

Spatial Modeling of Nitrate Leaching in the Netherlands

Al-driven Data Engineering and Reusability for Earth and Space Sciences (DARES) @ ECAI 2025

Nitrate leaching \rightarrow The process of washing nitrogen out through the soil with water.

→ Happens when the soil contains more nitrate than plants can absorb.

Source: https://ragnabodata.se/drainage_irrigation/nitrogencycle.html

Nitrate leaching \rightarrow The process of washing nitrogen out through the soil with water.

→ Happens when the soil contains **more nitrate than plants can absorb**.

Why is it a problem?

- Leads to groundwater pollution
- Causes algal blooms and fish die-off
- Risks public health (e.g., blue baby syndrome)

Algal bloom

Source: https://nypost.com/2018/06/22/toxic-algae-blooms-becoming-more-common-across-us/

- Nitrate leaching \rightarrow The process of washing nitrogen out through the soil with water.
 - → Happens when the soil contains more nitrate than plants can absorb.
 - → Can be monitored by **sampling groundwater** through **monitoring wells**.

Source: https://books.gw-project.org/domestic-wells-introduction-and-overview/chapter/drilled-wells/

Relevance for the Netherlands:

- 66% of the land area is used for agriculture [1]
- Highest livestock density of EU countries [2]
- High **fertilizer** usage [3]
- Sandy soils (50% of area) provoke nitrate leaching [4, 5]

Objective:

• To develop an **explainable spatial regression model** for predicting nitrate concentrations in groundwater in **the Netherlands**, using spatial and environmental factors.

Objective:

• To develop an **explainable spatial regression model** for predicting nitrate concentrations in groundwater in **the Netherlands**, using spatial and environmental factors.

Challenges:

- Monitoring wells are sparse → many areas with no direct data
- Groundwater sampling is expensive → low sampling frequency

2. Literature review

"Everything is related to everything else, but near things are more related than distant things."

- Waldo Tobler's First Law of Geography (1970)

Traditionally **spatial** and **temporal autocorrelation** is used.

2. Literature review

"Everything is related to everything else, but near things are more related than distant things."

— Waldo Tobler's First Law of Geography (1970)

Relying on geographic proximity and may omit environmental interactions involved in nitrogen cycle:

- **Spijker et al. (2022)**: \rightarrow Introduced environmental variables
 - → Developed Random Forest model

2. Literature review

"Everything is related to everything else, but near things are more related than distant things."

- Waldo Tobler's First Law of Geography (1970)

Relying on geographic proximity and may omit environmental interactions involved in nitrogen cycle:

- **♦ Spijker et al. (2022)**: → Introduced environmental variables
 - → Developed Random Forest model

Limitations addressed:

- a. Limited temporal scope only year 2017 was analyzed
- b. Missing key nitrogen cycle factors explained 58% of variance
- c. Used only **model-specific** interpretability

a) Study Area & Time Period

- 12 provinces
- City regions are excluded
- Years: 2008 2023

b) Target variable

- **Nitrate** concentration in groundwater
- ~870 locations
- Sampled about twice a year
- Source:

c) Explanatory variables

	Time Series	Spatial
ÇÇ.	Temperature (KNMI)	Population density (CBS)
	Precipitation (KNMI)	Elevation (AHN)
	Groundwater table (BRO)	Land use (WER)
		Soil and geochemical properties (BRO)

d) Prediction grid

Nationwide 500 × 500 m prediction map

Excluding city regions

 Each point → location + date + environmental factors

• Years: 2010 | 2017 | 2021 | 2023

e) Data Pre-processing

Sources:

f) Model selection

Ridge Regression

- Linear model with L² regularization to prevent overfitting
- Interpretable by design

Random Forest

- Ensemble of decision trees non-linearity
- Model-specific interpretability (Gini impurity reduction)

XGBoost (Extreme Gradient Boosting)

- Sequentially adds trees to correct previous errors
- Model-specific interpretability (Loss-reduction gain)

f) Model selection

Ridge Regression

- Linear model with L² regularization to prevent overfitting
- Interpretable by design

Random Forest

- Ensemble of decision trees non-linearity
- Model-specific interpretability (Gini impurity reduction)

