

LABORATORY WORK SHEET

Name of the Student	MA DKI	SAL C	HARAN		_		12-5	******				
Class CSM - 'C'	Semes	der	Tst				- 12.1		lumb			
Course Code A.E	E003 co	urse Name	- Electrica	land	2	30	5	1	A	5 6	F	2
Course Code ∴A € Name of the Course	Faculty M5. A	O.VAI	Electron RA LAKSI	niu Eng	ine	erir	9 _{Fa}	La	boa VID	uto LAR	5	1072
Exercise Number :												

DAY TO DAY EVALUATION:

A	Arm /	Algorithm / Procedure	Source Code	Program Execution	Viva-	
Marks	Preparation	Performance in the Lab	Calculations and Graphs	Results and Error Analysis	Voce	Total
Max. Marks	4	4	4	4	4	20
Obtained	4	CF	4	-4	4	20

Signature of Faculty

START WRITING FROM HERE:

Aim: To Verify the Condition of seciprocity for an electric network theoritically and practically.

Apparatus:

SNO	Name of the Equipment	Range	Туре	Quantity
01-	Ammeter	(Am DOS-0)	Digital	01
02.	Voltmeter	(0-30V)	Digital	01
03.	R. P. S	(0-300)	Digital	01
043	Resistors	100 1, 1501, 441	-	05
05.	Bread Board	(10)	-	e (
06.	Connecting wixes	-	6-7	AS required

statement: In any linear, bilateral, single source network the ratio of excitations to response is constant even when their positions are inter-changed

2/4

Procedure: 1 Connect the circuit as shown in frg #1

- @ Measure the current I, in the branch.
- 3 Inter-change voltage source and response as shown in fig (3) and note down the curent Iz
- @ Observe that the currents I, and I, should be
- 6) Measure the ratio of excitation and response and Check whether they are equal in both cases.

Calculations:

$$I_1 = \frac{\sigma p}{Total} \times I_{7}$$

$$I_1 = 0.019 \times \frac{1000}{1232} \Rightarrow I_2 = 0.01544$$

From Pia &

$$I_{T} = \frac{10}{474.42} = 0.041A$$

$$I_{T} = 21 \text{ mA}$$

$$I_{X} = 27 \times \frac{000}{70404} = 0.021 \times \frac{1000}{1320}$$

$$I_{X} = 0.0154A$$

$$V/I_{1} = V/I_{2}$$

$$V/I_{1} = V/I_{2}$$

Tabular column:

Parameters	Theoritical Values	practical Values
I	15.404	16.4 ma
īΙχ	15,4mA	16=1MA

Precautions:

- O check for proper connections before switching on the supply-
- @ Make sure of proper colour cooling of resistors.
- 13) The tourninal of the resistance should be properly connected.

Result;

Hence, Reciprocity theorem for an electric circuit network is verified both theoritically and practically.

