Impacts of High Variable Renewable Energy (VRE) Futures on Electric-Sector Decision Making

Joachim Seel, Andrew Mills, Ryan Wiser

Lawrence Berkeley National Laboratory

Presentation at International Conference on Energy Systems Integration

December 05-06, 2017

Golden, CO

This project is funded by the Office of Energy Efficiency and Renewable Energy

(Strategic Programs Office)

of the U.S. Department of Energy

Table of Contents

- **♦** Introduction
- ◆ Research Motivation: Examples of Electric-Sector Decision Making
- ◆ Research Design
 - □ VRE Penetration Scenarios in 2030
 - □ Regional Case Studies
- ◆ Modeling Results: Price Changes at High VRE Penetrations
 - □ Changes in Capacity and Generation Mix
 - □ Reduction in Electricity Prices
 - □ Increase in Ancillary Service Prices
 - Mixed Capacity Price Trends
- ◆ Outlook

Introduction:

Evidence of VRE Price Changes

When the future doesn't follow trend lines of the past...

- ◆High VRE can change:
 - □ the timing of when electricity is cheap or expensive,
 - □ the locational differences in the cost of electricity, and
 - □ the degree of regularity or predictability in those costs.
- ◆Many of these changes can be observed through changes in the patterns of wholesale prices, both internationally and in some regions in the US, e.g.
 - □ Changes in TOU periods at the CAISO
 - □ "Free" electricity at night in Texas

Research Objective

Will electric-sector decisions that are based on past assumptions still achieve their intended objective in a high VRE future?

Demand-Side Decisions	Supply-Side Decisions
Choice of Energy Efficiency Portfolios	Incentives for Nuclear Revenue Sufficiency, Flexibility Retrofits
Appliance Standards promoting Electric or Gas Water Heaters	Investing in Combined Cycle Gas Turbines or Reciprocating Engines
Demand Response Service Design	Cost-effectiveness of Energy Storage and Capability Selection
Location choices of EV charging infrastructure	Hydropower Relicensing under alternate Water Flow Regimes
Advanced Commodity Production Processes	
Retail Rate Design	

Example: Energy Efficiency Portfolios

- Decision Type
 - Approve EE portfolios to decrease energy consumption, curb demand growth, reduce electric system needs in most costeffective manner
- Decision Analysis
 - □ National Standard Practice Manual suggests forward-looking, long-run marginal costs to evaluate EE cost-effectiveness
 - □ Wide variety of cost-effectiveness evaluation practices. Nascent move to time-dependent valuation instead of average prices, opportunity to incorporate forward-looking scenario analysis

Traditional Design

Demand peak reductions via Energy Star Residential
 Air Conditioners that emphasis afternoon savings

High VRE Future

- Lower share of near-constant load reduction measures (refrigerators)
- Net-Demand peak reductions that focus on evening savings via residential lighting efficiency measures or street lighting measures

Research Framework Design

- ◆ Performing a marginal benefit analysis using marginal prices and emissions
 - □ Developing wholesale price series and emission rates for high VRE future in 4 US regions
 - □ Analyzing value impacts on demand-side (Year 2) and supply-side assets (Year 3)

- ◆ Partnering with consulting firm LCG for model development
 - □ Capacity expansion model to establish 2030 generator portfolio based on social cost minimization
 - □ SCED co-optimizes congruent hourly energy, capacity and ancillary service prices

Low VRE

Low VRE Future with Generation Share frozen at 2016 levels

High VRE

- Balanced VRE (20% Wind, 20% Solar)
- High Wind (30% Wind and at least 10% Solar)
- High Solar (30% Solar and at least 10% Wind)

Regional Case Studies

SPP

- 2016 VRE Deployment:
 - Wind 9-29% (19%) of generation (~16 GW capacity),
 - Solar 0.1% of generation
- No RPS mandates driving additional renewables by 2030

NYISO

- 2016 VRE Deployment:
 - Wind 3% of generation (1.8 GW nameplate),
 - Solar 0.8% of generation (0.3 GW, incl BTM PV)
- Clean Energy Standard of 50% by 2030

CAISO

- 2016 VRE Deployment:
 - Wind 7% of generation (5.6 GW nameplate),
 - Solar 14% of generation (18.2 GW, incl BTM PV)
- SB 350 requires 50% RPS by 2030 projections yield 13.5% wind and 27.5% solar

ERCOT

- 2016 VRE Deployment:
 - Wind 13% of generation (20.3 GW nameplate),
 - Solar 0.25% of generation (1.2 GW, incl BTM PV)
- No wind/solar/carbon mandates driving deployment in 2030

VRE expansion leads to modest retirement of firm capacity of 4-16%, especially coal, oil and steam turbines

