Lema 1

Tópicos em controle

IME USP

24 de agosto de 2020

Lema 1

O lema 1 é muito interessante pois associa propriedades de um operador linear num espaço de dimensão infinita às propriedades de uma matriz!

Se $G: \mathbb{R} \to \mathbb{R}^{n \times m}$ é contínua e $\mathcal{C}([t_0, t_1], \mathbb{R}^m)$ é o nosso espaço vetorial de funções, então operador:

$$\mathcal{L}(u(\cdot)) = \int_{t_0}^{t_1} G(s)u(s)ds$$

é um operador linear de $\mathcal{C}([t_0,t_1],\mathbb{R}^m)$ em \mathbb{R}^n

Lema 1: Se $W(t_0, t_1) = \int_{t_0}^{t_1} G(t) G^T(t) dt$, então

 $\operatorname{Im} \mathcal{L} = \operatorname{Im} W(t_0, t_1).$

$$\operatorname{Im} \mathcal{L} = \operatorname{Im} W(t_0, t_1).$$

Prova: 1. $\operatorname{Im} W(t_0, t_1) \subseteq \operatorname{Im} \mathcal{L}$, se $\mathbf{x} \in \operatorname{Im} W(t_0, t_1)$ então temos
 $\operatorname{um} \mathbf{y} \in \mathbb{R}^n$ com $W(t_0, t_1)\mathbf{y} = \mathbf{x}$ e da definição de W temos

 $W(t_0,t_1)\mathbf{y} = \int_{t_0}^{t_1} G(t)G^{\mathsf{T}}(t)\mathbf{y}dt = \mathbf{x}$

 $=\mathcal{L}(u(\cdot))$ para $u(t)=G^T(t)\mathbf{y}$

2. $\operatorname{Im} \mathcal{L} \subseteq \operatorname{Im} W(t_0, t_1)$

Se $\mathbf{x} \notin \operatorname{Im} W(t_0, t_1)$, usando o fato de que W é simétrica, podemos

encontrar um
$$\mathbf{y} \neq 0$$
 tal que $W(t_0, t_1)\mathbf{y} = 0$ e $\mathbf{y}^T\mathbf{x} \neq 0$. Notemos então que:

 $=\int_{t}^{t_1}\|G(t)^T\mathbf{y}\|^2 \implies$

 $G(t)^T \mathbf{y} = 0 \forall t \in [t_0, t_1]$

 $0 = \mathbf{y}^T W(t_0, t_1) \mathbf{y} = \int_{t_0}^{t_1} (G^T(t) \mathbf{y})^T (G^T(t) \mathbf{y}) dt$

Se \mathbf{x} estivesse em Im \mathcal{L} então:

$$\mathbf{x} = \int_{t_0}^{t_1} G(t)u(t)dt \implies$$

$$\mathbf{y}^T \mathbf{x} = \int_{t_0}^{t_1} \mathbf{y}^T G(t)u(t)dt =$$

$$= \int_{t_0}^{t_1} [G^T(t)\mathbf{y}]^T u(t)dt = 0$$

Que contraria como foi escolhido o ${\bf y}$ assim fica demosntrado o lema \Box