实验六 洗衣机控制电路原理图

一 实验目的

- 1 掌握层次原理图的绘制方法。
- 2 理解原理图模块化的设计方法;菜单的基本使用;工具栏的使用。

二 实验内容

绘制洗衣机控制电路原理图,包括复位、晶振模块,CPU 模块,显示模块,控制模块。

三 实验步骤

- 1 新建工程项目文件
 - 1) 单击菜单 File/New/PCB Project ,新建工程项目文件。
 - 2) 单击菜单 File/Save Project 保存工程文件,并命名为"洗衣机控制电路.PrjPCB"。
- 2 绘制母图
 - 1) 在洗衣机控制电路.PrjPCB 工程文件中,单击菜单 File/New/Schematic,新建原理图文件。
 - 2) 单击菜单 File/Save As,将新建的原理图文件保存为"洗衣机控制电路.SchDoc"
- 3) 单击菜单 Place/Sheet Symbol,或单击 Wring 工具栏中的 按钮,如图 1 所示,修改其属性,依次放置复位、晶振模块,CPU 模块,显示模块,控制模块四个方块电路,放置如图 2 所示

图 1 方块

电路属性

图 2 放置四个方块电路

4) 单击菜单 Wring 工具栏的 2 按钮,放置方块电路端口,并修改其属性,如图 3 设置 RST 端口,图 4 设置 P10 端口,依次设置,完成后效果如图 5 所示

图 3 RES 端口

图 4 P10 端口

图 5 放置方块电路端口

5) 连线。根据各方块电路电气连接关系,用导线或总线将端口连接起来,如图 6 所示,并添加网络标号,网络标号属性修改如图 7 所示。完成后的母图效果如图 8 所示。

图 6 连线

图 7 网络标号属性修改

- 3 创建及绘制子图
- 1)在母图中,单击菜单 Design/Create Sheet From Symbol,此时鼠标变为十字形。
- 2)将十字光标移到复位 晶振模块方块电路内,如图 9 所示。
- 3) 单击鼠标左键,系统将弹出如图 10 所示对话框,单击"No"按钮,生成子图,且自动布置与该方块电路相对应的 I/0 端口,如图 11 所示

图 8 完成后的母图

图 9 移动光标到方块电路内

图 10 转换端口方向对话框

图 11 自动生成的 I/0 端口

4) 绘制复位晶振模块电路子图。 其用到的元件如下表 1 所示。 绘制完成后的效果如图 12 所示。

表 1 复位晶振模块电路元件列表

元件在图	元件图形	所在元件库	元件类型或标	元件封装
中标号	样本名		示值	
<i>R</i> 1	RES2	Miscellaneous Devices.IntLib	270 Ω	AXIAL0.4
R2	RES2	Miscellaneous Devices.IntLib	1k Ω	AXIAL0.4
<i>C</i> 1	Cap	Miscellaneous Devices.IntLib	22pF	RAD0.3
C2	Cap	Miscellaneous Devices.IntLib	22pF	RAD0.3
<i>C</i> 3	Cap Pol2	Miscellaneous Devices.IntLib	22 µ F	POLAR0.8
S1	SW-PB	Miscellaneous Devices.IntLib		SPST-2
Y1	XTAL	Miscellaneous Devices.IntLib		BCY-W2/D3.1
VCC		电源工具栏		
GND		电源工具栏		

图 12 复位 晶振电路

5) 用类似的方法创建其它模块电路子图 各模块电路所用元件列表如表 2、表 3、表 4 所示 各模块电路绘制完成后效果如图 14、图 15、图 16 所示。

表 1 CPU 模块电路元件列表

元件在图	元件图形	所在元件库	元件类型	元件封装
中标号	样本名		或标示值	
DS80C310-	U1	Dallas Microcontroller 8-Bit.IntLib		DIP40B
MCL	UI	Danas Microcontroller 8-Bit.IntLib		
VCC		电源工具栏		
GND		电源工具栏		

提示: DS80C310-MCL 可以通过搜索功能来查找,搜索格式如图 13 所示,并添加其元件库

图 13 DS80C310-MCL 元件搜索

图 14 CPU 电路模块

表 3 显示模块电路元件列表

元件在图 中标号	元件图形样 本名	所在元件库	元件类型 或标示值	元件封装
DS1	Dpy Yellow-CA	Miscellaneous Devices.IntLib		LEDDIP-10/C5.08RHD
R3	RES2	Miscellaneous Devices.IntLib	1kΩ	AXIAL0.4
R4	RES2	Miscellaneous Devices.IntLib	1kΩ	AXIAL0.4
R5	RES2	Miscellaneous Devices.IntLib	1kΩ	AXIAL0.4
<i>R</i> 6	RES2	Miscellaneous Devices.IntLib	1kΩ	AXIAL0.4
R7	RES2	Miscellaneous Devices.IntLib	1kΩ	AXIAL0.4
R8	RES2	Miscellaneous Devices.IntLib	1kΩ	AXIAL0.4
R9	RES2	Miscellaneous Devices.IntLib	1kΩ	AXIAL0.4
R10	RES2	Miscellaneous Devices.IntLib	1kΩ	AXIAL0.4
VCC		电源工具栏		

图 15 显示电路模块

表 4 控制模块电路元件列表

元件在图	元件图形样本	所在元件库	元件类型或	元件封装
中标号	名		标示值	
K1	Relay-SPDT	Miscellaneous Devices.IntLib		DIP-P5/X1.65
P1	Header 3	Miscellaneous Connectors.IntLib		HDR1X3
P2	Header 3	Miscellaneous Connectors.IntLib		HDR1X3
VCC		电源工具栏		

图 16 控制电路模块

6) 一张完整的层次原理图绘制完毕

提示: 层次原理图完成后,若想要从母图的某一端口直接切换到子图的同一端口,或者从子图的某一端口直接切换到某图的同一端口,必须现将母图进行编译操作。

单击菜单 **Project/Compile all project**, 选择菜单 **Tools/Up/down Hierarchy**, 此时鼠标变为十字形状, 在某一端口双击即可实现切换。

四 思考题

- 1 绘制层次原理图的方法有那些?
- 2 方块电路端口与 I/O 端口有何区别?
- 3 层次原理图比较普通原理图有何优点?
- 4 如何实现母图与子图之间的切换?