

Bank Marketing (Campaign) Prediction for Term Deposit subscription

12th May 2023

Group Name: One

Name: Hira Fahim

Email: <u>hirashahidd26@yahoo.com</u>

Country: United Kingdom

Company: Unemployed

Specialization: Data Science

Batch Code: LISUM19

Submission Date: 12th May 2023

Submitted to: Data Glacier

Background – Bank Marketing Campaign

Problem Description:

ABC Bank wants to sell its term deposit product to customers and before launching the product they want to develop a model which help them in understanding whether a particular customer will buy their product or not (based on customer's past interaction with bank or other Financial Institution).

Approach

The analysis has been divided into following parts:

- Data Understanding
- Exploratory Data Analysis
- Univariate Analysis
- Correlation Analysis
- Bivariate Analysis

- Feature Engineering
- Model Building
- Model Evaluation
- Model Selection
- Model Deployment

Data Understanding

Dataset Information

The data is related with direct marketing campaigns of a Portuguese banking institution. The marketing campaigns were based on phone calls. Often, more than one contact to the same client was required, to access if the product (bank term deposit) would be ('yes') or not ('no') subscribed.

Datatype of Columns and Non-null values

```
In [19]: # Datatypes of columns and non-null values
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 45211 entries, 0 to 45210
        Data columns (total 17 columns):
                        Non-Null Count Dtype
         # Column
                        45211 non-null int64
             job
                        45211 non-null object
             marital
                       45211 non-null object
             education 45211 non-null object
             default
                       45211 non-null object
                        45211 non-null int64
                        45211 non-null object
                        45211 non-null object
                       45211 non-null object
             contact
                        45211 non-null int64
                        45211 non-null object
             duration
                       45211 non-null int64
                       45211 non-null int64
                        45211 non-null int64
             pdays
         14 previous 45211 non-null int64
                       45211 non-null object
                        45211 non-null object
        dtypes: int64(7), object(10)
         memory usage: 5.9+ MB
```

Numerical and categorical Features

Exploratory Data Analysis

Step:1 Drop Duplicate Rows

Step:3 Change Datatype of Categorical features

```
# change datatype of categorical columns into "category"
d["job"]=d["job"].astype("category")
d["marital"]=d["marital"].astype("category")
d["education"]=d["education"].astype("category")
d["default"]=d["default"].astype("category")
d["housing"]=d["housing"].astype("category")
d["loan"]=d["loan"].astype("category")
d["contact"]=d["contact"].astype("category")
d["month"]=d["month"].astype("category")
d["poutcome"]=d["poutcome"].astype("category")
d["y"]=d["y"].astype("category")
```

Step:2 Drop Unnecessary Column

```
# The duration is not known before a call is performed. Also, after the end of the call y is obviously known.
#Thus, this input should be discarded for a realistic predictive model.
d= d.drop(['duration'], axis=1)

d.shape
(45211, 16)
```

Final Dataset

```
d.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 45211 entries, 0 to 45210
Data columns (total 16 columns):
# Column
             Non-Null Count Dtype
              -----
              45211 non-null int64
    job
              45211 non-null category
   marital 45211 non-null category
   education 45211 non-null category
    default 45211 non-null category
   balance
              45211 non-null int64
    housing
              45211 non-null category
    loan
              45211 non-null category
   contact 45211 non-null category
              45211 non-null int64
10 month
              45211 non-null category
11 campaign 45211 non-null int64
              45211 non-null int64
12 pdays
13 previous 45211 non-null int64
14 poutcome 45211 non-null category
              45211 non-null category
dtypes: category(10), int64(6)
memory usage: 2.8 MB
```

Description of the data

	age	balance	day	duration	campaign	pdays	previous
count	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000	45211.000000	45211.00000
mean	40.936210	1362.272058	15.806419	258.163080	2.763841	40.197828	0.58032
std	10.618762	3044.765829	8.322476	257.527812	3.098021	100.128746	2.30344
min	18.000000	-8019.000000	1.000000	0.000000	1.000000	-1.000000	0.00000
25%	33.000000	72.000000	8.000000	103.000000	1.000000	-1.000000	0.00000
50%	39.000000	448.000000	16.000000	180.000000	2.000000	-1.000000	0.00000
75%	48.000000	1428.000000	21.000000	319.000000	3.000000	-1.000000	0.00000
max	95.000000	102127.000000	31.000000	4918.000000	63.000000	871.000000	275.00000

From **description** and **boxplot**, we can see there are outliers in numerical input variables like age, balance, campaign, pdays and previous. Pdays have most outliers comparatively.

