Welcome to

Introduction to Machine Learning!

Review of Topic 5: Hidden Markov Model 隐马尔可夫模型

Problem 2 - Solution 2

- Given an observation sequence, compute the most likely hidden state sequence
- Find the state sequence that best explains the observations
- There may be many X's that make P(X|O) maximal.
- We give an algorithm to find one of them.

$$\underset{X}{\operatorname{arg\,max}} P(X \mid O) \longrightarrow Viterbi algorithm$$

Viterbi Algorithm

$$\delta_t(j) = \max_{x_1...x_{t-1}} P(x_1...x_{t-1}, o_1...o_{t-1}, x_t = j, o_t)$$

The state sequence which maximizes the probability of seeing the observations to time t -1, landing in state j, and seeing the observation at time t

Viterbi Algorithm

$$\delta_t(j) = \max_{x_1...x_{t-1}} P(x_1...x_{t-1}, o_1...o_{t-1}, x_t = j, o_t)$$

$$\delta_{t+1}(j) = \max_{i} \{\delta_{t}(i)a_{ij}b_{jo_{t+1}}\}$$

$$\psi_{t+1}(j) = \arg\max_{i} \{\delta_{t}(i)a_{ij}b_{jo_{t+1}}\}$$

Recursive Computation

Viterbi Algorithm

$$\delta_t(j) = \max_{x_1...x_{t-1}} P(x_1...x_{t-1}, o_1...o_{t-1}, x_t = j, o_t)$$

$$\delta_{t+1}(j) = \max_{i} \{\delta_{t}(i)a_{ij}b_{jo_{t+1}}\} \quad \psi_{t+1}(j) = \arg\max_{i} \{\delta_{t}(i)a_{ij}b_{jo_{t+1}}\}$$

$$\hat{X}_T = \arg\max_i \delta_T(i)$$

$$P(\hat{X}) = \delta_T(i)$$

HMM applications

- Speech recognition
- (Chinese / Japanese) Input Method
- POS (Part of Speech) Tagging
- Gene analysis
- Any phenomena of linear sequence

Example: disease diagnose

Observations

Clinical symptoms c_i (fever, cough, sore throat, snivel, etc)

- States: diseases d_i (Influenza, pneumonia, tonsillitis, etc.)
- Transition probabilities: $P(d_i | d_i)$
- Observation probabilities: $P(c_i | d_i)$
- Initialize state probabilities
- Encoding problem:
 - Clinical symptoms: cough \rightarrow sore throat \rightarrow snivel \rightarrow fever
 - To find: what's the most probable disease changing sequence?

Example: POS tagging (词性标注)

• Problem:

Given word sequence $w_1w_2...w_n$, find POS sequence $c_1c_2...c_n$

• HMM model:

• State: POS

Observation: Word

• Training:

Learn POS transition matrix $[a_{ij}]$ and observation matrix (POS to words) $[b_{ik}]$ by statistical analyses

• Find the solution: Viterbi algorithm

Overview

- Estimation problem:
 - Define forward / backward variables
 - Dynamic algorithm, $O(N^2T)$
- Encoding problem: Viterbi algorithm
 - Dynamic algorithm, $O(N^2T)$

To master the definition and the computation of $\alpha_t(i)$

To master the viterbi algorithm

Overview (Cont.)

- Advantages of HMM:
 - Solid mathematical foundation, efficient algorithms, effective performance, easy to train
- The most import point:

We can use the special structure of this model to do a lot of neat math and solve problems that are otherwise not solvable.

- Further discussion:
 - Correctness and fitness of the 1st order Markov assumption

References

- L. Rabiner: A tutorial on Hidden Markov Models and selected applications in speech recognition, Proceedings of the IEEE 77(2): 257-286, 1989
 - Recommended readings: p257~p266 (exclude IV. Types of HMMs)
- E. Fosler-Lussier: Markov Models and Hidden Markov Models: A Brief tutorial, Technical Report (TR-98-041), December 1998, International Computer Science Institute, Berkeley, California.
- A. Meng: An introduction to Markov and Hidden Markov Models, http://eivind.imm.dtu.dk/teaching/04364/ex10/intro_HMM_01.pdf

Exercises: (by yourself)

Consider the following coin-tossing experiment:

	State 1	State 2	State 3
P(H)	0.5	0.75	0.25
P(T)	0.5	0.25	0.75

- state-transition probabilities equal to 1/3
- initial state probabilities equal to 1/3
- 1. You observe O = (H, H, H, H, T, H, T, T, T, T). What state sequence, q, is most likely? What is the joint probability, $P(O, q|\lambda)$, of the observation sequence and the state sequence?
- 2. What is the probability that the observation sequence came entirely of state 1?

