Given, 
$$\rho = 2$$
 $m = 4$ 
 $-2 \le e \le 6 \Rightarrow e_{min} = -2$ 
 $e_{max} = 6$ 

# Standard Form: We know,
$$F = \pm (0 \cdot d_1 d_2 d_3 d_4 - d_m)_{\beta} \times \beta^{e}$$

Maximum:
$$15/_{16} \times (2)^{6}$$

$$= 60$$
(Ams)

mantissa = 4

$$\approx (0.1111)_2$$

=  $\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$ 

=  $\frac{15}{16}$ 

exponent =  $2^6 = 64$ 

Minimum: 
$$\Rightarrow \frac{1}{2} \times \frac{1}{4}$$

$$= 0.125$$
(Am:)

And,

Smallest =  $-\left(\frac{15}{16}\right) \times \left(2\right)^{6}$ 
(most negative)
$$= -60$$

(Am &)

smallest mantissa,  

$$m = (0.1000)_2$$
  
exponent,  $(2)^{-2} = \frac{1}{4}$ 

[P. T. O]

# Denormalize Form: We Knows
$$F = \pm (1. d_1 d_2 d_3 d_4 - - d_m) \times \beta^e$$

Maximum = 
$$31/16 \times (2)^6$$
  
=  $124$   
(Am2)

manti 55a  
= 
$$(1 \cdot 111^{1})^{2}$$
  
=  $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$   
+  $\frac{1}{16}$   
=  $\frac{31}{16}$   
Exponent =  $2^{6}$   
=  $64$ 

Minimum: 
$$\Rightarrow 1 \times \frac{1}{4}$$

$$= 0.25$$

Smallest
$$(most negative) = -\left(\frac{31}{16}\right) \times (2)^{6}$$

$$= -124$$

mantissa,  
= 
$$(1.0000)_2$$
  
=  $(1+0+0+0+0)_2$   
= 1

exponent = 
$$(2)^{-2}$$
  
=  $\frac{1}{4}$ 

(Am 8)

We know,

$$\frac{\text{Maximum}}{\text{Maximum}} = \left(\frac{15}{16}\right) \times \left(2\right)^{6}$$



# Minimum =

$$\left(\frac{1}{2}\right) \times \left(2\right)^{-2}$$

$$= \left(\frac{1}{2}\right) \times \left(\frac{1}{4}\right)$$

$$= 0.125$$

#### mantissa,

$$m = (0.1111)^{7}$$

$$=\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$

exponent = 6 
$$\approx (2)^6$$

#### Mantissa,

exponent = 
$$(2)^{-2}$$

## Am. to the g. NO-01(b)

# Determining non-negative minimum numbers:

Minimum = 
$$(0.1000)_2 \times (2)^2$$
  
 $(non-negative) = 0.125$  [from '(a)']

(Ams)

### (1) Denoremalize Forem 8

Minimum = 
$$(1.0000)_{2} \times (2)^{-2}$$
  
(Non-negative) =  $0.25$  [from '(a)']

= 
$$0.25$$
 [from (a)

### Norcmalize Forcm 8

Minimum. 
$$(non-negative) = (0.1000)_2 \times (2)^2$$
  
= 0.125 [from. '(a)']

(Am?)

### Am. to the g. NO- 01(c)

#### Standard Forcm &

") mantissa 
$$\Rightarrow$$
  $d_1$  must be nonzero (1 to 15 in binary)  $\Rightarrow$  15 choice.

$$\Rightarrow d_{2}, d_{3}, d_{4} - \cdots$$

$$(0 \text{ on } 1)$$

$$\Rightarrow (2)^{3} = 8 \text{ choice}$$

(iii) Exponent 
$$\Rightarrow$$
 Given,  
 $-2 < e < 6$   
 $\Rightarrow -2, -1, 0, 1, 2, 3, 4, 5, 6$ 

De normalize forcm : We Know,

According to the given values,

[1 bit fixed with 1] 
$$\Rightarrow (2)^3 = 8$$

$$\Rightarrow exponent \Rightarrow -2 \leq e \leq 6$$

$$\Rightarrow -2, -1, 0, 1, 2, 3, 4,$$

$$5, 6$$

$$(9 \text{ values})$$

Page 1 amount of the same of the

(Am:)

### # Normalize form ;

We Know,

$$\Rightarrow$$
 forc  $d_1, d_2, d_3 - \cdots = > (2)^3 = 8$  choices

11) exponent 
$$\Rightarrow -2 \le e \le 6$$
  
 $\Rightarrow -2, -1, 0, 1, 2, 3, 4, 5, 6$   
(9 values)

|||) sign 
$$\Rightarrow$$
 + (ve)  $\left.\right\}$  2 choice.

