

DEC 1 4 2001

HEALTH AND SCIENCES UNIVERSITY BURROWS, GREGORY G.

TECH CENTER 1600/2900

VANDENBARK, ARTHUR A.

<120> RECOMBINANT MHC MOLECULES USEFUL FOR MANIPULATION OF ANTIGEN-SPECIFIC

<130> <140> <141>	US 09/847,172	RECEIVED DEC 1 4 2001
	US 60/200,942 2000-05-01	TECH CENTER 1600/2900
<150> <151>	US 09/153,586 1998-09-15	
<150> <151>	US 60/064,555 1997-10-10	
	US 60/064,552 1997-09-16	
<160>	44	
<170>	PatentIn version 3.1	•
<212>	1 566 DNA Rattus sp.	
	(3)(560)	
	ggc aga gac tcc cca agg ga	at ttc gtg tac cag ttc aag ggc 47 sp Phe Val Tyr Gln Phe Lys Gly 10 15
		cag cgc ata cgg gat gtg atc aga 95 Gln Arg Ile Arg Asp Val Ile Arg 25 30
	e Tyr Asn Gln Glu Glu Tyr I	ctg cgc tac gac agc gac gtg ggc 143 Leu Arg Tyr Asp Ser Asp Val Gly 40 45
		ggg cgg ccc tca gcc gag tac ttt 191 Gly Arg Pro Ser Ala Glu Tyr Phe 60

aac aag cag tac ctg gag cag acg cgg gcc gag ctg gac acg gtc tgc Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys 65 70 75	239
aga cac aac tac gag ggg tcg gag gtc cgc acc tcc ctg cgg cgg ctt Arg His Asn Tyr Glu Gly Ser Glu Val Arg Thr Ser Leu Arg Arg Leu 80 85 90 95	287
gga ggt caa gac gac att gag gcc gac cac gta gcc gcc tat ggt ata Gly Gly Gln Asp Asp Ile Glu Ala Asp His Val Ala Ala Tyr Gly Ile 100 105 110	335
aat atg tat cag tat tat gaa tcc aga ggc cag ttc aca cat gaa ttt Asn Met Tyr Gln Tyr Tyr Glu Ser Arg Gly Gln Phe Thr His Glu Phe 115 120 125	383
gat ggt gac gag gaa ttc tat gtg gac ttg gat aag aag gag acc atc Asp Gly Asp Glu Glu Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile 130 135 140	431
tgg agg atc ccc gag ttt gga cag ctg aca agc ttt gac ccc caa ggt Trp Arg Ile Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly 145 150 155	479
gga ctt caa aat ata gct ata ata aaa cac aat ttg gaa atc ttg atg Gly Leu Gln Asn Ile Ala Ile Ile Lys His Asn Leu Glu Ile Leu Met 160 165 170 175	527
aag agg tca aat tca acc caa gct gtc aac taa ctcgag Lys Arg Ser Asn Ser Thr Gln Ala Val Asn 180 185	566
<210> 2 <211> 185 <212> PRT <213> Rattus sp.	
<400> 2	
Met Gly Arg Asp Ser Pro Arg Asp Phe Val Tyr Gln Phe Lys Gly Leu 1 10 15	
Cys Tyr Tyr Thr Asn Gly Thr Gln Arg Ile Arg Asp Val Ile Arg Tyr 20 25 30	
Ile Tyr Asn Gln Glu Glu Tyr Leu Arg Tyr Asp Ser Asp Val Gly Glu 35 40 45	
Tyr Arg Ala Leu Thr Glu Leu Gly Arg Pro Ser Ala Glu Tyr Phe Asn 50 55 60	

