17. Konstrukční uspořádání PC – typy pamětí a jejich funkce v PC

- popis funkcí pamětí PC a jejich vzájemné souvislosti ROM BIOS, CMOS RAM, DRAM, SDRAM, DDR, DDR 2, 3 a 4, (provedení, moduly, datové šířky, rychlosti, technologie přenosu dat, banky)
- CACHE (HW, SW) popis a princip činnosti
- časování pamětí (latence) a Dual channel
- logická struktura operační paměti (Base, UMA, XMS)

1. Popis funkcí pamětí PC a jejich vzájemné souvislosti

ROM BIOS

- o Jedná se o energeticky nezávislou flash paměť každého HW, říká se mu Firmware
- o Každý HW potřebuje BIOS

CMOS RAM

- o Energeticky závislá paměť na základní desce
 - Její obsah je při vypnutí PC udržován baterií
- Možnost vymazání pomocí jumperu

DRAM (Dynamic RAM)

- Uchovává informace elektrickým nábojem kondenzátoru, vyžaduje periodickou obnovu dat
- Má vyšší přístupovou dobu než SRAM kvůli nutnosti obnovy a době nutné pro nabití kondenzátoru
- Výhodou je nižší cena a vyšší kapacita, což je důvodem použití u OP
- OP jsou realizovány jako matice a pro omezení počtu vývodů se adresa řádku a sloupce posílá po stejné sběrnici
- o Adresování řádku a sloupce je ovládáno signály RAS a CAS

SDRAM (Synchronous DRAM)

- o 168 vývodů
- Šířka přenosu dat je 64b
- o Pracují synchronně s procesorem
- o Svou frekvenci musí odpovídat frekvenci systémové sběrnice

DDR

- o 184 vývodů
- Rychlejší než SDR s dvojnásobným výkonem při stejné frekvenci díky Double Data Ratu
- Frekvence bufferu se rovná frekvenci paměťového čipu (jádra), počet bank (spojení) je roven 2
- o Napájení 2,5 V

DDR 2

- o 240 vývodů
- o Menší spotřeba o 50%
- Frekvence bufferu je dvojnásobná oproti frekvenci jádra, počet bank se musel zvýšit na dvojnásobek
 (4) oproti DDR z důvodu nutnosti dodání 2x více dat
- Napájení 1,8 V

DDR 3

- o 240 vývodů
- o Menší spotřeba o 30%
- Frekvence bufferu je čtyřnásobná oproti frekvenci jádra, počet bank se zvýšil na 8
- o Napájení 1,5 V

DDR 4

- o 288 vývodů
- Menší spotřeba o 20-30%
- o Frekvence bufferu je 8 násobná oproti frekvenci jádra, počet bank se zvýšil na 16

- o 288 vývodů, napájecí napětí: 1.1 V.
- o Dosahuje vyšší rychlosti a efektivity než DDR4 o 10-20%.
- Frekvence Bufferu je šestnáctinásobná oproti efektivní frekvenci paměťového čipu (jádra), počet bank se musel zvýšit na 2násobek (32) oproti DDR4

Výpočet rychlosti OP

Typ paměti	Označení	Přenosová ryclost Single Channel	Přenosová ryclost Dual Channel
DDR200	PC1600	1600 MB/s	3200 MB/s
DDR266	PC2100	2100 MB/s	4200 MB/s
DDR333	PC2700	2700 MB/s	5400 MB/s
DDR400	PC3200	3200 MB/s	6400 MB/s
DDR2 400	PC2 3200	3200 MB/s	6400 MB/s
DDR2 533	PC2 4300	4266 MB/s	8533 MB/s
DDR2 667	PC2 5300	5333 MB/s	10666 MB/s
DDR2 800	PC2 6400	6400 MB/s	12800 MB/s
DDR2 1000	PC2 8000	8000 MB/s	16000 MB/s
DDR2 1066	PC2 8500	8500 MB/s	17000 MB/s
DDR3 800	PC3 6400	6400 MB/s	12800 MB/s
DDR3 1066	PC3 8500	8500 MB/s	17000 MB/s
DDR3 1333	PC3 10600	10670 MB/s	21340 MB/s
DDR3 1600	PC3 12800	12800 MB/s	25600 MB/s

2. CACHE (HW, SW) – popis a princip činnosti

- Jedná se o paměti typu SRAM = Statická RAM
 - Uchovávají informaci po celou dobu připojení k napájení
 - Jsou blíže k procesoru a není je nutno obnovovat
 nižší přístupová doba než u DRAM
 - Jsou Složitější => nižší kapacita a vyšší cena
 - Paměťová buňka funguje jako bistabilní klopný obvod
 - Využívá 2 vodičů
 - Data pro zápis
 - !Data pro čtení, hodnota je vždy opačná, než uložená v paměti

- o Používá se jako vyrovnávací paměť pro pomalé vnější paměti HDD
- OS se snaží uchovávat informace, se kterými pracuje častěji, v rychlé OP a v případě zápisu na disk ukládat co v nejvýhodnějším pořadí
- HW cache
 - Realizována paměťovými obvody
 - o Použití u CPU a jeho podpůrných obvodů
 - V CPU ukládá kopie dat přečtených z adresy v OP
- Dělí se na L1 L3 podle vzdálenosti od procesoru
 - Čím blíže k procesoru, tím dražší a tím menší kapacita
 - Fungují jako "mezisklad" mezi různě rychlými částmi počítače, který celkově urychluje tok dat při zpracovávání

3. Časování pamětí (latence)

- Latence: počet taktů mezi jednotlivými operacemi, po které je potřeba počkat, aby byly data platné
- Hodnota CL udává pouze celkový počet taktů, nikoliv přesný čas

Dual channel

- o Technologie desek s pamětí DDR x
- Využívá 2 kanály s přenosem dat po 128 bitech (64 bitů pro každý kanál)
- Minimalizace latencí
 - Snížení dob, kdy není možné přistupovat k paměti
- Potřebné podmínky
 - Čipová sada s podporou Dual Channelu, párové osazení DIMM modulů, shodné parametry obou modulů pro efektivní využití, teoretické zdvojnásobení přenosové rychlosti paměti
- Rozšíření architektury
 - Existuje i Triple Channel a Quad Channel pro ještě větší efektivitu a výkon

4. Logická struktura operační paměti (Base, UMA, XMS)

- Base paměť je oblast operační paměti přístupná přímo procesoru (0-640kB)
 - o Používá se při spouštění
- UMA (Upper Memory Area) je také přístupná procesoru 640kB-1MB
 - o Vyhrazena pro ovladače HW
 - o Je zde umístěn BIOS a jeho součásti (např. Setup)
- XMS (Extended Memory Specification) je hlavní paměť
 - o Použitelná až po načtení ovladačů a najetí do OS