Discrete Optimization

Linear Programming: Part I

Goals of the Lecture

- Linear programming
 - what is a linear program?
 - -convexity
 - geometry

min
$$c_1x_1 + \ldots + c_nx_n$$

subject to
$$a_{11}x_1 + \ldots + a_{1n}x_n \le b_1$$

$$\ldots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n \le b_m$$

$$x_i \ge 0 \quad (1 \le i \le n)$$

min
$$c_1x_1 + \ldots + c_nx_n$$

subject to
$$a_{11}x_1 + \ldots + a_{1n}x_n \le b_1$$

$$\ldots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n \le b_m$$

$$x_i \ge 0 \quad (1 \le i \le n)$$

n variables, m constraints

min
$$c_1x_1 + \ldots + c_nx_n$$

subject to
$$a_{11}x_1 + \ldots + a_{1n}x_n \le b_1$$

$$\ldots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n \le b_m$$

$$x_i \ge 0 \quad (1 \le i \le n)$$

- n variables, m constraints
- variables are nonnegative

min
$$c_1x_1 + \ldots + c_nx_n$$

subject to
$$a_{11}x_1 + \ldots + a_{1n}x_n \le b_1$$

$$\ldots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n \le b_m$$

$$x_i \ge 0 \quad (1 \le i \le n)$$

- n variables, m constraints
- variables are nonnegative
- inequality constraints

► Can I maximize?

- Can I maximize?
- What if a variable can take negative values?

- Can I maximize?
- What if a variable can take negative values?
- What if I have an equality constraint?

- Can I maximize?
- What if a variable can take negative values?
- What if I have an equality constraint?
- What if my variable takes integer values?

- Can I maximize?
- What if a variable can take negative values?
- What if I have an equality constraint?
- What if my variable takes integer values?
- What if I have a nonlinear constraint?

► Can I maximize?

- Can I maximize?
 - use $\min -(c_1x_1 + ... + c_nx_n)$

- Can I maximize?
 - use $\min -(c_1x_1 + ... + c_nx_n)$
- ► What if a variable x_i can take negative values?

- ► Can I maximize?
 - use $\min -(c_1x_1 + ... + c_nx_n)$
- ► What if a variable x_i can take negative values?
 - -replace x_i by $x_i^+ x_i^-$

- ► Can I maximize?
 - use $\min -(c_1x_1 + ... + c_nx_n)$
- ► What if a variable x_i can take negative values?
 - -replace x_i by $x_i^+ x_i^-$
- What if I have an equality constraint?

- ► Can I maximize?
 - use $\min -(c_1x_1 + ... + c_nx_n)$
- ► What if a variable x_i can take negative values?
 - -replace x_i by $x_i^+ x_i^-$
- What if I have an equality constraint?
 - -use two inequalities

- ► Can I maximize?
 - use $\min -(c_1x_1 + ... + c_nx_n)$
- ► What if a variable x_i can take negative values?
 - -replace x_i by $x_i^+ x_i^-$
- What if I have an equality constraint?
 - -use two inequalities
- What if my variable takes integer values?

- ► Can I maximize?
 - use $\min -(c_1x_1 + ... + c_nx_n)$
- ► What if a variable x_i can take negative values?
 - -replace x_i by $x_i^+ x_i^-$
- What if I have an equality constraint?
 - -use two inequalities
- What if my variable takes integer values?
 - -that is not a linear program; see MIP later

- ► Can I maximize?
 - use $\min -(c_1x_1 + ... + c_nx_n)$
- ► What if a variable x_i can take negative values?
 - -replace x_i by $x_i^+ x_i^-$
- What if I have an equality constraint?
 - -use two inequalities
- What if my variable takes integer values?
 - -that is not a linear program; see MIP later
- What if I have a nonlinear constraint?

- ► Can I maximize?
 - use $\min -(c_1x_1 + ... + c_nx_n)$
- ► What if a variable x_i can take negative values?
 - -replace x_i by $x_i^+ x_i^-$
- What if I have an equality constraint?
 - -use two inequalities
- What if my variable takes integer values?
 - -that is not a linear program; see MIP later
- What if I have a nonlinear constraint?
 - -this is called a linear program :-)

Convex Combinations

Convex sets

Convex combinations

 $\lambda_1 v_1 + \ldots + \lambda_n v_n$ is a convex combination of v_1, \ldots, v_n if

$$\lambda_1 + \ldots + \lambda_n = 1$$

and

$$\lambda_i \ge 0 \quad (1 \le i \le n).$$

Convex sets

- a set S in Rⁿ is convex if it contains all the convex combinations of the points in S.

