

Attorney Docket P0986P2
PATENT

CERTIFICATION UNDER 37 CFR 1.10

EM 239 527 297 US: Express Mail Number

07 January 1977 Date of Deposit

I hereby certify that this New Application Transmittal and the documents referred to as enclosed therein are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner of Patents, Washington, D.C. 20231.

Pandra W/millivan

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

BOX PATENT APPLICATION Assistant Commissioner of Patents Washington, D.C. 20231

NEW APPLICATION TRANSMITTAL

Transmitted herewith for filing is the patent application of

Inventor(s):

Paul J. Carter Nancy Y. Chiang

Kyung Jin Kim William Matthews Maria L. Rodrigues

For:

WSX RECEPTOR AGONIST ANTIBODIES

1. Type of Application

This new application is for a(n) original X continuation-in-part application.

- 2. Papers Enclosed Which Are Required For Filing Date Under 37 CFR 1.53(b)(Regular)
 - 155 pages of specification
 - 3 pages of claims
 - __1__ page(s) of abstract
 - 61 sheet(s) of drawings
 [X] formal [] informal
- 3. Declaration or Oath
 - X The declaration of the inventor(s) [X] is enclosed []signed [X]unsigned.
- 4. Assignment
 - X An Assignment of the invention to GENENTECH, INC. [] is enclosed with attached Recordation Form Cover Sheet [X] will follow.

5. Fee Calculation (37 CFR 1.16)

The fee has been calculated as follows:

		CLAIM	S FOR FEE	CALCULATION	
Number Filed		Number Extra		Rate	Basic Fee 37 CFR 1.16(a) \$770.00
Total Claims	39	- 20 =	 19	X \$22.00	\$418.00
Independent Claims	1	- 3=	0	X \$80.00	\$0.00
Multiple dependent claim(s), if any				+ \$260.00	\$0.00
Filing Fee Calculation					\$1,188.00

6. Method of Payment of Fees

The Commissioner is hereby authorized to charge Deposit Account No. 07-0630 in the amount of \$1,188.00. A duplicate copy of this transmittal is enclosed.

7. Authorization to Charge Additional Fees

The Commissioner is hereby authorized to charge any additional fees required under 37 CFR §1.16 and 1.17, or credit overpayment to Deposit Account No. 07-0630. A duplicate copy of this sheet is enclosed.

8. Additional Papers Enclosed

- Information Disclosure Statement (37 CFR §1.98) w/ PTO-1449 and citations
- [X] Submission of "Sequence Listing", computer readable copy and/or amendment pertaining thereto for biological invention containing nucleotide and/or amino acid sequence and Sequence Statement.
- [] Other:

Respectfully submitted, GENENTECH, INC.

Reg. No. 28,616

Janet E. Hosak

Janet E. Hasak

460 Pt. San Bruno Blvd.

Date: 1/7/97

So. San Francisco, CA 94080-4990

Phone: (415) 225-1994 Fax: (415) 952-9881

Revised (10/13/95)

25

Patent Docket No. P0986P2 EXPRESS MAIL NO: EM 239 527 297 US DATE MAILED: 07 JANUARY 1997

WSX RECEPTOR AGONIST ANTIBODIES

5

CROSS REFERENCES

This application is a continuation-in-part of co-pending U.S. Application Serial No. 08/667,197 filed June 20, 1996, which is a continuation-in-part of co-pending U.S. Application Serial No. 08/585,005 filed January 11, 1996, which applications are incorporated herein by reference and to which applications priority is claimed under 35 USC §120.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention pertains generally to the WSX receptor. In particular, the invention relates to agonist antibodies which bind to and activate the WSX receptor.

Description of Related Art

A. HEMATOPOIESIS

The process of blood cell formation whereby red and white blood cells are replaced through the division of cells located in the bone marrow is called hematopoiesis. For a review of hematopoiesis see Dexter and Spooncer (*Ann. Rev. Cell Biol.* 3:423-441 (1987)).

There are many different types of blood cells which belong to distinct cell lineages. Along each lineage, there are cells at different stages of maturation. Mature blood cells are specialized for different functions. For example, erythrocytes are involved in O_2 and CO_2 transport; T and B lymphocytes are involved in cell and antibody mediated immune responses, respectively; platelets are required for blood clotting; and the granulocytes and macrophages act as general scavengers and accessory cells. Granulocytes can be further divided into basophils, eosinophils, neutrophils and mast cells.

Each of the various blood cell types arises from pluripotent or totipotent stem cells which are able to undergo self-renewal or give rise to progenitor cells or Colony Forming Units (CFU) that yield

5

10

a more limited array of cell types. As stem cells progressively lose their ability to self-renew, they become increasingly lineage restricted. It has been shown that stem cells can develop into multipotent cells (called "CFC-Mix" by Dexter and Spooncer, *supra*). Some of the CFC-Mix cells can undergo renewal whereas others lead to lineage-restricted progenitors which eventually develop into mature myeloid cells (e.g., neutrophils, megakaryocytes, macrophages and basophils). Similarly, pluripotent stem cells are able to give rise to PreB and PreT lymphoid cell lineages which differentiate into mature B and T lymphocytes, respectively. Progenitors are defined by their progeny, e.g., granulocyte/macrophage colony-forming progenitor cells (GM-CFU) differentiate into neutrophils or macrophages; primitive erythroid burst-forming units (BFU-E) differentiate into erythroid colony-forming units (CFU-E) which give rise to mature erythrocytes. Similarly, the Meg-CFU, Eos-CFU and Bas-CFU progenitors are able to differentiate into megakaryocytes, eosinophils and basophils, respectively.

Hematopoietic growth factors (reviewed in Andrea, *NEJM* 330(12):839-846 (1994)) have been shown to enhance growth and/or differentiation of blood cells via activation of receptors present on the surface of blood progenitor cells of the bone marrow. While some of these growth factors stimulate proliferation of restricted lineages of blood cells, others enhance proliferation of multiple lineages of blood cells. For example, erythropoietin (EPO) supports the proliferation of erythroid cells, whereas interleukin-3 (IL-3) induces proliferation of erythroid and myeloid lineages and is therefore considered a multi-lineage factor.

In recent years, several hematopoietic growth factor receptors have been isolated. Due to their low abundance and their existence in both high-affinity and low-affinity forms, biochemical characterization of these receptors has been hampered.

Cytokine receptors frequently assemble into multi-subunit complexes. Sometimes, the α subunit of this complex is involved in binding the cognate growth factor and the β -subunit may contain an ability to transduce a signal to the cell. These receptors have been assigned to three subfamilies depending on the complexes formed. Subfamily 1 includes the receptors for erythropoietin (EPO), granulocyte colony-stimulating factor (G-CSF), interleukin-4 (IL-4), interleukin-7 (IL-7), growth hormone (GH) and prolactin (PRL). Ligand binding to receptors belonging to this subfamily is thought to result in homodimerization of the receptor. Subfamily 2 includes receptors for IL-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-5 (IL-5), interleukin-6 (IL-6), leukemia inhibitory factor (LIF), oncostatin M (OSM) and ciliary neurotrophic factor (CNTF). Subfamily 2 receptors are heterodimers having an α -subunit for ligand binding and β -subunit (either the shared β -subunit of the IL-3, GM-CSF and IL-5 receptors or the gp130 subunit of the IL-6, LIF, OSM and CNTF receptors) for signal transduction. Subfamily 3 contains only the interleukin-2 (IL-2)

30

5

10

receptor. The β and γ subunits of the IL-2 receptor complex are cytokine-receptor polypeptides which associate with the α -subunit of the unrelated Tac antigen.

B. OBESITY

Obesity is the most common nutritional disorder which, according to recent epidemiologic studies, affects about one third of all Americans 20 years of age or older. Kuczmarski *et al.*, *J. Am. Med. Assoc.* 272:205-11 (1994). Obesity is responsible for a variety of serious health problems, including cardiovascular disorders, type II diabetes, insulin-resistance, hypertension, hypertriglyceridemia, dyslipoproteinemia, and some forms of cancer. Pi-Sunyer, F., *Anns. Int. Med.* 119: 655-60 (1993); Colfitz, G., *Am. J. Clin. Nutr.* 55:503S-507S (1992). A single-gene mutation (the obesity or "ob" mutation) has been shown to result in obesity and type II diabetes in mice. Friedman, *Genomics* 11:1054-1062 (1991).

Zhang et al., Nature 372:425-431 (1994) have recently reported the cloning and sequencing of the mouse ob gene and its human homologue, and suggested that the ob gene product, leptin or OB protein, may function as part of a signalling pathway from adipose tissue that acts to regulate the size of the body fat depot. Parabiosis experiments performed more than 20 years ago predicted that the genetically obese mouse containing two mutant copies of the ob gene (ob/ob mouse) does not produce a satiety factor which regulates its food intake, while the diabetic (db/db) mouse produces but does not respond to a satiety factor. Coleman and Hummal, Am. J. Physiol. 217:1298-1304 (1969); Coleman, Diabetol 9:294-98 (1973). Recent reports by three independent research teams have demonstrated that daily injections of recombinant OB protein inhibit food intake and reduce body weight and fat in grossly obese ob/ob mice but not in db/db mice (Pelleymounter et al., Science 269:540-43 (1995); Halaas et al., Science 269:543-46 (1995); Campfield et al., Science 269:546-49 (1995)), suggesting that the OB protein is such a satiety factor as proposed in early cross-circulation studies.

Researchers suggest that at least one OB receptor is localized in the brain. The identification and expression cloning of a leptin receptor (OB-R) was reported by Tartaglia *et al. Cell* 83:1263-71 (1995). Various isoforms of a OB receptor are described by Cioffi *et al. Nature* 2:585-89 (1996). See, also, WO 96/08510.

The mouse *db* gene has recently been cloned (Lee *et al. Nature* 379:632 (1996) and Chen *et al. Cell* 84:491-495 (1996)). Previous data had suggested that the *db* gene encoded the receptor for the obese (*ob*) gene product, leptin (Coleman *et al.*, *Diebetologia* 9:294-8 (1973) and Coleman *et al.*, *Diebetologia* 14:141-8 (1978)). It has been very recently confirmed that the *db/db* mouse

10

25

30

results from a truncated splice variant of the OB receptor which likely renders the receptor defective in signal transduction (Lee *et al.*, *Nature* 379:632 (1996) and Chen *et al.*, *Cell* 84: 491-495 (1996)).

SUMMARY OF THE INVENTION

This application relates to agonist antibodies which specifically bind to the WSX receptor and mimic one or more biological activities of naturally occurring WSX ligand, OB protein. Preferred antibodies are those with a strong binding affinity for human WSX receptor (e.g. having a Kd of no more than about 1 x 10 8 M; and preferably no more than about 1 x 10 9 M). In preferred embodiments, the agonist antibody binds to both human and murine WSX receptor.

Antibodies with defined agonistic activity in a bioassay, the KIRA ELISA, are disclosed herein. Preferred antibodies have an IC50 in the KIRA ELISA of about 0.5µg/ml or less, preferably about 0.2µg/ml or less, and most preferably about 0.1µg/ml or less.

The agonist antibodies of interest herein may have one or more of the biological characteristics of antibody 2D7, 1G4, 1E11 or 1C11 (see Example 13) or clones 3, 4, or 17 (see Example 14). For example, the antibody may bind to the epitope bound by any one of these antibodies, and/or may have some or all of the hypervariable region residues of these antibodies.

The agonist antibody may be one which decreases body weight and/or fat-depot weight and/or food intake in an obese mammal (e.g. in an ob/ob mouse). The preferred agonist antibody is one which exerts an adipose-reducing effect in an obese mammal (e.g. an ob/ob mouse) which is in excess of that induced by a reduction in food intake (Levin et al. Proc. Natl. Acad. Sci. USA 93:1726-1730 (1996)).

The agonist antibody may also have the property of inducing differentiation and/or proliferation and/or survival of hematopoietic progenitor cells. For example, the agonist antibody may induce lymphopoiesis, erythropoiesis and/or myelopoiesis.

The invention further provides a composition comprising the agonist antibody and a physiologically acceptable carrier. The composition for therapeutic use is sterile and may be lyophilized. For use in hematopoiesis, for example, the composition may further comprise a cytokine.

In another aspect, the invention provides a method for activating the WSX receptor which comprises exposing the WSX receptor to an amount of an agonist anti-WSX receptor antibody which is effective for activating the WSX receptor. The invention further provides a method for enhancing proliferation and/or differentiation of a cell which expresses the WSX receptor at its cell surface comprising exposing the cell to an amount of exogenous agonist anti-WSX receptor antibody which is effective for enhancing proliferation and/or differentiation of the cell. In another embodiment, the

5

10

invention provides a method for decreasing body weight and/or fat-depot weight and/or food intake in an obese mammal (e.g. a human) comprising administering an effective amount of the agonist antibody to the mammal. Also, the invention provides a method for treating the medical sequelae of obesity in a mammal, such as, e.g., arteriosclerosis, Type II diabetes, polycystic ovarian disease, cardiovascular diseases, osteoarthritis, dermatological disorders, hypertension, insulin resistance, hypercholesterolemia, hypertriglyceridemia, cancer and cholelithiasis, comprising administering an effective amount of an agonist anti-WSX receptor antibody to the mammal. The mammal to be treated may be one diagnosed with any one or more of these diseases, or may be predisposed to these diseases.

In another aspect, the present invention pertains to the discovery herein that WSX ligands, such as obesity (OB) protein, play a role in hematopoiesis via signalling through the WSX receptor. The role of the WSX receptor-ligand signalling pathway appears to be at the level of the early hematopoietic precursor as is evident by the ability of OB protein to simulate myelopoiesis, erythropoiesis (e.g. splenic erythropoiesis) and most dramatically, lymphopoiesis. Accordingly, WSX ligands can be used to stimulate proliferation and/or differentiation and/or survival of hematopoietic progenitor cells either *in vitro* or *in vivo* (e.g. for treating hematopoietic diseases or disorders).

Thus, the invention provides a method for stimulating proliferation and/or differentiation of a cell which expresses the WSX receptor (especially the WSX receptor variant 13.2, which is demonstrated herein to have the capacity to transmit a proliferative signal) at its cell surface comprising the step of contacting the WSX receptor with an amount of WSX ligand which is effective for stimulating proliferation and/or OB protein differentiation of the cell. In prefered embodiments, the cell which is exposed to the WSX ligand is a hematopoeitic precursor, e.g. a CD34+ cell. The WSX ligand may be OB protein or an agonist antibody which binds to the WSX receptor. For in vivo use, the WSX ligand of choice may be a long half-life derivative of an OB protein, such as OBimmunoglobulin chimera and/or OB protein modified with a nonproteinaceous polymer, such as polyethylene glycol (PEG). The method contemplated herein may lead to an increase in the proliferation and/or differentiation of lymphoid, myeloid and/or erythroid blood cell lineages and encompasses both in vitro and in vivo methods. For in vitro uses, the cell possessing the WSX receptor may be present in cell culture. As to in vivo methods, the cell may be present in a mammal, especially a human (e.g. one who is suffering from decreased blood levels and who could benefit from an increase in various blood cells). Potential patients include those who have undergone chemo- or radiation therapy, or bone marrow transplantation therapy. Thus, the invention provides a method for repopulating blood cells (e.g. erythroid, myeloid and/or lymphoid blood cells) in a

5

10

mammal comprising administering to the mammal a therapeutically effective amount of a WSX ligand.

Mammals which may benefit from an enhancement of lymphopoiesis include those predisposed to, or suffering from, any ony or more of the following exemplary conditions: lymphocytopenia; lymphorrhea; lymphostasis; immunodeficiency (e.g. HIV and AIDS); infections (including, for example, opportunistic infections and tuberculosis (TB)); lupus; and other disorders characterized by lymphocyte deficiency. An effective amount of the WSX ligand can be used in a method of immunopotentiation or to improve immune function in a mammal.

On the other hand, WSX receptor or WSX ligand antagonists (such as WSX receptor ECD or immunoadhesin, and WSX receptor or OB protein neutralizing antibodies) may be used in the treatment of those disorders wherein unacceptable lymphocyte levels are present in the mammal, particularly where this is caused by excessive activation of the WSX receptor. Examples of conditions in which administration of such an antagonist may be beneficial include: neoplastic disorders (such as Hodkin's disease; lymphosarcoma; lymphoblastoma; lymphocytic leukemia; and lymphoma) and lymphocytosis.

Diseases or disorders in which an increase in erythropoiesis may be beneficial include, but are not limited to: erythrocytopenia; erthrodegenerative disorders; erythroblastopenia; leukoerythroblastosis; erythroclasis; thalassemia; and anemia (e.g. hemolytic anemia, such as acquired, autoimmune, or microangiopathic hemolytic anemia; aplastic anemia; congenital anemia, e.g., congenital dyserythropoietic anemia, congenital hemolytic anemia or congenital hypoplastic anemia; dyshemopoietic anemia; Faconi's anemia; genetic anemia; hemorrhagic anemia; hyperchromic or hypochromic anemia; nutritional, hypoferric, or iron deficiency anemia; hypoplastic anemia; infectious anemia; lead anemia; local anemia; macrocytic or microcytic anemia; malignant or pernicious anemia; megaloblastic anemia; molecular anemia; normocytic anemia; physiologic anemia; traumatic or posthemorrhagic anemia; refractory anemia; radiation anemia; sickle cell anemia; splenic anemia; and toxic anemia).

Conversely, WSX receptor or WSX ligand antagonists may be used to treat those conditions in which excessive erythrocyte levels are present in a mammal, *e.g.* in neoplastic disorders such as erythroleukemia; erythroblastosis; and erythrocythemia or polycythemia.

An increase in myelopoiesis may be beneficial in any of the above-mentioned diseases or disorders as well as the following exemplary conditions: myelofibrosis; thrombocytopenia; hypoplasia; disseminated intravascular coagulation (DIC); immune (autoimmune) thrombocytopenic purpura (ITP); HIV induced ITP; myelodysplasia; thrombocytotic diseases and thrombocytosis.

5

10

Antagonists of the WSX receptor-WSX ligand interaction may also be used to treat myeloid cell-related conditions such as malignancies (*e.g.* myelosarcoma, myeloblastoma, myeloma, myeloleukemia and myelocytomatosis); myeloblastosis; myelocytosis; and myelosis.

The method may further involve the step of exposing hematopoeitic cells (whether they be in cell culture or in a mammal) to one or more other cytokines (e.g. lineage-specific cytokines) and this may lead to a synergistic enhancement of the proliferation and/or differentiation of the cells. Exemplary cytokines include thrombopoietin (TPO); erythropoietin (EPO); macrophage-colony stimulating factor (M-CSF); granulocyte-macrophage-CSF (GM-CSF); granulocyte-CSF (G-CSF); interleukin-1 (IL-1); IL-1 α ; IL-2; IL-3; IL-4; IL-5; IL-6; IL-7; IL-8; IL-9; IL-11; IL10; IL-12; leukemia inhibitory factor (LIF) or kit ligand (KL). In this embodiment, exposure to the cytokine may proceed, occur simultaneously with, or follow, exposure to the WSX ligand. Preferably, the WSX ligand and one or more further cytokines are administered simultaneously to the patient (where the method is an *in vivo* one) and, optionally, are combined to form a pharmaceutical composition.

For use in the above methods, the invention also provides an article of manufacture, comprising: a container; a label on the container; and a composition comprising an active agent within the container; wherein the composition is effective for enhancing proliferation and/or differentiation of cells comprising the WSX receptor in a mammal, the label on the container indicates that the composition can be used for enhancing proliferation and/or differentiation of those cells and the active agent in the composition is a WSX ligand. Optionally, the article of manufacture includes one or more futher containers which hold further cytokine(s) in a packaged combination with the container holding the WSX ligand.

In another embodiment, an effective amount of the WSX ligand may be used to improve engraftment in bone marrow transplantation or to stimulate mobilization of hematopoietic stem cells in a mammal prior to harvesting hematopoietic progenitors from the peripheral blood thereof.

According to a further aspect, the invention is concerned with the WSX cytokine receptor and a soluble form of the receptor which is the WSX receptor extracellular domain (ECD). The WSX receptor polypeptides are optionally conjugated with, or fused to, molecules which increase the serum half-lives thereof and can be formulated as pharmaceutical compositions comprising the polypeptide and a physiologically acceptable carrier.

In certain embodiments, the WSX receptor ECD may be used as an antagonist insofar as it may bind to WSX ligand and thereby reduce activation of endogenous WSX receptor. This may be useful in conditions characterized by excess levels of WSX ligand and/or excess WSX receptor activation in a mammal. WSX receptor ECD may, for example, be used to treat metabolic disorders

10

(e.g., anorexia or steroid-induced truncalobesity), stem cell tumors and other tumors which express WSX receptor.

Pharmaceutical compositions of the WSX receptor ECD may further include a WSX ligand. Such dual compositions may be beneficial where it is therapeutically useful to prolong the half-life of WSX ligand and/or activate endogenous WSX receptor directly as a heterotrimeric complex.

The invention also relates to chimeric WSX receptor molecules, such as WSX receptor immunoadhesins (having long half-lives in the serum of a patient treated therewith) and epitope tagged WSX receptor. Immunoadhesins may be employed as WSX receptor antagonists in conditions or disorders in which neutralization of WSX receptor biological activity may be beneficial. Bispecific immunoadhesins (combining a WSX receptor ECD with a domain of another cytokine receptor) may form high affinity binding complexes for WSX ligand.

The invention further provides methods for identifying a molecule which binds to and/or activates the WSX receptor. This is useful for discovering molecules (such as peptides, antibodies, and small molecules) which are agonists or antagonists of the WSX receptor. Such methods generally involve exposing an immobilized WSX receptor to a molecule suspected of binding thereto and determining binding of the molecule to the immobilized WSX receptor and/or evaluating whether or not the molecule activates (or blocks activation of) the WSX receptor. In order to identify such WSX ligands, the WSX receptor may be expressed on the surface of a cell and used to screen libraries of synthetic compounds and naturally occurring compounds (e.g., endogenous sources of such naturally occurring compounds, such as serum). The WSX receptor can also be used as a diagnostic tool for measuring serum levels of endogenous WSX ligand.

In a further embodiment, a method for purifying a molecule which binds to the WSX receptor is provided. This can be used in the commercial production and purification of therapeutically active molecules which bind to this receptor. In the method, the molecule of interest (generally a composition comprising one or more contaminants) is adsorbed to immobilized WSX receptor (e.g., WSX receptor immunoadhesin immobilized on a protein A column). The contaminants, by virtue of their inability to bind to the WSX receptor, will generally flow through the column. Accordingly, it is then possible to recover the molecule of interest from the column by changing the elution conditions, such that the molecule no longer binds to the immobilized receptor.

In further embodiments, the invention provides antibodies that specifically bind to the WSX receptor. Preferred antibodies are monoclonal antibodies which are non-immunogenic in a human and bind to an epitope in the extracellular domain of the receptor. Preferred antibodies bind the WSX receptor with an affinity of at least about 10⁶ L/mole, more preferably 10⁷ L/mole.

5

10

Antibodies which bind to the WSX receptor may optionally be fused to a heterologous polypeptide and the antibody or fusion thereof may be used to isolate and purify WSX receptor from a source of the receptor.

In a further aspect, the invention provides a method for detecting the WSX receptor *in vitro* or *in vivo* comprising contacting the antibody with a sample suspected of containing the receptor and detecting if binding has occurred. Based on the observation herein that CD34+ cells possess WSX receptor, use of WSX antibodies for identification and/or enrichment of stem cell populations (in a similar manner to that in which CD34 antibodies are presently used) is envisaged.

For certain applications, it is desirable to have an agonist antibody which can be screened for as described herein. Such agonist antibodies are useful for activating the WSX receptor for *in vitro* uses whereby enhancement of proliferation and/or differentiation of a cell comprising the receptor is desired. Furthermore, these antibodies may be used to treat conditions in which an effective amount of WSX receptor activation leads to a therapeutic benefit in the mammal treated therewith. For example, the agonist antibody can be used to enhance survival, proliferation and/or differentiation of a cell comprising the WSX receptor. In particular, agonist antibodies and other WSX ligands may be used to stimulate proliferation of stem cells/progenitor cells either *in vitro* or *in vivo*. Other potential therapeutic applications include the use of agonist antibodies to treat metabolic disorders (such as obesity and diabetes) and to promote kidney, liver or lung growth and/or repair (e.g., in renal failure).

For therapeutic applications it is desirable to prepare a composition comprising the agonist antibody and a physiologically acceptable carrier. Optionally, such a composition may further comprise one or more cytokines.

In other embodiments, the antibody is a neutralizing antibody. Such molecules can be used to treat conditions characterized by unwanted or excessive activation of the WSX receptor.

In addition to the above, the invention provides isolated nucleic acid molecules, expression vectors and host cells encoding the WSX receptor which can be used in the recombinant production of WSX receptor as described herein. The isolated nucleic acid molecules and vectors are also useful for gene therapy applications to treat patients with WSX receptor defects and/or to increase responsiveness of cells to WSX ligand.

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1A-H together depict the double stranded nucleotide (SEQ ID NO:1) and deduced amino acid sequence (SEQ ID NO:2) encoding full length human WSX receptor variant 13.2. Nucleotides are numbered at the beginning of the sense strand. Amino acid residues are numbered

5

10

at the beginning of the amino acid sequence. Restriction enzyme sites are depicted above the nucleotide sequence.

Figs. 2A-B together depict an amino acid sequence alignment of full length human WSX receptor variants 6.4 (SEQ ID NO:3), 12.1 (SEQ ID NO:4) and 13.2, respectively. Homologous residues are boxed. WSX receptor variants 6.4, 12.1 and 13.2 are native sequence human WSX receptor variants which, without being bound to any one theory, appear to be generated by alternate splicing of WSX receptor mRNA. The putative signal peptide, transmembrane, Box 1, Box 2, and Box 3 domains are indicated. The extracellular and cytoplasmic domains are amino- and carboxy-terminal, respectively, to the transmembrane domain. The Box 1-3 domains shown correspond to the box 1-3 motifs described in Baumann *et al.*, *Mol. Cell. Biol.* 14(1):138-146 (1994).

Figs. 3A-E together depict an alignment of the nucleotide sequences encoding human WSX receptor variants 6.4 (SEQ ID NO:5), 12.1 (SEQ ID NO:6) and 13.2, respectively.

Figs. 4A-B depict an alignment of the full length human WSX receptor variant 13.2 amino acid sequence (top) with that of partial murine WSX receptor extracellular domain sequence (bottom) (SEQ ID NO:7) obtained as described in Example 7. The putative murine signal peptide is marked with an arrow.

Figs. 5A-F represent an alignment of the nucleotide sequences encoding human WSX receptor variant 13.2 (bottom) and partial murine WSX receptor extracellular domain (top) (SEQ ID NO:8), respectively.

Fig. 6 is a bar graph depicting results of the thymidine incorporation assay described in Example 5. ³H-thymidine incorporation (counts per minute, CPM) in parental Baf3 cells or Baf3 cells electroporated with GH/WSX variant 13.2 chimera in the presence of varying concentrations of human growth hormone (GH) is shown.

Fig. 7 shows the human and murine oligonucleotides (SEQ ID NOS:9-38, respectively) used for the antisense experiment described in Example 8.

Figs. 8 and 9 show thymidine incorporation assays in Baf-3 cells. For these assays, cells were deprived of IL-3 for 16-18 hours (in RPMI 1640 supplemented with 10% fetal calf serum (FCS)). Cells were washed in serum free RPMI 1640 and plated at 50,000 cells per well in 0.2 mls of serum free RPMI 1640 supplemented with the indicated concentration of human GH or human OB protein. Cells were stimulated for 24 hours and thymidine incorporation was determined as described (Zeigler et al. Blood 84:2422-2430 (1994)). Assays were performed in triplicate and the results were confirmed in three independent experiments.

5

10

In Fig. 8, GH receptor-WSX receptor variant 12.1 or 13.2 chimeric proteins were expressed in Baf-3 cells as described in Example 5. These transfected cells and the parental Baf-3 line were stimulated with hGH and the incorporation of titrated thymidine determined.

In Fig. 9, Baf-3 cells were stably transfected with WSX receptor variant 13.2. Thymidine incorporation was then determined in these cell lines following stimulation with human OB protein.

In Figs. 10A-C, murine fetal liver AA4*Sca*Kit* (flASK) stem cells were cultured in suspension culture or methylcellulose. In Fig. 10A, flASK cells were cultured in suspension culture containing serum with kit ligand (KL) or kit ligand and OB protein. Cell counts and cytospin analyses were performed 7 days later. In Fig. 10B, flASK cells were seeded into methylcellulose under either myeloid or lymphoid conditions as described in Example 10. Colony counts were performed 14 days later. For colonies produced under lymphoid conditions, FACS analysis demonstrated the vast majority of cells to be B220 positive. In Fig. 10C, flASK cells were seeded into methylcellulose containing kit ligand. To this base media, erythropoietin (EPO) or erythropoietin and OB protein were then added. The resultant colonies were counted 14 days later. FACS analysis demonstrated approximately 95% of these colonies to be TER 119 positive. All assays were performed in triplicate and confirmed in at least three independent experiments.

Fig. 11 illustrates methylcellulose assays to determine the colony forming potential of *db/db*, *ob/ob* and the corresponding wild-type marrow. 100,000 bone marrow cells were seeded into methylcellulose and the resultant colonies counted after 14 days. Assays were performed using both myeloid and lymphoid conditions. Assays were performed in triplicate and the experiments were repeated a minimum of 3 times.

Figs. 12A-B show bone marrow cellular profiles in wild-type misty gray homozygotes, misty gray/db heterozygotes, and homozygote db/db mice. Overall cellularity in the db/db marrow was unchanged compared to controls. Fig. 12A shows cellular profiles determined using anti-B220, anti-CD43, and anti-TER119 antibodies. Fig. 12B shows cellular profiles of the spleens from the above groups.

Figs. 13A-C are an analysis of peripheral blood in *db/db* homozygotes, *db/db* misty gray heterozygotes and misty gray homozygotes. 40 microliters of peripheral blood was taken via orbital bleed and analyzed on a Serrono Baker system 9018. All areas described by the boxes represent the mean ± one standard deviation of the two parameters.

Fig. 14 is a comparison of peripheral lymphocyte counts and blood glucose level. Five groups of animals, misty-gray, misty-gray/db, db/db, interferon α -transgenic, and glucokinase transgenic heterozygote mice (gLKa) were sampled via retro-orbital bleed. Blood glucose levels in

5

10

these mice were determined. All areas described by the boxes represent the mean \pm standard deviation of the two parameters.

In Figs. 15A-C, misty gray homozygotes, *db*/misty gray heterozygotes, and homozygous *db/db* mice were subjected to sub-lethal irradiation and the recovery kinetics of the peripheral blood was determined via retro-orbital bleeds.

Figs. 16A-16Q together show the nucleotide sequence (SEQ ID NO:46) and the amino acid sequence (SEQ ID NO: 47) of the human OB-immunoglobulin chimera in the plasmid described in of Example 11.

Fig. 17 shows binding of anti-WSX receptor agonist antibodies to human WSX receptor. The anti-WSX receptor agonist antibodies (2D7 and 1G4) produced as described in Example 13 and an IgG isotope control were evaluated for their ability to bind to human WSX receptor by capture ELISA.

Fig. 18 shows the activity of mAbs 2D7 and 1G4 as well as OB protein in the KIRA ELISA (see Example 13). Absorbance at 490nm versus concentration of antibody or ligand in this assay is shown.

Fig. 19 depicts binding of anti-WSX receptor agonist antibodies to murine WSX receptor. The anti-WSX receptor agonist antibodies (2D7 and 1G4) and an IgG isotope control were evaluated for their ability to bind to murine WSX receptor by capture ELISA.

Figs. 20A-B show the results of epitope mapping of the agonist anti-WSX receptor antibodies produced as described in Example 13. Fig. 20A shows blocking ability of anti-WSX receptor antibodies on Epitope A using biotinylated 2D7. Fig. 20B shows blocking ability of anti-WSX receptor antibodies on Epitope B using biotinylated 1C11. Based on the competitive binding ELISA, 2D7 bound a different epitope from 1E11, 1C11 and 1G4.

Fig. 21 depicts an alignment of the amino acid sequences of full length human WSX receptor variant 6.4 (hWSXR) (SEQ ID NO:3) and murine WSX receptor (mWSXR) (SEQ ID NO:51).

Fig. 22 is a standard curve for human OB protein in the KIRA ELISA, which illustrates schematically inside the graph WSX receptor KIRA ELISA panning with scFv phage as described in Example 14.

Fig. 23 shows the activity of clone # 3, #4 and # 17 scFv phage from Example 14 and anti-HER2 scFv phage control in the KIRA ELISA. Absorbance versus phage titer is shown.

Fig. 24 shows the activity of clone # 3, #4 and # 17 scFv from Example 14, anti-HER2 scFv control (Her2 clone) and OB protein in the KIRA ELISA. Absorbance versus antibody concentration is shown.

Fig. 25 aligns the amino acid sequences of agonist antibody clone #3 (3.scFv) (SEQ ID NO:48), clone #4 (4.scFv) (SEQ ID NO:49) and clone #17 (17.scFv) (SEQ ID NO:50) obtained as

10

described in Example 14. Complementarity determining region (CDR) residues according to Kabat et al., Sequences of Proteins of Immunological Interest. 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991) are underlined and hypervariable loop (Chothia et al., Nature 342:8767 (1989)) are in italics.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. **Definitions**

In describing the present invention, the following terms will be employed, and are intended to be defined as indicated below.

The terms "WSX receptor" or "WSX receptor polypeptide" when used herein encompass native sequence WSX receptor; WSX receptor variants; WSX extracellular domain; and chimeric WSX receptor (each of which is defined herein). Optionally, the WSX receptor is not associated with native glycosylation. "Native glycosylation" refers to the carbohydrate moieties which are covalently attached to WSX receptor when it is produced in the mammalian cell from which it is derived in nature. Accordingly, human WSX receptor produced in a non-human cell is an example of a WSX receptor which is "not associated with native glycosylation". Sometimes, the WSX receptor is unglycosylated (e.g., as a result of being produced recombinantly in a prokaryote).

"WSX ligand" is a molecule which binds to and activates native sequence WSX receptor (especially WSX receptor variant 13.2). The ability of a molecule to bind to WSX receptor can be determined by the ability of a putative WSX ligand to bind to WSX receptor immunoadhesin (see Example 2) coated on an assay plate, for example. The thymidine incorporation assay provides a means for screening for WSX ligands which activate the WSX receptor. Exemplary WSX ligands include anti-WSX receptor agonist antibodies and OB protein (e.g., described in Zhang et al. Nature 372:425-431 (1994)).

The terms "OB protein" and "OB" are used interchangeably herein and refer to native sequence OB proteins (also known as "leptins") and their functional derivatives.

A "native sequence" polypeptide is one which has the same amino acid sequence as a polypeptide (e.g., WSX receptor or OB protein) derived from nature. Such native sequence polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. Thus, a native sequence polypeptide can have the amino acid sequence of naturally occurring human polypeptide, murine polypeptide, or polypeptide from any other mammalian species.

The term "native sequence WSX receptor" specifically encompasses naturally-occurring truncated forms of the WSX receptor, naturally-occurring variant forms (e.g., alternatively spliced

-13-

25

5

10

forms such as human WSX receptor variants 6.4, 12.1 and 13.2 described herein) and naturally-occurring allelic variants of the WSX receptor. The preferred native sequence WSX receptor is a mature native sequence human WSX receptor, such as human WSX receptor variant 6.4, human WSX receptor variant 12.1 or human WSX receptor variant 13.2 (each shown in Figs. 2A-B). Most preferred is mature human WSX receptor variant 13.2.

The term "native sequence OB protein" includes those OB proteins from any animal species (e.g. human, murine, rabbit, cat, cow, sheep, chicken, porcine, equine, etc.) as occurring in nature. The definition specifically includes variants with or without a glutamine at amino acid position 49, using the amino acid numbering of Zhang et al., supra. The term "native sequence OB protein" includes the native proteins with or without the initiating N-terminal methionine (Met), and with or without the native signal sequence, either in monomeric or in dimeric form. The native sequence human and murine OB proteins known in the art are 167 amino acids long, contain two conserved cysteines, and have the features of a secreted protein. The protein is largely hydrophilic, and the predicted signal sequence cleavage site is at position 21, using the amino acid numbering of Zhang et al., supra. The overall sequence homology of the human and murine sequences is about 84%. The two proteins show a more extensive identity in the N-terminal region of the mature protein, with only four conservative and three non-conservative substitutions among the residues between the signal sequence cleavage site and the conserved Cys at position 117. The molecular weight of OB protein is about 16 kD in a monomeric form.

The "WSX receptor extracellular domain" (ECD) is a form of the WSX receptor which is essentially free of the transmembrane and cytoplasmic domains of WSX receptor, *i.e.*, has less than 1% of such domains, preferably 0.5 to 0% of such domains, and more preferably 0.1 to 0% of such domains. Ordinarily, the WSX receptor ECD will have an amino acid sequence having at least about 95% amino acid sequence identity with the amino acid sequence of the ECD of WSX receptor indicated in Figs. 2A-B for human WSX receptor variants 6.4, 12.1 and 13.2, preferably at least about 98%, more preferably at least about 99% amino acid sequence identity, and thus includes WSX receptor variants as defined below.

A "variant" polypeptide means a biologically active polypeptide as defined below having less than 100% sequence identity with a native sequence polypeptide (e.g., WSX receptor having the deduced amino acid sequence shown in Figs. 1A-H for human WSX receptor variant 13.2). Such variants include polypeptides wherein one or more amino acid residues are added at the N- or C-terminus of, or within, the native sequence; from about one to thirty amino acid residues are deleted, and optionally substituted by one or more amino acid residues; and derivatives of the above polypeptides, wherein an amino acid residue has been covalently modified so that the resulting

5

10

product has a non-naturally occurring amino acid. Ordinarily, a biologically active WSX receptor variant will have an amino acid sequence having at least about 90% amino acid sequence identity with human WSX receptor variant 13.2 shown in Figs. 1A-H, preferably at least about 95%, more preferably at least about 99%. Ordinarily, a biologically active OB protein variant will have an amino acid sequence having at least about 90% amino acid sequence identity with a native sequence OB protein, preferably at least about 95%, more preferably at least about 99%.

A "chimeric" OB protein or WSX receptor is a polypeptide comprising OB protein or full-length WSX receptor or one or more domains thereof (*e.g.*, the extracellular domain of the WSX receptor) fused or bonded to heterologous polypeptide. The chimeric WSX receptor will generally share at least one biological property in common with human WSX receptor variant 13.2. The chimeric OB protein will generally share at least one biological property in common with a native sequence OB protein. Examples of chimeric polypeptides include immunoadhesins and epitope tagged polyeptides.

The term "WSX immunoadhesin" is used interchangeably with the expression "WSX receptor-immunoglobulin chimera" and refers to a chimeric molecule that combines a portion of the WSX receptor (generally the extracellular domain thereof) with an immunoglobulin sequence. Likewise, an "OB protein immunoadhesin" or "OB-immunoglobulin chimera" refers to a chimeric molecule which combines OB protein (or a portion thereof) with an immunoglobulin sequence. The immunoglobulin sequence preferably, but not necessarily, is an immunoglobulin constant domain. The immunoglobulin moiety in the chimeras of the present invention may be obtained from IgG1, IgG2, IgG3 or IgG4 subtypes, IgA, IgE, IgD or IgM, but preferably IgG1 or IgG3.

The term "epitope tagged" when used herein refers to a chimeric polypeptide comprising WSX receptor or OB protein fused to a "tag polypeptide". The tag polypeptide has enough residues to provide an epitope against which an antibody thereagainst can be made, yet is short enough such that it does not interfere with biological activity of the WSX receptor or OB protein. The tag polypeptide preferably also is fairly unique so that the antibody thereagainst does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8-50 amino acid residues (preferably between about 9-30 residues).

"Isolated" WSX receptor (or OB protein) means WSX receptor (or OB protein) that has been purified from a WSX receptor (or OB protein) source or has been prepared by recombinant or synthetic methods and is sufficiently free of other peptides or proteins (1) to obtain at least 15 and preferably 20 amino acid residues of the N-terminal or of an internal amino acid sequence by using a spinning cup sequenator or the best commercially available amino acid sequenator marketed or

5

10

as modified by published methods as of the filing date of this application, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Homogeneity here means less than about 5% contamination with other source proteins.

"Essentially pure" protein means a composition comprising at least about 90% by weight of the protein, based on total weight of the composition, preferably at least about 95% by weight. "Essentially homogeneous" protein means a composition comprising at least about 99% by weight of protein, based on total weight of the composition.

"Biological property" when used in conjunction with either "WSX receptor" or "isolated WSX receptor" means having an effector or antigenic function or activity that is directly or indirectly caused or performed by native sequence WSX receptor (whether in its native or denatured conformation). Effector functions include ligand binding; and enhancement of survival, differentiation and/or proliferation of cells (especially proliferation of cells). However, effector functions do not include possession of an epitope or antigenic site that is capable of cross-reacting with antibodies raised against native sequence WSX receptor.

"Biological property" when used in conjunction with either "OB protein" or "isolated OB protein" means having an effector function that is directly or indirectly caused or performed by native sequence OB protein. Effector functions of native sequence OB protein include WSX receptor binding and activation; and enhancement of differentiation and/or proliferation of cells expressing this receptor (as determined in the thymidine incorporation assay, for example). A "biologically active" OB protein is one which possesses a biological property of native sequence OB protein.

A "functional derivative" of a native sequence OB protein is a compound having a qualitative biological property in common with a native sequence OB protein. "Functional derivatives" include, but are not limited to, fragments of native sequence OB proteins and derivatives of native sequence OB proteins and their fragments, provided that they have a biological activity in common with a corresponding native sequence OB protein. The term "derivative" encompasses both amino acid sequence variants of OB protein and covalent modifications thereof.

The phrase "long half-life" as used in connection with OB derivatives, concerns OB derivatives having a longer plasma half-life and/or slower clearance than a corresponding native sequence OB protein. The long half-life derivatives preferably will have a half-life at least about 1.5-times longer than a native OB protein; more preferably at least about 2-times longer than a native OB protein, more preferably at least about 3-time longer than a native OB protein. The native OB protein preferably is that of the individual to be treated.

An "antigenic function" means possession of an epitope or antigenic site that is capable of cross-reacting with antibodies raised against native sequence WSX receptor. The principal antigenic

5

10

function of a WSX receptor is that it binds with an affinity of at least about 10⁶ L/mole to an antibody raised against native sequence WSX receptor. Ordinarily, the polypeptide binds with an affinity of at least about 10⁷ L/mole. The antibodies used to define "antigenic function" are rabbit polyclonal antibodies raised by formulating the WSX receptor in Freund's complete adjuvant, subcutaneously injecting the formulation, and boosting the immune response by intraperitoneal injection of the formulation until the titer of the anti-WSX receptor or antibody plateaus.

"Biologically active" when used in conjunction with either "WSX receptor" or "isolated WSX receptor" means a WSX receptor polypeptide that exhibits or shares an effector function of native sequence WSX receptor and that may (but need not) in addition possess an antigenic function. A principal effector function of the WSX receptor is its ability to induce proliferation of CD34+ human umbilical cord blood cells in the colony assay described in Example 8.

"Antigenically active" WSX receptor is defined as a polypeptide that possesses an antigenic function of WSX receptor and that may (but need not) in addition possess an effector function.

"Percent amino acid sequence identity" is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the native sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. None of N-terminal, C-terminal, or internal extensions, deletions, or insertions into the candidate sequence shall be construed as affecting sequence identity or homology.

A "thymidine incorporation assay" can be used to screen for molecules which activate the WSX receptor. In order to perform this assay, IL-3 dependent Baf3 cells (Palacios *et al., Cell*, 41:727-734 (1985)) are stably transfected with full length native sequence WSX receptor as described in Example 4. The WSX receptor/Baf3 cells so generated are starved of IL-3 for, *e.g.*, 24 hours in a humidified incubator at 37°C in 5%CO₂ and air. Following IL-3 starvation, the cells are plated out in 96 well culture dishes with, or without, a test sample containing a potential agonist (such test samples are optionally diluted) and cultured for 24 hours in a cell culture incubator. 20µl of serum free RPMI media containing 1µCi of ³H thymidine is added to each well for the last 6-8 hours. The cells are then harvested in 96 well filter plates and washed with water. The filters are then counted using a Packard Top Count Microplate Scintillation Counter, for example. Agonists are expected to induce a statistically significant increase (to a P value of 0.05) in ³H uptake, relative to control. Preferred agonists leads to an increase in ³H uptake which is at least two fold of that of the control.

An "isolated" WSX receptor nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily

10

associated in the natural source of the WSX receptor nucleic acid. An isolated WSX receptor nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated WSX receptor nucleic acid molecules therefore are distinguished from the WSX receptor nucleic acid molecule as it exists in natural cells. However, an isolated WSX receptor nucleic acid molecule includes WSX receptor nucleic acid molecules contained in cells that ordinarily express WSX receptor where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

The expression "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, a ribosome binding site, and possibly, other as yet poorly understood sequences. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

As used herein, the expressions "cell," "cell line," and "cell culture" are used interchangeably and all such designations include progeny. Thus, the words "transformants" and "transformed cells" include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context.

The term "antibody" is used in the broadest sense and specifically covers monoclonal antibodies, antibody compositions with polyepitopic specificity, bispecific antibodies, diabodies, and single-chain molecules, as well as antibody fragments (e.g., Fab, F(ab')₂, and Fv), so long as they exhibit the desired biological activity.

5

10

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Patent No. 4,816,567 (Cabilly et al.)). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature 352:624-628 (1991) and Marks et al., J. Mol. Biol. 222:581-597 (1991), for example.

The monoclonal antibodies herein specifically include "chimeric" antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (Cabilly *et al.*, *supra*; Morrison *et al.*, *Proc. Natl. Acad. Sci. USA*, 81:6851-6855 (1984)).

"Humanized" forms of non-human (*e.g.*, murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues which are found neither in the recipient

5

10

antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and optimize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones *et al.*, *Nature* 321:522-525 (1986); Reichmann *et al.*, *Nature* 332:323-329 (1988); and Presta, *Curr. Op. Struct. Biol.* 2:593-596 (1992). The humanized antibody includes a Primatized[™] antibody wherein the antigen-binding region of the antibody is derived from an antibody produced by immunizing macaque monkeys with the antigen of interest.

The term "hypervariable region" when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region comprises amino acid residues from a "complementarity determining region" or "CDR" (*i.e.* residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat *et al.*, Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)) and/or those residues from a "hypervariable loop" (*i.e.* residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk *J. Mol. Biol.* 196:901-917 (1987)). "Framework" or "FR" residues are those variable domain residues other than the hypervariable region residues as herein defined.

"Non-immunogenic in a human" means that upon contacting the polypeptide of interest in a physiologically acceptable carrier and in a therapeutically effective amount with the appropriate tissue of a human, no state of sensitivity or resistance to the polypeptide of interest is demonstrable upon the second administration of the polypeptide of interest after an appropriate latent period (*e.g.*, 8 to 14 days).

By "agonist antibody" is meant an antibody which is able to activate native sequence WSX receptor. The agonist antibody of particular interest herein is one which mimics one or more (e.g. all) of the biological properties of naturally occurring WSX ligand, OB protein. In preferred embodiments, the agonist antibody has a quantitative biological property of OB protein which is within about two orders of magnitude, and preferably within about one order of magnitude, that of OB protein. The agonist antibody may bind to and activate WSX receptor and thereby stimulate proliferation and/or differentiation and/or maturation and/or survival of a cell which expresses the

5

10

WSX receptor (e.g. WSX receptor variant 13.2). In this embodiment of the invention, the agonist antibody may be one which enhances proliferation and/or differentiation of a hematopoietic progenitor cell which expresses the WSX receptor at its cell surface; enhances proliferation and/or differentiation of lymphoid blood cell lineages; enhances proliferation and/or differentiation of myeloid blood cell lineages; and/or enhances proliferation and/or differentiation of erythroid blood cell lineages. The agonist antibody may display agonist activity upon binding to a chimeric receptor comprising the WSX receptor extracellular domain in the KIRA ELISA. The agonist antibody may stimulate ³H uptake in the thymidine incorporation assay using a signaling WSX receptor (see above); decrease body weight and/or fat-depot weight and/or food intake in an obese mammal (e.g. in the ob/ob mouse); effect Ca²⁺ influx in adipocytes; and/or activate downstream signaling molecules of OB protein.

A "neutralizing antibody" is one which is able to block or significantly reduce an effector function of native sequence WSX receptor or OB protein. For example, a neutralizing antibody may inhibit or reduce WSX receptor activation by a WSX ligand as determined in the thymidine incorporation assay or in a KIRA ELISA.

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., I^{131} , I^{125} , Y^{90} and Re^{186}), chemotherapeutic agents, and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin, or fragments thereof.

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include Adriamycin, Doxorubicin, 5-Fluorouracil, Cytosine arabinoside ("Ara-C"), Cyclophosphamide, Thiotepa, Taxotere (docetaxel), Busulfan, Cytoxin, Taxol, Methotrexate, Cisplatin, Melphalan, Vinblastine, Bleomycin, Etoposide, Ifosfamide, Mitomycin C, Mitoxantrone, Vincreistine, Vinorelbine, Carboplatin, Teniposide, Daunomycin, Carminomycin, Aminopterin, Dactinomycin, Mitomycins, Esperamicins (see U.S. Pat. No. 4,675,187), Melphalan and other related nitrogen mustards.

The term "prodrug" as used in this application refers to a precursor or derivative form of a pharmaceutically active substance that is less cytotoxic to tumor cells compared to the parent drug and is capable of being enzymatically activated or converted into the more active parent form. See, e.g., Wilman, "Prodrugs in Cancer Chemotherapy" *Biochemical Society Transactions*, 14, pp. 375-382, 615th Meeting Belfast (1986) and Stella et al., "Prodrugs: A Chemical Approach to Targeted Drug Delivery," *Directed Drug Delivery*, Borchardt et al., (ed.), pp. 247-267, Humana Press (1985). The prodrugs of this invention include, but are not limited to, phosphate-containing prodrugs, thiophosphate-containing prodrugs, sulfate-containing prodrugs, peptide-containing prodrugs, D-

5

10

amino acid-modified prodrugs, glycosylated prodrugs, β -lactam-containing prodrugs, optionally substituted phenoxyacetamide-containing prodrugs or optionally substituted phenylacetamide-containing prodrugs, 5-fluorocytosine and other 5-fluorouridine prodrugs which can be converted into the more active cytotoxic free drug. Examples of cytotoxic drugs that can be derivatized into a prodrug form for use in this invention include, but are not limited to, those chemotherapeutic agents described above.

An "antagonist" of the WSX receptor and/or OB protein is a molecule which prevents, or interferes with, binding and/or activation of the WSX receptor or OB protein. Such molecules can be screened for their ability to competitively inhibit WSX receptor activation by OB protein in the thymidine incorporation assay disclosed herein, for example. Examples of such molecules include: WSX receptor ECD; WSX receptor immunoadhesin; neutralizing antibodies against WSX receptor or OB protein; small molecule and peptide antagonists; and antisense nucleotides against the WSX receptor or ob gene.

The phrase "enhancing proliferation of a cell" encompasses the step of increasing the extent of growth and/or reproduction of the cell relative to an untreated cell either *in vitro* or *in vivo*. An increase in cell proliferation in cell culture can be detected by counting the number of cells before and after exposure to a molecule of interest. The extent of proliferation can be quantified via microscopic examination of the degree of confluency. Cell proliferation can also be quantified using the thymidine incorporation assay described herein.

By "enhancing differentiation of a cell" is meant the act of increasing the extent of the acquisition or possession of one or more characteristics or functions which differ from that of the original cell (i.e. cell specialization). This can be detected by screening for a change in the phenotype of the cell (e.g., identifying morphological changes in the cell).

A "hematopoietic progenitor cell" or "primitive hematopoietic cell" is one which is able to differentiate to form a more committed or mature blood cell type.

"Lymphoid blood cell lineages" are those hematopoietic precursor cells which are able to differentiate to form lymphocytes (B-cells or T-cells). Likewise, "lymphopoeisis" is the formation of lymphocytes.

"Erythroid blood cell lineages" are those hematopoietic precursor cells which are able to differentiate to form erythrocytes (red blood cells) and "erythropoeisis" is the formation of erythrocytes.

The phrase "myeloid blood cell lineages", for the purposes herein, encompasses all hematopoietic precursor cells, other than lymphoid and erythroid blood cell lineages as defined

5

10

above, and "myelopoiesis" involves the formation of blood cells (other than lymphocytes and erythrocytes).

A "CD34+ cell population" is enriched for hematopoietic stem cells. A CD34+ cell population can be obtained from umbilical cord blood or bone marrow, for example. Human umbilical cord blood CD34+ cells can be selected for using immunomagnetic beads sold by Miltenyi (California), following the manufacturer's directions.

"Physiologically acceptable" carriers, excipients, or stabilizers are ones which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).

As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgG1, IgG2, IgG3, and IgG4) that is responsible for increasing the *in vivo* serum half-life of the IgG molecule. Exemplary salvage receptor binding epitope sequences include HQNLSDGK (SEQ ID NO:39); HQNISDGK (SEQ ID NO:40); HQSLGTQ (SEQ ID NO:41); VISSHLGQ (SEQ ID NO:42); and PKNSSMISNTP (SEQ ID NO:43).

The term "cytokine" is a generic term for proteins released by one cell population which act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are OB protein; growth hormones such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor- α and - β ; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGF- β ; platelet-growth factor; transforming growth factors (TGFs) such as TGF- α and TGF- β ; insulin-like growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon- α , - β , and - γ ; colony stimulating factors (CSFs) such as macrophage-

10

CSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1, IL-1 α , IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-11, IL-12; and other polypeptide factors including leukemia inhibitory factor (LIF) and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence cytokines.

A "lineage-specific cytokine" is one which acts on relatively committed cells in the hematopoietic cascade and gives rise to an expansion in blood cells of a single lineage. Examples of such cytokines include EPO, TPO, and G-CSF.

"Treatment" refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented.

The term "obesity" is used to designate a condition of being overweight associated with excessive bodily fat. The desirable weight for a certain individual depends on a number of factors including sex, height, age, overall built, etc. The same factors will determine when an individual is considered obese. The determination of an optimum body weight for a given individual is well within the skill of an ordinary physician.

"Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, *etc.* Preferably, the mammal is human.

By "solid phase" is meant a non-aqueous matrix to which a reagent of interest (e.g., the WSX receptor or an antibody thereto) can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Patent No. 4,275,149.

II. Modes for Carrying Out the Invention

The present invention is based on the discovery of the WSX receptor. The experiments described herein demonstrate that this molecule is a cytokine receptor which appears to play a role in enhancing proliferation and/or differentiation of hematopoietic cells. In particular, this receptor has been found to be present in enriched human stem cell populations, thus indicating that WSX ligands, such as agonist antibodies, may be used to stimulate proliferation of hematopoietic stem cells/progenitor cells. Other uses for this receptor will be apparent from the following discussion.

A description follows as to how WSX receptor or OB proteins may be prepared.

-24-

5

10

A. Preparation of WSX Receptor or OB Protein

Techniques suitable for the production of WSX receptor or OB protein are well known in the art and include isolating WSX receptor or OB protein from an endogenous source of the polypeptide, peptide synthesis (using a peptide synthesizer) and recombinant techniques (or any combination of these techniques). The preferred technique for production of WSX receptor or OB protein is a recombinant technique to be described below.

Most of the discussion below pertains to recombinant production of WSX receptor or OB protein by culturing cells transformed with a vector containing WSX receptor or OB protein nucleic acid and recovering the polypeptide from the cell culture. It is further envisioned that the WSX receptor or OB protein of this invention may be produced by homologous recombination, as provided for in WO 91/06667, published 16 May 1991.

Briefly, this method involves transforming primary human cells containing a WSX receptor or OB protein-encoding gene with a construct (*i.e.*, vector) comprising an amplifiable gene (such as dihydrofolate reductase (DHFR) or others discussed below) and at least one flanking region of a length of at least about 150 bp that is homologous with a DNA sequence at the locus of the coding region of the WSX receptor or OB protein gene to provide amplification of the WSX receptor or OB protein gene. The amplifiable gene must be at a site that does not interfere with expression of the WSX receptor or OB protein gene. The transformation is conducted such that the construct becomes homologously integrated into the genome of the primary cells to define an amplifiable region.

Primary cells comprising the construct are then selected for by means of the amplifiable gene or other marker present in the construct. The presence of the marker gene establishes the presence and integration of the construct into the host genome. No further selection of the primary cells need be made, since selection will be made in the second host. If desired, the occurrence of the homologous recombination event can be determined by employing PCR and either sequencing the resulting amplified DNA sequences or determining the appropriate length of the PCR fragment when DNA from correct homologous integrants is present and expanding only those cells containing such fragments. Also if desired, the selected cells may be amplified at this point by stressing the cells with the appropriate amplifying agent (such as methotrexate if the amplifiable gene is DHFR), so that multiple copies of the target gene are obtained. Preferably, however, the amplification step is not conducted until after the second transformation described below.

After the selection step, DNA portions of the genome, sufficiently large to include the entire amplifiable region, are isolated from the selected primary cells. Secondary mammalian expression host cells are then transformed with these genomic DNA portions and cloned, and clones are

10

selected that contain the amplifiable region. The amplifiable region is then amplified by means of an amplifying agent if not already amplified in the primary cells. Finally, the secondary expression host cells now comprising multiple copies of the amplifiable region containing WSX receptor or OB protein are grown so as to express the gene and produce the protein.

1. Isolation of DNA Encoding WSX Receptor or OB Protein

The DNA encoding WSX receptor or OB protein may be obtained from any cDNA library prepared from tissue believed to possess the WSX receptor or OB protein mRNA and to express it at a detectable level. Accordingly, WSX receptor or OB protein DNA can be conveniently obtained from a cDNA library prepared from mammalian fetal liver. The WSX receptor or OB protein-encoding gene may also be obtained from a genomic library or by oligonucleotide synthesis.

Libraries are screened with probes (such as antibodies to the WSX receptor or OB protein, or oligonucleotides of about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures as described in chapters 10-12 of Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual* (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding WSX receptor or OB protein is to use PCR methodology as described in section 14 of Sambrook *et al.*, *supra*.

A preferred method of practicing this invention is to use carefully selected oligonucleotide sequences to screen cDNA libraries from various human tissues, preferably human fetal liver. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized.

The oligonucleotide must be labeled such that it can be detected upon hybridization to DNA in the library being screened. The preferred method of labeling is to use ³²P-labeled ATP with polynucleotide kinase, as is well known in the art, to radiolabel the oligonucleotide. However, other methods may be used to label the oligonucleotide, including, but not limited to, biotinylation or enzyme labeling.

Amino acid sequence variants of WSX receptor or OB protein are prepared by introducing appropriate nucleotide changes into the WSX receptor or OB protein DNA, or by synthesis of the desired WSX receptor or OB protein. Such variants represent insertions, substitutions, and/or specified deletions of, residues within or at one or both of the ends of the amino acid sequence of a naturally occurring human WSX receptor or OB protein, such as the WSX receptor variants shown in Figs 2A-B or the human OB protein of Zhang et al., supra. Preferably, these variants represent insertions and/or substitutions within or at one or both ends of the mature sequence, and/or insertions, substitutions and/or specificed deletions within or at one or both of the ends of the signal

5

10

sequence of the WSX receptor or OB protein. Any combination of insertion, substitution, and/or specified deletion is made to arrive at the final construct, provided that the final construct possesses the desired biological activity as defined herein. The amino acid changes also may alter post-translational processes of the WSX receptor or OB protein, such as changing the number or position of glycosylation sites, altering the membrane anchoring characteristics, and/or altering the intracellular location of the WSX receptor or OB protein by inserting, deleting, or otherwise affecting the leader sequence of the WSX receptor or OB protein.

Variations in the native sequence as described above can be made using any of the techniques and guidelines for conservative and non-conservative mutations set forth in U.S. Pat. No. 5,364,934. These include oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. See also, for example, Table I therein and the discussion surrounding this table for guidance on selecting amino acids to change, add, or delete.

2. Insertion of Nucleic Acid into Replicable Vector

The nucleic acid (e.g., cDNA or genomic DNA) encoding the WSX receptor or OB protein is inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. Many vectors are available. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.

a. Signal sequence component

The WSX receptor or OB proteins of this invention may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which is preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the WSX receptor or OB protein DNA that is inserted into the vector. The heterologous signal sequence selected preferably is one that is recognized and processed (*i.e.*, cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the native WSX receptor or OB protein signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the native signal sequence may be substituted by, e.g., the yeast invertase leader, α factor leader (including *Saccharomyces* and *Kluyveromyces* α-factor leaders, the latter described in U.S. Pat. No. 5,010,182 issued 23 April 1991), or acid phosphatase leader, the *C. albicans* glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In

10

30

mammalian cell expression the native signal sequence (e.g., the WSX receptor or OB protein presequence that normally directs secretion of WSX receptor or OB protein from human cells *in vivo*) is satisfactory, although other mammalian signal sequences may be suitable, such as signal sequences from other animal WSX receptors or OB proteins, and signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders, for example, the herpes simplex gD signal.

The DNA for such precursor region is ligated in reading frame to DNA encoding the mature WSX receptor or OB protein.

b. Origin of replication component

Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2µ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).

Most expression vectors are "shuttle" vectors, *i.e.*, they are capable of replication in at least one class of organisms but can be transfected into another organism for expression. For example, a vector is cloned in *E. coli* and then the same vector is transfected into yeast or mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.

DNA may also be amplified by insertion into the host genome. This is readily accomplished using *Bacillus* species as hosts, for example, by including in the vector a DNA sequence that is complementary to a sequence found in *Bacillus* genomic DNA. Transfection of *Bacillus* with this vector results in homologous recombination with the genome and insertion of WSX receptor or OB protein DNA. However, the recovery of genomic DNA encoding WSX receptor or OB protein is more complex than that of an exogenously replicated vector because restriction enzyme digestion is required to excise the WSX receptor or OB protein DNA.

c. Selection gene component

Expression and cloning vectors should contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells

10

ij 25

grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.

One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin, mycophenolic acid and hygromycin.

Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the WSX receptor or OB protein nucleic acid, such as DHFR or thymidine kinase. The mammalian cell transformants are placed under selection pressure that only the transformants are uniquely adapted to survive by virtue of having taken up the marker. Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes WSX receptor or OB protein. Amplification is the process by which genes in greater demand for the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Increased quantities of WSX receptor or OB protein are synthesized from the amplified DNA. Other examples of amplifiable genes include metallothionein-I and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, etc.

For example, cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980). The transformed cells are then exposed to increased levels of methotrexate. This leads to the synthesis of multiple copies of the DHFR gene, and, concomitantly, multiple copies of other DNA comprising the expression vectors, such as the DNA encoding WSX receptor or OB protein. This amplification technique can be used with any otherwise suitable host, e.g., ATCC No. CCL61 CHO-K1, notwithstanding the presence of endogenous DHFR if, for example, a mutant DHFR gene that is highly resistant to Mtx is employed (EP 117,060).

Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding WSX receptor or OB protein, wild-type

-29-

5

10

DHFR protein, and another selectable marker such as aminoglycoside 3'-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, *e.g.*, kanamycin, neomycin, or G418. See U.S. Patent No. 4,965,199.

A suitable selection gene for use in yeast is the *trp*1 gene present in the yeast plasmid YRp7 (Stinchcomb *et al.*, *Nature* 282:39 (1979)). The *trp*1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, *Genetics* 85:12 (1977). The presence of the *trp*1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, *Leu*2-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the *Leu*2 gene.

In addition, vectors derived from the 1.6 µm circular plasmid pKD1 can be used for transformation of *Kluyveromyces* yeasts. Bianchi *et al.*, *Curr. Genet.* 12:185 (1987). More recently, an expression system for large-scale production of recombinant calf chymosin was reported for *K. lactis.* Van den Berg, *Bio/Technology* 8:135 (1990). Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of *Kluyveromyces* have also been disclosed. Fleer *et al.*, *Bio/Technology* 9:968-975 (1991).

d. Promoter Component

Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the WSX receptor or OB protein nucleic acid. Promoters are untranslated sequences located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of particular nucleic acid sequence, such as the WSX receptor or OB protein nucleic acid sequence, to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to WSX receptor or OB protein-encoding DNA by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector. Both the native WSX receptor or OB protein promoter sequence and many heterologous promoters may be used to direct amplification and/or expression of the WSX receptor or OB protein DNA. However, heterologous promoters are

10

preferred, as they generally permit greater transcription and higher yields of WSX receptor or OB protein as compared to the native WSX receptor or OB protein promoter.

Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems (Chang *et al.*, *Nature* 275:615 (1978); Goeddel *et al.*, *Nature* 281:544 (1979)), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, *Nucleic Acids Res.* 8:4057 (1980); EP 36,776), and hybrid promoters such as the tac promoter. deBoer *et al.*, *Proc. Natl. Acad. Sci. USA* 80:21-25 (1983). However, other known bacterial promoters are suitable. Their nucleotide sequences have been published, thereby enabling a skilled worker operably to ligate them to DNA encoding WSX receptor or OB protein (Siebenlist *et al.*, *Cell* 20:269 (1980)) using linkers or adaptors to supply any required restriction sites. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding WSX receptor or OB protein.

Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an ATrich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.

Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman *et al.*, *J. Biol. Chem.* 255:2073 (1980)) or other glycolytic enzymes (Hess *et al.*, *J. Adv. Enzyme Reg.* 7:149 (1968); Holland, *Biochemistry* 17:4900 (1978)), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Yeast enhancers also are advantageously used with yeast promoters.

WSX receptor or OB protein transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, *e.g.*, the actin promoter or an

5

10

immunoglobulin promoter, from heat-shock promoters, and from the promoter normally associated with the WSX receptor or OB protein sequence, provided such promoters are compatible with the host cell systems.

The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication. Fiers *et al.*, *Nature* 273:113 (1978); Mulligan *et al.*, *Science* 209:1422-1427 (1980); Pavlakis *et al.*, *Proc. Natl. Acad. Sci. USA* 78:7398-7402 (1981). The immediate early promoter of the human cytomegalovirus is conveniently obtained as a <u>Hindlll</u> E restriction fragment. Greenaway *et al.*, *Gene* 18:355-360 (1982). A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Patent No. 4,419,446. A modification of this system is described in U.S. Patent No. 4,601,978. See also Gray *et al.*, *Nature* 295:503-508 (1982) on expressing cDNA encoding immune interferon in monkey cells; Reyes *et al.*, *Nature* 297:598-601 (1982) on expression of human β-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus; Canaani *et al.*, *Proc. Natl. Acad. Sci. USA* 79:5166-5170 (1982) on expression of the human interferon β1 gene in cultured mouse and rabbit cells; and Gorman *et al.*, *Proc. Natl. Acad. Sci. USA* 79:6777-6781 (1982) on expression of bacterial CAT sequences in CV-1 monkey kidney cells, chicken embryo fibroblasts, Chinese hamster ovary cells, HeLa cells, and mouse NIH-3T3 cells using the Rous sarcoma virus long terminal repeat as a promoter.

e. Enhancer element component

Transcription of a DNA encoding the WSX receptor or OB protein of this invention by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Enhancers are cisacting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent, having been found 5' (Laimins *et al.*, *Proc. Natl. Acad. Sci. USA* 78:993 (1981)) and 3' (Lusky *et al.*, *Mol. Cell Bio.* 3:1108 (1983)) to the transcription unit, within an intron (Banerji *et al.*, *Cell* 33:729 (1983)), as well as within the coding sequence itself. Osborne *et al.*, *Mol. Cell Bio.* 4:1293 (1984). Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, *Nature* 297:17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to the WSX receptor or OB protein-encoding sequence, but is preferably located at a site 5' from the promoter.

10

f. Transcription termination component

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding WSX receptor or OB protein.

g. Construction and analysis of vectors

Construction of suitable vectors containing one or more of the above-listed components employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and re-ligated in the form desired to generate the plasmids required.

For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures are used to transform *E. coli* K12 strain 294 (ATCC 31,446) and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced by the method of Messing *et al.*, *Nucleic Acids Res.* 9:309 (1981) or by the method of Maxam *et al.*, *Methods in Enzymology* 65:499 (1980).

h. Transient expression vectors

Particularly useful in the practice of this invention are expression vectors that provide for the transient expression in mammalian cells of DNA encoding WSX receptor or OB protein. In general, transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector. Sambrook *et al.*, *supra*, pp. 16.17 - 16.22. Transient expression systems, comprising a suitable expression vector and a host cell, allow for the convenient positive identification of polypeptides encoded by cloned DNAs, as well as for the rapid screening of such polypeptides for desired biological or physiological properties. Thus, transient expression systems are particularly useful in the invention for purposes of identifying analogs and variants of WSX receptor or OB protein that are biologically active WSX receptor or OB protein.

i. Suitable exemplary vertebrate cell vectors

Other methods, vectors, and host cells suitable for adaptation to the synthesis of WSX receptor or OB protein in recombinant vertebrate cell culture are described in Gething *et al.*, *Nature* 293:620-625 (1981); Mantei *et al.*, *Nature* 281:40-46 (1979); EP 117,060; and EP 117,058. A

5

10

particularly useful plasmid for mammalian cell culture expression of WSX receptor or OB protein is pRK5 (EP 307,247) or pSVI6B. WO 91/08291 published 13 June 1991.

3. Selection and Transformation of Host Cells

Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote. yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 April 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. One preferred E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. Strain W3110 is a particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell should secrete minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins, with examples of such hosts including E. coli W3110 strain 27C7. The complete genotype of 27C7 is tonAΔ ptr3 phoAΔE15 Δ(argF-lac)169 ompTΔ degP41kan^r. Strain 27C7 was deposited on 30 October 1991 in the American Type Culture Collection as ATCC No. 55,244. Alternatively, the strain of E. coli having mutant periplasmic protease disclosed in U.S. Patent No. 4,946,783 issued 7 August 1990 may be employed. Alternatively still, methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for WSX receptor or OB protein-encoding vectors. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe (Beach et al., Nature, 290:140 (1981); EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Patent No. 4,943,529; Fleer et al., supra) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., supra), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol. 28:265-278 (1988)); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA 76:5259-5263 (1979)); Schwanniomyces such as Schwanniomyces

5

10

occidentalis (EP 394,538 published 31 October 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 January 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun. 112:284-289 (1983); Tilburn et al., Gene 26:205-221 (1983); Yelton et al., Proc. Natl. Acad. Sci. USA 81:1470-1474 (1984)) and A. niger. Kelly et al., EMBO J. 4:475-479 (1985).

Suitable host cells for the expression of glycosylated WSX receptor or OB protein are derived from multicellular organisms. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as *Spodoptera frugiperda* (caterpillar), *Aedes aegypti* (mosquito), *Aedes albopictus* (mosquito), *Drosophila melanogaster* (fruitfly), and *Bombyx mori* have been identified. See, e.g., Luckow et al., *Bio/Technology* 6:47-55 (1988); Miller et al., in *Genetic Engineering*, Setlow et al., eds., Vol. 8 (Plenum Publishing, 1986), pp. 277-279; and Maeda et al., *Nature* 315:592-594 (1985). A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of *Autographa californica* NPV and the Bm-5 strain of *Bombyx mori* NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of *Spodoptera frugiperda* cells.

Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can be utilized as hosts. Typically, plant cells are transfected by incubation with certain strains of the bacterium *Agrobacterium tumefaciens*, which has been previously manipulated to contain the WSX receptor or OB protein-encoding DNA. During incubation of the plant cell culture with *A. tumefaciens*, the DNA encoding the WSX receptor or OB protein is transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express the WSX receptor or OB protein-encoding DNA. In addition, regulatory and signal sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences. Depicker et al., J. Mol. Appl. Gen. 1:561 (1982). In addition, DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or increasing transcription levels of plant-expressible genes in recombinant DNA-containing plant tissue. EP 321,196 published 21 June 1989.

However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. See, e.g., Tissue Culture, Academic Press, Kruse and Patterson, editors (1973). Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59

5

10

(1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub *et al., Proc. Natl. Acad. Sci. USA* 77:4216 (1980)); mouse sertoli cells (TM4, Mather, *Biol. Reprod.* 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather *et al., Annals N.Y. Acad. Sci.* 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).

Host cells are transfected and preferably transformed with the above-described expression or cloning vectors for WSX receptor or OB protein production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.

Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO₄ and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.

Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in section 1.82 of Sambrook *et al.*, *supra*, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with *Agrobacterium tumefaciens* is used for transformation of certain plant cells, as described by Shaw *et al.*, *Gene* 23:315 (1983) and WO 89/05859 published 29 June 1989. In addition, plants may be transfected using ultrasound treatment as described in WO 91/00358 published 10 January 1991.

For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham *et al.*, *Virology* 52:456-457 (1978) is preferred. General aspects of mammalian cell host system transformations have been described in U.S. Pat. No. 4,399,216 issued 16 August 1983. Transformations into yeast are typically carried out according to the method of Van Solingen *et al.*, *J. Bact.* 130:946 (1977) and Hsiao *et al.*, *Proc. Natl. Acad. Sci. USA* 76:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, *e.g.*, polybrene, polyornithine, *etc.*, may also be

10

used. For various techniques for transforming mammalian cells, see Keown *et al.*, *Methods in Enzymology* 185:527-537 (1990) and Mansour *et al.*, *Nature* 336:348-352 (1988).

4. Culturing the Host Cells

Prokaryotic cells used to produce the WSX receptor or OB protein of this invention are cultured in suitable media as described generally in Sambrook *et al.*, *supra*.

The mammalian host cells used to produce the WSX receptor or OB protein of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al. Meth. Enz. 58:44 (1979), Barnes et al., Anal. Biochem. 102:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Patent Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin. transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN[™] drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

In general, principles, protocols, and practical techniques for maximizing the productivity of mammalian cell cultures can be found in *Mammalian Cell Biotechnology: a Practical Approach*, M. Butler, ed. (IRL Press, 1991).

The host cells referred to in this disclosure encompass cells in culture as well as cells that are within a host animal.

5. Detecting Gene Amplification/Expression

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA (Thomas, *Proc. Natl. Acad. Sci. USA* 77:5201-5205 (1980)), dot blotting (DNA analysis), or *in situ* hybridization, using an appropriately labeled probe, based on the sequences provided herein. Various labels may be employed, most commonly radioisotopes, particularly ³²P. However, other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a

-37-

30

5

10

polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product coupled, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, luminescent labels, and the like. A particularly sensitive staining technique suitable for use in the present invention is described by Hsu *et al.*, *Am. J. Clin. Path.* 75:734-738 (1980).

Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared as described herein.

6. Purification of WSX Receptor or OB Protein

WSX receptor (e.g., WSX receptor ECD) or OB protein preferably is recovered from the culture medium as a secreted polypeptide, although it also may be recovered from host cell lysates. If the WSX receptor is membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100)

When WSX receptor or OB protein is produced in a recombinant cell other than one of human origin, the WSX receptor or OB protein is completely free of proteins or polypeptides of human origin. However, it is necessary to purify WSX receptor or OB protein from recombinant cell proteins or polypeptides to obtain preparations that are substantially homogeneous as to WSX receptor or OB protein. As a first step, the culture medium or lysate is centrifuged to remove particulate cell debris. WSX receptor or OB protein thereafter is purified from contaminant soluble proteins and polypeptides, with the following procedures being exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75™; and protein A Sepharose™ columns to remove contaminants such as IgG.

WSX receptor or OB protein variants in which residues have been deleted, inserted, or substituted are recovered in the same fashion as native sequence WSX receptor or OB protein, taking account of any substantial changes in properties occasioned by the variation. Immunoaffinity columns such as a rabbit polyclonal anti-WSX receptor or OB protein column can be employed to absorb the WSX receptor or OB protein variant by binding it to at least one remaining immune epitope.

A protease inhibitor such as phenyl methyl sulfonyl fluoride (PMSF) also may be useful to inhibit proteolytic degradation during purification, and antibiotics may be included to prevent the growth of adventitious contaminants.

7. **Covalent Modifications**

Covalent modifications of WSX receptor or OB protein are included within the scope of this invention. Both native sequence WSX receptor or OB protein and amino acid sequence variants of the WSX receptor or OB protein may be covalently modified. One type of covalent modification of the WSX receptor or OB protein is introduced into the molecule by reacting targeted amino acid residues of the WSX receptor or OB protein with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues of the WSX receptor or OB protein.

Cysteinyl residues most commonly are reacted with α -haloacetates (and corresponding amines), such as chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, α-bromo-β-(5-imidozoyl)propionic acid, chloroacetyl phosphate, Nalkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p-chloromercuribenzoate, 2chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1,3-diazole.

Histidyl residues are derivatized by reaction with diethylpyrocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain. Para-bromophenacyl bromide also is useful; the reaction is preferably performed in 0.1M sodium cacodylate at pH 6.0.

Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing α -amino-containing residues include imidoesters such methyl pyridoxal phosphate, picolinimidate, pyridoxal, chloroborohydride. trinitrobenzenesulfonic acid, O-methylisourea, 2,4-pentanedione, and transaminase-catalyzed reaction with glyoxylate.

Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of

-39-

10

5

äl, The state of Q. 25

30

10

arginine residues requires that the reaction be performed under alkaline conditions because of the high pK_a of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as with the arginine epsilon-amino group.

The specific modification of tyrosyl residues may be made, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively. Tyrosyl residues are iodinated using ¹²⁵l or ¹³¹l to prepare labeled proteins for use in radioimmunoassay, the chloramine T method being suitable.

Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction with carbodiimides (R-N=C=N-R'), where R and R' are different alkyl groups, such as 1-cyclohexyl-3-(2-morpholinyl-4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

Derivatization with bifunctional agents is useful for crosslinking WSX receptor or OB protein to a water-insoluble support matrix or surface for use in the method for purifying anti-WSX receptor or OB protein antibodies, and vice-versa. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane. Derivatizing agents such as methyl-3-((p-azidophenyl)dithio)propioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Patent Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.

Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues, respectively. These residues are deamidated under neutral or basic conditions. The deamidated form of these residues falls within the scope of this invention.

Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α -amino groups of lysine, arginine, and histidine side chains (T.E. Creighton, *Proteins: Structure and Molecular Properties*, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

30

5

10

Another type of covalent modification of the WSX receptor or OB protein included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. By altering is meant deleting one or more carbohydrate moieties found in native WSX receptor or OB protein, and/or adding one or more glycosylation sites that are not present in the native WSX receptor or OB protein.

Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxylamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

Addition of glycosylation sites to the WSX receptor or OB protein is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the native WSX receptor or OB protein sequence (for O-linked glycosylation sites). For ease, the WSX receptor or OB protein amino acid sequence is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the WSX receptor or OB protein at preselected bases such that codons are generated that will translate into the desired amino acids. The DNA mutation(s) may be made using methods described above and in U.S. Pat. No. 5,364,934, *supra*.

Another means of increasing the number of carbohydrate moieties on the WSX receptor or OB protein is by chemical or enzymatic coupling of glycosides to the polypeptide. These procedures are advantageous in that they do not require production of the polypeptide in a host cell that has glycosylation capabilities for N- or O-linked glycosylation. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in WO 87/05330 published 11 September 1987, and in Aplin *et al., CRC Crit. Rev. Biochem.* 259-306 (1981).

Removal of carbohydrate moieties present on the WSX receptor or OB protein may be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the polypeptide to the compound trifluoromethanesulfonic acid, or an equivalent compound. This

5

10

treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin, et al., Arch. Biochem. Biophys. 259:52 (1987) and by Edge et al., Anal. Biochem. 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol. 138:350 (1987).

Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin *et al.*, *J. Biol. Chem.* 257:3105 (1982). Tunicamycin blocks the formation of protein-N-glycoside linkages.

Another type of covalent modification of WSX receptor or OB protein comprises linking the WSX receptor or OB protein to one of a variety of nonproteinaceous polymers, *e.g.*, polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

Since it is often difficult to predict in advance the characteristics of a variant WSX receptor or OB protein, it will be appreciated that some screening of the recovered variant will be needed to select the optimal variant. A change in the immunological character of the WSX receptor or OB protein molecule, such as affinity for a given antibody, is also able to be measured by a competitive-type immunoassay. The WSX receptor variant is assayed for changes in the ability of the protein to induce cell proliferation in the colony assay of Example 8. Other potential modifications of protein or polypeptide properties such as redox or thermal stability, hydrophobicity, susceptibility to proteolytic degradation, or the tendency to aggregate with carriers or into multimers are assayed by methods well known in the art.

8. Epitope-Tagged WSX Receptor or OB Protein

This invention encompasses chimeric polypeptides comprising WSX receptor or OB protein fused to a heterologous polypeptide. A chimeric WSX receptor or OB protein is one type of WSX receptor or OB protein variant as defined herein. In one preferred embodiment, the chimeric polypeptide comprises a fusion of the WSX receptor or OB protein with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally provided at the amino- or carboxyl- terminus of the WSX receptor or OB protein. Such epitopetagged forms of the WSX receptor or OB protein are desirable as the presence thereof can be detected using a labeled antibody against the tag polypeptide. Also, provision of the epitope tag enables the WSX receptor or OB protein to be readily purified by affinity purification using the anti-tag antibody. Affinity purification techniques and diagnostic assays involving antibodies are described later herein.

5

10

Tag polypeptides and their respective antibodies are well known in the art. Examples include the flu HA tag polypeptide and its antibody 12CA5 (Field *et al.*, *Mol. Cell. Biol.* 8:2159-2165 (1988)); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto (Evan *et al.*, *Molecular and Cellular Biology* 5:3610-3616 (1985)); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody. Paborsky *et al.*, *Protein Engineering* 3(6):547-553 (1990). Other tag polypeptides have been disclosed. Examples include the Flag-peptide (Hopp *et al.*, *BioTechnology* 6:1204-1210 (1988)); the KT3 epitope peptide (Martin *et al.*, *Science* 255:192-194 (1992)); an α-tubulin epitope peptide (Skinner *et al.*, *J. Biol. Chem.* 266:15163-15166 (1991)); and the T7 gene 10 protein peptide tag. Lutz-Freyermuth *et al.*, *Proc. Natl. Acad. Sci. USA* 87:6393-6397 (1990). Once the tag polypeptide has been selected, an antibody thereto can be generated using the techniques disclosed herein.

The general methods suitable for the construction and production of epitope-tagged WSX receptor or OB protein are the same as those disclosed hereinabove. WSX receptor or OB protein-tag polypeptide fusions are most conveniently constructed by fusing the cDNA sequence encoding the WSX receptor or OB protein portion in-frame to the tag polypeptide DNA sequence and expressing the resultant DNA fusion construct in appropriate host cells. Ordinarily, when preparing the WSX receptor or OB protein-tag polypeptide chimeras of the present invention, nucleic acid encoding the WSX receptor or OB protein will be fused at its 3' end to nucleic acid encoding the N-terminus of the tag polypeptide, however 5' fusions are also possible.

Epitope-tagged WSX receptor or OB protein can be conveniently purified by affinity chromatography using the anti-tag antibody. The matrix to which the affinity antibody is attached is most often agarose, but other matrices are available (e.g. controlled pore glass or poly(styrenedivinyl)benzene). The epitope-tagged WSX receptor or OB protein can be eluted from the affinity column by varying the buffer pH or ionic strength or adding chaotropic agents, for example.

9. WSX Receptor or OB Protein Immunoadhesins

Chimeras constructed from a receptor sequence linked to an appropriate immunoglobulin constant domain sequence (immunoadhesins) are known in the art. Immunoadhesins reported in the literature include fusions of the T cell receptor* (Gascoigne et al., Proc. Natl.Acad. Sci. USA 84: 2936-2940 (1987)); CD4* (Capon et al., Nature 337: 525-531 (1989); Traunecker et al., Nature 339: 68-70 (1989); Zettmeissl et al., DNA Cell Biol. USA 9: 347-353 (1990); Byrn et al., Nature 344: 667-670 (1990)); L-selectin (homing receptor) ((Watson et al., J. Cell. Biol. 110:2221-2229 (1990); Watson et al., Nature 349: 164-167 (1991)); CD44* (Aruffo et al., Cell 61: 1303-1313 (1990)); CD28*

5

10

and B7 (Linsley *et al.*, *J. Exp. Med.* 173: 721-730 (1991)); CTLA-4* (Lisley *et al.*, *J. Exp. Med.* 174: 561-569 (1991)); CD22* (Stamenkovic *et al.*, *Cell* 66:1133-1144 (1991)); TNF receptor (Ashkenazi *et al.*, *Proc. Natl. Acad. Sci. USA* 88: 10535-10539 (1991); Lesslauer *et al.*, *Eur. J. Immunol.* 27: 2883-2886 (1991); Peppel *et al.*, *J. Exp. Med.* 174:1483-1489 (1991)); NP receptors (Bennett *et al.*, *J. Biol. Chem.* 266:23060-23067 (1991)); and IgE receptor α* (Ridgway *et al.*, *J. Cell. Biol.* 115:abstr. 1448 (1991)), where the asterisk (*) indicates that the receptor is member of the immunoglobulin superfamily.

The simplest and most straightforward immunoadhesin design combines the binding region(s) of the "adhesin" protein with the hinge and Fc regions of an immunoglobulin heavy chain. Ordinarily, when preparing the WSX receptor or OB-immunoglobulin chimeras of the present invention, nucleic acid encoding OB protein or the extracellular domain of the WSX receptor will be fused C-terminally to nucleic acid encoding the N-terminus of an immunoglobulin constant domain sequence, however N-terminal fusions are also possible. For OB-immunoglobulin chimeras, an OB protein fragment which retains the ability to bind to the WSX receptor may be employed.

Typically, in such fusions the encoded chimeric polypeptide will retain at least functionally active hinge, CH2 and CH3 domains of the constant region of an immunoglobulin heavy chain. Fusions are also made to the C-terminus of the Fc portion of a constant domain, or immediately N-terminal to the CH1 of the heavy chain or the corresponding region of the light chain.

The precise site at which the fusion is made is not critical; particular sites are well known and may be selected in order to optimize the biological activity, secretion or binding characteristics of the WSX receptor or OB-immunoglobulin chimeras.

In some embodiments, the WSX receptor or OB-immunoglobulin chimeras are assembled as monomers, or hetero- or homo-multimers, and particularly as dimers or tetramers, essentially as illustrated in WO 91/08298.

In a preferred embodiment, the OB protein sequence or WSX receptor extracellular domain sequence is fused to the N-terminus of the C-terminal portion of an antibody (in particular the Fc domain), containing the effector functions of an immunoglobulin, e.g. immunoglobulin G1 (IgG1). It is possible to fuse the entire heavy chain constant region to the OB protein or WSX receptor extracellular domain sequence. However, more preferably, a sequence beginning in the hinge region just upstream of the papain cleavage site (which defines IgG Fc chemically; residue 216, taking the first residue of heavy chain constant region to be 114, or analogous sites of other immunoglobulins) is used in the fusion. In a particularly preferred embodiment, the OB protein or WSX receptor amino acid sequence is fused to the hinge region, CH2 and CH3, or the CH1, hinge, CH2 and CH3

10

domains of an IgG1, IgG2, or IgG3 heavy chain. The precise site at which the fusion is made is not critical, and the optimal site can be determined by routine experimentation.

In some embodiments, the WSX receptor or OB-immunoglobulin chimeras are assembled as multimers, and particularly as homo-dimers or -tetramers. Generally, these assembled immunoglobulins will have known unit structures. A basic four chain structural unit is the form in which IgG, IgD, and IgE exist. A four unit is repeated in the higher molecular weight immunoglobulins; IgM generally exists as a pentamer of basic four units held together by disulfide bonds. IgA globulin, and occasionally IgG globulin, may also exist in multimeric form in serum. In the case of multimer, each four unit may be the same or different.

Various exemplary assembled WSX receptor or OB-immunoglobulin chimeras within the scope herein are schematically diagrammed below:

- (a) $AC_L AC_L$;
- (b) $AC_H^-(AC_H, AC_L^-AC_H, AC_L^-V_H^-C_H, or V_L^-C_L^-AC_H)$;
- (c) $AC_1 AC_{H^-}(AC_1 AC_{H^+}, AC_1 V_HC_{H^+}, V_1C_1 AC_{H^+}, or V_1C_1 V_HC_{H^+});$
- (d) $AC_1-V_HC_{H-1}(AC_H, or AC_1-V_HC_H, or V_1C_1-AC_H);$
- (e) $V_LC_L-AC_H-(AC_L-V_HC_H)$, or $V_LC_L-AC_H$); and
- (f) $(A-Y)_n (V_1 C_1 V_H C_H)_2$,

wherein

each A represents identical or different OB protein or WSX receptor amino acid sequences;

V₁ is an immunoglobulin light chain variable domain;

V_H is an immunoglobulin heavy chain variable domain;

C_L is an immunoglobulin light chain constant domain;

C_H is an immunoglobulin heavy chain constant domain;

n is an integer greater than 1;

Y designates the residue of a covalent cross-linking agent.

In the interests of brevity, the foregoing structures only show key features; they do not indicate joining (J) or other domains of the immunoglobulins, nor are disulfide bonds shown. However, where such domains are required for binding activity, they shall be constructed as being present in the ordinary locations which they occupy in the immunoglobulin molecules.

Alternatively, the OB protein or WSX receptor extracellular domain sequence can be inserted between immunoglobulin heavy chain and light chain sequences such that an immunoglobulin comprising a chimeric heavy chain is obtained. In this embodiment, the OB protein or WSX receptor sequence is fused to the 3' end of an immunoglobulin heavy chain in each arm of an immunoglobulin, either between the hinge and the CH2 domain, or between the CH2 and CH3

30

5

10

domains. Similar constructs have been reported by Hoogenboom *et al.*, *Mol. Immunol.*, 28:1027-1037 (1991).

Although the presence of an immunoglobulin light chain is not required in the immunoadhesins of the present invention, an immunoglobulin light chain might be present either covalently associated to an OB protein or WSX receptor-immunoglobulin heavy chain fusion polypeptide, or directly fused to the WSX receptor extracellular domain or OB protein. In the former case, DNA encoding an immunoglobulin light chain is typically coexpressed with the DNA encoding the OB protein or WSX receptor-immunoglobulin heavy chain fusion protein. Upon secretion, the hybrid heavy chain and the light chain will be covalently associated to provide an immunoglobulin-like structure comprising two disulfide-linked immunoglobulin heavy chain-light chain pairs. Methods suitable for the preparation of such structures are, for example, disclosed in U.S. Patent No. 4,816,567 issued 28 March 1989.

In a preferred embodiment, the immunoglobulin sequences used in the construction of the immunoadhesins of the present invention are from an IgG immunoglobulin heavy chain constant domain. For human immunoadhesins, the use of human IgG1 and IgG3 immunoglobulin sequences is preferred. A major advantage of using IgG1 is that IgG1 immunoadhesins can be purified efficiently on immobilized protein A. In contrast, purification of IgG3 requires protein G, a significantly less versatile medium. However, other structural and functional properties of immunoglobulins should be considered when choosing the lg fusion partner for a particular immunoadhesin construction. For example, the IgG3 hinge is longer and more flexible, so it can accommodate larger adhesin domains that may not fold or function properly when fused to IgG1. Another consideration may be valency; IgG immunoadhesins are bivalent homodimers, whereas Ig subtypes like IgA and IgM may give rise to dimeric or pentameric structures, respectively, of the basic Ig homodimer unit. For immunoadhesins designed for in vivo application, the pharmacokinetic properties and the effector functions specified by the Fc region are important as well. Although IgG1, IgG2 and IgG4 all have in vivo half-lives of 21 days, their relative potencies at activating the complement system are different. IgG4 does not activate complement, and IgG2 is significantly weaker at complement activation than IgG1. Moreover, unlike IgG1, IgG2 does not bind to Fc receptors on mononuclear cells or neutrophils. While IgG3 is optimal for complement activation, its in vivo half-life is approximately one third of the other IgG isotypes. Another important consideration for immunoadhesins designed to be used as human therapeutics is the number of allotypic variants of the particular isotype. In general, IgG isotypes with fewer serologically-defined allotypes are preferred. For example, IgG1 has only four serologically-defined allotypic sites, two of which (G1m and 2) are located in the Fc region; and one of these sites G1m1, is non-immunogenic. In contrast,

5

10

there are 12 serologically-defined allotypes in IgG3, all of which are in the Fc region; only three of these sites (G3m5, 11 and 21) have one allotype which is nonimmunogenic. Thus, the potential immunogenicity of a $\gamma3$ immunoadhesin is greater than that of a $\gamma1$ immunoadhesin.

With respect to the parental immunoglobulin, a useful joining point is just upstream of the cysteines of the hinge that form the disulfide bonds between the two heavy chains. In a frequently used design, the codon for the C-terminal residue of the WSX receptor or OB protein part of the molecule is placed directly upstream of the codons for the sequence DKTHTCPPCP (SEQ ID NO:44) of the IgG1 hinge region.

The general methods suitable for the construction and expression of immunoadhesins are the same as those disclosed hereinabove with regard to WSX receptor and OB protein. Immunoadhesins are most conveniently constructed by fusing the cDNA sequence encoding the WSX receptor or OB protein portion in-frame to an Ig cDNA sequence. However, fusion to genomic Ig fragments can also be used (see, e.g., Gascoigne et al., Proc. Natl. Acad. Sci. USA, 84:2936-2940 (1987); Aruffo et al., Cell 61:1303-1313 (1990); Stamenkovic et al., Cell 66:1133-1144 (1991)). The latter type of fusion requires the presence of Ig regulatory sequences for expression. cDNAs encoding IgG heavy-chain constant regions can be isolated based on published sequence from cDNA libraries derived from spleen or peripheral blood lymphocytes, by hybridization or by polymerase chain reaction (PCR) techniques. The cDNAs encoding the WSX receptor or OB protein and lg parts of the immunoadhesin are inserted in tandem into a plasmid vector that directs efficient expression in the chosen host cells. For expression in mammalian cells, pRK5-based vectors (Schall et al., Cell 61:361-370 (1990)) and CDM8-based vectors (Seed, Nature 329:840 (1989)) can be used. The exact junction can be created by removing the extra sequences between the designed junction codons using oligonucleotide-directed deletional mutagenesis (Zoller et al., Nucleic Acids Res. 10:6487 (1982); Capon et al., Nature 337:525-531 (1989)). Synthetic oligonucleotides can be used, in which each half is complementary to the sequence on either side of the desired junction; ideally, these are 36 to 48-mers. Alternatively, PCR techniques can be used to join the two parts of the molecule in-frame with an appropriate vector.

The choice of host cell line for the expression of the immunoadhesin depends mainly on the expression vector. Another consideration is the amount of protein that is required. Milligram quantities often can be produced by transient transfections. For example, the adenovirus EIA-transformed 293 human embryonic kidney cell line can be transfected transiently with pRK5-based vectors by a modification of the calcium phosphate method to allow efficient immunoadhesin expression. CDM8-based vectors can be used to transfect COS cells by the DEAE-dextran method (Aruffo et al., Cell 61:1303-1313 (1990); Zettmeissl et al., DNA Cell Biol. US 9:347-353 (1990)). If

5

10

larger amounts of protein are desired, the immunoadhesin can be expressed after stable transfection of a host cell line. For example, a pRK5-based vector can be introduced into Chinese hamster ovary (CHO) cells in the presence of an additional plasmid encoding dihydrofolate reductase (DHFR) and conferring resistance to G418. Clones resistant to G418 can be selected in culture; these clones are grown in the presence of increasing levels of DHFR inhibitor methotrexate; clones are selected, in which the number of gene copies encoding the DHFR and immunoadhesin sequences is coamplified. If the immunoadhesin contains a hydrophobic leader sequence at its N-terminus, it is likely to be processed and secreted by the transfected cells. The expression of immunoadhesins with more complex structures may require uniquely suited host cells; for example, components such as light chain or J chain may be provided by certain myeloma or hybridoma cell hosts (Gascoigne et al., 1987, supra, Martin et al., J. Virol. 67:3561-3568 (1993)).

Immunoadhesins can be conveniently purified by affinity chromatography. The suitability of protein A as an affinity ligand depends on the species and isotype of the immunoglobulin Fc domain that is used in the chimera. Protein A can be used to purify immunoadhesins that are based on human y1, y2, or y4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human y3 (Guss et al., EMBO J. 5:1567-1575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices Mechanically stable matrices such as controlled available. pore glass poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. The conditions for binding an immunoadhesin to the protein A or G affinity column are dictated entirely by the characteristics of the Fc domain; that is, its species and isotype. Generally, when the proper ligand is chosen, efficient binding occurs directly from unconditioned culture fluid. One distinguishing feature of immunoadhesins is that, for human y1 molecules, the binding capacity for protein A is somewhat diminished relative to an antibody of the same Fc type. Bound immunoadhesin can be efficiently eluted either at acidic pH (at or above 3.0), or in a neutral pH buffer containing a mildly chaotropic salt. This affinity chromatography step can result in an immunoadhesin preparation that is >95% pure.

Other methods known in the art can be used in place of, or in addition to, affinity chromatography on protein A or G to purify immunoadhesins. Immunoadhesins behave similarly to antibodies in thiophilic gel chromatography (Hutchens *et al., Anal. Biochem.* 159:217-226 (1986)) and immobilized metal chelate chromatography (Al-Mashikhi *et al., J. Dairy Sci.* 71:1756-1763 (1988)). In contrast to antibodies, however, their behavior on ion exchange columns is dictated not only by their isoelectric points, but also by a charge dipole that may exist in the molecules due to their chimeric nature.

5

10

If desired, the immunoadhesins can be made bispecific. Thus, the immunoadhesins of the present invention may combine a WSX receptor extracellular domain and a domain, such as the extracellular domain, of another cytokine receptor subunit. Exemplary cytokine receptors from which such bispecific immunoadhesin molecules can be made include TPO (or *mpl* ligand), EPO, G-CSF, IL-4, IL-7, GH, PRL, IL-3, GM-CSF, IL-5, IL-6, LIF, OSM,CNTF and IL-2 receptors. Alternatively, an OB protein domain may be combined with another cytokine, such as those exemplified herein, in the generation of a bispecific immunoadhesin. For bispecific molecules, trimeric molecules, composed of a chimeric antibody heavy chain in one arm and a chimeric antibody heavy chain-light chain pair in the other arm of their antibody-like structure are advantageous, due to ease of purification. In contrast to antibody-producing quadromas traditionally used for the production of bispecific immunoadhesins, which produce a mixture of ten tetramers, cells transfected with nucleic acid encoding the three chains of a trimeric immunoadhesin structure produce a mixture of only three molecules, and purification of the desired product from this mixture is correspondingly easier.

10. Long Half-Life Derivatives of OB Protein

Prefered OB protein functional derivatives for use in the methods of the present invention include OB-immunoglobulin chimeras (immunoadhesins) and other longer half-life molecules. Techniques for generating OB protein immunoadhesins have been described above. The prefered OB immunoadhesin is made according to the techniques described in Example 11 below.

Other derivatives of the OB proteins, which possess a longer half-life than the native molecules comprise the OB protein or an OB-immunoglobulin chimera covalently bonded to a nonproteinaceous polymer. The nonproteinaceous polymer ordinarily is a hydrophilic synthetic polymer, i.e., a polymer not otherwise found in nature. However, polymers which exist in nature and are produced by recombinant or in vitro methods are useful, as are polymers which are isolated from native sources. Hydrophilic polyvinyl polymers fall within the scope of this invention, e.g. polyvinylalcohol and polyvinylpyrrolidone. Particularly useful are polyalkylene ethers such as polyethylene glycol (PEG); polyelkylenes such as polyoxyethylene, polyoxypropylene, and block copolymers of polyoxyethylene and polyoxypropylene (Pluronics™); polymethacrylates; carbomers; branched or unbranched polysaccharides which comprise the saccharide monomers D-mannose. D- and L-galactose, fucose, fructose, D-xylose, L-arabinose, D-glucuronic acid, sialic acid, Dgalacturonic acid, D-mannuronic acid (e.g. polymannuronic acid, or alginic acid), D-glucosamine, Dgalactosamine, D-glucose and neuraminic acid including homopolysaccharides and heteropolysaccharides such as lactose, amylopectin, starch, hydroxyethyl starch, amylose, dextrane sulfate, dextran, dextrins, glycogen, or the polysaccharide subunit of acid mucopolysaccharides, e.g. hyaluronic acid; polymers of sugar alcohols such as polysorbitol and polymannitol; heparin or

10

heparon. The polymer prior to cross-linking need not be, but preferably is, water soluble, but the final conjugate must be water soluble. In addition, the polymer should not be highly immunogenic in the conjugate form, nor should it possess viscosity that is incompatible with intravenous infusion or injection if it is intended to be administered by such routes.

Preferably the polymer contains only a single group which is reactive. This helps to avoid cross-linking of protein molecules. However, it is within the scope herein to optimize reaction conditions to reduce cross-linking, or to purify the reaction products through gel filtration or chromatographic sieves to recover substantially homogenous derivatives.

The molecular weight of the polymer may desirably range from about 100 to 500,000, and preferably is from about 1,000 to 20,000. The molecular weight chosen will depend upon the nature of the polymer and the degree of substitution. In general, the greater the hydrophilicity of the polymer and the greater the degree of substitution, the lower the molecular weight that can be employed. Optimal molecular weights will be determined by routine experimentation.

The polymer generally is covalently linked to the OB protein or to the OB-immunoglobulin chimera though a multifunctional crosslinking agent which reacts with the polymer and one or more amino acid or sugar residues of the OB protein or OB-immunoglobulin chimera to be linked. However, it is within the scope of the invention to directly crosslink the polymer by reacting a derivatized polymer with the hybrid, or via versa.

The covalent crosslinking site on the OB protein or OB-immunoglobulin chimera includes the N-terminal amino group and epsilon amino groups found on lysine residues, as well as other amino, imino, carboxyl, sulfhydryl, hydroxyl or other hydrophilic groups. The polymer may be covalently bonded directly to the hybrid without the use of a multifunctional (ordinarily bifunctional) crosslinking agent. Covalent binding to amino groups is accomplished by known chemistries based upon cyanuric chloride, carbonyl diimidazole, aldehyde reactive groups (PEG alkoxide plus diethyl acetal of bromoacetaldehyde; PEG plus DMSO and acetic anhydride, or PEG chloride plus the phenoxide of 4-hydroxybenzaldehyde, succinimidyl active esters, activated dithiocarbonate PEG, 2,4,5-trichlorophenylcloroformate or P-nitrophenylcloroformate activated PEG). Carboxyl groups are derivatized by coupling PEG-amine using carbodiimide.

Polymers are conjugated to oligosaccharide groups by oxidation using chemicals, e.g. metaperiodate, or enzymes, e.g. glucose or galactose oxidase (either of which produces the aldehyde derivative of the carbohydrate), followed by reaction with hydrazide or amino derivatized polymers, in the same fashion as is described by Heitzmann et al., P.N.A.S. 71:3537-41 (1974) or Bayer et al., Methods in Enzymology 62:310 (1979), for the labeling of oligosaccharides with biotin or avidin. Further, other chemical or enzymatic methods which have been used heretofore to link

30

10

oligosaccharides are particularly advantageous because, in general, there are fewer substitutions than amino acid sites for derivatization, and the oligosaccharide products thus will be more homogenous. The oligosaccharide substituents also are optionally modified by enzyme digestion to remove sugars, e.g. by neuraminidase digestion, prior to polymer derivatization.

The polymer will bear a group which is directly reactive with an amino acid side chain, or the N- or C-terminus of the polypeptide linked, or which is reactive with the multifunctional cross-linking agent. In general, polymers bearing such reactive groups are known for the preparation of immobilized proteins. In order to use such chemistries here, one should employ a water soluble polymer otherwise derivatized in the same fashion as insoluble polymers heretofore employed for protein immobilization. Cyanogen bromide activation is a particularly useful procedure to employ in crosslinking polysaccharides.

"Water soluble" in reference to the starting polymer means that the polymer or its reactive intermediate used for conjugation is sufficiently water soluble to participate in a derivatization reaction.

"Water soluble" in reference to the polymer conjugate means that the conjugate is soluble in physiological fluids such as blood.

The degree of substitution with such a polymer will vary depending upon the number of reactive sites on the protein, whether all or a fragment of the protein is used, whether the protein is a fusion with a heterologous protein (e.g. an OB-immunoglobulin chimera), the molecular weight, hydrophilicity and other characteristics of the polymer, and the particular protein derivatization sites chosen. In general, the conjugate contains about from 1 to 10 polymer molecules, while any heterologous sequence may be substituted with an essentially unlimited number of polymer molecules so long as the desired activity is not significantly adversely affected. The optimal degree of cross-linking is easily determined by an experimental matrix in which the time, temperature and other reaction conditions are varied to change the degree of substitution, after which the ability of the conjugates to function in the desired fashion is determined.

The polymer, e.g. PEG, is cross-linked by a wide variety of methods known per se for the covalent modification of proteins with nonproteinaceous polymers such as PEG. Certain of these methods, however, are not preferred for the purposes herein. Cyanuronic chloride chemistry leads to many side reactions, including protein cross-linking. In addition, it may be particularly likely to lead to inactivation of proteins containing sulfhydryl groups. Carbonyl diimidazole chemistry (Beauchamp et al., Anal Biochem. 131:25-33 (1983)) requires high pH (>8.5), which can inactivate proteins. Moreover, since the "activated PEG" intermediate can react with water, a very large molar excess of "activated PEG" over protein is required. The high concentrations of PEG required for the

5

10

carbonyl diimidazole chemistry also led to problems in purification, as both gel filtration chromatography and hydrophilic interaction chromatography are adversely affected. In addition, the high concentrations of "activated PEG" may precipitate protein, a problem that *per se* has been noted previously (Davis, U.S. Patent No. 4,179,337). On the other hand, aldehyde chemistry (Royer, U.S. Patent No. 4,002,531) is more efficient since it requires only a 40-fold molar excess of PEG and a 1-2 hr incubation. However, the manganese dioxide suggested by Royer for preparation of the PEG aldehyde is problematic "because of the pronounced tendency of PEG to form complexes with metal-based oxidizing agents" (Harris *et al.*, *J. Polym. Sci. Polym. Chem. Ed.* 22:341-52 (1984)). The use of a Moffatt oxidation, utilizing DMSO and acetic anhydride, obviates this problem. In addition, the sodium borohydride suggested by Royer must be used at high pH and has a significant tendency to reduce disulfide bonds. In contrast, sodium cyanoborohydride, which is effective at neutral pH and has very little tendency to reduce disulfide bonds is preferred.

Functionalized PEG polymers to modify the OB protein or OB-immunoglobulin chimeras of the present invention are available from Shearwater Polymers, Inc. (Huntsville, AL). Such commercially available PEG derivatives include, but are not limited to, amino-PEG, PEG amino acid esters, PEG-hydrazide, PEG-thiol, PEG-succinate, carboxymethylated PEG, PEG-propionic acid, PEG amino acids, PEG succinimidyl succinate, PEG succinimidyl propionate, succinimidyl ester of carboxymethylated PEG, succinimidyl carbonate of PEG, succinimidyl esters of amino acid PEGs, PEG-oxycarbonylimidazole, PEG-nitrophenyl carbonate, PEG tresylate, PEG-glycidyl ether, PEG-aldehyde, PEG vinylsulfone, PEG-maleimide, PEG-orthopyridyl-disulfide, heterofunctional PEGs, PEG vinyl derivatives, PEG silanes, and PEG phospholides. The reaction conditions for coupling these PEG derivatives will vary depending on the protein, the desired degree of PEGylation, and the PEG derivative utilized. Some factors involved in the choice of PEG derivatives include: the desired point of attachment (lysine or cysteine), hydrolytic stability and reactivity of the derivatives, stability, toxicity and antigenicity of the linkage, suitability for analysis, etc. Specific instructions for the use of any particular derivative are available from the manufacturer.

The long half-life conjugates of this invention are separated from the unreacted starting materials by gel filtration. Heterologous species of the conjugates are purified from one another in the same fashion. The polymer also may be water-insoluble, as a hydrophilic gel.

The conjugates may also be purified by ion-exchange chromatography. The chemistry of many of the electrophilically activated PEG's results in a reduction of amino group charge of the PEGylated product. Thus, high resolution ion exchange chromatography can be used to separate the free and conjugated proteins, and to resolve species with different levels of PEGylation. In fact,

5

10

the resolution of different species (e.g. containing one or two PEG residues) is also possible due to the difference in the ionic properties of the unreacted amino acids.

