UNIVERSITÀ DEGLI STUDI DI UDINE

Dipartimento di Scienze Matematiche, Informatiche e Fisiche

ANNO ACCADEMICO 2018-2019

Ai miei genitori per non avermi tagliato i viveri

Abstract

TODO

Introduzione

In campo automotive, soprattutto negli ultimi anni, si è visto un crescente interesse nei confronti di sistemi di intelligenza artificiale che permettano di supervisionare la qualità dei pezzi prodotti. Assicurare la qualità è un requisito critico perché, in generale, la qualità influenza l'intera vita di un prodotto. Le applicazioni di algoritmi di Machine Learning prima, e di sistemi di Deep Learning poi, si sono dimostrate efficaci, flessibili e resilienti, portando numerosi vantaggi non solo nel campo del controllo automatico ma anche in quello del supporto agli operatori umani, ad esempio. I riferimenti alle applicazioni ben riuscite di sistemi intelligenti crescono di mese in mese ed offrono un ottimo mercato I riscontri In un mercato

TODO Sistemare sopra

TODO Spiegare cosa si intende con machine vision

Ref a Computer vision Digital image processing Image processing Machine vision

Indice

\mathbf{A}	bstra	ct		\mathbf{V}
In	trodi	uzione		vii
El	enco	delle f	figure	xi
1	Il P	roblem	ıa	1
	1.1	Le Car	rcasse per Motori Elettrici	1
	1.2	Il Proc	cesso di Produzione	2
	1.3	Gli Ob	piettivi da Raggiungere	3
2	Il D	ataset		5
	2.1	Proble	ematiche Principali	5
		2.1.1	Dataset Piccolo e Sbilanciato	5
		2.1.2	Differenze tra Immagini	7
	2.2	Prepro	ocessing	9
		2.2.1	Passaggio da RGB a GrayScale	11
		2.2.2	Masking	11
		2.2.3	Traslazioni e Rotazioni	11
		2.2.4	Crop e Resizing	11
		2.2.5	Histogram Equalization	12
		2.2.6	Gaussian Blur	12
		2.2.7	Bilateral Filter	12
		2.2.8	Sobel Operator	12
		2.2.9	Canny Edge Detection	12
		2.2.10	Circle Hough Transform	12
		2.2.11	Applicazione degli algoritmi descritti	12
	2.3	Data A	Augmentation	12
		2.3.1	Generazione Scarti Sintetici	12

Y	INDICE
<u>~</u>	

2	Gli Autoencoder	13		
J	3.1 La Struttura di un Autoencoder	13		
	3.1.2 Applicazioni principali	14		
4	3.3 Spazi Latenti	14 15		
5	Risultati Ottenuti	17		
6	Metodi Alternativi	19		
7	Ulteriori Risultati	21		
8	3 Conclusioni			
A	Come si fanno le appendici	25		
В	Esempi di Citazioni Bibliografiche	27		
\mathbf{C}	Ambiente GNU/Linux (ad esempio Ubuntu)	29		
Bi	bliografia	31		

Elenco delle figure

1.1	Visioni laterale e superiore di una carcassa	•	•	•	•	•	•	•	•	•	•	•	1
2.1	TODO Immagine da rifare												11

Capitolo 1

Il Problema

In questo documento si affronta il problema di rilevare la presenza di colla all'interno di carcasse per motori elettrici, per mezzo di fotografie digitali. Dopo alcune considerazioni sulla forma e sul fine ultimo di tali pezzi seguirà una descrizione sommaria del processo industriale e delle macchine che manipolano e depositano la colla all'interno dei pezzi, nonché del sistema di acquisizione immagini. Si conclude la sezione con una formalizzazione del problema da risolvere e le metriche con cui valutare la soluzione proposta.

1.1 Le Carcasse per Motori Elettrici

Figura 1.1: Visioni laterale e superiore di una carcassa

Osservando le fotografie in figura, possono essere definite le caratteristiche principali delle carcasse:

• il pezzo ha una struttura cilindrica cava;

2 Il Problema

- il fondo presenta tre gradini;
- sono presenti due balze (nella foto laterale se ne vede soltanto una), posizionate, una di fronte all'altra, prima del primo gradino;

• i supporti alla bocca della carcassa presentano due fori;

Il pezzo è stato pensato per avvolgere e proteggere motori elettrici. Nello specifico i pezzi in foto, sui quali è stato svolto lo studio, sono carcasse per motori elettrici per tergicristalli. I due fori aiuteranno a fissare con delle viti il pezzo su dei supporti in plastica. Il motore alloggerà interamente nella cavità, nella quale verrà anche depositata della colla. Questa verrà poi cotta in modo che il motore non possa vibrare all'interno della carcassa, evitando che eventuali urti possano danneggiarlo. Dalla foto si può notare che la colla è distribuita in modo da formare un anello ad una altezza di circa 4cm dal fondo della carcassa. La colla è stata depositata correttamente se:

- 1. l'anello non presenta né sbavature né discontinuità;
- 2. sul fondo non c'è presenza di colla.

In questo documento, come si vedrà nella sezione sul dataset, ci concentreremo esclusivamente sul secondo punto. La presenza di colla sul sul fondo della carcassa causerà il malfunzionamento del motorino dopo un limitato tempo d'utilizzo, molto inferiore al tempo di vita atteso. Per questo motivo è fondamentale che la colla venga depositata correttamente.

1.2 Il Processo di Produzione

Chiarire le modalità con cui le carcasse vengono manipolate, la colla viene depositata e le foto vengono acquisite risulta fondamentale. Senza queste informazioni mancherebbe la base sulla quale costruire ipotesi e considerazioni riguardo le immagini del dataset. Analizzando le condizioni in cui le foto vengono scattate, si definiscono i vincoli ed i confini entro i quali le soluzioni proposte possono considerarsi verosimili ed applicabili al mondo reale.

Le carcasse, già presenti in grandi quantità in magazzino, raggiungono il macchinario e vengono caricate, con la concavità rivolta verso l'alto, su un disco rotante. Ad ogni ciclo macchina la colla, tramite due ugelli, viene depositata simultaneamente su due carcasse distinte. Al contempo due sonde dotate di luce scendono nelle due carcasse su cui la colla era stata depositata il ciclo precedente, fino ad una distanza di circa 3cm dal fondo. Le carcasse ritenute conformi procedono lungo un rullo trasportatore, mentre quelle che non idonee vengono scartate.

Vanno precisati vari aspetti. Le carcasse, nonostante siano tutte dello stesso tipo, possono differire per quanto riguarda colore, graffi superficiali, sporco, incrostazioni oppure macchie. Inoltre non vengono orientate tutte allo stesso modo rispetto all'asse verticale: questo ha delle ripercussioni dirette sulle foto raccolte, infatti le due balze non si presenteranno in posizioni fisse.

Il sistema assicura che le foto vengano scattate sempre alla stessa profondità e che la sonda sia centrata rispetto al pezzo (considerando come centro il centro della cavità cilindrica). La distanza fissa è condizione sufficiente per garantire la messa a fuoco di ognuno dei tre gradini sul fondo. Purtroppo non sono stati specificati dei vincoli riguardo l'illuminazione.

Si fa notare che il processo appena descritto viene eseguito da almeno due macchinari distinti, ovviamente questo aggiunge un ulteriore grado di sfida: non si può supporre che i macchinari siano sempre calibrati esattamente allo stesso modo.

In conclusione le foto che saranno da analizzare vengono raccolte da un totale di quattro fotocamere distinte, delle quali si assicura

- con un grado di precisione soddisfacente la distanza dal fondo;
- con un grado di precisione accettabile la centratura delle immagini.

