PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

US

(51) International Patent Classification ⁵:
C12N 15/00, 5/00, A61K 37/00
A61K 31/70

(11) International Publication Number:

WO 93/04169

(43) International Publication Date:

4 March 1993 (04.03.93)

(21) International Application Number:

PCT/US92/07184

748,342 (CIP)

A1

(22) International Filing Date:

(60) Parent Application or Grant

Filed on

(63) Related by Continuation

20 August 1992 (20.08.92)

20 August 1991 (20.08.91)

(30) Priority data: 748,342

20 August 1991 (20.08.91)

(72) Inventors; and

(75) Inventors/Applicants (for US only): BERNS, Anton [NL/NL]; Floris Balthasarstraat 2, NL-2064 XP Spaarndam (NL). ROBANUS MANDAG, Els [NL/NL]; Berta van Suttnerstraat 89, NL-2037 LG Haarlem (NL). TE RIELE, Hein [NL/NL]; Da Costakade 128, NL-1053 XB Amsterdam (NL).

(74) Agents: SMITH, William, M. et al.; Townsend and Townsend, One Market Plaza, 20th Fl., Steuart Tower, San Francisco, CA 94105 (US).

(71) Applicant (for all designated States except US): GEN-PHARM INTERNATIONAL, INC. [US/US]; 2375 Garcia Avenue, Mountain View, CA 94043 (US). (81) Designated States: AT, AU, BB, BG, BR, CA, CH, CS, DE, DK, ES, FI, GB, HU, IP, KP, KR, LK, LU, MG, MN, MW, NL, NO, PL, RO, RU, SD, SE, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, SN, TD, TG).

Published

With international search report.

(54) Title: GENE TARGETING IN ANIMAL CELLS USING ISOGENIC DNA CONSTRUCTS

(57) Abstract

The present invention provides novel methods for modifying the genome of an animal cell which typically comprise the steps of: constructing a DNA molecule in which desired sequence modifications are contained in a segment of DNA (a "targeting DNA") that is substantially isogenic with a DNA in the cell genome (a "target DNA"); introducing the targeting DNA construct into the cell (e.g., by microinjection, electroporation, transfection, or calcium phosphate precipitation); and selecting cells in which the desired sequence modifications have been introduced into the genome via homologous recombination.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	MN	Mongolia
AU	Australia	FR	France	MR	Mauritania
BB	Barbados	CA	Gabon	MW	Malawi
BE	Belgium	GB	United Kingdom	NL	Netherlands
BF	Burkina Faso	GN	Guinea	NO	Norway
BG	Bulgaria	GR	Greece	NZ	New Zealand
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	ΙE	Ircland	PT	Portugal
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	RU	Russian Federation
CC	Cungo	KP	Democratic People's Republic	SD	Sudan
CH	Switzerland		of Korea	SE	Sweden
CI	Côte d'Ivoire	KR	Republic of Korea	SK	Slovak Republic
CM	Cameroon	LI	Liechtenstein	SN	Senegal
cs	Czechoslovakia	LK	Sri Lanka	SU	Soviet Union
CZ	(Sech Republic	LU	Luxembourg	TD	Chad
DE	Germany	MC	Monaco	TC	Togo
DK	Denniark	MG	Madagascar	UA	Ukraine
ES	Spain	MI	Mali	us	United States of America

1

GENE TARGETING IN ANIMAL CELLS USING ISOGENIC DNA CONSTRUCTS

5

10

15

20

25

30

35

40

FIELD OF THE INVENTION

The present invention relates generally to methods for modifying the genome of animal cells, including human cells, and more particularly, to methods for modifying a genomic DNA sequence by homologous recombination using substantially isogenic DNA constructs.

BACKGROUND OF THE INVENTION

Targeted gene disruption by homologous recombination has met with variable success in higher eukaryotes. has been possible to isolate cells which have stably incorporated exogenously prepared DNA sequences, in the vast majority of these cells, the DNA has integrated randomly into the genome rather than at the desired target site via homologous recombination. The ratio of the number of homologous recombinants to the total number of integration events varies, but typically, when there is no direct selection or enrichment for homologous recombinants, less than 1% of the integration events result from homologous recombination and ratios as low as 1 in 40,000 have been observed. Variations in the relative targeting efficiency have not been clearly attributable to differences in the length of homologous sequence present in the targeting constructs. Nor has any unequivocal correlation been documented between recombination efficiency and transcriptional activity of the target gene or chromosomal location of the target gene.

If the homologous recombinants can only be obtained amidst a large background of random integration events, then it may be impractical, if not impossible, to effectively target many genomic sequences. The approaches taken to overcoming this problem have focused on developing special strategies to screen or select homologous recombinants from the large background of non-homologous or random integration events. In a few situations in which the targeted gene is itself a

PCT/US92/07184 WO 93/04169

2

dominant selectable marker, it may be feasible to select directly for homologous recombinants. For example, knocking out the hprt gene (encoding hypoxanthine phosphoribosyl transferase) results in increased tolerance of the base analog 6-thioguanine (Thomas, K. and M. Capecchi, Cell 51:503-512 (1987). However, such particularized methods are not widely applicable. Other selection procedures aim at the enrichment for the desired homologous recombination event by suppressing colony formation due to random integrations of the targeting construct. In single selection protocols, the targeting constructs contain a marker gene, typically conferring drug resistance, deprived of transcriptional and/or translational start signals, in such a way that the juxtaposition of the marker gene and functional expression signals would be obtained on homologous recombination but only rarely on random 15 integration. Sedivy, J., and P. Sharp, Proc. Nat'l Acad. Sci. <u>USA</u> 86:227-231 (1989). The double or "positive/negative" selection procedure developed by Capecchi and co-workers makes use of an autonomously expressed marker gene, but the targeting construct is flanked by a second gene which is detrimental to the cell and which tends to be lost on homologous recombination but not on random integration. Mansour, S., at al., Nature 336:348-352 (1988).

10

20

30

35

Another approach has involved the use of screening procedures based on the polymerase chain reaction ("PCR"), in 25 which pools of cells are tested for potential homologous recombinants using pairs of primers which will be juxtaposed only if homologous recombination has occurred. Any pools containing potential homologous recombinants are then subdivided and the procedure is continued until a small enough pool of cells can be analyzed individually. Zimmer, A., et al., Nature 338:150-153 (1989); and Joyner, A., et al., Nature 338:153-156 (1989). Besides the labor involved in screening, the PCR protocols also require that appropriate regions of the DNAs have been sequenced and that oligonucleotide primers be obtained.

The relative inefficiency of homologous recombination is even more problematic when working with cells that are not

easily reproduced in vitro and for which the aforementioned selection and screening protocols may be impractical, if not impossible. For example, there are a large variety of cell types, including many stem cell types, which are difficult or impossible to clonally reproduce in vitro. If the relative frequency of homologous recombination itself could be improved, then it might be feasible to target a variety of cells which are not amenable to specialized isolation techniques such as positive/negative selection or PCR screening. (See, W091/01140, which is incorporated herein by reference.)

Thus, there remains a significant need for gene targeting systems in which homologous recombinants can be routinely and efficiently obtained at a high enough frequency to obviate the necessity of special selection and screening protocols. The present invention fulfills these and other needs.

10

15

30

35

SUMMARY OF THE INVENTION

The present invention provides novel methods for

20 modifying the genome of an animal cell comprising the steps of:
 constructing a DNA molecule in which desired sequence
 modifications are contained in a segment of DNA (a "targeting
 DNA") that is substantially isogenic with a DNA in the cell
 genome (a "target DNA"); introducing the targeting DNA

25 construct into the cell (e.g., by microinjection,
 electroporation, transfection, or calcium phosphate
 precipitation); and selecting cells in which the desired
 sequence modifications have been introduced into the genome via
 homologous recombination.

Preferably, the targeting DNA will be derived from a cell line or animal strain that is closely related to the cell line which is being targeted; so that the sequence of the targeting DNA is substantially identical with the sequence of the target DNA (except for the desired sequence modifications). By using substantially isogenic targeting DNA, a substantial fraction of the cells in which integration has occurred will have undergone homologous recombination between the targeting DNA sequence and the target DNA sequence. Since the

PCT/US92/07184 WO 93/04169

integration events are thereby enriched for homologous recombinants, it is possible to forego the use of special selection and screening protocols used to isolate rare homologous recombinants from a large background of nonhomologous integration events.

10

15

25

30

Although the present invention has been applied to laboratory mice strains such as BALB/c and 129, the invention will be even more useful for gene targeting in non-murine The typical mouse strains used in laboratories tend to be fairly inbred and, as a result, there is smaller likelihood of sequence divergence in an allele derived from different lines (see, e.g., Bishop, C., et al., Nature 315:70-In contrast, many other animals are not so inbred, and there is a greater chance of sequence divergence between alleles derived from different individuals. The restriction fragment length polymorphisms ("RFLPs"), useful in "fingerprinting" human DNA, are an example of this phenomenon in a non-inbred species.

A preferred cell type for targeting the genome of a mammalian organism is the embryonic stem cell. Preferably, the 20 DNA construct contains a selectable marker, such as an antibiotic resistance marker, and the cells are selected on a medium containing the selective agent (e.g., antibiotic). present invention also provides novel methods for creating genetically modified animals comprising the steps of: modifying the genome of embryonic stem cells derived from the animal, as described above; introducing the modified embryonic stem cells into blastocysts derived from the same species of animal; and using a pseudo-pregnant female to carry the chimeric animal to The resulting chimeric animal can in turn be bred to obtain non-chimeric animals in which the desired genetic alteration has been stably inherited through germ-line transmission.

The present invention can also be used for the direct targeting of animal zygotes, but is preferably used for gene 35 targeting in embryonic stem (ES) cells. The targeting DNA can be introduced by, for example, microinjection, biolistics, lipofection, or electroporation, and then, with mammals for

5

example, the modified zygotes can be transferred to pseudopregnant females capable of carrying the animal to term.

Similarly, for somatic gene therapy, the genome of somatic
cells of an animal is directly modified using the substantially
isogenic targeting DNA and then the modified cells are
introduced into the same or a different animal. Preferably,
isogenic DNA obtained from the individual that is the subject
of the gene therapy is used; such isogenic DNA can be obtained
from a DNA sample prepared from the individual (e.g., by solid
tissue biopsy or lymphocyte explant), typically by cloning or
high-fidelity amplification (e.g., PCR with a high-fidelity
polymerase).

In another aspect, the present invention provides cells exhibiting a recombination event at a preselected native target DNA site in the cell genome. Thus, in view of the increased efficiency of homologous recombination utilizing the methods of the present invention, a collection of cells having integrated the targeting DNA (e.g., cells selected with the selection agent) will generally comprise between about 10-90%, typically at least about 30 to 50%, of cells having a correctly targeted homologous recombination event. The cells exhibiting the desired characteristics may be selected for and isolated in accordance with standard techniques, and grown into animals.

25

30

35

10

15

20

BRIEF DESCRIPTION OF FIGURES

Fig. 1. DNA targeting constructs. (a) The retinoblastoma (Rb) locus around exons 19 and 20 (black boxes), in mouse strain 129. Restriction enzyme sites are as follows: B=BglII, E=EcoRI, H=HindIII, Hp=HpaI, P=PstI, and S=StuI. Except for the StuI site, these sites are also present in the corresponding BALB/c region. (b) The DNA targeting constructs containing the neo gene inserted into the BglII site of exon 19 within a 10.5 kb Rb HpaI fragment derived from mouse strains 129 (targeting construct "129Rb-neo") or BALB/c (targeting construct "B/cRb-neo"). The neo marker was flanked by 2.5 and 8 kb of Rb sequence. (c) and (d). Two additional isogenic targeting constructs generated by inserting the hprt-minigene

6

(Van der Lugt, N., et al., <u>Gene</u>, (1991)) or the <u>hyg</u> gene (Te Riele, H., et al., <u>Nature</u> 348:649-651 (1990)) into the BglII site of exon 19 within a 17 kb 129-derived <u>Rb</u> fragment, giving 129<u>Rb-hprt</u> (c) and 129<u>Rb-hyg</u> (d), respectively. These two constructs were flanked by non-endogenous SalI sites. A and B indicate fragments used as probes to detect modifications at Rb.

DNA at the region of homology. The upper part of the diagram represents the 10.5 kb. Rb sequence present in targeting constructs B/cRb-neo and 129Rb-neo (see Fig. 1b). The sequence was divided into nine smaller fragments, as shown by the solid vertical lines. Filled triangles represent extra nucleotides within a fragment in the BALB/c-derived sequence (above the line) or within the 129-derived sequence (below the line). Open triangles indicate length differences within a fragment that could result from nucleotide insertions or restriction site polymorphisms. The lower part of the diagram shows nucleotide differences as determined by sequence analysis of the indicated regions.

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, gene targeting can be used to modify the genome of animal cells, including human cells, using an efficient technique involving homologous recombination between substantially isogenic DNA constructs. By introducing an exogenous "targeting DNA" into eukaryotic cells, selecting for cells in which the targeting DNA has been stably integrated into the recipient cell genome is readily accomplished. The methods provided for substantially increased frequency of recombination, one to three orders of magnitude higher, or more may be achieved, depending upon the target and protocol.

There are two general events believed to be
responsible for stable integration. In homologous
recombination, the incoming DNA interacts with and integrates
into a site in the genome that contains a substantially
homologous DNA sequence. In non-homologous ("random" or

7

"illicit") integration, the incoming DNA is not found at a homologous sequence in the genome but integrates elsewhere, apparently at one of a large number of potential locations. In general, studies with higher eukaryotic cells have revealed that the frequency of homologous recombination is far less than the frequency of random integration. The ratio of these frequencies has direct implications for "gene targeting" which depends on integration via homologous recombination (i.e.

recombination between the exogenous "targeting DNA" and the corresponding "target DNA" in the genome).

10

15

20

25

30

35

Gene targeting represents a major advance in the ability to selectively manipulate animal cell genomes. Using this technique, a particular DNA sequence can be targeted and modified in a site-specific and precise manner. Different types of DNA sequences can be targeted for modification, including regulatory regions, coding regions and regions of DNA between genes. Examples of regulatory regions include: promoter regions, enhancer regions, terminator regions and introns. By modifying these regulatory regions, the timing and level of expression of a gene can be altered. Coding regions can be modified to alter, enhance or eliminate, for example, the specificity of an antigen or antibody, the activity of an enzyme, the composition of a food protein, the sensitivity of protein to inactivation, the secretion of a protein, or the routing of a protein within a cell. Introns and exons, as well as inter-genic regions, are suitable targets for modification.

Modifications of DNA sequences can be of several types, including insertions, deletions, substitutions, or any combination of the preceding. A specific example of a modification is the inactivation of a gene by site-specific integration of a nucleotide sequence that disrupts expression of the gene product. Using such a technique to "knock out" a gene by targeting will avoid problems associated with the use of antisense RNA to disrupt functional expression of a gene product. For example, one approach to disrupting a target gene using the present invention would be to insert a selectable marker into the targeting DNA such that homologous recombination between the targeting DNA and the target DNA will

8

result in insertion of the selectable marker into a coding region or essential regulatory element of the target gene.

It may be preferable to incorporate a selectable marker into the targeting DNA which allows for selection of targeted cells that have stably incorporated the targeting DNA. This is especially useful when employing relatively low efficiency transformation techniques such as electroporation, calcium phosphate precipitation and liposome fusion, as discussed below, where typically fewer than 1 in 1000 cells will have stably incorporated the exogenous DNA. Using high efficiency methods, such as microinjection into nuclei, typically from 5-25% of the cells will have incorporated the targeting DNA; and it is therefore feasible to screen the targeted cells directly without the necessity of first selecting for stable integration of a selectable marker.

10

15

20

25

30

. 35

Examples of selectable markers include: genes conferring resistance to compounds such as antibiotics, genes conferring the ability to grow on selected substrates, genes encoding proteins that produce detectable signals such as luminescence. A wide variety of such markers are known and available, including, for example, antibiotic resistance genes such as the neomycin resistance gene (neo), Southern, P., and P. Berg, J. Mol. Appl. Genet. 1:327-341 (1982); and the hygromycin resistance gene (hyg), Nucleic Acids Research 11:6895-6911 (1983), and Te Riele, H., et al., Nature 348:649-651 (1990). Selectable markers also include genes conferring the ability to grow on certain media substrates such as the $\underline{\mathsf{tk}}$ gene (thymidine kinase) or the hprt gene (hypoxanthine phosphoribosyltransferase) which confer the ability to grow on HAT medium (hypoxanthine, aminopterin and thymidine); and the bacterial gpt gene (guanine/xanthine phosphoribosyltransferase) which allows growth on MAX medium (mycophenolic acid, adenine, and xanthine). See Song, K-Y., et al. Proc. Nat'l Acad. Sci. USA 84:6820-6824 (1987). Other selectable markers for use in mammalian cells, and plasmids carrying a variety of selectable markers, are described in Sambrook, J., et al., Molecular Cloning - A Laboratory Manual, Cold Spring Harbor Laboratory,

9

Cold Spring Harbor, New York (1989) (hereinafter "Sambrook"), see chapter 16.

