EEE243 – Applied Computer Programming

Input and outputs

Outline

- 1. Encoding
- 2. Peripherals
- 3. Data streams
- 4. File manipulations

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	_[Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	II .	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	Р	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	ŕ
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ī
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
		_							I		-

Source: wikimedia.org

Hello!

Hello!

Hello!

Allô!

		F	4								l			Ć	ĵ				!	
0)	0	4	1	0	0	6	С	0	0	6	С	0	0	F	4	0	0	2	1

Allô!

	F	4				l				l			Ć	ĵ				!	
0	0	4	1	0	0	6	С	0	0	6	С	0	0	F	4	0	0	2	1

Number of bytes	Bits for code point	First code point	Last code point	Byte 1	Byte 2	Byte 3	Byte 4
1	7	U+0000	U+007F	0xxxxxxx			
2	11	U+0080	U+07FF	110xxxxx	10xxxxxx		
3	16	U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx	
4	21	U+1000 0	U+10FF FF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

From [1]

Number of bytes	Bits for code point	First code point	Last code point	Byte 1	Byte 2	Byte 3	Byte 4
1	7	U+0000	U+007F	0xxxxxxx			
2	11	U+0080	U+07FF	110xxxxx	10xxxxxx		
3	16	U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxxx	
4	21	$0+1000 \\ 0$	U+10FF FF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

From [1]

Encoding and Digitization

Digitization: going from an analog representation of something to a digital form

Encoding and Digitization

Audio Digitization

Audio Digitization

File Encoding

File: "a computer resource for encoding data discretely in a computer storage device." [2]

- Allows for persistent data.
- Allows to logically group together bits
- Segregates interpretation

File Encoding

File format: "a standard way that information is encoded for storage in a computer file. It specifies how bits are used to encode information in a digital storage medium." [1]

Png, bmp, jpeg, mp3, mp4, html, etc.

File Encoding

- Identifying file type
 - OS specific
 - most use the extension (*.txt)

Bitmap.Bmp file

metadata

File Structure Example

Name	42	Size	Description
er	9000	4 bytes	Windows Structure: BITMAPFILEHEADER
Signature	50	bytes	'BM'
ileSize		l bytes	File size in bytes
eserved	000	l bytes	unused (=0)
DataOffset	92 J	l bytes	File offset to Raster Data
leader	77	0 bytes	Windows Structure: BITMAPINFOHEADER
Size	900	l bytes	Size of InfoHeader =40
Width		l bytes	Bitmap Width
Height	000	l bytes	Bitmap Height
lanes	10	bytes	Number of Planes (=1)
BitCount	0(2) + 2-3	! bytes	Bits per Pixel 1 = monochrome palette. NumColors = 1 4 = 4bit palletized. NumColors = 16 8 = 8bit palletized. NumColors = 256 16 = 16bit RGB. NumColors = 65536 (?) 24 = 24bit RGB. NumColors = 16M
Compression		loytes	Type of Compression 0 = BI_RGB no compression 1 = BI_RLES Shit RLE encoding 2 = BI_RLE4 4bit RLE encoding
mageSize		bytes	(compressed) Size of Image It is valid to set this =0 if Compression = 0
CpixelsPerM	32	l bytes	horizontal resolution: Pixels/meter
/pixelsPerM	32	l bytes	vertical resolution: Pixels/meter
ColorsUsed	32	l bytes	Number of actually used colors
ColorsImportant		lbytes	Number of important colors D = all
orTable		l * NumColors bytes	present only if Info BitsPerPixel <= 8 colors should be ordered by importance
Rec	\$ 1	byte	Red intensity
Gre		byte	Green intensity
Blu		byte	Blue intensity
res	erved 1		unused (=0)
epeated Nu	nColors	times	egal an their also, for Miller, four for an fall.
r Data		nfo.ImageSize bytes	The pixel data

Source: www.ue.eti.pg.gda.pl/fpgalab/zadania.spartan3/zad_vga_struktura_pliku_bmp_en.html

Streams

"The logical channels on which I/O is performed." [3]

Text

- characters are organized in lines (terminated by new line indicator)
- Read and write operations can affect the content (new line indicator modified depending on implementation)

Binary

- Ordered sequence of characters
- No modification of content by implementation.

