SAÜ BİLGİSAYAR VE BİLİŞİM BİLİMLERİ FAKÜLTESI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DİFERENSİYEL DENKLEMLER DERSİ ARASINAVI

İŞLEM YAPILMADAN VERİLEN CEVAPLAR DİKKATE ALINMAYACAKTIR.

- 1. c_1 ve c_2 keyfi sabitler olmak üzere $y = c_1 x + \frac{c_2}{x}$ eğri ailesini çözüm kabul eden en düşük basamaktan diferensiyel denklemi elde ediniz. Elde ettiğiniz denklemin mertebe, derece ve lineerliğini belirtiniz.
- 2. $xy' = x^4(y-x)^2 + y$ denklemi için önce $y = ax (a \in R)$ şeklinde bir özel çözüm araştırınız. Daha sonra bu özel çözüm yardımıyla genel çözümünü bulunuz
- 3. $y = xp + \sqrt{a^2p^2 + b^2}$ (p = y', a ve b sabitler.) denkleminin genel çözümünü ve varsa aykırı çözümünü bulunuz.
- 4. Karakteristik denkleminin kökleri $3 \mp 5i$, $3 \mp 5i$, $-\sqrt{3}$, $-\sqrt{3}$, 0, 4, 4, 4 olan sabit katsayılı lineer homojen denkleme ilişkin,
- a) Lineer bağımsız çözümler için temel çözümler kümesini yazınız.
- b) Denklemin genel çözümünü yazınız.

SÜRE: 70 DAKİKADIR.

BAŞARILAR DİLERİM.

1)
$$y = c_1 \times + c_1 \times^{-1}$$

(3) $y' = c_1 - c_2 \times^{-2}$

(2) $z = \frac{1}{2} \times^3 z^{-1}$

(3) $y' = 2c_1 \times^{-3}$

(4) $z = y' + \frac{1}{2} \times y''$

(5) $z = 2c_1 \times^{-3}$

(7) $z = y' + \frac{1}{2} \times y''$

(8) $z = 2c_1 \times^{-3}$

(9) $z = 2c_1 \times^{-3}$

(1) $z = y' + \frac{1}{2} \times y''$

(2) $z = y' + \frac{1}{2} \times y''$

(3) $z = x + \frac{1}{2} \times y'' + xy' + y''$

(4) $z = x + \frac{1}{2} \times y' + \frac{1}{2} \times y''$

(5) $z = x + \frac{1}{2} \times y'' + xy'' + y''$

3)
$$y = xp + \sqrt{a^{2}p^{2} + b^{2}}$$
 Clairant

 $x = gan + bce alining a$
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp
 dp