

Enhanced ESD, 3.0 kV rms/6.0 kV rms 150Kbps Hexa-Channel Digital Isolators

Data Sheet

$\pi 160 \text{U}/\pi 161 \text{U}/\pi 162 \text{U}/\pi 163 \text{U}$

FEATURES

Ultra low power consumption (150 Kbps):

0.55mA/Channel

High data rate: π16xAxx: 600Mbps

π16xExx: 200Mbps π16xMxx: 10Mbps π16xUxx: 150kbps

High common-mode transient immunity: 150 kV/ μ s typical

High robustness to radiated and conducted noise

Isolation voltages:

π16xx3x: AC 3000Vrms π16xx6x: AC 6000Vrms

High ESD rating:

ESDA/JEDEC JS-001-2017

Human body model (HBM) ±8kV, all pins Safety and regulatory approvals (Pending):

UL certificate number: E494497

3000Vrms/6000Vrms for 1 minute per UL 1577

CSA Component Acceptance Notice 5A VDE certificate number: 40047929

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12

V_{IORM} = 707V peak/1200V peak CQC certification per GB4943.1-2011

3 V to 5.5 V level translation AEC-Q100 qualification

Wide temperature range: -40°C to 125°C 16-lead, RoHS-compliant, (W)SOIC package

APPLICATIONS

General-purpose multichannel isolation Industrial field bus isolation

ENERAL DESCRIPTION

The $\pi 1xxxxx$ is a 2PaiSemi digital isolators product family that includes over hundreds of digital isolator products. By using maturated standard semiconductor CMOS technology and 2PaiSEMI *iDivider* technology, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators.

Intelligent voltage divider technology (*iDivider* technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit voltage signal directly cross the isolator capacitor without signal modulation and demodulation.

The $\pi 1 xxxxx$ isolator data channels are independent and are available in a variety of configurations with a withstand voltage

rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. π 160xxx/ π 161xxx/ π 162xxx/ π 163xxx functional Block Diagram

Figure 2. π 160xxx Typical Application Circuit

PIN CONFIGURATIONS AND FUNCTIONS

π160Uxx Pin Function Descriptions

Pin No.	Name	Description
PIII NO.		•
1	V _{DD1}	Supply Voltage for Isolator Side 1.
2	VIA	Logic Input A.
3	VIB	Logic Input B.
4	Vıc	Logic Input C.
5	VID	Logic Input D.
6	VIE	Logic Input E.
7	VIF	Logic Input F.
8	GND_1	Ground 1. This pin is the ground reference for Isolator Side 1.
9	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.
10	Vof	Logic Output F.
11	Voe	Logic Output E.
12	Vod	Logic Output D.
13	Voc	Logic Output C.
14	Vов	Logic Output B.
15	Voa	Logic Output A.
16	V _{DD2}	Supply Voltage for Isolator Side 2.

Figure 3. $\pi 160 Uxx$ Pin Configuration

π161Uxx Pin Function Descriptions

Pin No.	Name	Description
1	V _{DD1}	Supply Voltage for Isolator Side 1.
2	VIA	Logic Input A.
3	VIB	Logic Input B.
4	Vıc	Logic Input C.
5	VID	Logic Input D.
6	VIE	Logic Input E.
7	Vof	Logic Output F.
8	GND₁	Ground 1. This pin is the ground reference for Isolator Side 1.
9	GND₂	Ground 2. This pin is the ground reference for Isolator Side 2.
10	Vif	Logic Input F.
11	Voe	Logic Output E.
12	Vod	Logic Output D.
13	Voc	Logic Output C.
14	Vов	Logic Output B.
15	Voa	Logic Output A.
16	V_{DD2}	Supply Voltage for Isolator Side 2.

