Code Optimization

Chapter 10

COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2005

2

The Code Optimizer

- Control flow analysis: CFG (Ch. 9)
- Data-flow analysis
- Transformations

Code Optimizations

- Local/global common subexpression elimination
- Dead-code elimination
- Instruction reordering
- Constant folding
- Algebraic transformations
- Copy propagation
- Loop optimizations

4

Loop Optimizations

- Code motion
- Induction variable elimination
- Reduction in strength
- ... lots more

Reduction Variable Elimination

Replace induction variable in expressions with another

Determining Loops in Flow Graphs: Dominators

- Dominators: *d dom n*
 - Node d of a CFG dominates node n if every path from the initial node of the CFG to n goes through d
 - The loop entry dominates all nodes in the loop
- The *immediate dominator m* of a node *n* is the last dominator on the path from the initial node to *n*
 - If $d \neq n$ and d dom n then d dom m

8

Dominator Trees

2
3
4
5
6
9
10

CFG

Dominator tree

10

Natural Loops

- A back edge is is an edge $a \rightarrow b$ whose head b dominates its tail a
- Given a back edge $n \rightarrow d$
 - The *natural loop* consists of d plus the nodes that can reach n without going through d
 - The *loop header* is node *d*
- Unless two loops have the same header, they are disjoint or one is nested within the other
 - A nested loop is an *inner loop* if it contains no other loops

Natural (Inner) Loops Example

Natural loop
for 3 dom 4

Sometimes of the second secon

12

Pre-Headers

- To facilitate loop transformations, a compiler often adds a *preheader* to a loop
- Code motion, strength reduction, and other loop transformations populate the preheader

Reducible Flow Graphs

• Reducible graph = disjoint partition in forward and back edges such that the forward edges form an acyclic (sub)graph

Example of a reducible CFG

Example of a nonreducible CFG

14

Global Data-Flow Analysis

- To apply global optimizations on basic blocks, data-flow information is collected by solving systems of data-flow equations
- Suppose we need to determine the *reaching* definitions for a sequence of statements S $out[S] = gen[S] \cup (in[S] kill[S])$

$$out[B1] = gen[B1] = \{d1, d2\}$$

 $out[B2] = gen[B2] \cup \{d1\} = \{d1, d3\}$

d1 reaches B2 and B3 and d2 reaches B2, but not B3 because d2 is killed in B2

Reaching Definitions

Then, the data-flow equations for S are:

$$\begin{array}{ll} gen[S] & = \{d\} \\ kill[S] & = D_{\mathbf{a}} - \{d\} \\ out[S] & = gen[S] \cup (in[S] - kill[S]) \end{array}$$

where $D_{\mathbf{a}}$ = all definitions of \mathbf{a} in the region of code

6

Reaching Definitions

$$\begin{array}{ll} gen[S] & = gen[S_2] \cup (gen[S_1] - kill[S_2]) \\ kill[S] & = kill[S_2] \cup (kill[S_1] - gen[S_2]) \\ in[S_1] & = in[S] \\ in[S_2] & = out[S_1] \\ out[S] & = out[S_2] \end{array}$$

Reaching Definitions

 $\begin{array}{ll} gen[S] & = gen[S_1] \cup gen[S_2] \\ kill[S] & = kill[S_1] \cap kill[S_2] \\ in[S_1] & = in[S] \\ in[S_2] & = in[S] \\ out[S] & = out[S_1] \cup out[S_2] \end{array}$

18

Reaching Definitions

 $\begin{array}{ll} gen[S] & = gen[S_1] \\ kill[S] & = kill[S_1] \\ in[S_1] & = in[S] \cup gen[S_1] \\ out[S] & = out[S_1] \end{array}$

Accuracy, Safeness, and Conservative Estimations

- *Conservative*: refers to making safe assumptions when insufficient information is available at compile time, i.e. the compiler has to guarantee not to change the meaning of the optimized code
- *Safe*: refers to the fact that a superset of reaching definitions is safe (some may be have been killed)
- Accuracy: the larger the superset of reaching definitions, the less information we have to apply code optimizations

22

Reaching Definitions are a Conservative (Safe) Estimation

Estimation:

gen[S] = $gen[S_1] \cup gen[S_2]$ kill[S] = $kill[S_1] \cap kill[S_2]$

Accurate:

 $gen'[S] = gen[S_1] \subseteq gen[S]$ $kill'[S] = kill[S_1] \supseteq kill[S]$

Reaching Definitions are a Conservative (Safe) Estimation

The problem is that

 $in[S_1] = in[S] \cup out[S_1]$

makes more sense, but we cannot solve this directly, because $out[S_1]$ depends on $in[S_1]$

d: a:=b+c

Reaching Definitions are a Conservative (Safe) Estimation

We have:

(1) $in[S_1] = in[S] \cup out[S_1]$

(2) $out[S_1] = gen[S_1] \cup (in[S_1] - kill[S_1])$

Solve $in[S_1]$ and $out[S_1]$ by estimating $in^1[S_1]$ using safe but approximate $out[S_1] = \emptyset$, then re-compute $out^1[S_1]$ using (2) to estimate $in^2[S_1]$, etc.

 $in^{1}[S_{1}] =_{(1)} in[S] \cup out[S_{1}] = in[S]$ $out^{1}[S_{1}] = \underbrace{\ \ \ }_{(2)} gen[S_{1}] \cup (in^{1}[S_{1}] - kill[S_{1}]) = gen[S_{1}] \cup (in[S] - kill[S_{1}])$ $in^2[S_1] = \inf_{(1)} in[S] \cup out^1[S_1] = in[S] \cup gen[S_1] \cup (in[S] - kill[S_1]) = in[S] \cup gen[S_1]$ $out^{2}[S_{1}] =_{(2)} gen[S_{1}] \cup (in^{2}[S_{1}] - kill[S_{1}]) = gen[S_{1}] \cup (in[S] \cup gen[S_{1}] - kill[S_{1}])$ $= gen[S_1] \cup (in[S] - kill[S_1])$

Because $out^1[S_1] = out^2[S_1]$, and therefore $in^3[S_1] = in^2[S_1]$, we conclude that $in[S_1] = in[S] \cup gen[S_1]$