ST2334 Summary Notes

AY23/24 Sem 1, github.com/gerteck

1. Basic Probability Concepts

- Sample Space: S All possible outcomes of stat. expt.
- Null Event: Event that contains no element, empty set, \varnothing
- Axioms of Probability:

For any event X, $0 \le P(X) \le 1$. P(S) = 1. If $A \cap B = \emptyset$ (Mut Excl.), $P(A \cup B) = P(A) + P(B)$.

• Finite sample space with equally likely outcomes: $P(A) = (\frac{\#samplepointsA}{\#totalsamplepointsS})$. (e.g. birthday problem)

Event Operation & Relationships

- Event Operations: Union, Intersection, Complement.
- Event Relationships: Contained: $A \subset B$ Equivalence: $A \subset B$ with $A \supset B \to A = B$

Mutually Exclusive: $A \cap B = \emptyset$.

• De Morgan's Law: $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$

Counting Methods

- Multiplication Principle: (Sequential Events)
- Addition Principle: (Pairwise Disjoin sets)
- **Permutation**: ${}_{n}P_{r} = \frac{n!}{(n-r)!}$
- Combination: $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

Conditional Probability

• Understand conditional as reduced sample space.

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

Independence

$$A \perp B \leftrightarrow P(A \cap B) = P(A)P(B)$$
$$A \perp B \leftrightarrow P(A|B) = P(A)$$

Law of Total Probability

- **Partition:** If A_1, \dots, A_n mutually exclusive, $\bigcup_{i=1}^n A_i = S$, then A_1, \dots, A_n are partitions.
- If A_1, \dots, A_n are partitions of S, then for any event B:

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Bayes' Theorem

Let A_1, \dots, A_n be partitions of S. For any event B:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_k)P(A_i)}$$

For when n = 2, $\{A, A'\}$ becomes a partition of S.

$$P(A|B) = \frac{P(A)P(B|A))}{P(A)P(B|A) + P(A')P(B|A')}$$

2. Random Variables

A function X, which assigns a real number to every $s \in S$ is called a random variable.

- Range space: $Rx = \{x | x = X(s), s \in S\}$
- Likewise, the set $X \in A$, for A being a subset of R, is also a subset of $S: s \in S: X(s) \in A$.

Probability Distribution

Two main types of RV used in practice: discrete and continuous.

- ullet Probability assigned to each possible X
- Given RV X with range of R_x :

Discrete: Numbers in R_x are finite or countable **Continuous:** R_x is interval

(Discrete) Probability Mass Function f(x):

$$f(x) \begin{cases} P(X=x), & \text{for } x \in R_X \\ 0, & \text{for } x \notin R_X \end{cases}$$

- 1. $f(x_i) = P(X = x_i) \ge 0$ for $x_i \in R_x$
- 2. $f(x_i) = 0$ for $x_i \notin R_x$
- 3. $\sum_{i=1}^{\infty} f(x_i) = 1$ (PSum = 1)
- 4. $\forall B \subseteq \mathbb{R}, P(X \in B) = \sum_{x_i \in B \cap R_x} f(x_i)$

(Continuous) Probability Density Function f(x):

- Given R_x is interval. Quantifies probability that X is in some range.
- p.f. must satisfy:
 - 1. $f(x) \ge 0$, f(x) = 0 for $x \notin R_x$
 - 2. No need $f(x) \leq 1$ (Concerned with area)
 - 3. $\int_{R_x} f(x)dx = 1$ (Integration over $R_X = 1$)
 - 4. $\forall a, b \text{ s.t. } a \leq b, P(a \leq X \leq b) = \int_a^b f(x) dx$
- Note: $P(X = x_0) = \int_{x_0}^{x_0} f(x) dx = 0$
- Hence, to check if a function is a pdf,
- 1. $f(x) \ge 0$ for $x \in R_x$, f(x) = 0 for $x \notin R_x$
- 2. $\int_{R_x} f(x) dx = 1$.

Cumulative Distribution Function

Describes distribution of a RV X: cumulative distribution function (cdf), applicable for discrete or continuous RV.

$$F(x) = P(X \le x)$$

F(x) is non-decreasing and $0 \le F(x) \le 1$

 Probability fn & cumulative distribution fn have one-to-one correspondence. For any probability fn given, the cdf is uniquely determined, vice versa.

