Hidden Markov Models

Laboratory of Bioinformatics I Module 2

31 March, 2020

Emidio Capriotti
http://biofold.org/

Department of Pharmacy and Biotechnology (FaBiT) University of Bologna

Formal Definition

A HMM is a stochastic generator of sequences characterized by:

- N states
- A set of transition probabilities between two states $\{a_{kj}\}$

$$a_{ki} = P(\pi(i) = j | \pi(i-1) = k)$$

• A set of starting probabilities $\{a_{\theta k}\}$

$$a_{0k} = P(\pi(1) = k)$$

• A set of ending probabilities $\{a_{k\theta}\}$

$$a_{k0} = P(\pi(i) = END | \pi(i-1) = k)$$

- An alphabet *C* with *M* characters.
- A set of emission probabilities for each state $\{e_k(c)\}$

$$e_k(c) = P(s = c \mid \pi(i) = k)$$

•Constraints:

$$\Sigma_{k} a_{0k} = 1$$

$$a_{k0} + \Sigma_{j} a_{kj} = 1$$

$$\Sigma_{c \in C} e_{k}(c) = 1$$

$$\forall k$$

s: sequence, π : path through the states

Hidden Markov Models

HMMs interpret an observable sequence (residue sequence or DNA/RNA sequence) as «generated» by an underlying (hidden) process.

Transition topology and probabilities define a global grammar

Emission probabilities cast the propensity of observable symbols in each state

Secondary Structure

SALKMNYTREIMVASNQ s: sequence

 $\texttt{c} \ \alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_3 \ \alpha_3 \ \texttt{c} \ \texttt{c} \ \texttt{c} \ \texttt{c} \ \texttt{c} \ \beta_1 \ \beta_2 \ \beta_2 \ \beta_2 \ \texttt{c} \ \texttt{c} \ \texttt{\pi: path}$

 $c \alpha \alpha \alpha \alpha \alpha \alpha \alpha c c c c \beta \beta \beta \beta c c Y(\pi)$: labels

Generating HMM Sequence

GpC Islands Model

Probability of a sequence s with a given path π

Emission: $0.1 \times 0.4 \times 0.4 \times 0.4 \times 0.4 \times 0.4 \times 0.1 \times 0.25 \times 0.25$

Transition: $0.2 \times 0.7 \times 0.7 \times 0.7 \times 0.7 \times 0.7 \times 0.7 \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.1$

Joint Probability

Calculate the joint probability of the sequence (s) ad the path (π) given the model (M)

$$P(s,\pi \mid M) = P(s \mid \pi, M) \cdot P(\pi \mid M)$$

$$P(\pi \mid M) = a_{0\pi(1)} \cdot \prod_{i=2}^{T} a_{\pi(i-1)\pi(i)} \cdot a_{\pi(T)0}$$

$$P(s \mid \pi, M) = \prod_{i=1}^{T} e_{\pi(i)}(s^{i})$$

$$P(s,\pi \mid M) = a_{\pi(T)0} \cdot \prod_{i=1}^{T} a_{\pi(i-1)\pi(i)} \cdot e_{\pi(i)}(s^{i})$$

Sequence Probability

$$P(s|M) = \sum_{\pi} P(s, \pi|M)$$

2¹³ different paths

Summing over all the path will give the probability of having the sequence

Forward Algorithm

On the basis of preceding observations the computation of P(s I M) can be decomposed in simplest problems

For each state k and each position i in the sequence, we compute:

$$F_k(i) = P(s^1 s^2 s^3 \dots s^i, \pi(i) = k \mid M)$$

Initialization:
$$F_{BEGIN}(0) = 1$$
 $F_i(0) = 0$ $\forall i \neq BEGIN$

Recurrence:
$$F_l(i+1) = P(s^l s^2 ... s^i s^{i+1}, \pi(i+1) = l) =$$

$$= \sum_k P(s^l s^2 ... s^i, \pi(i) = k) \cdot a_{kl} \cdot e_l(s^{i+1}) =$$

$$= e_l(s^{i+1}) \cdot \sum_k F_k(i) \cdot a_{kl}$$

Termination:
$$P(s) = P(s^1 s^2 s^3 s^T, \pi(T+1) = END) =$$

$$= \sum_k P(s^1 s^2 ... s^T, \pi(T) = k) \cdot a_{k0}$$

$$= \sum_k F_k(T) \cdot a_{k0}$$

Forward Algorithm: Example

S: ATGCG *Initialization*: $F_{BEGIN}(0) = 1$ $F_i(0) = 0$ $\forall i \neq BEGIN$

