

HT32F52357/HT32F52367 产品规格书

带 Arm® Cortex®-M0+ 内核以及 1 MSPS ADC、DAC、CMP、DIV、USART、UART、QSPI、 SPI、I²C、I²S、MCTM、GPTM、SCTM、BFTM、PWM、 SCI、PDMA、CRC、RTC、WDT、EBI、AES 和 USB2.0 FS 高达 256 KB Flash 和 32 KB SRAM 的 Holtek 32-bit 单片机

版本: V1.20 日期: 2022-04-21

www.holtek.com

目录

1	简介	.6
2	特性	.7
		. 7
	片上存储器	. 7
	Flash 存储器控制器 – FMC	. 7
	复位控制单元 – RSTCU	. 7
	时钟控制单元 – CKCU	. 8
	电源控制单元 – PWRCU	. 8
	外部中断 / 事件控制器 – EXTI	. 8
	模数转换器 – ADC	. 8
	比较器 – CMP	. 9
	数模转换器 – DAC	. 9
	输入/输出端口-GPIO	. 9
	马达控制定时器 – MCTM	10
	通用功能定时器 – GPTM1	10
	脉冲宽度调制定时器 – PWM	10
	单通道定时器 – SCTM	11
	基本功能定时器 – BFTM	11
	看门狗定时器 – WDT	11
	实时时钟 – RTC	11
	内部集成电路 – I ² C	12
	四线串行外设接口 – QSPI	12
	串行外设接口 – SPI	12
	通用同步异步收发器 – USART	13
	通用异步收发器 – UART	
	智能卡接口 – SCI	
	内置音频接口 – I ² S	
	循环冗余校验 – CRC	
	外设直接访问内存 – PDMA	
	硬件除法器 – DIV	
	外部总线接口 – EBI	
	通用串行总线设备控制器 – USB	
	高级加密标准 – AES	
	调试支持	
	封装和工作温度	16

3	概述17
	单片机信息17
	方框图
	存储器映射19
	时钟结构
4	引脚图
5	电气特性
3	ゼ パイド
	建议直流特性
	片上超低功耗 LDO 稳压器特性 33 功耗 33
	复位和电源监控特性
	外部时钟特性
	内部时钟特性
	系统 PLL 特性
	USB PLL 特性
	存储器特性37
	I/O 端口特性
	A/D 转换器特性
	内部参考电压特性40
	V _{DDA} 监控特性41
	比较器特性41
	DAC 特性
	GPTM / MCTM / PWM / SCTM 特性
	I ² C 特性
	SPI 特性
	QSPI 特性
	I ² S 特性
	USB 特性
6	封装信息
	SAW Type 46-pin QFN (6.5mm × 4.5mm × 0.75mm) 外形尺寸
	48-pin LQFP (7mm×7mm) 外形尺寸
	64-pin LQFP (7mm×7mm) 外形尺寸
	80-pin LQFP (10mm×10mm) 外形尺寸56

表列表

表 1. 特性及外设列表	17
表 2. 寄存器映射	20
表 3. 引脚分配	27
表 4. 引脚描述	29
表 5. 极限参数	32
表 6. 建议直流工作条件	32
表 7. LDO 特性	32
表 8. ULDO 特性	33
表 9. 功耗特性	33
表 10. V _{DD} 电源复位特性	34
表 11. LVD / BOD 特性	
表 12. 外部高速时钟 (HSE) 特性	35
表 13. 外部低速时钟 (LSE) 特性	36
表 14. 内部高速时钟 (HSI) 特性	36
表 15. 内部低速时钟 (LSI) 特性	
表 16. 系统 PLL 特性	37
表 17. USB PLL 特性	37
表 18. Flash 存储器特性	37
表 19. I/O 端口特性	38
表 20. A/D 转换器特性	39
表 21. 内部参考电压特性	40
表 22. V _{DDA} 监控特性	
表 23. 较器特性	41
表 24. DAC 特性	
表 25. GPTM / MCTM / PWM / SCTM 特性	43
表 26. I ² C 特性	43
表 27. SPI 特性	44
表 28. QSPI 特性	46
表 29. I'S 特性	49
表 30. USB 直流电气特性	51
表 31 USR 交流由气特性	51

图列表

图 1. 方框图	18
图 2. 存储器映射	
图 3. 时钟结构图	22
图 4. 46-pin QFN 引脚图	23
图 5. 48-pin LQFP 引脚图	24
图 6. 64-pin LQFP 引脚图	25
图 7.80-pin LQFP 引脚图	26
图 8. A/D 转换器采样网络模板	40
图 9. I ² C 时序图	43
图 10. SPI 时序图 – SPI 主机模式	45
图 11. SPI 时序图 – SPI 从机模式,CPHA = 1	45
图 12. QSPI 时序图 – QSPI 主机模式 (1-bit 串行模式, DUALEN = 0, QUADEN = 0)	47
图 13. QSPI 时序图 – QSPI 主机模式 (Dual 模式, DUALEN = 1)	
图 14. QSPI 时序图 – QSPI 主机模式 (Quad 模式, QUADEN = 1)	48
图 15. QSPI 时序图 – QSPI 从机模式,CPHA = 1 (1-bit 串行模式)	49
图 16. I ² S 主机模式时序图	50
图 17. I ² S 从机模式时序图	
图 18. USB 信号上升时间、下降时间和交叉点电压 (VCRS) 定义	51

1 简介

该系列的 Holtek 单片机是基于 Arm® Cortex®-M0+ 处理器内核的 32-bit 高性能低功耗单片机。Cortex®-M0+ 是把嵌套向量中断控制器 (NVIC)、系统节拍定时器 (SysTick Timer) 和先进的调试支持紧紧结合在一起的新一代处理器内核。

该系列单片机可工作在高达 60 MHz 的频率下,借助 Flash 加速器以获得较大的效能。它提供高达 256 KB 的嵌入式 Flash 存储器用作程序/数据存储,高达 32 KB 的嵌入式 SRAM 存储器用作系统操作和应用程序运用。此系列单片机具有多种外设,如 USB2.0 FS、EBI、PDMA、AES-128/256、硬件除法器 DIV、QSPI、SPI、I²S、USART、UART、SCI、I²C、MCTM、GPTM、PWM、SCTM、BFTM、CRC-16/32、RTC、WDT、ADC、CMP、DAC、SW-DP(串行线调试端口)等。提供了几种省电模式,在唤醒延迟和功耗方面具有较优化的灵活性,这是低功耗应用方面的考虑要点。

以上这些特性使该系列单片机可以广泛地适用于各种应用,如白色家电应用控制、电源监控、报警系统、消费类产品、手持式设备、数据记录应用、马达控制器等。

2 特性

内核

- 32-bit Arm® Cortex®-M0+ 处理器内核
- 高达 60 MHz 的工作频率
- 单周期乘法
- 集成嵌套向量中断控制器 (NVIC)
- 24-bit SysTick 定时器

Cortex®-M0+处理器是一种低门数,高效能的 32-bit 处理器内核,专为要求面积优化、低功耗处理器的单片机及深度嵌入式应用而设计。Cortex®-M0+处理器基于 ARMv6-M 架构,支持 Thumb®指令集。该处理器还提供了许多功能,如单周期 I/O 端口,硬件乘法器和低延迟中断响应时间。

片上存储器

- 高达 256 KB 片上 Flash 存储器用于指令 / 数据和选项的存储
- 高达 32 KB 片上 SRAM
- 支持多种启动模式

Arm® Cortex®-M0+ 处理器通过同一条外部接口对外部 AHB 外设进行访问及调试访问。处理器访问优先于调试访问。Cortex®-M0+ 的最大地址范围是 4 GB,因为它具有 32-bit 总线地址宽度。此外,预先定义的内存映射由 Cortex®-M0+ 处理器提供,以减少软件被不同的单片机供应商重复实施的复杂性。但有一些区域为 Arm® Cortex®-M0+ 系统外设所使用。更多信息请参考 Arm® Cortex®-M0+ 技术参考手册。概述章节中图 2 显示了该系列单片机的存储器映射,包括代码、SRAM、外设和其它预先定义的区域。

Flash 存储器控制器 - FMC

- 32-bit 字编程, 支持在线系统编程 (ISP) 和在线应用编程 (IAP)
- Flash 保护功能, 防止非法访问

Flash 存储器控制器 FMC 为嵌入式片上 Flash 存储器提供所有必要的功能和预抓取缓存器。由于 Flash 存储器访问速度比 CPU 慢, 故提供一个带有预抓取缓存器的宽访问接口来减少 CPU 指令执行延迟的等待时间。Flash 存储器还提供字编程 / 页擦除功能。

复位控制单元 - RSTCU

- 电源监控:
 - 上电复位 / 掉电复位 POR / PDR
 - 掉电检测器 BOD
 - 可编程低压检测-LVD

复位控制单元 RSTCU 有三种复位方式,分别是上电复位、系统复位和 APB 单元复位。上电复位,被称为冷复位,在上电时复位了整个系统。系统会复位处理器内核和除 SW-DP 控制器以外的外设 IP 元件。这些复位可以通过外部信号、内部事件和复位发生器触发。

时钟控制单元 - CKCU

- 外部 4~16 MHz 晶振
- 外部 32.768 kHz 晶振
- 在工作电压为 3.3 V, 工作温度为 25°C 下, 内部 8 MHz RC 振荡器精度可调整为 ±2%
- 内部 32 kHz RC 振荡器
- 集成时钟 PLL 和 USB PLL
- 用作外设时钟源的独立的时钟分频器与门控位

时钟控制单元 CKCU 提供了一系列振荡器和时钟功能,包括内部高速 RC 振荡器 (HSI)、外部高速晶振 (HSE)、内部低速 RC 振荡器 (LSI)、外部低速晶振 (LSE)、锁相环 (PLL)、HSE 时钟监控、时钟预分频器、时钟倍频和 APB 时钟分频器与门控电路。AHB、APB 和 Cortex®-M0+的时钟来源于系统时钟 (CK_SYS),而系统时钟可以来自 HSI、HSE、LSI、LSE 或者系统 PLL。看门狗定时器和实时时钟 (RTC) 使用 LSI 或 LSE 作为它们的时钟源。

申源控制单元 - PWRCU

- 单一电源 V_{DD} 供电: 1.65 V~3.6 V
- 集成 1.5 V LDO 稳压器用作 CPU 内核、外设和存储器电源
- V_{BAT} 电池供电给 RTC 和备份寄存器
- 三个电源域: V_{DD}, V_{CORE} 和备份
- 四种省电模式: 休眠模式、深度休眠模式 1、深度休眠模式 2、暂停模式

功耗被视为许多嵌入式系统应用中最重要的问题之一。因此,在这些单片机中,电源控制单元 PWRCU 提供多种省电模式如休眠模式、深度休眠模式 1、深度休眠模式 2 和暂停模式。这些工作模式可以降低功耗,并允许应用在 CPU 运行时间、速度和功耗相互冲突的需求中达到较佳平衡。

外部中断/事件控制器-EXTI

- 高达 16 个可配置触发源和触发类型的 EXTI 输入线
- 所有 GPIO 引脚都可选作 EXTI 触发源
- 触发源类型包括: 高电平、低电平、下降沿、上升沿或者双沿
- 每个 EXTI 输入线都可独立进行中断使能、唤醒使能和状态位设置
- 每个 EXTI 输入线都有软件中断触发模式
- 内建去干扰滤波器,用于封锁短脉冲

外部中断 / 事件控制器 EXTI 由 16 个可独立产生唤醒事件和中断请求的边沿检测器组成。每个 EXTI 输入线也可被单独屏蔽。

模数转换器 - ADC

- 12-bit SAR A/D 转换器内核
- 高达 1 Msps 转换速率
- 高达 12 个外部模拟输入通道

此系列单片机包含一个多通道 12-bit A/D 转换器, 其具有多路复用通道, 包括 12 个提供模拟信号的外部通道和 6 个可测量的内部通道。如果输入电压必须保持在一个特定的阈值窗口, 模拟看门狗功能将监控和检测这些信号。当输入电压高于或低于设定的阈值, 将产生中断。有三种转换模式用来把模拟信号转换成数字数据。A/D 转换器可工作在单次转换、连续和非连续转换模式。

内部参考电压 V_{REF} 为 A/D 转换器和比较器提供了稳定的输出参考电压。 V_{REF} 内接于 A/D 转换器的输入通道。 V_{REF} 的精确电压由 Holtek 公司在生产测试中对每个部件进行单独测量。

比较器 - CMP

- 轨到轨比较器
- 可配置的负端输入,用于灵活的电压选择
 - 外部 CN 引脚
 - 内部 8-bit CVR 输出
- 可编程迟滞
- 可编程速度与功耗
- 比较器输出可输出至 I/O 口、定时器或作为 A/D 转换器触发输入
- 8-bit CVR 可配置在专用 I/O 口以提供参考电压
- 比较器可通过 EXTI 控制器产生中断,将 MCU 从休眠、深度休眠 1 或深度休眠 2 模式中唤醒

该系列单片机具有两个通用比较器 (CMP)。模拟比较器可配置为独立的比较器或与各种不同外设 IP 结合。每个比较器都可以产生 NVIC 中断,或通过 EXTI 唤醒事件管理单元将 MCU 从休眠、深度休眠 1 或深度休眠 2 模式中唤醒。

数模转换器 - DAC

- 两个 D/A 转换器,各自带有一个输出通道
- 12-bit 或 8-bit 分辨率
- 最大 500 ksps 转换更新速率
- 双 DAC 通道可实现同步转换
- 支持电压输出缓冲模式和旁路电压输出缓冲模式
- 参考电压来自内部参考电压 V_{REF} 或 V_{DDA}

DAC 模块有两个数模转换器。每个转换器都是 12-bit 电压输出数模转换器,并各自带有一个输出通道。DAC 可以配置为 8-bit 或 12-bit 模式。该 DAC 模块可以实现独立转换,或当两个通道组合使用同步更新时,实现同步转换。

输入/输出端口-GPIO

- 多达 67 个通用输入 / 输出口 (GPIO)
- 端口 A、B、C、D 映射为 16 个外部中断 EXTI
- 几乎所有 I/O 引脚都具有可编程输出驱动电流功能

