1 Análisis Sísmico

«««< HEAD

1.1 Factor de Zona

Este factor se interpreta como la aceleración máxima horizontal en el suelo rígido con una probabilidad de 10~% de ser excedida en 50 años======

1.2 Factor zona

Las rigideces laterales pueden calcularse como la razon entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.

 $\gg\gg> \text{dev}_j osue$

Table 1: Factor de zona

FACTOR DE ZONA SEGÚN E-030					
ZONA	Z				
4	0.45				
3	0.35				
2	0.25				
1	0.10				

Fuente: E-030 (2018)

1.3 Factor de suelo

Este factor se interpreta como un factor de modificación de la aceleración pico del suelo para un perfil determinado respecto al pefil tipo $\mathrm{S}1$

Table 2: Factor de suelo

FACTOR DE SUELO SEGÚN E-030									
SUELO S0 S1 S2 S3									
ZONA									
4	0.80	1.00	1.05	1.10					
3	0.80	1.00	1.15	1.20					
2	0.80	1.00	1.20	1.40					
1	0.80	1.00	1.60	2.00					

Fuente: E-030 (2018)

1.3.1 Periodos de suelo

1.4 Sistema Estructural

Después de realizar el análisis sísmico se determino que los sistemas estructurales en X, Y son De muros estructurales y Dual respectivamente.

1.5 Factor de Amplificación sísmica

Se determina según el artículo 14 de la E-030

Table 3: Periodos de suelo

	PERIODO "Tp" y "Tl" SEGÚN E-030							
	Perfil de suelo							
	S0 S1 S2 S3							
Тр	0.30	0.40	0.60	1.00				
Tl	3.00	2.50	2.00	1.60				

Fuente: E-030 (2018)

Table 4: Coeficiente básico de reducción

SISTEMAS ESTRUCTURALES						
Sistema Estructural	Coeficiente Básico de Reducción Ro					
Acero:						
Porticos Especiales Resistentes a Momento (SMF)	8					
Porticos Intermedios Resistentes a Momento (IMF)	5					
Porticos Ordinarios Resistentes a Momento (OMF)	4					
Porticos Ordinarios Resistentes a Momento (OMF)	7					
Porticos Ordinarios Concentricamente Arrriostrados (OCBF)	4					
Porticos Excentricamente Arriostrados (EBF)	8					
Concreto Armado:						
Porticos	8					
Dual	7					
De muros estructurales	6					
Muros de ductilidad limitada	4					
Albañilería Armada o Confinada	3					
Madera	7					

Fuente: E-030 (2018)

Figure 1: Factor de amplificación

$$T < T_P$$

$$C = 2, 5 \cdot \left(\frac{T_P}{T}\right)$$

$$T_P < T < T_L$$

$$C = 2, 5 \cdot \left(\frac{T_P}{T}\right)$$

$$T > T_L$$

$$C = 2, 5 \cdot \left(\frac{T_P T_L}{T^2}\right)$$
 Fuente: Muñoz (2020)

1.6 Factor de Importancia

 $<<< {\rm HEAD}$

Table 5: Factor de Uso o Importancia

	CATEGORIA DE LA EDIFICACION					
CATEGORIA	DESCRIPCION	FACTOR U				
	A1: Establecimiento del sector salud (públicos y pri-	Con aislamiento				
A Edificaciones	vados) del segundo y tercer nivel, según lo normado	1.0 y sin				
Escenciales	por el ministerio de salud.	aislamiento 1.5.				
Escenciales	A2: Edificaciones escenciales para el manejo de las					
	emergencias, el funcionamiento del gobierno y en	1.50				
	general aquellas que puedan servir de refugio después					
	de un desastre.					
	Edificaciones donde se reúnen gran cantidad de personas tales como cines, teatros, estadios, col-					
B Edificaciones Im-	iseos, centros comerciales, terminales de buses de					
portantes	pasajeros, establecimientos penitenciarios, o que	1.30				
portantes	guardan patrimonios valiosos como museos y bib-					
	liotecas.					
	Edificaciones comunes tales como: viviendas, ofic-					
C Edificaciones Co-	inas, hoteles, restaurantes, depósitos e instalaciones	1.00				
munes	industriales cuya falla no acarree peligros adicionales	1.00				
	de incendios o fugas de contaminantes.					
D Edificaciones	Construcciones provisionales para depósitos, casetas	A criterio del				
temporales	y otras similares.	proyectista				

Fuente: E-030 (2018)

1.7 Espectro de respuesta de aceleraciones

1.8 Peso sísmico

Art. 26

El peso (P), se calcula adicionando a la carga permanente y total de la edificación un porcentaje de la carga viva o sobrecarga. En edificaciones de categoría C, se toma el 25% de la carga viva.

1.9 Excentricidad accidental

Art. 28.5

La incertidumbre en la localización de los centros de masa en cada nivel, se considera mediante una excentricidad accidental perpendicular a la dirección del sismo igual a 0,05 veces la dimensión del edificio en la dirección perpendicular a la dirección de análisis. En cada caso se considera el signo más desfavorable.

Para determinar el sentido mas desfavorable de la excentricidad accidental se calculó el centro de masa y centro de rigidez del edificio, resultando negativo en ambos casos.

Figure 2: Excentricidad de la masa en ETABS

images/excentricidad.PNG

1.10 Análisis modal Art. 29.1 E-030

Art. 29.1.1

Los modos de vibración pueden determinarse por un procedimiento de análisis que considere apropiadamente las características de rigidez y la distribución de las masas.

Art. 29.1.2

En cada dirección se consideran aquellos modos de vibración cuya suma de masas efectivas sea por lo menos el 90% de la masa total, pero se toma en cuenta por lo menos los tres primeros modos predominantes en la dirección de análisis.

======

1.10.1 Factor de suelo

Table 6: Factor de zona

FACTOR DE SUELO SEGÚN E-030									
SUELO S0 S1 S2 S3									
ZONA									
4	0.80	1.00	1.05	1.10					
3	0.80	1.00	1.15	1.20					
2	0.80	1.00	1.20	1.40					
1	0.80	1.00	1.60	2.00					

Fuente: E-30 (2018)

1.10.2 Periodos de suelo

Table 7: Periodos de suelo

	PERIODO "Tp" y "Tl" SEGÚN E-030							
	Perfil de suelo							
	S0 S1 S2 S3							
Тр	0.30	0.40	0.60	1.00				
Tl	3.00	2.50	2.00	1.60				

Fuente: E-30 (2018)

Las rigideces laterales pueden calcularse como la razon entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.

1.10.3 Sistema Estructural

Después de realizar el análisis sísmico se determino que los sistemas estructurales en X, Y son:

1.10.4 Factor de Amplificación sísmica

Se determina según el artículo 11 de la E-30

Table 8: coeficiente básico de reducción

SISTEMAS ESTRUCTURALES						
Sistema Estructural	Coeficiente Básico de Reducción Ro					
Acero:						
Porticos Especiales Resistentes a Momento (SMF)	8					
Porticos Intermedios Resistentes a Momento (IMF)	5					
Porticos Ordinarios Resistentes a Momento (OMF)	4					
Porticos Ordinarios Resistentes a Momento (OMF)	7					
Porticos Ordinarios Concentricamente Arrriostrados (OCBF)	4					
Porticos Excentricamente Arriostrados (EBF)	8					
Concreto Armado:						
Porticos	8					
Dual	7					
De muros estructurales	6					
Muros de ductilidad limitada	4					
Albañilería Armada o Confinada	3					
Madera	7					

Fuente: E-30 (2018)

Figure 3: Factor de amplificación

$$T < T_P$$

$$C = 2, 5 \cdot \left(\frac{T_P}{T}\right)$$

$$T_P < T < T_L$$

$$C = 2, 5 \cdot \left(\frac{T_P}{T}\right)$$

$$T > T_L$$

$$C = 2, 5 \cdot \left(\frac{T_P T_L}{T^2}\right)$$
 Fuente: Muñoz (2020)

1.10.5 Factor de Importancia

1.11 Análisis modal Art. 26.1 E-030

Art. 26.1.1

En cada dirección se consideran aquellos modos de vibración cuya suma de masas efectivas sea por lo menos el 90% de la masa total, pero se toma en cuenta por lo menos los tres primeros modos predominantes en la dirección de análisis.

Art. 26.1.2

En cada dirección se consideran aquellos modos de vibración cuya suma de masas efectivas sea por lo menos el 90% de la masa total, pero se toma en cuenta por lo menos los tres primeros modos predominantes en la dirección de análisis.