B. Therapeutic Uses for the WSX Receptor

The WSX receptor and WSX receptor gene are believed to find therapeutic use for administration to a mammal in the treatment of diseases characterized by a decrease in hematopoietic cells. Examples of these diseases include: anemia (including macrocytic and aplastic anemia); thrombocytopenia; hypoplasia; disseminated intravascular coagulation (DIC); myelodysplasia; immune (autoimmune) thrombocytopenic purpura (ITP); and HIV induced ITP. Additionally, these WSX receptor molecules may be useful in treating myeloproliferative thrombocytotic diseases as well as thrombocytosis from inflammatory conditions and in iron deficiency. WSX receptor polypeptide and WSX receptor gene which lead to an increase in hematopoietic cell proliferation may also be used to enhance repopulation of mature blood cell lineages in cells having undergone chemo- or radiation therapy or bone marrow transplantation therapy. Generally, the WSX receptor molecules are expected to lead to an enhancement of the proliferation and/or differentiation (but especially proliferation) of primitive hematopoietic cells.

Other potential therapeutic applications for WSX receptor and WSX receptor gene include the treatment of obesity and diabetes and for promoting kidney, liver and lung growth and/or repair (e.g. in renal failure). WSX receptor can also be used to treat obesity-related conditions, such as type II adult onset diabetes, infertility, hypercholesterolemia, hyperlipidemia, cardiovascular disease and hypertension.

The WSX receptor may be administered alone or in combination with cytokines (such as OB protein), growth factors or antibodies in the above-identified clinical situations. This may facilitate an effective lowering of the dose of WSX receptor. Suitable dosages for such additional molecules will be discussed below.

Administration of WSX receptor to a mammal having depressed levels of endogenous WSX receptor or a defective WSX receptor gene is contemplated, preferably in the situation where such depressed levels lead to a pathological disorder, or where there is lack of activation of the WSX receptor. In these embodiments where the full length WSX receptor is to be administered to the patient, it is contemplated that the gene encoding the receptor may be administered to the patient via gene therapy technology.

In gene therapy applications, genes are introduced into cells in order to achieve *in vivo* synthesis of a therapeutically effective genetic product, for example for replacement of a defective gene. "Gene therapy" includes both conventional gene therapy where a lasting effect is achieved by a single treatment, and the administration of gene therapeutic agents, which involves the one time

5

10

or repeated administration of a therapeutically effective DNA or mRNA. Antisense RNAs and DNAs can be used as therapeutic agents for blocking the expression of certain genes *in vivo*. It has already been shown that short antisense oligonucleotides can be imported into cells where they act as inhibitors, despite their low intracellular concentrations caused by their restricted uptake by the cell membrane. (Zamecnik *et al.*, *Proc. Natl. Acad. Sci. USA*, 83:4143-4146 (1986)). The oligonucleotides can be modified to enhance their uptake, *e.g.*, by substituting their negatively charged phosphodiester groups by uncharged groups.

There are a variety of techniques available for introducing nucleic acids into viable cells. The techniques vary depending upon whether the nucleic acid is transferred into cultured cells in vitro, or in vivo in the cells of the intended host. Techniques suitable for the transfer of nucleic acid into mammalian cells in vitro include the use of liposomes, electroporation, microinjection, cell fusion, DEAE-dextran, the calcium phosphate precipitation method, etc. The currently preferred in vivo gene transfer techniques include transfection with viral (typically retroviral) vectors and viral coat protein-liposome mediated transfection (Dzau et al., Trends in Biotechnology 11:205-210 (1993)). In some situations it is desirable to provide the nucleic acid source with an agent that targets the target cells, such as an antibody specific for a cell surface membrane protein or the target cell, a ligand for a receptor on the target cell, etc. Where liposomes are employed, proteins which bind to a cell surface membrane protein associated with endocytosis may be used for targeting and/or to facilitate uptake, e.g. capsid proteins or fragments thereof tropic for a particular cell type, antibodies for proteins which undergo internalization in cycling, and proteins that target intracellular localization and enhance intracellular half-life. The technique of receptor-mediated endocytosis is described. for example, by Wu et al., J. Biol. Chem. 262:4429-4432 (1987); and Wagner et al., Proc. Natl. Acad. Sci. USA 87:3410-3414 (1990). For review of the currently known gene marking and gene therapy protocols see Anderson et al., Science 256:808-813 (1992).

The invention also provides antagonists of WSX receptor activation (e.g. WSX receptor ECD, WSX receptor immunoadhesins and WSX receptor antisense nucleic acid; neutralizing antibodies and uses thereof are discussed in section E below). Administration of WSX receptor antagonist to a mammal having increased or excessive levels of endogenous WSX receptor activation is contemplated, preferably in the situation where such levels of WSX receptor activation lead to a pathological disorder.

In one embodiment, WSX receptor antagonist molecules may be used to bind endogenous ligand in the body, thereby causing desensitized WSX receptors to become responsive to WSX ligand, especially when the levels of WSX ligand in the serum exceed normal physiological levels.

5

10

Also, it may be beneficial to bind endogenous WSX ligand which is activating undesired cellular responses (such as proliferation of tumor cells). Potential therapeutic applications for WSX antagonists include for example, treatment of metabolic disorders (e.g., anorexia, cachexia, steroid-induced truncalobesity and other wasting diseases characterized by loss of appetite, diminished food intake or body weight loss), stem cell tumors and other tumors which express WSX receptor.

Pharmaceutical compositions of the WSX receptor ECD may further include a WSX ligand. Such dual compositions may be beneficial where it is therapeutically useful to prolong half-life of WSX ligand, and/or activate endogenous WSX receptor directly as a heterotrimeric complex.

Therapeutic formulations of WSX receptor are prepared for storage by mixing WSX receptor having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers (*Remington's Pharmaceutical Sciences*, 16th edition, Osol, A., Ed., (1980)), in the form of lyophilized cake or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counter-ions such as sodium; and/or non-ionic surfactants such as Tween, Pluronics™ or polyethylene glycol (PEG).

The WSX receptor also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules), or in macroemulsions. Such techniques are disclosed in *Remington's Pharmaceutical Sciences*, *supra*.

WSX receptor to be used for *in vivo* administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. WSX receptor ordinarily will be stored in lyophilized form or in solution.

Therapeutic WSX receptor compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

The route of WSX receptor administration is in accord with known methods, e.g., those routes set forth above for specific indications, as well as the general routes of injection or infusion

5

10

means, or sustained release systems as noted below. WSX receptor is administered continuously by infusion or by bolus injection. Generally, where the disorder permits, one should formulate and dose the WSX receptor for site-specific delivery.

Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the protein, which matrices are in the form of shaped articles, *e.g.*, films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (*e.g.*, poly(2-hydroxyethyl-methacrylate) as described by Langer *et al.*, *J. Biomed. Mater. Res.* 15:167-277 (1981) and Langer, *Chem. Tech.* 12:98-105 (1982) or poly(vinylalcohol)), polylactides (U.S. Patent No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and γ ethyl-L-glutamate (Sidman *et al.*, *Biopolymers* 22:547-556 (1983)), non-degradable ethylene-vinyl acetate (Langer *et al.*, *supra*), degradable lactic acid-glycolic acid copolymers such as the Lupron Depot[™] (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid (EP 133,988).

by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, or intralesional

While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated proteins remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for protein stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

Sustained-release WSX receptor compositions also include liposomally entrapped WSX receptor. Liposomes containing WSX receptor are prepared by methods known *per se*: DE 3,218,121; Epstein *et al.*, *Proc. Natl. Acad. Sci. USA* 82:3688-3692 (1985); Hwang *et al.*, *Proc. Natl. Acad. Sci. USA* 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Patent Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal WSX receptor therapy.

When applied topically, the WSX receptor is suitably combined with other ingredients, such as carriers and/or adjuvants. There are no limitations on the nature of such other ingredients, except

5

10

that they must be physiologically acceptable and efficacious for their intended administration, and cannot degrade the activity of the active ingredients of the composition. Examples of suitable vehicles include ointments, creams, gels, or suspensions, with or without purified collagen. The compositions also may be impregnated into transdermal patches, plasters, and bandages, preferably in liquid or semi-liquid form.

For obtaining a gel formulation, the WSX receptor formulated in a liquid composition may be mixed with an effective amount of a water-soluble polysaccharide or synthetic polymer such as PEG to form a gel of the proper viscosity to be applied topically. The polysaccharide that may be used includes, for example, cellulose derivatives such as etherified cellulose derivatives, including alkyl celluloses, hydroxyalkyl celluloses, and alkylhydroxyalkyl celluloses, for example, methylcellulose, hydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl methylcellulose, and hydroxypropyl cellulose; starch and fractionated starch; agar; alginic acid and alginates; gum arabic; pullullan; agarose; carrageenan; dextrans; dextrins; fructans; inulin; mannans; xylans; arabinans; chitosans; glycogens; glucans; and synthetic biopolymers; as well as gums such as xanthan gum; guar gum; locust bean gum; gum arabic; tragacanth gum; and karaya gum; and derivatives and mixtures thereof. The preferred gelling agent herein is one that is inert to biological systems, nontoxic, simple to prepare, and not too runny or viscous, and will not destabilize the WSX receptor held within it.

Preferably the polysaccharide is an etherified cellulose derivative, more preferably one that is well defined, purified, and listed in USP, e.g., methylcellulose and the hydroxyalkyl cellulose derivatives, such as hydroxypropyl cellulose, hydroxyethyl cellulose, and hydroxypropyl methylcellulose. Most preferred herein is methylcellulose.

The polyethylene glycol useful for gelling is typically a mixture of low and high molecular weight PEGs to obtain the proper viscosity. For example, a mixture of a PEG of molecular weight 400-600 with one of molecular weight 1500 would be effective for this purpose when mixed in the proper ratio to obtain a paste.

The term "water soluble" as applied to the polysaccharides and PEGs is meant to include colloidal solutions and dispersions. In general, the solubility of the cellulose derivatives is determined by the degree of substitution of ether groups, and the stabilizing derivatives useful herein should have a sufficient quantity of such ether groups per anhydroglucose unit in the cellulose chain to render the derivatives water soluble. A degree of ether substitution of at least 0.35 ether groups per anhydroglucose unit is generally sufficient. Additionally, the cellulose derivatives may be in the form of alkali metal salts, for example, the Li, Na, K, or Cs salts.

5

10

If methylcellulose is employed in the gel, preferably it comprises about 2-5%, more preferably about 3%, of the gel and the WSX receptor is present in an amount of about 300-1000 mg per ml of gel.

An effective amount of WSX receptor to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. Typically, the clinician will administer the WSX receptor until a dosage is reached that achieves the desired effect. A typical daily dosage for systemic treatment might range from about 1 µg/kg to up to 10 mg/kg or more, depending on the factors mentioned above. As an alternative general proposition, the WSX receptor is formulated and delivered to the target site or tissue at a dosage capable of establishing in the tissue a WSX receptor level greater than about 0.1 ng/cc up to a maximum dose that is efficacious but not unduly toxic. This intra-tissue concentration should be maintained if possible by continuous infusion, sustained release, topical application, or injection at empirically determined frequencies. The progress of this therapy is easily monitored by conventional assays.

C. Non-Therapeutic Uses for the WSX Receptor

WSX receptor nucleic acid is useful for the preparation of WSX receptor polypeptide by recombinant techniques exemplified herein which can then be used for production of anti-WSX receptor antibodies having various utilities described below.

The WSX receptor (polypeptide or nucleic acid) can be used to induce proliferation and/or differentiation of cells *in vitro*. In particular, it is contemplated that this molecule may be used to induce proliferation of stem cell/progenitor cell populations (*e.g.* CD34+ cell populations obtained as described in Example 8 below). These cells which are to be grown *ex vivo* may simultaneously be exposed to other known growth factors or cytokines, such as those described herein. This results in proliferation and/or differentiation of the cells having the WSX receptor.

In yet another aspect of the invention, the WSX receptor may be used for affinity purification of WSX ligand. Briefly, this technique involves: (a) contacting a source of WSX ligand with an immobilized WSX receptor under conditions whereby the WSX ligand to be purified is selectively adsorbed onto the immobilized receptor; (b) washing the immobilized WSX receptor and its support to remove non-adsorbed material; and (c) eluting the WSX ligand molecules from the immobilized WSX receptor to which they are adsorbed with an elution buffer. In a particularly preferred embodiment of affinity purification, WSX receptor is covalently attaching to an inert and porous matrix (e.g., agarose reacted with cyanogen bromide). Especially preferred is a WSX receptor immunoadhesin immobilized on a protein A column. A solution containing WSX ligand is then passed

10

through the chromatographic material. The WSX ligand adsorbs to the column and is subsequently released by changing the elution conditions (e.g. by changing pH or ionic strength).

The WSX receptor may be used for competitive screening of potential agonists or antagonists for binding to the WSX receptor. Such agonists or antagonists may constitute potential therapeutics for treating conditions characterized by insufficient or excessive WSX receptor activation, respectively.

The preferred technique for identifying molecules which bind to the WSX receptor utilizes a chimeric receptor (*e.g.*, epitope tagged WSX receptor or WSX receptor immunoadhesin) attached to a solid phase, such as the well of an assay plate. Binding of molecules which are optionally labelled (*e.g.*, radiolabelled) to the immobilized receptor can be evaluated.

To identify WSX receptor agonists or antagonists, the thymidine incorporation assay can be used. For screening for antagonists, the WSX receptor can be exposed to a WSX ligand followed by the putative antagonist, or the WSX ligand and antagonist can be added to the WSX receptor simultaneously, and the ability of the antagonist to block receptor activation can be evaluated.

The WSX receptor polypeptides are also useful as molecular weight markers. To use a WSX receptor polypeptide as a molecular weight marker, gel filtration chromatography or SDS-PAGE, for example, will be used to separate protein(s) for which it is desired to determine their molecular weight(s) in substantially the normal way. The WSX receptor and other molecular weight markers will be used as standards to provide a range of molecular weights. For example, phosphorylase b (mw = 97,400), bovine serum albumin (mw = 68,000), ovalbumin (mw = 46,000), WSX receptor (mw = 44,800), trypsin inhibitor (mw = 20,100), and lysozyme (mw = 14,400) can be used as mw markers. The other molecular weight markers mentioned here can be purchased commercially from Amersham Corporation, Arlington Heights, IL. The molecular weight markers are generally labeled to facilitate detection thereof. For example, the markers may be biotinylated and following separation can be incubated with streptavidin-horseradish peroxidase so that the various markers can be detected by light detection.

The purified WSX receptor, and the nucleic acid encoding it, may also be sold as reagents for mechanism studies of WSX receptor and its ligands, to study the role of the WSX receptor and WSX ligand in normal growth and development, as well as abnormal growth and development, e.g., in malignancies.

WSX receptor variants are useful as standards or controls in assays for the WSX receptor for example ELISA, RIA, or RRA, provided that they are recognized by the analytical system employed, e.g., an anti-WSX receptor antibody.

30

5

10

D. WSX Receptor Antibody Preparation

1. Polyclonal antibodies

Polyclonal antibodies are generally raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. In that the preferred epitope is in the ECD of the WSX receptor, it is desirable to use WSX receptor ECD or a molecule comprising the ECD (e.g., WSX receptor immunoadhesin) as the antigen for generation of polyclonal and monoclonal antibodies. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl₂, or R¹N=C=NR, where R and R¹ are different alkyl groups.

Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining 1 mg or 1 µg of the peptide or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later the animals are boosted with 1/5 to 1/10 the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.

2. Monoclonal antibodies

Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies, *i.e.*, the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Thus, the modifier "monoclonal" indicates the character of the antibody as not being a mixture of discrete antibodies.

For example, the monoclonal antibodies may be made using the hybridoma method first described by Kohler *et al.*, *Nature* 256:495 (1975), or may be made by recombinant DNA methods (Cabilly *et al.*, *supra*).

In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes

-60-

10

may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).

The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused. parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 cells available from the American Type Culture Collection, Rockville, Maryland USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol. 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).

Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA).

The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al., Anal. Biochem. 107:220 (1980).

After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, supra). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal.

The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as. for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or

affinity chromatography.

30

20 FEEL FREE FREE

5

10

DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol. 5:256-262 (1993) and Plückthun, Immunol. Revs. 130:151-188 (1992).

In a further embodiment, antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature 348:552-554 (1990). Clackson et al., Nature 352:624-628 (1991) and Marks et al., J. Mol. Biol. 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Mark et al., Bio/Technology 10:779-783 (1992)), as well as combinatorial infection and in vivo recombination as a strategy for constructing very large phage libraries (Waterhouse et al., Nuc. Acids. Res. 21:2265-2266 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.

The DNA also may be modified, for example, by substituting the coding sequence for human heavy- and light-chain constant domains in place of the homologous murine sequences (Cabilly et al., supra; Morrison, et al., Proc. Nat. Acad. Sci. USA 81:6851 (1984)), or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide.

Typically such non-immunoglobulin polypeptides are substituted for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody to create a chimeric bivalent antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.

Chimeric or hybrid antibodies also may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide-exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate.

5

10

3. Humanized and human antibodies

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (Cabilly et al., supra), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims *et al.*, *J. Immunol.* 151:2296 (1993); Chothia *et al.*, *J. Mol. Biol.* 196:901 (1987)). Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter *et al.*, *Proc. Natl. Acad. Sci. USA* 89:4285 (1992); Presta *et al.*, *J. Immnol.* 151:2623 (1993)).

It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, *i.e.*, the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be

5

10

selected and combined from the consensus and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.

Alternatively, it is now possible to produce transgenic animals (*e.g.*, mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (J_H) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, *e.g.*, Jakobovits *et al.*, *Proc. Natl. Acad. Sci. USA* 90:2551 (1993); Jakobovits *et al.*, *Nature* 362:255-258 (1993); Bruggermann *et al.*, *Year in Immuno.* 7:33 (1993). Human antibodies can also be produced in phage- display libraries (Hoogenboom *et al.*, *J. Mol. Biol.* 227:381 (1991); Marks *et al.*, *J. Mol. Biol.* 222:581 (1991)).

4. Bispecific antibodies

Bispecific antibodies (BsAbs) are antibodies that have binding specificities for at least two different antigens. BsAbs can be used as tumor targeting or imaging agents and can be used to target enzymes or toxins to a cell possessing the WSX receptor. Such antibodies can be derived from full length antibodies or antibody fragments (e.g. $F(ab')_2$ bispecific antibodies). In accordance with the present invention, the BsAb may possess one arm which binds the WSX receptor and another arm which binds to a cytokine or another cytokine receptor (or a subunit thereof) such as the receptors for TPO, EPO, G-CSF, IL-4, IL-7, GH, PRL; the α or β subunits of the IL-3, GM-CSF, IL-5, IL-6, LIF, OSM and CNTF receptors; or the α , β or γ subunits of the IL-2 receptor complex. For example, the BsAb may bind both WSX receptor and gp130.

Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the coexpression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein *et al.*, *Nature* 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker *et al.*, *EMBO J.* 10:3655-3659 (1991).

5

10

According to a different and more preferred approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light chain binding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance.

In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690 published March 3, 1994. For further details of generating bispecific antibodies see, for example, Suresh *et al.*, *Methods in Enzymology* 121:210 (1986).

Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (US Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in US Patent No. 4,676,980, along with a number of cross-linking techniques.

Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. The following techniques can also be used for the production of bivalent antibody fragments which are not necessarily bispecific. According to these techniques, Fab'-SH fragments can be recovered from *E. coli*, which can be chemically coupled to form bivalent antibodies. Shalaby *et al.*, *J. Exp. Med.* 175:217-225 (1992) describe the production of a fully

5

10

humanized BsAb F(ab')₂ molecule. Each Fab' fragment was separately secreted from *E. coli* and subjected to directed chemical coupling *in vitro* to form the BsAb. The BsAb thus formed was able to bind to cells overexpressing the HER2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets. See also Rodrigues *et al.*, *Int. J. Cancers* (Suppl.) 7:45-50 (1992).

Various techniques for making and isolating bivalent antibody fragments directly from recombinant cell culture have also been described. For example, bivalent heterodimers have been produced using leucine zippers. Kostelny *et al.*, *J. Immunol.* 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. The "diabody" technology described by Hollinger *et al.*, *Proc. Natl. Acad. Sci. USA* 90:6444-6448 (1993) has provided an alternative mechanism for making BsAb fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making BsAb fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber *et al.*, *J. Immunol.* 152:5368 (1994).

5. Antibody Screening

It may be desirable to select antibodies with a strong binding affinity for the WSX receptor. Antibody affinities may be determined by saturation binding; enzyme-linked immunoabsorbent assay (ELISA); and competition assays (e.g. RIA's), for example. The antibody with a strong binding affinity may bind the WSX receptor with a binding affinity (K_d) value of no more than about 1 x 10⁻⁷ M, preferably no more than about 1 x 10⁻⁸ M and most preferably no more than about 1 x 10⁻⁹ M (e.g. to about 1 x 10⁻¹²M).

In another embodiment, one may screen for an antibody which binds a WSX receptor epitope of interest. For example, an antibody which binds to the epitope bound by antibody 2D7, 1G4, 1E11 or 1C11 (see Example 13) or antibody clone #3, #4 or #17 (see Example 14) can be identified. To screen for antibodies which bind to the epitope on WSX receptor bound by an antibody of interest (e.g., those which block binding of any one of the above antibodies to WSX receptor), a routine cross-blocking assay such as that described in *Antibodies, A Laboratory Manual*, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Alternatively, epitope mapping,

5

10

e.g. as described in Champe et al., J. Biol. Chem. 270:1388-1394 (1995), can be performed to determine whether the antibody binds an epitope of interest.

In one particularly preferred embodiment of the invention, agonist antibodies are selected. Various methods for selecting agonist antibodies are available. In one embodiment, one evaluates the agonistic properties of the antibody upon binding to a chimeric receptor comprising the WSX receptor extracellular domain in an assay called the kinase receptor activation enzyme linked immunoadsorbent assay (KIRA ELISA) described in WO95/14930 (expressly incorporated herein by reference).

To perform the KIRA ELISA, a chimeric receptor comprising the extracellular domain of the WSX receptor and the transmembrane and intracellular domain of Rse receptor (Mark *et al.*, *Journal of Biological Chemistry* 269(14):10720-10728 (1994)) with a carboxyl-terminal herpes simplex virus glycoprotein D (gD) tag is produced and dp12.CHO cells are transformed therewith as described in Example 4 of WO95/14930.

The WSX/Rse.gD transformed dp12.CHO cells are seeded (3x10⁴ per well) in the wells of a flat-bottom-96 well culture plate in 100µl media and cultured overnight at 37°C in 5% CO₂. The following morning the well supernatants are removed and various concentrations of the antibody are added to separate wells. The cells are stimulated at 37°C for 30 min., the well supernatants are decanted. To lyse the cells and solubilize the chimeric receptors, 100 µl of lysis buffer is added to each well. The plate is then agitated gently on a plate shaker (Bellco Instruments, Vineland, NJ) for 60 min. at room temperature.

While the cells are being solubilized, an ELISA microtiter plate (Nunc Maxisorp, Inter Med, Denmark) coated overnight at 4°C with the 5B6 monoclonal anti-gD antibody (5.0 µg/ml in 50 mM carbonate buffer, pH 9.6, 100 µl/well) is decanted and blocked with 150 µl/well of Block Buffer for 60 min. at room temperature. After 60 minutes, the anti-gD 5B6 coated plate is washed 6 times with wash buffer (PBS containing 0.05 % TWEEN 20™ and 0.01 % thimerosal).

The lysate containing solubilized WSX/Rse.gD from the cell-culture microtiter well is transferred (85µl/well) to anti-gD 5B6 coated and blocked ELISA well and is incubated for 2 h at room temperature. The unbound WSX/Rse.gD is removed by washing with wash buffer and 100 µl of biotinylated 4G10 (anti-phosphotyrosine) diluted 1:18000 in dilution buffer (PBS containing 0.5 % BSA, 0.05 % Tween-20, 5 mM EDTA, and 0.01 % thimerosal), *i.e.* 56 ng/ml is added to each well. After incubation for 2 h at room temperature the plate is washed and HRPO-conjugated streptavidin (Zymed Laboratories, S. San Francisco, CA) is added to each well. The plate is incubated for 30 minutes at room temperature with gentle agitation. The free avidin-conjugate is washed away and 100 µl freshly prepared substrate solution (tetramethyl benzidine (TMB); 2-component substrate kit;

5

10

Kirkegaard and Perry, Gaithersburg, MD) is added to each well. The reaction is allowed to proceed for 10 minutes, after which the color development is stopped by the addition of 100µl/well 1.0 M H₃PO₄. The absorbance at 450 nm is read with a reference wavelength of 650 nm (ABS_{450/650}), using a *vmax* plate reader (Molecular Devices, Palo Alto, CA) controlled with a Macintosh Centris 650 (Apple Computers, Cupertino, CA) and DeltaSoft software (BioMetallics, Inc, Princeton, NJ).

Those antibodies which have an IC50 in the KIRA ELISA of about 0.5µg/ml or less (e.g. from about 0.5µg/ml to about 0.001 µg/ml), preferably about 0.2µg/ml or less and most preferably about 0.1µg/ml or less are preferred agonists.

In another embodiment, one screens for antibodies which activate downstream signaling molecules for OB protein. For example, the ability of the antibody to activate Signal Transducers and Activators of Transcription (STATs) can be assessed. The agonist antibody of interest may stimulate formation of STAT-1 and STAT-3 complexes, for example. To screen for such antibodies, the assay described in Rosenblum *et al. Endocrinology* 137(11):5178-5181 (1996) may be performed.

Alternatively, an antibody which stimulates proliferation and/or differentiation of hematopoietic cells can be selected. For example, the hematopoiesis assays of Example 10 below can be performed. For example, murine fetal liver flASK stem cells may be isolated from the midgestational fetal liver as described in Zeigler et al., Blood 84:2422-2430 (1994) and studied in stem cell suspension culture or methylcellulose assays. For the stem cell suspension cultures, twenty thousand of the fLASK cells are seeded in individual wells in a 12 well format in DMEM 4.5/F12 media supplemented with 10% heat inactivated fetal calf serum (Hyclone, Logan, UT) and Lglutamine. Growth factors are added at the following concentrations: kit ligand (KL) at 25 ng/mL, interleukin-3 (IL-3) at 25 ng/mL, interleukin-6 (IL-6) at 50 ng/mL, G-CSF at 100 ng/mL, GM-CSF at 100 ng/mL, EPO at 2U/mL, interleukin-7 (IL-7) at 100 ng/mL (all growth factors from R and D Systems, Minneapolis, MN). The agonist antibody is then added and the ability of the antibody to expand the fIASK cells grown in suspension culture is assessed. Methylcellulose assays are performed as previously described (Zeiger et al., supra). Briefly, methylcellulose colony assays are performed using "complete" methylcellulose or pre-B methylcellulose medium (Stem Cell Technologies, Vancouver, British Columbia, Canada) with the addition of 25 ng/mL KL (R and D Systems, Minneapolis, MN). Cytospin analyses of the resultant colonies are performed as previously described in Zeigler et al. The ability of the agonist antibody to augment myeloid, lymphoid and erythroid colony formation is assessed. Also, the effect of the agonist antibody on the murine bone marrow stem cell population; LinloSca+ may be evaluated.

5

10

One may select an agonist antibody which induces a statistically significant decrease in body weight and/or fat-depot weight and/or food intake in an obese mammal (e.g. in an ob/ob mouse). Methods for screening for such molecules are described in Levin et al. Proc. Natl. Acad. Sci. USA 93:1726-1730 (1996), for example. Preferred agonist antibodies are those which exert adipose-reducing effects in an obese mammal, such as the ob/ob mouse, which are in excess of those induced by reductions in food intake.

The antibody of interest herein may have the hypervariable region residues of one of the antibodies in Examples 13 and 14. Also, the invention encompasses "affinity matured" forms of these antibodies in which hypervariable region residues of these antibodies have been modified. Such affinity matured antibodies will preferably have a biological activity which is the same as or better than that of the original antibody. The affinity matured antibody may have from about 1-10, e.g. 5-10 deletions, insertions or substitutions (but preferably substitutions) in the hypervariable regions thereof. One useful procedure for generating affinity matured antibodies is called "alanine scanning mutagenesis" (Cunningham and Wells Science 244:1081-1085 (1989)). Here, one or more of the hypervariable region residue(s) are replaced by alanine or polyalanine residue(s) to affect the interaction of the amino acids with the WSX receptor. Those hypervariable region residue(s) demonstrating functional sensitivity to substitution are then refined by introducing further or other mutations at or for the sites of substitution. The ala-mutants produced this way are screened for their biological activity as described herein. Another procedure is affinity maturation using phage display (Hawkins et al. J. Mol. Biol. 254:889-896 (1992) and Lowman et al. Biochemistry 30(45):10832-10837 (1991)). Briefly, several hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody mutants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed mutants are then screened for their biological activity (e.g. binding affinity).

6. Antibody Modifications

It may be desirable to tailor the antibody for various applications. Exemplary antibody modifications are described here.

In certain embodiments of the invention, it may be desirable to use an antibody fragment, rather than an intact antibody. In this case, it may be desirable to modify the antibody fragment in order to increase its serum half-life. This may be achieved, for example, by incorporation of a salvage receptor binding epitope into the antibody fragment. See WO96/32478 published October

5

10

17, 1996. Alternatively, the antibody may be conjugated to a nonproteinaceous polymer, such as those described above for the production of long half-life derivatives of OB protein.

Where the antibody is to be used to treat cancer for example, various modifications of the antibody (e.g. of a neutralizing antibody) which enhance the effectiveness of the antibody for treating cancer are contemplated herein. For example, it may be desirable to modify the antibody of the invention with respect to effector function. For example cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol. 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al. Anti-Cancer Drug Design 3:219-230 (1989).

The invention also pertains to immunoconjugates comprising the antibody described herein conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g. an enzymatically active toxin of bacterial, fungal, plant or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins, dianthin proteins, *Phytolaca americana* proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. A variety of radionuclides are available for the production of radioconjugate antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be

5

10

prepared as described in Vitetta *et al. Science* 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody may be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g. avidin) which is conjugated to a cytotoxic agent (e.g. a radionucleotide).

The antibody may also be formulated as an immunoliposome. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein *et al.*, *Proc. Natl. Acad. Sci. USA*, 82:3688 (1985); Hwang *et al.*, *Proc. Natl Acad. Sci. USA*, 77:4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin *et al. J. Biol. Chem.* 257: 286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon *et al. J. National Cancer Inst.*81(19)1484 (1989).

The antibody of the present invention may also be used in ADEPT by conjugating the antibody to a prodrug-activating enzyme which converts a prodrug (*e.g.* a peptidyl chemotherapeutic agent, see WO81/01145) to an active anti-cancer drug. See, for example, WO 88/07378 and U.S. Patent No. 4,975,278.

The enzyme component of the immunoconjugate useful for ADEPT includes any enzyme capable of acting on a prodrug in such a way so as to covert it into its more active, cytotoxic form.

Enzymes that are useful in the method of this invention include, but are not limited to, alkaline phosphatase useful for converting phosphate-containing prodrugs into free drugs; arylsulfatase useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5-fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), that are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as β-galactosidase and neuraminidase useful for converting

5

10

glycosylated prodrugs into free drugs; β -lactamase useful for converting drugs derivatized with β -lactams into free drugs; and penicillin amidases, such as penicillin V amidase or penicillin G amidase, useful for converting drugs derivatized at their amine nitrogens with phenoxyacetyl or phenylacetyl groups, respectively, into free drugs. Alternatively, antibodies with enzymatic activity, also known in the art as "abzymes", can be used to convert the prodrugs of the invention into free active drugs (see, e.g., Massey, *Nature* 328: 457-458 (1987)). Antibody-abzyme conjugates can be prepared as described herein for delivery of the abzyme to a tumor cell population.

The enzymes of this invention can be covalently bound to the antibody mutant by techniques well known in the art such as the use of the heterobifunctional crosslinking reagents discussed above. Alternatively, fusion proteins comprising at least the antigen binding region of an antibody of the invention linked to at least a functionally active portion of an enzyme of the invention can be constructed using recombinant DNA techniques well known in the art (see, e.g., Neuberger et al., Nature, 312: 604-608 (1984)).

In other embodiments, the antibody can be covalently modified, with exemplary such modifications described above.

E. Therapeutic Uses for WSX Receptor Ligands and Antibodies

The WSX ligands (e.g. OB protein and anti-WSX receptor agonist antibodies) of the present invention are useful, in one embodiment, for weight reduction, and specifically, in the treatment of obesity, bulimia and other disorders associated with the abnormal expression or function of the OB and/or WSX receptor genes, other metabolic disorders such as diabetes, for reducing excessive levels of insulin in human patients (e.g. to restore or improve the insulin-sensitivity of such patients). Thus, these molecules can be used to treat a patient suffering from excessive food consumption and related pathological conditions such as type II adult onset diabetes, infertility (Chehab et al. Nature Genentics 12:318-320 (1996)), hypercholesterolemia, hyperlipidemia, cardiovascular diseases, arteriosclerosis, polycystic ovarian disease, osteoarthritis, dermatological disorders, insulin resistance, hypertriglyceridemia, cancer, cholelithiasis and hypertension.

In addition, the WSX ligands can be used for the treatment of kidney ailments, hypertension, and lung dysfunctions, such as emphysema.

In a further embodiment, the WSX ligands (such as agonist WSX receptor antibodies) of the present invention can be used to enhance repopulation of mature blood cell lineages in mammals having undergone chemo- or radiation therapy or bone marrow transplantation therapy. Generally, the ligands will act via an enhancement of the proliferation and/or differentiation (but especially proliferation) of primitive hematopoietic cells. The ligands may similarly be useful for treating

5

10

diseases characterized by a decrease in blood cells. Examples of these diseases include: anemia (including macrocytic and aplastic anemia); thrombocytopenia; hypoplasia; immune (autoimmune) thrombocytopenic purpura (ITP); and HIV induced ITP. Also, the ligands may be used to treat a patient having suffered a hemorrhage. WSX ligands may also be used to treat metabolic disorders such as obesity and diabetes mellitus, or to promote kidney, liver or lung growth and/or repair (e.g., in renal failure).

The WSX receptor ligands and antibodies may be administered alone or in concert with one or more cytokines. Furthermore, as an alternative to administration of the WSX ligand protein, gene therapy techniques (discussed in the section above entitled "Therapeutic Uses for the WSX Receptor") are also contemplated herein.

Potential therapeutic applications for WSX receptor neutralizing antibodies include the treatment of metabolic disorders (such as cachexia, anorexia and other wasting diseases characterized by loss of appetite, diminished food intake or body weight loss), stem cell tumors and other tumors at sites of WSX receptor expression, especially those tumors characterized by overexpression of WSX receptor.

For therapeutic applications, the WSX receptor ligands and antibodies of the invention are administered to a mammal, preferably a human, in a physiologically acceptable dosage form, including those that may be administered to a human intravenously as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intra-cerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. The WSX receptor ligands and antibodies also are suitably administered by intratumoral, peritumoral, intralesional, or perilesional routes or to the lymph, to exert local as well as systemic therapeutic effects.

Such dosage forms encompass physiologically acceptable carriers that are inherently non-toxic and non-therapeutic. Examples of such carriers include ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts, or electrolytes such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, and PEG. Carriers for topical or gel-based forms of WSX receptor antibodies include polysaccharides such as sodium carboxymethylcellulose or methylcellulose, polyvinylpyrrolidone, polyacrylates, polyoxyethylene-polyoxypropylene-block polymers, PEG, and wood wax alcohols. For all administrations, conventional depot forms are suitably used. Such forms include, for example, microcapsules, nano-capsules, liposomes, plasters, inhalation forms, nose sprays, sublingual tablets, and sustained-release preparations. The WSX

5

10

receptor ligand or antibody will typically be formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml.

Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the WSX receptor ligand or antibody, which matrices are in the form of shaped articles, e.g. films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate) as described by Langer et al., supra and Langer, supra, or poly(vinylalcohol), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and y ethyl-L-glutamate (Sidman et al., supra), non-degradable ethylene-vinyl acetate (Langer et al., supra), degradable lactic acid-glycolic acid copolymers such as the Lupron Depot™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated WSX receptor antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thiodisulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

Sustained-release WSX receptor ligand or antibody compositions also include liposomally entrapped antibodies. Liposomes containing the WSX receptor ligand or antibody are prepared by methods known in the art, such as described in Epstein *et al.*, *Proc. Natl. Acad. Sci. USA* 82:3688 (1985); Hwang *et al.*, *Proc. Natl. Acad. Sci. USA* 77:4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Ordinarily, the liposomes are the small (about 200-800 Angstroms) unilamelar type in which the lipid content is greater than about 30 mol.% cholesterol, the selected proportion being adjusted for the optimal WSX receptor ligand or antibody therapy. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

For the prevention or treatment of disease, the appropriate dosage of WSX receptor ligand or antibody will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the antibodies are administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the WSX receptor ligand or antibody, and the discretion of the attending physician. The WSX receptor ligand or antibody is suitably administered to the patient at one time or over a series of treatments.

5

10

Depending on the type and severity of the disease, about 1 µg/kg to 15 mg/kg of WSX receptor ligand or antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A typical daily dosage might range from about 1 µg/kg to 100 µg/kg (e.g. 1-50 µg/kg) or more, depending on the factors mentioned above. For example, the dose may be the same as that for other cytokines such as G-CSF, GM-CSF and EPO. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.

When one or more cytokines are co-administered with the WSX receptor ligand, lesser doses of the WSX ligand may be employed. Suitable doses of a cytokine are from about 1µg/kg to about 15mg/kg of cytokine. A typical daily dosage of the cytokine might range from about 1µg/kg to 100µg/kg (e.g. 1-50µg/kg) or more. For example, the dose may be the same as that for other cytokines such as G-CSF, GM-CSF and EPO. The cytokine(s) may be administered prior to, simultaneously with, or following administration of the WSX ligand. The cytokine(s) and WSX ligand may be combined to form a pharmaceutically composition for simultaneous administration to the mammal. In certain embodiments, the amounts of WSX ligand and cytokine are such that a synergistic repopulation of blood cells (or synergistic increase in proliferation and/or differentiation of hematopoietic cells) occurs in the mammal upon administration of the WSX ligand and cytokine thereto. In other words, the coordinated action of the two or more agents (i.e. the WSX ligand and cytokine(s)) with respect to repopulation of blood cells (or proliferation/differentiation of hematopoietic cells) is greater than the sum of the individual effects of these molecules.

For treating obesity and associated pathological conditions, the WSX ligand may be administered in combination with other compound(s) for combatting or preventing obesity. Substances useful for this purpose include, e.g., hormones (catecholamines, glucagon, ACTH); clofibrate; halogenate; cinchocaine; chlorpromazine; appetite-suppressing drugs acting on noradrenergic neurotransmitters such as mazindol and derivatives of phenethylamine, e.g., phenylpropanolamine, diethylpropion, phentermine, phendimetrazine, benzphetamine, amphetamine, methamphetamine, and phenmetrazine; drugs acting on serotonin neurotransmitters such as fenfluramine, tryptophan, 5-hydroxytryptophan, fluoxetine, and sertraline; centrally active drugs such as naloxone, neuropeptide-Y, galanin, corticotropin-releasing hormone, and cholecystokinin; a cholinergic agonist such as pyridostigmine; a sphingolipid such as a lysosphingolipid or derivative thereof (EP 321,287 published June 21, 1989); thermogenic drugs such as thyroid hormone, ephedrine, beta-adrenergic agonists; drugs affecting the gastrointestinal tract such as enzyme

5

10

inhibitors, e.g., tetrahydrolipostatin, indigestible food such as sucrose polyester, and inhibitors of gastric emptying such as threo-chlorocitric acid or its derivatives; β -adrenergic agonist such as isoproterenol and yohimbine; aminophylline to increase the β -adrenergic-like effects of yohimbine, an α_2 -adrenergic blocking drug such as clonidine alone or in combination with a growth hormone releasing peptide (U.S. Pat. No. 5,120,713 issued June 9, 1992); drugs that interfere with intestinal absorption such as biguanides such as metformin and phenformin; bulk fillers such as methylcellulose; metabolic blocking drugs such as hydroxycitrate; progesterone; cholecystokinin agonists; small molecules that mimic ketoacids; agonists to corticotropin-releasing hormone; an ergot-related prolactin-inhibiting compound for reducing body fat stores (U.S. Pat. No. 4,783,469 issued November 8, 1988); beta-3-agonists; bromocriptine; antagonists to opioid peptides; antagonists to neuropeptide Y; glucocorticoid receptor antagonists; growth hormone agonists; combinations thereof; etc. This includes all drugs described by Bray and Greenway, Clinics in Endocrinol. and Metabol., 5:455 (1976).

These adjunctive agents may be administered at the same time as, before, or after the administration of WSX ligand and can be administered by the same or a different administration route than the WSX ligand.

The WSX ligand treatment may occur without, or may be imposed with, a dietary restriction such as a limit in daily food or calorie intake, as is desired for the individual patient.

F. Articles of Manufacture

In another embodiment of the invention, an article of manufacture containing materials useful for the treatment of the conditions described above is provided. The article of manufacture comprises a container and a label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is effective for treating the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The active agent in the composition is the WSX ligand. The label on, or associated with, the container indicates that the composition is used for treating the condition of choice. The article of manufacture may further comprise a second container holding a cytokine for co-administration with the WSX ligand. Further container(s) may be provided with the article of manufacture which may hold, for example, a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution or dextrose solution. The article of manufacture may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.

10

G. Non-Therapeutic Uses for WSX Receptor Ligands and Antibodies

WSX receptor ligands and antibodies may be used for detection of and/or enrichment of hematopoietic stem cell/progenitor cell populations in a similar manner to that in which CD34 antibodies are presently used. For stem cell enrichment, the WSX receptor antibodies may be utilized in the techniques known in the art such as immune panning, flow cytometry or immunomagnetic beads.

In accordance with one *in vitro* application of the WSX ligands, cells comprising the WSX receptor are provided and placed in a cell culture medium. Examples of such WSX-receptor-containing cells include hematopoietic progenitor cells, such as CD34+ cells.

Suitable tissue culture media are well known to persons skilled in the art and include, but are not limited to, Minimal Essential Medium (MEM), RPMI-1640, and Dulbecco's Modified Eagle's Medium (DMEM). These tissue culture medias are commercially available from Sigma Chemical Company (St. Louis, MO) and GIBCO (Grand Island, NY). The cells are then cultured in the cell culture medium under conditions sufficient for the cells to remain viable and grow in the presence of an effective amount of WSX ligand and, optionally, further cytokines and growth factors. The cells can be cultured in a variety of ways, including culturing in a clot, agar, or liquid culture.

The cells are cultured at a physiologically acceptable temperature such as 37°C, for example, in the presence of an effective amount of WSX ligand. The amount of WSX ligand may vary, but preferably is in the range of about 10 ng/ml to about 1mg/ml. The WSX ligand can of course be added to the culture at a dose determined empirically by those in the art without undue experimentation. The concentration of WSX ligand in the culture will depend on various factors, such as the conditions under which the cells and WSX ligand are cultured. The specific temperature and duration of incubation, as well as other culture conditions, can be varied depending on such factors as, e.g., the concentration of the WSX ligand, and the type of cells and medium.

It is contemplated that using WSX ligand to enhance cell proliferation and/or differentiation in vitro will be useful in a variety of ways. For instance, hematopoietic cells cultured in vitro in the presence of WSX ligand can be infused into a mammal suffering from reduced levels of the cells. Also, the cultured hematopoietic cells may be used for gene transfer for gene therapy applications. Stable in vitro cultures can be also used for isolating cell-specific factors and for expression of endogenous or recombinantly introduced proteins in the cell. WSX ligand may also be used to enhance cell survival, proliferation and/or differentiation of cells which support the growth and/or differentiation of other cells in cell culture.

The WSX receptor antibodies of the invention are also useful as affinity purification agents. In this process, the antibodies against WSX receptor are immobilized on a suitable support, such

5

10

a Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody then is contacted with a sample containing the WSX receptor to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the WSX receptor, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, that will release the WSX receptor from the antibody.

WSX receptor antibodies may also be useful in diagnostic assays for WSX receptor, e.g., detecting its expression in specific cells, tissues, or serum. For diagnostic applications, antibodies typically will be labeled with a detectable moiety. The detectable moiety can be any one which is capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as ³H, ¹⁴C, ³²P, ³⁵S, or ¹²⁵I; a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin; radioactive isotopic labels, such as, e.g., ¹²⁵I, ³²P, ¹⁴C, or ³H; or an enzyme, such as alkaline phosphatase, beta-galactosidase, or horseradish peroxidase.

Any method known in the art for separately conjugating the polypeptide variant to the detectable moiety may be employed, including those methods described by Hunter et al., Nature 144:945 (1962); David et al., Biochemistry 13:1014 (1974); Pain et al., J. Immunol. Meth 40:219 (1981); and Nygren, J. Histochem. and Cytochem. 30:407 (1982).

The antibodies of the present invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola, *Monoclonal Antibodies: A Manual of Techniques*, pp.147-158 (CRC Press, Inc., 1987).

Competitive binding assays rely on the ability of a labeled standard to compete with the test sample analyte for binding with a limited amount of antibody. The amount of WSX receptor in the test sample is inversely proportional to the amount of standard that becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound, the antibodies generally are insolubilized before or after the competition, so that the standard and analyte that are bound to the antibodies may conveniently be separated from the standard and analyte which remain unbound.

Sandwich assays involve the use of two antibodies, each capable of binding to a different immunogenic portion, or epitope, of the protein to be detected. In a sandwich assay, the test sample analyte is bound by a first antibody which is immobilized on a solid support, and thereafter a second antibody binds to the analyte, thus forming an insoluble three-part complex. See, e.g., US Pat No. 4,376,110. The second antibody may itself be labeled with a detectable moiety (direct sandwich assays) or may be measured using an anti-immunoglobulin antibody that is labeled with a detectable

5

10

moiety (indirect sandwich assay). For example, one type of sandwich assay is an ELISA assay, in which case the detectable moiety is an enzyme.

H. Deposit of Materials

1C11 hybridoma cell line

The following biological materials have been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, USA (ATCC):

Deposit Designation Baf3/WSX E63x7 sort (Baf3 cells expressing human WSX receptor variant 13.2)	ATCC No. ATCC CRL 12015	Deposit Date Jan 10, 1996
2D7 hybridoma cell line		
1G4 hybridoma cell line	HB-12243	Dec 11, 1996
1E11 hybridoma cel I line		

These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture for 30 years from the date of deposit. Each of the deposited cultures will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures (a) that access to the culture will be available during pendency of the patent application to one determined by the Commissioner to be entitled thereto under 37 CFR §1.14 and 35 USC §122, and (b) that all restrictions on the availability to the public of the culture so deposited will be irrevocably removed upon the granting of the patent.

The assignee of the present application has agreed that if any of the cultures on deposit should die or be lost or destroyed when cultivated under suitable conditions, it will be promptly replaced on notification with a viable specimen of the same culture. Availability of the deposited cell lines is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

30

5

10

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by any culture deposited, since the deposited embodiment is intended as an illustration of one aspect of the invention and any culture that is functionally equivalent is within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustration that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.

III. Experimental

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

The disclosures of all publications, patents and patent applications cited herein, whether *supra* or *infra*, are hereby incorporated by reference in their entirety.

EXAMPLE 1

Cloning of Human WSX Receptor

An oligonucleotide probe designated WSX.6 #1 was synthesized based upon the T73849 EST sequence. The WSX.6 #1 probe was a 51mer having the following sequence: 5' GTCAGTCTCCCAGTTCCAGACTTGTGTGCAGTCTATGCTGTTCAGGTGCGC - 3' (SEQ ID NO:45).

The radiolabeled WSX.6 #1 probe was used to probe 1.2×10^6 clones from a random and oligo dT primed λ gt10 fetal liver library (Clontech, Palo Alto, CA). Following hybridization at 42° C overnight, the filters were washed at 50° C in $0.5 \times$ SSC and 0.1% NaDodSO₄ (SDS). From the initial screen, 10 clones were selected and upon subsequent screening 5 individual plaque pure clones were isolated. Of these 5 individual clones, four clones designated 1, 5, 6 and 9 were subcloned into pBSSK (Stratagene) following EcoRI digestion. Sequence analysis revealed clone 5 and clone 9 contained the putative initiation methionine and signal peptide. Clone 6 (designated 6.4) contained the most 3' end sequence and subsequently was used for further screening.

To obtain the full length gene, clone 6.4 (fragment Nsi-Hind III) was radiolabeled and used to screen 1.2×10^6 clones from a λ gt 10 library constructed from a hepatoma Hep3B cell line. This

5

10

screen resulted in 24 positive clones. Following PCR analysis of the clones using λgt10 primers (F and R), the four longest clones 12.1, 13.2, 22.3, and 24.3 were isolated. These clones were subcloned into pBSSK⁻ using the EcoRl site, and following examination by restriction enzyme digest, clones 12.1 and 13.2 were submitted for sequencing. DNA sequencing was performed with the Taq dye deoxynucleotide terminator cycle sequencing kit on an automated Applied Biosystems DNA sequencer.

The assembled contiguous sequence from all the isolated clones encoded a consensus amino terminus for the newly identified polypeptide designated the WSX receptor. However, sequence analysis revealed that at least three naturally occurring variants of the WSX receptor exist which have different cytoplasmic regions. These variants appear to be differentially spliced at the lysine residue at position 891. Clone 6.4 stops 5 amino acids after Lys 891. Clone 12.1 is different from 13.2 and 6.4 following Lys 891 and encodes a putative box 2 region which is distinct from that encoded by clone 13.2. Clone 13.2 contains a potential box 1 region and following Lys 891 encodes putative box 2 and box 3 motifs. See, Baumann *et al.*, *Mol. Cell. Biol.* 14(1):138-146 (1994).

The full length WSX gene based on the clone 13.2 cytoplasmic region putatively encodes an 1165 amino acid transmembrane protein. The 841 amino acid extracellular domain (ECD) contains two WSXWS domains. The ECD is followed by a 24 amino acid transmembrane domain and a 300 amino acid cytoplasmic region.

EXAMPLE 2

WSX Receptor Immunoadhesin

Using polymerase chain amplification, a WSX receptor immunoadhesin was created by engineering an in-frame fusion of the WSX receptor gene extracellular domain (WSX.ECD) with human CH2CH3(Fc)IgG (Bennett *et al., J.Biol. Chem.* 266(34):23060-23067 (1991)) at the C terminus of the ECD and cloned into pBSSK⁻(Stratagene). For expression, the WSX-Fc was excised with ClaI and BstEII and ligated into the pRK5.HuIF.grbhIgG Genenase I vector (Beck *et al., Molecular Immunology* 31(17):1335-1344 (1994)), to create the plasmid pRK5.WSX-IgG Genenase I. This plasmid was transiently transfected into 293 cells using standard calcium phosphate transfection techniques. The transfected cells were cultured at 37°C in 5% CO₂ in DMEM F12 50:50 supplemented with 10% FBS, 100mM HEPES (pH 7.2) and 1mM glutamine. The WSX receptor immunoadhesin was purified using a ProSepA™ protein A column.

30

5

10

EXAMPLE 3

Antibody Production

In order to raise antibodies against the WSX receptor, the WSX receptor immunoadhesin of Example 2 was used to inoculate rabbits to raise polyclonal antibodies and mice to raise monoclonal antibodies using conventional technology.

EXAMPLE 4

Generation of a Cell Line Expressing WSX Receptor

The nucleic acid encoding full length WSX receptor variant 13.2 was inserted in the pRKtkNeo plasmid (Holmes *et al.*, *Science* 253:1278-1280 (1991)). 100 μ gs of the pRKtkNeo.WSX plasmid thus generated was linearized, ethanol precipitated and resuspended in 100 μ L of RPMI 1640. 7 x 10⁶ Baf3 cells (5 x 10⁵/ml) were suspended in 900 μ L of RPMI and added to the linearized plasmid. Following electroporation at 325V, 1180 μ F using a BRL electroporation apparatus, the cells were plated into 15 mls of RPMI 1640 containing 5% WEHI3B conditioned media and 15% serum. 48 hours later cells were selected in 2mg/ml G418.

To obtain the Baf3/WSX cell line expressing WSX receptor variant 13.2, the G418 selected clones were analyzed by FACS using the rabbit polyclonal antisera raised against the WSX-Fc chimeric protein as described above. The highest expressing clone (designated E6) was sorted by FACS to maintain a population with a high level of WSX receptor expression.

EXAMPLE 5

Role of WSX Receptor in Cellular Proliferation

The proliferative potentials of WSX receptor variants 13.2 and 12.1 were tested by constructing human growth hormone receptor-WSX receptor (GH-WSX) fusions encoding chimeric proteins consisting of the GH receptor extracellular and transmembrane domains and the WSX receptor variant 13.2 or 12.1 intracellular domains. These chimeric gene fusions were transfected into the IL-3 dependent cell line Baf3. The ability of the GH-WSX transfected Baf3 cells to respond to exogenous growth hormone (GH) was tested in a thymidine incorporation assay. As can be seen in Figs. 6 and 8, the GH-WSX receptor variant 13.2 chimera was capable of increasing thymidine uptake in the transfected Baf3 cells, thus indicating the proliferative potential of the WSX receptor variant 13.2. However, WSX receptor variant 12.1 was unable to transmit a proliferative signal in this experiment (Fig. 8).

5

10

Materials and Methods

Recombinant PCR was used to generate the chimeric receptors containing the extracellular and transmembrane domains of the hGH receptor and the cytoplasmic domain of either WSX receptor variant 12.1 or variant 13.2. In short, the cytoplasmic domain of either variant 12.1 or 13.2 beginning with Arg at amino acid 866 and extending down to amino acid 958 or amino acid 1165 respectively, was fused in frame, by sequential PCR, to the hGH receptor extracellular and transmembrane domain beginning with Met at amino acid 18 and extending down to Arg at amino acid 274. The GH-WSX chimera was constructed by first using PCR to generate the extracellular and transmembrane domain of the human GH receptor. The 3' end primer used for this PCR contained 20 nucleotides at the 5' end of the primer corresponding to the first 20 nucleotides of the WSX cytoplasmic domain. The 3' end of the chimera was generated using PCR where the 5' end primer contained the last 19 nucleotides of the human GH receptor transmembrane domain. To generate the full length chimera, the 5' end of the human GH receptor product was combined with the 3' end WSX receptor cytoplasmic PCR product and subsequently amplified to create a fusion of the two products.

