Electric Circuits I Laboratory 2: Circuits with Series and Parallel Resistors

Objective:

- To become familiar with the measurements in electric circuits.
- To determine the equivalent resistances of series and parallel combinations
- To use Kirchhoff's laws

BACKGROUND & THEORY

The equivalent resistance of N resistors connected <u>in series</u> is expressed as:

$$R_{eq} = R_1 + R_2 + ... + R_N = \sum_{n=1}^{N} R_n$$

The equivalent resistance of N resistors connected <u>in parallel</u> is expressed as:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} = \sum_{n=1}^{N} \frac{1}{R_n}$$

Note: For only two resistors in parallel, the above equation reduces to:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{R_1 R_2}{R_1 + R_2}$$

Note also that for resistors of the same value in parallel this reduces to:

 $R_{eq} = R_1/2$ for two resistors

 $R_{\text{eq}} = R_1/3$ for three resistors

 $R_{eq} = R_1/4$ for four resistors

Laboratory Part 1:

Step 1: Build the simple voltage divider circuit shown below on your breadboard using the resistors shown and a DC power supply set to 20 V.

- **Step 2:** Measure the current and the two voltages shown. Also measure the resistance values.
- **Step 3:** Compare your measurements to calculated values for the voltages and current. Make a table showing the measured and calculated values as well as the percentage difference.
- **Step 4:** Compute the ratio of V_1 to V_2 and the ratio of R_1 to R_2 . How are they related?

Step 5: Modify your circuit as shown below by adding a third resistor, R_3 , connected in parallel to R_2 .

- **Step 6:** Measure the three currents and the three voltages shown. Make a table showing the measured and calculated values, and the percentage difference. Also measure the R_3 resistance value.
- **Step 7:** Compute the equivalent resistance of the parallel combination of R_3 and R_2 . How does this explain the values of I_1 and V_2 in this circuit compared to the values measured with the first circuit?
- **Step 8:** What is the ratio of I_2 to I_3 ? What is the ratio of R_2 to R_3 ? How are they related?
- **Step 9:** Modify your circuit by adding a fourth resistor, R_4 , connected in parallel to R_2 and R_3 with $R_4 = 1.2 \text{ k}\Omega$.
- **Step 10:** Measure the currents through and voltages across each resistor. Make a table showing the measured and calculated values, and the percentage difference. Compute the equivalent resistance of the three measured resistors connected in parallel. How is the current I_1 divided by the three resistors connected in parallel?

Laboratory Part 2:

$$R_1 = 1.2 \text{ k}\Omega$$
, $R_2 = 5.6 \text{ k}\Omega$, $R_3 = 3.3 \text{ k}\Omega$, $R_4 = 4.7 \text{ k}\Omega$, $R_5 = 2.7 \text{ k}\Omega$, $R_6 = 1.2 \text{ k}\Omega$

- **Step 1:** Build the circuit shown above on the breadboard, using a DC power supply Vs set to 20V and leaded resistors for R_1 , R_2 , R_3 , R_4 , R_5 , and R_6 .
- **Step 2:** Measure all the currents and voltages in the circuit, including Vs. Make a table showing the percentage difference between measured and calculated values.
- **Step 3:** Write Kirchhoff's Current Law for each node, and from your measurements, verify that KCL is satisfied at each node. If there is any discrepancy, recheck your measurements.
- **Step 4:** Write Kirchhoff's Voltage Law for each loop, and from your measurements, verify that KVL is satisfied for each loop. If there is any discrepancy, recheck your measurements.

Step 5: With the ohmmeter, measure that equivalent resistance of the circuit as shown in the figure below. Compare it to the theoretical value calculated in the pre-lab.

- **Step 6:** Use the measured value of the voltage V_S and the current I_1 from Step 2 to calculate the equivalent resistance. Compare this value to your measurement from Step 5.
- **Step 7:** If R₆ were replaced by an unknown resistor value, how could you find the value of R₆ from measurement and calculation method?

Laboratory Report:

Include all measurements, computations, tables, and answers to all questions from the laboratory procedure. Clearly label all steps.

Pre-lab:

Read all steps in the lab procedure and complete the following theoretical calculations **prior to coming to the lab**. These calculations are based on the ideal component values given in the lab procedure.

In Part 1

- Step 2 Calculate the theoretical values of the current and the two voltages specified in Step 2 of the lab procedure.
- o Step 4 Calculate the ideal ratio of V_1 to V_2 and the ratio of R_1 to R_2 .
- Step 6 Calculate the currents and voltages specified in Step 6.
- \circ Step 7 Calculate the equivalent resistance of the parallel combination of R_3 and R_2 .
- \circ Step 8 Calculate the ratio of I_2 to I_3 , and the ratio of R_2 to R_3 .
- Step 10 Calculate the currents and voltages specified in Step 10, as well as the equivalent resistance of the three parallel resistors.

• In Part 2

- Calculate all currents and voltages specified in Step 2.
- Calculate the theoretical value of the equivalent resistance of the circuit from Part 2. To do this,
 - First calculate Req₅₆, the equivalent resistance of R₅ and R₆ connected in series.
 - Then calculate Req₄₅₆, the equivalent resistance of Req₅₆ and R₄ connected in parallel.
 - Continue this process until you have the total equivalent resistance for the circuit shown in Step 5 of the lab procedure.