

Transition and Inner Transition Elements

Subtopics

- 8.1 Introduction
- 8.2 Position in the periodic table
- 8.3 Electronic configuration
- 8.4 Oxidation states of first transition series
- 8.5 Physical properties of first transition series
- 8.6 Trends in atomic properties of the first transition series
- 8.7 Compounds of Mn and Cr (KMnO₄ and $K_2Cr_2O_7$)
- 8.8 Common properties of d block elements
- 8.9 Extraction of metals
- 8.10 Inner transition (f-block) elements
- 8.11 Properties of f-block elements
- 8.12 Properties of lanthanoids
- 8.13 Applications of lanthanoids
- 8.14 Actinoids
- 8.15 Properties of actinoids
- 8.16 Applications of actinoids
- 8.17 Postactinoid elements

Marie Curie: Idol of passion, patience, boldness, persistence, selflessness

The Curies undertook the arduous task of separating out radium salt by differential crystallization. From a ton of pitchblende, one tenth of a gram of radium chloride was separated in 1902. In 1910 Marie Curie isolated pure radium metal.

The extraction was not a simple task. Much more pitchblende was needed to obtain significant quantities of radium and they eventually obtained some 8000 kg of waste ore from Austria. They worked for the next four years under appalling conditions in a leaking unventilated shed, freezing in the winter and dreadfully hot by summer. Marie described life in 'this miserable shed' as 'the best and happiest years of our life', and was much honoured when Lord Kelvin and other famous scientists visited her there. It is remarkable that Curie calculated the atomic weight of radium (as 225) so accurately, given such deplorable conditions. "Large swings in temperature and humidity undoubtedly affected the electrometer...but Marie's patience and tenacity prevailed."

Quick Review

d and f-Block elements:

d-block elements Transition elements (group 3 to 12)

First transition (3d) series elements (period 4)

 $\begin{array}{ccc} \text{(period 4)} & \text{(period 4)} \\ \text{[Sc(Z = 21) to} & \text{[Ye]} \\ \text{Zn(Z = 30)]} & \text{Cd} \end{array}$

Second transition (4d) series elements (period 5) [Y(Z = 39) toCd(Z = 48)]

Third transition (5d) series elements (period 6) [La(Z = 57), Hf(Z = 72) to Hg (Z = 80)] Fourth transition (6d) series elements (period 7) [Ac(Z = 89), Rf(Z = 104) 10 Cn (Z = 112)] nts

oldness,

out radium lende, one-02. In 1910,

blende was and they stria. They itions in a adfully hot ed' as 'the ured when here. It is radium (as s. "Large fected the

d. "

f-block elements Inner transition elements

Lanthanoids

(First inner transition series elements) (group 3 and period 6) [Ce(Z = 58) to Lu (Z = 71)]

Actinoids

(Second inner transition series elements) (group 3 and period 7) [Th(Z = 90) to Lr(Z = 103)]

Electronic configuration of 3d series of d-block elements: General electronic configuration of 3d series is [Ar] 3d 1-10 4s². (Atomic number of Ar = 18)

Element	Symbol	Atomic number	Expected electronic configuration	Observed electronic
Scandium	Sc	21		configuration
Titanium	Ti	22	[Ar] $3d^{1}4s^{2}$	$[Ar] 3d^{1} 4s^{2}$
Vanadium	V	23	[Ar] $3d^2 4s^2$	[Ar] $3d^2 4s^2$
Chromium	Cr	24	[Ar] $3d^3 4s^2$	[Ar] 3d3 4s2
Manganese	Mn	25	[Ar] $3d^4 4s^2$ [Ar] $3d^5 4s^2$	[Ar] 3d ⁵ 4s ¹
Iron	Fe	26	[Ar] $3d^{6} 4s^{2}$	[Ar] 3d ⁵ 4s ²
Cobalt	Co	27	[Ar] $3d^{7}4s^{2}$	[Ar] 3d ⁶ 4s ²
Nickel	Ni	28	[Ar] $3d^8 4s^2$	[Ar] 3d ⁷ 4s ² [Ar] 3d ⁸ 4s ²
Copper	Cu	29	$[Ar] 3d^9 4s^2$	[Ar] 3d 4s ¹
Zinc	Zn	30	[Ar] 3d ¹⁰ 4s ²	[Ar] $3d^{10} 4s^2$

Colour of 3d transition metal ions:

Ion	Outer electronic configuration	Number of unpaired electrons	Colour
Sc ³⁺ Ti ³⁺	3d ⁰	0	Colourless
Ti ³⁺	3d ¹	I man I man	Purple
Ti ⁴⁺	$3d^0$	0	Colourless
V ³⁺	$3d^2$	2	Green
Cr ³⁺	$3d^3$	3	Violet
Mn ²⁺	3d ⁵	5 0000	Light pink
Mn ³⁺ Fe ²⁺	$3d^4$	4	Violet
Fe ²⁺	$3d^6$	4	Pale green
Fe ³⁺	3d ⁵	5	Yellow
Co ²⁺	3d ⁷	3	Pink
Co ²⁺ Ni ²⁺	3d ⁸	2	Green
Cu ²⁺	3d ⁹	THE PARTY OF THE P	Blue
	3d ¹⁰	0	Colourless
$\frac{\text{Cu}^+}{\text{Zn}^{2+}}$	3d ¹⁰	0	Colourless

Preparation of KMnO4:

Chemical oxidation:

 $^{3}\text{MnO}_{2} + 6\text{KOH} + \text{KClO}_{3} \xrightarrow{\Delta} 3\text{K}_{2}\text{MnO}_{4} + \text{KCl} + 3\text{H}_{2}\text{O}$

 ${}^{3}K_{2}MnO_{4} + 4CO_{2} + 2H_{2}O \longrightarrow 2KMnO_{4} + MnO_{2} + 4KHCO_{3}$

Electrolytic oxidation:

 \rightarrow 2KMnO₄ + 2KOH $2K_2MnO_4 + H_2O + [O] -$

on

ents

Chemical properties of KMnO₄:

Oxidation of Γ to I_2	$2MnO_4^- + 10\Gamma + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + I_2$
Oxidation of Fe ²⁺ to Fe ³⁺	$M_{\rm PO}^{-} + 5{\rm Fe}^{2+} + 8{\rm H}^{+} \longrightarrow 5{\rm Fe}^{3+} + {\rm Mn}^{2+} + 4{\rm H}_{2}{\rm O}$
Oxidation of S ²⁻ to S	$5S^{2-} + 2MnO_4^{-} + 16H^{+} \longrightarrow 2Mn^{2+} + 5S + 8H_2O$
Oxidation of H ₂ C ₂ O ₄ to CO ₂	$2M_{\rm P}O^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} \longrightarrow 2Mn^{2+} + 10CO_{2} + 8H_{2}O_{3}$
Neutral or weakly alkaline m.	edium
Oxidation of 1 to 10;	$2MnO_4^- + H_2O + \Gamma \longrightarrow 2Mn_2 + 2OH^- + 1O_3^-$
Oxidation of S ₂ O ₃ ²⁻ to SO ₄ ²⁻	$8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH$
Oxidation of Mn ²⁺ to MnO ₂	$2MnO_4^- + 3Mn^{2+} + 2H_2O \longrightarrow 5MnO_2 + 4H^+$

▶ Preparation of K₂Cr₂O₇:

Industrial preparation from chromite ore:

 $4(FeO.Cr_2O_3) + 8Na_2CO_3 + 7O_2 \xrightarrow{\Delta} 8Na_2CrO_4 + 2Fe_2O_3 + 8CO_2$

 $2Na_2CrO_4 + H_2SO_4 \longrightarrow Na_2Cr_2O_7 + Na_2SO_4.H_2O$

 $Na_2Cr_2O_7 + 2KCl \longrightarrow K_2Cr_2O_7 + 2NaCl$

Chemical properties of K₂Cr₂O₇:

Acidic medium	THE PARTY OF THE P
Oxidation of Γ to I_2	$K_2Cr_2O_7 + 6KI + 7H_2SO_4 \longrightarrow 4K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O + 3I_2O + 3I_2$
Oxidation of S ²⁻ to S	$K_2Cr_2O_7 + 4H_2SO_4 + 3H_2S \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O + 3S_2SO_4 + Cr_2(SO_4)_3 + 7H_2O + 3S_2S_2S_2 + Cr_2(SO_4)_3 + 7H_2O + 3S_2S_2 + Cr_2(SO_4)_3 + Cr_2(SO_4)_3 + 7H_2O_5 + Cr_2(SO_4)_3 $

Ger (At

Pr

P

D

Che

Minerals and ores of some transition metals:

Metals	Mineral	Ore	
Iron	Haematite: Fe ₂ O ₃ Magnetite: Fe ₃ O ₄ Limonite: 2Fe ₂ O ₃ , 3H ₂ O Iron pyrites: FeS ₂ Siderite: FeCO ₃	Haematite	
Copper	Chalcopyrite: CuFeS ₂ Chalcocite: Cu ₂ S Cuprite: Cu ₂ O	Chalcopyrite Chalcocite	
Zinc	Zinc blende: ZnS Zincite: ZnO Calamine: ZnCO ₃	Zinc blende	

Different methods used in metallurgy:

Steps involved in the extraction of iron from haematite ore:

glectronic configuration of lanthanoids:

General electronic configuration of lanthanoids is [Xe] 4f⁰⁻¹⁴ 5d 0-2 6s².

