জ্যামিতির সব সূত্র ও টেকনিক

সরলরেখা (The Straight Line)

সরলরেখা: কোন কার্তেসীয় সমতলে দুটি বিন্দুর সমদূরবর্তী বিন্দু সমূহের সঞ্চারপথকে সরলরেখা বলে।

সরলরেখার ঢাল (Slope of a line):

কোন সরলরেখা $_X$ অক্ষের ধনাত্মক দিকের সাথে যে কোণ উৎপন্ন করে তার ত্রিকোণমিতিক ট্যানজেনেটর (tan)মানকে সরলরেখাটির ঢাল বলে এবং ঢালকে m দ্বারা সূচিত করা হয়।

চিত্রে AB রেখাটি $_{
m X}$ অক্ষের ধনাত্মক দিকের সাথে $_{
m heta}$ কোণ তৈরি করে। $\left(0^{0} \le heta < 180^{0}; heta \ne 90^{0}
ight)$ তৈরি করে।

⇒ ∴ AB রেখার ঢাল m = tanθ.

PQ রেখাটি χ অক্ষের ধনাত্মক দিকের সাথে $\left(180^{0}-\phi\right)$ কোণ উৎপন্ন করে।

⇒ ∴ PQ রেখার ঢাল, $m = tan(180^{\circ} - \phi) = -tan \phi$. θ কোণাের পরিমাণ $90^{\circ} < \theta < 180^{\circ}$ হলে ঢাল ঋণাত্মক হবে।

একটি সরলরেখার ঢাল নির্ণয় যা দুটি নির্দিষ্ট বিন্দু দিয়ে অতিক্রম করে৷

PQ সরলরেখাটি $_X$ অক্ষের ধনাত্মক দিকের সাথে $_\theta$ কোণ উৎপন্ন করে এবং $_A(x_1,y_1)$ ও $_B(x_2,y_2)$ বিন্দুদ্বয়্দিয়ে অতিক্রম করে।

$$\Rightarrow$$
 \therefore PQ রেখার টাল $m=\tan\theta=\tan BAR=rac{BR}{AR}=rac{y_2-y_1}{x_2-x_1}=rac{y_1-y_2}{x_1-x_2}$ =ভূজদ্বয়ের অন্তর/কোটিদ্বয়ের অন্তর

⇒ ∴ : A(x₁,y₁),B(x₂,y₂),C(x₃,y₃) বিন্দু তিনটি সমরেখা হওয়ার শর্ত :

$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{y_1 - y_3}{x_1 - x_3}; x_1 \neq x_2, x_3$$

🗴 অক্ষ ও y অক্ষের সমান্তরাল সরলরেখার সমীকরণ :

 \therefore \mathbf{X} অক্ষের সমান্তরাল যেকোন সরলরেখা সমীকরণ $\mathbf{y} = \mathbf{b}$ এবং

y-অক্ষের সমান্তরাল যেকোন সরলরেখা সমীকরণ x=a

মন্তব্য : b ধনাত্মক হলে সরলরেখাটি x অক্ষের b একক উপর এবং b ঋণাত্মক হলে সরলরেখাটি x অক্ষের b একক নীচে অবস্থান করবে। b=0 হলে রেখাটি x অক্ষের সাথে মিলে যাবে।

∴ X অক্ষের সমীকরণ y=0

আবার a ধনাতম হলে সরলরেখা y অক্ষের a একক ডানে এবং a ঋণাত্মক হলে সরলরেখাটি y অক্ষের a একক বামে অবস্থান করবে।

a=0 হলে রেখাটি y অক্ষের সাথে মিলে যাবে।

∴ y অক্ষের সমীকরণ

সরলরেখার আদর্শ সমীকরণ:

PQ সরলরেখাটি y অক্ষকে c বিন্দুতে ছেদ করে এবং x অক্ষের ধনাত্মক দিকের সাথে θ কোণ উৎপন্ন করে। ধরি, A(x,y) বিন্দুটি PQ এর উপর অবস্থিত এবং y অক্ষ থেকে খন্ডিত অংশ OC=C.

 $\therefore y = mx + c$ যা নির্ণেয় সরলরেখার সমীকরণ।

c=0 হলে PQ সরলরেখায় মূলবিন্দুগামী হয়।

 \therefore মূলবিন্দুগামী সরলরেখার সমীকরণ y = mx

www.bcsourgoal.com.bd

 (x_1,y_1) বিন্দুগামী ${f m}$ ঢালবিশিষ্ট সরলরেখার সমীকরণ পাই $(y-y_1)=m(x-x_1)$ দুইটি নির্দিষ্ট বিন্দু (বিন্দু দুইটি স্থানাংক (x_1,y_1) ও (x_2,y_2)) দিয়ে গমনকারী সরলরেখার সমীকরণ

$$\therefore \frac{\mathbf{x} - \mathbf{x}_1}{\mathbf{x}_1 - \mathbf{x}_2} = \frac{\mathbf{y} - \mathbf{y}_1}{\mathbf{y}_1 - \mathbf{y}_2}$$

অনুসিদ্ধান্ত:

(i) মূলবিন্দু (0,0) এবং (x_1,y_1) বিন্দুর সংযোগকারী রেখার সমীকরণ :

$$\frac{x}{x_1} = \frac{y}{y_1} \Longrightarrow y = \frac{y_1}{x_1} x$$

(ii) সরলরেখাটির ঢাল =
$$\dfrac{y_2-y_1}{x_2-x_1}$$

অক্ষদ্বয় হতে নির্দিষ্ট দৈর্ঘ্যের অংশ ছেদ করে এরূপ সরলরেখার সমীকরণ নির্ণয়৷ (ছেদক আকৃতির সমীকরণ)

PQ সরলরেখাটি A(x,y) বিন্দুগামী এবং x অক্ষকে P এবং y-অক্ষকে Q বিন্দুতে ছেদ করে। ধরি OP=a এবং

$$OQ = b$$
 সরলরেখার সমীকরণ $\therefore \frac{x}{a} + \frac{y}{b} = 1$

সমীকরণটি মূলবিন্দুগামী হতে পারে না কারণ (0,0) বিন্দুদ্বারা সমীকরণটি সিদ্ধ হয় না।

মূলবিন্দু থেকে কোন সরলরেখার উপর অংকিত লম্বের দৈর্ঘ্য P এবং লম্বটি x অক্ষের ধনাত্মক দিকের সাথে ∞ কোণ উৎপন্ন করলে: সরলরেখার সমীকরণ $x\cos ∞ + y\sin ∞ = P$ (লম্ব আকৃতি সমীকরণ)

 \mathbf{x} অক্ষের ধনাত্মক দিকের সাথে $\mathbf{\theta}$ কোণ উৎপন্ন করে এবং $(\mathbf{x_1},\mathbf{y_1})$ নির্দিষ্ট বিন্দুগামী সরলরেখার সমীকরণ

$$\therefore \frac{x - x_1}{\cos \theta} = \frac{y - y_1}{\sin \theta} = \gamma;$$

দুইটি সমীকরণ (ax+by+c=0.4বং $a_1x+b_1y+c_1=0)$ দ্বারা একই সরলরেখা নির্দেশ করার শর্ত নির্ণয় : সরলরেখাদ্রের ধ্রুবকগুলো শূন্য নয় এবং $a \neq a_1, b \neq b_1, c \neq c_1$

$$\frac{a}{a_1} = \frac{b}{b_1} = \frac{c}{c_1}$$

সরলরেখা (Straight Lines)

সাধারণ ধারণা

 \Rightarrow 1. A (x_1,y_1) ও B (x_2,y_2) বিন্দুগামী সরলরেখার ঢাল(gradient) ,

$$\mathbf{m} = rac{$$
কোটিদ্বয়ের অন্তর}{ভুজদ্বয়ের অন্তর} = rac{\mathbf{y}_1 - \mathbf{y}_2}{\mathbf{x}_1 - \mathbf{x}_2}

