

2. Interpolação Polinomial

2.1 Interpolação Polinomial: background

2.1.1 O problema

Designemos por \mathcal{P}_{n-1} o conjunto de todos os polinómios de coeficientes reais de grau não superior a n-1 e sejam x_1, \ldots, x_n , n pontos distintos (em \mathbb{R}) e y_1, \ldots, y_n números reais dados. O problema de interpolação polinomial pode ser enunciado da seguinte forma:

Determinar o polinómio $P_{n-1} \in \mathcal{P}_{n-1}$ que satisfaça as chamadas condições de interpolação:

$$P_{n-1}(x_i) = y_i; \quad i = 1, \dots, n.$$
 (2.1)

Frequentemente, y_1, \ldots, y_n são valores de uma certa função f nos pontos x_1, \ldots, x_n , i.e.,

$$y_i = f(x_i); i = 1, ..., n$$

e P_{n-1} pode ser usado para estimar f em qualquer ponto $x \in (\min x_i, \max x_i)$. Nesse caso, dizemos que P_{n-1} interpola f nos pontos x_i .

Teorema 2.1 (Existência e unicidade) Sejam x_1, \ldots, x_n , n pontos distintos (em $\mathbb R$) e sejam y_1, \ldots, y_n números reais dados. Então existe um único polinómio $P_{n-1} \in \mathcal P_{n-1}$, tal que

$$P_{n-1}(x_i) = y_i; \quad i = 1, 2, \dots, n.$$

Teorema 2.2 (Forma cardinal do polinómio interpolador) O polinómio P_{n-1} que satisfaz as condições de interpolação (2.1) é dado por

$$P_{n-1}(x) = \sum_{i=1}^{n} L_i(x)y_i,$$
(2.2)

onde L_i são os polinómios

$$L_i(x) = \prod_{\substack{j=1\\i \neq i}}^n \left(\frac{x - x_j}{x_i - x_j}\right); i = 1, \dots, n.$$
 (2.3)

A forma (2.2) é chamada forma de Lagrange ou forma cardinal do polinómio interpolador e L_i em (2.2) são chamados os polinómios de Lagrange para os pontos x_1, \ldots, x_n .

Nota 2.1 Note-se que

$$L_i(x_j) = \delta_{i,j}; \ i, j = 1, \dots, n,$$
 (2.4)

onde $\delta_{i,j}$ é a função delta de Kronecker.

Teorema 2.3 (Erro em interpolação polinomial) Seja $P_{n-1} \in \mathcal{P}_{n-1}$ o polinómio interpolador da função f nos n pontos distintos x_1, x_2, \ldots, x_n . Se $f \in C^n[a,b]$, onde [a,b] é um intervalo que contém x_i , então para todo $x \in [a,b]$, existe $\xi_x = \xi_x(x) \in (a,b)$ tal que

$$E_{n-1}(x) := y(x) - P_{n-1}(x) = \frac{f^{(n)}(\xi_x)}{n!} \prod_{i=1}^n (x - x_i).$$
 (2.5)

Nota 2.2

- 1. Se f é um polinómio de grau $\leq n-1$, então em (2.5) $E_{n-1}(x)=0$;
- 2. Se $\max_{x \in [a,b]} |f^{(n)}(x)| \leq M_n$, então (2.5) fornece um limite superior para o erro:

$$|E_{n-1(x)}| = |y(x) - P_{n-1}(x)| \le \frac{M_n}{n!} \prod_{i=1}^n |x - x_i|$$

2.1.2 Forma de Newton do polinómio interpolador :: Diferenças Divididas

A diferença dividida de ordem n-1 de y_1, \ldots, y_n , nos pontos x_1, \ldots, x_n , usualmente denotada por $[y_1, \ldots, y_n]$, é definida por

$$[y_1, \dots, y_n] := \sum_{k=1}^n \frac{y_k}{\prod_{\substack{j=1\\j \neq k}}^n (x_k - x_j)}$$
 (2.6)

Teorema 2.4 (Forma de Newton do polinómio interpolador) O polinómio P_{n-1} interpolador dos valores y_1, y_2, \ldots, y_n , nos n pontos distintos x_1, x_2, \ldots, x_n , pode escrever-se como

$$P_{n-1}(x) = \sum_{k=1}^{n} [y_1, \dots, y_k](x - x_1) \dots (x - x_{k-1})$$

Teorema 2.5 (Fórmula recursiva para o cálculo das diferenças divididas) A diferença dividida (2.6) podem ser calculada recursivamente como

$$[y_1, \dots, y_n] = \frac{[y_2, \dots, y_n] - [y_1, \dots, y_{n-1}]}{x_n - x_1}; \text{ para } n = 2, 3, \dots$$
 (2.7)

 $com [y_i] := y_i.$

Tabela de diferenças divididas

 x_5 $d_{51} = y_5$

Exemplo 2.1

2.1.3 Algoritmos

→ Diferenças divididas

```
Input: x = [x_1, x_2, \dots, x_n] e y = [y_1, y_2, \dots, y_n]
```

Output: matriz d de ordem n com as diferenças divididas

```
\begin{split} n = & length(x); \\ d = & zeros(n); \\ d(:,1) = & y; \\ for & k = 2:n \\ & for & i = 1:n-k+1 \\ & d(i,k) = (d(i+1,k-1)-d(i,k-1))/(x(k+i-1)-x(i)); \\ & end \\ end \end{split}
```

→ Polinómio interpolador

```
Input: x = [x_1, x_2, \dots, x_n], y = [y_1, y_2, \dots, y_n] \in \mathbb{Z}
```

Output: P(z), onde P é o polinómio interpolador de y_i em x_i

```
\label{eq:dd} \begin{split} dd &= d(1,:); \qquad \% \ d \ \acute{e} \ matriz \ contendo \ as \ diferenças \ divididas \\ n &= length(dd); \\ pvalue &= ones(size(z)); \\ pvalue(:) &= dd(n); \\ for \ i &= n-1:-1:1 \\ pvalue &= dd(i) + pvalue.*(z-x(i)); \qquad \% \ forma \ encaixada \ do \ polinómio \ end \end{split}
```

2.1.4 Exercícios

Exercício 2.1 Sejam $L_k(x)$; $k=1,\ldots,n$, os polinómios de Lagrange para os pontos distintos x_1,x_2,\ldots,x_k e seja Π_n o polinómio de grau n,

$$\Pi_n = \prod_{i=1}^n (x - x_i).$$

Recordando que a interpolação de grau n é exata para polinómios de grau $\leq n$, mostre que:

a)
$$L_i(x) = \frac{\Pi_n(x)}{(x-x_i)\Pi'_n(x_i)}; \ i = 1, \dots, n.$$

b)
$$\sum_{k=1}^{n} L_k(x) \equiv 1.$$

c)
$$\sum_{k=1}^{n} L_k(0) x_k^j = 0; j = 1, \dots, n; n \ge 2.$$

d)
$$\sum_{k=1}^{n} L_k(0) x_k^n = (-1)^{n-1} x_1 \dots x_n$$

As relações b) e c) são conhecidas como as relações de Cauchy para os polinómios $L_i(x)$.

Exercício 2.2 Verifique que a fórmula de Lagrange (2.2)-(2.3) pode ser escrita na forma

$$p_n(x) = \frac{\sum_{i=0}^{n} \frac{f(x_i)}{(x - x_i) \prod_{n=1}^{(1)} (x_i)}}{\sum_{i=0}^{n} \frac{1}{(x - x_i) \prod_{n=1}^{(1)} (x_i)}}.$$

Exercício 2.3 (Diferenças divididas e derivadas) Seja $f \in C^{n-1}[a,b]$ e $x_1, \ldots x_n \in [a,b]$ (distintos). Prove que

$$f[x_1, \dots, x_n] = \frac{f^{(n-1)}(\xi)}{(n-1)!},$$
 (2.8)

para algum $\xi \in (a,b)$.

Exercício 2.4 (Valores do argumento igualmente espaçados) Seja $x_i = x_1 + (i-1)h$; i = 1, 2, ... e seja Δ o operador de operador de diferenças descendentes ou progressivas definido por

$$\Delta y_i = y_{i+1} - y_i, \quad \Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i; \ k = 2, 3, \dots$$

Prove que:

1.
$$[y_1, y_2, \dots, y_k] = \frac{\triangle^{k-1} y_1}{h^{k-1} (k-1)!}$$

2.
$$\triangle^k y_i = \sum_{j=0}^k (-1)^{k+j} \binom{k}{j} y_{i+j}$$

3.
$$P_{n-1}(x_1 + sh) = y_1 + s \left\{ \triangle y_1 + \frac{(s-1)}{2} \left\{ \triangle^2 y_1 + \frac{(s-2)}{3} \left\{ \triangle^3 y_1 + \dots + \left\{ \triangle^{n-2} y_1 + \frac{(s-n+2)}{n-1} \triangle^{n-1} y_1 \right\} \dots \right\} \right\} \right\}$$

Exercício 2.5 (Fenómeno de Runge) Considere a função de Runge

$$f(x) = \frac{1}{1 + 25x^2}, \ x \in [-1, 1]$$

e os n nós igualmente espaçados

$$x_k = -1 + \frac{2(k-1)}{n}$$
; $k = 1, \dots, n+1$.

Represente graficamente o polinómio P_n interpolador de f nos pontos x_1, \ldots, x_{n+1} , para n=2,4,10,20. Observe e comente o comportamento do erro de interpolação.

Exercício 2.6 (Nós de Chebyshev) Para $n \in \mathbb{N}$, considere os chamados nós de Chebyshev¹

$$t_k^{(n)} := \cos\left(\frac{(2k-1)\pi}{2n}\right); \quad k = 1, \dots, n.$$

Represente graficamente o polinómio P_{n-1} que interpola a função de Runge f nos pontos $t_1^{(n)},\ldots,t_n^{(n)}$, para n=3,5,11,21. Compare com o resultado do Exercício 2.3.

2.2 Interpolação de Hermite

2.2.1 O problema

O objetivo da interpolação de Hermite é construir um polinómio que interpole não apenas a função f, mas também as derivadas de f, até uma certa ordem, num conjunto de pontos nodais especificados. Consideremos n pontos (x_i, y_i) ; $i = 1, \ldots, n$, (com x_i distintos). O problema da interpolação de Hermite pode ser enunciado da seguinte forma:

Determinar um polinómio H_N de grau $\leq N$ que satisfaça as condições de interpolação:

$$H_N^{(j-1)}(x_i) = f^{(j-1)}(x_i), \quad i = 1, \dots, n; \ j = 1, \dots, m_i$$

Nota 2.3 O grau de H_N é $N=\sum_{i=1}^n m_i-1$. A interpolação polinomial de Lagrange corresponde ao caso $m_1=m_2=\cdots=m_n=1$.

