

# Loan Application Data Analytics

Defaulters VS Non-Defaulters

EDA performed by:

Arpit Vijay (arpitvj1993@gmail.com)

Dhananjay Punekar (dhananjay.punekar36@gmail.com)

# Objective of the EDA:

- We are given this case study to identify the patterns and factors by which company can decide about giving the loan on the basis of gain information and understanding.
- Identify patterns which indicate if a client has difficulty paying their installments.
- Understanding the driving factors (or driver variables) behind loan default.
- Finding the top 10 correlation for the Client with payment difficulties and all other cases.

# Our Approach

- Data cleaning
  - Dropping columns with more than 40% null values.
  - Converting the columns to proper data types.
  - Convert negative values in some date columns to positive.
- Finding outliers

(We have only found and visualised the outliers but have not performed any outlier treatment as it was optional!)

- Determine the correlation for Target 0 and Target 1
- Univariate analysis
- Bivariate analysis
- Analysing the merged dataset
- Summary and conclusion

# Application Data

**Analysis** 

# Understanding data at a high level:

We are mainly targeting to see if an applicant is a defaulter or a non defaulter.

The given data, after a few treatments, has about 91.9% Non-Defaulter and 8.1% defaulters



# Outlier search









# Which income range are the major applicants?

People in the age group of 25 to 45 apply highest for the loans

Target 0 (Non-Defaulters)



Target 1 (Defaulters)



#### Count of applicants by OCCUPATION\_TYPE

**Univariate Analysis** 



Labourers are the most frequent applicants

## Count of applicants by INCOME\_TYPE

**Univariate Analysis** 



Working class people are the most frequent applicants

#### Distribution of Amount Credit

#### Numerical Univariate Analysis





The above 2 graphs can be plotted overlapping to get better insights

Overlapping plot

Credit amount is left skewed

#### Variation of Amount Credit with Amount Good Price

Numerical Bivariate Analysis



Amount Credit and Amount goods price show a strong positive correlation

# Гуре Educatio Variation of Amount across ncome



Applicants with a Academic degree have a higher total income

# Correlation Matric for Target 0 and Target 1

Target 1
Defaulter

#### Target 0 Non-Defaulter

| Var1                     | Var2                     | Correlation |
|--------------------------|--------------------------|-------------|
| OBS_60_CNT_SOCIAL_CIRCLE | OBS_30_CNT_SOCIAL_CIRCLE | 0.998269    |
| AMT_GOODS_PRICE          | AMT_CREDIT               | 0.983103    |
| DEF_60_CNT_SOCIAL_CIRCLE | DEF_30_CNT_SOCIAL_CIRCLE | 0.868994    |
| AMT_GOODS_PRICE          | AMT_ANNUITY              | 0.752699    |
| AMT_ANNUITY              | AMT_CREDIT               | 0.752195    |
| DAYS_EMPLOYED            | DAYS_BIRTH               | 0.582185    |
| AMT_ANNUITY              | AMT_INCOME_TOTAL         | 0.430682    |
| AMT_GOODS_PRICE          | AMT_INCOME_TOTAL         | 0.354769    |
| AMT_CREDIT               | AMT_INCOME_TOTAL         | 0.353619    |
| OBS_60_CNT_SOCIAL_CIRCLE | DEF_30_CNT_SOCIAL_CIRCLE | 0.337181    |

| Var1                     | Var2                     | Correlation |
|--------------------------|--------------------------|-------------|
| OBS_60_CNT_SOCIAL_CIRCLE | OBS_30_CNT_SOCIAL_CIRCLE | 0.998508    |
| AMT_GOODS_PRICE          | AMT_CREDIT               | 0.987253    |
| DEF_60_CNT_SOCIAL_CIRCLE | DEF_30_CNT_SOCIAL_CIRCLE | 0.859289    |
| AMT_GOODS_PRICE          | AMT_ANNUITY              | 0.776686    |
| AMT_ANNUITY              | AMT_CREDIT               | 0.771308    |
| DAYS_EMPLOYED            | DAYS_BIRTH               | 0.626116    |
| AMT_ANNUITY              | AMT_INCOME_TOTAL         | 0.488599    |
| AMT_GOODS_PRICE          | AMT_INCOME_TOTAL         | 0.419921    |
| AMT_CREDIT               | AMT_INCOME_TOTAL         | 0.414447    |
| DAYS_BIRTH               | CNT_CHILDREN             | -0.336966   |

Inference: For Default and Non-default population, the Top 10 correlations are same

# Merged Data Set

Application Data and Previous Application Data

**Analysis** 

### Application status for common applicants



Most of the applicants between previous and current applicants have been refused credit previously

## Analysis on merged data set

Loans which have been refused and cancelled before have more chances to default as compared to the approved ones.

Percentage of loans defaulted across the different contract status types



# Default Rate Analysis

Default rate is assumed as the ratio of number of defaulted on total number of loans in the segment we are observing



#### Final Conclusions

- People with 'Low' income range have higher chances of defaulting, therefore we should focus on other income ranges over this.
- People with 'Lower secondary' education and 'Single' status have the highest default rate. Therefore, we should
  be very careful while providing them loans. An authenticated guarantor's presence should be considered
  mandatory.
- Among both genders, even though there are more females applicants, it is still observed that females are lesser
  defaulters than males. Therefore, providing loans to females over males can be a plus point.
- People with 'Rented apartments' as their housing type are the highest defaulters. Therefore, we should check
  the security assets as well as the income of the applicant thoroughly.
- Age group (20-25) are the highest defaulters. Whereas, income stability is better in the age groups from 25 to 45
  and they are less likely to default. Therefore, we should offer more loans to (25-45) age groups.
- People with housing types 'office apartments' and 'with parents' are least likely to default as compared to other
  categories. Therefore, we should focus more on providing loans to these applicants.
  - Banks should focus less on income type 'Working' as they have most number of unsuccessful payments.
- Banks should focus more on contract type 'pensioner' and 'Businessman' with housing 'type other than 'Co-op apartment' for successful payments with loan purpose 'Repair' is having higher number of unsuccessful payments on time

# Thank You