

(11) EP 1 184 027 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 06.03.2002 Patentblatt 2002/10

(51) Int Cl.7: A61 K 7/00, A61 K 7/48

(21) Anmeldenummer: 00118952.1

(22) Anmeldetag: 01.09.2000

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(71) Anmelder:

Primacare S.A.
 08902 L'Hospitalet de Llobregat, Barcelona (ES)

 Cognis Deutschland GmbH, Dep. Intellectual Properties
 40551 Düsseldorf (DE) (72) Erfinder:

de Moragas, Maria, Dr.
 08310 Argentona, Barcelona (ES)

 Somigliana, Christian 22020 Torno (TO) (IT)

 Conesa, Christina Amela 08029 Cerdanyola del Vallés, Barcelona (ES)

 Prat Queralt, Esther 03823 Alella (ES)

(74) Vertreter: Fabry, Bernd, Dr. c/o Cognis Deutschland GmbH, CRT-IP, Postfach 13 01 64 40551 Düsseldorf (DE)

(54) Kosmetische Stiftzubereitung

(57) Vorgeschlagen werden Stiftzubereitungen, enthaltend mit Wirkstoffen beladene Chitosanmikrokapseln.

Beschreibung

Gebiet der Erfindung

[0001] Die Erfindung befindet sich auf dem Gebiet der kosmetischen Zubereitungen, speziell auf dem Gebiet der transparenten Deostifte und betrifft Stiftzubereitungen, die einen wirksamen Gehalt an mit Wirkstoffen beladenen Mikrokapseln aufweisen.

Stand der Technik

10

25

35

50

[0002] Kosmetische Stiftpräparate, die als Antitranspirant- oder Deodorantprodukte auf dem Markt zu finden sind, enthalten vornehmlich Seife (Natriumstearat), Ölkörper und Bakterizide. Sie weisen einen alkalischen pH-Wert von ca. 9 auf. Als nachteilig wird vom Verbraucher das mit diesen Stiften verbundene seifige Hautgefühl angesehen. Eine neuere Entwicklung betrifft Stifte, die bekannte Antitranspirantwirkstoffe, wie z.B. Aluminiumchlorhydrat (ACH) enthalten. Sie müssen bei einem sauren pH-Wert von ca. 4 formuliert werden und benötigen dazu besondere Verdickersysteme, wie z.B. Polydiole in Kombination mit Dibenzylidensorbitol, was die Mitverwendung von Alkalien erheblich stört. Daneben gibt es seit vielen Jahren eine Vielzahl von Antitranspirantstiften auf Basis natürlicher oder synthetischer Wachse auf dem Markt, in denen der Wirkstoff als Puder in die Wachsmatrix eingebracht wird. Hierbei ist von Nachteil, daß die Stifte stark fettend sind und häufig ein weißer Rückstand auf der Haut verbleibt.

[0003] Die komplexe Aufgabe der vorliegenden Erfindung hat daher darin bestanden, Stiftpräparate zur Verfügung zu stellen, die frei von den geschilderten Nachteilen sind. Insbesondere sollten die Stifte so beschaffen sein, dass auch in Gegenwart alkalischer Bestandteile, wie z.B. Seifen, saure Wirkstoffe eingearbeitet werden können, ohne dass es zur Bildung störender Salze kommt. Gleichzeitig sollten sich die Stifte durch ein verbessertes Hautgefühl, hohe Konsistenz und Temperaturbeständigkeit sowie Transparenz auszeichnen.

Beschreibung der Erfindung

[0004] Gegenstand der Erfindung sind vorzugsweise klare bzw. transparente Stiftzubereitungen, enthaltend mit Wirkstoffen beladene Mikrokapseln. Die Stifte können wasserhaltig sein, vorzugsweise sind sie jedoch wasserfrei oder praktisch wasserfrei, d.h. der Wassergehalt liegt unter 2 und vorzugsweise unter 1 Gew.-%.

[0005] Überraschenderweise wurde gefunden, dass die erfindungsgemäßen Zubereitungen nicht nur eine ausreichend hohe Konsistenz und Temperaturbeständigkeit zeigen, sondern auch ein vorteilhaftes Hautgefühl vermitteln. Die Zubereitungen erlauben auch in Gegenwart von alkalischen Seifen die Einarbeitung saurer Wirkstoffe, wie z.B. Aluminiumchlorhydrat. Hierbei schließt die Erfindung die Erkenntnis mit ein, dass bei der Formulierung keine Wirkstoffpulver, sondern ohne weiteres auch wäßrige Lösungen eingesetzt werden können, was die Herstellung und die homogene Verteilung im Stift erheblich vereinfacht. Die Stifte sind transparent, in der Anwendung rückstandsfrei und besonders hautverträglich.

Wirkstoffe

[0006] Die Auswahl der zu verkapselnden Wirkstoffe ist für die Lehre der Erfindung zwar von Bedeutung, jedoch nicht entscheidend, da es darauf ankommt, für diesen Zweck hinlänglich bekannte Einsatzstoffe in einer neuen, effizienten Anbietungsform zum Einsatz zu bringen, d.h. in einer Matrix aus Chitosan zu verkapseln. Demzufolge kann der Begriff Wirkstoff sehr breit ausgelegt werden und letztlich alle üblichen Hilfs- und Zusatzstoffe umfassen, die für eine Anwendung im Deobereich vom Fachmann in Betracht gezogen werden, also beispielsweise Ölkörper, Deodorantien, keimhemmende Mittel, Parfümöle, Aromen, Farbstoffe und dergleichen. Insofern besitzt die folgende Auflistung lediglich einen beispielhaften, nicht aber einen abschließenden Charakter.

