

Теория формальных языков — это не только написание парсеров

Семён Григорьев

JetBrains Research, лаборатория языковых инструментов

13.04.2018

Поиск путей в графах

- Анализ графов
 - Запросы к графовым базам данных
 - Анализ сетей (социальных, интернет и т.д.)
- Статический анализ программ
 - Анализ алиасов
 - ► Taint analysis
 - Анализ типов
 - ▶ Статический анализ динамически формируемого кода
- ...

Поиск путей с ограничениями в терминах языков

Language-constrained path querying, language reachability

- Σ терминальный алфавит
- L(Σ) язык над Σ
- ullet G=(V,E,L) ориентированный граф, $E\subseteq V imes L imes V$, $L\subseteq \Sigma$
- ullet $p=v_0 \stackrel{l_0}{ o} v_1 \stackrel{l_1}{ o} \cdots v_{n-1} \stackrel{l_{n-1}}{ o} v_n$ путь в графе G
- $w(p) = w(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- $R = \{ p \mid w(p) \in L(\Sigma) \}$
 - ▶ Проблема: множество R может быть бесконечным
- Задачу можно сформулировать иначе:

$$Q = \{(v_0, v_n) \mid \exists p = v_0 \xrightarrow{l_0} \cdots \xrightarrow{l_{n-1}} v_n \ (w(p) \in L(\Sigma))\}$$

Регулярные ограничения

- $L(\Sigma)$ регулярный язык
 - ▶ Языки запросов к графовым БД (SPARQL, Cypher, PGQL)
 - OpenCypher: https://goo.gl/5h5a8P

Контекстно-свободные ограничения

- $L(\Sigma)$ контекстно-свободный язык
- Графовые базы данных и семантические сети
 - Same-generation query (и модификации), similarity query (и модификации)
 - ► Sevon P., Eronen L. "Subgraph queries by context-free grammars." 2008
 - ► Zhang X. et al. "Context-free path queries on RDF graphs." 2016
 - Hellings J. "Conjunctive context-free path queries." 2014
- Статический анализ кода
 - ▶ Thomas Reps et al. "Precise interprocedural dataflow analysis via graph reachability." 1995
 - ▶ Qirun Zhang et al. "Efficient subcubic alias analysis for C." 2014
 - ▶ Dacong Yan et al. "Demand-driven context-sensitive alias analysis for Java." 2011
 - ► Jakob Rehof and Manuel Fahndrich. "Type-base flow analysis: from polymorphic subtyping to CFL-reachability." 2001

Контекстно-свободные ограничения

- Kai Wang et. al. Graspan: A Single-machine Disk-based Graph System for Interprocedural Static Analyses of Large-scale Systems Code. 2017
 - "We have identified a total of 1127 unnecessary NULL tests in Linux, 149 in PostgreSQL, 32 in httpd."
 - "Our analyses reported 108 new NULL pointer dereference bugs in Linux, among which 23 are false positives"
 - "For PostgreSQL and httpd, we detected 33 and 14 new NULL pointer bugs; our manual validation did not find any false positives among them."

Линейно-конъюнктивные ограничения

- $L(\Sigma)$ линейно-конъюнктивный язык
 - ▶ Интерливинг правильных скобочных последовательностей: $L_1 = \{a^nb^n|n \geq 0\}; L_2 = \{c^md^m|m \geq 0\}; L_3 = L_1 \odot L_2 = \{ab; acbcdd; cdab; \dots\}$
- Qirun Zhang and Zhendong Su. Context-sensitive data-dependence analysis via linear conjunctive language reachability. 2017

Возможные направления

- В данной области существуют открытые проблемы
 - lacktriangle Например, существует ли алгоритм со сложностью $O(|V|^{3-arepsilon}), arepsilon > 0$
- В данной области применимы решения из "классического" синтаксического анализа
 - Алгоритмы: CYK, (Generalized) LL, (Generalized) LR, Эрли, ...
 - Техники: комбинаторы, генераторы парсеров, ...
 - ► Оптимизации: использование GPGPU, специальные структуры данных (сжатое представление леса разбора, структурированный в виде графа стек), ...
- Из-за существенно бОльших объёмов данных требуются специальные оптимизации (распределённые вычисления, параллельные вычисления, ...)