If a selectable marker is used, the preferred location of the marker gene in the targeting construct will depend on the aim of the gene targeting. For example, if the aim is to disrupt target gene expression, then the selectable marker can be cloned into targeting DNA corresponding to coding sequence in the target DNA. Alternatively, if the aim is to express an altered product from the target gene, such as a protein with an amino acid substitution, then the coding sequence can be modified to code for the substitution, and the selectable marker can be placed outside of the coding region, in a nearby intron for example.

10

If the selectable markers will depend on their own 15 promoters for expression and the marker gene is derived from a very different organism than the organism being targeted (e.g. prokaryotic marker genes used in targeting mammalian cells), it is preferable to replace the original promoter with transcriptional machinery known to function in the recipient cells. A large number of transcriptional initiation regions 20 are available for such purposes including, for example, metallothionein promoters, thymidine kinase promoters, betaactin promoters, immunoglobulin promoters, SV40 promoters and human cytomegalovirus promoters. A widely used example is the pSV2-neo plasmid which has the bacterial neomycin phosphotransferase gene under control of the SV40 early promoter and confers in mammalian cells resistance to G418 (an antibiotic related to neomycin). Southern, P., and P. Berg, J. Mol. Appl. Genet. 1:327-341 (1982). A number of other variations may be employed to enhance expression of the 30 selectable markers in animal cells, such as the addition of a poly(A) sequence (see, e.g., Thomas, K., et al., Cell 44:419-428 (1986)); and the addition of synthetic, translation initiation sequences (see, e.g., Thomas, K. and M. Capecchi, 35 Cell 51:503-512 (1987)). Both constitutive and inducible promoters may be used.

In some cases, it may be desirable for the modification sequences (including selectable markers) to alter

10

the transcriptional activity of the target gene. However, if selectable markers are used and it is not desirable to affect transcriptional activity of the target gene, it will be preferable to use selectable markers with an inducible promoter and/or to include a transcription termination sequence downstream of the selectable marker. A variety of inducible promoters and transcription termination sequences are known and available. See, e.g., Sambrook, supra.

where the target gene is highly expressed or readily inducible, it may be advantageous to use selectable markers lacking their own promoters as a way to further enhance the frequency of obtaining homologous recombinants. In that way, the likelihood of the selectable marker being highly expressed upon integration into the genome will be much greater for homologous recombination events (where the promoterless gene will have been placed in the vicinity of the target gene promoter) than for random integration into the genome.

10

15

20

25

30

35

Target genes can also be modified by deletions. In the case of a deletion, the sequence to be deleted will be absent or removed from the corresponding targeting DNA and thus the "modification sequence" will constitute a missing sequence relative to the target DNA. The deletion will generally cover a portion of one or more exons and may include introns and flanking non-coding regions such as regulatory regions. The deletion may be as small as one base pair or as large as tens of thousands of base pairs.

Another specific form of modification is the introduction of a new gene into the animal cell genome. By flanking the new gene with sequences substantially isogenic with target DNA in the host cell, it is possible to introduce the gene in a site-specific fashion at the targeted location. Using this approach, a gene from any source (e.g., bacterial, plant, animal) can be introduced into an animal cell to impart new characteristics to the cell or to allow the animal cell to produce desired polypeptides which can then be isolated from the animal or from its cells in vitro.

Another form of modification is the insertion of a marker gene in a region outside of but proximal to a gene of

11

interest. This sort of modification results in the creation of a new linkage in the animal genome. For this approach, the precise function of a target sequence need not be known, so long as it is known to be associated with a particular trait. Selectable markers can be introduced into precise locations adjacent to desirable genes to facilitate selection of desirable traits that are otherwise not selectable in culture. This procedure is of value, for instance, in order to facilitate animal breeding programs. Segregation of the trait through successive generations can be tracked by growing cells on the appropriate selective medium. Thus, the time required to breed improved varieties can be shortened. As an example of this kind of approach, regions identified by RFLP analysis to be associated with complex traits can be targeted and cells containing the traits can be selected in culture.

10

15

20

25

30

35

The targeting DNA comprises a sequence in which the desired sequence modifications are flanked by DNA substantially isogenic with a corresponding target sequence in the genome to be modified. The substantially isogenic sequence is preferably at least about 97-98% identical with the corresponding target sequence (except for the desired sequence modifications), more preferably more preferably at least about 99.0-99.5% identical, most preferably about 99.6 to 99.9% identical. Particularly for non-inbred animals (e.g., other than mice strains 129 and BALB/c), the sequences are typically 100% identical. targeting DNA and the target DNA preferably share stretches of DNA at least about 75 base pairs that are perfectly identical, more preferably at least about 150 base pairs that are perfectly identical, even more preferably at least about 500 base pairs that are perfectly identical. Accordingly, it is preferable to use targeting DNA derived from cells as closely related as possible to the cell line being targeted; more preferably, the targeting DNA is derived from cells of the same cell line as the cells being targeted. Most preferably, the targeting DNA is derived from cells of the same individual (or animal) as the cells being targeted.

Preferably, the targeting DNA sequence comprises at least about 100-200 bp of substantially isogenic DNA, more

PCT/US92/07184

12

preferably at least about 300-1000 bp and generally less than about 15,000 bp. The amount of targeting DNA present on either side of a sequence modification can be manipulated to favor either single or double crossover events, both of which can be obtained using the present invention. In a double crossover or "replacement-type" event, the portion of the targeting DNA between the two crossovers will replace the corresponding portion of the target DNA. In a single crossover or "insertion-type" event, the entire targeting DNA will generally be incorporated into the target sequence at the site of the single crossover. To promote double crossovers, the modification sequences are preferably flanked by targeting DNA such that, upon linearization, the modification sequences are located towards the middle of the flanking targeting DNA. single crossovers are desired, the targeting DNA should be designed such that the ends of the linearized targeting sequence correspond to target DNA sequences lying adjacent to each other in the genome, as described by Thomas, K., and M. Capecchi, Cell 51:503-512 (1987).

10

15

20

25

30

35

In one embodiment, a modification sequence is flanked on one or both sides with a cassette of isogenic DNA, typically at least about 75 or more contiguous bases, preferably at least about 500-1000 contiguous bases or larger as may be conveniently obtained (e.g., by high-fidelity PCR amplification from a source of isogenic DNA, such as an aliquot of host ES cells or an individual that is the subject for gene targeting). Extending distally (i.e., in the direction away from the modification sequence) from such an isogenic cassette is typically a sequence which is highly homologous to a targeted sequence, but which may be nonisogenic. For example, in embodiments where a targeting DNA is used to make genetic modifications to a host genome for gene therapy in a non-inbred animal (e.g., a human patient), it may be time-consuming and costly to obtain long (e.g., more than about 2 kb) contiguous segments of isogenic DNA from the non-inbred animal, such as by genomic cloning with cosmid or bacteriophage vectors. applications such as this, high-fidelity PCR may be used to amplify isogenic DNA cassettes of about 500-2000 basepairs from

13

DNA of the non-inbred animal; the isogenic DNA cassettes thus obtained may be incorporated into the targeting DNA, typically immediately adjacent to the modification sequence. However, since the efficiency of gene targeting by homologous recombination generally is believed to increase with the length of homology of the targeting DNA with the targeted gene sequence, it may be desirable to include in the targeting DNA additional flanking sequences having substantial homology with endogenous sequences flanking the isogenic sequences, but not necessarily being isogenic. For example, a targeting DNA for targeting and correcting a human cystic fibrosis disease allele having a deletion in a human patient may comprise one or more isogenic DNA cassettes obtained by PCR amplification of DNA from the individual patient, and may comprise additional highly homologous sequences obtained, for example, from a human genomic DNA library not derived from the patient.

modification sequence which, when correctly targeted, corrects

the deletion in the cystic fibrosis allele, is typically flanked by at least one isogenic cassette obtained from the

10

15

20

25

30

patient.

The DNA delivery molecule may contain only the targeting DNA with modification sequences or it may contain additional DNA flanking the targeting DNA. If this additional DNA contains a selectable marker, then it may be possible to further enrich for cells which have undergone double crossover homologous recombination because these cells will generally have lost the flanking selectable marker located outside the targeting DNA. Conversely, cells which have stably incorporated the flanking selectable marker are likely to have arisen by random integration of the DNA construct into the genome. One such flanking selectable marker is the HSV-tk gene which confers sensitivity to the antibiotic gancyclovir.

Mansour, S., et al., Nature 336:348-352 (1988).

Combinations of selectable markers can also be used

to advantage. For example, to target non-selectable gene "X,"

a neo gene (with or without its own promoter, as discussed above) can be cloned into a DNA sequence which is substantially isogenic with gene X. As discussed above, the placement of

14

this marker gene, particularly whether it is in an exon or outside the coding sequence, will depend on the aim of the gene targeting. To use a combination of markers, the HSV-tk gene can be cloned such that it is outside of the targeting DNA (another selectable marker could be placed on the opposite flank, if desired). After introducing the DNA construct into the cells to be targeted, the cells can be selected on the appropriate antibiotics. In this particular example, those cells which are resistant to G418 and gancyclovir are most likely to have arisen by homologous recombination in which the neo gene has been recombined into gene X but the tk gene has been lost because it was located outside the region of the double crossover. As discussed above, it will be necessary to ensure that the selectable markers are adequately expressed in the recipient cells.

10

15

20

25

30

35

The targeting DNA construct may also contain replication systems which are functional in prokaryotes, especially <u>E. coli</u>, which were of use in constructing the DNA molecule, and for performing and analyzing genetic manipulations of the targeting sequence. Preferably, however, DNA sequence not required for the gene targeting is removed prior to introducing the DNA into cells to be targeted.

The DNA delivery molecule containing the targeting DNA may also contain DNA sequences or proteins that affect the uptake of the DNA delivery molecule or the fate of the molecule after introduction into the cells. For example, the DNA delivery molecule may be a viral capsid containing the targeting DNA, as discussed below. Also, the DNA delivery molecule may contain sequences or DNA binding proteins that affect degradation or localization of the molecule following entry into the targeted cells, or that affect the catalysis of homologous recombination.

Transformation of animal cells with the recombinant construct containing the targeting DNA can be carried out using essentially any method for introducing nucleotide sequences into animal cells including, as discussed below, microinjection, electroporation, calcium phosphate

15

precipitation, and transfection using a virus or viral particle.

After the targeting DNA has been introduced into the animal cells, the cells in which the targeting DNA has stably integrated into the genome can be selected. The choice of which one to use will generally depend upon the nature of the sequence that has been integrated. For example, if the targeting DNA contains a selectable marker, as described above, then the integration of targeting DNA into the genome results in the stable acquisition of the selectable marker. situations the cells may be selected by virtue of a modification of the target gene. For example, if the target gene has a selectable phenotype, then modification of the target DNA may result in loss or alteration of that phenotype. In other situations, a selectable phenotype may result from juxtaposition of a DNA sequence present on the targeting DNA

10

15

30

· · 35

with DNA sequences present near the target DNA. For example, integration of a promoterless antibiotic resistance gene at the target site may result in expression of the resistance gene based on transcriptional activity at the target site.

It is also possible, although not essential, to use the polymerase chain reaction (PCR) and/or Southern blot analysis to screen cells in which homologous integration has occurred. In an advantageous application, one PCR primer is directed to DNA in the modification sequence and another primer is directed to DNA near the target locus that is outside but proximal to the target DNA, such that integration results in the creation of a genomic DNA sequence in which the primer binding sites are facing each other in relative juxtaposition. After a number of rounds of amplification, DNA from such a

locus will be present at much higher levels because it is being amplified exponentially rather than linearly.

Homologous recombination can be confirmed using

Homologous recombination can be confirmed using standard DNA hybridization techniques, such as Southern blotting, to verify the presence of the integrated DNA in the desired genomic location.

Where the cells contain more than one copy of a gene, the cell lines obtained from the first round of targeting are

16

likely to be heterozygous for the targeted allele.

Homozygosity, in which both alleles are modified, can be achieved in a number of ways. One approach is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting using a different selectable marker. Alternatively, homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics. In some situations, it may be desirable to have two different modified alleles. This can be achieved by successive rounds of gene targeting or by breeding heterozygotes, each of which carries one of the desired modified alleles.

10

20

25

30

35

The present invention can be used with a variety of cell types derived from a number of animal sources. As discussed above, the invention is especially useful with animals, such as non-murine animals, in which inbreeding is not very common. The choice of particular cell types for targeting will generally depend on the purposes for which the site-directed mutagenesis is undertaken. For example, if whole animals carrying a particular mutation are desired, then embryonic stem cells derived from that animal can be targeted and later introduced into blastocysts for growing the modified cells into chimeric animals. For embryonic stem cells, either an embryonic stem cell line or freshly obtained stem cells may be used. The resulting chimeric animals can be bred in order to obtain non-chimeric animals in which the mutation has been transmitted through the germ line.

Another approach to creating genetically altered animals that can be used with the present invention is to modify zygotes directly. For mammals, the modified zygotes can be then introduced into the uterus of a pseudopregnant female capable of carrying the animal to term.

Besides altering organisms through germ-line modifications, gene targeting can also be used to modify somatic cells. Cells of interest for somatic gene targeting include hematopoietic cells, T-lymphocytes and other cells of the immune system, epithelial cells, endothelial cells, adrenal medulla cells, keratinocytes, fibroblasts, osteoblasts,

17

osteoclasts, neurons, ganglion cells, retinal cells, liver cells, myoblast cells, and cells of the islets of Langerhans. Also of interest will be the stem cells which serve as the progenitors of the above cells and which may be an original progenitor cell or a progenitor cell that has already become dedicated to a particular cell lineage.

In addition to applications such as the production of transgenic animals and gene therapy, the techniques of the present invention are also useful in expanding basic knowledge with respect to animal cell function. For example, the expression of altered forms of genes and their promoters can be analyzed without position effects because the gene is altered in situ; and the function of sequences whose purpose is unknown can be determined by inactivating the sequence and observing changes in cell function.

The following list of terms, intended to supplement the descriptions above, will be useful in understanding the present invention:

20 Target DNA sequence

10

15

25

30

35

The DNA to be modified by homologous recombination. The target DNA can be in any organelle of the animal cell including the nucleus and mitochondria and can be an intact gene, an exon or intron, a regulatory sequence or any region between genes.

Desired sequence modifications

Sequence changes that it would be desirable to introduce into the target DNA. These sequence modifications may include insertions, deletions or substitutions of DNA sequence, or any combination thereof, and may be as small as a single base pair or as large as tens of thousands of base pairs. Insertions include the insertion of entire genes which may be of animal, plant, prokaryotic or viral origin.

Targeting DNA sequence

A DNA sequence containing the desired sequence modifications and which is, except for the sequence

18

modifications, substantially isogenic with the target DNA. A typical targeting DNA as a polynucleotide which comprises: (1) at least one homology region having a sequence that is substantially isogenic to a sequence present in a host cell endogenous gene locus, and (2) a targeting region which becomes integrated into an host cell endogenous gene locus by homologous recombination between a targeting DNA homology region and said endogenous gene locus sequence. If the targeting construct is a "hit-and-run" or "in-and-out" type construct (Valancius and Smithies (1991) Mol. Cell. Biol. 11: 1402; Donehower et al. (1992) Nature 356: 215; (1991) J. NIH Res. 3: 59; which are incorporated herein by reference), the targeting region is only transiently incorporated into the endogenous gene locus and is eliminated from the host genome by selection.

DNA delivery molecule

The molecule comprising at least the targeting DNA which is introduced into cells to be targeted.

20

30

15

5

10

Uninterrupted sequence identity

The length of a stretch of DNA sequence that is identically conserved between two homologous DNA sequences.

25 Average sequence identity

The percentage of DNA sequence that is identically conserved between two homologous DNA sequences. For example, if a first DNA sequence comprises 200 base pairs and a second sequence differs at two sites (e.g. a small insertion such as 4 nucleotides, and a small deletion), then the average sequence identity is about 99%.

Homologous DNA sequence or homologous DNA

DNA sequence that is at least about 70% identical
with a reference DNA sequence. An indication that two
sequences are homologous is that they will hybridize with each
other under fairly stringent conditions (see, e.g., Maniatis or
Sambrook, infra).

PCT/US92/07184 19

Isogenic or substantially isogenic DNA

DNA sequence that is identical with or nearly identical with a reference DNA sequence. Indications that two sequences are isogenic is that they will hybridize with each other even under the most stringent hybridization conditions (see, e.g. Maniatis or Sambrook, infra); and will not exhibit sequence polymorphisms (i.e. they will not have different sites for cleavage by restriction endonucleases). The term "substantially isogenic" refers to DNA that is at least about 10 97-99% identical with the reference DNA sequence, and preferably at least about 99.5-99.9% identical with the reference DNA sequence, and in certain uses 100% identical with the reference DNA sequence. Indications that two sequences are substantially isogenic is that they will still hybridize with each other under the most stringent conditions (see, Sambrook) 15 and they will only rarely exhibit RFLPs or sequence polymorphisms (relative to the number that would be statistically expected for sequences of their particular length which share at least about 97-99% sequence identity). In general, a targeting DNA sequence and a host cell sequence are 20 compared over a window of at least about 75 consecutive nucleotides. DNA sequences compared between individuals of a highly inbred strain, such as C57B1/6N, are generally considered isogenic even if detailed sequence information is 25 not available, so that a targeting DNA comprising a DNA sequence from one individual is usually isogenic as compared to other individuals (or ES cells) of the same inbred strain.

Homologous recombination

30

35

The term "homologous recombination" refers to the process of DNA recombination based on sequence homology. term embraces both crossing over and gene conversion. Cellular recombination enzymes are believed to be involved in the process of recognizing sequence identity between distinct nucleotide sequences. Three distinct types of homologous recombination have been distinguished based on the nature of the recombination substrates and the mechanisms believed to be involved in mediating recombination: "chromosomal

PCT/US92/07184

recombination," "extrachromosomal recombination" and "gene targeting" (see definitions, <u>infra</u>).

Chromosomal recombination

WO 93/04169

5

10

30

35

Homologous recombination between two DNA sequences within a single chromosome ("intrachromosomal recombination") or recombination between chromosomes ("interchromosomal recombination"). A common example of interchromosomal recombination is the mitotic recombination between homologous chromosomes.

Extrachromosomal recombination

Homologous recombination between two DNA sequences neither of which are located on chromosomes. An example of extrachromosomal recombination is the recombination between two viruses transfected into a single recipient cell.

Gene targeting

Homologous recombination between two DNA sequences, one of which is located on a chromosome and the other of which is not.

Non-homologous or "random" integration

Any process by which DNA is integrated into the
genome that does not involve homologous recombination. It
appears to be a random process in which incorporation can occur
at any of a large number of genomic locations.

Selectable marker

A gene, the expression of which allows cells containing the gene to be identified on a particular medium. A selectable marker can be one that allows a cell to proliferate on a medium that prevents or slows the growth of cells without the gene. Examples include antibiotic resistance genes and genes which allow an organism to grow on a selected metabolite. Alternatively, the gene can facilitate visual screening of transformants by conferring on cells a phenotype that is easily identified. Such an identifiable phenotype may be, for

example, the production of luminescence or the production of a colored compound, or the production of a detectable change in the medium surrounding the cell.

Animal cell

10

A cell of a multicellular eukaryotic organism of, for example, the phyla chordata, echinodermata, coelenterata, annelida, and arthropoda. Preferably, the animal cells are from an animal belonging to the phylum chordata, more preferably the subphylum vertebrata. Most preferably, the animal cells are non-murine mammalian cells, including human cells.

Correctly targeted construct

As used herein, the term "correctly targeted construct" or "correctly targeted targeting DNA" refer to a 15 portion of the targeting DNA which is integrated within or adjacent to an endogenous crossover target sequence, such as a portion of a targeted endogenous gene locus. For example but not limitation, a portion of a targeting DNA encoding neo and flanked by homology regions having substantial identity with 20 endogenous Rb gene sequences flanking the 19th and 20th exons, is correctly targeted when said targeting DNA portion is integrated into a chromosomal location so as to replace, for example, the 19th and/or 20th exon(s) of the endogenous Rb 25 In contrast and also for example, if the targeting DNA or a portion thereof is integrated into a nonhomologous region and/or a region not within about 50 kb of a targeted endogenous gene sequence, the resultant product is an incorrectly targeted targeting DNA construct. It is possible to generate cells having both a correctly targeted targeting DNA construct(s) and 30 an incorrectly targeted targeting DNA construct(s). Cells and animals having a correctly targeted targeting DNA construct(s) and/or an incorrectly targeted targeting DNA construct(s) may be identified and resolved by PCR and/or Southern blot analysis of genomic DNA. 35

EXPERIMENTAL

A. General Methods

10

20

30

Generally, the nomenclature and standard laboratory procedures with respect to recombinant DNA technology can be found in Maniatis, T. et al., Molecular Cloning - A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982) (hereinafter "Maniatis"); and now in Second Edition by Sambrook, J., et al. (1989) (hereinafter "Sambrook"). general references are provided throughout this document. procedures therein are believed to be well known in the art, and are provided for the convenience of the reader. Maniatis, Sambrook, and the other general references are specifically incorporated herein by reference.

B. Preparation of the Targeting DNA 15

Isolation of Isogenic DNA 1)

The targeting DNA comprises a sequence in which the desired sequence modifications are flanked by DNA substantially isogenic with a corresponding target sequence in the genome to be modified. The targeting DNA can be constructed exclusively from genomic DNA, from cDNA, from synthetic DNA or from any combination of the above. The genomic DNA can be cloned from a library of genomic DNA fragments in a bacteriophage vector (e.g., lambda phage), in a plasmid vector (e.g., pBR322 derivative), or in a cosmid vector; using techniques well-known 25 in the art of recombinant DNA. cDNA can, e.g., be prepared from a mRNA population which forms the basis of preparation of a cDNA library. Alternatively, synthetic DNA fragments can be prepared based upon knowledge of the nucleotide sequence of the target DNA.

Modifying the Targeting DNA 2)

Modification of the targeting DNA will depend on two basic considerations: firstly, what modifications are desired in the target DNA; secondly, whether selectable sequences 35 should be included as an aid in isolating homologous recombinants.

30

In some situations, the modified targeting DNA will already be available. If for example, a mutant version of a particular gene is already available as a recombinant DNA construct, then the targeting DNA may be obtained from that source using standard cloning techniques. See, e.g., Sambrook. As discussed above, the efficiency of homologous recombination depends in part on the isogenicity of the targeting DNA and the target DNA. Where the modification is available in a different cell line than that being targeted, it may be preferable to clone the modification sequence out of the original DNA and into DNA sequence that is more nearly isogenic with the target DNA. In general, such cloning will be performed in prokaryotic organisms, using standard cloning techniques. Id.

If a targeting DNA with desired sequence modifications is not already available, then a fragment of 15 substantially isogenic targeting DNA can be obtained and modified. Generally, the isogenic targeting DNA will be most easily modified after being cloned onto vectors that can be used in prokaryotic organism such as E. coli. If an appropriate fragment of isogenic targeting DNA is not already 20 available, then a gene library of the cell line to be targeted can be prepared and screened for the desired sequence using techniques well known in the art. See, e.g., Sambrook. the targeting DNA is cloned, insertions, deletions and alterations of DNA sequences can be achieved by techniques well known in the art. See, Sambrook. If the sequence of the target DNA is known, it is also possible to obtain synthetic DNA fragments in which one or more of the base pairs are specifically altered, added or removed.

One particular type of modification is the insertion of a gene within the targeting DNA. As discussed above, it will often be advantageous to include a selectable marker as an insert to facilitate selection of recombinants. A wide variety of such markers are generally known and available; and can be readily cloned into a desired targeting DNA construct using well known techniques. See, e.g., Sambrook.

C. Construction of DNA Delivery Molecules

Typically, cloning of the targeting DNA will be performed in E. coli, and standard plasmids such as pUC and pBR322 derivatives can be used. In many cases, it will be possible to use these plasmid DNAs directly as DNA delivery molecules; but it is preferable to minimize the amount of extraneous DNA on the delivery molecule. Thus, DNA sequence that will not be involved in targeting or selection of homologous recombinants can be removed prior to introduction of the DNA into the recipient cells. Preferably, the DNA will be linearized by cutting with a restriction enzyme prior to introduction into the cell. See, Sambrook. Where biological methods of DNA introduction are used, such as a virus or viral capsid, the DNA delivery molecule will be tailored accordingly to the particular system. For example, particular viral capsids generally work most efficiently with DNA sequences that are within a particular size range.

As discussed above, the DNA delivery molecule containing the targeting DNA may also contain DNA sequences or proteins that affect the uptake of the molecule or the fate of the molecule after introduction into the cells. For example, the DNA delivery molecule may be a viral capsid containing the targeting DNA, as discussed below. Also, the DNA delivery molecule may contain sequences or DNA binding proteins that affect degradation or localization of the molecule following entry into the targeted cells or molecules that affect the catalysis of homologous recombination.

D. Cells to be Targeted

10

15

20

25

30

The present invention can be used with essentially any cell into which DNA can be introduced. As discussed in the following section, there are a variety of methods applicable for introducing DNA into animal cells. The choice of cell type will depend on the particular goal of the site-directed mutagenesis. For example, embryonic stem cells or zygotes may be targeted for generating modified animals; whereas both germline and somatic cells may be usefully targeted for gene therapy. The choice of cells may also affect (or be affected by) the choice of transformation technique, as discussed below.

25

Growth and manipulation of the cells can be performed using standard procedures as described in Hogan, B., et al, Manipulating the Mouse Embryo, Cold Spring Harbor, New York (1986).

5

15

20

25

30

- . 35

E. Introduction of the DNA into the Cells

Any technique that can be used to introduce DNA into the animal cells of choice can be employed. Electroporation has the advantage of ease and has been found to be broadly 10 applicable, but a substantial fraction of the targeted cells may be killed during electroporation. Therefore, for sensitive cells or cells which are only obtainable in small numbers, microinjection directly into nuclei may be preferable. Also, where a high efficiency of DNA incorporation is especially important, such as targeting without the use of a selectable marker (as discussed above), direct microinjection into nuclei is an advantageous method because typically 5-25% of targeted cells will have stably incorporated the microinjected DNA. Retroviral vectors are also highly efficient but in some cases they are subject to other shortcomings, as described by Ellis, J., and A. Bernstein, Molec. Cell. Biol. 9:1621-1627 (1989). Where lower efficiency techniques are used, such as electroporation, calcium phosphate precipitation or liposome fusion, it is preferable to have a selectable marker in the targeting DNA so that stable transformants can be readily selected, as discussed above. A variety of such transformation techniques are well known in the art, including:

(1) Direct microinjection into nuclei:

Targeting constructs can be microinjected directly into animal cell nuclei using micropipettes to mechanically transfer the recombinant DNA. This method has the advantage of not exposing the DNA to cellular compartments other than the nucleus and of yielding stable recombinants at high frequency. See, Capecchi, M., Cell 22:479-488 (1980).

(2) Electroporation:

WO 93/04169

10

30

The targeting DNA can also be introduced into the animal cells by electroporation. In this technique, animal cells are electroporated in the presence of DNA containing the targeting construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. The pores created during electroporation permit the uptake of macromolecules such as DNA. Procedures are described in, e.g., Potter, H., et al., Proc. Nat'l. Acad. Sci. USA 81:7161-7165 (1984); and Sambrook, ch. 16.

(3) Calcium phosphate precipitation:

The targeting constructs may also be transferred into cells by other methods of direct update, for example, using calcium phosphate. See, e.g., Graham, F., and A. Van der Eb, Virology 52:456-467 (1973); and Sambrook, ch.16.

(4) Liposomes:

Encapsulation of DNA within artificial membrane
vesicles (liposomes) followed by fusion of the liposomes with
the target cell membrane can also be used to introduce DNA into
animal cells. See Mannino, R. and S. Gould-Fogerite,
BioTechniques, 6:682 (1988).

25 (5) Viral capsids:

Viruses and empty viral capsids can also be used to incorporate DNA and transfer the DNA to animal cells. For example, DNA can be incorporated into empty polyoma viral capsids and then delivered to polyoma-susceptible cells. See, e.g., Slilaty, S. and H. Aposhian, Science 220:725 (1983).

- (6) Transfection using polybrene or DEAE-dextran: These techniques are described in Sambrook, ch.16.
- 35 (7) Protoplast fusion:

Protoplast fusion typically involves the fusion of bacterial protoplasts carrying high numbers of a plasmid of interest with cultured animal cells, usually mediated by

27

treatment with polyethylene glycol. Rassoulzadegan, M., et al., Nature, 295:257 (1982).

(8) Ballistic penetration:

Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., Nature, 327, 70-73, 1987.

10

15

25

30

5

F. Selection for Integration Events

In some situations, the gene targeting event will itself result in a selectable phenotype, in which case the targeted cells can be screened directly for homologous recombination. For example, disrupting the gene <a href="https://hptt.com

The relative frequency of targeting to a gene may be further improved by using a selectable marker which lacks its own promoter, since the likelihood of adequate expression of the selectable marker is greater where integration into a gene has occurred than for integration into the large parts of the genome that are believed to be transcriptionally quiescent.

G. Isolation of Homologous Recombinants

Using the present invention, the frequency of homologous recombination relative to random integration into the genome is substantially improved. The frequency is typically improved by a factor of 5 to 10, 50 to 100 or 1000 or

more depending upon the particular old, targeting sequencers and other parameters known by the skilled artisan. In some cases, it will be feasible to directly obtain cells in which homologous recombination at the target locus has occurred. For example, gene targeting may itself result in a readily selectable phenotype. Also, selectable markers in the targeting DNA can be employed which will be preferentially expressed upon integration into the target gene by homologous recombination. Another approach is to utilize the polymerase chain reaction to screen the cells for homologous recombinants. See, e.g., Zimmer, A., et al., Nature, Vol. 338, pp.150-153 (1989); and Joyner, A., et al., Nature, Vol. 338, pp. 153-156 (1989).

10

25

30

However, using the present invention, a relatively
large fraction of the stable integrants will be correctly
targeted to the gene of interest rather than incorporated at
random sites throughout the genome. Accordingly, it will be
feasible to obtain homologous recombinants without the
necessity of employing any special selection protocols or
carrying out PCR-based screening.

The standard approach for confirming that a cell has undergone a homologous recombination event is to isolate genomic DNA and perform a Southern hybridization analysis to demonstrate that genomic DNA fragments hybridizing with a labelled probe of the target DNA have been rearranged because of the modification of the target DNA. Southern hybridization is described in Sambrook and Maniatis. Given the high frequency of homologous recombination obtainable with the present invention, the targeted cells can be checked directly for homologous recombination.

H. Targeting Both Alleles of a Target Sequence

Where the cells contain more than one copy of a gene,
the cell lines obtained from the first round of targeting are
likely to be heterozygous for the targeted allele.
Homozygosity, in which both alleles are modified, can be
achieved in a number of ways. One approach, exemplified below,

29

is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting using a different selectable marker. Alternatively, homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics.

In some situations, it may be desirable to have two different modified alleles. This can be achieved by successive rounds of gene targeting or by breeding heterozygotes, each of which carries one of the desired modified alleles.

I. Production of Genetically Altered Animals

10

15

20

25

30

35

Embryonic stem cells which have been modified can be injected into the blastocoel of a blastocyst and grown in the uterus of a pseudopregnant female. In order to readily detect chimeric progeny, the blastocysts can be obtained from a different parental line than the embryonic stem cells. For example, the blastocysts and embryonic stem cells may be derived from parental lines with different hair color or other readily observable phenotype. The resulting chimeric animals can be bred in order to obtain non-chimeric animals which have received the modified genes through germ-line transmission. Techniques for the introduction of embryonic stem cells into blastocysts and the resulting generation of chimeric animals are well known (see e.g., Bradley, A. Production and analysis of chimaeric mice, pp. 113-151 in Robertson, E. (ed.), Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Oxford IRL Press (1987); and Hogan, B., et al, Manipulating the Mouse Embryo, Cold Spring Harbor, New York (1986)).

Targeting DNA can also be introduced directly into a zygote nucleus using, for example, microinjection. Selectable markers and/or other aspects of the present invention can be employed and the zygotes can be grown into animals using techniques well known in the art. In the case of mammals, the targeted organism can be introduced into the uterus of a

PCT/US92/07184 WO 93/04169

30

pseudo-pregnant female capable of carrying the developing animal to term.

J. Somatic Gene Therapy

5

10

15

20

25

Similarly, the methods described above can be employed for somatic gene therapy to, e.g., alter the expression of a gene, or correct a defective gene, or introduce a new gene in somatic cells of a human or other animal. somatic cells are first modified, using the methods described above, and then introduced into the same or a different individual (see Friedman, Science 244:1275-1281).

EXAMPLE 1

Gene Targeting Using Isogenic Targeting Constructs.

A. Targeting constructs:

The target DNA selected was the retinoblastoma susceptibility gene (Rb) in mouse embryonic stem cells of line E14. The targeting DNA consisted of a 10.5 kb HpaI fragment of Rb sequence from around the 19th and 20th exons of the gene (see Fig. 1b).

Two different sources of Rb sequence were used for the targeting DNA. The 10.5 kb targeting DNA sequence was either isolated from a mouse strain 129-derived DNA library ("129Rb"), or a BALB/c-derived DNA library ("B/cRb"). the recipient embryonic stem cells were also derived from mouse strain 129 (Hooper, M., et al., Nature 326:292-295 (1987)), the 129Rb targeting DNA will be substantially isogenic with the 30 target DNA. As discussed below, the B/cRb targeting DNA sequence is very similar to the 129Rb sequence but differs by about 0.5-1.0% (i.e. one sequence difference per 100-200 nucleotides).