Ölkörper

[0007] Als zu verkapseinde Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C_6 - C_{22} -Fettsäuren mit linearen oder verzweigten C_6 - C_{22} -Fettalkoholen bzw. Ester von verzweigten C_6 - C_{13} -Carbonsäuren mit linearen oder verzweigten C_6 - C_{22} -Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylsostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylsostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylsostearat, Stearyloleat, Stearylpalmitat, Isostearylsearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylpalmitat, Oleylstearat, Oleylsostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Beherote

nylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C₆-C₂₂-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von C₁₈-C₃₈-Alkylhydroxycarbonsäuren mit linearen oder verzweigten C₆-C₂₂-Fettalkoholen (vgl. DE 19756377 A1), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C₆-C₁₀-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von C6-C18-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-C12-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C₆-C₂₂-Fettalkoholcarbonate, wie z.B. Dicaprylyl Carbonate (Cetiol® CC), Guerbetcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C₆-C₂₂-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Siliciummethicontypen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.

Deodorantien und keimhemmende Mittel

[0008] Kosmetische Deodorantien (Desodorantien), die ebenfalls verkapselt vorliegen können, wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren. Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N'-(3,4 dichlorphenyl)harnstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3,5-dimethyl-phenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)-phenol, 2-Benzyl-4-chlorphenol, 3-(4-Chlorphenoxy)-1,2-propandiol, 3-lod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonocaprinat, Glycerinmonocaprylat, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.

[0009] Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat.

[0010] Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfums unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätheri-

sche Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.

[0011] Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wäßrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:

- > adstringierende Wirkstoffe,
- Ölkomponenten,

10

15

20

30

35

- > nichtionische Emulgatoren,
- Coemulgatoren,
- Konsistenzgeber,
- > Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
- > nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.

[0012]. Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1,2. Aluminiumhydroxyallantoinat, Aluminiumchloridtartrat, Aluminium-Zirkonium-Trichlorohydrat, Aluminium-Zirkonium-tetrachlorohydrat, Aluminium-Zirkonium-pentachlorohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin. Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:

- > entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
- > synthetische hautschützende Wirkstoffe und/oder
- > öllösliche Parfümöle.

[0013] Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert-Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.

Parfümöle und Aromen

[0014] Als Parfümöle, die verkapselt vorliegen können, seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethyllsobutyrat, p-tert. -Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol,

Benzylaceton, Cyclamenaldehyd, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.

[0015] Als Aromen kommen beispielsweise Pfefferminzöl, Krauseminzöl, Anisöl, Sternanisöl, Kümmelöl, Eukalyptusöl, Fenchelöl, Citronenöl, Wintergrünöl, Nelkenöl, Menthol und dergleichen in Frage.

Farbstoffe

25

35

50

[0016] Als Farbstoffe für die Verkapselung können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Beispiele sind Kochenillerot A (C.I. 16255), Patentblau V (C.I.42051), Indigotin (C.I.73015), Chlorophyllin (C.I. 75810), Chinolingelb (C.I.47005), Titandioxid (C.I.77891), Indanthrenblau RS (C.I. 69800) und Krapplack (C.I.58000).
Als Lumineszenzfarbstoff kann auch Luminol enthalten sein.

Chitosanmikrokapseln

[0017] Unter dem Begriff "Mikrokapsel" werden vom Fachmann sphärische Aggregate mit einem Durchmesser im Bereich von etwa 0,1 bis etwa 5 mm verstanden, die mindestens einen festen oder flüssigen Kern enthalten, der von mindestens einer kontinuierlichen Hülle umschlossen ist. Genauer gesagt handelt es sich um mit filmbildenden Polymeren umhüllte feindisperse flüssige oder feste Phasen, bei deren Herstellung sich die Polymere nach Emulgierung und Koazervation oder Grenzflächenpolymerisation auf dem einzuhüllenden Material niederschlagen. Nach einem anderen Verfahren werden flüssige Wirkstoffe in einer Matrix aufgenommen ("microsponge"), die als Mikropartikel zusätzlich mit filmbildenden Polymeren umhüllt sein können. Die mikroskopisch kleinen Kapseln, auch Nanokapseln genannt, lassen sich wie Pulver trocknen. Neben einkernigen Mikrokapseln sind auch mehrkernige Aggregate, auch Mikrosphären genannt, bekannt, die zwei oder mehr Kerne im kontinuierlichen Hüllmaterial verteilt enthalten. Ein- oder mehrkernige Mikrokapseln können zudem von einer zusätzlichen zweiten, dritten etc. Hülle umschlossen sein. Die Hülle kann aus natürlichen, halbsynthetischen oder synthetischen Materialien bestehen. Natürlich Hüllmaterialien sind beispielsweise Gummi Arabicum, Agar-Agar, Agarose, Maltodextrine, Alginsäure bzw. ihre Salze, z.B. Natrium- oder Calciumalginat, Fette und Fettsäuren, Cetylalkohol, Collagen, Chitosan, Lecithine, Gelatine, Albumin, Schellack, Polysaccaride, wie Stärke oder Dextran, Polypeptide, Proteinghydrolysate, Sucrose und Wachse. Halbsynthetische Hüllmaterialien sind unter anderem chemisch modifizierte Cellulosen, insbesondere Celluloseester und -ether, z.B. Celluloseacetat, Ethylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose und Carboxymethylcellulose, sowie Stärkederivate, insbesondere Stärkeether und -ester. Synthetische Hüllmaterialien sind beispielsweise Polymere wie Polyacrylate, Polyamide, Polyvinylalkohol oder Polyvinylpyrrolidon.

