Analízis II. (F) gyakorlatok Programtervező informatikus BSc Szoftverfejlesztő (C) specializáció

Differenciálszámítás 1.

■ Szükséges ismeretek

- A derivált fogalma.
- A deriválási szabályok.
- Nevezetes függvények deriváltja.

■ Feladatok

- 1. Feladat. A definíció alapján lássuk be, hogy $f \in D\{a\}$, és számítsuk ki f'(a)-t, ha
 - a) $f(x) := x^4 \quad (x \in \mathbb{R}), \qquad a := 1,$
 - b) $f(x) := \sqrt{x} \quad (x \in [0, +\infty)), \qquad a := 2,$
 - c) $f(x) := \frac{1}{x} \quad (x \in \mathbb{R} \setminus \{0\}), \qquad a := 3,$
 - d) $f(x) := x|x| \quad (x \in \mathbb{R}), \qquad a := 0,$
 - e) $f(x) := \begin{cases} 1 x, & \text{ha } x < 0, \\ x^2 x + 1, & \text{ha } x \ge 0, \end{cases}$ a := 0.
- 2. Feladat. Adjuk meg a következő függvények deriváltját!
 - a) $f(x) := 4x^3 2x^2 + 5x 3$ $(x \in \mathbb{R}),$
 - b) $f(x) := \sqrt{x \sqrt{x \sqrt{x}}}$ (x > 0),
 - c) $f(x) := x^3 + \frac{1}{x^2} \frac{1}{5x^5}$ $(x \in \mathbb{R} \setminus \{0\}),$
 - d) $f(x) := x^a + a^x + ax + \frac{x}{a} + \frac{a}{x}$ (x > 0), a > 0 paraméter.

- 3. Feladat. Adjuk meg a következő függvények deriváltját!
 - a) $f(x) := x^2 \sin x$ $(x \in \mathbb{R}),$
 - b) $f(x) := e^x(\sqrt[3]{x^2} + e^2)$ (x > 0),
 - c) $f(x) := \frac{x^3 + 2}{x^2 + x + 5}$ $(x \in \mathbb{R}),$
 - d) $f(x) := \frac{2^x + 1}{2 + \sin x}$ $(x \in \mathbb{R}).$

4. Feladat. Adjuk meg a következő függvények deriváltját!

a)
$$f(x) := (5x^2 + 3x)^{2020}$$
 $(x \in \mathbb{R})$

b)
$$f(x) := \sqrt{x + \sqrt{x}}$$
 $(x \ge 0)$,

c)
$$f(x) := \sin \frac{x^2 + 1}{x + 3}$$
 $(x > -3),$

d)
$$f(x) := \sin^2 \left(\ln \sqrt{1 + \cos^2 x} + 1 \right) \quad (x \in \mathbb{R}).$$

5. Feladat. Mutassuk meg, hogy az alábbi függvények differenciálhatók, és számítsuk ki a deriváltfüggvényeiket!

a)
$$f(x) := \left(1 + \frac{1}{x}\right)^{1-x} \quad (x > 0),$$

b)
$$f(x) := (\ln x)^{x+1}$$
 $(x > 1)$.

Házi feladatok

1. Feladat. A definíció alapján lássa be, hogy $f \in D\{a\}$, és számítsa ki f'(a)-t, ha

a)
$$f(x) := \frac{1}{x^2}$$
 $(x < 0)$, $a := -1$,

b)
$$f(x) := \begin{cases} x^3 + x, & \text{ha } x \le 0, \\ e^x - 1, & \text{ha } x > 0, \end{cases}$$
 $a := 0.$

2. Feladat. Adja meg a következő függvények deriváltját!

$$a)$$
 $f(x) := x^2 e^{\cos x}$ $(x \in \mathbb{R}),$

a)
$$f(x) := x^2 e^{\cos x}$$
 $(x \in \mathbb{R}),$ b) $f(x) := \log_2\left(\frac{x+2}{x-1}\right)$ $(x > 1),$

c)
$$f(x) := \sin \sqrt{2^x + x^2}$$
 $(x \in \mathbb{R})$

c)
$$f(x) := \sin \sqrt{2^x + x^2}$$
 $(x \in \mathbb{R}),$ $d)$ $f(x) := \frac{\cos(\ln 2x)}{x^2 \ln x}$ $(x > 0).$

3. Feladat. Adja meg a következő függvények deriváltját!

$$a) \quad f(x) := x^x \quad (x > 0),$$

a)
$$f(x) := x^x$$
 $(x > 0)$, b) $f(x) := (x^3 + x)^{\ln x}$ $(x > 1)$.

Gyakorló feladatok

1. Feladat. A definíció alapján lássa be, hogy $f \in D\{a\}$, és számítsa ki f'(a)-t, ha

a)
$$f(x) := 3x^2 - x + 1$$
 $(x \in \mathbb{R}), a := 3,$

b)
$$f(x) := \sqrt{x+1}$$
 $(x > -1)$, $a := 3$,

c)
$$f(x) := \sqrt[3]{x^2} \quad (x \in \mathbb{R}), \qquad a := 0,$$

d)
$$f(x) := \frac{2}{x} + 4$$
 $(x > 0)$, $a := 2$,

e)
$$f(x) := \begin{cases} x^3 - x, & \text{ha } x < 1, \\ x^2, & \text{ha } x \ge 1, \end{cases}$$
 $a := 1,$

f)
$$f(x) := \begin{cases} 2\sin x, & \text{ha } x < 0, \\ x^2 + 2x, & \text{ha } x \ge 0, \end{cases}$$
 $a := 0.$

2. Feladat. Számítsa ki az

$$f(x) := \frac{1}{x} + \sqrt{1 + \frac{1}{x^2}} \quad (x > 0)$$

függvény deriváltfüggvényét. (Egyszerűsítsen is.)

3. Feladat. Adja meg a következő függvények deriváltját!

a)
$$f(x) := \frac{2x^2 - 1}{x\sqrt{1 + x^2}}$$
 $(x \in \mathbb{R}),$ b) $f(x) := \frac{e^x}{1 + e^x}$ $(x \in \mathbb{R}),$

$$b) \quad f(x) := \frac{e^x}{1 + e^x} \quad (x \in \mathbb{R}),$$

c)
$$f(x) := \sin \sqrt{1+x^3}$$
 $(x > -1),$

c)
$$f(x) := \sin \sqrt{1+x^3}$$
 $(x > -1)$, $d)$ $f(x) := \frac{(x+1)^3}{x^{3/2}}$ $(x > 0)$,

e)
$$f(x) := \ln(e^{-x}\sin x)$$
 $(0 < x < \pi), f)$ $f(x) := \sqrt{1 + \sin^2 x} \cdot \cos x$ $(x \in \mathbb{R}),$

$$f(x) := \sqrt{1 + \sin^2 x \cdot \cos x} \quad (x \in \mathbb{R}),$$

g)
$$f(x) := e^x \sin x \quad (x \in \mathbb{R}),$$
 h) $f(x) := x^2 \sqrt[3]{x} \quad (x > 0),$

h)
$$f(x) := x^2 \sqrt[3]{x}$$
 $(x > 0)$,

i)
$$f(x) := (x+2)^8(x+3)^6$$
 $(x \in \mathbb{R}), \quad j)$ $f(x) := (\sin^3 x) \cdot \cos x$ $(x \in \mathbb{R}),$

$$f(x) := (\sin^3 x) \cdot \cos x \quad (x \in \mathbb{R}),$$

$$f(x) := \frac{1}{\sqrt[3]{x + \sqrt{x}}} \quad (x > 0)$$

k)
$$f(x) := \frac{1}{\sqrt[3]{x + \sqrt{x}}}$$
 $(x > 0)$, $l)$ $f(x) := \frac{\sin(2x^2)}{3 - \cos(2x)}$ $(x \in \mathbb{R})$,

$$f(x) := \ln(x^2 e^x) \quad (x > 0),$$

$$n)$$
 $f(x) := e^{\cos x} + \cos(e^x)$ $(x \in \mathbb{R}),$

o)
$$f(x) := \left(x + \frac{1}{x^2}\right)^{\sqrt{7}}$$
 $(x > 0)$, $p)$ $f(x) := \ln(\cos x)$ $(0 < x < \frac{\pi}{2})$,

$$p) \quad f(x) := \ln\left(\cos x\right) \quad \left(0 < x < \frac{\pi}{2}\right).$$

$$q) \quad f(x) := \sqrt[5]{x \cos x} \quad (x > 0)$$

q)
$$f(x) := \sqrt[5]{x \cos x}$$
 $(x > 0)$, r $f(x) := \sin^2(\ln(\sqrt{1 + \cos^2 x} + 1))$ $(x \in \mathbb{R})$.

4. Feladat. Adja meg a következő függvények deriváltját!

a)
$$f(x) := (1 + e^{3x+1})^{x^2+1}$$
 $(x \in \mathbb{R}),$ b) $f(x) := (2 + \sin x)^{\cos x}$ $(x \in \mathbb{R}),$

b)
$$f(x) := (2 + \sin x)^{\cos x}$$
 $(x \in \mathbb{R})$

c)
$$f(x) := x^{\sqrt{x}} \quad (x > 0),$$

$$d) \quad f(x) := \sin(x^{\cos x}) \quad (x > 0).$$

További feladatok

1. Feladat. Hol deriválhatók az alábbi függvények? Ahol differenciálhatók, ott számítsa ki a deriváltat!

a)
$$f(x) := |3x - 1| \quad (x \in \mathbb{R}),$$
 b) $f(x) := e^{|x|} \quad (x \in \mathbb{R}),$

$$b) \quad f(x) := e^{|x|} \quad (x \in \mathbb{R})$$

c)
$$f(x) := \ln|x| \quad (x \in \mathbb{R} \setminus \{0\})$$

c)
$$f(x) := \ln|x|$$
 $(x \in \mathbb{R} \setminus \{0\}),$ $d)$ $f(x) := x^2(\operatorname{sign} x + \operatorname{sign} |x - 1|)$ $(x \in \mathbb{R}).$

2. Feladat. Legyen α valós paraméter. Hol deriválható az

$$f(x) := \begin{cases} \alpha x + x^2, & x < 0 \\ x - x^2, & x \ge 0 \end{cases}$$

függvény? Ahol differenciálható, ott számítsa ki a deriváltat!

3. Feladat. Tegyük fel, hogy a $g: \mathbb{R} \to \mathbb{R}$ függvény differenciálható. Fejezze ki az f függvény deriváltját q segítségével, ha

- a) $f(x) := g^2(x)$ $(x \in \mathbb{R}),$
- b) f(x) := g(g(x)) $(x \in \mathbb{R}),$
- c) $f(x) := \ln |g(x)|$ $(x \in \mathbb{R} \setminus \{y \mid g(y) = 0\}).$

4. Feladat. Legyenek $f: \mathbb{R} \to \mathbb{R}^+$ és $g: \mathbb{R} \to \mathbb{R}^+$ differenciálható függvények. Fejezze ki h'-t f és g segítségével, ha

- a) $h(x) := f(g(\sin x))$ $(x \in \mathbb{R}),$
- b) $h(x) := \log_{f(x)} (g(x))$ $(x \in \mathbb{R} \setminus \{y \mid f(y) = 1\}).$

5. Feladat. Legyenek $f: \mathbb{R} \to \mathbb{R}^+$ és $g: \mathbb{R} \to \mathbb{R}^+$ differenciálható függvények. Fejezze ki h'-t f és q segítségével, ha

- a) $h(x) := f(g(\sin x))$ $(x \in \mathbb{R}),$
- b) $h(x) := \log_{f(x)} (g(x))$ $(x \in \mathbb{R} \setminus \{y \mid f(y) = 1\}).$

6. Feladat. Alkalmas függvény differenciálhatóságának a definíciójára gondolva számítsa ki a következő határértékeket!

a)
$$\lim_{h \to 0} \frac{\sqrt[4]{16+h} - 2}{h}$$
,

b)
$$\lim_{x \to 1} \frac{\sin(x-1)}{x^2 + x - 2}$$
.

7. Feladat. Legyen $a \in \mathbb{R}$ és $g \colon \mathbb{R} \to \mathbb{R}$. Mi a szükséges és elegendő feltétele annak, hogy az

5

a)
$$f(x) := g(x)(x-a)$$
 $(x \in \mathbb{R})$ b) $f(x) := g(x)|x-a|$ $(x \in \mathbb{R})$

b)
$$f(x) := g(x)|x-a| \quad (x \in \mathbb{R})$$

függvény deriválható az a pontban?

Differenciálszámítás 2.

■ Szükséges ismeretek

- Az érintő fogalma, egyenlete.
- Az inverz függvényre vonatkozó deriválási szabály.
- Egyoldali pontbeli deriváltak.
- A Rolle- és a Lagrange-féle középértéktétel.

■ Feladatok

1. Feladat. Legyen

$$f(x) := \frac{\sqrt{1+x}}{(x^2+1)^5} \qquad (x > -1).$$

- a) Vizsgáljuk meg deriválhatóság szempontjából az f függvényt, és határozzuk meg az f' deriváltfüggvényét!
- b) Mutassuk meg, hogy a függvény grafikonjának a (0, f(0)) pontban van érintője, és írjuk fel az érintőegyenes egyenletét!
- **2. Feladat.** Igazoljuk, hogy az alábbi függvények invertálhatók és inverzei differenciálhatók! Számítsuk ki az $(f^{-1})'$ függvény értékét a megadott b pontban!

a)
$$f(x) := x^3 + x \ (x \in \mathbb{R}), \quad b := -2,$$

b)
$$f(x) := 2x + \ln(x^2 + 1)$$
 $(x > 0)$, $b := 2 + \ln 2$.

3. Feladat. Igazoljuk, hogy az

$$f(x) := \sqrt{e^{2x-1} + 1} \qquad (x \in \mathbb{R})$$

függvények invertálható, inverze differenciálható és határozzuk meg az inverz függvényének deriváltját!

4. Feladat. Állapítsuk meg, hogy differenciálhatók-e az alábbi függvények a megadott a pontokban!

a)
$$f(x) := \begin{cases} x^2 + 1, & \text{ha } x < 0, \\ \ln(x^2 + 1), & \text{ha } x \ge 0, \end{cases}$$
 $a = 0,$

b)
$$f(x) := \begin{cases} 2^x, & \text{ha } x < 1, \\ 2, & \text{ha } x = 1, \\ \sqrt{x^3 + 3}, & \text{ha } x > 1, \end{cases}$$
 $a = 1,$

c)
$$f(x) := \begin{cases} \cos^2 x, & \text{ha } x \le \frac{\pi}{2}, \\ (x - \frac{\pi}{2})^2, & \text{ha } x > \frac{\pi}{2}, \end{cases}$$
 $a = \frac{\pi}{2},$

d)
$$f(x) := \begin{cases} x^3 + 1, & \text{ha } x \le 0, \\ \frac{\sin x}{x}, & \text{ha } x > 0, \end{cases}$$
 $a = 0.$

5. Feladat. Megadható-e olyan a és b paraméter, hogy differenciálhatóak legyenek a következő függvények?

a)
$$f(x) = \begin{cases} x^2 + b, & \text{ha } x < 1, \\ \frac{a}{x}, & \text{ha } x \ge 1. \end{cases}$$
 b) $f(x) = \begin{cases} \sin ax + b, & \text{ha } x \le 0, \\ e^{x^2} + x, & \text{ha } x > 0. \end{cases}$

6. Feladat. Legyen $a, b \neq 1$ két pozitív szám. Igazoljuk, hogy az

$$f(x) := a^x + b^x - 2 \qquad (x \in \mathbb{R})$$

függvénynek legfeljebb két zérushelye lehet!

7. Feladat. Igazoljuk a következő egyenlőtlenséget!

$$x - \frac{x^2}{2} < \ln(x+1) < x$$
 $(x > 0)$.

■ Házi feladatok

1. Feladat. Írja fel az

$$f(x) := \cos \frac{x-1}{x^2+1} \qquad (x \in \mathbb{R})$$

függvény grafikonjának az $a=\frac{1}{2}$ abszcisszájú pontjához tartozó érintőegyenesének az egyenletét!

2. Feladat. Igazolja, hogy az alábbi függvény invertálható és inverze differenciálható a $(-\pi, \pi)$ intervallumon! Számítsa ki a függvény inverzének deriváltja a $b = 1 + \frac{\pi}{2}$ pontban!

$$f(x) := x + \sin x \qquad (x \in \mathbb{R})$$

3. Feladat. Megadható-e olyan a és b paraméter, hogy differenciálhatóak legyenek a következő függvény?

$$f(x) := \begin{cases} ax^2 - ax + b\cos(x+1), & \text{ha } x < -1, \\ \frac{2a}{x^2 + 1} + e^{bx + b}, & \text{ha } x \ge -1. \end{cases}$$

4. Feladat. Igazolja, hogy az $f(x) := x^7 + 14x - 3 \quad (x \in \mathbb{R})$ függvénynek pontosan egy zérushelye van!

■ Gyakorló feladatok

1. Feladat. Számítsa ki a következő függvény deriváltját, és írja fel a függvény grafikonjának az a=2 abszcisszájú pontjához tartozó érintőegyenesének az egyenletét!

$$f(x) := \frac{1}{\ln^2\left(x - \frac{1}{x}\right)} \qquad (x > 1)$$

2. Feladat. Írja fel az f függvény grafikonjának az a abszcisszájú pontjához tartozó érintőegyenesének az egyenletét!

a)
$$f(x) := \sqrt{1+x^2}$$
 $(x \in \mathbb{R}), a = 1/2,$

b)
$$f(x) := \frac{\sin\sqrt{1+x^2}}{x+3} \quad (x \in (-3, +\infty)), \qquad a = 0,$$

c)
$$f(x) := (x+2)^{x^2+1}$$
 $(x > -2)$, $a = -1$,

d)
$$f(x) := x^{\ln x} \quad (x > 0), \qquad a = e^2.$$

3. Feladat. A logaritmikus deriválás segítségével számítsa ki a következő függvények deriváltját!

a)
$$f(x) := \frac{x^4 \sqrt{x^2 + 1}}{\sqrt{x^2 + 3}}$$
 $(x \neq 0)$, $(x \neq 0)$, $(x \neq 0)$ $(x \neq 0)$.

4. Feladat. Igazolja, hogy az alábbi függvény invertálható és inverze differenciálható! Számítsa ki a függvény inverzének deriváltja a b=2 pontban!

$$f(x) := x^5 + x^3 \qquad (x \in \mathbb{R})$$

5. Feladat. Igazolja az inverz kapcsolat segítségével, hogy az alábbi függvények invertálhatók, inverzük differenciálható és határozza meg az inverz függvényük deriváltját!

a)
$$f(x) := 3e^{\sqrt[3]{x}} - 1 \quad (x \in \mathbb{R}),$$

$$f(x) := e^{e^x} \quad (x \in \mathbb{R}).$$

6. Feladat. Állapítsa meg, hogy differenciálhatóak-e az alábbi függvények a megadott pontokban!

a)
$$f(x) := \begin{cases} x^2 - 3x + 3, & \text{ha } x \le 1, \\ e^{1-x}, & \text{ha } x > 1, \end{cases}$$
 $a = 1,$

b)
$$f(x) := \begin{cases} \sin^2 x, & \text{ha } x \le \frac{\pi}{2}, \\ x^2 - \pi x, & \text{ha } x > \frac{\pi}{2}, \end{cases}$$
 $a = \frac{\pi}{2},$

c)
$$f(x) := \begin{cases} e^x, & \text{ha } x \le 0, \\ x+1, & \text{ha } 0 < x \le 1, \\ 3 - \frac{1}{x}, & \text{ha } x > 1, \end{cases}$$
 $a_1 = 0, a_2 = 1,$

$$\begin{cases}
3 - \frac{1}{x}, & \text{na } x > 1, \\
\frac{4x + 5}{x + 1}, & \text{na } x < -2, \\
1 - x, & \text{na } -2 \le x \le 2, \\
\cos(\pi(x - 1)), & \text{na } x > 2,
\end{cases}$$

e)
$$f(x) := \begin{cases} \sin(x^2 + \pi), & \text{ha } x \le 0, \\ x \ln(x+1), & \text{ha } x > 0, \end{cases}$$
 $a = 0.$

7. Feladat. Megadható-e olyan a és b paraméter, hogy differenciálhatóak legyenek a következő függvények?

a)
$$f(x) = \begin{cases} ax^3 + bx + a, & \text{ha } x < 0, \\ bx^3 + ax^2 + bx, & \text{ha } x \ge 0, \end{cases}$$
 b) $f(x) = \begin{cases} a + x - x^2, & \text{ha } x < 0, \\ e^{bx} - a, & \text{ha } x \ge 0, \end{cases}$ c) $f(x) = \begin{cases} e^{\frac{x}{2}} + a, & \text{ha } x < 0, \\ \ln(\sin x + b), & \text{ha } x \ge 0, \end{cases}$ d) $f(x) = \begin{cases} ax^2 + bx, & \text{ha } x < 1, \\ \cos(\frac{x-1}{2}), & \text{ha } x \ge 1. \end{cases}$

8. Feladat. Megadható-e olyan a és b paraméter, hogy differenciálhatók legyen a következő függvény?

$$f(x) = \begin{cases} a - \frac{bx}{x^2 + 1}, & \text{ha } x < 0, \\ \frac{e^x - 1}{ax} + bx, & \text{ha } x \ge 0. \end{cases}$$

9. Feladat. Legyen

$$f(x) = \begin{cases} x, & \text{ha } -16 \le x \le 2, \\ -x^2 + 6x - 6, & \text{ha } 2 < x \le 8. \end{cases}$$

- a) Teljesülnek-e a Rolle-tétel feltételei a [-6, 6] intervallumon?
- b) Van-e zérushelye f'-nek a (-6,6) intervallumon?
- 10. Feladat. Legyen

$$f(x) = 1 - \sqrt[3]{x^2} \qquad (x \in \mathbb{R}).$$

Igazolható, hogy f(-1) = f(1), de nincs olyan pont -1 és 1 között, ahol a függvény deriváltja nulla. Ez pedig a Rolle-féle középértéktételnek ellenmond. Hol hibádzik az előző okfejtés?

11. Feladat. Legyen

$$f(x) := x(x+1)(x+2)(x+3) \qquad (x \in \mathbb{R}).$$

Igazoljuk, hogy az f' függvénynek pontosan három zérushelye van!

12. Feladat. Igazolja, hogy minden $x, y \in \mathbb{R}$ esetén fennáll az alábbi egyenlőtlenség!

$$|\sin x - \sin y| < |x - y|.$$

13. Feladat. Igazolja, hogy bármely $n \in \mathbb{N}$ esetén fennáll az alábbi egyenlőtlenség!

$$\sqrt[n]{1+x} \le 1 + \frac{x}{n}$$
 $(x \ge -1).$

■ További feladatok

1. Feladat. Adja meg olyan p és q értékeket, hogy az x tengely érintse az

$$f(x) := x^3 + px + q \qquad (x \in \mathbb{R})$$

függvény grafikonját!

2. Feladat. Igazolja, hogy az

$$f(x) := e^x + x \qquad (x \in \mathbb{R})$$

függvény invertálható, $f^{-1} \in D^2(\mathbb{R})$, majd számítsa ki az $\left(f^{-1}\right)''(1)$ értékét!

3. Feladat. Igazolja, hogy van olyan deriválható $h \colon \mathbb{R} \to \mathbb{R}$ függvény, amelyre

$$h(x^3 + 3x + 1) = x^3 - 2x + 1$$
 $(x \in \mathbb{R})$

teljesül, majd számítsa ki a h'(-3) értéket!

4. Feladat. Adott $\alpha, \beta, a \in \mathbb{R}$, ill. az a pontban differenciálható $g: [a, +\infty) \to \mathbb{R}$ függvény esetén mi a szükséges és elegendő feltétele annak, hogy az

$$f(x) = \begin{cases} \alpha x + \beta, & \text{ha } x < a, \\ g(x), & \text{ha } x \ge a \end{cases}$$

függvény deriválható az a pontban?

5. Feladat. Legyen $a,b\in\mathbb{R}$ és $n\in\mathbb{N}$. Mutassuk meg, hogy ha n rendre páros, illetve páratlan, akkor a

$$p(x) := x^n + ax + b \qquad (x \in \mathbb{R})$$

polinomnak legfeljebb kettő, illetve három gyöke van!

6. Feladat. A Rolle-tétel felhasználásával igazoljuk a következő egyenlőtlenséget!

$$\sin x > \frac{2x}{\pi} \qquad \left(0 < x < \frac{\pi}{2}\right).$$

Függvénytulajdonságok kapcsolata a deriválttal 1.

■ Szükséges ismeretek

- A monotonitás és a derivált kapcsolata.
- A lokális szélsőérték elsőrendű szükséges feltétele.
- A lokális szélsőérték elsőrendű és másodrendű elégséges feltétele.
- A lokális és abszolút szélsőérték viszonya.
- A Weierstrass-tétel.

■ Feladatok

1. Feladat. Határozzuk meg azokat a legbővebb intervallumokat, amelyeken az f függvény monoton, ha

a)
$$f(x) := 3x^4 - 4x^3 - 12x^2 + 2 \quad (x \in \mathbb{R}),$$

b)
$$f(x) := \frac{x}{x^2 - 10x + 16}$$
 $(x \in \mathbb{R} \setminus \{2, 8\}).$

2. Feladat. Számítsuk ki az

$$f(x) := x^5 - 5x^4 + 5x^3 + 1 \qquad (x \in \mathbb{R})$$

függvény lokális szélsőértékhelyeit és lokális szélsőértékeit!

3. Feladat. Határozzuk meg az

$$f(x) := \frac{x}{x^2 + 1}$$
 $\left(x \in \left[-\frac{1}{2}, 2\right]\right)$

függvény abszolút szélsőértékhelyeit és abszolút szélsőértékeit!

- **4. Feladat.** Igazoljuk, hogy ha két pozitív szám összege állandó, szorzatuk akkor a legnagyobb, ha a két szám egyenlő!
- **5. Feladat.** Határozzuk meg egy R sugarú félkörbe írt legnagyobb területű téglalap méreteit, ha a téglalap egyik oldala a félkör átmérőjén fekszik!
- **6. Feladat.** Hogyan kell megválasztani egy 1 liter térfogatú, henger alakú konzervdoboz méreteit, hogy a gyártási költsége minimális legyen?

Házi feladatok

1. Feladat. Határozza meg azokat a legbővebb intervallumokat, amelyeken az f függvény monoton, ha

a)
$$f(x) := x - \frac{3}{x} + \frac{2}{x^2}$$
 $(x \in \mathbb{R} \setminus \{0\}),$

b)
$$f(x) := \frac{e^x}{x}$$
 $(x \in \mathbb{R} \setminus \{0\}).$

2. Feladat. Határozza meg az

$$f(x) := \frac{x}{x^2 + x + 1} \qquad (x \in \mathbb{R})$$

függvénynek

- a) a lokális szélsőértékeit,
- b) az abszolút szélsőértékeit a [-2,0] halmazon!
- 3. Feladat. Keresse meg azt a maximális területű téglalapot az első síknegyedben, amelynek az egyik csúcsa az origó, az ebből kiinduló két oldala a koordinátatengelyekre illeszkedik, és az origóval szemközti csúcs az

$$f(x) := e^{-3x}$$
 $\left(x \in (0, +\infty)\right)$

függvény grafikonján helyezkedik el!

Gyakorló feladatok

1. Feladat. Határozza meg azokat a legbővebb intervallumokat, amelyeken az f függvény monoton, ha

a)
$$f(x) := 1 - 4x - x^2 \quad (x \in \mathbb{R}),$$

b)
$$f(x) := x^2(x-3) \quad (x \in \mathbb{R}),$$

$$c) \quad f(x) := x \ln x \quad (x > 0),$$

$$d) \quad f(x) := \frac{2}{x} - \frac{8}{1+x} \quad \left(x \in \mathbb{R} \setminus \{0, 1\}\right),$$

$$e) \quad f(x) := 2e^{x^2 - 4x} \quad (x \in \mathbb{R}),$$

$$f)$$
 $f(x) := xe^{-x^2}$ $(x \in \mathbb{R}),$

g)
$$f(x) := \ln \frac{x^2}{(1+x)^3}$$
 $(x > -1, x \neq 0), h)$ $f(x) := (x-3)\sqrt{x}$ $(x \ge 0).$

h)
$$f(x) := (x-3)\sqrt{x} \quad (x \ge 0).$$

2. Feladat. Határozza meg az f függvény lokális szélsőértékhelyeit és lokális szélsőértékeit, ha

a)
$$f(x) := x^3 - 3x^2 + 3x + 2$$
 $(x \in \mathbb{R}),$ b) $f(x) := \frac{x^2}{x - 3}$ $(x \neq 3),$

b)
$$f(x) := \frac{x^2}{x-3}$$
 $(x \neq 3)$,

c)
$$f(x) := x^2 e^{-x} \quad (x \in \mathbb{R}),$$

d)
$$f(x) := x - \ln(1+x)$$
 $(x > -1)$.

3. Feladat. Számítsa ki az f függvény abszolút szélsőértékeit, ha

a)
$$f(x) := 2x^3 + 3x^2 - 12x + 1$$
 $(-3 \le x \le 3)$, b) $f(x) := x^4 - 4x^3 + 10$ $(-1 \le x \le 4)$,

b)
$$f(x) := x^4 - 4x^3 + 10 \quad (-1 \le x \le 4),$$

$$c) \quad f(x) := x^2 e^{-x} \quad (x \in \mathbb{R}),$$

d)
$$f(x) := 2x + \frac{200}{x}$$
 $(0 < x < +\infty)$.

- 4. Feladat. A 6x+y=9 egyenletű egyenesen keressük meg a (-3,1)-hez legközelebbi pontot!
- 5. Feladat. Az $y^2 x^2 = 4$ egyenletű hiperbolának mely pontja van legközelebb a (2,0)ponthoz?
- 6. Feladat. Határozza meg annak az egyenesnek az egyenletét, amelyik átmegy a (3,5) ponton és az első síknegyedből a legkisebb területű részt vágja le!
- 7. Feladat. Mely pozitív szám esetén lesz a szám és reciprokának összege a lehető legkisebb?

- **8. Feladat.** Egységnyi kerületű téglalapok közül melyiknek legnagyobb, illetve legkisebb a területe?
- 9. Feladat. Határozzuk meg egy R sugarú félkörbe írt legnagyobb területű trapéz méreteit, ha a trapéz egyik párhuzamos oldala a félkör átmérőjén fekszik!
- 10. Feladat. A Tisza partján egy 3200 m² területű, téglalap alakú telket kell bekeríteni. Mekkorára válaszuk a téglalap méreteit, hogy a legrövidebb kerítésre legyen szükség? (A folyóparton nem állítunk kerítést.)
- 11. Feladat. Egy ablak alakja egy téglalap és egy fölé állított szabályos háromszögből áll. Kerülete 5 m. Milyennek válasszuk a méreteket, hogy az ablak a legtöbb fényt bocsássa át?
- 12. Feladat. Az R sugarú gömbbe írt kúpok közül keressük meg azt, amelyiknek a térfogata maximális!
- 13. Feladat. Határozzuk meg az 1 literes, felül nyitott legkisebb felszínű henger méreteit!

■ További feladatok

- 1. Feladat. Mutassa meg, hogy ha $f \in D(\mathbb{R})$ és f páros (páratlan), akkor f' páratlan (páros)!
- **2. Feladat.** Milyen $p \in \mathbb{R}$ esetén van az $x^3 6x^2 + 9x + p = 0$ egyenletnek pontosan egy valós gyöke?
- 3. Feladat. Az $\ln' 1 = 1$ egyenlőség alapján bizonyítsa be, hogy

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e.$$

4. Feladat. Vizsgáljuk meg van-e lokális szélsőértéke az

$$f(x) = (x - a)^n \varphi(x)$$

függvénynek az x=a pontban, ha a φ függvény folytonos az x=a pontban, $\varphi(a)\neq 0$ és n egy pozitív egész szám!

