Topic 7: Wingate Anaerobic Test

Laboratory Manual Section 07

HPHE 6720 Dr. Cheatham

$\sqrt{}$

7 Origins

- Developed at the Wingate Institute in Israel by Dr. Oded Bar-Or in the late 1970's
- Originally developed for use in children but was expanded to adults
- One of the most widely performed tests to assess anaerobic power

🌃 Physiological Rationale

- Performance during the test is primarily dependent on the combination of the anaerobic energy pathways:
 - Phosphagen System
 - Glycolytic System
 - Approximately 85% of ATP production during the test is accounted for by these systems.
- The WAnT requires a power level that is usually 2-4 times greater than the participant's VO_{2max}.

M Physiological Rationale

Variables that are Assessed

• Peak Anaerobic Power (Pk-AnP)

- A reflection of the ability of the limb muscles to produce high mechanical power in a short time.
- Peak power observed (usually over a 5 second period) during the 30-sec test.
- Typically occurs within the first 5-8 seconds of the 30-sec test.
- Is thought to mostly reflect the participant's ability to use the phosphagenic system.
- However, the glycolytic pathway is probably also significantly involved
- Expressed both in absolute terms (Watts) and relative to the participant's bodyweight (Watts/kg)

Variables that are Assessed

• Mean Anaerobic Power (M-AnP)

- Reflects the endurance of the limb muscles (i.e. their ability to maintain extremely high power.
- The average anaerobic power over the 30-sec test
- Glycolytic pathway appears to contribute most to the participant's mean aerobic power
 - ~ 49% of ATP production
- Phosphagen system also contributes
 - Subjects reduced there phosphagen levels to 70% of their original ATP values and 40% of their original CP values after performing the test.
- Expressed in both absolute terms (Watts) and relative to the participant's bodyweight (Watts/kg)

Variables that are Assessed

• Total Work (w)

- The total work is based upon the number of revolutions at the end of the 30-sec test
- Expressed in both absolute terms (N·m; J) and relative to the participant's bodyweight (J/kg)

• Fatigue Index (FI)

- The degree of decrease in power from the peak anaerobic power to the lowest anaerobic power.
- Typically 40% or more

W Variables that are Assessed

Fig. 1. Indices of the Wingate anaerobic test. A schematic representation of 3 indices. Not displayed is the 'fatigue slope', which is the power drop-off between points A and B, divided by the time elapsed between the two measurements. Peak power = 300W, mean power = 237W, % fatigue = (300-165)/300 = 45%.

Performing the Test

- Protocol has five distinct time periods:
 - Prior Exercise
 - 5 min cycling at low intensity interspersed with 4-5 sprints of 4-6 seconds at prescribed force
 - Recovery Interval
 - 2-5 minutes of rest or cycling against minimal force
 - Acceleration Period
 - 1st Phase: cycle for 5-10 seconds at one-third of prescribed force at 20-50 RPM
 - 2nd Phase: Cycle 1-5 seconds against approach to prescribed force at maximal RPM
 - Alternate: Have subject reach maximal RPM's against no-load and drop the basket immediately at maximal RPM's
 - Wingate Test
 - Cycle at highest RPM's possible against prescribed force for 30 seconds
 - Cool-Down Period
 - 2-3 minutes of cycling at low to moderate aerobic power level

Methodological Considerations

• Optimization of Force

Subjects	Limb	Force (kp/kg)		Work — (J/rev/kg)	References
		Monark	Fleisch	(5/164/1/19)	
Adult males				4.41	Ayalon et al. (1974)
Sedentary	Legs	0.075	0.045 0.059	5.76	Evans & Quinney (1981)
Active and athletes	Legs	0.098	0.059	5.13	Dotan & Bar-Or (1983)
Phys. ed. students	Legs	0.087	0.052	5.53	Patton et al. (1985)
Soldiers	Legs	0.094	0.037	3.62	Dotan & Bar-Or (1983)
Phys. ed. students	Arms	0.062	0.037	3.02	Dottain at 2 at 1 at 1
Adult females					Dotan & Bar-Or (1983)
Phys. ed. students	Legs	0.085	0.051	5.04	
Phys. ed. students	Arms	0.048	0.029	2.82	Dotan & Bar-Or (1983)
13- to 14-year-old boys					
Active, non-athlete	Legs	0.070	0.042	- 4.13	Dotan & Bar-Or (1983)
a)	2393				
13- to 14-year-old girls				3.92	Dotan & Bar-Or (1983)
Active, non-athlete	Legs	0.067	0.040	3.32	Dotail & Dail of (1995)

W Methodological Considerations

• Optimization of Force (cont'd)

- -General recommendations when using Monark cycle ergometer
 - Adult Non-Athletes: 0.090 kp/kg body weight
 - Adult Athletes: 0.100 kp/kg body weight

Methodological Considerations

Duration of Test

- Have ranged from 30 seconds to 2 min.
- General consensus is that a 30 second test is optimal.

