Data Mining: Model Evaluation

Tom Heskes

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation (1)

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	TP	FN		
02,100	Class=No	FP	TN		

TP: true positive

FN: false negative

FP: false positive

TN: true negative

- FP: falsely predicted to be positive (thus actual class is negative)
- FN: falsely predicted to be negative (thus actual class is positive)

Metrics for Performance Evaluation (2)

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	TP	FN		
	Class=No	FP	TN		

Most widely-used metric:

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, the accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example
 - Should always at least compare with baseline accuracy!

Cost Matrix

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)		
	Class=No	C(Yes No)	C(No No)		

- C(i|j): Cost of misclassifying class j example as class i
- Cost of misclassifying a healthy subject as a patient typically lower than vice versa

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS				
ACTUAL CLASS	C(i j)	+	-		
	+	0	100		
	-	2	0		

Model M ₁	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	90	10	
	•	90	210	

Accuracy =
$$75\%$$

Cost = 1180

Model M ₂	PREDICTED CLASS				
		+	-		
ACTUAL CLASS	+	70	30		
	•	50	250		

Accuracy =
$$80\%$$

Cost = 3100

Cost-Sensitive Measures

 Precision: of all samples predicted to be positive predictions, what fraction is actually positive? Biased towards C(Yes|Yes) & C(Yes|No)

Precision (p) =
$$\frac{TP}{TP + FP}$$

 Recall: of all actually positive samples, what fraction is predicted to be positive? Biased towards C(Yes|Yes) & C(No|Yes)

Recall (r) =
$$\frac{TP}{TP + FN}$$

F-measure balances Precision and Recall

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2TP}{2TP+FP+FN}$$

Receiver Operating Characteristics (ROC)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterizes the trade-off between positive hits and false alarms
- ROC curve plots TP rate (on the y-axis) against FP rate (on the x-axis)
- TP rate = TP/(TP + FN) = recall = sensitivity
 fraction of positive examples correctly classified as positive
- FP rate = FP/(FP + TN) = 1 specificity
 fraction of negative examples incorrectly classified as positive

- Performance of each classifier represented as a point on the ROC curve
- Changing the threshold of the algorithm changes the location of the point

ROC Curve (1)

- One-dimensional data set containing 2 classes (positive and negative)
- Points located at x > t classified as positive

TP rate=0.5, FN rate=0.5, FP rate=0.12, TN rate=0.88

ROC Curve (2)

- (TP,FP):
 - (0,0): declare everything to be negative class
 - (1,1): declare everything to be positive class
 - (1,0): ideal
- Diagonal line:
 - Random guessing
- Below diagonal line:
 - Prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperforms the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC Curve (AUC)
 - Ideal: area = 1
 - Random guess: area = 0.5

How to Construct an ROC curve (1)

Instance	P(+ A)	True Class
1	1	+
2	0.93	+
3	0.87	-
4	0.85	+
5	0.85	-
6	0.85	-
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP + FN)
- FP rate, FPR = FP/(FP + TN)

How to Construct an ROC curve (2)

		Class	+	-	+	-	-	-	+	=	+	+	
Th	resh	old ≥	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
		TP	5	4	4	3	3	3	3	2	2	1	0
		FP	5	5	4	4	3	2	1	1	0	0	0
е		TN	0	0	1	1	2	3	4	4	5	5	5
SS		FN	0	1	1	2	2	2	2	3	3	4	5
		TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
		FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Instance	P(+ A)	True Class
1	1	+
2	0.93	+
3	0.87	-
4	0.85	+
5	0.85	-
6	0.85	-
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

ROC Curve:

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods of Estimation

- Holdout
 - Reserve, e.g., 2/3 for training and 1/3 for testing
 - Fine for huge data sets
- Random subsampling
 - Repeated holdout
- Cross-validation
 - Partition data into *k* disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n with n the number of samples
 - Better than holdout for small data sets
- Bootstrap
 - Sampling with replacement

"pull oneself over a fence by one's bootstraps"

Cross-Validation

- Advantage over holdout: all data used for training and testing
- Predictions on test folds can be concatenated and can then be treated as if they are predictions on an independent test set, e.g., for making an ROC curve
- Ideal for comparing classifiers on relatively small data sets
- Make sure to use the same splits for all classifiers
- Can make use of sign test to check significance of difference in performance between classifiers (more later)

Cross-validation Example

Break up data into groups of the same size

Hold aside one group for testing and use the rest to build model

Repeat

Stratified Ten-fold Cross-validation

- Standard method for evaluation: stratified ten-fold cross-validation
- Why ten? Works fine in practice and not too computationally intensive
- Stratification, i.e., keeping the same class distribution across folds, reduces the estimate's variance
- Even better: repeated stratified cross-validation
 - E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

