Metody wielokrokowe

Literatura

- A. Krupowicz, Metody numeryczne zagadnień początkowych równań różniczkowych zwyczajnych, PWN, Warszawa 1986.
- D. Kincaid, W. Cheney, Analiza numeryczna, WNT, Warszawa 2006.

Wiadomości wstępne

Rozważać będziemy zagadnienie początkowe:

$$\begin{cases} y'(x) = f(x, y(x)), & x \geqslant a, \\ y(a) = y_0, \end{cases}$$
 (1)

którego przybliżonego rozwiązania będziemy szukać za pomocą k-krokowej metody numerycznej.

Metoda numeryczna rozwiązania zagadnienia początkowego (1) jest sposobem obliczenia przybliżenia y_n nieznanej wartości rozwiązania dokładnego $y(x_n)$ dla ciągu punktów x_n ($n=1,2,\ldots$), takich że $x_n < x_{n+1}$.

W najprostszym przypadku punkty x_n określamy następująco: dla h>0 (krok całkowania) przyjmujemy:

$$x_n = a + n h, \qquad n = 0, 1, 2, \dots$$

W przypadku, gdy zagadnienie początkowe rozpatrujemy w przedziałe skończonym [a,b], to krok całkowania h musi być tak dobrany, aby długość przedziału była jego wielokrotnością.

Musi więc istnieć $m \in \mathbb{N}$, takie że

$$b - a = m h$$

i wówczas:

$$x_n = a + n h, \qquad n = 0, 1, 2, \dots, m.$$

Najczęściej zadajemy liczbę kroków m, a następnie wyznaczamy długość kroku całkowania h:

$$h = \frac{b-a}{m}.$$

Zbiór:

$$S = \{x_n : x_n = a + n h, \quad n = 0, 1, 2, \dots, m\}$$

będziemy nazywać siatką, a jego elementy węzłami.

Zdefiniowane w powyższy sposób punkty x_n są równo odległe, czyli obliczenia będą wykonywane ze stałym krokiem całkowania, i dalej tylko takim przypadkiem będziemy się zajmować.

Dla ustalonego k ($k=1,2,\ldots$) zastosowanie metody k-krokowej wymaga znajomości wielkości:

$$y_0, y_1, \ldots, y_{k-1}$$

będących przybliżeniami wartości dokładnych

$$y(x_0), y(x_1), \ldots, y(x_{k-1}).$$

W rozważanym zagadnieniu początkowym mamy zadaną wartość y_0 , natomiast pozostałe wartości y_1,\ldots,y_{k-1} musimy wyznaczyć korzystając np. z metody jednokrokowej (Eulera, Heuna, Rungego-Kutty).

Ogólnie wyznaczenie pewnego przybliżenia y_n ($n \ge k$) wymaga znajomości k wartości:

$$y_{n-k}, y_{n-k+1}, \dots, y_{n-2}, y_{n-1}$$

będących przybliżeniami wartości dokładnych:

$$y(x_{n-k}), y(x_{n-k+1}), \dots, y(x_{n-2}), y(x_{n-1}).$$

Szukane przybliżenie y_n ($n=k,k+1,\ldots$) w metodzie k-krokowej wyznacza się z następującego ogólnego wzoru:

$$y_n = \sum_{i=1}^k a_i \, y_{n-i} + h \, \sum_{i=0}^k b_i \, f(x_{n-i}, y_{n-i}), \tag{2}$$

gdzie a_i, b_i są odpowiednio dobranymi współczynnikami liczbowymi. Zależność ta stanowi tzw. równanie różnicowe.

Wzór (2) możemy zapisać w postaci:

$$y_n = \sum_{i=1}^k a_i \, y_{n-i} + h \, \sum_{i=1}^k b_i \, f(x_{n-i}, y_{n-i}) + h \, b_0 \, f(x_n, y_n).$$
 (3)

Z postaci tej wynika, że jeśli $b_0 \neq 0$, to szukane przybliżenie y_n występuje również po prawej stronie równania.

W związku z tym rozróżniamy dwa typy metod k-krokowych:

- 1. metody jawne (ekstrapolacyjne, otwarte) jeśli $b_0 = 0$;
- 2. metody niejawne (interpolacyjne, zamknięte) jeśli $b_0 \neq 0$.

Metoda jawna

Algorytm metody jawnej jest postaci:

$$y_n = \sum_{i=1}^k a_i y_{n-i} + h \sum_{i=1}^k b_i f(x_{n-i}, y_{n-i}).$$

Wyznaczenie y_n nie stanowi problemu (gdy już znamy współczynniki a_i i b_i) – wystarczy wstawić do tego wzoru znane wartości przybliżone $y_{n-k}, y_{n-k+1}, \dots, y_{n-2}, y_{n-1}$ i wykonać obliczenia.

W tym przypadku wzór ma postać:

$$y_n = \sum_{i=1}^k a_i y_{n-i} + h \sum_{i=1}^k b_i f(x_{n-i}, y_{n-i}) + h b_0 f(x_n, y_n).$$

Wstawienie do tego wzoru wartości przybliżonych $y_{n-k}, y_{n-k+1}, \dots, y_{n-2}, y_{n-1}$ prowadzi na ogół (decyduje o tym postać funkcji f) do równania nieliniowego ze względu na y_n :

$$y_n = c_k + h b_0 f(x_n, y_n),$$
 (4)

gdzie c_k oznacza sumę składników zawierających stałe a_1,\ldots,a_k i b_1,\ldots,b_k .

Do rozwiązania tego równania musimy zastosować odpowiednią metodę przybliżoną (np. metodę iteracji prostej lub metodę Newtona). Konieczność rozwiązania w każdym kroku równania nieliniowego zwiększa znacznie nakład obliczeń w stosunku do metody jawnej. Ze względu jednak na lepsze własności numeryczne metod niejawnych celowe jest ich stosowanie.

Pojawia się pytanie:

Czy równanie (4) posiada rozwiązanie i czy jest ono jednoznaczne?

Twierdzenie

Niech funkcja f spełnia warunek Lipschitza ze względu na zmienną y, tzn. istnieje stała L>0 (stała Lipschitza), taka że dla dowolnych y^* i y^{**} oraz dla dowolnego $x\in [a,b]$ spełniona jest nierówność:

$$|f(x, y^*) - f(x, y^{**})| \le L |y^* - y^{**}|.$$

Wówczas istnieje takie $h_0 \in \mathbb{R}_+$ ($h_0 > 0$), że dla dowolnego $h \in (0, h_0)$ równanie (4) ma dokładnie jedno rozwiązanie.

Dowód. Równanie (4) możemy zapisać w postaci:

$$y = \Phi(y),$$

gdzie:

$$\Phi(y) = c_k + h b_0 f(x, y).$$

Niech teraz:

$$h_0 = \frac{1}{L |b_0|}.$$

Wówczas dla $h \in (0, h_0)$ oraz dowolnych y^* i y^{**} mamy:

$$|\Phi(y^*) - \Phi(y^{**})| = h |b_0| |f(x, y^*) - f(x, y^{**})| \le h |b_0| L |y^* - y^{**}|.$$

Dla $h \in (0,h_0)$, mamy $h |b_0| L < h_0 |b_0| L = 1$. Odwzorowanie Φ jest więc odwzorowaniem zwężającym. Korzystając z twierdzenia Banacha o odwzorowaniach zwężających dostajemy, że posiada ono dokładnie jeden punkt stały y, czyli punkt który spełnia równość $y = \Phi(y)$.

Powyżej podane zostały ogólne definicje metody jawnej i niejawnej. Występujące we wzorach parametry a_i oraz b_i nie są dowolne. Dobiera się je tak, aby konkretna metoda posiadała pożądane własności. Najogólniej mówiąc chodzi o to, by jak najmniejszym nakładem obliczeń uzyskać odpowiednio dokładne przybliżenia rozwiązania dokładnego. Wymóg ten prowadzi do uzyskania odpowiednich zależności na parametry a_i oraz b_i . Wyliczając parametry a_i , b_i w oparciu o te zależności otrzymujemy konkretne metody wielokrokowe.

Podstawowymi, najczęściej stosowanymi w praktyce są metody Adamsa-Bashfortha (jawne) oraz Adamsa-Moultona (niejawne).

Metoda Adamsa-Bashfortha

Całkując zagadnienie początkowe w przedziale $[x_0, x]$ mamy:

$$\int_{x_0}^x y'(x) \, dx = \int_{x_0}^x f(x, y(x)) \, dx,$$

czyli

$$y(x) - y(x_0) = \int_{x_0}^{x} f(x, y(x)) dx.$$

Dostajemy stąd równoważną postać zagadnienia początkowego:

$$y(x) = y(x_0) + \int_0^x f(x, y(x)) dx.$$

Możemy więc rozważane zagadnienie początkowe (1) przepisać w postaci (zakładamy, że znamy y_{n-k}, \ldots, y_{n-1}):

$$y(x) = y(x_{n-1}) + \int_{x_{n-1}}^{x} f(x, y(x)) dx$$
 dla $x > x_{n-1}$.

Stąd dostajemy:

$$y(x_n) = y(x_{n-1}) + \int_{x_{n-1}}^{x_n} f(x, y(x)) dx.$$
 (5)

ldea metody polega na przybliżeniu funkcji podcałkowej f odpowiednim wielomianem interpolacyjnym stopnia k-1, a następnie całkowaniu tego wielomianu.

Wielomian interpolacyjny W konstruujemy w k punktach:

$$x_{n-k}, x_{n-k+1}, \dots, x_{n-2}, x_{n-1} \quad (x_{n-k} < x_{n-k+1} < \dots < x_{n-1}).$$

Wymagamy od niego, aby w tych punktach pokrywał się z funkcją f:

$$W(x_{n-i}) = f(x_{n-i}, y(x_{n-i})), \qquad i = 1, 2, \dots, k.$$

Wprowadzamy oznaczenie:

$$f(x_{n-i}) := f(x_{n-i}, y(x_{n-i})).$$

Do interpolacji wykorzystamy drugi wielomian interpolacyjny Newtona utworzony za pomocą różnic wstecznych. W celu otrzymania prostszej postaci wielomianu interpolacyjnego dokonamy zamiany zmiennych, przyjmując:

$$x = x_{n-1} + t h, t \in [0, 1],$$

wtedy $x \in [x_{n-1}, x_n]$.

