databricksDataBricks_tutorial

(https://databricks.com) PySpark Scenarios

1. Data Ingestion

Load the CSV file into a PySpark DataFrame. Infer schema automatically and check the data types of each column.

2. Data Cleaning

Handle missing values: Fill missing values in Item_Weight with the average weight. Fill missing values in Outlet_Size with the mode. Remove duplicate rows if any.

3. Data Transformation

Convert Outlet_Establishment_Year to Outlet_Age by subtracting it from the current year. Standardize Item_Fat_Content (since variations like 'low fat' and 'LF' exist).

4. Aggregation & Analysis

Compute total sales (Item_Outlet_Sales) per Outlet_Type. Find the most sold item category (Item_Type) based on total sales. Determine the top 5 items with the highest visibility.

5. Filtering and Queries

Retrieve records where Item_Visibility is greater than the average visibility. Fetch details of all items with Item_MRP greater than 200. Get all sales data for a specific Outlet_Identifier.

6. Joins & Grouping

If another dataset (e.g., Outlet_Details) exists, join it based on Outlet_Identifier. Group sales data by Outlet_Location_Type and calculate the average sales.

7. Machine Learning Preparation

Encode categorical variables (Outlet_Type, Item_Type, Outlet_Location_Type). Prepare a dataset for predicting Item_Outlet_Sales using features like Item_Weight, Item_MRP, and Outlet_Age. Would you like PySpark code for any of these scenarios?

Here are some complex PySpark scenarios based on the dataset:

1. Predictive Sales Analysis Using Window Functions

Scenario: Identify the top-selling item in each Outlet_Identifier using window functions.

Use Window Functions to rank Item_Outlet_Sales per outlet. Get the top 3 selling items per outlet. Compare sales across different Outlet_Type.

2. Advanced Feature Engineering for Sales Prediction

Scenario: Build new features that could improve sales prediction. Compute rolling average sales for each outlet using window functions. Create a sales-to-visibility ratio: Sales per unit of Visibility = Item_Outlet_Sales / Item_Visibility Generate Outlet Performance Score: (Total Sales per Outlet) / (Years in Business)

3. Market Basket Analysis - Association Rules

Scenario: Identify frequently co-purchased item categories.

Group transactions by Outlet_Identifier and find co-occurrence of Item_Type. Use FP-Growth algorithm in PySpark ML to identify association rules.

4. Anomaly Detection in Sales Data

Scenario: Detect unusual spikes or dips in sales for an outlet.

Use Z-score or IQR (Interquartile Range) to detect sales anomalies. Identify outlets with unusual sales drop (e.g., 30% drop in the last month). Flag items with an abnormally high Item_Visibility.

5. Time Series Analysis: Predicting Future Sales

Scenario: Use Lag features to predict future sales.

Create lagged sales features (Sales on Day -1, Day -7, etc.). Use exponential smoothing or ARIMA to forecast sales. Compare sales trends before and after an outlet was established.

6. Customer Segmentation Based on Outlet Performance

Scenario: Cluster outlets into high, medium, and low performers.

Use K-Means clustering to group outlets based on: Total Sales Outlet_Age Avg Item Price Assign labels: High-Performing, Medium, and Low-Performing. ###7. Recommendation System for Product Discounts Scenario: Suggest discounts for underperforming products.

JSON READING

Identify items with: Low Sales High MRP but low visibility Recommend discount strategies for items that haven't been selling well.

3

```
json_df = spark.read.format('json')\
    .option('inferschema', True)\
    .option('header', True)\
    .option('multiline', False)\
    .load('/FileStore/tables/drivers.json')
```

▶ ■ json_df: pyspark.sql.dataframe.DataFrame = [code: string, dob: string ... 6 more fields]

```
json_df.show()
```

Data Reading

6

dbutils.fs.ls('/FileStore/tables')

7

```
df = spark.read.format('csv')\
    .option('InferSchema', True)\
    .option('header', True)\
    .load('/FileStore/tables/BigMart_Sales.csv')
```

▶ ■ df: pyspark.sql.dataframe.DataFrame = [Item_Identifier: string, Item_Weight: double ... 10 more fields]

8

df.printSchema()

root

```
|-- Item_Identifier: string (nullable = true)
```

- |-- Item_Weight: double (nullable = true)
- |-- Item_Fat_Content: string (nullable = true)
- |-- Item_Visibility: double (nullable = true)
- |-- Item_Type: string (nullable = true)
- |-- Item_MRP: double (nullable = true)
- |-- Outlet_Identifier: string (nullable = true)
- |-- Outlet_Establishment_Year: integer (nullable = true)
- |-- Outlet_Size: string (nullable = true)
- |-- Outlet_Location_Type: string (nullable = true)
- |-- Outlet_Type: string (nullable = true)
- |-- Item_Outlet_Sales: double (nullable = true)