- **5. Feladat.** Két, egymást derékszögben metsző egyenes egy-egy pontja egyidejűleg kezd a csúcspont felé mozogni. Az egyik 100 m, a másik 60 m távolságban indul a csúcsponttól. Az első sebessége 4 m/s, a másiké 2 m/s. Mikor lesz a két pont egymáshoz legközelebb, és mekkora lesz ekkor egymástól a távolságuk?
- **6. Feladat.** Egy 5 m széles csatornán szálfákat úsztatnak. A csatornából egy 2,5 m széles mellékág vezet le, amelynek az iránya az eredetivel derékszöget zár be. Legfeljebb hány méter hosszúságú szálfát tudunk a szóban forgó mellékágra terelni?
- 7. Feladat. Legfeljebb mekkora lehet annak a gerendának a hossza, amelyet egy 4 m átmérőjű, kör keresztmetszetű toronyba, egy a torony falán vágott 2 m magas ajtón át bevihetünk?
- 8. Feladat. Egy ellipszis két féltengelyének hossza a és b. Mekkorák az ellipszisbe írható legnagyobb területű téglalap méretei, ha feltételezzük, hogy a téglalap oldalai párhuzamosak az ellipszis féltengelyeivel?

Függvénytulajdonságok kapcsolata a deriválttal 2.

Szükséges ismeretek

- L'Hospital szabály.
- A konvexitás és a derivált kapcsolata.
- Az inflexiós pontok létezésének szükséges és elégséges feltétele.
- Az aszimptota fogalma és meghatározásának módja.

Feladatok

1. Feladat. L'Hospital-szabály segítségével számítsuk ki az alábbi határértékeket!

a)
$$\lim_{x \to 1} \frac{5x^3 - 8x + 3}{x^7 + x - 2}$$
, b) $\lim_{x \to +\infty} \frac{5x^3 - 8x + 3}{x^7 + x - 2}$,

b)
$$\lim_{x \to +\infty} \frac{5x^3 - 8x + 3}{x^7 + x - 2}$$

c)
$$\lim_{x \to 2} \frac{\sqrt{x^2 + 5} - 3}{x^3 - 8}$$
, d) $\lim_{x \to 0} \frac{\operatorname{tg} x - x}{x - \sin x}$.

d)
$$\lim_{x\to 0} \frac{\operatorname{tg} x - x}{x - \sin x}$$

2. Feladat. L'Hospital-szabály segítségével számítsuk ki az alábbi határértékeket!

$$a) \quad \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right),$$

$$b) \quad \lim_{x \to +\infty} \left(x e^{1/x} - x \right),$$

c)
$$\lim_{x \to 1-0} \ln x \cdot \ln (1-x),$$

$$d) \quad \lim_{x \to 1} (1 - x) \cdot \operatorname{tg} \frac{\pi}{2} x.$$

3. Feladat. L'Hospital-szabály segítségével számítsuk ki az alábbi határértékeket!

$$a)\quad \lim_{x\to +\infty}\left(1+\frac{1}{x}\right)^x,$$

$$b) \quad \lim_{x \to 0+0} \left(\frac{1}{x}\right)^{\operatorname{tg} x}.$$

Feladat. Adjuk meg azokat a legbővebb intervallumokat, amelyeken f konvex, illetve konkáv. Van-e a függvénynek inflexiós pontja?

14

a)
$$f(x) := 2x^3 - 21x^2 + 36x \quad (x \in \mathbb{R})$$

a)
$$f(x) := 2x^3 - 21x^2 + 36x$$
 $(x \in \mathbb{R}),$ b) $f(x) := \ln(x^2 + 2x + 2)$ $(x \in \mathbb{R}),$

c)
$$f(x) := \frac{x^3}{4 - x^2}$$
 $(x \in \mathbb{R} \setminus \{-2, 2\}),$ $d)$ $f(x) := \frac{e^x}{x + 1}$ $(x \in \mathbb{R} \setminus \{-1\}).$

$$d) \quad f(x) := \frac{e^x}{x+1} \quad \left(x \in \mathbb{R} \setminus \{-1\}\right).$$

Házi feladatok

1. Feladat. L'Hospital-szabály segítségével számítsuk ki az alábbi határértékeket!

a)
$$\lim_{x \to \frac{\pi}{2} - 0} \frac{\ln\left(\frac{\pi}{2} - x\right)}{\lg x},$$

$$b) \quad \lim_{x \to 0+0} \frac{1 - \sqrt{\cos x}}{1 - \cos \sqrt{x}},$$

c)
$$\lim_{x \to +\infty} x \cdot \left(\operatorname{arctg} x - \frac{\pi}{2} \right)$$
,

$$d) \quad \lim_{x \to 0} (\operatorname{ch} x)^{1/\operatorname{sh} x}.$$

Feladat. Adjuk meg azokat a legbővebb intervallumokat, amelyeken f konvex, illetve konkáv. Van-e a függvénynek inflexiós pontja?

a)
$$f(x) := e^{2x} - (4x+1)$$
 $(x \in \mathbb{R}),$

a)
$$f(x) := e^{2x} - (4x + 1)$$
 $(x \in \mathbb{R}),$ b) $f(x) := \frac{4x}{x^2 - 1}$ $(x \in \mathbb{R} \setminus \{-1, 1\}).$

3. Feladat. Van-e az f függvényeknek aszimptotája $(+\infty)$ -ben, illetve $(-\infty)$ -ben? Ha igen, akkor határozza meg az aszimptotákat.

$$f(x) := \frac{x^2 + 4}{x} \quad (x \in \mathbb{R} \setminus \{0\})$$

Gyakorló feladatok

1. Feladat. L'Hospital-szabály segítségével számítsuk ki az alábbi határértékeket!

a)
$$\lim_{x \to 1} \frac{3x^2 - 2x - 1}{5x^2 - x - 4}$$
,

b)
$$\lim_{x \to -2} \frac{2x^7 + 4x^6 - x^2 - x + 2}{3x^4 + 7x^3 - 5x - 2}$$

c)
$$\lim_{x \to 0} \frac{2 - \sqrt{x^2 + x + 4}}{x}$$
,

$$d) \quad \lim_{x \to 2} \frac{\sqrt[3]{8x^2 + 6x + 20} - 2x}{x^3 + x - 10},$$

$$e) \quad \lim_{x \to 0} \frac{e^{2x} - 1}{\sin x},$$

$$f) \quad \lim_{x \to -\infty} \frac{e^x + x}{x^3},$$

$$g) \quad \lim_{x \to 0} \frac{e^{x^2} - 1}{1 - \cos x},$$

$$h) \quad \lim_{x \to 0} \frac{\ln \cos 2x}{x^2}$$

$$i) \quad \lim_{x \to 0} \frac{x \cos x - \sin x}{x^3},$$

$$j$$
) $\lim_{x \to 0} \frac{x^3 \sin x}{(1 - \cos x)^2}$,

$$k) \quad \lim_{x \to \frac{\pi}{2}} \frac{\operatorname{tg} x}{\operatorname{tg} 5x},$$

$$l)$$
 $\lim_{x\to 0} \frac{a^x - a^{\sin x}}{x^3}$ $(a > 0),$

$$m$$
) $\lim_{x\to 0+0} \frac{3+\ln x}{2-3\ln\sin x}$,

$$n) \quad \lim_{x \to 0+0} \frac{\ln(1 - \cos x)}{\ln \operatorname{tg} x},$$

$$o) \quad \lim_{x \to 0+0} \left(\frac{1}{\arctan x} - \frac{1}{x} \right),$$

$$p) \quad \lim_{x \to 0} \left(\frac{1}{\ln x} - \frac{x}{x - 1} \right),$$

$$q) \quad \lim_{x \to \infty} (x - \sqrt{x^2 + x}),$$

$$r) \quad \lim_{x \to 0+0} \frac{1}{\sqrt{x}} \left(\frac{1}{\sin x} - \frac{1}{x} \right),$$

$$s) \quad \lim_{x \to 0} (1 - \cos x) \operatorname{ctg} x,$$

$$t$$
) $\lim_{x \to +\infty} e^{x-x^2} \cdot \ln(x^2 - x + 1),$

$$u) \quad \lim_{x \to 1} x^{\frac{1}{1-x}},$$

$$v) \quad \lim_{x \to 0+0} (\cos x)^{\frac{1}{x^2}},$$

$$w$$
) $\lim_{x\to 0+0} (e^{3x} - 5x)^{\frac{1}{x}},$

$$x) \quad \lim_{x \to \infty} (e^{3x} - 5x)^{\frac{1}{x}},$$

15

$$y$$
) $\lim_{x\to 0+0} (\operatorname{ctg} x)^{\sin x}$,

$$z) \quad \lim_{x \to 0+0} \frac{(1+x)^{1/x} - e}{x}.$$

2. Feladat. Határozza meg a következő határértékeket!

a)
$$\lim_{n \to +\infty} n(\sqrt[n]{\alpha} - 1) \quad (\alpha > 0),$$

b)
$$\lim_{n\to+\infty} \left(1+\sin\left(\frac{1}{n}\right)\right)^n$$
.

3. Feladat. Határozzuk meg a

$$\frac{\sin 4x \sin 3x}{x \sin 2x}$$

hányados határértékét ha $x \to 0$ és ha $x \to \frac{\pi}{2}$.

Feladat. Adjuk meg azokat a legbővebb intervallumokat, amelyeken f konvex, illetve konkáv. Van-e a függvénynek inflexiós pontja?

a)
$$f(x) := 1 - (x+1)^3$$
 $(x \in \mathbb{R}),$ b) $f(x) := x^5 - 5x^4$ $(x \in \mathbb{R}),$

b)
$$f(x) := x^5 - 5x^4 \quad (x \in \mathbb{R}),$$

c)
$$f(x) := \frac{x^3}{3x^2 + 1}$$
 $(x \in \mathbb{R}),$ $d)$ $f(x) := \frac{4x}{x^2 + 1}$ $(x \in \mathbb{R}),$

$$d) \quad f(x) := \frac{4x}{x^2 + 1} \quad (x \in \mathbb{R}),$$

e)
$$f(x) := x\sqrt{8 - x^2}$$
 $(|x| \le 2\sqrt{2})$

e)
$$f(x) := x\sqrt{8-x^2}$$
 $(|x| \le 2\sqrt{2}),$ $f(x) := \frac{\sqrt{x}}{x+1}$ $(x \ne -1),$

$$g)$$
 $f(x) := xe^{-x^2}$ $(x \in \mathbb{R}),$

h)
$$f(x) := \frac{x}{e^x(x-1)}$$
 $(x \neq 1)$,

i)
$$f(x) := \ln(x^2 + 1)$$
 $(x \in \mathbb{R}),$

$$f(x) := x + \sin x \quad (x \in \mathbb{R}).$$

5. Feladat. Írjuk fel az

$$f(x) = \frac{2x}{x^2 + 1}$$

függvény grafikonjához húzott érintők egyenletét a függvény inflexiós pontjaiban!

6. Feladat. Van-e az alábbi függvényeknek aszimptotája $(+\infty)$ -ben, illetve $(-\infty)$ -ben? Ha igen, akkor határozza meg az aszimptotákat.

a)
$$f(x) := \frac{1-x^3}{x^2}$$
 $(x \in \mathbb{R} \setminus \{1\}),$ b) $f(x) := \frac{\ln x}{x}$ $(x > 0),$

b)
$$f(x) := \frac{\ln x}{x}$$
 $(x > 0),$

c)
$$f(x) := x \ln |x| \quad (x \in \mathbb{R} \setminus \{1\}),$$

d)
$$f(x) := \sqrt{x^2 - x + 1}$$
.

További feladatok

1. Feladat. Igazoljuk, hogy az

$$a) \quad \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x},$$

b)
$$\lim_{x \to +\infty} \frac{x - \sin x}{x + \sin x},$$

határértékek L'Hospital-szabállyal nem határozhatók meg és keressük meg más úton az értéküket!

2. Feladat. Határozzuk meg az a és b értékeket úgy, hogy

$$\lim_{x \to 0} \left(\frac{\sin 3x}{x^3} + \frac{a}{x^2} + b \right) = 0.$$

3. Feladat. Határozzuk meg a c értéket úgy, hogy

$$\lim_{x \to +\infty} \left(\frac{x+c}{x-c} \right)^x = 4.$$

4. Feladat. Határozzuk meg a

$$\lim_{x \to +\infty} x^n \sin \frac{a}{x}$$

határértéket, ahol $a \neq 0$ valós szám és n egy pozitív egész szám!

5. Feladat. Igazoljuk, hogy az

$$f(x) = \frac{x+1}{x^2+1}$$

függvénynek három inflexiós pontja van, melyek egy egyenesre illeszkednek!

6. Feladat. Keressük olyan a értékeket, hogy az $f(x) = e^x + ax^3$ függvénynek legyen inflexiós pontja!

Elemi függvények és teljes függvényvizsgálat

■ Szükséges ismeretek

- A trigonometrikus függvények inverzeinek fogalma és legfontosabb összefüggések.
- A teljes függvényvizsgálat menete, és az egyes szempontok vizsgálatának módja.

■ Feladatok

1. Feladat. Számítsuk ki az alábbi függvényértékeket!

$$\arcsin \tfrac{1}{2}, \quad \arcsin (\sin 10), \quad \arccos \left(-\tfrac{\sqrt{2}}{2}\right), \quad \arctan \operatorname{tg} 1, \quad \operatorname{arc} \operatorname{tg} \sqrt{3}, \quad \log_{1/4} \tfrac{1}{1024}.$$

2. Feladat. Differenciálszámítással igazoljuk, hogy

$$\arcsin x + \arccos x = \frac{\pi}{2} \quad (x \in [-1, 1]).$$

Milyen kapcsolat van az arc sin és az arc cos függvények grafikonjai között?

3. Feladat. Szemléltessük az

$$f(x) := \arcsin(\sin x) \quad (x \in \mathbb{R})$$

függvény grafikonját!

4. Feladat. Bizonyítsuk be, hogy

$$\arcsin x = \operatorname{arctg} \frac{x}{\sqrt{1 - x^2}} \qquad (x \in (-1, 1)).$$

5. Feladat. Teljes függvényvizsgálat végzése után vázoljuk a következő függvény grafikonját!

$$f(x) := x^4 - 4x^3 + 10 \qquad (x \in \mathbb{R})$$

6. Feladat. Teljes függvényvizsgálat végzése után vázoljuk a következő függvény grafikonját!

$$f(x) := \frac{x^3 + x}{x^2 - 1} \qquad \left(x \in \mathbb{R} \setminus \{-1, 1\} \right)$$

7. Feladat. Teljes függvényvizsgálat végzése után ábrázoljuk az

$$f(x) := e^{-x^2} \qquad (x \in \mathbb{R})$$

függvény grafikonját (az ún. Gauss-görbét)!

Házi feladatok

1. Feladat. Számítsa ki az alábbi függvényértékeket!

$$\arcsin\left(-\frac{\sqrt{3}}{2}\right)$$
, $\arcsin\left(\frac{3}{4}\right)$, $e^{-2\ln 3}$.

2. Feladat. Teljes függvényvizsgálat végzése után vázolja a következő függvények grafikonját!

a)
$$f(x) := \left(\frac{x+2}{x-3}\right)^2 \quad (x \in \mathbb{R} \setminus \{3\}),$$
 b) $f(x) := x^2 e^x \quad (x \in \mathbb{R}).$

Gyakorló feladatok

1. Feladat. Számítsa ki az alábbi függvényértékeket!

 $\operatorname{arc} \cos \left(-\frac{1}{2}\right)$, $\operatorname{arc} \sin (\cos 10)$, $\operatorname{arc} \operatorname{tg} (-\sqrt{3})$, $\operatorname{arch} \left(\frac{5}{4}\right)$, $\log_9 \frac{3}{27^3}$, $8^{\log_4 9}$.

2. Feladat. Differenciálszámítással igazolja, hogy

$$\operatorname{arc} \operatorname{tg} x + \operatorname{arc} \operatorname{ctg} x = \frac{\pi}{2} \quad (x \in \mathbb{R}).$$

Milyen kapcsolat van az arc tg és az arc ctg függvények grafikonjai között?

