Capsule Networks

What's the big idea?

Goals of Machine Vision

What Deep Convolutional Neural Networks Do

- Recognize an object's appearance anywhere in an image
- Optimize weights
- Create a hierarchy of object recognition

(Image: Toward Data Science)

What Are They Missing?

- "The pooling operation used in convolutional neural networks is a big mistake and the fact that it works so well is a disaster." - Geoff Hinton
- Networks learn to identify patterns but not to identify connections between the objects present in the image.
- Max-pooling is information loss

Max Pooling is Evil

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

What Are They Missing Part 2

- "Orientational and relative spatial relationships between these components are not very important to a CNN." - Max Pechonkin
- Tried to make up for the issues by introducing data set augmentation
 - Rotate the images in every which way to train your network to recognize rotated cats.
 - Requires a ton more data
- The resulting neural nets have no notion of coordinate systems,
 rotating pixels and rearranging pixels can fool them easily.

FACE

What Do Humans Have?

- Humans naturally apply transformations on objects when trying to recognize them in an image
- Humans use coordinate system + pattern recognition, not just pattern recognition
- They have a cortical column, also known as the minicolumn, and it is considered to be the basic functional unit of the cerebral cortex

Related Brain Research

- Neurons within a minicolumn (microcolumn) encode similar features [1]
- Vernon Mountcastle maps the brain's response to touch to find that the cortical columns: "code for both location and quality of stimulation" [4]
- Folks at Numenta published about columns in the neocortex enable learning the structure of the world [2]
- "The output layer learns complete models of objects as a set of features at locations. This is analogous to how computer-aided-design programs represent multi-dimensional objects." - John Hawkins [3]

What Capsule Networks Add

- 3D orientation between objects in an image with CapsNet is much easier to retrieve because these relationships are explicitly modeled
- Training needs a fraction of the data set that was required for a ConvNet*
- Each capsule learn a vector that describes object and it's orientation adding pose information to the object.
- They build a graph of the objects in the image
- Regularized by an auto encoder which promotes keeping relevant information around

How Do They Do That?!

- Enter the field of computer graphics: object rendering and scene
 graphs.
- "Representation of objects in the brain does not depend on view angle."
- Learn about objects **regardless of their orientation** to the viewer
- Learn about objects and their **relative orientation** to each other

How Do They Do That?!

- Capsules vote among each other to determine who is the best to handle information
 - Lower level capsule place bets, higher level capsules take winning bets
- This is rerouting based on agreement
- They are learning a graphics system instead of only weights for a neural network
- Use a mix of unsupervised and supervised methods
- Difficulties: De-rendering in the early level to get pose information in the higher level.

image 3.0: CapsNet Architecture

(Image: <u>Dynamic Routing Between Capsules</u>)

Training a Capsule

Procedure 1 Routing algorithm.

```
1: procedure ROUTING(\hat{\mathbf{u}}_{j|i}, r, l)
2: for all capsule i in layer l and capsule j in layer (l+1): b_{ij} \leftarrow 0.
3: for r iterations do
4: for all capsule i in layer l: \mathbf{c}_i \leftarrow \text{softmax}(\mathbf{b}_i) \triangleright \text{softmax} computes Eq. 3
5: for all capsule j in layer (l+1): \mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}
6: for all capsule j in layer (l+1): \mathbf{v}_j \leftarrow \text{squash}(\mathbf{s}_j) \triangleright \text{squash} computes Eq. 1
7: for all capsule i in layer i and capsule i
```

Let's look at some PyTorch code!

Results and Accuracy

Table 1: CapsNet classification test accuracy. The MNIST average and standard deviation results are reported from 3 trials.

Method Routing		Reconstruction	MNIST (%)	MultiMNIST (%)	
Baseline	_	-	0.39	8.1	
CapsNet	1	no	$0.34_{\pm 0.032}$	-	
CapsNet	1	yes	$0.29_{\pm 0.011}$	7.5	
CapsNet	3	no	$0.35_{\pm 0.036}$		
CapsNet	3	yes	$0.25_{\pm 0.005}$	$\bf 5.2$	

Results In Face and Object Recognition

Table 3. Comparison of classification results.

		Baselines		CapsNet			
Dataset	Classes	Instances	Algorithm	Avg. train- ing time	Test accuracy	Avg. training time	Test accuracy
Yale Face Database B	38	5850	Fisherface	~5 minutes*	98.2%**	~24 hours***	95.3%
MIT CBCL (faces)	10	5240	Fisherface	~1 minute*	98.3%**	~14 hours***	99.87%
BelgiumTS (traffic signs)	62	7000	Modified LeNet	<1minute*	98.2%	16 hours***	92% (40 epochs)
CIFAR-100 (objects)	100	60000	Resnet 50	20 hours (200 epochs)	65.5%	18 hours***	18% (35 epochs)

Results on CIFAR 10

Table 1: Accuracy Results for Various Models

	Validation Accuracy		
Models	25 Epochs	50 Epochs	
MNIST Model Baseline	67.51%	68.93%	
64 Capsule Layers	60.54%	64.67%	
4-Model Ensemble (4 Ensemble)	68.97%	70.78%	
2-Convolution Layers (2 Conv)	68.14%	69.34%	
4 Ensemble + 2 Conv	70.34%	71.50%	
7 Ensemble + 2 Conv	70.50%		
4 Ensemble + 2 Conv + 0.0001 Reconstruction Scaling	69.21%		
Stack Additional Capsule Layer	10.11%		

Resources

Geoff Hinton talks about capsule networks

Capsule networks Tutorial by Aurelien Geron

<u>Understanding Hintons Capsule Networks</u> by Max Pechyonkin

Capsule networks overview,

Expressing Pose

Scene graph

Secret to Strong AI by Jeff Hawkins

Columns in the neocortex enable learning the structure of the world by Jeff Hawkins

<u>CapsNet comparative performance evaluation for image classification</u>

Capsules

Activation vector:

Length = estimated probability of presence
Orientation = object's estimated pose parameters

Predict Next Layer's Output

Routing by Agreement

Clusters of Agreement

Handling Crowded Scenes

Thanks to routing by agreement, the ambiguity is quickly resolved (explaining away).