Assignment I1

Jens Kristian Refsgaard Nielsen

21-02-2019

1.

We wish to show that $L_1 := \{a^i b^j a^j \mid 0 \le i, 0 \le j\}$ is non regular, we proceed by applying the pumping lemma.

Let $k \ge 0$ be given, choose $z = a^p b^q a^q$ for some $p, q \ge 0$ such that |z| > k i.e. p + 2q > k, let $u, v, w \in \Sigma^*$ be given such that z = uvw and |uv| < k and |v| > 0 we then get a few cases of how u, v, w could look:

Case 1: $u=a^l, \ v=a^j, \ w=a^{p-j-l}b^qa^q$ for $l\geq 0$ and $p\geq j>0$ such that $p-l-j\geq 0$.

Case 2: $u = a^{p-l}$, $v = a^l b^j$, $w = b^{q-j} a^q$ for $p \ge l \ge 0$ and j > 0 since if j = 0 we are in case 1.

Case 3: $u = a^p b^j$, $v = b^l$, $w = b^{q-j-l} a^q$ for l > 0 and $j \ge 0$ such that $q - l - j \ge 0$.

Case 4: $u = a^p b^{q-j}$, $v = b^j a^l$, $w = a^{q-l}$ for l > 0 and $j \ge 0$ and |uv| = p + q + l < k.

Is it overkill to go through all these cases? absolutely.

Case 1: Consider

$$uv^{i}w = a^{l}a^{ij}a^{p-j-l}b^{q}a^{q} = a^{l+ij+p-j-l}b^{q}a^{q}$$
$$= a^{(i-1)j+p}b^{q}a^{q} \in L_{1} \iff (i-1)j+p \in \mathbb{N}$$

Now we want to find an $i \ge 0$ such that $uv^iw \notin L_1$, but as shown above we cannot choose such an i since j is positive and smaller than p, and as such we are forced to choose p = 0 to avoid case 1 altogether.

After forcing p = 0 case 2 becomes absorbed into case 3, and becomes:

Case 3': $u = b^j$, $v = b^l$, $w = b^{q-j-l}a^q$ for l > 0 and $j \ge 0$ such that $q - l - j \ge 0$. Consider

$$uv^{i}w = b^{j}b^{il}b^{q-j-l}a^{q} = b^{q+(i-1)l}a^{q}$$
$$uv^{i}w \in L_{1} \iff q+(i-1)l = q \iff (i-1)l = 0$$

As in case 1, we wish $uv^iw \notin L_1$ so we can choose $i \neq 1$ since l > 0.

Case 4: After forcing p = 0 case 4 now has $u = b^{q-j}$ and q + l < k, consider

$$uv^iw = b^{q-j}(b^ja^l)^ia^{q-l}$$

This looks very unlikely to be in L_1 , but if we subdivide into cases of j being zero or not we get

$$j = 0 \Rightarrow uv^{i}w = b^{q}a^{il}a^{q-l} = b^{q}a^{q+(i-1)l} \in L_{1} \iff q = q + (i-1)l \iff i = 1$$
$$j > 0 \Rightarrow uv^{i}w \in L_{1} \Rightarrow i = 0 \lor i = 1$$

The j > 0 case clearly breaks down if $i \ge 2$ because we can have any (abab) in our language, so we simply choose i > 1 and this case has been taken care of.

In conclusion we can choose $z = b^q a^q$ where 2q > k and the pumping lemma will show that L_1 is non regular.

2.

Consider $L_2 := \{a^i b^j b^j \mid i \geq 0, j \geq 0\} = \{a^i (bb)^j \mid i \geq 0, j \geq 0\} = \mathcal{L}(a^*(bb)^*)$ so L_2 is regular. After spending (too) many hours trying to make the pumping lemma work on this set, I face palmed so hard that I am unable to formulate a coherent thought about how the above is non trivial.

3.

Let L_3 be an arbitrary finite language, and L_4 be an arbitrary non-regular language. We wish to prove that $L_4 \setminus L_3 \in NREG$. Recall that for any sets we have

$$A = A \setminus B \cup (A \cap B)$$

We take A, remove the bits of B in A and add those bits back in. Now if we assume for contradiction that $L_4 \setminus L_3$ is regular, recall that REG is closed under union and intersection, and that all finite languages are regular. Note that $L_4 \cap L_3$ is finite since L_3 is, consider then

$$L_4 = L_4 \setminus L_3 \cup (L_4 \cap L_3)$$

This is a union of regular languages and a contradiction, since L_4 is non regular. So $L_4 \setminus L_3$ is non regular.