Recurrence: $F_l(i+1) = e_l(s_i) \cdot \Sigma_k F_k(i) \cdot a_{kl}$

Termination: $P(s) = \sum_{k} F_{k}(T) \cdot a_{k0}$

	-	Α	Т	G	С	G	-
Begin	1	0	0	0	0	0	0
Υ	0	0.2x0.1	2e-2x0.7x0.1+ +0.2x0.1x0.1= =3.4e-3	3.4e-3x0.7x0.4+ +4.1e-2x0.1x0.4= =2.59e-3	2.59e-3x0.7x0.4+ +8.37e-3x0.1x0.4= =1.06056e-3	1.06056e-3x0.7x0.4+ +1.8036e-3x0.1x0.4= =3.691008e-4	
N	0	0.8x0.25	2e-2x0.2x0.25+ +0.2x0.8x0.25= =4.1e-2	3.4e-3x0.2x0.25+ +4.1e-2x0.8x0.25= =8.37e-3	2.592e-3x0.2x0.25+ +8.37e-3x0.8x0.25= =1.8036e-3	1.06056e-3x0.2x0.25+ +1.8036e-3x0.8x0.25= =4.13748e-4	
End	0	0	0	0	0	0	3.69e-4x0.1+ +4.13e-4x0.1= =7.82e-5

Backward Algorithm

Similar to the Forward algorithm: it computes P(s I M), reconstructing the sequence from the end

For each state k and each position i in the sequence, we compute:

$$B_{k}(i) = P(s i+1s i+2s i+3.....s T \mid \pi(i) = k)$$
Initialization: $B_{k}(T) = P(\pi(T+1) = END \mid \pi(T) = k) = a_{k0}$
Recurrence: $B_{l}(i-1) = P(s is i+1...s T \mid \pi(i-1) = l) = \sum_{k} P(s i+1s i+2...s T \mid \pi(i) = k) \cdot a_{lk} \cdot e_{k}(s^{i}) = \sum_{k} B_{k}(i) \cdot e_{k}(s^{i}) \cdot a_{lk}$

Termination:
$$P(s) = P(s^1 s^2 s^3s^T | \pi(0) = BEGIN) =$$

= $\sum_k P(s^2 ...s^T | \pi(1) = k) \cdot a_{0k} \cdot e_k(s^1) =$
= $\sum_k B_k(1) \cdot a_{0k} \cdot e_k(s^1)$

Computational Complexity

Naïf method

$$P(s | M) = \Sigma_{\pi} P(s, \pi | M)$$

There are *N* ^T possible paths.

Each path requires about **2**·**T** operations.

The time for the computation is $O(T \cdot N^T)$

Forward Algorithm

T positions, **N** values for each position

Each element requires about 2 · N product and 1 sum

The time for the computation is $O(T \cdot N^2)$

Complexity Plot

Hidden Paths

$$\pi^* = \operatorname{argmax}_{\pi} [P(\pi \mid s, M)]$$

$$= \operatorname{argmax}_{\pi} [P(\pi, s \mid M)]$$

2¹³ different paths

Viterbi path: path that gives the best joint probability

s: A	G	C	G	C	G	T	A	A	T	C	T	G
π_1 : Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
π_2 : Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N
π_3 : Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y
π_4 : Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	N
π_5 : Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y

Searching the Hidden Path

Viterbi decoding

Among all the possible path, choose the path π^* that maximizes the $P(\pi \mid s, M)$

$$\pi^* = \operatorname{argmax}_{\pi} [P(\pi \mid s, M)] = \operatorname{argmax}_{\pi} [P(\pi, s \mid M)]$$

A Posteriori decoding

For each position choose the state $\underline{\pi}(i)$:

$$\underline{\pi}(i) = \operatorname{argmax}_{k} [P(\pi(i) = k | s, M)]$$

The contribution to this probability derives from all the paths that go through the state k at position i.