Figure 4. $\pi 161Uxx$ Pin Configuration

π 162Uxx Pin Function Descriptions

Pin No.	Name	Description
1	V _{DD1}	Supply Voltage for Isolator Side 1.
2	VIA	Logic Input A.
3	VIB	Logic Input B.
4	Vıc	Logic Input C.
5	VID	Logic Input D.
6	Voe	Logic Output E.
7	Vof	Logic Output F.
8	GND₁	Ground 1. This pin is the ground reference for Isolator Side 1.
9	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.
10	VIF	Logic Input F.
11	VIE	Logic Input E.
12	Vod	Logic Output D.
13	Voc	Logic Output C.
14	Vов	Logic Output B.
15	Voa	Logic Output A.
16	V _{DD2}	Supply Voltage for Isolator Side 2.

Figure 5. $\pi 162 Uxx$ Pin Configuration

π 163Uxx Pin Function Descriptions

Pin No.	Name	Description
1	V _{DD1}	Supply Voltage for Isolator Side 1.
2	VIA	Logic Input A.
3	VIB	Logic Input B.
4	Vıc	Logic Input C.
5	Vod	Logic Output D.
6	Voe	Logic Output E.
7	Vof	Logic Output F.
8	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
9	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.
10	VIF	Logic Input F.
11	VIE	Logic Input E.
12	VID	Logic Input D.
13	Voc	Logic Output C.
14	Vов	Logic Output B.
15	Voa	Logic Output A.
16	V _{DD2}	Supply Voltage for Isolator Side 2.

Figure 6. $\pi 163 Uxx$ Pin Configuration

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 1. Absolute Maximum Ratings⁴

Parameter	Rating
Supply Voltages (V _{DD1} -GND ₁ , V _{DD2} -GND ₂)	-0.5 V to +7.0 V
Input Voltages (V _{IA} , V _{IB}) ¹	-0.5 V to V _{DDx} + 0.5 V
Output Voltages (V _{OA} , V _{OB}) ¹	-0.5 V to V _{DDx} + 0.5 V
Average Output Current per Pin ² Side 1 Output Current (I _{O1})	−10 mA to +10 mA
Average Output Current per Pin ² Side 2 Output Current (I _{O2})	−10 mA to +10 mA
Common-Mode Transients Immunity ³	-150 kV/μs to +150 kV/μs
Storage Temperature (T _{ST}) Range	-65°C to +150°C
Ambient Operating Temperature (T _A) Range	-40°C to +125°C

Notes:

RECOMMENDED OPERATING CONDITIONS

Table 2. Recommended Operating Conditions

Parameter	Symbol	Min	Тур М	ах	Unit
Supply Voltage	V _{DDx} ¹	3	5	.5	V
High Level Input Signal Voltage	V_{IH}	0.7*V _{DDx} ¹	V_{D}	Dx ¹	V
Low Level Input Signal Voltage	V_{IL}	0	0.3*	V_{DDx}^1	V
High Level Output Current	Іон	-6			mA
Low Level Output Current	Іоь		(6	mA
Maximum Data Rate		0	1	50	Kbps
Junction Temperature	TJ	-40	1	50	°C
Ambient Operating Temperature	T _A	-40	1:	25	°C

Notes:

Truth Tables

Table 3. $\pi 160xxx/\pi 161xxx/\pi 162xxx/\pi 163xxx$ Truth Table

V 1	V Chanal	V State1	Default Low	Default High	Test Conditions
V _{Ix} Input ¹	V _{DDI} State ¹	V _{DDO} State ¹	Vox Output ¹	Vox Output ¹	/Comments
Low	Powered ²	Powered ²	Low	Low	Normal operation
High	Powered ²	Powered ²	High	High	Normal operation
Open	Powered ²	Powered ²	Low	High	Default output
Don't Care ⁴	Unpowered ³	Powered ²	Low	High	Default output⁵
Don't Care ⁴	Powered ²	Unpowered ³	High Impedance	High Impedance	

Notes:

 $^{^{1}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2.

² See Figure 7 for the maximum rated current values for various temperatures.

³ See Figure21 for Common-mode transient immunity (CMTI) measurement.

⁴ Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

 $^{^{1}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2.

