Descriptive tables with

{gtsummary}

Make an easy Table 1

What is {gtsummary}?

- Create tables that are publication-ready
- Highly customizable
- Descriptive tables, regression tables, etc.

gtsummary::tbl_summary()

```
1 library(gtsummary)
2
3 tbl_summary(
4 nlsy,
5 by = sex_cat,
6 include = c(sex_cat,
7 eyesight
```

	Male	Female
Characteristic	N = 6,403	N = 6,283
race_eth_cat		
Hispanic	1,000 (16%)	1,002 (16%)
Black	1,613 (25%)	1,561 (25%)
Non-Black, Non- Hispanic	3,790 (59%)	3,720 (59%)
region_cat		
Northeast	1,296 (21%)	1,254 (20%)
North Central	1,488 (24%)	1,446 (23%)
South	2,251 (36%)	2,317 (38%)
West	1,253 (20%)	1,142 (19%)
Unknown	115	124
eyesight_cat		
Excellent	1,582 (38%)	1,334 (31%)
Very good	1,470 (35%)	1,500 (35%)
Good	792 (19%)	1,002 (23%)

	Male	Female
Characteristic	N = 6,403	N = 6,283
Fair	267 (6.4%)	365 (8.5%)
Poor	47 (1.1%)	85 (2.0%)
Unknown	2,245	1,997
glasses	1,566 (38%)	2,328 (54%)
Unknown	2,241	1,995
age_bir	25 (21, 29)	22 (19, 27)
Unknown	3,652	3,091
1		
n (%); Median (Q1, Q3)		

You can also refer to variables using helper functions

```
1 library(gtsummary)
2
3 tbl_summary(
4 nlsy,
5 by = sex_cat,
6 include = c(ends_wit)
```

	Male	Female
Characteristic	N = 6,403	N = 6,283
region_cat		
Northeast	1,296 (21%)	1,254 (20%)
North Central	1,488 (24%)	1,446 (23%)
South	2,251 (36%)	2,317 (38%)
West	1,253 (20%)	1,142 (19%)
Unknown	115	124
race_eth_cat		
Hispanic	1,000 (16%)	1,002 (16%)
Black	1,613 (25%)	1,561 (25%)
Non-Black, Non- Hispanic	3,790 (59%)	3,720 (59%)
eyesight_cat		
Excellent	1,582 (38%)	1,334 (31%)
¹ n (%); Median (Q1, Q3)		

-	Male N = 6,403	Female N = 6,283
Characteristic	1 - 0,400	14 = 0,200
Very good	1,470 (35%)	1,500 (35%)
Good	792 (19%)	1,002 (23%)
Fair	267 (6.4%)	365 (8.5%)
Poor	47 (1.1%)	85 (2.0%)
Unknown	2,245	1,997
glasses	1,566 (38%)	2,328 (54%)
Unknown	2,241	1,995
age_bir	25 (21, 29)	22 (19, 27)
Unknown	3,652	3,091
n (%); Median (Q1, Q3)		

We probably want to name the variables

```
1 tbl summary(
     nlsy,
     by = sex cat,
     include = c(sex cat, race eth cat,
                 eyesight cat, glasses,
     label = list(
       race eth cat ~ "Race/ethnicity",
       region cat ~ "Region",
       eyesight cat ~ "Eyesight",
10
       glasses ~ "Wears glasses",
       age bir ~ "Age at first birth"
11
12
     missing text = "Missing")
13
```

N = 6,403 1,000 (16%) 1,613 (25%) 3,790 (59%) 1,296 (21%) 1,488 (24%)	N = 6,283 1,002 (16%) 1,561 (25%) 3,720 (59%) 1,254 (20%) 1,446 (23%)
1,613 (25%) 3,790 (59%) 1,296 (21%) 1,488 (24%)	1,561 (25%) 3,720 (59%) 1,254 (20%)
1,613 (25%) 3,790 (59%) 1,296 (21%) 1,488 (24%)	1,561 (25%) 3,720 (59%) 1,254 (20%)
1,613 (25%) 3,790 (59%) 1,296 (21%) 1,488 (24%)	1,561 (25%) 3,720 (59%) 1,254 (20%)
3,790 (59%) 1,296 (21%) 1,488 (24%)	3,720 (59%) 1,254 (20%)
1,296 (21%) 1,488 (24%)	1,254 (20%)
1,488 (24%)	
1,488 (24%)	<u> </u>
	1,446 (23%)
2 251 (260/)	
2,251 (36%)	2,317 (38%)
1,253 (20%)	1,142 (19%)
115	124
1,582 (38%)	1,334 (31%)
1,470 (35%)	1,500 (35%)
792 (19%)	1,002 (23%)
	1,470 (35%)

	Male N = 6,403	Female N = 6,283
Characteristic	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1/
Fair	267 (6.4%)	365 (8.5%)
Poor	47 (1.1%)	85 (2.0%)
Missing	2,245	1,997
Wears glasses	1,566 (38%)	2,328 (54%)
Missing	2,241	1,995
Age at first birth	25 (21, 29)	22 (19, 27)
Missing	3,652	3,091
1		
n (%); Median (Q1, Q3)		

And do a million other things

```
1 tbl summary(
     nlsy,
     by = sex cat,
     include = c(sex cat, race eth cat,
                 eyesight cat, glasses,
     label = list(
       race eth cat ~ "Race/ethnicity",
       eyesight cat ~ "Eyesight",
       glasses ~ "Wears glasses",
10
       age bir ~ "Age at first birth"
11
     missing text = "Missing") |>
12
     add p(test = list(all continuous()
13
14
                        all categorical(
     add overall(col label = "**Total**
15
     bold labels() |>
16
     modify footnote(update = everythin
17
     modify header(label = "**Variable*
18
```

Variable	Total	Male N = 6,403	Female N = 6,283	Р
Race/ethnicity				
Hispanic	2,002 (16%)	1,000 (16%)	1,002 (16%)	
Black	3,174 (25%)	1,613 (25%)	1,561 (25%)	
Non-Black, Non-Hispanic	7,510 (59%)	3,790 (59%)	3,720 (59%)	
Eyesight				
Excellent	2,916 (35%)	1,582 (38%)	1,334 (31%)	
Very good	2,970 (35%)	1,470 (35%)	1,500 (35%)	
Good	1,794 (21%)	792 (19%)	1,002 (23%)	
Fair	632 (7.5%)	267 (6.4%)	365 (8.5%)	
Poor	132 (1.6%)	47 (1.1%)	85 (2.0%)	
Missing	4,242	2,245	1,997	
Wears glasses	3,894 (46%)	1,566 (38%)	2,328 (54%)	
Missing	4,236	2,241	1,995	

Additional arguments

We saw include =, by =, label =, missing_text = in the example

```
statistic =:
```

- The default is list(all_continuous() ~ "{median}
 ({p25}, {p75})", all_categorical() ~ "{n} ({p}%)")
- For categorical variables, you can use {n} (frequency),
 {N} (denominator), {p} formatted percentage
- For continuous variables, you can use {median}, {mean}, {sd}, {var}, {min}, {max}, {sum}, {p##} (any percentile), or any function {foo}
- You can refer to individual variables with their names:
 list(age ~ "min = {min}; max = {max}")

Additional arguments

digits =:

- It will do its best to guess the appropriate number of digits
- Otherwise, you can pass a function:
 - digits = everything() ~ style_sigfig
- Or a value for each statistic shown

 - digits = list(age \sim c(1, 1)
 year_of_birth \sim c(0, 0, 0))

Additional arguments

type =:

- One of "continuous", "continuous2", "categorical", "dichotomous"
 - If a variable only has 0/1, TRUE/FALSE, or yes/no values, it will be treated as dichotomous
 - o You can override this with type =
 list(``varname``~ "categorical")
 - Dichotomous variables only show one row (i.e., the percentage of 1's) unless you change to categorical
 - You can change which level to show with value = list(varname ~ "level to show")
 - "continuous2" variables can have multiple rows of statistics

```
missing =:
```

Additional functions

- add_overall(): In a stratified table, add a column for all strata combined
- bold_labels(): Bold the variable names (also bold_levels())
- add_p(): Add a p-value (required by some journals
- modify_footnote(update = everything() ~ NA): Remove the footnotes (can also add footnotes!)
- modify_header(): Change the header column

tbl_summary()

- Incredibly customizeable
 - So many options can be overwhelming
 - The FAQ/gallery is an incredible resource
- To save, I often just view in the web browser and copy and paste into a Word document
 - Can also be used within quarto/R Markdown

Exercises

- 1. Open the script with some examples.
- 2. Install {gtsummary} and run the examples.
- 3-7. You're on your own! Work with your neighbors, and we'll come back together to go over these.

Extra time? Start a table using the data you downloaded for your final project! Make sure you switch to that R project!

