DIVISIONE Operatore universale(tutti...)

DIVISIONE

Operatore universale (tutti...)

selezionare le persone che hanno avuto tutte fidanzate con i capelli biondi

sql:

1° procedura ottimizzata:

dimostrare che **non** esiste una fidanzata di X che **non** sia stata con i capelli biondi (doppia negazione afferma)

2° procedura non ottimizzata:

Prendo tutte le fidanzate di X con i capelli biondi e prendo tutte le fidanzate di X complessivamente (confronto tra 2 conteggi) se i due numeri coincidono allora ho dimostrato la mia ipotesi

Query: selezionare le persone che hanno comprato tutte le penne

Algebra relazione:

3 persone e 2 penne (tutte le combinazioni si ottengono con il prodotto cartesiano e le tuple saranno pari a: Cardinalità(Persone)*Cardinalità(Penne)=3*2=6 tuple)

A Tutte le combinazioni delle coppie (persona, penna) (tra cui ci saranno informazioni false -prodotto cartesiano-) sottraggo le coppie reali (ossia tutte le coppie persona – penna che esistono davvero) e si ottengono le informazioni false ossie le coppie (persona, penna) che non esistono:

ogni persona rimasta dopo la differenza cosa posso dire : sono le persone che non avendo acquistato almeno una penna non potranno essere scelte come persone che hanno comprato tutte le penne

Tutte le persone - le persone del risultato della differenza = ottengo le persone che hanno acquistato tutte le penne

Query: selezionare le persone che hanno comprato tutte le penne

Algebra relazione:

3 persone e 2 penne (tutte le combinazioni si ottengono con il prodotto cartesiano e le tuple saranno pari a: Cardinalità(Persone)*Cardinalità(Penne)=3*2=6 tuple)

tutte le combinazioni delle coppie (persona, penna) (tra cui ci saranno informazioni false -prodotto cartesiano-) sottraggo le coppie reali (ossia tutte le coppie persona – penna che esistono davvero)...se tutte le persone hanno tutte le penne questa differenza mi restituisci una relazione vuota

Tutte le persone - relazione vuota = tutte le persone

PROE ROSARIO SORBELLO

Divisione

- Non supportata come operatore primitivo, ma utile per alcuni tipi di interrogazione
- Sia A una relazione con due campi, x e y; sia B una relazione con il solo campo y:
- ▶ $A/B = \{\langle x \rangle \mid per \ ogni \ \langle y \rangle \in B, \ \langle x, y \rangle \in A\}$
 - cioè, A/B contiene tutte le tuple x tali che **per ogni** tupla y in B, ci sia una tupla xy in A

ESEMPIO: Trovare gli Impiegati *che lavorano in tutti i reparti*

K 1		\mathbb{R}_2	$\mathbf{R}_1/\mathbf{R}_2$
Impiegato	Reparto	Reparto	K 1 / K 2
Rossi	Α	Α	Impieg
Rossi	В	В	Ross
Bianchi	В		

ESEMPIO: Trovare gli **Impiegati** *che lavorano in tutti i reparti*

 \mathbf{R}_1

Impiegato	Reparto
Rossi	Α
Rossi	В
Bianchi	В

 \mathbb{R}_2

Reparto A B R_1/R_2

Impiegato Rossi

LA DIVISIONE E' SEMPRE EFFETTUATA TRA UNA RELAZIONE SLAVE E UNA MASTER DATE LE RELAZIONI

R1(X) E R2(Y) DOVE X=(Impiegato, Reparto) e Y=(Reparto) allora (X-Y)=Impiegato

$$R1(X) / R2(Y) = PROJ_{Impiegato}(R1) - PROJ_{Impiegato}((PROJ_{Impiegato}(R1) * R2) - R1)$$

♦ L'operatore divisione ÷ può essere derivato dagli operatori di base:

$$r \div s = \pi_{X-Y}(r) - \pi_{X-Y}((\pi_{X-Y}(r) \times s) - r)$$

Verifichiamo tale equivalenza sull'esempio precedente:

$$\pi_{X-Y}(r) \times s$$
 $(\pi_{X-Y}(r) \times s) - r$ $\pi_{X-Y}((\pi_{X-Y}(r) \times s) - r)$

