

INTELLIGENT AGENTS

CS4373: Artificial Intelligence Laboratory
A.Y. 2023-2024
Department of Computer Science and Engineering
National Institute of Technology Rourkela

August 08, 2023

Contents

- Agent Programming
 - Types of agent programs: Simple Reflex Agents
 - Types of agent programs: Model-based Reflex Agents
 - Types of agent programs: Goal-based Agents
 - Types of agent programs: Utility-based Agents
 - Assignment 1 (a)
 - Assignment 1 (b)
 - Assignment 1 (c)
 - Assignment 1 (d)

Agent Programming

Agent

An agent can perceive its environment through sensors and act upon that environment through actuators.

Environment

The outside circumstances in which an agent functions to accomplish a particular task.

Agent Function

The agent function is a mathematical function that maps a sequence of perceptions into action.

Agent Program

An agent program is an implementation of an agent function.

Simple Reflex Agents

Figure 1: Simple Reflex Agents.¹

¹Russell, S. J., Norvig, P. (2021). Artificial Intelligence: A Modern Approach. United Kingdom: Pearson.

Model-based Reflex Agents

Figure 2: Model-based reflex agents.¹

¹Russell, S. J., Norvig, P. (2021). Artificial Intelligence: A Modern Approach. United Kingdom: Pearson.

Figure 3: Goal-based agents.¹

¹Russell, S. J., Norvig, P. (2021). Artificial Intelligence: A Modern Approach. United Kingdom: Pearson.

Figure 4: Utility-based Agents.¹

¹Russell, S. J., Norvig, P. (2021). Artificial Intelligence: A Modern Approach. United Kingdom: Pearson. 🐗 🔻 🗦 🔻 🖘 🥫 🛷

Assignment 1 (a)

Problem Statement

Simulate a simple two-room vacuum cleaner world where a vacuum cleaner agent is placed in a house with two rooms (Room A and Room B), and its goal is to clean the dirty rooms.

Environment Description

- The house has two rooms: Room A and Room B.
- Each room can be in one of two states: "Clean" or "Dirty".
- The agent starts in one of the rooms at random.
- The agent can move between rooms and clean the rooms.

- The vacuum cleaner agent uses a Simple Reflex approach to make decisions.
- The agent has the following sensors:
 - Current room location (Room A or Room B).
 - Dirt sensor (detects if the current room is dirty).

- The agent's decision-making is based on a set of simple rules:
 - If the current room is dirty, the agent cleans the room.
 - If the current room is clean, the agent moves to the other room.

- Implement the 'SimpleVacuumEnvironment' class that represents the vacuum cleaner world and includes methods to:
 - Check if a room is dirty.
 - Clean a room.
 - Move the agent to another room.
 - Display the current state of the environment.
- Implement the 'SimpleReflexVacuumAgent' class that represents the vacuum cleaner agent using a Simple Reflex approach. The agent should have methods to:
 - Perceive the current room and dirt status.
 - Decide actions based on the rules described above.
 - Perform the decided action.
- Create an instance for each class and simulate the agent's actions for a few steps, displaying the environment's state after each action

Assignment 1 (b)

Problem Statement

Simulate a simple two-room vacuum cleaner world where a vacuum cleaner agent is placed in a house with two rooms (Room A and Room B), and its goal is to clean the dirty rooms.

Environment Description

- The house has two rooms: Room A and Room B.
- Each room can be in one of two states: "Clean" or "Dirty".
- The agent starts in one of the rooms at random.
- The agent can move between rooms and clean the rooms.

- The vacuum cleaner agent uses a Model-Based Reflex approach to make decisions.
- The agent has the following sensors:
 - Current room location (Room A or Room B).
 - Dirt sensor (detects if the current room is dirty).
- The agent maintains a model of the environment, which includes the dirt status of both rooms.

