Proposta de trabalho de computação experimental

Alunos:

- André Luiz Vidal Giampaolo 11/0077067
- Jefferson Viana Fonseca Abreu 13/0028959
- Renan Lobato Rheinboldt 12/0077400

Introdução:

Dado um grafo ${\tt G}$ não orientado e conectado, uma árvore geradora de um grafo - spanning tree - ${\tt AG}$ é um subgrafo de ${\tt G}$, e ${\tt AG}$ é uma árvore que contém todos os vértices de ${\tt G}$.

Figura 1 - Spanning Tree

O grafo ${\tt G}$ pode possuir diversas árvores geradoras, porém se ${\tt G}$ é um grafo valorado, as diferentes árvores geradoras possuem pesos distintos. Se uma árvore geradora ${\tt AG}$ possui o menor peso possível, dizemos que ${\tt AG}$ é uma árvore geradora mínima - minimum $spanning\ tree$ -.

Descrição precisa do problema:

Existem diversos algoritmos que são capazes de encontrar a árvore geradora mínima de um grafo, todos eles com abordagens distintas para solucionar o mesmo problema. Para este estudo de caso vamos utilizar os seguintes algoritmos:

- Algoritmo de Prim;
- Algoritmo de Kruskal.

Mediantes estas duas soluções como encontrar a melhor opção para uma carga de trabalho especificada.

Objetivo:

Utilizar técnicas de experimentação para comparar os algoritmos de Prim e Kruskal, objetivando conseguir elencar dados empíricos sobre a eficiência destes. Para isso serão utilizados métodos de:

- Caracterização/modelagem de workload;
- Comparação de sistemas.

Universidade de Brasília

Referências Bibliográficas

- 1. Eppstein, David. "Spanning trees and spanners." *Handbook of computational geometry* (1999): 425-461.
- 2. Cormen, Thomas H., et al. "Algoritmos: teoria e prática." *Editora Campus* 2 (2002).