Topic 6. ML Theory-I: Evaluating Hypotheses 学习理论 I: 假设的评估问题

Min Zhang

z-m@tsinghua.edu.cn

Review: Inductive learning hypothesis

• Much of the learning involves acquiring general concept from specific training examples.

- Inductive learning algorithms can at best guarantee that the output hypothesis fits the target concept over the training data.
 - Notice: over-fitting problem

Review: Inductive learning hypothesis

• The Inductive Learning Hypothesis:

Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over unobserved examples.

(任一假设若在足够大的训练样例集中很好地逼近目标函数, 它也能在未见实例中很好地逼近目标函数)

Motivation – Question 1

- Performance estimation
 - Given the observed accuracy of a hypothesis over a limited sample of data
 - how well does it estimate the accuracy over additional data?

Motivation – Question 2

- h₁ outperforms h₂ over some sample of data
 - How probable is it that h₁ is better in general?

Motivation – Question 3

- When data is limited
 - what is the best way to use this data to both learn a hypothesis and estimate its accuracy?

The mathematical study of the likelihood and probability of events occurring based on known information and inferred by taking a limited number of samples.

Basics of Sampling Theory

- Bernoulli experiments
 - Only 2 outputs: success probability: p, fail probability: q = 1-p
 - Use random variable X to record the number of success
- Binomial Distribution:
 - Toss a coin: probability of heads side up p, toss n times, observed heads up r times
 - If $X \sim B(n, p)$ then Pr(X = r) = P(r) $P(r) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r}$

Binomial distribution

Where the Binomial Distribution Applies

- Two possible outcomes (success and failure) (Y=0 or Y=1)
- The probability of success is the same on each trial Pr(Y=1) = p, where p is a constant
- There are *n* independent trails
 - Random variables Y_1, \ldots, Y_n ,
 - iid (independent identically distribution)
 - R: random variable, count of Y_i where $Y_i = 1$ on n trails,
- $Pr(R = r) \sim \text{Binomial distribution}$
- Mean (expected value): E[R], μ
 - Binomial distribution: $\mu = np$
- Variance: $Var[R]=E[(R-E[R])^2]$, σ^2 (Standard deviation σ)
 - Binomial distribution: $\sigma^2 = np(1-p)$

Review Question 1

- Performance estimation
 - Given the observed accuracy of a hypothesis over a limited sample of data
 - how well does it estimate the accuracy over additional data?

Estimating Hypothesis Accuracy: Define Problem

- Given:
 - A hypothesis *h* and a data sample containing *n* examples
 - Drawn at random according to the distribution D
 - Sample Error $error_S$ $error_S(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$
- Question
 - 1. What is the best estimate of the accuracy of *h* over future instances drawn from the same distribution?

True Error
$$error_{\mathcal{D}}$$
 $error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$

2. What is the probable error of the accuracy estimate?

Estimating Hypothesis Accuracy

answer to Q1.1

Back to Q1.1 What is the best estimate of the accuracy of *h* over future

instances drawn from the same distribution?

Probability that r of n random samples are misclassified — Binomial distribution

$$error_D(h) = p$$
 $error_s(h) = \frac{r}{n}$

$$P(r) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r}$$

$$E[r] = np$$
, $E[error_S(h)] = E[\frac{r}{n}] = \frac{np}{n} = p = error_D(h)$

$$\sigma_{error_s(h)} = \frac{\sigma_r}{n} = \frac{\sqrt{np(1-p)}}{n} = \sqrt{\frac{error_D(h)(1-error_D(h))}{n}}$$

$$\sigma_{error_s(h)} = \frac{\sigma_r}{n} \approx \sqrt{\frac{error_s(h)(1 - error_s(h))}{n}}$$
 3.2% 6.5%

Two important properties of estimator

- Estimation bias
 - If S is training set, $error_S(h)$ is optimistically biased

$$bias \equiv E[error_S(h)] - error_D(h)$$

- For unbiased estimate (bias = 0), h and S must be chosen independently \rightarrow Don't test on training set!
- Estimation variance
 - Even with unbiased S, $error_S(h)$ may still vary from $error_D(h)$
 - E.g. previous examples of 3.2% vs. 6.5%
 - Should choose the unbiased estimator with least variance