Wielomian interpolacyjny przyjmie wówczas postać:

$$W(x) = W(x_{n-1} + th) = f(x_{n-1}) + t \nabla f(x_{n-1}) + \frac{t(t+1)}{2!} \nabla^2 f(x_{n-1}) + \dots + \frac{t(t+1)(t+2)\dots(t+k-2)}{(k-1)!} \nabla^{k-1} f(x_{n-1}),$$

gdzie:

$$\nabla^{0} f(x_{n-1}) = f(x_{n-1}),$$

$$\nabla f(x_{n-1}) = f(x_{n-1}) - f(x_{n-2}),$$

$$\nabla^{2} f(x_{n-1}) = \nabla f(x_{n-1}) - \nabla f(x_{n-2}),$$

$$\vdots$$

$$\nabla^{i} f(x_{n-1}) = \nabla^{i-1} f(x_{n-1}) - \nabla^{i-1} f(x_{n-2}), \quad i = 1, 2, \dots, k-1.$$

Funkcję podcałkową we wzorze (5) przybliżamy wielomianem interpolacyjnym:

$$f(x, y(x)) = W(x) + r(x),$$

gdzie r(x) jest błędem interpolacji określonym równością:

$$r(x) = r(x_{n-1} + t h) =$$

$$= f^{(k)}(c(t)) h^k \frac{t(t+1)(t+2) \dots (t+k-1)}{k!},$$

gdzie c(t) jest punktem z przedziału (x_{n-1},x) .

Policzymy teraz całki:

$$\int_{x_{n-1}}^{x_n} (W(x) + r(x)) dx = \begin{vmatrix} x = x_{n-1} + th \\ dx = h dt \\ x = x_{n-1} \to t = 0 \\ x = x_n \to t = 1 \end{vmatrix} =$$

$$= h \int_{0}^{1} (W(x_{n-1} + th) + r(x_{n-1} + th)) dt$$

Całka z wielomianu interpolacyjnego:

$$\int_{0}^{1} W(x_{n-1} + t h) dt =$$

$$= \int_{0}^{1} \left(f(x_{n-1}) + t \nabla f(x_{n-1}) + \frac{t(t+1)}{2!} \nabla^{2} f(x_{n-1}) + \dots + \frac{t(t+1)(t+2)\dots(t+k-2)}{(k-1)!} \nabla^{k-1} f(x_{n-1}) \right) dt =$$

$$= f(x_{n-1}) + \nabla f(x_{n-1}) \int_{0}^{1} t \, dt + \frac{1}{2!} \nabla^{2} f(x_{n-1}) \int_{0}^{1} t \, (t+1) \, dt + \dots$$

$$+ \frac{1}{(k-1)!} \nabla^{k-1} f(x_{n-1}) \int_{0}^{1} t \, (t+1) \dots (t+k-2) \, dt =$$

$$= \sum_{i=0}^{k-1} \gamma_{i} \nabla^{i} f(x_{n-1}),$$

gdzie wprowadziliśmy oznaczenie:

$$\gamma_0 = 1, \qquad \gamma_i = \frac{1}{i!} \int_0^1 t(t+1) \dots (t+i-1) dt, \quad i \geqslant 1.$$

Policzymy teraz całkę z błędu r. W tym celu wykorzystamy:

Twierdzenie (o wartości średniej dla całek)

Jeśli funkcje $f,g:[a,b]\to\mathbb{R}$ są ciągłe oraz funkcja g jest stałego znaku, to istnieje $c\in[a,b]$, takie że:

$$\int_{a}^{b} f(x) g(x) dx = f(c) \int_{a}^{b} g(x) dx.$$

Liczymy:

$$\int_{0}^{1} r(x_{n-1} + t h) dt =$$

$$= \int_{0}^{1} \left(f^{(k)}(c(t)) h^{k} \frac{t(t+1)(t+2) \dots (t+k-1)}{k!} \right) dt =$$

$$= h^{k} \frac{1}{k!} f^{(k)}(\xi_{n}) \int_{0}^{1} t (t+1) \dots (t+k-1) dt =$$

$$= h^{k} f^{(k)}(\xi_{n}) \gamma_{k} = h^{k} \gamma_{k} y^{(k+1)}(\xi_{n}).$$

Skorzystaliśmy z tego, że funkcja $t\,(t+1)\dots(t+k-1)$ dla $t\in[0,1]$ jest nieujemna, natomiast z zagadnienia początkowego y'(x)=f(x,y), mamy $y^{(k+1)}(x)=f^{(k)}(x,y)$.

Wykorzystując teraz policzone całki wzór (5) możemy zapisać następująco:

$$y(x_n) = y(x_{n-1}) + h \sum_{i=0}^{k-1} \gamma_i \nabla^i f(x_{n-1}) + h^{k+1} \gamma_k y^{(k+1)}(\xi_n).$$
 (6)

Wykorzystując teraz zależność na i-tą różnicę wsteczną:

$$\nabla^{i} f(x_{n-1}) = \sum_{m=0}^{i} (-1)^{m} {i \choose m} f(x_{n-1-m}), \quad i = 0, 1, \dots, k-1,$$

dostajemy:

$$y(x_n) = y(x_{n-1}) + h \sum_{i=0}^{k-1} \sum_{m=0}^{i} \gamma_i (-1)^m \binom{i}{m} f(x_{n-1-m}) + h^{k+1} \gamma_k y^{(k+1)}(\xi_n).$$

Przegrupujemy teraz wyrazy w środkowym składniku prawej strony powyższej równości (pogrupujemy te same $f(x_k)$). W tym celu rozpiszemy środkową sumę:

$$i = 0 : \gamma_{0}(-1)^{0} {0 \choose 0} f(x_{n-1-0})$$

$$i = 1 : \gamma_{1}(-1)^{0} {1 \choose 0} f(x_{n-1-0}) + \gamma_{1}(-1)^{1} {1 \choose 1} f(x_{n-1-1})$$

$$i = 2 : \gamma_{2}(-1)^{0} {2 \choose 0} f(x_{n-1-0}) + \gamma_{2}(-1)^{1} {2 \choose 1} f(x_{n-1-1}) + \gamma_{2}(-1)^{2} {2 \choose 2} f(x_{n-1-2})$$

$$\vdots$$

$$i = k - 1 : \gamma_{k-1}(-1)^{0} {k-1 \choose 0} f(x_{n-1-0}) + \gamma_{k-1}(-1)^{1} {k-1 \choose 1} f(x_{n-1-1}) + \dots + \gamma_{k-1}(-1)^{k-1} {k-1 \choose k-1} f(x_{n-1-k+1})$$

Sumując kolumnami rozważaną sumę możemy zapisać następująco:

$$s = \sum_{i=1}^{k} \left((-1)^{i-1} \left[\sum_{m=i-1}^{k-1} \gamma_m \binom{m}{i-1} \right] f(x_{n-i}) \right).$$

Wykorzystując to poprzednią zależność możemy zapisać w postaci:

$$y(x_n) = y(x_{n-1}) + h \sum_{i=1}^k b_{ki} f(x_{n-i}) + h^{k+1} \gamma_k y^{(k+1)}(\xi_n),$$
 (7)

gdzie wprowadziliśmy oznaczenie:

$$b_{ki} = (-1)^{i-1} \sum_{m=i-1}^{k-1} \gamma_m \binom{m}{i-1}, \qquad i = 1, 2, \dots, k.$$

Dla dokładnych wartości $f(x_{n-i}), y(x_{n-1})$ i znanej wartości $y^{(k+1)}(\xi_n)$, powyższa zależność jest zależnością dokładną. W rzeczywistości nie znamy wartości dokładnych we wcześniejszych punktach siatki, także na ogół nie jesteśmy w stanie wyznaczyć punktów ξ_n . Dlatego w obliczeniach przechodzimy do zależności przybliżonej, pomijając błąd interpolacji oraz zastępując wartości dokładne wartościami przybliżonymi.

Otrzymujemy w ten sposób wzory metody Adamsa-Bashfortha w postaci:

$$y_n = y_{n-1} + h \sum_{i=1}^k b_{ki} f_{n-i},$$
 (8)

gdzie $f_{n-i} = f(x_{n-i}, y_{n-i}).$

Łatwo zauważyć, ze wzór (8) odpowiada ogólnemu schematowi metod wielokrokowych jawnych, mamy bowiem $b_{k0}=0$ dla $k\in\mathbb{N}.$

Wzór (8) definiuje rodzinę metod Adamsa-Bashfortha. Dla każdego $k=1,2,\ldots$ otrzymujemy inną metodę.

Metoda Adamsa-Bashfortha (jawna)

Wartości współczynników b_{ki} dla kilku wybranych metod.

		i							
k	b_{ki}	1	2	3	4	5	6		
1	b_{1i}	1							
2	$2 b_{2i}$	3	-1						
3	$12 b_{3i}$	23	-16	5					
4	$24 b_{4i}$	55	-59	37	-9				
5	$720 b_{5i}$	1901	-2774	2616	-1274	251			
6	$1440 b_{6i}$	4277	-7923	9982	-7298	2877	-475		

$$b_{ki} = (-1)^{i-1} \sum_{m=i-1}^{k-1} \gamma_m \binom{m}{i-1}, \qquad i = 1, 2, \dots, k,$$
$$\gamma_0 = 1, \quad \gamma_i = \frac{1}{i!} \int_0^1 t (t+1) \dots (t+i-1) dt, \quad i \ge 1.$$

Metoda Adamsa-Bashfortha (jawna)

Uwaga

Jednokrokowa (k=1) metoda Adamsa-Bashfortha ma postać:

$$y_n = y_{n-1} + h f_{n-1}, \qquad n = 1, 2, \dots$$

i jest to poznana wcześniej metoda Eulera (w tym przypadku wykorzystywany jest wielomian stopnia zerowego czyli funkcja stała).