This chimeric fusion was digested with Clal and Xbal and ligated to pRKtkNeo (Holmes *et al., Science* 253:1278-1280 (1991)) to create the chimeric expression vector. The IL-3 dependent cell line Baf3 was then electroporated with this hGH/WSX chimeric expression vector.

Briefly, 100 μ g of the pRKtkNeo/GH.WSX plasmid was linearized, ethanol precipitated and resuspended in 100 μ L of RPMI 1640. 7 x 10⁶ Baf3 cells (5 x 10⁵/ml) were suspended in 900 μ L of RPMI and added to the linearized plasmid. Following electroporation at 325V, 1180 μ F using a BRL electroporation apparatus, the cells were plated into 15 mls of RPMI 1640 containing 5% wehi conditioned media and 15% serum. 48 hours later, cells were selected in 2mg/ml G418.

To obtain the Baf3/GH.WSX cell lines, the G418 selected cells were FACS sorted using an anti-human GH mAb (3B7) at 1µg/ml. The top 10% expressing cells were selected and expanded.

EXAMPLE 6

Expression Analysis of the WSX Receptor

The expression profile of the WSX receptor was initially examined by Northern analysis. Northern blots of human fetal or adult tissue mRNA were obtained from Clontech (Palo Alto, California). A transcript of approximately 6 kb was detected in human fetal lung, liver and kidney. In the adult, low level expression was detected in a variety of tissues including liver, placenta, lung skeletal muscle, kidney, ovary, prostate and small intestine.

30

5

10

PCR analysis of human cord blood identified transcripts in CD34⁺ subfraction. By PCR analysis, all three variants of the WSX receptor were present in CD34⁺ cells. The CD34⁻ subfraction appeared negative by this same PCR analysis.

By PCR analysis, both the 6.4 variant and 13.2 variant were evident in the AA4⁺Sca⁺Kit⁺ (flASK) cell population isolated from the mid-gestation fetal liver as described in Zeigler *et al.*, *Blood* 84:2422-2430 (1994). No clones containing the 12.1 variant cytoplasmic tail have been isolated from murine tissues.

Human B cells isolated from peripheral blood using anti-CD19/20 antibodies were also positive for short form (6.4 variant) and long from (13.2 variant) receptor mRNA expression.

The WSX receptor appears to be expressed on both progenitor and more mature hematopoietic cells.

EXAMPLE 7

Cloning of Murine WSX Receptor

The human WSX receptor was used as a probe to isolate murine WSX receptor. The pRKtkNeo.WSX plasmid of Example 4 was digested using Ssp1. This Ssp1 fragment (1624 bps) was isolated, and radiolabelled, and used to screen a murine liver λgt10 library (Clontech). This resulted in 4 positive clones which were isolated and sequenced after sub-cloning into pBSSK⁻ via EcoRl digestion. The resultant clones, designated 1, 2, 3, 4 showed homology to the extracellular domain of the human WSX receptor; the contiguous sequences resulting from these clones extended from the initiation methionine to tryptophan at position 783. The overall similarity of human WSX receptor and murine WSX receptor is 73 % over this region of the respective extracellular domains (see Figs. 4A-B).

EXAMPLE 8

The Role of WSX Receptor in Hematopoietic Cell Proliferation

The presence of the WSX receptor in the enriched human stem cell population CD34⁺ from cord blood is indicative of a potential role for this receptor in stem cell/progenitor cell proliferation.

The proliferation of CD34⁺ human blood cells in methylcellulose media (Stem Cell Technologies) was determined in the presence or absence of WSX receptor antisense oligonucleotides. These experiments were also repeated in the murine hematopoietic system using AA4⁺ Sca⁺ Kit⁺ stem cells from the murine fetal liver. In both instances, the antisense oligonucleotides statistically significantly inhibited colony formation from the hematopoietic progenitor

10

cells. See Table 1 below. The anti-proliferative effects were most pronounced using the -20 antisense and the +85 antisense oligonucleotide constructs. This inhibition was not lineage specific to any particular myeloid lineage that resulted from the progenitor expansion. The principal effect of the antisense oligonucleotides was a reduction of overall colony numbers. The size of the individual colonies was also reduced.

Antisense oligonucleotide experiments using both human and murine stem cells demonstrated an inhibition of myeloid colony formation. Although, the reduction in myelopoiesis observed in these assays could be prevented by the additional inclusion of G-CSF and GM-CSF in the culture medium. These data serve to illustrate the redundancy of cytokine action in the myelopoietic compartment.

TABLE 1

EXPERIMENT	<u>OLIGO</u>	AVG. COLONY #	% INHIBITION
Human Cord Blood (KL)	(-20)AS	32	
	(-20)S	100	70
	(-20)SCR	114	
	(+85)AS	80	
	(+85)S	123	38
	(+85)SCR	138	
	Control	158	
Human Cord Blood	(-20)AS	78	
(IL-3, IL-6, KL)	(-20)S	188	54
	(-20)SCR	151	
	(+85)AS	167	
	(+85)S	195	18
	(+85)SCR	213	
	Control	266	
Human Cord Blood (KL)	(-20)AS	42	
	(-20)S	146	69
	(-20)SCR	121	
	(+85)AS	123	
	(+85)S	162	23
	(+85)SCR	156	
	Control	145	
Murine Fetal Liver (KL)	(+84)AS	33	
	(+84)S	86	54
	(+84)SCR	57	
	(-20)AS	27	
	(-20)S	126	71
	(-20)SCR	60	
	(-99)AS	109	

EXPERIMENT	OLIGO	AVG. COLONY #	% INHIBITION
	(-99)S	93	0
	(-99)SCR	109	
	Control	121	
Murine Fetal Liver (KL)	(-213)AS	51	
	(-213)S	60	10
	(-213)SCR	53	
	(+211)AS	58	
	(+211)S	54	3
	(+211)SCR	66	
	Control	59	

Materials and Methods

Human stem cells: Human umbilical cord blood was collected in PBS/Heparin (1000μ/ml). The mononuclear fraction was separated using a dextran gradient and any remaining red blood cells lysed in 20 mM NH₄ Cl. CD34⁺ cells were isolated using CD34⁺ immunomagnetic beads (Miltenyi, CA). These isolated CD34⁺ cells were found to be 90-97% CD34⁺ by FACS analysis.

Murine stem cells: Midgestation fetal liver were harvested and positively selected for the AA4⁻ antigen by immune panning. The AA4⁻ positive fraction was then further enriched for stem cell content by FACS isolation of the AA4⁺ Sca⁺ Kit⁺ fraction.

Antisense experiments: Oligodeoxynucleotides were synthesized against regions of the human or murine WSX receptors. For each oligonucleotide chosen, antisense (AS), sense (S) and scrambled (SCR) versions were synthesized (see Fig. 7). + or - indicates position relative the initiation methionine of the WSX receptor. CD34⁺ or AA4⁺ Sca⁺ Kit⁺ cells were incubated at a concentration of 10³/ml in 50:50 DMEM/F12 media supplemented with 10% FBS, L-glutamine, and GIBCOTM lipid concentrate containing either sense, antisense or scrambled oligonucleotides at a concentration of 70 μg/ml. After 16 hours, a second aliquot of the respective oligonucleotide was added (35 μg/ml) and the cells incubated for a further 6 hours.

Colony assays: 5000 cells from each of the above conditions were aliquoted into 5 ml of methylcellulose (Stem Cell Technologies) containing kit ligand (KL) (25 ng/ml), interleukin-3 (IL-3) (25 ng/ml) and interleukin-6 (IL-6) (50 ng/ml). The methylcellulose cultures were then incubated at 37°C for 14 days and the resultant colonies counted and phenotyped. All assays were performed in triplicate.

10

EXAMPLE 9

WSX Receptor Variant 13.2 is a Receptor for OB Protein

The WSX receptor variant 13.2 has essentially the same amino acid sequence as the recently cloned leptin (OB) receptor. See Tartaglia *et al.*, *Cell* 83:1263-1271 (1995). OB protein was able to stimulate thymidine incorporation in Baf3 cells transfected with WSX receptor variant 13.2 as described in Example 4 (See Fig. 9).

OB protein expression in hematopoietic cells was studied. Oligonucleotide primers designed specifically against the OB protein illustrated the presence of this ligand in fetal liver and fetal brain as well as in two fetal liver stromal cell lines, designated 10-6 and 7-4. Both of these immortalized stromal cell lines have been demonstrated to support both myeloid and lymphoid proliferation of stem cell populations (Zeigler *et al.*, *Blood* 84:2422-2430 (1994)).

EXAMPLE 10

Role of OB Protein in Hematopoiesis

To examine the hematopoietic activity of OB protein, a variety of *in vitro* assays were performed.

Murine fetal liver fIASK stem cells were isolated from the midgestational fetal liver as described in Zeigler et al., Blood 84:2422-2430 (1994) and studied in stem cell suspension culture or methylcellulose assays.

For the stem cell suspension cultures, twenty thousand of the fLASK cells were seeded in individual wells in a 12 well format in DMEM 4.5/F12 media supplemented with 10% heat inactivated fetal calf serum (Hyclone, Logan, UT) and L-glutamine. Growth factors were added at the following concentrations: kit ligand (KL) at 25 ng/mL, interleukin-3 (IL-3) at 25 ng/mL, interleukin-6 (IL-6) at 50 ng/mL, G-CSF at 100 ng/mL, GM-CSF at 100 ng/mL, EPO at 2U/mL, interleukin-7 (IL-7) at 100 ng/mL (all growth factors from R and D Systems, Minneapolis, MN). OB protein was added at 100 ng/mL unless indicated otherwise. Recombinant OB protein was produced as described in Levin et al., Proc. Natl. Acad. Sci. (USA) 93:1726-1730 (1996).

In keeping with its ability to transduce a proliferative signal in Baf3 cells (see previous Example), OB protein dramatically stimulated the expansion of flASK cells grown in suspension culture in the presence of kit ligand (Fig. 10A). The addition of OB protein alone to these suspension cultures was unable to effect survival of the hematopoietic stem cells (HSCs). When a variety of

30

hematopoietic growth factors in suspension culture assays were tested, the main synergy of OB protein appeared to be with KL, GM-CSF and IL-3 (Table 2). No preferential expansion of any particular lineage was observed from cytospin analysis of the resultant cultures.

TABLE 2

Factor	KL	KL+OB protein	OB protein
N/A	128+/-9	192+/-13	
G-CSF	131+/-3	177+/-8	30+/-5
GM-CSF	148+/-4	165+/-6	134+/-10
IL-3	189+/-7	187+/-4	144+/-
IL-6	112+/-4	198+/-5	32+/-3
EPO	121+/-3	177+/-8	30+/-6
IL-3 & IL-6	112+/-12	198+/-7	32+/-7

flASK stem cells were isolated. Twenty thousand cells were plated in suspension culture with the relevant growth factor combination. Cells were harvested and counted after 7 days. Cell numbers are presented x10³. Assays were performed in triplicate and repeated in two independent experiments.

Methylcellulose assays were performed as previously described (Zeiger et al., supra). Briefly, methylcellulose colony assays were performed using "complete" methylcellulose or pre-B methylcellulose medium (Stem Cell Technologies, Vancouver, British Columbia, Canada) with the addition of 25 ng/mL KL (R and D Systems, Minneapolis, MN). Cytospin analyses of the resultant colonies were performed as previously described in Zeigler et al.

When these methylcellulose assays were employed, OB protein augmented myeloid colony formation and dramatically increased lymphoid and erythroid colony formation (Figs. 10B and 10C) which demonstrates that OB protein can act on very early cells of the hematopoietic lineage. Importantly, the hematopoietic activity of OB protein was not confined to fetal liver stem cells, the murine bone marrow stem cell population; Lin^{lo}Sca⁺ also proliferated in response to OB protein (KL: 5 fold expansion, KL and OB protein: 10 fold expansion).

Further hematopoietic analysis of the role of the WSX receptor was carried out by examining hematopoietic defects in the *db/db* mouse.

30

20

5

10

These defects were assessed by measuring the proliferative potential of db/db homozygous mutant marrow. Under conditions favoring either myeloid (Humphries et al., Proc. Natl. Acad. Sci. (USA) 78:3629-3633 (1981)) or lymphoid (McNiece et al., J. Immunol. 146:3785-90 (1991)) expansion, the colony forming potential of the db/db marrow was significantly reduced when compared to the wild-type control marrow (Fig. 11). This was particularly evident when the comparison was made under pre-B methylcellulose conditions where KL and IL-7 are used to drive lymphopoiesis (McNiece et al., supra). Corresponding analysis of the complementary mouse mutation ob/ob, which is deficient in the production of OB protein (Zhang et al., Nature 372:425-431 (1994)), also indicated that the lymphoproliferative capacity is compromised in the absence of a functional OB protein signalling pathway (Fig. 11). However, this reduction was less than the reduction observed using db/db marrow.

Analysis of the cellular profile of the db/db and wild-type marrow revealed significant differences between the two. Overall cellularity of the db/db marrow was unchanged. However, when various B cell populations in the db/db marrow were examined, both decreased levels of B220* and B220⁺/CD43⁺ cells were found. B220 ⁺ cells represent all B cell lineages while CD43 is considered to be expressed preferentially on the earliest cells of the B cell hierarchy (Hardy et al., J. Exp. Med. 173:1213-25 (1991)). No differences were observed between the CD4/CD8 staining profiles of the two groups. The TER119 (a red cell lineage marker) population was increased in the db/db marrow (Fig. 12A).

Comparison of the spleens from the two groups revealed a significant decrease in both tissue weight and cellularity of the db/db mice compared to the homozygote misty gray controls (0.063 ± 0.009 g vs. 0.037 ± 0.006 g and $1.10\times 10^7\pm 1\times 10^4$ vs. $4.3\times 10^6\pm 10^3$ cells > p0.05). This decreased cellularity in the db spleen was reflected in a marked reduction in TER119 staining (Fig. 12B). This result appears to confirm the synergy demonstrated between OB protein and EPO and points to a role for OB protein in the regulation of erythropoiesis.

Examination of the hematopoietic compartment of the db/db mouse in vivo demonstrated a significant reduction in peripheral blood lymphocytes when compared to heterozygote or wild-type controls. Db/db mice fail to regulate blood glucose levels and become diabetic at approximately 6-8 weeks of age; therefore, peripheral blood counts as the animals matured were followed.

For procurement of blood samples, prior to the experiment and at time points throughout the study, 40 µL of blood was taken from the orbital sinus and immediately diluted into 10 mL of diluent

30

5

10

to prevent clotting. The complete blood count from each blood sample was measured on a Serrono Baker system 9018 blood analyzer within 60 min. of collection. Only half the animals in each dose group were bled on any given day, thus, each animal was bled on alternate time points. Blood glucose levels were measured in orbital sinus blood samples using One Touch glucose meters and test strips (Johnson and Johnson). The results of this experiment are shown in Figs. 13A-C.

This analysis demonstrated that peripheral blood lymphocytes are significantly reduced at all time points compared to control animals and that the peripheral lymphocyte population of the *db/db* mouse does not change significantly with age. FACS analysis revealed that the decreased lymphocyte population represented a decrease in both B220⁺ cells and CD4/CD8 cells. Both erythrocyte and platelets are at wild-type levels throughout all time periods examined. The peripheral blood lymphocyte levels in *ob/ob* homozygous mutant mice were unchanged from wild-type controls.

Hematopoietic analysis of the *db/db* mouse can be complicated by the onset of diabetes. Therefore, the impact of high glucose levels on lymphopoiesis was examined by comparing the peripheral blood profiles and blood glucose levels in two other diabetic models, the glucokinase knockout heterozygote mouse (Grupe *et al.*, *Cell* 83:69-78 (1995)) and the IFN-α transgenic mouse (Stewart *et al.*, *Science* 260:1942-6 (1993)). Comparison of peripheral lymphocytes and blood glucose in *db/db* mice, their appropriate controls and the high glucose models illustrated no relationship between blood-glucose and lymphocyte counts (Fig. 14). These results suggest therefore that the lymphoid defects observed in the *db/db* mouse are directly attributed to the hematopoietic function of the OB protein signalling pathway.

To test the capacity of the *db/db* hematopoietic compartment to respond to challenge, the *db/db* mice and controls were subjected to sub-lethal irradiation C57BLKS/J *db/db*, C57BLKS/Jm⁺/db, and C57BLKS/J ⁺m/⁺m mice were subjected to sub-lethal whole body irradiation (750 cGy, 190 cGy/min) as a single dose from a ¹³⁷Cs source. Ten animals were used per experimental group. The kinetics of hematopoietic recovery were then followed by monitoring the peripheral blood during the recovery phase. This experiment illustrated the inability of the *db/db* hematopoietic system to fully recover the lymphopoietic compartment of the peripheral blood 35 days post-irradiation. Platelet levels in these mice followed the same recovery kinetics as controls, however the reduction in erythrocytes lagged behind controls by 7-10 days. This finding may reflect the increased TER 119 population found in the marrow of the *db/db* mice (Fig. 12A).

30

5

10

Materials and Methods

Bone marrow, spleens and peripheral blood was harvested from the diabetic mouse strains: C57BLKS/J db/db (mutant), C57BLKS/J m+/db (lean heterozygote control littermate), C57BLKS/J+m/+m (lean homozygote misty gray coat control littermate) and the obese mouse strains: C57BL/6J-ob/ob (mutant) and the C57BL/6J-ob/+ (lean littermate control). All strains from the Jackson Laboratory, Bar Harbor, ME. A minimum of five animals were used per experimental group. Femurs were flushed with Hank's balanced salt solution (HBSS) plus 2% FCS and a single cell suspension was made of the bone marrow cells. Spleens were harvested and the splenic capsule was ruptured and filtered through a nylon mesh. Peripheral blood was collected through the retro-orbital sinus in phosphate buffered saline (PBS) with 10U/mL heparin and Immol EDTA and processed as previously described. The bone marrow, splenocytes and peripheral blood were then stained with the monoclonal antibodies against the following antigens: B220/CD45R (Pan B cell) FITC antimouse, TER-119/erythroid cell R-PE antimouse, CD4 (L3T4), FITC antimouse, CD8 (Ly 3.2), FITC antimouse, and slgM (lgh-6b), FITC antimouse (All monoclonals from Pharmigen, San Diego, CA). The appropriate isotype controls were included in each experiment. For methylcellulose assays, the bone marrow from five animals per group was pooled and 100,000 cell aliquots from each group used for each assay point.

EXAMPLE 11

Expression of OB-immunoadhesin

Using protein engineering techniques, the human OB protein was expressed as a fusion with the hinge, CH2 and CH3 domains of IgG1. DNA constructs encoding the chimera of the human OB protein and IgG1 Fc domains were made with the Fc region clones of human IgG1. Human OB cDNA was obtained by PCR from human fat cell dscDNA (Clontech Buick-Clone cDNA product). The source of the IgG1 cDNA was the plasmid pBSSK-CH2CH3. The chimera contained the coding sequence of the full length OB protein (amino acids 1-167 in Figure 16) and human IgG1 sequences beginning at aspartic acid 216 (taking amino acid 114 as the first residue of the heavy chain constant region (Kabat *et al.*, Sequences of Proteins of Immunological Interest 4th ed. (1987)), which is the first residue of the IgG1 hinge after the cysteine residue involved in heavy-light chain bonding, and ending with residues 441 to include the CH2 and CH3 Fc domains of IgG1. There was an insert of codons for three amino acids (GlyValThr) between the OB protein and IgG1 coding sequences. If

10

necessary, this short linker sequence can easily be deleted, for example by site directed deletion mutagenesis, to create an exact junction between the coding sequences of the OB protein and the IgG1 hinge region. The coding sequence of the OB-IgG1 immunoadhesin was subcloned into the pRK5-based vector pRK5tk-neo which contains a neomycine selectable marker, for transient expression in 293 cells using the calcium phosphate technique (Suva *et al.*, *Science* 237:893-896 (1987)). 293 cells were cultured in HAM's: Low Glucose DMEM medium (50:50), containing 10% FBS and 2 mM L-Gln. For purification of OB-IgG1 chimeras, cells were changed to serum free production medium PS24 the day after transfection and media collected after three days. The culture media was filtered.

The filtered 293 cell supernatant (400 ml) containing recombinant human OB-IgG1 was made 1 mM in phenylmethylsulfonyl fluoride and 2 µg/ml in aprotinin. This material was loaded at 4°C onto a 1 x 4.5 cm Protein A agarose column (Pierce catalog # 20365) equilibrated in 100 mM HEPES pH 8. The flow rate was 75 ml/h. Once the sample was loaded, the column was washed with equilibration buffer until the A₂₈₀ reached baseline. The OB-IgG1 protein was eluted with 3.5 M MgCl₂ + 2% glycerol (unbuffered) at a flow rate of 15 ml/h. The eluate was collected with occasional mixing into 10 ml of 100 mM HEPES pH 8 to reduce the MgCl₂ concentration by approximately one-half and to raise the pH. The eluted protein was then dialyzed into phosphate buffered saline, concentrated, sterile filtered and stored either at 4°C or frozen at -70 °C. The OB-IgG1 immunoadhesin prepared by this method is estimated by SDS-PAGE to be greater than 90% pure.

EXAMPLE 12

Preparation of PEG-OB

The PEG derivatives of the human OB protein were prepared by reaction of hOB protein purified by reverse phase chromatography with a succinimidyl derivative of PEG propionic acid (SPA-PEG) having a nominal molecular weight of 10 kD, which had been obtained from Shearwater Polymers, Inc. (Huntsville, AL). After purification of the hOB protein by reverse phase chromatography, an approximately 1-2 mg/ml solution of the protein in 0.1% trifluoroacetic acid and approximately 40% acetonitrile, was diluted with 1/3 to 1/2 volume of 0.2 M borate buffer and the pH adjusted to 8.5 with NaOH. SPA-PEG was added to the reaction mixture to make 1:1 and 1:2 molar ratios of protein to SPA-PEG and the mixture was allowed to incubate at room temperature for one hour. After reaction and purification by gel electrophoresis or ion exchange chromatography, the

samples were extensively dialyzed against phosphate-buffered saline and sterilized by filtration through a 0.22 micron filter. Samples were stored at 4°C. Under these conditions, the PEG-hOB resulting from the 1:1 molar ratio protein to SPA-PEG reaction consisted primarily of molecules with one 10 kD PEG attached with minor amounts of the 2 PEG-containing species. The PEG-hOB from the 1:2 molar reaction consisted of approximately equal amounts of 2 and 3 PEGs attached to hOB. as determined by SDS gel electrophoresis. In both reactions, small amounts of unreacted protein were also detected. This unreacted protein can be efficiently removed by the gel filtration or ion exchange steps as needed. The PEG derivatives of the human OB protein can also be prepared essentially following the aldehyde chemistry described in EP 372,752 published June 13, 1990.

10

5

EXAMPLE 13

Murine Agonist Antibodies

Mice were immunized five times with 20µg of the WSX receptor immunoadhesin (see Example 2 above) resuspended in MPL-TDM (monophosphoryl lipid A/trehalose dicorynomycolate; Rabi, Immunochemical Research Inc.) into each foot pad. Three days after the last immunization, popliteal lymphoid cells were fused with mouse myeloma cells, X63-Ag8.8.653 cells, using 50% polyethylene glycol as described (Laskov et al. Cell. Immunol. 55:251 (1980)).

The initial screening of hybridoma culture supernatants was done using a capture ELISA. For the capture ELISA, microtiter plates (Maxisorb; Nunc, Kamstrup, Denmark) were coated with 50µl/well of 2µg/ml of goat antibodies specific to the Fc portion of human IgG (Goat anti-hlgG-Fc; Cappel), in PBS, overnight at 4°C and blocked with 2x BSA for 1 hr at room temperature. Then, 50µl/well of 2µg/ml of WSX receptor immunoadhesin was added to each well for 1 hr. The remaining anti-Fc binding sites were blocked with PBS containing 3% human serum and 10µg/ml of CD4-IgG for 1 hr. Plates were incubated with 50µl/well of 2µg/ml of anti-WSX receptor monoclonal antibody (or hybridoma culture supernatant) for 1 hr. Plates were then incubated with 50µl/well of HRP-goat anti-mouse IgG. The bound enzyme was detected by the addition of the substrate (OPD) and the plates were read at 490nM with an ELISA plate reader. Between each step, plates were washed in wash buffer (PBS containing 0.05% TWEEN 20™).

Agonist antibodies were screened for using the KIRA ELISA described in WO95/14930. A chimeric receptor comprising the extracellular domain of the WSX receptor and the transmembrane and intracellular domain of Rse receptor (Mark et al., Journal of Biological Chemistry 269(14):10720-

30

30

5

10

10728 (1994)) with a carboxyl-terminal herpes simplex virus glycoprotein D (gD) tag was produced and dp12.CHO cells were transformed therewith as described in Example 4 of WO95/14930.

The WSX/Rse.gD transformed dp12.CHO cells were seeded (3x10⁴ per well) in the wells of a flat-bottom-96 well culture plate in 100µl media and cultured overnight at 37°C in 5% CO₂. The following morning the well supernatants were removed and various concentrations of purified mAb were then added to separate wells. The cells were stimulated at 37°C for 30 min. and the well supernatants were decanted. To lyse the cells and solubilize the chimeric receptors, 100 µl of lysis buffer was added to each well. The plate was then agitated gently on a plate shaker (Bellco Instruments, Vineland, NJ) for 60 min. at room temperature.

While the cells were being solubilized, an ELISA microtiter plate (Nunc Maxisorp, Inter Med, Denmark) coated overnight at 4°C with the 5B6 monoclonal anti-gD antibody (5.0 µg/ml in 50 mM carbonate buffer, pH 9.6, 100 µl/well) was decanted and blocked with 150 µl/well of Block Buffer containing 2% BSA for 60 min. at room temperature. After 60 minutes, the anti-gD 5B6 coated plate was washed 6 times with wash buffer (PBS containing 0.05 % TWEEN 20™ and 0.01 % thimerosal).

The lysate containing solubilized WSX/Rse.gD from the cell-culture microtiter well was transferred (85µl/well) to anti-gD 5B6 coated and blocked ELISA well and was incubated for 2 h at room temperature. The unbound WSX/Rse.gD was removed by washing with wash buffer and 100 µl of biotinylated 4G10 (anti-phosphotyrosine) diluted 1:18000 in dilution buffer (PBS containing 0.5 % BSA, 0.05 % Tween-20, 5 mM EDTA, and 0.01 % thimerosal), *i.e.* 56 ng/ml was added to each well. After incubation for 2 h at room temperature the plate was washed and HRPO-conjugated streptavidin (Zymed Laboratories, S. San Francisco, CA) was added to each well. The plate was incubated for 30 minutes at room temperature with gentle agitation. The free avidin-conjugate was washed away and 100 µl freshly prepared substrate solution (tetramethyl benzidine (TMB); 2-component substrate kit; Kirkegaard and Perry, Gaithersburg, MD) was added to each well. The reaction was allowed to proceed for 10 minutes, after which the color development was stopped by the addition of 100µl/well 1.0 M H₃PO₄. The absorbance at 450 nm was read with a reference wavelength of 650 nm (ABS_{450/650}), using a *vmax* plate reader (Molecular Devices, Palo Alto, CA) controlled with a Macintosh Centris 650 (Apple Computers, Cupertino, CA) and DeltaSoft software (BioMetallics, Inc, Princeton, NJ).

Four of the 25 anti-WSX receptor monoclonal antibodies activated the chimeric WSX/Rse receptor in the KIRA ELISA. The antibodies were designated: 2D7, 1G4, 1E11 and 1C11.

10

To determine whether the four agonist anti-WSX receptor mAbs recognized the same or different epitopes, a competitive binding ELISA was performed as described in *Kim et al. J. Immunol. Method* 156:9-17 (1992) using biotinylated mAbs (Bio-mAb). Bio-mAb were prepared using N-hydroxyl succinimide as described in *Antibodies, A Laboratory Manual* Cold Spring Harbor Laboratory, Eds. Harlow E. and D. Lane, p. 341 (1988). Microtiter wells were coated with 50µl of Goat anti-hlgG-Fc and kept overnight at 4°C, blocked with 2% BSA for 1 hr, and incubated with 25 µl/well of human WSX receptor immunoadhesin (1µg/ml) for 1 hr at room temperature. After washing, a mixture of a predetermined optimal concentration of Bio-mAb bound and a thousand-fold excess of unlabeled mAb was added into each well. Following 1hr incubation at room temperature, plates were washed and the amount of Bio-mAb was detected by the addition of HRP-streptavidin. After washing the plates, the bound enzyme was detected by the addition of the substrate ophenylenediamine dihydrochloride (OPD), and the plates were read at 490nm with an ELISA plate reader.

The ability of the mAbs to recognize murine WSX receptor was determined in a capture ELISA. Murine WSX receptor (Fig. 21) fused to a gD tag (see above) was captured by an anti-gD (5B6) coated ELISA plate. After washing, various concentrations of biotinylated mAbs were added into each well. Biotinylated mAbs bound to murine WSX receptor-gD were detected using HRP-streptavidin as described above.

To determine whether the antibodies bound membrane-bound receptor, FACS analysis was performed using 293 cells transfected with WSX receptor. 10⁵ WSX receptor-transfected 293 cells were resuspended in 100µl of PBS plus 1% fetal calf serum (FSC) and incubated with 2D7 or 1G4 hybridoma cell supernatant for 30 min on ice. After washing, cells were incubated with 100µl of FITC-goat anti-mouse IgG for 30 min at 4°C. Cells were washed twice and resuspended in 150µl of PBS plus 1% FCS and analyzed by FACscan (Becton Dickinson, Mountain View, CA). The antibodies 2D7 and 1G4 bound to membrane WSX receptor according to the FACS analysis.

The properties of agonist antibodies 2D7 and 1G4 are summarized in the following table.

TABLE 2

mAb	Isotype	Isotype epitope ^a hWSXR ^b		mWSXR ^b	Agonist°
2D7	lgG1	A	+++	++	+
1G4	lgG1	В	+++	+	+

30

10

EXAMPLE 14

Human Agonist Antibodies

Single-chain Fv (scFv) fragments binding to the human WSX receptor (hWSXR) were isolated from a large human scFv library (Vaughan *et al. Nature Biotechnology* 14:309–314 (1996)) using antigen coated on immunotubes or biotinylated antigen in conjunction with streptavidin-coated magnetic beads (Griffiths *et al. EMBO J.* 13:3245–3260 (1994); and Vaughan *et al.* (1996)). Briefly, immunotubes coated overnight with 10µg/ml human WSX receptor immunoadhesin (see Example 2 above) in phosphate buffered saline (PBS) were used for three rounds of panning. The humanized antibody, huMAb4D5–8 (Carter *et al. Proc. Natl. Acad. Sci. USA* 89:4285–4289 (1992)) was used to counter-select for antibodies binding to the Fc of the immunoadhesin. This was done by using 1mg/ml huMAb4D5-8 in solution for the panning steps. In addition, human WSX receptor extracellular domain (cleaved from the WSX receptor immunoadhesin with Genenase (Carter *et al. Proteins: Structure, Function and Genetics* 6:240-248 (1989)) was biotinylated and used for three rounds of panning. Individual phage following two or three rounds of panning were characterized by antigen-binding ELISA (Tables 3 and 4).

TABLE 3
Panning with human WSX receptor immunoadhesin-coated immunotubes

	Phage ELISA	# clones	# BstNI			
Round	hWSXR	Fc	characterized	fingerprints		
2	74 / 96	0 / 96	74	11 ^a		
3	191 / 192	1 / 192	58	8ª		

^a Total of 11 different clones identified.

^a These mAbs are shown to recognize different epitopes by competitive binding ELISA.

^b These results are determined by ELISA (hWSXR is human WSX receptor and mWSXR is murine WSX receptor).

[°] The agonistic activities were determined by KIRA ELISA.

W.

20

TABLE 4
Panning with biotinylated human WSX receptor

	Phage ELISA		# clones	# BstNl		
Round	hWSXR	Fc	characterized	fingerprints		
2	8 / 96	0 / 96	8	4 ^a		
3	49 / 192	1 / 192	49	4 ^a		

^a Total of 7 different clones identified.

Clones binding to human WSX receptor were further characterized by BstNI fingerprinting of a PCR fragment encoding the scFv. A total of 18 clones were identified: 11 from the panning using immunotubes and 7 from the panning using biotinylated antigen (there was no overlap between these groups). The DNA for all 18 clones was sequenced.

Anti-huWSXR clones obtained as described above were analyzed for agonist activity in a KIRA-ELISA assay (see above and Fig. 22) firstly as scFv phage and then as scFv. The scFv phage were PEG-precipitated (Carter et al., Mutagenesis: A Practical Approach, McPherson, M. ed. IRL Press, Oxford, UK, Chapter 1, pp 1-25 (1991)) and resuspended in PBS prior to screening. To prepare the scFv, DNA from the clones was transformed into 33D3 cells (a non-suppressor strain for expression of soluble protein). The cells were plated onto 2YT/2%glucose/50µg per ml of carbenicillin and incubated at 37°C overnight. A 5 ml culture (2YTG: 2YT, 2% glucose, 50µg/ml carbenicillin) was innoculated and grown at 30°C overnight. The next morning, the 5ml culture was diluted into 500ml 2YTG media and grown at 30°C until OD550~ 0.3. Then, the media was changed from 2YTG into 2YT/50µg/ml carbenicillin/2mM IPTG and grown at 30°C for 4-5 hrs for scFv production. The culture was harvested and the cell pellet was frozen at -20°C. For purification, the cell pellet was resuspended in 10ml shockate buffer (50mM TrisHCl pH8.5, 20% sucrose, 1mM EDTA) and agitated at 4°C for 1hr. The debris was spun down and supernatant was taken to be purified on Ni NTA Superose (Qiagen) column. MgCl₂ was added to the supernatant to 5mM and loaded onto 0.5ml Ni NTA Superose packed into a disposable columnn. The column was then washed with 2x5ml wash buffer 1 (50mM sodium phosphate, 300mM NaCl, 25mM imidazole pH 8.0) followed by 2x5ml wash 2 buffer (50mM sodium phosphate, 300mM NaCl, 50mM imidazole pH 8.0).

The scFv was then eluted with 2.5ml elution buffer (50mM sodium phosphate, 300mM NaCl, 250mM imidazole, pH8.0). The eluted pool was buffer exchanged into PBS with a NAP5 column (Pharmacia) and stored at 4°C.

Clones #3, #4 and #17 were found to have agonist activity as phage and as scFv (see Figs. 23 and 24). The sequences of these agonist clones are shown in Fig. 25. The activity of the antibodies as F(ab')₂ in the KIRA ELISA was assessed, with clone #4 and clone # 17 showing enhanced activity as F(ab')₂. The ability of the antibodies to bind murine WSX receptor in a capture ELISA (see Example 13) was assessed. Clone #4 and clone # 17 bound murine WSX receptor in this assay.

SEQUENCE LISTING

	(1) GE	NERAL INFORMATION:
5	(i)	APPLICANT: Carter, Paul J. Chiang, Nancy Y. Kyung, Jin Kim Matthews, William Rodrigues, Maria L.
	(ii)	TITLE OF INVENTION: WSX RECEPTOR AGONIST ANTIBODIES
	(iii)	NUMBER OF SEQUENCES: 51
10 15	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Genentech, Inc. (B) STREET: 460 Point San Bruno Blvd (C) CITY: South San Francisco (D) STATE: California (E) COUNTRY: USA
		(F) ZIP: 94080
15 T T T T T T T T T T T T T T T T T T T	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: 3.5 inch, 1.44 Mb floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: WinPatin (Genentech)
25	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 08/667197 (B) FILING DATE: 06/20/96
30	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 08/585005 (B) FILING DATE: 01/08/96
	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Lee, Wendy M. (B) REGISTRATION NUMBER: 40,378

(C) REFERENCE/DOCKET NUMBER: P0986P2

- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 415/225-1994
 - (B) TELEFAX: 415/952-9881
 - (C) TELEX: 910/371-7168
- 5 (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4102 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GAATTCTCGA	GTCGACGGCG	GGCGTTAAAG	CTCTCGTGGC	ATTATCCTTC	50
AGTGGGGCTA	TTGGACTGAC	TTTTCTTATG	CTGGGATGTG	CCTTAGAGGA	100
TTATGGGTGT	ACTTCTCTGA	AGTAAGATGA	TTTGTCAAAA	ATTCTGTGTG	150
GTTTTGTTAC	ATTGGGAATT	TATTTATGTG	ATAACTGCGT	TTAACTTGTC	200
ATATCCAATT	ACTCCTTGGA	GATTTAAGTT	GTCTTGCATG	CCACCAAATT	250
CAACCTATGA	CTACTTCCTT	TTGCCTGCTG	GACTCTCAAA	GAATACTTCA	300
AATTCGAATG	GACATTATGA	GACAGCTGTT	GAACCTAAGT	TTAATTCAAG	350
TGGTACTCAC	TTTTCTAACT	TATCCAAAAC	AACTTTCCAC	TGTTGCTTTC	400
GGAGTGAGCA	AGATAGAAAC	TGCTCCTTAT	GTGCAGACAA	CATTGAAGGA	450
AAGACATTTG	TTTCAACAGT	AAATTCTTTA	GTTTTTCAAC	AAATAGATGC	500
AAACTGGAAC	ATACAGTGCT	GGCTAAAAGG	AGACTTAAAA	TTATTCATCT	550
GTTATGTGGA	GTCATTATTT	AAGAATCTAT	TCAGGAATTA	TAACTATAAG	600
GTCCATCTTT	TATATGTTCT	GCCTGAAGTG	TTAGAAGATT	CACCTCTGGT	650
TCCCCAAAAA	GGCAGTTTTC	AGATGGTTCA	CTGCAATTGC	AGTGTTCATG	700
AATGTTGTGA	ATGTCTTGTG	CCTGTGCCAA	CAGCCAAACT	CAACGACACT	750
CTCCTTATGT	GTTTGAAAAT	CACATCTGGT	GGAGTAATTT	TCCAGTCACC	800

5

TCTAATGTCA GTTCAGCCCA TAAATATGGT GAAGCCTGAT CCACCATTAG 850 GTTTGCATAT GGAAATCACA GATGATGGTA ATTTAAAGAT TTCTTGGTCC 900 AGCCCACCAT TGGTACCATT TCCACTTCAA TATCAAGTGA AATATTCAGA 950 GAATTCTACA ACAGTTATCA GAGAAGCTGA CAAGATTGTC TCAGCTACAT 1000 CCCTGCTAGT AGACAGTATA CTTCCTGGGT CTTCGTATGA GGTTCAGGTG 1050 AGGGGCAAGA GACTGGATGG CCCAGGAATC TGGAGTGACT GGAGTACTCC 1100 TCGTGTCTTT ACCACACAG ATGTCATATA CTTTCCACCT AAAATTCTGA 1150 CAAGTGTTGG GTCTAATGTT TCTTTTCACT GCATCTATAA GAAGGAAAAC 1200 AAGATTGTTC CCTCAAAAGA GATTGTTTGG TGGATGAATT TAGCTGAGAA 1250 AATTCCTCAA AGCCAGTATG ATGTTGTGAG TGATCATGTT AGCAAAGTTA 1300 CTTTTTTCAA TCTGAATGAA ACCAAACCTC GAGGAAAGTT TACCTATGAT 1350 GCAGTGTACT GCTGCAATGA ACATGAATGC CATCATCGCT ATGCTGAATT 1400 ATATGTGATT GATGTCAATA TCAATATCTC ATGTGAAACT GATGGGTACT 1450 TAACTAAAAT GACTTGCAGA TGGTCAACCA GTACAATCCA GTCACTTGCG 1500 GAAAGCACTT TGCAATTGAG GTATCATAGG AGCAGCCTTT ACTGTTCTGA 1550 TATTCCATCT ATTCATCCA TATCTGAGCC CAAAGATTGC TATTTGCAGA 1600 GTGATGGTTT TTATGAATGC ATTTTCCAGC CAATCTTCCT ATTATCTGGC 1650 TACACAATGT GGATTAGGAT CAATCACTCT CTAGGTTCAC TTGACTCTCC 1700 ACCAACATGT GTCCTTCCTG ATTCTGTGGT GAAGCCACTG CCTCCATCCA 1750 GTGTGAAAGC AGAAATTACT ATAAACATTG GATTATTGAA AATATCTTGG 1800 GAAAAGCCAG TCTTTCCAGA GAATAACCTT CAATTCCAGA TTCGCTATGG 1850 TTTAAGTGGA AAAGAAGTAC AATGGAAGAT GTATGAGGTT TATGATGCAA 1900 AATCAAAATC TGTCAGTCTC CCAGTTCCAG ACTTGTGTGC AGTCTATGCT 1950 GTTCAGGTGC GCTGTAAGAG GCTAGATGGA CTGGGATATT GGAGTAATTG 2000

5

GAGCAATCCA GCCTACACAG TTGTCATGGA TATAAAAGTT CCTATGAGAG 2050 GACCTGAATT TTGGAGAATA ATTAATGGAG ATACTATGAA AAAGGAGAAA 2100 AATGTCACTT TACTTTGGAA GCCCCTGATG AAAAATGACT CATTGTGCAG 2150 TGTTCAGAGA TATGTGATAA ACCATCATAC TTCCTGCAAT GGAACATGGT 2200 CAGAAGATGT GGGAAATCAC ACGAAATTCA CTTTCCTGTG GACAGAGCAA 2250 GCACATACTG TTACGGTTCT GGCCATCAAT TCAATTGGTG CTTCTGTTGC 2300 AAATTTTAAT TTAACCTTTT CATGGCCTAT GAGCAAAGTA AATATCGTGC 2350 AGTCACTCAG TGCTTATCCT TTAAACAGCA GTTGTGTGAT TGTTTCCTGG 2400 ATACTATCAC CCAGTGATTA CAAGCTAATG TATTTTATTA TTGAGTGGAA 2450 AAATCTTAAT GAAGATGGTG AAATAAAATG GCTTAGAATC TCTTCATCTG 2500 TTAAGAAGTA TTATATCCAT GATCATTTTA TCCCCATTGA GAAGTACCAG 2550 TTCAGTCTTT ACCCAATATT TATGGAAGGA GTGGGAAAAC CAAAGATAAT 2600 TAATAGTTTC ACTCAAGATG ATATTGAAAA ACACCAGAGT GATGCAGGTT 2650 TATATGTAAT TGTGCCAGTA ATTATTTCCT CTTCCATCTT ATTGCTTGGA 2700 ACATTATTAA TATCACACCA AAGAATGAAA AAGCTATTTT GGGAAGATGT 2750 TCCGAACCCC AAGAATTGTT CCTGGGCACA AGGACTTAAT TTTCAGAAGC 2800 CAGAAACGTT TGAGCATCTT TTTATCAAGC ATACAGCATC AGTGACATGT 2850 GGTCCTCTTC TTTTGGAGCC TGAAACAATT TCAGAAGATA TCAGTGTTGA 2900 TACATCATGG AAAAATAAAG ATGAGATGAT GCCAACAACT GTGGTCTCTC 2950 TACTTTCAAC AACAGATCTT GAAAAGGGTT CTGTTTGTAT TAGTGACCAG 3000 TTCAACAGTG TTAACTTCTC TGAGGCTGAG GGTACTGAGG TAACCTATGA 3050 GGACGAAAGC CAGAGACAAC CCTTTGTTAA ATACGCCACG CTGATCAGCA 3100 ACTCTAAACC AAGTGAAACT GGTGAAGAAC AAGGGCTTAT AAATAGTTCA 3150 GTCACCAAGT GCTTCTCTAG CAAAAATTCT CCGTTGAAGG ATTCTTTCTC 3200

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

	Met 1	Ile	Cys	Gln	Lys 5	Phe	Cys	Val	Val	Leu 10	Leu	His	Trp	Glu	Phe 15
5	Ile	Tyr	Val	Ile	Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30
	Trp	Arg	Phe	Lys	Leu 35	Ser	Cys	Met	Pro	Pro 40	Asn	Ser	Thr	Tyr	Asp 45
	Tyr	Phe	Leu	Leu	Pro 50	Ala	Gly	Leu	Ser	Lys 55	Asn	Thr	Ser	Asn	Ser 60
10	Asn	Gly	His	Tyr	Glu 65	Thr	Ala	Val	Glu	Pro 70	Lys	Phe	Asn	Ser	Ser 75
	Gly	Thr	His	Phe	Ser 80	Asn	Leu	Ser	Lys	Thr 85	Thr	Phe	His	Cys	Cys 90
	Phe	Arg	Ser	Glu	Gln 95	Asp	Arg	Asn	Cys	Ser 100	Leu	Cys	Ala	Asp	Asn 105
To the state of th	Ile	Glu	Gly	Lys	Thr 110	Phe	Val	Ser	Thr	Val 115	Asn	Ser	Leu	Val	Phe 120
i ed	Gln	Gln	Ile	Asp	Ala 125	Asn	Trp	Asn	Ile	Gln 130	Cys	Trp	Leu	Lys	Gly 135
20	Asp	Leu	Lys	Leu	Phe 140	Ile	Cys	Tyr	Val	Glu 145	Ser	Leu	Phe	Lys	Asn 150
	Leu	Phe	Arg	Asn	Tyr 155	Asn	Tyr	Lys	Val	His 160	Leu	Leu	Tyr	Val	Leu 165
25	Pro	Glu	Val	Leu	Glu 170	Asp	Ser	Pro	Leu	Val 175	Pro	Gln	Lys	Gly	Ser 180
	Phe	Gln	Met	Val	His 185	Cys	Asn	Cys	Ser	Val 190	His	Glu	Cys	Cys	Glu 195
	Cys	Leu	Val	Pro	Val 200	Pro	Thr	Ala	Lys	Leu 205	Asn	Asp	Thr	Leu	Leu 210
30	Met	Cys	Leu	Lys	Ile 215	Thr	Ser	Gly	Gly	Val 220	Ile	Phe	Gln	Ser	Pro 225

	Leu	Met	Ser	Val	Gln 230	Pro	Ile	Asn	Met	Val 235	Lys	Pro	Asp	Pro	Pro 240
	Leu	Gly	Leu	His	Met 245	Glu	Ile	Thr	Asp	Asp 250	Gly	Asn	Leu	Lys	Ile 255
5	Ser	Trp	Ser	Ser	Pro 260	Pro	Leu	Val	Pro	Phe 265	Pro	Leu	Gln	Tyr	Gln 270
	Val	Lys	Tyr	Ser	Glu 275	Asn	Ser	Thr	Thr	Val 280	Ile	Arg	Glu	Ala	Asp 285
10	Lys	Ile	Val	Ser	Ala 290	Thr	Ser	Leu	Leu	Val 295	Asp	Ser	Ile	Leu	Pro 300
	Gly	Ser	Ser	Tyr	Glu 305	Val	Gln	Val	Arg	Gly 310	Lys	Arg	Leu	Asp	Gly 315
्याम् १ व्याप्त	Pro	Gly	Ile	Trp	Ser 320	Asp	Trp	Ser	Thr	Pro 325	Arg	Val	Phe	Thr	Thr 330
15,	Gln	Asp	Val	Ile	Tyr 335	Phe	Pro	Pro	Lys	Ile 340	Leu	Thr	Ser	Val	Gly 345
	Ser	Asn	Val	Ser	Phe 350	His	Cys	Ile	Tyr	Lys 355	Lys	Glu	Asn	Lys	Ile 360
<u>"</u> 20	Val	Pro	Ser	Lys	Glu 365	Ile	Val	Trp	Trp	Met 370	Asn	Leu	Ala	Glu	Lys 375
	Ile	Pro	Gln	Ser	Gln 380	Tyr	Asp	Val	Val	Ser 385	Asp	His	Val	Ser	Lys 390
	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400	Pro	Arg	Gly	Lys	Phe 405
25	Thr	Tyr	Asp	Ala	Val 410	Tyr	Cys	Cys	Asn	Glu 415	His	Glu	Cys	His	His 420
	Arg	Tyr	Ala	Glu	Leu 425	Tyr	Val	Ile	Asp	Val 430	Asn	Ile	Asn	Ile	Ser 435
30	Cys	Glu	Thr	Asp	Gly 440	Tyr	Leu	Thr	Lys	Met 445	Thr	Cys	Arg	Trp	Ser 450
	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu	Arg 465

	Tyr	His	Arg	Ser	Ser 470	Leu	Tyr	Cys	Ser	Asp 475	Ile	Pro	Ser	Ile	His 480
	Pro	Ile	Ser	Glu	Pro 485	Lys	Asp	Cys	Tyr	Leu 490	Gln	Ser	Asp	Gly	Phe 495
5	Tyr	Glu	Cys	Ile	Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510
	Met	Trp	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525
10	Pro	Thr	Cys	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro	Pro 540
	Ser	Ser	Val	Lys	Ala 545	Glu	Ile	Thr	Ile	Asn 550	Ile	Gly	Leu	Leu	Lys 555
1 EST 1	Ile	Ser	Trp	Glu	Lys 560	Pro	Val	Phe	Pro	Glu 565	Asn	Asn	Leu	Gln	Phe 570
	Gln	Ile	Arg	Tyr	Gly 575	Leu	Ser	Gly	Lys	Glu 580	Val	Gln	Trp	Lys	Met 585
To the second of	Tyr	Glu	Val	Tyr	Asp 590	Ala	Lys	Ser	Lys	Ser 595	Val	Ser	Leu	Pro	Val 600
20 20	Pro	Asp	Leu	Cys	Ala 605	Val	Tyr	Ala	Val	Gln 610	Val	Arg	Cys	Lys	Arg 615
To the second se	Leu	Asp	Gly	Leu	Gly 620	Tyr	Trp	Ser	Asn	Trp 625	Ser	Asn	Pro	Ala	Tyr 630
	Thr	Val	Val	Met	Asp 635	Ile	Lys	Val	Pro	Met 640	Arg	Gly	Pro	Glu	Phe 645
25	Trp	Arg	Ile	Ile	Asn 650	Gly	Asp	Thr	Met	Lys 655	Lys	Glu	Lys	Asn	Val 660
	Thr	Leu	Leu	Trp	Lys 665	Pro	Leu	Met	Lys	Asn 670	Asp	Ser	Leu	Cys	Ser 675
30	Val	Gln	Arg	Tyr	Val 680	Ile	Asn	His	His	Thr 685	Ser	Cys	Asn	Gly	Thr 690
	Trp	Ser	Glu	Asp	V al 695	Gly	Asn	His	Thr	Lys 700	Phe	Thr	Phe	Leu	Trp 705

	Thr	Glu	Gln	Ala	His 710	Thr	Val	Thr	Val	Leu 715	Ala	Ile	Asn	Ser	Ile 720
	Gly	Ala	Ser	Val	Ala 725	Asn	Phe	Asn	Leu	Thr 730	Phe	Ser	Trp	Pro	Met 735
5	Ser	Lys	Val	Asn	Ile 740	Val	Gln	Ser	Leu	Ser 745	Ala	Tyr	Pro	Leu	Asn 750
	Ser	Ser	Cys	Val	Ile 755	Val	Ser	Trp	Ile	Leu 760	Ser	Pro	Ser	Asp	Tyr 765
10	Lys	Leu	Met	Tyr	Phe 770	Ile	Ile	Glu	Trp	Lys 775	Asn	Leu	Asn	Glu	Asp 780
	Gly	Glu	Ile	Lys	Trp 785	Leu	Arg	Ile	Ser	Ser 790	Ser	Val	Lys	Lys	Tyr 795
	Tyr	Ile	His	Asp	His 800	Phe	Ile	Pro	Ile	Glu 805	Lys	Tyr	Gln	Phe	Ser 810
	Leu	Tyr	Pro	Ile	Phe 815	Met	Glu	Gly	Val	Gly 820	Lys	Pro	Lys	Ile	Ile 825
	Asn	Ser	Phe	Thr	Gln 830	Asp	Asp	Ile	Glu	Lys 835	His	Gln	Ser	Asp	Ala 840
	Gly	Leu	Tyr	Val	Ile 845	Val	Pro	Val	Ile	Ile 850	Ser	Ser	Ser	Ile	Leu 855
	Leu	Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His	Gln 865	Arg	Met	Lys	Lys	Leu 870
	Phe	Trp	Glu	Asp	Val 875	Pro	Asn	Pro	Lys	Asn 880	Cys	Ser	Trp	Ala	Gln 885
25	Gly	Leu	Asn	Phe	Gln 890	Lys	Pro	Glu	Thr	Phe 895	Glu	His	Leu	Phe	Ile 900
30	Lys	His	Thr	Ala	Ser 905	Val	Thr	Cys	Gly	Pro 910	Leu	Leu	Leu	Glu	Pro 915
	Glu	Thr	Ile	Ser	Glu 920	Asp	Ile	Ser	Val	Asp 925	Thr	Ser	Trp	Lys	Asn 930
	Lys	Asp	Glu	Met	Met 935	Pro	Thr	Thr	Val	Val 940	Ser	Leu	Leu	Ser	Thr 945

	Thr As	p Leu Gl	u Lys 950	Gly	Ser	Val	Cys	Ile 955	Ser	Asp	Gln	Phe	Asn 960
	Ser Va	l Asn Ph	e Ser 965	Glu	Ala	Glu	Gly	Thr 970	Glu	Val	Thr	Tyr	Glu 975
5	Asp Gl	u Ser Gl	n Arg 980	Gln	Pro	Phe	Val	Lys 985	Tyr	Ala	Thr	Leu	Ile 990
	Ser As	n Ser Ly	s Pro 995	Ser	Glu	Thr	-	Glu .000	Glu	Gln	Gly		Ile L005
10	Asn Se	r Ser Va	1 Thr 1010	Lys	Cys	Phe		Ser .015	Lys	Asn	Ser		Leu L020
	Lys As	p Ser Ph	e Ser 1025	Asn	Ser	Ser		Glu .030	Ile	Glu	Ala		Ala L035
	Phe Ph	e Ile Le	u Ser 1040	Asp	Gln	His		Asn 045	Ile	Ile	Ser		His LO50
15	Leu Th	r Phe Se	r Glu 1055	Gly	Leu	Asp		Leu 1060	Leu	Lys	Leu		Gly 1065
	Asn Ph	e Pro Gl	u Glu 1070	Asn	Asn	Asp		Lys .075	Ser	Ile	Tyr		Leu 1080
<u>21</u>	Gly Va	l Thr Se	r Ile 1085	Lys	Lys	Arg		Ser .090	Gly	Val	Leu		Thr .095
	Asp Ly	s Ser Ar	g Val 1100	Ser	Cys	Pro		Pro 105	Ala	Pro	Cys		Phe
	Thr As	p Ile Ar	g Val 1115	Leu	Gln	Asp		Cys .120	Ser	His	Phe		Glu 125
25	Asn As	n Ile As	n Leu 1130	Gly	Thr	Ser		Lys 135	Lys	Thr	Phe		Ser 1140
	Tyr Me	t Pro Gl	n Phe 1145	Gln	Thr	Cys		Thr .150	Gln	Thr	His	_	Ile 155
30	Met Gl	u Asn Ly	s Met 1160	Cys	Asp	Leu		Val 165					

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEOUE	NCE CHAI	RACTERT	STICS .	
١	_	/ 525002	TACTA CITUT	/LZ/C T TJ1/-T		

- (A) LENGTH: 896 amino acids
- (B) TYPE: Amino Acid
- (D) TOPOLOGY: Linear

(xi) SECTENCE DESCRIPTION. SEC ID NO.3.

