La Cité Collégiale Institut des Technologies, des Arts et de la Communication Projet Final - UA 3

Cours Apprentissage Machine Appliqué (IFM31103-0020-A2025)

Année académique 2025 Semestre Automne Instructeur Paul Mvula

Annoncé 9 septembre 2025

Date de soumission 8 décembre 2025, 11:59 PM ET

Projet Final

Objectif du Projet

En groupes de deux (2), les étudiant.e.s devront utiliser des bibliothèques Python pour appliquer des **techniques d'apprentissage supervisé** (classification/régression), d'apprentissage non supervisé (clustering) et d'ensembles sur un jeu de données réel (UCI ou Kaggle).

L'objectif est de :

- 1. Nettoyer et préparer les données.
- 2. Comparer plusieurs modèles de classification/régression.
- 3. Explorer des regroupements cachés avec des méthodes de clustering.
- 4. Améliorer les performances avec des méthodes d'ensembles.
- 5. Produire des visualisations claires et un rapport documenté.
- 6. Le projet se déroule sur 12 semaines et une présentation (10 minutes par groupe) est attendue en dernière semaine (le **10 décembre 2025**).

Idées de Projet

- 1. Prédiction du départ des employés (HR Analytics Kaggle)
 - Tâches:
 - o Classification supervisée pour prédire la rétention/départ.
 - Clustering pour regrouper les profils d'employés (types de carrières, satisfaction, performance).
 - Utiliser des ensembles (Random Forest, Gradient Boosting) pour comparer les performances.
 - Concepts couverts: Prétraitement, sélection de variables, classification, clustering, ensembles.
- 2. Analyse des fraudes par carte de crédit (UCI Credit Card Fraud Dataset)
 - Tâches:
 - Classification binaire (fraude vs normal).
 - Clustering pour détecter des comportements suspects.

- o Combinaison avec bagging/boosting pour améliorer la détection.
- **Concepts couverts :** Données déséquilibrées, métriques adaptées (rappel, F1), ensembles.

3. Analyse de survie de patients (Breast Cancer Wisconsin – UCI)

- Tâches :
 - o Régression pour prédire la gravité/stade.
 - o Classification binaire (bénin vs malin).
 - o Clustering pour explorer des sous-groupes de patients.
 - o Comparaison de modèles avec stacking (ensembles).
- Concepts couverts: Classification, régression, clustering médical, ensembles.

4. Prédiction de prix de l'immobilier (Housing Prices - Kaggle)

- Tâches:
 - Régression supervisée pour prédire les prix.
 - Clustering des quartiers ou types de maisons.
 - Ensembles (XGBoost, Random Forest) pour améliorer la performance.
- Concepts couverts : Régression multiple, validation croisée, ensembles.

5. Reconnaissance de chiffres manuscrits (MNIST - UCI)

- Tâches:
 - Classification multiclasse (chiffres 0–9).
 - Réduction dimensionnelle + clustering pour découvrir des regroupements cachés.
 - Ensembles de classifieurs (bagging/boosting) pour améliorer la précision.
- Concepts couverts: Classification avancée, clustering non supervisé, ensembles.

Analyse des plaintes des consommateurs (Consumer Complaints – Kaggle)

- Tâches:
 - \circ Traitement de texte \rightarrow classification des types de plaintes.
 - Clustering thématique des plaintes (NLP non supervisé).
 - Comparaison d'ensembles (boosting, stacking) sur des représentations TF-IDF.
- Concepts couverts: NLP appliqué, classification, clustering, ensembles.

7. Analyse des habitudes de consommation (Online Retail Dataset – UCI)

- Tâches:
 - Clustering des clients (segmentation RFM).
 - Classification de la probabilité de réachat.

- Ensembles pour optimiser la prédiction des comportements futurs.
- **Concepts couverts :** Clustering (k-means, DBSCAN), classification, ensembles.

8. Prédiction de la qualité des vins (Wine Quality – UCI)

- Tâches:
 - o Régression pour prédire le score de qualité.
 - o Classification multiclasse (mauvais, moyen, bon vin).
 - o Clustering des vins selon les propriétés chimiques.
 - o Comparaison d'ensembles pour déterminer la meilleure approche.
- **Concepts couverts :** Régression, classification, clustering, validation croisée, ensembles.

9. Analyse de performance académique (Student Performance Dataset – UCI)

- Tâches:
 - Régression pour prédire les notes finales.
 - o Classification (succès vs échec).
 - o Clustering des profils d'étudiants.
 - Ensembles pour combiner les prédictions.
- Concepts couverts: Prétraitement, classification, régression, clustering, ensembles.