Algorytm metody Adamsa-Bashfortha

- 1. Dane: funkcja f(x,y), wartości x_0,y_0 , liczba k, liczba kroków m $(m\geqslant k)$, koniec przedziału b (lub długość kroku h).
- 2. Jeśli zadany jest koniec przedziału b, liczymy $h = \frac{b-x_0}{m}$.
- 3. Wyznaczamy węzły siatki $x_i = x_0 + i h$ dla $i = 1, \dots, k-1$.
- 4. Inną metodą wyznaczamy wartości y_i dla $i=1,\ldots,k-1$.
- 5. Obliczamy $f_i = f(x_i, y_i) \text{ dla } i = 0, 1, ..., k 1.$
- 6. Dla $n = k, k + 1, \dots, m$ liczymy:
 - 6.1. $y_n = y_{n-1} + h \sum_{i=1}^k b_{ki} f_{n-i};$
 - 6.2. $x_n = x_{n-1} + h$:
 - 6.3. $f_n = f(x_n, y_n)$.
- 7. Wynikiem są punkty (x_i, y_i) , $i = 0, 1, \ldots, m$.

Metoda Adamsa-Bashfortha (jawna)

Przykład

Znaleźć przybliżone rozwiązanie zagadnienia początkowego:

$$\begin{cases} y'(x) = x + y(x), \\ y(0) = 1, \end{cases}$$

w punkcie x=0.4, przy kroku całkowania h=0.1, za pomocą czterokrokowej metody Adamsa-Bashfortha, gdy wiadomo, że metodą Rungego-Kutty znaleziono wartości:

i	1	2	3
x_i	0.1	0.2	0.3
y_i	1.11	1.243	1.4

Rozwiązanie na wykładzie.

Metoda Adamsa-Moultona

Rozważać będziemy zagadnienie początkowe w równoważnej postaci całkowej

$$y(x_n) = y(x_{n-1}) + \int_{-\pi}^{\pi_n} f(x, y(x)) dx.$$
 (9)

Tym razem funkcję podcałkową interpolujemy wielomianem interpolacyjnym stopnia k, który w k+1 różnych punktach:

$$x_{n-k}, x_{n-k+1}, \dots, x_{n-2}, x_{n-1}, x_n$$

przyjmuje wartości:

$$f(x_{n-k}), f(x_{n-k+1}), \dots, f(x_{n-2}), f(x_{n-1}), f(x_n),$$

gdzie podobnie jak poprzednio przyjmujemy oznaczenie $f(x_i) := f(x_i, y(x_i))$. Wymagamy więc aby spełnione były równości:

$$W(x_{n-i}) = f(x_{n-i}), \qquad i = 0, 1, 2, \dots, k.$$

Podobnie jak poprzednio jako wielomian interpolacyjny przyjmujemy drugi wielomian interpolacyjny Newtona utworzony za pomocą różnic wstecznych. Ponownie w celu uzyskania prostszej postaci dokonujemy zamiany zmiennych:

$$x = x_n + t h, \qquad t \in [-1, 0],$$

wtedy $x \in [x_{n-1}, x_n]$.

Wielomian interpolacyjny przyjmie wówczas postać:

$$W(x) = W(x_n + th) = f(x_n) + t \nabla f(x_n) + \frac{t(t+1)}{2!} \nabla^2 f(x_n) + \dots + \frac{t(t+1)(t+2)\dots(t+k-1)}{k!} \nabla^k f(x_n),$$

gdzie:

$$\nabla^{0} f(x_{n}) = f(x_{n}),$$

$$\nabla f(x_{n}) = f(x_{n}) - f(x_{n-1}),$$

$$\nabla^{2} f(x_{n}) = \nabla f(x_{n}) - \nabla f(x_{n-1}),$$

$$\vdots$$

$$\nabla^{i} f(x_{n}) = \nabla^{i-1} f(x_{n}) - \nabla^{i-1} f(x_{n-1}), \quad i = 1, 2, \dots, k.$$

Funkcję podcałkową we wzorze (9) zastępujemy wielomianem interpolacyjnym:

$$f(x, y(x)) = W(x) + r(x),$$

gdzie r(x) jest błędem interpolacji wyrażonym wzorem:

$$r(x) = r(x_n + t h) =$$

$$= f^{(k+1)}(c(t)) h^{k+1} \frac{t(t+1)(t+2) \dots (t+k)}{(k+1)!},$$

gdzie c(t) jest punktem z przedziału (x, x_n) .

Liczymy całki:

$$\int_{x_{n-1}}^{x_n} (W(x) + r(x)) dx = \begin{vmatrix} x = x_n + th \\ dx = h dt \\ x = x_{n-1} \to t = -1 \\ x = x_n \to t = 0 \end{vmatrix} =$$

$$= h \int_{-1}^{0} (W(x_n + th) + r(x_n + th)) dt$$

Całka z wielomianu interpolacyjnego:

$$\int_{-1}^{0} W(x_n + t h) dt =$$

$$= \int_{-1}^{0} \left(f(x_n) + t \nabla f(x_n) + \frac{t(t+1)}{2!} \nabla^2 f(x_n) + \dots + \frac{t(t+1)(t+2)\dots(t+k-1)}{k!} \nabla^k f(x_n) \right) dt =$$

$$= f(x_n) + \nabla f(x_n) \int_{-1}^{0} t \, dt + \frac{1}{2!} \nabla^2 f(x_n) \int_{-1}^{0} t \, (t+1) \, dt + \dots$$
$$+ \frac{1}{k!} \nabla^k f(x_n) \int_{-1}^{0} t \, (t+1) \dots (t+k-1) \, dt =$$
$$= \sum_{i=0}^{k} \overline{\gamma}_i \nabla^i f(x_n),$$

gdzie wprowadziliśmy oznaczenie:

$$\overline{\gamma}_0 = 1, \qquad \overline{\gamma}_i = \frac{1}{i!} \int_1^0 t(t+1)\dots(t+i-1) dt, \quad i \geqslant 1.$$

Całkując błąd r dostajemy:

$$\int_{-1}^{0} r(x_n + t h) dt =$$

$$= \int_{-1}^{0} \left(f^{(k+1)}(c(t)) h^{k+1} \frac{t(t+1)(t+2) \dots (t+k)}{(k+1)!} \right) dt =$$

$$= h^{k+1} \frac{1}{(k+1)!} f^{(k+1)}(\xi_n) \int_{-1}^{0} t (t+1) \dots (t+k) dt =$$

$$= h^{k+1} f^{(k+1)}(\xi_n) \overline{\gamma}_{k+1} = h^{k+1} \overline{\gamma}_{k+1} y^{(k+2)}(\xi_n).$$

Skorzystaliśmy z tw. o wartości średniej dla całki, ponieważ funkcja $t \, (t+1) \dots (t+k)$ dla $t \in [-1,0]$ jest stale ujemna.

Sumując obie całki i podstawiając do wcześniejszego wzoru otrzymamy:

$$y(x_n) = y(x_{n-1}) + h \sum_{i=0}^k \overline{\gamma}_i \nabla^i f(x_n) + h^{k+2} \overline{\gamma}_{k+1} y^{(k+2)}(\xi_n).$$
 (10)

Wykorzystując teraz zależność na i-tą różnicę wsteczną:

$$\nabla^{i} f(x_{n}) = \sum_{m=0}^{i} (-1)^{m} {i \choose m} f(x_{n-m}), \quad i = 0, 1, \dots, k,$$

dostajemy:

$$y(x_n) = y(x_{n-1}) + h \sum_{i=0}^k \sum_{m=0}^i \overline{\gamma}_i (-1)^m \binom{i}{m} f(x_{n-m}) + h^{k+2} \overline{\gamma}_{k+1} y^{(k+2)}(\xi_n).$$

Podobnie jak poprzednio przegrupujemy składniki w sumie. W tym celu rozpisujemy środkową sumę:

$$i = 0 : \overline{\gamma}_0(-1)^0 \begin{pmatrix} 0 \\ 0 \end{pmatrix} f(x_{n-0})$$

$$i = 1 : \overline{\gamma}_0(-1)^0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} f(x_{n-0}) + \overline{\gamma}_0(-1)^1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} f(x_{n-1})$$

$$i = 1 : \overline{\gamma}_1(-1)^0 {1 \choose 0} f(x_{n-0}) + \overline{\gamma}_1(-1)^1 {1 \choose 1} f(x_{n-1})$$

$$i = 2 : \overline{\gamma}_2(-1)^0 {2 \choose 0} f(x_{n-0}) + \overline{\gamma}_2(-1)^1 {2 \choose 1} f(x_{n-1}) + \overline{\gamma}_2(-1)^2 {2 \choose 2} f(x_{n-2})$$

$$i = k : \overline{\gamma}_k (-1)^0 \binom{k}{0} f(x_{n-0}) + \overline{\gamma}_k (-1)^1 \binom{k}{1} f(x_{n-1}) + \dots + \overline{\gamma}_k (-1)^k \binom{k}{k} f(x_{n-k}).$$

Sumując kolumnami otrzymamy:

Sumując kolumnami otrzymamy:
$$s = \sum_{i=1}^{k} \left((-1)^{i} \left[\sum_{i=1}^{k} \overline{\gamma}_{m} \binom{m}{i} \right] f(x_{n-i}) \right).$$

Wykorzystując to możemy zapisać:

$$y(x_n) = y(x_{n-1}) + h \sum_{i=0}^{k} \overline{b}_{ki} f(x_{n-i}) + h^{k+2} \overline{\gamma}_{k+1} y^{(k+2)}(\xi_n), \quad (11)$$

gdzie:

$$\overline{b}_{ki} = (-1)^i \sum_{m=i}^k \overline{\gamma}_m \binom{m}{i}, \qquad i = 0, 1, 2, \dots, k.$$

Tak jak poprzednio dla dokładnych wartości $f(x_{n-i}), y(x_{n-1})$ i znanej wartości $y^{(k+2)}(\xi_n)$, powyższa zależność jest zależnością dokładną. W rzeczywistości nie znamy wartości dokładnych we wcześniejszych punktach siatki oraz na ogół nie jesteśmy w stanie wyznaczyć punktów ξ_n . Dlatego w obliczeniach przechodzimy do zależności przybliżonej, pomijając błąd interpolacji oraz zastępując wartości dokładne wartościami przybliżonymi.

Otrzymujemy w ten sposób wzory metody Adamsa-Moultona w postaci:

$$y_n = y_{n-1} + h \sum_{i=0}^k \overline{b}_{ki} f_{n-i},$$
 (12)

gdzie $f_{n-i} = f(x_{n-i}, y_{n-i}).$

Powyższy wzór przedstawia ogólną postać k-krokowej niejawnej metody Adamsa-Moultona. Dla każdego $k=1,2,\ldots$ otrzymujemy inną metodę.

