

Positive voltage regulator ICs

Features

- Output current up to 1.5 A
- Output voltages of 5; 6; 8; 8.5; 9; 12; 15; 18; 24 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection
- 2 % output voltage tolerance (A version)
- Guaranteed in extended temperature range (A version)

Description

The L78 series of three-terminal positive regulators is available in TO-220, TO-220FP, D2PAK and DPAK packages and several fixed output voltages, making it useful in a wide range of applications.

These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type embeds internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Maturity status link

L78

1 Diagram

Figure 2. Block diagram

GAMG220920161000MT

DS0422 - Rev 35 page 2/55

2 Pin configuration

Figure 3. Pin connections (top view)

Figure 4. Schematic diagram

GAMG220920161002MT

DS0422 - Rev 35 page 3/55

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter		Value	Unit
V.	DC input voltage	for V _O = 5 to 18 V	35	V
VI	DC input voltage	for V _O = 20, 24 V	40	V
Io	Output current	Internally limited		
P _D	Power dissipation	Power dissipation		
T _{STG}	Storage temperature rar	nge	-65 to 150	°C
T _{OP}	Operating junction temperature range	for L78xxC, L78xxAC	0 to 125	°C
, Ob	Operating junction temperature range	for L78xxAB	-40 to 125	

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2. Thermal data

Symbol	Parameter	D ² PAK	DPAK	TO-220	TO-220FP	Unit
R _{thJC}	Thermal resistance junction-case	3	8	5	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	100	50	60	°C/W

Figure 5. Application circuits

GAMG220920161003MT

DS0422 - Rev 35 page 4/55

4 Test circuits

Figure 6. DC parameter

Figure 7. Load regulation

Figure 8. Ripple rejection

DS0422 - Rev 35 page 5/55

GAMG220920161006MT

5 Electrical characteristics

 V_I = 10 V, I_O = 1 A, T_J = 0 to 125 °C (L7805AC), T_J = -40 to 125 °C (L7805AB), unless otherwise specified.

Table 3. Electrical characteristics of L7805A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	4.9	5	5.1	V
Vo	Output voltage	I_O = 5 mA to 1 A, V_I = 7.5 to 18 V	4.8	5	5.2	V
V _O	Output voltage	I_O = 1 A, V_I = 18 to 20 V, T_J = 25 °C	4.8	5	5.2	V
		V_I = 7.5 to 25 V, I_O = 500 mA, T_J = 25 °C		7	50	mV
A) ((1)	1.	V _I = 8 to 12 V		10	50	mV
$\Delta V_0^{(1)}$	Line regulation	V _I = 8 to 12 V, T _J = 25 °C		2	25	mV
		V _I = 7.3 to 20 V, T _J = 25 °C		7	50	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	I_O = 5 mA to 1.5 A, T_J = 25 °C		30	100	mV
		I _O = 250 to 750 mA		8	50	
	Out a sent account	T _J = 25 °C		4.3	6	mA
Iq	Quiescent current				6	mA
		V_{I} = 8 to 23 V, I_{O} = 500 mA			0.8	mA
Δl_{q}	Quiescent current change	V _I = 7.5 to 20 V, T _J = 25 °C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 8 to 18 V, f = 120 Hz, I _O = 500 mA		68		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
eN	Output noise voltage	T _A = 25 °C, B =10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25 °C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α
$\Delta V_O/\Delta T$	Output voltage drift			-1.1		mV/°C
$\Delta V_{O}/\Delta T$	Output voltage drift			-1.1		mV

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating
effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 6/55

 V_I = 11 V, I_O = 1 A, T_J = 0 to 125 °C (L7806AC), T_J = -40 to 125 °C (L7806AB), unless otherwise specified.

Table 4. Electrical characteristics of L7806A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	5.88	6	6.12	V
V _O	Output voltage	I_O = 5 mA to 1 A, V_I = 8.6 to 19 V	5.76	6	6.24	V
V _O	Output voltage	I_O = 1 A, V_I = 19 to 21 V, T_J = 25 °C	5.76	6	6.24	V
		V_I = 8.6 to 25 V, I_O = 500 mA, T_J = 25 °C		9	60	mV
ANZ (1)	l in a manufation	V _I = 9 to 13 V		11	60	mV
$\Delta V_{O}^{(1)}$	Line regulation	V_I = 9 to 13 V, T_J = 25 °C		3	30	mV
		V _I = 8.3 to 21 V, T _J = 25 °C		9	60	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	I_O = 5 mA to 1.5 A, T_J = 25 °C		30	100	mV
		I _O = 250 to 750 mA		10	50	
1	Quiescent current	T _J = 25° C		4.3	6	mA
Iq	Quiescent current				6	mA
		V _I = 9 to 24 V, I _O = 500 mA			0.8	mA
Δl_{q}	Quiescent current change	V _I = 8.6 to 21 V, T _J = 25 °C			8.0	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 9 to 19 V, f = 120 Hz, I _O = 500 mA		65		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
eN	Output noise voltage	T_A = 25 °C, B =10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25 °C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α
$\Delta V_O / \Delta T$	Output voltage drift			-0.8		mV/°C

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 7/55

 V_I = 14 V, I_O = 1 A, T_J = 0 to 125 °C (L7808AC), T_J = -40 to 125 °C (L7808AB), unless otherwise specified.

