Multi-Objective Optimization Design: Pruning Methods

Prof. David W. Coit & Assoc. Prof. Naruemon Wattanapongsakorn

 ${\it King\ Mongut's\ University\ Technology\ of\ Thonburi\ (KMUTT)}$

Term 1/2016

Data Clustering

- Clustering is a data mining technique, which in multi-dimensional situations can be very insightful
- Clustering methods are applied in many domains such as in artificial intelligence, pattern recognition, decision-making, etc.
- Cluster analysis is used to find groups in data, and such groups are called clusters.
- The clusters are formed in such a way that objects in the same group are similar to each other, whereas objects in different groups are as dissimilar as possible.

Pruning by using data clustering

- 1. Obtain the entire Pareto-optimal set or sub-set
- 2. Apply the k-means algorithm to form clusters
- 3. Run the k-means algorithm for different values of k
- 4. Choose k with the highest average silhouette width
 - o Rousseeuw, P.J. (1987). Journal of Computational and Applied Mathematics, 20, 53-65.
 - o Kaufman, L. and Rousseeuw, P.J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York.
- 5. Per cluster, select a representative solution
- 6. Choose a solution for system implementation

k-means Algorithm

- k-means algorithm is probably the most widely applied nonhierarchical clustering technique (Kaufman et al., 1990).
- The k-means algorithm is well known for its efficiency in clustering data sets.
- The grouping is done by calculating the centroid for each group, and assigning each observation to the group with the closest centroid.
- The objective function that the k-means algorithm optimizes
 is:

$$KM(X,C) = \sum_{i=1}^{n} \min_{j \in \{1,..,k\}} || \mathbf{x}_i - \mathbf{c}_j ||^2$$

 $\mathbf{x}_i = i^{th}$ data vector

X =set of data vectors

 $\mathbf{c}_i = \mathbf{j}^{\text{th}}$ cluster centroid

C = set of centroids

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change

7

Example: Multi-objective RAP

The objectives are to determine the optimal design configuration that will maximize system reliability, minimize the total cost, and minimize the system weight, for a seriesparallel system.

system reliability system weight

Subject to:

$$1 \le \sum_{j=1}^{m_i} x_{ij} \le n_{\max,i} \quad \text{for} \quad \forall i = 1, 2, ..., s$$
$$x_{ii} \in \{0, 1, 2, ...\}$$

s = number of subsystems

$$\mathbf{x}_{i} = (x_{i,1}, x_{i,2}, ..., x_{i,m_i})$$

 X_{ij} = quantity of the f^{th} available component used in subsystem i m_i = total number of available components for subsystem i

 $n_{max,i}$ = user defined maximum number of components in parallel used in subsystem i

$$R_i(\mathbf{x}_i)$$
 = reliability of subsystem $i = \left[1 - \prod_{j=1}^{m_i} (1 - r_{ij})^{x_{ij}}\right]$

 c_{ii} , w_{ii} , r_{ii} = cost, weight and reliability for the j^{th} available component for subsystem i

Redundancy Allocation Problem (RAP)

• System design optimization problem : a total of s subsystems connected in series. For each subsystem, there are n_i functionally equivalent components arranged in parallel.

Example: Multiobjective RAP (cont'd...)

• MO-RAP was formulated and solved using the fast elitist non-dominated sorting genetic algorithm (NSGA-II).

Example Problem:

- 3 subsystems
- 5, 4 and 5 component choices per subsystem
- 75 solutions were found in the Pareto set

Component choices for each subsystem

Design Alternative	Subsystem i										
j	1			2			3				
	R	С	W	R	С	W	R	С	W		
1	0.94	9	9	0.97	12	5	0.96	10	6		
2	0.91	6	6	0.86	3	7	0.89	6	8		
3	0.89	6	4	0.70	2	3	0.72	4	2		
4	0.75	3	7	0.66	2	4	0.71	3	4		
5	0.72	2	8				0.67	2	4		

Solving the redundancy allocation problem has been shown to be NP-hard by Chern (1992).

RAP Example - Pruned results using data clustering

- 46 solutions in the Pareto-optimal set
- k-means algorithm to partition the data set
- Silhouette plots to validate the partition
- 3 as an "appropriate" number of clusters
 - · Cluster 1 --- 22 solutions
 - · Cluster 2 --- 19 solutions
 - · Cluster 3 --- 5 solutions

How to choose a solution from each cluster

 Identify the solution that is closest to its respective cluster centroid

	# of solutions				
Cluster 1	22	#39	0.9978541	22	34
Cluster 2	19	#91	0.984265	15	25
Cluster 3	5	#87	0.819216	11	24

• The DM has now a small set of solutions

Pareto Set Pruning Conclusions

- Pruning solutions creates a pragmatically sized set that reflects DM's preferences
 - Pruning causes ~ 90% Reduction in the Pareto optimal set
- Pruning the solutions facilitates the decision making process
 - It focuses on solutions that are attractive to the decision maker
 - Filters out unwanted solutions
 - Reduces the size of the possible nondominated solutions that can be used for implementation