





## Cont. Modelo Relacional e Introdução a SQL

Professor: Yuri Ferreira



- > Revisão aula anterior:
  - > Conceitos principais de Bancos de Dados Relacionais;
  - > Restrições de Esquema:
    - > Restrições de domínio;
    - > Restrições de chave;
    - Restrições de entidade;
    - Restrições de Integridade Referencial;
  - Chave estrangeira;
  - ➤ Diagrama de Esquema;



#### > Conteúdo:

- > Restrições de Integridade Semântica;
- > Operações de inserção e tratamento violação de restrições;
- > Operações de delete e tratamento de violação de restrições;
- História da Linguagem SQL;
- > Partes da Linguagem SQL;
- Recursos Básicos SQL;
- > Tipos de domínios básicos e avançados;
- Definição de Esquema e Catalogo;
- Criação de Tabelas;



- > Conteúdo:
  - > Especificando Restrições na tabela:
    - > Atributo;
    - chave;
    - ➤ Integridade referencial;
  - > Tratamento de restrições de integridade referencial;



- > Restrições de Integridade Semântica
  - Podem ser especificadas na aplicação que atualiza o BD (mais comum) ou por mecanismos chamados triggers (gatilhos) e assertions (afirmações) usados na linguagem SQL;
  - Ex: "O salário de um empregado não pode ser maior que o do seu supervisor";
  - ➤ "O número máximo de horas que um empregado pode trabalhar, em todos os projetos, é 56";



- ➢ Operações de atualização e tratamento de violações de restrição:
  - > BD relacional temos dois tipos de operações:
    - > Recuperações e
    - > Atualizações;
  - > Operações básicas de atualização:
    - ➤ *Insert*: insere uma linha;
    - > Delete: remove uma linha;
    - Update: modifica o valor de atributos de linhas existentes;



## **FACEC** Aula 5 – Modelo Relacional e Faculdade Introdução a SQL

## Exemplo "Esquema da relação Empregado"

| EMPREGADO | PNOME    | MINICIAL | UNOME   | SSN       | DATANASC   | ENDERECO                 | SEXO | SALARIO | SUPERSSN  | DNO |
|-----------|----------|----------|---------|-----------|------------|--------------------------|------|---------|-----------|-----|
|           | John     | В        | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М    | 30000   | 333445555 | 5   |
|           | Franklin | T        | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | M    | 40000   | 888665555 | 5   |
|           | Alicia   | J        | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F    | 25000   | 987654321 | 4   |
|           | Jennifer | S        | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F    | 43000   | 888665555 | 4   |
|           | Ramesh   | K        | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М    | 38000   | 333445555 | 5   |
|           | Joyce    | Α        | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F    | 25000   | 333445555 | 5   |
|           | Ahmad    | ٧        | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М    | 25000   | 987654321 | 4   |
|           | James    | E        | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М    | 55000   | null      | 1   |

DEPT LOCALIZACOES

|              |                     |         |           |               | 1   | Houston   |
|--------------|---------------------|---------|-----------|---------------|-----|-----------|
|              |                     |         |           |               | 4   | Stafford  |
| DEPARTAMENTO | DNOME               | DNUMERO | GERSSN    | GERDATAINICIO | 5   | Bellaire  |
|              | Pesquisa            | 5       | 333445555 | 1988-05-22    | 5   | Sugarland |
|              | Administração       | 4       | 987654321 | 1995-01-01    | - C | Houston   |
|              | Sede administrativa | 1       | 888665555 | 1981-06-19    |     |           |

Fonte: RUIZ, USP.

