Selected Discrete Distributions

Distribution	PMF	Expec./Var.	MGF
$X \sim \mathrm{Bin}(n,p)$	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k},$ $k \in \{0, \cdots, n\}$	$\mathbb{E}[X] = np$ $\operatorname{Var}(X) = np(1-p)$	$M_X(t) = (1 - p + pe^t)^n$
$X \sim Geom(p)$	$p_X(k) = p(1-p)^{k-1},$ $k \in \{1, 2, \dots\}$	$\mathbb{E}[X] = \frac{1}{p}$ $\operatorname{Var}(X) = \frac{1-p}{p^2}$	$M_X(t) = \frac{pe^t}{1 - (1 - p)e^t},$ $t < -\ln(1 - p)$
$X \sim Geom(p)$	$p_X(k) = p(1-p)^k$, $k \in \{0, 1, \dots\}$	$\mathbb{E}[X] = \frac{1-p}{p}$ $\operatorname{Var}(X) = \frac{1-p}{p^2}$	$M_X(t) = \frac{p}{1 - (1 - p)e^t},$ $t < -\ln(1 - p)$
$X \sim \mathrm{NegBin}(r,p)$	$p_X(k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}, k \in \{r, r+1, \dots\}$	$\mathbb{E}[X] = \frac{r}{p}$ $\operatorname{Var}(X) = \frac{r(1-p)}{p^2}$	$M_X(t) = \left[\frac{pe^t}{1 - (1 - p)e^t}\right]^r,$ $t < -\ln(1 - p)$
$X \sim \operatorname{Pois}(\lambda)$	$p_X(k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!},$ $k \in \{0, 1, \dots\}$	$\mathbb{E}[X] = \lambda \\ \operatorname{Var}(X) = \lambda$	$M_X(t) = \exp\left\{\lambda(e^t-1) ight\}$

Selected Continuous Distributions

Distribution	PDF	Expec./Var.	MGF
$X \sim Unif[a,b]$	$f_X(x) = \frac{1}{b-a} \cdot \mathbb{1}_{\{x \in [a,b]\}}$	$\mathbb{E}[X] = \frac{a+b}{2}$ $\operatorname{Var}(X) = \frac{(b-a)^2}{12}$	$M_X(t) = \begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & \text{if } t \neq 0\\ 1 & \text{if } t = 0 \end{cases}$
$X \sim \operatorname{Exp}(\beta)$	$f_X(x) = \frac{1}{\beta} e^{-x/\beta} \cdot \mathbb{1}_{\{x \ge 0\}}$	$\mathbb{E}[X] = \beta \\ \operatorname{Var}(X) = \beta^2$	$M_X(t) = (1 - \beta t)^{-1}, \ t < 1/\beta$
$X \sim \operatorname{Gamma}(\alpha,\beta)$	$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} \cdot \mathbb{1}_{\{x \ge 0\}}$	$\mathbb{E}[X] = \alpha\beta$ $\operatorname{Var}(X) = \alpha\beta^2$	$M_X(t) = (1 - \beta t)^{-\alpha}, \ t < 1/\beta$
$X \sim \mathcal{N}(\mu, \sigma^2)$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	$\mathbb{E}[X] = \mu \\ \operatorname{Var}(X) = \sigma^2$	$M_X(t) = \exp\left\{\mu t + rac{\sigma^2}{2}t ight\}$

Calculus Results

• Product Rule:
$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

• Power Rule:
$$\frac{\mathrm{d}}{\mathrm{d}x}(x^n) = \begin{cases} nx^{n-1} & \text{if } n \neq -1 \\ \ln(x) & \text{if } n = -1 \end{cases}$$

- Gamma Function:
$$\Gamma(r):=\int_0^\infty t^{r-1}e^{-t}\,\mathrm{d}t$$
 if $r>0$

• Product Rule:
$$\frac{\mathsf{d}}{\mathsf{d}x}\left[f(x)g(x)\right] = f'(x)g(x) + f(x)g'(x) \qquad \quad \bullet \text{ Quotient Rule: } \frac{\mathsf{d}}{\mathsf{d}x}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

• Chain Rule:
$$\frac{\mathrm{d}}{\mathrm{d}x}f(g(x)) = f'(g(x)) \cdot g'(x)$$

- Recursiveness of Gamma Fnt.:
$$\Gamma(r) = (r-1) \cdot \Gamma(r-1)$$

Selected Statistics Results

- Standarization of Normals: If $Y \sim \mathcal{N}(0,1)$, then $Y^2 \sim \chi^2_1$.
- Closure of χ^2 under Sums: Given independent random variables $\{Y_i\}_{i=1}^n$ with $Y_i \sim \chi^2_{
 u_i}$, then

$$(Y_1 + \dots + Y_n) \sim \chi^2_{\nu_1 + \dots + \nu_n}$$

- Closure of Gamma under Scaling: if $Y\sim {\sf Gamma}(\alpha,\beta)$, then $(cY)\sim {\sf Gamma}(\alpha,c\beta)$ for c>0
- Sample Mean: $\overline{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i$ Sample Variance: $S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (Y_i \overline{Y}_n)^2$

Sample Standard Deviation:
$$S_n := \sqrt{S_n^2} = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (Y_i - \overline{Y}_n)^2}$$

• Modified Standardization Result: Given $Y_1,Y_2,\cdots\stackrel{\text{i.i.d.}}{\sim}\mathcal{N}(\mu,\sigma^2)$,

$$\sqrt{n} \left(\frac{\overline{Y}_n - \mu}{S_n} \right) \sim t_{n-1}$$

- Sampling Distribution of First Order Statistic: $f_{Y_{(1)}} = n[1 - F_Y(y)]^{n-1} f_Y(y)$

Sampling Distribution of ${m n}^{\sf th}$ Order Statistic: $f_{Y_{(n)}}(y)=n[F_Y(y)]^{n-1}f_Y(y)$

- Factorization Theorem: $\mathcal{L}_{\vec{Y}}(\theta) = g(U,\theta) \times h(\vec{Y}) \iff U$ is sufficient for θ .
- Equivariance Property of MLE: $\widehat{\tau(\theta)}_{\rm MLE} = \tau\left(\widehat{\theta}_{\rm MLE}\right)$