- 3. Feladat. Teljes függvényvizsgálat végzése után vázolja a következő függvények grafikonját!
 - a) $f(x) := 3x x^3$ $(x \in \mathbb{R}),$
- b) $f(x) := x^4 + 8x^2 9 \quad (x \in \mathbb{R}),$
- c) $f(x) := (x-1)^2(x+2)^2$ $(x \in \mathbb{R}),$ d) $f(x) := x^5 5x^4 + 5x^3 + 1$ $(x \in \mathbb{R}),$
- e) $f(x) := x + \sqrt{1-x}$ $(x \le 1)$,
- $f(x) := \frac{x+2}{\sqrt{x^2+1}} \quad (x \in \mathbb{R}),$
- g) $f(x) := \frac{x}{x^2 + 1}$ $(x \in \mathbb{R}),$
- $h) \quad f(x) := \frac{x^2 + 9}{x} \quad \left(x \in \mathbb{R} \setminus \{0\} \right),$
- $i) \quad f(x) := \frac{x+1}{x^2} \quad \left(x \in \mathbb{R} \setminus \{0\} \right),$
- $f(x) := \frac{x^2 1}{x^2 5x + 6} \quad (x \in \mathbb{R} \setminus \{2, 3\}),$
- k) $f(x) := \frac{x^2}{x^3 x}$ $\left(x \in \mathbb{R} \setminus \{-1, 0, 1\} \right)$, l) $f(x) := \frac{x^3 + 2x^2}{x^2 + 2x + 1}$ $\left(x \in \mathbb{R} \setminus \{-1\} \right)$,
- $f(x) := \left(\frac{x-3}{x+1}\right)^2 \quad \left(x \in \mathbb{R} \setminus \{-1\}\right), \quad n) \quad f(x) := \frac{x^3 2x^2}{x^2 4} \quad \left(x \in \mathbb{R} \setminus \{-2, 2\}\right),$
- o) $f(x) := x + \frac{7}{x} \frac{3}{x^2}$ $(x \in \mathbb{R} \setminus \{0\}),$ p) $f(x) := 3x + \frac{6}{x} \frac{1}{x^3}$ $(x \in \mathbb{R} \setminus \{0\}),$
- $g(x) = f(x) := xe^{-2x} \quad (x \in \mathbb{R}),$
- $f(x) := e^x x \quad (x \in \mathbb{R}),$
- s) $f(x) := \frac{e^x}{x+1}$ $\left(x \in \mathbb{R} \setminus \{-1\}\right)$, t) $f(x) := \frac{e^x}{1+e^x}$ $(x \in \mathbb{R})$,

 $u) \quad f(x) := e^{\frac{1}{1-x}} \quad (x \in \mathbb{R}),$

- $f(x) := e^{2x-x^2} \quad (x \in \mathbb{R}).$
- $f(x) := \ln(x^2 + x + 1) \quad (x \in \mathbb{R}),$
- $f(x) := x \ln^2 x \quad (x > 0),$

 $f(x) := \frac{\ln x}{x} \quad (x > 0),$

z) $f(x) := x - \operatorname{arctg} 2x \quad (x \in \mathbb{R}).$

További feladatok

- 1. Feladat. Teljes függvényvizsgálat végzése után vázolja a következő függvények grafikonját!

 - a) $f(x) := \ln(x^2 1)$ (|x| > 1), b) $f(x) := x + \ln(x^2 4x)$ $(x \in \mathbb{R} \setminus [0, 4])$,

 - c) $f(x) := x \ln |x| \quad (x \in \mathbb{R} \setminus \{0\}), \quad d) \quad f(x) := \frac{x^4}{|x| \cdot (x^2 1)} \quad (x \in \mathbb{R} \setminus \{-1, 0, 1\}),$
 - e) $f(x) := 2^{-x} \sin \pi x$ $(x \in \mathbb{R}),$ $f(x) := e^{\sin \pi x}$ $(x \in \mathbb{R}),$
- - g) $f(x) := \sin^2 x 2\cos x$ $(x \in \mathbb{R}), h)$ $f(x) := x \arctan x$ $(x \in \mathbb{R}).$

2. Feladat. Teljes függvényvizsgálat végzése után vázolja a következő függvény grafikonját!

$$f(x) := \begin{cases} x^4 \left(2 + \sin \frac{1}{x}\right), & \text{ha } x \in \mathbb{R} \setminus \{0\} \\ 0 & \text{ha } x = 0. \end{cases}$$

3. Feladat. Legyen $g(x):=e^{-x^2} \quad (x\in\mathbb{R})$ a Gauss-görbe. Teljes függvényvizsgálat végzése után ábrázoljuk az

$$f(x) := -g''(x) \qquad (x \in \mathbb{R})$$

függvény grafikonját (az ún. Sombrero-függvényt)!

Taylor-polinomok és Taylor-sorok

■ Szükséges ismeretek

- A lineáris közelítés.
- A Taylor-polinom fogalma.
- A Taylor-formula.
- A Taylor-sor fogalma.
- A hatványsor összegfüggvénye és Taylor-sora közötti kapcsolat.
- Egy függvény Taylor-sorának a felírásához létező módszerek.

■ Feladatok

1. Feladat. Legyen

$$f(x) := \frac{1}{\sqrt[3]{1+x}}$$
 $(x > -1)$ és $A := \frac{1}{\sqrt[3]{1030}}$.

- a) Milyen lineáris becslést tudunk adni az f függvényre az a=0 pont környezetében? Becsüljük vele a A értéket, és adjunk hibabecslést!
- b) Írjuk fel az f függvény 0 ponthoz tartozó harmadfokú Taylor-polinomját, és határozzuk meg, hogy a $\left[0,\frac{1}{10}\right]$ intervallumon legfeljebb mekkora hibával közelíti meg a Taylor-polinom a függvényt!
- c) A b) pontban kapott becslés felhasználásával adjunk újabb becslést az A számra, és becsüljük meg a közelítés hibáját!
- **2. Feladat.** Az $f(x) = e^x$ függvény a = 0 ponthoz tartozó negyedfokú Taylor polinomja segítségével adjunk becslést a \sqrt{e} értékére és adjunk hibakorlátot! A becslések kiszámításakor kizárólag a négy alapműveletet szabad használni.
- 3. Feladat. Számítsuk ki sin 1 értékét 5 tizedesjegy pontossággal!
- 4. Feladat.
 - a) Mutassuk meg, hogy bármely P polinomot bármely $a \in \mathbb{R}$ ponthoz tartozó Taylor-sora mindenütt előállítja, azaz ha P tetszőleges legfeljebb n-edfokú polinom és $a \in \mathbb{R}$ egy tetszőlegesen megadott középpont, akkor minden $x \in \mathbb{R}$ esetén

$$P(x) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (x - a)^{k}.$$

- b) Írjuk fel az x^5 polinomot (x-1) hatványai szerint, és számítsuk ki vele $1, 1^5$ pontos értékét!
- 5. Feladat. Számítsuk ki az arc tg függvény deriváltjait a 0 pontban!

6. Feladat. Milyen $x \in \mathbb{R}$ pontban konvergens az

$$\sum_{n=0}^{\infty} (n+1)x^n = 1 + 2x + 3x^2 + 4x^3 + \dots + nx^{n-1} + \dots$$

hatványsor, és mi az összegfüggvénye?

7. Feladat. Adjuk meg a következő függvények a pont körüli Taylor-sorát!

a)
$$f(x) := \sin^3 x \ (x \in \mathbb{R}), \ a = 0,$$
 b) $f(x) := \frac{1}{x^3} \ (x \in \mathbb{R}), \ a = 1.$

b)
$$f(x) := \frac{1}{x^3} (x \in \mathbb{R}), \quad a = 1.$$

Milyen intervallumon állítja elő a Taylor-sor a függvényt?

Házi feladatok

1. Feladat. Írja fel az

$$f(x) := \sqrt{1+2x}$$
 $\left(x \in \left(-\frac{1}{2}, +\infty\right)\right)$

függvény 0 pont körüli második Taylor-polinomját, $T_{2.0}f(x)$ -et! Adjon becslést az

$$\left| f(x) - T_{2,0}f(x) \right|$$

hibára a $\left[-\frac{5}{18}, \frac{1}{4}\right]$ intervallumon.

2. Feladat. Adja meg a következő függvények a pont körüli Taylor-sorát!

$$a)$$
 $f(x) := 2^x$ $(x \in \mathbb{R}), \quad a = 1,$

a)
$$f(x) := 2^x$$
 $(x \in \mathbb{R}), a = 1,$ b) $f(x) := \ln(x^2 + 1)$ $(x \in \mathbb{R}), a = 0.$

Milyen intervallumon állítja elő a Taylor-sor a függvényt?

Gyakorló feladatok

Feladat. Határozza meg a következő függvények a ponthoz tartozó n-edfokú Taylorpolinomját!

a)
$$f(x) = x^5$$
, $a = 1$, $n = 3$,

b)
$$f(x) = e^{-x}$$
, $a = 0$, $n = 5$.

c)
$$f(x) = \cos x, \ a = 0, \ n = 5,$$

a)
$$f(x) = x^5$$
, $a = 1$, $n = 3$,
b) $f(x) = e^{-x}$, $a = 0$, $n = 5$,
c) $f(x) = \cos x$, $a = 0$, $n = 5$,
d) $f(x) = \sin x$, $a = 0$, $n = 5$,

e)
$$f(x) = \ln(1-x)^3$$
, $a = 0$, $n = 4$, $f(x) = \sqrt{x}$, $a = 4$, $n = 4$,

$$f(x) = \sqrt{x}, \ a = 4, \ n = 4$$

g)
$$f(x) = \operatorname{tg} x$$
, $a = \frac{\pi}{4}$, $n = 3$,

$$f(x) = \sin^2 x, \ a = \pi, \ n = 3,$$

i)
$$f(x) = \operatorname{arctg} x, \ a = 0, \ n = 4,$$

$$f(x) = \operatorname{arth} x, \ a = 0, \ n = 4,$$

$$f(x) = \sqrt[3]{8-x}, \ a = 0, \ n = 3,$$

k)
$$f(x) = \sqrt[3]{8-x}$$
, $a = 0$, $n = 3$, l) $f(x) = \frac{1}{2+x}$, $a = -1$, $n = 3$.

2. Feladat. A megadott f függvények adott a pontban húzott érintőegyenes egyenletével becsülje meg a következő értékeket, és az értékbecslések hibáit!

a)
$$f(x) = \sqrt{x+1}$$
, $a = 8$, $\sqrt{9,1} \approx ?$, b) $f(x) = \sqrt[3]{x}$, $a = 8$, $\sqrt[3]{8,4} \approx ?$,

b)
$$f(x) = \sqrt[3]{x}$$
, $a = 8$, $\sqrt[3]{8,4} \approx ?$

$$c) \quad f(x) = \frac{x}{x+1}, \quad a = 1, \quad \frac{13}{23} \approx ?, \qquad \qquad d) \quad f(x) = e^x, \quad a = 0, \quad \frac{1}{e^{0,01}} \approx ?,$$

d)
$$f(x) = e^x$$
, $a = 0$, $\frac{1}{e^{0.01}} \approx ?$

e)
$$f(x) = \sin x$$
, $a = 0$, $\sin \frac{\pi}{16} \approx ?$,

e)
$$f(x) = \sin x$$
, $a = 0$, $\sin \frac{\pi}{16} \approx ?$, $f(x) = \arctan x$, $a = 1$, $\arctan x = 1$, $arc tg 1, 01 \approx ?$.

Határozzuk meg az előző értékbecsléseket másod- és harmadfokú közelítéssel és becsüljük meg a kapott becslések hibáját!

Feladat. A megadott f függvények esetén adjon becslést az a ponthoz tartozó n-edik Taylor-polinommal történő közelítés hibájára az adott I intervallumon!

a)
$$f(x) = x^5$$
, $a = 1$, $n = 3$, $I = [0, 1]$

b)
$$f(x) = \sqrt{x+2}$$
, $a = 2$, $n = 2$, $I = \left[\frac{7}{4}, 3\right]$

c)
$$f(x) = \frac{1}{\sqrt[3]{1+x}}$$
, $a = 0$, $n = 3$, $I = \left[-\frac{1}{8}, \frac{1}{8}\right]$

d)
$$f(x) = xe^x$$
, $a = 0$, $n = 2$, $I = \left[-\frac{1}{2}, \frac{1}{2} \right]$,

e)
$$f(x) = \ln(x+1)$$
, $a = 0$, $n = 2$, $I = \left[-\frac{7}{8}, 1\right]$

f)
$$f(x) = \cos x$$
, $a = 0$, $n = 5$, $I = \left[0, \frac{\pi}{6}\right]$.

Feladat. Becsülje meg a következő értékeket 5 tizedesjegy pontossággal! Végezze el a közelítést a megadott függvény adott a ponthoz tartozó Taylor-polinomjával .

a)
$$(0,2)^{12}$$
, $f(x) = x^{12}$, $a = 0$, b) $(2,1)^{10}$, $f(x) = x^{10}$, $a = 2$,

b)
$$(2,1)^{10}$$
, $f(x) = x^{10}$, $a = 2$

c)
$$\sqrt{5}$$
, $f(x) = \sqrt{x}$, $a = 4$, d) $\sqrt[5]{2}$, $f(x) = \sqrt[5]{x}$, $a = 1$,

d)
$$\sqrt[5]{2}$$
, $f(x) = \sqrt[5]{x}$, $a = 1$

e)
$$\frac{1}{0.99}$$
, $f(x) = \frac{1}{x}$, $a = 1$

e)
$$\frac{1}{0.99}$$
, $f(x) = \frac{1}{x}$, $a = 1$, $f(x) = \sin x$, $a = 0$,

g)
$$\operatorname{tg} \frac{\pi}{8}$$
, $f(x) = \operatorname{tg} x$, $a = 0$, h) e^{-1} , $f(x) = e^{-x}$, $a = 0$,

$$h)$$
 e^{-1} , $f(x) = e^{-x}$, $a = 0$,

$$i) \quad e^{0,1}, \quad f(x) = e^x, \quad a = 0,$$

i)
$$e^{0,1}$$
, $f(x) = e^x$, $a = 0$, j) $\ln 0.8$, $f(x) = \ln(1+x)$, $a = 0$,

$$(k)$$
 $\ln 2$, $f(x) = \ln x$, $a = 1$,

k)
$$\ln 2$$
, $f(x) = \ln x$, $a = 1$, l) $\arctan 2$, $f(x) = \arctan 3$, $a = 1$.

- 5. Feladat. Írja fel a $2x^3 + 5x^2 + 3x + 1$ polinomot (x + 1) hatványai szerint!
- **6. Feladat.** Adja meg a következő függvények a pont körüli Taylor-sorát! Milyen intervallumon állítja elő a Taylor-sor a függvényt?

a)
$$f(x) := \frac{1}{x+2}$$
 $(x \in \mathbb{R} \setminus \{-2\}),$ $a = 0,$

b)
$$f(x) := \frac{1}{x} \quad (x \in \mathbb{R} \setminus \{0\}), \qquad a = 3,$$

c)
$$f(x) := \frac{1}{x^2 - 5x + 6} \quad (x \in \mathbb{R} \setminus \{2, -3\}), \quad a = 0,$$

$$d) \quad f(x) := \frac{1}{x^3} \quad \left(x \in \mathbb{R} \setminus \{0\} \right), \qquad a = 2,$$

e)
$$f(x) := 3^x \quad (x \in \mathbb{R}), \qquad a = -1,$$

$$f)$$
 $f(x) := x^2 e^{x^3}$ $(x \in \mathbb{R}),$ $a = 0,$

$$g)$$
 $f(x) := \ln x \quad (x > 0), \qquad a = 2,$

h)
$$f(x) := \ln \frac{1+x}{1-x}$$
 $(-1 < x < 1), \quad a = 0,$

$$i)$$
 $f(x) := \cos x \quad (x \in \mathbb{R}), \qquad a = \pi,$

$$f(x) := \sin^2 x \quad (x \in \mathbb{R}), \qquad a = 0.$$

További feladatok

1. Feladat. Adja meg a következő függvények a pont körüli Taylor-sorát! Milyen intervallumon állítja elő a Taylor-sor a függvényt?

a)
$$f(x) := \sqrt{1+x}$$
 $(x > -1)$, $a = 0$,

b)
$$f(x) := \frac{1}{\sqrt{1+x}}$$
 $(x > -1), \quad a = 0,$

c)
$$f(x) := \frac{1}{\sqrt{1-x^2}}$$
 $(-1 < x < 1), \quad a = 0,$

d)
$$f(x) := \arcsin x \quad (-1 < x < 1), \qquad a = 0.$$

2. Feladat. Egy alkalmas függvény sorfejtése segítségével határozza meg a következő sorok összegét!

$$a) \quad \sum_{k=1}^{\infty} \frac{k}{2^k},$$

$$b) \quad \sum_{k=1}^{\infty} \frac{k^2}{2^k}$$

$$c) \quad \sum_{k=1}^{\infty} \frac{1}{k2^k},$$

a)
$$\sum_{k=1}^{\infty} \frac{k}{2^k}$$
, b) $\sum_{k=1}^{\infty} \frac{k^2}{2^k}$, c) $\sum_{k=1}^{\infty} \frac{1}{k2^k}$, d) $\sum_{k=1}^{\infty} \frac{1}{(2k+1)!}$

Integrálszámítás 1.