Table 5. Electrical characteristics of L7808A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	7.84	8	8.16	V
Vo	Output voltage	I_O = 5 mA to 1 A, V_I = 10.6 to 21 V	7.7	8	8.3	V
Vo	Output voltage	I_{O} = 1 A, V_{I} = 21 to 23 V, T_{J} = 25 °C	7.7	8	8.3	V
		V_I = 10.6 to 25 V, I_O = 500 mA, T_J = 25 °C		12	80	mV
AV (1)		V _I = 11 to 17 V		15	80	mV
ΔV _O ⁽¹⁾	Line regulation	V_I = 11 to 17 V, T_J = 25 °C		5	40	mV
		V_I = 10.4 to 23 V, T_J = 25 °C		12	80	mV
		I _O = 5 mA to 1 A		25	100	
ΔV _O ⁽¹⁾	Load regulation	I_O = 5 mA to 1.5 A, T_J = 25 °C		30	100	mV
		I _O = 250 to 750 mA		10	50	
,	Outropent summer	T _J = 25 °C		4.3	6	mA
Iq	Quiescent current				6	mA
		V_I = 11 to 23 V, I_O = 500 mA			0.8	mA
Δl_q	Quiescent current change	V_I = 10.6 to 23 V, T_J = 25 °C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V_{I} = 11.5 to 21.5 V, f = 120 Hz, I_{O} = 500 mA		62		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
eN	Output noise voltage	T _A = 25 °C, B =10 Hz to 100 kHz		10		μV/V _O
Ro	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25 °C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α
$\Delta V_{O}/\Delta T$	Output voltage drift			-0.8		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating
effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 8/55

 V_{I} = 15 V, I_{O} = 1 A, T_{J} = 0 to 125 °C (L7809AC), T_{J} = -40 to 125 °C (L7809AB), unless otherwise specified(Minimum load current for regulation is 5 mA.)

Table 6. Electrical characteristics of L7809A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	8.82	9	9.18	V
Vo	Output voltage	I_O = 5 mA to 1 A, V_I = 10.6 to 22 V	8.65	9	9.35	V
Vo	Output voltage	I _O = 1 A, V _I = 22 to 24 V, T _J = 25 °C	8.65	9	9.35	V
		V_I = 10.6 to 25 V, I_O = 500 mA, T_J = 25 °C		12	90	mV
AV (1)	l in a manufallan	V _I = 11 to 17 V		15	90	mV
$\Delta V_0^{(1)}$	Line regulation	V _I = 11 to 17 V, T _J = 25 °C		5	45	mV
		V _I = 11.4 to 23 V, T _J = 25 °C		12	90	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	I_O = 5 mA to 1.5 A, T_J = 25 °C		30	100	mV
		I _O = 250 to 750 mA		10	50	
1	Outcoant aument	T _J = 25 °C		4.3	6	mA
Iq	Quiescent current				6	mA
		V_{I} = 11 to 25 V, I_{O} = 500 mA			0.8	mA
Δl_{q}	Quiescent current change	V _I = 10.6 to 23 V, T _J = 25 °C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz, I _O = 500 mA		61		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
eN	Output noise voltage	T _A = 25 °C, B =10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25 °C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α
$\Delta V_O/\Delta T$	Output voltage drift			-0.8		mV/°C

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 9/55

 V_I = 19 V, I_O = 1 A, T_J = 0 to 125 °C (L7812AC), T_J = -40 to 125 °C (L7812AB), unless otherwise specified.

Table 7. Electrical characteristics of L7812A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	11.75	12	12.25	V
Vo	Output voltage	I _O = 5 mA to 1 A, V _I = 14.8 to 25 V	11.5	12	12.5	V
Vo	Output voltage	I_{O} = 1 A, V_{I} = 25 to 27 V, T_{J} = 25 °C	11.5	12	12.5	V
		V_I = 14.8 to 30 V, I_O = 500 mA, T_J = 25 °C		13	120	mV
AV (1)	l in a manufation	V _I = 16 to 12 V		16	120	mV
$\Delta V_{O}^{(1)}$	Line regulation	V_I = 16 to 12 V, T_J = 25 °C		6	60	mV
		V _I = 14.5 to 27 V, T _J = 25 °C		13	120	mV
		I _O = 5 mA to 1 A		25	100	
ΔV _O ⁽¹⁾	Load regulation	I_O = 5 mA to 1.5 A, T_J = 25 °C		30	100	mV
		I _O = 250 to 750 mA		10	50	
1	Quiescent current	T _J = 25 °C		4.4	6	mA
Iq	Quiescent current				6	mA
		V _I = 15 to 30 V, I _O = 500 mA			0.8	mA
DIq	Quiescent current change	V _I = 14.8 to 27 V, T _J = 25 °C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 15 to 25 V, f = 120 Hz, I _O = 500 mA		60		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
eN	Output noise voltage	T _A = 25 °C, B = 10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25 °C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α
$\Delta V_{O}/\Delta T$	Output voltage drift			-1		mV/°C

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 10/55

 V_I = 23 V, I_O = 1 A, T_J = 0 to 125 °C (L7815AC), T_J = -40 to 125 °C (L7815AB), unless otherwise specified.

