Should I Stop or Should I Go: Updated Theorems and Proofs

1. Theorems

Theorem 3.2 (CLASH weights converge to optimal weights). The CLASH weights satisfy the error bound

$$|\hat{w}_i^n - w_i^*| \le \exp\left\{-\frac{(\tau(x_i) - \delta)^2}{2\hat{\sigma}_{n,-i}^2(x_i)}\right\} + \frac{|\hat{\tau}_{n,-i}(x_i) - \tau(x_i)|}{\hat{\sigma}_{n,-i}(x_i)} \exp\left\{-\frac{(\tau(x_i) - \delta)^2}{2\hat{\sigma}_{n,-i}^2(x_i)} + \frac{|\tau(x_i) - \delta||\hat{\tau}_{n,-i}(x_i) - \tau(x_i)|}{\hat{\sigma}_{n,-i}^2(x_i)}\right\}.$$

Moreover, if $\delta < \inf_{x:\tau(x)>0} \tau(x)$ and, given x_i , $\hat{\tau}_{n,-i}(x_i) \xrightarrow{p} \tau(x_i)$ and $\hat{\sigma}_{n,-i}(x_i) \xrightarrow{p} 0$, then \hat{w}_i^n is a consistent estimator of the optimal weight: $\hat{w}_i^n - w_i^* \xrightarrow{p} 0$.

Theorem 3.3 (CLASH limits unnecessary stopping). Consider a stopping test with weighted z-statistic and weights estimated using CLASH. If $\max_{i \leq n} \hat{\sigma}_{n,-i}^2(x_i) = o_p(1/\log(n))$, $\max_{i \leq n} |\tau(x_i) - \hat{\tau}_{n,-i}(x_i)| = o_p(1)$, and y_i are uniformly bounded, then the stopping probability of the test converges to zero if no participant group is harmed.

2. Proofs

We now present proofs for Thm. 3.2 and Thm. 3.3. Note that we repeatedly use the following property. For any events A and B,

$$\mathbb{P}(A,B) \le \min{\{\mathbb{P}(A), \mathbb{P}(B)\}} \tag{5}$$

2.1. Proof of Thm. 3.2

Our entire proof will be carried out conditional on the value x_i . Recall that we define our weights as

$$\hat{w}_i^n = 1 - \Phi\left(\frac{\delta - \hat{\tau}_{n,-i}(x_i)}{\hat{\sigma}_{n,-i}(x_i)}\right)$$

Further recall that the functions $\hat{\tau}_{n,-i}$ and $\hat{\sigma}_{n,-i}$ are, by construction, independent of x_i .

Error Bound We first establish a bound on the difference between our estimated weights \hat{w}_i^n and the optimal weights w_i^* . Consider two cases.

Case 1: $\tau(x_i) \leq 0$. In this case, $w_i^* = 0$ by definition, and so we just need to prove a bound on the magnitude of \hat{w}_i^n . Using Taylor's theorem with Lagrange remainder, we know that $\exists h_n \in [0, 1]$ such that

$$\begin{split} \hat{w}_{i}^{n} &= 1 - \Phi \bigg(\frac{\delta - \hat{\tau}_{n,-i}(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} \bigg) \\ &= 1 - \Phi \bigg(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} \bigg) - \frac{\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} \phi \bigg(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} + h_{n} \frac{\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} \bigg) \\ &\leq 1 - \Phi \bigg(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} \bigg) + \frac{|\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})|}{\hat{\sigma}_{n,-i}(x_{i})} \phi \bigg(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} + h_{n} \frac{\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} \bigg) \end{split}$$

where ϕ is the standard Gaussian probability density function. Since $\delta - \tau(x_i) > 0$, we can use the Chernoff inequality to bound the first term,

$$1 - \Phi\left(\frac{\delta - \tau(x_i)}{\hat{\sigma}_{n,-i}(x_i)}\right) \le \exp\left(-\frac{(\delta - \tau(x_i))^2}{2\hat{\sigma}_{n,-i}^2(x_i)}\right).$$

We now focus on the second term.