Lys 65	Gln	Tyr	Leu	Glu	Gln 70	Thr	Arg	Ala	Glu	Leu 75	Asp	Thr	Val	Cys	Arg 80	
His	Asn	Tyr	Glu	Gly 85	Ser	Glu	Val	Arg	Thr 90	Ser	Leu	Arg	Arg	Leu 95	Gly	
Gly	Gln	Asp	Asp 100	Ile	Glu	Ala	Asp	His 105	Val	Ala	Ala	Tyr	Gly 110	Ile	Asn	
Met	Tyr	Gln 115	Tyr	Tyr	Glu	Ser	Arg 120	Gly	Gln	Phe	Thr	His 125	Glu	Phe	Asp	
Gly	Asp 130	Glu	Glu	Phe	Tyr	Val 135	Asp	Leu	Asp	Lys	Lys 140	Glu	Thr	Ile	Trp	
Arg 145	Ile	Pro	Glu	Phe	Gly 150	Gln	Leu	Thr	Ser	Phe 155	Asp	Pro	Gln	Gly	Gly 160	
Leu	Gln	Asn	Ile	Ala 165	Ile	Ile	Lys	His	Asn 170	Leu	Glu	Ile	Leu	Met 175	Lys	
Arg	Ser	Asn	Ser 180	Thr	Gln	Ala	Val	Asn 185								
<210)> 3	3														
<211		113														
<212 <213		ONA Artif	icia	al Se	equer	ice										
<220)>															
<223		Antig	gen/]	inke	er in	sert	;									
<220)>															
<221 <222		DS (3)	/112	. 1												
<223		(3)	(11.	, ,												
<400 cc a			ıqa c	ac t	cc c	ca c	aq a	ag a	igc c	ag a	ıgg a	ict c	aq c	at c	aq	47
	let C				er F			ys S	er G					sp G		
								gga Gly								95
		ggt Gly														113

35

```
<210> 4
<211> 37
<212> PRT
<213> Artificial Sequence
<220>
<223> Antigen/linker insert
<400> 4
Met Gly Arg Asp Ser Pro Gln Lys Ser Gln Arg Thr Gln Asp Glu Asn
               5
                                   10
                                                       15
Pro Val Val His Phe Gly Gly Gly Ser Leu Val Pro Arg Gly Ser
Gly Gly Gly Ser
       35
<210> 5
<211> 83
<212> DNA
<213> Artificial Sequence
<220>
<223> Alternative antigen encoding sequences for the expression cassett
<220>
<221> CDS
<222> (3)..(83)
<223>
<400> 5
cc atg ggc aga gac tcc tcc ggc aag gat tcg cat cat gcg gcg cgg
                                                                     47
  Met Gly Arg Asp Ser Ser Gly Lys Asp Ser His His Ala Ala Arg
                                      10
                                                                     83
acg acc cac tac ggt gga ggt gga ggc tca cta gtg
Thr Thr His Tyr Gly Gly Gly Gly Ser Leu Val
               20
<210> 6
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Alternative antigen encoding sequences for the expression cassett
```

•

е <400> 6 Met Gly Arg Asp Ser Ser Gly Lys Asp Ser His His Ala Ala Arg Thr 5 10 Thr His Tyr Gly Gly Gly Gly Ser Leu Val <210> 7 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> Alternative antigen encoding sequences for the expression cassett <220> <221> CDS <222> (3)..(89) <223> <400> 7 cc atg ggc aga gac tcc aaa ctg gaa ctg cag tcc gct ctg gaa gaa 47 Met Gly Arg Asp Ser Lys Leu Glu Leu Gln Ser Ala Leu Glu Glu 10 gct gaa gct tcc ctg gaa cac gga ggt gga ggc tca cta gtg 89 Ala Glu Ala Ser Leu Glu His Gly Gly Gly Ser Leu Val 20 <210> 8 <211> 29 <212> PRT <213> Artificial Sequence <220> Alternative antigen encoding sequences for the expression cassett <223> <400> 8 Met Gly Arg Asp Ser Lys Leu Glu Leu Gln Ser Ala Leu Glu Glu Ala 5 10 15 Glu Ala Ser Leu Glu His Gly Gly Gly Ser Leu Val

25

<210> 9

20

```
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 9
aattcctcga gatggctctg cagacccc
                                                                     28
<210> 10
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 10
tcttgacctc caagccgccg cagggaggtg
                                                                     30
<210> 11
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 11
                                                                     31
cggcggcttg gaggtcaaga cgacattgag g
<210> 12
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 12
gcctcggtac cttagttgac agcttgggtt gaatttg
                                                                    37
<210> 13
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 13
cagggaccat gggcagagac tcccca
                                                                    26
```

