

LAPORAN PROYEK AKHIR MATA KULIAH MACHINE LEARNING

HANDWRITTEN LETTER RECOGNITION

Disusun oleh:

Yunus Marsetio	C14190065	2019
Peter Yudhistira	C14190067	2019
Michael Halim S.	C14190119	2019

Universitas Kristen Petra Surabaya 2021

DAFTAR ISI

ANGGOTA KELOMPOK DAN PEMBAGIAN KERJA	<i>3</i>
DASAR TEORI	3
Artificial Neural Network	3
Normalisasi – Min-max Scaling	4
Convolutional Neural Network	5
Maxpooling Layer	5
Dropout Layer	5
Dense Neural Network	5
DATASET	6
MODEL NEURAL NETWORK	10
HASIL PERCOBAAN	12
Hasil Percobaan dengan Model Neural Network A	12
Hasil Percobaan dengan Model Neural Network B	12
Hasil Percobaan dengan Model Neural Network C	13
Hasil Percobaan dengan Model Neural Network D	13
Rata-rata Akurasi	13
Rata-rata Akurasi dengan Sample 1, 5, dan 6	14
Rata-rata Akurasi dengan Sample 2, 3, dan 4	15
KESIMPULAN	16
Daftar Pustaka	18

ANGGOTA KELOMPOK DAN PEMBAGIAN KERJA

Nama Anggota Kelompok	Tugas						
Yunus Marsetio	Data preprocessing, Membuat susunan neural network, manipulasi epoch, menjalankan percobaan.						
Peter Yudhistira	Manipulasi dataset, manipulasi layer, menjalankan percobaan, mencatat dan menyimpulkan hasil percobaan.						
Michael Halim Senatra	Mencari dataset, mempersiapkan dataset, data preprocessing, menjalankan percobaan.						

DASAR TEORI

Artificial Neural Network

Artificial Neural Network adalah sebuah metode *machine learning* yang terdiri dari banyak unit yang dirancang untuk bekerja selayaknya system syaraf bekerja. Sebuah neural network menerima banyak input dan mengeluarkan satu output, yang didapatkan via fungsi aktivasi yang dikerjakan pada input-input yang dimasukkan. Input-input yang dimasukkan memiliki weight tertentu.

Neural network dapat digunakan untuk melakukan klasifikasi data. Jenis neural network yang digunakan untuk tujuan ini adalah Multilayer Perceptron (MLP). Seperti pada namanya, network ini memiliki tiga jenis layer: input layer, hidden layer, dan output layer. Pada input layer, data dimasukkan kedalam neural network. Pada hidden layer, dilakukan metode-metode untuk mempropagasikan input agar

semua neuron pada hidden layer bisa melakukan perhitungan. Boleh terdapat lebih dari satu hidden layer, tergantung kebutuhan. Pada output layer, nilai-nilai yang sudah diperhitungkan di hidden layer diarahkan pada sekumpulan node output. Output yang memiliki nilai paling besar menjadi output pilihan.

Normalisasi – Min-max Scaling

Normalisasi adalah sebuah teknik *data preparation* dalam *machine learning*. Tujuannya adalah mengganti nilai numerik dari sebuah kolom pada dataset sesuai skala yang diinginkan, sehingga data bisa dimasukkan ke fungsi tertentu. Data yang sudah dinormalisasi magnitudonya sama dengan data yang belum dinormalisasi. Ada banyak metode normalisasi. Dalam proyek kami, kami menggunakan metode *Min-Max Scaling*. Dalam metode ini, ditentukan minimum dan maksimum dari ukuran data yang baru, yaitu 0 sebagai minimum dan 1 sebagai maksimum. Setelah itu, data akan di-*scaling* terhadap nilai maksimum bari, dan ditranslasi menurut minimum baru untuk mendapatkan nilai pasca normalisasi (Djuwiantho, 2021, slide 31). Normalisasi mengikuti formula berikut ini:

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

Dengan:

- V': titik data hasil scaling.
- V: titik data sebelum scaling
- Min_A: nilai minimum dari data sebelum scaling
- Max_A: nilai maksimum dari data sebelum scaling
- New_min_A: nilai minimum dari data setelah scaling

• New_max_A: nilai maksimum dari data setelah scaling

Setelah normalisasi, nilai akan berada pada *range* 0 sampai 1, dan magnitudo dipertahankan.

