

사람의 음식 인지

신경경로에 따라 구성

✓ 신경경로 : 신경세포들의 다양하고, 복잡한 연결과정에 따라 형성된 것

본능적인 부분

신경경로

생물학적으로 물려받은 유전자에 의해 설계 및 형성

환경적인 부분

→ 생리적이고 문화적인 현상

씨가 단국대학교

음식인지의 해부학적 구조

미각

후각

- ✔ 화학물질을 감지해 생기는 감각
 - → 화학수용체

맛 보기

맛을 보는데 특화된 입안의 세포에서 시작

✔ 50~150개의 세포가 모여 '미뢰' 조직 구성

미로 Taste Bud

- ✔ 입안을 향해 화학수용기가 뻗어 나온 구조로 된 조직
 - → 1주일에서 10정도의 기간 마다 닳아 없어지고 새로운 것으로 대치됨
- ✔ 45세까지 활발히 활동함
 - → 입천장은 나이가 들어가며 닳음
 - ➡ 똑같은 감각을 느끼기 위해 강렬한 맛 필요
- ✔ 미각이 가장 예민한 층은 어린아이들

씨가 단국대학교

음식을 입에 넣고 씹기

침이 섞이며 음식물의 즙이 나옴

음식의 화학물들이 미뢰에 접근

- ➡ 물질이 녹아야 맛을 볼 수 있다.
- ➡ 침이 없다면 맛을 느끼기 힘들다.

미로 Taste Bud

- ✔ 혀 표면의 돌기에 분포함
 - → 약 1만개의 미뢰가 존재함
- ✔ 물렁입천장, 뺨의 안쪽 벽, 인두, 후두덮개에도 분포함

미뢰에서 맛을 느끼는 세포

✔ 감각을 담당하는 신경세포로 신호를 보내야 맛을 인지할 수 있음

단맛

신맛

짠맛

쓴맛

감칠맛

감칠맛

- ✔ 인간이 혀로 감지할 수 있는 제 5의 미각
- ✔ '맛있다'는 뜻의 일본어

이케나 기쿠나에

- → 가츠오부시 국물에서 감칠맛 성분 추출
- → 아미노산의 일종인 '글루탐산'임을 밝혀냄

이케나 기쿠나에

MSG

맛있는 음식

- ✔ 감칠맛과 단맛: 영양가 있는 음식
- ✔ 쓴 맛: 상했거나 독성이 있는 음식
 - → 본능적으로 음식을 뱉어버림

맛을 느끼는 것에 중요한 감각 '미각'

✔ 미각 수용체만을 의존하지는 않음

질감

마른 음식이 촉촉한 음식보다 맛이 덜함

생리적 요인 특정식욕, 소금식욕

✔ 신체의 나트륨 수치가 낮아지면 소금 섭취의 갈망이 높아짐

냄새

→ 음식을 씹을 때 나오는 화학물질이 후각 자극

미각수용체 + 후각수용체

미각 수용체의 장기적 적응

- ✔ 문화 환경과 관련 깊은 요인들을 통한 맛과 음식의 적응
 - → 반복된 노출, 개인적 경험, 기억, 조건화

처음 접하는 커피의 쓴맛

→ 해롭다는 신호로 움찔

커피의 맛에 익숙해진 후

- → 지속적인 섭취 가능
- → 커피의 다른 맛을 알게 됨

맛을 보는 과정

입 안에서

맛을 인식하는 과정

두뇌에서

뉴런 → 미각세포와 연결

뇌신경 → 말초신경의 일부

뇌줄기 → 신경핵 중 고립로핵(신경세포 모임)

축삭돌기 연접

뇌줄기

- ✔ 미각 정보를 고위로 보내 대뇌피질이 맛을 느끼게 함
- ✔ 삼키기, 기침과 같은 무의식적 불수의 반사운동 지시

먹어서는 안될 것을 먹었을 때 뱉어냄

" 반사운동"

뇌줄기를 거친 신호

시상을 거쳐 대뇌로

관자엽 안쪽 눈확이마피질 도달

편도체에서 맛 평가

눈확이마겉질

- ✔ 맛감각, 질감, 경도 등의 정보를 처리하는 신경세포 존재
- ✔ 맛과 관련된 시작정보 처리 신경세포 존재

"특정 자극에 특화된 뉴런들의 》 조합을 통해 인간은 음식의 질에 관한 폭넓은 감각정보를 인식하게 된다"