Table 8. Electrical characteristics of L7815A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	14.7	15	15.3	V
Vo	Output voltage	I_O = 5 mA to 1 A, V_I = 17.9 to 28 V	14.4	15	15.6	V
Vo	Output voltage	I_O = 1 A, V_I = 28 to 30 V, T_J = 25 °C	14.4	15	15.6	V
		V_I = 17.9 to 30 V, I_O = 500 mA, T_J = 25 °C		13	150	mV
A) ((1)	Line ne midelien	V _I = 20 to 26 V	16	150	mV	
$\Delta V_0^{(1)}$	Line regulation	V_I = 20 to 26 V, T_J = 25 °C		6	75	mV
		V_I = 17.5 to 30 V, T_J = 25 °C		13	150	mV
		I _O = 5 mA to 1 A		25	100	
ΔV _O ⁽¹⁾	Load regulation	I_O = 5 mA to 1.5 A, T_J = 25 °C		30	100	mV
		I _O = 250 to 750 mA		10	50	
	Quippont surrent	T _J = 25 °C		4.4	6	mA
Iq	Quiescent current				6	mA
		V_{I} = 17.5 to 30 V, I_{O} = 500 mA			0.8	mA
Δl_q	Quiescent current change	V_I = 17.5 to 30 V, T_J = 25 °C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V_{I} = 18.5 to 28.5 V, f = 120 Hz, I_{O} = 500 mA		58		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
eN	Output noise voltage	$T_A = 25$ °C, B = 10Hz to 100 kHz		10		μV/V _O
Ro	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25 °C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α
$\Delta V_O/\Delta T$	Output voltage drift			-1		mV/°C

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 11/55

 V_I = 33 V, I_O = 1 A, T_J = 0 to 125 °C (L7824AC), T_J = -40 to 125 °C (L7824AB), unless otherwise specified.

Table 9. Electrical characteristics of L7824A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	23.5	24	24.5	V
Vo	Output voltage	I _O = 5 mA to 1 A, V _I = 27.3 to 37 V	23	24	25	V
Vo	Output voltage	I_O = 1 A, V_I = 37 to 38 V, T_J = 25 °C	23	24	25	V
		V_I = 27 to 38 V, I_O = 500 mA, T_J = 25 °C		31	240	mV
AN (1)	Live a secondario	V _I = 30 to 36 V		35	200	mV
$\Delta V_0^{(1)}$	Line regulation	V _I = 30 to 36 V, T _J = 25 °C		14	120	mV
		V _I = 26.7 to 38 V, T _J = 25 °C		31	240	mV
ΔV _O ⁽¹⁾		I _O = 5 mA to 1 A		25	100	
	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25 °C		30	100	mV
		I _O = 250 to 750 mA		10	50	
	Ouissant summer	T _J = 25 °C		4.6	6	mA
Iq	Quiescent current				6	mA
		V _I = 27.3 to 38 V, I _O = 500 mA			0.8	mA
Δl_{q}	Quiescent current change	V _I = 27.3 to 38 V, T _J = 25 °C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 28 to 38 V, f = 120 Hz, I _O = 500 mA		54		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
eN	Output noise voltage	T _A = 25 °C, B = 10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		20		m
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25 °C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α
ΔV _O /ΔT	Output voltage drift			-1.5		mV/°C

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 12/55

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 10 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 10. Electrical characteristics of L7805C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	4.8	5	5.2	V
Vo	Output voltage	I_{O} = 5 mA to 1 A, V_{I} = 7 to 18 V	4.75	5	5.25	V
Vo	Output voltage	I_O = 1 A, V_I = 18 to 20V, T_J = 25 °C	4.75	5	5.25	V
ΔV _O ⁽¹⁾	Lina manulation	V_I = 7 to 25 V, T_J = 25 °C		3	100	mV
Δνο	Line regulation	V_I = 8 to 12 V, T_J = 25 °C		1	50	mv
ΔV _O ⁽¹⁾	Lood vorulation	I_O = 5 mA to 1.5 A, T_J = 25 °C			100	> (
Δνο	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			50	mV
I _d	Quiescent current	T _J = 25° C			8	mA
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
Δl _d		V _I = 7 to 23 V			0.8	
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1.1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T_J = 25 °C		40		μV/V _O
SVR	Supply voltage rejection	V _I = 8 to 18 V, f = 120 Hz	62			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C		0.75		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 13/55

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 11 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 11. Electrical characteristics of L7806C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	5.75	6	6.25	V
Vo	Output voltage	I_O = 5 mA to 1 A, V_I = 8 to 19 V	5.7	6	6.3	V
Vo	Output voltage	I_{O} = 1 A, V_{I} = 19 to 21 V, T_{J} = 25 °C	5.7	6	6.3	V
AV (1)	Line regulation	V_I = 8 to 25 V, T_J = 25 °C			120	mV
ΔV _O ⁽¹⁾		V_I = 9 to 13 V, T_J = 25 °C			60	mv
AV (1)	L and manufaktora	I_O = 5 mA to 1.5 A, T_J = 25 °C			120	>/
ΔV _O ⁽¹⁾	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			60	mV
I _d	Quiescent current	T _J = 25 °C			8	mA
DI	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
Dl _d		V _I = 8 to 24 V			1.3	
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T_J = 25 °C		45		μV/V _O
SVR	Supply voltage rejection	V _I = 9 to 19 V, f = 120 Hz	59			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
R _O	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C		0.55		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 14/55