- Convex sets
 - a set S in Rⁿ is convex if it contains all the convex combinations of the points in S.
- ► The intersection of convex sets is a convex set

Let $\bigcap S_i$ be the intersection of the convex sets

$$S_i \quad (1 \leq i \leq m).$$

Consider $v_1, \ldots, v_n \in \bigcap S_i$. It follows that

$$v_1, \dots, v_n \in S_i \quad (1 \le i \le m)$$

All convex combinations of v_1, \ldots, v_n are in S_i $(1 \le i \le m)$. Hence all convex combinations of v_1, \ldots, v_n are in $\bigcap S_i$.

A half space is a convex set

$$a_1x_1 + \ldots + a_nx_n \le b$$

► A half space is a convex set

$$a_1x_1 + \ldots + a_nx_n \leq b$$

► The intersection of a set of half spaces is convex and is called of polyhedron. If it is finite, it is called a polytope.

$$a_{11}x_1 + \ldots + a_{1n}x_n \le b_1$$

...
 $a_{m1}x_1 + \ldots + a_{mn}x_n \le b_m$

16

$-4.0x_1$	+	$2.5x_{2}$	\leq	-0.25
$-3.0x_1$		$6.0x_{2}$	\leq	-43.50
$1.5x_{1}$		$4.5x_{2}$	\leq	3.00
$1.7x_{1}$		$1.7x_{2}$	\leq	16.67
$4.8x_1$	+	$1.2x_{2}$	\leq	82.33
$2.0x_{1}$	+	$3.5x_{2}$	\leq	65.75
$-3.0x_{1}$	+	$5.0x_{2}$	<	29.50

A face is the intersection of finitely many hyperplanes

- A face is the intersection of finitely many hyperplanes
- ► For n variables
 - -dimension n-1 (one hyperplane): facet
 - -dimension 0 (n hyperplane): vertex

Hyperplane, Facets, and Vertices

Hyperplane, Facets, and Vertices

Hyperplane, Facets, and Vertices

3D Constraints

3D Constraints

min
$$c_1x_1 + \ldots + c_nx_n$$

subject to
$$a_{11}x_1 + \ldots + a_{1n}x_n \le b_1$$

$$\ldots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n \le b_m$$

$$x_i \ge 0 \quad (1 \le i \le n)$$

► Theorem: At least one of the points where the objective value is minimal is a vertex.

$$c_1x_1 + \ldots + c_nx_n = b$$

$$c_1x_1 + \ldots + c_nx_n = b$$

$$\min c_1 x_1 + \ldots + c_n x_n = b$$

$$\min c_1 x_1 + \ldots + c_n x_n = b$$

Why I Love These Vertices Now in 3D!

Why I Love These Vertices Now in 3D!

► Theorem: At least one of the points where the objective value is minimal is a vertex.

Let x^* be the minimum. Since each point in a polytope is a convex combination of the vertices v_1, \ldots, v_t , we have

$$x^* = \lambda_1 v_1 + \ldots + \lambda_t v_t$$

and the objective value at optimality can be expressed as

$$cx^* = \lambda_1 * (cv_1) + \ldots + \lambda_t (cv_t).$$

Assume that the minimum is not at a vertex, i.e.,

$$cx^* < cv_i \quad \forall i : 1 \le i \le t.$$

It follows that

$$cx^* = \lambda_1 * (cv_1) + \ldots + \lambda_t (cv_t)$$

$$> \lambda_1 * (cx^*) + \ldots + \lambda_t (cx^*)$$

$$> (\lambda_1 + \ldots + \lambda_t)(cx^*)$$

$$> cx^*.$$

Hence, it must be the case that $x^* = v_i$ for some $1 \le i \le t$.

- ► How to solve a linear program "geometrically"?
 - -enumerate all the vertices
 - select the one with the smallest objective value

Until Next Time