Frequency Domain Maximum likelihood Estimation of Linear Dynamic Errors-in-Variables Models

R. Pintelon, and J. Schoukens

Vrije Universiteit Brussel, dept. ELEC

Open Loop Generalised-Output-Error Problem

Open Loop Errors-in-Variables Problem

Closed Loop Errors-in-Variables Problem

Closed Loop Errors-in-Variables Problem

Arbitrary excitation

$$\begin{cases} U_0 = \frac{1}{1 + GM} (U_g + N_g - N_M - MN_P) \\ Y_0 = \frac{G}{1 + GM} (U_g + N_g - N_M - MN_P) \end{cases} \text{ and } \begin{cases} N_U = M_U \\ N_Y = M_Y + \frac{1}{1 + GM} N_P \end{cases}$$

Closed Loop Errors-in-Variables Problem

Periodic excitation

$$\begin{cases} U_0 = \frac{1}{1 + GM} U_g \\ Y_0 = \frac{G}{1 + GM} U_g \end{cases} \text{ and } \begin{cases} N_U = M_U + \frac{1}{1 + GM} (N_g - N_M) - \frac{M}{1 + GM} N_P \\ N_Y = M_Y + \frac{G}{1 + GM} (N_g - N_M) + \frac{1}{1 + GM} N_P \end{cases}$$

This Paper: Simplified Errors-in-Variables Problem

Assumptions

- Open loop
- Filtered white noise excitation
- Independent, filtered white noise input/output errors

with $E_U(k)$, $E_Y(k)$, and $E_L(k)$

- Mutually independent
- Independent over *k*
- Circular complex, normally distributed

$$G_1(z^{-1}) = \frac{Z\{y_0(nT_{\rm s})\}}{Z\{u_0(nT_{\rm s})\}} = \frac{\frac{Z\{y_0(nT_{\rm s})\}}{Z\{e_L(nT_{\rm s})\}}}{\frac{Z\{u_0(nT_{\rm s})\}}{Z\{e_L(nT_{\rm s})\}}} = \frac{(1-z^{-1})Z\{L^{-1}\{L(s)G(s)/s\}\}}{(1-z^{-1})Z\{L^{-1}\{L(s)/s\}\}}$$

$$G_1(z^{-1}) = \frac{Z\{y_0(nT_{\rm s})\}}{Z\{u_0(nT_{\rm s})\}} = \frac{\frac{Z\{y_0(nT_{\rm s})\}}{Z\{e_L(nT_{\rm s})\}}}{\frac{Z\{u_0(nT_{\rm s})\}}{Z\{e_L(nT_{\rm s})\}}} = \frac{(1-z^{-1})Z\{L^{-1}\{L(s)G(s)/s\}\}}{(1-z^{-1})Z\{L^{-1}\{L(s)/s\}\}}$$

Conclusion

- Exact DT model depends on *L*(*s*)
- Natural choice = CT modelling

- 1. $G = \frac{B}{A}$, $L = \frac{P}{Q}$, $H_U = \frac{C_U}{D_U}$, and $H_Y = \frac{C_Y}{D_Y}$ cannot be simplified
- 2. Monic parametrisation A, P, Q, C_U , D_U , C_Y , and D_Y

- 1. $G = \frac{B}{A}$, $L = \frac{P}{Q}$, $H_U = \frac{C_U}{D_U}$, and $H_Y = \frac{C_Y}{D_Y}$ cannot be simplified
- 2. Monic parametrisation A, P, Q, C_U , D_U , C_Y , and D_Y

Not related to EIV

3. G(s) has no quadrant symmetric poles nor zeroes

$$G(s_0) = \begin{cases} 0 \\ \infty \end{cases} \Rightarrow G(-s_0) \neq \begin{cases} 0 \\ \infty \end{cases}$$

4. No pole nor zero of G(s) is respectively a zero or pole of L(s)L(-s)

3. G(s) has no quadrant symmetric poles nor zeroes

$$G(s_0) = \begin{cases} 0 \\ \infty \end{cases} \Rightarrow G(-s_0) \neq \begin{cases} 0 \\ \infty \end{cases}$$

