LU3ME005 : Méthodes numériques pour la mécanique Travaux Dirigés (20h)

1 Racines d'équations (2h)

1.1 Méthodes du Point fixe

Soit la fonction $f(x) = e^x - 4x$.

- 1. Etudier la fonction sur \mathbb{R}^+ et localiser graphiquement les deux racines réelles.
- 2. Proposer deux fonctions $\phi_1(x)$ et $\phi_2(x)$ qui permettent de calculer les deux racines r_1 et r_2 par des méthodes de point fixe $x_{k+1} = \phi(x_k)$.
- 3. Montrer que l'on peut accélerer ces méthodes en les relaxant, c'est-à-dire en utilisant la méthode de point fixe $x_{k+1} = \phi_{\theta}(x_k) = (1 \theta) x_k + \theta \phi(x_k)$.

1.2 Méthode de Newton et méthode de Jacobi-Chebyshev

Soit une fonction f(x) de racine r telle que f(r) = 0.

On étudie la méthode du point fixe $x_{k+1} = \varphi(x_k)$ avec x_0 donnée au voisinage de r.

A l'itération k+1, on définit l'erreur ϵ_{k+1} par $\epsilon_{k+1}=x_{k+1}-r$.

Le facteur de convergence d'une suite itérée pour une racine r est la quantité ρ_k définie par :

$$\rho_k \equiv \frac{\varepsilon_{k+1}}{\varepsilon_k}$$

1. A partir du développement limité de $\varphi(x_k)$ au voisinage de r, montrer que l'erreur ϵ_{k+1} peut s'écrire sous la forme :

$$\epsilon_{k+1} = \epsilon_k \, \varphi'(r) + \frac{\epsilon_k^2}{2!} \, \varphi''(r) + \frac{\epsilon_k^3}{3!} \, \varphi'''(r) + \frac{\epsilon_k^4}{4!} \, \varphi^{(4)}(r) + O(\epsilon_k^5).$$

- 2. Donner les conditions sur les dérivées de $\varphi(r)$ pour que la convergence soit quadratique. Même chose pour une convergence cubique.
- 3. On souhaite construire des suites du type $x_{k+1} = x_k + \Phi(x_k) f(x_k)$.
 - 3.1 En posant $\varphi(x) = x + \Phi(x) f(x)$, calculer $\varphi'(x)$ et $\varphi''(x)$.
 - 3.2 Donner la condition sur $\Phi(r)$ pour que $\varphi'(r) = 0$.
 - 3.3 Donner la condition sur $\Phi'(r)$ pour que $\varphi''(r) = 0$, en considérant la condition précédente satisfaite.
- 4. On considère la suite :

$$x_{k+1} = \varphi_1(x_k) = x_k - \frac{f(x_k)}{f'(x_k)}.$$

- 4.1 Mettre la fonction φ_1 sous la forme $\varphi_1(x) = x + \Phi_1(x) f(x)$. En déduire $\Phi_1(x)$.
- 4.2 Calculer $\Phi_1(r)$.
- 4.3 Que peut-on dire de sa rapidité de convergence?
- 4.4 De quelle méthode s'agit-it?
- 5. On considère la suite :

$$x_{k+1} = \varphi_2(x_k) = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{f''(x_k)[f(x_k)]^2}{2[f'(x_k)]^3}.$$

- 5.1 Mettre la fonction φ_2 sous la forme $\varphi_2(x) = x + \Phi_2(x) f(x)$. En déduire $\Phi_2(x)$.
- 5.2 Donner $\Phi'_2(x)$.
- 5.3 Calculer $\Phi_2(r)$ et $\Phi_2'(r)$.
- 5.4 Que peut-on dire de sa rapidité de convergence?
- 6. Comment peut-on envisager la construction de méthodes plus rapides ?