[0018] Beispiele für Mikrokapseln des Stands der Technik sind folgende Handelsprodukte (in Klammern angegeben ist jeweils das Hüllmaterial): Hallcrest Microcapsules (Gelatine, Gummi Arabicum), Coletica Thalaspheres (maritimes Collagen), Lipotec Millicapseln (Alginsäure, Agar-Agar), Induchem Unispheres (Lactose, mikrokristalline Cellulose, Hydroxypropylmethylcellulose); Unicerin C30 (Lactose, mikrokristalline Cellulose, Hydroxypropylmethylcellulose), Kobo Glycospheres (modifizierte Stärke, Fettsäureester, Phospholipide), Softspheres (modifiziertes Agar-Agar) und Kuhs Probiol Nanospheres (Phospholipide).

[0019] In diesem Zusammenhang sei auch auf die deutsche Patentanmeldung DE 19712978 A1 (Henkel) hingewiesen, aus der Chitosanmikrosphären bekannt sind, die man erhält, indem man Chitosane oder Chitosanderivate mit Ölkörpern vermischt und diese Mischungen in alkalisch eingestellte Tensidlösungen einbringt. Aus der deutschen Patentanmeldung DE 19756452 A1 (Henkel) ist ferner auch die Verwendung von Chitosan als Verkapselungsmaterial für Tocopherol bekannt. Chitosanmikrokapseln und Verfahren zu ihrer Herstellung sind Gegenstand früherer Patenanmeldungen der Pantentanmelderin. Man unterscheidet dabei im wesentlichen die beiden folgenden Verfahren:

- (1) Mikrokapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllmembran und einer mindestens einen Wirkstoff enthaltenden Matrix, erhältlich, indem man
 - (a) aus Gelbildnern, Chitosanen und Wirkstoffen eine Matrix zubereitet,
 - (b) gegebenenfalls die Matrix in einer Ölphase dispergiert,
 - (c) die dispergierte Matrix mit wäßrigen Lösungen anionischer Polymere behandelt und gegebenenfalls dabei die Ölphase entfernt.
- (2) Mikrokapseln mit mittleren Durchmessern im Bereich von 0,1 bis 5 mm, bestehend aus einer Hüllmembran

und einer mindestens einen Wirkstoff enthaltenden Matrix, erhältlich, indem man

- (a) aus Gelbildnern, anionischen Polymeren und Wirkstoffen eine Matrix zubereitet,
- (b) gegebenenfalls die Matrix in einer Ölphase dispergiert,
- (c) die dispergierte Matrix mit wäßrigen Chitosanlösungen behandelt und gegebenenfalls dab i die Ölphase

Gelbildner

[0020] Als Gelbildner vorzugsweise solche Stoffe in Betracht gezogen, welche die Eigenschaft zeigen in wäßriger Lösung bei Temperaturen oberhalb von 40 °C Gele zu bilden. Typische Beispiele hierfür sind Hetereopolysaccharide und Proteine. Als thermogelierende Heteropolysaccharide kommen vorzugsweise Agarosen in Frage, welche in Form des aus Rotalgen zu gewinnenden Agar-Agar auch zusammen mit bis zu 30 Gew.-% nichtgelbildenden Agaropektinen vorliegen können. Hauptbestandteil der Agarosen sind lineare Polysaccharide aus D-Galaktose und 3,6-Anhydro-L-galaktose, die alternierend β-1,3- und β-1,4-glykosidisch verknüpft sind. Die Heteropolysaccharide besitzen vorzugsweise ein Molekulargewicht im Bereich von 110.000 bis 160.000 und sind sowohl farb- als auch geschmacklos. Als Alternativen kommen Pektine, Xanthane (auch Xanthan Gum) sowie deren Mischungen in Frage. Es sind weiterhin solche Typen bevorzugt, die noch in 1-Gew.-%iger wäßriger Lösung Gele bilden, die nicht unterhalb von 80 °C schmelzen und sich bereits oberhalb von 40 °C wieder verfestigen. Aus der Gruppe der thermogelierenden Proteine seien exemplarisch die verschiedenen Gelatine-Typen genannt.