Convolutional Neural Network

Convolutional Neural Network adalah suatu metode deep learning yang digunakan untuk menganalisis gambar. Dalam layer konvolusi ini, input dibagi menjadi beberapa bagian lokal yang disebut kernel. Ukuran kernel bisa diatur sesuai kebutuhan. Pergeseran dari kernel disebut stride. Untuk CNN dengan kernel dengan dimensi lebih dari 1x1, padding harus ditambahkan pada gambar input, supaya resolusi output dipertahankan (Anak AI, 2021)

Maxpooling Layer

Maxpooling adalah sebuah fungsi untuk mengurangi jumlah sampel data gambar 2 dimensi. Pengurangan terjadi dengan cara mengambil data dengan nilai paling besar dari sebuah pool yang memiliki dimensi tertentu (Keras Documentation).

Dropout Layer

Dropout Layer adalah sebuah fungsi regularisasi pada neural network yang menutup secara sengaja beberapa neuron input secara acak dalam sebuah layer per epoch, atau per batch. Tujuannya adalah mencegah overfitting. Adanya dropout layer mengurangi *loss* dan memperbaiki *accuracy* (Versloot, December 2019).

Dense Neural Network

Dense Neural Network adalah sebuah layer neural network yang padat, dimana setiap neuron terkoneksi dengan neuron lainnya; bisa dikatakan ini adalah *fully-connected layer*. *Layer* ini digunakan pada fase klasifikasi, setelah fase feature extraction selesai. Dense Neural Network memberikan kombinasi maksimal dari hubungan setiap node untuk memaksimalkan hasil learning. Karena sifat dari data

kami, dimana output yang diminta bukan berupa Boolean (bukan hanya "ya" atau "tidak"; ada 52 output yang masing-masing berkorespondensi dengan huruf pada abjad dan kebalikannya), aktivasi dari layer Dense terakhir adalah softmax dan bukan sigmoid (elektro programming, 2020).

DATASET

Dataset diambil dari kaggle.com/sachinpatel21/az-handwritten-alphabets-in-csv-format. Dataset berupa sekumpulan tulisan tangan dari huruf kapital A sampai Z. Dataset ini disalin dua kali; pada salinan kedua, diberlakukan vertical flip dan horizontal flip secara acak pada setiap data. Dataset kedua lalu digabung dengan dataset pertama. Huruf-huruf yang ada mempunyai resolusi 28x28 pixel, dan format warnanya grayscale. Jumlah gambar untuk tiap huruf berbeda-beda, dan data disimpan dalam format .CSV, dimana tiap baris data memuat data warna pixel dari tiap gambar dengan format Grayscale yang diwakilkan dengan angka 0 sampai 255. Terdapat 744900 buah gambar dalam dataset, yang akan dibagi menjadi training dan validating dataset. Pembagiannya mengikuti rasio 8 training : 2 validating.

Selain itu, dibuat juga 6 set alphabet A sampai Z untuk testing akurasi training. Set ini dibuat secara mandiri oleh tim dan mengandung beberapa tema variasi seperti keterbalikan dan kemiringan.