	(x:	i) SI	EQUEI	VCE I	DESCF	RIPTI	EON:	SEQ	ID 1	VO:3:	;				
	Met 1	Ile	Cys	Gln	Lys 5	Phe	Cys	Val	Val	Leu 10	Leu	His	Trp	Glu	Phe 15
10	Ile	Tyr	Val	Ile	Thr 20	Ala	Phe	Asn	Leu	Ser 25	Tyr	Pro	Ile	Thr	Pro 30
	Trp	Arg	Phe	Lys	Leu 35	Ser	Cys	Met	Pro	Pro 40	Asn	Ser	Thr	Tyr	Asp 45
1 mm 1	Tyr	Phe	Leu	Leu	Pro 50	Ala	Gly	Leu	Ser	Lys 55	Asn	Thr	Ser	Asn	Ser 60
	Asn	Gly	His	Tyr	Glu 65	Thr	Ala	Val	Glu	Pro 70	Lys	Phe	Asn	Ser	Ser 75
	Gly	Thr	His	Phe	Ser 80	Asn	Leu	Ser	Lys	Thr 85	Thr	Phe	His	Cys	Cys 90
20 20	Phe	Arg	Ser	Glu	Gln 95	Asp	Arg	Asn	Cys	Ser 100	Leu	Cys	Ala	Asp	Asn 105
THE STATE OF THE S	Ile	Glu	Gly	Lys	Thr 110	Phe	Val	Ser	Thr	Val 115	Asn	Ser	Leu	Val	Phe 120
And the state of t	Gln	Gln	Ile	Asp	Ala 125	Asn	Trp	Asn	Ile	Gln 130	Cys	Trp	Leu	Lys	Gly 135
25	Asp	Leu	Lys	Leu	Phe 140	Ile	Cys	Tyr	Val	Glu 145	Ser	Leu	Phe	Lys	Asn 150
	Leu	Phe	Arg	Asn	Tyr 155	Asn	Tyr	Lys	Val	His 160	Leu	Leu	Tyr	Val	Leu 165
30	Pro	Glu	Val	Leu	Glu 170	Asp	Ser	Pro	Leu	Val 175	Pro	Gln	Lys	Gly	Ser 180
	Phe	Gln	Met	Val	His 185	Cys	Asn	Cys	Ser	Val 190	His	Glu	Cys	Cys	Glu 195

	Cys	Leu	Val	Pro	Val 200	Pro	Thr	Ala	Lys	Leu 205	Asn	Asp	Thr	Leu	Leu 210
	Met	Cys	Leu	Lys	Ile 215	Thr	Ser	Gly	Gly	Val 220	Ile	Phe	Gln	Ser	Pro 225
5	Leu	Met	Ser	Val	Gln 230	Pro	Ile	Asn	Met	Val 235	Lys	Pro	Asp	Pro	Pro 240
	Leu	Gly	Leu	His	Met 245	Glu	Ile	Thr	Asp	Asp 250	Gly	Asn	Leu	Lys	Ile 255
10	Ser	Trp	Ser	Ser	Pro 260	Pro	Leu	Val	Pro	Phe 265	Pro	Leu	Gln	Tyr	Gln 270
	Val	Lys	Tyr	Ser	Glu 275	Asn	Ser	Thr	Thr	Val 280	Ile	Arg	Glu	Ala	Asp 285
gama's Suppli	Lys	Ile	Val	Ser	Ala 290	Thr	Ser	Leu	Leu	V al 295	Asp	Ser	Ile	Leu	Pro 300
	Gly	Ser	Ser	Tyr	Glu 305	Val	Gln	Val	Arg	Gly 310	Lys	Arg	Leu	Asp	Gly 315
The state of the s	Pro	Gly	Ile	Trp	Ser 320	Asp	Trp	Ser	Thr	Pro 325	Arg	Val	Phe	Thr	Thr 330
20 20	Gln	Asp	Val	Ile	Tyr 335	Phe	Pro	Pro	Lys	Ile 340	Leu	Thr	Ser	Val	Gly 345
	Ser	Asn	Val	Ser	Phe 350	His	Cys	Ile	Tyr	Lys 355	Lys	Glu	Asn	Lys	Ile 360
	Val	Pro	Ser	Lys	Glu 365	Ile	Val	Trp	Trp	Met 370	Asn	Leu	Ala	Glu	Lys 375
25	Ile	Pro	Gln	Ser	Gln 380	Tyr	Asp	Val	Val	Ser 385	Asp	His	Val	Ser	Lys 390
	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400	Pro	Arg	Gly	Lys	Phe 405
30	Thr	Tyr	Asp	Ala	Val 410	Tyr	Cys	Cys	Asn	Glu 415	His	Glu	Cys	His	His 420
	Arg	Tyr	Ala	Glu	Leu 425	Tyr	Val	Ile	Asp	Val 430	Asn	Ile	Asn	Ile	Ser 435

	Cys	Glu	Thr	Asp	Gly 440	Tyr	Leu	Thr	Lys	Met 445	Thr	Cys	Arg	Trp	Ser 450
	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu	Arg 465
5	Tyr	His	Arg	Ser	Ser 470	Leu	Tyr	Cys	Ser	Asp 475	Ile	Pro	Ser	Ile	His 480
	Pro	Ile	Ser	Glu	Pro 485	Lys	Asp	Cys	Tyr	Leu 490	Gln	Ser	Asp	Gly	Phe 495
10	Tyr	Glu	Cys	Ile	Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510
	Met	Trp	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525
1 cm ;	Pro	Thr	Cys	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro	Pro 540
15 J	Ser	Ser	Val	Lys	Ala 545	Glu	Ile	Thr	Ile	Asn 550	Ile	Gly	Leu	Leu	Lys 555
	Ile	Ser	Trp	Glu	Lys 560	Pro	Val	Phe	Pro	Glu 565	Asn	Asn	Leu	Gln	Phe 570
20 20	Gln	Ile	Arg	Tyr	Gly 575	Leu	Ser	Gly	Lys	Glu 580	Val	Gln	Trp	Lys	Met 585
	Tyr	Glu	Val	Tyr	Asp 590	Ala	Lys	Ser	Lys	Ser 595	Val	Ser	Leu	Pro	Val 600
1 0000 0000 0000 0000 0000 0000 0000 0	Pro	Asp	Leu	Cys	Ala 605	Val	Tyr	Ala	Val	Gln 610	Val	Arg	Cys	Lys	Arg 615
25	Leu	Asp	Gly	Leu	Gly 620	Tyr	Trp	Ser	Asn	Trp 625	Ser	Asn	Pro	Ala	Tyr 630
	Thr	Val	Val	Met	Asp 635	Ile	Lys	Val	Pro	Met 640	Arg	Gly	Pro	Glu	Phe 645
30	Trp	Arg	Ile	Ile	Asn 650	Gly	Asp	Thr	Met	Lys 655	Lys	Glu	Lys	Asn	V al 660
	Thr	Leu	Leu	Trp	Lys 665	Pro	Leu	Met	Lys	Asn 670	Asp	Ser	Leu	Cys	Ser 675

	Val	Gln	Arg	Tyr	Val 680	Ile	Asn	His	His	Thr 685	Ser	Cys	Asn	Gly	Thr 690
	Trp	Ser	Glu	Asp	V al 695	Gly	Asn	His	Thr	Lys 700	Phe	Thr	Phe	Leu	Trp 705
5	Thr	Glu	Gln	Ala	His 710	Thr	Val	Thr	Val	Leu 715	Ala	Ile	Asn	Ser	Ile 720
	Gly	Ala	Ser	Val	Ala 725	Asn	Phe	Asn	Leu	Thr 730	Phe	Ser	Trp	Pro	Met 735
10	Ser	Lys	Val	Asn	Ile 740	Val	Gln	Ser	Leu	Ser 745	Ala	Tyr	Pro	Leu	Asn 750
	Ser	Ser	Cys	Val	Ile 755	Val	Ser	Trp	Ile	Leu 760	Ser	Pro	Ser	Asp	Tyr 765
346.3	Lys	Leu	Met	Tyr	Phe 770	Ile	Ile	Glu	Trp	Lys 775	Asn	Leu	Asn	Glu	Asp 780
15	Gly	Glu	Ile	Lys	Trp 785	Leu	Arg	Ile	Ser	Ser 790	Ser	Val	Lys	Lys	Tyr 795
	Tyr	Ile	His	Asp	His 800	Phe	Ile	Pro	Ile	Glu 805	Lys	Tyr	Gln	Phe	Ser 810
20 20	Leu	Tyr	Pro	Ile	Phe 815	Met	Glu	Gly	Val	Gly 820	Lys	Pro	Lys	Ile	Ile 825
	Asn	Ser	Phe	Thr	Gln 830	Asp	Asp	Ile	Glu	Lys 835	His	Gln	Ser	Asp	Ala 840
1997 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Gly	Leu	Tyr	Val	Ile 845	Val	Pro	Val	Ile	Ile 850	Ser	Ser	Ser	Ile	Leu 855
25	Leu	Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His	Gln 865	Arg	Met	Lys	Lys	Leu 870
	Phe	Trp	Glu	Asp	Val 875	Pro	Asn	Pro	Lys	Asn 880	Cys	Ser	Trp	Ala	Gln 885
30	Gly	Leu	Asn	Phe	Gln 890	Lys	Arg	Thr	Asp		Leu 896				

(2) INFORMATION FOR SEQ ID NO:4:

30

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 923 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met	Ile	Cys	Gln	Lys	Phe	Cys	Val	Val	Leu	Leu	His	Trp	Glu	Phe
1				5					10					15

Ile Tyr Val Ile Thr Ala Phe Asn Leu Ser Tyr Pro Ile Thr Pro
20 25 30

10 Trp Arg Phe Lys Leu Ser Cys Met Pro Pro Asn Ser Thr Tyr Asp 35 40 45

Tyr Phe Leu Leu Pro Ala Gly Leu Ser Lys Asn Thr Ser Asn Ser 50 55 60

Asn Gly His Tyr Glu Thr Ala Val Glu Pro Lys Phe Asn Ser Ser
65 70 75

Gly Thr His Phe Ser Asn Leu Ser Lys Thr Thr Phe His Cys Cys 80 85 90

Phe Arg Ser Glu Gln Asp Arg Asn Cys Ser Leu Cys Ala Asp Asn 95 100 105

Ile Glu Gly Lys Thr Phe Val Ser Thr Val Asn Ser Leu Val Phe
110 115 120

Gln Gln Ile Asp Ala Asn Trp Asn Ile Gln Cys Trp Leu Lys Gly
125 130 135

Asp Leu Lys Leu Phe Ile Cys Tyr Val Glu Ser Leu Phe Lys Asn 140 145 150

Leu Phe Arg Asn Tyr Asn Tyr Lys Val His Leu Leu Tyr Val Leu 155 160 165

Pro Glu Val Leu Glu Asp Ser Pro Leu Val Pro Gln Lys Gly Ser 170 175 180

Phe Gln Met Val His Cys Asn Cys Ser Val His Glu Cys Cys Glu 185 190 195

	Cys	Leu	Val	Pro	Val 200	Pro	Thr	Ala	Lys	Leu 205	Asn	Asp	Thr	Leu	Leu 210
	Met	Cys	Leu	Lys	Ile 215	Thr	Ser	Gly	Gly	Val 220	Ile	Phe	Gln	Ser	Pro 225
5	Leu	Met	Ser	Val	Gln 230	Pro	Ile	Asn	Met	Val 235	Lys	Pro	Asp	Pro	Pro 240
	Leu	Gly	Leu	His	Met 245	Glu	Ile	Thr	Asp	Asp 250	Gly	Asn	Leu	Lys	Ile 255
10	Ser	Trp	Ser	Ser	Pro 260	Pro	Leu	Val	Pro	Phe 265	Pro	Leu	Gln	Tyr	Gln 270
	Val	Lys	Tyr	Ser	Glu 275	Asn	Ser	Thr	Thr	Val 280	Ile	Arg	Glu	Ala	Asp 285
**************************************	Lys	Ile	Val	Ser	Ala 290	Thr	Ser	Leu	Leu	Val 295	Asp	Ser	Ile	Leu	Pro 300
	Gly	Ser	Ser	Tyr	Glu 305	Val	Gln	Val	Arg	Gly 310	Lys	Arg	Leu	Asp	Gly 315
The state of the s	Pro	Gly	Ile	Trp	Ser 320	Asp	Trp	Ser	Thr	Pro 325	Arg	Val	Phe	Thr	Thr 330
20	Gln	Asp	Val	Ile	Tyr 335	Phe	Pro	Pro	Lys	Ile 340	Leu	Thr	Ser	Val	Gly 345
	Ser	Asn	Val	Ser	Phe 350	His	Cys	Ile	Tyr	Lys 355	Lys	Glu	Asn	Lys	Ile 360
	Val	Pro	Ser	Lys	Glu 365	Ile	Val	Trp	Trp	Met 370	Asn	Leu	Ala	Glu	Lys 375
25	Ile	Pro	Gln	Ser	Gln 380	Tyr	Asp	Val	Val	Ser 385	Asp	His	Val	Ser	Lys 390
	Val	Thr	Phe	Phe	Asn 395	Leu	Asn	Glu	Thr	Lys 400	Pro	Arg	Gly	Lys	Phe 405
30	Thr	Tyr	Asp	Ala	Val 410	Tyr	Cys	Cys	Asn	Glu 415	His	Glu	Cys	His	His 420
	Arg	Tyr	Ala	Glu	Leu 425	Tyr	Val	Ile	Asp	Val 430	Asn	Ile	Asn	Ile	Ser 435

	Cys	Glu	Thr	Asp	Gly 440	Tyr	Leu	Thr	Lys	Met 445	Thr	Cys	Arg	Trp	Ser 450
	Thr	Ser	Thr	Ile	Gln 455	Ser	Leu	Ala	Glu	Ser 460	Thr	Leu	Gln	Leu	Arg 465
5	Tyr	His	Arg	Ser	Ser 470	Leu	Tyr	Cys	Ser	Asp 475	Ile	Pro	Ser	Ile	His 480
	Pro	Ile	Ser	Glu	Pro 485	Lys	Asp	Cys	Tyr	Leu 490	Gln	Ser	Asp	Gly	Phe 495
10	Tyr	Glu	Cys	Ile	Phe 500	Gln	Pro	Ile	Phe	Leu 505	Leu	Ser	Gly	Tyr	Thr 510
	Met	Trp	Ile	Arg	Ile 515	Asn	His	Ser	Leu	Gly 520	Ser	Leu	Asp	Ser	Pro 525
a base is	Pro	Thr	Cys	Val	Leu 530	Pro	Asp	Ser	Val	Val 535	Lys	Pro	Leu	Pro	Pro 540
	Ser	Ser	Val	Lys	Ala 545	Glu	Ile	Thr	Ile	Asn 550	Ile	Gly	Leu	Leu	Lys 555
The Dayle House	Ile	Ser	Trp	Glu	Lys 560	Pro	Val	Phe	Pro	Glu 565	Asn	Asn	Leu	Gln	Phe 570
# 20	Gln	Ile	Arg	Tyr	Gly 575	Leu	Ser	Gly	Lys	Glu 580	Val	Gln	Trp	Lys	Met 585
	Tyr	Glu	Val	Tyr	Asp 590	Ala	Lys	Ser	Lys	Ser 595	Val	Ser	Leu	Pro	Val 600
	Pro	Asp	Leu	Cys	Ala 605	Val	Tyr	Ala	Val	Gln 610	Val	Arg	Cys	Lys	Arg 615
25	Leu	Asp	Gly	Leu	Gly 620	Tyr	Trp	Ser	Asn	Trp 625	Ser	Asn	Pro	Ala	Tyr 630
	Thr	Val	Val	Met	Asp 635	Ile	Lys	Val	Pro	Met 640	Arg	Gly	Pro	Glu	Phe 645
30	Trp	Arg	Ile	Ile	Asn 650	Gly	Asp	Thr	Met	Lys 655	Lys	Glu	Lys	Asn	Val 660
	Thr	Leu	Leu	Trp	Lys 665	Pro	Leu	Met	Lys	Asn 670	Asp	Ser	Leu	Cys	Ser 675

	Val	Gln	Arg	Tyr	Val 680	Ile	Asn	His	His	Thr 685	Ser	Cys	Asn	Gly	Thr 690
	Trp	Ser	Glu	Asp	Val 695	Gly	Asn	His	Thr	Lys 700	Phe	Thr	Phe	Leu	Trp 705
5	Thr	Glu	Gln	Ala	His 710	Thr	Val	Thr	Val	Leu 715	Ala	Ile	Asn	Ser	Ile 720
	Gly	Ala	Ser	Val	Ala 725	Asn	Phe	Asn	Leu	Thr 730	Phe	Ser	Trp	Pro	Met 735
10	Ser	Lys	Val	Asn	Ile 740	Val	Gln	Ser	Leu	Ser 745	Ala	Tyr	Pro	Leu	Asn 750
	Ser	Ser	Cys	Val	Ile 755	Val	Ser	Trp	Ile	Leu 760	Ser	Pro	Ser	Asp	Tyr 765
भू साम्पर्धे स्थापन	Lys	Leu	Met	Tyr	Phe 770	Ile	Ile	Glu	Trp	Lys 775	Asn	Leu	Asn	Glu	Asp 780
	Gly	Glu	Ile	Lys	Trp 785	Leu	Arg	Ile	Ser	Ser 790	Ser	Val	Lys	Lys	Tyr 795
	Tyr	Ile	His	Asp	His 800	Phe	Ile	Pro	Ile	Glu 805	Lys	Tyr	Gln	Phe	Ser 810
20	Leu	Tyr	Pro	Ile	Phe 815	Met	Glu	Gly	Val	Gly 820	Lys	Pro	Lys	Ile	Ile 825
	Asn	Ser	Phe	Thr	Gln 830	Asp	Asp	Ile	Glu	Lys 835	His	Gln	Ser	Asp	Ala 840
1200	Gly	Leu	Tyr	Val	Ile 845	Val	Pro	Val	Ile	Ile 850	Ser	Ser	Ser	Ile	Leu 855
25	Leu	Leu	Gly	Thr	Leu 860	Leu	Ile	Ser	His	Gln 865	Arg	Met	Lys	Lys	Leu 870
	Phe	Trp	Glu	Asp	Val 875	Pro	Asn	Pro	Lys	Asn 880	Cys	Ser	Trp	Ala	Gln 885
30	Gly	Leu	Asn	Phe	Gln 890	Lys	Met	Phe	Arg	Thr 895	Pro	Arg	Ile	Val	Pro 900
	Gly	His	Lys	Asp	Leu 905	Ile	Phe	Arg	Arg	Cys 910	Leu	Lys	Ala	Ala	Cys 915

5

10

Ser Leu Arg Val Ile Thr Thr Pro 920 923

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3004 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

G	AATTCCGGG	TTAAAGCTCT	CGTGGCATTA	TCCTTCAGTG	GGGCTATTGG	50
P	CTGACTTTT	CTTATGCTGG	GATGTGCCTT	AGAGGATTAT	GGATTTGCCA	100
(STTCACCCTG	ACCATCTTGA	AAATAAGTTA	TCTCTGATCT	CTGTCTGTAT	150
G	TTACTTCTC	TCCCCTCACC	AATGGAGAAC	AAATGTGGGC	AAAGTGTACT	200
T	CTCTGAAGT	AAGATGATTT	GTCAAAAATT	CTGTGTGGTT	TTGTTACATT	250
C	GGAATTTAT	TTATGTGATA	ACTGCGTTTA	ACTTGTCATA	TCCAATTACT	300
C	CTTGGAGAT	TTAAGTTGTC	TTGCATGCCA	CCAAATTCAA	CCTATGACTA	350
(CTTCCTTTTG	CCTGCTGGAC	TCTCAAAGAA	TACTTCAAAT	TCGAATGGAC	400
I	ATTATGAGAC	AGCTGTTGAA	CCTAAGTTTA	ATTCAAGTGG	TACTCACTTT	450
7	CTAACTTAT	CCAAAACAAC	TTTCCACTGT	TGCTTTCGGA	GTGAGCAAGA	500
7	TAGAAACTGC	TCCTTATGTG	CAGACAACAT	TGAAGGAAAG	ACATTTGTTT	550
(CNACAGTAAA	TTCTTTAGTT	TTTCAACAAA	TAGATGCAAA	CTGGAACATA	600
(CAGTGCTGGC	TAAAAGGAGA	CTTAAAATTA	TTCATCTGTT	ATGTGGAGTC	650
I	ATTATTTAAG	AATCTATTCA	GGAATTATAA	CTATAAGGTC	CATCTTTTAT	700
I	ATGTTCTGCC	TGAAGTGTTA	GAAGATTCAC	CTCTGGTTCC	CCAAAAAGGC	750
I	AGTTTTCAGA	TGGTTCACTG	CAATTGCAGT	GTTCATGAAT	GTTGTGAATG	800
ין	CTTGTGCCT	GTGCCAACAG	CCAAACTCAA	CGACACTCTC	CTTATGTGTT	850

5

TGAAAATCAC ATCTGGTGGA GTAATTTTCC AGTCACCTCT AATGTCAGTT 900 CAGCCCATAA ATATGGTGAA GCCTGATCCA CCATTAGGTT TGCATATGGA 950 AATCACAGAT GATGGTAATT TAAAGATTTC TTGGTCCAGC CCACCATTGG 1000 TACCATTTCC ACTTCAATAT CAAGTGAAAT ATTCAGAGAA TTCTACAACA 1050 GTTATCAGAG AAGCTGACAA GATTGTCTCA GCTACATCCC TGCTAGTAGA 1100 CAGTATACTT CCTGGGTCTT CGTATGAGGT TCAGGTGAGG GGCAAGAGAC 1150 TGGATGGCCC AGGAATCTGG AGTGACTGGA GTACTCCTCG TGTCTTTACC 1200 ACACAAGATG TCATATACTT TCCACCTAAA ATTCTGACAA GTGTTGGGTC 1250 TAATGTTTCT TTTCACTGCA TCTATAAGAA GGAAAACAAG ATTGTTCCCT 1300 CAAAAGAGAT TGTTTGGTGG ATGAATTTAG CTGAGAAAAT TCCTCAAAGC 1350 CAGTATGATG TTGTGAGTGA TCATGTTAGC AAAGTTACTT TTTTCAATCT 1400 GAATGAAACC AAACCTCGAG GAAAGTTTAC CTATGATGCA GTGTACTGCT 1450 GCAATGAACA TGAATGCCAT CATCGCTATG CTGAATTATA TGTGATTGAT 1500 GTCAATATCA ATATCTCATG TGAAACTGAT GGGTACTTAA CTAAAATGAC 1550 TTGCAGATGG TCAACCAGTA CAATCCAGTC ACTTGCGGAA AGCACTTTGC 1600 AATTGAGGTA TCATAGGAGC AGCCTTTACT GTTCTGATAT TCCATCTATT 1650 CATCCCATAT CTGAGCCCAA AGATTGCTAT TTGCAGAGTG ATGGTTTTTA 1700 TGAATGCATT TTCCAGCCAA TCTTCCTATT ATCTGGCTAC ACAATGTGGA 1750 TTAGGATCAA TCACTCTCTA GGTTCACTTG ACTCTCCACC AACATGTGTC 1800 CTTCCTGATT CTGTGGTGAA GCCACTGCCT CCATCCAGTG TGAAAGCAGA 1850 AATTACTATA AACATTGGAT TATTGAAAAT ATCTTGGGAA AAGCCAGTCT 1900 TTCCAGAGAA TAACCTTCAA TTCCAGATTC GCTATGGTTT AAGTGGAAAA 1950 GAAGTACAAT GGAAGATGTA TGAGGTTTAT GATGCAAAAT CAAAATCTGT 2000 CAGTCTCCCA GTTCCAGACT TGTGTGCAGT CTATGCTGTT CAGGTGCGCT 2050

GTAAGAGGCT AGATGGACTG GGATATTGGA GTAATTGGAG CAATCCAGCC 2100 TACACAGTTG TCATGGATAT AAAAGTTCCT ATGAGAGGAC CTGAATTTTG 2150 GAGAATAATT AATGGAGATA CTATGAAAAA GGAGAAAAAT GTCACTTTAC 2200 TTTGGAAGCC CCTGATGAAA AATGACTCAT TGTGCAGTGT TCAGAGATAT 2250 GTGATAAACC ATCATACTTC CTGCAATGGA ACATGGTCAG AAGATGTGGG 2300 AAATCACACG AAATTCACTT TCCTGTGGAC AGAGCAAGCA CATACTGTTA 2350 CGGTTCTGGC CATCAATTCA ATTGGTGCTT CTGTTGCAAA TTTTAATTTA 2400 ACCTTTTCAT GGCCTATGAG CAAAGTAAAT ATCGTGCAGT CACTCAGTGC 2450 TTATCCTTTA AACAGCAGTT GTGTGATTGT TTCCTGGATA CTATCACCCA 2500 GTGATTACAA GCTAATGTAT TTTATTATTG AGTGGAAAAA TCTTAATGAA 2550 GATGGTGAAA TAAAATGGCT TAGAATCTCT TCATCTGTTA AGAAGTATTA 2600 TATCCATGAT CATTTTATCC CCATTGAGAA GTACCAGTTC AGTCTTTACC 2650 CAATATTTAT GGAAGGAGTG GGAAAACCAA AGATAATTAA TAGTTTCACT 2700 CAAGATGATA TTGAAAAACA CCAGAGTGAT GCAGGTTTAT ATGTAATTGT 2750 GCCAGTAATT ATTTCCTCTT CCATCTTATT GCTTGGAACA TTATTAATAT 2800 CACACCAAAG AATGAAAAAG CTATTTTGGG AAGATGTTCC GAACCCCAAG 2850 AATTGTTCCT GGGCACAAGG ACTTAATTTT CAGAAGAGAA CGGACATTCT 2900 TTGAAGTCTA ATCATGATCA CTACAGATGA ACCCAATGTG CCAACTTCCC 2950 AACAGTCTAT AGAGTATTAG AAGATTTTTA CATTTTGAAG AAGGGCCGGA 3000 ATTC 3004

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 3102 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear

20

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GAATTCTCGA GTCGACGGCG GGCGTTAAAG CTCTCGTGGC ATTATCCTTC 50 AGTGGGGCTA TTGGACTGAC TTTTCTTATG CTGGGATGTG CCTTAGAGGA 100 TTATGGGTGT ACTTCTCTGA AGTAAGATGA TTTGTCAAAA ATTCTGTGTG 150 GTTTTGTTAC ATTGGGAATT TATTTATGTG ATAACTGCGT TTAACTTGTC 200 ATATCCAATT ACTCCTTGGA GATTTAAGTT GTCTTGCATG CCACCAAATT 250 CAACCTATGA CTACTTCCTT TTGCCTGCTG GACTCTCAAA GAATACTTCA 300 AATTCGAATG GACATTATGA GACAGCTGTT GAACCTAAGT TTAATTCAAG 350 TGGTACTCAC TTTTCTAACT TATCCAAAAC AACTTTCCAC TGTTGCTTTC 400 GGAGTGAGCA AGATAGAAAC TGCTCCTTAT GTGCAGACAA CATTGAAGGA 450 AAGACATTTG TTTCAACAGT AAATTCTTTA GTTTTTCAAC AAATAGATGC 500 AAACTGGAAC ATACAGTGCT GGCTAAAAGG AGACTTAAAA TTATTCATCT 550 GTTATGTGGA GTCATTATTT AAGAATCTAT TCAGGAATTA TAACTATAAG 600 GTCCATCTTT TATATGTTCT GCCTGAAGTG TTAGAAGATT CACCTCTGGT 650 TCCCCAAAAA GGCAGTTTTC AGATGGTTCA CTGCAATTGC AGTGTTCATG 700 AATGTTGTGA ATGTCTTGTG CCTGTGCCAA CAGCCAAACT CAACGACACT 750 CTCCTTATGT GTTTGAAAAT CACATCTGGT GGAGTAATTT TCCAGTCACC 800 TCTAATGTCA GTTCAGCCCA TAAATATGGT GAAGCCTGAT CCACCATTAG 850 GTTTGCATAT GGAAATCACA GATGATGGTA ATTTAAAGAT TTCTTGGTCC 900 AGCCCACCAT TGGTACCATT TCCACTTCAA TATCAAGTGA AATATTCAGA 950 GAATTCTACA ACAGTTATCA GAGAAGCTGA CAAGATTGTC TCAGCTACAT 1000 CCCTGCTAGT AGACAGTATA CTTCCTGGGT CTTCGTATGA GGTTCAGGTG 1050 AGGGGCAAGA GACTGGATGG CCCAGGAATC TGGAGTGACT GGAGTACTCC 1100

5

TCGTGTCTTT ACCACACAG ATGTCATATA CTTTCCACCT AAAATTCTGA 1150 CAAGTGTTGG GTCTAATGTT TCTTTTCACT GCATCTATAA GAAGGAAAAC 1200 AAGATTGTTC CCTCAAAAGA GATTGTTTGG TGGATGAATT TAGCTGAGAA 1250 AATTCCTCAA AGCCAGTATG ATGTTGTGAG TGATCATGTT AGCAAAGTTA 1300 CTTTTTCAA TCTGAATGAA ACCAAACCTC GAGGAAAGTT TACCTATGAT 1350 GCAGTGTACT GCTGCAATGA ACATGAATGC CATCATCGCT ATGCTGAATT 1400 ATATGTGATT GATGTCAATA TCAATATCTC ATGTGAAACT GATGGGTACT 1450 TAACTAAAAT GACTTGCAGA TGGTCAACCA GTACAATCCA GTCACTTGCG 1500 GAAAGCACTT TGCAATTGAG GTATCATAGG AGCAGCCTTT ACTGTTCTGA 1550 TATTCCATCT ATTCATCCCA TATCTGAGCC CAAAGATTGC TATTTGCAGA 1600 GTGATGGTTT TTATGAATGC ATTTTCCAGC CAATCTTCCT ATTATCTGGC 1650 TACACAATGT GGATTAGGAT CAATCACTCT CTAGGTTCAC TTGACTCTCC 1700 ACCAACATGT GTCCTTCCTG ATTCTGTGGT GAAGCCACTG CCTCCATCCA 1750 GTGTGAAAGC AGAAATTACT ATAAACATTG GATTATTGAA AATATCTTGG 1800 GAAAAGCCAG TCTTTCCAGA GAATAACCTT CAATTCCAGA TTCGCTATGG 1850 TTTAAGTGGA AAAGAAGTAC AATGGAAGAT GTATGAGGTT TATGATGCAA 1900 AATCAAAATC TGTCAGTCTC CCAGTTCCAG ACTTGTGTGC AGTCTATGCT 1950 GTTCAGGTGC GCTGTAAGAG GCTAGATGGA CTGGGATATT GGAGTAATTG 2000 GAGCAATCCA GCCTACACAG TTGTCATGGA TATAAAAGTT CCTATGAGAG 2050 GACCTGAATT TTGGAGAATA ATTAATGGAG ATACTATGAA AAAGGAGAAA 2100 AATGTCACTT TACTTTGGAA GCCCCTGATG AAAAATGACT CATTGTGCAG 2150 TGTTCAGAGA TATGTGATAA ACCATCATAC TTCCTGCAAT GGAACATGGT 2200 CAGAAGATGT GGGAAATCAC ACGAAATTCA CTTTCCTGTG GACAGAGCAA 2250 GCACATACTG TTACGGTTCT GGCCATCAAT TCAATTGGTG CTTCTGTTGC 2300

5

AAATTTTAAT TTAACCTTTT CATGGCCTAT GAGCAAAGTA AATATCGTGC 2350 AGTCACTCAG TGCTTATCCT TTAAACAGCA GTTGTGTGAT TGTTTCCTGG 2400 ATACTATCAC CCAGTGATTA CAAGCTAATG TATTTTATTA TTGAGTGGAA 2450 AAATCTTAAT GAAGATGGTG AAATAAAATG GCTTAGAATC TCTTCATCTG 2500 TTAAGAAGTA TTATATCCAT GATCATTTTA TCCCCATTGA GAAGTACCAG 2550 TTCAGTCTTT ACCCAATATT TATGGAAGGA GTGGGAAAAC CAAAGATAAT 2600 TAATAGTTTC ACTCAAGATG ATATTGAAAA ACACCAGAGT GATGCAGGTT 2650 TATATGTAAT TGTGCCAGTA ATTATTTCCT CTTCCATCTT ATTGCTTGGA 2700 ACATTATTAA TATCACACCA AAGAATGAAA AAGCTATTTT GGGAAGATGT 2750 TCCGAACCCC AAGAATTGTT CCTGGGCACA AGGACTTAAT TTTCAGAAGA 2800 TGTTCCGAAC CCCAAGAATT GTTCCTGGGC ACAAGGACTT AATTTTCAGA 2850 AGATGCTTGA AGGCAGCATG TTCGTTAAGA GTCATCACCA CTCCCTAATC 2900 TCAAGTACCC AGGGACACAA ACACTGCGGA AGGCCACAGG GTCCTCTGCA 2950 TAGGAAAACC AGAGACCTTT GTTCACTTGT TTATCTGCTG ACCCTCCCTC 3000 CACTATTGTC CTATGACCCT GCCAAATCCC CCTCTGTGAG AAACACCCAA 3050 GAATGATCAA TAAAAAAAA AAAAAAAAA AAAAAAGTCG ACTCGAGAAT 3100 TC 3102

(2) INFORMATION FOR SEO ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 783 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
- Met Met Cys Gln Lys Phe Tyr Val Val Leu Leu His Trp Glu Phe 25 1 5 10 15

	neu .	тут	vaı .	TTE 1	20	ara i	Jeu A	ADII I	ueu z	25	ryr 1	PIO.	TTE	ser .	30
	Trp	Lys	Phe	Lys	Leu 35	Phe	Cys	Gly	Pro	Pro 40	Asn	Thr	Thr	Asp	Asp 45
5	Ser	Phe	Leu	Ser	Pro 50	Ala	Gly	Ala	Pro	Asn 55	Asn	Ala	Ser	Ala	Leu 60
	Lys	Gly	Ala	Ser	Glu 65	Ala	Ile	Val	Glu	Ala 70	Lys	Phe	Asn	Ser	Ser 75
10	Gly	Ile	Tyr	Val	Pro 80	Glu	Leu	Ser	Lys	Thr 85	Val	Phe	His	Cys	Cys 90
	Phe	Gly	Asn	Glu	Gln 95	Gly	Gln	Asn	Cys	Ser 100	Ala	Leu	Thr	Asp	Asn 105
5(C)	Thr	Glu	Gly	Lys	Thr 110	Leu	Ala	Ser	Val	Val 115	Lys	Ala	Ser	Val	Phe 120
15	Arg	Gln	Leu	Gly	Val 125	Asn	Trp	Asp	Ile	Glu 130	Cys	Trp	Met	Lys	Gly 135
	Asp	Leu	Thr	Leu	Phe 140	Ile	Cys	His	Met	Glu 145	Pro	Leu	Pro	Lys	Asn 150
20	Pro	Phe	Lys	Asn	Tyr 155	Asp	Ser	Lys	Val	His 160	Leu	Leu	Tyr	Asp	Leu 165
	Pro	Glu	Val	Ile	Asp 170	Asp	Ser	Pro	Leu	Pro 175	Pro	Leu	Lys	Asp	Ser 180
	Phe	Gln	Thr	Val	Gln 185	Cys	Asn	Cys	Ser	Leu 190	Arg	Gly	Cys	Glu	Cys 195
25	His	Val	Pro	Val	Pro 200	Arg	Ala	Lys	Leu	Asn 205	Tyr	Ala	Leu	Leu	Met 210
	Tyr	Leu	Glu	Ile	Thr 215	Ser	Ala	Gly	Val	Ser 220	Phe	Gln	Ser	Pro	Leu 225
30	Met	Ser	Leu	Gln	Pro 230	Met	Leu	Val	Val	Lys 235	Pro	Asp	Pro	Pro	Leu 240
	Gly	Leu	His	Met	Glu 245	Val	Thr	Asp	Asp	Gly 250	Asn	Leu	Lys	Ile	Ser 255

	Trp	Asp	Ser	Gln	Thr 260	Met	Ala	Pro	Phe	Pro 265	Leu	Gln	Tyr	Gln	Val 270
	Lys	Tyr	Leu	Glu	Asn 275	Ser	Thr	Ile	Val	Arg 280	Glu	Ala	Ala	Glu	Ile 285
5	Val	Ser	Ala	Thr	Ser 290	Leu	Leu	Val	Asp	Ser 295	Val	Leu	Pro	Gly	Ser 300
	Ser	Tyr	Glu	Val	Gln 305	Val	Arg	Ser	Lys	Arg 310	Leu	Asp	Gly	Ser	Gly 315
10	Val	Trp	Ser	Asp	Trp 320	Ser	Ser	Pro	Gln	Val 325	Phe	Thr	Thr	Gln	Asp 330
	Val	Val	Tyr	Phe	Pro 335	Pro	Lys	Ile	Leu	Thr 340	Ser	Val	Gly	Ser	Asn 345
	Ala	Ser	Phe	His	Cys 350	Ile	Tyr	Lys	Asn	Glu 355	Asn	Gln	Ile	Val	Ser 360
	Ser	Lys	Gln	Ile	Val 365	Trp	Trp	Arg	Asn	Leu 370	Ala	Glu	Lys	Ile	Pro 375
	Glu	Ile	Gln	Tyr	Ser 380	Ile	Val	Ser	Asp	Arg 385	Val	Ser	Lys	Val	Thr 390
	Phe	Ser	Asn	Leu	Lys 395	Ala	Thr	Arg	Pro	Arg 400	Gly	Lys	Phe	Thr	Tyr 405
	Asp	Ala	Val	Tyr	Cys 410	Cys	Asn	Glu	Gln	Ala 415	Cys	His	His	Arg	Tyr 420
	Ala	Glu	Leu	Tyr	Val 425	Ile	Asp	Val	Asn	Ile 430	Asn	Ile	Ser	Cys	Glu 435
25	Thr	Asp	Gly	Tyr	Leu 440	Thr	Lys	Met	Thr	Cys 445	Arg	Trp	Ser	Pro	Ser 450
30	Thr	Ile	Gln	Ser	Leu 455	Val	Gly	Ser	Thr	Val 460	Gln	Leu	Arg	Tyr	His 465
	Arg	Cys	Ser	Leu	Tyr 470	Cys	Pro	Asp	Ser	Pro 475	Ser	Ile	His	Pro	Thr 480
	Ser	Glu	Pro	Lys	Thr 485	Ala	Ser	Tyr	Arg	Glu 490	Thr	Ala	Phe	Met	Asn 495

	Val	Phe	Ser	Ser	Gln 500	Ser	Phe	Tyr	Tyr	Leu 505	Ala	Ile	Gln	Cys	Gly 510
	Phe	Arg	Ile	Asn	His 515	Ser	Leu	Gly	Ser	Leu 520	Asp	Ser	Pro	Pro	Thr 525
5	Cys	Val	Leu	Pro	Asp 530	Ser	Val	Val	Lys	Pro 535	Leu	Pro	Pro	Ser	Asn 540
	Val	Lys	Ala	Glu	Ile 545	Thr	Val	Asn	Thr	Gly 550	Leu	Leu	Lys	Val	Ser 555
10	Trp	Glu	Lys	Pro	Val 560	Phe	Pro	Glu	Asn	Asn 565	Leu	Gln	Phe	Gln	Ile 570
	Arg	Tyr	Gly	Leu	Ser 575	Gly	Lys	Glu	Ile	Gln 580	Trp	Lys	Thr	His	Glu 585
	Val	Phe	Asp	Ala	Lys 590	Ser	Lys	Ser	Ala	Ser 595	Leu	Leu	Val	Ser	As p
	Leu	Cys	Ala	Val	Tyr 605	Val	Val	Gln	Val	A rg 610	Cys	Arg	Arg	Leu	Asp 615
	Gly	Leu	Gly	Tyr	Trp 620	Ser	Asn	Trp	Ser	Ser 625	Pro	Ala	Tyr	Thr	Leu 630
	Val	Met	Asp	Val	Lys 635	Val	Pro	Met	Arg	Gly 640	Pro	Glu	Phe	Trp	Arg 645
	Lys	Met	Asp	Gly	As p 650	Val	Thr	Lys	Lys	Glu 655	Arg	Asn	Val	Thr	Leu 660
	Leu	Trp	Lys	Pro	Leu 665	Thr	Lys	Asn	Asp	Ser 670	Leu	Cys	Ser	Val	Arg 675
25	Arg	Tyr	Val	Val	Lys 680	His	Arg	Thr	Ala	His 685	Asn	Gly	Thr	Trp	Ser 690
	Glu	Asp	Val	Gly	Asn 695	Arg	Thr	Asn	Leu	Thr 700	Phe	Leu	Trp	Thr	Glu 705
30	Pro	Ala	His	Thr	Val 710	Thr	Val	Leu	Ala	Val 715	Asn	Ser	Leu	Gly	Ala 720
	Ser	Leu	Val	Asn	Phe 725	Asn	Leu	Thr	Phe	Ser 730	Trp	Pro	Met	Ser	Lys 735

5

10

Val Ser Ala Val Glu Ser Leu Ser Ala Tyr Pro Leu Ser Ser Ser 750

Cys Val Ile Leu Ser Trp Thr Leu Ser Pro Asp Asp Tyr Ser Leu 765

Leu Tyr Leu Val Ile Glu Trp Lys Ile Leu Asn Glu Asp Asp Gly 780

Met Lys Trp 783

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2868 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGGCCCCCC TCGAAGTCGA CGGTATCGAT AAGCTTGATA TCGAATTCCG 50
GCCGGGACAC AGGTGGGACA CTCTTTTAGT CCTCAATCCC TGGCGCGAGG 100
CCACCCAAGG CAACGCAGGA CGCAGGGCGT TTGGGGACCA GGCAGCAGAC 150
TGGGGCGGTA CCTGCGGAGA GCCACGCAAC TTCTCCAGGC CTCTGACTAC 200
TTTGGAAACT GCCCGGGGCT GCGACATCAA CCCCTTAAGT CCCGGAGGCG 250
GAAAGAGGGT GGGTTGGTTT GAAAGACACA AGGAAGAAAA ATGTGCTGTG 300
GGGCGGGTTA AGTTTCCCAC CCTCTCCCC CTTCCCGAGC AAATTAGAAA 350
CAAAACAAAT AGAAAAGCCA GCCCTCCGGC CAACCAAAGC CCCAAGCGGA 400
GCCCCAAGCG GAGCCCCAGC CGGAGCACTC CTTTAAAAGG ATTTGCAGCG 450
GTGAGGAAAA AACCAGACCC GACCGAGGAA TCGTTCTGCA AATCCAGGTG 500
TACACCTCTG AAGAAAGATG ATGTGTCAGA AATTCTATGT GGTTTTGTTA 550
CACTGGGAAT TTCTTTATGT GATAGCTGCA CTTAACCTGG CATATCCAAT 600

5

ACTCCTTTCT CTCACCTGCT GGAGCCCCAA ACAATGCCTC GGCTTTGAAG 700 GGGGCTTCTG AAGCAATTGT TGAAGCTAAA TTTAATTCAA GTGGTATCTA 750 CGTTCCTGAG TTATCCAAAA CAGTCTTCCA CTGTTGCTTT GGGAATGAGC 800 AAGGTCAAAA CTGCTCTGCA CTCACAGACA ACACTGAAGG GAAGACACTG 850 GCTTCAGTAG TGAAGGCTTC AGTTTTTCGC CAGCTAGGTG TAAACTGGGA 900 CATAGAGTGC TGGATGAAAG GGGACTTGAC ATTATTCATC TGTCATATGG 950 AGCCATTACC TAAGAACCCC TTCAAGAATT ATGACTCTAA GGTCCATCTT 1000 TTATATGATC TGCCTGAAGT CATAGATGAT TCGCCTCTGC CCCCACTGAA 1050 AGACAGCTTT CAGACTGTCC AATGCAACTG CAGTCTTCGG GGATGTGAAT 1100 GTCATGTGCC AGTACCCAGA GCCAAACTCA ACTACGCTCT TCTGATGTAT 1150 TTGGAAATCA CATCTGCCGG TGTGAGTTTT CAGTCACCTC TGATGTCACT 1200 GCAGCCCATG CTTGTTGTGA AACCCGATCC ACCCTTAGGT TTGCATATGG 1250 AAGTCACAGA TGATGGTAAT TTAAAGATTT CTTGGGACAG CCAAACAATG 1300 GCACCATTTC CGCTTCAATA TCAGGTGAAA TATTTAGAGA ATTCTACAAT 1350 TGTAAGAGAG GCTGCTGAAA TTGTCTCAGC TACATCTCTG CTGGTAGACA 1400 GTGTGCTTCC TGGATCTTCA TATGAGGTCC AGGTGAGGAG CAAGAGACTG 1450 GATGGTTCAG GAGTCTGGAG TGACTGGAGT TCACCTCAAG TCTTTACCAC 1500 ACAAGATGTT GTGTATTTTC CACCCAAAAT TCTGACTAGT GTTGGATCGA 1550 ATGCTTCCTT TCATTGCATC TACAAAAACG AAAACCAGAT TGTCTCCTCA 1600 AAACAGATAG TTTGGTGGAG GAATCTAGCT GAGAAAATCC CTGAGATACA 1650 GTACAGCATT GTGAGTGACC GAGTTAGCAA AGTTACCTTC TCCAACCTGA 1700 AAGCCACCAG ACCTCGAGGG AAGTTTACCT ATGACGCAGT GTACTGCTGC 1750 AATGAGCAGG CGTGCCATCA CCGCTATGCT GAATTATACG TGATCGATGT 1800

CTCTCCCTGG AAATTTAAGT TGTTTTGTGG ACCACCGAAC ACAACCGATG 650

5

CAATATCAAT ATATCATGTG AAACTGACGG GTACTTAACT AAAATGACTT 1850 GCAGATGGTC ACCCAGCACA ATCCAATCAC TAGTGGGAAG CACTGTGCAG 1900 CTGAGGTATC ACAGGTGCAG CCTGTATTGT CCTGATAGTC CATCTATTCA 1950 TCCTACGTCT GAGCCCAAAA CTGCGTCTTA CAGAGAGACG GCTTTTATGA 2000 ATGTGTTTTC CAGCCAATCT TTCTATTATC TGGCTATACA ATGTGGATTC 2050 AGGATCAACC ATTCTTTAGG TTCACTTGAC TCGCCACCAA CGTGTGTCCT 2100 TCCTGACTCC GTAGTAAAAC CACTACCTCC ATCTAACGTA AAAGCAGAGA 2150 TTACTGTAAA CACTGGATTA TTGAAAGTAT CTTGGGAAAA GCCAGTCTTT 2200 CCGGAGAATA ACCTTCAATT CCAGATTCGA TATGGCTTAA GTGGAAAAGA 2250 AATACAATGG AAGACACATG AGGTATTCGA TGCAAAGTCA AAGTCTGCCA 2300 GCCTGCTGGT GTCAGACCTC TGTGCAGTCT ATGTGGTCCA GGTTCGCTGC 2350 CGGCGGTTGG ATGGACTAGG ATATTGGAGT AATTGGAGCA GTCCAGCCTA 2400 TACGCTTGTC ATGGATGTAA AAGTTCCTAT GAGAGGGCCT GAATTTTGGA 2450 GAAAAATGGA TGGGGACGTT ACTAAAAAGG AGAGAAATGT CACCTTGCTT 2500 TGGAAGCCCC TGACGAAAAA TGACTCACTG TGTAGTGTGA GGAGGTACGT 2550 GGTGAAGCAT CGTACTGCCC ACAATGGGAC GTGGTCAGAA GATGTGGGAA 2600 ATCGGACCAA TCTCACTTTC CTGTGGACAG AACCAGCGCA CACTGTTACA 2650 GTTCTGGCTG TCAATTCCCT CGGCGCTTCC CTTGTGAATT TTAACCTTAC 2700 CTTCTCATGG CCCATGAGTA AAGTGAGTGC TGTGGAGTCA CTCAGTGCTT 2750 ATCCCCTGAG CAGCAGCTGT GTCATCCTTT CCTGGACACT GTCACCTGAT 2800 GATTATAGTC TGTTATATCT GGTTATTGAA TGGAAGATCC TTAATGAAGA 2850 TGATGGAATG AAGTGGCT 2868

(2) INFORMATION FOR SEQ ID NO:9:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GGGTTAAGTT TCCCACCC 18

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GGGTGGGAAA CTTAACCC 18

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

AGGATACAGT GGGATCCC 18

- (2) INFORMATION FOR SEQ ID NO:12:
- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear

The same was a second of the same of the s

20

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCCCGAGCAC TCCTTTAA 18

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
- 10 TTAAAGGAGT GCTCCCGC 18
 - (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GAGCGGCCCT GTTAGATA 18

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GTATACACCT CTGAAGAA 18

(2) INFORMATION FOR SEQ ID NO:16:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

TTCTTCAGAG GTGTACAC 18

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

ATGCGAGGCT ACTTCTAT 18

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CTCTCCCTGG AAATTTAA 18

- (2) INFORMATION FOR SEQ ID NO:19:
- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

TTAAATTTCC AGGGAGAG 18

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
- 10 ATTTGAAGGA GTTAAGCC 18

5

ı,

20

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
- AATTTAATTC AAGTGGTA 18
- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
 - TACCAGTTGA ATTAAATT 18

5

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GTATCACTTC ATAATATA 18

- (2) INFORMATION FOR SEQ ID NO:24:
- 10 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GATGGTCAGG GTGAACTG 18

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CAGTTCACCC TGACCATC 18

- 25 (2) INFORMATION FOR SEQ ID NO:26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear

GAGGCGAATG TGCGGATT 18

- (2) INFORMATION FOR SEQ ID NO:27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

10 CTTAAATCTC CAAGGAGT 18

5

Total

1

20

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

ACTCCTTGGA GATTTAAG 18

- (2) INFORMATION FOR SEQ ID NO:29:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

AAGTCTTAAG CCAGACTT 18

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

30

(2) INFORMATION FOR SEQ ID NO:30:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

TACTTCAGAG AAGTACAC 18

- (2) INFORMATION FOR SEQ ID NO:34:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:
- 10 GTGTACTTCT CTGAAGTA 18

5

. □ 20

- (2) INFORMATION FOR SEQ ID NO:35:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GAATCACGGT AACTATCA 18

- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CAGCTGTCTC ATAATGTC 18

- (2) INFORMATION FOR SEQ ID NO:37:
 - (i) SEQUENCE CHARACTERISTICS:

10

- (A) LENGTH: 18 base pairs
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GACATTATGA GACAGCTG 18

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

TTCGTCAAGC CATCTGAT 18

- (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

His Gln Asn Leu Ser Asp Gly Lys 1 5 8

- (2) INFORMATION FOR SEQ ID NO:40:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
- His Gln Asn Ile Ser Asp Gly Lys
 30 1 5 8

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:

5

- (2) INFORMATION FOR SEQ ID NO:45:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

GTCAGTCTCC CAGTTCCAGA CTTGTGTGCA GTCTATGCTG TTCAGGTGCG 50 C 51

- 10 (2) INFORMATION FOR SEQ ID NO:46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7127 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

TTCGAGCTCG CCCGACATTG ATTATTGACT AGTTATTAAT AGTAATCAAT 50
TACGGGGTCA TTAGTTCATA GCCCATATAT GGAGCTCCCC GTTACATAAC 100
TTACGGTAAAA TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCATTG 150
ACGTCAATAA TGACGTATGT TCCCATAGTA ACGCCAATAG GGACTTTCCA 200
TTGACGTCAA TGGGTGGAGT ATTTACGGTA AACTGCCCAC TTGGCAGTAC 250
ATCAAGTGTA TCATATGCCA AGTACGCCCC CTATTGACGT CAATGACGGT 300
AAATGGCCCG CCTGGCATTA TGCCCAGTAC ATGACCTTAT GGGACTTTCC 350
TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTACC ATGGTGATGC 400
GGTTTTGGCA GTACATCAAT GGGCGTGGAT AGCGGTTTGA CTCACGGGGA 450
AAATCAACGG GACTTTCCAA AATGTCGTAA CAACTCCGCC CCATTGACGC 550