Motivation

- General consensus is that conventional encouragement of feedback does not affect results

Methodological Considerations

Fig. 3. Effect of extra motivation on the performance of the Winate anaerobic test. Individual data of 8 young adults who performed the test in competition with each other ('competition') [yaxis] and with no extra motivation (x-axis). Based on Geron and Inbar (1980). r = 0.97.

Methodological Considerations

• Warm-Up

- One study showed that a 15 minute intermittent warm-up (30 seconds on, 30 seconds off) on a treadmill increased mean power by ~7% but had no effect on peak power.
- Regardless, warm-up should be standardized.

Reliability of the Wingate Test

Fig. 2. Test-retest reliability of the Wingate anaerobic test. 38 children and adolescents with cerebral palsy and muscular dystrophies/atrophies performed the leg test on 2 separate days (\triangle = boys; \bigcirc = girls) [Bar-Or, unpublished data]. r = 0.96.

Reliability of the Wingate Test

Subjects	r	Comments	Reference
Children and young adults	0.95-0.97	Several experiments	Bar-Or et al. (1977)
18 elderly, COPD patients	0.89	Abbreviated WAT	Berman & Bar-Or (unpublished)
12 active or athletic young adults	0.96		Evans & Quinney (1981)
9 phys. ed. students and athletes	0.95-0.97		Kaczkowski et al. (1982)
28 10- to 12-year-old girls and boys	0.89-0.93	3 climates, 2-week intervals	Dotan & Bar-Or (1983)
19 military personnel	0.91-0.93		Patton et al. (1985)
58 6- to 20-year-old, neuromuscular disease	0.94-0.98	Arm test	Tirosh et al. (1987)
38 6- to 20-year-old, neuromuscular disease	0.96	Leg test	Tirosh et al. (1987)

Validity of the Wingate Test

WAT index	No. and sex	Exercise	, r	Comments	Reference
PP	35M	40m run speed	. 0.84	10-15 year-olds, random sample	Bar-Or & Inbar (1978)
PP	9М	50m run time	-0.91	Active young adults	Kaczkowski et al. (1982)
PP	24M	4 × 91.5m skate	0.83	10-year-old ice hockey players	Rhodes et al. (1985)
PP/kg	56M	50 yard time	-0.69	10-15-year-olds, active	Tharp et al. (1985)
PP .	56M	Vertical jump	0.70	10-15-year-olds, active	Tharp et al. (1985)
PP	8?	500m skate speed	0.66	US National team	Thompson et al. (1986)
PP	24M	SAS40	0.32	Junior A ice hockey players	Watson & Sargeant (198
MP	9F&M	25m swim time	-0.90	8-12-year-old swimmers	Inbar & Bar-Or (1977)
MP	9F&M	25m swim time	-0.92	8-12-year-olds, WAT arm	Inbar & Bar-Or (1977)
MP	22F&M	300m run time	-0.88	8-12-year-old swimmers	Inbar & Bar-Or (1977)
MP	35M	300m run speed	0.85	10- to 15-year-olds, random sample	Bar-Or & Inbar (1978)
MP	24M	4 × 91.5m skate	0.71	10-year-old ice hockey players	Rhodes et al. (1985)
MP/kg	56M	50 yard time	0.69	10- to 15-year-olds, active	Tharp et al. (1985)
MP	56M	Vertical jump	0.74	10- to 15-year-olds, active	Tharp et al. (1985)
MP	24M	SAS40	0.79	Junior A ice hockey players	Watson & Sargeant (198
MP	8?	500m skate speed	0.76	US National team	Thompson et al. (1986)
MP	10M	300m cycle time	< -0.75	25.7-year-old cyclists	Perez et al. (1986)

Validity of the Wingate Test

Fig. 4. Performance of the Wingate anaerobic test by runners of various specialties. Individual data of 24 male members of the Burmese National track team are plotted against the log of their running specialty (ranging from 100m to a marathon). $r_{sp} = 0.82.$

Wingate Compared to Other Anaerobic Tests

WAT index	No.	Laboratory test or index	r	Reference
PP	15	Margaria step-running	0.79	Ayalon et al. (1974)
PP/kg	11	Margaria step-running	0.84	Jacobs (1979)
PP/kg	15	Margaria step-running	-0.003	Taunton et al. (1981)
PP	19	PP - Thorstensson isokinetic	0.61	Inbar et al. (1981)
MP	19	MP - Thorstensson isokinetic	0.78	Inbar et al. (1981)
MP	16	Maximal O ₂ debt	0.86	Bar-Or et al. (1977)
PP	11	O ₂ debt post WAT	0.85	Jacobs (1979)
MP	11	O ₂ debt post WAT	0.63	Jacobs (1979)
MP	14	O ₂ debt post WAT	0.47	Tamayo et al. (1984)
rev/30 sec	11	Lactate post WAT	0.60	Jacobs (1979)
MP/kg	14	Lactate post WAT	0.60	Tamayo et al. (1984)
PP/LBM	19	% FT area	0.60	Bar-Or et al. (1980)
% fatigue	19	FT area/ST area	0.75	Bar-Or et al. (1980)
MP/LBM	19	FT area/ST area	0.63	Bar-Or et al. (1980)
PP	29	% FT	0.72	Inbar et al. (1981)
MP	29	% FT	0.57	Inbar et al. (1981)
PP	9	FT area	0.84	Kaczkowski et al. (1982)
MP	9	FT area	0.83	Kaczkowski et al. (1982)

Calculations

Pk-AnP

- Should be expressed in Watts
- Best to use the newton (N) unit as the expression of force (rather than kg)
 - 1 kg = 9.81 N
- Pk-AnP (N·m·sec⁻¹; W) = (N x (Rmax x 6))/5
- Example:
 - A person's highest 5 second interval was 12 revolutions at a force setting of 4.6 kg (45 N)
 - Pk-AnP = (45 x (12 x 6))/5 = 648 W
- Divide Pk-AnP by the person's bodyweight (kg) to get relative Pk-AnP

Calculations

Total Work

- $-w(N\cdot m; J) = Nx(Rx6)$
 - N = the force in Newtons
 - R = the total number of revolutions in 30 seconds

M-AnP

- M-AnP (W; J·sec⁻¹) = total work / 30 s
- Divide M-AnP by the person's bodyweight (kg) to get relative M-AnP

Fatigue Index

- FI (%) = ((Pk-AnP – lowest AnP) / Pk-AnP) x 100

🌃 Hand Calculations

Monark Test Report Human Performance Research

tel. Exercise Science Program

Monark Anaerobic Test

Created: 2.11.2010 17:11:26

Person Information

First Name: Justin Last Name: Lvons Male

Height: 181 Weight [kg]: 86 Date of Birth: 15.12.1999

Test Information

Test Duration [s]: 30 Brake Weight [kg]: 8.6 Person Weight [kg]: 86

Date and Time:

10.11.2009 18:33:06

Analysis

Peak Power [W]: 1,177.55 Peak Power [W/kg]: 13.69 Avg. Power [W]: 891.78 Avg. Power [W/kg]: 10.37 Min. Power [W]: 586.06

Power Drop [W]: Power Drop [W/kg]: 6.88 Power Drop [W/s]: Power Drop [W/s/kg]:0.229 Power Drop [%]:

Min. Power [W/kg]: 6.81

Hand Calculations

Time [s]	W	W/kg	Rpm
-3025	-	-	101
-2520	-		98
-2015	-	-	93
-1510	4.72	0.05	92
-105	22.78	0.26	95
-50	466.60	5.43	172
05	957.26	11.13	152
510	974.82	11.34	123
1015	911.50	10.60	111
1520	817.63	9.51	101
2025	745.24	8.67	91
2530	650.79	7.57	82