Wartości współczynników \overline{b}_{ki} dla kilku wybranych metod.

		i							
k	\overline{b}_{ki}	0	1	2	3	4	5	6	
1	$2\overline{b}_{1i}$	1	1						
2	$12\overline{b}_{2i}$	5	8	-1					
3	$24\overline{b}_{3i}$	9	19	-5	1				
4	$720\overline{b}_{4i}$	251	646	-264	106	-19			
5	$1440\overline{b}_{5i}$	475	1427	-798	482	-173	27		
6	$60480\overline{b}_{6i}$	19087	65112	-46461	37504	-20211	6312	-863	

$$\overline{b}_{ki} = (-1)^i \sum_{m=i}^k \overline{\gamma}_m \binom{m}{i}, \qquad i = 0, 1, 2, \dots, k,$$

$$\overline{\gamma}_0 = 1, \quad \overline{\gamma}_i = \frac{1}{i!} \int_1^0 t (t+1) \dots (t+i-1) dt, \quad i \geqslant 1.$$

Algorytm metody Adamsa-Moultona

- 1. Dane: funkcja f(x,y), wartości x_0,y_0 , liczba k, liczba kroków m $(m\geqslant k)$, koniec przedziału b (lub długość kroku h).
- 2. Jeśli zadany jest koniec przedziału b, liczymy $h = \frac{b-x_0}{m}$.
- 3. Wyznaczamy węzły siatki $x_i = x_0 + i h$ dla $i = 1, \dots, k-1$.
- 4. Inną metodą wyznaczamy wartości y_i dla $i=1,\ldots,k-1$.
- 5. Obliczamy $f_i = f(x_i, y_i)$ dla i = 0, 1, ..., k 1.
- 6. Dla $n = k, k + 1, \dots, m$ liczymy:
 - 6.1. $x_n = x_{n-1} + h$:
 - 6.2. Wyznaczamy y_n rozwiązując równanie $y_n = y_{n-1} + h \sum_{i=1}^k \overline{b}_{ki} f_{n-i} + h \overline{b}_{k0} f(x_n, y_n);$
- $g_n g_{n-1} + h \sum_{i=1}^{n} o_{ki} f_{n-i} + 6.3.$ $f_n = f(x_n, y_n).$
- 7. Wynikiem są punkty (x_i, y_i) , $i = 0, 1, \ldots, m$.

Przykład

Dane jest zagadnienie początkowe:

$$\left\{ \begin{array}{ll} y'(x)=x\,y^2(x), & \quad x\in[0,1],\\ y(0)=1, & \end{array} \right.$$

Metodą Rungego-Kutty uzyskano przybliżone rozwiązanie $y_1=1.005$ dla $x_1=0.1$. Wykorzystując dwukrokową metodę Adamsa-Moultona znaleźć wartość przybliżoną rozwiązania w punkcie $x_2=0.2$.

Rozwiązanie na wykładzie.

Błąd metody powstaje wskutek zastąpienia równania różniczkowego równaniem różnicowym i wyznaczania rozwiązania przybliżonego za pomocą tego wzoru.

Załóżmy, że przybliżenie y_n wartości dokładnej $y(x_n)$ wyznaczamy ze wzoru metody k-krokowej:

$$y_n = \sum_{i=1}^k a_i \, y_{n-i} + h \, \sum_{i=1}^k b_i \, f(x_{n-i}, y_{n-i}) + h \, b_0 \, f(x_n, y_n).$$
 (13)

Załóżmy teraz, że w miejsce k poprzednich przybliżeń $y_{n-1}, y_{n-2}, \ldots, y_{n-k}$ użyjemy odpowiednich wartości rozwiązania dokładnego $y(x_{n-1}), y(x_{n-2}), \ldots, y(x_{n-k})$.

Otrzymane w ten sposób przybliżenie wartości dokładnej $y(x_n)$ oznaczymy przez y_n^{\star} czyli:

$$y_n^* = \sum_{i=1}^k a_i y(x_{n-i}) + h \sum_{i=1}^k b_i f(x_{n-i}, y(x_{n-i})) + h b_0 f(x_n, y_n^*).$$
(14)

Wykorzystanie wartości dokładnych pozwala określić błąd jaki powoduje metoda wielokrokowa.

Z drugiej strony jeśli we wzorze (13) przyjmiemy wartości dokładne $y(x_n), y(x_{n-1}), \ldots, y(x_{n-k})$, to nie otrzymamy wartości dokładnej $y(x_n)$, ale możemy napisać:

$$y(x_n) = \sum_{i=1}^k a_i \, y(x_{n-i}) + h \sum_{i=0}^k b_i \, f(x_{n-i}, y(x_{n-i})) - r_n(h),$$
(15)

gdzie $r_n(h)$ jest pewną "poprawką".

Definicja

Błędem aproksymacji odpowiadającym punktowi x_n będziemy nazywać:

$$r_n(h) = \sum_{i=0}^k a_i y(x_{n-i}) + h \sum_{i=0}^k b_i f(x_{n-i}, y(x_{n-i})),$$

gdzie przyjęto $a_0 = -1$.

Z zależności (14) i (15) dostajemy:

$$y_n^* - y(x_n) = h b_0 \left(f(x_n, y_n^*) - f(x_n, y(x_n)) \right) + r_n(h),$$

stąd:

$$r_n(h) = (y_n^* - y(x_n)) - h b_0 (f(x_n, y_n^*) - f(x_n, y(x_n))),$$

$$r_n(h) = \left(y_n^* - y(x_n)\right) \left[1 - h \, b_0 \, \frac{f(x_n, y_n^*) - f(x_n, y(x_n))}{y_n^* - y(x_n)}\right]$$

czyli:

$$r_n(h) = \left(y_n^* - y(x_n)\right) \left[1 - h b_0 \frac{\partial f}{\partial y}(x_n, \xi_n)\right],$$

gdzie ξ_n leży między y_n^* i $y(x_n)$ (skorzystaliśmy z tw. Lagrange'a o wartości średniej).

Twierdzenie (Lagrange'a o wartości średniej)

Załóżmy, że funkcja $f:[a,b]\to\mathbb{R}$ jest ciągła na [a,b] oraz różniczkowalna na (a,b). Wówczas istnieje punkt $c\in(a,b)$, taki że:

$$f(b) - f(a) = f'(c) (b - a).$$

Otrzymana proporcjonalność (a dla metody jawnej równość, bo wtedy $b_0=0$) błędu aproksymacji i różnicy $y_n^*-y(x_n)$ oznacza, że błąd aproksymacji $r_n(h)$ informuje nas o tym, jaki błąd wniosłaby metoda w kroku x_n , gdyby we wcześniejszych krokach błędy nie były popełnione.

Definicja

Operatorem różnicowym metody wielokrokowej będziemy nazywać operator określony dla dowolnej funkcji różniczkowalnej φ wzorem:

$$L[\varphi(x);h] := \sum_{i=0}^{k} \left(a_i \varphi(x-ih) + h b_i \varphi'(x-ih) \right).$$

Z ostatnich dwóch definicji wynika, że:

$$r_n(h) = L[y(x_n); h].$$
 (16)

Zakładając, że funkcja φ jest p+1 razy różniczkowalna z wzoru Taylora otrzymujemy:

$$\varphi(x-ih) = \varphi(x) + \frac{\varphi'(x)}{1!} (x-ih-x) + \frac{\varphi''(x)}{2!} (-ih)^2 + \dots$$

$$+ \frac{\varphi^{(p+1)}(x)}{(p+1)!} (-ih)^{p+1} + O(h^{p+2}) =$$

$$= \sum_{m=0}^{p+1} \frac{(-ih)^m}{m!} \varphi^{(m)}(x) + O(h^{p+2})$$

oraz:

$$\varphi'(x-ih) = \sum_{m=0}^{p} \frac{(-ih)^m}{m!} \varphi^{(m+1)}(x) + O(h^{p+1}) =$$

$$= \sum_{m=1}^{p+1} \frac{(-ih)^{m-1}}{(m-1)!} \varphi^{(m)}(x) + O(h^{p+1}).$$

Powyższe zależności podstawiamy do wzoru na operator różnicowy metody wielokrokowej:

$$L[\varphi(x);h] = \sum_{i=0}^{k} \left(a_i \sum_{m=0}^{p+1} \frac{(-ih)^m}{m!} \varphi^{(m)}(x) + O(h^{p+2}) + h b_i \sum_{m=1}^{p+1} \frac{(-ih)^{m-1}}{(m-1)!} \varphi^{(m)}(x) + h O(h^{p+1}) \right) =$$

$$= \sum_{i=0}^{k} \sum_{m=0}^{p+1} a_i \frac{(-ih)^m}{m!} \varphi^{(m)}(x) +$$

$$+ \sum_{i=0}^{k} \sum_{m=1}^{p+1} b_i h^m \frac{(-i)^{m-1}}{(m-1)!} \varphi^{(m)}(x) + O(h^{p+2}) =$$

$$= \sum_{m=0}^{p+1} h^m \frac{1}{m!} \left(\sum_{i=0}^k (-i)^m a_i \right) \varphi^{(m)}(x) +$$

$$+ \sum_{m=1}^{p+1} h^m \frac{1}{(m-1)!} \left(\sum_{i=0}^k (-i)^{m-1} b_i \right) \varphi^{(m)}(x) + O(h^{p+2}).$$

