ECE215/S – Principles of Electronic Cyber Warfare Equation Sheet

DC Circuit Analysis

Ohm's Law $P = IV = \frac{V^2}{R} = I^2R$ $R_{eq} = R_1 + R_2 + \dots + R_n$ Power Law Series $V_x = \frac{R_x}{R_{eq}} V_{series}$ $R_{eq} = (\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n})^{-1}$ Voltage Divider Parallel $R_{eq} = \frac{R_x R_y}{R_x + R_y}$ \rightarrow 2 resistors $I_{x} = \frac{R_{eq}}{R_{x}} I_{parallel}$ $I_{x} = \frac{R_{y}}{R_{x} + R_{y}} I_{parallel}$ Current Divider \rightarrow 2 resistors $\sum_{In}(I) = \sum_{Out}(I)$ **KCL** $\sum_{Loon}(V) = 0$ **KVL** $1.1 \times I_{nom} < CB_{value} < 1.5 \times I_{nom}$ Circuit Breaker

Transformers

Turns ratio
$$a = \frac{N_1}{N_2} = \frac{v_1(t)}{v_2(t)} = \frac{i_2(t)}{i_1(t)}$$

Complex Math

$$\begin{array}{c|c} \text{Imag Number} & j = \sqrt{-1}, \frac{1}{j} = -j \\ \text{Rectangular} & Re + jIm \\ & = A\cos\phi + jA\sin\phi \\ \text{Phasor} & A\underline{/\phi} \\ \text{Amplitude} & A = \sqrt{Re^2 + Im^2} \\ \text{Phase} & \phi = \tan^{-1}\left(\frac{Im}{Re}\right) \end{array}$$

AC Circuit Analysis

AC Equation	$v(t) = V_{bias} + V_m \cos(\omega \cdot t + \phi)$	
Angular Freq	$\omega = 2\pi f$	
Frequency	$f = \frac{1}{\text{period}} = \frac{1}{T}$	
Phase Shift	$\phi = \omega \cdot \Delta t$, left = pos, right = neg	
RMS	$V_{rms} = \frac{V_m}{\sqrt{2}} = 0.707 * V_m$	
Apparent [VA]	$S = V_{rms}I_{rms} = \sqrt{P^2 + Q^2}$	
Real [W]	$P = V_{rms}I_{rms}\cos\left(\phi_V - \phi_I\right)$	
Reactive [VAR]	$Q = V_{rms}I_{rms}\sin\left(\phi_V - \phi_I\right)$	
Power Factor	$pF = \frac{P}{S}$	
Q > 0	lagging (I lags V)	
Q < 0	leading (I leads V)	
$P_{bus} = P_1 + P_2 + \dots, Q_{bus} = Q_1 + Q_2 + \dots$		

R-C and R-L Circuits

Resistor Impedance	$Z_R = R$
Capacitor Impedance	$Z_C = \frac{1}{i\omega C}$
Inductor Impedance	$Z_L = j\omega L$
R-C Circuit Cutoff	$Z_R = R$ $Z_C = \frac{1}{j\omega C}$ $Z_L = j\omega L$ $f_{\text{cutoff}} = \frac{1}{2\pi RC}$
R-L Circuit Cutoff	$f_{\text{cutoff}} = \frac{R}{2\pi L}$ $BW = f_{high} - f_{low}$ $ V_{\text{cut}} $
Bandwidth	$BW = f_{high} - f_{low}$
Gain in absolute	$G_{abs} = \left \frac{V_{out}}{V_{in}} \right $ $G_{dB} = 20 \log_{10}(G_{abs})$
Gain in decibels	$G_{dB} = 20 \log_{10}(G_{abs})$

Motors, Power Converters

Efficiency	$\eta = \frac{P_{out}}{P_{in}} = \frac{P_{useful}}{P_{useful} + P_{loss}}$
Mech Power	1 hp = 745.7 Watts
Converters	Only use REAL power, P [W]

Engineering Notation 10^{12} T (tera)

Notation		
10^{12}	T (tera)	
10^{9}	G (giga)	
10^{6}	M (mega)	
10^{3}	k (kilo)	
10^{-3}	m (milli)	
10^{-6}	μ (micro)	
10^{-9}	n (nano)	
10^{-12}	p (pico)	
10^{-15}	f (femto)	
10^{-18}	a (atto)	

RF Spectrum -300 GHz EHF 30 GHz -3 GHz UHF -300 MHz VHF -30 MHz $_{ m HF}$ -3 MHz MF-300 kHz $_{ m LF}$ $\cdot 30 \text{ kHz}$ VLF

