Análisis complejo

Taller 13

Productos infinitos.

Fecha de entrega: 14 de noviembre de 2024

1. Determine si los siguientes productos convergen:

(a)
$$\prod_{n=1}^{\infty} \left(1 + \frac{(-1)^n}{n} \right)$$
, (b) $\prod_{n=1}^{\infty} \left(1 + \frac{(-1)^n}{\sqrt{n}} \right)$.

2. Pruebe el teorema de la clase:

Sea (X,d) un espacio métrico compacto y sean $g_n:X\to\mathbb{C}$ funciones continuas tal que $\sum_{n=1}^\infty |g_n|$ converge uniformemente. Defina $f_n:X\to\mathbb{C},\, f_n(x)=\prod_{n=1}^n (1+g_j(x))$. Ya sabemos que para todo $x\in X$ el producto $\prod_{n=1}^\infty (1+g_j(x))$ es absolutamente convergente¹, entonces

$$f: X \to \mathbb{C}, f(x) := \lim_{n \to \infty} f_n(x)$$

está bien definida.

Demuestre que $f_n \to f$ uniformemnte y que existe un $N \in \mathbb{N}$ tal que para todo $x \in X$

$$f(x) = 0$$
 \iff $g_n(x) = -1$ para algún $n \le N$.

3. Sean $U \subseteq \mathbb{C}$ abierto y sean $g_n: U \to \mathbb{C}$ funciones holomorfas tal que $\sum_{n=1}^{\infty} |g_n|$ converge compactamente U. Sea

$$f_n: X \to \mathbb{C}, f_n(x) = \prod_{n=1}^n (1 + g_j(x)).$$

- (a) Demuestre que $(f_n)_{n\in\mathbb{N}}$ converge compactamente a una funcón holomorfa $f:U\to\mathbb{C}$.
- (b) Sea $z_0 \in U$. Demuestre que $f(z_0) = 0$ si y solo si existe un $j \in \mathbb{N}$ tal que $g_j(z_0) = -1$, que solo hay finitos tales j y que el orden del cero z_0 para f es igual a la suma de las multiplicidades de z_0 como cero de todas las funciones $1 + g_j$.
- 4. Sea $U \subseteq \mathbb{C}$ una región, sean $f_n: U \to \mathbb{C}$ funciones holomorfas y suponga que $\prod_{j=1}^{\infty} f_n$ converge absolutamente y compactamente en U. Demuestre que $f'/f = \sum_{j=1}^{\infty} f'_j/f_j$ donde la suma al lado derecho es compactamente convergente en su dominio.

Por hipótesis existe j_0 (que además podemos escoger inependiente de x) tal que para $j>j_0$, tenemos que $|g_j(x)|<\frac{1}{2}$. Por lo tanto convergencia de $\sum_{j=j_0}^{\infty}|g_j(x)|$ es equivalente a la $\sum_{j=j_0}^{\infty}|\ln(1+g_j(x))|$, que por definición es equivalente la convergencia absoluto del producto de los $1+g_j(x)$.