DLOCALIZACAO

DNUMERO



- ➤ Operação *Insert*:
  - > Ex. 1: inserir um novo Empregado com chave null;
  - Inserir empregado <'Alfredo', 'B', 'Ribeiro', **null**, '1960-04-05', 'Rua A, 388', 'M', 28000, null, 4>
  - > Resultado:
  - Viola restrição de integridade de entidade;
  - > Chave primária não pode ser null;



- ➤ Operação *Insert (cont.)*:
  - Ex. 2: Inserir um novo Empregado com chave já existente;
  - ➤ Inserir empregado <'Alfredo', 'B', 'Ribeiro', **99988777**, '1960-04-05', 'Rua A, 388', 'M', 28000, null, 4>
  - > Resultado:
  - Viola restrição de chave;
  - > Já existe uma linha com o mesmo valor de SSN;



- ➤ Operação *Insert (cont.)*:
  - > Ex. 3: inserir um novo Empregado com chave estrangeira inexistente;
  - Inserir empregado <'Alfredo', 'B', 'Ribeiro', 123456788, '1960-04-05', 'Rua A, 388', 'M', 28000, null, 7>
  - > Resultado:
  - Viola restrição de integridade referencial;
  - ➤ Não existe valor de DNUMERO=7;



- ➤ Como resolver problemas com INSERT ?
  - Por padrão é rejeitada a inserção;
  - Poderia ser tratado a exceção na aplicação mostrando o motivo ao usuário;
  - ➤ Tentar corrigir o motivo da rejeição (No caso do exemplo de chave nula e chave existente);
  - ➤ Inserir uma nova linha que corresponda a relação (No exemplo da chave estrangeira inexistente, inserir uma linha com o número do Departamento = 7);



## **FACEC** Aula 5 – Modelo Relacional e Faculdade Introdução a SQL

DEPT LOCALIZACOES

> Operação delete: só viola a restrição de integridade referencial; Ex: delete tupla EMPREGADO com SSN='333445555';

| <b>EMPREGADO</b> | PNOME    | MINICIAL | UNOME   | SSN       | DATANASC   | ENDERECO                 | SEXO | SALARIO | SUPERSSN  | DNO |
|------------------|----------|----------|---------|-----------|------------|--------------------------|------|---------|-----------|-----|
|                  | John     | В        | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | M    | 30000   | 333445555 | 5   |
|                  | Franklin | T        | Wood    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | M    | 40000   | 888665555 | 5   |
|                  | Alicia   | J        | Zeb.,   | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F    | 25000   | 987654321 | 4   |
|                  | Jennifer | S        | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F    | 43000   | 888665555 | 4   |
|                  | Ramesh   | K        | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | M    | 38000   | 333445555 | 5   |
|                  | Joyce    | A        | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F    | 25000   | 333445555 | 5   |
|                  | Ahmad    | V        | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | M    | 25000   | 987654321 | 4   |
|                  | James    | E        | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | M    | 55000   | null      | 1   |

| DEPARTAMENTO | DNOME               | DNUMERO | <b>GERSSN</b> | GERDATAINICIO |
|--------------|---------------------|---------|---------------|---------------|
|              | Pesquisa            | 5       | 333445555     | 1988-05-22    |
|              | Administração       | 4       | 987654321     | 1995-01-01    |
|              | Sede administrativa | 1 9     | 888665555     | 1981-06-19    |

| S | DNUMERO | DLOCALIZACAO |
|---|---------|--------------|
|   | 1       | Houston      |
|   | 4       | Stafford     |
|   | 5       | Bellaire     |
|   | 5       | Sugarland    |
|   |         | Houston      |

Fonte: RUIZ, USP.



- ➤ Operação *delete*:
  - Só é possível deletar linhas de uma tabela se nenhuma das colunas forem referenciadas em outras tabelas;
  - ➤ Por exemplo o Empregado John poderia ser deletado, pois ele não consta na tabela Departamento;
  - ➤ Agora o Empregado "Franklin" não pode ser deletado, pois ele esta sendo referenciado no departamento "Pesquisa" como gerente;



- ➤ Como resolver problemas com *delete*:
  - > Detectado a violação da restrição as **opções** para tratamento podem ser especificadas nas restrições da tabela, como:
  - > Restrict: rejeitar sempre a exclusão;
  - Cascade: propagar exclusão nas demais linhas referenciadas em outras tabelas;
  - ➤ Set NULL ou Set Default: é possível modificar os valores das linhas referenciadas como NULL (caso não seja chave primária) ou outra linha de valor válido;
  - > Ex: FOREIGN KEY (GERSSN) REFERENCES EMPREGADO ON DELETE CASCADE ou SET NULL;



