Bölüm 3 Boole Cebri

Claude Shannon (1916 - 2001)

- Boole fonksiyonları
- □ Boole fonksiyonlarının gösterilimi
- □ Mantık kapıları
- □ Karnaugh haritaları

- Boole cebri {0, 1} üzerinden çalışır, işlem operatörleri
 - + (Boolean sum)
 - . (Boolean product)
 - ~ (Complement)
- Bu işlemler aşağıdaki gibi tanımlanır
 - *Boole sum*: 1 + 1 = 1

$$1 + 0 = 1$$

$$0 + 1 = 1$$

$$0 + 0 = 0$$

Boole product:
$$1 \cdot 1 = 1$$

$$1 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$0 \cdot 0 = 0$$
Complement: $\overline{0} = 1$

Örnek:
$$1 \cdot 0 + \overline{(0+1)}$$
 ?
Çözüm: $1 \cdot 0 + \overline{(0+1)} = 0 + \overline{1}$
 $= 0 + 0$
 $= 0$

 $\bar{1} = 0$

Boole ifadeler and Boole fonksiyonlar

Tanım:

$$B = \{0, 1\}$$
 olsun
 $B^n = \{(x_1, x_2, ..., x_n) \mid x_i \in B, \text{ her } 1 \le i \le n \}$

0 ve 1'lerden oluşan tüm *n* bitlik değerlerin kümesi olsun. Herhangi bir *x* değişkeninin değeri B kümesinden ise alabileceği değerler 0 veya 1 olur. *x* değişkenine *Boolean değişken* denir.

Bⁿ 'den B' ye olan bir fonksiyona da **n.** dereceden Boole fonksiyon denir

□ Örnek: Verilen Boole fonksiyonunun değeri nedir?

$$F(x, y, z) = xy + \bar{z}.$$

Çözüm:

TAB	LE:				
x	у	z	хy	\overline{z}	$F(x, y, z) = xy + \overline{z}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

Tanım: F gibi bir Boole fonksiyonunun,

 \bar{F}

$$\overline{F}(x_1, x_2, ..., x_n) = \overline{F(x_1, x_2, ..., x_n)}$$

Tanım: n değişkenden oluşan iki Boole fonksiyonu olan F ve G eşit kabul edilebilmesi için, $b_1, b_2, ..., b_n$ B kümesinin elemanları olduğunda F $(b_1, b_2, ..., b_n)$ = G $(b_1, b_2, ..., b_n)$ eşitliği sağlanmalıdır.

xy, xy + 0 ve xy.1 bu üç farklı Boole ifadesi birbirine denktir

F+ G olan

$$(F+G)(x_1, x_2, ..., x_n) = F(x_1, x_2, ..., x_n) + G(x_1, x_2, ..., x_n)$$

FG

$$(FG)(x_1, x_2, ..., x_n) = F(x_1, x_2, ..., x_n)G(x_1, x_2, ..., x_n)$$

Boole ifadeler and Boole fonksiyonlar

Örnek: **n**'nin değerine göre kaç farklı Boole fonksiyonu vardır?

Çözüm: Saymanın temel ilkelerinden çarpma ilkesine göre 0 ve 1'lerden oluşan birbirinden farklı n'lik dizilerin sayısı 2^{n} 'dir ve $2^{2^{n}}$ tane de n. dereceden Boole fonksiyonu vardır.

The Number of Boolean Functions of Degree n .			
Degree	Number		
1	4		
2	16		
3	256		
4	65,536		
5	4,294,967,296		
6	18,446,744,073,709,551,616		

İkinci dereceden bir Boole fonksiyonunun tanım kümesi 4 farklı ikiliden oluşur ve değer kümesi 2 elemanlı B={0, 1} dir. Bu yüzden 16 farklı 2.derecedn Boole fonksiyonu vardır.

		1	Γhe 16	6 Bool	ean F	uncti	ons of	Degr	ee Tw	'0.									
x	у	F_1	F_2	F ₃	F ₄	F_5	F ₆	F ₇	F ₈	F9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅	F ₁₆		
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0		
1	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0		
0	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0		
0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0		

Boole cebrindeki özdeşlikler

Boolean Identitie	es.
Identity	Name
$\overline{\overline{x}} = x$	Law of the double complement
$x + x = x$ $x \cdot x = x$	Idempotent laws
$x + 0 = x$ $x \cdot 1 = x$	Identity laws
$x + 1 = 1$ $x \cdot 0 = 0$	Domination laws
x + y = y + x $xy = yx$	Commutative laws
x + (y + z) = (x + y) + z $x(yz) = (xy)z$	Associative laws
x + yz = (x + y)(x + z) $x(y + z) = xy + xz$	Distributive laws
$\overline{(xy)} = \overline{x} + \overline{y}$ $\overline{(x+y)} = \overline{x} \ \overline{y}$	De Morgan's laws
x + xy = x $x(x + y) = x$	Absorption laws
$x + \overline{x} = 1$	Unit property
$x\overline{x} = 0$	Zero property

Devre tasarımlarının sadeleştirilmesinde kullanılırlar

Örnek: x(y + z) = xy + xz doğru mudur?

