\$METODO 3-RANGO

Data una matrice $A \in M_{m,m}(\mathbb{R})$ le righe possous essere viste come vettori di R^m e le coloure coure vettori di R^m.

DEF.: Data una matrice $A \in M_{m,m}(\mathbb{R})$ si chiama RANGO RIGHE di A il munero mossimo di sighe lineormente indipendenti (come vettori di RM); si chioma RANGO COLONNE di A il numero mossimo di colonne lineormente indipendenti (come vettori di R^m).

220. Il rougo righe ed il rougo colonne non sono indipendenti, on si sono legati dal seguente:

TEOR. (SENZA DIMOSTRAZIONE): Sia A ∈ Mm, m(R). Ollona il rougo righe di A coucide cou il rougo colonne di A.

DEF: Data AEMm,n(R) chioueveus RANGO di A, e lo indichereus cou rg(A), sia il rougo righe di A sia il rougo colonne di A (dato che coincidono). OSS. Per una matrice a roba la mosique di rougo coincide con quella già studiata:

 $A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 0 & -5 & 3 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

ha ng A = 3. Mostrious che è il nuvero morsives di vighe liveormente indipen deuti come vettori di R":

 $V_1 = (1, 2, 3, -1)$ $V_2 = (0, 0, 5, 3)$, $V_3 = (0, 0, 0, -2)$, $V_4 = (0, 0, 0, 0)$.

Chioromente vy non è livermente indipendente. Dobbious quindi verificare che {v2, v2, v3 } sous lives meute indipendenti. Poiche v1 ≠0/24 e v2 mon è multiplo di v₁ ⇒ {v1, v2} vous livesmente indipendenti. Mostrious che v3 € ∠v1, v2?

Se da, pe R t.c. &(1,2,3,-1)+B(0,0,-5,3) = (0,0,0,-2),

ollora orreumo $(a,22,32-5\beta,-2+3\beta)=(0,0,0,-2)$.

In porticolore $\alpha=0$, da cui $(0,0,-5\beta,3\beta)=(0,0,0,-2)$ che mou puo' verificonsi per olcum $\beta\in\mathbb{R}$. Segue la teri.

Data $A \in M_{m,n}(\mathbb{R})$, il rougo di $A \in uguele alla dimensione di <math>W = \frac{1}{2}$ sotto spazio generato dalle righe di $A \in \mathbb{R}^n$ e di

Z = { rottorpassio generato dalle colonne di A} ⊆ 12m.

PROP. Sia $A \in M_{m,n}(\mathbb{R})$. le operazioni elementari sulle righe di A preservous il sottospazio di \mathbb{R}^n generato delle righe di A e quindi IL RANGO.

DIM: Sia $A \in M_{m_1m}(\mathbb{R})$ e indichious con $v_2,...,v_m$ le rue night pensate come vettoni di \mathbb{R}^m . Vogliano mostrare che le operazioni elementori rulle night mon modificono $< v_2,...,v_k >$.

Chioramente reombiere due righe non altera il rottorpasio.

Aualogamente se sostituious od una riga un suo multiplo mon mullo, preser_ vious il sottospazio: ossia

< vz,..., vi,..., vn> = < vz,..., dvi,..., vn> ∀ d∈ R\20g.

Jufiue mostrious che se sostituious alla riga i-esima la riga i-esima + & (riga j-esima) il sottospazio mon voia. Più precisamente dato che l'operazione coinsol que solo le righe i e j dobtrious provore che:

\(v_j, v_i > = < v_j, v_i + a v_j > \) \(\text{A} \in \text{R}. \)

Chioramente $\langle v_j, v_i \rangle \geq \langle v_j, v_i + \alpha v_j \rangle$: Dato $a v_j + b(v_i + \alpha v_j) \in \langle v_j, v_i + \alpha v_j \rangle$ in ha: $a v_j + b(v_i + \alpha v_j) = a v_j + b v_i + b \alpha v_j = (a + b \alpha) v_j + b v_i \in \langle v_j, v_i \rangle$.

Viceversa, provious che < vi, vi+dvj>2 < vi, vj>. Dato a vj+bvi e < vi, vj>, porsia

 $av_{j} + bv_{i} = av_{j} + bv_{i} + (buv_{j} - bv_{j}) = (av_{j} - bv_{j}) + bv_{i} + bv_{j} = (a - bv_{j})v_{j} + b(v_{i} + av_{j})$

Quindi oboious provato che <vj, vi>= <vj, vi+evj>, da cui la tesi. <vj, vi+evj>

Possiaux quivali descrivere il METODO 3.

SHETODO 3- RANGO : DETTAGLI

Dati i vettori $v_2, ..., v_k \in \mathbb{R}^n$ si costruisce la modrice $A \in M_{K,m}(\mathbb{R})$ che ha toli vettori per righe. Bi la si riduce a scola cou l'olgoritmo di Gouss e si colcola il rougo della matrice a scola otteunta.

055: la spazio generato da (151,..., 1512) coincide con la spazio generato dalle righe della matrice a reala attenuta da A tramite l'algoritmo di Gouss.

ES: Stabilize se $v_1 = (1, 2, 0, 1)$, $v_2 = (-1, 1, 1, 1)$, $v_3 = (3, 3, -1, 1)$, $v_4 = (-3, 0, 2, 1)$ some linear mente indipendenti.

Schinour A = [200] ER4. Rioluciour A a reala:

ES.: Stabilité per quali KER i vettori (1, k, 1), (k, 1, -k), (k, k, 1) sous livearmente indipendenti.

Sciulous una matrice $A \in M_{3,3}(\mathbb{R})$ con right ugusti ai vettari dati e ridu cisusla a rocola: $A = \begin{bmatrix} 1 & k & 1 \\ 1 & k & -k \\ 0 & k-1 & 1+k \end{bmatrix} \xrightarrow{\mathbb{I} \to \mathbb{I} - k} \begin{bmatrix} 1 & k & 1 \\ 0 & k-1 & 1+k \\ 0 & k-1 & 1+k \end{bmatrix} \xrightarrow{\mathbb{I} \to \mathbb{I} - k} \begin{bmatrix} 1 & k & 1 \\ 0 & k-1 & 1+k \\ 0 & k-1 & 1+k \end{bmatrix} \xrightarrow{\mathbb{I} \to \mathbb{I} - k} \begin{bmatrix} 1 & k & 1 \\ 0 & k-1 & 1+k \\ 0 & k-1 & 1+k \end{bmatrix} = A^{1}.$

rg A=rg A^{l} . Poiché $k^{2}+1>0$ sempre, rg A=rg $A^{l}\geqslant 2$ sempre. Tuttonia il rg $(A^{l})=2$ \Longrightarrow k-1=0 \Longrightarrow k=1.

Abrious quindi mostrato che Yk+1 i vettori dati sous linearmente indipendenti.