Lab 6

To Demonstrate the Working of Binary Subtractor

Note: You may draw all the logic diagrams with hand and paste the pictures here or on logicly software with your name, roll number & section mentioned in your workspace. Make sure that all of your connections are clearly visible and distinguishable.

Tasks

1. Construct a logic circuit for half and full subtractor with the help of truth table/Boolean expression. Also write the Boolean expression for output(s).

Half Subtractor

a) Truth Table

b) Boolean Expression (Simplified)

c) Logic Diagram

d) Software Simulation (Show here your results for each combination that gives a high output)

Inputs are 1 and 0

InPUTS ARE 0 AND 1

Full Subtractor

a) Truth Table

b) Boolean Expression (Simplified)

d) Software Simulation (Show here your results for each combination that gives a high output)

Inputs are 001 and output is 1 and Bout is also 1

Inputs are 100 and output is 1 and Bout is 0

<u>Inputs are 111 and output is 1 and Bout is also 1</u>

- 2. A full subtractor can be implemented using 2-half subtractors. Demonstrate the logic diagram for the said circuit. Simulate your circuit for the verification of results.
 - a) Logic Diagram of Full Subtractor using 2-Half Subtractor

b) Software Simulation (Show here your results for each combination that gives a high output)
Inputs are 001 and output is 1 and Bout is 1

Inputs are 100 and output is 1

<u>Inputs are 111 and output is 1</u>

Muzamil
P200108
Lab Task # 6
2D-1