The chosen sequence modification was disruption of the Rb gene coding sequence by insertion of the neomycin 35 phosphotransferase (neo) gene into the 19th exon of the gene. The neo marker was derived from plasmid pMClneo poly(A) (Thomas, K., and M. Capecchi, Cell 51:503-512 (1987)). A

31

mutation present in the <u>neo</u> coding sequence and reducing its ability to confer G418 resistance was corrected (see Yenofsky, R., et al. <u>Proc. Nat'l Acad. Sci. USA</u> 87:3435-3439 (1990). The <u>neo</u> marker was flanked by 2.5 and 8.0 kb of <u>Rb</u> sequence. The resulting constructs, 129<u>Rb-neo</u> and B/c<u>Rb-neo</u> are shown in Fig.1b. The targeting DNA sequences were separated from flanking vector DNA by cleavage with a restriction enzyme followed by gel electrophoresis and purification by electroelution.

10

15

20

25

30

35

B. Gene targeting

Embryonic stem cell line E14, derived from mouse strain 129, was grown on BRL conditioned medium (Hooper, M., et al., Nature 326:292-295 (1987)). Cells (3x10⁷) were mixed with 90 micrograms of targeting DNA (either 129Rb-neo or B/cRb-neo) in a volume of 600 microliters of PBS buffer and electroporated using a Biorad Gene pulser (0.8 kV, 3 micro F, electrode distance 0.4 cm). Cells were reseeded on 10-cm tissue culture dishes at a density of about 10⁷ cells per plate. G418 (200 micrograms/ml) selection was started after one day; after eight days, colonies were randomly picked and grown up for analysis.

C. Analysis

Double crossing-over at the <u>Rb</u>-locus will integrate the <u>neo</u> marker into the 19th exon of the <u>Rb</u> gene, thereby disrupting the coding sequence (Fig. 1a). G418-resistant colonies obtained from both electroporation experiments were analyzed by Southern hybridization. DNA from individual G418-resistant colonies was analyzed in the following way: 1-2x10⁶ cells were embedded in 50 microliters of 05% of low melting point agarose in PBS buffer and incubated in 1 ml of EDTA (0.5M), Sarcosyl (1%) and Proteinase K (1 mg) for 48 h at 50°C. Agarose blocks were washed three times in Tris (10mM), EDTA (10mM), pH 8 plus PMSF (0.1 mM) and once in the appropriate restriction enzyme buffer. DNA digestion took place in 100 microliters of restriction enzyme buffer containing 50 units of restriction enzyme EcoRI for 6 hours at 37°C. Agarose blocks were melted at 65°C and loaded onto 0.7% agarose gels for

32

Southern analysis following standard procedures (see Maniatis or Sambrook). Using fragment A (Fig. 1b) as the hybridization probe, the non-modified <u>Rb</u> locus appears as a band of 9.7 kb (<u>Rb</u>); whereas integration of <u>neo</u> by homologous recombination gives a 4.9 kb band (<u>neo</u>).

D. Results

5

10

Although the targeting constructs 129<u>Rb-neo</u> and B/c<u>Rb-neo</u> were identical, except for the origin of the <u>Rb</u> sequence, the results obtained with the two constructs were different. Using B/c<u>Rb-neo</u>, 1 homologous recombinant was detected amidst 144 random integration events. In contrast, of 94 analyzed G418-resistant colonies obtained with 129<u>Rb-neo</u>, 33 underwent homologous recombination at one of the <u>Rb</u> alleles. Thus, gene targeting was about 45-fold more efficient with 129<u>Rb-neo</u> than with B/c<u>Rb-neo</u>. The isogenic targeting construct allowed the easy recovery of homologous recombinants (1 out of 3 resistant colonies) without the use of any enrichment protocol.

20

25

30

35

15

E. Analysis of the sequence divergence between the 129 and BALB/c targeting DNAs

A comparison of the 129-derived and the BALB/c-derived DNAs, ("129Rb" and "B/cRb," respectively) was made to confirm that even small amounts of sequence divergence can substantially affect the frequency of homologous recombination. The 10.5 kb Rb fragments present in targeting constructs 129Rb-neo and B/cRb-neo were separated into nine smaller fragments (as shown in Fig. 2). Two of these fragments fell into regions that were entirely sequenced. The remaining seven fragments were separated in a low melting point agarose gel, recovered from the gel, and digested with Hinfl, Taql, or both, using standard techniques (see e.g., Sambrook, supra). The digested fragments were radioactively labelled and analyzed in a sequencing gel (see, id.).

The restriction digestion patterns of the two fragments were identical for 8 out of the 13 enzymes tested, showing that no gross alterations had occurred. Five

33

restriction site polymorphisms were seen, suggesting that 5 base pair substitutions were present within the 275 basepairs (bp) analyzed in this way. Second, 1102 nucleotides around the site where the neo marker was inserted and 585 nucleotides 5 kb away from this site were sequenced. Within these two regions (containing 1687 nucleotides) nine basepair substitutions, three small deletions (1, 4 and 6 nucleotides) and a polymorphic CA-repeat (a 14 bp deletion) were detected in the BALB/c sequence with respect to the 129 sequence. 10 stretch of perfect homology within the sequenced region was 278 nt. Finally, to detect deletions/insertions in the remainder of the targeting constructs, the 10.5 kb Rb fragments were digested into 9 smaller fragments (see Fig. 2). fragments fell in the region already sequenced, the remaining 15 seven were further digested with restriction enzymes, radioactively labelled and analyzed on a sequencing gel. this analysis, 3 deletions (2, 2 and 5 nucleotides) and three small insertions (1, 2 and 10 nucleotides) were detected in the BALB/c fragment with respect to the 129 fragment. A summary of 20 the sequence and restriction fragment length analyses is given in Fig. 2. Based on these results, we estimate that on the average one sequence difference (a base pair substitution or a deletion/insertion) was present per 160 nucleotides, for an overall sequence divergence in the range of about 0.5-1.0%. Thus, even though the two targeting constructs shared an 25 average sequence identity of about 99%, they nevertheless exhibited a significant difference in their efficiency as gene targeting substrates.

30

EXAMPLE 2

Successive targeting using two different selectable markers, targeting a selectable marker

35 A. First round of gene targeting

The targeting construct contained a selectable marker, an hprt minigene, embedded in 17 kb of targeting DNA from the retinoblastoma susceptibility gene derived from mouse

PCT/US92/07184

34

line 129 (see Fig. 1c). The cells to be targeted were the mouse embryonic stem cell line E14Tg2a, an HPRT-minus derivative of cell line E14 (which was derived from cell line 129; see Hooper, M., et al., Nature 326:292-295 (1987)). Cells were electroporated with targeting DNA as described in Example 2.

Integration of the <a href="https://prescription.org/linearing-new-normalization.org/linearing genome results in the acquisition of the ability to grow on HAT medium. Of 35 tested colonies that were selected on HAT medium, 8 contained the hprt-minigene correctly integrated into the 19th exon of one of the Rb alleles via homologous recombination. None of the homologous recombinants contained additional hprt copies integrated elsewhere in the genome. of these clones, designated HAT-20, was used as the recipient 15 for a second targeting experiment.

B. Second round of gene targeting

10

Clone HAT-20 was subjected to gene targeting using the constructs 129Rb-neo and B/cRb-neo (described above in Example I). HAT-20 cells were electroporated with 90 20 micrograms of targeting constructs B/cRb-neo and 129Rb-neo and the linearized vector $pMCl_{\underline{neo}}$ poly(A). $G418^R$ colonies were scored after 8 days; 6-Thioguanine (10 μ g/ml) was added and surviving colonies were counted 8 days later. From each electroporation experiment individual colonies were picked and 25 grown up for DNA analysis. Double crossing-over at the previously targeted Rb allele will substitute hprt for neo, giving colonies resistant to both G418 (neo+) and 6-Thioguanine (Hprt-). The ratio of homologous recombinants (resistant to both 6-TG and G418) to the total number of integrations (G418^R) 30 was much higher with 129Rb-neo than with B/cRb-neo (see Table Some 6-TG-resistant colonies were also seen after electroporation of HAT-20 with the plasmid pMC1neo poly(A), albeit at a much lower rate than with either targeting construct (Table 1). 35

DNA of individual clones (6-TG R and G418 R) was digested with PstI and analyzed by Southern hybridization. Using fragment A (Fig. 1b) as a probe, bands of the expected

35

size appeared, corresponding to the wild type <u>Rb</u> allele (4.9 kb), the <u>Rb</u> allele containing <u>hprt</u> (7.7 kb) and the <u>Rb</u> allele containing <u>neo</u> (3.9 kb). Colonies resistant to both 6-TG and G418, obtained upon electroporation of HAT-20 with B/c<u>Rb-neo</u> (a), 129<u>Rb-neo</u> (b) and pMClneo poly(A) (c) were analyzed as described in Example I.

DNA analysis of 18 colonies obtained with 129Rb-neo confirmed that all 18 resulted from homologous recombination with the target allele. In contrast, analysis of the colonies obtained using the B/cRb-neo construct demonstrated that 14 out of 29 colonies resistant to 6-TG resulted from the spontaneous loss of the hprt containing allele rather than from homologous recombination. Analysis of colonies obtained using pMC1neopoly(A) revealed that they had all lost the hprt containing Rb allele, possible by loss of the entire chromosome. Corrected for the spontaneous loss of the hprt minigene in the HAT-20 ES cell line, the frequency of homologous recombination was 1/200 for the B/cRb construct, but reached 1/10 using the isogenic targeting construct (129Rb). In summary, using isogenic DNA resulted in a 20-fold increase in the efficiency of gene targeting by homologous recombination.

10

20

PCT/US92/07184

20

25

Table 1 Efficiency of homologous recombination						
DNA	Number of cells (HAT-20)	G418 ^R (total)	G418 ^R & 6-TG ^R (HR)	Efficiency * (HR/total)		
B/c <u>Rb-neo</u>	5x10 ⁷	11500	105	1/200		
129 <u>Rb-neo</u>	5x10 ⁷	13500	1260	1/10		
pMClneo p(A)	2.5x10 ⁷	5470	11	-		

^{*} Corrected number of homologous recombinants (HR) divided by total number of G418^R colonies obtained. DNA analysis revealed that, in the case of B/cRb-neo, about half of the 6-TG^R colonies resulted from spontaneous loss of the hprt allele rather than homologous recombination. The same was true for all of the colonies resulting from pMClneo poly(A). For the isogenic construct (129Rb-neo), all of the colonies examined resulted from homologous recombination.

37

EXAMPLE 3

Targeting both alleles of a gene; and a comparison of positive/negative selection and isogenic targeting.

5

10

In the first step, the retinoblastoma (<u>Rb</u>) allele of mouse embryonic stem cell line E14 was disrupted by homologous recombination with a BALB/c-derived targeting construct employing a standard positive/negative selection strategy as described by Capecchi and co-workers (see Mansour, S., et al, <u>Nature</u> 336:348-352 (1988), and using approximately 18 kb of <u>Rb</u> targeting sequence, three correct integrations of a <u>neo</u> marker into the 19th exon of the <u>Rb</u> gene were isolated from a background of 3600 random integration events.

One of these single Rb knock-out cell lines was used 15 as the recipient in a second electroporation experiment with an isogenic targeting construct, consisting of a hygromycin resistance gene (hyg) embedded in 17 kb of a 129-derived Rb sequence (see 129Rb-hyq, Fig. 1d). Electroporation conditions and DNA analysis were similar as described in the legend to Fig. 1. In a typical experiment, 8x10⁷ cells were 20 electroporated with 90 micrograms of 129Rb-hyg DNA (Fig. 1d). Hygromycin B (150 micrograms/ml) selection was started after one day. Approximately 15,000 hygromycin B resistant colonies were obtained and, after 12 days of growth, a number of 25 individual colonies were picked and grown up for DNA analysis. DNA derived from 61 different Hygromycin B-resistant colonies was digested with EcoRI and analyzed by Southern hybridization. Using fragment B (Fig. 1d) as a probe, different sized bands, corresponding to the non-modified Rb allele (9.7 kb), the Rb 30 allele with neo integrated (11.5 kb) and the Rb allele with hyg integrated (4.9 kb), could be observed. The Southern analysis revealed that approximately 75% of the Hygromycin B-resistant colonies tested (48 out of 61) resulted from homologous recombination. Thus, not only were homologous recombinants readily obtainable, they were the predominant type of cell arising from integration of the targeting DNA. Furthermore. all 48 of these lines had undergone homologous recombination at the Rb locus. In 40 of the lines, the hyg gene was correctly

integrated into the remaining wild-type copy of the <u>Rb</u> gene thus giving cell lines in which both <u>Rb</u> alleles had been disrupted. In the other 8 lines, the <u>hyg</u> targeting DNA had incorporated by homologous recombination but the target had been the already modified allele in which the <u>hyg</u> targeting sequence replaced <u>neo</u>. By selecting the recombinants on both G418 and hygromycin, it is possible to select against cells in which the second targeting DNA has merely replaced the first.

5

20

25

The results also exemplify the effect of using
isogenic targeting. With a fairly homologous targeting DNA,
and employing a positive/negative selection strategy, less than
0.1% of the cells (approximately 1/1200) were homologous
recombinants. In contrast, using isogenic targeting DNA, about
75% of the cells were correctly targeted without having to
employ special selection techniques.

The invention described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed, since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

WHAT IS CLAIMED IS:

1. A method for modifying a preselected DNA sequence in a cell of a non-inbred animal by homologous recombination between a native target DNA sequence in the preselected DNA sequence and a targeting DNA sequence introduced into the cell, said method comprising:

isolating cells in which preselected sequence modifications have been incorporated into the genome by homologous recombination between the target DNA and the targeting DNA, wherein the targeting DNA comprises a polynucleotide sequence that is substantially isogenic to the target sequence except for the preselected sequence modifications.

15

30

35

10

- 2. A method according to claim 1, wherein the animal cell is a mammalian cell.
- 3. A method according to claim 1, wherein the sequence modifications in the targeting DNA comprise an insertion of a selectable marker.
- 4. A method according to claim 3, wherein the selectable marker is a gene conferring resistance to an inhibitory compound.
 - 5. A method according to claim 4, wherein the gene conferring resistance to an inhibitory compound substantially lacks its own transcriptional and/or translational start signals.
 - 6. A method according to claim 4, wherein the gene conferring resistance to an inhibitory compound is preferentially expressed when integrated into the genome by homologous recombination between the targeting DNA sequence and the target DNA sequence.

40

- 7. A method according to claim 3, wherein the selectable marker is a gene conferring the ability to grow on a selected substrate.
- 8. A method according to claim 1, wherein the targeting DNA sequence is at least about 99% identical with the target DNA sequence except for the desired sequence modifications.
- 9. A method for modifying a non-murine animal cell genome by homologous recombination between a target DNA sequence in the animal cell genome and a targeting DNA sequence introduced into the animal cell, said method comprising:

introducing into cells to be targeted a DNA delivery molecule comprising the targeting DNA; and

15

20

25

30

isolating cells in which preselected sequence modifications have been incorporated into the genome by homologous recombination between the target DNA and the targeting DNA, wherein the target DNA and the targeting DNA are substantially isogenic except for the preselected sequence modifications.

- 10. A method according to claim 9, wherein the targeting DNA is introduced into the cell by microinjection or electroporation.
 - 11. A method according to claim 9, wherein the targeting DNA sequence is at least about 99.5-99.9% identical with the target DNA sequence except for the desired sequence modifications.
 - 12. A method according to claim 9, wherein the native target DNA is an immunoglobulin gene.
- 13. A method according to claim 9, wherein the targeting DNA comprises an isogenic sequence of about 75 to 150 base pairs that is identical with a corresponding sequence in the target DNA.

41

14. A method according to claim 9, wherein the sequence modifications in the targeting DNA comprise one or more modifications selected from the group consisting of insertions, deletions and substitutions.

5

15. A method for modifying a cell genome of an animal by homologous recombination between a target DNA sequence in the animal cell genome and a targeting DNA sequence introduced into the animal cell, said method comprising:

10

15

introducing a DNA delivery molecule comprising the targeting DNA into cells to be targeted, wherein the targeting DNA was prepared from cells of the same individual animal or a sibling thereof; and

isolating cells in which preselected sequence modifications have been incorporated into the genome by homologous recombination between the target DNA and the targeting DNA, wherein the target DNA and the targeting DNA are substantially isogenic except for the preselected sequence modifications.

20

16. A method for enhancing homologous recombination between a native target DNA sequence in a non-murine mammalian cell line and a targeting DNA sequence introduced into the cell line, said method comprising the steps of:

25

isolating targeting DNA derived from a second cell line wherein said targeting DNA is substantially isogenic with the target DNA; and

introducing desired sequence modifications into the targeting DNA; and

30

introducing a DNA delivery molecule comprising the targeting DNA into cells to be targeted; and

isolating cells in which one or more of the sequence modifications are incorporated into the genome by homologous recombination between the target DNA and the targeting DNA.

