Національний технічний університет України

"Київський політехнічний інститут імені Ігоря Сікорського"

Факультет Електроніки

Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №7 з дисципліни: «Твердотіла електроніка»

Дослідження вольт-амперних характеристик біполярних транзисторів

Виконав: Студент 3-го курсу	(підпис)	Кузьмінський О.Р.
Перевірив:	(підпис)	Королевич Л.М.

1. Мета роботи

Теоретичне вивчення і практичне дослідження біполярних транзисторів з допомогою вимірювання вольт-амперних характеристик, визначення фізичних та основних технічних параметрів біполярних транзисторів із вольт-амперних характеристик.

2.Завдання

- 1) Вивчити структуру паспортних параметрів біполярних транзисторів. Озна-йомитися із вимірювальним стендом та використовуваними приладами (рис. 1, 2, 3, 4).
- 2) Зібрати схему для дослідження вольт-амперних характеристик біполярних транзистора ввімкненого за схемою із спільним емітером (або із спільною базою).
- 3) Визначити експериментально і побудувати графічно сімейство вхідних характеристик транзистора залежність вхідного струму від вхідної напруги.
- 4) Визначити експериментально та побудувати графічно сімейство вихідних характеристик транзистора залежність вихідного струму від вихідної напруги.
- 5) * Провести температурні дослідження ВАХ біполярного транзистора при підвищеній температурі $T_2 \approx +70^{\circ}C$.
- 6) **Із вхідних та вихідних ВАХ побудувати характеристики зворотного зв'язку і прямої передачі.
- 7) За побудованими графіками характеристик визначити основні параметри біполярного транзистора: коефіцієнт підсилення струму бази β ; коефіцієнт підсилення струму емітера α ; диференційні опори емітерного r_e і колекторного r_c переходів для вибраної робочої точки $A_p(I_c, U_{ce})$; графічно визначити дифузійний потенціал емітерного переходу φ_0 та опір бази r_b .
- 8) Провести аналіз результатів досліджень, і зробити висновки з виконаної роботи.

3.Схема вимірювання

Рис.1. Схема для дослідження вольт амперних характеристик транзистора ввімкненого за схемою із спільним емітером.

В схему вимірювання ВАХ транзистора входять: блок живлення E_1 для вхідного кола та блок живлення E_2 для вихідного кола схеми, міліамперметр A_1 для вимірювання вхідного струму бази, міліамперметр A_2 для вимірювання вихідного струму колектора, вольтметри V_1 та V_2 для вимірювання напруг база-емітер та колектор-емітер відповідно.

4.Вхідні дані

Табл.1. Значення вхідних струмів і напруг при напругах виходу 0 та 8 В.

$U_{\text{вих}}$	= 0 B	$U_{\text{вих}} = 8 \text{ B}$				
$U_{\rm BX}, { m B}$	$I_{\mathrm{BX}},\ \mathrm{MKA}$	$U_{\rm BX}, {\rm B}$	$I_{\mathrm{BX}},\ \mathrm{MKA}$			
0,441	2	0,599	2			
0,463	4	0,619	4			
0,476	6	0,632	6			
0,485	8	0,638	8			
0,493	10	0,644	10			
0,5	12	0,649	12			
0,506	14	0,653	14			
0,51	16	0,656	16			
0,516	18	0,659	18			
0,518	20	0,662	20			
0,524	22	0,664	22			
0,527	24	0,666	24			
0,53	26	0,667	26			
0,533	28	0,668	28			
0,536	30	0,67	30			
0,539	32	0,672	32			
0,541	34	0,673	34			
0,544	36	0,674	36			
0,548	38	0,675	38			
0,55	40	0,676	40			
0,552	42	0,676	42			
0,554	44	0,676	44			
0,556	46	0,678	46			
0,557	48	0,678	48			
0,56	50	0,678	50			

Зазначимо, що похибки струмів і напруг для обох випадків дорівнювали: $\Delta U = 2.5~\text{мB},~\Delta I = 0.75~\text{мкA}.$

