Juan Carlos Llamas Nuñez 3º DG Inf-Mat.

DNI: 11867802-D Fecha: 12/11/2020

Examen I.O.

Problema 1 -

Sea XI el número de procesos de tipo Th utilizados y X2 el número de procesos de tipo Ta utilizados.

La funcion objetivo que queremos maximizar es

Z = 4. (8: xx+10x2) + 6 (6xx+7x2) + 7 (5xx+4x2)

Unidades de 6 produ.

Unidades de Vinidades de Producidas S producidas.

Las restricciones que se nos indicam son

1- Unidades producidas de G el meios 900

8 × 1 + 10 × 2 > 900

2- Unidades producidas de P al menos 300

6 × 1 + 7 × 2 > 300

3- Unidades producidas de S al menos 800

4- El crudo de tipo (1 disponible es 1400

7 × 1 + 10 × 2 > 1400

5- El crudo de tipo (2 disponible es 2000

12 × 1 + 8 × 2 = 2000

Juan Carlos Llamas Núñez DNJ: 11867802-D

Por tanto se trata de maximizar

max Z = 4(8x,+10x2)+6(6x,+7x2)+7(5x,+4x2)

sujete a:

$$8 \times_{1} + 10 \times_{2} \approx 900$$
 $6 \times_{1} + 7 \times_{2} \approx 300$
 $5 \times_{1} + 4 \times_{2} \approx 800$
 $5 \times_{1} + 4 \times_{2} \approx 1700$
 $7 \times_{1} + 10 \times_{2} \approx 1400$
 $12 \times_{1} + 8 \times_{2} \approx 2000$

×1, ×2 >0

Problema 2=

Estamos ante un problema de minimización donde todos los costes veducidos no son mayores o iguales que O por lo que podemos hacer decrecer la función objetivo en la región factible. Introducimos en la base la variable no básica xy y sacamos la variable básica xz por lo que en la siguiente iteración del simplex tenemos la tabla:

	Xı	×2	X3	1 Xy	1 ×5	i
*4	0	7	0	1	0	2
X ₃	0	2/3	1	0	-1/3	13/3
×ı	1	1/3	0	0	1/3	2/3
	0	4	0	0	0	2-7

Juan Carlos Llamas Núnez DNI: 11867802-D

Llegamos a una tabla donde todos los costes reducidos son majores o iguales que cero por lo que ya tenemos una solución ó phima que (x1 = 1/43), Sin embargo, esta solución no es única ya que (x3) (18/3) 2

hay algún coste reducido de una variable no básica que es O. Par tanto hay solución optima multiple. Introducinos en la base la variable no basia Xs y saramos la variable basia XI con lo que obtenemos la

	×i	Xz	×3	1 ×4	1. ×5	- 1
Xy	0	1	0	1	0	2
X3	1	1	1	0	0	5
X5	3	1	0	0	1	2
1	C	4	0	0	0	2-7

$$\begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \lambda \begin{vmatrix} 2/3 \\ 0 \\ 13/3 \end{vmatrix} + (1-\lambda) \begin{vmatrix} 0 \\ 0 \\ 5 \\ 2 \end{vmatrix}$$
Con $\lambda \in [0,1]$.

Para estos puntos la función objetivo toma el valor $z=7$.

Broblema 3.-

Estermos ante un probleme de minimización donde no todos los cos les reducidos son mayores o igrales que O por lo que podemos hacer decrecer la función objetivo dentro de la región factible.

Introducimos en la base la variable no básica xs y sacamos de la base la variable no paísica xs y sacamos de la base la variable básica x, con lo que la nueva tabla queda:

-	XI	1×2	X 3	1 74	1×5	Ī
×ī	1	-314	5/4	-1/4	0	7/2
Xş	0	-1/4	15/4	-3/4	1	5/2
	0	11	21	0	0	2-1-18

Como todos los cestes reducidos son mayores o iguales que o tenemos una solución optima (x1 x2 = 1/3) para la que la función (x3 x4 x5) | 56

objetivo toma el valor Z=-18. Sin embargo, no es única ya que hay una vaviable no bossica xy con coste reducido como El hecho de que en esa columna todos los valores sean menores o iguales que cero nos hace notar que podemos movernos a lo largo de una dirección extremo mante niendo el valor de la función objetivo. Por tanto, el conjunto de soluciones es

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ 0 \\ 0 \\ 0 \\ 5/2 \end{pmatrix} + \mu \begin{pmatrix} \frac{1}{3} \\ 0 \\ 0 \\ \frac{1}{3} \\ \frac{3}{4} \end{pmatrix}$$

conpuzo y el vulor de la función objetivo para estos puntos es Z=-18