DESIGN OF GATE NETWORKS

- DESIGN OF TWO-LEVEL NETWORKS:
 AND-OR and OR-AND NETWORKS
- MINIMAL TWO-LEVEL NETWORKS
 KARNAUGH MAPS
 MINIMIZATION PROCEDURE AND TOOLS
 LIMITATIONS OF TWO-LEVEL NETWORKS
- DESIGN OF TWO-LEVEL NAND-NAND and NOR-NOR NETWORKS
- PROGRAMMABLE LOGIC: PLAs and PALs

DESIGN OF TWO-LEVEL NETWORKS

IMPLEMENTATION:

Level 1: NOT GATES (optional)

Level 2: AND GATES

Level 3: OR GATES

LITERALS

(uncomplemented and complemented variables)

NOT GATES (IF NEEDED)

PRODUCTS: AND gates

SUM: OR gate

MULTIOUTPUT NETWORKS: ONE OR GATE USED FOR

EACH OUTPUT

PRODUCT OF SUMS NETWORKS - SIMILAR

MODULO-64 INCREMENTER

Input: $0 \le x \le 63$

Output: $0 \le z \le 63$

Function: $z = (x+1) \mod 64$

$$egin{array}{c|cccc} x & 010101 & x & 001111 \\ \hline z & 010110 & z & 010000 \\ \hline \end{array}$$

RADIX-2 REPRESENTATION

$$z_i = \begin{cases} 1 & \text{if } (x_i = 1 \text{ and } there \ exists \ j < i \ such \ that \ x_j = 0) \\ & \text{or } (x_i = 0 \text{ and } x_j = 1 \ for \ all \ j < i) \\ 0 & \text{otherwise} \end{cases}$$

$$z_{5} = x_{5}(x'_{4} + x'_{3} + x'_{2} + x'_{1} + x'_{0}) + x'_{5}x_{4}x_{3}x_{2}x_{1}x_{0}$$

$$= x_{5}x'_{4} + x_{5}x'_{3} + x_{5}x'_{2} + x_{5}x'_{1} + x_{5}x'_{0} + x'_{5}x_{4}x_{3}x_{2}x_{1}x_{0}$$

$$z_{4} = x_{4}x'_{3} + x_{4}x'_{2} + x_{4}x'_{1} + x_{4}x'_{0} + x'_{4}x_{3}x_{2}x_{1}x_{0}$$

$$z_{3} = x_{3}x'_{2} + x_{3}x'_{1} + x_{3}x'_{0} + x'_{3}x_{2}x_{1}x_{0}$$

$$z_{2} = x_{2}x'_{1} + x_{2}x'_{0} + x'_{2}x_{1}x_{0}$$

$$z_{1} = x_{1}x'_{0} + x'_{1}x_{0}$$

$$z_{0} = x'_{0}$$

Figure 5.1: NOT-AND-OR MODULO-64 INCREMENTER NETWORK.

UNCOMPLEMENTED AND COMPLEMENTED INPUTS AVAILABLE

TWO TYPES OF TWO-LEVEL NETWORKS:

AND-OR NETWORK ⇔ SUM OF PRODUCTS (SP) easily transformed into NAND-NAND NETWORK

$$E(x_2, x_1, x_0) = x_2' x_1' x_0 + x_2 x_1 + x_1 x_0'$$

OR-AND NETWORK ⇔ PRODUCT OF SUMS (PS) (NOR-NOR NETWORK)

$$E(x_2, x_1, x_0) = (x_2' + x_1)(x_1 + x_0')(x_2 + x_1' + x_0)$$

 $Figure\ 5.2:\ \mbox{AND-OR}$ and OR-AND NETWORKS.

- 1. INPUTS: UNCOMPLEMENTED AND COMPLEMENTED
- 2. FANIN UNLIMITED
- 3. SINGLE-OUTPUT NETWORKS
- 4. MINIMAL NETWORK:

MINIMUM NUMBER OF GATES WITH MINIMUM NUMBER OF INPUTS

(minimal expression: min. number of terms with min. number of literals)

Figure 5.3: NETWORKS WITH DIFFERENT COST TO IMPLEMENT $f(x_2, x_1, x_0) = one\text{-set}(3,6,7)$.