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 14 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 12. Electrical characteristics of L7808C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	7.7	8	8.3	V
Vo	Output voltage	I_O = 5 mA to 1 A, V_I = 10.5 to 21 V	7.6	8	8.4	V
Vo	Output voltage	I_{O} = 1 A, V_{I} = 21 to 25 V, T_{J} = 25 °C	7.6	8	8.4	V
ANZ (1)	Line menulation	V_I = 10.5 to 25 V, T_J = 25 °C			160	mV
ΔV _O ⁽¹⁾	Line regulation	V_I = 11 to 17 V, T_J = 25 °C			80	mv
AV. (1)	I and assuitation	I_O = 5 mA to 1.5 A, T_J = 25 °C			160	>/
ΔV _O ⁽¹⁾	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			80	mV
I _d	Quiescent current	T _J = 25 °C			8	mA
A1.	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA
Δl _d		V _I = 10.5 to 25 V			1	
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T_J = 25 °C		52		μV/V _O
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz	56			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
R _O	Output resistance	f = 1 kHz		16		mΩ
I _{sc}	Short circuit current	V_I = 35 V, T_J = 25 °C		0.45		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 15/55

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 14.5 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 13. Electrical characteristics of L7885C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	8.2	8.5	8.8	V
Vo	Output voltage	I_{O} = 5 mA to 1 A, V_{I} = 11 to 21.5 V	8.1	8.5	8.9	V
Vo	Output voltage	I_O = 1 A, V_I = 21.5 to 26 V, T_J = 25 °C	8.1	8.5	8.9	V
ΔV _O ⁽¹⁾	Line regulation	V_I = 11 to 27 V, T_J = 25 °C			160	mV
Δνο	Line regulation	V _I = 11.5 to 17.5 V, T _J = 25 °C			80	IIIV
AV/- (1)	Load regulation	I_O = 5 mA to 1.5 A, T_J = 25 °C			160	mV
ΔV _O ⁽¹⁾	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			80	
I _d	Quiescent current	T _J = 25 °C			8	mA
Al	Quiescent current change	I _O = 5 mA to 1 A			0.5	0
Δl _d		V _I = 11 to 26 V			1	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T_J = 25 °C		55		μV/V _O
SVR	Supply voltage rejection	V _I = 12 to 22 V, f = 120 Hz	56			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
R _O	Output resistance	f = 1 kHz		16		mΩ
I _{sc}	Short circuit current	V_I = 35 V, T_J = 25 °C		0.45		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 16/55

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 15 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 14. Electrical characteristics of L7809C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	T _J = 25 °C	8.64	9	9.36	V	
Vo	Output voltage	I_{O} = 5 mA to 1 A, V_{I} = 11.5 to 22 V	8.55	9	9.45	V	
V _O	Output voltage	I_{O} = 1 A, V_{I} = 22 to 26 V, T_{J} = 25 °C	8.55	9	9.45	V	
AV (1)	Line menulation	V_I = 11.5 to 26 V, T_J = 25 °C			180	>/	
ΔV _O ⁽¹⁾	Line regulation	V _I = 12 to 18 V, T _J = 25 °C			90	mV	
AV (1)		I_O = 5 mA to 1.5 A, T_J = 25 °C			180		
ΔV _O ⁽¹⁾	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			90	mV	
I _d	Quiescent current	T _J = 25 °C			8	mA	
4.1	Outros and a second about a	I _O = 5 mA to 1 A			0.5	0	
$\Delta l_{\sf d}$	Quiescent current change	V _I = 11.5 to 26 V			1	mA	
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C	
eN	Output noise voltage	B = 10 Hz to 100 kHz, T_J = 25 °C		70		μV/V _O	
SVR	Supply voltage rejection	V _I = 12 to 23 V, f = 120 Hz	55			dB	
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V	
R _O	Output resistance	f = 1 kHz		17		mΩ	
I _{sc}	Short circuit current	V_I = 35 V, T_J = 25 °C		0.40		Α	
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α	

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating
effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 17/55

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 19 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 15. Electrical characteristics of L7812C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	T _J = 25 °C	11.5	12	12.5	V	
Vo	Output voltage	I_{O} = 5 mA to 1 A, V_{I} = 14.5 to 25 V	11.4	12	12.6	V	
Vo	Output voltage	I_O = 1 A, V_I = 25 to 27 V, T_J = 25 °C	11.4	12	12.6	V	
AV (1)	l in a manufakina	V_I = 14.5 to 30 V, T_J = 25 °C			240	.,	
ΔV _O ⁽¹⁾	Line regulation	V_I = 16 to 22 V, T_J = 25 °C			120	mV	
AV (1)		I_O = 5 mA to 1.5 A, T_J = 25 °C			240	>/	
$\Delta V_0^{(1)}$	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			120	mV	
I _d	Quiescent current	T _J = 25 °C			8	mA	
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	4	
Δl _d		V _I = 14.5 to 30 V			1	mA	
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C	
eN	Output noise voltage	B = 10 Hz to 100 kHz, T_J = 25 °C		75		μV/V _O	
SVR	Supply voltage rejection	V _I = 15 to 25 V, f = 120 Hz	55			dB	
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V	
R _O	Output resistance	f = 1 kHz		18		mΩ	
I _{sc}	Short circuit current	V_I = 35 V, T_J = 25 °C		0.35		Α	
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α	

