Comparison of Q-Learning (Tabular) vs. Deep Q-Network (DQN)

1. Implementation Details

Feature	Q-Learning (Tabular)	Deep Q-Network (DQN)
State Space	Discretized into 10 bins for position, velocity, pole angle, and pole angular velocity (11x11x11x11)	Continuous (4-dimensional)
Action Space	Discrete (2 actions: left and right)	Discrete (2 actions: left and right)
Learning Rate (α)	0.1	0.001
Epsilon Decay Rate	0.00001	500 (steps)
Neural Network Architecture	No Neural Network model there	Fully connected layers: 128 -> 128 -> n_actions
Target Network Update Frequency	N/A	Every 10 episodes
Scalability	Impractical for large or continuous state spaces due to the curse of dimensionality.	Handle large and continuous state spaces, making it suitable for complex environments.

2. Results

2.1 Learning Curves

Q-Learning (Tabular)

- **Learning Curve:** Typically shows a gradual increase in average reward and a reduction in loss as episodes progress. The curve might be jagged due to the discrete state representation and learning rate adjustments.
- **Jagged Learning Curve:** The discrete nature of the state space can lead to abrupt changes in the Q-values, causing the learning curve to be less smooth.
- **Plot Insights:** The reward per episode graph demonstrates how the agent improves its performance over time. Loss values help in understanding how well the Q-values are being estimated.

Deep Q-Network (DQN)

- **Learning Curve**: Shows a more continuous improvement in average rewards and loss. The use of neural networks usually provides smoother learning curves due to better approximation of Q-values.
- **Plot Insights:** The rewards per episode and loss plots generally show a smoother and faster convergence compared to tabular methods. This is due to the efficiency of neural networks in handling continuous state spaces.
- **Experience Replay:** The replay buffer helps to break the correlation between consecutive experiences, improving stability and reducing overfitting.
- **Target Network:** The target network helps to prevent overestimation of Q-values, further enhancing stability.

2.2 Average Reward per Episode

Q-Learning (Tabular):

- **Performance:** The average reward per episode tends to increase gradually but may have significant fluctuations, especially in the early episodes. Performance stabilizes as the agent learns and the epsilon value decreases.
- **Result:** The limited scalability of Q-Learning can result in slower convergence, especially for large or complex environments due to the discrete state space representation.

Deep Q-Network (DQN):

- **Performance:** The average reward per episode usually increases more rapidly and reaches higher levels due to the neural network's ability to generalize better from continuous states.
- **Result:** Generally, DQN achieves higher average rewards per episode faster compared to Q-Learning.

2.3 Stability

Q-Learning (Tabular)

- Sensitivity to Discretization: The choice of discretization can significantly impact stability. If the discretization is too coarse, it may fail to capture important nuances of the environment, leading to unstable learning.
- Limited Ability to Generalize: Q-Learning's reliance on a discrete state space can make it less robust to changes in the environment or variations in state representations.

Deep O-Network (DON)

- Enhanced Stability: Experience replay and target networks help to reduce the correlation between consecutive experiences and prevent overestimation of Q-values, respectively, improving stability.
- **Better Generalization:** DQN's ability to learn a function approximate allows it to generalize better to unseen states, making it more robust to variations in the environment.

3. Discussion

Q-Learning (Tabular)

Strengths:

- **Simplicity:** Easy to understand and implement, suitable for small and discrete state spaces.
- Less Computational Overhead: No need for complex neural network computations.
- **Interpretability:** Q-Learning's tabular representation makes it easier to interpret and understand the learned policy.
- **Deterministic Policy:** The Q-table directly represents the optimal action for each state, leading to a deterministic policy.

Weaknesses:

- **Scalability Issues:** Struggles with larger or continuous state spaces due to discretization, which can lead to suboptimal performance.
- **Slow Convergence:** May require many episodes to converge, especially if the state space is large or poorly discretized.

Deep Q-Network (DQN)

Strengths:

- **Handling Continuous Spaces:** Efficient in managing continuous state spaces and can approximate complex Q-functions using neural networks.
- **Faster Learning:** Typically converges faster and achieves higher performance due to better generalization from continuous states.
- **Function Approximation:** DQN's use of a neural network allows it to approximate Q-values for any state-action pair, providing flexibility and scalability.
- **Stochastic Policy:** The neural network's output is typically a Q-value for each action, leading to a stochastic policy (e.g., ε-greedy exploration).

Weaknesses:

- **Complexity:** More complex to implement and tune, requires managing neural network training, experience replay, and target networks.
- **Computational Resources:** More computationally intensive, requiring more resources for training and longer training times.

4. Conclusion

Q-Learning (**Tabular**): Best suited for smaller or simpler environments where state spaces can be effectively discretized. It is straightforward but may struggle with larger or continuous state spaces.

Deep Q-Network (DQN): More appropriate for complex or continuous environments. It generally provides better performance and stability due to its ability to handle continuous state spaces and advanced techniques like experience replay.

While Q-Learning is a valuable algorithm for learning in discrete spaces, DQN offers superior performance and stability for more complex environments, making it a preferred choice for modern reinforcement learning tasks.