TRIPS CPU

James Halliday

October 15, 2009

What is it?

- ► Tera-op, Reliable, Intelligently adaptive Processing System
 - University of Texas, Austin
 - ► IBM
 - Intel
 - Sun

What is it?

- ► Goals
 - ▶ One TFLOP on a single processor by 2012.
 - Scale across hundreds or thousands of cores

How does it work?

- Explicit Data Graph Execution Instruction Set Architecture
- Hyperblocks
- only 128 instructions
 - only 32 memory accesses
 - only 64 register accesses (32 read, 32 write)
 - one branch op (end)
- Compilers already know enough to build these structures

How does it work? (terms)

- Dynamic Issue *
 - Order of instruction execution is not known ahead of time
- ► Static Issue
 - Order of instruction execution is known ahead of time
 - It's really hard to know whether or not memory is in cache
 - Waiting for memory to appear in cache holds up everything else
- Dynamic Placement
 - Dependency analysis performed at runtime
- Static Placement *
 - Dependency analysis performed at compilation
 - Programs are only compiled once, but run many times

How does it work?

- Other Approaches to Parallelism
 - Superscalar
 - ► Dynamic Placement
 - Dynamic Issue
 - Itanium
 - Very Long Instruction Words
 - Static Placement
 - Static Issue
 - SIMD
 - Hard-Coded Vector Sizes
 - Extra Circuit Complexity

How does it work?

- Static Placement
- Dynamic Issue
- ► TRIPS is lazy!
- Local dependencies are optimized by the compiler, not the CPU

Why should I care?

- Exploit massive parallelism in sequential programs!
- ▶ Hundreds or thousands of identical cores on the same chip
- Compilers are better at figuring out mundane details than you are

Why should I care?

- Speaker: James Halliday
- Subject: TRIPS CPU
- What it is
 - experimental, lots of identical cores
- How it works:
 - hyperblocks, static placement, dynamic issue
- Why you care:
 - compiler figures out parallelism details on thousands of cores