

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method for the treatment of cancerous cell growth mediated by RAF kinase, comprising administering a compound of Formula I:

or a pharmaceutically acceptable salt thereof, wherein

D is $-NH-C(O)-NH-$,

A is a substituted moiety of up to 40 carbon atoms of the formula: $-L-(M-L^1)_q$, where L is a 5 or 6 membered cyclic structure bound directly to D, L^1 comprises a substituted cyclic moiety having at least 5 members, M is a bridging group having at least one atom, q is an integer of from 1-3; and each cyclic structure of L and L^1 contains 0-4 heteroatoms which are members of the group consisting of nitrogen, oxygen or and sulfur, and

B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member cyclic structure bound directly to D containing 0-4 heteroatoms which are members of the group consisting of nitrogen, oxygen or and sulfur,

wherein L^1 is substituted by at least one substituent selected from the group consisting of $-SO_2R_x$, $-C(O)R_x$ or and $-C(NR_y)R_z$,

R_y is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing one or more heteroatoms which are N, S, or O selected from N, S and O and optionally halosubstituted, up to per-halo per-halosubstitution,

R_z is hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms which are N, S, or O selected from N, S and O and optionally substituted by halogen, hydroxy or a and carbon based substituents of up to 24 carbon atoms[5] which optionally contain contains one or more heteroatoms which are N, S, or O selected from N, S and O and is

are optionally substituted by halogen;

R_x is independently chosen from R_z moieties or is R_z or NR_aR_b where R_a and R_b are

a) independently

i) hydrogen,

ii) a carbon based moiety of up to 30 carbon atoms optionally containing one or more heteroatoms which are selected from N, S or O and optionally substituted by halogen, hydroxy or a and carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contain contains one or more heteroatoms which are selected from N, S or O and is are optionally substituted by halogen, or

iii) $-OSi(R_f)_3$ where R_f is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing one or more heteroatoms which are N, S or O selected from N, S and O and optionally substituted by halogen, hydroxy or a and carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contain contains one or more heteroatoms which are N, S, or O selected from N, S and O and is are optionally substituted by halogen; or

b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms which are selected from N, S or O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms which are selected from N, S or O substituted by halogen, hydroxy or a carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contain contains one or more heteroatoms which are N, S, or O selected from N, S and O and is are optionally substituted by halogen; or

c) one of R_a or R_b is $-C(O)-$, a C_1-C_5 divalent alkylene group or a substituted C_1-C_5 divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the one or more substituents substituent(s) of the substituted C_1-C_5 divalent alkylene group are selected from the group consisting of halogen, hydroxy, or a and carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contain contains one or

more heteroatoms which are N, S, or O selected from N, S and O and is are optionally substituted by halogen;

where B is substituted, L is substituted or L¹ is additionally substituted, the one or more substituents are selected from the group consisting of halogen, up to per-halosubstitution per-halo, and W_nH, where n is 0-3;

wherein each W is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, -Q-Ar, or a and carbon based moeity moieties of up to 24 carbon atoms[;] optionally containing one or more heteroatoms which are N, S, or O selected from N, S and O and optionally substituted by one or more substituents which are independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -OR⁷, -SR⁷, -NR⁷R⁷, -NO₂, -NR⁷C(O)R⁷, -NR⁷C(O)OR⁷ or and halogen up to per-halosubstitution per-halo; with each R⁷ independently being selected from H or a carbon based moiety of up to 24 carbon atoms[;] optionally containing one or more heteroatoms which are N, S, or O selected from N, S and O and optionally substituted by halogen,

wherein Q is -O-, -S-, -N(R⁷)-, -(CH₂)_m-, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a-, -CX^a-, -S-(CH₂)_m- or and -N(R⁷)(CH₂)_m-, where m= 1-3, and X^a is halogen; and

Ar is a 5- or 6-member aromatic structure containing 0-2 heteroatoms which are members selected from the group consisting of nitrogen, oxygen or and sulfur, which is optionally substituted by halogen, up to per-halosubstitution, and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, or and a carbon based moiety of up to 24 carbon atoms[;] optionally containing one or more heteroatoms which are N, S, or O selected from N, S and O and optionally substituted by one or more substituents which are selected from the group consisting of -CN, -CO₂R⁷, -COR⁷, -C(O)NR⁷R⁷, -OR⁷, -SR⁷, -NO₂, -NR⁷R⁷, -NR⁷C(O)R⁷, or and -NR⁷C(O)OR⁷, with each R⁷ being independently as defined above.

2. (Currently Amended) A method as in claim 1 wherein:

R_y is hydrogen, C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O selected from N, S and O, C₇₋₂₄ aralkyl, C₇₋₂₄ alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from N, S and O, substituted C_{6-C₁₄} aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O selected from N, S and O, substituted C₇₋₂₄ alkaryl or substituted C_{7-C₂₄} aralkyl, where R_y is a substituted group, it is substituted by halogen up to per-halo per-halosubstitution,

R_z is hydrogen, C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, C₃₋₁₀ cycloalkyl having 0-3 which are N, S or O heteroatoms, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C_{3-C₁₂} hetaryl having 1-3 heteroatoms which are N, S or O selected from S, N and O, C₇₋₂₄ alkaryl, C₇₋₂₄ aralkyl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C_{6-C₁₄} aryl, substituted C_{3-C₁₀} cycloalkyl having 0-3 heteroatoms which are N, S or O selected from S, N and O, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O selected from S, N and O, substituted C₇₋₂₄ alkaryl or substituted C_{7-C₂₄} aralkyl where R_z is a substituted group, it is substituted by halogen up to per-halosubstitution per-halo, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, S and N, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O selected from N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted per-halo alkyl, C_{6-C₁₂} halosubstituted aryl up to per-halosubstituted per-halo aryl, C_{3-C₁₂} halosubstituted cycloalkyl up to per-halosubstituted per-halo cycloalkyl having 0-3 heteroatoms which are N, S or O selected from N, S and O, halosubstituted C_{3-C₁₂} hetaryl up to per-halosubstituted per-halo hetaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S, halosubstituted C_{7-C₂₄} aralkyl up to per-halosubstituted per-halo aralkyl, halosubstituted C_{7-C₂₄} alkaryl up to per-halosubstituted per-halo alkaryl, and -C(O)R_g,

R_a and R_b are,

a) independently

i) hydrogen,

ii) a carbon based moiety ~~which is selected from the group consisting of~~
C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms ~~which are N, S or O selected from O, N and S, C₃₋₁₂ C₃₋₁₀~~
cycloalkyl having 0-3 heteroatoms ~~which are N, S, O selected from N, S and O, C₇₋₂₄ aralkyl, C_{7-C₂₄} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from N, S and O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O selected from N, S and O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,~~

~~where R_a or R_b are substituted, the substituents are substituted by halogen up to per-halosubstituted per-halo, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, S and N, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O selected from N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted per-halo alkyl, C_{6-C₁₂} halosubstituted aryl up to per-halosubstituted per-halo aryl, C_{3-C₁₂} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O selected from N, S and O, up to per-halosubstituted per-halo cycloalkyl, halosubstituted C_{3-C₁₂} hetaryl up to per-halosubstituted per-halo heteroaryl, halosubstituted C_{7-C₂₄} aralkyl up to per-halosubstituted per-halo aralkyl, halosubstituted C_{7-C₂₄} alkaryl up to per-halosubstituted per-halo alkaryl, or and -C(O)R_g ; or~~

iii) -OSi(R_f)₃ where R_f is hydrogen, C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, C_{3-C₁₀} cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, S and N, C₆₋₁₂ aryl, C_{3-C₁₂} hetaryl having 1-3 heteroatoms which are N, S or O selected from O, S and N, C₇₋₂₄ aralkyl, substituted C₁₋₁₀ alkyl, substituted C_{1-C₁₀} alkoxy, substituted C_{3-C₁₂} cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, S and N, substituted C_{3-C₁₂} heteroaryl having 1-3 heteroatoms which are N, S or O selected from O, S and N, substituted C₆₋₁₂ aryl, or and substituted C₇₋₂₄ alkaryl,

where R_f is a substituted group it is substituted halogen up to per-halosubstitution per-halo, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, S and N, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O selected from N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C_{7-C24} alkaryl, C_{7-C24} aralkyl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted per-halo alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted per-halo aryl, C_{3-C12} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O selected from N, S and O, up to per-halosubstituted per-halo cycloalkyl, halosubstituted C_{3-C12} hetaryl up to per-halosubstituted per-halo heteroaryl, halosubstituted C_{7-C24} aralkyl up to per-halosubstituted per-halo aralkyl, halosubstituted C_{7-C24} alkaryl up to per-halo substituted per-halo alkaryl, or and -C(O)R_g,

or

b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O selected from N, S and O with substituents which are selected from the group consisting of halogen up to per-halosubstitution per-halo, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, S and N, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O selected from N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C_{7-C24} alkaryl, C_{7-C24} aralkyl, halosubstituted C₁₋₆ alkyl up to per-halosubstituted per-halo alkyl, halosubstituted C_{6-C12} aryl up to per-halosubstituted per-halo aryl, halosubstituted C_{3-C12} cycloalkyl having 0-3 heteroatoms which are N, S or O selected from N, S and O, up to per-halosubstituted per-halo cycloalkyl, halosubstituted C_{3-C12} hetaryl up to per-halosubstituted per-halo heteroaryl, halosubstituted C_{7-C24} aralkyl up to per-halosubstituted per-halo aralkyl, halosubstituted C_{7-C24} alkaryl up to per-halosubstituted per-halo alkaryl, or and -C(O)R_g,

or

c) one of R_a or R_b is -C(O)-, a C_{1-C5} divalent alkylene group or a substituted C_{1-C5} divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5

members,

wherein the substituents of the substituted C₁-C₅ divalent alkylene group are selected from the group consisting of halogen, hydroxy, C₁-₁₀ alkyl, C₃-₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, S and N, C₃-₁₂ hetaryl having 1-3 heteroatoms which are N, S or O selected from N, S and O, C₁-₁₀ alkoxy, C₆-₁₂ aryl, C₇-C₂₄ alkaryl, C₇-C₂₄ aralkyl, C₁-₆ halosubstituted alkyl up to per-halosubstituted per-halo alkyl, C₆-C₁₂ halosubstituted aryl up to per-halosubstituted per-halo aryl, C₃-C₁₂ halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O selected from N, S and O, up to per-halosubstituted per-halo cycloalkyl, halosubstituted C₃-C₁₂ heteroaryl hetaryl up to per-halosubstituted per-halo heteroaryl, halosubstituted C₇-C₂₄ aralkyl up to per-halosubstituted per-halo aralkyl, halosubstituted C₇-C₂₄ alkaryl up to per-halosubstituted per-halo alkaryl, or and -C(O)R_g,

where R_g is C₁-₁₀ alkyl; -CN, -CO₂R_d, -OR_d, -SR_d, -NO₂, -C(O)R_e, -NR_dR_e, -NR_dC(O)OR_e or and -NR_dC(O)R_e, or and R_d and R_e are independently selected from the group consisting of hydrogen, C₁-₁₀ alkyl, C₁-₁₀ alkoxy, C₃-₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, N and S, C₆-₁₂ aryl, C₃-C₁₂ hetaryl with 1-3 heteroatoms which are N, S or O selected from O, N and S and C₇-C₂₄ aralkyl, C₇-C₂₄ alkaryl, up to per-halosubstituted per-halo-substituted C₁-C₁₀ alkyl, up to per-halosubstituted per-halo-substituted C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, N and S, up to per-halosubstituted per-halo substituted C₆-C₁₄ aryl, up to per-halosubstituted per-halo substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S, halosubstituted C₇-C₂₄ alkaryl up to per-halosubstituted per-halo alkaryl, or and up to per-halosubstituted per-halo substituted C₇-C₂₄ aralkyl,