XGBoost (Extreme Gradient Boosting)

- Sequentially adds trees to correct previous errors
- Model-specific interpretability (Loss-reduction gain)

- Model-agnostic interpretability applied across all models.
- Best-performing models combined in Ensemble prediction.

g) Metrics

- Coefficient of Determination (\mathbb{R}^2) \rightarrow Goodness of fit
- Mean Absolute Error (MAE) → Average error
- Root Mean Squared Error (RMSE) → Impact of large mistakes

a) Performance evaluation

b) Feature Importances - <u>Model Specific</u>

c) Feature Importances - Model Agnostic

Feature

d) Test set predictions (year 2021)

e) Grid predictions

50

40

oz ration (mg

20

10

L

f) Changes over years

5. Discussion

a) Feature importance insights

- Thick earth soils
 - Sandy, highly permeable
- Low loam content
 - Low values → unbalanced soil
- Deeper groundwater tables
 - Proxy for elevation

5. Discussion

b) Spatial trends

- High nitrate areas → nitrogen surplus after year 2015 [10]
 - Region A: dry, sandy soils, and low share of grasslands.
 - Region B: more grasslands, and higher proportion of peat.

• Anomaly: northern Drenthe (2023) \rightarrow study limitation.

5. Discussion

c) Limitations

- Spatial mismatch between groundwater & nitrate datasets ($r \approx$ 0.6).
- Models underpredict nitrate values above 6 mg/L due to skewed nitrate dataset

• ~34 % of variance remains **unexplained** → Lack of fertilizer input data

6. Conclusion

- Random Forest and XGBoost outperformed Linear Regression
- Ensemble model performed best $\rightarrow R^2 = 0.66$
- **Key predictors:** thick soil types, loam content, and groundwater depth.
- Highest nitrate risk: South and North-East of the Netherlands.

Future work:

- Add agricultural practice, and fertilizer data
 - → Capture finer-scale variability and improve predictions.

Thank you!

- Iulia Capralova
 - O i.capralova@student.rug.nl
- Juan Cardenas-Cartagena
 - O j.d.cardenas.cartagena@rug.nl

References

- 1. European Commission. (2025). *CAP Strategic Plan: Netherlands*. Retrieved from https://agriculture.ec.europa.eu/cap-my-country/cap-strategic-plans/netherlands en
- 2. Eurostat. (2022). *Agri-environmental indicator livestock patterns*. Retrieved from https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_livestock_patterns
- 3. Eurostat. (2024). Fertiliser consumption (aei_fm_usefert). Retrieved from https://ec.europa.eu/eurostat/databrowser/view/aei_fm_usefert/default/bar?lanq=en
- 4. Delta Programme. (2024). Elevated Sandy Soils. Retrieved from https://english.deltaprogramma.nl/areas/elevated-sandy-soils
- 5. Van Drecht, G. (1993). Modelling of regional scale nitrate leaching from agricultural soils, The Netherlands. *Applied geochemistry*, *8*, 175-178.
- 6. Verloop, J., van den Brink, C., & Gielen, J. (2025). Effectiveness of Voluntary Nutrient Management Measures to Reduce Nitrate Leaching on Dairy Farms Using Soil N Surplus as an Indicator. Water, 17(3), 455.
- 7. D'Agostino, V., Greene, E. A., Passarella, G., & Vurro, M. (1998). Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization. *Environmental geology*, *36*(3), 285-295.
- 8. Boumans, L. J., Fraters, D., & Van Drecht, G. (2005). Nitrate leaching in agriculture to upper groundwater in the sandy regions of the Netherlands during the 1992–1995 period. *Environmental Monitoring and Assessment*, 102, 225-241.
- 9. Spijker, J., Fraters, D., & Vrijhoef, A. (2021). A machine learning based modelling framework to predict nitrate leaching from agricultural soils across the Netherlands. *Environmental Research Communications*, *3*(4), 045002.
- 10. B. Fraters, A. Hooijboer, A. Vrijhoef, A. Plette, N. Van Duijnhoven, J. Rozemeijer, M. Gosseling, C. Daatselaar, J. Roskam, H. Begeman, Agricultural practices and water quality in the netherlands; status (2016-2019) and trend (1992-2019) (2021).