NRES 779 Presentation

NRES 779 Presentation

Griffin Shelor

Data

- SNOTEL
- Daymet

Histogram of SNOTEL Data

NRES 779 Presentation

riffin Shelo

Model Development

- Lognormal distribution
- Tried and failed to use gamma
- Truncated normal

Bayesian p-values

NRES 779 Presentation

• Every single model had a value of 1 for the mean and variance.

WAIC of Top 4 Models

NRES 779 Presentation Griffin Shelor

WAIC for Top Models

calculated with Loo package

MODEL ID	WAIC	DELTA WAIC	ELPD_DIFF
Model 3	12,604.448	0.0000	0.000
Model 4	13,087.522	483.0739	-241.537
Model 1	13,165.115	560.6662	-280.333
Model 2	14,112.091	1507.6431	-753.822

Figure 1: WAIC Table

Best Performing Model

- Model statement: $y \sim \operatorname{lognormal}(\mu, \sigma^2)$
- $\bullet \text{ where } \mu = \beta_0 + \beta_1 x_1$
- ullet x_1 is max temperature
- Prior for the betas: $b_n \sim \text{normal}(0,10)$
- σ prior: $\sigma \sim \text{gamma}(1,1)$

Traceplot of Best Performing Model

NRES 779 Presentation Griffin Shelor

Figure 2: Traceplot

Some Things to Consider in the Future

- Adding more data with more time for models to run
- Looking at site random effects
- Figure out how to use gamma distribution
- Add in additional topographical variables (slope, aspect) and possibly land cover
- Adjust priors