Q1. Which statistical methods do we use for paired categorial data?

- A. 2x2 contingency table / t-test
- B. McNemar's test
- C. Fisher's exact test
- D. Z-test

Q2. When do we use Fisher's Exact test for categorial data?

- A. When the expected values of 2x2 table are small
- B. When the observed values of 2x2 table are small
- D. When the expected values of 2x2 table are large
- C. When the observed values of 2X2 table are large

Q3. The test statistic for testing the relation between two discrete variables (one with R categories and the other with C categories, i.e. RxC table) follows what kind of distribution:

- A. t-distribution
- B. normal distribution
- C. Chi-square distribution
- D. Binomial distribution

- Q4. What is the expected values for:
- 1) Blonde hair and blue eye
- 2) Black hair and brown eye

A. 1.64 and 3.64

B. 1.64 and 5

C. 5 and 3.64

D. 3.64 and 5

		Eye	Color		
Hair Color	Green	Blue	Brown	Black	Total
Blonde	4	7	2	1	14
Brown	2	4	18	2	26
Black	1	2	5	2	10
Total	7	13	25	5	50

Q5. Which statistical methods do we use for the data shown in the table?

TABLE 1. Detection of SARS CoV by quantitative PCR and realtime LAMP assays

Quantitative	RT-I	_AMP	Total
RT-PCR	Positive	Negative	Tota
Positive	40	60	46
Negative	2	11	13
Total	42	17	59
Total	72	**	

[&]quot;Three of these samples were positive in a repeated LAMP test.

- A. 2x2 contingency table / t-test
- B. McNemar's Chi-square test (Normal-theory test)
- C. McNemar's exact test
- D. Z-test

Q1. A study investigates the association between the size of school and academic performance to examine if the size of the school is linked with academic performance. "api00" is the dependent variable and "enroll" is the independent variable (predictor). Let's say the estimated regression line: api00= a + b *enroll

From the figure, the coefficient (b) should be:

- A. 0
- B. Positive
- C. Negative
- D. Infinity

Q2. Calculate the predicted average API score of a class size of 500 students.

A. 644.32

B. 644.318

C. 532.33

D. 532

Source	1	SS	df	h	MS		Number of obs	=	40
	-+-						F(1, 398)	=	44.8
Model	1	817326.293	1	81732	26.293		Prob > F	=	0.000
Residual	1	7256345.70	398	1823	2.0244		R-squared	-	0.101
	-+-						Adj R-squared	-	0.099
Total	1	8073672.00	399	2023	4.7669		Root MSE	=	135.0
api00	1	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval
enroll	1	1998674	.029	8512	-6.70	0.000	2585532		141181
cons	1	744.2514	15.93	3308	46.71	0.000	712,9279	7	75.574

Q3. Which of the following statement about the F test is incorrect?

A. The 9 variables, when considered together, are significant predictors of API score.

B. At least one of the coefficients of the multiple regression model is not equal to 0.

Source	T	SS	df		MS		Number of obs	= 3
	- 8 -						F(9, 385)	- 232,
Mode1	1	6740702.01	9	748	966.89		Prob > F	= 0.00
Residual	1	1240707.78	385	3222	.61761		R-squared	= 0.84
	+-						Adj R-squared	= 0.84
Total	1	7981409.79	394	2025	7.3852		Root MSE	= 56.7
api00	1	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interva
ell	ï	8600707	.210	6317	-4.08	0.000	-1,274203	44593
meals	1	-2.948216	.1703	3452	-17.31	0.000	-3.28314	-2.6132
yr_rnd	1	-19.88875	9.25	8442	-2.15	0.032	-38.09218	-1.685
mobility	1	-1.301352	.4362	2053	-2.98	0.003	-2.158995	44370
acs_k3	1	1.3187	2.252	2683	0.59	0.559	-3.1104	5.7478
acs_46	1	2.032456	.7983	3213	2.55	0.011	.462841	3.6020
full	1	,609715	.4758	8205	1.28	0,201	-,3258169	1.5452
emer	1	7066192	. 605	4086	-1.17	0.244	-1.89694	.48370
enrol1	1	012164	.016	7921	-0.72	0.469	0451798	.02085
	1	778.8305	61.68	500	12.63	0.000	657,5457	900.11

C. The degree of freedom = 385.

D. Coefficient of "ell" is not equal to zero when the coefficients of other variables are not equal to zero.

Q4. Which are the statistically significant predictors of API score after holding other variables constant?

