Лабораторна робота

Моделювання динамічного поля (поля тисків) та масопереносу

в гідродинамічних процесах

(застосування

- 1) моделі адвекції плями поверхневого забруднювача;
 - 2) моделі масопереносу донного грунту)

Математична постановка Задачі 1

(для визначення $\varphi = \varphi(r,t)$: $\vec{V} = \nabla \varphi$)

$$t \ge t_0: \qquad \Delta \varphi = 0 \qquad \qquad \vec{r} \notin L_d, L_v \tag{1}$$

$$\frac{\partial \varphi}{\partial n} = 0 \qquad \qquad \vec{r} = \vec{r}_d \in L_d(t) \quad (2)$$

$$\frac{d}{dt} \left(\varphi^+ - \varphi^- \right)_{r_v} = 0 \qquad \vec{r} = \vec{r}_v \in L_v(t) \quad (3)$$

$$\lim_{|r-r_L|\to\infty} \nabla \varphi = V_{\infty} \tag{4}$$

$$\frac{\partial \vec{r}_{v}}{\partial t} = \vec{V}(\vec{r}_{v}, t) \qquad \vec{r} = \vec{r}_{v} \in L_{v}(t) \quad (5)$$

$$t = t_0: \quad L_0 = L_d(t_0) + L_v(t_0) \tag{6}$$

Математична модель

(інтегральне представлення розв'язку)

$$\overline{V}_{\infty} = u_{\infty} - iv_{\infty}$$

$$\Phi(z,t) = \varphi + i\psi = \overline{V}_{\infty}z + \frac{1}{2\pi i} \int_{L_{d}(t)} f(\omega,t) \ln(z-\omega) d\omega + \frac{1}{2\pi i} \int_{L_{v}(t)} f(\omega,t) \ln(z-\omega) d\omega + Const$$

$$\overline{V}(z,t) = u - iv = \frac{\partial \Phi(z,t)}{\partial z} = \overline{V}_{\infty} + \frac{1}{2\pi i} \int_{L_{d}(t)} \frac{f(\omega,t)}{z-\omega} d\omega + \frac{1}{2\pi i} \int_{L_{v}(t)} \frac{f(\omega,t)}{z-\omega} d\omega$$
(8)

Умова на детермінованої границі $L_{_{d}}$

Умова на вільної границі

$$\begin{cases}
z = \omega_{d}(t) \in L_{d}, & t \geq t_{0}: \\
Re\left\{\frac{1}{2\pi i} \int_{L_{d}} \frac{f(\omega,t)n(\omega_{d})}{(\omega_{d}-\omega)} d\omega\right\} = -Re\left\{\overline{V}_{\omega}n(\omega_{d}) + \frac{1}{2\pi i} \int_{L_{v}(t)} \frac{f(\omega,t)n(\omega_{d})}{(\omega_{d}-\omega)} d\omega\right\} \\
\int_{L_{dj}} f(\omega_{d},t) d\omega_{d} = -\int_{L_{v_{j}}(t)} f(\omega_{v},t) d\omega_{v} + C_{j}, j = 1,2,...
\end{cases}$$

$$\begin{cases}
z = \omega_{V}(t) \in L_{v}(t), & t > t_{0}: \\
\frac{d\overline{\omega}_{v}(t)}{dt} = \frac{1}{2\pi i} \int_{L_{d}} \frac{f(\omega,t)d\omega}{(\omega_{v}-\omega)} + \frac{1}{2\pi i} \int_{L_{v}(t)} \frac{f(\omega,t)d\omega}{(\omega_{v}-\omega)} + \overline{V}_{\omega}, \\
\omega_{v} = \omega_{d} \Rightarrow f(\omega_{v},t) = f(\omega_{d},t), \\
t = t_{0}: \\
L_{v}(t_{0}) = L_{v_{0}}
\end{cases}$$

$$\begin{cases}
L_{v}(t_{0}) = L_{v_{0}}
\end{cases}$$

$$\begin{cases}
L_{v}(t_{0}) = L_{v_{0}}
\end{cases}$$

$$\begin{cases}
L_{v}(t_{0}) = L_{v_{0}}
\end{cases}$$

$$P(z,t) = P_{\infty} - \rho \operatorname{Re} \left\{ \frac{\partial}{\partial t} \Phi(z,t) + \frac{\overline{V}(z,t) \cdot \overline{\overline{V}(z,t)}}{2} - \frac{V_{\infty} \cdot \overline{V_{\infty}}}{2} \right\}$$