()9()

$$\phi\left(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} + h_{n} \frac{\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})}\right) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} + h_{n} \frac{\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})}\right)^{2}\right\}$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left[\left(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})}\right)^{2} + h_{n}^{2} \left(\frac{\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})}\right)^{2} - 2h_{n} \frac{(\delta - \tau(x_{i}))(\hat{\tau}_{n,-i}(x_{i}) - \tau(x_{i}))}{\hat{\sigma}_{n,-i}^{2}(x_{i})}\right]\right\}$$

$$\leq \exp\left\{-\frac{1}{2} \left[\left(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})}\right)^{2} - 2h_{n} \frac{(\delta - \tau(x_{i}))|\hat{\tau}_{n,-i}(x_{i}) - \tau(x_{i})|}{\hat{\sigma}_{n,-i}^{2}(x_{i})}\right]\right\}$$

$$\leq \exp\left\{-\frac{1}{2} \left[\left(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})}\right)^{2} - 2\frac{(\delta - \tau(x_{i}))|\hat{\tau}_{n,-i}(x_{i}) - \tau(x_{i})|}{\hat{\sigma}_{n,-i}^{2}(x_{i})}\right]\right\},$$

since $h_n \in [0, 1]$. Thus, we have that

$$\hat{w}_{i}^{n} \leq \exp \left\{ -\frac{(\delta - \tau(x_{i}))^{2}}{2\hat{\sigma}_{n,-i}^{2}(x_{i})} \right\} + \frac{|\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})|}{\hat{\sigma}_{n,-i}(x_{i})} \exp \left\{ -\frac{(\delta - \tau(x_{i}))^{2}}{2\hat{\sigma}_{n,-i}^{2}(x_{i})} + \frac{(\delta - \tau(x_{i}))|\hat{\tau}_{n,-i}(x_{i}) - \tau(x_{i})|}{\hat{\sigma}_{n,-i}^{2}(x_{i})} \right\}.$$

Case 2: $\tau(x_i) > 0$. In this case, $w_i^* = 1$. Thus,

$$\begin{split} |\hat{w}_{i}^{n} - w_{i}^{*}| &= 1 - \hat{w}_{i}^{n} \\ &= \Phi\Big(\frac{\delta - \hat{\tau}_{n,-i}(x_{i})}{\hat{\sigma}_{i}(x_{i})}\Big) \\ &= \Phi\Big(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})}\Big) + \frac{|\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})|}{\hat{\sigma}_{n,-i}(x_{i})} \phi\Big(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} + h_{n} \frac{\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})}\Big) \\ &= 1 - \Phi\Big(\frac{\tau(x_{i}) - \delta}{\hat{\sigma}_{n,-i}(x_{i})}\Big) + \frac{|\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})|}{\hat{\sigma}_{n,-i}(x_{i})} \phi\Big(\frac{\delta - \tau(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})} + h_{n} \frac{\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})}{\hat{\sigma}_{n,-i}(x_{i})}\Big) \\ &\leq \exp\left\{-\frac{(\delta - \tau(x_{i}))^{2}}{2\hat{\sigma}_{n,-i}^{2}(x_{i})}\right\} + \\ &\frac{|\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})|}{\hat{\sigma}_{n,-i}(x_{i})} \exp\left\{-\frac{(\delta - \tau(x_{i}))^{2}}{2\hat{\sigma}_{n,-i}^{2}(x_{i})} + \frac{(\tau(x_{i}) - \delta)|\hat{\tau}_{n,-i}(x_{i}) - \tau(x_{i})|}{\hat{\sigma}_{n,-i}^{2}(x_{i})}\Big)\right\}. \end{split}$$

using the same Taylor expansion and Chernoff bound from above.

In summary, we have established that

$$|\hat{w}_{i}^{n} - w_{i}^{*}| \leq \exp\left\{-\frac{(\delta - \tau(x_{i}))^{2}}{2\hat{\sigma}_{n,-i}^{2}(x_{i})}\right\} + \frac{|\tau(x_{i}) - \hat{\tau}_{n,-i}(x_{i})|}{\hat{\sigma}_{n,-i}(x_{i})} \exp\left\{-\frac{(\delta - \tau(x_{i}))^{2}}{2\hat{\sigma}_{n,-i}^{2}(x_{i})} + \frac{|\tau(x_{i}) - \delta||\hat{\tau}_{n,-i}(x_{i}) - \tau(x_{i})|}{\hat{\sigma}_{n,-i}^{2}(x_{i})}\right\}.$$

Consistency of \hat{w}_i^n We now establish the consistency of \hat{w}_i^n using the derived bound. We assume that $\delta < \inf_{x:\tau(x)>0} \tau(x)$ and, given x_i , $\hat{\tau}_{n,-i}(x_i) \xrightarrow{p} \tau(x_i)$ and $\hat{\sigma}_{n,-i}(x_i) \xrightarrow{p} 0$.