Données à Utiliser

Projet	Jeu de données	Lien	Concepts couverts
Prédiction du départ des employés	Employee Attrition & Performance	<u>Kaggle</u>	Classification, Clustering, Ensembles
Détection de fraude par carte de crédit	Credit Card Fraud Detection	<u>Kaggle</u>	Classification déséquilibrée, Clustering, Ensembles
Analyse de survie de patients	Breast Cancer Wisconsin (Diagnostic)	<u>UCI</u>	Classification binaire, Régression, Clustering, Ensembles
Prédiction des prix de l'immobilier	House Prices: Advanced Regression Techniques	<u>Kaggle</u>	Régression multiple, Clustering, Ensembles
Reconnaissance de chiffres manuscrits	MNIST Handwritten Digit Dataset	<u>Kaggle</u>	Classification multiclasse, Clustering, Ensembles
Analyse de plaintes consommateurs (NLP)	Consumer Complaints Dataset	<u>Kaggle</u>	NLP, Classification, Clustering, Ensembles
Segmentation des clients et prévision d'achats	Online Retail Data Set	<u>UCI</u>	Clustering, Classification, Ensembles
Analyse de la qualité des vins	Wine Quality Data Set	<u>UCI</u>	Régression, Classification multiclasse, Clustering, Ensembles
Performance académique des étudiants	Student Performance Data Set	UCI, Kaggle	Régression, Classification, Clustering, Ensembles

Chaque dataset contient plusieurs colonnes (numériques et/ou catégorielles). Les étudiants devront :

- Identifier les variables cibles (classification ou régression).
- Sélectionner des variables pertinentes.
- Justifier leurs choix en fonction des objectifs du projet.

Bibliothèques à Utiliser

Les bibliothèques suivantes sont obligatoires :

- NumPy / Pandas : manipulation et préparation des données.
- Matplotlib / Seaborn / Plotly : visualisations.
- scikit-learn : modèles de classification, régression, clustering, et ensembles.
- XGBoost / LightGBM : ensembles avancés.

Tâches à Réaliser

- 1. Chargement et préparation des données
 - a. Nettoyage, encodage des variables catégorielles, normalisation.
 - b. Gestion des valeurs manquantes.
 - c. Analyse descriptive des données.
- 2. Analyse exploratoire et visualisation
 - a. Visualisations des distributions et corrélations.
 - b. Graphiques par classes, regroupements, ou tendances temporelles (si applicable).
- 3. Modélisation supervisée (classification/régression)
 - a. Entraîner au moins deux modèles différents (ex. : régression linéaire/logistique, SVM, arbres de décision).
 - b. Comparer les performances avec validation croisée et métriques adaptées (précision, rappel, RMSE, etc.).
- 4. Modélisation non supervisée (clustering)
 - a. Appliquer au moins une méthode de clustering (k-means, DBSCAN, hiérarchique).
 - b. Interpréter les résultats et comparer la qualité des clusters.
- 5. Méthodes d'ensembles
 - a. Implémenter au moins un modèle d'ensemble (Random Forest, Gradient Boosting, Bagging).
 - b. Comparer avec les modèles individuels.
- 6. Rapport et présentation
 - a. Rédiger un rapport documenté (4–6 pages) décrivant : données, méthodes, résultats, interprétation.
 - b. Préparer une présentation orale avec diapositives (10 minutes par groupe).

À soumettre

Dans un fichier compressé (.zip, .rar, .tar, .tar.gz), veuillez inclure:

- 1. Le notebook (.ipynb) ou script (.py)
- 2. Une présentation (PowerPoint) à présenter en 10 minutes le 29 Mai.
- 3. Un rapport (format .pdf 5 pages maximum)

Évaluation (100%)

Critère	Description	
Préparation et qualité des données	Nettoyage, gestion des valeurs manquantes, encodage, normalisation ; pertinence des choix faits (justifiés dans le rapport).	
Qualité du code	Clarté, organisation, efficacité ; respect des bonnes pratiques (commentaires, modularité).	
Analyse exploratoire et visualisations	Pertinence et qualité des statistiques descriptives et graphiques ; clarté des visualisations.	15 %
Modélisation supervisée	Mise en œuvre de plusieurs modèles de classification/régression ; usage de validation croisée ; choix des métriques adaptés ; justification des résultats.	20 %
Modélisation non supervisée (clustering)	Application correcte d'au moins une méthode ; interprétation des résultats ; évaluation des clusters (silhouette, Davies-Bouldin, etc.).	10 %
Techniques d'ensembles	Utilisation d'au moins une méthode (bagging, boosting, random forest, etc.) ; comparaison avec modèles de base.	10 %
Rapport écrit	Structure claire, synthèse pertinente, discussion critique (forces/limites, interprétation des résultats).	10 %
Présentation orale	Clarté et concision des diapositives ; qualité de l'explication ; respect du temps (10 min).	5 %