Es. 2) i) funzione (f) a) sup
$$f=6=\max f=f(0,0)$$
 in $f=-\infty$ min $f \neq \infty$

b)
$$(-3,4) \in E_k$$
 per $k = f(-3,4) = 0 \rightarrow (-3,4) \in E_0$
 $E_0: 0 = 6 - \frac{6}{5} \sqrt{x_1^2 y^2} \rightarrow \sqrt{x_1^2 y^2} = 5 \times x_1^2 + y_2^2 = 25 \text{ crf } C(0,0) R = 5$

c)
$$E_{K} \neq \emptyset$$
 so $K \leq 6$
d) $E_{K} : 6 - \frac{6}{5} \sqrt{x^{2} + y^{2}} = K \rightarrow \sqrt{x^{2} + y^{2}} = \frac{5}{6} (6 - K) = 5 - \frac{5}{6} K$ 2°m <0

CONDIZIONE $5 - \frac{5}{6} K > 0 \rightarrow K \leq 6 (OK con c))$, pomo elevane(.)

ottenendo $x^{2} + y^{2} = (5 - \frac{5}{6} K)^{2}$ circonferenza di $(0,0)$ e $R = 5 - \frac{5}{6} K$

e)
$$E_{-3}$$
 $x^{2}+y^{2}=\left(\frac{15}{2}\right)^{2}$ $R_{-1}^{-15}/2$ $E_{6}=\sqrt{(0,0)}$ $E_{10}=\sqrt{(0,0)}$

a)
$$\sup_{f=-\mu=\min_{f=f(0,0)}} x = x$$

b)
$$(-3,3) \in E_{k}$$
 per $k=f(-3,3)=-4+\frac{1}{9}(-18)=$
 $=-4+2=-2$

$$\rightarrow (-3,3) \in \mathbb{E}_{-2}$$

$$E_{-2}: -2 = -4 + \frac{1}{9}(x^2 + y^2) \rightarrow x^2 + y^2 = 18$$

Cuf di C(0,0) $R = \sqrt{18} = 3\sqrt{2} \approx 4.2$

c)
$$E_{k} \neq \emptyset$$
 se $k \gg -4$
d) E_{k} : $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

where $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

Condition $K = -4 + \frac{1}{9}(x^{2} + y^{2}) \rightarrow x^{2} + y^{2} = 9.(4 + k)$ affinche rappresenti

$$R = \sqrt{9(k+4)} = 3\sqrt{k} + 4$$

e) $E = 6 = \phi$ Eo: $x + y = 36$ R=6 E₅: $x + y = 81$ R=9

iii) funtione g a) int g=- & ming X supg=+ & maxg X

b) $(-5,1) \in E_k$ per $K = f(-5,1) = 6-2 = 4 \rightarrow (-5,1) \in E_4$

E4: 4=6-24 y=1 retta orizzontale

d) Ex : $K=6-2y \rightarrow 2y=6-K$ $y=3-\frac{1}{2}K$ retta orizzoutale (||anex) (9)

passante per (0,3-1/2K). Ha seuso VKER (OK con c))

e) E-4; y=5 Eo: y=3 E2; y=2

iv) funzione (

a) inf m = -12 = min m = m(x,y)

V(x,y): x2+y2=225 (R=15)

sup m = 3 = max m = f(9,0)

2		6	
y=5	55	E-4	_
y=4	L,	E-2	
Y=3	3	E.	
Y=3 Y=2	2_	E2	
y=1	1	Eų.	
y=0		E ₆	\rightarrow
	1		

sup m = 5 = max m		
b) (6/2,6/2) EEK per	$K = f(6\sqrt{2},6\sqrt{2}) = -12 + \sqrt{225 - 72 - 7}$	$2 = -12 + \sqrt{81} = -12 + 9$ = -3
(6√2,6√2) ∈ £_3		7 2

 $E_{-3}: -3 = -12 + \sqrt{225 - x^2 - y^2} \rightarrow \sqrt{225 - x^2 - y^2} = 9 > 0$ $225 - x^2 - y^2 = 81$ x2+y2=144 cy C(0,0) R=12

(m)

d)
$$E_k$$
: $K = -12 + \sqrt{225 - x^2 - y^2}$ $\sqrt{225 - x^2 - y^2} = K + 12$ $\frac{1^a COND}{K + 1270}$

Se
$$K > -12$$
 posso elevare (.)² $225 - x^2 y^2 = (K + 12)^2$
 $x^2 + y^2 = 225 - (K + 12)^2 = 81 - K^2 - 24K$ che rappresenta una circonf a condizione che 2^a cond $81 - K^2 - 24K > 0$
 $K^2 + 24K - 81 \le 0$ $K_{112} = \frac{-12 \pm \sqrt{144 + 81}}{1} = -12 \pm 15$ $\frac{7}{3}$ $-27 \le K \le 3$ A^a cond $A^$

Se -12 $\leq K \leq 3$ allova $\leq K \in X^2 + y^2 = 81 - K^2 = 24K$ che rappresenta la crf di C(0,0) e $R = \sqrt{81 - K^2 = 24K}$ oppure $R = \sqrt{225 - (K+12)^2}$

e)
$$E_{-12}$$
: $X^2 + y^2 = 225$ $R = 15$

 $E_0: R=9 \qquad E_3=\{(0,0)\}$

V) funzione (

Supu=+0 minuz

b) $(4,-4) \in E_{K}$ per K = f(4,-4) = -8 + 5 + 12 = 9 $(4,-4) \in E_{g}$

Eg: $9 = -2x - \frac{5}{4}y + 12$ $\frac{5}{4}y = -2x + 3$ $y = -\frac{8}{5}x + \frac{12}{5}$

c) Exto YKER

Sch 6- es2-4-

J

y=-8x+12

(0,0)

(0,-6)

$$E_2: y = -\frac{8}{5} \times + 8$$

- VI) functione (W)
- a) inf w=- o min w 7 $\sup \omega = 12 = \max f = f(6, -6)$
- c) Ex + p se K = 12
- d) E_{k} : $k = 12 \frac{1}{3}((x-6)^{2}+(y+6)^{2})$

$$(x-6)^2+(y+6)^2=3(12-k^2)$$

che rappresenta una crf a conditione

che 3(12-K)>0 <u>COND</u> cioè K≤12 Precisamente è la crfdi C(6,-6) e R= (3(12-K).

C(6,-6)

R=6

(12,-6)

- e) E_0 : $(x-6)^2 + (y-6)^2 = 36$ R=6 C(6,-6)
- Vii) funtione (1)
 - a) infu--3=minu=f(0,5) Supu=+00 maxu &
 - c) Ex + p se K ≥ -3
- d) $E_K K = -3 + \frac{4}{5} | x^2 + (y-5)^2$

 $(x^{2}+(y-5)^{2}=\frac{5}{4}(k+3))$ COND $\frac{5}{4}(k+3)>0$ k>-3 (OK COU C))

Se K > -3 pono $(.)^2$ $\times^2 + (y-5)^2 = (\frac{5}{4}(K+3))^2$ che rappiezenta

una crf di C(0,5) e $R = \frac{5}{4}(K+3)$.

e) $E_1: x^2 + (y-5)^2 = 25 R = 5$