Dla m=0 mamy:

$$\left(\sum_{i=0}^{k} a_i\right) \varphi(x) = h^0 \left(\sum_{i=0}^{k} a_i\right) \varphi(x) = h^0 C_0 \varphi(x);$$

dla m=1 mamy:

$$h\left(\sum_{i=1}^{k}(-i) a_i\right) \varphi'(x) + h\left(\sum_{i=0}^{k} b_i\right) \varphi'(x) =$$

$$= h\left[-\sum_{i=1}^{k} i a_i + \sum_{i=0}^{k} b_i\right] \varphi'(x) = h C_1 \varphi'(x);$$

dla $m \geqslant 2$ mamy:

$$h^{m} \frac{1}{m!} \left(\sum_{i=1}^{k} (-i)^{m} a_{i} \right) \varphi^{(m)}(x) +$$

$$+ h^{m} \frac{1}{(m-1)!} \left(\sum_{i=1}^{k} (-i)^{m-1} b_{i} \right) \varphi^{(m)}(x) =$$

$$= h^{m} \left[\frac{1}{m!} \sum_{i=1}^{k} \left((-i)^{m} a_{i} \right) + \frac{1}{(m-1)!} \sum_{i=1}^{k} \left((-i)^{m-1} b_{i} \right) \right] \varphi^{(m)}(x) =$$

$$= h^{m} C_{m} \varphi^{(m)}(x).$$

Ostatecznie więc dostajemy:

$$L[\varphi(x); h] = C_0 \varphi(x) + \sum_{m=1}^{p+1} h^m C_m \varphi^{(m)}(x) + O(h^{p+2}), \quad (17)$$

gdzie:

$$C_0 = \sum_{i=0}^k a_i,$$

$$C_1 = -\sum_{i=1}^k i \, a_i + \sum_{i=0}^k b_i,$$

$$C_m = \frac{1}{m!} \sum_{i=1}^k \left((-i)^m \, a_i \right) + \frac{1}{(m-1)!} \sum_{i=1}^k \left((-i)^{m-1} \, b_i \right), \quad m \geqslant 2.$$

Na podstawie ostatniej zależności możemy stwierdzić, że dla dowolnej funkcji φ różniczkowalnej p+1 razy:

$$L[\varphi(x); h] = O(h^{p+1})$$

wtedy i tylko wtedy, gdy $C_m=0$ dla $m=0,1,\ldots,p$ oraz $C_{p+1}\neq 0.$

Definicja

Będziemy mówić, że zachodzi równość asymptotyczna:

$$g(x) = O(h^p)$$

jeśli skończona jest granica:

$$\lim_{h \to 0} \frac{g(x)}{h^p}.$$

Definicja

Będziemy mówić, że operator różnicowy metody wielokrokowej jest rzędu p, jeżeli $C_m=0$ dla $m=0,1,\ldots,p$ oraz $C_{p+1}\neq 0$. Stałą C_{p+1} nazywamy wówczas stałą błędu metody.

Przyjmiemy umowę, że zamiast mówić operator różnicowy metody wielokrokowej jest rzędu p, będziemy mówili, iż metoda jest rzędu p.

Z powyższych rozważań wynika:

Wniosek

Jeżeli operator różnicowy metody wielokrokowej jest rzędu p, a rozwiązanie zagadnienia początkowego y(x) jest p+1 razy różniczkowalne, to dla każdego x_n błąd aproksymacji wyrażą się wzorem:

$$r_n(h) = L[y(x_n); h] = h^{p+1} C_{p+1} y^{(p+1)}(x_n) + O(h^{p+2}).$$
 (18)

Wyrażenie $h^{p+1}\,C_{p+1}\,y^{(p+1)}(x_n)$ nazywamy częścią główną błędu aproksymacji.

Z wzoru (18) widać, że dla dostatecznie małego h o wielkości błędu decyduje część główna błędu aproksymacji.

Z wcześniejszych rozważań mamy:

$$y_n^* - y(x_n) = \frac{1}{d} r_n(h),$$

gdzie d jest stałą proporcjonalności ($d=1-h\,b_0\,\frac{\partial f}{\partial y}(x_n,\xi_n)$). Dalej:

$$y_n^* - y(x_n) = \frac{1}{d} h^{p+1} C_{p+1} y^{(p+1)}(x_n) + O(h^{p+2}) = O(h^{p+1}).$$

Różnica $y_n^*-y(x_n)$ jako funkcja kroku h jest wielkością rzędu p+1 i zbiega do zera, gdy h dąży do zera, tym szybciej im p jest większe.

Zależność (18) określa czynniki mające wpływ na wielkość błędu aproksymacji. Wielkość p+1 pochodnej rozwiązania dokładnego oraz wielkość stosowanego kroku h nie zależą od stosowanej metody. Natomiast wielkość rzędu p oraz wielkość stałej błędu C_{p+1} już tak.

Zgodnie z definicją stałe C_m zależą od współczynników metody a_0, a_1, \ldots, a_k i b_0, b_1, \ldots, b_k . Krok h zwykle jest mniejszy od jedności (h < 1), co oznacza, że błąd aproksymacji jest tym mniejszy im większy jest rząd metody p.

Możemy zatem powiedzieć, że w celu minimalizacji błędu aproksymacji pożądane jest, aby operator różnicowy metody wielokrokowej był możliwie wysokiego rzędu i aby stała błędu była możliwie mała.

Przykład

Wyznaczyć rząd i stałą błędu metody Eulera (czyli jednokrokowej metody Adamsa-Bashfortha) danej zależnością:

$$y_n = y_{n-1} + h f_{n-1}.$$

Przykład

Wyznaczyć rząd i stałą błędu dwukrokowej jawnej metody różnicowej określonej wzorem:

$$y_n = -3 y_{n-1} + 4 y_{n-2} + h \left(\frac{7}{2} f_{n-1} + \frac{3}{2} f_{n-2}\right).$$

Przykład

Wyznaczyć współczynniki metody dwukrokowej niejawnej rzędu $p\geqslant 4$.

Przykład

Rozważmy metodę dwukrokową niejawną, dla której:

$$a_1 = 1 + \alpha,$$
 $a_2 = -\alpha,$ $b_0 = \frac{1}{12}(5 + \alpha),$ $b_1 = \frac{2}{3}(1 - \alpha),$ $b_2 = -\frac{1}{12}(1 + 5\alpha),$

gdzie α jest parametrem rzeczywistym. Zbadać wpływ wartości parametru α na rząd metody.

metody wielokrokowej

Błąd całkowity

Błąd aproksymacji (inaczej zwany błędem metody) jest błędem jaki powstaje wskutek zastąpienia równania różniczkowego równaniem różnicowym i dotyczy jednego kroku obliczeń bez uwzględniania błędów popełnianych we wcześniejszych krokach (czyli zakładamy, że korzystamy z wartości dokładnych).

Błąd całkowity jest natomiast rezultatem wielokrotnego zastosowania określonego wzoru numerycznego w trakcie przybliżonego rozwiązywania równania. W danym kroku obliczeń jego wielkość jest rezultatem nagromadzenia się błędów z poprzednich kroków.

Definicja

Błędem całkowitym nazywamy różnicę między wartością przybliżoną y_n i wartością dokładną $y(x_n)$:

$$\varepsilon_n = y_n - y(x_n).$$

Dla jawnej metody k-krokowej przybliżenie y_n wyznaczamy ze wzoru:

$$y_n = \sum_{i=1}^k a_i y_{n-i} + h \sum_{i=1}^k b_i f(x_{n-i}, y_{n-i}).$$

Na podstawie definicji błędu aproksymacji mamy:

$$y(x_n) = \sum_{i=1}^k a_i y(x_{n-i}) + h \sum_{i=1}^k b_i f(x_{n-i}, y(x_{n-i})) - r_n(h),$$

gdzie $r_n(h)$ jest błędem aproksymacji (metody).

Po odjęciu stronami ostatnich dwóch zależności otrzymamy:

$$y_n - y(x_n) = \sum_{i=1}^k a_i \left(y_{n-i} - y(x_{n-i}) \right) + h \sum_{i=1}^k b_i \left(f(x_{n-i}, y_{n-i}) - f(x_{n-i}, y(x_{n-i})) \right) + r_n(h),$$

a korzystając z błędu całkowitego mamy:

$$\varepsilon_n = \sum_{i=1}^k a_i \, \varepsilon_{n-i} + h \sum_{i=1}^k b_i \left(f(x_{n-i}, y_{n-i}) - f(x_{n-i}, y(x_{n-i})) \right) + r_n(h).$$

Wyznaczenie błędu całkowitego ε_n z powyższego wzoru jest niemożliwe wobec nieznajomości rozwiązań dokładnych $y(x_{n-i})$. Dlatego szukane jest tylko oszacowanie tego błędu.

Oszacowanie to dla metody jawnej jest postaci:

$$|\varepsilon_n| \le \beta_1 \max_{0 \le i \le k-1} |\varepsilon_i| + \beta_2 h^p, \qquad n = k, \dots, m$$
 (19)

(dowód tej nierówności można znaleźć na przykład w książce Krupowicza [1]).

Stałe β_1 i β_2 zależą od długości przedziału całkowania (b-a), od stosowanej metody (czyli od współczynników a_1,\ldots,a_k i b_0,b_1,\ldots,b_k) oraz własności rozwiązania.

Prawa strona nierówności nie zależy od n, co oznacza, że wszystkie błędy całkowite ε_n dla $k\leqslant n\leqslant m$, są wspólnie ograniczone.

Dla metody niejawnej oszacowanie błędu całkowitego także ma postać (19).

Zbieżność metody oznacza, że błędy całkowite ε_n odpowiadające punktom x_n dążą do zera $(\varepsilon_n \to 0)$, gdy odległość między węzłami maleja do zera $(h \to 0)$.

Definicja

Metoda numeryczna jest zbieżna, jeśli dla dowolnej $\delta>0$ istnieje $h_0>0$, takie że jeśli $h\in(0,h_0)$ to dla wszystkich węzłów $x_n=x_0+n$ h zachodzi równocześnie:

$$|\varepsilon_n| = |y_n - y(x_n)| < \delta$$
 dla $n = 1, 2, \dots, m$,

gdzie m jest liczbą węzłów rozpatrywanej siatki (czyli punktów w których liczymy przybliżone wartości rozwiązania).

Inaczej mówiąc zbieżność metody wielokrokowej (a także innej) oznacza, że dla dowolnej $\delta>0$ istnieje taki krok h_0 , że dla każdego mniejszego kroku rozwiązanie przybliżone mieści się w pasie pomiędzy $y(x)-\delta$ i $y(x)+\delta$, czyli:

$$\forall n \in \{1, 2, \dots, m\} \qquad y(x_n) - \delta \leqslant y_n \leqslant y(x_n) + \delta.$$

Stosowanie metody k-krokowej wymaga znajomości k wartości początkowych $y_0, y_1, \ldots, y_{k-1}$. Wybór metody startowej za pomocą, której wyznaczymy y_1, \ldots, y_{k-1} (y_0 znamy z warunku początkowego) jest istotny. Zbieżność ciągu przybliżeń y_n , $n \geqslant k$ zależy bowiem od tego jak dokładnie wyznaczone są przybliżenia początkowe.