Estimating Hypothesis Accuracy –Q1.2

- Q1.2 What is the probable error of the accuracy estimate? (How well does $error_S(h)$ estimate $error_D(h)$?)
- Sampling theory: confidence interval (置信区间)
- Definition:
 - An N% confidence interval for some parameter p is an interval that is expected with probability N% to contain p.

```
(N%: confidence degree)
```

参数p的N%置信区间是一个以N%的概率包含p的区间,N%:置信度

Confidence interval

- Example of confidence interval
 - Suppose you know nothing about a girl, therefore her age is a random variable X for you.
 - When you see her photo, you guess her age between 12 to 18 with confidence level 90%
 - To get more confidence level (e.g. 99.9%), the interval has to be larger (e.g. [3,50])
- How to get confidence interval?
 - Bad news: Hard with Binomial Distribution
 - Good news: Easy with Normal Distribution
 - Obtained with area (integral) of normal distribution

Normal distribution

• Probability density function of normal dist.

Normal Dist. & Binomial Dist.

• For sufficiently large sample sizes

The binomial distribution

can be closely approximated by

The Normal distribution

• Rule of thumb: n > 30, np(1-p) > 5

Confidence Interval of Normal Distribution

80% of area (the measured value y) lies in

N% of area (the measured value y) lies in

$$\mu \pm 1.28\sigma$$
 $\mu \pm z_N \sigma$

Equivalently, the mean μ will fall in the following interval N% of the time $y \pm z_N \sigma$

Estimating Hypothesis Accuracy – the answer to Q1.2

- More correctly, if
 - S contains n examples, drawn independently of h and each other, n >= 30
- Then
- With approximately 95% probability, $error_S(h)$ lies in interval

$$error_{\mathcal{D}}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

Estimating Hypothesis Accuracy – the answer to Q1.2

- More correctly, if
 - S contains n examples, drawn independently of h and each other, n >= 30
- Then
- With approximately 95% probability, $error_S(h)$ lies in interval

$$error_{\mathcal{D}}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

equivalently $error_{\mathcal{D}}(h)$ lies in interval

$$error_{S}(h) \pm 1.96 \sqrt{\frac{error_{D}(h)(1 - error_{D}(h))}{n}}$$

Estimating Hypothesis Accuracy – the answer to Q1.2

- More correctly, if
 - S contains n examples, drawn independently of h and each other, n >= 30
- Then
- With approximately 95% probability, $error_S(h)$ lies in interval

$$error_{\mathcal{D}}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

equivalently $error_{\mathcal{D}}(h)$ lies in interval

$$error_{S}(h) \pm 1.96 \sqrt{\frac{error_{D}(h)(1 - error_{D}(h))}{n}}$$
 which is approximately $error_{S}(h) \pm 1.96 \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$

More details: One-sided bounds

- Yield upper or lower error bounds
- We know the probability that $error_D(h)$ lies in [L,U]
- Then what's the probability that $error_D(h)$ is less than U?
 - Symmetry of Normal Distribution

More details: One-sided bounds

introduction to machine learning:Theory(I) Evaluating Hypotheses

Recall – Question 1

- Performance estimation
 - Given the observed accuracy of a hypothesis over a limited sample of data
 - how well does this estimate its accuracy over additional data?

Overview: Answers to Question 1

- Problem setting:
 - *S*: *n* random independent samples, and independent with hypothesis *h*
 - $n \ge 30 \& h$ with r errors
- True error $error_D$ lies in the following interval with N% confidence:

$$error_S(h) \pm z_N \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$

$$N\%$$
: 50% 68% 80% 90% 95% 98% 99% z_N : 0.67 1.00 1.28 1.64 1.96 2.33 2.58

More Information on Deriving Confidence Intervals

General Approach for deriving Confidence Intervals

- In general
 - Identify the parameter p to estimate, e.g. $error_D(h)$
 - Define estimator Y (bias, variance), e.g. $error_S(h)$
 - Desirable: minimum variance, unbiased estimator
 - ullet Determine distribution D governing Y (including mean & variance)
 - Determine N% confidence interval (L..U)
 - Could have $L=-\infty$ or $U=\infty$
 - E.g. Use table of z_n values (for normal distribution)
- Applied later to other problems

