Session 2: Exercises

M2 MOSIG: Distributed Systems

Thomas Ropars

2025

1 Lamport clocks

Question 1.1: Show through an example that Lamport Clocks cannot be used to decide whether a cut is consistent.

2 Vector Clocks

Question 2.2: Consider an execution in which the events are time stamped using vector clocks. Define a function \mathcal{F} which takes the vector clock of an event e and convert it to a scalar value SC, so that $e \to e' \Rightarrow SC(e) < SC(e')$. Prove that your function \mathcal{F} ensures the targeted property.

Question 2.3: Let C be a consistent cut defined by the tuple $(c_1, c_2, ..., c_n)$. Let $VC(e_i^{c_i})$ be the vector clock of event $e_i^{c_i}$. What condition, expressed in terms of $VC(e_i^{c_i})$, ensures that C is consistent?

3 Back to Chandy-Lamport algorithm

Question 3.4: Recall that the Chandy-Lamport snapshot algorithm requires FIFO-channels to work. Modify the algorithm to also work without that assumption. NB Consider only a single instance of the algorithm.

Propose an algorithm that only computes a consistent global state (it does not save the state of the channels).

Note: Do not implement FIFO order of messages.

Hint: Use piggybacking (piggyback the adquate information on application messages).

Question 3.5: Extend your algorithm to also record the state of the channels.