- ⇒2. ax+by+c=0 সরলরেখার ঢাল, m = -(a/b)
- \Rightarrow 3. A (x_1, y_1) , B (x_2, y_2) এবং C (x_3, y_3) বিন্দু তিনটি সমরেখ হবে যদি AB এবং AC রেখাদ্বয়ের ঢাল একই হয় $\frac{\mathbf{y_1} \mathbf{y_2}}{\mathbf{x_1} \mathbf{x_2}} = \frac{\mathbf{y_1} \mathbf{y_3}}{\mathbf{x_1} \mathbf{x_3}}$ অর্থাৎ যদি,
- ➡ 4. x অক্ষের সমীকরণ, y = 0
- \Rightarrow 5. \vee অন্দের সমীকরণ, $\times = 0$
- ⇒6. x অক্ষের সমান্তরাল সরলরেখার সমীকরণ, y = b
- ⇒7. y অক্ষের সমান্তরাল সরলরেখার সমীকরণ, x = a

 \Rightarrow 8. y অক্ষ থেকে নিদিষ্ট অংশ c ছেদ করে এবং x অক্ষের সাথে ধনাত্মক কোণ θ উৎপন্ন করে এরূপ সরলরেখার সমীকরণ, y = mx + c এখানে,

m = সরলরেখার ঢাল = $tan\theta$

c=0 হলে সরলরেখাটি মূলবিন্দুগামী হয় এবং

সমীকরণটি দাড়ায়, y = mx

 \Rightarrow 9. (x_1,y_1) বিন্দুগামী m ঢাল বিশিষ্ট সরলরেখার সমীকরণ $y-y_1=m(x-x_1)$

- \Rightarrow 10. (x_1, y_1) ও (x_2, y_2) বিন্দুগামী এবং y অক্ষের সমান্তরাল নয় এরূপ রেখার সমীকরণ, $\frac{\mathbf{x} \mathbf{x_1}}{\mathbf{x_1} \mathbf{x_2}} = \frac{\mathbf{y} \mathbf{y_1}}{\mathbf{y_1} \mathbf{y_2}}$
- \Rightarrow 11.মূলবিন্দু (0,0) এবং (x_1,y_1) বিন্দুর সংযোগকারী সরলরেখার সমীকরণ, $(x/x_1)=(y/y_1)$
- \Rightarrow 12.x অক্ষ থেকে নির্দিষ্ট অংশ a এবং y অক্ষ থেকে নির্দিষ্ট অংশ b ছেদ করে এরূপ সরলরেখার সমীকরণ, x/a + y/b = 1

সরলরেখাটি x অক্ষরেখাকে (a,0) এবং y অক্ষরেখাকে (0,b) বিন্দুতে ছেদ করে

- \Rightarrow 13.মূলবিন্দু থেকে যে সরলরেখার উপর অঙ্কিত লম্ব x অক্ষের ধনাত্মক দিকের সাথে Θ কোণ উৎপন্ন করে এবং যার উপর মূলবিন্দু থেকে অঙ্কিত লম্বের দৈর্ঘ্য p তার সমীকরণ, $x \cos \theta + y \sin \theta = p$
- ⇒14.দুইটি সরলরেখার সমীকরণ সমাধান করলে তাদের ছেদবিন্দুর স্থানাঙ্ক পাওয়া যায় I
- \Rightarrow 15. $a_1x+b_1y+c_1=0$ এবং $a_2x+b_2y+c_2=0$ সরলরেখাদ্বয়ের ছেদবিন্দুগামী সরলরেখার সমীকরণ, $a_1x+b_1y+c_1+k(a_2x+b_2y+c_2)=0$

k-এর বিভিন্ন মানের জন্য সমীকরণটি বিভিন্ন সরলরেখা প্রকাশ করে যার প্রত্যেকেই উক্ত ছেদ বিন্দুগামী।

