A 61 n

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

Deutsche Kl.: 21 g - 24/02

₩ •	Offenlegu	ingsschrift 1439 302	
Ø Ø ❸		Aktenzeichen: P 14 39 302.3 (S 88050) Anmeldetag: 26. Oktober 1963	
		Offenlegungstag: 23. Januar 1969	•
	Ausstellungspriorität:	 	
3	Unionspriorität		
@	Datum:	-	
®	Land:	· -	•
3	Aktenzeichen:		
9	Bezeichnung:	Hochfrequenz-Chirurgiegerät	
-	·		
6	Zusatz zu:	_	
@	Ausscheidung aus:	_	•
1	Anmelder:	Siemens AG, Berlin und München, 8520 Erlangen	
	Vertreter:	 مسلم	
@	Als Erfinder benannt:	Hudek, Karl, 8520 Erlangen	
	Benachrichtigung gemäß	B Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960):	7. 2. 1968

ORIGINAL INSPECTED

Hochfrequens-Chirurgiegerät

Die Brfindung betrifft ein Hochfrequenz-Chirurgiegerät, bestehend aus einem außerhalb des Operationsraumes aufstellbaren Hochfrequensgenerator und ein zur Aufstellung im Operationsraum bestimmte: Steuergerät, mindestens zum Ein- und Ausschalten des Hochfrequensgenerators sowie zum Anschluß der aktiven und inaktiven Chirurgieelektrode und aus einer Hochfrequenz-Energieleitung zwischen dem Generator und dem Steuergerät, die am Ort der Generatoraufstellung geerdet ist.

Dei der gleichzeitigen Anschaltung eines solchen HochfrequenzChirurgiegerätes sowie eines im Operationsraum aufgestellten
und dort geerdeten Meßgerätes für Körperaktionsspannungen, insbesondere eines Elektrokardiografen oder Encephalografen, an
ein- und denselben Patienten haben sich Störungen am Meßgerät
ergeben, die auch dann wirksam waren, wenn der Hochfrequensgenerator des Chirurgiegerätes abgeschaltet war. Diese Störungen
äußerten sich in Schwingungen der Anzeige des Meßgerätes entsprechend der Metzfrequenz; offenbar trat eine Überlagerung
des Meßwertes durch eine aus der Netzspannung abgeleitete Spannung ein, die unter Umständen sogar zur Zerstörung des Meßwerkes führte.

Die der Erfindung sugrundeliegenden Untersuchungen führten zu der Erkenntnis, daß sufolge der Erdung der Hochfrequenzenergieleitung am Aufstellungsort des Hochfrequenschirurgiegenerators, der galvanischen Verbindung swischen der geerdeten Hochfrequensenergieleitung und der insktiven Shirurgieelektrode über die galvanische Verbindung swischen Primär- und Sekundärwicklung des Hochfrequensübertragers im Steuergerät, der galvanischen Verbin-

dung zwischen der inaktiven Chirurgieelektrode und den Eingeng/des Meßgerätes über den Patienten sowie der Erdung des Meßgerätes im Operationsraum sich eine Erdungsschleise mit swei bis zu 100 m auseinanderliegenden Erdungspunkten bildet. Solche auseinanderliegenden Erdungspunkte können bekanntlich voneinander unterschiedliche Potentiale auf Grund induzierter Spannungen oder Spannungsabfälle verschiedener Verbraucher aufweisen, die zu entsprechenden Ausgleichströmen in der genannten Schleise führen. Mit diesen Ausgleichsströmen wird das Meßwerk des Meßgerätes zusätzlich belastet.

Erfindungsgemäß wird eine Schleifenbildung zwischen den räumlich voneinander entfernten Erdungspunkten der Hochfrequenzenergieleitung und des Meßgerätes dadurch vermieden, daß der
in das Steuergerät des Chirurgiegerätes eingebaute Hochfrequenzübertrager galvanisch voneinander getrennte Wicklungen
aufweist und die Verbindung zwischen der Sekundärseite des
Hochfrequenzübertragers und dem Anschluß der inaktiven Elektrode mit einem gesonderten Erdungsanschluß versehen ist.

Machfolgend werden die der Erfindung zugrundeliegenden Erkenntnisse und die Erfindung selbst an Hand der Figuren 1 bis 3 näher erläutert.

Die Pig. 1 veranschaulicht den schaltungstechnischen Zusammenbau zwischen dem Chirurgiegerät mit seinem außerhalb des Operationsraumes angeordneten Hochfrequenzgenerator und dem im Operationsraum angeordneten Steuergerät und dem Meßgerät, die Pig. 2 seigt die erfindungsgemäße Ausbildung des in dem Steuergerät untergebrachten Hochfrequensübertragers und die Pig. 3 seigt die Ausführung nach Pig. 2 zusammen mit einer ebenfalls im Steuergerät untergebrachten Sicherheitsschaltung. Gleiche Teile sind in allen 3 Figuren mit gleichen Zifern benagnt.