- ✔ 음식을 먹는 행위는 복잡한 감각의 경험
- ✔ 눈확이마겉질의 특화된 신경세포 협력을 통해 맛 경험

맛 = 생리학적 과정

✔ 미뢰가 화학물질을 인지, 중추신경계통으로 신호 전달

특별히 음식 맛에 민감한 사람들 존재

✓ 인간의 미각은 청각 시각과 마찬가지로 개인마다 다르며 일생에 걸쳐 바뀜

눈확이마겉질

→ 미뢰 신호, 촉감, 후각, 시각 등 다양한 정보 통합 인지

감정에 관여하는 일부 부위

- → 맛은 주관적이며 개인적이 될 수 있다는 것을 의미
- → 음식에 대한 태도 역시 개인적 경험과 문화의 영향을 받음

음식 문화

구성원들이 음식을 바라보고 인지하는 관점 형성

"맛은 문화의 산물이다."

"맛을 보는 기관은 혀가 아니라 두뇌다"

"두뇌는 대를 이어 전수된 가치 기준을 따르는 문화적으로 결정된 기관이다"

음식문화

맛과 음식에 대한 인지

단순한 해부학적 문제가 아님

맛을 느낀다는 것

✓ 해부학적 수용과 더불어 문화와 관련된 인지적 작용의 결과

해부학, 또는 생리학적으로

와 특정 맛에 열광하고, 특정 맛을 거부할까?

및 보기도 좋은 것이 먹기에도 좋은가?

맛 = 복합적인 신경 반응

어두운 식당에서 음식 먹기

✔ 시각정보 제거, 고객의 미각 후각, 촉각 극대화

불편하지만 미각, 촉각, 후각이 민감해진다!

및 보기도 좋은 것이 먹기에도 좋은가?

맛 = 복합적인 신경 반응

어두운 식당에서 음식 먹기

- ✓ 시각 외 감각이 극대화 되는 것은 눈확이마겉질의 신경세포가 원인
 - 시각정보 제거 시 다른 감각 정보처리에 신경 씀
 - 맛에 대한 인식이 근본적으로 바뀜

교, 보기도 좋은 것이 먹기에도 좋은가?

맛 = 복합적인 신경 반응

음악이 흐르는 식당

- ✔ 맛을 크게 달리 느끼지 않음
 - 청각은 미각 관련 ² 겉질에 큰 영향을 미치지 않을 수도 있음

교, 보기도 좋은 것이 먹기에도 좋은가?

식사의 쾌락

눈확이마겉질의 신경세포

원숭이의 맛 인지과정 연구

- ✔ 맛의 강도 인지와 쾌락을 느끼는 뇌 부위가 다름
- ✓ 두뇌영상 → 눈확이마겉질에서 쾌락을 느낌
- ✔ 배고프지 않아도 음식의 맛을 평가할 수 있음
- ✔ 배고픈 상태에서 먹는 음식은 더 맛있음

강화작용

상승작용

시너지 발생

와인과 다른 음식들의 조합

- ✔ 원리는 19세기 초부터 발생함
- ✓ 알렉상드르 비야르(Alexandre Viard)의 [황제의 요리사]
 - → 와인과 음식의 기본 원리를 이야기함
- 화이트 와인은 생선과 굴, 의 레드와인은 구운 고기와 먹 는 것이 좋다

강렬한 맛에 의한 두뇌 작용

두 가지 맛을 조합해 먹는 사람의 두뇌 MRI 촬영

MSG + 이노신산

fMRI로 추적

fMRI

✔ 두뇌부위로 가는 혈류량 측정, 활성화 되는 부위를 관찰

MSG

IMP

음식에 첨가되어 감칠맛을 내는 조미료

포도당액을 섭취한 사람의 두뇌 fMRI 촬영

✓ 포도당액, MSG, IMP 섭취 피실험자의 미각정보 통로는 모두 활성화 됨

MSG와 IMP를 함께 섭취

- ✔ 따로 섭취한 사람보다 큰 쾌락을 느낌
- ✓ 따로 섭취했을 때 활성화된 부위를 합친 것 보다 눈확겉질부위가 더 넓게 활성화 됨

두 가지 맛이 시너지를 일으킬 때 맛의 쾌락을 평가하는 두뇌부위가 훨씬 더 활성화됨

음식과 절묘한 궁합의 와인 섭취

✓ 이 때의 기쁨은 단순한 시식자의 기호가 아닌 대뇌겉질의 신경세포에서 일어나는 현상

맛의 시너지

잡식의 원인

- ✔ 농경식단의 단점 극복
- ✔ 대량의 식량을 섭취할 수 있는 장점 극대화

매운것은 통증

통증은 맛이 아니다.

