2018 CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL CONSTANTS OF PHYSICS AND CHEMISTRY NIST SP 959 (June 2019)

An extensive constants list is available at physics.nist.gov/constants.

Quantity	Symbol	Numerical value	Unit
*133Cs hyperfine transition frequency	$\Delta \nu_{ m Cs}$	9 192 631 770	Hz
*speed of light in vacuum	c	299792458	${ m ms^{-1}}$
*Planck constant	h	$6.62607015 \times 10^{-34}$	$ m JHz^{-1}$
	\hbar	$1.054571817\ldots \times 10^{-34}$	$\mathrm{J}\mathrm{s}$
*elementary charge	e	$1.602176634\times10^{-19}$	\mathbf{C}
*Avogadro constant	$N_{ m A}$	6.02214076×10^{23}	mol^{-1}
*Boltzmann constant	k	1.380649×10^{-23}	$ m JK^{-1}$
*luminous efficacy	K_{cd}	683	${ m lm}{ m W}^{-1}$
electron volt (e/C) J	eV	$1.602176634\times10^{-19}$	J
Josephson constant $2e/h$	$K_{ m J}$	$483597.8484\ldots\times10^9$	${ m HzV^{-1}}$
von Klitzing constant $2\pi\hbar/e^2$	$R_{ m K}$	$25812.80745\dots$	Ω
molar gas constant $N_{\rm A} k$	R	$8.314462618\dots$	$ m J mol^{-1} K^{-1}$
Stefan-Boltzmann const. $\pi^2 k^4/(60\hbar^3 c^2)$) σ	$5.670374419\ldots \times 10^{-8}$	${ m W}{ m m}^{-2}{ m K}^{-4}$

^{*}Defining constants of the International System of Units (SI).

Quantity	Symbol	Numerical value	Unit
(unified) atomic mass unit $\frac{1}{12}m(^{12}C)$	u	$1.66053906660(50)\times10^{-27}$	kg
Newtonian constant of gravitation	G	$6.67430(15) \times 10^{-11}$	$m^3 kg^{-1} s^{-2}$
fine-structure constant $e^2/(4\pi\epsilon_0\hbar c)$	α	$7.2973525693(11) \times 10^{-3}$	
inverse fine-structure constant	α^{-1}	137.035 999 084(21)	
Rydberg frequency $\alpha^2 m_{\rm e} c^2/(2h)$	cR_{∞}	$3.2898419602508(64)\times10^{15}$	Hz
vac. magnetic permeability $4\pi\alpha\hbar/(e^2c^2)$	μ_0	$1.25663706212(19) \times 10^{-6}$	${ m NA^{-2}}$
vac. electric permittivity $1/(\mu_0 c^2)$	ϵ_0	$8.8541878128(13) \times 10^{-12}$	${ m Fm^{-1}}$
electron mass	$m_{ m e}$	$9.1093837015(28) \times 10^{-31}$	kg
proton mass	$m_{ m p}$	$1.67262192369(51) \times 10^{-27}$	kg
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.15267343(11)	
reduced Compton wavelength $\hbar/(m_{\rm e}c)$	$\lambda_{ m C}$	$3.8615926796(12)\times10^{-13}$	\mathbf{m}
Bohr radius $\hbar/(\alpha m_{\rm e}c)$	a_0	$5.29177210903(80) \times 10^{-11}$	\mathbf{m}
Bohr magneton $e\hbar/(2m_{\rm e})$	$\mu_{ m B}$	$9.2740100783(28) \times 10^{-24}$	$ m JT^{-1}$

The number in parentheses is the one-sigma (1σ) uncertainty in the last two digits of the given value.

National Institute of Standards and Technology U.S. Department of Commerce