地理信息系统与遥感应用

实验 5.1 为新建学校选址并设计最优路线

项目背景

为新建学校选择合适的校址,并为新校址找到最佳的路线设计。

作业要求

主要完成以下图件,并给出相应描述:

- (1) 地形晕渲图;
- (2) 给出以下四个因子重分类之后的栅格图:坡度、距备选学校距离、距现有学校距离、土地利用;
- (3) 学校选址专题图;
- (4) 通往学校的最优路线图。

实验一、晕渲图制作

- 1. 新建地图,加载数据;
- 2. 使用 Hillshade 工具生成 Elevation 的 hillshade, 注意将 Z factor 值设为 0.3:

ESE317-2024 地理信息系统与遥感应用

3. 打开 landuse 的 Layer Properties,设置合适的 color scheme:

ESE317-2024 地理信息系统与遥感应用

4. 在 TOC 內调整 landuse 和 hillshade 的顺序,将 hillshad 放在 landuse 之下,而将 landuse 的透明度设为 30%,得到如下的效果图:

ESE317-2024 地理信息系统与遥感应用

5. 关闭 landuse 图层,利用 elevation 图层和 hillshade 生成晕渲图,效果如下:

ESE317-2024 地理信息系统与遥感应用

实验二、Histogram 制作

1. 打开 Spatial Analyst 工具条:

2. 在下拉框中国选择 landuse

ESE317-2024 地理信息系统与遥感应用

3. 点击 , 生成 landuse 的 histogram

4. 选择 elevation, 生成相应的 histogram

ESE317-2024

地理信息系统与遥感应用

实验三、学校选址

1. 新建地图,添加数据

◆ Elevation.shp: 高程数据

◆ Landuse.shp: 土地利用数据

◆ rec_sites.shp: 预选学校地点

◆ Schools.shp,: 己有学校校址

土地利用编码表: (用 attributed table 可查)

类型代码	土地利用类型
1	Brush / transitional
2	water
3	Barren land
4	Built up
5	Agriculture
6	Forest
7	wetlands

2. 设置处理参数

地理信息系统与遥感应用

打开 Environment Settings: Geoprocessing -> Environment Settings, 进行如下设置:

Workspace: Data\School

Processing Extent: same as Landuse

Raster Analysis: same as elevation

3. 计算坡度

Spatial Analyst Tools -> surface analysis -> Slope:

layer 选 elevation, 输出文件: slope 1.img

地理信息系统与遥感应用

4. 重分类 坡度分级

Spatial Analyst -> Reclass -> Reclassify

用 Classify 定义分为 10 级, 坡度小的级别高, 坡度大的级别低。output raster: 设为: rec_slope.img。

初始状态如下图,然后按图中标示的顺序依次点按钮进行设置:

地理信息系统与遥感应用

设置 1: 点 Classify...,弹出的窗口中进行如下设置:

设置 2: 点 Reverse New Values, 此时注意下图中红框内的数字已发生变化。

生成的新图如下:

5. 计算已有学校的距离图:

已有学校地址文件: schools.shp

Spatial Analyst → Distance → Euclidean Distance,输出文件为 school_dis.img,其他设置如下:

输出结果如下:

6. 生成已有学校的距离图的分级图

输入文件: school_dis.img

Spatial Analyst → Reclass → Reclassify

分 10 级,从低到高, 距离越近级数越小。输出文件为: rec_school.img

地理信息系统与遥感应用

输出效果如下:

7. 建立预选校址的距离图

预选学校点文件: rec_sites.shp

Spatial Analyst → Distance → Euclidean Distance

结果文件名为: :dis_rec_sites.img

ESE317-2024 地理信息系统与遥感应用

8. 分级预选校址的距离图

Spatial Analyst → Reclassify,

分级 10 级, 级数从大到小, 即距离越近级别越大。输出文件名: rec_site.img。 具体设置参照步骤 6, 参数如下:

ESE317-2024

地理信息系统与遥感应用

结果图如下:

9. 土地利用图重新分级

土地利用文件名: landuse.shp

根据建筑的耗费级别为每个土地类型重新定位

土地类型值:用 open attribute table 可以看土地的属性值

Brush/ Transitional	5
Barren Land	10
Built up	3
Agriculture	9
Forest	4
Water	Nodata
Wetland	Nodata

用 Reclassify 重新指定数值(参考步骤 6, 但需要手动编辑下图中红框内的值):

ESE317-2024 地理信息系统与遥感应用

输出文件命名为: rec_landuse.img, 效果如下:

10. 数据检查

将重分类图进行制图分类,并如下图排列、验证正确性。

将土地利用重分类图进行如下制图:

11. 决策计算

权重值

决策要素	权重系数
坡度	0.125
土地利用	0.125
原有学校	0.25
预选校址	0.5

决策公式:

[rec_slope]*0.125 + [rec_landuse] *0.125+ [rec_school]*0.25+ [rec_site] *0.5 计算步骤: Spatial Analyst → Map Algebra → Raster Calculator

ESE317-2024 地理信息系统与遥感应用

结果文件: school_site.img

12. 彩色显示

在数据层树选择 结果文件--→右键 -→ Properties -→ Symbology -→ Classified -→在 Color Ramp 选择合适的色条

ESE317-2024 地理信息系统与遥感应用

13. 选择候选区域

Spatial Analyst → Conditional → Con

注意在 Expression 里输入: "value">8 && "value"<10。其他设置参考下图中的红框值

地理信息系统与遥感应用

生成的结果如下:

ESE317-2024 地理信息系统与遥感应用

14. 转换候选区域值 Spatial Analyst Tools -> Math -> Int

地理信息系统与遥感应用

15. 优化候选区域

Spatial Analyst → Generalization → Majority Filter

地理信息系统与遥感应用

ESE317-2024 地理信息系统与遥感应用

16. 优化候选区域

Conversion Tools \rightarrow From Raster \rightarrow Raster to Polygon

结果如下:

17. Selection By Location

18. Selection By Attributes

选择效果如下:

ESE317-2024 地理信息系统与遥感应用

19. 导出最

终选中的

优化区域

20. 出专题图,绘制最终的学校选址

实验四、寻找通往新校址的最优路线

1. 土地利用图成本计算

将 Landuse.img 重新分类,不同土地利用类型的成本值见下表:

序号	类别名	成本值
1	Brush/ Transitional-	5
2	Water	10
3	Barren Land	6
4	Built up	9
5	Agriculture	4
6	Forest	8
7	Wetland	Nodata

打开: Spatial Analyst -> Reclass -> Reclassify

输入文件: landuse.img

地理信息系统与遥感应用

结果文件名为: rec_landuse2.img。 结果如下:

2. 坡度图成本计算

将 slop_1.img 重新分类,将 slope 平均分为 10 级,分类值为 1 到 10,坡度 越大,成本越高。

打开: Spatial Analyst -> Reclass -> Reclassify, 关键设置如下图。注意将Changing missing values to NoData 置于选中状态。

地理信息系统与遥感应用

输出文件名: rec_slope2.img

OK Cancel Environments... << Hide Help Tool Help

ESE317-2024 地理信息系统与遥感应用

3. 生成成本权重图

打开: Spatial Analyst → Map Algebra → Raster Calculator

计算公式: rec_landuse2 + rec_slope2

输出文件: cost2.img

计算结果如下:

地理信息系统与遥感应用

4. 生成成本距离图和成本方向图

打开: Spatial Analyst → Distance → Cost Distance;

设置如下图:

Input raster or feature source data: opt area

Input cost raster: Cost2.img;

Output distance raster: CostDis opt.img;

Output backlink raster: cost_bl.img

生成两个结果图:

成本距离权重图

成本方向权重图

5. 生成最佳道路

打开: Spatial Analyst → Distance → Cost Path;

设置如下图:

输出文件名: opt_path.img

地理信息系统与遥感应用

结果如下:

6. 生成最终最佳选线

打开: Conversion Tools → From Raster → Raster to Polyline 设置如下图:

输出文件名: new_route.shp

ESE317-2024 地理信息系统与遥感应用

最终结果如下:

