TEST REPORT

Reference No	:	WTS18S04108384W
FCC ID	:	XOMEL231WL
Applicant	:	Shenzhen Qiyue Optronics Company Limited
Address	:	Flat3, Tower 3, Excellence Meilin Center Plaza, Zhongkang Road 1 Shangmeilin, Futian District, Shenzhen, China
Manufaturer	:	SHENZHEN QIYUE OPTRONICS COMPANY LIMITED BRANCH
Address	:	SEIYU INDUSTRIAL PARK,DA SAN VILLAGE,DA SHUI KENG,GUANLAN TOWN,LONGHUA NEW DISTRICT,SHENZHEN,P.R.C
Product	:	Electronic Shelf Display
Model(s)	:	EL231WLBC0HWWW, EL231WL, XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Standards	:	FCC CFR47 Part 15 C Section 15.407: 2017
Date of Receipt sample	:	2018-04-13
Date of Test	:	2018-04-29 to 2018-05-03
Date of Issue	:	2018-05-05

Remarks:

Test Result:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by: Approved by:

Pass

Jack Wen / Test Engineer

Philo Zhong / Manager

28,

Reference No.: WTS18S04108384W Page 2 of 115

2 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation) of USA, Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), IC(Industry Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

2.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Accreditation Body	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe	A2LA	EMCD\RED	-
Taiwan	(Certificate No.: 4243.01)	NCC	-
Hong Kong		OFCA	-
Australia		RCM	-
India		WPC	-
Thailand	International Services	NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. IC Canada Registration No.: 7760A

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

Reference No.: WTS18S04108384W Page 4 of 115

3 Revision History

Test report #	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS18S04108384W	2018-04-13	2018-04-29 to2018-05-03	2018-05-05	Original	-	Valid

Reference No.: WTS18S04108384W Page 5 of 115

4 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207(a)	PASS
	15.407(a)	
Radiated Emissions	15.205(a)	PASS
	15.209(a)	
Duty Cycle	KDB 789033	PASS
6dB Bandwidth	15.407(a)	PASS
26 dB Emission Bandwidth	15.407(a)	PASS
& 99% Occupied Bandwidth	15.407 (a)	FASS
Maximum Conducted Output Power	15.407(a)	PASS
Power Spectral Density	15.407(a)	PASS
Restricted bands around	15.407(a)	PASS
fundamental frequency	13.407 (a)	1 700
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

5 Contents

		Page
•	COVER PAGELABORATORIES INTRODUCTION	
2		
2	2.1 TEST FACILITY	
3	REVISION HISTORY	
4	TEST SUMMARY	
5	CONTENTS	
6	GENERAL INFORMATION	
	6.1 GENERAL DESCRIPTION OF E.U.T	
	6.3 CHANNEL LIST	
7	EQUIPMENT USED DURING TEST	
	7.1 EQUIPMENTS LIST	
	7.2 DESCRIPTION OF SUPPORT UNITS	14
	7.3 MEASUREMENT UNCERTAINTY	
	7.4 TEST EQUIPMENT CALIBRATION	
8	CONDUCTED EMISSION	
	8.1 E.U.T. OPERATION	
	8.3 MEASUREMENT DESCRIPTION	
	8.4 CONDUCTED EMISSION TEST RESULT	
9	RADIATED EMISSIONS	18
	9.1 EUT OPERATION	
	9.2 TEST SETUP	
	9.3 SPECTRUM ANALYZER SETUP	
	9.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
	9.6 SUMMARY OF TEST RESULTS	22
10	DUTY CYCLE	34
	10.1 SUMMARY OF TEST RESULTS	34
11	BAND EDGE	41
	11.1 Test Produce	
	11.2 TEST RESULT	
12	·	
	12.1 TEST PROCEDURE:	
12		
13		
	13.1 TEST PROCEDURE:	
14		
	14.1 Test Procedure:	
	14.2 TEST RESULT:	
15	POWER SPECTRAL DENSITY	94
	15.1 TEST PROCEDURE:	94
	15.2 TEST RESULT:	95
16	FREQUENCY STABILITY	111

Reference No.: WTS18S04108384W Page 7 of 115

	16.1	TEST PROCEDURE:	111
	16.2	TEST RESULT:	112
17	ANTE	ENNA REQUIREMENT	113
18	SAR	EVALUATION	114
19	PHOT	TOGRAPHS - TEST SETUP AND EUT PHOTOS	115

Reference No.: WTS18S04108384W Page 8 of 115

6 General Information

6.1 General Description of E.U.T

Product: Electronic Shelf Display

Model(s): EL231WLBC0HWWW, EL231WL,

alphanumeric of a-z, A-Z or 0-9 or blank or-)

Model Description: Only the model names are different. The model EL231WLBC0HWWW

is the test sample.

Operation Frequency: IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5150MHz to 5250MHz

IEEE 802.11a/ n(HT20/40)/ac(HT20/40/80): 5725MHz to 5850MHz

Type of modulation: IEEE for 802.11a: OFDM(BPSK/QPSK/16QAM/64QAM)

IEEE for 802.11n : OFDM(BPSK/QPSK/16QAM/64QAM)

IEEE for 802.11ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)

The Lowest Oscillator: 32.768KHz

Antenna installation: Internal Antenna

Antenna Gain: 3dBi

6.2 Details of E.U.T

Ratings Input: 100-240V~, 50/60Hz, 0.3A

Adapter Model: A1812_SM

6.3 Channel List

U-NII-1 (5.15-5.25GHz)		U-NII-3 (5.725-5.85GHz)		
channel	Frequency(MHz)	channel	Frequency(MHz)	
36	5180	149	5745	
38	5190	151	5755	
40	5200	153	5765	
42	5210	155	5785	
44	5220	157	5785	
46	5230	159	5795	
48	5240	161	5805	
		165	5825	

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11a/n(HT20)/ac(HT20):

channel	Frequency(MHz)	channel	Frequency(MHz)
36	5180	149	5745
40	5200	157	5785
48	5240	165	5825

For 802.11 n(HT40)/ac(HT40):

channel	Frequency(MHz)	channel	Frequency(MHz)
38	5190	151	5755
46	5230	159	5795

For 802.11 ac(HT80):

channel	Frequency(MHz)	channel	Frequency(MHz)
42	5210	155	5775

Test Mode Description:

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. Transmitting duty cycle is no less 98%.