 $\verb"">> \deg_j osue$

 $\ \ \, \text{````} < \text{HEAD}$

Table 9: Factor de Uso o Importancia

	CATEGORIA DE LA EDIFICACION					
CATEGORIA	DESCRIPCION	FACTOR U				
	A1: Establecimiento del sector salud (públicos y pri-	Con aislamiento				
A Edificaciones	vados) del segundo y tercer nivel, según lo normado	1.0 y sin				
Escenciales	por el ministerio de salud.	aislamiento 1.5.				
Liscenciales	A2: Edificaciones escenciales para el manejo de las					
	emergencias, el funcionamiento del gobierno y en	1.50				
	general aquellas que puedan servir de refugio después	1.00				
	de un desastre.					
	Edificaciones donde se reúnen gran cantidad de					
D.D.I.G.	personas tales como cines, teatros, estadios, col-					
B Edificaciones Im-	iseos, centros comerciales, terminales de buses de	1.30				
portantes	pasajeros, establecimientos penitenciarios, o que					
	guardan patrimonios valiosos como museos y bib-					
	liotecas.					
C Edificaciones Co-	Edificaciones comunes tales como: viviendas, oficinas hateles restaurentes den écites e instaleciones					
	inas, hoteles, restaurantes, depósitos e instalaciones industriales cuya falla no acarree peligros adicionales	1.00				
munes	de incendios o fugas de contaminantes.					
D Edificaciones	Construcciones provisionales para depósitos, casetas	A criterio del				
temporales	y otras similares.	proyectista				
temporates	y otras similares.	proyectista				

Fuente: E-30 (2018)

Table 10: Periodos y porcentajes de masa participativa

Mode	Period	UX	UY	RZ	SumUX	SumUY	SumRZ
1	0.360	0.864	0.000	0.000	0.864	0.000	0.000
2	0.273	0.000	0.872	0.000	0.864	0.872	0.000
3	0.225	0.000	0.000	0.850	0.864	0.872	0.850
4	0.101	0.119	0.000	0.000	0.983	0.872	0.850
5	0.077	0.000	0.112	0.000	0.983	0.984	0.850
6	0.062	0.000	0.000	0.132	0.983	0.984	0.982
7	0.048	0.017	0.000	0.000	1.000	0.984	0.982
8	0.037	0.000	0.016	0.000	1.000	1.000	0.982
9	0.029	0.000	0.000	0.018	1.000	1.000	1.000

1.12 Análisis de Irregularidades

1.12.1 Irregularidad de Rigidez-Piso Blando

======

1.12.2 Irregularidad de Rigidez-Piso Blando

 $""> dev_j osue$

Tabla N°9 E-030

Existe irregularidad extrema de rigidez cuando, en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 60% de la rigidez lateral del entrepiso inmediato superior, o es menor que 70% de la rigidez lateral promedio de los tres niveles superiores adyacentes. Las rigideces laterales pueden calcularse como la razon entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.

«««< HEAD =====

Table 11: Irregularidad de rigidez

Story	OutputCase	VX	VY	Rigidez Lateral(k)	70%k previo	80%Prom(k)	is_reg
Story3	SDx Max	37.537	9.565	18791.749			Regular
Story2	SDx Max	74.277	19.164	28433.680	13154.224		Regular
Story1	SDx Max	95.209	24.671	35703.618	19903.576		Regular

Table 12: Irregularidad de rigidez

Story	OutputCase	VX	VY	Rigidez Lateral(k)	70%k previo	80%Prom(k)	is_reg
Story3	SDy Max	11.261	31.883	18765.862			Regular
Story2	SDy Max	22.283	63.881	28442.075	13136.104		Regular
Story1	SDy Max	28.563	82.237	35708.771	19909.452		Regular

1.12.3 Irregularidad de Masa o Peso

Tabla N°9 E-030

Se tiene irregularidad de masa (o peso) cuando el peso de un piso determinado según el artículo 26, es nayor que 1,5 veces el peso de un piso adyascente. Este criterio no se aplica en azoteas ni en sótanos

Table 13: Irregularidad de Masa o Peso

Story	Masa	1.5 Masa	Tipo de Piso	is_reg
Story3	9.191		Azotea	Regular
Story2	13.850	20.774	Piso	Regular
Story1	14.612	21.918	Piso	Regular
Base	2.723		Sotano	Regular