 $^{^{1}}V_{lx}/V_{Dx}$ are the input/output signals of a given channel (A or B). V_{DDI}/V_{DDO} are the supply voltages on the input/output signal sides of this given channel.

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

Table 4. Switching Specifications

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, \\ T_A = 25 \\ ^{\circ}C, \text{ unless otherwise noted.}$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Minimum Pulse Width	PW			6.5	us	Within pulse width distortion (PWD) limit
Maximum Data Rate		150			Kbps	Within PWD limit
Propagation Delay Time ^{1,4}	tрнг, tргн		3.0	4.5	us	The different time between 50% input signal to 50% output signal 50% @ 5V _{DC} supply
			3.2	4.8	us	@ 3.3V _{DC} supply
Pulse Width Distortion ⁴	PWD	0	0.02	0.2	us	The max different time between tphL and tpLH@ 5VDC supply. And The value is tpHL - tpLH
		0	0.02	0.2	us	@ 3.3V _{DC} supply
Part to Part Propagation Delay Skew ⁴	tрsк			0.3	us	The max different propagation delay time between any two devices at the same temperature, load and voltage @ 5V _{DC} supply
	Λ			0.3	us	@ 3.3V _{DC} supply
Channel to Channel Propagation Delay Skew ⁴	tcsк	K)	02	0.2	us S	The max amount propagation delay time differs between any two output channels in the single device @ 5V _{DC} supply.
			0	0.2	us	@ 3.3V _{DC} supply
Output Signal Rise/Fall Time ⁴	t _r /t _f		1.5		ns	10% to 90% signal terminated 50 Ω , See figure 17.
Common-Mode Transient Immunity ³	СМТІ	100	150		kV/μs	$V_{IN} = V_{DDx}^2$ or 0V, $V_{CM} = 1000 \text{ V}$
ESD(HBM - Human body model)	ESD		±8		kV	All pins

Notes:

Table 5. DC Specifications

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 V_{DC} \pm 10\% \ or \ 5 V_{DC} \pm 10\%, \ T_A = 25 ^{\circ}C, \ unless \ otherwise \ noted.$

	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Rising Input Signal Voltage Threshold	V _{IT+}		0.6*V _{DDx} ¹	0.7*V _{DDx} ¹	V	
Falling Input Signal Voltage Threshold	V _{IT} -	0.3* V _{DDX} ¹	0.4* V _{DDX} 1		V	
High Level Output Voltage	V _{OH} ¹	$V_{DDx} - 0.1$	V_{DDx}		V	–20 μA output current
		V _{DDx} - 0.2	V_{DDx} – 0.1		V	-2 mA output current
Low Level Output Voltage	Vol		0	0.1	V	20 μA output current

² Powered means V_{DDx}≥ 2.9 V

 $^{^{3}}$ Unpowered means V_{DDx} < 2.3V

 $^{^4}$ Input signal (V_{1x}) must be in a low state to avoid powering the given V_{DD1} through its ESD protection circuitry.

⁵ If the V_{DDI} goes into unpowered status, the channel outputs the default logic signal after around 1us. If the V_{DDI} goes into powered status, the channel outputs the input status logic signal after around 3us.

 $^{^{1}}$ t_{pLH} = low-to-high propagation delay time, t_{pHL} = high-to-low propagation delay time. See figure 18.

 $^{^2\,}V_{DDx}$ is the side voltage power supply $V_{DD},$ where x = 1 or 2.

 $^{^{\}rm 3}\,{\rm See}\,\,{\rm Figure}21$ for Common-mode transient immunity (CMTI) measurement.

