Composition of Movement Primitives

Andrea Pierré

June 9, 2025

Contents

1	\mathbf{Pro}	MPs
	1.1	Recap
	1.2	Coupling between joints
	1.3	Hierarchical Bayesian Model
	1.4	Via-Points Modulation
		1.4.1 Do we actually get the desired mean by applying the conditioning update?
		1.4.2 With Via-points
2	Gau	ussian mixture modeling (GMM)/Gaussian mixture regression (GMR) recap
	2.1	Gaussian mixture modeling (GMM)
3	Cor	nposition of MPs
	3.1	Stitching
	3.2	Piecewise Gaussian Process
A	Hie	rarchical Bayesian Model proof
В	Via	-Points conditioning proof
1	Р	${ m ProMPs}$
_	_	
1.	1	Recap
Fr	om (I	Paraschos et al., 2013, 2018):
	\bullet q_t	: joint angle over time
	\bullet \dot{q}_t	: joint velocity over time
	• τ	$= \{q_t\}_{t=0T}$: trajectory
	• w	: weight vector of a single trajectory $[n \times 1]$
	\bullet ϕ_t	: basis function
	• n:	number of basis functions
	• Φ	$t_t = [\phi_t, \dot{\phi_t}]: n \times 2$ dimensional time-dependent basis matrix
	• z((t): monotonically increasing phase variable
	$ullet$ $oldsymbol{\epsilon}_{y}$	$oldsymbol{\gamma} \sim \mathcal{N}(0, oldsymbol{\Sigma}_y)$: zero-mean i.i.d. Gaussian noise

$$\mathbf{\Phi}_t = \begin{bmatrix} \phi_1 & \dot{\phi}_1 \\ \vdots & \vdots \\ \phi_n & \dot{\phi}_n \end{bmatrix} \tag{1}$$

$$\mathbf{y}_t = \begin{bmatrix} q_t \\ \dot{q}_t \end{bmatrix} = \mathbf{\Phi}_t^\top \mathbf{w} + \boldsymbol{\epsilon}_y \tag{2}$$

$$p(\boldsymbol{\tau}|\boldsymbol{w}) = \prod_{t} \mathcal{N} \Big(\boldsymbol{y}_{t} | \boldsymbol{\Phi}_{t}^{\top} \boldsymbol{w}, \boldsymbol{\Sigma}_{y} \Big)$$
(3)

$$p(\tau; \theta) = \int p(\tau | \boldsymbol{w}) \cdot p(\boldsymbol{w}; \theta) d\boldsymbol{w}$$
(4)

1.2 Coupling between joints

$$p(\mathbf{y}_t|\mathbf{w}) = \mathcal{N}\left(\begin{bmatrix} \mathbf{y}_{1,t} \\ \vdots \\ \mathbf{y}_{d,t} \end{bmatrix} \middle| \begin{bmatrix} \mathbf{\Phi}_t^{\top} & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{\Phi}_t^{\top} \end{bmatrix} \mathbf{w}, \mathbf{\Sigma}_y \right) = \mathcal{N}\left(\mathbf{y}_t | \mathbf{\Psi}_t \mathbf{w}, \mathbf{\Sigma}_y \right)$$
(5)

with:

- $\boldsymbol{w} = [\boldsymbol{w}_1^\top, \dots, \boldsymbol{w}_n^\top]^\top$: combined weight vector $[n \times n]$
- Ψ_t : block-diagonal basis matrix containing the basis functions and their derivatives for each dimension
- $\mathbf{y}_{i,t} = [q_{i,t}, \dot{q}_{i,t}]^{\mathsf{T}}$: joint angle and velocity for the i^{th} joint

1.3 Hierarchical Bayesian Model

The Hierarchical Bayesian Model used in ProMPs is illustrated in Fig. 1.

Figure 1: Hierarchical Bayesian Model used in ProMPs.

