HOJA DE REGLAS DE INFERENCIAS LÓGICAS

Nota: Cada regla es un razonamiento válido con premisas Pi y conclusión Q, tal que P!, P2,...Pn \Rightarrow Q. Alguna premisa Pi puede ser a su vez una deducción, subdeducción o supuesto, que escribiremos entre paréntesis.

REGLAS DE CONJUNCIÓN	
IC (Introducción conjunción)	$A, B \Rightarrow A \wedge B$
EC (Eliminación conjunción)	$A \wedge B \Rightarrow A; A \wedge B \Rightarrow B$
ECQ	$A \land \neg A \Rightarrow C$

REGLAS DE DISYUNCIÓN	
ID (Introducción disyunción)	$A \Rightarrow A \lor B$
ED (Prueba por casos)	$A \vee B$, $(A \Rightarrow C)$, $(B \Rightarrow C) \Rightarrow C$

REGLAS DE IMPLICACIÓN / CONDICIONAL	
TD (Teorema de Deducción)	$(A \Rightarrow B) \Rightarrow A \rightarrow B$
MP (modus ponens)	$A \rightarrow B$, $A \Rightarrow B$
MT (modus tollens)	$A \rightarrow B$, $\neg B \Rightarrow \neg A$
ECO (Eliminación bicondicional)	$(A \leftrightarrow B) \Leftrightarrow (A \to B) \land (B \to A)$

REGLAS DE NEGACIÓN	
IN (Reducción al absurdo)	$(A \Rightarrow B \land \neg B) \Rightarrow \neg A$
EN (Eliminación negación)	$\neg\neg A \Rightarrow A$
IDN (Introducción de doble negador)	$A \Rightarrow \neg \neg A$

SILOGISMOS	
SH (Silogismo Hipotético)	$A \rightarrow B$, $B \rightarrow C \Rightarrow A \rightarrow C$
SD (Silogismo Disyuntivo)	$A \lor B, \neg B \Rightarrow A$

DILEMAS	
Dil ₁	$\neg A \lor \neg B$, $C \to A$, $C \to B \Rightarrow \neg C$
Dil ₂	$A \vee B$, $A \rightarrow C$, $B \rightarrow D \Rightarrow C \vee D$
Dil ₃	$\neg A \lor \neg B$, $C \to A$, $D \to B \Rightarrow \neg C \lor \neg D$

REGLAS DE EQUIVALENCIA	
(DIA) (Definición implicador conjunción)	$A \to B \Leftrightarrow \neg(A \land \neg B)$
(DIV) (Definición implicador disyunción)	$A \to B \Leftrightarrow \neg A \lor B$
Cp (Contrapositivo)	$A \to B \iff \neg B \to \neg A$
De Morgan	$ (M \land) \neg (A \lor B) \Leftrightarrow \neg A \land \neg B; (M \lor) \neg (A \land B) \Leftrightarrow \neg A \lor \neg B $
Idempotencia	$(Idc) A \wedge A \Leftrightarrow A; \qquad (Idd) A \vee A \Leftrightarrow A$
Absorción	(AbsC) $A \wedge (A \vee B) \Leftrightarrow A$; (AbsD) $A \vee (A \wedge B) \Leftrightarrow A$
Distributiva	(DD) $A \wedge (B \vee C) \Rightarrow (A \wedge B) \vee (A \wedge C)$
	(DC) $A \vee (B \wedge C) \Rightarrow (A \vee B) \wedge (A \vee C)$
(¬U) ¬ \forall xP(x) \Leftrightarrow \exists x¬P(x)	$(\neg E) \neg \exists x \neg P(x) \Leftrightarrow \forall x P(x)$
(U¬) $\forall x \neg P(x) \Leftrightarrow \neg \exists x P(x)$	$(E\neg) \neg \forall x \neg P(x) \Leftrightarrow \exists x P(x)$
Equivalencias semánticas	$E_1: p \land \neg p = F;$ $E_2: p \lor \neg p = V;$ $E_3: p \land V = p;$
	$E_4: p \lor V = V;$ $E_5: p \land F = F;$ $E_6: p \lor F = p;$