2 Méthodes directes, conditionnement (4h)

2.1 Gauss, *L U*

Soit à résoudre le système Ax=b où $A\in\mathbb{R}^{3,3}$ et $b\in\mathbb{R}^3$ sont définis par :

$$A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 1 & 4 & 9 \end{bmatrix} \qquad b = \begin{bmatrix} 14 \\ 20 \\ 20 \end{bmatrix}$$

- 1. Résoudre le système Ax = b par la méthode de Gauss sans pivotage.
- 2. Résoudre le système Ax = b par la méthode de Gauss avec pivotage partiel.
- 3. Effectuer la décomposition A = LU où L est à diagonale unité, et calculer x.

2.2 Cholesky, conditionnement

Soient la matrice A et les vecteurs b et b' définis par :

$$A = \begin{bmatrix} 1 & 2 & 6 & 8 \\ 2 & 5 & 15 & 23 \\ 6 & 15 & 46 & 73 \\ 8 & 23 & 73 & 130 \end{bmatrix} \qquad b = \begin{bmatrix} 17 \\ 45 \\ 140 \\ 234 \end{bmatrix} \qquad b' = \begin{bmatrix} 18 \\ 46 \\ 139 \\ 235 \end{bmatrix}$$

- 1. Donner la décomposition de Cholesky de la matrice A.
- 2. Résoudre, en utilisant cette décomposition, les systèmes Ax = b et Ax' = b'.
- 3. Calculer le rapport entre $\frac{||x-x'||_{\infty}}{||x||_{\infty}}$ et $\frac{||b-b'||_{\infty}}{||b||_{\infty}}$. Qu'en déduisez-vous concernant le conditionnement infini ?
- 4. Même question pour le conditionnement 1.
- 5. Les valeurs propres de A sont : 177.183, 4.70437, 0.100583, 0.0119275. Vérifier les relations entre les normes $1, 2, \infty$ pour le vecteur b, puis pour la matrice A.
- 6. Comment peut-on approcher $\operatorname{cond}(A)$ sans calculer A^{-1} ?

3 Méthodes itératives (4h)

3.1 Jacobi, Gauss-Seidel, SOR

Soit à résoudre un système matriciel qui provient d'un problème de conduction stationnaire 2D. La matrice $A \in \mathbb{R}^{3,3}$ et le second membre $b \in \mathbb{R}^3$ sont définis par :

$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -2 & 4 \end{bmatrix} \qquad b = \begin{bmatrix} 3/16 \\ 4/16 \\ 6/16 \end{bmatrix}$$

- 1. Peut-on résoudre ce système par la méthode de décomposition de Cholesky? Expliquer. Donner la solution de ce système.
- 2. Montrer que la méthode itérative de Gauss-Seidel converge plus vite que celle de Jacobi. Estimer le nombre d'itérations nécessaires pour obtenir une précision de 4 chiffres après la virgule, si on prend le vecteur nul comme vecteur initial.
- 3. Donner le schéma de la méthode de relaxation.

3.2 Gradients, gradients conjugués

Soit $A \in \mathbb{R}^{n,n}$ une matrice réelle, symétrique. Soit à résoudre un système matriciel qui provient d'un problème de conduction stationnaire 1D. La matrice $A \in \mathbb{R}^{3,3}$ et le second membre $b \in \mathbb{R}^3$ sont définis par :

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix}$$

3.2.1 Méthode du gradient

On rappelle la notation du produit scalaire : $\langle x, y \rangle = x^t y \quad \forall x, y \in \mathbb{R}^n$.

Décrire l'algorithme de résolution de $A\,x=b$ par la méthode du gradient et effectuer les trois premières itérations.

3.2.2 Méthode du gradient conjugué

Décrire l'algorithme de résolution de Ax = b par la méthode des gradients conjugués et effectuer les trois premières itérations.

3

3.2.3 Comparaison des deux méthodes

- 1. Comparer les résultats obtenus par chacune des deux méthodes.
- 2. Évaluer, pour chaque itération, le nombre d'opérations nécessaires.
- 3. Conclure.

