGC	1380
		GATTTGAATT AGGTTCCTTC					1440 1500
30		TGAGCTGCAG					1560
		GGACGCTCAA					1620
		TACCTACCTG CTGGACTCTC					1680 1740
35	TGCTTACGGA	AAGCAAAGAA	ATTTGTTCCT	GCCAGCAGCT			1800
33	GGAAGCTACC	AAAAGCCTTC	TTACATCCTT	TAA			
40	SEQ ID NO:236 Protein Accession	ACC5 Protein sequ	rence; NP_000441				
40							
	1						
	ī	11	21	31	41	51 !	
45	i	 TLVLLIKESG	1	Ì		I	60
45	 MIASQFLSAL SILSYSPSYY	 TLVLLIKESG WIGIRKVNNV	 AWSYNTSTEA WVWVGTQKPL	 MTYDEASAYC TEEAKNWAPG	QQRYTHLVAI EPNNRQKDED	 ONKEEIEYLN CVEIYIKREK	120
45	 MIASQFLSAL SILSYSPSYY DVGMWNDERC	 TLVLLIKESG	 AWSYNTSTEA WVWVGTQKPL AACTNTSCSG	 MTYDEASAYC TEEAKNWAPG HGECVETINN	QQRYTHLVAI EPNNRQKDED YTCKCDPGFS	 QNKEEIEYLN CVEIYIKREK GLKCEQIVNC	
	 MIASQFLSAL SILSYSPSYY DVGMWNDERC TALESPEHGS ECDAVTNPAN	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNFG	AWSYNTSTEA WVWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF	 MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG	QQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG	 QNKEEIEYLN CVEIYIKREK GLKCEQIVNC SAPIPACNVV NWDNEKPICK	120 180 240 300
45 50	MIASQFLSAL SILSYSPSYY DVGMWNDERC TALESPEHGS ECDAVTNPAN AVTCRAVRQP	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNP GFVECFQNPG QNGSVRCSHS	AWSYNTSTEA WWWYGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS	MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG CNFTCEEGFM	QQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT	QNKEEIEYLN CVEIYIKREK GLKCEQIVNC SAPIPACNVV NWDNEKPICK TQGQWTQQIP	120 180 240 300 360
	MIASQFLSAL SILSYSPSYY DVGMMDERC TALESPENGS ECDAVTNPAN AVTCRAVRQP VCEAFQCTAL EKPTCEAVRC	 TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL	AWSYNTSTEA WVWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE	 MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG CNFTCEEGFM GSSCEFSCEQ FTYKSSCAFS	QQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT GPVLKGSKRL CEEGFELYGS	 QNKEEIEYLN CVEIYIKREK GLKCEQIVNC SAPIPACNVC NWDNEKPTCK TQGQWTQQIP QCGPTGEMDN TQLECTSQGQ	120 180 240 300
	MIASOFLSAL SILSYSPSYY DVGMWNDERC TALESPEHGS ECDAVTNPAN AVTCRAVROP VCEAFQCTAL EKPTCEAVRC WTEEVPSCQV	 TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SFPWNTTCTF PAGEFTFKSS LPSASGSFRY WRCAHSPIGE KINMSCSGEF	 MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG CMFTCEEGFM GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC	QQRYTHLVAI EPPNIRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT GPVLKGSKRI CEEGFELYGS PEGWTLNGSA	 QNKEEIEYLM CVEIYIKKE GLKCEQIVNC SAPIPACNVV NWDNEKPTCK TQGQWTQQIP QCGPTGEWD TQLECTSQGQ ARTCGATGHW	120 180 240 300 360 420 480 540
	MIASOFLSAL SILSYSPSYY DVGMWNDERC TALESPEHGS ECDAVTNPAN AVTCRAVROP VCEAFQCTAL EKPTCEAVRC WTEEVPSCQV	 TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SFPWNTTCTF PAGEFTFKSS LPSASGSFRY WRCAHSPIGE KINMSCSGEF	 MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG CMFTCEEGFM GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC	QQRYTHLVAI EPPNIRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT GPVLKGSKR CEEGFELYGS PEGWTLNGSA	 QNKEEIEYLM CVEIYIKKE GLKCEQIVNC SAPIPACNVV NWDNEKPTCK TQGQWTQQIP QCGPTGEWD TQLECTSQGQ ARTCGATGHW	120 180 240 300 360 420 480
50	MIASOFLSAL SILSYSPSYY DVGMWNDERC TALESPEHGS ECDAVTNPAN AVTCRAVROP VCEAFOCTAL EKPTCEAVRC WTEEVPSCOV SGLLPTCEAP GSYQKPSYIL	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNFG QNGSVRCSHS SNPERGYHNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT	 MTYDEASAYC TEEAKNWAPG HGECVBTINN DRGYLPSSME DCEEGFELMG CNFTCEEGFM GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK	OQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT GFVLKGSKRL CEEGFELYGS PEGWTLNGSA CLRKAKKFVP	 QNKEEIEYLM CVEIYIKKE GLKCEQIVNC SAPIPACNVV NWDNEKPTCK TQGQWTQQIP QCGPTGEWD TQLECTSQGQ ARTCGATGHW	120 180 240 300 360 420 480 540 600
50	MIASOFLSAL SILSYSPSYY DVGMWNDERC TALESPEHGS ECDAVTNPAN AVTCRAVROP VCEAFQCTAL EKPTCEAVRC WTEEVPSCQV SGLLPTCEAP GSYQRPSYIL Nucleic Acid Acc	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002	 MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG CMFTCEEGFM GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK	QQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT GFVLKGSKR CEEGFELYGS PEGWTLNGSA CLRKAKKFVP	ONKEEIEYLM CVEIYIKREK GLKCEQIVNC SAPIPACNVV NWDNEKPTCK TQGQWTQQIP QCGPTGEWID TQLECTSQSQ ARTCGATGHW ASSCQSLESD	120 180 240 300 360 420 480 540 600
50	MIASOFLSAL SILSYSPSYY DVGMWNDERC TALESPEHGS ECDAVTNPAN AVTCRAVROP VCEAFOCTAL EKPTCEAVRC WTEEVPSCOV SGLLPTCEAP GSYQKPSYIL	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002	 MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG CNFTCEEGFM GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK	QQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT GFVLKGSKR CEEGFELYGS PEGWTLNGSA CLRKAKKFVP	ONKEEIEYLM CVEIYIKREK GLKCEQIVNC SAPIPACNVV NWDNEKPTCK TQGQWTQQIP QCGPTGEWID TQLECTSQSQ ARTCGATGHW ASSCQSLESD	120 180 240 300 360 420 480 540 600
50 55	MIASOFLSAL SILSYSPSYY DVGMWNDERC TALESPEHGS ECDAVTNPAN AVTCRAVROP VCEAFQCTAL EKPTCEAVRC WTEEVPSCQV SGLLPTCEAP GSYQRPSYIL Nucleic Acid Acc	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002	 MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG CMFTCEEGFM GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK	QQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT GFVLKGSKR CEEGFELYGS PEGWTLNGSA CLRKAKKFVP	ONKEEIEYLM CVEIYIKREK GLKCEQIVNC SAPIPACNVV NWDNEKPTCK TQGQWTQQIP QCGPTGEWID TQLECTSQSQ ARTCGATGHW ASSCQSLESD	120 180 240 300 360 420 480 540 600
50 55	MIASQFLSAL SILSYSPSYY DVGMMNDERC TALESPEHGS ECDAVTNPAN AVTCRAVRQP VCEAFQCTAL EKPTCEAVRC WTEEVPSCQC WTEEVPSCQL SGLLPTCEAP GSYQKPSYIL Nucleic Acid Acc Coding sequence	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNFG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG	AWSYNTSTEA WWWWGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTI PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under	MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG CNFTCEEGFM GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEG ined sequences c	QQRYTHLVAI QQRYTHLVAI QQRYTHLVAI QCRYCHOPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT GFVLKGSKRL CEEGFELYGS PEGWTLNGSA CLRKAKKFVP DID NO:237 PM20 onespond to start 41	ONKEETEYIM CVETYIKREK GLKCEQIVMC SAPIPACNVV MWIDNEKPTCK TQGQWTQQIP QCGPTGEMIN TQLECTSQSQ ARTCGATGHW ASSCQSLESD B DNA SEQUENCE and stop codors)	120 180 240 300 360 420 480 540 600
55 55 60	MIASOFLSAL SILSYSPSYY DVGMMNDERC TALESPENGS ECDAVTNPAN AVTCRAVROP VCEAFQCTAL EKPTCEAVRC WTEEVPSCOV SGLLPTCEAV GSYQKPSYIL Nucleic Acid Acc Coding sequence 1	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNP GPVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 CACGATTAAT AGACTCCCAT	MTYDEASAYC TEEAKNWAPG HEGEVETINN DRGYLPSSME DCEEGFELMG CNFTCEEGFM GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEG ined sequences c 31 GAGGACACCC TTTGAGCAGC	OQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT GFVLKGSKRL CEEGFELYGS PEGWTLNGSA CLRKAKKFVP ONESpond to start 1 CAATGAGCCA TGATGATGAA	QNKEETEYLM CVETYIKREK GLKCEQTUNC SAPIPACNUV NWIDNEKPICK TQGQWTQQIP QCGPTGEMIN TQLECTSQGQ ARTCGATCHW ASSCQSLESD B DNA SEQUENCE and stop codors) 51 AAGGGGGTCC TATGCTAGAT	120 180 240 300 360 420 480 540 600
50 55	MIASOFLSAL SILSYSPSYY DVGMMDERC TALESPEHGS ECDAVTNPAN AVTCRAVROP VCEAFOCTAL EKPICEAVRC WTEEVPSCOV SGLLPTCEAP GSYQKPSYIL Nucleic Acid Acc Coding sequence 1 ATGATGTGTG GAAAGGGATC	TIVILIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNFG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG ** 11 AAGTGATGCC GCTCGGACTC GTCTTCTAGA	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS VPCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 CACGATTAAT AGACTCCCAT CACCCTTCGG	MTYDEASAYC TEEAKNWAPG HGECVBTINN DRGYLPSSME DCEEGFELMG GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEG lined sequences c 31 GAGGACACCC TTTGAGCAGC GAGACCCAGG	QQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT CEEGFELYGS PEGWTLNGSA CLRKAKKFVP DID NO:237 PM2I OMESPOND to start 41 CAATGAGCCA TGATGGTGAA AAAGCCTCTC	QNKEEIEYLM CVEIYIKREK GLKCEQIVNC SAPIPACNVV MWDNEKPICK TQGQWTQQIP QCGPTGEWDN TQLECTSGQQ ARTCGATGHW ASSCQSLESD B DNA SEQUENCE and stop codons) 51 AAGGGGGTCC TATGCTAGAT ACTTGCCCAG	120 180 240 300 360 420 480 540 600
55 55 60	MIASQFLSAL SILSYSPSYY DVGMMNDERC TALESPEHGS ECDAVTNPAN AVTCRAVRQP VCEAFQCTAL EKPTCEAVRC WTEEVPSCQC SGLLPTCEAP GSYQKPSYIL Nucleic Acid Acc Coding sequence 1	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNP GPVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG	AWSYNTSTEA WWWYGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS LPSASGSFRY WRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 CACCATTAAT AGACTCCCAG CTATGACCGA	MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG CNFTCEEGFM GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEG dined sequences c 31 GAGGACACCC TTTGAGCAGC GAGACCAGG GAGACCACCG GAGACCAGG GAGACTCACTCC	QQRYTHLVAI QQRYTHLVAI QQRYTHLVAI QCMSGEW YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT GFVLKGSKRL CEEGFELYGS PEGWTLNGSA CLRKAKKFVP DID NO:237 PM2i omespond to start 41 CAATGAGCCA TGATGGTGAA AAAGCCTCTC AGAGACAGCT	QNKEETEYLM CVETYIKREK GLKCEQIVMC SAPIPACNVV MWIDNEKPTCK TQGQWTQQIP QCGPTGEMIN TQLECTSQSQ ARTCGATGHW ASSCQSLESD B DNA SEQUENCE and stop codons) 51	120 180 240 300 360 420 480 540 600
55 55 60	MIASOFLSAL SILSYSPSYY DVGMMNDERC TALESPENGS ECDAVTNPAN AVTCRAVROP VCEAFQCTAL EKPTCEAVRC WTEEVPSCOV SGLLPTCEAP GSYQKPSYLL Nucleic Acid Acc Coding sequence 1 ATGATGTGTG GAAAGGAGTG GAAAGACTTC CAAAGACTTC CTGCCACAGG CCGGAATTTG	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNP GPVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG 25: 11 AAGTGATGAC GCTCGGACTC GTCTTCTAGA AGGATGTCAT ATATCGAATC CTGCACTGAC	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 i CACGATTAAT AGACTCCCAT CACCCTTCGG CTATGACCGA ACCATTAACAGGA AAAAGAATTA	MTYDEASAYC TEEAKNWAPG HEGEVETINN DRGYLPSSME DCEEGFELMG GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEG ined sequences c 31 GAGGACACCC TTTGAGCAGC GAGACCCAGG GACTCACTCC GGGCTGGCTG AATGCCTGCA	OQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG EGVLKGSKRL CEEGPELYGS PEGWTLNGSA CLRKAKKFVP ONESpond to start 1 CAATGAGCCA TGATGGTGAA AAAGCCTCTC GTTCTAAAGGG GGGAACAACT	QNKEEIEYLM CVEIYIKREK GLKCEQIVMC SAPIPACNVV MWDNEKPTCK TQGQWTQQIP QCGPTGEMDM TQLECTSQGQ ARTCGATCHW ASSCQSLESD B DNA SEQUENCE and stop codors) 51 AAGGGGGTCC TATGCTAGAT ACTTGCCCAG CACATTCAGCC TGCTAGTACCA TCTAGAAAAG	120 180 240 300 360 420 540 600 120 180 240 360
55 55 60 65	MIASQFLSAL SILSYSPSYY DVGMMDERC TALESPENGS ECDAVTMPAN AVTCRAVROP VCEAFQCTAL EKPTCEAVRC WTEEVPSCQV SGLLPTCEAP GSYQKPSYIL Nucleic Acid Acc Coding sequence 1	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNFG QNGSVRCSHS SNPERGYMNC DAVHOPPKGL VKCSSLAVPG TESNIPLVAG 255 11	AWSYNTSTEA WWWWGTQKPL AACTNTSCSG SYNSSCSISC SYPWNTTCTT PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 CACGATTAAT AGACTCCCAT CACCCTTCGG CTATGACCGA CCTATCAGGA AAAAGAATTA TAAAGCTGAA	MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEG ined sequences c 31 GAGGACACCC GAGGACACCC GAGACCCAGG GACTCACTCC GGGCTGGCTG AATGCCTGCA AGGAACACA	QQRYTHLVAI QQRYTHLVAI QQRYTHLVAI QQRYTHLVAI YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG GFVLKGSKRL CEEGFELYGS PEGWTLNGSA CLRKAKKFVP DID NO:237 PM20 Onespond to start 41 CAATGAGCCA TGATGGTGAA AAAGCCTCTC AGAGACAGCT GTTCTAAGGG GGGAACAACT CAAGAGCTATT	QNKEETEYLM CVETYLKREK GLKCEQTUNC SAPIPACNUV MYDNEKPTCK TQGQWTQQIP QCGPTGENDN TQLECTSQ3Q ARTCGATGHW ASSCQSLESD B DNA SEQUENCE and slop codons) 51	120 180 240 360 420 480 540 600 120 180 240 300 360 420
55 55 60	MIASQFLSAL SILSYSPSYY DVGMMNDERC TALESPEHGS ECDAVTNPAN AVTCRAVRQP VCEAFQCTAL EKPTCEAVRC WTEEVPSCQV SGLLPTCEAP GSYQRPSYIL Nucleic Acid Acc Coding sequence 1 ATGATGTGTG GAAAGGAGTC CAAAGGATTC CTGCCACAGG CCGGAATTTG GAAGAAGTAC TTGGAGTGCC GCCCAGTCTC	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNP GFVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG 2255ion #: 25 21 1	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SFPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 CACGATTAAT AGACTCCAT CACCCTTCGG CCTATGACGGA AAAGAATTA TAAAGCTGAA ACATGAAAGA ATCCAGTGAA	MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEI ined sequences c 31 GAGGACACCC TTTGAGCAGC GAGTACCCC GGGCTGCTG AATGCCTGCA AGAACAACA TCACTAAGAA GTTGAAGTTC	QQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG EQCHACTSSG LQGPAQVECT GEPLINGSA CLRKAKKFVP ID NO:237 PM2i omespond to start 41 CAATGAGCCA TGATGGTGAA AAAGCCTTCT GTTCTAAGGG GGGAACAACT CAAGGACTAT TGACGGTGGT TCAAGGCACT	QNKEEIEYLM CVEIYIKREK GLKCEQIVMC SAPIPACNVV NMDNEKPTCK TQGQWTQQIP QCGPTGEMDN TQLECTSQGQ ARTCGATCHW ASSCQSLESD B DNA SEQUENCE and stop codons) 51 AAGGGGGTCC TATGCTAGAT ACTTGCCCAG GGCTGATCCA TCTAGAAAAG ACTGGACCAT TCTAGAAAAG AAATCTTTG	120 180 240 300 360 420 540 600 120 180 240 360
55 55 60 65	MIASOFLSAL SILSYSPSYY DVGMMNDERC TALESPENGS ECDAVTNPAN AVTCRAVROP VCEAFQCTAL EKPTCEAVRC WTEEVPSCOV SGLLPTCEAP GSYQKPSYIL Muclel Add Acc Coding sequence 1 ATGATGTGTG GAAAGGATTC CAAAGACTTC CTGCCACAGG CCGGAATTTG GAAGAAAAAAATTTGAGTGTCTCTTTGAGCACCC TTTTGAGCACCC	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNP GPVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG 25: 11 AAGTGATGCC GCTCGGACTC GTCTTCTAGA AGGAGTGTATC TTGTGTCACC CCTCAGGAGT ACAAGGCCTT	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 i CACGATTAAT AGACTCCAT CACCTTCGG CTATGACCGA ACACGGAA ACACGGAA ACATGAAAG ACATGAAAG GGATGAAAAG GGATGAAAAG	MTYDEASAYC TEEAKNWAPG HEGEVETINN DRGYLPSSME DCEEGFELMG GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEG ined sequences c 31 GAGGACACCC TTTGAGCAGC GAGACCCAGG GACTCACTCC GGGCTGGCTG AATGCCTGCA AGAACAACA TCACTAAGAA GTTGAAGTTC GTTAAGGGAGC GTTAAGGGAGC	OQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG EQPAQVECT GFVLKGSKRL CEEGFELYGS PEGWTLNGSA CLRKAKKFVP ONESPOND TO STATE CAATGAGCCA TGATGGTGAA AAAGCCTCTC AGAGCAACT CTTCAAGGG GGGAACAACT TGACGGTGTT TGAAGGCACT TGAAGGCACT TGAAGGCACT TGAAGGCACT TGAAGGCACT TGAAGGCACT TGAAGGCACT TCAAGGGCACT TCAAGGCACT GACTGAGGGT	QNKEEIEYLM CVEIYIKREK GLKCEQIVMC SAPIPACNVV MWDNEKPTCK TQGQWTQQIP QCGPTGEMDM TQLECTSQGQ ARTCGATCHW ASSCQSLESD B DNA SEQUENCE and stop codors) 51 AAGGGGGTCC TATGCTAGAT ACTTGCCCAG CGATTCAGCC TCTAGAAAAG ACTGGACCAT AAAACGCCAA AAAACGCCAA AAAACGCCAA AAAACTTTG TTCTTTAGAAA	120 180 240 300 360 420 480 600 120 180 240 420 480 540 600
50 55 60 65 70	MIASOFLSAL SILSYSPSYY DVGMMDERC TALESPEHGS ECDAVTNPAN AVTCRAVROP VCEAFOCTAL EKPTCEAVRC WTEVPSCOW SGLLPTCEAP GSYQKPSYIL Nucleic Acid Acc Coding sequence 1 ATGATGTGTG GAAAGCAGTG CAAAGCATTC CTGCCACAGG CCGGAATTTG GAAGAGAAA TTGGAGTGCC GCCCAGTCTC TTTGAGCACC AGAGTCTCTG AGAGTCTCTG	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNP GFVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG 2255ion #: 25 21 1	AWSYNTSTEA WWWWGTQKPL AACTNTSCSG SYNSSCSISC SYPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 1 CACCATTAAT AGACTCCAT CACCCTTCGG CTATGACGA AAAGAATTA TAAAGCTGAA ACATGAAAGA ATCCAGTGAA ACATGAAAGA ATCCAGTGAA ACATGAAAGA ACATGAAAGA AGGAATGAAAGA AGGAATGACT	MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG CNFTCEEGFM GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEG dined sequences c 31 GAGGACACCC TTTGAGCAGC GAGACCCAGG GACTCACTCC GGGCTGGCTG AATGCCTGCA AGAAACAACA TCACTAAGAA GTTGAAGTTC GTAAGGAGC GCTGCTAATC	QQRYTHLVAI QQRYTHLVAI QQRYTHLVAI QQRYTHLVAI QUENTE CEPNING (CEPTING CONTROL CONTROL QUENTE CEEGFELYGS PEGWILINGSA QUENTLINGSA	QNKEEIEYLM CVETYIKREK GLKCEQIVMC SAPIPACNVV MWIDNEKPTCK TOGOWTQQIP QCGPTGEMIN TQLECTSQSQ ARTCGATGHW ASSCQSLESD B DNA SEQUENCE and stop codons) 51	120 180 240 300 360 420 480 540 600 120 240 300 360 420 480 540
55 55 60 65	MIASOFLSAL SILSYSPSYY DVGMMDERC TALESPENGS ECDAVTNPAN AVTCRAVROP VCEAFQCTAL EKPTCEAVRC WITEVPSCOV SGLLPTCEAP GSYORPSYIL Nucleic Acid Acc Coding sequence 1 ATGATGTGTG GAAAGGATTC CTGCCACAGG CCGGAATTTG GAAGAAGAAATTGGAGTGCC GCCCAGTCTC TTTGAGCACC AGACTCTCTGAAGGATC CATCTGAAGCCC AGACTCTTGAAGCACC AGACTCTTGAAGCACC CATCTTGAAGCACC CATCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTATTGAAGCACCTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAAGCACTCTTGAACACTCTTGAAGCACTCTTGAACACTCTTGAAGCACCTTTAACTGAACACTCTTGAACACCTTTAACTGAACACACAC	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNP GFVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG 225 11 1 AAGTGATGCC GCTCGGACTC GTCTTCTAGA ATATCGAATT CTGCACTGAACT TCTCTGAACT TCTCTGAACT TCTCTGAACT TCTCTGAACT TCTCTGAACT CTCTGAACT CTCTGAACT CTCTGAACT CTCTGAACT TCTCTGAACT TCTTCTGAACT TCTCTGAACT TCTCTTCT TCTCTTCT TCTCTTCT TCTCTT TCTCTTCT	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 CACGATTAAT AGACTCCAT CACCCTTCGG CCTATCACGGA AAAGATTAA TAAAGCTGAAA ACATGAAAGA ATCCAGTGAA GGATGAAAAG GGATGAAAAG GGATGAAAAG TGGACAGAAA	MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEI ined sequences c 31 GAGGACACCC TTTGAGCAGC GAGTCCACTC GGGCTGCTG AATGCCTGCA AGAAACAAC GTTGAAGTAC GTTAAGGAG GCTGCTAATC GTAAGGAGC GCATCAAGCA GCTGCTAATC GCATCAAGCA GCTGCTAATC GCATCAAGCA GCTCCATGAGA GTTCAAGCG GCTCCATGAGA	QQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG EQVLKGSKRL CEEGFELYGS PEGWTLNGSA CLRKAKKFVP ID NO:237 PM2I OMESPOND TO SIAN 41 CAATGAGCCA TGATGGTGAA AAAGCCTCTC GTTCTAAGGG GGGAACACT TGACGGTGT TCAAGGCACT TGACGGTGT TCAAGGCACT TCAAGGCACT AGGGATCTT TCAAGGCACT AGGGACT AGGGATTGT AGGGACTCTC	QNKEEIEYLM CVEIYIKREK GLKCEQIVNC SAPIPACNVV NMDNEKPTCK TQGQWTQQIP QCGPTGEMDN TQLECTSQGQ ARTCGATCHW ASSCQSLESD B DNA SEQUENCE and stop codons) 51 AAGGGGGTCC TATGCTAGAT ACTTGCCCAG CGATTCAGCC GGCTGATCCA TCTAGAAAAG ACTGGACCAT TCTAGAAAAG ACTGGACCAT TCTAGAAAAG GAAATCTTTG TTCTTTAGAA TGCCTTGCGT TGCCTGAGAA GAAATCTTTG TCCTTTTAGAA CAGAGTAGAAA CAATGGTTCT	120 180 240 300 360 420 540 600 120 180 240 360 420 540 600 600 600 720 780
50 55 60 65 70	MIASOFLSAL SILSYSPSYY DVGMMNDERC TALESPEHGS ECDAVTNPAN AVTCRAVROP VCEAFQCTAL EKPTCEAVRC WIEEVPSCOV SGLLPTCEAP GSYQKPSYIL Muclel Add Acc Coding sequence	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNP GPVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG 25: 11 AAGTGATGCC GCTCGGACTC GTCTCTAGA AGGATGTAATC CTGCACTGAC TTGTCTACG ACTGGAAGT ACAAGGCCTT CACTGGAAGA CCCGATGAAAAC CCGATGAAAAC	AWSYNTSTEA WWWVGTQKPL AACTNTSCSG SYNSSCSISC SPPWNTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 CACGATTAAT AGACTCCCAT CACCCTTCGG CTATGACCGA AAAAGAATTA ACATGAAAA ACATGAAAA ACATGAAAAG GGATGAAAAG GGATGAAAAG GGATGAAAAG TAGACAGAT TAGACCAT TGGACAGAAA TTGGACAGAAA TTGACAGAAAA TTGGACAGAAA TTGACCAGAAA TTGGACAGAAA TTGGACAGAAA TTGGACAGAAA TTGGACAGAAA TTGGACAGAAA TTGGACAGAAA TTGGACAGAAA TTGGACAGAAAA TTGGACAGAAA TTGGACAGAAA TTGGACAGAAA TTGGACAGAAA TTGGACAGAAA TTGGACAGAAA TTGGACAGAAA TTGAGAAAAATA	MTYDEASAYC TEEAKNWAPG HEGEVETINN DRGYLPSSME DCEEGFELMG GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEG ined sequences c 31 GAGGACACCC TTTGAGCAGC GAGACCCAGG GACTCACTCC GGGCTGGCTG AATGCCTGCA AGAACAACA TCACTAAGAA TCACTAAGAA GTTGAAGTTC GTAAGGGAGC GCTGCTAATC GCATCAAGC GTCCATGAGA GTTGAACTAC GTTGAACTAC GTTGAACTAC GCATCAAGA GTTGAACTAC GTTGAACTAC GTTGAACTAC GTTGAACTAC GTTGAACTAC	OQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG EQPAQVECT GFVLKGSKRL CEEGFELYGS PEGWTLNGSA CLRKAKKFVP ONESPOND TO SIAN L CAATGAGCCA TGATGGTGAA AAAGCCTCTC AGAGCAACT CTCAAGGG GGGAACAACT TGACGGTGGT TCAAGGG GGGAACAACT TCAAGGGATCAT TCAAGGGATCAT AGGGATCTA AGGGATCTA AGGGATCTA AGGGATCTA AGGGATCTA AGGGATCTA AGGGATCTCT AAGAATTGCT AAGAATTGCT AAGAATTGCT AAGAATTGCT	QNKEEIEYLM CVEIYIKREK GLKCEQIVMC SAPIPACNVV MWDNEKPTCK TQGQWTQQIP QCGPTGEMDM TQLECTSQGQ ARTCGATCHW ASSCQSLESD B DNA SEQUENCE and stop codons) 51 AAGGGGGTCC TATGCTAGAT ACTTGCCCAG CCATTCAGCA TCTAGAAAAG ACTGAGCAT AAAACGCCAA GAAATCTTG TTCTTTAGAA TGCCTTGCGT AGAGTCAGAA AGAGTCAGAA CATGGTCAGAA AGAGTCAGAA CATGGTCTTGTTTAGAA TGCCTTGCGT TGAAAAGCAA	120 180 240 360 420 480 600 120 180 240 360 420 480 540 660 720 780 840
50 55 60 65 70	MIASOFLSAL SILSYSPSYY DVGMMDERC TALESPEHGS ECDAVTNPAN AVTCRAVROP VCEAFOCTAL EKPTCEAVRC WTEVPSCOW SGLLPTCEAP GSYQKPSYIL Nucleic Acid Acc Coding sequence 1 ATGATGTGTG CAAAGCATTC CAAAGACTTC CTGCCACAGG CCCGATTTC GAAGAAGAAA TTGGAGTGCC GCCCAGTCTC TTTGAGCAC ACAGTCTCTTG GAACAAAATG CATCATCAAA AACTATGAAA	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNP GFVECFQNPG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG 225 11 1 AAGTGATGCC GCTCGGACTC GTCTTCTAGA ATATCGAATT CTGCACTGAACT TCTCTGAACT TCTCTGAACT TCTCTGAACT TCTCTGAACT TCTCTGAACT CTCTGAACT CTCTGAACT CTCTGAACT CTCTGAACT TCTCTGAACT TCTTCTGAACT TCTCTGAACT TCTCTTCTAACT TCTCTTCTT TCTCTTCTT TCTCTTCTT TCTCTTCT	AWSYNTSTEA WWWWGTQKPL AACTNTSCSG SYNSSCSISC SYPWNTTCTT PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 CACCGATTAAT AGACTCCAT CACCCTTCGG CTATGACCGA AAAGAATTA TAAAGCTGAA ACATGAAAGA ATCCAGTGAA GGATGAAAG GGATGAAAG GGATGAAAG GGATGAAAG GGATGAAAG GGATGAAAG TAGACAGAT TGGACAGAAA TGGACAGAAA TGGACAGAAA TGGACAGAAA TAGTCAAATA TAGTCAAATA GAAAGAACGT	MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG CNFTCEEGFM GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEG dined sequences c 31 GAGGACACCC TTTGAGCAGC GAGACCCAGG GACTCACTCC GGGCTGGCTG AATGCCTGCA AGAAACAACA TCACTAAGAA GTTGAAGTTC GCATCAAGCG GTCCATGAGC GTCCATGAGC GTCCATGAGC GTTGAACTAC CTTAGCAGC GTCCATGAGC GTTCAACCC TTAGCAGCC TTAGCACCC TTAGCACCC TTAGCACCC CTTAGCACCC CTCATGAGC GTCCATGAGC GTTCAACCAC TTAGCACCC TTAGCAGCCC	QQRYTHLVAI QQRYTHLVAI QQRYTHLVAI QQRYTHLVAI YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG LQGPAQVECT GFVLKGSKRL CEEGFELYGS PEGWTLNGSA CLRKAKKFVP AID NO:237 PM2I ONESPOND TO START I CAATGAGCCA TGATGAGCCA AGAGCTCTC AGAGCACTCT AGAGCACT TCAAGGC GGGAACAACT TCAAGGCACT TCAAGGCACT TCAAGGCACT TCAAGGCACT TCAAGGCACT ACAGGTTGTT AGCGGTTGTT AGCGGTTTGTTC AGCGGTTTGTTC AGAGAATTGCT TTTCTTCCCG	QNKEEIEYLM CVETYIKREK GLKCEQIVNC SAPIPACNVV MWIDNEKPICK TOGOWTQQIP QCGPTGEMIN TQLECTSQSQ ARTCGATGHW ASSCQSLESD B DNA SEQUENCE and stop codons) 51 AAGGGGGTCC TATGCTAGAT ACTTGCCAG CAATTCAGCC GGCTGATCCA TCTAGAAAAA ACTGGACAT AAACGGCAA TCTAGAAAAA TCTAGAAAA TCTAGAAAA TCTAGAAAA ACTGGTAGAA TCTAGAAAA TCTAGAAAA ACTGGTAGAA CAATGGTTTTT TGAAAAAG CAATGGTTTGTAGAAA AGTGGGAGAG	120 180 240 300 360 420 540 600 120 180 240 360 420 540 600 600 600 720 780
50 55 60 65 70	MIASOFLSAL SILSYSPSYY DVGMMDERC TALESPENGS ECDAVTNPAN AVTCRAVROP VCEAFQCTAL EKPTCEAVRC WITEVPSCOV SGLLPTCEAP GSYORPSYIL Nucleic Acid Acc Coding sequence 1 ATGATGTGTG GAAAGGATTC CTGCCACAGG CCGGAATTTG GAAGAAGAAA TTGGAGTGCC GCCCAGTCTC TTTGAGCACC GCACATATG GAACAAAATG CATCTGAAG ATACACTCAA ACTATGAAG ATACACTCAA ACTATGAAG ATACACTCAA ACTATGAAG AAGTATCAAA ACTATGAAG AAGTATCAAA ACTATGAAA GTGGAACAAAAG AAGTATCAAA ACTATGAAG AAGTATCAAA	TLVLLIKESG WIGIRKVNNV SKKKLALCYT LVCSHPLGNF GFVECFQNFG QNGSVRCSHS SNPERGYMNC DAVHQPPKGL VKCSSLAVPG TESNIPLVAG **SSION **: 11	AWSYNTSTEA WWWYGTQKPL AACTINTSCSG SYNSSCSISC SPPWINTTCTF PAGEFTFKSS LPSASGSFRY VRCAHSPIGE KINMSCSGEP LSAAGLSLLT N51002 1-3793 (under 21 CACGATTAAT AGACTCCAT CACCCTTCGG CCTATGACGGA AAAGAACTAC ACATGAAGA ATCCAGTGAA GGATGAAAG GGATGAAAG GGATGAAAG GGATGAAAG AGAAAAATT TGGACAGAAA TAGTCAAATA GAAAGAACT TGGACAGAAA TAGTCAAATA GAAAGAACT TGGACAGAAA TAGTCAAATA GAAAGAACGT TGGACAGAAA TAGTCAAATA GAAAGAACGT TGGACAGAAA GGAAGAACGT GGACGCCATG	MTYDEASAYC TEEAKNWAPG HGECVETINN DRGYLPSSME DCEEGFELMG GSSCEFSCEQ FTYKSSCAFS VFGTVCKFAC LAPFLLWLRK SEI ined sequences c 31 GAGGACACCC TTTGAGCAGC GGCTGCTG AATGCCTGCA AGAAACAACA GTTGAAGTTC GTAAGGAGC CCTGCTAATC GCATCAATC GCATCAAGC GTCCATGAG GTTGAACTAC GTTAGCAGCC GTCTATTA GCACAAAAGG	QQRYTHLVAI EPNNRQKDED YTCKCDPGFS TMQCMSSGEW AQSLQCTSSG EQPAQVECT GFVLKGSKRL CEEGFELYGS PEGWTLNGSA CLRKAKKFVP ID NO:237 PM2I OMESPOND to start 41 CAATGAGCCA TGATGGTGAA AAAGCCTCTC GTTCTAAGGG GGGAACACT TGACGGGTTTTAAGGG GGGAACACT TCAAGGCACT AAGCATTGTC AAGAATTGCT TTTCTTCCC AAACAGAAGA AAACAGAAGA AAACAGAAGA AAGATATGGA	QNKEEIEYLM CVEIYIKREK GLKCEQIVMC SAPIPACNVV NMDNEKPTCK TQGQWTQQIP QCGPTGEMDN TQLECTSQGQ ARTCGATCHW ASSCQSLESD B DNA SEQUENCE and stop codons) 51 AAGGGGGTCC TATGCTAGAT ACTTGCCCAG CGATTCAGCC GGCTGATCCA TCTAGAAAAG ACTGGACCAT TCTAGAAAAG ACATGTTCT TTCTTTAGAA TGCCTTGCGT TGCTTTTTTTTTT	120 180 240 360 420 480 540 600 120 180 240 360 480 540 660 720 780 840 900

```
AAAAACAGAC AGTTACAAGA ACGTCTTGAG CTAGCTGAAC AAAAGTTGCA GCAGACCATG
                                                                            1200
        AGAAAGGCTG AAACCTTGCC TGAAGTAGAG GCTGAACTGG CTCAGAGAAT TGCAGCCCTA
                                                                            1260
        ACCAAGGCTG AAGAGACACA TGGAAATATT GAAGAACGTA TGAGACATTT AGAGGGTCAA
                                                                            1320
  5
        CTTGAAGAGA AGAATCAAGA ACTTCAAAGA GCTAGGCAAA GAGAGAAAAT GAATGAGGAG
                                                                            1380
        CATAACAAGA GATTATCGGA TACGGTTGAT AGACTTCTGA CTGAATCCAA TGAACGCCTA
                                                                            1440
        CAACTACACT TAAAGGAAAG AATGGCTGCT CTAGAAGAAA AGAATGTTTT AATTCAAGAA
                                                                            1500
        TCAGAAACTT TCAGAAAGAA TCTTGAAGAA TCTTTACATG ATAAGGAAAG ATTAGCAGAA
                                                                            1560
        GAAATTGAAA AGCTGAGATC TGAACTTGAC CAATTGAAAA TGAGAACTGG CTCTTTAATT
                                                                            1620
10
        GAACCCACAA TACCAAGAAC TCATCTAGAC ACCTCAGCTG AGTTGCGGTA CTCAGTGGGA
                                                                            1680
        TCCCTAGTGG ACAGCCAGTC TGATTACAGA ACAACTAAAG TAATAAGAAG ACCAAGGAGA
        GGCCGCATGG GTGTGCGAAG AGATGAGCCA AAGGTGAAAT CTCTTGGGGA TCACGAGTGG
                                                                            1800
        AATAGAACTC AACAGATTGG AGTACTAAGC AGCCACCCTT TTGAAAGTGA CACTGAAATG
        TCTGATATTG ATGATGATGA CAGAGAAACA ATTTTTAGCT CAATGGATCT TCTCTCTCA
                                                                            1920
15
        AGTGGTCATT CCGATGCCCA GACGCTAGCC ATGATGCTTC AGGAACAATT GGATGCCATC
                                                                            1980
       AACAAAGAAA TCAGGCTAAT TCAGGAAGAA AAAGAATCTA CAGAGTTGCG TGCTGAAGAA
                                                                            2040
        ATTGAAAATA GAGTGGCTAG TGTGAGCCTC GAAGGCCTGA ATTTGGCAAG GGTCCACCCA
                                                                            2100
        GGTACCTCCA TTACTGCCTC TGTTACAGCT TCATCGCTGG CCAGTTCATC TCCCCCCAGT
                                                                            2160
        GGACACTCAA CTCCAAAGCT CACCCCTCGA AGCCCTGCCA GGGAAATGGA TCGGATGGGA
                                                                            2220
20
        GTCATGACAC TGCCAAGTGA TCTGAGGAAA CATCGGAGAA AGATTGCAGT TGTGGAAGAA
                                                                            2280
       GATGGTCGAG AGGACAAAGC AACAATTAAA TGTGAAACTT CTCCTCCTCC TACCCCTAGA
        GCCCTCAGAA TGACTCACAC TCTCCCTTCT TCCTACCACA ATGATGCTCG AAGTAGTTTA
                                                                            2400
       TCTGTCTCTC TTGAGCCAGA AAGCCTCGGG CTTGGTAGTG CCAACAGCAG CCAAGACTCT
                                                                            2460
       CTTCACAAAG CCCCCAAGAA GAAAGGAATC AAGTCTTCAA TAGGACGTTT GTTTGGTAAA
                                                                            2520
25
       AAAGAAAAG CTCGACTTGG GCAGCTCCGA GGCTTTATGG AGACTGAAGC TGCAGCTCAG
                                                                            2580
        GAGTCCCTGG GGTTAGGCAA ACTCGGAACT CAAGCTGAGA AGGATCGAAG ACTAAAGAAA
                                                                            2640
       AAGCATGAAC TTCTTGAAGA AGCTCGGAGA AAGGGATTAC CTTTTGCCCA GTGGGATGGG
                                                                            2700
       CCAACTGTGG TCGCATGGCT AGAGCTTTGG TTGGGAATGC CTGCGTGGTA CGTGGCAGCC
                                                                            2760
       TGCCGAGCCA ACGTGAAGAG TGGTGCCATC ATGTCTGCTT TATCTGACAC TGAGATCCAG
30
       AGAGAAATTG GAATCAGCAA TCCACTGCAT CGCTTAAAAC TTCGATTAGC AATCCAGGAG
                                                                            2880
       ATGGTTTCCC TAACAAGTCC TTCAGCTCCT CCAACATCTC GAACTCCTTC AGGCAACGTT
                                                                            2940
       TGGGTGACTC ATGAAGAAAT GGAAAATCTT GCAGCTCCAG CAAAAACGAA AGAATCTGAG
                                                                            3000
       GAAGGAAGCT GGGCCCAGTG TCCGGTTTTT CTACAGACCC TGGCTTATGG AGATATGAAT
                                                                            3060
       CATGAGTGGA TTGGAAATGA ATGGCTTCCC AGCTTGGGGT TACCTCAGTA CAGAAGTTAC
                                                                            3120
35
       TTTATGGAAT GCTTGGTAGA TGCAAGAATG TTAGATCACC TAACAAAAAA AGATCTCCGT
                                                                            3180
       GTCCATTTAA AAATGGTGGA TAGTTTCCAT CGAACAAGTT TACAATATGG AATTATGTGC
                                                                            3240
       TTAAAGAGGT TGAATTATGA CAGAAAAGAA CTAGAAAGAA GACGGGAAGC AAGCCAACAT
       GAAATAAAAG ACGTGTTGGT GTGGAGCAAT GACCGAATTA TTCGCTGGAT ACAAGCAATT
                                                                            3360
       GGACTTCGAG AATATGCAAA TAATATACTT GAGAGCGGTG TGCATGGCTC ACTTATAGCC
                                                                            3420
40
       CTGGATGAAA ACTTTGACTA CAGCAGCTTA ACTTTATTAT TACAGATTCC AACACAGAAC
                                                                            3480
       ACCCAGGCAA GGCAGATTCT TGAAAGAGAA TACAATAACC TCTTGGCCCT GGGAACTGAA
                                                                            3540
       AGGCGACTGG ATGAAAGTGA TGACAAGAAC TTCAGACGTG GATCAACCTG GAGAAGGCAG
                                                                            3600
       TTTCCTCCTC GTGAAGTACA TGGAATCAGC ATGATGCCTG GGTCCTCAGA AACATTACCA
                                                                            3660
       GCTGGATTTA GGTTAACCAC AACCTCTGGG CAATCAAGAA AAATGACAAC AGATGTTGCT
45
       TCATCAAGAC TGCAGAGGTT AGACAACTCC ACTGTTCGCA CATACTCATG TCTCGAGTAA
       GCGGCCGCTT TAA
       SEQ ID NO:238 PM28 Protein sequence:
50
       Protein Accession #:
                               none found
                              21
55
       MMCEVMPTIN EDTPMSQRGS QSSGSDSDSH FEQLMVNMLD ERDRLLDTLR ETQESLSLAQ
       QRLQDVIYDR DSLQRQLNSA LPQDIESLTG GLAGSKGADP PEFAALTKEL NACREQLLEK
                                                                             120
       EEEISELKAE RNNTRLLLEH LECLVSRHER SLRMTVVKRO AOSPSGVSSE VEVLKALKSL
                                                                             180
       FEHHKALDEK VRERLRVSLE RVSALEEELA AANQEIVALR EQNVHIQRKM ASSEGSTESE
                                                                             240
       HLEGMEPGOK VHEKRLSNGS IDSTDETSQI VELQELLEKQ NYEMAQMKER LAALSSRVGE
                                                                             300
60
       VEQEAETARK DLIKTEEMNT KYQRDIREAM AQKEDMEERI TTLEKRYLSA QRESTSIHDM
                                                                             360
       NDKLENELAN KEAILROMBE KNROLOERLE LAEOKLOOTM RKAETLPEVE AELAORIAAL
       TKAEERHGNI EERMRHLEGQ LEEKNQELQR ARQREKMNEE HNKRLSDTVD RLLTESNERL
                                                                             480
       OLHLKERMAA LEEKNVLIQE SETFRKNIEE SLHDKERLAE EIEKLRSELD QLKMRTGSLI
                                                                             540
       EPTIPRTHLD TSAELRYSVG SLVDSQSDYR TTKVIRRPRR GRMGVRRDEP KVKSLGDHEW
                                                                             600
65
       NRTQQIGVLS SHPPESDTEM SDIDDDDRET IFSSMDLLSP SGHSDAQTLA MMLQEQLDAI
                                                                             660
       NKEIRLIQEE KESTELRAEE IENRVASVSL EGLNLARVHP GTSITASVTA SSLASSSPPS
                                                                             720
       GHSTPKLTPR SPAREMDRMG VMTLPSDLRK HRRKIAVVEE DGREDKATIK CETSPPPTPR
                                                                             780
       ALRMTHTLPS SYHNDARSSL SVSLEPESLG LGSANSSQDS LHKAPKKKGI KSSIGRLFGK
                                                                             840
       KEKARLGQLR GFMETEAAAQ ESLGLGKLGT QAEKDRRLKK KHELLEEARR KGLPFAQWDG
                                                                             900
70
       PTVVAWLELW LGMPAWYVAA CRANVKSGAI MSALSDTEIQ REIGISNPLH RLKLRLAIQE
                                                                             960
       MVSLTSPSAP PTSRTPSGNV WVTHEEMENL AAPAKTKESE EGSWAQCPVF LQTLAYGDMN
                                                                            1020
       HEWIGNEWLP SLGLPQYRSY FMECLVDARM LDHLTKKDLR VHLKMVDSFH RTSLQYGIMC
                                                                            1080
       LKRLNYDRKE LERRREASOH EIKDVLVWSN DRIIRWIQAI GLREYANNIL ESGVHGSLIA
                                                                           1140
       LDENPOYSSL TLLLQIPTON TOARQILERE YNNLLALGTE RRLDESDOKN FRRGSTWRRO
                                                                            1200
75
       PPPREVHGIS MMPGSSETLP AGFRLTTTSG QSRKMTTDVA SSRLQRLDNS TVRTYSCLE
                                                 SEQ ID NO:239 PCI4 DNA SEQUENCE
       Nucleic Acid Accession #:
                               1-1134 (underlined sequences correspond to start and stop codons)
       Coding sequence:
80
```

