Local Gauge Anomalies and The Standard Model

E. Arnold & K. Okeyre

October 2025 Undergraduate Summer Research Project Durham University

Abstract

Abstract here

Contents

1	Introduction	3
2	Quantum States	3
3	The Heisenburg Picture of Quantum Mechanics	4
4	Classical field theory & Noether's theorem	5
5	Path Integral & Generating Functional	6
6	Scalar Fields & Green's Functions	7
7	Wess-Zumino Consistency & Ward Identity	7
8	Stora-Zumino Descent	7
9	Dai-Freed & Index Theorems	7
Re	eferences	8

1 Introduction

The following report is aimed at undergraduate students familiar with lagrangian mechanics, hamiltonian mechanics, quantum mechanics, and topology. For a guide to the expected prerequisite knowledge see [1, 2, 3].

[The aim of this report is to offer a gentle introduction to quantum field theory, and offer insight into one example of where topology shows up in theoretical physics.] - CHANGE THIS

Explain structure of report here.

2 Quantum States

One should be familiar with the notion of a quantum wavefunction, such as $\psi(x)$, which describes the position of a particle. However, in quantum field theory we deal with a more abstract concept called a quantum state.

Definition 2.1. Define Hilbert space

Notation 2.2. We use the Bra-Ket notation for vectors in Hilbert space. A vector is written as $|\psi\rangle$ and a covector is written as $|\phi\rangle$. We define

$$\langle \phi | \psi \rangle := \langle \phi | (|\psi \rangle)$$

Given a vector $|\psi\rangle$ the corresponding hermition transpose of this vector is $\langle\psi|$, meaning $|\psi|^2 = \langle\psi|\psi\rangle$.

A quantum state is a mathematical entity that embodies all the known information of some given quantum system. There are two types of quantum states, pure and mixed. We will only explain pure quantum states in this section.

A (pure) quantum state is an abstract vector in a complex Hilbert space, denoted by $|\psi\rangle$. This Hilbert space is called our state space and often has infinite dimensions.

Observables of our quantum system correspond to Hermition operators on our state space. The eigenvalues of such an operator are real and correspond to possible observed values. It can be shown that the eigenstates of any Hermition operator form a basis for our state space. This allows us to relate quantum states to the more familiar notion of a quantum wavefunction.

Let $\langle \psi |$ be a quantum state and \hat{X} be the position operator with eigenstates $|x\rangle$. Then $\psi(x) = \langle x | \psi \rangle$. WHY???

3 The Heisenburg Picture of Quantum Mechanics

One is usually introduced to quantum mechanics in the Schrödinger picture, however, in quantum field theory, it is more natural to consider the Heisenburg picture.

In the Schrödinger picture, the quantum states vary with time. For example, our quantum state may be represented by a wave function $\psi(x,t)$, which evolves in time. Conversely, the operators that act on our state space, such as momentum, position, etc, are usually fixed with respect to time. The only exception to this is that the Hamiltonian may include a potential energy term that varies with time.

Consider a time dependent quantum state $|\psi(t)\rangle$. This state evolves in time according the Schrodinger equation. One can represent this via a unitary time-evolution operator $U(t,t_0)$ as follows;

$$|\psi(t)\rangle = U(t, t_0)|\psi(t_0)\rangle.$$

In the Schrödinger picture, the expectation of a potentially time-dependent hermition operator, A(t), in the state $|\psi(t)\rangle$, can be written as

$$\langle \hat{A}(t) \rangle = \langle \psi(t) | \hat{A}(t) | \psi(t) \rangle.$$

Choosing some reference time t_0 we can rewrite this as

$$\langle \psi(t_0)|\hat{U}^{\dagger}(t,t_0)\hat{A}(t)\hat{U}(t,t_0)|\psi(t_0)\rangle.$$

If we define

$$\hat{A_H}(t) = \hat{U}^{\dagger}(t, t_0) \hat{A}(t) \hat{U}(t, t_0)$$

then we have

$$\langle \hat{A}(t) \rangle = \langle \psi(t_0) | \hat{A}_H(t) | \psi(t_0) \rangle.$$

So we notice that we could have obtained this same expectation by considering a constant quantum state $|\psi(t_0)\rangle$ and a new operator that evolves with time. This is the idea behind the Heisenberg picture of quantum mechanics. One interprets the quantum states as being fixed in time, and it is the operators that evolve in time.

In the Schrödinger picture, the Schrödinger equation governs the time evolution of quantum states. Hence, a natural question is, in the Heisenberg picture, how do the operators evolve in time? One can derive the following equation

$$\frac{d}{dt}\hat{A}_H(t) = \frac{1}{i\hbar}[\hat{A}_H(t), \hat{H}_H(t)] + \left[\frac{d}{dt}\hat{A}_S(t)\right]_H$$

where the subscripts S and H denote whether we are considering the element in the Schrodinger or Heisenberg picture respectively.

4 Classical field theory & Noether's theorem

Classical field theory is a generalisation of classical mechanics where instead of considering a collection of particles $\{q_i(t)\}_i$, we consider a function on spacetime, $\phi(\vec{x},t)$, called a field. The *i* has been generalised to \vec{x} .

The Lagrangian density at a point is a function of fields and their derivatives,

$$\mathcal{L}(\vec{x},t) = \mathcal{L}(\phi_a(\vec{x},t), \partial_\mu \phi_a(\vec{x},t)),$$

where the subscript a is because the density may depend on multiple fields. The Lagrangian is then written as an integral of this Lagrangian density over space,

$$L(t) = \int d^3 \vec{x} \mathcal{L}(\vec{x}, t).$$

Our action is then written as a time integral of this Lagrangian,

$$S = \int dt L(t)$$

or equivalently

$$S = \int d^4x \mathcal{L}(\phi_a, \partial_\mu \phi_a).$$

From this, we can derive the new Euler-Lagrange equations,

$$\frac{\partial \mathcal{L}}{\partial \phi_a} - \partial_\mu \left[\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a)} \right] = 0.$$

***NOT SURE IF THIS WILL BE NEEDED

The fields in the Lagrangian density are relativistic, meaning under Lorentz tranformations

$$x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$$

they transform as

$$\phi_i'(x') = R_i^j \phi_i(x)$$

**what is i? Does it matter?

We use the Minkowski metric

$$\eta_{\mu\nu} = diag(-1, 1, 1, 1)$$

in these notes.

***DOWN TO HERE

Define a symmetry

State Noether's thm

5 Path Integral & Generating Functional

Given a particle position x at time t the probability amplitude of a measurement at time t' observing a position x' is

$$\begin{split} M(x',t';x,t) &= {}_H \langle x',t'|x,t\rangle_H \\ &= \langle x'| \exp\left[\frac{-i}{\hbar} \hat{H}(t-t')\right] |x\rangle \end{split}$$

now we note that if the states are normalised

$$\int dy |y, t\rangle \langle y, t| = \mathbb{I}$$
 (1)

we can write

$$M(x',t';x,t) = \sum_{n} \psi_n(x')\psi_n^*(x) \exp\left[\frac{-i}{\hbar}\hat{H}(t-t')\right]$$
 (2)

which acts as our propagator

$$\psi(x',t') = \int dx \ M(x',t';x,t)\psi(x,t)\partial_{\mu}^{x}$$
 (3)

- 6 Scalar Fields & Green's Functions
- 7 Wess-Zumino Consistency & Ward Identity
- 8 Stora-Zumino Descent
- 9 Dai-Freed & Index Theorems

References

- [1] Iñaki Etxebarria. Lagrangian and hamiltonian mechanics, june 2025.
- [2] Casper Peeters. Introduction to quantum mechanics, Januarary 2025.
- [3] Sophie Darwin. Topology ii, January 2025.