EQUIVALENT BUT DIFFERENT COST

$$E_1(x_2, x_1, x_0) = x_2' x_1 x_0' + x_1' x_0 + x_2 x_0$$

$$E_2(x_2, x_1, x_0) = x_2 x_1 x_0 + x_2' x_1 x_0' + x_2' x_1' x_0 + x_2 x_1' x_0$$

- BOTH MINIMAL SP AND PS MUST BE OBTAINED AND COMPARED
- BASIS:

$$ab + ab' = a$$
 (for sum of products)
 $(a + b)(a + b') = a$ (for product of sums)

GRAPHICAL REPRESENTATION OF SWITCHING FUNCTIONS: kARNAUGH MAPS

- 2-DIMENSIONAL ARRAY OF CELLS
- n VARIABLES $\longrightarrow 2^n$ CELLS
- cell $i \longleftrightarrow ASSIGNMENT i$

ADJACENCY CONDITION

ANY SET OF 2^r ADJACENT ROWS (COLUMNS): ASSIGNMENTS DIFFER IN r VARIABLES

- REPRESENTING SWITCHING FUNCTIONS
- REPRESENTING SWITCHING EXPRESSIONS
- GRAPHICAL AID IN SIMPLIFYING EXPRESSIONS

Figure 5.4: K-Maps

Figure 5.5: K-map FOR FIVE VARIABLES

REPRESENTATION OF SWITCHING FUNCTIONS

$$f(x_2, x_1, x_0) = one\text{-}set(0,2,6)$$

$$x_{2} \frac{x_{0}}{0 0 0 1}$$

$$x_{1} \frac{x_{0}}{0 0 0 1}$$

$$f(x_3, x_2, x_1, x_0) = zero\text{-}set(1,3,4,6,10,11,13)$$

$$f(x_2, x_1, x_0) = [one\text{-}set(0,4,5), dc\text{-}set(2,3)]$$

$$x_{1} = x_{0}$$
 $x_{1} = x_{0}$
 $x_{1} = x_{0}$
 $x_{1} = x_{0}$
 $x_{1} = x_{0}$

- 1. MINTERM m_j CORRESPONDS TO 1-CELL WITH LABEL j.
- 2. PRODUCT TERM OF n-1 LITERALS \longleftrightarrow RECTANGLE OF TWO ADJACENT 1-CELLS

$$x_3x_1'x_0 = x_3x_1'x_0(x_2 + x_2')$$

$$= x_3x_2x_1'x_0 + x_3x_2'x_1'x_0$$

$$= m_{13} + m_9$$

Figure 5.6

RECTANGLES OF 1-CELLS AND SUM OF PRODUCTS (cont.)

3. PRODUCT TERM OF n-2 LITERALS \longleftrightarrow RECTANGLE OF FOUR ADJACENT 1-CELLS

$$x_3x_0 = x_3x_0(x_1 + x_1')(x_2 + x_2')$$

$$= x_3x_2'x_1'x_0 + x_3x_2'x_1x_0 + x_3x_2x_1'x_0 + x_3x_2x_1x_0$$

$$= m_9 + m_{11} + m_{13} + m_{15}$$

$$x_0$$

$$x_3$$

$$x_3$$

$$x_3$$

$$x_3$$

$$x_3$$

$$x_3$$

$$x_3$$

Figure 5.6

4. PRODUCT TERM OF n-s LITERALS \longleftrightarrow RECTANGLE OF 2^s ADJACENT 1-CELLS

Figure 5.7: Representation of product of n - (a + b) variables.

represented in a K-map by the union of rectangles

$$E(x_3, x_2, x_1, x_0) = x_3' x_2 x_1 + x_2' x_1 x_0 + x_0'$$

$$E(a,b,c) = ab + ac + b'c'$$

0-cell 13 CORRESPONDS TO THE MAXTERM

$$M_{13} = x_3' + x_2' + x_1 + x_0'$$

RECTANGLE OF $2^a \times 2^b$ 0-cells \longleftrightarrow SUM TERM OF n-(a+b) LITERALS

IMPLICANT: PRODUCT TERM FOR WHICH f=1

Figure 5.9: Implicant representation.

IMPLICANTS: $x_3'x_2'x_1'x_0$, ALL PRODUCT TERMS WITH x_3

PRIME IMPLICANT: IMPLICANT NOT COVERED BY ANOTHER IMPLICANT

PRIME IMPLICANTS: $x_2'x_1'x_0$, x_3

FIND ALL PIs

a)
$$f(x_2, x_1, x_0) = one\text{-}set(2,4,6)$$

Pls: x_2x_0' and x_1x_0'

b)
$$f(x_2, x_1, x_0) = one\text{-}set(0,1,5,7)$$

Pls: $x_2'x_1'$, x_2x_0 , and $x_1'x_0$

c)
$$f(x_3, x_2, x_1, x_0) = one\text{-}set(0,3,5,7,11,12,13,15)$$

Pls: x_2x_0 , x_1x_0 , $x_3x_2x_1'$, and $x_3'x_2'x_1'x_0'$

MINIMAL SUM OF PRODUCTS CONSISTS OF PRIME IMPLICANTS

Figure 5.10: MINIMAL SUM OF PRODUCTS AND PRIME IMPLICANTS.