1.12.4 Irregularidad Torsional

Tabla N°9 E-030

Existe irregularidad torsional cuando, en cualquiera de las direcciones de análisis el desplazamiento relativo de entrepiso en un edificion (Δ_{max}) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1,3 veces el desplazamineto relativo promedio de los extremos del mismo entrepiso para la condicion de carga (Δ_{prom}). Este crriterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N° 11

Tabla N°9 E-030

Existe irregularidad torsional cuando, en cualquiera de las direcciones de análisis el desplazamiento relativo de entrepiso en un edificion (Δ_{max}) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1,3 veces el desplazamineto relativo promedio de los extremos del mismo entrepiso para la condicion de carga (Δ_{prom}). Este crriterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N° 11

Table 14: Irregularidad Torsional

Story	OutputCase	Direction	Max Drift	Avg Drift	Ratio	Height	Drifts	< Driftmax/2	Es Regular
Story3	SDx Max	X	0.004028	0.003867	1.042	3.6	0.021751	False	Regular
Story3	SDx Max	Y	0.000643	0.000622	1.034	3.6	0.003472	True	Regular
Story2	SDx Max	X	0.004952	0.004773	1.037	3.6	0.026741	False	Regular
Story2	SDx Max	Y	0.000826	0.000802	1.03	3.6	0.004460	False	Regular
Story1	SDx Max	X	0.004885	0.004718	1.036	5	0.026379	False	Regular
Story1	SDx Max	Y	0.00083	0.000808	1.028	5	0.004482	False	Regular

Table 15: Irregularidad Torsional

Story	OutputCase	Direction	Max Drift	Avg Drift	Ratio	Height	Drifts	< Driftmax/2	Es Regular
Story3	SDy Max	X	0.001227	0.00117	1.049	3.6	0.006626	False	Regular
Story3	SDy Max	Y	0.00176	0.001751	1.005	3.6	0.009504	False	Regular
Story2	SDy Max	X	0.001508	0.001443	1.045	3.6	0.008143	False	Regular
Story2	SDy Max	Y	0.002307	0.002297	1.004	3.6	0.012458	False	Regular
Story1	SDy Max	X	0.001486	0.001426	1.042	5	0.008024	False	Regular
Story1	SDy Max	Y	0.002355	0.002346	1.004	5	0.012717	False	Regular

1.12.5 Irregularidad por Esquinas Entrantes

Tabla N°9 E-030

La estructura se califica como irregular cuando los diafragmas tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma.

También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección transversal total de la misma dirección calculada con las dimensiones totales de la planta.

Figure 4: Irregularidad por discontinuidad del diafragma

Fuente: Muñoz (2020)

Table 16: Irregularidad por discontinuidad del diafragma (a)

Longitud del aligerado (L1)	7.51	m
Espesor del aligerado (e1)	0.05	m
Area del aligerado A1=L1· e1	0.38	m^2
Longitud de la losa macisa (L2)	2.25	m
Espesor de la losa macisa (e2)	0.2	m
Area de la losa macisa A1=L1· e1	0.45	m^2
Ratio	118.42	%
Ratio límite	25.00	%
Verificación	Regular	

Table 17: Irregularidad por discontinuidad del diafragma (b)

Abertura	Largo (m)	Ancho (m)	Área m^2
1	4.02	2.30	9.25
2	1.10	2.30	2.53
3	1.20	19.00	22.80

Área total de aberturas: $34.58 m^2$ Área total de la planta: $120.41 m^2$

Ratio: 28.72%Ratio límite: 50.00%Verificación: Regular

 $\verb|ww| > \text{dev}_j osue Las rigideces la terale spueden calcular se como la razon entre la fuerza cortante de le ntrepiso y el correspondient de la fuerza cortante de la fuerza$

Table 18: Irregularidad de rigidez

Story	OutputCase	VX	VY	Rigidez Lateral(k)	70%k previo	80%Prom(k)	is_reg
Story3	SDx Max	37.537	9.565	18791.749			Regular
Story2	SDx Max	74.277	19.164	28433.680	13154.224		Regular
Story1	SDx Max	95.209	24.671	35703.618	19903.576		Regular

Table 19: Irregularidad de rigidez

Story	OutputCase	VX	VY	Rigidez Lateral(k)	70%k previo	80%Prom(k)	is_reg
Story3	SDy Max	11.261	31.883	18765.862			Regular
Story2	SDy Max	22.283	63.881	28442.075	13136.104		Regular
Story1	SDy Max	28.563	82.237	35708.771	19909.452		Regular

