Applied Cryptography: Homework 7

(Deadline: 2:30pm, 2022/04/27)

Justify your answers with caculations, proofs and programs.

1. (25 points, question 5.18, page 183 of the textbook) Compute Pd_0 and Pd_1 for the following authentication code, represented in matrix form:

key	1	2	3	4
1	1	1	2	3
2	1	2	3	1
3	2	1	3	1
4	2	3	1	2
5	3	2	1	3
6	3	3	2	1

2. (25 points, question 6.11, page 247 of the textbook) Suppose that n=pq, where p and q are distinct odd primes and $ab \equiv 1 \pmod{(p-1)(q-1)}$. The RSA encryption operation is $e(x) = x^b \mod n$ and the decryption operation is $d(y) = y^a \mod n$. We proved that d(e(x)) = x if $x \in \mathbb{Z}_n^*$. Prove that the same statement is true for any $x \in \mathbb{Z}_n$.

HINT Use the fact that $x_1 \equiv x_2 \pmod{pq}$ if and only if $x_1 \equiv x_2 \pmod{p}$ and $x_1 \equiv x_2 \pmod{q}$. This follows from the Chinese remainder theorem.