35

17. A method according to claim 16, wherein the second cell line is identical with the mammalian cell line.

42

18. A method for producing a genetically modified mammal comprising:

modifying the genome of embryonic stem cells of the desired mammal in accordance with claim 1, 9 or 15; and incorporating the modified embryonic stem cells into a blastocyst derived from said mammal; and growing the blastocyst into a chimeric animal.

19. A method for producing a genetically modified10 mammal comprising:

modifying the genome of embryonic stem cells of the desired mammal in accordance with claim 1, 9 or 15; and

incorporating the modified embryonic stem cells into a blastocyst derived from said mammal; and

growing the blastocyst into a chimeric animal.

breeding the chimeric animal to obtain a non-chimeric

offspring in which the genetic alteration has been acquired through germ-line transmission.

20. A method for producing a genetically modified animal comprising:

modifying the genome of a zygote of the desired animal in accordance with claim 1, 9 or 15; and growing the zygote into an animal.

25

30

15

5

21. A method for gene therapy of an animal comprising:

introducing into cells of a first animal to be targeted a DNA delivery molecule comprising a targeting DNA sequence from a second animal, which sequence is capable of effecting homologous recombination with a substantially isogenic target DNA sequence, other than preselected sequence modifications, in the first animal cell genome;

isolating cells in which the preselected sequence
5 modifications have been incorporated into the genome; and
introducing the modified cells into the first animal.

43

- 22. A method according to claim 21, wherein the first animal and the second animal are members of the same species.
- 23. A method according to claim 21, wherein the first animal is a sibling of the second animal.
 - 24. A method according to claim 21, wherein the cells are somatic cells.
- 25. A method according to claim 21, wherein the cells are hematopoietic cells.
 - 26. A method according to claim 21, wherein modifying the genome comprises correcting a defective gene.

15

- 27. A method according to claim 21, wherein modifying the genome comprises inactivating a gene.
- 28. A composition comprising a collection of cells
 20 between about 10 to 90% of which, following primary selection,
 exhibit a correctly targeted recombination event at a
 preselected native target DNA segment of the cells, which
 correctly targeted recombination event is selected from the
 group consisting of: an addition of an exogenous DNA segment to
 25 the native DNA segment, a substitution of an exogenous DNA
 segment for the native DNA segment, and a deletion of the
 native DNA segment from the cell; wherein genomes of the cells
 exhibiting the event consist essentially of substantially
 isogenic DNA proximate to the recombination event except for
 30 the exogenous DNA.
 - 29. A composition of claim 28, wherein about 30% of the cells exhibit the correctly targeted recombination event.
- 35 30. A component of claim 28, wherein the cells are isolated from an in-bred mouse.

44

- 31. A composition of claim 28, wherein the exogenous DNA segment is from a cell of a different species than cells in the collection.
- 5 32. A non-human animal comprising cells with a homologous recombination event at a preselected native target DNA segment in the cell genome, wherein genomes of the cells consist essentially of substantially isogenic DNA proximate to the target DNA segment except for preselected sequence modifications which are incapable of undergoing homologous recombination in the cells unless linked to a second DNA segment homologous to the native target DNA segment.
- 33. A non-human animal of claim 32, wherein the recombination event is a deletion, insertion or substitution.
 - 34. A non-human animal of claim 32, wherein the cells are murine.
- 20 35. A non-human animal of claim 34, wherein the mouse cells comprise a DNA segment from a different manual.
 - 36. A non-human animal of claim 35, wherein the DNA segment encodes a human immunoglobulin gene.

1(b)

1(c)

Pig. 2

SEQUENCE DIVERGENCE BETWEEN 129 AND BALB/c DNA AT THE Rb LOCUS

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/07184

A. CLASSIFICATION OF SUBJECT MATTER IPC(5) :C12N 15/00, 5/00; A61K 37/00, 31/70 US CL :435/172.3, 240.1; 424/93A; 514/44; 800/2 According to International Parts Classification (IPC)								
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED								
Minimum documentation searched (classification system followed by classification symbols)								
U.S. : 435/172.3, 240.1; 424/93A; 514/44; 800/2								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched none								
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Chemical Abstracts; APS								
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.						
Proto-Oncogene int-2 in Mouse Embryo-Derive	Nature, Volume 336, issued 24 November 1988, S.L. Mansour et al, "Disruption of the Proto-Oncogene int-2 in Mouse Embryo-Derived Stem Cells: A General Strategy for Targeting Mutations to Non-Selectable Genes", pages 348-352, see entire document.							
Y Nature, Volume 348, issued 13 December 1990, bothe alleles of the pim-1 Proto-Oncogene by Ho Stem Cells", pages 649-651, see entire document	1-36							
Further documents are listed in the continuation of Box Special exceptions of cited documents:								
"A" document defining the general state of the art which is not considered	tater document published after the inter data and not in conflict with the applica principle or theory underlying the inve	tion but cited to understand the						
to be part of particular relevance "E" earlier document published on or after the international filing date	"X" document of particular relevance; the	claimed invention cannot be						
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	considered novel or cannot be consider when the document is taken alone 'Y' document of particular relevance; the	·						
*O" document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	step when the document is documents, such combination						
P document published prior to the international filing date but later than the priority date claimed	'&' document member of the same patent i							
Date of the actual completion of the international search	Date of mailing of the international sear	rch report						
05 November 1992	= 2NOV 1992 / //							
Name and mailing address of the ISA/ Commissioner of Patents and Trademarks	Authorized officer DEBORAH CROUCH, PH.D. A Warne							
Box PCT Washington, D.C. 20231								
Facsimile No. NOT APPLICABLE	Telephone No. (703) 308-0106	· '						

Form PCT/ISA/210 (second sheet)(July 1992)±

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISI	HED I	UND	DER THE PATENT COOPERAT	ON TREATY (PCT)	
(51) International Patent Classification 6:		(11) International Publication Number:	WO 95/22611	
C12N 15/12, 15/16, A61K 48/00, 38/39, C07K 14/47, A61L 27/00		(43) International Publication Date:	24 August 1995 (24.08.95)	
(21) International Application Number: PCT/US95/02251			(81) Designated States: AM, AT, AU CN, CZ, DE, DK, EE, ES, FI		
(22) International Filing Date: 21 February 1995 (21.02.95)			KP, KR, KZ, LK, LR, LT, LI MX, NL, NO, NZ, PL, PT, R	U, LV, MD, MG, MN, MW, O, RU, SD, SE, SI, SK, TJ,	
(30) Priority Data:			TT, UA, UG, UZ, VN, Europe DK, ES, FR, GB, GR, IE, IT,	LU, MC, NL, PT, SE), OAPI	
08/199,780 18 February 1994 (18.02.94) 08/316,650 30 September 1994 (30.09.9)	•	US	patent (BF, BJ, CF, CG, CI, (SN, TD, TG), ARIPO patent (CM, GA, GN, ML, MR, NE, KE, MW, SD, SZ, UG).	
(71) Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN [US/US]; Wolverine Tower, Room 2071, 3003 South State Street, Ann Arbor, MI 48109-1280 (US).			Published Without international search report and to be republished upon receipt of that report.		
(74) Agent: PARKER, David, L.; Arnold, White & Durkee, P.O. Box 4433, Houston, TX 77210 (US).					
*					

(54) Title: METHODS AND COMPOSITIONS FOR STIMULATING BONE CELLS

(57) Abstract

Disclosed are methods, compositions, kits and devices for use in transferring nucleic acids into bone cells in situ and/or for stimulating bone progenitor cells. Type II collagen and, particularly, osteotropic genes, are shown to stimulate bone progenitor cells and to promote bone growth, repair and regeneration in vivo. Gene transfer protocols are disclosed for use in transferring various nucleic acid materials into bone, as may be used in treating various bone-related diseases and defects including fractures, osteoporosis, osteogenesis, imperfecta and in connection with bone implants.

7

"illicit") integration, the incoming DNA is not found at a homologous sequence in the genome but integrates elsewhere, apparently at one of a large number of potential locations. In general, studies with higher eukaryotic cells have revealed that the frequency of homologous recombination is far less than the frequency of random integration. The ratio of these frequencies has direct implications for "gene targeting" which depends on integration via homologous recombination (i.e. recombination between the exogenous "targeting DNA" and the

corresponding "target DNA" in the genome).

10

15

20

25

30

. 35

Gene targeting represents a major advance in the ability to selectively manipulate animal cell genomes. Using this technique, a particular DNA sequence can be targeted and modified in a site-specific and precise manner. Different types of DNA sequences can be targeted for modification, including regulatory regions, coding regions and regions of DNA between genes. Examples of regulatory regions include: promoter regions, enhancer regions, terminator regions and introns. By modifying these regulatory regions, the timing and level of expression of a gene can be altered. Coding regions can be modified to alter, enhance or eliminate, for example, the specificity of an antigen or antibody, the activity of an enzyme, the composition of a food protein, the sensitivity of protein to inactivation, the secretion of a protein, or the routing of a protein within a cell. Introns and exons, as well as inter-genic regions, are suitable targets for modification.

Modifications of DNA sequences can be of several types, including insertions, deletions, substitutions, or any combination of the preceding. A specific example of a modification is the inactivation of a gene by site-specific integration of a nucleotide sequence that disrupts expression of the gene product. Using such a technique to "knock out" a gene by targeting will avoid problems associated with the use of antisense RNA to disrupt functional expression of a gene product. For example, one approach to disrupting a target gene using the present invention would be to insert a selectable marker into the targeting DNA such that homologous recombination between the targeting DNA and the target DNA will

PCT/US92/07184 WO 93/04169

8

result in insertion of the selectable marker into a coding region or essential regulatory element of the target gene.

It may be preferable to incorporate a selectable marker into the targeting DNA which allows for selection of 5 targeted cells that have stably incorporated the targeting DNA. This is especially useful when employing relatively low efficiency transformation techniques such as electroporation, calcium phosphate precipitation and liposome fusion, as discussed below, where typically fewer than 1 in 1000 cells will have stably incorporated the exogenous DNA. Using high efficiency methods, such as microinjection into nuclei, typically from 5-25% of the cells will have incorporated the targeting DNA; and it is therefore feasible to screen the targeted cells directly without the necessity of first selecting for stable integration of a selectable marker. 15

10

20

25

30

. 35

Examples of selectable markers include: genes conferring resistance to compounds such as antibiotics, genes conferring the ability to grow on selected substrates, genes encoding proteins that produce detectable signals such as luminescence. A wide variety of such markers are known and available, including, for example, antibiotic resistance genes such as the neomycin resistance gene (neo), Southern, P., and P. Berg, J. Mol. Appl. Genet. 1:327-341 (1982); and the hygromycin resistance gene (hyg), Nucleic Acids Research 11:6895-6911 (1983), and Te Riele, H., et al., Nature 348:649-651 (1990). Selectable markers also include genes conferring the ability to grow on certain media substrates such as the $\underline{\mathsf{tk}}$ gene (thymidine kinase) or the hprt gene (hypoxanthine phosphoribosyltransferase) which confer the ability to grow on HAT medium (hypoxanthine, aminopterin and thymidine); and the bacterial gpt gene (guanine/xanthine phosphoribosyltransferase) which allows growth on MAX medium (mycophenolic acid, adenine, and xanthine). See Song, K-Y., et al. Proc. Nat'l Acad. Sci. USA 84:6820-6824 (1987). Other selectable markers for use in mammalian cells, and plasmids carrying a variety of selectable markers, are described in Sambrook, J., et al., Molecular Cloning - A Laboratory Manual, Cold Spring Harbor Laboratory,

9

Cold Spring Harbor, New York (1989) (hereinafter "Sambrook"), see chapter 16.

If a selectable marker is used, the preferred location of the marker gene in the targeting construct will depend on the aim of the gene targeting. For example, if the aim is to disrupt target gene expression, then the selectable marker can be cloned into targeting DNA corresponding to coding sequence in the target DNA. Alternatively, if the aim is to express an altered product from the target gene, such as a protein with an amino acid substitution, then the coding sequence can be modified to code for the substitution, and the selectable marker can be placed outside of the coding region, in a nearby intron for example.

10

25

If the selectable markers will depend on their own 15 promoters for expression and the marker gene is derived from a very different organism than the organism being targeted (e.g. prokaryotic marker genes used in targeting mammalian cells), it is preferable to replace the original promoter with transcriptional machinery known to function in the recipient 20 cells. A large number of transcriptional initiation regions are available for such purposes including, for example, metallothionein promoters, thymidine kinase promoters, betaactin promoters, immunoglobulin promoters, SV40 promoters and human cytomegalovirus promoters. A widely used example is the pSV2-neo plasmid which has the bacterial neomycin phosphotransferase gene under control of the SV40 early promoter and confers in mammalian cells resistance to G418 (an antibiotic related to neomycin). Southern, P., and P. Berg, J. Mol. Appl. Genet. 1:327-341 (1982). A number of other 30 variations may be employed to enhance expression of the selectable markers in animal cells, such as the addition of a poly(A) sequence (see, e.g., Thomas, K., et al., Cell 44:419-428 (1986)); and the addition of synthetic, translation initiation sequences (see, e.g., Thomas, K. and M. Capecchi, Cell 51:503-512 (1987)). Both constitutive and inducible promoters may be used.

In some cases, it may be desirable for the modification sequences (including selectable markers) to alter

10

the transcriptional activity of the target gene. However, if selectable markers are used and it is not desirable to affect transcriptional activity of the target gene, it will be preferable to use selectable markers with an inducible promoter and/or to include a transcription termination sequence downstream of the selectable marker. A variety of inducible promoters and transcription termination sequences are known and available. See, e.g., Sambrook, supra.

Where the target gene is highly expressed or readily inducible, it may be advantageous to use selectable markers lacking their own promoters as a way to further enhance the frequency of obtaining homologous recombinants. In that way, the likelihood of the selectable marker being highly expressed upon integration into the genome will be much greater for homologous recombination events (where the promoterless gene will have been placed in the vicinity of the target gene promoter) than for random integration into the genome.

10

20

25

35

Target genes can also be modified by deletions. In the case of a deletion, the sequence to be deleted will be absent or removed from the corresponding targeting DNA and thus the "modification sequence" will constitute a missing sequence relative to the target DNA. The deletion will generally cover a portion of one or more exons and may include introns and flanking non-coding regions such as regulatory regions. The deletion may be as small as one base pair or as large as tens of thousands of base pairs.

Another specific form of modification is the introduction of a new gene into the animal cell genome. By flanking the new gene with sequences substantially isogenic with target DNA in the host cell, it is possible to introduce the gene in a site-specific fashion at the targeted location. Using this approach, a gene from any source (e.g., bacterial, plant, animal) can be introduced into an animal cell to impart new characteristics to the cell or to allow the animal cell to produce desired polypeptides which can then be isolated from the animal or from its cells in vitro.

Another form of modification is the insertion of a marker gene in a region outside of but proximal to a gene of

11

interest. This sort of modification results in the creation of a new linkage in the animal genome. For this approach, the precise function of a target sequence need not be known, so long as it is known to be associated with a particular trait. Selectable markers can be introduced into precise locations adjacent to desirable genes to facilitate selection of desirable traits that are otherwise not selectable in culture. This procedure is of value, for instance, in order to facilitate animal breeding programs. Segregation of the trait through successive generations can be tracked by growing cells on the appropriate selective medium. Thus, the time required to breed improved varieties can be shortened. As an example of this kind of approach, regions identified by RFLP analysis to be associated with complex traits can be targeted and cells containing the traits can be selected in culture.

10

15

20

25

30

35

The targeting DNA comprises a sequence in which the desired sequence modifications are flanked by DNA substantially isogenic with a corresponding target sequence in the genome to be modified. The substantially isogenic sequence is preferably at least about 97-98% identical with the corresponding target sequence (except for the desired sequence modifications), more preferably more preferably at least about 99.0-99.5% identical, most preferably about 99.6 to 99.9% identical. Particularly for non-inbred animals (e.g., other than mice strains 129 and BALB/c), the sequences are typically 100% identical. targeting DNA and the target DNA preferably share stretches of DNA at least about 75 base pairs that are perfectly identical, more preferably at least about 150 base pairs that are perfectly identical, even more preferably at least about 500 base pairs that are perfectly identical. Accordingly, it is preferable to use targeting DNA derived from cells as closely related as possible to the cell line being targeted; more preferably, the targeting DNA is derived from cells of the same cell line as the cells being targeted. Most preferably, the targeting DNA is derived from cells of the same individual (or animal) as the cells being targeted.

Preferably, the targeting DNA sequence comprises at least about 100-200 bp of substantially isogenic DNA, more

12

preferably at least about 300-1000 bp and generally less than about 15,000 bp. The amount of targeting DNA present on either side of a sequence modification can be manipulated to favor either single or double crossover events, both of which can be obtained using the present invention. In a double crossover or "replacement-type" event, the portion of the targeting DNA between the two crossovers will replace the corresponding portion of the target DNA. In a single crossover or "insertion-type" event, the entire targeting DNA will generally be incorporated into the target sequence at the site of the single crossover. To promote double crossovers, the modification sequences are preferably flanked by targeting DNA such that, upon linearization, the modification sequences are located towards the middle of the flanking targeting DNA. single crossovers are desired, the targeting DNA should be designed such that the ends of the linearized targeting sequence correspond to target DNA sequences lying adjacent to each other in the genome, as described by Thomas, K., and M. Capecchi, Cell 51:503-512 (1987).