PROF. ROSARIO SORBELLO

ESEMPIO: Trovare gli Impiegati *che lavorano in tutti i reparti*

 \mathbf{R}_1

	211
Impiegato	Reparto
Rossi	Α
Rossi	В
Bianchi	В

Reparto	
Α	
В	

 R_1/R_2

Rossi

LA DIVISIONE E' SEMPRE TRA UNO SLAVE E UN MASTER

R1(X) E R2(Y) DOVE X=(Impiegato, Reparto) e Y=(Reparto) allora (X-Y)=Impiegato

$$R1 / R2 = PROJ_{Impiegato}(R1) - PROJ_{Impiegato}((PROJ_{Impiegato}(R1) * R2) - R1)$$

= tutti gli impiegati = prodotto cartesiano = (tutti gli impiegati in tutti i reparti)

= le tuple (impiegato, reparto) che sono false

(PROJ _{Impiegato} (R1) * R2) – R1 PROJ _{Impiegato} ((PROJ _{Impiegato} (R1) * R2) – R1)

= gli impiegati che non lavorano in almeno un

reparto e quindi non lavorano in tutti i reparti

PROJ
$$_{\rm Impiegato}$$
 (R1) - PROJ $_{\rm Impiegato}$ ((PROJ $_{\rm Impiegato}$ (R1) * R2) - R1)

$$(R1) * R2 - R1$$

= Tutti gli impiegati – (gli impiegati che non lavorano in almeno un reparto)

= Gli impiegati che lavorano i tutti i reparti

PROF. ROSARIO SORBELLO

LA DIVISIONE E' SEMPRE TRA UNO SLAVE E UN MASTER

DATO S(X) E M(Y) DOVE X=(A,B) e Y=(B) allora OTTERRO' UNA RELAZIONE

DEFINITA SUGLI ATTRIBUTI (X-Y)=(A)

 $S / M = PROJ_{X-Y}(S) - PROJ_{X-Y}((PROJ_{X-Y}(S) * M) - S)$

 $S / M = PROJ_A(S) - PROJ_A((PROJ_A(S) * M) - S)$

(PROJ _A (S) * M) E' UN PRODOTTO CARTESIANO CHE MI DA TUTTE LE COMBINAZIONI O TUPLE (A,B) ANCHE QUELLE CHE NON ESISTONO NELLA REALTA'

S CONTIENE SOLO LE TUPLE (A,B) VERE

 $(PROJ_A(S) * M) - S = TUTTE LE TUPLE FALSE$

PROJ A ((PROJ A (S) * M) – S)= OTTENGO GLI A CHE SICURAMENTE NON FANNO PARTE DEL RISULTATO FINALE

PROJ $_{A}$ (S) = TUTTI GLI A – PROJ $_{A}$ ((PROJ $_{A}$ (S) * M) – S) = GLI A CHE NON SONO LEGATI A TUTTI

PROF. ROSARIO SORBELLO

IL CODICE DEI CORSI SOSTENUTI DA TUTTI GLI STUDENTI S(Y)

DOVE X=(REF_S, REF_C) e Y=(COD_S) allora OTTERRO' UNA RELAZIONE DEFINITA SUGLI ATTRIBUTI (X-Y)= (REF_C)

STUDENTE

 $\mathbf{E}(\mathbf{X})$

M.REF_S

$$E(X) / S(Y) = PROJ_{REF_C}(E) - PROJ_{REF_C}(PROJ_{REF_C}(E) * S) - E$$
 $E.REF_S$

TRA GLI ATTRIBUTI DI E CHE SONO IN FK E LA CHIAVE PRIMARIA DI S

E.REF C

ESAME

C.REF C

IL CODICE DEI CORSI SOSTENUTI DA TUTTI GLI STUDENTI ? OSSIA IL CODICE DELLE MATERIE PER I QUALI HANNO SOSTENUTO GLI ESAMI TUTTI GLI STUDENTI

CORSO

ESAME	REF_S	REF_C
E(X) dove	S1	C1
X=(REF_S;REF_C) ossia	S2	C1
E(REF_S, REF_C)	S1	C2

REF_S	STUDENTE MASTER S(Y) dove
S1	$Y = (REF_S)$
S2	ossia
STUDENTI	S(REF_S)