单片机有多达 67 个通用 I/O 引脚, GPIO, 可以实现逻辑输入/输出功能。每个 GPIO 端口都有相关的控制和配置寄存器, 提高了灵活性并满足特定的应用需求。

在封装上 GPIO 引脚与其它复用功能引脚共用,以获得较大的灵活性。通过配置相应的寄存器, GPIO 口可以被用作复用功能的引脚。对单片机 GPIO 引脚的外部中断在外部中断控制单元, EXTI, 都有相关的控制和配置寄存器。

马达控制定时器 - MCTM

- 16-bit 向上 / 向下自动重载计数器
- 16-bit 可编程预分频器对计数器时钟频率进行分频,分频率为1~65536
- 输入捕捉功能
- 比较匹配输出
- PWM 波形产生功能,具有边沿对齐和中心对齐两种计数模式
- 单脉冲输出模式
- 带可编程死区时间插入的互补输出
- 刹车信号输入将强制定时器输出复位或输出固定电平

马达控制定时器包括一个 16-bit 向上/向下计数器、四个 16-bit 捕捉/比较寄存器 (CCR)、一个 16-bit 计数器重装载寄存器 (CRR)、一个 8-bit 重复计数器和几个控制/状态寄存器。它可用于多种用途,包括测量输入信号的脉冲宽度或产生输出波形,如比较器匹配输出、PWM 输出或带死区时间插入的互补 PWM 输出。MCTM 能够为马达控制、霍尔传感器接口和刹车信号输入提供全功能支持。

通用功能定时器 - GPTM

- 16-bit 向上 / 向下自动重载计数器
- 每个定时器高达 4 个独立通道
- 16-bit 可编程预分频器对计数器时钟频率进行分频,分频率为1~65536
- 输入捕捉功能
- 比较匹配输出
- PWM 波形产生功能,具有边沿对齐和中心对齐两种计数模式
- 单脉冲输出模式
- 内建可处理编码器接口信号的带两个输入口的正交解码器

通用功能定时器包括一个 16-bit 向上 / 向下计数器, 四个 16-bit 捕捉 / 比较寄存器 (CCR), 一个 16-bit 计数器重载寄存器 (CRR) 和多个控制 / 状态寄存器。它们可用于多种用途,包括通用计时、输入信号脉冲宽度测量、输出波形产生,如单脉冲波形产生或 PWM 输出产生。GPTM 内建可处理编码器接口信号的带两个输入口的正交解码器。

脉冲宽度调制定时器 - PWM

- 16-bit 向上 / 向下自动重载计数器
- 每个定时器高达4个独立通道
- 16-bit 可编程预分频器对计数器时钟频率进行分频,分频率为1~65536
- 比较匹配输出
- PWM 波形产生功能,具有边沿对齐和中心对齐两种计数模式
- 单脉冲输出模式

脉冲宽度调制定时器包括一个 16-bit 向上 / 向下计数器, 四个 16-bit 比较寄存器 (CR), 一个 16-bit 计数器重装载寄存器 (CRR) 和多个控制 / 状态寄存器。它可用于多种用途, 包括通用计时、输出波形产生, 如单脉冲波形产生或 PWM 输出。

单通道定时器 - SCTM

- 16-bit 向上自动重载计数器
- 每个定时器具有单个通道
- 16-bit 可编程预分频器对计数器时钟频率进行分频,分频率为1~65536
- 输入捕捉功能
- 比较匹配输出
- PWM 波形产生功能,具有边沿对齐计数模式
- 单脉冲输出模式

单通道定时器包括一个 16-bit 向上计数器,一个 16-bit 捕捉/比较寄存器 (CCR),一个 16-bit 计数器重装载寄存器 (CRR) 和多个控制/状态寄存器。它可用于多种用途,包括通用计时、输入信号脉冲宽度调制、输出波形产生,如单脉冲波形产生或 PWM 输出。

基本功能定时器 - BFTM

- 32-bit 比较 / 匹配向上计数器 无输入 / 输出控制特性
- 单次模式 比较匹配条件产生后停止计数
- 重复模式 比较匹配条件产生后重新开始计数

基本功能定时器是一个简单的 32-bit 向上计数器,可用于测量时间间隔并产生一个单次或者重复中断。BFTM 工作在两种功能模式下,即重复模式或单次模式。在重复模式下,当一个比较匹配事件发生时,BFTM 重新开始计数。BFTM 也包含一个单次模式,在此模式下,当一个比较匹配事件发生时,计数器停止计数。

看门狗定时器-WDT

- 带有 3-bit 预分频器的 12-bit 向下计数器
- ■可产生系统复位
- 可编程看门狗定时器窗口功能
- 寄存器写保护功能

看门狗定时器是一个硬件定时电路,可用于检测因软件陷入死锁导致的系统故障。它包括一个12-bit 向下计数器、预分频器、一个WDT增量值寄存器、WDT操作控制电路和WDT保护机制。如果软件在看门狗定时器溢出前没有重载计数器的值,计数器溢出时将产生复位。此外,当计数器值大于WDT增量值时,如果软件重新加载计数器,也会产生复位。这意味着计数器必须在有限的时间窗口内用特定方法重新加载。当处理器处于调试模式,看门狗定时器计数器可停止计数。该寄存器写保护功能被使能,来防止看门狗定时器配置的突然改变。

实时时钟 - RTC

- 带可编程预分频器的 32-bit 向上计数器
- 报警功能
- ■中断和唤醒事件

实时时钟,RTC 电路包括 APB 接口、32-bit 向上计数器、一个控制寄存器、一个预分频器、一个比较寄存器和一个状态寄存器。除了APB 接口外,RTC 电路大多位于备份电源域。APB 接口位于 V_{CORE} 域。因此,当 V_{CORE} 区掉电即单片机进入暂停模式时隔离来自电源控制单元的 ISO 信号,是很有必要的。RTC 计数器被用作唤醒定时器当 MCU 在省电模式时,产生系统恢复或中断信号。

内部集成电路-I2C

- 支持高达 1 MHz 频率的主从模式
- 提供仲裁功能和时钟同步功能
- 支持 7-bit 和 10-bit 寻址模式和广播呼叫寻址
- 可屏蔽地址功能支持多种从机寻址模式

I²C 模块是一个允许与外部 I²C 接口通信的内部电路,而外部 I²C 接口是一个符合工业标准并用于连接外部硬件的两线串行接口。这两个串行线被称为串行数据线 SDA 和串行时钟线 SCL。I²C 模块提供了三种数据传输速率:即标准模式下的 100 kHz、快速模式下的 400 kHz 和高速模式下的 1 MHz。SCL 周期产生寄存器用于设置不同的占空比得到不同的 SCL 脉冲。

SDA 线是一条双向数据线,它连接整个 I^2C 总线,在主机和从机之间用于数据的传输和接收。 I^2C 模块还具有仲裁检测功能和时钟同步,可防止多个主机试图同时传送数据到 I^2C 总线的情况。

四线串行外设接口 - OSPI

- 支持主机和从机模式
- 主机模式速度高达 f_{HCLK}/2
- 从机模式速度高达 f_{HCLK}/3
- 16-bit 可编程数据帧长度
- FIFO 深度: 8级
- MSB 或 LSB 优先传输
- 可编程从机选择高或低有效极性
- 多个主机和多个从机工作模式
- 主机模式支持 OSPI NOR Flash 两线 / 四线输出读模式
- 四个错误标志带有各自的中断
 - 读溢出
 - 写冲突
 - 模式故障
 - 从机中止
- 支持 PDMA 接口

四线串行外设接口 QSPI 在主从模式下均提供了一个符合 QSPI 通信协议的数据发送与接收功能。QSPI 接口用于双线 / 四线 SPI, 使用 6 个引脚, 其中有串行数据输入 / 输出线 (SIO3、SIO2、MISO/SIO1、MOSI/SIO0)、时钟线 SCK 和从机选择线 SEL。

串行外设接口-SPI

- 支持主从模式
- 主机模式频率高达 (f_{PCLK}/2) MHz, 从机模式频率高达 (f_{PCLK}/3) MHz
- FIFO 深度: 8级
- 多个主机和多个从机工作模式

串行外设接口 SPI 提供了一个 SPI 协议: 主从模式下数据发送和接收功能。SPI 接口使用 4 个引脚,其中有串行数据输入和输出线 MISO 和 MOSI,时钟线 SCK 和从机选择线 SEL。SPI 作为主机使用,用 SEL 和 SCK 信号控制数据流来说明数据通信启动和数据采样率。要接收数据字节,数据流在特定的时钟边沿时被锁存且存储在数据寄存器或 RX FIFO。数据发送也是通过类似的方式,但以相反的顺序。模式故障检测功能使其适用于多主机应用。

通用同步异步收发器 - USART

- 支持异步和时钟同步串行通信模式
- 异步工作频率高达 (f_{PCLK}/16) MHz, 同步工作频率高达 (f_{PCLK}/8) MHz
- 全双工通信
- 完全可编程串行接口通信特性包括:
 - 字长: 7、8 或 9-bit 字符
 - 校验位: 奇、偶或无奇偶校验位的产生和检测
 - 停止位:1或2个停止位
 - 位顺序: 最低位优先或最高位优先传输
- 错误侦测: 奇偶校验、溢出和帧错误
- 自动硬件流控制模式 RTS、CTS
- IrDA SIR 编码器和解码器
- 具有输出使能控制的 RS485 模式
- FIFO 深度:接收器和发送器均为8级

通用同步异步收发器 USART 提供了一个灵活的采用同步或异步传输的全双工数据交换。USART 用来转换并行和串行接口之间的数据,通常也被用作 RS232 标准通信。USART 外设功能支持四种类型的中断,包括线路状态中断、发送 FIFO 空中断、接收器阈值级别到达中断和超时中断。USART 模块包括一个发送 FIFO (TX_FIFO) 和一个接收 FIFO (RX_FIFO)。通过读取 USART 状态 & 中断标志寄存器 USRSIFR,软件可以检测 USART 的错误状态。状态包括传输模式下的类型和状况以及因奇偶、溢出、帧和暂停事件造成的错误状况。

通用异步收发器 - UART

- 异步串行通信工作频率高达 (f_{PCLK}/16) MHz
- 全双工通信
- 完全可编程串行接口通信特性包括:
 - 字长: 7、8 或 9-bit 字符
 - 校验位: 奇、偶或无奇偶校验位的产生和检测
 - 停止位: 1或2个停止位
 - 位顺序: 最低位优先或最高位优先传输
- 错误侦测: 奇偶校验、溢出和帧错误

通用异步收发器 UART 提供了一个灵活的采用异步传输的全双工数据交换。UART 用来转换并行和串行接口之间的数据,通常也被用作 RS232 标准通信。UART 外设功能支持线路状态中断。通过读取 UART 状态 & 中断标志寄存器 URSIFR,软件可以检测 UART 的错误状态。状态包括传输模式下的类型和状况以及因奇偶、溢出,帧和暂停事件造成的错误状况。

智能卡接口-SCI

- 支持 ISO 7816-3 标准
- 字符发送模式
- 一个发送缓冲器和一个接收缓冲器
- 11-bit ETU (基本时间单位) 计数器
- 9-bit 时间保护计数器
- 24-bit 通用等待时间计数器
- 奇偶校验产生和检测

■ 发送和接收模式下检测到奇偶错误时自动进行字符重发

智能卡接口与 ISO 7816-3 标准兼容。该接口包括卡插入 / 移除检测、SCI 数据发送控制逻辑和数据缓冲器、内置定时器计数器和相关的控制逻辑电路来完成所有与智能卡有关的操作。智能卡接口作为一个智能卡读卡器,便于与外部智能卡通信。所有智能卡接口功能由一系列寄存器控制,包括控制和状态寄存器以及几个相关中断,这些中断产生将引起单片机注意,用于 SCI 发送状态。

内置音频接口 - I2S

- 主机模式或从机模式
- 单声道和立体声道
- I2S 对齐模式 左对齐和右对齐模式
- 带 32-bit 扩展通道的 8 / 16 / 24 / 32-bit 采样值
- 8×32 位 TX & RX FIFO 并支持 PDMA
- 带速率控制的 8-bit 小数时钟分频器

 I^2S 是一个同步通信接口,用于主机或从机与其它音频外设,如 ADC 或 DAC,之间交换数据。 I^2S 支持多种数据格式。除了立体声 I^2S 对齐、左对齐和右对齐模式,还有带 8/16/24/32-bit 采样值的单声道 PCM 模式。当 I^2S 工作在主机模式下并使用小数分频器,它可以提供一个准确的采样频率输出,且支持速率控制功能和输出频率微调,以避免由不同单片机之间的累积频率误差造成的系统问题。

循环冗余校验 - CRC

- 支持 CRC16 多项式: 0x8005, X¹⁶ + X¹⁵ + X² + 1
- 支持 CCITT CRC16 多项式: 0x1021, X¹⁶ + X¹² + X⁵ + 1
- 支持 IEEE-802.3 CRC32 多项式: 0x04C11DB7, X³² + X²⁶ + X²³ + X²² + X¹⁶ + X¹² + X¹¹ + X¹⁰ + X⁸ + X⁷ + X⁵ + X⁴ + X² + X + 1
- 支持对数据和校验码进行1的补码、字节取反和位取反操作
- 支持字节、半字和字数据大小
- 可编程 CRC 初始种子值
- 对 8-bit 数据执行 CRC 计算需要 1 个 AHB 时钟周期, 32-bit 数据需要 4 个 AHB 时钟周期
- 支持 PDMA 对一个存储器区块进行 CRC 计算

循环冗余校验 (CRC) 计算单元是一种错误检测技术测试算法,用于验证数据传输或存储数据的正确性。CRC 计算将数据流或数据块作为输入,并生成一个 16-bit 或 32-bit 输出余数。通常情况下,数据流带 CRC 后缀码,且当被发送或存储时用作校验码。因此,被接收或重新储存的数据流是通过上述相同的生成多项式计算的。如果新的 CRC 码结果与先前计算的不匹配,这意味着数据流出错了。

外设直接访问内存 – PDMA

- 带触发源分组的 6 个通道
- 8 / 16 / 32-bit 宽度数据发送
- 支持地址递增、递减或固定模式
- 4 层可编程通道优先级
- 自动重载模式

■ 支持的触发源包括:

ADC、QSPI、SPI、USART、UART、SCI、I²C、I²S、MCTM、GPTM、PWM、AES 和软件请求外设直接访问内存控制器 PDMA 对 AHB 总线上的数据在外设与系统存储器之间进行转移。每一个 PDMA 通道都有一个源地址、目的地址、存储块长度和发送数量。PDMA 可以排除 CPU 干扰,避免执行中断服务程序。由于软件无需参与每个数据的转移操作,此举提高了系统性能。

硬件除法器 - DIV

- 32-bit 有符号 / 无符号除法器
- 运算需 8 个时钟周期,加载需 1 个时钟周期
- 除数为零错误标志

该除法器采用舍尾除法,需通过 START 控制位来触发除法器开始计算。8个时钟周期后当除法器计算结束,完成标志位将被置高,但若除数寄存器内数据为零,那么除数为零错误标志将被置位。

外部总线接口-EBI

- 用于多种存储器类型的可编程接口
- 将 AHB 事务转换成相应的外部设备协议
- 为每一个存储区提供独立的片选控制
- 支持一系列单片机的可编程时序
- 当 AHB 事务宽度和外部存储器接口宽度不同时,可自动转换
- 写缓存器可减少因 AHB 写突发事件而停滞的状况
- 支持复用和非复用地址和数据线配置
 - 高达 21 条地址线
 - 高达 16-bit 数据总线宽度

外部总线接口能够访问外部并行总线设备,如 SRAM、Flash 和 LCD 模块。该接口存储映射于 CPU 内部地址。为了减少外接单片机所需的引脚数,数据线与地址线可以复用。总线的读/写时序可以被调整以符合外部设备的时序规格。注意,该接口仅支持异步8-bit 或16-bit 总线接口。

通用串行总线设备控制器 - USB

- 符合 USB 2.0 全速 (12Mbps) 规范
- 内置 USB 全速收发器
- 1 个控制端点 (EP0) 可用于控制转移
- 3 个单缓冲端点可用于批量和中断传输
- 4 个双缓冲端点可用于批量、中断和同步传输
- 1024 字节用于端点数据缓冲器

USB 设备控制器符合 USB 2.0 全速规范。有一个被称为端点 0 的控制端点和七个可配置端点。一个 1024 字节的 SRAM 被用作端点缓冲器。每个端点缓冲器大小可通过相应的寄存器编程来设置,这将为不同的应用提供了尽可能大的灵活性。内置 USB 全速收发器有助于减少总的系统复杂度和成本。USB 功能块也包含恢复和暂停特性以满足低功耗的需求。

高级加密标准 - AES

- 支持 AES 加密 / 解密功能
- 支持 AES ECB / CBC / CTR 模式
- 支持秘钥长度 128 / 192 / 256 位
- 支持 4 字初始向量用于 CBC 和 CTR 模式
- 8 × 32 位 (每个 IN 和 OUT FIFO 容量)用于 2 个 AES 数据块
- 支持 PDMA 接口
- 支持字数据交换功能

AES 的核心是支持加密和解密功能。AES 只对 128 位输入数据进行加密或解密。硬件无需为输入数据填补任意位。软件需在起始填补。

调试支持

- 串行线调试端口 SW-DP
- 4 个用于硬件断点或代码 / 文字补丁的比较器
- 2 个用于硬件数据观察点的比较器

封装和工作温度

- 46-pin QFN 和 48 / 64 / 80-pin LQFP 封装
- 工作温度: -40 °C~+85 °C

3 概述

单片机信息

表 1. 特性及外设列表

	外设	HT32F52357	HT32F52367
主 Flash (KB)		128	255
选项字节 Flash (KB)		1	1
SRAM (KB)		16	32
	MCTM	1	
	GPTM	1	[
	PWM	2	2
定时器	SCTM	2	2
	BFTM		2
	WDT	1	
	RTC	1	
	USB	1	
	QSPI	1	
	SPI	2	2
通信	USART	2	2
地行	UART	4	1
	I^2C		2
	I^2S	1	
	SCI (ISO7816-3)	2	2
PDMA		6 道	通道
AES		1	
硬件除法器		1	
EBI		1	1
CRC-16/32		1	
EXTI		1	6
12-bit ADC		1	
通道数		最大 1	2 通道
比较器			2
DAC		2	2
GPIO		67 (N	Max.)
CPU 频率		60 MHz	z (Max.)
工作电压		1.65 V	~ 3.6 V
工作温度		-40 °C	~ 85 °C
封装		46-pin QFN 和 48	/ 64 / 80-pin LQFP

方框图

Power supply:
Bus:
Control signal:
Alternate function:

图 1. 方框图

存储器映射

图 2. 存储器映射

表 2. 寄存器映射

			1
起始地址	结束地址	外设	总线
0x4000_0000	0x4000_0FFF	USART0	
0x4000_1000	0x4000_1FFF	UART0	
0x4000_2000	0x4000_2FFF	UART2	
0x4000_3000	0x4000_3FFF	保留	
0x4000_4000	0x4000_4FFF	SPI0	
0x4000_5000	0x4000_FFFF	保留	
0x4001_0000	0x4001_0FFF	ADC	
0x4001_1000	0x4002_1FFF	保留	
0x4002_2000	0x4002_2FFF	AFIO	
0x4002_3000	0x4002_3FFF	保留	
0x4002_4000	0x4002_4FFF	EXTI	
0x4002_5000	0x4002_5FFF	保留	
0x4002_6000	0x4002_6FFF	I^2S	
0x4002_7000	0x4002_BFFF	保留	
0x4002_C000	0x4002_CFFF	MCTM	
0x4002_D000	0x4003_0FFF	保留	
0x4003_1000	0x4003_1FFF	PWM0	
0x4003_2000	0x4003_3FFF	保留	
0x4003_4000	0x4003_4FFF	SCTM0	APB
0x4003_5000	0x4003_9FFF	保留	AID
0x4003_A000	0x4003_AFFF	SCI1	
0x4003_B000	0x4003_FFFF	保留	
0x4004_0000	0x4004_0FFF	USART1	
0x4004_1000	0x4004_1FFF	UART1	
0x4004_2000	0x4004_2FFF	UART3	
0x4004_3000	0x4004_3FFF	SCI0	
0x4004_4000	0x4004_4FFF	SPI1	
0x4004_5000	0x4004_7FFF	保留	
0x4004_8000	0x4004_8FFF	I2C0	
0x4004_9000	0x4004_9FFF	I2C1	
0x4004_A000	0x4005_3FFF	保留	
0x4005_4000	0x4005_4FFF	DAC	
0x4005_5000	0x4005_7FFF	保留	
0x4005_8000	0x4005_8FFF	CMP	
0x4005_9000	0x4006_7FFF	保留	
0x4006_8000	0x4006_8FFF	WDT	
0x4006_9000	0x4006_9FFF	保留	
0x4006_A000	0x4006_AFFF	RTC & PWRCU	

起始地址	结束地址	外设	总线
0x4006_B000	0x4006_DFFF	保留	
0x4006_E000	0x4006_EFFF	GPTM	
0x4006_F000	0x4007_0FFF	保留	
0x4007_1000	0x4007_1FFF	PWM1	
0x4007_2000	0x4007_3FFF	保留	A DD
0x4007_4000	0x4007_4FFF	SCTM1	APB
0x4007_5000	0x4007_5FFF	保留	
0x4007_6000	0x4007_6FFF	BFTM0	
0x4007_7000	0x4007_7FFF	BFTM1	
0x4007_8000	0x4007_FFFF	保留	
0x4008_0000	0x4008_1FFF	FMC	
0x4008_2000	0x4008_7FFF	保留	
0x4008_8000	0x4008_9FFF	CKCU & RSTCU	
0x4008_A000	0x4008_BFFF	CRC	
0x4008_C000	0x4008_FFFF	保留	
0x4009_0000	0x4009_1FFF	PDMA	
0x4009_2000	0x4009_7FFF	保留	
0x4009_8000	0x4009_9FFF	EBI	
0x4009_A000	0x400A_7FFF	保留	
0x400A_8000	0x400A_9FFF	USB	
0x400A_A000	0x400A_BFFF	USB EP_SRAM	
0x400A_C000	0x400A_FFFF	保留	AHB
0x400B_0000	0x400B_1FFF	GPIOA	
0x400B_2000	0x400B_3FFF	GPIOB	
0x400B_4000	0x400B_5FFF	GPIOC	
0x400B_6000	0x400B_7FFF	GPIOD	
0x400B_8000	0x400B_9FFF	GPIOE	
0x400B_A000	0x400C_7FFF	保留	
0x400C_8000	0x400C_9FFF	AES	
0x400C_A000	0x400C_BFFF	DIV	
0x400C_B000	0x400D_FFFF	保留	
0x400E_0000	0x400E_1FFF	QSPI	
0x400E_2000	0x400F_FFFF	保留	

时钟结构

- 1. Those control bits are located In RTC Control Register (RTCCR).
 2. The CK_IN signal is sourced from the external CKIN pin.

图 3. 时钟结构图

					_		Н	T32F	52357 46 Q	/HT32 FN-A	F5230	67								
			PA0	VSSA	VDDA	PB8	PB7	PB6	PC3	PC2	PC1	PB5	PB4	PB3	PB2	VSS_2		AF0 (Default)		
AF0 (Default)		$\overline{}$	46	45	44	43	42	41	40	39	38	37	36	35	34	33			AF0 (Default)	AF1
			VDD	AP	AP	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	PVDD			(==:==:,	
PA1	1	VDD		/DD \	/DD Po	wor Dr	nd			\/F	BAT V	DATD	ower P	od			PIO	32	VDDIO	
PA2	2	VDD								VE							VDD IO	31	PB1	
PA3	PA3 3 VDD Analog Power Pad PIO VDDIO Power Pad VDD 30 PB0 VDD VDDIO Digital I/O Pad VDD 20 PA15																			
PA4	VDD VDDO DUTUU VDD														PA15					
PA5	10 VDD 10 Z9 PA15															PA14				
PA6	6	VDD		DD \	/DD Di	gital I/C) Pad										VDD IO	27	SWDIO	PA13
PA7	7	VDD		2016	Back-up	. D	in Dad										VDD IO	26	SWCLK	PA12
USBDM /PC6	8	USB		DAN	заск-и	Doma	IIII Fau										VDD IO	25	PA11	
USBDP /PC7	9	USB	L	ISB U	JSB PH	IY Pad											VDD IO	24	PA10	
			P15	PVDD	PVDD	VBAK	VBAT	VBAK	VBAK	VBAK	VDD	VDD	VDD	VDD	VDD IO	VDD IO				
			10	11	12	13	14	15	16	17	18	19	20	21	22	23				
'			0	<	<	ם	_	×	X32	RT	×	XT/	П	_		PA9		—— 	·	
			CLDO	VDD_1	VSS_1	nRST	VBAT	X32KIN	X32KOUT	RTCOUT	XTALIN	XTALOUT	PB15	PC0	PA8	PA9_BOOT		AF0 (Default)		
								PB10	PB11	PB12	PB13	PB14						AF1		

图 4. 46-pin QFN 引脚图

						Н			/HT32 (FP-A	F5230	67							
			VSSA	VDDA	PB8	PB7	PB6	PC3	PC2	PC1	PB5	PB4	PB3	PB2		AF0 (Default)		
AF0 (Default)		\mathcal{C}	48	47	46	45	44	43	42	41	40	39	38	37			AF0 (Default)	AF1
			AP	AP	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD				_
PA0	1	VDD			VBAT	VBAT	Powe	r Pad							PVDD	36	VSS_2	
PA1	2	VDD			PVDI	VDD	Power	Pad							PIO	35	VDDIO	
PA2	3	VDD							u Dad						VDD IO	34	PB1	
PA3	4	VDD			AP			g Powe	r Pau						VDD IO	33	PB0	
PA4	5	VDD			P15	1.5 V	Power	Pad							VDD IO	32	PA15	
PA5	6	VDD			VDD	VDD	Digital	& Anal	og I/O	Pad					VDD IO	31	PA14	
PA6	7	VDD			VDD	VDD	Digital	I/O Pa	d						VDD IO	30	SWDIO	PA13
PA7	8	VDD			VBAK	VDD	Domai	n Pad							VDD IO	29	SWCLK	PA12
PC4	9	VDD			LISB	USB	PHY P	ad							VDD IO	28	PA11	
PC5	10	VDD]									VDD IO	27	PA10	
USBDM /PC6	11	USB			PIO			er Pad							VDD IO	26	PA9_ BOOT	
USBDP /PC7	12	USB			VDD IO	VDDI	O Digit	al I/O F	Pad						VDD IO	25	PA8	
			P15	PVDD	PVDD	VBAK	VBAT	VBAK	VBAK	VBAK	VDD	VDD	VDD	VDD				
			13	14	15	16	17	18	19	20	21	22	23	24				
			CLDO	VDD_1	VSS_1	nRST	VBAT	X32KIN	Х32КОUТ	RTCOUT	XTALIN	XTALOUT	PB15	PC0		AF0 (Default)		
								PB10	PB11	PB12	PB13	PB14			-	AF1		

