Краткое Руководство по Sage

Уильям Стайн (основано на работе П. Джипсен) Лицензия свободной документации GNU ©Уильям Стайн 2014

Notebook/Блокнот

Вычислить ячейку: (shift-enter)

Вычислить, создав новую ячейку: (alt-enter)

Разбить ячейку: ⟨control-;⟩

Соединить ячейки: (control-backspace)

Вставить математическую ячейку: щёлкнуть мышью

синюю линию между ячейками

Вставить ячейку с текстом/HTML: Shift+щёлкнуть

мышью синюю линию между ячейками

Удалить ячейку: удалить содержимое, затем нажать Backspace

Командная строка

Автодополнение *команды*: $com\langle tab \rangle$

Показать список команд, содержащих "bar": *bar*?

Показать документацию: κ оманда? $\langle tab \rangle$

Показать исходный код: κ оман ∂a ?? $\langle tab \rangle$

Показать методы для объекта \mathbf{a} : \mathbf{a} . $\langle \operatorname{tab} \rangle$ (показать

больше: dir(a))

Показать скрытые методы для объекта: а: а._ $\langle {\rm tab} \rangle$

Полнотекстовый поиск в документах:

search_doc("string unu regexp")

Поиск в исходном коде:

search_src("string unu regexp")

Предыдущий вывод данных: _ is

Числа

Целые: $\mathbf{Z} = ZZ$ напр. -2 -1 0 1 10^100

Рациональные: $\mathbf{Q} = \mathbb{Q}\mathbb{Q}$ напр. 1/2 1/1000 314/100

-2/1

Реальные: $\mathbf{R}~\approx \mathtt{RR}~$ напр. .5 0.001 3.14

1.23e10000

Комплексные: $\mathbf{C} \approx \mathtt{CC}$ напр. $\mathtt{CC}(1,1)$ $\mathtt{CC}(2.5,-3)$

Двойная точность: RDF and CDF напр. CDF(2.1,3)

 $\operatorname{Mod} n$: $\mathbf{Z}/n\mathbf{Z} = \operatorname{Zmod}$ напр. $\operatorname{Mod}(2,3)$ $\operatorname{Zmod}(3)(2)$

Конечные поля: $\mathbf{F}_q = \mathtt{GF}$ напр. $\mathtt{GF(3)(2)}$ $\mathtt{GF(9,"a").0}$

Полиномы: R[x,y] напр. S.<x,y>=QQ[] x+2*y^3

Ряды: R[[t]] напр. S.<t>=QQ[[]] 1/2+2*t+0(t^2)

p-адические числа: $\mathbf{Z}_p \approx \mathsf{Zp}, \, \mathbf{Q}_p \approx \mathsf{Qp}$ напр.

2+3*5+0(5^2)

Алгебраическое замыкание: $\overline{\mathbf{Q}} = \mathtt{QQbar}$ напр. $\mathtt{QQbar}(2^{(1/5)})$

Интервальная арифметика: RIF напр. sage: RIF((1,1.00001))

Числовое поле: R.<x>=QQ[]; K. <a> = NumberField(x^3+x+1)

Арифметика

 $ab = \texttt{a*b} \quad \frac{a}{b} = \texttt{a/b} \quad a^b = \texttt{a^b} \quad \sqrt{x} = \texttt{sqrt(x)}$ $\sqrt[n]{x} = \texttt{x^(1/n)} \quad |x| = \texttt{abs(x)} \quad \log_b(x) = \log(\texttt{x,b})$

 $ext{Суммы: } \sum_{i=k} f(i) = ext{sum(f(i) for i in (k..n))}$ Произведения: $\prod_{i=k}^n f(i) = ext{prod(f(i) for i in }$

(k..n))

Константы и функции

Kонстанты: $\pi=$ pi e= e i= i $\infty=$ oo $\phi=$ golden_ratio $\gamma=$ euler_gamma

Приближение: pi.n(digits=18) =

3.14159265358979324

 Φ ункции: sin cos tan sec csc cot sinh cosh tanh sech csch coth log ln exp ...

Функции Python: def f(x): return x^2

Интерактивные функции

Вставить @interact перед функцией (var определяют аргументы):

@interact

def f(n=[0..4], s=(1..5), c=Color("red")):
 var("x"); show(plot(sin(n+x^s),-pi,pi,color=c))

Символические выражения

Задать новые символические переменные:

var("t u v y z")

Символическая функция: напр. $f(x) = x^2$ f(x)=x^2

Отношения: f==g f<=g f>=g f< g f>g

Pemuth f = g: solve(f(x)==g(x), x) solve([f(x,y)==0, g(x,y)==0], x,y)

factor(...) expand(...) (...).simplify_...

