Braids and the bracket polynomial

Thesis presentation

Apoorv Potnis

IISERB

April 17, 2023

Outline

Three dimensional representation

Three dimensional geometric representation of a braid

Two dimensional representation

Multiplication of braids

Multiplication of two braids

The identity braid \mathbf{I}_n

Inverse of braids

Inverse of a braid

Generators of the braid group

Generators σ_i and σ_i^{-1}

Type II move: $\sigma_i \sigma_i^{-1} = \mathbf{I}_n$

A type II move illustrating $\sigma_i \sigma_i^{-1} = \mathbb{I}_n$

Type III move: $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

A type III move illustrating $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

Sliding of crossings: $\sigma_i \sigma_j = \sigma_j \sigma_i$

Figure: Sliding of crossings illustrating $\sigma_i \sigma_j = \sigma_j \sigma_i$

Presentation of the braid group

The Artin braid group B_n admits the following presentation on the generators σ_i , for $1 \le i \le n-1$.

$$\mathsf{B}_n = \left\langle \begin{array}{ccc} \sigma_1, \dots, \sigma_{n-1} & \sigma_i \sigma_i^{-1} & = & \mathbf{I}_n \\ \sigma_i \sigma_{i+1} \sigma_i & = & \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{if } i+1 \leq n-1 \\ \sigma_i \sigma_i & = & \sigma_i \sigma_i & \text{if } |i-j| \geq 2 \end{array} \right\rangle$$

Closure of a braid \overline{b}

Braids and links

Every closure of a braid is a link.

Theorem (Alexander)

Every link is ambient isotopic to a closure of a braid.

Conjugation

Conjugation process illustrating the link equivalence of $\overline{g\,bg^{-1}}$ and \overline{b} (part 1)

Conjugation (contd.)

Conjugation process illustrating the link equivalence of $\overline{gbg^{-1}}$ and \overline{b} (part 2)

Markov theorem

Theorem (Markov)

Two braids whose closures are ambient isotopic to each other are related by a finite sequence of the following operations.

- Braid equivalences, i.e. equivalences resulting due to the braid relations.
- 2. Conjugation.
- 3. Markov moves.

Markov move

Markov move with $b = \sigma_1^{-1}$.

Orientation

A braid with downward orientation

For the consistency of the orientation, it must be either upwards or downwards for all strands.

Writhe is the sum of the assigned numbers.

Kauffman's bracket polynomial $\langle K \rangle$

Definition (Kauffman's bracket polynomial)

Let K an un-oriented link diagram. Then the bracket $\langle K \rangle \in \mathbb{Z}[A,A^{-1}]$ is defined by the rules:

- 1. $\langle \bigcirc \rangle = 1$.
- 2. $\langle \bigcirc \cup K \rangle = (-A^2 A^{-2}) \langle K \rangle$.
- 3. $\left\langle \middle{}\right\rangle = A \left\langle \middle{}\right\rangle + A^{-1} \left\langle \middle{}\right\rangle \left\langle \middle{}\right\rangle$.

 $\langle \textit{K} \rangle$ is invariant under the type II and type III moves.

Normalised bracket polynomial L(K)

We can normalise $\langle K \rangle$ by multiplying it with $(-A^3)^{-w(K)}$ gain type I move invariance.

$$L(K) := (-A^3)^{-w(K)} \langle K \rangle$$

Bracket polynomial of a braid

Bracket polynomial of a braid:

$$\langle \cdot \rangle \colon \mathsf{B}_n \to \mathbb{Z}[A, A^{-1}]$$

 $\langle \cdot \rangle \colon b \mapsto \langle \overline{b} \rangle$

 $\langle \cdot \rangle$ is well defined and invariant under conjugation.

Normalisation using writhe:

$$L(K) := (-A^3)^{-w(b)} \langle \overline{b} \rangle$$

$$\left\langle \left| \cdots \right| \right\rangle \left| \cdots \right| \right\rangle = A \left\langle \left| \cdots \right| \right\rangle \left| \cdots \right| \right\rangle + A^{-1} \left\langle \left| \cdots \right| \right\rangle \left| \cdots \right| \right\rangle$$

$$\left| \cdots \right| \left| \bigcirc \left| \cdots \right| = \mathbf{I}_n \quad \text{and} \quad \mathsf{U}_i \coloneqq \left| \cdots \right| \left| \bigcirc \left| \cdots \right| \right|$$

$$\langle \sigma_i^{-1} \rangle = A \langle \mathsf{U}_i \rangle + A^{-1} \langle \mathbf{I}_n \rangle$$

$$\langle \sigma_i \rangle = A \langle \mathbb{I}_n \rangle + A^{-1} \langle \mathsf{U}_i \rangle$$

We refer to U_i 's as "hooks" or "input-output" forms.

They don't belong to the Artin braid group.

Input-output forms or hooks for 4 strands

Example

Example (contd.)

Writing a state of a braid closure in terms of input-output forms

$$\langle b \rangle = \langle S(b) \rangle = \sum_{s} \langle b | s \rangle \langle P_{s} \rangle = \sum_{s} \langle b | s \rangle \delta^{\|s\|}$$

 $\langle \sigma_i^{-1} \rangle = A \langle \mathsf{U}_i \rangle + A^{-1} \langle \mathbf{I}_n \rangle$

||s||: Number of loops in s minus one

s: A state in the expansion

 $\langle b|s\rangle$: Product of A's and A^{-1} 's

 P_s : Product of U_i 's

 $\delta : -A^2 - A^{-2}$

$$\langle S(b)
angle$$
 : Substituting $\langle \sigma_i
angle = A\,\langle {
m I\hspace{-.1em}I}_n
angle + A^{-1}\,\langle {
m U}_i
angle$ and

Temperley–Lieb algebra TL_n

We give U_i 's a structure of their own by constructing

- \triangleright over the ring $\mathbb{Z}[A, A^{-1}]$
- \triangleright the free additive algebra TL_n (as a module)
- \blacktriangleright with the generators $U_1, U_2, \ldots, U_{n-1}$
- and the multiplicative relations coming from the interpretation of U_i's as input-output forms.

Multiplicative relations in TL_n

Multiplicative relations in TL_n :

- 1. $U_i U_{i\pm 1} U_i = U_i$
- 2. $U_i^2 = \delta U_i$
- 3. $U_i U_j = U_j U_i$ if $|i j| \ge 2$

Geometric interpretation of $U_1U_2U_1=U_1$

Geometric interpretation of $U_1U_2U_1=U_1$

Geometric interpretation of $U_i^2 = \delta U_i$

Geometric interpretation of $U_i^2 = \delta U_i$

Geometric interpretation of $U_3U_1=U_1U_3$

Representation of B_n in TL_n

We define a mapping

$$\rho \colon \mathsf{B}_n \to \mathsf{TL}_n$$

by

$$\rho(\sigma_i) = A + A^{-1} U_i$$
$$\rho(\sigma_i^{-1}) = A^{-1} + A U_i$$

 $\rho \colon \mathsf{B}_n \to \mathsf{TL}_n$ is a representation of the Artin braid group.

Trace

We define the diagrammatic trace

$$\operatorname{tr} \colon \mathsf{TL}_n o \mathbf{Z}[A,A^{-1}]$$

by extending linearly

$$\operatorname{tr}(P) = \langle P \rangle$$
.

This version of trace is diagrammatic in nature as we are counting loops in a state.

$$\langle b \rangle = \operatorname{tr}(\rho(b))$$

Whole procedure

So one can

- ightharpoonup find a braid representation b of a link L by Alexander's theorem,
- ightharpoonup calculate $tr(\rho(b))$
- and normalise it to get the link invariant normalised bracket polynomial.

The substitution $A = t^{-1/4}$ yields us the Jones polynomial.

References

Louis Kauffman's book on which this presentation is based:

Louis H. Kauffman. *Knots and physics*. 4th ed. Knots and Everything 53. Singapore: World Scientific, 2013. ISBN: 978-981-4383-00-4

Original papers by Emil Artin and Frederic Bohnenblust:

- Emil Artin. "Theorie der zöpfe". In: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 4.1 (Oct. 1925), pp. 47–72. ISSN: 1865-8784. DOI: 10.1007/bf02950718 This paper is in German. I am not aware of an English translation. It contains some errors which have been corrected in the 1947 paper by Artin.
- Emil Artin. "Theory of braids". In: Annals of Mathematics 1 (1947), pp. 101–126. ISSN: 0003486X. DOI: 10.2307/1969218
- 3. H. Frederic Bohnenblust. "The algebraical braid group". In: *The Annals of Mathematics* 48.1 (Jan. 1947), p. 127. ISSN: 0003-486X. DOI: 10.2307/1969219

General reference books for knot theory and braids:

- 1. Kunio Murasugi and Bohdan I. Kurpita. *A study of braids*. Springer Science & Business Media, 1999. ISBN: 978-0-7923-5767-4
- 2. Peter R. Cromwell. *Knots and links*. Cambridge, UK: Cambridge University Press, 2004. ISBN: 0-521-83947-5
- Joan S. Birman. Braids, links, and mapping class groups. Annals of Mathematics Studies 82. Princeton University Press, 1974. ISBN: 978-14-0088142-0
 - This book contains the first proof of the Markov theorem, based on the notes of J. H. Roberts and an unknown speaker at Princeton University.

- 1. Andrei A. Markov Jr. "Über die freie äquivalenz der geschlossenen zöpfe". German. In: Recueil Mathématique. Nouvelle Série 1 (1936), pp. 73-78. URL: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=5479&option_lang=eng
 This paper is in German and contains a sketch of a proof.
- 2. James W. Alexander. "A lemma on systems of knotted curves". In: *Proceedings of the National Academy of Sciences* 9.3 (Mar. 1923), pp. 93–95. DOI: 10.1073/pnas.9.3.93

 This paper introduced and proved the now known Alexander's theorem.
- 3. H. R. Morton. "Threading knot diagrams". In: *Mathematical Proceedings of the Cambridge Philosophical Society* 99.2 (1986), pp. 247–260. DOI: 10.1017/S0305004100064161

 This paper contains a shorter proof of the Markov theorem.

- H. Neville V. Temperley and Eliott H. Lieb. "Relations between the 'percolation' and 'colouring' problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the 'percolation' problem". In: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 322.1549 (Apr. 1971), pp. 251–280. DOI: 10.1098/rspa.1971.0067 This paper introduces the Temperley-Lieb algebras in a statistical physics context.
- F. R. Vaughan Jones. "A polynomial invariant for knots via von Neumann algebras". In: Bulletin of the American Mathematical Society 12.1 (1985), pp. 103–111. DOI: 10.1090/s0273-0979-1985-15304-2 This paper introduces the Jones polynomial.