3 ESAMI REGISTRATI MA RELATIVI A SOLO 2 MATERIE

PROF. ROSARIO SORBELLO

VOGLIO FARE LA DIVISIONE TRA ESAME – E(X) (SLAVE) E STUDENTE – S(Y) (MASTER)
DATO ESAME(REF_S, REF_C), STUDENTE(REF_S) E CORSO(REF_C)
IL CODICE DEI CORSI SOSTENUTI **DA TUTTI GLI STUDENTI**S(Y)

DOVE X=(REF_S, REF_C) e Y=(REF_S)

STUDENTE

E(X)

DOVE X=(REF_S, REF_C) e Y=(REF_S) allora OTTERRO' UNA RELAZIONE DEFINITA SUGLI ATTRIBUTI (X-Y)= (REF_C)

 $E(X) / C(Z) = PROJ_{REF_S}(E) - PROJ_{REF_S}((PROJ_{REF_S}(E) * C) - E)$ E.REF_S

TRA GLI ATTRIBUTI DI E CHE SONO IN FK E LA CHIAVE PRIMARIA DI S

IL CODICE DEGLI STUDENTI CHE HANNO SOSTENUTO TUTTE LE MATERIE ?

3 ESAMI REGISTRATI MA RELATIVI A SOLO 2 MATERIE E SOLO 3 CORSI

ESAME E(X) dove X=(REF_S;REF_C) ossia E(REF_S, REF_C)

	REF_S	REF_C
\	S1	C1
)	S2	C1
	S1	C2

REF_C	CORSO MASTE C(Z) dove	REF_S
C1	$Z = (REF_C)$	S1
C2	ossia	S2
2 CORSI	C(REF_C) 2 S	TUDENTI

M.REF S

STUDENTE MASTER C(Z)
S(Y) ddve
Y = (REF_S)
ossia

S(REF_S)

E.REF C

ESAME

C.REF C

CORSO

PROF. ROSARIO SORBELLO

VOGLIO FARE LA DIVISIONE TRA ESAME – E(X) (SLAVE) E STUDENTE – S(Y) (MASTER) DATO ESAME(REF_S, REF_C) E STUDENTE(REF_S)

IL CODICE DEI CORSI SOSTENUTI DA TUTTI GLI STUDENTI S(Y)

DOVE X=(REF_S, REF_C) e Y=(COD_S) allora OTTERRO' UNA RELAZIONE DEFINITA SUGLI ATTRIBUTI (X-Y)= (REF_C)

STUDENTE

M.REF S

 $E(X) / S(Y) = PROJ_{REF_C}(E) - PROJ_{REF_C}(PROJ_{REF_C}(E) * S) - E$ $E.REF_S$

TRA GLI ATTRIBUTI DI E CHE SONO IN FK E LA CHIAVE PRIMARIA DI S

ESAME

E(X)

C.REF C

CORSO

E.REF C

IL CODICE DEI CORSI SOSTENUTI DA TUTTI GLI STUDENTI ? OSSIA IL CODICE DELLE MATERIE PER I QUALI HANNO SOSTENUTO GLI ESAMI TUTTI GLI STUDENTI

> $ESAME - E(X) - E(REF_S, REF_C)$ $STUDENTE - S(Y) - Y(REF_S)$

REF_S	REF_C
S1	C1
S2	C1
S1	C2

REF S S1 S2 2 STUDENTI

3 ESAMI REGISTRATI MA RELATIVI A SOLO 2 MATERIE PROF. ROSARIO SORBELLO

ESAME(**REF_S, REF_C**) STUDENTE(**REF_S**) CORSO(**REF_C**)

 $E(REF_S,REF_C) / S(REF_S) = R_{RISULTATO} (REF_C)$

IL CODICE REF_C DEI CORSI PER I QUALI HANNO SOSTENUTO ESAMI **TUTTI** GLI STUDENTI

 $E(REF_S, REF_C / C(REF_C) = R_{RISULTATO} (REF_S)$

IL CODICE REF_S DEGLI STUDENTI CHE HANNO SOSTENUTO TUTTI GLI ESAMI

ESAME

CORSO

STUDENTE

 $\mathbf{E}(\mathbf{X})$

COD_C

CORSO

ESAME

REF_C

S(Y)

STUDENTE

REF_S

COD_S

REF_S	REF_C		REF_C	
S1	C1		C1	
S2	C1		C2	
S1	C2 PROF.	ROSARI	O SORBELI	LO.

