Why the missing 1/L in the relaxation function does not cause problem in our viscoelastic simulation? Because the error pointed out by Peter Moczo is not an error.

1 Boltzmann principle

For a linear isotropic viscoelastic material, the stress-strain relation is given by Boltzmann principle. In scalar notation, we have:

$$\sigma(t) = \int_{-\infty}^{t} \psi(t - t') \dot{\varepsilon}(t') dt' \tag{1}$$

where $\sigma(t)$ is stress, $\dot{\varepsilon}(t)$ time derivative of strain, and $\psi(t)$ stress relaxation function defined as a stress response to Heaviside unit step function in strain. The stress at a given time t is determined by the entire history of the strain until t.

Using symbol * for the convolution and applying the convolution's property, we have:

$$\sigma(t) = \psi(t) * \dot{\varepsilon}(t) = \dot{\psi}(t) * \varepsilon(t)$$
(2)

In following, we set $\dot{\psi}(t) = M(t)$.

2 Representation of M(t) by a set of standard linear solid

In seismology, we typically encounter viscoelastic material with attenuation is observed to be relatively constant over a broad frequency range. For this kind of material, we could approximate the M(t) by a set of standard linear solid:

For viscoelastic material described by N standard linear solids, we have:

$$M(\omega) = \sum_{l=1}^{N} M_{Rl} \frac{1 + \mathbf{i} \tau_{\varepsilon l} \omega}{1 + \mathbf{i} \tau_{\sigma l} \omega}$$
(3)

 $\text{Where} \quad \tau_{\varepsilon l} = \frac{\eta_l}{\delta M_{_l}} \frac{M_{_{Ul}}}{M_{_{Rl}}}, \quad \tau_{\sigma l} = \frac{\eta_l}{\delta M_{_l}} \,, \quad \frac{\tau_{_{\mathcal{E}l}}}{\tau_{_{\sigma l}}} = \frac{M_{_{Ul}}}{M_{_{Rl}}} \,. \quad M_{_{R}} \, \text{is the total relaxed modulu}.$

Correspondingly, for $M_{Rl} = \frac{M_R}{N}$ we have:

$$\psi(t) = M_R \left[1 - \frac{1}{N} \sum_{l=1}^{N} \left(1 - \frac{\tau_{\varepsilon l}}{\tau_{\sigma l}} \right) e^{-t/\tau_{\sigma l}} \right] H(t)$$
(4)

3 Error pointed out by Peter Moczo

In his 2005 paper: "On the rheological models used for time-domain methods of seismic wave

propagation", Moczo pointed out that the $\frac{1}{N}$ is missing in Liu's paper: "Velocity dispersion due to anelasticity: Implications for seismology and mantle composition". That Liu use (4) wrongly as:

$$\psi(t) = M_R \left[1 - \sum_{l=1}^{N} \left(1 - \frac{\tau_{cl}}{\tau_{\sigma l}} \right) e^{-t/\tau_{\sigma l}} \right] H(t)$$
(5)

Taking into account that the SPECFEM2D and SPECFEM3D are based on (5), that means the two codes would give wrong results in case for viscoelastic simulation.

4 Error pointed out by Peter Moczo is not an error.

First by setting $M_{Rl} = \frac{M_R}{N}$, (3) can be rewritten as:

$$M(\omega) = \sum_{l=1}^{N} M_{Rl} \frac{1 + \mathbf{i} \tau_{\varepsilon l} \omega}{1 + \mathbf{i} \tau_{\sigma l} \omega} = \frac{M_{R}}{N} \sum_{l=1}^{N} \frac{1 + \mathbf{i} \tau_{\varepsilon l} \omega}{1 + \mathbf{i} \tau_{\sigma l} \omega} = \frac{M_{R}}{N} \sum_{l=1}^{N} \left(1 + \frac{\mathbf{i} \omega (\tau_{\varepsilon l} - \tau_{\sigma l})}{1 + \mathbf{i} \tau_{\sigma l} \omega} \right)$$

$$= \frac{M_{R}}{N} \sum_{l=1}^{N} \left(1 + \frac{\mathbf{i} \omega (\tau_{\varepsilon l} - \tau_{\sigma l}) (1 - \mathbf{i} \tau_{\sigma l} \omega)}{1 + \omega^{2} \tau_{\sigma l}^{2}} \right) = M_{R} + \frac{M_{R}}{N} \sum_{l=1}^{N} \left(\frac{\mathbf{i} \omega (\tau_{\varepsilon l} - \tau_{\sigma l}) (1 - \mathbf{i} \tau_{\sigma l} \omega)}{1 + \omega^{2} \tau_{\sigma l}^{2}} \right)$$

$$= M_{R} \left[1 + \sum_{l=1}^{N} \frac{\omega^{2} \tau_{\sigma l}^{2}}{1 + \omega^{2} \tau_{\sigma l}^{2}} \left(\frac{1}{N} \frac{(\tau_{\varepsilon l} - \tau_{\sigma l})}{\tau_{\sigma l}} \right) + \sum_{l=1}^{N} \frac{\mathbf{i} \omega \tau_{\sigma l}}{1 + \omega^{2} \tau_{\sigma l}^{2}} \left(\frac{1}{N} \frac{(\tau_{\varepsilon l} - \tau_{\sigma l})}{\tau_{\sigma l}} \right) \right]$$

$$(4)$$

Introducing $\frac{\tau'_{\varepsilon l} - \tau_{\sigma l}}{\tau_{\sigma l}} = \frac{1}{N} \frac{\left(\tau_{\varepsilon l} - \tau_{\sigma l}\right)}{\tau_{\sigma l}}$ that is:

$$\tau_{\varepsilon l}' = \frac{1}{N} (\tau_{\varepsilon l} - \tau_{\sigma l}) + \tau_{\sigma l} \tag{5}$$

then the (4) reduces to

$$M(\omega) = M_R \left[1 + \sum_{l=1}^{N} \frac{\omega \tau_{\sigma l} \left(\tau_{\varepsilon l}' - \tau_{\sigma l} \right)}{1 + \omega^2 \tau_{\sigma l}^2} + \sum_{l=1}^{N} \frac{\mathbf{i} \omega \tau_{\sigma l} \left(\tau_{\varepsilon l}' - \tau_{\sigma l} \right)}{1 + \omega^2 \tau_{\sigma l}^2} \right]$$
(6)