1.3 Gli Obiettivi da Raggiungere

Di seguito sono riportati alcuni dati numerici riguardo i processi appena descritti.

La colla viene depositata su circa 5000 pezzi al giorno, la probabilità che gocce di colla cadano sul fondo delle carcasse è estremamente bassa. Purtroppo non esistono dati numerici esatti ma si stima che il macchinario abbia un fault rate di una carcassa al mese o poco più. Questi dati possono essere trasformati in probabilità approssimative osservando che:

colla depositata al mese: 5000 * 31 = 155000 colla mal depositata al mese: 2

Quindi la probabilità che il macchinario sbagli e pari allo 0.00001%. Il sistema di intelligenza artificiale deve riconoscere i pezzi non conformi ma soprattutto, tenendo conto della probabilità di cui sopra, deve generare un numero bassissimo di falsi positivi. Ricordano che per falsi positivi (riferiti anche come FP o False Positive) si intendono tutte le carcasse che il sistema considera non conformi ma che in realtà non presentano difetti. Una AI troppo rigida,

4 Il Problema

che, quando indecisa, propende per scartare il pezzo, inciderebbe negativamente sulla produzione. Si rischierebbe, infatti di creare un enorme danno economico, andando a scartare molte più carcasse del necessario.

Il nostro obbiettivo è quindi quello di generare un numero di falsi positivi che sia inferiore al 2%, cercando di riconoscere più carcasse non conformi possibili.

Capitolo 2

Il Dataset

Innanzitutto si specifica che con la parola Scarto si indica l'immagine di una carcasse che presenta colla sul fondo, pezzo che, quindi, dovrà essere scartato. Invece con la parola Conforme si indica l'immagine di una carcassa nella quale la colla è stata depositata correttamente, quindi con fondo pulito.

TODO recap capitolo In questo capitolo verrà descritto il dataset e quali.

2.1 Problematiche Principali

2.1.1 Dataset Piccolo e Sbilanciato

La prima difficoltà insorge ancora prima di ispezionare le immagini del dataset. Infatti il dataset non solo comprende solamente 1719 immagini ma è anche fortemente sbilanciato:

- 1719 immagini sono Conformi;
- 30 immagini sono Scarti.

A questo punto è corretto chiedersi se le quasi duemila immagini del dataset siano sufficienti ai nostri scopi. Nel campo del *Machine Learning*, ed ancora di più in quello del *Deep Learning*, non è raro che il numero di elementi in un dataset sia dell'ordine delle decine di migliaia se non di quello delle centinaia di migliaia. Basti pensare ai dataset più famosi ed usati:

 MNIST è un dataset molto famoso contenente 70000 cifre disegnate a mano appartenenti a 10 classi in totale. È alla stesso tempo sia il punto di partenza dei principianti, perché di facile manipolazione, sia il campo di prova degli esperti, sul quale vengono allenati nuovi modelli prima di passare a compiti più complessi; 6 Il Dataset

- CIFAR-10 contiene TODO descrivere
- ImageNet contiene TODO descrivere

Ciascuno di questi dataset è stato etichettato¹ a mano. Ciò significa che ad ogni immagine è stata assegnata, a mano, una classe di appartenenza. Prendendo in esempio MNIST, se un'immagine raffigura la cifra 7 allora sarà etichettata con il label seven ed apparterrà alla classe di immagini in cui compare la cifra 7. Allo stesso modo le immagini di ImageNet hanno etichette come dog, cat, bird, car, bike, ecc... Il nostro dataset, come già illustrato, contiene due classi: Conforme e Scarto.

Sembrerebbe che possedere 2000 immagini appena renda impossibile applicare algoritmi di *Machine Learning*. In realtà osservando i Conformi, in figura TODO sono stati riportati alcuni esemplari significativi, ci si accorge che i pezzi sono molto simili. Le differenze principali tra un'immagine e l'altra riguardano la posizione delle balze, la luminosità e le imperfezioni superficiali (graffi, macchie, ...), ciascuna di queste differenze verrà analizzata nel dettaglio tra poco. Quindi, come ci si poteva aspettare essendo pezzi creati meccanicamente, la loro distribuzione è nell'intorno del pezzo progettato. TO-DO dire meglio. Concludiamo che il numero di Conformi a nostra disposizione è sufficiente

Purtroppo non possiamo dire lo stesso per gli Scarti. Se già la statistica ci lascia sospettare che 30 esemplari non possono ritenersi significativi, allora questo sospetto diventa certezza quando si analizzano le caratteristiche della colla nelle immagini Scarto. Come si vede in figura TODO la colla può presentarsi in forma di gocce più o meno circolari oppure come sbaffi di grossezza e lunghezza variabili. Anche la quantità di superficie coperta dalla colla può variare notevolmente, passando da aree ridotte e localizzate ad aree estese e di conformazioni singolari. Infine notiamo che la posizione del rimasuglio di colla all'interno della carcassa non è in relazione con la posizione delle balze e che la presenza dei gradini sul fondo non la obbliga in alcun modo a scivolare fino al centro.

Per analizzare meglio le modalità con cui potrebbe essere generato uno Scarto si supponga che il macchinario abbia commesso un errore: dall'ugello è uscita un certa quantità di colla in esubero. A seconda della posizione dell'ugello rispetto alla carcassa si può immaginare che la colla raggiunga il fondo in vari modi, proviamo ora ad esplorarne due:

• nel primo caso si immagina che il braccio abbia già depositato l'anello di colla e che si stia allontanando dalla carcassa. La colla in esubero

¹in inglese *labeled* da *label*, etichetta

cadrebbe sotto forma si goccia fino a raggiungere il fondo del pezzo. Questo potrebbe esse il caso per la figura TODO ref immagine con colla a goccia;

• nel secondo caso si immagina che la colla in esubero faccia parte dell'anello appena depositato e che, a causa delle vibrazioni o di altri fattori simili, coli raggiungendo il fondo della carcassa. Questo potrebbe esse il caso per la figura TODO ref immagine con colla "sbaffata" dal bordo.

Concludiamo che gli esemplari forniti per la classe Scarto descrivono soltanto in modo parziale la distribuzione della classe (TODO dire meglio) e che quindi non possono essere utilizzati per allenare un modello veramente generale. Infatti se, per esempio, venissero usati per il train di una rete convolutiva, di cui poi verrà illustrata brevemente la struttura, si rischierebbe di creare un modello con forte *overfit* rispetto a quelle specifiche macchie di colla fornite. Con il termine overfit si intende TODO.

Prima di proseguire con le prossime problematiche dobbiamo spendere alcune parole per commentare la colorazione delle immagini rispetto ai veri colori delle carcasse e della colla. In figura 1.1 a pagina 1 abbiamo visto che la superficie del pezzo è di colore grigio ma nella foto risulta di colore verdastro. Allo stesso modo anche la colla, in realtà di colore bianco sporco, nella fotografia assume tonalità verdognole. Per certi compiti possedere immagini in falsi colori può risultare problematico ma fortunatamente non è questo il caso: l'importante è che venga mantenuta l'informazione che ci permette di distinguere la colla dalla superficie della carcassa. Come vedremo poi le immagini verranno trasformate in scala di grigi quindi, nonostante sarebbe stato preferibile avere immagini a colori reali, i falsi colori non sono da considerarsi problematici.

