Solving Linear Recurrence Relations

Review

A recursive definition of a sequence specifies

- Initial conditions
- Recurrence relation

Example:

$$a_0=0$$
 and $a_1=3$

Initial conditions

 $a_n=2a_{n-1}-a_{n-2}$

Recurrence relation

 $a_n=3n$

Solution

Linear recurrences

Linear recurrence:

Each term of a sequence is a linear function of earlier terms in the sequence.

For example:

$$a_0 = 1$$
 $a_1 = 6$ $a_2 = 10$
 $a_n = a_{n-1} + 2a_{n-2} + 3a_{n-3}$
 $a_3 = a_0 + 2a_1 + 3a_2$
 $= 1 + 2(6) + 3(10) = 43$

Linear recurrences

Linear recurrences

- 1. Linear homogeneous recurrences
- 2. Linear non-homogeneous recurrences

A linear homogenous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

where $c_1, c_2, ..., c_k$ are real numbers, and $c_k \neq 0$.

a_n is expressed in terms of the previous k terms of the sequence, so its degree is k.

This recurrence includes k initial conditions.

$$a_0 = C_0$$
 $a_1 = C_1$... $a_k = C_k$

$$a_1 = C$$

Determine if the following recurrence relations are linear homogeneous recurrence relations with constant coefficients.

- $P_n = (1.11)P_{n-1}$
 - a linear homogeneous recurrence relation of degree one
- $\Box \quad a_n = a_{n-1} + a_{n-2}^2$ not linear

a linear homogeneous recurrence relation of degree two

- $\Box H_n = 2H_{n-1} + 1$ not homogeneous
- $a_n = a_{n-6}$ a linear homogeneous recurrence relation of degree six
- $\Box B_n = nB_{n-1}$ does not have constant coefficient

Proposition 1:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ be a linear homogeneous recurrence.
- Assume the sequence a_n satisfies the recurrence.
- Assume the sequence a'_n also satisfies the recurrence.
- So, $b_n = a_n + a'_n$ and $d_n = \alpha a_n$ are also sequences that satisfy the recurrence.

(α is any constant)

Proof:

$$\begin{aligned} b_n &= a_n + a'_n \\ &= (c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}) + (c_1 a'_{n-1} + c_2 a'_{n-2} + \dots + c_k a'_{n-k}) \\ &= c_1 (a_{n-1} + a'_{n-1}) + c_2 (a_{n-2} + a'_{n-2}) + \dots + c_k (a_{n-k} + a'_{n-k}) \\ &= c_1 b_{n-1} + c_2 b_{n-2} + \dots + c_k b_{n-k} \end{aligned}$$

So, b_n is a solution of the recurrence.

Proposition 1:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ be a linear homogeneous recurrence.
- Assume the sequence a_n satisfies the recurrence.
- Assume the sequence a'_n also satisfies the recurrence.
- So, $b_n = a_n + a'_n$ and $d_n = \alpha a_n$ are also sequences that satisfy the recurrence.

(α is any constant)

Proof:

$$\begin{aligned} d_n &= \alpha a_n \\ &= \alpha \left(c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} \right) \\ &= c_1 \left(\alpha a_{n-1} \right) + c_2 \left(\alpha a_{n-2} \right) + \dots + c_k \left(\alpha a_{n-k} \right) \\ &= c_1 d_{n-1} + c_2 d_{n-2} + \dots + c_k d_{n-k} \end{aligned}$$

So, d_n is a solution of the recurrence.

It follows from the previous proposition, if we find some solutions to a linear homogeneous recurrence, then **any linear combination** of them will also be a solution to the linear homogeneous recurrence.

Geometric sequences come up a lot when solving linear homogeneous recurrences.

So, try to find any solution of the form $a^n = r^n$ that satisfies the recurrence relation.

Recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

☐ Try to find a solution of form rⁿ

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + ... + c_{k}r^{n-k}$$

$$r^{n} - c_{1}r^{n-1} - c_{2}r^{n-2} - \dots - c_{k}r^{n-k} = 0$$

$$r^k - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_k = 0$$
 (dividing both sides by r^{n-k})

This equation is called the **characteristic equation**.

Example:

The Fibonacci recurrence is

$$F_n = F_{n-1} + F_{n-2}$$

Its characteristic equation is

$$r^2 - r - 1 = 0$$

Proposition 2:

r is a solution of r^k - $c_1 r^{k-1}$ - $c_2 r^{k-2}$ - ... - $c_k = 0$ if and only if r^n is a solution of $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$.

Example:

consider the characteristic equation $r^2 - 4r + 4 = 0$.

$$r^2 - 4r + 4 = (r - 2)^2 = 0$$

So, r=2.

So, 2^n satisfies the recurrence $F_n = 4F_{n-1} - 4F_{n-2}$.

$$2^{n} = 4 \cdot 2^{n-1} - 4 \cdot 2^{n-2}$$

$$2^{n-2}(4-8+4)=0$$

Theorem 1:

- Consider the characteristic equation $r^k c_1 r^{k-1} c_2 r^{k-2} \dots c_k = 0$ and the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$.
- \square Assume $r_1, r_2, ...$ and r_m all satisfy the equation.
- \square Let $\alpha_1, \alpha_2, ..., \alpha_m$ be any constants.
- \square So, $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + ... + \alpha_m r_m^n$ satisfies the recurrence.

Proof:

By Proposition 2, $\forall i r_i^n$ satisfies the recurrence.

So, by Proposition 1, $\forall i \alpha_i r_i^n$ satisfies the recurrence.

Applying Proposition 1 again, the sequence $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_m r_m^n$ satisfies the recurrence.

What is the solution of the recurrence relation

$$a_n = a_{n-1} + 2a_{n-2}$$

with $a_0=2$ and $a_1=7$?

Solution:

☐ Since it is linear homogeneous recurrence, first find its characteristic equation

$$r^2 - r - 2 = 0$$

$$(r+1)(r-2) = 0$$
 $r_1 = 2$ and $r_2 = -1$

- \square So, by theorem $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$ is a solution.
- \square Now we should find α_1 and α_2 using initial conditions.

$$a_0 = \alpha_1 + \alpha_2 = 2$$

$$a_1 = \alpha_1 2 + \alpha_2 (-1) = 7$$

- \square So, α_1 = 3 and α_2 = -1.
- \Box $a_n = 3 \cdot 2^n (-1)^n$ is a solution.

What is the solution of the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$

with $f_0=0$ and $f_1=1$?

Solution:

☐ Since it is linear homogeneous recurrence, first find its characteristic equation

$$r^2 - r - 1 = 0$$

 $r_1 = (1 + \sqrt{5})/2$ and $r_2 = (1 - \sqrt{5})/2$

- □ So, by theorem $f_n = \alpha_1((1+\sqrt{5})/2)^n + \alpha_2((1-\sqrt{5})/2)^n$ is a solution.
- \square Now we should find α_1 and α_2 using initial conditions.

$$f_0 = \alpha_1 + \alpha_2 = 0$$

$$f_1 = \alpha_1 (1 + \sqrt{5})/2 + \alpha_2 (1 - \sqrt{5})/2 = 1$$

- \square So, $\alpha_1 = 1/\sqrt{5}$ and $\alpha_2 = -1/\sqrt{5}$.
- \Box $a_n = 1/\sqrt{5}$. $((1+\sqrt{5})/2)^n 1/\sqrt{5}((1-\sqrt{5})/2)^n$ is a solution.

What is the solution of the recurrence relation

$$a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$$

with $a_0=8$, $a_1=6$ and $a_2=26$?

Solution:

Since it is linear homogeneous recurrence, first find its characteristic equation

$$r^3 + r^2 - 4r - 4 = 0$$

$$(r+1)(r+2)(r-2) = 0$$
 $r_1 = -1$, $r_2 = -2$ and $r_3 = 2$

- So, by theorem $a_n = \alpha_1(-1)^n + \alpha_2(-2)^n + \alpha_3 2^n$ is a solution.
- \square Now we should find α_1 , α_2 and α_3 using initial conditions.

$$\mathbf{a_0} \mathbf{=\alpha_1 + \alpha_2 + \alpha_3 = 8}$$

$$a_1 = -\alpha_1 - 2\alpha_2 + 2\alpha_3 = 6$$

$$a_2 = \alpha_1 + 4\alpha_2 + 4\alpha_3 = 26$$

- \square So, α_1 = 2, α_2 = 1 and α_3 = 5.
- \Box a_n = 2 . (-1)ⁿ + (-2)ⁿ + 5 . 2ⁿ is a solution.

If the characteristic equation has k distinct solutions $r_1, r_2, ..., r_k$, it can be written as $(r - r_1)(r - r_2)...(r - r_k) = 0$.

If, after factoring, the equation has m+1 factors of $(r-r_1)$, for example, r_1 is called a solution of the characteristic equation with multiplicity m+1.

When this happens, not only r_1^n is a solution, but also nr_1^n , $n^2r_1^n$, ... and $n^mr_1^n$ are solutions of the recurrence.

Proposition 3:

- □ Assume r₀ is a solution of the characteristic equation with multiplicity at least m+1.
- \square So, $n^m r_0^n$ is a solution to the recurrence.

When a characteristic equation has fewer than k distinct solutions:

- We obtain sequences of the form described in Proposition 3.
- By Proposition 1, we know any combination of these solutions is also a solution to the recurrence.
- We can find those that satisfies the initial conditions.

Theorem 2:

- Consider the characteristic equation $r^k c_1 r^{k-1} c_2 r^{k-2} ... c_k = 0$ and the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$.
- □ Assume the characteristic equation has t≤k distinct solutions.
- Let ∀i (1≤i≤t) r_i with multiplicity m_i be a solution of the equation.
- Let ∀i,j (1≤i≤t and 0≤j≤m_i-1) α_{ii} be a constant.

satisfies the recurrence.

What is the solution of the recurrence relation

$$a_n = 6a_{n-1} - 9a_{n-2}$$

with $a_0=1$ and $a_1=6$?

Solution:

□ First find its characteristic equation

$$r^2 - 6r + 9 = 0$$

$$(r - 3)^2 = 0$$

$$r_1 = 3$$

 $r_1 = 3$ (Its multiplicity is 2.)

- \square So, by theorem $a_n = (\alpha_{10} + \alpha_{11} n)(3)^n$ is a solution.
- Now we should find constants using initial conditions.

$$a_0 = \alpha_{10} = 1$$

$$a_1 = 3 \alpha_{10} + 3\alpha_{11} = 6$$

- □ So, α_{11} = 1 and α_{10} = 1.
- \Box a_n = 3ⁿ + n3ⁿ is a solution.

What is the solution of the recurrence relation

$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$

with $a_0=1$, $a_1=-2$ and $a_2=-1$?

Solution:

☐ Find its characteristic equation

$$r^3 + 3r^2 + 3r + 1 = 0$$

 $(r + 1)^3 = 0$ $r_1 = -1$ (Its multiplicity is 3.)

- So, by theorem $a_n = (\alpha_{10} + \alpha_{11}n + \alpha_{12}n^2)(-1)^n$ is a solution.
- Now we should find constants using initial conditions.

$$a_0 = \alpha_{10} = 1$$

 $a_1 = -\alpha_{10} - \alpha_{11} - \alpha_{12} = -2$
 $a_2 = \alpha_{10} + 2\alpha_{11} + 4\alpha_{12} = -1$

- □ So, α_{10} = 1, α_{11} = 3 and α_{12} = -2.
- \Box a_n = (1 + 3n 2n²) (-1)ⁿ is a solution.

What is the solution of the recurrence relation

$$a_n = 8a_{n-2} - 16a_{n-4}$$
, for $n \ge 4$, with $a_0 = 1$, $a_1 = 4$, $a_2 = 28$ and $a_3 = 32$?

Solution:

☐ Find its characteristic equation

$$r^4 - 8r^2 + 16 = 0$$

 $(r^2 - 4)^2 = (r-2)^2 (r+2)^2 = 0$
 $r_1 = 2$ $r_2 = -2$ (Their multiplicities are 2.)

