End Term (Odd) Semester Examination December 2024

Roll no.

Name of the Course and semester: B.Tech. III semester Name of the Paper: Discrete Structure and Combinatorics

Paper Code: TMA-316

Time: 3 hour

Maximum Marks: 100

Note:

(i) All the questions are compulsory.

- (ii) Answer any two sub questions from a, b and c in each main question.
- (iii) Total marks for each question is 20 (twenty).
- (iv) Each sub-question carries 10 marks.

Q1. (2X10=20 Marks)

- Draw the Hasse diagram of Poset $(P(A), \subseteq)$, where $A = \{a, b, c\}$. Find greatest element, least element, minimal element and maximal element.
- b. Prove that if R is an equivalence relation on set A then R^{-1} is also an equivalence relation on set A.

CO1

- c . Define the following with examples: (i) Bijective function (ii) Many one function (iii) Invertible function (iv) Identity function.
- Q2.

 A die is thrown 8 times and it is required to find the probability that 3 will show (i) Exactly 2 times (ii) At least six times (iii) At most three times.
- b. Define the following: (i) Normal distribution (ii) Random variables (iii)

 Exponential distribution (iv) Bayes theorem.

 CO2
- c. If mean and variance of a binomial distribution are 4 and 2 respectively, find the probability of (i) exactly 2 successes (ii) less than 3 successes (iii) at least 4 successes.
- O3 (2X10=20 Marks)
- a. Define the following with suitable examples:
 - (i) Quantifiers
 - (ii) Tautologies

CO3

(iii) Logical equivalence

Show that (i)
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

(ii) $\neg (p \leftrightarrow q) \equiv (p \vee q) \wedge \neg (p \wedge q)$.

b. Using Principle of Mathematical induction proves that $(n^5 - n)$ is divisible by 5.

End Term (Odd) Semester Examination December 2024

	0 Marks)
Q4. a. Prove that the fourth root of unity $\{1,-1, i, -i\}$ form an abelian group with respect to	multiplication. CO4
b. A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be se has (i) no girls? (ii) at least one boy and one girl? (iii) at least 3 girls?	
c. Define the following (i) Abelian group (ii) Pigeonhole principle (iii) Isomorphism.	CO4
Q5. a. (i) State and prove Handshaking theorem. (ii) Explain Adjacency matrix.	0 Marks) CO5
b. Define the following: (i) Directed graph (ii) Connected graph (iii) Complete graph Hamilton path.	ph (iv) CO5
c. Draw the following graphs: (i) $K_{3,4}$ (ii) W_6 (iii) K_5 (iv) C_6 .	CO5