KOLLMORGEN

SERVODISC™ CATALOG

A new dimension in performance

If you are involved with high performance servomotor applications, there is an important motor technology which you should know about. It's the technology found in ServoDisc motors from Kollmorgen.

What separates the ServoDisc motor from conventional DC servos is its ironless disc armature. As we shall see, this difference enables ServoDisc motors to deliver a level of performance, in both incremental motion and continuous speed applications, which is not attainable with conventional ironcore motor designs.

In addition to performance advantages, ServoDisc motors have a unique compact shape that can be an attractive alternative when solving tight packaging problems.

Unique ironless design

In a conventional slot-wound servomotor, the armature is constructed from a heavy, laminated ironcore wound with

coils of wire. In a ServoDisc motor, the armature has no iron. Instead, it is constructed from several layers of copper conductors in a unique flat-disc configuration.

Not only are the armature designs completely different, so is the shape and internal construction. In a conventional servo, the permanent magnets are mounted on the motor shell creating a radial magnetic field, perpendicular to the shaft (Fig. 1). Because the magnet pairs are so far apart, the iron core of the armature is needed to contain and focus the lines of magnetic flux. Motors of this type are typically long, thin and heavy.

In a ServoDisc motor, the magnets are mounted on the end plates creating an axial magnetic field, parallel to the shaft.

Ironcore Motor

A conventional ironcore motor uses a radial design with magnets placed concentrically around the shaft in such a way as to produce a radial magnetic field. (Fig. 1) The armature consists of slotted steel laminations wound with coils of wire which interact with the magnetic field to produce torque. As the motor rotates a commutator automatically maintains the correct current flow. A ServoDisc motor uses entirely different physical construction. The motor is designed with the magnetic field aligned axially, parallel to the shaft. (Fig. 2) The conductors in the arma-

ServoDisc Motor

ture have a current flow which is perpendlcular to the magnetic field (radial to the shaft). This produces a torque perpendicular to both the magnetic field and the current (the left-hand rule). This force rotates the shaft. This construction approach is much more efficient than the radial design of conventional ironcore motors and eliminates the heavy iron armature and the electrical losses associated with it. The large number of commutations possible with Kollmorgen's unique flat armature produce dramatically smoother torque output.

This leads to a very small air gap be tween the magnets, separated only by the thickness of the disc armature - a very clean and effective design approach. Torque is created when the current flowing radially through the copper conductors interacts directly with the field of the permanent magnets (Fig. 2). This configuration is a very efficient way of producing torque. These different approaches produce dramatically different motors (Fig. 3).

Outdistances other DC servos

The iron-free ServoDisc armature provides some significant performance advantages for motion control applications.

COMPARISON OF PERFORMANCE FEATURES

Size

The ServoDisc armature is much smaller and lighter than bulky ironcore designs of equivalent output.

Acceleration

ServoDisc motors accelerate up to 10 times faster than conventional servo motors.

Cogging

The ironless ServoDisc armature has absolutely no cogging at any speed of operation.

Faster acceleration

The thin, low-inertia armature design leads to exceptional torque-to-inertia ratios. This translates into blazing acceleration (Fig. 4). A typical ServoDisc motor can accelerate from 0 to 3000 rpm in only 60 degrees of rotation. In some applications,

the entire move can be performed in less than 10 milliseconds. This means shorter cycle times, more moves per second and higher throughput. For incremental motion applications, this translates into higher productivity and more profitability.

Electrical Time Constant

A very low electrical time constant results in torque much sooner than with conventional wire-wound motors.

Torque-Speed Curves

With full torque from 0 to full speed, ServoDisc motors solidly outperform conventional motors.

Peak Torque Capability

High peak torque capability means more throughput than is available from standard servos.

Perfectly smooth rotation

If you rotate a conventional motor when it is unpowered, you will notice that it pulls into certain preferred positions. This occurs when the iron laminations in the arma ture line up with the permanent magnets on the stator. This phenomenon is called "cogging." It also occurs when the motor is powered and shows up as torque disturbances which can be a serious problem in critical applications. The ServoDisc armature, being ironless, is not attracted by the magnets and. consequently, has intrinsically zero cogging (Fig. 5). The result is ultra-smooth rotation at any speed.

Long brush life

Because there is no iron, there is nearly no inductance. The result is no arcing, because there is no stored energy in the armature to be dissipated during commutation. In an ironcore motor, a lot of energy is stored in the magnetic field of each coil. When this field collapses, the energy may be discharged by arcing to the brushes. Arcing, not friction, is the major cause of brush wear. The elimination of arcing leads to very long brush life in most applications. In fact, depending on the application, it is possible for the brushes to last as long as the bearings.

High speed capability

No arcing also means no commutation limits due to speed. In a conventional motor, arcing increases as speed increases and eventually causes motor operation to become erratic. ServoDisc motors do not suffer from this problem and can run to 4000 rpm and above.

Instantaneous torque

Low inductance provides another advantage...low electrical time constant. This is a measure of how long it takes for current to flow into the armature. For ServoDisc motors, this is much less than one millisecond (Fig. 6). This means full torque almost instantly; a key to fast moves and accurate tracking.

Full torque from 0 to 4000 rpm

In a conventional motor there are losses associated with rotating the iron armature in a magnetic field. These losses increase with speed, so as the motor goes faster, it uses more and more of its available torque just to keep itself turning. Consequently, less torque is left to deliver to the output shaft (Fig. 7A). ServoDisc motors do not have these iron-associated losses and, as a result, deliver more torque over their entire speed range. In fact, the torque is almost constant from 0 to 4000 rpm (Fig. 7B). Compare this performance with the torque-speed characteristics of a conventional motor.

When sizing a conventional motor, the torque drop-off with speed may require you to select the next higher size to get sufficient torque at high speed. You will never have this problem with a ServoDisc motor.

Extra torque on call

For rapid acceleration and deceleration, higher than normal torque is usually required. To produce this temporary peak torque, a peak current is applied to the motor. In an iron-core design, the magnetic field of the armature can interact with and demagnetize the permanent magnets. Because of this effect, peak current is generally limited to 2 or 3 times the continuous current rating. With the non-magnetic ServoDisc armature and axial magnetic field, this problem is virtually eliminated. Most ServoDisc motors are rated for peak current of 10 times the continuous rating (Fig. 8).

Sizes for every application

ServoDisc motors use a very "well behaved" technology. As a result, products have been developed which cover a wide range of package sizes and power levels. Motors are presently available with torques from 10 oz-in to 20 lb-ft and power outputs from 30 watts to 4.5 kilowatts. This means a product match for nearly every application .

Easy to design in

The disc armature design leads to a unique flat motor package. This is generally easier to design in than much longer conventional motors. From a performance standpoint, this shape provides closer physical coupling and better torsional stiffness. These key factors can optimize your mechanical design.

Kollmorgen ServoDisc

TABLE OF CONTENTS

Kollmorgen PLATINUM™ Series	6
U-Series	14
S-Series	26
Ferrite Series	31
Ferrite Kit Series	39
N-Series	43
JR-Series	48
Gearmotor Series	56
Accurex Gearmotor Series	57
Revex Gearmotor Series	60
Indurex Gearmotor Series	68
Ferrite Series	70

INTRODUCTION

- Options:
- -- Integral tachometers
- -- External tachometers
- -- Optical encoders
- -- Fail-safe brakes
- -- Aluminum armature
- -- Hardened commutator
- -- Forced air cooling
- -- Dust cover with CPC or splash-tite connectors
- -- Industrial cover with MS connectors
- -- IP65 water resistant
- -- Cable and connector options

- 50 to 186 oz-in (35 to 130 N-cm) Continuous Torque
- Motor Lengths Less Than 2 Inches
- 4.37 to 5.5 Inches OD Round Frame
- Optional Tachometer and Encoder Feedback

PLATINUMTM Series is a new generation of ServoDisc motors. Offering numerous new design improvements that have been proven to increase life, reliability and performance, the PLATINUM Series is a direct replacement for the existing U-Series and S-Series motors.

- Form fit, function replacement for the 9cm and 12cm U-Series
- "Torque Frame" concept provides up to 2x the torque range within identical motor frames
- 15% to 40% weight reduction versus the U-Series
- Flexible manufacturing design reduces customer lead times without limiting customer options
- All-aluminum construction increases resistance to corrosive environments
- Ironless, low inertia armature for rapid acceleration
- Zero cogging for smooth operation at low speeds
- · Easy field replaceable brush assembly

Compatible Products

- KXA Plus Amplifier
- PWM Amplifiers

PERFORMANCE DATA

Platinum U9D Series Pancake Servomotors Motor Torque Frame Size U9D-A to U9D-F

Inches/mm 4.4/111 Motor Diameter 1.8/46.7 Inches/mm LG Motor Length 3.8/1.7 Lbs/kg Weight

				Standard	Torque Fran	nes—Series W	undings U9D-E	U9D-F
o Gracifications	Symbol	Units	U9D-A	U9D-B	U9D-C	U9D-D	773	691
rformance Specifications	<u> </u>	oz-in	453	545	581	727	545.9	488.0
ak Torque	T _p —	N-cm	319.9	384.9	410.3	513.4	3000	3000
	N	RPM	3000	3000	3000	3000	85	75
ited Speed		oz-in	50	60	65	80	60.0	53.0
ited Continuous Torque @25°C	T ₂₅ —	N-cm	35.3	42.4	45.9	56.5	77	68
		oz-in	45	54	59	72	54.3	47.9
ated Continuous Torque @40°C	T ₄₀ —	N-cm	32.0	38.3	41.5	51.1	190	170
	P	Watts	109	133	142	179	6000	6000
ated Power Output	Nmax	RPM	6000	6000	6000	6000	69	$\frac{-62}{62}$
Jaximum Recommended Speed		oz-in	39	48	51	65	48.7	43.8
ontinuous Stall Torque	T _s —	N-cm	27.5	33.9	36.0	45.9	0.0	0.0
Continuous State 1 1		oz-in	0.0	0.0	0.0	0.0	0.0	$\frac{0.0}{0.0}$
Cogging Torque	T _c —	N-cm	0.0	0.0	0.0	0.0	0.0	0.0
N. 4-i-al Specifications					- 07	32	33	30
Electrical Specifications	E	Volts	23	26	27	8.57	8.55	8.59
Rated Terminal Voltage Rated Continuous Current	<u></u>	Amps	8.67	8.64	8.63	72	72	72
	$-\hat{I}_{p}$	Amps	72	72	72	6.8	6.8	6.8
Peak Current	 	Amps	6.8	6.8	6.8	0.8	0.0	
Continuous Stall Current								
Winding Specifications		01	0.85	0.85	0.85	0.85	0.85	0.85
Terminal Resistance +/- 10%	R _t	Ohms	0.85	0.66	0.66	0.66	0.66	0.66
Armature Resistance +/- 10%	Ra	Ohms	5	6	6.4	8	8.5	7.6
Back EMF Constant +/- 10%	Ke	V/kRPM		8.1	8.7	10.8	11.5	10.3
	K _t -	oz-in/Amp	6.8	5.7	6.1	7.6	8.1	7.3
Torque Constant +/- 10%	15(N-cm/Amp	4.8	0.9	1	1.2	1.3	1.2
	K _d -	oz-in/kRPM	0.8	0.6	0.7	0.8	0.9	0.8
Viscous Damping Constant	Nd	N-cm/kRPM	0.6	<0.03	<0.03	< 0.03	< 0.03	<0.03
Armature Inductance	L	μH	<0.03	-0.093	-0.093	093	-0.093	-0.093
Temperature Coeff. of Ke	C	%/°C Rise	-0.093	-0.093	-0.075			
						0.0056	0.0056	0.0056
Mechanical Specifications		oz-in-sec2	0.0056	0.0056	0.0056	0.0056	0.395	0.395
Moment of Inertia	J _m -	kg-cm2	0.395	0.395	0.395	0.395	4	4
MATOMICON		oz-in	4	4	4	4	-	2.8
Static Friction Torque	T_{f}	N-cm	2.8	2.8	2.8	2.8	2.8	$\frac{2.0}{117}$
	Z	14-0111	$\frac{-\frac{2.5}{117}}{}$	117	117	117	117	11/
Number of Commutator Bars								
Figures of Merit		kRad/s2	80.9	97.2	103.8	129.9	138.1	123.4 4.9
Peak Acceleration	A _p	ms	11.27	7.85	6.9	4.43	3.92	<0.05
Mechanical Time Constant	T _m	ms	<0.05	< 0.05	< 0.05	<0.05	<0.05	7.38
Electrical Time Constant	1 _e	kW/sec	3.06	4.52	5.17	8.19	9.25	
Continuous Power Rate	P _c	VA1/200						
Thermal Specifications			10	1.3	1.3	1.3	1.3	1.3
Thermal Resistance at Rated Spee	d RAAR	°C/Watt		2.4	2.4	2.4	2.4	2.4
Thermal Resistance at Stall	RAAS	°C/Watt	2.4	2.4	21			
Forced Air Thermal Resistance:				0.22	0.32	0.32	0.32	0.32
- w/ 2.0 Lbs/Min Forced Air	RAA3	°C/Watt	0.32	0.32	0.32			

All values are based upon a 150°C armature temperature limit and with the motor mounted on a 8" x 16" x 3/8" aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max. armature temp. of 150°C is not exceeded.

Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/Cu. Ft.)

Terminal Resistance is measured at 4.0 Amps. Rt varies as a function of applied current

Unless otherwise noted, all specifications above apply at 25°C.

Peak torque and current is calculated based on max. pulse duration of 50 milliseconds and a 1% duty cycle.

PERFORMANCE DATA

U9D-A

U9D-B

U9D-C

U9D-D

U9D-E

U9D-F

PERFORMANCE DATA

Platinum U9D Series Pancake Servomotors Motor Torque Frame Size U9DLR-A to U9DLR-F

Motor Diameter	D	4.4/111	Inches/mm
Motor Length	LG	1.8/45.7	Inches/mm
Weight	W	3.8/1.7	Lbs/kg

				Standard	l Torque Fra	mes—Parallel	_	
	Symbol	Units	U9DLR-A	U9DLR-B	U9DLR-C	U9DLR-D	U9DLR-E	U9DLR-F
Performance Specifications	Symbol	oz-in	428	515	551	691	767	662
Peak Torque	T _p —	N-cm	302.2	363.7	389.1	488.0	541.6	467.5
		RPM	3000	3000	3000	3000	3000	3000
Rated Speed		oz-in	45	55	60	75	85	70
Rated Continuous Torque @25°C	T_{25} —	N-cm	31.8	38.8	42.4	53.0	60.0	49.4
		oz-in						0.0
Rated Continuous Torque @40°C	T ₄₀ —	N-cm	0.0	0.0	0.0	0.0	0.0	0.0
Rated Power Output	P	Watts	94	114	125	158	180	6000
Maximum Recommended Speed	Nmax	RPM	6000	6000	6000	6000	6000	58
		oz-in	33	40	44	56	81 57.2	41.0
Continuous Stall Torque	T _s —	N-cm	23.3	28.2	31.1	39.5	$\frac{37.2}{0.0}$	$\frac{41.0}{0.0}$
	T.	oz-in	0.0	0.0	0.0	0.0	0.0	0.0
Cogging Torque	T _c -	N-cm	0.0	0.0	0.0	0.0	0.0	
Electrical Specifications		_				17.6	17.5	15.9
Rated Terminal Voltage	Е	Volts	12.5	13.9	14.4	16.6	15.75	15.8
Rated Continuous Current	I	Amps	15.15	15.11	15.33	15.3 136	13.73	136
Peak Current	$I_{\rm p}$	Amps	136	136	136	11.5	11.5	11.5
Continuous Stall Current	Is	Amps	11.5	11.5	11.5	11.5	11.5	11.5
Winding Specifications					0.005	0.365	0.365	0.365
Terminal Resistance +/- 10%	Rt	Ohms	0.365	0.365	0.365	0.363	0.175	0.175
Armature Resistance +/- 10%	Ra	Ohms	0.175	0.175	0.175	4	4.4	3.8
Back EMF Constant +/- 10%	Ke	V/kRPM	2.5	3	3.2	5.4	6.0	5.1
	K _t -	oz-in/Amp	3.4	4.1	4.3	3.8	4.2	3.6
Torque Constant +/- 10%	IXI -	N-cm/Amp	2.4	2.9	3.1	1.2	1.3	1.1
T. Constant	K _d -	oz-in/kRPM	0.8	0.9	0.9	0.8	0.9	0.8
Viscous Damping Constant		N-cm/kRPM		0.6	<0.03	<0.03	<0.03	< 0.03
Armature Inductance	L	μΗ	< 0.03	<0.03 -0.093	-0.093	-0.093	-0.093	-0.093
Temperature Coeff. of Ke	С	%/°C Rise	-0.093	-0.093	-0.093	-0.075	0.030	
Mechanical Specifications			0.0000	0.0028	0.0028	0.0028	0.0028	0.0028
Moment of Inertia	J _m	oz-in-sec2	0.0028	0.0028	0.0028	0.197	0.197	0.197
MOMENT OF METHA		kg-cm ²	0.197	4	4	4	4	4
Static Friction Torque	T_{f}	oz-in	2.8	2.8	2.8	2.8	2.8	2.8
		N-cm	<u>2.8</u> 117	117	117	117	117	117
Number of Commutator Bars	Z		11/					
Figures of Merit		IsD a Mag	76.5	91.9	98.5	123.4	137	118.2
Peak Acceleration	A_p	kRad/s2	11.94	8.32	7.32	4.69	3.88	5.2
Mechanical Time Constant	Tm	ms	<0.17	<0.17	<0.17	<0.17	<0.17	< 0.17
Electrical Time Constant	Te	ms kW/sec	2.26	3.35	3.99	6.41	8.34	6.2
Continuous Power Rate	P _c	kw/sec	2.20					
Thermal Specifications	- m: - m	00000	1.3	1.3	1.3	1.3	1.3	1.3
Thermal Resistance at Rated Spee	d RAAR	°C/Watt	2.4	2.4	2.4	2.4	2.4	2.4
Thermal Resistance at Stall	RAAS	°C/Watt	2.4		2,1			
Forced Air Thermal Resistance:		0/2/837. **	0.20	0.28	0.28	0.28	0.28	0.28
- w/ 2.0 lbs/min Forced Air	RAA3	°C/Watt	0.28	0.20	0.20		<u> </u>	

- 1) All values are based upon a 150°C armature temperature limit and with the motor mounted on a 8" x 16" x 3/8" aluminum heatsink with no forced air Notes: cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max. armature temp. of 150°C is not exceeded.
- Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/Cu. Ft.)
 Terminal Resistance is measured at 4.0 Amps. R_t varies as a function of applied current Unless otherwise noted, all specifications above apply at 25°C.
- Peak torque and current is calculated based on max. pulse duration of 50 milliseconds and a 1% duty cycle.

PERFORMANCE DATA

U9DLR-A

U9DLR-B

U9DLR-C

U9DLR-D

U9DLR-E

U9DLR-F

PERFORMANCE DATA

Platinum U9D Series Pancake Servomotors With Integral Tachometer **Motor Torque Frame Size U9DT-A to U9DT-F**

Inches/mm 4.4/111 Motor Diameter 1.8/46.7 Inches/mm LG Motor Length Lbs/kg 3.8/1.7 Weight

				Standar				
- a Sur-Eastions	Symbol	Units	U9DT-A	U9DT-B	U9DT-C	U9DT-D	U9DT-E	U9DT-F
Performance Specifications	Symbol	oz-in	412	528	547	699	795	680
Peak Torque	T _p -	N-cm	290.9	372.8	386.3	493.6	561.4	480.2 3000
	N	RPM	3000	3000	3000	3000	3000	72
Rated Speed		oz-in	45	55	60	75	85	50.8
Rated Continuous Torque @25°C	T25 -	N-cm	31.8	38.8	42.4	53.0	60.0	64.8
		oz-in	40.5	49.5	54	67.5	76.5	45.8
Rated Continuous Torque @40°C	T40 -	N-cm	28.6	35.0	38.1	47.7	54.0	160
Rated Power Output	P	Watts	94	123	128	165	187	6000
Maximum Recommended Speed	Nmax	RPM	6000	6000	6000	6000	6000	58
		oz-in	34	44	46	60	48.7	$\frac{-36}{41.0}$
Continuous Stall Torque	T_s -	N-cm	24.0	31.1	32.5	42.4	0.0	0.0
		oz-in	0.0	0.0	0.0	0.0	0.0	0.0
Cogging Torque	T _c -	N-cm	0.0	0.0	0.0	0.0	0.0	
Electrical Specifications						- 20.1	22.0	29.6
Rated Terminal Voltage	E	Volts	22	25.1	25.7	30.1	32.9 8.6	8.66
Rated Continuous Current	I	Amps	8.32	8.72	8.71	8.65	71	71
Peak Current	Ip	Amps	71	71	71	71	6.5	6.5
Continuous Stall Current	Îs	Amps	6.5	6.5	6.5	6.5		0.5
W. Jim Considerations								0.05
Winding Specifications	Rt	Ohms	0.85	0.85	0.85	0.85	0.85	0.85
Terminal Resistance +/- 10% Armature Resistance +/- 10%	Ra	Ohms	0.66	0.66	0.66	0.66	0.66	0.66
	Ke Ka	V/kRPM	4.6	5.6	5.8	7.4	8.4	7.2
Back EMF Constant +/- 10%		oz-in/Amp	6.2	7.6	7.8	10.0	11.4	9.7
Torque Constant +/- 10%	\mathbf{K}_{t}	N-cm/Amp	4.4	5.3	5.5	7.1	8.0	6.9
		oz-in/kRPM	0.7	0.9	0.9	1.2	1.4	1.1
Viscous Damping Constant	$\mathbf{K}_{\mathbf{d}}$	N-cm/kRPM	0.5	0.6	0.6	0.8	1.0	0.8
Armature Inductance	L	μH	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03 -0.093
Temperature Coeff. of Ke	<u>c</u>	%/°C Rise	-0.093	-0.093	-0.093	-0.093	-0.093	-0.093
Temperature Coeff. of Tic								
Mechanical Specifications						0.0002	0.0083	0.0083
		oz-in-sec2	0.0083	0.0083	0.0083	0.0083	0.586	0.586
Moment of Inertia	$J_{\mathbf{m}}$	kg-cm ²	0.586	0.586	0.586	0.586 4.5	4.5	4.5
	Т-	oz-ın	4.5	4.5	4.5	$\frac{4.5}{3.2}$	3.2	3.2
Static Friction Torque	$T_{\mathbf{f}}$	N-cm	3.2	3.2	3.2	117	117	117
Number of Commutator Bars	Z		117	117	117	117		
Figures of Merit							141.9	121.5
Peak Acceleration	Ap	kRad/s2	73.6	94.3	97.7	124.9		4.97
Mechanical Time Constant	Tm	ms	13.29	8.19	7.64	4.7	3.65	<0.03
Electrical Time Constant	Te	ms	< 0.05	<0.05	< 0.05	<0.05	<0.05 9.01	×0.0. 8.47
Continuous Power Rate	Pc	kW/sec	2.26	3.89	4.19	6.97	9.01	0.47
Thermal Specifications		° C/Watt	1.3	1.3	1.3	1.3	1.3	1.3
Thermal Resistance at Rated Speed	RAAR	° C/Watt	2.4	2.4	2.4	2.4	2.4	2.4
Thermal Resistance at Stall	RAAS	C/ watt	2.4	2.7				
Forced Air Thermal Resistance:		° C/Watt	0.23	0.23	0.23	0.23	0.23	0.23
- w/ 2.0 lbs/min Forced Air	RAA3	- C/watt	0.23	0.23	0,23			
Tachometer Specifications				- 200		3.70	4.20	3.60
Output Voltage	v	Volts/kRPM	2.30	2.80	2.90	3.70	3.0	3.0
MaxRipple peak to peak(@1000RP	M) Vrh	%	3.0	3.0	3.0	0.06	0.06	0.00
Linearity of Output Voltage (@3600	RPM) LIN	%	0.06	0.06	0.06	0.06	0.00	0.00

- All values are based upon a 150°C armature temperature limit and with the motor mounted on a 8" x 16" x 3/8" aluminum heatsink with no forced air Notes: cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max. armature temp. of 150°C is not exceeded.
- Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/Cu. Ft.)
- Terminal Resistance is measured at 4.0 Amps. Rt varies as a function of applied current
- Unless otherwise noted, all specifications above apply at 25°C.
- Peak torque and current is calculated based on max. pulse duration of 50 milliseconds and a 1% duty cycle.