Define $a_i = |\tau(x_i) - \delta|/\sqrt{2}$ and $Z_{i,n} = \frac{\tau(x_i) - \hat{\tau}_{n,-i}(x_i)}{\hat{\sigma}_{n,-i}(x_i)}$. Note that a_i is strictly positive and a constant (given x_i). From the error bound, we have that

$$|\hat{w}_i^n - w_i^*| \le \exp(-a_i^2/\hat{\sigma}_{n,-i}(x_i)^2) + |Z_{i,n}| \exp[-a_i^2/\hat{\sigma}_{n,-i}(x_i)^2 + \sqrt{2}a_i|Z_{i,n}|/\hat{\sigma}_{n,-i}(x_i)].$$

Now, we fix any $\epsilon > 0$. Applying the law of total probability and equation (5), we find that

 $\mathbb{P}(|\hat{w}_{i}^{n} - w_{i}^{*}| > \epsilon) \leq \mathbb{P}(\exp(-a_{i}^{2}/\hat{\sigma}_{n,-i}(x_{i})^{2}) + |Z_{i,n}| \exp[-a_{i}^{2}/\hat{\sigma}_{n,-i}(x_{i})^{2} + \sqrt{2}a_{i}|Z_{i,n}|/\hat{\sigma}_{n,-i}(x_{i})] > \epsilon)$ $= \mathbb{P}(\exp(-a_i^2/\hat{\sigma}_{n,-i}(x_i)^2) + |Z_{i,n}| \exp[-a_i^2/\hat{\sigma}_{n,-i}(x_i)^2 + \sqrt{2}a_i|Z_{i,n}|/\hat{\sigma}_{n,-i}(x_i)] > \epsilon,$ $|Z_{i,n}\hat{\sigma}_{n,-i}(x_i)| > a_i/(2\sqrt{2})) +$ $\mathbb{P}(\exp(-a_i^2/\hat{\sigma}_{n,-i}(x_i)^2) + |Z_{i,n}| \exp[-a_i^2/\hat{\sigma}_{n,-i}(x_i)^2 + \sqrt{2}a_i|Z_{i,n}|/\hat{\sigma}_{n,-i}(x_i)] > \epsilon.$ $|Z_{i,n}\hat{\sigma}_{n,-i}(x_i)| \le a_i/(2\sqrt{2})$ $\leq \mathbb{P}(|Z_{i,n}\hat{\sigma}_{n,-i}(x_i)| > a_i/(2\sqrt{2})) +$ $\mathbb{P}(\exp(-a_i^2/\hat{\sigma}_{n,-i}(x_i)^2) + |Z_{i,n}| \exp[-a_i^2/\hat{\sigma}_{n,-i}(x_i)^2 + \sqrt{2}a_i|Z_{i,n}|/\hat{\sigma}_{n,-i}(x_i)] > \epsilon,$ $|Z_{i,n}\hat{\sigma}_{n,-i}(x_i)| < a_i/(2\sqrt{2})$ $\leq \mathbb{P}(|Z_{i,n}\hat{\sigma}_{n,-i}(x_i)| > a_i/(2\sqrt{2})) +$ $\mathbb{P}\left(\left(1 + \frac{a_i}{2\sqrt{2}\hat{\sigma}_{n,-i}(x_i)}\right) \exp\left(\frac{-a_i^2}{2\hat{\sigma}_{n,-i}(x_i)^2}\right) > \epsilon , \ |Z_{i,n}\hat{\sigma}_{n,-i}(x_i)| \le a_i/(2\sqrt{2})\right)$ $\leq \mathbb{P}(|Z_{i,n}\hat{\sigma}_{n,-i}(x_i)| > a_i/(2\sqrt{2})) + \mathbb{P}\left(\left(1 + \frac{a_i}{2\sqrt{2}\hat{\sigma}_{n-i}(x_i)}\right) \exp\left(\frac{-a_i^2}{2\hat{\sigma}_{n-i}(x_i)^2}\right) > \epsilon\right)$

