

Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων

Introduction to low-power microprocessor design – Static power and static power reduction techniques

Vasileios Tenentes

University of Ioannina

E-mail: tenentes@cse.uoi.gr

Outline

- 1: Overview of microprocessors manufacturing process
- 2: Motivation: Why to care about power efficient microrprocessors?
- 3: Performance of microprocessors
- 4: Dynamic power and dynamic power reduction design techniques
- 5: Static power and static power reduction techniques
- 6: The future, Introduction to IoT applications!!!

The problem

The solution

so far we spoke only about power when a transistor is ON... Well.. it still consumes power even when it's OFF!!!

That power is called **static power**

In fact it is:

Power=(Dynamic Power) + (Short Circuit Power) + (Static Power)

We will talk about this later

Static power (caused by leakage currents) is typically responsible for 40% of the energy consumption. Thus, increasing the number of transistors increases power dissipation, even if the transistors are always off

Static power (caused by leakage currents)

- ☐ Static power is as large as dynamic power for next generation ICs, unless specific countermeasures are taken
- Main components
 - ☐ Sub-threshold leakage current
 - ☐ Gate-oxide leakage current

$$P_{static} = V_{dd} * I_{leakage}$$

FINFET and High-k materials have tackled efficiently gate-oxide leakage current

Source: Word roadmap for semiconductors

Drain

Static power and threshold voltage background

- Leakage Power consumption occurs as long as the circuit is powered on
- Sub-threshold current between source and drain in MOS transistor occurs when gate voltage (V_{gs}) is below transistor threshold voltage V_t
- ullet sub-threshold current increases by 3x with each technology generation due to scaling of the transistor threshold voltage V_t
- At 45nm, total power (60% dynamic and 40% leakage)
- V_{dd} reduces with technology scaling (15% lower operating voltage, 30% smaller transistor), V_t must scale to deliver transistor performance.

$$\begin{split} P_{leakage} \approx V_{dd}.I_{leakage} \\ I_{leakage} \approx I_0 e^{\left(\frac{V_{gs}-V_t}{nV_T}\right)}, I_0 = \mu_0 C_{ox} \frac{W}{L} (n-1)V_T^2 \end{split}$$

Is that a real problem?

Data from Intel i7 2017:

100W is a limit for cooling expenses in enterprise servers

There is also regulation for per year energy for each computer so this is another problem to consider for enterprise servers

Leakage Power Reduction 1. Technology Level 2. Stacking Effect 3. Body Bias 4. Adaptive Body Bias 5. Sleep Transistor (Power Gating)

1.Technology level

Multiple V_t technology where fabrication process provides both high and low threshold transistor V_t (low: fast and leaky and high: slow and less leaky) for N and P transistors. Default design uses high V_t and careful replacing high V_t with low V_t , one can get low V_t performance and yet significantly lower leakage power.

Synopsys Galaxy Design Platform provides an automated way of embedding *multi-V_t* to reduce leakage power

Example

critical path delay determines performance of the design, all other paths have lower delay. Use low V_t transistors in modules on the critical path, and high V_t transistors in modules on non-critical paths.

5. Power Gating

- Sleep transistors
 - Insert high V_t MOSFET between power rail and logic blocks
 - Header transistor off lead to logic block floating to near zero
 - Footer transistor off lead to logic block floating to near 1

Header switches preferred if multiple power rails since gated block logics float to zero irrespective of supply voltages Vdd

Vdd

CPU

sleep=0

See ref [8] for more details

Example: SoC with Power Gated CPU

Fast latch

3. Create output isolation

Slow latch

1. Define power domain and create supply

2. Create power switches

4. Create state retention

UPF (Unified Power Format)

1. Define power domain and create supply net for each power domain

2. Create power switches

3. Create output isolation

4. Create state retention

5. Create power gating controller FSM (RTL model)

- Require a controller to:
 - clamp the power gated block output and save the states before power off
 - Restore the states and unclamp the output after power on

Power Gating Design Synthesis Flow

Power gating design synthesis requires:

- 1. Power descriptions (upf file)
- 2. Power gating controller model (RTL)
- 3. Cell library with power gating support
- 4. Synthesis Tool with power gating capability (e.g. latest version of Synopsys Design Compiler)


```
module fifo(power, retain, nclamp
                                                  FIFO (First In First Out)
        clk n_rst wr_en rd_en .d_in
        _d_out _full _empty
);
                                                  A design to be power gated
   parameter DATA_WIDTH = 8:
   parameter ADDR_WIDTH = 3;
   parameter DEPTH = 8:
    input power, retain, nolamp;
    input clk, n_rst, wr_en, rd_en;
    input [DATA_WIDTH-1 : 0] d_in;
   output full, empty;
   output [DATA_WIDTH-1 : 0] d_out;
   reg [ADDR_WIDTH : 0]
                               distance:
   reg [DATA_WIDTH-1:0] buffer [DEPTH-1:0];
   reg [ADDR_WIDTH-1 : 0] wr_p, rd_p;
   integer i;
   always @ (posedge clk) begin
     if("n_rst) wr_p <= {(ADDR_WIDTH){1'b0}};
     else if(wr_en&&!full) wr_p <= wr_p + 1;
   always @ (posedge clk) begin
     if("n_rst) rd_p <= {(ADDR_WIDTH){1'b0}};
     else if(rd_en&&!empty) rd_p <= rd_p + 1;
   end
   always @ (posedge clk) begin
     if("n_rst) distance <= {(ADDR_WIDTH+1){1'b0}};</pre>
     //if only read, decrease distance
     else if(rd_en&&!empty&&(!wr_en||full)) distance <= distance - 1;
     //if only write, increase distance
     else if(wr_en&&!full&&(!rd_en||empty)) distance <= distance + 1;
     //otherwise keep distance the same
    always @ (posedge clk) begin
       if("n_rst) begin
            for (i=0: i<DEPTH: i=i+1) buffer[i] <= {(DATA_WIDTH){1'b0}};</pre>
       lse if(wr_en&&!full) begin
           buffer[wr_p] \leftarrow d_{in}
       end
     end
     assign full = (distance == DEPTH)? 1'b1 : 1'b0;
     assign empty = (distance == 0)? 1'b1 : 1'b0;
```

assign d_out = buffer[rd_p];

endmodule // fifo

Power gating controller

```
module pg_ctrl(clk, n_rst, sleep, power, retain, nclamp, gclk, pg_nrst);
   //power control states talbe
   parameter pcs_active = 7'b101_0100;
   parameter pcs_stopclk = 7'b101_1110;
   parameter pcs_clamp = 7'b100_1110;
                           = 7'b110_1110;
   parameter pcs_save
   parameter pcs_reset = 7'b110_1010;
   parameter pcs_poweroff = 7'b010_1010;
   parameter pcs_sleep
                           = 7'b010_1000;
   parameter pcs_poweron = 7'b110_1001;
   parameter pcs_resetoff = 7'b110_1101;
   parameter pcs_restore = 7'b100_1101;
   parameter pcs_unclamp = 7'b101_1101;
   input clk, n_rst, sleep;
   output power, retain, nclamp, gclk, pg_nrst;
   reg [6:0] pcs;
   //control power state transistions
   always @ (posedge clk, negedge n_rst) begin
       if("n_rst) pcs <= pcs_active;</pre>
       else begin
            if ((pcs == pcs_active) && (sleep))
                                                   pcs <= pcs_stopclk;
           if (pcs == pcs_stopclk)
                                       pcs <= pcs_clamp;
           if (pcs == pcs_clamp)
                                       pcs <= pcs_save;
            if (pcs == pcs_save)
                                       pcs <= pcs_reset;
            if (pcs == pcs_reset)
                                       pcs <= pcs_poweroff;</pre>
            if (pcs == pcs_poweroff)
                                       pcs <= pcs_sleep;</pre>
           if ((pcs == pcs_sleep) && (
                                       'sleep))
                                                       pcs <= pcs_poweron;
           if (pcs == pcs_poweron)
                                       pcs <= pcs_resetoff;</pre>
            if (pcs == pcs_resetoff)
                                       pcs <= pcs_restore;
            if (pcs == pcs_restore)
                                       pcs <= pcs_unclamp;
           if (pcs == pcs_unclamp)
                                       pcs <= pcs_active;</pre>
        end
   end
   assign power = pcs[6];
   assign retain = pcs[5];
   assign nclamp = pcs[4];
   assign gclk = pcs[3];
   assign pg_nrst = pcs[2];
```