 $^{^4}$ Output Signal Terminated 50 $\!\Omega.$

			0.1	0.2	V	2 mA output current
Input Current per Signal Channel	I _{IN}	-10	0.5	10	μΑ	$0~V \leqslant Signal~voltage \leqslant V_{DDX}{}^{1}$
V _{DDx} ¹ Undervoltage Rising Threshold	V _{DDxUV+}	2.45	2.65	2.9	V	
V _{DDx} ¹ Undervoltage Falling Threshold	V _{DDxUV} -	2.3	2.5	2.75	V	
V _{DDx} ¹ Hysteresis	VDDxUVH		0.15		V	

Notes:

Table 6. Quiescent Supply Current

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, \\ T_A = 25 \\ ^{\circ}C, \\ C_L = 0 \\ pF, \\ unless \\ otherwise \\ noted.$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
	IDD1 (Q)	461	576	749	μΑ	0V Input signal
π160Uxx Quiescent Supply Current @ 5V _{DC}	I _{DD2} (Q)	2124	2655	3452	μΑ	0V Input signal
Supply	I _{DD1} (Q)	182	228	296	μΑ	5V Input signal
	I _{DD2} (Q)	2302	2877	3740	μΑ	5V Input signal
	I _{DD1} (Q)	338	423	550	μΑ	0V Input signal
6.2.W G 1	I _{DD2} (Q)	2088	2610	3393	μΑ	0V Input signal
@ 3.3V _{DC} Supply	IDD1 (Q)	180	225	293	μΑ	3.3V Input signal
	I _{DD2} (Q)	2275	2844	3697	μΑ	3.3V Input signal
/	IDD1 (Q)	738	923	1199	μΑ	0V Input signal
π161Uxx Quiescent Supply Current @ 5V _{DC}	I _{DD2} (Q)	1847	2309	3002	μΑ	0V Input signal
Supply	IDD1 (Q)	536	670	870	μΑ	5V Input signal
	IDD2 (Q)	1949	2436	3167	μΑ	5V Input signal
	IDD1 (Q)	630	788	1024	μΑ	0V Input signal
	I _{DD2} (Q)	1797	2246	2920	μΑ	0V Input signal
@ 3.3V _{DC} Supply	I _{DD1} (Q)	529	662	860	μΑ	3.3V Input signal
	I _{DD2} (Q)	1926	2408	3130	μΑ	3.3V Input signal
	IDD1 (Q)	1015	1269	1650	μΑ	0V Input signal
π 162Uxx Quiescent Supply Current @ 5V _{DC}	I _{DD2} (Q)	1570	1963	2552	μΑ	0V Input signal
Supply	I _{DD1} (Q)	889	1111	1444	μΑ	5V Input signal
	IDD2 (Q)	1596	1995	2594	μΑ	5V Input signal
	IDD1 (Q)	922	1152	1498	μΑ	0V Input signal
@ 3.3V _{DC} Supply	IDD2 (Q)	1506	1882	2447	μΑ	0V Input signal
© 3.3 v DC Suppry	IDD1 (Q)	878	1098	1427	μΑ	3.3V Input signal
	I _{DD2} (Q)	1578	1972	2564	μΑ	3.3V Input signal
	I _{DD1} (Q)	1294	1617	2102	μΑ	0V Input signal
1163Uxx Quiescent Supply Current @ 5V _{DC} Supply	I _{DD2} (Q)	1294	1617	2102	μΑ	0V Input signal
Trosoxx Quiescent suppry Current & 5 v be suppry	I _{DD1} (Q)	1243	1554	2020	μΑ	5V Input signal
	I _{DD2} (Q)	1243	1554	2020	μΑ	5V Input signal
	I _{DD1} (Q)	1214	1518	1973	μΑ	0V Input signal
@ 2.2W. Summly	I _{DD2} (Q)	1214	1518	1973	μΑ	0V Input signal
@ 3.3V _{DC} Supply	I _{DD1} (Q)	1229	1536	1997	μΑ	3.3V Input signal
	I _{DD2} (Q)	1229	1536	1997	μΑ	3.3V Input signal

 $^{^{1}}$ V_{DDx} is the side voltage power supply $V_{DD}\text{,}\,$ where x = 1 or 2.

Table 7. Total Supply Current vs. Data Throughput ($C_L = 0 pF$)

 V_{DD1} - $V_{GND1} = V_{DD2}$ - $V_{GND2} = 3.3 V_{DC} \pm 10\%$ or $5 V_{DC} \pm 10\%$, $T_A = 25$ °C, $C_L = 0$ pF, unless otherwise noted.

