

微电子器件实验

彭守仲

北京航空航天大学 集成电路学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

2020年12月7日

回顾: 基本放大电路

- 场效应管单管放大电路
 - 共源放大电路
 - 共漏放大电路(源随器)
 - 共栅放大电路

(源随器)

共源

回顾: 步骤1:放大电路参数计算

1952 1952

- 放大电路参数计算
- 1. 画出低频交流小信号
- 等效电路
- 2. 设 g_m =0.01S,计算出 电压放大倍数 A_v 、电流放 大系数 A_i 、输入电阻 R_{in} 、 输出电阻 R_{out} 的具体数值 (课堂测试)

回顾: 步骤2:直流工作点设置

■ 直流工作点设置

- 1.自行设置 E_G 和 E_D
- $2.测量<math>V_{DS}$ 和 I_D 并画图,确保工作在放大区
- $3.测量交流信号<math>v_{gs}$ 和 i_d 并计算低频跨导 g_m :

$$g_m = \frac{i_d}{v_{gs}}$$

4.调节 E_G 和 E_D ,使低频 跨导 g_m =0.01S

回顾:场效应管的模型参数测量

- 饱和区低频跨导(忽略沟道长度调制效应)
 - 直流工作点确定后, I_D 和 g_m 保持不变

思考:如何改变低频跨导 g_m ?

回顾: 步骤3:放大电路参数测量

1952 1952

- 放大电路参数测量
- 1.保持直流工作点不变
- 2.任意波形发生器输出

1KHz、500mV_{PP}信号v_{in} gds

3.断开 R_L ,用示波器测量 v_{in}

和 v_{outl} ,用万用表测量 i_{in}

4.计算电压放大倍数 A_{ν} 、

输入电阻R_{in}

5.连接 R_L 测量 v_{out2} ,计算电流 v_{gs}

放大倍数 A_i 和输出电阻 R_{out}

■ 运算放大器

- 广泛应用于信号运算、高速放大、滤波、缓冲器等电路。
- 通常以负反馈形式使用,以提供稳定性、精度等指标。

理想集成运放:

开环差模电压增益 A_{od} 无穷大开环差模输入电阻 r_{id} 无穷大带宽 f_H 无穷大共模抑制比无穷大始出电阻 r_o 为零噪声为零

■ 运放的线性/非线性工作区

- ➤ 运放分为线性工作区和非线性工作区(正向/负向饱和区)。
- \rightarrow 线性工作区: $u_o = A_{od} (u_P u_N)$
- ▶ 用来设计运算电路时,处于线性工作区。
- 用来设计比较器时,处于非线性工作区。

■ 运放的线性/非线性工作区

- ▶ 运放分为线性工作区和非线性工作区(正向/负向饱和区)。
- ➤ 线性工作区: $u_o = A_{od} (u_P u_N)$
- ▶ 用来设计运算电路时,处于线性工作区。
- 用来设计比较器时,处于非线性工作区。

■ 理想运放的"虚短"和"虚断"

$$u_o = A_{od}(u_P - u_N)$$

因为 u_o 为有限值,而 $A_{od} = \infty$ 所以 $u_N - u_P = 0$,即 $u_N = u_P$ 此为<u>"虚短路"</u>!

因为
$$r_{id} = \infty$$
 ,所以 $i_N = i_P = 0$ 此为 "虚断路"!

■ 反相比例运算电路

$$R'=R\parallel R_f$$

确保差分输入端的对称性

$$i_N = i_P = 0$$
,虚断; $u_N = u_P = 0$,虚短

在节点N处应用KCL:

$$i_F = i_R = \frac{u_I}{R} = -\frac{u_O}{R_f}$$

达到反相比例运算效果:
$$u_O = -\frac{R_f}{R} \cdot u_I$$

■ 四运放集成电路LM324N

封装类型:DIP

针脚数:14

工作温度范围:-40℃ to +85℃

-3dB带宽增益乘积:1MHz

变化斜率:0.5V/µs

最大输入偏移电压:7mV

最大电源电压:32V

最小电源电压:3V

额定电源电压:+5V

■ 四运放集成电路LM324N

■ 四运放集成电路LM324N

步骤1:设计基本运算电路

■ 设计基本运算电路

利用集成运放设计电路:

- ①反相比例运算电路
- ②同相比例运算电路
- ③电压跟随器

设置合适的电阻值, 使闭

环增益A = u_O / u_I 分别

为-2、-1、2、1。

(课堂测试)

步骤2:测量基本运算电路

■ 测量基本运算电路

搭建所设计的电路:

- ①反相比例运算电路
- ②同相比例运算电路
- ③电压跟随器

测量并验证闭环增益

$$A = u_O / u_I$$
等于

-2, -1, 2, 1.

课后思考

■ 课后思考

- 1. 在我们的实验中如何提高反相比例运算电路的放大倍数?
- 2. 如果放大倍数过高,会带来什么不利影响?

京都在新文大學 內容和在新文化學

谢谢!