10

15

20

25

30

35

In one embodiment, a modification sequence is flanked on one or both sides with a cassette of isogenic DNA, typically at least about 75 or more contiguous bases, preferably at least about 500-1000 contiguous bases or larger as may be conveniently obtained (e.g., by high-fidelity PCR amplification from a source of isogenic DNA, such as an aliquot of host ES cells or an individual that is the subject for gene targeting). Extending distally (i.e., in the direction away from the modification sequence) from such an isogenic cassette is typically a sequence which is highly homologous to a targeted sequence, but which may be nonisogenic. For example, in embodiments where a targeting DNA is used to make genetic modifications to a host genome for gene therapy in a non-inbred animal (e.g., a human patient), it may be time-consuming and costly to obtain long (e.g., more than about 2 kb) contiguous segments of isogenic DNA from the non-inbred animal, such as by genomic cloning with cosmid or bacteriophage vectors. For applications such as this, high-fidelity PCR may be used to amplify isogenic DNA cassettes of about 500-2000 basepairs from

13

DNA of the non-inbred animal; the isogenic DNA cassettes thus obtained may be incorporated into the targeting DNA, typically immediately adjacent to the modification sequence. However, since the efficiency of gene targeting by homologous recombination generally is believed to increase with the length of homology of the targeting DNA with the targeted gene sequence, it may be desirable to include in the targeting DNA additional flanking sequences having substantial homology with endogenous sequences flanking the isogenic sequences, but not necessarily being isogenic. For example, a targeting DNA for targeting and correcting a human cystic fibrosis disease allele having a deletion in a human patient may comprise one or more isogenic DNA cassettes obtained by PCR amplification of DNA from the individual patient, and may comprise additional highly homologous sequences obtained, for example, from a human genomic DNA library not derived from the patient. Thus, a modification sequence which, when correctly targeted, corrects the deletion in the cystic fibrosis allele, is typically flanked by at least one isogenic cassette obtained from the patient.

10

15

20

25

30

35

The DNA delivery molecule may contain only the targeting DNA with modification sequences or it may contain additional DNA flanking the targeting DNA. If this additional DNA contains a selectable marker, then it may be possible to further enrich for cells which have undergone double crossover homologous recombination because these cells will generally have lost the flanking selectable marker located outside the targeting DNA. Conversely, cells which have stably incorporated the flanking selectable marker are likely to have arisen by random integration of the DNA construct into the genome. One such flanking selectable marker is the HSV-tk gene which confers sensitivity to the antibiotic gancyclovir.

Mansour, S., et al., Nature 336:348-352 (1988).

Combinations of selectable markers can also be used to advantage. For example, to target non-selectable gene "X," a neo gene (with or without its own promoter, as discussed above) can be cloned into a DNA sequence which is substantially isogenic with gene X. As discussed above, the placement of

14

this marker gene, particularly whether it is in an exon or outside the coding sequence, will depend on the aim of the gene targeting. To use a combination of markers, the HSV-tk gene can be cloned such that it is outside of the targeting DNA (another selectable marker could be placed on the opposite flank, if desired). After introducing the DNA construct into the cells to be targeted, the cells can be selected on the appropriate antibiotics. In this particular example, those cells which are resistant to G418 and gancyclovir are most likely to have arisen by homologous recombination in which the neo gene has been recombined into gene X but the tk gene has been lost because it was located outside the region of the double crossover. As discussed above, it will be necessary to ensure that the selectable markers are adequately expressed in the recipient cells.

10

15

20

25

30

35

The targeting DNA construct may also contain replication systems which are functional in prokaryotes, especially <u>E. coli</u>, which were of use in constructing the DNA molecule, and for performing and analyzing genetic manipulations of the targeting sequence. Preferably, however, DNA sequence not required for the gene targeting is removed prior to introducing the DNA into cells to be targeted.

The DNA delivery molecule containing the targeting DNA may also contain DNA sequences or proteins that affect the uptake of the DNA delivery molecule or the fate of the molecule after introduction into the cells. For example, the DNA delivery molecule may be a viral capsid containing the targeting DNA, as discussed below. Also, the DNA delivery molecule may contain sequences or DNA binding proteins that affect degradation or localization of the molecule following entry into the targeted cells, or that affect the catalysis of homologous recombination.

Transformation of animal cells with the recombinant construct containing the targeting DNA can be carried out using essentially any method for introducing nucleotide sequences into animal cells including, as discussed below, microinjection, electroporation, calcium phosphate

15

precipitation, and transfection using a virus or viral particle.

10

25

30

• 35

After the targeting DNA has been introduced into the animal cells, the cells in which the targeting DNA has stably integrated into the genome can be selected. The choice of which one to use will generally depend upon the nature of the sequence that has been integrated. For example, if the targeting DNA contains a selectable marker, as described above, then the integration of targeting DNA into the genome results in the stable acquisition of the selectable marker. In some situations the cells may be selected by virtue of a modification of the target gene. For example, if the target gene has a selectable phenotype, then modification of the target DNA may result in loss or alteration of that phenotype.

In other situations, a selectable phenotype may result from juxtaposition of a DNA sequence present on the targeting DNA with DNA sequences present near the target DNA. For example, integration of a promoterless antibiotic resistance gene at the target site may result in expression of the resistance gene based on transcriptional activity at the target site.

It is also possible, although not essential, to use the polymerase chain reaction (PCR) and/or Southern blot analysis to screen cells in which homologous integration has occurred. In an advantageous application, one PCR primer is directed to DNA in the modification sequence and another primer is directed to DNA near the target locus that is outside but proximal to the target DNA, such that integration results in the creation of a genomic DNA sequence in which the primer binding sites are facing each other in relative juxtaposition. After a number of rounds of amplification, DNA from such a

After a number of rounds of amplification, DNA from such a locus will be present at much higher levels because it is being amplified exponentially rather than linearly.

Homologous recombination can be confirmed using standard DNA hybridization techniques, such as Southern blotting, to verify the presence of the integrated DNA in the desired genomic location.

Where the cells contain more than one copy of a gene, the cell lines obtained from the first round of targeting are

16

likely to be heterozygous for the targeted allele:
Homozygosity, in which both alleles are modified, can be
achieved in a number of ways. One approach is to grow up a
number of cells in which one copy has been modified and then to
subject these cells to another round of targeting using a
different selectable marker. Alternatively, homozygotes can be
obtained by breeding animals heterozygous for the modified
allele, according to traditional Mendelian genetics. In some
situations, it may be desirable to have two different modified
alleles. This can be achieved by successive rounds of gene
targeting or by breeding heterozygotes, each of which carries
one of the desired modified alleles.

10

15

20

25

30

35

The present invention can be used with a variety of cell types derived from a number of animal sources. discussed above, the invention is especially useful with animals, such as non-murine animals, in which inbreeding is not very common. The choice of particular cell types for targeting will generally depend on the purposes for which the sitedirected mutagenesis is undertaken. For example, if whole animals carrying a particular mutation are desired, then embryonic stem cells derived from that animal can be targeted and later introduced into blastocysts for growing the modified cells into chimeric animals. For embryonic stem cells, either an embryonic stem cell line or freshly obtained stem cells may The resulting chimeric animals can be bred in order be used. to obtain non-chimeric animals in which the mutation has been transmitted through the germ line.

Another approach to creating genetically altered animals that can be used with the present invention is to modify zygotes directly. For mammals, the modified zygotes can be then introduced into the uterus of a pseudopregnant female capable of carrying the animal to term.

Besides altering organisms through germ-line modifications, gene targeting can also be used to modify somatic cells. Cells of interest for somatic gene targeting include hematopoietic cells, T-lymphocytes and other cells of the immune system, epithelial cells, endothelial cells, adrenal medulla cells, keratinocytes, fibroblasts, osteoblasts,

17

osteoclasts, neurons, ganglion cells, retinal cells, liver cells, myoblast cells, and cells of the islets of Langerhans. Also of interest will be the stem cells which serve as the progenitors of the above cells and which may be an original progenitor cell or a progenitor cell that has already become dedicated to a particular cell lineage.

In addition to applications such as the production of transgenic animals and gene therapy, the techniques of the present invention are also useful in expanding basic knowledge with respect to animal cell function. For example, the expression of altered forms of genes and their promoters can be analyzed without position effects because the gene is altered in situ; and the function of sequences whose purpose is unknown can be determined by inactivating the sequence and observing changes in cell function.

The following list of terms, intended to supplement the descriptions above, will be useful in understanding the present invention:

20 Target DNA sequence

10

15

25

30

35

The DNA to be modified by homologous recombination. The target DNA can be in any organelle of the animal cell including the nucleus and mitochondria and can be an intact gene, an exon or intron, a regulatory sequence or any region between genes.

Desired sequence modifications

Sequence changes that it would be desirable to introduce into the target DNA. These sequence modifications may include insertions, deletions or substitutions of DNA sequence, or any combination thereof, and may be as small as a single base pair or as large as tens of thousands of base pairs. Insertions include the insertion of entire genes which may be of animal, plant, prokaryotic or viral origin.

Targeting DNA sequence

A DNA sequence containing the desired sequence modifications and which is, except for the sequence

PCT/US92/07184 WO 93/04169

18

modifications, substantially isogenic with the target DNA. A typical targeting DNA as a polynucleotide which comprises: (1) at least one homology region having a sequence that is substantially isogenic to a sequence present in a host cell endogenous gene locus, and (2) a targeting region which becomes integrated into an host cell endogenous gene locus by homologous recombination between a targeting DNA homology region and said endogenous gene locus sequence. targeting construct is a "hit-and-run" or "in-and-out" type construct (Valancius and Smithies (1991) Mol. Cell. Biol. 11: 10 1402; Donehower et al. (1992) Nature 356: 215; (1991) J. NIH Res. 3: 59; which are incorporated herein by reference), the targeting region is only transiently incorporated into the endogenous gene locus and is eliminated from the host genome by selection.

DNA delivery molecule

The molecule comprising at least the targeting DNA which is introduced into cells to be targeted.

20

15

Uninterrupted sequence identity

The length of a stretch of DNA sequence that is identically conserved between two homologous DNA sequences.

Average sequence identity 25

> The percentage of DNA sequence that is identically conserved between two homologous DNA sequences. For example, if a first DNA sequence comprises 200 base pairs and a second sequence differs at two sites (e.g. a small insertion such as 4 nucleotides, and a small deletion), then the average sequence identity is about 99%.

Homologous DNA sequence or homologous DNA

DNA sequence that is at least about 70% identical with a reference DNA sequence. An indication that two 35 sequences are homologous is that they will hybridize with each other under fairly stringent conditions (see, e.g., Maniatis or Sambrook, infra).

19

Isogenic or substantially isogenic DNA

DNA sequence that is identical with or nearly identical with a reference DNA sequence. Indications that two sequences are isogenic is that they will hybridize with each other even under the most stringent hybridization conditions (see, e.g. Maniatis or Sambrook, infra); and will not exhibit sequence polymorphisms (i.e. they will not have different sites for cleavage by restriction endonucleases). The term "substantially isogenic" refers to DNA that is at least about 10 97-99% identical with the reference DNA sequence, and preferably at least about 99.5-99.9% identical with the reference DNA sequence, and in certain uses 100% identical with the reference DNA sequence. Indications that two sequences are substantially isogenic is that they will still hybridize with 15 each other under the most stringent conditions (see, Sambrook) and they will only rarely exhibit RFLPs or sequence polymorphisms (relative to the number that would be statistically expected for sequences of their particular length which share at least about 97-99% sequence identity). In 20 general, a targeting DNA sequence and a host cell sequence are compared over a window of at least about 75 consecutive nucleotides. DNA sequences compared between individuals of a highly inbred strain, such as C57Bl/6N, are generally considered isogenic even if detailed sequence information is 25 not available, so that a targeting DNA comprising a DNA sequence from one individual is usually isogenic as compared to other individuals (or ES cells) of the same inbred strain.

Homologous recombination

30

35

The term "homologous recombination" refers to the process of DNA recombination based on sequence homology. The term embraces both crossing over and gene conversion. Cellular recombination enzymes are believed to be involved in the process of recognizing sequence identity between distinct nucleotide sequences. Three distinct types of homologous recombination have been distinguished based on the nature of the recombination substrates and the mechanisms believed to be involved in mediating recombination: "chromosomal

20

recombination," "extrachromosomal recombination" and "gene targeting" (see definitions, <u>infra</u>).

Chromosomal recombination

5

10

30

35

Homologous recombination between two DNA sequences within a single chromosome ("intrachromosomal recombination") or recombination between chromosomes ("interchromosomal recombination"). A common example of interchromosomal recombination is the mitotic recombination between homologous chromosomes.

Extrachromosomal recombination

Homologous recombination between two DNA sequences neither of which are located on chromosomes. An example of extrachromosomal recombination is the recombination between two viruses transfected into a single recipient cell.

Gene targeting

Homologous recombination between two DNA sequences, one of which is located on a chromosome and the other of which is not.

Non-homologous or "random" integration

Any process by which DNA is integrated into the
genome that does not involve homologous recombination. It
appears to be a random process in which incorporation can occur
at any of a large number of genomic locations.

Selectable marker

A gene, the expression of which allows cells containing the gene to be identified on a particular medium. A selectable marker can be one that allows a cell to proliferate on a medium that prevents or slows the growth of cells without the gene. Examples include antibiotic resistance genes and genes which allow an organism to grow on a selected metabolite. Alternatively, the gene can facilitate visual screening of transformants by conferring on cells a phenotype that is easily identified. Such an identifiable phenotype may be, for

21

example, the production of luminescence or the production of a colored compound, or the production of a detectable change in the medium surrounding the cell.

5 Animal cell

10

A cell of a multicellular eukaryotic organism of, for example, the phyla chordata, echinodermata, coelenterata, annelida, and arthropoda. Preferably, the animal cells are from an animal belonging to the phylum chordata, more preferably the subphylum vertebrata. Most preferably, the animal cells are non-murine mammalian cells, including human cells.

Correctly targeted construct

As used herein, the term "correctly targeted 15 construct" or "correctly targeted targeting DNA" refer to a portion of the targeting DNA which is integrated within or adjacent to an endogenous crossover target sequence, such as a portion of a targeted endogenous gene locus. For example but not limitation, a portion of a targeting DNA encoding neo and flanked by homology regions having substantial identity with 20 endogenous Rb gene sequences flanking the 19th and 20th exons, is correctly targeted when said targeting DNA portion is integrated into a chromosomal location so as to replace, for example, the 19th and/or 20th exon(s) of the endogenous Rb In contrast and also for example, if the targeting DNA 25 or a portion thereof is integrated into a nonhomologous region and/or a region not within about 50 kb of a targeted endogenous gene sequence, the resultant product is an incorrectly targeted targeting DNA construct. It is possible to generate cells having both a correctly targeted targeting DNA construct(s) and 30 an incorrectly targeted targeting DNA construct(s). Cells and animals having a correctly targeted targeting DNA construct(s) and/or an incorrectly targeted targeting DNA construct(s) may be identified and resolved by PCR and/or Southern blot analysis 35 of genomic DNA.

22

EXPERIMENTAL

A. General Methods

10

Generally, the nomenclature and standard laboratory procedures with respect to recombinant DNA technology can be found in Maniatis, T. et al., Molecular Cloning - A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982) (hereinafter "Maniatis"); and now in Second Edition by Sambrook, J., et al. (1989) (hereinafter "Sambrook"). Other general references are provided throughout this document. The procedures therein are believed to be well known in the art, and are provided for the convenience of the reader. Maniatis, Sambrook, and the other general references are specifically incorporated herein by reference.

15 B. Preparation of the Targeting DNA

1) Isolation of Isogenic DNA

The targeting DNA comprises a sequence in which the desired sequence modifications are flanked by DNA substantially isogenic with a corresponding target sequence in the genome to be modified. The targeting DNA can be constructed exclusively 20 from genomic DNA, from cDNA, from synthetic DNA or from any combination of the above. The genomic DNA can be cloned from a library of genomic DNA fragments in a bacteriophage vector (e.g., lambda phage), in a plasmid vector (e.g., pBR322 derivative), or in a cosmid vector; using techniques well-known 25 in the art of recombinant DNA. cDNA can, e.g., be prepared from a mRNA population which forms the basis of preparation of a cDNA library. Alternatively, synthetic DNA fragments can be prepared based upon knowledge of the nucleotide sequence of the 30 target DNA.

2) Modifying the Targeting DNA

Modification of the targeting DNA will depend on two basic considerations: firstly, what modifications are desired in the target DNA; secondly, whether selectable sequences should be included as an aid in isolating homologous recombinants.

