CSL105: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Resolution Principle

- Resolution Principle is another way of showing that an argument is correct.
- Definitions:
 - <u>Literal</u>: A variable or a negation of a variable is called a literal.
 - <u>Sum and Product</u>: A disjunction of literals is called a sum and a conjunction of literals is called a product.
 - <u>Clause</u>: A disjunction of literals is called a clause.
 - Resolvent: For any two clauses C_1 and C_2 , if there is a literal L_1 in C_1 that is complementary to literal L_2 in C_2 , then delete L_1 and L_2 from C_1 and C_2 respectively and construct the disjunction of the remaining clauses. The constructed clause is a resolvent of C_1 and C_2 .
 - $C_1 = P \vee Q \vee R$
 - $C_2 = \neg P \lor \neg S \lor T$
 - What is a resolvent of C_1 and C_2 ?

- Resolution Principle is another way of showing that an argument is correct.
- Definitions:
 - <u>Literal</u>: A variable or a negation of a variable is called a literal.
 - <u>Sum and Product</u>: A disjunction of literals is called a sum and a conjunction of literals is called a product.
 - <u>Clause</u>: A disjunction of literals is called a clause.
 - Resolvent: For any two clauses C_1 and C_2 , if there is a literal L_1 in C_1 that is complementary to literal L_2 in C_2 , then delete L_1 and L_2 from C_1 and C_2 respectively and construct the disjunction of the remaining clauses. The constructed clause is a resolvent of C_1 and C_2 .
 - $C_1 = P \vee Q \vee R$
 - $C_2 = \neg P \lor \neg S \lor T$
 - What is a resolvent of C_1 and C_2 ? $Q \lor R \lor \neg S \lor T$

Theorem

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

- Example: Modus ponens $(P \land (P \rightarrow Q) \rightarrow Q)$
 - C₁: P
 - C_2 : $\neg P \lor Q$
 - The resolvent of C_1 and C_2 is Q which is a logical consequence of C_1 and C_2 .

Theorem

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Definition (Resolution principle and refutation)

Given a set S of clauses, a (resolution) deduction of C from S is a finite sequence $C_1, ..., C_k$ of clauses such that each C_i either is a clause in S or a resolvent of clauses preceding C and $C_k = C$. A deduction of \square (empty clause) is called a *refutation*.

Theorem

Given two clauses C_1 and C_2 , a resolvent C of C_1 and C_2 is a logical consequence of C_1 and C_2 .

Definition (Resolution principle and refutation)

Given a set S of clauses, a (resolution) deduction of C from S is a finite sequence $C_1, ..., C_k$ of clauses such that each C_i either is a clause in S or a resolvent of clauses preceding C and $C_k = C$. A deduction of \Box (empty clause) is called a *refutation* of a proof of S.

• If there is an argument where $P_1, ..., P_r$ are the premises and C is the conclusion, to get a proof using resolution principle, put $P_1, ..., P_r$ in clause form and add to it $\neg C$ in clause form. From this sequence, if \square can be derived, the argument is valid.

- If there is an argument where $P_1, ..., P_r$ are the premises and C is the conclusion, to get a proof using resolution principle, put $P_1, ..., P_r$ in clause form and add to it $\neg C$ in clause form. From this sequence, if \square can be derived, the argument is valid.
- Example:

$$T \to (M \lor E)$$

$$S \to \neg E$$

$$T \land S$$

$$\therefore M$$

• What are the clauses?

• Example:

$$T \to (M \lor E)$$

$$S \to \neg E$$

$$T \land S$$

$$\therefore M$$

- C_1 : $\neg T \lor M \lor E$
- $C_2 : \neg S \lor \neg E$
- C₃ : T
- $C_4 : S$
- C₅ : ¬M

• Example:

$$T \to (M \lor E)$$

$$S \to \neg E$$

$$T \land S$$

$$\therefore M$$

- C_1 : $\neg T \lor M \lor E$
- $C_2 : \neg S \lor \neg E$
- $C_3 : T$
- C₄: S
- C₅ : ¬M
- $C_6: \neg T \lor M \lor \neg S$

(resolvent of C_1 and C_2)

• Example:

$$T \to (M \lor E)$$

$$S \to \neg E$$

$$T \land S$$

$$\therefore M$$

- C_1 : $\neg T \lor M \lor E$
- $C_2 : \neg S \lor \neg E$
- $C_3 : T$
- C₄: S
- $C_5 : \neg M$
- $C_6: \neg T \lor M \lor \neg S$
- $C_7: M \vee \neg S$

(resolvent of C_1 and C_2) (resolvent of C_3 and C_6)

• Example:

$$T \to (M \lor E)$$

$$S \to \neg E$$

$$T \land S$$

$$\therefore M$$

- C_1 : $\neg T \lor M \lor E$
- $C_2: \neg S \lor \neg E$
- $C_3 : T$
- C₄ : S
- $C_5 : \neg M$
- $C_6: \neg T \lor M \lor \neg S$
- $C_7: M \vee \neg S$
- C₈: M

(resolvent of C_1 and C_2) (resolvent of C_3 and C_6) (resolvent of C_4 and C_7)

Example:

$$T \to (M \lor E)$$

$$S \to \neg E$$

$$T \land S$$

$$\therefore M$$

- C_1 : $\neg T \lor M \lor E$
- $C_2 : \neg S \lor \neg E$
- $C_3 : T$
- $C_4 : S$
- $C_5 : \neg M$
- $C_6: \neg T \lor M \lor \neg S$
- $C_7: M \vee \neg S$
- C₈ : M
- C₉ : □

(resolvent of C_1 and C_2)

(resolvent of C_3 and C_6)

(resolvent of C_4 and C_7) (resolvent of C_5 and C_8)

rument is valid

Hence, from the resolution principle, the argument is valid.

Rules of Inference for Quantified Statements

Rule of inference	Name
$\frac{\forall x \ P(x)}{\therefore ?}$	Universal instantiation
$\frac{P(c) \text{ for an arbitrary } c}{\therefore ?}$	Universal generalization
$\frac{\exists x \ P(x)}{\therefore ?}$	Existential instantiation
$\frac{P(c) \text{ for some element } c}{\therefore ?}$	Existential generalization
	Universal modus ponens
$\frac{\forall x (P(x) \to Q(x))}{\neg Q(a) \text{ where } a \text{ is a particular element in the domain}}$ $\therefore ?$	Universal modus tollens

Table: Rules of inference for quantified statements

Rule of inference	Name
$\frac{\forall x \ P(x)}{\therefore P(c)}$	Universal instantiation
$\frac{P(c) \text{ for an arbitrary } c}{\therefore \forall x \ P(x)}$	Universal generalization
$\frac{\exists x \ P(x)}{\therefore P(x) \text{ for some element } c}$	Existential instantiation
$\frac{P(c) \text{ for some element } c}{\therefore \exists x \ P(x)}$	Existential generalization
	Universal modus ponens
	Universal modus tollens

Table: Rules of inference for quantified statements

Logic Rules of inference for quantified statements

• Use rules of inference for quantified statements to show the premises "A student in this class has not read the book," and "Everyone in this class passed the first exam" imply the conclusion "Someone who has passed the first exam has not read the book."

End