endmodule

Schematic of Synthesized Gate Level Netlist of the above Example

Note: (i) Power Domain is not created just after logic synthesis

(ii) Physical synthesis is necessary for that

Schematic of chip layout after physical synthesis (Place and Routed Design)

References

- 1. http://www.synopsys.com/products/power/multivoltage-bkgrd.pdf
- 2. R.X. Gu, et al, Power dissipation analysis and optimisation of DSM CMOS digital circuits, IEEE J. Solid State Circuits, 31, pp.707, 1996
- 3. K.S. Khouri, et al, Leakage power analysis and reduction during behavioural synthesis, IEEE Transactions on CAD, 10(6), pp.876, 2002
- 4. J. Tschanz et all, Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage", IEEE Journal of Solid State Circuits, 2002, pp:1396
- 5. D., Lee, et al, Gate oxide leakage current analysis and reduction in VLSI circuits, IEEE Transactions on VLSI system, 12(2), pp. 155, 2004
- 6. K. Roy, et al, Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-submicrometer CMOS Circuits, Proceedings of the IEEE, Vol 91, No. 2, 2003
- 7. Bashir Al. Hashimi, System on Chip: Next Generation Electronics, chapter 13, IEE Circuits, Devices and Systems Series 18.
- 8. Michael Keating et al, Low Power Methodology Manual, chapter 5 and 14, Springer.

Short-circuit power

Short circuit power is consumed in a circuit when both the nMOS and pMOS transistors are "on"

--- Short-circuit current

$$P_{short-circuit} = 1/12.k.\tau.F_{clk}.(V_{dd} - 2V_t)^3$$

where τ is the rise time and fall time (assumed equal) and k is the gain factor of the transistor

40 years of Processor Performance

What about the future? is it that bad?

Well we need again to check the past:

a similar scaling problem occurred in the 80's with CMOS technology replacing Bipolar. There is research on new materials, computing technologies and of course low-power design techniques to tackle leakage! We need also to adapt our markets...

Markets??? What about markets?

The Era Of The Consumer is it over?

Households, Semiconductor Industry's #1 Customer

Smart applications of embedded systems (Cyber-Physical Systems and Internet of Things (IoT))

1926 Nikola Tesla

"When wireless is perfect converted into a huge brainstruments through what be amazingly simple con A man will be able to car

Google Trends: cyber-p

Source: everything 4.0? Sabina Jesch 2013, invited talk Wuppertal

Back to: The earth converted into a huge "brain"... (Tesla 1926)

Integrating complex information from multiple heterogenous sources opens multiple possibilities of optimization: e.g. energy consumption, security services, rescue services as well as increasing the quality of life

Drivers for CPS/IoT applications

Wearable embedded systems on cattle

For monitoring their position and status...

Energy efficiency: a possible bottleneck for IoT

- ☐ There is an exponential growth of the demand for connected devices
- ☐ There is a bound of 50 Billion connected devices due to **energy constraints** at the networking infrastructure (ARM white paper)
 - ☐ Low power digital hardware is required especially for IoT networking stacking (see mbed SoCs) https://www.openfogconsortium.org
- D. Evans, "The internet of things: How the next evolution of the internet is changing everything," CISCO White paper, vol. 1, p. 14, 2011. "The Intelligent Flexible Cloud," https://community.arm.com/docs/ DOC-9981, ARM Ltd, White Paper, 2015. "Intelligent Flexible IoT Nodes," https://community.arm.com/docs/ DOC-10861, ARM Ltd, White Paper, 2015.