Visualization (boxplot) of Numerical Attributes

Histogram for Numerical Attributes

In Histogram, we can see input variables like age, balance, campaign, pdays and previous are **positively skewed**, and we can also see uneven distribution of data in day column.

Visualization of Categorical Attributes

In **Bar chart** of categorical columns, we see uneven distribution of data in all the input categorical columns.

Correlation Analysis

Correlation between numerical input and Output variables

Heat Map

Pairplot

From Correlation Analysis, we see there is less correlation between numerical attribute and output variable

Term Deposit based on Age

Clients between age 30-40 are more responsive towards term deposit

Term Deposit based on Job

Clients with job related to 'management, blue-collar and technician' have subscribed for deposit.

Term Deposit based on Marital status

Married Clients are main contributor of deposit scheme.

Term Deposit based on Education

Clients with secondary and tertiary educational background are main contributors.

Term Deposit based on Credit default

Clients with good credit history are more interested in term deposit

Term Deposit based on Month

Investment in term deposit is fluctuating throughout the year but in the month of 'May' we have highest success rate.

Term Deposit based on Balance

Client with balance up to 20,000 are more interested in term deposit

Term Deposit based on Housing Loan

Client with no housing loan have subscribed for the term deposit

Term Deposit based on Personal Loan

Client with no personal loan are more interested in term deposit.

Term Deposit based on Outcome of Previous Campaign

From the Outcome of previous Campaign, if the outcome is Failure, then there is a less chance that client will subscribe to the term deposit. whereas if the outcome of previous Campaign is Success, then it is more likely that Client will subscribe to the term deposit.

Feature Engineering

Step 1: Change datatype of Categorical Features

```
# change datatype of categorical columns into "category"
d["job"]=d["job"].astype("category")
d["marital"]=d["marital"].astype("category")
d["education"]=d["education"].astype("category")
d["default"]=d["default"].astype("category")
d["housing"]=d["housing"].astype("category")
d["loan"]=d["loan"].astype("category")
d["contact"]=d["contact"].astype("category")
d["month"]=d["month"].astype("category")
d["poutcome"]=d["poutcome"].astype("category")
d["y"]=d["y"].astype("category")
```

Step 2: Encode Categorical Columns into Numerical using Label encoding

```
from sklearn import preprocessing

le=preprocessing.LabelEncoder()
d['job']=le.fit_transform(d['job'])
d['marital']=le.fit_transform(d['marital'])
d['education']=le.fit_transform(d['education'])
d['default']=le.fit_transform(d['default'])
d['housing']=le.fit_transform(d['housing'])
d['loan']=le.fit_transform(d['loan'])
d['contact']=le.fit_transform(d['contact'])
d['month']=le.fit_transform(d['month'])
d['poutcome']=le.fit_transform(d['poutcome'])
```

Feature Engineering

Last step: Feature Scaling using Normalization technique

Final Dataset for Model building

Model Building

- 1. The dataset is imbalance, so we will balance the dataset using **SMOTE**.
- 2. Divide the dataset into input variables and output variable then split the input and output into train and test sets (30% test and 70% train).
- 3. Different Machine Learning models to predict the term deposit subscription:
 - Logistic Regression
 - Random Forest
 - Gradient Boosting

Model Evaluation

Metrics of Evaluation

- 1. Accuracy, Precision, Recall and F1-Score
- 2. Scores of Test, Train and Complete dataset
- 3. Confusion Matrix
- 4. Lift and Gain
- 5. KS Statistics and ROC-AUC Score

Model Selection

Model selection based on Scores and Confusion Matrix

Model	Score	Score	Score	TN	FP	FN	TP
	All Dataset	Train Dataset	Test Dataset				
Logistic Regression	0.63	0.66	0.66	7288	3572	4501	8593
Random Forest	0.76	0.72	0.71	9245	2544	4207	7958
Gradient Boosting	0.898	0.94	0.93	11442	347	1242	10923
Gradient Boosting + Hyperparameter Tuning	0.895	0.93	0.92	11385	404	1276	10886

Based on scores and confusion matrix Gradient Boosting without hyperparameter tuning is the best model.