REF_C
C1
C2

REF_S
S1
S2

ESAME(**REF_S, REF_C**, DATA, VOTO) STUDENTE(COD_S, NOME, COGNOME) CORSO(COD_C, NOME_C)

 $E(REF_S,REF_C) / S(REF_S) = R_{RISULTATO} (REF_C)$ $E(REF_S, REF_C / C(REF_C) = R_{RISULTATO} (REF_S)$

(PROJ_{REF S.REF C}E)/ REN _{REF S<-COD S} (PROJ _{COD S}S)

IL CODICE REF_C DEI CORSI PER I QUALI HANNO SOSTENUTO ESAMI **TUTTI** GLI STUDENTI

(PROJ_{REF S.REF C}E)/ REN _{REF C<-COD C} (PROJ _{COD C}C)

IL CODICE REF S DEGLI STUDENTI CHE HANNO SOSTENUTO TUTTI GLI ESAMI

ESAME

CORSO

STUDENTE

S(Y)

E(X)

COD_C

CORSO

ESAME

REF C

STUDENTE

REF_S

COD S

REF_S	REF_C		REF_C	
S1	C1		C1	
S2	C1		C2	
S1	C2 PROF.	ROSARI	O SORBELI	[.O

REF_C	
C1	
C2	

REF_	S	
S1		
S2		

ESAME(**REF_S, REF_C**, DATA, VOTO) STUDENTE(COD_S, NOME, COGNOME) CORSO(COD C, NOME C)

E(REF_S,REF_C) / S(REF_S)= R RISULTATO (REF_C) $E(REF_S, REF_C / C(REF_C) = R_{RISULTATO} (REF_S)$

STUDENTE

COD C

CORSO

PROJ NOME C (CORSO JOIN C.COD C=REF C (PROJREF S,REF C E) / REN REF S<-COD S (PROJ COD S S))

IL NOME DEI CORSI PER I QUALI HANNO SOSTENUTO ESAMI **TUTTI** GLI STUDENTI

PROJ CODS, NOME, COGNOME (STUDENTE JOIN S.COD S=REF S(PROJREF S,REF C E)/ REN REF C<-COD C (PROJ COD C C

IL NOME E COGNOME DEGLI STUDENTI CHE HANNO SOSTENUTO TUTTI GLI ESAMI

ESAME REF S REF C REF_C REF_S **S1** C1 **S1** C1 **S2** C2 **S2** C1 **S1** PROF. ROSARIO SORBELLO

CORSO

ESAME(**REF_S, REF_C**, DATA, VOTO) STUDENTE(**COD_S**, NOME, COGNOME) CORSO(**COD_C**, NOME_C)

 $E(REF_S,REF_C) / S(REF_S) = R_{RISULTATO} (REF_C)$ $E(REF_S, REF_C / C(REF_C) = R_{RISULTATO} (REF_S)$ STUDENTE

E(X)

COD_S

REF_S

REF_C

COD_C

IL NOME E COGNOME DEGLI STUDENTI CHE HANNO SOSTENUTO <mark>TUTTI</mark> GLI ESAMI DI BASI DI DATI E CALCOLATORI

CORSO

PROJ CODS, NOME, COGNOME (STUDENTE JOIN S.COD_S=REF_S(PROJ_REF_S,REF_C E)/ REN REF_C<-COD_C (PROJ_COD_C (SEL NOME_C=BASICOR NOME_C=CALC)

ESAME

REF_S	REF_C	DATA	VOTO
S1	C1	16/6/2022	30
S2	C1	14/6/2022	28
S1	C2	18/6/2022	26

CORSO

COD_C	NOME_C
C1	BASI DI DATI
C2	CALCOL
C3	PROGRA

STUDENTE

COD_S	NOME	COGNOME
S1	M	ROSSI
S2	Р	VERDI

PROF. ROSARIO SORBELLO