where the second last inequality follows by substituting $|Z_{i,n}\hat{\sigma}_{n,-i}(x_i)| \leq a_i/(2\sqrt{2})$ into the bound and algebraically simplifying and the last inequality follows from (5). Now, the first term on the right converges to 0 since $Z_{i,n}\hat{\sigma}_{n,-i}(x_i) = \tau(x_i) - \hat{\tau}_{n,-i}(x_i) \stackrel{p}{\to} 0$. We examine the second term. Define $\xi_{i,n} = a_i/(\sqrt{2}\hat{\sigma}_{n,-i}(x_i))$. Since a convex function is no smaller than its tangent line, we have $(1 + \xi_{i,n}/2) \leq \exp(\xi_{i,n}/2)$. Then,

$$\mathbb{P}\left(\left(1 + \frac{a_i}{2\sqrt{2}\hat{\sigma}_{n,-i}(x_i)}\right) \exp\left(\frac{-a_i^2}{2\hat{\sigma}_{n,-i}(x_i)^2}\right) > \epsilon\right) \le \mathbb{P}\left(\left(1 + \xi_{i,n}/2\right) \exp\left(-\xi_{i,n}^2\right) > \epsilon\right)$$

$$\le \mathbb{P}\left(\exp\left(-\xi_{i,n}^2 + \xi_{i,n}/2\right) > \epsilon\right)$$

which converges to 0 as $\hat{\sigma}_{n,-i}(x_i) \stackrel{p}{\to} 0$ (and thus $\xi_{i,n}$ diverges in probability to ∞). Thus, we have shown that

$$\mathbb{P}(|\hat{w}_i^n - w_i^*| > \epsilon) \to 0,$$

which establishes the desired consistency.

2.2. Proof of Thm. 3.3

Suppose that no participant group is harmed so that $w_i^*=0$ for all i. Let $a=\delta/\sqrt{2}$, and $a_i=|\tau(x_i)-\delta|/\sqrt{2}$, and note that $a\leq a_i$ for each i as each $\tau(x_i)\leq 0$. Thus, if $|Z_{i,n}\hat{\sigma}_{n,-i}(x_i)|\leq a/(2\sqrt{2})$, then $|Z_{i,n}\hat{\sigma}_{n,-i}(x_i)|\leq a_i/(2\sqrt{2})$ and hence, as in the proof of Thm. 3.2,

$$\hat{w}_i^n \le \left(1 + \frac{a_i}{2\sqrt{2}\hat{\sigma}_{n-i}(x_i)}\right) \exp\left(\frac{-a_i^2}{2\hat{\sigma}_{n,-i}(x_i)^2}\right)$$

Fix any $\epsilon > 0$, let $\xi_{i,n} = a_i/(\sqrt{2}\hat{\sigma}_{n,-i}(x_i))$, and define $f(x) = (1+x/2)\exp(-x^2)$. As in the proof of Thm. 3.2, we can apply the law of total probability and equation (5) to write,

$$\mathbb{P}(\sum_{i} \hat{w}_{i}^{n} > \epsilon) \leq \mathbb{P}(\max_{i \leq n} |Z_{i,n} \hat{\sigma}_{n,-i}(x_{i})| > a/(2\sqrt{2})) + \mathbb{P}(\sum_{i} \hat{w}_{i}^{n} > \epsilon, \max_{i \leq n} |Z_{i,n} \hat{\sigma}_{n,-i}(x_{i})| \leq a/(2\sqrt{2})) \\
\leq \mathbb{P}(\max_{i \leq n} |Z_{i,n} \hat{\sigma}_{n,-i}(x_{i})| > a/(2\sqrt{2})) + \\
\mathbb{P}(\sum_{i} (1 + a_{i}/(2\sqrt{2}\hat{\sigma}_{n,-i}(x_{i}))) \exp(-a_{i}^{2}/(2\hat{\sigma}_{n,-i}(x_{i})^{2})) > \epsilon) \\
= \mathbb{P}(\max_{i \leq n} |Z_{i,n} \hat{\sigma}_{n,-i}(x_{i})| > a/(2\sqrt{2})) + \mathbb{P}(\sum_{i} f(\xi_{i,n}) > \epsilon).$$