2.1.2 Differenze tra Immagini

Ora che abbiamo una visione d'insieme sul dataset possiamo concentrare la nostra attenzione sulle proprietà principali delle immagini. Innanzitutto ogni immagine ha una risoluzione di 896x896 pixel, dimensione che ci permette di esplorare varie possibilità. Ad esempio si può pensare di ridurre l'immagine ad una dimensione tale da: occupare meno spazio in memoria, quindi in RAM durante il training, ed allo stesso tempo di mantenere un livello di dettaglio sufficiente ai nostri scopi, risultando quindi in un boost in velocità di train. TODO dire meglio. Oppure di suddividere l'immagine in quadranti da analizzare singolarmente così da mantenere la qualità dell'immagine originale ma senza dover creare una rete che accetti immagini troppo grandi. Infatti una rete che accetta immagini di grandi dimensioni, solitamente, avrà un numero

8 Il Dataset

di parametri maggiore di una che accetta immagini piccole. Questo porta non solo ad occupare più spazio in memoria ma significa anche che la rete impiegherà più tempo sia in fase di train (più parametri da aggiustare) sia in fase di predizione (più conti da fare). TODO sistemare. Per avere un termine di paragone basti pensare che le immagini di MNIST sono 64x64 pixel mentre quelle di ImageNet di TODOxTODOpx.

Osservando nuovamente Figura TODO ci si accorge che le immagini hanno varie proprietà, verranno ora elencate e commentate in ordine crescente di fastidiosità (TODO dire meglio).

- Ogni immagine presenta tre circonferenze concentriche, con centro il centro del pezzo. Ciascuna circonferenza è definita da una transizione da una zona più scura ad una più chiara. Sappiamo che le zone più scure corrispondono alle pareti verticali del pezzo mentre le zone chiare ai tre gradini sul fondo. Questa proprietà non è problematica, anzi potrà essere sfruttata a nostro vantaggio.
- Dato che le immagini vengono raccolte ad una distanza costante dal fondo, la dimensioni delle circonferenze sono fissate e si mantengono coerenti tra le immagini. Anche questa proprietà verrà usata a nostro vantaggio.
- Le due balze sulla parete verticale sono ben visibili e possono presentarsi, sempre una di fronte all'altra, in ogni posizione lungo una circonferenza di raggio pari al raggio della cavità cilindrica. Possono essere considerate un problema in quanto rappresentano informazione superflua e variabile. Ricordiamo che la posizione delle balze non ha alcuna correlazione con la presenza della colla, tanto meno con la sua posizione.
- Le superfici dei pezzi si assomigliano: presentano tutte un effetto chiamato "sale e pepe" con granuli di grandezze e luminosità varia. Questo è un bene perché è una costante ma anche un male perché ognuno ha una particolare disposizione di quella texture. TODO dire meglio. Bisogna prestare particolare attenzione alle macchie scure presenti sul fondo di alcune carcasse. La posizione delle macchie non è fissa, perdipiù anche la loro dimensione è variabile. Queste qualità superficiali non saranno da sottovalutare in fase di elaborazione delle immagini.
- A guardare le immagini sembra che siano centrate in realtà ci siamo accorti che c'erano delle differenze. TODO dire meglio. Il centro dell'immagine non corrisponde con il centro del pezzo. Nonostante la distanza massima tra centro del pezzo e il centro dell'immagine è tale che il fondo della carcassa sia sempre visibile interamente, è preferibile che le carcasse nelle immagini vengano centrate correttamente.

• La variazione di luminosità tra le varie foto è una problematica che dovrà essere assolutamente gestita. Infatti alcune immagini hanno una luminosità così alta da far risultare alcune superfici bianche. Altre immagini invece sono molto più scure, tanto che anche le zone che normalmente rifletterebbero sono illuminate appena.

Ora possiamo elencare le proprietà esclusive degli Scarti, in questo caso sono tutte a nostro favore poiché sono l'informazione con cui si distingue uno scarto da un conforme(TODO dire meglio):

- La colla ha alcune caratteristiche particolari: ha un colore bianco-verde solitamente più chiaro della superficie della carcassa e presenta sempre delle zone con dei riflessi.
- La colla è localizzata. Significa che, se presente, non appare come tante gocce sparse ma come un corpo unico più o meno allungato.
- Tracciando una diametro a piacere ci si accorge che gli Scarti sono sempre asimmetrici, invece i conformi, a meno di piccole differenze superficiali, sono sempre simmetrici. (TODO dire meglio).