(6) corresponds exactly as

$$\psi(t) = M_R \left[1 - \sum_{l=1}^{N} \left(1 - \frac{\tau_{\varepsilon l}'}{\tau_{\sigma l}} \right) e^{-t/\tau_{\sigma l}} \right] H(t)$$
(7)

Thus if in frequency domain we use (6) to obtain the value of M_R , τ'_{sl} and $\tau_{\sigma l}$, no error exists. In our codes SPECFEM3D and SPECFEM2D, we use (6) together with (7). Thus, no modification has to be made in our code.

It worth note here, $\tau'_{\varepsilon l}$ do not share the same physical meaning as $\tau_{\varepsilon l}$.

Appendix A: For constant τ method, relationship between M_R , $\tau_{\varepsilon l}$ and $\tau_{\sigma l}$ determined by (3) and that by (6)

Considering using one standard linear solid, for both (3) and (6), we have

$$M(\omega) = M_R \left(1 - \frac{\omega^2 \tau_{\sigma 1} \left(\tau_{\sigma 1} - \tau_{\varepsilon 1} \right)}{1 + \omega^2 \tau_{\sigma 1}^2} + \mathbf{i} \frac{\omega \left(\tau_{\varepsilon 1} - \tau_{\sigma 1} \right)}{1 + \omega^2 \tau_{\sigma 1}^2} \right)$$
(A-1)

Thus

$$Q^{-1} = \frac{\operatorname{Im}\left[M\left(\omega\right)\right]}{\operatorname{Re}\left[M\left(\omega\right)\right]} = \frac{\frac{\omega(\tau_{\varepsilon_{1}} - \tau_{\sigma_{1}})}{1 + \omega^{2}\tau_{\sigma_{1}}^{2}}}{1 - \frac{\omega^{2}\tau_{\sigma_{1}}(\tau_{\sigma_{1}} - \tau_{\varepsilon_{1}})}{1 + \omega^{2}\tau_{\sigma_{1}}^{2}}} = \frac{\omega(\tau_{\varepsilon_{1}} - \tau_{\sigma_{1}})}{1 + \omega^{2}\tau_{\sigma_{1}}\tau_{\varepsilon_{1}}}$$
(A-2)

Introducing $\tau = \frac{\tau_{\varepsilon l} - \tau_{\sigma l}}{\tau_{\sigma l}}$, we can rewritten (A-2) as:

$$Q^{-1} = \frac{\omega \tau \tau_{\sigma 1}}{1 + \omega^2 \tau_{\sigma 1}^2 (1 + \tau)}$$
 (A-3)

In paper: "Modeling of a constant Q: Methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique", Blanch, Robertsson and Symes observed the L2 approximation of constant Q near the interesting band $\left[\omega_0-\Delta\omega,\omega_0+\Delta\omega\right]$ with (A-3) gives $\tau<<1$ for bigger Q (Q > 20).Moreover, by setting a constant τ , the change of $\tau_{\sigma 1}$ is enough to give good approximation if ω_0 changes. Thus they prosper to use constant τ in approximation of constant Q in wide frequency band.

Thus, in general case, for $\tau \ll 1$, with (3) we have:

$$Q^{-1} = \frac{\frac{1}{N} \sum_{l=1}^{N} \frac{\omega \tau_{(3)} \tau_{\sigma l}}{1 + \omega^{2} \tau_{\sigma l}^{2}}}{1 - \tau_{(3)} \frac{1}{N} \sum_{l=1}^{N} \frac{\omega^{2} \tau_{\sigma l} \tau_{\sigma l}}{1 + \omega^{2} \tau_{\sigma l}^{2}}} \approx \frac{1}{N} \sum_{l=1}^{N} \frac{\omega \tau_{(3)} \tau_{\sigma l}}{1 + \omega^{2} \tau_{\sigma l}^{2}}$$
(A-4)

While (6) we have

$$Q^{-1} = \frac{\sum_{l=1}^{N} \frac{\omega \tau_{(6)} \tau_{\sigma l}}{1 + \omega^{2} \tau_{\sigma l}^{2}}}{1 - \tau_{(6)} \sum_{l=1}^{N} \frac{\omega^{2} \tau_{\sigma l} \tau_{\sigma l}}{1 + \omega^{2} \tau_{\sigma l}^{2}}} \approx \sum_{l=1}^{N} \frac{\omega \tau_{(6)} \tau_{\sigma l}}{1 + \omega^{2} \tau_{\sigma l}^{2}}$$
(A-5)

If we use same set of $\tau_{\sigma 1}$. Different value of τ will be obtained by (3) compared that obtained by (6) denoted as $\tau_{(6)}$, which gives that

$$\tau_{(3)} / N = \tau_{(6)}$$
 (A-6)

That is

$$\tau_{\varepsilon l}' = \left(\tau_{\varepsilon l} - \tau_{\sigma l}\right) \frac{1}{N} + \tau_{\sigma l} \tag{A-6}$$