4. No pole nor zero of G(s) is respectively a zero or pole of L(s)L(-s)

Finite number of solutions with different model structure

5. One of the following conditions is fulfilled

$$\lim_{s \to s_0} \frac{H_U(s)H_U(-s)}{L(s)L(-s)} = 0 \text{ for } s_0 = \infty \text{ or pole of } L(s)L(-s)$$

$$\lim_{s \to s_0} \frac{H_Y(s)H_Y(-s)}{G(s)L(s)G(-s)L(-s)} = 0 \text{ for } s_0 = \infty \text{ or pole of } G(s)L(s)G(-s)L(-s)$$

5. One of the following conditions is fulfilled

$$\lim_{s \to s_0} \frac{H_U(s)H_U(-s)}{L(s)L(-s)} = 0 \text{ for } s_0 = \infty \text{ or pole of } L(s)L(-s)$$

$$\lim_{s \to s_0} \frac{H_Y(s)H_Y(-s)}{G(s)L(s)G(-s)L(-s)} = 0 \text{ for } s_0 = \infty \text{ or pole of } G(s)L(s)G(-s)L(-s)$$

Infinite number of solutions depending on λ_L

Special cases

1. L = 1, $H_U = 1$, and $H_Y = 1 \Rightarrow$ identifiable iff G(s) is dynamic

Special cases

- 1. L = 1, $H_U = 1$, and $H_Y = 1 \Rightarrow$ identifiable iff G(s) is dynamic
- 2. G(s) is static \Rightarrow identifiable if either L(s), $H_U(s)$, or $H_Y(s)$ depends on s

Special cases

- 1. L = 1, $H_U = 1$, and $H_Y = 1 \Rightarrow$ identifiable iff G(s) is dynamic
- 2. G(s) is static \Rightarrow identifiable if either L(s), $H_U(s)$, or $H_Y(s)$ depends on s
- 3. $H_Y(s)$ may have the same poles as $G(s) \Rightarrow ARX$ and ARMAX

Time domain → frequency domain

$$Y(k) = \frac{1}{\sqrt{N}} \sum_{t=0}^{N-1} y(t) e^{-2\pi jkt/N}$$

$$U(k) = \frac{1}{\sqrt{N}} \sum_{t=0}^{N-1} u(t) e^{-2\pi jkt/N}$$

Define
$$Z(k) = \begin{bmatrix} Y(k) & U(k) \end{bmatrix}^T$$
, and $\Lambda = [\lambda_L, \lambda_U, \lambda_Y]^T$

$$\mathsf{E}\left\{\left.Z(k)\right|\theta,\Lambda\right\} \ = \ 0$$

$$\operatorname{Cov}(Z(k) | \theta, \Lambda) = C_{Z(k)}(\theta)$$

Negative Gaussian log-likelihood

$$V(\theta, \Lambda, Z) = \sum_{k \in \mathbb{K}} \operatorname{logdet}(C_{Z(k)}(\theta)) + \sum_{k \in \mathbb{K}} Z^{H}(k) C_{Z(k)}^{-1}(\theta) Z(k)$$

with

$$\begin{split} \det(C_{Z(k)}(\theta)) &= (\left|H_{Y}\right|^{2}\lambda_{Y} + \left|GH_{U}\right|^{2}\lambda_{U})|L|^{2}\lambda_{L} + \left|H_{U}H_{Y}\right|^{2}\lambda_{U}\lambda_{Y} \\ Z^{H}(k)C_{Z(k)}^{-1}(\theta)Z(k) &= \frac{\left|Y - GU\right|^{2}|L|^{2}\lambda_{L} + |Y|^{2}\left|H_{U}\right|^{2}\lambda_{U} + |U|^{2}\left|H_{Y}\right|^{2}\lambda_{Y}}{\det(C_{Z(k)}(\theta))} \end{split}$$

Negative Gaussian log-likelihood

$$V(\theta, \Lambda, Z) = \sum_{k \in \mathbb{K}} \operatorname{logdet}(C_{Z(k)}(\theta)) + \sum_{k \in \mathbb{K}} Z^{H}(k) C_{Z(k)}^{-1}(\theta) Z(k)$$

with

$$\begin{split} \det(C_{Z(k)}(\theta)) &= (\left|H_{Y}\right|^{2}\lambda_{Y} + \left|GH_{U}\right|^{2}\lambda_{U})|L|^{2}\lambda_{L} + \left|H_{U}H_{Y}\right|^{2}\lambda_{U}\lambda_{Y} \\ Z^{H}(k)C_{Z(k)}^{-1}(\theta)Z(k) &= \frac{\left|Y - GU\right|^{2}|L|^{2}\lambda_{L} + |Y|^{2}|H_{U}|^{2}\lambda_{U} + |U|^{2}|H_{Y}|^{2}\lambda_{Y}}{\det(C_{Z(k)}(\theta))} \end{split}$$

Discussion

• Spectral factorisation = $\sqrt{\det(C_{Z(k)}(\theta))}$

Negative Gaussian log-likelihood

$$V(\theta, \Lambda, Z) = \sum_{k \in \mathbb{K}} \operatorname{logdet}(C_{Z(k)}(\theta)) + \sum_{k \in \mathbb{K}} Z^{H}(k) C_{Z(k)}^{-1}(\theta) Z(k)$$

with

$$\begin{split} \det(C_{Z(k)}(\theta)) &= (\left|H_{Y}\right|^{2}\lambda_{Y} + \left|GH_{U}\right|^{2}\lambda_{U})|L|^{2}\lambda_{L} + \left|H_{U}H_{Y}\right|^{2}\lambda_{U}\lambda_{Y} \\ Z^{H}(k)C_{Z(k)}^{-1}(\theta)Z(k) &= \frac{\left|Y - GU\right|^{2}|L|^{2}\lambda_{L} + |Y|^{2}\left|H_{U}\right|^{2}\lambda_{U} + |U|^{2}\left|H_{Y}\right|^{2}\lambda_{Y}}{\det(C_{Z(k)}(\theta))} \end{split}$$

Discussion

- Spectral factorisation = $\sqrt{\det(C_{Z(k)}(\theta))}$
- Numerical stable Gauss-Newton scheme

Negative Gaussian log-likelihood

$$V(\theta, \Lambda, Z) = \sum_{k \in \mathbb{K}} \operatorname{logdet}(C_{Z(k)}(\theta)) + \sum_{k \in \mathbb{K}} Z^{H}(k) C_{Z(k)}^{-1}(\theta) Z(k)$$

with

$$\begin{split} \det(C_{Z(k)}(\theta)) &= (\left|H_{Y}\right|^{2}\lambda_{Y} + \left|GH_{U}\right|^{2}\lambda_{U})|L|^{2}\lambda_{L} + \left|H_{U}H_{Y}\right|^{2}\lambda_{U}\lambda_{Y} \\ Z^{H}(k)C_{Z(k)}^{-1}(\theta)Z(k) &= \frac{\left|Y - GU\right|^{2}|L|^{2}\lambda_{L} + |Y|^{2}\left|H_{U}\right|^{2}\lambda_{U} + |U|^{2}\left|H_{Y}\right|^{2}\lambda_{Y}}{\det(C_{Z(k)}(\theta))} \end{split}$$

Discussion

- Spectral factorisation = $\sqrt{\det(C_{Z(k)}(\theta))}$
- Numerical stable Gauss-Newton scheme
- Exact filtering

Continuous-Time Simulation Example

$$\lambda_L = 1$$

$$\lambda_U = (0.2)^2$$

$$\lambda_Y = (0.01)^2$$

$$N = 20480$$

- G(s) 5th order
- L(s) 1st order

$$H_U = H_Y = 1$$

Continuous-Time Simulation Example

$$\lambda_L = 1$$

$$\lambda_U = (0.2)^2$$

$$\lambda_Y = (0.01)^2$$

$$N = 20480$$

G(s) 5th order L(s) 1st order $H_U = H_Y = 1$

Contributions

- 1. Frequency domain Gaussian ML estimator
- 2. Exact filtering
- 3. Continuous-time modelling
- 4. Numerical stable Gauss-Newton minimisation
- 5. Numerical stable calculation Cramér-Rao lower bound

Open Problems

- 1. High quality starting values for coloured input/output errors
- 2. Sensitivity to model errors
- 3. Validation of the identified models

Concluding Remark

Using periodic excitations

Closed loop EIV is as easy as open loop output error