12.67 REV 10.25 REV 9.25 REV 8.42 REV 7.58 REV 6.83 REV

Total = 55 REV

Group	F-Set	Pk-AnP	Rel-Pk-A	nP	Total w	M-AnP	Rel-M-AnP
Males	%wt	w	W⋅kg ⁻¹		kJ	· W	W⋅kg ⁻¹
Normals							-
18-29 y ²³	7.5	540	8.2		13.5	450	7.0
25-34 y	7.5	700	9.2		16.2	540	7.2
35-44 y	7.5	660	8.6				
18-28 y ³⁵	7.5					563	7.3
Athletes ²⁸	7.5		11.8				
Cyclists ⁵⁰							
Category II-IV	9.5	963	13.3			783	10.8
Ice Hockey ³⁹	7.5				15.6		
Volleyball Olympians ⁴⁹	10.0				23.9	797	9.1
Sprinters ⁴⁵	9.0		14.2		23.9		
Nondesignated ²²	9.5	1064			25		
Females							
PE Majors ²⁵	~7.7	561	9.0			453	7.2
Softball Players ⁴⁷	7; 8		9.1; 9.6				
	9; 10		10.8; 11.1				

Table 3 Percentile (%ile) Norms for Pk-AnP (W) and Rel-Pk-AnP (W·kg⁻¹) for the Wingate Test in Physically Active Men (n = 62) and Women (n = 68) Ages 18–28 y

%ile Rank	Pk-Anaero	bic Power (W)	Relative-Pl	(-AnP (W⋅kg ⁻¹)	500 000 A 100 00
	Men (W)	Women (W)	Men (W·kg ⁻¹)	Women (W-kg ⁻¹)	
95	867	602	11.1	9.3	
90	822	560	10.9	9.0	
85	807	530	10.6	8.9	
80	777	527	10.4	8.8	
75	768	518	10.4	8.6	
70	757	505	10.2	8.5	
65	744	493	10.0	8.3	
60	721	480	9.8	8.1	
55	706	464	9.5	7.8	
50	689	449	9.2	7.6	
45	678	447	9.0	7.2	
40	671	432	8.9	7.0	
35	662	418	8.6	7.0	
30	656	399	8.5	6.9	
25	646	396	8.3	6.8	
20	618	376	8.2	6.6	
15	594	362	7.4	6.4	
10	570	353	7.1	6.0	
5	530	329	6.6	5.7	
м	699.5	454.5	9.18	7.61	
SD	94.7	81.3	1.43	1.24	
Minimum	500	239	5.3	4.6	
Maximum	927	623	11.9	10.64	

From P. J. Maud and B. B. Schultz, Research Quarterly for Exercise and Sport, 60(2), p. 147, 1989. Copyright © 1989 AAHPERD, 1900 Association Dr., Reston, VA 22091.

Table 4 Percentile (%ile) Norms for M-AnP (W) and Rel-M-AnP (W·kg⁻¹) for the Wingate Test in Physically Active Men (n = 60) and Women (n = 69) Ages 18–28 y

%ile Rank	M-Anaero	bic Power (W)	Relative-M	l-AnP (W⋅kg ⁻¹)	
	Men (W)	Women (W)	Men (W·kg ⁻¹)	Women (W⋅kg ⁻¹)	
95	677	483	8.63	7.5	
90	662	470	8.24	7.3	
85	631	437	8.09	7.1	
80	618	419	8.01	7.0	
75	604	444	7.96	6.9	
70	600	410	7.91	6.8	
65	592	402	7.70	6.7	
60	577	391	7.59	6.6	
55	575	386	7.46	6.5	
50	565	381	7.44	6.4	
45	553	377	7.26	6.2	
40	548	367	7.14	6.15	
35	535	361	7.08	6.13	
30	530	353	7.00	6.0	
	521	347	6.79	5.9	
25	496	337	6.59	5.7	
20	485	320	6.39	5.6	
15	471	306	5.98	5.3	
10	453	287	5.56	5.1	
5		381	7.28	6.35	
М	562.7	56.4	0.88	0.73	
SD	66.5		4.6	4.5	
Minimum	441	235	9.1	8.1	
Maximum	711	529	9.1	0.1	

From P. J. Maud and B. B. Schultz, Research Quarterly for Exercise and Sport, 60(2), p. 146, 1989. Copyright © 1989 AAHPERD, 1900 Association Dr., Reston, VA 22091.

Class Laboratory Exercise

- As many students as would like All students who are able will perform a Wingate Anaerobic Test
- Our research question:
 - -Do males and females differ with respect to the different variables assessed from a Wingate Anaerobic Test.