AATGATAAAC TAGAAAATGA GTTAGCAAAT AAAGAAGCTA TCCTACGGCA GATGGAAGAG 1140

	1	11	21	31	41	51	
_	ATGAGGCGAC	TGAATCGGAA	AAAAACTTTA	AGTTTGGTAA	 AAGAGTTGGA	TGCCTTTCCG	60
5				GCCAGTGGAG			120
				GAATTCTCAG TCTAGCAAAT			180 240
	ACTGTTGCCA	TGAAGTGTCA	ATATGTTGGA	GCGGATGTAT	TGGATTTAGC	AGAAACAATG	300
10				CCAACAGTAT			360 420
	CAAGATGTGA	TATTTAAAAG	TGCTTTTAAA	AGTACATCAA	CAGCTCTTCC	ACCAAGAGAA	480
				AGAATTCATG			540 600
1.0				TACAATTTTT			660
15				AATCCTTTAG			720 780
				TCTGTGACAG			840
				ATATTTATGA			900
20				TTCTGGCAGT ATGTTACATG			960 1020
				TCCTATAAAC			1080
	GAGGATGGCC	ACACAGACAA	CCACTTACCT	CTTTTAGAAA	ATAATACACA	TIGA	
25	SEQ ID NO:240 I	PCIA Protein senu	euce.				
20	Protein Accession		NP_057654				
	1	11	21	31	41	51	
30	1	1	1	1	1	1	
30				ASGGTVSLIA ADVLDLAETM			60 120
				STSTALPPRE			180
				YNFSHRIDHL SVTERERIIN			240 300
35	MVTVTEEHMP	FWQFFVRLCG		MLHGIGKFIV			360
	EDGHTDNHLP	LLENNTH					
	Nucleic Acid Acce	esinnik AA2191	134	SEC	11D NO:241 PBA7	DNA SEQUENCE	i
40	1100.007404	2010.11. TELIO			Coding se	quence: 2	24-1815 (underlined sequences correspond to start and stop codons)
			•				
						CT GCTGCTGT	
45						CTT CAGATCA. CTC GTCATTG	
						AGA AGGACA	
						TC AGTITATO CTC TCTTCCAT	
50	CCACTTGTGT	TTACATCGC	A GAGATTGC	TC CTCAACAC	AG AAGAGGC	CTT CTTGTGT	CAC 420
30						AT TACGCATI TG GGAGTTTI	
	AAGCAATTG	CAATGTATTT	T CTTCCTCCA	A GCCCTCGG	TT TCTGGTGA	TG AAAGGAC	AAG 600
						FACA ACTGAG IGG GATCTGT	
55	GTTCAAAAG	A CAACATGC	G ACCCGAAT	TAA TGATAGG	ACT AACACT.	AGTA TTTTTT	GTAC 780
						AAG TCAGTTG XGTC AAGGTC/	
						TIC CICIGCA	
					ATT COTT 4 A ATT		110 700
60		GATGGCAGC				CTC AACATCC	ACA 1020
60	TGAACTTCAC	GATGGCAGC CCATATCTG	C AGAAGCCA	CA ATTCTATO	AA CCAGTCC	TTG GATGAGT	ACA 1020 CTG 1080
60	TGAACTTCAC TGATTTATGC GGATTTCTTC	GATGGCAGC CCATATCTG ACCAGGAAA CCATAGCAG	C AGAAGCCA AC CTGTCAAC A AGCTCACT	CA ATTCTATO CA ACAACAA CA TGCCCCTG	AA CCAGTCC TAC TCTCAGA AG AAATGAT	TTG GATGAGT AGAC CACTTC/ GTG GATAAG/	ACA 1020 CTG 1080 AAAG 1140 AGAG 1200
	TGAACTTCAC TGATTTATGC GGATTTCTTC GGGAGACGA	GATGGCAGC CCATATCTG ACCAGGAAA CCATAGCAG CCTCAGCAT	C AGAAGCCA AC CTGTCAAC A AGCTCACTC CC TTGCTAAA	CA ATTCTATO CA ACAACAA CA TGCCCCTG TG CTGGATTA	AA CCAGTCC TAC TCTCAGA AG AAATGAT AAG CCACACT	TTG GATGAGT AGAC CACTTC/ GTG GATAAG/ TGAA TACCAG/	ACA 1020 CTG 1080 AAAG 1140 AGAG 1200 ATAG 1260
60 65	TGAACTTCAC TGATTTATGC GGATTTCTTC GGGAGACGA TCACAGACCC TTTATGTTGC	GATGGCAGC CCATATCTG ACCAGGAAA CCATAGCAG CCTCAGCATC TGGGGACGT TGCTTTTCA	C AGAAGCCA LC CTGTCAAC A AGCTCACT CC TTGCTAAA TC CCAGCTTT ATTGGTCTAA	CA ATTCTATO CA ACAACAA CA TGCCCCTG TG CTGGATTA IT TGAAATGO G GACCAATGO	AA CCAGTCC TAC TCTCAGA AG AAATGAT AAG CCACACT CT GTCCTTAG CC CTGGCTGG	TTG GATGAGT AGAC CACTTC/ GTG GATAAG/ IGAA TACCAG, GCC AGCTTGC TG CTCAGCG/	ACA 1020 CTG 1080 AAAG 1140 AGAG 1200 ATAG 1260 CTG 1320 AGA 1380
	TGAACTTCAC TGATTTATGG GGATTTCTTC GGGAGACGA TCACAGACCC TTTATGTTGC TCTTTCCTGG	GATGGCAGC CCATATCTG GACCAGGAAA CCATAGCAG CCTCAGCATC CTGGGGACGT TGCTTTTTCA TGGGATCAG	C AGAAGCCA AC CTGTCAAC A AGCTCACTC CC TTGCTAAA CC CCAGCTTT ATTGGTCTAC A GGACGAGC	CA ATTCTATO CA ACAACAA CA TGCCCCTG TG CTGGATTA IT TGAAATGG G GACCAATGC CA TGGCTTA	AA CCAGTCC TAC TCTCAGA AG AAATGAT AAG CCACACT CT GTCCTTAC CC CTGGCTGG AC TTCTAGC	TTG GATGAGT AGAC CACTTCA GTG GATAAGA GGAA TACCAGA GCC AGCTTGC TG CTCAGCGA ATG AACTGGG	ACA 1020 CTG 1080 AAAG 1140 AGAG 1200 ATAG 1260 TTG 1320 AGA 1380 GGCA 1440
	TGAACTTCAC TGATTTATGG GGATTTCTTC GGGAGACGA TCACAGACCC TTTATGTTGC TCTTTCCTGG TCAATCTCCT TGTGCTTTAT	GATGGCAGC CCATATCTG ACCAGGAAA CCATAGCAG CCTCAGCATC TGGGGACGT TGCTTTTCA TGGGATCAG CATCAGCATC ATATACAATC	C AGAAGCCA C CTGTCAAC A AGCTCACTC C TTGCTAAA C CCAGCTTT ATTGGTCTAA A GGACGAGC G ACATTTTG C ATGAGTCTA C ATGAGTCTA C ATGAGTCTA C ATGAGTCTA	CA ATTCTATO CA ACAACAA CA TGCCCCTG TG CTGGATT IT TGAAATGG G GACCAATGC CA TGGCTTTA A CTGTAACTC G ATCTTATT	AA CCAGTCC TAC TCTCAGA AG AAATGAT AAG CCACACT CC GTCCTTAG CA CTCTTAG CAC TCTTAGC GA TCTTATTG GG CCTGCCAT	ITG GATGAGT AGAC CACTTC/ GTG GATAAG/ TGAA TACCAG, GCC AGCTTGC TTG CTCAGCG/ ATG AACTGGG GC CTGCCATG TGG GTGTGCTT	ACA 1020 CTG 1080 AAAG 1140 AGAG 1200 ATAG 1260 TTG 1320 AGA 1380 AGA 1440 IGG 1500 ITA 1560
65	TGAACTTCAC TGATTTATGG GGATTTCTTG GGGGAGACCA TCACAGACCC TTTATGTTGC TCATCCCT TGTGCTTTAT TATATACAAT	GATGGCAGC CCATATCTG ACCAGGAAA CCATAGCAG CCTCAGCATT CTGGGGACGT TGCTTTTTCA TGGGATCAG CATCTCGCTC ATATACAATT CATGAGTCT	C AGAAGCCA C CTGTCAAC C TTGCTAAA C CTGCTAAA C CCAGCTTT ATTGGTCTAA A GGACGAGC C ACATTTTG C ATGGTCTA A GGACTACCA C ACATTTTA C ATGGTCTA A GCATCCTA A GCATCCCTC	CA ATTCTATO CA ACAACAA CA TGCCCCTG TG CTGGATTA TT TGAAATGO G GACCAATGO CA TGGCTTTA A CTGTAACTO G ATCTTATTG CCTTTTATTG CCTTTTTTTTTTTTTTTTT	AA CCAGTCC TAC TCTCAGA AG AAATGAT AAG CCACACT CC GTCCTTAG CAC TTCTAGC GAC TCTTATTG GG CCTGCCAT TTTATTTATTTATTTATTTATTTATTATTTATTATTA	ITG GATGAGT GAC CACTTCC GTG GATAAGA GAA TACCAG GCC AGCTTGC TG CTCAGCGA ATG AACTGGG GC CTGCCATG GG GTGTGCT TA CCTGAGAC	ACA 1020 CTG 1080 AAAG 1140 AGAG 1200 ATAG 1260 TTG 1320 AGA 1380 GCA 1440 GGG 1500 FTA 1560 CAA 1620
	TGAACTTCAC TGATTTATGG GGATTTCTTG GGGGAGACCA TTATGTTGC TCTTTCCTGG TCAATCTCCT TGTGCTTTAT AATAACAAT AGGGATGCTC	GATGGCAGC CCATATCTG CCATAGCAG CCATAGCAGC CCTCAGCATC CTGGGGACGT TGCTTTTCA TGGGATCAG CATCTCGCTC ATATACAATT CATGAGTCT CTTTGGAACA	C AGAAGCCA A GCTCACC A AGCTCACC CC TTGCTAAA CC CCAGCTTT ATTGGTCTA A GGACGAGC G ACATTTTTG A GCATCCTA A GCATCCTA A GCATCCTA A GCATCCAT A ATATCAAT A ATATCAAT	CA ATTCTATO CA ACAACAA CA TGCCCCTG TG CTGGATTA IT TGAAATGG G GACCAATGC CA TGGCTTTA A CTGTAACTC GC TTTTTTTTTTTTTTTTTTTTTTTTTTG GG AGCTAGC	AA CCAGTCC TAC TCTCAGA AG AAATGAT AG CCACACT ACT GTCCTTAA CC CTGGCTGG AC TTCTAGC AT TCTTATTG TTTATTG TTTATTG TTTATTG AAA AGTGAAA	ITG GATGAGT AGAC CACTTC/ GTG GATAAG/ TGAA TACCAG, GCC AGCTTGC TTG CTCAGCG/ ATG AACTGGG GC CTGCCATG TGG GTGTGCTT	ACA 1020 CTG 1080 AAAG 1140 AGAG 1200 ATAG 1260 TTG 1320 AGA 1380 GGCA 1440 IGG 1500 TTA 1560 CAA 1620 AACA 1680
65	TGAACTTCAC TGATTTATGG GGAGACGA TCACAGACCC TTTATGTTGC TCATTCCTGG TCAATCTCCT TGTGCTTTAT TATATACAAT AGGGATGCT ACATTTGTTT AACCCCAGG	GATGGCAGC CCATATCTG CCATAGCAA CCTCAGCATC CTGGGACAT CTGGGATCAG CATCTCGCTC ATATACAATC ATATACAATC TGGATCAG CATCTCGCTC ATATACAATC ATATACAATC ATATGGATCAC ATATGGATCAC ATATGGATCAC ATATGAGTCT ATATGAGTCAC AGCAGCTCTT	C AGAAGCCA C CTGTCAAC C CTGTCAAC C TTGCTAAA C CCAGCTTT ATTGGTCTA A GGACGAGC G ACATTTTG C ATGAGTCTA A GCATCCCTC A ATATCAAT C CACCAAGAA C GAGTGTAA	CA ATTCTATE CA ACAACAA CA TGCCCCTG TG CTGGATT IT TGAAATGG G GACCAATGG G GACCAATGG CTTTA A CTGTAACT G ATCTTATT GC TITTTGTA AG AGCTAGC AG AACTAGC AG AACTAGC AG AACTAGC AG AACTAGC AG AATTAGTG CA AGCTGTG CA AGCTGTG CA AGCTGTG	AA CCAGTCC TAC TCTCAGA AG AAATGAT AAG CCACACT CC GTCCTTAGC AC TTCTAGC AG TCTTATTG GG CCTGCCAT TTTTAGTTTA AAA AGTGAA CC AAAACAG TCG TAGGGG CC TAGGGGG CC TAGGGGG	ITG GATGAGT GAC CACTTCY GTG GATAAG/ GAA TACCAG GCC AGCTTGC GCC AGCTTGC GCC CTGCCATG GC GTGTGCT TA CCTGAGAC CCT CAAAAA CCT CAAAAA CCAA TCCAGG	ACA 1020 CCTG 1080 AAAG 1140 AGAG 1200 ATAG 1260 TTG 1320 AGA 1380 GGCA 1440 GGG 1500 FTA 1560 AAACA 1620 AACA 1680 AAGAA 1740 GCAGC 1800
65 70	TGAACTTCAC TGATTTATGG GGAGACGA TCACAGACCC TTTATGTTGC TCATCCTCTGG TCAATCTCCT TGTGCTTTAT TATATACAAA AGGGATGCTT ACATTTGTTT AACCCCAGG TTTCTCCAGA	GATGGCAGC CCATATCTG ACCAGGAAA CCTCAGCATT CTGGGACCAT TGCTTTTTCA TGGGATCAT CATTCCCT ATATACAATT CATGAGTCT TTTTGAACA TATGAGTCAT AGCAGCTCTT AGCACCAT AGCAGCTCT AGCACCAT AGCAGCTCT AGCACCTAATG	C AGAAGCCA C CTGTCAAC C CTGTCAAC C TTGCTAAA C CCAGCTTT ATTGGTCTAA A GGACGAGC A CATTTTGG C ATGATTATG C ATGATCAA A GCACCAG C TCACCAAGA G GAGTGTAA G CCTCAACA	CA ATTCTATO CA ACAACAA CA TGCCCCTG TG CTGGATTA TT TGAAATGO G GACCAATGG CA TGGCTTA A CTGTAACTO G ATCTTATT GC TTTTTGTT GG AGCTAGC AG AAGTAGC CA AGCTGT CC AGCTGT CC TTCTGAAC CC TTCTGAAC CC TTCTGAAC CC TTCTGAAC CC TTCTGAAC CC TTCTGAAC	AA CCAGTCC TAC TCTCAGA AG CACACT CC GTCCTTAG CC CTGGCTGG AC TTCTAGG GG CCTGCCAT GT TATGTTA AAA AGTGAAA CC AAAACAG GG TGGGAAG GG TGGGGG GG TGGGAAG GG TGGGAAG GC AAAACAG GG TGGGAAG GG TGGGAAG GG TGGGAAG GG TGGGAAG GG TGGGAAG GG TGGGAAG GGG TGGAAG GGG TGGAAAG GGG	ITG GATGAGT GGAC CACTTCZ GTG GATAAGA GGAA TACCAGG GCC AGCTTGC TTG CTCAGCGA ATG AACTGGG GC CTGCCATG GG GTGTGCT TACCTGAGACA CCTAT GTGAAAAAAACCCT CAAAAAAA	ACA 1020 CTG 1080 AAAG 1140 AAGAG 1200 ATAG 1260 TTG 1320 AGA 1380 GGCA 1440 GGG 1500 LTA 1560 CAA 1620 AACAA 1680 AACAA 1740 ICAGC 1800 CTTA 1860
65	TGAACTTCAG TGATTTATGG GGAGACGA TCACAGACCC TTTATGTTIGC TCAATCTCCT TGTGCTTTAT TATATACAAT AAGGAGTGCT AACCCCAGG TTTCTCCAGG GGAGGGGTGT GAACTGGTTT	GATGGCAGC CCATATCTG GACCAGGAAA CCATAGCAG CCTCAGCATC CTGGGGACGT TGCTTTTCA CATCTCGCTC ATATACAATT CTATGAGACA TTGGACA TATGAGTCT CTTTGGACA TATGAGTCT CTTTGGACA TATGAGTCT CTTTGGACA TATGAGTCA TATGAGTCA TATGAGTCA TATGAGTCA TATGAGTCA TATGAGTCA TATGAGCACA TTGAACAA	C AGAAGCCA C CTGTCAAC C CTGTCAAC C TTGCTAAA C CCAGCTTT ATTGGTCTA A GGACGAGC G ACATTTTG C ATGAGTCTA A GCATCCTA A GCATCCTA G CATCCTA G CATCCTA G CAGCAGAGA G CATCCTT A ATATCATA G CCTCAACA A TGCATACT A TGCATAGT A TGCATAGT A TGCATAGT	CA ATTCTATE CA ACAACAA* CA TGCCCCTG TG CTGGATTA TT TGAAATGG G GACCAATGG CA TGGCTTTA A CTGTAACTG G ATCTTATTG GC ATCTTATTG GC ATCTTATTG CG AGCTAGC AGCAGC AGCTGT CC AGCTGT CC AGCTCT TG CACTCT TG CACTCCT TG ATAAAGA	AA CCAGTCC TAC TCTCAGA AG AAATGAT AAG CCACACT CT GTCCTTAGC AC TTCTAGC AC TTCTAGC AT TCTTATTG GG CCTGCCAT IT TATGTTTA AAA AGTGAA ACC AAAACAG GG TAGGGG GT GGATAGT GT GGCTCTCT CAG CCTTTAA	ITG GATGAGT GGAC CACTTCC GTG GATAAGA GGAA TACCAGG GCC AGCTTGC TTG CTCAGCGA ATG AACTGGG GC CTGCCATG TG GTGTGCT TA CCTGAGAC CCTAT GTGAAA CCT CAAAAAA CCAA TCCAGG GC AGAACAC LTT CAGGGC LTT CAGGGC LTT CAGGGC LTT CAGGCC LTT CAGGCC LTT CAGCCC LTT CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ACA 1020 CTG 1080 AAAG 1140 AGAG 1200 ATAG 1260 TTG 1320 AGA 1380 AGA 1380 AGA 1500 ATAG 1500 ATAG 1500 ATAG 1620 AAACA 1680 AGAA 1740 A
65 70	TGAACTTCAC TGATTTATGG GGAGACGA TCACAGACCC TTTATGTTIGG TCATTCCTGG TCATATATACAAT AGGGATGCTTAT TATATACAAT AGGGATGCTTAT AACCCCAGG TTTCTCCAGA GGAGGGTTT CAGAAGGAA	GATGGCAGC CCATATCTG GACAGGAAA CCATAGCAGC CTCAGCATC CTGGGATCAG CATCTCGCTC ATATACAATC CATGAGTCA TATAGAGTCA TATGAGTCA TATGAGTCA TATGAGTCA TATGAGTCA CATCTTGGAAC CATCTTGGAAC CATCTTGGAAC CATCTAAAAGGCCCTCAAAAAGGCCCTCAAAAAGGCCCCTCAAAAAGGCCCCCCCC	C AGAAGCCA C CTGTCAAC C CTGTCAAC C TTGCTAAA C CCAGCTTT ATTGGTCTA A GGACGAGC G ACATTTTG C ATGAGTCTA A GCATCCCT A ATATCAAT C CACCAAGA C GAGTGTAA G CATCACAC A TGCATAGT A TGCATAGT C CTCGAACA GT AGATGAG GT AGA	CA ATTCTATE CA ACAACAA' CA TGCCCCTG TG CTGGATT/ IT TGAAATGG G GACCAATGG CA TGGCTTTAA A CTGTAACTG G ATCTTATTG GC ATCTTATTG CA AGCTAGC AG AATTAGTG CA AGCTGTG CC TTCTGAAC TCTGAAC TCTAAAAG TCAAAAG TCAAAAG TCAAAAC TCAAAC TCAAAC TCAAAC TCAAAC TCAAAC TCAAC TCAAAC TCAAC T	AA CCAGTCC TAC TCTCAGA AG AAATGAT AAG CCACACT CC GTCCTTAGC AC TTCTAGC AT TCTTAGC AT TCTTAGC AT AGTGAT CC AAAACAG GG TAGGGGG GG TAGGGGG GG TAGGGGG GT GCTTTAGC CCTA AGTGAA CCTA AGTGAA CCTA AGTGAA CCTA AGTGAT CCTA AGTGAT	ITG GATGAGT GGAC CACTTCZ GTG GATAAGA GGAA TACCAGG GCC AGCTTGC GTG CTCAGCGA ATG AACTGGG GC CTGCCATG GG GTGTGCT TA CCTGAGAC CCT CAAAAA CCC CAAAAAA CCCA AGACAC TCT CAGGGC TCT CAGTGCC TTC CGCTCCT CTCCT CTTTTCTC CCCTCCT CTCT TTTTCTC	ACA 1020 CTG 1080 AAAG 1140 AGAG 1200 ATAG 1260 TTG 1320 AGGA 1380 AGGA 1440 AGG 1500 ATA 1560 AAA 1620 AAACA 1680 AGGA 1740 AGCAC 1800 CTTA 1860 ATG 1920 CCMC 1980 GAGC 2040
65 70	TGAACTTCAC TGATTTATGG GGATTTCTTG GGGAGACCA TCACAGACCC TTTATGTTGC TCATCCTTGG TCAATCTCCT TGTGCTTTAT TATATACAAT AGGGATGCTT AACCCCAGG TTTCTCCAGA GGAGGGTGTT CAGAAGGAA AGGATATCAC AGGAGGAAGCAA AGGATATCAC AGAGCAGCC	GATGGCAGC CCATATCTG CCATAGCAG CCATAGCAGC CCTCAGCATC CTGGGACGT TGCTTTTCA TGGGATCAG CATCTCGCTC ATATACAATC CATGAGTCT CTTTGGAACA TATGAGTCA TGCAGCTCT TTTGGAACA TATGAGTCA CGACCTAATG CTTTGGAACA TTGAACAATG CTTAAAAGA TTGAAAAAA TTTAAAAAAA	C AGAAGCCA C CTGTCAACA C CTGTCAACA C CTGCTAAA C CCAGCTTT ATTGGTCTAA A GGACGAGCC ACATTTTG C ATGACTCAA A GCATCCTA A GCATCCTA A GCATCCTA A GCATCCTA A GCATCCTA A TATCAATA C GAGTGTAA G CCTCAACA A TGCATAGT CA CTCTGAAA ATGATGAGA AT AGATGAGA ATGATGAGA ATGATGAGA A AAAAGTTA C TATGTCCT	CA ATTCTATO CA ACAACAA CA TGCCCCTG TG CTGGATTA TT TGAAATGO G GACCAATGO CA TGGCTTTA AC CTGTAACTO GG ATCTTATTT GG ATCTTATT GG ATCTTATT GG AGCTAGC CA AGCTGGC CA AGCTGGC CC TTCTGAAC TG CGACTCCT TG ATAAAGAA CTG CGACTCCT TG ATAAAGAA CAT GGCTGGT AG TGAAGACA AG TGAAGACA AG TGAAGACA	AA CCAGTCC TAC TCTCAGA AG CACACT CC GTCCTTAGC CC CTGCCTGG GA CTTCTAGC GA CCTGCCAT TTATGTTA AAA AGTGAAA CC AAAACAG GG TGGATAGT GT GCTCTCT CAG CCTTTAA CCTTAGCCT TTATGTTTA TTATGTTT TTATGTTT TTATGTTT TTATGTTC	ITG GATGAGT GAC CACTTCC. GTG GATAAGA GGA TACCAG GCC AGCTTGC TG CTCAGCGA ATG AACTGGG GC CTGCCATG TG GTGTGCT TA CCTGAGAC CTAT GTGAAA CCT CAAAAA CCT CAAACAC TTT CAGTGTC LTC CCCCCCCC CTT CTTCTCC CTTA CCTTAAGC CTTA CCTTCTTCTC CCTA CCTTCTTCTC CCCC CCCCCTC CTTA CCTTCTTCTC CCTA CCTTCTTCTC CCTA CCTTCTTCTC CCCC CCCCCCCC CTTAAGCC CCTCCTTTTCTCTC CCCC CCTCCTTCTTCTC CCCC CCCCCCCC	ACA 1020 CTG 1080 AAAG 1140 AGAG 1200 ATAG 1260 TTG 1320 AGA 1380 AGCA 1440 AGG 1500 TTA 1560 AAA 1620 AAACA 1680 AGAA 1740 CCAGC 1800 CTTA 1860 ATG 1920 CCMC 1980 GAGC 2040 CAC 2100 TATG 2160
65 70	TGAACTTCAG TGATTTATGG GGAGACGA TCACAGACCC TTTATGTTIGC TCAATCTCCT TGTGCTTTAT TATATACAAT AACCCCAGG TTTTCCCAGG TTTCTCCAGG TTTCTCAGG ACATTGTTT AACCCCAGG TTTCTCCAGA GGAGGGTGT CAGAAGGAA AGGATATCA AGAGTATCA AGAGGAGCC TATGTATGGA	GATGGCAGC CCATATCTG GACCAGGAAA CCATAGCAG CCTCAGCATC CTGGGGACT TGCTTTTTCA TGGGATCAG CATCTCGCTC ATATACAATC CATGAGTCAC TATGAGTCAC TATGAGTCAC TATGAGTCAC TATGAGTCAC TTGAACAATG CTGAACAATG CTGAACAATG CTGAACAATG TTGAACAATG TTGAACAATG TTGAACAATG TTGAACAATG TTGAACAATG TTGAACAAAAG TTGAACAAAAG TTGAACAAAAG TTGAACAAAAG TTGAACAAAAG TTGAACAAAAG TTGAACAAAAG TTTGAACAAAAG TTGAACAAAAG TTGAACAAAAG TTTGAACAAAAG TTGAACAAAAG TTGAACAAAAG TTGAACAAAAG TTGAACAAAAG TTGAACAAAAG TTGAACAAAAG TTGAACAAAAAG TTGAACAAAAAG TTGAACAAAAAG TTGAACAAAAAG TTGAACAAAAAAAAG TTGAACAAAAAAAAAA	C AGAAGCCA C CTGTCAAC C CTGTCAAC C TTGCTAAA C CCAGCTTT ATTGGTCTA A GGACGAGC G ACATTTTG C ATGAGTCA A GCATCCTA A GCATCCTA A GCATCCTA A GCATCCTA A GCATCCTA C CACCAAGA C C CACCACCA C C C C	CA ATTCTATE CA ACAACAA* CA TGCCCCTG TG CTGGATTA IT TGAAATGG G GACCAATGG G ATCTTAACTG G ATCTTATTG G ATCTTATTG GG AGCTAGC AG GACTAGT TTCTGAAC TCTCTGAAC TG CAACGC TG CGACTCCT TG ATAAAGA TA CAAGGT AG TGAAGAC AG TGAAGAC AG TGAAGAC AG TGCAGAC AG AG TGCAGAC AG	AA CCAGTCC TAC TCTCAGA AG AAATGAT AAG CCACACT GCT GTCCTTAGC AC TTCTAGC AC TTCTAGC AT TCTTATTG GG CCTGCCAT AT TATGTTTA AAA AGTGAA ACA AGTGAA CC AAAACAG GG TAGGGG GT GGATAGT CGT GCTCTT CAG CCTTTAA CTA AGTGAT TTA AGTGAT AGTGAT AGTAA CCA AAACAG CCAAAACAG CG TAGGGGG TAGGGGG TAGGGGG TAGGGGG TAGGGGG TAGGATAGT TAAACTCC CACACACTCC CACACTCC CACACTC CACACTCC CACACTC C	ITG GATGAGT GGAC CACTTCZ GTG GATAAGA GGA TACCAGG GCC AGCTTGC TTG CTCAGCGA GC CTGCCATG GC GTGTGCT TA CCTGAGAC CCTAT GTGAAA CCAA TCCAGG GCC AGAACAC TTT CAGTGTCC TTCC CCCTCCT CTCT TTTTCTC TCTA CCTTCTTT	ACA 1020 CTG 1080 AAAG 1140 AGAG 1200 ATAG 1260 TTG 1320 AGA 1380 AGA 1380 AGA 1380 AGA 1620 AAA 1620 AAACA 1680 AGAA 1740 CCAGC 1800 CTTA 1860 ATG 1920 CCAC 2000 CCAC 2100 CCA

ACACACAGTG TGGACAACTG CCCATATATT CTATCTAGAT TAGGAGAGGG TCCTGGCTAG 2340 GATTTTAGTG GTAATTCCTA GTTACATTCA ACAAGTATAA AGATTATAGA GCTTATTTTA 2400 TGAACTATAA ACTATAATTT AATGCAAAAT ATCCTTTTAT GAATTTCATG TTAATATTGT 2460 GAAATATTAA AATAATTCCR CAATAGTTGA GAAAAATGAG CATTTTTTTC CATTTTTAAA 2520 5 AAATGCATAG AAAAGACAAT TTTAAAATCC TGGGACCATA TTTATTTAGA AGTAGCTGTT 2580 AGTAAAACAT TAGAAAAGGA GTCAGGCCAT TAGGTTATTT ATCCAAATCT CTAAGCAATT 2640 AGGTTGAAGT TATTAAGTCA AGCCTAGAAA AGCTGCCTCC TTGTAAGGCT TTCATGACAA 2700 TGTATAGTAA TCCACAGTGT CCAATTCTTC ACACTCCTCA GGAATATCAC TACCTCAGGT 2760 TACGGTACAC AGGCTATAAT TGATGATGAT GTTCAGATAA CTGAAGACAC AATAAATGAC 2820 10 ATTCAGACAT CAGGAMAAWW CCCTCATGTT CTTTTCTATG ATGGCCACCT GTACCAGCAA 2880 CGTGGGTTTC ACCCACACAA CGATGAACTG TTCTCTTACT TCTCCAGTTG ATTTTAAAGA 2940 CTTGTTAAGA GGTCTTACTA ATAAAATTTG GGTATGATAG AAAAWCCACA ATCAAAWCTT 3000 GAACCAAATA ACATATTAAA TTACTAATAT TTAAGTGATG GAAGACACAC AAAAAACTTA 3060 AAAGCACGAA CAACCTAACT TGAAAAAGAA TTTTAAAATA TGATTAACCT GAAGAAAAGA 3120 15 GAATCCTAAG AGCCAAAGCT CCTTTTTATT TAGCTTGGAA TTTTCCTATT GGTTCCTAAC 3180 AAACTGTCCC AATGTCATAT AAGGAAACAT GATCTATTAC ATTCCTTTAT AACAATGTGG 3240 AGAGACTATA AACCTATGTA AGTAGTAAAA CTATATYAGA GACTCAGGAG ACTGACTAAA 3300 AGGCCTGGAT CTGCAGTGTA TTATCTGTAT AAAAATTGGC AGGGGGAAGC TAAAAGGAAA 3360 GGAGATTGGA GATCTCAATT CTATCATGGT GTATTTCATA CGCAAATCAG AGCATGCATT 3420 20 GTTTTTGTT TTTGGAAAGA GAAGGGAAGT GTGTTCTGCC CCATGTTTCC TTCCGTGTTT 3480 ATAGTTCAAA CTCTATATAT ACTTCAGGTA TTTTTTGTTT AGCCCTTCAT TATAAATGGG 3540 CAGGAAATTG TTTATCAACC TAGCCAGTTT ATTACTAGTG ACCTTGACTT CAGTATCTTG 3600 AGCATTCTTT TATATTTTTC TTTTATTATC CTGAGTCTGT AACTAAACAA TTTTGTCTTC 3660 AAATTTTTAT CCAATATCCA TTGCACCACA CCAAATCAAG CTTCTTGATT TTCAAAAATA 3720 25 AAAAGGGGGA AATACTTACA ACTTGTACAT ATATATTCAC AGTTTTTATT TATAAAAAA 3780 ATTTACAGTA CTTATGGAGA GCCAGCAGAA GACATCAGAG CACTCACTTC TTCCCATCTT 3840
TGTTAAGGTT AGCGAATTAC CCATGGACAC TGTTAGGTGA GGCTCATTCG GCAGCCCTGA 3900 AAACAAACCT GGTCACACTG TCTTTACCCT CTCCCTTCAG ATAAAGCACT TCGATTATCT 3960 ATTGATCTGC CCAGTTTTCA AGTCATGCGA ATACTAAAAA GGTTACATCA TCTGGATCTG 4020 30 TACCTTGGCT ATATAAGCAT GTTTTCCCCC TATTCTATGT TTCTTTTTTT GGTGAACATT 4080 GAAAAACAGG AGGTGACTTA TTACTGTTAA TTAAAACTAA ATGAAAAATG TCAAGTCTTT 4140 AAAACAGTGA GCTTGTAACT CTTTCATGTA ATTTTATTCT CTATGAATTT GGCTATCCTA 4200 CTGAATCTTA AAATAAAGGA AATAAACACT TTTTTTTWAA AAAAAAGGAA AAATAMAARW 4260 MWAAAAATCT CAATGAAATA TTTCACAAGA AGGAAAAA 35