PERFORMANCE DATA

U9DT-A

U9DT-B

U9DT-C

U9DT-D

U9DT-E

U9DT-F

PERFORMANCE DATA

Platinum U9D Series Pancake Servomotors With Integral Tachometer Motor Torque Frame Size U9DLRT-A to U9DLRT-F

4.4/111 Inches/mm Motor Diameter Motor Length LG 1.8/46.7 Inches/mm 3.8/1.7 Lbs/kg Weight

					d Torque Fran	nes—Parallel	Windings U9DLRT-E	U9DLRT-F
Performance Specifications	Symbol	Units	U9DLRT-A	U9DLRT-B	U9DLRT-C		783	670
Peak Torque	T _p	oz-in	424	517	539	689	552.9	473.1
reak forque		N-cm	299.4	365.1	380.6	486.5	3000	3000
Rated Speed	N	RPM	3000	3000	3000	3000	80	65
Rated Continuous Torque @25°C	T ₂₅ -	oz-in	40	50	55	70	56.5	45.9
Rated Continuous Torque @25 C	123	N-cm	28.2	35.3	38.8	49.4	72	58.5
Rated Continuous Torque @40°C	T ₄₀	oz-in	36	45	49.5	63	50.8	41.3
Rated Continuous Torque @40 C		N-cm	25.4	31.8	35.0	44.5	176	150
Rated Power Output	P	Watts	90	112	120	155	6000	6000
Maximum Recommended Speed	Nmax	RPM	6000	6000	6000	6000		54
Continuous Stell Torque	Ts	oz-in	31	39	43	55	64	38.1
Continuous Stall Torque	18	N-cm	21.9	27.5	30.4	38.8	45.2	0.0
G : T	Tc	oz-in	0.0	0.0	0.0	0.0	0.0	0.0
Cogging Torque	1c	N-cm	0.0	0.0	0.0	0.0	0.0	0.0
Electrical Specifications							125	
Rated Terminal Voltage	E	Volts	11.6	13	13.1	15.4	16.7	15.1
Rated Continuous Current	I	Amps	16.04	15.98	16.43	16.31	16.22	16.33
Peak Current	Ip	Amps	146	146	146	146	146	146
Continuous Stall Current	Is	Amps	12.3	12.3	12.3	12.3	12.3	12.3
Winding Specifications								
Terminal Resistance +/- 10%	Rt	Ohms	0.365	0.365	0.365	0.365	0.365	0.365
Armature Resistance +/- 10%	Ra	Ohms	0.175	0.175	0.175	0.175	0.175	0.175
Back EMF Constant +/- 10%	Ke	V/kRPM	2.3	2.8	2.9	3.7	4.2	3.6
		oz-in/Amp	3.1	3.8	3.9	5.0	5.7	4.9
Torque Constant +/- 10%	\mathbf{K}_{t}	N-cm/Amp	2.2	2.7	2.8	3.5	4.0	3.4
		oz-in/kRPM	0.8	0.9	0.9	1.2	1.4	1.1
Viscous Damping Constant	K_d	N-cm/kRPM	0.6	0.6	0.6	0.8	1.0	0.8
Armature Inductance	L	μН	<0.03	< 0.03	<0.03	<0.03	< 0.03	<0.03
Temperature Coeff. of Ke	<u>c</u>	%/°C Rise	-0.093	-0.093	-0.093	-0.093	-0.093	-0.093
Temperature Cook. of the								
Mechanical Specifications			0.0038	0.0038	0.0038	0.0038	0.0038	0.0038
Moment of Inertia	$J_{\mathbf{m}}$	oz-in-sec2	0.0038	0.268	0.268	0.268	0.268	0.268
		kg-cm ²	4.5	4.5	4.5	4.5	4.5	4.5
Static Friction Torque	$T_{ m f}$	oz-in		3.2	3.2	3.2	3.2	3.2
		N-cm	3.2	117	117	117	117	117
Number of Commutator Bars	Z		117	117		117	117	
Figures of Merit			77. (00.2	06.2	123.1	139.8	119.7
Peak Acceleration	Ap	kRad/s ²	75.6	92.3	96.3	4.7	3.65	4.97
Mechanical Time Constant	Tm	ms	12.09	8.19	7.64	4.7 <0.20	<0.20	<0.20
Electrical Time Constant	Te	ms	<0.20	<0.20	<0.20		7.92	5.79
Continuous Power Rate	Pc	kW/sec	2.07	3.19	3.68	6.13	1.92	3.19
Thermal Specifications							10	12
Thermal Resistance at Rated Speed	RAAR	° C/Watt	1.3	1.3	1.3	1.3	1.3	1.3
Thermal Resistance at Stall	RAAS	° C/Watt	2.4	2.4	2.4	2.4	2.4	2.4
Forced Air Thermal Resistance:								0.00
- w/ 2.0 lbs/min Forced Air	RAA3	° C/Watt	0.28	0.28	0.28	0.28	0.28	0.28
Tachometer Specifications								
Output Voltage		Volts/kRPM	2.30	2.80	2.90	3.70	4.20	3.60
MaxRipple peak to peak (@1000RPM	•	%	3.0	3.0	3.0	3.0	3.0	3.0
Linearity of Output Voltage (@3600R	PM) LIN	%	0.06	0.06	0.06	0.06	0.06	0.06

- All values are based upon a 150°C armature temperature limit and with the motor mounted on a 8" x 16" x 3/8" aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max. armature temp. of 150°C is not exceeded. Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/Cu. Ft.)

 Terminal Resistance is measured at 4.0 Amps. Rt varies as a function of applied current

- Unless otherwise noted, all specifications above apply at 25°C.
- Peak torque and current is calculated based on max. pulse duration of 50 milliseconds and a 1% duty cycle.

PERFORMANCE DATA

U9DLRT-A

U9DLRT-B

U9DLRT-C

U9DLRT-D

U9DLRT-E

U9DLRT-F

PERFORMANCE DATA

Platinum U12D Series Pancake Servomotors Motor Torque Frame Size U12D-A to U12D-F

5.5/ 139.7 Inches/mm Motor Diameter D 2.1/53.3 Inches/mm Motor Length LG Lbs/kg 6.8/ 3.1 Weight

				Standar	d Torque Fra	mes—Series V	Vindings	
D. C C-saiffeations	Symbol	Units	U12D-A	U12D-B	U12D-C	U12D-D	U12D-E	U12D-F
Performance Specifications		oz-in	1285	1403	1541	1744	1893	1935
Peak Torque	T _p -	N-cm	907.4	990.7	1088.2	1231.5	1336.8	1366.4
	N	RPM	3000	3000	3000	3000	3000	3000
Rated Speed		oz-in	130	135	150	160	175	175
Rated Continuous Torque @25°C	T ₂₅ -	N-cm	91.8	95.3	105.9	113.0	123.6	123.6
		oz-in	116	120	134	142	156	156
Rated Continuous Torque @40°C	T40 -	N-cm	81.7	84.8	94.3	100.6	110.0	110.0
Rated Power Output	P	Watts	275	298	325	362	387	380
Maximum Recommended Speed	Nmax	RPM	6000	6000	6000	6000	6000	6000
Maximum Recommended Speed		oz-in	116	127	140	159	173	175
Continuous Stall Torque	T_s	N-cm	81.9	89.7	98.9	112.3	122.2	123.6
		oz-in	0.0	0.0	0.0	0.0	0.0	0.0
Cogging Torque	T _c	N-cm	0.0	0.0	0.0	0.0	0.0	0.0
Electrical Specifications								
Rated Terminal Voltage	Е	Volts	43.3	46	49	55	59	59
Rated Continuous Current	- <u>ī</u> -	Amps	8.65	8.59	8.51	8.37	8.26	8.01
Peak Current	Ip	Amps	84	84	84	84	84	84
Continuous Stall Current	Is	Amps	7.9	7.9	7.9	7.9	7.9	7.9
Winding Specifications				0.75	0.75	0.75	0.75	0.75
Terminal Resistance +/- 10%	Rt	Ohms	0.75	0.75	0.73	0.73	0.61	0.61
Armature Resistance +/- 10%	Ra	Ohms	0.61	0.61	14.5	16.4	17.8	18.2
Back EMF Constant +/- 10%	K _e	V/kRPM	12.1	13.2	19.6	22.2	24.1	24.6
Torque Constant +/- 10%	K_t	oz-in/Amp	16.4	17.9 12.6	13.8	15.7	17.0	17.4
Torque Constant 47- 1076		N-cm/Amp	11.6	2.2	2.6	3.1	3.6	3.8
Viscous Damping Constant	K_d	oz-in/kRPM	1.9	1.6	1.8	2.2	2.5	2.7
		N-cm/kRPM	1.3	<.045	<.045	<.045	<.045	<.045
Armature Inductance	L	μH	<.045	-0.093	-0.093	-0.093	-0.093	093
Temperature Coeff. Of Ke	C	%/°C Rise	-0.093	-0.093	-0.093	-0.073		
Mechanical Specifications				0.010	0.019	0.019	0.019	0.019
Moment of Inertia	$J_{\mathbf{m}}$	oz-in-sec2	0.019	0.019	1.342	1.342	1.342	1.342
Montent of metua		kg-cm ²	1.342	1.342		5.5	5.5	7
Static Friction Torque	T_{f}	oz-in	5.5	5.5	5.5 3.9	3.9	3.9	4.9
		N-cm	3.9	3.9	141	141	141	141
Number of Commutator Bars	Z		141	141	141	141	141	
Figures of Merit				- 72.0	01.1	91.8	99.7	101.8
Peak Acceleration	Ap	kRad/s2	67.6	73.8	81.1 4.24	3.32	2.82	2.69
Mechanical Time Constant	Tm	ms	6.09	5.12		0.07	0.07	0.07
Electrical Time Constant	Te	ms	0.07	0.07	7.98	9.9	11.35	10.94
Continuous Power Rate	P _c	kW/sec	5.71	6.72	1.98	7.7	11.55	10.2 1
Thermal Specifications						1.05	1.25	1.25
Thermal Resistance at Rated Speed	RAAR	°C/Watt	1.25	1.25	1.25	1.25	1.23	1.23
Thermal Resistance at Stall	RAAS	°C/Watt	1.9	1.9	1.9	1.9	1.9	1.7
Forced Air Thermal Resistance:						0.02	0.23	0.23
- w/ 2.0 lbs/min Forced Air	RAA3	°C/Watt	0.23	0.23	0.23	0.23	0.23	0.23

- 1) All values are based upon a 150°C armature temperature limit and with the motor mounted on a 8" x 16" x 3/8" aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max. armature temp. of 150°C is not exceeded.
- Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/Cu. Ft.)
- Terminal Resistance is measured at 4.0 Amps. Rt varies as a function of applied current
- Unless otherwise noted, all specifications above apply at 25°C.
- 5) Peak torque and current is calculated based on max. pulse duration of 50 millisecond and a 1% duty cycle

PERFORMANCE DATA

U12D-A

U12D-B

U12D-C

U12D-D

U12D-E

U12D-F

PERFORMANCE DATA

Platinum U12D Series Pancake Servomotors Motor Torque Frame Size U12DLR-A to U12DLR-F

 Motor Diameter
 D
 5.5/ 139.7
 Inches/mm

 Motor Length
 LG
 2.1/ 53.3
 Inches/mm

 Weight
 W
 6.8/ 3.1
 Lbs/kg

Performance Specifications	The fearning Constitute		T T **	THART R			mes—Paraliel		THADE D. Y.
Peat Torque	Performance Specifications	Symbol							
Rated Speed	Peak Torque	$T_{\mathbf{p}}$							
Rated Continuous Torque @25°C T25 N-cm 81.2 84.7 91.8 102.4 113.0 116.5	Pated Speed	_							
Nated Continuous Torque @40°C T40									
Rated Continuous Torque @40°C	Rated Continuous Torque @25°C	T ₂₅							
Rated Continuous Iorque (#4PC)				01.2	04.7	71.0	102.4	113.0	110.5
Rated Permission Permissi	Rated Continuous Torque @40°C	T40		00	0.0	0.0	0.0	0.0	0.0
Maximum Recommended Speed Nmax RPM 6000	Rated Power Output	P							
Continuous Stall Torque T _s Oz-in 105 115 125 140 160 165									
Continuous Stail Torque				105	115	125	140	160	165
Cogging Torque	Continuous Stall Torque	T_{s}							
Rectrical Specifications Rated Terminal Voltage E Volts 22 23 25 28 31 31	Continue Transco			0.0	0.0	0.0	0.0	0.0	0.0
Rated Continuous Current	Cogging Torque	1 _c	N-cm	0.0	0.0	0.0	0.0	0.0	0.0
Rated Continuous Current	Electrical Specifications			•					
Rated Continuous Current	Rated Terminal Voltage	Е	Volts	22	23	25	28	31	31
Peak Current Ip Continuous Stall Current Is Amps 165									
Vinding Specifications	Peak Current	In				165		165	165
Terminal Resistance +/- 10% R _t Ohms 0.29	Continuous Stall Current								
Terminal Resistance +/- 10% R _t Ohms 0.29		· · · · · · · · · · · · · · · · · · ·	•						
Armature Resistance +/- 10% Ra									
Back EMF Constant +/- 10% K _e V/kRPM 6.1 6.6 7.2 8.2 9.3 9.5	Terminal Resistance +/- 10%		Ohms	0.29	0.29	0.29	0.29	0.29	0.29
Torque Constant +/- 10% Kt Oz-in/Amp S.2 S.9 9.7 11.1 12.6 12.8	Armature Resistance +/- 10%		Ohms	0.15	0.15	0.15	0.15	0.15	0.15
N-cm/Amp 5.8 6.3 6.9 7.8 8.9 9.1	Back EMF Constant +/- 10%	Ke	V/kRPM				8.2		
N-cm/Amp 5.8 6.3 6.9 7.8 8.9 9.1	Torque Constant +/- 10%	к.							
N-cm/kRPM 1.4 1.6 1.8 2.3 2.8 2.9	Torque Constant 17- 1076	124							
N-cm/RPM 1.4 1.6 1.8 2.3 2.8 2.9	Viscous Damping Constant	Ka							
Mechanical Specifications	1 0								
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Temperature Coeff. of Ke	C	%/°C Rise	093	093	093	093	093	093
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mechanical Specifications								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Moment of Inertia	I							
N-cm 3.9									
Number of Commutator Bars Z 141 141 141 141 141 141 141 141 141 1	Static Friction Torque	T_{f}							
Figures of Merit Peak Acceleration Ap kRad/s² 67.2 72.7 79.4 90.4 102.6 104.8 Mechanical Time Constant Tm ms 5.89 5.03 4.23 3.26 2.54 2.43 Electrical Time Constant Te ms 0.27 0.	· · · · · · · · · · · · · · · · · · ·		N-cm						
Peak Acceleration Ap kRad/s² 67.2 72.7 79.4 90.4 102.6 104.8 Mechanical Time Constant Tm ms 5.89 5.03 4.23 3.26 2.54 2.43 Electrical Time Constant Te ms 0.27 0	Number of Commutator Bars	Z		141	141	141	141	141	141
Mechanical Time Constant Tm ms 5.89 5.03 4.23 3.26 2.54 2.43 Electrical Time Constant Te ms 0.27									
Electrical Time Constant Te ms 0.27 0.25 9.71 10.03 Thermal Resistance at Rated Speed RAAR °C/Watt 1.25 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Continuous Power Rate Pc kW/sec 4.69 5.43 6.35 7.95 9.71 10.03 Thermal Specifications Thermal Resistance at Rated Speed RAAR °C/Watt 1.25 1.25 1.25 1.25 1.25 1.25 1.9									
Thermal Specifications Thermal Resistance at Rated Speed RAAR °C/Watt 1.25 1.25 1.25 1.25 1.25 1.25 1.25 Thermal Resistance at Stall RAAS °C/Watt 1.9 1.9 1.9 1.9 1.9 1.9 Forced Air Thermal Resistance:									
Thermal Resistance at Rated Speed RAAR °C/Watt 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	Continuous Power Rate	Pc	kW/sec	4.69	5.43	6.35	7.95	9.71	10.03
Thermal Resistance at Stall RAAS °C/Watt 1.9 1.9 1.9 1.9 1.9 1.9 1.9 Forced Air Thermal Resistance:	Thermal Specifications								
Forced Air Thermal Resistance:						1.25			
		RAAS	°C/Watt	1.9	1.9	1.9	1.9	1.9	1.9
- w/ 2.0 lbs/min Forced Air RAA3 °C/Watt 023 0.23 0.23 0.23 0.23 0.23									
	- w/ 2.0 lbs/min Forced Air	RAA3	°C/Watt	023	0.23	0.23	0.23	0.23	0.23

- 1) All values are based upon a 150°C armature temperature limit and with the motor mounted on a 8" x 16" x 3/8" aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max. armature temp. of 150°C is not exceeded.
- 2) Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/Cu. Ft.)
- 3) Terminal Resistance is measured at 4.0 Amps. Rt varies as a function of applied current
- 4) Unless otherwise noted, all specifications above apply at 25°C.
- 5) Peak torque and current is calculated based on max. pulse duration of 50 millisecond and a 1% duty cycle.

PERFORMANCE DATA

U12DLR-A

U12DLR-B

U12DLR-C

U12DLR-D

U12DLR-E

U12DLR-F

PERFORMANCE DATA

Platinum U12D Series Pancake Servomotors With Integral Tachometer Motor Torque Frame Size U12DT-A to U12DT-F

Motor DiameterD5.5/139.7Inches/mmMotor LengthLG2.1/53.3Inches/mmWeightW6.8/3.1Lbs/kg

				Stand	ard Torque F	rames—Series	Windings	
Performance Specifications	Symbol	Units	U12DT-A	U12DT-B	U12DT-C	U12DT-DT	U12DT-E	U12DT-F
Pools Torque	T	oz-in	1178	1307	1435	1648	1829	1936
Peak Torque	T_p	N-cm	831.9	922.9	1013.3	1163.7	1291.6	1367.1
Rated Speed	N	RPM	3000	3000	3000	3000	3000	3000
Rated Continuous Torque @25°C	T ₂₅	oz-in	115	125	135	155	165	175
Kaled Continuous Torque @ 25 C	125	N-cm	81.2	88.3	95.3	109.5	116.5	123.6
Rated Continuous Torque @40°C	T40	oz-in	104.65	113.75	122.85	141.05	150.15	159.25
		N-cm	73.9	80.3	86.8	99.6	106.0	112.5
Rated Power Output	P	Watts	250	276	301	341	373	390
Maximum Recommended Speed	Nmax	RPM	6000	6000	6000	6000	6000	6000
Continuous Stall Torque	T_s	oz-in	105	117	129	149	166	176
		N-cm	74.1	82.6	91.1	105.2	117.2	124.3
Cogging Torque	Tc	oz-in	0.0	0.0	0.0	0.0	0.0	0.0
Electrical Specifications								
Rated Terminal Voltage	E	Volts	40	43	47	52	57	60
Rated Continuous Current	I	Amps	8.65	8.59	8.52	8.38	8,25	8.16
Peak Current	I _p		84	84	84	84	84	84
Continuous Stall Current	I _s	Amps Amps	7.9	7.9	7.9	7.9	7.9	7.9
Continuous Stan Current	15	Allips	1.9	1.9	1.9	1.9	1.9	7.9
Winding Specifications								
Terminal Resistance +/- 10%	Rt	Ohms	0.75	0.75	0.75	0.75	0.75	0.75
Armature Resistance +/- 10%	Ra	Ohms	0.61	0.61	0.61	0.61	0.61	0.61
Back EMF Constant +/- 10%	Ke	V/kRPM	11.1	12.3	13.5	15.5	17.2	18.2
T		oz-in/Amp	15.0	16.6	18.3	21.0	23.3	24.6
Torque Constant +/- 10%	\mathbf{K}_{t}	N-cm/Amp	10.6	11.7	12.9	14.8	16.4	17.4
W. D. C.		oz-in/kRPM	1.7	2	2.3	2.9	3.4	3.8
Viscous Damping Constant	K_d	N-cm/kRPM	1.2	1.4	1.6	2.0	2.4	2.7
Armature Inductance	L	μН	< 0.045	<0.045	< 0.045	< 0.045	<0.045	< 0.045
Temperature Coeff. of Ke	С	%°/C Rise	-0.093	-0.093	-0.093	-0.093	-0.093	-0.093
								•
Mechanical Specifications		·····						
Moment of Inertia	$J_{\mathbf{m}}$	oz-in-sec2	0.026	0.026	0.026	0.026	0.026	0.026
	<u> </u>	kg-cm ²	1.836	1.836	1.836	1.836	1.836	1.836
Static Friction Torque	T_{f}	oz-in-sec2	6.0	6.0	6.0	6.0	6.0	6.0
<u> </u>		N-cm	4.2	4.2	4.2	4.2	4.2	4.2
Number of Commutator Bars	Z	······································	141	141	141	141	141	141
Figures of Merit								
Peak Acceleration	Ap	Krad/s2	62	68.8	75.5	86.7	96.3	101.9
Mechanical Time Constant	T _m	ms	7.23	5.89	4.89	3.71	3.02	2.69
Electrical Time Constant	Te	ms	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
Continuous Power Rate	P _c	kW/sec	4.72	5.76	6.86	8.8	10.5	11.52
		11117000			0.00		10.0	11.52
Thermal Specifications								
Thermal Resistance at Rated Speed	RAAR	°C/Watt	1.25	1.27	1.27	1.27	1.27	1.27
Thermal Resistance at Stall	RAAS	°C/Watt	1.9	1.9	1.9	1.9	1.9	1.9
Forced Air Thermal Resistance:							 .	
- w/ 2.0 lbs/min Forced Air	RAA3	°C/Watt	0.23	0.23	0.23	0.23	0.23	0.23
Tachometer Specifications								
Output Voltage	V	Volts/kRPM	5.40	6.00	6.50	7.50	8.30	8.80
Max Ripple peak to peak (@1000RPM)	Vrh	%	3.0	3.0	3.0	3.0	3.0	3.0
Linearity of Output Voltage (@3600RPN	M) LIN	%	0.11	0.11	0.11	0.11	0.11	0.11

- 1) All values are based upon a 150°C armature temperature limit and with the motor mounted on a 8" x 16" x 3/8" aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max. armature temp. of 150°C is not exceeded.
- 2) Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/Cu. Ft.)
- 3) Terminal Resistance is measured at 4.0 Amps. Rt varies as a function of applied current
- 4) Unless otherwise noted, all specifications above apply at 25°C.
- 5) Peak torque and current is calculated based on max. pulse duration of 50 milliseconds and a 1% duty cycle.

PERFORMANCE DATA

U12DT-A

U12DT-B

U12DT-C

U12DT-D

U12DT-E

U12DT-F

PERFORMANCE DATA

Platinum U12D Series Pancake Servomotors With Integral Tachometer Motor Torque Frame Size U12DLRT-A to U12DLRT-F

			Windings					
Performance Specifications	Symbol	Units	U12DLRT-A	U12DLRT-E	U12DLRT-C	U12DLRT-D	U12DLRT-E	U12DLRT-F
Peak Torque	$T_{\mathbf{p}}$	oz-in	1158	1285	1412	1644	1814	1917
		N-cm	817.7	907.4	997.1	1160.9	1281.0	1353.7
Rated Speed	N	RPM	3000	3000	3000	3000	3000	3000
Rated Continuous Torque @25°C	T ₂₅	oz-in	105	115	125	140	150	165
		N-cm	74.1 95.55	81.2	88.3	98.9	105.9	116.5
Rated Continuous Torque @40°C	T40	oz-in N-cm	95.55	104.65 73.9	113.75 80.3	127.4 90.0	136.5 96.4	150.15 106.0
Rated Power Output	P	Watts	230	254	277	317	344	357
Maximum Recommended Speed	Nmax	RPM	6000	6000	6000	6000	6000	6000
		oz-in	96	107	119	139	154	162
Continuous Stall Torque	T_s	N-cm	67.8	75.6	84.0	98.2	108.7	114.4
Cogging Torque	Tc	oz-in	0.0	0.0	0.0	0.0	0.0	0.0
Electrical Specifications								
Rated Terminal Voltage	E	Volts	20	22	23	26	28	30
Rated Continuous Current	I	Amps	16.16	16.03	15.88	15.58	15.32	15.05
Peak Current	Ip	Amps	166	166	166	166	166	166
Continuous Stall Current	Is	Amps	14.6	14.6	14.6	14.6	14.6	14.6
Winding Specifications								
Terminal Resistance +/- 10%	Rt	Ohms	0.29	0.29	0.29	0.29	0.29	0.29
Armature Resistance +/- 10%	Ra	Ohms	0.15	0.15	0.15	0.29	0.29	0.29
Back EMF Constant +/- 10%	Ke	V/kRPM	5.5	6.1	6.7	7.8	8.6	9.1
		oz-in/Amp	7.4	8.2	9.1	10.5	11.6	12.3
Torque Constant +/- 10%	Kt	N-cm/Amp	5.3	5.8	6.4	7.4	8.2	8.7
Viscous Damping Constant	17.	oz-in/kRPM	1.7	2	2.3	2.9	3.5	3.8
	Kd	N-cm/kRPM	1.2	1.4	1.6	2.0	2.5	2.7
Armature Inductance	L	μН	< 0.025	< 0.025	< 0.025	<0.025	< 0.025	< 0.025
Temperature Coeff. of Ke	С	%°/C Rise	-0.093	-0.093	-0.093	-0.093	-0.093	-0.093
Mechanical Specifications								,
<u> </u>	- · .	oz-in-sec2	0.13	0.13	0.13	0.13	0.13	0.13
Moment of Inertia	$J_{\mathbf{m}}$	kg-cm ²	0.917	0.917	0.917	0.917	0.917	0.917
Static Friction Torque	T_{f}	oz-in-sec2	6	6	6	6	6	6
<u> </u>	_	N-cm	4.2	4.2	4.2	4.2	4.2	4.2
Number of Commutator Bars	Z		141	141	141	141	141	141
Figures of Merit								
Peak Acceleration	Ap	KRad/s2	60.9	67.6	74.3	86.5	95.4	100.9
Mechanical Time Constant	T _m	ms	7.25	5.89	4.89	3.61	2.97	2.65
Electrical Time Constant	Te	ms	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Continuous Power Rate	Pc	kW/sec	3.99	4.87	5.8	7.6	8.95	9.66
Thermal Specifications								
Thermal Resistance at Rated Speed	RAAR	°C/Watt	1.27	1.27	1.27	1.27	1.07	1 27
Thermal Resistance at Stall	RAAS	°C/Watt	1.27	1.27	1.27	1.27	1.27 1.9	1.27
Forced Air Thermal Resistance:		Civiali			1.9	1.9	1.9	1.9
- w/ 2.0 lbs/min Forced Air	RAA3	°C/Watt	0.23	0.23	0.23	0.23	0.23	0.23
Tachometer Specifications					-		· · ·	
Output Voltage	V	Volts/kRPM	5.40	6.00	6.50	7.50	0.20	0.00
Max Ripple peak to peak (@1000RPM)	Vrh	WOILS/KRPIVI	3.0	6.00 3.0	3.0	3.0	8.30 3.0	3.0
Linearity of Output Voltage@3600RPM)	LIN	- 70 %	0.11	0.11	0.11	0.11	0.11	0.11
on partitional services and the services are services and the services are services and the services and the services are services are services and the services are services and the serv	- Day		0.11	0.11	0.11	0.11	0.11	0.11

- 1) All values are based upon a 150°C armature temperature limit and with the motor mounted on a 8" x 16" x 3/8" aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max. armature temp. of 150°C is not exceeded.
- 2) Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/Cu. Ft.)
- 3) Terminal Resistance is measured at 4.0 Amps. Rt varies as a function of applied current
- 4) Unless otherwise noted, all specifications above apply at 25°C.
- 5) Peak torque and current is calculated based on max. pulse duration of 50 millisecond and a 1% duty cycle.

PERFORMANCE DATA

U12DLRT-A

U12DLRT-B

U12DLRT-C

U12DLRT-D

U12DLRT-E

U12DLRT-F

DIMENSIONS

U9D-A to U9D-F

Note:

1) True metric designs available.

Dimensions in inches (mm)

U12D-A to U12D-F

Note

True metric designs available.

Dimensions in inches (mm)

DIMENSIONS

Platinum Series U9D, U12D

Connection options (Motor only)

*For other connection options consult your regional Kollmorgen Sales Office.

INTRODUCTION

- Options:
- -- Integral tachometers
- -- External tachometers
- -- Optical encoders
- -- Fail-safe brakes

Compatible Products

- KXA Plus Amplifier
- EM19 Linear Amplifier

- 39 to 402 oz-in (27-284)N-cm continuous torque
- Motor Lengths Less Than 2"
- 4.37 to 7.37" OD Round Frame
- Optional Tachometer and Encoder Feedback

U-Series ServoDisc motors employ the unique Kollmorgen flat disc armature. The ironless, low inertia armature delivers high acceleration and zero cogging in an exceptionally compact package.

- Extremely good speed control with zero cogging and low RFI
- Long brush life
- Flat ServoDisc motors are ideal for many applications:
- -- Save space and weight in applications requiring a low profile motor
- -- Large torsional stiffness for precision control of speed and acceleration

PERFORMANCE DATA

Performance Specifications	Symbol	Units	U9M4LR	U9M4	U9M4A	U9M4H	U9M4HA	U9M4HA-2
Peak Torque	T_p	oz-in	447	469	360	727	559	690
•	-	N-cm	315	331	254	513	395	488
Rated Speed	N	RPM	3000	3000	3000	3000	3000	3000
Rated Continous Torque @ 25°C	T ₂₅	oz-in	45	51	39	81	62	80
Rated Continious Torque @ 25 C	1 25	N-cm	32	36	27	57	44	57
Rated Continuous Torque @ 40°C	T ₄₀	oz-in	41	46	35	72	56	74
•		N-cm	29	32	25	51	40	52
Rated Power Output	P	Watts	101	113	86	179	138	178
Maximum Recommended Speed	Nmax	RPM	6000	6000	6000	6000	6000	6000
Continous Stall Torque	T_s	oz-in	35	41	31	65	50	63
-		N-cm	25	29	22	46	35	45
Cogging Torque	T _c	oz-in	0	0	0	0	0	0
Electrical Specifications								
Rated Terminal Voltage	Е	Volts	12.6	24.1	26.8	31.9	34.7	40.0
Rated Continuous Current	I	Amps	15.6	8.7	6.8	8.6	6.8	6.8
Peak Current	I_p	Amps	137	72	56	72	56	56
Continuous Stall Current	I_s	Amps	12.0	6.8	5.3	6.8	5.3	5.3
Winding Specifications								
Terminal Resistance ± 10%	R _t	Ohms	0.365	0.850	1.310	0.850	1.310	1.310
Armature Resistance ± 10%	Ra	Ohms	0.175	0.660	1.120	0.660	1.120	1.120
Back EMF Constant ± 10%	Ke	V/KRPM	2.43	4.85	4.85	7.50	7.50	9.24
T. C. 100/	17	oz-in/Amp	3.29	6.56	6.56	10.15	10.15	12.50
Torque Constant ± 10%	\mathbf{K}_{t}	N-cm/Amp	2.32	4.63	4.63	7.17	7.17	8.83
	***	oz-in/KRPM	0.8	0.8	0.7	1.1	0.9	1.0
Viscous Damping Constant	K_d	N-cm/KRPM	0.5	0.5	0.5	0.8	0.6	0.7
Armature Inductance	L	μH	<25	<100	<100	<100	<100	<100
Temperature Coefficient of KE	С	%/°C Rise	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02
Number of Cummutator Bars	Z		117	117	117	117	117	117
Mechanical Specifications								
•	-	oz-in-sec ²	0.0056	0.0056	0.0028	0.0058	0.0029	0.0027
Moment of Inertia	$J_{\rm m}$	kg-m ²	0.40	0.40	0.20	0.41	0.20	0.19
		oz-in	4.0	4.0	4.0	4.0	4.0	3.0
Static Friction Torque	T_{f}	N-cm	2.8	2.8	2.8	2.8	2.8	2.1
		lbs	4.5	4.5	4.5	5.3	5.3	5.8
Weight	W	kg	2.0	2.0	2.0	2.4	2.4	2.6
		in	4.37	4.37	4.37	4.37	4.37	4.37
Diameter	D	mm	111.0	111.0	111.0	111.0	111.0	111.0
		in	1.84	1.84	1.84	2.39	2.39	2.39
Length	LG	mm	46.7	46.7	46.7	60.7	60.7	60.7
							0017	
Figure of Merit								
Peak Acceleration	Ap	kRad/s²	79.7	83.7	128.6	125.3	192.7	255.7
Mechanical Time Constant	T _m	ms	12.63	11.97	10.08	5.21	4.41	2.72
Electrical Time Constant	T _e	ms	<0.14	<0.15	<0.09	<0.15	<0.09	<0.09
Continuous Power Rate	P _c	kW/sec	2.6	3.3	3.8	7.9	9.4	16.8
Continuous I owel Rate	1 C	K W/SCC	2.0	3.3	3.0	1.7	7.7	10.0
Thermal Specifications								
Thermal Resistance at Rated Speed	RAAR	°C/Watt	1.30	1.30	1.30	1.30	1.30	1.30
Thermal Resistance at Stall	RAAS	°C/Watt	2.40	2.40	2.40	2.40	2.40	2.40
Forced Air Thermal Resistance:	KAAS	C/ Wall	2.40	2.40	2.40	2.40	2.40	2.40
with 2.0 lbs/min Forced Air	D A A 2	0C/Watt	0.20	0.28	0.28	0.22	0.32	0.32
with 2.0 ids/iiiil Forced Air	RAA3	°C/Watt	0.28	0.28	0.28	0.32	0.32	0.32

¹⁾ All values are based upon a 150°C armature temperature limit and with the motor mounted on an 8" x 16" x 3/8" aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the mzx armature temperature of 150°C is not exceeded.

²⁾ Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/ft³).

³⁾ Terminal resistance is measured at 4.0 amps. RT varies as a function of applied current.

PERFORMANCE DATA

Performance Specifications	Symbol	Units	U12M4LR	U12M4	U12M4A	U12M4H	U12M4HA	U16M4	U16M4H
Peak Torque	T_p	oz-in	1224	1316	1014	2076	1600	2981	5242
•		N-cm	864	929	716	1465	1130	2105	3702
Rated Speed	N	RPM	3000	3000	3000	3000	3000	3000	3000
Rated Continous Torque @ 25°C	T ₂₅	oz-in	112	128	100	179	148	322	402
	- 23	N-cm	79	91	71	126	104	227	284
Rated Continuous Torque @ 40°C	T_{40}	oz-in	102	114	90	158	133	287	341
		N-cm	72	81	64	112	94	203	241
Rated Power Output	P	Watts	249	284	223	396	329	704	890
Maximum Recommended Speed	Nmax	RPM	6000	6000	6000	6000	6000	6000	6000
Continous Stall Torque	T_s	oz-in	106	122	93	195	150	280	501
-		N-cm	75	86	66	137	106	194	354
Cogging Torque	T _c	oz-in	0	0	0	0	0	0	0
Electrical Specifications									
Rated Terminal Voltage	Е	Volts	22	43.4	46.0	62.7	65.6	82.7	125.7
Rated Continuous Current	I	Amps	15.8	8.8	7.0	7.9	6.5	11.0	8.5
Peak Current	I _p	Amps	160	85	65	84	65	95	101
Continuous Stall Current	I _s	Amps	14.4	8.1	6.3	8.1	6.3	9.2	9.8
	-3			***		***			
Winding Specifications									
Terminal Resistance ± 10%	R _t	Ohms	0.305	0.750	1.170	0.750	1.170	0.880	0.880
Armature Resistance ± 10%	Ra	Ohms	0.165	0.610	1.030	0.610	1.030	0.740	0.740
Back EMF Constant ± 10%	Ke	V/KRPM	5.77	11.55	11.55	18.50	18.50	23.30	39.00
Torque Constant 100/	V	oz-in/Amp	7.81	15.63	15.63	25.03	25.03	31.53	52.77
Torque Constant ± 10%	K_{t}	N-cm/Amp	5.52	11.04	11.04	17.68	17.68	22.27	37.26
Vi Din Ctt	17	oz-in/KRPM	1.7	1.8	1.3	5.0	3.26	6.0	15.3
Viscous Damping Constant	K_d	N-cm/KRPM	1.2	1.3	0.9	3.5	2.3	4.3	10.8
Armature Inductance	L	μН	<25	<100	<100	<100	<100	<100	<85
Temperature Coefficient of KE	С	%/°C Rise	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02
Number of Cummutator Bars	Z		141	141	141	141	141	165	165
Mechanical Specifications				0.0100	0.0000	0.0010	0.0100	0.0010	
Moment of Inertia	$J_{\rm m}$	oz-in-sec ²	0.021	0.0190	0.0080	0.0210	0.0100	0.0840	0.0840
	- 111	kg-m ²	1.45	1.34	0.56	1.48	0.71	5.93	5.93
Static Friction Torque	$T_{\rm f}$	oz-in	5.5	5.5	5.5	5.5	5.5	10.5	10.5
	-1	N-cm	3.9	3.9	3.9	3.9	3.9	7.4	7.4
Weight	W	lbs	8.0	8.0	8.0	11.0	11.0	18.5	18.7
		kg	3.6	3.6	3.6	5.0	5.0	8.4	8.5
Diameter	D	in	5.50	5.50	5.50	5.50	5.50	7.37	7.37
		mm	139.7	139.7	139.7	139.7	139.7	187.2	187.2
Length	LG	in	2.10	2.10	2.10	2.78	2.78	2.55	2.99
		mm	53.3	53.3	53.3	70.6	70.6	64.8	75.9
Figure of Merit									
Peak Acceleration	A_p	kRad/s ²	59.4	69.2	126.7	98.9	160	35.5	62.4
Mechanical Time Constant	T _m	ms	7.85	6.68	4.75	2.88	2.31	8.81	3.15
Electrical Time Constant	T _e	ms	< 0.15	< 0.16	< 0.10	< 0.10	< 0.10	< 0.14	< 0.11
Continuous Power Rate	Pc	kW/sec	4.33	6.1	8.9	10.7	15.5	8.7	13.6
Thormal Chaoliffer 4 and									
Thermal Specifications	DAAD	0000	1.07	1.07	1.07	1.27	1.07	0.65	0.70
Thermal Resistance at Rated Speed Thermal Resistance at Stall	RAAR	°C/Watt	1.27	1.27	1.27	1.27	1.27	0.65	0.70
	RAAS	°C/Watt	1.90	1.90	1.90	1.90	1.90	1.25	1.10
Forced Air Thermal Resistance:	D 4 4 2	00000	0.22	0.22	0.22	0.22	0.22	0.10	0.10
with 2.0 lbs/min Forced Air	RAA3	°C/Watt	0.23	0.23	0.23	0.23	0.23	0.18	0.18

⁴⁾ Unless otherwise noted, all specifications above apply at 25°C.

⁵⁾ Peak torque and current is calculated based on max pulse duration of 50 millisecond and a 1% duty cycle.

⁶⁾ The operating current can be calculated as: I = (Shaft torque + TF + KD x N/1000) / KT. 7) The operating voltage can be calculated as: V = KE x (N/1000) + RT x I.

PERFORMANCE DATA

U9M4LR-STD

U9M4HA-STD

U9M4H-STD

U9M4HA-2 STD

U9M4-STD

U12M4LR-STD

- A. All curves are drawn for a fixed armature temperature of 150°C.
- B. The motor can be operated at any point on the graph below 4000 RPM. Higher speeds can be obtained for short periods of time. Contact a Kollmorgen Sales Office for more details.
- C. Determine voltage required for a desired combination of speed and torque by locating it on the appropriate 'Constant terminal-voltage curve.'
- D. Determine the required cooling by locating the desired operating point on the appropriate 'Constant cooling curve.'
- E. The operating current can be calculated as: I = (Shaft torque + TF + KD x N/1000) / KT.
- F. The operating voltage can be calculated as: $V = KE \times N/1000 + RT \times I$.

PERFORMANCE DATA

U12M4H-STD

U12M4A

U12M4-STD

U16M4H

U12M4HA-STD

U16M4

- A. All curves are drawn for a fixed armature temperature of 150°C.
- B. The motor can be operated at any point on the graph below 4000 RPM. Higher speeds can be obtained for short periods of time. Consult a Kollmorgen Sales Office for more details.
- C. Determine voltage required for a desired combination of speed and torque by locating it on the appropriate 'Constant terminal-voltage curve.'
- D. Determine the required cooling by locating the desired operating point on the appropriate 'Constant cooling curve.'
- E. The operating current can be calculated as: I = (Shaft torque + TF + KD x N/1000) / KT.
- F. The operating voltage can be calculated as: $V = KE \times N/1000 + RT \times I$.

DIMENSIONS

U9M4

Motors designed to English dimensions, note the metric equivalent.

Motor Types	"A" Tap	"B" Dia ± .005	C Dia + .0000 0005	D Dia + .000 0002	E Dia ± .01	F ± 1/32	G ± .01	H ± 1/32	J ± 1/32	K Dia Ref	L° ∢ ± 1/2°
U9M4LR	8-32	3.656 (92.86)	.4995 (12.68)	3.311 (84.09)	4.37 (110.99)	11/4 (31.75)	.06 (1.52)	127/32 (46.83)	13/16 (30.16)	1.660 (42.16)	261/2
U9M4	8-32	3.656 (92.86)	.4995 (12.68)	3.311 (84.09)	4.37 (110.99)	11/4 (31.75)	.06 (1.52)	127/32 (46.83)	13/16 (30.16)	1.660 (42.16)	261/2
U9M4A	8-32	3.656 (92.86)	.4995 (12.68)	3.311 (84.09)	4.37 (110.99)	11/4 (31.75)	.06 (1.52)	127/32 (46.83)	13/16 (30.16)	1.660 (42.16)	261/2
U9M4H	8-32	3.656 (92.86)	.4995 (12.68)	3.311 (84.09)	4.37 (110.99)	11/4 (31.75)	.06 (1.52)	213/32 (61.11)	13/16 (30.16)	1.660 (42.16)	261/2
U9M4HA	8-32	3.656 (92.86)	.4995 (12.68)	3.311 (84.09)	4.37 (110.99)	11/4 (31.75)	.06 (1.52)	213/32 (61.11)	13/16 (30.16)	1.660 (42.16)	261/2
U9M4HA-1	8-32	3.656 (92.86)	.3745 (9.51)	3.311 (84.09)	4.37 (110.99)	11/4 (31.75)	.06 (1.52)	225/64 (60.72)	13/16 (30.16)	1.660 (42.16)	261/2
U9M4HA-2	8-32	3.656 (92.86)	.3745 (9.51)	3.311 (84.09)	4.37 (110.99)	11/4 (31.75)	.06 (1.52)	225/64 (60.72)	13/16 (30.16)	1.660 (42.16)	261/2
U12M4LR	10-32	4.875 (123.82)	.4995 (12.68)	4.500 (114.3)	5.50 (139.7)	11/4 (31.75)	.06 (1.52)	27/64 (53.57)	13/16 (30.16)	2.220 (56.38)	26
U12M4	10-32	4.875 (123.82)	.4995 (12.68)	4.500 (114.3)	5.50 (139.7)	11/4 (31.75)	.06 (1.52)	27/64 (53.57)	13/16 (30.16)	2.220 (56.38)	26
U12M4A	10-32	4.875 (123.82)	.4995 (12.68)	4.500 (114.3)	5.50 (139.7)	11/4 (31.75)	.06 (1.52)	27/64 (53.57)	13/16 (30.16)	2.220 (56.38)	26
U12M4H	10-32	4.875 (123.82)	.4995 (12.68)	4.500 (114.3)	5.50 (139.7)	11/4 (31.75)	.06 (1.52)	225/32 (70.64)	13/16 (30.16)	2.220 (56.38)	26
U12M4HA	10-32	4.875 (123.82)	.4995 (12.68)	4.500 (114.3)	5.50 (139.7)	11/4 (31.75)	.06 (1.52)	225/32 (70.64)	13/16 (30.16)	2.220 (56.38)	26
U16M4	1/4-20	6.625 (168.27)	.7496 (19.03)	6.124 (155.54)	7.37 (187.19)	11/4 (31.75)	.09 (2.28)	29/16 (65.08)	15/32 (29.36)	2.830 (71.88)	24
U16M4H	1/4-20	6.625 (168.27)	.7496 (19.03)	6.124 (155.54)	7.37 (187.19)	11/4 (31.75)	.09 (2.28)	3.81 (76.96)	1.150 (29.21)	2.830 (71.88)	24

DIMENSIONS

MECHANICAL SPECIFICATIONS

- 1. Shaft Dia -A- runout not to exceed 0.001 in per in.
- 2. Pilot Dia B- concentric to A- within 0.003 in T.I.R.
- 3. Mounting surface -S- perpendicular to -A- within: 0.005" for U9M Series 0.007" for U12M Series 0.010" for U16M4.
- 4. Shaft end play 0.001" Max under a thrust in the direction shown of: 10 lbs for U9M and U12 Series 15 lbs for U16M4.
- 5. Max pure radial load, 1" from surface "S": 18 lbs for U9HA-1 and -2, 25 lbs for U9M and U12M, 60 lbs for U12H and HA and 85 lbs for U16M @ rated speed.
- 6. Max pure axial load is 8 lbs for U9HA-1 and -2, 11 lbs for U9M and U12M, 55 lbs for U12H and HA and 75 lbs for U16M.
- 7. Radial lead termination optional.
- 8. For U12M4H and U12M4HA, radial termination is standard.

PERFORMANCE DATA (with Integral Tachometer)

Performance Specifications	Symbol	Units	U9M4T	U9M4HT	U12M4T	U12M4HT	U16M4T	U16M4HT
Peak Torque	T _p	oz-in	434	665	1206	1846	2748	4811
	_	N-cm	306	470	852	1304	1941	3397
Rated Speed	N	RPM	3000	3000	3000	3000	3000	3000
Rated Continous Torque @ 25°C	T ₂₅	oz-in	46	72	115	158	288	393
		N-cm	32	51	81	111	203	278
Rated Continuous Torque @ 40°C	T ₄₀	oz-in	41	64	104	139	256	340
Detect Decree Octoor	P	N-cm	29 102	45 159	73 254	99	181 639	240 872
Rated Power Output		Watts				350		
Maximum Recommended Speed	Nmax	RPM oz-in	6000 37	6000 59	6000	6000 171	6000 257	6000 459
Continous Stall Torque	T_s	N-cm	26	42	78	121	181	324
Cogging Torque	T _c	oz-in	0	0	0	0	0	0
Electrical Specifications								
Rated Terminal Voltage	E	Volts	22.9	29.9	40.4	56.5	77.1	116.7
Rated Continuous Current	I	Amps	8.63	8.51	8.71	7.93	10.78	8.99
Peak Current	I_p	Amps	72	72	85	85	95	101
Continuous Stall Current	I _s	Amps	6.8	6.8	8.1	8.1	9.2	9.8
Winding Specifications			0.050	0.050	0.550	0.550	0.000	
Terminal Resistance ± 10%	R _t	Ohms	0.850	0.850	0.750	0.750	0.880	0.880
Armature Resistance ± 10%	Ra	Ohms	0.660	0.660	0.610	0.610	0.740	0.740
Back EMF Constant ± 10%	Ke	V/KRPM	4.50	6.87	10.60	16.20	21.50	35.80
Torque Constant ± 10%	K _t	oz-in/Amp	6.09	9.30	14.34	21.92	29.09	48.44 34.21
		N-cm/Amp	4.30	6.57 1.3	10.13	15.48	20.54	
Viscous Damping Constant	K _d	oz-in/KRPM N-cm/kRPM	0.8	0.9	1.4	4.1 2.9	6.5 4.6	9.2
Armature Inductance	L		<100	<100	<100	<100	<100	<u>9.2</u> <85
Temperature Coefficient of KE	C	μΗ %/°C Rise	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02
Number of Cummutator Bars	Z	%/ C KISE	117	117	141	141	165	165
Number of Cummutator Bars	L		117	117	141	141	103	103
Mechanical Specifications								
Moment of Inertia	т	oz-in-sec ²	0.0083	0.0083	0.0260	0.0270	0.1120	0.1120
Moment of mertia	J_{m}	kg-cm ²	0.59	0.59	1.84	1.91	7.91	7.91
Average Eristian Torque	т	oz-in	4.5	4.5	6.0	7.0	11.5	10.5
Average Friction Torque	T_{f}	N-cm	3.2	3.2	4.2	4.9	8.1	7.4
Weight	W	lbs	4.5	5.3	8.0	11.0	18.5	18.7
Weight	• • • • • • • • • • • • • • • • • • • •	kg	2.0	2.4	3.6	5.0	8.4	8.5
Diameter	D -	in	4.37	4.37	5.50	5.50	7.37	7.37
Diameter	D	mm	111.0	111.0	139.7	139.7	187.2	187.2
Length	LG	in	1.86	2.41	2.11	2.82	2.59	3.03
Length		mm	47.2	61.2	53.6	71.6	65.8	77.0
71								
Figure of Merit		1.D. 1/ 2		00.1	16.1	60.4	24.5	12.0
Peak Acceleration	Ap	kRad/s ²	52.3	80.1	46.4	68.4	24.5	43.0
Mechanical Time Constant	T _m	ms	20.52	8.86	10.84	4.82	13.77	4.98
Electrical Time Constant	Te	ms	<0.15	<0.15	<0.16	<0.16	<0.14	<0.11
Continuous Power Rate	Pc	kW/sec	1.8	4.4	3.6	6.5	5.2	9.7
Thermal Specifications								
Thermal Resistance at Rated Speed	RAAR	°C/Watt	1.30	1.30	1.27	1.27	0.65	0.70
Thermal Resistance at Stall	RAAS	°C/Watt	2.40	2.40	1.27	1.27	1.25	1.10
Forced Air Thermal Resistance:	KAAS	C/ Watt	2.40	2.40	1.90	1.90	1.23	1.10
with 2.0 lbs/min Forced Air	D A A 2	OC/Wett	0.3	0.32	0.25	0.27	0.19	0.18
with 2.0 los/iiiin Forced Air	RAA3	°C/Watt	0.3	0.32	0.25	0.27	0.19	0.18
Tachometer Specifications								
Output Voltage	V	Volts/KRPM	2.25	3.43	5.30	8.10	10.50	17.90
Maximum Ripple Peak to Peak	V _{rh}	%	3.0	3.0	3.0	3.0	3.0	3.0
Linearity of Output Voltage	LIN	%	0.06	0.06	0.11	0.11	0.11	0.11
	2111	/0	0.00	3.00	U.11	U.11	U.11	

- All values are based upon a 150°C armature temperature limit and with the motor mounted on an 8" x 16" x 3/8" aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max armature temperature of 150°C is not exceeded.
- 2) Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/ft³).
- 3) Terminal resistance is measured at 4.0 amps. RT varies as a function of applied current.
- 4) Unless otherwise noted, all specifications above apply at 25°C.

- Peak torque and current is calculated based on max pulse duration of 50 milliseconds and a 1% duty cycle.
- 6) The operating current can be calculated as: $I = (Shaft torque + TF + KD \times N/1000) / KT$.
- 7) The operating voltage can be calculated as: $V = KE \times (N/1000) + RT \times I$.
- 8) Tachometer ripple measured with a resistive load of 1 kohm and a single low pass filter with 3db cut off at 500 Hz.
- 9) Tachometer minimum load resistance of 500 ohms.

PERFORMANCE DATA (with Integral Tachometer)

U9M4T

U12M4T

U9M4HT

U12M4HT

U16M4HT

U16M4T

- A. All curves are drawn for a fixed armature temperature of 150°C.
- B. The motor can be operated at any point on the graph below 4000 RPM. Higher speeds can be obtained for short periods of time. Consult a Kollmorgen Sales Office for more details.
- C. Determine voltage required for a desired combination of speed and torque by locating it on the appropriate 'Constant terminal-voltage curve.'
- D. Determine the required cooling by locating the desired operating point on the appropriate 'Constant cooling curve.'
- E. The operating current can be calculated as: I = (Shaft torque + TF + KD x N/1000) / KT.
- F. The operating voltage can be calculated as: $V = KE \times N/1000 + RT \times I$.

DIMENSIONS (with Integral Tachometer)

U9M4T

Motors designed to English dimensions, note the metric equivalent.

Motor Types	"A" Tap	"B" Dia ± .005	C Dia + .0000 0005	D Dia + .000 002	E Dia ± .01	F ± 1/32	G ± .01	H ± 1/32	J ± 1/32	K Dia Ref	L° < ± 1/2°
U9M4T	8-32	3.656 (92.86)	.4995 (12.68)	3.311 (84.09)	4.37 (110.99)	1.220 (30.98)	.06 (1.52)	155/64 (47.22)	1.200 (30.48)	1.660 (42.16)	261/2
U9M44HT	8-32	3.656 (92.86)	.4995 (12.68)	3.311 (84.09)	4.37 (110.99)	1/	.06 (1.52)	213/32 (61.11)	13/16 (46.03)	1.660 (42.16)	261/2
U12M4T	10-32	4.875 (123.82)	.4995 (12.68)	4.500 (114.3)	5.50 (139.7)	1.230 (31.24)	.06 (1.52)	27/64 (56.35)	1.195 (30.35)	2.220 (56.38)	26
U12M4HT	10-32	4.875 (123.82)	.4995 (12.68)	4.500 (114.3)	5.50 (139.7)	17/32 (30.95)	.06 (1.52)	213/16 (71.43)	113/16 (46.03)	2.220 (56.38)	26
U16M4T	1/-20	6.625 (168.27)	.7496 (19.03)	6.124 (155.54)	7.37 (187.19)	1.230 (31.24)	.09 (2.28)	2.98 (78.74)	1.150 (29.21)	2.830 (71.88)	24
U16M4HT	1/-20	6.625 (168.27)	.7496 (19.03)	6.124 (155.54)	7.37 (187.19)	1.230 (31.24)	.09 (2.28)	2.98 (78.74)	1.170 (29.21)	2.830 (71.88)	24

- 1. Shaft Dia -A- runout not to exceed 0.001 in per in.
- 2. Pilot Dia _B_ concentric to _A_ within 0.003 in T.I.R.
- 3. Mounting surface S—perpendicular to A—within: 0.005" for U9M Series 0.007" for U12M Series 0.010" for U16M4.
- 4. Shaft end play 0.001" Max under a thrust in the direction shown of: 10 lbs for U9M4 and U12M4 Series, and 15 lbs for U16M4.
- Max pure radial load, 1" from surface "S": 25 lbs for U9 and U12M4T Series, 60 lbs for U12HT and 85 lbs for U16M4T at rated speed.
- 6. Max pure axial load is 11 lbs for U9 and U12MT, 55 lbs for U12HT and 75 lbs for U16MT.
- 7. Radial lead termination optional.
- 8. For U12M4HT, radial termination is standard. Screw terminals are optional.

SYSTEM PERFORMANCE (with separate Integral Tachometer)

Add-on tachometers are available mounted directly to the motor shaft to provide velocity without magnetic coupling between motor and tachometer.

Type U6T
High Precision Analog Tachometer
(Shown in typical mounting to U9M4 motor)

Type 9FA4T
Low Cost Analog Tachometer
(Shown in typical mounting to U9M4 motor)

Dimensions in inches

Characteristics (at 25°C)	Units	Type U6T	Type 9FA4T
Output Voltage	Volts/kRPM	1.00	2.50
Ripple Voltage Max (P-P) (1)			
at 1000 RPM	%	1.5	5.0
at 500 RPM	%	1.5	5.0
at 100 RPM	%	1.5	5.0
Linearity of Output Voltage			
(rated at 3600 RPM)	%	.05	.06
Bi-directional Tol			
(diff. in output Volts/kRPM)	%	1.5	3.0
Output Impedance (resistive)	ohms	2.61	1.18
Temperature Coefficient			
Output Voltage	%/°C Rise	02	19
Load Resistance			
(recommended Min)	ohms	2610	1180
Tachometer Inertia	oz-in-sec ²	.00025	.0024
No of Commutator Bars		97	117

Measured with a resistive load of 1 kohm and a single-pole low pass filter with 3db cut off at 500 Hz. Calculated ripple frequency = $ZT \times N/60$. For encoder specifications (M23 only), please reference feedback section.

PLATINUM REFERENCE GUIDE

Kollmorgen also offers the PLATINUMTM Series motors, a new generation of ServoDisc motors. These motors offer increased life, reliability and performance, and may be used as a direct replacement for the U-Series motors. This reference guide shows suggested equivalent PLATINUM and U-Series, S-Series, and N-Series motors currently offered by Kollmorgen.

PLATINUM Series U9D

Motors

	E DI ATINIUM	Sta	ndard Se	ries Windi	ing	Standard Parallel Winding				
Motor Model Number	Equivalent PLATINUM Model Number	Torque (oz-in)	Ke (V/krpm)	V (Volts) @3KRPM	I (Amps) @3KRPM	Torque (oz-in)	Ke (V/krpm)	V (Volts) @3KRPM	I (Amps) @3KRPM	
U9M4	U9D-A	50	5.0	23.9	8.7	45	2.5	12.5	15.5	
	U9D-B	60	6.0	26.7	8.6	55	3.0	13.9	15.5	
	U9D-C	65	6.4	27.8	8.6	60	3.2	14.5	15.5	
U9M4H	U9D-D	80	8.0	32.2	8.6	75	4.0	16.7	15.4	
S9M4H	U9D-E	90	8.8	34.6	8.5	85	4.4	17.8	15.3	
N9M4	U9D-F	75	7.6	31.2	8.6	70	3.8	16.1	15.4	

Motors with Integral Tachometers

	Eminalant DI ATINIIN	Sta	ndard Se	ries Windi	ing	Standard Parallel Winding				
Motor Model Number	Equivalent PLATINUM Model Number	Torque (oz-in)	Ke (V/krpm)	V (Volts) @3KRPM	I (Amps) @3KRPM	Torque (oz-in)	Ke (V/krpm)	V (Volts) @3KRPM	I (Amps) @3KRPM	
U9M4T	U9DT-A	45	4.6	22.7	8.6	40	2.3	11.9	15.4	
	U9DT-B	55	5.6	25.3	8.6	50	2.8	13.2	15.3	
	U9DT-C	60	5.8	25.9	8.5	55	2.9	13.5	15.3	
U9M4HT	U9DT-D	75	7.4	30.5	8.5	70	3.7	15.8	15.2	
S9M4HT	U9DT-E	85	8.4	33.4	8.4	80	4.2	17.3	15.1	
N9M4T	U9DT-F	70	7.2	30.0	8.5	65	3.6	15.5	15.2	

PLATINUM Series U12D

Motors

	Eminalant DI ATINIIM	Sta	ındard Se	ries Windi	ing	Standard Parallel Winding			
Motor Model Number	Equivalent PLATINUM	Torque	Ke	V (Volts)	I (Amps)	Torque	Ke	V (Volts)	I (Amps)
	Model Number	(oz-in)	(V/krpm)	@3KRPM	@3KRPM	(oz-in)	(V/krpm)	@3KRPM	@3KRPM
U12M4	U12D-A	130	12.1	43.3	8.8	115	6.1	22.2	15.8
	U12D-B	140	13.2	46.0	8.7	125	6.6	23.7	15.5
N12M4	U12D-C	150	14.5	50.0	8.6	135	7.2	25.5	15.5
	U12D-D	165	16.4	55.2	8.5	150	8.2	28.2	15.3
JR12	U12D-E	180	18.5	61.1	8.2	160	9.3	31.0	14.7
U12M4H	U12D-F	185	19.1	62.6	8.1	170	9.5	31.8	14.6

Motors with Integral Tachometers

	Essinalant DI ATINI IM	Sta	ndard Se	ries Windi	ing	Standard Parallel Winding			
Motor Model Number	Equivalent PLATINUM Model Number	Torque	Ke	V (Volts)	I (Amps)	Torque	Ke	V (Volts)	I (Amps)
	Wiodel Nullibel	(oz-in)	(V/krpm)	@3KRPM	@3KRPM	(oz-in)	(V/krpm)	@3KRPM	@3KRPM
U12M4T	U12DT-A	115	11.1	40.3	8.7	105	5.5	20.7	15.8
	U12DT-B	125	12.3	43.7	8.6	115	6.1	22.4	15.6
U12M4HT	U12DT-C	135	13.5	47.0	8.5	125	6.7	24.1	15.5
	U12DT-D	150	15.5	52.7	8.3	140	7.8	26.9	15.3
U12M4HT	U12DT-E	160	17.2	57.1	7.9	150	8.6	29.0	14.8
	U12DT-F	170	18.2	60.0	7.8	160	9.1	30.6	14.6

INTRODUCTION

- Options:
- -- Tachometers
- -- Optical encoders
- -- Fail-Safe brakes
- -- Rugged housing and mil-type connectors

Compatible Product

• KXA Plus Amplifier

- 21 to 85 oz-in (15-60 N-cm) Continuous Torque
- 3.39 to 4.37" OD Round Frame
- Motor Lengths Less Than 2"
- Optional Rugged Housing
- Optional Tachometer or Encoder Feedback and Failsafe Brakes

S-Series ServoDisc motors employ the unique Kollmorgen flat disc armature. The ironless, low inertia armature delivers high acceleration and zero cogging in an exceptionally compact package.

Rugged housings and mil-type connectors added to S-Series motors protect the motors and optional integral components such as encoders, tachometers and fail-safe brakes. They have been designed for harsh industrial evnironments where protection from damaging elements is essential.

- Extremely good speed control with zero cogging and low RFI
- Long brush life
- Flat ServoDisc motors are ideal for many applications:
 - -- Save space and weight in applications requiring a low profile motor
 - -- Large torsional stiffness for precision control of speed and acceleration

PERFORMANCE DATA

Performance Specifications	Symbol	Units	S6M4H (S6M4HI)	S9M4H (S9M4HI)
Peak Torque	T^p	oz-in	214	921
-		N-cm	151	650
Rated Speed	N	RPM	3000	3000
Rated Continuous Torque @ 25°C	T_{25}	oz-in	21	85
Rated Continuous Torque @ 25 C	1 25	N-cm	15	60
Rated Continuous Torque @ 40°C	T_{40}	oz-in	19	77
· · · · · · · · · · · · · · · · · · ·		N-cm	13	54
Rated Power Output	Р	Watts	46	187
Maximum Recommended Speed	Nmax	RPM	6000	6000
Continuous Stall Torque	T_s	oz-in	20	85
Cogging Torque	T _c	N-cm	14 0	60
Cogging Torque	1 с	oz-in	U	0
Electrical Specifications				
Rated Terminal Voltage	Е	Volts	17.7	34.0
Rated Continuous Current	I	Amps	5.20	7.79
Peak Current	I_p	Amps	51	79
Continuous Stall Current	$I_{\rm s}$	Amps	4.8	7.5
W/2 J2 - Charles (0) - 4 2				
Winding Specifications Terminal Resistance ± 10%	D	O1	1 207	0.050
Armature Resistance + 10%	R _t	Ohms Ohms	1.207	0.850 0.660
	R _a	V/KRPM	0.940 3.15	
Back EMF Constant ± 10%	K _e	.,	4.26	8.80 11.91
Torque Constant ± 10%	K _t	oz-in/Amp		
Viscous Damping Constant	Kd	N-cm/Amp oz-in/KRPM	3.01	8.41 1.3
viscous Damping Constant	Kū	N-cm/KRPM	0.2	0.9
Armature Inductance	т		<100	<100
Temperature Coefficient of KE	L C	μΗ %/°C Rise	020	020
Number of Cummutator Bars	Z	%/°C Rise	020 82	020 117
Number of Cummutator Bars	L		02	117
Mechanical Specifications				
Moment of Inertia	$J_{\rm m}$	oz-in-sec ²	0.00085	0.00560
- Incitia	³ m	kg-cm ²	0.060	0.395
Static Friction Torque	T_{f}	oz-in	0.9	4.0
	-1	N-cm	0.6	2.8
Weight	W	lbs	2.1, (2.73)	5.42, (6.7)
		kg	0.95, (1.24)	2.5, (3.84)
Diameter	D	in	3.39	4.37
		mm	86.1	111.0
Length	LG	in	1.61, (4.23)	2.28, (5.19)
Figures of Merit		mm	40.9, (107.4)	57.9, (131.8)
Peak Acceleration	A_p	kRad/s ²	251.9	164.5
Mechanical Time Constant	$T_{\rm m}$	ms	6.16	3.66
Electrical Time Constant	T _e	ms	<0.11	< 0.15
Continuous Power Rate	P _c	kW/sec	3.53	9.01
	-			
Thermal Specifications				
Thermal Resistance at Rated Speed	RAAR	°C/Watt	2.70	1.50
Thermal Resistance at Stall	RAAS	°C/Watt	3.32	2.00
Tachometer Specifications				
Output Voltage	V	Volts/KRPM	0.75	3.00
Maximum Ripple Peak to Peak	$\overline{V_{\mathrm{rh}}}$	%	1.5	1.5
Linearity of Output Voltage	LIN		0.06	0.06
Minimum Load Resistance	R_l	Ohms	1000	1180
	14	Omns	1000	1100

PERFORMANCE DATA

S6M4H & S6M4HI

S9M4H & S9M4HI

- 1. All curves are drawn for a fixed armature temperature of 150°C .
- 2. The motor can be operated at any point on the graph below 4000 RPM. Higher speeds are possible for some applications. Contact a Kollmorgen Sales Office for more details.
- 3. Determine voltage required for a desired combination of speed and torque by estimating it as a line parallel to one of the constant terminal voltage (E) lines.
- 4. The operating current can be calculated as: $I = (Shaft torque + KD \ 3 \ N/1000) / KT.$
- 5. The operating voltage can be calculated as: $V = KE \ 3 \ N/1000 + RT \ 3 \ I.$

DIMENSIONS

S6M4H

			Motor	Motor/ Tachometer	Motor/ Brake	Motor/Brake Tachometer
	Without	inch	1.61	2.56	3.03	3.96
A	Encoder	mm	40.9	65.1	77.0	101.0
	With	inch	2.42	3.37	3.84	4.79
В	Encoder	mm	61.5	85.6	97.5	122.0

Shaft Loading - S6M4H & S6M4HI - Radial $\frac{10 \text{ lbs}}{4.5 \text{ kg}} \stackrel{@}{=} \frac{7/8 \text{ from}}{22.2} - \text{Axial} \frac{7.5 \text{ lbs}}{3.4 \text{ kg}}$ any direction

S6M4HI

 $Motor\ Connector\ -\ Amphenol/Bendix\ PT\ 02A-12-8P\ Encoder\ Connector\ -\ Amphenol/Bendix\ PT\ 02A-12-10P$

DIMENSIONS

S9M4H

			Motor	Motor/ Tachometer	Motor/ Brake	Motor/Brake Tachometer
	Without	inch	2.28	3.25	3.7	4.7
A	Encoder	mm	57.9	82.6	94.0	119.0
	With	inch	3.09	4.06	4.5	5.5
В	Encoder	mm	78.5	103.0	114.0	140.0

 $Shaft\ Loading\ -\ S9M4H\ \&\ S9M4HI\ -\ Radial\ \underline{25\ lbs} \\ \underline{11.4\ kg} \\ \underline{025.4} \\ \underline{-S-} - Axial\ \underline{25\ lbs} \ any\ direction$

S9M4HI

			Motor	Motor/ Tachometer	Motor/ Brake	Motor/Brake Tachometer
	Without	inch	5.19	6.17	5.44	6.42
A	Encoder	mm	131.8	157.0	138.0	163.0
	With	inch	5.19	6.17	6.6	7.6
A	Encoder	mm	131.8	157.0	167.6	193.0

 $Motor\ Connector\ \hbox{-}\ MS3102A16S\hbox{-}IP\ Encoder\ Connector\ \hbox{-}\ MS3102A18\hbox{-}1P$

INTRODUCTION

- Options:
 - -- Tachometers
 - -- Encoders
 - -- Fail-safe brakes

Compatible Products

- KXA Plus Amplifier
- EM19 Linear Amplifier

- 16 to 56 oz-in (11-40 N-cm) Continuous Torque
- 4.0 to 5.1" OD Round Frame
- Ultrathin Pancake Motor

Ferrite Series ServoDisc motors employ the unique Kollmorgen flat disc armature and ultraflat package to create a low cost ServoDisc motor.