Dovometer	Cumphal	2 Kbps				50Kb	ps	150Kbps			
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
=1001 by Cupply Current @ FV	I _{DD1}		0.39	0.59		0.39	0.59		0.39	0.59	mA
π 160Uxx Supply Current @ 5V _{DC}	I _{DD2}		2.76	4.14		2.79	4.19		2.82	4.23	mA
@ 2.21/	I _{DD1}		0.30	0.45		0.30	0.45		0.30	0.45	mA
@ 3.3V _{DC}	I _{DD2}		2.73	4.10		2.73	4.10		2.76	4.14	mA
π 161Uxx Supply Current @ 5V _{DC}	I _{DD1}		0.79	1.18		0.79	1.19		0.80	1.19	mA
ntotoxx supply current @ 5v _{DC}	I _{DD2}		2.37	3.56		2.39	3.59		2.42	3.63	mA
@ 2.21/	I _{DD1}		0.71	1.06		0.71	1.07		0.71	1.07	mA
@ 3.3V _{DC}	I _{DD2}		2.33	3.50		2.33	3.50		2.35	3.53	mA
π162Uxx Supply Current @ 5V _{DC}	I _{DD1}		1.18	1.77		1.19	1.79		1.21	1.82	mA
niozoxx supply current @ 5V _{DC}	I _{DD2}		1.97	2.96		1.99	2.99		2.02	3.03	mA
@ 3.3V _{DC}	I _{DD1}		1.11	1.67		1.12	1.68		1.12	1.68	mA
ლ 3.3 v _{DC}	I _{DD2}		1.92	2.88		1.93	2.90		1.94	2.91	mA
π163Uxx Supply Current @ 5V _{DC}	I _{DD1}		1.59	2.39		1.59	2.39		1.62	2.43	mA
ntosoxx supply current @ sv _{DC}	I _{DD2}		1.59	2.39		1.59	2.39		1.62	2.43	mA
@ 3.3V _{DC}	I _{DD1}		1.53	2.30		1.53	2.30		1.53	2.30	mA
ლ 3.3V _{DC}	I _{DD2}		1.53	2.30		1.53	2.30		1.53	2.30	mA

INSULATION AND SAFETY RELATED SPECIFICATIONS Table 8. Insulation Specifications

Table 8. Insulation Specifications

Parameter	Symbol	Value		Unit	Test Conditions/Comments		
		π16xU3x	π16xU6x	Unit	rest conditions/comments		
Rated Dielectric Insulation Voltage		3000	6000	V rms	1-minute duration		
Minimum External Air Gap (Clearance)	L (CLR)	4	8	mm min	Measured from input terminals to output terminals, shortest distance through air		
Minimum External Tracking (Creepage)	L (CRP)	4	8	mm min	Measured from input terminals to output terminals, shortest distance path along body		
Minimum Internal Gap (Internal Clearance)		11	21	μm min	Insulation distance through insulation		
Tracking Resistance (Comparative Tracking Index)	СТІ	>400	>400	V	DIN IEC 112/VDE 0303 Part 1		
Material Group		II	Ш		Material Group (DIN VDE 0110, 1/89, Table 1)		

PACKAGE CHARACTERISTICS

Table 9. Package Characteristics

Davamatar	Cumbal	Typica	l Value	l linia	Tost Conditions/Comments	
Parameter	Symbol	π16xU3x	π16xU6x	Unit	Test Conditions/Comments	
Resistance (Input to Output) ¹ R _{I-O}		10 11	10 11	Ω		
Capacitance (Input to Output) ¹	C _{I-O}	0.6	0.6	pF	@1MHz	
Input Capacitance ²	Cı	3	3	pF	@1MHz	
IC Junction to Ambient Thermal Resistance	Αιθ	76	45	°C/W	Thermocouple located at center of package underside	

Notes:

¹The device is considered a 2-terminal device; SOIC-16 Pin 1 - Pin 8(WSOIC-16 Pin 1-Pin8) are shorted together as the one terminal, and SOIC-16 Pin 9 - Pin 16(WSOIC-16 Pin 9-Pin16) are shorted together as the other terminal.

