§1 Lecture 11-11

Definition 1.1 (Weierstrass). The ϵ definition of the limit of a function.

Let $f:A\subseteq\mathbb{R}\to\mathbb{R}$, and $x_0\in\mathbb{R}$. We say that L is a limit of f as x approaches x_0 if:

$$\forall \epsilon > 0, \ \exists \delta > 0, \ \forall x \in A : 0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \epsilon$$

This can be rewritten in several ways:

1.

$$\forall \epsilon > 0, \ \exists \delta > 0 : x \in V_{\delta}^*(x_0) \cap A \Rightarrow f(x) \in V_{\epsilon}(L)$$

2. $\forall \epsilon > 0, \ \exists \delta > 0 : f(V_{\delta}^*(x_0) \cap A) \subseteq V_{\epsilon}(L)$

Theorem 1.2

Let $f: A \to \mathbb{R}$ be a function. Let $x_0 \in \mathbb{R}$ and $L \in \mathbb{R}$. Then:

$$\lim_{x \to x_0} f(x) = L$$

in the sequential sense if and only if this holds in the $\epsilon - \delta$ sense.

Proof.

1. " $\epsilon - \delta \Rightarrow$ Sequential":

Let $\epsilon > 0$. Let $\delta > 0$ be such that $f(V_{\delta}^*(x_0) \cap A) \subseteq V_{\epsilon}(L)$.

Let (x_n) be a sequence in $A \setminus \{x_0\}$ with $\lim(x_n) = x_0$. Then $\exists N \in \mathbb{N}, \ \forall n \ge N : x_n \in V_{\delta}(x_0)$.

We also have that $x_n \neq x_0$ and $x_n \in A$ for all $n \in \mathbb{N}$. This implies that

$$\forall n \ge N : x_n \in V_{\delta}^*(x_n) \cap A$$

$$\Rightarrow \forall n \ge N : f(x_n) \in V_{\epsilon}(L)$$

$$\Rightarrow (f(x_n)) \text{ converges } toL$$

2. "Sequential $\Rightarrow \epsilon - \delta$ ":

Assume that the sequential definition holds but that there exists $\epsilon > 0$ for which ulno $\delta > 0$ exists that satisfies $\epsilon - \delta$.

i.e. assume that $f(V_{\delta}^*(x_0) \cap A) \not\subseteq V_{\epsilon}(L)$ for all $\delta > 0$. Especially:

$$\delta = 1: \quad f(V_1^*(x_0) \cap A) \not\subseteq V_{\epsilon}(L)$$

$$\Rightarrow \exists x_1 \in V_1^*(x_0) \cap A \text{ such that } f(x_1) \notin V_{\epsilon}(L)$$

$$\delta = \frac{1}{2}: \quad f(V_{\frac{1}{2}}^*(x_0) \cap A) \not\subseteq V_{\epsilon}(L)$$

$$\Rightarrow \exists x_2 \in V_{\frac{1}{2}}^*(x_0) \cap A \text{ such that } f(x_2) \notin V_{\epsilon}(L)$$

:

We then obtain a sequence (x_n) such that $x_n \in V_{\frac{1}{2}}^*(x_0) \cap A$ but $f(x_n) \notin V_{\epsilon}(L)$.

Thus $\lim(x_n) = x_0$ but $(f(x_n))$ does <u>not</u> converge to L. This contradicts the sequential definition of limit.

Thus $\exists \delta > 0$ such that $f(V_{\delta}^*(x_0) \cap A) \subseteq V_{\epsilon}(L)$.

Example 1.3

Show that:

$$\lim_{x \to x_0} x^2 = x_0^2$$

Solution.

1. Sequential:

Let (x_n) be a sequence in $\mathbb{R} \setminus \{x_0\}$ with $\lim(x_n) = x_0$. Then $\lim(f(x_n)) = \lim(x_n^2) = [\lim(x_n)]^2 = x_0^2$

2. $\epsilon - \delta$:

Let $\epsilon > 0$. Let $\delta > 0$ be arbitrary for now and assume that $|x - x_0| < \delta$.

$$|f(x) - f(x_0)| = |x^2 - x_0^2| = \underbrace{|x - x_0|}_{<\delta} \cdot |x + x_0|$$

$$\Rightarrow < |x + x_0|\delta = |x - x_0 + 2x_0|\delta \le (|x - x_0| + 2|x_0|)\delta$$

$$< (\delta + 2|x_0|)\delta < (\delta + 2|x_0|) \cdot \delta < \epsilon$$

Assume that $\delta < 1$. Then $|f(x) - f(x_0)| < (\delta + 2|x_0|)\delta < (1 + 2|x_0|)\delta < \epsilon$

Now let:

$$\delta < \min(1, \frac{\epsilon}{1 + 2|x_0|})$$

Then if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \epsilon \Rightarrow$

$$\lim_{x \to x_0} x^2 = x_0^2$$

Example 1.4

$$f: \mathbb{R}\{0\} \to \mathbb{R}, x \to \frac{1}{x}$$

Let $x_0 \in \mathbb{R} \setminus \{0\}$. Show that:

$$\lim_{x \to x_0} \frac{1}{x} = \frac{1}{x_0}$$

Solution.

