Math 4317 (Prof. Swiech, S'18): HW #3

Peter Williams 3/20/2018

Section 14

A. Let $b \in \mathbb{R}$, show $\lim \frac{b}{n} = 0$.

Take $\varepsilon > 0$, if $|\frac{b}{n} - 0| < \varepsilon$, there exists natural number $K(\varepsilon)$ such that $\frac{b}{n} < \frac{n}{K(\varepsilon)} < \varepsilon$. If $n \ge K(\varepsilon)$, and we choose $K(\varepsilon)$ such that $K(\varepsilon) > \frac{b}{\varepsilon} \implies \frac{b}{n} < \varepsilon \implies \lim \frac{b}{n} = 0$.

B. Show that $\lim_{n \to \infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 0$.

Take $\varepsilon > 0$, note that for $n \in \mathbb{N}, \frac{1}{n} - \frac{1}{n+1} = \frac{n+1-n}{n(n+1)} = \frac{1}{n(n+1)} < \frac{1}{n}$. So we choose natural number $K(\varepsilon)$ such that $\frac{1}{K(\varepsilon)} < \varepsilon$. Therefore if $n \geq K(\varepsilon) \implies \frac{1}{n} < \varepsilon$. Therefore $|\frac{1}{n} - \frac{1}{n+1} - 0| = \frac{1}{n} - \frac{1}{n+1} < \frac{1}{n} < \varepsilon \implies \lim(\frac{1}{n} - \frac{1}{n+1}) = 0$.

D. Let $X = (x_n)$ be a sequence in \mathbb{R}^p which is convergent to x. Show that $\lim ||x_n|| = ||x||$. (Hint: use the Triangle Inequality.)

Let $||x|| = \lim(||x_n||)$, $\varepsilon > 0$, which implies there exists natural number $K(\varepsilon)$ such that for $n \ge K(\varepsilon)$, $||x_n - x|| < \varepsilon$. If $n \ge K(\varepsilon)$, $||x_n|| = ||x_n - x + x|| \le ||x_n - x|| + ||x|| < \varepsilon + ||x|| \implies ||x_n|| - ||x|| \le ||x_n - x|| < \varepsilon \implies \lim ||x_n|| = ||x||$.

G. Let $d \in \mathbb{R}$ satisfy d > 1. Use Bernoulli's inequality to show that the sequence (d_n) is not bounded in \mathbb{R} . Hence it is not convergent.\$

We have the sequence $D=(d_n)$, where $d_n=d^n$. Let d=1+a for some $a>0 \implies d^n=(1+a)^n>1+na$ by Bernoulli's inequality. For any a>b>0, $(1+a)^n>(1+b)^n$ which implies the sequence d_n is increasing. Take M>0, we have $d^n>1+na>M>0$, if $n>\frac{M}{a}\implies 1+na>M$. Thus (d_n) is not bounded.

H. Let $b \in \mathbb{R}$ satisfy 0 < b < 1; show that $\lim(nb^n) = 0$. (Hint: use the Binomial theorem as in Example 14.8(e).)

Let $b=\frac{1}{1+a}, a>0$, we have $b^n=\frac{1}{(1+a)^n}$. By Binomial theorem, $(1+a)^n>\frac{n(n-1)}{2}a^2\Longrightarrow \frac{1}{(1+a)^n}<\frac{2}{n(n-1)a^2}$, therefore $nb^n=\frac{n}{(1+a)^n}<\frac{2n}{n(n-1)a^2}=\frac{2}{(n-1)a^2}$. Take $\varepsilon>0$, natural number $K(\varepsilon)$, if $n\geq K(\varepsilon)$ we have $nb^n=\frac{n}{(1+a)^n}<\frac{2}{(n-1)a^2}<\frac{2}{(K(\varepsilon)-1)a^2}<\varepsilon$. Then $|nb^n-0|<\varepsilon\Longrightarrow nb^n<\varepsilon\Longrightarrow nb^n=0$.

I. Let $X = (x_n)$ be a sequence of strictly positive real numbers such that $\lim(\frac{x_{n+1}}{x_n}) < 1$. Show that for some r with 0 < r < 1 and some C > 0, then we have $0 < x_n < Cr^n$ for all sufficiently large $n \in \mathbb{N}$. Use this to show that $\lim(x_n) = 0$

Since $L = \lim(\frac{x_{n+1}}{x_n}) < 1$, $0 < r < 1 \implies |\frac{x_{n+1}}{x_n} - L| < r$ or $0 < \frac{x_{n+1}}{x_n} < r$ for all $n \ge K(\varepsilon) \in \mathbb{N}$. Since $\frac{x_{n+1}}{x_n} < r < 1 \implies x_{n+1} < rx_n < x_n \implies x_n < \frac{x_n}{r}$. If we set $C = \frac{x_n}{r^{n+1}} > 0$, we have $x_n < Cr^n$. Since $\lim_{n \to \infty} r^n = 0 \implies \lim(x_n) = 0$.

