Лабораторная работа 1.3 Эффект Рамзауэра

Карцев Вадим

4 октября 2021 г.

Цель работы: исследование энергетической зависимости вероятности рассеяния электронов атомами инертного газа, определение энергий электронов при которых наблюдается «просветление» инертного газа, оценка размера его внешней электронной оболочки.

Оборудование: лампа-тиратрон, блок источников питания, осцилограф, вольтметр.

1 Теоретическая справка

Рассеяние электрона на атоме можно приближенно рассматривать как рассеяние частицы энергии E на потенциальной яме длины l и глубины U_0 . Уравнение Шрёдингера имеет вид

$$\Psi'' + k^2 \Psi = 0$$

где k_1 вне ямы и k_2 внутри равны соответственно

$$k^{2} = k_{1}^{2} = \frac{2mE}{\hbar^{2}}$$
 $k^{2} = k_{2}^{2} = \frac{2m(E + U_{0})}{\hbar^{2}}$

В таком случае коэффициент прохождения равен

$$D = \frac{16k_1^2k_2^2}{16k_1^2k_2^2 + 4(k_1^2 - k_2^2)^2\sin^2(k_2l)}$$

Легко заметить, что коэффициент прохождения имеет ряд максимумов и минимумов. Максимумы будут наблюдаться при соблюдении условия

$$\sqrt{\frac{2m(E+U_0)}{\hbar^2}}l = n\pi, \quad n = 1, 2, 3, \dots$$
 (1)

Качественно эффект Рамзауэра можно объяснить, рассмотрев интерференцию прошедшей и дважды отразившейся от оболочки волн де Бройля. Длины волн вне и внутри атома

$$\lambda = \frac{h}{\sqrt{2mE}}, \quad \lambda_1 = \frac{h}{\sqrt{2m(E+U_0)}}$$

Тогда условия на первые интерференционные максимумы и минимумы выглядят следующим образом

$$2l = \frac{h}{\sqrt{2m(E_1 + U_0)}} \qquad 2l = \frac{3}{2} \frac{h}{\sqrt{2m(E_2 + U_0)}}$$
 (2)

Так же можно исключить из этих соотношений глубину потенциальной ямы

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}\tag{3}$$

При этом глубина ямы будет равна

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 \tag{4}$$

2 Обработка результатов динамического режима

Рис 1. Осциллограмма

2.1 Рассчет размера электронной оболочки атома

В обоих случаях мы получили значения максимума $E_1=2,5$ эВ и минимума $E_2=7$ эВ. Подставим измеренные значения в формулы 2.

$$2l = \frac{6,63 \cdot 10^{-34}}{\sqrt{2 \cdot 9,11 \cdot 10^{-31} \cdot (2,5+2,5) \cdot 6,24 \cdot 10^{-19}}} \approx 278 n \text{m}; \qquad l = \frac{278}{2} \approx 139 n \text{m}$$

$$2l = \frac{3}{2} \frac{6,63 \cdot 10^{-34}}{\sqrt{2 \cdot 9,11 \cdot 10^{-31} \cdot (7+2,5) \cdot 6,24 \cdot 10^{-19}}} \approx 302 n \text{m}; \qquad l = \frac{302}{2} \approx 151 n \text{m}$$

Точно так же подставим полученные данные в формулу 3.

$$l = \frac{6,63 \cdot 10^{-34} \cdot \sqrt{5}}{\sqrt{32 \cdot 9,11 \cdot 10^{-31} \cdot (7-2,5) \cdot 6,24 \cdot 10^{-19}}} \approx 164 nM$$

Таким образом мы получили, что размер электронной оболчки атома $l \approx 151 n_M$

2.2 Оценка глубины потенциальной ямы

Подставим в уравнение 4 измеренные значения.

$$U_0 = \frac{4}{5} \cdot 7 - \frac{9}{5} \cdot 2.5 = 1,1B$$

2.3 Оценка потенциала ионизации

В динамическом методе мы получили напряжение пробоя $U_n \approx 12$ В. Таким образом мы можем сказать, что тиратрон наполнен **ксеноном**, для которого ионизационный потенциал $U_{n_{Xe}} = 12, 1$ эВ

3 Обработка результатов статического режима

3.1 Построение графиков зависимости $I_a = f(V_c)$

1,25 1,00 0,75 0,50 0,25 0,00 2 4 6 8 10

Рис 2. График для $V_n = 3,07 \; \mathrm{B}$

Рис 3. График для $V_n = 3,32 \text{ B}$

Графики построены по таблицам данных, приведённым в разделе «Дополнительные данные» на стр. 6.

Из графиков видно что для $V_n=3,07$ В максимум достигается при $V_1=2,515$ В а минимум при $V_2=7,279$ В. Для $V_n=3,32$ В эти значения $V_1=2,39$ В и $V_2=6,889$ В.

3.2 Вычисление размера атома

Подставим значения для $V_n = 3,07$ В в формулы 2 и 3.

$$2l = \frac{6,63 \cdot 10^{-34}}{\sqrt{2 \cdot 9,11 \cdot 10^{-31} \cdot (2,515+2,5) \cdot 6,24 \cdot 10^{-19}}} \approx 277 n \text{m}; \qquad l = \frac{277}{2} \approx 139 n \text{m}$$

$$2l = \frac{3}{2} \frac{6,63 \cdot 10^{-34}}{\sqrt{2 \cdot 9,11 \cdot 10^{-31} \cdot (7,279+2,5) \cdot 6,24 \cdot 10^{-19}}} \approx 298 n \text{m}; \qquad l = \frac{298}{2} \approx 149 n \text{m}$$

$$l = \frac{6,63 \cdot 10^{-34} \cdot \sqrt{5}}{\sqrt{32 \cdot 9,11 \cdot 10^{-31} \cdot (7,279-2,515) \cdot 6,24 \cdot 10^{-19}}} \approx 159 n \text{M}$$

