Design of Experiments: Chapter 1

1 KEY CONCEPTS

- Difference between a designed experiment and an observational study;
- Definition and notation of key quantities (response, factor, level, design point and support, experimental unit);
- Principles of designed experiments (replication, randomisation, blocking);
- Mathematical definition of exact design;
- Basic concepts of linear models:
 - Mathematical definition;
 - Least square estimation;
 - Predicted values;
 - R^2 coefficient of model fit;
 - Analysis of variance.

2 EXERCISES

Let $Y = (Y_1, ..., Y_N)$ be a *N*-dimensional vector of responses

- 1. Consider the null model $Y_i = \beta_0 + \varepsilon_i$, for i = 1, ..., N. Demonstrate that the least square estimate $\hat{\beta}_0 = \bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$;
- 2. Consider again the null model. Demonstrate that the residual sum of square is $Y^TY N\bar{Y}^2$;

- 3. Recall that in an Anova table the Regression sum of squares is equal to the total sum of squares $(\mathbf{Y}^{\mathrm{T}}\mathbf{Y}-N\bar{Y}^{2})$ minus the regression sum of squares $((\mathbf{Y}-X\hat{\boldsymbol{\beta}})^{\mathrm{T}}(\mathbf{Y}-X\hat{\boldsymbol{\beta}}))$. Demonstrate that the regression sum of squares is equal to $\hat{\boldsymbol{\beta}}^{\mathrm{T}}(X^{\mathrm{T}}X)\hat{\boldsymbol{\beta}}-N\bar{Y}^{2}$;
- 4. Which components of an ANOVA table are not additive?
 - a) degrees of freedom;
 - b) sums of squares;
 - c) mean square.