Math 310 - HW 2 (Due Wednesday 02/12)

- 1. (i) Show that given finitely many countable sets A_1, A_2, \dots, A_n , the set $A_1 \times A_2 \times \dots \times A_n$ is also countable.
- (ii) Is it true that given countably many countable sets A_1, A_2, \dots , the set $A_1 \times A_2 \times \dots$ is also countable? Justify your answer.
- **2**. (i) Let \mathcal{F} be the collection of all functions $f:\{0,1\}\to\mathbb{N}$. Is \mathcal{F} countable? Justify your answer.
- (ii) Let \mathcal{F} be the collection of all functions $f: \mathbb{N} \to \{0,1\}$. Is \mathcal{F} countable? Justify your answer.
- (iii) Let \mathcal{F} be the collection of all functions $f: \mathbb{N} \to \mathbb{N}$. Is \mathcal{F} countable? What about $f: \mathbb{R} \to \mathbb{R}$? Justify your answers.
- **3.** (i) Let (0,1) be the open interval from 0 to 1. Show that $|(0,1)| = |\mathbb{R}^+|$ by finding an explicit bijection.
- (ii) [Extra-Credit] Show that $|(0,1)| = |\mathbb{R}|$, by finding an explicit bijection.
- (iii) Show that $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}^+|$ (Hint: Use (i) and binary representation of numbers in (0,1).)
- **4.** A real number x is said to be algebraic (over \mathbb{Q}) if it satisfies some polynomial equation $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0$, where each $a_i \in \mathbb{Q}$, $a_n \neq 0$. If x is not algebraic, it is called transcendental.

(Remark: All rational numbers are obviously algebraic. $\sqrt{2}$ and golden-ratio ϕ are two irrational numbers which are also algebraic, while e and π are not, and hence transcendental.)

- (i) Show that the set of all polynomials over \mathbb{Q} (as mentioned above) is countable.
- (ii) Prove that there are countably many algebraic numbers. (*Hint*: Use (i) and here you may use the Fundamental theorem of Algebra, that any real polynomial has finitely many roots in \mathbb{R} .)
- (iii) Prove that there are uncountably many transcendental numbers.

Not for Credit

- 1. Let X, Y be sets with a function $f: X \to Y$. Prove that the following are equivalent:
 - (a) f is 1-1.
 - (b) f(A B) = f(A) f(B) for all subsets A and B of X.
 - (c) $f^{-1}(f(E)) = E$ for all subsets E of X.
 - (d) $f(A \cap B) = f(A) \cap f(B)$ for all subsets A and B of X.
- **2**. Prove that the set of points on the unit circle in \mathbb{R}^2 , that is $\{(x,y): x^2+y^2=1\}$ is uncountable.
- **3.** Is the subset of rational numbers $\{\frac{m}{n}: m, n \in \mathbb{Z}, 1 \le n \le 100\}$ is dense in \mathbb{R} ?
- **4**. Prove that $\mathbb{N} \times \mathbb{N}$ is countably infinite by showing that the function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f(m,n) = 2^{n-1}(2m-1)$ is a bijection.