- $\theta = \{\mu_w, \Sigma_w\}$
- $p(\boldsymbol{w};\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}_w, \boldsymbol{\Sigma}_w)$: prior over the weight vector \boldsymbol{w} , with parameters $\boldsymbol{\theta}$, assumed to be Gaussian

$$p(\boldsymbol{y}_t; \boldsymbol{\theta}) = \int \mathcal{N}(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{w}, \boldsymbol{\Sigma}_y) \cdot p(\boldsymbol{w}; \boldsymbol{\theta}) d\boldsymbol{w}$$
 (6)

$$= \int \mathcal{N}\left(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{w}, \boldsymbol{\Sigma}_y\right) \cdot \mathcal{N}\left(\boldsymbol{w} | \boldsymbol{\mu}_{\boldsymbol{w}}, \boldsymbol{\Sigma}_{\boldsymbol{w}}\right) d\boldsymbol{w}$$
 (7)

$$= \mathcal{N} \left(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}}, \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_y \right)$$
(8)

See Appendix A for the proof.

1.4 Via-Points Modulation

- $x_t^* = [y_t^*, \Sigma_t^*]$: desired observation
- y_t^{\star} : desired position and velocity vector at time t
- Σ_t^{\star} : accuracy of the desired observation

Using Bayes rule:

$$p(\boldsymbol{w}|\boldsymbol{x}_t^{\star}) = \frac{p(\boldsymbol{x}_t^{\star}|\boldsymbol{w}) \cdot p(\boldsymbol{w})}{p(\boldsymbol{x}_t^{\star})}$$
(9)

$$p(\boldsymbol{w}|\boldsymbol{x}_t^{\star}) \propto \mathcal{N}\left(\boldsymbol{y}_t^{\star}|\boldsymbol{\Psi}_t^{\top}\boldsymbol{w}, \boldsymbol{\Sigma}_t^{\star}\right) \cdot \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}_w, \boldsymbol{\Sigma}_w)$$
 (10)

$$\boldsymbol{\mu}_{\boldsymbol{w}}^{[new]} = \boldsymbol{\mu}_{\boldsymbol{w}} + \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \left(\boldsymbol{\Sigma}_{y}^{\star} + \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \right)^{-1} (\boldsymbol{y}_{t}^{\star} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})$$
(11)

$$\Sigma_{\boldsymbol{w}}^{[new]} = \Sigma_{\boldsymbol{w}} - \Sigma_{\boldsymbol{w}} \Psi_t \left(\Sigma_{\boldsymbol{y}}^{\star} + \Psi_t^{\top} \Sigma_{\boldsymbol{w}} \Psi_t \right)^{-1} \Psi_t^{\top} \Sigma_{\boldsymbol{w}}$$
(12)

See Appendix B for the proof.

1.4.1 Do we actually get the desired mean by applying the conditioning update?

Proof that the posterior mean equals the observed mean.

$$\mathbb{E}[y_t | x_t^{\star}] = \boldsymbol{\mu}_{\boldsymbol{y}_t | \boldsymbol{x}_t^{\star}} = \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w} | \boldsymbol{x}_t^{\star}} = \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} + \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t \left(\boldsymbol{\Sigma}_t^{\star} + \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t \right)^{-1} (\boldsymbol{y}_t^{\star} - \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})$$
(13)

We set the observed covariance Σ_t^{\star} to 0 so as to have perfect accuracy around our observed position.

$$\boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}|\boldsymbol{x}_{t}^{\star}} = \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} + \underline{\boldsymbol{\Psi}_{t}^{\top}} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \left(\underline{\boldsymbol{\Psi}_{t}^{\top}} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t}\right)^{-1} (\boldsymbol{y}_{t}^{\star} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})$$

$$(14)$$

$$= \Psi_t^{\top} \mu_w + y_t^{\star} - \Psi_t^{\top} \mu_w \tag{15}$$

$$= \boldsymbol{y}_t^{\star} \tag{16}$$

1.4.2 Multi via-points

Figure 2: Example of ProMP with two via-points.

1. For the first via-point conditioning update with the observed via-point $\boldsymbol{x}_{t_1}^{\star} = [\boldsymbol{y}_{t_1}^{\star}, \boldsymbol{\Sigma}_{t_1}^{\star}]$, we can directly apply Eq. (11) and (12), with $\boldsymbol{\Psi}_{t_1}$ the observation matrix at time t_1 :

$$\boldsymbol{\mu}_{\boldsymbol{w}|\boldsymbol{x}_{t_1}^{\star}} = \boldsymbol{\mu}_{\boldsymbol{w}} + \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t_1} \Big(\boldsymbol{\Sigma}_{t_1}^{\star} + \boldsymbol{\Psi}_{t_1}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t_1} \Big)^{-1} (\boldsymbol{y}_{t_1}^{\star} - \boldsymbol{\Psi}_{t_1}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})$$
(17)

$$\Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t_1}^{\star}} = \Sigma_{\boldsymbol{w}} - \Sigma_{\boldsymbol{w}} \Psi_{t_1} \left(\Sigma_{t_1}^{\star} + \Psi_{t_1}^{\top} \Sigma_{\boldsymbol{w}} \Psi_{t_1} \right)^{-1} \Psi_{t_1}^{\top} \Sigma_{\boldsymbol{w}}$$
(18)

