Create Fit Options and Fit Type Before Fitting

Load and plot the data, create fit options and fit type using the fittype and fitoptions functions, then create and plot the fit.

Load and plot the data in census.mat.

```
load census
plot(cdate,pop,'o')
```


Create a fit options object and a fit type for the custom nonlinear model $y = a(x - b)^n$, where a and b are coefficients and n is a problem-dependent parameter.

Fit the data using the fit options and a value of n = 2.

[curve2,gof2] = fit(cdate,pop,ft,'problem',2)

```
curve2 =
     General model:
     curve2(x) = a*(x-b)^n
     Coefficients (with 95% confidence bounds):
             0.006092 (0.005743, 0.006441)
       b =
                  1789 (1784, 1793)
     Problem parameters:
       n =
gof2 =
           sse: 246.1543
       rsquare: 0.9980
           dfe: 19
    adjrsquare: 0.9979
          rmse: 3.5994
Fit the data using the fit options and a value of n = 3.
[curve3,gof3] = fit(cdate,pop,ft,'problem',3)
curve3 =
     General model:
     curve3(x) = a*(x-b)^n
     Coefficients (with 95% confidence bounds):
             1.359e-05 (1.245e-05, 1.474e-05)
       b =
                   1725 (1718, 1731)
     Problem parameters:
       n =
qof3 =
           sse: 232.0058
       rsquare: 0.9981
           dfe: 19
    adjrsquare: 0.9980
          rmse: 3.4944
Plot the fit results with the data.
hold on
plot(curve2, 'm')
plot(curve3,'c')
legend('Data','n=2','n=3')
hold off
```


Copyright 2015 The MathWorks, Inc. Published with MATLAB® R2016a