Tema 5: Representación gráfica

Daniel Eduardo Macias Estrada

17/4/2021

Gráficos con la función plot

- plot(x,y): para dibujar un gráfico básico de puntos siendo x y vectores vectores numéricos
 plot(x) = plot(1:length(x),x)
- plot(x, función): para dibujar el gráfico de una función

```
alumnos = c(1:10)

notas = c(6,4,8,9,10,2,5,1,8,9)

plot(alumnos, notas)
```


Figure 1: Gráfica de las calificaciones de 10 alumnos

Si no incorporamos vector y, R nos va a tomar el parámetro x como si fuese el vector de datos y: plot(1:n, x)

plot(2^(1:6))

Si queremos representar una función f(x):

```
f <- function(x){ sqrt(x) }
plot(f)</pre>
```


Parámetros de la función plot

- log: para indicar que queremos el gráfico en escala logarítmica
- main("título": para poner título al gráfico. Si en vez de un texto queráis poner una expresión matemática, tenéis que utilizar la función expression()
- xlab("etiqueta"): para poner etiqueta al eje X
- ylab("etiqueta"): para poner etiqueta al eje Y
- pch=n: para elegir el símbolo de los puntos $n=0,1,\ldots,25$. El valor por defecto es pch = 1
- cex: para elegir el tamaño de los símbolos
- col = "color en inglés": para elegir el color de los símbolos.

Ejemplo

```
n = 1:20
f = 1/sqrt(5) * ((1+sqrt(5))/2)^n - 1/sqrt(5) * ((1 - sqrt(5))/2)^n
```


Figure 2: Primeros parámetros a considerar

```
par(mfrow = c(1,2))
plot(f, xlab = "n", ylab = expression(F[n]),
    main = "Secuencia de Fibonacci", pch = 20,
    cex = 1.5, col = "darkslategray4", log = "x")
plot(f, xlab = "n", ylab = expression(F[n]),
    main = "Secuencia de Fibonacci", pch = 20,
    cex = 1.5, col = "darkslategray4", log = "y")
```

Ejemplo Fibonacci

Secuencia de Fibonacci

Secuencia de Fibonacci

Otros parámetros son los siguientes

- type: para elegir el tipo de gráfico que queremos:
 - p: puntos (valor por defecto)
 - 1: líneas rectas que unen los puntos (dichos puntos no tienen símbolo)
 - b: líneas rectas que unen los puntos (dichos puntos tienen símbolos). Las líneas no traspasan los puntos
 - o: como el anterior pero en este caso las líneas sí que traspasan los puntos
 - h: histograma de líneas
 - $-\,$ s: histograma de escalones
 - n: para no dibujar los puntos

Ejemplos

```
par(mfrow = c(3,2))
x = c(50:59)
y = c(2,9,25,3,100,77,62,54,19,40)
plot(x,y, pch = 23, cex = 2, col = "blue", type = "p")
plot(x,y, pch = 23, cex = 2, col = "blueviolet", type = "l")
plot(x,y, pch = 23, cex = 2, col = "gold", type = "b")
plot(x,y, pch = 23, cex = 2, col = "deeppink", type = "o")
plot(x,y, pch = 23, cex = 2, col = "springgreen", type = "h")
plot(x,y, pch = 23, cex = 2, col = "firebrick1", type = "s")
```


Figure 3: Segundo grupo de parámetros a considerar

```
par(mfrow = c(1,1))
```

Otros parámetros

- lty: para especificar el tipo de línea
 - "solid":1:línea continua (valor por defecto)
 - -"dashed":2:línea discontinua
 - -"dotted":3:línea de puntos
 - -"dotdashed":4:línea que alterna puntos y rayas
- lwd: para especificar el grosor de las líneas

- \bullet xlim: para modificar el rango del eje X
- ylim: para modificar el rango del eje Y
- xaxp: para modificar posiciones de las marcas en el eje X
- yaxp: para modificar posiciones de las marcas en el eje Y