TODO manca qualcosa? TODO fare conclusione section/subsection?

2.2 Preprocessing

Questa sezione è divisa in due parti: nella prima verranno illustrate alcune tra le principali tecniche di *Digital Image Preprocessing* nonché di *Machine Vision*, esponendo i dettagli matematici ed esplorando le loro applicazioni; nella seconda si spiegherà quali di queste tecniche, in che ordine e per quali motivi sono state utilizzate.

Come prima cosa è bene ricordare che con *Digital Image Preprocessing* si intende il modificare immagini digitali per mezzo di algoritmi eseguibili da un calcolatore.

Mentre con Machine vision

Gli algoritmi utilizzati in questi campi hanno precise formulazioni matematiche perché ogni immagine viene rappresentata come una matrice bidimensionale, se in scala di grigi, oppure tridimensionale se a colori. Gli elementi di una matrice bidimensionale appartengono all'intervallo [0, 255], nel quale 0 corrisponde al colore nero mentre 255 corrisponde al bianco. Disponendo una sopra l'altra tre matrici come quelle appena descritte si ottiene un'immagine a colori: ogni matrice rappresenta uno dei canali principali (Red, Green, Blue da cui il famoso acronimo RGB) dell'immagine. Sia I un'immagine a

10 Il Dataset

tre canali (RGB), il colore del pixel in posizione (i,j) è dato dalla tripletta (I[i,j,0],I[i,j,1],I[i,j,2]), in cui: (0,0,0) indica il colore nero, (255,255,255) indica il colore bianco, (255,0,0) indica il colore rosso, (0,255,0) indica il colore verde, e così via . . . Quindi un'immagine avrà un numero finito di elementi, detti pixel, il cui numero si può ottenere moltiplicando il numero di colonne della matrice per il numero di righe.

Uno dei vantaggi del rappresentare le immagini come matrici è quello di poter applicare operazioni classiche come somma, sottrazione, prodotto e divisione. Ma la nostra attenzione si concentrerà soprattutto sulle convoluzioni e sulle trasformazioni affini.

Nell'ambito del $Image\ Preprocessing\ con\ convoluzione\ si intende\ l'operazione\ che permette di effettuare, per ogni pixel dell'immagine, una somma pesata tra il pixel e gli elementi a lui vicini. I pesi sono definiti in una matrice, detta <math>kernel$ o filtro, di dimensioni non superiori a quelle dell'immagine di partenza. Solitamente i kernel hanno dimensione 3x3 o 5x5. Sfrutteremo ora un esempio per spiegare come viene effettuata una convoluzione, più avanti, quando parleremo del filtro Sobel, verrà illustrato lo pseudocodice che ne formalizza i passaggi. In Figura 2.2 sono illustrate, da sinistra a destra: l'immagine di partenza I, il filtro K e l'immagine risultato O. Il simbolo * denota l'operazione di convoluzione e non è da confondere con nessun tipo di prodotto. Effettueremo una convoluzione da sinistra a destra e dall'alto verso il basso, ma si fa presente che l'ordine d'esecuzione non modifica il risultato.

- Il primo passo è posizionare una copia di K sopra ad I in modo che l'angolo in alto a sinistra del kernel combaci con quello in alto a sinistra dell'immagine.
- Ora possiamo moltiplicare ogni elemento di *I* con il rispettivo elemento di *K*. I valori così ottenuti dovranno essere sommati tra di loro. Effettuando i conti si osserva che il risultato combacia con il valore in alto a sinistra dell'immagine risultato.
- Il prossimo passo consiste nel far traslare il kernel di una cella a sinistra, calcolare la somma di prodotti rispetto ai nuovi valori ed infine salvare il risultato in O una cella a destra rispetto a prima.
- Si prosegue in questo modo fino a che l'ultima colonna di K non combacia con l'ultima colonna di I, questo coincide con il riempimento della prima riga in O.
- \bullet Ora bisogna posizionare K in modo che l'elemento nell'angolo superiore sinistro sia sopra all'elemento in I sulla prima colonna della seconda

riga. Si effettuano prodotti e somme, salvando il risultato nella prima cella libera della seconda riga in O.

• Si procede in questo modo finché non si raggiunge l'ultimo elemento dell"immagine di partenza.

L'algoritmo può essere facilmente espresso tramite due cicli *for* facendo attenzione a posizionare il kernel sempre entro i limiti dell'immagine di partenza.

Figura 2.1: TODO Immagine da rifare

Trasformazioni Affini

TODO RIEMPIRE DI TEORIA QUA

Ora verranno introdotti alcuni algoritmi fondamentali nel campo del Ma- $chine\ Vision$

2.2.1 Passaggio da RGB a GrayScale

2.2.2 Masking

Basta dire che è una operazione di AND tra mask e immagine.

2.2.3 Traslazioni e Rotazioni

Rotazione è metodo standard e largamente usato e bla bla

2.2.4 Crop e Resizing

Crop è "slice" di un array Il più semplice è Nearest-Neighbor Interpolation Resizing default di opency è Bilinear Interpolation Parentesi sulla Linear Interpolation Per poi spiegare Bilinear Interpolation 12 Il Dataset

- 2.2.5 Histogram Equalization
- 2.2.6 Gaussian Blur
- 2.2.7 Bilateral Filter
- 2.2.8 Sobel Operator
- 2.2.9 Canny Edge Detection

2.2.10 Circle Hough Transform

Descrizione radius-and-angle parametrization

Descrizione Hough Line Transform

Descrizione Hough Parameter Space

Descrizione algoritmo di Hough Circles

2.2.11 Applicazione degli algoritmi descritti

2.3 Data Augmentation

Due metodi principali: - rotazione - generazione degli scarti sintetici

2.3.1 Generazione Scarti Sintetici

Scarti Sintetici I ritagli non sono stati semplicemente incollati sui conformi: la luminosità della colla è stata modificata per avvicinarsi a quella del pezzo conforme; dopo aver aggiunto la colla è stato praticato uno smooth lungo il contorno, per evitare che ci fosse una transizione netta fra sofndo ed inizio bordo della colla.

Capitolo 3

Gli Autoencoder

3.1 La Struttura di un Autoencoder

TODO quote from wikipedia

Un Autoencoder (AE) è un particolare tipo di rete neurale il cui scopo è codificare efficacemente l'informazione fornita in input con modalità unsupervised. Gli Autoencoder sono stati largamente utilizzati come tecniche per la dimensionality reduction, dimostrando capacità paragonabili a quelle di algoritmi come PCA o t-sne. Un Autoencoder è formato da due componenti principali:

- l'encoder, ottimizzato per generare una version compressa del dato;
- il decoder, ottimizzato per ricostruire l'informazione originale a partire dalla versione compressa.

Durante l'allenamento (training) la rete cerca di fornire un output il più simile possibile all'input ricevuto. Potrebbe sembrare che l'obiettivo dell'Autoencoder sia simulare la funzione identità, cioè quella funzione che fornisce in output esattamente l'input ricevuto. In realtà all'interno della rete accade molto di più. Prendiamo in esempio il più semplice degli AE: due layer fully-connected messi in sequenza. Sappiamo che il numero di feature ¹ in ingresso nel primo layer deve combaciare con il numero di feature in uscita, altrimenti non potremmo confrontare l'input con la ricostruzione generata dalla rete. Se si immaginano le feature in ingresso come dei punti, vettori, in un spazio n-dimensionale, con n pari al numero delle feature fornite, il compito dell'Autoencoder è generare dei punti che siano molto vicini ai punti osservati. In altre parole si vuole che l'Autoencoder catturi la distribuzione probabilistica dei vettori forniti. Stabilito, quindi, che la rete riceve e restituisce vettori di