Example 5.9

$$E(x_2, x_1, x_0) = x_2 x_1' x_0' + x_2 x_1 x_0' + x_1 x_0'$$

not PIs: $x_2x_1'x_0'$ and $x_2x_1x_0'$

PI: x_2x_0' , x_1x_0'

REDUCED SP: $E(x_2, x_1, x_0) = x_2 x_0' + x_1 x_0'$

ESSENTIAL PRIME IMPLICANTS (EPI)

 $p_e(\underline{a}) = 1$ and $p(\underline{a}) = 0$ FOR ANY OTHER PI p

EPIs: $x_1'x_0'$ and x_1x_0

NON-ESSENTIAL: x_2x_1 , x_2x_0' .

ALL EPIs ARE INCLUDED IN A MINIMAL SP

PROCEDURE FOR FINDING MIN SP

- 1. DETERMINE ALL PIs
- 2. OBTAIN THE EPIs
- 3. IF NOT ALL 1-CELLS COVERED, CHOOSE A COVER FROM THE REMAINING PIs

FIND A MINIMAL SP:

a)
$$E(x_3, x_2, x_1, x_0) = x_3' x_2' + x_3' x_2 x_0 + x_1 x_0$$

- Pls: $x_3'x_2'$, $x_3'x_0$, and x_1x_0
- ALL EPIs
- UNIQUE MIN SP: $x_3'x_2' + x_3'x_0 + x_1x_0$

b)
$$E(x_2, x_1, x_0) = \Sigma m(0, 3, 4, 6, 7)$$

- Pls: $x_1'x_0'$, x_1x_0 , x_2x_0' , and x_2x_1
- EPIs: $x_1'x_0'$ and x_1x_0
- EXTRA COVER: $x_2x'_0$ or x_2x_1
- TWO MIN SPs:

$$x_1'x_0' + x_1x_0 + x_2x_0'$$
 and $x_1'x_0' + x_1x_0 + x_2x_1$

c)
$$E(x_2, x_1, x_0) = \Sigma m(0, 1, 2, 5, 6, 7)$$

- Pls: $x_2'x_1'$, $x_2'x_0'$, x_2x_0 , x_2x_1 , $x_1'x_0$, and x_1x_0'
- No EPIs
- TWO MIN SPs

$$x_2'x_1' + x_2x_0 + x_1x_0'$$
 and $x_2'x_0' + x_1'x_0 + x_2x_1$

MINIMAL SPs FOR INCOMPLETELY SPECIFIED FUNCTIONS³¹

A minimal SP

$$E(x_3, x_2, x_1, x_0) = x_3 x_0' + x_3' x_0 + x_3' x_2' x_1'$$

IMPLICATE: SUM TERM FOR WHICH f = 0.

PRIME IMPLICATE: IMPLICATE NOT COVERED BY ANOTHER IMPLICATE

ESSENTIAL PRIME IMPLICATE: AT LEAST ONE "CELL"
NOT INCLUDED IN OTHER IMPLICATE

$$f(x_3, x_2, x_1, x_0) = zero-set(7,13,15)$$

THE PRIME IMPLICATES: $(x'_3 + x'_2 + x'_0)$ and $(x'_2 + x'_1 + x'_0)$

BOTH ESSENTIAL

PROCEDURE FOR FINDING MIN PS

- 1. DETERMINE ALL PRIME IMPLICATES
- 2. DETERMINE THE ESSENTIAL PRIME IMPLICATES
- 3. FROM SET OF NONESSENTIAL PRIME IMPLICATES, SE-LECT COVER OF REMAINING 0-CELLS

- THE PRIME IMPLICATES: $(x'_0 + x'_2)$ and $(x_0 + x_2 + x'_1)$
- BOTH ESSENTIAL, THE MINIMAL PS IS $(x'_0 + x'_2)(x_0 + x_2 + x'_1)$

