

COMSATS University Islamabad, Lahore Campus

Department of Computer Engineering

Assignment 2 – SPRING 2025

Name:	·			Registration Number:				
Submission Date:	9 th April, 2025			Maximum Marks:		30		
Semester:	4 th	Batch:	FA23	Section:	A, B	Date Given:	28 th March, 202	25
Course Instructor	Dr. Muhammad Naeem Awais Mr. Moazzam Ali Sahi				Program Name:	ВСЕ		
Course Title:	Computer Organization & Architecture				Course Code:	CPE 343	Credit Hours:	4(3,1)
					Ì			

Important Instructions / Guidelines:

- Do your own work, PLAGARISM will be graded as ZERO
- No late submission.

Question 1: [CLO2-PLO2-C3] [10 Marks]

For the given piece of C code, *produce* the equivalent MIPS assembly code.

For
$$(i = 20; i \ge 0; i = i - 1)$$

 $W[i+1] = X[i-1] + s*Y[i];$

While generating the assembly code, assume that W, X and Y are arrays and their base addresses are in registers \$s0 to \$s2. Whereas s is a 32-bit number that corresponds to \$t0 and i is an array index that corresponds to \$t1.

Question 3: [CLO2-PLO2-C3] [10 Marks]

For the given piece of C code, *produce* the equivalent MIPS assembly code:

```
int find_max(int X[], int size)
    {
    int max = X[0];
    for (int i = 1; i < size; i++) {
        if (X[i] > max) {
            max = X[i];
        }
    }
    return max;
}
```

While generating the assembly code, assume that the base address of array X is in register \$s0 and size variable is associated with \$s1. Whereas variables max and i are associated with \$t0 and \$t1 respectively.

Ouestion 2: [CLO2-PLO2-C3] [10 Marks]

For the given piece of C code, *produce* the equivalent MIPS assembly code using **STACK**.

```
void reverse_array(int X[], int size) {
  int left = 0, right = size - 1;
  while (left < right) {</pre>
```

```
int temp = X[left];

X[left] = X[right];

X[right] = temp;

left++;

right--;
}
```

While generating the assembly code, assume that the base address of array X is in register \$a0 and size variable is associated with \$a1. Whereas variables left, right and temp are associated with \$s0, \$s1 and \$t0 respectively.