Computation on Collaborative Filtering

slides adapted from Stanford data mining course

Outline

- User based Collaborative Filtering (CF) and item based Collaborative Filtering (CF)
- Latent factor approach—Matrix Factorization

User based Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Finding "Similar" Users $r_x = [*, _, _, *, ***]$ $r_y = [*, _, **, **, _]$

$$r_x = [*, _, _, *, ***]$$
 $r_y = [*, _, **, **, _]$

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure
 - Problem: Ignores the value of the rating
- r_x , r_v as sets: $r_x = \{1, 4, 5\}$ $r_v = \{1, 3, 4\}$

- Cosine similarity measure
 - $= sim(\boldsymbol{x}, \, \boldsymbol{y}) = cos(\boldsymbol{r}_{\boldsymbol{x}}, \, \boldsymbol{r}_{\boldsymbol{y}}) = \frac{r_{\boldsymbol{x}} \cdot r_{\boldsymbol{y}}}{||r_{\boldsymbol{x}}|| \cdot ||r_{\boldsymbol{v}}||}$

- r_x , r_v as points: $r_x = \{1, 0, 0, 1, 3\}$ $r_v = \{1, 0, 2, 2, 0\}$
- Problem: Treats missing ratings as "negative"
- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}} \frac{1}{\overline{r_x}, \overline{r_y} \dots \text{ avg.}}$$

Similarity Metric

Cosine sim:
$$sim(x,y) = \frac{\sum_{i} r_{xi} \cdot r_{yi}}{\sqrt{\sum_{i} r_{xi}^{2}} \cdot \sqrt{\sum_{i} r_{yi}^{2}}}$$

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4</p>
- Cosine similarity: 0.38 > 0.32

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item i of user x:

Many other options/tricks possible...

Item-based Collaborative Filtering

- So far: User-based collaborative filtering
- Another view: Item-based
 - For item i, find other similar items
 - Estimate rating for item *i* based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

s_{ij}... similarity of items *i* and *j*r_{xj}...rating of user *x* on item *j*N(i;x)... set items rated by *x* similar to *i*

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	

users

- unknown rating

- rating between 1 to 5

							user	S					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

	users													
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.96
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.66</u>
Ε	4		2	4		5			4			2		-0.84
	5			4	3	4	2					2	5	-0.89
	<u>6</u>	1		3		3			2			4		0.77

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute similarities between rows

							user	S						
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.96
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.66</u>
Ε	4		2	4		5			4			2		-0.84
	5			4	3	4	2					2	5	-0.89
	<u>6</u>	1		3		3			2			4		<u>0.77</u>

LICOKO

Compute similarity weights:

$$s_{1,3}$$
=0.66, $s_{1,6}$ =0.77

	_	_	
		0	rc
		_	_
-			

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		2.6	5			5		4	
2			5	4			4			2	1	3
<u>3</u>	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

$$r_{1.5} = (0.66*2 + 0.77*3) / (0.66+0.77) = 2.54$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Item-based vs. User-based

- In practice, it has been observed that <u>item-based</u> often works better than user-based
- Why? Items are simpler, users have multiple tastes

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

- No feature selection needed
- Cold Start:
 - Need enough users in the system to find a match
- Sparsity:
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
- First rater:
 - Cannot recommend an item that has not been previously rated
 - New items, Esoteric items
- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
 - Could pre-compute
- Naïve pre-computation takes time O(k · | X |)
 - X ... set of customers
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction

Outline

- User CF and item CF
- Latent factor approach—Matrix Factorization

■ Matrix Factorization: $\mathbf{R} \approx \mathbf{Q} \cdot \mathbf{P}^T$

- For now let's assume we can approximate the rating matrix R as a product of "thin" $Q \cdot P^T$
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

$\hat{r}_{xi} =$	q_i	p_x
$=\sum_{i=1}^{n}$	q_{if}	$\cdot p_{xf}$
_ -	row <i>i</i> c colum	of Q n x of P ^T

	.1	4	.2						
S	5	.6	.5						
items	2	.3	.5						
ite	1.1	2.1	.3						
	7	2.1	-2						
	-1	.7	.3						
factors									

ı

W	

_												
S	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
<u>fa</u>	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

users

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

$\hat{r}_{xi} =$	q_i	$\boldsymbol{p}_{\boldsymbol{x}}$
$=\sum$	q_{if}	$\cdot p_{xf}$
	row <i>i</i> o columı	f Q n x of P ^T

•	.1	4	.2	
	5	.6	.5	
items	2	.3	.5	
ite	1.1	2.1	.3	
	7	2.1	-2	
	-1	.7	.3	

factors

S	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
<u>6</u>	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1
'												

USERS

PT

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

\hat{r}_{xi}	=	q_i	$\cdot p_x$	
=		q_{if}	$\cdot p_{\lambda}$	c f
		row <i>i</i> (colum	of Q nn x of F	⊃ T

(0	.1	4	.2		
	5	.6	.5		
items	2	.3	.5		
ite	1.1	2.1	.3		
	7	2.1	-2		
	-1	.7	.3		

f factors

Ors	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
• act	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
f f	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

USERS

PT

Our goal is to find P and Q such tat:

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x)^2$$

Stochastic Gradient Descent

Back to Our Problem

- Want to minimize Sum of Squared Errors (SSE) for unseen test data
- Idea: Minimize SSE on training data
 - Want large k (# of factors) to capture all the signals
 - But, SSE on test data begins to rise for k > 2
- This is a classical example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalizing well to unseen test data

Dealing with Missing Entries

To solve overfitting we introduce regularization:

- Allow rich model where there are sufficient data
- Shrink aggressively where data are scarce

$$\min_{P,Q} \sum_{\text{training}} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$
"error"
"length"

 $\lambda_1, \lambda_2 \dots$ user set regularization parameters

Note: We do not care about the "raw" value of the objective function, but we care in P,Q that achieve the minimum of the objective

Summary

- User CF and item CF
 - Understand how to compute
- Latent factor approach—Matrix Factorization
 - Understand the high-level idea