2. For the second via-point conditioning update with the observed via-point $\boldsymbol{x}_{t_2}^{\star} = [\boldsymbol{y}_{t_2}^{\star}, \boldsymbol{\Sigma}_{t_2}^{\star}]$, the prior is the posterior from the first via-point, *i.e.*, $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{w}|\boldsymbol{x}_{t_1}^{\star}}, \boldsymbol{\Sigma}_{\boldsymbol{w}|\boldsymbol{x}_{t_1}^{\star}})$, the likelihood is $\boldsymbol{y}_{t_2}^{\star} \sim \mathcal{N}(\boldsymbol{\Psi}_{t_2}^{\top} \boldsymbol{w}, \boldsymbol{\Sigma}_{t_2}^{\star})$, with $\boldsymbol{\Psi}_{t_2}$ the observation matrix at time t_2 , and the posterior update becomes:

$$\mu_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star},\boldsymbol{x}_{t_{2}}^{\star}} = \mu_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star}} + \Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star}} \Psi_{t_{2}} \left(\Sigma_{t_{2}}^{\star} + \Psi_{t_{2}}^{\top} \Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star}} \Psi_{t_{2}} \right)^{-1} (\boldsymbol{y}_{t_{2}}^{\star} - \Psi_{t_{2}}^{\top} \mu_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star}})$$
(19)

$$\boldsymbol{\Sigma}_{\boldsymbol{w}|\boldsymbol{x}_{t_1}^{\star},\boldsymbol{x}_{t_2}^{\star}} = \boldsymbol{\Sigma}_{\boldsymbol{w}|\boldsymbol{x}_{t_1}^{\star}} - \boldsymbol{\Sigma}_{\boldsymbol{w}|\boldsymbol{x}_{t_1}^{\star}} \boldsymbol{\Psi}_{t_2} \left(\boldsymbol{\Sigma}_{t_2}^{\star} + \boldsymbol{\Psi}_{t_2}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}|\boldsymbol{x}_{t_1}^{\star}} \boldsymbol{\Psi}_{t_2} \right)^{-1} \boldsymbol{\Psi}_{t_2}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}|\boldsymbol{x}_{t_1}^{\star}}$$
(20)

3. For the k^{th} via-point conditioning update with the observed via-point $\boldsymbol{x}_{t_k}^{\star} = [\boldsymbol{y}_{t_k}^{\star}, \boldsymbol{\Sigma}_{t_k}^{\star}]$, the prior is the posterior after conditioning on the previous k-1 via-points, i.e., $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{w}|\boldsymbol{x}_{t_1}^{\star},...,\boldsymbol{x}_{t_{k-1}}^{\star}}, \boldsymbol{\Sigma}_{\boldsymbol{w}|\boldsymbol{x}_{t_1}^{\star},...,\boldsymbol{x}_{t_{k-1}}^{\star}})$, the likelihood is $\boldsymbol{y}_{t_k}^{\star} \sim \mathcal{N}(\boldsymbol{\Psi}_{t_k}^{\top}\boldsymbol{w}, \boldsymbol{\Sigma}_{t_k}^{\star})$, with $\boldsymbol{\Psi}_{t_k}$ the observation matrix at time t_k , and the posterior update becomes:

$$\mu_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star},...,\boldsymbol{x}_{t_{k}}^{\star}} = \mu_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star},...,\boldsymbol{x}_{t_{k-1}}^{\star}} + \Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star},...,\boldsymbol{x}_{t_{k-1}}^{\star}} \Psi_{t_{k}} \Big(\Sigma_{t_{k}}^{\star} + \Psi_{t_{k}}^{\top} \Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star},...,\boldsymbol{x}_{t_{k-1}}^{\star}} \Psi_{t_{k}} \Big)^{-1} (\boldsymbol{y}_{t_{k}}^{\star} - \Psi_{t_{k}}^{\top} \mu_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star},...,\boldsymbol{x}_{t_{k-1}}^{\star}})$$

