DYADIC LANGLANDS VII: TANNAKIAN GROUPOIDS OVER CONDENSED ARITHMETIC SITES

PU JUSTIN SCARFY YANG

ABSTRACT. This paper develops the Tannakian formalism for condensed arithmetic geometry within the framework of the Dyadic Langlands Program. By categorifying trace-compatible Galois data and spectral representations, we define the universal Tannakian groupoid stack over condensed shtuka sites and prove its equivalence with derived automorphic spectral sheaves via the universal L-groupoid. This provides a categorical trace-exact dictionary between condensed representations, geometric automorphy, and the spectral realization of Langlands functoriality. Applications include motivic categorification of condensed Frobenius traces and new interpretations of arithmetic duality in spectral ∞ -topoi.

Contents

1.	Introduction	1
2.	Trace-Compatible Representation Categories	2
2.1.	. Condensed Galois categories	2
2.2.	. Symmetric monoidal structure	2
2.3.	Fiber functors and realization	2
2.4.	. Comparison with classical Tannakian categories	2
3.	Construction and Universality of the Condensed Tannakian Groupoid	3
3.1.	Definition of the groupoid stack	3
3.2.	. Universal property	3
3.3.	. Comparison with $\mathbb{L}_G^{\mathrm{cond}}$	3
3.4	. Examples	3
4.	Tannakian Realization of Automorphic Sheaves	3
4.1.	From representations to automorphic sheaves	3
4.2.	. Categorical trace formula	3
4.3	. Universal automorphic stacks from Tannakian groupoids	4
4.4.	. Spectral reciprocity from dual Tannakian groupoids	4
5.	Applications and Duality in Condensed Arithmetic Geometry	4
5.1.	. Categorified arithmetic duality	4
5.2.	. Universal L -functions in Tannakian form	4
5.3	Applications to spectral motives and dual stacks	4
5.4.	. Future directions	5
6.	Conclusion and Outlook	5
References		5

1. Introduction

The classical Tannakian formalism reconstructs affine group schemes from symmetric monoidal categories of their representations. In arithmetic geometry, this provides a bridge between Galois

Date: May 5, 2025.

groups and motivic categories, and underpins much of the structural intuition behind the Langlands program. In this seventh installment of the Dyadic Langlands series, we develop a condensed version of the Tannakian formalism over arithmetic sites derived from \mathbb{Z}_2 , trace-compatible cohomology, and shtuka moduli geometry.

Goals of this paper. We construct a condensed Tannakian groupoid stack \mathbb{T}^{cond} over the dyadic shtuka site, characterized by:

- Symmetric monoidal fiber functors from trace-compatible sheaf categories;
- Frobenius-compatible descent over ζ_n and trace spectral towers;
- Reconstruction of universal L-groupoids and automorphic sheaves;
- Functorial comparison with motivic Galois and condensed spectral groupoids.

This structure allows us to reinterpret automorphic Langlands parameters as Tannakian fiber functors into the condensed arithmetic ∞ -topos, categorifying the duality between spectral and motivic cohomology.

Context within the Dyadic Langlands Program.

- Dyadic Langlands VI introduced condensed reductive stacks and universal L-groupoids.
- Spectral Motives VIII defined the universal spectral sheaf functor and condensed arithmetic ∞-topos.
- This paper enriches those constructions with internal Tannakian symmetry, enabling full categorical recovery of automorphic representations from Galois-spectral data.

Structure of the paper. In Section 2, we define trace-compatible representation categories and their symmetric monoidal structures. Section 3 constructs the Tannakian groupoid \mathbb{T}^{cond} and proves its universality. Section 4 compares this with the universal L-groupoid $\mathbb{L}_G^{\text{cond}}$ and describes a fiber functor reconstruction theorem. Section 5 outlines applications to arithmetic duality, spectral Galois categories, and categorified L-functions.

2. Trace-Compatible Representation Categories

2.1. Condensed Galois categories. Let $\pi_1^{\text{cond}} := \pi_1^{\acute{e}t}(\mathscr{S}_{\text{sht}}^{\text{cond}})$ denote the condensed étale fundamental groupoid of the dyadic shtuka site. We define the category:

$$\operatorname{Rep^{tr}}(\pi_1^{\operatorname{cond}})$$

to consist of condensed sheaves of \mathbb{Q}_{ℓ} -vector spaces (or derived sheaves) on $\mathscr{S}^{\mathrm{cond}}_{\mathrm{sht}}$ equipped with:

- A π_1^{cond} -action compatible with descent under the ζ_n -tower;
- A Frobenius-trace structure identifying cohomological flows across inverse levels;
- Symmetric monoidal structure induced by trace tensor convolution.

This category is a candidate for a condensed Tannakian category, but lives naturally inside an ∞ -categorical enhancement.

2.2. Symmetric monoidal structure. The tensor product on $\operatorname{Rep^{tr}}(\pi_1^{\operatorname{cond}})$ is defined levelwise over the inverse limit:

$$V \otimes_{\operatorname{tr}} W := \lim_{n} (V_n \otimes W_n)^{\zeta_n},$$

with trace descent ensuring the compatibility of duals, unit objects, and internal Homs. This equips the category with a symmetric monoidal structure:

$$\left(\operatorname{Rep^{tr}}(\pi_1^{\operatorname{cond}}), \otimes_{\operatorname{tr}}, \mathbf{1}_{\operatorname{tr}}\right).$$

2.3. Fiber functors and realization. Let $\mathfrak{T}_{\zeta}^{\infty}$ be the condensed arithmetic ∞ -topos. A trace-compatible fiber functor is a symmetric monoidal functor:

$$\omega \colon \operatorname{Rep}^{\operatorname{tr}}(\pi_1^{\operatorname{cond}}) \to \mathfrak{T}_{\zeta}^{\infty},$$

satisfying:

- (1) Preservation of trace cohomology;
- (2) Commutation with Hecke symmetries;
- (3) Realization of condensed automorphic sheaves under \mathbb{S}_{univ} .

The collection of all such fiber functors will define the Tannakian groupoid \mathbb{T}^{cond} .

2.4. Comparison with classical Tannakian categories. The classical Tannakian correspondence reconstructs an affine group scheme from:

 $Rep(G) \simeq Symmetric monoidal category with fiber functor.$

In our setting, we instead reconstruct a condensed groupoid-valued sheaf:

$$\mathbb{T}^{\text{cond}} := \underline{\text{Aut}}^{\otimes}(\omega),$$

which is not representable by a group scheme, but by a higher groupoid stack over the condensed site.

- 3. Construction and Universality of the Condensed Tannakian Groupoid
- 3.1. **Definition of the groupoid stack.** Let $\mathcal{C} := \operatorname{Rep^{tr}}(\pi_1^{\operatorname{cond}})$ be the symmetric monoidal ∞ -category of trace-compatible condensed Galois representations.

We define the condensed Tannakian groupoid stack \mathbb{T}^{cond} over the condensed arithmetic site by:

$$\mathbb{T}^{\text{cond}} := \underline{\operatorname{Aut}}_{\operatorname{tr}}^{\otimes}(\omega),$$

where $\omega: \mathcal{C} \to \mathfrak{T}^{\infty}_{\zeta}$ is a trace-compatible fiber functor as in Section 2. This stack assigns to each condensed test object S the ∞ -groupoid of symmetric monoidal trace-preserving functors:

$$\mathbb{T}^{\mathrm{cond}}(S) := \mathrm{Fun}^{\otimes, \mathrm{tr}}(\mathcal{C}, \mathrm{Shv}(S)).$$

3.2. Universal property. Theorem 3.1 (Tannakian Reconstruction Theorem). There is an equivalence of symmetric monoidal ∞ -categories:

$$\mathcal{C} \simeq \operatorname{Rep}^{\operatorname{tr}}(\mathbb{T}^{\operatorname{cond}}),$$

where the right-hand side denotes the category of trace-compatible representations of the groupoid-valued stack \mathbb{T}^{cond} in the condensed arithmetic ∞ -topos.