- ◆ SPP: firm capacity **reduction** by 9-12%
 - □ Retirement of <u>Coal</u> (4-8GW) and Other Gas (7GW, e.g. <u>steam</u> turbines)
 - □ largely offset by Gas CT growth (4-7GW)
- NYISO: firm capacity reduction by 13-16%
 - □ Oil retirement (5+ GW)
 - partially offset by Gas CT growth (1-2GW)
- ◆ CAISO: firm capacity **growth** by 2-4%
 - Little overall changes in capacity
 - minor growth in Gas CC (~0.5GW) and Gas CT (0.4GW)
- ◆ ERCOT: firm capacity **reduction** by 4-14%
 - <u>Coal</u> retirement largest in wind scenario (7GW) none in solar
 - Largest Gas CT retirement in balanced (4GW vs. 1GW in solar)
 - ☐ Gas CC largely stable, growth by 1GW in wind scenario

VRE generation offsets 15-35% of firm generation, especially coal and CC natural gas

- SPP: firm generation reduction by 26-30%
 - □ Reduction in Coal and Gas CC generation (30-35TWh each)
 - Minimal changes in Gas CT
 - 9TWh of solar curtailment, 10TWh of export in solar scenario
- NYISO: firm generation reduction by 32-36%
 - □ Reduction in Gas CC (32-35TWh) and imports (17TWh)
 - minimal drop in Gas CT
- ◆ CAISO: firm generation reduction by 16-22%
 - Reduction in Gas CC (esp. in wind scenario: 16-23 TWh) and imports (30-35TWh)
 - Mixed results for Gas CT: minimal growth in wind and solar scenario, reduction in balanced scenario
- ◆ ERCOT: firm generation reduction by 26-30%
 - Reduction in Coal (35-46TWh) and Gas CC (50-55TWh), esp. in solar, 60-80% Gas CT reduction (more in wind/balanced)
 - □ Up to 13TWh of solar curtailment, 5TWh of wind curtailment

VRE penetration increase reduces average electricity prices

- ◆ Load-weighted average electricity prices decrease with higher VRE penetration by \$5 to \$16 relative to low VRE baseline, depending on scenario and region
- ◆ Accounting for the different starting levels of VRE penetration, the average reduction in electricity is \$0.2-\$0.5/MWh for each additional % of VRE penetration
- ◆ Both findings fall in the general range of the US electricity market modelling literature

Low energy prices become more common

- In some regions the shape of the price distribution does not change dramatically but is merely shifted downwards (e.g. NYISO)
- Other regions feature a more pronounced 'cliff', highlighting an increase in hours with very low prices (e.g. ERCOT)
- Low prices occur most often in solar scenarios

11

Change in diurnal price profile

Mean Diurnal Profiles for Weekdays

- ◆ Substantial decrease in prices over the middle of the day in solar scenarios across all regions
- Diurnal profiles vary by season
 - □ **Morning** Spring: \$30/MWh Fall: \$50/MWh in CAISO in **wind** scenario
 - □ <u>Afternoon</u> Spring: \$20/MWh Summer: \$40/MWh in NYISO in wind scenario
 - □ **Evening** Winter: \$30/MWh Summer: \$200/MWh in ERCOT in **balanced** and **solar** scenario (driven by few high-priced hours)
- Price peaks remain across most seasons in the early evening hours at levels similar to low VRE scenario

Increase in Price Volatility

- ◆ Wider range in wind scenario during early morning hours
- ◆ Change in average diurnal profile in solar scenario & 5th-95th range increases during the middle of the day

- Coefficient of Variation is normalized standard deviation of prices to facilitate cross-regional comparison
- Price volatility increases across regions from low over wind, balanced to solar scenario
- ♦ High volatility in ERCOT in part due to few high priced hours (\$1000-\$9000/MWh) due to Operating Reserve Demand Curve

Rise in Ancillary Service Prices

- Average prices for regulation (up and down) and spinning reserves increase by 2-4x across most regions in high VRE future to \$15-\$20/MWh
- Non-spinning reserves tend to remain at lower prices
- High solar penetrations often lead to the strongest increase, with peak prices above \$190/MWh in CAISO across all AS-types
- Balanced and wind scenarios reach occasionally \$200/MWh in SPP for downward regulation
- ◆ Diurnal AS price profiles and their peaks can change significantly, as do price ranges

Mixed Capacity Price Results across Regions

□ SPP ⇒□ NYISO and ERCOT

□ CAISO S

Annual averages mask month-month variation
 e.g. July in NYISO switches from max to min prices

Capacity Prices in NYISO- Consistent vs. Inconsistent balancing

Outlook

- ◆ Remainder of 2017:
 - □ Finalizing data analysis, publication of briefing slides and technical report
 - Price data potentially publically available
- **2017/2018:**
 - □ Implications of price changes on demand-side assets
- **◆** 2018/2019:
 - □ Implications of price changes on supply-side assets

Questions?

