

Merchant Recommendation using Sentiment Analysis to increase profitability

Targeting potential Merchants through organic reviews

Group 2

GreatNusa Data Science Training

May 2023

EPICC

Live an EPICC Life

CIMB Proprietary / For Internal Use Only Proprietary of Decision Management

03

Meeting agenda

01

Overview

- Background
- Proposed Solution
- Objective
- Potential Benefit

02

Data, Analysis & Results

- Approach & Data Overview
- Model Result
- Scoring & Category

Conclusion

Overview – Background, Proposed Solution & Potential Benefits

Background

Merchant Code Category (MCC) Analysis provides an overview of Customer **CC** Spending Behavior

Targeted campaigns & **Identify merchants** for partnership

However, CIMB Niaga only use Internal data for Analysis

Can we leverage External Data to **better identify** which merchant to approach? *Give 4 out of 5 Stars but negative review However, scoring from external data might not be reliable

Proposed Solution

Sentiment Analysis

predict potential merchants that will have positive sentiments in the future

Scoring Sentiment

Comprehensive understanding the consistency of the sentiment each merchant

Category of Quality Drivers Prediction

Comprehensive predict of categorize that drives the sentiments of each merchant.

Objective

Enhance CIMB Niaga's *ability to* identify potential merchants

Increase Profitability through credit-card and merchant partnership campaigns

NTB Acquisition

Reducing Campaign Cost as a result of better targeting

Potential Benefit

Revenue Uplift from **CC** Transaction

Approach & Data Overview

& Region

Approach

IdentifyTop MCC

MCC Category:

Restaurant

Clothing Store

Region: Jakarta Pusat

Extract Data from External Data

Initial Data: Google Google Reviews

Sentiment **Analysis** Modelling

Tested 4 Models:

Random Forest

Decision Tree

Naïve Bayes

MLP

Create Scoring to Capture Trend Sentiment

Scoring Criteria:

Positive

Years Passed

Probability Sentiment

Category:

Categorize

what drives

the sentiment

Quality of Service

Price

Convenient Place

Quality of **Products**

Identify **Potential** Merchants

Strictly Private and Confidential

Extracted Data from Google Reviews 4.9 K

2.4 K

Clothing Store

Data Preprocessing & Model Selection

Data Preprocessing

LowerText

2 Remove Numbers 3 Remove Punctuation

Stemming

Vectorization (TfidfVectorizer)

Model Selection Multi Classification Model (Target: Positive, Neutral, Negative)

• Train & Test Split = 0.8: 0.2

• Total Dataset for Training & Testing = 16,972

2.		T . (-1		
Data	Positive	Neutral	Negative	Total
Data Train (80%)	5,896	5,896	5,236	13,577
Data Test (20%)	1,474	1,309	612	3,395
Total Dataset (100%)	7,370	6,545	3,057	16,972

	Random Forest	Decision Tree	MLP	Naive Bayes
Parameter	Value	Value	Value	Value
Accuracy	0.82	0.78	0.77	0.53
Precision	0.81	0.78	0.77	0.68
Recall	0.82	0.78	0.77	0.53
F-1 Score	0.82	0.78	0.77	0.53
Cross- Validation	0.80	0.76	0.75	0.51

Key Highlight:

Therefore, for Sentiment Analysis, we are using Random Forest Model, since it has the highest model performance result.

Scoring Sentiment to Capture Trend

To capture the sentiment trend of each merchant, we use scoring to assign weight based on last review year. The most recent year will have higher weight than previous year

Year	Weight	Probability of Positive Sentiment	Scoring Per Year
Year 0 & - 1 (2023 – 2022)	45%		0.45 * Probability of positive sentiment
Year -2 & -3 (2021 – 2020)	35%	Total Positive Sentiment / Total Review In respectively each year's group	0.35 * Probability of positive sentiment
<= Year -4 (<=2019)	20%	sepecare., caon your o group	0.2 * Probability of Positive Sentiment
	Total Scoring each Year's Group		

Capture & Prioritizemerchants who are **growing & consistently** have
positive sentiment.