$$(21)$$

$$\Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star},...,\boldsymbol{x}_{t_{k}}^{\star}} = \Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star},...,\boldsymbol{x}_{t_{k-1}}^{\star}} - \Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star},...,\boldsymbol{x}_{t_{k-1}}^{\star}} \Psi_{t_{k}} \Big(\Sigma_{t_{k}}^{\star} + \Psi_{t_{k}}^{\top} \Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star},...,\boldsymbol{x}_{t_{k-1}}^{\star}} \Psi_{t_{k}} \Big)^{-1} \Psi_{t_{k}}^{\top} \Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t_{1}}^{\star},...,\boldsymbol{x}_{t_{k-1}}^{\star}}$$

$$(22)$$

Alternative Batch Formulation Instead of iterative updates, we could condition on all via-points simultaneously by stacking the observations:

$$\boldsymbol{y}^{\star} = \begin{bmatrix} \boldsymbol{y}_{t_1}^{\star} \\ \vdots \\ \boldsymbol{y}_{t_k}^{\star} \end{bmatrix}, \quad \boldsymbol{\Psi} = \begin{bmatrix} \boldsymbol{\Psi}_{t_1} \\ \vdots \\ \boldsymbol{\Psi}_{t_k} \end{bmatrix}, \quad \boldsymbol{\Sigma}^{\star} = \operatorname{diag}(\boldsymbol{\Sigma}_{t_1}^{\star}, \dots, \boldsymbol{\Sigma}_{t_k}^{\star})$$
(23)

$$\mu_{\boldsymbol{w}|\{\boldsymbol{x}_{t_k}^*\}_{k=1}^K} = \mu_{\boldsymbol{w}} + \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi} \left(\boldsymbol{\Sigma}^* + \boldsymbol{\Psi}^\top \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi} \right)^{-1} (\boldsymbol{y}^* - \boldsymbol{\Psi}^\top \boldsymbol{\mu}_{\boldsymbol{w}})$$
(24)

$$\Sigma_{\boldsymbol{w}|\{\boldsymbol{x}_{t_k}^*\}_{k=1}^K} = \Sigma_{\boldsymbol{w}} - \Sigma_{\boldsymbol{w}} \Psi \left(\Sigma^* + \Psi^\top \Sigma_{\boldsymbol{w}} \Psi \right)^{-1} \Psi^\top \Sigma_{\boldsymbol{w}}$$
(25)

2 Gaussian mixture modeling (GMM)/Gaussian mixture regression (GMR) recap

2.1 Gaussian mixture modeling (GMM)

- π_k : mixture weights
- $\theta := \{\mu_k, \Sigma_k, \pi_k : k = 1, \dots, K\}$: collection of all parameters of the model
- r_{nk} : responsibility of the k^{th} mixture component for the n^{th} data point
- N: number of data points
- $N_k := \sum_{n=1}^N r_{nk}$: total responsibility of the k^{th} mixture component for the entire dataset

$$p(\boldsymbol{x}|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (26)

$$0 \le \pi_k \le 1, \quad \sum_{k=1}^K \pi_k = 1 \tag{27}$$

$$r_{nk} := \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$
(28)

Update of the GMM means:

$$\mu_k^{new} = \frac{\sum_{n=1}^{N} r_{nk} x_n}{\sum_{n=1}^{N} r_{nk}}$$
 (29)

Update of the GMM covariances:

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^N r_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\top}$$
(30)

Update of the GMM mixture weights:

$$\pi_k^{new} = \frac{N_k}{N}, \quad k = 1, \dots, K \tag{31}$$

Algorithm 1: Expectation Maximization (EM) algorithm

- 1. Initialize μ_k , Σ_k , π_k
- 2. *E-step*: Evaluate responsibilities r_{nk} for every data point \boldsymbol{x}_n using current parameters $\boldsymbol{\mu}_k$, $\boldsymbol{\Sigma}_k$, π_k :

$$r_{nk} = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$
(32)

3. M-step: Re-estimate parameters μ_k , Σ_k , π_k using the current responsibilities r_{nk} (from E-step):

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} \boldsymbol{x}_n \tag{33}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} r_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\top}$$
(34)

$$\pi_k = \frac{N_k}{N} \tag{35}$$

3 Composition of MPs

3.1 Stitching

See Fig. 3.

