Devoir maison n°12 : Première fois. Stabilité géométrique

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Problème 1 - Première fois.

• Partie A: Une fonction agissant sur les nombres entiers naturels.

Soit une fonction $\Delta:\mathbb{N}\to\mathbb{N}$ possédant les propriétés :

- (1) $\Delta(0) = \Delta(1) = 0$
- (2) Pour tout entier premier p, $\Delta(p) = 1$
- (3) Pour tous entiers a et b: $\Delta(a \times b) = b\Delta(a) + a\Delta(b)$
- 1) Soit p un nombre premier, n un entier naturel. On cherche à prouver que $\Delta(p^n) = np^{n-1}$.

Initialisation:

Pour $n=0, \Delta(p^0)=\Delta(1)=0$ d'après (1). Ce qui correspond à la formule.

Pour n=1, $\Delta(p^1)=\Delta(p)=1$ d'après (2). Or avec la formule on obtient $p^0=1,$ ce qui est donc correct.

Hérédité:

On suppose que $\Delta(p^n)=np^{n-1}$, cherchons à prouver que $\Delta(p^{n+1})=(n+1)p^n$.

$$\Delta(p^{n+1}) = \Delta(p \times p^n) = p^n \Delta(p) + p \Delta(p^n) = p^n + pnp^{n-1} = (n+1)p^n$$

Par principe de récurrence, $\Delta(p^n) = np^{n-1}$.

- **2) a)** Soit p et q des nombres premiers distincts, m et n des entiers naturels supérieurs ou égaux à 1. $\Delta(p^m \times q^n) = q^n \Delta(p^m) + p^m \Delta(q^n)$ D'après la question précédente, on a alors : $mq^n p^{m-1} + np^m q^{n-1} = (p^{m-1}q^{n-1})(mq + np)$
- **b)** $\Delta(10^n)=\Delta(2^n\times 5^n)$ Comme 2 et 5 sont premiers et distincts, n supérieur ou égal à 1, on a d'après la question précédente : $\Delta(2^n\times 5^n)=7n(2^{n-1}\times 5^{n-1})$ $\Delta(10^n)$ est donc un multiple de 7 avec $n\geq 1$.
- 3) a)
- Partie B : Étude de quelques images d'entiers par la fonction Δ .
- 4) a)