

# Medical image synthesis using deep learning

IMAG/e

Medical Image Analysis group (IMAG/e)
Department of Biomedical Engineering
Eindhoven University of Technology

Evi M.C. Huijben, Maureen van Eijnatten, and Josien P.W. Pluim

## Introduction

Medical image E.g. segmentation, detection, analysis tasks classification, registration Clinical E.g. radiotherapy, image guided applications surgery, diagnosis, risk prediction **Problems**  Large clinical datasets needed Privacy and ethical concerns Imbalanced datasets Models not always robust against changes in acquisition protocol

### How to overcome these problems?

The use of artificial data can overcome these issues. Artificial medical images can be created in two ways: using simulation or synthesis.

Simulation uses complex models to model the underlying structure and to simulate a medical scan. Whereas synthesis is data driven, and no underlying models need to be known.

Many studies are done on generating deep fakes for e.g. political attacks or generating non-existent faces. These models can be translated to medical images to potentially improve automated medical image analysis tasks.

# Methods & possible applications

Possible directions this research is heading:

### **Non-existing patients**

Generate images of non-existent patients with for example the use of a style-based generator [1].

- Create an anonymous variant of an existing dataset
- Controlled data augmentation to obtain a balanced dataset that includes rare pathologies

### Non-existent features in real patients

Generate images of existent patients, with non-existent features using e.g. image-to-image translation model [2].

- Generate images showing future progression of disease
- For example for early diagnosis of Alzheimer's disease
- Large public datasets available from Alzheimer studies





### Points of discussion

- Many 3D tasks, will hardware allow for 3D image synthesis?
- How to evaluate the quality of synthetic data?
  - Metric based on comparing feature distributions of real versus synthetic images



- → How to evaluate when synthetic dataset contains more variation than original?
- Evaluate deep learning task trained on real versus synthetic data.
  - → Do the images need to be realistic in this case?
- Are synthetic images completely anonymous, or can they be traced back to a patient?