Should I Stop or Should I Go: Updated Theorems

Since $\max_{i \leq n} |Z_{i,n} \hat{\sigma}_{n,-i}(x_i)| = o_p(1)$ by assumption, we have $\mathbb{P}(\max_{i \leq n} |Z_{i,n} \hat{\sigma}_{n,-i}(x_i)| > a/(2\sqrt{2})) \to 0$. Meanwhile, since a convex function is no smaller than its tangent line, we have $(1 + x/2) \leq \exp(x/2)$ and hence

$$f(x) \le \exp(-x^2 + x/2) \le \exp(-x^2 + x^2/2 + 1/8) = \exp(-x^2/2 + 1/8)$$

where we used the arithmetic-geometric mean inequality in the final inequality. Therefore, since $a \leq \min_i a_i$,

$$\mathbb{P}(\sum_{i} f(\xi_{i,n}) > \epsilon) \leq \mathbb{P}(\sum_{i} \exp(-\xi_{i,n}^{2}/2 + 1/8) > \epsilon) \leq \mathbb{P}(n \exp(-(\min_{i \leq n} \xi_{i,n}^{2})/2 + 1/8) > \epsilon)
\leq \mathbb{P}(n \exp(-(\min_{i \leq n} a_{i}^{2}/\hat{\sigma}_{n,-i}^{2}(x_{i}))/4 + 1/8) > \epsilon)
\leq \mathbb{P}(\exp(-a^{2}/(4 \max_{i < n} \hat{\sigma}_{n,-i}^{2}(x_{i})) + 1/8 + \log n) > \epsilon)$$

Since $\max_{i \leq n} \hat{\sigma}_{n,-i}^2(x_i) = o_p(1/\log(n))$ by assumption, we further have $\mathbb{P}(\sum_i f(\xi_{i,n}) > \epsilon) \to 0$. Since $\epsilon > 0$ was arbitrary, we have shown that $\sum_{i=1}^n \hat{w}_i^n \stackrel{p}{\to} 0$.

Now, recall the form of the CLASH weighted z-statistic

$$\lambda_n^w = \frac{\sqrt{\sum_{i=1}^n \hat{w}_i^n}}{\sqrt{2\sigma^2}} \left(\frac{\sum_{i=1}^n \hat{w}_i^n y_i d_i}{\sum_{i=1}^n \hat{w}_i^n d_i} - \frac{\sum_{i=1}^n \hat{w}_i^n y_i (1 - d_i)}{\sum_{i=1}^n \hat{w}_i^n (1 - d_i)} \right)$$

Define c such that $|y_i| \le c$. We know c must exist, since the outcomes are bounded by assumption. Then, we have that

$$\begin{aligned} |\lambda_n^w| &= \left| \frac{\sqrt{\sum_{1=1}^n \hat{w}_i^n}}{\sqrt{2\sigma^2}} \left(\frac{\sum_{i=1}^n \hat{w}_i^n y_i d_i}{\sum_{1=1}^n \hat{w}_i^n d_i} - \frac{\sum_{i=1}^n \hat{w}_i^n y_i (1 - d_i)}{\sum_{1=1}^n \hat{w}_i^n (1 - d_i)} \right) \right| \\ &\leq \frac{\sqrt{\sum_{1=1}^n \hat{w}_i^n}}{\sqrt{2\sigma^2}} \left(\frac{\sum_{i=1}^n \hat{w}_i^n c d_i}{\sum_{1=1}^n \hat{w}_i^n d_i} - \frac{\sum_{i=1}^n \hat{w}_i^n (-c) (1 - d_i)}{\sum_{1=1}^n \hat{w}_i^n (1 - d_i)} \right) \\ &= \frac{\sqrt{\sum_{1=1}^n \hat{w}_i^n}}{\sqrt{2\sigma^2}} 2c \\ &\xrightarrow{\stackrel{p}{\longrightarrow}} 0 \end{aligned}$$

Thus, we see that the weighted test statistic λ_n^w converges in probability to 0. Now, the test can only reject if λ_n^w exceeds a fixed and positive bound b_α . By the definition of convergence in probability, this probability must shrink to zero.