Adapun isi dari masing-masing set sample adalah:

1. Sample1: abjad A-Z tegak, tanpa dibolak-balik.

2. Sample2: abjad A-Z dengan kemiringan kurang dari 45 derajat ke dua arah.

3. Sample3: abjad A-Z dengan goresan-goresan yang tidak umum.

4. Sample4: abjad A-Z dengan kemiringan ke kanan sebesar 45 derajat.

5. Sample5: diambil dari Sample2, namun diaplikasikan vertical flip.

6. Sample6: diambil dari Sample1, namun diaplikasikan horizontal flip.

MODEL NEURAL NETWORK

Proses training dengan *neural network* melibatkan 2 fase: *feature extraction* dan *classification*. Pada fase *feature extraction*, input dimasukkan *convolution layer* dan *maxpooling*, untuk mengurangi dimensi input menjadi beberapa fitur-fitur yang relevan untuk memudahkan perhitungan. Proses ini menghasilkan output yang semakin banyak, namun berdimensi lebih kecil; diberikan juga operasi dropout untuk mencegah *overfitting*. Setelah itu, data akan di*-flatten* agar menjadi data satu dimensi, untuk memastikan ada tepat satu input yang akan dimasukkan input layer dalam fase berikutnya. Dalam fase klasifikasi, digunakan Dense layer dengan fungsi aktivasi RELU sebagai hidden layer, serta layer Dense terakhir dengan fungsi aktivasi softmax. Layer terakhir memiliki 52 node output yang masing-masing berkorespondensi dengan abjad A-Z dan kebalikannya.

Ada 4 model neural network yang kami buat, sebagai berikut:

Nama Model	Layer (Berurutan)	Keterangan	Catatan	
	Convolution 2D	32 filter, kernel 5x5, fungsi aktivasi RELU, padding same	Rancangan awal,	
	Convolution 2D	32 filter, kernel 5x5, fungsi aktivasi RELU, padding same	meniru arsitektur	
	MaxPool2D	pool size 2x2	VGG16 namun lebih	
	Dropout	Dropout rate 0.4	sederhana karena	
	Convolution 2D	64 filter, kernel 5x5, fungsi aktivasi RELU, padding same	input berupa gambar	
	Convolution 2D	64 filter, kernel 5x5, fungsi aktivasi RELU, padding same	yang resolusinya	
	Convolution 2D	64 filter, kernel 5x5, fungsi aktivasi RELU, padding same	kecil. Pada layer	
Α	MaxPool2D	pool size 2x2	convolution,	
	Dropout	Dropout rate 0.3	diberikan padding =	
	Flatten		same sehingga hasil	
	Dense	128 filter, fungsi aktivasi RELU	konvolusi sama	
	Dropout	Dropout rate 0.5	resolusinya dengan input sebelum	
	Dense	52 filter, fungsi aktivasi softmax	konvolusi.	
	Convolution 2D	32 filter, kernel 5x5, fungsi aktivasi RELU, padding same		
	MaxPool2D	pool size 2x2	Model ini dibuat	
	Dropout	Dropout rate 0.5	karena resolusi	
В	Flatten		gambar kecil. Hanya	
	Dense	128 filter, fungsi aktivasi RELU	dilakukan satu kali	
	Dense	52 filter, fungsi aktivasi softmax	convolution-dropout.	
	Convolution 2D	32 filter, kernel 5x5, fungsi aktivasi RELU, padding same		
	Convolution 2D	32 filter, kernel 5x5, fungsi aktivasi RELU, padding same	1	
	MaxPool2D	pool size 2x2	Sama seperti model	
	Dropout	Dropout rate 0.5	A, namun layer	
С	Flatten		konvolusi-	
	Dense	128 filter, fungsi aktivasi RELU	maxpooling hanya	
	Dropout	Dropout rate 0.5	satu.	
	Dense	52 filter, fungsi aktivasi softmax		
	Convolution 2D	32 filter, kernel 5x5, fungsi aktivasi RELU, padding same		
	Convolution 2D	32 filter, kernel 5x5, fungsi aktivasi RELU, padding same		
	MaxPool2D	pool size 2x2		
	Dropout	Dropout rate 0.4		
	Convolution 2D	64 filter, kernel 5x5, fungsi aktivasi RELU, padding same		
	Convolution 2D	64 filter, kernel 5x5, fungsi aktivasi RELU, padding same	C	
	Convolution 2D	64 filter, kernel 5x5, fungsi aktivasi RELU, padding same	Sama seperti model	
	MaxPool2D	pool size 2x2	A, namun	
D	Dropout	Dropout rate 0.3	menggunakan satu	
	Convolution 2D	128 filter, kernel 5x5, fungsi aktivasi RELU, padding same	layer konvolusi- maxpooling	
	Convolution 2D	128 filter, kernel 5x5, fungsi aktivasi RELU, padding same	maxpooling tambahan.	
	Convolution 2D	128 filter, kernel 5x5, fungsi aktivasi RELU, padding same	tambanan.	
	Dropout	Dropout rate 0.3		
	Flatten			
	Dense	128 filter, fungsi aktivasi RELU]	
	Dropout	Dropout rate 0.5]	
	Dense	52 filter, fungsi aktivasi softmax		