find_root(f(x), a, b) найти $x \in [a,b] \; \mathrm{s.t.} \; f(x) pprox 0$

Математический анализ

 $\lim_{x \to a} f(x) = \text{limit(f(x), x=a)}$

 $\frac{d}{dx}(f(x)) = \text{diff(f(x),x)}$

 $\frac{\partial}{\partial x}(f(x,y)) = \text{diff}(f(x,y),x)$

 $\mathtt{diff} = \mathtt{дифференцировать} = \mathtt{производная}$

 $\int f(x)dx = integral(f(x),x)$

 $\int_a^b f(x)dx = integral(f(x),x,a,b)$

 $\int_a^b f(x) dx pprox ext{numerical_integral(f(x),a,b)}$

полином Тейлора, порядка n в точке a: taylor(f(x),x,a,n)

2D графика

Линия: line([(x_1,y_1),...,(x_n,y_n)], onquu)

Многоугольник: polygon([(x_1,y_1),...,(x_n,y_n)], onuuu)

Окружность: circle((x,y),r, onuuu)

Tekct: text("txt",(x,y), onuuu)

Опции: plot.options, thickness= $uucno\ (monuuna\ nunuu\ e\ nukcensx)$, rgbcolor= $(r, q, b)\ (ueem)$,

hue=h ($ommeno\kappa$), причем $0 \le r, b, g, h \le 1$

Показать графику: show(графика, опции)

Задать размер: figsize=[w,h]

Задать пропорции: aspect_ratio=число

График функции: $\operatorname{plot}(\operatorname{f}(x),(x,x_{\min},x_{\max}),\ onuuu)$

Параметрический график:

 $parametric_plot((f(t),g(t)),(t,t_{\min},t_{\max}), onyuu)$

График в полярных координатах:

 $polar_plot(f(t),(t,t_{min},t_{max}), onyuu)$

Наложение графических элементов:

circle((1,1),1)+line([(0,0),(2,2)]) Анимировать графику (с задержкой, напр. 20

секунд): animate(cnucor, onuuu).show(delay=20)

3D графика

3D линия: line3d([(x_1,y_1,z_1),...,(x_n,y_n,z_n)], onuuu)

Сфера: sphere((x,y,z), размер, onции)

 ${\rm 3D}$ Tekct: text3d("Tekct", (x,y,z),pasmep, onuuu)

 $\ensuremath{\mathit{Terpasgp:}}$ tetrahedron((x,y,z), pasмep, onyuu)

 $\mathsf{Ky6}$: cube((x,y,z), $\mathit{pasmep},\ \mathit{onuuu}$)

Октаэдр: octahedron((x,y,z), pasmep, onuuu)

Додекаэдр: dodecahedron((x,y,z), pasmep, onuuu)

Икосаэдр: icosahedron((x, pазмер, onuuu)

График: plot3d(f(x,y),($x,x_{\rm b},x_{\rm e}$), ($y,y_{\rm b},y_{\rm e}$), $\mathit{onu}uu$)

Параметрический график:

parametric_plot3d((f,g,h), (t,t_b,t_e) , onuuu) parametric_plot3d((f(u,v),g(u,v),h(u,v)),

 $(u, u_{\mathrm{b}}, u_{\mathrm{e}})$, $(v, v_{\mathrm{b}}, v_{\mathrm{e}})$, onu , uu

Опции: aspect_ratio=[1,1,1] (nponopuuu), color="red" (usem), opacity=0.5 (npospauhocmb), figsize=6 (pasmep), viewer="tachyon" (cnocobomofpashehus)

Дискретная математика

 $\lfloor x \rfloor = floor(x) \quad \lceil x \rceil = ceil(x)$

Остаток n от деления на $k=\mathtt{n}\%\mathtt{k}$ — k|n iff $\mathtt{n}\%\mathtt{k}==\mathtt{0}$

n! = factorial(n) $\binom{x}{m} = binomial(x,m)$

 $\phi(n) = \texttt{euler_phi}(n)$

Строка: напр. s = "Hello" = "Hel"+'lo'

s[0]="H" s[-1]="o" s[1:3]="el" s[3:]="lo"

Списки: напр. [1,"Hello",x] = []+[1,"Hello"]+[x]

Кортежи: напр. (1,"Hello",х) (неизменяемый) Множества: напр. $\{1,2,1,a\} = Set([1,2,1,"a"])$

 $(=\{1,2,a\})$

Генераторы списков \approx система обозначения множеств, напр.

 $\{f(x):x\in X,x>0\}=\mathrm{Set}([\mathtt{f}(\mathtt{x})\ \mathrm{for}\ \mathtt{x}\ \mathrm{in}\ \mathtt{X}\ \mathrm{if}\ \mathtt{x>0}])$

Теория графов

 Γ pa φ : G = Graph({0:[1,2,3], 2:[4]})

Ориентированный граф: DiGraph(словарь)

Семейства графов: graphs. $\langle tab \rangle$

Инварианты: G.chromatic_polynomial(),

G.is_planar()

Кратчайший путь: G.shortest_path()

Визуализация: G.plot(), G.plot3d()

 $Aвтоморфизмы: G.automorphism_group(),$

G1.is_isomorphic(G2), G1.is_subgraph(G2)

Комбинаторика

Целочисленные последовательности:

 ${ t sloane_find(\it list), sloane.\langle ab \rangle}$

Paзбиения: P=Partitions(cnucox) P.count()

Cочетания: C=Combinations(cnucox) C.list()

Декартово произведение: CartesianProduct(P,C)

Табло: Tableau([[1,2,3],[4,5]])

Слова: W=Words("abc"); W("aabca")

Частично упорядоченные множества:

Poset([[1,2],[4],[3],[4],[]])

Системы корней: RootSystem(["A",3])

Kpucтaллы: CrystalOfTableaux(["A",3],

shape=[3,2])

Целочисленные выпуклые многогранники:

A=random_matrix(ZZ,3,6,x=7)

L=LatticePolytope(A) L.npoints()
L.plot3d()

Матричная алгебра

$$\binom{1}{2} = \text{vector}([1,2])$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = matrix(QQ,[[1,2],[3,4]], sparse=False)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \text{matrix}(QQ,2,3,[1,2,3,4,5,6])$$

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \det(\max(QQ,[[1,2],[3,4]]))$$

$$Av = A*v \quad A^{-1} = A^{-1} \quad A^t = A.transpose()$$

Pemuth Ax = v: A\v or A.solve_right(v)

Решить xA = v: A.solve_left(v)

Матрица приведенного ступенчатого вида по строкам: A.echelon_form()

Ранг и дефект матрицы: A.rank() A.nullity()

Xессенбергова форма матрицы: A.hessenberg_form()

Характеристиечский полином: A.charpoly()

C: A.eigenvalues()

Собственные векторы: A.eigenvectors_right()

(также левый)

Процесс Грама-Шмидта: A.gram_schmidt()

Визуализировать: A.plot()

LLL алгоритм: matrix(ZZ,...).LLL()

Эрмитова матрица: matrix(ZZ,...).hermite_form()

Линейная алгебра

Векторное пространство $K^n={\tt K^n}$ e.g. QQ^3 RR^2 CC^4

Линейная оболочка: span(vectors, none)

например, span([[1,2,3], [2,3,5]], QQ)

Ядро: A.right_kernel() (также левое)

Сумма и пересечение: V + W and

V.intersection(W)

Базис: V.basis()

Базисная матрица: V.basis_matrix()

Ограничить матрицу на подпространство: A.restrict(V)

Разложение вектора по базису:

V.coordinates(eekmop)

Вычислительная математика

 Π акеты: import numpy, scipy, cvxopt

Минимизация: var("x y z")

minimize($x^2+x*y^3+(1-z)^2-1$, [1,1,1])

Теория чисел

Простые числа: prime_range(n,m), is_prime, next_prime

Pазложение на простые множители: factor(n), qsieve(n), ecm.factor(n)

Символ Кронекера: $\left(\frac{a}{b}\right) = \text{kronecker_symbol}(a, b)$

Цепные дроби: continued_fraction(x)

Числа Бернулли: bernoulli(n), bernoulli_mod_p(p)

Эллиптические кривые:

EllipticCurve($[a_1, a_2, a_3, a_4, a_6]$)

Характеры Дирихле: DirichletGroup(N)

Модулярные формы: ModularForms(yposenb, snak) Модулярные символы: ModularSymbols(yposenb,

вес, знак)

Модули Брандта: BrandtModule(уровень, вес) Модулярные Абелевы многообразия: J0(N), J1(N)

Теория групп

 Γ руппы перестановок: G = Permutation group([[(1,2,3),(4,5)],[(3,4)]])

Симметрические группы: SymmetricGroup(n)

Знакопеременные группы: AlternatingGroup(n)

Абелевы группы: AbelianGroup([3,15])

Матричные группы: GL, SL, Sp, SU, GU, SO, GO

Функции: подгруппа Силова G.sylow_subgroup(p),

таблица характеров G.character_table(),

нормальная подгруппа ${\tt G.normal_subgroups}({\tt)},$ граф

Кэли G.cayley_graph()

Некоммутативные кольца

Kватернионы: Q.<i,j,k> = QuaternionAlgebra(a,b)
Cвободная алгебра: R.<a,b,c> = FreeAlgebra(QQ,
3)

Модули Python

Загрузить модуль: import название модуля

Автодополнение для названия модуля:

название модуля (tab)

Помощь: help(название_модуля)

Профилирование и отладка

Показать время выполнения команды: time команда:

Замерить точное время выполнения команды: timeit(komanda)

Процессорное время: t = cputime(); cputime(t)

Peaльное время (выполнения команды): t = walltime(); walltime(t)

Включить интерактивный отладчик (только в

режиме командной строки): %pdb

Профилировать команду (только в режиме

командной строки): %prun команда