图 5. 48-pin LQFP 引脚图

								Н			/HT32 QFP-A		67									
			VSSA	VDDA	PB8	PB7	PB6	PC3	PC2	PC1	VSS_3	VDD_3	PC15	PC14	PB5	PB4	PB3	PB2		AF0 (Default)		
AF0 (Default))	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49			AF0 (Default)	AF1
		<i>-</i>	AP	AP	VDD	VDD	VDD	VDD	VDD	VDD	PVDD	PVDD	VDD	VDD	VDD	VDD	VDD	VDD				,
PA0	1	VDD																	VDD IO	48	PD3	
PA1	2	VDD					\ (D.A.)			_									VDD IO	47	PD2	
PA2	3	VDD					VBAT	VB/	AI POV	ver Pac	1								VDD IO	46	PD1	
PA3	4	VDD					PVDI	VDI	D Powe	er Pad									VDD IO	45	PB1	
PA4	5	VDD					AP	Ana	alog Po	wer Pa	nd								VDD IO	44	PB0	
PA5	6	VDD					P15	1.5	V Powe	er Pad									PVDD	43	VSS_2	
PA6	7	VDD					VDD	VDE) Digita	al & An	alog I/0) Pad							PIO	42	VDDIO	
PA7	8	VDD					L	_											VDD	41	PA15	
PD4	9	VDD					VDE	VDL	Digita	al I/O P	ad								VDD IO	40	PA14	
PD5	10	VDD					VBAI	S Bac	k-up D	omain	Pad								VDD IO	39	SWDIO	PA13
PC4	11	VDD					USB	USE	B PHY	Pad									VDD IO	38	SWCLK	PA12
PC5	12	VDD					PIO	VD	DIO Di	gital Po	ower Pa	ad							VDD IO	37	PA11	
PC8	13	VDD					VDE	VDE	OIO Dio	gital I/C) Pad								VDD IO	36	PA10	
PC9	14	VDD					10												VDD IO	35	PA9_ BOOT	
USBDM /PC6	15	USB																	VDD IO	34	PA8	
USBDP /PC7	16	USB																	VDD	33	PC13	
			P15	PVDD	PVDD	VBAK	VBAT	VBAK	VBAK	VBAK	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD				
			17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32				
			CLDO	VDD_1	VSS_1	nRST	VBAT	X32KIN	х32КОUТ	RTCOUT	PD0	XTALIN	XTALOUT	PB15	PC0	PC10	PC11	PC12		AF0 (Default)		
								PB10	PB11	PB12		PB13	PB14							AF1		

图 6. 64-pin LQFP 引脚图

										н			/HT32 QFP-A		67											
			VSSA	VDDA	PB8	PB7	PB6	PC3	PC2	PC1	PE3	VSS_3	VDD_3	PE2	PE1	PE0	PC15	PC14	PB5	PB4	PB3	PB2		AF0 (Default)		
AF0 (Default)		$\overline{}$	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61			AF0 (Default)	AF1
) 	AP	AP	VDD	VDD	VDD	VDD	VDD	VDD	VDD	PVDD	PVDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD				
PA0	1	VDD																					VDD IO	60	PD15	
PA1	2	VDD																					VDD IO	59	PD14	
PA2	3	VDD																					VDD IO	58	PD13	
PA3	4	VDD					VBA	VB/	AT Pov	ver Pac													VDD IO	57	PD12	
PA4	5	VDD					PVDI	VDI	D Powe	er Pad													VDD IO	56	PD11	
PA5	6	VDD					AP	Ana	log Po	wer Pa	d												VDD IO	55	PD3	
PA6	7	VDD					P15	1.5	V Powe	er Pad													VDD IO	54	PD2	
PA7	8	VDD					VDE	VDI) Digita	al & An	alog I/C) Pad											VDD IO	53	PD1	
PD4	9	VDD					H		-		-	, uu											VDD IO	52	PB1	
PD5	10	VDD					VDE	VDE) Digita	al I/O P	ad												VDD IO	51	PB0	
PC4	11	VDD					VBA	Bac	k-up D	omain	Pad												PVDD	50	VSS_2	
PC5	12	VDD					USE	USE	B PHY	Pad													PIO	49	VDDIO	
VDD_4	13	PVDD					PIO	VDE	OIO Po	wer Pa	d												VDD IO	48	PA15	
VSS_4	14	PVDD					VDE	VDI	OIO Dig	nital I/O	Pad												VDD IO	47	PA14	
PC8	15	VDD					10] '5'	J.O D.	,, o													VDD IO	46	SWDIO	PA13
PC9	16	VDD																					VDD IO	45	SWCLK	PA12
PD6	17	VDD																					VDD IO	44	PA11	
PD7	18	VDD																					VDD IO	43	PA10	
USBDM /PC6	19	USB																					VDD IO	42	PA9_ BOOT	
USBDP /PC7	20	USB																					VDD IO	41	PA8	
			P15	PVDD	PVDD	VBAK	VBAT	VBAK	VBAK	VBAK	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD				
			21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40				
			CLDO	VDD_1	VSS_1	nRST	VBAT	X32KIN	х32КОUТ	RTCOUT	PD0	XTALIN	XTALOUT	PD8	PD9	PD10	PB15	PC0	PC10	PC11	PC12	PC13		AF0 (Default)		
								PB10	PB11	PB12		PB13	PB14											AF1		

图 7. 80-pin LQFP 引脚图

表 3. 引脚分配

	+1	и±								复	用功能明	央射							
	封	装		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
80 LQFP	64 LQFP	48 LQFP	46 QFN	系统 默认	GPIO	ADC /DAC	CMP	MCTM /GPTM	SPI /QSPI	USART /UART	I ² C	SCI	EBI	I ² S	N/A	N/A	SCTM /PWM	N/A	系统 其它
1	1	1	46	PA0		ADC_ IN0		GT_CH0	SPI1_ SCK	USR0_ RTS	I2C1_ SCL	SCI0_ CLK		I2S_WS					VREF
2	2	2	1	PA1		ADC_ IN1		GT_CH1	SPI1_ MOSI	USR0_ CTS	I2C1_ SDA	SCI0_ DIO		I2S_ BCLK					
3	3	3	2	PA2		ADC_ IN2		GT_CH2	SPI1_ MISO	USR0_ TX				I2S_ SDO					
4	4	4	3	PA3		ADC_ IN3		GT_CH3	SPI1_ SEL	USR0_ RX				I2S_ SDI					
5	5	5	4	PA4		ADC_ IN4		GT_CH0	SPI0_ SCK	USR1_ TX	I2C0_ SCL	SCI1_ CLK							
6	6	6	5	PA5		ADC_ IN5		GT_CH1	SPI0_ MOSI	USR1_ RX	I2C0_ SDA	SCI1_ DIO							
7	7	7	6	PA6		ADC_ IN6		GT_CH2	SPIO_ MISO	USR1_ RTS	SEAT	SCI1_ DET							
8	8	8	7	PA7		ADC_		GT_CH3	SPI0_	USR1_ CTS		DET		I2S_ MCLK					
9	9			PD4		IN7 ADC_			SEL	URI_TX			EBI_	MCLK			PWM1_		
10	10			PD5		IN8 ADC_				UR1_RX			A2 EBI_				CH0 PWM1_		
11	11	9		PC4		IN9 ADC_		CT CHO	SPI1_	USR0_	I2C1_		A3 EBI_				CHI		
						IN10 ADC_		GT_CH0	SEL SPI1	TX USR0	SCL I2C1		A19 EBI						
12	12	10		PC5 VDD_4		IN11		GT_CH1	SCK	RX	SDA		A20						
14				VSS_4															
15	13			PC8				GT_CH2	SPI1_ MOSI	URI_TX			EBI_ A0				SCTM0		
16	14			PC9				GT_CH3	SPI1_ MISO	UR1_RX			EBI_ A1				SCTM1		
17				PD6									EBI_ A9				PWM1_ CH2		
18				PD7									EBI_ A10				PWM1_ CH3		
19	15	11	8	PC6				MT_CH2		UR0_TX	I2C0_ SCL								
19	15	11	8	USBDM															
20	16	12	9	USBDP															
20	16	12	9	PC7				MT_ CH2N		UR0_RX	I2C0_ SDA								
21	17	13	10	CLDO															
22	18	14	11	VDD_1															
23	19	15	12	VSS_1															
24	20	16	13	nRST															
25	21	17	14	VBAT															
26	22	18	15	X32KIN	PB10					USR1_ TX									
27	23	19	16	X32KOUT	PB11					USR1_ RX									
28	24	20	17	RTCOUT	PB12					UR0_RX	I2C0		EBI	I2S			0.077140		WAKEUP
30	25 26	21	18	PD0 XTALIN	PB13					UR3_TX	SDA		A18	SDI			SCTM0		
31	27	22	19	XTALOUT	PB14					UR3_RX									
32			.,	PD8						O.O_IO	I2C0_ SCL			I2S_ BCLK					
33				PD9							I2C0_ SDA		EBI_ A14	I2S_ SDO			PWM0_ CH0		
34				PD10							SDA		EBI_	I2S_ SDI			PWM0_		
35	28	23	20	PB15				MT_CH0	SPIO_	USR1_	I2C1_	SCI1_	A15 EBI_	I2S_			CH1		
								MT	SEL SPI0	TX USR1	SCL I2C1	CLK SCI1	A16 EBI	MCLK			CH2 PWM0		
36	29	24	21	PC0				CH0N	SCK	RX	SDA	DIO	A17				CH3		

±1.14				复用功能映射															
	封	装		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
80 LQFP	64 LQFP	48 LQFP	46 QFN	系统 默认	GPIO	ADC /DAC	СМР	MCTM /GPTM	SPI /QSPI	USART /UART	I ² C	SCI	EBI	I ² S	N/A	N/A	SCTM /PWM	N/A	系统 其它
37	30			PC10				GT_CH0	SPI1_ SEL	UR2_TX			EBI_ AD13	I2S_WS					
38	31			PC11				GT_CH1	SPI1_ SCK	UR2_RX			EBI_ AD14	I2S_ BCLK					
39	32			PC12				GT_CH2	SPI1_ MOSI	UR1_TX	I2C0_ SCL		EBI_ AD15	I2S_ SDO			SCTM0		
40	33			PC13				GT_CH3	SPI1_ MISO	UR1_RX	I2C0_ SDA	SCI1_ DET	EBI_ CS3	I2S_ SDI			SCTM1		
41	34	25	22	PA8				_	QSPI_	USR0_	SDA	SCI1_	CS3	I2S_			PWM1_		
42	35	26	23	PA9_					SIO2 SPIO_	TX UR3_TX		CLK SCI1_	EBI_	MCLK I2S_WS			CH3 PWM1_		CKOUT
				BOOT					MOSI	USR0		DIO SCI0	Al	125_W5			CH0 PWM0		CKOUT
43	36	27	24	PA10				MT_CH1	SIO3	RX		DET	EDI	120			CH1		
44	37	28	25	PA11				MT_ CHIN	SPI0_ MISO	UR3_RX		SCI1_ DET	EBI_ A0	I2S_ MCLK			SCTM0		
45	38	29 30	26 27	SWCLK SWDIO	PA12 PA13														
					PAIS			MT CHO	QSPI_	USR0	I2C1	SCI0	EBI				PWM0		
47	40	31	28	PA14				MT_CH0	SEL	RTS USR0	SCL I2C1	CLK SCI0	AD0 EBI				CH0		
48	41	32	29	PA15				CH0N	SCK	CTS	SDA	DIO	ADI				SCTM1		
50	42	35 36	32	VDDIO VSS 2															
51	44	33	30	PB0				MT_CH1	QSPI_	USR0_	I2C0_		EBI_				PWM0_		
52	45	34	31	PB1				MT_	SIO0 QSPI_	TX USR0_	SCL I2C0_		AD2 EBI_				CH1 PWM1_		
		34	31					CHIN	SIO1 QSPI	RX USR1	SDA	SCI0	AD3 EBI				CH1		
53	46			PD1				MT_CH2	SIO2	RTS		CLK	AD10						
54	47			PD2				MT_ CH2N	QSPI_ SIO3	USR1_ CTS		SCI0_ DIO	AD11						
55	48			PD3				MT_CH3	QSPI_ SEL			SCI0_ DET	EBI_ AD12						
56				PD11					QSPI_ SCK				EBI_ A4				PWM0_ CH2		
57				PD12					QSPI_ SIO0				EBI_ A5				PWM1_ CH2		
58				PD13					QSPI_ SIO1				EBI_ A6						
59				PD14					QSPI_ SIO2				EBI_ A7				SCTM0		
60				PD15					QSPI_ SIO3				EBI_ A8				SCTM1		
61	49	37	34	PB2			COUT0	MT_CH2	QSPI_ SEL	UR2_TX			EBI_				PWM0_		CKIN
62	50	38	35	PB3			COUT1	MT_	QSPI_	UR2_RX			AD4 EBI_				CH2 SCTM1		
63	51	39	36	PB4				CH2N MT_	SCK QSPI_	UR1_TX			AD5 EBI_				SCTM0		
								BRK MT_	SIO0 QSPI_				AD6 EBI				SCTWO		
64	52	40	37	PB5				BRK	SIO1 QSPI_	UR1_RX	I2C0_		AD7 EBI						
65	53			PC14			COUT0	MT_CH3	SIO2	UR3_TX	SCL		AD8						
66	54			PC15			COUT1		QSPI_ SIO3	UR3_RX	I2C0_ SDA		AD9				SCTM1		
67				PE0					SPI0_ SEL			SCI0_ CLK	EBI_ All				PWM1_ CH2		
68				PEI					SPI0_ SCK			SCI0_ DIO	EBI_ A12				PWM0_ CH3		
69				PE2			COUT0		SPI0_ MOSI				EBI_ A13						
70	55			VDD_3															
71	56			VSS_3															
72				PE3			COUT1		SPIO_ MISO					I2S_ MCLK					
73	57	41	38	PC1			CN0	MT_CH0	SPI1_ SEL	UR1_TX			EBI_ OE	I2S_ MCLK			PWM0_ CH0		

	封装			复用功能映射															
	到	衣		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
80 LQFP	64 LQFP	48 LQFP	46 QFN	系统 默认	GPIO	ADC /DAC	СМР	MCTM /GPTM	SPI /QSPI	USART /UART	I ² C	SCI	EBI	I ² S	N/A	N/A	SCTM /PWM	N/A	系统 其它
74	58	42	39	PC2			CP0	MT_ CH0N	SPI1_ SCK	UR2_RX			EBI_ CS0				PWM1_ CH0		
75	59	43	40	PC3		DAC0_ OUT	COUT0		SPI1_ MOSI	UR1_RX			EBI_ WE				PWM1_ CH1		
76	60	44	41	PB6			CN1	MT_CH2	SPI1_ MISO	UR2_TX		SCI1_ CLK	EBI_ ALE	I2S_ BCLK					
77	61	45	42	PB7			CP1	MT_ CH2N		UR0_TX	I2C1_ SCL	SCI1_ DET	EBI_ CS1	I2S_ SDO			PWM0_ CH3		
78	62	46	43	PB8		DAC1_ OUT	COUT1	MT_CH3		UR0_RX	I2C1_ SDA	SCI1_ DIO	EBI_ CS2	I2S_ SDI			PWM1_ CH3		
79	63	47	44	VDDA															
80	64	48	45	VSSA															

