32.13. Привести к каноническому виду данную квадратичную форму в n-мерном пространстве:

$$4) \sum_{1 \leqslant i < j \leqslant n} x_i x_j;$$

r+=1 naryonpeg.

32.18. При каких значениях параметра λ данная квадратичная форма положительно, отрицательно определена или полуопределена:

3)
$$\lambda x_1^2 + 8x_2^2 + x_3^2 + 16x_1x_2 + 4x_1x_3 + 4x_2x_3;$$

$$\begin{pmatrix} \lambda & 8 & 2 \\ 8 & 3 & 2 \\ 2 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} \lambda - 8 & 0 & 0 \\ 0 & 8 & 2 \\ 0 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} \lambda - 8 & 0 & 0 \\ 0 & 1 & 9 \\ 0 & 0 & 1 \end{pmatrix} \stackrel{\lambda}{\longrightarrow} \begin{array}{c} \lambda - 8 - n \cdot \text{mp} \\ \lambda - 8 - n \cdot \text{mp} \\ \lambda - 8 - n \cdot \text{mp} \end{array}$$
32.20

2) Доказать, что в матрице положительно определенной квадратичной формы максимальный по модулю элемент положителен.

- **32.21.** 1) Доказать, что в линейном пространстве вещественных квадратных матриц порядка n функция $k(X) = tr(X^TX)$ является положительно определенной квадратичной функцией.
- 2) Доказать, что в линейном пространстве вещественных квадратных матриц порядка n функция $k(X) = tr(X^2)$ является квадратичной функцией. Ңайти ее ранг и сигнатуру.

квадратных матриц порядка n функция $\mathbf{k}(X)=\mathrm{tr}(X^2)$ является квадратичной функцией. Найти ее ранг и сигнатуру.

$$tr(x^{T}x) = tr((xx^{T})^{T}) = tr(xx^{T}) - ab - appena.$$

$$XX^{T}_{ii} = \sum_{i=1}^{N} a_{i}^{-2} > 0 \quad \text{yut} \quad a_{i} \neq 0 \quad \text{2-}tr(xx^{T}) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i}^{-2} > 0$$

Т.1. Пусть угловые миноры матрицы квадратичной формы q на четырехмерном вещественном пространстве удовлетворяют условиям $\delta_1 > 0, \, \delta_2 = \delta_3 = 0, \, \delta_4 > 0$. Какими могут быть положительный r_+ и отрицательный r_- индексы инерции формы q?

 ${\bf T.2}^*$. Пусть $V=U\oplus W$ и ограничения $q|_U$ и $q|_W$ положительно определены.

25.7. В линейном пространстве функций, непрерывных на отрезке [-1, 1], функциям f и g сопоставляется число

243

§ 25. Скалярное произведение. Матрица Грама

$$(f, g) = \int_{-1}^{1} f(t) g(t) dt.$$

Доказать, что этим определено скалярное произведение.

25.25. Найти скалярное произведение векторов, если заданы их координаты в некотором базисе и матрица Грама Γ этого базиса:

1)
$$\|1 \ 1 \ 1\|^{T}$$
, $\|1 \ 3 \ 1\|^{T}$, $\Gamma = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -4 \\ 1 & -4 & 6 \end{bmatrix}$;
 $(1 \ 1) \begin{bmatrix} 1 & -2 & 1 \\ 1 & -4 & 6 \end{bmatrix}$;

 ${f 25.21}.$ Найти угол между ребром и диагональю n-мерного куба.

$$a = [1, 0, ..., 0]$$

$$b = [1, 0, ..., 0]$$

$$cosd = \frac{1}{1 - M} = \frac{1}{M}$$

$$cosd = \frac{1}{1 - M} = \frac{1}{M}$$

$$6 = (1, -1)$$
 $|a| = 1$
 $|6| = \sqrt{n}$

25.23. Пусть в некотором базисе квадрат длины любого вектора x равен сумме квадратов его координат. Доказать, что базис ортонормированный.

$$\begin{aligned}
& \left\{ \left(u_{+}v_{x} \right) = \left(u_{+}v_{y} + v_{y} \right) = \left(u_{y} \right) + \left(v_{y} \right) + \lambda \left(u_{y} \right) = \left(u_{x}^{2} + 2 v_{x}^{2} + \lambda \left(u_{y} \right) \right) \\
& \left(u_{y} \right) = 22 u_{x} v_{x} = 2 u_{y} v_{y} = 2 u_{x} v_{x} \left(v_{y}^{2} \right) = 2 v_{y}^{2} v_{y}^{2} + 2 v_{y}^{2} v_{y}$$

25.10. Пусть e — базис в линейном пространстве \mathcal{E} . Доказать, что в \mathcal{E} существует одно и только одно скалярное произведение, относительно которого базис е — ортонормированный.

25.35. Может ли третья строка матрицы Грама некоторого базиса в четырехмерном пространстве быть строкой:

Т.5. Проведите ортогонализацию базиса $\{1, x, x^2\}$ пространства многочленов степени ≤ 2 со скалярным произведением из задачи Б 25.7.

