Tipos básicos

Programação I 2020.2021

Teresa Gonçalves tcg@uevora.pt

Departamento de Informática, ECT-UÉ

Sumário

Tipos Conversão de tipos

Tipos

Tipos C

int

Inteiro que pode ser positivo ou negativo

float

Valor numérico com parte decimal

A melhor aproximação aos números reais

char

Indicado entre plicas

Caracteres

Caracteres especiais

\n : mudança de linha

\t : tabulação

Cadeia de caracteres (string)

Indicada entre aspas

Não é um tipo no C

Representação

int

Complemento para 2

Ocupa 2, 4 ou 8 bytes

float

Vírgula flutuante

Ocupa 4 bytes

char

Código específico: ASCII

Ocupa 1 byte (8 bits)

Código ASCII

ASCII (American Standard Code for Information Interchange)

7 bits

Extended ASCII

8 bits

Unicode

UTF-8

UTF-16

UTF-32

De 6 5	b ₅					000	° 0 -	0 - 0	0	100	0 -	1 -0	1 1
		b 3	p ^s	b - +	Row	0	l	2	3	4	5	6	7
	0	0	0	0	0	NUL .	DLE	SP	0	0	P	``	Р
	0	0	0	-	1	SOH	DC1	!	1	Α	Q	0	q
	0	0	1	0	2	STX	DC2	11	2	В	R	b	r
	0	0	-	_	3	ETX	DC3	#	3	C	S	С	S
	0	1	0	0	4	EOT	DC4	•	4	D	T	d	1
	0	-	0	1	5	ENQ	NAK	%	5	E	υ	e	υ
	0	1	1	0	6	ACK	SYN	8	6	F	>	f	٧
	0	_	1	1	7	BEL	ETB	•	7	G	W	g	w
	_	0	0	0	8	BS	CAN	(8	н	×	h	×
	-	0	0		9	нТ	EM)	9	1	Y	i	у
	-	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
	1	0	-	1	11	VT	ESC	+	:	K	C	k	{
	ı	ı	0	0	12	FF	FS	•	<	L	\	l	1
	1	1	0	ı	13	CR	GS	-	#	М)	E .	}
	•	1	ı	0	14	so	RS	•	^	N	^	n	>
	1	Ī			15	SI	υs	/	?	0		0	DEL

USASCII code chart

Valores booleanos

Uma expressão com operadores relacionais origina um valor booleano

```
x == y → True se x é igual a y
Não confundir com a atribuição
x != y → True se x é diferente de y
x < y → True se x é menor que y</li>
x > y → True se x é maior que y
x <= y → True se x é menor ou igual a y</li>
x >= y → True se x é maior ou igual a y
```

Em C não existe um tipo para valores booleanos São usados valores numéricos

0 : considerado Falso

<>0 : considerado Verdade

Operadores lógicos

Operadores lógicos

```
&& (and)
|| (or)
! (not)
```

Tabela de verdade

а	b	a && b	a b	!a
F	F	F	F	Т
F	Т	F	Т	Т
Т	F	F	Т	F
Т	Т	Т	Т	F

Avaliação de expressões lógicas

A avaliação é "short-circuited"

Apenas avalia o lado direito se necessário

Comportamento

```
    a | | b
    Se a == Falso então b, senão a
    a & b
    Se x == Falso então a, senão b
    ! a
    Se a == Falso então Verdade, senão Falso
```

Conversão de tipos

Conversão de tipos

Conversão implícita

Se a expressão tiver 2 tipos compatíveis a expressão fica com o tipo mais geral

```
char → int
int → float
```

Explícita (casting)

(tipo) variável

Casting

(float) expr_num

Converte expr para um valor real

(int) expr_num

maior inteiro menor que expr (parte inteira do número)

(char) expr_int

Caracter correspondente a expr int (código ASCII)

(int) expr_char

Código ASCII correspondente a expr_char

Exercício 1

Calcule o perímetro, a área e o volume

de uma circunferência, círculo e esfera (respetivamente) cujo raio é especificado pelo utilizador.

A saber

pi: 3.14159265

perimetro: 2 * pi * r

area: pi * r²

volume: 4* pi * r3 / 3

Perimetro, area e volume

```
int main() {
  float raio, perimetro, area, volume;
  float pi = 3.14159265;
  printf( "Insira o raio: ");
  scanf( "%f", &raio );
  perimetro = 2 * pi * raio;
  area = pi * raio * raio;
  volume = 4 * pi * raio * raio * raio / 3;
  printf( "perimetro=%f\n", perimetro );
  printf( "area=%f\n", area );
  printf( "volume=%f\n", volume );
  return 0:
```

É possivel declarar várias variáveis na mesma instrução

É possivel declarar e atribuir valor na mesma instrução

Exercício 2

Escreva um programa que lê um número real e escreve-o com 3 casas decimais

Num: 1234.56789 → resultado: 1234.567

Número com 3 casas decimais

```
int main() {
  float x, y;
  int n;
   printf( "Insira um número real: " );
  scanf( "%f", &x);
  y = x *1000;
  n = (int) y;
                                                                 n é convertido
                                                                 (implicitamente)
  y = n / 1000.0;
                                                                 para float antes
                                                                 da divisão
  printf("y=%f", y);
  return 0;
```