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Radiated Emissions	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Radiated Emissions	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Duty Cycle	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Dand Edge	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Band Edge	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX

			U-NII-1 36/40/48	
	802.11a	6 Mbps	U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
6dB Bandwidth	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
oub bandwidth	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
26dB Bandwidth and 99% Occupied	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Bandwidth	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Conducted Output Power	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
Conducted Output Power	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
	802.11a	6 Mbps	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Dower Spectral Density	802.11n(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX
Power Spectral Density	802.11n(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT20)	MCS0	U-NII-1 36/40/48 U-NII-3 149/155/165	TX

Reference No.: WTS18S04108384W Page 12 of 115

	802.11ac(HT40)	MCS0	U-NII-1 38/46 U-NII-3 151/159	TX
	802.11ac(HT80)	MCS0	U-NII-1 42 U-NII-3 155	TX
Frequency Stability	Un-modulation	/	U-NII-1 36/40/48 U-NII-3 149/155/165	TX

7 Equipment Used during Test

7.1 Equipments List

Condu	cted Emissions Test					
Item	Equipment	Manufaturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	2017-09-12	2018-09-11
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2017-09-12	2018-09-11
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2017-09-12	2018-09-11
4.	Cable	LARGE	RF300	-	2017-09-12	2018-09-11
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#		
Item	Equipment	Manufaturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP30	100091	2018-04-29	2019-04-28
2	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2018-04-09	2019-04-08
3	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2018-04-13	2019-04-12
4	Coaxial Cable (above 1GHz)			2018-04-13	2019-04-12	
5	Spectrum Analyzer	R&S	FSP40	100501	2017-10-20	2018-10-19
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2017-09-14	2018-09-13
7	Microwave Broadband Preamplifier	SCHWARZBECK	BBV 9721	100472	2017-10-25	2018-10-24
8	Cable	Тор	18GHz-40GHz	-	2017-10-25	2018-10-24
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site			
Item	Equipment	Manufaturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2018-04-13	2019-04-12
2	Ative Loop Antenna	Beijing Dazhi	ZN30900A	-	2017-10-17	2018-10-16
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2018-04-08	2019-04-07
4	Amplifier	ANRITSU	MH648A	M43381	2018-04-13	2019-04-12
5	Cable	HUBER+SUHNER	CBL2	525178	2018-04-13	2019-04-12
6	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2017-09-12	2018-09-11
RF Co	nducted Testing					
Item	Equipment	Manufaturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2017-09-14	2018-09-13
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2017-09-12	2018-09-11

Reference No.: WTS18S04108384W Page 14 of 115

3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2017-09-12	2018-09-11
4.	Coaxial Cable (10Hz-30GHz)	/	/	/	2017-09-12	2018-09-11
5.	Antenna Connector*	/	/	/	2017-09-12	2018-09-11

[&]quot;*": The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

7.2 Description of Support Units

Equipment	Manufaturer	Model No.	Series No.
/	/	/	/

7.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (A mains 150KHz~30MHz)

7.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTS18S04108384W Page 15 of 115

8 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56 \text{ dB}_{\mu}\text{V}$ between 0.5MHz & 5MHz $60 \text{ dB}_{\mu}\text{V}$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

8.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation: Transmitting mode

The test was performed in Transmitting mode(For WIFI), Only the worst case 802.11a mode were record in the report.

8.2 EUT Setup

The conducted emission tests were performed using the setup acordance with the ANSI C63.10:2013.

8.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

8.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1900	37.66	15.82	53.48	64.03	-10.55	QP	
2	0.1900	25.36	15.82	41.18	54.03	-12.85	AVG	
3	0.2620	25.53	17.92	43.45	61.36	-17.91	QP	
4	0.2620	13.43	17.92	31.35	51.36	-20.01	AVG	
5	0.4660	12.75	21.99	34.74	56.58	-21.84	QP	
6	0.4660	3.84	21.99	25.83	46.58	-20.75	AVG	
7	0.5660	12.14	23.05	35.19	56.00	-20.81	QP	
8	0.5660	2.21	23.05	25.26	46.00	-20.74	AVG	
9	1.4540	5.25	25.42	30.67	56.00	-25.33	QP	
10	1.4540	-2.09	25.42	23.33	46.00	-22.67	AVG	
11	16.1220	5.45	25.76	31.21	60.00	-28.79	QP	
12	16.1220	-1.87	25.76	23.89	50.00	-26.11	AVG	

Neutral line:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1940	36.63	16.05	52.68	63.86	-11.18	QP	
2	0.1940	26.03	16.05	42.08	53.86	-11.78	AVG	
3	0.2540	27.28	17.72	45.00	61.62	-16.62	QP	
4	0.2540	14.66	17.72	32.38	51.62	-19.24	AVG	
5	0.3260	15.88	19.49	35.37	59.55	-24.18	QP	
6	0.3260	3.79	19.49	23.28	49.55	-26.27	AVG	
7	0.4660	13.56	21.99	35.55	56.58	-21.03	QP	
8	0.4660	4.45	21.99	26.44	46.58	-20.14	AVG	
9	0.5700	13.62	23.09	36.71	56.00	-19.29	QP	
10	0.5700	3.42	23.09	26.51	46.00	-19.49	AVG	
11	1.4020	4.25	25.38	29.63	56.00	-26.37	QP	
12	1.4020	-2.73	25.38	22.65	46.00	-23.35	AVG	

Reference No.: WTS18S04108384W Page 18 of 115

9 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.407

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

I imit

LIIIIII.						
	Field Strei	ngth	Field Strength Limit at 3m Measurement Distance			
Frequency (MHz)	Distance		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

9.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

9.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup acordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS18S04108384W Page 20 of 115

The test setup for emission measurement above 1 GHz.