HASIL PERCOBAAN

Berikut adalah hasil percobaan dengan model neural network A hingga D. Model menggunakan feature extraction yang panjang dan hanya satu layer klasifikasi. Dilakukan percobaan untuk 5, 10, dan 20 epoch, dengan kombinasi flip vertikal dan horizontal. Dievaluasi accuracy dan loss dari data training dan validasi, serta accuracy untuk setiap sample, dari Sample1 sampai Sample6.

Hasil Percobaan dengan Model Neural Network A

	Layer		Batch									Sample	Sample	Vert.	Horz.	Rot.
No	NN	Epoch	Size	Val Acc	Val Loss	Acc	Loss	Sample1	Sample2	Sample3	Sample4	5	6	Flip	Flip	Range
1		5	100	0.9021	0.2953	0.8589	0.4555	0.8077	0.7692	0.4615	0.4231	0.7308	0.7308	FALSE	FALSE	45
2	Model A	10	100	0.9045	0.2913	0.868	0.4257	0.4615	0.5385	0.3846	0.4615	0.5	0.6154	FALSE	FALSE	45
3		15	100	0.9099	0.2725	0.8717	0.4166	0.6538	0.6538	0.5385	0.3846	0.4615	0.5	FALSE	FALSE	45
4		5	100	0.4979	0.9155	0.4646	1.0744	0.5769	0.5385	0.4231	0.2308	0.3462	0.5385	TRUE	TRUE	45
5	Model A	10	100	0.578	0.8507	0.5135	1.0114	0.3077	0.3077	0.5	0.2308	0.2308	0.3077	TRUE	TRUE	45
6		15	100	0.6195	0.7934	0.5427	0.9757	0.2308	0.1538	0.0769	0.1154	0.1923	0.4231	TRUE	TRUE	45
7		5	100	0.7988	0.4964	0.7329	0.7061	0.6538	0.5769	0.5385	0.4615	0.3846	0.6538	FALSE	TRUE	45
8	Model A	10	100	0.8313	0.4401	0.758	0.6563	0.6538	0.5769	0.5	0.5385	0.6154	0.7692	FALSE	TRUE	45
9		15	100	0.8456	0.4063	0.6335	0.6335	0.6923	0.5769	0.5	0.2308	0.4615	0.6538	FALSE	TRUE	45
10		5	100	0.7982	0.49	0.726	0.7084	0.3846	0.5385	0.4231	0.2308	0.4615	0.4231	TRUE	FALSE	45
11	Model A	10	100	0.7788	0.5315	0.7057	0.7484	0.5	0.5385	0.4231	0.3846	0.4615	0.4615	TRUE	FALSE	45
12		15	100	0.7887	0.5063	0.7221	0.7165	0.4231	0.4615	0.3462	0.2692	0.4615	0.3846	TRUE	FALSE	45

