Développement. Le théorème de prolongement de Tietze

Proposition 1. Soient E et F deux espaces de Banach et $T \in \mathcal{L}(E,F)$ une application linéaire continue. On suppose qu'elle est *presque surjective*, c'est-à-dire qu'il existe deux réels $\alpha \in]0,1[$ et C>0 tels que

$$\forall y \in \overline{B}_F(0,1), \exists x \in E, \qquad \|y - Tx\| \leqslant \alpha \quad \text{et} \quad \|x\| \leqslant C.$$
 (1)

Alors elle est surjective et, plus précisément, on a

$$\forall y \in \overline{B}_F(0,1), \exists x \in E, \quad y = Tx \text{ et } ||x|| \leqslant \frac{C}{1-\alpha}.$$

Preuve Soit $y \in E$ un vecteur tel que $||y|| \le 1$. Construisons une suite $(x_n)_{n \ge 1}$ de E telle que, pour tout entier $n \ge 1$, on ait

$$||x_n|| \leqslant C$$
 et $||y - Tx_1 - \alpha Tx_2 - \dots - \alpha^{n-1} Tx_n|| \leqslant \alpha^n$. (2)

Pour cela, on procède par récurrence sur l'entier n. L'hypothèse (1) nous assure l'existence d'un tel vecteur x_1 . Soit $n \ge 1$ un entier. On suppose avoir construit de tels vecteurs x_1, \ldots, x_n . Alors

$$\left\| \frac{y - Tx_1 - \alpha Tx_2 - \dots - \alpha^{n-1} Tx_n}{\alpha^n} \right\| \leqslant 1.$$

L'hypothèse (1) fournit alors un vecteur $x_{n+1} \in E$ tel que

$$\left\| \frac{y - Tx_1 - \alpha Tx_2 - \dots - \alpha^{n-1} Tx_n}{\alpha^n} - Tx_{n+1} \right\| \leqslant \alpha \quad \text{et} \quad \|x_{n+1}\| \leqslant C,$$

c'est-à-dire vérifiant la condition (2).

Comme $\|\alpha^{n-1}x_n\| \leq C\alpha^{n-1}$ avec $\alpha \in]0,1[$ pour $n \geq 1$, la série $\sum_{n\geq 1}\alpha^{n-1}x_n$ converge absolument dans E. Comme l'espace E est complet, cette dernière converge dans E. Grâce à l'inégalité triangulaire, sa somme $x \in E$ vérifie alors

$$||x|| \leqslant \sum_{n=1}^{+\infty} C\alpha^{n-1} = \frac{C}{1-\alpha}.$$

Enfin, comme l'application T est continue, un passage à la limite dans l'inégalité (2) donne $||y - Tx|| \le 0$, c'est-à-dire y = Tx.

Théorème 2. Soient X un espace métrique et $Y \subset X$ une partie fermée. Toute application continue $g_0: Y \longrightarrow \mathbf{R}$ se prolonge en une application continue $f_0: X \longrightarrow \mathbf{R}$.

Preuve • Première étape. Les espaces $\mathscr{C}_b(X)$ et $\mathscr{C}_b(Y)$ des fonctions continues bornées sur X et Y sont de Banach. Considérons l'application linéaire continue

$$T \colon \left| \mathscr{C}_{\mathrm{b}}(X) \longrightarrow \mathscr{C}_{\mathrm{b}}(Y) \right.$$
$$f \longmapsto f|_{Y}.$$

Montrons qu'elle est presque surjective avec C=1/3 et $\alpha=2/3$. Soit $g\in \mathscr{C}_{\mathrm{b}}(X)$ une fonction telle que $\|g\|_{\infty}\leqslant 1$. Posons

$$Y^+ := \{x \in Y \mid 1/3 \le g(x) \le 1\}$$
 et $Y^- := \{x \in Y \mid -1 \le g(x) \le -1/3\}$

La fonction $f: X \longrightarrow \mathbf{R}$ définie par

$$f(x) = \frac{1}{3} \frac{d(x, Y^{-}) - d(x, Y^{+})}{d(x, Y^{-}) + d(x, Y^{+})}, \qquad x \in X.$$

est continue et bornée, c'est-à-dire appartient à $\mathscr{C}_{\mathrm{b}}(X)$, et elle vérifie $||f||_{\infty} \leq 1/3$. Montrons que $||Tf - g||_{\infty} \leq 2/3$. Soit $x \in Y$. On distinguons trois cas.

- Si $x \in Y^+$, alors

$$g(x) - f(x) = g(x) - \frac{1}{3} \in \left[0, \frac{2}{3}\right].$$

- Si $x \in Y^-$, alors

$$g(x) - f(x) = g(x) + \frac{1}{3} \in \left[-\frac{2}{3}, 0 \right].$$

- Si $x \notin Y^+ \cup Y^-$, alors

$$|g(x) - f(x)| \le |g(x)| + |f(x)| \le \frac{1}{3} + \frac{1}{3} = \frac{2}{3}.$$

Cela montre que $||Tf - g||_{\infty} \leq 2/3$. Finalement, l'application T est presque surjective. On peut appliquer la proposition : toute fonction $g \in \mathcal{C}_b(Y)$ est de la forme $f|_Y$ pour une fonction $f \in \mathcal{C}_b(X)$ vérifiant $||f||_{\infty} \leq 1$. Autrement dit, toute fonction $g \in \mathcal{C}_b(Y)$ se prolonge en une fonction $f \in \mathcal{C}_b(X)$ avec $||f||_{\infty} \leq 1$.

• Deuxième étape. Soit $g \in \mathcal{C}_b(Y)$ une fonction telle que |g| < 1 sur Y. Montrons qu'elle peut se prolonger en une fonction $f \in \mathcal{C}_b(X)$ telle que |f| < 1 sur X. Grâce à la première étape, on peut la prolonger en une fonction $h \in \mathcal{C}_b(X)$ telle que $|h| \leq 1$ sur X. Si |h| < 1 sur X, alors on prend f := h. Sinon on suppose que

$$Z := \{x \in X \mid |h(x)| = 1\} \neq \emptyset.$$

Considérons la fonction $f := uh \in \mathscr{C}_{\mathrm{b}}(X)$ où

$$u(x) = \frac{\mathrm{d}(x, Z)}{\mathrm{d}(x, Y) + \mathrm{d}(x, Z)}, \qquad x \in X.$$

qui est bien posée puisque $Y \cap Z = \emptyset$ car |h| = |g| < 1 sur Y. Comme $|u| \le 1$ sur X, on a $|f| \le |h| \le 1$. De plus, lorsque $x \in Z$, on a u(x) = 0, donc f(x) = 0. On en déduit que |f| < 1. Pour finir, la fonction f prolonge bien la fonction h sur X puisque u = 1 sur Y.

• Troisième étape. Soit φ :]-1,1[$\longrightarrow \mathbf{R}$ un homéomorphisme. Alors la fonction $g \coloneqq \varphi^{-1} \circ g_0$ est continue et vérifie |g| < 1 sur Y. D'après la deuxième étape, elle admet un prolongement continu $f \in \mathscr{C}_b(X)$ tel que |f| < 1 sur X. Dans ce cas, la fonction $f_0 \coloneqq \varphi \circ f$ convient.

Hervé Queffélec et Claude Zuily. Analyse pour l'agrégation. 5e édition. Dunod, 2020.