Incerteza e Utilidades

Jogos Estocásticos

Pior caso vs. Caso médio

Resultado depende de sorte Adiciona-se o nível do acaso à árvore de busca.

Expectimax Search

Quando não saberíamos o resultado de uma ação? Rolagem de dados, pneu de um robô pode escorregar.

Valores na árvore refletem o caso médio (expectimax) e não o pior caso (minimax).

Busca Expectimax:

- 1. MAX funciona da mesma forma.
- 2. Nós acaso são como MIN, mas o resultado é incerto.
- 3. Calcula-se a utilidade esperada dos nós.

Implementação Expectimax

```
def valor(estado):
                     se estado é terminal: retorne a utilidade do estado
                     se agente é MAX: retorne max-valor(estado)
                     se agente é EXP: retorne exp-valor(estado)
                                                           def exp-valor(estado):
def max-valor(estado):
                                                               inicialize v = 0
   inicialize v = -\infty
                                                               para cada sucessor do estado:
   para cada sucessor do estado:
                                                                    p = probabilidade(sucessor)
       v = max(v, valor(sucessor))
                                                                   v += p * valor(sucessor)
   retorne v
                                                               retorne v
```

Implementação Expectimax

```
def exp-valor(estado): inicialize v = 0
  para cada sucessor do estado: p =
    probabilidade(sucessor) v += p *
    valor(sucessor)
retorne v
```


$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

Expectimax Exemplo

Poda Expectimax?

Depth-Limited Expectimax

 Utiliza-se aprofundamento iterativo e truncamento de busca.

 Utiliza-se função de avaliação ou simulações Monte Carlo.

> estima o valor real de expectimax (poderia demorar muito para calcular)

Designa-se por **método de Monte Carlo** (MMC) qualquer método de
uma classe de métodos estatísticos
que se baseiam em amostragens
aleatórias massivas para obter
resultados numéricos. Em suma,
utilizam a aleatoriedade de dados
para gerar um resultado para
problemas que a priori são
determinísticos. **Wikipedia**

Probabilidades

Relembrando: Probabilidades

- Uma variável aleatória representa um evento cujo resultado é desconhecido
- Uma distribuição de probabilidade é um atribuição de pesos aos resultados
- Exemplo: Engarrafamento em uma estrada
 - Variável aleatória: T = engarrafamento
 - Resultados: T {nenhum, leve, pesado}
 - Distribuição: P(T=nenhum) = 0.25, P(T=leve) = 0.50, P(T=pesado) = 0.25
- Algumas leis da probabilidade :
 - Probabilidades são sempre não negativas
 - Probabilidades sobre todo os resultados possíveis soma 1
- A medida que obtemos mais evidências a probabilidades podem mudar:
 - P(T=pesado) = 0.25, P(T=leve | Hora=8:00) = 0.60

0.25

0.50

0.25

Relembrando: Expectativa

 O valor esperado de uma função de uma variável aleatória é a média, ponderada pela distribuição de probabilidade sobre os resultados

Exemplo: Quanto tempo para chegar ao aeroporto?

Tempo:

20 min

30 min

0.50

60 min

Χ

0.25

35 min

Probabilidade: 0.25

Quais probabilidades usar?

- Na busca expectimax, temos um modelo probabilístico de como o oponente (ou ambiente) se comportará em qualquer estado
 - O modelo pode ser uma distribuição uniforme simples (lançar um dado)
 - O modelo pode ser sofisticado e exigir uma grande quantidade de computação
 - Temos um nó de chance para qualquer resultado fora de nosso controle: oponente ou ambiente
 - O modelo pode dizer que as ações adversárias são prováveis!
- Por enquanto, suponha que cada nó de chance venha magicamente com probabilidades que especificam a distribuição sobre seus resultados

Ter uma crença probabilística sobre a ação de outro agente não significa que o agente está jogando moedas!

Os perigos do otimismo e do pessimismo

Otimismo Perigoso

Assumindo a chance quando o mundo é perigoso

Pessimismo perigoso

Supondo o pior caso, quando não é provável

Suposições vs. Realidade

	Fantasma Adversário	Fantasma Aleatório
Minimax Pacman	vence 5/5	vence 5/5
	Pont. média: 483	Pont. média: 493
Expectimax Pacman	vence 1/5	vence 5/5
racifian	Pont. média: -303	Pont. média: 503

Resultados de 5 jogos

Pacman usou busca em profundidade 4 com uma função de avaliação que evita problemas O Ghost usou busca em profundidade 2 com uma função de avaliação que busca Pacman

Outros tipos de jogos

Tipos de camadas mistas

- E.g. Gamão
- Expectiminimax
 - O ambiente é um jogador "agente aleatório" extra que se move após cada agente mín/máx.
 - Cada nó calcula a combinação apropriada de seus filhos

Exemplo: Gamão

- Lançamentos de dados aumentam b: 21 lançamentos possíveis com 2 dados
 - Gamão ≈ 20 movimentos legais
 - Profundidade $2 = 20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- À medida que a profundidade aumenta, a probabilidade de alcançar um determinado nó de pesquisa diminui
 - Portanto, a utilidade da pesquisa é reduzida
 - Portanto, limitar a profundidade é menos prejudicial
 - Porém podar é mais complicado...
- História da IA: TDGammon usa pesquisa de profundidade 2 + função de avaliação muito boa + aprendizado de reforço:
- nível de jogo de campeão mundial
- 1º campeão mundial de IA em qualquer jogo!

Utilidades

Utilidade máxima esperada

 Quando devemos fazer a média das utilidades ou optar por minimax? Depende da situação.