General Approach for deriving Confidence Intervals

- In general
 - Identify the parameter p to estimate, e.g. $error_D(h)$
 - Define estimator Y (bias, variance), e.g. $error_S(h)$
 - Desirable: minimum variance, unbiased estimator
 - ullet Determine distribution D governing Y (including mean & variance)

- Determine N% confidence interval (L..U)
 - Could have $L=-\infty$ or $U=\infty$
 - E.g. Use table of z_n values (for normal distribution)
- Applied later to other problems

Central Limit Theorem

- Simplifies attempts to define confidence intervals.
- Problem setting
 - Independent, identically distributed (iid) random variable $Y_1, ..., Y_n$,
 - unknown distribution, with mean μ and finite variance σ^2
 - Estimating mean: $\bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_i$
- Central Limit Theorem
 - \bar{Y} approaches a normal distribution $(n \to \infty)$
 - With mean μ , and variance σ^2/n
 - Can be normalized to the normal dist. with $\mu = 0$, $\sigma = 1$

Central Limit Theorem ...

- Distribution of sample mean \vec{Y}
 - is known
 - although distribution of Y_i is not
 - ullet can be used to determine mean & variance of Y_i
- Gives basis to approximating
 - Distribution of estimators
 - That are means of some sample

Application: DTree Avoid over-fitting

- Two ways of avoid over-fitting for D-Tree
 - I. Stop growing when data split not statistically significant (pre-pruning)
 - II. Grow full tree, then post-pruning

For option II:

- How to select "best" tree?
 - Measure performance over training data (statistical pruning)
 - Confidence level
 - Measure performance over separate validation data set

Decision Tree Pruning based on Confidence Intervals (as in C4.5)

- Advantage: It allows all of the available labeled data to be used for training.
- Key idea: calculate a confidence interval for the error rate.
- True error $error_D$ lies in the following interval with N% confidence:

$$error_S(h) \pm z_N \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}} \begin{bmatrix} N\%: 50\% 68\% 80\% 90\% 95\% 98\% 99\% \\ z_N: 0.67 1.00 1.28 1.64 1.96 2.33 2.58 \end{bmatrix}$$

- In order to decide whether to replace a near-leaf node and its child leaves by a single leaf node, C4.5 compares the upper limits of the error confidence intervals for the two trees
- For the unpruned tree, the upper error estimate is calculated as a weighted average over its child leaves.

Decision Tree Pruning based on Confidence Intervals (as in C4.5)

e.g. For health plan node: (75% confidence, z=0.69)

- The average estimated upper error rate for the unpruned tree
 - =none: err_s=2/6, n=6, err_t upper bound: 0.46
 - =half: $err_s=1/2$, n=2, err_t upper bound: 0.74
 - =full: $err_s=2/6$, n=6, err_t upper bound: 0.46
 - Weighted average upper error rate: **0.50**
 - If the node "health plan" is pruned \rightarrow leaf(9+,5-)
 - $err_s = 5/14$, n = 14, Estimated err_t upper bound: **0.44**
- The pruned tree results in a lower upper estimate for the error rate, the leaves are indeed pruned.

More details and progress: Gilad Katz, Asaf Shabtai, Lior Rokach, and Nir Ofek. Confdtree: Improving decision trees using confidence intervals. In *Data Mining (ICDM), 2012 IEEE 12th International Conference on*, pages 339 –348, dec. 2012

Question 2

- h₁ outperforms h₂ over some sample of data
 - How probable is it that h₁ is more accurate in general?

Difference between hypotheses

Difference between hypotheses

- Test h_1 on sample S_1 (n_1 random samples), test h_2 on S_2 (n_2)
- Pick parameter to estimate $d \equiv error_{\mathcal{D}}(h_1) error_{\mathcal{D}}(h_2)$
- Choose an estimator $\hat{d} \equiv error_{S_1}(h_1) error_{S_2}(h_2)$
 - Unbiased
- Determine probability distribution that governs estimator
 - $error_{S1}(h_1)$, $error_{S2}(h_2)$ approx. Normal Dist.
 - \hat{d} is also approx. Normal Dist. *
 - \bullet Mean = d
 - variances: sum up

