MA 126 —	Spring 2017 —	Prof. Clontz —	Standard Assessment 2
----------	---------------	----------------	-----------------------

Name:		

- Each question is prefaced with a Standard for this course.
- When grading, each response will be marked as follows:
 - \checkmark : The response is demonstrates complete understanding of the Standard.
 - $-\star$: The response may indicate full understanding of the Standard, but clarification or minor corrections are required.
 - \times : The response does not demonstrate complete understanding of the Standard.
- Only responses marked with a \checkmark mark count toward your grade for the semester. Visit the course website for more information on how to improve \star and \times marks.
- \bullet This Assessment is due after 50 minutes. All blank responses will be marked with \times .

	Mark:	
C01: This student is able to		
Derive properties of the logarithmic and exponential functions from		
their definitions.		
	(Instructor Use Only)	

Show that $5^2=25$ follows from the definition $a^x=\exp(x\ln(a))$. (Hint: Use the fact that $\ln(z)+\ln(z)=\ln(z\times z)$.)

	Mark:	
C02: This student is able to Prove hyperbolic function identities.		
	(Instructor Use Only)	

Use the definition

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

to prove the following identity.

$$\cosh(2x) = 2\cosh^2(x) - 1$$

	Mark:
C03: This student is able to Use integration by substitution.	
	(Instructor Use Only)

Show that $\int_{2}^{3} x \sqrt{x-2} \, dx = \frac{26}{15}$.

S01: This student is able to...
Find derivatives and integrals involving logrithmic and exponential functions.

[Instructor Use Only]

a) Find $\frac{d}{dz}[\ln(3e^z)]$.

b) Find $\int \left(2e + \frac{3}{y}\right) dy$.

S02: This student is able to...
Find derivatives and integrals involving hypberbolic functions.

(Instructor Use Only)

a) Find $\frac{d}{dv}[4\tanh(3v) - \sinh(v^2)]$.

b) Find
$$\int (\cosh(x) + 2\sinh(x)) dx$$
.

	Mark:
S03: This student is able to Integrate products of trigonometric functions.	
	(Instructor Use Only)

Find $\int \sin^3(\theta) \cos^3(\theta) d\theta$.

	Mark:
S04: This student is able to	
Use trigonometric substitution.	
	(Instructor Use Only)

Find $\int \frac{2}{1+4x^2} dx$.

S05: This student is able to...
Use partial fractions to integrate rational functions.

[Instructor Use Only]

a) Complete the following partial fraction expansion:

$$\frac{f(x)}{(x+3)^3(x^2+7)^2} = \frac{A}{(x+3)^3(x^2+7)^2} + \frac{B}{(x+3)^3(x^2+7)^2} + \frac{B}{(x+3)^3(x^2$$

(Assume the degree of f is less than 7. You do NOT need to solve for A through G.)

b) Find $\int \frac{8x^2 - 6x + 14}{(x-1)(x^2+7)} dx$.

Use this space if you need extra room for a problem: