MATH 226 SOLUTIONS MANUAL PART 1.1: SETS AND COORDINATES

IZABELLA LABA TRANSCRIBED BY CALEB MARSHALL

- 1. Decide whether each of the sets below is open, closed, or neither.
 - (a) $\{(x,y) \in \mathbb{R}^2 : 0 \le x < 1, 0 \le y < 2\}$ neither
 - (b) $\{(x,y) \in \mathbb{R}^2 : x+y < 2\}$ open
 - (c) $\{(x,y) \in \mathbb{R}^2 : 0 < \sqrt{x^2 + y^2} \le 3\}$ neither open nor closed
 - (d) $\{(x, y, z) \in \mathbb{R}^3 : |x + 2y + 3z| \ge 6\}$ closed
- 2. The following conditions describe sets in \mathbb{R}^3 . Are these sets open, closed, or neither? Specify the boundary of each set.
 - (a) $x^2 + y^2 + z^2 \ge 16$: The boundary is the sphere $x^2 + y^2 + z^2 = 16$. Since this sphere is included in S, the set is closed.
 - (b) $x^2+y^2 \ge 4$, $z \ge 0$: This is the set above the plane z=0 and on the outside of the cylinder $x^2+y^2=4$, with boundary included. The boundary is the union of the cylindrical surface $\{(x,y,z): x^2+y^2=4, z\ge 0\}$, and the set $x^2+y^2\ge 4$ in the plane z=0. This set is closed.
 - (c) $\sqrt{x^2+y^2} \le z < 1$: This is the set above the cone $z=\sqrt{x^2+y^2}$ and below the plane z=1, with the cone surface included and the plane not included. The boundary consists of the conical segment $\{(x,y,z): z=\sqrt{x^2+y^2}, z \le 1\}$, and the disk $x^2+y^2 \le 1$ in the plane z=1. This set is neither closed nor open.
 - (d) 0 < x < 1, 0 < y < 1, z = 1. This is the unit square in the plane z = 1, without the edges. The boundary is the closed square $\{(x, y, z): 0 \le x \le 1, 0 \le y \le 1, z = 1\}$. This set is neither closed nor open.
 - (e) $\{(x,y,z)\in\mathbb{R}^3:\ 0<\sqrt{x^2+y^2}\leq 3\}$: The set is neither open nor closed. The boundary consists of the cylinder $\sqrt{x^2+y^2}=3$ (included in the set) and the line x=y=0 in \mathbb{R}^3 (not included in it).
 - (f) $\{(x,y,z)\in\mathbb{R}^3:\ x\geq 0,\ x^2+y^2+z^2\geq 4\}$: The set is closed. The boundary consists of the half-sphere $x\geq 0,\ x^2+y^2+z^2=4,$ and the set $x=0,\ y^2+z^2\geq 4.$
 - (g) $\{(x,y,z)\in\mathbb{R}^3:\ z>\sqrt{x^2+y^2},\ x^2+y^2+z^2\leq 2\}$: The set is neither open nor closed. The boundary is

$$\{(x,y,z) \in \mathbb{R}^3: \ z = \sqrt{x^2 + y^2}, \ x^2 + y^2 + z^2 \le 2\}$$

$$\cup \{(x,y,z) \in \mathbb{R}^3: \ z > \sqrt{x^2 + y^2}, \ x^2 + y^2 + z^2 = 2\}.$$

Date: September 11, 2023.

Optional: There are other equivalent ways to express the answer, for example

$$\{(x, y, z) \in \mathbb{R}^3 : z = \sqrt{x^2 + y^2}, \ 0 \le z \le 1\}$$

 $\cup \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 2, \ z \ge 1\}.$

(h) $\{(x,y,z)\in\mathbb{R}^3:\ x>0,\ 0\leq y\leq 4\}$: The set is neither open nor closed. The boundary is

$$\{(x, y, z) \in \mathbb{R}^3 : x > 0, y = 0\} \cup \{(x, y, z) \in \mathbb{R}^3 : x > 0. y = 4\}$$

 $\cup \{(x, y, z) \in \mathbb{R}^3 : x = 0, 0 \le y \le 4\}.$

3. Prove directly from the definition that the set $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 4\}$ is an open set in \mathbb{R}^3 . (Given a point $P = (x, y, z) \in S$, find a neigbourhood of P which is contained in S.)

Let $P=(x,y,z)\in S$. By the definition of S, we have $x^2+y^2<4$, so that if we choose $\varepsilon=2-\sqrt{x^2+y^2}$ then $\varepsilon>0$. We claim that $B_{\varepsilon}(P)\subset S$. To see this, let $Q=(a,b,c)\in B_{\varepsilon}(P)$. Let P',Q' be the projections of P,Q onto the xy-plane, respectively. That is, let P'=(x,y,0) and Q'=(a,b,0). Then $|PQ|<\varepsilon$ by construction and thus

$$|P'Q'| = \sqrt{(x-a)^2 + (y-b)^2}$$

 $\leq \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2}$
 $= |PQ|$
 $< \varepsilon$.

By the triangle inequality, $|OQ'| \le |OP'| + |P'Q'|$, where O = (0,0,0) denotes the origin. This yields

$$\sqrt{a^2 + b^2} \le \sqrt{x^2 + y^2} + |P'Q'|$$

$$< \sqrt{x^2 + y^2} + \varepsilon$$

$$= 2.$$

This is equivalent to $a^2 + b^2 < 4$, which shows that $Q \in S$, as required.

4. Let $S' = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 4, z \ge 0\}$. Is S' an open set in \mathbb{R}^3 ? Is it closed? Prove your answers (again, using points and neighbourhoods).

S' is not an open set. For example, P = (0,0,0) belongs to S', but has no neighbourhood contained in S'. To check that last part, let $B_r(P)$ be any neighbourhood of P in \mathbb{R}^3 . Then $B_r(P)$ contains the point Q = (0,0,-r/2), but $Q \notin S'$ since the z-coordinate of Q is negative.

S' is not a closed set, either. For this we must show that its complement $(S')^c$ is not open. Let $\tilde{P}=(2,0,0)$. Then $\tilde{P}\in (S')^c$, but there is no neighbourhood of \tilde{P} contained in $(S')^c$. To see this, let $B_r(\tilde{P})$ be any neighbourhood of \tilde{P} in \mathbb{R}^3 . Then $B_r(\tilde{P})$ contains the point $\tilde{Q}=(2-\frac{\min(r,4)}{2},0,0)$, but $\tilde{Q}\notin (S')^c$ since $\tilde{Q}\in S'$.

5. Prove directly from the definition that the set $S = \{(x,y) \in \mathbb{R}^2 : x+y>0\}$ is an open set in \mathbb{R}^2 . (Given a point $P = (x,y) \in S$, find an r > 0 such that the neigbourhood $B_r(P)$ is contained in S.)

Let $P = (x, y) \in S$, and choose r = (x + y)/2. By the definition of S, we have x + y > 0, so that r > 0. We claim that $B_r(P) \subset S$. To see this, let $Q = (x', y') \in B_r(P)$. Then

$$|PQ| = \sqrt{(x - x')^2 + (y - y')^2} < r,$$

so that

$$|x' - x| \le |PQ| < r = \frac{x+y}{2}, \quad |y' - y| \le |PQ| < r = \frac{x+y}{2}.$$

In particular, $x' - x > -\frac{x+y}{2}$ and $y' - y > -\frac{x+y}{2}$, so that

$$x' + y' = (x + y) + (x' - y) + (y' - y)$$
$$> (x + y) - \frac{x + y}{2} - \frac{x + y}{2}$$
$$= 0.$$

Therefore $Q \in S$. Since $Q \in B_r(P)$ was arbitrary, we have $B_r(P) \subset S$, as claimed.

6. Let $S' = \{(x,y) \in \mathbb{R}^2 : x+y > 0, x-y \leq 0\}$. Is S' an open set in \mathbb{R}^2 ? Prove your answer (again, using points and neighbourhoods).

S' is not an open set. For example, P=(1,1) belongs to S' since 1+1=2>0 and 1-1=0. However, P has no neighbourhood contained in S'. To check that last part, let $B_r(P)$ be any neighbourhood of P in \mathbb{R}^2 . Then $B_r(P)$ contains the point Q=(1,1-r/2), but $Q \notin S'$ since 1-(1-r/2)=r/2>0.

7. Prove from the definition that the set $S := \{(x,y) : x^2 + 4y^2 < 1\}$ is open in \mathbb{R}^2 . As above, this means: for each point $P \in S$, find an r > 0 such that $B_r(P) \subset S$.

The set S is the region enclosed by an ellipse with centre at the origin. The ellipse S has major axis in the horizontal with length 1; its minor axis is vertical with length 1/2. Notice for any $P = (x, y) \in S$, we necessarily have $1 - x^2 - 4y^2 > 0$.

Now, suppose $P = (x, y) \in S$ be given to us. Let $r = c(1 - x^2 - 4y^2)$ where 0 < c < 1 is some large. Then r > 0. Moreover, if $Q = (u, v) \in B_r(P)$, we know that |PQ| < r. In particular, $|u - x| \le |PQ| < r$ and $|v - y| \le |PQ| < r$. By the triangle inequality, this gives,

(1)
$$|u| \le |x| + |u - x| < |x| + r$$
 and $|v| \le |y| + |v - y| < |y| + r$.

We now need to show that $Q \in B_r(P)$ also satisfies $Q \in S$. Since Q was an arbitrary element of $B_r(P)$, this would imply that $B_r(P) \subset S$. Since $P \in S$ was also arbitrary, this would show that S is open.

Now, Q = (u, v) is an element of S if and only if $u^2 + 4v^2 < 1$. We will need some intermediate inequalities to show that this is, in fact, true. Notice that by (1)

$$u^{2} + 4v^{2} \le (|x| + r)^{2} + 4(|y| + r)^{2}$$

$$= |x|^{2} + 2|x|r + r^{2} + 4|y|^{2} + 8|y|r + 4r^{2}$$
(using that $|x|, |y| \le 1$ for $(x, y) \in S$) $\le |x|^{2} + 2r + r^{2} + 4|y|^{2} + 8r + 4r^{2}$

$$= |x|^{2} + 4|y|^{2} + 10r + 5r^{2}$$

Now, we examine $r = c(1 - x^2 - 4y^2)$. Notice, since c < 1, we must have r < 1. So, in particular: $r^2 = r(r) < 1 \cdot r = 1$. Let's continue our inequalities

$$u^{2} + 4v^{2} \le |x|^{2} + 4|y|^{2} + 10r + 5r^{2}$$
$$< x^{2} + 4y^{2} + 15r.$$

Now substitute the definition of r, to obtain

$$u^{2} + 4v^{2} \le x^{2} + 4y^{2} + 15c(1 - x^{2} - 4y^{2})$$

$$= 1 - (1 - x^{2} - 4y^{2}) + 5c(1 - x^{2} - 4y^{2})$$

$$= 1 - (1 - 15c)\underbrace{(1 - x^{2} - 4y^{2})}_{>0}.$$

In particular, if we choose c < 1/15, then

$$1 - (1 - 15c)\underbrace{(1 - x^2 - 4y^2)}_{>0} < 1 - (1 - 15 \cdot \frac{1}{15})(1 - x^2 - 4y^2) = 1.$$

So, with this choice of $r = c(1 - x^2 - 4y^2)$, we see that $Q = (x, y) \in S$. This concludes the proof that S is open.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, B.C. V6T 1Z2, CANADA

ilaba@math.ubc.ca, cmarshall@math.ubc.ca