Табл.2. Значення вихідних струмів і напруг при різних вхідних струмах

$I_{\scriptscriptstyle m BX}=3{\scriptscriptstyle m MKA}$				$I_{\scriptscriptstyle m BX}=6$ мк $ m A$				
$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , MA	$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , MA	
0,12	0,06	0,025	0,00375	0,12	0,125	0,025	0,00375	
0,2	0,24	0,025	0,00375	0,22	$0,\!55$	0,025	$ \ 0,00375\ $	
0,3	0,29	0,025	0,00375	$0,\!36$	$0,\!66$	0,025	0,00375	
0,5	0,31	0,025	0,00375	0,6	0,665	0,025	$ \ 0,00375\ $	
10	0,315	$0,\!25$	0,00375	10	0,675	0,25	0,00375	

	$I_{\text{BX}} = 1$	9мкА		$I_{\text{BX}} = 12 \text{MKA}$				
$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , мА	$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , MA	
0,1	0,115	0,025	0,00375	0,1	0,158	0,025	0,0015	
0,2	0,66	0,025	0,00375	0,14	0,4125	0,025	$ \ 0,00375\ $	
0,3	0,98	0,025	0,0075	0,18	0,7175	0,025	$ \ 0,00375\ $	
0,4	1,01	0,025	0,0075	0,2	0,93	0,025	0,0075	
2	1,025	0,075	0,0075	0,3	1,3	0,025	0,0075	
4	1,03	0,25	0,0075	0,4	1,345	0,025	0,0075	
10	1,04	0,25	0,0075	0,6	1,38	0,025	0,0075	
				0,94	1,39	0,025	0,0075	
				3	1,4	0,25	0,0075	
				6	1,41	0,25	0,0075	
				10	1,42	0,25	0,0075	

	$I_{ ext{BX}}=15$ мк $ ext{A}$				$I_{\scriptscriptstyle m BX}=18$ mk $ m A$				
$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , MA	$U_{\text{вих}}, \mathbf{B}$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , м A		
0,1	0,234	0,025	0,0015	0,1	0,268	0,025	0,0015		
0,14	0,515	0,025	0,00375	$0,\!12$	0,595	0,025	$ \ 0,00375\ $		
0,2	1,12	0,025	0,0075	$0,\!16$	0,84	0,025	0,0075		
0,24	$1,\!45$	0,025	0,015	0,2	1,38	0,025	0,015		
0,3	1,62	0,025	0,015	0,3	1,9	0,025	0,015		
0,4	1,69	0,025	0,015	0,4	1,98	0,025	0,015		
0,5	1,72	0,025	0,015	0,52	2,02	0,025	0,015		
0,6	1,74	0,025	0,015	0,6	2,06	0,025	0,015		
0,8	1,76	0,025	0,015	0,7	2,08	0,025	0,015		
1,5	1,78	0,075	0,015	1,1	2,12	0,075	0,015		
10	1,81	$0,\!25$	0,015	2,5	2,14	0,075	0,015		
				10	2,18	0,25	0,015		

Табл.2. Значення вихідних струмів і напруг при різних вхідних струмах (продовження $_1$)

	$I_{\text{BX}} = 2$	21мкА		$I_{\text{BX}} = 24 \text{MKA}$				
$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , MA	$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , м A	
0,1	0,166	0,0075	0,0015	0,09	0,252	0,0075	0,0015	
0,12	0,285	0,0075	0,00375	0,11	0,4175	0,0075	0,00375	
0,15	0,61	0,0075	0,00375	0,13	0,67	0,0075	$ \ 0,00375\ $	
0,18	1,01	0,0075	0,0075	$0,\!15$	0,97	0,0075	0,0075	
0,2	1,29	0,0075	0,0075	0,18	1,42	0,0075	0,0075	
0,23	1,66	0,0075	0,015	0,22	1,92	0,0075	0,015	
0,25	1,84	0,0075	0,015	0,25	2,22	0,0075	0,015	
0,27	1,98	0,0075	0,015	0,3	2,4	0,0075	0,015	
0,3	2,1	0,0075	0,015	0,5	2,6	0,025	0,015	
0,4	2,29	0,025	0,015	0,6	2,66	0,025	0,015	
0,5	2,34	0,025	0,015	0,7	2,69	0,025	0,015	
0,6	2,38	0,025	0,015	0,9	2,76	0,025	0,015	
0,76	$_{2,42}$	0,025	0,015	1,5	2,84	0,075	0,015	
2,6	2,51	0,075	0,015	5	2,88	0,25	0,015	
10	$2,\!56$	0,25	0,015	10	2,92	0,25	0,015	

	$I_{\text{BX}}=2$	7мкА		$I_{ ext{bx}}=30$ мк $ ext{A}$				
$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , MA	$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , мА	
0,08	0,218	0,0075	0,0015	0,06	0,108	0,0075	0,0015	
0,11	0,48	0,0075	0,00375	0,1	0,42	0,0075	0,00375	
0,12	0,605	0,0075	0,00375	0,11	0,555	0,0075	0,00375	
0,15	1,09	0,0075	0,0075	$0,\!12$	0,7	0,0075	0,00375	
0,17	1,39	0,0075	0,0075	$0,\!13$	0,89	0,0075	0,0075	
0,19	1,74	0,0075	0,015	$0,\!15$	1.185	0,0075	0,0075	
0,22	2,11	0,0075	0,015	$0,\!17$	1,59	0,0075	0,015	
0,25	2,38	0,0075	0,015	0,19	1,9	0,0075	0,015	
0,34	2,78	0,025	0,015	0,21	2,18	0,0075	0,015	
0,4	2,88	0,025	0,015	0,25	2,64	0,0075	0,015	
0,6	2,96	0,025	0,015	0,3	2,9	0,0075	0,015	
1,1	3,175	0,075	0,0375	0,4	3,075	0,025	0,0375	
2	3,25	0,075	0,0375	0,5	3,15	0,025	0,0375	
10	3,325	$0,\!25$	0,0375	0,8	3,3	0,025	0,0375	
				2	3,55	0,075	0,0375	
				10	3,65	0,25	0,0375	

Табл.2. Значення вихідних струмів і напруг при різних вхідних струмах (продовження $_2$)

	$I_{\text{BX}} = 3$	ЗмкА		$I_{\scriptscriptstyle m BX}=36{\scriptscriptstyle m MKA}$				
$U_{\text{вих}}$, В	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , м A	$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , м A	
0,06	0,124	0,0075	0,0015	0,06	0,144	0,0075	0,0015	
0,08	0,25	0,0075	0,00375	0.07	0,19	0,0075	0,00375	
0,1	0,475	0,0075	0,00375	0,09	0,385	0,0075	0,00375	
0,11	0,6125	0,0075	0,00375	0,11	0,675	0,0075	0,00375	
0,12	0,8	0,0075	0,0075	0,13	1,03	0,0075	0,0075	
0,13	0,955	0,0075	0,0075	$0,\!15$	1,47	0,0075	0,0075	
0,14	1,13	0,0075	0,0075	0,17	1,88	0,0075	0,015	
0,15	1,32	0,0075	0,0075	0,19	2,23	0,0075	0,015	
0,16	1,54	0,0075	0,015	0,21	2,55	0,0075	0,015	
0,17	1,74	0,0075	0,015	0,23	2,808	0,0075	0,015	
0,18	1,89	0,0075	0,015	0,25	3,05	0,0075	0,0375	
0,19	2,06	0,0075	0,015	0,29	3,3	0,0075	0,0375	
0,2	2,21	0,0075	0,015	0,32	3,5	0,025	0,0375	
0,21	2,36	0,0075	0,015	0,4	3,575	0,025	0,0375	
0,25	2,82	0,0075	0,015	0,8	3,85	0,025	0,0375	
0,36	3,3	0,025	0,0375	1,5	4,2	0,075	0,0375	
0,4	3,325	0,025	0,0375	2,7	4,3	0,075	0,0375	
0,5	3,4	0,025	0,0375	5,6	4,35	0,25	0,0375	
0,6	3,475	0,025	0,0375	10	4,425	0.25	0,0375	
0,7	3,55	0,025	0,0375					
1,1	3,75	0,075	0,0375					
2,9	3,95	0,075	0,0375					
10	4,05	0,25	0,0375					

Табл.2. Значення вихідних струмів і напруг при різних вхідних струмах (продовження $_3$)

