

Advance Computer Networks (CS G525)

Virendra S Shekhawat Department of Computer Science and Information Systems

First Semester 2018-2019 Lecture: 21-22 [1-3 Oct 2018]

innovate achieve lead

Agenda

- Internet Routing Basics
 - Inter-domain
 - Intra-domain

 Inter-domain Routing with Border Gateway Protocol (BGP)

Forwarding vs. Routing

- Forwarding: Data plane
 - Directing a data packet to an outgoing link
 - Individual router using a forwarding table

- Routing: Control plane
 - Computing the paths the packets will follow
 - Routers talking amongst themselves
 - Individual router creating a forwarding table

Routing Sub Functions

- Topology Update: Characterize and maintain connectivity
 - Discover neighbors, Measure "distance" (one or more metric),
 Disseminate
- Route Computation:
 - Kind of path: Multicast, Unicast
 - Centralized or Distributed Algorithm
 - Policy
 - Hierarchy
- Switching: Forward the packets at each node

Datagram v/s Virtual Circuit

- Datagram Routing
 - Each packet to be forwarded independently
- Virtual Circuit
 - Each packet from same s-d uses same route
 - More state (pick the "right" granularity)
- QoS sensitive networks use VC's and signaling
 - Find a route with resources available for the connection
 - "Reserve" the resources before sending data packets

Internet Routing Protocols

	Link State	Distance Vector	Path Vector
Information Dissem- ination	Flood link state advertisements to all routers	Update distances from neighbors' distances	Update paths based on neighbors' paths
Algorithm	Dijsktra's shortest path	Bellman-Ford shortest path	Local policy to rank paths
Converge	Fast due to flooding	Slow, due to count- to-infinity	Slow, due to path exploration
Protocols	OSPF, IS-IS	RIP, EIGRP	BGP

Link State vs. Distance Vector

- Disadvantages of LS
 - Need consistent computation of shortest paths
 - Same view of topology
 - Same metric in computing routes
 - Slightly more complicated protocol [rfc 2328 of 244 pages]
- Advantages of LS
 - Faster convergence
 - Global information allows optimal route computation
 - Gives unified global view
 - Useful for other purposes, e.g., building MPLS tables
- Question: Can link state have forwarding loops?

Link State Variant: Source Routing

Algorithm:

- Broadcast the entire topology to everyone
- Forwarding at source:
 - Compute shortest path (Dijkstra's algorithm)
 - Put path in packet header
- Forwarding at source and remaining hops:
 - Follow path specified by source
 - Router looks up next hop in packet header, strips it off and forwards remaining packet
 - Used in Adhoc networks (e.g. DSR protocol)
- Question: Can this result in forwarding loops?

Internet Routing System: Two Tier

- Interdomain routing: Between ASes
 - Routing policies based on business relationships
 - No common metrics, and limited cooperation
 - BGP: policy-based, path-vector routing protocol
- Intradomain routing: Within an AS
 - Shortest-path routing based on link metrics
 - Routers are managed by a single institution
 - OSPF and IS-IS: link-state routing protocol
 - RIP and EIGRP: distance-vector routing protocol

Next...

- BGP
 - ASes, Policies
 - BGP Attributes
 - BGP Path Selection
 - I-BGP vs. E-GBP

- Reference
 - BGP Routing Policies in ISP Networks
 - By Matthew Caesar, University of California at Berkeley & Jennifer Rexford, Princeton University

The BIG Picture

Autonomous Systems (ASes)

Autonomous system

- AS is an actual entity that participates in routing
- Has an unique 16 bit ASN (now 32 bit [RFC 4893 @ 2007])
 assigned to it and typically participates in inter-domain routing

Examples:

- MIT: 3, CMU: 9
- AT&T: 7018, 6341, 5074, ...
- UUNET: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...

Let's Find out...

- How do ASes interconnect to provide global connectivity?
- How does routing information get exchanged?

AS Categories [Stub/Multi-homed/Transit]

Peering Relationship

- Customer
- Provider
- Peer
- Sibling

Inter-domain Routing in the Internet

Link state or distance vector?

- Problems with distance-vector:
 - Bellman-Ford algorithm may not converge

- Problems with link state:
 - Metric used by routers not the same loops
 - LS database too large entire Internet
 - May expose policies to other AS's

Solution: Distance Vector with Path

- Each routing update carries the entire path
- Loops are detected as follows:
 - When AS gets route, check if AS already in path
 - If yes, reject route
 - If no, add self and (possibly) advertise route further

BGP-4

- BGP = Border Gateway Protocol
- Is a Policy-Based routing protocol
- It is the EGP of today's global Internet
- Relatively simple protocol, but configuration is complex

1989: BGP-1 [RFC 1105]

Replacement for EGP (1984, RFC 904)

1990: BGP-2 [RFC 1163]

1991: BGP-3 [RFC 1267]

1995 : BGP-4 [RFC 1771]

2006: BGP-4 [RFC 4271]

 Support for Classless Interdomain Routing (CIDR), Route Aggregation

BGP Operations

Four Types of BGP Messages

- Open: Establish a peering session.
- Keep Alive: Handshake at regular intervals.
- Notification: Shuts down a peering session.
- Update: Announcing new routes or withdrawing previously announced routes.

announcement =
prefix + attributes values

Fundamental Rules: BGP

- BGP advertises to neighbors only those routes that it uses
 - Consistent with the hop-by-hop Internet paradigm
- No need for periodic refresh routes are valid until withdrawn, or the connection is lost
- Incremental updates are possible

Policy Decisions

- BGP provides capability for enforcing various policies
- BGP enforces policies by <u>choosing paths from multiple</u> <u>alternatives</u> and controlling advertisement to other AS's
- Import policy
 - What to do with routes learned from neighbors?

- Export policy
 - What routes to announce to neighbors?
 - Depends on relationship with neighbors

BGP Route Export Example

BGP Policy Taxonomy

- Business Relationship
 - Governs economic and political relationship
- Traffic Engineering
 - Controls traffic flow within ISP and across peering points and maintain QoS
- Scalability
 - Reduce control traffic and avoid overloading routes
- Security
 - Protect ISP against malicious or accidental attacks

Example: Export Policy

- Once the route is announced the AS is willing to transit traffic on that route
- To Customers
 - Announce all routes learned from peers, providers and customers, and self-origin routes
- To Providers
 - Announce routes learned from customers and selforigin routes
- To Peers
 - Announce routes learned from customers and selforigin routes

How to implement export policies?

BGP Attributes

- Local Preference
- AS-Path Length
- MED (Multi Exit Discriminator)
- Next hop

Example: Local Preference

innovate achieve lead

Local Pref. Vs. MED

- Use Local Pref., if you have multiple exit points to a neighbor and want to <u>tell your routers</u> where to direct traffic
 - Intra-AS policy

- Use MED, if you have multiple links with a neighbor and want to <u>tell your neighbor</u> where to send traffic to you
 - Inter-AS policy

Internal BGP vs. External BGP

- •R3 and R4 can learn routes by using BGP
- •How do R1 and R2 learn routes?
- Option 1: Inject routes in IGP
 - —Only works for small routing tables
- Option 2: Use I-BGP

Internal BGP (I-BGP)

- Same messages as E-BGP
- Different rules about re-advertising prefixes:
 - Prefix learned from E-BGP can be advertised to I-BGP neighbor and vice-versa, but
 - Prefix learned from one I-BGP neighbor cannot be advertised to another I-BGP neighbor
 - Reason: No AS PATH within the same AS and thus danger of looping.

Route Selection Process

Highest Local Preference

Enforce relationships

Shortest ASPATH

Lowest MED

i-BGP < e-BGP

(Lowest IGP cost to BGP egress)

Lowest router ID

Traffic engineering

Throw up hands and break ties

Traffic Engineering Goals

Load balancing

- Making good use of network resources
- Alleviating network congestion
- End-to-end performance
 - Avoiding paths with downstream congestion
 - By moving traffic to alternate paths

Mechanisms

- Preferring some paths over other paths
- E.g., by setting local-preference attribute
- Among routes within the same business class

Next Class...

