Exercise 3

3-1 The circuit shown in Fig.3.1 illustrates a single-channel MOS resistor with a W/L of $2\mu m/2\mu m$. Using Table.3.1 model parameters calculate the small-signal on resistance of the MOS transistor at various values for VS and fill in the table below. (Note that the transistor was in linear region, VB=0, I_{DS}=0)

V _S (V)	$R(\Omega)$
0.0	
1.0	
2.0	
3.0	
4.0	
5.0	

Fig.3. 1

Answer

The equation for threshold voltage is represented with absolute values so that it can be applied to n-channel or p-channel transistors without confusion.

$$|V_T| = |V_{T0}| + \gamma \left[\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|} \right]$$

$$r_{on} = \frac{1}{\partial I_D / \partial V_{DS}} = \frac{L}{KW(|V_{GS}| - |V_T| - |V_{DS}|)}$$

For n-channel device

$$V_{T0} = 0.7 \ \gamma = 0.45 \ 2|\Phi_F| = 0.9 \ K = 134$$

(1) When
$$V_S = 0, V_{GS} = 5$$
 and $V_{SB} = 0$

$$|V_T| = |V_{T0}| + \gamma \left[\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|} \right] = 0.7$$

$$r_{on} = \frac{1}{\partial I_D / \partial V_{DS}} = \frac{L}{KW(|V_{GS}| - |V_T| - |V_{DS}|)} = 1.736K\Omega$$

(2) When
$$V_S = 1, V_{GS} = 4$$
 and $V_{SB} = 1$

$$|V_T| = |V_{T0}| + \gamma [\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|}] = 0.893$$

$$r_{on} = \frac{1}{\partial I_D / \partial V_{DS}} = \frac{L}{KW(|V_{GS}| - |V_T| - |V_{DS}|)} = 2.402K\Omega$$

(3) When
$$V_S = 2, V_{GS} = 3$$
 and $V_{SB} = 2$

$$|V_T| = |V_{T0}| + \gamma \left[\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|}\right] = 1.039$$

$$r_{on} = \frac{1}{\partial I_D/\partial V_{DS}} = \frac{L}{KW(|V_{GS}| - |V_T| - |V_{DS}|)} = 3.806K\Omega$$
(4) When $V_S = 3, V_{GS} = 2$ and $V_{SB} = 3$

$$|V_T| = |V_{T0}| + \gamma \left[\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|}\right] = 1.162$$

$$r_{on} = \frac{1}{\partial I_D / \partial V_{DS}} = \frac{L}{KW(|V_{GS}| - |V_T| - |V_{DS}|)} = 8.905K\Omega$$

(5) When
$$V_S = 4, V_{GS} = 1$$
 and $V_{SB} = 4$

$$|V_T| = |V_{T0}| + \gamma \left[\sqrt{2|\Phi_F| + |V_{SB}|} - \sqrt{2|\Phi_F|}\right] = 1.269$$

 $V_{GS} < V_T$ The device is cutoff, so $r_{on} = \text{infinity}$

(6) When
$$V_S = 5$$
, $V_{GS} = 0$ and $V_{SB} = 5$

The device is cutoff, so $r_{on} = infinity$

V _S (V)	$R(\Omega)$
0.0	1.736K
1.0	2.402K
2.0	3.806K
3.0	8.905K
4.0	infinity
5.0	infinity

3-2 An NMOS with W=50 μ m and L=0.5 μ m operates in the saturated region and its layout is folded shown as Fig3.2. Calculate the all capacitances by using the parameters in Table3.2 and $C_{\rm ox}$ =3.8×10⁻³ F/m, $V_{\rm R}$ =0.6V. Assume that the minimum size (lateral) of S/D region is 1.5 μ m

Fig.3. 2

Answer:

$$C_{j0} = 0.56 \times \frac{10^{-3} F}{m^2}$$
, $C_{jsw0} = 0.35 \times \frac{10^{-11} F}{m}$, $m_j = 0.45$, $m_{jsw} = 0.2$
 $C_{ov} = 0.4 \times \frac{10^{-9} F}{m}$, $W = 50 \mu m$, $L = 0.5 \mu m$, $L_D = 0.08 \mu m$, $E = 1.5 \mu m$

$$V_R = 0.6 V, 2\Phi_F = 0.9 V, C_{ox} = 3.8 \times 10^{-3} F/m^2, P_{SUB} = 9 \times 10^8 m^{-3}$$

$$\varepsilon_{si} = 11.7 \times 8.85 \times 10^{-12} F/m, q = 1.6 \times 10^{-19} C$$

$$C_{j} = \frac{C_{j0}}{(1 + V_{R}/2\Phi_{F})^{m_{j}}} = 0.445 \ fF/\mu m^{2} \ C_{jsw} = \frac{C_{jsw0}}{(1 + V_{R}/2\Phi_{F})^{m_{jsw}}} = 3.16 \times \frac{10^{-3} fF}{\mu m}$$

$$L_{eff} = L - 2L_D = 0.34 \ \mu m$$
 $C_d = W L_{eff} \sqrt{q \varepsilon_{si} P_{SUB} / 4 \Phi_F} = 1.55 \times 10^{-6} fF$

