

DM74LS390 Dual 4-Bit Decade Counter

General Description

Each of these monolithic circuits contains eight master-slave flip-flops and additional gating to implement two individual four-bit counters in a single package. The 'LS390 incorporates dual divide-by-two and divide-by-five counters, which can be used to implement cycle lengths equal to any whole and/or cumulative multiples of 2 and/or 5 up to divide-by-100. When connected as a bi-quinary counter, the separate divide-by-two circuit can be used to provide symmetry (a square wave) at the final output stage. The 'LS390 has parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system-timing signals.

Features

- Dual version of the popular 'LS90
- Direct clear for each 4-bit counter
- Dual 4-bit version can significantly improve system densities by reducing counter package count by 50%
- Typical maximum count frequency . . . 35 MHz
- Buffered outputs reduce possibility of collector commutation

Connection Diagram

Dual-In-Line Package

TL/F/6433-1

Order Number DM74LS390M or DM74LS390N See NS Package Number M16A or N16E

Function Tables

BCD Count Sequence (Each Counter) (See Note A)

Count	Outputs						
Count	Q _D Q _C		Q_{B}	$\mathbf{Q}_{\mathbf{A}}$			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	L	Н	Н			
4 5	L	Н	L	L			
5	L	Н	L	Н			
6	L	Н	Н	L			
7	L	Н	Н	Н			
8	Н	L	L	L			
9	Н	L	L	Н			

Bi-Quinary (5-2) (Each Counter) (See Note B)

Count	Outputs					
	Q_A	QA QD QC		Q_{B}		
0	L	L	L	L		
1	L	L	L	Н		
2	L	L	Н	L		
3	L	L	Н	Н		
4	L	Н	L	L		
5	Н	L	L	L		
6	Н	L	L	Н		
7	Н	L	Н	L		
8	Н	L	Н	Н		
9	Н	Н	L	L		

Note A: Output Q_A is connected to input B for BCD count.

Note B: Output Q_D is connected to input A for Bi-quinary count.

Note C: H = High Level, L = Low Level.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Input Voltage . Clear 7V $\mathsf{A} \ \mathsf{or} \ \mathsf{B}$ 5.5V Operating Free Air Temperature Range $0^{\circ}C$ to $\,+\,70^{\circ}C$

DM74LS

Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

 -65°C to $+\,150^{\circ}\text{C}$

Symbol	Parameter			DM74LS390			
Oyboi	T draines	Min	Nom	Max	Units		
V _{CC}	Supply Voltage		4.75	5	5.25	V	
V _{IH}	High Level Input Voltage		2			V	
V _{IL}	Low Level Input Voltage				0.8	٧	
Гон	High Level Output Current				-0.4	mA	
loL	Low Level Output Current				8	mA	
f _{CLK}	Clock Frequency (Note 1)	A to Q _A	0		25	MHz	
		B to Q _B	0		20	1411 12	
f _{CLK}	Clock Frequency (Note 2)	A to Q _A	0		20	MHz	
		B to Q _B	0		15		
t _W	Pulse Width (Note 1)	А	20				
		В	25			ns	
		Clear High	20				
t _{REL}	Clear Release Time (Notes 3 & 4)		25 ↓			ns	
T _A	Free Air Operating Temperature		0		70	°C	

Note 1: $C_L = 15$ pF, $R_L = 2$ k Ω , $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Note 2: $C_L = 50$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C and $V_{CC} = 5$ V.

Note 3: The symbol (\downarrow) indicates the falling edge of the clear pulse is used for reference.

Note 4: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	٧
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.7	3.4		V
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IL} = Max, V_{IH} = Min$			0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$			0.25	0.4	
lį	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	Clear			0.1	
	Input Voltage	VCC - IVIAX	Α			0.2	mA
		$V_I = 5.5V$	В			0.4	
I _{IH}	High Level Input	V _{CC} = Max	Clear			20	
	Current	$V_I = 2.7V$	Α			40	μΑ
			В			80	

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
I _{IL}	Low Level Input	$V_{CC} = Max, V_I = 0.4V$	Clear			-0.4	
	Current		Α			-1.6	mA
			В			-2.4	
los	Short Circuit Output Current	V _{CC} = Max (Note 2)	DM74	-20		-100	mA
Icc	Supply Current	V _{CC} = Max (Note 3)			15	26	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open, both CLEAR inputs grounded following momentary connection to 4.5 and all other inputs grounded.

$\textbf{Switching Characteristics} \text{ at } V_{CC} = 5V \text{ and } T_A = 25^{\circ}C \text{ (See Section 1 for Test Waveforms and Output Load)}$

·	Parameter	From (Input) To (Output)					
Symbol			C _L = 15 pF		$C_L = 50 \mathrm{pF}$		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock	A to Q _A	25		20		MHz
	Frequency	B to Q _B	20		15		141112
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _A		20		24	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _A		20		30	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	A to Q _C		60		81	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A to Q _C		60		81	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _B		21		27	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _B		21		33	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _C		39		51	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _C		39		54	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	B to Q _D		21		27	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	B to Q _D		21		33	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clear to Any Q		39		45	ns

Logic Diagram 'LS390 (3, 13) OUTPUT INPUT A (1, 15) CLEAR (5, 11) Q_B INPUT B (4, 12) Q_{B} V QB CLEAR (6, 10) OUTPUT QC T Q_C CLEAR (7, 9) OUTPUT QD $\mathbf{Q}_{\mathbf{D}}$ T QD CLEAR (2, 14) CLEAR _ TL/F/6433-2

16-Lead Small Outline Molded Package (M) Order Number DM74LS390M NS Package Number M16A

Physical Dimensions inches (millimeters) (Continued)

16-Lead Molded Dual-In-Line Package (N) Order Number DM74LS390N NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408