The A posteriori path can be a non-sense path (it may not be a legitimate path if some transitions are not permitted in the model)

Viterbi Algorithm

$$\pi^* = \operatorname{argmax}_{\pi} [P(\pi, s | M)]$$

The computation of $P(s,\pi^*|M)$ can be decomposed in simplest problems

Let $V_k(i)$ be the probability of the most probable path for generating the subsequence $s^1s^2s^3....s^i$ ending in the state k at iteration i.

Initialization: $V_{BEGIN}(0) = 1$ $V_i(0) = 0$ $\forall i \neq BEGIN$

Recurrence: $V_l(i+1) = e_l(s^{i+1}) \cdot \text{Max}_k(V_k(i) \cdot a_{kl})$

 $\operatorname{ptr}_{i}(l) = \operatorname{argmax}_{k}(V_{k}(i) \cdot a_{kl})$

Termination: $P(s, \pi^*) = Max_k(V_k(T) \cdot a_{k0})$

 $\pi^*(T) = \operatorname{argmax}_k(V_k(T) \cdot a_{k0})$

Traceback: $\pi^*(i-1) = \operatorname{ptr}_i(\pi^*(i))$

Viterbi Algorithm: Example

S: ATGCG *Initialization*: $V_{BEGIN}(0) = 1$ $V_i(0) = 0$ $\forall i \neq BEGIN$

Recurrence:
$$V_l(i) = e_l(s^i) \cdot \text{Max}_k(V_k(i-1) \cdot a_{kl}) - ptr_i(l) = argmax_k(V_k(i-1) \cdot a_{kl})$$

Termination:
$$P(s, \pi^*) = Max_k(V_k(T) \cdot a_{k0}) - \pi^*(T) = argmax_k(V_k(T) \cdot a_{k0})$$

Traceback:
$$\pi^*(i-1) = \operatorname{ptr}_i(\pi^*(i))$$

	-	Α	Т	G	С	G	-
Begin	1	0	0	0	0	0	0
Υ	0	0.2x0.1= =2e-2 ptr=Begin	Max(2e-2x0.7x0.1; 0.2x0.1x0.1) 2e-3; ptr=N	Max(2e-3x0.7x0.4; 1.6e-2x0.1x0.4) 6.4e-4; ptr= N	Max(6.4e-4x0.7x0.4; 3.2e-4x0.1x0.4) 1.79e-4; ptr= Y	Max(1.79e-4x0.7x0.4; 6.4e-5x0.1x0.4) 5.02e-5; ptr= Y	
N	0	0.8x0.25= =0.2 ptr=Begin	Max(2e-2x0.2x0.25; 0.2x0.8x0.25) 1.6e-2; ptr= N	Max(2e-3x0.2x0.25; 1.6e-2x0.8x0.25) 3.2e-4; ptr=N	Max(6.4e-4x0.2x0.25; 3.2e-4x0.8x0.25) 6.4e-5; ptr=N	Max(1.79e-4x0.2x0.25 ;6.4e-5x0.8x0.25) 1.28e-5; ptr=N	
End	0	0	0	0	0	0	Max(5.01e-5x0.1; 1.28e-5x0.1) 5.02e-6; ptr= Y

A Posteriori Decoding

For each position choose the state $\underline{\pi}(t)$:

$$\underline{\pi}(i) = \operatorname{argmax}_{k} [P(\pi(i) = k | s, M)]$$

How to compute $P(\pi(i) = k | s, M)$ for any state k and any position i?

$$P(\pi(i) = k \mid s, M) = \frac{P(\pi(i) = k, s \mid M)}{P(s \mid M)}$$

$$P(\pi(i) = k, s \mid M) = P(s^1 s^2 ... s^i, \pi(i) = k \mid M) \cdot P(s^{i+1}, s^{i+2}, ... s^T \mid \pi(i) = k, M) =$$

$$= F_k(i) \cdot B_k(i)$$

$$P(\pi(i) = k \mid s, M) = \frac{F_k(i) \cdot B_k(i)}{P(s \mid M)}$$

Elements of the Forward and Backward matrices

Computed with Forward or Backward algorithm termination steps