SEQ ID NO:242 PBA7 Protein sequence:

Protein Accession #: AAF91431

40 MFTFLSSVTA AVSGLLVGYE LGIISGALLQ IKTLLALSCH EQEMVVSSLV IGALLASLTG 60
GVLIDRYGRR TAIILSSCLL GLGSLVLILS LSYTVLIVGR IAIGVSISLS SIATCVYIAE 120
IAPQHRRGLL VSLNELMIVI GILSAYISNY AFANVFHGWK YMFGLVIPLG VLQAIAMYFL 180
PFSPRTLVMK GQEGAASKVL GRLRALSDTT EELITVIKSSL KDEYQYSFWD LFRSKDNMRT 240
RIMIGLTLVF FVQITGQPNI LFYASTVLKS VGFQSNEAAS LASTGVGVVK VISTIPATLL 300
VDHVGSKTFL CIGSSVMAAS LVTMGIVNLN HMNFTHICR SHNSINQSLD ESVIYGPGNL 360
STNNNTLRDH FKGISSHSRS SLMPLRNDVD KRGETTSASL LNAGLSHTEY QIVTDPGDVP 420
AFLKWLSLAS LLVYVAAFSI GLGPMPWLVL SEIFPGGIRG RAMALTSSMN WGINLLISLT 480
FLTVTDLIGL PWVCFTYTIM SLDLIGLPWV CFTYTIMSLA SLLFVVMFIP ETKGCSLEQI 540
SMELAKVNYV KNNICFMSHH QEELVPKQPQ KRKPQEQLLE CNKLCGRGQS RQLSPET

SEQ ID NO:243 PAB4 DNA sequence: Nucleic Acid Accession#: AA172056

55

75

Coding sequence:

121-339 (underlined sequences correspond to start and stop codons)

TTTAGCCACC AGAGGANTIC TCTIGAAATA CCCAAAATCC ATCAGTATCT TGAATCATGC 60
TGGATTITGA AGAATCTTA AGAAGCCATG TAAAGGGGGC TCTCTGGCCT TGAAATAGTG 120
ATGTTTTTA TACAGGAAGG AGAATGCAGA ATGGTCAGAC TATCATGCAC TGTTAAATTT 180
GATTICAAGA AATTACAGGA AAACTTTCCA AAGTTCCATC TCACAGAANN TTATTTTINCC 240
AAGAATTCCA AGATAAGTTT AGTTTTATGG AAGACTTTTA TGTGGTTTTT ACTCACTCTT 300
CATCTCAGAC ATCGACAGAT GATTACATCA CTTATAGTTC TAGACAATTT ATTAATATAA 360
AACTCAGAGA CATTCCAATA TCCACATTGC TTACACCATT AGGCATAGAT TCAGTGTCAG 420
CTATGACAAT TGAAAATGAG CTGTTTTGTG ATTTAAAGGT TAAATTTTCT CTAACCAAAC 480
TGCTTGATCC AGATGCAGGA CTGCAAATGT TAATATTTGT TCTGGAAGAA CAATCAAATA 540
AGACTTAAGA GGAAAGGGAA TGGCCACAAT CCACCTGAAA TTTTTTCTTA AAAAGTGTGC 660
TTTCTTAAGC TTACCTAAAG TTATTTCATC TGAAAATTTA AAACAAAATC CAATCAAACT 660
TTTCTTAAGC TTACCTAAAG TTATTTCATC TGAAAATTTA AAGCAACTTT GTTCAACCATT 720
AAATTGACAA TCTAAACTAA CAAGTCTTTT GAATTTTATGC ATGGTAGTAA ACATTCCTC 780
TATTAACTTT ATTACCTAAG GCTAAACCTA AAATTTTAA GCAAAAATTAG AAAAATAGTC 840
TTCACTCATC AAAAAAAAAAAG GTTTGTTACA TTTAGTATTT TCCCAATAAA ATTGGTCGTT 900
CTTGGTTTTT ATTTTGGAGA GTCTGTGCAA AATTTTTCCACATAAAATTA AGCACTAGAA 960
ATTATTTCTA AATACCAAA

SEQ ID NO:244 PBQ8 DNA SEQUENCE

Nucleic Acid Accession#: Coding sequence: 3-

: X51405 3-1721 (underlined sequence corresponds to start and stop codon)

1 11 21 31 41 51

403

	1	1	1	1	•	1	
	AAATGGCGTG	CCCGTCTCTC	cccccccc	CTGCCTCGCA	GTGGTTTCTC	CTGCAGCTCC	60
	CCTGGGCTCC	GCGGCCAGTA	GTGCAGCCCG	TGGAGCCGCG	GCTTTGCCCG	TCTCCTCTGG	120
	GTGGCCCCAG	TGCGCGGGCT	GACACTCATT	CAGCCGGGGA	AGGTGAGGCG	AGTAGAGGCT	180
5	GGTGCGGAAC	TTGCCGCCCC	CAGCAGCGCC	GGCGGGCTAA	GCCCAGGGCC	GGGCAGACAA	240
	AAGAGGCCGC	CCGCGTAGGA	AGGCACGGCC	GGCGGCGGCG	GAGCGCAGCG	ATGGCCGGGC	300
	GAGGGGGCAG	CGCGCTGCTG	GCTCTGTGCG	GGGCACTGGC	TGCCTGCGGG	TGGCTCCTGG	360
	GCGCCGAAGC	CCAGGAGCCC	GGGGCGCCCG	CGGCGGCAT	GAGGCGGCGC	CGGCGGCTGC	420
4.0	AGCAAGAGGA	CGGCATCTCC	TTCGAGTACC	ACCGCTACCC	CGAGCTGCGC	GAGGCGCTCG	480
10	TGTCCGTGTG	GCTGCAGTGC	ACCGCCATCA	GCAGGATTTA	CACGGTGGGG	CGCAGCTTCG	540
	AGGCCCGGGA	GCTCCTGGTC	ATCGAGCTGT	CCGACAACCC	TGGCGTCCAT	GAGCCTGGTG	600
	AGCCTGAATT	TAAATACATT	GGGAATATGC	ATGGGAATGA	GGCTGTTGGA	CGAGAACTGC	660
	TCATTTTCTT	GGCCCAGTAC	CTATGCAACG	AATACCAGAA	GGGGAACGAG	ACAATTGTCA	720
	ACCTGATCCA	CAGTACCCGC	ATTCACATCA	TGCCTTCCCT	GAACCCAGAT	GGCTTTGAGA	780
15	AGGCAGCGTC	TCAGCCTGGT	GAACTCAAGG	ACTGGTTTGT	GGGTCGAAGC	AATGCCCAGG	840
	GAATAGATCT	GAACCGGAAC	TTTCCAGACC	TGGATAGGAT	AGTGTACGTG	AATGAGAAAG	900
	AAGGTGGTCC	AAATAATCAT	CTGTTGAAAA	ATATGAAGAA	AATTGTGGAT	CAAAACACAA	960
			GCTGTCATTC				1020
00	CTGCCAATCT	CCATGGAGGA	GACCTTGTGG	CCAATTATCC	ATATGATGAG	ACGCGGAGTG	1080
20			TCCTCCCCAG				1140
			GCCATGTCTG				1200
			GATGGAACCA				1260
•			TACCTTAGCA				1320
25			GAAGAGACTC				1380
25			CAGATACACC				1440
			GCCACCATCT				1500
			TGGAGATTGC				1560
			ATAACAAAGA				1620
30			TCATTTTCTG				1680
30			TCAGAAACTT				1740 1800
			TGTAGTATGA TTTATTTTTT				1860
			AAAAATATAA				1920
			TTACACAAAA				1920
35			ATTCCTGGTA				2040
55			GAAGTTCTTT				2100
			CAGATACAGC				2160
			GTCGTTTTTT				2220
			GAAGAAAAGG				2280
40			TTGTACATAT				2340
••			AGGGTTTTCT				2400
			AAAAAATCCC				
					-	,	
		SEQ ID I	10:245 PBQ8 Pro	lein sequence			
45	Protein Accession	ı#: P16870					

45

50

55

MAGRGGSALL ALCGALAACG WILLGAEAQEP GAPAAGMRRR RRLQQEDGIS FEYHRYPELR 60
EALVSVWLQC TAISRIYTVG RSFEGREILLV IELSDNPGVH EPGEPEFKYI GNMHGNEAVG 120
RELLIFLAQY LCNEYQKGNE TIVNLIHSTR IHIMPSLNPD GFEKAASQPG ELKDWFVGRS 180
NAQGDLINRN FPDLDRIVYV NEKEGGPNNH LLKNMKKIVD QNTKLAPETK AVHIWIMDIP 240
FVLSANLHGG DLVANYPYDE TRSGSAHEYS SSPDDAIFQS LARAYSSFNP AMSDPNRPPC 300
RKNDDDSSFV DGTTNGGAWY SVPGGMQDFN YLSSNCFEIT VELSCEKFPP EETLKTYWED 360
NKNSLISYLE QHRGVKGFV RDLQGNPIAN ATISVEGIDH DVTSAKDGDY WRLLIPGNYK 420
LTASAPGYLA ITKKVAVPYS PAAGVDFELE SFSERKEEEK EELMEWWKMM SETLNF

SEQ ID NO:246 PBY4 DNA sequence Nucleic Acid Accession#: AF038966

60	NUCLEIC ACIU ACC		g sedneuce:	91-1107 (unde	adined sequence c	orresponds to start	and stop codon)
00	1	11	21	31	41	51	
	1	1	1	1	1	1	
	GGGGCGACGT	GAGCGCGCAG	GGGGGCGCG	GCCTCGCCTC	GTCTCTCTCT	CTGCGCCTGG	60
	GTCGGGTGGG	TGACGCCGAG	AGCCAGAGAG	ATGTCGGATT	TCGACAGTAA	CCCGTTTGCC	120
65	GACCCGGATC	TCAACAATCC	CTTCAAGGAT	CCATCAGTTA	CACAAGTGAC	AAGAAATGTT	180
	CCACCAGGAC	TTGATGAATA	TAATCCATTC	TCGGATTCTA	GAACACCTCC	ACCAGGCGGT	240
	GTGAAGATGC	CTAATGTACC	CANTACACAA	CCAGCAATAA	TGAAACCAAC	AGAGGAACAT	300
	CCAGCTTATA	CACAGATTGC	AAAGGAACAT	GCATTGGCCC	AAGCTGAACT	TCTTAAGCGC	360
70	CAAGAAGAAC	TAGAAAGAAA	AGCCGCAGAA	TTAGATCGTC	GGGAACGAGA	AATGCAAAAC	420
70	CTCAGTCAAC	ATGGTAGAAA	AAATATTTGG	CCACCTCTTC	CTAGCAATTT	TCCTGTCGGA	480
	CCTTGTTTCT	ATCAGGAATI	TTCTGTAGAC	ATTCCTGTAG	AATTCCAAAA	GACAGTAAAG	540
			GTTCCATGCA				600
	TTGGCTTGGT	TTTGTGTTGA	TTCTGCAAGA	GCGGTTGATT	TTGGATTGAG	TATCCTGTGG	660
76	TTCTTGCTTT	TTACTCCTTG	TTCATTTGTC	TGTTGGTACA	GACCACTTTA	TGGAGCTTTC	720
75			ATTCTTTGTA				780
			AGGATTTCAT				840
			TATTCCTGTT			_	900
			CTCACTAGTT				960
00		-	GAAGGCCCAA				1020
80	AAAACTGTCC	AGACCGCAGC	TGCAAATGCA	GCTTCAACTG	CAGCATCTAG	TGCAGCTCAG	1080

PCT/US01/32045 WO 02/30268

	AATGCTTTCA	AGGGTAACCA	GATTTAAGAA	TCTTCAAACA	ATACACTGTT	ACCTTTTGAC	1140
	TGTACCTTTT	TCTCCAGTTA	CTGTATTCTA	CAAATATTTT	TATGTTCAAA	ACACACAGTA	1200
	CAGACAGCAT	GGATATTTCC	TGTTCACTTG	TGCATGGGCT	AAAACCAGGA	AAACTTCCTT	1260
_	GTCTTATTAC	TTTACCTAAT	AGTTTCTTAA	TATTTCAGTG	CCCCTTGCAG	TTATAAAAAA	1320
5	ACATGCTAAA	TAAATATTCT	CCATATTTTT	GGGGGATGAC	ATTCAGTGAA	TTATTTCAGT	1380
	GGTGACCCAC	TGAAAATTAA	TAATGGTACT	TATGATTAAA	AACGCATTTA	ATACTAACTG	1440
	CAGTAGTTCT	TTCAAGAATC	TTTAGAGATA	AGGATTGCAC	ATTGGAAAAG	TAAACCATGT	1500
	TTCATTCCTT	TTTCCCTATT	TATATTGAAA	GAAATAGGCC	AGCAGAGACT	TAGGGATTTT	1560
	AAATTGGCTT	GCTTTTTAGC	TGTTTCAGTC	ACCAGTGAAG	AGCCTATGTG	CATTTTGTAG	1620
10	TAGATAATGT	AAAATTTGTC	ATCTTTTTCT	TTTCTTTTTT	TTAGAATAGC	TGATATTTTG	1680
	ATAACAATCT	CTAATTTGCA	TGGGCACCAC	ATTTCTTATA	TTAAAAGAAT	TAGTGTTTTG	1740
	GCTTCTGTAC	TGCTTATGGT	TGTAGGATTC	AGGGGTTAAT	GGAATCACAG	AAATGATATT	1800
	CTGCAAGAAT	TTCTTTTAAA	TAAAAAGTTT	GGGGGTGCAA	TATAAGAAGT	TTATATAATA	1860
15	TGCAGTACAT	TATCCAAAAG	AGAAGGTAGT	TAATGCAGTA	GAAAGTAGTG	GTAATAATTC	1920
<u> </u>	CILIII						

SEQ ID NO: 247 PBY4 Protein sequence:

Protein Accession #: 20

MSDFDSNPFA DPDLNNPFKD PSVTOVTRNV PPGLDEYNPF SDSRTPPPGG VKMPNVPNTQ 60 PAIMKPTEEH PAYTQIAKEH ALAQAELLKR QEELERKAAE LDRREREMON LSQHGRKNIW 120 PPLPSNFPVG PCFYQEFSVD IPVEFQKTVK LMYYLWMFHA VTLFLNIFGC LAWFCVDSAR 180 AVDFGLSILW FLLFTPCSFV CWYRPLYGAF RSDSSFRFFV FFFVYICQFA VHVLQAAGFH 240 25 NWGNCGWISS LTGLNQNIPV GIMMIIIAAL FTASAVISLV MFKKVHGLYR TTGASFEKAQ 300 QEFATGVMSN KTVQTAAANA ASTAASSAAQ NAFKGNQI

SEQ ID NO:248 PBH2 DNA sequence

30 none found Nucleic Acid Accession#:

1-613 (underlined sequence corresponds to start and stop codon)

ATGAGAGACA ATAAATCGTG TGCTTTTTTC ATGGGAAAGT TAAATGTTTG TTTTGAAGGC 60 ACAGTAATAG CAGGCTATTC AGTGTTTGCC ACTACCTGCA TCATTCATCT GGCTGTAGCT 120
AGTGCACTAC AATTTCCTAA AAAGTCTTCT CACCCTCACA GGACTGCTCT ACATCTGGCC 180
TCTGCCAATG GAAATTCAGA AGTAGTAAAA CTCCTGCTGG ACAGACGATG TCAACTTAAT 240
ATCCTTGACA ACAAAAAGAG GACAGCTCTG ACAAAGGCCG TACAATGCCA GGAAGATGAA 300
TGTGCGTTAA TGTTGCTGGA ACATGGCACT GATCCGAATA TTCCAGATGA GTATGGAAAT 360 35 ACCGCTCTAC ACTATGCTAT CTACAATGAA GATAAATTAA TGGCCAAAGC ACTGCTCTTA 420 40 TACGGTGCTG ATATCGAATC AAAAAACAAG CATGGCCTCA CACCACTGTT ACTTGGTGTA 480 CATGAGCAAA AACAGCAAGT GGTGAAATTT TTAATCAAGA AAAAAGCAAA TTTAAATGCA 540 CTGGATAGAT ATGGAAGGTG TGTGACCTTG GGAACGTTAT TTACCACCAA ATATGTTGTC 600

ATATATGAAA AGTAG 45

55

SEQ ID NO:249 PBH2 Protein sequence:

Protein Accession #:

MRDNKSCAFF MGKLNVCFEG TVIAGYSVFA TTCIIHLAVA SALQFFKKSS HPHRTALHLA 60 SANGNSEVVK LLLDRRCQLN ILDNKKRTAL TKAVQCQEDE CALMLLEHGT DPNIPDEYGN 120 50 TALHYAIYNE DKLMAKALLL YGADIESKNK HGLTPLLLGV HEQKQQVVKF LIKKKANLNA 180 LDRYGRCVTL GTLFTTKYVV IYEK

SEQ ID NO:250 PBJ1 DNA sequence

Nucleic Acld Accession#: XM_005829

1-3043 (underlined sequence corresponds to start and stop codon) Coding sequence:

60 ATGGTGATCA TCTATCTTTC TTTCTGCAAT TATTACATGG AGTTCTACAG AGAAGAGCTT 60 CCCACATTG ACTATTTGAT TGACATTCAG TTTGCAACAG GAAAGGTTAC TCAGCCCGGA 120
GAGGACACTT CCTACCATCA ATGCGCTCAG CTTGAAGCCA GAGACGAAGG CACCGACAGT 180
TTATTATTAA ACAATGGCAG CAGCGCCACG CTGAAGACAC GAACGCGCTG TTATGGAACC 240
CCCAGAGGTC TCCCCCATCG TAGCCTGCTC CAGCCGACTC CGCCCACATG TAAAACGAAG 300 65 ATCAGGAGCA GATTTGAAGA ATTACAAAGT GAATTGGTGC CAGTCAGCAT GTCAGAGACA 360 GACCACATAG CCTCTACTTC CTCTGATAAA AATGTTGGGA AAACACCTGA ATTAAAGGAA 420 GACTCATGCA ACTTGTTTTC TGGCAATGAA AGCAGCAAAT TAGAAAATGA GTCCAAACTA 480 TTGTCATTAA ACACTGATAA AACTTTATGT CAACCTAATG AGCATAATAA TCGAATTGAA 540 GCCCAGGAAA ATTATATTCC AGATCATGGT GGAGGTGAGG ATTCTTGTGC CAAAACAGAC 600 70 ACAGGCTCAG AAAATTCTGA ACAAATAGCT AATTTTCCTA GTGGAAATTT TGCTAAACAT 660 ATTTCAAAAA CAAATGAAAC AGAACAGAAA GTAACACAAA TATTGGTGGA ATTAAGGTCA 720 TCTACATTTC CAGAATCAGC TAATGAAAAG ACTTATTCAG AAAGCCCCTA TGATACAGAC 780 TGCACCAAGA AATITATITC AAAAATAAAG AGCGTTTCAG CATCAGAGGA TITGTTGGAA 840 GAAATAGAAT CTGAGCTCTT ATCTACGGAG TTTGCAGAAC ATCGAGTACC AAATGGAATG 900 75 AATAAGGGAG AACATGCATT AGTTCTGTTT GAAAAGTGTG TGCAAGATAA ATATTTGCAG 960 CAGGAACATA TCATAAAAAA GTTAATTAAA GAAAATAAGA AGCATCAGGA GCTCTTCGTA 1020 GACATTTGTT CAGAAAAAGA CAATTTAAGA GAAGAACTAA AGAAAAGAAC AGAAACTGAG 1080 AAGCAGCATA TGAACACAAT TAAACAGTTA GAATCAAGAA TAGAAGAACT TAATAAAGAA 1140 GTTAAAGCTT CCAGAGATCA ACTAATAGCT CAAGACGTTA CAGCTAAAAA TGCAGTTCAG 1200

CAGTTACACA AAGAGATGGC CCAACGGATG GAACAGGCCA ACAAGAAATG TGAAGAGGCA 1260 CGCCAAGAAA AAGAAGCAAT GGTAATGAAA TATGTAAGAG GTGAGAAGGA ATCTTTAGAT 1320 CTTCGAAAGG AAAAAGAGAC ACTTGAGAAA AAACTTAGAG ATGCAAATAA GGAACTTGAG 1380 AAAACAATI ACAAAATTAA GCAGCTTAGA 1380
AAAACACTA ACAAAATTAA GCAGCTTTCT CAGGAGAAAG GACGGTTGA 1640
GAAACTAAGG AAGGCGAAAC GACTAGACTC ATCAGAGAAA TAGACAAATT AAAGGAAGAC 1500
ATTAACTCTC ACGTCATCAA AGTAAAGTGG GCACAAAACA AATTAAAAGC TGAAATGGAT 1560
TCACACAAAGG AAACCAAAAGA TAAACTCAAA GAAACACAA CAAAATTAAC ACAAGCAAAG 1620
GAAGAAGCAG ATCAGATACG AAAAACTGT CAGGATATGA TAAAAACATA TCAGGAGTCA 1680
GAAGAAATTA AATCAAATGA GCTTGATGCA AAGCTTAGAG TCACAAAATG AGAACTTTAA 1740
AAACAAATGC AAGAAAAATC TGACCAGCTA GAGATGCATC ATGCCAAAAT AAAGGAACTA 1800 10 GAAGATCTGA AGAGAACATT TAAGGAGGGT ATGGATGAGT TAAGAACACT GAGAACAAAG 1860 GTGAAATGTC TAGAAGATGA ACGATTAAGA ACAGAAGATG AATTATCAAA ATATAAGGAA 1920 ATTATTAATC GCCAAAAAGC TGAAATTCAG AATTTATTGG ACAAGGTGAA AACTGCAGAT 1980 CAGCTACAGG AGCAGCTTCA AAGAGGTAAG CAAGAAATTG AAAATTTGAA AGAAGAAGTG 2040 15 GAAAGTCTTA ATTCTTTGAT TAATGACCTA CAAAAAGACA TCGAAGGCAG TAGGAAAAGA 2100 GAATCTGAGC TGCTGCTGTT TACAGAAAGG CTCACTAGTA AGAATGCACA GCTTCAGTCT 2160 GAATCCAATT CTTTGCAGTC ACAATTTGAT AAAGTTTCCT GTAGTGAAAG TCAGTTACAA 2220 AGCCAGTGTG AACAAATGAA ACAGACAAAT ATTAATTTGG AAAGTAGGTT GTTGAAAGAG 2280 GAAGAACTGC GAAAAGAGGA AGTCCAAACT CTGCAAGCTG AACTCGCTTG TAGACAAACA 2340
GAAGTTAAAG CATTGAGTAC CCAGGTAGAA GAATTAAAAG ATGAGTTAGT AACTCAGAGA 2400
CGTAAACATG CCTCTAGTAT CAAGGATCTC ACCAAACAAC TTCAGCAAGC ACGAAGAAAA 2460
TTAGATCAGG TTGAGAGTGG AAGCTATGAC AAAGAAGTCA GCAGCATGGG AAGTCGTTCT 2520 20 AGTTCATCAG GGTCCCTGAA TGCTCGAAGC AGTGCAGAAG ATCGATCTCC AGAAAATACT 2580 GGGTCCTCAG TAGCTGTGGA TAACTTTCCA CAAGTAGATA AGGCCATGTT GATTGAGAGA 2640 25 ATAGTTAGGC TGCAAAAAGC ACATGCCCGG AAAAATGAAA AGATAGAATT TATGGAGGAC 2700 CACATCAAAC AACTGGTGGA AGAAATTAGG AAAAAAACAA AAATAATTCA AAGTTATATT 2760 TTACGAGAAG AATCAGGCAC ACTITCTTCA GAGGCATCTG ATTTTAACAA AGTTCATTTA 2820 AGTAGACGGG GTGGCATCAT GGCATCTTTA TATACATCCC ATCCAGCTGA CAATGGATTA 2880 ACATTGGAGC TCTCTTTGGA AATCAACCGA AAATTACAGG CTGTTTTGGA GGATACGTTA 2940 ACATIGGAGC TCICTITIGA AATCAACCGA AAATTACAGG CTGITTIGGA GGATACGITA 2940
CTAAAAAATA TTACTTTGAA GGAAAATCTA CAAACACTTG GAACAGAAAT AGAACGTCTT 3000
ATTAAACACC AGCATGAACT AGAACAGAGG ACAAAGAAAA CC<u>TAA</u>AACAA GCCTCTTGCT 3060
CAGTAAAGAG ACAAAAGCCA CACAGGAGTA GGTGCCACTG ACCTCTATTG TTGGAGACTT 3120
TGTTCCACTT TITGTTTCAG CCAGTAAAAA TATTGTTTTG CTTCATCTGT ACACAAAAAA 3180
ATACCCTTTT ACAATATGAA TGCATTGCTG TATATACTGT AAGACTGAAA GCTTTGATGA 3240
AATTTGTTTT TGTATGGTGC AATATGACAG CCTGTCATTG AATCTAAACA ACTTAATTTG 3300 30 35 CTIGTATTCA TAAGAAGTGT TGAACATTAC AAGGGCTTTT AT

40 Protein Accession #: SEQ ID NO:251 PBJ1 Protein sequence: NP_060487

MVIIYLSFCN YYMEFYREEL PHIDYLIDIQ FATGKVTQPG EDTSYHQCAQ LEARDEGTDS 60
11LINNGSSAT LKTRTRCYGT PRGLPHRSIL QPTPPTCKTK IRSRFEELQS ELVPVSMSET 120
DHIASTSSDK NVGKTPELKE DSCNLFSGNE SSKLENESKL LSLNTDKTLC QPNEHNNRIE 180
AQENYIPDHG GGEDSCAKTD TGSENSEQIA NFPSGNFAKH ISKTNETEGK VTQILVELRS 240
STFPESANEK TYSESPYDTD CTKKFISKIK SVSASEDLLE EIESEILSTE FAEHRVPNGM 300
NKGEHALVIF EKCVQDKYLQ QEHIIKKLIK ENKKHQELFV DICSEKDNIR EELKKRTETE 360
KQHMITIKQL ESRIEELNKE VKASRDQLIA QDVTAKNAVQ QLHKEMAQRM EQANKKCEEA 420
RQEKEAMYMK YVRGEKESLD LRKEKETLEK KLRDANKELE KNTNKIKQLS QEKGRLHQLY 480
ETKEGETTRL IREIDKLKED INSHVIKVKW AQNKLKAEMD SHKETKDKLK ETTTKLTQAK 540
EEADQIRKNC QDMIKTYQES EEIKSNELDA KLRVTKGELE KQMQEKSDQL EMHHAKIKEL 600
EDLKRTFKEG MDELRTLRTK VKCLEDERLR TEDELSKYKE IINRQKAEIQ NILDKVKTAM 660
QLQEQLQRGK QEEINLKEEV ESLNSLINDL QKDEGSRKR ESELLLFTER LTSKNAQLQS 720
ESNSLQSQFD KVSCSESQLQ SQCEQMKQTN INLESRLLKE EELRKEEVQT LQAELACRQT 780
EVKALSTQVE ELKDELVTQR RKHASSIKDL TKQLQQARRK LDQVESGSYD KEVSSMGSRS 840
SSSGSLNARS SAEDRSPENT GSSVAVDNFP QVDKAMLER IVRLQKAHAR KNEKIEFMED 900
HIKQLVEEIR KKTKIIQSYI LREESGTILSS EASDFNKVHL SRRGGIMASL YTSHPADNGL 960
TLELSLEINR KLQAVLEDIL LKNITLKENL QTLGTEIERL IKHQHELEQR TKKT

SEQ ID NO:252 PBJ6 DNA sequence Nucleic Acid Accession#: D83760

60

Coding sequence: 56-1459 (underlined sequence corresponds to start and stop codon)

65	1	11	21	31	41	51	
	ī	Ī	Ī	Ī	Ĩ	Ĩ	
	TTGCCGTGAA	GGGCTGTGCG	GTTCCCGTGC	GCGCCGGAGC	CTGCTGTGGC	CTCTTATGCA	60
	CTCCACCACC	CCCATCAGCT	CCCTCTTCTC	CTTCACCAGC	CCCGCAGTGA	AGAGACTGCT	120
50	AGGCTGGAAG	CAAGGAGATG	AAGAGGAAAA	GTGGGCAGAG	AAGGCAGTGG	ACTCTCTAGT	180
70	GAAGAAGTTA	AAGAAGAAGA	AGGGAGCCAT	GGACGAGCTG	GAGAGGGCTC	TCAGCTGCCC	240
	GGGGCAGCCC	AGCAAATGCG	TCACGATTCC	CCGCTCCCTG	GACGGGCGGC	TGCAGGTGTC	300
	CCACCGCAAG	GGCCTGCCCC	ATGTGATTTA	CTGTCGCGTG	TGGCGCTGGC	CGGATCTGCA	360
	GTCCCACCAC	GAGCTGAAGC	CGCTGGAGTG	CTGTGAGTTC	CCATTTGGCT	CCAAGCAGAA	420
	AGAAGTGTGC	ATTAACCCTT	ACCACTACCG	CCGGGTGGAG	ACTCCAGTAC	TGCCTCCTGT	480
<i>7</i> 5	GCTCGTGCCA	AGACACAGTG	AATATAACCC	CCAGCTCAGC	CTCCTGGCCA	AGTTCCGCAG	540
	CGCCTCCCTG	CACAGTGAGC	CACTCATGCC	ACACAACGCC	ACCTATCCTG	ACTOTTTOCA	600
	GCAGCCTCCG	TGCTCTGCAC	TCCCTCCCTC	ACCCAGCCAC	GCGTTCTCCC	AGTCCCCGTG	660
	CACGGCCAGC	TACCCTCACT	CCCCAGGAAG	TCCTTCTGAG	CCAGAGAGTC	CCTATCAACA	720
	CTCAGTTGAC	ACACCACCCC	TGCCTTATCA	TGCCACAGAA	GCCTCTGAGA	CCCAGAGTGG	780

```
CCAACCTGTA GATGCCACAG CTGATAGACA TGTAGTGCTA TCGATACCAA ATGGAGACTT
         TCGACCAGTT TGTTACGAGG AGCCCCAGCA CTGGTGCTCG GTCGCCTACT ATGAACTGAA
                                                                                     900
         CAACCGAGTT GGGGAGACAT TCCAGGCTTC CTCCCGAAGT GTGCTCATAG ATGGGTTCAC
                                                                                      960
         CGACCCTTCA AATAACAGGA ACAGATTCTG TCTTGGACTT CTTTCTAATG TAAACAGAAA
  5
        CTCAACGATA GAAAATACCA GGAGACATAT AGGAAAGGGT GTGCACTTGT ACTACGTCGG
        GGGAGAGGTG TATGCCGAGT GCGTGAGTGA CAGCAGCATC TTTGTGCAGA GCCGGAACTG
                                                                                    1140
        CAACTATCAA CACGGCTTCC ACCCAGCTAC CGTCTGCAAG ATCCCCAGCG GCTGCAGCCT
         CAAGGTCTTC AACAACCAGC TCTTCGCTCA GCTCCTGGCC CAGTCAGTTC ACCACGGCTT
                                                                                    1260
        TGAAGTCGTG TATGAACTGA CCAAGATGTG TACTATCCGG ATGAGTTTTG TTAAGGGTTG
                                                                                    1320
10
        GGGTGCTGAG TATCATCGCC AGGATGTCAC CAGCACCCCC TGCTGGATTG AGATTCATCT
                                                                                    1380
        TCATGGGCCA CTGCAGTGGC TGGACAAAGT TCTGACTCAG ATGGGCTCTC CACATAACCC 1440
        CATTTCTTCA GTGTCTTAAC AGTCATGTCT TAAGCTGCAT TTCCATAGGA T
15
                            SEQ ID NO:253 PBJ6 Protein sequence:
        Protein Accession #:
                            NP 005896
        MHSTTPISSL FSFTSPAVKR LLGWKQGDEE EKWAEKAVDS LVKKLKKKKG AMDELERALS 60
        CPGQPSKCVT IPRSLDGRLQ VSHRKGLPHV IYCRVWRWPD LQSHHELKPL ECCEFPFGSK 120
20
         OKEVCINPYH YRRVETPVLP PVLVPRHSEY NPOLSLLAKF RSASLHSEPL MPHNATYPDS 180
        FQQPPCSALP PSPSHAFSQS PCTASYPHSP GSPSEPESPY QHSVDTPPLP YHATEASETQ 240
SGQPVDATAD RHVVLSIPNG DFRPVCYEEP QHWCSVAYYE LNNRVGETFQ ASSRSVLIDG 300
        FIDPSNNRNR FCLGLLSNVN RNSTIENTRR HIGKGVHLYY VGGEVYAECV SDSSIFVQSR 360
        NCNYQHGFHP ATVCKIPSGC SLKVFNNQLF AQLLAQSVHH GFEVVYELTK MCTIRMSFVK 420
25
        GWGAEYHRQD VTSTPCWIEI HLHGPLQWLD KVLTQMGSPH NPISSVS
        SEQ ID NO:254 PBJ8 DNA sequence
        Nucleic Acid Accession#: AB04684
30
        Coding sequence:
                            472-4377 (underlined sequence corresponds to start and stop codon)
        TGCAGGTTTG CAGGGTCTGA GATTACTTGG GCTTTTCCTG CCTTTTTCTT TTGCTTAAGG
35
        120
                                                                                     180
        ACCAAAATGA ACTGAGGGGT TTGTAATGGT AGTTTGTTTG TTGCTGGAGA ATGCTACTTT
                                                                                     240
        GCATGCTTTT TTTCTCTTGC AGGGTATGTT CTGTCTTGTG CTTTTTCTTT TAGAAGCTAC
        TAAAGGGTGT TGGGGATGCT TCTGACTATT ATGAAGGCCA AAAGGCCTGT TGACTGGGGC
40
        TGCTTTTAAC CCTTTCCTAT TTGCTGAGAA TGCAGCCGTG TGACAGTAAC TGAACATTGG
        TCTAAAGTCT TTCCAAAAGG TCAAGGTTCA CAAGAACATC TGCTCAAATT AATGACCATG
                                                                                     480
        GGGGATATGA AGACCCCAGA CTTTGATGAC CTCCTGGCAG CATTTGACAT CCCAGATATG
                                                                                     540
        GTCGATCCTA AAGCAGCTAT TGAGTCTGGA CACGATGACC ATGAAAGCCA CATGAAGCAG
                                                                                     600
        AATGCTCACG GAGAGGATGA CTCCCACGCA CCATCATCTT CTGATGTGGG TGTCAGCGTT
ATCGTCAAGA ATGTTCGGAA CATTGACTCT TCCGAGGGCG GGGAGAAAGA CGGCCACAAC
                                                                                     660
45
                                                                                     720
        CCCACTGGCA ATGGCTTACA TAATGGGTTT CTCACAGCAT CCTCCCTTGA CAGTTACAGT
                                                                                     780
        AAAGATGGAG CAAAGTCCTT GAAAGGAGAT GTGCCTGCCT CTGAGGTGAC ACTGAAAGAC
        TCGACATTCA GCCAGTTTAG CCCGATCTCC AGTGCTGAAG AGTTTGATGA CGACGAGAAG
                                                                                     900
        ATTGAGGTGG ATGACCCCCC TGACAAGGAG GACATGCGAT CAAGCTTCAG GTCGAATGTG
                                                                                     960
50
        TTGACGGGT CGGCTCCCCA GCAGGACTAC GATAAGCTGA AGGCACTCGG AGGGGAAAAC
                                                                                    1020
        TCCAGCAAAA CTGGACTCTC TACGTCAGGC AATGTGGAGA AAAACAAAGC TGTTAAAGAG
GAAACAGAAG CCAGTTCTAT AAACCTGAGT GTTTATGAAC CTTTTAAAGT CAGAAAAGCA
                                                                                    1080
                                                                                    1140
        GAGGATAAAT TGAAGGAAAG CTCTGACAAG GTGCTGGAAA ACAGAGTCCT AGATGGGAAG
                                                                                    1200
        CTGAGCTCCG AGAAGAATGA CACCAGCCTC CCCAGCGTTG CGCCATCAAA GACAAAGTCG
                                                                                    1260
55
        TCCTCCAAGC TCTCGTCCTG CATCGCTGCC ATCGCGGCTC TCAGCGCTAA AAAGGCGGCT
        TCAGACTCCT GCAAAGAACC AGTGGCCAAT TCGAGGGAAT CCTCCCCGTT ACCAAAAGAA
                                                                                    1380
        GTAAATGACA GTCCGAGAGC CGCTGACAAG TCTCCTGAAT CCCAGAATCT CATCGACGGG
                                                                                    1440
       ACCAAAAAC CATCCCTGAA GCAACCGGAT AGTCCCAGAA GCATCTCAG TGAGAACAGC
AGCAAAAGGAT CCCCGTCCTC TCCCGCAGGG TCCACACCAG CAATCCCCAA AGTCCCGATA
AAAACCATTA AGACATCTTC TGGGGAAATC AAGAGAACAG TGACCAGGGT ATTGCCAGAA
GTGGATCTTG ACTCTGGAAA GAAACCTTCC GAGCAGACAG CGTCCGTGAT GGCCTCTGTG
                                                                                    1500
                                                                                    1560
60
                                                                                    1620
                                                                                    1680
        ACATCCCTTC TGTCGTCTCC AGCATCAGCC GCCGTCCTTT CCTCTCCCCC CAGGGCGCCT
                                                                                    1740
        CTCCAGTCTG CGGTCGTGAC CAATGCAGTT TCCCCTGCAG AGCTCACCCC CAAACAGGTC
        ACAATCAAGC CTGTGGCTAC TGCTTTCCTC CCAGTGTCTG CTGTGAAGAC GGCAGGATCC
                                                                                    1860
65
        CAAGTCATTA ATTTGAAGCT CGCTAACAAC ACCACGGTGA AAGCCACGGT CATATCTGCT
                                                                                    1920
        GCCTCTGTCC AGAGTGCCAG CAGCGCCATC ATTAAAGCTG CCAACGCCAT CCAGCAGCAA
                                                                                    1980
        ACTOTOGTOG TECCOGCCATC CAGCCTGGCC AATGCCAAAC TCGTGCCAAA GACTGTGCAC CTTGCCAACC TTAACCTTTT GCCTCAGGGT GCCCAGGCCA CCTCTGAACT CCGCCAAGTG
                                                                                    2040
                                                                                    2100
        CTAACCAAAC CTCAGCAACA AATAAAGCAG GCAATAATCA ATGCAGCAGC CTCGCAACCC
                                                                                    2160
70
        CCCAAAAAGG TGTCTCGAGT CCAGGTGGTG TCGTCCTTGC AGAGTTCTGT GGTGGAAGCT
                                                                                    2220
        TTCAACAAGG TGCTGAGCAG TGTCAATCCA GTCCCTGTTT ACATCCCAAA CCTCAGTCCT
                                                                                    2280
        CCCGCCAATG CAGGGATCAC GTTACCGACG CGTGGGTACA AGTGCTTGGA GTGTGGGGAC
                                                                                    2340
        TCCTTTGCAC TTGAAAAGAG TCTGACCCAG CACTACGACA GACGGAGCGT GCGCATCGAA
                                                                                    2400
        GTAACGTGCA ACCATTGTAC AAAGAACCTC GTTTTTTACA ACAAATGCAG CCTCCTTTCC
                                                                                    2460
75
        CATGCCCGTG GGCATAAGGA GAAAGGGGTG GTAATGCAAT GCTCCCACTT AATTTTAAAG
                                                                                   2520
        CCAGTCCCAG CAGATCAAAT GATAGTTTCT CCGTCAAGCA ATACTTCCAC TTCAACTTCC
                                                                                    2580
       ACTOTICAGA GCCCTGTGGG AGCTGGCACA CACACTGTCA CAAAAATTCA GTCTGGCATA
ACTGGGACAG TCATATCGGC TCCTTCAAGC ACTCCCATCA CCCCAGCCAT GCCCCTAGAT
                                                                                    2640
```