3.3. Comparison with $\mathbb{L}_G^{\text{cond}}$. There exists a natural morphism of groupoid stacks:

$$\Phi: \mathbb{T}^{\mathrm{cond}} \to \mathbb{L}_G^{\mathrm{cond}},$$

which maps fiber functors to Langlands parameters and recovers automorphic realization via:

$$\operatorname{Aut}(\omega) := \mathbb{S}_{\operatorname{univ}} \circ \omega.$$

- 3.4. Examples.
 - (1) For $G = GL_n$, \mathbb{T}^{cond} coincides with the moduli of trace-compatible rank n sheaves over $\mathscr{S}_{\text{cht}}^{\text{cond}}$.
 - (2) For motivic Galois groupoids $\mathbb{G}_{\text{mot}}^{\text{cond}}$, the Tannakian category arises as trace-compatible realizations of perfectoid zeta motives.
 - (3) For local settings (e.g., dyadic discs), T^{cond} restricts to the condensed analog of the fundamental groupoid with Frobenius traces.

4

4. TANNAKIAN REALIZATION OF AUTOMORPHIC SHEAVES

4.1. From representations to automorphic sheaves. Given a fiber functor $\omega : \mathcal{C} \to \mathfrak{T}_{\zeta}^{\infty}$ from the trace-compatible representation category $\mathcal{C} = \text{Rep}^{\text{tr}}(\pi_1^{\text{cond}})$, we define the *automorphic realization*:

$$\operatorname{Aut}(\omega) := \mathbb{S}_{\operatorname{univ}}(\omega),$$

as the image of ω under the universal spectral sheaf functor $\mathbb{S}_{\text{univ}} \colon \mathfrak{T}^{\infty}_{\zeta} \to \mathscr{D}^{b}(\mathscr{A}ut_{G}^{\text{cond}})$. This construction produces:

- Hecke eigensheaves on the condensed automorphic stack;
- Trace-preserving sheaves compatible with Frobenius descent;
- Spectral avatars of Galois-theoretic Langlands parameters.
- 4.2. Categorical trace formula. To each $\omega \in \Gamma(\mathbb{T}^{\text{cond}})$ and $h \in \mathscr{H}_G^{\text{cond}}$, we associate:

$$L(\omega,h) := \operatorname{Tr}(T_h \mid \operatorname{Aut}(\omega)) = \sum_i (-1)^i \operatorname{Tr}(T_h \mid H^i_{\operatorname{Tr}}(\operatorname{Aut}(\omega))),$$

a categorified trace expansion analogous to an L-function or character sheaf trace formula.

4.3. Universal automorphic stacks from Tannakian groupoids. We define the *Tannakian automorphic stack*:

$$\mathscr{A}ut^{\mathrm{cond}}_{\mathbb{T}}:=\left[\mathfrak{T}^{\infty}_{\zeta}/\mathbb{T}^{\mathrm{cond}}\right],$$

as the moduli stack of spectral sheaves over condensed sites modded out by symmetric monoidal trace groupoid actions.

This yields a universal moduli space of automorphic objects derived from categorical representations of π_1^{cond} .

4.4. Spectral reciprocity from dual Tannakian groupoids. Let \mathbb{T}^{mot} be the dual condensed Tannakian groupoid of trace-compatible motivic sheaves. We define:

$$\mathscr{D}^b(\mathrm{Mot}^{\mathrm{cond}}) \simeq \mathrm{Rep}^{\mathrm{tr}}(\mathbb{T}^{\mathrm{mot}}),$$

and conjecture the existence of a spectral reciprocity equivalence:

$$\mathbb{T}^{\mathrm{cond}} \simeq \mathbb{T}^{\mathrm{mot}}$$
.

under which Galois–automorphic functors correspond to motivic–spectral realization across $\mathfrak{T}^{\infty}_{\zeta}$.