W związku z tym wymaga się aby przybliżenia wyznaczone metodą startową spełniały warunek

$$\lim_{h\to 0} y_n(h) = y_0.$$

Oznacza to, że gdy węzły $x_n=x_0+n\,h$ dążą do x_0 przy $h\to 0$, to odpowiadające im wartości y_n dążą do y_0 . W takim przypadku mówimy, że metoda startowa jest zbieżna do warunku początkowego.

Zbieżność metody startowej zapewnia dowolna zbieżna metoda jednokrokowa (np. któraś z metod Rungego-Kutty). Wybór rzędu tej metody powinien zależeć od rzędu stosowanej metody k-krokowej.

Przejdziemy teraz do określenia warunków, spełnienie których gwarantuje zbieżność metody wielokrokowej.

Definicja

Będziemy mówić, że metoda jest zgodna, jeżeli jest ona rzędu co najmniej pierwszego.

Zgodność metody oznacza, że wzór, którym jest ona określona, jest dokładny wtedy, gdy funkcja f jest wielomianem stopnia pierwszego.

Z definicji rzędu metody wynika, że aby była ona rzędu pierwszego lub wyższego, a tym samym była zgodna muszą być spełnione warunki:

$$C_0 = \sum_{i=0}^k a_i = 0,$$

$$C_1 = -\sum_{i=1}^k i \, a_i + \sum_{i=0}^k b_i = 0.$$

Definicja

Wielomianem charakterystycznym metody k-krokowej nazywamy wielomian ϱ określony wzorem:

$$\varrho(z) = \sum_{i=0}^{k} a_i z^{k-i}, \qquad z \in \mathbb{C} \quad (a_0 = -1),$$

czyli:

$$\varrho(z) = -z^k + a_1 z^{k-1} + a_2 z^{k-2} + \ldots + a_{k-1} z + a_k.$$

Warunek $C_0=0$ może być zapisany za pomocą wielomianu charakterystyczneho następująco:

$$\varrho(1) = 0.$$

Oznacza to, że z=1 jest pierwiastkiem wielomianu charakterystycznego, gdy metoda jest zgodna.

Ścisły związek z właściwościami metody k-krokowej ma wielomian σ o współczynnikach b_0,b_1,\ldots,b_k , określony wzorem:

$$\sigma(z) = \sum_{i=0}^{k} b_i z^{k-i}, \qquad z \in \mathbb{C},$$

czyli:

$$\sigma(z) = b_0 z^k + b_1 z^{k-1} + b_2 z^{k-2} + \ldots + b_{k-1} z + b_k.$$

Uwaga

Jeśli $C_0=0$, to warunek $C_1=0$ może być zapisany w postaci:

$$\rho'(1) + \sigma(1) = 0.$$

Dowód. Mamy:

$$C_1 = -\sum_{i=1}^k i \, a_i + \sum_{i=0}^k b_i.$$

Z określenia wielomianu σ mamy:

$$\sigma(1) = \sum_{i=0}^{k} b_i,$$

czyli otrzymujemy drugi składnik C_1 . Pozostaje pokazać, że $\varrho'(1)$ jest równe pierwszemu składnikowi C_1 . W tym celu liczymy pochodną:

$$\varrho'(z) = \sum_{i=0}^{k-1} (k-i) a_i z^{k-i-1}.$$

Skąd mamy:

$$\varrho'(1) = \sum_{i=0}^{k-1} (k-i) a_i = k \sum_{i=0}^{k-1} a_i - \sum_{i=0}^{k-1} i a_i.$$

Jeśli $C_0 = 0$, to:

$$\sum_{i=0}^k a_i = 0$$
 czyli także $\sum_{i=0}^{k-1} a_i = -a_k.$

Wykorzystując to w poprzedniej zależności otrzymamy:

$$\varrho'(1) = -k \, a_k - \sum_{i=0}^{k-1} i \, a_i = -\sum_{i=0}^{k} i \, a_i,$$

czyli ostatecznie $C_1 = \varrho'(1) + \sigma(1)$.

L

Wniosek

Metoda k-krokowa jest zgodna jeśli:

$$\varrho(1) = 0$$
 i $\varrho'(1) + \sigma(1) = 0.$

Definicja

Będziemy mówić, że metoda wielokrokowa jest stabilna, jeśli pierwiastki wielomianu charakterystycznego tej metody leżą w kole jednostkowym, przy czym pierwiastki o module równym jedności są pojedyncze.

Stabilność informuje nas o tym, że jeżeli błąd aproksymacji (metody) i błędy wartości początkowych $y_0, y_1, \ldots, y_{k-1}$ są dostatecznie małe, to przy wzrastającym n błędy wartości przybliżonych y_n pozostają ograniczone. Jeśli natomiast błędy te rosną nieograniczenie, to metoda jest niestabilna.

Istota stabilności polega więc na tym jak przenoszą się błędy z jednego etapu obliczeń na następny.

W myśl definicji sprawdzenie czy metoda jest stabilna wymaga lokalizacji pierwiastków wielomianu charakterystycznego ϱ .

Wiedząc, że dla metody zgodnej z=1 jest pierwiastkiem tego wielomianu wystarczy dokonać lokalizacji pierwiastków wielomianu $\varrho(z)/(z-1)$. W ogólnym przypadku nie jest to zadanie łatwe.

Przykład (ilustrujący niestabilność)

Pokażemy, że metoda dwukrokowa:

$$y_n = -4 y_{n-1} + 5 y_{n-2} + h (4 f_{n-1} + 2 f_{n-2}),$$

która jest metodą rzędu trzeciego (zadanie domowe: sprawdzić to) nie jest stabilna.

Własność

Metody k-krokowe Adamsa-Bashfortha i Adamsa-Moultona są zgodne dla dowolnego $k \in \mathbb{N}$.

Dowód. Wzory metod są postaci:

$$y_n = y_{n-1} + h \sum_{i=1}^k b_{ki} f_{n-i},$$
 (A-B),
 $y_n = y_{n-1} + h \sum_{i=0}^k \overline{b}_{ki} f_{n-i},$ (A-M).

Metoda wielokrokowa jest zgodna, gdy $C_0=0$ i $C_1=0$, gdzie:

$$C_0 = \sum_{i=0}^k a_i, \qquad C_1 = -\sum_{i=1}^k i \, a_i + \sum_{i=0}^k b_i.$$

W rozważanych metodach mamy:

$$a_0 = -1, a_1 = 1,$$

$$b_{ki} = (-1)^{i-1} \sum_{m=i-1}^{k-1} {m \choose i-1} \gamma_m,$$

$$\overline{b}_{ki} = (-1)^i \sum_{m=i}^k {m \choose i} \overline{\gamma}_m.$$

Stąd od razu widać, że dla obu metod $C_0 = 0$ oraz:

$$C_1 = -1 + \sum_{i=1}^{k} b_{ki},$$
 (A-B),
 $C_1 = -1 + \sum_{i=0}^{k} \overline{b}_{ki},$ (A-M).

Dla metody Adamsa-Bashfortha mamy:

$$\sum_{i=1}^{k} b_{ki} = \sum_{i=1}^{k} (-1)^{i-1} \sum_{m=i-1}^{k-1} {m \choose i-1} \gamma_m =$$

$$= \sum_{i=1}^{k} \sum_{m=i}^{k} (-1)^{i-1} {m-1 \choose i-1} \gamma_{m-1} = \dots$$

(zmieniamy kolejność sumowania)

$$\dots = \sum_{m=1}^{k} \sum_{i=1}^{m} (-1)^{i-1} {m-1 \choose i-1} \gamma_{m-1} = \dots$$

(korzystamy z tożsamości
$$\binom{m}{i} = \frac{m}{i} \binom{m-1}{i-1}$$
)

$$\dots = \sum_{m=1}^{k} \sum_{i=1}^{m} (-1)^{i-1} \frac{i}{m} \binom{m}{i} \gamma_{m-1} =$$

$$= \sum_{m=1}^{k} \frac{1}{m} \gamma_{m-1} \sum_{i=1}^{m} (-1)^{i-1} i \binom{m}{i} =$$

$$= \gamma_0 + \sum_{m=2}^{k} \frac{1}{m} \gamma_{m-1} \sum_{i=1}^{m} (-1)^{i-1} i \binom{m}{i} = \gamma_0 = 1.$$

Skorzystaliśmy z tego, że:

$$0 = m (1-1)^{m-1} = \sum_{i=1}^{m} (-1)^{i-1} i \binom{m}{i},$$

co uzyskujemy z tego, że:

$$(1+z)^m = \sum_{i=0}^m {m \choose i} z^i,$$

licząc pochodną:

$$m (1+z)^{m-1} = \sum_{i=1}^{m} {m \choose i} i z^{i-1},$$

stąd dla z=-1 i $m\geqslant 2$ dostajemy szukaną równość. Oznacza to, że metoda Adamsa-Bashfortha jest zgodna.

Dla metody Adamsa-Moultona mamy:

$$\sum_{i=0}^{k} \overline{b}_{ki} = \sum_{i=0}^{k} (-1)^{i} \sum_{m=i}^{k} {m \choose i} \overline{\gamma}_{m} = \sum_{i=0}^{k} \sum_{m=i}^{k} (-1)^{i} {m \choose i} \overline{\gamma}_{m} =$$

$$= \sum_{m=0}^{k} \sum_{i=0}^{m} (-1)^{i} {m \choose i} \overline{\gamma}_{m} = \sum_{m=0}^{k} \overline{\gamma}_{m} \sum_{i=0}^{m} (-1)^{i} {m \choose i} =$$

$$= \overline{\gamma}_{0} + \sum_{m=1}^{k} \overline{\gamma}_{m} \sum_{i=0}^{m} (-1)^{i} {m \choose i} = \overline{\gamma}_{0} = 1.$$

Skorzystaliśmy z tego, że dla $m\geqslant 1$ zachodzi równość:

$$0 = (1-1)^m = \sum_{i=0}^m (-1)^i \binom{m}{i}.$$

A więc metoda Adamsa-Moultona jest także zgodna.