Figure 3: Stitching three ProMPs.

3.2 Piecewise Gaussian Process

References

- A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, "Probabilistic Movement Primitives," in *Advances in Neural Information Processing Systems*, vol. 26. Curran Associates, Inc., 2013. [Online]. Available: https://proceedings.neurips.cc/paper/2013/hash/e53a0a2978c28872a4505bdb51db06dc-Abstract.html
- A. Paraschos, C. Daniel, J. Peters, and G. Neumann, "Using probabilistic movement primitives in robotics," *Autonomous Robots*, vol. 42, no. 3, pp. 529–551, Mar. 2018. [Online]. Available: https://doi.org/10.1007/s10514-017-9648-7
- M. P. Deisenroth, A. A. Faisal, and C. S. Ong, *Mathematics for machine learning*. Cambridge University Press, 2020.
- C. M. Bishop and H. Bishop, *Deep Learning: Foundations and Concepts*. Springer International Publishing, 2024. [Online]. Available: https://doi.org/10.1007/978-3-031-45468-4

A Hierarchical Bayesian Model proof

Proof of Eq. (8). From (Deisenroth et al., 2020), we have the joint distribution:

$$p(\mathbf{x}_a, \mathbf{x}_b) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{bmatrix}\right)$$
(36)

and the marginal distribution $p(\mathbf{x}_a)$ of a joint Gaussian distribution $p(\mathbf{x}_a, \mathbf{x}_b)$:

$$p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) d\mathbf{x}_b = \mathcal{N}(\mathbf{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa})$$
(37)

Since y_t and w are jointly Gaussian, we have:

$$\begin{bmatrix} \boldsymbol{y}_t \\ \boldsymbol{w} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{y}_t} \\ \boldsymbol{\mu}_{\boldsymbol{w}} \end{bmatrix}, \begin{bmatrix} \operatorname{Cov}[\boldsymbol{y}_t, \boldsymbol{y}_t] & \operatorname{Cov}[\boldsymbol{y}_t, \boldsymbol{w}] \\ \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{y}_t] & \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{w}] \end{bmatrix} \right)$$
(38)

$$\mu_{\mathbf{y}_t} = \mathbb{E}[\mathbf{y}_t] \tag{39}$$

$$= \mathbb{E}[\boldsymbol{\Psi}_t^{\top} \boldsymbol{w} + \boldsymbol{\epsilon}_y] \tag{40}$$

$$= \mathbf{\Psi}_t^{\top} \mathbb{E}[\mathbf{w}] + \mathbb{E}[\boldsymbol{\epsilon}_y] \tag{41}$$

$$= \mathbf{\Psi}_t^{\mathsf{T}} \boldsymbol{\mu}_{\boldsymbol{w}} + 0 \tag{42}$$

$$= \mathbf{\Psi}_t^{\mathsf{T}} \boldsymbol{\mu}_{\boldsymbol{w}} \tag{43}$$

$$Cov[\boldsymbol{y}_t, \boldsymbol{y}_t] = Cov[\boldsymbol{\Psi}_t^{\top} \boldsymbol{w} + \boldsymbol{\epsilon}_y]$$
(44)

$$= \operatorname{Cov}[\boldsymbol{\Psi}_{t}^{\top}\boldsymbol{w}] + \operatorname{Cov}[\boldsymbol{\epsilon}_{\boldsymbol{y}}] \tag{45}$$

$$= \boldsymbol{\Psi}_t^{\top} \operatorname{Cov}[\boldsymbol{w}] \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_y \tag{46}$$

$$= \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_{\boldsymbol{u}} \tag{47}$$

$$\begin{bmatrix} \boldsymbol{y}_t \\ \boldsymbol{w} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} \\ \boldsymbol{\mu}_{\boldsymbol{w}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_y & \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \\ \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t & \boldsymbol{\Sigma}_{\boldsymbol{w}} \end{bmatrix} \right)$$
(48)

$$p(\boldsymbol{y}_t; \boldsymbol{\theta}) = \mathcal{N} \Big(\boldsymbol{y}_t | \boldsymbol{\Psi}_t^{\top} \boldsymbol{\mu}_{\boldsymbol{w}}, \boldsymbol{\Psi}_t^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_t + \boldsymbol{\Sigma}_y \Big)$$
(49)