Hasil Percobaan dengan Model Neural Network B

	Layer		Batch									Sample	Sample	Vert.	Horz.	Rot.
No	NN	Epoch	Size	Val Acc	Val Loss	Acc	Loss	Sample1	Sample2	Sample3	Sample4	5	6	Flip	Flip	Range
13		5	100	0.915	0.2618	0.9056	0.2837	0.3462	0.2692	0.1154	0.1923	0.1538	0.3462	FALSE	FALSE	45
14	Model B	10	100	0.9198	0.2443	0.9113	0.2642	0.3077	0.2308	0.0385	0.2308	0.1538	0.3077	FALSE	FALSE	45
15		15	100	0.9214	0.2361	0.9149	0.2524	0.2308	0.1154	0.1154	0.1538	0.0769	0.2307	FALSE	FALSE	45
16		5	100	0.664	0.7442	0.6344	0.811	0.1538	0.1538	0.0385	0.1154	0.1923	0.1538	TRUE	TRUE	45
17	Model B	10	100	0.7164	0.6643	0.686	0.7307	0.2308	0.1154	0.0385	0.1154	0.2692	0.2308	TRUE	TRUE	45
18		15	100	0.7399	0.6225	0.707	0.6975	0.3076	0.1923	0.1154	0.1154	0.2308	0.3077	TRUE	TRUE	45
19		5	100	0.8166	0.4866	0.7923	0.5493	0.3077	0.3077	0.3077	0.2308	0.2308	0.3077	FALSE	TRUE	45
20	Model B	10	100	0.8432	0.4304	0.8197	0.4897	0.3462	0.2308	0.1923	0.3077	0.3077	0.3462	FALSE	TRUE	45
21		15	100	0.8573	0.4029	0.8349	0.4558	0.3462	0.3462	0.1923	0.1538	0.3462	0.3462	FALSE	TRUE	45
22		5	100	0.7612	0.616	0.7392	0.6769	0.6923	0.4615	0.423	0.4615	0.6923	0.5	TRUE	FALSE	45
23	Model B	10	100	0.7859	0.5571	0.7648	0.613	0.8076	0.5	0.3846	0.3077	0.807	0.5	TRUE	FALSE	45
24		15	100	0.8252	0.4724	0.8012	0.5336	0.5769	0.3462	0.2308	0.2692	0.5769	0.2692	TRUE	FALSE	45

Hasil Percobaan dengan Model Neural Network C

	Layer		Batch									Sample	Sample	Vert.	Horz.	Rot.
No	NN	Epoch	Size	Val Acc	Val Loss	Acc	Loss	Sample1	Sample2	Sample3	Sample4	5	6	Flip	Flip	Range
25		5	100	0.8966	0.3176	0.8266	0.5589	0.1154	0.0769	0.1538	0.1538	0.1154	0.1923	FALSE	FALSE	45
26	Model C	10	100	0.9022	0.3013	0.8361	0.5313	0.1923	0.1923	0.1538	0.1923	0.0769	0.1923	FALSE	FALSE	45
27		15	100	0.9038	0.2972	0.8421	0.514	0.1538	0.1154	0.1154	0.1538	0.1538	0.0769	FALSE	FALSE	45
28		5	100	0.5341	0.9271	0.4638	1.1754	0.1923	0.1154	0.0769	0.0385	0.0769	0.0385	TRUE	TRUE	45
29	Model C	10	100	0.5946	0.8607	0.4981	1.1151	0.1538	0.1154	0.1154	0.0385	0.1154	0.0769	TRUE	TRUE	45
30		15	100	0.6175	0.8304	0.5198	1.0862	0.1154	0.0769	0.1538	0.1154	0.0769	0.0769	TRUE	TRUE	45
31		5	100	0.7756	0.5861	0.6641	0.8855	0.1154	0.1154	0.1154	0.0769	0.0769	0.1154	FALSE	TRUE	45
32	Model C	10	100	0.8003	0.5412	0.6929	0.8409	0.0769	0.1154	0	0.0385	0.0769	0.0769	FALSE	TRUE	45
33		15	100	0.8113	0.5167	0.7087	0.8173	0.0769	0.0769	0	0.0385	0.0769	0.0769	FALSE	TRUE	45
34		5	100	0.719	0.7313	0.6092	1.0517	0.4231	0.2692	0.3077	0.4231	0.5	0.3846	TRUE	FALSE	45
35	Model C	10	100	0.7551	0.6358	0.6511	0.9416	0.1154	0.1923	0.1923	0.1538	0.1538	0.1154	TRUE	FALSE	45
36		15	100	0.7771	0.5945	0.6725	0.8943	0.0769	0.0769	0.0769	0.1538	0.2692	0.1538	TRUE	FALSE	45

Hasil Percobaan dengan Model Neural Network D

	Layer		Batch									Sample	Sample	Vert.	Horz.	Rot.
No	NN	Epoch	Size	Val Acc	Val Loss	Acc	Loss	Sample1	Sample2	Sample3	Sample4	5	6	Flip	Flip	Range
37		5	100	0.8738	0.3812	0.8286	0.5893	0.5	0.7692	0.423	0.4615	0.6923	0.5	FALSE	FALSE	45
38	Model D	10	100	0.8849	0.3516	0.8445	0.548	0.5385	0.5769	0.4615	0.5385	0.5163	0.5385	FALSE	FALSE	45
39		15	100	0.8892	0.3601	0.848	0.542	0.6154	0.5385	0.4231	0.5385	0.5769	0.6154	FALSE	FALSE	45
40		5	100	0.464	0.9523	0.4479	1.0899	0.5	0.5	0.4615	0.3462	0.3077	0.5	TRUE	TRUE	45
41	Model D	10	100	0.4658	0.9456	0.4479	1.1036	0.2692	0.2308	0.3077	0.3077	0.1538	0.2692	TRUE	TRUE	45
42		15	100	0.4649	0.9538	0.4473	1.118	0.0385	0.0769	0.1538	0.1154	0.0769	0.0385	TRUE	TRUE	45
43		5	100	0.7335	0.6406	0.6779	0.8244	0.7692	0.7308	0.5385	0.5385	0.5385	0.7308	FALSE	TRUE	45
44	Model D	10	100	0.7779	0.7187	0.7187	0.7636	0.6538	0.4231	0.3846	0.3462	0.3462	0.5385	FALSE	TRUE	45
45		15	100	0.7838	0.5455	0.7321	0.7505	0.3462	0.5	0.3077	0.3846	0.3846	0.4615	FALSE	TRUE	45
46		5	100	0.7139	0.6748	0.6448	0.904	0.3846	0.3846	0.3846	0.4231	0.4231	0.2692	TRUE	FALSE	45
47	Model D	10	100	0.7174	0.6684	0.6585	0.8878	0.2692	0.3077	0.3077	0.1154	0.3077	0.1923	TRUE	FALSE	45
48		15	100	0.7353	0.6416	0.6671	0.8847	0.3462	0.1538	0.0385	0.2308	0.1923	0.1923	TRUE	FALSE	45

Rata-rata Akurasi

Berikut adalah hasil rata-rata akurasi untuk ketiga epoch dari setiap sample, untuk setiap model. Perbandingan dibagi menjadi dua kategori : kategori pertama terdiri dari Sample 1, 5 dan 6 untuk mengukur dampak flip horizontal dan vertikal terhadap akurasi. Kategori kedua terdiri dari Sample 2, 3, dan 4, dan digunakan untuk mengukur dampak kemiringan tulisan terhadap akurasi.

Rata-rata Akurasi dengan Sample 1, 5, dan 6

Model NN	Label	Sample 1	Sample 5	Sample 6
	Ver. False, Hor. False	0.641	0.5641	0.6154
Model A	Ver. True, Hor. True	0.3718	0.2564	0.4231
Wiodel A	Ver. False, Hor. True	0.6667	0.4872	0.6923
	Ver. True, Hor. False	0.4402	0.4423	0.4231
	Ver. False, Hor. False	0.2949	0.1282	0.2948
Model B	Ver. True, Hor. True	0.2307	0.2308	0.2308
Wodel B	Ver. False, Hor. True	0.3333	0.2949	0.3333
	Ver. True, Hor. False	0.6923	0.6921	0.4231
	Ver. False, Hor. False	0.1538	0.1154	0.1538
Model C	Ver. True, Hor. True	0.1538	0.0897	0.0641
Wiodel C	Ver. False, Hor. True	0.0897	0.0769	0.0897
	Ver. True, Hor. False	0.2051	0.3077	0.2179
	Ver. False, Hor. False	0.5513	0.5952	0.5513
Madal D	Ver. True, Hor. True	0.2692	0.1795	0.2692
Model D	Ver. False, Hor. True	0.5897	0.4231	0.5769
	Ver. True, Hor. False	0.3333	0.3077	0.2179

Rata-rata Akurasi dengan Sample 2, 3, dan 4

Model NN	Label	Sample 2	Sample 3	Sample 4
	Ver. False, Hor. False	0.6538	0.4615	0.4231
Model A	Ver. True, Hor. True	0.3333	0.3333	0.1923
Wodel A	Ver. False, Hor. True	0.5769	0.5128	0.4103
	Ver. True, Hor. False	0.5128	0.3974	0.2949
	Ver. False, Hor. False	0.2051	0.0897	0.1923
Model B	Ver. True, Hor. True	0.1538	0.0641	0.1154
Model B	Ver. False, Hor. True	0.2949	0.2308	0.2308
	Ver. True, Hor. False	0.4359	0.3461	0.3461
	Ver. False, Hor. False	0.1282	0.141	0.1667
Model C	Ver. True, Hor. True	0.1026	0.1154	0.0641
WoderC	Ver. False, Hor. True	0.1026	0.0385	0.0513
	Ver. True, Hor. False	0.1795	0.1923	0.2436
	Ver. False, Hor. False	0.6282	0.4359	0.5128
Madal D	Ver. True, Hor. True	0.2692	0.3077	0.2564
Model D	Ver. False, Hor. True	0.5513	0.4103	0.4231
	Ver. True, Hor. False	0.2821	0.2436	0.2564

KESIMPULAN

Dari percobaan-percobaan yang telah kami lakukan dapat ditarik kesimpulan berupa:

- 1. Banyaknya epoch yang dijalankan mempengaruhi hasil pembelajaran mesin; secara umum, semakin banyak epochnya, semakin besar akurasi mesin pada dataset training dan validasi.
- 2. Secara umum, percobaan dengan model neural network A menghasilkan akurasi prediksi yang paling baik; percobaan dengan model C menghasilkan akurasi prediksi yang paling buruk.
- 3. Untuk pengujian dampak flip vertikal dan horizontal terhadap pembelajaran neural network, ditemukan bahwa:
 - a. Akurasi dataset Sample5 (dataset yang berisi huruf A-Z yang dibalik secara vertikal) lebih tinggi Ketika parameter augmentasi berupa Vertical Flip saja yang diperbolehkan.
 - b. Akurasi dataset Sample6 (dataset yang berisi huruf A-Z yang dibalik secara horizontal) lebih tinggi Ketika parameter augmentasi berupa Horizontal Flip saja yang diperbolehkan.
 - c. Ketika parameter augmentasi Vertical Flip dan Horizontal Flip keduanya diperbolehkan, akurasi cenderung menurun. Hal ini terjadi karena sifat dataset awal, dimana flip acak yang diberlakukan adalah flip horizontal atau flip vertikal, tidak ada yang keduanya.

Ini berarti, augmentasi data membantu mesin untuk belajar lebih baik dalam mengenali huruf terbalik secara vertikal atau horizontal, namun tidak jika huruf terbalik secara vertikal dan horizontal.

Daftar Pustaka

- Anak AI. (2020, August 9). *Mengenal Convolutional Neural Network (CNN)* [Video]. YouTube. URL https://www.youtube.com/watch?v=3NwE3Eu8g7c
- Djuwiantho, H. (2021). *DMiningKuliah 2A DPreparation* [PowerPoint Slides]. Retrieved from https://classroom.google.com/c/Mzc3MDQ5OTc1NDY2
- elektro programming. (2021, November 22). *Membuat KNN From Scratch Menggunakan Python | Machine Learning Python* [Video]. YouTube. URL https://www.youtube.com/watch?v=DV-e5xsP33o