9.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS18S04108384W Page 21 of 115

9.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level

- EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, eah emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.
- 8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

9.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Fator and Cable Fator, and subtrating the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Fator + Cable Fator - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

9.6 Summary of Test Results

FCC Part15.33: For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph: If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Test Frequency : 30MHz ~ 18GHz

Frequency	Receiver	Datastar	Turn	RX An	tenna	Corrected	Corrected	FCC I 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	n(HT20) L	J-NII-1 lov	w Chanı	nel 5180MHz	<u>-</u>		
226.32	34.92	46.00	-11.08						
226.32	45.94	QP	235	1.4	V	-11.25	34.69	46.00	-11.31
4503.85	45.07	PK	345	1.5	Н	-1.54	43.53	74.00	-30.47
4503.85	39.77	Ave	345	1.5	Н	-1.54	38.23	54.00	-15.77
5135.47	43.61	PK	55	1.0	Н	-0.75	42.86	74.00	-31.14
5135.47	45.39	Ave	55	1.0	Н	-0.75	44.64	54.00	-9.36
10360.00	38.96	PK	303	1.1	Н	5.33	44.29	74.00	-29.71
10360.00	24.06	Ave	303	1.1	Н	5.33	29.39	54.00	-24.61
15540.00	44.83	PK	18	1.0	Н	5.29	50.12	74.00	-23.88
15540.00	37.27	Ave	18	1.0	Н	5.29	42.56	54.00	-11.44
	,	802.11n	(HT20) U-	NII-1 mid	dle chai	nnel 5200MH	lz		
226.94	43.04	QP	267	1.7	Н	-10.96	32.08	46.00	-13.92
226.94	46.74	QP	204	1.6	V	-10.96	35.78	46.00	-10.22
4509.36	46.33	PK	311	1.1	Н	-1.64	44.69	74.00	-29.31
4509.36	42.96	Ave	311	1.1	Н	-1.64	41.32	54.00	-12.68
5133.87	43.96	PK	106	1.9	Н	-0.91	43.05	74.00	-30.95
5133.87	43.45	Ave	106	1.9	Н	-0.91	42.54	54.00	-11.46
10400.00	39.09	PK	16	1.5	Н	5.21	44.30	74.00	-29.70
10400.00	23.02	Ave	16	1.5	Н	5.21	28.23	54.00	-25.77
15600.00	45.31	PK	147	1.6	Н	5.30	50.61	74.00	-23.39
15600.00	39.57	Ave	147	1.6	Н	5.30	44.87	54.00	-9.13

_	Receiver	D	Turn	RX An	tenna	Corrected		FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11r	n(HT20) U	I-NII-1 H	igh char	nnel 5240MH	lz		
226.68	44.08	QP	239	1.8	Н	-10.97	33.11	46.00	-12.89
226.68	44.10	QP	328	1.7	V	-10.97	33.13	46.00	-12.87
4510.78	42.80	PK	18	1.9	Н	-1.56	41.24	74.00	-32.76
4510.78	43.58	Ave	18	1.9	Н	-1.56	42.02	54.00	-11.98
5128.12	43.05	PK	278	1.6	Н	-0.81	42.24	74.00	-31.76
5128.12	44.73	Ave	278	1.6	Н	-0.81	43.92	54.00	-10.08
10480.00	41.15	PK	189	1.9	Н	5.14	46.29	74.00	-27.71
10480.00	22.34	Ave	189	1.9	Н	5.14	27.48	54.00	-26.52
15720.00	45.44	PK	184	1.3	Н	5.10	50.54	74.00	-23.46
15720.00	38.11	Ave	184	1.3	Н	5.10	43.21	54.00	-10.79
	1	802.11	In(HT20) I	U-NII-3 lo	w Chan	nel 5745MH	Z		
227.25	46.46	QP	63	1.8	Н	-10.99	35.47	46.00	-10.53
227.25	44.74	QP	355	1.3	V	-10.99	33.75	46.00	-12.25
4529.59	44.01	PK	89	1.7	Н	-1.80	42.21	74.00	-31.79
4529.59	40.13	Ave	89	1.7	Н	-1.80	38.33	54.00	-15.67
5141.43	40.20	PK	326	2.0	Н	-0.96	39.24	74.00	-34.76
5141.43	24.12	Ave	326	2.0	Н	-0.96	23.16	54.00	-30.84
11490.00	46.47	PK	195	1.5	Н	5.93	52.40	74.00	-21.60
11490.00	37.94	Ave	195	1.5	Н	5.93	43.87	54.00	-10.13
17235.00	46.61	PK	39	1.8	Н	10.35	56.96	74.00	-17.04
17235.00	37.25	Ave	39	1.8	Н	10.35	47.60	54.00	-6.40