Ejemplos

```
x = (2*(1:20))
y = (-1)^(1:20)*5*(1:20)
plot(x,y, main = "Ejemplo de gráfico", pch = 8,
    cex = 0.75, type = "b", lty = 4, lwd = 4,
    xaxp = c(0,40,2), yaxp = c(-100,100, 8))
```

Ejemplo de gráfico

Figure 4: Tercer grupo de parámetros a considerar

```
plot(f, xlab = "n", ylab = expression(F[n]), main = "Secuencia de Fibonacci",
    pch = 6, cex = 0.75, col = "cadetblue4", lty = 2, lwd = 2,
    xlim = c(0,10), ylim = c(0,100), xaxp = c(0,10,2), yaxp = c(0,100,10),
    type = "b")
```

Elementos de un gráfico

• points(x): añade un punto de coordenadas (x,y) a un gráfico ya existente

Secuencia de Fibonacci

Figure 5: Secuencia de fibonacci limitando la gráfica

- abline: para añadir una recta a un gráfico ya existente
 - abline(a,b): añade la recta y = bx + a
 - abline(v = x0): añade la recta vertical $x = x_0$. v puede estar asignado a un vector
 - abline(h = y0): añade la recta horizontal $y = y_0$. h puede estar asignado a un vector

Ejemplo

```
f = function(x)\{x^2\}

plot(f, xlim = c(-3,3), col = "blue", xlab = "x", ylab = expression(x^2))

points(-3:3, (-3:3)^2, col = "forestgreen", pch = 5)

abline(v = -3:3, h = 0:9, col = "gray", lty = 2)
```


Figure 6: Uso de elementos de un gráfico

Para añadir texto a un punto en específico

- text(x,y,labels = "...."): añade en el punto de coordenadas (x,y) el texto especificado como argumento de labels
 - pos: permite indicar la posición del texto alrededor de las coordenadas (x, y). Admite los siguientes valores
 - * 1: abajo
 - * 2: izquierda
 - * 3: arriba

```
* 4: derecha
```

* 5: por defecto: texto centrado

```
plot(alumnos, notas, ylim = c(0,10), main = "Notas de alumnos", col = "blue")
abline(v = 1:10, h = 0:10, col = "gray", lty =2)
text(alumnos,
    notas,
    labels = c("A","B","C","D","E","F","G","H","I","J"),
    pos = c(rep(3,times = 4), 1, rep(3,times = 5)))
```

Notas de alumnos

Figure 7: Ejemplo de uso de text()

Para añadir más líneas a nuestra gráfica

- lines(x,y): añade a un gráfico existente una línea poligona lque une los puntos (x,y) sucesivos. x,y son vectores numéricos
- curve(curva): permite añadir la gráfica de una curva a un gráfico existente
 - add=TRUE: si no, la curva no se añade
 - La curva se puede especificar mediante una expresión algebraica con variable x, o mediante su nombre si la hemos definido antes

```
plot(f, col = "blue4", xlim = c(-3,3), ylim = c(-10,10))
points(-3:3, (-3:3)^2, pch = 19, col = "purple4")
lines(-3:3, (-3:3)^2, lty = "dashed", col = "red", lwd = 1.5)
curve(x^3, add = TRUE, lty = "dashed", col = "orange")
```


Añadiendo una leyenda

- legend(posición, legend = ...): para ñadir una leyenda
 - La posición indica donde queremos situar la leyenda. Puede ser o bien las coordenadas de la esquina superior izquierda de nuestra leyenda, o bien una de las palabras siguientes
 - * "bottom" / "bottomright" / "bottomleft"
 - * "top" / "topright" / "topleft" * "center" / "right" / "left"
 - legend: contiene el vector de nombres entre comillas con los que queremos identificar a las curvas en la leyenda

```
x = seq(-2*pi, 2*pi, 0.1)
plot(x, sin(x), col = "skyblue3", type = "l", lwd = 2)
lines(x, cos(x), col = "yellow3", lwd = 2)
lines(x, tan(x), col = "olivedrab3", lwd = 2)
legend("bottomleft", col = c("skyblue3", "yellow3", "olivedrab3"), legend = c("Seno", "Coseno", "Tangen
```