W is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, S and N, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₇-C₂₄ aralkyl, C₃-C₁₂ heteroaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S, C₄-C₂₃ alkheteroaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S, substituted C₁-C₁₀ alkyl, substituted

~~C₁-C₁₀ alkoxy, substituted C₂-C₁₀ alkenyl, substituted C₁-C₁₀ alkenoyl, substituted C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, N and S, substituted C₆-C₁₂ aryl, substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S, substituted C₇-C₂₄ aralkyl, substituted C₇-C₂₄ alkaryl, substituted C₄-C₂₃ alkheteroaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S, or and -Q-Ar;~~

~~R⁷ is independently selected from H, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, S and N, C₆-C₁₄ aryl, C₃-C₁₃ hetaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S, C₇-C₁₄ alkaryl, C₇-C₂₄ aralkyl, C₄-C₂₃ alkheteroaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S, up to per-halo substituted C₁-C₁₀ alkyl, up to per-halo substituted C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, N and S, up to per-halo substituted C₆-C₁₄ aryl, up to per-halo substituted C₃-C₁₃ hetaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S, up to per-halo substituted C₇-C₂₄ aralkyl, up to per-halo substituted C₇-C₂₄ alkaryl, or and up to per-halo substituted C₄-C₂₃ alkheteroaryl; and~~

~~each Z is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, N and S, C₆-C₁₄ aryl, C₃-C₁₃ hetaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S, C₇-C₂₄ alkaryl, C₇-C₂₄ aralkyl, C₄-C₂₃ alkheteroaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S, substituted C₁-C₁₀ alkyl, substituted C₁-C₁₀ alkoxy, substituted C₂-C₁₀ alkenyl, substituted C₁-C₁₀ alkenoyl, substituted C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O selected from O, N and S, substituted C₆-C₁₂ aryl, substituted C₇-C₂₄ alkaryl, substituted C₇-C₂₄ aralkyl or and substituted C₄-C₂₃ alkheteroaryl having 1-3 heteroatoms which are N, S or O selected from O, N and S;~~

~~wherein if Z is a substituted group, the one or more substituents are selected from the group consisting of -CN, -CO₂R⁷, -COR⁷, -C(O)NR⁷R⁷, -OR⁷, -SR⁷, -NO₂, -NR⁷R⁷, -NR⁷C(O)R⁷, or and -NR⁷C(O)OR⁷.~~

3. (Currently Amended) A method as in claim 2 4 wherein M is one or more bridging groups which are selected from the group consisting of -O-, -S-, -N(R⁷)-, -(CH₂)_m-, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a-, -CX^a₂-, -S-(CH₂)_m- or and -N(R⁷)(CH₂)_m-, where m= 1-3, X^a is halogen and R⁷ is as defined in claim 2 4.

4. Cancelled

5. Cancelled

6. (Currently Amended) A method of claim 2 4 wherein B of Formula I is an unsubstituted phenyl group, an unsubstituted pyridyl group, an unsubstituted pyrimidinyl, a phenyl group substituted by one or more substituents which are a substituent selected from the group consisting of halogen or and W_n W_n wherein W is as defined in claim 2 and n is 0-3 and n are as defined in claim 1, a pyrimidinyl group substituted by one or more substituents which are halogen or W_n wherein a substituent selected from the group constituting of halogen and W_n, whereas W is as defined in claim 2 and n is 0-3 and n are as defined in Claim 1, or a substituted pyridyl group substituted by one or more substituents which are halogen or W_n a substituent selected from the group consisting of halogen and W_n wherein W is as defined in claim 2 and n is 0-3 and n are as defined in claim 1.

7. (Currently Amended) A method of claim 91 6 wherein B of Formula I is a substituted phenyl group, a substituted pyrimidinyl group, or substituted pyridyl group substituted 1 to 3 times by 1 or more substituents which are selected from the group consisting of -CN, halogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, -OH, up to per-halosubstituted per halo substituted C₁-C₁₀ alkyl, up to per-halosubstituted per halo substituted C₁-C₁₀ alkoxy or phenyl substituted by halogen up to per-halosubstitution per halo.

8. (Currently Amended) A method of claim 2 †, wherein L, the six member cyclic structure bound directly to D, is a substituted or unsubstituted 6 member aryl moiety or a substituted or unsubstituted 6 member hetaryl moiety, wherein said hetaryl moiety has 1 to 4 members ~~which are selected from the group of heteroatoms consisting of nitrogen, oxygen or and sulfur with the balance of said hetaryl moiety being carbon, wherein the one or more substituents are selected from the group consisting of halogen or and W_n W_n wherein W is as defined in claim 2 and n is 0-3 and n are as defined in claim 1.~~

9. (Currently Amended) A method of claim 91 §, wherein L, the 6 member cyclic structure bound directly to D, is a substituted phenyl, unsubstituted phenyl, substituted pyrimidinyl, unsubstituted pyrimidinyl, substituted pyridyl or unsubstituted pyridyl group.

10. (Currently Amended) A method of claim 1, wherein said substituted cyclic moiety L¹ comprises ~~pyridinyl a 5-to-6 membered aryl moiety or hetaryl moiety, wherein said heteraryl moiety comprises 1 to 4 members selected from the group of heteroatoms consisting of nitrogen, oxygen or and sulfur.~~

11. (Currently Amended) A method of claim 2, wherein said substituted cyclic moiety L¹ is ~~phenyl, pyridinyl or pyrimidinyl.~~

12. (Currently Amended) A method of claim 3, wherein said substituted cyclic moiety L¹ is ~~phenyl, pyridinyl or pyrimidinyl.~~

13. (Currently Amended) A method of claim 6, wherein said substituted cyclic moiety L¹ is ~~phenyl, pyridinyl or pyrimidinyl.~~

14. Cancelled

15. (Currently Amended) A method of claim 7, wherein said substituted cyclic moiety L¹ is phenyl, pyridinyl or pyrimidinyl.

16. Cancelled

17. (Currently Amended) A method of claim 8, wherein said substituted cyclic moiety L¹ is phenyl, pyridinyl or pyrimidinyl.

18. (Currently Amended) A method of claim 13, wherein M is one or more bridging groups which are selected from the group consisting of -O-, -S-, -N(R⁷)-, -(CH₂)_m-, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a-, -CX^a₂-, -S-(CH₂)_m- or and -N(R⁷)(CH₂)_m-, where m= 1-3, X^a is halogen and R⁷ is hydrogen or a carbon based moiety of up to 24 carbon atoms, optionally containing one or more heteroatoms which are N, S or O selected from N, S and O and optionally substituted by halogen up to per-halosubstitution per-halo.

19. (Currently Amended) A method of claim 15, wherein M is one or more bridging groups which are selected from the group consisting of -O-, -S-, -N(R⁷)-, -(CH₂)_m-, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a-, -CX^a₂-, -S-(CH₂)_m- or and -N(R⁷)(CH₂)_m-, where m= 1-3, X^a is halogen and R⁷ is hydrogen or a carbon based moiety of up to 24 carbon atoms, optionally containing one or more heteroatoms which are N, S or O selected from N, S and O and optionally substituted by halogen up to per-halosubstitution per-halo.

20. Cancelled

21. (Currently Amended) A method of claim 17, wherein M is one or more bridging groups which are selected from the group consisting of -O-, -S-, -N(R⁷)-, -(CH₂)_m-, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a-, -CX^a₂-, -S-(CH₂)_m- or and -N(R⁷)(CH₂)_m-, where m= 1-3, X^a is halogen and R⁷ is hydrogen or a carbon based moiety of up to 24 carbon atoms, optionally containing one or more heteroatoms which are N, S and O selected from N, S and O and optionally substituted by halogen up to per-halosubstitution per-halo.

22. Cancelled

23. Cancelled

24. Cancelled

25. Cancelled

26. Cancelled

27. (Currently Amended) A method of claim 21 wherein L¹ is additionally substituted 1 to 3 times by one or more substituents which are selected from the group consisting of C₁-C₁₀ alkyl, up to per-halosubstituted per-halo-substituted C₁-C₁₀ alkyl, -CN, -OH, halogen, C₁-C₁₀ alkoxy and up to per-halosubstituted per-halo-substituted C₁-C₁₀ alkoxy.

28. (Currently Amended) A method of claim 24 wherein L¹ is substituted by -C(O)R_x.

29. Cancelled

30. Cancelled

31. Cancelled

32. (Currently Amended) A method of claim 24 wherein L¹ is pyridinyl substituted

by $-C(O)R_x$ or $-SO_2R_x$, wherein R_x is NR_aR_b .

33. (Currently Amended) A method of claim 13 wherein L^1 is pyridinyl substituted by $-C(O)R_x$ or $-SO_2R_x$, wherein R_x is NR_aR_b , and R_a and R_b are

a) independently

i) hydrogen,

ii) a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms which are N, S or O selected from N, S and O and optionally substituted by halogen, hydroxy or a and carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contain contains one or more heteroatoms which are N, S or O selected from N, S and O and is are optionally substituted by halogen, or

$-OSi(R_f)_3$ where R_f is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms which are N, S or O selected from N, S and O and optionally substituted by halogen, hydroxy or a and carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contain contains one or more heteroatoms which are N, S or O selected from N, S and O and is are optionally substituted by halogen; or

b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O selected from N, S and O substituted by halogen, hydroxy or a carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contain contains one or more heteroatoms which are N, S or O selected from N, S and O and is are optionally substituted by halogen; or

c) one of R_a or R_b is $-C(O)-$, a C_1-C_5 divalent alkylene group or a substituted C_1-C_5 divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituent substituents of the substituted C_1-C_5 divalent alkylene group are selected from the group consisting of halogen, hydroxy, or a and carbon based substituent

~~substituents of up to 24 carbon atoms[,] which optionally contain contains one or more heteroatoms which are N, S and O selected from N, S and O and is are optionally substituted by halogen.~~

34. Cancelled

35. Cancelled

36. Cancelled

37. (Currently Amended) A method of claim 21 wherein L^1 is substituted by $-C(O)R_x$ or $-SO_2R_x$, wherein R_x is NR_aR_b and R_a and R_b are independently hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms which are N, S or O selected from N, S and O and optionally substituted by halogen, hydroxy or a and carbon based substituent substituents of up to 24 carbon atoms [,] which optionally contain contains one or more heteroatoms which are N, S or O selected from N, S and O and is are optionally substituted by halogen.

