Survival Data Analysis

Nina Shenker-Tauris

02418 Statistical Modelling: Theory and practice Jan Kloppenborg Møller

Technical University of Denmark Department of Applied Mathematics and Computer Science

Winter Exam 2020

1/7

Overview

Analysis of Binary Data

The first part of the assignment deals with the study of the effect of AZT on AIDS. Methods of analysis:

- Binomial distribution of all data
- Binomial distribution of treatment groups
- Parameter estimation of p₀ and p₁
- Profile likelihood of AZT-yes coefficient
- Logistic regression model

Analysis of the Survival Time Data

The second part of the assignment deals survival time, where we want to see whether there is a difference for the two treatment groups

Methods of analysis:

- AIDS/healthy statistics
- Survival distribution by treatment
- Cumulative incidence function
- Log-rank test
- Parametric survival model

Binomial distribution of data

All data (AZT-yes and AZT-no)

Divided into AZT-yes and AZT-no

2-sample test for equality of proportions							
X-squared	df	p-value	95% CI	prop 1	prop 2		
6.171	1	0.01299	-0.21,-0.024	0.15	0.26		

Conclusion

P-value (0.01299) < 0.05, therefore we reject the null hypothesis, i.e. there is a significant difference between the groups

Parameter Estimation

Estimate parameters in the model (p_0 probability of AIDS in control group, p_1 probability of AIDS in treatment group)

$$p_0 = \frac{e^{\beta_0}}{1 + e^{\beta_0}} \tag{1}$$

$$p_1 = \frac{e^{\beta_0 + \beta_1}}{1 + e^{\beta_0 + \beta_1}} \tag{2}$$

- $\beta_1 = -0.7217$; Therefore there is a negative correlation when given the treatment i.e. when given AZT your log odds of having AIDS are -0.721.
- Projecting back into probability scale, p₀
 = 0.261, p₁ = 0.147, therefore, when
 given AZT you have a lower probability of
 having AIDS.

Profile likelihood for AZT-yes coefficient

Confidence intervals using profiled log-likelihood: 95% CI [-1.279, -0.183]

Logistics Regression Model

Logistic regression model for the binary outcome AIDS="yes" versus AIDS="no" with the explanatory variable treatment with AZT (yes, no)

$$logit < -gIm(cbind(data\$AIDS_yes, data\$n - data\$AIDS_yes) \sim data\$AZT, data = data, family = "binomial")$$
 (3)

Odds ratio for the effect of AZT on AIDS:

- GLM outputs log odds; if coefficient is positive, the effect of this AIDS is positive and vice versa.
- The odds of having AIDS with AZT: 0.147 / (1 0.147) = 0.172.
- The odd of having AIDS without AZT 0.261/(1-.261) 0.353.
- Computing a odd ratio we find that the odds of having AIDS is 2.05 times as high without immediate AZT treatment

Odds ratio 95 % CI				
	2.5 %	97.5 %		
(Intercept)	0.2515723	0.5004942		
AZT Yes	0.2813743	0.8390689		

Conclusion

GLM function supports earlier parameter estimation, in concluding that AZT has a significant effect on getting AIDS

Analysis of Survival Time Data

Healthy vs AIDS/death							
	Healthy	AIDS	Probability				
			of AIDS				
Two-drug	514	63	0.11				
treatment							
Three-	541	33	0.06				
drug							
treatment							
Total	1055	99	0.08				

Survival Distributions by Treatment

Conclusion

Log-rank Test: This tests if the survival curves of the two treatment groups are the same. Result was p= 0.001, therefore it is significant (p < 0.5). The curves are indeed NOT the same meaning that the drug makes a significant difference.

Cumulative Incidence Functions

Parametric Survival Models

Task: Fit parametric survival models containing treatment (tx) and CD4 count (cd4) as explanatory variables.

Method: Fit exponential, Weibull and log-logistic models, concluded that log-logistic was best has it has the lowest AIC.

Log-logistic Model Summary						
	Value	95% CI	z	р		
Intercept	6.82584	[6.33, 7.32]	26.82	< 2e-16		
Treatment	0.84295	[0.27, 1.41]	2.91	0.0036		
cd4	0.02080	[0.013, 0.028]	5.55	2.9e-08		

- Time ratio for the treatment effect: The median time to survival time for new treatment is 2.32 times the median for old treatment. 95% CI:[1.32, 4.10]
- Tested Cox-snell residuals and concluded they looked normal