2. L'equazione lineare del primo ordine y' = ay + b

Problema di Cauchy

$$a = 0 \implies \begin{cases} y' = b \\ y(x_0) = y_0 \end{cases} \Rightarrow \text{solutione: } y(x) = y_0 + b(x - x_0)$$

Esercizi

1.
$$\begin{cases} y' = -2 \\ y(-1) = 3 \end{cases}$$

2.
$$\begin{cases} y' = 5 \\ y(1) = 9 \end{cases}$$

1.
$$\begin{cases} y' = -2 \\ y(-1) = 3 \end{cases}$$
 2.
$$\begin{cases} y' = 5 \\ y(1) = 9 \end{cases}$$
 3.
$$\begin{cases} y' = \frac{1}{2} \\ y(0) = -4 \end{cases}$$
 4.
$$\begin{cases} y' = \sqrt{3} \\ y(0) = 0 \end{cases}$$

4.
$$\begin{cases} y' = \sqrt{3} \\ y(0) = 0 \end{cases}$$

$$a \neq 0$$
 =

$$\begin{cases} y' = ay + b \\ y(x_0) = y_0 \end{cases}$$

Problema di Cauchy
$$a \neq 0 \quad \Rightarrow \quad \begin{cases} y' = ay + b \\ y(x_0) = y_0 \end{cases} \quad \Rightarrow \quad \text{soluzione: } y(x) = \left(y_0 + \frac{b}{a}\right)e^{a(x - x_0)} - \frac{b}{a}$$

Esempio

Determinare l'integrale generale dell'equazione

$$2y' - 3y = 1$$

L'equazione si può scrivere nella forma (poiché $y=-\frac{1}{3}$ non è soluzione)

$$\frac{dy}{dx} = \frac{1+3y}{2} \to \frac{dy}{1+3y} = \frac{dx}{2}$$

da cui, integrando entrambi i termini

$$\int \frac{dy}{1+3y} = \int \frac{dx}{2} \to \frac{1}{3} \int \frac{d(1+3y)}{1+3y} = \int \frac{dx}{2} \to \log|1+3y| = \frac{3}{2}x + c$$

soluzione che si può scrivere:

$$|1 + 3y| = e^{\frac{3x}{2}} \cdot e^c$$
 ossia $|1 + 3y| = Ce^{\frac{3x}{2}}$

avendo posto $e^c = C$

Considerata poi la stessa equazione sottoposta a una condizione, per esempio

$$\begin{cases} 2y' - 3y = 1 \\ y(0) = 1 \end{cases}$$

la soluzione si ottiene dall'integrale generale $|1+3y|=\mathcal{C}e^{\frac{3x}{2}}$ imponendo che y(0)=1 , perciò si ha 4 = C, quindi la soluzione è

$$1 + 3y = 4e^{\frac{3x}{2}} \quad \text{ossia } y = \frac{4}{3}e^{\frac{3x}{2}} - \frac{1}{3}$$

Si osserva che il risultato si può ottenere applicando direttamente la formula risolutiva per

$$a = \frac{3}{2}$$
, $b = \frac{1}{2}$, $x_0 = 0$, $y_0 = 1$

Esercizi

Determinare l'integrale generale delle seguenti equazioni differenziali:

5.
$$y' + 3y = 1$$

6.
$$y' = 2 - y$$

$$7.v' = 4 + 2v$$

5.
$$y' + 3y = 1$$
 6. $y' = 2 - y$ **7.** $y' = 4 + 2y$ **8.** $3y' - y = 5$

Esercizi

Determinare l'integrale particolare delle seguenti equazioni differenziali che soddisfa la condizione

9.
$$\begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

9.
$$\begin{cases} y' = y \\ y(0) = 1 \end{cases}$$
 10.
$$\begin{cases} y' = 2y - 1 \\ y(1) = 0 \end{cases}$$
 11.
$$\begin{cases} y' = -y + 2 \\ y(-1) = 1 \end{cases}$$

11.
$$\begin{cases} y' = -y + 2 \\ y(-1) = 1 \end{cases}$$

12.
$$\begin{cases} y' = -y - 4 \\ y(\frac{1}{2}) = -\frac{3}{2} \end{cases}$$
 13.
$$\begin{cases} y' = 3y - 3 \\ y(0) = -3 \end{cases}$$
 14.
$$\begin{cases} y' = -4y + 1 \\ y(2) = 4 \end{cases}$$

13.
$$\begin{cases} y' = 3y - 3 \\ y(0) = -3 \end{cases}$$

14.
$$\begin{cases} y' = -4y + 1 \\ y(2) = 4 \end{cases}$$

Soluzioni

1. S.
$$v = -2x + 1$$

2.S.
$$y = 5x + 4$$

1. S.
$$y = -2x + 1$$
; **2.S.** $y = 5x + 4$; **3. S.** $y = \frac{x}{2} - 4$; **4. S.** $y = \sqrt{3}x$;

4. S.
$$y = \sqrt{3}x$$

5. S.
$$ce^{-3x} + \frac{1}{3}$$
 6. S $ce^{-x} + 2$ **7.** S. $ce^{2x} - 2$ **8.** S. $ce^{\frac{x}{3}} - 5$

6. S
$$ce^{-x}$$
+2

8.S.
$$ce^{\frac{x}{3}} - 5$$

9. S.
$$y = e^x$$

9. S.
$$y = e^x$$
; **10.S.** $y = -\frac{1}{2}e^{2(x-1)} + \frac{1}{2}$; **11.S.** $y = -e^{-x-1} + 2$;

11.S.
$$y = -e^{-x-1} + 2$$
;

12. S.
$$y = \frac{5}{2}e^{-x+\frac{1}{2}} - 4$$
; **13.S.** $y = -4e^{3x} + 1$; **14.** S. $y = \frac{15}{4}e^{-4x+8} + \frac{1}{4}$;

14. S.
$$y = \frac{15}{4}e^{-4x+8} + \frac{1}{4}$$
;