- Extremely good speed control with zero cogging and low RFI
- Very long brush life
- Flat ServoDisc motors are ideal for many applications:
- -- Save space and weight in applications requiring a low profile motor
- -- Large torsional stiffness for precision control of speed and acceleration
- Low inertia, DC servomotor
- Low axial profile
- High-pulse torque capability
- No cogging even at low operating speeds

PERFORMANCE DATA

Performance Specifications	Symbol	Units	9F/9FS	9FST	12FLR/12FLRB/ 12FLRS	12F/12FB/ 12FS	12FV/12FVB/ 12FVS
		oz-in	198	189	393	478	549
Peak Torque	T_p	N-cm	140	133	278	338	388
Rated Speed	N	RPM	3000	3000	3000	3000	3000
		oz-in	17	15	31	40	44
Rated Continous Torque @ 25°C	T_{25}	N-cm	12	11	22	28	31
Rated Continuous Torque @ 40°C	т	oz-in	15	13	29	36	39
Raied Continuous Torque @ 40 C	T_{40}	N-cm	10.6	9	20	26	27
Rated Power Output	P	Watts	37	33	68	88	96
Maximum Recommended Speed	Nmax	RPM	6000	6000	6000	6000	6000
Continous Stall Torque	T_s	oz-in	16	15	31	41	46
		N-cm	11	11	22	29	32
Cogging Torque	T _c	oz-in	0	0	0	0	0
Electrical Specifications		X 7 1.	14.6	111	11.7	21.6	165
Rated Terminal Voltage	E	Volts	14.6	14.4	11.7	21.6	16.5
Rated Continuous Current	I	Amps	6.8	6.60	12.10	7.5	10.3
Peak Current	Ip	Amps	70	70	136	81	116
Continuous Stall Current	I_s	Amps	6.3	6.2	11.9	7.4	10.3
Winding Specifications							
Terminal Resistance ± 10%	D	Ohms	0.950	0.950	0.400	0.860	0.48
Armature Resistance ± 10%	R _t	Ohms	0.930	0.930	0.400	0.610	0.48
Back EMF Constant ± 10%	R _a K _e	V/kRPM	2.39	2.30	2.45	5.00	4.00
Back EMI Constant ± 10%	r _e	oz-in/Amp	3.23	3.11	3.32	6.77	5.41
Torque Constant ± 10%	K_t	N-cm/Amp	2.28	2.20	2.34	4.78	3.82
		oz-in/KRPM	0.3	0.3	0.6	0.7	1.0
Viscous Damping Constant	K_d	N-cm/KRPM	0.3	0.3	0.4	0.7	0.7
Armature Inductance	L	μH	<0.03	<0.10	<0.03	<0.05	<0.03
Temperature Coefficient of KE	C	%/°C Rise	-0.19	-0.19	-0.19	-0.19	-0.19
Number of Cummutator Bars	Z	707 C Kisc	117	117	141	141	105
Number of Cummutator Bars			117	117	171	141	103
Mechanical Specifications							
Moment of Inertia	т	oz-in-sec ²	0.0052	0.0080	0.0190	0.0190	0.0220
Moment of mertia	J_{m}	kg-cm ²	0.37	0.56	1.34	1.34	1.62
Average Emistion Torque	т	oz-in	2.5	2.5	3.5	3.0	3.5
Average Friction Torque	T_{f}	N-cm	1.8	1.8	2.5	2.1	2.5
Weight	W	lbs	1.2	1.2	2.2	2.2	2.2
weight	VV	kg	0.5	0.5	1.0	1.0	1.0
Diameter	D	in	4.72	4.72	5.98	5.98	5.98
Diameter	D	mm	119.9	119.9	151.9	151.9	151.9
Length	LG	in	0.75	1.36	0.80	0.80	0.80
Length	LO	mm	19.1	34.5	20.3	20.3	20.3
Figure of Merit							
Peak Acceleration	Ap	kRad/s ²	38.1	23.6	21.0	25.1	25.0
Mechanical Time Constant	T _m	ms	44.00	72.80	50.70	35.40	30.4
Electrical Time Constant	Te	ms	< 0.05	< 0.16	< 0.12	< 0.07	0.34
Continuous Power Rate	Pc	kW/sec	0.3	0.2	0.3	0.6	0.6
TD1 1.C1 +0+ /+							
Thermal Specifications	DAAD	0000	2.00	2.00	1.70	1.70	1.70
Thermal Resistance at Rated Speed	RAAR	°C/Watt	2.00	2.00	1.70	1.70	1.70
Thermal Resistance at Stall	RAAS	°C/Watt	2.52	2.52	2.03	2.03	2.03
Tashamatan Cassification -							
Tachometer Specifications Output Voltage	V	Volts/KRPM		1.10			
Maximum Ripple Peak to Peak				5.0			
Linearity of Output Voltage	V _{rh}	<u>%</u>	_	0.14	_		
Emeanty of Output voltage	LIN	70		0.14			

- All values are based upon a 150°C armature temperature limit and with the motor mounted on an 8" x 16" x 3/8" aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max armature temperature of 150°C is not exceeded.
- 2. Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/ft³).
- 3. Terminal resistance is measured at 4.0 amps. RT varies as a function of applied current
- 4. Unless otherwise noted, all specifications above apply at 25°C.

- Peak torque and current is calculated based on max pulse duration of 50 milliseconds and a 1% duty cycle.
- 6. The operating current can be calculated as: I = (Shaft torque + TF + KD x N/1000) / KT.
- 7. The operating voltage can be calculated as: $V = KE \times (N/1000) + RT \times I$.
- Tachometer ripple measured with a resistive load of 1 kohm and a single low pass filter with 3db cut off at 500 Hz.
- 9. Tachometer minimum measured with a resistance of 370 ohms.
- 10. Bidirectional tolerance of tachometer will not exceed 3%.

PERFORMANCE DATA

Performance Specifications	Symbol	Units	9FHB-44
Peak Torque	T _p	oz-in	267
*	*	N-cm	188
Rated Speed	N	RPM	3000
Rated Continous Torque @ 25°C	T ₂₅	oz-in	21
		N-cm	15 19
Rated Continuous Torque @ 40°C	T ₄₀	oz-in N-cm	13
Rated Power Output	P	Watts	47
Maximum Recommended Speed	Nmax	RPM	47
		oz-in	21
Continous Stall Torque	T _s	N-cm	15
Cogging Torque	T _c	oz-in	0
Electrical Specifications			
Rated Terminal Voltage	Е	Volts	15.2
Rated Continuous Current	I	Amps	7.26
Peak Current	Ip	Amps	78
Continuous Stall Current	I _s	Amps	6.9
		*	
Winding Specifications			
Terminal Resistance ± 10%	R _t	Ohms	0.78
Armature Resistance ± 10%	Ra	Ohms	0.51
Back EMF Constant ± 10%	K _e	V/KRPM	2.9
Torque Constant ± 10%	K _t	oz-in/Amp	3.92
Torque Constant = 1070	t	N-cm/Amp	2.77
Viscous Damping Constant	K _d	oz-in/KRPM	0.5
		N-cm/KRPM	0.35
Armature Inductance	L	μΗ	<0.03
Temperature Coefficient of KE	С	%/°C Rise	-0.19
Number of Cummutator Bars	Z		117
Mechanical Specifications			
Moment of Inertia	J _m	oz-in-sec ²	0.0064
- Ivioinent of Inertia	³m	kg-cm ²	452
Average Friction Torque	T _f	oz-in	3.0
		IN-CIII	2.1
Weight	W	lbs	1.3
		Kg	0.59
Diameter	OD	in	4.96
		mm	126
Length	LG	in	0.76 19
		mm	19
Figure of Merit			
Peak Acceleration	Ap	kRad/s ²	41.8
Mechanical Time Constant	T _m	ms	29.4
Electrical Time Constant	T _e	ms	< 0.06
Continuous Power Rate	P _c	kW/sec	0.50
Thermal Specifications			
Thermal Resistance at Rated Speed	RAAR	°C/Watt	2.0
Thermal Resistance at Stall	RAAS	°C/Watt	2.52
Tachometer Specifications			
Output Voltage	V	Volts/KRPM	
Maximum Ripple Peak to Peak	V _{rh}	%	
Linearity of Output Voltage	LIN	%	

- These are based upon the least of the demagnetization limit, the structural limit and the thermal limit. It is calculated for max. pulse duration of 50 millisec and 1% duty cycle. (For thermal limit).
- 2. All values are based upon 150°C armature temperature and with the motor mounted on an aluminum plate (8" x 16" x 3/8") with no forced cooling. Other voltages, speeds and torques are achievalbe as long as armature temp. is kept below 150°C. Continuous operation above 4000 RPM is possible for some applications. Contact a Kollmorgen Sales Office for more details.
- 3. Measured at 4.0 Amps. It varies slightly with current due to variations in brush contact drop.
- 4. Maximum Permissible Dissipation = (150 Amb. Temp. °C)/RAA. Total Motor Losses = RT x 1^2 + 0.74 (TF + TD) x N/1000where TD = KD x N/1000.
- 5. Peak Acceleration with Load = (TP Reflected Load Frict.)/(JM + Reflected Load Inertia).
- 6. 3000 RPM is for reference purposes only. Motor can be run at higher speeds.

Ferrite Series

PERFORMANCE DATA

9F/9FS

12F/12FB/12FS

9FST/9FGT/9FGHDT

12FLR/12FLRB/12FLRS

12FV/12FVB/12FVS

9FHB-44

- A. All curves are drawn for a fixed armature temperature of 150°C.
- B. The motor can be operated at any point on the graph below 4000 RPM. Higher speeds are possible for some applications. Contact a Kollmorgen Sales Office for more details.
- C. Determine voltage required for a desired combination of speed and torque by estimating it as a line parallel to one of the constant terminal voltage (E) lines.
- D. The operating current can be calculated as: I = (Shaft torque + TF + KD x N/1000)/KT.
- E. The operating voltage can be calculated as: $V = KE \times N/1000 + RT \times I$.

PERFORMANCE DATA

12FLRHS-2

12FHS-2

12FVHS-2

- A. All curves are drawn for a fixed armature temperature of 150°C.
- B. The motor can be operated at any point on the graph below 4000 RPM. Higher speeds are possible for some applications. Contact a Kollmorgen Sales Office for more details.
- C. Determine voltage required for a desired combination of speed and torque by estimating it as a line parallel to one of the constant terminal voltage (E) lines.
- D. The operating current can be calculated as: $I = (Shaft\ torque + TF + KD\ x\ N/1000)/KT.$
- E. The operating voltage can be calculated as: $V = KE \times N/1000 + RT \times I$.

DIMENSIONS

Motor Types: 9F, 12F, 12 FLR, 12FV AND 12FB, 12FLRB, 12FVB

Motor Types	Units	A	В	С	D	E	F	G	Н	I	J (optional)	K	L
OE	in	1.19	0.593	.3125	1.03	0.75	4.0	4.72	3.91	4.33	1.98	0.22	0.81
9F	mm	30.16	15.06	7.94	26.16	19.05	101.6	120.0	99.2	110.0	50.3	5.6	20.64
12F, 12FLR, 12FV, 12FLRB,	in	1.69	0.92	0.315	1.17	0.80	5.08	5.98	5.11	5.59	2.12	0.22	1.22
12FV, 12FLKB, 12FVB	mm	42.9	23.4	8.00	29.8	20.2	129.0	151.9	129.8	142.0	53.8	5.6	31.0

Motor Types: 9FS, 12FS, 12FLRS, 12FVS

Motor Types	Units	A	В	С	D	E	F	G	Н	I	J (optional)	K	L
OEC	in	1.0	0.75	0.250	1.03	0.75	4.0	4.72	3.91	4.33	1.98	0.22	.31
9FS	mm	25.4	19.05	6.35	26.16	19.05	101.6	119.9	99.2	110.0	50.3	5.6	7.9
12FS, 12FLRS,	in	1.0	0.75	0.315	1.39	0.80	5.08	5.98	5.11	5.59	2.12	0.22	
12FVS	mm	25.4	19.05	8.0	35.31	20.24	129.03	151.89	129.8	142.0	53.8	5.6	

DIMENSIONS

9FHB-44

Notes:

- 1. Shaft diameter "A" runout not to exceed .001 in. per in. of shaft length.
- 2. For CCW rotation as viewed from shaft end of motor green lead (+) positive, blue lead (-) negative.
- 3. Shaft loading information for either pure radial or pure thrust loads:
 - A. Maximum recommended radial shaft load 3 lbs. located 1/4" from shaft end.
 - B. Maximum recommended thrust load on shaft 3 lbs.

12F Series

- 1. Shaft runout .001 in. of shaft length A and B.
- 2. For CW rotation as viewed from MTG end of motor red lead (+) positive, black lead (-) negative.
- Shaft loading for either pure radial or pure thrust
 A. Diameter -A-, max recommended radial shaft load is 7 lbs. located
 1 1/8 in. from surface "S".
 - B. Max recommended thrust load on shaft is 10 lbs.

DIMENSIONS

Motor with Encoder and Motor Prepared for Encoder

Note: Other Windings/Voltages available.

Motor Types	Radia	ıl Load	Axia	l Load		Play xial Load	Run Out in per in
	lbs	kg	lbs	kg	in	mm	of Shaft Length
9F	2.5	1.13	2.5	1.13	0.003	0.076	0.002
9FS	3	1.36	3	1.36	0.001	0.025	0.001
12F, 12FLR, 12FV	2.5	1.13	2.5	1.13	0.003	0.076	0.002
12FB, 12FLRB, 12FVB	7	3.18	10	4.54	0.001	0.025	0.001
12FS, 12FLRS, 12FVS	7	3.18	10	4.54	0.001	0.025	0.001

MOTOR SELECTION FOR FERRITE SERIES									
Motor Types	Motor Alone	Motor with Rear Shaft	Motor Prep. for Encoder	Motor with Integral Optical Encoder Type M23 (500 lines Max)					
9F, 12F, 12FLR, 12FV	Lowest cost	YES (option)	NO	NO					
12FB, 12FLRB, 12FVB	Front spindle Ball bearings	YES (option)	NO	NO					
9FS, 12FS, 12FLRS, 12FVS	Rear spindle Ball bearings	YES (option)	YES (option)	YES (option)					

FERRITE MOTOR WITH INTEGRAL TACHOMETER

INTRODUCTION

- 17 to 103 oz-in (12-73 N-cm) Continuous Torque
- 4.72 to 8.47" OD Round Frame
- Direct Drive, No Coupling
- Space-Saving Design

Putting Together Your Own High-Performance DC Motor

Designers who want to save both time and cost can obtain all these advantages by assembling the kit motor. The inherent simplicity of design leads to a highly simple mechanical structure that the user can put together himself or build into his own drive system.

The motor consists of two components: the flat ServoDisc armature and the end bell with magnet and brushes. The armature is available in several types depending on the application. For example, armatures for low voltages or low inertia can be used when required.

The magnet in the stamped end bell is a ring of ceramic ferrite material which has been precharged to produce eight alternately polarized magentic poles. Unlike Alnico permanent magnetic material, the ferrite is a type of permanent magnet that retains its magnetism even without a keeper or flux-return path.

Because of the use of the integral drive shaft rather than a separate motor shaft and bearings, there is no mechanical coupling and a minimum of torsional resonance. There is less bearing friction with increased efficiency and no problems due to shaft misalignment. In effect, the motor is assembled onto the drive system.

The designer of precision equipment has a low cost yet a technically smart solution to drive it. Coupling costs and alignment problems are eliminated. The total package is compact.

The applications of these motors are wide in range. One of the key advantages is the compact design, where in many cases, it is important where space is limited.

An encoder-mount is available for these motors to accept a kit encoder in order to close a digital control loop. Some typical applications are listed below:

- Use your own high-performance precision spindle
- A cost-effective solution to drive high-precision machines
- Zero cogging design, smooth rotation at low speeds
- Constant torque over a wide speed range

Compatible Products

- KXA Plus Amplifier
- EM19 Linear Amplifier

MOTOR PERFORMANCE DATA

Peak Torque
Rated Speed
Rated Continuous Torque @ 25°C T₂s oz-in
Rated Continuous Forque @ 25°C
Rated Continuous Torque @ 40°C T ₄₀ Oz-in 15 36 39 29 92 92 92 92 92 93 93
N-cm 10.6 26 27 20 65
Rated Power Output
Maximum Recommended Speed Nmax RPM 6000 6000 6000 6000 6000 6000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
N-cm
N-cm
Electrical Specifications Rated Terminal Voltage E Volts 14.6 21.6 16.5 11.7 38.6 Rated Continuous Current I Amps 6.82 7.5 10.3 12.05 9.70 Peak Current Ip Amps 70 81 116 136 94 Continuous Stall Current Is Amps 6.3 7.4 10.3 11.9 8.9
Rated Terminal Voltage E Volts 14.6 21.6 16.5 11.7 38.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Winding Specifications Rt Ohms 0.950 0.860 0.48 0.400 0.990 Armature Resistance ± 10% Rt Ohms 0.640 0.610 0.29 0.210 0.740 Back EMF Constant ± 10% Ke V/kRPM 2.39 5.00 4.00 2.45 10.00 Torque Constant ± 10% Kt 0z-in/Amp 3.23 6.77 5.41 3.32 13.53 Viscous Damping Constant Kd 0z-in/KRPM 0.3 0.7 1.0 0.6 1.3 Viscous Damping Constant Kd 0z-in/KRPM 0.3 0.7 1.0 0.6 1.3 Viscous Damping Constant Kd 0z-in/KRPM 0.3 0.7 1.0 0.6 1.3 Viscous Damping Constant Kd 0z-in/KRPM 0.2 0.5 0.7 0.4 0.9 Armature Inductance L µH <0.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \frac{\text{Moment of Inertia}}{\text{Moment of Inertia}} \frac{J_{\text{m}}}{J_{\text{m}}} \frac{\text{oz-in-sec}^2}{\text{kg-cm}^2} \frac{0.0052}{0.37} \frac{0.0190}{1.34} \frac{0.0220}{1.62} \frac{0.0190}{1.34} \frac{0.0890}{6.28} \\ \text{Average Friction Torque} T_{\text{f}} \frac{\text{oz-in}}{N\text{-cm}} \frac{2.0}{1.4} \frac{3.0}{2.5} \frac{3.5}{3.5} \frac{10.0}{10.0} \\ \text{Weight} W \frac{\text{lbs}}{\text{kg}} 0.9 1.4 1.4 1.4 1.4 5.0 \\ \text{kg} 0.4 0.6 0.6 0.6 0.6 2.27 \\ \frac{\text{in}}{1.00} \frac{4.72}{1.00} \frac{5.08}{1.00} \frac{5.08}{1.0$
$ \frac{\text{Moment of Inertia}}{\text{Moment of Inertia}} \frac{J_{\text{m}}}{J_{\text{m}}} \frac{\text{oz-in-sec}^2}{\text{kg-cm}^2} \frac{0.0052}{0.37} \frac{0.0190}{1.34} \frac{0.0220}{0.0190} \frac{0.0190}{0.0890} \\ \frac{\text{kg-cm}^2}{\text{kg-cm}^2} \frac{0.37}{0.37} \frac{1.34}{1.34} \frac{1.62}{1.62} \frac{1.34}{1.34} \frac{6.28}{0.28} \\ \frac{\text{oz-in}}{\text{N-cm}} \frac{2.0}{1.4} \frac{3.5}{2.5} \frac{3.5}{2.5} \frac{10.0}{7.1} \\ \frac{\text{lbs}}{\text{Weight}} \frac{0.9}{\text{kg}} \frac{1.4}{0.6} \frac{1.4}{0.6} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Weight W lbs 0.9 1.4 1.4 1.4 5.0 kg 0.4 0.6 0.6 0.6 2.27
kg 0.4 0.6 0.6 0.6 2.27
in 472 598 598 598 847
mm 119.9 151.9 151.9 151.9 215.1
Length LG in 1.00 1.20 1.20 1.30 1.30
mm 25.4 30.5 30.5 30.5 33.0
Figure of Merit
Peak Acceleration Ap kRad/s² 38.1 25.1 24.9 20.7 12.5
Mechanical Time Constant T_m ms 44.00 35.40 30.4 50.70 50.60
Electrical Time Constant T _e ms <0.05 <0.07 .34 <0.12 <0.11
Continuous Power Rate P _c kW/sec 0.4 0.6 0.6 0.3 0.8
Thermal Specifications
Thermal Resistance at Rated Speed RAAR °C/Watt 2.00 1.70 1.70 1.70 0.85
Thermal Resistance at Stall RAAS C/Watt 2.50 1.70 1.70 1.70 0.83 Thermal Resistance at Stall RAAS °C/Watt 2.52 2.03 2.03 2.03 1.25

- All values are based upon a 150°C armature temperature limit and with the motor mounted on an 8" x 16" x 3/8" aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max armature temperature of 150°C is not exceeded.
- 2. Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/ft 3).
- 3. Terminal resistance is measured at 4.0 amps. RT varies as a function of applied
- 4. Unless otherwise noted, all specifications above apply at 25°C.
- 5. Peak torque and current is calculated based on max pulse duration of 50 milliseconds and a 1% duty cycle.
- 6. The operating voltage can be calculated as: $I = (Shaft torque + TF + KD \times N/1000) / KT$.
- 7. The operating voltage can be calculated as: $V = KE \times (N/1000) + RT \times I$.

MOTOR PERFORMANCE DATA

9FP

12FP

12FVP

12FLRP

16FP

- A. All curves are drawn for a fixed armature temperature of 150°C.
- B. The motor can be operated at any point on the graph below 4000 RPM. Higher speeds are possible for some applications. Contact a Kollmorgen Sales Office for more details.
- C. Determine voltage required for a desired combination of speed and torque by estimating it as a line parallel to one of the constant terminal voltage (E) lines.
- D. The operating current can be calculated as: $I = (Shaft\ torque + TF + KD\ x\ N/1000)/KT$.
- E. The operating voltage can be calculated as: $V = KE \times N/1000 + RT \times I$.

MOTOR PERFORMANCE DATA

KIT MOTOR DIMENSIONS

Models	9FP	12F Series	16FP
A	4.72	5.98	8.46
В	3.90	5.11	6.74
С	1.0	1.25	1.26
BC	4.33	5.59	7.875
Н	.219	.219	.287 (8 holes)
HB	.375	.375	.500
T	.090	.125	.125

Dimensions in inches

OPTION: Mounting Surface on End Bell for Optical Encoder

INTRODUCTION

- 69 to 143 oz-in (36-101 N-cm) Continuous Torque
- 4.37 to 5.5" OD Round Frame
- Optional Tachometer and Endcoder Feedback
- Ultrathin Compact Size for Easy Design Integration

N-Series ServoDisc motors employ the unique Kollmorgen flat disc armature and high-energy neodymium-iron-boron magnets resulting in an ultra-thin motor. The ironless, low inertia armature delivers high acceleration and zero cogging.

- Neodymium magnet technology
- Fast Acceleration for higher throughput
- Extremely good speed control, zero cogging and low RFI
- Long brush life
- Flat ServoDisc motors are ideal for many applications:
 - -- Save space and weight in applications requiring a low profile motor
 - -- Large torsional stiffness for precision control of speed and acceleration
- Options:
 - -- With or without integral tachometer
 - -- Optical encoder
 - -- Brake

Compatible Products

- KXA Plus Amplifier
- EM19 Linear Amplifier

PERFORMANCE DATA

Performance Specifications	Symbol	Units	N9M4	N9M4T	N9M4LR	N9M4LRT	N12M4	N12M4T		N12M4LRT
Peak Torque	T_p	oz-in	760	692	729	663	1598	1386	1522	1320
Rated Speed	N	N-cm RPM	537 3000	489 3000	515 3000	468 3000	1128 3000	979 3000	1075 3000	932 3000
		oz-in	69	57	63	51	143	126	131	115
Rated Continous Torque @ 25°C	T_{25}	N-cm	49	40	44	36	101	89	93	81
D 10 1 D 0 1000		oz-in	63	52	57	46	131	112	117	103
Rated Continuous Torque @ 40°C	T_{40}	N-cm	44	37	40	32	93	79	83	73
Rated Power Output	P	Watts	153	126	140	114	316	278	291	256
Maximum Recommended Speed	Nmax	RPM	6000	6000	6000	6000	6000	6000	6000	6000
Continous Stall Torque	T _s	oz-in	69	62	62	56	147	128	136	117
		N-cm	49	44	44	40	104	90	96	83
Cogging Torque	T _c	oz-in	0	0	0	0	0	0	0	0
Electrical Specifications										
Rated Terminal Voltage	Е	Volts	30.0	28.0	16.0	14.0	51.0	45.0	26.0	23.0
Rated Continuous Current	I	Amps	7.80	7.10	14.00	12.90	8.00	8.10	14.80	15.00
Peak Current	I _p	Amps	79	77	151	147	83	83	159	159
Continuous Stall Current	I _s	Amps	7.5	7.3	13.7	13.3	8.0	8.0	14.7	14.7
Winding Specifications										
Terminal Resistance ± 10%	R _t	Ohms	0.850	0.850	0.370	0.370	0.750	0.750	0.310	0.310
Armature Resistance ± 10%	Ra	Ohms	0.660	0.660	0.180	0.180	0.610	0.610	0.170	0.170
Back EMF Constant ± 10%	Ke	V/KRPM	7.60	7.10	3.80	3.60	15.10	13.10	7.60	6.60
Torque Constant ± 10%	K _t	oz-in/Amp	10.30	9.60	5.10	4.80	20.40	17.80	10.20	8.90
Torque Constant ± 10%		N-cm/Amp	7.27	6.78	3.60	3.39	14.41	12.57	7.20	6.28
Viscous Damping Constant		oz-in/KRPM	1.1	1.1	1.1	1.1	2.8	2.3	2.7	2.2
. •		N-cm/KRPM	0.8	0.8	0.8	0.8	2.0	1.6	1.9	1.5
Armature Inductance	L	μH	< 0.03	< 0.03	< 0.03	<0.03	<0.05	< 0.05	< 0.05	<0.05
Temperature Coefficient of KE	C Z	%/°C Rise	-0.10 117	-0.10	-0.10	-0.10	-0.10 141	-0.10	-0.10	-0.10
Number of Cummutator Bars	L		117	117	117	117	141	141	141	141
Mechanical Specifications										
Moment of Inertia	$J_{\rm m}$	oz-in-sec ²	0.0056	0.0083	0.0056	0.0083	0.0190	0.0260	0.0190	0.0260
		kg-cm ²	0.40	0.59	0.40	0.59	1.34	1.84	1.34	1.84
Static Friction Torque	T_f	oz-in	4.0 2.8	4.5 3.2	4.0 2.8	4.5 3.2	5.5 3.9	5.5 3.9	5.5 3.9	5.5 3.9
		N-cm lbs	3.1	3.2	3.1	3.2	5.3	5.3	5.3	5.3
Weight	W	kg	1.4	1.5	1.4	1.5	2.4	2.4	2.4	2.4
		in	4.37	4.37	4.37	4.37	5.50	5.50	5.50	5.50
Diameter	D	mm	111.0	111.0	111.0	111.0	139.7	139.7	139.7	139.7
I	LG	in	0.94	0.95	0.94	0.95	1.07	1.10	1.07	1.10
Length	LU	mm	23.9	24.1	23.9	24.1	27.2	27.9	27.2	27.9
Figure of Merit										
Peak Acceleration	Ap	kRad/s ²	135.7	83.3	130.1	79.9	84.1	53.3	80.1	50.8
Mechanical Time Constant	T _m	ms	4.90	8.30	5.20	8.80	3.90	7.10	4.20	7.70
Electrical Time Constant	Te	ms	< 0.05	< 0.05	<0.17	< 0.17	< 0.07	< 0.07	<0.27	<0.27
Continuous Power Rate	Pc	kW/sec	6.0	2.8	5.0	2.2	7.6	4.3	6.4	3.6
Th										
Thermal Specifications	DAAD	°C/Watt	1.50	1.70	1.50	1.70	1.40	1.40	1 40	1.40
Thermal Resistance at Rated Speed Thermal Resistance at Stall	RAAR RAAS	°C/Watt	1.50 2.00	1.70 2.10	1.50 2.00	1.70 2.10	1.40	1.40	1.40	1.40
Thermal Resistance at Stall	KAAS	C/ Wall	2.00	2.10	2.00	2.10	1.90	1.90	1.90	1.70
Tachometer Specifications										
Output Voltage		Volts/KRPM	_	3.50		3.50		5.90		5.90
Maximum Ripple Peak to Peak	V _{rh}	%	_	3.0		3.0		3.0		3.0
Linearity of Output Voltage	LIN	%		0.06		0.11		0.11		0.11
Minimum Load Resistance	R _l	Ohms		370		370		494		494

- All values are based upon a 150°C armature temperature limit and with the motor mounted on an 8" x 16" x 3/8" aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max armature temperature of 150°C is not exceeded.
- 2. Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/ft³).
- 3. Terminal resistance is measured at 4.0 amps. RT varies as a function of applied current.
- 4. Unless otherwise noted, all specifications above apply at 25°C.

- Peak torque and current is calculated based on max pulse duration of 50 milliseconds and a 1% duty cycle.
- 6. The operating voltage can be calculated as: I = (Shaft torque + TF + KD x N/1000) / KT.
- 7. The operating voltage can be calculated as: $V = KE \times (N/1000) + RT \times I$.
- Tachometer ripple measured with a resistive load of 1 kohm and a single low pass filter with 3db cut off at 500 Hz.
- 9. Bidirectional tolerance of tachometer will not exceed 3%.

PERFORMANCE DATA

N9M4

N9M4T

N12M4

N12M4T

N9M4LR

N9M4LRT

DIMENSIONS

N12M4LR

N12M4LRT

Notes:

- A. All curves are drawn for a fixed armature temperature of 150° C.
- B. The motor can be operated at any point on the graph below 4000 RPM. Higher speeds are possible for some applications. Contact a Kollmorgen Sales Office for more details.
- C. Determine voltage required for a desired combination of speed and torque by estimating it as a line parallel to one of the constant terminal voltage (E) lines.
- D. The operating current can be calculated as: $I = (Shaft\ torque + TF + KD\ x\ N/1000)/KT.$
- E. The operating voltage can be calculated as: $V = KE \times N/1000 + RT \times I$.

N9M4/N9M4T

PERFORMANCE DATA

N12M4/N12M4T

INTRODUCTION

- 12 to 298 lb-in (1.3-33.6 N-cm) Continuous Torque
- 5.5 to 16.25" OD Round Frame
- Optional Tachometer and Encoder Feedback
- Rugged Industrial Package

JR-Series ServoDisc[™] motors employ the unique Kollmorgen flat disc armature in an industrial grade housing resulting in a low profile alternative to conventional servomotors.

- Extremely good speed control with zero cogging and low RFI
- Long brush life
- Flat ServoDisc[™] motors are ideal for many applications:
- -- Save space and weight in applications requiring a low profile motor
- -- Large torsional stiffness for precision control of speed and acceleration
- -- Military style ms connectors

- Mechanical time constants as low as 3 ms
- NEMA and IEC mounting available
- UL recognized versions available
- Options:
 - -- Tachometers
 - -- Optical encoders
 - -- Fail-safe brakes
 - -- Resolvers
 - -- Gear reducers

Compatible Products

• KXA Plus Amplifier

PERFORMANCE DATA

Performance Specifications	Symbol	Units	JR12M4CH	JR16M4CH	JR16M4CH-1	JR16M4CHLR-1	JR16M4CHLR-2	JR24M4CH	JR25M6CH	JR33M6CH
Peak Torque	Tp	lb-in	118	326	336	315	207 23.4	728	1015	4000 451.9
Dated Cased	N	N-cm RPM	13.3 3000	36.8 3000	38.0 3000	35.6 3000	3000	82.3 3000	114.7 3000	3000
Rated Speed	IN	lb-in	12	29	31	28	25	90	121	298
Rated Continous Torque @ 25°C	T_{25}		1.3							
		N-cm		3.3	3.5	3.2	2.8	10.2	13.7	33.6
Rated Continuous Torque @ 40°C	T_{40}	lb-in	11	26	28	25	22	81	108	266
D. ID. O.		N-cm	1.2	2.9	3.2	2.8	2.5	9.1	12.1	30.0
Rated Power Output	P	Watts	414	1036	1114	993	887	3188	4268	10550
Horsepower		HP	0.55	1.39	1.49	1.33	1.19	4.27	5.72	14.14
Maximum Recommended Speed	Nmax	RPM	5000	5000	5000	5000	5000	5000	5000	5000
Continous Stall Torque	T_s	lb-in N-cm	11	31	32	28 3.2	28 3.2	78 8.8	111 12.5	254 28.7
Cogging Torque	T _c	oz-in	0	0	0	0	0	0	0	0
Electrical Specifications										
Rated Terminal Voltage	Е	Volts	63.0	127.0	166.0	84.2	23.0	138.2	150.0	246.0
Rated Continuous Current	I	Amps	8.4	9.5	7.8	13.9	46.6	26.0	31.6	47.6
Peak Current	I _p	Amps	80	100	7.8	148	350	20.0	250	600
Continuous Stall Current	I _s	Amps	7.5	9.6	7.6	13.5	50.0	21.2	28.0	38.7
Continuous Stair Current	15	7 Hiips	7.5	7.0	7.0	13.3	30.0	21.2	20.0	30.7
Winding Specifications										
Terminal Resistance ± 10%	R _t	Ohms	0.950	0.940	1.400	0.530	0.050	0.310	0.210	0.190
Armature Resistance ± 10%	Ra	Ohms	0.730	0.740	1.200	0.330	0.025	0.230	0.160	0.135
Back EMF Constant ± 10%	Ke	V/KRPM	17.80	39.00	51.00	25.50	7.00	43.00	48.00	80.00
T C		oz-in/Amp	24.10	52.80	69.00	34.50	9.47	58.20	65.00	108.25
Torque Constant ± 10%	K_t	N-cm/Amp	17.02	37.28	48.72	24.36	6.69	41.10	45.90	76.44
W. D C	17	oz-in/KRPM	2.8	9.1	7.8	7.2	8.3	17.0	33.0	125.0
Viscous Damping Constant	K_d	N-cm/KRPM	2.0	6.4	5.5	5.1	5.8	12.0	23.3	88.3
Armature Inductance	L	μН	<45	<85	<140	<40	<5	<45	<40	<75
Temperature Coefficient of KE	C	%/°C Rise	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02
Number of Cummutator Bars	Z	707 0 11150	141	165	205	205	183	193	193	185
M-1:-1 C:6:4:										
Mechanical Specifications		:2	0.017	0.004	0.075	0.075	0.004	0.460	0.700	2 200
Moment of Inertia	$J_{\rm m}$	oz-in-sec ²	0.017	0.084	0.075	0.075	0.084	0.460	0.700	3.300
		kg-cm ²	1.20	5.93	5.30	5.30	5.93	32.48	49.43	233.03
Static Friction Torque	$T_{\rm f}$	oz-in	6.0	11.0	11.0	11.0	18.0	20.0	25.0	75.0
		N-cm	4.2	7.8	7.8	7.8	12.7	14.1	17.7	53.0
Weight	W	lbs	8.0	17.5	17.5	17.5	17.5	50.0	70.0	195.0
		kg	3.6	7.9	7.9	7.9	7.9	22.7	31.8	88.5
Diameter	D	in	5.50	7.38	7.38	7.38	7.38	11.00	11.00	16.25
		mm	139.7	187.5	187.5	187.5	187.5	279.4	279.4	412.8
Length	LG	in	3.94	4.50	4.50	4.50	4.50	6.76	7.75	7.00
		mm	100.1	114.3	114.3	114.3	114.3	171.7	196.9	177.8
Figure of Merit										
Peak Acceleration	Ap	kRad/s ²	111.3	62.2	71.7	67.3	44.2	25.3	23.0	19.4
Mechanical Time Constant	T _m	ms	3.02	3.15	2.99	3.29	3.31	4.42	3.80	5.38
Electrical Time Constant	Te	ms	< 0.14	< 0.14	<0.08	<0.08	< 0.20	< 0.40	< 0.31	< 0.56
Continuous Power Rate	P _c	kW/sec	14.6	18.3	23.8	18.9	13.5	31.8	37.8	48.5
Thermal Specifications										
Mounted on Aluminum Heatsink			8"x16"x ³ /8"	16"x16"x ³ /8"	16"x16"x ³ /8"	16"x16"x ³ /8"	16"x16"x ³ /8"	21"x21"x ³ /8"	21"x21"x ³ /8"	21"x21"x ³ /8"
Thermal Resistance at Rated Speed	RAAR	°C/Watt	1.10	0.70	0.70	0.70	0.70	0.31	0.27	0.11
Thermal Resistance at Stall	RAAS	°C/Watt	1.75	1.10	1.10	1.10	1.10	0.64	0.64	0.40
Forced Air Thermal Resistance:	1011111	C/ Truit	1.13	1.10	1.10	1.10	1.10	0.07	V.UT	0.70
with 2.0 lbs/min Forced Air	RAA3	°C/Watt	0.28	0.28	0.28	0.32	0.32	0.32	0.23	0.23
with 2.0 108/11111 FUICCU All	MAA	C/ Wall	0.20	0.40	0.40	0.34	0.32	0.34	0.23	0.23

- All values are based upon a 150°C armature temperature limit and with the motor mounted on an aluminum heatsink with no forced air cooling. Other voltages, speeds, and torques, and duty cycles are achievable as long as the max armature temperature of 150°C is not exceeded.
- 2. Mass air flow (lbs/min) = air volume (CFM) x air density (lbs/ft³).
- 3. Terminal resistance is measured at 4.0 amps. RT varies as a function of applied current.
- 4. Unless otherwise noted, all specifications above apply at $25^{\circ}\text{C}.$
- Peak torque and current is calculated based on max pulse duration of 50 milliseconds and a 1% duty cycle.
- 6. The operating current can be calculated as: $I = (Shaft + TF + KD \times N/1000) / KT$.
- 7. The operating voltage can be calculated as: $V = KE \times (N/1000) + RT \times I$.

PERFORMANCE DATA

JR12M4CH

JR16M4CH

JR16M4CH-1

JR16M4CHLR-1

JR16M4CHLR-2

JR24M4CH

PERFORMANCE DATA

JR25M6CH

JR33M6CH

- A. All curves are drawn for a fixed armature temperature of 150°C.
- B. The motor can be operated at any point on the graph below 4000 RPM. Higher speeds can be obtained for short periods of time. Contact a Kollmorgen Sales Office for more details.
- C. Determine voltage required for a desired combination of speed and torque by locating it on the appropriate 'constant terminal voltage curve.'
- D. Determine the required cooling by locating the desired operating point on the appropriate 'Constant cooling curve.' terminal voltage (E) lines.
- E. The operating current can be calculated as: $I = (Shaft\ torque + TF + KD\ x\ N/1000)\ /\ KT.$
- F. The operating voltage can be calculated as: $V = KE \times N/1000 + RT \times I$.

DIMENSIONS

JR12M4CH

JR16M4CH/CH-1/CHLR-1/CHLR-2

- For JR12M4CH Nema 48C Face Mount shown (Square Flange Mount and Face Mount per IEC-72 also available). Motor weight: 8.00 lbs.
- All others: Nema 56C Face Mount shown (Square Flange Mount and Face Mount per IEC-72 also available). Motor weight: 17.50 lbs.
- 2. Shaft diameter "A" runout not to exceed .001 in/in measured fromsurface "S".
- 3. Pilot diameter "B" runout to "A" within .003 in TIR.
- 4. Mounting surface "S" runout to "A" within .006 in TIR.
- For clockwise rotation as viewed from mounting end of motor: Pin "A" (+) positive, Pin "B" (-) negative, Case Ground: Pin "C." Connector MS3102A-10SL-3P and Mating Connector MS3106A-10SL-3S supplied.
- 6. For clockwise rotation as viewed from mounting end of motor: Pin "A" (+) positive, Pin "B" (-) negative, Case Ground: Pin "G." Tachometer output: Pin "C" (+) positive, Pin "D" (-) negative. Brake output: Pin "E" (+) positive, Pin "F" (-) negative. Connector MS3102A-16S-1P and Mating Connector MS3106A-16S-1S supplied.
- 7. For clockwise rotation as viewed from mounting end of motor: Pin "A" (+) positive, Pin "B" (-) negative, Case Ground: Pin "C." Connector MS3102A-20-19P and Mating Connector MS3106A-20-19S supplied.

Encoder Connections				
Function	Pin			
Output A	A			
Output B	В			
Index	С			
V+	D			
Common	F			
Case Ground	G			

Connector MS3102A-18-1P and Mating Connector MS3106A-18-1S supplied.

DIMENSIONS

JR24M4CH

JR25M6CH

Notes:

- 1. Nema 182ATC Face Mount shown (Square Flange Mount and Face Mount per IEC-72 also available).
- 2. Shaft diameter "A" runout not te exceed .001 in/in measured from surface "S".
- 3. Pilot diameter "B" runout to "A" within .003 in TIR.
- 4. Mounting surfaces "P" and "S" runout to "A" within .006 in TIR.
- For clockwise rotation as viewed from mounting end of motor: Pin "A" (+) positive, Pin "B" (-) negative, Case Ground: Pin "C." Connector MS3102A-16-10P and Mating Connector MS3106A-16-10S supplied.
- 6. For clockwise rotation as viewed from mounting end of motor: Pin "A" (+) positive, Pin "B" (-) negative, Case Ground: Pin "C." Brake output: Pin "D" (+) positive, Pin "E" (-) negative. Connector MS3102A-18-11P and Mating Connector MS3106A-18-11S supplied. Tachometer output (separate connector): Pin "A" (+) positive, Pin "B" (-) negative. Connector MS3102A-10SL-3P (3S for JR24M4CH) and Mating Connector MS3106A-10SL-3S supplied.
- 7a. JR24M4CH motor weight: 50 lbs.
- 7b. JR25M6CH motor weight: 70 lbs.

Encoder Connections			
Function	Pin		
Output A	A		
Output B	В		
Index	С		
V+	D		
Common	F		
Case Ground	G		

Connector MS3102A-18-1P and Mating Connector MS3106A-18-1S supplied.

DIMENSIONS

JR33

Notes:

- 1. Face Mount shown (Square Flange Mount also available).
- Shaft diameter "A" runout not to exceed .001 in/in measured from surface "S".
- Pilot diameter "B" runout to "A" within .003 in TIR. Mounting surface "S" runout to "A" within .010 in TIR.
- For clockwise rotation as viewed from mounting end of motor: Pin "A" (+) positive, Pin "B" (-) negative, Case Ground: Pin "C." Connector MS3106A-16-10P and Mating Connector MS3106A-16-10S supplied.
- For clockwise rotations as viewed from mounting end of motor: Pin "A" (+) positive, Pin "B" (-) negative, Case Ground: Pin "G." Brake output: Pin "D" (+) positive, Pin "E" (-) negative. Connector MS3102A-18-11P and Mating Connector MS3106A-18-11S supplied. Tachometer output (separate connector): Pin "A" (+) positive, Pin "B" (-) negative. Connector MS3102A-10SL-3P and Mating Connector MS3106A-10SL-3S supplied.
- Connectors are rotated 120° CW from true position as viewed from rear of motor.
- Lifting Eyes shipped loose (Eyes not shown) to be mounted in ³/₈-16 tapped holes if required (Face Mount). On Square Flange Mount 4, Lifting Eyes also mounted on Flange (not shown).
- 9. Motor weight: 195 lbs.

Encoder Connections				
Function	Pin			
Output A	A			
Output B	В			
Index	С			
V+	D			
Common	F			
Case Ground	G			

Connector MS3102A-18-1P and Mating Connector MS3106A-18-1S supplied.

	Max Shaft Loads				
		Pure Radial Load			
	Pure Axial Load (lb)	(lb)	From Mounting Face (in)		
JR12M4CH	50	52	1.25		
JR16M4CH	100	95	1.63		
JR24M4CH	100	150	1.875		
JR25M4CH	100	170	1.875		
J433	175	250	1.80		

OPTIONS

F9T	TACHOMETER					
	PARAMETER	JR12, JR16	JR24, JR25			
1.0	Emf/1000 RPM open circuit (KE) (V)	3+5%-0%	6.0*	*Measure with a resistive load of		
2.0	Bi-directional tolerance (% KE)	± 1.5	± 1	1 kohm and a single-pole low		
3.0	Residual ripple peak to peak (%)	4*	2**	pass filter with 3db cut off at 2 kHz.		
4.0	Linearity referred to 3600 RPM (% 3.6KE)	0.05	1	Optional voltage gradients avail-		
5.0	Output impedance (ohm)	1	5.4	able are: 7, 9, 10 and 19		
6.0	Rotor moment of inertia (J) (oz-in-sec ²)	0.005	.009	Volts/kRPM.		
7.0	Friction (oz-in)	3.0	3.0	** Measured with the recommended		
8.0	Temperature range (°C)	-25 to +70	-25 to +70	purely resistive load.		
9.0	Max speed (RPM)	4000	5000			
10.0	Weight (lb)	2.2	2.5			
BRA 1.0	DC Voltage (V)	24	24	Note:		
		= -	= ·	Note: 1. Brakes are electrically released.		
2.0	Input Power (W) Holding Torque (in-lbs)	25 Max 70.8	27 Max 180	2. Above brakes are intended to be		
4.0	Inertia (oz-in-sec ²)	0.0055	.021	used in emergency situatins (loss		
6.0	Weight (lb)	2.5	5.0	of power supply) or to hold the		
0.0	weight (10)	2.3	3.0	motor shaft when the motor is at standstill. Other voltages available.		
BA25	5I ENCODER					
(See E	3A25I data sheet for more detailed information	.)				
1.0	Moment of Inertia (oz-in-sec ²)	3.0 x 10 ⁻⁴ Ma	x	3.0 x 10 ⁻⁴ Max		
2.0	Starting Torque (oz-in Max)	1.0		1.0		
3.0	May Speed (DDM)	4000		4000		

1.0	Moment of Inertia (oz-in-sec ²)	3.0 x 10 ⁻⁴ Max	3.0 x 10 ⁻⁴ Max
2.0	Starting Torque (oz-in Max)	1.0	1.0
3.0	Max Speed (RPM)	4000	4000
4.0	Power Supply Required	5V±2% @ 150 ma	5V±2% @ 150 ma
5.0	Output TTL (CMOS also available)	Logic "0"<.7VDC	Logic "0"<.7VDC
		Logic "1">2.4VDC	Logic "1">2.4VDC
6.0	Number of Outputs	Dual Channel A and B in phase	Dual Channel A and B in phase
		quadrature with index channel.	quadrature with index channel.
7.0	Cycles Per Revolution	Standards available: 100,	Standards available: 100,
		125, 200, 250, 360, 500, 512	125, 200, 250, 360, 500, 512
		1000, 1024, 1200, 1800, 2000	1000, 1024, 1200, 1800, 2000
		2048, 2500.	2048, 2500.
8.0	Max data rate (kHz)	100	100
9.0	Temperature range (°C)	-25 to +70	-25 to +70
10.0	Weight (lb)	1.3	1.3

RESOLVER

1.0	Size 11 Resolver			Notes:
2.0	Weight (lb)	0.5	0.5	Resolver prepared with cover, MS
				connector, clamps and coupling.
				For details, contact a Kollmorgen
				Sales Office

Gearmotor Series ServoDisc

INTRODUCTION

- 8 to 2604 in-lb (.9 to 294 N-M) Continuous Stall Torque
- Virtually Zero to Medium Backlash Models
- Compact, Inline Packaging
- Powered by High-Performance DC ServoDisc Motors

Kollmorgen provides an assortment of gearmotors. Characteristics of all these products include high-torque-to-weight ratios, smooth constant torque and fast acceleration.

- The Accurex[™] series, with virtually zero backlash, is designed with a minimum of moving parts for extremely reliable operation
- The Revex[™] series uses proven spur gear technology to produce a wide range of exact gear ratios with a maximum of 5 arc minutes of backlash
- The IndurexTM series provides fully reversible helical gearing which results in an exceptional gearmotor actuator
- The low voltage Ferrite series is the flattest design, ideal for battery-powered applications

ACCUREX

- -- Virtually zero backlash for high-position accuracy
- -- Continuous output torque up to 500 in-lb
- -- Heavy duty bearing design
- -- Harmonic drive components for simplicity, high reliability and compact shape
- -- Exact reduction ratios: 60, 80, 100, 120 and 160:1
- -- High torque capacity in single-stage ratio
- -- IP55 environmental sealing and prep for resolver are available

REVEX

- -- Extremely low backlash; less than 5 arc-minutes
- -- High-torsional stiffness to ensure high accuracy and repeatability in positioning applications

- -- Exact reduction ratios: 10:1 up to 100:1 (other ratios optional)
- -- Continuous output torque up to 2604 in-lbs
- -- Compact and lightweight
- -- Gearhead can be sold separately (consult an Kollmorgen Sales Office)
- -- IP55 environmental sealing and prep for resolver are available

INDUREX

- -- Low backlash; less than 20 arc-minutes
- -- Compact ultraquiet design
- -- Industrial compact design
- -- Reduction ratios 3.67:1 up to 98.87:1
- -- Continuous output torque up to 2580 in-lbs
- -- IP55 environmental sealing and prep for resolver are available

FERRITE

- -- Flat shape and lighweight for easy design intergration
- -- Reduction ratios from 15:1 to 150:1
- -- Continuous output torque up to 200 in-lbs
- -- Suitable for battery operation: 12 or 24 Volts
- -- Constant torque over the entire speed range
- -- Zero cogging for smooth operation
- -- Low inertia produces rapid, accurate response to command signals
- Options:
- -- Tachometers or encoders
- -- Fail-safe brakes

Compatible Products

- KXA Plus Amplifier
- EM19 Linear Amplifier

Accurex Gearmotor Series ServoDisc

PERFORMANCE DATA

	Gearmotor Types	Rated Speed (RPM)	Continuous Torque (in-lb/N-m)	Peak Torque (in-lb/N-m)	Gear Ratio	Motor Voltage (Volts)	Motor Current (amps)
1.0	S6M4H/H6D60	50.0	52/6	300/34	60:1	17.5	5.0
2.0	S9M4H/H9D60	50.0	274/31	570/64	60:1	35.0	7.5
3.0	S6M4H/H6D80	37.5	70/8	300/34	80:1	17.5	5.0
4.0	S9M4H/H9D80	37.5	345/39	570/64	80:1	35.0	7.5
5.0	S6M4H/H6D100	30.0	87/10	400/45	100:1	17.5	5.0
6.0	S9M4H/H9D100	30.0	431/49	770/87	100:1	35.0	7.5
7.0	S6M4H/H6D120	25.0	105/12	400/45	120:1	17.5	5.0
8.0	S6M4H/H6D160	18.8	140/16	400/45	160:1	17.5	5.0
9.0	S9M4H/H9D120	17.0	500/57	990/112	120:1	26.0	7.5

		Units	S6M4H/H6D (all ratios)	S9M4H/H9D (all ratios)
1.0 Max Inertia (2)	oz-in-sec ²	0.0033	0.0125	
	wax merua (2)	g-cm ²	233	883
2.0	Radial Load	lbs	200	465
2.1	Distance from Mounting Surface	in	1 1/8	1 1/2
3.0	Axial Load	lbs	500	500
4.0	Basic Weight (3)	lbs	5.15	10.80
5.0	Basic Length (3)	in	5.4	6.8

Motor electrical and mechanical specifications are subject to change without notice. Please consult a Kollmorgen Sales Office.

- 1. Mounted on 8" x 16" x 3/8" aluminum heatsink.
- 2. Motor plus gearhead, measured at motor shaft.
- 3. Weights and lengths will vary with options.

- 4. For vertical orientation, a grease cartridge is recommended.5. Gearmotors can be mounted in any position.

Accurex Gearmotor Series ServoDisc

DIMENSIONS

S6M4H/H6D

S9M4H/H9D

- 1. Illustrations show basic motor lengths only. Lengths will vary with options.
- 2. Mating connectors are supplied with "Industrial" versions.

Accurex Gearmotor Series ServoDisc

OPTIONS

TACHOMETER SPECIFICATIONS

	Tachometer/Motor Types	S6T/S6M4H	S9A4T/S9M4H
1.0	Output Voltage (Volts/kRPM)	0.75	3.0
2.0	Max Ripple Peak to Peak (%)*	1.5	1.5
3.0	Linearity Referred to 3600 RPM (%)	0.05	0.06
4.0	Bi-directional Tolerance (%)	1.5	1.5
5.0	Output Impedance (ohm)	<5	<5
6.0	Moment of Inertia (oz-in-sec ²)	0.00025	0.0024
7.0	Temperature Coefficient (%/°C Rise)	-0.02	-0.02
8.0	Recommended Load Resistance (ohms)	1000	1000
9.0	Friction Torque (oz-in)	0.75	1.0
10.0	Weight (lb)	1.13	2.0

^{*}With 500 Hz low pass filter.

BRAKE SPECIFICATIONS

	Motor Types	S6M4H	S9M4H
1.0	DC Voltage (Volts)	24	24
2.0	Input Power @ 20°C Nominal (Watts)	8	9
3.0	Holding Torque (in-lbs)	3 Min.	8 Min.
4.0	Inertia (oz-in-sec²)	0.00028	0.00096
5.0	Weight (lb)	0.65	1.0

Notes:

- 1. Brakes are electrically released.
- 2. Brakes are intended for power loss situations or to hold motor when at a standstill.

M23 ENCODER SPECIFICATIONS

(for all motors) (See Encoder Section for more detailed information.)

1.0	Resolution	Up to 2540 Cycles Per Revolution (500 for sinewave)
2.0	Frequency Response (kHz)	100
3.0	Output Format	Quadrature Channels and Index
4.0	Phasing	$90^{\circ} \pm 20^{\circ} \text{ Max}$
5.0	Output Levels (5, 12 and 15 Volts)	TTL and CMOS Compatible
6.0	Input Power	5, 12 and 15 Volts 150 ma Max
7.0	Moment of Inertia (oz-in-sec ²)	0.0001
8.0	Weight	2.0 oz Typical

CONNECTION SPECIFICATIONS

(circular MS style mating connector available as industrial version)

Motor/Tach or Motor/Tach/Brake (for clockwise rotation) S6M4HI/S9M4HI

Notes:

S6M4HI uses Pin K. S9M4HI uses Pin I.

*Additional outputs for complementary models.

**Split supply for amplified sinewave.

r	Lead	Pin
e	(+) Motor Lead	A
)	(-) Motor Lead	В
I	(+) Tach Lead	C
	(-) Tach Lead	D
	(+) Brake Lead	Е
	(-) Brake Lead	F
	Case Ground	G

Encoder M23 S6M4HI/S9M4HI

Function	Pin
Channel A	A
Channel B	В
Channel I	C
V+	D
Common	F
Case Ground	G
Channel Ā*	Н
Channel B*	I/K (1)
Channel T*	J
+15V**	Н
-15V**	I/K (1)

Revex Gearmotor Series ServoDisc

PERFORMANCE DATA

		Rated Speed	Continuous Torque	Peak Torque**		Motor Voltage	Motor Current
	Gearmotor Types	(RPM)	(in-lb/N-m)	(in-lb/N-m)	Gear Ratio	(Volts)	(amps)
1.0	S6M4H/GH6-10	300	12.6/1.4	50/59.6	10:1	17.8	5.2
1.1	U9M4T/GH9-10*	300	27/3.1	103/11.7	10:1	22.9	8.6
1.2	U9M4/GH9-10	300	30/3.4	115/13	10:1	24.1	8.7
1.3	N9M4/GH9-10	300	41/4.6	163/18.4	10:1	30.2	7.8
1.4	U9M4HT/GH9-10*	300	45/5.1	179/20.2	10:1	29.9	8.5
1.5	S9M4H/GH9-10	300	49.4/5.6	296/33.5	10:1	35.0	7.8
1.6	U12M4T/GH12-10*	300	64/7.3	258/29.1	10:1	40.4	8.7
1.7	U12M4/GH12-10	300	75.2/8.5	301/34	10:1	43.4	8.8
1.8	U12M4HT/GH12-10*	300	93/10.5	372/42	10:1	56.5	7.9
1.9	U12M4H/GH12-10	300	103/11.6	417/47.2	10:1	67.7	7.8
1.10	JR12M4CH/GH12-10	300	105/11.9	420/47.5	10:1	61	8.4
1.11	JR16M4CH/GH16-10	300	263/31.4	650/73.4	10:1	129	9.6
2.0	S6M4H/GH6-20	150	24.7/3.1	100/11.3	20:1	17.8	5.2
2.1	U9M4T/GH9-20*	150	52/5.8	207/23.3	20:1	22.9	8.6
2.2	U9M4/GH9-20	150	60/6.8	240/27.1	20:1	24.1	8.7
2.3	N9M4/GH9-20	150	81/9.2	325/36.7	20:1	30.2	7.8
2.4	U9M4HT/GH9-20*	150	90/10.1	358/40.4	20:1	29.9	8.5
2.5	S9M4H/GH9-20	150	99/11.2	495/56	20:1	35.0	7.8
2.6	U12M4T/GH12-20*	150	129/14.6	515/58.2	20:1	40.4	8.7
2.7	U12M4/GH12-20	150	150/17	602/68	20:1	43.4	8.8
2.8	U12M4HT/GH12-20*	150	185/20.9	740/87.6	20:1	56.5	7.9
2.9	U12M4H/GH12-20	150	205/23.2	836/94.5	20:1	62.7	7.8
2.10	JR12M4CH/GH12-20	150	211/23.8	844/95	20:1	61	8.4
2.11	JR16M4CH/GH16-20	150	545/61.5	2603/294	20:1	129	9.6
3.0	S6M4H/GH6-40	75	48.3/5.5	159/18	40:1	17.8	5.2
3.1	U9M4T/GH9-40*	75	108/12.2	413/46.7	40:1	22.9	8.6
3.2	U9M4/GH9-40	75	117/13.2	468/93	40:1	24.1	8.7
3.3	N9M4/GH9-40	75	158/18	636/71.8	40:1	30.2	7.8
3.4	U9M4HT/GH9-40*	75	165/18.6	681/77	40:1	29.9	8.5
3.5	S9M4H/GH9-40	75	194/21.9	681/77	40:1	35.0	7.8
3.6	U12M4T/GH12-40*	75	252/28.5	1030/116.4	40:1	40.4	8.7
3.7	U12M4/GH12-40	75	294/33.3	1178/133	40:1	43.4	8.8
3.8	U12M4HT/GH12-40*	75	363/41.0	1434/162	40:1	56.5	7.9
3.9	U12M4H/GH12-40	75	411/46.4	1433/162	40:1	67.7	7.8
3.10	JR12M4CH/GH12-40	75	421/47.6	1534/516.5	40:1	61	8.4
3.11	JR16M4CH/GH16-40	75	1089/123	2603/294	40:1	129	9.6
4.0	S6M4H/GH6-60	50	72.5/8.2	177/20	60:1	17.8	5.2
4.1	U9M4T/GH9-60*	50	161/18.2	620/70	60:1	22.9	8.6
4.2	U9M4/GH9-60	50	176/19.9	726/82	60:1	24.1	8.7
4.3	N9M4/GH9-60	50	239/27	726/82	60:1	30.2	7.8
4.4	U9M4HT/GH9-60*	50	248/28	725/82	60:1	29.9	8.5
4.5	S9M4H/GH9-60	50	292/33	725/82	60:1	35.0	7.8
4.6	U12M4T/GH12-60*	50	378/42.7	1548/174.6	60:1	40.4	8.7
4.7	U12M4/GH12-60	50	442/50	1548/175	60:1	43.4	8.8
4.8	U12M4HT/GH12-60*	50	544/61.5	1548/175	60:1	56.5	7.9
4.9	U12M4H/GH12-60	50	602	1548/175	60:1	62.7	7.8
4.10	JR12M4CH/GH12-60	50	632/71.4	1548/175	60:1	61	8.4
4.11	JR16M4CH/GH16-60	50	1634/185	2603/184	60:1	129	9.6
5.0	S6M4H/GH6-100	30	79/9	195/22	100:1	15.4	3.6
5.1	U9M4T/GH9-100*	30	258/29.2	796/90	100:1	22.9	8.6
5.2	U9M4/GH9-100	30	293/33.2	796/90	100:1	24.1	8.7
5.3	N9M4/GH9-100	30	318/36	796/90	100:1	29.0	5.7
5.4	U9M4HT/GH9-100*	30	318/36	796/90	100:1	27.8	7.4
5.5	S9M4H/GH9-100	30	318/36	796/90	100:1	33	5.5
5.6	U12M4T/GH12-100*	30	630/71.2	1699/192	100:1	40.4	8.7
5.7	U12M4/GH12-100	30	681/77	1699/192	100:1	42.4	8.6
5.8	U12M4HT/GH12-100*	30	681/77	1699/192	100:1	54.3	6.6
5.9	U12M4H/GH12-100	30	681/77	1699/192	100:1	60.7	5.7
5.10	JR12M4CH/GH12-100	30	681/77	1699/192	100:1	57.5	5.8
5.11	JR16M4CH/GH16-100	30	2604/294	3905/441	100:1	125	9.0

^{*}Smallest axial length for gearmotor with tachometer.

^{**}For short duration only.

Revex Gearmotor Series ServoDisc

DIMENSIONS

S-SERIES (S6)

S6M4H/GH6		Motor	Motor/Tachometer	Motor/Brake	Motor/Brake Tachometer	
A Without Encoder	Without Encoder	in	1.61	2.56	2.91	3.94
	Without Encoder	mm	40.9	65.1	73.9	100.0
B With Encoder	With Encoder	in	2.66	3.61	3.96	4.99
	mm	67.6	91.7	100.0	126.7	

S6M4H/GH6 and S6M4HI/GH6		10:1 20:1	40:1 60:1	100:1
C	in	2.68	2.93	3.19
	mm	68.0	74.5	81

S6M4HI/GH9		Motor	Motor/Tachometer	Motor/Brake	Motor/Brake Tachometer	
A Without Encoder	in	4.23	5.26	4.23	5.26	
A	A without Encoder	mm	107.4	133.6	107.4	133.6
Α	With Encoder	in	4.23	5.26	5.61	6.56
A WILLIEUCO	With Encoder	mm	107.4	133.6	142.5	166.6

Motor Connector - Amphenol/Bendix PT 02A-12-8P Encoder Connector - Amphenol/Bendix PT 02A-12-10P

DIMENSIONS

S-SERIES (S9)

	S9M4H/GH9		Motor	Motor/Tachometer	Motor/Brake	Motor/Brake Tachometer
Δ	Without Encoder	in	2.28	3.25	3.70	4.66
A		mm	57.9	82.6	94.0	118.4
В	With Encoder	in	3.33	4.30	4.75	5.71
(max)	with Encoder	mm	84.6	109.0	120.7	145.0

	S9M4HI/GH9		Motor	Motor/Tachometer	Motor/Brake	Motor/Brake Tachometer
	Without Encoder	in	5.19	6.17	6.67	7.61
A	A without Encoder		131.8	157.0	169.4	193.3
Α	With Encoder	in	5.19	6.17	6.67	7.61
A	with Encoder	mm	131.8	157.0	169.4	193.3

Motor Connector - MS3102A16S-IP Encoder Connector - MS3102A18-IP

DIMENSIONS

U-SERIES

Gearmotor		B1	B2	В3	B4
U9M4/GH9	in	1.84	2.78	3.32	3.98
U9M4/UH9	mm	46.74	70.6	84.4	101.1
U9M4T/GH9	in	1.86	_	3.34	_
U3W41/U113	mm	47.20	_	84.8	_
U9M4HT/GH9	in	2.41	_	3.89	_
U9W4H1/UH9	mm	61.12	_	98.8	_

Gearmotor		B1	B2	В3	B4
U12M4/GH12	in	2.11	3.05	3.59	4.25
012M4/01112	mm	53.59	77.5	91.2	108
U12M4H/GH12	in	2.78	3.72	4.26	4.92
U12M4H/UH12	mm	70.61	94.5	108.25	125
U12M4T/GH12	in	2.11	_	3.59	_
U12M41/UH12	mm	53.6	_	91.2	_
U12M4HT/GH12	in	2.81	_	4.28	_
U12M4111/UH12	mm	71.4	_	108.7	_

MOTOR/ ENCODER

MOTOR/ TACHOMETER/ ENCODER

DIMENSIONS

JR12/GH12

JR16/GH16

Gearmotor				A			В					
Gearmotor		10:1	20:1	40:1	60:1	100:1	1	2	3	4	5	6
JR12M4CH/GH12	in	4.685	4.685	4.685	4.685	4.685	3.94	5.77	7.20	8.49	9.26	11.07
JK12WI4CH/GH12	mm	119.0	119.0	119.0	119.0	119.0	100.1	146.6	182.9	215.6	235.2	281.2
JR16M4CH/GH16	in	5.20	6.20	6.20	6.20	6.20	4.50	6.34	7.77	9.06	9.81	11.62
JK10W4CH/GH10	mm	132.1	157.5	157.5	157.5	157.5	114.3	161.0	197.4	230.1	249.1	295.1

DIMENSIONS

N-SERIES (N9)

	N9M4/GH9/M23			Motor	Motor/Tachometer	Motor/Brake	Motor/Brake Tachometer
		Without Encoder	in	0.93	0.95	2.43	2.45
	A		mm	23.6	24.1	61.7	62.2
	B With Encod		in	1.98	2.00	3.48	3.50
(max)	with Encoder	mm	50.3	50.8	88.4	88.9

DIMENSIONS

N-SERIES (N12)

N12M4/GH12/M23		Motor	Motor/Tachometer	Motor/Brake	Motor/Brake Tachometer	
Α	Without Encoder	in	1.06	1.09	2.87	2.90
A		mm	26.9	27.7	72.9	73.7
B With Encoder		in	2.11	2.14	3.92	3.95
(max)	with Elicodei	mm	53.6	54.4	99.6	100.3

		Units	GH6	GH9	GH12	GH16
1.0	Max Inertia (2)	oz-in-sec ²	10.9x10 ⁻⁴	5.90x10 ⁻³	22.46x10 ⁻³	86.5x10 ⁻³
1.0	iviax ilicitia (2)	g-cm ²	77	417	1586	6108
2.0	Radial Load	lbs	47	135	134	430
2.1	Distance from Mounting Surface	in	.71	.69	.93	1.7
3.0	Axial Load	lbs	52	126	253	762
4.0	Basic Weight (3)	lbs	4.3-5.0	8.2-12.7	18.5-24.7	50.5-67.5
5.0	Basic Lenght (3)	in	2.3-2.8	3.94	4.68	5.2-6.5

Notes

- 1. Mounted on 8" x 16" x 3/8" aluminum heatsink.
- 2. Motor plus gearhead, measured at motor shaft.

- 3. Weights and lengths will vary with options.
- 4. Gearmotors can be mounted in any position.

OPTIONS

TACHOMETER SPECIFICATIONS

	Tachometer/Motor Types	9FA4T/U-Series	F9T/JR-Series
1.0	Output voltage (Volts/kRPM)	2.5	3.0
2.0	Max ripple peak to peak (%)*	5.0	4.0
3.0	Linearity referred to 3600 RPM (%)	0.06	0.05
4.0	Bi-directional tolerance (%)	3.0%	1.5
5.0	Output impedance (ohm)	1.18	1.0
6.0	Moment of inertia (oz-in-sec ²)	0.0024	0.005
7.0	Temperature coefficient (%/°C Rise)	-0.19	-0.02
8.0	Recommended load resistance (ohms)	2500 Min.	2000 Min.

^{*}With 500 Hz low pass filter.

BRAKE SPECIFICATIONS

	Brake Types/Motor Types	BRK/JR-Series
1.0	DC voltage (Volts) (90V in option)	24
2.0	Input power @ 20°C nominal (Watts)	25 Max
3.0	Holding torque (in-lb)	70.8
4.0	Additional inertia (oz-in-sec ²)	0.0064

Notes:

- 1. Brakes are electrically released.
- 2. Brakes are intended for power loss situations or to hold motor when at a standstill.

ENCODER SPECIFICATIONS

(For U-Series, use Model #M23 for JR-Series; use Model #BA251.) (See Feedback Section for more detailed information.)

1.0	Resolution	Up to 2540 cycles per revolution
2.0	Frequency response (kHz)	100
3.0	Output format	Quadrature channels and index
4.0	Phasing	$90^{\circ} \pm 20^{\circ} \text{ max}$
5.0	Output levels (5, 12 and 15 Volts)	TTL and CMOS compatible
6.0	Input power	5, 12, and 15 volts 150 ma max
7.0	Moment of inertia (oz-in-sec ²)	
	M23	0.0001
	BA251	0.00045

Indurex Gearmotor Series ServoDisc

PERFORMANCE DATA

	Gearmotor Types	Rated Speed (RPM)	Continuous Torque (in-lb/N-m)	Peak Torque (in-lb./N-m)	Gear Ratio	Motor Voltage (Volts)	Motor Current (amps)
1.0	JR24M4CH/KR16-4	818	281/31.7	842/95	3.67:1	139.7	26.0
2.0	JR24M4CH/KR16-5	605	379/42.8	1138/128	4.96:1	139.7	26.0
3.0	JR24M4CH/KR16-6	467	491/55.4	1473/166	6.42:1	139.7	26.0
4.0	JR24M4CH/KR16-7	435	528/59.7	1583/178	6.90:1	139.7	26.0
5.0	JR16M4CH/KR16-10	301	269/30.4	806/91.1	9.96:1	127.4	9.6
6.0	JR24M4CH/KR16-10	301	762/86.1	2286/258	9.96:1	139.7	26.0
7.0	JR24M4CH/KR16-20	153	1498/169	3700/418	19.58:1	139.7	26.0
8.0	JR16M4CH/KR16-20	150	528/59.7	1614/182	19.58:1	129.4	9.6
9.0	JR16M4CH/KR16-40	77	1022	3067/346	39.17:1	129.4	9.6
10.0	JR16M4CH/KR16-60	53	1488/168	4464/504	57.01:1	129.4	9.6
11.0	JR16M4CH/KR16-80	38	2055/232	6000/678	78.76:1	129.4	9.6
12.0	JR16M4CH/KR16-100	30	2580/291	6180/698	98.87:1	129.4	9.6

		Units	JR16M4CH/KR16	JR24M4CH/KR16
1.0	Max Inertia (2)	oz-in-sec ²	0.097	0.535
1.0	Ivida ilicitia (2)	kg-cm ²	6.849	37.78
2.0	Radial Load	lb	500	272
2.1	Distance from Mounting Surface	in	1	1
3.0	Axial Load (5)	lb	114	71
4.0	Basic Weight (3)	lb	42	84
5.0	Basic Lenght (3)	in	10.7	13

Notes:

- 1. Mounted on 16" x 16" x 3/8" (JR16), 21" x 21" x 1/2" (JR24) aluminum heatsink.
- 2. Motor plus gearhead, measured at motor shaft.

- 3. Weights and lengths will vary with options.
- 4. Gearmotors can be mounted in any position.
- 5. Axial Load combined with specified Radial Load.

Indurex Gearmotor Series ServoDisc

OPTIONS

JR16M4CH/JR24M4CH

Gearmotor		A*	В
JR16M4CH	in	5.00	7.38
JK10W4CII	mm	127.0	187.4
JR24M4CH	in	6.78	11.09
JR24W4CI1	mm	172.2	281.7

^{*}Dimension will change depending on options chosen.

TACHOMETER SPECIFICATIONS

	Tachometer Types	F9T	W6T6	W6T19
1.0	Output voltage (Volts/kRPM)	3	6	19
2.0	Max ripple peak to peak (%)*	4	3	2
3.0	Linearity referred to 3600 RPM (%)	0.05	1	1
4.0	Bi-directional tolerance (%)	±1.5	±1	±1
5.0	Output impedance (ohms)	1.0	5.4	26.0
6.0	Moment of inertia (oz-in-sec ²)	0.005	0.008	0.008
7.0	Temperature coefficient (%/°C Rise)	-0.020	-0.045	-0.045
8.0	Recommended load resistance (ohms)	2000 Min.	350 Min.	2600 Min.
9.0	Friction torque (oz-in)	3	3	3
10.0	Weight (lb)	2.2	1.5	1.5

^{*}With 500 Hz low pass filter.

BRAKE SPECIFICATIONS

	Motor Types	JR16M4CH	JR24M4CH
1.0	DC voltage (Volts) (90V in option)	24	24
2.0	Input power @ 20°C nominal (Watts)	25 Max	27 Max
3.0	Holding torque (in-lb)	70.8	180.0
4.0	Additional inertia (oz-in-sec ²)	0.0064	0.0210
5.0	Disengagement time (millisec)	70	70
6.0	Engagement time (millisec)	30	30
7.0	Weight (lb)	2.5	5.0

Notes:

- 1. Brakes are electrically released.
- 2. Brakes are intended for power loss situations or to hold motor when at a standstill.

BA251 ENCODER SPECIFICATIONS

(See Feedback Section for more detailed information.)

1.0	Resolution	Up to 2540 cycles per revolution (500 for sinewave)
2.0	Frequency response (kHz)	100
3.0	Output format	Quadrature channels and index
4.0	Phasing	$90^{\circ} \pm 20^{\circ} \text{ max}$
5.0	Output levels (5, 12 and 15 Volts)	TTL and CMOS compatible
6.0	Input power	5, 12, and 15 volts 150 ma max
7.0	Moment of inertia (oz-in-sec ²)	0.00045
8.0	Weight	17 oz (max)

PERFORMANCE DATA

Gearm	notor Types	Rated Speed (RPM)	Continuous Torque (in-lb/N-m)	Peak Torque (in-lb/N-m)	Gear Ratio	Motor Voltage (Volts)	Motor Current (amps)
10:1	9FGCHD/10:1	315	8.0/0.9	32	9.53:1	13.8	6.2
10:1	9FGCHDT/10:1	315	7.5/0.8	32/3.6	9.53:1	13.8	6.2
15:1	9FGT/15:1	208	8.0/0.9	16/1.8	14.4:1	11.4	5.2
	9FG/15:1	208	9.9/1.1	16/1.8	14.4:1	12.4	5.2
	9FGHDT/15:1	200	12/1.4	36/4.1	15.1:1	14.4	6.6
	9FGHD/15:1	200	13.6/1.5	36/4.1	15.1:1	14.6	6.7
	9FGCHD/15:1	200	12.8/1.4	38/4.3	15.1:1	13.8	6.2
	9FGCHDT/15:1	199	12/1.4	38/4.3	15.11:1	13.8	6.2
	12FGT/15:1	189	27.9/3.2	68/7.7	16.06:1	19.4	7.4
	12FG/15:1	189	31.2/3.5	68/7.7	16.06:1	21.2	6.9
25:1	9FGT/25:1	125	13.4/1.5	26/2.9	24:1	11.4	5.2
23.1	9FG/25:1	125	16.5/1.9	26/2.9	24:1	12.4	5.2
	9FGHDT/25:1	116	19.2/2.2	62/7	25.85:1	14.4	6.6
	9FGHD1/25:1	116	22/2.5	62/7	25.85:1	14.4	6.7
	9FGCHD/25:1	116	20.6/2.3	69/7.3	25.85:1	13.8	6.2
	9FGCHDT/25:1	116	19.2/2.2	65/7.3	25.85:1	13.8	6.2
	12FGT/25:1	123	42.8/4.8	103/11.6	24.48:1	19.4	7.4
27.1	12FG/25:1	123	47.2/5.3	103/11.6	24.48:1	21.2	6.9
37:1	12FGT/37:1	81	64.5/7.3	156/17.6	36.99:1	19.4	7.4
7 0.4	12FG/37:1	81	72/8.1	156/17.6	36.99:1	21.2	6.9
50:1	9FGHDT/50:1	61	36/4.1	116/13.1	48.96:1	14.4	6.6
	9FGHD/50:1	61	42/4.7	116/13.1	48.96:1	14.6	6.7
	9FGT/50:1	60	27.5/3.1	49/5.6	48.95:1	11.4	5.2
	9FG/50:1	60	33.7/3.8	49/5.5	48.95:1	12.4	5.2
	9FGCHD/50:1	61	39/4.4	124/14	48.96:1	13.8	6.2
	9FGCHDT/50:1	61	36.4/4.1	124/14	48.96:1	13.8	6.2
	12FGT/50:1	60	87/9.8	210/23.7	49.96:1	19.4	7.4
	12FG/50:1	60	97/11	210/23.7	49.96:1	21.2	6.9
80:1	9FGT/80:1	38	44.3/5	59/6.7	77.29:1	11.4	5.2
	9FGHDT/80:1	38	56.8/6.4	149/16.8	79.2:1	14.4	6.6
	9FG/80:1	38	53.2/6	59/6.7	77.29:1	12.4	5.2
	9FGHD/80:1	38	65/7.3	149/16.8	79.2:1	14.6	6.7
	9FGCHD/80:1	38	60/6.8	120	79.2:1	13.0	6.2
	9FGCHDT/80:1	38	56.8/6.4	120/13.6	79.20:1	13.0	16.2
	12FGT/80:1	36	139/15.7	229/25.9	82.73:1	19.4	7.4
	12FG/80:1	36	155/17.5	229/25.9	82.73:1	21.2	6.9
100:1	9FGT/100:1	31	50/5.6	94/10.6	95.93:1	11.4	5.2
	9FG.100:1	31	59/6.7	94/10.6	95.93:1	12.2	5.0
	9FGHDT/100:1	30	71/8.0	151/17.1	99:1	14.6	6.6
	9FGHD/100:1	30	81.2/9.2	151/17.1	99:1	14.5	6.7
	9FGCHD/100:1	30	60/6.8	121	99.0:1	12.0	5.1
	9FGCHDT/100:1	30	60/6.8	120/13.6	99.0:1	12.0	5.1
	12FGT/100:1	30	169/19.1	237/26.8	99.77:1	19.4	7.4
	12FG/100:1	30	187/21.1	237/26.8	99.77:1	21.2	6.9
150:1	9FG/150:1	21	59/6.7	94/10.6	148.54:1	10.9	3.7
150.1	9FGT/150:1	21	59/6.7	94/10.6	148.54:1	10.5	4.3
	9FGHD/150:1	20	92/10.4	152/17.2	148.51:1	12.9	5.2
	9FGHD7150:1	20	92/10.4	152/17.2	148.51:1	13.6	6.0
		20					
	9FGCHD7/150:1		60/6.8	125	148.5:1	10.8	3.8
	9FGCHDT/150:1	20	60/6.8	120/13.6	148.5:1	10.8	3.8
	12FG/150:1	21	200/22.6	243/27.5	153:1	19.2	5.2
	12FGT/150:1	21	200/22.6	243/27.5	153:1	17.8	6.0

Legend: FG - Gearmotor

FGHD - Gearmotor, Heavy Duty GFCHD - Gearmotor, Compact Heavy Duty FGT - Gearmotor, Integral Tachometer

FGHDT - Gearmotor, Heavy Duty, Integral Tachometer

PERFORMANCE DATA

		Units	9FG	9FGT	9FGHD	9FGCHD	9FGHDT	12FG	12FGT
1.0	Maximum Inertia (2)	oz-in-sec ²	0.0052	0.0082	0.0052	0.0053	0.0082	0.0192	0.0252
1.0	Waximum merua (2)	g-cm ²	367	579	367	374	579	1356	1780
2.0	Radial Load @	lb	25	25	70	30 to 50	70	125	125
	Distance from Mounting Surf.	in	0.75	0.75	0.75	0.75	0.75	1.00	1.00
3.0	Axial Load	lb	5	5	80	45 to 55	80	150	150
4.0	Basic Weight (3)	lb	3.30	3.50	3.20	3.2	3.40	5.85	6.20
5.0	Basic Lenght (3)	in	1.92	2.00	2.81	2.29	2.88	3.75	3.80

Motor electrical and mechanical specifications are subject to change without notice. Please consult a Kollmorgen Sales Office.

Notes:

- 1. Mounted on $8" \times 16" \times 3/8"$ aluminum heatsink. Office.
- 2. Motor plus gearhead, measured at motor shaft.

- 3. Weights and lengths will vary with options. Please consult a Kollmorgen Sales
- 4. Gearmotors can be mounted in any position.

FERRITE GEARMOTOR OPTIONS

- Rear Shaft Extension
- Prepared for Encoder
- M23 Optical Encoder (See Options Section for details)
- Intergal Analog Tachometer
- Brake

DIMENSIONS

9FG, 9FGT

Dimensions in inches.

Models	9FG	9FGT
A	1.92 ±.06	2.00 ±.06
В	1.28 ±.06	1.34 ±.06

9FGHD, 9FGCHD, 9FGHDT (Heavy Duty and Compact Models)

Dimensions in inches.

Models	9FGHD	9FGCHD	9FGHDT
A	2.81 ±.06	2.29 ±.06	2.88 ±.06
В	2.19 ±.06	1.65 ±.06	2.25 ±.06
C (DIA)	.500	.375	.500

12FG, 12FGT

DIMENSIONS - Rear Shaft Extension

9FG, 9FGT

Dimensions in inches.

Models	9FG	9FGT
A	1.92 ±.06	2.00 ±.06
В	1.28 ±.06	1.34 ±.06
С	1.06 ±.06	1.25 ±.06

9FGHD, 9FGHDT, 9FGCHD (Heavy Duty and Compact Models)

Dimensions in inches.

Models	9FGHD	9FGHDT	9FGCHD	9FGCHDT
A	2.81 ±.06	$2.88 \pm .06$	2.29	2.31
В	2.19 ±.06	2.25 ±.06	1.65	1.67
С	1.23 ±.03	1.20 ±.03	1.23	1.20
D (DIA)	.500	.500	.375	.375

12FG, 12FGT

DIMENSIONS - Prepared for Encoder

9FG, 9FGT

Dimensions in inches.

Models	9FG	9FGT
A	1.92 ±.06	2.00 ±.06
В	1.28 ±.06	1.34 ±.06

9FGHD, 9FGCHDT, 9FGCHDT (Heavy Duty and Compact Models)

Dimensions in inches.

Models	9FGHD	9FGCHD	9FGHDT	9FGCHDT
A	2.81 ±.06	2.29 ±.06	2.88 ±.06	2.31
В	2.19 ±.06	1.65 ±.06	2.25 ±.06	1.67
C (DIA)	.500	.375	.500	.375

12FG, 12FGT

Dimensions in inches.

Models	12FG	12FGT
A	3.75 ±.06	$3.80 \pm .06$

DIMENSIONS - with Encoder

9FG, 9FGT

Dimensions in inches.

Models	9FG	9FGT
A	1.92 ±.06	2.00 ±.06
В	1.28 ±.06	1.34 ±.06

9FGHD, 9FGHDT, 9FGCHD (Heavy Duty Models)

Dimensions in inches.

Models	9FGHD	9FGHDT	9FGCHD	9FGCHDT
A	2.81 ±.06	2.88 ±.06	2.29	2.31
В	2.19 ±.06	2.25 ±.06	1.65	1.67
C (DIA)	.500	.500	.375	.375

12FG, 12FGT

Dimensions in inches.

Models	12FG	12FGT
A	$3.75 \pm .06$	3.80 ±.06

Disk armature technology brings new dimensions of performance to dc servo motor applications

Where it works best

Certain types of applications are naturals for ServoDisc technology. Let's look at the categories where the benefits are the greatest.

a) Fast moves

Incremental motion (rapid, repetitive moves) is a natural for the outstanding acceleration of these products. If you need to make many moves a second, this is the right technology. If you must get to speed quickly or stop quickly, ServoDisc will do it best.

b) Smooth Rotation

ServoDisc products are perfect when precise and smooth speed control is required. Applications such as tape or film handling or recording, machining, rotating mirrors or scanners. The total lack of cogging and the rapid response of these motors gives near perfect rotation.

c) Operation over a wide speed range

If you need 1 rpm, then 1000, then 4000, no other product can deliver the precise rotation, constant torque and trouble-free commutation which are characteristic of ServoDisc products. Low speed is not limited by cogging and high speed is not limited by arcing and commutation problems.

d) Compact Size

When space is at a premium, the unique ServoDisc package may be the answer. Its flat profile and high power output make it easier to design in than conventional motors. This may be just the edge you need to put your design ahead of the competition.

A Track Record of Success

The unique technology and superior performance of the ServoDisc motor make it the best choice for a tremendous range of servo applications. Increased throughout, better accuracy, improved packaging, longer life; these are just a few of the benefits that can be realized with this exciting technology.

a) Automation and robotics

Speed and acceleration capabilities separate ServoDisc motors from the conventional motor pack. Apply these products to packaging, sorting, labeling, component insertion, precision winding...any application where throughput is critical. Compact size and high torque make these motors ideal for robot axis drives. Compact ServoDisc precision gearmotors combine exceptional performance with innovative packaging. The same features make them great for robotic positioning tables.

b) Instrumentation

Superior technology is called for when performance and accuracy are critical. Inspection equipment, x-y stages,

chromatography equipment, ultrasonic and optical scanners, plotters, shutter actuation...all of these applications can benefit from the rapid response and precise motion which is characteristic of ServoDisc products.

c) Process control

Extraordinary responsiveness and cog-free rotation have earned ServoDisc products an important niche in process control applications. They can deliver fast, accurate metering of chemicals or fluids. The unparalled smoothness is perfect for handling continuous materials such as tape, film, paper, textiles or optical fibers. In fact any application involving continuous webs is a natural for this technology. Which accounts for its extensive use in the film, paper, printing and textile industries. Textile applications also include fabric cutting and stitching equipment.

d) Information handling

No cogging and the ability to maintain precise speed and phase lock are perfect features for audio, video, analog and digital recording. ServoDisc motors have an impressive track record in tape mastering and duplication equipment, instrumentation recorders and studio-grade recording equipment. They have also made their mark in the growing video disk industry.

e) Biomedical equipment

Portability, reliability and superior performance have made a name for ServoDisc motors in many medical life-support analysis applications. Blood pumps, blood analyzers, kidney dialysis, respirators and ultrasonic scanners are all candidates for this advanced technology.

f) Semiconductor manufacturing

ServoDisc motors are an excellent match for the demanding performance requirements of the semiconductor manufacturing industry. For die and wire bonding, wafer handling, cleaning, testing and dicing, and laser trimming, the high throughput, perfectly smooth rotation and precision of these motors can really crank up productivity.

g) Business automation

Demand is increasing inthe business community for increased performance and productivity from office automation equipment. The application of ServoDisc technology to check sorters, imprinters, document readers, high speed printers and collating equipment has answered the call.

h) Military applications

Rugged design, reliability, long life, compact packaging and outstanding performance have put ServoDisc products in the front lines. Gun turrets, gun loaders, fire control drives, smoke generators and antenna rotation drives are just some of the applications where we serve.