Lemma If k(x) has limit NI as 2000 ( & h(21) has limit O as 2000 con x x (special case of limits preserving products) then h(x)k(x) has limit O as 2000 con x x x Proof: Take  $\varepsilon = 1$  in the definition of  $\liminf_{x \to \infty} |k(x) = M$ so  $\exists \delta > 0 : o < |\pi - c| < \delta \Longrightarrow |k(x) - m| < |$ The product  $h(\omega)k(k)$  satisfies  $(m-1)h(\omega) < h(\omega)k(k) < (m+1)h(\omega)$  when  $0<|x-c|<\delta$ Now Just use Pinching Theorem. We tenow  $(m-1)h(x) \longrightarrow 0$  as  $x \longrightarrow 0$ which says  $h(n)k(0) \rightarrow 0$  as  $n \rightarrow 0$ . Theorem If  $\lim_{x\to c} f(x) = L_1$ ,  $\lim_{x\to c} f_2(x) = L_2$ then  $\lim_{x\to c} (f_1(x) f_2(x)) = L_1 L_2$ Algebraic trick: |f,(x)f261) - L, L2 = |f,(x)(f261)-L2) + (f,(1)-L2) L2

| f, (2) / f\_(1) - L2) | 1(1,6)-L1) L2/ By Dinequality | f.(i) fz(i)-LiLz | < limit 0 × constant limit limit So we have o we have  $0 \le |f_1(x) + f_2(x) - L, L_2| \le \text{something}$  with 0. so also limit of ty Pinching theorem: |file) fz(x) - L, Lz who has limit 0 as >c-> c.

50 f, Ge) fz(re) has limit L, Lz as >c-> c. 6) = is continuous at all points = 0. Escamples a) sin(sc) is continuous at 7c=0 a)  $\sin(x)$  is  $\sin(x)$ c)  $f(x) = \begin{cases} \sin x & x \neq 0 \\ \frac{1}{x} & x = 0 \end{cases}$ Continuous. Thin  $\frac{\sin(x)}{x} = 1$ e)  $f(\omega) = \begin{cases} \frac{1-\cos(\omega)}{x^2} & z \neq 0 \\ \frac{1}{2} & z = 0 \end{cases}$ d) cos(sc) cts