	Receiver	D	Turn	RX An	tenna	Corrected		FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11n	(HT20) U-	-NII-3 mic	ddle cha	nnel 5785Ml	Нz		
227.26	46.98	QP	156	1.1	Н	-11.13	35.85	46.00	-10.15
227.26	46.00	QP	127	1.6	V	-11.13	34.87	46.00	-11.13
4510.69	42.91	PK	180	1.2	Н	-1.59	41.32	74.00	-32.68
4510.69	41.20	Ave	180	1.2	Н	-1.59	39.61	54.00	-14.39
5111.62	39.82	PK	8	1.5	Н	-0.95	38.87	74.00	-35.13
5111.62	23.36	Ave	8	1.5	Н	-0.95	22.41	54.00	-31.59
11570.00	46.25	PK	332	1.0	Н	5.81	52.06	74.00	-21.94
11570.00	39.54	Ave	332	1.0	Н	5.81	45.35	54.00	-8.65
17355.00	46.33	PK	84	1.2	Н	10.37	56.70	74.00	-17.30
17355.00	38.92	Ave	84	1.2	Н	10.37	49.29	54.00	-4.71
		802.11r	n(HT20) U	I-NII-3 H	igh char	nnel 5825MH	lz		<u> </u>
227.37	46.03	QP	309	2.0	Н	-11.03	35.00	46.00	-11.00
227.37	45.54	QP	261	1.4	V	-11.03	34.51	46.00	-11.49
4527.42	43.24	PK	339	1.5	Н	-1.68	41.56	74.00	-32.44
4527.42	43.16	Ave	339	1.5	Н	-1.68	41.48	54.00	-12.52
5127.21	41.36	PK	69	1.8	Н	-0.96	40.40	74.00	-33.60
5127.21	23.98	Ave	69	1.8	Н	-0.96	23.02	54.00	-30.98
11650.00	45.93	PK	129	1.1	Н	5.84	51.77	74.00	-22.23
11650.00	38.55	Ave	129	1.1	Н	5.84	44.39	54.00	-9.61
17475.00	45.96	PK	56	1.8	Н	10.41	56.37	74.00	-17.63
17475.00	37.64	Ave	56	1.8	Н	10.41	48.05	54.00	-5.95

	Receiver	_	Turn	RX An	tenna	Corrected		FCC I 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	802.11a(HT20) U-NII-1 low Channel 5180MHz								
227.11	46.12	QP	88	1.5	Н	-11.20	34.92	46.00	-11.08
227.11	43.45	QP	334	1.5	V	-11.20	32.25	46.00	-13.75
4501.75	43.57	PK	9	1.3	Н	-1.80	41.77	74.00	-32.23
4501.75	43.80	Ave	9	1.3	Н	-1.80	42.00	54.00	-12.00
5115.89	41.86	PK	259	1.5	Н	-0.94	40.92	74.00	-33.08
5115.89	33.54	Ave	259	1.5	Н	-0.94	32.60	54.00	-21.40
10360.00	42.26	PK	243	1.5	Н	5.33	47.59	74.00	-26.41
10360.00	23.89	Ave	243	1.5	Н	5.33	29.22	54.00	-24.78
15540.00	43.77	PK	313	1.6	Н	5.29	49.06	74.00	-24.94
15540.00	37.86	Ave	313	1.6	Н	5.29	43.15	54.00	-10.85
		802.11a	(HT20) U-	NII-1 mid	dle cha	nnel 5200MH	Hz		
226.86	47.22	QP	323	1.3	Н	-11.15	36.07	46.00	-9.93
226.86	42.65	QP	11	1.5	V	-11.15	31.50	46.00	-14.50
4513.24	42.98	PK	216	1.3	Н	-1.69	41.29	74.00	-32.71
4513.24	42.36	Ave	216	1.3	Н	-1.69	40.67	54.00	-13.33
5138.48	41.67	PK	190	1.7	Н	-0.91	40.76	74.00	-33.24
5138.48	44.43	Ave	190	1.7	Н	-0.91	43.52	54.00	-10.48
10400.00	40.98	PK	113	1.8	Н	5.21	46.19	74.00	-27.81
10400.00	22.22	Ave	113	1.8	Н	5.21	27.43	54.00	-26.57
15600.00	45.60	PK	359	1.8	Н	5.30	50.90	74.00	-23.10
15600.00	38.34	Ave	359	1.8	Н	5.30	43.64	54.00	-10.36

_	Receiver	D	Turn	RX An	tenna	Corrected		FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11a	a(HT20) U	I-NII-1 Hi	igh char	nnel 5240MH	lz		
226.87	47.51	QP	69	1.0	Н	-11.18	36.33	46.00	-9.67
226.87	44.27	QP	94	1.7	V	-11.18	33.09	46.00	-12.91
4501.21	43.19	PK	142	1.5	Н	-1.77	41.42	74.00	-32.58
4501.21	42.93	Ave	142	1.5	Н	-1.77	41.16	54.00	-12.84
5119.46	45.28	PK	211	1.7	Н	-0.79	44.49	74.00	-29.51
5119.46	44.08	Ave	211	1.7	Н	-0.79	43.29	54.00	-10.71
10480.00	40.59	PK	105	1.2	Н	5.14	45.73	74.00	-28.27
10480.00	22.64	Ave	105	1.2	Н	5.14	27.78	54.00	-26.22
15720.00	46.51	PK	77	1.3	Н	5.10	51.61	74.00	-22.39
15720.00	39.34	Ave	77	1.3	Н	5.10	44.44	54.00	-9.56
		802.11	a(HT20) I	U-NII-3 lo	w Chan	nel 5745MH	Z		
226.68	47.26	QP	33	1.7	Н	-11.15	36.11	46.00	-9.89
226.68	45.98	QP	94	1.2	V	-11.15	34.83	46.00	-11.17
4520.90	40.81	PK	122	1.9	Н	-1.64	39.17	74.00	-34.83
4520.90	40.13	Ave	122	1.9	Н	-1.64	38.49	54.00	-15.51
5111.76	41.09	PK	258	2.0	Н	-0.84	40.25	74.00	-33.75
5111.76	24.97	Ave	258	2.0	Н	-0.84	24.13	54.00	-29.87
11490.00	45.85	PK	112	1.2	Н	5.93	51.78	74.00	-22.22
11490.00	37.86	Ave	112	1.2	Н	5.93	43.79	54.00	-10.21
17235.00	46.24	PK	252	1.7	Н	10.35	56.59	74.00	-17.41
17235.00	37.26	Ave	252	1.7	Н	10.35	47.61	54.00	-6.39