- A. ell, meals, yr_rnd, mobility, acs_k3, acs_46, full, emer, enroll
- B. ell, meals, yr_rnd, mobility, acs_k3, acs_46, full, emer
- C. ell, meals, yr_rnd, mobility, acs_46
- D. Not sure

Source	1	SS	df		MS		Number of obs	-	395
	-+-						F(9, 385)	=	232.4
Model	1	6740702.01	9	748	1966.89		Prob > F	-	0.0000
Residual	1	1240707.78	385	3222	2.61761		R-squared	-	0.844
	-+-						Adj R-squared	-	0.8409
Total	1	7981409.79	394	2025	7,3852		Root MSE	=	56.76
api00	1	Coef.	Std.	Err.	t	P>1t1	[95% Conf.	In	terval)
	-+-								
ell		8600707	.210		-4.08	0.000	-1.274203		445938
meals	1	-2.948216	.170	3452	-17.31	0,000	-3,28314	-2	.61329
yr_rnd	1	-19.88875	9,25	8442	-2.15	0.032	-38.09218	-	1.6853
mobility	1	-1.301352	.436	2053	-2.98	0.003	-2.158995		443708
aca_k3	9	1.3187	2.25	2683	0.59	0.559	-3.1104	5	.74780
acs_46	1	2.032456	.798	3213	2.55	0.011	.462841	3	.602071
full	1	.609715	.475	8205	1.28	0.201	3258169	1	.545247
emer	1	7066192	. 605	4086	-1.17	0.244	-1.89694		4837018
enroll	1	012164	.016	7921	-0.72	0.469	0451798	2.5	020851
cons	1	778.8305	61.6		12.63	0.000	657.5457	- 0	00.1154

Q5. When one or both of the variables are either ordinal or have a distribution that is far from normal, which of the following test should be used to assess the relation between two variables?

- A. Pearson's correlation
- B. Spearman rank correlation
- C. Single linear regression
- D. Multiple linear regression

Q1. A researcher was interested in stress levels of students during lectures. He took the same group of 8 students and measured their anxiety during a normal lecture and again in a lecture in which he had peers to be disruptive and misbehave. The data were not normally distributed. Which test should he use to compare the experimental conditions?

- A. Z-test
- B. Paired samples t-test
- C. Wilcoxon rank-sum test
- D. Wilcoxon signed-rank test

Q2. A researcher measured 20 people's physiological reactions while watching comedy movies and compared them to 30 people's physiological reactions when watching horror movies. The data were skewed. What test should be used to analyse the data?

- A. Independent t-test
- B. Dependent (related) t-test
- C. Wilcoxon rank-sum test
- D. Wilcoxon signed-rank test

Q3. Which of the following is true about nonparametric statistical methods?

- A. All of the following are true
- B. when no assumptions about the shape of the distribution
- C. when we cannot apply central-limit theorem due to small sample size
- D. when the data are skewed / not normally distributed.

Q4. A new treatment is proposed for patients with lung cancer. Investigators are concerned with patient's ability to tolerate the treatment and assess their quality of life both before and after receiving the new treatment. Quality of life (QOL) is measured on an ordinal scale and for analysis purposes, numbers are assigned to each response category as follows: 1=Poor, 2= Fair, 3=Good, 4= Very Good, 5 = Excellent. The data are shown below.

If we would like to test whether there is a difference in QOL after the treatment as compared to before. What kind of test should we

use?

A. Wilcoxon rank-sum test

B. Dependent (related) t-test

C. Sign test

D. Wilcozon signed-rank test

Patient	QOL Before Chemotherapy Treatment	QOL After Chemotherapy Treatment	Difference (After-Before)	Sign
1	3	2	-1	-
2	2	3	1	
3	3	4	1	. +
4	2	4	2	
5	1	1	0	
6	3	4	1	
7	2	4	2	
8	3	3	0	+
9	2	1	-1	-
10	1	3	2	
21	3	4		
12	2	3	1	

Q5. Which of the following shows the correct matching:

Analysis Type	Parametric Procedure	Nonparametric Procedure	
Compare means between wo distinct/independent groups	Two-sample t-test	2 3	
compare two quantitative neasurements taken from the same individual	Paired t-test		
Estimate the degree of association between two quantitative variables	Pearson coefficient of correlation		

- A. 1: Sign test, 2: Wilcoxon signed-rank test, 3: Spearman's rank correlation
- B. 1: Wilcoxon rank-sum test, 2: Wilcoxon signed-rank test,
- 3: Spearman's rank correlation
- C. 1: Wilcoxon rank-sum test, 2: sign test, 3: Spearman's rank correlation
- D. 1: Wilcoxon rank-sum test, 2: Wilcoxon signed-rank test, 3: Pearson's correlation