AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH

CSC3113: THEORY OF COMPUTATION

Lecture: # 6

Week: # 3

Semester: Spring 2022-2023

Non-deterministic Finite Automaton (NFA)

Instructor: Shakila Rahman,

Department of Computer Science, Faculty of Science & Technology.

Shakila.Rahman@aiub.edu

LECTURE OUTLINE

- **→ DFA-NFA Equivalence.**
- Nondeterministic Finite Automata (NFA).
 - → Practice, solve exercise of NFA.
 - Closure under regular operations.

LEARNING OBJECTIVE

- **₹** Equivalence of DFA & NFA.
- → Understand, learn & practice with example
 - **↗** Practice designing NFA.
 - → Understanding closure under regular operation for NFA.

LEARNING OUTCOME

ALL OUTCOME ARE REPRESENTED WITH EXAMPLES

- **₹** Equivalence of DFA & NFA.
- Conversion from NFA to DFA.
- → Practice & Design of NFA
- Closure under regular operations for NFA.

EQUIVALENCE BETWEEN NFA & DFA

- Tevery NFA has an equivalent DFA.
- TLet $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A.
- Construct a DFA $M = (Q', \Sigma, \delta', q_0', F')$ which recognizes A.
 - \not $Q' = \mathcal{P}(Q)$, power set of Q.
 - \blacksquare Every state of M is a set of states of N.
 - Let $E(R) = \{q \mid q \text{ can be reached from } R \subseteq Q \text{ by traveling along 0 or more } \varepsilon \text{ arrows, including the members of } R \text{ themselves} \}.$
 - - **▽**Each state *B* may go to a set of states after reading any symbol *a*. So, we take the union of all these sets.
 - - \nearrow M starts at the state corresponding to the collection containing all the possible states that can be reached from the start state of N along with the ε arrows.
 - \nearrow $F' = \{D \in Q' \mid D \text{ contains an accept state of } N\}.$

NFA-DFA EQUIVALENCE

Let, the above NFA N_2 =(Q_2 , Σ , δ_2 , b_1 , F_2).

$$\mathbf{Q_2} = \{b_1, b_2, b_3\}; \; \mathbf{\Sigma} = \{0, 1\};$$

$$b_1$$
 = start state; F_2 = $\{b_1\}$.

 δ_2 is given as –

Equivalent DFA $M = (Q, \Sigma, \delta, q_0, F)$

$$\mathbf{Q} = \mathcal{P}(Q_2) = \mathcal{P}(\{b_1, b_2, b_3\})$$

$$\mathbf{Q} = \{ \phi, \{b_1\}, \{b_2\}, \{b_3\}, \{b_1, b_2\}, \{b_1, b_3\},$$

$$\{b_2, b_3\}, \{b_1, b_2, b_3\} \};$$

o is given as –	l <u>U</u>	
ϕ	ϕ	ϕ
$\{b_1\}$	ϕ	{ <i>b</i> ₂ }
$\{b_2\}$	$\{b_2, b_3\}$	$\{b_3\}$
$\{b_3\}$	$\{b_1, b_3\}$	ϕ
4 1, Z,	$\{b_2, b_3\}$	$\{b_2, b_3\}$
$\{b_1, b_3\}$	$\{b_1, b_3\}$	{ <i>b</i> ₂ }
$\{b_2, b_3\}$	$\{b_1, b_2, b_3\}$	$\{b_3\}$
$\{b_1, b_2, b_3\}$	$\{b_1, b_2, b_3\}$	$\{b_2, b_3\}$

$$\Sigma = \{0, 1\}.$$

$$q_0 = E(\{b_1\}) = \{b_1, b_3\}$$
 is the start state;

$$\mathbf{F} = \{\{b_1\}, \{b_1, b_2\}, \{b_1, b_3\}, \{b_1, b_2, b_3\}\}.$$

NFA-DFA EQUIVALENCE

Equivalent DFA $M = (Q, \Sigma, \delta, q_0, F)$

$$Q = \{b_1, b_2, b_3\} = \mathcal{P}(Q)$$

$$Q = \{b_1, b_2, b_3\} = \mathcal{P}(Q)$$

$$\mathbf{Q} = \{ \phi, \{b_1\}, \{b_2\}, \{b_3\}, \{b_1, b_2\}, \{b_1, b_3\}, \{b_1, b_2\}, \{b_2, b_3\}, \{b_1, b_2\}, \{b_2, b_3\}, \{b_2, b_3\}, \{b_3, b$$

$$\{b_2, b_3\}, \{b_1, b_2, b_3\} \};$$

()h l		1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		
$\{b_1\}$		$\{b_2, b_3\}, \{b_1, b_2, b_3\} \};$		
	$oldsymbol{\delta}$ is given as –	0	1	
	o	$\mid \phi$	ϕ	
$\{b_2\}$	$\{b_1\}$	$\mid \phi$	$\{b_{2}\}$	
0 0	$\{b_2\}$	$ \{b_2,b_3\} $	$\{b_{3}\}$	
	$\{b_3\}$	$ \{b_1,b_3\} $	ϕ	
(b_2, b_3) (b_3)	$\{b_1, b_2\}$	$ \{b_2,b_3\} $	$\{b_2, b_3\}$	
$1 \begin{pmatrix} 1 \end{pmatrix} 0$	$\{b_1, b_3\}$	$ \{b_1,b_3\} $	$\{b_{2}\}$	
0, 1	$\{b_2, b_3\}$	$ \{b_1, b_2, b_3\}$	$\{b_{3}\}$	
$\{b_1, b_2, b_3\}$	$\{b_1, b_2, b_3\}$	$ \{b_1, b_2, b_3\}$	$\{b_2, b_3\}$	
(sh hi)				

0, 1

$$\Sigma = \{0, 1\}.$$

$$q_0 = E(\{b_1\}) = \{b_1, b_3\}$$
 is the start state;

$$\mathbf{F} = \{\{b_1\}, \{b_1, b_2\}, \{b_1, b_3\}, \{b_1, b_2, b_3\}\}.$$

CLOSURE UNDER REGULAR OPERATIONS

₹ Let,

$$\nearrow$$
 $N_1 = (Q_1, \Sigma, \delta_1, a_1, F_1)$ recognizes A_1 .

$$N_2 = (Q_2, \Sigma, \delta_2, b_1, F_2)$$
 recognizes A_2 .

- **JUNION**: Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.
 - **7** $Q = \{q_0\} \cup Q_1 \cup Q_2$.
 - $\neg q_0$ is the starting state.

7 For any $q \in Q$ and $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{a_1, b_1\} & q = q_0 \text{ and } a = \varepsilon \\ \phi & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

CLOSURE UNDER REGULAR OPERATIONS

₹ Let,

$$\nearrow$$
 $N_1 = (Q_1, \Sigma, \delta_1, a_1, F_1)$ recognizes A_1 .

$$N_2 = (Q_2, \Sigma, \delta_2, b_1, F_2)$$
 recognizes A_2 .

CONCATENATION: Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1^{\circ} A_2$.

$$q_0 = a_1$$
.

$$7 F = F_2$$
.

 \nearrow For any $q \in Q$ and $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{b_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q,a) & q \in Q_2 \end{cases}$$

CLOSURE UNDER REGULAR OPERATIONS

- **₹**Let,
 - $N_1 = (Q_1, \Sigma, \delta_1, a_1, F_1)$ recognizes A_1 .
- **STAR**: Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .
 - **7** $Q = \{q_0\} \cup Q_1$.

 - **7** $F = {q_0} \cup F_1.$
 - 7 For any $q \in Q$ and $a \in \Sigma_{\varepsilon}$,

$$\delta_1(q,a) \qquad q \in Q_1 \text{ and } q \notin F_1$$

$$\delta_1(q,a) \qquad q \in F_1 \text{ and } a \neq \varepsilon$$

$$\delta_1(q,a) \cup \{a_1\} \quad q \in F_1 \text{ and } a = \varepsilon$$

$$\{a_1\} \qquad q = q_0 \text{ and } a = \varepsilon$$

$$\phi \qquad q = q_0 \text{ and } a \neq \varepsilon$$

 $B_6 = \{w \mid w \text{ has at least two 1s}\}.$

B11 = {w | w has at least two 1s or w has at most two 1s}.

$$\sum = \{0,1\}$$

 $B_6 = \{w \mid w \text{ has at least two 1s}\}.$

B12 = {w | w has at least two 1s followed by w has at most two 1s}.

 $\Sigma = \{0,1\}$

B12

B₇

B10 = {w | w starts with a 1 and has even length or w starts with a 0 and has odd length}.

Find B10* for $\Sigma = \{0,1\}$

REFERENCES

ALL EXERCISES FOR FINITE AUTOMATA & REGULAR LANGUAGE

- Same as previous Lecture...
- Elements of the Theory of Computation, Papadimitriou (2nd ed),

 All exercises.
- Introduction to Automata Theory, Languages, and Computations, Hopcroft, All exercises.