<210> <211>	14 30	
	DNA	
	Artificial Sequence	
(213)	Artificial Sequence	
<220>		
	PCR primer	
(2237	TOR PITMOI	
<400>	14	
	tcga gttagttgac agcttgggtt	30
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
<210>	15	
<211>	128	
	DNA ·	
	Artificial Sequence	
12137	Artificial bodacino	
<220>		
	PCR primer	
12237	Ten planet	
<400>	15	
	ccgc ggggagcctc cacctccaga gcctcggggc actagtgagc ctccacctcc	60
gaaacc	0030 9353430000 0400000434 30000535550 4004505450 0100400000	•
gaagtgo	cacc actgggttct catcetgagt cetetggete ttetgtgggg agtetetgee	120
5005050		
ctcagto	cc 1	128
<210>	16	
<211>	31	
	DNA	
	Artificial Sequence	
12137	Altititut bequence	
<220>		
	PCR primer	
12207	2011 2211102	
<400>	16	
	cgcg ggatttcgtg taccagttca a	31
J		
<210>	17	
<211>	92	
	DNA	
	Artificial Sequence	
<220>	·	
	PCR primer	
	£	
<400>	17	
	catg ggcagagact cctccggcaa ggattcgcat catgcggcgc ggacgaccca	60
	. 5 55. 5 5 25 25 25 28	
ctacqat	tgga ggtggaggct cactagtgcc cc	92
25-		

<210> 18

<211><212><213>	92 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ggggcao	18 ctag tgagceteca cetecacegt agtgggtegt cegegeegea tgatgegaat	60
ccttgcc	egga ggagtetetg eccatggtaa ta	92
	19 98 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> tattaco	19 catg ggcagagact ccaaactgga actgcagtcc gctctggaag aagctgaagc	60
ttccctg	ggaa cacggaggtg gaggctcact agtgcccc	98
	20 98 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ggggcac	20 ctag tgagceteca ceteegtgtt ecagggaage tteagettet tecagagegg	60
actgcag	gttc cagtttggag tctctgccca tggtaata	98
<210><211><212><213>	21 184 PRT Homo sapiens	
<400>	21	
Gly Ser 1	His Ser Met Arg Tyr Phe Tyr Thr Ala Met Ser Arg Pro Gly 5 10 15	
Arg Gly	Glu Pro Arg Phe Ile Ala Val Gly Tyr Val Asp Asp Thr Gln 20 25 30	

Phe Val Arg Phe Asp Ser Asp Ala Ala Ser Pro Arg Thr Glu Pro Arg

35 40 45

Pro Pro Trp Ile Glu Gln Glu Gly Pro Glu Tyr Trp Asp Arg Asn Thr 50 55 60

Gln Ile Phe Lys Thr Asn Thr Gln Thr Tyr Arg Glu Asn Leu Arg Ile 65 70 75 80

Ala Leu Arg Tyr Tyr Asn Gln Ser Glu Ala Gly Ser His Ile Ile Gln 85 90 95

Arg Met Tyr Gly Cys Asp Leu Gly Pro Asp Gly Arg Leu Leu Arg Gly
100 105 110

His Asp Gln Ser Ala Tyr Asp Gly Lys Asp Tyr Ile Ala Leu Asn Glu 115 120 125

Asp Leu Ser Ser Trp Thr Ala Ala Asp Thr Ala Ala Gln Ile Thr Gln 130 135 140

Arg Lys Trp Glu Ala Ala Arg Val Ala Glu Gln Leu Arg Ala Tyr Leu 145 150 155 160

Glu Gly Leu Cys Val Glu Trp Leu Arg Arg Tyr Leu Glu Asn Gly Lys 165 170 175

Glu Thr Leu Gln Arg Ala Asp Pro 180

<210> 22

<211> 174

<212> PRT

<213> Homo sapiens

<400> 22

Arg Pro Arg Phe Leu Trp Gln Leu Lys Phe Glu Cys His Phe Phe Asn 1 5 10 15

Gly Thr Glu Arg Val Arg Leu Leu Glu Arg Cys Ile Tyr Asn Gln Glu 20 25 30

Glu Ser Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr 35 40 45

Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu 50 55 Leu Glu Gln Arg Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr 70 75 Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Val Glu Glu His Val 90 Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe 100 Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys 115 120 Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe 135 Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu 150 155 Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn 165 170 <210> 23 <211> 174 <212> PRT <213> Mus sp. <400> 23 Arg Pro Trp Phe Leu Glu Tyr Cys Lys Ser Glu Cys His Phe Tyr Asn Gly Thr Gln Arg Val Arg Leu Leu Val Arg Tyr Phe Tyr Asn Leu Glu 20 Glu Asn Leu Arg Phe Asp Ser Asp Val Gly Glu Phe Arg Ala Val Thr 35 40 45

