

CMPN415 – CMP405B Computer Networks

Part FOUR – 3rd lecture

Internetworking – Quality of Service

Most Important Slides

Quality of Service

Approaches to Achieve "Good" QoS

- 1. Over-provisioning
- 2. Buffering
- 3. Traffic Shaping
- 4. Packet Scheduling
 - Admission Control
 - 6. Resource Reservation

Usually more than one technique is used at the same time to satisfy the QoS requirements

4. Packet Scheduling

- Fluid Fair queuing (theoretical not applied)
 - Assign a queue to each flow
 - Assumes packet is infinitesimally divisible
 - Send part of each packet
 - All flows take same share of resources
- Fair queuing (output is Round Robin)
 - Assign a queue to each flow
 - Take one packet from each queue in round robin order
 - Problem: flows with larger packets dominate resources
 - All flows take same share of resources
- **Weighted** fair Queuing (Most used policy)
 - Assign a weight to each flow
 - Packets are scheduled such that flows with <u>higher weight get</u>
 more resources

Packet Scheduling Fair Queuing

Packet scheduling divides router/link resources among traffic flows with alternatives to FIFO (First In First Out)

Example of round-robin queuing

Packet Scheduling: Weighted Fair Queuing

Fair Queueing approximates bit-level fairness with different packet sizes; weights change target levels

Result is WFQ (Weighted Fair Queueing)

Virtual finish time is Calculated based on packets in same queue

Packet	Arrival	Length	Finish	Output
	time		time	order
Α	0	8	8	1
В	5	6	11	3
С	5	***************************************	1 0	2
D	8	æ	20	7
Е	\ &	80	14	4
F	10	6	16	5
G	11	10	19	6
Н	20	8	28	8

WL
8
6
5
9
4
6
5
8

Finish virtual times determine transmission order

- Finish time is calculated from Weighted length
- Output order is based on Finish time

5. Admission Control

Admission control takes a <u>traffic flow specification</u> and decides whether the network can carry it

Sets up packet scheduling to meet QoS

Parameter	Unit		
Token bucket rate	Bytes/sec	Max. Rate	
Token bucket size	Bytes	for sender	
Peak data rate	Bytes/sec		
Minimum packet size	Bytes	Processing at router	
Maximum packet size	Bytes	☐ Internetworking	

Example flow specification

Admission Control

Construction to guarantee bandwidth B and delay D:

- 1. Shape traffic source to a (R, B) token bucket
- 2. Run WFQ with weight W / all weights > R/capacity Holds for all traffic patterns, all topologies

if the flow has a rate of 1 Mbps and the router and output link have a capacity of 1 Gbps, the weight for the flow must be greater than 1/1000th of the total of the weights for all of the flows at that router for the output link.

6. Resource Reservation Integrated Services

Design with QoS for each flow; handles multicast traffic.

Admission with **RSVP** (Resource reSerVation Protocol):

- Receiver sends a request back to the sender
- Each router along the way reserves resources
- Routers merge multiple requests for same flow
- Entire path is set up, or reservation not made

Integrated Services

R3 reserves flow from S1

R3 reserves flow from S2

R5 reserves flow from S1; merged with R3 at H

RSVP: disadvantages

- Not very scalable
 - Relies on specifying each flow separately
 - No flow aggregation
 - Problems when there are millions of flows
- State maintenance per router
 - Need to maintain state per flow
 - Complex if router crash
- Complex protocol
 - Complex end-to-end message exchange
 - Substantial implementation effort

Differentiated Services

Design with classes of QoS; customers buy what they want

- Expedited class: is sent in preference to regular class
- Regular Class: Less expedited traffic but better quality for applications

Assured Forwarding (RFC2597)

Implementation of DiffServ:

- 4 priority classes: each has its own resources
- 3 drop/discard probability in case of congestion: Low, medium, high

Total: 12 classes

Example of implementation

- Customers mark desired class on packet
- ISP shapes traffic to delay or drop packets

