1) Problem Identification

Domain: Machine Learning

It comes under Supervised learning beause I/P & O/P are present

It is Regression as the O/P is continuous numerical value

Simple linear may not be not used since we have more than 2 inputs

We need to predict Insurance Charges

2) Basic info of dataset

Dataset has 1338 rows and 6 columns

3) Pre-Processing method

Dataset contains Colums "Sex" & "Smoker". This data is Nominal data.

It has been converted as numerical values (binary values (i.e) 1, 0)

I have used one hot encoding method to convert it as numerical data as this is Nominal data

4) Model development

Models developed using regression algorithms and uploaded the ipython files along with this document

5) R Square Values of Models

Multiple linear Regression	R Square Value	
	0.78	

Support Vector Machine							
(C) Penalty or Amount of regularization default C = 1.0	R Square (linear)	R Square (defalut = rbf)	R Square (poly)	R Square (sigmoid)	R Square (precomputed) N/A for this data set		
0.01	-0.0798	-0.0897	-0.0893	-0.0897	My dataset is not a square matrix		
0.001	-0.0879	-0.0897	-0.0897	-0.0897			
0.0001	-0.8895	-0.0897	-0.0897	-0.0897			
0.1	-0.1221	-0.0896	-0.0862	-0.0897			
1.00	-0.1115	-0.0884	-0.0645	-0.0899			
2.00	-0.1003	-0.0873	-0.0671	-0.09			
1000.00	0.6339	-0.1176	-0.0547	-1.7112	7		

Decision Tree					
criterion	Splitter	P Square			
default = squared_error	default = best	R Square			
squared_error	best	0.6999			
friedman_mse	best	0.6833			
absolute_error	best	0.7158			
poisson	best	0.6675			
squared_error	random	0.7188			
friedman_mse	random	0.7514			
absolute_error	random	0.7308			
poisson	random	0.7577			

Random Forest							
criterion default = squared_error	max_features (default=1.0)	n_estimators (default =100)	min_samples_split (default=2)	random_state (default=0)	R Square		
squared_error	sqrt	100	2	0	0.8661		
friedman_mse	sqrt	80	10	0	0.8789		
absolute_error	sqrt	50	5	0	0.8773		
poisson	sqrt	50	10	0	0.8723		
squared_error	log2	100	2	0	0.8661		
friedman_mse	log2	80	20	0	0.8763		
absolute_error	log2	100	10	0	0.8835		
poisson	log2	50	5	0	0.8741		
squared_error	1	100	2	0	0.8537		
friedman_mse	1	80	5	0	0.8574		
absolute_error	1	100	5	0	0.8637		
poisson	1	50	2	0	0.8384		
squared_error	2	100	2	0	0.8661		
friedman_mse	2	50	5	0	0.8756		
absolute_error	2	50	10	0	0.8811		
poisson	2	50	5	0	0.8741		

6) Final Model

I have chosen the best finalized model as the model which was created by Random forest regression alogrithm Because the R2_score value is 0.88 that is closer to 1