

SECOND SEMESTER 2019-2020

Course Handout Part II

Date:28-11-2019

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the courses.

Course No. :MF F311

Course Title : MECHATRONICS AND AUTOMATION

Instructor-in-charge: Dr. Kundan Singh

Scope and Objective of the Course: This course is intended to a comprehensive knowledge of the technology related to Mechatronics and Automation. The necessity of integrating and embedding electronics and microprocessor into mechanical systems have been long felt, due to rapid progress in microprocessor computer based technology, in domestic products to manufacturing systems. Mechatronics is a recently defined engineering field that builds on the traditional mechanical engineering studies, combines it with technologies from the electrical, electronics, computer and control fields, using techniques such as simultaneous engineering to provide solutions in manufacturing applications. Also, mechatronics has been applied to manufacturing and other industrial automation: robotic automation found in car automated production lines, such as welding, and assembly line in computer integrated manufacture etc. This course will develop overall background of the student in interdisciplinary mechatronic technology and a broad introduction to the issues encountered and techniques required in developing mechatronic products and automation systems.

Text Books

- W. Bolton, Mechanronics, 3rd Ed., Perason, 2004 [1]
- Automation, production systems, and computer-integrated manufacturing,4th Ed., Perason, 2015 [2]

Reference Books

- A. Smaili and F. Mrad, Applied Mechatronics, Oxford University Press, 2008.
- W. Stadler, Analytical Robotics and Mechatronics, McGraw Hill, 1995.
- Tai-Ran Hsu, MEMS and Microsystems: Design and Manufacture, John Wiley & Sons. 2008.

Course Plan:

Lecture	Learning Objec-	Topic to be covered	Chapter in the
No.	tives		text book
1-2	Fundamentals of	Mechatronics meaning and	[1]-1
	mechatronics	its history, mechantron-	
		ics principles, elements	
		of mechatronics system,	
		mechatronic system design	
		approach	
3-5	Sensors and its work-	Sensors characterisation,	Class notes and
	ing principles	Different types of sensors,	[1]-2
		selection and calibration of	
		sensors	
6-9	Signal conditioning	Amplifiers and its working	Class notes
	theory	principles, different ampli-	and[1]-3
		fiers, basics of signal filter-	
		ing, applications of signal	
		filtering	
10-12	Digital signal process-	Concept of analogue and	class notes and
	ing	digital signals, sampling	[1]-4
		theory, basics of data ac-	
		quisition, digital signal pro-	
		cessing theory	
13-15	Digital logic	Different logic gates and its	[1]-5
		application	

16-19	Actuation system de-	Pneumatic and hydraulic	Class notes and
	sign and theory	systems, directional control	[1]-7
		valves	
20-22	Microprocessors and	Microprocessor system and	[1]-10
	microcontrollers	its different components,	
	theory	microcontrollers theory and	
		block diagram	
23-24	Introduction to Au-	Automation definition, dif-	Class notes and
	tomation	ferent elements of automa-	[2]-4
		tion, industrial automation	
		levels	
25-28	Understanding the	Transfer function detail-	Class notes
	transfer function and	ing, open loop, closed	
	its application	loop proportional deriva-	
		tive, integral, multivariable,	
		digital, adaptive control	
		systems, application to	
		manufacturing process	
		automation	
29-32	Understanding the in-	Continuous and discrete	Class notes and
	dustrial control sys-	control systems, computer	[2]-5
	tems	process control, Theory of	
		PLC, SCADA and CNC	

Evaluation Scheme

Component	Duration	Weightage(%)	Date & Time	Nature of
				Component
Mid Sem. Test	90 Min.	20	11/3	Close Book
Quiz	_	15	_	Close Book
Project	_	15	_	_
Laboratory	_	15	_	_

Comprehension	3 Hrs.	35	$01/05 \; \text{FN}$	Partially Open
examination				& Close Book

Chamber Consultation Hour: Will be decided based on Time table and availability of the students.

Notices: All notices will be put up on CMS only.

Make-up Policy: Make-up will be given with prior concern and genuine reasons

only.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE

