Topology Homework 03

Ethan Jensen, Luke Lemaitre, Kasandra Lassagne

February 7, 2020

EXERCISE 1.16. On the plane \mathbb{R}^2 , let

$$\mathbb{B} = \{ (a, b) \times (c, d) \subseteq \mathbb{R}^2 | a < b, \ c < d \}$$

- (a) Show that \mathbb{B} is a basis for a topology on \mathbb{R}^2 .
- **(b)** Show that the topology \mathfrak{T}' generated by \mathbb{B} is the standard topology on \mathbb{R}^2 .
- (a)
- (1) Consider some $(x, y) \in \mathbb{R}^2$.

Let $B' = (x - 1, x + 1) \times (y - 1, y + 1)$.

Since $x \in (x-1), x+1$ and $y \in (y-1, y+1), (x,y) \in B'$

So $\exists B' \in \mathbb{B} \ni (x,y) \in B' \forall (x,y) \in \mathbb{R}^2$

(2) Let $B_1, B_2 \subseteq \mathbb{B}$

 $B_1 = (a_1, b_1) \times (a_2, b_2), \ a_1 < b_1, \ a_2 < b_2 \ \text{and} \ B_2 = (c_1, d_1) \times (c_2, d_2), \ c_1 < c_1, \ c_2 < d_2$

Let $(x,y) \in B_1 \cap B_2$

Using the laws of algebra, we know that

 $\max(a_1, c_1) < x < \min(b_1, d_1)$ and $\max(a_2, c_2) < y < \min(b_2, d_2)$

Let $B' = (\max(a_1, c_1), \min(b_1, d_1)) \times (\max(a_2, c_2), \min(b_2, d_2))$

Thus, $(x, y) \in B' \subseteq B_1 \cap B_2$

 $\therefore (x,y) \in B_1 \cap B_2 \implies \exists B' \subseteq B_1 \cap B_2 \ni (x,y) \in B' \quad \forall B_1, B_2 \in \mathbb{B}$

 \therefore \mathbb{B} is a basis for a topology.

(b) Let $\mathbb{B}_1 = \{(a,b) \times (c,d) | a < b,c < d\}$ Let $\mathbb{B}_2 = \{B(p,r) | r > 0\}$ Let \mathcal{T}_1 be the topology generated by $\mathbb{B}_1 = \mathbb{B}$ Let \mathcal{T}_2 be the topology generated by \mathbb{B}_2 (the standard topology).

Figure 1: \rightarrow

Figure 2: \leftarrow

→ Let
$$B_1 \in \mathbb{B}_1$$

 $\exists a, b, c, d \ni B_1 = (a, b) \times (c, d)$
Let $p = (x, y) \in B_1$, so $a < x < b$ and $c < y < d$.
Let $r = min(x - a, b - x, y - c, d - y)$, so $r > 0$.

Consider
$$B(p,r) \in \mathbb{B}_2$$

 $B(p,r) \in \mathcal{T}_2$
Let $q \in B(p,r)$
 $\exists m, \ \theta \ni 0 < m < r \text{ where } q = (x + m\cos\theta, \ y + m\sin\theta)$
Since $-1 \le \sin\theta \le 1, \ -r \le m\sin\theta \le r$
Since $-1 \le \cos\theta \le 1, \ -r \le m\cos\theta \le r$

$$a < x - r a < x - m a < x + m cos \theta$$

$$x + m < b x + m cos \theta < b$$

$$x + m cos \theta < b$$

$$c < y - r \\ c < y - m \\ c < y + m \sin \theta$$

$$y + r < d \\ y + m < d \\ y + m \cos \theta < d$$

So $q \in B_1$ Thus, $B(p,r) \subseteq B_1$ By the Union Lemma, $B_1 = \bigcup_{p \in B_1} B(p, r)$.

Let $U \in \mathfrak{T}_1$. $U = \bigcup B_k$ where $B_k \in \mathbb{B}_1$ since \mathbb{B}_1 generates \mathfrak{T}_1

Thus, $U = \bigcup \bigcup_{p \in B_k} B(p, r)$, which is a union of basis elements from \mathfrak{T}_2 . So $U \in \mathfrak{T}_2$

$$\therefore \mathfrak{T}_1 \subseteq \mathfrak{T}_2$$

$$\leftarrow \text{Let } B(p,r) \in \mathbb{B}_2$$
 Let $q = (x_q, y_q) \in B(p,r)$.

$$\exists m \ni 0 < m < r \text{ and } d(p,q) = m$$
 Let $B_q = \{(x_q + \frac{m-r}{\sqrt{2}}, x_q + \frac{r-m}{\sqrt{2}}) \times (y_q + \frac{m-r}{\sqrt{2}}, y_q + \frac{r-m}{\sqrt{2}})\}$ $B_q \in \mathbb{B}_1$ Let $s \in B_q$.

By the formula for Euclidian distance

$$d(q,s) < \sqrt{\left(x_q - \left(x_q \pm \frac{m-r}{\sqrt{2}}\right)\right)^2 + \left(y_q - \left(y_q \pm \frac{m-r}{\sqrt{2}}\right)\right)^2}$$
$$d(q,s) < \sqrt{\left(\frac{m-r}{\sqrt{2}}\right)^2 + \left(\frac{m-r}{\sqrt{2}}\right)^2}$$
$$d(q,s) < \sqrt{(r-m)^2}$$

Since r > m

$$d(q, s) < r - m$$

By the triangular property d(p,s) < d(p,q) + d(q,s)

```
\begin{split} &d(p,s) < m + (r-m) \quad \text{so } d(p,s) < r \\ &\text{Thus, } s \in B(p,r). \\ &\text{So } B_q \subseteq B(p,r) \\ &\text{By the Union lemma } \bigcup_{q \in B(p,r)} B_q = B(p,r) \\ &\text{Let } U \in \mathfrak{T}_2. \\ &U = \bigcup B_k \text{ where } B_k \in \mathbb{B}_2 \text{ since } \mathbb{B}_2 \text{ generates } \mathfrak{T}_2. \\ &\text{Thus, } U = \bigcup \bigcup_{q \in B(p,r)} B_q, \text{ which is a union of basis elements from } \mathfrak{T}_1. \\ &\text{So } U \in \mathfrak{T}_1 \\ & \square \\ & \therefore \mathfrak{T}_1 = \mathfrak{T}_2 \\ &\text{The topology } \mathfrak{I}' \text{ generated by } \mathbb{B} \text{ is the standard topology on } \mathbb{R}^2. \end{split}
```