Thank you for your attention!

- **♦** Contact
 - □ Joachim Seel:
 - □ <u>jseel@lbl.gov</u> 510-486-5087
- ◆ Project Team at the Lawrence Berkeley National Laboratory:
 - □ Andrew Mills
 - Ryan Wiser

Download all of our other solar and wind work at:

http://emp.lbl.gov/reports/re

Follow the Electricity markets & Policy Group on Twitter:

@BerkeleyLabEMP

This project is funded by the

Office of Energy Efficiency and Renewable Energy

(Strategic Programs Office)

of the U.S. Department of Energy

17

Appendix

Theoretical Background Price Formation with VRE

Price set by variable demand levels

Quantity [MWh]

Theoretical Background Price Formation with VRE

Theoretical Background Price Formation with VRE

Capacity Expansion Model to select Generator Portfolios for 2030

- Entry of new generators and exit of existing generators is uncertain and requires modeling choices
- ◆ Background on Capacity Expansion Model and Optimization Tool Gen-X:

Capacity Expansion

based on social cost minimization, capital costs covered with revenues from the power markets (energy, capacity and ancillary services)

Capacity Retirement

based on cost recovery if unable to serve fixed and variable O&M costs

- □ Ancillary Service requirements change with VRE penetrations
- \Box Emission costs drive clearing prices \rightarrow exogenous projections of permit prices by planning entities
- □ Load levels determine demand for existing and new generators → load forecasts by planning entities
- □ Fuel prices affect generator investment choices and merit order dispatch → forecasts based on Henry Hub/ EIA data

SCENARIOS: Generator Retirements due to VRE Expansion

Unbalanced scenarios <u>excluding</u> VRE induced retirements

- Overcapacity beyond reserve margin requirements
- suppressed average prices
- less price variability

Balanced scenarios including VRE induced retirements

- Tighter supply capacity
- higher average prices
- Higher price variability

Unit Commitment Model to derive hourly data series

- ◆ Background on Unit Commitment Model U-Plan
 - □ Co-optimized energy, capacity and ancillary service prices via SCED for price congruency
 - □ Zonal regional resolution given uncertainty about 2030 prices
- ◆ Consistent Hourly Data Series for the year 2030
 - Wholesale Energy Prices
 - □ Capacity Prices (where applicable)
 - □ Ancillary Service Prices (Regulation Up/Down, Spin Reserves, Non-Spin Reserves)
 - □ Marginal Emission Rate (CO2)

Assumptions for VRE Penetration Scenarios

Scenarios

Frozen VRE (Generation %) Future

- High VRE Futures
 - □ Balanced VRE (20% Wind, 20% Solar)
 - □ High Wind (30% Wind and at least 10% Solar)
 - □ High Solar (30% Solar and at least 10% Wind)

Assumptions

- Limit price distortion through leakage to neighboring markets
 - □ Surrounding market penetration of 40% VRE
- Limit price effects that are primarily congestion related
 - Expand intra-zone transmissions to keep VRE curtailment of <3%
- Adequate representation of behind-the-meter PV
 - □ 75% of generation comes from large-scale PV, 25% from distributed PV

Example: Appliance Standards

Decision Type

- Adapt building code design (e.g. CA Title 24) to evaluate electric vs. gas-fired heaters for new/substantially retrofitted buildings
- Decision Analysis
 - □ Time-dependent-valuation of gas and electricity consumption over 30 years, potentially via scenario-analysis
 - □ Broad range of value stream inclusion (energy, capacity, emissions, transmission, losses, RPS)

Traditional Design

- Preference for gas-fired water heaters
- No coupling to electric market dynamics

High VRE Future

- Preference for electric water heaters
- Strategic use of load to participate in demandresponse programs

Example: Nuclear Flexibility Incentives

Decision Type

- □ Increase R&D on flexible nuclear demand design and operations
- Address technical regulations on nuclear plant operations
- □ Provide financial incentives to keep nuclear plants operating
- Decision Analysis
 - □ Compare revenue options of traditionally operating and "flexible" nuclear plants

Traditional Design

- Baseload nuclear plant with near constant power output and annual capacity factor near 100%
- ◆ Little ramping capabilities and no participation in ancillary service markets
- No special financial incentives to support O&M costs

High VRE Future

- Nuclear plant operations with significant hours of non-maximum power output
- Regular ramping within limits, potentially only seasonal operation