KEY

- 1. B
- 2. E
- 3. C
- 4. C
- 5. D
- 6. A
- 7. C
- 8. E
- 9. B
- 10. D

Test ID: 314159 Page: 1

Instructions: For each problem, circle the letter of the best answer. You **must show all work** for credit. Partial credit may be awarded as appropriate.

- 1. Given the function defined by $f(x) = 3x^5 20x^3$, find all values of x for which the graph of f is concave up.
 - (a) $x > \sqrt{2}$
 - (b) $-\sqrt{2} < x < 0 \text{ or } x > \sqrt{2}$
 - (c) -2 < x < 2
 - (d) -2 < x < 0 or x > 2
 - (e) x > 0
- 2. At what values of x does $f(x) = 3x^5 5x^3 + 15$ have a relative maximum?
 - (a) -1, 0 and 1
 - (b) 0 only
 - (c) -1 and 1 only
 - (d) 1 only
 - (e) -1 only
- 3. The graph of $y = \frac{-5}{x-2}$ is concave downward for all values of x such that
 - (a) x < 5
 - (b) x < 2
 - (c) x > 2
 - (d) x < 0
 - (e) x > 0
- 4. The absolute maximum value of $f(x) = x^3 3x^2 + 12$ on the closed interval [-2,4] occurs at x = 1
 - (a) 1
 - (b) 0
 - (c) 4
 - (d) -2
 - (e) 2

5.	If the graph of $y = x^3 + ax^2 + bx - 4$ has a point of inflection at $(1, -6)$, what is the value of b ?
	(a) -3
	(b) 3
	(c) 1
	(d) 0
6.	The derivative of f is $x^4(x-2)(x+3)$. At how many points will the graph of f have a relative maximum?
	(a) One
	(b) Three
	(c) None
	(d) Four
	(e) Two
7	If $f(x) = x^2 e^x$, then the graph of f is decreasing for all x such that
١.	(a) $x < -2$
	(b) $x < 0$
	(c) $-2 < x < 0$
	(d) $x > 0$
	(e) $x \succ 2$
8.	If g is a differentiable function such that $g(x) < 0$ for all real numbers x and if $f'(x) = (x^2 - 4)g(x)$, which of the following is true?
	(a) f has relative maxima at $x = -2$ and at $x = 2$.
	(b) It cannot be determined if f has any relative extrema.
	(c) f has a relative minimum at $x = -2$ and a relative maximum at $x = 2$.
	(d) f has relative minima at $x = -2$ and at $x = 2$.
	(e) f has a relative maximum at $x = -2$ and a relative minimum at $x = 2$.

Test ID: 314159 Page: 3

9. What is the derivative of $y = \sec \sqrt{t}$?

- (a) $\tan^2 \sqrt{t}$
- (b) $\frac{\sec\sqrt{t}\tan\sqrt{t}}{2\sqrt{t}}$
- (c) $\sqrt{t} \tan^2 \sqrt{t}$
- (d) $\sec \sqrt{t} \tan \sqrt{t}$

10. The graphs of the derivatives of the functions f, g, and h are shown below. Which of the functions f, g, or h have a relative maximum on the open interval a < x < b?

- (a) g only
- (b) f and g only
- (c) h only
- (d) f only
- (e) f, g, and h

Free Response 1

The function

$$f(x) = \frac{1}{x^2 - 4}$$

has first derivative

$$f'(x) = \frac{-2x}{(x^2 - 4)^2}$$

and second derivative

$$f''(x) = \frac{6x^2 + 8}{\left(x^2 - 4\right)^3}$$

Sketch the graph of f(x) after completing the following questions:

- 1. State any domain restrictions for f(x)
- 2. Determine any critical points of f(x)
- 3. State intervals on which f(x) is increasing or decreasing
- 4. State intervals on which f(x) is concave up or concave down
- 5. Calculate any horizontal asymptotes of f(x)

Free Response 2

The graph f'(x) of the derivative of f(x) is shown below. f'(x) has horizontal tangents at x = -2, 2, 4 and zeros at x = -4, 0, 4. The domains of f'(x) and f(x) are [-6, 6].

1. On which x intervals is the function f increasing? Justify your answer.

2. At which x value(s) does f have a local maximum? Justify your answer.

3. On which x intervals is the function f concave down? Justify your answer.

Test ID: 314159 Page: 6