Laboratorium Elektroniki					
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.		
Informatyka	_	I		.6	
Temat Laboratorium				Numer lab.	
Układy RLC					
Skład grupy ćwiczeniowej oraz numery indeksów					
Maciej Kaszkowiak (151856), Dawid Jędraszczyk(148293), Michał Kalinowski(151758)					
Uwagi			Ocena		

1 Cel

Celem laboratorium jest zapoznanie się z zachowaniem elementów indukcyjnych, pojemnościowych oraz rezystancyjnych przy pobudzeniu prądem przemiennym. Ćwiczenia miały na celu również zapoznanie się z zachowaniem elementów pojemnościowych przy pobudzeniu prądem stałym. Badaliśmy zmiany skutecznej wartości prądu oraz napięcia w obwodzie w zależności od częstotliwości pobudzenia.

2 Krzywa ładowania pojemności

W celu wyznaczeniu czasu ładowania pojemności zbudowaliśmy następujący obwód na płytce prototypowej:

Rysunek 1: Badany obwód do wyznaczania czasu ładowania pojemności.

Zmierzyliśmy wartości elementów wykorzystanych do zbudowania układu, ich wartości rzeczywiste nieznacznie odbiegały od wartości nominalnych:

$$U = 10.2V \tag{1}$$

$$C = 47.22\mu\tag{2}$$

$$R = 987k\Omega \tag{3}$$

Układ wykorzystuje przełącznik trzypozycyjny. Powyższy schemat przedstawia pozycję przełącznika w stanie załączenia ciągłego. W stanie wyłączenia *off* prąd nie płynie przez układ. Przełącznik również posiada funkcję załączenia chwilowego, która powoduje rozładowanie kondensatora. Działanie można zaobserwować na poniższym schemacie:

Rysunek 2: Układ w stanie załączenia chwilowego.

Energia zgromadzona w kondensatorze jest rozpraszana przez rezystor $1k\Omega$. Wykorzystany sposób rozładowania kondensatora wymaga dobrania rezystora o odpowiedniej mocy. [1]

2.1 Teoretyczne obliczenie prądu oraz napięć w układzie

W pierwszym kroku obliczyliśmy napięcie na kondensatorze w zależności od czasu:

$$u_C(t) = E(1 - e^{\frac{-t}{RC}}) \tag{4}$$

Następnie podstawiliśmy wartości ustalone drogą pomiarów:

$$u_C(t) = 10.2(1 - e^{\frac{-t}{0.987 \cdot 10^6 \cdot 47.22 \cdot 10^{-6}}})$$
(5)

$$u_C(t) = 10.2(1 - e^{\frac{-t}{46.606}}) \tag{6}$$

W drugim kroku obliczyliśmy natężenie prądu płynącego przez kondensator w zależności od czasu: [2]

$$i_C(t) = C \cdot \frac{du_C(t)}{dt} \tag{7}$$

$$\frac{du_C(T)}{dt} = E \cdot \frac{e^{\frac{-t}{CR}}}{CR} \tag{8}$$

$$i_C(t) = E \cdot \frac{e^{\frac{-t}{CR}}}{R} \tag{9}$$

Następnie podstawiliśmy wartości ustalone drogą pomiarów:

$$i_C(t) = 10.2 \cdot \frac{e^{\frac{-t}{46.606}}}{0.987 \cdot 10^6} \tag{10}$$

2.2 Wyniki pomiarów oraz obliczeń

Finalnie obliczyliśmy wartości napięcia oraz natężenia dla wartości czasu przyjętych przy pomiarach. Przebiegi czasowe procesu ładowania pojemności przedstawiają się następująco:

Czas ładowania	Zmierzone napięcie	Obliczone napięcie	Obliczone napięcie	Obliczony prąd
kondensatora	na kondensatorze	na kondensatorze	na rezystorze	płynący przez układ
10.09s	1.984V	1.98556V	8.21V	8.322μΑ
20.11s	3.504V	3.57467V	6.63V	6.714μA
30.05s	4.67V	4.84718V	5.35V	5.423μA
39.99s	5.63V	5.87528V	4.32V	4.381μΑ
49.95s	6.39V	6.70742V	3.49V	3.542µA
59.97 <i>s</i>	7.02V	7.38307V	2.82V	2.854μΑ
69.93s	7.50V	7.92508V	2.27V	2.306μΑ
80.07s	7.90V	8.36989V	1.83V	1.856μΑ
89.94 <i>s</i>	8.20V	8.71917V	1.48V	1.530μΑ
100.03s	8.45V	9.00744V	1.19V	1.208μΑ
110.11 <i>s</i>	8.65V	9.23938V	0.96V	0.975μΑ
120.08s	8.80V	9.42438V	0.78V	0.785μΑ
130.03 <i>s</i>	8.92V	9.57348V	0.63V	0.635μΑ
140.04s	9.03 <i>V</i>	9.69458V	0.51V	0.512μΑ

Rysunek 3: Przebiegi czasowe procesu ładowania pojemności

Występuje drobna rozbieżność w granicach błędu pomiarowego pomiędzy zmierzonym a obliczonym napięciem.

Rysunek 4: Krzywa ładowania pojemności.

3 Obwód RC zasilony prądem przemiennym

Zbudowaliśmy następujący obwód RC na płytce prototypowej:

Rysunek 5: Badany obwód RC.

3.1 Pomiar napięć oraz przesunięcia fazowego

Z wykorzystaniem oscyloskopu uzyskaliśmy następujące pomiary:

Częstotliowść pobudzenia	Napięcie skuteczne na źródle	Napięcie skuteczne na rezystancji	Obliczone napięcie skuteczne na pojemności	Przesunięcie fazowe pomiędzy przebiegiem wejściowym oraz przebiegiem prądowym
1kHz	1.718V	98mV	1.715V	79,2°
2kHz	1.775V	180mV	1.766V	89,28°
4kHz	1.771V	361mV	1.734V	80,64°
6.4 <i>kHz</i>	1.768V	569mV	1.674V	73,7°
8kHz	1.768V	686mV	1.629V	63,36°
10kHz	1.725V	827mV	1.514V	57,6°
12kHz	1.715V	933mV	1.439V	$77,76^{\circ}$
14kHz	1.718V	1047mV	1.362V	52,42°
16 <i>kHz</i>	1.754V	1124mV	1.346V	46.07°
18 <i>kHz</i>	1.686V	1209mV	1.175V	41.47°
20kHz	1.739V	1273mV	1.185V	34.54°

Rysunek 6: Pomiary napięć oraz przesunięcia fazowego w obwodzie RC.

Obliczenie wartości teoretycznej napięć i pradu

Wykorzystaliśmy metodę liczb zespolonych do analitycznego wyznaczenia wartości napięć i prądu w obwodzie dla częstotliwości 1 kHz.

$$U_{pp} = 5V \tag{11}$$

$$f = 1kHz = 1 \cdot 10^3 Hz \tag{12}$$

$$C = 10nF = 1 \cdot 10^{-8}F \tag{13}$$

$$R = 1k\Omega = 1 \cdot 10^3 \Omega \tag{14}$$

W pierwszym kroku wyznaczyliśmy reaktancję kondensatora:

$$X_c = \frac{1}{\omega C} = \frac{1}{2\pi f C} \tag{15}$$

$$X_c = \frac{1}{\omega C} = \frac{1}{2\pi f C}$$

$$X_c = \frac{1}{2\pi \cdot 10^3 \cdot 10^{-8}} = \frac{1}{2\pi \cdot 10^{-5}} = 15915.49\Omega$$
(15)

W następnym kroku wyznaczyliśmy impendancję układu:

$$|Z| = \sqrt{R^2 + X_c^2} \tag{17}$$

$$|Z| = \sqrt{10^6 + 15915.49^2} = 15946.87\Omega \tag{18}$$

Następnie wyznaczyliśmy zespoloną wartość skuteczną napięcia: [3]

$$|U| = \frac{U_p}{\sqrt{2}} = \frac{U_{pp}}{2\sqrt{2}} \tag{19}$$

$$|U| = \frac{5}{2\sqrt{2}} = 1.767V\tag{20}$$

W dalszym ciągu ustaliliśmy wartości skuteczne prądu płynącego przez układ oraz napięcia na rezystorze i kondensatorze:

$$|I| = \frac{|U|}{|Z|} \tag{21}$$

$$|I| = \frac{|U|}{|Z|}$$

$$|I| = \frac{1.767}{15946.87} = 110.8\mu A$$
(21)

$$U_{rezystor} = |I| \cdot R = 110.8mV \tag{23}$$

Finalnie w celu wyznaczenia wartości skutecznej napięcia na kondensatorze skorzystaliśmy z napięciowego prawa Kirchoffa. [4]

$$U_{kondensator} = \sqrt{U_{zrodlo}^2 - U_{rezystor}^2}$$
 (24)

$$U_{kondensator} = \sqrt{1.767^2 - 0.1108^2} = 1.7635V \tag{25}$$

Wyniki ustalone analitycznie przedstawiają się następująco:

Prąd układu	Napięcie skuteczne	Napięcie skuteczne	Napięcie skuteczne
	na rezystancji	na kondensatorze	na źródle
110.8μA	110.8 <i>mV</i>	1.7635V	1.767V

Rysunek 7: Wyniki ustalone analitycznie dla obwodu RC.

Występuje drobna rozbieżność w granicach błędu pomiarowego - zmierzyliśmy napięcie skuteczne na rezystancji jako 98mV, natomiast drogą obliczeń ustaliliśmy jego wartość jako 110.8mV. Rozbieżność może być spowodowana niedoskonałością poszczególnych komponentów oraz napięciem skutecznym zasilania odbiegającym od wartości 5V.

3.3 Relacja pomiędzy reaktancją pojemnościową a częstotliwością pobudzenia oraz wartościa pradu w obwodzie

W celu ustalenia relacji przeprowadziliśmy modyfikację postaci wzoru na reaktancję pojemnościową:

$$X_C = -j\frac{1}{\omega C} \tag{26}$$

$$\omega = \frac{2\pi}{T} \tag{27}$$

$$T = \frac{1}{f} \tag{28}$$

$$X_C = -j\frac{1}{2\pi fC} \tag{29}$$

$$C = \frac{Q}{U}$$

$$U = RI$$
(30)

$$U = RI \tag{31}$$

$$X_C = -j \frac{1}{2\pi f \frac{Q}{RI}} \tag{32}$$

$$X_C = -j\frac{RI}{2\pi fQ} \tag{33}$$

Z uzyskanego wzoru wynika, że reaktancja pojemnościowa jest wprost proporcjonalna do prądu płynącego przez układ oraz odwrotnie proporcjonalna do częstotliwości pobudzenia. Zależność możemy zaobserwować na poniższym wykresie:

Rysunek 8: Zmiany wartości skutecznej natężenia prądu w obwodzie RC.

3.4 Wartość skuteczna napięcia na pojemności

W celu wyznaczenia wartości skutecznej napięcia na pojemności skorzystaliśmy z napięciowego prawa Kirchoffa. [4]

$$U_C = \sqrt{U_Z^2 - U_R^2} (34)$$

Wyniki przedstawiają się następująco:

Rysunek 9: Wykres napięcia na pojemności w zależności od częstotliwości pobudzenia.

4 Układ RL zasilony prądem przemiennym

Zbudowaliśmy następujący obwód RL na płytce prototypowej:

Rysunek 10: Badany obwód RL.

4.1 Pomiar napięć oraz przesunięcia fazowego

Z wykorzystaniem oscyloskopu uzyskaliśmy następujące pomiary:

Częstotliowść pobudzenia	Napięcie skuteczne na źródle	Napięcie skuteczne na rezystancji	Obliczone napięcie skuteczne na cewce	Przesunięcie fazowe pomiędzy przebiegiem wejściowym oraz przebiegiem prądowym
1kHz	1.753V	1.68V	0.501V	14.4°
2kHz	1.781V	1.60V	0.782V	28.8°
4kHz	1.799V	1.33V	1.211V	46.08°
6.4 <i>kHz</i>	1.842V	1.04V	1.520V	64.5°
8kHz	1.856V	891 <i>mV</i>	1.628V	51.84°
10 <i>kHz</i>	1.828V	742mV	1.671 <i>V</i>	64.8°
12kHz	1.825V	643mV	1.708V	60.48°
14kHz	1.830V	576mV	1.737V	80.64°
16 <i>kHz</i>	1.884V	516mV	1.812V	73.73°
18 <i>kHz</i>	1.820V	470mV	1.758V	72.58°
20kHz	1.884V	417mV	1.837V	74.88°

Rysunek 11: Pomiary napięć oraz przesunięcia fazowego w obwodzie RL.

Obliczenie wartości teoretycznej napięć i prądu

Wykorzystaliśmy metodę liczb zespolonych do analitycznego wyznaczenia wartości napięć i prądów w obwodzie dla częstotliwości 20 kHz.

$$U_{pp} = 5V \tag{35}$$

$$f = 20kHz = 2 \cdot 10^4 Hz \tag{36}$$

$$L = 33mH = 3.3 \cdot 10^{-2}H \tag{37}$$

$$R = 1k\Omega = 1 \cdot 10^3 \Omega \tag{38}$$

W pierwszym kroku wyznaczyliśmy reaktancję cewki:

$$|X_L| = \omega L = 2\pi f L \tag{39}$$

$$|X_L| = 2\pi \cdot 2 \cdot 10^4 \cdot 3.3 \cdot 10^{-2} = 2\pi \cdot 660 \tag{40}$$

$$|X_L| = 4146.9\Omega \tag{41}$$

W następnym kroku wyznaczyliśmy impendancję układu:

$$|Z| = \sqrt{R^2 + X_L^2} \tag{42}$$

$$|Z| = \sqrt{10^6 + 4146.9^2} = 4265.77\Omega \tag{43}$$

Następnie wyznaczyliśmy zespoloną wartość skuteczną napięcia: [3]

