Department of Engineering

ENGR 311: System DynamicsFall 2020

Chapter 2: Part 1

Dynamic Response and the Laplace Transform Method

Outline

- ☐ Complex Numbers, Variables and Functions
- □ Laplace Transformation
- □ Inverse Laplace Transformation
- □ Solving Linear, Time-invariant Differential Equations
- □ Additional Examples

Complex numbers

Notation

$$z = x + jy \qquad j = \sqrt{-1} \quad or \quad j^2 = -1$$

$$Re(z) = x \leftarrow Real \ part \ (real \ constant)$$

$$Im(z) = y \leftarrow Imiginary part (real constant)$$

Magnitude (absolute value) of
$$z, r = |z| = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right) \rightarrow Argument\ of\ z, \arg(z)\ (-\pi, \pi]\ or\ (-180^{\circ}, 180^{\circ}]$$

$$\circ \quad Euler's \ theorem: \quad \cos\theta + j\sin\theta = e^{j\theta} \quad \rightarrow \quad \begin{cases} \cos\theta = \frac{1}{2}(e^{j\theta} + e^{-j\theta}) \\ \sin\theta = \frac{1}{2j}(e^{j\theta} - e^{-j\theta}) \end{cases}$$

$$\begin{cases}
\cos\theta = \frac{1}{2}(e^{j\theta} + e^{-j\theta}) \\
\sin\theta = \frac{1}{2j}(e^{j\theta} - e^{-j\theta})
\end{cases}$$

Rectangular Forms

$$z = x + jy$$

$$z = |z|(\cos\theta + i\sin\theta)$$

$$x = |z|\cos\theta$$
$$y = |z|\sin\theta$$

o Polar Forms

$$z = |z|e^{j\theta}$$

$$z = |z| \angle \theta$$

Complex numbers

o Complex Conjugate

$$z = x + jy = |z|(\cos\theta + j\sin\theta) = |z|e^{j\theta} = |z|\angle\theta$$
$$\bar{z} = x - jy = |z|(\cos\theta - j\sin\theta) = |z|e^{-j\theta} = |z|\angle - \theta$$

Complex Algebra

$$z_1 = x_1 + jy_1$$

$$z_2 = x_2 + jy_2$$

- Equality $z_1 = z_2$ if and only if $x_1 = x_2$ and $y_1 = y_2$
- Addition $z_1 + z_2 = (x_1 + jy_1) + (x_2 + jy_2) = (x_1 + x_2) + j(y_1 + y_2)$
- Subtraction $z_1 - z_2 = (x_1 + jy_1) - (x_2 + jy_2) = (x_1 - x_2) + j(y_1 - y_2)$

Complex numbers

o Complex Algebra

$$z = x + jy = |z|(\cos\theta + j\sin\theta) = |z|e^{j\theta} = |z| \angle \theta$$

$$z_1 = x_1 + jy_1 = |z_1|(\cos\theta_1 + j\sin\theta_1) = |z_1|e^{j\theta_1} = |z_1| \angle \theta_1$$

$$z_2 = x_2 + jy_2 = |z_2|(\cos\theta_2 + j\sin\theta_2) = |z_2|e^{j\theta_2} = |z_2| \angle \theta_2$$

Multiplication

- > kz = k(x + jy) = kx + jky k: real number
- $\Rightarrow jz = j(x + jy) = jx + j^2y = -y + jx = |z|/\theta + 90^{\circ}$
- $z_1 z_2 = (x_1 + jy_1)(x_2 + jy_2) = x_1 x_2 + jx_1 y_2 + jy_1 x_2 + j^2 y_1 y_2$ $= (x_1 x_2 y_1 y_2) + j(x_1 y_2 + y_1 x_2)$
- $> z^2 = (x + jy)^2 = (x^2 y^2) + j2xy$
- $> z_1 z_2 = |z_1||z_2|(\cos(\theta_1 + \theta_2) + j\sin(\theta_1 + \theta_2)) = |z_1||z_2|e^{j(\theta_1 + \theta_2)}$

