Esperienze in DC (I e II)

I esp

Avendo a disposizione un alimentatore DC a tensione variabile (con V_{max} = 30 V), un multimetro analogico e un multimetro digitale, determinate la caratteristica I – V di un resistore e, da essa, ricavate il valore della sua resistenza elettrica.

[N.B. ai fini di non danneggiare il resistore, calcolare la tensione massima che potete utilizzare, sapendo che il valore nominale della resistenza è dell'ordine di 1 k Ω e la potenza massima che essa può sopportare è 0.25 W]

II esp

Il circuito di figura simula un generatore di tensione DC con V_0 = 15 V e resistenza interna $\rho = \rho_0 + R_i$.

- 1. Misurate la tensione di uscita, V_L , al variare della resistenza di carico.
- 2. Dalle curve $V_L = f(R_L)$ e $V_L = f(\overline{I_L})$, determinate la resistenza interna ρ .
- 3. Confrontate i risultati ottenuti con i due metodi e commentate il risultato.

Esperienza N. 3

Montate un circuito RC, supponete di conoscere il valore di R e solo approssimativamente il valore di C.

- 1. Misurate il tempo risposta del circuito se esso è sottoposto ad un segnale impulsivo. Da esso, conosciuto il valore di R, determinale il valore di C.
- 2. Sottoponente il circuito ad una tensione sinusoidale; misurate la risposta del circuito in funzione della frequenza e determinate la funzione di trasferimento (in ampiezza e fase) nei due casi:
 - a) La tensione di uscita è presa ai capi di C
 - b) La tensione di uscita è prese ai capi di R

Determinate la frequenza di taglio utilizzando le misure effettuate al punto 2) e confrontatela con il tempo di risposta misurato al punto 1).

Esperienza N. 4

Montate un circuito RLC serie come mostrato in figura (R, L, C possono essere misurate).

- 1. Sottoponente il circuito ad una tensione sinusoidale; misurate la risposta del circuito in funzione della frequenza e determinate la funzione di trasferimento (in ampiezza e fase) con l'uscita ai capi di R.
- 2. Esaminate la risposta del circuito ad un onda quadra.

Utilizzando i risultati ottenuti al punto 1, determinate la frequenza di risonanza e il fattore di qualità.

Commentate i risultati ottenuti, mettendo in evidenza la compatibilità tra i risultati ottenuti nel regime impulsivo e in quello sinusoidale. Evidenziare gli scostamenti dal comportamento ideale.