Szükséges ismeretek

- A határozatlan integrál fogalma.
- Alapintegrálok, a határozatlan integrál linearitása.
- Az első helyettesítési szabály.
- A parciális integrálás szabálya.

Feladatok

1. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \sqrt{x\sqrt{x\sqrt{x}}} dx \quad (x \in (0, +\infty)),$$
 b) $\int \frac{x^2 - 1}{x^2 + 1} dx \quad (x \in \mathbb{R}),$

$$b) \quad \int \frac{x^2 - 1}{x^2 + 1} \, dx \quad (x \in \mathbb{R}),$$

c)
$$\int \frac{(x+1)^2}{x^3} dx \quad \left(x \in (0, +\infty)\right)$$

c)
$$\int \frac{(x+1)^2}{x^3} dx$$
 $(x \in (0, +\infty)),$ d $\int \frac{3\cos^2 x + 2}{\cos 2x - 1} dx$ $(x \in (0, \pi)).$

2. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \frac{x}{x^2 + 3} \, dx \quad (x \in \mathbb{R}),$$

b)
$$\int \operatorname{tg} x \, dx \quad \left(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right)$$

c)
$$\int \frac{1}{x \cdot \ln x} dx \quad (x \in (1, +\infty)),$$
 $d) \quad \int \cos(5x - 3) dx \quad (x \in \mathbb{R}),$

$$d) \quad \int \cos(5x - 3) \, dx \quad (x \in \mathbb{R}),$$

e)
$$\int \sin^5 x \cdot \cos^3 x \, dx \quad (x \in \mathbb{R}),$$
 f) $\int \sin^2 x \, dx \quad (x \in \mathbb{R}),$

$$f$$
) $\int \sin^2 x \, dx \quad (x \in \mathbb{R}),$

g)
$$\int \frac{1}{\cos^2 x \cdot \sqrt{\lg^3 x}} dx \quad \left(x \in \left(0, \frac{\pi}{2} \right) \right), \qquad h) \quad \int \frac{1}{x \left(1 + \ln^2 x \right)} dx \quad \left(x \in \left(0, +\infty \right) \right).$$

h)
$$\int \frac{1}{x(1+\ln^2 x)} dx \quad (x \in (0,+\infty)).$$

3. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int x \cdot \sin x \, dx \quad (x \in \mathbb{R}).$$

a)
$$\int x \cdot \sin x \, dx \quad (x \in \mathbb{R}),$$
 b) $\int (x^2 + 3x) \cdot e^{2x} \, dx \quad (x \in \mathbb{R}).$

4. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \ln x \, dx \quad (x \in (0, +\infty)),$$

b)
$$\int \arctan \operatorname{tg} 3x \, dx \quad (x \in \mathbb{R}).$$

5. Feladat. Számítsuk ki az alábbi határozatlan integrált!

$$\int e^{2x} \cdot \cos x \, dx \qquad (x \in \mathbb{R}).$$

25

6. Feladat. Parciális integrálással számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \sqrt{1-x^2} \, dx \quad (x \in (-1,1)),$$
 b) $\int x^5 \cdot e^{x^3} \, dx \quad (x \in \mathbb{R}).$

$$b) \quad \int x^5 \cdot e^{x^3} \, dx \quad (x \in \mathbb{R})$$

Házi feladatok

1. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \frac{(x+1)^2}{\sqrt{x}} dx \quad (x>0)$$

a)
$$\int \frac{(x+1)^2}{\sqrt{x}} dx$$
 $(x > 0)$, b) $\int \sqrt{1 - \cos 2x} dx$ $(x \in (0, 2\pi))$,

c)
$$\int \frac{1}{1+e^{-x}} dx \quad (x \in \mathbb{R}),$$
 d) $\int \frac{x}{x^2+4} dx \quad (x \in \mathbb{R}),$

$$d) \quad \int \frac{x}{x^2 + 4} \, dx \quad (x \in \mathbb{R}),$$

$$e) \quad \int \frac{x}{\sqrt[3]{x^2 + 4}} \, dx \quad (x \in \mathbb{R}),$$

e)
$$\int \frac{x}{\sqrt[3]{x^2 + 4}} dx \quad (x \in \mathbb{R}), \qquad f) \quad \int x^2 \cdot \sqrt[3]{6x^3 + 4} dx \quad (x \in \mathbb{R}),$$

$$g) \quad \int \frac{5x+3}{2x-3} \, dx \quad \left(x > \frac{3}{2}\right),$$

$$h) \quad \int \frac{x}{1+x^4} \, dx \quad (x \in \mathbb{R}),$$

$$i) \quad \int x \ln^2 x \, dx \quad (x > 0)$$

i)
$$\int x \ln^2 x \, dx \quad (x > 0), \qquad \qquad j) \quad \int e^x \sin(3x + 1) \, dx \quad (x \in \mathbb{R}).$$

Gyakorló feladatok

1. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

$$a) \quad \int \frac{(\sqrt{x}+1)^2}{x} \, dx \quad (x>0),$$

b)
$$\int \frac{2x^2 - 2}{x} + 3(1 - x^2)^{-1/2} dx \quad (0 < x < 1),$$

c)
$$\int \operatorname{tg}^2 x \, dx \quad \left(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right)$$

c)
$$\int \operatorname{tg}^2 x \, dx \quad \left(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right),$$
 d) $\int \frac{\cos^2 x - 5}{1 + \cos 2x} \, dx \quad , \left(x \in \left(-\frac{\pi}{2} \frac{\pi}{2} \right) \right),$

e)
$$\int (\operatorname{tg} x + \operatorname{ctg} x)^2 dx \quad \left(x \in \left(0, \frac{\pi}{2}\right)\right), \quad f) \quad \int \sin^3 x dx \quad (x \in \mathbb{R}).$$

$$f) \quad \int \sin^3 x \, dx \quad (x \in \mathbb{R}),$$

$$g$$
) $\int \sin 3x \cdot \sin 9x \, dx \quad (x \in \mathbb{R}),$

$$h$$
) $\int \frac{1}{1+4x^2} dx \quad (x \in \mathbb{R}),$

$$i)$$
 $\int \frac{1}{4+x^2} dx \quad (x \in \mathbb{R}),$

$$j)$$
 $\int \frac{1}{\sqrt{4-x^2}} dx$ $(-2 < x < 2)$

$$k) \quad \int 4^{2x-3} \, dx \quad (x \in \mathbb{R}),$$

$$l) \quad \int \frac{1}{\sqrt{x+1} + \sqrt{x}} \, dx \quad (x > 0),$$

$$m) \quad \int \frac{(e^{2x}-1)^2}{e^{3x}} dx \quad (x \in \mathbb{R}),$$

$$n) \quad \int e^x (1 - e^x)^2 \, dx \quad (x \in \mathbb{R}),$$

o)
$$\int x^2 (4 - 2x^3)^{2021} dx$$
 $(x \in \mathbb{R}),$

p)
$$\int \frac{8x+14}{\sqrt[4]{(2x^2+7x+8)^5}} dx \quad (x \in \mathbb{R}),$$

$$q$$
) $\int \sin^3 x \cdot \cos^5 x \, dx \quad (x \in \mathbb{R}),$

$$r$$
) $\int \sin^4 x \cdot \cos^2 x \, dx \quad (x \in \mathbb{R}),$

$$s) \quad \int \sqrt{\frac{\operatorname{ar} \operatorname{sh} x}{1+x^2}} \, dx \quad (x>0),$$

t)
$$\int \frac{1}{(\cos^2 x) \cdot \sqrt{1 + \lg^2 x}} dx \quad \left(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right),$$

$$u) \quad \int \frac{x \cdot \sqrt[3]{\ln(1+x^2)}}{1+x^2} \, dx \quad (x \in \mathbb{R}),$$

$$v)$$
 $\int \frac{1}{(x^2+1) \arctan x} dx \quad (x \in \mathbb{R}),$

$$w) \int \frac{1}{\sin x} dx \quad \left(x \in \left(0, \frac{\pi}{2}\right)\right),$$

$$x) \quad \int \frac{\sin 2x}{1 + \sin^4 x} \, dx \quad (x > 0),$$

$$y) \quad \int \frac{x}{\sqrt{1-x^4}} \, dx \quad (-1 < x < 1), \qquad z) \quad \int \frac{e^{\operatorname{tg} x}}{\cos^2 x} \, dx \quad \left(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right).$$

z)
$$\int \frac{e^{\operatorname{tg} x}}{\cos^2 x} dx \quad \left(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right).$$

2. Feladat. Parciális integrálással számítsuk ki az alábbi határozatlan integrálokat!

$$a) \int x^2 e^x dx \quad (x \in \mathbb{R}),$$

$$b) \quad \int x \cdot e^{3x+1} \, dx \quad (x \in \mathbb{R}),$$

c)
$$\int (x^2 + 1)\sin 3x \, dx \quad (x \in \mathbb{R}),$$

c)
$$\int (x^2 + 1)\sin 3x \, dx \quad (x \in \mathbb{R}), \qquad d) \quad \int (2x + 1)\cos(3x + \pi) \, dx \quad (x \in \mathbb{R}),$$

e)
$$\int e^{3x} \sin 2x \, dx \quad (x \in \mathbb{R}),$$
 f) $\int e^{-x} \cos x \, dx \quad (x \in \mathbb{R}),$

$$f$$
) $\int e^{-x} \cos x \, dx \quad (x \in \mathbb{R}),$

g)
$$\int \operatorname{arsh} 2x \, dx \quad \left(-\frac{1}{2} < x < \frac{1}{2}\right), \quad h) \quad \int x \cdot \operatorname{arctg} x \, dx \quad (x \in \mathbb{R}),$$

$$h$$
) $\int x \cdot \operatorname{arctg} x \, dx \quad (x \in \mathbb{R})$

$$i) \quad \int x^2 \cdot \ln x \, dx \quad (x > 0),$$

i)
$$\int x^2 \cdot \ln x \, dx \quad (x > 0),$$
 j) $\int \ln \sqrt{1 + x^2} \, dx \quad (x \in \mathbb{R}),$

$$k)$$
 $\int \cos(\ln x) dx$ $(x > 0),$ $l)$ $\int x^3 e^{x^2} dx (x \in \mathbb{R})$.

$$l) \quad \int x^3 e^{x^2} \, dx (x \in \mathbb{R})$$

További feladatok

1. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int x\sqrt{2-8x} \, dx \quad \left(x < \frac{1}{4}\right),$$
 b) $\int \frac{x^5}{2x^2+1} \, dx \quad (x \in \mathbb{R}),$

$$b) \quad \int \frac{x^5}{2x^2 + 1} \, dx \quad (x \in \mathbb{R})$$

$$c) \quad \int \frac{x^7}{\sqrt{1+x^4}} (x \in \mathbb{R}) \, dx$$

c)
$$\int \frac{x^7}{\sqrt{1+x^4}} (x \in \mathbb{R}) dx$$
, d $\int \frac{2\sqrt{x+1}}{2x(\sqrt{x+1})} dx$ $(x > 0)$.

2. Feladat. Van-e primitív függvénye az alábbi függvénynek? Ha igen adja meg az összeset!

$$f(x) := x \cdot |2x - 1| \qquad (x \in \mathbb{R}).$$

3. Feladat. Igazolja a követező rekurziós formulákat!

1.
$$\int \frac{x^n}{\sqrt{1-x^2}} dx = -\frac{x^{n-1}\sqrt{1-x^2}}{n} + \frac{n-1}{n} \int \frac{x^{n-2}}{\sqrt{1-x^2}} dx,$$

2.
$$\int \cos^n x \, dx = \frac{\sin x \cos^{n-1} x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

3.
$$\int \sin^n x \, dx = -\frac{\cos x \sin^{n-1} x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

4.
$$\int x^{\alpha} \ln^{n} x \, dx = \frac{x^{\alpha+1} \ln^{n} x}{\alpha+1} - \frac{n}{\alpha+1} \int x^{\alpha} \ln^{n-1} x \, dx \qquad (\alpha \neq -1),$$

5.
$$\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx$$
,

ahol $n \in \mathbb{N}^+$.

Integrálszámítás 2.

Szükséges ismeretek

- Alapintegrálok, a határozatlan integrál linearitása.
- Az első helyettesítési szabály.
- A második helyettesítési szabály.

Feladatok

1. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \frac{1}{(x-2)(x-4)} dx \quad (x \in (2,4)),$$

a)
$$\int \frac{1}{(x-2)(x-4)} dx$$
 $(x \in (2,4)),$ b) $\int \frac{3x-5}{x^2+2x+1} dx$ $(x \in (-1,+\infty)),$

c)
$$\int \frac{x^3 + x^2 - x + 3}{x^2 - 1} dx$$
 $(x \in (-1, 1)), d$ $\int \frac{x + 3}{x^2 + 2x + 3} dx$ $(x \in \mathbb{R}),$

$$d) \quad \int \frac{x+3}{x^2+2x+3} \, dx \quad (x \in \mathbb{R}),$$

$$e)$$
 $\int \frac{1}{x(x^2+4)} dx \quad (x \in (0,+\infty)).$

2. Feladat. A $t = \sqrt{e^x - 1}$ helyettesítéssel számítsuk ki a

$$\int \sqrt{e^x - 1} \, dx \quad \left(x \in (0, +\infty) \right)$$

28

határozatlan integrált.