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 18/55

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 23 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 16. Electrical characteristics of L7815C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	14.4	15	15.6	V
V _O	Output voltage	I_{O} = 5 mA to 1 A, V_{I} = 17.5 to 28 V	14.25	15	15.75	V
V _O	Output voltage	I_{O} = 1 A, V_{I} = 28 to 30 V, T_{J} = 25 °C	14.25	15	15.75	V
AV (1)	Line requilation	V_I = 17.5 to 30 V, T_J = 25 °C			300	mV
$\Delta V_0^{(1)}$	Line regulation	V_I = 20 to 26 V, T_J = 25 °C			150	mv
AV. (1)	I and manufaking	I_O = 5 mA to 1.5 A, T_J = 25 °C			300	.,
ΔV _O ⁽¹⁾	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			150	mV
I _d	Quiescent current	T _J = 25 °C			8	mA
41	Quiescent current change	I _O = 5 mA to 1A			0.5	mA
Δl _d		V _I = 17.5 to 30 V			1	
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100kHz, T_J = 25 °C		90		μV/V _O
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120 Hz	54			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V
R _O	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C		0.23		Α
I _{scp}	Short circuit peak current	T _J = 25 °C		2.2		Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 19/55

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 26 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 17. Electrical characteristics of L7818C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _O	Output voltage	T _J = 25 °C	17.3	18	18.7	V	
Vo	Output voltage	$I_O = 5 \text{ mA to } 1 \text{ A, } V_I = 21 \text{ to } 31 \text{ V}$	17.1	18	18.9	V	
Vo	Output voltage	I_{O} = 1 A, V_{I} = 31 to 33 V, T_{J} = 25 °C	17.1	18	18.9	V	
ΔV _O ⁽¹⁾	Line regulation	V _I = 21 to 33 V, T _J = 25 °C			360		
Δνο	Line regulation	V _I = 24 to 30 V, T _J = 25 °C			180	mV	
AV. (1)		I_O = 5 mA to 1.5 A, T_J = 25 °C			360	>/	
ΔV _O ⁽¹⁾	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			180	mV	
I _d	Quiescent current	T _J = 25 °C			8	mA	
A.1	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA	
Δl _d		V _I = 21 to 33 V			1		
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C	
eN	Output noise voltage	B = 10 Hz to 100 kHz, T_J = 25 °C		110		μV/V _O	
SVR	Supply voltage rejection	V _I = 22 to 32 V, f = 120 Hz	53			dB	
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V	
R _O	Output resistance	f = 1 kHz		22		mΩ	
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C		0.20		Α	
I _{scp}	Short circuit peak current	T _J = 25 °C		2.1		Α	

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 20/55

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 33 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 18. Electrical characteristics of L7824C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _O	Output voltage	T _J = 25 °C	23	24	25	V	
Vo	Output voltage	I_O = 5 mA to 1 A, V_I = 27 to 37 V	22.8	24	25.2	V	
Vo	Output voltage	I_O = 1 A, V_I = 37 to 38 V, T_J = 25 °C	22.8	24	25.2	V	
AV (1)	Lina manulation	V _I = 27 to 38 V, T _J = 25 °C		480		mV	
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 30 to 36 V, T _J = 25 °C			240	mv	
AV (1)		I_O = 5 mA to 1.5 A, T_J = 25 °C			480		
$\Delta V_{O}^{(1)}$	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25 °C			240	mV	
I _d	Quiescent current	T _J = 25 °C			8	mA	
4.1	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA	
ΔI_d		V _I = 27 to 38 V			1		
ΔV _O /ΔΤ	Output voltage drift	I _O = 5 mA		-1.5		mV/°C	
eN	Output noise voltage	B = 10 Hz to 100 kHz, T_J = 25 °C		170		μV/V _O	
SVR	Supply voltage rejection	V _I = 28 to 38 V, f = 120 Hz	50			dB	
V _d	Dropout voltage	I _O = 1 A, T _J = 25 °C		2		V	
R _O	Output resistance	f = 1 kHz		28		mΩ	
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25° C		0.15		Α	
I _{scp}	Short circuit peak current	T _J = 25 °C		2.1		Α	

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Note: Minimum load current for regulation is 5 mA.

DS0422 - Rev 35 page 21/55

6 Application information

6.1 Design consideration

The L78 Series of fixed voltage regulators are designed with thermal overload protection that shuts down the circuit when subjected to an excessive power overload condition, internal short-circuit protection that limits the maximum current the circuit will pass, and output transistor safe-area compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with capacitor if the regulator is connected to the power supply filter with long lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtained with the arrangement is 2 V greater than the regulator voltage.

The circuit of Figure 14. High current voltage regulator can be modified to provide supply protection against short circuit by adding a short circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three terminal regulator Therefore a four ampere plastic power transistor is specified.

 $V_{1} \bigcirc V_{0}$ $C_{1} = 0.33 \mu F$ $C_{0} = 0.1 \mu F$

Figure 9. Fixed output regulator

GAMG220920161007MT

- 1. Although no output capacitor is need for stability, it does improve transient response.
- 2. Required if regulator is located an appreciable distance from power supply filter.

DS0422 - Rev 35 page 22/55

Figure 10. Current regulator

Figure 11. Circuit for increasing output voltage

Figure 12. Adjustable output regulator (7 to 30 V)

DS0422 - Rev 35 page 23/55

Figure 13. 0.5 to 10 V regulator

Figure 14. High current voltage regulator

Figure 15. High output current with short circuit protection

DS0422 - Rev 35 page 24/55

Figure 16. Tracking voltage regulator

Figure 17. Split power supply (± 15 V - 1 A)

GAMG220920161015MT

Note: * Against potential latch-up problems.

