Data science for business

Hamid Zehtab

Let's ask Google!

Making data work for you

What can data do?

- Describe the current state of an organization or process
- Detect anomalous events
- Diagnose the causes of events and behaviors
- Predict future events

Why now?

Why now?

Why now?

The data science workflow

Data collection

Experimentation and prediction

Exploration and visualization

Applications of Data science

Hamid Zehtab

DATA SCIENCE FOR BUSINESS

More case studies

- Traditional machine learning
- Internet of Things (IoT)
- Deep Learning

Case study: fraud detection

Case study: fraud detection

Amount	Date	Type	•••
•	•	•	•
•	•		•
•	•		•
•	•	•	•
•			•
•	•	•	•
•			

What do we need for machine learning?

- A well-defined question
 - "What is the probability that this transaction is fraudulent?"
- A set of example data
 - Old transactions labeled as "fraudulent" or "valid"
- A new set of data to use our algorithm on
 - New credit card transactions

Case study: smart watch

Internet of Things

- Smart watches
- Internet-connected home security systems
- Electronic toll collection systems
- Building energy management systems
- Much, much more!

Case study: image recognition

Case study: image recognition

1	1	1	1	1	1	1	1	2	2	3	3	3	1	-3	1	1	2
1	1	1	1	1	1	1	1	2	2	3	3	3	1	3	1	1	2
1	1	γ1	1	1	1	1	1	2	1	2	3	1	3	3	1	1	2
8	8	8	8	8	8	8	8	8	8	8	8	48	20	20	20	8	8
6	6	7	6	6	6	6	6	6	6	6	6	6	20	20	20	8	5
4	4	4	4	4	4	4	4	4	4	4	4	4	20	20	20	5	5
4	4	4	4	4	4	4	5	5	5	5	5	5	5	4	4	4	4
4	4	4	4	5	5	5	5	5	5	4	4	4	4	4	4	4	4
5	5	5	5	5	5	4	4	4	4	4	4	4	4	4	4	4	4
1	1	_	E			1	4	4	1	1	1		4	4	1	1	1

Deep learning

- Many neurons work together
- Requires much more training data
- Used in complex problems
 - Image classification
 - Language learning/understanding

Building a data science team

Hamid Zehtab

DATA SCIENCE FOR BUSINESS

Members of your team

Data engineering

- Information architects
- Build storage solutions
- Maintain data access

Data engineering tools

- SQL
 - Storing large quantities of data
- Java, Scala, or Python
 - Programming languages for processing data and automating tasks

Data analysis

- Creating dashboards
- Hypothesis testing
- Data visualization

Data analysis tools

- Spreadsheets (Excel or Google Sheets)
 - Simple storage and analysis
- SQL
 - Large-scale analysis
- BI Tools (Tableau, Power BI, Looker)
 - Dashboarding and sharing information

Machine learning

- Predictions and extrapolations
- Classification
- Stock price prediction
- Image processing
- Automated text analysis

Machine learning tools

- Python and R
 - Programming languages for creating predictive models

Review: members of your team

Data Engineer	Data Analyst	Machine Learning Scientist				
Store and maintain data	Visualize and describe data	Model and predict with data				
SQL + Java/Scala/Python	SQL + BI Tools + Spreadsheets	Python/R				

Data science team structure

- Isolated
- Embedded
- Hybrid

Team structure: isolated

Team structure: embedded

Team structure: hybrid

Collecting additional data

Even more data

- APIs
- Public records
- Mechanical Turk

Data APIs

- Application Programming Interface
- Request data over the internet

- Twitter
- Wikipedia
- Yahoo! Finance
- Google Maps
- Many more!

Tracking a hashtag

Use Twitter API

All tweets with #Example

Use Instagram API

Public records

- For the US, data.gov
- For the EU, data.europa.eu

Building a training set

Mechanical Turk

Select the car in the image.

Mechanical Turk

- Resource: AWS MTurk
- Label customer reviews
- Extract text from a form
- Highlight key words in a sentence

Resources

- Data Science for Business and Decision Making by Luiz Favero and Patrícia Belfiore
- 2. Harvard Business School at online.hbs.edu
- 3. Harvard Business Review at hbr.org
- 4. wikipedia.org
- 5. ibm.com/cloud/learn/data-science-introduction
- 6. coursera.org/browse/data-science