38. (Currently Amended) A method for the treatment of cancerous cell growth mediated by RAF kinase in a human or other mammal in need thereof, comprising administering to a human or other mammal in need thereof a compound of Formula I:

or a pharmaceutically acceptable salt thereof in a pharmaceutical composition further comprising a pharmaceutically acceptable carrier, wherein

D is $-NH-C(O)-NH-$,

A is a substituted moiety of up to 40 carbon atoms of the formula: $-L-(M-L^1)_q$, where L is a 6 membered aryl moiety or a 6 membered hetaryl moiety bound directly to D, L^1 comprises a substituted cyclic moiety having at least 5 members, M is a bridging group having at

least one atom, q is an integer of from 1-3; and each cyclic structure of L and L¹ contains 0-4 heteroatoms which are members of the group consisting of nitrogen, oxygen or and sulfur, and

B is a substituted or unsubstituted, phenyl, pyridyl or pyrimidinyl group up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6 member cyclic structure bound directly to D containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur,

wherein L¹ is substituted by at least one substituent which is selected from the group consisting of -SO₂R_x, -C(O)R_x or and -C(NR_y) R_z,

R_y is hydrogen or C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are O, N or S, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C24} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl, a carbon-based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally halosubstituted, up to per halo,

R_z is hydrogen or substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C12} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, halosubstituted C_{3-C12} hetaryl up to per-halosubstituted heteroaryl, or a carbon-based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon-based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;

R_x is independently chosen from the R_z moieties or is R_z or NR_aR_b where R_a and R_b are

a) independently

i) hydrogen,

ii) C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are from N, S or O, C₇₋₂₄ aralkyl, C_{7-C24} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl.

where R_a or R_b is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C12} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, halosubstituted C_{3-C12} hetaryl up to per-halosubstituted heteroaryl, or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen, or

iii) -OSi(R_f)₃ where R_f is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C24} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O,

substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where R_f is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C₁₂} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C₁₂} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, halosubstituted C_{3-C₁₂} hetaryl up to per-halosubstituted heteroaryl,

or

b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O selected from N, S and O substituted by halogen, or hydroxy or C_{1-C₁₀} alkyl, C_{1-C₁₀} alkoxy, C_{3-C₁₀} cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C₂₄} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where the substituent on the 5-7 member heterocyclic structure is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C₁₂} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C₁₂} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, halosubstituted C_{3-C₁₂} hetaryl up to per-halosubstituted heteroaryl; or hydroxy or carbon-based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;

c) one of R_a or R_b is -C(O)-, a C₁-C₅ divalent alkylene group or a substituted C₁-C₅ divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C₁-C₅ divalent alkylene group are halogen, hydroxy C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₆-C₁₂ aryl, C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇-C₂₄ aralkyl, C₇-C₂₄ alkaryl, substituted C₁-C₁₀ alkyl, substituted C₁-C₁₀ alkoxy, substituted C₃-C₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆-C₁₂ aryl, substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇-C₂₄ aralkyl, or substituted C₇-C₂₄ alkaryl,

where the substituent on the C₁-C₅ divalent alkylene is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁-C₁₀ alkyl, C₃-C₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁-C₁₀ alkoxy, C₆-C₁₂ aryl, C₁-C₆ halosubstituted alkyl up to per-halosubstituted alkyl, C₆-C₁₂ halosubstituted aryl up to per-halosubstituted aryl, C₃-C₁₂ halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, halosubstituted C₃-C₁₂ hetaryl up to per-halosubstituted heteroaryl,

~~selected from the group consisting of halogen, hydroxy, and carbon-based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;~~

where B is substituted, L is substituted or L¹ is additionally substituted, the substituents are ~~selected from the group consisting of halogen, up to per-halosubstitution per-halo, and W_n W_n, where n is 0-3;~~

wherein each W is independently ~~selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, -Q-Ar, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₆-C₁₂ aryl, C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇-C₂₄ aralkyl, C₇-C₂₄ alkaryl, substituted C₁-C₁₀ alkyl, substituted C₁-C₁₀ alkoxy,~~

substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

wherein W is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C₁₂} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C₁₂} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, halosubstituted C_{3-C₁₂} hetaryl up to per-halosubstituted heteroaryl,

-and carbon based moieties of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents independently selected from the group consisting of CN, CO₂R⁷, C(O)R⁷, C(O)NR⁷R⁷, OR⁷, SR⁷, NR⁷R⁷, -NO₂, NR⁷C(O)R⁷, NR⁷C(O)OR⁷ and halogen up to per-halo; with each R⁷ independently selected from H or a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen;

wherein Q is -O-, -S-, -N(R⁷)-, -(CH₂)_m- , -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a-, -CX^a₂-, -S-(CH₂)_m- or and -N(R⁷)(CH₂)_m- , where m= 1-3, and X^a is halogen;

Ar is a 5- or 6-member aromatic structure containing 0-2 heteroatoms which are members selected from the group consisting of nitrogen, oxygen or and sulfur, which is optionally substituted by halogen, up to per-halosubstitution per-halo, and is optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -NO₂, -OR⁷, -SR⁷ -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, C_{1-C₁₀} alkyl, C_{1-C₁₀} alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from O, N and S, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C₂₄} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl,

substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where Z is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C₁₂} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C₁₂} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, halosubstituted C_{3-C₁₂} hetaryl up to per-halosubstituted heteroaryl;

and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents are selected from the group consisting of CN, CO₂R⁷, COR⁷, C(O)NR⁷R⁷, OR⁷, SR⁷, NO₂, NR⁷R⁷, -NR⁷C(O)R⁷, and NR⁷C(O)OR⁷, with R⁷ as defined above; and
wherein M is one or more bridging groups which are selected from the group consisting of -O-, -S-, -N(R⁷)-, -(CH₂)_m-, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m-CHX^a-, -CX^a₂-, -S-(CH₂)_m- or and -N(R⁷)(CH₂)_m-, where m= 1-3, and X^a is halogen.

39. (Currently Amended) A method for the treatment of cancerous cell growth mediated by RAF kinase in a human or other mammal in need thereof, comprising administering to a human or other mammal in need thereof a compound of Formula I:

or a pharmaceutically acceptable salt thereof in a pharmaceutical composition further comprising a pharmaceutically acceptable carrier, wherein

D is -NH-C(O)-NH-,

A is a substituted moiety of up to 40 carbon atoms of the formula: -L-(M-L¹)_q, where L is a substituted or unsubstituted phenyl pyridinyl moiety bound directly to D, L¹ comprises a substituted phenyl, pyridinyl or pyrimidinyl moiety, M is a bridging group having at least one atom, q is an integer of from 1-3; and

B is a substituted or unsubstituted phenyl or pyridinyl pyridine group bound directly to D, wherein L¹ is substituted by one or more substituents which are at least one substituent selected from the group consisting of -SO₂R_x, -C(O)R_x or and -C(NR_y) R_z,

R_y is hydrogen or C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C24} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where R_y is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C12} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, halosubstituted C_{3-C12} hetaryl up to per-halosubstituted heteroaryl;

a carbon-based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally halosubstituted, up to per halo, and ;

R_z is hydrogen or C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C24} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where R_z is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C12}

halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, or halosubstituted C₃-C₁₂ hetaryl up to per-halosubstituted heteroaryl,

a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;

R_x is independently chosen from the R_z moieties or is R_z or NR_aR_b where R_a and R_b are

a) independently

i) hydrogen,

ii) C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C24} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where R_x is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C12} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, or halosubstituted C_{3-C12} hetaryl up to per-halosubstituted heteroaryl,

a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen, or

iii) -OSi(R_f)₃ where R_f is hydrogen or C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are

N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C₂₄} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C_{7-C₂₄} alkaryl,

where R_f is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C₁₂} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C₁₂} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, halosubstituted C_{3-C₁₂} hetaryl up to per-halosubstituted heteroaryl, a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or

b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O selected from N, S and O substituted by halogen, hydroxy or C_{1-C₁₀} alkyl, C_{1-C₁₀} alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C₂₄} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C_{7-C₂₄} alkaryl,

where the substituent on the 5-7 member heterocyclic structure is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C₁₂} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C₁₂} halosubstituted cycloalkyl having 0-3

heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, or halosubstituted C₃-C₁₂ hetaryl up to per-halosubstituted heteroaryl,

~~carbon-based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;~~ or

c) one of R_a or R_b is -C(O)-, a C₁-C₅ divalent alkylene group or a substituted C₁-C₅ divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C₁-C₅ divalent alkylene group are selected from the group consisting of halogen, hydroxy, and or a C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₆-C₁₂ aryl, C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇-C₂₄ aralkyl, C₇-C₂₄ alkaryl, substituted C₁-C₁₀ alkyl, substituted C₁-C₁₀ alkoxy, substituted C₃-C₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆-C₁₂ aryl, substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇-C₂₄ aralkyl, or substituted C₇-C₂₄ alkaryl,

where the substituent on the C₁-C₅ divalent alkylene is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁-C₁₀ alkyl, C₃-C₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁-C₁₀ alkoxy, C₆-C₁₂ aryl, C₁-C₆ halosubstituted alkyl up to per-halosubstituted alkyl, C₆-C₁₂ halosubstituted aryl up to per-halosubstituted aryl, C₃-C₁₂ halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, or halosubstituted C₃-C₁₂ hetaryl up to per-halosubstituted heteroaryl,

~~carbon-based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;~~

where B is substituted, L is substituted or L¹ is additionally substituted, the substituents are selected from the group consisting of halogen, up to per-halosubstitution per-halo, or and W_n, where n is 0-3;

wherein each W_n is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, -Q-Ar, or C₁-

C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C24} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where W is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C12} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, or halosubstituted C_{3-C12} hetaryl up to per-halosubstituted heteroaryl;

~~and carbon-based moieties of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents independently selected from the group consisting of CN, CO₂R⁷, C(O)R⁷, C(O)NR⁷R⁷, OR⁷, SR⁷, NR⁷R⁷, -NO₂, NR⁷C(O)R⁷, NR⁷C(O)OR⁷ and halogen up to per-halo; with each R⁷ independently selected from H or a carbon-based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen,~~

wherein Q is -O-, -S-, -N(R⁷)-, -(CH₂)_m- , -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a- , -CX^a₂- , -S-(CH₂)_m- or and -N(R⁷)(CH₂)_m- , where m= 1-3, and X^a is halogen;

Ar is a 5- or 6-member aromatic structure containing 0-2 heteroatoms which are members selected from the group consisting of nitrogen, oxygen or and sulfur, which is optionally substituted by halogen, up to per-halosubstitution per-halo, and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, C_{1-C10} alkyl, C_{1-C10} alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂

hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₇₋₂₄ aralkyl, C_{7-C₂₄} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S and O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where Z is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C₁₂} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C₁₂} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, or halosubstituted C_{3-C₁₂} hetaryl up to per-halosubstituted heteroaryl; and

and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents selected from the group consisting of -CN, -CO₂R⁷, -COR⁷, -C(O)NR⁷R⁷, -OR⁷, -SR⁷, -NO₂, -NR⁷R⁷, -NR⁷C(O)R⁷, and -NR⁷C(O)OR⁷; and

wherein M is one or more bridging groups which are selected from the group consisting of -O-, -S-, -N(R⁷)-, -(CH₂)_m- , -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a-, -CX^a₂-, -S-(CH₂)_m- or and -N(R⁷)(CH₂)_m- , where m= 1-3, X^a is halogen.

40. Cancelled
41. Cancelled
42. Cancelled

43. (Currently Amended) A method as in claim 38 wherein substituents for B and L and additional substituents for L¹, are selected from the group consisting of C_{1-C₁₀} alkyl[,] up to per-halosubstituted per-halo-substituted C_{1-C₁₀} alkyl, CN, OH, halogen, C_{1-C₁₀} alkoxy or and up to per-halosubstituted per-halo substituted C_{1-C₁₀} alkoxy.

45. (Currently Amended) A method as in claim 39 wherein substituents for B and L and additional substituents for L¹, are selected from the group consisting of C₁-C₁₀ alkyl[,] up to per-halo-substituted per-halo-substituted C₁-C₁₀ alkyl, CN, OH, halogen, C₁-C₁₀ alkoxy or and up to per-halo-substituted per-halo-substituted C₁-C₁₀ alkoxy.

46. (Previously Presented) A method of claim 38 wherein L¹ is pyridinyl substituted by C(O)R_x or SO₂R_x.

47. (Previously Presented) A method of claim 39 wherein L¹ is pyridinyl substituted by C(O)R_x or SO₂R_x.

48. (Currently Amended) A method of claim 46 wherein R_x is NR_aR_b and R_a and R_b are independently hydrogen, C₁-C₁₀ alkyl, C₃₋₁₀ cycloalkyl, C₆-C₁₂aryl, substituent substituted C₁₋₁₀ alkyl, substituents substituted C₃₋₁₀ cycloalkyl or substituted C₆-C₁₂aryl,

where R_a or R_b is a substituted group, it is substituted by halogen up to per-halo-substitution, hydroxy or C₁₋₁₀ alkyl,

and a carbon-based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon-based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen.

49. (Currently Amended) A method of claim 47 wherein R_x is NR_aR_b and R_a and R_b are independently hydrogen, C₁-C₁₀ alkyl, C₃₋₁₀ cycloalkyl or C₆₋₁₂ aryl,

and a carbon-based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon-based

~~substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen.~~

50. (Currently Amended) A method of claim 1 wherein the compound of Formula I formula 1 is a pharmaceutically acceptable salt which is selected from the group consisting of

- a) a basic salt salts of an organic acid acids or an and inorganic acid acids which is selected from the group consisting of hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, trifluorosulphonic acid, benzenesulfonic acid, p-toluene sulphonic acid (tosylate salt), 1-naphthalene sulfonic acid, 2-naphthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or and mandelic acid; or and
- b) an acid salt salts of an organic or and inorganic base bases containing a cation which is an alkali metal cation, an alkaline earth metal cation eations selected from the group consisting of alkaline cations, alkaline earth cations, the ammonium cation, an aliphatic substituted ammonium cation or an eations and aromatic substituted ammonium cation eations.

51. Cancelled

52. (Currently Amended) A method of claim 33 wherein the compound of Formula I formula 1 is a pharmaceutically acceptable salt which is selected from the group consisting of

- a) a basic salt salts of an organic acid acids and-or an inorganic acid aeids which is selected from the group consisting of hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, trifluorosulphonic acid, benzenesulfonic acid, p-toluene sulphonic acid (tosylate salt), 1-naphthalene sulfonic acid, 2-naphthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or and

mandelic acid; or an and

b) an acid salt salts of an organic or and inorganic base bases containing a cation which is an alkali metal cation, an alkaline earth metal cation, eations selected from the group consisting of alkaline cations, alkaline earth cations, the ammonium cation, an aliphatic substituted ammonium cation or an eations and aromatic substituted ammonium cation eations.

53. (Currently Amended) A method of claim 38 wherein the compound Formula I formula-1 is a pharmaceutically acceptable salt which is selected from the group consisting of

a) a basic salt salts of an organic acid acids or an and inorganic acid aeids selected from the group consisting of which is hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, trifluorosulphonic acid, benzenesulfonic acid, p-toluene sulphonic acid (tosylate salt), 1-naphthalene sulfonic acid, 2-naphthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or and mandelic acid; or and

b) an acid salt salts of an organic or and inorganic base bases containing a cation which is an alkali metal cation, an alkaline earth metal cation eations selected from the group consisting of alkaline cations, alkaline earth cations, the ammonium cation, an aliphatic substituted ammonium cation or an eations and aromatic substituted ammonium cation cations.

54. (Currently Amended) A method of claim 39 wherein the compound of Formula I formula-1 is a pharmaceutically acceptable salt which is selected from the group consisting of

a) a basic salt salts of an organic acid acids or an and inorganic acid aeids which is selected from the group consisting of hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, trifluorosulphonic acid, benzenesulfonic acid, p-toluene sulphonic acid (tosylate salt), 1-naphthalene sulfonic acid, 2-naphthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid,

succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or and mandelic acid; or an and

b) an acid salt salts of an organic or and inorganic base bases containing a cation which is an alkali metal cation, an alkaline earth metal cation eations-selected from the group consisting of alkaline eations, alkaline earth eations, the ammonium cation, an aliphatic substituted ammonium cation or an eations and aromatic substituted ammonium cation eations.

55. Cancelled

56. Cancelled

57. Cancelled

58. Cancelled

59. Cancelled

60. Cancelled

61. Cancelled

62. Cancelled

63. Cancelled

64. Cancelled

65. Cancelled

66. (Currently Amended) A method for the treatment of a cancerous cell growth mediated by raf kinase in a human or other mammal in need thereof, comprising administering to a human or other mammal in need thereof a compound which is a selected from the group consisting of

3-tert butyl phenyl urea ureas of Table 1 above;

5-tert butyl-2-methoxyphenyl urea ureas of Table 2 above;

5-(trifluoromethyl)-2 phenyl urea ureas of Table 3 above;
3-(trifluoromethyl) -4 chlorophenyl urea ureas of Table 4 above;
3-(trifluoromethyl)-4-bromophenyl urea ureas of Table 5 above; or
5-(trifluoromethyl)-4-chloro-2 methoxyphenyl urea ureas of Table 6 above; and
ureas 101-103 in Table 7 above.

67. (Currently Amended) A method for the treatment of a cancerous cell growth mediated by raf kinase in a human or other mammal in need thereof, comprising administering to a human or other mammal in need thereof a compound which is: selected from the group consisting of the one of the following 3-tert butyl phenyl ureas:

N-(3-*tert*-butylphenyl)-*N'*-(4-(3-(*N*-methylcarbamoyl)phenoxy)phenyl urea or and
N-(3-*tert*-butylphenyl)-*N'*-(4-(4-acetylphenoxy)phenyl urea; or

one of the following the 5-*tert*-butyl-2-methoxyphenyl ureas:

N-(5-*tert*-butyl-2-methoxyphenyl)-*N'*-(4-(1,3-dioxoisindolin-5-yloxy)phenyl) urea,
N-(5-*tert*-butyl-2-methoxyphenyl)-*N'*-(4-(1-oxoisindolin-5-yloxy)phenyl) urea,
N-(5-*tert*-butyl-2-methoxyphenyl)-*N'*-(4-(4-methoxy-3-(*N*-methylcarbamoyl)phenoxy)phenyl) urea
or and
N-(5-*tert*-butyl-2-methoxyphenyl)-*N'*-(4-(3-(*N*-methylcarbamoyl)phenoxy)phenyl) urea; or

one of the following the 2-methoxy-5-trifluoromethyl)phenyl ureas:

N-(2-methoxy-5-(trifluoromethyl)phenyl)-*N'*-(3-(2-carbamoyl-4-pyridyloxy)phenyl) urea,
N-(2-methoxy-5-(trifluoromethyl)phenyl)-*N'*-(3-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,

N-(2-methoxy-5-(trifluoromethyl)phenyl)-*N'*-(4-(2-carbamoyl-4-pyridyloxy)phenyl) urea,
N-(2-methoxy-5-(trifluoromethyl)phenyl)-*N'*-(4-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,
N-(2-methoxy-5-(trifluoromethyl)phenyl)-*N'*-(4-(2-(*N*-methylcarbamoyl)-4-pyridylthio)phenyl) urea,

N-(2-methoxy-5-(trifluoromethyl)phenyl)-*N'*-(2-chloro-4-(2-(*N*-methylcarbamoyl)(4-pyridyloxy))phenyl) urea or and

N-(2-methoxy-5-(trifluoromethyl)phenyl)-*N'*-(3-chloro-4-(2-(*N*-methylcarbamoyl)(4-pyridyloxy))phenyl) urea; or

one of the following the 4-chloro-3-(trifluoromethyl)phenyl ureas:

N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(3-(2-carbamoyl-4-pyridyloxy)phenyl) urea,
N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(3-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,
N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(4-(2-carbamoyl-4-pyridyloxy)phenyl) urea or and
N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(4-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea;

or one of the following the 4-bromo remo-3-(trifluoromethyl)phenyl ureas:

N-(4-bromo-3-(trifluoromethyl)phenyl)-*N'*-(3-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,
N-(4-bromo-3-(trifluoromethyl)phenyl)-*N'*-(4-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,
N-(4-bromo-3-(trifluoromethyl)phenyl)-*N'*-(3-(2-(*N*-methylcarbamoyl)-4-pyridylthio)phenyl) urea,
N-(4-bromo-3-(trifluoromethyl)phenyl)-*N'*-(2-chloro-4-(2-(*N*-methylcarbamoyl)(4-pyridyloxy))phenyl) urea or and
N-(4-bromo-3-(trifluoromethyl)phenyl)-*N'*-(3-chloro-4-(2-(*N*-methylcarbamoyl)(4-pyridyloxy))phenyl) urea; and

or one of the following the 2-methoxy-4-chloro-5-(trifluoromethyl)phenyl ureas:

N-(2-methoxy-4-chloro-5-(trifluoromethyl)phenyl)-*N'*-(3-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,
N-(2-methoxy-4-chloro-5-(trifluoromethyl)phenyl)-*N'*-(4-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,
N-(2-methoxy-4-chloro-5-(trifluoromethyl)phenyl)-*N'*-(2-chloro-4-(*N*-methylcarbamoyl)(4-pyridyloxy))phenyl) urea or and

N-(2-methoxy-4-chloro-5-(trifluoromethyl)phenyl)-*N'*-(3-chloro-4-(*N*-methylcarbamoyl)(4-pyridyloxy))phenyl) urea, wherein said compound is administered in a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.

68. (Currently Amended) A method for the treatment of solid cancers in a human comprising administering to a human a compound of Formula I:

A - D - B (I)

or a pharmaceutically acceptable salt thereof in a pharmaceutical composition further comprising a pharmaceutically acceptable carrier, wherein

D is -NH-C(O)-NH-,

A is a substituted moiety of up to 40 carbon atoms of the formula: -L-(M-L¹)_q, where L is a 5 or 6 membered cyclic structure bound directly to D, L¹ comprises a substituted cyclic moiety having at least 5 members, M is a bridging group having at least one atom, q is an integer of from 1-3; and each cyclic structure of L and L¹ contains 0-4 heteroatoms which are members of the group consisting of nitrogen, oxygen or and sulfur, and

B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member cyclic structure bound directly to D containing 0-4 heteroatoms which are members of the group consisting of nitrogen, oxygen or and sulfur,

wherein L¹ is substituted by at least one substituent which is selected from the group

eonsisting of $\text{-SO}_2\text{R}_x$, -C(O)R_x or and $\text{-C(NR}_y\text{) R}_z$,

R_y is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing one or more heteroatoms which are N, S or O selected from N, S and O and optionally halosubstituted, up to per-halosubstitution per-halo,

R_z is hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing one or more heteroatoms which are N, S or O selected from N, S and O and is optionally substituted by halogen, hydroxy or and a carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contains contain one or more heteroatoms which are N, S or O selected from N, S and O and is optionally substituted by halogen;

R_x is independently chosen from R_z moieties or is R_z -or NR_aR_b where R_a and R_b are