(Ams:)

### Am. to the g. NO - 02 (a)

Giren.

real number  $x = (5.625)_{10}$ 

| Integera | Part              |
|----------|-------------------|
| 25       | i treachen        |
| 2 1-     | <u>0</u>   become |

$$(5)_{10} = (101)_{2}$$

Fraction part

$$\begin{array}{c} (101)_{2} \\ \Rightarrow \text{Integers. 0}, \\ \text{freaction. 0.5} \end{array}$$

$$0.5 \times 2 = 1.0 \Rightarrow \text{Integer 1}$$

fraction  $0.0$ 

$$: (0.625)_{10} = (0.101)_{2}$$

$$(5.625)_{10} = (101.101)_{2}$$

(Am :)

## Am. to the g. NO- 02(b)

We know,

Given,

$$m=3$$

only 3 freaction bits are stored]

from (a)";

$$(5.625)_{10} = (101.101)_{2}$$

In Normalized form 
$$\Rightarrow$$
 if  $m=3$ ;
$$= (1.01101)_2 \times 2^2$$

$$= (1 \cdot 0.11) \times 2^{2} \quad [:m=3]$$

$$f(x) = (1.011)_2 \times 2^2$$

### Am. to the g. NO-02(c)

### 1) converting fl(a) back to decimal:

$$f_{\lambda}(\alpha) = (1 \cdot 0.11)_{2} = (1 + 0/2 + 1/4 + 1/8) \times 4$$
$$= (1 + 0 + 0.25 + 0.125) \times 4$$

$$\therefore \exists l(\alpha) = (5.5)_{10}$$

#### (Am :)

11) Rounding Ercrorc = 
$$x - fl(x)$$

$$= 0.125$$

#### (Am:)

#### 111) Determining Machine Epsilon:

Maximum Possible Total ercrore,  
= 
$$0.125 \times (10)^{3} \times (10)^{\circ}$$

P. 1.0.

We Know,

Machine Epsilon, 
$$E_{M} = \frac{0.125 \times (10)^{3} \times (10)^{\circ}}{0.125 \times (10) \times (10)^{\circ}}$$

$$=\frac{1}{8} \times (10)^{-2}$$

$$= 1.25 \times 10^{-3}$$

(Ams)

### commerc to the g. No-03(a)

Givens

quadrettic equation,

$$x^{9} - 60x + 1 = 0$$
 ——

Herre,

for the given equation,

$$b = -60$$

We know,
fore 
$$ax^2 + bx + C = 0$$
,

solving foremula,
$$x = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$$

Now

using 
$$x = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$$

in equation (),

$$x_1 = 30 + \sqrt{899} = 59.9833$$

$$\alpha_2 = 30 - \sqrt{899} = 0.01667$$

[ computers generally calculate upto 4 sigbit value]

Ficance occurs  $\Rightarrow$  in the subtraction  $\Rightarrow$  |(0.0167)-(0.01677)

## Amo. to the g. NO - 03(b)

In '(a)', 
$$2^{-60}x+1=0-0$$

we get,  $1055$  of significance occurs.

Now

Evaluation of correct roots without occurrance of Loss of significance:

$$\mathbf{x_1} = \frac{60 + 59.9833287}{2} = 59.9833287$$

teri the given countings

Now, rounding to 6 significant figures:

Again, for equation (1) >

Olgan Inhabito 
$$\beta = \frac{4}{\chi_1} = \chi_2$$

$$\Rightarrow \alpha_2 = \frac{\bot}{59.9833287}$$

rounding to 6 significant figures :-

We Knows

$$\alpha + \beta = -\frac{b}{a}$$

$$\alpha - \beta = \frac{c}{a}$$

fundamental property of a polynomial. "The convect roots Where no loss of significance occurs:

 $\kappa_1 \approx 59.9833$ 

x<sub>2</sub> ≈ 0·0166713

(Am:)