S. K. Armah (PgCAP, Ph.D.)

$$= |z_1||z_2| \underline{/\theta_1 + \theta_2}$$

Complex numbers

o Complex Algebra

$$z = x + jy = |z|(\cos\theta + j\sin\theta) = |z|e^{j\theta} = |z| \angle \theta$$

$$z_1 = x_1 + jy_1 = |z_1|(\cos\theta_1 + j\sin\theta_1) = |z_1|e^{j\theta_1} = |z_1| \angle \theta_1$$

$$z_2 = x_2 + jy_2 = |z_2|(\cos\theta_2 + j\sin\theta_2) = |z_2|e^{j\theta_2} = |z_2| \angle \theta_2$$

Division

$$\Rightarrow \frac{z}{i} = \frac{x + jy}{i} = ? = ? = y - jx = |z| / (\theta - 90)^{o}$$

Complex numbers

$$z = x + jy = |z|(\cos\theta + j\sin\theta) = |z|e^{j\theta} = |z| \angle \theta$$

Powers and Roots

$$z^n = (|z|(\cos\theta + j\sin\theta))^n = (|z|e^{j\theta})^n = (|z|\angle\theta)^n$$

$$= |z|^n(\cos n\theta + j\sin n\theta) = |z|^n e^{jn\theta} = |z|^n \angle n\theta$$

$$z^{1/n} = (|z|(\cos\theta + j\sin\theta))^{1/n} = (|z|e^{j\theta})^{1/n} = (|z|\angle\theta)^{1/n}$$

$$= |z|^{1/n}(\cos\theta/n + j\sin\theta/n) = |z|^{1/n}e^{j\theta/n} = |z|^{1/n}\angle\theta/n$$

Some Properties

$$\triangleright |z_1 z_2| = |z_1| |z_2|$$

$$\qquad \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

$$\triangleright |z_1 + z_2| \neq |z_1| + |z_2|$$

Complex variable

$$s = \sigma + j\omega$$

$$Re(s) = \sigma$$

$$Im(s) = \omega$$
 Both real quantities. At leat one is a variable

Complex function

$$F(s) = F_{x} + jF_{y} \qquad \overline{F}(s) = F_{x} - jF_{y}$$

$$Re(F(s)) = F_{x}$$

$$Im(F(s)) = F_{y}$$

$$Both real quantities$$

$$\theta = \tan^{-1}\left(\frac{F_{y}}{F_{x}}\right)$$

Typically, such functions have the form:

$$F(s) = K \frac{a_m s^m + a_{m-1} s^{m-1} + \dots + a_o}{b_n s^n + b_{n-1} s^{n-1} + \dots + b_o} = K \frac{(s + z_1)(s + z_2) \dots (s + z_m)}{(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$F(s) = 0 \to s = -z_1, -z_2, \dots, -z_m \text{ (zeros). Some may be at infinity } (\infty)$$

$$F(s) = \infty \to s = -p_1, -p_2, \dots, -p_n \text{ (poles, simple)}$$

$$F(s) = \infty : (s + n)^k \to s = -n \text{ (multiple / repeated note)}$$

 $F(s) = \infty$; $(s+p)^k \rightarrow s = -p$ (multiple/repeated pole)

Example 1

Find the zeros and poles of the complex functions:

(a)
$$F(s) = K \frac{(s+2)(s+10)}{s(s+1)(s+5)(s+15)^2}$$

(b)
$$F(s) = \frac{7(s-4)}{s^2 (s^2 - 6s - 27)}$$

(c)
$$F(s) = \frac{1}{(s^2 + 1)(s^2 + 4s + 20)}$$

- The <u>Laplace transform</u> is an operational method that can be used advantageously in solving LTI ODEs.
- Another advantage is that it converts linear differential equations in t domain into algebraic equations in s domain.
- In solving the differential equation, the initial conditions are automatically taken care of, and both the particular solution and the complementary solution can be obtained simultaneously.
- The Laplace transform $\mathcal{L}[f(t)]$ of a function f(t), real function of time, is defined as follows:

$$\mathcal{L}[f(t)] = \lim_{T \to \infty} \left[\int_0^T f(t)e^{-st} dt \right]$$

$$\mathcal{L}[f(t)] = \int_0^\infty f(t)e^{-st}dt = F(s)$$

$$f(t) = \begin{cases} ?, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

s: complex variable

 \mathcal{L} : Laplace transform operator

$$f(t) = \mathcal{L}^{-1}[F(s)]$$

 \mathcal{L}^{-1} : inverse Laplace transform operator

- For some relatively simple functions either the Laplace transform does not exist (such as for e^{t^2} and 1/t), or it cannot be represented as an algebraic expression.
- The Linearity Property