GAAGACCCCT CCAAACTGTG TAGACATAGT CTAAAATGTT TGGAGTGTAA TGAAGTCTTC

CAGGACGAGA CATCACTGGC TACACATTTC CAGCAGGCTG CAGATACGAG TGGACAAAAG

80

2700

2760

PCT/US01/32045 WO 02/30268

	ACTTGCACTA	TCTGCCAGAT	GCTGCTTCCT	AACCAGTGCA	GTTATGCATC	ACACCAGAGA	2880
	ATCCATCAGC	ACAAATCTCC	CTACACCTGC	CCTGAGTGTG	GGGCCATCTG	CAGGTCGGTG	2940
	CACTTCCAGA	CCCACGTCAC	CAAGAACTGT	CTGCACTACA	CGAGGAGAGT	TGGTTTTCGA	3000
-	TGTGTGCATT	GCAATGTTGT	GTACTCTGAT	GTGGCTGCTC	TGAAGTCTCA	CATTCAAGGT	3060
5	TCTCACTGTG	AAGTCTTCTA	CAAGTGTCCT	ATTTGTCCAA	TGGCGTTTAA	GTCTGCCCCA	3120
	AGCACACATT	CCCACGCCTA	CACACAGCAT	CCTGGCATCA	AGATAGGAGA	ACCAAAAATA	3180
	ATATATAAGT	GTTCCATGTG	CGACACTGTG	TTCACCCTGC	AAACCTTGCT	GTATCGCCAC	3240
	TTTGACCAAC	ACATTGAAAA	CCAGAAGGTG	TCTGTTTTCA	AGTGTCCAGA	CTGTTCTCTT	3300
	TTATATGCAC	AGAAGCAACT	TATGATGGAC	CATATCAAGT	CTATGCATGG	AACATTGAAA	3360
10	AGTATTGAAG	GGCCTCCAAA	CTTGGGTATA	AACTTGCCTT	TGAGCATTAA	GCCTGCAACT	3420
	CAAAATTCAG	CAAATCAGAA	CAAAGAGGAC	ACCAAATCCA	TGAATGGGAA	AGAGAAATTG	3480
	GAAAAGAAAT	CTCCATCTCC	TGTGAAAAA	TCAATGGAAA	CCAAGAAAGT	GGCCAGTCCT	3540
	GGGTGGACGT	GTTGGGAGTG	TGACTGCCTG	TTCATGCAGA	GAGATGTGTA	CATATCCCAC	3600
	GTGAGGAAGG	AGCACGGGAA	GCAAATGAAG	AAACACCCCT	GCCGCCAGTG	TGACAAGTCT	3660
15		CCCACAGCCT					3720
		GCTCGCACTG					3780
		TCCAGCTGAT					3840
		AGGAGGAAAC					3900
		AACCAGTTCT					3960
20		AAATCAATGT					4020
		TGCAATTCCA					4080
		AGTGTGGCCT					4140
		AGTTAAAGGA					4200
		AGAACAAACC					4260
25		AAGTGTGCGC					4320
		GCATGGCCTT					4380
		ATGAGGAAAA					4440
		TATAATAGAG					4500
		CCTTCACCTC					4560
30		TTTGTATATA					4620
		TAGTGGAAAA					4680
		AAACAGAGTT					4740
		GGATTTTGAA					4800
		TTTTAGAATT					4860
35		TAAGTGTCTT					4920
-		AACTGCACTC					4980
		AGTCTTGCAG					5040
•		GGAATGCTGA					5100
		ATGGGATTTG					5160
40		TAACGAAAGG					5220
		ATAGTCAGGT					5280
		ATCAAGTATT					5340
		AAAGAGTTGG					5400
		GATGCACAAC					5460
45		TACCTTAAGC					5520
		CGGTAGTTCT					5580
		TCTCTGAGAG					5640
		GTATTTATCC					5700
		TCTTTTGTGT					5760
50		AGGTCTTGCT					5820
		CATATGTAAA					J

SEQ ID NO:255 PBJ8 Protein sequence; 55

Protein Accession #:

MKTPDFDDLL AAFDIPDMVD PKAAIESGHD DHESHMKQNA HGEDDSHAPS SSDVGVSVIV 60 KNVRNIDSSE GGEKDGHNPT GNGLHNGFLT ASSLDSYSKD GAKSLKGDVP ASEVTLKDST 120 FSQFSPISSA EEFDDDEKIE VDDPPDKEDM RSSFRSNVLT GSAPQQDYDK LKALGGENSS 180 60 KTGLSTSGNV EKNKAVKRET EASSINLSVY EPFKVRKAED KLKESSDKVL ENRVLDGKLS 240 SEKNDTSLPS VAPSKTKSSS KLSSCIAAIA ALSAKKAASD SCKEPVANSR ESSPLPKEVN 300 DSPRAADKSP ESQNLIDGTK KPSLKQPDSP RSISSENSSK GSPSSPAGST PAIPKVRIKT 360 DSPRADKSP ESQNLIDGTK KPSLKQPDSP RSISSENSSK GSPSSPAGST PAIPKVRIKT 360

KTSSGEIKR TVTRVLPEVD LDSGKKPSEQ TASVMASVTS LLSSPASAAV LSSPPRAPLQ 420

SAVVTNAVSP AELTPKQVTI KPVATAFLPV SAVKTAGSQV INLKLANNTT VKATVISAAS 480

VQSASSAIIK AANAIQQQTV VVPASSLANA KLVPKTVHLA NLNILPQGAQ ATSELRQVLT 540

KPQQQIKQAI INAAASQPPK KVSRVQVVSS LQSSVVEAFN KVLSSVNPVP VYIENLSPPA 600

NAGITLPTRG YKCLECGDSF ALEKSLTQHY DRRSVRIEVT CNHCTKNLVF YNKCSLLSHA 660

RGHKEKGVVM QCSHLILKPV PADQMIVSPS SNTSTSTSTL QSPVGAGTHT VTKIQSGITG 720

TVISAPSSTP ITPAMPLDED PSKLCRHSLK CLECNEVFQD ETSLATHFQQ AADTSQKTC 780

TICQMLLPNQ CSYASHQRIH QHKSPYTCPE CGAICRSVHF QTHVTKNCLH YTRRVGFRCV 840

HCNVLVYSDVA AI KSHIGGSH CEVEYKCPIC PMARSKSAPST HSHAYTOHPG IKIGEPKIIV 900 65 70 HCNVVYSDVA ALKSHIQGSH CEVFYKCPIC PMAFKSAPST HSHAYTQHPG IKIGEPKIIY 900 KCSMCDTVFT LQTLLYRHFD QHIENQKVSV FKCPDCSLLY AQKQLMMDHI KSMHGTLKSI 960 EGPPNLGINL PLSIKPATON SANONKEDTK SMNGKEKLEK KSPSPVKKSM ETKKVASPGW 1020 TOWECDCLFM QRDVYISHVR KEHGKQMKKH PCRQCDKSFS SSHSLCRHNR IKHKGIRKVY 1080
ACSHCPDSRR TFTKRLMLEK HVQLMHGIKD PDLKEMTDAT NEEBTEIKED TKVPSPKRKL 1140
EEPVLEFRPP RGAITQPLKK LKINVFKVHK CAVCGFTTEN LLQFHEHIPQ HKSDGSSYQC 1200
RECGLCYTSH VSLSRHLFTV HKLKEPQPVS KQNGAGEDNQ QENKPSHEDE SPDGAVSDRK 1260 75 CKVCAKTFET EAALNTHMRT HGMAFIKSKR MSSAEK

80

SEQ ID NO:256 PBM1 DNA sequence Nucleic Acid Accession#: AF111847

THEOREM PROPERTY.	ru i i i i i i i
Coding sequence:	58-1608 (underlined sequence corresponds to start and ston codon)

5	1	11	21	31	41	51	
		ł		1		1	
				CAGCTGCGCC			60
	GGGGACCCCA	GCAAGCAGGA	CATCTTGACC	ATCTTCAAGC	GCCTCCGCTC	GGTGCCCACT	120
4.0	AACAAGGTGT	GTTTTGATTG	TGGTGCCAAA	AATCCCAGCT	GGGCAAGCAT	AACCTATGGA	180
10	GTGTTCCTTT	GCATTGATTG	CTCAGGGTCC	CACCGGTCAC	TTGGTGTTCA	CTTGAGTTTT	240
				TCATGGTTTC			300
	GGAGGAAACG	CTAGTGCATC	TTCCTTTTTT	CATCAACATG	GGTGTTCCAC	CAATGACACC	360
				CTCTATAGGG			420
	TCTCAAGCAA	CACGGAAGCA	TGGCACTGAT	CTGTGGCTTG	ATAGTTGTGT	GGTTCCACCT	480
15	TTGTCCCCTC	CACCAAAGGA	GGAAGATTTT	TTTGCCTCTC	ACGUTUCTCC	TGAGGTGAGT	540
				CCATCTTCTT			600
				GAGCAAGGAC			660
				TCTATCATAA			720
				TTGGGAGCTC			780
20				GCGGATAAAA			840
				GTTTCATCAT			900
				ATGAACATTA			960
			_	TGCAGAAGTG			1020
				CCCATTATGG			1080
25				TCCAGCTCAA			1140
						TTGGAAAAAA.	
				AAAACCACAG			1260
				GAAAATACAG			1320
				TATTTTGGAA			1380
30				GCAAGTTCCT			1440
50				AACTACAGCC			1500
				GTGAGATCGG			1560
				GATCGCTACG			1620
				AAATGAACAA			1680
35				TTGCTACTTT			1740
55				AGTTCTGATG			1800
				CTTTGGCGTC			1860
				AGGGCCTGGA			1920
				GGAGAGGTCT			1980
40				GCCTGCAGAA			2040
40				CTCGTGTGAC			2100
				TTGAAGTCAT			2160
				TCAGTGAGTG			2220
45				GTGAAAGGTG			2280
73				TCATAATAAA			2340
				AAGAAGATAC			2400
				AGTTTTGTTA			2460
				AAATAAAGAA GTAAAATATA			2520
50							2580
50				TCTTTCTTAA			2640
				AAAAAAAA			2700
		AAAAAAAAA		ААААААААА	AAAAAAAAA	AAAAAAAAA	2760
	AAAAAAAAA	AAAAAAAAA	AAAAAAA				
55							
JJ	050 ID 110 000 01						

SEQ ID NO:257 PBM1 Protein sequence: PBM1 Protein sequence: CAB76901

60

MGDPSKQDIL TIFKRLRSVP TNKVCFDCGA KNPSWASITY GVFLCIDCSG SHRSLGVHLS 60
FRSTELDSN WSWFQLRCMQ VGGNASASSF FHQHGCSTND TNAKYNSRAA QLYREKIKSL 120
ASQATRKHGT DLWLDSCVVP PLSPPPKEED FFASHVSPEV SDTAWASAIA EPSSLTSRPV 180
ETTLENNEGG GEGPSVEGL NVPTKATLEV SSIIKKKPNQ AKKGLGAKKG SLGAQKLANT 240
CFNEIEKQAQ AADKMKEQED LAKVVSKEES IVSSLRLAYK DLEIQMKKDE KMNISGKKNV 300
DSDRLGMGFG NCRSVISHSV TSDMQTTEQE SPIMAKPRKK YNDDSDDSYF TSSSSYFDEP 360
VELRSSSFSS WDDSSDSYWK KETSKDTETV LKTTGYSDRP TARRKPDYEP VENTDEAQKK 420
FGNVKAISSD MYFGRQSQAD YETRARLERL SASSSISSAD LFEEPRKQPA GNYSLSSVLP 480
NAPDMAQFKQ GVRSVAGKLS VFANGVVTSI QDRYGS

70 SEQ ID NO:258 PBM4 DNA sequence Nucleic Acid Accession#: D30891

Coding sequence: 1-4032 (underlined sequence corresponds to start and stop codon)

75 ATGATACTG TCATGAAGCA GACACATGCT GACACACCTG TTGATCATTG TCTATCTGGC 60
ATAAGAAAGT GTAGCAGCAC CTTTAAGCTT AAAAGTGAAG TCAACAAGCA TGAAACAGCC 120
CTTGAAATGC AGAATCAAA TTTGAACAAT AAAGAATGTT GTTTTCACCTT TACGTTGAAT 180
GGAAACTCCA GAAAATTAGA CCGTAGTGTG TTTACAGCAT ATGGTAAACC CAGCGAGAGT 240
ATCTACTCAG CCCTGAGTGC TAATGACTAT TTCAGTGAAA GGATAAAGAA TCAGTTTAAT 300
AAGAACATTA TTGTTTATGA AGAAAAGACA ATAGATGGAC ATATAAATTT AGGAATGCCT 360
CTCAAGTGCC TGCCTAGTGA TTCTCATTTT AAAATTACAT TTGGTCAAAG AAAGAGTAGC 420

AAAGAAGATG GACACATATT ACGCCAATGT GAAAATCCAA ACATGGAATG CATTCTTTTT 480 CATGTTGTTG CTATAGGAAG GACAAGAAAG AAGATTGTTA AGATCAACGA ACTTCATGAA 540 AAAGGAAGTA AACTTTGTAT TTATGCCTTG AAGGGTGAGA CTATTGAAGG AGCCTTATGC 600 AAGGATGGCC GTTTTCGGTC TGACATAGGT GAATTTGAAT GGAAACTAAA GGAAGGTCAT 660 AAGAAAATTT ATGGAAAACA GTCCATGGTG GATGAAGTAT CTGGAAAAGT CTTAGAAATG 720
GACATTCAA AAAAAAAAGC ATTACAACAG AAAGATATCC ATAAAAAAAT TAAACAGAAT 780 GAAAGTGCCA CTGATGAAAT TAATCACCAG AGTCTGATAC AGTCTAAGAA AAAAGTCCAC 840
AAACCAAAGA AAGATGGAGA GACCAAAGAT GTAGAACACA GCAGAGAGCA AATTCTCCCA 900 CCTCAGGATC TAAGCCATTA TATTAAAGAT AAAACTCGCC AGACAATTCC CAGGATTAGA 960 10 AATTATTACT TITGTAGTTT GCCCCGAAAA TATAGGCAAA TAAACTCACA AGTTAGACGG 1020 AGGCCGCATC TGGGTAGGCG GTATGCTATT AATCTGGATG TCCAAAAGGA GGCAATTAAT 1080 CTCTTAAAGA ATTATCAAAC GTTGAATGAA GCCATAATGC ATCAGTATCC GAATTTTAAA 1140 GAGGAGGCAC AGTGGGTAAG AAAATATTTT CGGGAAGAAC AAAAGAGAAT GAATCTTTCA 1200 CCAGCTAAGC AATTCAACAT ATATAAAAAG GACTTCGGAA AAATGACTGC AAATTCTGTT 1260 15 TCAGTTGCAA CCTGCGAACA GCTTACATAT TATAGCAAGT CAGTTGGGTT CATGCAATGG 1320 GACAATAATG GAAACACAGG TAATGCTACT TGCTTTGTCT TCAATGGTGG TTATATTTTC 1380 ACCTGTCGAC ATGTTGTACA TCTTATGGTG GGTAAAAACA CACATCCAAG TTTGTGGCCA 1440 GATATAATTA GCAAATGTGC GAAGGTAACC TTCACTTATA CAGAGTTCTG CCCTACTCCT 1500 GACAATTGGT TTTCCATTGA GCCATGGCTT AAAGTGTCCA ATGAAAATCT AGATTATGCC 1560 20 ATTITAAAAC TAAAAGAAAA TGGAAATGCG TTTCCTCCAG GACTATGGCG ACAGATTTCT 1620 CCTCAACCAT CTACTGGTTT GATTTATTTA ATTGGTCATC CTGAAGGCCA GATCAAGAAA 1680 ATAGATGGTT GTACTGTGAT TCCTCTAAAC GAACGATTGA AAAAATATCC AAACGATTGT 1740 CAAGATGGGT TGGTAGATCT CTATGATACC ACCAGTAATG TATACTGTAT GTTTACCCAA 1800 AGAAGTTTCC TATCAGAGGT TTGGAACACA CACACGCTTA GTTATGATAC TTGTTTCTCT 1860 25 GATGGGTCCT CAGGCTCCCC AGTGTTTAAT GCATCTGGCA AATTGGTTGC TTTGCATACC 1920 TTTGGGCTTT TTTATCAACG AGGATTTAAT GTGCATGCCC TTATTGAATT TGGTTATTCT 1980 ATGGATTCTA TTCTTTGTGA TATTAAAAAG ACAAATGAGA GCTTGTATAA ATCATTAAAT 2040 GATGAGAAAC TTGAGACCTA CGATGAAGAG AAAGCCCGGC CCAGGCCAGC CTACCGGCGA 2100 CTAGGATGCT TTCGCTTTCG CTCTCGCTTT CCAATACTCG GGACTGGGGA AACCGGGAGA 2160 ATAGAAGCAG GCAAGGACCG CCGTGGGCAC GGGGTCAGTG AGACAGGGTC CTGCTCGCGG 2220 30 CGTCAAGGAG GAGCGCTGTG GGTGTCCCCA GCGCAGCCAA TCGGCTTCCG AAGTAGCTGG 2280 AGCTCTGGAG CCTTTGCTTC CTCAAATACG AGCGGGAACT GCGTTGAGCG CTGGATTCCA 2340 GGCCGAGTGC TGGCGAGGCG CGCAGTCTCT AAAGAGCAAC AGAATAATTG CAGTACTTCT 2400 CTAATGAGGA TGGAGTCTAG AGGAGACCCA AGAGCCACAA CTAATACCCA GGCTCAAAGA 2460 35 TTCCATTCAC CTAAGAAAAA TCCAGAAGAC CAGACCATGC CCCAAAATAG GACAATATAT 2520 GTTACCTTGA AGGCTGTCAG AAAAGAGATA GAAACTCACC AAGGCCAAGA AATGCTTGTG 2580 CGTGGCACAG AAGGAATCAA AGAGTACATA AACCTTGGAA TGCCCCTCAG TTGTTTCCCT 2640 GAAGGTGGCC AGGTGGTCAT TACATTTTCC CAAAGTAAAA GTAAGCAGAA GGAAGATAAC 2700 CACATATTTG GCAGGCAGGA CAAAGCATCG ACTGAATGTG TCAAATTTTA CATTCATGCA 2760 40 ATTGGAATTG GGAAGTGTAA AAGAAGGATT GTTAAATGTG GGAAGCTTCA CAAAAAGGGG 2820 CGCAAACTCT GTGTTTATGC TTTCAAAGGA GAAACCATCA AGGATGCACT GTGCAAGGAT 2880 GGCAGATITIC TITICCITTICT GGAGAATGAT GATTGGAAAC TCATTGAAAA CAATGACACC 2940 ATTTTAGAAA GCACCCAGCC AGTTGATGAA TTAGAAGGCA GATACTTTCA GGTTGAGGTT 3000 GAGAAAAGAA TGGTCCCCAG TGCAGCAGCT TCTCAGAATC CTGAGTCAGA GAAAAGAAAC 3060 45 ACCTGTGTGT TGAGAGAACA AATCGTGGCT CAGTACCCCA GTTTGAAAAG AGAAAGTGAA 3120 AAAATCATTG AAAACTTCAA GAAAAAAATG AAAGTAAAAA ATGGGGAAAC ATTATTTGAA 3180 TTGCATAGAA CAACGTTTGG GAAAGTAACA AAAAATTCTT CTTCGATTAA AGTAGTGAAA 3240 CTTCTTGTAC GTCTCAGTGA CTCAGTTGGG TACTTATTCT GGGACAGTGC AACTACGGGT 3300 TACGCCACCT GCTTTGTTTT TAAAGGATTG TTCATTTTAA CTTGTCGGCA TGTAATAGAT 3360 50 AGCATTGTGG GAGACGGAAT AGAGCCAAGT AAGTGGGCAA CCATAATTGG TCAATGTGTA 3420 AGGGTGACAT TTGGTTATGA AGAGCTAAAA GACAAGGAAA CAAACTACTT TTTTGTTGAA 3480 CCTTGGTTTG AGATACATAA TGAAGAGCTT GACTATGCTG TCCTGAAACT GAAGGAAAAT 3540 GGACAACAAG TACCTATGGA ACTATATAAT GGAATTACTC CTGTGCCACT TAGTGGGTTG 3600 ATACATATTA TTGGCCATCC ATATGGAGAA AAAAAGCAGA TTGATGCTTG TGCTGTGATC 3660 55 CCTCAGGGTC AGCGAGCAAA GAAATGTCAG GAACGTGTTC AGTCTAAAAA AGCAGAAAGT 3720 CCAGAGTATG TCCATATGTA TACTCAAAGA AGTTTCCAGA AAATAGTTCA CAACCCTGAT 3780 GTGATTACCT ATGACACTGA ATTITTCTTT GGGGCTTCCG GCTCCCCTGT GTTTGATTCA 3840 AAAGGTTCAT TGGTGGCCAT GCATGCTGCT GGCTTTGCTT ATACTTACCA AAATGAGACT 3900 CGTAGTATCA TIGAGTTIGG CICTACCATG GAATCCATCC TCCTIGATAT TAAGCAAAGA 3960 60 CATAAACCAT GGTATGAAGA AGTATTTGTA AATCAGCAGG ATGTAGAAAT GATGAGTGAT 4020 GAGGACTTGT GAGAATTCAG TCTACTGGAT TTAAGGGAAT GGCTTATGGA GTTGFTATTT 4080 CGTAGGCATT GAAAATGGTT TTCTAAACTC CAAAATGGTC ATCTTATCAA TAATAATAAT 4140 ATTGACCATT TCCTATCTGC CAGGCATTTT TCTAAGCACA TGAAGAAATT AGTCCTAACA 4200 ACACTATGAG ATGGACTATA ACTTGCCCAA ATTTTTTTT TTTTTGAGAC TGAGTCTCAC 4260 ACCIONA AGOAT ACAGTIGGTGG ATCTCAGCT CACTGCAACT TCCACCTCCC 4320
AGGTTCAAGC GATTCTTATG CCTCAGTCTC CTGAGCAGCT GGGATTACAG GCAAACGCCA 4380
CCACACCCAG CTAAATTTTT TTTTTTTTTTT TGTATTTTTA GTAGAGACAG GGTTTCACCA 4440
TGTTGGTCAG GCGGGTCTCG AACTCCTGAC CTCGTGATCC ACCTGCCTCG GCCTTCCAAA 4500
GTGCTGGGAT TACAAGTTTG AGCCACTGCA CCTGGCTAAC TTGCCCTATT TTAAAGTCAA 4560 65 70 GCAATGGGAA GAATAACAAG ATTATATAGT AATCAGTTTC ATGACACTAA AAGTCATATA 4620 GTCATAGGGT TTTTTCATCT TTCATATCTT TGCCTAAATT CATITGCTAC AGTGCAGGAA 4680 CCAAAACTTG TTCATCTCAT GATTCCCTAC ATCTGACATA AGGAAAGTAA GTGCTCAGAA 4740 AAATGTGCAG GTCAATAAGT TGCAAAAGTT GGGGCTGCAA TTAATGCTAA CATAAGAGCT 4800 AAATGCTTGA TTAGAAATGA TCTCAAAACC TTTTAGAATT TCCAAAATCT TCATATTACT 4860 75 GAAACTGTCG GAATATATGG GTCCTGAAAT TCAGAAGATG ATAGTCACTC TTCCCATATT 4920 TATAGGCTAT TAAGGCAAGG GATATCTTAA ACATCATATT ACTTTATTTA GATTTCTACT 4980 ACTCCAATTA TTAATGTTAT GTATTTCTCA TTGTTTTACT TCTTCATGGT ATTATGAAGA 5040 CTATATAGAT GATTCAACCA AGCCTGCAAA TCTCCCTCTT GTGGAATTCC ACTGGACCCA 5100 ATCTGTTTTC CATTTCCATT GCAATACTAC TAAAGCCATA CAATATCAAG CACCCTCCCT 5160

CTAGGTCCAG GGACTATCAC AGAAGAAGCA GGCATGTAAG ATTTTAAGGA CTGGTTTCGA 5220 GGGGTCGAGT GTAGGAAAAC AGCCTGTTGC ATTGTAAGAG TGATGTCACC TTGAAGAGCA 5280 GCTGGCATGA TGACTGCTGT TTGACTCCTG CATACCAAGA TATTCTGCAG CAATGTCTTT 5340 AAACAGTGCC GGTAGTACAG ATAACCCCTC ATAAAGATGC TTATCTAACC TCCCCAGTGT 5400 TCAGGTGTTT CACAAGAAAG TCTGAGCTAT GACTAGCTAC ACGTTTTCCC AAAAATGCTT 5460 GTTATATAAA GGGTACTTTT GGGAGGGTGA GTGCCGCCAT TTAGTGGCTG CTAGAAACAT 5520 TGCTTCTGTT TGTAAGTTCC TATTAAATGT TCTTTCTGAG AAAAAAAAA

SEQ ID NO:259 PBM4 Protein sequence: PBM4 Protein sequence: BAB67788

5

MDTVMKQTHA DTPVDHCLSG IRKCSSTFKL KSEVNKHETA LEMQNPNLNN KECCFTFTLN 60
GNSRKLDRSV FTAYGKPSES IYSALSANDY FSERIKNOPN KNILVYEEKT IDGHINLGMP 120
LKCLPSDSHF KITFQRKSS KEDGHILRQC ENPNMECILF HVVAIGERTK KIVKINELHE 180
KGSKLCIYAL KGETIEGALC KDGRFRSDIG EFEWKLKEGH KKIYGKQSMV DEVSGKVLEM 240
DISKKKALQQ KDIHKKIKQN ESATDEINHQ SLIQSKKKVH KPKKDGETKD VEHSREQILP 300
PQDLSHYIKD KTRQTIPRIR NYYFCSLPRK YRQINSQVRR RPHLGRRYAI NLDVQKEAIN 360
LLKNYQTILNE AIMHQYPNFK EEAQWVRKYF REEQKRMINLS PAKQFNIYKK DFGKMTANSV 420
SVATCEQLTY YSKSVGFMQW DNNGNTGNAT CFVFNGGYIF TCRHVVHLMV GKNTHFSLWP 480
DIISKCAKVT FTYTEFCPTP DNWFSIEPWL KVSNENLDYA ILKLKENGNA FPFGLWRQIS 540
PQPSTGLIYL IGHPEGQIKK IDGCTVIPLN ERLKKYPNDC QDGLVDLYDT TSNVYCMFTQ 600
RSFLSEWWNT HTLSYDTCFS DGSSGSPVFN ASGKLVALHT FGLFYQRGFN VHALIEFGYS 660
MDSILCDIKK TNESLYKSLN DEKLETYDEE KARPRPAYRR LGCFFRSRF PILGTGETGR 720
IEAGKDRRGH GVSETGSCSR RQGGALWVSP AQPIGFRSSW SSGAFASSNT SGNCVERWIP 780
GRVLARRAVS KEQQNNCSTS LMRMESRGDP RATTNTQAQR FHSPKKNPED QTMPQNRTTY 840
VTLKAVRKEI ETHQQEMLV RGTEGIKEYI NLGMPLSCFP EGGQVVITFS QSKSKQKEDN 900
HIFGRQDKAS TECVKFYIHA IGIGKCKRRI VKCGKLHKKG RKLCVYAFKG ETIKDALCKD 960
GRFLSFLEND DWKLIENNDT ILESTQPVDE LEGRYFQVEV EKRMVPSAAA SQNPESEKRN 1020
TCVLREQIVA QYPSLKRESE KIIENFKKKM KVKNGETLFE LHRTTFGKVT KNSSSIKVVK 1080
LLVRLSDSVG YLFWDSATTG YATCFVFKGL FILTCRHVID SIVGDGIEPS KWATIIGQCV 1140
RVTFGYEELK DKETNYFFVE PWFEHNEEL DYAVLKLKEN GQQVPMELYN GITPVPLSGL 1200
HIIGHPYGE KKQIDACAVI PQGQRAKKCQ ERVQSKKAES PEYVHMYTQR SFQKIVHNPD 1260
VITYDTEFFF GASGSPVFDS KGSLVAMHAA GFAYTYQNET RSIIEFGSTM ESILLDIKQR 1320
HKPWYEEVFV NQQDVEMMSD EDL

SEQ ID NO:260 PBQ1 DNA sequence

Nucleic Acid Accession#: NM_015642
Coding sequence: 489-2489 (u

quence: 489-2489 (underlined sequence corresponds to start and stop codon)

	1	11	21	31	41	51	
4 ~	1	1	1	1 .	1	1	
45	ACATTTCAAA	AAAAATACAT	AGACTGATGT	TTCAGACTTG	TGCAGCATAA	GCCTACAGGG	60
	TACGAAGAAT	GAACTCTGAG	AATGTTTGGA	GAATGTTTCA	TCATTACTAA	CAGGATATTC	120
	CTCATGACAT	TGCTGTCTGA	TCTTTGACCA	TCAGTCTGTG	ACCTGCCCCT	TCTCTTTACA	180
	TGCAGCCGCT	CTCTGCTCCC	TGCCCCAATG	AACATCTGCA	CTAGGCCCAA	GCCTTGGAGT	240
~^	AATTTACCTG	AAGAGTGACA	CCATTGATTT	TGAAACTACT	GAAGAAACCC	AAGACAGCTG	300
50		GGCATCTGAG					360
	CGGGCCTTCC	CTGCCTGAAC	TTTGAAGCTG	TTTTGTCTCC	AGACCCAGCC	CTCATCCACT	420
	CAACACATTC	ACTGACAAAC	TCTCACGCTC	ACACCGGGTC	ATCTGATTGT	GACATCAGTT	480
	GCAAGGGGAT	GACCGAGCGC	ATTCACAGCA	TCAACCTTCA	CAACTTCAGC	AATTCCGTGC	540
بر بر	TCGAGACCCT	CAACGAGCAG	CGCAACCGTG	GCCACTTCTG	TGACGTAACG	GTGCGCATCC	600
55	ACGGGAGCAT	GCTGCGCGCA	CACCGCTGCG	TGCTGGCAGC	CGGCAGCCCC	TTCTTCCAGG	660
	ACAAACTGCT	GCTTGGCTAC	AGCGACATCG	AGATCCCGTC	GGTGGTGTCA	GTGCAGTCAG	720
	TGCAAAAGCT	CATTGACTTC	ATGTACAGCG	GCGTGCTACG	GGTCTCGCAG	TCGGAAGCTC	780
	TGCAGATCCT	CACGGCCGCC	AGCATCCTGC	AGATCAAAAC	AGTCATCGAC	GAGTGCACGC	840
<i>-</i> 0	GCATCGTGTC	ACAGAACGTG	GGCGATGTGT	TCCCGGGGAT	CCAGGACTCG	GGCCAGGACA	900
60	CGCCGCGGG	CACTCCCGAG	TCAGGCACGT	CAGGCCAGAG	CAGCGACACG	GAGTCGGGCT	960
	ACCTGCAGAG	CCACCCACAG	CACAGCGTGG	ACAGGATCTA	CTCGGCACTC	TACGCGTGCT	1020
	CCATGCAGAA	TGGCAGCGGC	GAGCGCTCTT	TTTACAGCGG	CGCAGTGGTC	AGCCACCACG	1080
	AGACTGCGCT	CGGCCTGCCC	CGCGACCACC	ACATGGAAGA	CCCCAGCTGG	ATCACACGCA	1140
~~	TCCATGAGCG	CTCGCAGCAG	ATGGAGCGCT	ACCTGTCCAC	CACCCCGAG	ACCACGCACT	1200
65	GCCGCAAGCA	GCCCCGGCCT	GTGCGCATCC	AGACCCTAGT	GGGCAACATC	CACATCAAGC	1260
	AGGAGATGGA	GGACGATTAC	GACTACTACG	GGCAGCAAAG	GGTGCAGATC	CTGGAACGCA	1320
	ACGAATCCGA	GGAGTGCACG	GAAGACACAG	ACCAGGCCGA	GGGCACCGAG	AGTGAGCCCA	1380
	AAGGTGAAAG	CTTCGACTCG	GGCGTCAGCT	CCTCCATAGG	CACCGAGCCT	GACTCGGTGG	1440
7 0	AGCAGCAGTT	TGGGCCTGGG	GCGGCGCGG	ACAGCCAGGC	TGAACCCACC	CAACCCGAGC	1500
70	AGGCTGCAGA	AGCCCCCGCT	GAGGGTGGTC	CGCAGACAAA	CCAGCTAGAA	ACAGGTGCTT	1560
	CCTCTCCGGA	GAGAAGCAAT	GAAGTGGAGA	TGGACAGCAC	TGTTATCACT	GTCAGCAACA	1620
	GCTCCGACAA	GAGCGTCCTA	CAACAGCCTT	CGGTCAACAC	GTCCATCGGG	CAGCCATTGC	1680
	CAAGTACCCA	GCTCTACTTA	CGCCAGACAG	AAACCCTCAC	CAGCAACCTG	AGGATGCCTC	1740
	TGACCTTGAC	CAGCAACACG	CAGGTCATTG	GCACAGCTGG	CAACACCTAC	CTGCCAGCCC	1800
<i>7</i> 5	TCTTCACTAC	CCAGCCCGCG	GGCAGTGGCC	CCAAGCCTTT	CCTCTTCAGC	CTGCCACAGC	1860
	CCCTGGCAGG	CCAGCAGACC	CAGTTTGTGA	CAGTGTCCCA	GCCCGGTCTG	TCGACCTTTA	1920
	CTGCACAGCT	GCCAGCGCCA	CAGCCCCTGG	CCTCATCCGC	AGGCCACAGC	ACAGCCAGTG	1980
	GGCAAGGCGA	AAAAAAGCCT	TATGAGTGCA	CTCTCTGCAA	CAAGACTTTC	ACCGCCAAAC	2040
~~	AGAACTACGT	CAAGCACATG	TTCGTACACA	CAGGTGAGAA	GCCCCACCAA	TGCAGCATCT	2100
80	GTTGGCGCTC	CTTCTCCTTA	AAGGATTACC	TTATCAAGCA	CATGGTGACA	CACACAGGAG	2160

	TGCACATGCG	CCTCCACCGG	ATCTGCAACA	CCTACGAGTO	CTACATCTGC	AAAAAGAAGT	2220 2280
5	CCCCTGCAGG AGGGGACCAC ACGACCACAT	CACACCCCCA TTACGTCTGC GAGGATGCAT	TCCGTCTGCC	CTGGCCCCCC CAGCAAAGTT GATAAGTAGT	AGGCGTGGTG TGACCAAATC ATCTTTCTCT	GCCTGCACGG GAGCAGTTCA	2340 2400 2460 2520 2580
10	GAAATGTTTT TACATGAAGA ATAGTTTTCC	GGTTTCATTI ACTGTTTTTT CAGTCTCCCT	TTACTTTCTG GCCTGCTGGT CGGATGGTGG	TTTTTGTTTT ACATTACATT CCTTAAGGCC	TGTTTCGTTT TCCGGAGGCT TGGTAGTGCT	CATTTTGTAC TGGGTGAATA	2640 2700 2760 2820
1.5	AAAAAAAA	, AICICIAGCI	ACIGGCCICI	MATACAACC	CIICIIIACA	- AMMANANA	2020
15	PBQ1 Protein sec	uence: NP_056			LAT DAID CUI	A ACERTODIA	. 60
20	SQNVGDVFPC NGSGERSFYS QPRPVRIQTL SFDSGVSSSI	VVSVQSVQK GQDSGQDTPF GAVVSHHETA VGNIHIKQEM GTEPDSVEQQ	LIDFMYSGVL R GTPESGTSGC A LGLPRDHHM EDDYDYYGQ FGPGAARDSQ	RVSQSEALQI OSSDTESGYLO IE DPSWITRIH ORVQILERNE AEPTQPEQAA	LTAASILQIK T Q SHPQHSVDR E RSQQMERYI S EECTEDTDQ L EAPAEGGPQI	A AGSPFFQDKL VIDECTRIV 12/ I YSALYACSMQ LS TTPETTHCRK A EGTESEPKGE T NQLETGASSP	0 180 240 300 360
25	TSNTQVIGTA LPAPQPLASS SFSLKDYLIK	GNTYLPALFT AGHSTASGQC HMVTHTGVR	TQPAGSGPKF EKKPYECTLO A YQCSICNKR	PFLFSLPQPLA CNKTFTAKQN FTQKSSLNVH	GQQTQFVTVS Y VKHMFVHT M RLHRGEKS	TSNLRMPLTL QPGLSTFTAQ GE KPHQCSICW YE CYICKKKFSI AK FDQIEQFNDI	480 /R 540 H 600
30			•				
25	SEQ ID NO: 262 Nucleic Acid Acce Coding sequence	ssion#: Al6541		ce corresponds to	start and stop cod	lon)	
35						51 CCCTTCTACA	60
40	CGGAAAACTC GAATTGGTGC AATGTTGGGA AGCAGCAAAT	CCTCACGATO CAGTCAGCAT AAACACCTGA TAGAAAATGA	TAAAACGAAG	ATCAGGAGCA GACCACATAG GACTCATGCA TTGTCATTAA	GATTTGAAGA CCTCTACTTC ACTTGTTTTC ACACTGATAA	AACTTTATGT	120 180 240 300 360 420
45	GGAGGTGAGG AATTTTCCTA GTAACACAAA ACTTATTCAG AGCGTTTCAG	ATTCTTGTGC GTGGAAATTI TATTGGTGGA AAAGCCCCTA CATCAGAGGA	CAAAACAGAC TGCTAAACAT ATTAAGGTCA TGATACAGAC TTTGTTGGAA	CACAGGCTCAG CATTTCAAAAA CTCTACATTTC CTGCACCAAGA GAAATAGAAT	CAAATTCTGA CAAATGAAAC CAGAATCAGC AATTTATTTC CTGAGCTCTT	ACAAATAGCT AGAACAGAAA TAATGAAAAG AAAAATAAAG ATCTACGGAG	480 540 600 660 720
50	GAAAAGTGTG	TGCAAGATAA ATTTGCCATC	ATATTTGCAG	CAGGAACATA	TCATAAAAA	GCCAGACTT TATCCCAAAT	780 840 900
55	SEQ ID NO:263 P Protein Accession						
60	NQKLQEKMT VQPLRNKKTI	P QGECSVAET O RLDVDSLFS!	L TPEEEHHMI	CR MMAKREK LLSLLEEATT	IIK ELIQTEKD	GTL RRSQSDRTI YL NDLELCVRE G EVFLQIKOPL	V 120
65	SEQ ID NO:264 F Nucleic Acid Acce Coding sequence	ession#: NM_01		quence correspon	ds to start and stop	•	
70	1	11 	21 .	31 	41 	51 	
	CCTCCAGGCT CTTCGCCTTC	CCGGGACCCG GCCTTTTGTT	GCCGCCGCC GCCGCGCCA TCCTCCGCTC	CCGCCCCCCT	GCCCGGCTC	CCGCCGCCGC GCGCTTTGCA	60 120 180
75	CGCGGCGGAC GCCGCCTGGC GCTCGCGCAC	CCCTCCTTCT GGGCGGGAGG CCCCCCGGAA	CAGCGGCCC CCTCCCGCG GGAGGTGGCA GGTAGACCGG GGGCGGGGGT	TGCGCGTGCC GGCGCGTTTG GAAGGGGAGG	CTTCTTGGCT CAGGAGGGGC CGGGCGGGCG	GCGCGCCGGC GCACCTCTTC GAGAGGAGAG	240 300 360 420 480
80	TCTAGACAGT	CTGATCCGGG	CTGGGGGCGT GGGAGTGTGG	GTACACTCGG	CGCACCTGCG	AGACTACAGA	540 600