5

AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGT 600 TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT 650 CCATAGAAGA CACCGGGACC GATCCAGCCT CCGCGGCCGG GAACGGTGCA 700 TTGGAACGCG GATTCCCCGT GCCAAGAGTG ACGTAAGTAC CGCCTATAGA 750 GTCTATAGGC CCACCCCTT GGCTTCGTTA GAACGCGGCT ACAATTAATA 800 CATAACCTTA TGTATCATAC ACATACGATT TAGGTGACAC TATAGAATAA 850 CATCCACTTT GCCTTTCTCT CCACAGGTGT CCACTCCCAG GTCCAACTGC 900 ACCTCGGTTC TATCGATATG CATTGGGGAA CCCTGTGCGG ATTCTTGTGG 950 CTTTGGCCCT ATCTTTCTA TGTCCAAGCT GTGCCCATCC AAAAAGTCCA 1000 AGATGACACC AAAACCCTCA TCAAGACAAT TGTCACCAGG ATCAATGACA 1050 TTTCACACAC GCAGTCAGTC TCCTCCAAAC AGAAAGTCAC CGGTTTGGAC 1100 TTCATTCCTG GGCTCCACCC CATCCTGACC TTATCCAAGA TGGACCAGAC 1150 ACTGGCAGTC TACCAACAGA TCCTCACCAG TATGCCTTCC AGAAACGTGA 1200 TCCAAATATC CAACGACCTG GAGAACCTCC GGGATCTTCT TCACGTGCTG 1250 GCCTTCTCTA AGAGCTGCCA CTTGCCCTGG GCCAGTGGCC TGGAGACCTT 1300 GGACAGCCTG GGGGGTGTCC TGGAAGCTTC AGGCTACTCC ACAGAGGTGG 1350 TGGCCCTGAG CAGGCTGCAG GGGTCTCTGC AGGACATGCT GTGGCAGCTG 1400 GACCTCAGCC CTGGGTGCGG GGTCACCGAC AAAACTCACA CATGCCCACC 1450 GTGCCCAGCA CCTGAACTCC TGGGGGGACC GTCAGTCTTC CTCTTCCCCC 1500 CAAAACCCAA GGACACCCTC ATGATCTCCC GGACCCCTGA GGTCACATGC 1550 GTGGTGGTGG ACGTGAGCCA CGAAGACCCT GAGGTCAAGT TCAACTGGTA 1600 CGTGGACGGC GTGGAGGTGC ATAATGCCAA GACAAAGCCG CGGGAGGAGC 1650 AGTACAACAG CACGTACCGT GTGGTCAGCG TCCTCACCGT CCTGCACCAG 1700 GACTGGCTGA ATGGCAAGGA GTACAAGTGC AAGGTCTCCA ACAAAGCCCT 1750

5

CCCAGCCCC ATCGAGAAAA CCATCTCCAA AGCCAAAGGG CAGCCCCGAG 1800 AACCACAGGT GTACACCCTG CCCCCATCCC GGGAAGAGAT GACCAAGAAC 1850 CAGGTCAGCC TGACCTGCCT GGTCAAAGGC TTCTATCCCA GCGACATCGC 1900 CGTGGAGTGG GAGAGCAATG GGCAGCCGGA GAACAACTAC AAGACCACGC 1950 CTCCCGTGCT GGACTCCGAC GGCTCCTTCT TCCTCTACAG CAAGCTCACC 2000 GTGGACAAGA GCAGGTGGCA GCAGGGGAAC GTCTTCTCAT GCTCCGTGAT 2050 GCATGAGGCT CTGCACAACC ACTACACGCA GAAGAGCCTC TCCCTGTCTC 2100 CGGGTAAATG AGTGCGACGG CCCTAGAGTC GACCTGCAGA AGCTTCTAGA 2150 GTCGACCTGC AGAAGCTTGG CCGCCATGGC CCAACTTGTT TATTGCAGCT 2200 TATAATGGTT ACAAATAAAG CAATAGCATC ACAAATTTCA CAAATAAAGC 2250 ATTTTTTCA CTGCATTCTA GTTGTGGTTT GTCCAAACTC ATCAATGTAT 2300 CTTATCATGT CTGGATCGAT CGGGAATTAA TTCGGCGCAG CACCATGGCC 2350 TGAAATAACC TCTGAAAGAG GAACTTGGTT AGGTACCTTC TGAGGCGGAA 2400 AGAACCAGCT GTGGAATGTG TGTCAGTTAG GGTGTGGAAA GTCCCCAGGC 2450 TCCCCAGCAG GCAGAAGTAT GCAAAGCATG CATCTCAATT AGTCAGCAAC 2500 CAGGTGTGGA AAGTCCCCAG GCTCCCCAGC AGGCAGAAGT ATGCAAAGCA 2550 TGCATCTCAA TTAGTCAGCA ACCATAGTCC CGCCCCTAAC TCCGCCCATC 2600 CCGCCCTAA CTCCGCCCAG TTCCGCCCAT TCTCCGCCCC ATGGCTGACT 2650 AATTTTTTT ATTTATGCAG AGGCCGAGGC CGCCTCGGCC TCTGAGCTAT 2700 TCCAGAAGTA GTGAGGAGGC TTTTTTGGAG GCCTAGGCTT TTGCAAAAAG 2750 CTGTTAATTC GAACACGCAG ATGCAGTCGG GGCGGCGCGG TCCCAGGTCC 2800 ACTTCGCATA TTAAGGTGAC GCGTGTGGCC TCGAACACCG AGCGACCCTG 2850 CAGCGACCCG CTTAACAGCG TCAACAGCGT GCCGCAGATC TGATCAAGAG 2900 ACAGGATGAG GATCGTTTCG CATGATTGAA CAAGATGGAT TGCACGCAGG 2950

5

TTCTCCGGCC GCTTGGGTGG AGAGGCTATT CGGCTATGAC TGGGCACAAC 3000 AGACAATCGG CTGCTCTGAT GCCGCCGTGT TCCGGCTGTC AGCGCAGGGG 3050 CGCCCGGTTC TTTTTGTCAA GACCGACCTG TCCGGTGCCC TGAATGAACT 3100 GCAGGACGAG GCAGCGCGC TATCGTGGCT GGCCACGACG GGCGTTCCTT 3150 GCGCAGCTGT GCTCGACGTT GTCACTGAAG CGGGAAGGGA CTGGCTGCTA 3200 TTGGGCGAAG TGCCGGGGCA GGATCTCCTG TCATCTCACC TTGCTCCTGC 3250 CGAGAAAGTA TCCATCATGG CTGATGCAAT GCGGCGGCTG CATACGCTTG 3300 ATCCGGCTAC CTGCCCATTC GACCACCAAG CGAAACATCG CATCGAGCGA 3350 GCACGTACTC GGATGGAAGC CGGTCTTGTC GATCAGGATG ATCTGGACGA 3400 AGAGCATCAG GGGCTCGCGC CAGCCGAACT GTTCGCCAGG CTCAAGGCGC 3450 GCATGCCCGA CGGCGAGGAT CTCGTCGTGA CCCATGGCGA TGCCTGCTTG 3500 CCGAATATCA TGGTGGAAAA TGGCCGCTTT TCTGGATTCA TCGACTGTGG 3550 CCGGCTGGGT GTGGCGGACC GCTATCAGGA CATAGCGTTG GCTACCCGTG 3600 ATATTGCTGA AGAGCTTGGC GGCGAATGGG CTGACCGCTT CCTCGTGCTT 3650 TACGGTATCG CCGCTCCCGA TTCGCAGCGC ATCGCCTTCT ATCGCCTTCT 3700 TGACGAGTTC TTCTGAGCGG GACTCTGGGG TTCGAAATGA CCGACCAAGC 3750 GACGCCCAAC CTGCCATCAC GAGATTTCGA TTCCACCGCC GCCTTCTATG 3800 AAAGGTTGGG CTTCGGAATC GTTTTCCGGG ACGCCGGCTG GATGATCCTC 3850 CAGCGCGGG ATCTCATGCT GGAGTTCTTC GCCCACCCG GGAGATGGGG 3900 GAGGCTAACT GAAACACGGA AGGAGACAAT ACCGGAAGGA ACCCGCGCTA 3950 TGACGCCAAT AAAAAGACAG AATAAAACGC ACGGGTGTTG GGTCGTTTGT 4000 TCATAAACGC GGGGTTCGGT CCCAGGGCTG GCACTCTGTC GATACCCCAC 4050 CGAGACCCCA TTGGGGCCAA TACGCCCGCG TTTCTTCCTT TTCCCCACCC 4100 CAACCCCCAA GTTCGGGTGA AGGCCCAGGG CTCGCAGCCA ACGTCGGGGC 4150

5

GGCAAGCCCG CCATAGCCAC GGGCCCCGTG GGTTAGGGAC GGGGTCCCCC 4200 ATGGGGAATG GTTTATGGTT CGTGGGGGTT ATTCTTTTGG GCGTTGCGTG 4250 GGGTCAGGTC CACGACTGGA CTGAGCAGAC AGACCCATGG TTTTTGGATG 4300 GCCTGGGCAT GGACCGCATG TACTGGCGCG ACACGAACAC CGGGCGTCTG 4350 TGGCTGCCAA ACACCCCCGA CCCCCAAAAA CCACCGCGCG GATTTCTGGC 4400 GCCGCCGGAC GAACTAAACC TGACTACGGC ATCTCTGCCC CTTCTTCGCT 4450 GGTACGAGGA GCGCTTTTGT TTTGTATTGG TCACCACGGC CGAGTTTCCG 4500 CGGGACCCG GCCAGGGCAC CTGTCCTACG AGTTGCATGA TAAAGAAGAC 4550 AGTCATAAGT GCGGCGACGA TAGTCATGCC CCGCGCCCAC CGGAAGGAGC 4600 TGACTGGGTT GAAGGCTCTC AAGGGCATCG GTCGAGCGGC CGCATCAAAG 4650 CAACCATAGT ACGCGCCCTG TAGCGGCGCA TTAAGCGCGG CGGGTGTGGT 4700 GGTTACGCGC AGCGTGACCG CTACACTTGC CAGCGCCCTA GCGCCCGCTC 4750 CTTTCGCTTT CTTCCCTTCC TTTCTCGCCA CGTTCGCCGG CTTTCCCCGT 4800 CAAGCTCTAA ATCGGGGGCT CCCTTTAGGG TTCCGATTTA GTGCTTTACG 4850 GCACCTCGAC CCCAAAAAAC TTGATTTGGG TGATGGTTCA CGTAGTGGGC 4900 CATCGCCCTG ATAGACGGTT TTTCGCCCTT TGACGTTGGA GTCCACGTTC 4950 TTTAATAGTG GACTCTTGTT CCAAACTGGA ACAACACTCA ACCCTATCTC 5000 GGGCTATTCT TTTGATTTAT AAGGGATTTT GCCGATTTCG GCCTATTGGT 5050 TAAAAAATGA GCTGATTTAA CAAAAATTTA ACGCGAATTT TAACAAAATA 5100 TTAACGTTTA CAATTTTATG GTGCAGGCCT CGTGATACGC CTATTTTTAT 5150 AGGTTAATGT CATGATAATA ATGGTTTCTT AGACGTCAGG TGGCACTTTT 5200 CGGGGAAATG TGCGCGGAAC CCCTATTTGT TTATTTTTCT AAATACATTC 5250 AAATATGTAT CCGCTCATGA GACAATAACC CTGATAAATG CTTCAATAAT 5300 ATTGAAAAAG GAAGAGTATG AGTATTCAAC ATTTCCGTGT CGCCCTTATT 5350

5

CCCTTTTTTG CGGCATTTTG CCTTCCTGTT TTTGCTCACC CAGAAACGCT 5400 GGTGAAAGTA AAAGATGCTG AAGATCAGTT GGGTGCACGA GTGGGTTACA 5450 TCGAACTGGA TCTCAACAGC GGTAAGATCC TTGAGAGTTT TCGCCCCGAA 5500 GAACGTTTTC CAATGATGAG CACTTTTAAA GTTCTGCTAT GTGGCGCGGT 5550 ATTATCCCGT GATGACGCCG GGCAAGAGCA ACTCGGTCGC CGCATACACT 5600 ATTCTCAGAA TGACTTGGTT GAGTACTCAC CAGTCACAGA AAAGCATCTT 5650 ACGGATGGCA TGACAGTAAG AGAATTATGC AGTGCTGCCA TAACCATGAG 5700 TGATAACACT GCGGCCAACT TACTTCTGAC AACGATCGGA GGACCGAAGG 5750 AGCTAACCGC TTTTTTGCAC AACATGGGGG ATCATGTAAC TCGCCTTGAT 5800 CGTTGGGAAC CGGAGCTGAA TGAAGCCATA CCAAACGACG AGCGTGACAC 5850 CACGATGCCA GCAGCAATGG CAACAACGTT GCGCAAACTA TTAACTGGCG 5900 AACTACTTAC TCTAGCTTCC CGGCAACAAT TAATAGACTG GATGGAGGCG 5950 GATAAAGTTG CAGGACCACT TCTGCGCTCG GCCCTTCCGG CTGGCTGGTT 6000 TATTGCTGAT AAATCTGGAG CCGGTGAGCG TGGGTCTCGC GGTATCATTG 6050 CAGCACTGGG GCCAGATGGT AAGCCCTCCC GTATCGTAGT TATCTACACG 6100 ACGGGGAGTC AGGCAACTAT GGATGAACGA AATAGACAGA TCGCTGAGAT 6150 AGGTGCCTCA CTGATTAAGC ATTGGTAACT GTCAGACCAA GTTTACTCAT 6200 GTGAAGATCC TTTTTGATAA TCTCATGACC AAAATCCCTT AACGTGAGTT 6300 TTCGTTCCAC TGAGCGTCAG ACCCCGTAGA AAAGATCAAA GGATCTTCTT 6350 GAGATCCTTT TTTTCTGCGC GTAATCTGCT GCTTGCAAAC AAAAAAACCA 6400 CCGCTACCAG CGGTGGTTTG TTTGCCGGAT CAAGAGCTAC CAACTCTTTT 6450 TCCGAAGGTA ACTGCCTTCA GCAGAGCGCA GATACCAAAT ACTGTCCTTC 6500 TAGTGTAGCC GTAGTTAGGC CACCACTTCA AGAACTCTGT AGCACCGCCT 6550

5

ACATACCTCG CTCTGCTAAT CCTGTTACCA GTGGCTGCTG CCAGTGGCGA 6600
TAAGTCGTGT CTTACCGGGT TGGACTCAAG ACGATAGTTA CCGGATAAGG 6650
CGCAGCGGTC GGGCTGAACG GGGGGTTCGT GCACACAGCC CAGCTTGGAG 6700
CGAACGACCT ACACCGAACT GAGATACCTA CAGCGTGAGC ATTGAGAAAG 6750
CGCCACGCTT CCCGAAGGGA GAAAGGCGGA CAGGTATCCG GTAAGCGGCA 6800
GGGTCGGAAC AGGAGAGCGC ACGAGGGAGC TTCCAGGGGG AAACGCCTGG 6850
TATCTTTATA GTCCTGTCGG GTTTCGCCAC CTCTGACTTG AGCGTCGATT 6900
TTTGTGATGC TCGTCAGGGG GGCGGAGCCT ATGGAAAAAC GCCAGCTGGC 6950
ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT 7000
GTGAGTTACC TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC 7050
GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATTT CACACAGGAA 7100
ACAGCTATGA CCATGATTAC GAATTAA 7127

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 397 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr

1 5 10 15

Leu Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp 20 25 30

Thr Lys Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile
35 40 45

Ser His Thr Gln Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu
50 55 60

Asp Phe Ile Pro Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met
65 70 75

	Asp	Gln	Thr	Leu	Ala 80	Val	Tyr	Gln	Gln	Ile 85	Leu	Thr	Ser	Met	Pro 90
	Ser	Arg	Asn	Val	Ile 95	Gln	Ile	Ser	Asn	Asp 100	Leu	Glu	Asn	Leu	Arg 105
5	Asp	Leu	Leu	His	Val 110	Leu	Ala	Phe	Ser	Lys 115	Ser	Cys	His	Leu	Pro 120
	Trp	Ala	Ser	Gly	Leu 125	Glu	Thr	Leu	Asp	Ser 130	Leu	Gly	Gly	Val	Leu 135
10	Glu	Ala	Ser	Gly	Tyr 140	Ser	Thr	Glu	Val	Val 145	Ala	Leu	Ser	Arg	Leu 150
	Gln	Gly	Ser	Leu	Gln 155	Asp	Met	Leu	Trp	Gln 160	Leu	Asp	Leu	Ser	Pro 165
g week b	Gly	Cys	Gly	Val	Thr 170	Asp	Lys	Thr	His	Thr 175	Cys	Pro	Pro	Cys	Pro 180
(5	Ala	Pro	Glu	Leu	Leu 185	Gly	Gly	Pro	Ser	Val 190	Phe	Leu	Phe	Pro	Pro 195
	Lys	Pro	Lys	Asp	Thr 200	Leu	Met	Ile	Ser	Arg 205	Thr	Pro	Glu	Val	Thr 210
# 2 0	Cys	Val	Val	Val	Asp 215	Val	Ser	His	Glu	Asp 220	Pro	Glu	Val	Lys	Phe 225
	Asn	Trp	Tyr	Val	Asp 230	Gly	Val	Glu	Val	His 235	Asn	Ala	Lys	Thr	Lys 240
	Pro	Arg	Glu	Glu	Gln 245	Tyr	Asn	Ser	Thr	Tyr 250	Arg	Val	Val	Ser	Val 255
25	Leu	Thr	Val	Leu	His 260	Gln	Asp	Trp	Leu	Asn 265	Gly	Lys	Glu	Tyr	Lys 270
	Cys	Lys	Val	Ser	Asn 275	Lys	Ala	Leu	Pro	Ala 280	Pro	Ile	Glu	Lys	Thr 285
30	Ile	Ser	Lys	Ala	Lys 290	Gly	Gln	Pro	Arg	Glu 295	Pro	Gln	Val	Tyr	Thr 300
	Leu	Pro	Pro	Ser	Arg 305	Glu	Glu	Met	Thr	Lys 310	Asn	Gln	Val	Ser	Leu 315

15
1 Sag.
4
THE ST
1
21
20
20

	Thr	Cys	Leu	Val	Lys 320	Gly	Phe	Tyr	Pro	Ser 325	Asp	Ile	Ala	Val	Glu 330
	Trp	Glu	Ser	Asn	Gly 335	Gln	Pro	Glu	Asn	Asn 340	Tyr	Lys	Thr	Thr	Pro 345
5	Pro	Val	Leu	Asp	Ser 350	Asp	Gly	Ser	Phe	Phe 355	Leu	Tyr	Ser	Lys	Leu 360
	Thr	Val	Asp	Lys	Ser 365	Arg	Trp	Gln	Gln	Gly 370	Asn	Val	Phe	Ser	Cys 375
10	Ser	Val	Met	His	Glu 380	Ala	Leu	His	Asn	His 385	Tyr	Thr	Gln	Lys	Ser 390
	Leu	Ser	Leu	Ser	Pro 395	Gly	Lys 397								
	(2)	INFOI	RMAT	ION I	FOR S	SEQ :	ID NO	:48	:						
	(:	(2	A) LI	NCE (ENGTI YPE:	I: 24	1 9 ar	nino		is						
	(x:	(1) T(OPOLO				SEQ	ID I	NO:48	3:				
		(I i) SI	O) TO		DESCI	RIPT	ION:					Lys	Lys	Pro	Gly 15
2 0	Glu 1	(I i) SI Val	O) TO	NCE I	DESCI Val 5	RIPT: Gln	ION: Ser	Gly	Ala	Glu 10	Val				15
20	Glu 1 Ala	(I i) SI Val Ser	O) TO EQUEI Gln Val	NCE I Leu	Val Val Val 20	Gln Ser	ION: Ser Cys	Gly Lys	Ala Ala	Glu 10 Ser 25	Val Gly	Tyr	Thr	Phe	15 Thr 30
2 0	Glu 1 Ala Gly	(I Val Ser Tyr	O) TO EQUEN Gln Val Tyr	NCE I Leu Lys	Val 5 Val 20 Tyr 35	Gln Ser Trp	ION: Ser Cys Val	Gly Lys Arg	Ala Ala Gln	Glu 10 Ser 25 Ala 40	Val Gly Pro	Tyr Gly	Thr Gln	Phe Gly	15 Thr 30 Leu 45
	Glu 1 Ala Gly Glu	(I i) SI Val Ser Tyr	O) TO EQUED Gln Val Tyr Met	NCE I Leu Lys Met	Val Val 20 Tyr 35 Trp	Gln Ser Trp	ION: Ser Cys Val Asn	Gly Lys Arg Pro	Ala Ala Gln Asn	Glu 10 Ser 25 Ala 40 Ser 55	Val Gly Pro Gly	Tyr Gly Gly	Thr Gln Thr	Phe Gly Asn	15 Thr 30 Leu 45 Tyr 60
	Glu Ala Gly Glu Ala	(I i) SI Val Ser Tyr Trp Gln	O) TO EQUEN Gln Val Tyr Met	Leu Lys Met	Val Val 20 Tyr 35 Trp 50 Gln 65	Gln Ser Trp Ile Gly	Ser Cys Val Asn	Gly Lys Arg Pro Val	Ala Ala Gln Asn Thr	Glu 10 Ser 25 Ala 40 Ser 55 Met 70	Val Gly Pro Gly Thr	Tyr Gly Gly Arg	Thr Gln Thr	Phe Gly Asn Thr	15 Thr 30 Leu 45 Tyr 60 Ser 75

	Ala	Tyr	His	Arg	G1y 110	Ser	'l'yr	Tyr	Met	115	Val	Trp	Gly	Arg	Gly 120
	Thr	Leu	Val	Thr	Val 125	Ser	Ser	Gly	Gly	Gly 130	Gly	Thr	Gly	Gly	Gly 135
5	Gly	Ser	Gly	Gly	Gly 140	Gly	Ser	Ser	Glu	Leu 145	Thr	Gln	Asp	Pro	Ala 150
	Val	Ser	Val	Ala	Leu 155	Gly	Gln	Thr	Val	Arg 160	Ile	Thr	Cys	Gln	Gly 165
10	Asp	Ser	Leu	Arg	Ser 170	Tyr	Tyr	Ala	Ser	Trp 175	Tyr	Gln	Gln	Lys	Pro 180
	Gly	Gln	Ala	Pro	Val 185	Leu	Val	Ile	Tyr	Gly 190	Lys	Asn	Asn	Arg	Pro 195
1 4 2 4 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ser	Gly	Ile	Pro	Asp 200	Arg	Phe	Ser	Gly	Ser 205	Ser	Ser	Gly	Asn	Thr 210
15	Ala	Ser	Leu	Thr	Ile 215	Thr	Gly	Ala	Gln	Ala 220	Glu	Asp	Glu	Ala	Asp 225
	Tyr	Tyr	Cys	Asn	Ser 230	Arg	Asp	Ser	Ser	Gly 235	Asn	His	Val	Val	Phe 240
20 20	Gly	Gly	Gly	Thr	Lys 245	Leu	Thr	Val	Leu 249						
	(2)	INFO	RMAT:	ION 1	FOR S	SEQ :	ID NO	0:49	:						
25	((1	A) Li 3) Ti	NCE (ENGTI YPE: OPOL(H: 25 Amir	50 ar 10 Ac	mino cid		is						
	(x	i) SI	EQUEI	NCE I	DESCI	RIPT	ION:	SEQ	ID I	NO:49	∌:				
	Glu 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15
30	Glu	Ser	Leu	Lys	Ile 20	Ser	Cys	Gln	Gly	Ser 25	Gly	Phe	Thr	Phe	Ser 30
	Ser	Tyr	Lys	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45

30

5

10

(2) INFORMATION FOR SEQ ID NO:50:

((i)	SECUENCE	CHARACTERISTICS:	۰
3		DHOOMICH		۰

- (A) LENGTH: 241 amino acids
- (B) TYPE: Amino Acid
- (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Gln	Val	Arg	Leu	Gln	Gln	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	${ t Gly}$
1				5					10					15
7	0	T ~	7	T	0	a	74 7	70 7	0	77	D1	TT1	T)]	70

Arg S	er L	eu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Asp
				20					25					30

15
The state of the state of
#
20
25

	Phe Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser 200 205 210
	Ser Leu Gln Pro Glu Asp Phe Gly Thr Tyr Tyr Cys Gln Gln Leu 215 220 225
5	Ile Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile 230 235 240
	Lys 241
	(2) INFORMATION FOR SEQ ID NO:51:
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 894 amino acids(B) TYPE: Amino Acid(D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:
a to the constant of the const	Met Met Cys Gln Lys Phe Tyr Val Val Leu Leu His Trp Glu Phe 1 5 10 15
in the state of th	Leu Tyr Val Ile Ala Ala Leu Asn Leu Ala Tyr Pro Ile Ser Pro 20 25 30
21	Trp Lys Phe Lys Leu Phe Cys Gly Pro Pro Asn Thr Thr Asp Asp 35 40 45
20	Ser Phe Leu Ser Pro Ala Gly Ala Pro Asn Asn Ala Ser Ala Leu 50 55 60
and the second s	Lys Gly Ala Ser Glu Ala Ile Val Glu Ala Lys Phe Asn Ser Ser 65 70 75
25	Gly Ile Tyr Val Pro Glu Leu Ser Lys Thr Val Phe His Cys Cys 80 85 90
	Phe Gly Asn Glu Gln Gly Gln Asn Cys Ser Ala Leu Thr Asp Asn 95 100 105
30	Thr Glu Gly Lys Thr Leu Ala Ser Val Val Lys Ala Ser Val Phe 110 115 120
	Arg Gln Leu Gly Val Asn Trp Asp Ile Glu Cys Trp Met Lys Gly 125 130 135

	Asp	Leu	Thr	Leu	Phe 140	Ile	Cys	His	Met	Glu 145	Pro	Leu	Pro	Lys	Asn 150
	Pro	Phe	Lys	Asn	Tyr 155	Asp	Ser	Lys	Val	His 160	Leu	Leu	Tyr	Asp	Leu 165
5	Pro	Glu	Val	Ile	Asp 170	Asp	Ser	Pro	Leu	Pro 175	Pro	Leu	Lys	Asp	Ser 180
	Phe	Gln	Thr	Val	Gln 185	Cys	Asn	Cys	Ser	Leu 190	Arg	Gly	Cys	Glu	Cys 195
10	His	Val	Pro	Val	Pro 200	Arg	Ala	Lys	Leu	Asn 205	Tyr	Ala	Leu	Leu	Met 210
	Tyr	Leu	Glu	Ile	Thr 215	Ser	Ala	Gly	Val	Ser 220	Phe	Gln	Ser	Pro	Leu 225
400 m	Met	Ser	Leu	Gln	Pro 230	Met	Leu	Val	Val	Lys 235	Pro	Asp	Pro	Pro	Leu 240
15	Gly	Leu	His	Met	Glu 245	Val	Thr	Asp	Asp	Gly 250	Asn	Leu	Lys	Ile	Ser 255
Company of the Compan	Trp	Asp	Ser	Gln	Thr 260	Met	Ala	Pro	Phe	Pro 265	Leu	Gln	Tyr	Gln	Val 270
20 25	Lys	Tyr	Leu	Glu	Asn 275	Ser	Thr	Ile	Val	Arg 280	Glu	Ala	Ala	Glu	Ile 285
TO STATE OF THE ST	Val	Ser	Ala	Thr	Ser 290	Leu	Leu	Val	Asp	Ser 295	Val	Leu	Pro	Gly	Ser 300
Tages	Ser	Tyr	Glu	Val	Gln 305	Val	Arg	Ser	Lys	Arg 310	Leu	Asp	Gly	Ser	Gly 315
25	Val	Trp	Ser	Asp	Trp 320	Ser	Ser	Pro	Gln	Val 325	Phe	Thr	Thr	Gln	Asp 330
	Val	Val	Tyr	Phe	Pro 335	Pro	Lys	Ile	Leu	Thr 340	Ser	Val	Gly	Ser	Asn 345
30	Ala	Ser	Phe	His	Cys 350	Ile	Tyr	Lys	Asn	Glu 355	Asn	Gln	Ile	Ile	Ser 360
	Ser	Lys	Gln	Ile	Val 365	Trp	Trp	Arg	Asn	Leu 370	Ala	Glu	Lys	Ile	Pro 375

	Glu	Ile	Gln	Tyr	Ser 380	Ile	Val	Ser	Asp	Arg 385	Val	Ser	Lys	Val	Thr 390
	Phe	Ser	Asn	Leu	Lys 395	Ala	Thr	Arg	Pro	Arg 400	Gly	Lys	Phe	Thr	Tyr 405
5	Asp	Ala	Val	Tyr	Cys 410	Cys	Asn	Glu	Gln	Ala 415	Cys	His	His	Arg	Tyr 420
	Ala	Glu	Leu	Tyr	Val 425	Ile	Asp	Val	Asn	Ile 430	Asn	Ile	Ser	Cys	Glu 435
10	Thr	Asp	Gly	Tyr	Leu 440	Thr	Lys	Met	Thr	Cys 445	Arg	Trp	Ser	Pro	Ser 450
	Thr	Ile	Gln	Ser	Leu 455	Val	Gly	Ser	Thr	Val 460	Gln	Leu	Arg	Tyr	His 465
2 200 g	Arg	Arg	Ser	Leu	Tyr 470	Cys	Pro	Asp	Ser	Pro 475	Ser	Ile	His	Pro	Thr 480
15	Ser	Glu	Pro	Lys	Asn 485	Cys	Val	Leu	Gln	Arg 490	Asp	Gly	Phe	Tyr	Glu 495
	Cys	Val	Phe	Gln	Pro 500	Ile	Phe	Leu	Leu	Ser 505	Gly	Tyr	Thr	Met	Trp 510
20 20	Ile	Arg	Ile	Asn	His 515	Ser	Leu	Gly	Ser	Leu 520	Asp	Ser	Pro	Pro	Thr 525
	Cys	Val	Leu	Pro	Asp 530	Ser	Val	Val	Lys	Pro 535	Leu	Pro	Pro	Ser	Asn 540
	Val	Lys	Ala	Glu	Ile 545	Thr	Val	Asn	Thr	Gly 550	Leu	Leu	Lys	Val	Ser 555
25	Trp	Glu	Lys	Pro	Val 560	Phe	Pro	Glu	Asn	Asn 565	Leu	Gln	Phe	Gln	Ile 570
	Arg	Tyr	Gly	Leu	Ser 575	Gly	Lys	Glu	Ile	Gln 580	Trp	Lys	Thr	His	Glu 585
30	Val	Phe	Asp	Ala	Lys 590	Ser	Lys	Ser	Ala	Ser 595	Leu	Leu	Val	Ser	Asp 600
	Leu	Cys	Ala	Val	Tyr 605	Val	Val	Gln	Val	Arg 610	Cys	Arg	Arg	Leu	Asp 615

	Gly	Leu	Gly	Tyr	Trp 620	Ser	Asn	Trp	Ser	Ser 625	Pro	Ala	Tyr	Thr	Leu 630
	Val	Met	Asp	Val	Lys 635	Val	Pro	Met	Arg	Gly 640	Pro	Glu	Phe	Trp	Arg 645
5	Lys	Met	Asp	Gly	Asp 650	Val	Thr	Lys	Lys	Glu 655	Arg	Asn	Val	Thr	Leu 660
	Leu	Trp	Lys	Pro	Leu 665	Thr	Lys	Asn	Asp	Ser 670	Leu	Cys	Ser	Val	Arg 675
10	Arg	Tyr	Val	Val	Lys 680	His	Arg	Thr	Ala	His 685	Asn	Gly	Thr	Trp	Ser 690
	Glu	Asp	Val	Gly	Asn 695	Arg	Thr	Asn	Leu	Thr 700	Phe	Leu	Trp	Thr	Glu 705
(m)	Pro	Ala	His	Thr	Val 710	Thr	Val	Leu	Ala	Val 715	Asn	Ser	Leu	Gly	Ala 720
The state of the s	Ser	Leu	Val	Asn	Phe 725	Asn	Leu	Thr	Phe	Ser 730	Trp	Pro	Met	Ser	Lys 735
	Val	Ser	Ala	Val	Glu 740	Ser	Leu	Ser	Ala	Tyr 745	Pro	Leu	Ser	Ser	Ser 750
*4 20	Cys	Val	Ile	Leu	Ser 755	Trp	Thr	Leu	Ser	Pro 760	Asp	Asp	Tyr	Ser	Leu 765
	Leu	Tyr	Leu	Val	Ile 770	Glu	Trp	Lys	Ile	Leu 775	Asn	Glu	Asp	Asp	Gly 780
	Met	Lys	Trp	Leu	Arg 785	Ile	Pro	Ser	Asn	Val 790	Lys	Lys	Phe	Tyr	Ile 795
25	His	Asp	Asn	Phe	Ile 800	Pro	Ile	Glu	Lys	Tyr 805	Gln	Phe	Ser	Leu	Tyr 810
	Pro	Val	Phe	Met	Glu 815	Gly	Val	Gly	Lys	Pro 820	Lys	Ile	Ile	Asn	Gly 825
30	Phe	Thr	Lys	Asp	Ala 830	Ile	Asp	Lys	Gln	Gln 835	Asn	Asp	Ala	Gly	Leu 840
	Tyr	Val	Ile	Val	Pro 845	Ile	Ile	Ile	Ser	Ser 850	Cys	Val	Leu	Leu	Leu 855

Gly Thr Leu Leu Ile Ser His Gln Arg Met Lys Lys Leu Phe Trp 860

Asp Asp Val Pro Asn Pro Lys Asn Cys Ser Trp Ala Gln Gly Leu 875

Asn Phe Gln Lys Arg Thr Asp Thr Leu

894

890

WHAT IS CLAIMED IS:

- 1. An agonist antibody which specifically binds to the WSX receptor.
- 2. The antibody of claim 1 which specifically binds to human WSX receptor.
- 3. The antibody of claim 2 which specifically binds to human WSX receptor variant 13.2.
- 4. The antibody of claim 1 which binds WSX receptor with a Kd of no more than about $1 \times 10^8 M$.
- 5. The antibody of claim 4 which binds WSX receptor with a Kd of no more than about 1×10^{-9} M.
- 6. The antibody of claim 2 which also binds to murine WSX receptor.
- 7. The antibody of claim 1 which has an IC50 in a KIRA ELISA of about 0.5µg/ml or less.
- 8. The antibody of claim 7 which has an IC50 in a KIRA ELISA of about 0.2µg/ml or less.
- 9. The antibody of claim 8 which has an IC50 in a KIRA ELISA of about 0.1µg/ml or less.
- 10. The antibody of claim 1 which has biological characteristics of antibody 2D7 (ATCC Accession Number_____).
- 11. The antibody of claim 10 which binds to the epitope on WSX receptor bound by antibody 2D7.
- 12. The antibody of claim 10 which has complementarity determining region (CDR) residues from antibody 2D7.
- 13. The antibody of claim 1 which has the biological characteristics of antibody 1G4 (ATCC Accession Number_____).
- 14. The antibody of claim 13 which binds to the epitope on WSX receptor bound by antibody 1G4.
- The antibody of claim 13 which has complementarity determining region (CDR) residues from antibody 1G4.
- 16. The antibody of claim 1 which has the biological characteristics of antibody 1E11 (ATCC Accession Number_____).
- 17. The antibody of claim 16 which binds to the epitope on WSX receptor bound by antibody 1E11.

- 18. The antibody of claim 16 which has complementarity determining region (CDR) residues from antibody 1E11.
- 19. The antibody of claim 1 which has the biological characteristics of antibody 1C11 (ATCC Accession Number_____).
- 20. The antibody of claim 19 which binds to the epitope on WSX receptor bound by antibody 1C11.
- 21. The antibody of claim 19 which has complementarity determining region (CDR) residues from antibody 1C11.
- 22. The antibody of claim 1 comprising hypervariable region residues of clone 3 antibody (SEQ ID NO:48).
- 23. The antibody of claim 1 comprising hypervariable region residues of clone 4 antibody (SEQ ID NO:49).
- 24. The antibody of claim 1 comprising hypervariable region residues of clone 17 antibody (SEQ ID NO:50).
- 25. The antibody of claim 1 which is a monoclonal antibody.
- 26. The antibody of claim 1 which is a human antibody.
- 27. The antibody of claim 1 which is a humanized antibody.
- 28. The antibody of claim 1 which is an antibody fragment.
- 29. The antibody fragment of claim 28 which is an F(ab')₂.
- 30. A composition comprising the antibody of claim 1 and a physiologically acceptable carrier.
- 31. The composition of claim 30 which is sterile.
- 32. The composition of claim 31 which is lyophilized.
- 33. The composition of claim 30 further comprising a cytokine.
- 34. A method for activating the WSX receptor comprising exposing the WSX receptor to an amount of the antibody of claim 1 which is effective for activating the WSX receptor.
- 35. A method for enhancing proliferation or differentiation of a cell comprising the WSX receptor comprising exposing the cell to an amount of the antibody of claim 1 which is effective for enhancing proliferation or differentiation of the cell.
- 36. An isolated nucleic acid molecule encoding the antibody of claim 1.

- 37. A vector comprising the nucleic acid molecule of claim 36.
- 38. A host cell comprising the nucleic acid molecule of claim 36.
- 39. A method of producing an agonist antibody which specifically binds to the WSX receptor comprising culturing the host cell of claim 38 and recovering the antibody from the cell culture.

WSX RECEPTOR AGONIST ANTIBODIES

ABSTRACT OF THE DISCLOSURE

Agonist antibodies which bind to and activate the WSX receptor are described along with various uses for these antibodies. Preferred antibodies are those which display an IC50 in the KIRA ELISA bioassay of about 0.5µg/ml or less.

F MAY 7:1997

COMBINED DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY FOR CONTINUING APPLICATION

As a below named inventors hereby declare that:

My residence posterice address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

WSX RECEPTOR AGONIST ANTIBODIES

the specification of which (check one) __ is attached hereto or X was filed on 07-Jan-1997 as Application Serial No. 08/779,457 was amended on (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, Section 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate have a filing date before that of the application on which priority is claimed:

Prior Foreign Applic	ation(s):		Priority Claimed Yes No
Number	Country	Day/Month/Year Filed	
l hereby claim the below:	oenefit under Title 35	, United States Code, §119(e) of any United St	ates provisional applications(s) listed
60/		08-Jan-1996	
Application Ser. No.		Filing Date	- liestians (a) listed below and insets

Thereby claim the benefit under Title 35, United States Code, §120 of any United States applications(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

08/667.197	20-June-1996	Pending
Application Ser. No.	Filing Date	Status: Patented, Pending, Abandoned
08/780,562	08-January-1997	Pending
Application Ser. No.	Filing Date	Status: Patented, Pending, Abandoned

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

Walter E. Buting - Reg. No. 23,092 Deirdre L. Conley - Reg. No. 36,487 Ginger R. Dreger - Reg. No. 33,055 Janet E. Hasak - Reg. No. 28,616 Sean A. Johnston - Reg. No. 35,910 Dennis G. Kleid - Reg. No. 32,037 Jeffrey S. Kubinec - Reg. No. 36,575 Wendy M. Lee - Reg. No. 40,378 Richard B. Love - Reg. No. 34,659 Diane L. Marschang - Reg. No. 35,600 Craig G. Svoboda - Reg. No. 39,044 Timothy E. Torchia - Reg. No. 36,700 Daryl B. Winter - Reg. No. 32,637 "Send correspondence to Genentech, Inc.

Attn: Wendy M. Lee

460 Point San Bruno Boulevard South San Francisco, CA 94080 Telephone: (415) 225-1994

I hereby declare that all statements made herein of my own knowledge and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both, under Section 1001 of Title 18 of the United States Code and that willful false statements may jeopardize the validity of the application or any patent issued thereon.

The undersigned hereby authorizes the U.S. attorney or agent named herein to accept and follow instructions from his foreign patent agent as to any action to be taken in the Patent and Trademark Office regarding this application without direct communication between the U.S. attorney or agent and the undersigned. In the event of a change in the persons from whom instructions may be taken, the U.S. attorney or agent named herein will be so notified by the undersigned.

Full name of sole or first inventor	
Paul J. Carter	
Inventor's signature	Date
Mrs 5 Carle	4/22/97
Residence 2074 18th Avenue, San Francisco, CA 94116	
Citizenship Great Britain	
Post Office Address 460 Point San Bruno Boulevard South San Francisco, CA 94080	
Full name of second joint inventor, if any	
Nancy Y. Chiang	
Inventor's signature Aug h Chang	Date 4.28-57
Residence () () () () (622 Quintara St., San Francisco, CA 94116	
Citizenship United States	
Post Office Address 460 Point San Bruno Boulevard South San Francisco, CA 94080	
Full name of third joint inventor, if any	
Kyung Jin Kim	
Inventor's signature // // // // // // // // // // // // //	Date
Residence 622 Benvenue Ave., Los Altos, CA 94025	
Citizenship United States	
Post Office Address 460 Point San Bruno Boulevard South San Francisco, CA 94080	

<u> </u>	
Full name of fourth joint inventor, if any	
William Matthews	
Inventor's signature	Date ()
William Marshews	4/2/97
Residence	
560 Summit Springs Road, Woodside, CA 94062	
Citizenship Great Britain	
Post Office Address	
460 Point San Bruno Boulevard	
South San Francisco, CA 94080	
Full name of fifth joint inventor, if any	
Maria L. Rodrigues	
Inventor's signature	Date
Marie here Rodin	4-22197
Residence	
2320 Donegal Ave., South San Francisco, CA 94080	
Citizenship (MR) Chinese UNITED STATES	
Pest Office Address	
460 Point San Bruno Boulevard	
South San Francisco, CA 94080	
THE STATE OF THE S	
변경 	
ेष्ड हा	
1502 1002 1003	
Table	
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	•

length: 4102 (circular)

xhoï sall hinfi pleI

paeR7I taqI

ecoRI taqI hincII/hindII tru9I mseI acci acii

GAATICICGA GICGACGGCG GCCGITAAAG CICICGIGGC AITAICCIIC AGIGGGGCIA IIGGACIGAC IIIICIIAIG CIGGGAIGIG CCITAGAGGA bslI apol aval

eco57I

CTTAAGAGCT CAGCTGCCGC CCGCAATTIC GAGAGCACCG TAATAGGAAG TCACCCCGAT AACCTGACTG AAAAGAATAC GACCCTACAC GGAATCTCCT Lru91

ddeI

fokī

101 TIATGGGTGT ACTICTCTGA AGTAAGATGA TITGTCAAAA ATTCTGTGTG GITTTGTTAC ATTGGGAATT TATTTATGTG ATAACTGCGT TTAACTTGTG AATACCCACA TGAAGAGACT TCAITCTACT AAACAGTTTT TAAGACACAC CAAAACAATG TAACCCTTAA ATAAATACAC TATTGACGCA AATTGAACAG msel × H apol EL EL 3 maeIII **>** Œ, apol 8 U eco57I csp6I

nlaIII

hinfr plei apol nspHI sphī nspl tru9I msel bsaJI styl

201 ATAICCAAIT ACTCCTIGGA GAITTAAGIT GICTIGCAIG CCACCAAAIT CAACCIAIGA CTACTICCIT TIGCCIGCIG GACTCTCAAA GAATACTICA tgaggaacct ctaaattcaa cagaacgtac ggtggtttaa gttggatact gatgaaggaa aacggacgac ctgagagttt cttatgaagt TATAGGTTAA

L P A Œ, 2 0. X U S r r T d

taqI bstBI Bful

csp6I rsal trugi. msel ddeI IIBdsu bsmAI aluI bsici asuII

ACAACGAAAG 301 AAITCGAAIG GACATIAIGA GACAGCIGII GAACCIAAGI ITAAIICAAG IGGIACICAC ITITCIAACI IAICCAAAAC AACIIICCAC IGIIGCIIIIC TTGAAAGGTG TFH CITGGAITCA AATTAAGIIC ACCAIGAGIG AAAAGAIIGA AIAGGIIIIG SX တ z S E P K TTAAGCTTAC CTGTAATACT CTGTCGACAA T A V H Y E AGATAGAAAC TGCTCCTTAT GTGCAGACAA CATTGAAGGA AAGACATTTG TTTCAACAGT AAATTCTTTA GTTTTTCAAC AAATAGATGC TICTGTAAAC AAAGTTGTCA TTTAAGAAAT CAAAAAGTTG TTTATCTACG O <u>د</u> د S GTAACTTCCT CCICACICGI ICIAICIIIG ACGAGGAAIA CACGICIGII Ų S υ 401 GGAGTGAGCA

apol

sau96I avalI msel asp700 hinfI tru91 hinfi pleI tru9I bsmAI mseI

XmnI

501 AAACTGGAAC ATACAGTGCT GGCTAAAAGG AGACTTAAAA TTATTCATCT GTTATGTGGA GTCATTATTT AAGAATCTAT TCAGGAATTA TAACTATAAG TITGACCITG TATGICACGA CCGAITITCC ICTGAATITT AATAAGTAGA CAATACACCI CAGTAATAAA ITCITAGATA AGTCCITAAI AITGATAITC > н I. 기 저 z z 126

bsrI

nlaili rcai muni bspHI CTGCAATTGC AGTGTTCATG GACGTTAACG TCACAAGTAC C N C S V H E	hphi maeili beri crccttatgt gtttgaaat cacatctggt ggagtaattt tccagtcacc gtcggttga gttgctgtga gaggaataca caaactttta gtgtagaca cctcattaaa aggtcagtga a k l n d t l l L m c l K I T S G G V I F Q S P	xcmI tru91 sau961 msel avali ahalli/dra1 asu1 ccttragtgt attraggtc ccttragtgt ctactaccat E I T D D G N L K I S W S	ecoRI apol GAATTCTACA ACAGTTATCA GAGAAGCTGA CAAGATTGTC TCAGCTACAT CTTAAGATGT TGTCAATAGT CTCTTCGACT GTTCTAACAG AGTCGATGT N S T V I R E A D K I V S A T S
munI CTGCAATTGC GACGTTAACG C N C	GGAGTAATTT CCTCATTAAA G V I F	tru91 mse1 ahaIII/dra1 ATTTAAAGAT T TAAATTTCTA A L K I	di bem Caagattete GTTCTAACAG K I V
AGATGGTTCA TCTACCAAGT M V H	CACATCTGGT GTGTAGACCA T S G	GATGATGGTA CTACTACCAT D D G N	drdi alui GAGAAGCTGA CI CTCTTCGACT G'
GGCAGTTTC CCGTCAAAAG G S F Q	GTTTGAAAAT CAAACTTTTA L K I	GGAAATCACA CCTTTAGTGT E I T	ACAGTTATCA TGTCAATAGT T V I R
bs11 V TCCCCAAAAA AGGGGTTTTT P Q K	CTCCTTATGT GTTTGAAAY. GAGGAATACA CAAACTTTT L L M C L K I) nder GTTGCATAT CAAACGTATA	ecori apoi Gaattctaca Cttaagatgt N S T
telli mall bell hinfi mall bell AI hphi nlary GATT CACCTCTGGT TCCCCAAAA GGCAGTTTI CTAA GTGGAGACCA AGGGTTTT CCGTCAAAA D S P L V P Q K G S F	CAACGACACT GTTGCTGTGA N D T	bsli sau3Ai mbol/ndeli[dam-] dpni[dam+] alwi[dam-] GAAGCCTGAT CCACCATTAG GTTTGCATAT CTTCGGACTA GGTGGTAATA K P D P P L G L H M	sspi Tatcaagtga aatattcaga Atagttcact ttataagtct X O Y K Y S E
LELLE D S P L V P Q K G S F Q M V H	hphi maelii bari caggacact ctccttatgt gtttgaaat cacatctggt ggagtaattt tccagtcacc gtcgsttga gttgctgtga gaggaataca caaactttta gtgtagaca cctcattaaa aggtcagtgg a k l n d t l l m c l k i t s g g v i f q s p	bsli sau3Ai mbol/ndell[dam-] dpni[dam+] [alwi[dam-] ndel GAAGCCTGAT CCACCATTAG GTTTGCATAT GGAAATCACA CTTCGGACTA GGTGGTAATC CAACGTATAG TTTAGTGT K P D P L G L H M E I T	SSPI TATCAAGTGA AATAITGAGA ATAGTTCACT TTAIAAGTCT
			rsal csp61 nlaly kpn1 hgiC1 ban1 asp718 acc651 ACCATGGTAA AGGTGAAGTT
eco571 GTCCATCTIT TATATGTTCT GCCTGAAGTG CAGGTAGAAA ATATACAAGA CGGACTTCAC V H L L Y V L P E V	AATGTTGTGA ATGTCTTGTG CCTGTGCCAA TTACAACACT TACAGAACAC GGACACGGTT C C E C L V P V P T	bstxi hphi TCTAATGTCA GTTCAGCCCA TAAATATGGT AGATTACAGT CAAGTCGGGT ATTTATACCA L M S V Q P I N M V	rsal csp6i nla1v hla1v kpni hgiCI bani asp718 bsll acc651 TCGGGTGGTA ACCATCAA
eco571 601 GTCCATCTT TATATGTTCT GCCTGAAGTG CAGGTAGAA ATATACAAGA CGGACTTCAC 159 V H L L Y V L P E V			bslI 901 AGCCACCAT TCGGTGGTA
601	701	801	901

mael acci apyi[dcm+] mnli hphi bsmall foki bsaji gsul/bpml gsul/bpml mnli
1001 CCCTGCTAGT AGACAGTATA CTTCCTGGGT CTTCGTATGA GGTTCAGGTG AGGGCCAAGA GACTGGATG CCCAGGAATC TGGAGTGACT GGAGTACTCC
GGGACGATCA TCTGTCATAT GAAGGATACT CCAAGTCCAC TCCCGTTCT CTGACCTACC GGGTCCTTAG ACCTCACTGA CCTCATGAGG
293 L V D S I L P G S S Y E V Q V R G K R L D G P G I W S D W S T P csp61 scal bsrI maelil rsal hinfi haeIII/palI bstNI dsav apyI[dcm+] asuI bstXI sau96I bsrI mnlI bst11071 bsaJI mboII **DPuAI** mval bbsI ecoRII scrFI bstni dsav accī rmaI

> F ^begin12u

ω S

O

۵, ۵ S

tfil

SCIFI

ecoRII

mval

GAAGGAAAAC CTTCCTTTTG K E N	[[dam-] -] -] -AGCAAAGTTA TCGTTTCAAT S K V T	ATGCTGAATT TACGACTTAA A E L	maeIII [aciI GTCACTTGCG CAGTGAACGC S L A	TATTTGCAGA ATAAACGTCT Y L Q S	rmai plei maei hinfi CTAGGTTCAC TTGACTCTCC GATCCAAGTG AACTGAGAGG L G S L D S P
sfani GCATCTATAA CGTAGATATT I Y K	nlaIII sau3AI mbol/ndeII[dam-] dpnI[dam+] dpnII[dam-] bclI[dam-] TGATCATGTT AGCAAA ACTAGTACAA TCGTTT D H V S K	CATCATCGCT GTAGTAGCGA H H R Y	rsal csp61 bsrI hincII/hindII bsrI rGGTCAACCA GTACAATCCA ACCAGTTGGT CATGTTAGGT W S T S T I Q	I 86 CAAAGATTGC TATTTGCAGA GTTTCTAACG ATAAACGTCT K D C Y L Q S	-) rmal mael CTAGGTTCAC GATCCAAGTG L G S L
TCTTTTCACT AGAAAGIGA S F H C	bsrI AGCCAGTATG ATGTTGTGAG TCGGTCATAC TACAACACTC S Q Y D V V S	bsmi nlalii ACATGAATGC TGTACTTACG H E C		hgiJII bsp1286 bmyI banII foki ddeI TATTCCATCT ATCTGAGCC C ATAAGGTAGA TAAGACTCGG G	sau3AI mbol/ndeli[dam-] dpni[dam+] alwi[dam-] tam-] [dam-] GGAT CAATCACTCT C CCTA GTTAGTGAGA G I N H S I
CAAGTGTTGG GTCTAATGTT GTTCACAACC CAGATTACAA S V G S N V		fnu4HI bbvI GCTGCAATGA CGACGTTACT C N E	GACTTGCAGA CTGAACGTCT T C R	foki ATTCATCCCA TAAGTAGGGT I H P I	sau3AI mbol/n dpn1[d dpn1[fl alw1[dan-] bsaB1[dam-] GGATTAGGAT CA CCTAATCCTA GT
CAAGTGTTGG GTCTAATG GTTCACAACC CAGATTAC S V G S N V	· ddel alul apol mnli TAGCTGAGAA AATTCCTCAA ATCGACTCTT TTAAGGAGTT	rsal sfani csp61 TACCTATGAT GCAGTGTACT ATGGATACTA CGTCACATGA T Y D A V Y C	tru9I mseI rsaI csp6I GATGGTACT TAACTAAAAT CTACCCATGA ATTGATTTA		dralli TACACAATGT ATGTGTTACA Y T M W
ACCT AAAATTCTGA IGGA TTTTAAGACT P K I L T	· ddel alul at TAGCTGAGAA ATCGACTCTT	sfaNI TACCTATGAT G ATGGATACTA C T Y D A		fnu4HI bbvi Accaccett Actettctga TCGTCGGAAA TGACAAGACT S S L Y C S D	ATTATCTGGC TAATAGACCG L S G
CTTTCCACCT AAAATTCTGA GAAAGGTGGA TTTTAAGACT F P P K I L T	apol foki TGGATGAATT ACCTACTTAA W M N L	II YI GAGGAAAGTT CTCCTTTCAA G K F	alii Atgtgaaact Tacactttga C E T	fnu4HI bbvI AGCAGCCTTT TCGTCGGAAA S S L Y	mboli CAATCTTCCT GTIAGAAGGA I F L
	GATTGTTTGG CTAACAAACC I V W	tagi xhoi paeR7i avai mnli mn ACCAAACCTC GA TGGTTTGGAG CT	nl TCAATATCTC AGTTATAGAG N I S	GTATCATAGG CATAGTATCC X H R	ppul0I nsil/avaIII ATGC ATTTTCCAGC TACG TAAAAGGTCG C I P Q P
ACCACACAAG ATGTCATATA TGGTGTGTC TACAGTATAT T T Q D V I Y	* mnll ccrcaaaaga ggagtttct s K E	TCTGAATGAA AGACTTACTT L N E	n] Gatgtcaata tcaatatctc Ctacagttat agttatagag D V N I N I S	muni mnii TGCAATTGAG GTATCATAGG ACGTTAACTC CATAGTATCC Q L R Y H R	PPU101 nsil/availi bsmi TTATGAATGC ATTTTCCAGC AATACTTACG TAAAAGGTCG Y E C I F Q P
TCGTGTCTTT AGCACAGAAA R V F	AAGATTGTTC TTCTAACAAG K I V P	CTTTTTTCAA GAAAAAGTT F F N	ATATGTGATT TATACACTAA Y V I	GAAAGCACTT CTTTCGTGAA E S T L	GTGATGGTTT CACTACCAAA D G F
1101 326		1301	1401	1501	1601 493