Chitosane

30

35

40

[0021] Chitosane stellen Biopolymere dar und werden zur Gruppe der Hydrokolloide gezählt. Chemisch betrachtet handelt es sich um partiell deacetylierte Chitine unterschiedlichen Molekulargewichtes, die den folgenden - idealisierten - Monomerbaustein enthalten:

[0022] Im Gegensatz zu den meisten Hydrokolloiden, die im Bereich biologischer pH-Werte negativ geladen sind, stellen Chitosane unter diesen Bedingungen kationische Biopolymere dar. Die positiv geladenen Chitosane können mit entgegengesetzt geladenen Oberflächen in Wechselwirkung treten und werden daher in kosmetischen Haar- und Körperpflegemitteln sowie pharmazeutischen Zubereitungen eingesetzt (vgl. Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A6, Weinheim, Verlag Chemie, 1986, S. 231-232). Übersichten zu diesem Thema sind auch beispielsweise von B. Gesslein et al. in HAPPI 27, 57 (1990), O. Skaugrud in Drug Cosm.Ind. 148, 24 (1991) und E. Onsoyen et al. in Seifen-Öle-Fette-Wachse 117, 633 (1991) erschienen. Zur Herstellung der Chitosane geht man von Chitin, vorzugsweise den Schalenresten von Krustentieren aus, die als billige Rohstoffe in großen Mengen zur Verfügung stehen. Das Chitin wird dabei in einem Verfahren, das erstmals von Hackmann et al. beschrieben worden ist, üblicherweise zunächst durch Zusatz von Basen deproteiniert, durch Zugabe von Mineralsäuren demineralisiert und schließlich durch Zugabe von starken Basen deacetyliert, wobei die Molekulargewichte über ein breites Spektrum verteilt sein können. Entsprechende Verfahren sind beispielsweise aus Makromol. Chem. 177, 3589 (1976) oder der französischen Patentanmeldung FR 2701266 A bekannt. Vorzugsweise werden solche Typen eingesetzt, wie sie in den deutschen Patentanmeldungen DE 4442987 A1 und DE 19537001 A1 (Henkel) offenbart werden und die ein durchschnittliches Molekulargewicht von 10.000 bis 500.000 bzw. 800.000 bis 1.200.000 Dalton aufweisen und/oder eine Viskosität nach Brookfield (1 Gew.-%ig in Glycolsäure) unterhalb von 5000 mPas, einen Deacetylierungsgrad im Bereich von 80 bis 88 % und einem Aschegehalt von weniger als 0,3 Gew.-% besitzen. Aus Gründ in der besseren Wasserlöslichkeit werden die Chitosane in der Regel in Form ihrer Salze, vorzugsweise als Glycolat eingesetzt.

Anionische Polym re

10

15

20

30

35

40

45

50

55

[0023] Die anionischen Polymeren haben die Aufgabe, mit den Chitosanen Membranen zu bilden. Je nach Herstellverfahren können sie in der Matrix enthalten sein (dann erfolgt die Membranbildung durch Behandlung mit den Chitosanlösungen) od r als Fällungsmittel für die in der Matrix enthaltenen Chitosane dienen. Als anionische Polymere eignen sich vorzugsweise Salze der Alginsäure. Bei der Alginsäure handelt es sich um ein Gemisch carboxylgruppenhaltiger Polysaccharide mit folgendem idealisierten Monomerbaustein:

[0024] Das durchschnittliche Molekulargewicht der Alginsäuren bzw. der Alginate liegt im Bereich von 150.000 bis 250.000. Dabei sind als Salze der Alginsäure sowohl deren vollständige als auch deren partiellen Neutralisationsprodukte zu verstehen, insbesondere die Alkalisalze und hierunter vorzugsweise das Natriumalginat ("Algin") sowie die Ammonium- und Erdalkalisalze. besonders bevorzugt sind Mischalginate, wie z.B. Natrium/Magnesium- oder Natrium/ Calciumalginate. In einer alternativen Ausführungsform der Erfindung kommen für diesen Zweck jedoch auch anionische Chitosanderivate, wie z.B. Carboxylierungs- und vor allem Succinylierungsprodukte in Frage, wie sie beispielsweise in der deutschen Patentschrift DE 3713099 C2 (L'Oréal) sowie der deutschen Patentanmeldung DE 19604180 A1 (Henkel) beschrieben werden.

Herstellung der Matrix

[0025] Zur Herstellung der Chitosanmikrokapseln stellt man beispielsweise eine 1 bis 10, vorzugsweise 2 bis 5 Gew-%ige wäßrige Lösung des Gelbildners, vorzugsweise des Agar-Agars her und erhitzt diese unter Rückfluß. In der Siedehitze, vorzugsweise bei 80 bis 100°C, wird eine zweite wäßrige Lösung zugegeben, welche das Chitosan in Mengen von 0,1 bis 2, vorzugsweise 0,25 bis 0,5 Gew.-% und den Wirkstoff in Mengen von 0,1 bis 25 und insbesondere 0,25 bis 10 Gew.-% enthält; diese Mischung wird als Matrix bezeichnet. Die Beladung der Mikrokapseln mit Wirkstoffen kann daher ebenfalls 0,1 bis 25 Gew.-% bezogen auf das Kapselgewicht betragen. Falls gewünscht, können zu diesem Zeitpunkt zur Viskositätseinstellung auch wasserunlösliche Bestandteile, beispielsweise anorganische Pigmente zugegeben werden, wobei man diese in der Regel in Form von wäßrigen oder wäßrig/alkoholischen Dispersionen zusetzt. Zur Emulgierung bzw. Dispergierung der Wirkstoffe kann es ferner von Nutzen sein, der Matrix Emulgatoren und/oder Lösungsvermittler hinzuzugeben.