		•					
	TGAGGGGAAG	GGAGGGGGCG	GGCAGGTGCA	GCGGCCGGGC	TAGTGGGAGG	GGGCGGCGGC	660
					TGCTACACAT		720
	CAGACACAGC	ACGGAGATGC	TGCACAACCT	GAACCAGCAG	CGCAAAAACG	GCGGGCGCTT	780
_	CTGCGACGTG	CTCTTGCGGG	TAGGCGACGA	GAGCTTCCCA	GCGCACCGCG	CCGTGCTGGC	840
5	CGCCTGCAGC	GAGTACTTTG	AGTCGGTGTT	CAGCGCCCAG	TTGGGCGACG	GCGGAGCTGC	900
					CCAGGCGGCG		960
	CAGCCGGGAG	CTGGAGATGC	ACACTATCAG	CTCCAAGGTA	TTTGGGGACA	TTCTGGACTT	1020
					CCCGAACTCA		1080
					GAAGTCATCA		1140
10					CTCTTTCGCC		1200
					GCCTTGGCAG		1260
					CGGGCGGCTG		1320
					CGCTTGCCCA		1380
					GTGGCATCCA		1440
15					AACCTGCTGG		1500
					TGCGGTCTAT		1560
					CACGGTGTCA		1620
					AATGGGCTAC		1680
					CAGGTGGCTT		1740
20					AAGCTGTCCC		1800
					AGAAAAGACC		1860
					ATCTGCCAGA		1920
					CAGGTGCACA		1980
					CGAGACCGTC		2040
25					GGGAAGTACT		2100
					AGCAACTICT		2160
					GTTAAAACCC		2220
					AATGGGGGAG		2280
					TCACATCAGG		2340
30					CTGAAGACGC		2400
					AAAAACAAAA		2460
					TTCCGCTCTA		2520
					GCCCCCTGG		2580
					TCTCTCCTCG		2640
35					GATCCTGAGG		2700
					CCCACGGAAA		2760
					GTTTGGGTTC		2820
					AACTCCTTCT		2880
					TCTGCAGAAA		2940
40					CCAAGGCAAA		3000
	GTTTCTTTAA	TGGGAAGAAG	CTGGAATTCC	TGGTGCTCAA	TTCTTAGTGA	CCCCAATCCT	3060
					GTCCCCTCCC		3120
					CTAGGGTCTC		3180
					CATCCCATGG		3240
45	GAGTGTCCTC	CAAGAGCCCC	CTGAGCTCAG	CCCTCTGCCT	GGAGGGCTCC	AGACCTTTCT	3300
					GCTCAGCTGT		3360
	CCCACCCCAA	ATTTCAGTTC	TTACGTGATT	TTAACCATTC	AACATGCTGT	TGGGTTTTAA	3420
	TTCTCTAATT	ATTATTATTA	TIGTTATTAT	TTTTTAGGAC	CAGTTGTAGT	GAATTGCTAC	3480
~~					CAGTCACACA		3540
50					GTTGATTGTT		3600
	GGAAGAAATA	GTTTTATGCA	AAATTTTAAA	AAATGCCAGT	CTGGTCAGGG	AAGTAGGGG	3660
					AGGTAGGGAC		3720
					GATGTGAATT	GATCTGATCA	3780
~ ~	GACTGTATTA	AAAATGTTAG	TACATTACTC	TA			
55							

SEQ ID NO:265 PBY7 Protein sequence: Protein Accession #: NP_114439

60 MERVNDASCG PSGCYTYQVS RHSTEMLHNL NQQRKNGGRF CDVLLRVGDE SFPAHRAVLA 60
ACSEYFESVF SAQLGDGGAA DGGPADVGGA TAAPGGGAGG SRELEMHTIS SKVFGDILDF 120
AYTSRIVVRL ESFPELMTAA KFLLMRSVIE ICQEVIKQSN VQILVPPARA DIMILFRPGT 180
SDLGFPLDMT NGAALAANSN GIAGSMOPEE EAARAAGAAI AGQASLPVLP GVDRLPMVAG 240
PLSPQLLTSP FPSVASSAPP LTGKRGRGRP RKANLLDSMF GSPGGLREAG ILPCGLCGKV 300
FTDANRLRQH EAQHGVTSLQ LGYUDLPPPR LGENGLPISE DPDGFRKRSR TRKQVACEIC 360
GKIFRDVYHL NRHKLSHSGE KPYSCPVCGL RFKRKDRMSY HVRSHDGSVG KPYICQSCGK 420
GFSRPDHLNG HIKQVHTSER PHKCQTCNAS FATRDRLRSH LACHEDKVPC QVCGKYLRAA 480
YMADHLKKHS EGPSNFCSIC NREGQKCSHQ DPIESSDSYG DLSDASDLKT PEKQSANGSF 540
SCDMAVPKNK MESDGEKKYP CPECGSFFRS KSYLNKHIQK VHVRALGGPL GDLGPALGSP 600
FSPQQNMSLL ESFGFQIVQS AFASSLVDPE VDQQPMGPEG K

SEQ ID NO:266 PBY9 DNA sequence Nucleic Acid Accession#: NM_012429 Coding sequence: 174-1385 (u

75 Coding sequence: 174-1385 (underlined sequence corresponds to start and stop codon)

1 11 21 31 41 51

80 CCCTACTCCG CCTCTCGGGA TCCTTTAAGA GGCGGGGCTT GGCTGCCAGC TCCGCGGCCC 60 GGGCAAAAGG CTGGGACTTT ACTCCGGGTG GCGGCGAGGA CGAGTCTGTG CTCCATCAGC 120

			GCCCCCAAAC				180
			CCCAGGCAGA				240
			CTGCCGAATC				300
5			CAGAAGTCGG				360
J			AACATCATTA				420
			GGCTATGACC GGTCTGCTGT				480 540
			CTGCTTCTGC				600
			ACCATAATTT				660
10			GCCTATGGAG				720
10			TTTGTTGTTA				780
			AGTGAGGACA				840
			AAACATATCA				900
			GGAAACCCCA				960
15			GTGCGAGACC				1020
			CACCAAGTGG				1080
			GATGGAGCGG				1140
			GCAGGGGAGA				1200
20	ACTCCCACCT	GGTCCCTGAA	GATGGGACCC AGCTTCATTC	TCACCIGCAG	TGATCCTGGC	ATCTATGTCC	1260 1320
20			TCAGAAGAGA				1320
			CAGGCCTGGC				1440
			CACAACCCTG				1500
			GTTAGGCAGA				1560
25	TATCAAATAC	CTAAGGAGTC	CCCAGGAGCT	GGCTGGCCAT	CGTGATAGGA	TCTGTCTGTC	1620
			ACCTGTCCAG				1680
			GGGAAAAAA				1740
			CGGGGAGAAA				1800
20			GTAGCTGGTT				1860
30			GGCTGGGGTA				1920
			TTCCCACTCG				1980
			CACACGGCCT				2040 2100
			CGCAGCTGCA				2160
35	CARROCCERAA	ACCACAGGGAT	CCAGTGCCCT	THE ACTOON	ACCGCCCTCT	CACCAAGCAG	2220
55			GAGACAAAA				2280
			GAGTGTCCCG				2340
			CAGTCCCATC				2400
40	GTTCAGGTGC	CGGTCGGCGT	AGCCAGGCCT	GGAGGCCCCC	CAGGCAGGAG	GCCGCCCAAA	2460
40			GACTAGGGGC				2520
			CGAGCCCCGC				2580
			ACCTGGCGGG				2640
			TGCGAAGCTG				2700
45			CTGCACGGGC GAAAATTAAC				2760
40	TGGGTTTACA	ACGCTGTTAG	GAAAATTAAC	CAATGAATAA	AGCAACGTTC	AGIGCGCA	
	SEQ ID NO:267 1	PBY9 Protein se	avence:				
	Protein Accessi						
50							
	MSGRVGDLS	P RQKEALAKI	R ENVQDVLP	AL PNPDDYFL	LR WLRARSFI	OLQ KSEAMLRI	CHV 60
	EFRKOKDIDN	I IISWQPPEVI	QQYLSGGMCC	YDLDGCPVW	VY DIIGPLDAK	G LLFSASKQDI	L 120
	LRTKMRECE	L LLQECAHQ1	T KLGRKVETI	T IIYDCEGLG	L KHLWKPAVI	EA YGEFLCMFE	E 180
	NYPETLKRLE	VVKAPKLFP'	V AYNLIKPFLS	EDTRKKIMV	L GANWKEVL	LK HISPDQVPV	E 240
55	YGGTMTDPD	G NPKCKSKIN	Y GGDIPRKY	V RDQVKQQ	YEH SVQISRG	SH QVEYELLF	G 300
						PED GTLTCSD	PG1 360
	YVLRFDNTY	S FIHAKKVNF	T VEVLLPDKA	S EEKMKQLG	AG TPK		
60	SEO ID NO-268	PBH8 DNA seque	nca				
00		ession#: XM_00				_	
	Coding sequence		40 (underlined sec	uence correspond	is to start and stor	codon)	
	County sociation		10 (0.1001111100 001	daning animakani			
	1	11	21	31	41	51	*
65	1	1	1	1	1	1.	
			CCGGGCCCCT				60
			GATTTGTTTT				120
			TCCATTTAGG				180
70	TATTTATGAA	TACATCCATC	CTTCTGACCA	CGATGAGATG	ACCGCTGTCC	TCACGGCCCA	240
10			TGCTCCAAGG				300
	ATGAAATGTG	COMMONWA	AAGGAACGCG	MAMANCONCO	ACAMOUNCOM ACAMOUNCOM	CANCESCALC	360 420
	CACTGCAGTG	MUCHOCOCO	GATCAGGCAG GGTGGCCGTG	THINIGHTUG	MCCCS CCCSC	ACCCVACTCC	480
			CATGTTCATG				540
75	TTCCTGGATT	CCAGGGTGAC	CGAGGTGACG	GGGTACGAGC	CGCAGGACCT	GATCGAGAAG	
			CGGCTGCGAC				660
			CACCACCAAG				720
	TGGGTGTGGG	TGCAGAGCTA	CGCCACCGTG	GTGCACAACA	GCCGCTCGTC	CCGGCCCCAC	780
00	TGCATCGTGA	GTGTCAATTA	TGTACTCACG	GAGATTGAAT	ACAAGGAACT	TCAGCTGTCC	840
80	CTGGAGCAGG	TGTCCACTGC	CAAGTCCCAG	GACTCCTGGA	GGACCGCCTT	GTCTACCTCA	900

PCT/US01/32045 WO 02/30268

	CAAGAAACTA	GGAAATTAGT	GAAACCCAAA	AATACCAAGA	TGAAGACAAA	GCTGAGAACA	960
*	AACCCTTACC						1020
	CTCGGAAACT (1080
5	CACTCAGAAA						1140
)	TACGGACACT						1200
	CCAGCCAGCG (1260
	CCAGCTAAAA						1320 1380
	TACGAAGGCA						1440
10	CTCCTGTTTG			MIACCGCCAG (CICCCCAGGA (CGCMGMC1GM	1440
10	CICCIGITIO	CICOCIOGAC	Crano				
	SEQ ID NO:269 P	BH8 Protein seau	ence:				
	Protein Accession						
15							
	MKEKSKNAAI	C TRREKENGE	F YELAKLLPL	P SAITSQLDK/	A SURLTTSYL:	KMRAVFPEGL	60
	GDAWGQPSR/	GPLDGVAKE	EL GSHLLQTLI	OG FVFVVASD	GK IMYISETAS	V HLGLSQVEL	T 120
	GNSIYEYIHP S	DHDEMTAVL	TAHQPLHHHI	LQEYEIERSF	FLRMKCVLAR	CRNAGLTCSGY	180
00						MFMFRASLDL	
20						V TTKYYRLLSI	
						A KSQDSWRTA	
						AS PPASAAAPF	
						SPCEVARFFL	
25						VRRFGEDTAP	
23						G APAQLPFVLL	
	VIITNGR	PLUUAAPAA	2 OLACAPGOI	E AA I GALKLI	KH PSPAA1SPI	'G APLPHYLGA	3 000
	VIIINGK						
30		SFO ID	NO:270 PBJ9 DN	A sequence			
-	Nucleic Acid Ac		AA760894				
	GGCACGAGG/	GAAGATGT	G CTTGCTCA	TG CTTGACTT	CT GCCATGG	TTG TGAGGCC	rcc 60
	CCAGCCATGT	GGAACTGTT	T TCAGGTGCT	G GTTCCATG	GC TCTTCCTG	AG CCGAAAAT	'AA 120
35	GGAAACTCCA	TAGACCTTG	T CCACTGGA	AC TOGTTCCC	AT CTACCCTC	CA CTCTATCC	AG 180
	GGTGATGGAT	CTCTGCAGT	A AGTGGAAG	AG TTCTTCAT	GG CCCCCAA	GGT TATATCC	ATC 240
						TA AGTTAGGT	
						GAA AATGTCT	
40	TAAAAAACAC	GAAAGAAC	CC ATAGAAA	CAC AAGGAAC	GAAG GTCATG	TGAA GATGGA	IGGCA 420
40						CCAG AAGCTG	
						TGA ACAGCTTO	
						C CAAACTTGG	
						CTC GATTCTTA GCCT ATAAAA	
45						IGC AGGCACC	
						GAT ATTTGAC	
						ATT CTGCCTAA	
						AA AGCTTTGC	
	GAAAACTGTA	AGCTTCCCA'	T ATCTGGAGG	CA TTTCACTT	TA AATATTTG	GA TAAATATG	TT 1020
50	ATCITCTTAC '	TTGGACATTT	CATGTGTTTA	GGGATTGTY	T TYTAAATTO	T TCCTAATTC	A 1080
•						AAT AAAGACC	CTA 1140
	TTGATTTGAA	CTTAAAAAA	A AAAAMAM/	AAAAAAA	ኣ ልልል ልልልል	AAAAT GA	
55	SEQ ID NO:271 P						
JJ	Nucleic Acid Acces				niori and alon ao	lan	
	Coding sequence:	1-1303 (authermien sedner	ice corresponds to	start and stop coc	Kilj	
	1	11	21	31	41	51	
60				1	 	!	60
w				AAGAGCCTTA			60
				GTCACTGTAG			120
				AGATGCGGCT			180 240
				CCTCATGTGG			300
	C MUCHINAN A		TWINNINII				300
65	GATGCTCTCA			ADDATOTOR	העניאה שליותה	ሮ እስጥ አስሮ ከጥሮ	360
65	CTGTGGGACC	TGAGACATCT	GCTTGTGGGT				360 420
65	CTGTGGGACC AGGATAAACC	TGAGACATCT AGTACCCAGA	GCTTGTGGGT ATCCAATGCT	GAATATTTGG	CTTCATTATT	CCCAGATTCT	420
65	CTGTGGGACC AGGATAAACC TTGATTGTCA	TGAGACATCT AGTACCCAGA AAGGATTTAA	GCTTGTGGGT ATCCAATGCT TGTTGTCTCA	GAATATTTGG GCTTGGGCAC	CTTCATTATT TTCAGTTAGG	CCCAGATTCT ACCTAAGGAT	420 480
	CTGTGGGACC AGGATAAACC TTGATTGTCA GCCAGCCGGC	TGAGACATCT AGTACCCAGA AAGGATTTAA AGGTTTATAT	GCTTGTGGGT ATCCAATGCT TGTTGTCTCA ATGCAGCAAC	GAATATTTGG GCTTGGGCAC AATATTCAAG	CTTCATTATT TTCAGTTAGG CGCGACAACA	CCCAGATTCT ACCTAAGGAT GGTTATTGAA	420 480 540
65 70	CTGTGGGACC AGGATAAACC TTGATTGTCA GCCAGCCGGC CTTGCCCGCC	TGAGACATCT AGTACCCAGA AAGGATTTAA AGGTTTATAT AGTTGAATTT	GCTTGTGGGT ATCCAATGCT TGTTGTCTCA ATGCAGCAAC CATTCCCATT	GAATATTTGG GCTTGGGCAC	CTTCATTATT TTCAGTTAGG CGCGACAACA CCTTATCATC	CCCAGATTCT ACCTAAGGAT GGTTATTGAA AGCCAGAGAG	420 480

AGCTTGGCCA CATTTTTTT CCTTTATTCC TTTGTCAGAG ATGTGATTCA TCCATATGCT AGAAACCAAC AGAGTGACTT TTACAAAATT CCTATAGAGA TTGTGAATAA AACCTTACCT

ATAGTTGCCA TTACTTTGCT CTCCCTAGTA TACCTCGCAG GTCTTCTGGC AGCTGCTTAT

ARACTTECCA TRACTITECT CTCCCTAGTA TACCTCEGAG GICTICTEGC AGCTGCTTAT
CAACTTEATT ACGCCACCAA GTATAGGAGA TATCCCACCTT GGTTACAG
TGTAGAAAAC AGCTTGGATT ACTAAGTTTT TTCTTCGCTA TGGTCAAGT TGCCTACAGC
CTCTGCTTAC CGATCAGAAG GTCAGAGAGA TATTTGTTTC TCAACATGGC TTATCAGCAG
GTTCATGCAA ATATTGAAAA CTCTTGGAAT GAGGAAGAAG TTTGGAGAAT TGAAATGTAT
ATCTCCTTTG GCATAATGAG CCTTGGCTTA CTTTCCCTCC TGGCAGTCAC TTCTATCCCT
TCAGTGAGCA ATGCTTTAAA CTGGAGAGAA TTCAGTTTTA TTCAGTCTAC ACTTGGATAT

	GAAGAGTAC		A TACACCACCI	AACTTTGTY	TTGCTCTTG1	AGCTTTTGAG TTTGCCCTCA	1260 1320
5	SEQ ID NO:272 Protein Accession	PBQ4 Protein sequ n #: none	uence:				
10	1	11	21	31	41	51	
10	RNPKFASEFF RINQYPESNA	KSLSETCLPN PHVVDVTHHE EYLASLFPDS DLGSLSSARE	DALTKTNIIF LIVKGFNVVS	VAIHREHYTS AWALQLGPKD	LWDLRHLLVG ASRQVYICSN	KILIDVSNNM NIQARQQVIE	60 120 180 240
15	RNQQSDFYKI CRKQLGLLSF ISFGIMSLGL	PIEIVNKTLP FFAMVHVAYS LSLLAVTSIP NFVLALVLPS	IVAITLLSLV LCLPMRRSER SVSNALNWRE	YLAGLLAAAY YLFLNMAYQQ FSFIQSTLGY	QLYYGTKYRR VHANIENSWN	FPPWLETWLQ EEEVWRIEMY	300 360 420
20	Nucleic Acid Acco		1973 45 (underlined seq			DNA SEQUENCE	
			·	•	•	·	
25	1	11	21	31	41	51 	
23	CCGCCGCCTT	CTACTCCGCC	GCGGGGGTCG	CAGCGGCTGC	CGCGCCGTCC		60
		GGAGGCTGAG					120
		CGCGGCGTCG					180
30		CCTGCAGAAG GCTTTTGCAG					240 300
-		GAATTATGAC					360
		AGTGAATGGT					420
		TCCAATGACA					480
35		CAGCAGTTCC GACCTCTAGC					540 600
-		TTTGAACTCC					660
	CAGCCGAGAA	ACTGGCAGAG	AAAAAATCTC	CTCAGGAGCC	CACACCATCT	GTCATCAAAT	720
		ACCTTCCAAA					780
40		TTCTCCATCT TTCCCTGGAA					.840 900
-10		CATTTCGTCC					960
		TCACCCAGAC					1020
		GAATTTGTCT					1080
45		TAATTCATCA					1140
43		GAGCAGTGAT					1200 1260
		ACCAGCATTT CCACTTCTGG					1320
		TAACACACTT					1380
5 0	CTCTGTCTGG	GCTGGATGGA	CCTTCCACCC	CTGGCCCATT	TTCCCCAGAC	CTACAGAAGA	1440
50		GCACTTGTGG					1500
		GAAGTGAGCA CCCATTGAAA					1560 1620
		TAAAAATGCC					1680
		TTTCCTTCCT					1740
55		TTTTGGTGGG					1800
		TGGCTATTGG					1860
		ATTTGTGAAA	TGAAAAAAA	AAAAAAAA	AAAAAAAAA	AAAAAAAAA	1920
	AAAAAAAA	AAA					
60							
	SEQ ID NO:274 F Protein Accession	PBQ5 Protein sequ NP_00:				-	
	MDSAITT WOT	I I OI I OKPOI	N KHMICWTS	ID GOFKI I OA	EE VARLWGII	RKN KPNMNYD	KLS 60
65	RALRYYYVKI ENGGKDKPPO PQEPTPSVIK I	N IIKKVNGQK Q PGAKTSSRN FVTTPSKKPP V	F VYKFVSYPE D YIHSGLYSSI /EPVAATISI G	I LNMDPMTV TLNSLNSSNV PSISPSSEE TIQ	GR IEGDCESLI KLIFKLIKTEN ALETLVS PKL	NF SEVSSSSKDN I PAEKLAEKKS PSLEAPT 240	/ 120 180
						PENLSLEP 300 ASLTPAFFSQ 3	
70		SSIHFWSTL SP				SGLDGPST 420	
75	Nucleic Acid Acce Coding sequence		321 60 (underlined seq			DNA SEQUENCE codon)	
	1	11	71	21	41	E1	
	1	11 	21 	31 	ī	51 {	
	•	•	1	1	•	•	
					41	6	

	,						
	AATCAGGAAC	AGATCATATA	TTGACCGAGA	TTCTGAGTAT	CTCTTGCAAG	AAAATGAACC	60
•			AATTATTGGA				120
			TCAGAGAAAA				180
5			ATCAGGTAAC				240
3			TCATTTTGGA				300
	TTGCAGAATA	GTTTGTACTC	AGCCAAGAAG	AATTAGTGCC	ATTTCAGTTG	CGGAAAGAGT	360
	AGCTGCAGAA	AGGGCAGAAT	CTTGTGGCAG	TGGTAATAGT	ACTGGATATC	AAATTCGTCT	420
			AACAGGGTTC				480
10			CGTATTTGTC				540
10	CCATGAAAGA	AATCTGCAGT	CAGATGTTTT	AATGACTGTT	GTTAAAGACC	TICTCAATIT	600
	TCGATCTGAC	TTGAAAGTAA	TATTGATGAG	TGCAACATTG	AATGCAGAAA	AGTTTTCAGA	660
	ATATTTTGGT	AACTGTCCAA	TGATACATAT	ACCTGGTTTT	ACCTTTCCGG	TTGTGGAATA	720
			AAAAAATAAG				780
			_				
15			TGCAAGGGCA				840
13			GGCCAGATTA				900
	AAGTACTGTA	GATGTTATAG	AAATGATGGA	GGATGATAAA	GTTGATCTGA	ATTTGATTGT	960
	TECCCTCATC	CGATACATTG	TTTTGGAAGA	AGAGGATGGT	GCGATACTGG	TCTTTCTGCC	1020
			CTTTACATGA				1080
20			CTTTACATTC				1140
20	GTTTAAAAGA	ACCCCTCCTG	GTGTTCGGAA	AATAGTAATT	GCTACCAACA	TTGCGGAGAC	1200
	TAGCATTACC	ATAGATGATG	TCGTTTATGT	GATAGATGGA	GGAAAAATAA	AAGAGACGCA	1260
	TTTTGATACT	CAGAACAATA	TCAGTACAAT	GTCCGCTGAG	TGGGTTAGTA	AAGCTAATGC	1320
			CTGGAAGAGT				1380
25			TAGATGACTA				1440
25			TAAAGATTTT				1500
	TAGATTAATG	GACCCACCAT	CAAATGAGGC	AGTGTTACTC	TCCATAAGAC	ACCTGATGGA	1560
	GCTGAACGCT	TTGGATAAAC	AAGAAGAATT	GACACCTCTT	GGAGTCCACT	TGGCACGATT	1620
			GAAAAATGAT				1680
			CTAGTCTCAG				1740
30							
30			CAAGAAGAAA				1800
	CTTAACAGTT	GTGAATGCGT	TTGAGGGCTG	GGAAGAGGCT	AGGCGACGTG	GTTTCAGATA	1860
	CGAAAAGGAC	TATTGCTGGG	AATATTTTCT	GTCTTCAAAC	ACACTGCAGA	TGCTGCATAA	1920
	CATGAAAGGA	CAGTTTGCTG	AGCATCTTCT	TGGAGCTGGA	TTTGTAAGCA	GTAGAAATCC	1980
			TAAATTCAGA				2040
35							
33			TTGCTAAAAT				2100
			CCGATGGCCT				2160
	GGAGCAAACA	GACTTTCACT	ACAACTGGCT	TATCTATCAC	CTAAAGATGA	GAACAAGCAG	2220
	ТАТАТАСТТС	TATGACTGCA	CAGAGGTTTC	CCCATACTGT	CTCTTCTTTT	TTGGAGGTGA	2280
			ACGATCAGGA				2340
40							2400
70			CCCATCTTGT				
			GTCCTCATCC				2460
	CTGTGCAGTA	CTGTCAGCTA	TTATAGACTT	GATCAAAACA	CAGGAAAAGG	CAACTCCCAG	2520
	GAACTTTCCG	CCACGATTCC	AGGATGGATA	TTACAGCTGA	CAGCTTTTCA	GGGGTGGTCT	2580
			ATTCTTCATC				2640
45			ATGTGTAAGG				2700
13							
			TATGTAGAGA				2760
			ACTCTGCTGT				2820
	CTTTATATAT	ATTGAGTATT	GTACCACTTG	AGAAATTCCT	TIGITCIGIT	ATACAAAATT	2880
	AATCTTTCTG	CTCATAATGA	TTGATGATAC	CACCAGTAAA	AATAGGATGT	TTACCCCAAA	2940
50			TGAACACAAC				3000
-			TAAAGTCCAG				5000
	AGTAAATTAA	TTTGTTGTAA	TAAAGTCCAG	TATTTAATAA	AATGTACAAT	GTTAAATCTC	
	SEQ ID NO:276 P	BY3 Protein seque	nce:				
	Protein Accession						
55	I Iddil Addison	. 0/4/000	-				
55	m, m, m, m, n, n, n	en i America			TOTAL CONTROL	. 1 DOLO 1010	
						CLPSYGMQKE	
						ISAISVAERV	
	AAERAESCGS	GNSTGYOIRL	OSRLPRKOGS	ILYCTTGIIL O	WLOSDPYLS S	SVSHIVLDEI 1	80
						I PGFTFPVVEY	
60							
00						Y VRELRRRYS	
						LLMSQVMFKS	
	DKFLIPLHS LI	MPTVNQTQV E	KRTPPGVRK I	VIATNIAET SI	TIDDVVYV ID	GGKIKETH 42	0
						DY QLPEILRT	
						PLGVHLARL	
65							
UJ						LAKDTRSDH (
						HLL GAGFVSSE	
	KDPESNINSD N	VEKIIKAVIC A	GLYPKVAKI R	LNLGKKRKM	VKVYTKTDGI	. VAVHPKSVN	V 720
						TIAVDEWIVF	
						KTQEKATPR	
70	•				I WAIDL I	Kommerer (
10	NFPPRFQDGY	13					

SEQ ID NO:277 PBY6 DNA SEQUENCE

75 Coding sequence: 64-1669(underlined sequence corresponds to start and stop codon)

Nucleic Acid Accession#: AA464018

GATTTTATCC TGGAACATTA CAGTGAAGAT GGCTATTTAT ATGAAGATGA AATTGCAGAT 60 CTT<u>ATG</u>GATC TGAGACAAGC TTGTCGGACG CCTAGCCGGG ATGAGGCCGG GGTGGAACTG 120

CTGATGACAT ACTTCATCCA GCTGGGCTTT GTCGAGAGTC GATTCTTCCC GCCCACACGG 180
CAGATGGGAC TCCTGTTCAC CTGGTATGAC TCTCTCACCG GGGTTCCGGT CAGCCAGCAG 240
AACCTGCTGC TGGAGAAGGC CAGTGTCCTG TTCAACACTG GGGCCCTCTA CACCCAGATT 300 GGGACCCGGT GTGATCGGCA GACGCAGGCT GGGCTGGAGA GTGCCATAGA TGCCTTTCAG 360 5 AGAGCCGCAG GGGTTTTAAA TTACCTGAAA GACACATTTA CCCATACTCC AAGTTACGAC 420 ATGAGCCCTG CCATGCTCAG CGTGCTCGTC AAAATGATGC TTGCACAAGC CCAAGAAAGC 480 GTGTTTGAGA AAATCAGCCT TCCTGGGATC CGGAATGAAT TCTTCATGCT GGTGAAGGTG 540 GCTCAGGAGG CTGCTAAGGT GGGAGAGGTC TACCAACAGC TACACGCAGC CATGAGCCAG 600 GCGCCGGTGA AAGAGAACAT CCCCTACTCC TGGGCCAGCT TAGCCTGCGT GAAGGCCCAC 660 10 CACTACGCGG CCCTGGCCCA CTACTTCACT GCCATCCTCC TCATCGACCA CCAGGTGAAG 720 CCAGGCACGG ATCTGGACCA CCAGGAGAAG TGCCTGTCCC AGCTCTACGA CCACATGCCA 780 GAGGGGCTGA CACCCTTGGC CACACTGAAG AATGATCAGC AGCGCCGACA GCTGGGGAAG 840 TCCCACTTGC GCAGAGCCAT GGCTCATCAC GAGGAGTCGG TGCGGGAGGC CAGCCTCTGC 900 AAGAAGCTGC GGAGCATTGA GGTGCTACAG AAGGTGCTGT GTGCCGCACA GGAACGCTCC 960 15 CGGCTCACGT ACGCCCAGCA CCAGGAGGAG GATGACCTGC TGAACCTGAT CGACGCCCCC 1020 ACAGTCACGI ALGACCAGCA CCAGGAGGAG GAIGACCIGC IGAACCIGAT CGACGCCCC 1020
AGTGTTGTTG CTAAAACTGA GCAAGAGGTT GACATTATAT TGCCCCAGTT CTCCAAGCTG 1080
ACAGTCACGG ACTTCTTCCA GAAGCTGGGC CCCTTATCTG TGTTTTTCGGC TAACAAGCGG 1140
TGGACGCCTC CTCGAAGCAT CCGCTTCACT GCAGAAGAAG GGGACTTGGG GTTCACCTTG 1200
AGAGGGAACG CCCCCGTTCA GGTTCACTTC CTGGATCCTT ACTGCTCTGC CTCGGTGGCA 1260
GGAGCCCGGG AAGGAGATTA TATTGTCTCC ATTCAGCTTG TGGATTGTAA GTGGCTGACG 1320
CTGAGTGAGG TTATGAAGCT GCTGAAGAGC TTTGGCGAGG ACGAGATCGA GATGAAAGTC 1380 20 GTGAGCCTCC TGGACTCCAC ATCATCCATG CATAATAAGA GTGCCACATA CTCCGTGGGA 1440 ATGCAGAAAA CGTACTCCAT GATCTGCTTA GCCATTGATG ATGACGACAA AACTGATAAA 1500 ACCAAGAAAA TCTCCAAGAA GCTTTCCTTC CTGAGTTGGG GCACCAACAA GAACAGACAG. 1560 25 AAGTCAGCCA GCACCTTGTG CCTCCCATCG GTCGGGGCTG CACGGCCTCA GGTCAAGAAG 1620 AAGCTGCCCT CCCCTTTCAG CCTTCTCAAC TCAGACAGTT CTTGGTACTA A

30 SEQ ID NO:278 PBY6 Protein sequence: Protein Accession #: NP 149094

KLPSPFSLLN SDSSWY

Nucleic Acid Accession#: AF107493

45

DFILEHYSED GYLYEDEIAD LMDLRQACRT PSRDEAGVEL LMTYFIQLGF VESRFFPPTR 60
QMGLLFTWYD SLTGVPVSQQ NLLLEKASVL FNTGALYTQI GTRCDRQTQA GLESAIDAFQ 120
RAAGVLNYLK DTFTHTPSYD MSPAMLSVLV KMMLAQAQES VFEKISLPGI RNEFFMLVKV 180
AQEAAKVGEV YQQLHAAMSQ APVKENIPYS WASLACVKAH HYAALAHYFT AILLIDHQVK 240
PGTDLDHQEK CLSQLYDHMP EGLTPLATLK NDQQRRQLGK SHLRRAMAHH EESVREASLC 300
KKLRSIEVLQ KVLCAAQERS RLTYAQHQEE DDLLNLIDAP SVVAKTEQEV DIILPQFSKL 360
TVTDFFQKLG PLSVFSANKR WTPPRSIRFT AEEGDLGFTL RGNAVUHFLDPYCSASVA 420
GAREGDYIVS IQLVDCKWLT LSEVMKLLKS FGEDEIEMKV VSLLDSTSSM HNKSATYSVG 480
MQKTYSMICL AIDDDDKTDK TKKISKKLSF LSWGTNKNRQ KSASTLCLPS VGAARPQVKK 540

