Melhores momentos

AULA 16

Programação dinâmica

Propriedade (da subestrutura ótima)

Se G é um digrafo com custos não-negativos nos arcos e v_0 - v_1 - v_2 -...- v_k é um caminho mínimo então v_i - v_{i+1} -...- v_j é um caminho mínimo para $0 \le i \le j \le k$

custo[v][w] = menor custo de uma caminho de v a w

Propriedade 1

O valor de custo[s][t] é

 $min\{custo[s][v] + custo[v][t] : v \in vértice\}$

Programação dinâmica

Propriedade (da subestrutura ótima)

Se G é um digrafo com custos não-negativos nos arcos e v_0 - v_1 - v_2 -...- v_k é um caminho mínimo então v_i - v_{i+1} -...- v_j é um caminho mínimo para $0 \le i \le j \le k$

custo[v][w] = menor custo de uma caminho de v a w

Propriedade 2

O valor de custo[s][t] é

 $min\{custo[s][v] + G - > adj[v][t] : v-t \text{ \'e arco}\}$

Problema da SPT

Problema: Dado um vértice s de um digrafo com custos (possivelmente negativos) nos arcos, encontrar uma SPT com raiz s Entra:

Problema da SPT

Problema: Dado um vértice s de um digrafo com custos (possivelmente negativos) nos arcos, encontrar uma SPT com raiz s
Sai:

O caminho mínimo de 0 a 2 tem custo 2 e não 3....

Conclusão

O algoritmo de Dijkstra não funciona para digrafos com custos negativos, mesmo que o digrafo seja acíclico.

AULA 17

Algoritmo de Bellman-Ford

Problema da SPT

Problema: Dado um vértice s de um digrafo com custos (possivelmente negativos) nos arcos, encontrar uma SPT com raiz s Entra:

Problema da SPT

Problema: Dado um vértice s de um digrafo com custos (possivelmente negativos) nos arcos, encontrar uma SPT com raiz s
Sai:

Caminhos hamiltonianos

Problema: Dados vértices s e t de um grafo encontrar um caminho hamiltoniano de s e t

Caminhos hamiltonianos

Problema: Dados vértices s e t de um grafo encontrar um caminho hamiltoniano de s e t

Redução polinomial

todos custos = -1

G possui um st-caminho hamiltoniano ↔

G possui um st-caminho simples de custo - (V - 1).

Conclusão

É sabido que:

O problema do caminho hamiltoniano é NP-difícil.

Assim, como problema do caminho simples mínimo com custos negativos é tão difícil quanto o problema do caminho hamiltoniano

O problema do caminho simples de custo mínimo é NP-difícil.

Complexidade computacional

O problema do caminho simples de custo mínimo é NP-difícil.

NP-difícil = **não se conhece** algoritmo de consumo de 'tempo polinomial'

Em outras palavras: ninguém conhece um algoritmo eficiente para o problema . . .

Se alguém conhece, não contou para ninguém ...

Subestrutura ótima . . .

todos custos = -1

Não vale para digrafos com ciclos negativos

Ciclos negativos

Se o digrafo possui um ciclo (de custo) negativo alcançavel a partir de s, então não existe caminho mínimo de s a alguns vértices

Vamos supor que o digrafo não tem ciclos negativos.

Caminho de custo mínimo

Problema: Dado vértices s e t de um digrafo com custos (possivelmente negativos) nos arcos, encontrar uma caminho de custo mínimo de s a t.

Esse problema pode ser:

- ▶ inviável: não existe caminho de s a t;
- viável e limitado: existe caminho de s a t e nenhum caminho de s a t passa por um ciclo negativo; ou
- viável e ilimitado: existe caminho de s a t mas não existe um caminho de s a t de custo mínimo, ou seja, existe caminho de s a t que passa por um ciclo negativo.

Caminho simples de custo mínimo

Problema: Dado vértices s e t de um digrafo com custos (possivelmente negativos) nos arcos, encontrar uma caminho simples de custo mínimo de s a t.

Esse problema pode ser:

- ▶ inviável: não existe caminho de s a t; ou
- ▶ viável (e limitado): existe caminho de s a t.

Este problema é NP-difícil.

Só sabemos resolver esse problema quando o caminho de custo mínimo é **simples**...

Programação dinâmica

 $\operatorname{custo}[k][w] = \operatorname{menor} \operatorname{custo} \operatorname{de} \operatorname{um} \operatorname{caminho} \operatorname{de}$ s a w com $\leq k$ arcos.

Recorrência

Programação dinâmica

```
\operatorname{custo}[k][w] = \operatorname{menor} \operatorname{custo} \operatorname{de} \operatorname{um} \operatorname{caminho} \operatorname{de} \operatorname{s} \operatorname{a} \operatorname{w} \operatorname{com} \leq \operatorname{k} \operatorname{arcos}.
```

Recorrência

```
\begin{array}{lll} \texttt{custo}[0][\textbf{s}] &=& 0 \\ \texttt{custo}[0][\textbf{w}] &=& \texttt{INFINITO}, \, \textbf{w} \neq \textbf{s} \\ \texttt{custo}[\textbf{k}][\textbf{w}] &=& \min\{\texttt{custo}[\textbf{k}-1][\textbf{w}], \\ && \quad & \min\{\texttt{custo}[\textbf{k}-1][\textbf{v}] + \texttt{G->adj}[\textbf{v}][\textbf{w}]\}\} \end{array}
```

Programação dinâmica

 $\operatorname{custo}[k][w] = \operatorname{menor} \operatorname{custo} \operatorname{de} \operatorname{um} \operatorname{caminho} \operatorname{de} \operatorname{s} \operatorname{a} \operatorname{w} \operatorname{com} \leq \operatorname{k} \operatorname{arcos}.$

Recorrência

```
\begin{array}{lll} \texttt{custo}[0][\mathbf{s}] &=& 0 \\ \texttt{custo}[0][\mathbf{w}] &=& \texttt{INFINITO}, \, \mathbf{w} \neq \mathbf{s} \\ \texttt{custo}[\mathbf{k}][\mathbf{w}] &=& \min\{\texttt{custo}[\mathbf{k}-1][\mathbf{w}], \\ &&& \min\{\texttt{custo}[\mathbf{k}-1][\mathbf{v}]+\texttt{G->adj}[\mathbf{v}][\mathbf{w}]\}\} \end{array}
```

Se o digrafo não tem ciclo negativo acessível a partir de s, então custo[V-1][w] é o menor custo de um caminho de s a w

Exemplo

Exemplo

	0	1	2	3	4	V
0	0	*	*	*	*	
1	0	3	*	6	*	
2	0	3	3	6	-1	
3	0	3	2	6	-1	
4	0	3	2	6	-1	

k

Exemplo


```
void bellman ford1(Digraph G, Vertex s){
     Vertex v, w; double d;
     for (v=0; v < G->V; v++)
         custo[0][v] = INFINITO;
     custo[0][s] = 0;
 5
     for (k=1; k < G->V; k++)
         for (w=0; w < G->V; w++)
 6
              custo[k][w] = custo[k-1][w];
              for (v=0; v < G->V; v++)
                 d = \operatorname{custo}[k-1][v] + G - \operatorname{ad}[v][w];
10
                 if (\operatorname{custo}[k][w] > d)
11
                     custo[k][w] = d;
```

Consumo de tempo

O consumo de tempo da função bellman_ford1 é $O(V^3)$.

Ciclos negativos

Se $custo[k][v] \neq custo[k-1][v]$, então custo[k][v] é o custo de um caminho de s a v com **exatamente** k arcos.

Se $custo[V][v] \neq custo[V-1][v]$, então

- ► custo[V][v] < custo[V-1][v] e
- custo[V][v] é o custo de um caminho P de s a v com exatamente V arcos.

Seja C um ciclo em P e seja P' o caminho resultante a partir de P após a remoção de C.

Ciclos negativos

Note que P' tem no $\leq V-1$ arcos e portanto

```
\begin{aligned} \text{custo}(P') &\geq \text{custo}[V-1][v] \\ &> \text{custo}[V][v] \\ &= \text{custo}(P) \\ &= \text{custo}(P') + \text{custo}(C). \end{aligned}
```

Logo, C é um ciclo de custo negativo.

Conclusão

Se $custo[V][v] \neq custo[V-1][v]$, então G tem um ciclo negativo alcançável a partir de s.