表 4. 引脚描述

	引脚:	编号						描述
80 LQFP	64 LQFP	48 LQFP	46 QFN	引脚名称	类型 (1)	I/O 结构 ⁽²⁾	输出驱动	默认功能 (AF0)
1	1	1	46	PA0	AI/O	33V	4/8/12/16 mA	PA0
2	2	2	1	PA1	AI/O	33V	4/8/12/16 mA	PA1
3	3	3	2	PA2	AI/O	33V	4/8/12/16 mA	PA2
4	4	4	3	PA3	AI/O	33V	4/8/12/16 mA	PA3
5	5	5	4	PA4	AI/O	33V	4/8/12/16 mA	PA4,在 Boot loader 模式下,此引脚提供 UART_TX 功能。
6	6	6	5	PA5	AI/O	33V	4/8/12/16 mA	PA5,在 Boot loader 模式下,此引脚提供 UART_RX 功能。
7	7	7	6	PA6	AI/O	33V	4/8/12/16 mA	PA6
8	8	8	7	PA7	AI/O	33V	4/8/12/16 mA	PA7
9	9			PD4	AI/O	33V	4/8/12/16 mA	PD4
10	10			PD5	AI/O	33V	4/8/12/16 mA	PD5
11	11	9		PC4	I/O	33V	4/8/12/16 mA	PC4
12	12	10		PC5	I/O	33V	4/8/12/16 mA	PC5
13				VDD_4	P	_	_	数字 I/O 口电压
14				VSS_4	P	_	_	数字 I/O 口接地参考电压
15	13			PC8	I/O	33V	4/8/12/16 mA	PC8
16	14			PC9	I/O	33V	4/8/12/16 mA	PC9
17				PD6	I/O	33V	4/8/12/16 mA	PD6
18				PD7	I/O	33V	4/8/12/16 mA	PD7
19	15	11	8	PC6	I/O	33V	4/8/12/16 mA	PC6
19	15	11	8	USBDM	AI/O	_	_	符合通用串行总线标准的 USB 微分数据总线
20	16	12	9	USBDP	AI/O	_	_	符合通用串行总线标准的 USB 微分数据总线
20	16	12	9	PC7	I/O	33V	4/8/12/16 mA	PC7
21	17	13	10	CLDO	P	_	_	内核 LDO V _{CORE} 输出电源 必须连接一个 2.2 μF 电容,尽量靠近 CLDO 与 VSS_1 引脚
22	18	14	11	VDD_1	P	_	_	数字 I/O 口电压
23	19	15	12	VSS_1	P	_	_	数字 I/O 口接地参考电压
24	20	16	13	nRST ⁽³⁾	I (BK)	33V_PU	_	暂停模式下外部复位引脚和外部唤醒引脚
25	21	17	14	VBAT	P	_	_	备份域的电池电源输入

	引脚:	 编号						描述
80	64	48	46	引脚名称	类型 (1)	I/O 结构 ⁽²⁾	输出驱动	默认功能 (AF0)
LQFP	LQFP	LQFP	QFN					19494-7511B (122 0)
26	22	18	15	PB10 ⁽³⁾	AI/O (BK)	33V	< 2 mA	X32KIN
27	23	19	16	PB11 ⁽³⁾	AI/O (BK)	33V	< 2 mA	X32KOUT
28	24	20	17	PB12 ⁽³⁾	I/O (BK)	33V	< 2 mA	RTCOUT
29	25			PD0	I/O	33V	4/8/12/16 mA	PD0
30	26	21	18	PB13	AI/O	33V	4/8/12/16 mA	XTALIN
31	27	22	19	PB14	AI/O	33V	4/8/12/16 mA	XTALOUT
32				PD8	I/O	33V	4/8/12/16 mA	PD8
33				PD9	I/O	33V	4/8/12/16 mA	PD9
34				PD10	I/O	33V	4/8/12/16 mA	PD10
35	28	23	20	PB15	I/O	33V	4/8/12/16 mA	PB15
36	29	24	21	PC0	I/O	33V	4/8/12/16 mA	PC0
37	30			PC10	I/O	33V	4/8/12/16 mA	PC10
38	31			PC11	I/O	33V	4/8/12/16 mA	PC11
39	32			PC12	I/O	33V	4/8/12/16 mA	PC12
40	33			PC13	I/O	33V	4/8/12/16 mA	PC13
41	34	25	22	PA8	I/O (V _{DDIO})	33V	4/8/12/16 mA	PA8
42	35	26	23	PA9	I/O (V _{DDIO})	33V_PU	4/8/12/16 mA	PA9_BOOT
43	36	27	24	PA10	I/O (V _{DDIO})	33V	4/8/12/16 mA	PA10
44	37	28	25	PA11	I/O (V _{DDIO})	33V	4/8/12/16 mA	PA11
45	38	29	26	PA12	I/O (V _{DDIO})	33V_PU	4/8/12/16 mA	SWCLK
46	39	30	27	PA13	I/O (V _{DDIO})	33V_PU	4/8/12/16 mA	SWDIO
47	40	31	28	PA14	I/O (V _{DDIO})	33V	4/8/12/16 mA	PA14
48	41	32	29	PA15	I/O (V _{DDIO})	33V	4/8/12/16 mA	PA15
49	42	35	32	VDDIO	P	_	_	数字 I/O 口电压
50	43	36	33	VSS_2	P	_	_	数字 I/O 口接地参考电压
51	44	33	30	PB0	I/O (V _{DDIO})	33V	4/8/12/16 mA	PB0
52	45	34	31	PB1	I/O (V _{DDIO})	33V	4/8/12/16 mA	PB1
53	46			PD1	I/O (V _{DDIO})	33V	4/8/12/16 mA	PD1
54	47			PD2	I/O (V _{DDIO})	33V	4/8/12/16 mA	PD2
55	48			PD3	I/O (V _{DDIO})	33V	4/8/12/16 mA	PD3
56				PD11	I/O (V _{DDIO})	33V	4/8/12/16 mA	PD11
57				PD12	I/O (V _{DDIO})	33V	4/8/12/16 mA	PD12

	引脚	 编号						描述
80 LQFP	64 LQFP	48 LQFP	46 QFN	引脚名称	类型 (1)	I/O 结构 ⁽²⁾	输出驱动	默认功能 (AF0)
58				PD13	I/O (V _{DDIO})	33V	4/8/12/16 mA	PD13
59				PD14	I/O (V _{DDIO})	33V	4/8/12/16 mA	PD14
60				PD15	I/O (V _{DDIO})	33V	4/8/12/16 mA	PD15
61	49	37	34	PB2	I/O	33V	4/8/12/16 mA	PB2
62	50	38	35	PB3	I/O	33V	4/8/12/16 mA	PB3
63	51	39	36	PB4	I/O	33V	4/8/12/16 mA	PB4
64	52	40	37	PB5	I/O	33V	4/8/12/16 mA	PB5
65	53			PC14	I/O	33V	4/8/12/16 mA	PC14
66	54			PC15	I/O	33V	4/8/12/16 mA	PC15
67				PE0	I/O	33V	4/8/12/16 mA	PE0
68				PE1	I/O	33V	4/8/12/16 mA	PE1
69				PE2	I/O	33V	4/8/12/16 mA	PE2
70	55			VDD_3	P	_	_	数字 I/O 口电压
71	56			VSS_3	P	_	_	数字 I/O 口接地参考电压
72				PE3	I/O	33V	4/8/12/16 mA	PE3
73	57	41	38	PC1	AI/O	33V	4/8/12/16 mA	PC1
74	58	42	39	PC2	AI/O	33V	4/8/12/16 mA	PC2
75	59	43	40	PC3	AI/O	33V	4/8/12/16 mA	PC3
76	60	44	41	PB6	AI/O	33V	4/8/12/16 mA	PB6
77	61	45	42	PB7	AI/O	33V	4/8/12/16 mA	PB7
78	62	46	43	PB8	AI/O	33V	4/8/12/16 mA	PB8
79	63	47	44	VDDA	P	_	_	ADC 和比较器模拟电压
80	64	48	45	VSSA	P	_	_	ADC 和比较器参考地

- 注: 1.I = 输入, O = 输出, A = 模拟端口, P = 电源, $V_{DD} = V_{DD}$ 电源,VDDIO = I/O 电源,BK = 备份域。
 - 2.33V=3.3V 容差, PU=上拉。
 - 3. V_{CORE} 上电复位 (POR) 后除了备份域 I/O 的 RTCOUT 引脚外,GPIO 都是 AF0 的状态。通过备份域上电复位 (PORB) 或软件复位 (BAK_CR 寄存器的 BAK_RST 位),RTCOUT 脚会被复位。
 - 4. I/O 引脚的备份域有驱动电流能力的限制 (< $2 \, \text{mA}$ @ $V_{DD} = 3.3 \, \text{V}$)。当 $V_{DD} = 3.3 \, \text{V}$,典型灌电流可配置为 $4/8 \, \text{mA}$ 。
 - 5. 在 Boot loader 模式下,可使用 UART 和 USB 连接通信。

5 电气特性

极限参数

下面的表格说明单片机的极限参数。这里只强调额定功率,超过极限参数所规定的范围将对芯片造成损害,无法预期芯片在上述标示范围外的工作状态,而且若长期在标示范围外的条件下工作,可能影响芯片的可靠性。

表 5. 极限参数

符号	参数	最小值	最大值	单位
V_{DD}	外部主电源供应电压	V _{SS} - 0.3	$V_{SS} + 3.6$	V
V_{DDIO}	外部 I/O 口电源供应电压	$V_{\rm SS}$ - 0.3	$V_{SS} + 3.6$	V
V_{DDA}	外部模拟电源供应电压	$V_{\rm SSA}$ - 0.3	$V_{SSA} + 3.6$	V
V_{BAT}	外部电池供应电压	$V_{\rm SS}$ - 0.3	$V_{SS} + 3.6$	V
V _{IN}	I/O 口输入电压	V _{SS} - 0.3	$V_{DD} + 0.3$	V
T _A	工作温度的范围	-40	+85	°C
T_{STG}	储存温度的范围	-60	+150	°C
$T_{\rm J}$	最大结温		+125	$^{\circ}\mathrm{C}$
P _D	总功耗	_	500	mW
V _{ESD}	静电放电电压(人体模式)	-4000	+4000	V

建议直流特性

表 6. 建议直流工作条件

T_A = 25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压		1.65	3.3	3.6	V
$V_{ m DDIO}$	I/O 口工作电压		1.65	3.3	3.6	V
$V_{ m DDA}$	模拟工作电压		2.5	3.3	3.6	V
V_{BAT}	电池供电的工作电压	_	2.0	3.3	3.6	V

片上 LDO 稳压器特性

表 7. LDO 特性

T_A = 25 ℃, 除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{LDO}	内部稳压器输出电压	调整后, $V_{DD} \ge 1.65 \text{ V}$ 稳压器输入 @ $I_{LDO} = 10 \text{ mA}$ 且电压变化为 $\pm 5 \%$	1.425	1.5	1.57	V
I_{LDO}	输出电流	V _{DD} = 1.65 ~ 3.6 V 稳压器输入 @ V _{LDO} = 1.5 V	_	30	35	mA
C_{LDO}	内核供电的外部滤波 电容值	电容值取决于内核电源的功耗	1	2.2	_	μF

片上超低功耗 LDO 稳压器特性

表 8. ULDO 特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{ULDO}	内部稳压器输出电压	调整后, $V_{DD} \ge 1.65 \text{ V}$ 稳压器输入 @ $I_{ULDO} = 2$ mA 且电压变化为±5 %	1.425	1.5	1.57	V
I_{ULDO}	输出电流	V _{DD} = 1.65 ~ 3.6 V 稳压器输入 @ V _{ULDO} = 1.5 V		2	5	mA
C_{LDO}	内核供电的外部滤波 电容值	电容值取决于内核电源的功耗	1	2.2	_	μF

功耗

表 9. 功耗特性

<i>/</i> // □	分 米L	C	A7 //-		曲型/生	最大值	1 @ T _A	* / <u>*</u>
符号	参数	f _{HCLK}	条件		典型值	25 °C	85 °C	单位
		CO MII-	$V_{DD} = V_{BAT} = 3.3 \text{ V}$	所有外设使能	23.4	26.8		
		60 MHZ	HSI = 8 MHz PLL = 60 MHz	所有外设除能	10.0	11.5	_	
		40 1 411	$V_{DD} = V_{BAT} = 3.3 \text{ V}$	所有外设使能	19.0	21.7	_	
		40 MHZ	HSI = 8 MHz PLL = 40 MHz	所有外设除能	9.8	11.2	_	
	工作电流	20 1411	$V_{DD} = V_{BAT} = 3.3 \text{ V}$	所有外设使能	9.6	11.0	_	mA
	(运行模式)	20 MHZ	HSI = 8 MHz PLL = 20 MHz	所有外设除能	4.6	5.3	_	
		0 1/11	$V_{DD} = V_{BAT} = 3.3 \text{ V}$	所有外设使能	4.5	5.1	_	
		8 MHz	HSI = 8 MHz PLL = 48 MHz	所有外设除能	1.9	2.2	_	
		22 1-11-	$V_{DD} = V_{BAT} = 3.3 \text{ V}$	所有外设使能	18.2	25.3	_	4
T		32 kHz	LSI = 32 kHz LDO off, ULDO on	所有外设除能	11.3	16.4	_	μΑ
I_{DD}			$V_{DD} = V_{BAT} = 3.3 \text{ V}$ HSI = 8 MHz	所有外设使能	16.3	18.6	_	
		60 MHz	PLL = 60 MHz MCU 内核休眠	所有外设除能	1.4	1.6		
			$V_{DD} = V_{BAT} = 3.3 \text{ V}$ HSI = 8 MHz	所有外设使能	11.2	12.8		
	休眠模式	40 MHz	PLL = 40 MHz MCU 内核休眠	所有外设除能	1.1	1.2		
	小帆铁八		$V_{DD} = V_{BAT} = 3.3 \text{ V}$ HSI = 8 MHz	所有外设使能	6.3	7.2	_	mA
		20 MHz	PLL = 20 MHz MCU 内核休眠	所有外设使能	0.8	0.9		
			$V_{DD} = V_{BAT} = 3.3 \text{ V}$ HSI = 8 MHz	所有外设使能	3.2	3.6	_	
		O IVITIZ	PLL = 48 MHz MCU 内核休眠	所有外设除能	0.4	0.5	_	