- So, by theorem $a_n = (\alpha_{10} + \alpha_{11} n)(2)^n + (\alpha_{20} + \alpha_{21} n)(-2)^n$ is a solution.
- □ Now we should find constants using initial conditions.

$$\begin{aligned} &a_0 = \alpha_{10} + \alpha_{20} = 1 \\ &a_1 = 2\alpha_{10} + 2\alpha_{11} - 2\alpha_{20} - 2\alpha_{21} = 4 \\ &a_2 = 4\alpha_{10} + 8\alpha_{11} + 4\alpha_{20} + 8\alpha_{21} = 28 \\ &a_3 = 8\alpha_{10} + 24\alpha_{11} - 8\alpha_{20} - 24\alpha_{21} = 32 \end{aligned}$$

- \square So, α_{10} = 1, α_{11} = 2, α_{20} = 0 and α_{21} = 1.
- \Box a_n = (1 + 2n) 2ⁿ + n (-2)ⁿ is a solution.

A linear non-homogenous recurrence relation with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n),$$

where $c_1, c_2, ..., c_k$ are real numbers, and f(n) is a function depending only on n.

The recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k},$$

is called the associated homogeneous recurrence relation.

This recurrence includes k initial conditions.

$$a_0 = C_0$$
 $a_1 = C_1$... $a_k = C_k$

The following recurrence relations are linear nonhomogeneous recurrence relations.

- \Box $a_n = a_{n-1} + 2^n$
- \Box $a_n = a_{n-1} + a_{n-2} + n^2 + n + 1$
- \Box $a_n = a_{n-1} + a_{n-4} + n!$
- \Box $a_n = a_{n-6} + n2^n$

Proposition 4:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$ be a linear non-homogeneous recurrence.
- \blacksquare Assume the sequence b_n satisfies the recurrence.
- Another sequence a_n satisfies the non-homogeneous recurrence if and only if h_n = a_n b_n is also a sequence that satisfies the associated homogeneous recurrence.

Proof:

Part1: if h_n satisfies the associated homogeneous recurrence then a_n is satisfies the non-homogeneous recurrence.

$$b_n = c_1 b_{n-1} + c_2 b_{n-2} + \dots + c_k b_{n-k} + f(n)$$

$$h_n = c_1 h_{n-1} + c_2 h_{n-2} + \dots + c_k h_{n-k}$$

$$b_n + h_n$$

= $c_1 (b_{n-1} + h_{n-1}) + c_2 (b_{n-2} + h_{n-2}) + ... + c_k (b_{n-k} + h_{n-k}) + f(n)$

Since $a_n = b_n + h_n$, $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$. So, a_n is a solution of the non-homogeneous recurrence.

Proof:

Part2: if a_n satisfies the non-homogeneous recurrence then h_n is satisfies the associated homogeneous recurrence.

$$b_n = c_1 b_{n-1} + c_2 b_{n-2} + \dots + c_k b_{n-k} + f(n)$$

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + f(n)$$

$$a_n - b_n$$

=
$$c_1 (a_{n-1} - b_{n-1}) + c_2 (a_{n-2} - b_{n-2}) + ... + c_k (a_{n-k} - b_{n-k})$$

Since
$$h_n = a_n - b_n$$
, $h_n = c_1 h_{n-1} + c_2 h_{n-2} + ... + c_k h_{n-k}$

So, h_n is a solution of the associated homogeneous recurrence.

Proposition 4:

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k} + f(n)$ be a linear non-homogeneous recurrence.
- Assume the sequence b_n satisfies the recurrence.
- Another sequence a_n satisfies the non-homogeneous recurrence if and only if $h_n = a_n b_n$ is also a sequence that satisfies the associated homogeneous recurrence.
- \square We already know how to find h_n .
- \square For many common f(n), a solution b_n to the non-homogeneous recurrence is similar to f(n).
- Then you should find solution $a_n = b_n + h_n$ to the non-homogeneous recurrence that satisfies both recurrence and initial conditions.

What is the solution of the recurrence relation

$$a_n = a_{n-1} + a_{n-2} + 3n + 1$$
 for $n \ge 2$, with $a_0 = 2$ and $a_1 = 3$?

