2. Построение множеств Input и Output

2.1.1 Остовное дерево

Чтобы пронумеровать вершины ГПУ, построим его остовное дерево (ОД) с корнем в вершине Entry и обойдем это дерево слева направо «сначала в глубину», используя «обратную нумерацию»

Остовное дерево графа содержит все вершины графа и часть его дуг.

Обратная нумерация используется для того, чтобы, например, вершина А имела номер 1, а не 8.

2.1.2 Глубинное остовное дерево

Чтобы пронумеровать вершины ГПУ, построим его остовное дерево (ОД) с корнем в вершине Entry и обойдем это дерево слева направо «сначала в глубину», используя «обратную нумерацию»

2.1.2 Глубинное остовное дерево

Чтобы пронумеровать вершины ГПУ, построим его остовное дерево (ОД) с корнем в вершине Entry и обойдем это дерево слева направо «сначала в глубину», используя «обратную нумерацию»

2.1.1 Глубинное остовное дерево

Чтобы пронумеровать вершины ГПУ, построим его остовное дерево (ОД) с корнем в вершине Entry и обойдем его слева направо «сначала в глубину», используя «обратную нумерацию»

2.1.1 Глубинное остовное дерево

У Чтобы пронумеровать вершины ГПУ, построим его *остовное дерево* (ОД) с корнем в вершине **Entry** и обойдем его слева направо «сначала в глубину», используя «обратную нумерацию»

В случае обратной нумерации вершин графа, содержащего n вершин i-ой вершине присваивается номер n - i

На остовном дереве идентификаторы вершин заменяем их номерами

Остовное дерево с корнем в **Entry** и такой нумерацией вершин называется *глубинным остовным деревом* – *DFST*).

DFST – Depth First Spanning Tree

2.1.1 Глубинное остовное дерево

Чтобы пронумеровать вершины ГПУ, построим его остовное дерево (ОД) с корнем в вершине Entry и обойдем его слева направо «сначала в глубину», используя «обратную нумерацию»

2.1.1 Глубинное остовное дерево

♦ После нумерации вершин ГПУ из примера 1.5.5 (тема 1) примет вид

2.1.2 Алгоритм построения глубинного остовного дерева и нумерации вершин ГПУ

Алгоритм

- \Diamond Вход: ГПУ $G = \langle N, E \rangle$ с корнем $Entry \in N$
- \Diamond **Выход**: глубинное остовное дерево графа G ($T_{DFS}(G)$) и нумерация узлов графа G, соответствующая упорядочению в глубину.
- - \diamond массив узлов dfn в порядке новой нумерации
 - \diamond множество T ребер глубинного остовного дерева $T_{DFS}(G)$

2.1.2 Алгоритм построения глубинного остовного дерева и нумерации вершин ГПУ

Рекурсивный алгоритм построения DFST

```
◆ Функция main():
    main() {
        T = ∅;
        for all n ∈ N n.vst = nv;
        c = |N|; // |N| = кол-во узлов
        DFST(n0);
}
```

```
Каждая вершина ГПУ представлена структурой struct n {number, vst}, где number - номер вершины, а vst имеет 2 значения: v (вершина была посещена) и пv (вершина не была посещена)
```

2.1.2 Алгоритм построения глубинного остовного дерева и нумерации вершин ГПУ

```
\Diamond
    Функция DFST ():
            void DFST(n) {
              Ormeyaem n kak v;
              for all s \in Succ(n)
                      if (s.vst == nv) {
                             T \cup = \{n \rightarrow s\};
                             DFST(s);
              // узлу n соответствует номер c
              n.number = c;
              dfn[c] = n;
              c--;
```

 \Diamond Замечание. Для каждой вершины $n \in N$ нетрудно построить множество Succ(n), содержащее все вершины $s \in N$, в которые входят дуги, выходящие из вершины n.

2.2.1 Поток данных

- \Diamond Точки программы $(...,p_j,p_{j+1},p_{j+2},...)$ расположены между ее инструкциями $(...,I_i,I_{i+1},...)$

$$I_j \stackrel{p_j}{\bullet} I_{j+1} \stackrel{p_{j+2}}{\bullet} \dots$$

- \diamond Инструкция программы I_j описывается парой состояний:
 - \diamond состоянием в *точке программы* p_{i} *перед* инструкцией I_{i}
 - \diamond состоянием в *точке программы* p_{j+1} *после* инструкции I_j .

2.2.1 Поток данных

Базовый блок В описывается парой состояний:

- \Diamond состоянием In[B] в точке входа в B (перед первой инструкцией),
- \Diamond состоянием $\pmb{Out}[B]$ в точке выхода из B (после последней инструкции)

С дугой от блока B_j к блоку B_k связаны две точки программы:

- lacktriangle точка выхода из блока B_j (ей соответствует состояние ${m Out}[B_j]$)
- \diamond точка входа в блок B_k (ей соответствует состояние ${\it In}[B_k]$)

При рассмотрении потока данных между базовыми блоками нельзя отождествлять точку выхода из базового блока и точку входа в следующий за ним базовый блок, так как последняя может следовать за точками выхода из нескольких базовых блоков (есть же **goto**)

2.2.3 Передаточные функции инструкций

- \Diamond Соотношение f_{I_j} между значениями данных до и после инструкции I_j называется $nepe\partial amoчнoй\ \phi y$ нкцией инструкции I_j .
- ♦ Передаточные функции работают в прямом и обратном направлениях:
 - \diamond В задаче прямого обхода: $Out[I_j] = f_{I_j}(In[I_j])$
 - $\begin{cases} \& \end{cases}$ В задаче обратного обхода: $\mathit{In}[I_j] = f^b_{I_j}\left(\mathit{Out}[I_j]\right)$
- \Diamond Если I_j и I_{j+1} nocле ∂o ваmельныe инструкции блока B, то
 - black В задаче прямого обхода: $\mathit{In}[I_{j+1}] = \mathit{Out}[I_{j}]$
 - \diamond В задаче обратного обхода: $Out[I_{j-1}] = In[I_j]$

2.2.3 Передаточные функции инструкций

- \Diamond Соотношение f_{I_j} между значениями данных до и после инструкции I_j называется $nepe \partial amoчнoй функцией$ инструкции I_j .
- Опередаточные функции работают в прямом и обратном направлениях:
 - \diamond В задаче прямого обхода: $\mathit{Out}[I_j] = f_{I_j}(\mathit{In}[I_j])$
- \Diamond Если I_j и I_{j+1} nocnedosamenьные инструкции блока B, то
 - \diamond В задаче прямого обхода: $\mathit{In}[I_{j+1}] = \mathit{Out}[I_{j}]$

f и f^b – две разные функции (для разных задач анализа потоков данных)

2.2.3 Передаточные функции базовых блоков

♦ Рассмотрим базовый блок

$$B=\langle P,Input,Output
angle,$$
где $P=I_1,...,I_n$ (в указанном порядке)

♦ По определению

$$In[B] = In[I_1], Out[B] = Out[I_n].$$

 \Diamond Передаточная функция f_B блока B по определению равна композиции передаточных функций его инструкций $I_1, \, ..., \, I_n$

$$f_B(x) = f_{I_n}(f_{I_{n-1}}(...f_{I_1}(x)...)) = (f_{I_1} \circ f_{I_2} \circ ... \circ f_{I_n})(x)$$

ИЛИ

$$f_B = f_{I_n} \circ f_{I_{n-1}} \circ \dots \circ f_{I_1}$$

2.2.4 Передаточные функции базовых блоков

♦ При прямом обходе:

Соотношение между потоком данных при выходе из блока B и потоком данных при входе в него имеет вид

$$Out[B] = f_{B}(In[B])$$

♦ При обратном обходе:

Соотношение между потоком данных при входе в блок B и потоком данных при выходе из него имеет вид

$$In[B] = f_B^b(Out[B])$$

2.3.1 Терминология

- \Diamond Определением переменной x называется инструкция, которая присваивает значение переменной x.
- \Diamond $\mathit{Использованием}$ $\mathit{переменной}$ x является инструкция, одним из операндов которой является переменная x .
- \Diamond Каждое определение переменной $x\ y \delta u e a e m$ все другие ее определения.
- \Diamond Определение d $\partial ocmuzaem$ точки p, если существует путь от точки, непосредственно следующей за d, к точке p, такой, что вдоль этого пути d остается живым.
- ◇ Замечание. Во время анализа достигающих определений рассматриваются не переменные, а их определения, причем каждая переменная может иметь несколько определений

2.3.2 Пример

- \Diamond Начало блока B_2 достигается определениями:
 - \diamond $(i, B_1), (j, B_1), (a, B_1),$
 - (j,B_2) (других определений j на пути от (j,B_2) до начала блока B_2 нет)
 - \diamond (a, B_3)
 - \diamond (i, B_4)
- \Diamond Начало блока B_2 не достигается определением: (i, B_2) , так как его убивает определение (i, B_4))
- \Diamond Определение (j, B_1) не достигает блоков B_3 и B_4 , так как его убивает определение (j, B_2)

Достигают ли определения d_1 и d_2 блока В4?

Exit

Включим ли мы в kill определение d_2 (и вообще все, что также присутствует в gen), не повлияет на результат из-за вида передаточной функции gen-kill: Out_{RD} $(B2) = gen_{B2} \cup (In_{RD}$ $(B2) - kill_{B2})$

В общем виде:
$$Out_{RD}[B_i] = gen_{B_i} \cup (In_{RD}[B_i] - kill_{B_i})$$

$$In_{RD}[B_i] = \bigcup_{P \in Pred(B_i)} Out_{RD}[P]$$

Консервативность решения: если учесть "лишние" пути (и определения), это не приведет к некорректной оптимизации.

Например, если компилятор решает, можно ли распространить константу «2» в « d_3 »

2.3.3 Передаточные функции для достигающих определений

 \diamond Рассмотрим инструкцию I

$$d$$
: $\mathbf{u} = \mathbf{v} + \mathbf{w}$

расположенную между точками p_1 и p_2 программы.

- \diamond Пусть x множество определений, достигающих точки p_1 gen_I множество определений, порождаемых инструкцией I
 - $kill_I$ множество определений, убиваемых инструкцией I y множество определений, достигающих точки p_2
- \Diamond $gen_I = \{d\}$
- \Diamond для определения $kill_I$ нужно иметь **все другие** определения \mathbf{u} , т.е. несколько базовых блоков, а иногда и всю процедуру.

2.3.3 Передаточные функции для достигающих определений

 \Diamond Рассмотрим инструкцию I

$$d: \mathbf{u} = \mathbf{v} + \mathbf{w}$$

расположенную между точками p_1 и p_2 программы.

♦ По определению передаточной функции

$$y = f_I(x)$$

ullet Инструкция I сначала убивает все предыдущие определения ${f u}$, а потом порождает d – новое определение ${f u}$. Следовательно

$$y = gen_I \cup (x - kill_I)$$

 \diamond Следовательно, передаточная функция f_I инструкции I может быть записана в виде:

$$f_I(x) = gen_I \cup (x - kill_I)$$

2.3.4. Передаточные функции вида gen-kill

♦ Определение.

Передаточные функции, определяемые соотношением

$$f(x) = gen \cup (x - kill)$$

будем называть передаточными функциями вида gen-kill.

Утверждение 1.

Композиция двух функций вида gen-kill является функцией вида gen-kill.

$$(f_2 \circ f_1)(x) = f_2(f_1(x)) = \\ = gen_2 \cup \left(\left(gen_1 \cup (x - kill_1) \right) - kill_2 \right) = \\ = gen_2 \cup \left(gen_1 - kill_2 \right) \cup \left(x - kill_1 - kill_2 \right) \\ (f_2 \circ f_1)(x) = gen_{f_2 \circ f_1} \cup \left(x - kill_{f_2 \circ f_1} \right) \\ \text{где} \ gen_{f_2 \circ f_1} = gen_2 \cup \left(gen_1 - kill_2 \right) \\ kill_{f_2 \circ f_1} = kill_1 \cup kill_2$$

2.3.4. Передаточные функции вида *gen-kill*

♦ Утверждение 2.

быть записана как

Пусть базовый блок B содержит n инструкций, каждая из которых имеет передаточную функцию $f_i(x) = gen_i \cup (x-kill_i)$ $i=1,\ 2,\ ...,\ n$. Тогда передаточная функция для базового блока B может

$$f_B(x) = gen_B \cup (x-kill_B)$$
 , где $kill_B = kill_1 \cup kill_2 \cup ... \cup kill_n$ $gen_B = gen_n \cup (gen_{n-1} - kill_n) \cup (gen_{n-2} - kill_{n-1} - kill_n) \cup ... \cup (gen_1 - kill_2 - kill_3 - ... - kill_n)$

2.3.5. Передаточные функции вида *gen-kill*

 \Diamond Если какая-либо переменная определяется в блоке B несколько раз, то в gen_B войдет только ее последнее определение, т.е.

только последнее определение переменной будет действительно вне блока.

2.3.6. Система уравнений

 \Diamond Таким образом, для **КАЖДОГО** базового блока B_i можно выписать уравнение

$$Out[B_i] = f_B(In[B_i])$$

или в случае анализа достигающих определений

$$Out[B_i] = gen_B \cup (In[B_i] - kill_B)$$

- \Diamond Если ГПУ содержит n базовых блоков, получится n уравнений относительно $2 \cdot n$ неизвестных $In[B_i]$ и $Out[B_i], \ i=1,\ 2,\ ...,\ n.$
- \Diamond Еще n уравнений получится с помощью сбора вкладов путей.

2.3.6 Сбор вкладов путей

Определение достигает точки программы, тогда и только тогда, когда существует ПО КРАЙНЕЙ МЕРЕ ОДИН путь, вдоль которого эта точка может быть достигнута.

Этот путь должен пройти через какую-нибудь вершину из Pred(B), причем если путь, проходящий через вершину $P \in Pred(B)$, не проходит ни через одну вершину, содержащую определение какой-либо переменной из B, то $Out(P) = \emptyset$. Следовательно

$$In[B] = \bigcup_{P \in Pred(B)} Out[P]$$

2.3.7 Итеративный алгоритм для вычисления достигающих определений

◊ Получается система уравнений

$$Out_{RD}[B_i] = gen_{B_i} \cup (In_{RD}[B_i] - kill_{B_i})$$

$$In_{RD}[B_i] = \bigcup_{P \in Pred(B_i)} Out_{RD}[P]$$

$$(i = 1, 2, ..., n)$$
.

(RD - Reaching definitions)

- $\Diamond = In_{RD}[B]$ множество переменных, определенных на входе в блок B
- $\Diamond \qquad Out_{_{RD}}[B] \$ множество переменных, определенных на выходе из блока B

В дальнейшем индекс RD будет опускаться

2.3.7 Итеративный алгоритм для вычисления достигающих определений

🕽 🔻 Полученную систему уравнений

$$Out_{RD}[B_i] = gen_{B_i} \cup (In_{RD}[B_i] - kill_{B_i})$$

$$In_{RD}[B_i] = \bigcup_{P \in Pred(B_i)} Out_{RD}[P]$$

можно упростить, произведя очевидную подстановку, в результате чего система уравнений примет вид:

$$In_{RD}[B_i] = \bigcup_{P \in Pred(B_i)} (gen_P \cup (In_{RD}[P] - kill_P))$$
(i = 1, 2, ..., n).

или, если вспомнить, что было обещано опускать индекс RD,

$$In[B_i] = \bigcup_{P \in Pred(B_i)} (gen_P \cup (In[P] - kill_P))$$

$$(i = 1, 2, ..., n).$$

2.3.7 Итеративный алгоритм для вычисления достигающих определений

Систему уравнений

$$In[B_i] = igcup_{P \in Pred(B_i)} ig(gen_P \cup (In[P] - kill_P)ig)$$
 $(i=1,\,2,\,...,\,n)$ булем решать метолом итераций

будем решать методом итераций.

- При этом для одного или более блоков B_i множество $Pred(B_i)$ может содержать вершину Entry. В этих случаях будет использоваться «граничное условие» $In[Entry] = \emptyset$
- В качестве **Начальных итераций** $In[B_i]$ возьмем пустые множества: $(In[B_i])^0 = \emptyset$

2.3.7 Итеративный алгоритм для вычисления достигающих определений

- ♦ Алгоритм «Достигающие определения»
 - ullet Вход: ГПУ (N,E), в котором для каждого базового блока $B_i \in N$ вычислены множества $kill_{B_i}$ и gen_{B_i}
 - $lacktriangledaw{}$ Выход: множества $In[B_i], (i=1,2,...,n)$ достигающих определений На ВХОДС в каждый базовый блок B_i графа потока управления
 - Φ **Метод**: Используется **МЕТОД ИТЕРАЦИЙ** с начальной итерацией $\left(In[B_i]\right)^0 = \varnothing$.

На всех итерациях r: $\left(In[Entry]\right)^r = \varnothing$ (граничное условие) Итерации продолжаются до тех пор, пока все множества $\left(In[B_i]\right)^r$ (r – номер итерации) не перестанут изменяться.

 \lozenge Замечание. Некоторые из множеств $(In[B_i])^r$ могут перестать изменяться гораздо раньше последней итерации.

