Priority Queues – Binary Heaps

Heap **Structure** Property

A binary heap is a <u>complete</u> binary tree.

Complete binary tree – binary tree that is completely filled, with the possible exception of the bottom level, which is filled left to right.

Examples:

Representing Complete Binary Trees in an Array

From node i:

left child: right child: parent:

implicit (array) implementation:

	A	В	C	D	E	F	G	Н	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Why this approach to storage?

implicit (array) implementation:

	A	В	C	D	E	F	G	Н	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

From node i:

left child:

right child:

parent:

Heap Order Property

Heap order property: For every non-root node X, the value in the parent of X is less than (or equal to) the value in X.

Heap Operations

- findMin:
- insert(val): percolate up.
- deleteMin: percolate down.

Heap

- A *max tree* is a tree in which the key value in each node is no smaller than the key values in its children. A *max heap* is a complete binary tree that is also a max tree.
- A *min tree* is a tree in which the key value in each node is no larger than the key values in its children. A *min heap* is a complete binary tree that is also a min tree.

Sample max heaps

Property:

The root of max heap (min heap) contains the largest (smallest).

Sample min heaps

Data Structures

- unordered linked list
- unordered array
- sorted linked list
- sorted array
- heap

Priority queue representations

Representation	Insertion	Deletion
Unordered array	$\Theta_{(1)}$	Θ (n)
Unordered linked list	$\Theta_{(1)}$	$\Theta(n)$
Sorted array	O(n)	$\Theta_{(1)}$
Sorted linked list	O(n)	Θ (1)
Max heap	$O(\log_2 n)$	O(log ₂ n)

Example of Insertion to Max Heap

initial location of new node

insert 5 into heap

insert 21 into heap

Insertion into a Max Heap

```
insert_max_heap(heap,n,x):
    n += 1
    i = n
    while ((i!=1) &&(x > heap[i/2])):
        heap[i] = heap[i/2]
        i /= 2
heap[i]= x
```

$$2^{k}-1=n ==> k= log_{2}(n+1)$$
O(log₂n)

Example of Deletion from Max Heap

Deletion from a Max Heap

```
deleteMax(heap,n):
    x = heap[1]
    heap[1] = heap[n]
    n -= 1
    MAX-HEAPIFY(heap,n,1)
    return x
```

Heapsort Algorithm

- The algorithm
 - (Heap construction) Build heap for a given array (either bottom-up or top-down)
 - (Maximum deletion) Apply the root-deletion operation n-1 times to the remaining heap until heap contains just one node.
- An example: 2 9 7 6 5 8

HEAP SORT

```
Algorithm heapSort(A[1..n])
for (i = n/2 to 1):
    MAX-HEAPIFY(A,n,i)

for (i = n to 1):
    Swap(A, 1, i);
    MAX-HEAPIFY(A, i-1,1)
```

Analysis of Heapsort

Recall algorithm:

- $\Theta(n)$ 1. Bottom-up heap construction
- $\Theta(\log n)$ 2. Root deletion

Repeat 2 until heap contains just one node.

n-1 times

Total:
$$\Theta(n) + \Theta(n \log n) = \Theta(n \log n)$$

• Note: this is the worst case. Average case also $\Theta(n \log n)$.