Making Claims with Data

Unit 4

Nepal Data Literacy Program, 2019

Organized by

Supported by

Objectives of the Unit

- Get acquainted with data and underlying context
- Become familiar with group characteristics of data
- Learn what can and cannot be implied by data
- How all of this leads to better decision-making

Image source: Cookerly.com

Module 1 Getting Familiar With the Context

Number of O-Ring incidents vs. Joint Temperature

(Incidents when O-Rings failed)

Number of O-Ring incidents vs. Joint Temperature (failures AND successes)

STS 51-C Field Joint 2

"A careful analysis of the flight history of O-ring performance would have revealed the correlation of O-ring damage in low temperature"

Credit: http://bit.ly/2XFfb7y

Question of Interest?

Internal Data

External Data

What is a Claim?

• Claim = Statistical Inquiry

• Clear and Precise

Men are taller than women

Men are generally taller than women

On an average, men are 10 cm taller than women

A good claim has to be grounded in data

Group of Measurements

Group of Measurements

Measures how well an individual score represents the distribution

Measures of Variability - Variance

$$= \frac{206^{2} + 76^{2} + (-224)^{2} + 36^{2} + (-94)^{2}}{5}$$

$$= \frac{42436 + 5776 + 50176 + 1296 + 8836}{5}$$

$$= \frac{108520}{5}$$

$$= 21704$$

$$= \frac{206^{2} + 76^{2} + (-224)^{2} + 36^{2} + (-94)^{2}}{5}$$

$$= \frac{42436 + 5776 + 50176 + 1296 + 8836}{5}$$

$$= \frac{108520}{5}$$

$$= 21704$$

Measures of Variability - Std Dev

- $= \sqrt{21704}$
- = 147.32...
- = **147** (to the nearest mm)

- About a group
- A statistical statement something that varies within the group
- Uses language that recognizes that variability

- Phrased with Precision we use:
 - Words describing proportions like: some, most
 - Percentages
 - Proportions

Most Nepalese live in a city

- About a group (or groups) → Nepalese is a group
- A statistical statement → Living in a city is a measure that changes
- Uses language that recognizes variability → Use of Qualifier "Most"

Is that a CLAIM?

Most Nepalese live in a city

- About a group (or groups) → Nepalese is a group
- A statistical statement → Living in a city is a measure that changes
- Uses language that recognizes variability → Use of Qualifier "Most"

Is that a CLAIM?

Is that CLAIM precise?

Pokhara is the capital of Gandaki

Is that a CLAIM?

Pokhara is the capital of Gandaki

Is that a CLAIM?

It does not anticipate variability in the data. It is just a fact which one can verify by looking up on the map

Gandaki is bigger than Karnali

Is that a CLAIM?

Gandaki is bigger than Karnali

Is that a CLAIM?

The group in this claim could be all the people in Gandaki or Karnali, and the thing that varies is which city they live in

Gandaki is bigger than Karnali

Is that a CLAIM?

Is that CLAIM precise?

A Word of Caution ...

- One must also consider the data in terms of possible biases that could influence or even distort its characteristics and content
- Data never contains absolute truths, only relative truths that offer one a more or less useful view of a problem
- Always be aware of the truthfulness of data and apply critical reasoning as part of your analysis of it

Module 2

Assess Validity of Claims

What is Validity?

- Appropriateness of inferences drawn from data
- Implies purpose for which inferences are drawn

example
use of information
posted at Facebook
and other
social media sites
by employers
to make hiring decisions
(i.e., predictions about
future job performance)

How to Assess a Claim?

- Understand the data available values
- Understand the data unavailable or missing values
- Understand the data relationships
- Understand the data visualizations

Meta Data

Metadata, you see, is really a love note - it might be to yourself, but in fact it's a love note to the person after you, or the machine after you, where you've saved someone that amount of time to find something by telling them what this thing is.

