Cours de maths 08-09-2019

Chap 1: Ensembles de nombres

par scott hamilton

Démonstration:

prouver que racine de 2 n'est pas rationnel

On veut montrer que $\sqrt{2} \notin \mathbb{Q}$, on raisonne par l'absurde.

⇒ Comment s'écrit
$$\sqrt{2}$$
?

$$\sqrt{2} = \frac{a}{b}, a \in \mathbb{N}, b \in \mathbb{N}^*$$

et
$$\begin{cases} PGCD(a,b) = 1\\ a \text{ et } b \text{ sont premiers entre eux}\\ \frac{a}{b} \text{ est irréductible} \end{cases}$$

 \Rightarrow Montrer que a^2 est pair

$$\sqrt{2} = \frac{a}{b}$$
 alors $a = \sqrt{2} \cdot b$

et
$$a^2 = 2 \cdot \underbrace{b^2}_{\in \mathbb{N}}$$

donc a^2 est pair

 \Rightarrow Montrer que a est pair

Supposons que a est, impair

$$a = 2k + 1, K \in \mathbb{N}$$

$$a^2 = 4k^2 + 4k + 1$$

$$a^2 = \underbrace{2(2k^2 + 2k)}_{\text{pair}} + 1$$

Or a^2 ne peut être impair.

Donc a n'est pas impair, a est pair.

Scott Hamilton

Cours de maths 08-09-2019

\Rightarrow Montrer que b est pair

$$a=2k, k \in \mathbb{N}$$

 $a^2=(2k)^2=4k^2$
 $2b^2=4k^2$
 $b^2=2\underbrace{k^2}_{\in \mathbb{Z}}$
 b^2 est pair b est pair

 \Rightarrow Conclure : donc $\frac{a}{b}$ n'est pas irréductible (a et b ont 2 comme diviseur commun) donc $\sqrt{2} \notin \mathbb{Q}$

2 **Scott Hamilton**