Немного экспериментов

- Semyon Grigorev and Anastasiya Ragozina. "Context-free path querying with structural representation of result." 2017
 - ▶ Основа Generalized LL: Scott E., Johnstone A. "GLL parsing"
 - ightharpoonup Временная сложность предложенного алгоритма: $O\left(|V|^3*\max_{v\in V}\left(deg^+\left(v
 ight)
 ight)
 ight)$
- Rustam Azimov, Semyon Grigorev. "Context-Free Path Querying by Matrix Multiplication." 2017
 - Основа Valiant L. "General context-free recognition in less than cubic time." 1974
 - lacktriangle Временная сложность предложенного алгоритма: $O(|V|^2|N|^3(BMM(|V|)+BMU(|V|)))$
 - \star BMM(n) время, необходимое для умножения сложения булевых матриц $n \times n$
 - \star BMU(n) время, необходимое для поэлементного сложения булевых матриц $n \times n$
- Parser-Combinators for Context-Free Path Querying (in Scala)

Экспериментальное исследование: запросы

- $0: \mathbf{S} \to subClassOf^{-1} \mathbf{S} subClassOf$
- 1: $\mathbf{S} \to type^{-1} \mathbf{S} type$
- $2: \mathbf{S} \rightarrow \mathit{subClassOf}^{-1} \mathit{subClassOf}$
- $3: \mathbf{S} \to type^{-1} type$

Грамматика для запроса Query 1

- $0: \mathbf{S} \to \mathbf{B} \ sub Class Of$
- 1: $S \rightarrow subClassOf$
- 2: $\mathbf{B} \to subClassOf^{-1} \mathbf{B} subClassOf$
- $3: \mathbf{B} \to subClassOf^{-1} subClassOf$

Грамматика для запроса Query 2

Экспериментальное исследование: результаты

Ontology	#V	#E	Query 1 (ms)			Query 2 (ms)	
			CYK ¹	GLL	GPGPU	GLL	GPGPU
skos	144	323	1044	10	12	1	1
generations	129	351	6091	19	13	1	0
travel	131	397	13971	24	30	1	10
univ-bench	179	413	20981	25	15	11	9
people-pets	337	834	82081	89	32	3	6
atom-primitive	291	685	515285	255	22	66	2
biomedical- measure-primitive	341	711	420604	261	20	45	24
pizza	671	2604	3233587	697	24	29	23
wine	733	2450	4075319	819	54	8	6
g_1	6224	11840	_	1926	82	167	38
g_2	5864	19600	_	6246	185	46	21
<i>g</i> ₃	5368	20832	_	7014	127	393	40

¹Zhang, et al. "Context-free path queries on RDF graphs."

Контакты

- Почта: semen.grigorev@jetbrains.com
- GitHub-сообщество YaccConstructor: https://github.com/YaccConstructor

Пример

Входной граф

Запрос — грамматика G для языка $L=\{a^nb^n\mid n\geq 1\}$ с явным выделением середины пути

 $0: S \rightarrow a S b$

 $1: S \rightarrow \textit{Middle}$

2: $Middle \rightarrow a b$

Ответ — бесконечное множество путей

•
$$p_1 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3$$

•
$$p_2 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0$$

Структурное представление результата запроса

Входной граф

(1, S, 0)

(0, S, 3)

(0, b, 3)

(3, b, 0)

(0, b, 3)

Результат (SPPF)

Дерево вывода пути ho_1

(2, a, 0)

(2, Middle, 3)

(0, S, 0)

rти ho_1 — Дерево вывода пути ho_2

Семён Григорьев (JetBrains Research)

Пример: извлечение путей

Почему это работает

Замкнутость КС языков относительно пересечения с регуляными

Почему это работает

Замкнутость КС языков относительно пересечения с регуляными

 $0: S \rightarrow a S b$

 $1: S \rightarrow \textit{Middle}$

 $2: \quad \textit{Middle} \rightarrow \textit{a b}$

Почему это работает

Замкнутость КС языков относительно пересечения с регуляными

 $0: S \rightarrow aSb$ 1 $S \rightarrow Middle$ 2: Middle \rightarrow a b $(0, S, 3) \rightarrow (0, a, 1) (1, S, 0) (0, b, 3)$ $(1, S, 0) \rightarrow (1, a, 2) (2, S, 3) (3, b, 0)$ $(2, 5, 3) \rightarrow (2, a, 0) (0, 5, 0) (0, b, 3)$ $(2. S, 3) \rightarrow (2, Middle, 3)$ $(0, S, 0) \rightarrow (0, a, 1) (1, S, 3) (3, b, 0)$ $(1, S, 3) \rightarrow (1, a, 2) (2, S, 0) (0, b, 3)$ $(2, S, 0) \rightarrow (2, a, 0) (0, S, 3) (3, b, 0)$ $(0, Middle, 3) \rightarrow (2, a, 0) (0, b, 3)$