Twierdzenie

Metoda wielokrokowa jest zbieżna wtedy i tylko wtedy, gdy jest ona zgodna i stabilna.

Dowód twierdzenia można znaleźć na przykład w książce Krupowicza [1].

Bezpośrednio z twierdzenia i poprzednich rozważań wypływa wniosek, że o zbieżności metody decydują własności wielomianów ϱ i σ .

Przykład

Zbadać zbieżność oraz wyznaczyć rząd i stałą błędu dwukrokowej metody niejawnej określonej wzorem:

$$y_n = \frac{4}{3}y_{n-1} - \frac{1}{3}y_{n-2} + \frac{2}{3}h f_n.$$

Rozwiązanie na wykładzie.

Twierdzenie

- 1) Dla każdego $k=1,2,\ldots k$ -krokowa metoda Adamsa-Bashfortha (jawna) jest stabilna i zgodna, a tym samym zbieżna. Rząd takiej metody jest równy k (p=k), a stała błędu $C_{k+1}=-\gamma_k$.
- 2) Dla każdego $k=1,2,\ldots k$ -krokowa metoda Adamsa-Moultona (niejawna) jest stabilna i zgodna, a tym samym zbieżna. Rząd takiej metody jest równy k+1 (p=k+1), a stała błędu $C_{k+2}=-\overline{\gamma}_{k+1}$.

Dowód. Zgodność metod wykazaliśmy we wcześniejszej własności. Zajmiemy się teraz ich stabilnością. Wzory metod są postaci:

$$y_n = y_{n-1} + h \sum_{i=1}^k b_{ki} f_{n-i},$$
 (A-B),
 $y_n = y_{n-1} + h \sum_{i=0}^k \overline{b}_{ki} f_{n-i},$ (A-M).

Dla obu rodzaju metod Adamsa wielomian charakterystyczny ma więc postać:

$$\rho(z) = -z^k + z^{k-1} = z^{k-1} (1 - z).$$

Tym samym poza pierwiastkiem z=1, istnieje jeszcze jeden (k-1)-krotny pierwiastek z=0. A zatem obie metody są stabilne. Tym samym, jako zgodne i stabilne, są zbieżne.

Z wcześniejszych rozważań wiemy, że metoda wielokrokowa jest rzędu p jeśli jej błąd aproksymacji wyraża się zależnością:

$$r_n(h) = C_{p+1} h^{p+1} y^{(p+1)}(x_n) + O(h^{p+2}),$$
 (20)

a C_{p+1} jest wówczas stałą błędu.

Dla metody Adamssa-Bashfortha mamy zależność:

$$y(x_n) = y(x_{n-1}) + h \sum_{i=1}^k b_{ki} f(x_{n-i}) + h^{k+1} \gamma_k y^{(k+1)}(x_n) + O(h^{k+2}),$$

natomiast w ogólnym przypadku wzór ten jest postaci:

$$y(x_n) = \sum_{i=1}^k a_i y(x_{n-i}) + h \sum_{i=1}^k b_i f(x_{n-i}) - r_n(h).$$

Porównując oba wzory dostajemy, że dla metody Adamsa-Bashfortha błąd aproksymacji wyraża się zależnością:

$$r_n(h) = -h^{k+1} \gamma_k y^{(k+1)}(x_n) + O(h^{k+2}).$$

Porównując to z zależnością (20) dostajemy, że metoda Adamsa-Bashfortha jest rzędu p=k, a stała błędu $C_{k+1}=-\gamma_k.$

Dla metody Adamsa-Moultona mamy natomiast:

$$y(x_n) = y(x_{n-1}) + h \sum_{i=0}^k \overline{b}_{ki} f(x_{n-i}) + h^{k+2} \overline{\gamma}_{k+1} y^{(k+2)}(x_n) + O(h^{k+3}),$$

czyli:

$$r_n(h) = -h^{k+2} \overline{\gamma}_{k+1} y^{(k+2)}(x_n) + O(h^{k+3}).$$

Tym samym metoda Adamsa-Moultona jest rzędu p=k+1, a stała błędu $C_{k+2}=-\overline{\gamma}_{k+1}.$

Twierdzenie

Jeśli metoda k-krokowa jest stabilna, to dla k nieparzystego jej maksymalny rząd jest równy k+1, a dla k parzystego jej maksymalny rząd jest równy k+2.

Dla k parzystego rząd metody jest równy k+2 wtedy i tylko wtedy, gdy wszystkie pierwiastki jej wielomianu charakterystycznego są pojedyncze i leżą na okręgu jednostkowym.

Jeśli stosujemy metodę niejawną, to w każdym kroku obliczeń musimy rozwiązać nieliniowe (na ogół) równanie algebraiczne. Do jego rozwiązania możemy zastosować jedną z typowych metod; najczęściej jest to metoda iteracji prostej, ewentualnie metoda Newtona. Metody te mają charakter iteracyjny i wymagają określenia przybliżenia początkowego oraz kryterium zakończenia iteracji.

W poprzednich teoretycznych rozważaniach zakładaliśmy przypadek idealny przyjmując, że kolejne przybliżenia y_{n-k},\ldots,y_{n-1} oraz y_n dane są jako dokładne rozwiązania nieliniowego równania określającego wielokrokową metodę niejawną:

$$y_n = \sum_{i=1}^k a_i \, y_{n-i} + h \, \sum_{i=1}^k b_i \, f(x_{n-i}, y_{n-i}) + h \, b_0 \, f(x_n, y_n).$$

W rzeczywistości stosując metodę iteracyjną znajdujemy jedynie $y_n^{[q]}$ będące przybliżeniem nieznanego y_n , gdzie q oznacza liczbę wykonanych iteracji.

Ta sama uwaga dotyczy również wielkości y_{n-k},\ldots,y_{n-1} , które w poprzednich krokach zostały znalezione jako q-te iteracje $y_{n-k}^{[q]},\ldots,y_{n-1}^{[q]}$.

Możemy więc powiedzieć, że praktyczna realizacja niejawnej metody wielokrokowej wymaga rozwiązania w każdym kroku nieliniowego równania algebraicznego:

$$y_n = \sum_{i=1}^k a_i \, y_{n-i}^{[q]} + h \, \sum_{i=1}^k b_i \, f(x_{n-i}, y_{n-i}^{[q]}) + h \, b_0 \, f(x_n, y_n).$$
 (21)

Stosując do tego równania metodę iteracji prostej dostajemy algorytm postaci:

$$y_n^{[s+1]} = \sum_{i=1}^k a_i y_{n-i}^{[q]} + h \sum_{i=1}^k b_i f(x_{n-i}, y_{n-i}^{[q]}) + h b_0 f(x_n, y_n^{[s]}).$$

gdzie $s = 0, 1, \dots, p - 1$.

Odejmując stronami powyższe dwie zależności dostajemy:

$$y_n - y_n^{[s+1]} = h b_0 \left(f(x_n, y_n) - f(x_n, y_n^{[s]}) \right).$$

Skąd mamy (bo zakładamy, że f spełnia warunek Lipschitza):

$$|y_n - y_n^{[s+1]}| \le h L |b_0| |y_n - y_n^{[s]}|$$

czyli dla każdego $q = 1, 2, \ldots$

$$|y_n - y_n^{[q]}| \le (h L |b_0|)^q |y_n - y_n^{[0]}|.$$
 (22)

Powyższa zależność wskazuje, że jeśli

$$h < \frac{1}{L|b_0|},\tag{23}$$

to dla dowolnego przybliżenia początkowego $y_n^{[0]}$ iteracje $y_n^{[q]}$ są zbieżne do rozwiązania y_n , gdy $p\to\infty$.

Zatem przybliżenie $y_n^{[q]}$ jest tym lepsze im większa jest liczba iteracji. Zauważmy jednak, że dla danej liczby iteracji q $(q\geqslant 1)$ przybliżenie $y_n^{[q]}$ jest tym lepsze im mniejszy jest krok h oraz im mniejszy jest błąd początkowy: $|y_n-y_n^{[0]}|$. W praktycznych algorytmach z zasady stosuje się małą liczbę iteracji (z reguły $1\leqslant q\leqslant 3$) przy dostatecznie małej długości kroku i dostatecznie dokładnym przybliżeniu początkowym.

Metoda predyktor-korektor jest to sposób realizacji metody wielokrokowej niejawnej. Zgodnie z jej określeniem każdy krok obliczeń składa się z dwóch etapów:

- predykcja (prognoza) wyznaczenie przybliżenia początkowego $y_n^{[0]}$ za pomocą metody jawnej;
- korekcja (poprawa) iteracyjne poprawienie przybliżenia początkowego za pomocą metody niejawnej.

Należy tu podkreślić, że chodzi o zastosowanie metody niejawnej, a metoda jawna gra tylko rolę pomocniczą i służy jedynie do zapoczątkowania procesu iteracyjnego określonego metodą niejawną.

Przejdziemy teraz do określenia rzędu metody i zbadania zbieżności metody predyktor-korektor.

Będziemy zakładać, że w metodzie korektor stosowana jest metoda iteracji prostej o stałej liczbie iteracji q. Równanie nieliniowe korektora, w którym zamiast obliczonych wartości $y_{n-k}^{[q]},\ldots,y_{n-1}^{[q]}$ przyjęto odpowiednie wartości rozwiązania dokładnego $y(x_{n-k}),\ldots,y(x_{n-1})$, przyjmuje postać:

$$Y_n = \sum_{i=1}^k a_i y(x_{n-i}) + h \sum_{i=1}^k b_i f(x_{n-i}, y(x_{n-i})) + h b_0 f(x_n, Y_n).$$

Stosując do tego równania metodę iteracji prostej dostajemy:

$$Y_n^{[s+1]} = \sum_{i=1}^k a_i y(x_{n-i}) + h \sum_{i=1}^k b_i f(x_{n-i}, y(x_{n-i})) + h b_0 f(x_n, Y_n^{[s]}).$$

Odejmując stronami mamy:

$$Y_n^{[s+1]} - Y_n = h b_0 \left(f(x_n, Y_n^{[s]}) - f(x_n, Y_n) \right).$$

Wcześniej uzyskaliśmy zależność (zamiast Y_n było oznaczenie y_n^*):

$$Y_n - y(x_n) = h b_0 (f(x_n, Y_n) - f(x_n, y(x_n))) + r_n(h).$$

Dodając stronami ostatnie dwie zależności dostajemy:

$$Y_n^{[s+1]} - y(x_n) = h b_0 \left(f(x_n, Y_n^{[s]}) - f(x_n, y(x_n)) \right) + r_n(h)$$

czyli:

$$Y_n^{[s+1]} - y(x_n) = h b_0 \frac{\partial f}{\partial y}(x_n, \xi_n^{[s]}) \left(Y_n^{[s]} - y(x_n) \right) + r_n(h),$$
 (24)

gdzie skorzystaliśmy z twierdzenia Lagrange'a o wartości średniej, a błąd aproksymacji r_n określony jest zależnością dla metody niejawnej:

$$r_n(h) = C_{p+1} h^{p+1} y^{(p+1)}(x_n) + O(h^{p+2}).$$
 (25)

W dalszej części rozważań przyjmiemy oznaczenia:

 \overline{p} – rząd predyktora,

 \overline{C}_{p+1} – stałą błędu predyktora,

p – rząd korektora,

 C_{p+1} – stała błędu korektora.

Zgodnie z określeniem błędu aproksymacji dla metody jawnej (predyktora) mamy:

$$Y_n^{[0]} - y(x_n) = \overline{C}_{\overline{p}+1} h^{\overline{p}+1} y^{(\overline{p}+1)}(x_n) + O(h^{\overline{p}+2}).$$
 (26)

Twierdzenie

Jeśli rząd predyktora jest nie mniejszy od rzędu korektora, czyli $\overline{p}\geqslant p$, to dla dowolnej liczby iteracji $q=1,2,\ldots$ mamy:

$$Y_n^{[q]} - y(x_n) = C_{p+1} h^{p+1} y^{(p+1)}(x_n) + O(h^{p+2}).$$

Jeśli natomiast rząd predyktora jest miejszy od rzędu korektora, czyli $\overline{p}=p+r$ dla pewnego $r\in\{1,2,\ldots\}$, to:

$$Y_n^{[q]} - y(x_n) = O(h^{p-r+m+1})$$
 dla $m = 1, \dots, r$,

oraz:

$$Y_n^{[q]} - y(x_n) = C_{p+1} h^{p+1} y^{(p+1)}(x_n) + O(h^{p+2})$$
 dla $m > r$.

Podobnie jak w ogólnym przypadku metody wielokrokowej, rząd aproksymacji metody predyktor-korektor określimy jako liczbę p^* , taką że dla każdego x_n :

$$Y_n^{[q]} - y(x_n) = O(h^{p^*+1}).$$

Korzystając z tego pojęcia możemy skomentować poprzednie twierdzenie.

Na początku zauważmy, że rząd metody predyktor-korektor nie może przewyższać rzędu korektora niezależnie od liczby iteracji, czyli:

$$p^* \leqslant p$$
,

Wynika stąd, że zwiększenie dokładności metody predyktor-korektor może nastąpić jedynie przez zwiększenie dokładności korektora, natomiast zwiększenie dokładności predyktora nie daje rezultatu.

Jeśli rząd predyktora jest niemniejszy od rzędu korektora $(\overline{p}\geqslant p)$, to uzyskanie maksymalnej dokładności metody predyktor-korektor następuje już dla jednej iteracji i zwiększenie liczby iteracji nie daje rezultatu. Powyższe uwagi są słuszne o tyle, o ile część główna błędu aproksymacji stanowi o wielkości błędu aproksymacji (czyli dla dostatecznie małych wartości kroku h).

W praktyce przyjmuje się $\overline{p} = p$ lub $\overline{p} = p - 1$.

Zbieżność metody predyktor-korektor wykazuje się w oparciu o zbieżność metody korektora.

Jeśli przez y_n oznaczymy (tak jak poprzednio) teoretyczne przybliżenie $y(x_n)$ uzyskane za pomocą metody niejawnej, a przez $y_n^{[q]}$ przybliżenie y_n uzyskane za pomocą metody predyktor-korektor, wówczas mamy:

$$|y(x_n) - y_n^{[q]}| \le |y(x_n) - y_n| + |y_n - y_n^{[q]}|.$$

Teraz jeśli metoda niejawna jest zbieżna, to mamy:

$$|y(x_n) - y_n| \to 0, \qquad \text{gdy } h \to 0,$$

natomiast ze wcześniejszej zależności mamy,

$$|y_n - y_n^{[q]}| \le (h L |b_0|)^q |y_n - y_n^{[0]}|$$

czyli:

$$|y_n - y_n^{[q]}| \to 0, \qquad \text{gdy } h \to 0.$$

Zbieżność zachodzi dla dowolnego przybliżenia początkowego $y_n^{[0]}$ i dowolnego q. Wynika stąd, że

$$|y(x_n) - y_n^{[q]}| \to 0, \qquad \text{gdy } h \to 0$$

czyli metoda predyktor-korektor jest zbieżna.

Przykład

Dane jest zagadnienie początkowe:

$$\begin{cases} y'(x) = x \sqrt[3]{y}, & x \geqslant 0, \\ y(0) = 1, & \end{cases}$$

Znaleźć przybliżone rozwiązanie dla x=1 wykorzystując metodę predyktor-korektor. Wiadomo, że dla $x_1=\frac{1}{2}$ metodą Rungego-Kutty uzyskano rozwiązanie przybliżone $y_1=1.12755$. Jako predyktora użyć dwukrokowej metody Adamsa-Bashfortha, a jako korektora dwukrokowej metody Adamsa-Moultona.

Rozwiązanie na wykładzie.

Rozważać będziemy układ równań różniczkowych:

$$\begin{cases} y'_1(x) = f_1(x, y_1, \dots, y_n), \\ y'_2(x) = f_2(x, y_1, \dots, y_n), \\ \vdots \\ y'_n(x) = f_n(x, y_1, \dots, y_n), \end{cases} x \in [a, b],$$

z warunkami początkowymi:

$$\begin{cases} y_1(x_0) = y_{10}, \\ y_2(x_0) = y_{20}, \\ \vdots \\ y_n(x_0) = y_{n0}, \end{cases}$$

 $\operatorname{\mathsf{gdzie}} x_0 = a.$

W postaci macierzowej układ ten możemy zapisać następująco:

$$\begin{cases} \mathbf{Y}'(x) = \mathbf{F}(x, \mathbf{Y}), \\ \mathbf{Y}(x_0) = \mathbf{Y}_0, \end{cases}$$

gdzie:

$$\mathbf{Y}'(x) = [y_1'(x), \dots, y_n'(x)]^T,
\mathbf{Y}(x) = [y_1(x), \dots, y_n(x)]^T,
\mathbf{Y}_0 = [y_{10}, \dots, y_{n0}]^T,
\mathbf{F}(x, \mathbf{Y}) = [f_1(x, y_1, \dots, y_n), \dots, f_n(x, y_1, \dots, y_n)]^T.$$

Do rozwiązania tego typu zagadnienia możemy zastosować omówione do tej pory metody (np. metody Rungego-Kutty lub metody Adamsa) zapisując je w notacji wektorowej.

W przypadku metody wielokrokowej otrzymamy:

$$\mathbf{Y}_n = \sum_{i=1}^k a_i \, \mathbf{Y}_{n-i} + h \, \sum_{i=0}^k b_i \, \mathbf{F}_{n-i},$$

gdzie
$$\mathbf{Y}_i = [y_1^i, y_2^i, \dots, y_n^i]^T$$
, $\mathbf{F}_i = \mathbf{F}(x_i, \mathbf{Y}_i) = \left[f_1(x_i, y_1^i, \dots, y_n^i), \dots, f_n(x_i, y_1^i, \dots, y_n^i)\right]^T$, a y_j^i jest przybliżeniem wartości $y_j(x_i)$.

W przypadku, gdy mamy do rozwiązania równanie rzędu n-tego:

$$y^{(n)}(x) = f(x, y, y', y'', \dots, y^{(n-1)}), \qquad x \in [a, b]$$

z warunkami:

$$\begin{cases} y(x_0) = y_{0,0}, \\ y'(x_0) = y_{1,0}, \\ \vdots \\ y^{(n-1)}(x_0) = y_{n-1,0}, \end{cases}$$

 $\operatorname{\mathsf{gdzie}} x_0 = a$,

możemy przekształcić je do układu równań różniczkowych rzędu pierwszego, wykonując podstawienia:

$$y_1(x) = y(x),$$

 $y_2(x) = y'(x),$
 $y_3(x) = y''(x),$
 \vdots
 $y_n(x) = y^{(n-1)}(x).$

Funkcje y_1, y_2, \dots, y_n spełniają wówczas układ równań różniczkowych rzędu pierwszego postaci:

$$\begin{cases} y'_1(x) = y_2(x), \\ y'_2(x) = y_3(x), \\ \vdots \\ y'_{n-1}(x) = y_{n-2}(x), \\ y'_n(x) = f(x, y_1, y_2, \dots, y_n), \end{cases}$$

z warunkami początkowymi:

$$\begin{cases} y_1(x_0) = y_{0,0}, \\ y_2(x_0) = y_{1,0}, \\ \vdots \\ y_n(x_0) = y_{n-1,0}, \end{cases}$$

 $\operatorname{\mathsf{gdzie}} x_0 = a.$

Przykład

Dane jest zagadnienie początkowe:

$$\begin{cases} y''(x) - 6y'(x) + 9y(x) = 2, & x \ge 0, \\ y(0) = 0, \\ y'(0) = 1. \end{cases}$$

Znaleźć jego przybliżone rozwiązanie na przedziale $[0,\frac{4}{10}]$, dla kroku siatki $h=\frac{1}{10}$. Wykorzystać dwukrokową metodę Adamsa-Bashfortha, gdy wiadomo, że metodą jednokrokową uzyskano wartości $y_1=0.14723$, $y_1^{'}=2.02479$, gdzie $y_i=y(x_i)$, $y_i^{'}=y^{\prime}(x_i)$.

Rozwiązanie na wykładzie.

Literatura

- A. Krupowicz, Metody numeryczne zagadnień początkowych równań różniczkowych zwyczajnych, PWN, Warszawa 1986.
- D. Kincaid, W. Cheney, Analiza numeryczna, WNT, Warszawa 2006.