4 Valeurs propres (2h)

On étudie la vibration d'un cordon acoustique sous tension. Après une perturbation initiale, une corde tendue, de longueur L fixée sur ses deux extrémités se met à vibrer. La tension et la densité de la corde sont notées σ et ρ . Ce mouvement vibratoire est décrit par l'équation suivante :

$$\frac{\sigma}{\rho} \frac{\partial^2 y(x)}{\partial x^2} + \omega^2 y(x) = 0, \quad y(0) = y(L) = 0$$

Les pulsations ω_k sont les valeurs de ω correspondant aux solutions non nulles du problème. On montre que la solution générale y(x) et la plus basse fréquence propre ω_0 sont :

$$y(x) = A e^{i\omega\sqrt{\frac{\rho}{\sigma}}x} + B e^{-i\omega\sqrt{\frac{\rho}{\sigma}}x}, \qquad \omega_0 = \frac{\pi}{L}\sqrt{\frac{\sigma}{\rho}}$$

Le problème discret en trois points est décrit par le système linéaire :

$$\frac{\sigma}{\rho h^2} \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} + \omega^2 \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = 0$$

- 1. Mettre ce système sous la forme matricielle $([M] \lambda[I])(y) = 0$ avec $\lambda \equiv \rho h^2 \omega^2 / \sigma$. Expliciter la matrice [M] et montrer qu'elle est définie positive.
- 2. Décrire l'algorithme de la puissance itérée appliquée à la matrice M.
- 3. Décrire l'algorithme de la puissance inverse appliquée à la matrice M.
- 4. Donner la décomposition LU, U à diagonale unité, de la matrice [M].
- 5. Appliquer la méthode de la puissance inverse pour calculer la plus basse fréquence propre. Utiliser comme vecteur initial $(1,1,1)^t$.
- 6. Comparer la valeur de ω_0 à sa valeur analytique. Conclure.

5 Interpolation polynomiale (2h)

5.1 Lagrange, moindres carrés, minimax

Une fonction f(x) est donnée en x_j $(0 \le j \le 3)$ par le tableau suivant :

j	0	1	2	3
x_j	-2	0	4	6
$f(x_j)$	3	5	8	5

On veut réaliser une approximation polynomiale de f(x) dans l'intervalle [-2,6] par différentes méthodes.

5.1.1 Polynômes de Lagrange

Ecrire le polynôme F(x) de degré 3, interpolé de Lagrange de f(x) sous la forme $F(x) = a + bx + cx^2 + dx^3$. Calculer a, b, c, d.

5.1.2 Moindres carrés

- 1. On approxime f(x) par un polynôme de degré m=0: $G_0(x)=a_0$. Déterminer a_0 . Calculer l'écart quadratique S_0 par $S_m=\sum_{j=0}^3 [G_m(x_j)-f(x_j)]^2$.
- 2. On approxime f(x) par un polynôme de degré $1:G_1(x)=a_0+a_1x.$ Calculer $a_0,\ a_1$ et $S_1.$
- 3. On approxime f(x) par un polynôme de degré 2: $G_2(x) = a_0 + a_1x + a_2x^2$. Trouver les valeurs des coefficients a_0 , a_1 , a_2 en résolvant le système linéaire. Calculer S_2 .
- 4. Comparer S_0 , S_1 et S_2 à S_3 que l'on déterminera.

5.1.3 Polynômes minimax

- 1. Calculer le polynôme $M_1(x)$ minimax de degré 1, $M_1(x) = a_0 + a_1x$. Donner la valeur de l'erreur minimax.
- 2. Calculer la parabole d'égale erreur. On pose $M_2(x) = a_0 + a_1x + a_2x^2$. Trouver les valeurs des coefficients a_0 , a_1 , a_2 en résolvant le système linéaire correspondant au problème.
- 3. On définit les écarts quadratiques par $E_m = \sum_{j=0}^{3} [M_m(x_j) f(x_j)]^2$. Comparer les valeurs de E_1 et E_2 à celles de S_1 et S_2 . Conclure.