1.12.6 Irregularidad de Masa o Peso

Tabla N°9 E-030

Se tiene irregularidad de masa (o peso) cuando el peso de un piso determinado según el artículo 26, es nayor que 1,5 veces el peso de un piso adyascente. Este criterio no se aplica en azoteas ni en sótanos

Table 20: Irregularidad de Masa o Peso

Story	Masa	1.5 Masa	Tipo de Piso	is_reg
Story3 Story2 Story1 Base	9.191 13.850 14.612 2.723	20.774 21.918	Azotea Piso Piso Sotano	Regular Regular Regular Regular

1.12.7 Irregularidad Torsional

Tabla N°9 E-030

Existe irregularidad torsional cuando, en cualquiera de las direcciones de análisis el desplazamiento relativo de entrepiso en un edificion (Δ_{max}) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1,3 veces el desplazamineto relativo promedio de los extremos del mismo entrepiso para la condicion de carga (Δ_{prom}). Este crriterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N° 11

Tabla N°9 E-030

Existe irregularidad torsional cuando, en cualquiera de las direcciones de análisis el desplazamiento relativo de entrepiso en un edificion (Δ_{max}) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1,3 veces el desplazamineto relativo promedio de los extremos del mismo entrepiso para la condicion de carga (Δ_{prom}). Este crriterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N° 11

Table 21: Irregularidad Torsional

Story	OutputCase	Direction	Max Drift	Avg Drift	Ratio	Height	Drifts	< Driftmax/2	Es Regular
Story3	SDx Max	X	0.004028	0.003867	1.042	3.6	0.006713	False	Regular
Story3	SDx Max	Y	0.000643	0.000622	1.034	3.6	0.001072	True	Regular
Story2	SDx Max	X	0.004952	0.004773	1.037	3.6	0.008253	False	Regular
Story2	SDx Max	Y	0.000826	0.000802	1.03	3.6	0.001377	True	Regular
Story1	SDx Max	X	0.004885	0.004718	1.036	5	0.005862	False	Regular
Story1	SDx Max	Y	0.00083	0.000808	1.028	5	0.000996	True	Regular

Table 22: Irregularidad Torsional

Story	OutputCase	Direction	Max Drift	Avg Drift	Ratio	Height	Drifts	< Driftmax/2	Es Regular
Story3	SDy Max	X	0.001227	0.00117	1.049	3.6	0.002045	True	Regular
Story3	SDy Max	\mathbf{Y}	0.00176	0.001751	1.005	3.6	0.002933	True	Regular
Story2	SDy Max	X	0.001508	0.001443	1.045	3.6	0.002513	True	Regular
Story2	SDy Max	\mathbf{Y}	0.002307	0.002297	1.004	3.6	0.003845	False	Regular
Story1	SDy Max	X	0.001486	0.001426	1.042	5	0.001783	True	Regular
Story1	SDy Max	Y	0.002355	0.002346	1.004	5	0.002826	True	Regular

1.12.8 Irregularidad por Discontinuidad del Diafragma

Tabla N°9 E-030

La estructura se califica como irregular cuando los diafragmas tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma.

También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección transversal total de la misma dirección calculada con las dimensiones totales de la planta.

Figure 5: Irregularidad por discontinuidad del diafragma

Fuente: Muñoz (2020)

Table 23: Irregularidad por discontinuidad del diafragma (a)

Longitud del aligerado (L1)	7.51	m
Espesor del aligerado (e1)	0.05	m
Area del aligerado A1=L1· e1	0.38	m^2
Longitud de la losa maciza (L2)	2.25	m
Espesor de la losa maciza (e2)	0.2	m
Area de la losa maciza A1=L1· e1	0.45	m^2
Ratio	118.42	%
Ratio límite	25.00	%
Verificación	Regular	

Table 24: Irregularidad por discontinuidad del diafragma (b)

Abertura	Largo (m)	Ancho (m)	Área m^2
1	4.02	2.30	9.25
2	1.10	2.30	2.53
3	1.20	19.00	22.80
	Área total	de aberturas:	$34.58 \ m^2$
	Área tota	l de la planta:	$120.41 \ m^2$

 $\begin{array}{ccc} {\rm Ratio:} & 28.72~\% \\ {\rm Ratio~limite:} & 50.00~\% \\ {\rm Verificaci\'on:} & {\rm Regular} \end{array}$