- a) independently
 - i) hydrogen,

ii) a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms which are selected from N, S or O and optionally substituted by halogen, hydroxy or a and carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contain contains one or more heteroatoms which are N, S or O selected from N, S and O and is are optionally substituted by halogen, or

iii). -OSi(R_f)₃ where R_f is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms which are N, S or O selected from N, S and O and optionally substituted by halogen, hydroxy or a and carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contain contains one or more heteroatoms which are N, S or O selected from N, S and O and is are optionally substituted by halogen; or

b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O selected from N, S and O substituted by halogen, hydroxy or a carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contain contains one or more heteroatoms which are N, S or O selected from N, S and O and is are optionally substituted by halogen; or

c) one of R_a or R_b is -C(O)-, a C₁-C₅ divalent alkylene group or a substituted C₁-C₅ divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C₁-C₅ divalent alkylene group are selected from the group consisting of halogen, hydroxy, or a and carbon based substituent substituents of up to 24 carbon atoms[,] which optionally contain contains one or more heteroatoms which are N, S or O selected from N, S and O and is are optionally substituted by halogen;

where B is substituted, L is substituted or L¹ is additionally substituted, the substituents are selected from the group consisting of halogen, up to per-halo or, and W_n W_n, where n is 0-3;

wherein each W is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, -Q-Ar, or a and carbon based moiety moieties of up to 24 carbon atoms, optionally containing one or more

heteroatoms which are N, S or O selected from N, S and O and optionally substituted by one or more substituents which are independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -OR⁷, -SR⁷, -NR⁷R⁷, -NO₂, -NR⁷C(O)R⁷, -NR⁷C(O)OR⁷ or and halogen up to per-halosubstitution per-halo; with each R⁷ independently selected from H or a carbon based moiety of up to 24 carbon atoms[;] optionally containing heteroatoms which are N, S or O selected from N, S and O and optionally substituted by halogen,

wherein Q is -O-, -S-, -N(R⁷)-, -(CH₂)_m- , -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a-, -CX^a2-, -S-(CH₂)_m- or and -N(R⁷)(CH₂)_m- , where m= 1-3, and X^a is halogen; and

Ar is a 5- or 6-member aromatic structure containing 0-2 heteroatoms which are members selected from the group consisting of nitrogen, oxygen or and sulfur, which is optionally substituted by halogen, up to per-halosubstitution per-halo, and optionally substituted by Zn₁, wherein n₁ is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -NO₂, -OR⁷, -SR⁷ -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, or and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms which are N, S or O selected from N, S and O and optionally substituted by one or more substituents which are selected from the group consisting of -CN, -CO₂R⁷, -COR⁷, -C(O)NR⁷R⁷, -OR⁷, -SR⁷, -NO₂, -NR⁷R⁷, -NR⁷C(O)R⁷, or and -NR⁷C(O)OR⁷, with R⁷ as defined above.

69. (Currently amended) A method for the treatment of carcinomas, myeloid disorders or adenomas in a human comprising administering to a human a compound of Formula I:

or a pharmaceutically acceptable salt thereof in a pharmaceutical composition further comprising a pharmaceutically acceptable carrier, wherein

D is -NH-C(O)-NH-,

A is a substituted moiety of up to 40 carbon atoms of the formula: -L-(M-L¹)_q, where L

is a 5 or 6 membered cyclic structure bound directly to D, L¹ comprises a substituted cyclic moiety having at least 5 members, M is a bridging group having at least one atom, q is an integer of from 1-3; and each cyclic structure of L and L¹ contains 0-4 members heteroatoms which are of the group consisting of nitrogen, oxygen or and sulfur, and

B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member cyclic structure bound directly to D containing 0-4 heteroatoms which are members of the group consisting of nitrogen, oxygen or and sulfur,

wherein L¹ is substituted by at least one or more substituents substituent which are selected from the group consisting of -SO₂R_x, -C(O)R_x or and -C(NR_y) R_z,

R_y is hydrogen or C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C24} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where R_y is substituted, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C12} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S and O, up to per-halosubstituted cycloalkyl, or halosubstituted C_{3-C12} hetaryl up to per-halosubstituted heteroaryl, or a carbon-based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally halosubstituted, up to per-halo,

R_z is hydrogen C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₇₋₂₄ aralkyl, C_{7-C24} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S or

O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where R_x is substituted it is substituted by halogen up to per-halosubstituted, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C12} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S and O, up to per-halosubstituted cycloalkyl, or halosubstituted C_{3-C12} hetaryl up to per-halosubstituted heteroaryl, or a carbon-based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon-based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;

R_x is independently chosen from R_z moieties or is R_z-or NR_aR_b where R_a and R_b are

a) independently

i.) hydrogen,

ii.) C_{1-C10} alkyl, C_{1-C10} alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₇₋₂₄ aralkyl, C_{7-C24} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S and O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where R_x is substituted, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C12} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S and O, up to per-halosubstituted cycloalkyl, or halosubstituted C_{3-C12} hetaryl up to per-halosubstituted heteroaryl,

~~a carbon-based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon-based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or~~

iii.) -OSi(R_f)₃ where R_f is hydrogen C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₆-C₁₂ aryl, C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₇-C₂₄ aralkyl, C₇-C₂₄ alkaryl, substituted C₁-C₁₀ alkyl, substituted C₁-C₁₀ alkoxy, substituted C₃-C₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S and O, substituted C₆-C₁₂ aryl, substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, substituted C₇-C₂₄ aralkyl, or substituted C₇-C₂₄ alkaryl,

wherein R_f is substituted, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁-C₁₀ alkyl, C₃-C₁₂ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₁-C₁₀ alkoxy, C₆-C₁₂ aryl, C₁-C₁₀ halosubstituted alkyl up to per-halosubstituted alkyl, C₆-C₁₂ halosubstituted aryl up to per-halosubstituted aryl, C₃-C₁₂ halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S and O, up to per-halosubstituted cycloalkyl, or halosubstituted C₃-C₁₂ hetaryl up to per-halosubstituted heteroaryl, or a carbon-based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon-based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or

or

b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S, or O selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O selected from N, S and O substituted by halogen, hydroxy a C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₆-C₁₂ aryl, C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₇-C₂₄ aralkyl, C₇-C₂₄ alkaryl, substituted C₁-C₁₀ alkyl,

substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S and O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where the substituent on the 5-7 member heterocyclic structure is substituted, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C₁₂} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C₁₂} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S and O, up to per-halosubstituted cycloalkyl, or halosubstituted C_{3-C₁₂} hetaryl up to per-halosubstituted heteroaryl, carbon-based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or

c) one of R_a or R_b is -C(O)-, a C_{1-C₅} divalent alkylene group or a substituted C_{1-C₅} divalent alkylene group bound to the moiety L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C_{1-C₅} divalent alkylene group are selected from the group consisting of halogen, hydroxy, or a and- C_{1-C₁₀} alkyl, C_{1-C₁₀} alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₇₋₂₄ aralkyl, C_{7-C₂₄} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S and O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where the substituents on the C₁₋₅ divalent alkylene group is substituted, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C₁₂} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C₁₂} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S or O, up to per-halosubstituted cycloalkyl, or halosubstituted C_{3-C₁₂}

hetaryl up to per-halosubstituted heteroaryl, carbon-based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;

where B is substituted, L is substituted or L^1 is additionally substituted, the substituents are selected from the group consisting of halogen, up to per-halosubstitution per-halo, and W_n , where n is 0-3;

wherein each W is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)NR⁷R⁷, -C(O)-R⁷, -NO₂, -OR⁷, -SR⁷, -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, -Q-Ar, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₆-C₁₂ aryl, C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₃-C₁₀ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₇-C₂₄ aralkyl, C₇-C₂₄ alkaryl, substituted C₁-C₁₀ alkyl, substituted C₁-C₁₀ alkoxy, substituted C₃-C₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S and O, substituted C₆-C₁₂ aryl, substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, substituted C₇-C₂₄ aralkyl, or substituted C₇-C₂₄ alkaryl,

where W is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁-C₁₀ alkyl, C₃-C₁₂ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₃-C₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₁-C₁₀ alkoxy, C₆-C₁₂ aryl, C₁-C₁₂ halosubstituted alkyl up to per-halosubstituted alkyl, C₆-C₁₂ halosubstituted aryl up to per-halosubstituted aryl, C₃-C₁₂ halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S and O, up to per-halosubstituted cycloalkyl, or halosubstituted C₃-C₁₂ hetaryl up to per-halosubstituted heteroaryl, selected from the group consisting of CN, CO₂R⁷, C(O)NR⁷R⁷, C(O)-R⁷, NO₂, OR⁷, SR⁷, NR⁷R⁷, NR⁷C(O)OR⁷, NR⁷C(O)R⁷, Q-Ar, and carbon-based moieties of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents independently selected from the group consisting of CN, CO₂R⁷, C(O)R⁷, C(O)NR⁷R⁷, OR⁷, SR⁷, NR⁷R⁷, NO₂, NR⁷C(O)R⁷, NR⁷C(O)OR⁷ and halogen up to per-halo; with each R⁷ independently selected from H or a carbon-based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally

~~substituted by halogen;~~

wherein Q is -O-, -S-, -N(R⁷)-, -(CH₂)_m- , -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a-, -CX^a₂-, -S-(CH₂)_m- and -N(R⁷)(CH₂)_m- , where m= 1-3, or and X^a is halogen; and

Ar is a 5- or 6-member aromatic structure containing 0-2 heteroatoms which are members selected from the group consisting of nitrogen, oxygen or and sulfur, which is optionally substituted by halogen, up to per-halosubstitution per-halo, and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁷, -C(O)R⁷, -C(O)NR⁷R⁷, -NO₂, -OR⁷, -SR⁷ -NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, or C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃₋₁₀ cycloalkyl, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S or O, C₃₋₁₀ cycloalkyl having 0-3 heteroatoms which are N, S and O, C₇₋₂₄ aralkyl, C_{7-C24} alkaryl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms which are N, S and O, substituted C₆₋₁₂ aryl, substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, substituted C₇₋₂₄ aralkyl, or substituted C₇₋₂₄ alkaryl,

where Ar is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms selected from O, S and N, C₃₋₁₂ hetaryl having 1-3 heteroatoms which are N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C12} halosubstituted cycloalkyl having 0-3 heteroatoms which are N, S and O, up to per-halosubstituted cycloalkyl, or halosubstituted C_{3-C12} hetaryl up to per-halosubstituted heteroaryl,

and a carbon-based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents selected from the group consisting of CN, CO₂R⁷, COR⁷, C(O)NR⁷R⁷, -OR⁷, -SR⁷, -NO₂, -NR⁷R⁷, -NR⁷C(O)R⁷, and -NR⁷C(O)OR⁷, with R⁷ as defined above.

70. (Previously Presented) A method as in claim 38 for the treatment of carcinomas, myeloid disorders or adenomas.

71. (Previously Presented) A method as in claim 39 for the treatment of carcinomas, myeloid disorders or adenomas.

72. (Previously Presented) A method as in claim 50 for the treatment of carcinomas, myeloid disorders or adenomas.

73. (Previously Presented) A method as in claim 67 for the treatment of carcinomas, myeloid disorders or adenomas.

74. (Previously Presented) A method as in claim 1 for the treatment of carcinoma of the lung, pancreas, thyroid, bladder or colon mediated by RAF kinase.

75. (Previously Presented) A method as in claim 38 for the treatment of carcinoma of the lung, pancreas, thyroid, bladder or colon.

76. (Previously Presented) A method as in claim 39 for the treatment of carcinoma of the lung, pancreas, thyroid, bladder or colon.

77. (Previously Presented) A method as in claim 50 for the treatment of carcinoma of the lung, pancreas, thyroid, bladder or colon.

78. (Previously Presented) A method as in claim 67 for the treatment of carcinoma of

the lung, pancreas, thyroid, bladder or colon.

79. (Previously Presented) A method as in claim 1 for the treatment of myeloid leukemia or villous colon adenomas mediated by RAF kinase.

80. (Previously Presented) A method as in claim 28 for the treatment of myeloid leukemia or villous colon adenomas.

81. (Previously Presented) A method as in claim 39 for the treatment of myeloid leukemia or villous colon adenomas.

82. (Previously Presented) A method as in claim 50 for the treatment of myeloid leukemia or villous colon adenomas.

83. (Previously Presented) A method as in claim 67 for the treatment of myeloid leukemia or villous colon adenomas.

Please add the following claims:

--84. (New) A method as in claim 1 wherein said composition of Formula I is administered in a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.