5.2 Hermite

Soient deux voies ferrées de distance latérale d=1. On cherche à optimiser la courbure des rails d'aiguillage afin que le train puisse changer de voie de la manière la plus douce possible. L'aiguillage s'effectue sur une longueur l à déterminer. Soit y(x) (avec $0 \le y \le 1$) la distance latérale de la voie d'aiguillage par rapport à la voie initiale. Les contraintes à respecter sont les suivantes :

$$y(0) = 0, y(l) = 1, y'(0) = 0, y'(l) = 0$$

Le tracé des voies sera défini à partir du polynôme d'Hermite.

- 1. Calculer le polynôme d'Hermite de degré 3 qui assure la collocation de y(x) et de y'(x) aux points x=0 et x=l.
- 2. Discuter de la stratégie à adopter pour avoir l'aiguillage le plus doux possible.

6 Dérivation (2h)

6.1 Développements de Taylor

Retrouver la formule de différences progressives à l'ordre 2 en h, ainsi que la valeur de la constante C.

$$f'_{j} = \frac{(-3f_{j} + 4f_{j+1} - f_{j+2})}{2h} + C h^{2} f'''_{j} + \dots$$

En déduire l'expression de f'_i par différences régressives à l'ordre 2 en h.

6.2 Vibrations acoustiques

- 1. Retrouver la matrice de la question 4.1 concernant le problème de vibration acoustique en utilisant un pas d'espace h=L/4.
- 2. Donner la nature de la matrice M pour n grand.
- 3. Discuter l'ordre de l'erreur commise pour la détermination de ω_0 .

6.3 Conduction stationnaire 2D

On s'intéresse à résoudre l'équation de Laplace :

$$\frac{\partial^2 \, u(x,y)}{\partial \, x^2} + \frac{\partial^2 \, u(x,y)}{\partial \, y^2} = 0$$

sur un domaine en forme de L (voir ci-contre) par la méthode des différences finies. Les conditions aux limites sont les suivantes :

b) sur la ligne
$$y = 0 : u = x(1 - x)$$

c) sur le reste de la frontière :
$$u = 0$$
.

- 1. Discrétiser l'équation de Laplace par les différences finies centrées en utilisant un pas constant h=0.25 en x et en y.
- 2. En utilisant les conditions aux limites et la symétrie du problème, expliciter le système linéaire (3×3) qui régit ce problème.

7 Intégration (2h)

7.1 Newton–Cotes

Soit une fonction numérique continue sur un intervalle [a,b]. On pose $I(f)=\int_a^b f(t)\,dt$. On considère les formules de quadrature suivantes :

$$S_1(f) = (b-a) f\left(\frac{a+b}{2}\right), \quad S_2(f) = (b-a) \left(\frac{f(a) + f(b)}{2}\right)$$

1. Déterminer le plus haut degré des polynômes pour lesquels ces formules sont exactes.

6

2. Pour f de classe C^2 sur [a,b], on admet qu'il existe deux constantes C_1 et C_2 indépendantes de f telles que :

$$I(f) - S_1(f) = C_1 f''(\xi_1) \quad \xi_1 \in [a, b], \qquad I(f) - S_2(f) = C_2 f''(\xi_2) \quad \xi_2 \in [a, b]$$

Calculer C_1 et C_2 .

- 3. On considère la formule de quadrature $S(f) = \alpha_1 S_1(f) + \alpha_2 S_2(f)$, (α_1, α_2) réels. Calculer (α_1, α_2) pour que S(f) soit exacte pour les polynômes de degré q le plus haut possible.
- 4. Calculer S(f), $S_1(f)$, $S_2(f)$, I(f) pour $a = 1, b = 2, f(t) = 1/(1+t^2)$.

