Assu	mption
en-	v. is a finite MDP
	A, R
- dy	namics: p(s', r s,a) is given for all s &S, a &A(s), b &R, s'&S
	I
	Idea May 550 1 hu 10 1 1 5 - 0 A - a7
U	$\frac{1}{4}(s) = \max_{\alpha} E[R_{t+1} + Fv_{x}(S_{t+1}) \mid S_{t}=s, A_{t}=a]$
	= max \(\frac{1}{5\frac{1}{5}}\) \(\rho(s', \rho(s, a) \) \(\rho(s'))\)
Policy	Evaluation (Prediction)
	for athitrary halfor To compute state-value function
ι	$ \pi(s) = \operatorname{Enl} G_{t} S_{t} = s $ (evaluate)
	= Er [Rth + & Gtr St = s]
	= ET [Rt+1 + & VT (St+1) St = s]
	= $\sum_{\alpha} \pi(\alpha s) \sum_{s',r} p(s',r s,a) [r+ \partial V_{\pi}(s')]$
Ç	Strategy: Iteration
Ī	VKH (S) = Ex [Pt+1 + rvk (Stri) St = s]
,-	= = = TL(a s) = p(s',r s,a) [r+ + vk(s')]
(iterative policy iteration
Γ	Toput: TE, to be evaluated
30 °C	$V_{o}(s) = 0.$ $k = 0.$
	Repeat
	for each all s ES
	VK+1(S) = = = T(a s) = p(s', + s, a) [++ + Vk(s')]
	$\Delta V = \max_{S} V_{k+1}(S) - V_{k}(S) $
	k = k+1
	until $\Delta V < \theta$.
	$V_{TL} = V_{K+1}$

```
Policy Improvement
    How to improve policy? Try new policy and Compare.
   : If Qn (S, TU(S)) = Vx(S), TU(S) -> TU(S) 75 better.
   (proof) Vx(s) ≤ 9π (s, TL'(s))
                   = E[Rty + + νπ(Sty) | St=s, A+= π'(s)]
                   = ETI E REYI + JUE (Stri) | St=S]
                   S ET [ R+++ + 3π(S++1, π'(S++1)) | S+=5]
                   = ETU ERtH + & ETUERtH2+ LVTE (St+2)] |St=S]
                   = ETI [Pty + & Pty2 + J2VT (St+2) | St=5]
                   5 ETV [ Pt+1 + & Pt+2 + & Pt+3 + 2 VT (St+5) | St =5]
                   SENTREN + ORtez + 2 Rt+3+ ... | St = S]
                   = V_{\pi I}(s)
    Intuitively, if one step try other policy TL'is) for all states is better then TLIS)
               TV is better for whole process.
    TU(s) = argmax 2x(s, a) -> greedy poticy (simple solution)
          = argmax EERty + + VTC(Str) | St=s, At=a]
          = Gramax Fr p(s,HS,a) [++ +Vx(s')]
Policy Iteration
  T. E) VI, IS TI 5 VII -> ...
   greedy policy.
   1. Initialization: V(s), TE(s) arbitratily
  2. Policy Evaluation
     THATE VKH (S) = Z P(S', H S, a=TUS)) [++ & VK(S')]
     until SV < 8
  3. Policy Improvement
     T(s) = argmax = p(o', r/s,a) [r++V(s')]
     Tt II(s) = old policy, Stop
      V ≈ V+, TC ≈ TC+.
```

Val	ne Iteration
One	drawback of policy iteration
- +	eo many iteration in policy evaluation Step
- (especially, initial iterations meaningless because policy itself is meaningless
e	valuation + Tmprovement = Value Ttetation
	VK+1 (S) = Max E [Rt+1 + & VK (St+1) St=S, At=a]
	= max \(\tau \psi', r \s, a) \[r + \forall V_s(s') \]
ale	porithm
V.	h(s) = 0, k = 0.
ke	epeat
	For each s &S:
	VK+1(S) = max = p(S', r(S,a) [+++VK(S')]
	$\Delta V = \max_{s} V_{k+1}(s) - V_{k}(s) , k = k+1,$
Un	41
	7E 15
Ty	$s) = \underset{\alpha}{\text{Argmax}} \sum_{s,t} p(s',t s,a) [t+tv_{k}(s')].$
-	