	$I_{\text{BX}} = 3$	9мкА		$I_{\scriptscriptstyle \mathrm{BX}}=42{\scriptscriptstyle \mathrm{MKA}}$				
$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , MA	$U_{\text{вих}}, \mathbf{B}$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , м A	
0,06	0,166	0,0075	0,0015	0,06	0,2	0,0075	0,0015	
0,07	$0,\!256$	0,0075	0,0015	0,07	$0,\!292$	0,0075	0,0015	
0,08	0,345	0,0075	0,00375	0,08	$0,\!3775$	0,0075	0,00375	
0,09	0,43	0,0075	0,00375	0,09	$0,\!48$	0,0075	0,00375	
0,1	0,5775	0,0075	0,00375	0,11	$0,\!85$	0,0075	0,0075	
0,12	0,935	0,0075	0,0075	$0,\!13$	$1,\!23$	0,0075	0,0075	
0,15	1,59	0,0075	0,015	0,15	1,72	0,0075	0,015	
0,18	2,16	0,0075	0,015	$0,\!17$	$2,\!16$	0,0075	0,015	
0,2	2,56	0,0075	0,015	0,2	2,74	0,0075	0,015	
0,24	3,05	0,0075	0,0375	0,24	3,3	0,0075	0,0375	
0,3	3,6	0,0075	0,0375	0,28	3,7	0,0075	0,0375	
0,4	3,825	0,025	0,0375	$0,\!36$	4	0,025	0,0375	
0,6	4	0,025	0,0375	0,44	4,1	0,025	0,0375	
1	4,25	0,025	0,0375	0,54	4,2	0,025	0,0375	
2	4,6	0,075	0,0375	0,7	4,3	0,025	0,0375	
10	4,75	$0,\!25$	0,0375	0,8	4,4	0,025	0,0375	
				0,9	$4,\!45$	0,025	0,0375	
				1,5	4,75	0,075	0,0375	
				3	5	0,075	0,0375	
				3,4	5,05	0,25	0,0375	
				10	$5,\!15$	0,25	0,0375	

Табл.2. Значення вихідних струмів і напруг при різних вхідних струмах (продовження $_4$)

	$I_{\text{BX}} = 4$	5мкА		$I_{\scriptscriptstyle \mathrm{BX}}=48$ mk A				
$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , MA	$U_{\text{вих}}, B$	$I_{\text{вих}}, \text{ мA}$	ΔU , B	ΔI , м A	
0,06	0,202	0,0075	0,0015	0,06	0,202	0,0075	0,0015	
0,07	0,275	0,0075	0,00375	0,07	0,305	0,0075	0,00375	
0,08	0,39	0,0075	0,00375	0,08	$0,\!425$	0,0075	0,00375	
0,09	0,525	0,0075	0,00375	0,09	0,5725	0,0075	0,00375	
0,1	0,7	0,0075	0,00375	0,11	0,99	0,0075	0,0075	
0,12	1,1	0,0075	0,0075	0,13	1,44	0,0075	0,0075	
0,14	1,62	0,0075	0,015	0,15	1,93	0,0075	0,015	
0,16	2,04	0,0075	0,015	0,17	2,44	0,0075	0,015	
0,18	2,5	0,0075	0,015	0,19	2,86	0,0075	0,015	
0,21	3,05	0,0075	0,0375	0,22	3,4	0,0075	0,0375	
0,26	3,7	0,0075	0,0375	0,25	3,8	0,0075	0,0375	
0,3	4	0,0075	0,0375	0,28	4,075	0,0075	0,0375	
0,4	4,3	0,025	0,0375	0,32	4,35	0,025	0,0375	
0,5	4,4	0,025	0,0375	0,4	4.5	0,025	0,0375	
0,6	4,5	0,025	0,0375	0,5	4,6	0,025	0,0375	
0,96	4,75	0,025	0,0375	0,6	4,675	0,025	0,0375	
2	5,3	0,075	0,0375	0,8	4,8	0,025	0,0375	
6	5,5	0,25	0,0375	1,1	5,1	0,075	0,0375	
10	5,55	0,25	0,0375	1,5	5,3	0,075	0,0375	
				2	5,5	0,075	0,0375	
				2,5	5,675	0,075	0,0375	
				3	5,75	0,075	0,0375	
				10	5,8		0,0375	

5. Графіки та обробка даних

Рис.2. Вхідні ВАХ транзистора при вихідній напрузі 0 та 8 В.

На рисунку ми бачимо дві гілки ВАХ. Гілка при 0 В відповідає колекторному струму, оскільки рівні легування в емітері та колекторі різні, зокрема потенційний бар'єр емітера більший ніж у колектора, і тому струм потече через колектор при нульовій напрузі. З цього рисунку можна знайти вхідний опір- він же- опір емітера за формулою:

$$R_{\rm BX} = \frac{\Delta U_{\rm 6e}}{\Delta I_{\rm 6}} \Big|_{U_{\rm ex} = const} \tag{1}$$

Наш графік є фактично залежністю струму бази від напруги емітер-база. Прирости ΔI_6 та ΔU_{6e} можна задати як різниці струмів і напруг відповідно в різних точках. Тому оберемо дві робочі точки Q_1 та Q_2 , але так щоб вони лежали на одній кривій, яка відповідає напрузі колектор-емітер.

Маємо по дві координати на кожну точку: $Q_1(U_{\text{бe1}};I_{\text{б1}})$ та $Q_2(U_{\text{бe2}};I_{\text{62}})$, тому модифікувавши рівняння (1), отримаєм наступний вираз:

$$R_{\rm BX} = \frac{U_{\rm 6e}^{Q_2} - U_{\rm 6e}^{Q_1}}{I_{\rm 6}^{Q_2} - I_{\rm 6}^{Q_1}} \tag{2}$$

Підставляючи усі дані отримаємо таке значення $R_{\rm BX}$:

$$R_{\rm BX} = r_e = \frac{0.675 - 0.66875}{40 \cdot 10^{-6} - 30 \cdot 10^{-6}} = 625 \, \, {
m Om}.$$

Визначимо з графіку також I_6 , як значення на осі $I_{\rm BX}$, яке відтинається перпендикуляром, що проведений з середини між робочими точками Q_1 та Q_2 . Бачимо, що значення приблизно складає $I_6=35$ мк ${\rm A}$.

Рис.3. Сімейство вихідних ВАХ транзистора.

Тепер знайдемо опір колекторного переходу по вихідних характеристиках транзистора, користуючись приростами за формулою:

$$R_{\text{вих}} = \frac{\Delta U_{\text{Ke}}}{\Delta I_{\text{K}}} \Big|_{I_6 = const} \tag{3}$$

На рис.3. вихідна напруга відповідає напрузі колектор-емітер, а вихідний струмструму колектора. По аналогії з вхідними характеристиками оберемо на рисунку знову робочу точку Q, але так, щоб перпендикуляр, опущений з неї на вісь х, відсікав значення $8\ \mathrm{B}$, оскільки на вхідних характеристиках ця сама робоча точка Q розташовувалась на гілці, що відповідала напрузі $U_{\mathrm{ke}}=8\ \mathrm{B}$.

Для забезпечення відчутної різниці $\Delta I_{\rm K}$ другу робочу точку L обрали на значній відстані від точки Q, майже в зоні режима насичення. Зазначимо, що дві точки розташовані на одній кривій, оскільки цього вимагає умова формули $(3)(I_6=const)$, а крива якраз відповідає I_6 .

Модифікуєм формулу (3), заміняючи прирости на різниці координат двох обраних робочих точок:

$$R_{\text{вих}} = \frac{U_{\text{ке}}^{Q} - U_{\text{ке}}^{L}}{I_{\text{к}}^{Q} - I_{\text{к}}^{L}},\tag{4}$$

та обраховуєм значення вихідного (колекторного) опору:

$$R_{\text{вих}} = \frac{U_{\text{ке}}^Q - U_{\text{ке}}^L}{I_{\text{к}}^Q - I_{\text{к}}^L} = \frac{8 - 2}{4.8 \cdot 10^{-3} - 4.6 \cdot 10^{-3}} = 30 \text{ кОм.}$$

Також з рис.3. визначаємо струм колектора $I_{\rm K}$, як значення на осі у, що відтинається перпендикуляром, який проведений з середини відрізка між двома робочими точками Q та L. Тобто з рисунка маємо, що $I_{\rm K}=4,6$ мА.

Маючи струм бази та струм колектора, можемо знайти струм емітера, скориставшись формулою для коефіцієнта підсилення за струмом для спільного емітера:

$$\beta = \frac{I_{\kappa}}{I_6} = \frac{I_{\kappa}}{I_{\rm e} - I_{\kappa}},\tag{5}$$

а отже $I_{\rm 6}=I_{\rm e}-I_{\rm K}$, або $I_{\rm e}=I_{\rm 6}+I_{\rm K}$

Тобто струм емітера-це сума струмів бази та колектора:

$$I_{\rm e} = 0.035 \cdot 10^{-3} + 4.6 \cdot 10^{-3} = 4.635 \cdot 10^{-3} = 4.635 \text{ MA}.$$

Далі, маючи струм емітера, знаходимо опір емітера за наступною формулою:

$$r_e = \frac{\varphi_T}{I_e}. (6)$$

Виконуєм розрахунок та знаходимо опір емітера:

$$r_e = \frac{\varphi_T}{I_e} = \frac{26 \text{ MB}}{4.635 \text{ MA}} \approx 5.6 \text{ Om}.$$

