

Пищик Е.С.

Super Resolution в домене видеоигр

Команда состоит из двух человек:

- Пищик Евгений, разработчик сервиса + ML части, @Evgenii_Pishchik;
- Рогачев Александр, куратор, <u>@airogachev</u>.

Ссылка на проект на GitHub.

<u>Super Resolution</u> (SR) - задача преобразования исходного изображения низкого разрешения и качества в изображение высокого разрешения и качества.

Low Resolution 270p

High Resolution 1080p

Данные в проекте собирались двумя способами:

- Рендер на игровом движке <u>Unreal</u> <u>Engine</u> (UE);
- Рендер на игровых движках (Unreal Engine, <u>Source2</u>) в 1080р и ухудшение качества со снижением разрешения алгоритмом из статьи <u>Real-ESRGAN</u> до 270р, 360р, 540р.

Real-ESRGAN

ResShift

EMT

8

PSNR is most easily defined via the mean squared error (MSE). Given a noise-free $m \times n$ monochrome image I and its noisy approximation K, MSE is defined as

$$\mathit{MSE} = rac{1}{m\,n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2.$$

The PSNR (in dB) is defined as

$$egin{aligned} PSNR &= 10 \cdot \log_{10} \left(rac{MAX_I^2}{MSE}
ight) \ &= 20 \cdot \log_{10} \left(rac{MAX_I}{\sqrt{MSE}}
ight) \ &= 20 \cdot \log_{10} (MAX_I) - 10 \cdot \log_{10} (MSE). \end{aligned}$$

Here, MAX_I is the maximum possible pixel value of the image. When the pixels are represented using 8 bits per sample, this is 255. More generally, when samples are represented using linear PCM with B bits per sample, MAX_I is $2^B - 1$.

$$ext{SSIM}(x,y) = rac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

with:

- μ_x the pixel sample mean of x;
- μ_y the pixel sample mean of y;
- σ_x^2 the variance of x;
- σ_y^2 the variance of y;
- σ_{xy} the covariance of x and y;
- $ullet c_1 = (k_1 L)^2$, $c_2 = (k_2 L)^2$ two variables to stabilize the division with weak denominator;
- L the dynamic range of the pixel-values (typically this is $2^{\#bits\ per\ pixel}-1$);
- ullet $k_1=0.01$ and $k_2=0.03$ by default.

LPIPS - Learned Perceptual Image Patch Similarity

RealESRGAN_x4plus	PSNR↑	SSIM↑	LPIPS↓	<u>HaarPSI</u> ↑	<u>BRISQUE</u> ↓
Pretrained	23.5409	0.7992	0.3924	0.5158	26.5565
Finetuned	24.3873	0.8348	0.3009	0.5625	32.3198

EMT_x4	PSNR↑	SSIM↑	LPIPS↓	<u>HaarPSI</u> ↑	<u>BRISQUE</u> ↓
Pretrained	24.5443	0.8231	0.3889	0.5417	61.9432
Finetuned	not yet	not yet	not yet	not yet	not yet

ResShift_RealSRx4	PSNR↑	SSIM↑	LPIPS↓	<u>HaarPSI</u> ↑	<u>BRISQUE</u> ↓
Pretrained	23.0368	0.7992	0.4829	0.5225	13.0324
Finetuned	not yet	not yet	not yet	not yet	not yet

Средние показатели inference на валидации для перевода из 270р в 1080р покадрово для модели RealESRGAN_x4plus на видеокарте NVIDIA Geforce GTX 1660 Super 6 Gb.

TYPE	SPEED,sec	INCREASE, %
PyTorch CUDA	1.070	-
ONNX CUDA	1.072	0
ONNX TensorRT	0.947	11
Triton TensorRT	0.563	47

- Новые модели;
- Обучение моделей на собранном датасете;
- Оптимизации моделей;
- Оформление wiki;
- Публикация датасета на Kaggle и HuggingFace;
 Публикация моделей со
- Публикация моделей со ссылками на авторов на HuggingFace;
- Документирование различных частей проекта (например добавление описания датасета и моделей на huggingface, добавление help к аргументам парсеров в скриптах и т.д.).

Doom 1993, RealESRGAN_x4plus, 270p -> 1080p

