

SOLUCIÓN NUMÉRICA DE LAS ECUACIONES DE EULER DE LA DINÁMICA DE FLUIDOS MEDIANTE EL ESQUEMA DE ROE

RODRIGO RAFAEL CASTILLO CHONG

Asesorado por DR. ENRIQUE PAZOS ÁVALOS

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

SOLUCIÓN NUMÉRICA DE LAS ECUACIONES DE EULER DE LA DINÁMICA DE FLUIDOS MEDIANTE EL ESQUEMA DE ROE

TRABAJO DE GRADUACIÓN
PRESENTADO A LA JEFATURA DEL
DEPARTAMENTO DE FÍSICA
POR

RODRIGO RAFAEL CASTILLO CHONG ASESORADO POR DR. ENRIQUE PAZOS ÁVALOS

AL CONFERÍRSELE EL TÍTULO DE LICENCIADO EN FÍSICA APLICADA

GUATEMALA, DICIEMBRE DE 2023

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICAS

CONSEJO DIRECTIVO INTERINO

Director M.Sc. Jorge Marcelo Ixquiac Cabrera

Representante Docente Arqta. Ana Verónica Carrera Vela

Representante Docente M.A. Pedro Peláez Reyes

Representante de Egresados Lic. Urías Amitaí Guzmán García

Representante de Estudiantes Elvis Enrique Ramírez Mérida

Representante de Estudiantes Oscar Eduardo García Orantes

Secretario Ing. Edgar Damián Ochóa Hernández

TRIBUNAL QUE PRACTICÓ EL EXAMEN GENERAL PRIVADO

Director M.Sc. Jorge Marcelo Ixquiac Cabrera

Examinador M.Sc. Osmar Obdulio Hernández Aguilar

Examinador Dr. José Rodrigo Sacahui Reyes

Examinador Dr. Juan Adolfo Ponciano Castellanos

Secretario Ing. Edgar Damián Ochoa Hernández

	Fecha
datos	
cuerpo	
despedida	
firma	
nombre	

Este archivo pdf es una muestra

AGRADECIMIENTOS

DEDICATORIA

ÍNDICE GENERAL

ÍNDICE DE FIGURAS	III
ÍNDICE DE TABLAS	V
LISTA DE SÍMBOLOS	VII
OBJETIVOS	IX
INTRODUCCIÓN	XI
1. ECUACIONES DE CONSERVACIÓN Y SISTEMAS HIPERBÓ- LICOS DE PRIMER ORDEN 1.1. Ecuaciones de conservación	1 1
2. MÉTODO DE VOLÚMENES FINITOS Y ESQUEMA DE ROE	3
3. ECUACIONES DE EULER Y APLICACIÓN DEL ESQUEMA DE ROE	5
4. COMPARACIÓN CON PYCLAW	7
5. SIMULACIONES CON DISTINTOS COEFICIENTES DE DILA- TACIÓN ADIABÁTICA	9
CONCLUSIONES	11
RECOMENDACIONES	13
BIBLIOGRAFÍA	15

ÍNDICE DE FIGURAS

ÍNDICE DE TABLAS

LISTA DE SÍMBOLOS

Símbolo	Significado
F_x $\frac{\partial f}{\partial x}$	derivada parcial de F respecto a x derivada parcial de F respecto a x
u	velocidad del gas sobre el eje x
ho	densidad del gas
p	presión del gas
e	densidad de energía interna del gas
T	temperatura del gas
U	vector de magnitudes de un gas

OBJETIVOS

General

Resolver las ecuaciones de Euler de la dinámica de fluidos para un gas ideal, con el método de volúmenes finitos, utilizando el esquema de Roe.

Específicos

- 1. Describir el método de volúmenes finitos y la motivación de su uso.
- 2. Describir el funcionamiento del esquema de Roe y su implementación en el lenguaje C++.
- 3. Comparar las soluciones obtenidas a través del programa implementado en C++ con las soluciones producidas con la librería PyClaw del lenguaje Python.
- 4. Analizar la diferencia entre simulaciones considerando gases con distintos grados de libertad, aprovechando la solución numérica obtenida a través del programa escrito en C++.

INTRODUCCIÓN

El estudio de las ecuaciones diferenciales es de gran importancia en las ciencias físicas, ya que cada teoría física se sustenta en ecuaciones diferenciales que describen el comportamiento a través del tiempo de cualquier sistema que dicha teoría busque explicar. La motivación del estudio de las ecuaciones diferenciales es encontrar soluciones generales de las mismas, principalmente a través de métodos analíticos que buscan soluciones exactas de las ecuaciones diferenciales. Sin embargo, no todas las ecuaciones diferenciales poseen soluciones exactas, lo cual motiva el estudio y desarrollo de métodos numéricos para la resolución de las mismas.

En el área de estudio del análisis numérico aplicado a ecuaciones diferenciales, existe una gran variedad de métodos y esquemas que se aplican para obtener una solución numérica, esto se debe a la amplia variedad de ecuaciones diferenciales de la física que carecen de solución analítica. Por otro lado, las ecuaciones diferenciales parciales son considerablemente más complejas que las ecuaciones diferenciales ordinarias, por lo que existen métodos más apropiados para resolver ecuaciones diferenciales que involucran funciones de varias variables.

Las ecuaciones de conservación tienen un papel importante en múltiples áreas de la física, de tal manera que se han desarrollado métodos numéricos apropiados para resolver este tipo de ecuaciones diferenciales parciales, siendo el método de volúmenes finitos el más utilizado. Un conjunto en particular de ecuaciones de conservación son las ecuaciones de Euler, que rigen la dinámica de un fluido compresible y no viscoso a partir de su ecuación de estado. Existen pocas soluciones analíticas conocidas a las ecuaciones de Euler, por lo que resolver este conjunto de ecuaciones de conservación con un método numérico apropiado resulta ser un problema interesante.

