Topics in Natural Language Processing

Nils Kujath

Linear Algebra Basics

- Let $n \in \mathbb{N}$. The set of all ordered n-tuples (c_1, c_2, \ldots, c_n) , where each component $c_i \in \mathbb{R}$, forms the vector space \mathbb{R}^n over (the field) \mathbb{R} . We call each of these n-tuples in \mathbb{R}^n a vector in \mathbb{R}^n . We will use bold lowercase letters to denote vectors, i.e., $\mathbf{v} \in \mathbb{R}^n$. We use the term scalar to refer to an element of the field \mathbb{R} —that is, one of the components of a vector in \mathbb{R}^n .
- An $m \times n$ matrix is a rectangular array of scalars arranged in m rows and n columns, with each entry taken from \mathbb{R} . We use uppercase bold letters to denote matrices, e.g., $\mathbf{A} \in \mathbb{R}^{m \times n}$. The scalar entry in row i and column j is denoted by $A_{[i,j]}$. The i-th row and the j-th column—each of which can be interpreted as a vector—are denoted by $\mathbf{A}_{[i,*]}$ and $\mathbf{A}_{[*,j]}$, respectively.
- A **tensor** is a multidimensional array of scalars that generalizes the concepts of scalars (order 0), vectors (order 1), and matrices (order 2). A tensor of order k has k indices and can be represented as an element of $\mathbb{R}^{d_1 \times d_2 \times \cdots \times d_k}$, where each $d_i \in \mathbb{N}$ specifies the size along the i-th mode. We typically denote tensors by boldface uppercase calligraphic letters, e.g., $\mathcal{T} \in \mathbb{R}^{d_1 \times \cdots \times d_k}$.

Linear Algebra Basics (cont'd)

$$ullet$$
 Let ${f v}=(1,2,3)$ and ${f A}=egin{bmatrix}1&2&3\4&5&6\end{bmatrix}$.

• We can use Python's numpy package to represent tensors using the ndarray class, which provides a general-purpose implementation of n-dimensional arrays (note that Python indexes from 0):

```
import numpy as np

v = np.array([1,2,3])
A = np.array([[1,2,3],[4,5,6]])

print(f"Type of v: {type(v)}, Type of A: {type(A)}")
print(f"Shape of v: {v.shape}, Shape of A: {A.shape}")
print(f"v[0]: {v[0]} A[1]: {A[1]} A[1,2]: {A[1][2]}")
```

```
Type of v: <class 'numpy.ndarray'>, Type of A: <class 'numpy.ndarray'>
Shape of v: (3,), Shape of A: (2, 3)
v[0]: 1 A[1]: [4 5 6] A[1,2]: 6
```

Linear Algebra Basics (cont'd)

- Let $\mathbf{u} \in \mathbb{N}$. Let $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ be two vectors in \mathbb{R}^n :
 - \circ Their **sum** is defined componentwise: $\mathbf{u}+\mathbf{v}=(u_1+v_1,\ldots,u_n+v_n)\in\mathbb{R}^n$, e.g.: (1,2,3)+(2,3,4)=(3,5,7);
 - \circ Similarly, their **difference** is defined componentwise: $\mathbf{u}-\mathbf{v}=(u_1-v_1,\ldots,u_n-v_n)\in\mathbb{R}^n$, e.g.: (1,2,3)-(4,5,6)=(-3,-3,-3).
- ullet Let $n\in\mathbb{N}$ and $k\in\mathbb{R}$. Let $\mathbf{u}=(u_1,\ldots,u_n)$. \mathbf{u} can be multiplied with a scalar k:
 - \circ The **scalar multiplication** of ${f u}$ with k is defined componentwise: $k{f u}=(ku_1,\ldots,ku_n)\in\mathbb{R}^n$, e.g.: $2\cdot(1,2,3)=(2,4,6)$.
- Let $n\in\mathbb{N}$ and $a\in\mathbb{R}$. Let $\mathbf{u}=(u_1,\ldots,u_n)$ and $\mathbf{v}=(v_1,\ldots,v_n)$ be two vectors in \mathbb{R}^n :
 - \circ The two vectors ${\bf u}$ and ${\bf v}$ are said to be **colinear** iff $\exists a \in \mathbb{R}$ if there exists a scalar $a \neq 0$ such that we can multiply ${\bf v}$ with a and get ${\bf u}$ (i.e., ${\bf u}=a{\bf v}$), e.g.: $(1,2,3)=0.5\cdot(2,4,6)$
 - \circ If a>0, both vectors point in the same direction; If a<0, both vectors point in opposite directions.