통증 수용체 신경세포

다른 신체부위 세포와 같음

- ✓ 부상에 민감하게 반응하는 일부 신경세포는 고통을 피하도록 신호를 보냄
 - → 느리게 반응하는 특징을 가짐
 - → 부상에 즉시 반응하지 않고 세포 파괴 시 분비되는 화학물질에 반응함
 - 기속적 통증에 반응

통층 수용체

자극에 빨리 순응하지 않음

장기간 음식 섭취

싫증남

같은 자극에 노출되면서 미각세포의 반응속도가 감소함

매운 음식 섭취

점점 더 고통스러움

→ 다른 감각과 질적으로 다른 감각

통증 수용체

통증인지 통제 신경계 매커니즘

- ✔ 통증수용체는 다른 감각 수용체에 비해 느리게 순응함
 - 수용 속도는 각기 다를 수 있음
- ✔ 내인성 아편 유사물질이 통증의 인지, 순응에 중요한 역할
 - → 내인성 아편 : 두뇌가 분비하는 진통제
 - 중단기적으로 고통에 순응하고 대처할 수단 제공

두뇌가 통증을 인식할 때 감정이 큰 영향을 줌

통증인식 두뇌 네트워크

- ✔ 감정에 관여하는 두뇌부위 '이마띠이랑' 포함
 - → 매운 고추처럼 통증을 유발하는 음식 섭취, 또는 회피

야생고추

초식동물은 먹지 않음

→ 캡사이신의 영향을 받지 않는

새들이 고추를 먹고 씨앗을 퍼뜨림

매운 고추

인간의 음식 선호 심리 상태 연구

"일상적이고 익숙한 음식 속에서 다양성을 추구한다"

- ✓ 고추는 비타민 A와 C가 풍부함
- ✔ 캡사이신은 침 분비량을 늘리고 내장운동을 촉진시킴

고추

→ 단독으로 섭취하거나 다른 식재료와 결합 가능

사람들이 매운 음식을 좋아하는 이유

- 롤러코스터 효과(Roller-coaster Effect)
 - ✓ 매운 음식을 먹지 않는 사람이 매운 음식을 좋아하는 사람을 만나 같이 먹게 되는 경우
- 기벼운 러너스 하이(Runner's High)
 - ✓ 더 매운 음식을 먹으면 내인성 아편이 분비되어 쾌감을 느끼는 것

매운 고추

인체에 아주 적합한 음식은 아님

- ✔ 최초로 고추를 먹은 인류는 6천년 전 아메리카 대륙 원주민들
 - 고추를 사용해 매운 음식을 만들 수 있다는 것을 알게 됨
 - % 인류의 요리 역사가 》 혁명적으로 바뀐 시점

통증의 시너지를 이용한 다양한 요리 개발

공격을 막는 기능

병에 걸리지 않도록 보호한다고 가정

- 질병을 담고 있는 물질이 메스꺼움 유발
- 메스꺼움 유발물질은 모든 문화에 걸쳐 보편적

경험적 자료 두 가지 예측을 모두 뒷받침 함

- ✔ 다양한 문화의 사람들, 비위생적인 음식에 메스꺼움을 느낌
 - ▶ 썩은고기, 불결한 음식, 악취를 풍기는 음식, 곤충이 빠진 음식 등

씨 단국대학교

공격을 막는 기능

성별에 따라 다른 적응

여성

- ✔ 아기와 어린 아이를 돌봐야 하기 때문에 그들에 대한 보호의 의무를 느낌
 - → 질병을 옮기는 이미지를 보았을 때, 여성이 남성보다 더 메스꺼움을 느낌
 - 질병의 위험성을 남성보다 더 높게 인식한다는 결과

메스꺼움을 억제해야 할 때

부상당한 동료나 가까운 친족을 돌볼 때

어머니

- ✓ 여러 아이의 대변 냄새 중 본인 아이의 대변 냄새를 덜 메스껍게 느낌
- ✓ 의도적으로 변 시료에 라벨을 바꿔 붙여도 본인 아이의 변이라 써진 것의 냄새를 덜 메스껍게 느낌

씹기의 해부학

음식 씹기

- ✔ 아래 턱뼈를 움직여 음식을 잘게 부수어야 함
- ✓ 깨물근, 관자근, 안쪽 및 가쪽 날개근으로 이루어진 4개의 씹기 근육을 통해 아래턱을 움직임
 - → 사람의 아기는 씹기 근육이 덜 발달하여 얼굴 표정 근육을 움직여 젖을 빰

