CSD Project Control of a Rolling Mill

Nathan Dwek – Thomas Lapauw

December 11th, 2015

Introduction

The Process

- Process steps:
 - Strip is unwound from the right roll
 - Strip is rolled between the middle pair of rolls
 - Strip is wound up by the left roll
 - All rolls are driven by DC motors
- Process goal: control the output thickness

Introduction

Sensors and Actuators

- Actuators: 3 DC motors, armature current controlled
- Sensors:
 - 3 velocity sensors
 - 2 traction sensors
 - 2 thickness sensors
- ► Current setup ⇒ only control sheet traction

Introduction

Controller Architecture

- Cascade plant
 - ⇒ Cascade controller:
 - Inner loop: DC motor speed control
 - Outer loop: traction control
- ► Traction system has differential input
 ⇒ "master-slave" architecture
 - Master: steady speed setpoint
 ⇒ zero static error, disturbance rejection
 - Slave: small signal speed⇒ tracking

In this Presentation

Control of the Master Motor

Control of the Slave Motor

Outer Loop: Control of the Traction

Discussion: Control of the Thickness

Master Motor (Left)

Setpoint and Response

- ▶ Winds the metal strip ⇒ Higher velocity (elongation)
- ▶ Dynamic model: $LM(s) \simeq \frac{5.398}{3.642S+1}$

Master Motor

Controller Design

PI Controller

- Zero steady state error
- Disturbance rejection
- $\frac{K_i}{K_p}$ = chosen at 0.294 to cancel plant pole

Master Motor

Tuning result

Master Motor

Conclusion

- ▶ PI Controller for zero steady state error
- ► Gain $K_P = 2$, $K_I = 0.588$ chosen for quickest settling time, reasonable overshoot
- Overshoot is due to non linearities and higher order effects

Slave Motor (Right)

Setpoint and Response

- Feeds the metal strip ⇒ Lower velocity
- Dynamic Model: $RM(s) \simeq \frac{7.128}{6.0665s+1}$

Slave Motor

Controller Design

P Controller

- Fast response, better tracking than PI
- Steady state error rejection not necessary due to cascade control

Slave Motor

Tuning Result

Slave Motor

Conclusion

Final tuning

- ▶ P Controller for fast tracking
- Gain $K_P = 3$ to avoid actuator saturation
- Overshoot is due to non linearities and higher order effects

Closed loop experimental response

Slave(s)
$$\simeq \frac{0.9577}{0.2428s + 1}$$

Gray Box Model

Gray Box Model – Refined

Dynamic Model

$$Trac(s) = 13.096 \cdot \frac{s + 0.9221}{s(s + 4.063)}$$

Controller Choice

First tentative: simple P controller

- Integrator in the plant should provide zero steady state error
- Added integrator would degrade the phase margin
- No specification on the transient

Simulation – Simple P Controlle

Controller Choice

- Steady state error is due to perturbation from the master speed, constant in regime
- Simple P controller
 - ⇒ No perturbation rejection
 - ⇒ But removes integrator from the closed loop!
- ► Idea: second outer PI loop to reject the constant perturbation
- Possible in terms of phase margin thanks to the inner P controller

Final Controller

Plant model

Controller Tuning – Inner Traction Loop

Controller Tuning – Outer Traction Loop

Simulation

High overshoot ⇒ should be primary tuning constraint

Final Controller Values

Verification: Actuator Input

Thank you! Questions?