F	Receiver	Detector	Turn	RX An	tenna	Corrected	Compated	FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Fator	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11a	(HT20) U-	-NII-3 mic	ddle cha	nnel 5785MI	Hz		
226.80	44.95	QP	186	1.4	Н	-11.02	33.93	46.00	-12.07
226.80	44.55	QP	141	1.0	V	-11.02	33.53	46.00	-12.47
4500.54	42.92	PK	187	1.7	Н	-1.63	41.29	74.00	-32.71
4500.54	43.12	Ave	187	1.7	Н	-1.63	41.49	54.00	-12.51
5113.75	40.86	PK	44	1.1	Н	-0.73	40.13	74.00	-33.87
5113.75	24.39	Ave	44	1.1	Н	-0.73	23.66	54.00	-30.34
11570.00	46.79	PK	44	1.7	Н	5.81	52.60	74.00	-21.40
11570.00	39.00	Ave	44	1.7	Н	5.81	44.81	54.00	-9.19
17355.00	45.03	PK	335	1.0	Н	10.37	55.40	74.00	-18.60
17355.00	37.03	Ave	335	1.0	Н	10.37	47.40	54.00	-6.60
	T	802.11a	a(HT20) U	I-NII-3 H	igh char	nnel 5825MH	lz	T	T
227.16	46.21	QP	28	1.6	Н	-11.25	34.96	46.00	-11.04
227.16	44.24	QP	186	1.7	V	-11.25	32.99	46.00	-13.01
4520.74	43.76	PK	174	1.6	Н	-1.67	42.09	74.00	-31.91
4520.74	44.34	Ave	174	1.6	Н	-1.67	42.67	54.00	-11.33
5111.35	41.23	PK	55	1.6	Н	-0.83	40.40	74.00	-33.60
5111.35	23.54	Ave	55	1.6	Н	-0.83	22.71	54.00	-31.29
11650.00	45.63	PK	33	1.4	Н	5.84	51.47	74.00	-22.53
11650.00	37.62	Ave	33	1.4	Н	5.84	43.46	54.00	-10.54
17475.00	45.34	PK	136	1.2	Н	10.41	55.75	74.00	-18.25
17475.00	38.54	Ave	136	1.2	Н	10.41	48.95	54.00	-5.05

Frequenc	Receiver	D	Turn	RX An	tenna	Corrected		FCC 15.407/2	
y	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.1	1n(HT40)	U-NII-1 k	ow Chai	nnel 5190MH	lz		
227.27	44.38	QP	18	1.9	Н	-11.20	33.18	46.00	-12.82
227.27	44.29	QP	147	1.1	V	-11.20	33.09	46.00	-12.91
4510.10	40.59	PK	102	1.7	Н	-1.50	39.09	74.00	-34.91
4510.10	39.31	Ave	102	1.7	Н	-1.50	37.81	54.00	-16.19
5122.62	46.54	PK	306	2.0	Н	-0.86	45.68	74.00	-28.32
5122.62	37.54	Ave	306	2.0	Н	-0.86	36.68	54.00	-17.32
10380.00	38.21	PK	157	1.7	Н	5.26	43.47	74.00	-30.53
10380.00	34.36	Ave	157	1.7	Н	5.26	39.62	54.00	-14.38
15570.00	46.60	PK	179	1.9	Н	5.13	51.73	74.00	-22.27
15570.00	38.07	Ave	179	1.9	Н	5.13	43.20	54.00	-10.80
		802.11	n(HT40) l	J-NII-1 F	ligh cha	nnel 5230MI	Hz		•
227.13	46.05	QP	289	1.8	Н	-11.12	34.93	46.00	-11.07
227.13	43.27	QP	107	1.9	V	-11.12	32.15	46.00	-13.85
4511.33	43.94	PK	299	1.1	Н	-1.63	42.31	74.00	-31.69
4511.33	42.28	Ave	299	1.1	Н	-1.63	40.65	54.00	-13.35
5134.64	43.52	PK	67	1.4	Н	-0.90	42.62	74.00	-31.38
5134.64	42.90	Ave	67	1.4	Н	-0.90	42.00	54.00	-12.00
10460.00	40.54	PK	100	1.7	Н	5.28	45.82	74.00	-28.18
10460.00	36.77	Ave	100	1.7	Н	5.28	42.05	54.00	-11.95
15690.00	46.45	PK	306	1.9	Н	5.02	51.47	74.00	-22.53
15690.00	39.85	Ave	306	1.9	Н	5.02	44.87	54.00	-9.13

_	Receiver	D	Turn	RX An	tenna	Corrected		FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11n(HT40) U-NII-3 low Channel 5755MHz									
227.05	46.52	QP	99	1.6	Н	-10.98	35.54	46.00	-10.46
227.05	46.37	QP	140	2.0	V	-10.98	35.39	46.00	-10.61
4501.62	39.32	PK	174	1.2	Н	-1.69	37.63	74.00	-36.37
4501.62	39.19	Ave	174	1.2	Н	-1.69	37.50	54.00	-16.50
5117.93	38.47	PK	219	1.0	Н	-0.74	37.73	74.00	-36.27
5117.93	34.15	Ave	219	1.0	Н	-0.74	33.41	54.00	-20.59
11510.00	45.51	PK	257	1.5	Н	5.88	51.39	74.00	-22.61
11510.00	38.18	Ave	257	1.5	Н	5.88	44.06	54.00	-9.94
17265.00	46.67	PK	269	1.8	Н	10.42	57.09	74.00	-16.91
17265.00	38.75	Ave	269	1.8	Н	10.42	49.17	54.00	-4.83
		802.11	n(HT40) L	J-NII-3 H	igh chai	nnel 5795MF	łz		1
227.01	44.56	QP	44	1.2	Н	-11.19	33.37	46.00	-12.63
227.01	44.26	QP	50	1.3	V	-11.19	33.07	46.00	-12.93
4520.20	44.85	PK	310	1.7	Н	-1.69	43.16	74.00	-30.84
4520.20	41.87	Ave	310	1.7	Н	-1.69	40.18	54.00	-13.82
5111.73	41.35	PK	35	1.1	Н	-0.89	40.46	74.00	-33.54
5111.73	36.21	Ave	35	1.1	Н	-0.89	35.32	54.00	-18.68
11590.00	45.55	PK	22	1.1	Н	5.63	51.18	74.00	-22.82
11590.00	37.35	Ave	22	1.1	Н	5.63	42.98	54.00	-11.02
17385.00	46.60	PK	28	1.6	Н	10.63	57.23	74.00	-16.77
17385.00	38.93	Ave	28	1.6	Н	10.63	49.56	54.00	-4.44