<i>አ</i> ታ ロ	4 *h	c	々件	曲 刑 /古	最大值	1 @ T _A	举 (六
符号	参数	f _{HCLK}	条件	典型值	25 °C	85 °C	单位
	工作电流 (深度休眠 1 模式)	_	$V_{DD} = V_{BAT} = 3.3 \text{ V, HSI/HSE/PLL}$ 时钟 off, LDO off, ULDO on, LSE off, LSI on, RTC on	5.1	9.4		
I_{DD}	工作电流 (深度休眠 2 模式)	_	$V_{DD} = V_{BAT} = 3.3 \text{ V, HSI/HSE/PLL}$ 时钟 off, LDO off, ULDO on, LSE off, LSI on, RTC on	5.1	9.4	_	
	工作电流		$V_{\text{DD}} = V_{\text{BAT}} = 3.3 \text{ V, LDO} \text{7D} \text{ ULDO off,}$ LSE off, LSI on, RTC on	1.50	2.30		μΑ
	(暂停模式)		$V_{\text{DD}} = V_{\text{BAT}} = 3.3 \text{ V, LDO} 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000000 1$	1.45	2.20		
I_{BAT}	电池工作电流	_	V_{DD} 不存在, V_{BAT} = 3.3 V, LDO 和 ULDO off, LSE off, LSI on, RTC on	1.35	2.05	_	
1BAT	(暂停模式)		V_{DD} 不存在, V_{BAT} = 3.3 V, LDO 和 ULDO off, LSE off, LSI on, RTC off	1.30	2.00	_	

- 注: 1. HSE 是外部高速振荡器。HSI 是内部 8 MHz 高速振荡器。
 - 2. LSE 是 32.768 kHz 外部低速振荡器。LSI 是内部 32 kHz 低速振荡器。
 - 3. RTC 表示实时时钟。
 - 4. 代码 = while (1) { 208 NOP } 在 Flash 中执行。

复位和电源监控特性

表 10. V_{DD} 电源复位特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	0.6	_	3.6	V
V_{POR}	上电复位阈值 (V _{DD} 电压上升)	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	1.40	1.55	1.65	V
V_{PDR}	掉电复位阈值 (VDD 电压下降)	$T_A = -40 \text{ °C} \sim 85 \text{ °C}$	1.27	1.45	1.57	V
V_{PORHYST}	POR 迟滞	_	_	100	_	mV
$t_{\rm POR}$	复位延迟时间	$V_{DD} = 3.3 \text{ V}$	_	0.1	0.2	ms

- 注: 1. 数据仅为特性描述结果,未在生产中测试。
 - 2. 若 LDO 开启,则 V_{DD} POR 处于无效状态。当 V_{DD} POR 处于有效状态时,LDO 和 ULDO 将被关闭。

表 11. LVD / BOD 特性

T_A=25 ℃, 除非另有规定

符号	参数	条	 件	最小值	典型值	最大值	单位
V_{BOD}	欠压检测电压	工厂调整后	V _{DD} 下降沿	1.62	1.68	1.74	V
			V _{DD} 上升沿	1.68	1.74	1.8	
V_{BODHYST}	BOD 迟滞	$V_{DD} = 2.0 \text{ V}$	_	_	60	_	mV
	低压检测电压	LVDS = 001 1.87 1.95 2 LVDS = 010 2.07 2.15 2 LVDS = 011 2.27 2.35 2 LVDS = 100 2.47 2.55 2 LVDS = 101 2.67 2.75 2 LVDS = 110 2.87 2.95 3	1.83	V			
$ m V_{LVD}$			LVDS = 001	1.87	1.95	2.03	V
			LVDS = 010	2.07	2.15	2.23	V
			LVDS = 011	2.27	2.35	2.43	V
			LVDS = 100	2.47	2.55	2.63	V
			LVDS = 101	2.67	2.75	2.83	V
			LVDS = 110	2.87	2.95	3.03	V
			LVDS = 111	3.07	3.15	3.23	V
V_{LVDHYST}	LVD 迟滞	$V_{DD} = 3.3 \text{ V}$	_	_	100	_	mV
$t_{ m suLVD}$	LVD 建立时间	$V_{DD} = 3.3 \text{ V}$		_	_	5	μs
t_{atLVD}	LVD 有效延迟时间	$V_{DD} = 3.3 \text{ V}$	_	_			ms
I_{DDLVD}	工作电流 (3)	$V_{DD} = 3.3 \text{ V}$			5	15	μΑ

- 注: 1. 数据仅为特性描述结果, 未在生产中测试。
 - 2. 不包括 Bandgap 电流。
 - 3. LVDS 位于 PWRCU LVDCSR 寄存器中。

外部时钟特性

表 12. 外部高速时钟 (HSE) 特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压范围	_	1.65	_	3.6	V
$f_{\text{CK_HSE}}$	外部高速振荡器频率(HSE)	_	4	_	16	MHz
C_{L}	负载电容	$V_{DD} = 3.3 \text{ V}, R_{ESR} = 100 \Omega$ @ 16 MHz	_		22	pF
R _{FHSE}	XTALIN 和 XTALOUT 引 脚间的内部反馈电阻	_	_	1	_	МΩ
R _{ESR}	等效串联电阻	$V_{DD} = 3.3 \text{ V}, C_{L} = 12 \text{ pF}$ @ 16 MHz, HSEDR = 0	_	_	160	Ω
		$V_{DD} = 2.5 \text{ V}, C_L = 12 \text{ pF}$ @ 16 MHz, HSEDR = 1				
$D_{\text{\tiny HSE}}$	HSE 振荡器占空比	_	40	_	60	%
I_{DDHSE}	HSE 振荡器工作电流	$V_{DD} = 3.3 \text{ V} @ 16 \text{ MHz}$	_	TBD	_	mA
I_{PWDHSE}	HSE 振荡器暂停电流	$V_{DD} = 3.3 \text{ V}$	_	_	0.01	μΑ
$t_{\text{SUHSE}} \\$	HSE 振荡器启动时间	$V_{DD} = 3.3 \text{ V}$	_	_	4	ms

表 13. 外部低速时钟 (LSE) 特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\scriptscriptstyle DD}$	工作电压范围	_	1.65	_	3.6	V
$f_{\text{CK_LSE}}$	LSE 频率	$V_{DD} = 1.65 \text{ V} \sim 3.6 \text{ V}$		32.768	_	kHz
R_{F}	内部反馈电阻	_	_	10	_	$M\Omega$
$R_{\rm ESR}$	等效串联电阻	$V_{DD} = 3.3 \text{ V}$	30	_	TBD	$k\Omega$
C_{L}	建议负载电容	$V_{DD} = 3.3 \text{ V}$	6	_	TBD	pF
I _{DDLSE}	LSE 振荡器工作电流 (大电流模式)	$\begin{split} f_{CK_LSE} &= 32.768 \text{ kHz,} \\ R_{ESR} &= 50 \text{ k}\Omega, C_L \! \geq \! 7 \text{ pF} \\ V_{DD} &= 1.65 \text{ V} \sim 2.7 \text{ V} \\ T_A &= -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C} \end{split}$	_	3.3	6.3	μΑ
	LSE 振荡器工作电流 (小电流模式)	$\begin{split} f_{CK_LSE} &= 32.768 \text{ kHz,} \\ R_{ESR} &= 50 \text{ k}\Omega, C_L < 7 \text{ pF} \\ V_{DD} &= 1.65 \text{ V} \sim 3.6 \text{ V} \\ T_A &= -40 \text{ °C} \sim 85 \text{ °C} \end{split}$	_	1.8	3.3	μΑ
	暂停电流	_	_	_	0.01	μΑ
$t_{ m SULSE}$	LSE 振荡器启动时间 (小电流模式)	$\begin{aligned} f_{CK_LSE} &= 32.768 \text{ kHz,} \\ V_{DD} &= 1.65 \text{ V} \sim 3.6 \text{ V} \end{aligned}$	500	_	_	ms

- 注: PCB 布局时建议参考以下几点以提高 HSE / LSE 时钟晶体电路的稳定性:
 - 1. 晶体振荡器应当尽可能的靠近单片机来缩短走线长度,进而减少寄生电容。
 - 2. 晶体电路部分采用铺地做保护来减少噪音干扰的影响。
 - 3. 高频信号走线时远离晶体振荡器区域,可防止串扰。

内部时钟特性

表 14. 内部高速时钟 (HSI) 特性

T_A=25℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压范围	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	1.65	_	3.6	V
$f_{\rm CK_HSI}$	HSI 频率	$V_{DD} = 3.3 \text{ V} $	_	8	_	MHz
ACC _{HSI}	工厂调整 HSI 振荡器 频率精度	$V_{DD} = 3.3 \text{ V}$ $T_A = 25 \text{ °C}$	-1.5	_	1.5	%
		$V_{DD} = 1.65 \text{ V} \sim 3.6 \text{ V}$ $T_A = -20 \text{ °C} \sim 60 \text{ °C}$	-2.5	_	2.5	%
		$V_{DD} = 1.65 \text{ V} \sim 3.6 \text{ V}$ $T_A = -40 \text{ °C} \sim 85 \text{ °C}$	-3	_	3	%
Duty	占空比周期	$f_{CK_{HSI}} = 8 \text{ MHz}$	35	_	65	%
I_{DDHSI}	HSI 振荡器工作电流	$f_{CK_HSI} = 8 \text{ MHz}$	_	300	500	μΑ
	暂停电流		_	_	0.05	μΑ
t_{SUHSI}	HIS 振荡器启动时间	$f_{CK_HSI} = 8 \text{ MHz}$	_	_	10	μs

表 15. 内部低速时钟 (LSI) 特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压范围	_	1.65	_	3.6	V
f_{CK_LSI}	LSI 频率	$V_{DD} = 3.3 \text{ V},$ $T_A = -40 \text{ °C} \sim 85 \text{ °C}$	21	32	43	kHz
ACC _{LSI}	LSI 频率精度	工厂调整后, V _{DD} =3.3 V, T _A =25 ℃	-10	_	+10	%
I_{DDLSI}	LSI 振荡器工作电流	$V_{DD} = 3.3 \text{ V}, T_A = 25 ^{\circ}\text{C}$	_	0.4	0.8	μΑ
t _{SULSI}	LSI 振荡器启动时间	$V_{DD} = 3.3 \text{ V}, T_A = 25 ^{\circ}\text{C}$	_	_	100	μs

系统 PLL 特性

表 16. 系统 PLL 特性

T_A=25℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
f_{PLLIN}	系统 PLL 输入时钟	_	4	_	16	MHz
$f_{\text{CK_PLL}}$	系统 PLL 输出时钟	_	16	_	60	MHz
t_{LOCK}	系统 PLL 锁相时间	_	_	200	_	μs

USB PLL 特性

表 17. USB PLL 特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
f_{PLLIN}	USB PLL 输入时钟	_	4	_	16	MHz
$f_{\text{CK_PLL}}$	USB PLL 输出时钟	_	16	_	48	MHz
t_{LOCK}	USB PLL 锁相时间	_	_	200	_	μs

存储器特性

表 18. Flash 存储器特性

T_A = 25 ℃, 除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
N_{ENDU}	失败前可擦写次数 (寿命)	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	10	_	_	K cycles
t_{RET}	数据保存时间	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	10	_	_	Years
t_{PROG}	字编程时间	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	20	_	_	μs
t_{ERASE}	页擦除时间	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	2	_	_	ms
t_{MERASE}	整片擦除时间	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	10	_	—	ms

I/O 端口特性

表 19. I/O 端口特性

T_A=25 ℃,除非另有规定

符号	参数		条件	最小值	典型值	最大值	单位
т.	(() () () () () () () () () () () () ()	3.3 V I/O	V _I =V _{ss} , 片内上拉电阻	_	_	3	
${ m I}_{ m IL}$	低电平输入电流	复位引脚	除能	_	_	3	μs
т.	克 由亚 於) 由 法	3.3 V I/O	V _I =V _{DD} ,片内下拉电阻	_	_	3	
I_{IH}	高电平输入电流	复位引脚	除能	_	_	3	μs
1 7	(() () () () () () () ()	3.3 V I/O		-0.4	_	$0.35~V_{DD}$	V
V_{IL}	低电平输入电压	复位引脚		-0.4	_	$0.35~V_{DD}$	V
***	京山亚松) 山口	3.3 V I/O		$0.65~\mathrm{V}_\mathrm{DD}$	_	$V_{DD} + 0.4$	3.7
V_{IH}	高电平输入电压	复位引脚		$0.65~\mathrm{V}_\mathrm{DD}$	_	$V_{DD} + 0.4$	V
X 7	施密特触发器输入	3.3 V I/O		_	$0.12~\mathrm{V_{DD}}$	_	3.7
V_{HYS}	电压迟滞	复位引脚		_	$0.12~\mathrm{V_{DD}}$	_	mV
		3.3 V I/O 4 mA	A 驱动, V _{OL} = 0.4 V	4	_	_	mA
		3.3 V I/O 8 mA	A 驱动, V _{OL} = 0.4 V	8	_	_	mA
I_{OL}	低电平输出电流	3.3 V I/O 12 m	A 驱动,V _{OL} = 0.4 V	12	_	_	mA
IOL	(GPIO 灌电流)	3.3 V I/O 16 m	A 驱动,V _{OL} = 0.4 V	16	_	_	mA
		备份域 I/O 驱 V _{OL} = 0.4 V,I	4	_	_	mA	
		3.3 V I/O 4 mA	$ \overline{V}$ 区式, $ V_{OH} = V_{DD} - 0.4 V$	4	_	_	mA
		3.3 V I/O 8 mA	$ \overline{V}$ 以动, $V_{OH} = V_{DD} - 0.4 V$	8	_	_	mA
I_{OH}	高电平输出电流	3.3 V I/O 12 m.	A 驱动,V _{OH} = V _{DD} - 0.4 V	12	_	_	mA
IOH	(GPIO 源电流)	3.3 V I/O 16 m.	A 驱动,V _{OH} = V _{DD} - 0.4 V	16	_	_	mA
			动 @ V _{DD} = 3.3 V, 4 V, PB10, PB11, PB12	_	_	2	mA
		3.3 V 4 mA 驱	动 I/O,I _{OL} = 4 mA	_	_	0.4	
		3.3 V 8 mA 驱	动 I/O, I _{OL} = 8 mA	_	_	0.4	
		3.3 V 12 mA 驯	区式 I/O, I _{OL} = 12 mA	_	_	0.4	
		3.3 V 16 mA 驯	区式 I/O, I _{OL} = 16 mA	_	_	0.4	
		备份域 I/O		_	_	0.4	
V_{OL}	低电平输出电压	灌电流 = 4 mA (低驱动能力) V _{DD} = 1.65 V~2	$V_{DD} = 2.7 V \sim 3.6 V$	_	_	0.6	V
		备份域 I/O		_	_	0.4	
		灌电流 = 8 mA (高驱动能力) V _{DD} = 1.65 V~	$V_{DD} = 2.7 V \sim 3.6 V$	_	_	0.6	