MINIMAL TWO-LEVEL GATE NETWORK DESIGN: EXAMPLE 5.14

Input:
$$x \in \{0, 1, 2, ..., 9\}$$
, coded in BCD as

$$\underline{x} = (x_3, x_2, x_1, x_0), \ x_i \in \{0, 1\}$$

Output: $z \in \{0, 1\}$

Function:
$$z = \begin{cases} 1 & \text{if } x \in \{0, 2, 3, 5, 8\} \\ 0 & \text{otherwise} \end{cases}$$

THE VALUES {10,11,12,13,14,15} ARE "DON'T CARES"

MIN SP: $z = x_2'x_1 + x_2'x_0' + x_2x_1'x_0$

Figure 5.11: MINIMAL AND-OR NETWORK

MIN PS:
$$z = (x'_2 + x'_1)(x'_2 + x_0)(x_2 + x_1 + x'_0)$$

EXAMPLE 5.15

Input: $x \in \{0, 1, 2, ..., 15\}$

represented in binary code by $\underline{x} = (x_3, x_2, x_1, x_0)$

Output: $z \in \{0, 1\}$

Function: $z = \begin{cases} 1 & \text{if } x \in \{0, 1, 3, 5, 7, 11, 12, 13, 14\} \\ 0 & \text{otherwise} \end{cases}$

THE K-MAP:

min SP: $z = x_3'x_0 + x_3'x_2'x_1' + x_2x_1'x_0 + x_3x_2x_0' + x_2'x_1x_0$ min PS: $z = (x_3' + x_2 + x_1)(x_3 + x_2' + x_0)(x_2 + x_1' + x_0)(x_3' + x_2' + x_1' + x_0')$ COST(PS) < COST(SP)

Figure 5.12: MINIMAL OR-AND NETWORK

QUINE-McCLUSKEY TABULAR METHOD

- Intended for minimizing s-expressions of more than 4 variables
- Suitable for computer-based methods
- Part 1: Determine the prime implicants (prime implicates) of the function. Use Xy+Xy'=X (or (X+y)(X+y')=X for min POS)
- Part 2: Select a set of prime implicants (prime implicates) that covers the function and has the minimum cost: construct PI chart
- The number of prime implicants is usually very large: obtaining a minimum cover is time-consuming

- ullet Given a function f of n variables, determine the prime implicants
- Column 1: list all the minterms according to the number of 1's in the binary representation
- Column 2: list implicants with n-1 literals by pairing elements of Column 1 that differ in the value of one variable; mark the variable in which they differ with "-". Mark elements of Column 1 which form such a pair with N ("Not prime implicants") 1011 and 1001 produce 10-1
- Column 3: list implicants with n-2 literals by pairing elements of Column 2 which have "-" in the same position and differ only in one variable. Mark as above.
 - 10-1 and 00-1 produce -0-1
- Continue this process until no more elements can be paired

ullet The prime implicants are elements not marked with N

EXAMPLE:
$$f(x_4, ..., x_0) = \Sigma m(1, 3, 4, 6, 9, 11, 12, 14, 16, 18, 21, 23, 24, 26, 29, 31)$$

	Minterms	4-literal prods	3-literal prods
	00001 N	000-1 N	0-0-1
	00100 N	0-001 N	0-1-0
	10000 N	001-0 N	1-0-0
		0-100 N	
	00011 N	100-0 N	1-1-1
	00110 N	1-000 N	
	01001 N		
	01100 N	0-011 N	
	10010 N	0-110 N	
	11000 N	010-1 N	
		011-0 N	
	01011 N	1-010 N	
	01110 N	110-0 N	
	10101 N		
	11010 N	101-1 N	
		1-101 N	
	10111 N		
Introduction to Digital Sy.	11101 N	1-111 N	$5-De ext{sign of}$

5 – Design of Two-Level Gate Networks

	1	3	4	6	9	11	12	14	16	18	21	23	24	26	29	31	Essential	Prime
0-0-1	X	X			X	X											•	
0-1-0			X	X			X	X									•	
1-0-0									X	X			X	X			•	
1-1-1		,	,	,	,						X	X			X	X	•	

$$f(x_4,\ldots,x_0)=x_4'x_2'x_0+x_4'x_2x_0'+x_4x_2'x_0'+x_4x_2x_0$$

DESIGN OF MULTIPLE-OUTPUT TWO-LEVEL GATE NETWORKS

 SEPARATE NETWORK FOR EACH OUTPUT: NO SHARING EXAMPLE 5.16

Inputs: $(x_2, x_1, x_0), x_i \in \{0, 1\}$

Output: $z \in \{0, 1, 2, 3\}$

Function: $z = \sum_{i=0}^{2} x_i$

1. THE SWITCHING FUNCTIONS IN TABULAR FORM ARE

x_2	x_1	x_0	$ z_1 $	z_0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

EXAMPLE 5.16 (cont.)