DS0422 - Rev 35 page 25/55

Figure 18. Negative output voltage circuit

Figure 19. Switching regulator

Figure 20. High input voltage circuit (configuration 1)

GAMG220920161018MT

DS0422 - Rev 35 page 26/55

Figure 21. High input voltage circuit (configuration 2)

Figure 22. High input and output voltage

GAMG220920161020MT

Figure 23. Reducing power dissipation with dropping resistor

GAMG220920161021MT

DS0422 - Rev 35 page 27/55

Figure 24. Remote shutdown

Figure 25. Power AM modulator (unity voltage gain, $I_0 \le 0.5$)

Note: The circuit performs well up to 100 kHz.

Figure 26. Adjustable output voltage with temperature compensation

Note: Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow rise time of the V_O .

DS0422 - Rev 35 page 28/55

Figure 27. Light controllers $(V_{O(min)} = V_{XX} + V_{BE})$

GAMG220920161025MT

Figure 28. Protection against input short-circuit with high capacitance loads

GAMG220920161026MT

Note:

Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see Figure 23. Reducing power dissipation with dropping resistor) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the base-emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

DS0422 - Rev 35 page 29/55

7 Typical performance

DS0422 - Rev 35 page 30/55

10²

10³

104

105

f (Hz)

GAMG200920161320MT

DS0422 - Rev 35 page 31/55

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

DS0422 - Rev 35 page 32/55

8.1 TO-220 (dual gauge) package information

Figure 38. TO-220 (dual gauge) package outline

DS0422 - Rev 35 page 33/55

Table 19. TO-220 (dual gauge) mechanical data

Dim.		mm	
DIM.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

DS0422 - Rev 35 page 34/55

8.2 TO-220 (single gauge) package information

Figure 39. TO-220 (single gauge) package outline

DS0422 - Rev 35 page 35/55

Table 20. TO-220 (single gauge) mechanical data

Dim.	mm					
Dim.	Min.	Тур.	Max.			
Α	4.40		4.60			
b	0.61		0.88			
b1	1.14		1.70			
С	0.48		0.70			
D	15.25		15.75			
E	10.00		10.40			
е	2.40		2.70			
e1	4.95		5.15			
F	0.51		0.60			
H1	6.20		6.60			
J1	2.40		2.72			
L	13.00		14.00			
L1	3.50		3.93			
L20		16.40				
L30		28.90				
ØP	3.75		3.85			
Q	2.65		2.95			

DS0422 - Rev 35 page 36/55

8.3 TO-220FP package information

Figure 40. TO-220FP package outline

7012510_type_A

DS0422 - Rev 35 page 37/55

Div		mm	
Dim.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Table 21. TO-220FP package mechanical data

TO-220 packing information 8.4

⊕<u>5.5</u> MARKING SIDE

Figure 41. Tube for TO-220 (dual gauge) (mm.)

DS0422 - Rev 35 page 38/55

0.75±0.1—
2.2±0.2

SECTION A-A

SECTION A-A

O 10.0

O

Figure 42. Tube for TO-220 (single gauge) (mm.)

8.5 DPAK package information

Figure 43. DPAK package outline

0068772_A_21

DS0422 - Rev 35 page 39/55

Table 22. DPAK mechanical data

Dim.	mm		
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

DS0422 - Rev 35 page 40/55

6.3 = 1 1.9 1.5 4.572 = 1

Figure 44. DPAK recommended footprint (dimensions are in mm)

Footprint_0068772

DS0422 - Rev 35 page 41/55

8.6 D²PAK (SMD 2L STD-ST) type A package information

Figure 45. D²PAK (SMD 2L STD-ST) type A package outline

0079457_22_type A

DS0422 - Rev 35 page 42/55

Table 23. D²PAK (SMD 2L STD-ST) mechanical data

Div	mm		
Dim.	Min.	Тур.	Max.
A	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

DS0422 - Rev 35 page 43/55

8.7 D²PAK (ASE subcon) type B package information

Figure 46. D²PAK (ASE subcon) type B package outline

0079457_23_type B

DS0422 - Rev 35 page 44/55

Table 24. D²PAK (ASE) type B mechanical data

Div		mm	
Dim.	Min.	Тур.	Max.
Α	4.36		4.56
A1	0		0.25
b	0.70		0.90
b1	0.51		0.89
b2	1.17		1.37
b3	1.36		1.46
С	0.38		0.694
c1	0.38		0.534
c2	1.19		1.34
D	8.60		9.00
D1	6.90		7.50
E	10.15		10.55
E1	8.10		8.70
е		2.54	
Н	15.00		15.60
L	1.90		2.50
L1			1.65
L2			1.78
L3		0.25	
L4	4.78		5.28

DS0422 - Rev 35 page 45/55

9.75

16.9

1.6

2.54

Footprint_0079457

Figure 47. D²PAK recommended footprint (dimensions are in mm)

DS0422 - Rev 35 page 46/55

8.8 D²PAK and DPAK packing information

Figure 48. Tape outline

AM08852v1

DS0422 - Rev 35 page 47/55

Figure 49. Reel outline

AM06038v1

Table 25. D²PAK tape and reel mechanical data

Таре		Reel			
Dim.	mm		Dim.	mm	
Dilli.	Min.	Max.	Diiii.	Min.	Max.
A0	10.5	10.7	Α		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base quantity		1000
P2	1.9	2.1	Bulk quantity		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

DS0422 - Rev 35 page 48/55

Table 26. DPAK tape and reel mechanical data

Таре		Reel				
Dim.	mm		Dim.	mm		
Diiii.	Min.	Max.	Diiii.	Min.	Max.	
A0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
E	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1	Bas	e qty.	2500	
P1	7.9	8.1	Bull	k qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