符号	参数	条	·件	最小值	典型值	最大值	单位
		3.3 V 4 mA 驱动 I/C	3.3 V 4 mA 驱动 I/O, I _{OH} = 4 mA		_	_	
		3.3 V 8 mA 驱动 I/O, I _{OH} = 8 mA		V _{DD} - 0.4	_	_	V
		3.3 V 12 mA 驱动 I/	3.3 V 12 mA 驱动 I/O, I _{OH} = 12 mA		_	_	V
V_{OH}	高电平输出电压	3.3 V 16 mA 驱动 I/O, I _{OH} = 16 mA		V _{DD} - 0.4	_	_	
		备份域 I/O 源电流 = 2mA	$V_{DD} = 2.7 \text{ V} \sim 3.6 \text{ V}$	2.4		_	V
		备份域 I/O 源电流 = 1mA	$V_{DD} = 1.65 \text{ V} \sim 2.7 \text{ V}$	V _{DD} - 0.4	_	_	V
R_{PU}	内部上拉电阻	$3.3 \text{ V I/O}, V_{DD} = 3.3 \text{ V}$		_	60	_	kΩ
R_{PD}	内部下拉电阻	$3.3 \text{ V I/O}, V_{DD} = 3.3$	V	_	60	_	kΩ

A/D 转换器特性

表 20. A/D 转换器特性

T_A = 25 ℃, 除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	A/D 转换器工作电压	_	2.5	3.3	3.6	V
V _{ADCIN}	A/D 转换器输入电压范围	_	0	_	V_{REF^+}	V
V_{REF^+}	A/D 转换器参考电压	_	_	V_{DDA}	V_{DDA}	V
I_{ADC}	电流损耗	$V_{DDA} = 3.3 \text{ V}, 1 \text{Msps}$	_	0.9	1.0	mA
I _{ADC_DN}	暂停模式电流损耗	$V_{DDA} = 3.3 \text{ V}$	_	_	0.1	μΑ
$f_{ m ADC}$	A/D 转换器时钟频率	_	0.7	_	16	MHz
f_S	采样率	_	0.05	_	1.00	MHz
$t_{ m DL}$	数据延迟	_	_	12.5	_	1/f _{ADC} Cycles
$t_{\rm S\&H}$	采样 & 保持时间	_	_	3.5	_	1/f _{ADC} Cycles
$t_{ADCCONV}$	A/D 转换器转换时间	_	_	16	_	1/f _{ADC} Cycles
$R_{\rm I}$	输入采样转换电阻	_	_	_	1	kΩ
$C_{\rm I}$	输入采样电容	不包括引脚/焊盘电容	_	4	_	pF
t_{SU}	启动时间	_	_	_	1	μs
N	分辨率	_	_	12	_	bits
INL	积分非线性误差	$f_S = 750 \text{ kHz}, V_{DDA} = 3.3 \text{ V}$	_	±2	±5	LSB
DNL	微分非线性误差	$f_S = 750 \text{ kHz}, V_{DDA} = 3.3 \text{ V}$	_	±1	_	LSB
Eo	失调误差	_	_	_	±10	LSB
E_{G}	增益误差	_	_	_	±10	LSB

注: 1. 数据仅为特性描述结果,未在生产中测试。

2. 下图显示了 A/D 转换器采样和保持输入级的等效电路,图中 C_I 为内部存储电容, R_I 为内部采样转换的电阻, R_S 是信号源 V_S 的输出阻抗。在正常情况下,采样阶段的持续时间大约是 $3.5/f_{ADC}$ 。 在此阶段,对 C_I 充电以确保在其两端的电压变得足够接近 V_S 。为了保证这一点, R_S 取值会有一定的限制。

图 8. A/D 转换器采样网络模板

最差的情况是, 当在输入电压范围的极限 (0 V 和 V_{REF}) 进行连续采样, 可采用下面公式来确保采样误差低于 1/4 LSB:

$$R_{\rm S}\!<\!\frac{3.5}{f_{\rm ADC}C_{\rm I}ln(2^{N\!+\!2})}\!-R_{\rm I}$$

在此公式中, f_{ADC} 是 A/D 转换器时钟频率,N 是 A/D 转换器分辨率 (此时 N=12)。安全程度由 引脚 / 焊盘寄生电容决定,在这个简单的例子中未作说明。

如果系统使用 A/D 转换器, 在连续采样阶段没有轨到轨的输入电压变化, R_s 可能大于上述公式表示值。

内部参考电压特性

表 21. 内部参考电压特性

T_A=25 ℃,除非另有规定

符号	参数		条件		典型值	最大值	单位	
V_{DDA}	工作电压	_		1.8	_	3.6	V	
		$V_{DDA}\!\ge\!2.0~V$	VREFSEL [1:0] = 00	1.19	1.215	1.24		
17	工厂调整后内部参 考电压 @ 25 ℃	$V_{DDA}\!\ge\!2.3~V$	VREFSEL [1:0] = 01	1.96	2.0	2.04	V	
V _{REF}		$V_{DDA} \ge 2.8 \text{ V}$	VREFSEL [1:0] = 10	2.45	2.5	2.55	V	
		$V_{DDA} \ge 3.0 \text{ V}$	VREFSEL [1:0] = 11	2.65	2.7	2.75		
ACC _{VREF}	调整后的参考电压 精度	$V_{DDA} = 1.8 \text{ V} \sim 3.6 \text{ V}, V_{REF} = 1.215 \text{ V},$ $T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$		-3.0		+3.0	%	
t_{STABLE}	稳定时间		_	_	_	100	ms	
t_{SREFV}	读取参考电压时的 A/D 转换器采样时间		_	10	_	_	μs	
I_{DD}	工作电流	$V_{DDA} = 3.3 \text{ V}, V_{REF} = 2.0 \text{ V},$ $T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$		_	45	55	μА	
I_{DDPWD}	暂停电流			_	_	0.01	μA	

V_{DDA} 监控特性

表 22. V_{DDA} 监控特性

T_A = 25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
R	V _{DDA} 电阻桥	_	_	50	_	kΩ
Q	V _{DDA} 测量比	_	_	2	_	_
E_R	误差比	_	-1	_	+1	%
$t_{ m SVDDA}$	读取 V _{DDA} 时的 ADC 采样时间	_	5	_	_	μs

注:数据仅为特性描述结果,未在生产中测试。

比较器特性

表 23. 较器特性

T_A = 25 ℃,除非另有规定

符号	参数	条	件	最小值	典型值	最大值	单位
$V_{ m DDA}$	工作电压	比较器模式		2.0	3.3	3.6	V
V _{IN}	输入共模电压范围	CP 或 CN		V_{SSA}	_	V_{DDA}	V
V_{IOS}	输入失调电压 ⁽¹⁾	$T_A = 25 ^{\circ}C$		-15	_	15	mV
		无迟滞,CMPHM	无迟滞,CMPHM [1:0] = 00		0	_	mV
3 7	输入迟滞	低迟滞,CMPHM	[1:0] = 01	_	30	_	mV
V_{HYS}	$V_{DDA} = 3.3 \text{ V}$	中迟滞,CMPHM	[1:0] = 10	_	70	_	mV
		高迟滞,CMPHM	[1:0] = 11	_	100	_	mV
	-4	宣冲摄	$V_{DDA} \ge 2.7 \text{ V}$	_	50	100	
t_{RT}	响应时间 输入过载 = ±100 mV	高速模式	V_{DDA} < 2.7 V		100	250	ns
	+的/(24/ ×100 m v	低速模式		_	2	5	μs
т	电流损耗	高速模式	高速模式		180	_	μΑ
I_{CMP}	$V_{DDA} = 3.3 \text{ V}$	低速模式		_	30	_	μΑ
t_{CMPST}	比较器启动时间	比较器使能,输出	有效	_	_	50	μs
I _{CMP_DN}	暂停电流	CMPEN = 0 CVREFEN = 0 CVREFOE = 0		_	_	0.1	μА
比较器	参考电压 (CVR)						
V_{CVR}	输出范围	_	_	V_{SSA}		V_{DDA}	V
N_{Bits}	CVR 定标器分辨率	_	_	_	8	_	bits
t_{CVRST}	设定时间	V_{DDA} = 3.3 V, CVREFOE = 1 $C_{LOAD} \le 100$ pF, $R_{LOAD} \ge 50$ kΩ CVR 定标器设定时间 CVREF = "00000000" ~ "11111111"		_	_	100	μs
т	电流损耗	CVREN = 1, CVR	DE = 0	_	65	_	μΑ
I_{CVR}	$V_{DDA} = 3.3 \text{ V}$	CVREN = 1, CVRC	DE = 1	_	80	110	μΑ

注:数据仅为特性描述结果,未在生产中测试。

DAC 特性

表 24. DAC 特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	模拟电源供应电压	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	2.5	_	3.6	V
V _{DACREF}	参考电源供应电压		2.2	_	V_{DDA}	V
V_{SSA}	地	_	0	_	0	V
$R_{\rm L}$	带缓冲器的电阻性负载	_	50	_	_	kΩ
C_{L}	电容性负载	_	_	_	50	pF
DACOUT _{MIN}	带缓冲器的最低 DACOUT 电压	_	0.2	_	_	V
$DACOUT_{MAX}$	带缓冲器的最高 DACOUT 电压	$V_{DACREF} = V_{DDA}$	_	_	V _{DACREF} - 0.2	V
	Bricoot Agai	$V_{DACREF} = V_{REF}$	—	—	V_{DACREF}	
I_{DD}	静态模式下 DAC 直流 电流损耗 (V _{DDA} + V _{REF})	无负载,最高码 (0xFFF)		1	mA	
I_{DDPWD}	暂停模式下 DAC 直流 电流损耗 (V _{DDA} + V _{REF})	无负载	_	_	1	nA
DNL	微分非线性误差 (两个连续码之差 – 1LSB)	DAC 设置为 10-bit (B1, B0 始终为 0)		_	±1	LSB
INL	积分非线性误差 (i对应的实际测量值与 由 0和 1023 两点之间 确定的直线上得到的 i 的值之差)	DAC 设置为 10-bit (B1, B0 始终为 0)		_	±2	LSB
E _o	失调误差 $(0x800 对应的实际测量 值与理想值V_{REF}/2之差)$	DAC 设置为 10-bit (B1, B0 始终为 0) @ V _{REF} = 3.6V	_	±10	_	mV
E_{G}	增益误差	_	_	±0.5	_	%
t _{SETTLE}	稳定时间(满量程: 10-bit 输入码从最低值改到最 高值时, DAC 开始转换 至 DACOUT 输出达到 最终值(±1LSB)之间的 时间间隔)	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$	_	_	5	μs
SR_{DAC}	当输入码发生微小变化时(从i到i+1LSB),可产生正确的DACOUT更新的最大频率	$\begin{split} &C_{LOAD} \leq 50 \text{ pF,} \\ &R_{LOAD} \geq 5 \text{ k}\Omega \end{split}$	_	_	0.33	MS/s

注:数据仅为特性描述结果,未在生产中测试。

GPTM / MCTM / PWM / SCTM 特性

表 25. GPTM / MCTM / PWM / SCTM 特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{TM}	MCTM,GPTM,PWM 和 SCTM 定时器时钟源	_		_	$f_{ m PCLK}$	MHz
t_{RES}	定时器分辨率时间	_	1	_	_	f_{TM}
f_{EXT}	通道1~4的外部信号频率	_	_	_	1/2	f_{TM}
RES	定时器分辨率	_	_	_	16	bits

I2C 特性

表 26. I2C 特性

符号	参数	标准	模式	快速	模式	高速	模式	单位
打写	多数	最小值	最大值	最小值	最大值	最小值	最大值	中加
$f_{\scriptscriptstyle SCL}$	SCL 时钟频率	_	100	_	400		1000	kHz
$t_{\rm SCL(H)}$	SCL 时钟高电平时间	4.5	_	1.125	_	0.45	_	μs
t _{SCL(L)}	SCL 时钟低电平时间	4.5	_	1.125	_	0.45	_	μs
t_{FALL}	SCL 和 SDA 下降沿时间	_	1.3	_	0.34	_	0.135	μs
t_{RISE}	SCL 和 SDA 上升沿时间	_	1.3	_	0.34	_	0.135	μs
$t_{SU(SDA)}$	SDA 数据建立时间	500	_	125	_	50	_	ns
,	SDA 数据保持时间 (5)	0	_	0	_	0	_	ns
$t_{H(SDA)}$	SDA 数据保持时间 ⁽⁶⁾	100	_	100	_	100	_	ns
$t_{\rm VD(SDA)}$	SDA 数据有效时间	_	1.6	_	0.475	_	0.25	us
t _{SU(STA)}	START 条件建立时间	500	_	125	_	50	_	ns
t _{H(STA)}	START 条件保持时间	0	_	0	_	0	_	ns
t _{SU(STO)}	STOP 条件建立时间	500	_	125	_	50	_	ns

