7.4 $F(A, B, C, D) = \sum m(5, 10, 11, 12, 13)$

A B						
CD		00	01	11	10	
	00	0	0	T	0	
	01	0	1	1	0	
	11	0	0	0	T	
	10	0	0	0	1	

F = BC'D + AB'C + ABC'

 $F = ABC' + BC'D + AB'C = BC'\left(A + D\right) + AB'C$

7.10
$$f_1(A, B, C, D) = \sum m(3, 4, 6, 9, 11)$$

$$f_2(A, B, C, D) = \sum m(2, 4, 8, 10, 11, 12)$$

$$f_3(A, B, C, D) = \sum m(3, 6, 7, 10, 11)$$

f ₁ =	ab'd	+	b'cd	+	a'bd'
•					

∕ a b							
c d		00	01	11	10		
	00		1	1	1)		
	01						
	11				T		
	10	1)			1		

$$f_2 = \underline{ab'c} + b'cd' + bc'd' + ac'd'$$

$$f_2 = \underline{ab'c} + b'cd' + bc'd' + ab'd'$$
11 gates

$$f_3 = \underline{ab'c} + \underline{b'cd} + a'bc$$

7.17 (a)			
7.17 (a)		ABCD	\boldsymbol{F}
	0	0000	0
	1	0001	0
	2	0010	0
	3	0 0 1 1	1
	4	0100	0
	5	0101	1
	6	0 1 1 0	1
	7	0 1 1 1	1
	8	1000	0
	9	1001	1
	10	1010	1
	11	1011	1
	12	1100	1
	13	1 1 0 1	1
	14	1110	1
	15	1111	1

$$F = (A + C + D) (A + B + C)$$

$$(A + B + D) (B + C + D)$$

$$= (A + D + BC)(B + C + AD) \underline{\text{or}}$$

$$= (A + C + BD)(B + D + AC) \underline{\text{or}}$$

$$= (C + D + AB)(A + B + CD)$$

This solution has 5 gates, 12 inputs. Beginning with the sum of products requires 6 gates.

$$F = \prod M(0, 1, 2, 4, 8)$$

$$D = \prod_{A} M(0, 1, 2, 4, 8)$$

$$B = \prod_{A} M(0, 1, 2, 4, 8)$$

7.23 (c)	\	∖ a b)			
	c d		00	01	11	10
		00	0	1	0	0
		01	0	1	0	0
		11	1	1	1	1
		10	0	1	0	0
			f	= a'b +	- cd	

$$F = B C'D + B'CD + A'B'D' + A'CD$$

$$F = B C'D + B'CD + A'B'D' + A'BD$$

Draw AND-OR circuit and replace all gates with NANDs.

7.33 (c)
$$F = B(A'D + C'D) + B'(A'D' + CD)$$

$$F = (B + C + D')(B' + D)(A' + D)(A' + B' + C')$$

Draw OR-AND circuit and replace all gates with NORs.

Alternative:

$$F = A' (B'D' + BD) + D (B'C + BC')$$

$$= D (A'B + BC') + B' (A'D' + CD)$$

$$= A' (B'D' + CD) + D (B'C + BC')$$

$$= D (A'C + BC') + B' (A'D' + CD)$$

7.40 (a) An inverter on the output of an XOR can be moved to one of its inputs.

7.40 (b) $F = (A \oplus BC) + (A' \oplus B'C') = A'BC + AB' + AC' + AB'C' + A'B + A'C$ = AB' + AC' + A'B + A'C = A(B' + C') + A'(B + C)= (A + B + C)(A' + B' + C')

7.40 (c)
$$F = A(B' + C') + A'(B + C)$$