Emulgatoren

[0026] Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:

- > Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
- > Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
- > Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusõl und/oder gehärtetes Ricinusõl;
- > Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
- Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;

- > Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
- Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
- Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
- Wollwachsalkohole;

10

- Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
- Polyalkylenglycole sowie
- Glycerincarbonat.
- [0027] Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. C_{12/18}-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
 - [0028] Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, dass sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
 - [0029] Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäuremonoglycerid, Olsäuremonoglycerid, Olsäurediglycerid, Ricinolsäuremonoglycerid, Linolsäuremonoglycerid, Linolsäuremonoglycerid, Linolsäuremonoglycerid, Linolensäuremonoglycerid, Linolensäuremonoglycerid, Linolensäuremonoglycerid, Weinsäuremonoglycerid, Weinsäuremonoglycerid, Weinsäuremonoglycerid, Gitronensäuremonoglycerid, Äpfelsäuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
- 35 [0030] Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandiisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbitanmonoorucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitansesquitartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonomaleat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandinaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
 - Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® GI 34), Polyglyceryl-3 Oleate, Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische.
 - [0031] Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Talgfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
 - [0032] Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Beson-

ders bevorzugt ist das unter der CTFA-Bezeichnung *Cocamidopropyl Betaine* bekannte Fettsäureamid-Derivat. Typische anionische Emulgatoren sind darüber hinaus aliphatische Fettsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Palmitinsäure, Stearinsäure oder Behensäure, sowie Dicarbonsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Azelainsäure oder Sebacinsäure. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C_{8/18}-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine-COOH- oder -SO₃H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C_{12/18}-Acylsarcosin.

[0033] Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind.

Hydrotrope

15

25

30

35

[0034] Als Lösungsvermittler oder Hydrotrope eignen sich beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Letztere besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind

- ➤ Glycerin:
- > Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
- > technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
- > Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
- > Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methylund Butylglucosid;
- > Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
- > Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
- > Aminozucker, wie beispielsweise Glucamin;
- > Dialkoholamine, wie Diethanolamin oder 2-Amino-1,3-propandiol.

[0035] Die Konzentration der Emulgatoren kann bezogen auf die Wirkstoffe 1 bis 20 und vorzugsweise 5 bis 10 Gew.-% betragen. Die Menge an Lösungsvermittler richtet sich ausschließlich nach der Wasserlöslichkeit bzw. Wasserdispergierbarkeit der Wirkstoffe.

40 Herstellung der Mikrokapseln

[0036] Nach der Herstellung der Matrix aus Gelbildner, Chitosan und Wirkstoff wird in einer besonderen Ausführungsform des Verfahrens die Matrix in einer Ölphase unter starker Scherung sehr fein dispergiert, um bei der nachfolgenden Verkapselung möglichst kleine Teilchen herzustellen. Dabei hat es sich als besonders vorteilhaft erwiesen, die Matrix auf Temperaturen im Bereich von 40 bis 60 °C zu erwärmen, während man die Ölphase auf 10 bis 20 °C kühlt. Im dritten Schritt erfolgt dann die eigentliche Verkapselung, d.h. die Ausbildung der Hüllmembran durch Inkontaktbringen des Chitosans in der Matrix mit den anionischen Polymeren. Hierzu empfiehlt es sich, die in der Ölphase dispergierte Matrix bei einer Temperatur im Bereich von 40 bis 100, vorzugsweise 50 bis 60 °C mit einer wäßrigen, etwa 0,1 bis 3 und vorzugsweise 0,25 bis 0,5 Gew.-%ige wäßrigen Lösung des Anionpolymers, vorzugsweise des Alginats zu waschen und dabei gleichzeitig die Ölphase zu entfernen.

[0037] In gleicher Weise ist es möglich, im ersten Schritt eine Matrix aus Gelbildner, Anionpolymer und Wirkstoff herzustellen, die Matrix in einer Ölphase zu dispergieren und dann die Kapseln durch Fällung mit einer Chitosanlösung herzustellen. Dazu reicht es aus, in der obigen Herstellvorschrift nur jeweils "Anionpolymer" und "Chitosan" zu vertauschen und die Mengenangaben beizubehalten. In zwei weiteren alternativen Ausführungsformen kann jeweils auf die Dispergierung in einer Ölphase verzichtet werden, dann werden jedoch in der Folge eher größere Kapseln erhalten. Somit stehen zur Herstellung der Chitosanmikrokapseln insgesamt vier Verfahren zur Verfügung. Die dabei resultierenden wäßrigen Zubereitungen weisen in der Regel einen Mikrokapselgehalt im Bereich von 1 bis 10 Gew.-% auf. In manchen Fällen kann es dabei von Vorteil sein, wenn die Lösung der Polymeren weitere Inhaltsstoffe, beispielsweise

Emulgatoren oder Konservierungsmittel enthält. Nach Filtration werden Mikrokapseln erhalten, welch im Mittel ein n Durchmesser im Bereich von vorzugsweise 1 bis 3 mm aufweisen. Es empfiehlt sich, die Kapseln zu sieben, um eine möglichst gleichmäßige Größenverteilung sicherzustellen. Die so erhaltenen Mikrokapseln können im herstellungsbedingten Rahmen eine beliebige Form aufweisen, sie sind jedoch bevorzugt näherungsweise kugelförmig. Entsprechende Produkte sind beispielsweise von der Firma Primacare, S.L. unter den Marken Primaspheres® und Primasponges® im Markt.

