

A Parallel Programming Environment for Clusters of Workstations

SNOW

Prof. Dr. Wolfgang Schröder-Preikschat

GMD-FIRST

September, 2000

Outline

- Motivation
- Goals
- Overview
- Partners and respective tasks
- Schedule
- Budget
- Summary

Motivation (1)

- Parallel computing performance revisited
 - a case study: commodity vs. Custom software

Clusters are still far behind MPPs

Motivation (2)

- Commodity hardware matches custom hardware
 - a conclusion that is not true for software
- Commodity software
 - is interactive, web-based, multi-{user,tasks,...}
 - is more distributed and less parallel
- Custom software
 - is delivering high performance and low latencies
 - is dedicated to parallel computing
- Clusters call for custom software

Goals

- Developing an application—oriented environment
 - management tools
 - programming language
 - run-time support system
 - standard interfaces (POSIX, MPI)
- Validated by selected parallel appliations
 - computational fluid dynamics
 - control of complex industrial processes
- Bringing cluster performance closer to MPP

Overview

Partners

- Germany
 - Academia
 - GMD-FIRST
 - Industry
 - Genias GmbH
- Brasil
 - Academia
 - UFRGS-II, UFSC-INE, USP-LSI
 - Industry
 - ALTUS Ltda

GMD-FIRST

- Tasks
 - run-time support system
 - reuse of EPOS components
 - configuration tools
- Head
 - Prof. Dr. Wolfgang Schröder–Preikschat
- Expertise
 - PEACE parallel operating system
 - PURE embedded operating system
 - Myrinet cluster

GENIAS GmbH

- Tasks
 - CFD package port and adaptation
 - Performance analysis and validation
- Head
 - Dr. Hans–Georg Paap
- Expertise
 - Codine cluster manager
 - Commercial parallel applications

UFRGS-II

- Tasks
 - DPC++ port and adaptation
 - Parallel run–time library
- Head
 - Prof. Dr. Philippe O. A. Navaux
- Expertise
 - Parallel programming languages
 - Myrinet and SCI clusters

UFSC-INE

- Tasks
 - Run-time support system
 - Reuse of EPOS components
 - POSIX adaptation layer
- Head
 - Prof. Antônio Augusto M. Fröhlich
- Expertise
 - Nó// multicomputer
 - Aboelha operating system

USP-LSI

- Tasks
 - Cluster management tools
 - MPI adaptation layer
- Head
 - Prof. Dr. Sérgio Takeo Kofuji
- Expertise
 - **SPADE** scalable parallel architecture
 - Myrinet and ATM clusters

ALTUS

- Tasks
 - Industrial control applications
 - Performance analysis and validation
- Head
 - Eng. Luiz Francisco Gerbase
- Expertise
 - Industry automation
 - Brazilian market leader

Time Table

Travel Plan

Germany -> Brasil

	2001	2002	2003	2004
	Q1 Q2 Q3 Q4			
GMD-FIRST				
GENIAS				

Brasil -> **Germany**

	2001	2002	2003	2004
	Q1 Q2 Q3 C	Q4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
UFRGS-II				
UFSC-INE				
USP-LSI				
ALTUS				

Summary

- High-performance computing is an every growing field
- Cluster computing is the cost–effective alternative
- Parallel computing is a strategic field
 - dominated by the USA and Japan regarding MPP
 - still open for cluster–based solutions
- Brasil and Germany have competence in the field
 - strategic alliance makes both major players
- Let's enjoy SNOW in the sunshine...