Review session: Exam question 3 Network Flows and Minimum Cost Flow algorithms.

• Lecture 9

- Totally Unimodular Linear Programs. Network Flows: Minimum Cost Flows.
- Course notes: "Network Flows", Sections 1-4.

• Lecture 10

- Network Flows: Maximum (s, t) —flows.
- Course notes: "Network Flows", Sections 5-6.

• Lecture 11

- The primal and dual network simplex algorithm.
- Vanderbei, Chapter 14 (pp 199-213).

• Lecture 12

- The cycle cancelling algorithm.
- Course notes: "Network Flows", Sections 7.

Totally Unimodular Matrices

Definition

An $m \times n$ matrix $A = (a_{ij})$ is totally unimodular if every square submatrix has determinant in $\{-1,0,1\}$.

TUM Integrality Theorem

Let $A = (a_{ij})$ be $m \times n$ totally unimodular matrix and let $b \in \mathbb{Z}^m$.

Then all basic solutions of

$$F = \{Ax \le b, x \ge 0\}$$

are integer.

Cramer's Rule

The system Ax = b has a unique solution if and only if $det(A) \neq 0$, and in that case it is given by

$$x_i = \frac{\det(A_i)}{\det(A)}$$

where A_i is A with column i replaced by b.

Alternatively recall:

$$A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)}$$

Dictionaries in Matrix form

$$Ax = \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} x_{\mathcal{B}} \\ \chi_{\mathcal{N}} \end{bmatrix} = Bx_{\mathcal{B}} + Nx_{\mathcal{N}} = b$$

$$\zeta = c^{\mathsf{T}}x = \begin{bmatrix} c_{\mathcal{B}}^{\mathsf{T}} & c_{\mathcal{N}}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} x_{\mathcal{B}} \\ \chi_{\mathcal{N}} \end{bmatrix} = c_{\mathcal{B}}^{\mathsf{T}}x_{\mathcal{B}} + c_{\mathcal{N}}^{\mathsf{T}}x_{\mathcal{N}}$$

Primal dictionary:

$$\zeta = c_{\mathcal{B}}^{\mathsf{T}} B^{-1} b - \left((B^{-1} N)^{\mathsf{T}} c_{\mathcal{B}} - c_{\mathcal{N}} \right)^{\mathsf{T}} x_{\mathcal{N}}$$
$$x_{\mathcal{B}} = B^{-1} b - B^{-1} N x_{\mathcal{N}}$$

• TUM implies that $det(B) = \pm 1$, and thus B^{-1} is an integer matrix.

Important example: The node-arc adjacency matrix

Let D = (N, A) be directed graph and A its node-arc adjacency matrix.

Rows are indexed by nodes. Columns by arcs.

Entry (k, (i, j)) is:

- 1 when k = i
- -1 when k = j
- 0 otherwise.

Lemma 1

If $A = (a_{ij})$ is a matrix with entries from $\{-1,0,1\}$ such that every column of A has at most one entry that is 1 and at most one entry that is -1, then A is totally unimodular.

Constructing further TUM matrices

Lemma 2

TUM is preserved by

- Transposing matrix.
- Removing a row or a column.
- Multiplying a row or a column by -1.

Lemma 3

If A is TUM then $\begin{bmatrix} A & I \end{bmatrix}$ and $\begin{bmatrix} A & A \end{bmatrix}$ are TUM as well.

Flow Networks

Directed graph D = (N, A).

Flow x assigns a real number x_{ij} to arc $ij \in A$.

Nonnegativity constraint: $x_{ij} \ge 0$

- Outgoing flow from node i: $\sum_{ij \in A} x_{ij}$
- Ingoing flow from node i: $\sum_{ji \in A} x_{ij}$
- Balance at node *i* w.r.t. *x*:

$$b_i(x) = \sum_{ij \in A} x_{ij} - \sum_{ji \in A} x_{ij}$$

- Note i is source if $b_i(x) > 0$, and sink if $b_i(x) < 0$.
- No sources or sinks: flow is circulation.

Constraints

- Balance constraints (required):
 - $b_i(x) = b_i$ for all $i \in N$.
 - Assumption: $\sum_{i \in \mathbb{N}} b_i = 0$
- Arc constraints (optional):
 - $l_{ij} \le x_{ij} \le u_{ij}$ for all $ij \in A$.
 - Assumption: $0 \le l_{ij} \le u_{ij}$

The minimum cost problem

Given network D = (N, A) with arc costs c_{ij} , together with balance constraints and possibly arc constraints.