Standard Streams

Automatically created when a program starts

- stdin
 - points to the keyboard
 - scanf uses it
- stdout
 - points to the screen (console)
 - printf uses it
- stderr
 - points to the screen (console)

Standard Streams

```
#include <stdio.h>
#include <stdlib.h>
int main(void) {
   char name[30];
   scanf("%s", name); // uses stdin
   printf("Hello World!\n"); // uses stdout
   fprintf(stderr, "An error"); //uses stderr
   return EXIT_SUCCESS;
    Output
    Hello World!
```

An error

Handling Files in C

- stdio contains a definition of the type FILE
- fopen: opens a file

```
FILE *fopen(const char *filename, const char *mode);
```

• fclose: closes a file

```
int fclose(FILE *stream);
```

fseek: sets the file position indicator

```
open a text file for reading
             truncate to zero length or create a text file for writing
             append; open or create text file for writing at end-of-file
a
             open binary file for reading
rb
             truncate to zero length or create a binary file for writing
wb
ab
             append; open or create binary file for writing at end-of-file
             open text file for update (reading and writing)
r+
             truncate to zero length or create a text file for update
W+
             append; open or create text file for update
a+
r+b or rb+
             open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create a binary file for update
a+b or ab+
             append; open or create binary file for update
```

```
int fseek(FILE *stream, long int offset, int whence);
```

SEEK_SET, SEEK_CUR, or SEEK_END

Handling Files in C

 ftell: obtains the current value of the file position indicator.

```
long int ftell(FILE *stream);
```

 fgetc: obtains the next character and advances the file position indicator

```
int fgetc(FILE *stream);
```

 fputc: writes the character to the stream and advances the file position indicator

```
int fputc(int c, FILE *stream);
```

Example

```
#include <stdio.h>
#include <stdlib.h>
void double space(FILE *in, FILE *out);
int main() {
   FILE *in, *out;
   in = fopen("lorem.txt", "r");
   out = fopen("new-lorem.txt", "w");
   double space(in, out);
   int err = fclose(in);
   err = fclose(out);
   return EXIT SUCCESS;
}
void double space(FILE *in, FILE *out) {
   int c;
   while((c = fgetc(in)) != EOF) {
      fputc(c, out);
      if(c == '\n'){
         fputc('\n', out);
```

Lorem ipsum dolor sit amet, consectetur adipiscing elit,

sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Handling Files in C

 fread: used to read binary streams and put the information into an array. Advances the file position indicator

```
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream)
```

 fwrite: writes from an array to a binary stream and advances the file position indicator

```
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);
```

Handling Files in C

• **fprintf:** used to print formatted text to a text stream. Works similarly to printf, but it is possible to specify the stream instead of the default stdout.

```
int fprintf(FILE *stream, const char *format, ...);
```

For more details on the stream/file manipulation functions, refer to [5]

Example

```
#include <stdio.h>
#include <stdlib.h>
#define LINE LEN 10
int main() {
   char buffer;
   int count = 0;
   FILE *input = fopen("lorem.txt", "rb");
   FILE *output = fopen("lorem-bin.txt", "w");
   while (fread(&buffer, 1, 1, input) == 1) {
      if (count == LINE LEN) {
         fprintf(output, "\n");
         count = 0;
      fprintf(output, "%x ", buffer);
      count++;
   return EXIT SUCCESS;
```

Lorem ipsum dolor sit amet, consectetur adipiscing elit,

sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Exercise

 Write a program that reads the lorem.txt file and creates a lorem-updated.txt file. The program puts all the text in uppercase and limits the length of the lines to 20 characters (without cutting the words).

 Note that you must choose the appropriate option to open your stream (r, w, r+, etc.) and you may need to create temporary files. Questions?

References

- [1] Wikipedia contributors. UTF-8. Wikipedia, The Free Encyclopedia. November 8, 2017, 18:48 UTC. Available at: https://en.wikipedia.org/w/index.php?title=UTF-8&oldid=809377359. Accessed November 8, 2017.
- [2] Wikipedia contributors. Computer file. Wikipedia, The Free Encyclopedia. October 4, 2017, 13:12 UTC. Available at: https://en.wikipedia.org/w/index.php?title=Computer_file&oldid=803760508. Accessed November 9, 2017.

References

- [3] Jaescheke, R., The Dictionary of Standard C. Prentice-Hall. 2001.
- [4] Wikibooks contributors. C Programming/File IO. Wikibooks, The Free Textbook Project. October 28, 2017, 23:20 UTC. Available from: https://en.wikibooks.org/w/index.php?title=C_Programming/File_IO&oldid=3320864. Accessed November 15, 2017.
- [5] Kelley A., Pohl I., C by Dissection, 4th. ed. Addison Wesley Longman. 2001.