

# Finite State Automaton

#### Introduction

Any automaton whose outputs are either "yes" or "no" acts as a language acceptor. A finite automaton is a model of simple computing device, which acts as a language acceptor.

#### 1. Definition of Finite State Automaton:

Languages that can be accepted by finite state automaton are regular languages, which can be generated by regular grammar.

A finite-state automaton (also called Finite State Machine (FSM)) is an idealized machine. It described as M = (S, I, f, s0, F) where

S: a finite set of states,

I: a finite input alphabet

f: a transition function that assigns a next state to every pair of state and input, so that  $f: S \times I \rightarrow S$  or S=f(S,I).

s0: an initial (or start) state

F: a subset F of S consisting of final (or accepting) states.

We can represent FSM using either next-state table or state diagram (also called transition diagram).

## 2. State Diagram (Transition Diagram):

The FSM can be visualized by state diagram as follows: states are represented by circles.



transition functions are represented by arrows with input  $s_x$  symbols as labels over those arrows.

The initial state will have an arrow pointing to it that doesn't  $\longrightarrow$  come from any state.



Final states are indicated by double circles.



#### 3. Next-State Table:

The next-state table (see the table below) for an FSM shows the values of the transition function f for all possible states S and input symbols I. In the next-state table, the initial state is indicated by an arrow and the final states are marked by double circles.

The transition function, for instance,  $f(s_0, I_1) = s_1$  can be translated as the following: when the FSM is in the state  $s_0$  and the input symbol is  $I_1$  the next state is  $s_1$ .



## **Example 1:**

Construct the state diagram for the FSM M = (S,I,f,s<sub>0</sub>,F), where S = { $s_0$ , $s_1$ , $s_2$ , $s_3$ }, I ={0, 1}, F ={ $s_0$ , $s_3$ }, and the transition function f is given below:

|            |                       | f              |                       |
|------------|-----------------------|----------------|-----------------------|
|            | Input symbol<br>State | 0              | 1                     |
| <b>†</b> © | <b>S</b> <sub>0</sub> | S <sub>0</sub> | S <sub>1</sub>        |
|            | $S_1$                 | $s_0$          | <b>S</b> <sub>3</sub> |
|            | S <sub>2</sub>        |                | $s_0$                 |
| 0          | <b>S</b> <sub>3</sub> | S <sub>2</sub> |                       |





### 4. Language Recognition by FSM:

A string of input symbols is fed into a FSM in sequence. The state of the machine is changed after each successive input symbol. When the string is ends, the automaton ends up in a certain state, which may be either an final state or a not. The strings that send the FSM from initial state to a final state are said to be accepted by that machine.

The language accepted by M machine, denoted L(M), is the set of all strings that are accepted by M.

### **Example 2:**

Consider the FSM M that is shown below.



Which of the following string is accepted by M and which one is rejected?

- 1) 01
- 2) 0011
- 3) 0101100
- 4) 10101

- 1) 01: accepted, because the FSM begins with initial state and ends at final state  $S_0^0 s_1^1 s_2$
- 2) 0011: rejected, the FSM begins with initial state but ends at a state which is not final  $\begin{smallmatrix}0&0&1&1\\S_0&s_1&s_1&s_2&s_0\end{smallmatrix}$



## Example 3:

Determine the languages recognized by the following FSMs.









#### **Solution:**

a) 
$$L(M_1) = \{ a, ab, abb, abbb, abbbb, ... \}$$
  
  $L(M_1) = \{ ab^n \mid n \ge 0 \}$ 

b) 
$$L(M_2) = \{ \epsilon, 1, 11, 111, 1111, ... \}$$
  
 $L(M_2) = \{ 1^n \mid n \ge 0 \}$ 

c) 
$$L(M_3) = \{ 1, 01 \}$$
  
  $L(M_3) = \{ 0^n 1 \mid n = 0, 1 \}$ 

d) 
$$L(M_4) = \{ \epsilon, 0, 00, 000, 00..., 10, 10010, 0010, 00010, 0010101101 \}$$
  
 $L(M_4) = \{ \epsilon, 0^i 10X \mid i \ge 0 \text{ and } X \text{ is any string of } 0, 1 \}$ 

#### **Example 4:**

Construct FSMs that recognize each of the following languages:

- 1) Set of bit string that begin with two 0s.
- 2) Set of bit string that contain two consecutive 0s.
- 3) Set of bit string that do not contain two consecutive 0s.
- 4) Set of bit string that end with two consecutive 0s.









## Example 5:

Design a FSM that accepts the set of all string of a and b such that the number of a in the string is divided by 3, what is the next-state table?

| _          |                       | F              |                       |
|------------|-----------------------|----------------|-----------------------|
| <b>†</b> © | Input symbol state    | а              | В                     |
|            | S <sub>0</sub>        | $S_1$          | $S_0$                 |
|            | <b>S</b> <sub>1</sub> | S <sub>2</sub> | <b>S</b> <sub>1</sub> |
|            | S <sub>2</sub>        | $S_0$          | S <sub>2</sub>        |



#### 5. Homework:

## HW 1:

Construct the state diagram for the FSM M = (S, I, f, s0, F), where  $S = \{s_0, s_1\}$ ,  $I = \{0, 1\}$ ,  $F = \{s_1\}$ , and the transition function f is given below, what is the language recognized by that FSM?

|          |                       | f              |                |
|----------|-----------------------|----------------|----------------|
|          | Input symbol<br>State | 0              | 1              |
| <b>→</b> | S <sub>0</sub>        | $S_0$          | S <sub>1</sub> |
| 0        | $S_1$                 | S <sub>1</sub> |                |

### HW 2:

Design a FSM that accepts the set of all string of x and y that contain an odd number of x with any number of y but the string must end with at least two consecutive y.