No que se segue, consideramos em detalhe o caso em que $m_i=2;\ i=1,\ldots,n$.

2.2.2 Interpolação de Hermite simples

O objetivo é determinar um polinómio H_{2n-1} que interpole uma função f e sua primeira derivada f' nos f pontos distintos f0 ou seja, construir f1 que

$$H_{2n-1}(x_i) = f_i$$

 $H'_{2n-1}(x_i) = f'_i$ $i = 1, ..., n,$ (2.9)

onde $f_i := f(x_i)$ e $f'_i := f'(x_i)$.

Teorema 2.6 (Existência e unicidades) Existe um único polinómio interpolador de Hermite H_{2n-1} que satisfaz as condições (2.9).

Demonstração. Provemos primeiro a existência do polinómio de Hermite. Consideremos os polinómios $h_1(x), \ldots, h_n(x)$ e $\tilde{h}_1(x), \ldots, \tilde{h}_n(x)$ de grau $\leq 2n-1$ que satisfazem as seguintes 2n condições:

$$h_i(x_j) = \delta_{i,j}$$

 $h'_i(x_j) = 0$ $i, j = 1, ..., n$ (2.10)

¹Estas são as raízes do polinómio de Chebyshev (de primeira espécie) de grau n, ou seja, $T_n(\cos\theta) = \cos(n\theta)$.

²Assumimos que $f \in C^1([a,b])$

е

$$\tilde{h}_i(x_j) = 0
\tilde{h}'_i(x_j) = \delta_{i,j} \qquad i, j = 1, \dots, n$$
(2.11)

onde $\delta_{i,j}$ é a função delta de Kronecker.

É fácil de ver que o polinómio

$$H_{2n-1}(x) = \sum_{i=1}^{n} h_i(x) f_i + \sum_{i=1}^{n} \tilde{h}_i(x) f_i'$$
(2.12)

tem grau $\leq 2n-1$ e satisfaz as condições de interpolação (2.9). Isto significa que o problema de determinar H_{2n-1} se reduz ao problema de determinar os polinómios h_i e \tilde{h}_i .

Consideremos agora o polinómio

$$g_i(x) = a_i(x)L_i^2(x)$$
 (2.13)

onde a_i é um polinómio linear e L_i é o polinómio de Lagrange (2.2) para os pontos x_1,\ldots,x_n . Então g_i tem grau 2n-1 e é tal que

- $g_i(x_i) = 0, i \neq j$; (cf. (2.4))
- $g_i'(x_j) = a_i'(x_j)L_i^2(x_j) + 2a_i(x_j)L_i(x_j)L_i'(x_j) = 0, i \neq j.$

Logo g_i satisfaz as condições (2.10) desde que

$$g_i(x_i) = 1$$
 e $g'_i(x_i) = 0$,

i.e., desde que

$$a_i(x_i) = 1$$
 e $a'_i(x_i) = -2L'_i(x_i)$,

ou ainda

$$a_i(x) = 1 - 2L'_i(x_i)(x - x_i).$$

Concluimos então que os polinómios h_i dados por

$$h_i(x) = [1 - 2L'_i(x_i)(x - x_i)]L_i^2(x)$$

satisfazem as condições (2.10). Analogamente, g_i satisfaz as condições (2.11) se

$$g_i(x_i) = 0$$
 e $g'_i(x_i) = 1$,

i.e., se

$$a_i(x_i) = 0$$
 e $a'_i(x_i) = 1$,

ou

$$a(x) = x - x_i$$
.

Logo, os polinómios $\tilde{h_i}$ dados por

$$\tilde{h_i}(x) = (x - x_i)L_i^2(x)$$

satisfazem as condições (2.11).

Mostrámos que o polinómio

$$H_{2n-1}(x) = \sum_{i=1}^{n} [1 - 2L_i'(x_i)(x - x_i)]L_i^2 f_i + \sum_{i=1}^{n} (x - x_i)L_i^2(x)f_i'$$
 (2.14)

satisfaz as condições de interpolação requeridas (2.9), estabelecendo assim a existência da solução do problema de interpolação de Hermite. Agora provamos a unicidade.

Suponhamos que existem dois polinómios H_{2n-1} e Q_{2n-1} que satisfazem as condições de interpolação (2.9). Então, o polinómio

$$R_{2n-1}(x) = H_{2n-1}(x) - Q_{2n-1}(x)$$

tem grau $\leq 2n-1$ e

$$R_{2n-1}(x_i) = R'_{2n-1}(x_i) = 0; \quad i = 1, \dots, n.$$

Portanto, x_1, \ldots, x_n são n raízes duplas de R_{2n-1} , o que significa que R_{2n-1} tem 2n raízes! Logo, $R_{2n-1} = 0$ e $H_{2n-1}(x) = Q_{2n-1}(x)$.

A forma (2.14) é chamada de forma cardinal do polinómio de Hermite.