# A linguagem SQL



### ➤ História do SQL:

- > IBM desenvolveu a versão originial do SQL, inicialmente chamada de Sequel, teve primeiros passos por volta de 1970;
- > Passado alguns anos, evoluiu para SQL (Structured Query Language);
- > Se tornou a linguagem padrão para banco de dados Relacionais;
- > Padrão SQL-86 ou SQL1 foi publicado pelos órgãos ANSI e ISO;
- > A próxima expansão da linguagem veio com SQL-92, ou SQL2;
- ➤ O padrão SQL:1999 começou como SQL3.
- > 2 atualizações vieram em sequência SQL:2003 e SQL:2006, acrescentaram recursos XML;
- > Outras atualizações surgiram em 2008 com incorporação de dados de objeto e a SQL:2011; 17



- ➤ Partes da Linguagem SQL:
  - DDL: Definição de esquemas de tabelas; exclusão de tabelas; e modificação de esquemas;
  - DML: Linguagem de consulta baseada em álgebra relacional e no cálculo relacional (operações matemáticas);
  - ➤ Integridade: DDL especifica **restrições** de integridade e os dados armazenados precisar satisfazer essas restrições;
  - ➤ Definição de *Views* (visões): inclui comando para definição de visões;



- ➤ Partes da Linguagem SQL (Cont.):
  - > Controle de Transações: início e fim das transações;
  - ➤ SQL embutida e SQL dinâmica: definem como as instruções são incorporadas dentro das linguagens de programação (C, C++, Java, PHP, Python, NodeJS, etc);
  - ➤ Autorização: DDL inclui comandos para especificar direitos de acesso para tabelas e visões;



- Recursos Básicos DML, DDL e da SQL:
  - Esquema para cada relação;
  - Domínio de cada atributo;
  - > Restrições de Integridade;
  - > Conjunto de índices mantidos para cada relação;
  - > Informações de segurança e Autorização para cada relação;
  - > Estrutura de armazenamento físico;

# FACEC Aula 5 – Modelo Relacional e Introdução a SQL

- ➤ Tipos de **Domínios** básicos e avançados:
  - > Tipo **texto**: Char, Character ou varchar;
  - > Tipo inteiro: Int, Integer ou Smallint;
  - > Tipo ponto flutuante: float, real, double;
  - ➤ Tipo ponto flutuante estendidos: Numeric(p,d), Decimal(p,d), onde p é de precisão (total de números) e d números de ponto flutuante;
    - Ex: Numeric(3,1) => 44,5 e não pode ser 444,5 e nem 0,32; o mesmo se aplica para Decimal;
  - > Tipo de datas e horas: Date, Time, Timestamp;
    - Ex: pode ser extraído ano, mês, dia, hora, minuto, segundo;
    - Também pode ser utilizado tipos estáticos como current\_date, current\_time, current\_timestamp, ambos fornecerão dados sobre o tempo atual;
      2019



- > Tipos de Domínios básicos e Avançados (Cont.):
  - > Tipos de grandes capacidades: CLOB, BLOB;
    - CLOB: tipo caractere, pode ser utilizado para armazenar grandes arquivos texto, Ex: CLOB(20M);
    - ➤ BLOB: tipo binário, pode ser utilizado para armazenar imagens e filmes entre outros arquivos, Ex: BLOB(30G);
  - > É possível também criar tipos definidos pelo usuário:
    - > CREATE TYPE DOLARES AS NUMERIC(12,2) FINAL;
    - ➤ Neste caso o tipo poderia chegar de \$0 até \$9.999.999.999,99 (=~ 10 bilhões);



- > Definição de **Esquema** e **Catalogo** em SQL:
  - ➤ Foi incorporado inicialmente para agrupar tabelas e outras construções que pertencem ao BD;
  - > Em alguns SGDB's os esquemas são chamados de BD;
  - > Um Esquema é identificado por:
    - Um nome de esquema + identificador de autorização + descritores dos elementos do esquema (opcional);
  - Estes elementos incluem tabelas, tipos, restrições, views, domínios e concessões de privilégios);
  - Exemplo Instrução para criar um esquema:
  - > CREATE SCHEMA Empresa AUTHORIZATION 'Jsilva';

# FACEC Aula 5 — Modelo Relacional e Introdução a SQL

- ➤ O comando CREATE TABLE:
  - CREATE TABLE r(A1D1, ..., AnDn, <restrição\_de\_integridade1>, <restrição\_de\_integridaden>)
  - > Onde r é o nome da relação (tabela);
    - > A são os nomes dos atributos;
    - > **D** são os tipos dos domínios dos valores;
    - > podem existir diversas restrições;

## FACEC Aula 5 – Modelo Relacional e Faculdade Introdução a SQL

2019

Ex:

Tabelas do Esquema

Empresa;



Fonte: ELMASRI, 2018.

