Unit 4 I/O Devices

960131 Digital Industry Infrastructure 1

Waranya Mahanan

College of Arts, Media and Technology

Chiang Mai Unitersity

Input / Output Devices

- Devices
 - Input
 - Keyboard, Mouse, Microphone
 - Output
 - Display / Monitor, Printer, Speaker
 - Input and Output
 - Disk Drive, DISC, Network card

- Partner
 - Human
 - Machine (other computers)
 - Storage
 - Environment

Input / Output Devices

อุปกรณ์	Behavior	ความเร็ว
Keyboard	input	10 Bps
Mouse	input	100 Bps
Modem	Input / output	7 KBps
Printer	output	100 KBps
Scanner	input	400 KBps
USB (Universal serial bus)	Input / output	1.5 MBps
CD	Input / output	6 MBps
Monitor	output	60 MBps

Devices Connectivity

- 1. Point to point connection
- 2. Bus connection
- 3. Cross bar switch

Point to point

• ทุกอุปกรณ์เชื่อมกันโดยตรง

Bus connections

• ทุกอุปกรณ์เชื่อมกันโดยมี Bus เป็นตัวเชื่อม

Cross Bar Switch

• ทุกอุปกรณ์เชื่อมกันโดยมี
Switch เป็นตัวเชื่อม

Comparison

	Point to Point	Bus	Cross bar switch
Cost (ราคา)	ଶ୍ପଏ	ต่ำ	ଶୃଏ
Throughput (ปริมาณงาน)	ଶୃଏ	ต่ำ	ଶୃଏ
Ports (จำนวนพอร์ต)	multi	Single	Single
Expansion (การขยาย)	ยาก	ง่าย	ยาก

What is a bus?

- ระบบที่ในการติดต่อสื่อสาร ข้อมูล ระหว่าง CPU กับ อุปกรณ์อื่น ๆ (Memory, I/O Device)
- เชื่อมโยงอุปกรณ์ไป CPU

Type of bus (ตามลักษณะข้อมูล)

DATA BUS

- CPU ใช้ <mark>รับส่ง Data</mark> จากอุปกรณ์อื่น
- เป็น Bi-directional

ADDRESS BUS

- CPU ใช้ <mark>ส่ง Address</mark> ไปยังอุปกรณ์อื่น
- เป็น Uni-directional

CONTROL BUS

- CPU <mark>ส่ง control signal ไปยังอุปกรณ์อื่น</mark>
- เป็น Uni-directional / Bi-directional

Advantages of Buses

- ความคล่องตัว
 - สามารถเพิ่มอุปกรณ์ใหม่ได้อย่างง่ายดาย
 - สามารถเคลื่อนย้ายอุปกรณ์ต่อพ่วงระหว่างระบบคอมพิวเตอร์ที่ใช้มาตรฐานบัสเดียวกัน
- ต้นทุนต่ำ
 - สายไฟชุดเดียวใช้ร่วมกันได้หลายวิธี

Disadvantage of Buses

- I/O Bottleneck
 - Bandwidth ของบัส จำกัดการส่งข้อมูลสูงสุดของ I / O
- ความเร็วสูงสุดของ Bus ถูกจำกัดโดย
 - ความยาวของบัส
 - จำนวนอุปกรณ์ บน Bus
 - ต้องการให้รองรับอุปกรณ์หลายประเภท เช่น
 - อุปกรณ์ที่มีเวลาเวลาในการตอบสนองแตกต่างกัน
 - อุปกรณ์ที่มีอัตราการถ่ายโอนข้อมูลที่แตกต่างกัน

Types of Buses (ตามอุปกรณ์ที่ต่อเชื่อม)

1. Processor-Memory Bus

- สายสั้น ความเร็วสูง
- เชื่อมระหว่าง Memory กับ CPU

2. I/O Bus

- ความยาวกว่า และช้ากว่า
- เชื่อมระหว่าง I/O กับ Processor-Memory Bus หรือ Backplane Bus

3. Backplane Bus

- เชื่อมระหว่าง CPU, Memory และ I/O device
- ใช้ Bus อันเดียวได้กับทุกอุปกรณ์

One Bus System

- •ใช้ Backplane bus 1 อัน ในการเชื่อมต่อระหว่าง CPU, Memory และ I/O device
- ข้อดี : ง่าย ต้นทุนต่ำ
- ข้อเสีย : ช้า และ Bus อาจทำให้เกิด bottleneck

A Two-Bus System

- I/O Bus เชื่อมกับ Processor-Memory Bus โดยผ่าน Bus adapter
- Processor-Memory Bus ใช้สำหรับรับส่งระหว่าง CPU กับ Memory
- ข้อดี : I/O Bus ทำให้เพิ่มอุปกรณ์ I/O ได้อีก