2.3.7 Итеративный алгоритм для вычисления достигающих определений

```
In[Entry] = \emptyset;
change = true;
for (каждый базовый блок B, отличный от Entry)
   In[B] = \emptyset;
/* основной цикл*/
while (change) do {
          change = false;
          for (каждый базовый блок B, отличный от Entry) {
              /* вычисление новых значений In[B] и переменной
                 change */
              InNew[B] = \bigcup (gen_P \cup (In[P] - kill_P))
                         P \in Pred(B)
              if (InNew[B] \neq In[B]){
                 In[B] = InNew[B];
                 change = true;
```

Алгоритм 2.3.7 не учитывает **замечания**: для некоторых значений *і* окончательный результат может быть получен намного раньше, чем будет выполнена последняя итерация. А это означает, что если на самом деле так получится, соответствующие значения будут много раз напрасно вычисляться, сравниваться с предыдущей итерацией и отвергаться — много лишней работы.

Получится, что алгоритм оптимизации сам не оптимален

```
while (change) do {  change = false; \\ for (каждый базовый блок B, отличный от Entry) \{ \\ /* вычисление новых значений <math>In[B] и переменной  change */ \\ InNew[B] = \bigcup_{P \in Pred(B)} (gen_P \cup (In[P] - kill_P)) \\  if (InNew[B] \neq In[B]) \{ \\ In[B] = InNew[B];
```

Поэтому имеет смысл модифицировать алгоритм 2.3.7, введя понятие рабочего множества. Рабочее множество workList; представляет собой очередь, в которую помещаются только те базовые блоки, которые требуют дальнейшей обработки.

2.3.8 Модифицированный итеративный алгоритм для вычисления достигающих определений

```
In[Entry] = \emptyset;
WorkList = \emptyset;
     for (каждый базовый блок В, отличный от Entry) {
       поместить В в WorkList;
       In[B] = \varnothing; /* Каждому In[B] присваивается значение его
                      нулевой итерации */
     };
                                      /* основной цикл*/
     do {
         Выбрать из очереди WorkList очередной блок В
         Вычислить InNew[B], используя уравнение
                   InNew[B] = \bigcup (gen_P \cup (In[P] - kill_P))
                              P \in Pred(B)
          /*При вычислении InNew[B] множества In[P],
                где P \in Pred(B), могут иметь значения либо
                текущей, либо следующей итерации
           if (InNew[B] \neq In[B]) {
               In[B] = InNew[B];
               Поместить Succs (B) в конец очереди WorkList
     } while |WorkList|>0;
```

2.3.8 Модифицированный итеративный алгоритм для вычисления достигающих определений

```
In[Entry] = \emptyset;
WorkList = \emptyset;
for (каждый базовый блок В,отличный от Entry) {
    поместить В в WorkList;
    <math>In[B] = \emptyset; /* Каждому In[B] присваивается значение его нулевой итерации */
```

Ценность алгоритма в том, что каждый базовый блок рассматривается не на каждой итерации, а столько раз, сколько он попадает в WorkList

```
InNew[B] = \bigcup (gen_P \cup (In[P]-kill_P))
/*При вычислении InNew[B] множества In[P],
где P \in Pred(B), могут иметь значения либо
текущей, либо следующей итерации

if (InNew[B] \neq In[B]) {
    In[B] = InNew[B];
    Поместить Succs(B) в конец очереди WorkList
}
} while |WorkList|>0;
```

2.3.8 Пример

B_1	B_2
i ← -, m, 1	i ← +, i, 1
j ← n	j ← -, j, 1
a ← u1	
B_3	B_4
a ← u2	i ← u3

2.3.8 Пример

В простой программе справа 7 определений. Требуется определить, какие определения достигают входов в ее 5 базовых блоков В1,В2,В3,В4 и Ехіт

$\begin{array}{c} B_1 \\ d_1 \colon \mathbf{i} \leftarrow -, m, 1 \\ d_2 \colon \mathbf{j} \leftarrow \mathbf{n} \\ d_3 \colon \mathbf{a} \leftarrow \mathbf{u1} \end{array}$	B_{2} $d_{4}: i \leftarrow +, i, 1$ $d_{5}: j \leftarrow -, j, 1$
$d_6: \mathbf{a} \leftarrow \mathbf{u2}$	$\begin{array}{ccc} B_4 \\ d_7: & \mathbf{i} \leftarrow \mathbf{u3} \end{array}$

$$d_1 = (i, B_1)$$
 — определение переменной i в блоке B_1 $d_4 = (i, B_2)$ — определение переменной i в блоке B_2 $d_7 = (i, B_4)$ — определение переменной i в блоке B_4

Вычислим множества gen и kill для каждого базового блока Для блока B_1 $gen_{B_1}=\{d_1,d_2,d_3\}$ $kill_{B_1}=\{d_4,d_5,d_6,d_7\}$

2.3.8 Пример

Entry

 B_1

 B_2

 B_3

 B_4

Exit

42

Результаты вычисления множеств gen и kill для базовых блоков сведены в таблицу

В	gen _B	$kill_B$
B_1	$\{(i,B_1), (j,B_1), (a,B_1)\}\$ = (1110000)	$\{(i,B_2), (j,B_2), (a,B_3), (i,B_4)\}\$ = (0001111)
B_2	$\{(i,B_2), (j,B_2)\}\$ = (0001100)	$\{(i,B_1), (j,B_1), (i,B_4)\}\$ = (1100001)
B_3	$\{(a,B_3)\}=$ (0000010)	$\{(a,B_1)\}=$ (0010000)
B_4	$\{(i,B_4)\}=$ (000001)	$\{(i,B_1),(i,B_2)\}=$ (1001000)
Exit	Ø	Ø

2.3.8 Пример

$$\begin{array}{c} B_1 \\ d_1 \colon \mathtt{i} \leftarrow \mathtt{--, m, 1} \\ d_2 \colon \mathtt{j} \leftarrow \mathtt{n} \\ d_3 \colon \mathtt{a} \leftarrow \mathtt{u1} \end{array} \qquad \begin{array}{c} B_2 \\ d_4 \colon \mathtt{i} \leftarrow \mathtt{++, i, 1} \\ d_5 \colon \mathtt{j} \leftarrow \mathtt{--, j, 1} \\ \end{array}$$

$$\begin{array}{c} B_3 \\ d_6 \colon \mathtt{a} \leftarrow \mathtt{u2} \end{array} \qquad \begin{array}{c} B_4 \\ d_7 \colon \mathtt{i} \leftarrow \mathtt{u3} \end{array}$$

Множества удобно представлять битовыми векторами, длина которых равна мощности базового множества. В рассматриваемом примере длина векторов равна 7.

$$gen_{B_1} =$$
 (1110000) $kill_{B_1} =$ (0001111) $d_1 d_2 d_3 d_4 d_5 d_6 d_7$

$$(i, B_1)$$
 (j, B_1) (a, B_1) (i, B_2) (j, B_2) (a, B_3) (i, B_4)

Определения примера 2.3.8

В	gen _B	kill _B
B_1	(1110000)	(0001111)
B_2	(0001100)	(1100001)
B_3	(0000010)	(0010000)
B_4	(000001)	(1001000)

Множества *gen* и *kill* базовых блоков примера 2.3.8

2.3.8 Пример

Нулевая итерация:

$$(In[B_i])^0 = \emptyset = (0000000), i = 1,2,3,4.$$

$$(In[Exit])^0 = \emptyset = (0000000)$$

Первая итерация:

Вычисляем $(In[B_i])^1$ (i = 1,2,3,4) и $(In[Exit])^1$ по формуле

$$InNew[B] = \bigcup_{P \in Pred(B)} (gen_P \cup (In[P] - kill_P))$$

используя значения $(In[B_i])$, известные к моменту вычисления

Вычисление
$$(In[B_1])^1$$
. $(In[B_1])^1 = \varnothing$ $(In[B_1])$ не попадает в WorkList и больше не будет вычисляться $(In[B_2])^1 = (gen_{B_1} \cup ((In[B_1])^1 - kill_{B_1})) \cup (gen_{B_4} \cup ((In[B_4])^0 - kill_{B_4})) = = ((1110000) \cup (\varnothing - (0001111))) \cup ((0000001) \cup (\varnothing - (1001000))) = (1110000)$

2.3.8 Пример

В	gen _B	kill _B	Pred(B)
B_1	(1110000)	(0001111)	Entry
B_2	(0001100)	(1100001)	$\{B_1, B_4\}$
B_3	(0000010)	(0010000)	B_2
B_4	(000001)	(1001000)	$\{B_2, B_3\}$

Первая итерация:

Вычисление
$$(In[B_3])^1$$
. $(In[B_3])^1 = gen_{B_2} \cup ((In[B_2])^1 - kill_{B_2}) = (0001100) \cup ((1110001) - (1100001)) = (0011100)$

Вычисление $(In[B_4])^1$.

$$(In[B_4])^1 = \left(gen_{B_2} \cup ((In[B_2])^1 - kill_{B_2})\right) \cup \left(gen_{B_3} \cup ((In[B_3])^1 - kill_{B_3})\right) =$$

$$= ((0001100) \cup ((1110001) - (1100001))) \cup ((0000010) \cup ((00011100) - (0010000))) =$$

=(0011110)

Entry

 B_1

 B_2

 B_3

 B_4

Exit

2.3.8 Пример

В	gen _B	kill _B	Pred(B)
B_1	(1110000)	(0001111)	Entry
B_2	(0001100)	(1100001)	$\{B_1, B_4\}$
B_3	(0000010)	(0010000)	B_2
B_4	(000001)	(1001000)	$\{B_2, B_3\}$

Первая итерация:

Вычисление $(In[Exit])^1$.

$$(In[Exit])^{1} = gen_{B_{4}} \cup ((In[B_{4}])^{1} - kill_{B_{4}}) =$$

$$= (0000001) \cup ((0011110) - (1001000)) =$$

$$= (0010111)$$

2.3.8 Пример

В	$(In[B])^1$	$(In[B])^2$	$(In[B])^3$
B_1	000000	000000	000000
B_2	1110001	1110111	1110111
B_3	0011100	0011110	0011110
B_4	0011110	0011110	0011110
Exit	0010111	0010111	0010111

Вторая и третья итерации выполняются аналогично (их результаты внесены в таблицу). На этом процесс завершается, так как, как видно из таблицы, все $(In[B])^3$ совпадают с $(In[B])^2$, т.е. WorkList пуст.

2.3.9 Множества *Input* для базовых блоков

 \Diamond Множество Input[B] для базового блока B – это множество $In_{RD}[B]$, которое строится при исследовании достигающих определений

2.4.1 Множества *Output* для базовых блоков

- ♦ Множества *Output* для базовых блоков строятся как результат анализа, позволяющего выявить *живые переменные*, т.е. переменные, используемые в базовых блоках, в которые управление попадает после выхода из исследуемого базового блока.
- \diamond Анализ похож на предыдущий, но ГПУ просматривается не с начала, а с конца: от Exit к Entry.

2.4.2. Определение

- \Diamond Цель анализа для определения переменной x в точке p программы выяснить, будет ли указанное значение x использоваться вдоль какого-нибудь пути, начинающегося в точке p.
 - \diamond Если да переменная $x \mathcal{H}uea$ (активна) в точке p,
 - \diamond если нет переменная *х мертва* (неактивна) в точке *p*.

2.4.3 Уравнения потока данных

 \Diamond $In_{LV}[B]$ – множество переменных, **живых** на входе в блок B

LV – Live Variables

 $Out_{LV}[B]$ – множество переменных, **живых** на выходе из блока B.

♦ В чем проблема?

Пусть в блоке B используется переменная v.

Возможны 2 случая:

- 1) используется определение v в одном из блоков $B' \in Pred^*(B)$;
- 2) используется определение ν в самом блоке B.

В первом случае говорят, что ν жива на выходе из B'

Во втором случае говорят, что ν мертва на выходе из B'

2.4.3 Уравнения потока данных

 \Diamond $In_{LV}[B]$ – множество переменных, **живых** на входе в блок B

LV – Live Variables

 $Out_{LV}[B]$ – множество переменных, **живых** на выходе из блока B .

- \diamond def_B множество переменных, определяемых в блоке B до их использования в этом блоке (любая переменная из def_B мертва на входе в блок B и, следовательно на выходе каждого блока $B' \in Pred_B$)
- \diamond use_B множество переменных, используемых в блоке B до их определения в этом блоке (любая переменная из use_B жива на входе в блок B и, следовательно на выходе каждого блока $B' \in Pred_B$)
- Замечание. В анализе живых переменных рассматриваются не определения переменных, а сами переменные.

2.4.3 Уравнения потока данных

 \Diamond $In_{LV}[B]$ – множество переменных, **живых** на входе в блок B

LV – Live Variables

 $Out_{LV}[B]$ – множество переменных, **живых** на выходе из блока B .

 \diamond def_B – множество переменных, определяемых в блоке B до их использования в этом блоке (любая переменная из def_B мертва на входе в блок B и, следовательно на выходе каждого блока $B' \in Pred_B$)

В качестве def_B можно рассматривать множество всех переменных, определяемых в блоке (а не только определяемых до использования) — на результат вычисления $Out_{LV}[B]$ это не повлияет, т.к. они также входят в use_B и в передаточной функции будут добавлены независимо от того, есть ли они в def_B : $In[B] = use_B \cup (Out[B] - def_B)$ $Out[B] = \bigcup In[S]$

 $S \in Succ(B)$

2.4.3 Уравнения потока данных

Рассмотрим блок B

$$\begin{array}{l} m \leftarrow 1 \\ k \leftarrow m + k \\ a \leftarrow a + b + m \end{array}$$

Речь идет о выходе из блоков из Pred(B)

Для этих блоков $m \in def$

Остальные переменные *∈ use*

Если переменная встречается и в правой, и в левой части присваивания, то для определений def и use можно считать, что правая часть выполняется раньше левой.

