DE10243974

Patent number:

DE10243974

Publication date:

2004-04-01

Inventor:

BURR REINHOLD (DE); KLINGLER DIETRICH (DE);

VOIGT KLAUS (DE)

Applicant:

BEHR GMBH & CO (DE)

Classification:

- international:

B60H1/34; B60H1/34; F02B; (IPC1-7): B60H1/34

- european:

Application number: DE20021043974 20020920 Priority number(s): DE20021043974 20020920

Also published as:

M W M AL

WO2004029427 (A3) WO2004029427 (A2) AU2003275971 (A1)

Report a data error here

Abstract not available for DE10243974

Data supplied from the esp@cenet database - Worldwide

(10) **DE 102 43 974 A1** 2004.04.01

(12)

Offenlegungsschrift

(21) Aktenzeichen: **102 43 974.5** (22) Anmeldetag: **20.09.2002**

(43) Offenlegungstag: 01.04.2004

(51) Int Cl.7: **B60H 1/34**

(71) Anmelder:

Behr GmbH & Co., 70469 Stuttgart, DE

(72) Erfinder:

Burr, Reinhold, Dipl.-Ing., 89522 Heidenheim, DE; Klingler, Dietrich, Dipl.-Ing., 73540 Heubach, DE;

Voigt, Klaus, Dipl.-Ing., 74321 Bietigheim-Bissingen, DE (56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 199 43 822 A1

DE 197 39 652 A1

DE 39 16 387 A1

FR 28 13 241 A1

EP 12 23 061 A2

WO 99/07 569 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Rechercheantrag gemäß § 43 Abs. 1 Satz 1 PatG ist gestellt.

(54) Bezeichnung: Lufteinströmer, insbesondere für ein Kraftfahrzeug

(57) Zusammenfassung: Die Erfindung betrifft einen Lufteinströmer (1), insbesondere für ein Kraftfahrzeug, mit einem Luft zuführenden Luftkanal (2), einer Dosiervorrichtung (3) und einer Luftleitvorrichtung (4), wobei die Luft in der Luftleitvorrichtung (4) zumindest bereichsweise in mehrere Teilkanäle (11, 12) aufgeteilt ist, wobei im Eintrittsbereich (10) keine wesentliche Richtungsänderung der Teilkanäle (11, 12) vorgesehen ist.

Beschreibung

[0001] Die Erfindung betrifft einen Lufteinströmer, insbesondere für ein Kraftfahrzeug, gemäß dem Oberbegriff des Anspruchs 1.

[0002] Aus der EP 1 223 061 A2 ist ein Lufteinströmer, insbesondere zur Fahrzeugklimatisierung, mit einem Rahmen, mehreren Lamellen, die um eine erste Achse verschwenkbar angeordnet sind, und mindestens einem Koppelelement, mit dem jede der Lamellen gekoppelt ist, wobei das Koppelelement relativ zur ersten Achse zwischen einer Neutralstellung, in der die Lamellen zueinander parallel sind, und einer Komfortstellung verstellbar sind, in der mindestens ein Teil der Lamellen in zueinander entgegengesetzter Richtung verschwenkbar ist. Der Lufteinströmer ist vor einem Ausströmer angeordnet, aus dem ein Luftstrom austritt, dessen Richtung mit Hilfe des Lufteinströmers eingestellt werden kann. Dabei kann der Luftstrom mit Hilfe der zueinander entgegengesetzt verschwenkten Lamellen aufgefächert werden, so dass ein divergierender Luftstrom erzeugt wird, in welchem geringere Strömungsgeschwindigkeiten herrschen als bei einem Luftstrom mit konstantem Querschnitt, so dass auch bei einem hohen Luftdurchsatz verhindert werden kann, dass der austretende Luftstrom mit hohen Geschwindigkeiten auf einen Fahrzeuginsassen auftrifft. Ein derartiger Lufteinströmer lässt jedoch noch Wünsche offen.

[0003] Es ist Aufgabe der Erfindung, einen verbesserten Lufteinströmer zur Verfügung zu stellen.

[0004] Diese Aufgabe wird gelöst durch einen Lufteinströmer mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.

[0005] Erfindungsgemäß ist ein Lufteinströmer mit einem Luft zuführenden Luftkanal und einer am Ende des Luftkanals angeordneten Dosiervorrichtung und einer Luftleitvorrichtung vorgesehen, bei dem die Luft in der Luftleitvorrichtung zumindest bereichsweise in mehrere Teilkanäle, insbesondere zwei Teilkanäle, aufgeteilt ist. Hierbei ist zumindest im Eintrittsbereich der Luftleitvorrichtung neben der Teilung in die Teilkanäle keine wesentliche Richtungsänderung vorgesehen. Die Teilung des eingangs einteiligen Luftkanals erfolgt etwas beabstandet vom Austritt der Luft aus der Luftleitvorrichtung, vorzugsweise 1 bis 10, insbesondere 2 bis 5, mal dem mittleren Durchmesser des Luftkanals im entsprechenden Bereich vor dem Austritt aus der Luftleitvorrichtung, und reicht im Wesentlichen bis unmittelbar vor oder bis in die Dosiervorrichtung hinein. Eine derartige Ausgestaltung ist kostengünstig zu realisieren und bietet bei geringem Gewicht neben einer einfachen Montage einen geringen luftseitigen Druckabfall.