REGULATORY INFORMATION

See Table 10 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels.

Table 10. Regulatory

Regulatory	π16xU3x	π16xU6x			
UL	Recognized under UL 1577	Recognized under UL 1577			
	Component Recognition Program ¹	Component Recognition Program ¹			
	Single Protection, 3000 V rms Isolation Voltage	Single Protection, 6000 V rms Isolation Voltage			
	File (E494497)	File (pending)			
CSA	Approved under CSA Component Acceptance Notice 5A	Approved under CSA Component Acceptance Notice 5A			
	CSA 60950-1-07+A1+A2 and	CSA 60950-1-07+A1+A2 and			
	IEC 60950-1, second edition, +A1+A2:	IEC 60950-1, second edition, +A1+A2:			
	Basic insulation at 500 V rms (707 V peak)	Basic insulation at 845 V rms (1200 V peak)			
	Reinforced insulation at 250 V rms	Reinforced insulation at 422 V rms			
	(353 V peak)	(600 V peak)			
	File (pending)	File (pending)			
VDE	DIN V VDE V 0884-10 (VDE V 0884-10):2006-122	DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ²			
	Basic insulation, $V_{IORM} = 707 \text{ V peak}$, $V_{IOSM} = 4615 \text{ V peak}$	Basic insulation, V _{IORM} = 1200 V peak, V _{IOSM} = 7000 V peak			
	File (40047929)	File (pending)			
cqc	Certified under	Certified under			
	CQC11-471543-2012	CQC11-471543-2012			
	GB4943.1-2011	GB4943.1-2011			
	Basic insulation at 500 V rms (707 V peak) working voltage	Basic insulation at 845 V rms (1200 V peak) working voltage			
	Reinforced insulation at	Reinforced insulation at			
	250 V rms (353 V peak)	422 V rms (600 V peak)			
	File (pending)	File (pending)			

Notes:

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval.

Table 11. VDE Insulation Characteristics

Description	Test Conditions/Comments	Cumbal	Charac	Unit		
Description	rest conditions/comments	Symbol	π16xx3x	π16xx6x	Offic	
Installation Classification per DIN VDE 0110					_	
For Rated Mains Voltage \leqslant 150 V rms			I to IV	I to IV		

²Testing from the input signal pin to ground.

¹ In accordance with UL 1577, each π 160U3x/ π 161U3x/ π 162U3x / π 163U3xis proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec; each π 160U6x/ π 161U6x/ π 163U6x / π 163U6xis proof tested by applying an isulation test voltage ≥ 7200 V rms for 1 sec

² In accordance with DIN V VDE V 0884-10, each π 160U3x/ π 161U3x/ π 162U3x / π 163U3x is proof tested by applying an insulation test voltage ≥ 1326 V peak for 1 sec (partial discharge detection limit = 5 pC); each π 160U6x/ π 161U6x/ π 162U6x / π 163U6x is proof tested by ≥ 2250 V peak for 1 sec. The * marking branded on the component designates DIN V VDE V 0884-10 approval.

For Rated Mains Voltage ≤ 300 V rms			I to III	I to III	
For Rated Mains Voltage ≤ 400 V rms			I to III	I to III	
Climatic Classification			40/105/21	40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	2	
Maximum Working Insulation Voltage		Viorm	707	1200	V peak
Input to Output Test Voltage, Method B1	$V_{IORM} \times 1.875 = V_{pd (m)}$, 100% production test, tini = t_m = 1 sec, partial discharge < 5 pC	V _{pd} (m)	1326	2250	V peak
Input to Output Test Voltage, Method A					
After Environmental Tests Subgroup 1	$V_{IORM} \times 1.5 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	V _{pd (m)}	1061	1800	V peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC		849	1440	V peak
Highest Allowable Overvoltage		Vіотм	4200	8500	V peak
Surge Isolation Voltage Basic	Basic insulation, 1.2 μs rise time, 50 μs, 50% fall time	Viosm	4615	7000	V peak
Surge Isolation Voltage Reinforced	Reinforced insulation, 1.2 μs rise time, 50 μs, 50% fall time	Viosm			V peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 7)				
Maximum Junction Temperature		Ts	150	150	°C
Total Power Dissipation at 25°C		Ps	1.56	2.78	W
Insulation Resistance at T _S	V _{IO} = 800 V	R_S	>10 ⁹	>10 ⁹	Ω