12/201
TANK THE
a gast Aast
£ 200
ëi.

nlaIII

nspHI Idsu

foki

	1701 ACCAACATGT GTCCTTCCTG ATTCTGTGGT GAAGCCACTG CCTCCATCCA GTGTGAAAGC AGAAATTACT ATAAACATTG GATTATTGAA AATATCTTGG	TCGTTGTACA CACGAAGGAC TAAGACACCA CTTCGGTGAC GGAGGTAGGT CACACTTTCG TCTTTAATGA TATTTGTAAC CTAATAACTT TTATAGAACC	V KPL PPSS VKA EIT INIG LLK ISW		•
	A A	e E	_		
	rtg	Z Z	۔		•
	TTA	AAT	J		
	S	5	**		
	ATTC	FAAC	_		
	AAC	TTG	z		•
	ATA	TAT	H		
	Ç	ľĞĀ	_		rsal
	ATT	TAA	н		Ä
	GAA	CIL	ធ		
	ج ي ي	ä	_		
	AAA	TTT(~ ¥		H
	GTG	CAC	>		tru9I
H	A GI	ຽ	ĽΩ		Ļ
muli bsrI	TCC	AGG	S		
Н	S	GGT	م		
m I	ပ္ပ	CC	Q.	=	hinfi
	CTG	GAC	J	tfi	h
	S	CCL	۵		
	MAG	TTC	×		
hphI	t	5	>		
Ē	GTG	CAC	· >		
H	FFCT	AGA	S		
hinfi	S	E U	Ω		
	CC	GGA	۵		•
	CT	SGA	ı		
	GT(Š	>		
afllII	TGT	PACA	ပ		
afl	ACA	rtg1	H		
	ACC	TGG	ρ.		
	1701	-	526 P T C V L P D S V		

1801 GAAAAGCCAG TCTTTCCAGA GAATAACCTT CAATTCCAGA TTCGCTATGG TTTAAGTGGA AAAGAAGTĀC AATGGAAGAT GTATGAGGTT TATGATGCAA ITTCTTCATG TIACCTICIA CATACTCCAA ATACTACGIT mnlI IIOQW × csp61 GITAAGGICT AAGCGATACC AAATICACCT ဗ J S msel O **8** н О XCMI E 0 CTTATTGGAA H z CTTTTCGGTC AGAAAGGTCT ک م bsrI K

hhal/cfol mull mael

1901 AATCAAAATC TGTCAGTCTC CCAGTTCCAG ACTTGTGTGC AGTCTATGCT GTTCAGGTGC GCTGTAAGAG GCTAGATGGA CTGGGATATT GGAGTAATTG TTAGITITAG ACAGICAGAG GGICAAGGIC IGAACACACG TCAGATACGA CAAGICCACG CGACATICIC CGAICIACCI GACCCIAIAA CCICATIAAC berI 1 bsmAI bsrI

× ນ ຂ **×** α > X > U D A A > S 593

2001 GAGCAATCCA GCCTACACAG TTGTCATGGA TATAAAAGTT CCTATGAGAG GACCTGAATT TTGGAGAATA ATTAATGGAG ATACTATGAA AAAGGAGAAA asel/asnl/vspl tru9I msel ecool091/draff apol sau96I avall asuI **IMndd** mnlI beli nlaIII

2101 AATGICACIT TACITIGGAA GCCCCIGAIG AAAAAIGACI CAITGIGCAG IGIICAGAGA TAIGIGAIAA ACCAICAIAC IICCIGCAAI GGAACAIGGI nlaIII TTTCCTCTTT CGGATGIGIC AACAGIACCI AIAIIIICAA GGATACICIC CIGGACITAA AACCICITAI TAAITACCIC TAIGAIACII æ hinfi plei I K V Z Z CTCGTTAGGT maeIII

CCTTGTACCA TTACAGIGAA AIGAAACCII CGGGGACIAC ITITIACIGA GIAACACGIC ACAAGICICI AIACACIAII IGGIAGIAIG AAGGACGIIA U S haeIII/pall mscI/ball haeI > * 8 > ຜ U Ω z

2201 CAGAAGATGT GGGAAATCAC ACGAAATTCA CTTTCCTGTG GACAGGCAA GCACATACTG TTACGGTTCT GGCCATCAAT TCAATTGGTG CTTCTGTTGC CCCTITAGIG IGCTITAAGI GAAAGGACAC CIGICICGII CGIGIAIGAC AAIGCCAAGA CCGGIAGIIA AGIIAACCAC GAAGACAACG MunI S cfrI > maeIII apol GTCTTCTACA MboII

eael

				UB/779457	3
<u>_</u>		tru91 mse1 ase1/asn1/vsp1 AT TA			Figure 1E
tru9I tru9I mseI ahaIII/draI TGCTTATCCT TTAAACAGCA GTTGTGTGAT TGTTTCCTGG ACGATAGGA AATTTGTCGT CAACACACACA A Y P L N S S C V I V S W	xmni tfii hinfi mboli asp700 ddei eari/ksp632i GCTTAGAATC TCTTCATCTG CGAATCTTAG AGAAGTAGAC L R I S S S V	CAAAGATA GTTTCTAT K I	TATECTTEGA TAACGAACCT L L G .	I T TTTCAGAAGC A AAAGTCTTCG F Q K P	
GTTGTGTGAT CAACACACTA C V I	xmni tfii hinfi n asp700 ddei eai GCTTAGAATC 7 CGAATCTTAG 7	GTGGGAAAAC CACCCTTTTG V G K P	mboli earl/ksp6321 nnli cr crrccarcrr ca gaaggragaa s s i L	tru9I mseI AGGACTTAAT TCCTGAATTA G L N	
tru9I mseI ahaIII/draI TTAAACAGCA A ATTTGTCGT L N S S	AAATAAAATG TITATTTAC I K W	TATGGAAGGA ATACCTTCCT M E G	m ATTATTTC TAATAAAG I I S	bsp1286 bmyl scrfi mval ecoRII dsav bstNI bsaJI apyl[dcm+] CCTGGGCACA GGACCCGTGT	
tru91 mse1 ahaIII/draI TCCTTATCCT TTAAACAGCA ACGAATAGGA AATTTGTCGT A Y P L N S S	mboli hphi Gaagatggtg aaataaaatg Cttctaccac tttattttac E D G E I K W	SSPI ACCCAATATT TGGGTTATA P I F	bsri TGTGCCAGTA ACACGGTCAT V P V	AAGAATTGTT TTCTTAACAA K N C S	
dder draili maeili AGTCACTCAG TGCTTA	tru91 msel r AAATCTTAAT CTTAAT CTTAGAATTA C	TTCAGTCTTT AAGTCAGAAA F S L T	TATATGTAAT ATATACATTA Y V I	TCCGAACCCC AGGCTTGGGG P N P	
AAAGTA AATATCGTGC P	TTGAGTGGAA AACTCACCTT S	bsrI rsaI csp6I GAAGTACCAG CTTCATGGTC K Y Q	bspMI sfani Gatgcaggtt Ctacgtccaa D A G L	xmnI mboII asp700 GGGAAGATGT CCCTTCTACA E D V	
CAAAGTA GTTTCAT K V	TATTTTATTA ATAAAATAAT Y F I I	dam-] TCCCCATTGA AGGGGTAACT P I E	ACACCAGAGT TGTGGTCTCA H Q S	alui AAGCTATTT TTCGATAAA K L F W	
haeIII/palI haeI nlaIII CATGGCCTAT GAG GTACCGGATA CTC	aluI CAAGCTAATG GTTCGATTAC K L M		ACTCAAGATG ATATTGAAAA TGAGTTCTAC TATAACTTTT T Q D D I E K	AAGAATGAAA TTCTTACTTT R H K	
bsli tru91 msei TTAACCTTTT AATTGGAAA 0		sau3AI mbol/ndeII dpnI[dam+] bclI[dam-] nlaIII TTATATCCAT GATCATTTA AATATAGGTA CTAGTAAAAT I H D H F I	ACTCAAGATG TGAGTTCTAC T Q D D	tru9I msel asel/asnl/vspl ACATTATTAA TATCACACCA TGTAATAATT ATAGTGGGT T L L I S H Q	
trugi (apol msel radatita apol msel radatita apol msel radatita apol msel rada apol msel sel sel sel sel sel sel sel sel sel	dralli. hphi bsri ATACTATCAC CCAGTGATTA TATGATAGTG GGTCACTAAT I L S P S D Y	tru9I mseI TTAAGAAGTA AATTCTTCAT K K Y	TAATAGTTTC ATTATCAAAG N S F		
2301 726	2401	2501	2601	2701	

```
TITIGGAGCC IGAAACAAII ICAGAAGAIA ICAGIGIIGA
                                                                                                                       gtctitgcaa actcgtagaa aaatagttcg tatgtcgtag tcactgtaca ccaggagaag aaaacctcgg actttgttaa agtcttctat agtcacaact
                                                                                             mbol I
                                                                                                                                                                                          mbol/ndell[dam-]
                                                                                                                                            H
                                                                                                                                                                                                                            dpnII[dam-]
                                                                                                                                                                                                                                            bstYI/xhoII
                                                                                                                                           M
                                                                                                                                                                                                              dpnI[dam+]
 A THE THE THE STATE OF THE THE
                                                                                                                                                                              sau3AI
                                                                                                                                              LEP
                                                                                                nlaIV
                               ear1/ksp6321
                                                                                                              2801 CAGAAACGIT IGAGCAICIT ITIAICAAGC AIACAGCAIC AGIGACAIGI GGICCICIIC
                                                                                               asul mboll
                                                                                 mnlI
                                               sau96I
                                                                  aflili avall
eam1105I
                   nlallf
                                                  nspHI
                                                                                                                                                  U
                                                                                                 maelil
                                                                                                                                                                                                                                                bsmAI
                                                                                                                                                  E
>
                                                                                                  sfanī
                                                                                                      psp1406I sfaNI
```

mbol/ndell[dam-] dpnII [damdpnI[dam+] bclI[dam-] AAGTIGICAC AATIGAAGAG ACTCCGACIC CCAIGACICC ATIGGAIACT CCIGCITICG GICTCTGIIG GGAACAAIT IAIGCGGIGC GACIAGICGI F N S V N F S E A E G T E V T Y E D E S Q R Q P F V K Y A T L I S N 3001 ticaacagtg ttaacticic tgaggctgag ggtäctgagg taacctatga ggàcgaaag cagagacaac cctttgttaa atacgccacg ctgatcagca sau3AI tru91 msel **DSMAI** mnll ddel maelll hincil/hindil muli muli csp61 bstEII rsal mull ddel ddel tru9I msel hpaI

2901 TACATCATGG AAAAATAAAG ATGAGATGAT GCCAACAACT GTGGTCTCTT TACTTTCAAC AACAGATCTT GAAAAGGGTT CTGTTTGTAT TAGTGACCAG

bsal

BfaNI

maelll

atgiagiacc tititatitc tactctacta cggitgitga caccagagag atgaagtig tigictagaa cititcccaa gacaaacata atcactggic

S ^ ^

F

۵.

E E

記 る の

7 0 1

bqlII

3101 ACTCTARACC AAGTGARACT GGTGAAGAAC AAGGGCTTAT AAATAGTTCA GTCACCAAGT GCTTCTTAG CAAAATTCT CCGTTGAAGG ATTCTTTCTC ttcactttga ccacttcttg ttcccgaata tttatcaagt cagtggttca cgaagagatc gtttttaaga ggcaacttcc taagaaagag hinfi PLX z S apol rmaI mael S drallI × + × maeIII hphI S S о ы ы MDOIL hphī bsrI TGAGATTTGG v

mnlI mpoi/ndeii[dam-] sau3AI fokI dpnII[dam-] dpnI[dam+] mamI[dam-] apyI[dcm+] haeIII/palI ecoRII SCIFI dsav **bstnI** mval sau961 asul nlaIII

3201 TANTAGCTCA TGGGAGATAG AGGCCCAGGC ATTTTTATA TTATCAGATC AGCATCCCAA CATAATTTCA CCACACCTCA CATTCTCAGA AGGATTGGAT U attatcgagt accetetate tecgggteeg taaaaatat aatagtetag tegtagggit gtattaaagt ggtgtggagt gtaagagtet ddeI hphI bsaBI[dam-] Ge, Ge, M M M

tru9I nlaIII

nspHI

nspI

The state of the s

hohi

mnlt

3301 GAACTTTTGA AATTGGAGGG AAATTTCCCT GAAGAAATA ATGATAAAAA GTCTATCTAT TATTTAGGGG TCACCTCAAT CAAAAAGAGA GAGAGTGGTG CTIGAAAACI ITAACCICCC IITAAAGGGA CIICITITAI TACIAITITI CAGATAGAIA AIAAAICCCC AGIGGAGIIA GIIITICICI TST X I G V SIX D X eco571 ۵ e Z i B G

maelll bstEII

CTCTCACCAC

ecoRII mvaI

dsav

apy1[dcm+] gsul/bpml

bsp1286

bstNI

3401 IGCITITGAC IGACAAGICA AGGGTAICGI GCCCATICCC AGCCCCCIGI ITATICACGG ACAICAGAGI ICTCCAGGAC AGTIGCICAC ACTITGIAGA U ACGAAAACTG ACTGTTCAGT TCCCATAGCA CGGGTAAGGG TCGGGGGACA AATAAGTGCC TGTAGTCTCA AGAGGTCCTG LFTD ပ a K 7 7 7

R >

1093

mbol/ndell[dam-] 3501 AATAATATC AACTTAGGAA CITCTAGTAA GAAGACTTTT GCATCTTACA TGCCTCAATT CCAAACTTGT TCTACTCAGA CTCATAAGAT CATGGAAAAC dpnII[dam-] dpnI[dam+] sau3AI hinfI pleI ddeI nspHI mnlI nlaIII Idsu sfani MDOII bpuAI bbsI maeI rmal

TITATIATAG TIGAATCCIT GAAGATCAIT CITCIGAAAA CGTAGAATGI ACGGAGITAA GGTTIGAACA AGAIGAGICT GAGTAITCIA GTACCITITG 0 H e G ۵ SXX K S S

eco57I Ilodm eco57I

pleI

K

1159

TGAGAAAGCC 3701 AGAGAAAAGA AACCAGAGIC AAAITIGAAA AIAAITGIIC CAAAIGAAIG IIGICIGIII GIICICICII AGIAACAIAG ACAAAAAII IGAGAAAGC ICICIIIICI IIGGICICAG IIIAAACIII IAIIAACAAG GIIIACIIAC AACAGACAAA CAAGAGAGAA ICAIIGIAIC IGIIIIIAA ACICIIIIGG ddel maelll

asp700

apol

XmnI

sau96I nlaIV

eccol091/drall avall **DPuMI** asuI mael rmaI aluI ear1/ksp6321 MDOII

mael rmal

aluI

3801 TICATAAGCC TACCAATGTA GACACGCTCT TCTAITITAT TCCCAAGCTC TAGTGGGAAG GTCCCTTGTT TCCAGCTAGA AATAAGCCCA ACAGACACCA AAGTATICGG AIGGITACAI CIGIGCGAGA AGAIAAAATA AGGGITCGAG AICACCCIIC CAGGGAACAA AGGICGAICI ITAIICGGGI IGICIGIGI msel aflili 3901 TCTTTTGTGA GATGTAATTG TTTTTCAGA GGGCGTGTTG TTTTACCTCA AGTTTTTGTT TTGTACCAAC ACACACACA ACACACAC ACACACAC TAGGTAG AATTGTGTAC AGAAAACACT CTACATAAC AAAAAGTCT CCCGCACAACAACAACACAC AACATGGTAG AATTGTGTAC AAATGTGTAC csp6I mnll

rsal

A STATE OF THE STA The state of the state of the state of

sfut bstBI bsiCI asuII

ecoRI

apol tru9I

msel

4001 TCCTTGTGTG TITTGAGAGT ATAITATGTA TITATATITT GTGCTATCAG ACTGTAGGAT TIGAAGTAGG ACTTTCCTAA ATGTTTAAGA TAAACAGAAT AGGAACACACA CAGAACACACA AAAACTCCA TATAATACAT AAATATAAAA CACGATAGTC TGACATCCTA AACTCCATA TACAATTCT ATTTGTCTTA

scfI

tagI 4101 TC AG

length: 4102


```
1 GAATTCCGGGTTAAAGCTCTCGTGGCATTATCCTTCAGTGGGGCTATTGG
wsxfull.6.4.variant
                SI ACTGACTTTCTTATGCTGGGATGTGCCTTAGAGGATTATGGGATTTTTGCCA
wsxfull.6.4.variant
                wsxfull.12.1.variant
                1 ..... GAATTCTCGAGTC
wsxfull.13.2.variant
               101 GTT CACCCT GACCATCT T GAAAATAAGTTAT CTCTGAT CTCTGTCTGTAT
WEXELLI.1. VARIANT 14 GACGGCGGGGGTTAAAGCTCTCGTGGCATTATCCTTCAGTGGGGCTATTG
wsxfull-13.2-variant 14 GACGGCGGGGGTTAAAGCTCTCGTGGCATTATCCTTCAGTGGGCTATTG
wsxfull.6.4.variant
               252 GT TACTT CTCT CC CCTCACCAAT GGAGAACAAATGT GGGGAAAGTGT ACT
WEXFULL.12.1. VARIANT & GACTGACTTTTCTTATGCTGGGATGTGCCTTAGAGGATTATGGGTGTACT
waxfull.13.2.variant & GACTGACTTTTCTTATGCTGGGATGTGCCTTAGAGGATTATGGGTGTACT
wsxfull.6.4.variant 201 TCTCTGAAGTAAGATGATTTGTCAAAAATTCTGTGTGTTTTGTTACAT
wsxfull.12.1.variant 214 Tototgaagtaagatgatttgtcaaaaattctgtgtggtttttttacatt
waxfull.13.2.variant 114 frotot gaagtaagat gattt groad a aatt et grotot get tre gratta catt
wexfull.6.4.variant 21 GGGAATTTATTTATGTGATAACTGCGTTTAACTTGTCATATCCAATTACT
wsxfull.12.1.variant 16 GGGAATTTATTTATGTGATAACTGCGTTTAACTTGTCATATCCAATTACT
wsxfull.13.2.variant 14 GGGAATTTATTTATGTGATAACTGCGTTTAACTTGTCATATCCAATTACT
WSXfull.6.4. variant 201 CCTTGGAGATTTAAGTTGTCTTGCATGCCACCAAATTCAACCTATGACTA
wsxfull.12.1.variant 214 CCTTGGAGATTTAAGTTGTCTTGCATGCCAACAATTCAACCTATGACTA
wsxfull.13.2.variant 214 CCTTGGAGATTTAAGTTGTCTTGCATGCCACCAAATTCAACCTATGACTA
wsxfull.6.4.variant 331 CTTCCTTTTGCCTGCTGGACTCTCAAAGAATACTTCAAATTCGAATGGAC
wsxfull.12.1.variant 264 CTTCCTTTTGCCTGCTGGACTCTCAAAGAATACTTCAAATTCGAATGGAC
wsxfull.13.2.variant 20 CTTCCTTTTGCCTGCTGGACTCTCAAAGAATACTTCAAATTCGAATGGAC
WEXELLE. 6.4. VARIANT ON ATTATGAGACAGCTGTTGAACCTAAGTTTAATTCAAGTGGTACTCACTTT
wsxfull.12.1.variant 314 ATTATGAGACAGCTGTTGAACCTAAGTTTAATTCAAGTGGTACTCACTTT
wsxfull.13.2.variant 314 ATTATGAGAGAGCTGTTGAACCTAAGTTTAATTCAAGTGGTACTCACTTT
wsxfull.6.4.variant
               451 T C T A A C T A T C C A A A C A A C T T T C C A C T G T T G C T T T C G G A G T G A G C A A G A
wsxfull.12.1.variant see | TCTAACTTATCCAAAACAACTTTCCACTGTTGCTTTCGGAGTGAGCAAGA
WSXfull.13.2. Variant 34 TCTAACTTATCCAAAACAACTTTCCACTGTTGCTTTCGGAGTGAGCAAGA
WSXfull.6.4. variant so IT A G A A C T G C T C C T T A T G T G C A G A C A T T G A A G G A A G A C A T T T G T T T
WSXfull.12.1.variant 414 TAGAAACTGCTCCTTATGTGCAGACACATTGAAGGAAAAGACATTGTTTTT
wsxfull.13.2.variant 414 TAGAAACTGCTCCTTATGTGCAGACACATTGAAGGAAAGACATTTGTTT
WEXFULL. 6.4. VARIANT SSI CHACAGTAAATTCTTTAGTTTTTCAACAAATAGATGCAAACTGGAACATA
WEXFULLIZILVATIANT 46 CAACAGTAAATTCTTTAGTTTTTCAACAAATAGATGCAAACTGGAACATA
WEXFULLIBLE OF CAACAGTAAATICTTTAGTTTTTCAACAAATAGATGCAAACTGGAACATA
WEXELLE. 6.4. VARIANT ON CAGIGCIGGCIAAAAGGAGACTIAAAATTATTCATCTGTTATGTGGAGTC
WEXELLIZI.VARIANT SIE CAGTGCTGGCTAAAAGGAGACTTAAAATTATTCATCTGTTATGTGGAGTC
WEXFULL.13.2. Variant SM CAGIGCIGGCIAAAAGGAGACTIAAAATTATTCATCIGTTATGIGGAGIC
               651 ATTATTTAAGAATCTATTCAGGAATTATAACTATAAGGTCCATCTTTAT
wsxfull.6.4.variant
wsxfull.12.1.variant see ATTATTTAAGAATCTATTCAGGAATTATAACTATAAGGTCCATCTTTAT
wsxfull.13.2.variant see ATTATTTAAGAATCTATTCAGGAATTATAACTATAAGGTCCATCTTTAT
              701 ATGTTCTGCCTGAAGTGTTAGAAGATTCACCTCTGGTTCCCCAAAAAGGC
wsxfull.6.4.variant
WSXfull.12.1. Variant 614 AT GTT CT GCCT GA A GT GTT A GA A GA TT CA CCT CT G GTT CCC CA A A A G G C
WSXfull.13.2. Variant 614 A T G T T C T G C C T G A G T G T T A G A G A T T C A C C T C T G G T T C C C C A A A A G G C
WSX full. 6.4. variant 751 A G T T T T C A G A T G G T T C A C T G C A A T T G C A G T G T T C A G A T G T T G T G A A T G
wsxfull.12.1.variant en AGTTTTCAGATGGTTCACTGCAATTGCAGTGTTCATGAATGTTGTGAATG
WSXfull.13.2. variant & AGTTTTCAGATGGTTCACTGCAATTGCAGTGTTCATGAATGTTGTGAATG
```

```
waxfull.6.4.variant ou TCTTGTGCCTGTGCCAACAGCCAACTCAACGACACTCTCCTTATGTGTT
wsxfull.12.1.variant 714 TOTTGTGCCTGTGCCAACAGCCAACTCAACGACACTCTCCTTATGTGT
waxfull.13.2.variant 714 TCTTGTGCCTGTGCCAACAGCCAAACTCAACGACACTCTCCTTATGTGTT
wsxfull.6.4.variant
                       asi T GAAAAT CACAT CT GGT GGAGT AATTTT C CAGT CACCT CT AAT GT CAGT T
wsxfull.12.1.variant Re TGAAAATCACATCTGGTGGAGTAATTTTCCAGTCACCTCTAATGTCAGTT
WEXELLI3.2. VARIANT THE TEAAAATCACATCTEGTEGAGTAATTTTCCAGTCACCTCTAATGTCAGTT
WEXELLIGITATE SOI CAGCCATAAATATGGTGAAGCCTGATCCACCATTAGGTTTGCATATGGA
WEXFULL.12.1. VARIANT ON CAGCCATAAATATGGTGAAGCCTGATCCACCATTAGGTTTGCATATGGA
WENTILLIB. 2. VARIANCE OF CAGCCATAAATATEGTGAAGCCTGATCCACCATTAGGTTTGCATATGGA
                       SSI AATCACAGATGATGGTAATTTAAAGATTTCTTGGTCCAGCCCACCATTGG
waxfull.12.1.variant = AATCACAGATGATGGTAATTTAAAGATTTCTTGGTCCAGCCCACCATTGG
wsxfull.13.2.variant on ATCACAGATGATGGTAATTTAAAGATTTCTTGGTCCAGCCCACCATTGG
wsxfull.6.4.variant 1001 TACCATTTCCACTTCAATATCAAGTGAAATATTCAGAGAATTCTACAACA
wsxfull.12.1.variant su TACCATTTCCACTTCAATATCAAGTGAAATATTCAGAGAATTCTACAACA
wexfull.13.2.variant ne TACCATTTCCACTTCAATATCAAGTGAAATATTCAGAGAATTCTACAACA
wsxfull.6.4.variant 1051 GTTATCAGAGAAGCTGACAAGATTGTCTCAGCTACATCCCTGCTAGTAGA
wsxfull.12.1.variant see GTTATCAGAGAAGCTGACAAGATTGTCTCAGCTACATCCCTGCTAGTAGA
wsxfull.13.2.variant see GTTATCAGAGAGGCTGACAAGATTGTCTCAGCTACATCCCTGCTAGTAGA
WEXELLE. 6.4. VARIANT 1101 CAGTATACTTCCTGGGTCTTCGTATGAGGTTCAGGTGAGGGGCAAGAGA
wsxfull.12.1.variant 1014 CAGTATACTTCCTGGGTCTTCGTATGAGGTTCAGGTGAGGGGCAAGAGAG
WENTELL 13.2. VARIANT 2014 CAGTATACTTCCTCGCTCTCCTATGAGGTTCAGGTGAGGGGCAAGAGAG
WEXELLI. 6.4. VARIANT 1151 T G G A T G G C C C A G G A A T C T G G A G T G G A G T A C T C C T C G T G T C T T T A C C
wsxfull.12.1.variant loss TGGATGGCCCAGGAATCTGGAGTGACTGGAGTACTCCTCGTGTCTTTACC
wsxfull.13.2.variant 1004 TGGATGGCCCAGGAATCTGGAGTGACTGGAGTACTCCTCGTGTCTTTACC
wsxfull.6.4.variant 1201 A CACAAGAT GT CATATACTTT CCACCTAAAATT CT GACAAGT GT T G G G T C
wsxfull.12.1.variant 1114 A CACAAGATGT CATATACTTT CCACCTAAAATT CT GACAAGT GT T G G G T C
wsxfull.13.2.variant 1114 ACACAAGATGTCATATACTTTCCACCTAAAATTCTGACAAGTGTTGGGTC
wsxfull.6.4.variant 1251 TAATGTTTCTTTTCACTGCATCTATAAGAAGGAAAACAAGATTGTTCCCT
wsxfull.13.2.variant 114 TAATGTTTCTTTTCACTGCATCTATAAGAAGGAAAACAAGATTGTTCCCT
WEXFULL 6.4. VARIANT 1301 CAAAAGAGATTGTTTGGTGGATGAATTTAGCTGAGAAAATTCCTCAAAGC
WEXEULL.12.1. VARIANC 1214 CAAAAGAGATTGTTTGGTGGATGATTTAGCTGAGAAAATTCCTCAAAGC
WSX full. 13.2. Variant 1214 CAAAAGAGATTGTTTGGTGGTGATGATTTAGCTGAGAAATTCCTCAAAGC
WEXELLI. 6.4. Variant 1351 CAGTATGATGTTGTGAGTGATCATGTTAGCAAAGTTACTTTTTCAATCT
wsxfull.12.1.variant 1264 CAGTATGATGTTGTGAGTGATCATGTTAGCAAAGTTACTTTTTCAATCT
WEXELLIBER THE LEG CAGTATGATGTTGTGAGTGATCATGTTAGCAAAGTTACTTTTTTCAATCT
WEXFULL. S. 4. VAZIANT 1401 GAATGAAACCAAACCTCGAGGAAAGTTTACCTATGATGCAGTGTACTGCT
WENTUIL-12-1-VARIANT 1314 GAAT GAAACCAAACCT CGAGGAAAGTTTACCTAT GAT GCAGT GT ACT GCT
WEXFULL. 13.2. VARIANC 1914 GAAT GAAACCAAACCT C GAGGAAAGT TTACCT AT GAT GCAGT GT ACT GCT
WEXELLE. 4. VARIANC 1651 GCAATGAACAT GAATGCCATCATCGCTATGCTGAATTATATGTGATTGAT
WEXELLIZION OF THE BEAUTICATION OF THE PROPERTY OF THE PROPERT
WENTULL 13.2. VARIANT 1944 GCAAT GAACAT GAAT GCCAT CAT CGCT AT GCT GAAT TAT AT GT GAT T GAT
WXXfull.6.4.variant 1501 GTCAATATCAATATCTCATGTGAAACTGATGGGTACTTAACTAAATGAC
WSXfull.12.1.variant 1816 GTCAATATCAATATCTCATGTGAAACTGATGGGTACTTAACTAAAATGAC
WEXELL 13.2. VARIANT MIN GTCAATATCAATATCTCATGTGAAACTGATGGGTACTTAACTAAATGAC
```


WEXTUIL 12-1. VARIANT 2014 T GA COCT GCCA A ATCCCCCTCT GT GAGAA A CA CCCAA GAAT GAT CA A TAA WEXTUIL 13.2. VARIANT 2014 A CT T CT CT GA GGCTGA GGGTA CT GA GGTA A CCT A T GA GGACGAA A GC CAG waxfull.13.2.variant and TGAAACTGGTGAAGAACAAGGGCTTATAAATAGTTCAGTCACCAAGTGCT waxfull.13.2.variant and TCTCTAGCAAAATTCTCCGTTGAAGGATTCTTTCTCTAATAGCTCATGG waxfull.13.2.variant am AATTTCACCACACCTCACATTCTCAGAAGGATTGGATGAACTTTTGAAAT wexfull.13.2.variant 204 TTAGGGGTCACCTCAATCAAAAAGAGAGAGAGTGGTGTGCTTTTGACTGA wexfull.13.2.variant Mix CAAGTCAAGGGTATCGTGCCCATTCCCAGCCCCTGTTTATTCACGGACA wsxfull.13.2.variant MM TCAGAGTTCTCCAGGACAGTTGCTCACACTTTGTAGAAAATAATATCAAC WEXELL.13.2. VARIANT 3514 TTAGGAACTTCTAGTAAGAAGACTTTTGCATCTTACATGCCTCAATTCCA WEXEFULL.13.2. VARIANT 3564 A A CTT GTT CT A CT CA GA CT CA T A GA T CA T G GA A A C A A GA T GT G T G A C C wsxfull.13.2.variant 364 TAACTGTGTAATTTCACTGAAGAAACCTTCAGATTTGTGTTATAATGGGT wsxfull.13.2.variant 3664 AATATAAAGTGTAATAGATTATAGTTGTGGGTGGGAGAGAGAAAAGAAAC WEXFULL.13.2. Variant 3764 CTCTCTTAGTAACATAGACAAAAATTTGAGAAAGCCTTCATAAGCCTAC wsxfull.13.2.variant 3014 CAATGTAGACACGCTCTTCTATTTTATTCCCAAGCTCTAGTGGGAAGGTC WSXfull.13.2.variant 366 CCTTGTTTCCAGCTAGAAATAAGCCCAACAGACACCATCTTTTGTGAGAT wsxfull.13.2.variant 3914 GTAATTGTTTTTCAGAGGGCGTGTTGTTTTACCTCAAGTTTTTGTTTTG wsxfull.13.2.variant 364 TACCAACACACACACACACACATTCTTAACACATGTCCTTGTGTGTTTT wsxfull.13.2.variant 4014 TGAGAGTATATTATGTATTTATATTTTGTGCTATCAGACTGTAGGATTTG

wexfull.13.2.variant 4064 % AGTAGGACTTTCCTAAATGTTTAAGATAAACAGAATTC

WSXfull.13.2.variant sol fipieky of slypif megy gkpkiinsft oddiekhos dagly vivpvii wsxfull.13.2.variant sol silligtilish or mkklf wed vphpkh gs wao gl nfo kpet fenlfi wsxfull.13.2.variant sol khtas vig plilepetised is v dis wknkde mmptiv v sllstidlek wsxfull.13.2.variant sol gs v cisdof ns v nf sea e gtevi v e desor opf v ky a tlish sk pset ge wsxfull.13.2.variant lose e oglins s v nf sea e gtevi v e desor opf v ky a tlish sk pset ge wsxfull.13.2.variant lose e oglins s v t k cf s s k ns plk ds f s n s s we i e a oa f fils d o n p n i is p n wsxfull.13.2.variant lose liftse gldelik legn f peen n o kk s i y y l g v ts i kk r e s g v l l to ks r v wsxfull.13.2.variant lose l t f s e gldelik legn f peen n o kk s i y y l g v ts i kk r e s g v l l t d ks r v wsxfull.13.2.variant lose s c p f p a p c l f t d i r v l o d s c s f y e n n i n l g t s s kk t f a s y m p o f o t c s t

wsxfull.13.2.variant 1151 QTHKIMERKMCDLTV

WENTUIL 13.2. VARIANT 2009 AATATCACACCAAAGAATGAAAAGCTATTTTGGGAAGATGT PCCGAACC WSXfull.13.2. Variant 2759 CCAAGAATTGTTCCTGGGCACAAGGACTTAATTTTCAGAAGCCAGAAACG wsxfull.13.2.variant 2009 TTTGAGCATCTTTTTATCAAGCATACAGCATCAGTGACATGTGGTCCTCT wsxfull.13.2.variant 2009 TOTTTTGGAGCCTGAAACAATTTCAGAAGATATCAGTGTTGATACATCAT wsxfull.13.2.variant 200 GGAAAAATAAAGATGAGATGATGCCAACAACTGTGGTCTCTACTTTCA wsxfull.13.2.variant 2009 ACAACAGATCTTGAAAAGGGTTCTGTTTGTATTAGTGACCAGTTCAACAG wsxfull.13.2.variant 3009 TGTTAACTTCTCTGAGGCTGAGGGTACTGAGGTAACCTATGAGGACGAAA wsxfull.13.2.variant 3059 GCCAGAGACAACCCTTTGTTAAATACGCCACGCTGATCAGCAACTCTAAA WSXfull.13.2. Variant 3109 CCAAGTGAAACTGGTGAAGAACAAGGGCTTATAAATAGTTCAGTČÁCCAA WEXELL.13.2. Variant 3209 CATGGGAGATAGAGGCCCAGGCATTTTTTATATTATCAGATCAGCATCCC wsxfull.13.2.variant 3259 AACATAATTTCACCACACCTCACATTCTCAGAAGGATTGGATGAACTTTT wsxfull.13.2.variant 2009 GAAATTGGAGGGAAATTTCCCTGAAGAAATAATGATAAAAAGTCTATCT wsxfull.13.2.variant 2009 ATTATTTAGGGGTCACCTCAATCAAAAAGAGAGAGAGTGGTGCTTTTG wsxfull.13.2.variant MO ACTGACAAGTCAAGGGTATCGTGCCCATTCCCAGCCCCTGTTTATTCAC wsxfull.13.2.variant MSS GGACATCAGAGTTCTCCAGGACAGTTGCTCACACTTTGTAGAAAATAATA WSXfull.13.2. Variant 3509 T CAACT TAGGAACT T C TAGTAAGAAGACT T T T G CAT C T T A CAT G C C T CAA WSXfull.13.2.variant 3559 TTCCAAACTTGTTCTACTCAGACTCATAAGATCATGGAAAACAAGATGTG wsxfull.13.2.variant 3609 TGACCTAACTGTGTAATTTCACTGAAGAAACCTTCAGATTTGTGTTATAA wsxfull.13.2.variant 3659 TGGGTAATATAAAGTGTAATAGATTATAGTTGTGGGGTGGGAGAGAAA

Murine	Sense:	GGGTTAAGTTTCCCACCC	(SEQ ID NO:9)
-213	Antisense:	GGGTGGGAAACTTAACCC	(SEQ ID NO:10)
	Scrambled:	AGGATACAGTGGGATCCC	(SEO ID NO:11)
	Scrambled:	AGGAIACAGIGGGIII	(
-99	Sense:	GCCCGAGCACTCCTTTAA	(SEQ ID NO:12)
- 90	Antisense:	TTAAAGGAGTGCTCCCGC	(SEQ ID NO:13)
	Scrambled:	GAGCGGCCCTGTTAGATA	(SEQ ID NO:14)
	5014.5104.		
-20	Sense:	GTATACACCTCTGAAGAA	(SEQ ID NO:15)
	Antisense:	TTCTTCAGAGGTGTACAC	(SEQ ID NO:16)
	Scrambled:	ATGCGAGGCTACTTCTAT	(SEQ ID NO:17)
			•
+84	Sense:	CTCTCCCTGGAAATTTAA	(SEQ ID NO:18)
	Antisense:	TTAAATTTCCAGGGAGAG	(SEQ ID NO:19)
	Scrambled:	ATTTGAAGGAGTTAAGCC	(SEQ ID NO:20)
			(» » » » » » » » » » » » » » » »
+211	Sense:	AATTTAATTCAAGTGGTA	(SEQ ID NO:21)
	Antisense:	TACCAGTTGAATTAAATT	(SEQ ID NO:22)
	Scrambled:	GTATCACTTCATAATATA	(SEQ ID NO:23)
Human	_	CARCONCACCOCAACOC	(SEC ID NO.24)
<u>Human</u> 5L	Sense:	GATGGTCAGGGTGAACTG	(SEQ ID NO:24)
	Antisense:	CAGTTCACCCTGACCATC	(SEQ ID NO:25)
	• •		· · · · · · · · · · · · · · · · · · ·
5L	Antisense: Scrambled:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT	(SEQ ID NO:25) (SEQ ID NO:26)
	Antisense: Scrambled: Sense:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:27)
5L	Antisense: Scrambled: Sense: Antisense:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:28)
5L	Antisense: Scrambled: Sense:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:27)
5L +85	Antisense: Scrambled: Sense: Antisense: Scrambled:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG AAGTCTTAAGCCAGACTT	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:28)
5L	Antisense: Scrambled: Sense: Antisense: Scrambled: Sense:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG AAGTCTTAAGCCAGACTT TCTAAGGCACATCCCAGC	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:28) (SEQ ID NO:29)
5L +85	Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG AAGTCTTAAGCCAGACTT TCTAAGGCACATCCCAGC GCTGGGATGTGCCTTAGA	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:28) (SEQ ID NO:29) (SEQ ID NO:30)
5L +85	Antisense: Scrambled: Sense: Antisense: Scrambled: Sense:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG AAGTCTTAAGCCAGACTT TCTAAGGCACATCCCAGC	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:28) (SEQ ID NO:29) (SEQ ID NO:30) (SEQ ID NO:31)
5L +85 -47	Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense: Scrambled:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG AAGTCTTAAGCCAGACTT TCTAAGGCACATCCCAGC GCTGGGATGTGCCTTAGA CGCAATGAATTGACCCCC TACTTCAGAGAAGTACAC	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:28) (SEQ ID NO:29) (SEQ ID NO:30) (SEQ ID NO:31)
5L +85	Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG AAGTCTTAAGCCAGACTT TCTAAGGCACATCCCAGC GCTGGGATGTGCCTTAGA CGCAATGAATTGACCCCC TACTTCAGAGAAGTACAC GTGTACTTCTCTGAAGTA	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:29) (SEQ ID NO:30) (SEQ ID NO:31) (SEQ ID NO:32) (SEQ ID NO:33) (SEQ ID NO:34)
5L +85 -47	Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Scrambled:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG AAGTCTTAAGCCAGACTT TCTAAGGCACATCCCAGC GCTGGGATGTGCCTTAGA CGCAATGAATTGACCCCC TACTTCAGAGAAGTACAC	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:28) (SEQ ID NO:29) (SEQ ID NO:30) (SEQ ID NO:31) (SEQ ID NO:32) (SEQ ID NO:33)
5L +85 -47	Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense: Antisense:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG AAGTCTTAAGCCAGACTT TCTAAGGCACATCCCAGC GCTGGGATGTGCCTTAGA CGCAATGAATTGACCCCC TACTTCAGAGAAGTACAC GTGTACTTCTCTGAAGTA GAATCACGGTAACTATCA	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:29) (SEQ ID NO:30) (SEQ ID NO:31) (SEQ ID NO:32) (SEQ ID NO:32) (SEQ ID NO:33) (SEQ ID NO:34) (SEQ ID NO:35)
5L +85 -47	Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense: Antisense:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG AAGTCTTAAGCCAGACTT TCTAAGGCACATCCCAGC GCTGGGATGTGCCTTAGA CGCAATGAATTGACCCCC TACTTCAGAGAAGTACAC GTGTACTTCTCTGAAGTA GAATCACGGTAACTATCA CAGCTGTCTCATAATGTC	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:29) (SEQ ID NO:30) (SEQ ID NO:31) (SEQ ID NO:32) (SEQ ID NO:32) (SEQ ID NO:34) (SEQ ID NO:35) (SEQ ID NO:36)
+85 -47 -20	Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense: Scrambled:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG AAGTCTTAAGCCAGACTT TCTAAGGCACATCCCAGC GCTGGGATGTGCCTTAGA CGCAATGAATTGACCCCC TACTTCAGAGAAGTACAC GTGTACTTCTCTGAAGTA GAATCACGGTAACTATCA CAGCTGTCTCATAATGTC GACATTATGAGACAGCTG	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:28) (SEQ ID NO:29) (SEQ ID NO:30) (SEQ ID NO:31) (SEQ ID NO:31) (SEQ ID NO:32) (SEQ ID NO:34) (SEQ ID NO:35) (SEQ ID NO:35)
+85 -47 -20	Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense: Scrambled: Sense: Antisense: Scrambled:	CAGTTCACCCTGACCATC GAGGCGAATGTGCGGATT CTTAAATCTCCAAGGAGT ACTCCTTGGAGATTTAAG AAGTCTTAAGCCAGACTT TCTAAGGCACATCCCAGC GCTGGGATGTGCCTTAGA CGCAATGAATTGACCCCC TACTTCAGAGAAGTACAC GTGTACTTCTCTGAAGTA GAATCACGGTAACTATCA CAGCTGTCTCATAATGTC	(SEQ ID NO:25) (SEQ ID NO:26) (SEQ ID NO:26) (SEQ ID NO:27) (SEQ ID NO:29) (SEQ ID NO:30) (SEQ ID NO:31) (SEQ ID NO:32) (SEQ ID NO:32) (SEQ ID NO:34) (SEQ ID NO:35) (SEQ ID NO:36)

Figure 10A

Figure 10B

Figure 10C

Figure 13A

■ db/Misty Gray heterozygous

Figure 13B

Figure 13C

•

THE WASHINGTON THE WA

> sites: std > length: 7127 (circular)

thaI fnuDII/mvnI bstUI bsh12361 acil maeIII	TICCAGCICG CCCGACATIG ALTATIGACT AGITATIANI AGIAATCAAT TACACCICAGI AATCAAGIAT CGGGTAIAIA CCICAAGGCG CAAIGIATIG Aagcicgagc gggcigtaac taataaciga icaataata tcattagita atgccccagi aatcaagiai ggggtaiata ccicaaggcg caaigiaitig
bslI	CGGGTATATA
	AATCAAGTAT
	ATGCCCCAGT
trugi msei asel/asni/vspi	AGTAATCAAT
tru9ľ msei asel/as	AGTTATTAAT FCAATAATTA
rmal mael	TTATTGACT I
IIId	CCCGACATTG A GGCCTGTAAC 1
aluI sst! sac! hgiJII hgiAI/aspHI cc1136II bsp1286 bsiHKAI bmyI banII	1 TTCCAGCTCG

ACCCAATAG GGACTTTCCA TGCGGTTATC CCTGAAAGGT	maeli hinli/acyi rsal ahali/bsaHi ndel csp6i aatli
mae TCCCATAGTA AGGGTATCAT	rsal
maell TGACGTATGT ACTGCATACA	ndeI
maell hinll/acyl ahull/bsalll acil aatll CCGCCCATTG ACGTCAATAA GCCGCGTAAC TGCAGTTATT	rsaī csp6I
CCAACGACCC	bglī
bgli bstNi sau961 sau961 haelil/pall acii abull/bsall maeli asul apyl[dcm+] . acii aatii maeli maelii thececran tocccccc cctcarcacc ccccart acccartact accartact accartact cctcaract acccartact cctcaract acccaract cctcaract	maell hinll/acyl ahall/bsaHl

101

ecoRII

dsav

BCLFI

mval

dsal hphl acil bsaJI sfaNI 201 TIGACGICAA IGGGIGGAGI ATTIACGGIA AACIGCCCAC TIGGCAGIAC AICAAGIGIA ICAIAIGCCA AGIACGCCC CIATIGACGI CAAIGACGGI AACIGCAGII ACCCACCICA IAAAIGCCAI IIGACGGIG AACCGICAIG IAGIICACAI AGIATACGGG GAIAACIGCA GIIACIGCACA nlaIII ncol BtyI maell snabl csp61 rsal ecoRII scrFI sau961 bstNI MVaI bgll dsav haellI/pall acil

asul 'apyl[dcm+] barl nlalli 301 anatggcccg cctggcatta tgcccagtac atgaccttat gggacttcc tacttggcag tacatctacg tattagtcat gggtattacg atggtgatgc TTTACCGGGC GGACCGTAAT ACGGGTCATG TACTGGAATA CCCTGAAAGG ATGAACGTC ATGTAGATGC ATAATGGATAATGG TACCACTACG

asel/asnl/vspl

bsh1236I

bsaJI

plei scfi hacili/pall

luse

scf1 hinf1

styl

sau961

acil

maell rsal

bstxI

bstul

fnuDII/mvnI tru9I

Ena4III

acil

thal

hinl acil

rsal

401 CCTTTTCCCA

bsmA1

aha II/bsallI hin11/acyl ual II

mae!!

nlalV hgici banI

GTACATCAAT KRGCGTGGAT AGCGRTTTGA CTCACGGGA TTTGCAAGTC TCCACCCCAT TGACGTCAAT GGGAGTTTGT TTTGGCACCA CCAAAACGGT CATGTAGTTA CCCGCACCTA TCGCCAAAACT GAGTGCCCCT AAAGGTTCAG AGGTGGGTA ACTGCAGTTA CCCTCAAACA AAACGGTGGT

hgiAI/aspHI hgiJII aluI BBtI Bacl

ec1136II bsp1286

DSINKAI

bmyI

banII

mnlI

csp6I

acil

rsal

501 ANATCANCGG GACTITCCAA ANIGICGIAA CAACTCCGCC CCATIGACGC AAATGGGCGG TAGGCGTGTA CGGTGGGAGG TCTATATAAG CAGAGCTCGA TITAGTTGCC CTGAAGGTI TIACAGCAIT GTTGAGGCGG GGTAACTGCG TTAACCGCC ATCCGCACAT GCCACCCTCC AGATATATTC GTCTCGAGCA hgal acil

eagl/xmalll/eclXI haeIII/palI MCLI

eael cfrI

fnu4111

acii thaI

funDII/mvnI

nspBII sacil/sstil SCIFI nctI kspI avall

I96nes

esp31

mvaI bsmAI ecoRII bstni

BCrFl

bglI bslI dsal scrFI nlaIV asuI

Idam

sau3AI mnlI bstUI ncil

mbol/ndell[dam-] hpall dpn1[dam+] bsaJI dsaV dpnII[dam-] bsh1236I hpa]I Idsm Iloqu

alwi[dam-] acii cauli Caull Asab **PpuAI** ppsI

fokI

dpn1[dam+] hgaI

sau3AI qsuI/bpmI mbol/ndelI[dam-]

apy1 [dcm+]

hinlI/acyl

dsav

mnll

AATCACTIGG CAGICIAGCG GACCICIGCG GIAGGIGCGA CAAAACIGGA GGIAICIICI GIGGCCCIGG CIAGGICGGA GGCGCCGGCC CTIGCCACGI GATCCAGCCT CCGCGGCCGG GNACGGTGCA 601 TIAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTTGACCT CCATAGAAGA CACCGGGACC dpnII[dam-] ahaII/bsaHI *Begin RNA

tfil

fnuDII/mvnI thal hinfl acil

bstuI

701 TIGGNACGCG GATTCCCCGT GCCAAGAGTG ACGTAAGTAC CGCCTATAGA GTCTATAGGC CCACCCCCTT GGCTTCGTTA GAACGCGGCT ACAATTAATAT AACCTTGCGC CTAAGGGGCA CGGTTCTCAC TGCATTCATG GCCGAATATAT CAAGGGGCA CGGTTCTCAC TGCATTCATG GCCGAATATATTAT csp61

Figure 16B

BCLFI	MV4 I	ecoR1I	dsaV	bstni	apyI (dcm+)	slI bsaJI	CATAACCITA IGIAICAIAC ACAIACGAIT TAGGIGACAC TAIAGAATAA CAICCACITT GCCIIICICI CCACAGGIGI CCACICCCAG GICCAACIGC	GTATTGGNAT ACNINGTATG TGTATGCTAA ATCCACTGTG ATATCTTATT GTAGGTGAAA CGGAAAGAGA GGTGTCCACA GGTGAGGGTC CAGGTTGACG			bsp1286	aluI bmyI fokI
						A	CCACAGGTGT C	CCTCTCCACA G			A	aluI b
							CCCTTTCTCT	CCCVVVCVCV			/pall	
						fokI	CATCCACTTF	GTAGGTGAAA	"Spo KNA BLAFL	sau961	hae!!!/pal!	asul
						scfl	AC TATAGAATAA	TC ATATCTTATT	y ods.	tfil.	hinfī	aci 1
				•	mae111	hphi scfl	r TAGGTGAC	A ATCCACTO	•			aIV ac
				•		•	ACATACGAT	TCTATCCTA		10.	/avalii	Tu Tu
				•			TGTATCATAC	ACATAGTATG		101ndd	tagi nsil/avalli	clai/bsp106
							CATAACCTTA	GTATTGGAAT			mnll	bsaJI

Rau961 avall

A WHEN A

The state of the s

Insu

1001 AGATGACACC AAAACCCTCA TCAAGACAAT TGTCACCAGG ATCAATGACA TTTCACACAC GCAGTCAGTC TCCTCCAAAC AGAAAGTCAC CGGTTTGGAC TCTACTGTGG TȚTTGGGAGT AGTTCTGTTA ACAGTGGTCC TAGTTACTGT AAAGTGTGTG CGTCAGTCAG AGGAGGTTTG TCTTTCAGTG GCCAAACCTG Aspaspthr LysthrLeuf leLysthril evalthrarg licasnaspi lesernisth rcinserval SerserLysc inLysvalth rclyLeuasp Idsm **bsaWI** agel maelil hphI hpall cfrlor mnll **DSMAI** mbo1/nde11[dam-] dpn1[dam-] dpn1[dam+] macili alvi[dam-] apy1 (dcm+) sauJAI ecoR11 SCIFI bstNI dsaV mva 1 hohi munI mnll

Met HisTrpGlyT hrLeuCysGl yPheLeuTrp LeuTrpProT yrLeuPheTy rValGlnAla ValProlleG lnLysValGln

ACCTCGGTTC TATCGATATG CATTGGGGAA CCCTGTGCGG ATTCTTGTGG CTTTGGCCCT ATCTTTTCTA TGTCCAAGCT GTGCCCATCC AAAAAGTCCA TGGAGCCAAG ATAGCTATAC GTAACCCCTT GGGACACGCC TAAGAACACC GAAACCGGGA TAGAAAAGAT ACAGGTTCGA CACGGGTAGG TTTTTCAGGT

bsaJI

801

901

Ahuman OB start

*cloning linker

dpn11[dam-] mbol/ndell[dam-] alw[[dam-] Bau3AI dpnI(dam+) 1101 TTCATTCCTG GGCTCCACCC CATCCTGACC TTATCCAAGA TGGACCAGAC ACTGGCAGTC TACCAACAGA TCCTCACGG TATGCCTTCC AGAAACGTGA AAGTAAGGAC GCTTGCAGA TCTTTGCAGT AAGTAAGGTGG GTAGGAAGG TCTTTGCACT maeII berl dpn I I [dam-] hphI mbol/ndell[dam-] alwl[dam-] bstY1/xhoII BauJAI dpnI(dam+) mn]I accl bsrí alwni Eau96I Ileve lnse PC) MI bs 1 I fokI **bsp1286** mval nlalv apy1 (dcm+) hglJII banII DmyI ecoRII BCLFI bstni bsaJI dsav