Solution:

 \square Since it is linear non-homogeneous recurrence, b_n is similar to f(n)

Guess:
$$b_n = cn + d$$

$$b_n = b_{n-1} + b_{n-2} + 3n + 1$$

$$cn + d = c(n-1) + d + c(n-2) + d + 3n + 1$$

$$cn + d = cn - c + d + cn - 2c + d + 3n + 1$$

$$0 = (3+c)n + (d-3c+1)$$

$$c = -3$$
 $d=-10$

$$\square$$
 So, $b_n = -3n - 10$.

(b_n only satisfies the recurrence, it does not satisfy the initial conditions.)

What is the solution of the recurrence relation

$$a_n = a_{n-1} + a_{n-2} + 3n + 1$$
 for $n \ge 2$,

with $a_0=2$ and $a_1=3$?

Solution:

- \square We are looking for a_n that satisfies both recurrence and initial conditions.
- $a_n = b_n + h_n$ where h_n is a solution for the associated homogeneous recurrence: $h_n = h_{n-1} + h_{n-2}$
- By previous example, we know $h_n = \alpha_1((1+\sqrt{5})/2)^n + \alpha_2((1-\sqrt{5})/2)^n$.

$$a_n = b_n + h_n$$

= -3n - 10 + $\alpha_1((1+\sqrt{5})/2)^n + \alpha_2((1-\sqrt{5})/2)^n$

■ Now we should find constants using initial conditions.

$$a_0 = -10 + \alpha_1 + \alpha_2 = 2$$

$$a_1 = -13 + \alpha_1 (1 + \sqrt{5})/2 + \alpha_2 (1 - \sqrt{5})/2 = 3$$

$$\alpha_1 = 6 + 2\sqrt{5}$$

$$\alpha_2 = 6 - 2\sqrt{5}$$

So,
$$a_n = -3n - 10 + (6 + 2\sqrt{5})((1+\sqrt{5})/2)^n + (6 - 2\sqrt{5})((1-\sqrt{5})/2)^n$$
.

What is the solution of the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2} + 2^n$$
 for $n \ge 2$,

with $a_0=1$ and $a_1=2$?

Solution:

 \square Since it is linear non-homogeneous recurrence, b_n is similar to f(n)

Guess:
$$b_n = c2^n + d$$

$$b_n = 2b_{n-1} - b_{n-2} + 2^n$$

$$c2^{n} + d = 2(c2^{n-1} + d) - (c2^{n-2} + d) + 2^{n}$$

$$c2^{n} + d = c2^{n} + 2d - c2^{n-2} - d + 2^{n}$$

$$0 = (-4c + 4c - c + 4)2^{n-2} + (-d + 2d - d)$$

$$c = 4$$
 $d=0$

 \Box So, b_n = 4 . 2ⁿ.

(b_n only satisfies the recurrence, it does not satisfy the initial conditions.)

What is the solution of the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2} + 2^n$$
 for $n \ge 2$,

with $a_0=1$ and $a_1=2$?

Solution:

- We are looking for a_n that satisfies both recurrence and initial conditions.
- $a_n = b_n + h_n$ where h_n is a solution for the associated homogeneous recurrence: $h_n = 2h_{n-1} h_{n-2}$.
 - Find its characteristic equation

$$r^2 - 2r + 1 = 0$$

$$(r - 1)^2 = 0$$

 $r_1 = 1$ (Its multiplicity is 2.)

So, by theorem $h_n = (\alpha_1 + \alpha_2 n)(1)^n = \alpha_1 + \alpha_2 n$ is a solution.

What is the solution of the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2} + 2^n$$
 for $n \ge 2$,

with $a_0=1$ and $a_1=2$?

Solution:

- \Box $a_n = b_n + h_n$
- \Box $a_n = 4 \cdot 2^n + \alpha_1 + \alpha_2 n$ is a solution.
- Now we should find constants using initial conditions.

$$a_0 = 4 + \alpha_1 = 1$$

$$a_1 = 8 - \alpha_1 + \alpha_2 = 2$$

$$\alpha_1 = -3$$
 $\alpha_2 = -3$

So,
$$a_n = 4 \cdot 2^n - 3n - 3$$
.