J. Let $X = (x_n)$ be a sequence of strictly positive real numbers such that $\lim(\frac{x_{n+1}}{x_n}) > 1$. Show that X is not a bounded sequence and hence is not convergent.

Take $\varepsilon > 0$, since $L = \lim(\frac{x_{n+1}}{x_n}) > 1 \implies |\frac{x_{n+1}}{x_n} - L| = |L - \frac{x_{n+1}}{x_n}| < \varepsilon \implies L - \varepsilon < \frac{x_{n+1}}{x_n} \text{ for all } n \ge K(\varepsilon) \in \mathbb{N}$. Take $L - \varepsilon = r > 1$ when ε is small. This implies $x_{n+1} > rx_n$. Take $C = \frac{x_n}{r^{n-1}} > 0 \implies x_{n+1} > Cr^n$. Since r > 1, r^n diverges which implies the sequence x_{n+1} is not bounded or convergent.

K. Give and example of a convergent sequence (x_n) of strictly positive real numbers such that $\lim_{x_n \to \infty} (\frac{x_n+1}{x_n}) = 1$. Give an example of a divergent sequence with this property.

Consider convergent sequence $X = (x_n) = (\frac{1}{n})$. $\lim \left(\frac{x_n+1}{x_n}\right) = 1 \implies \left|\frac{\frac{1}{n+1}}{\frac{1}{n}} - 1\right| = \left|\frac{-1}{n+1}\right| = \frac{1}{n+1} < \varepsilon, \ \varepsilon > 0$.

If we choose natural number $K(\varepsilon), n \ge K(\varepsilon)$ we have $\frac{1}{n+1} < \frac{1}{K(\varepsilon)+1} < \varepsilon$, indicating $(\frac{x_n+1}{x_n})$ is a convergent sequence with limit 1.

Consider divergent sequence $X=(x_n)=n$. $\lim \left(\frac{x_n+1}{x_n}\right)=1 \implies \left|\frac{n+1}{n}-1\right|=\left|\frac{1}{n}\right|=\frac{1}{n}<\varepsilon,\ \varepsilon>0$. If we choose natural number $K(\varepsilon), n\geq K(\varepsilon)$ we have $\frac{1}{n}<\frac{1}{K(\varepsilon)}<\varepsilon$, indicating $\left(\frac{x_n+1}{x_n}\right)$ is a convergent sequence with limit 1.

L. Apply the results of Exercises 14.I and 14.J to the following sequences. (Here 0 < a < 1, 1 < b, c > 0)

- (a) (a^n) $\lim(\frac{x_{n+1}}{x_n}) < 1$, since $\frac{x_{n+1}}{x_n} = \frac{a^{n+1}}{a^n} = a < 1 \implies a^n$ is convergent, bounded.
- (b) (na^n) $\lim_{x_n \to \infty} \left(\frac{x_{n+1}}{x_n}\right) < 1$, since $\frac{x_{n+1}}{x_n} = \frac{(n+1)a^{n+1}}{na^n} = \left(\frac{n+1}{n}\right)a$ which tends to $1 \cdot a < 1 \implies na^n$ is convergent, bounded.
- (c) (b^n) $\lim(\frac{x_{n+1}}{x_n}) > 1$, since $\frac{x_{n+1}}{x_n} = \frac{b^{n+1}}{b^n} = b > 1 \implies b^n$ is divergent, not bounded.
- (d) $(\frac{b^n}{n})$ In this case $\lim(\frac{x_{n+1}}{x_n}) > 1$, since $\frac{x_{n+1}}{x_n} = \frac{\frac{b^{n+1}}{n+1}}{\frac{b^n}{n}} = (\frac{n}{n+1})b$ which tends to $1 \cdot b > 1 \implies \frac{b^n}{n}$ diverges, not bounded.
- (e) $\left(\frac{c^n}{n!}\right)$ $\lim\left(\frac{x_{n+1}}{x_n}\right) < 1$, since $\frac{x_{n+1}}{x_n} = \frac{\frac{c^{n+1}}{(n+1)!}}{\frac{c^n}{n!}} = \frac{c}{n+1}$ which tends to 0 < 1 implying $\left(\frac{c^n}{n!}\right)$ converges, bounded.
- (f) $\left(\frac{2^{3n}}{3^{2n}}\right)$ converge

Section 15

C(a-e).

E.

F.

L.

N.

Section 16

A,B,E,G,J,M(a)(c)(d),N

Section 17

A,B,D,E,L,M

Section 18

A(a-c),D,F,I