Funcionament de l'oscil·loscopi

Grup:13

Cognoms: TRAVERIA MARN

Lloc de treball (A1,B2,...): CI Nom: ALEJANDRA

Qualificació:

Funcionament de l'oscil·loscopi

f	V(t)	A	H	V_{pp}	V_0	Vef	V_{pol}	В	L	T	f = 1/T
50.11	sin	2V/div	6 div	124.	6٧	4,241	4,220	5mc/div	Ydiv	0,025	50 Hz
50 Hz	trian	2 V/div	6div	(12V	6٧	3,460	3,33	5ms/div	Чdiv	0,028	20 H F
1 kHz	sin	2 /div	6div	12∨	6V	4,244	4,220	0,5 ms	2div	0,0015	1000 HF
3 kHz	sin	2 V/air	5 div	(10 V	\5 V	3,530	3,43 V	o, ims	3,30iv	G,33ms	3 030Hz

f és el valor nominal de la freqüència V_{ef} és la tensió eficaç teòrica V_{pol} és la tensió que dóna el polímetre

Funcionament del polímetre

1 3	Experimental	Teòric
V_I	3,36V	3,33 V
V_2	6, 55V	6,66V
V_3	3,36V	3, 33 V
V_4	7,840	6,66V
V_5	1,84V	6,66 V
I_1	0,064A	0,066 A
I_2	0,064A	0,0664
I_3	0,0644	0,066 A
<i>I</i> ₄	0,039A	0,033A
I ₅	0,039A	0,033 A
I	0,156A	0, 133 A

$$R_{leo} = 75\Omega$$
 $R_{obm} = 94.8\Omega$

EXPECICI PREVI

$$(62) V_0 = \frac{V_{PP}}{2} = 5 V$$

by)
$$fr = \frac{1}{\Gamma} = \frac{1}{1 + 1 + 1}$$
 $\int KHT \int KHT \int$

$$\mathcal{E}_{Vpp} = A \cdot H$$

$$\mathcal{E}_{Vpp} = \sqrt{\left(\mathcal{E}_{A} \cdot \frac{\partial V_{pp}}{\partial A}\right)^{2} + \left(\mathcal{E}_{H} \cdot \frac{\partial V_{pp}}{\partial H}\right)^{2}} = \sqrt{\left(\mathcal{E}_{H} \cdot A\right)^{2}} = \mathcal{E}_{H} \cdot A$$

(2)
$$\varepsilon_{V_0} = \frac{\varepsilon_{V_{PP}}}{2} = \frac{0.2}{2} = 0.1 \text{ V}$$

$$\mathcal{E}_{\text{Ver}} = \frac{\mathcal{E}_{\text{Ve}}}{\sqrt{2}} = \frac{O_{11}}{\sqrt{2}} = O_{10} + V$$

$$(3) \quad \mathcal{E}_{T} = \sqrt{\left(\mathcal{E}_{R} \cdot \frac{\partial \Gamma}{\partial R}\right)^{2} + \left(\mathcal{E}_{L} \cdot \frac{\partial \Gamma}{\partial L}\right)^{2}} = \mathcal{E}_{L} \cdot \mathcal{B} = 0, 1 \cdot 0, 2 = 0,02 \text{ s}$$