- \Rightarrow 16. (x_1, y_1) ও (x_2, y_2) বিন্দুদ্বয় ax+by+c=0 রেখার একই পার্শ্বে অবস্থিত হবে যদি a_1x+b_1y+c এবং a_2x+b_2y+c রাশিদ্বয় একই চিহ্নবিশিষ্ট হয় ।
- ান (x_1, y_1) ও (x_2, y_2) বিন্দুদ্বয় ax+by+c=0 রেখার বিপরীত পার্শ্বে অবস্থিত হবে যদি a_1x+b_1y+c এবং a_2x+b_2y+c রাশিদ্বয় বিপরীত চিহ্ন বিশিষ্ট হয় ।

www.bcsourgoal.com.bd

- \Rightarrow 18. দুইটি সরলরেখার ঢাল যথাক্রমে m_1 ও m_2 হলে তারা পরস্পর লম্ব হবে যদি $m_1 \times m_2 = -1$ হয় এবং তারা পরস্পর সমান্তরাল হবে যদি $m_1 = m_2$ হয় ।
- \Rightarrow 19. $a_1x+b_1y+c_1=0$ এবং $a_2x+b_2y+c_2=0$ রেখাদ্বয় পরস্পর লম্ব হবে যদি $a_1a_2+b_1b_2=0$ হয় এবং তারা পরস্পর সমান্তরাল হবে যদি $(a_1/b_1)=(a_2/b_2)$ হয় ।
- \Rightarrow 21. $a_1x+b_1y+c_1=0$ এবং $a_2x+b_2y+c_2=0$ এবং রেখাদ্বয়ের অন্তর্ভুক্ত কোণ θ হলে,

$$\tan\theta = \pm \frac{a_1b_2 - b_1a_2}{a_1a_2 + b_1b_2}$$

an heta এর ধনাত্মক মান অন্তর্ভুক্ত সূক্ষ্মকোণ এবং ঋণাত্মক মান অন্তর্ভুক্ত স্থূল কোণ নির্দেশ করে $oldsymbol{\mathsf{I}}$

- ⇒22.ax+by+c1 = 0 রেখার সমান্তরাল কোন রেখার সমীকরণ হবে, ax+by+c2 = 0 অর্থাৎ,শুধু ধ্রুবক পদটির পরিবর্তন হবে |
- \Rightarrow 23.(x1,y1) বিন্দুগামী এবং ax+by+c = 0 রেখার সমান্তরাল রেখার সমীকরণ, a(x-x1)+b(y-y1)=0
- \Rightarrow 24.ax+by+ c_1 = 0রেখার লম্ব কোন রেখার সমীকরণ হবে, bx-ay+ c_2 = 0 অর্থাৎ,x ও y এর সহগদ্বয় পরস্পর স্থান পরিবর্তন করবে,এদের একটির চিহ্ন পরিবর্তিত হবে এবং ধ্রুবক পদটি পরিবর্তিত হবে ।
- \Rightarrow 25. (x_1,y_1) বিন্দুগামী এবং ax+by+c=0 রেখার লম্ব রেখার সমীকরণ, $b(x-x_1)-a(y-y_1)=0$

 a_1 b_1 c_1 b_2 6. $a_1x+b_1y+c_1=0$; $a_2x+b_2y+c_2=0$ এবং $a_3x+b_3y+c_3=0$ রেখাত্রয় সমবিন্দু হবে যদি, a_2 b_2 $c_2=0$ হয় |

$$\Rightarrow$$
28.ax+by+c = 0 সরলরেখা থেকে (x1,y1) বিন্দুর লম্ব দূরত্ব, $d=\frac{|ax_1+by_1+c|}{\sqrt{a^2+b^2}}$

$$\Rightarrow$$
29.দুইটি সমান্তরাল রেখা $ax+by+c_1=0$ ও $ax+by+c_2=0$ এর মধ্যবর্তী দূরত্ব, $d=\frac{c_1-c_2}{\sqrt{a^2+b^2}}$

 $\Rightarrow 30. \ a_1 x + b_1 y + c_1 = 0 \ \text{এবং} \ a_2 x + b_2 y + c_2 = 0 \ \text{রেখাদ্বয়ের অন্তর্ভুক্ত কোণের সমদ্বিখণ্ডক সরলরেখাদ্বয়ের সমীকরণ,}$ $\frac{a_1 x + b_1 y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2 x + b_2 y + c_2}{\sqrt{a_2^2 + b_2^2}}$

- 1. $a_1a_2+b_1b_2>0$ হলে + চিহ্নপারী সমীকরণটি স্থূলকোণের এবং চিহ্নপারী সমীকরণটি সূক্ষকোণের সমদ্বিখণ্ডক নির্দেশ করে |
- 2. $a_1a_2+b_1b_2 < 0$ হলে + চিহ্নধারী সমীকরণটি সূক্ষ্মকোণের এবং চিহ্নধারী সমীকরণটি স্থূলকোণের সমদ্বিখণ্ডক নির্দেশ করে ।

বৃত্ত (Circle)

🖒 ১. যে বৃত্তের কেন্দ্র মূলবিন্দু (0,0) এবং ব্যাসার্ধ r তার সমীকরণ।

-y

 \Rightarrow ২. যে বৃত্তের কেন্দ্র (h,k) এবং ব্যাসার্ধ r তার সমীকরণ। $(x-h)^2+(y-k)^2=r^2$

Definition of a circle

h=0 হলে কেন্দ্র y অক্ষের উপর অবস্থিত। বৃত্তের সমীকরণ, $x^2+(y-k)^2=k^2$ k=0 হলে কেন্দ্র x অক্ষের উপর অবস্থিত। বৃত্তের সমীকরণ, $(x-h)^2+y^2=h^2$

 \Rightarrow ৩. বৃত্তের সাধারণ সমীকরণ, $x^2+y^2+2gx+2fy+c=0$

ightharpoonup যেখানে, বৃত্তের কেন্দ্র \equiv (-g,-f) এবং ব্যাসার্ধ $=\sqrt{(g^2+f^2-c)}$

g = 0 হলে কেন্দ্র y অক্ষের উপর অবস্থিত

f = 0 হলে কেন্দ্র X অক্ষের উপর অবস্থিত

c = 0 হলে বৃত্তটি মূলবিন্দুগামী

 \Rightarrow 8. কোন বৃত্ত x অক্ষাকে ছেদ করলে x **অক্ষা থেকে কর্তিত অংশ** = $2\sqrt{(g^2-c)}$ বৃত্তি x অক্ষাকে স্পর্শ করলে $g^2=c$

কোন বৃত্ত y অক্ষকে ছেদ করলে y **অক্ষ থেকে কর্তিত অংশ** = $2\sqrt{(f^2-c)}$ বৃত্তি y অক্ষকে স্পর্শ করলে $f^2=c$

🖒 ৫.কোন বৃত্ত 🗴 অক্ষকে স্পর্শ করলে তার ব্যাসার্ধ হবে কেন্দ্রের কোটির মান এবং

সমীকরণ হবে, $(x-h)^2+(y-k)^2=k^2$

⇒৬. কোন বৃত্ত y অক্ষকে স্পর্শ করলে তার ব্যাসার্ধ হবে কেন্দ্রের ভুজের মান এবং

সমীকরণ হবে, $(x-h)^2+(y-k)^2 = h^2$

🖒 ৭, (x_1,y_1) ও (x_2,y_2) বিন্দু দুইটির সংযোগ সরলরেখাকে ব্যাস ধরে অঙ্কিত

বৃত্তের সমীকরণ, $(x-x_1)(x-x_2)+(y-y_1)(y-y_2) = 0$

 \Rightarrow ৮. $x^2+y^2+2gx+2fy+c=0$ বৃত্তের এককেন্দ্রিক অন্য কোন বৃত্তের সমীকরণ হবে, $x^2+y^2+2gx+2fy+c_1=0$

 \Rightarrow ৯. $x^2+y^2+2gx+2fy+c=0$ বৃত্ত এবং $ax+by+c_1$ সরলরেখার ছেদবিন্দুগামী বৃত্তের সমীকরণ,

$$x^2+y^2+2gx+2fy+c+k(ax+by+c_1)=0$$

🖒১০. দুইটি বৃত্ত পরস্পরকে বহিঃস্থভাবে স্পর্শ করলে, তাদের ব্যাসার্ধদ্বয়ের যোগফল = কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব।

এক্ষেত্রে সাধারণ স্পর্শক তিনটি।

⇒১১. দুইটি বৃত্ত পরস্পরকে অন্তঃস্থভাবে স্পর্শ করলে,
তাদের ব্যাসার্ধদ্বয়ের অন্তরফল = কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব

এক্ষেত্রে সাধারণ স্পর্শক একটি।

➡>১২. দুইটি বৃত্ত পরস্পরকে ছেদ করবে যদি কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব ব্যাসার্ধদ্বয়ের যোগফলের থেকে ছোট হয়। এক্ষেত্রে সাধারণ স্পর্শক দুইটি।

⇒১৩. দুইটি বৃত্ত পরস্পরকে ছেদ বা স্পর্শ কোনটিই করবে না যদি কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব ব্যাসার্ধদ্বয়ের যোগফলের চেয়ে বড় হয়।

এক্ষেত্রে সাধারণ স্পর্শক চারটি।

\$\infty \\$8. $x^2+y^2+2gx+2fy+c=0$ এবং $x^2+y^2+2g_1x+2f_1y+c_1=0$ বৃত্তের ছেদবিন্দুগামী বৃত্তের সমীকরণ, $x^2+y^2+2gx+2fy+c+k(x^2+y^2+2g_1x+2f_1y+c_1)=0$

⇒১৫. বহিঃস্থ কোন বিন্দু থেকে কোন বৃত্তের ওপর দুইটি স্পর্শক অঙ্কন করা যায়।

 \Rightarrow ১৬. y=mx+c সরলরেখাটি $x^2+y^2=r^2$ বৃত্তকে স্পর্শ করবে যদি, $c=\pm r\sqrt{(1+m^2)}$ হয়

 \Rightarrow ১৭. $x^2+y^2=r^2$ বৃত্তের উপরিস্থিত (x_1,y_1) বিন্দুতে অঙ্কিত স্পর্শকের সমীকরণ, $xx_1+yy_1=r^2$

 \Rightarrow ১৮. $x^2+y^2+2gx+2fy+c=0$ বৃত্তের (x_1,y_1) বিন্দুতে অঙ্কিত স্পর্শকের সমীকরণ, $xx_1+yy_1+g(x+x_1)+f(y+y_2)+c=0$

 \Rightarrow ১৯. বহিঃস্থ কোন বিন্দু (x_1,y_1) থেকে $x^2+y^2=r^2$ বৃত্তের উপর অঙ্কিত

স্পর্শকদ্বয়ের সমীকরণ, $(x^2+y^2-r^2)(x_1^2+y_1^2-r^2)=(xx_1+yy_1-r^2)^2$

- \Rightarrow ২০. বহিঃস্থ বিন্দু (x_1,y_1) থেকে $x_2+y_2+2gx+2fy+c=0$ বৃত্তের উপর অঙ্কিত স্পর্শকদ্বয়ের সমীকরণ, $(x^2+y^2+2gx+2fy+c)(x_1^2+y_1^2+2gx_1+2fy_1+c) = \{xx_1+yy_1+g(x+x_1)+f(y+y_1)+c\}$
- \Rightarrow ২১. বহিঃস্থ বিন্দু (x_1, y_1) থেকে $x^2+y^2=a^2$ বৃত্তের উপর অঙ্কিত স্পর্শকের দৈর্ঘ্য, = $\sqrt{(x^2+y^2-r^2)}$ উক্ত বিন্দু থেকে $x^2+y^2+2gx+2fy+c=0$ বৃত্তের উপর অঙ্কিত স্পর্শকের দৈর্ঘ্য, = $\sqrt{(x_1^2+y_1^2+2gx_1+2fy_1+c)}$
- \Rightarrow ২২. $x^2+y^2=r^2$ বৃত্তের (x_1,y_1) বিন্দুতে অভিলম্বের সমীকরণ, $x_1y-y_1x=0$ বৃত্তের অভিলম্ব এর কেন্দ্রগামী।
- \Rightarrow ২৩. $x^2+y^2+2gx+2fy+c=0$ বৃত্তের (x_1,y_1) বিন্দুতে অভিলম্বের সমীকরণ, $(x_1+g)y-(y_1+f)x+fx_1-gy_1=0$