30

In some situations, the modified targeting DNA will already be available. If for example, a mutant version of a particular gene is already available as a recombinant DNA construct, then the targeting DNA may be obtained from that source using standard cloning techniques. See, e.g., Sambrook. As discussed above, the efficiency of homologous recombination depends in part on the isogenicity of the targeting DNA and the target DNA. Where the modification is available in a different cell line than that being targeted, it may be preferable to clone the modification sequence out of the original DNA and into DNA sequence that is more nearly isogenic with the target DNA. In general, such cloning will be performed in prokaryotic organisms, using standard cloning techniques. Id.

If a targeting DNA with desired sequence modifications is not already available, then a fragment of substantially isogenic targeting DNA can be obtained and modified. Generally, the isogenic targeting DNA will be most easily modified after being cloned onto vectors that can be used in prokaryotic organism such as E. coli. If an 20 appropriate fragment of isogenic targeting DNA is not already available, then a gene library of the cell line to be targeted can be prepared and screened for the desired sequence using techniques well known in the art. See, e.g., Sambrook. the targeting DNA is cloned, insertions, deletions and 25 alterations of DNA sequences can be achieved by techniques well known in the art. See, Sambrook. If the sequence of the target DNA is known, it is also possible to obtain synthetic DNA fragments in which one or more of the base pairs are specifically altered, added or removed.

One particular type of modification is the insertion of a gene within the targeting DNA. As discussed above, it will often be advantageous to include a selectable marker as an insert to facilitate selection of recombinants. A wide variety of such markers are generally known and available; and can be readily cloned into a desired targeting DNA construct using well known techniques. See, e.g., Sambrook.

C. Construction of DNA Delivery Molecules

PCT/US92/07184 WO 93/04169

24

Typically, cloning of the targeting DNA will be performed in E. coli, and standard plasmids such as puc and pBR322 derivatives can be used. In many cases, it will be possible to use these plasmid DNAs directly as DNA delivery molecules; but it is preferable to minimize the amount of extraneous DNA on the delivery molecule. Thus, DNA sequence that will not be involved in targeting or selection of homologous recombinants can be removed prior to introduction of the DNA into the recipient cells. Preferably, the DNA will be linearized by cutting with a restriction enzyme prior to introduction into the cell. See, Sambrook. Where biological methods of DNA introduction are used, such as a virus or viral capsid, the DNA delivery molecule will be tailored accordingly to the particular system. For example, particular viral 15 capsids generally work most efficiently with DNA sequences that are within a particular size range.

As discussed above, the DNA delivery molecule containing the targeting DNA may also contain DNA sequences or proteins that affect the uptake of the molecule or the fate of the molecule after introduction into the cells. For example, the DNA delivery molecule may be a viral capsid containing the targeting DNA, as discussed below. Also, the DNA delivery molecule may contain sequences or DNA binding proteins that affect degradation or localization of the molecule following entry into the targeted cells or molecules that affect the catalysis of homologous recombination.

D. Cells to be Targeted

10

20

25

30

The present invention can be used with essentially any cell into which DNA can be introduced. As discussed in the following section, there are a variety of methods applicable for introducing DNA into animal cells. The choice of cell type will depend on the particular goal of the site-directed mutagenesis. For example, embryonic stem cells or zygotes may be targeted for generating modified animals; whereas both germline and somatic cells may be usefully targeted for gene therapy. The choice of cells may also affect (or be affected by) the choice of transformation technique, as discussed below.

25

Growth and manipulation of the cells can be performed using standard procedures as described in Hogan, B., et al, Manipulating the Mouse Embryo, Cold Spring Harbor, New York (1986).

5

10

15

20

25

30

· · 35

E. Introduction of the DNA into the Cells

Any technique that can be used to introduce DNA into the animal cells of choice can be employed. Electroporation has the advantage of ease and has been found to be broadly applicable, but a substantial fraction of the targeted cells may be killed during electroporation. Therefore, for sensitive cells or cells which are only obtainable in small numbers, microinjection directly into nuclei may be preferable. Also, where a high efficiency of DNA incorporation is especially important, such as targeting without the use of a selectable marker (as discussed above), direct microinjection into nuclei is an advantageous method because typically 5-25% of targeted cells will have stably incorporated the microinjected DNA. Retroviral vectors are also highly efficient but in some cases they are subject to other shortcomings, as described by Ellis, J., and A. Bernstein, Molec. Cell. Biol. 9:1621-1627 (1989). Where lower efficiency techniques are used, such as electroporation, calcium phosphate precipitation or liposome fusion, it is preferable to have a selectable marker in the targeting DNA so that stable transformants can be readily selected, as discussed above. A variety of such transformation techniques are well known in the art, including:

(1) Direct microinjection into nuclei:

Targeting constructs can be microinjected directly into animal cell nuclei using micropipettes to mechanically transfer the recombinant DNA. This method has the advantage of not exposing the DNA to cellular compartments other than the nucleus and of yielding stable recombinants at high frequency. See, Capecchi, M., Cell 22:479-488 (1980).

(2) Electroporation:

The targeting DNA can also be introduced into the animal cells by electroporation. In this technique, animal cells are electroporated in the presence of DNA containing the targeting construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. The pores created during electroporation permit the uptake of macromolecules such as DNA. Procedures are described in, e.g., Potter, H., et al., Proc. Nat'l. Acad. Sci. USA 81:7161-7165 (1984); and Sambrook, ch. 16.

(3) Calcium phosphate precipitation:

The targeting constructs may also be transferred into cells by other methods of direct update, for example, using calcium phosphate. See, e.g., Graham, F., and A. Van der Eb, Virology 52:456-467 (1973); and Sambrook, ch.16.

(4) Liposomes:

WO 93/04169

10

15

30

Encapsulation of DNA within artificial membrane
vesicles (liposomes) followed by fusion of the liposomes with
the target cell membrane can also be used to introduce DNA into
animal cells. See Mannino, R. and S. Gould-Fogerite,
BioTechniques, 6:682 (1988).

25 (5) Viral capsids:

Viruses and empty viral capsids can also be used to incorporate DNA and transfer the DNA to animal cells. For example, DNA can be incorporated into empty polyoma viral capsids and then delivered to polyoma-susceptible cells. See, e.g., Slilaty, S. and H. Aposhian, <u>Science</u> 220:725 (1983).

- (6) Transfection using polybrene or DEAE-dextran: These techniques are described in Sambrook, ch.16.
- 35 (7) Protoplast fusion:

Protoplast fusion typically involves the fusion of bacterial protoplasts carrying high numbers of a plasmid of interest with cultured animal cells, usually mediated by

27

treatment with polyethylene glycol. Rassoulzadegan, M., et al., Nature, 295:257 (1982).

(8) Ballistic penetration:

Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., Nature, 327, 70-73, 1987.

10

25

30

35

5

F. Selection for Integration Events

In some situations, the gene targeting event will itself result in a selectable phenotype, in which case the targeted cells can be screened directly for homologous recombination. For example, disrupting the gene <a href="https://hptt.ncbi.nlm.ncbi.nlm.nlm.ncbi.nlm

The relative frequency of targeting to a gene may be further improved by using a selectable marker which lacks its own promoter, since the likelihood of adequate expression of the selectable marker is greater where integration into a gene has occurred than for integration into the large parts of the genome that are believed to be transcriptionally quiescent.

G. Isolation of Homologous Recombinants

Using the present invention, the frequency of homologous recombination relative to random integration into the genome is substantially improved. The frequency is typically improved by a factor of 5 to 10, 50 to 100 or 1000 or

more depending upon the particular old, targeting sequencers and other parameters known by the skilled artisan. In some cases, it will be feasible to directly obtain cells in which homologous recombination at the target locus has occurred. For example, gene targeting may itself result in a readily selectable phenotype. Also, selectable markers in the targeting DNA can be employed which will be preferentially expressed upon integration into the target gene by homologous recombination. Another approach is to utilize the polymerase chain reaction to screen the cells for homologous recombinants. See, e.g., Zimmer, A., et al., Nature, Vol. 338, pp.150-153 (1989); and Joyner, A., et al., Nature, Vol. 338, pp. 153-156 (1989).

However, using the present invention, a relatively
large fraction of the stable integrants will be correctly
targeted to the gene of interest rather than incorporated at
random sites throughout the genome. Accordingly, it will be
feasible to obtain homologous recombinants without the
necessity of employing any special selection protocols or
carrying out PCR-based screening.

10

25

30

The standard approach for confirming that a cell has undergone a homologous recombination event is to isolate genomic DNA and perform a Southern hybridization analysis to demonstrate that genomic DNA fragments hybridizing with a labelled probe of the target DNA have been rearranged because of the modification of the target DNA. Southern hybridization is described in Sambrook and Maniatis. Given the high frequency of homologous recombination obtainable with the present invention, the targeted cells can be checked directly for homologous recombination.

H. Targeting Both Alleles of a Target Sequence

Where the cells contain more than one copy of a gene,
the cell lines obtained from the first round of targeting are
likely to be heterozygous for the targeted allele.
Homozygosity, in which both alleles are modified, can be
achieved in a number of ways. One approach, exemplified below,

29

is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting using a different selectable marker. Alternatively, homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics.

In some situations, it may be desirable to have two different modified alleles. This can be achieved by successive rounds of gene targeting or by breeding heterozygotes, each of which carries one of the desired modified alleles.

I. Production of Genetically Altered Animals

10

20

25

30

Embryonic stem cells which have been modified can be injected into the blastocoel of a blastocyst and grown in the uterus of a pseudopregnant female. In order to readily detect chimeric progeny, the blastocysts can be obtained from a different parental line than the embryonic stem cells. For example, the blastocysts and embryonic stem cells may be derived from parental lines with different hair color or other readily observable phenotype. The resulting chimeric animals can be bred in order to obtain non-chimeric animals which have received the modified genes through germ-line transmission. Techniques for the introduction of embryonic stem cells into blastocysts and the resulting generation of chimeric animals are well known (see e.g., Bradley, A. Production and analysis of chimaeric mice, pp. 113-151 in Robertson, E. (ed.), Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Oxford IRL Press (1987); and Hogan, B., et al, Manipulating the Mouse Embryo, Cold Spring Harbor, New York (1986)).

Targeting DNA can also be introduced directly into a zygote nucleus using, for example, microinjection. Selectable markers and/or other aspects of the present invention can be employed and the zygotes can be grown into animals using techniques well known in the art. In the case of mammals, the targeted organism can be introduced into the uterus of a

30

pseudo-pregnant female capable of carrying the developing animal to term.

J. Somatic Gene Therapy

5

10

20

25

30

Similarly, the methods described above can be employed for somatic gene therapy to, e.g., alter the expression of a gene, or correct a defective gene, or introduce a new gene in somatic cells of a human or other animal. The somatic cells are first modified, using the methods described above, and then introduced into the same or a different individual (see Friedman, Science 244:1275-1281).

EXAMPLE 1

15 Gene Targeting Using Isogenic Targeting Constructs.

A. Targeting constructs:

The target DNA selected was the retinoblastoma susceptibility gene (Rb) in mouse embryonic stem cells of line E14. The targeting DNA consisted of a 10.5 kb <u>HpaI</u> fragment of Rb sequence from around the 19th and 20th exons of the gene (see Fig. 1b).

Two different sources of <u>Rb</u> sequence were used for the targeting DNA. The 10.5 kb targeting DNA sequence was either isolated from a mouse strain 129-derived DNA library ("129<u>Rb</u>"), or a BALB/c-derived DNA library ("B/c<u>Rb</u>"). Since the recipient embryonic stem cells were also derived from mouse strain 129 (Hooper, M., et al., <u>Nature</u> 326:292-295 (1987)), the 129<u>Rb</u> targeting DNA will be substantially isogenic with the target DNA. As discussed below, the B/c<u>Rb</u> targeting DNA sequence is very similar to the 129<u>Rb</u> sequence but differs by about 0.5-1.0% (i.e. one sequence difference per 100-200 nucleotides).

The chosen sequence modification was disruption of the Rb gene coding sequence by insertion of the neomycin phosphotransferase (neo) gene into the 19th exon of the gene. The neo marker was derived from plasmid pMClneo poly(A) (Thomas, K., and M. Capecchi, Cell 51:503-512 (1987)). A

31

mutation present in the <u>neo</u> coding sequence and reducing its ability to confer G418 resistance was corrected (see Yenofsky, R., et al. <u>Proc. Nat'l Acad. Sci. USA</u> 87:3435-3439 (1990). The <u>neo</u> marker was flanked by 2.5 and 8.0 kb of <u>Rb</u> sequence. The resulting constructs, 129<u>Rb-neo</u> and B/c<u>Rb-neo</u> are shown in Fig.1b. The targeting DNA sequences were separated from flanking vector DNA by cleavage with a restriction enzyme followed by gel electrophoresis and purification by electroelution.

10

15

20

25

30

35

B. Gene targeting

Embryonic stem cell line E14, derived from mouse strain 129, was grown on BRL conditioned medium (Hooper, M., et al., Nature 326:292-295 (1987)). Cells (3x10⁷) were mixed with 90 micrograms of targeting DNA (either 129Rb-neo or B/cRb-neo) in a volume of 600 microliters of PBS buffer and electroporated using a Biorad Gene pulser (0.8 kV, 3 micro F, electrode distance 0.4 cm). Cells were reseeded on 10-cm tissue culture dishes at a density of about 10⁷ cells per plate. G418 (200 micrograms/ml) selection was started after one day; after eight days, colonies were randomly picked and grown up for analysis.

C. Analysis

Double crossing-over at the <u>Rb</u>-locus will integrate the <u>neo</u> marker into the 19th exon of the <u>Rb</u> gene, thereby disrupting the coding sequence (Fig. 1a). G418-resistant colonies obtained from both electroporation experiments were analyzed by Southern hybridization. DNA from individual G418-resistant colonies was analyzed in the following way: 1-2x10⁶ cells were embedded in 50 microliters of 05% of low melting point agarose in PBS buffer and incubated in 1 ml of EDTA (0.5M), Sarcosyl (1%) and Proteinase K (1 mg) for 48 h at 50°C. Agarose blocks were washed three times in Tris (10mM), EDTA (10mM), pH 8 plus PMSF (0.1 mM) and once in the appropriate restriction enzyme buffer. DNA digestion took place in 100 microliters of restriction enzyme buffer containing 50 units of restriction enzyme EcoRI for 6 hours at 37°C. Agarose blocks were melted at 65°C and loaded onto 0.7% agarose gels for

32

Southern analysis following standard procedures (see Maniatis or Sambrook). Using fragment A (Fig. 1b) as the hybridization probe, the non-modified <u>Rb</u> locus appears as a band of 9.7 kb (<u>Rb</u>); whereas integration of <u>neo</u> by homologous recombination gives a 4.9 kb band (<u>neo</u>).

D. Results

5

10

15

Although the targeting constructs 129<u>Rb-neo</u> and B/c<u>Rb-neo</u> were identical, except for the origin of the <u>Rb</u> sequence, the results obtained with the two constructs were different. Using B/c<u>Rb-neo</u>, 1 homologous recombinant was detected amidst 144 random integration events. In contrast, of 94 analyzed G418-resistant colonies obtained with 129<u>Rb-neo</u>, 33 underwent homologous recombination at one of the <u>Rb</u> alleles. Thus, gene targeting was about 45-fold more efficient with 129<u>Rb-neo</u> than with B/c<u>Rb-neo</u>. The isogenic targeting construct allowed the easy recovery of homologous recombinants (1 out of 3 resistant colonies) without the use of any enrichment protocol.

20

25

30

35

E. Analysis of the sequence divergence between the 129 and BALB/c targeting DNAs

A comparison of the 129-derived and the BALB/c-derived DNAs, ("129Rb" and "B/cRb," respectively) was made to confirm that even small amounts of sequence divergence can substantially affect the frequency of homologous recombination. The 10.5 kb Rb fragments present in targeting constructs 129Rb-neo and B/cRb-neo were separated into nine smaller fragments (as shown in Fig. 2). Two of these fragments fell into regions that were entirely sequenced. The remaining seven fragments were separated in a low melting point agarose gel, recovered from the gel, and digested with Hinfl, Taql, or both, using standard techniques (see e.g., Sambrook, supra). The digested fragments were radioactively labelled and analyzed in a sequencing gel (see, id.).

The restriction digestion patterns of the two fragments were identical for 8 out of the 13 enzymes tested, showing that no gross alterations had occurred. Five

33

restriction site polymorphisms were seen, suggesting that 5 base pair substitutions were present within the 275 basepairs (bp) analyzed in this way. Second, 1102 nucleotides around the site where the neo marker was inserted and 585 nucleotides 5 kb away from this site were sequenced. Within these two regions (containing 1687 nucleotides) nine basepair substitutions, three small deletions (1, 4 and 6 nucleotides) and a polymorphic CA-repeat (a 14 bp deletion) were detected in the BALB/c sequence with respect to the 129 sequence. The longest 10 stretch of perfect homology within the sequenced region was 278 nt. Finally, to detect deletions/insertions in the remainder of the targeting constructs, the 10.5 kb Rb fragments were digested into 9 smaller fragments (see Fig. 2). fragments fell in the region already sequenced, the remaining 15 seven were further digested with restriction enzymes, radioactively labelled and analyzed on a sequencing gel. this analysis, 3 deletions (2, 2 and 5 nucleotides) and three small insertions (1, 2 and 10 nucleotides) were detected in the BALB/c fragment with respect to the 129 fragment. A summary of 20 the sequence and restriction fragment length analyses is given in Fig. 2. Based on these results, we estimate that on the average one sequence difference (a base pair substitution or a deletion/insertion) was present per 160 nucleotides, for an overall sequence divergence in the range of about 0.5-1.0%. 25 Thus, even though the two targeting constructs shared an average sequence identity of about 99%, they nevertheless exhibited a significant difference in their efficiency as gene targeting substrates.

30

EXAMPLE 2

Successive targeting using two different selectable markers, targeting a selectable marker

35 A. First round of gene targeting

The targeting construct contained a selectable marker, an https://marker.org/hpt/ marker.org/hpt/ marker.org/hpt/https://marker.org/hpt/htt

PCT/US92/07184 WO 93/04169

34

line 129 (see Fig. 1c). The cells to be targeted were the mouse embryonic stem cell line E14Tg2a, an HPRT-minus derivative of cell line E14 (which was derived from cell line 129; see Hooper, M., et al., Nature 326:292-295 (1987)). Cells 5 were electroporated with targeting DNA as described in Example 2.

Integration of the hprt_minigene">hprt_minigene into the ES cell genome results in the acquisition of the ability to grow on HAT medium. Of 35 tested colonies that were selected on HAT medium, 8 contained the hprt-minigene correctly integrated into the 19th exon of one of the Rb alleles via homologous recombination. None of the homologous recombinants contained additional hprt copies integrated elsewhere in the genome. of these clones, designated HAT-20, was used as the recipient 15 for a second targeting experiment.

B. Second round of gene targeting

10

30

Clone HAT-20 was subjected to gene targeting using the constructs 129Rb-neo and B/cRb-neo (described above in 20 Example I). HAT-20 cells were electroporated with 90 micrograms of targeting constructs B/cRb-neo and 129Rb-neo and the linearized vector pMClneo poly(A). G418R colonies were scored after 8 days; 6-Thioguanine (10 μ g/ml) was added and surviving colonies were counted 8 days later. From each 25 electroporation experiment individual colonies were picked and grown up for DNA analysis. Double crossing-over at the previously targeted Rb allele will substitute hprt for neo, giving colonies resistant to both G418 (neo+) and 6-Thioguanine (Hprt-). The ratio of homologous recombinants (resistant to both 6-TG and G418) to the total number of integrations (G418^R) was much higher with 129Rb-neo than with B/cRb-neo (see Table Some 6-TG-resistant colonies were also seen after electroporation of HAT-20 with the plasmid pMC1neo poly(A), albeit at a much lower rate than with either targeting construct (Table 1). 35

DNA of individual clones (6-TG R and G418 R) was digested with PstI and analyzed by Southern hybridization. Using fragment A (Fig. 1b) as a probe, bands of the expected 35

size appeared, corresponding to the wild type <u>Rb</u> allele (4.9 kb), the <u>Rb</u> allele containing <u>hprt</u> (7.7 kb) and the <u>Rb</u> allele containing <u>neo</u> (3.9 kb). Colonies resistant to both 6-TG and G418, obtained upon electroporation of HAT-20 with B/c<u>Rb-neo</u> (a), 129<u>Rb-neo</u> (b) and pMClneo poly(A) (c) were analyzed as described in Example I.

DNA analysis of 18 colonies obtained with 129Rb-neo confirmed that all 18 resulted from homologous recombination with the target allele. In contrast, analysis of the colonies obtained using the B/cRb-neo construct demonstrated that 14 out of 29 colonies resistant to 6-TG resulted from the spontaneous loss of the hprt containing allele rather than from homologous recombination. Analysis of colonies obtained using pMC1neopoly(A) revealed that they had all lost the hprt containing Rb allele, possible by loss of the entire chromosome. Corrected cell line, the frequency of homologous recombination was 1/200 for the B/cRb construct, but reached 1/10 using the isogenic targeting construct (129Rb). In summary, using isogenic DNA resulted in a 20-fold increase in the efficiency of gene targeting by homologous recombination.

10

15

36

	Table 1 Efficiency of homologous recombination					
5	DNA	Number of cells (HAT-20)	G418 ^R (total)	G418 ^R & 6-TG ^R (HR)	Efficiency * (HR/total)	
10	B/c <u>Rb</u> -neo	5x10 ⁷	11500	105	1/200	
	129 <u>Rb-neo</u>	5x10 ⁷	13500	1260	1/10	
15	pMCl <u>neo</u> p(A)	2.5x10 ⁷	5470	11	-	

^{*} Corrected number of homologous recombinants (HR) divided by total number of G418^R colonies obtained. DNA analysis revealed that, in the case of B/cRb-neo, about half of the 6-TG^R colonies resulted from spontaneous loss of the hprt allele rather than homologous recombination. The same was true for all of the colonies resulting from pMClneo poly(A). For the isogenic construct (129Rb-neo), all of the colonies examined resulted from homologous recombination.

20

EXAMPLE 3

Targeting both alleles of a gene; and a comparison of positive/negative selection and isogenic targeting.

In the first step, the retinoblastoma (<u>Rb</u>) allele of mouse embryonic stem cell line E14 was disrupted by homologous recombination with a BALB/c-derived targeting construct employing a standard positive/negative selection strategy as described by Capecchi and co-workers (see Mansour, S., et al, <u>Nature 336:348-352 (1988)</u>, and using approximately 18 kb of <u>Rb</u> targeting sequence, three correct integrations of a <u>neo</u> marker into the 19th exon of the <u>Rb</u> gene were isolated from a background of 3600 random integration events.

One of these single Rb knock-out cell lines was used 15 as the recipient in a second electroporation experiment with an isogenic targeting construct, consisting of a hygromycin resistance gene (hyg) embedded in 17 kb of a 129-derived Rb sequence (see 129<u>Rb-hyq</u>, Fig. 1d). Electroporation conditions and DNA analysis were similar as described in the legend to 20 Fig. 1. In a typical experiment, 8x107 cells were electroporated with 90 micrograms of 129Rb-hyg DNA (Fig. 1d). Hygromycin B (150 micrograms/ml) selection was started after one day. Approximately 15,000 hygromycin B resistant colonies were obtained and, after 12 days of growth, a number of individual colonies were picked and grown up for DNA analysis. 25 DNA derived from 61 different Hygromycin B-resistant colonies was digested with EcoRI and analyzed by Southern hybridization. Using fragment B (Fig. 1d) as a probe, different sized bands, corresponding to the non-modified Rb allele (9.7 kb), the Rb allele with neo integrated (11.5 kb) and the Rb allele with hyq 30 integrated (4.9 kb), could be observed. The Southern analysis revealed that approximately 75% of the Hygromycin B-resistant colonies tested (48 out of 61) resulted from homologous recombination. Thus, not only were homologous recombinants readily obtainable, they were the predominant type of cell arising from integration of the targeting DNA. all 48 of these lines had undergone homologous recombination at the Rb locus. In 40 of the lines, the hyg gene was correctly

38

integrated into the remaining wild-type copy of the <u>Rb</u> gene thus giving cell lines in which both <u>Rb</u> alleles had been disrupted. In the other 8 lines, the <u>hyg</u> targeting DNA had incorporated by homologous recombination but the target had been the already modified allele in which the <u>hyg</u> targeting sequence replaced <u>neo</u>. By selecting the recombinants on both G418 and hygromycin, it is possible to select against cells in which the second targeting DNA has merely replaced the first.

The results also exemplify the effect of using isogenic targeting. With a fairly homologous targeting DNA, and employing a positive/negative selection strategy, less than 0.1% of the cells (approximately 1/1200) were homologous recombinants. In contrast, using isogenic targeting DNA, about 75% of the cells were correctly targeted without having to employ special selection techniques.

10

15

20

The invention described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed, since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

WHAT IS CLAIMED IS:

1. A method for modifying a preselected DNA sequence in a cell of a non-inbred animal by homologous recombination between a native target DNA sequence in the preselected DNA sequence and a targeting DNA sequence introduced into the cell, said method comprising:

isolating cells in which preselected sequence modifications have been incorporated into the genome by homologous recombination between the target DNA and the targeting DNA, wherein the targeting DNA comprises a polynucleotide sequence that is substantially isogenic to the target sequence except for the preselected sequence modifications.

15

30

10

- 2. A method according to claim 1, wherein the animal cell is a mammalian cell.
- 3. A method according to claim 1, wherein the sequence modifications in the targeting DNA comprise an insertion of a selectable marker.
- 4. A method according to claim 3, wherein the selectable marker is a gene conferring resistance to an inhibitory compound.
 - 5. A method according to claim 4, wherein the gene conferring resistance to an inhibitory compound substantially lacks its own transcriptional and/or translational start signals.
 - 6. A method according to claim 4, wherein the gene conferring resistance to an inhibitory compound is preferentially expressed when integrated into the genome by homologous recombination between the targeting DNA sequence and the target DNA sequence.

40

- 7. A method according to claim 3, wherein the selectable marker is a gene conferring the ability to grow on a selected substrate.
- 8. A method according to claim 1, wherein the targeting DNA sequence is at least about 99% identical with the target DNA sequence except for the desired sequence modifications.
- 9. A method for modifying a non-murine animal cell genome by homologous recombination between a target DNA sequence in the animal cell genome and a targeting DNA sequence introduced into the animal cell, said method comprising:

introducing into cells to be targeted a DNA delivery molecule comprising the targeting DNA; and

15

20

25

30

isolating cells in which preselected sequence modifications have been incorporated into the genome by homologous recombination between the target DNA and the targeting DNA, wherein the target DNA and the targeting DNA are substantially isogenic except for the preselected sequence modifications.

- 10. A method according to claim 9, wherein the targeting DNA is introduced into the cell by microinjection or electroporation.
 - 11. A method according to claim 9, wherein the targeting DNA sequence is at least about 99.5-99.9% identical with the target DNA sequence except for the desired sequence modifications.
 - 12. A method according to claim 9, wherein the native target DNA is an immunoglobulin gene.
- 13. A method according to claim 9, wherein the targeting DNA comprises an isogenic sequence of about 75 to 150 base pairs that is identical with a corresponding sequence in the target DNA.

41

14. A method according to claim 9, wherein the sequence modifications in the targeting DNA comprise one or more modifications selected from the group consisting of insertions, deletions and substitutions.

5

10

15

15. A method for modifying a cell genome of an animal by homologous recombination between a target DNA sequence in the animal cell genome and a targeting DNA sequence introduced into the animal cell, said method comprising:

introducing a DNA delivery molecule comprising the targeting DNA into cells to be targeted, wherein the targeting DNA was prepared from cells of the same individual animal or a sibling thereof; and

isolating cells in which preselected sequence modifications have been incorporated into the genome by homologous recombination between the target DNA and the targeting DNA, wherein the target DNA and the targeting DNA are substantially isogenic except for the preselected sequence modifications.

20

16. A method for enhancing homologous recombination between a native target DNA sequence in a non-murine mammalian cell line and a targeting DNA sequence introduced into the cell line, said method comprising the steps of:

isolating targeting DNA derived from a second cell line wherein said targeting DNA is substantially isogenic with the target DNA; and

introducing desired sequence modifications into the targeting DNA; and

introducing a DNA delivery molecule comprising the targeting DNA into cells to be targeted; and

isolating cells in which one or more of the sequence modifications are incorporated into the genome by homologous recombination between the target DNA and the targeting DNA.

35

30

17. A method according to claim 16, wherein the second cell line is identical with the mammalian cell line.

42

18. A method for producing a genetically modified mammal comprising:

modifying the genome of embryonic stem cells of the desired mammal in accordance with claim 1, 9 or 15; and incorporating the modified embryonic stem cells into a blastocyst derived from said mammal; and growing the blastocyst into a chimeric animal.

19. A method for producing a genetically modified

10 mammal comprising:

modifying the genome of embryonic stem cells of the desired mammal in accordance with claim 1, 9 or 15; and

incorporating the modified embryonic stem cells into a blastocyst derived from said mammal; and

growing the blastocyst into a chimeric animal.

breeding the chimeric animal to obtain a non-chimeric offspring in which the genetic alteration has been acquired through germ-line transmission.

20. A method for producing a genetically modified animal comprising:

modifying the genome of a zygote of the desired animal in accordance with claim 1, 9 or 15; and growing the zygote into an animal.

25

30

15

5

21. A method for gene therapy of an animal comprising:

introducing into cells of a first animal to be targeted a DNA delivery molecule comprising a targeting DNA sequence from a second animal, which sequence is capable of effecting homologous recombination with a substantially isogenic target DNA sequence, other than preselected sequence modifications, in the first animal cell genome;

isolating cells in which the preselected sequence
35 modifications have been incorporated into the genome; and
introducing the modified cells into the first animal.

43

- 22. A method according to claim 21, wherein the first animal and the second animal are members of the same species.
- 23. A method according to claim 21, wherein the first animal is a sibling of the second animal.
 - 24. A method according to claim 21, wherein the cells are somatic cells.
- 25. A method according to claim 21, wherein the cells are hematopoietic cells.
 - 26. A method according to claim 21, wherein modifying the genome comprises correcting a defective gene.
 - 27. A method according to claim 21, wherein modifying the genome comprises inactivating a gene.

- between about 10 to 90% of which, following primary selection, exhibit a correctly targeted recombination event at a preselected native target DNA segment of the cells, which correctly targeted recombination event is selected from the group consisting of: an addition of an exogenous DNA segment to the native DNA segment, a substitution of an exogenous DNA segment for the native DNA segment, and a deletion of the native DNA segment from the cell; wherein genomes of the cells exhibiting the event consist essentially of substantially isogenic DNA proximate to the recombination event except for the exogenous DNA.
 - 29. A composition of claim 28, wherein about 30% of the cells exhibit the correctly targeted recombination event.
- 35 30. A component of claim 28, wherein the cells are isolated from an in-bred mouse.

- 31. A composition of claim 28, wherein the exogenous DNA segment is from a cell of a different species than cells in the collection.
- 5 32. A non-human animal comprising cells with a homologous recombination event at a preselected native target DNA segment in the cell genome, wherein genomes of the cells consist essentially of substantially isogenic DNA proximate to the target DNA segment except for preselected sequence modifications which are incapable of undergoing homologous recombination in the cells unless linked to a second DNA segment homologous to the native target DNA segment.
- 33. A non-human animal of claim 32, wherein the recombination event is a deletion, insertion or substitution.
 - 34. A non-human animal of claim 32, wherein the cells are murine.
- 20 35. A non-human animal of claim 34, wherein the mouse cells comprise a DNA segment from a different manual.
 - 36. A non-human animal of claim 35, wherein the DNA segment encodes a human immunoglobulin gene.

1(d)

1(b)

1(a)

BEST AVAILABLE COPY

SEQUENCE DIVERGENCE BETWEEN 129 AND BALB/c DNA AT THE Rb LOCUS

Pig. 2

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/07184

		<u> </u>					
A. CLASSIFICATION OF SUBJECT MATTER IPC(5) :C12N 15/00, 5/00; A61K 37/00, 31/70 US CL :435/172.3, 240.1; 424/93A; 514/44; 800/2							
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED							
Minimum documentation searched (classification system followed by classification symbols)							
U.S. : 435/172.3, 240.1; 424/93A; 514/44; 800/2							
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched none							
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Chemical Abstracts; APS							
C. DOCUMENTS CONSIDERED TO BE RELEVANT							
Category* Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.					
Y Nature, Volume 336, issued 24 November 1988, Proto-Oncogene int-2 in Mouse Embryo-Derive Targeting Mutations to Non-Selectable Genes*, pa	d Stem Cells: A General Strategy for	1-36					
Y Nature, Volume 348, issued 13 December 1990, I bothe alleles of the <u>pim-1</u> Proto-Oncogene by Ho Stem Cells", pages 649-651, see entire document.	mologous Recombination in Embryonic	1-36					
Further documents are listed in the continuation of Part							
Further documents are listed in the continuation of Box C							
 Special extegories of cited documents: A* document defining the general state of the art which is not considered to be part of particular relevance 	"T" later document published after the inter date and not in conflict with the applica principle or theory underlying the inve	tion but cited to understand the					
E carlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be consider	claimed invention cannot be					
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	when the document is taken alone 'Y' document of particular relevance; the						
"O" document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	step when the document is documents, such combination					
"P" document published prior to the international filing date but later than the priority date claimed	'&' document member of the same patent f						
Date of the actual completion of the international search	Date of mailing of the international sear	rch report					
05 November 1992	= -: NOV 1992						
Name and mailing address of the ISA/ Commissioner of Patents and Trademarks	Authorized officer						
Box PCT Washington, D.C. 20231	DEBORAH CROUCH, PH.D. J. J. J.						
Facsimile No. NOT APPLICABLE	Telephone No. (703) 308-0196	75-					

Form PCT/ISA/210 (second sheet)(July 1992)*