2. THE CORRESPONDING K-MAPS ARE

3. MINIMAL SPs:

$$z_1 = x_2x_1 + x_2x_0 + x_1x_0$$

$$z_0 = x_2'x_1'x_0 + x_2'x_1x_0' + x_2x_1'x_0' + x_2x_1x_0$$

4. MINIMAL PSs:

$$z_1 = (x_2 + x_0)(x_2 + x_1)(x_1 + x_0)$$

$$z_0 = (x_2 + x_1 + x_0)(x_2 + x_1' + x_0')$$

$$(x_2' + x_1 + x_0')(x_2' + x_1' + x_0)$$

5. SP AND PS EXPRESSIONS HAVE THE SAME COST

Figure 5.13: MINIMAL TWO-OUTPUT and-or NETWORK

$$E = p_1 + p_2 + p_3 + \ldots + p_n$$

 p_1, p_2, \ldots ARE PRODUCT TERMS

$$E = (p_1' \cdot p_2' \cdot p_3' \dots p_n')'$$

or

$$E = NAND(NAND_1, NAND_2, NAND_3, \dots, NAND_n)$$

Figure 5.15: TRANSFORMATION OF AND-OR NETWORK INTO NAND-NAND NETWORK

$$z = x_5'(x_4 + x_3')(x_2 + x_1 + x_0)$$

$$x_5 \\
x_4 \\
x_3 \\
x_1 \\
x_2 \\
x_1 \\
x_0$$
(a)
$$z \\
x_1 \\
x_2 \\
x_1 \\
x_0 \\
(b)$$

Figure 5.16: EQUIVALENT OR-AND AND NOR-NOR NETWORKS

- 1. THE REQUIREMENT OF UNCOMPLEMENTED AND COM-PLEMENTED INPUTS IF NOT SATISFIED, AN ADDITIONAL LEVEL OF NOT GATES NEEDED
- 2. A TWO-LEVEL IMPLEMENTATION OF A FUNCTION MIGHT REQUIRE A LARGE NUMBER OF GATES AND IRREGULAR CONNECTIONS
- 3. EXISTING TECHNOLOGIES HAVE LIMITATIONS IN THE FAN-IN OF THE GATES
- 4. THE PROCEDURE ESSENTIALLY LIMITED TO THE SINGLE-OUTPUT CASE

5. THE COST CRITERION OF MINIMIZING THE NUMBER OF GATES IS NOT ADEQUATE FOR MANY MSI/LSI/VLSI DE-SIGNS

PROGRAMMABLE MODULES: PLAs and PALs

- STANDARD (FIXED) STRUCTURE
- CUSTOMIZED (PROGRAMMED) FOR A PARTICULAR FUNCTION
 - DURING THE LAST STAGE OF FABRICATION
 - WHEN INCORPORATED INTO A SYSTEM
- FLEXIBLE USE
- MORE EXPENSIVE AND SLOWER THAN FIXED-FUNCTION MODULES
- OTHER TYPES DISCUSSED IN Chapter 12

Figure 5.17: PROGRAMMABLE LOGIC ARRAY (PLA): a) BLOCK DIAGRAM; b) LOGIC DIAGRAM.

Figure 5.18: EXAMPLE OF PLA IMPLEMENTATION AT THE CIRCUIT LEVEL: FRAGMENT OF A MOS PLA .

A BCD-to-Gray CONVERTER

Inputs: $\underline{d} = (d_3, d_2, d_1, d_0), d_j \in \{0, 1\}$

Outputs: $g = (g_3, g_2, g_1, g_0), g_j \in \{0, 1\}$

Function:

\underline{i}	$d_3d_2d_1d_0$	$g_3g_2g_1g_0$	
0	0000	0000	
1	0001	0001	EXPRESSIONS:
2	0010	0011	EAPRESSIONS:
3	0011	0010	$g_3 = d_3$
4	0100	0110	$g_2 = d_3 + d_2$
5	0101	0111	$g_1 = d_2' d_1 + d_2 d_1'$
6	0110	0101	$g_0 = d_1 d'_0 + d'_1 d_0$
7	0111	0100	$g_0 - a_1 a_0 + a_1 a_0$
8	1000	1100	
9	1001	1101	

Note: a PLA chip would have more rows and columns then shown here

Figure 5.19: PLA IMPLEMENTATION OF BCD-Gray CODE CONVERTER.