 \Rightarrow ২৪. $x^2+y^2+2g_1x+2f_1y+c_1=0$ এবং $x^2+y^2+2g_2x+2f_2y+c_2=0$ বৃত্তদ্বরের সাধারণ জন্য এর সমীকরণ, $(x^2+y^2+2g_1x+2f_1y+c_1)-(x^2+y^2+2g_2x+2f_2y+c_2)=0$

www.bcsourgoal.com.bd

কনিক (Conics)

কনিক: কার্তেসীয় সমতলে একটি নির্দিষ্ট বিন্দু ও একটি নির্দিষ্ট সরলরেখা থেকে যে সব বিন্দুর দূরত্বের অনুপাত একটি ধ্রুবক, তাদের সেই একটি সঞ্চারপথ এবং তাকে কনিক বলা হয়।

নির্দিষ্ট বিন্দুটিকে কনিকের উপকেন্দ্র বা ফোকাস (focus) বলে। নির্দিষ্ট সরলরেখাটিকে কনিকের দিকাক্ষ বা নিয়ামক (directrix) বলে । ধ্রুব অনুপাতটিকে উৎকেন্দ্রিকতা (eccentricity) বলা হয় এবং দ্বারা e সূচিত করা হয় $oldsymbol{\mathsf{I}}$ е এর বিভিন্ন মানের জন্য সঞ্চারপথের আকৃতি ভিন্ন হয়।

- e = 0 হলে সঞ্চারপথ হয় বৃত্ত (circle)
- ⇒ 0 < e < 1 হলে সঞ্চারপথ হয় উপবৃত্ত (ellipse)
- e=1 হলে সঞ্চারপথ হয় পরাবৃত্ত (parabola)
- e > 1 হলে সঞ্চারপথ হয় অধিবৃত্ত (hyperbola)

অক্ষরেখা (Axis of symmetry): উপকেন্দ্রের মধ্য দিয়ে দিকাক্ষের উপর অঙ্কিত লম্ব রেখাটিকে পরাবৃত্তের অক্ষরেখা বলা হয়। শীর্ষবিন্দু (Vertex): পরাবৃত্ত ও অক্ষরেখার ছেদ বিন্দুকে পরাবৃত্তের শীর্ষবিন্দু বলা হয়। উপকেন্দ্রিক দূরত্ব (Focal distance): উপকেন্দ্র থেকে পরাবৃত্তের

যেকোনো বিন্দুর দূরত্বকে উপকেন্দ্রিক দূরত্ব বা ফোকাস দূরত্ব বলা হয়।

উপকেন্দ্রিক জ্যা (Focal chord): পরাবৃত্তের যে জ্যা উপকেন্দ্র দিয়ে গমন করে তাকে উপকেন্দ্রিক জ্যা বলে। উপকেন্দ্রিক লম্ব (Latus rectum): উপকেন্দ্রিক জ্যা অক্ষের উপর লম্ব হলে তাকে উপকেন্দ্রিক লম্ব বা নাভিলম্ব বলে।

Vertex

axis of symmetry

Parabola

ভেক্টর (Vector)

ভেক্টর রাশির নির্দেশনা (Representation of vectors):

 $\overline{OP}=\overline{r}$ কোন ভেক্টর হলে একে নির্দেশ করার জন্য $\overline{r},\overline{r},\underline{r}$ প্রভৃতি প্রতীক ব্যবহৃত হয় এবং এর মান যথাক্রমে $|\overline{r}|,|\overline{r}|,\underline{r}$ ইত্যাদি দ্বারা নির্দেশিত হয় | অনেক সময় শুধু r দিয়ে ও \overline{r} ভেক্টরের মান প্রকাশ করাহয় |

⇒ একক ভেক্টর (Unit vector) : কোন ভেক্টর রাশিকে তার মান (Magnitude) দ্বারা ভাগ করলে ঐ ভেক্টরের দিকে বা তার সমান্তরাল দিকে একক ভেক্টর পাওয়া যায় ।

 $ar{A}$ কোন ভেক্টর ও তার দিকে বা সমান্তরালে একক ভেক্টর \hat{a} হলে, $\hat{a}=rac{\overline{A}}{|A|}$