62 Phellebrog lyLeuHisPr ofleteuthr LeuScrLysM clAspGinTh rLeuAlaVal TyrGinGinf leLcuThrSe rMetProSer ArgAsnVallle

haeIII/pall suu961 suu961 suu961 suu961 asul asul mval mval mval dsuv dsav bstNl bstNl bstXl apy1[dcm+] apy1[dcm+] bsaJl	sau961 avaii alur pvuII pvuII bsuI nlaIII nspBII bsaI bsgI nspHI bbvI asuI cccAGAGAC TCCTGTACGA CACCGTCGAC GlySerLeuG lnAspHetLe uTrpGlnLeu
paujāli scrfi batvi/xholi scrfi batvi batvi scrfi conti batvi batv	scrfi eco571 mval scrfi del scfi alui ecoRII mval alui dsav ecoRII mval alui bstNI bill pstI bsgI pstI nlaIII nspBII bstNI bstNI bindIII xcmI bsgI pstI nlaIII nspBII bsaJI bstNI bstXI mnli asui bbvI bsaI bsgI nspH bbvI alui ccrccccccccccccccccccccccccccccccccc
1201 TCCAA AGGTT 96 GIM	1301 GGAC 129 ASPÉ

mboll mboll

ABUI

bstNI dsav

nlaIII

bsaJI **DBtNI**

196nes

avaII **ecoRII**

SCIFI MV& I

ecoRII SCIFI

dsav bell

MVAI

M
J
est :#et
14.4
¥1
100 t

Idsm

hpall

scrFI

dsav nci I

Illdsu Idsu asul ecobli maelii mul I mbol/ndell[dam-] caulf rcal dpn1[dam+] nlalii

nlallI

avall

Bau3AI

maelI

mnlI

drdI I I Oqu csp61

rsal

bbsI bsu361/mstII/sauI bsrI bsaAI

bpual ecoell ddeI

maell

bsu36I/mstII/sauI dpnII[dam-] bspHI[dam-] mnlI

Lysproly saspthileu metilesera igthiprogl uvalthicys valvalvala spvalserhi sgluasppro gluvallysp heasntiptyr CGAAGACCCT GAGGTCAAGT TCAACTGGTA GCTTCTGGGA CTCCAGTTCA AGTTGACCAT GITTIGGGIT CCIGIGGGAG TACTAGAGGG CCIGGGGACT CCAGIGIACG CACCACCACC IGCACTCGGI 1501 CANAACCCAA GGACACCCTC ATGATCTCCC GGACCCCTGA,GGTCACATGC GTGGTGGTGG ACGTGAGCCA bsaJI

ecoRII SCIFI dsav MVAI rsal funDII/mvnI **bsh1236I** acil bstul thaI

sacII/sstII nspBII kspl

dsal

bsaJl

csp61

maeII bsaAI

acil

csp61 mnlI fnu4HI

.. mull

apyI[dcm+]

ball

CCTGCACCAG

GGACGTGGTC

bbvI avaI

fnu4HI

econi batni

hphI

hgal muli

Valaspgly Valgiuvalh isasnalaly sthriyspro Arggiugiug intyrasnse rthrtyrarg valvalserv alleuthrva ileuhisgin AGTACAACAG CACGTACCGT GTGGTCAGCG TCCTCACCGT GCACCTGCCG TACCTCCACG TAITACGGIT CIGITICGGC GCCTCCTCG TCAIGITGTC GIGCAIGGCA CACCAGICGC AGGAGIGGCA mnlI 1601 CGTGGACGGC GTGGAGGTGC ATAATGCCAA GACAAAGCCG CGGACG::GC **DSmAl** bsal csp61 rsal :

barī

229

262 AsptrpLeuA snGlyLysGl uTyrLysCys LysValSerA snLysAlaLe uProAlaPro IleGluLysT hrileSerLy sAlaLysGly GinProArgGlu 1701 GACTGGCTGA ATGGCAAGGA GTACAAGTGC AAGGTCTCCA ACAAAGCCCT CCCAGCCCCC ATCGAGAAA CCATCTCCAA AGCCAAAGGG CAGCCCCGAG CTGACCGACT TACCGTTCCT CATGTTCACG TTCCAGAGGT TGTTTCGGGA GGGTCGGGGG TAGCTCTTTT GGTAGAGGTT TCGGTTTCCC GTCGGGGCTC

tadī

CTTGTGGTTT GTCCAAACTC ATCAATGTAT
THAT TATAATGGTT ACAAATATG CATATGATG GETATTAATG GETATTAATG GETATTAATG ACAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
BEANI BARTATAGETT ACAAATAAAG CAATAGCATC ATATTACCAA TGTTTATTC GTTATCCTAG

rsal csp6I nlaiv hpul hgiCI banI asp718 mnlI acc65I ddel acil ACCATGGAG ACTCCGCCTT	
mbol/ndeIl[dam-] dpnI[dam+] dpnI[dam+] dpnI[dam-]. pvul/bspCI mcI taql[dam-] tru9I taql[dam-] tru9I taql[dam-] tru9I tagl[dam-] t	^sv40 origin

mval I bstNI apyl(dcm+)	TAG TAG
ecorii dsav	agtcage/ rcagtcg1
10 I	AGAACCAGCT GTGGAATGTG TGTCAGTTAG GGTGTGGAAA GTCCCCAGGG GCAGAAGTAT GCAAAGCATG CATCTCAATT AGTCAGCAAC ACAACCAGCT GTGGAATGTG TGTCAGTTAG GGTGTGGAAA GTCCCCAGGG TGCCCTATAGAGTTAA TCAGTGGTTG ACAACCAGCT GTGGAATGTG ACAGTCAATG CCACACCTTT CAGGGGTCGG AGGGTCGTC CGTCTTCATA CGTTTCGTAC GTAGAGTTAA TCAGTCGTTG
sfaNi ppulOI nsil/avaIII nlaII sphi	nspar GCAAAGCATG CGTTTCGTAC
	GCAGAAGTAT CGTCTTCATA
- +#:	TCCCCAGCAG
nlalV scrFI mval ecoRII dsaV bstNI apyl{dcm+}	bsaJI GTCCCCAGGC CAGGGGTCCG
	GGTGTGGAAA CCACACCTTT
•	rgecagteag Acagecaate
	GTGGAATGTG
aluI	DEBAJI BEAJI BEAJI BEAJI BAAACCAGCT GTGGAATGTG TGTCAGTTAG GGTGTGGAAA GTCCCCAGCAG GCAGAAGTAT GCAAAGCATG CATCTCAATT AGTCAGCAAG TCTTTGGTGA CACTTACAC ACAGTCAATC CCACACCTTT CAGGGTCGG AGGGGTCGTC CGTCTTCATA CGTTTCGTAC GTAGAGTTAA TCAGTCGTTG TCTTTGGTCGA CACCTTACAC ACAGTCAATC CCACACCTTT CAGGGTCGT AGGGGTCGTC CGTCTTCATA CGTTTCGTAC GTAGAGTTAA TCAGTCGTTG
	ខ

GTTAG GGTGTGGAAA GTCCCCAGGC TCCCCAGCAG GCAGAAGTAT GCAAAGCATG CATCTCAATT AGTCAGCAAC CAATC CCACACCTTT CAGGGGTCCG AGGGGTCGTC CGTCTTCATA CGTTTCGTAC GTAGAGTTAA TCAGTCGTTG
AGTC
14 T
NTCTC PAGAG Q
575 575 59
AAGCA TTCG1
200 A
AGTA! TCAT!
CCTCT
SCAG
CCCAC
ည် (၁)
CCAC
640 6466
CTTT
GTGTC
rag atc c
CAGT
5 G 7 G
AATGI
GTGG
nspbii ccaccr ccrcca
GAACC
nspbii 2401 agaaccagct gtggaatgtg tgtcagttag ggtg tgttggtgga caccttacag acagtcaatg ccac
ñ

•	acii foki Accatagte egeecetaae teegeecate Tegtateage gegegatte aggegggtag	fnudHI bglI sfil haettl/balI
ppul0I nsil/avalII	nlalli sphi nspl sfani nsphi AGT ATGCAAAGCA TGCATCTCAA TCA TAGGTTTCGT ACGTAGGT	nlalii
nlarv · · scrfi scrfi mval	dsav dsav bstNI bptNI apy1[dcm+] bsaJI bsaJI crectede Agreeceage Agendange Accatace Accatace Geceetane Technology Technology Accatace Geceetane Agendedate crecaence treases Geceetane Angeogete Geogestic Angendate Accatace Accatace Geogestic Agenceetas	
	250	

scrff mval sau961 nlalV avall sau961 thal ecoR1	5 5 5 5	acil acil bealing co coccocco recendence co ecceccoc Accreced
Annual Company of the	sful bstni bsiCi asuII	mnii acii bedi comnocade and acii acii bedicocade accadence
The state of the s	styl bsajl blni haeli/pall stul mal	mnli avrii: : TTTTTGGAG GCCTAGGCTT TTGCAAA: : AAAAACCTC CGGATCCGAA AACGTTT
	. •	mnii mnii 2701 TCCAGAAGTA GTGAGGAGGG AGGTCTTCAT CACTCCTCCG

8au3AI	mpol/udeII[dam-]	(dam+)	sau3AI	mpol/udeII[dam-]	dpnI(dam+)	bstYI/xhoII	[-map]III dbuII[dam-]	tru9I hincil/hindil acil dpnII[dam-] bsmAI	hgal fnu4HI bcl1[dam-]	2801 ACTICGCATA TTAAGGIGAC GCGTGIGGCC TCGAACACCC AGCGACCCTG CAGCGACCCG CTTAACAGGCG TCAACAGGGT GCCGCAGATC TGATCAAGAG	TGAAGCGTAT AATTCCACTG CGCACACCGG AGCTTGTGGC TCGCTGGGAC GTCGCTGGGC GAATTGTCGCA AGTTGTCGCA CGGCGTCTAG ACTAGTTCTC	tns neomycin phosphotransferase gene.
					fnu4HI	phvI	scfl	pst1 tru9I	bsg[acil msel hgal	AGCGACCCTG CAGCGACCCG CTTAACA	receregeae ereceregee gaarter	tn5 neomycin
		thaI	fnuDII/mvnI	bstul	Inte	aflili	hohi bshi236i mnli	tru91 hqal hael11/pall		TTAAGGTGAC GCGTGTGGCC TCGAACACCG	NATICCACTG CGCACACCGG AGCTTGTGGC	
										2801 ACTICGCATA	TCAAGCGTAT	

			•			bsp1286	DmyI	bsrI	CCCCTATGAC TCCCCACAAC	GCCGATACTG ACCCGTGTTG
	~	/pall		eag1/xma111/eclX1				Ilum	CTTGGGTGG AGAGGCTATT	GAACCCACC TCTCCGATAA
acil	fun4111	haeIII/palI	merI	eag1/xm	cael	cfri	Idsm	DSpMI hpaII	SCACGCAGG TTCTCCGGCC G	SCICCCICC AAGAGGCCGG C
				•					CANGATGGAT TG	GTTCTACCTA AC
	sau3AI	mbol/ndeII[dam-]	dpnI (dam+)	dpnII[dam-]		(-E	am-)	foki alwi[dam-] nlaili	<u>Acaggatgag gatcgtticg catgattgaa caacatggat tgcacgcagg ttctccggcc gcttgggtgg agaggctatt cggctatgac tgggcacaac</u>	TGTCCTACTC CTAGCAAAGC GTACTAACTT GTTCTACCTA ACGTGCGTCC AAGAGGCCGG CGAACCCACC TCTCCGATAA GCCGATACTG ACCCGTGTTG
					mn11	mam! [dam-]	bsaB1 [dam-]	fokI al	2901 ACAGGATGAG	TGTCCTACTC

ear1/ksp6321

dpnII[dam-]

hpall cfr101 Idsm

hpall bspMI taq1 sfaNi bmyl maell fokl cfr101 taq1[dam-] dpnII[dam-] 3301 ATCCGCTAC CTGCCATTC GACCACCAAG CGAAACATC GATCAGGATG ATCTGGACGA TAGAGCCGAAG CGACAAACAG CTGCCATG CTTTGTAG CTTTGTAG CTTTGTAG CTTTGTAG CTTTGTAG CTTTGTAG CTTGTAGAAACAAG TAGACCTGCT CGTGCATCG CCAGAAACAG CTAGTCCTAC TAGACCTGCT

bsp1286 **DSINKAI**

taqI

Idsm

•		[·	
scfi psti bsgi CT	i Ç.	sau3AI mbol/ndeIl[dam-] dpnl[dam+] dpnll[dam-] alwl[dam-]	[[dam-]
GAATGAA	fnu4HI bæri bbvi iA CTGGCTGCT	entacge:	mbol/ndell[dam-] dpn1[dam+] [[dam-] sapl] mboll
bsp1286 bmyl nlaIV hgiCI banI mspI sc. hpalI bsaWI TCCGGTGCCC TGAATGAACT	Al/aspiil 11286 11286 11 maeli eco57i fnu4Hi tthili/aspi acii bsri bbvi GCTCGACGTT GTCACTGAAG CGGGAAGGAA CTGGCTGAAG CGGGAAGGAA CTGGCTGAAG CGGGAAGGAA CTGGCTAA CGGGAAGGAAA CTGGCTGAAA CGGGAAGGAAA CAGTGACTTC GCCCTTCCCT GACCGAACGAAA	fnu4HI mi acii bbvi acii a GCGCGCGCTG CATACGCTTG	sau3AI foki foki sau3Ai dpni[da mboi/ndeii[dam-] dpni[dam+]
drdI A GACCGACCTG	spili maeli eco571 tth1111/aspi qi maelii ad GACGTT GTCACTGAAG	nlaiii sfani TTGCTCCTGC CGAGAAGTA TCCATCATGG CTGATGCAAT AACGAGGAGG GCTCTTTCAT AGGTAGTACC GACTAGGTTA	T do
hinp! nlaiv nlaiv nar! scrf! kas! nci! hinl!/acy! hgiC! msp! bal! hpa!! ban! dsav hinp! aha!!/bsal!! hha!/cfo! cau!! AGCGCAGGG CGCCCGGTC TTTTGTCAA TCGCGTCCC GCGGCCAAAAACAGTT	hgial/aspill bsp1286 bsjikal bmyl maell i tthlill cr ccrccactr	nlalli A TCCATCATGG (
hinpi nari scrpi kasi ncii hinli/acyi hgici mspi haeri hpaii bani dsav ahaii/bsaii foi cauii	hgi bsp alul pvuli fnu4HI fnu4HI bbvI bsj hfnPI bmy hhal/cfol mstl nspBII avili/fspI GGCGTCCTT GGGCAGCTGT	C CGAGAAAGTA G GCTCTTTCAT	rsal csp6I bsaAI hg1AI/aspHI bsp1286
	₩		
msp1 TCGGCTGTC AGGCCGAG	haelli/pall msci/ball hael eael cfri T GGCCACG	[[dam-]]-] -] I hphI TCATCTCACC	
acil fnu4HI , , H bslI GCCGCGTGT	mani SI mah TATCGTGGCT ATAGGACCGA	saulAI mbol/ndell[dam-] dpn![dam+] bstYl/xholl alw![dam-] GGATCTCCTG TCATCT	
indth fudth mspl bbvi sfani bsli hpali AGACAATGG CTGTCTGAT GCGCCGTGT TCGGCTGTCTTCTTATATATATATATATATATATATATAT	fnu4HI thai fnuDII/mvnI bstUI bsh1236I hinPI hinPI mscI/balI fnu4HI bbvI acil mhl hhai/cfol ccrccrccc cgrccccc Arrccrcca cccrccrcc	scrri ncii mspi hpaii dsav cauii bsaji TGCCGGGCA	÷
acil fnu4HI fnu4HI , , bbvI sfaNI bslI 3001 AGACAATCG CTGCTCTGAT GCGCGCGTGT	 mnli gcagacgae corcerecte	TTGGGCGAAG	
3001	3101	3201	

styl dsal bsaJI sfaNI maeIII nlaIII GTGA CCCATGGCGA TGCCTGCTG	CATAGCGTTG GCTACCCGTG	cfol NI ATCGCCTTCT ATCGCCTTCT TAGCGGAAGA TAGCGGAAGA	I acii fi findHi . acii trccAccGCC GCCTTCTATG
sau3AI mbol/ndcII[dam-] dpnII[dam-] hstYl/xhoII dsaI alwI[dam-] mnlI maeII cGGGGAGGAT CTCGTCGTGA	mspl bsli hpali sau961 nael avali cfrl01 asul haellI/pali rsrl1/cspl eael cpol acil acil tcGACTGTGG CCGCCTGGC GCTATCAGGA CATAGCGTTG GCTACCCGTG ACCTGACTGTGC CCGCACC GCTATCAGGA CATAGCGTACCCGTG	hinpl bsrBI hhal/efol acil tfil fnu4HI mnll fnu4HI hinfl bbvI sfaNI ccrcgrgcrr taccgtatc ccgcrcccga trcgcaccc arcgccrrct arcgccrrct ggagcacgaa argccatagc ggcgaggcr Aagcgrccc taccgaaga taccgaaga	tfil bspMi hinfi sali NAC CTGCCATCAC GAGATTTCGA TT
hinp! hinp! tha! hinp! tha! hinp! tha! tha! fuuDI/mvnI mva! bstU! bstU! bstU! bstU! bstU! bstU! bstU! bstU! ccoRII bsh1236! bsp1286 bmyd bsh1236! bmyd bsh1236! bmyd bsh1236! bmyd bsh1236! bmyd bsh1236! ccoRII bsh1236! bmyd bsh1236! bmyd bsh1236! bmyd bsh1236! cccRGCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		f mnli TT CCTCGTGCTT TACGGTATCG	taqi sful batul hinli/acyl tfil acil acil hinfi hinfi hinfi fuu4HI hinfi asuli asuli asuli acil tcGAGACCCAAGC TCGCGATCA GAGATTACA AAGTTACGC GGGAAGATAC CTGAGACCCC AAGCTTACT GCCTGCTTC GACGCACTTA GAGACCCC AAGCTTACT GCCTGCTTC GACGCACTC GACGCACTC AAGCTGACACCC CGGAAGATAC
hinpl thai fuuDII/mvnI scrFl bstUI mval bstUI ccoRI bsp1286 dsav bmyz bsh1236I bsLNI banII hhai/cfoI apyff GGGCTCCCC CAGCCGAACT GTTCGCCAGC		sapi mboli fnutHi earl/ksp632i eco571.alui acii ucti' ATATTGCTGA AGAGCTTGGC GGCGAATGGG CTGACCGCTT TATAACGACT TCTCGAACCG CCGCTTACCC GACTGGCGAA	
hinpl thai thai funDII/m betui hgiJii bsp1286 bsp1286 bsp1286 bsp1286 bsp1286 bsp1286 bsp1286 bsp1286 bryiz cccaccccccccccccccccccccccccccccccccc	nlaili 3501 CCGAATATCA TGGTGGAAAA GGCTTATAGT ACCACCTTTT	sapi mboli f earl/ksp6321 eco571.alul a 3601 ATATTGCTGA AGAGCTTGG	ddel mboll bsrBl 3701 TGACGAGTTC TTCTGAGCGG ACTGCTCAAG AAGACTCGCC

scrff ncil mspl hpall dsaV caull	bsl1 xma1/bscA1	Smal	scrFI	ncii	dsaV	Caull	bsaJI	bsaJI	mboil ball aval	CCCCACCCC GGAGATGGGG	s CGGGTGGGGC CCTCTACCCC or Smal-Pvull ^
THE THE THE THE TANK THE	TAFtues Tedit Tooklytinka	bsll	I/bsail1	E	ncil sau3AI hhal/cfol gsul/bpmI	mspl mspl mbol/ndell[dam-] mbol/ndell[dam-]	hpall hpall, dpnl[dam+] bstul dpnl[dam+]	dsav	hinfi cauli cfr101 foki alw1[dam-] bsh12361 nlalli mbol1	GTTTTCCG	TITCCAACCE GAAGCETTAG CAAAAGGCCC TGCGGCCGAC CTACTAGGAG GTCGCGCCCC TAGAGTACGA CCTCAAGAAG CGGGTGGGGG CCTCTACCCC
										~	

					CCTCCTTTCT	CCAGCAAACA
					1901 gaggetaact gaaacacgga aggagacaat accgaagga acccgcgeta tgacggcaat aaaaagacag aataaaacgc acgggtgttg ggt c gtttgt	CICCGATIGA. CITIGIGCCI ICCICIGITA IGGCCTICCI IGGCCGCGAI ACIGCCGTTA ITTITCIGIC ITATITIGCG IGCCCACAAC CCAGCAAACA
					AATAAAACGC	TTATTTGCG
					AAAAAGACAG	TTTTTCTGTC
[0]	Invi				TGACGGCAAT	ACTCCCCTTA
hinPI hhai/cfoI thai	funDI I/mvnI	bstuI	bsh1236I	Vacif	ACCCCCCCTA	TCCCCCCAT
		Idam	hpall	bsawl nlalv acif	ACCCCAACGA	TGGCCTTCCT
				DSMAI	AGGAGACAAT	TCCTCTGTTA
	•				GAAACACGGA	CTTTGTGCCT
				mnll	CAGGCTAACT	CTCCCATTGA.
					3901	

	thai haeIII/pali fnuDII/mvni sau96I bstUI asuI bshl236I '	TTGGGGCCNA TACGCCCGCG TTCTTCCTT TTCCCCACCC
ecori dsav bstni bsali	acii sau961 thai nlaiv fuuDii/mvni bsaJi bstUI bstUI bsmAi	GCACTCTGTC GATACCCCAC C

bsli naly avali styl asul ncol ppuMl dsal laly bsaJl ecol091/drall tth1111/aspl nlalli GAC GGGTCCCCC	haeII/palI haeI fokI TTTTGGATG AAAAACCTAC II/mvnI hinPI	halv kasi hinli/acyi hacii bani or ahali/bsaHi ATTCTGGC TAAAGACCG	thai fuuDII/mvnI bstUI sacII/sstII haeIII/pall bsh12361 cri hspBII kspI i dsaI agI/xmaIII/eclXI aeI bsaJI frI aciI GGC CGAGTTTCG
bsli sau961 nlaIY avaII sty asuI nco ppuHI ds: nlaIV bsaJI eco01091// tth1111/aspI n.	nlaili styl ncol ncol dsal bsali fokl AGACCCATGG TTTTTGGATG TCTGGGTACC AAAACCTAC acii thal fnubli/mvni hi bstui	1 361 /cf	thai fuud bstu sacii haelii/pali bshi mcri nspBi il kspi il kspi il cagi/xmalii/clixi eaci bsaji cfri acii cccc ccrcAAAGC
n GGTTAGG	nlalli styl ncol dsal bsall schooler TCTGGGTACC acil	- 33	hz dsal dsal bsall hphl eag maeIII el bstEII cfi
sau961 hac11/pal1 sau961 nlafy hgiJll ccol091/dral1 bsp1286 bsp1201 bmy1 bmy1 bmy1 bmy1 ban11 asul dsal dsal apal bsaJl bsaJl asul	dde I CTGAGCAGAC GACTCGTCTG	th fii ccccaaaaa gggggtttt	k TTTGTATTC
Eau961 BujJ11 CCOO109 Excml asul ds dsal a bsaJ1 CCATAGCCAC GGTATCGGTG		ACACCCCCGA	hinPI hhal/cfoI hacII eco47III A GCGCTTTGT
## ## ## ## ## ## ## ## ## ## ## ## ##	sau96I avaII asuI bsrI GGGTCAGGTC CACGACTGGA CCCAGTCCAG GTGCTGACCT	fnu4HI bbv I gctgccaa cgacggtt	hael mcri dsal hinpl hinpl rsal haell csp61 eco47111 bstEll cfri ccrccrccccccccccccccccccccccccccccc
bococc 1	CGCAACGCAC CCC	I/bsa II ITCTG	mboli cerecteded co
and the second	AACC	hinii/ Fi I mspi hpai dsav caui ACAC CG	CTGCCC CT
hgiJii bsp1286 mell bmyl scrfi mvil ecoRII dsaV bstNI bsaJi sau96i bsl1 haeIII/Pali fnu4HI asu1 ban11 bbv1 AGCCCAGG CTCGCACCA		hal still hall hall hall hall hall hall hall h	mspI hpalI acil fnu4ii GCGCGGAC GAACTAAACC TGACTACGGC ATCTCTGGG
	 TT CGTGGGGGT AA GCACCCCAA	thai thai rai thai rai thai thai thai thail patul ii.nspi hinpi nsphi pari bshi236i acii cspi hhai/cfoi cccarc actacccc aca	: : bsli rgg acter
hphi GTTCGGGTGA	GTTTATGG	sau96I real fi avaii nialii asui.nspi atii nsphi it acti cspi r GGACCCCATG T	C GAACTAA
bali caaccccaa GracgcgtT	ATGGGGAATG GTTTATGGTT CGTGGGGGTT TACCCCTTAC CAAATACCAA GCACCCCCAA	scrfi mvai sau961 ccoRII . thai scridsay real fnuDII/mvni nci bstNi avaII nlaIII bstUI bslI asuI.nspI hinPI bsaJI nlaIII nspH bsrI bsh12361 apyI[dcm+] aciI csp6I hhai/cfoI GCCTGGGCAT GGACCGCATG TACTGGCGC ACACGA	
	4201	4301	4401

haeIII/palI

maell

hinPl mspl hhal/cfol thal hpall fnubll/mvnl bstUl bsaWl bsh12361 nlall acil bsll GTCATGCC CCGCCCCAC CGGAAGGAGC	acil fnu4Hi thai fnuDII/mvnI bstUI hhai/cfoI hhai/cfoI fnu4HI tru91 acil acil msel bsh1236I GCGGCGCA TTAAGCGCG CGGGTGTGGT
### Property Property Property	haelil/pali haelil/pali haelil/pali haelil/pali haelil/pali haelil/pali haelil/pali haelil/pali haelil/pali eael hot! hot! hot! fuudHi hot! fuudHi hal/cfo! hinp! hal/cfo! hal/cfo! acil acil bsrl sfaNi taql cfrl sfaNi csp6i bsll acil hal/cccccc cccarcaccc cccarcacccc cccarcacccc Actgacccaa ctrccgaag trcccgaag caccacccc cccarcaccaccaccaccaccaccaccaccaccaccacca
scrfi hlaiv ncii hqici dsav scrfi cauli mvai bsii ecokli bsii dsav bsaji bstNi sau96i bsaji nlaiv haelii/pali avaii eaei avaii eaei avaii eaei ecol091/draii bmyi ecol091/draii bmyi ecol091/draii bmyi ecol091/draii bmyi ecol091/draii sai GCCTGGGGC CGCTCCCTACG AGT	Berl stagger GAGGCTCTC AAGGCATCG GTG ACTGACTCGAA CTCCGAGGG TCCGAGGC CAGGCCAGGC

mspI hpaII naeI	TTCTCGCCA CGTTCGCCGG CTTTCCCCGT AAGAGCGGT GCAAGGGGCA
hinPI hhal/cfol rmal hinPI haeII hhal/cfol bsrBI	maelii bbwi maelii 4701 ggftacgcgc Agcgrgccg Ctackgccccta Gcgccccctc Ctttcgcttc Tttctcgcca Cgttcgccg Ctttcccct Ccaatgcgcg Tcgcactgc Gatgtgaacg Gtcgcgggat cgcgggcga gaaagcgaaa Gaagggaagg Aaagagggt Gcaaggggc Gaaaggggca
fruthi hinpi hhal/cfoi thai fnuDil/mwni bstUi bshl236i acii	maelii bbvi maelii 4701 GGTTACGCC AGCGTGACCG CTAC CCAATGCGCG TCGCACTGGC GATG

All ori delta 3

196nes asuI 4801 CAAGCTCTAA ATCGGGGGCT CCCTTTAGGG TTCCGATTTA GTGCTTTACG GCACTCGAC CCCAAAAAAC TTGATTTGGG TGATGGTTCA CGTAGTGGGC GCTTTTTT AACCCCCCGA GGGAAATCCC AAGGCTAAAT CACGAAAATGC CGTGGAGCTG GGGTTTTTTG AACTAAAACC ACTACCAAGT GCATCACCGG draili **bsaAI** hphI hgici taqi banl mull nlaIV hgijii bsp1286 bmyi banII alul

nlaIV

nlaIV

					U8/77	9457
					U8/77	Figure 16N
ball aval ACCCTATCTC TGGGATAGAG	nvni krugi msei sspi iT TAACAAAATA	I TGGCACTTTT ACCGTGAAA	sspI CTTCAATAAT GAAGTTATTA	CAGAAACGCT GTCTTTGCGA	mbol I TCGCCCGAA AGCGGGGCTA	
ACAACACTCA TGT1GTGAGT	thal fnuDII/n I apol bstuI ACGCGAATI	maeli hinli/acyl ahail/bsahi ddel aatil ATGCTTTCTT AGACGTCAGG TGCCACTTTT TACCAAGAA TCTGCAGTCC ACCGTGAAAA	CTGATAAATG	hphi ccttcctgtt tttgctcacc ggaagacaa aaacgagtgg	sau3AI mbol/ndeII[dam-] dpnI[dam+] alwi[dam-] stYI/xhoII GATCC TTGAGAGTTT CTAGG AACTCTCAAA	
ber1 CCAAACTGGA GGTTTGACCT			rcal bspHI bsrBI bsmAI acil nlaIII CCGCTCATGA GACAATAACC GGCGAGTACT CTGTTATGG	CCTTCCTGTT	m-) sau3AI mbol/ndeII dpnI[dam+] dpnII[dam-] II alwI[dam-] ii bstYI/xhoII GGTAAGATCC TTGA	
CATCGCCCTG ATAGACGGTT TTTCGCCCTT TGACGTGCACCTTC TTTAATAGTG GACTCTTGTT GAAGGGGGAA ACTGCAACCT CAGGTGCAAG AAATAATAGTG CTGAGAACAAAAAAAAAA	tru9 msel tru91 msel tru91 msel haell1/pall aluI msel apol GCCGATTTCG GCCTATTGGT TAAAAAATGA GCTGATTTAA CAAAAATTTA	nlalli tru9l rcal msel bspHI AGGTTAATGT CATGATAATA TCCAATTACA GTACTATTAT		fnu4HI acii CGCCCTTATT CCCTTTTTG CCTTCCTGTT TTTGCTCACC CAGAAACGCT GCGGGAATAA GGGAAAAAAC GCCGTAAAAC GGAAGGACAA AAACGAGTGG GTCTTTGCGA	sau3AI mbol/ndeII[dam-] sau3AI dpnI[dam+] mbol/ndeII[dam-] dpnII[dam-] dpnI[dam-] bstYl/xhoII dpnII[dam-] taqI alwI[dam-] acii bstYl/xhoII mbol TCGAACTGGA TCTCAACAGC GGTAAGATCC TTGAGAGTTT TCGCCCGGAA AGCTTGACCT AGAGTTGTCG CCATTCTAGG AACTCTCAAA AGCGGGGCTT	
trugi msci trtaarage aaartaara	trugi msei t taaaaaatga		C AAATATGTAT 3 TTTATAGATA	E CCCTTTTTG N GGGAAAAAG		
rlei hinfi maeli sin greencurr	haeill/pali G GCCTATTGG	CCTATTTTAT G GATAAAAATA	I AAATACATTC A TITATGTAAG	T CGCCCTTATT A GCGGGAATAA	hgial/asphi bsp1286 bsiHKAI [[[dam-]]] bmyI apaLI/snol alw44I/snol accaccaccaccaccaccaccaccaccaccaccaccacc	
maell ri drill chi r roacctroca	f GCCGATTTCC	mnli haeiii/pali tui aei GGCCT CGTGATACGC CCGGA GCACTATGCG	nI CCCTATITGT TTATITITCT GGGATAAACA AATAAAAGA	C ATTCCGTG	hgial/aspHI bsp1286 bsp1286 mbol/ndeII[dam-] dpnI[dam+] bmyI dpnI[dam-] apaLI/snoI GATCAGTT GGGTGCACGA GT	;
CATCGCCCTG ATAGACGGTT TTTCGCCCTT GTAGCGGGAC TATCTGCCAA AAAGCGGGAA	haell GGGCTATTCT TTTGATTTAT AAGGGATTTT GCCGATTTCG GCC CCCGATAAGA AAACTAAATA TTCCCTAAAA CGGCTAAAGC	maeli haelil/pali haelil/pali tru91 stul msel traccrita Caattitat Caattitat Greencege Certateta Aattecaat Greancece Carattitat Aattecaat Greancece Adelta 2a		mboli earl/kap6321 Attgaaaaa gaagagtatg agtattcaac atttccgtgt taactttttc cttctcatac tcataagtgg taaaggcaca	hgini/asphi bsp1286 sau3AI bsihKAI mbol/ndeII[dam-] dpnI[dam-] dpnI[dam-] eco57I apaLI/snoI sfaNI mbolI[dam-] alw44I/snoI maeIII AAAGATGCTG AAGATCAGTT GGTGCACGA GTGGGTTACA TTTCTACGAC TTCTAGTCAA CCCACGTGT CACCCAATGT	
G ATAGACGGT	I TTTGATTTAT A AACTAAATA	I A CAATTTTAT T GTTAAAATA				
			1 CGGGGAAATG GCCCCTTTAC		hphi GGTGAAAGTA CCACTTTCAT	·
4901	5001	5101	5201	5301	5401	

```
mbol/ndeII[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                  dpnII[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                  dpn I [dam+]
                                                                                                                                                                                                                                                                                                                                                                                                sau3AI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GCAACCCTTG GCCTCGACTT ACTTCGGTAT GGTTTGCTGC TCGCACTGTG GTGCTACGGT CGTCGTTACC GTTGTTGCAA CGCGTTTGAT AATTGAÇCGC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   5701 TGATAACACT GCGGCCAACT TACTTCTGAC AACGATCGGA. "GACCGAAGG AGCTAACCGC TTTTTTGCAC AACATGGGGG ATCATGTAAC TCGCCTTGAT
ACTATTGTGA CGCCGGTTGA ATGAAGACTG TTGCTAGCCT CCTGGCTTCC TCGATTGGCG AAAAAACGTG TTGTACCCCC TAGTACATTG AGCGGAACTA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GCAGCAATGG CAACAACGTT GCGCAAACTA TTAACTGGCG
                                                                                                                                                                                                                                                               ATTCTCAGAA TGACTTGGTT GAGTACTCAC CAGTCACAGA AAAGCATCTT ACGGATGGCA TGACAGTAAG AGAATTATGC AGTGCTGCCA TAACCATGAG
TAAGAGTCTT ACTGAACCAA CTCATGAGTG GTCAGTGTCT TTTCGTAGAA TGCCTACCGT ACTGTCATTC TCTTAATACG TCACGACGGT ATTGGTACTC
                                                                                                                                                      GAACGITITC CAATGAIGAG CACTITIAAA GIICIGCIAI GIGGCGCGGI AITAICCCGI GAIGACGCCG GGCAAGAGCA ACTCGGICGC CGCAACACT
CIIGCAAAAG GIIACIACTC GIGAAAAITI CAAGACGAIA CACCGCGCCA TAATAGGGCA CIACIGCGGC CCGIICICGI IGAGCCAGCG GCGIAIGIGA
                                                                                                                                                                                                                                                   nlaIII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              berI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               tru91
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Beel
                                                                                                                                       mcrI fnu4HI
                                                                                                                                                                                                                                                                                                                                                                                               mbol/ndell[dam-]
                                                                                                                                                                                                                                                                                                                                                                                 sau3AI maeIII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                maeII hhaI/cfoI
                                                                                                                                                                                                                                                                                                                                                                                                                                                    nlaIII dpnIl[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              avill/fspl
                                                                                                                                                                                                                                                                                                                                                                nlaiii
                                                                                                                                                                                                                                                                                                                                                                                                                     dpnI[dam+]
                                                                                                                                                                                                                                                     PbvI
                                                                                                                                                                                                                                                                                                                                                                                                                                     alwI[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            hinpi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               mstI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   psp14061
                                                                                                                                            bcgI
                                                                                                                                           ahall/bsaHI
                                                                                                          hinll/acyl
                                                     hpa 11
                                                                                        Caull
BCFF1
                  ncil
                                   msp.1
                                                                      dsaV
                                                                                                                             hgaI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      fnu4HI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        bbvI
           ecil
                                                                                                                                                                                                                                                         foki nlalii
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5801 CGTTGGGAAC CGGAGCTGAA TGAAGCCATA CCAAACGACG AGCGTGACAC CACGATGCCA
                                                                                                                                                                                                                                                                                                                                                                                                                                                           alui acii
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           BfaNI
                                                                          [nul)] [/mvn]
                                                                                                                                                hha I/cfol
                                                                                                             bsh1236I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           maelil
                                                                                            bstur
                                                                                                                                                                                                                                                             sfanī
                                                                                                                                                                                                                                                                                                                                                                                        mbol/ndell[dam-]
                                                          thai
                                                                                                                                 hinpi
                    196nes
                                                                                                                                                                                                                                                                                                                                                    avalI
                                                                                                                                                                                                                                                                                                                                                                      asuI
                                                                                                                                                                                                                                                                                                                                                                                                                            dpn11 (dam-)
                                                                                                                                                                                                                                                                                                                                                                                                                                           pvu1/bspCI
                                                                                                                                                                                                                                                                                                                                                                                                         dpnI [dam+]
                                                                                                                                                                                                                                                                                                                                                                                                                                                               mcrI mnl1
                                                                                                                                                                                                                                                                                                                                                                        gau3AI
                                                                                                                                                                                                                                                           maeltl
                                                                                                                                                                                                                                             bari
                                                                                                                                                                                                                                                              scal hphI
                                                                                                                 tru91
                                                                                                                                     msel
                                                                                                                                                                                                                                            csp6I
                                                                                                   hgiAI/aspliI
                                                                                                                                                                                                                             rsal
                                                                                                                 bsp1286
                                                                                                                                   DSIHKA1
                                                                                                                                                                                                                                                                                                                                                                                            haeIII/palI
                                                                                                                                                                                                                                                                                 5601 ATTCTCAGAA TGACTTGGTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 aluI
                                                                                                                                                                                                                                                                                                                                                                                                                                                  fnu4HI
                                                                                                                                                                                                                                                                                                                                                                                                                                 cfrI
                                                                                                                                                                                                                                                                                                                                                                                                                eaci
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           hpall
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Idem
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DBaWI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 nlaIV
                                                                                                                     psp14061
                                                                                                     maelI
                                                                                                                                          Xmn
                                                                                                                                                                             5501
```

5901 AACTACTTAC TCTAGCTTCC CGCCAACAAT TAATAGACTG GATGGAGGCG GATAAAGTTG CAGGACCACT TCTGCGCTCG GCCCTTCCGG CTGGCTGGTT TICATGAATG AGATCGAAGG GCCGTTGTTA ATTATCTGAC CTACTCCGC CTATTTCAAC GTCCTGGTGA AGACGCGAGC CGGGAAGGCC GACCGACCAA hpaII Idsm haeIII/palI bglI 196nes hinpi asul hha1/cfo1 Bau96I avall Insu mnll fokI . . asel/asnl/vspl bsrI tru9I msel hpall mspī SCIFI dsav aluI ncii rmal

eam1105I 6001 INTIGCIGAT ANATCIGGAG CCGGIGAGCG TGGGICTCGC GCINICATIG CAGCACTGGG GCCAGATGGT AAGCCCTCCC GIATCGTAGT TAACTACACG AAAACGACTA TITAGACCTC GGCCACTCGC ACCCAGAGGG CCATAGATGTGC GCGTCTACCACTA TITAGACCTC GGCCACTCGC ACCCAGAGGG CCATAGATGTGC mnlI bbvi bsri hacili/pall 196nes asuI nlaIV fnu4III fnut)II/mvnI bsal bshl2361 bstuI thaI **DsmAI** nlalV hphI hpaII cfr101

acti

bbvI

alvni

```
TATATGAAAT CTAACTAAAT TITGAAGTAA AAATTAAATT TTCCTAGATC CACTTCTAGG AAANACTATT AGAGTACTGG TTTTAGGGAA TTGCACTCAA
                                                                                                                                                                                                                                                                                     6201 ATATACTTTA GATTGATTTA AMCTTCATT TTTAATTTAA AAGGATCTAG GTGAAGATCC TTTTGATAA TCTCATGACC AAAATCCCTT AACGTGAGTT
                                                                                             TGCCCCTCAG TCCGTTGATA CCTACTTGCT TTATCTGTCT AGCGACTCTA TCCACGGAGT GACTAATTCG TAACCATTGA CAGTCTGGTT CAAATGAGTA
                                                                                  ATTECTAACT GTCAGACCAA GTTTACTCAT
                                                                                                                                                                                                                                        maelï
                                                                                                                                                                                                                                                     tru9I
                                                                                                                                                                                                                                                                         msel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                fnu4HI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 bbvI
                                                                 maell1
                                                                                                                                                                                                                                         nlallI
                                                                                                                                                                                                                                                                          DSPHI
                                                                                                                                                                                                                                                                                                                                                                                                              Invm/IIdun1
                                                                                                                                                                                                                                                          rcal
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                hha1/cfo1
                                                                                                                                                                                                                                                                                                                                                                                                                                                bsh12361
                                                                                                                                                                                                                                                                                                                                                                                                                                batuI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  hinpi
                                                                                 6101 ACGGGGAGTC AGGCAACTAT GGATGAACGA AATAGACAGA TCGCTGAGAT AGGTGCCTGA CTGATTAAGC
                                                                                                                                                                    mbol/ndell[dam-]
                                                  tru91
                                                                 msel
                                                                                                                                                                                                                                                                                                                                                                                               mbol/ndelI[dam-]
                                                                                                                                                                                                                        dpn I 1 [dam-]
                                                                                                                                                                                                       dpnI [dam+]
                                                                                                                                                                                                                                                         bstYI/xhoII bstYI/xhoII
                                                                                                                                                                                                                                         alwi[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                               dpnII[dam-]
               THE THE WAY WE THE THE
                                                                                                                                                                                                                                                                         alwi[dam-] mboli[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 bstY1/xhoII
                                                                                                                                                                                                                                                                                                                                                                                                                                                 alwi[dam-]
                                                                                                                                                                                                                                                                                                                                                                                                               dpnI [dam+]
                                                                                                                                                       sau3AI
                                   mn 1 1
                                                                                                                                                                                                                                                                                                                                                                                sau3AI
                                                                                                                                                                                        mbol/ndell[dam-]
                                             hgiCl
                                                                                                                                                                                                                                                                                                                                                               mbol/ndeII[dam-]
                                                                      banI
                                                                                                                                                                                                                          dpnII(dam-)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    dpn1[dam+] mbo11[dam-]
                                 mbol/ndell[dam-]
                                                                                                                                                                                                          dpn1[dam+]
                                                                                                                                        hphI
                                                                                                                                                                                                                                                                                                                                                                                                 dpnII[dam-]
                                                                                                                                                                                                                                                                                                                                                                                 dpn [ (dam+)
                                                                                                                                                                                                                                                                                                                                                                                                                    bstYI/xhoII
                                                                                                                                                                                                                                                                                                                                                                                                                                 alw1[dam-]
                                                                                                                                                                                                                                             ahalii/drai mael
                                                                                                                                                         raa]
                                                                                                                                                                        sau3A1
                                                                                                                                                                                                                                                                                                                                                                                                                                                     mbol/ndelI[dam-]
                                                                    dpn 11 [dam-]
ddet i dan 3AL
                                                                                                                                                                                                                                                                                                                                                 sau3AI
                                                    dpn 1 [dam+]
                                                                                                                                                                                                                                                                             msel msel
                                                                                                                                                                                                                                                                                                                                                                                                                                     sau3AI
                                                                                                                                                                                                                                                                                ahalil/dral
                                                                          fokl
                                                                                                                                                                                                                                               tru91
                                                                                                                                                                                                                                                                msel
                                                                            hinfI
                                                            plef
                                                                                                                                                                                                                                                                                                                                                          •
```

rmal mael CCGCTACCAG CGGTGGTTTG TTTGCCGGAT CAAGAGCTAC CAACTCTTTT TCCGAAGGTA ACTGGCTTCA GCAGAGCGCA GATACCAAAT ACTGTCCTTC GGCGATGGTC GCCACCAAAC AAACGGCCTA GTTCTCGATG GTTGAGAAAA AGGCTTCCAT TGACCGAAGT CGTCTCGCGT CTATGGTTTA TGACAGGAAG aagcaaggtg actegeagte tggggeatet tttetagttt eetagaagaa etetaggaaa aaaagaegeg eattagaega egaacgttg ttttttggt fnutHI hha I/cfoI hinpi eco57I bsrI maellI mbol/ndell[dam-] aluī dpnII[dam-] don! [dam+] alwI (dam-) sau3AI hpall nspl CCGCTACCAG CGGTGGTTTG acii nspBII

6301 TICGITCCAC IGAGCGICAG ACCCCGIAGA AAAGAICAAA GGAICTICIT GAGAICCTIT TITICIGCGC GIAATCIGCT GCTIGCAAAC AAAAAAACCA

dpnII[dam-]

. ddeI .hgaI

6501 TAGTGTAGCC GTAGTTAGGC CACCACTICA AGAACTCTGT AGCACCGCCT ACATACCTCG CTCTGCTAAT CCTGTTACCA GTGGCTGCTG CCAGTGGCGA ATCACATEGG CATCAATEGG GTGGTGAAGT TETTGAGACA TEGTGGEGGA TGTATGGAGG GAGACGATTA GGACAATGGT CACCGACGAC GGTCAECGGT bari fnu4HI bbvI bsrI maellI mnlI acil scfl haeIII/palI haeI belI

alw44I/Bn	hha1/cfo1	111966
apaLI/sno	hinpl acil	bsaWl
DmyI	phvI	hpall
DSTHKAI	fnu4III	Idsm
bsp1286	A STATE OF THE STA	THE THE THE THE
hg1A1/asp	meri	

품

TANGTEGIGT CTTACCGGGT TGGACTCAAG ACGATAGTA CCGGATAGG CGCAGCGGTC GGGCTGAACG GGGGGTTCGT GCACACAGCC CAGCTTGGAG ATCAGCACA ACCTGAGTTC TGCTATCAAT GGCCTATTCC GCGTGCCAG CCGAACTTGC CCCCAAGCA ACCTGAGTTC TGCTATCAAT GCCTATTCC GCGTGCCCAG CCGAACTTGC CCCCAAGCA CGTGTGTCGG GTCGAACCTC 6601 TAAGTCGTGT

plel

hpa I I Idsm dsav

Berri

ncil

fun4HI acii hpall Idsw ball **DSAWI** acil hha I/cfoI haeII scfI ddeI

6701 CGAACGACCT ACACCGAACT GAGATACCTA CAGCGTGAGC, ATTGAGAAAG CGCCACGCTT CCCGAAGGGA GAAAGCGGA CAGGTATCCG GTAAGCGGCA GCTTGCTGGA TGTGGCTTGA CTCTATGGAT GTCGCACTCG TAACTCTTTC GCGGTGCGAA GGGCTTCCCT CTTTCCGCCT GTCCATAGGC CATTCGCCGT

BCIFI

bstnI BCIFI dsaV **ecorii** MVAI **ecorii** bsaJI bstnI dsay MVal

6801 GGGTCGGAAC AGGAGABCGC ACGAGGGAGC TTCCAGGGGG AAACGCCTGG TATCTTTATA GTCCTGTCGG GTTTCGCCAC CTCTGACTTG AGCGTCGATT tagi hgal drdI mn 1 I apyI [dcm+] apy1[dcm+] aluI hinpi muli hha1/cfo1

CCCAGCCTTG TCCTCTCGCG TGCTCCCTCG AAGGTCCCCC TTTGCGGACC ATAGAAATAT CAGGACAGCC CAAAGCGGTG GAGATGAAC TCGCAGCTAA tru9I msel hinpi alul

IInad

asel/asnl/vspl AAAGCGGGCA GTGAGCGCAA CGCAATTAAT SIANI 6901 THIGHGATGC TCGTCAGGG GGCGGAGCCT ATGGAAAAAC GCCAGCTGC ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGGGGAA CGCAATTAAT AAACACTACG AGCAGTCCCC CCGCGTGGGA TACCTTTITG CGGTCGACCG TGCTGTCCAA AGGGCTGACC TTTCGCCCGT CACTGGGGTT GCGTTAATTA hha1/cfo1 acii berI deltal.PVU nspBII nlaIV acil sfant.

BCFFI MVAI

ecoRII nlaIV bstNI dsav

hgici apyi[dcm+] banl bsaJI

mn11

GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAGGGG ATAACAATTT CACACAGGAA CACTCAATGG AGTGAGTAAT CCGTGGGGTC CGAAATGTGA AATACGAAGG CCGAGCATAC AACACACCTT AACAGTGGCC TATTGTTAAA GTGTGTCCTT hpall 7001 GEGAGTEACC TCACTCATTA macili

Idsm

acil berBI

> aseI/asnI/vspI tru9I msel

GAATTAA asp700 XMUX 7101 ACAGCTATGA CCATGATTAC nlaIII alul

CTTAATT

TGTCGATACT GGTACTAATG

>length: 7127

Figure 16Q

Figure 17

Figure 18

Figure 19

Figure 20B

Figure 20A

```
1 MICOKFOVVLLHWEFIYVIJAFNLSYPIJPWRFKLSCMPPNSTYDYFLLP
1 MMCOKFYVVLLHWEFLYVIAALNLAYPISPWKFKLFCGPPNTTDDSFLSP
hWSXR
mWSXR
       51 AGLSKNISNSNGHYEIT AV EPKFNSSGI HFSNLSKTITFHCCFRSEODRNCS
       51 A GAPNNASALKGASEAIVEAKFNSSGIYVPELSKTVFHCCFGNEOGONCS
      101 L CADNIEGKTF VSTVNSLVFOOIDANWNIOCWLKGDLKLFICY VESLFKN
      101 ALTONTEGKTLASIVIKASVFROLGVNWDIJECWMKGDLTLFICHMEPLPKN
      151 LFRNYNYKVHLLYVLPEVLEDSPLVPQKGSFQMVHCNCSVHECCECLVPV
151 PFKNYDSKVHLLYDLPEVIDDSPLPPLKDSFOTVQCNCSLRG-CECHVPV
      201 PITAKLNDTLLMCLKITSGGVIFQSPLMSVQPINMVKPDPPLGLHMEITDD
         PRAKLNY ALLMYLEI TSAGVSFOSPLMSLOPMLVVKPDPPLGLHMEVTDD
         GNLKISWSSPPLVPFPLQYQVKYSENSTTV IREADKIVSATSLLVDS I LP
      250 GNLKISWDSQTMAPFPLQYQVKYLENS - TIVREALAELIVSATSLLVDSVLP
         GSSYEVQVRGKRLDGPG I WSDWSTPRVFTTQDVI I YFPPKILTSVGSNVSF
GSSYEVQVRSKRLDGSGVWSDWSSPQVFTTQDVVYFPPKILTSVGSNASF
         HCIYKKENKIIVPSKEIVWWMNLAEKIPOSOYDVVSDHVSKVTFFNLNEITK
         HCIYKNENO I JISKO I V W W R N LAEKIPEIO Y SIV SO R V SK V TF S N L KATR
         PRGKFTYDAVYCCNE HECHHRYAELYVIDVNINISCETDGYLTKMTCRWS
         PRGKFTYDAVYCCNE QACHHRYAELYVIDVNINISCETDGYLTKMTCRWS
      451 TSTIQSLAESTLQLRYHRSSLYCISDIPSIHPISEPKDCIYLQISDGFYECII
         PSTIOSLVGSTVQLRYHRRSLYCPDSPSIHPTSEPKNCVLQRDGFYECVF
      501 QPIFLLSGYTMWIRINHSLGSLDSPPTCVLPDSVVKPLPPSISVKAEITIIN
         QP I F L L S G Y T M W I R I N H S L G S L D S P P T C V L P D S V V K P L P P S N V K A E I T V N
      SS1 IGLLKISWEKPVFPENNLOFOIRYGLSGKEVQWKMYEVYDAKSKSVSLIPV
        TGLLK VSWEKPVFPENNLOFOIRYGLSGKE I LOWK THE VFDAKSKS AS LILV
      601 POLCAVYAVQVRCKRLDGLGYWSNWSNPAYTVVMDIKVPMRGPEFWRIIN
         SDLCAVYVVOVRCRRLDGLGYWSWWSSPAYTLVMDVKVPMRGPEFWRKMD
         GDIT MKKEKNVTLLWKPLMKNDSLCSVQRYVII NHHHTISCNGTWSEDVGNHTK
      649 GDVTKKERNVTLLWKPLTKNDSLCSVRRYVVKHRTAHNGTWSEDVGNRTN
      701 FTFLWTEQAHTVTVLAINSIGASVANFNLTFSWPMSKVNIVQSLSAYPLN
         LTFLWTEPAHTVTVLAVNSLGASLVNFNLTFSWPMSKVSAVESLSAYPLS
      751 SSCVIVSWILSPSDYKLMYFIIEWKNINEDGEIKWLRISSSVKKYYIHDH
749 SSCVILSWTLSPDDYSLLYLVIEWKILNEDDGMKWLRIPSNVKKFYIHDN
      BO1 FIPIEKYOFSLYPIFMEGVGKPKIINSFTODDIEKHOSDAGLYVIVPVII
      799 FIPIEKYOFSLYPVEMEGVGKPKIINGETKOALDKOONDAGLYVIVPILI
      851 SSS ILLLGTLL I SHORMKKLFWEDVPNPKNCSWAQGLNFQKRTDIL
      849 SSCVLLLGTLLISHORMKKLFWDDVPNPKNCSWAOGLNFOKRTDTL
```


029A-024A

Figure 22

U8/7794

Figure 23

Figure 24

17.scfv	1 QVRLQQSGGGLVQPGRSLRLSCAASGFTFD <u>DYAMH</u> WVRQAPGKGLEWVS <u>G</u>
3.scfv	1 EVQLVQSGAEVKKPGASVKVSCKAS <i>GYTFT<u>GYYMY</u>WVR</i> QAPGQGLEWMG <u>W</u>
4.scfv	1 EVQLVQSGAEVKKPGESLKISCQGS <i>GFTFS<u>SYKMN</u>WVR</i> QAPGKGLEWMG <u>G</u>
	CDR H1
17.scfv	51 <u>MTWNSGSIGYADSVKG</u> RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARE <i>P</i>
3.scfv	51 INPNSCOTNYAOKFOGRVTMTRDTSIGTAYMELSRLSSDDTAVYYCARDR
4.scfv	51 <u>IIPIFGTANYAOKFOG</u> RVTITADESTSTAYMELSSLRSEDTAVYYCAR <u>DR</u>
	CDR H2
17.scfv	101 <u>HNTDAFDI</u> WGRGTLVTVSSGGGPGGGSGGGGDVVMTQSP
3.scfv	101 YYGSSAYHRGSYYMDYWGRGTLVTVSSGGGGTGGGGSGGGGS-SELTQDP
4.scfv	101 <u>VVVPATSLRGGMDV</u> WGQGTTVTVSSGGGGSGGGGGGGGGGSQSVLTQPA
	CDR H3
17.scfv	143 SFLSAFVGDTITITCRASOGIYNYLAWYQQKPGKAPKLLIYAASTLO
3.scfv	150 A-VSVALGQTVRITC <u>OGDSLRSY-YAS</u> WYQQKPGQAPVLVIY <u>GKNNRP</u>
4.scfv	149 S-VSGSPGQSITISC <u>TG<i>TSSDVG</i>GYNYVS</u> WYQQHPGKAPKLMIY <u>EGS</u> KRP
	CDR L1 CDR L2
17.scfv	190 <u>S</u> GVPSRFSGSGSGTEFTLTISSLQPEDFGTYYC <u>OOLISYPLT</u> FGGGTK
3.scfv	196 SGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNHVVFGGGTK
4.scfv	198 <u>S</u> GVSNRFSGSKSGSTASLTISGLQAEDEADYYC <u>SSYTTRSTR-V</u> FGGGTK
	CDR L3
17.scfv	238 VEIK
3.scfv	246 LTVL
4.scfv	247 LTVL

Figure 25