Quiz_Answers

December 10, 2017

0.1 QUIZ-1

```
ANS 1: Supervised Learning
```

- ANS 2: Unsupervised Learning
- **ANS 3:** Classification
- **ANS 4:** Regression
- **ANS 5:** $k=1 \Rightarrow Class 1$ and $k=3 \Rightarrow Class 2$
- ANS 6: Memorizes the entire training set

ANS 7:

- 1. See ehat type of cleaning or preprocessing still needs to be done
- 2. you might notice missing data
- 3. gain insight on what machine learning model might be appropriate in any
- 4. get a sense for how difficult the problem might be

ANS 8: to estimate how well the learned model will generalize to new data

ANS 9: To make experiment easily reproducible by always using the same partitioning of the data

ANS 10:

```
X_train (7500,50)
y_train(7500,)
X_test(2500,50)
y_test(2500,)
```

0.2 **QUIZ-2**

ANS 1: You are overfitting, the next model trained should have a higher value for alpha

ANS 2: Decrease C and gamma

ANS 3: Classify a set of fruits as apples, oranges, bananas, or lemons

ANS 4: 10

ANS 5: Lasso Regression

ANS 6: 0.1, 1, 10

ANS 7: Figure A: Ridge Regression, Figure B: Lasso Regression

ANS 8: 3

ANS 9: 10

ANS 10: 8

ANS 11:

- 1. Helps prevent knowledge about the test set from leaking into the model
- 2. Increases generalization ability and computational complexity
- 3. Fits multiple models on different splits of the data

0.3 **QUIZ-3**

ANS 1: 0.99

ANS 2: 0.906

ANS 3: 0.923

ANS 4: 0.960

ANS 5: 0.6

ANS 6:

- 1. Model 1:Roc 1
- 2. Model 2:Roc 3
- 3. Model 3:Roc 2

ANS 7: Not enough information is given

ANS 8: 0.744

ANS 9:

- 1. The best possible score is 1.0
- 2. The worst possible score is 0.0

ANS 10: Precision

ANS 11: Recall

ANS 12: The model is probabily misclassifying the frequent labels more than the infrequent labels.

ANS 13: 0.52

ANS 14: 0.15

0.4 **QUIZ-4**

ANS 1: Separate the data into distinct groups by similarity

ANS 2:

- 1. Trees often require less preprocessing of data
- 2. Trees are easy to interpret and visualize

ANS 3: To improve generalization by reducing correlation among the trees and making the model more robust to bias.

ANS 4: Neural Netwrok, SVM, KNN

ANS 5:

- 1. For a model that wont overfit a training set, Naive Bayes would be a better choice than
- 2. For predicting future sales of a clothing line, Linear regression would be a better choregressor.

ANS 6: Neural Network -> KNN(k=1) -> Decision Tree

ANS 7: 0.06745

ANS 8:

- 1. collection_status Flag for payments in collections
- 2. compliance_detail More information on why each ticket was marked compliant or non-comp

ANS 9:

- 1. If time is a factor, remove any data related to the event of interest that doesnt take ;
- 2. Remove variables that a model in production wouldnt have access to
- 3. Sanity check the model with an unseen validation set

ANS 10: EXOR (output would be 0110)

In []: