Shallow Neural Network

Sidharth Baskaran

July 2021

Overview

- Superscript [l] refers to l-th layer
- Right-to-left propagation allows for computing derivative at each step

Neural Network Representation

- Hidden layers are in between output and input layers
 - True values not observed, only I/O
- Notation $\to a^{[0]} = x$, $a^{[1]}$ represents the activation unit **vectors** of dimension being number of nodes in
 - Also contain $w^{[l]}$ and $b^{[l]}$
- Counting layers \rightarrow input layer not counted, so indexed by 0

Computing Neural Network Output

Figure 1: Neural net node

- Single node takes in all elements of a feature
- Notation $\rightarrow a_i^{(l)}$ is the ith node of the lth layer Want to vectorize $z_i^{[l]} = w_i^{[l]T}x + b_i^{[l]}, a_i^{[l]} = \sigma(z_i^{[l]})$
- $w_i^{[l]T}$ is a row-vector, so results in a matrix when vectorized, with the row vectors stacked. Then just multiply by x, i.e. vector

$$z^{[l]} = W^{[l]}x^{[l]} + b^{[l]}$$

• Then, $a^{[l]} = \sigma(z^{[l]})$

Vectorizing across multiple examples

$$x^{(i)} \to a^{[l](i)} = \hat{y}^{(i)}$$

For $i \in [1, m]$, this accounts for m training examples.

$$\begin{array}{l} \text{for } i=1 \text{ to } m: \\ z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]} \\ a^{[1](i)} = \sigma \left(z^{[1](i)}\right) \\ z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]} \\ a^{[2](i)} = \sigma \left(z^{[2](i)}\right) \end{array}$$

Vectorize:

$$Z^{[l]} = W^{[l]}X + b^{[l]}A^{[l]} = \sigma(Z^{[l]})$$

Closer look:

$$z^{[l]} = \left[z^{[l](1)} \ z^{[l]2)} \ \cdots \ z^{[l](m)} \right]$$

Activation Functions

- $\tanh(z)$ is better than $\sigma(z)$ and has range [-1,1]
 - Formula $\rightarrow a = \tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$ Represent of $g^{[l]}(z^{[l]})$

Figure 2: tanh

- Formula for ReLU function is $a = \max(0, z) \implies \frac{d}{dz}a = \max(0, 1)$, is a good default choice
 - Is faster than tanh and σ
 - * Less effect of slope approaching 0, since it is rectified
- Only use sigmoid for binary, always use tanh, but ReLU is most commonly used, or the leaky ReLU $(a = \max(0.001z, z))$

Reason for nonlinear activation functions

- Say g(z) = z, so an identity activation function
- A linear function of input is the output, which results in no point for hidden layers
 - The output layer can use a linear function to give output $\in \mathbb{R}$

Figure 3: ReLU

Figure 4: Leakly ReLU

Derivatives of Activation Functions

• Sigmoid function
$$-g'(z) = \frac{d}{dz} \frac{1}{1+e^{-z}} \left(1 - \frac{1}{1+e^{-z}}\right) = g(z) \left(1 - g(z)\right)$$
• Tanh function
$$\frac{d}{dz} \left(\frac{1}{z}\right) = \frac{d}{dz} \frac{1}{z} \left(\frac{1}{z}\right) + \frac{1}{z} \frac{1}{z} \frac{1}{z} \frac{1}{z} \left(\frac{1}{z}\right) + \frac{1}{z} \frac{1}{z}$$

$$-g'(z) = \frac{d}{dz}g(z) = 1 - (\tanh(z))^2$$

• ReLU function

$$-g(z) = \max(0, z)$$

$$-g'(z) = \begin{cases} 0, z < 0 \\ 1, z \ge 0 \\ \text{DNE}, z = 0 \end{cases}$$

• Leaky ReLU

$$-g(z) = \max(0.01z, z)$$
$$-g'(z) = \begin{cases} 0.01, z < 0\\ 1, z > 0\\ \text{DNE}, z = 0 \end{cases}$$

Gradient Descent for Neural Networks

- Parameters $W^{[1]}$, $(n^{[1]}, n^{[0]})$, $b^{[1]}$, $(n^{[1]}, 1)$, and then $W^{[2]}$, $b^{[2]}$ $- n_x = n^{[0]}, n^{[1]}, n^{[2]} = 1$
- Cost function if $J(\text{params}) = \frac{1}{m} \sum_{i=1}^{n} \mathcal{L}(\hat{y}, y)$ In each iteration (for $i \in [1, m]$)
- - Compute $\hat{y}^{(i)}$ predictions
 - Compute $dW^{[i]}, db^{[i]}$
 - Then update $w^{[i]}, b^{[i]}$ with α
- Formulas for partial derivatives
 - $dZ^{[2]}=A^{[2]}-Y,$ where Y is row vector of ground truth values $dW^{[2]}=\frac{1}{m}dZ^{[2]}A^{[1]T}$

 - $-db^{[2]} = \frac{1}{m}$ np.sum $(dZ^{[2]},$ axis=1,keepdims=true), prevents a rank-1 array creation
 - $-dZ^{[1]} = W^{[2]T}dZ^{[2]}.*g^{[1]'}(Z^{[1]}), \text{ where both are } (n^{[1]},m) dW^{[1]} = \frac{1}{m}dZ^{[1]}X^T$

 - $-db^{[1]} = \frac{1}{m}$ np.sum $(dZ^{[1]},$ axis=1,keepdims=true)
 - Backpropagation explanation

Random Initialization

- Should not initialize weights (W) to zero
 - Hidden units will compute same function
- Example
 - $-W^{[1]} = \text{np.random.randn}((2,2))*0.01$
 - $-b^{[1]} = \text{np.zeros}((2,1))$
- Large values in W to start makes activation function saturated to high values, slows down learning