_	Receiver		Turn RX Antenna Correct		Corrected	rected Corrected	FCC F 15.407/2		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11ac(HT40) U-NII-1 low Channel 5190MHz									
226.93	45.05	QP	216	1.8	Н	-11.09	33.96	46.00	-12.04
226.93	43.57	QP	155	1.5	V	-11.09	32.48	46.00	-13.52
4518.04	39.79	PK	252	1.7	Н	-1.70	38.09	74.00	-35.91
4518.04	39.49	Ave	252	1.7	Н	-1.70	37.79	54.00	-16.21
5110.75	47.26	PK	359	1.6	Н	-0.78	46.48	74.00	-27.52
5110.75	39.27	Ave	359	1.6	Н	-0.78	38.49	54.00	-15.51
10380.00	39.30	PK	77	1.3	Н	5.26	44.56	74.00	-29.44
10380.00	35.50	Ave	77	1.3	Н	5.26	40.76	54.00	-13.24
15570.00	45.46	PK	41	1.0	Н	5.13	50.59	74.00	-23.41
15570.00	38.09	Ave	41	1.0	Н	5.13	43.22	54.00	-10.78
	T	802.11a	c(HT40) l	J-NII-1 F	ligh cha	nnel 5230Mł	Hz	T	T
226.86	45.40	QP	199	1.5	Н	-11.25	34.15	46.00	-11.85
226.86	44.16	QP	266	1.5	V	-11.25	32.91	46.00	-13.09
4538.42	41.14	PK	70	1.1	Н	-1.50	39.64	74.00	-34.36
4538.42	39.98	Ave	70	1.1	Н	-1.50	38.48	54.00	-15.52
5132.58	39.55	PK	240	1.1	Н	-0.85	38.70	74.00	-35.30
5132.58	34.82	Ave	240	1.1	Н	-0.85	33.97	54.00	-20.03
10460.00	45.10	PK	137	1.5	Н	5.28	50.38	74.00	-23.62
10460.00	38.96	Ave	137	1.5	Н	5.28	44.24	54.00	-9.76
15690.00	45.39	PK	211	1.1	Н	5.02	50.41	74.00	-23.59
15690.00	39.16	Ave	211	1.1	Н	5.02	44.18	54.00	-9.82

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11ac(HT40) U-NII-3 low Channel 5755MHz									
227.25	47.38	QP	64	1.3	Н	-10.99	36.39	46.00	-9.61
227.25	45.80	QP	27	1.0	V	-10.99	34.81	46.00	-11.19
4531.13	40.94	PK	82	1.8	Н	-1.79	39.15	74.00	-34.85
4531.16	42.36	Ave	82	1.8	Н	-1.79	40.57	54.00	-13.43
5147.17	40.24	PK	12	1.9	Н	-0.81	39.43	74.00	-34.57
5147.17	36.00	Ave	12	1.9	Н	-0.81	35.19	54.00	-18.81
11510.00	46.60	PK	327	1.2	Н	5.88	52.48	74.00	-21.52
11510.00	37.10	Ave	327	1.2	Н	5.88	42.98	54.00	-11.02
17265.00	46.52	PK	11	1.4	Н	10.42	56.94	74.00	-17.06
17265.00	38.29	Ave	11	1.4	Н	10.42	48.71	54.00	-5.29
		802.11a	ic(HT40) l	J-NII-3 H	ligh cha	nnel 5795Ml	Hz		T
227.24	45.27	QP	27	1.2	Н	-10.99	34.28	46.00	-11.72
227.24	45.35	QP	235	1.2	V	-10.99	34.36	46.00	-11.64
4503.46	43.69	PK	124	1.4	Н	-1.54	42.15	74.00	-31.85
4503.46	41.72	Ave	124	1.4	Н	-1.54	40.18	54.00	-13.82
5111.18	41.92	PK	77	1.3	Н	-0.89	41.03	74.00	-32.97
5111.18	37.13	Ave	77	1.3	Н	-0.89	36.24	54.00	-17.76
11590.00	46.49	PK	219	1.9	Н	5.63	52.12	74.00	-21.88
11590.00	37.65	Ave	219	1.9	Н	5.63	43.28	54.00	-10.72
17385.00	46.26	PK	175	1.1	Н	10.63	56.89	74.00	-17.11
17385.00	39.35	Ave	175	1.1	Н	10.63	49.98	54.00	-4.02

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.407/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11ac(HT80) U-NII-1 low Channel 5210MHz									
226.77	45.07	QP	300	1.0	Н	-11.18	33.89	46.00	-12.11
226.77	45.33	QP	102	1.9	V	-11.18	34.15	46.00	-11.85
4530.84	43.38	PK	30	1.2	Н	-1.77	41.61	74.00	-32.39
4530.84	43.09	Ave	30	1.2	Н	-1.77	41.32	54.00	-12.68
5135.27	42.70	PK	219	1.9	Н	-0.82	41.88	74.00	-32.12
5135.27	48.53	Ave	219	1.9	Н	-0.82	47.71	54.00	-6.29
10420.00	41.34	PK	228	1.2	Н	4.65	45.99	74.00	-28.01
10420.00	37.14	Ave	228	1.2	Н	4.65	41.79	54.00	-12.21
15630.00	46.61	PK	66	1.1	Н	5.10	51.71	74.00	-22.29
15630.00	37.80	Ave	66	1.1	Н	5.10	42.90	54.00	-11.10
		802.11a	ac(HT80)	U-NII-3 lo	ow Char	nnel 5775MH	z		T
226.69	46.74	QP	163	2.0	Н	-11.13	35.61	46.00	-10.39
226.69	44.67	QP	28	1.2	V	-11.13	33.54	46.00	-12.46
4514.54	43.09	PK	228	1.7	Н	-1.75	41.34	74.00	-32.66
4514.54	43.09	Ave	228	1.7	Н	-1.75	41.34	54.00	-12.66
5119.20	43.09	PK	300	1.6	Н	-0.95	42.14	74.00	-31.86
5119.20	43.85	Ave	300	1.6	Н	-0.95	42.90	54.00	-11.10
11550.00	45.14	PK	198	1.7	Н	4.83	49.97	74.00	-24.03
11550.00	38.15	Ave	198	1.7	Н	4.83	42.98	54.00	-11.02
17325.00	46.56	PK	163	2.0	Н	10.55	57.11	74.00	-16.89
17325.00	39.53	Ave	163	2.0	Н	10.55	50.08	54.00	-3.92

