0.1 Problem

We are solving this problem:

$$J(y, u) = \frac{1}{2} \int_{0}^{T} u^{2} dt + \frac{1}{2} (y(T) - y^{T})^{2}$$

and let our ODE constraint be:

$$\begin{cases} E(y,u) = y' - \alpha y - u \\ y(0) = y_0 \end{cases}$$

To do this we need the gradient of the reduced J, which is:

$$\nabla \hat{J} = u + p$$

p is the solution of the adjoint equation:

$$\begin{cases} -p'(t) - \alpha p(t) = 0 \\ p(T) = y(T) - y^T \end{cases}$$

Because we want to parallelize in time we also try to solve the control problem with added penalty terms:

$$J(y, u, \lambda) = \int_0^T u^2 dt + \frac{1}{2} (y_m(T) - y^T)^2 + \frac{\mu}{2} \sum_{i=1}^{m-1} (y_i(T_i) - \lambda_i)^2$$

This functional has the following gradient:

$$\hat{J}'(u,\lambda) = (u+p, p_2(T_1) - p_1(T_1), ..., p_m(T_{m-1}) - p_m(T_{m-1}))$$

We now also solve the state equations:

$$\begin{cases} \frac{\partial}{\partial t} y_i(t) = \alpha y_i(t) + u(t) \text{ for } t \in [T_{i-1}, T_i] \\ y_i(T_{i-1}) = \lambda_{i-1} \end{cases}$$

and the adjoint equations:

$$-\frac{\partial}{\partial t}p_m = \alpha p_m$$
$$p_m(T_m) = y_m(T_m) - y_T$$

On $[T_{i-1}, T_i]$ the adjoint equation is:

$$-\frac{\partial}{\partial t}p_i = p_i$$
$$p_i(T_i) = \mu(y_i(T_i) - \lambda_i)$$

0.2 Assumption

Assume that we have solved the non-penalty problem, and have an optimal control u^* and a corresponding solution to the state equation y^* . What happens if we try to solve the same problem using the penalty method with u^* and $\lambda_i = y^*(T_i)$ as an initial guess? One might expect that u^* would also be optimal for the penalty method with any choise of μ . This is however not the case, and we see why, by calculating the gradient using the initial guess. The problem is that the adjoint equation in all subintervals except the last have initial condition 0. This results what is shown in plot below. If we then solve the problem using u^* as initial guess, we will eventually get a solution close to u^* , but it will not be exactly the same.

Even though u^* is not a valid solution for the penalty method, using it as initial guess allows us to come arbitrary close to the real non-penalty solution if solve it using increasing μ values.

	μ	$ u-u_{\mu} _{L^2}$
0	10	3.298276e-01
1	100	4.510803 e-06
2	1000	4.620845 e - 07
3	10000	4.632146e-08
4	100000	4.633279 e - 09
5	1000000	4.633392e-10
6	10000000	4.633403e-11
7	100000000	4.633407e-12
8	1000000000	4.633409e-13
9	10000000000	4.632983e-14
10	1000000000000	4.689641e-15
11	10000000000000	6.090340e-16

I solve the mentioned problem for different time-decompositions and timesteps using the parameters: $(y_0, y_T, T, a) = (1, -10, 1, 1)$. This yielded the following relative errors between penalty and non-penalty control solutions:

N = 100:

μ	2	4	8	1	6 3	32	 64
$\frac{7}{1.000000e+01}$	0.062196	0.174324	0.337817	0.52213			
1.000000e+01 1.000000e+02	0.002190 0.007483	0.174524 0.020676	0.048616	0.02213 0.09849			
1.0000000c+02 1.0000000e+03	0.001400	0.020070 0.002115	0.045010 0.005161	0.03043 0.01080			
1.0000000e + 03 1.0000000e + 04	0.001420	0.002113 0.000211	0.000634	0.01000 0.00112			
1.0000000e+01	0.001410	0.000170	0.000417	0.00065			
1.0000000+00	0.001410	0.000170	0.000416	0.00065			
1.0000000e+07	0.001410	0.000170	0.000416	0.00065			
1.0000000e + 08	0.001410	0.000170	0.000416	0.00065			
1.000000e + 09	0.001410	0.000170	0.000416	0.00065			02
1.0000000e + 10	0.001410	0.000170	0.000416	0.00065		4 0.0004	02
1.0000000e + 13	0.001410	0.000170	0.000416	0.00065	1 0.00129	4 0.00040	02
N = 1000:							<u> </u>
μ	2	4	8	1	6 3	32	64
1.000000e+01	0.061013	0.174237	0.338846	0.52773	9 0.69920	0.8252	13
1.0000000e+02	0.006545	0.020662	0.048753	0.10051	5 0.18861	0.3207	11
1.0000000e+03	0.000731	0.002105	0.005099	0.01105	1 0.02272	0.04508	34
1.0000000e+04	0.000127	0.000211	0.000513	0.00111	6 0.00232	20.00469	99
1.0000000e + 05	0.000127	0.000021	0.000052	0.00011		66 0.0004	72
1.0000000e + 06	0.000127	0.000002	0.000006	0.00000	9 0.00002	0.0000	47
1.0000000e+07	0.000127	0.000002	0.000006	0.00000			
1.0000000e + 08	0.000127	0.000002	0.000006	0.00000			
1.0000000e+09	0.000127	0.000002	0.000006	0.00000			
1.0000000e + 10	0.000127	0.000002	0.000006	0.00000			
1.0000000e+13	0.000127	0.000002	0.000006	0.00000	9 0.00001	5 0.00000)2
N = 10000:							
μ	2		4	8	16	32	64
1.000000e+01	0.060877	1.742088e	-01 3.388	225e-01	0.528336	0.700282	0.826652
1.0000000e+02	0.006450	2.066013e	-02 4.874	753e-02	0.100732	0.189396	0.322893
1.0000000e + 03	0.000656	2.105155e	-03 5.098	720e-03	0.011077	0.022831	0.045517
1.0000000e+04	0.000071	2.109139e	-04 5.124	423e-04	0.001119	0.002331	0.004746
1.0000000e + 05	0.000011	2.109436e		613e-05	0.000112	0.000234	0.000477
1.0000000e+06	0.000011	2.108745e		341e-06	0.000011	0.000023	0.000048
1.0000000e+07	0.000011	1.416372e		085e-06	0.000011	0.000002	0.000048
1.0000000e + 08	0.000011	6.703425e		438e-07	0.000011	0.000002	0.000048
1.000000e+09	0.000011	6.702827e		447e-07	0.000011	0.000002	0.000048
1.000000e+10	0.000011	6.702827e		447e-07	0.000011	0.000002	0.000048
1.0000000e + 13	0.000011	6.702823e	-08 6.248	448e-07	0.000011	0.000002	0.000048

Now for the same problem with slightly different parameters: $(y_0, y_T, T, a) = (3.3, 10, 1, 1.4)$, I used a constant number of time-decompositions, while decreasing the time-steps. Here are some results: m = 2:

	1	01	501		801	1001		2000	,	5000	-	10000	į	50000
1e+00	0.3864	57 0.3	84180	3.839ϵ	e-01 3.838	8e-01	3.835	6e-01	3.836	e-01	3.83	6e-01	3.83	6e-01
1e + 01	0.0592	56 0.0	58724	5.867ϵ	e-02 5.86	5e-02	5.858	8e-02	5.858	Se-02	5.85	8e-02	5.85	8e-02
1e + 02	0.0062	60 0.0	06200	6.194ϵ	e-03 6.195	2e-03	6.184	le-03	6.184	e-03	6.18	4e-03	6.18	4e-03
1e + 04	0.0000	63 0.0	00062	6.233ϵ	e-05 6.230	0e-05	6.223	Be-05	6.210	e-05	6.20	2e-05	6.19	3e-05
1e + 05	0.0000	58 0.0	00006	6.398ϵ	e-06 6.26	3e-06	6.223	Be-06	6.170	e-06	6.02	0e-06	5.96	7e-06
1e + 06	0.0000	58 0.0	00005	5.765ϵ	e-07 = 7.675	5e-07	6.225	6e-07	5.632	e-07	5.99	5e-07	7.41	6e-07
1e + 07	0.0000	58 0.0	00005	5.754ϵ	-07 - 6.808	8e-07	6.221	e-07	9.919	e-08	5.99	5e-07	7.41	6e-07
1e + 08	0.0000	58 0.0	00005	5.753ϵ	-07 6.80	7e-07	6.220	e-07	9.921	e-08	5.99	5e-07	7.41	6e-07
1e + 09	0.0000	58 0.0	00005	5.753ϵ	-07 6.80	7e-07	6.220	e-07	1.336	6e-07	5.99	5e-07	7.41	6e-07
1e+10	0.0000	58 0.0	00005	5.753ϵ	e-07 6.80°	7e-07	6.220	0e-07	1.336	6e-07	5.99	5e-07	7.41	6e-07
1e+13	0.0000	58 0.0	00005	5.753ϵ	e-07 6.80°	7e-07	6.220	0e-07	1.335	e-07	5.99	5e-07	7.41	6e-07
m = 7:					_									
		10	00	50000	_									
1.00000	0e + 05	0.84080	06 0.	000049										
1.00000	0e + 06	0.83632	20 0.	000049										
1.00000	0e + 07	0.83440	0.0	000014										
1.00000	0e + 08	0.83440	0.00	000014										
1.00000	0e + 09	0.83440	05 0.	000014										
2.00000	0e + 09	0.83440	05 0.	000014										
5.00000	0e + 09	0.83440	0.0	000014										
1.00000	0e + 10	0.83440	0.0	000014										
1.00000	0e + 11	0.83440	0.0	000014										
m = 10:					-									
		1(01	501	801		1001		2000	5	000	100	000	50
1.00000	0e + 00	0.8767	19 0.	877567	0.877646	0.87	7675	0.87	7786	0.877	784	0.877	781	0.87
1.00000	0e + 01	0.41560	05 0.	417511	0.417692	0.41	7753	0.418	8012	0.418	000	0.4179	996	0.41
1.00000	0e + 02	0.06639		066883	0.066929	0.06	66946	0.067	7012	0.067	009	0.0670	800	0.06
1.00000	0e + 04	0.0005	32 0.	000716	0.000717	0.00	00718	0.000)719	0.000	718	0.0007	718	0.000
1.00000	0e + 05	0.00038	80 0.	000091	0.000073	0.00	00073	0.000	0071	0.000	072	0.0000	072	0.000
1.00000	0e + 06	0.0003'	79 0.	000005	0.000007	0.00	00073	0.000	0009	0.000	007	0.0000	007	0.000
1.00000	0e + 07	0.0003'	79 0.	000005	0.000006	0.00	00073	0.000	0009	0.000	007	0.0000	007	0.000
1.00000	0e + 08	0.0003'	79 0.	000005	0.000006	0.00	00073	0.000	0009	0.000	007	0.0000	007	0.000
1.00000	0e + 09	0.0003'	79 0.	000005	0.000006	0.00	00073	0.000	0009	0.000	007	0.0000	007	0.000
1.00000	0e+10	0.0003'	79 0.	000005	0.000006	0.00	00073	0.000	0009	0.000	007	0.0000	007	0.000