# FACEC Aula 5 — Modelo Relacional e Introdução a SQL

➤ Vamos criar 2 tabelas para exemplificar:

```
create table funcionario (
   primeiro_nome varchar(15) not null,
   nome_meio char,
   ultimo_nome varchar(15) not null,
    cpf char(11) not null,
   dt_nascimento date,
    endereco varchar(30),
    sexo char,
    salario decimal(10,2),
    cpf\_supervisor char(11),
   numero_departamento int not null,
   primary key (cpf)
```

```
create table departamento (
    nome_departamento varchar(15) not null,
    numero_departamento int not null,
    cpf_gerente char(11) not null,
    data_inicio_gerente date,
    primary key (numero_departamento),
    unique (nome_departamento),
    foreign key (cpf_gerente)
        references funcionario(cpf)
);
```

https://kripken.github.io/sql.js/GUI/



- > Restrições de **atributo**:
  - > NOT NULL ou DEFAULT <valor>;



- > Restrições de **atributo**:
  - ➤ A Clausula CHECK também pode ser utilizada para limitar valores de atributo;



- > Restrições de chave:
  - ➤ A cláusula **PRIMARY KEY** pode especificar um ou mais atributos que compõem a chave primaria;
  - > Se ela for única pode ser passada diretamente a frente do atributo;
  - > A cláusula UNIQUE especifica as chaves candidatas;

```
create table departamento (
    nome_departamento varchar(15) UNIQUE,
    numero_departamento int PRIMARY KEY,
    cpf_gerente char(11) not null,
    data_inicio_gerente date,
    foreign key (cpf_gerente)
        references funcionario(cpf)
);
```



➤ As restrições também podem ser **nomeadas** utilizando a palavra **CONSTRAINT**:

```
create table funcionario (
    cpf char(11) not null,
    cpf_supervisor char(11),
    numero_departamento int not null,
    constraint chave_prim_func primary key(cpf),
    constraint chave_estr_supervisor
        foreign key (cpf_supervisor)
        references funcionario(cpf),
    constraint chave_estr_departamento
        foreign key (numero_departamento)
        references departamento(numero departamento)
```

2019



- > Restrições de integridade referencial:
  - > É utilizada a cláusula FOREING KEY (chave estrangeira);
  - Lembrando: Ela pode ser violada quando linhas são inseridas, excluídas ou ainda quando uma chave é atualizada;
  - > As ações de disparo referencial podem ser:
    - > NO ACTION;
    - > CASCADE;
    - > SET NULL;
    - > SET DEFAULT;



## **FACEC** Aula 5 – Modelo Relacional e Faculdade Introdução a SQL

> Projetista do BD pode especificar uma alternativa quando violada a restrição:

```
create table funcionario (
    cpf char(11) primary key,
    cpf\_supervisor char(11),
    numero_departamento int not null,
    foreign key (cpf_supervisor)
        references funcionario(cpf)
        ON DELETE SET NULL
        ON UPDATE CASCADE
    foreign key (numero_departamento)
        references departamento(numero_departamento)
        ON DELETE SET DEFAULT
        ON UPDATE CASCADE
```

2019



### > Referências:

- ➤ SILBERSCHATZ, A.; KORTH, F.; SUDARSHA, S. Database System Concepts. 6. ed. Nova York: MC Graw Hill, 2011.
- ELMASRI, R.; NAVATHE B. Sistemas de banco de dados. 6. Ed. São Paulo, SP: Pearson Addison-Wesley, 2011.
- > RUIZ E. E.; Modelo de Dados Relacional. USP, São Paulo.