Házi feladatok

1. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \frac{x^3 + x^2 - x + 3}{x^2 + x - 2} dx \quad (x > 1).$$

a)
$$\int \frac{x^3 + x^2 - x + 3}{x^2 + x - 2} dx$$
 $(x > 1)$, b) $\int \frac{x^4 - x^2 + 1}{x^2(x+1)} dx$ $(0 < x < 1)$,

c)
$$\int \frac{x+1}{x^2+3x+4} dx$$
 $(x \in \mathbb{R}),$ d $\int \frac{2x^2+x+1}{x^2(x^2+1)} dx$ $(x > 0).$

$$d) \int \frac{2x^2 + x + 1}{x^2(x^2 + 1)} dx \quad (x > 0).$$

Gyakorló feladatok

1. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

$$a) \quad \int \frac{3}{2x+1} \, dx \quad \left(x < -\frac{1}{2}\right),$$

$$b) \quad \int \frac{5}{(2x-1)^3} \, dx \quad \left(x < \frac{1}{2}\right),$$

c)
$$\int \frac{x}{x^2 - 4} dx$$
 (-2 < x < 2), d) $\int \frac{3x}{(x^2 + 1)^4} dx$ (x \in \mathbb{R}),

$$d) \quad \int \frac{3x}{(x^2+1)^4}, dx \quad (x \in \mathbb{R}),$$

e)
$$\int \frac{x+2}{x^2+4x+13}, dx \quad (x \in \mathbb{R}),$$
 f) $\int \frac{3x+1}{x^2+4x+13} dx \quad (x \in \mathbb{R}).$

$$f) \quad \int \frac{3x+1}{x^2+4x+13} \, dx \quad (x \in \mathbb{R}).$$

2. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \frac{1}{x^2 - 3x + 2} dx$$
 $(x > 2),$

a)
$$\int \frac{1}{x^2 - 3x + 2} dx$$
 $(x > 2)$, b) $\int \frac{x}{x^2 - 3x + 2} dx$ $(1 < x < 2)$,

c)
$$\int \frac{5x+9}{x^2+5x-6} dx$$
 $(x>1)$, d) $\int \frac{2}{x(x+2)} dx$ $(x>0)$,

$$d) \quad \int \frac{2}{x(x+2)} \, dx \quad (x>0).$$

e)
$$\int \frac{4}{x^2(x+2)} dx$$
 $(x < -2),$

e)
$$\int \frac{4}{x^2(x+2)} dx$$
 $(x<-2)$, f) $\int \frac{x^3+2}{(x-1)(x+2)^2} dx$ $(x>1)$,

g)
$$\int \frac{x+2}{(x-1)^3} dx$$
 $(x < 1)$,

g)
$$\int \frac{x+2}{(x-1)^3} dx$$
 $(x < 1)$, h) $\int \frac{2x^3 + 13x^2 + 26x + 16}{(x+3)^2} dx$ $(x > -3)$,

i)
$$\int \frac{5x^4 + 2x - 4}{x^3 - 5x^2 - 4} dx \quad (x < 0),$$

i)
$$\int \frac{5x^4 + 2x - 4}{x^3 - 5x^2 - 4} dx$$
 $(x < 0),$ $j)$ $\int \frac{x(x+7)}{(x-1)(x+1)^2} dx$ $(-1 < x < 1),$

k)
$$\int \frac{x^2 + 4x - 8}{x^3 + 8} dx$$
 $(x > -2)$, l) $\int \frac{1}{x^3 + 8} dx$ $(x > -2)$,

$$l) \quad \int \frac{1}{x^3 + 8} \, dx \quad (x > -2),$$

$$m) \quad \int \frac{x^3 - 4}{5x^3 + x} \, dx \quad (x > 0)$$

m)
$$\int \frac{x^3 - 4}{5x^3 + x} dx$$
 $(x > 0)$, n) $\int \frac{x - 3}{x^2 - 2x + 4} dx$ $(x \in \mathbb{R})$,

o)
$$\int \frac{1}{x^4 + 1} dx \quad (x \in \mathbb{R}), \qquad p) \quad \int \frac{x + 1}{x^4 + 1} dx \quad (x \in \mathbb{R}),$$

$$p) \quad \int \frac{x+1}{x^4+1} \, dx \quad (x \in \mathbb{R}),$$

q)
$$\int \frac{x+1}{x^4+x^2+1} dx$$
 $(x \in \mathbb{R}),$ r) $\int \frac{x^5}{x^3-1} dx$ $(x > 1),$

r)
$$\int \frac{x^5}{x^3 - 1} dx$$
 $(x > 1)$,

s)
$$\int \frac{x^4}{x^4-1} dx$$
 $(x<-1)$

s)
$$\int \frac{x^4}{x^4 - 1} dx$$
 $(x < -1)$, t) $\int \frac{x^3 + x}{(x^2 + 4x - 5)^2} dx$ $(x > 1)$,

u)
$$\int \frac{x^3 + x}{x^2 + 4x + 5} dx$$
 $(x \in \mathbb{R}),$ v) $\int \frac{x^5}{x^2 + 1} dx$ $(x \in \mathbb{R}),$

$$v) \quad \int \frac{x^5}{x^2 + 1} \, dx \quad (x \in \mathbb{R}),$$

$$w)$$
 $\int \frac{2x+5}{x^3(x^2+4)} dx$ $(x>0),$

$$w) \quad \int \frac{2x+5}{x^3(x^2+4)} \, dx \quad (x>0), \qquad x) \quad \int \frac{4x^2-8x}{(x-1)^2(x^2+1)} \, dx \quad (x>1),$$

3. Feladat. Számítsa ki az

$$\int \sqrt{1+x^2} \, dx \qquad (x \in \mathbb{R})$$

határozatlan integrált

- a) az $x = \operatorname{sh} t$ $(t \in \mathbb{R})$ helyettesítéssel,
- b) parciális integrálással!

4. Feladat. A megadott helyettesítéssel számítsuk ki az alábbi határozatlan integrálokat!

$$a) \quad \int \frac{\ln^2 x}{x^2} \, dx \quad (x > 0),$$

$$t = \ln x$$

$$b) \quad \int \frac{\ln x + 1}{x \ln^2 x + x} \, dx \quad (x > 0),$$

$$t = \ln x$$

c)
$$\int \frac{\cos x}{1 + \sin^2 x} dx \quad \left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right),$$

$$t = \sin x$$

$$d) \quad \int e^{2x} \sin(e^{2x}) \, dx \quad (x \in \mathbb{R}),$$

$$t = e^{2x}.$$

$$e) \quad \int \frac{\sqrt{x^2 + 1}}{x} \, dx \quad (x > 0),$$

$$t = \frac{1}{\sqrt{x^2 + 1}},$$

$$f$$
) $\int \frac{e^{2x}}{\sqrt{e^x + 1}} dx \quad (x \in \mathbb{R}),$ $t = \sqrt{e^x + 1}.$

További feladatok

1. Feladat. Számítsa ki a következő integrált!

$$\int \frac{1}{(1+x^2)^2} \, dx \quad (x \in \mathbb{R}).$$

Ötlet: Alkalmazza a

$$2\frac{1}{(1+x^2)^2} = \frac{(1+x^2) + (1-x^2)}{(1+x^2)^2} = \frac{1}{1+x^2} + \frac{1 \cdot (1+x^2) - x \cdot 2x}{(1+x^2)^2} = \frac{1}{1+x^2} + \left(\frac{x}{1+x^2}\right)'$$

átalakítást!

2. Feladat. Igazolja, hogy tetszőleges $n = 1, 2, \ldots$ esetén

$$\int \frac{1}{(1+x^2)^{n+1}} \, dx = \frac{1}{2n} \frac{x}{(1+x^2)^n} + \frac{2n-1}{2n} \int \frac{1}{(1+x^2)^n} \, dx.$$

3. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

$$a) \quad \int \frac{1}{(x^2 + 4)^2} \, dx \quad (x \in \mathbb{R}),$$

a)
$$\int \frac{1}{(x^2+4)^2} dx$$
 $(x \in \mathbb{R}),$ b) $\int \frac{1}{x(x^2+1)^2} dx$ $(x > 0),$

c)
$$\int \frac{1}{(x^2+x+1)^2} dx \quad (x \in \mathbb{R}),$$

c)
$$\int \frac{1}{(x^2+x+1)^2} dx$$
 $(x \in \mathbb{R}),$ d) $\int \frac{x^5}{(x^2+x+1)^2} dx$ $(x \in \mathbb{R}),$

e)
$$\int \frac{x^3+1}{x^2(x^2+9)} dx$$
 $(x>0)$, f) $\int \frac{1}{(x^2+1)^3} dx$ $(x \in \mathbb{R})$.

$$f) \quad \int \frac{1}{(x^2+1)^3} \, dx \quad (x \in \mathbb{R}).$$

4. Feladat. Igazolja, hogy

$$\int |x| \, dx = \frac{x|x|}{2} + c \qquad (x \in \mathbb{R}).$$

Integrálszámítás 3.

■ Szükséges ismeretek

• Racionális törtfüggvények integrálása.

• A második helyettesítési szabály.

• A Newton–Leibniz-formula.

• Síkidomok területének, síkbeli görbék ívhosszának, forgástest térfogatának kiszámítása.

• Improprius integrálok kiszámítása.

■ Feladatok

1. Feladat. Számítsuk ki az alábbi határozatlan integrálokat!

a)
$$\int \frac{e^{3x}}{e^x + 2} dx \quad (x \in \mathbb{R}), \qquad b) \quad \int \frac{1}{x^2} \cdot \sqrt[3]{\frac{x+1}{x}} dx \quad (x \in (0, +\infty)).$$

2. Feladat. Számítsuk ki az

$$\int_{10}^{66} \frac{1}{x - \sqrt[3]{x - 2} - 2} \, dx$$

határozott integrált!

3. Feladat. Számoljuk ki az y = x - 1 egyenletű egyenes és az $y^2 = 2x + 6$ egyenletű parabola által közrezárt korlátos síkidom területét!

4. Feladat. Határozzuk meg az

$$f(x) := \frac{2(x-1)^{3/2}}{3} \quad (2 \le x \le 5)$$

függvény grafikonjának a hosszát!

5. Feladat. Számítsuk ki az

$$f(x) := \sin x \qquad (x \in [0, \pi])$$

függyény grafikonjának az x-tengely körüli megforgatásával adódó forgástest térfogatát!

6. Feladat. Számítsuk ki az alábbi improprius integrálokat!

a)
$$\int_{0}^{+\infty} xe^{-2x} dx$$
, b) $\int_{0}^{2} \frac{1}{\sqrt{x(2-x)}} dx$.

Házi feladatok

1. Feladat. Számítsuk ki az alábbi integrálokat!

$$a) \int_{-1}^{\ln 8} \frac{e^x}{e^{2x} - 4} \, dx$$

a)
$$\int_{-1}^{\ln 8} \frac{e^x}{e^{2x} - 4} dx$$
, b) $\int \frac{\sqrt{3x - 1}}{x} dx \quad \left(x > \frac{1}{3}\right)$, c) $\int_{-2}^{+\infty} e^{-4x} dx$.

$$c) \int_{0}^{+\infty} e^{-4x} dx.$$

- **2. Feladat.** Számítsa ki az $y=x^2$, $y=\frac{x^2}{2}$ és az y=2x egyenletű görbék által közrezárt korlátos síkidom területét!
- 3. Feladat. Határozza meg az

$$f(x) := \sqrt{\operatorname{arc} \operatorname{tg} x} \qquad (x \in [0, 1])$$

függvény grafikonjának az x-tengely körüli megforgatásával adódó forgástest térfogatát!

4. Feladat. Számítsa ki az

$$f(x) := x^{3/2} \qquad \left(0 \le x \le 4\right)$$

függvény grafikonjának a hosszát!

Gyakorló feladatok

1. Feladat. Számítsa ki az alábbi integrálokat!

$$a) \quad \int \frac{\sqrt{x}}{x+2} \, dx \quad (x>0),$$

b)
$$\int \frac{x}{\sqrt{x+1}} dx$$
 $(x > -1),$

$$c) \quad \int\limits_{1}^{5} x\sqrt{x-1} \, dx,$$

$$d) \quad \int_{4}^{12} \frac{\sqrt{2x+1}}{x} \, dx,$$

$$e) \quad \int \frac{1}{x + \sqrt{x+1}} \, dx \quad (x > 0)$$

e)
$$\int \frac{1}{x + \sqrt{x+1}} dx$$
 $(x > 0)$, f) $\int \frac{1}{x} \sqrt{\frac{2x-3}{x}} dx$ $(x < 0)$,

g)
$$\int \frac{1}{\sqrt{5x-1}+2x} dx$$
 $(x>\frac{1}{5}),$ h) $\int \frac{1}{\sqrt{x}+\sqrt[3]{x}} dx$ $(x>0),$

$$h) \quad \int \frac{1}{\sqrt{x} + \sqrt[3]{x}} \, dx \quad (x > 0),$$

$$i)$$
 $\int \frac{1}{1+e^{2x}} dx \quad (x \in \mathbb{R}),$

$$j) \quad \int \frac{1}{2^x + 3} \, dx \quad (x \in \mathbb{R}),$$

$$k$$
) $\int_{0}^{1} \frac{e^{x}}{1 + e^{3x}} dx$,

$$l) \int_{0}^{\ln 2} \frac{e^x + 4}{e^x + 2} \, dx,$$

$$m) \quad \int \frac{e^{-x}}{1 + e^{2x}} dx \quad (x \in \mathbb{R}),$$

$$n) \quad \int \frac{e^{4x}}{1+e^x} \, dx \quad (x \in \mathbb{R}).$$

2. Feladat. Számítsa ki az alábbi határozott integrálokat!

$$a) \quad \int\limits_{0}^{\frac{\pi}{2}} x^2 \sin 3x \, dx,$$

$$b) \quad \int\limits_0^\pi e^x \sin x \, dx,$$

$$c) \quad \int\limits_{1}^{e} \frac{\sin(\ln x)}{x} \, dx,$$

$$d) \int_{2}^{\sqrt{3}-2} \frac{1}{x^2 + 4x + 5} \, dx,$$

$$e) \quad \int\limits_{e}^{e^{2}} \frac{1}{x \ln x} \, dx,$$

$$f) \quad \int\limits_0^1 x\sqrt{x^2+1}\,dx.$$

- **3. Feladat.** Számítsa ki az x=1, x=4, $y=\frac{1}{x}$ és az $y=\frac{1}{1+\sqrt{x}}$ (x>0) egyenletű görbék által közrezárt korlátos síkidom területét!
- 4. Feladat. Milyen arányú részekre osztja az $y^2 = 2x$ egyenletű parabola az $x^2 + y^2 = 8$ egyenletű kör által határolt síkrész területét?
- 5. Feladat. Határozza meg a következő görbék által közrezárt korlátos síkidomok területét!

a)
$$y = x^2 - 6x + 5$$
, $y = 2x - 7$,

b)
$$y = 2 - x^2$$
, $y = |x|$,

c)
$$y^2 = 2x$$
, $x^2 + y^2 = 8$,

d)
$$y = x^2$$
, $y = \frac{x^2}{2}$, $y = 3x$,

$$e) \quad y^3 = x, \quad y = 1, \quad x = 8,$$

$$f)$$
 $\frac{x^2}{4} - \frac{y^2}{9} = 1$, $x = 4$,

$$y = \sin x, \quad y = \cos x, \quad x = 0.$$

6. Feladat. Határozza meg a következő függvények adott I intervallumon keletkezett görbeívének hosszát!

a)
$$f(x) = x^2$$
, $I := [0, 4]$

b)
$$f(x) = \frac{4\sqrt{2}}{3}\sqrt{x^3} - 1$$
, $I := [0, 1]$,

c)
$$f(x) = \sqrt{x}$$
, $I := [1, 4]$

c)
$$f(x) = \sqrt{x}$$
, $I := [1, 4]$, d) $f(x) = \frac{x^3}{3} + \frac{1}{4x}$, $I := [1, 3]$,

$$e)$$
 $f(x) = \ln x$, $I := [1, e]$,

$$f)$$
 $f(x) = \ln \cos x$, $I := \left[0, \frac{\pi}{4}\right]$,

g)
$$f(x) = \ln(1 - x^2)$$
, $I := \left[0, \frac{1}{4}\right]$, h) $f(x) = \cosh x$, $I := [0, \ln 2]$.

h)
$$f(x) = \operatorname{ch} x$$
, $I := [0, \ln 2]$.