Teorema 2.7 (Erro em interpolação de Hermite) Seja H_{2n-1} o polinómio de Hermite de grau $\leq 2n-1$ que interpola a função f e sua primeira derivada f' nos n pontos distintos x_1, x_2, \ldots, x_n . Se $f \in C^{2n}([a,b])$, onde [a,b] é um intervalo que contém os x_i , então para todo $x \in [a,b]$, existe $\xi_x = \xi_x(x) \in (a,b)$ tal que

$$E_{2n-1}(x) := f(x) - H_{2n-1}(x) = \frac{f^{(2n)}(\xi_x)}{(2n!)} \prod_{i=1}^n (x - x_i)^2.$$
 (2.15)

Demonstração. O resultado é trivial se $x=x_i$. Consideremos então o caso em que $x \neq x_i$ seja

$$F(t) := f(t) - H_{2n-1}(t) - \frac{f(x) - H_{2n-1}(x)}{\pi_n^2(x)} \pi_n^2(t), \tag{2.16}$$

onde $\pi_n(x) := \prod_{n=1}^n (x-x_i)$. É fácil ver que $F(x_i) = F'(x_i) = F(x) = 0$, o que mostra que x_1, \ldots, x_n são raízes duplas de F e x é uma raiz simples. O uso do Teorema de Rolle generalizado implica que existe ξ_x tal que $F^{(2n)}(\xi_x) = 0$. Portanto, a partir de (2.16) obtemos

$$0 = F^{(2n)}(\xi_x) = f^{(2n)}(\xi_x) - \frac{E_{2n-1}(x)}{\pi_n^2(x)}(2n)!$$

e o resultado fica provado.

Exercício 2.7 (Polinómio cúbico de Hermite em dois pontos) Mostre que o polinómio cúbico de Hermite em dois pontos H_3 , que interpola f e f' nos dois pontos x_1 e x_2 , pode ser escrito como

$$H_3(x) = \frac{1}{h^3} (x - x_2)^2 \left[h + 2(x - x_1) \right] f_1 + \frac{1}{h^3} (x - x_1)^2 \left[h - 2(x - x_2) \right] f_2$$

+ $\frac{1}{h^2} (x - x_2)^2 (x - x_1) f_1' + \frac{1}{h^2} (x - x_1)^2 (x - x_2) f_2'$

Exercício 2.8 (Erro do polinómio cúbico de Hermite em dois pontos) Seja H_3 o polinómio cúbico de Hermite interpolador de f e f' nos dois pontos x_1 e x_2 . Mostre que se $f \in C^4([x_1, x_2])$, então para $x \in [x_1, x_2]$,

$$|f(x) - H_3(x)| \le \frac{h^4}{384} M_4,$$

onde $\max_{x \in [x_1, x_2]} |f^{(4)}(x)| \le M_4$ e $h = x_2 - x_1$.

2.2.3 Diferenças divididas em nós coincidentes

Definição 2.1 Sejam x_1, \ldots, x_n n pontos distintos e, para cada i, seja $m_i \in \mathbb{N}$. A diferença dividida

$$f[\underbrace{x_1, \dots, x_1}_{m_1}, \underbrace{x_2, \dots, x_2}_{m_2}, \dots, \underbrace{x_n, \dots, x_n}_{m_n}]$$
(2.17)

define-se como o limite (caso exista)

$$\lim_{\substack{\epsilon_{i}^{(j)} \to 0}} f[x_1, x_1 + \epsilon_1^{(1)}, \dots, x_1 + \epsilon_{m_1 - 1}^{(1)}, x_2, x_2 + \epsilon_1^{(2)}, \dots, x_2 + \epsilon_{m_2 - 1}^{(2)}, \dots, x_n, x_n + \epsilon_1^{(n)}, \dots, x_n + \epsilon_{m_n - 1}^{(n)}].$$

Exemplo 2.2

$$\Rightarrow f[x_1, x_1] = \lim_{\epsilon \to 0} f[x_1, x_1 + \epsilon] = \lim_{\epsilon \to 0} \frac{f(x_1 + \epsilon) - f(x_1)}{\epsilon} = f'(x_1)$$

Se $x_2 = x_1 + h$

$$f[x_1, x_1, x_2] = \lim_{\epsilon \to 0} f[x_1, x_1 + \epsilon, x_2] = \lim_{\epsilon \to 0} \frac{f[x_1 + \epsilon, x_2] - f[x_1, x_1 + \epsilon]}{x_2 - x_1}$$
$$= \frac{1}{h} \left(\frac{f(x_2) - f(x_1)}{h} - f'(x_1) \right)$$

Relembrando a relação (2.8) entre diferenças divididas e derivadas, facilmente se prova que

Teorema 2.8 Se f é de classe C^{n-1} numa vizinhança de x, então

$$f[\underbrace{x, x, \dots, x}] = \frac{1}{(n-1)!} f^{(n-1)}(x). \tag{2.18}$$

Demonstração. Exercício.

A fórmula (2.18) pode ser utilizada em conjunto com a fórmula recursiva (2.7) para calcular diferenças divididas em nós coincidentes, desde que os argumentos repetidos sejam agrupados.

Corolário 2.1 (Fórmula recursiva para diferenças divididas) As diferenças divididas podem ser calculadas recursivamente como

$$f[x_1, x_2, \dots, x_n] = \begin{cases} \frac{f[x_2, \dots, x_n] - f[x_1, \dots, x_{n-1}]}{x_n - x_1}, & \text{if } x_1 \neq x_n \\ \frac{f^{(n-1)}}{(n-1)!}, & \text{if } x_1 = x_n \end{cases}$$

Exercício 2.9 A tabela de diferenças divididas pode ser obtida repetindo m_i vezes cada nó x_i . Prove que a Tabela 2.1 contém as diferenças divididas em 2 (azul) e 3 (preto) nós coincidentes.

Tabela 2.1: Tabela de diferenças divididas com nós x_1, x_1, x_2, x_2 e x_3, x_3

2.2.4 A forma de Newton do polinómio interpolador cúbico de Hermite

Seja $P_3(x)$ o polinómio cúbico que interpola f nos pontos $x_1, x_1 + \epsilon, x_2, x_2 + \mu$, ou seja:

$$P_3(x) = f(x_1) + f[x_1, x_1 + \epsilon](x - x_1) + f[x_1, x_1 + \epsilon, x_2](x - x_1)(x - x_1 - \epsilon) + f[x_1, x_1 + \epsilon, x_2, x_2 + \mu](x - x_1)(x - x_1 - \epsilon)(x - x_2)$$

Assumamos que $f \in C^1([x_1, x_2])$ e seja H_3 o polinómio obtido a partir de P_3 fazendo $\epsilon, \mu \to 0$, ou seja:

$$H_3(x) = f(x_1) + f[x_1, x_1](x - x_1) + f[x_1, x_1, x_2](x - x_1)^2 + f[x_1, x_1, x_2, x_2](x - x_1)^2(x - x_2)$$
(2.19)

ou (cf. Tabela 2.1)

$$H_3(x) = f(x_1) + f'(x_1)(x - x_1) + \frac{1}{h} \left(\frac{f(x_2) - f(x_1)}{h} - f'(x_1) \right) (x - x_1)^2 + \frac{1}{h^2} \left(f'(x_2) - \frac{2}{h} (f(x_2) - f(x_1)) + f'(x_1) \right) (x - x_1)^2 (x - x_2)$$
 (2.20)

Como $H_3(x_1) = f(x_1)$, $H_3(x_2) = f(x_2)$, $H_3'(x_1) = f'(x_1)$ e $H_3'(x_2) = f'(x_2)$ (Prove!), podemos concluir que o polinómio H_3 dado por (2.19) é o polinómio cúbico de Hermite nos dois pontos x_1 e x_2 .

2.2.5 Exercícios

Exercício 2.10 Obtenha o polinómio cúbico H_3 tal que

$$H_3(1) = -1$$
, $H'_3(1) = 0.5$, $H_3(2) = 1$, $H'_3(2) = 1$.

Exercício 2.11 Escreva a representação em diferenças divididas do polinómio quíntico de Hermite H_5 tal que

$$H_5^{(j)}(x_i) = f^{(j)}(x_i); i = 1, 2, 3; j = 0, 1.$$

Calcule o polinómio H_5 que satisfaz as condições de interpolação

$$H_5(1) = 1, \quad H_5'(1) = 1,$$

$$H_5(2) = 0, \quad H_5'(2) = 2,$$

$$H_5(3) = 1$$
, $H'_5(3) = -1$.

Exercício 2.12 Modifique os algoritmos da Secção 2.1.3 de forma a resolver o exercício anterior.

2.3 Funções spline

2.3.1 O problema

No que se segue, assumimos que n é um inteiro não negativo e chamamos a um conjunto de pontos $\Omega_n=\{x_i\}_{i=1}^n,$ onde

$$a = x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

uma sequência de nós em [a,b]; os nós x_2,\ldots,x_{n-1} são chamados nós interiores e $x_1=a$ e $x_n=b$ são nós de fronteira. Para simplificar, assumimos que x_1,\ldots,x_n estão igualmente espaçados e consideramos os n-1 subintervalos $I_i:=[x_i,x_{i+1});\ i=1,\ldots,n-2$ e $I_{n-1}:=[x_{n-1},x_n]$.

Definição 2.2 Uma função $S:[a,b]\longrightarrow \mathbb{R}$ diz-se um spline^3 de grau k com nós Ω_n se:

- Em cada intervalo I_i , S é um polinómio de grau não superior a k;
- $S \in C^{k-1}[a, b]$.

Nota 2.4 Entende-se por $C^{-1}[a,b]$ o conjunto das funções seccionalmente contínuas em [a,b].

No que se segue, consideramos em detalhe o caso de splines cúbicas interpoladoras (k = 3).

O problema: Dado um conjunto Ω_n de nós igualmente espaçados no intervalo [a,b] e um conjunto de valores f_1, \ldots, f_n (geralmente valores de uma dada função), determinar um spline cúbico S que interpola os valores f_i nos nós x_i .

³o nome deriva de um instrumento mecânico usado para traçar curvas suaves passando por determinados pontos (por exemplo, pontos de um mapa, estabelecendo a rota de um navio).

2.3.2 Expressão do spline cúbico em termos dos valores $m_i = S'(x_i)$

A expressão cúbica que define S em cada subintervalo I_i , pode ser facilmente obtida em termos dos valores

$$m_i := S'(x_i); i = 1, ..., n.$$

De facto, uma vez que

$$S(x_{i-1}) = f_{i-1}, \ S(x_i) = f_i, \ S'(x_{i-1}) = m_{i-1} \ \ e \ S'(x_i) = m_i,$$

e recordando a expressão (2.20) do polinómio cúbico de Hermite interpolador, concluimos que

$$S(x) = f_{i-1} + m_{i-1}(x - x_{i-1}) + \frac{1}{h} \left(\frac{f_i - f_{i-1}}{h} - m_{i-1} \right) (x - x_{i-1})^2 + \frac{1}{h^2} \left(m_{i-1} - \frac{2}{h} (f_i - f_{i-1}) + m_i \right) (x - x_{i-1})^2 (x - x_i), \ x \in I_{i-1}$$
 (2.21)

Observe-se que a função S, definida em cada intervalo $[x_{i-1}, x_i]$ por (2.21), é, por construção, contínua e com uma derivada contínua. Os valores m_i que aparecem em (2.21), embora desconhecidos, podem ser facilmente determinados, como veremos.