Leu Glu Gln Lys Arg Ala Glu Val Asp Thr Val Cys Arg His Asn Tyr

Glu Leu Gly Arg Pro Asp Ala Glu Asn Trp Asn Ser Gln Pro Glu Phe

55

50

65	70	75	80

Glu Ile Phe Asp Asn Phe Leu Val Pro Arg Arg Val Glu Glu His Thr 85 90 95

Ile Ile Gln Ala Glu Phe Tyr Leu Leu Pro Asp Lys Arg Gly Glu Phe
100 105 110

Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Ile Glu Lys
115 120 125

Ser Glu Thr Ile Trp Arg Leu Glu Glu Phe Ala Lys Phe Ala Ser Phe 130 135 140

Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu 145 150 155 160

Asp Val Met Lys Glu Arg Ser Asn Asn Thr Pro Asp Ala Asn 165 170

<210> 24

<211> 180

<212> PRT

<213> Rattus sp.

<400> 24

Met Gly Arg Asp Ser Pro Arg Asp Phe Val Tyr Gln Phe Lys Gly Leu 1 5 10 15

Cys Tyr Tyr Thr Asn Gly Thr Gln Arg Ile Arg Asp Val Ile Arg Tyr 20 25 30

Ile Tyr Asn Glu Glu Tyr Leu Arg Tyr Asp Ser Asp Val Gly Glu
35 40 45

Tyr Arg Ala Leu Thr Glu Leu Gly Arg Pro Ser Ala Glu Tyr Trp Asn 50 55 60

Ser Gln Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val 65 70 75 80

Cys Arg His Asn Tyr Glu Gly Ser Glu Val Arg Thr Ser Leu Arg Arg 85 90 95

Leu Ala Asp His Val Ala Ala Tyr Gly Ile Asn Met Tyr Gln Tyr Tyr 100 105 Glu Ser Arg Gly Gln Phe Thr His Glu Phe Asp Gly Asp Glu Glu Phe 120 Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Arg Ile Pro Glu Phe 130 135 Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala 145 150 155 Ile Ile Lys His Asn Leu Glu Ile Leu Met Lys Arg Ser Asn Ser Thr 170 Gln Ala Val Asn 180 <210> 25 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Artificial peptide <400> 25 Gly Ser Leu Pro Gln Lys Ser Gln Arg Ser Gln Asp Glu Asn Pro Val 5 10 Val His Phe <210> 26 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Artificial peptide <400> 26 Ser Gly Lys Asp Ser His His Ala Ala Arg Thr Thr His Tyr Gly 10

```
<210> 27
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Artificial peptide
<400> 27
Lys Leu Glu Leu Gln Ser Ala Leu Glu Glu Ala Glu Ala Ser Leu Glu
His
<210> 28
<211> 95
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 28
tattaccatg ggcagagact ccccacagaa gagccagagg tctcaggatg agaacccagt
                                                                     60
                                                                     95
ggtgcacttc ggaggtggag gctcactagt gcccc
<210> 29
<211> 94
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 29
ggggcactag tgagcctcca cctccgaagt gcaccactgg gttctcatcc tgagacctct
                                                                     60
ggctcttctg tggggagtct ctgcccatgg taat
                                                                     94
<210> 30
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Artificial peptide
<400> 30
Gly Ser Leu Pro Gln Lys Ser Gln Arg Thr Gln Asp Glu Asn Pro Val
```

Val His Phe <210> 31 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 31 attaccatgg gggacacccg accacgttt 29 <210> 32 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 32 ggatgatcac atgttcttct ttgatgactc gccgctgcac tgtga 45 <210> 33 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> PCR primer

