MSoC Final Project

January 22, 2021

Reconstruction of Compressively Sensed Diagnostic Images Using HLS Solution

Presenter: Ting-Yang Chen, Yu-Cheng Lin, I-Hsuan Liu

Team#: 1

Graduate Institute of Electronics Engineering, National Taiwan University

https://github.com/linkingmon/ReconNet-hls https://github.com/tingyungchen/ReconNet

Outline

- Introduction
 - CT Images
 - Compressive sensing
 - ReconNet
- Software simulation
- HLS implementation
- PYNQ implementation
- Summary & Future Work

Diagnostic Images

Diagnostic images nowadays

- CT, radiography and MRI images
- Poor image quality produced in radiographic examinations
- Much radiation exposure to patients through repeated radio graphic examinations, loss of diagnostic information

Solutions

- Compressive sensing to reconstruct images from underdetermined linear systems
- Reducing patient dose and loss of information

Compressive sensing

Compressive sensing

– The matrix Φ reduces the dimension of the signal x

Reconstruction

- Underdetermined linear systems
- Solved by algorithms or neural network

Reconstruction with ReconNet

CS measurements

- Measurement matrix Φ is a random Gaussian matrix of appropriate size
- Initial image estimate
 - A FC layer maps the CS measurements vector to a 2D array
 - Due to large size, patch-based method is applied
- ReconNet used to solve the image reconstruction problem

Implementation Target

ReconNet

Three convolutional layers

- All intermediate feature maps are 33×33
- ReconNet Unit
 - first convolutional layer 11×11 , generates 64 feature maps
 - second convolutional layer 1×1 , generates 32 feature maps
 - third convolutional layer 7×7 , generates the output block
- ReLU is followed after each convolutional layer

Loss Function of ReconNet

Euclidean Loss

- mini-batch gradient descent with backpropagation

$$L(\Theta) = \frac{1}{B} \sum_{i=1}^{B} \| f(\mathbf{y}_i, \Theta) - \mathbf{x}_i \|^2$$

Euclidean + Adversarial Loss

- ReconNet units acts as generator g
- Discriminator D outputs the probability of the input being a real image block
- Parameters of g & D update in alternating fashion

Outline

- Introduction
 - CT Images
 - Compressive sensing
 - ReconNet
- Software simulation
- HLS implementation
- PYNQ implementation
- Summary & Future Work

ReconNet Reconstruction (4x Reduction)

- Euclidean + adversarial with Learned Φ , trained with Adam optimizer
 - MR = 0.25, mean PSNR is 30.43 (total 346)

Original

Reconstructed

Outline

- Introduction
 - Compressive sensing
 - ReconNet
- Software simulation
- HLS implementation
 - HLS Workflow
 - Model quantization
 - Dataflow, streaming and line-buffer
 - Comparison Table
- PYNQ implementation
- Summary & Future Work

Workflow

- Cosim cost several days, so we skip this step
- All the works are our original work

Model Quantization (1/2)

- Fixed point arithmetic uses significantly fewer resources for basic operations and less memory usage
- However, range of model weights and feature map varies from layers (Even 24 bit fixed point get poor results)
- We use float-16 (1 signed, 5 exp, 10 mantissa) for implementation (Software verified)

#include "hls half.h"
typedef half data type;

Float32

Float16

Original

Model Quantization (2/2)

Post-training quantization

- Reduce ReconNet model size
- Reduce hardware resources

Simple linear equation applied

- r is the real value (usually *float32*)
- q is its quantized representation as a
 B-bit integer(uint8, uint32, etc.)
- S (float32) and z (uint) are the factors
 by which we scaling and shifting
- z is the quantized zero-point

$$r = S(q - z)$$

Dataflow pipelining

- There are two main functions: Zero-padding & Convolution 2d
- Dataflow pipelining the execution of convolutional
 - Don't need to wait until all convolution completes
 - Data buffers (FIFO or PingPong buffer) were added in each layer
 - We choose FIFO for higher throughput and lower resources

Line buffer for convolution operation

2D Line buffer Library

• If the line buffer is specify as 1D (7712×1), the array partition number of layer2 (32 channel kernel 7)exceeds 1024 (error!)

```
hls::LineBuffer<INPUT_SIZE * INPUT_CHANNELS * (KERNEL_SIZE -1) + KERNEL_SIZE * INPUT_CHANNELS, 1, data_type> conv_buff;
```

 We modified the Linebuffer to 2D (241 x 32), then the array partition number satisfies, however, the channel will be non-parallizable

```
hls::LineBuffer<INPUT_SIZE * (KERNEL_SIZE -1) + KERNEL_SIZE , INPUT_CHANNELS, data_type> conv_buff;
```

```
template<int ROWS, int COLS, typename T>
class LineBuffer<ROWS, COLS, T, 0> {
public:
    LineBuffer() {

#pragma HLS array_partition variable=val dim=1 complete

#pragma HLS dependence variable=val inter talse

#pragma HLS dependence variable=val intra false

};

/* LineBuffer main APIs */
void shift_pixels_up(int col);
void shift_pixels_down(int col);
void insert_bottom_row(T value, int col);
void insert_top_row(T value, int col);
void get_col(T value[ROWS], int col);
T& getval(int row, int col);
T& operator ()(int row, int col);
```


