VICTORIA UNIVERSITY OF WELLINGTON

Te Whare Wananga o te Upoko o te Ika a Maui

Introduction to Database Systems Part I

Coordinator: Dr Hui Ma Lecturer: Dr Pavle Mogin

SWEN 304
Database System Engineering

Plan for Intro to DB Systems I

- What is:
 - A database
 - Data
 - A database management system (DBMS)

- Reading:
 - Chapter 1

Definition of a Database

- A database is a collection of related data
- Essential database characteristics are:
 - Represents an aspect of the real world (miniworld, UoD),
 - We shall suppose it is well structured (even has a strict regular structure),
 - Reflects (or should reflect) current state of the UoD,
 - Has users and applications,
 - Stored in a permanent (persistent) computer memory, and
 - Managed by a Database Management System (DBMS)
- All these characteristics have to be met

What Is a Database?

A Sample Database

Student

LName	FName	StudId	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp

Course

CName	Courld	Hours	Dept
DB Sys	C302	2+1	Comp
SofEng	C301	2+0	Comp
DisMat	M214	4+1	Math

Grade

StudId	Courld	Grade
007007	C302	A+
007007	C301	Α
007007	M214	A+
131313	C301	B-
555555	C301	С
131313	C302	D
555555	C302	E

Questions for You

- 1. Is a book (like "Fundamentals of Database Systems") a database?
- 2. Is an old style library card catalog a database?
- 3. Is a bank statement a database

Relationship

Definition of Data (Datum)

 Data is a value of a property of an individual UoD entity or a relationship (between two UoD objects) at a particular period of time

 Example 	Entity	
-----------------------------	--------	--

UoD object(s)JamesJames & CompSciPropertyAgeNumber of PointsTimeJuly 2010July 2010Value21240

 If time is not recorded, it is assumed the value relates to the current time

Assumptions

- Fundamental Assumptions of Data Management:
 - Databases provide data for multiple application programs
 - Data in databases is accessed and manipulated concurrently
 - Data in databases is dynamic, that is, may change over time
 - Data in databases is persistent
 - The amount of data in databases can be huge

Amazon.com Database

- 20 million books, CDs, videos, DVDs, electronices, apparel and other items
- Occupies over 42 terabytes (1 terabytes = 1024GB)
- Stored on 200 different computers
- 15 million visitors access Amazon.com each day
- The database is continually updated as new books/items are added to the inventory and purchases are transacted
- 100 people are responsible for keeping the database up-to-date

Database Management System (DBMS)

- A Database Management System (DBMS) is a general purpose software system that facilitates:
 - Defining (describing the structure),
 - Populating by data (Constructing),
 - Manipulating (querying, updating),
 - Preserving consistency,
 - Protecting from misuse,
 - Recovering from failure, and
 - Concurrent using
 - of a database
- The product of database defining is called meta-data
 - It is stored by DBMS as a small database called catalog or dictionary

A Simplified Database System Layout

Typical DBMS Functionality

Supports:

- Defining of a particular database in terms of its data types, structures, and constraints (contains DDL)
- Loading the initial database contents on a secondary storage medium
- Manipulating the database (contains DML):
 - Retrieval: querying, generating reports
 - Modification: insertions, deletions and updates
- Processing and Sharing by a set of concurrent users and application programs
 - Keeps all data valid and consistent
- Protection or Security measures to prevent unauthorized access

Data Definition Example

Defining a table in SQL:

```
CREATE TABLE Course (

Courld char(4) CONSTRAINT cspk PRIMARY KEY,

CName varchar NOT NULL,

Points int NOT NULL CHECK (Points >= 0),

Dept varchar
);
```

Query and Insert Examples

```
SELECT LName AS SURNAME, CName, Grade
```

FROM Student s, Grades g, Course c

WHERE FName = 'James' AND

s.StudId = g.StudId AND c.CourId = g.CourId;

```
INSERT INTO Student (FName, LName, StudId)
VALUES ('Ann', 'Bolen', 111111),
('Sharon', 'King' 121212);
```

Concurrency Control Example

prg #1	A in prg #1	A in db	prg #2	A in prg #2
Read A	2	2		
	2	2	Read A	2
A = A + 1	3	2		2
	3	2	A = A + 1	3
Write A	3	3		3
		3	Write A	3

Time

The net result of executing these two programs is: 2 + 1 + 1 = 3

A Question for You

- What caused the error in the database processing example:
 - a) Pavle made a mistake
 - b) DBMS does not know to do arithmetic
 - c) Wrong program design

Advantages of Using Databases

(1)

- Helps in:
 - Controlling redundancy in data storage
 - Investing less efforts in development and maintenance
 - Sharing of data among multiple users
 - Restricting unauthorized access to data
- · Also, allows using sophisticated design techniques:
 - Data normalization
 - Denomalization: sometimes it is necessary to use controlled redundancy to improve the performance of queries

Advantages of Using Databases

(2)

- Helps in:
 - Providing backup and recovery services
 - Providing multiple interfaces to different classes of users
 - Representing complex relationships among data
 - Enforcing integrity constraints on the database
 - Referential integrity constraint
 - Key or uniqueness constraint
 - Attribute constraints
 - Drawing inferences and actions using rules (active databases)
 - E.g. triggers and stored procedures

Summary

- A database is a collection of related data that is well structured and stored permanently
- A data (datum) is a value of a real object's (or a relationship's) property in a perceived moment of time
- A DBMS is a set of programs that supports:
 - Defining,
 - Populating by data,
 - Querying,
 - Preserving consistency,
 - Protecting from misuse,
 - Recovering from failure, and
 - Concurrent using

of a database

Plan for the next lecture

- Data models
- Schemas and instances
- The three schema architecture
- Data independence
- Database users and languages

- Reading:
 - chapter 2 of the textbook