Limitaciones de la Lógica Proposicional: Expresividad

Intente expresar en lógica proposicional las siguientes afirmaciones:

- María es una persona
- Juan es una persona
- María es mortal
- María y Juan son hermanos

Una solución

p: María es una persona

q: Juan es una persona

r: María es mortal

s: María y Juan son hermanos

Limitaciones de la Lógica Proposicional: Expresividad

Intente expresar en lógica proposicional las siguientes afirmaciones:

Una solución

p: María es una persona

q: Juan es una persona

r: María es mortal

s: María y Juan son hermanos

¿Cómo vinculamos a María de la primera oración con María de la tercera oración? ¿Y cómo vinculamos a María y Juan?

Limitaciones de la Lógica Proposicional: Expresividad

Intente expresar en lógica proposicional las siguientes afirmaciones:

- Todas las personas son mortales;
- Hay una persona que es espía.

Una solución

- Podemos dar un nombre a todas las personas y expresar este hecho mediante proposiciones:
- María-es-mortal Λ Juan-es-mortal Λ Chris-es-mortal Λ...Λ
 Michael-es-mortal
- María-es-un-espía V John-es-un-espía V Chris-es-un-espía V... V Michael-es-un-espía

Lógica de Primer Orden

...lógica predicativa, lógica de predicados o cálculo de predicados

Lógica de Predicados: introducción

- Estudia las frases declarativas con más detalle
 - De quién se afirma (sujeto o objeto)
 - Qué se afirma (predicado o relación)
- Proposiciones: ejemplo

```
p : El <u>perro</u> es un animal.q : La <u>vaca</u> es un animal.r : El <u>tigre</u> es un animal
```

Proposiciones

- Funciones proposicionales
 - P(x): x es un animal.
 - **P(x)** no es una proposición es una función proposicional cuyo valor depende de la variable x

Los cuantificadores nos permiten construir proposiciones a partir de funciones proposicionales

Lógica de Predicados: sintaxis

- Alfabeto
 - Variables: X, Y, Z...
 - Constantes: a,b,c...
 - Funciones: f, g, h....(se puede incluir la aridad, f²)
 - Letras Predicados: p, q, r... (se puede incluir la aridad, p³)
- Conectivas
 - $\{\neg, \land, \lor, \rightarrow, \longleftrightarrow, (,)\}$
- Cuantificadores
 - ∀,∃

Cuantificadores

Universal

 $\forall x \ P(x)$ se lee como "Para todo x, P(x)" o "Para cada x, P(x)" $\forall x \ P(x)$ es igual que $P(x_1) \land P(x_2)$... $\land P(x_n)$)... para todos los x_i en U

Existencial

 $\exists x \ P(x)$ se lee como "Existe un x, P(x)" o "Para algún x, P(x)" $\exists x \ P(x)$ es igual que $P(x_1) \ V \ P(x_2)... \ V \ P(x_n)$)... para todos los x_i en U

A todos los niños les encanta el helado

- De quién se afirma (sujeto o objeto):
 - los niños
- Qué se afirma (predicado o relación):
 - encanta helado (qué aridad? uno)

```
Dominio = personas
```

 $\forall x$: niño(x) \rightarrow encantaHelado (x)

 $\forall x$: niño(x) \land encantaHelado (x)

A todos los niños les encanta el helado

Dominio = personas

 $\forall x: niño(x) \rightarrow encantaHelado(x)$

es posible que X no sea un niño pero (sin embargo) ama el helado

 $\forall x: niño(x) \land encantaHelado(x)$

solo hay niños en el universo de discurso y les encanta el helado

∀X: niño(X)	∀X: encantaHelado (X)	niño(x) → encantaHelado (X)	niño(x) ∧ encantaHelado (X)
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	F

Todos en Ingeniería son Inteligentes

Dominio = personas

∀x: Pertenece(x, Ingeniería) → Inteligente (x))

- Por lo general, \rightarrow es el conectivo principal con \forall .
- Error común: usar ∧ como conectivo principal con ∀:

 $\forall x$. Pertenece (x, Ingeniería) \land Inteligente (x))

significa "Todos pertenecen a Ingeniería y todos son inteligentes"

María ama a todos

- De quién se afirma (sujeto o objeto):
 - María (es una constante)
- Qué se afirma (predicado o relación):
 - ama a todos (qué aridad? Dos)

```
Dominio = personas
Constante m = María
∀x: ama² (m, x);
```

Nota: No se necesitan más paréntesis, pero los "paréntesis adicionales" son considerados aceptables.

Por lo tanto, sería correcto también:

 $\forall x \text{ (ama (María, x)), } (\forall x \text{ ama (María, x)), } (\forall x \text{ (ama (María, x)))}$

Hay (una o más) conferencias interesantes

- De quién se afirma (sujeto o objeto):
 - conferencias interesantes
- Qué se afirma (predicado o relación):
 - Hay una o más

Dominio = eventos

 $\exists X: Conferencia(X) \land Interesante(X)$

 $\exists X: Conferencia(X) \rightarrow Interesante(X)$

Hay (una o más) conferencias interesantes

Dominio = eventos

 $\exists X$: Conferencia(X) \land Interesante (X)

Los eventos deben tener ambas propiedades

 $\exists X: Conferencia(X) \rightarrow Interesante(X)$

Aquí X también es calificado, si X no es una conferencia

∃X: conferencia(X)	∃X: interesante (X)	∃X: conferencia(X) ∧ interesante (X)	∃X: conferencia(X) → interesante (X)
V	V	V	V
V	F	F	F
F	V	F	V
F	F	F	V

Alguien en Mecánica es inteligente
Dominio = personas
∃X: Pertenece(x, Mecanica) ∧ Inteligentes (X)

- Normalmente, ∧ es el conectivo principal con ∃.
- Error común: usar → como conectivo principal con ∃:

 $\exists x. Pertenece(x, Mecánica) \rightarrow Inteligente(x)$

¡Es cierto si hay alguien que no pertenece a Mecánica!

Todos aman a todos.

- De quién se afirma (sujeto o objeto):
 - Todos
- Qué se afirma (predicado o relación):
 - Aman a todos (aridad? Dos)

Dominio = personas

 $\forall x \forall y \text{ amar } (x, y)$

Todos los estudiantes sonríen.

- **De quién se afirma** (sujeto o objeto):
 - Todos los estudiantes
- Qué se afirma (predicado o relación):
 - sonrien (aridad? uno)

```
Dominio = personas \forall x \text{ (estudiante (x) } \rightarrow \text{ sonrisa (x))}
```

Todos caminan o hablan.

- De quién se afirma (sujeto o objeto):
 - Todos
- Qué se afirma (predicado o relación):
 - caminan o hablan (aridad? uno)

```
Dominio = personas \forall x \text{ (caminar } (x) \lor \text{ hablar } (x))
```

Todos los informáticos son listos y Juan es informático, luego Juan es listo.

Dominio = personas Constante juan = Juan

 $(\forall x \text{ (informatico } (x) \rightarrow \text{listo } (x)) \land \text{informatico } (\text{juan})) \rightarrow \text{listo}(\text{juan})$

Práctica 2