If $\mathcal{L}[f_1(t)]$ and $\mathcal{L}[f_2(t)]$ exist, then

$$\mathcal{L}[f_1(t) + f_2(t)] = \mathcal{L}[f_1(t)] + \mathcal{L}[f_2(t)]$$

Also,

$$\mathcal{L}^{-1}[F_1(s) + F_2(s)] = \mathcal{L}^{-1}[f_1(t)] + \mathcal{L}^{-1}[f_2(t)]$$

Transforms of Common Functions

Transforms of Common Functions
$$\frac{\text{Constant}}{f(t) = \begin{cases} A, & t \ge 0 \\ 0, & t < 0 \end{cases}} \mathcal{L}[A] = \int_0^\infty Ae^{-st} dt = A \int_0^\infty e^{-st} dt = A \left[-\frac{e^{-st}}{s} \right]_0^\infty = A \left[0 + \frac{1}{s} \right]$$

$$\mathcal{L}[A] = \lim_{T \to \infty} \left[A \int_0^T e^{-st} dt \right] = A \lim_{T \to \infty} \left\{ \left[-\frac{e^{-st}}{s} \right]_0^T \right\} = A \lim_{T \to \infty} \left\{ -\frac{e^{-sT}}{s} + \frac{1}{s} \right\}$$

Transforms of Common Functions

Step Function

$$f(t) = \begin{cases} A, & t > 0 \\ 0, & t < 0 \end{cases}$$

Unit-step Function

$$f(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

 $f(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases} \quad \text{Or} \quad u_s(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$

The **step function**, a discontinuous function, models an input that rapidly reaches a constant value.

$$\mathcal{L}[u_s(t)] = \frac{1}{s}$$

$$f(t) = Au_{S}(t)$$

 $\mathcal{L}[A] = \frac{A}{a} \mid$

The unit step function, or the Heaviside step function, usually denoted by H or θ (but sometimes u, 1 or $\mathbb{1}$).

 $u_s(t)$

Exponential Function

$$f(t) = \begin{cases} Ae^{-\alpha t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

$$\mathcal{L}[Ae^{-\alpha t}] = \frac{A}{s + \alpha}$$

$$\mathcal{L}[Ae^{-\alpha t}] = \int_0^\infty Ae^{-\alpha t}e^{-st}dt = \int_0^\infty Ae^{-(s+\alpha)t}dt$$

$$\alpha > 0$$

$$= A \left[-\frac{e^{-(s+\alpha)t}}{s+\alpha} \right]_0^{\infty}$$

$$f(t) = \begin{cases} Ae^{\alpha t}, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$\mathcal{L}[Ae^{\alpha t}] = \frac{A}{s - \alpha}$$

$$=A\left[0+\frac{1}{s+\alpha}\right]$$

Transforms of Common Functions

Ramp Function

$$f(t) = \begin{cases} At, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$\mathcal{L}[At] = \frac{A}{s^2}$$
 An input that changes at a constant rate is modeled by the *ramp*

function.

$$\mathcal{L}[At] = \frac{A}{s^2}$$

 $\mathcal{L}[At] = A \int_0^\infty t e^{-st} dt = A \left\{ \left[-t \frac{e^{-st}}{s} \right]_0^\infty - \int_0^\infty -\frac{e^{-st}}{s} dt \right\}$

Sinusoidal Function

$$f(t) = \begin{cases} A\sin\omega t, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$\mathcal{L}[A\sin\omega t] = \frac{A\omega}{s^2 + \omega^2}$$

$$f(t) = \begin{cases} A\cos\omega t, & t \ge 0\\ 0, & t < 0 \end{cases}$$

$$\mathcal{L}[A\cos\omega t] = \frac{As}{s^2 + \omega^2}$$

$$\mathcal{L}[A\sin\omega t] = A \int_0^\infty \sin\omega t e^{-st} dt$$

$$= \frac{A}{2j} \int_0^\infty (e^{j\omega t} - e^{-j\omega t}) e^{-st} dt$$

$$= \frac{A}{2j} \left\{ \left[-\frac{e^{-(s-j\omega)t}}{s-j\omega} \right]_0^\infty - \left[-\frac{e^{-(s+j\omega)t}}{s+j\omega} \right]_0^\infty \right\}$$

$$= \frac{A}{2j} \left\{ \left[\frac{1}{s-j\omega} \right] - \left[\frac{1}{s+j\omega} \right] \right\}$$