SEQ ID NO:279 PBY8 DNA SEQUENCE

	Coding sequence	125-55	6 (underlined seq	uence corresponds	s to start and stop	codon)	
	1	11	21	31	41	51	
50	1	1	1	1	1	1	
50				GGGGCGCAGA			60
				TTTTGGAGCT			120
				AACAGAGCGT			180
				ATCCCGAAGC			240
~ ~				TAGATATGAT			300
55				TGACCGATCC			360
				TGACATCAGT			420
				CACAGAGAGC			480
				GAGGCTGATG			540
60				TCCCCATTCC			600
60				AATTCAGAAT			660
				ATCTGAGGAA			720
				TTTATAAACT			780
				TCAAATGGAG			840
				GATCCCCAAG			900
65	TGCTTCCCAA	TTGGCTTTGT	CACGCAGTGT	TGAAGCAGTG	GGAGAGAGAT	TCACCTGTTA	960
	TAAAGGAACT	GACTAACACA	AGTATCCCGT	CTATATCTGA	ATGCTGTCTC	TAGGTGTAAG	1020
	CCGTGGTTTC	GCCTTCGTGG	AGTTTTATCA	CTTGCAAGAT	GCTACCAGCT	GGATGGAAGC	1080
	CAATCAGGTT	GCTTCACTCA	CCAAGTCTAG	ATATTCATGA	AAATGGAACA	AGTCTGTACA	1140
	ATTTTAAAAA	AAGGTTGAAG	GAGTGGTTTG	TTCCAAAGGA	GTGACTTTTT	AAAAAATTT	1200
70	AAGCTTTGTA	TATATTAAAA	TTGATGTTAC	TAGAATAAGT	ACAGTACCAA	GGACTTCATT	1260
	ATAGAATTTG	TTCTGCCTTT	AAACATGGCT	ACCTACCTGG	CAGGGCTTTG	TTAACTACTG	1320
	AATACCTGTC	TGGTAATCAC	TAAAACATCT	TTATGTTTCC	CTTTTTTCTA	GTTTGTTATA	1380
	TTCCTATTAT	GTCCATTGAG	AGTAAGCTTA	GTATATCAAA	CTCTCCATTT	GACAGTGAAG	1440
	AGAACATAGT	GAAAGTCTGT	GGCGGCATTT	TTATAAGTAA	TTCCTTATTT	CTGCCTGAAG	1500
<i>7</i> 5	ACCACAAAGC	CTCCTGGAGG	CGTAACTGCT	CAGACCGGTC	TTCAGGGAAT	ATTTAAGGAC	1560
	TTAGTGGAAT	TTATGAACAA	TAAGTCTGAT	GAGATTAGCC	TGGGAGTGGT	GTCCTGCAGC	1620
	TGTCTAATCT	AGAGTGGCAT	TAACATTCTA	ATCTCCTTGA	GAATGCCTTT	TATAGTCTGT	1680
	TCAAAGCAAG	TCATTGATGG	TTCTTCGAGG	TAGTGTTAAC	TGAAGTGTTC	TTCAGTTTGT	1740
	CAAGATAATG	TTCAGTGCTT	GGCACTTAAA	TAACATTITT	TGCAAGAACT	CCAAGGCACA	1800

```
TTATTGAATG CCTTTAACCA AGTGCATTCT GGGAAGTTTG CTTGACTCAT TATCTTGCTT
       TTCTGCAGCA TTCTGTGATT TGAGTCATCC ATGAATCCAT GAATAAAAGT TACATTCTTT
                                                                           1920
       GATTGGTAAT ATTGCCATTT ATAACAAGAC TCACTAATGA GGGTATCACT TTGACTGACT
                                                                           1980
       GATTTGTTAA AGTTTTTAAG CCTCTCATTT TCCTAACCCA GAAATCACAG CCTGATTTTA
                                                                           2040
 5
       TTAAAAGTAG AGCTTCATTC ATTTCATACC ATAGATACCA TCCTAGTAAA TCCAGAACAT
                                                                           2100
       ATACAAGGTT CATGTGAGTC TGCTTTCTTG ACATGATAGC ATTGTTTGAT GCAGTGGATA
                                                                           2160
       TGTCAGAATG ACTAACCTAG GAGTTTGAAA CTCCTAAGAA ACTAAAACCT GTAAGACATT
       TAAAAGTCTC CACAATTTTA ATGTATACAA AGCTATGTTA CTGTGTAACA CATTACAGTT
                                                                           2280
       CARATTCACT CCAGAAATAA AAGGCCAGTA GGATTAGGGA CTCACTGGTA GTTTGGAGTC
                                                                           2340
10
       TCCCAGCACA CATCCCTCCT AGTGGGATGA TCTATTCACA TATCTCCCAG CTTTTTTATT
                                                                           2400
       TITIGCTTCTG TATATCACAG TGAGTGGATG GCCCTTCAGC TTTTTCTCTC CTGGCCAGAC
                                                                           2460
       ATGCAGTCTT GCCTTTAGAT ATCGCAGAGA CAAAATTCAC AGCATGTCTT AAATCTTCCA
                                                                           2520
       GGATTTGCAA GAACCAAATT GCTCAACAGT ATGTATGTTT AGAGGGGTTA GACTCCTTTT
                                                                           2580
       TAAAATCTGG ATATCTAACC ACCTACTTAA ATCTGTTTGA TAGTGTCAAA CCACCCCCAC
15
       CCTTGATCCT CCCACCCCCA AAAAAAAAAA AAAA
       SEQ ID NO:280 PBY8 Protein sequence:
                         XP_003261
20
       MGSDKRVSRT ERSGRYGSII DRDDRDERES RSRRRDSDYK RSSDDRRGDR YDDYRDYDSP 60
       ERERERRNSD RSEDGYHSDG DYGEHDYRHD ISDERESKTI MLRGLPITIT ESDIREMMES 120
       FEGPOPADVR LMKRKTGESL LSS
25
                                                 SEQ ID NO:281 PCI2 DNA SEQUENCE
       Nucleic Acid Accession#: AF208291
       Coding sequence:
                         109-3705 (underlined sequence corresponds to start and stop codon)
30
                  11
                                         31
       CGGCCGCTTT TTTCTCAAGA TGGCAGATTC CCACTGAGGC TGAGGGGGCC GAGCTCGCGC
       GCCGCGTTCC CTTCTCCGTT GCCATGAACC GCGGACACCC CGGCCCCGAT GGCCCCCGTG
                                                                            120
       TACGAAGGTA TGGCCTCACA TGTGCAAGTT TTCTCCCCTC ACACCCTTCA ATCAAGTGCC
                                                                            180
35
       TTCTGTAGTG TGAAGAAACT AAAAGTAGAG CCAAGTTCCA ACTGGGACAT GACTGGGTAC
                                                                            240
       GGCTCCCACA GCAAAGTGTA CAGCCAGAGC AAGAACATAC CACCTTCTCA GCCAGCCTCC
       ACAACCGTCA GCACCTCCTT GCCGGTCCCA AACCCAAGCC TACCTTACGA GCAGACCATC
                                                                            360
       GTCTTCCCAG GAAGCACCGG GCACATCGTG GTCACCTCAG CAAGCAGCAC TTCTGTCACC
                                                                            420
       GGGCAAGTCC TCGGCGGACC ACACAACCTA ATGCGTCGAA GCACTGTGAG CCTCCTTGAT
                                                                            480
40
       ACCTACCAAA AATGTGGACT CAAGCGTAAG AGCGAGGAGA TCGAGAACAC AAGCAGCGTG
                                                                            540
       CAGATCATCG AGGAGCATCC ACCCATGATT CAGAATAATG CAAGCGGGGC CACTGTCGCC
                                                                            600
       ACTGCCACCA CGTCTACTGC CACCTCCAAA AACAGCGGCT CCAACAGCGA GGGCGACTAT
                                                                            660
       CAGCTGGTGC AGCATGAGGT GCTGTGCTCC ATGACCAACA CCTACGAGGT CTTAGAGTTC
                                                                            720
       TTGGGCCGAG GGACGTTTGG ACAAGTGGTC AAGTGCTGGA AACGGGGCAC CAATGAGATC
                                                                            780
45
       GTAGCCATCA AGATCCTGAA GAACCGCCCA TCCTATGCCC GACAAGGTCA GATTGAAGTG
                                                                            840
       AGCATCCTGG CCCGGTTGAG CACGGAGAGT GCCGATGACT ATAACTTCGT CCGGGCCTAC
                                                                            900
       GAATGCTTCC AGCACAAGAA CCACACGTGC TTGGTCTTCG AGATGTTGGA GCAGAACCTC
                                                                            960
       TATGACTITC TGAAGCAAAA CAAGTTTAGC CCCTTGCCCC TCAAATACAT TCGCCCAGTT
                                                                           1020
       CTCCAGCAGG TAGCCACAGC CCTGATGAAA CTCAAAAGCC TAGGTCTTAT CCACGCTGAC
                                                                           1080
50
       CTCAAACCAG AAAACATCAT GCTGGTGGAT CCATCTAGAC AACCATACAG AGTCAAGGTC
                                                                           1140
       ATCGACTTTG GTTCAGCCAG CCACGTCTCC AAGGCTGTGT GCTCCACCTA CTTGCAGTCC
                                                                           1200
                                                                           1260
       AGATATTACA GGGCCCCTGA GATCATCCTT GGTTTACCAT TTTGTGAGGC AATTGACATG
       TGGTCCCTGG GCTGTGTTAT TGCAGAATTG TTCCTGGGTT GGCCGTTATA TCCAGGAGCT
                                                                           1320
       TCGGAGTATG ATCAGATTCG GTATATTTCA CAAACACAGG GTTTGCCTGC TGAATATTTA
                                                                           1380
55
       TTAAGCGCCG GGACAAAGAC AACTAGGTTT TTCAACCGTG ACACGGACTC ACCATATCCT
                                                                           1440
       TTGTGGAGAC TGAAGACACC AGATGACCAT GAAGCAGAGA CAGGGATTAA GTCAAAAGAA
                                                                           1500
       GCAAGAAGT ACATTTYCAA CTGTTTAGAT GATATGGCCC AGGTGAACAT GACGACAGAT
       TTGGAAGGGA GCGACATGTT GGTAGAAAAG GCTGACCGGC GGGAGTTCAT TGACCTGTTG
                                                                           1620
       AAGAAGATGC TGACCATTGA TGCTGACAAG AGAATCACTC CAATCGAAAC CCTGAACCAT
                                                                           1680
60
       COCTTTGTCA CCATGACACA CTTACTCGAT TTTCCCCACA GCACACGT CAAATCATGT
                                                                           1740
       TTCCAGAACA TGGAGATCTG CAAGCGTCGG GTGAATATGT ATGACACGGT GAACCAGAGC
                                                                           1800
       AAAACCCCTT TCATCACGCA CGTGGCCCCC AGCACGTCCA CCAACCTGAC CATGACCTTT
                                                                           1860
       AACAACCAGC TGACCACTGT CCACAACCAG GCTCCCTCCT CTACCAGTGC CACTATTTCC
                                                                           1920
       TTAGCCAATC CCGAAGTCTC CATACTAAAC TACCCATCTA CACTCTACCA GCCCTCAGCG
65
       GCATCCATGG CTGCAGTGGC CCAGCGGAGC ATGCCCCTGC AGACAGGAAC AGCCCAGATT
                                                                           2040
       TGTGCCCGGC CTGACCCGTT CCAGCAAGCT CTCATCGTGT GTCCCCCGG CTTCCAAGGC
                                                                           2100
       TTGCAGGCCT CTCCCTCTAA GCACGCTGGC TACTCGGTGC GAATGGAAAA TGCAGTTCCC
                                                                           2160
       ATCGTCACTC AAGCCCCAGG AGCTCAGCCT CTTCAGATCC AACCAGGTCT GCTTGCCCAG
                                                                           2220
       CAGGCTTGGC CAAGTGGGAC CCAGCAGATC CTGCTTCCCC CAGCATGGCA GCAACTGACT
                                                                           2280
70
       GGAGTGGCCA CCCACACATC AGTGCAGCAT GCCACCGTGA TTCCCGAGAC CATGGCAGGC
                                                                           2340
       ACCCAGCAGC TGGCGGACTG GAGAAATACG CATGCTCACG GAAGCCATTA TAATCCCATC
                                                                           2400
       ATGCAGCAGC CTGCACTATT GACCGGTCAT GTGACCCTTC CAGCAGCACA GCCCTTAAAT
                                                                           2460
       GTGGGTGTGG CCCACGTGAT GCGGCAGCAG CCAACCAGCA CCACCTCCTC CCGGAAGAGT
       AAGCAGCACC AGTCATCTGT GAGAAATGTC TCCACCTGTG AGGTGTCCTC CTCTCAGGCC
75
       ATCAGCTCCC CACAGCGATC CAAGCGTGTC AAGGAGAACA CACCTCCCCG CTGTGCCATG
                                                                           2640
       GTGCACAGTA GCCCGGCCTG CAGCACCTCG GTCACCTGTG GGTGGGGCGA CGTGGCCTCC
                                                                           2700
       AGCACCACCC GGGAACGGCA GCGGCAGACA ATTGTCATTC CCGACACTCC CAGCCCCACG
```

GTCAGCGTCA TCACCATCAG CAGTGACACG GACGAGGAGG AGGAACAGAA ACACGCCCCC

ACCAGCACTG TCTCCAAGCA AAGAAAAAC GTCATCAGCT GTGTCACAGT CCACGACTCC

CCCTACTCCG ACTCCTCCAG CAACACCAGC CCCTACTCCG TGCAGCAGCG TGCTGGGCAC

80

2760

2820

2880

	AACAATGCCA	ATGCCTTTGA	CACCAAGGGG	AGCCTGGAGA	ATCACTGCAC	GGGGAACCCC	3000
			CCTGAAAACC				3060
			CAGTCACCAC				3120
5			TCACTCTTCA				3180
J			CTTCCAGCAG				3240 3300
			CACTGGGAGC CTCCTTCCCG				3360
			TGCCGCTGCC				3420
			GGGCTCCACC				3480
10			GCAGCACACT				3540
	CCCGTGAGCA	TGGGCCCCCG	GGTCCTGCCC	TCGCCCACCA	TCCACCCGAG	TCAGTATCCA	3600
			CTACATCAGC				3660
			GGTCAACCAG				3720
15			GAATGGCCCG				3780
13			CCTTTTATAC				3840 3900
			GACGTAGAGC				3960
			ATGGTTTTTA			resourances	3300
	•						
20							
		PCI2 Protein seg				•	
	Protein Accessi	ion#: NP_07	13577				
			- 0004F00U	er i mirenaest	um vægvægv		DDC (0
25						ISKV YSQSKNII PHNLMRRSTV	
25						ATSKNSGSNS	
						KIL KNRPSYAR	
						Q NKFSPLPLK	
						A SHVSKAVCS	
30						RYISQTQGLP	
						FNCLDDMAQV	
						T HLLDFPHSTI	
						TT VHNQAPSST	
35						P FQQALIVCPP PSG TQQILLPPA	
~~						PAL LTGHVTL	
						R SKRVKENTP	
						SSDTDEEEEQ	
40						AF DTKGSLENI	
40		PLKTQASEVL				GHSSGSSSGA 1	
						AP YSFPHNSPSI	
	GTVHPHLAA.	A AAAAHLPTQ	P HLYTYTAP	AA LGSTGTVA	HL VASQGSA	RHT VQHTAYP.	
	GTVHPHLAA.	A AAAAHLPTQ		AA LGSTGTVA	HL VASQGSA	RHT VQHTAYP.	
45	GTVHPHLAA.	A AAAAHLPTQ	P HLYTYTAP	AA LGSTGTVA Q TYISASPAST	HL VASQGSAI	RHT VQHTAYP. KVNQYPYI	ASI 1140
45	GTVHPHLAA.	A AAAAHLPTQ PRVLPSPTIHI	OP HLYTYTAPA SQYPAQFAHO	AA LGSTGTVA Q TYISASPAST	HL VASQGSAI	RHT VQHTAYP.	ASI 1140
45	GTVHPHLAA. VHQVPVSMG	A AAAAHLPTC PRVLPSPTIHP ession#: NM_01	OP HLYTYTAPA SQYPAQFAHO	AA LGSTGTVA Q TYISASPAST SE	HIL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY	RHT VQHTAYP. A KVNQYPYI 1 DNA SEQUENCE	ASI 1140
45	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acco	A AAAAHLPTC PRVLPSPTIHP ession#: NM_01 r: 147-80	OP HLYTYTAP, SQYPAQFAHO 7700 6 (underlined sequ	AA LGSTGTVA Q TYISASPAST SEC Jence corresponds	HIL VASQGSAI VYTGYPLSPA Q ID NO:283 PBY to start and stop of	RHT VQHTAYP. AKVNQYPYI 1 DNA SEQUENCE codon)	ASI 1140
	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acco	A AAAAHLPTC PRVLPSPTIHP ession#: NM_01	OP HLYTYTAPA SQYPAQFAHO 7700	AA LGSTGTVA Q TYISASPAST SE	HIL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY	RHT VQHTAYP. A KVNQYPYI 1 DNA SEQUENCE	ASI 1140
45 50	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence	A AAAAHLPTC PRVLPSPTHF ession#: NM_01 r: 147-80	P HLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence)	AA LGSTGTVA Q TYISASPAST SEC Jence corresponds 31	HIL VASQGSAI VYTGYPLSPA Q ID NO:283 PBY to start and stop of 41	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE codon) 51	ASI 1140
	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC PRVLPSPTHE ession#: NM_01 r: 147-80 11 AGGTAACCCT	P HLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) 21 GGAGTGAAGC	AA LGSTGTVA Q TYISASPAST SEC Jence corresponds 31 GGTTTAGTTA	HL VASQGSAI VYTGYPLSPA Q ID NO:283 PBY to start and stop of 41 GAAGGGAGCA	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE codon) 51 GATAAACTCG	ASI 1140
	GTVHPHLAA. VHQVPVSMG Nucleic Acid Accc Coding sequence 1 Accccacacc TCACTCTAGT	A AAAAHLPTC PRVLPSPTHE ession#: NM_01 r: 147-80 11 i AGGTAACCCT AGCTTTAACC	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) 21 GGAGTGAAGC CTCACCCTGA	AA LGSTGTVA Q TYISASPAST SECUENCE COMESPONDS 31 GGTTTAGTTA GGCACCTTAG	HIL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY to start and stop of 41 GAAGGGAGCA CAATCAGCCA	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE codon) 51 GATAAACTCG TTGCCTGCAA	60 120
50	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC PRVLPSPTHE ession#: NM_01 : 147-80 11 i AGGTAACCCT AGCTTTAACC CTTGTCTTTG	P HLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) 21 GGAGTGAAGC CTCACCCTGA CCTAATATGG	AA LGSTGTVA Q TYISASPAST SEC Jence corresponds 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY to start and stop of 41 GAAGGGAGCA CAATCAGCCA AGCCACTGGG	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE codon) 51 GATAAACTCG TTGCCTCCAA AAAGAAAACA	ASI 1140
	GTVHPHLAA. VHQVPVSMG Nucleic Acid Accc Coding sequence 1	A AAAAHLPTC P RVLPSPTHE ession#: NM_01 : 147-80 11 AGGTAACCCT AGCTTTAAC CTTGTCTTTG GAAAAGAAT	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) 21 GGAGTGAAGC CTCACCCTGA	AA LGSTGTVA Q TYISASPAST SEC Jence corresponds 31 GGTTTAGTTA GGCACCTTAG AGCCCAAGA TGAGGTCTAG	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 GAAGGGAGCA CAATCAGCA AGCCACTGGG ACTCTATATG	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE codon) 51 GATABACTCG TTGCCTGCAB ABAGABACA CTGGAGAGAB CTGGAGAGAB	60 120 180
50	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC PRVLPSPTHH ession#: NM_01 1 147-80 11 AGGTAACCCT AGGTTAACC CTTGTCTTTG GAAAAAGAAT CACTGTGGTT TGACAGGACC	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) 21 GGAGTGAAGC CTCACCCTGA CCTAATATGG CCTGACCTTGA CCTGACCTGGA CCTGACCTGG	AA LGSTGTVA Q TYISASPAST SEI Hence corresponds 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TCAGGTCTAG TTTCTGGGA AGAAATTACA	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY to start and stop of 41 GAAGGGAGCA CAATCAGCCA AGCCACTGGG ACTCTATATG CAGCACTCTGGC CAGAAAGATG	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATAAACTCG TTGCCTGCAA AAAGAAAACA CTGGAGAGAA ACCTTGAGGA ACCTCACAGG	60 120 180 240 300 360
50	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC PRVLPSPTHE ession#: NM_01 1 147-80 11 AGGTAACCCT AGCTTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG	PHLYTYTAP, SQYPAQFAH(7700 6 (underlined sequence) 21 GAGGTGAAGC CTCACCCTGA CCTAATATGG CTGGCCTTCT GAGAGCAGTC GAGAGCAGTC ACCTTAACCC ACCTTAACCC	AA LGSTGTVA Q TYISASPAST SEC JENCE COTTESPONDS 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TGAGGTCTAG TTTCTGGGGA AGAAATTACA CAGAGGAAGA CAGAGGAAGA	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 GAAGGGAGCA CAATCAGCCA AGCCACTGGG ACTCTATATG CCACTCTGGG GGAAAAGATG GCATCATATG GCATCATATG GCATCATATG GCATCATATG	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE codon) 51 GATABACTCG TTGCCTCCAA ABAGBABACA CTGGAGAGAA ACTTCACAGG AAGAGATGA	60 120 180 240 300 360 420
50	GTVHPHLAA. VHQVPVSMG Nucleic Acid Accc Coding sequence 1	A AAAAHLPTC P RVLPSPTHE ESSION#: NM_01 : 147-80 11 AGGTAACCCT AGCTTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAAGATC	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) 21 GAGTGAAGC CTCACCCTGA CCTAACTGG CTGGCCTTCT GAGAGCAGTG GAATACAAC ACTTAACCC ATTAAGGAGC	AA LGSTGTVA Q TYISASPAST SECUENCE CORRESPONDS 31 GGTTTAGTTA GGCACCTTAG AGCCCAAGA TGAGGTCTAG TTTCTGGGGA AGAAATTACA CAGAGGAAGA TGATACAGAC TGATACAGAC	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 GAAGGGAGCA CAATCAGCA AGCCACTGGG ACTCTATATG CCACTGGGC AGAAAAGGAT GCATCATATG GCATCATATG AGAAAAGGAT AGAAAAGGAT AGAAAAGGAT	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE codon) 51 GATABACTCG TTGCCTCCAA AAAGABAACA CTGGAGAGA ACCTCACAGG ACTCCACAGG AAGAGGATGA TATCTCACATG	60 120 180 240 360 420 480
50 55	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC P RVLPSPTHE ession#: NM_01 1 147-80 11 AGGTAACCCT AGCTTTAACC CTTGTCTTTG GAAAAAGAAT CACTGTGGTT TGACAGGAC TGTAGCTGAG GGAAAAGAT GGTAACGAG GGAAAAGAT GTGTGTTAGG	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) GGAGTGAAGC CTCACCCTGA CCTAATATGG CTGGCCTTCT GAGAGCAGTG GAATACACC ATTAAGGAGC ATTAAGGAGC GAAGTGGTTC	AA LGSTGTVA Q TYISASPAST SEC Jence corresponds 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TCAGGTCTAG TTTCTGGGGA AGAAATTACA CAGAGGAAGA TGATACAGAC AGCCCCTGAG	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY to start and slop of 41 GRAGGGAGCA CAATCAGCCA AGCCACTGGG ACTCTATATG CCACTCTGGC AGAAAAGATG GCATCATCATG AGAAAAGATG AGAAAAGATA AGAAAAGGAT AAATAAAAAA	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATAAACTCG TTGCCTCCAA AAAGAAAACA CTGGAGAGAA ACCTTGAGGA ACTCCACAGG AAGAGATGA TATCTCAATG ACTGATAGCC	60 120 180 240 300 360 420 480 540
50	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC PRVLPSPTHH PRVLPSPTHH 1 147-80 11 AGGTAACCCT AGGTAACCCT AGGTAACCCT TGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAAGAT CGTGTGTTAGC TTAGCTTAGC	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence of control of co	AA LGSTGTVA Q TYISASPAST SEI IENCE COMESPONDS 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TCAGGTCTAG ATTCTGGGA AGAAATTACA CAGAGGAAGA TGATACAAGA AGTCCGTGCA AGTCCGTGCA	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY to start and stop of 41 GAAGGGAGCA CAATCAGCCA AGCCACTGGG ACTCTATATG CCACTCTGGC AGAAAAGATG GCATCATATG AGAAAAGATG AGAAAAGATG AGAAAAAGAT TCAGATATCA	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATAAACTCG TTGCCTGCAA AAAGAAAACA CTGGAGAGAA ACCTTGAGGA ACTCACAGG AAGAGGATGA TATCTCAATG ACTGATAGGC GCCAAGCTGC	60 120 180 240 300 360 420 480 540 600
50 55	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC P RVLPSPTHE ESSION#: NM_01 1 147-80 11 AGGTAACCCT AGCTTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAGATC GTGTGTTAGCT GTAGCTTAGCT	PHLYTYTAP, SQYPAQFAH(7700 6 (underlined sequence) 21 GAGTGAAGC CTCACCCTGA CCTAATATGG CTGGCCTTCT GAGAGCAGTC GAATACAAC ACCTTAACCC ATTAAGGAGC GAAGTGGTTC ACGACAACT ACCACACACAC ACCACACACAC ACCACACACA	AA LGSTGTVA Q TYISASPAST SEC JENCE COTTESPONDS 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TGAGGTCTAG TTTCTGGGGA AGAAATTACA CAGAGGAAGA TGATACAGAC AGCCCTGAG AGCTCCTGAG AGCTCCTGAG TGGAACCGGC	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 GAAGGGAGCA CAATCAGCCA AGCCACTGGG ACTCTATATG CCACTCTGGG AGAAAAGATG AGAAAAGATG AGAAAAGATG AGAAAAGATG AGAAAAGAT AAATAAAAAG ACATCATATG AGAAAAGAT AAATAAAAAG ACATCATATG AGAAAAGAT AAATAAAAAG ACATCATATG AGAAAAGAT AAATAAAAAG ACATGCAAGTA CATGCAAGTA	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATAAACTCG TTGCCTCCAA AAAGAAAACA CTGGAGAGA ACTTCACAGG AAGAGATGA TATCTCAATG ACTGATAGCA CTGATAGCA CTGATAGCA CTGATAGCA CTGATAGCA ACTTCAATG ACTGATAGCA ACTTCAATG ACTGATAGCA ACTTGACAAG ACTTGACACAAG	60 120 180 240 300 420 480 540 600 660
50 55	GTVHPHLAA. VHQVPVSMG Nucleic Acid Accc Coding sequence 1	A AAAAHLPTC P RVLPSPTHE ESSION#: NM_01 11 AGGTAACCCT AGCTTTACC CTTGTCTTTC GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAAGAT CTGTGTGTT TGACTGAG GGAAAGAT GTGTGTTTGG GGAAAGAT GGTGTGTTTAG GAAGAGGCC GATTAAAGGG GAATAAAGG	PHLYTYTAP, SQYPAQFAHO 7700 6 (underlined sequence) 21 GAGTGAAGC CTCACCCTGA CCTAACATGG CTGGCCTTCT GAGAGCAGTG GAATACAACA ACTTAACGC ATTAAGGAGC GAAGTGGTTC AGCAACATTG AGCAACATTG ACAACAGAGC CCACTGGAAG CCACTGGAAG	AA LGSTGTVA Q TYISASPAST SEC JENCE CONESPONDS 31 GGTTTAGTTA GGCACCTTAG TGAGGTCTAG TTTCTGGGGA AGAATTACA AGAGAAGA TGATACAGAC AGCCCTGAG AGTCCTGCA AGTCCGTGCA AGTCCGTGCA AGTCCGGCC ATATTTATAA	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 GAAGGGAGCA CAATCAGCCA AGCCACTGGG ACTCTATATG CCACTCTGGC AGAAAAGATA GCATCATATG AGAAAAGAT AAATAAAAAG TCAGATATCA CATGCAGTATCA AATCATATCA	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATABACTCG TTGCCTGCAB ABAGABAACA CTGGAGABA ACCTTGAGGB ACTTGAGGB ACTTGAGGB ACTTGAGGB TTTCTCABTG ACTGATAGGC GCCABACTTG ACTGATAGGC GCCABACTTG TTTCACTG TTTCACTG TTTCACTG	60 120 180 240 300 360 420 480 540 600 720
50 55 60	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC P RVLPSPTHE ession#: NM_01 1 147-80 11	PHLYTYTAP, SQYPAQFAH(7700 6 (underlined sequence) 21 GAGTGAAGC CTCACCCTGA CCTAATATGG CTGGCCTTCT GAGAGCAGTC GAATACAAC ACCTTAACCC ATTAAGGAGC GAAGTGGTTC ACGACAACT ACCACACACAC ACCACACACAC ACCACACACA	AA LGSTGTVA Q TYISASPAST SEC JENCE CONESPONDS 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TCAGGTCTAG TTTCTGGGGA AGAAATTACA CAGAGGAAGA TGATACAGAC AGCCCCTGAG AATATTATAA AAAAGGAAGA	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 GAAGGGAGCA CAATCAGCCA AGCACTGGG ACTCTATATG CCACTCTGGC AGAAAAGATG GCATCATATG GCATCATATG GCATCATATG AGAAAAGATA AGAAAAGAT AAATAAAAAG TCAGGATATCA CATGCAAGTA AATCTACTGC AGAGCTGAAG	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATAAACTCG TTGCCTCCAA AAAGAAAACA CTGGAGAGAA ACCTTGAGGA ACTCCACAGG AAGAGATGA TATCTCAATG ACTGATAGC GCCAAGCTGC ATTGGAGAGA TATCTCAATG ACTGATAGC GCAAGCTGC ATTGGAGAG TATCACCATG GAACATTTGA	60 120 180 240 300 420 480 540 600 660
50 55	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acc. Coding sequence 1 AGTCACAGCC TCACTCTAGT GCCTCCAAAG TGGTCACCAA GGAAGACTGA GGAAGACTGC TGGCAAAGCC ATCTAGAGCT TGGATGTGT TGGATGTGT TATTCTTGCA ATGAAGCACA TGTAGAGCACA TGTAGAGCACA TGTAGAGCACA TGTAGAGCACA TGTAGCACTGTAT GTTGCCTAGC	A AAAAHLPTC P RVLPSPTHE ESSION#: NM_01 1 147-80 11 AGGTAACCCT TAGCTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAGATC GTAGCTGTGTTAGT GGAAGAGCC GATTAAAGG GTAGCTTAGT TGGAGGAGGCC GATTAAAGG TAGCTTATACT GGAAGAGGCC GATTAAAGG TAGCTTATACT AGGGAACATT AGGGAACATT	PHLYTYTAP, SQYPAQFAHO 7700 6 (underlined sequence) 21 GAGTGAAGC CTCACCCTGA CCTAATATGG CTGGCCTTCT GAGAGCAGTC GAATACACC ACTTAACCC ACACAGACC CCACTGGAAG GAGTCCTACC CTTAATGGAT CTTAATGGAT CTTAATGGAT	AA LGSTGTVA Q TYISASPAST SE JENCE CONESPONDS 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TGAGGTCTAG TGAGAATTACA CAGAGGAAGA TGATACAGAC AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG ATATTATAA AAAAGGAAGA ATATTCAAATG GTAGATGAAA	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 GAAGGAGCA CAATCAGCCA AGCACTGGG ACTCTATATG CCACTCTGGG ACTCTATATG GCATCATATG GCATCATATG AGAAAGATG AGAAAGAT AAATAAAAG ACTGAAGTA AATCAACTGAGTA AATCAACTGAGTA AATCTACTGC AGAGGTGAAG AGAGTGAAGTA AATCTACTGC AGAGTTACAG AGAGTTGACA AGTGTTACAG GGTCTCACAT	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COMON) 51 GATARACTCG TTGCCTCAA ANAGARARACA CTGGAGAGAA ACTTCACAGG ANGAGATGA ACTCACAGG ANGAGATGA TATCTCAATG ACTGATAGGC GCAAGCTGC GCAAGCTGC ATTGGAGAAG TATCACCATG GAACATTTGA ANATCCTATG	60 120 180 240 300 360 420 540 600 660 720 780
50 55 60	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC P RVLPSPTHE ESSION#: NM_01 : 147-80 11 AGGTAACCCT AGCTTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGAT TGACAGGACC TGTAGCTGAG GGAAAAGAT GGAAAAGAT GGAAAAGAT CACTGTGTTAGG GGAAAAGAT CACTGTAGT GGAAAGAT CACTGTAGT TAGCTGAG GGAAAAGAT CACTGTAGT TAGCTGAG GGAAAAGAT TGAGTAAAGG CATTAAAGG TAGTATACTTA AGGGAACATT CTTGCTGGGA	PHLYTYTAP, SQYPAQFAHO 7700 6 (underlined sequence) 21 GAGGTGAAGC CTCACCCTGA CCTAACCTGA CCTAATATGG GAATACAACC AACTAAACC AACTAAACC AACTAACCC ATTAAGGAGC GAAGTGATTC ACAACAGACC CCACTGGAAG GAGTCCTATC CCACTGGAAG GAGTCCTATC CCACTGGAAG GAGTCAAGGC CTAAATGGAT GAGTAAGGC CTTAAATGGAT GCTCTGCTTT	AA LGSTGTVA Q TYISASPAST SECULOR OF THE SECULOR OF	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 41 GAAGGAGCA CAATCAGCCA AGCCACTGGG ACTCTATATG CCACTGGGG ACTCTATATG CCACTGGGT AGAAAAGATC AGAAAAGAT AAATAAAAAG CCAGGATATCA CATGCAAGTA AATCTACTGC AGAGTATCG AGAGTATCG AGAGTATCG AGAGTATCG AGAGTATCG AGAGTATCG AGTGTACGA ATGATTCCCA ATGATTCCCA ATGATTCCCA TATAAAAAGC TATAAAAAAGC	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATAAACTCG TTGCCTGCAA AAAGAAAACA CTGGAGAGAA ACCTCGAGGA AACTCCACAGG AAGAGGATGA TATCTCAATG ACTGATAGGC GCCAAGCTGC GACAGCTGC GAACATTGA TATCACCATG GAACATTGA TATCTCTCTCTCA TGACATGCC TGACATCCC	60 120 180 240 360 420 480 540 660 720 780 840 900 960
50 55 60	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC PRVLPSPTHH PRVLPSPTHH SSION#: NM_01 11 147-80 11 1 AGGTAACCCT AGCTTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAGATC GTGTGTTAGG GAAAAGAGC TAGCTTGTTT GGAAGAGCC GATTAAACG TAGTTATACTG CAGTCCTTA AGGGAACATT CTGCTGGGA TTGACTTTTT TGGACTCTTA	PHLYTYTAP, SQYPAQFAHO 7700 6 (underlined sequence) 21 GGAGTGAAGC CTCACCCTGA CCTAATATGG CCTAATATGG CAGAGCAGTG GAATACACC ACCTTAACCC ACCTTAACCC ACCTTAACCC CACTTAACCC CACTTAACCC CACTTAACCC CACTGAAG GCAACATTG ACAACAGACG CCACTGGAAG GAGTCCTATG AAGTAAGGCC TTAAATGGAT TTACCCCTTGC TTCCCCCTGC	AA LGSTGTVA Q TYISASPAST SEI IEECE COMESPONDS 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TTTCTAGGGA AGAAATTACA CAGAGGAAGA TGATACAGAC AGCCCTGAG AGTCCGTGCA TGGACCGGC ATATTTATAA AAAAGGAAGA ATATAAAATTATAAAAGGAAGA TTTCAAATG GTAGATGAAC GCATTCCCTT GAGAATGACT	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 1 to start and slop of 41 GAAGGGAGCA CARTCAGCCA AGCCACTGGG ACTCTATATG CCACTCTGGC AGAAAAGATG AGAAAAGATG AGAAAAGATG AGAAAAGATG AGATATCA CATGCAAGTA AATCTGCAAGTA AATCTGCAAGTA AATCTGCAAGTA AATCTGCAAGTA AATCTGCAAGTA AATCTGCAAGTA AATCTGCAAGTA AATCTGCAAGTA AATCTGCAAGTA AATCTTACTACAAGA ATGATTCCCA AGAGCTGAAG ATGATTCCCA AGAGCTGAAG ATGATTCCCA AGAGCTGAAG ATGATTACAAAAAC AAAAATAACA	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COGON) 51 GATAAACTCG TTGCCTCCAA AAAGAAAACA CTGGAGAGAA ACCTCACAGG AAGAGATAA ATTCTCAATG ACTGATAGCC GCCAAGCTGC ATTGGAGAA ACTTCACATG GAACATTTGA AAATCCTATG AAATCCTATG TGACATGCA AAATCCTATG TGACATGCA TGGAAGAAAAAA	60 120 180 240 360 420 480 660 660 720 780 840 990 1020
50 55 60	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC P RVLPSPTHH ESSION#: NM_01 1 147-80 11 AGGTAACCCT AGGTATACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAAGAT GGTATTAGG GGAAAGAT CACTGTGTTT GGAAGAGCC TAGCTGTGTT GGAAGAGCC TAGCTGTGTT TGCAGGACCTT AGGGAACATT AGGGAACATT TGCAGCGATT TGCAGCGATT	PHLYTYTAP, SQYPAQFAHO 7700 6 (underlined sequence) 21 GGAGTGAAGC CTCACCTGA CCTAATATGG CTGACCTTGA GAATACACC ACCTTAACCC ACCTTAACCC ACCTTAACCC ACCTTAACCC ACCTTAACCC ACCTTAACCC ACCTTAACCC CAACTGGAG GCACACTGGAG CCACTGGAG CCACTGGAG CCACTGGAG CCACTGGAG CCACTGGAG CCACTGGAG CCACTGGAG CCACTGGAG CCACTGCTTT TCCCCCCTGC GAAAAATGCA	AA LGSTGTVA Q TYISASPAST SEI IENCE COMESPONDS 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TCAGGTCTAG AGAAGATACAA CAGAGGAAGA TGATACAGAC CAGAGGAAGA AGTACCGTGCA AGCCCCTGAG AGTCCGTGCA AGAACCGGC ATATTTATAA AAAAGGAAGA ATTTCAAAAT GCATTCCCTT GAGAATGAAA ATATCAAAAT ATATCAAAAT	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 GAAGGGAGCA CAATCAGCCA AGCCACTGGG ACTCATATG GCATCATATG GCATCATATG GCATCATATG AGAAAAGATG ACATCAGCA AGCACTCGGC AGAAAAGATG ACATCATATG AGAAAAGAT AAATAAAAAG ATGAAATACA GTGCACAT TATAAAAAG ATAAAAAGC ATAAAAAGC ATAAAAATGA ATTAAAAACA ATAAAAATGTG	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COMON) 51 GATARACTCG TTGCCTCCAA ARAGARARCA CTGGAGAGAA ACTCCACAGG ARGAGATGA ACTCCACAGG ARGAGATGA TATCTCAATG ACTGATAGGC GCCAAGCTGC ATTGGAGAAG TATCACCATG GAACATTCA ARATCCTATG TGACATCCTA TGACATCCCA TGACATCCCA TGACATCCCA TGACATCCCA TGACATCCCA TGACATCCCA TGACATCCCA TGACATCCCA TGACATCCCA TGGACATCCCA TGGACATCCCA TGGACATCCCA TGGACATCCCA TGGACATCCCA TGGACATCCCA TGGACATCCCA TGGACAGACA TGGACAGCA TGGACAGCA TGGACAGCA TGGACAGACA TGGACAGACA TGGACAGCA TGGACAGACA TGCACAGACA TCCACAGACA TCCACACAC TCCACACAC TCCACACAC TCCACACAC TCCACACAC TCCACACACA	60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080
50 55 60 65	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acc. Coding sequence 1 AGTCACAGCC TCACTCTAGT GCCTCCAAAG TGGTCACCAA GGAAGACTGA GGAAGACTGA TGGATGTTC TGGCAAAGCG ATCTAGAGCT TGGATGTGTT TATTCTTGCA ATGAAGCACA ATGAAGCACA GCCACTGTAT GTTGCCTAGC TTTTATGAGA TTTATGAG TTTATGAGCTC CTCTTCTTAA	A AAAAHLPTC P RVLPSPTHE ESSION#: NM_01 1 147-80 11 AGGTAACCCT AGGTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAGATC GGAAAAGATC GTAGCTGAG GGAAAGATC GTAGCTGAG GGAAAGATC GTAGCTGAG TAGCTTACTG AGGAACATT CTGCTGGA TTGACTCTTA AGGGAACATT CTTGCTGGA TTGACTCTTA AGGGAACATT TTGCAGGTATTGTA AGCTATTGTA AGCTATTGTA	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence of the control o	AA LGSTGTVA Q TYISASPAST SE JENCE CONESPONDS 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TGAGGTCTAG TGAGATCTAG AGCTCCAAAGA TGATACAAGA TGATACAAGA AGATCCGTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG ATATTATAA AAAGGAAGA TGAAACAGC ATATTTATAA AAATTCAAAAT GCATTCCCTT GAGAATGACT TGAAACAT CCCCACGTAG CCCCACGTAG	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 GAAGGAGCA CAATCAGCCA AGCCACTGGG ACTCTATATG CCACTCTGGG ACTCTATATG GCAACATGAGTA AGAAAGAGT AGAAAGAGT AAAAATACA AGGTTACAGTA AATCTACTGC AGGATGACGA AGGTTACAG AGGTTACAG AGGTTACAG AGGTTACAG AGGTTACAG AGGTTACAG AGGTTCACAT TATAAAAAGC AAAAATACAG ATAAAATACT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATARACTCG TTGCCTCCAA ANAGARACA CTGGAGAGAA ACCTTGAGGA ACTCCACAGG AAGAGGATGA TATCTCAATG ACTGATAGGC ACTGATAGGC ACTGATAGGC ACTGATAGGC TTGCACAGG TATCACCATG GAACATTGA AAATCCTCAA AAATCCTCAC TGACAGT TGACATCCA AAATCCTATG TGACATGCCA TGGAAGAAGA ACAGTGAAAAAA ACATGAAGAAAAA ACATGAAGAAAAAA ACAGAAAAAAAAAA	60 120 180 240 300 420 480 540 660 720 780 840 900 960 1020 1140
50 55 60	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acc. Coding sequence 1	A AAAAHLPTC P RVLPSPTHE ESSION#: NM_01 : 147-80 11 AGGTAACCCT AGCTTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAAGAT CGATATAGC GAATAACGC TAGTTTAGG GAAAAGAT CGATAAAGGC TAGTTTAGT GGAAGAGCC GATTAAAGG TAGTTATCTTA AGGGAACATT CCTGCTGGGA TTGCTGGGA TTGCTGGGA TTGCTGGTATTT TGCAGCGATT TGCAGCACTCTTA AGCTATTGTA CCATGACCAC	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) 21 GAGGTGAAGC CTCACCCTGA CCTAACCTGA CCTAATATGG GAATACAACC AATTAAGGAGC AACTAACCC ATTAAGGAGC GAAGTGATTC ACAACAGACC CCACTGGAAG GAGTCATGC CCACTGGAAG GAGTCATGC CTAAATGGAT GAGTAAGGC TTAAATGGAT GCTCTGCTTT TTCCCCCTGC TGCAGCACATT	AA LGSTGTVA Q TYISASPAST SE Jence corresponde 31 GGTTTAGTTA GGCACCTTAG TAGGCCCAAAGA TGAGGTCTAG TTCTGGGGA AGAAATTACA AGCCCTGAG AGCCCTGAG AGCCCTGAG AGTTCCGTGC ATATTTATAA AAAGGAAGA TTTCAAAGA TTTCAAAGA GTAGATGAAA GCATTCCCTT GAGATGAAA TCCCCACGTAG GGGTTAATGG	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 41 GAAGGAGCA CAATCAGCCA AGCACTCTGGG ACTCTATATG CCACTCTGGG ACTCTATATG CCACTCTGGT AGAAAAGAT AAATAAAAAG ATGAATTCACAGTA AATCTACTGC AGAGTATCCA AGTGATCCA ATGATTCCACA ATGATTCCACA ATGATTCCACA TATAAAAAGC AAAAATACA TTCAAGGATT ACTTAGGGGA TTCAAGGATT ACTTAGGGGA ATTAGGGGA ATTAGGGGA ATTAGGGGAT ACTTAGGGGAT ACTTAGGGGAT ACTTAGGGGAT ACTTAGGGGAT ACTTAGGGGAT ACTTAGGGGAA ATTAGGGGAA ATTAGGGGAA ATTAGGGGAA ATTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGGAA ACTTAGGGGAA ACTTAGGGGGAA ACTTAGGGGGAA ACTTAGGGGGAA ACTTAGGGGAA ACTTAGGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGGAA ACTTAGGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGAA ACTTAGGGGAA ACTTAGGAA ACTTAGGGGAA ACTTAGGGGAA ACTTAGGAAA ACTTAGGAA ACTTAGGAA ACTTAGGAA ACTTAGGAA ACTTAGGAA ACTTAGAA ACTTAGA	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATARACTCG TTGCCTGCAA AAAGAARACA CTGGAGAGAA ACCTTGAGGA ACCTCACAGG ACTCCACAGG ACTCCACAGG ACTGATAGGC GCCAAGCTGC GACAGCTGC GAACATTGA TATCACCATG GAACATTGA TATCACCATG GAACATTGA TCTCCTCTCA TGGAGAAAAAC TGGAGAAAAGA CTGAGAGAAAAGA TATCCTATGA TGACATCCCA TGGAGAAAAAAC TGGAGAAAAAC TGGAGAAAAAAC TGGAGAAAAAAC TGGAGAAAAAA TTGGCCTACA	60 120 180 240 300 420 480 540 660 720 780 840 900 960 1020 1020 1140 1200
50 55 60 65	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC PRVLPSPTHH ESSION#: NM_01 11 1 147-80 11 1 6AAAAACCT AGGTAACCCT AGGTAACCCT AGGTAACCCT TGACAGGACC TGAGGAGACC TGTAGTTAGC GGAAAAGATC GGATAAACGC TGTGTTTTG GGAAGAGCC TAGTATACTG CAGTATACTG CAGTATACTG CAGTATTACTG CAGTATTACTG CAGTATTACTG CAGTATTACTG CAGTATTATT AGGGAACATT TGTAGCTGGA TTGACTTTTT TGCAGCGATTT AGCTGTTTTT TGCAGCGATTTACCTGTAGCCAC GCCGTCTTCT	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) 21 GGAGTGAAGC CTCACCTGA CCTAATATGG CTGACCTTGA CCTAATATGG CAGAGGAGT GAGAGAGCA ACCTTAACCC ACCTTAACCC ACCTTAACCC ACCTGAAG AGGAGACATTG ACAACAGACG CCACTGGAAG GAGTCCTATG AAGTAAGGCC TTAAATGGAT CCTCTGCTTT TTCCCCCTGC GAAAAATGCA TTGGCTTG TTGCCTGC TGGAGGACACAT TTCCCCCAAAC	AA LGSTGTVA Q TYISASPAST SEI IEECE COMESPONDS 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TCAGGTCTAG AGAACTACA AGAGATACAAGA TGATACAAGA AGTCCGTGCA AGTCCGTGCA AGTCCGTGCA ATATTATAA AAAAGGAAGA TTTCAAATG GTAGATGAAC GCACTTCCTT GAGAATGACT ATATCAAAAT CCCCACGTAG AGCACTTCCCTT ATATCAAAAT CCCCACGTAG GGGTTAATGG TCACTTGGG	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 1 to start and slop of 41 GAAGGGAGCA CATCAGCCA AGCACTGGG ACTCTATATG CCATCTGGC AGAAAAGATG AGAAAAGATG ACATCAGTG AGAAAAGATG ACATCAGTG AGATATCA CATGCAAGTA AATCTACTGC AGAGCTGAAG ATGATTCTCCA GGTCTCCACAT TATAAAAAGC AAAAATAACA ATAAAAAGC ATAAAAATGTG TTCAAGGATT TTCAAGGATT TATAAGGGGA GGATGGGTG GGAGTGGGGGGGAGATGGGTGGG	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE CODON) 51 GATAAACTCG TTGCCTGCAA AAAGAAAACA CTGGAGAGAA ACCTCACAGG AAGAGAGAA ACTCCACAGG AAGAGAGAA ACTCCACAGG AAGAGAGAA ACTCCACAGG AAGAGAGAA TATCCACATG GAACATTTGA TATCCACTGC AAATCCTATG TGACATGCCA TGGAGAGAA ACTCTCACA AAATCCTATG TGACATGCCA TGGAGAGAGA AAGACAAGC ATGGAGAGAA AAGACAAGC AAGACACC AAGACACC AAGACC AAGACC AAGACC AAGACC AAGC AAGACC AAGC AAGACC AAGC AAGACC AAGC AAGACC AAGC AAGC	60 120 180 240 360 420 480 540 660 660 720 780 840 900 1020 1080 1140 1200 1200
50 55 60 65	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC P RVLPSPTHH ESSION#: NM_01 11 AGGTAACCCT AGCTTTAGC CTTGTCTTTG GAAAAGAAT TGACAGGACC TGTAGCTGAG GGAAAGAT TGACAGGACC TGTGTTAGG TAGCTGAT TGGAGGACC TAGTGTTAGG TAGCTGAT TGGAAGAGAC TAGCTGAT TGGAAGAGC TAGTTAAGG TAGCTGTTTT TGGAGGACATT CTTGCTGGGA ATTGACTTTTT TGCAGGATTT TGCAGGATT TGCAGGATT AGCTATTGTA CCATGACCAC CCCGTCTTCT AAAGTTAGTT AAAGTTAGTT	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence of the control o	AA LGSTGTVA Q TYISASPAST SEI IENCE COMESPONDE 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TGAGGTCTAG TTTCTGGGGA AGAATTACA AGACCCCTGGA AGCCCCTGGA AGCCCCTGGA AGTCCGTGCA TGGAACCGGC ATATTTATAA ATATCAAAT GCTAGATGAAA GCATTCCCTT GAGAATGACA TGAATGACA GCATTCCCTT GAGATGACA TCCCACGTAG GGGTTAATGG TCACTGTGGG TCACTGTGGG TCACTGTGGG TCACTGTGGG TCACTGTGGC	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 GAAGGAGCA CAATCAGCCA AGCCACTGGG ACTCATATG GCATCATATG AGAAAGATG ACATCAGCA AGACACTGGA AGAAAGATG AGAAAGATG AGAAAGATG AGAAAGATA AAATAAAAG ATGAATTCACTGC AGAGTGACA ATGAATACCA ATGAAATACA ATGAAATACA ATTAAAAAG TTCAAGGATT AGTTAAGAGT AGTTAAGAGT AGTTAAGAGT AGTTAAGAGT TTCAAGGATT AGTTAAGGGT AGTTAAGGGT TTCAAGGATT AGTTAAGGGT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCAAGGATT TTCATCTCT	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATARACTCG TTGCCTGCAA ARAGARARCA CTGGAGAGAA ACTCCACAGG ARGAGATGA TATCTCAATG ACTCTACAGG ACTCTACAGG ACTCTCACAGG ACACTTCAGGA ACACTTCACAGG ACACTTCACA ACACTCTCA ACACCTCACA ACACCACAC ACACCTCACA ACACCACAC ACACCTCACA ACACCACAC ACACCTCACA ACACCACAC ACACCTCACA ACACCACAC ACCCTCACAA ACACCACACTC ACCCTCACAAA	60 120 180 240 300 420 480 540 660 720 780 960 960 1020 1080 1140 1200 1320
50 55 60 65 70	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acc. Coding sequence 1 AGTCACAGCC TCACTCTAGT GCCTCCAAAG TGGTCACCAA GGAAGACTGA GGAAGACTGA TGGATGTGT TGGATGTGT TATTCTTGCA ATGAAGCAC ATTAGAGCAC GTTATAGAGCAC TTTTATGAG TTTTATGAG TTTTATGAG TTTTATGAG CACTGTAT GTTGCCTAGC TTTTATGAGC TTTTATGAGC TTTTATGAGC TCTCTTTAA ACACGTGGCC ACTCTGCTT AGGCCTTGT AGGCCCTTGTT ACACGTTGGCC ACTCTGCTTGT AGGCCCTTGTT AGGCCCTGGGC ACTCTGCTGTG	A AAAAHLPTC P RVLPSPTHE ESSION#: NM_01 1 147-80 11 AGGTAACCCT AGGTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAGATC GGAAAAGAT GGAATACTG GGAAAAGAT CACTGTGTTAGG TAGCTTAGT TGAGAGTACTG TAGCTGAG TAGCTTATGT TGAGAGTACTT CCATGACTTTACTG AGGTAACTT TCACGCGTCTTT AGCTATTGTA CCATGACCAC GCCGTCTTCT GGAGCTACAC	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) 21 GAGGTGAAGC CTCACCCTGA CCTAACTGTG GAATACAGC GAATACAGC GAATACAGC GAATACAGC GAATACAGC GAACATTA ACACAGAGC CCACTGGAAG GAGTCATGC GAAGTCATGC GAAGTCATGC CACTGGAAG GAGTCATGC CACTGGAT GAGTCATGC TTAAATGGAT GCTCTGCTTT TCCCCCTGC TGGAGCACAT TCCCCCAAA AATGTACTTT	AA LGSTGTVA Q TYISASPAST SE JENCE CONESPONDE 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TGAGGTCTAG TGAGATCTAG AGATCAGAG AGCTCCATAGA AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTTAG ATATTATAA ATATTAAA ATATTAAA ATATTCAAAT GCATTCCCTT GAGAATGACT GAGAATGACT CCCACGTAG GGGTTAATCG TCCCTCTTCCTT TCTATCCTT	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 41 GAAGGAGCA CAATCAGCCA AGCACTCTGGG ACTCTATATG CCACTCTGGG ACTCTATATG AGAAAGATG AGAAAGATG AGAAAGATG AGAAAGATG AGATAAAAGT AATCTACTGC AGGATGTACA AGTCTCACAT TATAAAAAGC AAAATTACAT TATAAAAAGC AAAATTACAT TTCAAGGATT AGTTAGGGGA TTCAAGGATT AGTTAGGGGA GAGAAGGTAT CAGGAAGGTAT CAGGAAGGAAGTAT	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE CODON) 51 GATAAACTCG TTGCCTGCAA AAAGAAAACA CTGGAGAGAA ACCTCACAGG AAGAGAGAA ACTCCACAGG AAGAGAGAA ACTCCACAGG AAGAGAGAA ACTCCACAGG AAGAGAGAA TATCCACATG GAACATTTGA TATCCACTGC AAATCCTATG TGACATGCCA TGGAGAGAA ACTCTCACA AAATCCTATG TGACATGCCA TGGAGAGAGA AAGACAAGC ATGGAGAGAA AAGACAAGC AAGACACC AAGACACC AAGACC AAGACC AAGACC AAGACC AAGC AAGACC AAGC AAGACC AAGC AAGACC AAGC AAGACC AAGC AAGC	60 120 180 240 300 420 480 540 660 720 780 900 960 1020 1140 1200 1200 1320 1380
50 55 60 65	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acc. Coding sequence 1	A AAAAHLPTC P RVLPSPTHE ESSION#: NM_01 1 147-80 11 AGGTAACCCT AGGTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAGATC GGAAAAGAT GGAATACTG GGAAAAGAT CACTGTGTTAGG TAGCTTAGT TGAGAGTACTG TAGCTGAG TAGCTTATGT TGAGAGTACTT CCATGACTTTACTG AGGTAACTT TCACGCGTCTTT AGCTATTGTA CCATGACCAC GCCGTCTTCT GGAGCTACAC	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) 21 GARGTGAAGC CTCACCCTGA CCTAACCTGA CCTAATATGG GAAGAGAGC GAAGAGAGC ACTTAACCC ATTAAGGAGC ACTTAACCC ATTAAGGAGC CCACTGGAAG GAGTCCTAT ACACAGACG CCACTGGAAG GAGTCCTAT GCACTGGAAG GAGTCATT TCCCCTGC TGAAAATGGAT TTCCCCAAAC TCAGAACAT TCCCCAAAC TCAGAACAT CAAAGTATGT CAAAGTATGT CAAAGTATGT	AA LGSTGTVA Q TYISASPAST SE JENCE CONESPONDE 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TGAGGTCTAG TGAGATCTAG AGATCAGAG AGCTCCATAGA AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTTAG ATATTATAA ATATTAAA ATATTAAA ATATTCAAAT GCATTCCCTT GAGAATGACT GAGAATGACT CCCACGTAG GGGTTAATCG TCCCTCTTCCTT TCTATCCTT	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 41 GAAGGAGCA CAATCAGCCA AGCACTCTGGG ACTCTATATG CCACTCTGGG ACTCTATATG AGAAAGATG AGAAAGATG AGAAAGATG AGAAAGATG AGATAAAAGT AATCTACTGC AGGATGTACA AGTCTCACAT TATAAAAAGC AAAATTACAT TATAAAAAGC AAAATTACAT TTCAAGGATT AGTTAGGGGA TTCAAGGATT AGTTAGGGGA GAGAAGGTAT CAGGAAGGTAT CAGGAAGGAAGTAT	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATARACTCG TTGCCTCCAA ANAGARACA CTGGAGAGAA ACTTCACAGG AAGAGATGA ACTCACAGG AAGAGATGA TATCTCAATG ACTGATAGGC ACTGATAGGC ACTGATAGGC TATCACTGA AATCCTCAA AATCCTCAA CTGATAGGC TATCACATG GAACATTGA CAACTTCACA AAATCCTCAA AAATCCTCAA AAATCCTCAA AAATCCTAAG TGACATCCCA AAATCCTAAC TGACAAGAAGAAGC ATGTGAGATA ATGGCCTACA AAGACAAGTC ATGCCTAAAA CTATTCACTG	60 120 180 240 300 420 480 540 660 720 780 960 1020 1080 1140 1260 1320 1380
50 55 60 65 70	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC P RVLPSPTHH ESSION#: NM_01 11 AGGTAACCCT AGGTATCC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAAGAT CACTGTGTTTAG GGAAAAGAT TAGCTGAGT TAGCTGAGT TAGCTGAGT TAGCTGAGT TAGCTGAT TAGCTGAT TAGCTGAT TAGCTGAT TAGCTGAT AGGGAACAT TAGCTGTTT TGCAGGAC TAGTATACTG TCAGCATTTTT TGCAGCATT TGCAGCATT TGCAGCATT TGCAGCATT AGCTATTGTA CCATGACCAC CCCGTCTTCT AAAAATATAA AAAAAAAAAA	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence of the control o	AA LGSTGTVA Q TYISASPAST SE JENCE CONESPONDE 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TGAGGTCTAG TGAGATCTAG AGATCAGAG AGCTCCATAGA AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTTAG ATATTATAA ATATTAAA ATATTAAA ATATTCAAAT GCATTCCCTT GAGAATGACT GAGAATGACT CCCACGTAG GGGTTAATCG TCCCTCTTCCTT TCTATCCTT	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 41 GAAGGAGCA CAATCAGCCA AGCACTCTGGG ACTCTATATG CCACTCTGGG ACTCTATATG AGAAAGATG AGAAAGATG AGAAAGATG AGAAAGATG AGATAAAAGT AATCTACTGC AGGATGTACA AGTCTCACAT TATAAAAAGC AAAATTACAT TATAAAAAGC AAAATTACAT TTCAAGGATT AGTTAGGGGA TTCAAGGATT AGTTAGGGGA GAGAAGGTAT CAGGAAGGTAT CAGGAAGGAAGTAT	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATARACTCG TTGCCTCCAA ANAGARACA CTGGAGAGAA ACTTCACAGG AAGAGATGA ACTCACAGG AAGAGATGA TATCTCAATG ACTGATAGGC ACTGATAGGC ACTGATAGGC TATCACTGA AATCCTCAA AATCCTCAA CTGATAGGC TATCACATG GAACATTGA CAACTTCACA AAATCCTCAA AAATCCTCAA AAATCCTCAA AAATCCTAAG TGACATCCCA AAATCCTAAC TGACAAGAAGAAGC ATGTGAGATA ATGGCCTACA AAGACAAGTC ATGCCTAAAA CTATTCACTG	60 120 180 240 300 420 480 540 660 720 780 960 1020 1080 1140 1260 1320 1380
50 55 60 65 70	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acc. Coding sequence 1	A AAAAHLPTC PRVLPSPTHH ESSION#: NM_01 11 AGGTAACCCT AGCTTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAGAT CGCTGTTAGT GGAAGAGCC GATTAAAGG TAGCTTAGT TGCAGGACAT AGGGAACAT CTGCTGGT TGCAGCAC CAGTCTTA AGGGAACAT CTGCTGGT AGCTACTTA AGGGAACAT CTGCTGGT AGCTATTTT AGCACTTTTT AGCACTTTTT AGCTATTTT AGCTATTTT AGCTATTGTA CCATGACCAC AAAAATATAA AAAAAAAAAA	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence of the control o	AA LGSTGTVA Q TYISASPAST SE JENCE CONESPONDE 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TGAGGTCTAG TGAGATCTAG AGATCAGAG AGCTCCATAGA AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTTAG ATATTATAA ATATTAAA ATATTAAA ATATTCAAAT GCATTCCCTT GAGAATGACT GAGAATGACT CCCACGTAG GGGTTAATCG TCCCTCTTCCTT TCTATCCTT	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 41 GAAGGAGCA CAATCAGCCA AGCACTCTGGG ACTCTATATG CCACTCTGGG ACTCTATATG AGAAAGATG AGAAAGATG AGAAAGATG AGAAAGATG AGATAAAAGT AATCTACTGC AGGATGTACA AGTCTCACAT TATAAAAAGC AAAATTACAT TATAAAAAGC AAAATTACAT TTCAAGGATT AGTTAGGGGA TTCAAGGATT AGTTAGGGGA GAGAAGGTAT CAGGAAGGTAT CAGGAAGGAAGTAT	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATARACTCG TTGCCTCCAA ANAGARACA CTGGAGAGAA ACTTCACAGG AAGAGATGA ACTCACAGG AAGAGATGA TATCTCAATG ACTGATAGGC ACTGATAGGC ACTGATAGGC TATCACTGA AATCCTCAA AATCCTCAA CTGATAGGC TATCACATG GAACATTGA CAACTTCACA AAATCCTCAA AAATCCTCAA AAATCCTCAA AAATCCTAAG TGACATCCCA AAATCCTAAC TGACAAGAAGAAGC ATGTGAGATA ATGGCCTACA AAGACAAGTC ATGCCTAAAA CTATTCACTG	60 120 180 240 300 420 480 540 660 720 780 960 1020 1080 1140 1260 1320 1380
50 55 60 65 70	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC PRVLPSPTHH ESSION#: NM_01 11 AGGTAACCCT AGCTTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAGAT CGCTGTTAGT GGAAGAGCC GATTAAAGG TAGCTTAGT TGCAGGACAT AGGGAACAT CTGCTGGTA AGGGAACAT CTGCTGGTA AGGGAACAT CTGCTGGTA AGGGAACAT TGCAGGAT TGCAGTATTT AGCATTTTT AGCATTTTT AGCATTTTT AGCATTTTT AGCATTTTT AGCATTTTT AGCATTTTT AGCATTTCT AAAGTTAGTT GGAGCTACAC AAAAATATAA AAAAAAAAAA	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence of the control o	AA LGSTGTVA Q TYISASPAST SE JENCE CONESPONDE 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TGAGGTCTAG TGAGATCTAG AGATCAGAG AGCTCCATAGA AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTTAG ATATTATAA ATATTAAA ATATTAAA ATATTCAAAT GCATTCCCTT GAGAATGACT GAGAATGACT CCCACGTAG GGGTTAATCG TCCCTCTTCCTT TCTATCCTT	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 41 GAAGGAGCA CAATCAGCCA AGCACTCTGGG ACTCTATATG CCACTCTGGG ACTCTATATG AGAAAGATG AGAAAGATG AGAAAGATG AGAAAGATG AGATAAAAGT AATCTACTGC AGGATGTACA AGTCTCACAT TATAAAAAGC AAAATTACAT TATAAAAAGC AAAATTACAT TTCAAGGATT AGTTAGGGGA TTCAAGGATT AGTTAGGGGA GAGAAGGTAT CAGGAAGGTAT CAGGAAGGAAGTAT	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATARACTCG TTGCCTCCAA ANAGARACA CTGGAGAGAA ACTTCACAGG AAGAGATGA ACTCACAGG AAGAGATGA TATCTCAATG ACTGATAGGC ACTGATAGGC ACTGATAGGC TATCACTGA AATCCTCAA AATCCTCAA CTGATAGGC TATCACATG GAACATTGA CAACTTCACA AAATCCTCAA AAATCCTCAA AAATCCTCAA AAATCCTAAG TGACATCCCA AAATCCTAAC TGACAAGAAGAAGC ATGTGAGATA ATGGCCTACA AAGACAAGTC ATGCCTAAAA CTATTCACTG	60 120 180 240 300 420 480 540 660 720 780 960 1020 1080 1140 1260 1320 1380
50 55 60 65 70	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acci Coding sequence 1	A AAAAHLPTC PRVLPSPTHH RVLPSPTHH RSSION#: NM_01 11 1 AGGTAACCCT AGGTAACCCT TGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGGGT TGACAGGACC TGTAGCTGAG GGAAAAGAT CACTGTGTTT GGAAGAGAC TGTGTTTT TGCAGGAC TAGTATACTG CAGTCCTTA AGGGAACATT CTTGCTGGGA TTGACTTTTT TGCAGCGATT TGCAGCGATT AGCTATTGTA CCATGACCAC GCCGTCTTCT AAAGTTACTT GGAGCTACTA AAAAAAAAAA	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence) 21 GGAGTGAAGC CTCACCTGA CCTAATATGG CTGACCTTGA CCTAATATGG CTGACTTGACGC ACCTTAACCC ACCTTAACCC ACCTTAACCC ACCTTAACCC ACCTGAAG GGAGCAGT ACAACAGACG CCACTGGAAG ACATGGAAG GCTTGCTTG TTCCCCCTGC GAAAAATGCA TCTGCCTGT TGGAGCACAT TTCCCCAAC TCAGAACAT AATGTACTTT AAAA ACTTACTTTC TCAGAACAT AATGTACTTT AAAA ACTACTTTTCCCAAC TCAGAACAT AATGTACTTTT AAAA GENEE: 0170	AA LGSTGTVA Q TYISASPAST SEI IEECE COMESPONDS 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TCAGGTCTAG AGAAATTACA CAGAGGAAGA TGATACAGAC AGCCCTGAG AGTCCGTGCA AGTCCGTGCA AGTCCGTGCA TGTATTATTATAA ARAAGGAAGA TTTTCAAATG GTAGATGAAC GGAATGACT ATATCAAAAT CCCCACGTAG GGGTTAATGG TCACTGTGGG TCACTGTGGC TCATAGAAAAA	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 GAAGGGAGCA CAATCAGCCA AGCCACTGGG ACTCTATATG GCATCATATG GCATCATATG AGAAAAGATG ACATCAGCA AGACACTGGC AGACATATAG ACATCAGCA AGACATATAG ACATCAGCA ATAAAAAG ATAAAAAG ATAAAAAG ATAAAATG TTCAAGGAT TTCAAGGAT TAGTAGGGA GAGATGGGTG GAGATGGGTG GAGATGGGTG AGAGTGGTT CAAGATTAGCA ATAAAATGTG TTCAAGGAT AGTTAGGGA AGAGTGGGTG AGAGTGGTT CAGGAAGTAT AACCCCTTGC	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATAAACTCG TTGCCTGCAA AAAGAAAACA CTGGAGAGAA ACCTTGAGGA ACTCCACAGG AAGAGATGA TATCTCAATG ACTGATAGGC GCCAAGCTGC ATTGGAGAAG TATCACCATG GAACATTTGA TATCCCTCTCA AAATCCTATG TGACATGCCA TGGAAGAAGA CTGGAAGAAGA ATGTGACATCCA AAATCCTATG TGACATGCCA TGGAAGAAGA CTATTGACATA CTATTGACATA CTATTGACATA CTATTGACATA AAAACAATCC ATGAAAAACC ATGTGACATA AAGACAAGTC ATCCTAAAA CTATTCACAG TATTTCAAAA	60 120 180 240 300 420 480 540 660 720 780 960 1020 1080 1140 1260 1320 1380
50 55 60 65 70	GTVHPHLAA. VHQVPVSMG Nucleic Acid Acc. Coding sequence 1	A AAAAHLPTC PRVLPSPTHH ESSION#: NM_01 11 AGGTAACCCT AGCTTTAACC CTTGTCTTTG GAAAAGAAT CACTGTGGTT TGACAGGACC TGTAGCTGAG GGAAAGAT CGCTGTTAGT GGAAGAGCC GATTAAAGG TAGCTTAGT TGCAGGACAT AGGGAACAT CTGCTGGT TGCAGCAC CAGTCTTA AGGGAACAT CTGCTGGT AGCTACTTA AGGGAACAT CTGCTGGT AGCTATTTT AGCACTTTTT AGCACTTTTT AGCTATTTT AGCTATTTT AGCTATTGTA CCATGACCAC AAAAATATAA AAAAAAAAAA	PHLYTYTAP, SQYPAQFAH 7700 6 (underlined sequence of the control o	AA LGSTGTVA Q TYISASPAST SE JENCE CONESPONDE 31 GGTTTAGTTA GGCACCTTAG AGCCCAAAGA TGAGGTCTAG TGAGATCTAG AGATCAGAG AGCTCCATAGA AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTGAG AGCTCCTTAG ATATTATAA ATATTAAA ATATTAAA ATATTCAAAT GCATTCCCTT GAGAATGACT GAGAATGACT CCCACGTAG GGGTTAATCG TCCCTCTTCCTT TCTATCCTT	HL VASQGSAI VYTGYPLSPA 2 ID NO:283 PBY 41 41 41 GAAGGAGCA CAATCAGCCA AGCACTCTGGG ACTCTATATG CCACTCTGGG ACTCTATATG AGAAAGATG AGAAAGATG AGAAAGATG AGAAAGATG AGATAAAAGT AATCTACTGC AGGATGTACA AGTCTCACAT TATAAAAAGC AAAATTACAT TATAAAAAGC AAAATTACAT TTCAAGGATT AGTTAGGGGA TTCAAGGATT AGTTAGGGGA GAGAAGGTAT CAGGAAGGTAT CAGGAAGGAAGTAT	RHT VQHTAYP. A KVNQYPYI I DNA SEQUENCE COOON) 51 GATARACTCG TTGCCTGCAA ARAGARARCA CTGGAGAGAA ACCTTGAGGA ACTCCACAGG AAGAGATGA TATCTCAATG ACTGATAGGC GCCAAGCTGC ATTGGAGAAG TATCACCATG GAACATTGA TATCACCATG TGACATGCC ATTGGAGAAG ATTGACATGC ATTGACATGC ATTGACATGC ATTGACATGC ATTGACATGC ATTGACATGC TTGACATGCC ATTGACATGC ATTGACATGC ATTGACATCC ATGAAGAGAAGA	60 120 180 240 300 420 480 540 660 720 780 960 1020 1080 1140 1260 1320 1380