1. ECUACIONES DE CONSERVACIÓN Y SISTEMAS HIPERBÓLICOS DE PRIMER ORDEN

1.1. Ecuaciones de conservación

En este capítulo se introducen los conceptos fundamentales de las ecuaciones de conservación y sistemas hiperbólicos de primer orden. Se introduce el problema de Riemann de una ecuación de conservación.

En física, una ecuación de conservación es una ecuación diferencial parcial de la siguiente forma

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} = 0 \tag{1.1}$$

donde \mathbf{U} es un vector n-dimensional de variables físicas que se conservan, por ejemplo, la densidad, la masa o el momentum de un medio [3]. En este texto, las variables de las que depende \mathbf{U} son x y t, una variable espacial y otra temporal respectivamente. Por tanto, formalmente, $\mathbf{U}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^n$ mientras que las variables conservadas se denominan u_i , de tal manera que $\mathbf{U} = \mathbf{U}(u_1, u_2, \dots, u_n)$ [3]. La función \mathbf{F} corresponde al flujo de cada una de las variables involucradas en un punto (x,t) [3]. Al igual que \mathbf{U} , la función \mathbf{F} depende de las mismas variables físicas y por ende, también depende de (x,t). Sin embargo, el flujo de cada variable conservada puede tener una forma distinta, entonces es conveniente escribir a \mathbf{F} como un vector de n funciones independientes, $\mathbf{F} = (f_1, f_2, \dots, f_n)$ de tal manera que f_i es la función de flujo de la i-ésima variable conservada, u_i [3].

Una ecuación de conservación para un sistema definido en un intervalo espacial D = [a, b] necesita de condiciones iniciales para su resolución, el caso más simple a considerar es el de un problema de Cauchy [3]. En dicho caso, se debe especificar una función $\mathbf{U}_0(x)$

$$\mathbf{U}(x,0) = \mathbf{U}_0(x) \tag{1.2}$$

la cual sea válida para todo x tal que $x \in D$.

2. MÉTODO DE VOLÚMENES FINITOS Y ESQUEMA DE ROE

Se describe la estructura del método de volúmenes finitos, principalmente para resolver ecuaciones de conservación y se enfatiza su importancia al aplicarse a problemas de esta naturaleza. Se introducen los conceptos de discretización, ecuación de diferencias, esquema numérico, celda. Se comenta sobre las condiciones de estabilidad de una solución numérica.

Se exponen algunos esquemas numéricos generales aproximados. Se introduce el esquema de Roe y su relación con el problema de Riemann. Nuevamente, se utiliza como ejemplo la ecuación de Burgers para proporcionar una idea simple de la aplicación de estos esquemas.

3. ECUACIONES DE EULER Y APLICACIÓN DEL ESQUEMA DE ROE

Se explican y derivan las ecuaciones de Euler utilizando las variables generales (presión, densidad y velocidad) y variables conservadas. Se explican las ligaduras adicionales involucradas para que las ecuaciones de Euler sean aplicadas a un gas ideal poliatómico.

Se aplican los conceptos previamente descritos para una ecuación de conservación de una variable al sistema de ecuaciones de Euler. El problema de Riemann se adapta al problema de onda de choque en un tubo descrito por las ecuaciones de Euler.

Se describe el esquema de Roe implementado específicamente en la solución de las ecuaciones de Euler para un gas ideal poliatómico. Se explica la implementación del método numérico en C++. Se muestran los resultados obtenidos para un problema de condiciones iniciales en específico.

4. COMPARACIÓN CON PYCLAW

Se da una breve explicación del funcionamiento y diseño de la simulación del problema de condiciones iniciales del capítulo anterior con la librería PyClaw y se comparan los resultados obtenidos.

5. SIMULACIONES CON DISTINTOS COEFICIENTES DE DILATACIÓN ADIABÁTICA

Se comparan los resultados obtenidos en simulaciones del mismo problema de condición inicial pero con distinto coeficiente de dilatación adiabática γ , esto con el fin de obtener una intuición física, a través de la simulación, de cómo varía el comportamiento de un gas cuando el número de grados de libertad interno del mismo cambia.

CONCLUSIONES

- 1. Conclusión 1.
- 2. Conclusión 2.
- 3. Conclusión 3.

RECOMENDACIONES

- 1. Recomendación 1.
- 2. Recomendación 2.
- 3. Recomendación 3.

BIBLIOGRAFÍA

- [1] CAMERON, MARIA: «Notes on Burger's Equation», 2016. https://www.math.umd.edu/~mariakc/burgers.pdf
- [2] CLAWPACK DEVELOPMENT TEAM: «Clawpack software», 2020. doi: https://doi.org/10.5281/zenodo.4025432. Version 5.7.1. http://www.clawpack.org
- [3] LEVEQUE, RANDALL J.: Nonlinear Conservation Laws and Finite Volume Methods. pp. 1–159. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-31632-9, 1998. doi: 10.1007/3-540-31632-9_1. https://doi.org/10.1007/3-540-31632-9_1
- [4] ROE, P.L: «Approximate Riemann solvers, parameter vectors, and difference schemes». Journal of Computational Physics, 1981, 43(2), pp. 357-372. ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(81)90128-5. https://www.sciencedirect.com/science/article/pii/0021999181901285
- [5] —: «Characteristic-Based Schemes for the Euler Equations». Annual Review of Fluid Mechanics, 2003, **18**, pp. 337–365. doi: 10.1146/annurev.fl.18.010186. 002005.