Math 3607: Homework 7

Due: 10:00PM, Tuesday, October 26, 2021

TOTAL: 30 points

- Important note. Do not use Symbolic Math Toolbox. Any work done using sym or syms will receive NO credit.
- Another important note. When asked write a MATLAB function, write one at the end of your live script.
- 1. (Using eig; **FNC** 7.2.3) Use eig to find the EVD of each matrix. Then for each eigenvalue λ , use the rank command to verify that $\lambda I A$ is singular.

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & -1 & -1 \\ -2 & 2 & -1 \\ -1 & -2 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & -3 & -2 & -1 \\ -2 & 4 & -2 & -1 \\ -1 & -2 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{bmatrix}.$$

2. (Polynomial evaluation of matrices; **FNC** 7.2.5 and Su20 final exam) Let $p(z) = c_1 + c_2 z + \cdots + c_n z^{n-1}$. The value of p for a square matrix input is defined as

$$p(X) = c_1 I + c_2 X + \dots + c_n X^{n-1}.$$

- (a) \mathscr{S} Show that if $X \in \mathbb{R}^{k \times k}$ has an EVD, then p(X) can be found using only evaluations of p at the eigenvalues and two matrix multiplications.
- (b) Complete the following program which, given coefficients $\mathbf{c} = (c_1, c_2, \dots, c_n)^{\mathrm{T}}$, evaluates the corresponding polynomial at \mathbf{x} , which can be a number, a vector, or a square matrix. If \mathbf{x} is a scalar or a vector, use *Horner's method*¹; if \mathbf{x} is a square matrix, use the result from the previous part.

```
function y = mypolyval(c, x)
%MYPOLYVAL evaluates a polynomial at points x given its coeffs.
% Input:
% c coefficient vector (c_1, c_2, ..., c_n)^T
% x points of evaluation
% - if x is a scalar or a vector, use Horner's method
% - if x is a square matrix, use the result from (a)
% - otherwise, produce an error message.
```

¹See Problem 12 of Module 2 practice problem set (click here).

3. (Singular values by hand) ? Calculate the singular values of

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ -1 & -1 \end{bmatrix}$$

by solving a 2×2 eigenvalue problem.

- 4. (SVD and the 2-norm) \nearrow Let $A \in \mathbb{R}^{n \times n}$. Show that
 - (a) A and A^{T} have the same singular values.
 - (b) $||A||_2 = ||A^{\mathrm{T}}||_2$.
- 5. (Vandermonde matrix, SVD, and rank) \square Let \mathbf{x} be a vector of 1000 equally spaced points between 0 and 1, and let A_n be the $1000 \times n$ Vandermonde-type matrix whose (i, j) entry is x_i^{j-1} for $j = 1, \ldots, n$.
 - (a) Print out the singular values of A_1 , A_2 , and A_3 .
 - (b) Make a semi-log plot of the singular values of A_{25} .
 - (c) Use rank to find the rank of A_{25} . How does this relate to the graph from part (b)? You may want to use the help document for the rank command to understand what it does.