Exercise sheet 11: RNA Bioinformatics

Exercise 1

RNA secondary structures can be represented using a graph notation, where nodes represent nucleotides and edges encode the molecule's backbone or intramolecular base pairs between nucleotides. Below, an RNA molecule graph is depicted that encodes base pairs in blue.

Decide for the following properties whether they are correct or wrong given the RNA secondary structure graph.

1a)

Position 23 represents the 5'-end

Hide

Solution wrong; We always encode in the 5' (=1) to 3' (=n) direction.

1b)

the graph is invalid

Hide

Solution	wrong
1c)	
contains inv	valid base pairs
Hide	
Solution	wrong; all base pairs depicted in the graph are valid
1d)	
contains a p	pseudoknot
Hide	
Solution	wrong; There are no pseudoknot structures in this graph.
	wrong, there are no productinos or described in this graph.
1e)	
non-crossin	g
Hide	
Solution	correct; There are no pseudoknot structures in this graph.
10)	
1f) nested	
Hide	
Solution	correct

```
1g)
contains base pair (5,12)
Hide
Solution wrong; Position 5 is unpaired.
1h)
contains base pair (4,13)
Hide
Solution correct
1i)
base pair (1,10) would be crossing
Hide
Solution correct
1j)
obeys a minimal loop length of 4
Hide
Solution wrong; The minimum loop length for this graph is 3. (number of unpaired bases in loops)
1k)
encoded by ((\ldots)).(((((\ldots)).))).
```

Hide

Solution wrong

11)

```
encoded by .(((.((...))))).((...))
```

Hide

Solution correct

Exercise 2

You are given the following dot-bracket string: (((...))...((((...))..))

2a)

Draw graph representations of all nested structures that can be encoded by the dot-bracket string. Assume a minimal loop length of 3.

Hide

Solution

This is the only possible nested structure based on the dot-bracket string given.

2b)

Draw a graph representation of one possible crossing structure that can be encoded by the dot-bracket string. Assume a minimal loop length of 3.

Hide

Solution

Dot-bracket string: (((...)))...[(((...])..))

There are multiple other possible crossing structures. (e.g. $(((\ldots)))\ldots[((<\ldots])..>)$)

Exercise 3

Given the following partially filled Nussinov matrix N using a minimal loop length l=0, i.e. neighbored nucleotides are allowed to pair.

3a)

What are the values of the green and red entry?

Hide Solution green: 2 red: 1 3b) How many tracebacks exist for the red entry using the original recursion by Nussinov? Hide **Solution** There exist two tracebacks for the red entry; pairing with either G. Exercise 4 Given any matrix N filled by Nussinov's algorithm for and RNA sequence S of length n. Discuss which of the following statements are correct or wrong. The entry $N_{1,n}$ of the Nussinov matrix encodes ... 4a) ... the optimal structure. Hide **Solution** wrong; It only encodes the base pair number for the optimal structure. 4b) ... the minimum free energy (mfe) structure. Hide **Solution** wrong; No energy minimization is done.

... the maximal number of base pairs for sequence $S_1...S_n$.

4c)

Hide
Solution correct
4d)
the traceback end.
Hide
Solution wrong; It encodes the traceback start.
4e)
the maximal number of base pairs for any structure.
Hide
Solution correct
4f)
information for a unique structure.
Hide
Solution wrong; Typically there is more than one optimal structure with maximal number of base pairs.

Exercise 5

$$\begin{array}{c}
\overbrace{i \quad N_{i,j} \quad j} = \max \left\{ \begin{array}{c}
\overbrace{i \quad j}, \quad \overbrace{j \quad j} \\
\overbrace{i \quad k \quad k+1 \quad j} \\
\overbrace{i \quad k \quad k+1 \quad j} \\
\end{array} \right\}$$

5a)

Provide all recursion and initialization details for the following recursion depictions. Note, also ensure a minimal loop length l within your recursions.

Hide

Solution

$$\begin{split} N_{i,i} &= N_{i,i-1} = \\ \forall_{1 \leq i < j \leq n} : N_{i,j} &= \\ B_{i,j} &= \\ D_{i,j} &= \\ \end{split} \begin{array}{l} 0 \text{ (no init for } B \text{ and } D \text{ needed)} \\ \max \left\{ B_{i,j}, D_{i,j} \right\} \\ \begin{cases} N_{i+1,j-1} + 1 & \text{if } i+l < j \wedge S_i, S_j \text{ compl.} \\ 0 & \text{else} \end{cases} \\ D_{i,j} &= \\ \max_{i \leq k < j} \left\{ B_{i,k} + N_{k+1,j} \right\} \text{ (only valid for } i < j) \end{split}$$