The Bootstrap

- CV uses sampling without replacement
 - The same instance, once selected, cannot be selected again for a particular training/test set
- The bootstrap uses sampling with replacement to form the training set
 - Sample a dataset of *n* instances *n* times with replacement to form a new dataset of *n* instances
 - Use this data as the training set
 - Use the instances from the original dataset that don't occur in the new training set for testing
- A particular instance has a probability of 1–1/n of not being picked
 - Thus its probability of ending up in the test data is: $\left(1 \frac{1}{n}\right)^n \approx e^{-1} = 0.368$
 - This means the training data will contain approximately 63.2% of the instances

Estimating Error with the Bootstrap

- The error estimate on the test data will be very pessimistic
 - Trained on just ~63% of the instances
- Therefore, combine it with the training error:

$$err = 0.632 \cdot e_{\text{test}} + 0.368 \cdot e_{\text{training}}$$

- The training error gets less weight than the error on the test data
- Repeat process several times with different replacement samples; average the results
- Referred to as the 0.632 bootstrap estimator

General Issues

- Unbalanced data
- Tuning "hyperparameters"
- Learning curves

Nice overview with recommendations:

Raschka, S. (2018). Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. *arXiv:1811.12808v2*.

Unbalanced Data

- Sometimes, classes have very unequal frequency
 - medical diagnosis: 90% healthy, 10% disease
 - eCommerce: 99% don't buy, 1% buy
 - Security: >99.99% of Americans are not terrorists
- Majority class classifier can be very close to 100% correct, but is still completely useless...
- Measuring performance by ROC at least helps a bit
- Alternative is to construct balanced train and test sets, and train model on a balanced set
 - consider all minority class instances
 - add equal number of randomly selected samples from the majority class

Tuning Hyperparameters

- Many classification methods contain "hyperparameters", e.g., the maximum depth of the tree, the number of hidden units in a neural network, the regularization parameter in support vector machines, the number of nearest neighbors in k nearest neighbors
- Test data should not be used in any way to tune the hyperparameters!
- Proper procedure uses nested cross-validation with

"inner" cross-validation to optimize the hyperparameters and

"outer" cross-validation to estimate the generalization of the whole procedure (including the optimization of the hyperparameters)

Nested cross-validation

Learning Curves

- Learning curve shows how accuracy changes with varying sample size
- Can be constructed by subsampling smaller data sets from the full data set
- Useful to check whether collecting more data may still further improve performance

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Two Classifiers, Single Test Set

 Given a test set with the true class and the predictions of the two models:

Instance	M ₁	M ₂	True Class
1	+	+	+
2	+	+	+
3	+	-	-
4	-	-	-
5	-	-	-
6	+	-	+
7	-	+	-
8	-	-	+
9	+	+	-
•••			

Translate to table with correct/wrong:

 M_2

Correct wrong

Correct 50 6 56

Wrong 14 30 44

64 36

NB: this part deviates from the book, which considers two classifiers on different test sets, which is silly and hardly ever occurs in practice

 $\mathbf{M_{1}} \\ \mathbf{M_{1}} \\ \mathbf{M_{1}} \\ \mathbf{Correct} \\ \mathbf{50} \\ \mathbf{9} \\ \mathbf{59} \\ \mathbf{Wrong} \\ \mathbf{11} \\ \mathbf{30} \\ \mathbf{41} \\ \mathbf{61} \\ \mathbf{39} \\ \mathbf{0} \\ \mathbf{11} \\ \mathbf{39} \\ \mathbf{0} \\ \mathbf{0}$

 $\mathbf{M_1} \\ \begin{array}{c|cccc} \mathbf{M_2} \\ \hline \mathbf{correct} & \mathbf{wrong} \\ \hline \mathbf{correct} & \mathbf{50} & \mathbf{0} & \mathbf{50} \\ \hline \mathbf{wrong} & \mathbf{10} & \mathbf{40} & \mathbf{50} \\ \hline \mathbf{60} & \mathbf{40} \\ \end{array}$

 $\mathbf{M_1} \\ \begin{array}{c|cccc} \mathbf{M_2} \\ \hline \mathbf{M_1} \\ \hline \mathbf{correct} & \mathbf{80} & \mathbf{0} & \mathbf{80} \\ \hline \mathbf{wrong} & \mathbf{10} & \mathbf{10} & \mathbf{20} \\ \hline \mathbf{90} & \mathbf{10} \\ \hline \end{array}$

 $\mathbf{M_{1}} \\ \mathbf{M_{1}} \\ \mathbf{Correct} \\ \mathbf{5} \\ \mathbf{0} \\ \mathbf{5} \\ \mathbf{wrong} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{5} \\ \mathbf{7} \\ \mathbf{3} \\ \mathbf{0} \\ \mathbf{5} \\ \mathbf{5} \\ \mathbf{7} \\ \mathbf{3} \\ \mathbf{5} \\ \mathbf{7} \\ \mathbf{6} \\ \mathbf{7} \\ \mathbf{6} \\ \mathbf{7} \\ \mathbf{7} \\ \mathbf{6} \\ \mathbf{7} \\ \mathbf{6} \\ \mathbf{7} \\ \mathbf{6} \\ \mathbf{7} \\ \mathbf{6} \\ \mathbf{7} \\ \mathbf{7$