^{*} Proof: http://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

Difference between hypotheses

- Test h_1 on sample S_1 (n_1 random samples), test h_2 on S_2 (n_2)
- Pick parameter to estimate $d \equiv error_{\mathcal{D}}(h_1) error_{\mathcal{D}}(h_2)$
- Choose an estimator $\hat{d} \equiv error_{S_1}(h_1) error_{S_2}(h_2)$
 - Unbiased
- Determine probability distribution that governs estimator

$$\sigma_{\hat{d}} \approx \sqrt{\frac{\mathrm{error}_{S_1}(h_1)(1 - \mathrm{error}_{S_1}(h_1))}{n_1} + \frac{\mathrm{error}_{S_2}(h_2)(1 - \mathrm{error}_{S_2}(h_2))}{n_2}}$$

Difference between hypotheses

- Test h_1 on sample S_1 (n_1 random samples), test h_2 on S_2 (n_2)
- Pick parameter to estimate $d \equiv error_{\mathcal{D}}(h_1) error_{\mathcal{D}}(h_2)$
- Choose an estimator $\hat{d} \equiv error_{S_1}(h_1) error_{S_2}(h_2)$
 - Unbiased
- Determine probability distribution that governs estimator

$$\sigma_{\hat{d}} \approx \sqrt{\frac{\mathrm{error}_{S_1}(h_1)(1 - \mathrm{error}_{S_1}(h_1))}{n_1} + \frac{\mathrm{error}_{S_2}(h_2)(1 - \mathrm{error}_{S_2}(h_2))}{n_2}}$$

• Find interval (L,U) such that N% of probability mass falls in the interval

$$\hat{d} \pm z_N \sqrt{\frac{\text{error}_{S_1}(h_1)(1 - \text{error}_{S_1}(h_1))}{n_1} + \frac{\text{error}_{S_2}(h_2)(1 - \text{error}_{S_2}(h_2))}{n_2}}$$

Hypothesis testing

- Probability that some claim is true
 - E.g. prob. that $e_D(h_1) > e_D(h_2)$
- Example $(n_1 = n_2 = 100)$

- $e_{SI}(h_1) = 0.3$, $e_{S2}(h_2) = 0.2$, prob. that $e_D(h_1) > e_D(h_2)$
 - Given $\hat{d} = 0.1$, prob. that $e_D(h_1) > e_D(h_2)$

Hypothesis testing

- Probability that some claim is true
 - E.g. prob. that $e_D(h_1) > e_D(h_2)$
- Example $(n_1 = n_2 = 100)$
 - $e_{SI}(h_1) = 0.3$, $e_{S2}(h_2) = 0.2$
 - Given $\hat{d} = 0.1$, prob. that $e_D(h_1) > e_D(h_2)$
 - Given $\hat{d} = 0.1$, prob. that d > 0

Hypothesis testing

- Probability that some claim is true
 - E.g. prob. that $e_D(h_1) > e_D(h_2)$
- Example $(n_1 = n_2 = 100)$
 - $e_{SI}(h_1) = 0.3$, $e_{S2}(h_2) = 0.2$

- Given $\hat{d} = 0.1$, prob. that d > 0
- Prob. \hat{d} is in interval $d + 0.1 > \hat{d}$
 - Note: d is the mean of distribution of \hat{d}
- Prob. \hat{d} is in interval $\hat{d} < \mu_{\hat{d}} + 0.1$

Hypothesis testing (cont.)

$$e_{S1}(h_1) = 0.3, e_{S2}(h_2) = 0.2 \quad n_1 = n_2 = 100$$

• Approx. distribution of \hat{d} is known

$$\sigma_{\hat{d}} \approx \sqrt{\frac{error_{s_1}(h_1)(1 - error_{s_1}(h_1))}{n_1} + \frac{error_{s_2}(h_2)(1 - error_{s_2}(h_2))}{n_2}} = 0.061$$

$$\hat{d} < \mu_{\hat{d}} + 0.1 \rightarrow \hat{d} < \mu_{\hat{d}} + 1.64 \sigma_{\hat{d}}$$

- $Z_N = 1.64$, 90% two-sided confidence interval (c.i.)
- i.e. 95% one-sided c.i.
- $e_D(h_1) > e_D(h_2)$ with 95% confidence

Hypothesis testing (cont.)