1. Sequential:

Let (x_n) be a sequence in $\mathbb{R} \setminus \{0, x_0\}$ with $\lim(x_n) = x_0$. Then:

$$\lim(f(x_n)) = \lim(\frac{1}{x_n}) = \frac{1}{\lim(x_n)} = \frac{1}{x_0}$$

2. With $\epsilon - \delta$:

Let $\epsilon > 0$. Let $\delta > 0$ be arbitrary for now. Let $|x - x_0| < \delta$. Then:

$$|f(x) - f(x_0)| = \left| \frac{1}{x} - \frac{1}{x_0} \right| = \left| \frac{x_0 - x}{x x_0} \right|$$
$$= \frac{|x - x_0|}{|x||x_0|} < \frac{\delta}{|x||x_0|}$$

Let $\delta < \frac{1}{2}|x_0|$. Then for all x with $|x - x_0| < \delta$ we have:

$$|x| = |(x - x_0) + x_0| \ge |x| - |x - x_0| > |x_0| - \frac{1}{2}|x_0| = \frac{1}{2}|x_0|$$

i.e. $|x| \ge \frac{1}{2}|x_0|$ Now:

$$|f(x) - f(x_0)| < \frac{\delta}{|x||x_0|} \le \frac{\delta}{\frac{1}{2}|x_0||x_0|} = \frac{2\delta}{x_0^2} < \epsilon$$

$$\Leftrightarrow \delta < \frac{x_0^2}{2} \cdot \epsilon$$

Let $\delta < \min(\frac{1}{2}|x_0|, \frac{1}{2}x_0^2\epsilon)$. Then if $|x - x_0| < \delta$, we have that:

$$|f(x) - f(x_0)| < \epsilon \Rightarrow \lim_{x \to x_0} \frac{1}{x} = \frac{1}{x_0}$$

§1.1 Limit Laws

Theorem 1.5 (Limit of a Sum is the Sum of the Limits)

Let $f, g: A \to \mathbb{R}$, and x_0 be a cluster point of A. Assume that $\lim_{x \to x_0} f(x) = L_1$ and that $\lim_{x \to x_0} g(x) = L_2$.

Then

$$\lim_{x \to x_0} [(f+g)(x)] = \lim_{x \to x_0} [f(x) + g(x)] = L_1 + L_2$$
$$= \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

i.e.

$$\lim_{x \to x_0} [(f+g)(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

Proof. We'll use the sequential criterion to prove this theorem. Let (x_n) be a sequence in $A \setminus \{x_0\}$ with $\lim(x_n) = x_0$. Then

$$\lim((f+g)(x_n)) = \lim(f(x_n) + g(x_n))$$

$$= \lim(f(x_n)) + \lim(g(x_n)) = L_1 + L_2 = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

Theorem 1.6 (Limit of a Product is the Product of the Limits)

Let $f, g: A \to \mathbb{R}$ and x_0 be a cluster point of A. Assume that $\lim_{x\to x_0} g(x)$ exist. Then:

$$\lim_{x\to x_0}[(f\cdot g)(x)]=\lim_{x\to x_0}[f(x)\cdot g(x)]=\lim_{x\to x_0}f(x)\cdot \lim_{x\to x_0}g(x)$$

Proof. Let (x_n) be a sequence in $A \setminus \{x_0\}$ with $\lim(x_n) = x_0$. Then:

$$\lim_{x \to x_0} [(f \cdot g)(x)] = \lim(f(x_n) \cdot g(x_n)) = \lim(f(x_n)) \cdot \lim(g(x_n)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Especially, let $c \in \mathbb{R}$. Then

$$\lim_{x\to x_0}[c\cdot f(x)]=c\cdot \lim_{x\to x_0}f(x)\quad \text{Think of it as choosing }g=c$$

Therefore:

$$\begin{split} \lim_{x \to x_0} [f(x) - g(x)] &= \lim_{x \to x_0} [f(x) + (-1) \cdot g(x)] = \lim_{x \to x_0} f(x) + \lim[(-1)g(x)] \\ &= \lim_{x \to x_0} f(x) + (-1) \lim_{x \to x_0} g(x) = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x) \\ &\Rightarrow \lim_{x \to x_0} [f(x) - g(x)] = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x) \end{split}$$

Theorem 1.7

Let $f, g: A \to \mathbb{R}$ and x_0 be a cluster point of A. Furthermore, let $\forall x \in A, \ g(x) \neq 0$ and let $\lim_{x \to x_0} f(x), \lim_{x \to x_0} g(x)$ exist where $\lim_{x \to x_0} g(x) \neq 0$. Then:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$