Table of Laplace Transform Pairs

X(s)		$x(t), t \ge 0$
	1	$\delta(t)$, unit impulse
2.		$u_s(t)$, unit step
3.	$\frac{c}{s}$	constant, c
4.	$\frac{e^{-sD}}{s}$	$u_s(t-D)$, shifted unit step
5.	$\frac{n!}{s^{n+1}}$	t^n
6.	$\frac{1}{s+a}$	e^{-at}
	$\frac{1}{(s+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$
8.	$\frac{b}{s^2 + b^2}$	$\sin bt$
	$\frac{s}{s^2 + b^2}$	$\cos bt$
10.	$\frac{b}{(s+a)^2 + b^2}$	$e^{-at}\sin bt$
11.	$\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos bt$
12.	$\frac{a}{s(s+a)}$	$1 - e^{-at}$
13.	$\frac{1}{(s+a)(s+b)}$	$\frac{1}{b-a}(e^{-at}-e^{-bt})$
14.	$\frac{s+p}{(s+a)(s+b)}$	$\frac{1}{b-a}[(p-a)e^{-at} - (p-b)e^{-bt}]$
15.	$\frac{1}{(s+a)(s+b)(s+c)}$	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-b)(a-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$

16.
$$\frac{s+p}{(s+a)(s+b)(s+c)}$$
 $\frac{(p-a)e^{-at}}{(b-a)(c-a)} + \frac{(p-b)e^{-bt}}{(c-b)(a-b)} + \frac{(p-c)e^{-ct}}{(a-c)(b-c)}$

17. $\frac{b}{s^2-b^2}$ $\sinh bt$

18. $\frac{s}{s^2+b^2}$ $\cosh bt \rightarrow \frac{s}{s^2-b^2}$

19. $\frac{a^2}{s^2(s+a)}$ $at-1+e^{-at}$

20. $\frac{a^2}{s(s+a)^2}$ $1-(at+1)e^{-at}$

21. $\frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$ $\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin \omega_n\sqrt{1-\zeta^2}t$

22. $\frac{s}{s^2+2\zeta\omega_n s+\omega_n^2}$ $1-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin \left(\omega_n\sqrt{1-\zeta^2}t-\phi\right), \phi=\tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$

23. $\frac{\omega_n^2}{s\left(s^2+2\zeta\omega_n s+\omega_n^2\right)}$ $1-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin \left(\omega_n\sqrt{1-\zeta^2}t+\phi\right)$

24. $\frac{1}{s[(s+a)^2+b^2]}$ $\frac{1}{a^2+b^2}\left[1-\left(\frac{a}{b}\sin bt+\cos bt\right)e^{-at}\right], \phi=\tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$

25. $\frac{b^2}{s(s^2+b^2)}$ $1-\cos bt$

26. $\frac{b^3}{s^2(s^2+b^2)}$ $bt-\sin bt$

27. $\frac{2b^2}{(s^2+b^2)^2}$ $\sin bt-bt\cos bt$

28. $\frac{2bs}{(s^2+b^2)^2}$ $t\cos bt$

29. $\frac{s^2-b^2}{(s^2+b^2)^2}$ $t\cos bt$

20. $\frac{s^2-b^2}{(s^2+b^2)^2}$ $t\cos bt$

30. $\frac{s}{(s^2+b^2)^2}(s^2+b^2)^2$ $\frac{1}{2b}(\sin bt+bt\cos bt)$

Example 2

Obtain the Laplace transform of the following functions:

(a)
$$f(t) = \begin{cases} 2t^4, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

(b)
$$f(t) = \begin{cases} \frac{5}{3}e^{2t} - 7\sin 5t, & t \ge 0\\ 0, & t < 0 \end{cases}$$

(c)
$$f(t) = \begin{cases} 8t - e^{-t} + 3\cosh 2t, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

- Properties of the Laplace Transform
 - Time Shifted/Translated Function

$$f(t) = \begin{cases} g(t)u_s(t), & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$f(t-\alpha) = \begin{cases} g(t-\alpha)u_s \ (t-\alpha), & t \ge \alpha \\ 0, & t < \alpha \end{cases}$$

$$\mathcal{L}[f(t-\alpha)] = \mathcal{L}[g(t-\alpha)u_s(t-\alpha)] = \int_0^\infty g(t-\alpha)u_s(t-\alpha)e^{-st}dt$$

$$\mathcal{L}[f(t-\alpha)] = \mathcal{L}[g(t-\alpha)] = \mathcal{L}[g(t-\alpha)u_s(t-\alpha)] = e^{-\alpha s}G(s)$$

