



## PROGRAMAÇÃO ORIENTADA AOS OBJETOS

## 2024/2025

## **EXERCÍCIO DE AVALIAÇÃO #2**

Prazo de entrega: 04/11/2024 Cotação: 1.5 valores

Plataforma: Inforestudante

## **Notas Importantes:**

1 – Este exercício deverá ser realizado em grupo (2 estudantes da mesma turma).

2 – A fraude denota uma grave falta de ética e constitui um comportamento não admissível. Qualquer tentativa de fraude leva a anulação do exercício tanto do facilitador como do prevaricador.

O Laboratório NCS (*Networks, Communications, and Security, Redes, Comunicações* e *Segurança*) encomendou o desenvolvimento de um programa que permita a gestão da sua infraestrutura ICT (*Information and Communication Technologies, Tecnologias* de *Informação* e *Comunicação*). O laboratório tem diferentes tipos de computadores que incluem servidores, laptops, e Raspberry Pis. Os servidores estão ao nível de *Cloud*, os laptops ao nível de *Edge*, e os Raspberry Pis ao nível *IoT* (*Internet of Things, Internet das Coisas*). Para alem do seu nível dentro da infraestrutura ICT, todos os computadores têm um ID gerado pelo *Helpdesk*, memoria RAM, espaço de armazenamento (disco), capacidade de processamento (CPU), e uma arquitetura que pode ser x64 ou ARM. Para cada tipo de computador, os níveis iniciais são aleatórios¹, segundo as gamas seguintes:

| Tipo         | RAM (GB) | Disco (GB) | CPU (GHz) |
|--------------|----------|------------|-----------|
| Servidor     | 128-512  | 1024-10240 | 3.0-4.0   |
| Laptop       | 16-64    | 256-1024   | 2.0-3.0   |
| Raspberry Pi | 2-8      | 16-128     | 1.0-2.0   |

<sup>&</sup>lt;sup>1</sup> Para valores de RAM e disco o resultado deve ser um número potência de 2.





Pretende-se desenvolver um programa para a gestão dos computadores do Laboratório NCS. Para isso, deve completar as seguintes alíneas:

- A. Crie as classes necessárias para representar o problema descrito.
- B. Crie a classe "NCSLab" e defina uma estrutura (ArrayList de Computadores) que contenha 5 servidores, 5 laptops, e 5 Raspberry Pis para verificar as funcionalidades indicadas nas alíneas seguintes.
- C. Desenvolva o código necessário para imprimir todos os computadores (ID, RAM, disco, CPU, nível).
- D. Desenvolva o código necessário para mostrar todos os computadores de arquitetura x64.
- E. Desenvolva o código necessário para calcular o consumo energético do computador em watts, tendo em conta as fórmulas seguintes:

| Tipo         | Fórmula                                                                           |
|--------------|-----------------------------------------------------------------------------------|
| Servidor     | 80 x frequência CPU                                                               |
| Laptop       | (50 x frequência CPU x 1.2); se tem GPU;<br>(50 x frequência CPU); se não tem GPU |
| Raspberry Pi | 20 x frequência CPU                                                               |

Serão penalizadas soluções que não sigam os princípios da programação orientada aos objetos e os conceitos de herança e polimorfismo. As soluções devem ter em consideração boas práticas de programação. Não é permitido o uso dos métodos *instaceOf(), getClass()* e semelhantes. Não deverão ser usados métodos estáticos (para além do main), nem variáveis estáticas.

ENTREGA: Deve ser feita na plataforma *InforEstudante* num ficheiro em formato .zip seguindo o formato: *Exercicio2NomesAlunos.zip*. Este ficheiro deverá conter apenas o código fonte da aplicação.