7. Feladat. Határozza meg a következő függvények adott I intervallumon x tengely körüli forgatásával keletkezett forgástest térfogatát!

a)
$$f(x) = x^2 - 2x$$
, $I := [0, 2]$, b) $f(x) = \sqrt[3]{x}$, $I := [1, 8]$,

b)
$$f(x) = \sqrt[3]{x}$$
, $I := [1, 8]$

c)
$$f(x) = \frac{1}{1 + \sqrt{x}}$$
, $I := [0, 4]$, $d)$ $f(x) = \frac{1}{2 - x}$, $I := [0, 1]$,

d)
$$f(x) = \frac{1}{2-x}$$
, $I := [0,1]$

e)
$$f(x) = x\sqrt[4]{x^3 + 1}$$
, $I := [0, 2]$, $f(x) = \sin x$, $I := [0, \frac{\pi}{2}]$,

$$f$$
) $f(x) = \sin x$, $I := \left[0, \frac{\pi}{2}\right]$,

g)
$$f(x) = \log_2 x$$
, $I := [1, 8]$, $h)$ $f(x) = xe^x$, $I := [0, 3]$,

$$h)$$
 $f(x) = xe^x$, $I := [0,3]$,

i)
$$f(x) = \frac{1}{\sqrt{3+e^x}}$$
, $I := [0,1]$, $j)$ $f(x) = \operatorname{tg} 2x$, $I := [0, \frac{\pi}{8}]$.

$$f(x) = \operatorname{tg} 2x$$
, $I := \left[0, \frac{\pi}{8}\right]$

8. Feladat. Bizonyítsa be, hogy

$$\int_{0}^{1} \arctan tg \, x \, dx + \int_{0}^{\pi/4} tg \, x \, dx = \frac{\pi}{4}.$$

9. Feladat. Számítsa ki az alábbi improprius integrálokat!

$$a) \quad \int\limits_0^8 \frac{1}{\sqrt[3]{x}} \, dx,$$

$$b) \quad \int\limits_{1}^{+\infty} \frac{1}{x^3} \, dx,$$

$$c) \quad \int\limits_{1}^{+\infty} \frac{1}{x\sqrt{x}} \, dx,$$

$$d) \int_{\ln 2}^{+\infty} e^{-3x} \, dx,$$

$$e$$
)
$$\int_{0}^{+\infty} x^{2}e^{-x}$$

$$f) \int_{-\infty}^{+\infty} |x| e^{-x^2} dx.$$

■ További feladatok

1. Feladat. Számítsa ki az

$$\int \sqrt{\frac{1+x}{1-x}} \, dx \qquad \left(x \in (-1,1)\right)$$

határozatlan integrált

a) a
$$t = \sqrt{\frac{1+x}{1-x}}$$
 helyettesítéssel,

b) az integrandus
$$\sqrt{\frac{1+x}{1+x}} = 1$$
-gyel megszorzásával].!

A végeredmény:

a) $\int \sqrt{\frac{1+x}{1-x}} \, dx = 2 \, \arctan \left(\sqrt{\frac{1+x}{1-x}} - \sqrt{1-x^2} + c \right) \quad \left(x \in (-1,1) \right),$

b) $\int \sqrt{\frac{1+x}{1-x}} \, dx = \arcsin x - \sqrt{1-x^2} + c \qquad (x \in (-1,1)).$

A Mathematica programcsomag a következő eredményt adja:

$$\int \sqrt{\frac{1+x}{1-x}} \, dx = 2 \arcsin \sqrt{\frac{1+x}{2}} - \sqrt{1-x^2} + c \qquad \left(x \in (-1,1)\right).$$

Megjegyzés. Határozatlan integrálokra különböző módszerekkel kaphatunk (formai szempontból) különböző képleteket. Az így kapott két függvényhalmaz egyenlő, ha a generáló elemeik különbségének a deriváltja a megadott intervallumon azonosan nulla.

Még két olyan integrandus-típust mutatunk be, amelyeket alkalmas helyettesítésekkel racionális törtfüggvények integrálására vezethetünk vissza.

3. típus: $\int R(\sin x, \cos x) dx$ alakú integrálok, ahol R(u, v) két változós racionális törtfüggvény. Ebben az esetben a

$$t = \operatorname{tg} \frac{x}{2}$$

helyettesítés lesz célravezető. Ekkor

$$\sin x = \sin\left(2 \cdot \frac{x}{2}\right) = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2\frac{x}{2} + \sin^2\frac{x}{2}} = \frac{2\operatorname{tg}\frac{x}{2}}{1 + \operatorname{tg}^2\frac{x}{2}} = \frac{2t}{1 + t^2},$$

$$\cos x = \cos\left(2 \cdot \frac{x}{2}\right) = \frac{\cos^2\frac{x}{2} - \sin^2\frac{x}{2}}{\cos^2\frac{x}{2} + \sin^2\frac{x}{2}} = \frac{1 - \lg^2\frac{x}{2}}{1 + \lg^2\frac{x}{2}} = \frac{1 - t^2}{1 + t^2}.$$

Másrészt

$$x = 2 \operatorname{arc} \operatorname{tg} t = g(t)$$
 \Longrightarrow $g'(t) = \frac{2}{1 + t^2} > 0.$

Példa. Számítsuk ki az

$$\int \frac{1}{1 + \sin x + \cos x} \, dx \qquad \left(-\frac{\pi}{2} < x < \pi \right)$$

határozatlan integrált!

A $t= \operatorname{tg} \frac{x}{2}$ helyettesítéssel az előző összefüggések alapján, ha $-\frac{\pi}{2} < x < \pi,$ akkor

$$\int \frac{1}{1+\sin x + \cos x} dx = \int \frac{1}{1+\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2}} \cdot \frac{2}{1+t^2} dt = \int \frac{2}{1+t^2 + 2t + 1 - t^2} dt = \int \frac{1}{t+1} dt = \ln(1+t) + c \Big|_{t=\operatorname{tg}\frac{x}{2}} = \ln\left(1+\operatorname{tg}\frac{x}{2}\right) + c$$

4. típus: $\int R(x, \sqrt{1-x^2}) dx$, $\int R(x, \sqrt{1+x^2}) dx$, $\int R(x, \sqrt{x^2-1}) dx$ alakú integrálok, ahol R(u, v) két változós racionális törtfüggvény. Ezekben az esetekben rendre a

$$\boxed{t = \sin t} \qquad \boxed{t = \sin t}$$

helyettesítésekkel érdemes próbálkozni.

2. Feladat. Számítsa ki az alábbi integrálokat!

a)
$$\int \frac{1}{\sin x} dx$$
 $(0 < x < \pi)$, b) $\int \frac{1 + \sin x}{1 - \cos x} dx$ $(0 < x < \pi)$,

c)
$$\int \frac{\sin x}{\sin x + \cos x} dx \quad \left(0 < x < \frac{\pi}{2}\right), \quad d) \quad \int \frac{\sin^2 x}{1 + \cos x} dx \quad \left(-\pi < x < \pi\right),$$

e)
$$\int \frac{1}{x^2\sqrt{1+x^2}} dx$$
 $(x > 0)$, f) $\int \frac{\sqrt{1+x^2}}{x} dx$ $(x > 0)$,

g)
$$\int \sqrt{x^2 - x} \, dx$$
 $(x > 1)$, h) $\int \frac{1}{(1 + x^2)\sqrt{1 - x^2}} \, dx$ $(-1 < x < 1)$.

3. Feladat. Határozza meg az

$$f(x) := \sin^2 x \qquad \left(x \in [0, \pi] \right)$$

függvény grafikonjának az x-tengely körüli megforgatásával adódó forgástest térfogatát. $\acute{U}tmutat$ ás. Használja fel a

$$\sin^4 x = \sin^2 x \cdot \left(1 - \cos^2 x\right) = \sin^2 x - \frac{\left(\sin 2x\right)^2}{4} \qquad \left(x \in \mathbb{R}\right)$$

azonosságot.

Többváltozós analízis 1.

■ Szükséges ismeretek

- Többváltozós függvények folytonossága, átviteli elv.
- Többváltozós függvények pontbeli határértéke, átviteli elv.
- A parciális deriváltak fogalma.
- Az iránymenti derivált, és kapcsolata a parciális deriváltakkal.

■ Feladatok

1. Feladat. A definíció alapján bizonyítsuk be, hogy az

$$f(x,y) := \begin{cases} \frac{x^2 y^3}{2x^2 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \\ 0, & \text{ha } (x,y) = (0,0) \end{cases}$$

függvény folytonos a (0,0) pontban!

2. Feladat. Mutassuk meg, hogy az

$$f(x,y) := \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \\ 0, & \text{ha } (x,y) = (0,0) \end{cases}$$

függvény nem folytonos a (0,0) pontban!

3. Feladat. Legyen

$$f(x,y) := \begin{cases} \frac{x^2y}{x^4 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

Bizonyítsuk be, hogy f leszűkítése minden, az origón átmenő egyenesre egy folytonos egyváltozós függvény, de $f \notin C\{(0,0)\}$.

4. Feladat. Lássuk be, hogy

a)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = 0,$$
 b) $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1} = 2.$

5. Feladat. Bizonyítsuk be, hogy

a) Az

$$f(x,y) := \begin{cases} \frac{x^4 y}{(x^2 + y^2)^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0), \end{cases}$$

függvény folytonos a (0,0) pontban!

b) A

$$g(x,y) := \frac{x^4}{(x^2 + y^2)^2} \quad ((x,y) \in \mathbb{R}^2 \setminus \{(0,0)\})$$

függvénynek nincs határértéke a (0,0) pontban!

6. Feladat. Számítsuk ki az alábbi függvény x és y változók szerinti parciális deriváltjait!

$$f(x,y) := \frac{x^2 - y^3}{xy}$$
 $(x,y > 0).$

7. Feladat. Legyen

$$f(x,y) := x^3y + x^2y^2 + x + y^2$$
 $((x,y) \in \mathbb{R}^2).$

Számítsa ki a függvény másodrendű parciális deriváltjait az (x, y) = (1, 0) pontban!

8. Feladat. Legyen

$$f(x,y) := x^2 - xy + y^2 \quad ((x,y) \in \mathbb{R}^2),$$

 $a=(a_1,a_2)=(1,1)$ és v az x-tengely pozitív ágával α szöget bezáró euklideszi normában vett egységvektor.

- a) Határozzuk meg a definíció alapján a $\partial_v f(a)$ iránymenti deriváltat!
- b) Ellenőrizzük a kapott eredményt a tanult tétellel!
- 9. Feladat. Határozzuk meg az

$$f(x,y) := \frac{y^3}{e^{2x+1}} \qquad \left((x,y) \in \mathbb{R}^2 \right)$$

függvény iránymenti deriváltját a $P\left(-\frac{1}{2},1\right)$ pontban a u=(1,2) vektor által meghatározott irány mentén!

■ Házi feladatok

- 1. Feladat. Bizonyítsa be, hogy
 - a) Az

$$f(x,y) := \begin{cases} \frac{x^3 y^2}{3x^2 + 2y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0), \end{cases}$$

függvény folytonos a (0,0) pontban!

b) A

$$g(x,y) := \frac{x^2 y^2}{x^2 y^2 + (x - y)^2} \quad \left((x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \right)$$

függvénynek nincs határértéke a (0,0) pontban!

2. Feladat. Számolja ki az

$$f(x,y) := xe^{yx} - xy$$
 $((x,y) \in \mathbb{R}^2)$

függvény iránymenti deriváltját az (1,1) pontban a v=(3,4) vektor által meghatározott iránymentén!

■ Gyakorló feladatok

1. Feladat. A definíció alapján bizonyítsa be, hogy az

$$f(x,y) := \sqrt{|xy|} \quad ((x,y) \in \mathbb{R}^2)$$

függvény folytonos az a := (0,0) pontban!

2. Feladat. A definíció alapján igazoljuk, hogy az alábbi $f: \mathbb{R}^2 \to \mathbb{R}$ függvény folytonos az a = (0,0) pontban!

$$f(x,y) = \begin{cases} \frac{x^3 y^3}{x^2 + 3y^2}, & \text{ha } (x,y) \neq (0,0), \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

3. Feladat. Folytonos-e az

$$f(x,y) := \begin{cases} \frac{xy}{x^2 + xy + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0) \end{cases}$$

függvény az origóban?

4. Feladat. Mutassa meg, hogy

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0.$$

5. Feladat. Legyen

$$f(x,y) := \frac{x-y}{x+y} \qquad ((x,y) \in \mathbb{R}^2, x \neq -y).$$

Bizonyítsa be, hogy

a)
$$\exists \lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right),$$
 b) $\exists \lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right),$ c) $\not\exists \lim_{(0,0)} f.$

6. Feladat. Léteznek-e az alábbi határértékek? Ha igen, számolja ki az értéküket!

a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$$
, b) $\lim_{(x,y)\to(0,0)} \frac{x^3+y^4}{x^2+y^2}$,

c)
$$\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x^2+y^2}$$
, d $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{|x|+|y|}$.

7. Feladat. Számítsa ki az alábbi függvények x és y változók szerinti parciális deriváltjait!

a)
$$f(x,y) := y^2 \ln(xy)$$
 $(x,y>0)$, b) $f(x,y) := e^{x^2y} - 2x^2y^7 \sin(x+y)$ $(x,y \in \mathbb{R})$,

c)
$$f(x,y) := e^x \cos y - x \ln y$$
 $(x,y > 0)$, $d)$ $f(x,y) := \frac{\sin y}{e^{xy}}$ $(x,y \in \mathbb{R})$.

8. Feladat. Határozza meg az

$$f(x,y) := x^3 e^{y^2}$$
 $((x,y) \in \mathbb{R}^2)$

38

függvény összes első- és másodrendű parciális deriváltját az $(x_0, y_0) := (2, 1)$ pontban!

9. Feladat. Igazolja, hogy az

$$f(x,y) := \begin{cases} 0, & \text{ha } xy = 0, \\ 1, & \text{ha } xy \neq 0, \end{cases}$$

függvény nem folytonos a (0,0) pontban, de ott léteznek a parciális deriváltjai!

10. Feladat. Határozza meg az

$$f(x,y) := 5x + 3y + x^2y^3$$
 $((x,y) \in \mathbb{R}^2)$

v irány szerinti deriváltját a megadott a pontban!

- a) v = (1,0) és a = (3,2).
- b) v = (4,3) és a = (1,2).
- c) v az x tengellyel 60-fokos szöget bezáró egységvektor.

■ További feladatok

1. Feladat. Határozza meg és szemléltesse az $f \in \mathbb{R}^2 \to \mathbb{R}$ függvénynek a koordinátasíkokkal párhuzamos síkmetszeteit és szintvonalait. Milyen felülettel szemléltethető a függvény a térbeli koordináta-rendszerben?

a)
$$f(x,y) := \sqrt{1 - x^2 - y^2}$$
 $((x,y) \in \mathbb{R}^2, x^2 + y^2 \le 1),$

b)
$$f(x,y) := e^{-(x^2+y^2)}$$
 $((x,y) \in \mathbb{R}^2).$

2. Feladat. Az $f(x,y):=x^2+y^2$ $\left((x,y)\in\mathbb{R}^2\right)$ függvény grafikonja egy forgásparaboloid. Milyen felülettel szemléltethető a

$$g(x,y) := x^2 + y^2 - 2x + 4y + 1 \quad ((x,y) \in \mathbb{R}^2)$$

függvény a térbeli koordináta-rendszerben?

3. Feladat. Vizsgálja meg folytonosság szempontjából az alábbi függvényeket!

a)
$$f(x,y) := \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{ha } (x,y) \neq (0,0), \\ 0, & \text{ha } (x,y) = (0,0), \end{cases}$$

b)
$$f(x,y) := \begin{cases} \frac{\sin(xy)}{\sqrt{x^2 + y^2}}, & \text{ha } (x,y) \neq (0,0), \\ 0, & \text{ha } (x,y) = (0,0), \end{cases}$$

c)
$$f(x,y) := \begin{cases} (1+x^2y^2)^{\frac{-1}{x^2+y^2}}, & \text{ha } (x,y) \neq (0,0), \\ 0, & \text{ha } (x,y) = (0,0), \end{cases}$$

d)
$$f(x,y) := \begin{cases} x \sin \frac{1}{y}, & \text{ha } y \neq 0, \\ 0, & \text{ha } y = 0. \end{cases}$$

4. Feladat. Léteznek-e az alábbi határértékek? Ha igen, számolja ki az értéküket!

a)
$$\lim_{(x,y)\to(0,0)} \frac{y\sin^2(2x)}{x^2+3y^2}$$
, b) $\lim_{(x,y)\to(0,0)} \frac{\sin(x^3+y^3)}{x^2+y^2}$,

$$c) \quad \lim_{(x,y)\to(0,0)} (x^2+y^2) \ln(x^2+y^2), \qquad d) \quad \lim_{(x,y)\to(0,0)} \begin{cases} x+y, & \text{ha } x+y \text{ racionális,} \\ x^2+y^2, & \text{ha } x+y \text{ irracionális.} \end{cases}$$

5. Feladat. Melyik $f:\mathbb{R}^2 \to \mathbb{R}$ függvényt határozzák meg (együtt) az alábbi egyenlőségek?

$$\partial_x f(x,y) = x^2 y, \quad \partial_y f(x,y) = 1 + \frac{x^3}{3} \qquad ((x,y) \in \mathbb{R}^2).$$

Többváltozós analízis 2.