2D Line buffer Resource usage

The HLS results of 32 bit data type is as follows

+	- BRAM 18K	nenael	+ FF I	+ LUT	URAM
Name	DIVAL: TOK	D3P46E	FF [LUI I	UKAN
DSP		 -	+ -	+ -	 - I
Expression	i -i	-i	0	50	-i
FIFO	50	-	1275	1175	-
Instance	491	23	84683	41123	0
Memory	44	-1	0	0	0
Multiplexer	l -l	-1	-	815	-
Register	l -I	-	51	-	-
+	++	+	+	+	+
Total	585	23	86009	43163	0
+	++	+	+	+	+
Available	280	220	106400	53200	0
+		+	+	+	+
Utilization (%)	208	10	80	81	0
+		+	+	+	+

By changing the datatype to half (float16), the non-parallel part is then realized by FF.

+	++ BRAM_18K	DSP48E	FF	LUT	URAM
+	++	+	+	+	+
DSP	-	-	-	-	-1
Expression	-	-	0	50	-
FIFO	25	-	875	975	-
Instance	5	18	55162	40192	0
Memory	22	-	64	16	0
Multiplexer	-	-	-	815	-
Register	-	-	51	-1	-
+	++	+	+	+	+
Total	52	18	56152	42048	0
+	+			+	+
Available	280	220	106400	53200	0
+	++	+	+	+	+
Utilization (%)	18	8	52	79	0
+	+		+	+	+

Comparison table

Final resources

+ Name	+ BRAM_18K	DSP48E	FF	LUT	URAM
+	++ 		+	+	+
DSP	-	-	-	-1	-
Expression	-	-	0	50	-
FIFO	25	-	875	975	-
Instance	5	18	55162	40192	0
Memory	22	-	64	16	0
Multiplexer	-	-	-	815	-
Register	-	-	51	-	-
+	+	+		+	+
Total	52	18	56152	42048	0
Available	+ 280	- 220	106400	53200 l	+ 0
+	+				+
Utilization (%)	18	8	52	79	øj
+	++			+	+

Latency

Outline

- Introduction
 - Compressive sensing
 - ReconNet
- Software implementation
- HLS implementation
- PYNQ implementation
 - Top level architecture
 - Host program
 - Demo
- Summary & Future Work

Top level architecture

Apply AXI stream as interface

```
#pragma HLS INTERFACE axis port=AXI_video_stream_in bundle=VIDEO_IN
#pragma HLS INTERFACE axis port=AXI_video_stream_out bundle=VIDEO_OUT
#pragma HLS INTERFACE s_axilite port=return bundle=CONTROL
```


Host program

```
ol = Overlay("/home/xilinx/IPBitFile/yclin/ReconNet2.bit")
ip ReconNet = ol.ReconNet Ø
ipDMAIn = ol.axi dma in 0
ipDMAOut = ol.axi dma out 0
n row = 33
n col = 33
\# n \ col. = 256+144
numSamples = n row*n col
image = cv2.imread('barbara.tif',cv2.IMREAD UNCHANGED)
print("Shape of image reshape", image.shape)
xlnk = Xlnk()
inBuffer0 = xlnk.cma array(shape=(numSamples,), dtype=np.single)
outBuffer0 = xlnk.cma array(shape=(numSamples,), dtype=np.single)
for i in range(n row):
    for j in range(n col):
        inBuffer0[i*n col+j] = image[i][j]
ip ReconNet.write(0x00, 0x01)
ipDMAIn.sendchannel.transfer(inBuffer0)
ipDMAOut.recvchannel.transfer(outBuffer0)
ipDMAIn.sendchannel.wait()
ipDMAOut.recvchannel.wait()
print("======"")
print("Exit process")
```

Read bit stream

Read input feature map

Store input feature map to Xlnk

Start Kernel and wait till DMA_out receive all values

Demo

• Reconstruction of 256x256 image (4x transmission reduction)

Final Performance

Performance

 Reach a reconstruction of PSNR over 30(dB) on CT image (Human cannot tell whether the image is real or fake by eye)

Hardware implementation

- The network require memory to store the weight (Weight stationary)
- The image is streaming into and out of the submodule (streaming)
- Utilize half data type to reduce resources while maintaining performance

Summary

- Algorithms
 - Construct high resolution image by ReconNet
 - Slice full image into patches to reduce model size
 - Model Quantization make the solution more hardware efficient
- HLS
 - Dataflow pipelining with data streaming
 - Utilize half data type to reduce resources while maintaining performance
 - Loop pipelining to speed up
- FPGA implementation

Future Work

- Real time high resolution video streaming (v.s. H.264)
- Motion vector aided bypassing
 - Find Motion vector by motion estimation algorithms on low resolution picture and predict on high resolution picture
 - Enhance frame rate
- Make the model more scalable

Reference

[1] S. Lohit, K. Kulkarni, R. Kerviche, P. Turaga and A. Ashok, "Convolutional Neural Networks for Noniterative Reconstruction of Compressively Sensed Images," in *IEEE Transactions on Computational Imaging*, vol. 4, no. 3, pp. 326-340, Sept. 2018