7.2 Gauss-Legendre

- 1. Calculer le polynôme de Gauss-Legendre X_3 (de degré 3), en utilisant pour $n \ge 1$ la relation de récurrence : $X_0 = 1$, $X_1 = x$, $(n+1)X_{n+1} = (2n+1)xX_n nX_{n-1}$.
- 2. Montrer que le polynôme X_3 est orthogonal dans $L^2([-1,1])$ aux polynômes de degré inférieur ou égal à 2.
- 3. On cherche à construire sur l'intervalle [-1,1] une formule $S_g(f)$ de quadrature de type Gauss à trois points.
 - (a) Donner le plus haut degré du polynôme pour lequel elle est exacte.
 - (b) Déterminer les racines x_i du polynôme X_3 .
 - (c) Calculer les fonctions poids ω_i en utilisant la formule : $\omega_i = 2/[(1-x_i^2)(X_3'(x_i))^2]$.
- 4. Appliquer $S_g(f)$ pour $a=1,b=2,f(t)=1/(1+t^2)$. Comparer $S_g(f)$ à S(f) et à I(f).

8 Equations différentielles (2h)

On considère le problème de Cauchy $\left\{ \begin{array}{ll} dy/dx &= f(x,y) \\ y(0) &= 0 \end{array} \right.$, où y(x) est la fonction réelle inconnue sur l'intervalle [0,X].

Soit $x_0=0, x_1=h, \cdots, x_n=nh=X$ une subdivision régulière de l'intervalle [0,X]. Pour les schémas d'intégration à un pas, on note $\phi(x,y,h)$ la fonction telle que $y_{i+1}=y_i+h\phi(x_i,y_i,h)$.

8.1 Question préliminaire

On considère la fonction $f(x,y) = x^2 \cos y$.

- 1. Montrer que cette fonction f est lipschitzienne par rapport à y.
- 2. Qu'en déduit-on pour le problème de Cauchy dans ce cas?

Dans la suite du TD, on utilisera cette fonction-exemple pour les illustrations des méthodes.

8.2 Méthode d'Euler 1 explicite

- 1. Utiliser un développement de Taylor pour construire le schéma d'Euler 1 explicite. Quelle est l'expression de $\phi(x, y, h)$?
- 2. Déterminer l'ordre d'approximation de la méthode.
- 3. Illustrer la mise en œuvre numérique de cette méthode sur la fonction-exemple.

8.3 Méthode d'Euler 1 implicite

- 1. Utiliser maintenant un autre développement de Taylor pour construire un schéma implicite.
- 2. Illustrer sa mise en œuvre sur la fonction-exemple. Quelle opération supplémentaire est nécessaire pour intégrer l'EDO?

8.4 Autres méthodes issues des développements de Taylor

- 1. Utiliser les trois premiers termes d'un développement de Taylor pour construire un schéma d'Euler explicite du second ordre. Donner $\phi(x, y, h)$.
- 2. Illustrer la mise en œuvre à l'aide de la fonction-exemple. Pourquoi n'utilise-t-on que peu ce type de méthode ?

8.5 Méthodes de Runge-Kutta

- 1. Soit la méthode de Heun d'ordre 2 : $\begin{cases} \tilde{y} &= y_i + \frac{h}{2} f(x_i, y_i) \\ y_{i+1} &= y_i + h f(x_i + \frac{h}{2}, \tilde{y}) \,. \end{cases}$ Donner $\phi(x, y, h)$. Montrer rapidement que la méthode est au moins d'ordre 2.
- 2. Pour la méthode d'Euler modifié d'ordre 2, on a :

$$\phi(x, y, h) = \frac{1}{2} [f(x, y) + f(x + h, y + hf(x, y))].$$

Écrire la méthode en deux étapes comme ci-dessus, et illustrer sa mise en œuvre.

3. Écrire la méthode de Runge-Kutta d'ordre 4 usuelle et illustrer sa mise en œuvre.

8.6 Une méthode à deux pas : leapfrog

1. À l'aide de développements de Taylor, construire un schéma de la forme :

$$y_{i+1} = y_{i-1} + h\Phi(x_i, y_i, h)$$
.

Quel est son ordre?

2. Quel problème se pose lors de la mise en œuvre numérique ? Proposer une solution. Illustrer avec la fonction-exemple.

8.7 Comparaisons.

Commenter les figures de résultats ci-après.

Comparaison solution exacte et méthodes d'Euler ordre 1

Etude de l'erreur en x=1 pour différents pas et méthodes

