INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4042B MSI Quadruple D-latch

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple D-latch

HEF4042B MSI

DESCRIPTION

The HEF4042B is a 4-bit latch with four data inputs (D_0 to D_3), four buffered latch outputs (O_0 to O_3), four buffered complementary latch outputs (\overline{O}_0 to \overline{O}_3) and two common enable inputs (E_0 and E_1). Information on D_0 to D_3 is transferred to O_0 to O_3 while both E_0 and E_1 are in the same state, either HIGH or LOW. O_0 to O_3 follow D_0 to D_3 as long as both E_0 and E_1 remain in the same state. When E_0 and E_1 are different, D_0 to D_3 do not affect O_0 to O_3 and the information in the latch is stored. \overline{O}_0 to \overline{O}_3 are always the complement of O_0 to O_3 . The exclusive-OR input structure allows the choice of either

polarity for E₀ and E₁. With one enable input HIGH, the

other enable input is active HIGH; with one enable input

LOW, the other enable input is active LOW.

16 15 14 13 12 11 10 9 V_{DD} \overline{O}_3 D_3 D_2 \overline{O}_2 O_2 O_1 \overline{O}_1 HEF4042B O_3 O_0 \overline{O}_0 D_0 E_0 E_1 D_1 V_{SS} 1 2 3 4 5 6 7 8 7269500 Fig.2 Pinning diagram.

00 D₀ D 0 FF СР \overline{O}_0 3 ō 01110 D_1 7 FF 01 9 02 11 D_2 13 FF 3 \overline{O}_2 12 031 Dз 14 FF Ō₃|₁₅ 7Z69550.3 Fig.1 Functional diagram.

HEF4042BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4042BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4042BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

 D_0 to D_3 data inputs E_0 and E_1 enable inputs

O₀ to O₃ parallel latch outputs

 \overline{O}_0 to \overline{O}_3 complementary parallel latch outputs

APPLICATION INFORMATION

Some examples of applications for the HEF4042B are:

- Buffer storage
- Holding register

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

Quadruple D-latch

HEF4042B MSI

Product specification

FUNCTION TABLE

E ₀	E ₁	OUTPUT O _n		
L	L	D _n		
L	Н	latched		
Н	L	latched		
Н	Н	D _n		

Note

H = HIGH state (the more positive voltage)
 L = LOW state (the less positive voltage).

Philips Semiconductors Product specification

Quadruple D-latch

HEF4042B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$D \rightarrow O, \overline{O}$	5			95	190	ns	67 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	28 ns + (0,23 ns/pF) C _L
	15			30	55	ns	22 ns + (0,16 ns/pF) C _L
	5			85	175	ns	57 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		40	75	ns	28 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$E \rightarrow O, \overline{O}$	5			130	260	ns	102 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	105	ns	38 ns + (0,23 ns/pF) C _L
	15			35	75	ns	27 ns + (0,16 ns/pF) C _L
	5			120	245	ns	92 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	105	ns	38 ns + (0,23 ns/pF) C _L
	15			35	75	ns	27 ns + (0,16 ns/pF) C _L
Output transition							
times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
Set-up time	5		30	10		ns	
$D \rightarrow E$	10	t _{su}	20	5		ns	
	15		20	5		ns	
Hold time	5		15	-5		ns	
$D \rightarrow E$	10	t _{hold}	15	0		ns	see also waveforms Figs 5 and 6
	15		15	0		ns	i igo o ana o
Minimum enable	5		90	45		ns	
pulse width	10	t _{WE}	40	20		ns	
	15		30	15		ns	

	V _{DD}	TYPICAL FORMULA FOR P (W)	
Dynamic power	5	3800 $f_i + \sum (f_oC_L) \times V_{DD}^2$	where
dissipation per	10	15 700 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	41 100 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Quadruple D-latch

HEF4042B MSI

Philips Semiconductors Product specification

Quadruple D-latch

HEF4042B MSI

hold-times are shown as positive values but may be specified as negative values.