 $1.0000000e + 13 \quad 0.000379 \quad 0.000005 \quad 0.000006 \quad 0.000073 \quad 0.000009 \quad 0.000007 \quad 0.000007$

0.000

μ	$\frac{J(v_{\mu}) - J(v)}{J(v)}$	$\frac{J_{\mu}(v_{\mu}) - J_{\mu}(v)}{J_{\mu}(v)}$	$\sup y_i(T_i) - \lambda_i $	$ v_{\mu}-v $
1.000000e+02	5.007898e-04	-1.324212e-02	4.086928e-02	5.744718e-03
2.0000000e+02	1.268703 e-04	-6.665189e-03	2.057083e-02	2.891694 e-03
5.0000000e+02	2.046259 e - 05	-2.676781e-03	8.261371e-03	1.161322 e-03
1.0000000e+03	5.129368e-06	-1.340184e-03	4.136221 e-03	5.814392e-04
5.0000000e+03	2.056154e-07	-2.683245e-04	8.281321e-04	1.165086e-04
7.0000000e+03	1.049219e-07	-1.916750e-04	5.915683e-04	8.315818e-05
2.0000000e+04	1.285614e-08	-6.709462e -05	2.070747e-04	2.912014e-05
2.0000000e+05	1.285767e-10	-6.709867e-06	2.070872e-05	2.908512 e-06
3.0000000e+05	5.714442e-11	-4.473255e- 06	1.380585e-05	1.942684 e-06
4.0000000e+05	3.213904e-11	-3.354945e-06	1.035437e-05	1.454067e-06
5.0000000e + 05	2.057461e-11	-2.683958e-06	8.283522 e-06	1.163044 e-06
6.0000000e + 05	1.428967e-11	-2.236632e-06	6.902938e-06	9.686295 e - 07
1.0000000e+06	5.136798e-12	-1.341981e-06	4.141726e-06	5.817674e-07
1.000000e + 07	5.104870e-14	-1.341982e-07	4.141771e-07	5.808221e-08
2.0000000e+07	1.136420e-14	-6.709912e-08	2.070895e-07	2.916005 e-08
1.0000000e + 08	1.172497e-14	-1.341982e-08	4.141772e-08	2.899515e-08
1.0000000e + 11	1.443073e-15	-1.342040e-11	4.141842e-11	1.455351e-08
1.0000000e + 12	9.019206e-16	-1.342599e-12	4.144241e-12	1.455351e-08
1.0000000e + 13	3.427298e-15	-1.325823e-13	4.192202 e-13	1.455351 e-08
1.0000000e + 14	3.427298e-15	-1.154458e-14	4.085621e-14	1.455351 e-08
1.000000e+16	3.427298e-15	2.344993e-15	8.881784e-16	1.455351e-08

Figure 1: Due to zero difference in state equation jumps, the adjoint in the penalty case has a big jump. This jump will show up in the gradient

Figure 2: Results of non-penalty and penalty solver, when using u^* as initial guess for penalty solver