5	NQKLQEKMTP VQPLRNKKTD	QGECSVAETL RLDVDSLFSN	TPEEEHHMKR	 RRKTDTVVES MMAKREKIIK LLSLLEEATT LSHCIQSLK	ELIQTEKDYL	NDLELCVREV	60 120 180
10	Nucleic Acid Acc					DNA SEQUENCE	
10	Coding sequence	: 523-26	76 (underlined sec	uence correspond	s to start and stop	codon)	
	1	11 1	21	31	41	51 I	
15				CAGGACTCAG TTTTCAGAAG			60 120
	TTCCTACACT	TTTCCTGCGC	TAGAGCAGCG	AGCAGCCTGG TTAGAGACCC	AACAGACCCA	GGCGGAGGAC	180 240
20	ATGTGCGGAT	TTGCGAGGCG	CGCCCTGGAG	CTGCTAGAGA GGAGAAAGCG	TCCGGAAGCA	CAGCCCCGAG	300 360
20	TCTCCGGCCT	GTCTGCACCC	TGTCGCCTGA	GCTGCCTGAC	AGTGACAATG	ACATCCCAGT	420
				TGTTTGTCAG GACACCAACA			480 540
~~				TTCTCCTTAC			600
25				TCAGAGAGCT GAAAGTCTTC			660 720
				AGTATTTGCA			780
				TTGGCAAAGC			840
30				ACAATTGCAG AAGAGGTTTT			900 960
	ATGAAAACAT	CCTTGGGGTG	GTTGGAGGCA	CCCTTAAAGA	TTTTTAAACA	GCTTCAGTAC	1020
				AGCAGGAAAA TTTCTACATG			1080 1140
				ATAAAGGCAG			1200
35				TGCTTCCATA			1260
				ATGAAAAGCA ACATCGCTAT			1320 1380
	CATTTCATGT	TTGACAAAGA	TATGACAATT	CTGCAATTTG	GCAATGGCAT	CAGAAGGCTG	1440
40				AATTTTGAAT ACTATGTTGA			1500 1560
70				TCTTCAAGGG			1620
				TTGTTTTTGG CTCTCAGACA			1680
				CGAGCTCAG			1740 1800
45	GGGAAGCTGA	AGGCTACCCT	TGAGCAAGCC	CACCAAGCCC	TGGAGGAGGA	GAAGAAAAAG	1860
				TGTGAGGTTG GTCACCATGC			1920 1980
				CTGCAGGTCA			2040
50				CTGGATGTCT			2100 2160
50				AAAGAGAGTG TCTGATGAAG			2220
	CCTATCAAGA	TGCGAATTGG	ACTGCACTCT	GGATCAGTTT	TTGCTGGCGT	CGTTGGAGTT	2280
				AATGTCACTC CCAACAACTT			2340 2400
55	CCTGGTTTCG	TGTTTACCCC	TCGATCAAGG	GAGGAACTTC	CACCAAACTT	CCCTAGTGAA	2460
	ATCCCCGGAA	TCTGCCATTT	TCTGGATGCT	TACCAACAAG CAATTTTTTA	GAACAAACTC	AAAACCATGC	2520 2580
	TTAGCAACCT	AAGATGTGGA	TTATAAGTCT	TTGGGGTTTG	ACTCATTGAA	GATGTGTAGA	2640
60	GCCTCTGAAA	GCACTTTAGG	GATTGTAGAT	GGC <u>TAA</u> CAAG	CAGTATTAAA	ATTTCAGGAG	2700
60				GACAAAATGT GCTACTTTTG			2760 2820
	AACCAGCACT	TACTACCTGT	ACTCAAAATT	CAGCACCTTG	TACATATATC	AGATAATTGT	2880
				GCAATCTCAT CAAAAAAAA			2940 3000
65	AAAA	GIGITIGIGA	INGITATOR	Citabata	Manner	700000000	3000
	SEQ ID NO:286 Protein Accession						
70	1	11	21	31	41	51	
	Ī	1]	1	1	Ī	
				EEAAGSSESC VALORTLAKH			60 120
				ILGVVGGTLK			180
75	KRGRLEDASI	LCLDKEDDFL	HVYYFPPKRT	TSLILPGIIK	AAAHVLYETE	VEVSLMPPCF	240
				PQSSLVIPTS INQTFSGIMT			300 360
	SRVMDLKGQM	IYIVESSAIL	PLGSPCVDRL	EDFTGRGLYL	SDIPIHNALR	DVVLIGEQAR	420
80				VDLLCSIFPC			480
80	TMLFSDIVGF	TAICSQCSPL	OATJMINALA	TRFDQQCGEL	DVYKVETIGD	AYCVAGGLHK	540

ESDTHAVQIA LMALKMMELS DEVMSPHGEP IKMRIGLHSG SVFAGVVGVK MPRYCLFGNN 600 VTLANKFESC SVPRKINVSP TTYRLLKDCP GFVFTPRSRE ELPPNFPSBI PGICHFLDAY. 660 QQGTNSKPCF QKKDVEDGNA NFLGKASGID

5

SEQ ID NO:287 PFD2 DNA SEQUENCE

Nucleic Acid Accession#: NM_000720
Coding sequence: 119-6664 (underlined sequence corresponds to start and stop codon)

	county acquerioc	. 11000	0 + (uniconico co	lacinos acircoborio	o to our and otop	1000.17	
10							
10							
	1	11	21	31	41	51	
	1	1	1	1	I	1	
	DODDATEACO	CAGGGACCGC	CCCTCCTATC	TOTTCGTCAT	CCCCTTCCCC	ATTCCCCCCC	60
		CCCAGCACAG					120
15							
ΙJ		ATGATGATGA					180
		AACTATGCAA					240
	TCAGCCGAAT	AGCTCCAAGC	AAACTGTCCT	GTCTTGGCAA	GCTGCAATCG	ATGCTGCTAG	300
	ACAGGCCAAG	GCTGCCCAAA	CTATGAGCAC	CTCTGCACCC	CCACCTGTAG	GATCTCTCTC	360
		CGTCAGCAAT					420
20							480
20		GCCCTTTTCT					
		TGGAAACCAT					540
	GGCCTTAGCT	ATTTACATCC	CATTCCCTGA	AGATGATTCT	AATTCAACAA	ATCATAACTT	600
	GGAAAAAGTA	GAATATGCCT	TCCTGATTAT	TTTTACAGTC	GAGACATTTT	TGAAGATTAT	660
	ACCCTATCCA	TTATTGCTAC	ATCCTAATGC	TTATGTTAGG	AATGGATGGA	ATTTACTGGA	720
25		GTAATAGTAG					780
23		AACCACTCAA					840
		TTGCGACCAC					900
	GAACTCCATT	ATAAAAGCCA	TGGTTCCCCT	CCTTCACATA	GCCCTTTTGG	TATTATTTGT	960
	AATCATAATC	TATGCTATTA	TAGGATTGGA	ACTITITATI	GGAAAAATGC	ACAAAACATG	1020
30		GACTCAGATA					1080
		CAGTGTACTG					1140
		ACCAACTTTG					1200
		GGCTGGACAG					1260
25		TATTTTGTTA					1320
35	TCTTGGTGTC	CTTAGTGGAG	AATTCTCAAA	GGAAAGAGAG	AAGGCAAAAG	CACGGGGAGA	1380
	TTTCCAGAAG	CTCCGGGAGA	AGCAGCAGCT	GGAGGAGGAT	CTAAAGGGCT	ACTTGGATTG	1440
	GATCACCCAA	GCTGAGGACA	TCGATCCGGA	GAATGAGGAA	GAAGGAGGAG	AGGAAGGCAA	1500
		AGCATGCCCA					1560
		AACCGAGGCT					1620
40							
40		GGGCCCTCTG					1680
		TGGCGTCGCT					1740
	GTCTGTCACG	TTTTACTGGC	TGGTTATCGT	CCTGGTGTTT	CTGAACACCT	TAACCATTTC	1800
	CTCTGAGCAC	TACAATCAGC	CAGATTGGTT	GACACAGATT	CAAGATATTG	CCAACAAAGT	1860
		CTGTTCACCT					1920
45		TCTCTTTTCA					1980
72							
		GTGGAACTGG					2040
		AGAATCTTCA					2100
	ATCCTTATTA	AACTCCATGA	AGTCCATCGC	TTCGCTGTTG	CTTCTGCTTT	TTCTCTTCAT	2160
	TATCATCTTT	TCCTTGCTTG	GGATGCAGCT	GTTTGGCGGC	AAGTTTAATT	TTGATGAAAC	2220
50		CGGAGCACCT					2280
-		GAAGACTGGA					2340
		GGAATGATCG					2400
		AATGTCTTCT					2460
	GAACACTGCT	CAGAAAGAAG	AAGCGGAAGA	AAAGGAGAGG	AAAAAGATTG	CCAGAAAAGA	2520
55	GAGCCTAGAA	AATAAAAAGA	ACAACAAACC	AGAAGTCAAC	CAGATAGCCA	ACAGTGACAA	2580
		ATTGATGACT					2640
		GTAGGGGAAG					2700
							2760
		CCTCGAAGGA					
C O		GCTTTCTTCA					2820
60	GCTCATCAAC	CACCACATCT	TCACCAACCT	CATCCTTGTC	TTCATCATGC	TGAGCAGCGC	2880
	TGCCCTGGCC	GCAGAGGACC	CCATCCGCAG	CCACTCCTTC	CGGAACACGA	TACTGGGTTA	2940
		GCCTTCACAG					3000
		CTCCACAAAG					3060
							3120
65		GTGTCTCTGG					
65		GTCTTAAGGG					3180
	TAAGCACGTG	GTCCAGTGCG	TCTTCGTGGC	CATCCGGACC	ATCGGCAACA	TCATGATCGT	3240
	CACTACCCTC	CTGCAGTTCA	TGTTTGCCTG	TATCGGGGTC	CAGTTGTTCA	AGGGGAAGTT	3300
	CTATCGCTGT	ACGGATGAAG	CCAAAAGTAA	CCCTGAAGAA	TGCAGGGGAC	TTTTCATCCT	3360
		GGGGATGTTG					3420
70							
70		GACAACGTCC					3480
		GCGTTGCTGT					3540
	CTACAACCAC	CGCGTGGAGA	TCTCCATCTT	CTTCATCATC	TACATCATCA	TTGTAGCTTT	3600
	CTTCATGATG	AACATCTTTG	TGGGCTTTGT	CATCGTTACA	TTTCAGGAAC	AAGGAGAAAA	3660
	ДСАСТАТАВС	AACTGTGAGC	TGGACAAAAA	TCAGCGTCAG	TGTGTTCAAT	ACCCCTTCAA	3720
75		TTGCGGAGAT					3780
13							
		TCGCCTTTCG					3840
		CAGCACTACG					3900
	CATGGTCTTC	ACCGGGGTGT	TCACCGTCGA	GATGGTTTTG	AAAGTCATCG	CATTTAAGCC	3960
		TTTAGTGACG					4020
80		GCCCTCAGCG					4080
-				. and a definition			-500

