Hazard function for discrete random variables

Hazard function: discrete case

Suppose T is a discrete random variable.

• **Probability mass function** (unconditional failure probability)

$$f(t_j) = P(T = t_j), for j = 1, 2, \cdots$$

• Hazard function(conditional failure probability)

$$h(t_j) = P(T = t_j | T \ge t_j) = \frac{f(t_j)}{S(t_{j-1})}$$

A discrete example: uniform

• Suppose 10 patients whose event times are uniformly distributed on 1,2,3,4,5,6,7,8,9,10

t	0		2	3	4	5	6	7	8	9	10
f(t)	0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
S(t)	1	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0
h(t)	0	1	1	1	1	1	1	1	1	1	1
		10	_	_	7	-	-	4	-	-	

• Hazard goes up because the risk set dwindles.

Hazard function

- The hazard function not only depends on the number of events, but also the size of risk set at time t.
- For discrete r.v.

$$h(t_j) = \frac{f(t_j)}{S(t_{j-1})}$$

• For continuous r.v.

$$h(t) = \frac{f(t)}{S(t)}$$

Three Weibull Distributions

Typical shapes of hazard functions

Constant hazard: appropriate for lifetime of light bulbs

Typical shapes of hazard functions

Increasing hazard: typical to model aging effect.

Typical shapes of hazard functions

Decreasing hazard: survival following surgery

Typical shapes of hazard functions

Increasing then decreasing hazard: survival after tuberculosis infection

Typical shapes of hazard functions

Bathtub hazard: lifespan of animals

Cumulative hazard function

- Let T be a nonnegative random variable.
- Cumulative hazard function

$$H(t) = \int_0^t h(u) du.$$

• It measures the total amount of risk that has been cumulated up to time t.

Summary: continuous case

If T is a continuous non-negative random variable,

• Cumulative distribution function

$$F(t) = P(T \le t)$$

Probability density function

$$f(t) = \frac{dF(t)}{dt} = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t)}{\Delta t}$$

Survival function

$$S(t) = P(T > t)$$

Hazard function

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

Cumulative hazard function

$$H(t) = \int_0^t h(u) du$$

Relationship

- There is one-to-one relationship between the quantities.
- If we know any one of the functions, we can derive the other functions.
- For example

$$f(t) = -\frac{dS(t)}{dt}$$
 $h(t) = \frac{f(t)}{S(t)}$

$$H(t) = -\log(S(t)) \quad S(t) = \exp(-H(t))$$

5