A Three-Bus System

- เพิ่ม Backplane Bus เข้ามาระหว่าง Processor Memory Bus กับ I/O Bus โดยมี Bus Adapter เป็นตัวเชื่อม
- ข้อดี : processor memory bus รับโหลดน้อยลง

Input Operation

• CPU ให้ Memory รับข้อมูลจาก I/O Device

This Photo by http://www.cs.uccs.edu/~xzhou/teaching/CS4520/

Output Operation

• CPU ส่งข้อมูลจาก Memory ไปให้ I/O Device

ลักษณะการส่งข้อมูล

Clocking: Synchronous Bus

- ทำงานตาม Clock รับส่งข้อมูลตาม Clock ของ CPU
- ข้อดี : ง่าย ทำงานได้เร็ว
- ข้อเสีย : อุปกรณ์ทุกตัวต้องทำงานด้วย Clock rate เดียวกัน

Clocking: Asynchronous Bus

- ไม่ต้องทำงานตาม Clock ของ CPU
- ต้องมีการทำ Handshaking ก่อน
- Handshaking
 - ถามผู้รับก่อนส่งข้อมูล
 - จะส่งเมื่อทั้งผู้รับและผู้ส่งพร้อม

Input / Output Subsystem

• เป็นส่วนเชื่อมระหว่าง I/O device และ อุปกรณ์อื่นๆ เช่น CPU, memory, cache

 ทำหน้าที่ควบคุมการติดต่อ ของ I/O device กับ อุปกรณ์อื่นๆ

Function of I/O Subsystem

- 1. Scheduling จัดลำดับการทำงานของ I/O
- 2. Buffering
- 3. Caching
- 4. Spooling
- 5. Device reservation
- 6. I/O Protection
- 7. Error hadling

1. Scheduling

- จัดลำดับการทำงานของ I/O
- สามารถปรับปรุงประสิทธิภาพโดยรวมได้
- ลำดับความสำคัญ : เมื่อมีอุปกรณ์ I/O เข้ามาลำดับจะถูกจัดเรียงใหม่โดย I/O system เพื่อทำให้ประสิทธิภาพดีที่สุด

2. Buffering

- จัดเก็บข้อมูลในหน่วยความจำขณะถ่ายโอนข้อมูลระหว่างอุปกรณ์
- ทำบัฟเฟอร์เพราะ
 - 1. ความเร็วของอุปกรณ์ไม่ตรงกัน
 - 2. ขนาดการโอนอุปกรณ์ไม่ตรงกัน

3. Caching

- ทำ Copy ของข้อมูลไว้
 - ทำให้ประสิทธิภาพดีขึ้น
 - ทำให้มีความเร็วมากขึ้น
- Cache vs. Buffer
 - Cache เก็บสำเนาที่ใช้บ่อยไว้ ให้เรียกใช้ได้เร็วขึ้น
 - Buffer พักข้อมูลเพื่อส่งต่อไป

4. Spooling

- Hold out for a device
 - บางอุปกรณ์ทำงานได้ที่ละอย่าง ต้องทำให้เสร็จก่อนถึงจะรับงานต่อไปได้
 - เช่น printer
- เป็น Buffer ที่เก็บข้อมูล output ของอุปกรณ์ไว้

5. Device reservation

- จองอุปกรณ์
 - เมื่อต้องใช้ 2 อย่างพร้อมกัน แต่อุปกรณ์หนึ่งไม่ว่าง หรือ ยังไม่สามารถทำงานได้
 - จะจองอุปกรณ์ไว้ก่อน
 - Process อื่นจะใช้อุปกรณ์ที่จองไว้ไม่ได้
 - อาจเกิด Deadlock

6. I/O Protection

- มีระบบป้องกัน I/O โดยต้องใช้งาน I/O ผ่านระบบเท่านั้น
- เนื่องจาก
 - ผู้ใช้อาจขัดขวางการทำงานของ I/O โดยไม่ตั้งใจหรือตั้งใจ
 - เพื่อป้องกันไม่ให้ผู้ใช้สั่ง I/O โดยไม่ได้รับอนุญาต

7. Error hadling

- จัดการกับ error ที่เกิดขึ้น
 - 1/0 ไม่ได้เชื่อมต่อ
 - ส่งข้อมูลไม่สำเร็จ
 - Network overload
 - Disk มีปัญหา

I/O System Performance

- ขึ้นอยู่กับหลายปัจจัย เช่น
 - CPU
 - Main Memory, Cache
 - Busses
 - The I/O controller, The I/O device
 - The speed of the I/O software
 - performance metrics (ตัววัดประสิทธิภาพ)
 - Throughput: I/O bandwidth (ปริมาณงาน)
 - Response time: Latency (เวลาการตอบสนอง)