Обчислимо значення коефіцієнта підсилення за струмом для спільного емітера за формулою (5):

$$\beta = \frac{I_{\text{K}}}{I_6} = \frac{4.6 \text{ MA}}{35 \text{ MKA}} \approx 130.$$

Розрахуємо коефіцієнт підсилення струму бази за наступною формулою:

$$\alpha = \frac{I_{\rm K}}{I_{\rm e}}.\tag{7}$$

$$\alpha = \frac{I_{\text{K}}}{I_{\text{e}}} = \frac{4.6}{4,635} \approx 0.99$$

Тепер знайдемо дифузійний потенціал емітерного переходу φ_0 . Його можна визначити графічно з рисунку 2, провівши дотичну до точки, що знаходиться посередині між робочими точками Q_1 та Q_2 , але для більш точних результатів скористаймося рівнянням прямої через ці точки, й підставимо в нього y=0, аби дізнатись значення дифузійного потенціалу.

Координати робочих точок: $Q_1(\underbrace{0,66875B}_{x_1};\underbrace{30\text{мкA}}_{y_1}),\ Q_2(\underbrace{0,675B}_{x_2};\underbrace{40\text{мкA}}_{y_2}).$

Записуємо відповідне рівняння прямої:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}; \frac{x - 0.66875}{0.675 - 0.66875} = \frac{y - 30 \cdot 10^{-6}}{40 \cdot 10^{-6} - 30 \cdot 10^{-6}}$$

В результаті перетворень, отримали спрощене рівняння прямої

$$y = \frac{x - 0.65}{625},$$

з якого легко знаходимо значення дифузійного потенціалу, прирівнявши y=0. Отримали $\varphi_0=0.65$ В.

Нарешті, маючи струм бази та дифузійний потенціал, знаходимо опір бази за формулою:

$$r_6 = \frac{\varphi_0}{I_6} \tag{8}$$

$$r_6 = \frac{\varphi_0}{I_6} = \frac{0.65}{35 \cdot 10^{-6}} \approx 18,57 \text{ kOm}.$$

Запишемо усі знайдені параметри транзистора:

- коефіцієнт підсилення струму емітера $\beta = 130.$
- коефіцієнт підсилення струму бази $\alpha = 0.99$.
- диференційний опір емітерного переходу $r_e = 625~{
 m Om}.$
- диференційний опір колекторного переходу $r_{\rm k} = 30 \; {\rm kOm}.$
- дифузійний потенціал емітерного переходу $\varphi_0 = 0.65 \text{ B}.$
- опір бази $r_6 = 18{,}57$ кОм.
- струм бази $I_6 = 35$ мкА.
- струм колектора $I_{\rm K} = 4.6$ мА.
- \bullet струм емітера $I_{
 m e} = 4{,}635$ мА.

6. Аналіз результатів та висновки з виконаної роботи

Отже, в даній роботі було досліджено поведінку та параметри транзистора при схемі вмикання зі спільним емітером. Дана схема харктеризується найбільшим підсиленням струму та напруги, що ми і бачимо на прикладі коефіцієнта підсилення струму емітера який збільшує струм в 130 разів.

Порівнюючи між собою опори колектора та емітера, ми бачимо що опір колектора в тисячі разів більший ніж опір емітера, що добре узгоджується з теорією, оскільки в транзисторі струм емітера завжди більший ніж струм колектора. Пов'язано це з тим, що при прикладанні прямої напруги електрони, прямуючи до емітера, частково рекомбінують в базі.

Обраховано значення коефіцієнта підсилення струму бази який дорівнює $\alpha=0.99$, що добре вписується в діапазон значень 0.95-0.99 в сучасних транзисторах.

Аналізуючи графік вхідної характеристики, ми бачимо, що вона трохи нагадує ВАХ звичайного діода. Як було сказано раніше, потенційний бар'єр колектора більший, ніж у емітера й тому при нульовій напрузі потече струм через колектор. Такий режим роботи називається режимом відсікання, що означає, що транзистор закритий. Далі гілка прямує різко вгору- це режим насичення, за якого транзистор повністю відкритий. При прикладанні напруги ми спостерігаємо зміщення гілки вправо, що можна пояснити зміною товщини бази-ефект Ерлі.