► Translation of g(t) by $\alpha \to \text{Multiplication of } G(s)$ by $e^{-\alpha s}$

- Properties of the Laplace Transform
 - Time Shifted/Translated Function
 - Shifting Step Function

$$f(t) = \begin{cases} Mu_S (t - D), & t > D \\ 0, & t < D \end{cases}$$

$$\mathcal{L}[Mu_{S}(t-D)] = \frac{Ae^{-DS}}{S}$$

Shifting Unit-step Function

$$\mathcal{L}[u_s(t-D)] = \frac{e^{-Ds}}{s}$$

- Properties of Laplace Transforms
 - Multiplication by an Exponential

$$\mathcal{L}[e^{-\alpha t}f(t)] = \int_0^\infty e^{-\alpha t}f(t)e^{-st}dt = \int_0^\infty f(t)e^{-(s+\alpha)t}dt$$

$$\mathcal{L}[e^{-\alpha t}f(t)] = F(s+\alpha)$$
Shifting along the s-axis

Illustration

Derive the Laplace transform of the function $te^{-\alpha t}$

$$\mathcal{L}[te^{-\alpha t}] = \frac{1}{s^2} \bigg|_{s \to s + \alpha} = \frac{1}{(s + \alpha)^2}$$

Multiplication by t

$$\mathcal{L}[tf(t)] = \int_0^\infty tf(t)e^{-st}dt$$

$$\mathcal{L}[tf(t)] = -\frac{d}{ds}F(s)$$

<u>Illustration</u>

Derive the Laplace transform of the function $t\cos\omega t$

$$\mathcal{L}[t\cos\omega t] = -\frac{d}{ds}\left(\frac{s}{s^2 + \omega^2}\right) = \frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$$

$$\mathcal{L}[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s)$$

- Properties of Laplace Transforms
 - Comments on the lower limit of the Laplace integral
 - In some cases, f(t) possesses a discontinuity in the function at t = 0.
 - This phenomenon occurs in models having impulse inputs and in models containing derivatives of a discontinuous input, such as a step function.
 - Then the lower limit of the Laplace integral must be clearly specified as to whether it is 0 or 0 +; The Laplace transforms of f(t) will differ for these two lower limits.

$$\mathcal{L}_{+}[f(t)] \neq \mathcal{L}_{-}[f(t)], \quad \text{since } \int_{0-}^{0+} f(t)e^{-st}dt \neq 0$$

 If such a distinction of the lower limit of the Laplace integral is necessary, we use the notations

$$\mathcal{L}_{+}[f(t)] = \int_{0+}^{\infty} f(t)e^{-st}dt \qquad \text{and} \qquad \mathcal{L}_{-}[f(t)] = \int_{0-}^{\infty} f(t)e^{-st}dt$$
$$= \int_{0-}^{0+} f(t)e^{-st}dt + \mathcal{L}_{+}[f(t)]$$

Properties of Laplace Transforms

Differentiation theorem

• To solve differentiation equations, we will need to obtain the transforms of derivatives.

$$\mathcal{L}\left[\frac{d}{dt}f(t)\right] = \int_0^\infty \frac{df(t)}{dt} e^{-st} dt$$

• For a given function f(t), the values of f(0+) and f(0-) may be the same or different. f(t) may have a discontinuity at t=0, and in such a case, df(t)/dt will involve an impulse function at t=f(0-) 0; $f(0+) \neq f(0-)$.

$$\mathcal{L}_{\pm}\left[\frac{d^2}{dt^2}f(t)\right] = s^2F(s) - sf(0\pm) - \dot{f}(0\pm)$$

$$\mathcal{L}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0)$$

$$\mathcal{L}_{\pm}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0\pm)$$

Step function and sine function indicating initial values at t = 0 – and t = 0 +

$$\mathcal{L}_{\pm} \left[\frac{d^n}{dt^n} f(t) \right] = s^n F(s) - s^{n-1} f(0 \pm) - s^{n-2} \dot{f}(0 \pm) - \dots - f^{n-1}(0 \pm)$$

Example 3

Derive the X(s) from the differential equations:

(a)
$$5\dot{x} - 7x = e^{2t}$$
, $x(0) = 2$

(b)
$$\ddot{x} - 4\dot{x} + x = t$$
, $x(0) = 1$, $\dot{x}(0) = 3$

Properties of Laplace Transforms

- Final Value Theorem
 - To find the limit of the function f(t) as $t \to \infty$, we can use the **final value theorem**. The theorem states that

$$f(\infty) = \lim_{t \to \infty} f(t) = \lim_{s \to 0} [sF(s)]$$

- The theorem applies if and only if the limit exists.
- The final-value theorem relates the <u>steady-state</u> behavior of f(t) to the behavior of sF(s) in the neighborhood of s=0.
- The function f(t) will approach a constant value if all the roots of the denominator of sF(s) have negative real parts.
- If all poles of sF(s) lie in the left half s-plane, then $\lim_{t\to\infty} f(t)$ exists, but if sF(s) has poles on the imaginary axis or in the right half s plane, f(t) will contain oscillating or exponentially increasing time functions, respectively, and $\lim_{t\to\infty} f(t)$ will not exist. The final-value theorem does not apply to such cases.

Properties of Laplace Transforms

- Initial Value Theorem
 - Sometimes we will need to find the value of the function f(t) at t = 0 + (a time infinitesimally greater than 0), given the transform <math>F(s).
 - The answer can be obtained with the <u>initial value theorem</u>, which states that

$$f(0+) = \lim_{t \to 0+} f(t) = \lim_{s \to \infty} [sF(s)]$$

$$s \to \infty \text{ is taken along the real axis}$$

- The conditions for which the theorem is valid are that the latter limit exists and that the transforms of f(t) and df/dt exist.
- If F(s) is a rational function and if the degree of the numerator of F(s) is less than the degree of the denominator, then the theorem will give a finite value for f(0+). If the degrees are equal, then the initial value is undefined, and the initial value theorem is invalid.
- In applying the initial-value theorem, we are not limited as to the locations of the poles of sF(s). Thus, the theorem is valid for the sinusoidal function.

$$\dot{f}(0+) = \lim_{t \to 0+} \dot{f}(t) = \lim_{S \to \infty} \{s[sF(s) - f(0+)]\} \qquad \dot{f}(0+) = \lim_{S \to \infty} \{s[sF(s)]\}$$
_{02/09/2020}
S. K. Armah (PgCAP, Ph.D.)
$$\dot{f}(0+) = \lim_{S \to \infty} \{s[sF(s)]\}$$

Properties of Laplace Transforms

- Final and Initial Value Theorems
 - Note that the initial-value and the final-value theorems provide a convenient check on the solution, since they enable us to predict the system behavior in the time domain without actually transforming functions in s back to time functions.

Example 4

(a) Use the final and initial value theorems to determine $g(\infty)$ and g(0+), respectively, for the transforms:

$$G(s) = \frac{7s+2}{s(s+6)}$$

(b) Given the following model, for a unit-step input $f(t) = u_s(t)$, what are the values of y(0+) and $\dot{y}(0+)$?

$$\frac{Y(s)}{F(s)} = \frac{s}{2s^2 + 14s + 20}$$

- Properties of Laplace Transforms
 - Integration Theorem
 - The integration theorem is given as

$$\mathcal{L}\left[\int f(t)dt\right] = \frac{F(s)}{s} + \frac{\left[\int f(t)dt\right]_{t=0}}{s}$$

$$\mathcal{L}\left[\int_0^t f(t)dt\right] = \frac{F(s)}{s}$$

where $F(s) = \mathcal{L}[f(t)]$

• Note that, if f(t) involves an impulse function at t=0, then the following must be observed:

$$\mathcal{L}_{+}\left[\int f(t)dt\right] = \frac{F(s)}{s} + \frac{\left[\int f(t)dt\right]_{t=0+}}{s}$$

$$\mathcal{L}_{+}\left[\int_{0+}^{t} f(t)dt\right] = \frac{\mathcal{L}_{+}[f(t)]}{s}$$

$$\mathcal{L}_{-}\left[\int f(t)dt\right] = \frac{F(s)}{s} + \frac{\left[\int f(t)dt\right]_{t=0-}}{s}$$

$$\mathcal{L}_{-}\left[\int_{0-}^{t} f(t)dt\right] = \frac{\mathcal{L}_{-}[f(t)]}{s}$$