Figure 7. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE

Figure 11. π 160Uxx Quiescent Supply Current with 5.0V Supply vs. Free-Air Temperature

Figure 12. π161Uxx Quiescent Supply Current with 3.3V Supply vs. Free-Air Temperature

Figure 13. π161Uxx Quiescent Supply Current with 5.0V Supply vs. Free-Air Temperature

Figure 17. Transition time waveform measurement

Figure 18. Propagation delay time waveform measurement

$\pi 160 \text{U}/\pi 161 \text{U}/\pi 162 \text{U}/\pi 163 \text{U}$

APPLICATIONS INFORMATION

OVERVIEW

The \$\pi 1 xxxxx\$ are 2PaiSemi digital isolators product family based on 2PaiSEMI unique *iDivider* technology. Intelligent voltage **Divider** technology (*iDivider* technology) is a new generation digital isolator technology invented by 2PaiSEMI. It uses the principle of capacitor voltage divider to transmit signal directly cross the isolator capacitor without signal modulation and demodulation. Compare to the traditional Opto-couple technology, icoupler technology, OOK technology, *iDivider* is a more essential and concise isolation signal transmit technology which leads to greatly simplification on circuit design and therefore significantly improves device performance, such as lower power consumption, faster speed, enhanced anti-interference ability, lower noise.

By using maturated standard semiconductor CMOS technology and the innovative *i*Divider design, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators. The π 1xxxxx isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide).

The $\pi 160$ Uxx/ $\pi 161$ Uxx/ $\pi 162$ Uxx/ $\pi 163$ Uxx are the outstanding 150Kbps hexa-channel digital isolators with the enhanced ESD capability. the devices transmit data across an isolation barrier by layers of silicon dioxide isolation.

The devices operate with the supply voltage on either side ranging from 3.0~V to 5.5~V, offering voltage translation of 3.3~V and 5~V logic.

The $\pi 160 Uxx/\pi 161 Uxx/\pi 162 Uxx/\pi 163 Uxx$ have very low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference.

See the Ordering Guide for the model numbers that have the failsafe output state of low or high.

PCB LAYOUT

The low-ESR ceramic bypass capacitors must be connected between V_{DD1} and GND_1 and between V_{DD2} and GND_2 . The bypass capacitors are placed on the PCB as close to the isolator device as possible. The recommended bypass capacitor value is between $0.1~\mu F$ and $10~\mu F$. To enhance the robustness of a design,

the user may also include resistors (50–300 Ω) in series with the inputs and outputs if the system is excessively noisy.

Avoid reducing the isolation capability, Keep the space underneath the isolator device free from metal such as planes, pads, traces and vias.

To minimize the impedance of the signal return loop, keep the solid ground plane directly underneath the high-speed signal path, the closer the better. The return path will couple between the nearest ground plane to the signal path. Keep suitable trace width for controlled impedance transmission lines interconnect.

To reduce the rise time degradation, keep the length of input/output signal traces as short as possible, and route low inductance loop for the signal path and It's return path.