- Jason Scott

Meta Data - Types

Metadata - Example

Metadata - Example

A	В	C	D	E
Country Code	Region	IncomeGroup	SpecialNotes	TableName
ABW	Latin America & Caribbean	High income		Aruba
AFG	South Asia	Low income		Afghanistan
AGO	Sub-Saharan Africa	Lower middle income		Angola
ALB	Europe & Central Asia	Upper middle income		Albania
AND	Europe & Central Asia	High income		Andorra
ARB			Arab World aggregate. Arab World is composed of members of the League of Arab States.	Arab World
ARE	Middle East & North Africa	High income		United Arab Emirates
ARG	Latin America & Caribbean	Upper middle income		Argentina
ARM	Europe & Central Asia	Upper middle income		Armenia
ASM	East Asia & Pacific	Upper middle income		American Samoa
ATG	Latin America & Caribbean	High income		Antigua and Barbuda
AUS	East Asia & Pacific	High income	Fiscal year end: June 30; reporting period for national accounts data: FY.	Australia
AUT	Europe & Central Asia	High income	A simple multiplier is used to convert the national currencies of EMU members to euros. The following irrevocab	e Austria
AZE	Europe & Central Asia	Upper middle income		Azerbaijan
BDI	Sub-Saharan Africa	Low income		Burundi
BEL	Europe & Central Asia	High income	A simple multiplier is used to convert the national currencies of EMU members to euros. The following irrevocab	e Belgium
BEN	Sub-Saharan Africa	Low income		Benin
BFA	Sub-Saharan Africa	Low income		Burkina Faso
BGD	South Asia	Lower middle income	Fiscal year end: June 30; reporting period for national accounts data: FY.	Bangladesh
BGR	Europe & Central Asia	Upper middle income		Bulgaria
BHR	Middle East & North Africa	High income		Bahrain
BHS	Latin America & Caribbean	High income		Bahamas, The
BIH	Europe & Central Asia	Upper middle income		Bosnia and Herzegovina
BLR	Europe & Central Asia	Upper middle income	Data before 2015 were adjusted to reflect the new denomination effective from July 1, 2016 (BYN), a decrease of	1 Belarus
DI 7	Latin Amarica O Caribbaan	Hanne middle income		Bolizo

Understand the data

Secondary Data Primary Data

Secondary Data - Sources

Internal Data External Data

Secondary Data

Advantages

Disadvantages

Secondary Data - Extending Limits

- Identify Potential Gaps
- Plug External Data
- Feature Engineering
- Discover New Insights

Identify Potential Gaps

No Geospatial Information

नेपालमा हेलिकोप्टर दुर्घटनाको इतिहास

मिति (सन्)	हेलिकोप्टर कम्पनी	दुर्घटना स्थल	मृतक संख्या
9999	मीभीआईपी	लाड्टाड्	Ę
9993	हिमालयन हेलि	लाब्टाब्	0
१९९६	नेपाल एयरवेज	सोताङ्	۰
9990	कर्णाली	थुपोन छोलिङ्	٩
9990	गोरखा एयरलाइन्स	कालिकोट	0
9996	मीमीआईपी	दिपायल	0
999८	एसियन एयरलाइन्स	मूल खर्क	3
9999	कर्णाली एयर	लिसंखु, सिन्धुपाल्वोक	0
9999	मनकामना एयरवेज	रामेछाप	0
2009	एयर अनन्य	मिमी	0
2009	फिस्टल एयर	रारा ताल	¥

2

S.N.	Date of Accident	A/C Reg. No.	Type of A/C	Operator/Owner	Place of Accident	Fatality	Survival	Remarks
1	27/12/1979	9N RAE	Allutte-III	VVIP	Langtang	6	0	
2	27/04/1993	9N ACK	Bell-206	Himalayan Helicopter	Langtang	0		Closed operation
3	24/01/1996	9N ADM	MI-17	Nepal Airways	Sotang	0	3	Closed operation
4	30/09/1997	9N AEC	AS-350	Karnali Air	Thupten Choling	1	4	Closed operation
5	13/12/1997	9N ADT	MI-17	Gorkha Airlines	Kalikot	0		Closed operation
6	04/01/1998	9N RAL	Bell-206	VVIP Flight	Dipayal			
7	24/10/1998	9N ACY	AS-350B	Asian Airlines	Mul Khark	3	0	Closed operation
8	30/04/1999	9N AEJ	AS-350BA	Karnali Air	Lisunkhu, Sindhupalchowk	0		Closed operation
9	31/05/1999	9N ADI	AS-350B2	Manakamana Airways	Ramechhap	0	2	Closed operation
10	11/09/2001	9N ADK	MI-17	Air Ananya	Mimi	0	5	Renamed as Shree Airlines
11	12/11/2001	9N AFP	AS-350B	Fishtail Air	Rara Lake, Mugu	4	2	
12	12/05/2002	9N AGE	AS 350B2	Karnali Air	Makalu Base Camp	0	1	Closed operation
13	30/09/2002	9N ACU	MI-17 (MI8-MTV)	Asian Airlines	Sholumkhumbu*	0	None	Closed operation

- + district
- + lat-long (based on location)

Plug External Data

Covers large population of mobile phone users

Potential to track hardto-reach populations

Timely information

Loss of information due to anonymization

Data access

Surveillance and privacy issues

Geo-located social media data and online media content

Richness of information

Potential to track hardto-reach populations

Timely information on users' location

Reliability of self-reported information

Selection bias

Privacy and ethical issues

Plug External Data

Feature Engineering

- How GDP and Population can be combined to give GDP Per Capita
- How profit and cost can be combined to calculate revenue

Primary Data

Advantages

Disadvantages

Primary Data - Types

Survey

Observation

Primary Data - Survey Techniques - Comparison

	Remote Survey (Mail,	Telephone Survey	In-Person Survey (Mall
	Internet etc)		Intercept, etc)
Cost	LEAST	MODERATE	MOST
Ability to ask complex questions	LITTLE	SOME	MUCH (Interviwer can show
	(Self-administered format	(Interviewer can probe and	visuals, probe, establish
	must be short and simple)	elaborate)	rapport)
Opportunity for Interviewer to bias results	NONE	SOME	SIGNIFICANT
	(Form is completed without	(Because of voice inflection	(Voice and Facial
	interviewer)	of interviwer)	expression of interviewer)
Anonymity for Respondent	COMPLETE	SOME	LITTLE
	(No signature is needed)	(Because of telephone contact)	(Because of face-to-face contact)

Bias

- Carryover Effect
- Practise Effect
- Fatigue Effect

Blind Men and the Elephant

- None of them were wrong, but none of them were right either
- One can come across the some problem when one is looking at data

- Understand the data available values
- Understand the data unavailable or missing values

Missing Values

- Missing Completely at Random (MCAR)
 - The Good
- Missing At Random (MAR)
- Missing Not At Random (MNAR)

Complete data		
Age	IQ score	
25	133	
26	121	
29	91	
30	105	
30	110	
31	98	
44	118	
46	93	
48	141	
51	104	
51	116	
54	97	

Incomplete data		
Age	IQ score	
25		
26	121	
29	91	
30		
30	110	
31		
44	118	
46	93	
48		
51		
51	116	
54		

Missing Values

- Missing Completely at Random (MCAR)
- Missing At Random
 (MAR) The Bad
- Missing Not At Random (MNAR)

Complete data		
Age	IQ score	
25	133	
26	121	
29	91	
30	105	
30	110	
31	98	
44	118	
46	93	
48	141	
51	104	
51	116	
54	97	

Incomplete data		
Age	IQ score	
25		
26		
29		
30		
30		
31		
44	118	
46	93	
48	141	
51	104	
51	116	
54	97	

Missing Values

- Missing Completely at Random (MCAR)
- Missing At Random (MAR)
- Missing Not At Random (MNAR) –
 The Ugly

Complete data		
Age	IQ score	
25	133	
26	121	
29	91	
30	105	
30	110	
31	98	
44	118	
46	93	
48	141	
51	104	
51	116	
54	97	

Incomplete data		
Age	IQ score	
25	133	
26	121	
29		
30		
30	110	
31		
44	118	
46		
48	141	
51		
51	116	
54		

- Understand the data available values
- Understand the data unavailable or missing values
- Understand the data relationships

$$y = m x + c$$

Independent vs Dependent Variable

- Intentionally manipulated
- Controlled
- Vary at known rate
- Cause

- Intentionally left alone
- Measured
- Vary at unknown rate
- Effect

Control Variable

Factors or conditions that are kept the same (unchanged) in an experiment

Does changing the color of light maffect the growth rate of plants?

Does changing the color of light marked the growth rate of plants?

Does changing the color of light marked the growth rate of plants?

- Same type / size of plant
- Same amount of water
- Same soil
- Same exposure to light
- etc...

Does the size of a parachute affect the time it takes a hippo to free fall to the ground?

Does the size of a parachute affect the time it takes a hippo to free fall to the ground?

Does the size of a parachute affect the time it takes a hippo to free fall to the ground?

- Same hippo
- Same drop height
- Same parachute fabric
- Same length of strings
- etc...

Correlation vs Causation

Correlation -

A mutual connection or relationship between two or more things

Relationship is almost LINEAR

Correlation vs Causation

Correlation -

A mutual connection or relationship between two or more things

Correlation vs Causation

Correlation Coefficient (r)
 Degree to which there is a linear relationship between the variables

Causation

One event or state is the result of the occurrence of another event or state

Causation

One event or state is the result of the occurrence of another event or state

Credit: http://bit.ly/2NqFcUg

Causation

One event or state is the result of the occurrence of another event or state

Causation

One event or state is the result of the occurrence of another event or state

Credit: http://bit.ly/2NqFcUg

Causation

One event or state is the result of the occurrence of another event or state

How to Assess a Claim?

- Understand the data available values
- Understand the data unavailable or missing values
- Understand the data relationships
- Understand the data visualizations

Red Herring

- Something that misleads or distracts from a relevant or important question
- May be intentional, or unintentional

Enlighten, Confuse or Deceive ?

- Errors
- Overwhelming
- Misleading

Errors

Overwhelming

Overwhelming

Overwhelming

Non-Zero Axis

Inconsistent Scales

• "Others"

Pictographs