¹TODO spiegare cosa si intende per feature

14 Gli Autoencoder

dimensionalità n si può definire la dimensionalità dello spazio latente, cioè di quello spazio di dimensione m, con m < n, in cui tutti i vettori in input vengono mappati durante l'encoding. Viene chiamato spazio latente perché non è conosciuto a priori. Infatti sarà proprio la rete stessa, durante il training, a trovarlo, selezionandolo tra gli infiniti spazi m-dimensionali. La dimensione dello spazio latente deve essere sufficientemente grande da permettere di mantenere le informazioni che caratterizzano l'input, ed allo stesso tempo sufficientemente piccolo così da rimuovere eventuale rumore o dati superflui. Poco fa abbiamo definito due layer fully-connected, specificando soltanto le dimensioni in input del primo e le dimensioni in output del secondo. Ora sappiamo che le feature in uscita dal primo layer dovranno essere accettate, in entrata, dal secondo. Sappiamo anche che la dimensione della feature, in quanto vettore dello spazio latente, dovrà essere pari ad m. La rete appena definita e raffigurata in con la tipica forma a clessidra. La parte più stretta di un Autoencoder è detta bottleneck (in italiano: collo di bottiglia) e corrisponde con la compressione massima del dato.

3.1.1 Variazioni dell'architettura

Breve descrizione diconvAE stacked SAE DAE VAE

3.1.2 Applicazioni principali

La capacità degli Autoencoder di ricostruire l'input, quindi di mantenerne la struttura, privandolo di eventuale rumore o addirittura rimpiazzando il rumore con valori verosimili, si è rilevata utile in molti campi.

Quando il rumore incide notevolmente

In questo paper si usano gli AE per colorare immagini un bg

Anche in questo documento la rimozione del rumore sarà un tema centrale, l'applicazione nel nostro caso verrà analizzato nel dettaglio nei prossimi capitoli.

3.2 Convoluzioni e Convoluzioni Trasposte

3.3 Spazi Latenti

Capitolo 4 Valutazione Sperimentale

Capitolo 5 Risultati Ottenuti

Capitolo 6 Metodi Alternativi

Capitolo 7 Ulteriori Risultati

Capitolo 8

Conclusioni

Appendice A Come si fanno le appendici

Le appendici si fanno con \appendix seguito da \chapter{...}

Appendice B

Esempi di Citazioni Bibliografiche

Pŷrłå in [2] ha poi generalizzato i risultati di Bišker [1]. Il pacchetto uniudtesi carica automaticamente hyperref, che a sua volta rende "cliccabili" i riferimenti bibliografici nel documento elettronico.

Appendice C

Ambiente GNU/Linux (ad esempio Ubuntu)

Contributo di Leonardo Taglialegne

Gli ambienti GNU/Linux contengono parecchi strumenti utili per la stesura di una tesi di laurea, in particolare segnaliamo:

- Kile
- KBibTeX

Il primo è un editor per il LATEX, che include una tabella dei simboli, la visualizzazione della struttura, evidenziazione del codice e simili comodità, e nelle ultime versioni fornisce una visualizzazione in anteprima dei risultati di compilazione.

Il secondo è uno strumento di ricerca, modifica ed inserimento di citazioni in formato BibTeX.

I pacchetti relativi (ed altri utili) si installano, su ambienti Debian e Ubuntu con: sudo apt-get install kile kile-l10n kbibtex texlive-science texlive-math-extra texlive-lang-italian

Bibliografia

- [1] J. Bišker, On the elements of the empty set. Mathematica Absurdica 132 (1999), 13–113.
- [2] U. Pŷrłå, Generalization of Bišker's theorem. Paperopolis J. Math. 14 (2001), 125–132.