Notes on LR Parsing

Geoffrey Matthews

Department of Computer Science Western Washington University

November 19, 2018

Readings

- http://www.cs.rochester.edu/~nelson/courses/csc_173/ grammars/cfg.html
- http://en.wikipedia.org/wiki/Context-free_grammar
- http://en.wikipedia.org/wiki/Context-free_language
- http://en.wikipedia.org/wiki/Parsing
- http://en.wikipedia.org/wiki/Pushdown_automata
- http://en.wikipedia.org/wiki/LR_parser
- https://parasol.tamu.edu/~rwerger/Courses/434/lec12-sum.pdf

Bottom up parsing of CFGs

- We start with the input and attempt to build the parse tree.
- If we begin with the input and attempt to build the tree above it, we are doing bottom-up parsing.
- Equivalently, we try to constuct a rightmost derivation from right to left, scanning the input left to right.

$$S \rightarrow SA \mid \epsilon$$

 $A \rightarrow AA \mid a$

$$S \overset{S \to SA}{\Longrightarrow} SA \overset{A \to AA}{\Longrightarrow} SAA \overset{A \to a}{\Longrightarrow} SAa \overset{A \to a}{\Longrightarrow} Saa \overset{S \to \epsilon}{\Longrightarrow} aa$$

LR(k) grammars

ightharpoonup LR(k) means we find a rightmost derivation by scanning the input left to right, and have to lookahead at most k symbols.

LR parsing: Shift and Reduce

Shift: move character from input to stack

Reduce: if stack holds RHS of a rule, replace with LHS

A B	\rightarrow	a b
D	_	D
	\bigcirc)
(A))	(B)
(a)	$\frac{h}{h}$
\bigcirc	,	

Stack	Input	Rule
\$	ab\$	shift
\$a	b\$	A→a
\$A	b\$	shift
\$Ab	\$	$B{ ightarrow} b$
\$AB	\$	S→AB
\$S	\$	accept

$$S \stackrel{S \to AB}{\Longrightarrow} AB \stackrel{B \to b}{\Longrightarrow} Ab \stackrel{A \to a}{\Longrightarrow} ab$$

▶ Note: At all times, stack+input=derivation string

LR parsing: Shift and Reduce

$$S \rightarrow SA \mid \epsilon$$

 $A \rightarrow AA \mid a$

Stack	Input	Rule
\$	aa\$	$S o \epsilon$
\$S	aa\$	shift
\$Sa	a\$	A o a
\$SA	a\$	shift
\$SAa	\$	A o a
\$SAA	\$	$A \rightarrow AA$
\$SA	\$	$S \rightarrow SA$
\$S	\$	accept

$$S \overset{S \to SA}{\Longrightarrow} SA \overset{A \to AA}{\Longrightarrow} SAA \overset{A \to a}{\Longrightarrow} SAa \overset{A \to a}{\Longrightarrow} Saa \overset{S \to \epsilon}{\Longrightarrow} aa$$

Another LR parse

Stack	Input	Rule
\$	aadbb\$	shift
\$a	adbb\$	shift
\$aa	dbb\$	shift
\$aad	bb\$	$S \rightarrow d$
\$aaS	bb\$	shift
\$aaSb	b\$	$B \rightarrow b$
\$aaSB	b\$	S o aSB
\$aS	b\$	shift
\$aSb	\$	B o b
\$aSB	\$	S o aSB
\$S	\$	accept

$$S \overset{S o aSB}{\Longrightarrow} aSB \overset{B o b}{\Longrightarrow} aSb \overset{S o aSB}{\Longrightarrow} aaSBb \overset{B o b}{\Longrightarrow} aaSbb \overset{S o d}{\Longrightarrow} aadbb$$

LR parsing arithmetic

E T F	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	E + T T T * F F (E) a
Ε	\Rightarrow	E + T
	\Rightarrow	E + T * F
	\Rightarrow	E + T * a
	\Rightarrow	E + F * a
	\Rightarrow	E + a * a
	\Rightarrow	T + a * a
	\Rightarrow	F + a * a
	\Rightarrow	a + a * a

Stack	Input	Rule
\$	a+a*a\$	shift
\$a	+a*a\$	F→a
\$F	+a*a\$	T→F
\$T	+a*a\$	E→T
\$E	+a*a\$	shift
\$E+	a*a\$	shift
\$E+a	*a\$	F→a
\$E+F	*a\$	T→F
\$E+T	*a\$	shift
\$E+T*	a\$	shift
\$E+T*a	\$	F→a
\$E+T*F	\$	T→T*F
\$E+T	\$	E→E+T
\$E	\$	accept

- ▶ The trick is to know when to shift and when to reduce.
- Hopefully by looking at only one symbol of the input.
- Everything on the stack has already been examined.
- We can use the entire stack to determine actions.
- We do this by using a DFA to keep track of stack state.
- We note each time a RHS appears on top of the stack.
- ▶ If a RHS is on top of the stack, a reduction is *possible*.
 - We can then choose whether to shift or reduce.
 - Otherwise you must shift.

$$S \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$S \overset{S \to AB}{\Longrightarrow} AB \overset{B \to b}{\Longrightarrow} Ab \overset{A \to a}{\Longrightarrow} ab$$

Stack	Input	Rule
\$	ab\$	shift
\$a	b\$	A→a
\$A	b\$	shift
\$Ab	\$	$B{ ightarrow}b$
\$AB	\$	S→AB
\$S	\$	accept

We will store the state of the DFA on the stack, too.

$$S \stackrel{S \to AB}{\Longrightarrow} AB \stackrel{B \to b}{\Longrightarrow} Ab \stackrel{A \to a}{\Longrightarrow} ab$$

	а	b	Α	В	S	\$
0	1		2		5	
1		A o a				
2		3		4		
3						B o b
4						S o AB
5						accept

Stack	Input	Rule
0	ab\$	shift
0 a 1	b\$	A→a
0 A 2	b\$	shift
0 A 2 b 3	\$	$B{ ightarrow}b$
0 A 2 B 4	\$	$S{ ightarrow}AB$
0 S 5	\$	accept

Left recursion: $S \rightarrow Sa \mid a$

S	ta	ck					In	ρι	ıt	
0					a	a	а	a	\$	
0	a	1				a	a	a	\$	
0	S	2				а	а	а	\$	
0	S	2	а	3			а	а	\$	
0	S	2					а	a	\$	
0	S	2	a	3				a	\$	
0	S	2						a	\$	
0	S	2	a	3					\$	
0	S	2							\$	

	а	\$	S
0	1		2
1	S o a		
2	3	accept	
3	S o Sa	S o Sa	

Right recursion: $S \rightarrow aS \mid a$

Stack	Input
0	аааа\$
0 a 1	ааа\$
0 a 1 a 1	аа\$
0 a 1 a 1 a 1	a \$
0 a 1 a 1 a 1 a 1	\$
0 a 1 a 1 a 1 S 2	\$
0 a 1 a 1 S 2	\$
0 a 1 S 2	\$
0 S 3	\$

	а	\$	S
0	1		3
1	1	S o a	2
2		S o aS	
3		accept	

Middle recursion: $S \rightarrow aSa \mid bSb \mid c$

C. 1			a	b	С	\$	S
Stack	Input	0	1	2	9		8
0	abcba\$	1	1	2	3		4
0 a 1	bcba\$	2	1	2	3		5
0 a 1 b 2 0 a 1 b 2 c 3	cba\$	3	S o c	S o c			
0 a 1 b 2 C 3	ba\$ ba\$	4	6				
0 a 1 b 2 S 5 b 7	a\$	5		7			
0 a 1 S 4	a \$	6	S ightarrow aSa	S ightarrow aSa		S ightarrow aSa	
0 a 1 S 4 a 6	\$	7	S o bSb	S o bSb		S o bSb	
0 S 8	\$	8				accept	
	•	9				S o c	
		а					

LR(1) parsing, a more complex example

Stack	Input	Rule
\$	acccd\$	shift
\$a	cccd\$	shift
\$ac	ccd\$	shift
\$acc	cd\$	shift
\$accc	d\$	C→c
\$accC	d\$	C→cC
\$acC	d\$	C→cC
\$aC	d\$	shift
\$aCd	\$	S o aCd
\$S	\$	accept

 $S \Rightarrow aCd \Rightarrow acCd \Rightarrow accCd \Rightarrow acccd$

Stack	Input	Rule
\$	bcccd\$	shift
\$b	cccd\$	shift
\$bc	ccd\$	shift
\$bcc	cd\$	shift
\$bccc	d\$	C →c
\$bccC	d\$	$C \rightarrow cC$
\$bcC	d\$	$C \rightarrow cC$
\$bC	d\$	shift
\$bCd	\$	D→d
\$bCD	\$	S→bCD
\$S	\$	accept

 $S \Rightarrow bCD \Rightarrow bCd \Rightarrow bcCd \Rightarrow bccCd \Rightarrow bcccd$

$$\begin{array}{ccc} S & \rightarrow & aCd \mid bCD \\ C & \rightarrow & cC \mid c \\ D & \rightarrow & d \end{array}$$

- ▶ $S \Rightarrow aCd \Rightarrow acCd \Rightarrow accCd \Rightarrow acccd$
- ▶ $S \Rightarrow bCD \Rightarrow bCd \Rightarrow bcCd \Rightarrow bccCd \Rightarrow bcccd$
- ▶ At any point, the derivation string must look like one of these:

$$aCd$$
 ac^+Cd ac^+d bCD bCd bc^+Cd bc^+d

Whenever we see one of these, we have to know which rule to apply at what point in the shifting of the string.

$$\begin{array}{ccc} S & \rightarrow & aCd \mid bCD \\ C & \rightarrow & cC \mid c \\ D & \rightarrow & d \end{array}$$

Stack	Input	Rule
\$	acccd\$	shift
\$a	cccd\$	shift
\$ac	ccd\$	shift
\$acc	cd\$	shift
\$accc	d\$	C→c
\$accC	d\$	C→cC
\$acC	d\$	C→cC
\$aC	d\$	shift
\$aCd	\$	$S \rightarrow aCd$
\$S	\$	accept

Stack	Input	Rule	Peek
\$aCd	\$	$S{ ightarrow}aCd$	
\$ <i>ac</i> + <i>C</i>	d\$	$C \to \! c C$	
\$ <i>ac</i> +	d\$	$C \to \! c$	d
\$bCD	\$	$S{ ightarrow}bCD$	
\$bCd	\$	$D{ ightarrow}d$	
bc^+C	d\$	$C \to \! c C$	
\$bc ⁺	d\$	C o c	d

ΨDC	uψ	C /C	u
Stack	Input	Rule	
\$	bcccd\$	shift	
\$b	cccd\$	shift	
\$bc	ccd\$	shift	
\$bcc	cd\$	shift	
\$bccc	d\$	C →c	
\$bccC	d\$	$C \rightarrow cC$	
\$bcC	d\$	$C \rightarrow cC$	
\$bC	d\$	shift	
\$bCd	\$	$D{ o}d$	
\$bCD	\$	S→bCD	
\$S	\$	accept	⊧ ⊳ ∢ ≣

DFA for LR parsing

S	\rightarrow	aCd bCD
С	\rightarrow	$cC \mid c$
D	\rightarrow	d

Stack	Input	Rule	Peek
\$aCd	\$	$S{ o}aCd$	
\$ <i>ac</i> + <i>C</i>	d\$	$C \to \! c C$	
\$ <i>ac</i> +	d\$	$C \to \! c$	d
\$bCD	\$	$S{ ightarrow}bCD$	
\$bCd	\$	$D{ ightarrow}d$	
\$ <i>bc</i> ⁺ <i>C</i>	d\$	$C \to \! c C$	
bc^+	d\$	$C \to \! c$	d

Using the DFA in LR parsing

Stack	Input	Rule	Peek
\$aCd	\$	$S{ o}aCd$	
\$ <i>ac</i> + <i>C</i>	d\$	$C \to \! c C$	
\$ <i>ac</i> +	d\$	$C \to \! c$	d
\$bCD	\$	$S{\to}bCD$	
\$bCd	\$	$D{ ightarrow}d$	
bc^+C	d\$	$C \to \! c C$	
\$bc ⁺	d\$	C o c	d

Stack	Input	Rule
0	acccd\$	shift
0 a 1	cccd\$	shift
0 a 1 c 4	ccd\$	shift
0 a 1 c 4 c 4	cd\$	shift
0 a 1 c 4 c 4 c 4	d\$	C→c
0 a 1 c 4 c 4 C 5	d\$	C→cC
0 a 1 c 4 C 5	d\$	C→cC
0 a 1 C 2	d\$	shift
0 a 1 C 2 d 3	\$	S o aCd
0 S 12	\$	accept

Using the DFA in LR parsing

Stack	Input	Rule	Peek
\$aCd	\$	S→aCd	
\$ <i>ac</i> + <i>C</i>	d\$	$C \to \! c C$	
\$ <i>ac</i> +	d\$	C o c	d
\$ <i>bCD</i>	\$	$S{\to}bCD$	
\$bCd	\$	$D{ ightarrow}d$	
\$ <i>bc</i> + <i>C</i>	d\$	$C \to \! c C$	
bc^+	d\$	$C \to \! c$	d

Stack	Input	Rule
0	bcccd\$	shift
0 b 6	cccd\$	shift
0 b 6 c 10	ccd\$	shift
0 b 6 c 10 c 10	cd\$	shift
0 b 6 c 10 c 10 c 10	d\$	C o c
0 b 6 c 10 c 10 C 11	d\$	C o c C
0 b 6 c 10 C 11	d\$	C o c C
0 b 6 C 7	d\$	shift
0 b 6 C 7 d 9	\$	$D{ ightarrow}d$
0 b 6 C 7 D 8	\$	$S{ ightarrow}bCD$
0 S 12	\$	accept

More examples in notes on repo.

LR(k) languages, Knuth's theorem

Theorem

```
LR(k) languages = LR(1) languages
= deterministic context free languages
```

LR parsing exercises

Redo all the solved examples. Also, find DFAs and tables for the following languages, and trace some parses:

- $ightharpoonup S
 ightarrow a \mid b \mid c$
- $ightharpoonup S
 ightarrow S
 ightharpoonup a Sa \mid b$
- ightharpoonup S
 ightarrow ABC
 - $A \rightarrow a$
 - $B \rightarrow b$
 - $C \rightarrow c$

Lex and Yacc Style Parsers

- http://epaperpress.com/lexandyacc/
- https:
 //docs.racket-lang.org/parser-tools/index.html