Neue Unterlagen (Art. 7 § 1 Abs. 2 Nr. 1 Satz 3 des Änderungsges. v. 4. S.

- 3 -BAD ORIGINAL Mit 1 ist der Hochfrequensgenerator des Chirurgiegerätes bezeichnet. 2 bedeutet den Operationsraum Bei 3 (außerhalb des Operationsraumes) ist der Generator 1 bsw. die koaxiale Hochfrequens-Knergieleitung 4 geerdet. Diese Leitung führt zu dem im Operationsraum 2 aufgestellten Steuergerät 5 für den Generator 1, in welchem Steuergerät der Hochfrequenzübertrager 6 mit den Eingangsbuchsen 7 und 8 enthalten ist. Die zwischen Steuergerät und HF-Generator vorhandenen Steuerleitungen sind der Übersichtlichkeit der Darstellung wegen nicht gezeichnet.

Die aktive Elektrode 9 (zum Schneiden und Koagulieren) und die neutrale Elektrode 10 sind über die Buchsen 11, 12 an die Sekundärseite des Übertragers 6 unter Zwischenschaltung des Frennkondensators 13 angeschlossen. Der Patient 14 ist mit der breitflächigen neutralen Elektrode 10 verbunden. Der Elektrokardiograph 15, der die Herzaktionsspannungen des Patienten registriert, hat fünf Anschlüsse 16, 17, 18, 19 und 20, von denen 16, 17, 18, 19 in bekannter Weise mit dem Patienten 14 und der Anschluß 20 mit dem Erdpunkt 21 im Operationsraum verbunden sind.

Mit dicken Strichen ist die bei dieser Schaltung entstehende Erdungsschleise zwischen den beiden Erdungspunkten 3 und 21 hervorgehoben. Es ist ersichtlich, daß der einleitend genannte Ausgleichsstrom zwischen 3 und 21 über das Meßgerät fließt und Fehlmessungen hervorruft. Eine Erdung des Übertragers am Erdpunkt 21 würde auch keine Abhilfe schaffen, weil dadurch nur eine weitere Erdschleise entstünde, wobei der Spannungsabfall, den der Ausgleichsstrom auf einer solchen Erdungsleitung mit sich bringt, vom Meßgerät angezeigt würde.

In der Fig. 2 ist dargestellt, wie durch die erfindungsgemäße galvanische Trennung der beiden Übertragerseiten und die Erdung der Sekundärseite des Übertragers im Operationsraum bei 21 die genannten Störungen des Meßgerätes vermieden sind.

Bei leistungsstarken Hochfrequens-Chirurgiegeräten ist es Vorschrift, daß die Verbindung der neutralen Elektrode mit dem Hochfrequens-Chirurgiegerät durch eine Sicherheitsschaltung - 4 -

überwacht wird. Beim Betrieb einer solchen Schutzschaltung mit Wechselstrom entsteht durch den Spannungsabfall über die notwendige Zuleitung zur neutralen Elektrode eine 50 Hz-Brunnspannung gegen Erde, die die Registriergeräte ebenfalls erheblich stören kann. Bei der Schaltgruppe nach der Erfindung wird daher die Sicherheitsschaltung mit gesiebter Gleichspannung betrieben. Die entsprechende Schaltung ist in der Fig. 3 dargestellt: Dabei ist die mit der neutralen Elektrode 10 verbundene Sekundärseite des Übertragers 6 bei 21 geerdet. Der Transformstor 22, der aus einer im Generatorgehäuse 1 untergebrachten 50 Hz-Wechselspannungsquelle gespeist wird (nicht dargestellt), arbeitet auf den Gleichrichter 23 mit Glättungskondensator 24, der einerseits bei 21 geerdet ist und andererseits über das Relais 25 th tiber die Buchse 26 der geerdeten neutralen Elektrode 10 verbunden ist. Wenn die Elektrode 10 versehentlich oder z.B. wegen einer schadhaften Zuleitung nicht geerdet ist, fällt das Relais 25 ab und verhindert über einen Steuerkontakt, daß der Hochfrequenzgenerator eingeschaltet werden kann.

BAD ORIGINAL

Patentanapruch

Hochfrequenz-Chirurgiegerät, bestehend aus einem außerhalb des Operationsraumes aufstellbaren Hochfrequenzgenerator und einem zur Aufstellung im Operationsraum bestimmten Steuergerät, mindestens zum Rin- und Ausschalten des Hochfrequenzgenerators sowie zum Anschluß der aktiven und inaktiven Chirurgieelektrode und aus einer Hochfrequenz-Energieleitung swischen dem Generator und dem Steuergerät, die am Ort der Generatoraufstellung geerdet ist, dadurch gekennzeichnet, daß der in das Steuergerät des Chirurgiegerätes eingebaute Hochfrequenzübertrager galvanisch voneinander getrennte Wicklungen aufweist und die Verbindung swischen der Sekundärseite des Hochfrequenzübertragers und dem Anschluß der inaktiven Elektrode mit einem gesonderten Erdungsanschluß versehen ist.

909804/0046

Fig.3