

Theoretische Grundlagen

- Äquivalenz kontextfreier Grammatiken und Kellerautomaten
 - Zu jeder kontextfreien Grammatik kann man einen Kellerautomaten konstruieren, der die von der Grammatik definierte Sprache akzeptiert.
 - Die von einem Kellerautomaten akzeptierte Sprache ist kontextfrei.

© Prof. J.C. Freytag, Ph.D.

6.3

Gedächtnis des Automaten

- Welche Art von »Gedächtnis« ist für kontextfreie Sprachen notwendig?
 - $L=\{a^nbc^n|n>0\}$
 - man muss sich Anzahl der a merken
- in einem (Keller-)Speicher sollten
 - die a gespeichert werden können und
 - nachdem ein b erkannt wurde, sollten mit den erkannten c die a wieder aus dem Keller entfernt werden können

© Prof. J.C. Freytag, Ph.D.

Zustandsübergang (NDKA)

Zustandsübergangstransition (state transition)

 $δ: Z x (V_t \cup {ε}) x V_k \rightarrow (Z x V_k^*)$

- befindet sich Automat K
 - im Zustand z und
 - liest das Eingabezeichen t und
 - sei A das oberste Kellerelement,

so kann K im nächsten Schritt

- in den Zustand z' übergehen und
- das oberste Kellerelement durch eine Symbolfolge B₁...B_k ersetzen (B₁ ist dabei das oberste Kellerelement)

Spezialfall

• ε-Eingabe: spontaner Übergang (ohne

Konsumtion eines Eingabe-Signals)

© Prof. J.C. Freytag, Ph.D.

6.7

Akzeptanz, Startzustände

- Akzeptanz eines Eingabewortes
 - keine Endzustände
 - Akzeptanz erfolgt,
 - wenn der Keller leer ist, i.e. nur noch das Zeichen # zu finden ist (zu Beginn jeder Analyse steht das Zeichen # im Keller)
 - ... und die Eingabe leer (i.e. das \$-Zeichen gelesen wurde).
- Startzustände
 - Einschränkung auf einen Startzustand ist nicht zwingend
 - mittels " spontaner " Übergänge kann in die "eigentliche Startzustände" übergegangen werden

© Prof. J.C. Freytag, Ph.D.

Konfiguration

- eine Konfiguration k ist ein Tripel (z, w, v) ∈ (Z x V_T* x V_K*) mit
 - z : aktueller Zustand z
 - w: (noch zu lesende) Eingabewort
 - v : Kellerzustand v

Eine Konfiguration beschreibt eine "Momentaufnahme" des Kellerautomaten

- Zustand,
- noch zu lesendes Eingabewort,
- Kellerzustand (oberstes Kellerzeichen links)
- Keller: nur das oberste Zeichen des Kellers kann gelesen werden

© Prof. J.C. Freytag, Ph.D.

6.9

"Rechenschritt", akzeptierte Sprache

■ zweistellige Relation ⇒, die eine Konfiguration in die Nachfolgekonfiguration überführt:

 $k \Rightarrow k'$ (k' ergibt sich durch *einmalige* Anwendung der δ -Funktion)

sei ⇒* die reflexive, transitive Hülle von ⇒ , dann ist die durch einen Kellerautomaten K akzeptierte Sprache L(K) folgendermaßen bestimmt:

$$L(K) = \{ w \in V_T^* \mid (z_0, w, \#) \Rightarrow^* (z, \varepsilon, \#) \text{ für ein } z \in Z \}$$

(**Achtung**: "⇒" neu definiert im Kontext des Kellerautomaten)

Satz:

Eine Sprache L ist kontextfrei gdw. (iff) L von einem nichtdeterministischen Kellerautomaten erkannt wird.

© Prof. J.C. Freytag, Ph.D.

