Final Design Project: Homing Bot

Localization with sonar scans

ECE2031 Fall 2018

Introduction

- Don't forget we had an introductory lecture three weeks ago
- This picks up where that left off

DE2Bot Hardware Architecture

Project Development

DE2 and FPGA System Architecture

Your Design Task for Fall 2018

- For a robot randomly placed in an area...
 - Make it go to its "home"

- Grid represents carpet tiles
- Home is the green area
- Blue area will be clear no people, chairs, etc.
- Starting point will be somewhere in clear area
 - Details to follow

Demo "runs"

- Each of "run" consists of starting from the shaded region on the right and trying to get home.
- The entire body of the robot will be within the starting region boundaries at the start of each run (different locations each time)

Scoring for arriving at home

- Most of the points are given based on being in or out of home at the end of the run (when robot stops or time runs out)
 - The entire body of the robot inside the carpet squares awards 600 points
 - Half as many points (300) for being partly in the home region
 - No points for finishing anywhere else
 - No prorating based on percentage of the robot inside the home region

Other scoring factors

- Each team performs three 2-minute runs, using a different robot each run
 - Every team does one run, then all do second run, then all do third run
- Score for each run
 - Inside/On-the-line/Outside (previous slide): 600/300/0 points
 - Progress points: 100 points prorated from starting location to center of home area (0 points for no progress, 100 points for perfect finish)
 - Seconds remaining: one point per second remaining
 - Any non-zero number of collisions: -50 points
- Demo score is sum of two best runs
 - Lowest of the three runs is discarded
- Demo <u>scores</u> across all sections are curved to produce a <u>grade</u> (normally between 70-100%)

Hard-mode Option

- For each run, a team may opt-in for a more difficult starting location:
 - Within the "clear area", outside the normal starting area, not closer than 6 in. to any wall or object
- Taking this option increases the "progress" points from 100 to 200
 - Still no points if you make no (or negative) progress
 - Still no goal points if you don't make it to the goal
- Do not start the project with this option in mind. Only attempt it after you are confident within the normal starting area.

Materials provided

- Working SCOMP and robot peripherals
- Movement API and other code used in initial exercises
- Arctangent, Pythagorean distance, Multiplication, Division, Modulus
- Code that spins robot in place, storing 360 sonar readings in an array
- Code that shows how to index through an array of 360 values

Design Space (factors that drive design choices)

Reliance on odometry:

- How long can you rely on odometry?
- Should you avoid it altogether?

<u>Integration of sonar and odometry</u>:

- Once robot "knows" where it is, does it ignore sonar?
- If initial scan is confusing, does odometry provide useful information to take robot to a spot where sonar should expect better readings?

General:

- Speed and type of robot movement (e.g., continuous vs. stop-and-turn)
- Use of one sonar vs. multiple sonars
- ?? (That's why you brainstorm)

What is reasonable?

- This is deliberately open-ended
- There is no "perfect result," and no "this score will earn this grade"
- Your peers are in the same situation
- Do not overreach (and over-propose)
 - Proposing a "perfect solution" is doomed
- Propose a progressive path with incremental performance improvements

Time management

- Focus on how you can build towards a certain result by completing smaller tasks.
- If you spend "normal" 2031 time and use that time wisely, you'll end up with an acceptable project
 - Typically, most 2031 projects are split A/B, with only a very few C grades
 - A conscientious effort is what we expect, and no more time in lab than you would normally spend (splitting effort among the team)

Project tasks vs. tasks in Labs 1-8

- Replace time spent on prelab work with preparation
 - Adjust your overall plan according to what you've finished and how much time you have left
 - Plan how you will use robot time in lab
- Use lab time to make incremental progress
- The time previously spent assembling lab results can be used to assess current progress

Lab activity

- Do not all work on one piece of code
 - One or two team members can code
 - One or two can run tests
 - Some can work on deliverables like the proposal
- Open hours are still available
 - Offered for convenience, not because we require you to use them
 - Maintain a balance between this class, other classes, and personal time

Robot Logistical Details

- ONE robot per team
- Check out robots with a BuzzCard
 - You will get a long USB cable as well
- During your lab section, you will always have a robot available to you
- During open hours, robots are first-come first-served
 - With time limits imposed if robots are in high demand

Information on DE2Bot

- The downloadable DE2Bot Manual includes many details about the robot and how to use it.
- If you want to know something more, ask on Piazza

Name	IO Address	IN/OUT	Description	
SWITCHES	0x00	IN	Read DE2 switch	
LEDS	0x01	OUT	Write to DE2 LF	
TIMER	0x02	IN/OUT	Read 10Hz timer	
XIO*	0x03	IN	Read PB3-PB1,	
SSEG1	0x04	OUT	Write to left 4-di	
SSEG2	0x05	OUT	Write to right 4	
LCD	0x06	OUT	Write to LCD (16	
XLEDS	0x07	OUT	Write to DE2 LED	
BEEP	0x0A	OUT	Write 1-7 for be	
CTIMER	0x0C	OUT	Configurable tip	
LPOS*	0x80	IN	Read the current	
LVEL*	0x82	IN	Read the current	
LVELCMD*	0x83	OUT	Write the desir	
RPOS*	0x88	IN	Read the current	
RVEL*	0x8A	IN	Read the curren	
RVELCMD*	0x8B	OUT	Write the desire	
I2C_CMD*	0x90	OUT	Write configurati	
J2C_DATA* ▲	0x91	IN/Q/T	Read or write d	

Project Starting Point

- You will have a complete SCOMP
 - Implements all instructions in Table 7.1 of lab manual
 - Implements additional instructions detailed in robot manual
 - Implements a 10-level subroutine call stack
 - Has twice as much program memory (2048 words)
 - Supports hardware interrupts from four sources
- You will have a complete DE2Bot Quartus project
 - Has working interfaces with all DE2 I/O (switches, LEDs, etc.)
 - Has an additional DE2 I/O device working (LCD)
 - Has the full complement of robot I/O devices
- You will have some example ASM code and useful subroutines (described earlier)

Next Week in Lab

- There will be one last pre-lab quiz
 - Covering these slides, and any other project material on Canvas
- You will have some specific things to do
 - Form groups and share your brainstorming ideas
 - Learn to use the robot self-test
 - Implement some basic robot movement
- If you complete the exercises before your lab period is over, don't waste that extra time
 - You have four lab sessions (including next week) and some open hours to complete this project
 - The lab will be busy in the last few days
 - Robots will be rationed not guaranteed outside of your section
 - Don't count on completing significant work during that time

Project Phases and Key Dates

- Introductory exercises (next week in lab)
 - Form project groups
 - Complete guided tasks (previous slide)
- Proposal presentations November 12th 16th
 - Incorporate brainstorming ideas into a polished presentation
- Work on project in your lab section and as needed in open hours
 - After next week's guided tasks, you decide how to spend your time
 - Keep a design logbook, which will be used for the design summary
- Complete your design by November 20th
 - You will not be able to work in the lab after this day
- Final demonstrations in lab November 26th -29th
 - Demonstrate your solution in your section
- Turn in final design summaries by the following Tuesday, December 4th at 3:00 PM (on Canvas)

Project Schedule

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	28-Oct	29-Oct	30-Oct	31-Oct	1-Nov	2-Nov	3-Nov
Lab Activity	OPEN HRS	Project Initial Exercises				OPEN HRS	CLOSED
Lecture Topic				Written Exam			
	4-Nov	5-Nov	6-Nov	7-Nov	8-Nov	9-Nov	10-Nov
Lab Activity	OPEN HRS	Project Work				OPEN HRS	CLOSED
Lecture Topic					TBD		
	11-Nov	12-Nov	13-Nov	14-Nov	15-Nov	16-Nov	17-Nov
Lab Activity	OPEN HRS	Project Work				OPEN HRS	CLOSED
Lecture Topic					Design Summary		
	18-Nov	19-Nov	20-Nov	21-Nov	22-Nov	23-Nov	24-Nov
Lab Activity	OPEN HRS	Finish Project			HOLIDAY		CLOSED
Lecture Topic					No Lecture (holiday)		
	25-Nov	26-Nov	27-Nov	28-Nov	29-Nov	30-Nov	1-Dec
Lab Activity	CLOSED	Project Demos				OPEN HRS	CLOSED
Lecture Topic					No Lecture		

Clarifications

- Additional announcements and clarifications will be posted on Piazza
 - You are responsible for information posted there
 - Could include changes to rules or assignments
 - O Make sure you are monitoring it!
- Use Piazza to ask questions
 - If a general question is asked, everyone can benefit from the answer
 - If your question contains details specific to your design, you can limit the visibility to only instructors
 - Especially if you think your idea might be against the "spirit" of the project, ask us about it.