Como S''(x) é contínua, então

$$S''(x_i^-) = S''(x_i^+); \quad i = 2, \dots, n-1$$
 (2.22)

Derivando(2.21) duas vezes, obtém-se

$$S''(x) = \frac{2}{h} \left(\frac{f_i - f_{i-1}}{h} - m_{i-1} \right) + \frac{2}{h^2} \left(m_{i-1} - 2 \frac{f_i - f_{i-1}}{h} + m_i \right) (2(x - x_{i-1}) + (x - x_i)). \tag{2.23}$$

Logo

$$S''(x_i^-) = \frac{2}{h}(m_{i-1} + 2m_i) - \frac{6}{h^2}(f_i - f_{i-1}); i = 2, \dots, n$$

е

$$S''(x_i^+) = -\frac{2}{h}(2m_i + m_{i+1}) + \frac{6}{h^2}(f_{i+1} - f_i); i = 1, \dots, n-1.$$

A condição (2.22) implica que

$$m_{i-1} + 4m_i + m_{i+1} = \frac{3}{h}(f_{i+1} - f_{i-1}); i = 2, \dots, n-1.$$
 (2.24)

As relações acima são conhecidas como relações de consistência para os m_i .

2.3.3 Condições finais

Destacamos agora os seguintes aspetos relativos às relações de consistência que acabámos de obter:

1. As relações de consistência correspondem a n-2 equações para a determinação das n incógnitas $m_i;\ i=1,\ldots,n.$

- 2. As condições de interpolação **não são suficientes** para determinar unicamente S.
- 3. É necessário impor **duas** condições adicionais sobre S, que geralmente são impostas nos nós fronteiros. Por essa razão, são chamadas de **condições finais**.

Em seguida, estudaremos as escolhas mais comuns de condições finais; as funções spline correspondentes recebem os nomes dados.

Spline completo

Definição 2.3 Condições finais da forma

$$S'(x_1) = f_1', \ S'(x_n) = f_n'$$

definem os chamados splines completos.

Estas condições finais, juntamente com as relações de consistência (2.24), conduzem ao seguinte sistema linear.

$$\begin{cases}
 m_1 = f_1' \\
 m_{i-1} + 4m_i + m_{i+1} = \frac{3}{h} (f_{i+1} - f_{i-1}); i = 2, \dots, n-1 \\
 m_n = f_n'
\end{cases}$$

Como m_1 e m_n são conhecidos, temos que resolver um sistema linear de n-2 equações e n-2 incógnitas m_2, \ldots, m_{n-1} , o qual pode ser escrito em forma matricial como

$$\begin{pmatrix} 4 & 1 & & & & \frac{3}{h}(f_3 - f_1) - f_1' \\ 1 & 4 & 1 & & & \frac{3}{h}(f_4 - f_2) \\ & & \ddots & & & \vdots \\ & & & \ddots & & \vdots \\ & & & 1 & 4 & 1 & \frac{3}{h}(f_{n-1} - f_{n-3}) \\ & & & 1 & 4 & \frac{3}{h}(f_n - f_{n-2}) - f_n' \end{pmatrix}$$

A matriz de coeficientes M do sistema acima é uma matriz de diagonal estritamente dominante 4 o que, como sabemos, implica que M é invertível e o sistema tem uma solução única. Além disso, M é tridiagonal, o que torna o sistema especialmente simples de resolver.

Por outras palavras, podemos garantir que existe **uma e apenas uma** função spline completa que satisfaz as condições de interpolação dadas.

Spline Natural

Definição 2.4 Condições finais da forma

$$S''(x_1) = S''(x_n) = 0$$

definem os chamados splines naturais.

 $^{^4}$ Uma matriz $A=(a_{ij})$ é de diagonal estritamente dominante se $|a_{ii}|>\sum_{\substack{j=1\ j\neq i}}^n|a_{ij}|;i=1,\ldots,n$

Os valores $S''(x_1)$ e $S''(x_n)$ podem ser obtidos de (2.23), i.e.,

$$S''(x_1) = -\frac{2}{h}(2m_1 + m_2) + \frac{6}{h^2}(f_2 - f_1)$$

е

$$S''(x_n) = \frac{2}{h}(m_{n-1} + 2m_n) - \frac{6}{h^2}(f_n - f_{n-1})$$

As equações $S''(x_1) = 0$ e $S''(x_n) = 0$ conduzem às relações de consistência.

$$2m_1+m_2=rac{3}{h}(f_2-f_1)$$
 e $m_{n-1}+2m_n=rac{3}{h}(f_n-f_{n-1})$

O correspondente sistema linear é agora da forma

$$\begin{pmatrix} 2 & 1 & & & & \frac{3}{h}(f_2 - f_1) \\ 1 & 4 & 1 & & \frac{3}{h}(f_3 - f_1) \\ & \ddots & & & \vdots \\ & & 1 & 4 & 1 & \frac{3}{h}(f_n - f_{n-2}) \\ & & 1 & 2 & \frac{3}{h}(f_n - f_{n-1}) \end{pmatrix}$$

e tem uma solução única, porque a sua matriz dos coeficientes é de diagonal estritamente dominante.