Deterministischer Kellerautomat

- Deterministischer Kellerautomat
 - Spezialfall des Nichtdeterministischen Kellerautomaten
 - darf nur eine Transition pro (Eingabe, Keller)-Paar besitzen
- Deterministischer Kellerautomat akzeptiert per Endzustand und nicht per leerem Keller
- Bemerkung:

bei Nichtdeterministischen Kellerautomaten sind beide Akzeptanzmechanismen (leerer Keller bzw. Endzustand) äquivalent

© Prof. J.C. Freytag, Ph.D. 6.11

Transitionstabelle

L =
$$\{xcx^R | x \in \{a,b\}^*\}$$

Index	Zustand	Eing.	Keller	Transition	
1	z_0	a	#	(z_0,a #)	
2	z_0	b	#	(z_0,b #)	
3	z_0	a	a	(z_0,a a)	
4	z_0	b	a	(z_0,b a)	
5	z_0	a	b	(z_0,b b)	
6	z_0	b	b	(z_0,b b)	
7	z_0	c	#	(z_1, #)	
8	z_0	c	a	(z_1, #)	
8	z_0	c	b	(z_1, a)	
9	z_0	c	b	(z_1, b)	
10	z_1	a	a	(z_1, \epsilon)	
11	z_1	b	b	(z_1, \epsilon)	
12	z_1	\$ #	(z_2, #)		
6	Prof. J.C. Freytag,	12	Z_1	\$ #	(z_2, #)
6	Exercise				

Nicht-Determinismus

- Nicht-Determinismus:
 - es existieren mehrere Transitionen für die gleiche **Eingabe-Keller Konfiguration**
 - d.h. aus demselben Zustand heraus existiert für den Keller=Y und die Eingabe=w, eine weitere andere Transition mit Keller=Y Eingabe=w

© Prof. J.C. Freytag, Ph.D.

6.29

Nichtdeterminismus -<u>Determinismus</u>

- einige nicht-deterministische Kellerautomaten können in deterministische umgewandelt werden
- andere kontextfreie Sprachen sind dagegen inhärent nicht-deterministisch

$$L = \{x \in \{a, b\}^* | x = x^R\}$$

• DIENSTMANNAMTSNEID

Palindrome (von Hansgeorg Stengel)

ANNASUSANNA

NURDUGUDRUN

- LAGERREGAL
- RELIEFPFEILER

- ALLE BANANEN ANABELLA
- REGINE WEINE NIE WENIGER
- EIN MAKI KAM NIE

© Prof. J.C. Freytag, Ph.D.

noch ein Stengel-Palindrom

LEONI LEG ANTONS NOTNAGEL IN OEL

Hansgeorg Stengel:

»AnnasusannA – Ein Pendelbuch für Rechts- und Linksleser« Eulenspiegel Verlag Berlin, 1984

© Prof. J.C. Freytag, Ph.D.

6.31

Anwendung im Compilerbau

- Ausgang
 - beliebige kontextfreie Grammatik
- Konstruktion
 - eines Kellerautomaten, der die durch die Grammatik definierte Sprache akzeptiert
- Problem
 - Kellerautomat ist nichtdeterministisch (auch wenn die Ausgangsgrammatik einen deterministischen Akzeptor haben sollte)
 - Aber: für gewisse Unterklassen Kontextfreier Grammatiken können jedoch deterministische Kellerautomaten abgeleitet werden.

© Prof. J.C. Freytag, Ph.D.

LR(k)- Analyseverfahren

- LR-Verfahren
 - L: Links-nach-rechts-Verarbeitung der Eingabefile
 - R: Rechtsableitung in umgekehrter Reihenfolge (Bottom-Up-Verfahren)
 - k: Zahl der voraus betrachteten Eingabesymbole (prädiktives Verfahren)
 - ohne Rücksetzen und damit effizient (lineare Komplexität)
- LR-Grammatiken

© Prof. J.C. Freytag, Ph.D.

6.35

Attraktivität von LR- Verfahren

- können praktisch alle Programmiersprachenkonstrukte erkennen, für die kontextfreie Grammatiken existieren
- LR ist die allgemeinste Shift-Reduce-Syntaxanalyse ohne Backtracking;
 - dennoch kann sie effizienter implementiert werden als andere Shift-Reduce-Methoden
- LR-Sprachen enthalten LL-Sprachen!!
- Nachteil: sehr großer Aufwand für Hand-Implementation

aber: automatisch (mittels yacc/bison) erzeugter Parser erkennen und lokalisieren Mehrdeutigkeiten oder andere schwierige syntaktische Konstrukte kontextfreier Grammatiken

© Prof. J.C. Freytag, Ph.D.