Таким же образом поступим и с данными для $V_n = 3,32$ В

$$2l = \frac{6,63 \cdot 10^{-34}}{\sqrt{2 \cdot 9,11 \cdot 10^{-31} \cdot (2,39+2,5) \cdot 6,24 \cdot 10^{-19}}} \approx 281 n \text{M}; \qquad l = \frac{281}{2} \approx 140 n \text{M}$$

$$2l = \frac{3}{2} \frac{6.63 \cdot 10^{-34}}{\sqrt{2 \cdot 9.11 \cdot 10^{-31} \cdot (6.889 + 2.5) \cdot 6.24 \cdot 10^{-19}}} \approx 304 n \text{M}; \qquad l = \frac{304}{2} \approx 152 n \text{M}$$

$$l = \frac{6,63 \cdot 10^{-34} \cdot \sqrt{5}}{\sqrt{32 \cdot 9,11 \cdot 10^{-31} \cdot (6,889 - 2,39) \cdot 6,24 \cdot 10^{-19}}} \approx 164 n \text{M}$$

Усредним размер электронной оболчки атома, полученный для разных напряжений накала. Тогда искомый размер $l \approx 151 n M$.

3.3 Оценка глубины потенциальной ямы

Рассчитаем глубину потенцальной ямы для $V_{n}=3,07$ В:

$$U_0 = \frac{4}{5} \cdot 7,279 - \frac{9}{5} \cdot 2,515 = 1,2962B$$

и для $V_n = 3,32$ В:

$$U_0 = \frac{4}{5} \cdot 6,889 - \frac{9}{5} \cdot 2,39 = 1,2092B$$

4 Теоретический рассчет напряжений с максимальным усилением

$$k_2 l = \sqrt{\frac{2m (E_n + U_0)}{\hbar^2}} l = \pi n \Rightarrow E_n = \frac{\left(\frac{\pi n \hbar}{l}\right)^2}{2m} - U_0 = \frac{\pi^2 n^2 \hbar^2}{2m l^2} - U_0$$

Выразим l из исходного выражения и подставим его в формулу.

$$l = \frac{\pi \hbar n}{\sqrt{2m (E_n + U_0)}} = \frac{\pi \hbar}{\sqrt{2m (E_1 + U_0)}}$$

$$E_n = f(E_1, n) = \frac{\pi^2 n^2 \hbar^2}{2m \frac{\pi^2 \hbar^2}{2m (E_1 + U_0)}} - U_0 = \underbrace{(E_1 + U_0) n^2 - U_0}_{\text{Искомая зависимость}}$$

По полученой формуле рассчитаем напряжения на которых наблюдаются максимумы 2-го и 3-го порядка, приняв $E_1=2,515B,\,U_0=3,07B.$

Порядок максимума	1	2	3
Напряжение максимума	2,52B	19,27B	47,20B

5 Рассчет вероятности рассеяния электронов

По данным можно построить график зависимости вероятности рассеяния с точностью до константы

Рис 4. Зависимость вероятности рассеивания от энергии электронов

6 Вывод

В ходе работы была статическим и динамическим методом исследована ВАХ тиратрона, в обоих случаях соответствующая теоретической, получено значение размера внешней оболочки атома инертного газа и потенциал его ионизации, по которому было определено, что это ксенон.

7 Дополнительные данные

$V_n = 3,07B$					
N	V_c	V_I	I		
1	1,538	2,08	0,0208		
2	1,842	24,9	0,249		
3	2,18	82,7	0,827		
4	2,349	83,18	0,8318		
5	2,515	93,72	0,9372		
6	2,595	92	0,92		
7	2,636	90,59	0,9059		
8	2,722	87,98	0,8798		
9	2,961	80,75	0,8075		
10	3,234	74,5	0,745		
11	3,358	72,43	0,7243		
12	3,742	67,43	0,6743		
13	$4,\!37$	61,48	0,6148		
14	5,029	56,63	0,5663		
15	5,314	54,9	0,549		
16	5,863	52,43	0,5243		
17	$6,\!185$	51,5	0,515		
18	6,422	50,91	0,5091		
19	6,668	50,4	0,504		
20	6,816	50,25	0,5025		
21	$7,\!14$	50,07	0,5007		
22	7,279	50,02	0,5002		
23	7,577	50,16	0,5016		
24	7,786	50,57	0,5057		
25	8,127	51,3	0,513		
26	8,589	53,64	0,5364		
27	9,135	56,01	0,5601		
28	9,799	57,8	0,578		
29	10,126	59,89	0,5989		
30	10,866	74,13	0,7413		

$V_n = 3,32B$					
N	V_c	V_i	I		
1	1,422	1,25	0,0125		
2	1,677	11,5	0,115		
3	1,83	32,2	0,322		
4	1,996	66,2	0,662		
5	2,086	82,15	0,8215		
6	2,295	102,74	1,0274		
7	2,39	105,21	1,0521		
8	2,569	104,19	1,0419		
9	2,626	103,13	1,0313		
10	2,795	99,92	0,9992		
11	2,907	98,13	0,9813		
12	$3,\!555$	94,48	0,9448		
13	4,117	93,7	0,937		
14	4,905	90,65	0,9065		
15	6,005	86,25	0,8625		
16	6,889	84,94	0,8494		
17	7,044	85,17	0,8517		
18	7,396	86,3	0,863		
19	7,683	87,4	0,874		
20	7,854	88,15	0,8815		
21	8,377	91,45	0,9145		
22	8,916	98,5	0,985		
23	9,533	102,41	1,0241		
24	9,743	103,82	1,0382		
25	10,249	111,17	1,1117		