- The agent's decision-making is based on following rules:
 - If the current room is dirty based on the actual state and the model, the agent cleans the room.
 - If the current room is clean based on the actual state but dirty in the model, the agent cleans the room based on the model.
 - Otherwise, the agent moves to the other room.

- Implement the 'SimpleVacuumEnvironment' class that represents the vacuum cleaner world and includes methods to:
 - Check if a room is dirty.
 - Clean a room.
 - Move the agent to another room.
 - Display the current state of the environment.
- Implement the 'ModelBasedReflexVacuumAgent' class that represents the vacuum cleaner agent using a Model-Based Reflex approach. The agent should have methods to:
 - Perceive the current room and dirt status.
 - Maintain and update a model of the environment.
 - Decide actions based on the rules described above.
 - Perform the decided action.
- Create an instance for each class and simulate the agent's actions for a few steps, displaying the environment's state after each action.

Assignment 1 (c)

Problem Statement

Simulate a simple two-room vacuum cleaner world where a vacuum cleaner agent is placed in a house with two rooms (Room A and Room B), and its goal is to clean the dirty rooms.

Environment Description

- The house has two rooms: Room A and Room B.
- Each room can be in one of two states: "Clean" or "Dirty".
- The agent starts in one of the rooms at random.
- The agent can move between rooms and clean the rooms.

- The vacuum cleaner agent uses a Goal-Based Agent approach to make decisions.
- The agent has the following sensors:
 - Current room location (Room A or Room B).
 - Dirt sensor (detects if the current room is dirty).

- The agent's decision-making is based on explicit goals and priorities:
 - The agent maintains a list of goals, each represented as a tuple with an action and a priority.
 - The agent prioritizes and selects the highest-priority goal and performs the associated action.

- Implement the 'SimpleVacuumEnvironment' class that represents the vacuum cleaner world and includes methods to:
 - Check if a room is dirty.
 - Clean a room.
 - Move the agent to another room.
 - Display the current state of the environment.
- Implement the 'GoalBasedVacuumAgent' class that represents the vacuum cleaner agent using a Goal-Based Agent approach. The agent should have methods to:
 - Set goals with actions and priorities.
 - Prioritize goals based on their priorities.
 - Perceive the current room and dirt status.
 - Decide actions based on the highest-priority goal.
 - Perform the decided action.
- Oreate an instance for each class and simulate the agent's actions for a few steps, displaying the environment's state after each action.

Assignment 1 (d)

Problem Statement

Simulate a simple two-room vacuum cleaner world where a vacuum cleaner agent is placed in a house with two rooms (Room A and Room B), and its goal is to clean the dirty rooms.

Environment Description

- The house has two rooms: Room A and Room B.
- Each room can be in one of two states: "Clean" or "Dirty".
- The agent starts in one of the rooms at random.
- The agent can move between rooms and clean the rooms.

- The vacuum cleaner agent uses a Utility-Based Agent approach to make decisions.
- The agent has the following sensors:
 - Current room location (Room A or Room B).
 - Dirt sensor (detects if the current room is dirty).
- The agent maintains utility values for each room, representing the desirability of its state.

- The agent's decision-making is based on utility values assigned to different states:
 - The agent calculates utility values for each room based on its cleanliness.
 - The agent prioritizes actions based on the calculated utilities and selects the action with the highest utility.

- Implement the 'SimpleVacuumEnvironment' class that represents the vacuum cleaner world and includes methods to:
 - Check if a room is dirty.
 - Clean a room.
 - Move the agent to another room.
 - Display the current state of the environment.
- Implement the 'UtilityBasedVacuumAgent' class that represents the vacuum cleaner agent using a Utility-Based Agent approach. The agent should have methods to:
 - Calculate utility values for each room based on cleanliness.
 - Decide actions based on utility values.
 - Perform the decided action.
- Oreate an instance for each class and simulate the agent's actions for a few steps, displaying the environment's state after each action.

Thank You.

16/16