MATH 141: Midterm 2

Name: _	

Directions:

- * Show your thought process (commonly said as "show your work") when solving each problem for full credit.
- * Remember to simplify each expression.
- * If you do not know how to solve a problem, try your best and/or explain in English what you would do.
- * Good luck!

Problem	Score	Points	
1		10	
2		10	
3		10	
4		10	
5		10	

- 1. Suppose $f(x) = \sqrt{x}$.
 - (a) What does the expression $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ represent?

(b) Find

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

for the given function f(x). You must use this limit definition to receive credit.

(c) Find the equation of the tangent line of f(x) at the point (1, 1).

- 2. Short answer questions:
 - (a) If a function f(x) is continuous at x = a, must it be differentiable at x = a as well? If not, draw a graph of a function that is continuous but not differentiable at x = a.

(b) True or false:

$$f(x) = \sin(x) + \frac{x}{x+1}$$

is continuous on \mathbb{R} .

(c) Given f(x) = x, find an equation of the normal line at (3,3).

- 3. Answer the following:
 - (a) Given a function f(x), if

$$\lim_{x\to a}f(x)=\frac{0}{0}$$

what global factor do you need to manifest in the numerator and denominator and why?

(b) Find

$$\lim_{t\to 0}\frac{\sqrt{1+t}-\sqrt{1-t}}{t}$$

$$\lim_{x \to 3} \frac{\frac{1}{x} - \frac{1}{3}}{x - \frac{3}{3}}$$

4. Find the following derivatives. You are allowed to use the Differentiation Rules.

(a)
$$f(x) = \pi^2$$

(b)
$$f(x) = x^2 \sin x$$

(c)
$$f(x) = \frac{\sin(x^2)}{2 - \cos x}$$

(d)
$$g(x) = \sqrt{\tan x^3}$$

5. Given the implicit equation

$$\sqrt{xy} = x + y$$

Find
$$\frac{dy}{dx}$$
.