Fundamental Problems with BGP

innovate achieve lead

Agenda

- Fundamental Problems with BGP
- Reference
 - Some Foundational Problems in Inter-domain Routing [Nick Feamster 2004]
- BGP Mis-configurations
- Reference
 - Understanding BGP Mis-configuration [Ratul Mahajan, 2002]

Fundamental Problems with BGP

- Protocol Oscillations
 - Policy Disputes
 - Non monotonic ranking
- Weak Security
 - Control Plane Security
 - Data plane security
- Scalability Induced problems
 - Prefix aggregation

Oscillations: Policy Disputes

- Routing policies are used to implement traffic agreements between peering AS
 - BGP allows each AS to define its own routing policies independently
 - No global coordination exists for configuring the AS routing policies
 - This can lead to protocol oscillations i.e. non-stable routing state

Example: Policy Dispute Oscillations

Why "Policy disputes" Occur...?

- There is no possible path assignment for which at-least one AS in the system does not have a better path available
 - Thus that AS would switch to the better route
 - This act of switching creates a different path assignment that is also not stable
 - It is analogous to a game where there is no pure strategy (i.e. Nash Equilibrium)

Can Inter-domain routing converge...?

- Argument made by Gao & Rexford
 - If every AS obeys certain local constraints on preference and export policies, then BGP is guaranteed to converge!
- Validity of the argument
 - There may be legitimate reasons to deviate from the guidelines
 - e.g. AS may decide to provide transit between two peer ASes as a part of special business relationship
- Question...?
 - Is it possible to design a policy-based protocol that always converges?
 - Without imposing policy restrictions

Non-Monotonic Ranking

- An AS can attach MED route attribute to express its preferences regarding which route the neighbor should use (ASes are connected at more than one place)
 - MED values are set by the AS that advertise the route
 - Receiving AS can not compare it with routes received from some other
 ASes for the same destination

- Consequences
 - Routers may not have monotonic preferences between pairs of routes
 - Causes oscillations
 - Oscillations possible within a single AS also becoz routers within AS can not express monotonic ranking

Control Plane Security

- BGP does not allow an AS to verify that a route it learned is valid
- Also, it doesn't guarantees about where packets will actually go
- No support for controlling route announcements
 - An AS can advertise any arbitrary prefixes
 - No prefix authorization checking !!!
 - Vulnerable to prefix hijacking
- Difficult to check whether routes are policy complaint
 - ASes do not make their relationship public
- S-BGP Proposes IP Addresses AS binding
 - Requires PKI (Public Key Infrastructure)
 - Costly as High message overhead

Example: Prefix Hijacking

Control Plane Security

- Open Questions
 - 1. Decentralized solution to verify prefix ownership....?

2. Is it possible to design In-band verification scheme for ownership?

Using TCP as the Transport Protocol

- Policy and routing information between two AS can be listen by an intruder
 - No security provision in TCP
- Possibility of the Man in the Middle Attack
 - BGP messages exchanged between two AS can be tempered (adding bogus info)
- Denial of Service Attacks
 - SYN Flooding attack
 - Some better routes can be neglected
 - Excessive messages can abort the session or crash the routers

Data Plane Security

- Assuming, the routes are authentic and policy complaint
 - Does this verify that route's AS path matches the actual forwarding path?

- A router should reject packets from sources that should not have a valid route through this router to the destination.
 - This requires to discover the routes from the source to that AS

Scalability Induced Problems

- BGP abstracts the routing details inside each AS and aggregates reach-ability information (i.e. prefix aggregation) about destinations
 - This provides scalability to BGP
 - But....makes difficult to determine cause of any routing updates
 - Convergence becomes slow
 - Hide fine-grained information about the reachability of destinations
 - Reduces AS control over incoming traffic

How to Secure BGP...?

- Secure message exchange between neighbors
 - No one should watch or tempering the exchanged messages

- Routing Information validity
 - Origin authentication
 - Is the prefix owned by the AS announcing it?
 - AS path authentication
 - Is AS path the sequence of ASes the update traversed?
 - AS path policy
 - Does AS path adhere to the routing policies of each AS?

Secure BGP Protocols

- S-BGP
 - Based on PKI
 - Validates path attributes between ASes using digital signatures and associated public key certificates

- Secure Origin BGP (SoBGP)
 - Use PKI for authorizing and authenticating entities and organizations

Cryptographic Techniques

- Shared key between two parties
 - Maintaining shared secret's Complexity becomes O(n²) for n peers
 - Needs frequent replacement
- Cryptographic Hash Functions
 - Message Digest Algorithm (MD 5)
 - Secure Hash Algorithm (SHA 1) Family
- Message Authentication Code
 - Unforgeable tag appended to message that provides security by guarantee the message integrity
- Public Key Cryptographic
 - Public key + Private key

BGP Security Today!!!

- Applying best common practices (BCPs)
 - Securing the session (authentication, encryption)
 - Filtering routes by prefix and AS path
 - Resetting attributes to default values
 - Packet filters to block unexpected control traffic
- This is not good enough
 - Depends on vigilant application of BCPs
 - ... and not making configuration mistakes!
 - Doesn't address fundamental problems
 - Can't tell who owns the IP address block
 - Can't tell if the AS path is bogus or invalid
 - Can't be sure the data packets follow the chosen route

Next...

BGP Mis-configurations

- Reference
 - Understanding BGP Mis-configuration [Ratul Mahajan, 2002]

BGP Mis-configurations Causes

- Accidental injection of routes into global BGP tables
 - e.g. due to address space hijacks

- Accidental export of routes in violation of an ISP's policy
 - e.g. due to human errors

BGP Mis-configurations Types

- Origin Misconfiguration: accidently injects a prefix into the global BGP tables
 - Failure to summaries an address space, leads to the injection of one or more specific prefixes
 - Prefix Hijack

- Export Misconfiguration: AS-path is in violation of the policies of one of the ASes in the path
 - Router exported a route, it should have filtered

Impact of Misconfigurations

- Adverse Impact of Misconfigurations
 - Routing load
 - Connectivity Disruption
 - Policy Violations

- Mis-configuration Identification
 - In general valid routes stay for a longer period
 - Route changes last for *less than a day* are treated as misconfigured
 - Based on Real time observation
 - Vague conclusion! Why

Origin Mis-configuration Types

	Old route		New route	
Self deagg-	a.b.0.0/16	XYZ	a.b.c.0/24	ΧΥΖ
regation				
Related	a.b.0.0/16	XYZ	a.b.0.0/16	ΧY
origin			a.b.0.0/16	XYZO
			a.b.c.0/24	ΧY
			a.b.c.0/24	XYZO
Foreign	a.b.0.0/16	XYZ	a.b.0.0/16	XYO
origin			a.b.c.0/24	XYO
			e.f.g.h/i	ΧΥΟ

Related Origin: An existing prefix (or subset) is advertised by a new but related origin (one of the origins appears in the AS path of the other)

Possible Causes

Self De-aggregation: Forget to aggregate at a router

Related Origin: Likely connected to the network

Foreign Origin: Due to Prefix Hijack

innov

Export Policy

- Export policies arises from commercial relationship between ASes
- Knowing the relationship between ASes makes mis-configuration detection simple
 - But AS relationship is not available...!
- Observations from BGP Routing Tables
 - An AS path can have at most one peer to peer edge which occurs at highest point in the path
 - ASes with more neighbors are more likely to be providers
 - Valid AS paths are Valley free
 - Provider to customer is downward direction, sibling and peers same level
 - Routes that starts going downwards never goes up again

Example: Valley Free Violation

Example: Export Mis-configuration

- Intended policy at C1: Provide transit to C2 through link C1-C2
- Configured policy: Export all routes originated by C2 to P1 and P2
- Correct policy: export only when AS path is "C2"

Questions!!!

Thank You!