Properties of Laplace Transforms Table

	•	
x(t)		$X(s) = \int_0^\infty f(t)e^{-st} dt$
1.	af(t) + bg(t)	aF(s) + bG(s)
2.	$\frac{dx}{dt}$	sX(s) - x(0)
	$\frac{d^2x}{dt^2}$	$s^2X(s) - sx(0) - \dot{x}(0)$
4.	$\frac{d^n x}{dt^n}$	$s^{n}X(s) - \sum_{k=1}^{n} s^{n-k}g_{k-1}$
		$g_{k-1} = \left. \frac{d^{k-1}x}{dt^{k-1}} \right _{t=0}$
5.	$\int_0^t x(t) dt$	$\frac{X(s)}{s} + \frac{g(0)}{s}$
	6	$g(0) = \left. \int x(t) dt \right _{t=0}$
6.	$x(t) = \begin{cases} 0 & t < D \\ g(t - D) & t \ge D \end{cases}$	
	$= u_s(t-D)g(t-D)$	$X(s) = e^{-sD}G(s)$
7.	$e^{-at}x(t)$	X(s+a)
8.	tx(t)	$-\frac{dX(s)}{ds}$
9.	$x(\infty) = \lim_{s \to 0} sX(s)$	
10.	$x(0+) = \lim_{s \to \infty} sX(s)$	

For Entries 2, 3, 4, and 5, if $x \neq 0$ for $t < 0$, then replace the initial		
conditions at $t = 0$ with the pre-initial conditions at $0-$.		

DIE			
1	$\mathscr{L}[Af(t)] = AF(s)$		
2	$\mathscr{L}[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$		
3	$\mathcal{L}_{\pm}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0\pm)$		
4	$\mathcal{L}_{\pm}\left[\frac{d^2}{dt^2}f(t)\right] = s^2F(s) - sf(0\pm) - \dot{f}(0\pm)$		
5	$\mathcal{L}_{\pm} \left[\frac{d^n}{dt^n} f(t) \right] = s^n F(s) - \sum_{k=1}^n s^{n-k} f(0\pm)$ where $f(t) = \frac{d^{k-1}}{dt^{k-1}} f(t)$		
6	$\mathcal{L}_{\pm}\left[\int f(t) dt\right] = \frac{F(s)}{s} + \frac{\left[\int f(t) dt\right]_{t=0\pm}}{s}$		
7	$\mathcal{L}_{\pm}\left[\iint f(t) \ dt \ dt\right] = \frac{F(s)}{s^2} + \frac{\left[\iint f(t) \ dt\right]_{t=0\pm}}{s^2} + \frac{\left[\iint f(t) \ dt \ dt\right]_{t=0\pm}}{s}$		
8	$\mathscr{L}_{\pm}\left[\int\cdots\int f(t)(dt)^{n}\right] = \frac{F(s)}{s^{n}} + \sum_{k=1}^{n} \frac{1}{s^{n-k+1}} \left[\int\cdots\int f(t)(dt)^{k}\right]_{t=0\pm}$		
9	$\mathscr{L}\left[\int_0^t f(t) dt\right] = \frac{F(s)}{s}$		
10	$\int_0^\infty f(t) dt = \lim_{s \to 0} F(s) \qquad \text{if } \int_0^\infty f(t) dt \text{ exists}$		
11	$\mathscr{L}[e^{-at}f(t)] = F(s+a)$		
12	$\mathscr{L}[f(t-\alpha)1(t-\alpha)] = e^{-\alpha s}F(s) \qquad \alpha \ge 0$		
13	$\mathscr{L}[tf(t)] = -\frac{dF(s)}{ds}$		
14	$\mathscr{L}[t^2f(t)] = \frac{d^2}{ds^2}F(s)$		
15	$\mathscr{L}[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s) \qquad n = 1, 2, 3, \dots$		
16	$\mathscr{L}\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s) ds \text{if } \lim_{t \to 0} \frac{1}{t}f(t) \text{ exists}$		
17	$\mathscr{L}\left[f\left(\frac{t}{a}\right)\right] = aF(as)$		

Pulse and Impulse Functions

Consider the *(rectangular) pulse function* shown

$$f(t) = \begin{cases} \frac{A}{t_o} & 0 < t < t_0 \\ 0 & t < 0, \quad t_0 < t \end{cases}$$

$$A \text{ and } t_0 \text{ are constants}$$

$$t_0 \text{ is the } \textbf{pulse duration}$$

$$The rectangular pulse function models a constant input that is suddenly removed.}$$

The rectangular pulse

The **strength** of the pulse = **area** under the pulse = A.