■ Szükséges ismeretek

- A totális derivált fogalma és kapcsolata a parciális deriváltakkal.
- Az érintősík egyenlete.
- Valós értékű függvények (feltétel nélküli) szélsőértékeinek fogalma.
- $\mathbb{R}^2 \to \mathbb{R}$ függvények lokális szélsőértékeire vonatkozó elsőrendű szükséges, és másodrendű elégséges feltétel.

■ Feladatok

1. Feladat. A definíció alapján bizonyítsuk be, hogy az

$$f(x,y) := 2x^2 + 3xy - y^2$$
 $((x,y) \in \mathbb{R}^2)$

függvény totálisan deriválható az a := (1,2) pontban, és adjuk meg az f'(a) deriváltmátrixot! Az f'(a)-ra így kapott eredményt ellenőrizzük a Jacobi-mátrix kiszámításával!

2. Feladat. Bizonyítsuk be, hogy az

$$f(x,y) := \sqrt{|xy|}$$
 $((x,y) \in \mathbb{R}^2)$

függvény folytonos a (0,0) pontban, ott léteznek a parciális deriváltak, de f nem differenciálható a (0,0) pontban!

3. Feladat. Legyen

$$f(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

Mutassuk meg, hogy az f függvény a (0,0) pontban

- a) folytonos,
- b) minden irány mentén deriválható,
- c) totálisan nem deriválható!
- 4. Feladat. Legyen

$$f(x,y) := \sqrt{x^2 - 2y^2}$$
 $((x,y) \in \mathbb{R}^2, x^2 > 2y^2).$

- a) Számítsa ki az f függvény elsőrendű parciális deriváltjait!
- b) Írja fel a $z=\sqrt{x^2-2y^2}$ egyenletű felület $P_0(3,2)$ pontjához tartozó érintősíkjának az egyenletét, és adja meg a sík egy normálvektorát.

5. Feladat. Határozzuk meg az

$$f(x,y) := x^3 - 3x^2 + 2xy + y^2$$
 $((x,y) \in \mathbb{R}^2)$

függvény lokális szélsőértékhelyeit!

6. Feladat. Határozzuk meg az

$$f(x,y) := x^4 + y^4 - x^2 - 2xy - y^2$$
 $((x,y) \in \mathbb{R}^2)$

függvény lokális szélsőértékhelyeit!

7. Feladat. Határozzuk meg az

$$f(x,y) := x^3 y^5$$
 $((x,y) \in \mathbb{R}^2)$

függvény lokális szélsőértékhelyeit!

■ Házi feladatok

1. Feladat. A definíció alapján bizonyítsa be, hogy az

$$f(x,y) := x^3 + xy$$
 $((x,y) \in \mathbb{R}^2)$

függvény totálisan deriválható az a := (2,3) pontban, és adjuk meg az f'(a) deriváltmátrixot! Az f'(a)-ra így kapott eredményt ellenőrizzük a Jacobi-mátrix kiszámításával!

- **2. Feladat.** Írja fel a $z = x^2 e^{xy}$ egyenletű felület $P_0(1,0)$ pontjához tartozó érintősíkjának az egyenletét, és adja meg a sík egy normálvektorát!
- 3. Feladat. Határozza meg az

$$f(x,y) := 2x^3 - 6x + y^3 - 12y + 5$$
 $((x,y) \in \mathbb{R}^2)$

függvény lokális szélsőértékhelyeit!

Gyakorló feladatok

1. Feladat. Vizsgálja meg a definíció szerint az alábbi függvények differenciálhatóságát a megadott pontokban!

a)
$$f(x,y) := x^2 + xy$$
 $((x,y) \in \mathbb{R}^2),$ $a = (2,1),$

b)
$$f(x,y) := (x+y)^3 \quad ((x,y) \in \mathbb{R}^2), \qquad a = (1,2),$$

c)
$$f(x,y) := \sqrt[3]{x^3 + y^3}$$
 $((x,y) \in \mathbb{R}^2)$, $a = (0,0)$,

d)
$$f(x,y) := \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0), \end{cases}$$
 $a = (0,0).$

- 2. Feladat. Írja fel a z = xy + x + y egyenletű felület $P_0(1, -1)$ pontjához tartozó érintősíkjának az egyenletét, és adja meg a sík egy normálvektorát!
- 3. Feladat. Legven

$$f(x,y) := \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

- a) Mutassa meg, hogy $f \in C\{(0,0)\}!$
- b) Határozza meg a $\partial_1 f$ és $\partial_2 f$ függvényeket \mathbb{R}^2 minden pontjában!
- c) Bizonyítsa be, hogy $f \not\in D\{(0,0)\}!$
- 4. Feladat. Határozza meg az alábbi függvények lokális szélsőértékeit!

a)
$$f(x,y) := x^2 + xy + y^2 - 5x - 4y + 1$$
 $((x,y) \in \mathbb{R}^2),$

b)
$$f(x,y) := x^3 + y^3 - 9xy$$
 $((x,y) \in \mathbb{R}^2),$

c)
$$f(x,y) := x^4 y^2 (4 - x - y)$$
 $((x,y) \in \mathbb{R}^2),$

d)
$$f(x,y) := x^3 y^2 (4 - x - y)$$
 $((x,y) \in \mathbb{R}^2),$

e)
$$f(x,y) := e^{-x^2 - y^2} (x^2 + 2y^2)$$
 $((x,y) \in \mathbb{R}^2),$

f)
$$f(x,y) := (1+e^y)\cos x - ye^y$$
 $((x,y) \in \mathbb{R}^2).$

5. Feladat. Mutassa meg, hogy ha

$$f(x,y) := x^4 + y^2$$
 és $g(x,y) := x^3 + y^2$ $((x,y) \in \mathbb{R}^2)$,

akkor

- a) f-nek az origóban lokális (és abszolút) minimuma van, g-nek ugyanott nincs lokális szélsőértéke,
- b) mindegyik függvény origóban vett Hesse-mátrixának a determinánsa nullával egyenlő!

■ További feladatok

1. Feladat. Legyen

$$f(x,y) := \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

Igazolja, hogy a $\partial_1\partial_2 f(0,0)$ és a $\partial_2\partial_1 f(0,0)$ parciális deriváltak léteznek, de ezek nem egyenlők:

$$\partial_1 \partial_2 f(0,0) \neq \partial_2 \partial_1 f(0,0).$$

Mutassa meg azt is, hogy f nem differenciálható kétszer a (0,0) pontban! Megoldás. Először az elsőrendű parciális deriváltfüggvényeket határozzuk meg.

A (0,0) pontban az x változó szerinti parciális derivált a definíció alapján:

$$\partial_1 f(0,0) = \partial_x f(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0,$$

az y változó szerinti parciális derivált pedig

$$\partial_2 f(0,0) = \partial_y f(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0.$$

Ha $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ (vagyis $x^2 + y^2 \neq 0$), akkor

$$\partial_1 f(x,y) = \partial_x f(x,y) = y \cdot \frac{x^2 - y^2}{x^2 + y^2} + xy \cdot \frac{2x \cdot (x^2 + y^2) - (x^2 - y^2) \cdot 2x}{(x^2 + y^2)^2} =$$

$$= y \cdot \frac{x^2 - y^2}{x^2 + y^2} + \frac{4x^2 y^3}{(x^2 + y^2)^2} \quad \text{és}$$

$$\partial_2 f(x,y) = \partial_y f(x,y) = x \cdot \frac{x^2 - y^2}{x^2 + y^2} + xy \cdot \frac{-2y \cdot (x^2 + y^2) - (x^2 - y^2) \cdot 2y}{(x^2 + y^2)^2} =$$

$$= x \cdot \frac{x^2 - y^2}{x^2 + y^2} - \frac{4x^3y^2}{(x^2 + y^2)^2}.$$

A másodrendű parciális deriváltakat az origóban a parciális derivált definíciója alapján számítjuk ki:

$$\frac{\partial_{12}f(0,0)}{\partial_{12}f(0,0)} = \frac{\partial_{2}(\partial_{1}f)(0,0)}{\partial_{1}f(0,0)} = \lim_{t \to 0} \frac{\partial_{1}f(0,t) - \partial_{1}f(0,0)}{t} = \lim_{t \to 0} \frac{-t - 0}{t} = -1,$$

$$\frac{\partial_{21}f(0,0)}{\partial_{21}f(0,0)} = \frac{\partial_{1}(\partial_{2}f)(0,0)}{\partial_{1}f(0,0)} = \lim_{t \to 0} \frac{\partial_{2}f(t,0) - \partial_{2}f(0,0)}{t} = \lim_{t \to 0} \frac{t - 0}{t} = 1.$$

A $\partial_{12}f(0,0) = \partial_{21}f(0,0)$ egyenlőség tehát valóban nem teljesül. (A parciális deriváltak sorrendjének a képzése nem cserélhető fel.)

Az f függvény nem deriválható kétszer az origóban. Valóban, ha ez igaz lenne, akkor Young tétele szerint a különböző sorrendben vett másodrendű deriváltak megegyeznének, és ez a fentiek alapján $nem\ igaz$.

2. Feladat. Legyen

$$A := \{(x,y) \in \mathbb{R}^2 \mid x^2 + (y-1)^2 < 1 \text{ vagy } x^2 + (y+1)^2 < 1\},$$

$$B := \{(x,0) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}.$$

Bizonyítsa be, hogy a

$$\chi_{A \cup B}(x, y) := \begin{cases} 1, & \text{ha } (x, y) \in A \cup B \\ 0, & \text{ha } (x, y) \in \mathbb{R}^2 \setminus (A \cup B) \end{cases}$$

függvény (az $A \cup B$ halmaz karakterisztikus függvénye) minden irányban deriválható a (0,0) pontban, de nem deriválható (totálisan) a (0,0) pontban!

3. Feladat. Mutassa meg, hogy ha $F: \mathbb{R} \to \mathbb{R}, F \in D$ és

$$f(x,y) := y \cdot F(x^2 - y^2) \qquad ((x,y) \in \mathbb{R}^2),$$

akkor

$$y^2 \cdot \partial_x f(x, y) + xy \cdot \partial_y f(x, y) = x \cdot f(x, y)$$
 $((x, y) \in \mathbb{R}^2).$

Többváltozós analízis 3.

■ Szükséges ismeretek

- Többváltozós valós értékű függvényekre vonatkozó Weierstrass-tétel.
- Abszolút szélsőérték kiszámításainak módja.
- A feltételes lokális szélsőértékre vonatkozó szükséges és elegendő feltétel (Lagrange-szorzók módszere).

■ Feladatok

1. Feladat. Határozza meg az

$$f(x,y) := x^3 - 12x + y^3 - 3y$$
 $((x,y) \in \mathbb{R}^2)$

függvénynek abszolút szélsőértékhelyeit és abszolút szélsőértékeit az alábbi halmazon:

$$H := \{ (x, y) \in \mathbb{R}^2 \mid -2 \le x \le 3, \quad -x \le y \le 2 \}.$$

- **2. Feladat.** Határozza meg az $f(x,y):=x^2+y^2$ $\Big((x,y)\in\mathbb{R}^2\Big)$ függvény feltételes lokális minimumhelyeit a g(x,y)=x+2y-4=0 feltételre vonatkozóan!
 - a) Mi a feladat geometriai tartalma?
 - b) Oldja meg a feladatot úgy, hogy a korlátozó feltételből y kifejezésével visszavezeti egyváltozós szélsőérték-problémára!
 - c) Oldja meg a feladatot a Lagrange-szorzók módszerével!
- 3. Feladat. Legyen

$$f(x,y) := xy$$
 és $g(x,y) := x^2 + y^2 - 1$ $((x,y) \in \mathbb{R}^2)$.

- a) Elemi úton keresse meg az f függvény feltételes abszolút szélsőértékhelyeit a g=0 feltétel mellett!
- b) A Lagrange-szorzók módszerével keresse meg az f függvény feltételes lokális szélsőértékhelyeit a g=0 feltétel mellett!
- 4. Feladat. Legyen

$$f(x,y) := 2x + 3y$$
 és $g(x,y) := x^2 + y^2 - 1$ $((x,y) \in \mathbb{R}^2)$.

45

Határozza meg az f függvény feltételes lokális szélsőértékhelyeit a g=0 feltétel mellett!

■ Házi feladatok

1. Feladat. Határozza meg az

$$f(x,y) := x^3 + y^3 - 9xy$$
 $((x,y) \in \mathbb{R}^2)$

függvénynek abszolút szélsőértékhelyeit és abszolút szélsőértékeit az alábbi halmazon:

$$H := \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 5, \ 0 \le y \le 2x\}.$$

2. Feladat. Legyen

$$f(x,y) := xy$$
 és $g(x,y) := x + y - 1$ $((x,y) \in \mathbb{R}^2)$.

Határozza meg az f függvény feltételes lokális szélsőértékhelyeit a g = 0 feltétel mellett!

■ Gyakorló feladatok

1. Feladat. Határozza meg az

$$f(x,y) := x^3 - 3x^2 - y^2$$
 $((x,y) \in \mathbb{R}^2)$

függvénynek abszolút szélsőértékhelyeit és abszolút szélsőértékeit az alábbi halmazon:

$$H := \{(x, y) \in \mathbb{R}^2 \mid x \ge -1, \ x - 1 \le y \le 4\}.$$

2. Feladat. Határozza meg az alábbi f függvény feltételes lokális szélsőértékeit a g=0 feltételre vonatkozóan!

a)
$$f(x,y) := xy$$
, $g(x,y) := x + y - 1$ $((x,y) \in \mathbb{R}^2)$,

b)
$$f(x,y) := 3xy$$
, $g(x,y) := x^2 + y^2 - 8$ $((x,y) \in \mathbb{R}^2)$

c)
$$f(x,y) := x + y$$
, $g(x,y) := x^2 + y - 1$ $((x,y) \in \mathbb{R}^2)$,

d)
$$f(x,y) := x + y$$
, $g(x,y) := x^2 + 3xy + 3y^2 - 3$ $((x,y) \in \mathbb{R}^2)$,

e)
$$f(x,y) := x^2 + y^2$$
, $g(x,y) := x^2 + xy + y^2 - 3$ $((x,y) \in \mathbb{R}^2)$,

f)
$$f(x,y) := 2x + 3y$$
, $g(x,y) := x^2 - y^3$ $((x,y) \in \mathbb{R}^2)$,

g)
$$f(x,y) := x^3 + y^3$$
, $g(x,y) := x^2 + y^2 - 1$ $((x,y) \in \mathbb{R}^2)$,

h)
$$f(x,y) := x^2 + 12xy + 2y^2$$
, $g(x,y) := 4x^2 + y^2 - 25$ $((x,y) \in \mathbb{R}^2)$.

■ További feladatok

- 1. Feladat. Adott kerületű téglalapokat megforgatunk az egyik oldaluk körül. Mikor lesz a keletkező henger térfogata a legnagyobb?
- **2. Feladat.** Határozzuk meg az $x^2y^2z=1$ felület azon pontjait, amelyek legközelebb vannak az origóhoz!

3. Feladat. Alkalmazhatók-e a feltételes szélsőértékkel kapcsolatban tanult tételek az f függvény g=0 feltételre vonatkozó (esetleg létező) feltételes lokális szélsőértékeinek a meghatározására, ha

a)
$$f(x,y) := x$$
, $g(x,y) := x^3 - y^2$ $((x,y) \in \mathbb{R}^2)$,

b)
$$f(x,y) := x^3$$
, $g(x,y) := y - x^2$ $((x,y) \in \mathbb{R}^2)$,

c)
$$f(x,y) := y$$
, $g(x,y) := x^3 - y^2$ $((x,y) \in \mathbb{R}^2)$,

d)
$$f(x,y) := x + y$$
, $g(x,y) := x^3 - y^2$ $((x,y) \in \mathbb{R}^2)$.

(Ha a tételek nem alkalmazhatók, akkor a definíció alapján okoskodjon!)