$$C_{DB} = \frac{W}{2}EC_j + 2(\frac{W}{2} + E)C_{jsw} = 16.85fF$$

$$C_{SB} = 2(\frac{W}{2}EC_j + 2(\frac{W}{2} + E)C_{jsw}) = 33.71fF$$

$$C_{GD} = 2(\frac{W}{2}C_{ov}) = 20.0fF$$

$$C_{GS} = \frac{2}{3}WL_{eff}C_{ox} + WC_{ov} = 63fF$$

$$C_{GB} = \frac{WL_{eff}C_{OX}C_{d}}{(WL_{eff}C_{oX} + C_{d})} = 1.55 \times 10^{-6} fF$$

3-3 There is an N-type current source, I_D is 0.5mA, and the drain-source voltage V_{DS} must more than 0.4V when it works as a current source. If the minimum output resistance is 20 K Ω , determine the length and width of the device by using the parameters in Table.3.2.

Answer:

$$\begin{cases} r_o = \frac{1}{\lambda I_D} = 20K\Omega \\ I_D = 0.5mA \end{cases} \Rightarrow \lambda = 0.1$$

From the table 3.2, L can be determined as L=0.5um.(

$$L_{eff} = L - 2L_D = 0.5 \mu m - 2 \times 0.08 \mu m = 0.34 \mu m$$

Calculating W

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L_{eff}} (V_{GS} - V_{TH})^2, \quad V_{GS} - V_{TH} = V_{DSAT} = 0.4V$$

$$\frac{W}{L_{eff}} = \frac{I_D}{\frac{1}{2}\mu_n C_{ox} (V_{GS} - V_{TH})^2} = \frac{0.5 \times 10^{-3}}{\frac{1}{2} \times 134 \times 10^{-6} \times 0.4^2} = 46.64$$

$$W = 46.64 L_{eff} = 15.86 \mu m$$

3-4 A "ring" MOS structure is shown in Fig.3.3. Explain how the device operations and estimate its equivalent aspect ratio. Calculate the drain junction capacitance of the structure. (use Cj and Cjsw)

Fig.3. 3

Answer:

Width/length ratio is 4W/L

$$C_{DB} = W^2 C_j + 4W C_{jsw}$$

Table.3. 1

Table.3. I					
Typical Parameter Value					
Parameter	Parameter	n-Channel	p-Channel	Units	
Symbol	Description	II-Citatilici			
$ m V_{T0}$	Threshold	0.7	-0.8	V	
	voltage(V _{BS} =0)	0.7	-0.8		
	Transconductance	134	50	μA/V ²	
K	parameter(in				
	saturation)				
γ	Bulk threshold	0.45	0.4	$V^{1/2}$	
	parameter	0.43	0.4		
	Channel length	0.1	0.2	V ⁻¹	
λ	modulation				
	parameter				
2 φ _F	Surface potential	0.9	0.8	V	
	at strong				
	inversion				

NMOS Model				
LEVEL=1	VTO=0.7	GAMMA=0.45	PHI=0.9	
PSUB=9e+14	LD=0.08e-6	UO=350	LAMBDA=0.1	
TOX=9e-9	PB=0.9	CJ=0.56e-3	CJSW=0.35e-11	
MJ=0.45	MJSW=0.2	CGDO=0.4e-9	JS=1.0e-8	
PMOS Model				
LEVEL=1	VTO=-0.8	GAMMA=0.4	PHI=0.8	
PSUB=5e+14	LD=0.09e-6	UO=100	LAMBDA=0.2	
TOX=9e-9	PB=0.9	CJ=0.94e-3	CJSW=0.32e-11	
MJ=0.5	MJSW=0.3	CGDO=0.3e-9	JS=0.5e-8	

上表给出的是 $0.5\mu m$ 工艺 level 1 MOS SPICE 模型参数的典型值,其中的参数定义如下:

VTO:	VSB=0 时的阈值电压	(单位: V)
GAMMA:	体效应系数	(单位: V ^{1/2})
PHI:	$2\Phi_{ ext{F}}$	(单位: V)
TOX:	栅氧厚度	(单位: m)
NSUB:	衬底掺杂浓度	(单位: cm ⁻³)
LD:	源/漏侧扩散长度	(单位: m)
UO:	沟道迁移率	(单位: cm2/(v/s))
LAMBDA:	沟道长度调制系数	(单位: V-1)
CI·	单位面积的源/漏结由容	(单位· F/m²)

(单位: F/m²) 单位面枳的源/漏结电容 CJSW: 单位长度的源/漏侧壁结电容 (单位: F/m) 源/漏结内建电势 (单位: V) PB: CJ公式中的幂指数 (无单位) MJ: (无单位) MJSW: CJSW 等式中的幂指数 单位宽度的栅/漏交叠电容 (单位: F/m) CGDO: CGSO: 单位宽度的栅/源交叠电容 (单位: F/m) (单位: A/m²) JS: 源/漏结单位面积的漏电流