Illustration

Shabu-Shabu Le-Ta-Su

Location = Grand Indonesia Total Review = 89

Year	Total Review	Total Positive Sentiment Review
Year 0 & -1 (2023 - 2022)	58	49
Year -2 & -3 (2021 - 2020)	14	8
<= Year -4 (<=2019)	17	10
Total	89	67

Higher Weight

Year	Weight	Probability of Positive Sentiment	Scoring per Year
Year 0 & -1 (2023 - 2022)	45%	49/58 = 0.845	0.45 * 0.845 = 0.380
Year -2 & -3 (2021 - 2020)	35%	8/14 = 0.571	0.35 * 0.571 = 0.2
<= Year -4 (<=2019)	20%	10/17 = 0.588	0.2 * 0.588 = 0.118
Т	otal Scoring		0.7

From this scoring we were able to see the **positive sentiment trend** for **Shabu-Shabu Le-Ta-Su**.

We can conclude that this merchant **consistently have positive**

sentiment.

Sentiment Drivers

Now we were able to identify Merchants who consistently have positive sentiment or consistently have negative sentiment. To *analyze further*, we categorize *what drives these sentiments*.

Positive Sentiment

Negative Sentiment

Using these word clouds, we categorize into 4 groups:

Price Quality of Product

Quality of Service

Convenient Place

Since there are still no data training for these qualities categorization, therefore, we are using *indexing* to *categorize the qualities*.

Impact of Categories to Sentiment

Consistent Scoring

Grand Café Total Scoring = 0.81

Quality of Service Quality of Products Price Convenient Place

Inconsistent Scoring

McDonalds Total Scoring = 0.77

Quality of Service Quality of Products

Price

Convenient Place

V

Key Highlight*:

For **restaurant merchant**, that have **at least 2 qualities**, usually have **increasing or stable positive sentiment value**. However, **restaurant merchant** that only have **1 qualities** usually have **inconsistent** of **positive sentiment value**.

Strictly Private and Confidential

Result: Top Merchant – Based on MCC

From our modelling, we recommend CIMB Niaga to tap into the following merchants:

		Re	staurar	nt			Clo	hing S	tore	
Manakanthana	(SUSHI 1 E I	GRAND · CAFE·	M		LE-TA-SU	eague:	POLO	UNI QLO	THE EXECUTIVE	& matahari
Merchant Name	Sushi Tei	Grand Cafe	McD	Kayu Manis	Shabu – Shabu Le-Ta-Su	League	Polo	Uniqlo	The Executive	Matahari
Total Scoring	0.84	0.81	0.77	0.74	0.69	0.93	0.75	0.72	0.72	0.63
Quality of Service										
Quality of Products										
Price										
Convenient Place		⊘	⊘							

Key Highlight:

Across **Restaurant** and **Clothing Store** MCC, the main driver is **Quality of Products.**For **Restaurant**, merchant with 1 driver have tendency to have **inconsistent positive sentiment** value

Conclusion & Whats Next

Conclusion

- Sentiment Analysis model used is Random Forest. The model has an *Accuracy* of **0.82** & *Cross-Validation* of **0.80**
- Restaurant merchant that have at least 2 drivers tend to have increasing or stable positive sentiment value, while merchants with 1 driver tend to be more inconsistent. This result may differ depending on the MCC.
- For MCC Restaurant & Clothing Store, the *main driver* is *quality of products*
- In total, there are 10 Merchants that are recommended for tap-in, 5 for Restaurants and 5 for Clothing Store

Recommendation & Next Action Plan

Tap into more external Data

For Future exercise there is possibility to use social media data such as Instagram & Twitter

More Specified MCC

Possibility to expand MCC into more defined subcategories for better analysis.

For future categorization qualities driver prediction will use modelling

Since data training is already available from this exercise, we no longer need to use indexing.

Thank You

Appendix

13

Doto		Target		Total
Data	Positive	Neutral	Negative	TOtal
Data Train (80%)	5,896	5,236	2,445	13,577
Data Test (20%)	1,474	1,309	612	3,395
Total Dataset (100%)	7,370	6,545	3,057	16,972

Year	Weight	Probability of Positive Sentiment	Scoring per Year
Year 0 & -1 (2023 - 2022)	45%	Total Positive	0.45 * Probability of positive sentiment
Year -2 & -3 (2021 – 2020)	35%	Sentiment / Total Review in respectively	0.35 * Probability of positive sentiment
<= Year -4 (<=2019)	20%	each year's group	0.2 * Probability of positive sentiment
Т	otal Scoring		Total of Scoring each Year's Group

Quality of Service	Quality of Products	Price	Convenient Place
	V		V
Quality of Service	Quality of Products	Price	Convenient Place

V