Test Frequency: 18GHz~40GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS18S04108384W Page 34 of 115

10 Duty cycle

47 CFR Part 15C 15.407 and 789033 D02 General UNII Test

Test Requirement: Procedures New Rules v02r01, Section (B)

Test Method: ANSI C63.10: 2013

Test Limit: N/A

Test Result: PASS

Remark: Only the worst case is recorded in the report.

10.1 Summary of Test Results

	802.11	a mode									
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
36	100	100	100								
149	100	100	100								
	802.11n(HT20) mode										
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
36	100	100	100								
149	100	100	100								
	802.11n(H	T40) mode									
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
38	100	100	100								
151	100	100	100								
	802.11ac(F	HT20) mode									
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
36	100	100	100								
149	100	100	100								
	802.11ac(F	HT40) mode									
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
38	100	100	100								
151	100	100	100								
	802.11ac(F	IT80) mode									
channel	On time(ms)	Period(ms)	Duty Cycle(%)								
42	100	100	100								
155	100	100	100								

Test result plots shown as follows:

802.11a U-NII-1 Low channel

Reference No.: WTS18S04108384W Page 41 of 115

11 Band Edge

Test Requirement: FCC CFR47 Part 15 Section 15.407

Test Method: ANSI C63.10 2013

Test Limit: (1) For transmitters operating in the 5.15-5.25 GHz band: All

emissions outside of the 5.15-5.35 GHz band shall not exceed an

e.i.r.p. of -27dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5

MHz above or below the band edge increasing linearly to a level of

27 dBm/MHz at the band edge.

Test Result: PASS

11.1 Test Produce

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

11.2 Test Result

Test result plots shown as follows:

802.11ac(HT40) U-NII-1 Band edge-right side

802.11ac(HT80) U-NII-1 Band edge-right side

Reference No.: WTS18S04108384W Page 54 of 115

12 6 dB Bandwidth

Test Requirement: FCC CFR47 Part 15 Section 15.407(e)

KDB789033 D02 General UNII Test Procedures New Rules

Test Method: v02r01 Section C

Test Limit: ≥ 500 kHz

Test Result: PASS

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

12.2 Test Result:

Band	Operation	6 dB Bandwidth (MHz)				
	mode	Low	Middle	High		
U-NII-3	802.11a	16.44	16.41	16.44		
	802.11n(HT20)	17.73	17.67	16.41		
	802.11n(HT40)	36.48	/	36.42		
	802.11ac(HT20)	17.70	17.67	17.70		
	802.11ac(HT40)	36.48	/	36.36		
	802.11ac(HT80)	76.08	/	/		

Test result plots shown as follows:

Reference No.: WTS18S04108384W Page 62 of 115

13 26 dB Bandwidth and 99% Occupied Bandwidth

Test Requirement: 47 CFR Part 15C Section 15.407 (a)

KDB789033 D02 General UNII Test Procedures New Rules

Test Method: v02r01 Section D

Test Limit: No restriction limits

Test Result: PASS

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer:

RBW = approximately 1% of the emission bandwidth,

VBW ≥ 3 × RBW

Reference No.: WTS18S04108384W Page 63 of 115

13.2 Test Result:

Band	Operation	26 dB Bandwidth (MHz)			99% Bandwidth (MHz)		
	mode	Low	Middle	High	Low	Middle	High
U-NII-1	802.11a	21.65	21.41	21.55	16.811	16.787	16.791
	802.11n(HT20)	21.64	21.60	21.61	17.941	17.913	17.964
	802.11n(HT40)	40.21	/	40.00	36.367	/	36.366
	802.11ac(HT20)	21.64	21.40	21.57	17.977	17.858	17.910
	802.11ac(HT40)	40.11	/	40.12	36.370	/	36.347
	802.11ac(HT80)	81.52	/	/	75.761	/	/
U-NII-3	802.11a	21.52	21.41	21.52	16.800	16.807	16.778
	802.11n(HT20)	19.45	19.15	19.35	17.490	17.500	17.510
	802.11n(HT40)	39.58	/	39.40	36.180	/	36.121
	802.11ac(HT20)	21.69	21.56	21.61	17.972	17.988	17.899
	802.11ac(HT40)	40.15	/	39.79	36.370	/	36.366
	802.11ac(HT80)	81.97	/	/	75.856	/	

Test result plots shown as follows:

Transmit Freq Error

Query INTERRUPTED

x dB Bandwidth

42.251 kHz

21.52 MHz

802.11a U-NII-3 Middle channel

OBW Power

x dB

99.00 % -26.00 dB

Reference No.: WTS18S04108384W Page 78 of 115

14 Conducted Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.407(a)

KDB789033 D02 General UNII Test Procedures New Rules

Test Method: v02r01 Section E

U-NII-1 250mW(24dBm)

Test Limit: U-NII-3 1W(30dBm)

Test Result: PASS

Conducted output power= measurement power+10log(1/x)