85. (New) A method as in claim 3 wherein:

R_y , R_z , R_a , and R^7 are each independently hydrogen, C_{1-10} alkyl optionally

substituted by halogen up to per-halosubstitution or C₁₋₁₀ alkoxy optionally substituted by halogen up to per-halosubstitution.

86. (New) A method as in claim 85 wherein said substituted cyclic moiety L¹ is pyridinyl.

87. (New) A method of claim 8 wherein L¹ is pyridyl substituted by C(O)R_x wherein R_x is NR_aR_b and R_a and R_b are independently hydrogen or C_{1-C₁₀} alkyl.

88. (New) A method for the treatment of cancerous cell growth in a human or other mammal comprising administering to a human or other mammal in need thereof:

N-(5-*tert*-butyl-2-methoxy phenyl)-*N'*-(4-(4-methoxy-3-(*N*-methylcarbamoyl)phenoxy)phenyl) urea,

N-(2-methoxy-5-(trifluoromethyl)phenyl)-*N'*-(4-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,

N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(4-(2-carbamoyl-4-pyridyloxy)phenyl) urea,

N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(4-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea or

N-(2-methoxy-4-chloro-5-(trifluoromethyl)phenyl)-*N'*-(3-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea

in a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.

89. (New) A method for the treatment of cancerous cell growth mediated by raf kinase in a human or other mammal comprising administering to a human or other mammal in need thereof:

N-(5-*tert*-butyl-2-methoxy phenyl)-*N'*-(4-(4-methoxy-3-(*N*-methylcarbamoyl)phenoxy)phenyl) urea,
N-(2-methoxy-5-(trifluoromethyl)phenyl)-*N'*-(4-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,
N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(4-(2-carbamoyl-4-pyridyloxy)phenyl) urea,
N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(4-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea or
N-(2-methoxy-4-chloro-5-(trifluoromethyl)phenyl)-*N'*-(3-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea
in a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.

90. (New) A method for the treatment of a raf mediated disorder in a human or other mammal which comprises administering to a human or other mammal in need thereof;

N-(5-*tert*-butyl-2-methoxy phenyl)-*N'*-(4-(4-methoxy-3-(*N*-methylcarbamoyl)phenoxy)phenyl) urea,
N-(2-methoxy-5-(trifluoromethyl)phenyl)-*N'*-(4-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,
N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(4-(2-carbamoyl-4-pyridyloxy)phenyl) urea,
N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(4-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea or
N-(2-methoxy-4-chloro-5-(trifluoromethyl)phenyl)-*N'*-(3-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea
in a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.

91. (New) A method for treatment of a raf mediated disorder in a human or other mammal, comprising administering to a human or other mammal in need thereof a pharmaceutical composition comprising a compound of Formula I:

or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier wherein

D is $-\text{NH}-\text{C}(\text{O})-\text{NH}-$,

A is a substituted moiety of the formula:

wherein L is

(i) phenyl, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, C₁-C₅ alkyl, C₁-C₅ haloalkyl up to per-halo-substituted, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy up to per-halo-substituted alkoxy, hydroxy, amino, C₁-C₃ alkylamino, C₁-C₆ dialkylamino, halogen, cyano or nitro;

(ii) a 5 membered monocyclic heteroaryl group, having 1-2 heteroatoms which are, independently, N, S or O, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, C₁-C₅ haloalkyl up to per-halo-substitution, C₁-C₃ haloalkoxy up to per-halo-substituted alkoxy, hydroxy, amino, C₁-C₃ alkylamino, C₁-C₆ dialkylamino, halogen, cyano, or nitro; or

(iii) a 6 membered monocyclic heteroaryl group having 1-4 heteroatoms which are, independently, N, S or O, optionally substituted with 1-3 substituents, which are, independently, C₁-C₅ alkyl, C₁-C₅ haloalkyl up to per-halo-substitution, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy up to per-halo-substituted alkoxy, hydroxy, amino, C₁-C₃ alkylamino, C₁-C₆ dialkylamino, halogen, cyano or nitro;

L¹ comprises a substitution cyclic moiety which is

(i) phenyl, optionally substituted with 1-3 substituents which are independently, R⁷, OR⁷,

NR^7R^7 , C(O)R^7 , C(O)OR^7 , $\text{C(O)NR}^7\text{R}^7$, $\text{NR}^7\text{C(O)R}^7$, $\text{NR}^7\text{C(O)OR}^7$, halogen, cyano or nitro;

(ii) naphthyl, optionally substituted with 1-3 substituents which are, independently, R^7 , OR^7 , NR^7R^7 , C(O)R^7 , C(O)OR^7 , $\text{C(O)NR}^7\text{R}^7$, $\text{NR}^7\text{C(O)R}^7$, $\text{NR}^7\text{C(O)OR}^7$, halogen, cyano or nitro;

(iii) 5 and 6 membered monocyclic heteroaryl groups, having 1-4 heteroatoms which are independently N, S or O, optionally substituted with 1-3 substituents which are independently R^7 , OR^7 , NR^7R^7 , C(O)R^7 , C(O)OR^7 , $\text{C(O)NR}^7\text{R}^7$, $\text{NR}^7\text{C(O)R}^7$, $\text{NR}^7\text{C(O)OR}^7$, halogen, cyano or nitro;

(iv) 8 to 10 membered bicyclic heteroaryl groups, having 1-6 heteroatoms which are independently, N, S or O, optionally substituted with 1-3 substituents which are independently, R^7 , OR^7 , NR^7R^7 , C(O)R^7 , C(O)OR^7 , $\text{C(O)NR}^7\text{R}^7$, $\text{NR}^7\text{C(O)R}^7$, $\text{NR}^7\text{C(O)OR}^7$, halogen, cyano or nitro;

(v) saturated and partially saturated $\text{C}_3\text{-C}_6$ monocyclic carbocyclic moieties optionally substituted with 1-3 substituents which are independently, R^7 , OR^7 , NR^7R^7 , C(O)R^7 , C(O)OR^7 , $\text{C(O)NR}^7\text{R}^7$, $\text{NR}^7\text{C(O)R}^7$, $\text{NR}^7\text{C(O)OR}^7$, halogen, cyano or nitro;

(vi) saturated and partially saturated $\text{C}_8\text{-C}_{10}$ bicyclic carbocyclic moieties, optionally substituted with 1-3 substituents which are independently, R^7 , OR^7 , NR^7R^7 , C(O)R^7 , C(O)OR^7 , $\text{C(O)NR}^7\text{R}^7$, $\text{NR}^7\text{C(O)R}^7$, $\text{NR}^7\text{C(O)OR}^7$, halogen, cyano or nitro;

(vii) saturated and partially saturated 5 and 6 membered monocyclic heterocyclic moieties, having 1-3 heteroatoms which are independently, N, S or O, optionally substituted with 1-3 substituents which are independently, R^7 , OR^7 , NR^7R^7 , C(O)R^7 , C(O)OR^7 , $\text{C(O)NR}^7\text{R}^7$, $\text{NR}^7\text{C(O)R}^7$, $\text{NR}^7\text{C(O)OR}^7$, halogen, cyano or nitro; or

(viii) saturated and partially saturated 8 to 10 membered bicyclic heterocyclic moieties, having 1-6 heteroatoms which are independently, N, S or O, optionally substituted with 1-3 substituents which are independently, R^7 , OR^7 , NR^7R^7 , C(O)R^7 , C(O)OR^7 , $\text{C(O)NR}^7\text{R}^7$, $\text{NR}^7\text{C(O)R}^7$, $\text{NR}^7\text{C(O)OR}^7$, halogen, cyano or nitro;

wherein L^1 is substituted by one or more substituents which are $-\text{SO}_2\text{R}_x$, $-\text{C(O)R}_x$ or

-C(NR_y) R_z,

wherein R_z is

a) independently hydrogen, C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, C₃₋₁₀ cycloalkyl having 0-3 which are N, S or O heteroatoms, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C_{3-C12} hetaryl having 1-3 heteroatoms which are N, S or O, C₇₋₂₄ alkaryl, C₇₋₂₄ aralkyl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C_{6-C14} aryl, substituted C_{3-C10} cycloalkyl having 0-3 heteroatoms which are N, S or O, substituted C_{3-C12} hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ alkaryl or substituted C_{7-C24} aralkyl

where R_z is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl up to per-halosubstituted alkyl, C_{6-C12} halosubstituted aryl up to per-halosubstituted aryl, C_{3-C12} halosubstituted cycloalkyl up to per-halosubstituted per-halo cycloalkyl having 0-3 heteroatoms which are N, S or O, halosubstituted C_{3-C12} hetaryl up to per-halosubstituted hetaryl having 1-3 heteroatoms which are N, S or O, halosubstituted C_{7-C24} aralkyl up to per-halosubstituted aralkyl, or halosubstituted C_{7-C24} alkaryl up to per-halosubstituted alkaryl,

wherein R_x is independently chosen from R_z moieties or is NR_aR_b and R_a and R_b are

a) independently hydrogen, C₁₋₁₀ alkyl, C₁₋₁₀ alkoxy, C₃₋₁₀ cycloalkyl having 0-3 which are N, S or O heteroatoms, C₂₋₁₀ alkenyl, C₁₋₁₀ alkenoyl, C₆₋₁₂ aryl, C_{3-C12} hetaryl having 1-3 heteroatoms which are N, S or O, C₇₋₂₄ alkaryl, C₇₋₂₄ aralkyl, substituted C₁₋₁₀ alkyl, substituted C₁₋₁₀ alkoxy, substituted C_{6-C14} aryl, substituted C_{3-C10} cycloalkyl having 0-3 heteroatoms which are N, S or O, substituted C_{3-C12} hetaryl having 1-3 heteroatoms which are N, S or O, substituted C₇₋₂₄ alkaryl or substituted C_{7-C24} aralkyl,

where R_a or R_b is a substituted group, it is substituted by halogen up to per-halosubstitution, hydroxy, C₁₋₁₀ alkyl, C₃₋₁₂ cycloalkyl having 0-3 heteroatoms which are N, S or O, C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O, C₁₋₁₀ alkoxy, C₆₋₁₂ aryl, C₁₋₆ halosubstituted alkyl

up to per-halo substituted alkyl, C₆-C₁₂ halo substituted aryl up to per-halo substituted aryl, C₃-C₁₂ halo substituted cycloalkyl up to per-halo substituted cycloalkyl having 0-3 heteroatoms which are N, S or O, halo substituted C₃-C₁₂ hetaryl up to per-halo substituted hetaryl having 1-3 heteroatoms which are N, S or O, halo substituted C₇-C₂₄ aralkyl up to per-halo substituted aralkyl, or halo substituted C₇-C₂₄ alkaryl up to per-halo substituted alkaryl, or

b) combined together to form a 5-7 member heterocyclic structure of 1-3 heteroatoms which are N, S or O, optionally substituted by halogen hydroxy or C₁₋₁₀ alkyl; or

c) one of R_a or R_b is -C(O)-, a C₁-C₅ divalent alkylene group or a substituted C₁-C₅ divalent alkylene group bound to the moiety L¹ to form a cyclic structure with at least 5 members, wherein the substituents of the substituted

C₁-C₅ divalent alkylene group are halogen hydroxy, or C₁₋₁₀ alkyl ; wherein M is one or more bridging groups which are -O-, -S-, -N(R⁷)-, -(CH₂)_m-, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m- CHX^a-, -CX^a₂-, -S-(CH₂)_m- or -N(R⁷)(CH₂)_m-, where m= 1-3, and X^a is halogen and

B is:

(i) phenyl, optionally substituted with 1-3 substituents which are, independently, R⁷, OR⁷, NR⁷R⁷, C(O)R⁷, C(O)OR⁷, C(O)NR⁷R⁷, NR⁷C(O)R⁷, NR⁷C(O)OR⁷ halogen, cyano, or nitro;

(ii) naphthyl, optionally substituted with 1-3 substituents which are, independently, R⁷, OR⁷, NR⁷R⁷, C(O)R⁷, C(O)OR⁷, C(O)NR⁷R⁷, NR⁷C(O)R⁷, NR⁷C(O)OR⁷, halogen, cyano, or nitro;

(iii) 5 and 6 membered monocyclic heteroaryl groups, having 1-4 heteroatoms which are, independently, O, N or S, optionally substituted with 1-3 substituents which are, independently, R⁷, OR⁷, NR⁷R⁷, C(O)R⁷, C(O)OR⁷, C(O)NR⁷R⁷, NR⁷C(O)R⁷, NR⁷C(O)OR⁷, halogen, cyano, or nitro; or

(iv) 8 to 10 membered bicyclic heteroaryl groups, having 1-6 heteroatoms which are, independently, N, S or O, optionally substituted with 1-3 substituents which are, independently, R⁷, OR⁷, NR⁷R⁷, C(O)R⁷, C(O)OR⁷, C(O)NR⁷R⁷, NR⁷C(O)R⁷, NR⁷C(O)OR⁷, halogen, cyano, or nitro;

each R_y is independently

(a) hydrogen,

(b) C₁-C₆ alkyl, optionally substituted with halogen up to per-halosubstitution,

(c) C₁-C₆ alkoxy, optionally substituted with 1-3 halogen substituents,

(d) C₃-C₆ cyclic alkyl, optionally substituted with 1-3 halogen substituents,

(e) phenyl, optionally substituted with 1-3 halogen substituents,

(f) 5-6 membered monocyclic heteroaryl having 1-4 heteroatoms which are N, S or O or 8-10 membered bicyclic heteroaryl having 1-6 heteroatoms which are N, S or O, optionally substituted with 1-3 halogen substituents, or

(g) C₁-C₃ alkyl-phenyl, optionally substituted with 1-3 halogen substituents,

each R⁷ and R⁷', is independently

(a) hydrogen,

(b) C₁-C₆ alkyl, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, up to per-halosubstituted C₁-C₅ alkyl, C₁-C₃ alkoxy or hydroxy ;

(c) C₁-C₆ alkoxy, optionally substituted with 1-3 substituents which are, independently, C₁-C₅, up to per-halosubstituted C₁-C₅ alkyl, C₁-C₃ alkoxy, hydroxy or halogen;

(d) phenyl, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, up to per-halosubstituted C₁-C₅ alkyl, C₁-C₃ alkoxy, hydroxy or halogen,

(e) 5-6 membered monocyclic heteroaryl having 1-4 heteroatoms which are N, S or O or 8-10 membered bicyclic heteroaryl having 1-6 heteroatoms which are N, S or O, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, up to per-halosubstituted

C₁-C₅ alkyl, C₁-C₃ alkoxy, hydroxy or halogen,

(f) C₁-C₃ alkyl-phenyl, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, up to per-halosubstituted C₁-C₅ alkyl, C₁-C₃ alkoxy, hydroxy or halogen; and

(g) up to per-halosubstituted C₁-C₅, and where not per-halosubstituted, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, up to per-halosubstituted C₁-C₅ alkyl, C₁-C₃ alkoxy or hydroxy.

92. (New) A method as in claim 91 wherein M is one or more bridging groups is -O-, -S-, -N(R⁷)-, -C(O)-, -CH(OH)-, -(CH₂)O-, -(CH₂)S-, -(CH₂)N(R⁷)-, -O(CH₂)-, -CHF-, -CF₂-, -S-(CH₂)- and -N(R⁷)(CH₂)-, -C(O)CH₂-, -CH₂OC(O)-, -C(O)OCH₂-, -C(O)N(R⁷)CH₂-, -N(R⁷)C(O)CH₂-, or -N(R⁷)C(O) OCH₂-, where R⁷ is as defined in claim 91.

93. (New) A method as in claim 91 wherein B of Formula I is

(i) phenyl, optionally substituted with 1-3 substituents which are, independently, R⁷, OR⁷, NR⁷R⁷, C(O)R⁷, C(O)OR⁷, C(O)NR⁷R⁷, NR⁷C(O)R⁷, NR⁷C(O)OR⁷, halogen, cyano, or nitro; or

(ii) pyridyl, optionally substituted with 1-3 substituents which are, independently, R⁷, OR⁷, NR⁷R⁷, C(O)R⁷, C(O)OR⁷, C(O)NR⁷R⁷, NR⁷C(O)R⁷, NR⁷C(O)OR⁷, halogen, cyano, or nitro; or

(iii) pyrimidinyl, optionally substituted with 1-3 substituents which are, independently, R⁷, OR⁷, NR⁷R⁷, C(O)R⁷, C(O)OR⁷, C(O)NR⁷R⁷, NR⁷C(O)R⁷, NR⁷C(O)OR⁷, halogen, cyano, or nitro.

94. (New) A method as in claim 91 wherein B of Formula I is phenyl, or pyridinyl 1,

substituted 1 to 3 times by one or more substituents which are independently -CN, halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -OH, up to per-halosubstituted C₁-C₆ alkyl, up to per halosubstituted C₁-C₆ alkoxy or phenyl substituted by halogen up to per-halosubstitution.

95. (New) A method as in claim 94, wherein L is

- (i) phenyl, optionally substituted with 1-3 substituents which are, independently, R⁷, OR⁷, NR⁷R⁷, C(O)R⁷, C(O)OR⁷, C(O)NR⁷R⁷, NR⁷C(O)R⁷, NR⁷C(O)OR⁷, halogen, cyano or nitro; or
- (ii) pyridyl, optionally substituted with 1-3 substituents which are, independently, R¹, OR¹, NR¹R², C(O)R¹, C(O)OR¹, C(O)NR¹R², NR¹C(O)R², NR¹C(O)OR², halogen, cyano, or nitro.

96. (New) A method as in claim 91, wherein L¹ is phenyl, pyridinyl or pyrimidinyl.

97. (New) A method as in claim 93 wherein L¹ is phenyl, pyridinyl or pyrimidinyl.

98. (New) A method as in claim 94, wherein L¹ is phenyl or pyridinyl.

99. (New) A method as in claim 95, wherein L¹ is phenyl or pyridinyl.

100. (New) A method as in claim 97, wherein M is -O-, -S-, -C(O)-, -CH(OH)-, -(CH₂)O-, -(CH₂)S-, -O(CH₂)-, -S-(CH₂)-, -CHF-, -CF₂- or -C(O)CH₂-.

101. (New) A method as in claim 98, wherein M is -O-, -S-, -C(O)-, -CH(OH)-, -(CH₂)O-, -(CH₂)S-, -O(CH₂)-, -CHF-, -CF₂-, -S-(CH₂)- or -C(O)CH₂-.

102. (New) A method as in claim 99, wherein M is -O-, -S-, -(CH₂)O-, -(CH₂)S-, -O(CH₂)-, -CHF-, -CF₂-, -S-(CH₂)- or -C(O)CH₂-.

103. (New) A method as in claim 91 wherein L¹ is substituted by -C(O)R_x.

104. (New) A method of claim 100 wherein L¹ is substituted by -C(O)R_x wherein R_x is NR_aR_b.

105. (New) A method as in claim 101 wherein L¹ is substituted by -C(O)R_x, wherein R_x is NR_aR_b and R_a and R_b are independently hydrogen, C₁-C₆ alkyl or C₁-C₆ alkoxy.

106. (New) A method as in compound of claim 102 wherein L¹ is substituted by -C(O)R_x, wherein R_x is NR_aR_b and R_a and R_b are independently hydrogen, C₁-C₆ alkyl or C₁-C₆ alkoxy.

107. (New) A method for the treatment of a raf mediated disorder in a human or other mammal, comprising administering to a human or other mammal in need thereof, a pharmaceutical composition comprising a compound of Formula I:

or a pharmaceutically acceptable salt thereof and pharmaceutically acceptable carrier, wherein

D is -NH-C(O)-NH-,

A is of the formula:

where L is

(i) phenyl, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, C₁-C₅ haloalkyl up to per-halo substituted alkyl, C₁-C₃ alkoxy, hydroxy, amino, C₁-

C_3 alkylamino, C_1 - C_6 dialkylamino, halogen, cyano, or nitro; or

(ii) pyridyl, optionally substituted with 1-3 substituents which are, independently, C_1 - C_5 alkyl, C_1 - C_5 haloalkyl up to per-halo substituted alkyl, C_1 - C_3 alkoxy, hydroxy, amino, C_1 - C_3 alkylamino, C_1 - C_6 dialkylamino, halogen, cyano, or nitro; and

M is one or more bridging groups which are $-O-$, $-S-$, $-N(R^7)-$, $-(CH_2)_m-$, $-C(O)-$, $-CH(OH)-$, $-(CH_2)_mO-$, $-(CH_2)_mS-$, $-(CH_2)_mN(R^7)-$, $-O(CH_2)_m-$, CHX^a- , $-CX^a_2-$, $-S-(CH_2)_m-$ or $-N(R^7)(CH_2)_m-$, where each m is independently an integer of from 1-3, X^a is halogen, and

L^1 comprises a substituted cyclic moiety which is:

(i) naphthyl, optionally substituted with 1-3 substituents which are, independently, fR^7 , OR^7 , NR^7R^7 , $C(O)R^7$, $C(O)OR^7$, $C(O)NR^7R^7$, $NR^7C(O)R^7$, $NR^7C(O)OR^7$, halogen, cyano or nitro;

(ii) 5 and 6 membered monocyclic heteroaryl groups, having 1-4 heteroatoms which are, independently, N, S or O, optionally substituted with 1-3 substituents which are, independently, R^7 , OR^7 , NR^7R^7 , $C(O)R^7$, $C(O)OR^7$, $C(O)NR^7R^7$, $NR^7C(O)R^7$, $NR^7C(O)OR^7$, halogen, cyano or nitro;

(iii) 8 to 10 membered bicyclic heteroaryl groups, having 1-6 heteroatoms, which are, independently, N, S or O, optionally substituted with 1-3 substituents, which are, independently, R^7 , OR^7 , NR^7R^7 , $C(O)R^7$, $C(O)OR^7$, $C(O)NR^7R^7$, $NR^7C(O)R^7$, $NR^7C(O)OR^7$, halogen, cyano or nitro;

wherein L^1 is substituted by one or more substituents which are $-SO_2R_x$, $-C(O)R_x$ or $-C(NR_y)R_z$,

wherein R_x independently chosen from the moieties of R_z or NR_aR_b and R_a and R_b are independently chosen from the moieties of R_z ;

and

B is

(i) phenyl, optionally substituted with 1-3 substituents which are, independently, f R⁷, OR⁷, NR⁷R⁷, C(O)R⁷, C(O)OR⁷, C(O)NR⁷R⁷, NR⁷C(O)R⁷, NR⁷C(O)OR⁷, halogen, cyano, or nitro; or

