PROJECT DEVELOPMENT - DELIVERY OF SPRINT 2

Date:	14 November 2022
Team ID:	PNT2022TMID08065
Name:	Efficient Water Quality analysis & Prediction using Machine Learning.

PYTHON CODE import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import warnings from google.colab import drive drive.mount('/content/driv e') data=pd.read_csv('/conten t/drive/My Drive/water_dataX.csv',e ncoding='ISO-8859-1',low_memory=False) data.shape data.head data.describe data.info() data['D.O. (mg/l)']=pd.to_numeric(d ata['D.O. (mg/l)'],errors='coerce') data['PH']=pd.to_numeric (data['PH'],errors='coerce' data['B.O.D. (mg/l)']=pd.to_numeric(d ata['B.O.D. (mg/l)'],errors='coerce') data['CONDUCTIVITY (µmhos/cm)']=pd.to_num eric(data['CONDUCTIVI

(µmhos/cm)'],errors='coer

ce')

data.dtypes

data['NITRATENAN N+ NITRITENANN (mg/l)']=pd.to_numeric(d ata['NITRATENAN N+ NITRITENANN (mg/l)'],errors='coerce')

data['TOTAL COLIFORM (MPN/100ml)Mean']=pd.t o_numeric(data['TOTAL COLIFORM (MPN/100ml)Mean'],erro rs='coerce')

data.dtypes

Data visualization Sns.catplot(x='wbdo', y='wec' ,kind='bar',data=data)

Output:

