Test di Calcolo Numerico

Ingegneria Informatica 21/07/2022

COGNOME	NOME			
MATRICOLA				
RISPOSTE				
1)				
2)				
3)				
4)				

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 21/07/2022

1) Si vuole calcolare la funzione

$$f(x,y) = \frac{y^2}{x}$$

in un punto $P_0 \in [-2, -1] \times [2, 3]$.

Per avere un errore assoluto $|\delta_f| \leq 10^{-2}$, quali limitazioni devono soddisfare l'errore assoluto algoritmico $|\delta_a|$ e gli errori assoluti $|\delta_x|$ e $|\delta_y|$?

2) È data la matrice

$$A = \left(\begin{array}{ccc} 1 & -2 & 4 \\ 0 & 5 & 0 \\ 0 & 6 & 1 \end{array}\right) .$$

Calcolare il polinomio caratteristico della matrice A^3 .

3) È data la tabella di valori

$$\begin{array}{c|ccccc} x & 0 & 1 & \alpha & 2 \\ \hline f(x) & 2\alpha & 2 & -4 & 8 \end{array}, \quad \alpha \in \mathbb{R} \, .$$

Calcolare i valori reali di α per i quali il polinomio di interpolazione risulta di grado minimo.

4) Si ha

$$\int_0^1 x^2 f(x) dx = \frac{1}{12} f(0) + \frac{1}{4} f(1) + E_1(f) .$$

Se l'errore risulta esprimibile come $E_1(f) = K f^{(s)}(\xi)$, determinare i valori di K e s.

SOLUZIONE

- 1) Si pongono $|\delta_a| < \frac{1}{2}10^{-2}$ e $|\delta_d| < \frac{1}{2}10^{-2}$. Risultano $A_x = 9$ e $A_y = 6$ per cui $|\delta_x| < 10^{-4}$ e $|\delta_y| < 10^{-4}$. Quindi, per rientrare nella limitazione richiesta, basta introdurre x e y troncati alla quarta cifra decimale e arrotondare il risultato dell'operazione alla seconda cifra decimale.
- 2) Gli autovalori di A sono $\lambda_1=\lambda_2=1,\ \lambda_3=5$ per cui gli autovalori della matrice A^3 sono

$$\mu_1 = \mu_2 = 1, \qquad \mu_3 = 125.$$

Segue che il polinomio caratteristico della matrice A^3 è

$$-(x-1)^2(x-125)$$
.

3) Si imposta il quadro delle differenze divise ottenendo

\boldsymbol{x}	f(x)	DD1	DD2
1	2		
2	8	6	
0	2α	$2-2\alpha$	$\alpha + 2$
α	-4	$\frac{6}{1-\alpha}$	$\frac{6\alpha}{(1-\alpha)(\alpha-2)}$

L'ultima colonna risulta costante se α è soluzione dell'equazione

$$\alpha^3 - \alpha^2 + 2\alpha + 4 = 0.$$

Si ha quindi che il grado del polinomio risulta minimo (grado 2) se

$$\alpha = -1$$
.

4) La formula di quadratura proposta ha grado di precisione m=1 per cui risulta s=2.

Essendo $E_1(x^2) = \frac{1}{5} - \frac{1}{4} = -\frac{1}{20}$, si ottiene $K = -\frac{1}{40}$.