[0006] Vorzugsweise weist der Luftkanal einen Krümmer auf, wobei im Bereich des Krümmers die Luft auf mehrere, insbesondere zwei, Teilkanäle aufgeteilt ist. Vorzugsweise ist dabei der Krümmer Teil der Luftleitvorrichtung. Vorzugsweise weist der

Krümmer einen Winkel von 60° bis 120°, insbesondere 80° bis 100°, vorzugsweise 90°, auf.

[0007] Vorzugsweise erfolgt die Aufteilung im Eintrittsbereich der Luftleitvorrichtung in den Bereich mit zwei Teilströmen achssymmetrisch, d.h. in radialer Richtung, insbesondere in der von der Mittellängsachse des Luftkanals und der Mittellinie des Krümmers definierten Ebene.

[0008] Vorzugsweise ist die Dosiervorrichtung vor der Luftleitvorrichtung angeordnet, insbesondere vor dem Krümmer, welcher vorzugsweise auch Teil der Luftleitvorrichtung sein kann.

[0009] Vorzugsweise ist die Luftleitvorrichtung derart ausgebildet, dass im Ausströmbereich des Luftkanals ein mittlerer Bereich des Luftkanals und ein äußerer Bereich des Luftkanals vorgesehen ist, denen durch unterschiedliche Teilkanäle Luft zuführbar ist. Die Luftverteilung auf die einzelnen Teilkanäle ist mittels einer Dosiervorrichtung steuerbar. Dabei kann vorzugsweise mit Hilfe eines der Teilkanäle eine Spotwirkung und mit Hilfe eines anderen Teilkanals ein Drall der Luft am Austritt erzeugt werden, welcher eine diffuse Einstellung bewirkt. Hierfür ist vorzugsweise eine Vorrichtung vorgesehen, welche den entsprechenden Teilluftstrom in eine wendelförmige Bewegung versetzt, wobei der Teilluftstrom in im Wesentlichen tangentialer Richtung zur Austrittsöffnung geführt wird. Ebenfalls ist ein in die Länge gezogener, spiralförmiger Bereich der Luftleitvorrichtung möglich, der ebenfalls einen Drall bewirkt.

[0010] Vorzugsweise ist die Dosiervorrichtung derart ausgebildet, dass die Luftströme der einzelnen Teilkanäle steuerbar sind, insbesondere unabhängig voneinander. Vorzugsweise steuert die Dosiervorrichtung sowohl die Verteilung der anströmenden Luft auf die einzelnen Teilkanäle als auch deren jeweilige Dosierung. Dies ermöglicht eine feine Dosierung.

[0011] Vorzugsweise ist als Dosiervorrichtung eine Stellvorrichtung vorgesehen, die eine mittels einer oder mehrerer Kurvenscheiben oder mit einer Kinematik gesteuerte Doppelklappe aufweist. Dies ermöglicht eine direkte Handverstellung mittels eines Drehknopfes durch den Insassen, so dass kein Stellmotor, keine Übersetzung o.ä. erforderlich ist.

[0012] Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung im Einzelnen erläutert. In der Zeichnung zeigen:

[0013] Fig. 1 eine Ansicht eines Lufteinströmers,

[0014] Fig. 2 eine teilweise offene Ansicht des Lufteinströmers von Fig. 1,

[0015] Fig. 3 eine schematische Ansicht der möglichen Strömungsverläufe des Lufteinströmers von

[0016] Fig. 4 eine andere schematische Ansicht der möglichen Strömungsverläufe des Lufteinströmers von Fig. 1,

[0017] Fig. 5 eine Detailansicht des Krümmerbereichs des Lufteinströmers von Fig. 1, und

[0018] Fig. 6 eine andere, teilweise geschnitten

dargestellte Detailansicht des Krümmerbereichs des Lufteinströmers von Fig. 1.

[0019] Ein erfindungsgemäßer Lufteinströmer 1, wie in den Figuren dargestellt, schließt an einen Luftkanal 2 an und umfasst eine Dosiervorrichtung 3, welche noch im Bereich des Luftkanals 2 angeordnet ist, eine Luftleitvorrichtung 4, welche der Dosiervorrichtung 3 nachgeordnet ist, und eine Vorrichtung 5 zur Einstellung der Richtung des Luftstroms, welche im Bereich der Austrittsöffnung 6 angeordnet ist. Diese Vorrichtung 5 weist einen schwenkbaren Ring 7 mit ringförmigen Luftleitschaufeln auf und ist auf im Prinzip bekannte Weise ausgestaltet. Die Austrittsöffnung 6 und somit auch die Vorrichtung 5 zur Einstellung der Richtung des Luftstroms sind im Armaturenbrett (nicht dargestellt) eines Kraftfahrzeugs eingebaut und somit kann der Insasse direkt die gewünschte Richtung des Luftstromes einstellen.

[0020] Die Luftleitvorrichtung 4 ist derart ausgebildet, dass an ihrem Eintrittsbereich 10 eine Aufteilung des Luftkanals 2 in zwei im Wesentlichen gleich große Teilkanäle 11 und 12 erfolgt. Die Teilung erfolgt in radialer-Richtung quer zum im Wesentlichen kreisförmigen Querschnitt des Luftkanals 2. Dabei ist im Anfangsbereich, auch als Eintrittsbereich der Luftleitvorrichtung 4 bezeichnet, keine Richtungsänderung bezüglich der Richtung des Luftkanals 2 vorgesehen.

[0021] Im Anschluss an den Eintrittsbereich der Luftleitvorrichtung 4 ist ein 90°-Krümmer 15 angeordnet. Einer der beiden Teilkanäle 11, 12, im Folgenden als mittlerer Teilkanal 11 bezeichnet, durchläuft den 90°-Krümmer 15 auf direktem Wege, so dass die ihn durchströmende Luft im Wesentlichen ohne Drall zur Austrittsöffnung 6 gelangt, wie in den Fig. 3 und 4 durch schwarze Pfeile im Bereich des Luftaustritts angedeutet. Die in den mittleren Teilkanal 11 eintretende Luft ist ebenfalls durch einen schwarzen Pfeil angedeutet. Der andere Teilkanal 12, im Folgenden als äußerer Teilkanal 12 bezeichnet, wird derart umgeleitet, dass er wendelförmig um den mittleren Teilkanal 11 geführt wird und dadurch einen Drall, gemäß dem Ausführungsbeispiel entgegen dem Uhrzeigersinn, erhält, wie in den Fig. 3 und 4 durch die weißen Pfeile im Bereich des Luftaustritts angedeutet. Die in den äußeren Teilkanal 12 eintretende Luft ist ebenfalls durch einen weißen Pfeil angedeutet.

[0022] Gemäß dem vorliegenden Ausführungsbeispiel ist als Dosiervorrichtung 3 eine Stellvorrichtung 20 mit einer Doppelklappe 21 vorgesehen, die parallel zur Teilung des Kanals 2 angeordnet ist und die über zwei miteinander durch eine Welle verbundene Kurvenscheiben 22 derart steuerbar ist, dass jeder Teilkanal 11, 12 einzeln geöffnet und geschlossen werden kann. Die Steuerung erfolgt durch den Insassen über ein am (nicht dargestellten) Armaturenbrett angeordnetes Betätigungsorgan 23, vorliegend einen Drehknopf, welcher direkt mit der Welle verbunden ist

[0023] Die Funktion des Lufteinströmers 1 ist Folgende: steht die Doppelklappe 21 in einer Stellung,

die beide Teilkanäle 11 und 12 freigibt, so gelangt jeweils etwa ein gleich großer Luftstrom in die beiden Teilkanäle 11 und 12. Die den mittleren Teilkanal 11 durchströmende Luft gelangt auf direktem Wege durch den Krümmer 15 und wird in im Wesentlichen gerader Richtung und mit einem ausreichend gleichmäßigen Strömungsprofil bei einer geraden Einstellung des Ringes 7 in den Fahrzeuginnenraum abgegeben. Die den äußeren Teilkanal 12 durchströmende Luft gelangt in den wendelförmigen Teil der Luftleitvorrichtung 4 und erhält dadurch einen Drall, der auch an der Austrittsöffnung 6 noch vorhanden ist und für eine gewisse Verwirbelung der Luft sorgt und den durch den mittleren Teilkanal 11 kommenden Luftstrom auffächert.

[0024] Verschließt der eine Teil der Doppelklappe 21 den äußeren Teilkanal 12 und ist der mittlere Teilkanal 11 freigegeben, so gelangt die Luft ausschließlich durch den mittleren Teilkanal 11 zur Austrittsöffnung 6, so dass ein im Wesentlichen drallfreier Luftstrahl an den Fahrzeuginnenraum abgegeben wird (Spotwirkung).

[0025] Verschließt hingegen der andere Teil der Doppelklappe 21 den mittleren Teilkanal 11 und ist der äußere Teilkanal 12 freigegeben, so gelangt die Luft ausschließlich durch den wendelförmigen Teil der Luftleitvorrichtung 4 und erhält dadurch den o.g. Drall, der auch an der Austrittsöffnung 6 noch vorhanden ist und für eine starke Verwirbelung der Luft sorgt (diffuse Einstellung).

[0026] Zwischenbereiche können beliebig angesteuert werden, so dass eine feine Dosierung des Luftstromes mit Hilfe des Lufteinströmers 1 möglich ist. Durch das gleichzeitige Verschließen beider Teilkanäle, kann die Düse auch komplett verschlossen werden.

Bezugszeichenliste

- 1 Lufteinströmer
- 2 Luftkanal
- 3 Dosiervorrichtung
- 4 Luftleitvorrichtung
- 5 Vorrichtung
- 6 Austrittsöffnung
- 7 Ring
- 10 Eintrittsbereich
- 11 mittlerer Teilkanal
- 12 äußerer Teilkanal
- 15 Krümmer
- 20 Stellvorrichtung
- 21 Doppelklappe
- 22 Kurvenscheibe
- 23 Betätigungsorgan

Patentansprüche

 Lufteinströmer, insbesondere für ein Kraftfahrzeug, mit einem Luft zuführenden Luftkanal (2), einer Dosiervorrichtung (3) und einer Luftleitvorrichtung

- (4), dadurch gekennzeichnet, dass die Luft in der Luftleitvorrichtung (4) zumindest bereichsweise in mehrere Teilkanäle (11, 12) aufgeteilt ist, wobei im unterteilten Eintrittsbereich (10) keine wesentliche Richtungsänderung der Teilkanäle (11, 12) vorgesehen ist.
- 2. Lufteinströmer nach Anspruch 1, dadurch gekennzeichnet, dass die Luftleitvorrichtung (4) eine zumindest bereichsweise in Verlängerung der Längsrichtung des Luftkanals (2) verlaufende Trennwand aufweist.
- 3. Lufteinströmer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Teilung des Luftkanals (2) in mehrere Teilkanäle (11, 12) 1 bis 10, insbesondere 2 bis 5, mal dem mittleren Durchmesser des Luftkanals (2) im entsprechenden Bereich vor dem Austritt der Luft aus der Luftleitvorrichtung (4) vorgesehen ist.
- 4. Lufteinströmer nach einem der vorhergehenden-Ansprüche, dadurch gekennzeichnet, dass die Luftleitvorrichtung (4) einen Krümmer (15) aufweist, wobei im Bereich des Krümmers (15) die Luft auf mehrere, insbesondere zwei Teilkanäle (11, 12) aufgeteilt ist.
- 5. Lufteinströmer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Krümmer (15) einen Winkel von 60° bis 120°, insbesondere 80° bis 100°, aufweist.
- 6. Lufteinströmer nach Anspruch 5, dadurch gekennzeichnet, dass der Krümmer (15) einen Winkel von 90° aufweist.
- 7. Lufteinströmer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Aufteilung im Eintrittsbereich (10) in den Bereich mit zwei Teilkanälen (11, 12) achssymmetrisch ist.
- 8. Lufteinströmer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dosiervorrichtung (3) vor der Luftleitvorrichtung (4) angeordnet ist.
- 9. Lufteinströmer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Luftleitvorrichtung (4) derart ausgebildet ist, dass im Ausströmbereich der Luftleitvorrichtung (4) ein mittlerer Bereich und ein äußerer Bereich vorgesehen ist, die durch unterschiedliche Teilkanäle (11, 12) anströmbar sind.
- 10. Lufteinströmer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Luftleitvorrichtung (4) einen wendelförmigen oder in die Länge gezogenen, spiralförmigen Bereich aufweist.

- 11. Lufteinströmer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dosiervorrichtung (3) derart ausgebildet ist, dass die den einzelnen Teilkanälen (11, 12) zuführbare Luft steuerbar ist.
- 12. Lufteinströmer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dosiervorrichtung (3) sowohl die Verteilung der anströmenden Luft auf die einzelnen Teilkanäle (11, 12) als auch deren Dosierung steuert.
- 13. Lufteinströmer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Dosiervorrichtung (3) eine Stellvorrichtung (20) vorgesehen ist, die eine mittels einer Kurvenscheibe (22) oder einer Kinematik gesteuerte Doppelklappe (21) aufweist.
- 14. Lufteinströmer nach Anspruch 13, dadurch gekennzeichnet, dass die Stellvorrichtung (20) direkt über eine Welle mit einem Betätigungsorgan (23) verbunden ist.

Es folgen 3 Blatt Zeichnungen

Anhängende Zeichnungen

