Claims

1. A process for an asymmetric intramolecular [3+2] cycloaddition reaction of a hydrazone characterized by reacting a hydrazone derivative represented by the following formula (III):

$$R^{3}R^{4}$$

$$N$$

$$R^{2}$$

$$R^{1}NH - R^{5}$$

(wherein R¹, R², R³, R⁴ and R⁵ are each identical or different and denote a hydrogen atom or a hydrocarbon group which may have a substituent or a hetero atom, R¹ and R², R³ and R⁴ may be linked to form a ring by a hydrocarbon chain which may have a substituent or a hydrocarbon chain which has a hetero atom, and X denotes a hetero atom or a hydrocarbon chain which may have a substituent or a hetero atom) in the presence of an asymmetric catalyst system obtained by mixing a zirconium alkoxide represented by the following formula (I):

$$Zr(OR)_4$$
 (I)

(wherein R is a hydrocarbon group which may have a substituent) with a binaphthol derivative represented by the following formula (II):

$$Y^2$$
OH
 Y^2
 Y^1
 Y^2
 Y^1
 Y^2
 Y^1

(wherein Y^1 and Y^2 are each identical or different and denote a hydrogen atom or a halogen atom, and at least one of Y^1 and Y^2 denotes a halogen atom).

- 2. The process for an asymmetric intramolecular [3+2] cycloaddition reaction according to claim 1, which is carried out in the coexistence of a primary alcohol.
- 3. The process for an asymmetric intramolecular [3+2] cycloaddition reaction according to claim 2, wherein the primary alcohol is an n-propanol.
- 4. The process for an asymmetric intramolecular [3+2] cycloaddition reaction according to any one of claims 1 to 3, by which an asymmetric cyclic compound represented by the following formula (IV):

is synthesized.

5. The process for an asymmetric intramolecular [3+2] cycloaddition reaction according to any one of claims 1 to 4, wherein the zirconium alkoxide used in the catalyst system is $Zr(O^tBu)_4$ or $Zr(OPr)_4$.