- Princípio da utilidade máxima esperada:
 - Um agente racional deve escolher a ação que maximiza sua utilidade esperada, dado seu conhecimento

- De onde vêm as utilidades?
- Como sabemos que esses utilidades existem?
- Como sabemos que a média faz sentido?
- E se o nosso comportamento (preferências) não puder ser descrito pelos utilidades?

Quais utilidades usar?

- Para o raciocínio minimax, alterar a escala da função de avaliação não importa
 - Queremos apenas melhores estados com avaliações mais altas (obter a ordem certa)
 - Chamamos isso de insensibilidade às transformações monotônicas

Utilidades

- Utilitários são funções de resultados (estados do mundo) a números reais que descrevem as preferências de um agente
- De onde vêm as utilidades?
 - Em um jogo, pode ser simples (+1/-1)
 - Utilidades resumem o objetivo do agentes
 - Teorema: quaisquer preferências "racionais" podem ser resumidas como uma função de utilidade

- Por que não deixamos os agentes escolherem utilidade?
- Porque não codificamos o comportamento?

Utilidades: Resultados incertos

Preferências

• Um agente deve ter preferências entre:

- Prêmios: *A*, *B*, etc.
- Loterias: situações com prêmios incertos

$$L = [p, A; (1-p), B]$$

Notação:

Preferência:

• Indiferença: $A \succ B$ $A \sim B$

Uma loteria

Racionalidade

Preferências Racionais

 Queremos algumas restrições nas preferências antes de chamá-las de racionais, tais como:

Axioma de Transitividade:

$$(A>B) \land (B>C) \Rightarrow (A>C)$$

Por exemplo: um agente com preferências intransitivas pode ser induzido a dar todo o seu dinheiro

- Se B > C, então um agente com C pagaria (digamos) 1 centavo para obter B
- Se A > B, então um agente com B pagaria (digamos) 1 centavo para obter A
- Se C > A, então um agente com A pagaria (digamos) 1 centavo para obter C

Preferências Racionais

Os Axiomas da Racionalidade

Teorema: Preferências racionais implicam comportamento descritível como maximização da utilidade esperada

Princípio MUE

Teorema [Ramsey, 1931; von Neumann & Morgenstern, 1944]

Dadas as preferências que satisfaçam essas restrições, existe uma função de valor real U tal que:

$$U(A) \ge U(B) \Leftrightarrow A \succeq B$$

 $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

- Ou seja os valores atribuídos por U preservam as preferências de prêmios e loterias!
- Princípio da máxima utilidade esperada (MUE):
 - Escolha a ação que maximiza a utilidade esperada
 - Nota: um agente pode ser totalmente racional (consistente com MUE) sem nunca representar ou manipular utilidades e probabilidades
 - Por exemplo, uma tabela de pesquisa para jogo da velha perfeito; um aspirador de pó reflexivo

Utilidades Humanas

Escalas de Utilidade

- Utilidades normalizadas: u₊ = 1.0, u₋ = 0.0
- Micromortes: chance de um milionésimo de morte, útil para pagar para reduzir os riscos do produto, etc.
- QALYs: anos de vida ajustados pela qualidade, úteis para decisões médicas envolvendo risco substancial

Utilidades Humanas

- Os utilitários mapeiam estados para números reais. Quais números?
- Abordagem padrão para avaliação (elicitação) de utilidades humanas:
 - Compare um prêmio A com uma loteria padrão L_p entre:
 - "Melhor prêmio possível" u₁ com probabilidade p
 - "Pior catástrofe possível" u com probabilidade 1-p
 - Ajuste a probabilidade da loteria p até a indiferença: A ~ L_p
 - O p resultante é um utilidade em [0,1]

Dinheiro

- O dinheiro não se comporta como uma função de utilidade, mas podemos falar sobre a utilidade de ter dinheiro (ou estar em dívida)
- Dada a loteria L = [p, \$X; (1-p), \$Y]
 - O valor monetário esperado EMV(L) is p*X + (1-p)*Y
 - U(L) = p*U(\$X) + (1-p)*U(\$Y)
 - Tipicamente, U(L) < U(EMV(L))
 - Nesse sentido, as pessoas são avessas ao risco
 - Quando estão afundadas em dívidas, as pessoas estão propensas aos riscos

Exemplo: seguro

- Considere a loteria [0.5, \$1000; 0.5, \$0]
 - Qual é o valor monetário esperado? (\$500)
 - Qual é a sua certeza equivalente?
 - Valor monetário aceitável em vez de loteria
 - \$ 400 para a maioria das pessoas
 - A diferença de \$ 100 é o prêmio do seguro
 - Existe uma indústria de seguros porque as pessoas pagam para reduzir seus riscos
 - Se todos fossem neutros ao risco, nenhum seguro seria necessário!
 - É ganha-ganha: você prefere os \$ 400 e a seguradora prefere a loteria (sua curva de utilidade é plana e eles têm muitas loterias)

Exemplo: Racionalidade Humana?

Exemplo famoso de Allais (1953)

■ A: [0.8, \$4k; 0.2, \$0]

■ B: [1.0, \$3k; 0.0, \$0]

• C: [0.2, \$4k; 0.8, \$0]

■ D: [0.25, \$3k; 0.75, \$0]

A maioria das pessoas prefere B > A, C > D

- Porém se U(\$0) = 0, então
 - $B > A \Rightarrow U(\$3k) > 0.8 U(\$4k)$
 - $C > D \Rightarrow 0.8 U(\$4k) > U(\$3k)$