Bottom-Up-Syntaxanalyseverfahren

einfaches Verfahren:

Shift-Reduce-Syntaxanalyse

- davon einfach zu implementieren:
 Operator-Precedence-Syntaxanalyse
- allgemeineres Verfahren:

LR-Syntaxanalyse

© Prof. J.C. Freytag, Ph.D.

6.37

Prinzip der Bottom-Up-Verfahren

- sukzessive Anwendung von Reduktionsschritten, um letztendlich ein Eingabewort w (Programm) auf das Startsymbol S der Grammatik zu reduzieren
- einzelner (Reduktions-) Schritt:

Teilzeichenkette

 \rightarrow

die mit rechter Regel-Seite übereinstimmt Symbol

das mit der linken Regel-Seite übereinstimmt

 wird die Teilzeichenkette richtig gewählt, liegt eine Rechtsableitung in umgekehrter Reihenfolge vor

© Prof. J.C. Freytag, Ph.D.

Ziel

- Suche nach einem Teilstring α , der mit der rechten Seite einer Regel $A \to \alpha$ übereinstimmt und dessen Reduktion zum Nichtterminalen A in einer umgekehrten Rechtsableitung reduziert werden kann
- der Teilstring α wird auch Griff (engl. »Handle«) genannt

formale Definition

- Ein »Handle« einer Zeichenkette γ (die aus Terminalen und Nichtterminalen bestehen kann und einer Rechtsableitung entstammt) ist
 - eine Regel $A \rightarrow \beta$ und
 - eine Position in γ , in der β gefunden und durch A ersetzt wird

© Prof. J.C. Freytag, Ph.D. 6.43

»Handle« (2)

Bemerkung

- falls $s \Rightarrow^* \alpha Aw \Rightarrow \alpha \beta w$, dann ist $A \to \beta$ an der Position, die α folgt, ein »Handle« für $\gamma = \alpha \beta w$
- da γ einer Rechtsableitung entstammt, enthält das Teilwort w rechts vom »Handle« nur Terminalsymbole (deswegen $w \in V_t^*$).

Beobachtung für letztes Beispiel

S ⇒ aABe ⇒ aAde ⇒ aAbcde ⇒ abbcde

Grammatik: $S \rightarrow aABe$ $A \rightarrow Abc \mid b$ $B \rightarrow d$

abbcde entstammt einer Rechtsableitung, Handle: A → b an Position 2

aAbcde entstammt einer Rechtsableitung, Handle: A → Abc an Position 2

Kurzsprechweise: Teilstring Abc ist Handle von aAbcde

© Prof. J.C. Freytag, Ph.D.

6.45

»Handle« (3)

Satz:

 Falls die Grammatik G eindeutig ist, dann gibt es in jedem String einer Rechtsableitung ein eindeutig bestimmte »Handle«

Beweisidee (durch Anwendung der Definitionen):

G ist eindeutig ⇒ Rechtableitung ist eindeutig

- \Rightarrow es existiert eine eindeutige Regel A \rightarrow β , die $\gamma_{i\text{-}1}$ nach γ_{i} überführt
- \Rightarrow es existiert eine eindeutige Position k, an der die Regel A $\rightarrow \beta$ angewandt wird
- \Rightarrow dies ist das eindeutige »Handle« A $\rightarrow \beta$

© Prof. J.C. Freytag, Ph.D.

»Handle-Pruning«

Def.: Prozess, einen Parsebaum »bottom-up« zu konstruieren, heißt »handle-pruning«

sei w String einer Rechtsableitung

```
\mathsf{S} \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_{\mathsf{n-1}} \Rightarrow \gamma_\mathsf{n} = \mathsf{W}
```

 dann ist folgender einfacher Algorithmus ein (Parse-) handle-pruning-Algorithmus

```
for i = n downto 0 do
```

finde die Handle $A_i \rightarrow \beta_i$ in γ_i ; ersetze β_i durch A_i , um γ_{i-1} zu generieren

© Prof. J.C. Freytag, Ph.D.