$$|U| = \frac{U_p}{\sqrt{2}} = \frac{U_{pp}}{2\sqrt{2}} \tag{44}$$

$$|U| = \frac{5}{2\sqrt{2}} = 1.767V\tag{45}$$

W dalszym ciągu ustaliliśmy wartości skuteczne prądu płynącego przez układ oraz napięcia na rezystorze i cewce:

$$|I| = \frac{|U|}{|Z|} \tag{46}$$

$$|I| = \frac{|U|}{|Z|}$$

$$|I| = \frac{1.767}{4265.77} = 414.2\mu A$$

$$(46)$$

$$U_{rezystor} = |I| \cdot R = 414.2mV \tag{48}$$

Finalnie w celu wyznaczenia wartości skutecznej napięcia na cewce skorzystaliśmy z napięciowego prawa Kirchoffa. [4]

$$U_{cewka} = \sqrt{U_{zrodlo}^2 - U_{rezystor}^2} \tag{49}$$

$$U_{cewka} = \sqrt{1.767^2 - 0.4142^2} = 1.7177V \tag{50}$$

Wyniki ustalone analitycznie przedstawiają się następująco:

Prąd układu	Napięcie skuteczne	Napięcie skuteczne	Napięcie skuteczne
	na rezystancji	na cewce	na źródle
414.2μA	414.2 <i>mV</i>	1.7177V	1.767V

Rysunek 12: Wyniki ustalone analitycznie dla obwodu RL.

Występuje drobna rozbieżność w granicach błędu pomiarowego - zmierzyliśmy napięcie skuteczne na rezystancji jako 414.2mV, natomiast drogą obliczeń ustaliliśmy jego wartość jako 417mV. Rozbieżność może być spowodowana niedoskonałością poszczególnych komponentów oraz napięciem skutecznym zasilania odbiegającym od wartości 5V.

4.3 Relacja pomiędzy reaktancją indukcyjną a częstotliwością pobudzenia oraz wartościa pradu w obwodzie

W celu ustalenia relacji przeprowadziliśmy modyfikację postaci wzoru na reaktancję indukcyjną:

$$X_L = j\omega L \tag{51}$$

$$\omega = \frac{2\pi}{T} \tag{52}$$

$$T = \frac{1}{f} \tag{53}$$

$$L = \frac{\Psi}{I} \tag{54}$$

$$T = \frac{1}{f}$$

$$L = \frac{\Psi}{I}$$

$$X_L = j2\pi f \frac{\Psi}{I}$$
(53)
$$(54)$$

Z uzyskanego wzoru wynika, że reaktancja indukcyjna jest odwrotnie proporcjonalna do prądu płynącego przez układ i wprost proporcjonalna do częstotliwości pobudzenia. Zależność możemy zaobserwować na poniższym wykresie:

Rysunek 13: Zmiany wartości skutecznej natężenia prądu w obwodzie RL.

4.4 Wartość skuteczna napięcia na cewce

W celu wyznaczenia wartości skutecznej napięcia na cewce skorzystaliśmy z napięciowego prawa Kirchoffa. [4]

$$U_L = \sqrt{U_Z^2 - U_R^2} \tag{56}$$

Wyniki przedstawiają się następująco:

Rysunek 14: Wykres napięcia na cewce w zależności od częstotliwości pobudzenia.

5 Wnioski

Zbudowaliśmy układy zawierające wyłącznie podstawowe elementy pasywne: rezystor, cewkę i kondensator, przy pomocy których zmierzyliśmy zależność ładowania pojemności w stosunku do czasu. Zrozumieliśmy pojęcie przesunięcia fazowego oraz sposób jego wyznaczania. Poznaliśmy także zależność pomiędzy częstotliwością pobudzenia układu a reaktancją indukcyjną oraz pojemnościową.

Spis treści

1	el	1			
2	Arzywa ładowania pojemności 1 Teoretyczne obliczenie prądu oraz napięć w układzie				
3	Powód RC zasilony prądem przemiennym 1 Pomiar napięć oraz przesunięcia fazowego	5			
4	Układ RL zasilony prądem przemiennym 4.1 Pomiar napięć oraz przesunięcia fazowego				
5	nioski				
Li	eratura				
[1]	ak bezpiecznie rozładować kondensator. TME, 2020. [Online]. Avai ttps://www.tme.eu/pl/news/library-articles/page/22156/Jak-bezpiecznie-rozladowac-kondensator/	able:			
[2]	V. Moebs, <i>Fizyka dla szkół wyższych. Tom 2</i> . OpenStax Poland, 2018. [Online]. Avai ttps://openstax.org/books/fizyka-dla-szkół-wyższych-tom-2/pages/1-wstep	able:			
[3]	G. M. Cathleen Shamieh, <i>Elektronika dla bystrzaków</i> . Helion, 2012.				
[4]	A. Pożaryski, Podstawy naukowe elektrotechniki łącznie z zasadami pomiarów. BCPW, 1915.				