BML 300: INTRODUCTION TO HEALTHCARE ENGINEERING

Coordinator: Dr. Arnab Chanda

Centre for Biomedical Engineering, IIT Delhi Department of Biomedical Engineering, AIIMS Delhi

Date: Aug 12, 2024

What is Biomechanics?

What is biomechanics?

The term *biomechanics* combines the prefix *bio*, meaning "life," with the field of *mechanics*, which is the study of the actions of forces, (both internal muscle forces and external forces.) In biomechanics we analyze the mechanical aspects of living organisms.

Sub-branches of biomechanics:

- statics: study of systems in constant motion, (including zero motion)
- dynamics: study of systems subject to acceleration
- kinematics: study of the appearance or description of motion
- kinetics: study of the actions of forces (Force can be thought of as a push or pull acting on a body.)

What is kinematics?

What we visually observe of a body in motion is called the kinematics of the movement. Kinematics is the study of the size, sequencing, and timing of movement, without regard for the forces that cause or result from the motion. The kinematics of an exercise or a sport skill is known, more commonly, as form or technique.

What is kinetics?

Kinetics is the study of forces, including internal forces (muscle forces) and external forces (the forces of gravity and the forces exchanged by bat and ball).

What is kinesiology?

Kinesiology is the study of human movement.

What is sports medicine?

Sports medicine is an umbrella term that encompasses both clinical and scientific aspects of exercise and sport.

What questions or problems are studied by biomechanists?

When not subject to gravitational force, astronauts lose significant amounts of bone mass. (Bone atrophies when not subjected to forces.) Exercise, however, is known to increase bone mass. So what kinds of exercise should astronauts do while in space in order to preserve as much bone as possible?

Whether lifting weights or lifting boxes in industry, the act of lifting places major mechanical stress on the low back. What lifting kinematics (techniques) can minimize this stress?

How do toddlers
learn to balance
their torsos on little
legs unaccustomed
to walking? (This
question spans the
fields of
biomechanics,
motor learning, and
motor
development.)

Pitching can lead to stress injuries of the elbow and shoulder joints. What pitching technique characteristics minimize the mechanical stresses to these joints?

Recreational runners, as well as athletes in many sports, often stretch before a work out. Does this actually help or hinder performance? (Increasing evidence suggests the latter...)

What biomechanical elements of running technique enable some sprinters to dominate over others who are just as well trained and have just as strong physiological attributes?

Qualitative vs. Quantitative:

qualitative: pertaining to quality (without the use of numbers)

For example: strong, skillful, agile, flexible, fast

quantitative: involving numbers

For example: running speed = 5 m/s

height = 1.75 m

mass = 68.2 kg

Qualitative vs. Quantitative:

Quantitatively, the robot missed the coffee cup by 15 cm. Qualitatively, he malfunctioned.

Qualitative vs. Quantitative:

Coaches rely heavily on qualitative observations of athletes' performances in formulating advice about technique.

BML 300: INTRODUCTION TO HEALTHCARE ENGINEERING

Coordinator: Dr. Arnab Chanda

Other Instructors: Dr. Biswarup Mukherjee, Dr. Sachin Kumar B, Dr. Naveen K. Singh

Centre for Biomedical Engineering, IIT Delhi

Department of Biomedical Engineering, AIIMS Delhi

Date: Jan 30, 2024

Introduction to Biomechanics

Biomechanics:

- Study of movement of living body (including bones, tissues, and organs)
- The math behind injury and tissue related disease-Doctors cannot tell this!

Gait Biomechanics

Sports Biomechanics

Injury Biomechanics

Cardiovascular Biomechanics

Orthopedic Biomechanics

Experimental Biomechanics

Limited by biosafety and ethics:

Cadaveric Tissue Experiments

Experimental Gait Analysis

Exercise Testing

Can we study these experimentally?

Blast Injury

Slips and Falls

Armor Testing

Finite Element Modeling (FEM)

Allows us to simulate complex scenarios

Honda R&D Americas, Inc. May 2014

Vehicular Crash Testing

Organ Damage due to IED Blast

BML 300: INTRODUCTION TO HEALTHCARE ENGINEERING

Coordinator: Dr. Arnab Chanda

Centre for Biomedical Engineering, IIT Delhi Department of Biomedical Engineering, AIIMS Delhi

Date: Aug 13, 2024

Disease Biomechanics

Allows us to study disease progressions and forms

Stress Distribution-Varying degrees of Osteoporosis

Stress Distribution-Varying Aneurysm Forms

Also can test interventions and medical devices

INTRODUCTION: Why Biomechanics?

Mechanics and Mechanobiology of Tissues Bones, Soft Tissues, Biomaterials,

WHY STUDY SOFT TISSUE MECHANICS?

Tendon

http://www.gwc.maricopa.edu/class/bio201/histo

Blood Vessel

Elastic Cartilage

MANY BIOLOGICAL **EVOLVED TO** PERFORM SPECIFIC **MECHANICAL** FUNCTIONS.

SOMETIMES, THESE (PHYSICALLY AND/OR FUNCTIONALLY).

INTRODUCTION: Why Biomechanics?

STUDY OF DISEASES

INTRODUCTION: Why Biomechanics?

STUDY OF INJURIES

Finite Element Modeling (FEM)

STEPS

Finite Element (FE) Software

Simulations

Finite Element Modeling (FEM)

Analysis

FEM Analysis

STEPS:

- 1. Stress and Strain Distributions
- 2. Effect of Material Properties on Results
- 3. Identifying Injury or Disease Specific Stresses or Strains
- 4. Effect of Interventions on Stresses/Strains

Orthotic Interventions

Software-ANSYS

Download ANSYS Student Version (Free)

Gait Analysis

- Study of human locomotion
- Walking and running
- Walking is a series of gait cycles
 - A single gait cycle is known as a STRIDE

The Main Tasks of the Gait Cycle

• (1) Weight acceptance

- most demanding task in the gait cycle
- involves the transfer of body weight onto a limb that has just finished swinging forward and has an unstable alignment.
- Shock absorption and the maintenance of a forward body progression

• (2) single limb support

- One limb must support the entire body weight
- Same limb must provide truncal stability while bodily progression is continued.

• (3) limb advancement

- Requires foot clearance from the floor
- The limb swings through three positions as it travels to its destination in front of the body.

Why Study Normal Gait?

 Loss of the ability to walk can result is significant health problems

(co-morbidities)

- Pain, injury, paralysis or tissue damage can alter normal gait and lead to:
 - further musculoskeletal problems (compensations)
 - Cardiovascular and pulmonary problems (inactivity due to pain)
 - Psychological problems (depression)

- Sports, Exercise/Fitness, and Rehabilitation Professionals must have a sound knowledge of normal gait so they can accurately detect, interpret, and ultimately correct deviations and/or gait pathologies to restore "normal," pain-free function
- It is important to remember that each person displays "normal" variations from the normal pattern of walking
- ULTIMATE GOAL: KEEP YOURSELF AND YOUR PATIENTS/CLIENTS MOVING PAIN-FREE THROUGHOUT YOUR/THEIR LIFESPANS!!!

Normal Walking Requirements

• There are (4) major criteria essential to walking.

Equilibrium

 the ability to assume an upright posture and maintain balance.

Locomotion

the ability to initiate and maintain rhythmic stepping

Walking Requirements Cont'd

- Musculoskeletal Integrity
 - normal bone, joint, and muscle function
- Neurological Control,
 - must receive and send messages telling the body how and when to move. (visual, vestibular, auditory, sensorimotor input)