Figure 19. Recommended Printed Circuit Board Layout

CMTI MEASUREMENT

To measure the Common-Mode Transient Immunity (CMTI) of $\pi 1xxxxx$ isolator under specified common-mode pulse magnitude (V_{CM}) and specified slew rate of the common-mode pulse (dV_{CM}/dt) and other specified test or ambient conditions, The common-mode pulse generator (G_1) will be capable of providing fast rising and falling pulses of specified magnitude and duration of the common-mode pulse (V_{CM}) and the maximum common-mode slew rates (dV_{CM}/dt) can be applied to $\pi 1xxxxx$ isolator coupler under measurement. The common-mode pulse is applied between one side ground GND1 and the other side ground GND2 of $\pi 1xxxxx$ isolator and shall be capable of providing positive transients as well as negative transients.

Figure 20. Common-mode transient immunity (CMTI) measurement

OUTLINE DIMENSIONS

Figure 21. 16-Lead Standard Small Outline Package [16-Lead SOIC_N]

Figure 22. 16-Lead Wide Body Outline Package [16-Lead SOIC_W]

REEL INFORMATION

16-Lead SOIC_N

ORDERING GUIDE

Mode	el Name	Temperature Range	No. of Inputs, V _{DD1} Side	No. of Inputs, V _{DD2} Side	Withstand Voltage Rating (kV rms)	Fail- Safe Output State	Package Description	Package Option	Quantity
π160U31	Pai160U31	-40°C to +125°C	6	0	3	High	16-Lead SOIC_N	S-16-N	2500 per reel
π160U30	Pai160U30	-40°C to +125°C	6	0	3	Low	16-Lead SOIC_N	S-16-N	2500 per reel
π161U31	Pai161U31	-40°C to +125°C	5	1	3	High	16-Lead SOIC_N	S-16-N	2500 per reel
π161U30	Pai161U30	-40°C to +125°C	5	1	3	Low	16-Lead SOIC_N	S-16-N	2500 per reel
π162U31	Pai162U31	-40°C to +125°C	4	2	3	High	16-Lead SOIC_N	S-16-N	2500 per reel
π162U30	Pai162U30	-40°C to +125°C	4	2	3	Low	16-Lead SOIC_N	S-16-N	2500 per reel
π163U31	Pai163U31	-40°C to +125°C	3	3	3	High	16-Lead SOIC_N	S-16-N	2500 per reel
π163U30	Pai163U30	-40°C to +125°C	3	3	3	Low	16-Lead SOIC_N	S-16-N	2500 per reel
π160U61	Pai160U61	-40°C to +125°C	6	0	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π160U60	Pai160U60	-40°C to +125°C	6	0	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel
π161U61	Pai161U61	-40°C to +125°C	5	1	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π161U60	Pai161U60	-40°C to +125°C	5	1	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel
π162U61	Pai162U61	-40°C to +125°C	4	2	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π162U60	Pai162U60	-40°C to +125°C	4	2	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel
π163U61	Pai163U61	-40°C to +125°C	3	3	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π163U60	Pai163U60	-40°C to +125°C	3	3	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel

Notes:

PART NUMBER NAMED RULE

Notes:Pai16xxxx is equals to π 16xxxx in the customer BOM

 $^{^{1}}$ π 16xxxxQ special for Auto, qualified for AEC-Q100

REVISION HISTORY

Revision	Updated	Date	Page	Change Record
1	Devin	2018/09/19	All	Initial version
2	Devin	2018/11/28	P1,P12	Changed C_{IN} , C_{OUT} in Figure 2 from 0.1uF to 1uF. Changed the recommended bypass capacitor value from between 0.1 μ F and 1 μ F to between 0.1 μ F and 10 μ F.
3	Devin	2019/09/08	P1,P13, P15,P16	P1: Changed the address from 'Room 19307, Building 8, No.498, GuoShouJing Road' to 'Room 308-309, No.22, Boxia Road'; Add <i>iDivider</i> technology description in General Description. Changed C _{IN} , C _{OUT} in Figure 2 from 1uF to 0.1uF. P13: Add <i>iDivider</i> technology description in overview. P15: Updated 16-Lead SOIC_W reel drawing. P16: Add character 'S' and 'Q' in part number named rule; Changed the SOIC_W quantity from '1000 per reel' to '1500 per reel'.