Element	Symbol	Atomic number	Expected electronic	Observed electronic
Lanthanum	La	57	configuration	configuration
Cerium	Ce	58	[Xe] 4f ⁰ 5d ¹ 6s ²	[Xe] $4f^0 5d^1 6s^2$
Praseodymium	Pr	59	[Xe] $4f^2 6s^2$	[Xe] $4f^{1} 5d^{1} 6s^{2}$
Neodymium	Nd	60	[Xe] $4f^3 6s^2$	[Xe] $4f^3 6s^2$
Promethium	Pm	61	[Xe] $4f^4 6s^2$	[Xe] $4f^4 6s^2$
Samarium	Sm	61	[Xe] $4f^{6} 6s^{2}$ [Xe] $4f^{6} 6s^{2}$	$[Xe] 4f^5 6s^2$
Europium	Eu	63	$[Xe] 4f^7 6s^2$	[Xe] $4f^6 6s^2$
Gadolinium	Gd	64	$[Xe] 4f^8 6s^2$	[Xe] 4f7 6s2
Terbium	Tb	65	$[Xe] 4f^9 6s^2$	[Xe] $4f^7 5d^1 6s^2$
Dysprosium	Dy	66	[Xe] $4f^{10} 6s^2$	$[Xe] 4f^9 6s^2$
Holmium	Но	67	[Xe] $4f^{11} 6s^2$	[Xe] $4f^{10} 6s^2$
Erbium	Er	68	[Xe] $4f^{12} 6s^2$	[Xe] $4f^{11} 6s^2$
Thulium	Tm	69	[Xe] $4f^{13} 6s^2$	[Xe] $4f^{12} 6s^2$
Ytterbium	Yb	70	[Xe] $4f^{14} 6s^2$	[Xe] $4f^{13} 6s^2$
Lutetium	Lu	71	[Xe] $4f^{14} 5d^1 6s^2$	[Xe] $4f^{14} 6s^2$ [Xe] $4f^{14} 5d^1 6s^2$

Chemical reactivity of lanthanoids:

MHT-CET Triumph Chemistry (MCQs)

Electronic configuration of actinoids: General electronic configuration of actinoids is [Rn] $5f^{0-14} 6d^{0-2} 7s^2$. Atomic number of Rn = 86

Element	Symbol	Atomic number	Observed electronic configuration
Actinium	Ac	89	$[Rn] 5f^0 6d^1 7s^2$
Thorium	Th	90	[Rn] $5f^0 6d^2 7s^2$
Protactinium	Pa	91 1821 342	[Rn] 5f ² 6d ¹ 7s ²
Uranium	U	92	[Rn] 5f ³ 6d ¹ 7s ²
Neptunium	Np	93	[Rn] 5f ⁴ 6d ¹ 7s ²
Plutonium	Pu	94	[Rn] 5f ⁶ 6d ⁰ 7s ²
Americium	Am	95	$[Rn] 5f^7 6d^0 7s^2$
Curium	Cm	96	$[Rn] 5f' 6d^1 7s^2$
Berkelium	Bk	1 (ii) 97	[Rn] 5f ⁹ 6d ⁰ 7s ²
Californium	Cf	98 VA	[Rn] 5f ¹⁰ 6d ⁰ 7s ²
Einsteinium	Es	99 300	$[Rn] 5f^{11} 6d^0 7s^2$
Fermium	Fm	100 Will	
Mendelevium	Md	101	[Rn] $5f^{13} 6d^0 7s^2$
Nobelium	No	. 102	$[Rn] 5f^{14} 6d^0 7s^2$
Lawrencium	Lr	103	$[Rn] 5f^{14} 6d^{1} 7s^{2}$

Formulae

1. Spin-only formula for magnetic moment: $\mu = \sqrt{n(n+2)} \; BM$ where, n = no. of unpaired electrons