Schema Defenition

```
df_withdefined_schema.display()
```

```
df_withdefined_schema.printSchema()
```

StructType Schema

```
from pyspark.sql.types import *
from pyspark.sql.functions import *
```

Command skipped

```
16
   strcttype_schema = StructType([
       StructField('Item_Identifier', StringType(), True),
       StructField('Item_wieght', DoubleType(), True),
       StructField('Item_Fat_Content', StringType(), True),
       StructField('Item_Visibility', StringType(), True),
       StructField('Item_Type', StringType(), True),
       StructField('Item_MRP', StringType(), True),
       StructField('Outlet_Identifier', StringType(), True),
       StructField('Outlet_Establishment_Year', StringType(), True),
       StructField('Outlet_Size', StringType(), True),
       StructField('Outlet_Location_Type', StringType(), True),
       StructField('Outlet_Type', StringType(), True),
       StructField('Item_Outlet_Sales', StringType(), True)
   ])
Command skipped
```

```
strct_type_schema_df.display()

Command skipped
```

```
df.printSchema()

Command skipped
```

SELECT

21

```
#Selecting with Comma Sperated Columns
df.select('Item_Identifier', 'Item_Weight',
'Item_Fat_Content').display()
```

Command skipped

22

```
#Selecting with LIst OF Columns
df.select(['Item_Identifier', 'Item_Weight',
    'Item_Fat_Content']).display(5)
```

Command skipped

23

```
#Select with Col()
# Alias is Used to Rename teh Column, This is possibel with Col
Object

df.select(col('Item_Identifier').alias('Item_ID'),
col('Item_Weight'), col('Item_fat_content')).display()
```

Command skipped

FILTER/WHERE

Scenario-1: Filter Data With fat Content = Regular

Scenario-2: Display records with Item wight <10 & Type is Soft Drinks

```
df.filter(((col('Item_Weight') < 10) & (col('Item_Type')=='Soft
Drinks'))).display()</pre>
Command skipped
```

Filter the Data With Outlet_Size = null & Location in Tier 1 or Tier2

```
df.filter((col('Outlet_Location_Type').isin('Tier 1','Tier 2'))&(c
ol('Outlet_Siz ...
```

WithColumnRenamed

```
df.withColumnRenamed('Outlet_Establishment_year', 'Establishment_year'
).display()

Command skipped
```

WithColumn

Scenario 1 : Add a new Column with Value based on calculation from two Columns

```
df.withColumn('flag', lit('True')).display()
```

df.withColumn('Total Price', col('Item_Weight') * col('Item_MR
P')).display()

replacing teh Value on teh value of Existing column

```
df.withColumn('Item_Fat_Content', regexp_replace('Item_Fat_Content', 'Regular', ' ...
```

TypeCasting

```
df = df.withColumn('Item_Weight',
    col('Item_Weight').cast(StringType()))

Command skipped
```

```
df.printSchema()

Command skipped

42

df.filter(col('Item_Weight').isNotNull())\
.sort(col('Item_Weight').asc())\
.sort(col('Item_Visibility').asc())\
.display()
Command skipped
```

Sceanrio 2: Sorting based on multiple Column

Item Weight Ascending & Item Visibility Descending

Limit- Just to Limit teh number of Records as we do in SQL

```
df.limit(10).display()
# Just to get First 10 Records

Command skipped
```

Drop: Drop the Column

Sceanrio 1: Drop 1 Column Item_Visibility

Scenario 2: Drop Multiple Columns

50

#Scenario 1: Drop 1 Column Item_Visibility df.drop('Item_Visibilit
y').display()

51

#Scenario 2: Drop two Columns Item_Visibility & Item_Type
df.drop('Item_Visibility', 'Item_Type', 'Outlet_Size').display()

Command skipped

Drop Duplicates

53

df.dropDuplicates().display()

Command skipped

Scenario 2: Drop Duplicates in One Column

55

df.dropDuplicates(subset=['Item_Type', 'Item_Fat_Content']).display()

Command skipped

Union- It Combines teh Data UnionBYName- It Combines the Data by name

```
data_set1 = [('Saurabh', 34),('Smriti', 31)]
schema = 'name STRING','age INT'
data_set2 = [('Lavit', 3),('Shambhu', 72)]
df1 = spark.createDataFrame(data_set1, schema)
df2 = spark.createDataFrame(data_set2, schema)
df1.display()
df2.display()
Command skipped
```

```
(df1.union(df2)).sort(col('age INT').asc()).display()
Command skipped
```