B Via-Points conditioning proof

Proof of Eq. (11) and Eq. (12). With the joint distribution $p(\mathbf{x}_a, \mathbf{x}_b)$ in Eq. (36), and from (Bishop and Bishop, 2024), the parameters of a conditional multivariate Gaussian $p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}(\boldsymbol{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b})$ are the following:

$$\boldsymbol{\mu}_{a|b} = \boldsymbol{\mu}_a + \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_b - \boldsymbol{\mu}_b)$$
 (50)

$$\Sigma_{a|b} = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba} \tag{51}$$

We want the posterior $p(\boldsymbol{w}|\boldsymbol{x}_t^{\star})$, knowing the likelihood $\boldsymbol{x}_t^{\star}|\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{y}_t^{\star}|\boldsymbol{\Psi}_t^{\top}\boldsymbol{w}, \boldsymbol{\Sigma}_t^{\star})$, and the prior $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{w}|\boldsymbol{\mu}_w, \boldsymbol{\Sigma}_w)$.

$$\begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{x}_{t}^{\star} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{w}} \\ \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}} \end{bmatrix}, \begin{bmatrix} \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{w}] & \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{x}_{t}^{\star}] \\ \operatorname{Cov}[\boldsymbol{x}_{t}^{\star}, \boldsymbol{w}] & \operatorname{Cov}[\boldsymbol{x}_{t}^{\star}, \boldsymbol{x}_{t}^{\star}] \end{bmatrix} \right)$$
(52)

 $Cov[\boldsymbol{x}_t^{\star}, \boldsymbol{x}_t^{\star}]$ follows from Eq. (47).

$$Cov[\boldsymbol{w}, \boldsymbol{x}_t^{\star}] = Cov[\boldsymbol{w}, \boldsymbol{\Psi}_t^{\top} \boldsymbol{w} + \boldsymbol{\epsilon}_n]$$
(53)

$$= \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{\Psi}_t^{\top} \boldsymbol{w}] \qquad (\operatorname{Cov}[\boldsymbol{w}, \boldsymbol{\epsilon_y}] = 0 \text{ since } \boldsymbol{\epsilon_y} \text{ is independent of } \boldsymbol{w}) \quad (54)$$

$$= \mathbb{E}[(\boldsymbol{w} - \boldsymbol{\mu}_{\boldsymbol{w}})(\boldsymbol{\Psi}_{t}^{\top} \boldsymbol{w} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})^{\top}]$$
 (55)

$$= \mathbb{E}[(\boldsymbol{w} - \boldsymbol{\mu}_{\boldsymbol{w}})(\boldsymbol{w} - \boldsymbol{\mu}_{\boldsymbol{w}})^{\top} \boldsymbol{\Psi}_{t}]$$
 (56)

$$= \operatorname{Cov}[\boldsymbol{w}, \boldsymbol{w}] \cdot \boldsymbol{\Psi}_t \tag{57}$$

$$= \Sigma_{w} \Psi_{t} \tag{58}$$

$$\begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{x}_{t}^{\star} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{w} \\ \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{w} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{w} & \boldsymbol{\Sigma}_{w} \boldsymbol{\Psi}_{t} \\ \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{w} & \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{w} \boldsymbol{\Psi}_{t} + \boldsymbol{\Sigma}_{t}^{\star} \end{bmatrix} \right)$$
(59)

Using Eq. (50) we get:

$$\boldsymbol{\mu}_{\boldsymbol{w}|\boldsymbol{x}_{t}^{\star}} = \boldsymbol{\mu}_{\boldsymbol{w}} + \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \left(\boldsymbol{\Sigma}_{t}^{\star} + \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{w}} \boldsymbol{\Psi}_{t} \right)^{-1} (\boldsymbol{y}_{t}^{\star} - \boldsymbol{\Psi}_{t}^{\top} \boldsymbol{\mu}_{\boldsymbol{w}})$$
(60)

Using Eq. (51) we get:

$$\Sigma_{\boldsymbol{w}|\boldsymbol{x}_{t}^{\star}} = \Sigma_{\boldsymbol{w}} - \Sigma_{\boldsymbol{w}} \Psi_{t} \left(\Sigma_{t}^{\star} + \Psi_{t}^{\top} \Sigma_{\boldsymbol{w}} \Psi_{t} \right)^{-1} \Psi_{t}^{\top} \Sigma_{\boldsymbol{w}}$$

$$(61)$$