Model Selection

Model selection based on Lift and Gain Curve

Cumulative gains and lift charts are visual aids for measuring model performance. The Greater the area between the Lift / Gain and Baseline, the Better the model. By analysing Gain and Lift Curve, Gradient Boosting Classifier is the best model.

Gradient Boosting Classification Model

Model Selection

Model selection based on Accuracy, Precision, Recall, F1 Score, KS statistics and AUC-ROC

Model	Precision	Recall	F1	Accuracy	KS Statics	AUC- ROC
			score			
Logistic Regression	0 – 0.67	0.62	0.64	0.66	0.336	0.7246
	1 – 0.66	0.71	0.68			
Random Forest	0 -0.69	0.78	0.73	0.72	0.4475	0.785
	1 – 0.76	0.65	0.70			
Gradient Boosting	0 – 0.90	0.97	0.94	0.93	0.8697	0.97
	1 – 0.97	0.90	0.93			
Gradient Boosting +	0 – 0.90	0.97	0.93	0.93	0.861	0.961
Hyperparameter Tuning	1 – 0.96	0.89	0.93			

The F1- Score, KS statistics and AUC-ROC metrics of KNNC model are the best. Therefore, **The best model for deployment is Gradient Boosting Classification model.**

Model Deployment

Given Workflow shows Gradient Boosting classification model is used and Flask Framework for deployment. It represents the details of how the model works from user interface till the results.

Model Deployment

- Save the model using Pickle.
- 2. Deploy the model using Flask framework.
- 3. The app.py file contains the source code including the ML code for prediction and will be execute by the Python interpreter to run the Flask web application.
- 4. The Index.html file will render a text form where a user enter the details of required fields. Index.html file will be rendered via the render_template ('index.html', prediction_text="{}".format(output)), which is inside the predict function of app.py script to display the output as per the input submitted by the user.
- 5. The URL generate by 'app.py.' Open a web browser and navigate to http://127.0.0.1:5000/ following is output of Index.html.

```
import numpy as np
from flask import Flask, request, render_template
#Create an app object using the Flask class.
app = Flask(__name___
#Load the trained model. (Pickle file)
model = pickle.load(open('models/model.pkl', 'rb'))
#Define the route to be home.
#The decorator below links the relative route of the URL to the function it is decorating.
WHere, home function is with '/', our root directory.
#Running the app sends us to index.html.
#Note that render_template means it looks for the file in the templates folder.
#use the route() decorator to tell Flask what URL should trigger our function.
@app.route('/')
def home():
 return render_template('index.html')
#You can use the methods argument of the route() decorator to handle different HTTP methods.
#GET: A GET message is send, and the server returns data
#POST: Used to send HTML form data to the server.
#Add Post method to the decorator to allow for form submission.
#Redirect to /predict page with the output
@app.route('/predict',methods=['POST'])
def predict():
    int features = [float(x) for x in request.form.values()] #Convert string inputs to float.
    features = [np.array(int features)] #Convert to the form [[a, b,c]] for input to the model
    prediction = model.predict(features) # features Must be in the form [[a, b,c]]
    output = round(prediction[0], 2)
    return render_template('index.html', prediction_text="{}".format(output))
#For now, we care about the __name__ variable.
#If we execute our code in the main program, like in our case here, it assigns
# __main__ as the name (__name__).
#So if we want to run our code right here, we can check if __name__ == __main__
#If we import this file (module) to another file then __name__ == app (which is the name of this python file).
if __name__ == "__main__":
    app.run()
```

Model Deployment

Select categorical fields as per their respective number in the given code and click the Predict button. The predicted result will be displayed at the bottom of the web page.

Model Deployment on Render (Open-Source Cloud Deployment)

> After the model has been trained and deployed locally, now it is ready for deploy on open-source cloud "Render".

Connect web service to GitHub Repository.

Click and open the application for Term deposit subscription.

https://predict-bank-term-depositsubscription.onrender.com

Model Deployment on Render (Open-Source Cloud Deployment)

Select categorical fields as per their respective number in the given code and click the Predict button. The predicted result will be displayed at the bottom of the web page.

Challenges

- Feature scaling was a challenging task, which is done normalization technique as the dataset consists of both numerical and categorical features.
- ➤ Selection of best model was also tricky but after carefully considering all parameters and metrics of evaluation choose 'Gradient Boosting Classification model' as the best model.

Thank You