UnionByName()- It will combine teh Dataframes based on Column Name

```
schema = 'age INT', 'name STRING'
data_set1 = [(34, 'Saurabh'),(31, 'Smriti')]

df1 = spark.createDataFrame(data_set1, schema=schema)

df1.display()

df1.union(df2).display()

df2.unionByName(df1).display()
Command skipped
```

String Functions

INITCAP()

UPPER()

LOWER()

62

df.select(initcap(col('Item_Type')).alias('Init_Cap_Item_Type')).d
isplay()

63

df.select(upper(col('Item_Type')).alias('Upper_Item_Type')).limit(5).
display()

Command skipped

df.select(lower(col('Item_type')).alias('Lower_Item_type')).limit
(10).display()

Date Functions

Current_Date()

Date_Add()

Date_Sub()

66

df = df.withColumn('curr_date', current_date())
df.display()

Command skipped

67

df = df.withColumn('Week_After', date_add('curr_date',7)) df.displ
ay()

68

df = df.withColumn('Week_Before', date_sub('curr_date', 7)) df.lim
it(10).display ...

Date Subtraction using date_add()

```
df = df.withColumn('Two_Weeks_Before', date_add('Week_Before',-7))
df.display()
```

Date Diff

Date_Format

```
df =df.withColumn('Week_Before', date_format('Week_Before','dd-MM-
yyyy'))
df.display()

Command skipped
```

Handling Nulls

Dropping Null

 Dropping NA with All as an option deletes all teh rows having all columns as Null This happens to be rare event where all teh columns will have null values

- Dropping null with 'any' it drops all the rows with any collumn having null --> It imposes data loss
- Dropping Null values for a specific Column by supplying the Subset of teh Columns.

Filling null values.			
78			
df.dropna('all').display()			
Command skipped			
79			
<pre>df.dropna('any').display()</pre>			
Command skipped			
80			
<pre>df.dropna(subset=['Outlet_Size']).display()</pre>			
Command skipped			
81			
<pre>df.fillna('Not Available', subset=['Outlet_Size']).display()</pre>			
Command skipped			

----- Split & Indexing -----

Split splits the String based on some Delimiter like Space, Comma Et or any sptring you want your string to be splitted on

df = df.withColumn('Splitted_Column',split('Outlet_Type', ' '))
 df.display()

Command skipped

-----EXPLODE --

df_exploded = df.withColumn('Splitted_Column',
 explode('Splitted_Column'))
 df_exploded.display()

Command skipped

Array_Contains-----

df = df.withColumns({'Outlet_type_supermarket': array_contains('Sp
litted_Column' ...

90

df.groupBy('Item_type').agg(sum('Item_MRP')).display()

INstead of Finding Sum What is the Average MRP grouped by Type

92

df.groupBy('Item_Type').agg(avg('Item_MRP').alias('Item_Wise_Average_
MRP')).display()

Command skipped

Gruop By multiple Columns

94

df.groupBy('Item_Type',
'Outlet_Size').agg(sum('Item_MRP').alias('Grouped_MRP'))\
 .sort('Item_Type','Outlet_Size').display()

Command skipped

 Group by Item_Type & Outlet Size and Calculate the Total & the Average MRP

```
df.groupBy('Item_Type',
    'Outlet_Size').agg(sum('Item_MRP').alias('Total_MRP'),
    avg('Item_MRP').alias('Average_MRP'))\
        .sort('Item_Type', 'Outlet_Size').display()
Command skipped
```

------CoLLect_List() & Collect_Set() -----

```
df.groupBy('Item_type').agg(collect_list('Outlet_Size').alias('Outlet _Size_list')).display()
df.groupBy('Item_type').agg(collect_set('Outlet_Size').alias('Outlet_Size_list')).display()

Command skipped
```

----- Pivot -----

```
df.groupBy('Item_Type').pivot('Outlet_Size').agg(avg('Item_MRP').alia
s('Average_MRP')).display()

Command skipped
```


Meat

103 df = df.withColumn('veg_flag', when(col('Item_Type') == 'Meat', 'Non-Veg').otherwise('Veg')) df.display() ▶ 🗐 df: pyspark.sql.dataframe.DataFrame = [Item_Identifier: string, ITEM_wieght: string ... 11 more fields] **Table**

Create a Veg_Expensive_flag column if it is veg_flag is true & Item_MRP is > 100, it should be veg_expensive if Item_MRP < 100, It should be veg_Inexpensive, Otherwise it can be Simple Nonveg

105

▶ ■ df: pyspark.sql.dataframe.DataFrame = [Item_Identifier: string, ITEM_wieght: string ... 12 more fields]

Table

JOINS

- INNER JOINS
- OUTER JOINS
- LEFT JOIN
- RIGHT JOIN
- FULL JOIN
- ANTI JOIN

	108
Table	