⇒ আয়ত একক ভেক্টর (Rectangular unit vectors) : ত্রিমাত্রিক স্থানাংক ব্যবস্থায় ধনাত্মক x, y এবং z অক্ষের দিকে যথাক্রমে ব্যবহৃত î , ĵ , k̂ একক ভেক্টরগুলোকে আয়ত একক ভেক্টর বলে ।

অবস্থান ভেক্টর (Position vector): প্রসঙ্গ কাঠামোর মূল বিন্দুর সাপেক্ষে কোন বিন্দুর অবস্থান যে ভেক্টরের সাহায্যে নির্ণয় করা হয় তাকে অবস্থান ভেক্টর বলে।

O বিন্দুর সাপেক্ষে P বিন্দুর অবস্থান নির্দেশ করেছে $\overrightarrow{OP} = \overrightarrow{r}$ অবস্থান ভেক্টর I লক্ষণীয়,

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$

$$\vec{r} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{\sqrt{x^2 + y^2 + z^2}}$$

লব্ধি (Resultant): দুই বা ততোধিক ভেক্টরের সমষ্টিকে একটি ভেক্টর রূপে প্রকাশ করা যায় যাকে ঐ ভেক্টরগুলোর লব্ধি বলে।

$$\Rightarrow$$
 \vec{C} = Cx î+ Cy ĵ+ $Cz\hat{K}$ [\vec{C} = লব্ধি ভেক্টর] \therefore $|\vec{C}| = \sqrt{{C_x}^2 + {C_y}^2 + {C_z}^2}$

লব্ধির সামান্তরিক সূত্র (Law of parallelogram): কোন নির্দিষ্ট বিন্দুর উপর পরস্পর θকোণে ক্রিয়াশীল দুটি

$$\vec{R} = \vec{P} + \vec{Q}$$

$$|\vec{R}| = \sqrt{P^2 + Q^2 + 2PQ \cos\theta}$$
 \vec{R}, \vec{P} এর সাথে ϕ কোণ উৎপন্ন করলে,
$$\phi = \tan^{-1}\left(\frac{Q \sin\theta}{P + Q \cos\theta}\right)$$

ভেক্টরের স্কেলার বা উট গুণন (Scalar or dot product) : A ভ B দুটি ভেক্টর ও তাদের মধ্যবর্তী কোণ Θ হলে, তাদের স্কেলার গুণন,

$$\overline{A}$$
 . \overline{B} = ABcos θ [A. \overline{B} = B. A] আবার, \overline{A} = Axî+ Ay ĵ+ Azk;

ভেক্টর গুণন বা ক্রস গুণন (Vector or cross product) : A ও B দুটি ভেক্টর এবং তাদের মধ্যবর্তী কোণ θ হলে, ভেক্টর গুণন

 \vec{A} ও \vec{B} সমান্তরাল হলে, $\theta = 0^\circ$ \therefore $\vec{A} \times \vec{B} = \vec{A} \vec{B} \sin 0^\circ = 0$ $[\sin 0^\circ = 0]$ অর্থাৎ, দুটি ভেক্টর সমান্তরাল হলে তাদের ভেক্টর গুণফল শূন্য হবে ।

মধ্যবর্তী কোণ নির্ণয়: Aভ B দুটি ভেক্টর এবং তাদের মধ্যবর্তী কোণ θ হলে,

$$\theta = \text{cos}^{-1} \frac{\vec{A}.\vec{B}}{AB} = \text{sin}^{-1} \frac{\vec{A}.\vec{B}}{AB}$$

ভেক্টরের লম্ব অভিক্ষেপ বা অভিক্ষেপ (Orthogonal projection) : $\overrightarrow{OP} = \overrightarrow{A}$ এবং $\overrightarrow{OQ} = \overrightarrow{B}$ পরস্পর θ কোণে ক্রিয়ারত দৃটি ভেক্টর হলে,

$$\Rightarrow$$
 A এর উপর B এর অভিক্ষেপ = $\frac{\overrightarrow{A}.\overrightarrow{B}}{A}$
 \Rightarrow B এর উপর A এর অভিক্ষেপ = $\frac{\overrightarrow{A}.\overrightarrow{B}}{B}$

