GaZmusino: An extended edge RISC-V core with support for Bayesian Neural Networks

Samuel Pérez Pedrajas*, Javier Resano* and Darío Suárez Gracia*

Contact email samuel.perez@unizar.es *Department of Computer Science and Systems Engineering (DIIS), Aragon Institute for Engineering Research (I3A), University of Zaragoza

Grupo de Investigación en Árquitectura de Computadores (gaZ)

Universidad Zaragoza

¿What are Bayesian Neural Networks?

- · Integrate probabilistic modeling
- Extend predictions with uncertainty
- More expensive inference algorithm

Weight Sampling Optimization

- Bayesian Neural Networks parameters are modeled by Gaussian distributions
- Distribution sampling takes more than 80% execution time during inference
- We propose and validate using the **Uniform distribution** instead of Gaussian doing a weight transformation

$$\sigma\,\mathcal{N}(0,1) + \mu
ightarrow a\,\mathcal{U}(0,1) + b$$

$$a = \sigma \sqrt{12}$$

$$b = \mu - a/2$$

From BayesianTorch to GaZmusino

- - Layer folding
 - Weight transformation
 - Fixed point
- Portable C code generation
- GaZmusino BNN extension

Results and Conclusions

	↑ Acc %		↓ RE %		↓ UCE %	
Model	BT	GZ	BT	GZ	BT	GZ
HYPER	89.46	0.03	3.93	0.00	3.31	-0.11
LENET	62.61	-0.38	2.62	-0.75	4.09	1.35
B2N2	75.77	0.17	2.13	-0.54	2.72	1.86
RESNET	81.01	-1.34	2.23	-0.74	2.24	0.71
Average		-0.38		-0.51		0.95
Std. Dev.		0.29		0.39		1.02

ACC. Accuracy (Higher Better)

RE. Reliability Error (Lower Better)

UCE. Uncertainty Calibration Error (Lower Better)

Model performance preserved

Avg. 8.9× speedup and 8.2× energy efficiency GaZmusino enables BNN inference on the edge

GaZmusino Open-Source RISC-V Core

New instructions

- •fxgen.unif rd, I
- •fxgen.seed ra
- Uniform RNG
- Fixed-Point MAC
- •fx.madd rd, ra, rb, rc, I

References

- [1] Chuan Guo et al. "On Calibration of Modern Neural Networks". 2017.
- [2] Charles Blundell et al. "Weight Uncertainty in Neural Networks". 2015.
- [3] Hiromitsu Awano and Masanori Hashimoto. "B2N2: Resource efficient Bayesian neural network accelerator using Bernoulli sampler on FPGA". 2023.
- [4] Ranganath Krishnan, Pi Esposito, and Mahesh Subedar. "Bayesian-Torch: Bayesian neural network layers for uncertainty estimation". 2022.
- [5] Max-Heinrich Laves et al. "Well-calibrated Model Uncertainty with Temperature Scaling for Dropout Variational Inference". 2019.
- [6] Colby Banbury et al. "MLPerf Tiny Benchmark". 2021.