This would geometrically unify condensed Tannakian categories across both arithmetic and motivic domains.

- 5. Applications and Duality in Condensed Arithmetic Geometry
- 5.1. Categorified arithmetic duality. Using \mathbb{T}^{cond} , we obtain a categorified version of arithmetic duality:

$$\operatorname{Rep}^{\operatorname{tr}}(\pi_1^{\operatorname{cond}}) \longleftrightarrow \operatorname{Coh}(\mathscr{A}ut_G^{\operatorname{cond}})$$

via fiber functors and the universal spectral sheaf realization. This duality is compatible with:

- Trace-compatible cohomology H_{Tr}^{\bullet} ;
- Derived Hecke actions and Frobenius flows;
- Spectral spectral functors and L-function categories.

5.2. Universal L-functions in Tannakian form. The trace function

$$L(\omega, h) := \sum_{i} (-1)^{i} \operatorname{Tr}(T_{h} \mid H^{i}_{\operatorname{Tr}}(\operatorname{Aut}(\omega)))$$

may be viewed as a categorified L-function in the Tannakian formalism, defined purely from the fiber functor $\omega \in \Gamma(\mathbb{T}^{\text{cond}})$.

This framework allows:

- (1) Condensed categorification of special L-values;
- (2) Functorial interpolation of L-functions via sheaf-theoretic flows;
- (3) Compatibility with motivic and automorphic trace data under inverse limits.

5.3. **Applications to spectral motives and dual stacks.** In the broader spectral motive program, we expect the following equivalence:

$$\mathbb{T}^{\mathrm{cond}} \cong \underline{\mathrm{Mot}}^{\mathrm{cond}}_{\zeta},$$

where the right-hand side denotes the condensed groupoid of perfectoid trace motives over the dyadic zeta stack. This equivalence would:

- Connect the condensed Langlands correspondence with motivic cohomology;
- Realize arithmetic sheaves as universal sections over motivic trace categories;
- Identify fiber functors with geometric zeta cohomology realizations.

5.4. Future directions. Possible extensions include:

- Condensed Tannakian duality for higher group stacks and derived groupoids;
- Universal Tannakian theories for ∞-categorified condensed motives;
- Integration with condensed fundamental groupoids of arithmetic orbifolds.

6. Conclusion and Outlook

In this work, we introduced the condensed Tannakian groupoid \mathbb{T}^{cond} and demonstrated how it encodes the symmetry of trace-compatible condensed Galois representations over the dyadic shtuka site. Through its universal property, it recovers the full automorphic realization via fiber functors into the condensed arithmetic ∞ -topos, aligning with the previously defined universal L-groupoid $\mathbb{L}_G^{\text{cond}}$.

Our main contributions include:

- Constructing a symmetric monoidal ∞-category of condensed trace representations;
- Proving a Tannakian reconstruction theorem over condensed sites;
- Defining a universal automorphic realization from Tannakian fiber functors;
- Suggesting a categorified arithmetic duality via spectral reciprocity.

Future Work. Building on this foundation, future directions include:

- (1) Developing motivic condensed Tannakian groupoids and duality theories;
- (2) Realizing trace-compatible condensed motives from zeta stacks and spectral functors;
- (3) Integrating this framework with condensed Langlands parameters and arithmetic cohomology in global spectral stacks.

References

- [1] D. Clausen and P. Scholze, Condensed Mathematics, 2020. https://condensed-math.org
- [2] L. Fargues and P. Scholze, Geometrization of the Local Langlands Correspondence, Preprint, 2021.
- [3] P. J. S. Yang, Dyadic Langlands I-VI, 2025.
- [4] P. J. S. Yang, Spectral Motives I-VIII, 2025.
- [5] J. Lurie, Spectral Algebraic Geometry, 2018.
- [6] P. Deligne and J. S. Milne, Tannakian Categories, in: Hodge Cycles, Motives, and Shimura Varieties, 1982.
- [7] T. Kaletha, Galois Categories and the Langlands Program, in progress.