NN: Leurue-5

Backpropfor N-layer NN

1 - Layer MN (80/tmax Classetfies)

Computational graph of 1-layer

$$\frac{\partial T}{\partial W} = (A - Y). X$$

N-layer MM

Lomputational graph for N-layer NN

Longuetational graph for N-Payer NN

$$A^{\circ} \times \longrightarrow (300.2)$$

$$W' \rightarrow (314)$$

$$Z' \rightarrow (300.4)$$

$$b' \rightarrow (1.4)$$

$$A' \rightarrow (300.4)$$
 $W^{2} \rightarrow (4.3)$
 $Z^{2} \rightarrow (300.3)$
 $b^{2} \rightarrow (11.3)$

$$A^2 \rightarrow (300/3)$$

$$y \rightarrow (300/3)$$

Back weard Prop (2 W2)

$$\frac{\partial J}{\partial W^2} \longrightarrow \partial W^2$$

Balleward Prop (d/m²)

$$A' \cdot \partial Z^{2} = \partial W^{2}$$

$$A' \rightarrow (300, 4)$$

$$A^{3} \rightarrow (300, 3)$$

$$A^{3} \rightarrow (413)$$

But ruhy are vue dividing by m? $W \longrightarrow W - \propto \lim_{N \to \infty} \frac{1}{2N}$

Backweard Prop (202)

Backward Propogation (20152)

$$A^{3}-Y \longrightarrow (300,3)$$

$$3b^{2} \longrightarrow (1,3)$$

Ase me donne here?

Backward Prop (dW')

Backward Proplani)

$$\frac{\partial Z^{1}}{\partial W^{1}} \qquad \frac{\partial A^{1}}{\partial Z^{1}} \qquad \frac{\partial Z^{2}}{\partial A^{1}}$$

$$3 \qquad 2 \qquad 1 \qquad 0$$

$$\partial A_1 = \frac{\partial T}{\partial Z^2} \cdot \frac{\partial Z^2}{\partial A^1}$$
 $\partial A' = \partial Z^2 \cdot W^{aT}$

Backward Prop (02')

$$\frac{\partial Z'}{\partial W'} = \frac{\partial A'}{\partial Z'} = \frac{\partial Z^2}{\partial A'} = \frac{\partial Z^2}{\partial A'}$$
3 2 1

Backmard Prop(2W')

$$\frac{\partial Z'}{\partial W'} = \frac{\partial A'}{\partial Z'} = \frac{\partial Z^2}{\partial A'} = \frac{\partial Z^2}{\partial A'}$$
3 2 1

$$\partial W' = X^T \cdot \partial Z'$$

Backward Prop (06)

$$\frac{\partial Z'}{\partial W'} = \frac{\partial A'}{\partial Z'} = \frac{\partial Z^2}{\partial A'} = \frac{\partial Z^2}{\partial A'}$$

Backward Prop (86')

Tuesday

and the contract of the contra

+ Keras + Tensor Mon

Thursday

Regulations
Hyper turning
Optimization.
Essoz Analysis.