Preliminary Design Review

Cambridge University Unmanned Air Systems Society

University of Cambridge

Team Members

Engineering,	4 th year
Engineering,	4 th year
Engineering,	3 rd year
Engineering,	1^{st} year
Engineering,	1 st year
Engineering,	$1^{\rm st}$ year
	Engineering, Engineering, Engineering,

Supervisor

Dr. Richard Roebuck

Sponsors

Cambridge University Engineers Association
Cambridge University Engineering Society
Student-led Projects and Industry Partnership (The Boeing Company, Marshall
Aerospace and Defence Group, McLaren Technology Group)

1 Project Management

- project plan with main activities, lead times, and dependencies
- $\bullet\,$ table summarising risks and their mitigation

2 Requirement Verification

	Requirement	Verification
Req. 1	MTOW of $6.9kg$.	Weight budget supported by component and final as-
		sembly measurements.
Req. 2	Maximum 4 cell LiPo battery.	Voltage measurement.
Req. 3	Payload: Single First Aid Kit, one or more	CAD of fuselage in combination with exact dimensions
	Buxton water bottles.	of payload, flight tests.
Req. 4	Completely autonomous operation.	Philip
Req. 5	Take off and landing within 30m	Basic performance calculations and tests.
Req. 6	All radio equipment must be licensed for	Philip
	use in the UK. Radio equipment providing	
	control of the UAS and for the FTS must	
	be 'spread spectrum', must have a mini-	
	mum range of 1km, and must operate on	
	the 2.4GHz band.	
Req. 7	The UAV must have a FTS which is ei-	Philip
	ther activated 5s after the uplink is lost	
	or manually by the flight safety officer via	
	the master controller, and 10s after the	
	downlink is lost. The FTS will also be ac-	
	tivated in the case of a geo fence breach.	
Req. 8	The UAS should carry a camera system	Philip
	with target recognition capability to un-	
	dertake target search.	
Req. 9	The following telemetry must be available	Philip
	in flight: UAS position on moving map,	
	local airspace, QFE, IAS.	
Req. 10		CAD of fuselage, using dimensions of tracker provided
	a WBT-201 "G-Rays 2" GPS Tracker.	in rules document.
Req. 11	Batteries must be coloured brightly.	Visual inspection of batteries.
Req. 12		CAD of fuselage, flight tests.
	mand.	
Req. 13	_	Usage of flaps for slow flying during payload drop.
	ble when delivering the payloads.	
Req. 14		Parachutes as speed retardation systems.
Req. 15	v 1 v	Use of composite materials (CFRP, GFRP) for
	mass as possible.	lightweight airframe design.
Req. 16	, , , , , , , , , , , , , , , , , , ,	Philip
	possible.	
Req. 17	The mission should be completed in under	Performance calculations factoring in wind and ex-
	10 min.	pected distance covered, flight tests.

3 Performance Calculations

preliminary aerodynamic, structural, and peformance calculations supporting the initial sizing, basic stability and control calculations, and weight and balance estimate.

4 Cost Budget

initial budget allocation for COTS items

5 Safety

- table of hazards and mitigating design features
- description of RF compliance
- FTS

6 Design Description

- functional description, rationale for selection of systems (airframe, propulsion, flight controls, navigation & mission control, sensors, image processing, autonomy, payload carriage, fts) > highlight innovative features
- diagram showing hte preliminary system architecture and data flowfor navigation and mission control, flight control, vision sensors
- overall layout & description with three-view scale drawing

7 Test Plan

short summary of any testing (flight testing, structural loads)