Catalog

Question 1	
Question 2	2
Question 5	
Question 6	

Question 1

Answer:

The relationships between the four notions of differential privacy are as follows:

- 1. Pure Differential Privacy (ϵ -DP) implies Approximate Differential Privacy ((ϵ , δ)-DP), but not vice versa. Under ϵ -DP, the privacy loss random variable is almost surely bounded between $-\epsilon$ and ϵ because the ratio of probabilities $\Pr[A(D) = o]/\Pr[A(D') = o]$ is bounded by e^{ϵ} . This strict bound means that for all outputs, the difference in probabilities is tightly controlled, satisfying (ϵ , ϵ)-DP with ϵ = 0. However, (ϵ , ϵ)-DP allows the privacy loss to exceed ϵ with probability up to ϵ , so it does not imply the strict bounds of ϵ -DP unless ϵ = 0.
- 2. Pure Differential Privacy (ϵ -DP) implies Zero-Concentrated Differential Privacy (ρ -zCDP), but not vice versa. In ϵ -DP, the bounded privacy loss random variable ensures sub-Gaussian tails with parameter $\rho \geq \epsilon^2/2$. This sub-Gaussian behavior aligns with the definition of zCDP, where the privacy loss random variable has a certain concentration (controlled variance). Conversely, zCDP allows for unbounded privacy loss values with sub-Gaussian tails, so it does not enforce the strict bounds required by ϵ -DP.
- 3. Zero-Concentrated Differential Privacy (ρ -zCDP) implies Rényi Differential Privacy (α , $\epsilon'(\alpha)$ -RDP), but not necessarily the other way around. zCDP ensures that the privacy loss random variable is sub-Gaussian, which implies that the Rényi divergence of order α between A(D) and A(D') is at most $\epsilon'(\alpha) = \rho\alpha$. This directly satisfies the definition of RDP. However, RDP can allow for privacy loss random variables with heavier tails (sub-exponential), so it does not always imply the sub-Gaussian concentration required for zCDP unless additional conditions are met.
- 4. Rényi Differential Privacy $(\alpha, \epsilon'(\alpha)-RDP)$ implies Approximate Differential Privacy $((\epsilon, \delta)-DP)$, and vice versa under certain parameters. RDP bounds the Rényi divergence, which controls the moments of the privacy loss random variable. By applying concentration inequalities, one can derive $(\epsilon, \delta)-DP$ guarantees from RDP parameters. Similarly, $(\epsilon, \delta)-DP$ provides bounds on the cumulative distribution function of the privacy loss, which can be used to derive RDP parameters for certain α . The conversion between RDP and approximate DP depends on the specific values of α , ϵ , and δ .

- 5. Zero-Concentrated Differential Privacy (ρ -zCDP) implies Approximate Differential Privacy ((ϵ , δ)-DP), but not vice versa. The sub-Gaussian nature of the privacy loss random variable in zCDP allows us to bound the probability that the privacy loss exceeds any ϵ , leading to (ϵ , δ)-DP with δ depending on ρ and ϵ . Specifically, tail bounds for sub-Gaussian distributions show that the probability of large deviations decreases exponentially, satisfying the δ requirement. However, approximate DP allows for heavier-tailed distributions (sub-exponential), so it does not ensure the sub-Gaussian concentration needed for zCDP.
- 6. Pure Differential Privacy (ϵ -DP) implies Rényi Differential Privacy (α , $\epsilon'(\alpha)$ -RDP), but not vice versa. Since ϵ -DP bounds the privacy loss random variable between $-\epsilon$ and ϵ , all its moments are bounded, and the Rényi divergence of any order α is at most $\epsilon'(\alpha) = \alpha\epsilon^2/2$ (for $\alpha \geq 1$). This satisfies the RDP definition with specific $\epsilon'(\alpha)$. Conversely, RDP does not impose the strict pointwise bounds on the privacy loss random variable required for ϵ -DP unless $\epsilon'(\alpha)$ is zero for all α , which is trivial.

In conclusion, the implications between these notions form a hierarchy based on the restrictiveness of the privacy guarantees, primarily determined by the behavior of the privacy loss random variable:

Pure DP (most restrictive, bounded privacy loss) implies zCDP (sub-Gaussian privacy loss), zCDP implies RDP (controls on the Rényi divergence, sub-exponential tails), RDP implies Approximate DP (least restrictive, allows small probability δ of larger privacy loss).

