MEDIDAS EN CORRIENTE ALTERNA Y MANEJO DE UN OSCILOSCOPIO

Autores: Alberto Gutiérrez Castro Blanca Cano Camarero

Curso: 1º DGIIM 2017-2018 Fecha entrega: 3/12/2017

Índice de contenido

. <u>3</u>
.3
. <u>3</u>
. <u>3</u>
.4
.4
. <u>4</u>
.5
.5
. <u>5</u>
.5
.5
.5

Objetivos

El objetivo de esta práctica era aprender sobre el manejo de un osciloscopio y estudiar un circuito RC en el dominio de la frecuencia a través de la medida de los cambios de tensión de la señal de salida debidos a las variaciones de la señal de la frecuencia de entrada.

A partir de las medidas tomadas realizar el diagrama de Bode en amplitud de la función de transferencia que se obtiene al tomar la salida en el condensador del circuito RC.

Fundamentos teóricos

Circuito RC

Los circuitos RC son circuitos eléctricos compuestos de resistencias y de condensadores, se utilizan como filtro de señales: paso alto, paso bajo... En estas prácticas estudiaremos el comportamiento de un filtro de paso bajo.

Filtro paso bajo de primer orden

En la figura mostrada se presenta un filtro de paso bajo, véase que está constituido por un condensador una resistencia en serie.

En base a las leyes de Kirchhoff para corriente alterna:

La impedancia en asociación viene determinada por:

$$Z_{eq} = Z_R + Z_C = R + \frac{1}{j\omega C} = \frac{j\omega RC + 1}{j\omega C} = \frac{1 + j\omega RC}{j\omega C}$$

El fasor que representa la corriente del circuito es:

$$i(\omega) = \frac{v_i(\omega)}{Z_{eq}} = v_i(\omega) \frac{j\omega C}{1 + j\omega RC}$$

Siendo v(w) el fasor que representa la tensión de entrada, y el fasor que representa la caída de tensión en el condensador es

$$v_C(\omega) = i(\omega)Z_C = \frac{v_i(\omega)}{1 + j\omega RC}$$

La función de transferencia del circuito es:

$$|T(\omega)| = \frac{1}{\sqrt{1 + (\omega/\omega_0)^2}}$$

Diagrama de Bode

Un diagrama de Bode es una representación gráfica que sirve para caracterizar la respuesta en frecuencia de un sistema. Es una herramienta muy utilizada en el análisis de circuitos en electrónica, siendo fundamental para el diseño y análisis de filtros y amplificadores.

En él se representa la fase de la función de transferencia en función de la frecuencia en escala logarítmica.

Fórmula de obtención del módulo de la función de transferencia:

$$T(\omega) = \frac{v_C(\omega)}{v_i(\omega)} = \frac{1}{1 + j\omega RC}$$

siendo ω _0 = 1/(RC) la frecuencia de corte del circuito. La función de transferencia en el diagrama de Bode se representa usando los decibelios, obteniéndose por consiguiente:

Permite evaluar el desplazamiento en fase de una señal a la salida del sistema respecto a la entrada para una frecuencia determinada.

$$|T(\omega)|_{dB} = 20 \log \left[\frac{1}{\sqrt{1 + (\omega/\omega_0)^2}} \right]$$

Material

Osciloscopio 54622A de Agilent

Instrumento que sirve para medir voltajes entre los polos de sus terminales llamados sondas.

El osciloscopio se diferencia de otros elementos de medición en una pantalla para visualizar el voltaje medio o la tensión alterna o transitoria en función del tiempo (generalmente) .

Este osciloscopio que usaremos posee dos canales con sus respectivas sondas; podemos

visualizar y medir dos señales a la vez, así como visualizar algunas operaciones aritméticas sencillas entre ellas.

Resistencia

Resitencia experimental de 988Ω

Condensador

Medida experimental 2,294nF

Generador de señales Agilent 33220A

Es una fuente de tensión variable en el tiempo que proporciona señales de diferentes tipos en el margen de frecuencias de 1 Hz a 20 MHz y con tensiones máximas de pico a pico de 20 V en circuito abierto. Además permite sumar a la señal variable una tensión continua o tensión "offset" positiva o negativa. La impedancia de salida del generador es de 50 Ω .

Desarrollo y resultados

Nuestro trabajo del laboratorio consistía en las siguientes tres cuestiones:

1. Mida los valores de los elementos usados en el circuito:

 $R = 988\Omega$

C = 2,294nF

2. Calcule la frecuencia de corte teórica usando los valores anteriores:

 $f0 = 7,022144685 \times 10^4 Hz$

 $\omega 0 = 4,412143631 \times 10^5 \text{ rad/s}.$

3. Realice una tabla con los datos necesarios para realizar el diagrama de Bode. Esta tabla debe de contar con los datos medidos de las frecuencias lineal (f) y angular (ω), la amplitud de la señal de salida y la amplitud de la señal de entrada.

A continuación se presentan los datos registrados experimentalmente junto con el diagrama de Bode estimado:

f teórica (Hz)	f exp (Hz)	ω exp (Rad/s)	Vo pp (V)	V _i pp (V)	Vo pp/Vi pp (V)	20.log V₀ pp/V₁ pp (dB)
100	100	628,318530717959	10,5	10,3	1,01941747573	0,167041487295317
200	200	1256,63706143592	10,5	10,3	1,01941747573	0,167041487295317
300	303	1884,95559215388	10,5	10,3	1,01941747573	0,167041487295317
500	500	3141,59265358979	10,6	10,3	1,02912621359	0,249372811191961
800	800	5026,54824574367	10,5	10,3	1,01941747573	0,167041487295317
1000	1000	6283,18530717959	10,5	10,3	1,01941747573	0,167041487295317
2000	2000	12566,3706143592	10,5	10,3	1,01941747573	0,167041487295317
3000	3000	18849,5559215388	10,5	10,3	1,01941747573	0,167041487295317
5000	5000	31415,9265358979	10,3	10	1,03	0,256744494103444
8000	8000	50265,4824574367	10,3	10	1,03	0,256744494103444
10000	10000	62831,8530717959	10,3	10	1,03	0,256744494103444
20000	20000	125663,706143592	9,8	10	0,98	-0,175478486150102
30000	30000	188495,559215388	9,5	10	0,95	-0,445527894223045
50000	50000	314159,265358979	8,3	10	0,83	-1,61843815247852
70220	70200	441205,272270151	7,2	10	0,72	-2,85335007137463
80000	80000	502654,824574367	6,7	9,8	0,68367346939	-3,30302545983337
100000	100000	628318,530717959	5,9	9,8	0,60204081633	-4,40748128100701
200000	200000	1256637,06143592	3,6	9,8	0,36734693878	-8,69847149850415
300000	300000	1884955,59215388	2,8	9,8	0,28571428571	-10,8813608870055
500000	500000	3141592,65358979	1,7	9,7	0,17525773196	-15,1264562577594

Diagrama de Bode a partir de la función de transferencia

Frecuencia angular (Rad/s)

Discusión - Conclusión

Como se comprueba a simple vista, el diagrama de Bode se ajusta muy bien a la función que cabría esperar teóricamente. De hecho, el coeficiente de correlación es casi 1 y en consecuencia la línea de tendencia coincide prácticamente con las medidas tomadas.

Fuentes

- ·0 Wikipedia
- ·1 Circuitos RC
- ·2 <u>Diagrama de Bode</u>
- ·3 Apuntes de prácticas de la asignatura