씹기근육

얼굴 표정 근육

5번째 뇌신경 7번째 뇌신경

각각의 뇌신경핵은 뇌줄기에 위치

씹기의 해부학

(c) Insertions, medial view of left mandibular ramus

사람의 음식씹는 턱뼈는 다른 유인원에 비해 작음

- ✓석기와 불을 이용한 조리기술 발달과 함께 진화했기 때문이라고 추측
 - ➡ 턱뼈가 작아지면서 두뇌를 감싸는 머리뼈 부위가 커짐

씹기의 해부학

삼차신경 십기 근육에 분포하는 5번 째 뇌신경

- ✔ 신경핵은 뇌줄기에 위치함
- ✔ 근육에 연결된 부분은 근육과 근육 신경연접부를 이름

중추패턴발생기 뇌줄기 신경세포 집단

- ✔ 씹는 동작 통제
- ✔ 삼차신경을 포함하는 복잡한 되먹임 회로를 유지하며 고위의 정보를 받음

쌔건국대학교

대뇌를 제거한 동물 대상 실험

CPG와 삼차신경만으로 씹는 동작 가능

고위 반응

- ✔껌을 씹는 피실험자들의 두뇌활동을 fMRI 실험
 - → 이마엽, 뒤통수엽 겉질 부위가 씹는 동작에 관여함

씹기는 단순한 아래턱 반복 운동이 아닌 두뇌 활동을 바탕으로 하는 복잡한 기전

쌔단국대학교

소리의 해부학

바삭바삭한 음식을 먹는 행위

청각신경계를 활성화 시킴

속귀에서 공기 움직임 감지 신경세포로 전환

소리를 듣게 됨

8번째 뇌신경 속귀신경

소리의 해부학

속귀신경

- ✔소리 지각 및 머리의 위치변화 감지
 - → 평형을 유지시킴

청각신경섬유

→ 뇌줄기로 들어가 중간뇌의 다양한 핵을 거쳐 대뇌겉질 일차청각피질에 도착

청각신호를 처리하며, 언어를 듣고 이해하는데 중요한 역할 담당

음식 먹을 때 나는 소리

문화권에 따라 다른 태도

서양

✔ 음식을 먹을 때 나는 '역겨운 소리' 제거에 초점

일본

✔ 국수를 먹을 때 '후루룩' 소리가 나도록 권장

사람이 먹는 소리 자신의 머리뼈를 통해 소리가 전달됨

✓ 소리에 대한 청각계통의 순응, 즉 자극에 노출될 경우 감각신경의 반응이 감소하기 때문에 자신의 먹는 소리는 크게 신경 쓰지 않음

씨 단국대학교

사람을 자극하는 바삭한 소리

다른 음식보다 큰 소리를 내는 바삭한 음식

- ✔ 더 강한 자극일 수록 순응 속도는 늦음
 - → 음식을 먹을 때 질리는 속도가 늦어짐

선조들이 곤충을 즐겨먹던 것의 흔적?

✓ 순응과 관련된 바삭한 소리의 청각작응은 유력한
가설 중 하나

보행 소리

오사카 나오유키 연구팀

보행 소리에 대한 뇌 활동 관찰

뜻 없는 의성어 소리에 대한 뇌 활동 관찰

✔ 눈을 가려 시각정보를 차단한 상태, 소리만 듣고도 시각정보를 처리하는 두뇌부위 활성화

나 사한 소리를 듣거나 말한다면?

바삭한 음식을 먹는 느낌을 연상할 수 있음

바삭한 소리는 식감

바삭한 음식

- ✔ 여러 가지로 두뇌를 자극함
 - → 더 바삭한 음식을 먹을수록 순응현상이 늦게 나타날 확률이 높음

바삭하다는 뜻을 가진 단어

✔ 인간의 식욕을 자극함

사람들이 술을 좋아하는 이유

- ✓ 최소 2400만년 전 부터 열매를 먹은 인간
- ✔ 대부분의 영장류 또한 열매를 먹음

열매에 들어있는 당분과 에탄올

✔ 사람과 영장류는 수백만 년 전부터 익은 열매를 통해 낮은 농도의 에탄올을 섭취함

쌔단국대학교

사람들이 술을 좋아하는 이유

과실식 부산물 가설

- ✓ 술을 좋아하는 것은 열매를 좋아하는 적응의 부산물
- → 에탄올을 통한 열매의 칼로리 가치 평가 적응 전략이 에 탄올을 즐겨 섭취하는 방향으로 진화
- → 지금과 달리 우리 조상은 고농도의 알코올을 저장할 장 치가 없어 다량의 에탄올을 접하지 못함

알코홀 충독

쌔단국대학교