Question 2

Answer:

- (a) Since the privacy loss L(o) is almost surely equal to ε_0 , it means that for all outputs o, we have $\ln\left(\frac{\Pr[A(D)=o]}{\Pr[A(D')=o]}\right)=\varepsilon_0$. This implies $\Pr[A(D)=o]=e^{\varepsilon_0}\Pr[A(D')=o]$ for all o. Therefore, the mechanism satisfies Pure Differential Privacy (ε -DP) with $\varepsilon=\varepsilon_0$, because the ratio of probabilities is exactly bounded by e^{ε_0} .
- (b) The privacy loss L(o) lies within $[0, \varepsilon_1]$ for all outputs o, which means $\ln\left(\frac{\Pr[A(D)=o]}{\Pr[A(D')=o]}\right) \leq \varepsilon_1$ and $\Pr[A(D)=o] \leq e^{\varepsilon_1}\Pr[A(D')=o]$. Additionally, since $L(o) \geq 0$, $\Pr[A(D')=o] \leq \Pr[A(D)=o]$. Thus, the mechanism satisfies Pure Differential Privacy (ε -DP) with $\varepsilon=\varepsilon_1$, as the privacy loss is bounded within $[0,\varepsilon_1]$.
- (c) The privacy loss L(o) follows a normal distribution with mean 0 and variance σ^2 , exhibiting sub-Gaussian tails. This implies that for all $\alpha>1$, the Rényi divergence $D_{\alpha}(A(D)\parallel A(D'))\leq \frac{\alpha}{2\sigma^2}$. Hence, the mechanism satisfies Zero-Concentrated Differential Privacy (p-zCDP) with $\rho=\frac{1}{2\sigma^2}$, because the privacy loss random variable meets the sub-Gaussian concentration required by zCDP.

- (d) Here, L(o) follows a Laplace distribution with sub-exponential tails, which means the moment-generating function exists only within a finite interval. This allows us to bound the Rényi divergence $D_{\alpha}(A(D) \parallel A(D'))$ by $\varepsilon'(\alpha) = \frac{\alpha}{b}$ for $\alpha > 1$. Therefore, the mechanism satisfies Rényi Differential Privacy $(\alpha, \varepsilon'(\alpha)$ -RDP), as it provides explicit bounds on the Rényi divergence based on the scale parameter b.
- (e) The privacy loss L(o) takes values $\pm \varepsilon_2$ with equal probability, so $|L(o)| = \varepsilon_2$ almost surely. This means that both $\Pr[A(D) = o] \le e^{\varepsilon_2} \Pr[A(D') = o]$ and $\Pr[A(D') = o] \le e^{\varepsilon_2} \Pr[A(D) = o]$ hold for all o. Consequently, the mechanism satisfies Pure Differential Privacy (ε -DP) with $\varepsilon = \varepsilon_2$, due to the absolute bound on the privacy loss.

In summary:

- (a) represents (1) Pure Differential Privacy (ε-DP).
- (b) represents (1) Pure Differential Privacy (ε-DP).
- (c) represents (3) Zero-Concentrated Differential Privacy (ρ-zCDP).
- (d) represents (4) Rényi Differential Privacy (α , $\epsilon'(\alpha)$ -RDP).
- (e) represents (1) Pure Differential Privacy (ε-DP).

Each privacy loss distribution corresponds to the strictest differential privacy notion it satisfies, and by the implications established, it also satisfies the less restrictive notions.

Question 5

Answer:

To show that the VC dimension of the class \mathcal{C} of convex subsets in the unit square $[0,1]^2$ is ∞ , need to demonstrate that for any positive integer n, there exists a set of n points in $[0,1]^2$ that can be shattered by \mathcal{C} .

1. Selection of Points:

Let n be any positive integer.

Choose n distinct points $\{x_1, x_2, ..., x_n\}$ in $[0,1]^2$ such that no three points are colinear (they are in general position). Since $[0,1]^2$ is uncountably infinite, always select such points within the unit square.

2. Shattering the Points:

For any binary labeling of these n points (each point labeled either 0 or 1), to find a convex set $S \subseteq [0,1]^2$ such that:

All points labeled 1 are inside S.

All points labeled 0 are outside S.

3. Construction of the Convex Set:

If all points are labeled 1:

The convex hull of all the points $\{x_1, x_2, ..., x_n\}$ is a convex set containing all the points, satisfying the labeling.

If some points are labeled 0 and others 1:

Let P_1 be the set of points labeled 1.

Let P_0 be the set of points labeled 0.

Construct the convex hull $Conv(P_1)$ of the positively labeled points P_1 . This is the smallest convex set containing all points in P_1 .

Since the points are in general position, for each negatively labeled point $x_i \in P_0$, there exists a hyperplane (in 2D, a straight line) that separates x_i from Conv (P_1) .

For each $x_i \in P_0$, introduce a half-plane that excludes x_i but includes $Conv(P_1)$. Intersecting Convex Sets:

The intersection of convex sets is convex. Therefore, intersecting $Conv(P_1)$ with the half-planes that exclude the negatively labeled points yields a convex set S that contains all positively labeled points and excludes all negatively labeled points.

Conclusion:

Since can construct such a convex set S for any binary labeling of the n points, the set of points $\{x_1, x_2, ..., x_n\}$ is shattered by C.

As n was arbitrary, this process works for any positive integer n.

Therefore, the VC dimension of C is ∞ .

Question 6

Answer:

An infinite VC dimension implies that the class \mathcal{C} is not PAC learnable, because no finite sample size can guarantee uniform convergence between empirical risk and true risk for all distributions over $[0,1]^2$; thus, learning \mathcal{C} with arbitrarily high accuracy and confidence is impossible in the PAC framework.