Service-oriented Quantum Applications

Martin Beisel, Benjamin Weder

[beisel, weder]@iaas.uni-stuttgart.de

Institute of Architecture of Application Systems

Tutorial Structure

- Session 1 (09:00 10:30): An Introduction to Quantum Computing
- Session 2 (11:00 12:30): Quantum Software Engineering
- Session 3 (14:00 15:30): Quantum Workflows
 - Quantum Workflows
 - Service-oriented Quantum Applications
 - Introduction to Hands-On Session
 - Hands-On Session Part 1
- Session 4 (16:00 17:30): Operation of Hybrid Quantum Applications

Tutorial Structure

- Session 1 (09:00 10:30): An Introduction to Quantum Computing
- Session 2 (11:00 12:30): Quantum Software Engineering
- Session 3 (14:00 15:30): Quantum Workflows
 - Quantum Workflows
 - Service-oriented Quantum Applications
 - Introduction to Hands-On Session
 - Hands-On Session Part 1
- Session 4 (16:00 17:30): Operation of Hybrid Quantum Applications

Motivation

Motivation

- Many quantum applications are implemented as monoliths
- Low reusability, understandability, scalability, maintainability, ...

- Implement quantum applications as service-oriented architectures
 - Identify core functionalities
 - Conceptualize micro service architecture

Quantum Service Ecosystem

Modularization

- Identify typical steps of a quantum application
 - Circuit Generation

Circuit Execution

Error Mitigation

Optimization

Result Evaluation

Warm-Starting

Circuit-Cutting

Separate application based on identified steps

Circuit Generation Service

- Supports commonly used encodings, circuit fragments and entire circuits
 - Encodings:
 - Basis encoding, amplitude encoding, angle encoding, ...
 - Circuit fragments:
 - Quantum phase estimation, quantum fourier transformation, ...
 - Circuits:
 - QAOA, HHL, VQE, ...

Circuit Execution Service

- Execution for various providers
 - IBM, IonQ: https://github.com/UST-QuAntiL/qiskit-service
 - Execution via AWS: https://github.com/UST-QuAntiL/braket-service
 - Rigetti, OQC, IonQ, QuEra, Xanadu
 - Q#: https://github.com/UST-QuAntiL/qsharp-service
 - Google: https://github.com/UST-QuAntiL/cirq-service

Error Mitigation Service

- Reduce impact of errors based on data about the quantum computer
- Example: Readout-error mitigation using the calibration matrix

 Error mitigation service enables generating, saving, reusing and sharing error models

Parameter Optimization Service

Variational quantum algorithms require the optimization of circuit parameters

- Integrates various optimization algorithms provided by:
 - SciPy
 - Qiskit

Result Evaluation Service

Many quantum algorithm require a classical evaluation of the circuit execution result

Example:

- Service supports
 - Objective functions, such as expectation value, Gibbs, Cvar
 - Cost functions, such as maximum cut problem, traveling salesman problem

Warm-Starting Service

- Warm-Starting can improve the performance of quantum algorithms by:
 - Efficiently approximating classical solutions that can be encoded into the quantum circuit
 - Pre-computing initial parameters for the circuit optimization process

Warm-Starting services enables users to easily warm-start their quantum algorithm

Quantum Circuit Cutting Service

- Quantum circuits might be too large (width, depth) to retrieve good results
- Execute multiple smaller circuits
 - → Classical post-processing to combine results

System Architecture

Hands-On Session