

Outline

▶ 2 is prime (two divisors: 1 and 2).

▶ 3 is prime (two divisors: and 3

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number

Proof.

- 1. Suppose *p* were the largest prime number.
- 2. Let q be the product of the first p numbers.
- 4. But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

1896

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

There is no largest prime number

Proof.

- 1. Suppose p were the largest prime number.
- 2. Let q be the product of the first p numbers.
- 3. Then q+1 is not divisible by any of them
- 4. But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

User guide

User guide First slider

Second Second slider

Thanks!

This text is red on slides 2 and 3, otherwise black

otherwise black This text is red on slides 2 and 3

otherwise black This text is red on slides 2 and 3

Shown on first slide.

Shown from slide 4 on.

Shown from slide 4 on. Shown on all slides.