3 kHz

Analog/Digital Conversion

Signal Conditioning	$V_{out} = K \cdot V_{in} + B$
Nyquist Criterion	$f_s \geqslant 2f_{high}, T_s = \frac{1}{f_s}$
Quantization Levels	$\# \text{ levels} = 2^b$
Voltage Resolution	$\Delta V = \frac{V_{max} - V_{min}}{2^b}$
Expected Level	$EL = \frac{V_{in} - V_{min}}{\Delta V}$
Quantized Level	QL = floor(EL)
Quantized Voltage	$V_{quant} = QL \cdot \Delta V + V_{min}$
Quantization Error	$QE = V_{in} - V_{quant}$
$\operatorname{Max} QE$	$QE_{max} = \Delta V$
Digital/Analog	$V_{out,DAC} = QL \cdot \Delta V + V_{min}$
$(w/V_{min} = 0V)$	$V_{out,DAC} = \frac{QL}{2^b} \cdot V_{max}$

Bit Rate & Data Storage

Bit Rate | bit rate =
$$f_s \cdot b$$

Data Storage | 1 byte = 8 bits
 2^{30} bytes = 1 GiB
 2^{20} bytes = 1 MiB
 2^{10} bytes = 1 kiB

Amplitude Modulation

$$A_{c} \cos \left(2\pi \cdot f_{c} \cdot t\right) \cdot \left[A_{m} \cos \left(2\pi \cdot f_{m} \cdot t\right) + B\right] = \dots$$

$$(\text{diff}) \qquad \frac{A_{c} A_{m}}{2} \cos \left[2\pi \cdot (f_{c} - f_{m}) \cdot t\right] + \dots$$

$$(\text{sum}) \qquad \frac{A_{c} A_{m}}{2} \cos \left[2\pi \cdot (f_{c} + f_{m}) \cdot t\right] + \dots$$

$$(\text{bias}) \qquad A_{c} B \cos \left(2\pi \cdot f_{c} \cdot t\right) \blacksquare$$

$$\text{Mod Index} \qquad \alpha = \frac{A_{m}}{B} = \frac{2 \cdot Amp_{SB}}{Amp_{Carrier}}$$

$$\text{Efficiency} \qquad \eta = \frac{\alpha^{2}}{\alpha^{2} + 2}$$

Antennas

Wavelength
$$\lambda = \frac{c}{f}$$
 Speed of Light
$$c = 3 \times 10^8 \text{ m/s}$$
 Ideal Dipole
$$\text{Length} = \frac{\lambda}{2}, G = 1.64$$
 Ideal Monopole
$$\text{Length} = \frac{\lambda}{4}, G = 3.28$$
 Parabolic Dish
$$G_{dish} = \left(\frac{2\pi r_{dish}}{\lambda}\right)^2$$

Wireless Communication

Line of Sight
$$R_{LOS,mi} = \sqrt{2 \cdot h_{ft,1}} + \sqrt{2 \cdot h_{ft,2}}$$
 Conversions $1 \text{mi} = 1.61 \text{km}, 1 \text{ft} = 0.305 \text{m}$

Friis Equation $P_R = P_T G_T G_R \left(\frac{\lambda}{4\pi R}\right)^2$ $R = \frac{\lambda}{4\pi} \cdot \sqrt{\frac{P_T G_T G_R}{P_R}}$ Signal-to-Noise $SNR = \frac{P_{signal}}{P_{noise}} = \frac{P_R}{k \cdot T_{sys} \cdot BW}$ $k = 1.38 \times 10^{-23} J/K$

Radar

$$\begin{array}{c|c} \text{Radar Range Eqn} & P_R = \frac{P_T G_T^2 (RCS) \lambda^2}{(4\pi)^3 R^4} \\ & R = \left(\frac{P_T G_T^2 (RCS) \lambda^2}{(4\pi)^3 P_R}\right)^{1/4} \\ \text{Pulse Rep Freq} & PRF = \frac{1}{PRI} \\ \text{Unambig Range} & R_{\text{max},unambig} = \frac{c \cdot PRI}{2} \end{array}$$

Electronic Warfare

$$SNR_{comm} = \frac{P_{R,sig}}{P_{R,jam}} = \frac{P_{T,sig} \cdot G_{T,sig} \cdot R_{jam}^2}{P_{T,jam} \cdot G_{T,jam} \cdot R_{sig}^2}$$
$$SNR_{rad} = \frac{P_{R,rad}}{P_{R,jam}} = \frac{P_{T,rad} \cdot G_{T,rad} \cdot RCS}{P_{T,jam} \cdot G_{T,jam} \cdot 4\pi R^2}$$