- **Т.6***. В пространстве $\mathrm{M}_n(\mathbb{R})$ со скалярным произведением $(X,Y)=\mathrm{tr}(X^TY)$ найдите ортогональное дополнение к подпространству а) симметричных
 - верхнетреугольных матриц.
 - Moranay, roccur X=XT y 4=-YT, 70 (X, Y)=0 $(X,Y) = tr(X^TY) = tr(XY) = tr(YX) = -tr(Y^TX) = -(Y,X) = -(X,Y)$ 2(X,Y)=0=> (X,Y)=0 => Dua 400 Poronen a com morphing use cl. y patro 0-5.0. one
- $\delta) \quad X \text{Experimpty}, \quad Y \text{turner every} \implies (X, Y) = \text{tr}(X^T Y) = \text{tr}(\left(X^O\right)\left(Y^{\bullet, O}\right) = \text{tr}\left(X^{O}\right)\left(Y^{\bullet, O}\right) = 0$
- **26.6.** Подпространства \mathcal{L}_1 и \mathcal{L}_2 ортогональны. Обязательно ли ортогональны \mathcal{L}_1^{\perp} и \mathcal{L}_2^{\perp} ?

- **26.13.** Подпространство \mathcal{L} задано как линейная оболочка векторов, имеющих в ортонормированном базисе координатные столбцы:
- $3) \ \|3-15\ 9\ 1\|^T, \|3-6-3\ 2\|^T;$ а) матрицу системы уравнений, определяющей $\mathcal{L}^\perp,$ (3-1591/9) E

 - б) базис в \mathcal{L}^{\perp} .

1331

3) $\|3 - 1591\|^{-}$, $\|3 - 6 - 32\|^{-}$; а) матрицу системы уравнений, определяющей \mathcal{L}^{\perp} , 6) базис в \mathcal{L}^{\perp} .

8) $\left(\frac{3 - 1591}{3 - 632}\right)^{-} \left(\frac{3 - 632}{3 - 632}\right)^{-} \left(\frac{1 - 21}{3 - 632}\right)^{-}$

26.15. Подпространство \mathcal{L} задано в ортонормированном базисе системой линейных уравнений $A\xi = \mathbf{o}$. Найти систему уравнений подпространства \mathcal{L}^{\perp} :

уравнений подпространства
$$\mathcal{L}^{\perp}$$
:

2) $8x_1 - x_2 + 2x_3 - 4x_4 = 0$; $\begin{pmatrix} 8 & -4 & 2 & -4 \\ -6 & 3 & -4 & 6 \end{pmatrix}$ $\sim \begin{pmatrix} 8 & -4 & 2 & -4 \\ 40 & 4 & 0 & -2 \end{pmatrix}$ $\sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix}$ $\sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix}$ $\sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix}$ $\sim \begin{pmatrix} 48 & 0 & 2 & -6 \\ 40 & 4 & 0 & -2 \end{pmatrix}$ $\sim \begin{pmatrix} 49 & 0 & 4 & -3 \\ -6 & 3 & -4 & 6 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ -5 & -4 & 2 & -4 \\ -9 & 3 & 0 & -2 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0 & 2 & 3 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 4 & 0 & 6 & 5 \\ 0$

26.27. Подпространство \mathcal{L} — линейная оболочка векторов a_1, \ldots, a_k . В ортонормированном базисе заданы координатные столбцы этих векторов и координатный столбец ξ вектора x. Найти координатные столбцы ξ' и ξ'' ортогональных проекций вектора x соответственно на \mathcal{L} и \mathcal{L}^{\perp} :

2)
$$\mathbf{a}_{1} = \|\mathbf{6} \ \mathbf{1} \ \mathbf{5}\|^{T}, \ \mathbf{a}_{2} = \|\mathbf{4} \ -\mathbf{1} \ \mathbf{3}\|^{T}, \ \mathbf{\xi} = \|\mathbf{1} \ \mathbf{3} \ -\mathbf{2}\|^{T};$$

1) $\begin{pmatrix} 6 \ 1 \ 5 \\ 4 \ -1 \ 5 \end{pmatrix} \sim \begin{pmatrix} 6 \ 1 \ 5 \\ 10 \ 0 \ 8 \end{pmatrix} \sim \begin{pmatrix} 6 \ 1 \ 5 \\ 5 \ 0 \ 4 \end{pmatrix} \sim \begin{pmatrix} 0.5 \ 1 \\ 5 \ 0 \ 4 \end{pmatrix} \sim \begin{pmatrix} 0.5 \ 1 \\ 5 \ 0 \ 4 \end{pmatrix} \sim \begin{pmatrix} -1.4 \ 1 \\ 5 \ 0 \ 4 \end{pmatrix} \sim \begin{pmatrix}$

2)
$$\xi' \in L_1 \land \xi'' \in L_2 \land \xi' + \xi'' = \xi$$

$$\begin{cases}
0 & 0 & 0 & -4 & -1 & 5 & | \mathbf{0} \\
6 & 1 & 5 & 0 & 0 & | 0 \\
4 & -1 & 3 & 0 & 0 & | 1 & | 1 & | 1 & | 1 & | 2 & | 1 &$$