Spline sem nó

Definição 2.5 Condições finais da forma

$$S^{(3)}(x_2^+) = S^{(3)}(x_2^-); \ S^{(3)}(x_{n-1}^+) = S^{(3)}(x_{n-1}^-)$$

definem o chamado spline sem nó.

A continuidade de S''' em x_2 (juntamente com a continuidade de S, S' e S'' nesse ponto) implica que os polinómios cúbicos que definem o spline nos intervalos $[x_1,x_2]$ e $[x_2,x_3]$ são os mesmos, ou seja, x_2 não é um nó verdadeiro; o mesmo é válido para o nó x_{n-1} . Esta observação justifica a designação dada ao spline.

Exercício 2.13 Obtenha o sistema de equações lineares correspondente às condições finais dos spline sem nó.

Exemplo 2.3 Considere os nós e os valores da função mostrados na tabela a seguir:

A figura a seguir mostra o spline completo (com S'(1) = 1 e S'(8) = 2), o spline sem nó e o polinómio de grau 7 que interpola os valores dados, obtidos através das funções spline e polyfit do Matlab. O efeito das condições finais é bem ilustrado nesta figura. À medida que nos deslocamos em direção ao interior do intervalo, o efeito das condições finais diminui, como seria de esperar.

A interpolação por splines é frequentemente preferida à interpolação polinomial porque evita a oscilação que pode ocorrer entre os pontos ao usar polinómios de grau elevado para interpolar.

O código Matlab para produzir a figura é o seguinte:

```
x=[1, 2, 3, 4, 5, 6, 7, 8];
y=[1, -1, 2, 1, 3, -1, 0, 2];
hold on
plot(x,y,'ko','MarkerSize',10)
pontos=linspace(1,8);
splineSemNo=spline(x,y,pontos);
splineCompleto=spline(x,[1 y 2],pontos);
plot(pontos,splineSemNo,'r--','LineWidth',2)
plot(pontos,splineCompleto,'b-','LineWidth',2)
plot(pontos,polyval(polyfit(x,y,7),pontos),'g-','LineWidth',2)
legend('pontos de interpolação','Spline sem nó',...
'Spline completo','Polinómio interpolador')
hold off
```

2.3.4 Erro em interpolação por splines cúbicos

Seja S um spline cúbico completo que interpola uma função f nos nós $x_i=a+(i-1)h,\,i=1\ldots,n;$ onde $h=\frac{b-a}{n-1}.$ Se $f\in C^4[a,b]$ e M_4 é tal que $\max_{x\in[a,b]}|f^{(4)}(x)|\leq M_4$, então⁵

$$\max_{x \in [a,b]} |S(x) - f(x)| \le \frac{5}{384} h^4 M_4.$$

Esse resultado pode ser escrito utilizando o símbolo de Landau (ou notação Big O) na forma

$$\|S-f\|_{\infty}:=\max_{x\in[a,b]}|S(x)-f(x)|=\mathcal{O}(h^4), \text{ quando }h o 0.$$

Pode também provar-se que a função spline sem nó satisfaz

$$||S - f||_{\infty} = \mathcal{O}(h^4),$$

ou seja, a ordem de convergência desse tipo de splines é idêntica à do spline completo.

Quanto à função spline natural, temos o seguinte resultado:

$$||S - f||_{\infty} = \mathcal{O}(h^2).$$

Isso significa que, ao contrário do que o nome natural pode sugerir, a interpolação por esse tipo de splines não é recomendada do ponto de vista da aproximação produzida. No entanto, pode mostrar-se que a influência negativa das condições finais da função spline natural diminui à medida que consideramos valores de x mais "interiores" no intervalo de interpolação.

Nota 2.5 Pode provar-se que, de entre todas as funções f duas vezes continuamente diferenciáveis num certo intervalo [a,b] e cujos gráficos passam por um certo conjunto de pontos (x_i,y_i) (com x_i pontos distintos de [a,b]), a função spline cúbica natural é a (única) que minimiza

$$I(f) = \int_a^b \left[f''(x) \right]^2 dx.$$

Essa propriedade é conhecida como a propriedade minimal do spline cúbico natural.

Como |f''(x)| é um indicador da curvatura da curva definida por y = f(x), o valor $\int_a^b [f''(x)]^2 dx$ pode ser visto como uma espécie de "curvatura média" da curva no intervalo [a,b]. Assim, podemos interpretar a propriedade mínima da spline natural do seguinte modo: De todas as funções duas vezes continuamente diferenciáveis cujos gráficos passam por certos pontos, a função spline natural é a que possui a menor "curvatura média".

⁵A prova deste resultado pode ser vista em Hall, C.A., Meyer, W., *Optimal Error Bounds for Spline Interpolation*, J. Approx. Theory, **16**, 105-112 (1976).

⁶Para uma curva definida por y=f(x), a curvatura é dada por $\kappa=\frac{|f''|}{\left(1+f'^2\right)^{\frac{3}{2}}}$; se $f'\ll 1$, então $\kappa\approx |f''|$.

2.3.5 Exercícios

Exercício 2.14 Considere os seguintes nós e valores de uma dada função:

a) Mostre que

$$S(x) = \begin{cases} 1 + 6x - 32x^3, & 0 \le x < \frac{1}{4} \\ 2 - 24(x - \frac{1}{4})^2 + 32(x - \frac{1}{4})^3, & \frac{1}{4} \le x < \frac{1}{2} \\ 1 - 6(x - \frac{1}{2}) + 32(x - \frac{1}{2})^3, & \frac{1}{2} \le x < \frac{3}{4} \\ 24(x - \frac{3}{4})^2 - 32(x - \frac{3}{4})^3, & \frac{3}{4} \le x \le 1 \end{cases}$$

é o spline cúbico natural interpolador dos valores dados.

b) Represente graficamente S juntamente com o spline completo e o spline sem nó para os mesmos dados. Pode recorrer à função spline do Matlab.

Exercício 2.15 Considere novamente a função de Runge (cf. Exercício 2.5). Represente graficamente o spline cúbico completo e o spline cúbico sem nó que interpolam os nós

$$x_k = -1 + \frac{2(k-1)}{10}$$
; $k = 1, \dots, 11$.

Faça um comentário aos resultados.

2.4 Trabalhos

Trabalho 1. [Interpolação inversa]

Se tivermos uma tabela de pontos (x_i, y_i) com $y_i = f(x_i)$ valores de uma função y = f(x) nos nós x_i , e se soubermos que a função f é invertível, podemos trocar o papel das abcissas x_1, \ldots, x_n e das ordenadas y_1, \ldots, y_n e construir o polinómio interpolador dos valores x_1, \ldots, x_n nos nós y_1, \ldots, y_n , ou seja, construir o polinómio interpolador da função inversa $x = f^{-1}(y)$. Diz-se, neste caso, que se trata de interpolação inversa.

- a) Justifique por que razão este processo não funciona se f não for monótona no intervalo de interpolação.
- b) Use interpolação inversa para determinar uma estimativa para:
 - i) a raíz real da equação $x^3 x 1 = 0$.
 - ii) $\sqrt[3]{8.1232}$, supondo que a sua "máquina" não calcula valores de raízes cúbicas.

Trabalho 2. [Polinómio quíntico de Hermite em 2 pontos]

a) Escreva a representação em diferenças divididas do polinómio quintico de Hermite $H_{\rm 5}$ tal que

$$H_5^{(j)}(x_i) = f^{(j)}(x_i); i = 1, 2; j = 0, 1, 2.$$

b) Calcule o polinómio H_5 que satisfaz as condições de interpolação

$$H_5(1) = 1$$
, $H'_5(1) = 1$, $H''_5(1) = -1$

$$H_5(2) = 0$$
, $H'_5(2) = 2$, $H''_5(2) = 1$

Trabalho 3. [Expressão do spline cúbico S em termos dos valores $M_i = S''(x_i)$]

Seja S um spline cúbico que interpola uma função f nos n nós

$$x_i = a + (i-1)h$$
, $i = 1..., n$; $h = \frac{b-a}{n-1}$

e seja

$$M_i = S''(x_i).$$

Mostre que o spline S pode ser escrito em termos dos valores M_i , como

$$S(x) = \frac{(x_{i+1} - x)^3 M_i + (x - x_i)^3 M_{i+1}}{6h} + \left(\frac{f_i}{h} - \frac{h}{6} M_i\right) (x_{i+1} - x) + \left(\frac{f_{i+1}}{h} - \frac{h}{6} M_{i+1}\right) (x - x_i),$$

onde M_i satisfaz as condições de consistência

$$M_{i-1} + 4M_i + M_{i+1} = \frac{6}{h^2} (f_{i-1} - 2f_i + f_{i+1}); i = 2, \dots, n-1.$$

Obtenha o sistema de equações lineares correspondente às condições naturais e sem nó para S.

[Sugestão: Comece com a expressão de S''(x) em $[x_i, x_{i+1}]$ e observe que se trata de um polinómio linear da forma $S''(x) = \frac{(x_{i+1}-x)M_i+(x-x_i)M_{i+1}}{h}$]

Trabalho 4. [Splines quínticos]

Seja S um spline quíntico interpolador de uma dada função nos nós igualmente espaçados x_1, \ldots, x_n . Considere a representação de S em termos dos valores supostamente conhecidos $m_i = S'(x_i)$ e $M_i = S''(x_i)$ e deduza as correspondentes relações de consistência.

2.5 Bibliografia

- 1. S. D. Conte, Carl de Boor, Elementary Numerical Analysis An Algorithmic Approach, McGraw-Hill, 1980.
- 2. Philip J. Davis, Interpolation and approximation, Dover, New York, 1975.
- 3. H. Pina, Métodos Numéricos, McGraw-Hill, Lisboa, 1995

2.6 Conteúdo

nterpolação Polinomial	3
Interpolação Polinomial: background	3
O problema	3
Forma de Newton do polinómio interpolador :: Diferenças Divididas	4
Algoritmos	6
Exercícios	6
Interpolação de Hermite	8
O problema	8
Interpolação de Hermite simples	8
Diferenças divididas em nós coincidentes	11
A forma de Newton do polinómio interpolador cúbico de Hermite	12
Exercícios	13
Funções spline	13
O problema	13
Expressão do spline cúbico em termos dos valores $m_i = S'(x_i)$	14
Condições finais	14
Erro em interpolação por splines cúbicos	18
Exercícios	19
Trabalhos	19
D'I-I' a mar C'a	01