Gewerbliche Anwendbarkeit

[0038] Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der mit Wirkstoffen beladenen Chitosanmikrokapseln zur Herstellung von Stiftzubereitungen, vorzugsweise klaren bzw. transparenten Mitteln, die ganz oder praktisch vollständig wasserfrei sind, welche die Mikrokapseln in Mengen von 1 bis 10, vorzugsweise 2 bis 15 und insbesondere 5 bis 10 Gew.% -bezogen auf die Mittel - enthalten können.

15 Hilfs- und Zusatzstoffe

[0039] Die stiftförmigen Zubereitungen können neben den Chitosanmikrokapseln weitere nichtverkapselte Hilfs- und Zusatzstoffe enthalten, die im wesentlichen mit den auch für die Verkapselung bzw. Herstellung der Kapseln in Frage kommenden Wirkstoffen und dergleichen identisch sein können. Dabei ist es auch möglich verkapselte und unverkapselte Wirkstoffe nebeneinander einzusetzen. Obschon grundsätzlich auch für eine Verkapselung in Frage kommend, enthalten die erfindungsgemäßen Mittel neben den bereits genannten Emulgatoren und Hydrotropen die folgenden Zusatzstoffe in typischen Mengen jedoch bevorzugt unverkapselt:

Tenside

20

25

35

[0040] Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder amphotere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, $Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, \\ \alpha\text{-Methylestersulfonate}, Sulfofetts\"{a}uren, \\ \alpha\text{-Methylestersulfonate}, Sulfofetts\emph{a}uren, \\ \alpha\text{-$ Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl (ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk (en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Typische Beispiele für besonders geeignete milde, d. h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder $\label{eq:decomposition} Dialkylsulfosuccinate, Fetts\"{a}ureisethionate, Fetts\"{a}uresarcosinate, Fetts\"{a}uretauride, Fetts\"{a}ureglutamate, α-Olefinsul-like the control of the cont$ fonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.

Fette und Wachse

[0041] Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen, als Wachse kommen u.a. natürliche

Wachse, wie z.B. Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC). Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1,2-Diacyl-sn-glycerin-3-phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.

Periglanzwachse

15

[0042] Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxy-substituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.

Konsistenzgener und Verdickungsmittel

[0043] Konsistenzgeber und Verdickungsmittel stellen bevorzugte Hilfsstoffe für die Herstellung der Stiftformulierungen dar, da sie beispielsweise durch Aufbau eines intermolekularen Netzwerkes dafür Sorge tragen, dass die Mikrokapseln nicht separieren. Für diesen Zweck kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethyl- oder Hydroxypropylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® und Pemulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid. Als besonders wirkungsvoll haben sich vor allem Bentonite, wie z.B. Bentone® Gel VS-5PC (Rheox) erwiesen, bei dem es sich um eine Mischung aus Cyclopentasiloxan, Disteardimonium Hectorit und Propylencarbonat handelt. Die Verdickungsmittel werden üblicherweise in Mengen von 0,5 bis 15 und vorzugsweise 1 bis 10 Gew.-% eingesetzt.

Überfettungsmittel

[0044] Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.

Stabilisatoren

50

55

[0045] Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.

<u>Polymere</u>

[0046] Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte

Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationisch Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol.

[0047] Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/ Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmeth-acrylat/tert.Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/ Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cosm.Toil. 108, 95 (1993) aufgeführt.

Siliconverbindungen

20

30

35

40

45

50

[0048] Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91, 27 (1976).

UV-Lichtschutzfilter und Antioxidantien

[0049] Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:

- > 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher wie in der EP 0693471 B1 beschrieben;
- > 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoe-säureamylester;
- > Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxy-zimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octocrylene);
- Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-iso-propylbenzylester, Salicylsäurehomomenthylester;
- > Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
- Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexyl-ester;
- > Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin und Octyl Triazon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
- > Propan-1,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1,3-dion;
- > Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.

[0050] Als wasserlösliche Substanzen kommen in Frage:

- > 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
- > Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxyb nzophenon-5-sulfonsäure

12

und ihre Salz ;

- Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
- [0051] Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion. 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol® 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Besonders günstige Kombinationen bestehen aus den Derivate des Benzoylmethans" z.B. 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol® 1789) und 2-Cyano-3,3-phenylzimtsäure-2-ethyl-hexylester (Octocrylene) in Kombination mit Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester und/oder 4-Methoxyzimtsäurepropylester und/oder 4-Methoxyzimtsäureisoamylester. Vorteilhaft werden deartige Kombinationen mit wasserlöslichen Filtern wie z.B. 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze kombiniert.
- [0052] Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T.805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) sowie Part.Kosm. 3, 11 (1999) zu entnehmen.
 - [0053] Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D, L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, β-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, Y-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), a-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnSO₄) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.

Biogene Wirkstoffe

35

40

[0054] Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, (Desoxy)Ribonucleinsäure und deren Fragmentierungsprodukte, β-Glucane, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte, wie z. B. Prunusextrakt, Bambaranussextrakt und Vitaminkomplexe zu verstehen.

Insekten-Repellentien, Selbstbräuner und Depigmentierungsmittel

[0055] Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1,2-Pentandiol oder Ethyl Butylacetylaminopropionate in Frage. Als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispielsweise Arbutin, Ferulasäur , Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage.

Konservierungsmittel

[0056] Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die unter der Bezeichnung Surfacine® bekannten Silberkomplexe und die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen. [0057] Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.