CDF Discrete RV: Step Function F(x)

$$F(x) = \sum_{t \in R_x; t \le x} f(t)$$

- $P(a \le X \le b) = P(X \le b) P(X < a)$
- $P(a \le X \le b) = F(b) F(a-)$
- $P(a < X < b) = F(b) \lim_{x \to a^{-}} F(x)$
- $0 \le f(x) \le 1$
- c.d.f has to be **right continuous** (• —)

CDF Continuous RV: F(x)

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

$$impt: f(x) = \frac{d(F(x))}{dx}$$

- $P(a \le X \le b) = P(a < X < b) = F(b) F(a)$
- $0 \le f(x)$.
- e.g. $f(x) = 3x^2$ is a valid p.f. since $\int_{R_x} f(x) dx = 1$

Expectation μ & Variance σ

Expectation of Random Variable: μ

• Mean of discrete RV:

$$\mu = E(X) = \sum_{x \in R_x} x_i f(x_i)$$

- E.g.: X discrete RV with p.m.f. f(x) and range R_X $\mu = E(g(x)) = \sum_{x \in R_x} g(x) f(x)$
- Mean of continuous RV:

$$\mu = E(X) = \int_{x \in R_x} x f(x) dx$$

- E.g.: X continuous RV with p.d.f. f(x) and range R_X $\mu = E(g(x)) = \int_{x \in R_n} g(x) f(x) dx$
- Properties of Expectation:
- E(aX + b) = aE(X) + b
- Linearity of expectation: E(X + Y) = E(X) + E(Y)

Variance of Random Variable: σ

$$\sigma_X^2 = V(X) = E[(X - \mu_X)^2]$$

• Variance of discrete RV:

$$V(X) = \sum_{x \in R_x} (x - \mu_X)^2 f(x)$$

• Variance of continuous RV:

$$V(X) = \int_{x \in R_x} (x - \mu_X)^2 f(x) dx$$

- $V(X) \ge 0$ and V(X) = 0 when X is a constant
- $V(aX + b) = a^2V(X)$
- alt. form: $V(X) = E(X^2) (E(X))^2$
- Standard Deviation: $\sigma_X = \sqrt{V(X)}$

3. Joint Distributions

- Consider more than 1 RV simultaneously,
- Given sample space S. Let X and Y be functions mapping $s \in S \to \mathbb{R}$: (X,Y) is 2D random vector.

Range spc:
$$R_{X,Y} = \{(x,y)|x = X(s), y = Y(s), s \in S\}$$

• Discrete 2D RV:

of possible values of (X(s),Y(s)) finite / countable

- Continuous 2D RV:
 - # of possible values of (X(s),Y(s)) assume any value in some region of the Euclidean space \mathbb{R}^2
- If both X and Y are discrete/continuous, then (X, Y) is discrete/continuous respectively.

Joint Probability Function

• Joint Probability (mass) function, 2D discrete RV:

$$f_{X,Y}(x,y) = P(X = x, Y = y)$$

- $f_{X,Y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$
- $-f_{X,Y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$
- $-\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(X = x_i, Y = y_i) = 1$
- Let $A \subseteq R_{X,Y}$.

$$P((X,Y) \in A) = \sum \sum_{(x,y) \in A} f_{X,Y}(x,y)$$

• Joint Probability (density) function, 2D cont. RV:

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx$$

- $-f_{X,Y}(x,y) \ge 0$ for any $(x,y) \in R_{X,Y}$
- $-f_{X,Y}(x,y)=0$ for any $(x,y)\notin R_{X,Y}$
- $-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$ or equivalently:
- $-\int \int_{(x,y)\in R_{X,Y}} f_{X,Y}(x,y) dx dy = 1$

Marginal Probability Function

Marginal distribution of X is individual distribution of X, ignoring the value of Y. "Projection" of 2D function $f_{X,Y}(x,y)$ to 1D function.

Let (X, Y) be 2D RV with joint probability function $f_{X,Y}(x,y)$:

If Y is discrete,
$$f_X(x) = \sum_y f_{X,Y}(x,y)$$

If Y is **continuous**,
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

- $f_Y(y)$ defined similarly
- $f_X(x)$ is a p.f., satisfies all properties of prob. fn.

Conditional Distribution

Let (X,Y) be 2D RV with joint probability function $f_{X,Y}(x,y)$. Then $\forall x$ s.t. $f_X(x) > 0$: (X marg prob fn.) Conditional probability function of Y given X = x:

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

- Intuition: Distribution of Y given X = x
- Only defined for x s.t. $f_X(x) > 0$
- $f_{Y|X}(y|x)$ is a p.f. if we fix x, satisfies prop. of prob.fn.
- But, $f_{Y|X}(y|x)$ is not a p.f. for x: No need for sum / integral over x = 1. Hence,

If
$$f_X(x) > 0$$
: $f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$
If $f_Y(y) > 0$: $f_{X,Y}(x,y) = f_Y(y)f_{X|Y}(x|y)$

- Probability $Y \le y$, Average Y given X = x
- $P(Y \le y|X = x) = \int_{-\infty}^{y} f_{Y|X}(y|x)dy$
- $E(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$