A Spectral Approach to Protein Structure

Aaron Zampaglione 2011 Fall

EIGAs Objective

- Structurally compare protein folds.
- Fast.

Contact Matrix

Contact Matrix

$$\sigma(d_{ij}) = \left\{ \begin{array}{ll} 1 - \frac{1}{\kappa} d_{ij} & 0 \le d_{ij} \le \kappa \\ 0 & otherwise \end{array} \right\} \quad \stackrel{\text{top top}}{\text{odd}}$$

Intrinsic Contact Coordinates

 $SVD(CONTACT_MATRIX) = VDV^{T}$

$$R = \sqrt{D}V^T$$

Intrinsic coordinates of residue 4.

Ro	R ₁	R ₂	Rз	R4
$cos(\theta_{0,0})$				
•••	$\cos(\theta_{1,1})$			
•••		$\cos(heta_{2,2})$		
			$\cos(\theta_{3,3})$	
				$\cos(heta_{4,4})$

Example Intrinsic Matrix for 1FXIa

Do	D 1	D 2	D 3	D4	D 5
12.1981	0	0	0	0	
0	10.4843	0	0	0	
0	0	10.2397	0	0	
0	0	0	8.76604	0	
0	0	0	0	8.27862	

V o	V 1	V 2	V 3	V ₄	V 5
-0.0610	-0.0848	-0.1495	-0.12	-0.1606	
0.06328	0.10578	0.18317	0.17656	0.21746	
-0.0726	-0.078	-0.0983	-0.0303	0.0105	
0.01813	0.01241	-0.0352	0.02443	0.02211	
-0.0141	-0.0484	-0.0724	-0.1307	-0.1483	

Example Intrinsic Matrix for 1FXIa

Ro	R1	R2	Rз	R4	R5	R6	R ₇	R8	R9	
-0.2131	-0.2963	-0.5221	-0.4192	-0.561	-0.358	-0.3596	-0.2868	-0.2078	-0.0855	•••
0.2049	0.34252	0.5931	0.57171	0.70412	0.50241	0.40764	0.29229	0.14015	0.04555	•••
-0.2325	-0.2496	-0.3146	-0.0971	0.03362	0.3071	0.48553	0.53399	0.45012	0.20938	•••
0.05368	0.03676	-0.1043	0.07235	0.06548	0.23138	0.34574	0.3131	0.32754	0.16921	•••
-0.0406	-0.1393	-0.2084	-0.3763	-0.4268	-0.4731	-0.4138	-0.337	-0.236	-0.1173	•••
0.337	0.40935	0.52426	0.21486	0.07267	-0.3246	-0.4005	-0.4426	-0.275	-0.1214	
-0.0852	0.02756	0.12779	0.19847	0.16066	-0.1176	-0.35	-0.5326	-0.5777	-0.3437	•••
0.42168	0.46185	0.30979	0.28542	0.12126	0.04143	0.02949	-0.0793	-0.0276	-0.0354	•••
-0.1046	-0.0322	0.03662	0.01902	-0.0589	-0.011	0.06625	0.15725	0.33221	0.24857	•••
0.09955	0.01397	-0.032	-0.1203	-0.0505	-0.1072	-0.0507	-0.0838	-0.1522	-0.13	

Protein Fingerprint

$$[\lambda_0, \lambda_1, \lambda_2, \lambda_3, ..., \lambda_n]$$

"Standard" DP

$$M_{i-1,j} + S_{i-1,j} + 1.0$$

$$S_{ij} = \left| \lambda_i - \lambda_j \right| \qquad M_{i,j} = \min(M_{i-1,j-1} + S_{i-1,j-1})$$

$$M_{i,j-1} + S_{i,j-1} + 1.0$$

$$init = egin{aligned} M_{i,0} &= S_{i,0} + i \ M_{0,j} &= S_{0,j} + j \end{aligned}$$

"Special" DP

$$M_{i-1,j} + S_{i-1,j} + 1.0$$

$$DIRECTION = \min(M_{i-1,j-1} + S_{i-1,j-1})$$

$$M_{i,j-1} + S_{i,j-1} + 1.0$$

$$IF(DIRECTION == TOP)$$

$$M_{i,j} = M_{i-1,j} + 1.0$$

$$ELSEIF(DIRECTION == LEFT)$$

$$M_{i,j} = M_{i,j-1} + 1.0$$

$$ELSE$$

 $M_{i,j} = M_{i-1,j-1}$

$$init = \begin{bmatrix} M_{i,0} = i \\ M_{0,j} = j \end{bmatrix}$$

"Standard" DP Hard Alignment Results

Protein 1	Protein 2	Our Score	Report's Score
1FXIa (96)	1UBQ (76)	65	74
1TEN (89)	3HHRb (195)	78	88
3HLAb (99)	2RHE (114)	81	95
2AZAa (129)	1PAZ (120)	93	109
1CEWi (108)	1MOLa (94)	68	88
1CID (177)	2RHE (114)	103	133
1CRL (534)	1EDE (310)	273	304
2SIM (381)	1NSBa (392)	283	339
1BGEb (159)	2GMFa (121)	98	121
1TIE (166)	4FGF (124)	99	120

"Special" DP Hard Alignment Results

Protein 1	Protein 2	Our Score	Report's Score
1FXIa (96)	1UBQ (76)	74	74
1TEN (89)	3HHRb (195)	89	88
3HLAb (99)	2RHE (114)	95	95
2AZAa (129)	1PAZ (120)	107	109
1CEWi (108)	1MOLa (94)	90	88
1CID (177)	2RHE (114)	112	133
1CRL (534)	1EDE (310)	307	304
2SIM (381)	1NSBa (392)	348	339
1BGEb (159)	2GMFa (121)	119	121
1TIE (166)	4FGF (124)	121	120

Skolnick Results

Fold 1	Fold 2	% Aligned avg.	% Aligned stdv.
TIM B/A Barrel	TIM B/A Barrel	83.23	5.70
TIM B/A Barrel	Ferritin	65.83	4.64
TIM B/A Barrel	Flavodxin	48.40	2.24
TIM B/A Barrel	Cupredoxin	39.60	1.84
TIM B/A Barrel	Mic. Ribo.	40.96	1.67
Ferritin	Ferritin	83.91	7.47
Ferritin	Flavodxin	68.62	3.95
Ferritin	Cupredoxin	57.13	3.45
			•••

Future

- Implement EIGA.
- Find structural motifs using local (spectral) alignment.
- Compare the motifs using global (spectral) alignment.

References

 Shibberu Y., Holder A. A Spectral Approach to Protein Structure Alignment. Mathematics Department Rose-Hulman Institute of Technology. Terre Haute, IN 47803. 2011. DOI= http://ieeexplore.ieee.org/xpl/freeabs_all.jsp? arnumber=5710873.