10

15

45

37

<210> 34 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 34

tggtgctcga gttaattggt gatcggagta tagttgg

tcacagtgca gcggcgagtc atcaaagaag aacatgtgat catcc

<210> 35 <211> 20

<400> 33

1

5

```
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 35
                                                                    20
taatacgact cactataggg
<210> 36
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 36
                                                                    19
gctagttatt gctcagcgg
<210> 37
<211> 132
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 37
aggetgecae aggaaacgtg ggeetecaee tecagageet eggggeaeta gtgageetee 60
acctccacgc ggggtaacga tgtttttgaa gaagtgaaca accgggtttt ctcgggtgtc
                                                                   120
ccccatggta at
                                                                   132
<210> 38
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 38
                                                                    20
ccacgtttcc tgtggcagcc
<210> 39
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
```

```
<400> 39
                                                                     22
tcaaagtcaa acataaactc gc
<210> 40
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 40
gcgagtttat gtttgacttt ga
                                                                     22
<210> 41
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Artificial peptide
<400> 41
Glu Asn Pro Val Val His Phe Phe Lys Asn Ile Val Thr Pro Arg
               5
<210> 42
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Artificial peptide
<400> 42
Ala Thr Gly Phe Lys Gln Ser Ser Lys Ala Leu Gln Arg Pro Val Ala
               5
Ser
<210> 43
<211> 641
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (3)..(635)
```

<400> 43	47
cc atg ggg gac acc cga gaa aac ccg gtt gtt cac ttc ttc aaa aac Met Gly Asp Thr Arg Glu Asn Pro Val Val His Phe Phe Lys Asn 1 5 10 15	47
atc gtt acc ccg cgt gga ggt gga ggc tca cta gtg ccc cga ggc tct Ile Val Thr Pro Arg Gly Gly Gly Gly Ser Leu Val Pro Arg Gly Ser 20 25 30	95
gga ggt gga ggc cca cgt ttc ctg tgg cag cct aag agg gag tgt cat Gly Gly Gly Pro Arg Phe Leu Trp Gln Pro Lys Arg Glu Cys His 35 40 45	143
ttc ttc aat ggg acg gag cgg gtg cgg ttc ctg gac aga tac ttc tat Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr 50 55 60	191
aac cag gag gag tcc gtg cgc ttc gac agc gac gtg ggg gag ttc cgg Asn Gln Glu Glu Ser Val Arg Phe Asp Ser Asp Val Gly Glu Phe Arg 65 70 75	239
gcg gtg acg gag ctg ggg cgg cct gac gct gag tac tgg aac agc cag Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln 80 85 90 95	287
aag gac atc ctg gag cag gcg cgg gcc gcg gtg gac acc tac tgc aga Lys Asp Ile Leu Glu Gln Ala Arg Ala Ala Val Asp Thr Tyr Cys Arg 100 105 110	335
cac aac tac ggg gtt gtg gag agc ttc aca gtg cag cgg cga gtc atc His Asn Tyr Gly Val Val Glu Ser Phe Thr Val Gln Arg Arg Val Ile 115 120 125	383
aaa gaa gaa cat gtg atc atc cag gcc gag ttc tat ctg aat cct gac Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp 130 135 140	431
caa tca ggc gag ttt atg ttt gac ttt gat ggt gat gag att ttc cat Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His 145 150 155	479
gtg gat atg gca aag aag gag acg gtc tgg cgg ctt gaa gaa ttt gga Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly 165 170 175	527
cga ttt gcc agc ttt gag gct caa ggt gca ttg gcc aac ata gct gtg Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val 180 185 190	575
gac aaa gcc aac ttg gaa atc atg aca aag cgc tcc aac tat act ccg Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro 195 200 205	623
atc acc aat taa ctcgag	641

<400> 44

Met Gly Asp Thr Arg Glu Asn Pro Val Val His Phe Phe Lys Asn Ile 1 5 10 15

Val Thr Pro Arg Gly Gly Gly Ser Leu Val Pro Arg Gly Ser Gly 20 . 25 30

Gly Gly Pro Arg Phe Leu Trp Gln Pro Lys Arg Glu Cys His Phe 35 40 45

Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr Asn 50 55 60

Gln Glu Glu Ser Val Arg Phe Asp Ser Asp Val Gly Glu Phe Arg Ala 65 70 75 80

Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys 85 90 95

Asp Ile Leu Glu Gln Ala Arg Ala Ala Val Asp Thr Tyr Cys Arg His
100 105 110

Asn Tyr Gly Val Val Glu Ser Phe Thr Val Gln Arg Arg Val Ile Lys 115 120 125

Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln 130 135 140

Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val 145 150 155 160

Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg 165 170 175

Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp 180 185 190 Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile
195 200 205

Thr Asn 210