A clustering framework for conditional extremes models

SAMBa Conference 2025 Talk, 11th July, 2025, Paddy O'Toole, University of Bath Supervised by Christian Rohrbeck and Jordan Richards (University of Edinburgh)

Introduction

Problem

· Often want to estimate

$$\mathbb{P}(X > X, Y > y) = \mathbb{P}(Y > y \mid X > x)\mathbb{P}(X > x)$$

for large x, y

- "concomitant"/concurrent extreme events for random vector X often particularly devastating
- Goal: identify trends by clustering sites with similar tail dependence

Dependence Modelling

Asymptotic dependence

- Coefficient of extremal dependence $\chi \in [0,1]$,

$$\chi = \lim_{u \to 1} \mathbb{P} \big[F_1(X_1) > u \mid F_2(X_2) > u \big]$$

- (Increasingly strong) asymptotic dependence for $\chi > 0$.
- However, χ only gives summary; inference requires **dependence** model.

Ireland

 Precipitation¹ & wind speed² data for 59 sites across Ireland, Winter months (Oct-Mar) 1990-2020

¹ Met Éireann weekly aggregate

² ERA5 reanalysis weekly mean of daily maxima

Marginal transformation

Heteroskedastic regression dependence model:

$$(Y \mid X = x) = \alpha x + x^{\beta} Z$$
, for $x > u$

- slope parameter α for Y given large X,
- "spread" parameter $\beta \in (-\infty, 1]$ controls stochasticity of relationship between Y and large X.

Heteroskedastic regression dependence model:

$$(\mathbf{Y}_{-i} \mid \mathbf{Y}_i = \mathbf{y}_i) = \boldsymbol{\alpha}_{|i} \mathbf{y}_i + \mathbf{y}_i^{\boldsymbol{\beta}_{|i}} \mathbf{Z}_{|i}, \text{ for } \mathbf{y}_i > u_{\mathbf{Y}_i}$$

- slope parameter $\alpha_{j|i} \in [-1,1]$ for Y_j given large Y_i ,
- "spread" parameter $\beta_{j|i} \in (-\infty, 1]$ controls stochasticity of relationship between Y_i and large Y_i .

Heteroskedastic regression dependence model:

$$(\mathbf{Y}_{-i} \mid \mathbf{Y}_i = \mathbf{y}_i) = \boldsymbol{\alpha}_{|i} \mathbf{y}_i + \mathbf{y}_i^{\boldsymbol{\beta}_{|i}} \mathbf{Z}_{|i}, \text{ for } \mathbf{y}_i > u_{\mathbf{Y}_i}$$

- · slope parameter $\alpha_{j|i} \in [-1,1]$ for Y_j given large Y_i ,
- "spread" parameter $\beta_{j|i} \in (-\infty, 1]$ controls stochasticity of relationship between Y_j and large Y_i .
- Key assumptions:
 - · Residuals $Z_{|i} \sim N(oldsymbol{\mu}_{|i}, oldsymbol{\Sigma}_{|i})$
 - · $Z_{|i}$, Y_i conditionally independent for large Y_i
- · Special cases:

$$oldsymbol{lpha}_{|i}=0, oldsymbol{eta}_{|i}=0 \qquad \Longrightarrow \ \mathbf{Y}_{-i}, \mathbf{Y}_i \ ext{independent}, \ oldsymbol{lpha}_{|i}=-1/1, oldsymbol{eta}_{|i}=0 \implies \ ext{perfect positive/negative dependence}, \ -1$$

Inference

Inference assumes conditional distribution follows a multivariate Normal (MVN) distribution:

$$\left(Y_{-i} \mid Y_i = y_i\right) \sim N\left(\alpha_{|i}y_i + y_i^{\beta_i}\boldsymbol{\mu}_{|i}, y_i^{\beta_i}\boldsymbol{\Sigma}_{|i}\right), \text{ for } Y_i > u_{Y_i}$$

 \implies dependence structures at different sites can be compared using their MVN distributions

Clustering