(ii) pyridyl, optionally substituted with 1-3 substituents which are, independently, R⁷, OR⁷, NR⁷R⁷, C(O)R⁷, C(O)OR⁷, C(O)NR⁷R⁷, NR⁷C(O)R⁷, NR⁷C(O)OR⁷, halogen, cyano, or nitro;

each R_y is independently

(a) hydrogen,

(b) C₁-C₆ alkyl, optionally substituted with halogen up to per-halosubstitution,

(c) C₁-C₆ alkoxy, optionally substituted with 1-3 halogen substituents,

(d) C₃-C₆ cyclic alkyl, optionally substituted with 1-3 halogen substituents,

(e) phenyl, optionally substituted with 1-3 halogen substituents,

(f) 5-6 membered monocyclic heteroaryl having 1-4 heteroatoms which are N, S or O or 8-10 membered bicyclic heteroaryl having 1-6 heteroatoms which are N, S or O, optionally substituted with 1-3 halogen substituents, or

(g) C₁-C₃ alkyl-phenyl, optionally substituted with 1-3 halogen substituents,

each R⁷, R⁷' and R_z is independently

(a) hydrogen,

(b) C₁-C₆ optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, up to per-halosubstituted C₁-C₅ alkyl, C₁-C₃ alkoxy or hydroxy ;

(c) C₁-C₆ alkoxy, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, up to per-halosubstituted C₁-C₅ alkyl, C₁-C₃ alkoxy, hydroxy or halogen;

(d) phenyl, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, up to per-halosubstituted C₁-C₅ alkyl, C₁-C₃ alkoxy, hydroxy or halogen,

(e) 5-6 membered monocyclic heteroaryl having 1-4 heteroatoms which are N, S or O or 8-10 membered bicyclic heteroaryl having 1-6 heteroatoms which are N, S or O, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, up to per-halosubstituted C₁-C₅ alkyl, C₁-C₃ alkoxy, hydroxy or halogen,

(f) C₁-C₃ alkyl-phenyl, optionally substituted with 1-3 substituents, which are, independently, C₁-C₅ alkyl, up to per-halosubstituted C₁-C₅ alkyl, C₁-C₃ alkoxy, hydroxy or halogen; or

(g) up to per-halosubstituted C₁-C₅ alkyl, and where not per-halosubstituted, optionally substituted with 1-3 substituents which are, independently, C₁-C₅ alkyl, up to per-halosubstituted C₁-C₅ alkyl, C₁-C₃ alkoxy or hydroxy.

108. (New) A method as in claim 107 wherein substituents for B and L and additional substituents for L¹, one C₁-C₆ alkyl up to per-halosubstituted C₁-C₆ alkyl, CN, OH, halogen, C₁-C₆ alkoxy or up to per-halosubstituted C₁-C₆ alkoxy.

109. (New) A method of claim 107 wherein L¹ is pyridyl and is substituted by C(O)R_x or SO₂NR_aR_b.

110. (New) A method of claim 91 wherein a pharmaceutically acceptable salt of a compound of Formula I of claim 91 is used which is

- a basic salt of an organic acid or inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-naphthalene sulfonic acid, 2-naphthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid,

lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or

b) an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.

111. (New) A method of claim 107 wherein a pharmaceutically acceptable salt of a compound Formula I of claim 61 which is selected from the group consisting of

a) a basic salt of an organic acid or inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-naphthalene sulfonic acid, 2-naphthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or

b) an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.

112. (New) A method of claim 91 wherein the substituted or unsubstituted monocyclic heteroaryl groups of B, L and L¹ are, independently,

2- and 3-furyl,

2- and 3-thienyl,

2- and 4-triazinyl,

1-, 2- and 3-pyrrolyl,

1-, 2-, 4- and 5-imidazolyl,
1-, 3-, 4- and 5-pyrazolyl,
2-, 4- and 5-oxazolyl,
3-, 4- and 5-isoxazolyl,
2-, 4- and 5-thiazolyl,
3-, 4- and 5-isothiazolyl,
2-, 3- and 4-pyridyl,
2-, 4-, 5- and 6-pyrimidinyl,
1,2,3-triazol-1-, -4- and -5-yl,
1,2,4-triazol-1-, -3- and -5-yl,
1- and 5-tetrazolyl,
1,2,3-oxadiazol-4- and -5-yl,
1,2,4-oxadiazol-3- and -5-yl,
1,3,4-thiadiazol-2- and -5-yl,
1,2,4-oxadiazol-3- and -5-yl,
1,3,4-thiadiazol-2- and -5-yl,
1,3,4-thiadiazol-3- and -5-yl,
1,2,3-thiadiazol-4- and -5-yl,
2-, 3-, 4-, 5- and 6-2H-thiopyranyl,
2-, 3- and 4-4H-thiopyranyl,
3- and 4-pyridazinyl, or

2-,3-pyrazinyl.

113. (New) A compound of claim 91 wherein the substituted or unsubstituted bicyclic heteroaryl groups of B and L¹ are, independently:

2-, 3-, 4-, 5-, 6- and 7-benzofuryl,
2-, 3-, 4-, 5-, 6- and 7-benzothienyl,
1-, 2-, 3-, 4-, 5-, 6- and 7-indolyl,
1-, 2-, 4- and 5-benzimidazolyl,
1-, 3-, 4-, 5-, 6- and 7-benzopyrazolyl,
2-, 4-, 5-, 6- and 7-benzoxazolyl,
3-, 4-, 5-, 6- and 7-benzisoxazolyl,
1-, 3-, 4-, 5-, 6- and 7-benzothiazolyl,
2-, 4-, 5-, 6- and 7-benzisothiazolyl,
2-, 4-, 5-, 6- and 7-benz-1,3-oxadiazolyl,
2-, 3-, 4-, 5-, 6-, 7- and 8-quinolinyl,
1-, 3-, 4-, 5-, 6-, 7-, and 8- isoquinolinyl,
2-, 4-, 5-, 6-, 7- and 8-quinazolinyl,
tetrahydroquinolinyl,
tetrahydroisoquinolinyl,
dihydrobenzofuryl,
pyrazolo[3,4-b]pyrimidinyl,
purinyl,
benzodiazine,
pterindinyl,
pyrrolo[2,3-b]pyridinyl,
pyrazolo[3,4-b]pyridinyl,
oxazo[4,5-b]pyridinyl,
imidazo[4,5-b]pyridinyl,
cyclopentenopyridine,
cyclohexanopyridine,
cyclopentanopyrimidine,

cyclohexanopyrimidine,
cyclcopentanopyrazine,
cyclohexanopyrazine,
cyclopantanopyridazine,
cyclohexanopyridazine,
cyclopentanoimidazole,
cyclohexanoimidazole,
cyclopentanothiophen or
cyclohexanothiophene.

114. (New) A method of claim 91 wherein the substituted 5 and 6 membered monocyclic heteroaryl moieties of B, L and L¹ are independently

5-methyl-2-thienyl,
4-methyl-2-thienyl,
1-methyl-3-pyrolol,
1-methyl-3-pyrazolyl,
5-methyl-2-thiazolyl, or
5-methyl-1,2,4-thiadiazol-2-yl; or

the substituted phenyl and naphthyl groups of B, L and L¹ are independently

tetrahydronaphthyl,
indanyl,
indenyl,
benzocyclobutanyl,
benzocycloheptanyl or
benzocycloheptenyl;

the partially saturated monocyclic heterocyclic moieties of B, L and L¹ are independently:

dihydropyranyl,
dihydrofuranyl,
dihydrothienyl,

dihydropiperidinyl or
dihydropyrimidonyl.

115. (New) A method of claim 91 wherein the structures of B, L and L¹ are each, phenyl, furyl, oxadiazolyl, oxazolyl, isooxazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrazolyl, thiadiazolyl, thiazolyl or thienyl and the structures of B and L¹ are additionally naphthyl, isoindolinyl, quinolinyl or isoquinolinyl.

116. (New) A method of claim 115 wherein the substituents of the substituted structures of L are methyl, trifluoromethyl, ethyl, n-propyl, n-butyl, n-pentyl, i-propyl, t-butyl, methoxy, ethoxy, propoxy, Cl, Br, F, cyano, nitro, hydroxy, amino, methylamino, dimethylamino, ethylamino or diethylamino.

117. (New) A method of claim 115 wherein the substituents of the substituted structures of B and L¹ are methyl, trifluoromethyl, ethyl, n-propyl, n-butyl, n-pentyl, isopropyl, *tert*-butyl, sec-butyl, isobutyl, cyclopropyl, cyclobutyl, cyclopentyl, methoxy, ethoxy, propoxy, Cl, Br and F, cyano, nitro, hydroxy, amino, methylamino, dimethylamino, ethylamino or diethylamino.

118. (New) A method of claim 115 wherein the substituents of the substituted structures of B and L¹ are each, independently, selected from the group consisting of phenyl, pyridinyl, pyrimidinyl, chlorophenyl, dichlorophenyl, bromophenyl, dibromophenyl, chloropyridinyl, bromopyridinyl, dichloropyridinyl, dibromopyridinyl methylphenyl, methylpyridinyl quinolinyl, isoquinolinyl, isoindolinyl, pyrazinyl, pyridazinyl, pyrrolinyl, imidazolinyl, thienyl, furyl,

isoxazolinyl, isothiazolinyl, benzopyridinyl, benzothiazolyl,
C₁-C₅ acyl;

NH(C₁-C₅ alkyl, phenyl or pyridinyl);
N(C₁-C₅ alkyl)(C₁-C₅ alkyl, phenyl or pyridinyl);
N(C₁-C₃ alkyl) SO₂(C₁-C₅ alkyl);
CO(C₁-C₆ alkyl or phenyl);
C(O)H;
C(O)O(C₁-C₆ alkyl or phenyl);
C(O)OH;
C(O)NH₂ ;
C(O)NH(C₁-C₆ alkyl or phenyl) ;
C(O)N(C₁-C₆ alkyl or phenyl)(C₁-C₆ alkyl, phenyl or pyridinyl);
C(NCH₃)CH₃;
NHC(O)(C₁-C₆ alkyl or phenyl) or
N(C₁-C₅ alkyl,)C(O)(C₁-C₅ alkyl).

119. (New) A method as in claim 91 wherein B, L and L¹ of the compound of Formula I or the pharmaceutically acceptable salt thereof follow one of the following of combinations:

B= phenyl, L=phenyl and L¹ is phenyl, pyridinyl, quinolinyl or isoquinolinyl,
B= phenyl, L=pyridinyl and L¹ is phenyl, pyridinyl, quinolinyl or isoquinolinyl,
B=phenyl, L = naphthyl and L¹ is phenyl, pyridinyl, quinolinyl or isoquinolinyl,
B=pyridinyl, L= phenyl and L¹ is phenyl, pyridinyl, quinolinyl or isoquinolinyl,
B=pyridinyl, L= pyridinyl and L¹ is phenyl, pyridinyl, quinolinyl or isoquinolinyl,
B =isoquinolinyl, L= phenyl and L¹ is phenyl, pyridinyl, quinolinyl or isoquinolinyl,
B= isoquinolinyl, L= pyridinyl and L¹ is phenyl, pyridinyl, quinolinyl or isoquinolinyl,
B= quinolinyl, L= phenyl and L¹ is phenyl, pyridinyl, quinolinyl or isoquinolinyl, or
B= quinolinyl, L= pyridinyl and L¹ is phenyl, pyridinyl, quinolinyl or isoquinolinyl.

120. (New) A method as in claim 119 wherein the pharmaceutically acceptable salt is

a) a basic salt of an organic acid or an inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-naphthalene sulfonic acid, 2-naphthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or

b) an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.

121. (New) A method for the treatment of a raf mediated disorder in a human or other mammal, comprising administering to a human or other mammal in need thereof, a pharmaceutical composition comprising a tosylate salt of

N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(4-(2-carbamoyl-4-pyridyloxy)phenyl) urea or
N-(4-chloro-3-(trifluoromethyl)phenyl)-*N'*-(4-(2-(*N*-methylcarbamoyl)-4-pyridyloxy)phenyl) urea.--