$$e_{S1}(h_1) = 0.3, e_{S2}(h_2) = 0.2 n_1 = n_2 = 30$$

• Approx. distribution of \hat{d} is known

$$\sigma_{\hat{d}} \approx \sqrt{\frac{error_{s_1}(h_1)(1 - error_{s_1}(h_1))}{n_1} + \frac{error_{s_2}(h_2)(1 - error_{s_2}(h_2))}{n_2}} = \mathbf{0.111}$$

$$\hat{d} < \mu_{\hat{d}} + 0.1 \rightarrow \hat{d} < \mu_{\hat{d}} + \mathbf{0.90} \ \sigma_{\hat{d}}$$

- Z_N = 0.90 , 68% two-sided confidence interval (c.i.)
- i.e. 84% one-sided c.i.
- $e_D(h_1) > e_D(h_2)$ with 84% confidence

Question 3

- When data is limited
 - What is the best way to use this data to both learn a hypothesis and estimate its accuracy?

Comparing learning algorithm

• We would like to estimate:

$$E_{S\subset\mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

- where L(S) is the hypothesis output by learner L using training set S.
- "Which one is better on average?"
- Performance over all S drawn from D, independent test set
- But, given limited data D_0 , what is a good estimator?
 - Divide D_0 into training set S_0 and testing set T_0 and measure:

$$erron_{T_0}(L_A(S_0)) - erron_{T_0}(L_B(S_0))$$
 Holdout

- Even Better, repeat this many times and average the results.
- Paired t-test: 2 algorithms use same training and testing sets

Comparing learning algorithm

- 1. Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.
- 2. For i from 1 to k, do

use T_i for the test set, and the remaining data for training set S_i

- $\bullet \ S_i \leftarrow \{D_0 T_i\}$
- \bullet $h_A \leftarrow L_A(S_i)$
- $h_B \leftarrow L_B(S_i)$
- $\delta_i \leftarrow error_{T_i}(h_A) error_{T_i}(h_B)$
- 3. Return the value $\bar{\delta}$, where

$$ar{\delta} \equiv rac{1}{k} \sum\limits_{i=1}^k \delta_i$$

k -fold cross validation

Confidence intervals

- z_N can not be used
 - The training sets in this algorithm are not independent. (they overlap!)

$$|S| = \frac{k-1}{k} |D_0|$$

• $t_{N,k}$ & estimate of deviation

$$ar{\delta} \pm t_{N,k-1} \; s_{ar{\delta}} \qquad s_{ar{\delta}} \equiv \sqrt{rac{1}{k(k-1)}} \sum\limits_{i=1}^k (\delta_i - ar{\delta})^2$$

- k = degrees of freedom
 - ullet # of independent random events affecting the variable value $ar{\delta}$
- Confidence interval (c.i.) of Paired t-test: a tighter c.i.
 - Any differences in observed errors in a paired test are due to differences between the hypotheses.

Practical setting

- This method is not strictly "statistically valid"
 - Re-sampling \rightarrow training sets not independent \rightarrow δ_i not independent
 - Testing set is independent
 - But even this approximation is better than no comparison.
- Other sampling techniques
 - Draw random test sets (|S| > 30)
 - Drawback: test sets may overlap

Overview: Answers to the 3 questions

1. Estimating hypothesis accuracy, confidence

Binomial Dist.→ Normal Dist., Confidence interval

- 2. h_1 outperforms h_2 over some samples
 - In general, h_1 is better than h_2 ?

Difference of hypotheses → to find one-sided c.i.

3. How to use limited data to learn and estimate?

Paired *t*-test, *k*-fold cross validation, c.i. with $t_{N,k-1}$

For more info...

- More references
 - Dietterich, T. G., (1998). "Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms." *Neural Computation*, 10 (7) 1895-1924
 - Kong EB., Dietterich TG., "Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree Algorithms." technical report. (1995).
- Recommended reading
 - 正态分布的前世今生(上) http://cos.name/2013/01/story-of-normal-distribution-1/
 - 正态分布的前世今生(下) http://cos.name/2013/01/story-of-normal-distribution-2/

Homework

- (1) Tom Mitchell, Machine learning, Exercise 5.4 (p152, En.)
- (2) Evaluate your NB classifiers in Experiment 1
 - Compare results on 5% & 100% training set respectively
 - I. Estimations of error_D and the C.I. respectively
 - II. What's the confidence of algorithm A is better than B in general?
- Submit deadline: March 30 (Thursday 11:59pm).