Find feasible flow *x* minimizing

$$\sum_{ij\in A} c_{ij} x_{ij}$$

Integrality theorem

If all balance constraints, lower bounds, and upper bounds are integer, then there is a minimum cost feasible flow that is integer.

Proof: By TUM of LP.

Examples: Transportation problem, Tanker Scheduling Problem, Optimal loading of a hopping airplane, ...

Maximum (s, t)-flow problem

Given network D = (N, A) with upper bounds u and specified source $s \in N$ and sink $t \in N$.

Feasibility criterion:

• Non-negativity: $x_{ij} \ge 0$

• Flow conservation: $b_i(x) = 0$, for $i \neq s$, t.

• Arc upper bounds respected: $x_{ij} \le u_{ij}$

Find feasible flow x maximizing the value $|x| = b_s(x)$.

Can be seen as special case of minimum cost flow problem: Add (t,s) arc with cost -1, forming a circulation network.

Max-flow Min-cut Theorem

(s,t)-cut: Partition (S,T) of nodes $N=S\cup T$ with $s\in S$ and $t\in T$.

Minimum (s,t)-cut problem: Find (s,t)-cut (S,T) minimizing the capacity $u(S,T) = \sum_{i \in S, j \in T} u_{ij}$.

Let x be a feasible (s, t)-flow and let (S, T) be (s, t)-cut.

Then: $|x| \le u(S, T)$ (compare to weak duality)

Theorem

Let x be a maximal value feasible (s,t)-flow and let (S,T) be a minimum capacity (s,t)-cut. Then: |x| = u(S,T) (compare to strong duality)

Proof: By strong duality theorem for LP.

Examples

- Maximum (s, t)-flow:
 - Preemptive scheduling on uniform parallel machines.
 - Distributed computing on two-processor systems.

• ...

- Minimum (s, t)-cut:
 - Open pit mining.

•

Algorithms for minimum cost flow

- Network simplex algorithm
 - Specialization of the simplex algorithm to flow networks.
 - Comes in both primal and dual variant.
 - Very hard to beat in practice.
- Klein's cycle cancelling algorithm
 - Generalization of the Ford-Fulkerson max flow algorithm.
 - A variation where augmenting cycles are chosen to be of *minimum mean cost* is a *strongly polynomial time* algorithm (like the Edmonds-Karp max flow algorithm).
 - Not really competitive in practice.
- Many other types of algorithms known.
 - So-called cost-scaling algorithms (which are polynomial time algorithms) can sometimes be competitive with network simplex on very large networks. (Compare to the case of interior point algorithms for LP).

LP formulation and the dual

Primal:

$$\sum_{ij\in A}c_{ij}x_{ij}$$

$$\sum_{ji\in A} x_{ji} - \sum_{ij\in A} x_{ji} = -b_i$$
$$x_{ij} \ge 0$$

Dual:

$$-\sum_{i\in N}b_iy_i$$

$$y_i - y_i \le c_{ij}$$

$$ij \in A$$

Not in standard form. Simplex algorithm could still be executed if constraint matrix is of full row rank. If network is connected we would only need just remove one row.

Complementary Slackness

Primal:

Minimize
$$\sum_{ij\in A} c_{ij}x_{ij}$$
 Subject to
$$\sum_{ji\in A} x_{ji} - \sum_{ij\in A} x_{ji} = -b_i$$

$$x_{ij} \geq 0$$

Dual:

Maximize
$$-\sum_{i \in N} b_i y_i$$
 Subject to
$$y_j - y_i + z_{ij} = c_{ij} \qquad ij \in A$$

$$z_{ij} \geq 0$$

Feasible solutions x and (y, z) are (both) optimal if and only if $x_{ij}z_{ij}=0$ for all $ij \in A$.

Basis = Spanning Tree

- A basic solution corresponds to a spanning tree T of the network.
- Fix a root r of T.
- Erasing the row of the node-arc incidence matrix A corresponding to r and erasing columns corresponding to arcs not in T results in a non-singular matrix (the basis matrix B).

Given T we can compute basic primal and dual solutions:

- Primal solution:
 - Assign flow 0 to edges not in T (non-basic variables)
 - Compute flow on edges in T (basic variables) working inward from leaves.
- Dual solution:
 - Compute dual variables (potentials), setting $y_r = 0$, and solving $y_j = y_i + c_{ij}$ for all $ij \in T$, also letting $z_{ij} = 0$.
 - Compute remaining dual slacks $z_{ij} = c_{ij} y_j + y_i$, for $ij \notin T$.

