In the claims

5

aluminum and tantalum.

Cancel claims 21-26.

Claims 3, 5, 8, 10, 11 and 27 of remaining claims 1-25 and 27 are amended.

1	1. (Original) A magnetic head comprising:
.2	first and second pole pieces including first and second pole tips separated by a gap layer;
3	and
.4	the first and second pole pieces each including a body-centered cubic (BCC) nickel-iron
5	alloy layer containing from 64% to 81% iron by weight.
1	2. (Original) The magnetic head of claim 1 wherein at least one of the first and
· 2	second pole pieces comprises:
3	a seed layer having a first saturation flux density underlying an electroplated BCC
4	nickel-iron alloy layer having a second saturation flux density no greater than the first saturation
5	flux density.
1	3. (Currently Amended) The magnetic head of claim 2 wherein A magnetic head
2	comprising:
3	first and second pole pieces including first and second pole tips separated by a gap layer;
4	the first and second pole pieces each including a body-centered cubic (BCC) nickel-iron
5	alloy layer containing from 64% to 81% iron by weight;
6	at least one of the first and second pole pieces comprising:
7	a seed layer having a first saturation flux density underlying an electroplated BCC
8	nickel-iron alloy layer having a second saturation flux density no greater than the first
9	saturation flux density; and
10	the second saturation flux density [[is]] being in the range from about 1.9 teslas to
11	about 2.3 teslas.
1	4. (Original) The magnetic head of claim 2 wherein the underlying seed layer
2	comprises a material selected from a group consisting essentially of:
3	a nickel-iron alloy (NiFe), an iron-nitride-X alloy (FeNX) and a cobalt-iron-X (CoFeX)
4	alloy wherein X comprises a material selected from a group comprising nickel, nitrogen, rhodium,

1	5. (Currently Amended) The magnetic head of claim 1 wherein A magnetic head
2	comprising:
3 ,	first and second pole pieces including first and second pole tips separated by a gap layer;
4	the first and second pole pieces each including a body-centered cubic (BCC) nickel-iron
5	alloy layer containing from 64% to 81% iron by weight; and
6	the coercivity of the first and second pole pieces [[is]] being less than about 160
7	amps/meter.
1	6. (Original) A magnetic read/write head comprising:
2	first and second pole pieces including first and second pole tips separated by a first gap
3	layer;
4	a magnetic sensor sandwiched between second and third gap layers, the second and third
5	gap layers being sandwiched between first and second shield layers, the second shield layer being
6	generally adjacent to the first pole piece; and
7	the first and second pole pieces each including a body-centered cubic (BCC) nickel-iron
8	alloy layer containing from 64% to 81% iron by weight.
1	7. (Original) The magnetic read/write head of claim 6 wherein at least one of the
2	first and second pole pieces comprises:
3	a seed layer having a first saturation flux density underlying an electroplated BCC
4	nickel-iron alloy layer having a second saturation flux density no greater than the first saturation
5	flux density.
1	8. (Currently Amended) The magnetic read/write head of claim 7 wherein A
2	magnetic read/write head comprising:
3	first and second pole pieces including first and second pole tips separated by a first gap
4	layer;
5	a magnetic sensor sandwiched between second and third gap layers, the second and third
6	gap layers being sandwiched between first and second shield layers, the second shield layer being
7	generally adjacent to the first pole piece;
8	the first and second pole pieces each including a body-centered cubic (BCC) nickel-iron
9	alloy layer containing from 64% to 81% iron by weight;

10	at least one of the first and second pole pieces comprising:
11	a seed layer having a first saturation flux density underlying an electroplated BCC
12	nickel-iron alloy layer having a second saturation flux density no greater than the first
13	saturation flux density, and
14	the second saturation flux density [[is]] being in the range from about 1.9 teslas to
15	about 2.3 teslas.
· 1	9. (Original) The magnetic read/write head of claim 7 wherein the underlying seed
2	layer comprises a material selected from a group consisting essentially of:
3	a nickel-iron alloy (NiFe), an iron-nitride-X alloy (FeNX) and a cobalt-iron-X (CoFeX)
4	alloy wherein X comprises a material selected from a group comprising nickel, nitrogen, rhodium,
. 5	aluminum and tantalum.
1	10. (Currently Amended) The magnetic read/write head of claim 6 further
2	comprising: A magnetic read/write head comprising:
3	first and second pole pieces including first and second pole tips separated by a first gap
4	layer;
5	a magnetic sensor sandwiched between second and third gap layers, the second and third
6	gap layers being sandwiched between first and second shield layers, the second shield layer being
7	generally adjacent to the first pole piece;
8	the first and second pole pieces each including a body-centered cubic (BCC) nickel-iron
9	alloy layer containing from 64% to 81% iron by weight;
10	a first insulation layer disposed over the first pole piece;
11	at least one coil layer disposed over the first insulation layer; and
12	a second insulation layer disposed over the coil layer; wherein and
13	the second pole piece [[is]] being disposed over the second insulation layer.
1	11. (Currently Amended) The magnetic read/write head of claim 6 wherein A
2	magnetic read/write head comprising:
3	first and second pole pieces including first and second pole tips separated by a first gap
4	layer;

5	a magnetic sensor sandwiched between second and third gap layers, the second and third
6	gap layers being sandwiched between first and second shield layers, the second shield layer being
7	generally adjacent to the first pole piece;
8	the first and second pole pieces each including a body-centered cubic (BCC) nickel-iron
9	alloy layer containing from 64% to 81% iron by weight; and
10	the coercivity of the first and second pole pieces [[is]] being less than about 160
11	amps/meter.
1	12. (Original) A magnetic data storage drive for storing data on a magnetic
2	medium, the drive comprising:
3	a magnetic head including
· 4	first and second pole pieces including first and second pole tips separated by a gap layer,
5	the first and second pole pieces each including a body-centered cubic (BCC) nickel-iron alloy layer
6	containing from 64% to 81% iron by weight;
7	a housing;
8	a support mounted in the housing for supporting the magnetic head;
9	medium moving means mounted in the housing for moving the magnetic medium past the
10	magnetic head in a transducing relationship therewith;
11	positioning means connected to the support for moving the magnetic head to a plurality of
12	positions with respect to the moving magnetic medium so as to process signals with respect to a
13	plurality of data storage tracks on the magnetic medium; and
14	control means connected to the magnetic head, the medium moving means and the
15	positioning means for controlling and processing signals with respect to the magnetic head,
16	controlling movement of the magnetic medium and controlling the position of the magnetic head.
1	13. (Original) The magnetic data storage drive of claim 12 wherein at least one of
2	the first and second pole pieces comprises:
3	a seed layer having a first saturation flux density underlying an electroplated BCC
4	nickel-iron alloy layer having a second saturation flux density no greater than the first saturation
5	flux density.
1	14. (Original) The magnetic data storage drive of claim 13 wherein the second
2	saturation flux density is in the range from about 1.9 teslas to about 2.3 teslas.

I	15. (Original) The magnetic data storage drive of claim 13 wherein the underlying
2	seed layer comprises a material selected from a group consisting essentially of:
3	a nickel-iron alloy (NiFe), an iron-nitride-X alloy (FeNX) and a cobalt-iron-X (CoFeX)
4	alloy wherein X comprises a material selected from a group comprising nickel, nitrogen, rhodium,
5	aluminum and tantalum.
1	16. (Original) The magnetic data storage drive of claim 13 further comprising:
2	a first insulation layer disposed over the first pole piece;
3	at least one coil layer disposed over the first insulation layer; and
4	a second insulation layer disposed over the coil layer; wherein
5	the second pole piece is disposed over the second insulation layer.
1	17. (Original) The magnetic data storage drive of claim 12 wherein the magnetic
2	head comprises:
3	first and second pole pieces including first and second pole tips separated by a first gap
4	layer; and
5	a magnetic sensor sandwiched between second and third gap layers, the second and third
6	gap layers being sandwiched between first and second shield layers, the second shield layer being
7	generally adjacent to the first pole piece; and
8	the first and second pole pieces each including a BCC nickel-iron alloy layer containing
9	from 64% to 81% iron by weight.
1	18. (Original) The magnetic data storage drive of claim 12 wherein the nickel-iron
2	alloy in first and second pole pieces has a coercivity of less than about 160 amps/meter.
1	19. (Original) The magnetic data storage drive of claim 12 wherein:
2	the moving magnetic medium includes a rotating magnetic disk.
1	20. (Original) The magnetic data storage drive of claim 12 wherein:
2	the moving magnetic medium includes a streaming magnetic tape.
	21 26. (Cancelled)

1	27 (Currently Amended) The method of claim 21 further comprising the step of: A
2	method of fabricating a magnetic write head comprising the steps of:
3	providing a substrate;
4	forming a first magnetic pole layer over the substrate by performing the steps of:
5	forming a first underlying seed layer of a first ferromagnetic (FM) material having
.6	a first saturation flux density, and
7	electroplating the first underlying seed layer with a second FM material having a
.8	second saturation flux density no greater than the first saturation flux density;
9	forming a gap filling layer over the first magnetic pole layer; and
·10	forming a second magnetic pole layer over the gap filling layer by performing the steps of:
11	forming a second underlying seed layer of a third FM material having a third
12	saturation flux density;
13	electroplating the second underlying seed layer with a fourth FM material having
14	a fourth saturation flux density no greater than the third saturation flux density; and
15	annealing the FM materials in the first and second magnetic pole layers to reduce
16	the coercivity thereof to less than about 160 amps/meter.