 $\mathbf{M_1} \\ \mathbf{M_1} \\ \mathbf{M_1} \\ \mathbf{Correct} \\ \mathbf{50} \\ \mathbf{64} \\ \mathbf{36} \\ \mathbf{M_2} \\ \mathbf{56} \\ \mathbf{M_1} \\ \mathbf{64} \\ \mathbf{36} \\ \mathbf{64} \\ \mathbf{64} \\ \mathbf{36} \\ \mathbf{64} \\ \mathbf{$

Sign Test (1)

- General test for difference in the median between paired samples
- Non-parametric: makes no assumptions about distribution
- $x_1 = 1$ if M_1 is correct, $x_1 = 0$ if M_1 is wrong; similar for x_2
- Is the median of x₂ larger than the median of x₁?
- Null hypothesis: for a random pair of samples, x_1 and x_2 are equally likely to be larger than the other

Sign Test (2)

- Call $N_{1<2}$ the number of samples for which M_2 is correct and M_1 is incorrect
- Samples for which $x_1 = x_2$ can be omitted: only $N_{1<2}$ and $N_{1>2}$ matter!
- Boils down to a binomial test:
 - Null hypothesis: fair "coin", p = 0.5
 - Test statistic: $W = N_{1<2}$
 - Under the null hypothesis, the test statistic follows a binomial distribution with number of draws $N = N_{1<2} + N_{1>2}$
- One-sided alternative: $M_2 > M_1$, i.e., p > 0.5
- Two-sided alternative: $M_2 \neq M_1$, i.e., $p \neq 0.5$

1		
	V	•
-		7

correct wrong $\mathbf{M_1}$?? $N_{1>2}$ correct ?? $N_{1<2}$ wrong

A.k.a. an exact version of McNemar's test (the original one uses a chisquared test, which is a fine approximation for *N* large)

 $\mathbf{M_2}$

 $\mathbf{M_1}$

	correct	wrong	
correct	50	9	59
wrong	11	30	41
	61	39	

Binocdf(10,20,0.5)

 $P(W \ge 11)$

- N = 20 draws
- P-value = $P(W \ge 11) = 1 Binocdf(10, 20, 0.5) = 0.4199 > 0.05$
- Clearly not significant

null hypothesis: p = 0.5

$\mathbf{M_2}$				
		correct	wrong	
$\mathbf{M_1}$	correct	5000	900	5900
	wrong	1100	3000	4100
		6100	3900	

- N = 2000 draws
- P-value = $P(W \ge 1100) = 1 Binocdf(1099, 2000, 0.5) = 4.23 \times 10^{-6} < 0.05$
- Clearly significant

	M_2				
		correct	wrong		
$\mathbf{M_1}$	correct	50	0	50	
	wrong	10	40	50	
		60	40		

- N = 10 draws
- P-value = $P(W \ge 10) = 1 \text{Binocdf}(9, 10, 0.5) = 9.77 \times 10^{-4} (= 2^{-10}) < 0.05$
- Clearly significant

	\mathbf{M}_2			
		correct	wrong	
$\mathbf{M_1}$	correct	80	0	80
	wrong	10	10	20
		90	10	

- N = 10 draws: same as before
- P-value = $P(W \ge 10) = 1 \text{Binocdf}(9, 10, 0.5) = 9.77 \times 10^{-4} (= 2^{-10}) < 0.05$
- Clearly significant

	\mathbf{M}_{2}				
		correct	wrong		
$\mathbf{M_1}$	correct	5	0	5	
	wrong	2	3	5	
		7	3		

- N = 2 draws
- P-value = $P(W \ge 2) = 1 Binocdf(1, 2, 0.5) = 0.25 (= 2^{-2}) > 0.05$
- Clearly not significant

	\mathbf{M}_{2}			
		correct	wrong	
\mathbf{M}_{1}	correct	50	6	56
	wrong	14	30	44
		64	36	

- N = 20 draws
- P-value = $P(W \ge 14) = 1 Binocdf(13, 20, 0.5) = 0.0577 > 0.05$
- Just not significant

Two Classifiers, Multiple Test Sets

- Standard practice: compare different classifiers on a whole range of problems, e.g., from the UCI repository
- Simplest idea: use the sign/McNemar's test, but now on complete test sets instead of test samples
- Now N_{1<2} is the number of test sets on which M₂ does better than M₁
- The Wilcoxon signed-rank test also takes into account how much better a classifier does
- Demšar, JMLR 2006, is the key reference, also for comparing multiple classifiers on multiple test sets

Journal of Machine Learning Research 7 (2006) 1-30

Submitted 8/04; Revised 4/05; Published 1/06

Statistical Comparisons of Classifiers over Multiple Data Sets

Janez Demšar

JANEZ.DEMSAR@FRI.UNI-LJ.SI

Faculty of Computer and Information Science Tržaška 25

Ljubljana, Slovenia