WO 02/30268

			AAGAGAGCAA				4140
			AGCTTCTCAG				4200
			AGGCGCTCCC				4260
5			GCATGCAGAT ACTTCCAGAC				4320 4380
5			GGCAGGAGAT				4440
			ACCCCGGGGA				4500
			ACATGCTCTG				4560
			ACTATCTGAC				4620
10	TTTAGATGAA	TTCAAAAGAA	TATGGTCAGA	ATATGACCCT	GAGGCAAAGG	GAAGGATAAA	4680
	ACACCTTGAT	GTGGTCACTC	TGCTTCGACG	CATCCAGCCT	CCCCTGGGGT	TTGGGAAGTT	4740
			GCAAGAGATT				4800
			CAACCCTGTT				4860
15			AAGCTAATGA				4920
13			TACTTGACCA			AATTCAAGAA	4980 5040
			TGGGAAAGTA				5100
						TATCGTGTGA	5160
			AGGAAACAAA				5220
20			ACCATGTCAA				5280
			ACCGTCCCCT				5340
			TGTTTCCTCC				5400
			AGCAAGTTCC				5460
25			ATGGAAAGCG				5520
25			CCCACAAGCA				5580
			AAACTTACAT				5640
			CAGAGATACA GTGAGGAATG				5700 5760
			ACAGCAGATA				5820
30			AAGGATTCTT				5880
			GACGCCTACT				5940
			TGCGCCGGCA				6000
			CCCTGCCTCT				6060
25			AAGCCCAGAA				6120
35			CTCCCTACCG				6180
			CCCTGGACCA				6240
			AGCCCGACAT GGAACAAAAA				6300 6360
			CCGAAGGCTT				6420
40			TCGCTGATGC				6480
•••			ATGGGAACGT				6540
	CCTCTCACAC	CGGCAGGACT	ATGAGCTACA	GGACTTTGGT	CCTGGCTACA	GCGACGAAGA	6600 -
			AGGAGGACCT				6660
45			GACTGGCTCT				6720
43			GAAAGTTTAG				6780
			TCATGCCTCA			AAACAGCAGG	6840 6900
						ATTGTCCAGA	6960
						ACCCAACTGA	7020
50			GGGGAAAGTT				7080
	CGTTACCTCA	GCCATCGGTC	TAGCATATCA	GTCACTGGGC	CCAACATATC	CATTTTTAAA	7140
	CCCTTTCCCC	CAAATACACT	GCGTCCTGGT	TCCTGTTTAG	CTGTTCTGAA	ATA	
55		FD2 Protein sequ					
33	Protein Accession	n#: A38198	5				
	1	11	21		41	51	
	MANAGAMAKKA	OHOROOOMDH	AMEANVARCT	PLPLSGEGPT	SUBMESKULA	LSWQAAIDAA	60
60			SQRKRQQYAK				120
•			VALAIYIPFP				180
			DFVIVIVGLF				240
	AFRVLRPLRL	VSGVPSLQVV	LNSIIKAMVP	LLHIALLVLF	VIIIYAIIGL	ELFIGKMHKT	300
			GNGRQCTANG				360
65			WPWVYFVSLI				420
			WITQAEDIDP				480
			AAKAGPSGCR				540
			SSEHYNQPDW ETILVELEIM				600 660
70			IIIFSLLGMQ				720
, ,			PSSSGMIVCI				780
			ESLENKKNNK				840
	CDVPVGEEEE	EEEEDEPEVP	AGPRPRRISE	LNMKEKIAPI	PEGSAFFILS	KTNPIRVGCH	900
76	KLINHHIFTN	LILVFIMLSS	AALAAEDPIR	SHSFRNTILG	YFDYAFTAIF	TVEILLKMTT	960
<i>7</i> 5			LVVGVSLVSF				1020
			VTTLLQFMFA				1080
			DENFONVLSA				1140
			FFMMNIFVGF VVNSSPFEYM				1200 1260
80			PKGYFSDAWN				1320
-		Are A			42		
					41	-	

			FRVMRLVKLL NQINRNNNFQ				1380 1440
•			IVYFISFYML				1500
5			KHLDVVTLLR KTEGNLEQAN				1560 1620
_			KRKEQGLVGK				1680
	DLQDDEPEET	KREEEDDVFK	RNGALLGNHV	NHVNSDRRDS	LOQTIVITHRP	LHVQRPSIPP	1740
			HNHNSIGKQV VKRTRYYETY				1800 1860
10			SRONYGYYSR				1920
	DSRRSPRRRL	LPPTPASHRR	SSFNFECLRR	QSSQEEVPSS	PIPPHRTALP	LHLMQQQIMA	1980
			WATPPATPPY				2040
			LTVPSSFRNK SAASTLLNGN				2100 2160
15		LADEMICITT		***************************************		201010101	
				CE	O ID NO.300 ODI	DNA SEQUENCE	
	Nucleic Acid Acc	ession#: NM_00	2812	. 32	4 ID NO.205 OBIC	DIA SEQUENCE	
20	Coding sequence	: 150-33	62 (underlined sec	quence correspond	ls to start and stop	codon)	
20							
	1 -	11	21	31	41	51	
	1	1	1	1	1	l	•
25			TCGGGGTCGG				60
43			CCCGCCGCGA				120 180
	CCCGCCGGTT	GCCTCTGCTC	AGCGTCCTGC	TGCTGCCGCT	GCTGGGCGGT	ACCCAGACAG	240
			CCGTCCTCCC				300
30			CCGGGCCCGG				360 420
50			ACCTTCCAGT				480
			TCCTTCAACA				540
			GCTGAGATCC				600 660
35			GTCAGCAGCA				720
	GTCCTGAGCA	TAGTGGGCTG	TATTCCTGCT	GCGCCCACAG	TGCTTTTGGC	CAGGCTTGCA	780
			AGCATTGCTG				840 900
			AGGTATGAGG TGGCTCTTTG				960
40	GCCCCCACA	CCTCCGCAGA	GCCACAGTGT	TTGCCAACGG	GTCTCTGCTG	CTGACCCAGG	1020
			ATCTACCGCT				1080
			CACCTAGCAG GAGGAGCGTG				1140 1200
			CACGCGGGAG				1260
45			TTGGCCAATA				1320
			GGTCAGCGGA CCCCAAGACA				1380 1440
			ACACCAAAAC				1500
50			TTCGAGGTCT				1560
50			TGGTACCGTT GTGCTGGAAA				1620 1680
			AAGGAGGCCA				1740
			CGGGCAGATG				1800
55			GCCCGGGTGA GGCCAGATTC				1860 1920
55			CCAGAGCGTA				1980
			GACCCCAAGC				2040
			GGACCCAGGA GACTCAGGCC				2100 2160
60			CCCCTCTATG				2220
			CCCTACAAGA				2280
			GCCGTGCTGG CAGCCCGAGG				2340 2400
			CAGCCCTCAG				2460
65			GCCACCAACA				2520
			CCCATCACCA TTGGAGGAGG				2580 2640
			CAGCAGCAGC				2700
70	GGAAGCTGAA	CCACGCCAAC	GTGGTGCGGC	TCCTGGGGCT	GTGCCGGGAG	GCTGAGCCCC	2760
70			GTGGATCTGG				2820
			AAGTCACAGC ATGGAGCACC				2880 2940
	TGGCTGCGCG	TAACTGCCTG	GTCAGTGCCC	AGAGACAAGT	GAAGGTGTCT	GCCCTGGGCC	3000
75			AGTGAGTACT				3060
75			ATCCTGGAGG GAAGTGTTTA				3120 3180
			GATTTGCAGG				3240
	GCTGCCCTTC	CAAACTCTAT	CGGCTGATGC	AGCGCTGCTG	GGCCCTCAGC	CCCAAGGACC	3300
80			GCCAGCGCCC ATGGCCTGGG				3360 3420
JU	- AND		2700011000	AUUNUUUN	CUTCICIARY	COGUNGCICA	-440

```
CAGCATGATG GGCAAGATCC CTGTCCTCCT GGGCCCTGAG GTGCCCTAGT GCAACAGGCA 3480
        TTGCTGAGGT CTGAGCAGGG CCTGGCCTTT CCTCCTCTTC CTCACCCTCA TCCTTTGGGA
                                                                             3540
        GGCTGACTTG GACCCAAACT GGGCGACTAG GGCTTTGAGC TGGGCAGTTT CCCCTGCCAC
                                                                             3600
        CTCTTCCTCT ATCAGGGACA GTGTGGGTGC CACAGGTAAC CCCAATTTCT GGCCTTCAAC
                                                                             3660
        TTCTCCCCTT GACCGGGTCC AACTCTGCCA CTCATCTGCC AACTTTGCCT GGGGAGGGCT
                                                                             3720
        AGGCTTGGGA TGAGCTGGGT TTGTGGGGAG TTCCTTAATA TTCTCAAGTT CTGGGCACAC
                                                                             3780
        AGGGTTAATG AGTCTCTTGC CCACTGGTCC ACTTGGGGGT CTAGACCAGG ATTATAGAGG
                                                                             3840
        ACACAGCAAG TGAGTCCTCC CCACTCTGGG CTTGTGCACA CTGACCCAGA CCCACGTCTT
                                                                             3900
        CCCCACCCTT CTCTCCTTTC CTCATCCTAA GTGCCTGGCA GATGAAGGAG TTTTCAGGAG
                                                                             3960
10
        CTTTTGACAC TATATAAACC GCCCTTTTTG TATGCACCAC GGGCGGCTTT TATATGTAAT
                                                                             4020
        TGCAGCGTGG GGTGGGTGGG CATGGGAGGT AGGGGTGGC CCTGGAGATG AGGAGGGTGG
                                                                             4080
        4140
        TGTTTTGTT TTTACACTCG CTGCTCTCAA TAAATAAGCC TTTTTTA
15
        SEQ ID NO:290 OBI6 Protein sequence:
       Protein Accession #:
                          NP 002812
                                                                 51
                               21
                                          31
                                                     41
20
       MGAARGSPAR PRRLPLLSVL LLPLLGGTOT AIVFIKOPSS ODALOGRRAL LRCEVEAPGP
        VHVYWLLDGA PVQDTERRFA QGSSLSFAAV DRLQDSGTFQ CVARDDVTGE EARSANASFN
                                                                              120
       IKWIEAGPVV LKHPASEAEI QPQTQVTLRC HIDGHPRPTY QWFRDGTPLS DGQSNHTVSS
       KERNLTLRPA GPEHSGLYSC CAHSAFGQAC SSQNFTLSIA DESFARVVLA PQDVVVARYE
25
       EAMPHCOPSA OPPPSLOWLF EDETPITMRS RPPHLRRATV FANGSLLLTO VRPRNAGIYR
       CIGQGQRGPP IILEATLHLA EIEDMPLFEP RVFTAGSEER VTCLPPKGLP EPSVWWEHAG
       VRLPTHGRVY QKGHELVLAN IAESDAGVYT CHAANLAGQR RQDVNITVAT VPSWLKKPQD
                                                                              420
       SOLEEGKPGY LDCLTQATPK PTVVWYRNOM LISEDSRFEV FKNGTLRINS VEVYDGTWYR
                                                                              480
       CMSSTPAGSI BAQARVQVLE KLKFTPPPQP QQCMEFDKEA TVPCSATGRE KFTIKWERAD
GSSLPEWVTD NAGTLHFARV TRDDAGNYTC IASNGPQGQI RAHVQLTVAV FITFKVEPER
                                                                              540
30
                                                                              600
       TTVYQGHTAL LQCEAQGDPK PLIQWKGKDR ILDPTKLGPR MHIFQNGSLV IHDVAPEDSG
                                                                              660
       RYTCIAGNSC NIKHTEAPLY VVDKPVPEES EGPGSPPPYK MIQTIGLSVG AAVAYIIAVL
                                                                              720
       GLMFYCKKRC KAKRLQKQPE GEEPEMECLN GGPLQNGQPS AEIQEEVALT SLGSGPAATN
                                                                              780
       KRHSTSDKMH FPRSSLQPIT TLGKSEFGEV PLAKAQGLEE GVAETLVLVK SLQTKDEQQQ
                                                                              840
35
       LDFRRELEMF GKLNHANVVR LLGLCREAEP HYMVLEYVDL GDLKQFLRIS KSKDEKLKSQ
                                                                              900
       PLSTKQKVAL CTQVALGMEH LSNNRFVHKD LAARNCLVSA QRQVKVSALG LSKDVYNSEY
                                                                              960
       YHFROAWVPL RWMSPEAILE GDFSTKSDVW AFGVLMWEVF THGEMPHGGO ADDEVLADLO
                                                                             1020
       AGKARLPOPE GCPSKLYRLM ORCWALSPKD RPSFSEIASA LGDSTVDSKP
40
                                                  SEQ ID NO:291 AAB1 DNA SEQUENCE
       Nucleic Acid Accession #:
                                NM_002205
                                1-3150 (underlined sequences correspond to start and stop codons)
       Coding sequence:
45
                  11
                              21
                                         31
                                                     41
                                                                51
       ATGGGGAGCC GGACGCCAGA GTCCCCTCTC CACGCCGTGC AGCTGCGCTG GGGCCCCCGG
       CGCCGACCCC CGCTSSTGCC GCTGCTGTTG CTGCTSSTGC CGCCGCCACC CAGGGTCGGG
                                                                              120
50
       GGCTTCAACT TAGACGCGGA GGCCCCAGCA GTACTCTCGG GGCCCCCGGG CTCCTTCTTC
       GGATTCTCAG TGGAGTTTTA CCGGCCGGGA ACAGACGGGG TCAGTGTGCT GGTGGGAGCA
                                                                              240
       CCCAAGGCTA ATACCAGCCA GCCAGGAGTG CTGCAGGGTG GTGCTGTCTA CCTCTGTCCT
                                                                              300
       TGGGGTGCCA GCCCCACACA GTGCACCCCC ATTGAATTTG ACAGCAAAGG CTCTCGGCTC
                                                                              360
       CTGGAGTCCT CACTGTCCAG CTCAGAGGGA GAGGAGCCTG TGGAGTACAA GTCCTTGCAG
TGGTTCGGGG CAACAGTTCG AGCCCATGGC TCCTCCATCT TGGCATGCGC TCCACTGTAC
                                                                              420
55
                                                                              480
       AGCTGGCGCA CAGAGAAGGA GCCACTGAGC GACCCCGTGG GCACCTGCTA CCTCTCCACA
                                                                              540
       GATAACTTCA CCCGAATTCT GGAGTATGCA CCCTGCCGCT CAGATTTCAG CTGGGCAGCA
                                                                              600
       GGACAGGGTT ACTGCCAAGG AGGCTTCAGT GCCGAGTTCA CCAAGACTGG CCGTGTGGTT
                                                                              660
       TTAGGTGGAC CAGGAAGCTA TTTCTGGCAA GGCCAGATCC TGTCTGCCAC TCAGGAGCAG
                                                                              720
60
       ATTGCAGAAT CTTATTACCC CGAGTACCTG ATCAACCTGG TTCAGGGGCA GCTGCAGACT
       CGCCAGGCCA GTTCCATCTA TGATGACAGC TACCTAGGAT ACTCTGTGGC TGTTGGTGAA
                                                                              840
       TTCAGTGGTG ATGACACAGA AGACTTTGTT GCTGGTGTGC CCAAAGGGAA CCTCACTTAC
                                                                              900
       GGCTATGTCA CCATCCTTAA TGGCTCAGAC ATTCGATCCC TCTACAACTT CTCAGGGGAA
                                                                              960
       CAGATGGCCT CCTACTTTGG CTATGCAGTG GCCGCCACAG ACGTCAATGG GGACGGGCTG
                                                                             1020
65
       GATGACTTGC TGGTGGGGGC ACCCCTGCTC ATGGATCGGA CCCCTGACGG GCGGCCTCAG
                                                                             1080
       GAGGTGGGCA GGGTCTACGT CTACCTGCAG CACCCAGCCG GCATAGAGCC CACGCCCACC
                                                                             1140
       CTTACCCTCA CTGGCCATGA TGAGTTTGGC CGATTTGGCA GCTCCTTGAC CCCCCTGGGG
                                                                             1200
       GACCTGGACC AGGATGGCTA CAATGATGTG GCCATCGGGG CTCCCTTTGG TGGGGAGACC
                                                                             1260
       CAGCAGGGAG TAGTGTTTGT ATTTCCTGGG GGCCCAGGAG GGCTGGGCTC TAAGCCTTCC
70
       CAGGITCIGC AGCCCCTGTG GGCAGCCAGC CACACCCCAG ACTICITIGG CICTGCCCTT
                                                                            1380
       CGAGGAGGCC GAGACCTGGA TGGCAATGGA TATCCTGATC TGATTGTGGG GTCCTTTGGT
                                                                            1440
       GTGGACAAGG CTGTGGTATA CAGGGGCCGC CCCATCGTGT CCGCTAGTGC CTCCCTCACC
                                                                            1500
       ATCTTCCCCG CCATGTTCAA CCCAGAGGAG CGGAGCTGCA GCTTAGAGGG GAACCCTGTG
                                                                            1560
       GCCTGCATCA ACCTTAGCTT CTGCCTCAAT GCTTCTGGAA AACACGTTGC TGACTCCATT
                                                                            1620
75
       GGTTTCACAG TGGAACTTCA GCTGGACTGG CAGAAGCAGA AGGGAGGGGT ACGGCGGGCA
                                                                            1680
       CTGTTCCTGG CCTCCAGGCA GGCAACCCTG ACCCAGACCC TGCTCATCCA GAATGGGGCT
                                                                            1740
       CGAGAGGATT GCAGAGAGAT GAAGATCTAC CTCAGGAACG AGTCAGAATT TCGAGACAAA
                                                                            1800
       CTCTCGCCGA TTCACATCGC TCTCAACTTC TCCTTGGACC CCCAAGCCCC AGTGGACAGC
                                                                            1860
       CACGGCCTCA GGCCAGCCCT ACATTATCAG AGCAAGAGCC GGATAGAGGA CAAGGCTCAG
80
       ATCTTGCTGG ACTGTGGAGA AGACACATC TGTGTGCCTG ACCTGCAGCT GGAAGTGTTT
                                                                            1980
```

```
GGGGAGCAGA ACCATGTGTA CCTGGGTGAC AAGAATGCCC TGAACCTCAC TTTCCATGCC
                                                                                2040
        CAGAATGTGG GTGAGGGTGG CGCCTATGAG GCTGAGCTTC GGGTCACCGC CCCTCCAGAG
                                                                                2100
        GCTGAGTACT CAGGACTCGT CAGACACCCA GGGAACTTCT CCAGCCTGAG CTGTGACTAC
                                                                                2160
        TTTGCCGTGA ACCAGAGCCG CCTGCTGGTG TGTGACCTGG GCAACCCCAT GAAGGCAGGA
                                                                                2220
 5
        GCCAGTCTGT GGGGTGGCCT TCGGTTTACA GTCCCTCATC TCCGGGACAC TAAGAAAACC
                                                                                2280
        ATCCAGTTTG ACTTCCAGAT CCTCAGCAAG AATCTCAACA ACTCGCAAAG CGACGTGGTT
                                                                                2340
        TCCTTTCGGC TCTCCGTGGA GGCTCAGGCC CAGGTCACCC TGAACGGTGT CTCCAAGCCT
        GAGGCAGTGC TATTCCCAGT AAGCGACTGG CATCCCCGAG ACCAGCCTCA GAAGGAGGAG
                                                                                2460
        GACCTGGGAC CTGCTGTCCA CCATGTCTAT GAGCTCATCA ACCAAGGCCC CAGCTCCATT
                                                                                2520
10
        AGCCAGGGTG TGCTGGAACT CAGCTGTCCC CAGGCTCTGG AAGGTCAGCA GCTCCTATAT
                                                                                2580
        GTGACCAGAG TTACGGGACT CAACTGCACC ACCAATCACC CCATTAACCC AAAGGGCCTG
                                                                                2640
        GAGTTGGATC CCGAGGGTTC CCTGCACCAC CAGCAAAAAC GGGAAGCTCC AAGCCGCAGC
                                                                                2700
        TCTGCTTCCT CGGGACCTCA GATCCTGAAA TGCCCGGAGG CTGAGTGTTT CAGGCTGCGC
                                                                                2760
        TGTGAGCTCG GGCCCCTGCA CCAACAAGAG AGCCAAAGTC TGCAGTTGCA TTTCCGAGTC
                                                                                2820
15
        TGGGCCAAGA CTTTCTTGCA GCGGGAGCAC CAGCCATTTA GCCTGCAGTG TGAGGCTGTG
                                                                                2880
        TACAAAGCCC TGAAGATGCC CTACCGAATC CTGCCTCGGC AGCTGCCCCA AAAAGAGCGT
                                                                                2940
        CAGGTGGCCA CAGCTGTGCA ATGGACCAAG GCAGAAGGCA GCTATGGCGT CCCACTGTGG
        ATCATCATCC TAGCCATCCT GTTTGGCCTC CTGCTCCTAG GTCTACTCAT CTACATCCTC
                                                                                3060
        TACAAGCTTG GATTCTTCAA ACGCTCCCTC CCATATGGCA CCGCCATGGA AAAAGCTCAG
                                                                                3120
20
        CTCAAGCCTC CAGCCACCTC TGATGCCTGA
       SEQ ID NO:292 AAB1 Protein sequence:
NP_002196
25
        MGSRTPESPL HAVQLRWGPR RRPPLLPLLL LLLPPPPRVG GFNLDAEAPA VLSGPPGSFF
        GFSVEFYRPG TDGVSVLVGA PKANTSQPGV LQGGAVYLCP WGASPTQCTP IEFDSKGSRL
                                                                                  120
30
        LESSLSSEG EEPVEYKSLQ WFGATVRAHG SSILACAPLY SWRTEKEPLS DPVGTCYLST
DNFTRILEYA PCRSDFSWAA GQGYCQGGFS AEFTKTGRVV LGGPGSYFWQ GQILSATQEQ
                                                                                  180
                                                                                  240
         IAESYYPEYL INLVQGQLQT RQASSIYDDS YLGYSVAVGE FSGDDTEDFV AGVPKGNLTY
                                                                                  300
         GYVTILNGSD IRSLYNFSGE QMASYFGYAV AATDVNGDGL DDLLVGAPLL MDRTPDGRPQ
                                                                                  360
         EVGRVYVYLQ HPAGIEPTPT LTLTGHDEFG RFGSSLTPLG DLDQDGYNDV AIGAPFGGET
35
         QQGVVFVFPG GPGGLGSKPS QVLQPLWAAS HTPDFFGSAL RGGRDLDGNG YPDLIVGSFG
                                                                                  480
         VDKAVVYRGR PIVSASASLT IFPAMFNPEE RSCSLEGNPV ACINLSFCLN ASGKHVADSI
                                                                                  540
        GFTVELQLDW QKQKGGVRRA LFLASRQATL TQTLLIQNGA REDCREMKIY LRNESEFRDK
LSPIHIALNF SLDPQAPVDS HGLRPALHYQ SKSRIEDKAQ ILLDCGEDNI CVPDLQLEVF
                                                                                  600
                                                                                  660
         GEONHVYLGD KNALNLTFHA ONVGEGGAYE AELRVTAPPE AEYSGLVRHP GNFSSLSCDY
                                                                                  720
40
         FAVNQSRLLV CDLGNPMKAG ASLWGGLRFT VPHLRDTKKT IQFDFQILSK NLNNSQSDVV
         SFRLSVEAQA QVTLNGVSKP EAVLFPVSDW HPRDQPQKEE DLGPAVHHVY ELINQGPSSI
         SQGVLELSCP QALEGQQLLY VTRVTGLNCT TNHPINPKGL ELDPEGSLHH QQKREAPSRS
                                                                                  900
        SASSGPQILK CPEAECFRLR CELGPLHQQE SQSLQLHFRV WAKTFLQREH QPFSLQCEAV
                                                                                  960
        YKALKMPYRI LPRQLPQKER QVATAVQWTK AEGSYGVPLW IIILAILFGL LLLGLLIYIL 1020
45
        YKLGFFKRSL PYGTAMEKAQ LKPPATSDA
                                                    SEQ ID NO:293 LBH4 DNA SEQUENCE
        Nucleic Acid Accession #: BC001291
50
                          44-541 (start and stop codons are underlined)
        Coding sequence:
             11
                   21
                        31 41
                                    51
55
        GGGGGCGCCG CGCGCTGACC CTCCCTGGGC ACCGCTGGGG ACG<u>ATG</u>GCGC TGCTCGCCTT 60
       GCTGCTGGTC GTGGCCCTAC CGCGGGTGTG GACAGACGCC AACCTGACTG CGAGACAACG 120
       AGATCCAGAG GACTCCCAGC GAACGGACGA GGGTGACAAT AGAGTGTGGT GTCATGTTTG 180
       TGAGAGAGAA AACACTTTCG AGTGCCAGAA CCCAAGGAGG TGCAAATGGA CAGAGCCATA 240
       CTGCGTTATA GCGGCCGTGA AAATATTTCC ACGTTTTTTC ATGGTTGCGA AGCAGTGCTC 300
60
       CGCTGGTTGT GCAGCGATGG AGAGACCCAA GCCAGAGGAG AAGCGGTTTC TCCTGGAAGA 360
       GCCCATGCCC TTCTTTTACC TCAAGTGTTG TAAAATTCGC TACTGCAATT TAGAGGGGCC 420
       ACCTATCAAC TCATCAGTGT TCAAAGAATA TGCTGGGAGC ATGGGTGAGA GCTGTGGTGG 480
       GCTGTGGCTG GCCATCCTCC TGCTGCTGGC CTCCATTGCA GCCGGCCTCA GCCTGTCTTG 540
       AGCCACGGGA CTGCCACAGA CTGAGCCTTC CGGAGCATGG ACTCGCTCCA GACCGTTGTC 600
65
       ACCTGTTGCA TTAAACTTGT TITCTGTTGA TTACCTCTTG GTTTGACTTC CCAGGGTCTT 660
GGGATGGGAG AGTGGGGATC AGGTGCAGTT GGCTCTTAAC CCTCAAGGGT TCTTTAACTC 720
ACATTCAGAG GAAGTCCAGA TCTCCTGAGT AGTGATTTTG GTGACAAGTT TTTCTCTTTG 780
       AAATCAAACC TTGTAACTCA TITATTGCTG ATGGCCACTC TTTTCCTTGA CTCCCCTCTG 840
       CCTCTGAGGG CTTCAGTATT GATGGGGAGG GAGGCCTAAG TACCACTCAT GGAGAGTATG 900
TGCTGAGATG CTTCCGACCT TTCAGGTGAC GCAGGAACAC TGGGGGAGTC TGAATGATTG 960
70
       GGGTGAAGAC ATCCCTGGAG TGAAGGACTC CTCAGCATGG GGGCAGTGG GGCACACGTT 1020
       AGGGCTGCCC CCATTCCAGT GGTGGAGGCG CTGTGGATGG CTGCTTTTCC TCAACCTTTC 1080
       CTACCAGATT CCAGGAGGCA GAAGATAACT AATTGTGTTG AAGAAACTTA GACTTCACCC 1140
       ACCAGCTGGC ACAGGTGCAC AGATTCATAA ATTCCCACAC GTGTGTGTTC AACATCTGAA 1200
75
       ACTTAGGCCA AGTAGAGAGC ATCAGGGTAA ATGGCGTTCA TTTCTCTGTT AAGATGCAGC 1260
       CATCCATGGG GAGCTGAGAA ATCAGACTCA AAGTTCCACC AAAAACAAAT ACAAGGGGAC 1320
       ΤΤΟΑΛΑΛΟΤΤ CACGAAAAAA ΑΛΑΛΑΑΑΑΑΑ ΑΛΑΛΑΑΑΑΑ ΑΛΑΛΑΑΑΑΑ ΑΛΑ
```

SEQ ID NO:294 LBH4 Protein sequence; Protein Accession #: AAH01291

15

20

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

WHAT IS CLAIMED IS:

A method of detecting a prostate cancer-associated transcript in a cell 1 from a patient, the method comprising contacting a biological sample from the patient with a 2 polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence 3 4 as shown in Tables 1-16. 2. The method of claim 1, wherein the polynucleotide selectively 1 hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1-16. 2 3. The method of claim 1, wherein the biological sample is a tissue 1 2 sample. 4. The method of claim 1, wherein the biological sample comprises 1 2 isolated nucleic acids. 1 5. The method of claim 4, wherein the nucleic acids are mRNA. 6. The method of claim 4, further comprising the step of amplifying 1 2 nucleic acids before the step of contacting the biological sample with the polynucleotide. 7. The method of claim 1, wherein the polynucleotide comprises a 1 2 sequence as shown in Tables 1-16. 1 8. The method of claim 1, wherein the polynucleotide is labeled. The method of claim 8, wherein the label is a fluorescent label. 9. 1 The method of claim 1, wherein the polynucleotide is immobilized on 1 10. 2 a solid surface. The method of claim 1, wherein the patient is undergoing a therapeutic 1 11. 2 regimen to treat prostate cancer. 1 12. The method of claim 1, wherein the patient is suspected of having 2 prostate cancer.

1 13. A method of monitoring the efficacy of a therapeutic treatment of 2 prostate cancer, the method comprising the steps of: 3 (i) providing a biological sample from a patient undergoing the therapeutic 4 treatment; and 5 (ii) determining the level of a prostate cancer-associated transcript in the 6 biological sample by contacting the biological sample with a polynucleotide that selectively 7 hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16, 8 thereby monitoring the efficacy of the therapy. 14. 1 The method of claim 13, further comprising the step of: (iii) comparing 2 the level of the prostate cancer-associated transcript to a level of the prostate cancer-3 associated transcript in a biological sample from the patient prior to, or earlier in, the 4 therapeutic treatment. 1 15. The method of claim 13, wherein the patient is a human. 16. A method of monitoring the efficacy of a therapeutic treatment of 1 2 prostate cancer, the method comprising the steps of: 3 (i) providing a biological sample from a patient undergoing the therapeutic 4 treatment; and 5 (ii) determining the level of a prostate cancer-associated antibody in the 6 biological sample by contacting the biological sample with a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence 7 8 as shown in Tables 1-16, wherein the polypeptide specifically binds to the prostate cancer-9 associated antibody, thereby monitoring the efficacy of the therapy. 1 **17**. The method of claim 16, further comprising the step of: (iii) comparing 2 the level of the prostate cancer-associated antibody to a level of the prostate cancer-3 associated antibody in a biological sample from the patient prior to, or earlier in, the 4 therapeutic treatment. 1 18. The method of claim 16, wherein the patient is a human.

1]	19.	A method of monitoring the efficacy of a therapeutic treatment of		
2	prostate cancer, the method comprising the steps of:				
3		(i) prov	riding a biological sample from a patient undergoing the therapeutic		
4	treatment; and				
5	((ii) dete	ermining the level of a prostate cancer-associated polypeptide in the		
6	biological samp	ole by c	contacting the biological sample with an antibody, wherein the antibody		
7	specifically bin	ds to a	polypeptide encoded by a polynucleotide that selectively hybridizes to		
8	a sequence at le	ast 80°	% identical to a sequence as shown in Tables 1-16, thereby monitoring		
9	the efficacy of the therapy.				
1	2	20.	The method of claim 19, further comprising the step of: (iii) comparing		
2	the level of the	prostat	e cancer-associated polypeptide to a level of the prostate cancer-		
3	associated poly	peptide	e in a biological sample from the patient prior to, or earlier in, the		
4	therapeutic trea	tment.			
1	2	21.	The method of claim 19, wherein the patient is a human.		
1	2	22.	An isolated nucleic acid molecule consisting of a polynucleotide		
2	sequence as sho	own in	Tables 1-16.		
1		23.	The nucleic acid molecule of claim 22, which is labeled.		
1	3	24.	The nucleic acid of claim 23, wherein the label is a fluorescent label		
1	:	25.	An expression vector comprising the nucleic acid of claim 22.		
1		26.	A host cell comprising the expression vector of claim 25.		
1	2	27.	An isolated polypeptide which is encoded by a nucleic acid molecule		
2	having polynuc	leotide	sequence as shown in Tables 1-16.		
1	2	28.	An antibody that specifically binds a polypeptide of claim 27.		
1		29.	The antibody of claim 28, further conjugated to an effector component.		

1	30.	The antibody of claim 29, wherein the effector component is a			
2	fluorescent label.				
1	31.	The antibody of claim 29, wherein the effector component is a			
2	radioisotope or a cyt	otoxic chemical.			
1	32.	The antibody of claim 29, which is an antibody fragment.			
1	33.	The antibody of claim 29, which is a humanized antibody			
1	34.	A method of detecting a prostate cancer cell in a biological sample			
2	from a patient, the m	nethod comprising contacting the biological sample with an antibody of			
3	claim 28.	· ·			
1	35.	The method of claim 34, wherein the antibody is further conjugated to			
2	an effector component.				
1	36.	The method of claim 35, wherein the effector component is a			
2	fluorescent label.	, in the second of the second			
1	37.	A method of detecting antibodies specific to prostate cancer in a			
2	patient, the method o	comprising contacting a biological sample from the patient with a			
3	polypeptide encoded by a nucleic acid comprises a sequence from Tables 1-16.				
1	38.	A method for identifying a compound that modulates a prostate cancer-			
2	associated polypeptic	de, the method comprising the steps of:			
3		ntacting the compound with a prostate cancer-associated polypeptide, the			
4	polypeptide encoded	by a polynucleotide that selectively hybridizes to a sequence at least			
5	80% identical to a sequence as shown in Tables 1-16; and				
6	(ii) de	termining the functional effect of the compound upon the polypeptide.			
1	39.	The method of claim 38, wherein the functional effect is a physical			
2	effect.	- 			

The method of claim 38, wherein the functional effect is a chemical

40.

1

2	effect.	
1	41.	The method of claim 38, wherein the polypeptide is expressed in a
2	eukaryotic host ce	ll or cell membrane.
1	42.	The method of claim 38, wherein the functional effect is determined by
2	measuring ligand l	binding to the polypeptide.
1	43.	The method of claim 38, wherein the polypeptide is recombinant.
1	44.	A method of inhibiting proliferation of a prostate cancer-associated
2	cell to treat prostat	te cancer in a patient, the method comprising the step of administering to
3	the subject a thera	peutically effective amount of a compound identified using the method of
4	claim 38.	
1	45.	The method of claim 44, wherein the compound is an antibody.
1	46.	The method of claim 45, wherein the patient is a human.
1	47.	A drug screening assay comprising the steps of
2	(i) a	administering a test compound to a mammal having prostate cancer or a
3	cell isolated theref	rom;
4	(ii)	comparing the level of gene expression of a polynucleotide that selectively
5	hybridizes to a seq	uence at least 80% identical to a sequence as shown in Tables 1-16 in a
6	treated cell or man	nmal with the level of gene expression of the polynucleotide in a control
7	cell or mammal, w	herein a test compound that modulates the level of expression of the
8	polynucleotide is a	candidate for the treatment of prostate cancer.
1	48.	The assay of claim 47, wherein the control is a mammal with prostate
2	cancer or a cell the	refrom that has not been treated with the test compound.
1	49.	The assay of claim 47, wherein the control is a normal cell or mammal

1 50. A method for treating a mammal having prostate cancer comprising 2 administering a compound identified by the assay of claim 47. 1 51. A pharmaceutical composition for treating a mammal having prostate 2 cancer, the composition comprising a compound identified by the assay of claim 47 and a 3 physiologically acceptable excipient. 1 52. The method according to claim 1, wherein said biological sample is 2 contacted with a plurality of polynucleotides comprising a first polynucleotide that 3 selectively hybridizes to a sequence at least 80% identical to a first sequence as shown in 4 Tables 1-16; and a second polynucleotide that selectively hybridizes to a second sequence at 5 least 80% identical to a second sequence as shown in Tables 1-16. 53. A method according to claim 52, wherein the plurality of 1 2 polynucleotides comprises a third polynucleotide that selectively hybridizes to a sequence at 3 least 80% identical to a third sequence as shown in Tables 1-16... 1 54. A method of detecting a prostate cancer associated transcript, the 2 method comprising contacting a biological sample from the patient with a plurality of 3 polynucleotides wherein at least two of said polynucleotides selectively hybridize to a 4 difference sequence at least 80% identical to a sequence as shown in Tables 1-16. 1 55. A method of detecting a prostate cancer, the method comprising the 2 steps of: 3 (i) providing a biological sample from a patient; 4 (ii) contacting the biological sample with a first polynucleotide that selectively 5 hybridizes to a sequence at least 80% identical to a first sequence as shown in Tables 1-16 to 6 determine the level of a prostate cancer-associated transcript in the biological sample; and 7 . with a second polynucleotide that selectively hybridizes to a second sequence at least 80%

identical to a sequence not shown in Tables 1-16; wherein the expression of said second

of a control transcript in the biological sample;

sequence is not substantially changed in prostate cancer, to determine the level of expression

8

9

10

11 (iii) comparing the level of the prostate cancer-associated transcript to a level 12 of the normal tissue associated transcript in the biological sample. 1 56. A method of quantitating a prostate cancer-associated transcript in a 2 cell from a patient, the method comprising contacting a biological sample from the patient 3 with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a 4 sequence as shown in Tables 1-16. 57. The method of claim 56, wherein the polynucleotide selectively 1 2 hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1-16. 1 58. The method of claim 56, wherein the biological sample is a tissue 2 sample. 59. 1 The method of claim 56, wherein the biological sample comprises 2 isolated nucleic acids. 60. The method of claim 56, wherein the nucleic acids are mRNA. 1 61. 1 The method of claim 59, further comprising the step of amplifying 2 nucleic acids before the step of contacting the biological sample with the polynucleotide. 62. 1 The method of claim 56, wherein the polynucleotide comprises a 2 sequence as shown in Tables 1-16. 1 63. The method of claim 56, wherein the polynucleotide is labeled. 1 64. The method of claim 63, wherein the label is a fluorescent label. 1 65. The method of claim 56, wherein the polynucleotide is immobilized on a solid surface. 2 . 66. 1 The method of claim 56, wherein the patient is undergoing a 2 therapeutic regimen to treat metastatic prostate cancer. 1 67. The method of claim 56, wherein the patient is suspected of having

2

metastatic prostate cancer.

1	68. A biochip comprising a plurality of polynucleotides that selectively					
2	hybridize to a sequence at least 80% identical to a sequence as shown in Tables 1-16.					
1	69. A method of screening drug candidates comprising:					
2	i) providing a cell that expresses an expression profile gene selected from the					
3	group consisting of an expression profile gene set forth in Tables 1-16 or fragment thereof;					
4	ii) adding a drug candidate to said cell; and					
5	iii) determining the effect of said drug candidate on the expression of said					
6	expression profile gene.					
1	70. A method according to claim 59 wherein said determining comprises					
2	comparing the level of expression in the absence of said drug candidate to the level of					
3	expression in the presence of said drug candidate.					
1	SF 1277890 v1					