X is duty cycle=1, so $10\log(1/1)=0$

Conducted output power= measurement power

14.1 Test Procedure:

Remark:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

14.2 Test Result:

Band	Operation mode	СН	Conducted Output Power (dBm)
		Low	11.79
	802.11a	Middle	11.96
		High	10.87
		Low	11.64
	802.11n(HT20)	Middle	11.86
		High	11.08
		Low	11.63
	802.11n(HT40)	Middle	/
11 1111 4		High	11.63
U-NII-1		Low	11.83
	802.11ac(HT20)	Middle	11.86
		High	11.02
		Low	12.28
	802.11ac(HT40)	Middle	/
		High	11.53
	802.11ac(HT80)	Low	11.34
		Middle	/
		High	/
		Low	9.37
	802.11a	Middle	9.38
		High	9.57
	802.11n(HT20)	Low	9.48
		Middle	9.82
		High	9.84
		Low	9.75
	802.11n(HT40)	Middle	1
II NIII 2		High	9.72
U-NII-3		Low	9.50
	802.11ac(HT20)	Middle	9.52
		High	9.50
	802.11ac(HT40)	Low	9.38
		Middle	/
		High	9.51
	802.11ac(HT80)	Low	9.75
		Middle	/
		High	/

.

Test result plots shown as follows:

802.11a U-NII-1 Low channel

802.11a U-NII-1 Middle channel

802.11a U-NII-3 Low channel

802.11a U-NII-3 Middle channel

Reference No.: WTS18S04108384W Page 94 of 115

15 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.407(a)

KDB789033 D02 General UNII Test Procedures New Rules v02r01,

Test Method: Section I

Test Limit: ≤11.00dBm/MHz for Operation in the U-NII-1(5150MHz-5250MHz)of

mobile device

≤30.00dBm/500KHz for Operation in the U-NII-3(5725MHz-

5850MHz)of device

Test Result: PASS

15.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer:

U-NII-1

RBW = 1MHz, VBW ≥3* RBW Sweep = auto; Detector Function = Peak. Trae = Max hold.

U-NII-3

RBW = 510KHz, VBW \ge 3* RBW Sweep = auto; Detector Function = Peak. Trae = Max hold.

3. Allow the trae to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjaent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Reference No.: WTS18S04108384W Page 95 of 115

15.2 Test Result:

Band	Operation mode	СН	Power Spectral Density (dBm/MHz)	
		Low	0.320	
	802.11a	Middle	-0.122	
		High	-0.369	
		Low	2.913	
	802.11n(HT20)	Middle	0.323	
		High	0.622	
		Low	-1.638	
	802.11n(HT40)	Middle	/	
		High	-3.078	
U-NII-1	802.11ac(HT20)	Low	1.300	
		Middle	1.101	
		High	0.568	
	802.11ac(HT40)	Low	-1.921	
		Middle	/	
		High	-2.905	
	802.11ac(HT80)	Low	-5.345	
		Middle	/	
		High	/	
	Limit	≤11.00dBm/MHz		

Band	Operation mode	СН	Power Spectral Density (dBm/MHz)	
		Low	-1.584	
	802.11a	Middle	-1.129	
		High	-1.102	
		Low	-0.730	
	802.11n(HT20)	Middle	-1.261	
		High	0.181	
	802.11n(HT40)	Low	-4.120	
		Middle	/	
		High	-4.066	
U-NII-3	802.11ac(HT20)	Low	-1.390	
		Middle	-1.495	
		High	-0.765	
	802.11ac(HT40)	Low	-3.988	
		Middle	/	
		High	-4.009	
	802.11ac(HT80)	Low	-7.299	
		Middle	/	
		High	/	
	Limit	≤30.00dBm/500KHz		

Test result plots shown as follows:

802.11a U-NII-1 Low channel

802.11a U-NII-3 Middle channel

Reference No.: WTS18S04108384W Page 111 of 115

16 Frequency Stability

Test Requirement: FCC CFR47 Part 15 Section 15.407(g)

Test Method: ANSI C63.10:2013

Test Limit:

Manufaturers of U-NII devices are responsible for ensuring frequency

stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the

users manual or 20ppm.

Test Result: PASS

16.1 Test Procedure:

1. The transmitter output (antenna port) was connected to the spectrum analyzer. EUT have transmitted absence of unmodulation signal and fixed channelise. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc x 10⁶ ppm and the limit is less than ±20ppm The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.

2. Extreme temperature rule is 5°C~ 35°C.

16.2 Test Result:

U-NII-1 Test Frequency:5180MHz				
Temperature (°C)	Power Supply (VAC)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)
35		1752	0.3382	20
30		1789	0.3454	20
25		1778	0.3432	20
20	120	1732	0.3344	20
15		1764	0.3405	20
10		1766	0.3409	20
5		1744	0.3367	20
20	108	1774	0.3425	20
20	132	1780	0.3436	20

U-NII-3 Test Frequency:5785MHz				
Temperature $(^{\circ}\mathbb{C})$	Power Supply (VAC)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)
()	(VAC)	(112)	(ррпі)	(ррпі)
35		1854	0.3156	20
30		1862	0.3169	20
25		1853	0.3154	20
20		1836	0.3125	20
15		1842	0.3135	20
10		1846	0.3142	20
5		1852	0.3152	20
20	108	1903	0.3239	20
20	132	1902	0.3237	20

17 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attahed antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufaturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jak or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in acordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

This device uses of two antennas that uses a specified coupling to the intentional radiator. Antenna connectors complied with the requirement.

Result:

The EUT have one Integrated Antenna, meets the requirements of FCC 15.203.

Reference No.: WTS18S04108384W Page 114 of 115

18 SAR Evaluation

Please refer to SAR report.

Reference No.: WTS18S04108384W Page 115 of 115

19 Photographs - Test Setup and EUT Photos

Refer to the file EL231WLBC0HWWW _Ext Photos, EL231WLBC0HWWW _Int Photos and EL231WLBC0HWWW _Tsup Photos.

====End of Report=====