Beispiele

15

[0058] Beispiel H1. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in 88 ml Wasser und dann mit einer Zubereitung von 25 g Chitosan (Hydagen® DCMF, 1 Gew.-%ig in Glycolsäure, Henkel KGaA, Düsseldorf/FRG), 10 g Paraffinöl, 0,5 g Phenonip® (Konservierungmittelmischung enthaltend Phenoxyethanol und Parabene) und 0,5 g Polysorbat-20 (Tween® 20, ICI) in 64 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 60 °C erwärmt und in eine 0,5 Gew.-%ige Natriumalginatlösung getropft. Zum Erhalt von Mikrokapseln gleichen Durchmessers wurden die Zubereitungen anschließend gesiebt.

[0059] Beispiel H2. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in ad 100 g Wasser und dann mit einer Zubereitung von 25 g Chitosan (Hydagen® DCMF, 1 Gew.-%ig in Glycolsäure, Henkel KGaA, Düsseldorf/FRG), 0,5 g Trichlosan und 0,5 g Phenonip® (in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 50 °C temperiert und unter starken Rühren im 2,5fachen Volumen Paraffinöl, das zuvor auf 15 °C gekühlt worden war, dispergiert. Die Dispersion wurde anschließend mit einer wäßrigen Lösung enthaltend 1 Gew.-% Natriumlaurylsulfat und 0,5 Gew.-% Natriumalginat und dann mehrfach mit einer 0,5 Gew.-%igen wäßrigen Phenoniplösung gewaschen, wobei die Ölphase entfernt wurde. Nach dem Sieben wurde eine wäßrige Zubereitung erhalten, die 8 Gew.-% Mikrokapseln mit einem mittleren Durchmesser von 1 mm enthielt.

[0060] Beispiel H3. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in 88 ml Wasser und dann mit einer Zubereitung von 2,5 g Natriumalginat in Form einer 10 Gew.-%igen wäßrigen Lösung, 5 g Squalan (Cetioi® SQ, Cognis Deutschland GmbH), 0,5 g Phenonip® und 0,5 g Polysorbat-20 (Tween® 20, ICI) in 64 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 60 °C erwärmt und in eine 1 Gew.-%ige Lösung von Chitosanglycolat in Wasser getropft. Zum Erhalt von Mikrokapseln gleichen Durchmessers wurden die Zubereitungen anschließend gesiebt.

[0061] Beispiel H4. In einem 500-ml-Dreihalskolben mit Rührer und Rückflußkühler wurden in der Siedehitze 3 g Agar-Agar in 200 ml Wasser gelöst. Anschließend wurde die Mischung innerhalb von etwa 30 min unter starkem Rühren zunächst mit einer homogenen Dispersionen von 10 g Glycerin und 2 g Talk in ad 100 g Wasser und dann mit einer Zubereitung von 2,5 g Natriumalginat in Form einer 10 Gew.-%igen wäßrigen Lösung, 5 g Dicaprylyl Carbonat (Cetiol® CC, Cognis Deutschland GmbH) und 0,5 g Phenonip® (in ad 100 g Wasser versetzt. Die erhaltene Matrix wurde filtriert, auf 50 °C temperiert und unter starken Rühren im 2,5fachen Volumen Paraffinöl, das zuvor auf 15 °C gekühlt worden war, dispergiert. Die Dispersion wurde anschließend mit einer wäßrigen Lösung enthaltend 1 Gew.-% Natriumlaurylsulfat und 0,5 Gew.-% Chitosanglycolat und dann mehrfach mit einer 0,5 Gew.-%igen wäßrigen Phenoniplösung gewaschen, wobei die Ölphase entfernt wurde. Nach dem Sieben wurde eine wäßrige Zubereitung erhalten, die 8 Gew.-% Mikrokapseln mit einem mittleren Durchmesser von 1 mm enthielt.

<u>Tabelle 1</u>
Klare Stiftformulierungen (Mengenangaben als Gew.-%)

5	Zusammensetzung (INCI)	1	2	3	4	5
	Stearyl Alcohol	21,0	21,0		•	-
	Dipropylene Glycol	-		65,0	65,0	65,0
10 · · ·	Propylene Glycol	•		14,0	14,0	14,0
	PEG 400		•	5,0	5,0	5,0
	Hydrogenated Castor Oil	4,0	4,0	<u> </u>	-	-
15	Hexyldecanol (and) Hexyldecyl Laurate	6,0	6,0	-	•	•
	Dicaprylyl Ether	3,0	3,0	-		-
	Aluminium Zirconium Tetrachlo- rohydrate	15,0	15,0	<u>-</u>	-	. -
20	Dibenzylidene Sorbitol			2,5	2,5	2,5
	Cyclopentasiloxane (and) Disteardimonium Hectorite (and) Propylene Carbonate	10,0	10,0	<u>-</u>	•	•
25	Hydroxy Propyl Cellulose	<u>.</u>	•	1,0	1,0	1,0
30	Cyclomethicone	38,0	38,0	-	-	-
	Mikrokapseln gemäß Bsp. 1	2,0	-	5,0	-	-
	Mikrokapseln gemäß Bsp. 2	1,0	•	-	•	-
	Mikrokapseln gemäß Bsp. 3	-	3,0		7,0	<u> </u>
	Mikrokapseln gemäß Bsp. 4		_	<u> </u>	<u> </u>	10,0
35	Wasser			ad 100	· · · · · · · · · · · · · · · · · · ·	