The pulse function can be written as

The pulse function can be written as
$$f(t) = \frac{A}{t_0} u_s(t) - \frac{A}{t_0} u_s(t - t_0)$$

$$\mathcal{L}[f(t)] = \int_0^\infty f(t) e^{-st} dt$$

$$\mathcal{L}[f(t)] = \mathcal{L}\left[\frac{A}{t_0} u_s(t)\right] - \mathcal{L}\left[\frac{A}{t_0} u_s(t - t_0)\right]$$

$$= \frac{A}{t_0} \int_0^{t_0} e^{-st} dt = \frac{A}{t_0} \left[-\frac{e^{-s t}}{s}\right]_0^{t_0}$$

$$= \frac{A}{t_0 s} - \frac{A}{t_0 s} e^{-st_0} \qquad \qquad \mathcal{L}[f(t)] = \frac{A}{t_0 s} (1 - e^{-st_0})$$

02/09/2020 S. K. Armah (PgCAP, Ph.D.)

Pulse and Impulse Functions

Consider the *impulse function* shown

$$f(t) = \begin{cases} \lim_{t_o \to 0} \frac{A}{t_o} & 0 < t < t_0 \\ 0 & t < 0, \end{cases} \quad t_0 < t \end{cases}$$

$$0 < t < t_0$$

$$t < t_0 < t$$

$$to the pulse function, but it models an input that is suddenly applied and removed after a$$

very short time.

- It is a special limiting case of the pulse function. It is a limiting case of the pulse function as t_o approaches zero; has an infinite magnitude for an infinitesimal time.
- It is a mathematical function only and has no physical counterpart; fiction.

$$\mathcal{L}[f(t)] = \lim_{t_o \to 0} \left[\frac{A}{t_0 s} (1 - e^{-st_0}) \right]$$

$$= \lim_{t_o \to 0} \left[\frac{\frac{d}{dt_0} [A(1 - e^{-st_0})]}{\frac{d}{dt_0} (t_0 s)} \right] \circ \lim_{t_o \to 0} \left[\frac{Ase^{-st_0}}{s} \right] = \frac{As}{s} = A$$

02/09/2020 S. K. Armah (PgCAP, Ph.D.)

Pulse and Impulse Functions

- \circ Unit impulse or Dirac delta function, $\delta(t)$
 - The strength of $\delta(t)$ is unity; A = 1.

$$\delta(t) = \frac{d}{dt}u_{s}(t)$$

• The unit-impulse function occurring at $t=t_o$ is usually denoted by $\delta(t-t_o)$, which satisfies the following conditions:

$$\delta(t - t_o) = 0 \quad \text{for } t \neq t_0$$

$$\delta(t - t_o) = \infty \quad \text{for } t = t_0$$

$$\int_{-\infty}^{\infty} \delta(t - t_o) dt = 1$$

$$\delta(t - t_o) = \frac{d}{dt} u_s(t - t_o)$$

• The unit-impulse function $\delta(t-t_o)$ can be considered the derivative of the unit-step function $1(t-t_o)$ at the point of discontinuity $t=t_o$.

$$\mathcal{L}[\delta(t)] = 1$$

$$\mathcal{L}\left[\frac{d}{dt}\delta(t)\right] = s$$

$$\mathcal{L}\left[\frac{d^2}{dt^2}\delta(t)\right] = s^2$$

- Impulse function often appears in the analysis of dynamic systems. It is an analytically convenient approximation of an input applied for only a very short time, such as when a high-speed object strikes a stationary object.
- The impulse is also useful for estimating the system's parameters experimentally and for analyzing the effect of differentiating a step or any other discontinuous input function.

Example 5

(a) Given the following model, for a unit-impulse input, $f(t) = \delta(t)$, what is the value of y(0 +)?

$$\frac{Y(s)}{F(s)} = \frac{1}{s+5}$$

(b) Given the following model, and initial conditions of x(0) = 5 and $\dot{x}(0) = 10$, obtain an expression for X(s), hence determine the values of x(0+) and $\dot{x}(0+)$.

$$\ddot{x} = \delta(t)$$