2.4.3 Уравнения потока данных

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B_2 $i \leftarrow +, i, 1$ $j \leftarrow -, j, 1$
B_3 a \leftarrow u2	B_4 $\mathbf{i} \leftarrow \mathbf{u3}$

♦ Пример

(1) в блоке B_2 переменные i и j используются до их переопределения, следовательно,

$$use_{B_2} = \{i, j\} = (11000000)$$

(2) в блоке B_2 определяются новые значения переменных i и j, так что

$$def_{B_2} = \{i, j\} = (11000000)$$

В программе 8 переменных: i, j, a, m, n, u1, u2, u3

2.4.3 Уравнения потока данных

 \Diamond Уравнения, связывающие def и use с неизвестными In и Out, определяются следующим образом:

$$In[B] = use_B \cup (Out[B] - def_B)$$
$$Out[B] = \bigcup_{S \in Succ(B)} In[S]$$

♦ К ним добавляется граничное условие

$$Out [Exit] = \emptyset$$

2.4.3 Уравнения потока данных

 \Diamond Уравнения, связывающие def и use с неизвестными In и Out, определяются следующим образом:

$$In[B] = use_B \cup (Out[B] - def_B)$$
$$Out[B] = \bigcup_{S \in Succ(B)} In[S]$$

 def_B – множество переменных, определяемых в блоке B до их использования* в этом блоке (**Исключаем заведомо мертвые переменные**). use_B – множество переменных, используемых в блоке B до их определения** в

этом блоке (Добавляем новые живые переменные)

- (*) Также можно рассматривать в качестве def_B просто множество всех переменных, определяемых в блоке B на результат это не повлияет. (**) В случае use_B важно, что переменные используются до определения в блоке.
- Хотя по своему смыслу определения действительно должны быть симметричны, допустимость (*) объясняется только видом передаточной функции.

2.4.3 Уравнения потока данных

 \Diamond Если значение In, определяемое первым уравнением подставить во второе уравнение, множества In будут исключены из системы уравнений и получится система уравнений, содержащая в качестве неизвестных только множества Out:

$$Out[B] = \bigcup_{S \in Succ(B)} (use_S \cup (Out[S] - def_S))$$

 \Diamond К ним добавляется граничное условие $Out \ [Exit] = \emptyset$

2.4.4 Итеративный алгоритм анализа живых переменных

- ♦ Алгоритм «Живые переменные»
 - \diamond **Вход**: ГПУ, в котором для каждого блока B вычислены множества def и use
 - \diamond **Выход**: множества переменных, живых на выходе (Out[B]) каждого базового блока B.
 - ♦ Метод: выполнить следующую программу:

2.4.4 Итеративный алгоритм анализа живых переменных

Метод: выполнить следующую программу:

♦ Алгоритм «Живые переменные»

while |WorkList|>0;

Out[Exit] = \emptyset ; WorkList = \emptyset ; for (каждый базовый блок В, отличный от Exit) { Out[B] = \emptyset ; WorkList ∪= {B} /*основной цикл*/ do { Извлечь блок B из WorkList (исключив B); OutNew[B] = $\bigcup (use_s \cup (Out[S] - def_s))$ S∈Succ (B) if (OutNew[B] ≠ Out[B]) { Out[B] = OutNew[B] ; WorkList ∪= Pred(B)

2.4.5 Множества *Output* для базовых блоков

 \Diamond Множество Output[B] для базового блока B – это множество $Out_{LV}[B]$, которое строится при исследовании живых переменных

Множества def и kill, а также use и gen для данной задачи являются синонимами. В общем виде для данного класса задач (Gen-Kill) анализа потоков данных используется gen/kill, в частном случае для живых переменных — use/def.

Консервативность решения: если учесть "лишние" пути (и определения), это не приведет к некорректной оптимизации.

Например, если компилятор решает, можно ли в В3 занять регистр, в котором лежит «x», под другую переменную.

Строго говоря, живая переменная может вообще не иметь определения в рассматриваемом ГПУ.