40 Patentansprüche

- 1. Stiftzubereitungen, enthaltend mit Wirkstoffen beladene Chitosanmikrokapseln.
- Zubereitungen nach Anspruch 1, dadurch gekennzeichnet, dass sie Wirkstoffe enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Ölkörpern, Deodorantien, keimhemmenden Mitteln, Parfümölen und Farbstoffen.
 - 3. Zubereitungen nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass sie mit Wirkstoffen beladene Chitosanmikrokapseln enthalten, die man erhält, indem man
 - (a) aus Gelbildnern, Chitosanen und Wirkstoffen eine Matrix zubereitet und
 - (b) die Matrix mit wäßrigen Lösungen anionischer Polymere behandelt .
- 4. Zubereitungen nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass sie mit Wirkstoffen beladene Chitosanmikrokapseln enthalten, die man erhält, indem man
 - (a) aus Gelbildnern, Chitosanen und Wirkstoffen eine Matrix zubereitet,
 - (b) die Matrix in einer Ölphase dispergiert,

- (c) die dispergierte Matrix mit wäßrigen Lösungen anionischer Polymere behandelt und dabei die Ölphase entfernt.
- 5. Zubereitungen nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass sie mit Wirkstoffen beladene Chitosanmikrokapseln enthalten, die man erhält, indem man
 - (a) aus Gelbildnern, anionischen Polymeren und Wirkstoffen eine Matrix zubereitet und
 - (b) die Matrix mit wäßrigen Chitosanlösungen behandelt .
- 10 6. Zubereitungen nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass sie mit Wirkstoffen,beladene Chitosanmikrokapseln enthalten, die man erhält, indem man
 - (a) aus Gelbildnern, anionischen Polymeren und Wirkstoffen eine Matrix zubereitet,
 - (b) die Matrix in einer Ölphase dispergiert,

15

25

30

35

40

50

- (c) die dispergierte Matrix mit wäßrigen Chitosanlösungen behandelt und dabei die Ölphase entfernt.
- 7. Zubereitungen nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzelchnet, dass die Mikrokapseln als Gelbildner Heteropolysaccharide oder Proteine enthalten.
- Zubereitungen nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Mikrokapseln als anionische Polymere Salze der Alginsäure oder anionische Chitosanderivate enthalten.
 - Zubereitungen nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sie wasserfrei sind.
 - 10. Verwendung von mit Wirkstoffen beladenen Mikrokapseln zur Herstellung von Stiftzubereitungen.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 00 11 8952

	EINSCHLÄGIGI			
Ketegorie	Kerinzelchnung des Dollui der maßgeblich	ments mit Angabe, soweit enforderlich, en Telle	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (InLCL7)
A	WO 92 06672 A (REVI 30. April 1992 (199 * das ganze Dokumen	92-04-30)	1-10	A61K7/00 A61K7/48
A,D	DE 197 12 978 A (HI 1. Oktober 1998 (19 * das ganze Dokumen	998-10-01)	1-10	
À	₩0 00 01373 A (ECOL FEDERALE DE LAUSANE 13. Januar 2000 (20 * das ganze Dokumer	i) 1000-01-13)	1-10	
A	US 6 096 344 A (LIL 1. August 2000 (200 * das ganze Dokumer	00-08-01)	1-10	
E	EP 1 064 910 A (PRI 3. Januar 2001 (200 + das ganze Dokumer	01-01-03)	1-10	
	•			RECHERCHIERTE SACHGEBIETE (Inl.Cl.7)
				A61K
	•			
i				
	•	••		İ
	•			
				1
Ì				
Der vo	rliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt		
	Rederchenost	Abschlußdatum der Recherche		Prûfer
	DEN HAAG	7. Februar 2001	F1:	scher, J.P.
X : won Y : won	ATEGORIE DER GENANNTEN DOK besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung ren Verditentlichung deraelben Kate	E: Siteres Patent tet nach dem Ann print einer D: in der Anmeld	zugrunde flegende dokument, das jed neldedatum veröffe lung angeführtes D Bründen angeführte	intlicht worden ist okument
A : tech O : nich	nologischer Hintergrund tschriftliche Offenberung cheniteratur	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		aebnemmilanierade.

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 00 11 8952

In diesem Anhang sind die Mitglieder der Patentfamtilen der im obengenannten europäischen Recherchenbericht angeführten Patentrokumente angegeben. Die Angeben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angeben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

07-02-2001

Im Recherchenbericht angeführtes Patentidokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung		
WO	9206672	A	30-04-1992	US	5194262 A	16-03-1993	
				AU -	657107 B	02-03-1995	
				AU	8940591 A	20-05-1992	
				CA	2094513 A,C	23-04-1992	
				EP	0589883 A	06-04-1994	
				IL	99804 A	31-10-1996	
			·	NZ	240300 A	27-09-1994	
				US	5271934 A	21-12-199:	
				ZA	9108414 A	29-07-199	
DE	19712978	A	01-10-1998.	AU	7036598 A	22-10-199	
				WO	9843609 A	08-10-1998	
	•			EP	0969807 A	12-01-200	
WO	0001373	A	13-01-2000	AU	4636699 A	24-01-200	
US	6096344	A	01-08-2000	KEIN	E		
EP	1064910	Α	03-01-2001	WO	0101929 A	11-01-200	

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82