Çözüm:

	Verifying One of the Distributive Laws.						
x	у	z	y + z	хy	xz	x(y+z)	xy + xz
1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Boole cebrinin soyut tanımı

Boole cebri V, \wedge ikili işlemleri ve \sim tekli işlemi uygulanabilen, 0 ve 1 elemanlarına sahip ve tüm x, y, z şeklindeki değişkenlerinde bu özelliklerin tamamı uygulanabilen B kümesidir.

Boole fonksiyonlarının gösterilimi

Örnek: Tabloda verilmiş olan F(x, y, z) and G(x, y, z) fonksiyonlarını tanımlayan Boole ifadelerini bulunuz.

Çözüm:

F fonksiyonu sadece x=z=1 ve y=0 olduğunda 1 değerini aldığından $F(x,y,z)=x\overline{y}z$ dir

TA	TABLE					
x	у	z	F	G		
1	1	1	0	0		
1	1	0	0	1		
1	0	1	1	0		
1	0	0	0	0		
0	1	1	0	0		
0	1	0	0	1		
0	0	1	0	0		
0	0	0	0	0		

Çarpımların toplamı açılımı

Tanım: Bir değişken veya tümleyenine **öğe** (*literal*) denir. Boole değişkenleri $x_1, x_2, ..., x_n$ 'in $y_i = x_i$ veya $y_i = \overline{x_i}$ durumunu sağlayan $y_1, y_2, ..., y_n$ çarpımına *minterim* denir. Her değişken bir öğe olarak gösterildiğinde bir miniterim n tane öğenin çarpımıdır.

Örnek : F(x,y,z) = (x + y)

 \bar{z} fonksiyonu için toplamların çarpımı açılımını bulunuz.

Çözüm 1:

Tabloda F(x,y,z) fonksiyonun 1 olduğu değerler alındığında $F(x, y, z) = xy\bar{z} + x\bar{y}\bar{z} + \bar{x}y\bar{z}$

x	у	z	x + y	\overline{z}	$(x+y)\overline{z}$
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	1	0	0
1	0	0	1	1	1
0	1	1	1	0	0
0 0	1	0	1	1	1
0	0	1	0	0	0
0	0	0	0	1	0

Çözüm 2:

$$F(x,y,z) = (x+y) \bar{z}$$

$$= x\bar{z} + y\bar{z} \quad dağılma kuralı$$

$$= x1\bar{z} + 1y\bar{z} \quad \ddot{o}zdeşlik kuralı$$

$$= x(y+\bar{y})\bar{z} + (x+\bar{x})y\bar{z} \quad birim \ddot{o}zelliği$$

$$= xy\bar{z} + x\bar{y}\bar{z} + xy\bar{z} + \bar{x}\bar{z} \quad dağılma kuralı$$

$$= xy\bar{z} + x\bar{y}\bar{z} + \bar{x}y\bar{z} \quad değişmezlik kuralı$$

Mantık kapıları

Devrelerin temel elemanları kapılardır ve kapı türleri farklı bir Boole işlemini gerçekleştirmektedir.

Kullanılan kapılar OR (toplama), AND (çarpma), NOT (tersi)

Örnek

Aşağıdaki ifadeleri mantık kapıları ile tasarlayınız

(a)
$$(x + y)\bar{x}$$

(b)
$$\bar{x} \overline{(y + \bar{z})}$$

(c)
$$(x + y + z)(\overline{x} \ \overline{y} \ \overline{z})$$

Devre örnekleri

□ İki bitlik yarı toplayıcı devresi (half adder)

Karnaugh diygramları

https://youtu.be/zFPAuskKETg

https://youtu.be/gEFyd7aWHok

https://youtu.be/BJIN7fZc2SU

https://youtu.be/PSCtOXoFmGYhttps://you

tu.be/diwmhcsljJA

https://youtu.be/GgazfgKMAZE