DS0422 - Rev 35 page 49/55

9 Ordering information

Table 27. Order codes

	Order codes					
Part number	TO-220 (single gauge)	TO-220 (dual gauge)	DPAK	D²PAK	TO-220FP	Output voltages
L7805C	L7805CV	L7805CV-DG	L7805CDT-TR	L7805CD2T-TR	L7805CP	5 V
L7805AB	L7805ABV	L7805ABV-DG		L7805ABD2T-TR	L7805ABP	5 V
L7805AC	L7805ACV	L7805ACV-DG		L7805ACD2T-TR	L7805ACP	5 V
L7806C	L7806CV	L7806CV-DG		L7806CD2T-TR		6 V
L7806AB	L7806ABV	L7806ABV-DG		L7806ABD2T-TR		6 V
L7806AC	L7806ACV	L7806ACV-DG				6 V
L7808C	L7808CV	L7808CV-DG		L7808CD2T-TR		8 V
L7808AB	L7808ABV	L7808ABV-DG		L7808ABD2T-TR		8 V
L7808AC	L7808ACV	L7808ACV-DG				8 V
L7885C	L7885CV					8.5 V
L7809C	L7809CV	L7809CV-DG		L7809CD2T-TR	L7809CP	9 V
L7809AB	L7809ABV	L7809ABV-DG		L7809ABD2T-TR		9 V
L7809AC	L7809ACV					9 V
L7812C	L7812CV	L7812CV-DG		L7812CD2T-TR	L7812CP	12 V
L7812AB	L7812ABV	L7812ABV-DG		L7812ABD2T-TR		12 V
L7812AC	L7812ACV	L7812ACV-DG		L7812ACD2T-TR		12 V
L7815C	L7815CV	L7815CV-DG		L7815CD2T-TR	L7815CP	15 V
L7815AB	L7815ABV	L7815ABV-DG		L7815ABD2T-TR		15 V
L7815AC	L7815ACV	L7815ACV-DG		L7815ACD2T-TR		15 V
L7818C	L7818CV	L7818CV-DG				18 V
L7824C	L7824CV	L7824CV-DG		L7824CD2T-TR	L7824CP	24 V
L7824AB	L7824ABV	L7824ABV-DG				24 V
L7824AC	L7824ACV	L7824ACV-DG				24 V

DS0422 - Rev 35 page 50/55

Revision history

Table 28. Document revision history

Date	Revision	Changes
21-Jun-2004	12	Document updating.
03-Aug-2006	13	Order codes has been updated and new template.
19-Jan-2007	14	D²PAK mechanical data has been updated and add footprint data.
31-May-2007	15	Order codes has been updated.
29-Aug-2007	16	Added Table 1 in cover page.
11-Dec-2007	17	Modified: Table 27.
06-Feb-2008	18	Added: TO-220 mechanical data Figure 38 on page 38, Figure 39 on page 39, and Table 23 on page 37. Modified: Table 27 on page 58.
18-Mar-2008	19	Added: Table 29: DPAK mechanical data on page 50, Table 30: Tape and reel DPAK mechanical data on page 52. Modified: Table 27 on page 58.
26-Jan-2010	20	Modified Table 1 on page 1 and Table 23 on page 37, added: Figure 38 on page 38 and Figure 39 on page 39, Figure 40 on page 45 and Figure 41 on page 45.
04-Mar-2010	21	Added notes Figure 38 on page 38.
08-Sep-2010	22	Modified Table 27 on page 58.
23-Nov-2010	23	Added: TJ = 25 °C test condition in DVO on Table 3, 4, 5, 6, 7, 8 and Table 9.
16-Sep-2011	24	Modified title on page 1.
30-Nov-2011	25	Added: order codes L7805CV-DG, L7806CV-DG, L7808ABV-DG, L7812CV-DG and L7815CV-DG Table 27 on page 58.
08-Feb-2012	26	Added: order codes L7805ACV-DG, L7805ABV-DG, L7806ABV-DG, L7808CV-DG, L7809CV-DG, L7812ACV-DG, L7818CV-DG, L7824CV-DG Table 27 on page 58.
27-Mar-2012	27	Added: order codes L7812ABV-DG, L7815ABV-DG Table 27 on page 58.
27-Apr-2012	28	Modified: VI = 10.4 to 23 V ==> VI = 11.4 to 23 V test conditon value Line regulation Table 6 on page 13 .
10-May-2012	29	Added: order codes L7806ACV-DG, L7808ACV-DG, L7815ACV-DG, L7824ABV-DG and L7824ACV-DG Table 27 on page 58.
19-Sep-2012	30	Modified load regulation units from V to mV in Table 3 to Table 9.
12-Mar-2013	31	Modified: VO output voltage at 25 °C min. value 14.4 V Table 16 on page 23.
		Part numbers L78xx, L78xxC, L78xxAB, L78xxAC changed to L78.
		Removed TO-3 package.
04-Mar-2014	32	Updated the description in cover page, Section 2: Pin configuration, Section 3: Maximum ratings, Section 4: Test circuits, Section 5: Electrical characteristics, Section 6: Application information, Section 8: Package information and Table 27: Order codes.
		Added Section 9: Packaging mechanical data.
		Minor text changes.
26-Feb-2016	33	Updated Section 8: Package information.
20.002010		Minor text changes.
28-Nov-2016	34	Updated Section 9: "Ordering information".
	J .	Minor text changes.
25-May-2018	35	Updated D ² PAK package Section 8.7 D ² PAK (ASE) type B package information.

DS0422 - Rev 35 page 51/55

Contents

1	Diag	ıram	2
2	Pin	configuration	3
3	Max	imum ratings	4
4	Test	circuits	5
5	Elec	trical characteristics	6
6	Арр	lication information	22
	6.1	Design consideration	22
7	Турі	cal performance	30
8	Pacl	kage information	32
	8.1	TO-220 (dual gauge) package information	32
	8.2	TO-220 (single gauge) package information	34
	8.3	TO-220FP package information	36
	8.4	TO-220 packing information	38
	8.5	DPAK package information	39
	8.6	D²PAK (SMD 2L STD-ST) type A package information	41
	8.7	D²PAK (ASE subcon) type B package information	43
	8.8	D²PAK and DPAK packing information	46
9	Orde	ering information	50
Rev	ision	history	51
Con	itents		52
List	of tal	bles	53
l ist	of fic	uires	54

List of tables

Table 1.	Absolute maximum ratings	. 4
Table 2.	Thermal data	. 4
Table 3.	Electrical characteristics of L7805A	. 6
Table 4.	Electrical characteristics of L7806A	. 7
Table 5.	Electrical characteristics of L7808A	. 8
Table 6.	Electrical characteristics of L7809A	. 9
Table 7.	Electrical characteristics of L7812A	10
Table 8.	Electrical characteristics of L7815A	11
Table 9.	Electrical characteristics of L7824A	12
Table 10.	Electrical characteristics of L7805C	13
Table 11.	Electrical characteristics of L7806C	14
Table 12.	Electrical characteristics of L7808C	15
Table 13.	Electrical characteristics of L7885C	16
Table 14.	Electrical characteristics of L7809C	17
Table 15.	Electrical characteristics of L7812C	18
Table 16.	Electrical characteristics of L7815C	19
Table 17.	Electrical characteristics of L7818C	20
Table 18.	Electrical characteristics of L7824C	21
Table 19.	TO-220 (dual gauge) mechanical data	34
Table 20.	TO-220 (single gauge) mechanical data	36
Table 21.	TO-220FP package mechanical data	38
Table 22.	DPAK mechanical data	40
Table 23.	D²PAK (SMD 2L STD-ST) mechanical data	43
Table 24.	D²PAK (ASE) type B mechanical data	45
Table 25.	D ² PAK tape and reel mechanical data	48
Table 26.	DPAK tape and reel mechanical data	49
Table 27.	Order codes	
Table 28.	Document revision history	51

DS0422 - Rev 35 page 53/55

List of figures

Figure 2.	Block diagram	. 2
Figure 3.	Pin connections (top view)	. 3
Figure 4.	Schematic diagram	. 3
Figure 5.	Application circuits	. 4
Figure 6.	DC parameter	. 5
Figure 7.	Load regulation	. 5
Figure 8.	Ripple rejection	. 5
Figure 9.	Fixed output regulator	22
Figure 10.	Current regulator	23
Figure 11.	Circuit for increasing output voltage	23
Figure 12.	Adjustable output regulator (7 to 30 V)	23
Figure 13.	0.5 to 10 V regulator	24
Figure 14.	High current voltage regulator	
Figure 15.	High output current with short circuit protection	24
Figure 16.	Tracking voltage regulator	25
Figure 17.	Split power supply (± 15 V - 1 A)	
Figure 18.	Negative output voltage circuit	
Figure 19.	Switching regulator	
Figure 20.	High input voltage circuit (configuration 1)	
Figure 21.	High input voltage circuit (configuration 2)	
Figure 22.	High input and output voltage	
Figure 23.	Reducing power dissipation with dropping resistor.	
Figure 24.	Remote shutdown	
Figure 25.	Power AM modulator (unity voltage gain, $I_O \le 0.5$)	
Figure 26.	Adjustable output voltage with temperature compensation	
Figure 27.	Light controllers ($V_{O(min)} = V_{XX} + V_{BE}$)	
Figure 28.	Protection against input short-circuit with high capacitance loads	
Figure 29.	Dropout voltage vs junction temperature	
Figure 30.	Peak output current vs input/output differential voltage.	
Figure 31.	Supply voltage rejection vs frequency	
Figure 32.	Output voltage vs junction temperature	
Figure 33.	Output impedance vs frequency	
Figure 34.	Quiescent current vs junction temp.	
Figure 35.	Load transient response	
Figure 36.	Line transient response	
Figure 37.	Quiescent current vs. input voltage	
Figure 38.	TO-220 (dual gauge) package outline	33
Figure 39.	TO-220 (single gauge) package outline	
Figure 40.	TO-220FP package outline	
Figure 41.	Tube for TO-220 (dual gauge) (mm.)	
Figure 42.	Tube for TO-220 (single gauge) (mm.)	
Figure 43.	DPAK package outline	
Figure 44.	DPAK recommended footprint (dimensions are in mm).	
Figure 44.	D²PAK (SMD 2L STD-ST) type A package outline	
Figure 46.	D²PAK (ASE subcon) type B package outline	
Figure 47.	D²PAK recommended footprint (dimensions are in mm)	
Figure 47.	Tape outline	
Figure 49.	Reel outline	
. iguio To.	11001 0441110	-10

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS0422 - Rev 35 page 55/55