Appendix B: Eniscope Reported Parameters

Item Symbol Unit Description	
1 ts sec. Unix timestamp	
A_1 deg. Angle between V1 and V1	
A_2 deg. Angle between V1 and V2	
A_3 deg. Angle between V1 and V3	
5 AE VAh Apparent energy of the system (sum of all three phases)	
$6 AE_1 VAh Apparent energy of phase-1$	
7 AE_2 VAh Apparent energy of phase-2	
AE_3 VAh Apparent energy of phase-3	
9 E Wh Cumulative Nett Energy of the system (sum of all three pha	uses)
E_1 Wh Cumulative Energy of phase-1	
11 E_2 Wh Cumulative Energy of phase-2	
E_3 Wh Cumulative Energy of phase-3	
13 Ex Wh Cumulative Nett Energy export of the system (sum of all th	ree phases)
Ex_1 Wh Cumulative Energy export of phase-1	
15 Ex_2 Wh Cumulative Energy export of phase-2	
Ex_3 Wh Cumulative Energy export of phase-3	
17 F Hz Line frequency of the system (average of all three phases)	
18 I A RMS line current of the system (arithmetic mean of I1, I2 as	nd I3)
I_1 A RMS line current of phase-1	,
I_2 A RMS line current of phase-2	
I_3 A RMS line current of phase-3	
22 In A Neutral current, RMS current in the neutral conductor	
23 P W Power of the system (sum of all three phases)	
P_1 W Power of phase-1	
P_2 W Power of phase-2	
P_3 W Power of phase-3	
27 PF n/a Power factor of the system (arithmetic mean of PF1, PF2 ar	nd PF3)
PF_1 n/a Power factor of phase-1	,
PF_2 n/a Power factor of phase-2	
PF_3 n/a Power factor of phase-3	
31 Q var Reactive power of the system (sum of all three phases)	
Q_1 var Reactive power of phase-1	
Q_2 var Reactive power of phase-2	
Q_3 var Reactive power of phase-3	
35 RE varh Cumulative Nett Reactive energy of the system (sum of all t	three phases)
RE_1 varh Cumulative Reactive energy of phase-1	1 /
RE_2 varh Cumulative Reactive energy of phase-2	
RE_3 varh Cumulative Reactive energy of phase-3	
39 REx varh Cumulative Nett Reactive energy export of the system (sum	of all three phases)
40 REx_1 varh Cumulative Reactive energy export of phase-1	
41 REx_2 varh Cumulative Reactive energy export of phase-2	
REx_3 varh Cumulative Reactive energy export of phase-3	
43 S va Cumulative Nett Apparent power of the system (sum of all t	three phases)
44 S_1 va Cumulative Apparent power of phase-1	• /
45 S_2 va Cumulative Apparent power of phase-2	
46 S_3 va Cumulative Apparent power of phase-1	
47 U V Line to line voltage of the system (arithmetic mean of U1, U	J2 and U3)
48 U_1 V Line (phase-1) to line (phase-2) voltage	,
49 U_2 V Line (phase-2) to line (phase-3) voltage	

51	V	V	RMS line to neutral voltage of the system (arithmetic mean of V1, V2 and V3)
52	V_1	V	RMS line (phase-1) to neutral voltage
53	V_2	V	RMS line (phase-2) to neutral voltage
54	V_3	V	RMS line (phase-3) to neutral voltage