(10)

Вхідні данні (для дискретизованої моделі)

- 1) Контур в системі координат визначається масивом маркованих точок, в яких розташовано систему дискретних особливостей:
- -Впорядкований масив точок $\{\omega_{0j}=x_{0j}+iy_{0j}\},\ j=1,...,M$ розташування дискретних особливостей: $\{x_{0j},y_{0j}\},\ j=1,...,M$

- Впорядкований масив точок колокацій $\{\omega_k = x_k + iy_k\}$, k = 1,..., M-1 розташованих між дискретних особливостей:

$$\{x_k = (x_{0k} + x_{0k+1})/2, y_k = (y_{0k} + y_{0k+1})/2 \}$$

 $k = 1,..., M-1$

-Масив нормалей, розташованих в точках колокацій:

$$\vec{n}_{k}(x_{k}, y_{k}) = (n_{xk}, n_{yk}) \qquad n_{xk} = -(y_{0k+1} - y_{0k}) / \sqrt{(x_{0k+1} - x_{0k})^{2} + (y_{0k+1} - y_{0k})^{2}}
 k = 1,..., M-1 \qquad n_{yk} = (x_{0k+1} - x_{0k}) / \sqrt{(x_{0k+1} - x_{0k})^{2} + (y_{0k+1} - y_{0k})^{2}}$$

- 2) М -кількість дискретних особливостей
- 3) Γ_0 -константа, для визначення єдиного розв'язку

4)
$$\vec{V}_{\infty} = (u_{\infty}, v_{\infty})$$
 $|\vec{V}_{\infty}| = 1$

Дискретизована модель (при $t = t_{n+1}$)

$$\vec{V_{\infty}} = (u_{\infty}, v_{\infty}) = (\cos \alpha, \sin \alpha)$$

$$\varphi(x, y, t_{n+1}) = (xu_{\infty} + yv_{\infty}) + \sum_{j=1}^{M} \frac{\Gamma_{j}(t_{n+1})}{2\pi} Arctg\left(\frac{y - y_{0j}}{x - x_{0j}}\right) + \sum_{p} \sum_{i=1}^{n+1} \frac{\gamma_{i}^{p}}{2\pi} Arctg\left(\frac{y - y_{i}^{p}(t_{n+1})}{x - x_{i}^{p}(t_{n+1})}\right)$$
(12)

$$\overrightarrow{V}(x, y, t_{n+1}) = (u_{\infty}, v_{\infty}) + \sum_{j=1}^{M} \Gamma_{j}(t_{n+1}) \overrightarrow{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n+1} \gamma_{i}^{p} \overrightarrow{V}(x, y, x_{i}^{p}(t_{n+1}), y_{i}^{p}(t_{n+1}))$$
(13)

Умова на детермінованої границі L_d

Умова на детермінованої границі $L_{_{\scriptscriptstyle \mathcal{V}}}$

$$\begin{cases}
\sum_{j=1}^{M} \Gamma_{j}(t_{n+1}) \left(\vec{n}_{k}(x_{k}, y_{k}) \cdot \vec{V}_{j}(x_{k}, y_{k}, x_{0j}, y_{0j}) \right) = \\
= -\left(\vec{n}_{k}(x_{k}, y_{k}) \cdot \vec{V}_{\infty} \right) - \sum_{p} \sum_{i=1}^{n+1} \gamma \left(n(x_{k}, y_{k}) \cdot \vec{V}(x_{k}, y_{k}, x_{i}^{p}(t_{n+1}), y_{i}^{p}(t_{n+1})) \right) \\
\sum_{j=1}^{M} \Gamma_{j}(t_{n}) = -\sum_{p} \sum_{i=1}^{n} \gamma_{i}^{p}
\end{cases}$$

$$(15)$$

 $C_P(x, y, t) = 2 \frac{p - p_{\infty}}{\rho \vec{V}_{\alpha}^2} = 1 - \frac{(\nabla \varphi)^2}{V^2} - \frac{2}{V^2} \frac{\partial \varphi}{\partial t}$

(16)

Визначення $\Gamma_1(t_{n+1}),.....,\Gamma_M(t_{n+1})$ для векторного поля швидкостей

$$\overrightarrow{V}(x, y, t_{n+1}) = (u_{\infty}, v_{\infty}) + \sum_{i=1}^{M} \Gamma_{j}(t_{n+1}) \overrightarrow{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n+1} \gamma_{i}^{p} \overrightarrow{V}(x, y, x_{i}^{p}(t_{n+1}), y_{i}^{p}(t_{n+1}))$$
(17)

Із умови

$$\left(\vec{V}(x_k, y_k, t_{n+1}) \cdot \vec{n}(x_k, y_k)\right) = 0, \quad k = \overline{1, M - 1}$$
(18)

Система лінійних алгебраїчних рівнянь

$$\begin{cases}
\sum_{j=1}^{M} \Gamma_{j}(t_{n+1}) \left(\vec{n}_{k}(x_{k}, y_{k}) \cdot \vec{V}_{j}(x_{k}, y_{k}, x_{0j}, y_{0j}) \right) = \\
= -\left(\vec{n}_{k}(x_{k}, y_{k}) \cdot \vec{V}_{\infty} \right) - \sum_{p} \sum_{i=1}^{n+1} \gamma \left(n(x_{k}, y_{k}) \cdot \vec{V}(x_{k}, y_{k}, x_{i}^{p}(t_{n+1}), y_{i}^{p}(t_{n+1})) \right)
\end{cases} (19)$$

$$\sum_{j=1}^{M} \Gamma_{j}(t_{n+1}) = -\sum_{p} \sum_{i=1}^{n+1} \gamma_{i}^{p}$$

$$k = \overline{1, M-1}$$
(20)

$$\Gamma_1(t_{n+1}),\ldots,\Gamma_M(t_{n+1})$$

Чисельний розв'язок початково-краєвої задачі відривного обтікання окремого не замкненого контуру

$$\vec{V}(x, y, t_n) = \nabla \varphi(x, y, t_n) = (u(x, y, t_n), v(x, y, t_n)) =
= \vec{V}_{\infty} + \sum_{j=1}^{M} \Gamma_j(t_n) \vec{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n} \gamma_i^p \vec{V}(x, y, x_i^p(t_n), y_i^p(t_n))$$
(22)

Вектор швидкості $V(x, y, x_{0i}, y_{0i}) = (u(x, y, x_{0i}, y_{0i}), v(x, y, x_{0i}, y_{0i}))$ визначений в (23)індукований вихором з одиничною інтенсивністю, розташованим в точці (x_{0i}, y_{0i})

$$u(x, y, x_{0i}, y_{0i}) = \frac{1}{2\pi} \cdot \frac{y_{0i} - y}{R_{0i}^2}$$
(24)

$$\begin{cases} u(x, y, x_{0i}, y_{0i}) = \frac{1}{2\pi} \cdot \frac{y_{0i} - y}{R_{0i}^2} \\ v(x, y, x_{0i}, y_{0i}) = \frac{1}{2\pi} \cdot \frac{x - x_{0i}}{R_{0i}^2} \end{cases}$$
(24)

Де
$$R_{0i} = \begin{cases} \sqrt{(x - x_{0i})^2 + (y - y_{0i})^2}, \sqrt{(x - x_{0i})^2 + (y - y_{0i})^2} > \delta \\ \delta, \sqrt{(x - x_{0i})^2 + (y - y_{0i})^2} \le \delta \end{cases}$$
 (26)

Крок по часу обирається із умови
$$\tau_n = \frac{\min(\delta_k)}{\max_{D_+^+} \left(|V| \right)}$$
 (27)

1)

3)

4)

 $\vec{V}(x, y, t_n) = (\cos \alpha, \sin \alpha) + \sum_{i=1}^{M} \Gamma_j(t_n) \vec{V}(x, y, x_{0j}, y_{0j}) + \sum_{i=1}^{M} \sum_{i=1}^{n} \gamma_i^p \vec{V}(x, y, x_i^p(t_n), y_i^p(t_n))$ (30) Визначення швидкості всіх вихорів, які визначають контур L^p_{v} що відірвався від P-

 $V_{\infty} = (u_{\infty}, v_{\infty}) = (\cos \alpha, \sin \alpha)$

 $V(x, y, t_n) = \nabla \varphi(x, y, t_n) = (u(x, y, t_n), v(x, y, t_n)) =$ $= \vec{V}_{\infty} + \sum_{i=1}^{M} \Gamma_{j}(t_{n}) \vec{V}(x, y, x_{0j}, y_{0j}) + \sum_{n} \sum_{i=1}^{n} \gamma_{i}^{p} \vec{V}(x, y, x_{i}^{p}(t_{n}), y_{i}^{p}(t_{n}))$

Послідовність кроків при моделювання кінематики

Пересування за час $\Delta t = t_{n+1} - t_n$ всіх вихорів, які визначають контур L^p що відірвався від Р- вихора: $\forall p, i=1,..,n$

 $x_i^p(t_{n+1}) = x_i^p(t_n) + u(x_i^p(t_n), y_i^p(t_n), t_n)(t_{n+1} - t_n)$ $y_i^p(t_{n+1}) = y_i^p(t_n) + v(x_i^p(t_n), y_i^p(t_n), t_n)(t_{n+1} - t_n)$

Розвязування СЛАР для визначення $\Gamma_1(t_{n+1}), \dots, \Gamma_M(t_{n+1})$

 $\gamma_{n+1}^{p} = \Gamma_{p}(t_{n})$ -інтенсивність нового вихора, який відірвався від P- вихора

 $\varphi(x, y, t_{n+1}) = (x\cos\alpha + y\sin\alpha) + \sum_{i=1}^{M} \frac{\Gamma_{j}(t_{n+1})}{2\pi} Arctg\left(\frac{y - y_{0j}}{x - x_{0j}}\right) + \sum_{p} \sum_{i=1}^{n+1} \frac{\gamma_{i}^{p}}{2\pi} Arctg\left(\frac{y - y_{i}^{p}(t_{n+1})}{x - x_{i}^{p}(t_{n+1})}\right)$ (33) $\overrightarrow{V}(x, y, t_{n+1}) = (\cos\alpha, \sin\alpha) + \sum_{i=1}^{M} \Gamma_{j}(t_{n+1}) \overrightarrow{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n+1} \gamma_{i}^{p} \overrightarrow{V}(x, y, x_{i}^{p}(t_{n+1}), y_{i}^{p}(t_{n+1}))$

(31)

(32)

Покрокове моделювання кінематики

$$\varphi(x, y, t_n) = (x\cos\alpha + y\sin\alpha) + \sum_{j=1}^{M} \frac{\Gamma_j(t_n)}{2\pi} Arctg\left(\frac{y - y_{0j}}{x - x_{0j}}\right) + \sum_{p} \sum_{i=1}^{n} \frac{\gamma_i^p}{2\pi} Arctg\left(\frac{y - y_i^p(t_n)}{x - x_i^p(t_n)}\right)$$
(35)

$$\vec{V}(x, y, t_n) = (\cos\alpha, \sin\alpha) + \sum_{j=1}^{M} \Gamma_j(t_n) \vec{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n} \gamma_i^p \vec{V}(x, y, x_i^p(t_n), y_i^p(t_n))$$
(36)

$$\vec{V}(x, y, t) = (u(x, y, t), v(x, y, t))$$
 (37)

Покрокове моделювання кінематикі

$$\vec{V}(x, y, t_n) = (u(x, y, t_n), v(x, y, t_n)) =
= \vec{V}_{\infty} + \sum_{j=1}^{M} \Gamma_j(t_n) \vec{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n} \gamma_i^p \vec{V}(x, y, x_i^p(t_n), y_i^p(t_n))$$
(38)

$$\forall p: \ \gamma_{n+1}^p = \Gamma_p(t_n); \ i = 1,...,n+1:$$

$$\begin{cases} x_i^p(t_{n+1}) = x_i^p(t_n) + u(x_i^p(t_n), y_i^p(t_n), t_n)(t_{n+1} - t_n) \\ y_i^p(t_{n+1}) = y_i^p(t_n) + v(x_i^p(t_n), y_i^p(t_n), t_n)(t_{n+1} - t_n) \end{cases}$$
 (39)
$$\gamma_{n+1}^p = \Gamma_p(t_n) \quad \text{-інтенсивність нового вихора, який відірвався від } P\text{- вихора}$$

$$\begin{cases}
\sum_{j=1}^{M} \Gamma_{j}(t_{n+1}) \left(\vec{n}_{k}(x_{k}, y_{k}) \cdot \vec{V}_{j}(x_{k}, y_{k}, x_{0j}, y_{0j}) \right) = \\
= -\left(\vec{n}_{k}(x_{k}, y_{k}) \cdot \vec{V}_{\infty} \right) - \sum_{p} \sum_{i=1}^{n+1} \gamma_{i}^{p} \left(n(x_{k}, y_{k}) \cdot \vec{V}(x_{k}, y_{k}, x_{i}^{p}(t_{n+1}), y_{i}^{p}(t_{n+1})) \right) \\
\sum_{j=1}^{M} \Gamma_{j}(t_{n}) = -\sum_{p} \sum_{i=1}^{n} \gamma_{i}^{p}
\end{cases}$$

$$(40)$$

$$k = \overline{1, M-1}$$

$$(41)$$

$$\Gamma_1(t_{n+1}), \dots, \Gamma_M(t_{n+1})$$
 (42)

$$\varphi(x, y, t_{n+1}) = (x \cos \alpha + y \sin \alpha) + \sum_{j=1}^{M} \frac{\Gamma_{j}(t_{n+1})}{2\pi} Arctg\left(\frac{y - y_{0j}}{x - x_{0j}}\right) + \sum_{p} \sum_{i=1}^{n+1} \frac{\gamma_{i}^{p}}{2\pi} Arctg\left(\frac{y - y_{i}^{p}(t_{n+1})}{x - x_{i}^{p}(t_{n+1})}\right)$$

$$\vec{V}(x, y, t_{n+1}) = (\cos \alpha, \sin \alpha) + \sum_{i=1}^{M} \Gamma_{j}(t_{n+1}) \vec{V}(x, y, x_{0j}, y_{0j}) + \sum_{i=1}^{n+1} \gamma_{i}^{p} \vec{V}(x, y, x_{i}^{p}(t_{n+1}), y_{i}^{p}(t_{n+1}))$$

$$(43)$$

Локальні особливості дискретної моделі

Параметри для забезпечення виконання умови непроникнення для нестаціонарних процесів

$$\Delta = 2\delta$$

$$\Delta = \frac{L}{M}$$

$$\delta = \frac{L}{2M}$$

Методи забезпечення виконання умови непроникнення

$$sign(\vec{R}_1 \times \vec{R}_2) > 0 \implies r \in D^+ \qquad \qquad + \qquad \qquad - \qquad sign(\vec{R}_1 \times \vec{R}_2) < 0 \implies r \in D^-$$

Визначення положення маркованої рухомої точки відносно боку елементу контуру

Забезпечення непроникнення маркованої рухомої точки відносно боку елементу контуру

Приклади графічного відображення

$$\vec{V}(x, y, t) = (u_{\infty}, v_{\infty}) + \sum_{j=1}^{M} \Gamma_{j}(t) \vec{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n(t)} \gamma_{i}^{p} \vec{V}(x, y, x_{i}^{p}(t), y_{i}^{p}(t))$$
(45)

$$\varphi(x, y, t) = (xu_{\infty} + yv_{\infty}) + \sum_{i=1}^{M} \frac{\Gamma_{i}(t)}{2\pi} Arctg\left(\frac{y - y_{0j}}{x - x_{0j}}\right) + \sum_{p} \sum_{i=1}^{n(t)} \frac{\gamma_{i}^{p}}{2\pi} Arctg\left(\frac{y - y_{i}^{p}(t)}{x - x_{i}^{p}(t)}\right)$$
(46)

$$C_{P}(x, y, t) = 2 \frac{p - p_{\infty}}{\rho \vec{V}_{\infty}^{2}} = 1 - \frac{(\nabla \varphi)^{2}}{\vec{V}_{\infty}^{2}} - \frac{2}{\vec{V}_{\infty}^{2}} \frac{\partial \varphi}{\partial t}$$

$$(47)$$

1) Обчислення поля тисків

$$\overrightarrow{V}(x, y, t) = (u_{\infty}, v_{\infty}) + \sum_{i=1}^{M} \Gamma_{j}(t) \overrightarrow{V}(x, y, x_{0j}, y_{0j}) + \sum_{i=1}^{n(t)} \gamma_{i}^{p} \overrightarrow{V}(x, y, x_{i}^{p}(t), y_{i}^{p}(t))$$

$$C_P(x, y, t) = 2 \frac{p - p_{\infty}}{\rho \vec{V}_{\infty}^2} = 1 - \frac{(\nabla \varphi)^2}{\vec{V}_{\infty}^2} - \frac{2}{\vec{V}_{\infty}^2} \frac{\partial \varphi}{\partial t}$$

$$\frac{\partial \varphi(x, y, t_{n+1})}{\partial t} = \sum_{j=1}^{M-1} \left(\vec{D}_j, \vec{V}_j(x, y, \bar{x}_j(t_{n+1}), \bar{y}_j(t_{n+1})) \right) + \sum_p \left(\vec{d}_p, \vec{V}_p(x, y, \bar{x}_n^p(t_{n+1}), \bar{y}_n^p(t_{n+1})) \right) - \sum_p \left(\vec{d}_p, \vec{V}_p(x, y, \bar{x}_n^p(t_{n+1}), \bar{y}_n^p(t_{n+1})) \right) - \sum_p \left(\vec{d}_p, \vec{V}_p(x, y, \bar{x}_n^p(t_{n+1}), \bar{y}_n^p(t_{n+1})) \right) - \sum_p \left(\vec{d}_p, \vec{V}_p(x, y, \bar{x}_n^p(t_{n+1}), \bar{y}_n^p(t_{n+1})) \right) - \sum_p \left(\vec{d}_p, \vec{V}_p(x, y, \bar{x}_n^p(t_{n+1}), \bar{y}_n^p(t_{n+1}), \bar{y}_n^p(t_{n+1})) \right) - \sum_p \left(\vec{d}_p, \vec{V}_p(x, y, \bar{x}_n^p(t_{n+1}), \bar{y}_n^p(t_{n+1}), \bar{y}_n^p(t_{n+1})) \right) - \sum_p \left(\vec{d}_p, \vec{V}_p(x, y, \bar{x}_n^p(t_{n+1}), \bar{y}_n^p(t_{n+1}), \bar{y}_n^p(t_{n+1})) \right) - \sum_p \left(\vec{d}_p, \vec{V}_p(x, y, \bar{x}_n^p(t_{n+1}), \bar{y}_n^p(t_{n+1}), \bar{y}_n^$$

$$-\sum_{j=1}^{M} \Gamma_{j}(t_{n+1}) \Big(\vec{V}_{j}(x, y, x_{0j}(t_{n+1}), y_{0j}(t_{n+1})), \vec{W}_{d}(x_{0j}(t_{n+1}), y_{0j}(t_{n+1})) \Big) -$$

$$-\sum_{p=1}^{P}\sum_{i=1}^{n+1}\delta_{i}^{p}\left(\vec{V}_{i}(x,y,x_{i}^{p}(t_{n+1}),y_{i}^{p}(t_{n+1})),\overset{\rightarrow}{W_{v}}(x_{i}^{p}(t_{n+1}),y_{i}^{p}(t_{n+1}))\right)$$

Де
$$\begin{cases} \vec{D}_j = (x_{j+1} - x_j, y_{j+1} - y_j)Q_j \\ \vec{d}_p = (x_p - x_n^p, y_p - y_n^p)q_p \end{cases} \begin{cases} \overline{x}_j = 0.5(x_{0j+1} + x_{0j}) \\ \overline{y}_j = 0.5(y_{0j+1} + y_{0j}) \end{cases} \begin{cases} \overline{x}_n^p = 0.5(x_n^p + x_{0p}) \\ \overline{y}_n^p = 0.5(y_n^p + y_{0p}) \end{cases}$$

$$C_{p}(x, y, t) = 1 - \frac{\left(\vec{V}(x, y, t)\right)^{2}}{\vec{V}_{\infty}^{2}} - \frac{2}{\vec{V}_{\infty}^{2}} \left(\frac{\partial \varphi_{\partial u n o \pi b}}{\partial t} + \frac{\partial \varphi_{\kappa o H \theta e \kappa m}}{\partial t}\right)$$

Discrete singularities and computational algorithm for accounting for flow separation

Fig.21

Transformation of the Vortex System into the System of Dipoles and Vortices

Fig.22

The transformation of the vortex system into a system of dipoles, taking into account the separation

Визначення параметрів та похідних

$$\delta_{n+1}^{\bullet} = \delta_{n+1}^{p} / (t_{n+1} - t_{n})$$

$$\dot{\Gamma}_{j}(t_{n+1}) = (\Gamma_{j}(t_{n+1}) - \Gamma_{j}(t_{n})) / (t_{n+1} - t_{n})$$

$$\hat{q}_{j} = \hat{q}_{i}(t_{n+1}) = \dot{\Gamma}_{j}(t_{n+1})$$

$$\dot{q}_{p}(t_{n+1}) = \dot{\Gamma}_{p}(t_{n+1}) + \delta_{n+1}^{p}$$

$$Q_{1} = \hat{q}_{1} \quad Q_{i} = \sum_{k=1}^{i} \hat{q}_{k} \qquad i=1,2,...,M-1.$$

Вплив нестаціонарності

$$C_{p}(x,y,t) = 1 - \frac{\left(\vec{V}(x,y,t)\right)^{2}}{\vec{V}_{\infty}^{2}} - \frac{2}{\vec{V}_{\infty}^{2}} \left(\frac{\partial \varphi_{\partial u n o \pi b}}{\partial t} + \frac{\partial \varphi_{\kappa o h b e \kappa m}}{\partial t}\right)$$

Задачі Коші для визначеня масопереносу (по видомому полю швидкості).

- 2) Задачі Коші для процесу адвекції.
- 3) Задачі Коші для масопереносу (грунту).

$$\vec{V}(x, y, t) = (u_{\infty}, v_{\infty}) + \sum_{j=1}^{M} \Gamma_{j}(t) \vec{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n(t)} \gamma_{i}^{p} \vec{V}(x, y, x_{i}^{p}(t), y_{i}^{p}(t))$$

Задачі Коші ставиться для процесу адвекції- процесу переносу пасивної домішки.

Задачі Коші ставиться для кожної i = 0,1,2,3,4,.... маркованої частинки, яка визначає контур, шо охоплює пляму пасивної домішки

$$\begin{cases}
\frac{d\vec{r}_i}{dt} = \vec{V}(\vec{r}_i, t) \\
\vec{r}_i(t_0) = \vec{r}_{0i} & i = 0,1,2,3,4,....
\end{cases}$$
(48)

Схема застосування лінійної інтерполяції при редискретизації контуру, який охоплює пляму

$$\vec{V}(x, y, t) = (u_{\infty}, v_{\infty}) + \sum_{j=1}^{M} \Gamma_{j}(t) \vec{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n(t)} \gamma_{i}^{p} \vec{V}(x, y, x_{i}^{p}(t), y_{i}^{p}(t))$$

Тестове моделювання процесу адвекції навколо перешкод різної форми («У», «З»)

A)
$$\begin{cases} \vec{r}_i(t_{n+1}) = \vec{r}_i(t_n) + \vec{V}(r_i, t_n) \Delta t \\ \vec{r}_i(t_0) = \vec{r}_{0i}, \forall i \end{cases}$$

$$\vec{V}(x,y,t) = (u_{\infty},v_{\infty}) + \sum_{j=1}^{M} \Gamma_{j}(t) \vec{V}(x,y,x_{0j},y_{0j}) + \sum_{p} \sum_{i=1}^{n(t)} \gamma_{i}^{p} \vec{V}(x,y,x_{i}^{p}(t),y_{i}^{p}(t))$$

Тестове моделювання процесу адвекції навколо перешкод різної форми («У», «З»)

A)

Б)

$$\overrightarrow{V}(x, y, t) = (u_{\infty}, v_{\infty}) + \sum_{j=1}^{M} \Gamma_{j}(t) \overrightarrow{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n(t)} \gamma_{i}^{p} \overrightarrow{V}(x, y, x_{i}^{p}(t), y_{i}^{p}(t))$$

Тестове моделювання процесу адвекції навколо перешкод різної форми («У»)

A)

$$\overrightarrow{V}(x, y, t) = (u_{\infty}, v_{\infty}) + \sum_{j=1}^{M} \Gamma_{j}(t) \overrightarrow{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n(t)} \gamma_{i}^{p} \overrightarrow{V}(x, y, x_{i}^{p}(t), y_{i}^{p}(t))$$

Б) Тестове моделювання процесу адвекції навколо перешкод різної форми («З»)

Моделювання разповсюдження забруднювача в акваторії

3) Визначеня масопереносу (по видомому полю швидкості).

$$\overrightarrow{V}(x, y, t) = (u_{\infty}, v_{\infty}) + \sum_{j=1}^{M} \Gamma_{j}(t) \overrightarrow{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n(t)} \gamma_{i}^{p} \overrightarrow{V}(x, y, x_{i}^{p}(t), y_{i}^{p}(t))$$

Масоперенос: Задачі Коші (рух грунту навколо перешкоди)

$$\begin{cases}
\frac{d\vec{r}_i}{dt} = \vec{W}(\vec{r}_i, t) \\
\vec{r}_i(t_0) = \vec{r}_{0i}
\end{cases}$$
(52)

3) Визначеня масопереносу (по видомому полю

ШВИДЖО, СТІ
$$(u_{\infty}, v_{\infty}) + \sum_{j=1}^{M} \Gamma_{j}(t) \overrightarrow{V}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n(t)} \gamma_{i}^{p} \overrightarrow{V}(x, y, x_{i}^{p}(t), y_{i}^{p}(t))$$

Задачі Коші (масоперенос грунту)

$$\begin{cases} \frac{d\vec{r}_{i}}{dt} = \vec{W}(\vec{r}_{i}, t) \\ \vec{r}_{i}(t_{0}) = \vec{r}_{0i} \end{cases} \qquad \vec{W}(r_{i}, t) = \begin{cases} \alpha \vec{V}(\vec{r}_{i}, t), \alpha < 1, \text{sk ujo } |V(r, t)| > \beta V_{\infty}, \beta > \beta_{0}; \\ 0, \text{sk ujo } |\vec{V}(r_{i}, t)| \leq \beta V_{\infty}, \beta > \beta_{0}. \end{cases}$$

Моделювання масопереносу навколо перешкоди у вигляді літери W. $\alpha = 0.3; \ \beta_0 = 2.$

$$\forall t_{n+1}: \vec{V}(x, y, t_{n+1}) = (u_{\infty}, v_{\infty}) + \sum_{j=1}^{M} \Gamma_{j}(t_{n+1}) \vec{V}_{j}(x, y, x_{0j}, y_{0j}) + \sum_{p} \sum_{i=1}^{n+1} \delta_{i}^{p} \vec{V}_{i}^{p}(x, y, x_{i}^{p}(t_{n+1}), y_{i}^{p}(t_{n+1}))$$

Розвязання задачі Коші (масоперенос грунту навколо перешкоди- W):

$$\begin{cases} \vec{r}_i(t_{n+1}) = \vec{r}_i(t_n) + \vec{W}(r_i, t_n) \Delta t \\ \vec{r}_i(t_0) = \vec{r}_{0i}, \forall i \end{cases}$$

$$\vec{W}(r_i,t) = \begin{cases} \alpha \vec{V}(\vec{r}_i,t), \alpha < 1, \text{ sk } \text{ u,o } \left| V(r,t) \right| > \beta V_{\infty}, \beta > 1; \\ \\ 0, \text{ sk } \text{ u,o } \left| \vec{V}(r_i,t) \right| \leq \beta V_{\infty}, \beta > 1. \end{cases}$$