Understanding dual solution

- The dual variable y_i can also be computed by:
 - ullet Consider path from r to i. Add costs of forward edges and subtract costs of backward edges.
- The dual slack z_{ij} for $ij \notin A$ can also be computed by:
 - Consider cycle formed by i and T in direction of ij. Add costs of forward edges and subtract costs of backward edges.

Primal and Dual Network Simplex

Primal algorithm

- Select *entering arc*: Pick some $ij \in A$ with $z_{ij} < 0$.
- Select leaving arc: Consider cycle formed by *ij* and **T** in the direction of *ij*. Pick backwards edge with minimum flow value. Send flow along cycle to cancel flow on this edge.
- Update dual solution

Dual algorithm

- Select leaving arc: Pick an arc $ij \in T$ with $x_{ij} < 0$.
- Select entering arc: Find an arc that with T with forms cycle in direction of *ij*. Pick such arc with minimum dual slack. Send flow along cycle to increase flow on arc *ij* to 0.
- Update dual solution

Initialization, Termination, Complexity,...

Similar issues as the general Simplex algorithm.

• Initialization:

 Two-phase algorithm. Either construct auxiliary program (auxiliary network) or use dual based phase 1.

• Termination:

- Cycling remains an issue that must be handled by anti-pivoting rules.
- In network simplex there are in fact specialized pivot rules that avoid *stalling*, long sequences of pivot operations that do not improve the solutions.

Complexity

- Worst-case exponential.
- Very efficient in practice.

Klein's cycle cancelling algorithm

- Like the (primal) network simplex algorithm:
 - Maintain a feasible flow x.
 - Improve the cost of x by changing flow along a cycle of the network (increasing flow on *forward arcs* and decreasing flow on *backward arcs*).
- Unlike the network simplex algorithm:
 - Do not restrict to tree flows (i.e. basic solutions).
 - Consider any possible cycle in the network.
- We will describe the algorithm for networks with arc constraints.

Cycle flows and augmenting cycles

Let C be a cycle in D. Let F be set of forward arcs and B be set of backward arcs.

- Cost of C: $c(C) = \sum_{ij \in F} c_{ij} \sum_{ij \in B} c_{ij}$
- Cycle flow γ_C^{δ} :
 - On arcs in F: δ
 - On arcs in B: $-\delta$
 - Other arcs: 0

C is an augmenting cycle if

- 1. Cost is negative: c(C) < 0.
- 2. There exists $\delta > 0$ such that $x + \gamma_C^{\delta}$ is feasible.

$$\delta(C) = \min \left\{ \min_{ij \in F} (u_{ij} - x_{ij}), \min_{ij \in B} (x_{ij} - l_{ij}) \right\}$$

Klein's algorithm.

- 1. Let x be a feasible flow.
- 2. **while** exist augmenting cycle *C* **do**

3.
$$x \coloneqq x + \gamma_C^{\delta(C)}$$

- 4. end while
- 5. **return** x

Residual Network

- Analogous to residual network used in the Ford-Fulkerson max-flow algorithm – represents possible changes to flow on arcs maintaining feasibility.
- Definition is straightforward given feasible flow x:
 - Same set of nodes.
 - Circulation network.
 - Upper bounds, residual capacities.
- When defined correctly, directed cycles in residual network D_x correspond exactly to augmenting cycles for the flow x.

Partial correctness

• Circulation decomposition lemma: Let $x \ge 0$ be circulation in network D. Then there are cycles C_1, \ldots, C_k and $\delta_1, \ldots, \delta_k > 0$ such that

$$x = \gamma_{C_1}^{\delta_1} + \cdots \gamma_{C_k}^{\delta_k}$$

Apply to residual network D_x :

The difference x-y between the flow x and any optimal flow y can be expressed as a feasible flow in D_x . If x is not optimal then there must be a cycle in D_x .

Initialization, Termination, Complexity,...

• Termination:

 Cost is strictly improved each iteration. When balances, lower and upper bounds are integers, this guarantees termination.

Complexity:

• May take exponentially many iterations (like Ford-Fulkerson).

• Initialization:

- Formulate finding feasible flow as a maximum flow problem:
- Arcs for nodes $i \in N$:
 - From s to i with capacity b_i when $b_i > 0$.
 - From i to t with capacity $-b_i$ when $b_i < 0$.
- Arcs for arcs $ij \in A$:

