

Chapel: Hands-on

Morning Hands-on Session

Goals:

- Get everyone up and running with Chapel
- Try out base language and data parallel features

What can I do?

- Work through prepared Monte Carlo exercises
- Read and execute sample programs (\$CHPL_HOME/examples)
- Write your own Chapel program of interest

Please feel free to:

- Work with a partner
- Ask questions/talk with the team

- 1. A Chapel Quick Reference Sheet
 - Provides a succinct overview of the language
- 2. A prepared set of programming exercises

Compiling Chapel

Chapel Compiler Architecture

Chapel Directory Structure (Partial)

```
chapel-1.2.0/
chapel/ - $CHPL_HOME refers to this directory
  README — quick-start instructions for building & using chpl

  also contains pointers to key documentation

  doc/ - language spec, READMEs, quick reference
  examples / - sample codes written in Chapel
        man page for chpl
  README.files - complete directory structure description
  bin/ - location of the Chapel compiler
  lib/ - location of the Chapel runtime libraries
  modules/- location of the Chapel standard/internal modules
```

Monte Carlo Exercise

Goal: Estimate π using a Monte Carlo method

Technique:

- Generate n random points in unit square
- Count how many fall in quadrant of unit circle
- Use ratio of count/n to estimate ratio of areas

morning hands-on

Five variations:

- 1. serial
- 2. data parallel
- 3. task parallel
- 4. multi-locale task parallel
- 5. multi-locale data parallel

 $count / n \approx (\pi \cdot r^2/4) / r^2$ $7/10 \approx \pi/4$ $\Rightarrow \pi \approx 2.8$

afternoon hands-on

Using Chapel Today

- 1. Install your own version of Chapel...
 - ...on a laptop
 - Linux/UNIX
 - Mac OS X
 - Windows if you have Cygwin installed (but it tends to be slow)
 - ...or by ssh-ing to a remote Linux/UNIX-based system
- 2. Or use a pre-installed version on a CX-1000™
 - we have ten accounts with Chapel pre-installed
 - requires ability to ssh to an external machine
 - also requires comfort with vim or gedit (no emacs support)

Again, feel free to partner with someone if desired

Q&A

Q: Where do I get the Chapel release?

A: From your Cray USB stick or http://sourceforge.net/projects/chapel/; after unpacking, start with the top-level README

Q: Where do I get the Monte Carlo exercise?

A: From the handout, your USB stick, or http://chapel.cray.com/tutorials/SC10

Q: Where can I get the final tutorial slides?

A: On your Cray USB stick -- the version from SC10 is an earlier draft

Q: Where can I get more documentation on the language?

A1: \$CHPL_HOME/doc/chapelLanguageSpec.pdf or http://chapel.cray.com/spec/spec-0.796.pdf

A2: See also the quick reference handout (also in \$CHPL_HOME/doc/)

Q: Where can I get more documentation on the compiler itself?

A: (1) chpl –help; (2) man chpl; (3) \$CHPL_HOME/doc/README.compiling

Executing Multi-Locale Programs

- By default, Chapel compiles for a single locale
 - environment variable CHPL_COMM defaults to 'none'
 - Effect: no communication inserted by compiler
 - Locales array exists, but has just one element
- To execute using multiple locales...
 - With your own installation:
 - Requires making some additional settings and building a second version of the runtime
 - See \$CHPL_HOME/doc/README.multilocale for instructions
 - With the provided CX1000 accounts:
 - See the instructions on your handout