Bias Estimation of Biological Reference Points Under Two-Parameter SRRs

Nick Grunloh

In collaboration with: Dr. E.J. Dick Dr. H. K.H. Lee

15 Aug 2022

$$I_t = qB_te^{\epsilon} \quad \epsilon \sim N(0, \sigma^2)$$

Introduction

$$\frac{dB(t)}{dt} = P(B(t); \theta) - Z(t)B(t)$$

$$RP:MSY, \ \frac{F_{MSY}}{M}, \ \frac{B_{MSY}}{B_0}$$

Yield and Related Quantities

Introduction

$$\frac{F_{MSY}}{M} \in \mathbb{R}^+ \quad \frac{B_{MSY}}{B_0} \in (0,1)$$

Mangel et al. 2013, CJFAS:

■ BH Model:

$$F_{MSY} \in \mathbb{R}^+$$
 $\frac{B_{MSY}}{\bar{B}(0)} = \frac{1}{F_{MSY}/M+2}$

Similar Constraints for other Two-Parameter Curves

Introduction

$$\frac{F_{MSY}}{M} \in \mathbb{R}^+ \quad \frac{B_{MSY}}{B_0} \in (0,1)$$

Mangel et al. 2013, CJFAS:

■ BH Model:

$$F_{MSY} \in \mathbb{R}^+$$
 $\frac{B_{MSY}}{\overline{B}(0)} = \frac{1}{F_{MSY}/M+2}$

- Similar Constraints for other Two-Parameter Curves
- Three-Parameter Relationships Allow Independent RP Estimation

Schnute 1985, CJFAS

$$\frac{dB}{dt} = P(B; \theta) - (M + F)B$$

$$P(B; [\alpha, \beta, \gamma]) = \alpha B(1 - \beta \gamma B)^{\frac{1}{\gamma}}$$

$$\gamma = -1 \Rightarrow$$
 Beverton-Holt $\gamma \to 0 \Rightarrow$ Ricker $\gamma = 1 \Rightarrow$ Logistic

Introish Ideas list

- PT/Schaffer work (link)
- Computational Difficulties

0000

- Schnute Space Filling
- Catch/Contrast

Catch

High Contrast PT Fishery PT Population Catch 10000 8000 Biomass 4000 2000 0 10 20 30 40 Time

Results Idea List

- contrast
 - components
 - animated arrows and yeild curves
- flat
 - animated arrows and yeild curves

2.5 3.0

2.0

F_{MSY}/M

1.0

0.5

1.0

2.5 3.0

F_{MSY}/M

Bias Direction for (F_{MSY}/M, B_{MSY}/B₀) Jointly

Conclusions

- Contrast story
- Importance of getting the computational details correct for moving to analysis of Delay Difference and age structure