- 注: 1. 数据仅为特性描述结果,未在生产中测试。
 - 2. 为达到标准模式 100 kHz, 外设时钟频率必须高于 2 MHz。
 - 3. 为达到快速模式 400 kHz, 外设时钟频率必须高于 8 MHz。
 - 4. 为达到高速模式 1 MHz, 外设时钟频率必须高于 20 MHz。
 - 5. 以上 I²C 总线时序图的特性参数是基于: COMBFILTEREN = 0 且 SEQFILTER = 00 的情况
 - 6. 以上 I^2C 总线时序图的特性参数是基于: COMBFILTEREN = 1 且 SEQFILTER = 00 的情况。

图 9. I2C 时序图

SPI 特性

表 27. SPI 特性

符号	参数	条件	最小值	典型值	最大值	单位	
SPI 主机	SPI 主机模式						
f_{SCK}	SPI 主机输出 SCK 时钟频率	SPI 外设时钟频率 f _{PCLK}	_	_	$f_{PCLK}/2$	MHz	
$t_{SCK(H)} \\ t_{SCK(L)}$	SCK 时钟高电平和低电平时间	_	t _{SCK} /2 - 2	_	$t_{SCK}/2 + 1$	ns	
$t_{\rm V(MO)}$	数据输出有效时间	_	_	_	5	ns	
$t_{\rm H(MO)}$	数据输出保持时间	_	2	_	_	ns	
$t_{\rm SU(MI)} \\$	数据输入建立时间	_	5	_	_	ns	
$t_{H\left(MI\right)}$	数据输入保持时间	_	5	_	_	ns	
SPI 从机	模式						
f_{SCK}	SPI 从机输入 SCK 时钟频率	SPI 外设时钟频率 f _{PCLK}	_	_	$f_{PCLK}/3$	MHz	
Duty _{SCK}	SPI 从机输入 SCK 时钟占空比周期	_	30	_	70	%	
$t_{\rm SU(SEL)}$	SEL 使能建立时间	_	3 t _{PCLK}	_	_	ns	
$t_{\text{H(SEL)}}$	SEL 使能保持时间	_	2 t _{PCLK}	_	_	ns	
$t_{A(\mathrm{SO})}$	数据输出访问时间	_	_	_	3 t _{PCLK}	ns	
$t_{\rm DIS(SO)}$	数据输出禁止时间	_	_	_	10	ns	
$t_{V(SO)}$	数据输出有效时间	_	_	_	25	ns	
t _{H(SO)}	数据输出保持时间	_	15	_	_	ns	
$t_{SU(SI)}$	数据输入建立时间	_	5	_	_	ns	
$t_{H(SI)}$	数据输入保持时间	_	4	_	_	ns	

注: 1. f_{SCK} 为 SPI 输出 / 输入时钟频率, $t_{SCK} = 1/f_{SCK}$ 。

^{2.} f_{PCLK} 为 SPI 外设时钟频率, t_{PCLK} = 1/f_{PCLK}。

图 10. SPI 时序图 - SPI 主机模式

图 11. SPI 时序图 - SPI 从机模式, CPHA = 1

QSPI 特性

表 28. QSPI 特性

符号	参数	条件	最小值	典型值	最大值	单位		
QSPI ±	QSPI 主机模式							
$\begin{array}{c} f_{SCK} \\ \left(1/t_{SCK} \right) \end{array}$	QSPI 主机输出 SCK 时钟 频率	QSPI 外设时钟频率 f _{HCLK}	_	_	f _{HCLK} /2	MHz		
t _{SCK(H)} t _{SCK(L)}	SCK 时钟高电平和低电平 时间	_	t _{SCK} /2 - 2	_	t _{SCK} /2 + 1	ns		
$t_{V(MO)}$	数据输出有效时间	_	_	_	5	ns		
$t_{H(MO)}$	数据输出保持时间	_	2	_	_	ns		
$t_{\rm SU(MI)} \\$	数据输入建立时间	_	5	_	_	ns		
$t_{H(MI)}$	数据输入保持时间	_	5	_	_	ns		
QSPI 从	QSPI 从机模式 (仅用于 1-bit 串行模式)							
f _{SCK} (1/t _{SCK})	QSPI 从机输入 SCK 时钟 频率	QSPI 外设时钟频率 f _{HCLK}	_	_	f _{HCLK} /3	MHz		
Duty _{SCK}	QSPI 从机输入 SCK 时钟 占空比周期	_	30	_	70	%		
$t_{SU(SEL)}$	SEL 使能建立时间	_	$3 \times t_{HCLK}$	_	_	ns		
$t_{\text{H(SEL)}}$	SEL 使能保持时间	_	$2 \times t_{HCLK}$	_	_	ns		
$t_{A(\mathrm{SO})}$	数据输出访问时间	_	_	_	$3 \times t_{HCLK}$	ns		
$t_{\rm DIS(SO)}$	数据输出禁止时间	_	_	_	10	ns		
$t_{\rm V(SO)}$	数据输出有效时间	_	_	_	25	ns		
$t_{H(\mathrm{SO})}$	数据输出保持时间	_	15	_	_	ns		
$t_{\rm SU(SI)} \\$	数据输入建立时间	_	5	_	_	ns		
$t_{H(\mathrm{SI})}$	数据输入保持时间	_	4	_	_	ns		

- 注: $1. f_{SCK}$ 为 QSPI 输出 / 输入时钟频率, $t_{SCK} = 1/f_{SCK}$ 。
 - 2. f_{HCLK} 为 QSPI 外设时钟频率, t_{HCLK} = 1/f_{HCLK}。

图 12. QSPI 时序图 – QSPI 主机模式 (1-bit 串行模式, DUALEN = 0, QUADEN = 0)

图 13. QSPI 时序图 – QSPI 主机模式 (Dual 模式, DUALEN = 1)

图 14. QSPI 时序图 – QSPI 主机模式 (Quad 模式, QUADEN = 1)

图 15. QSPI 时序图 – QSPI 从机模式, CPHA = 1 (1-bit 串行模式)

I2S 特性

表 29. I2S 特性

符号	参数	条件	最小值	典型值	最大值	单位			
I2S 主机模式	I ² S 主机模式								
t _{WSD(MO)}	WS 输出到 BCLK 延迟	_	_	TBD	_	ns			
t _{DOD(MO)}	数据输出到 BCLK 延迟	_	_	TBD	_	ns			
t _{DIS(MI)}	数据输入建立时间	_	_	TBD	_	ns			
t _{DIH(MI)}	数据输入保持时间	_	_	TBD	_	ns			
I2S 从机模式	t								
t _{BCH(SI)}	BCLK 高脉冲宽度	_	_	TBD	_	ns			
t _{BCL(SI)}	BCLK 低脉冲宽度	_	_	TBD	_	ns			
t _{WSS(SI)}	WS 输入建立时间	_	_	TBD	_	ns			
t _{DOD(SO)}	数据输出到 BCLK 延迟	_	_	TBD	_	ns			
t _{DIS(SI)}	数据输入建立时间	_	_	TBD	_	ns			
t _{DIH(SI)}	数据输入保持时间	_	_	TBD	_	ns			

图 16. I2S 主机模式时序图

图 17. I²S 从机模式时序图

USB 特性

USB接口符合 USB-IF 认证 – 全速。

表 30. USB 直流电气特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	USB 工作电压	_	3.0	_	3.6	V
V_{DI}	微分输入灵敏度	USBDP – USBDM	0.2	_	_	V
V_{CM}	共模电压范围	_	0.8	_	2.5	V
V_{SE}	单端接收器阈值	_	0.8	_	2.0	V
V _{OL}	Pad 输出低电压		0	_	0.3	V
V _{OH}	Pad 输出高低压	1.5 kΩ R _L 连接到 V _{DD33}	2.8	_	3.6	V
V_{CRS}	微分输出信号交叉点电压		1.3	_	2.0	V
Z_{DRV}	驱动器输出电阻值	_	_	10	_	Ω
C _{IN}	收发器 Pad 电容值	_	_	_	20	pF

- 注: 1. 数据仅为特性描述结果,未在生产中测试。
 - 2. 当电压降低至 $2.7\,V$ 时,都可确保 USB 功能的正常使用,但当 V_{DD} 电压范围在 $2.7\,V\sim3.0\,V$ 时,部分 USB 电气特性值会有所下降。
 - 3. R_L 是连接到 USB 驱动器 USBDP 的负载电阻。

图 18. USB 信号上升时间、下降时间和交叉点电压 (V_{CRS}) 定义

表 31. USB 交流电气特性

符号	参数	条件	最小值	典型值	最大值	单位
t_R	上升时间	$C_L = 50 \text{ pF}$	4	_	20	ns
$t_{\rm F}$	下降时间	$C_L = 50 \text{ pF}$	4	_	20	ns
$t_{R/F}$	上升时间 / 下降时间匹配度	$t_{R/F} = t_R / t_F$	90	_	110	%

6 封装信息

请注意,这里提供的封装信息仅作为参考。由于这个信息经常更新,提醒用户咨询 Holtek 网站以 获取最新版本的封装信息。

封装信息的相关内容如下所示,点击可链接至 Holtek 网站相关信息页面。

- 封装信息(包括外形尺寸、包装带和卷轴规格)
- 封装材料信息
- 纸箱信息

SAW Type 46-pin QFN (6.5mm × 4.5mm × 0.75mm) 外形尺寸

符号	尺寸(单位: inch)				
1 7 5	最小值	典型值	最大值		
A	0.028	0.030	0.031		
A1	0.000	0.001	0.002		
A3	_	0.008 BSC	_		
b	0.006	0.008	0.010		
D	_	0.256 BSC	_		
Е	_	0.177 BSC	_		
e	_	0.016 BSC	_		
D2	0.199	0.201	0.203		
E2	0.120	0.122	0.124		
L	0.014	0.016	0.018		
K	0.008	_	_		

<i>የ</i> ታ 🗆	尺寸(单位: mm)				
符号	最小值	典型值	最大值		
A	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
A3	_	0.203 BSC	_		
b	0.15	0.20	0.25		
D	_	6.50 BSC	_		
Е	_	4.50 BSC	_		
e	_	0.40 BSC	_		
D2	5.05	5.10	5.15		
E2	3.05	3.10	3.15		
L	0.35	0.40	0.45		
K	0.20	_	_		

48-pin LQFP (7mm×7mm) 外形尺寸

符号	尺寸(单位: inch)				
1寸 写	最小值	典型值	最大值		
A	_	0.354 BSC	_		
В	_	0.276 BSC	_		
C	_	0.354 BSC	_		
D	_	0.276 BSC	_		
Е	_	0.020 BSC	_		
F	0.007	0.009	0.011		
G	0.053	0.055	0.057		
Н	_	_	0.063		
I	0.002	_	0.006		
J	0.018	0.024	0.030		
K	0.004	_	0.008		
α	0°	_	7°		

符号		尺寸(单位: mm)				
1寸 写	最小值	典型值	最大值			
A	_	9.0 BSC	_			
В	_	7.0 BSC	_			
С	_	9.0 BSC	_			
D	_	7.0 BSC	_			
E	_	0.5 BSC	_			
F	0.17	0.22	0.27			
G	1.35	1.4	1.45			
Н	_	_	1.60			
I	0.05	_	0.15			
J	0.45	0.60	0.75			
K	0.09	_	0.20			
α	0°	_	7°			

64-pin LQFP (7mm×7mm) 外形尺寸

——————————— 符号	尺寸(单位: inch)			
1寸 写	最小值	典型值	最大值	
A	_	0.354 BSC	_	
В	_	0.276 BSC	_	
С	_	0.354 BSC	_	
D	_	0.276 BSC	_	
Е	_	0.016 BSC	_	
F	0.005	0.007	0.009	
G	0.053	0.055	0.057	
Н	_	_	0.063	
I	0.002	_	0.006	
J	0.018	0.024	0.030	
K	0.004	_	0.008	
α	0°	_	7°	

<i>5</i> 5 □	尺寸(单位: mm)				
符号	最小值	典型值	最大值		
A	_	9.00 BSC	_		
В	_	7.00 BSC	_		
С	_	9.00 BSC	_		
D	_	7.00 BSC	_		
Е	_	0.40 BSC	_		
F	0.13	0.18	0.23		
G	1.35	1.40	1.45		
Н	_	_	1.60		
I	0.05	_	0.15		
J	0.45	0.60	0.75		
K	0.09	_	0.20		
α	0°	_	7°		

80-pin LQFP (10mm × 10mm) 外形尺寸

符号	尺寸(单位: inch)		
	最小值	典型值	最大值
A	_	0.472 BSC	_
В	_	0.394 BSC	_
С	_	0.472 BSC	_
D	_	0.394 BSC	_
Е	_	0.016 BSC	_
F	0.005	0.007	0.009
G	0.053	0.055	0.057
Н	_	_	0.063
I	0.002	_	0.006
J	0.018	0.024	0.030
K	0.004	_	0.008
α	0°	_	7°

符号	尺寸(单位: mm)			
	最小值	典型值	最大值	
A	_	12.00 BSC	_	
В	_	10.00 BSC	_	
С	_	12.00 BSC	_	
D	_	10.00 BSC	_	
Е	_	0.40 BSC	_	
F	0.13	0.18	0.23	
G	1.35	1.40	1.45	
Н	_	_	1.60	
I	0.05	_	0.15	
J	0.45	0.60	0.75	
K	0.09	_	0.20	
α	0°	_	7°	

$\label{eq:copyright} \textbf{Copyright}^{\texttt{@}} \ \textbf{2022} \ \textbf{by} \ \textbf{HOLTEK} \ \textbf{SEMICONDUCTOR} \ \textbf{INC}.$

使用指南中所出现的信息在出版当时已尽量做到合理注意,但合泰不保证信息准确无误,文中提到的应用目的仅仅是用来做为参考,合泰不保证这些说明将是适当的,也不推荐将合泰的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。合泰特此声明,不授权将产品使用于救生、维生从机或系统中做为关键从机。合泰对于客户或第三方因说明书所载信息错误或遗漏、使用产品或说明书而遭受的一切损失,一概不负任何责任。合泰拥有不事先通知而修改使用指南中所记载的产品或规格的权利,如欲取得最新的信息,请与我们联系。