

cross-section
a sample from one point
in time

time series
Laindividual through time

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_N}{N} = \frac{\sum_{i=1}^{N} X_i}{N}$$
Sample mean

index	unordered data	ordered data	Percentile
1	30.6 Inter-Quar 21.9 Q3-Q1	-tik Range = I	८ ८ 0.00
2	21.9 03-01	24.2	11.11
3	27.8 QI_	25.6	22.22
4	34.5	27.8	33.33
5	32.6 Q Z	29.2 > 29.2430	6 44.44
6	35.2	30.6	55.56
7	24.2	32.6	66.67
8	25.6	34.5	77.78
9	41.5	35.2	88.89
10	29.2	41.5	100.00

sample Variance
$$(x_1-\overline{x})^2 + (x_1-\overline{x})^2 + \dots + (x_N-\overline{x})^2$$

$$S_x^2 = \frac{(x_1-\overline{x})^2 + (x_1-\overline{x})^2 + \dots + (x_N-\overline{x})^2}{N-1}$$

$$S_{bmi}^2 = Variance$$

$$S_{bmi} = Variance$$

$$S_{bmi} = (S_{bmi}^2 = Standard deviation)$$

