

Global Trigger firmware Specification for MP7 platform for Upgrade Phase I

Herbert Bergauer, Babak Rahbaran, Johannes Wittmann
Institute of High Energy Physics (HEPHY)
http://www.hephy.at
http://globaltrigger.hephy.at
https://twiki.cern.ch/twiki/bin/viewauth/CMS/GlobalTrigger

November 15, 2022

Revision History

Doc Rev	Description of Change	Revision Date
8.4	Inserted chapter "GTH I/Os" to "Appendices" (7.2).	2022/10/12
8.3	Added table "Firmware versions" (2).	2022/09/27
8.2	8.2 Updated "Appendices" (7). 8.1 Updated text in "LUTs for $1/\Delta R^2$ " (4.4.7), added new chapter "Muon shower bits" (4.4.10).	
8.1		
8.0	Updated text for Final-OR-mask and veto-mask (5.5.4 and 5.5.5). Updated versions.tex.	2022/09/09
7.9	Updated text for "fractional prescale", reset prescaler with "start" (5.5.3).	2022/08/17
7.8	Updated text for "fractional prescale" values (5.5.3).	2022/07/11
7.7	Inserted "Anomaly Detection Trigger" (4.4.15).	2022/05/27
7.6	Added Global Trigger input and output links description to "Appendices" (7).	2022/05/27
7.5	Inserted "Description of tests" to "Appendices" (7.7).	2022/03/25
7.4		
7.3	Added "Configuration of optical input links" and "Configuration of links to AMC13 (readout)" to "Appendices" (7.4 and 7.5).	2022/02/28
7.2	Inserted "Appendices" (7) and added references.	2022/02/25
7.1	Inserted "Simulation and build of firmware" and "Testing firmware" (2.2.2 and 2.2.3).	2022/02/15
7.0	Bug fixed in labels. Updated labels.	2022/02/14
6.9	Inserted "Implementation in firmware" for top-of-hierarchy of VHDL code (2.2.1). Updated labels.	2022/02/11
6.8	Updated text of section "Implementation in firmware" for Framework (3.1), GTL (4.3) and FDL (5.4).	2022/02/10
6.7	Inserted references and updated text in 2.2.	2022/02/09
6.6	Updated text in "Implementation in firmware" (4.3).	2022/01/10
6.5	Bug fixed in definition of calo eta ranges (4.4.2).	2021/11/30
6.4	Updated data structure for jets with DISP bit (4.2.1).	2021/11/17
6.3	6.3 Inserted "Calculation of look-up-tables (LUTs) for correlation cuts" (4.4.7).	
6.2	Removed "VHDL-Templates for VHDL-Producer".	2021/09/24
6.1	Updated (and renamed) description of "Invariant mass over delta R calculation" (see 4.4.6).	2021/09/14

Doc Rev	Description of Change	Revision Date		
6.0	New structure of document for firmware versions 1.12.x and higher.	2021/02/10 2020/12/03		
5.7	5.7 Fixed typo in section "Invariant mass calculation for three objects" 4.4.6.			
5.6	5.6 Updated text in section "VHDL-Templates for VHDL-Producer".			
5.5	Inserted links to VHDL modules.	2020/09/18		
5.4	Updated text in section "Correlation conditions" 4.4.14. Description is for v1.10.0 of Global Trigger Logic.	2020/09/17		
5.3	Inserted description of "Invariant mass divided by delta R calculation" (see 4.4.6).	2020/09/10		
5.2	Fixed typo (unconstrained pt).	2020/09/09		
5.1	Inserted text for new muon structure in sections 4.2.2, 4.4.4 and 4.4.14.1. Added subsections in section "VHDL-Templates for VHDL-Producer"	2020/08/04		
5.0	5.0 Additional text in section for calo calo overlap remover condition module.			
4.9	Inserted text in section Calorimeter Overlap Remover conditions and Calo Calo Overlap Remover Correlation conditions.	2020/04/16		
4.8	Updated text in sections Calorimeter conditions, Muon conditions and Correlation conditions for changes which have been done for GTL VHDL version 1.8.0 (module names without version number, "five eta cuts").	2019/08/13		
4.7	Inserted "Asymmetry" and "Centrality" of "Energy sums" (GTL VHDL version 1.6.0). Therefore updated sections 4.1, 4.2.1, 4.4.9 added section "Centrality condition" 4.4.13 and updated Table 5	2018/08/13		
4.6	Updated text in section "Global Trigger Logic" (4) according to firmware version v1.5.0 of gtl_module.vhd.	2018/02/21		
4.5	Updated text in section "Framework" (3) according to firmware version v1.2.3 of frame.vhd.	2018/01/19		
4.4	New "icons" ET_{miss}^{HF} and HT_{miss}^{HF} in Table 5 and Section 4. Updated glossary.	2016/11/11		
4.3	Updated table " μ FDL register map" (26) and section "Register map" (5.5.7.1). Moved "List of Tables" and "List of Figures" to the end of document. Inserted link to "Scales for inputs to μ GT" (4.3). Moved section "Software reset" to section "Framework" as subsection (3.2.6). Removed empty sections "IPBus", "Firmware Configuration" and "Bibliography".	2016/11/03		

Doc Rev	Description of Change	Revision Date
4.2	Updated sections "Calo-Layer2 optical interfaces" (4.2.1) and "Energy sum quantities conditions" (4.4.9) for tower-count trigger bits. Inserted section "Towercount condition" (4.4.12).	2016/10/25
4.1	Updated section "Calo-Layer2 optical interfaces" (4.2.1) for new energy sum quantities and minimum bias trigger bits. Updated sections "Firmware" (2), "Framework" (3) and "Fi- nal Desicion Logic" (5).	2016/06/09
4.0	Updated Text in section "Muon Muon Correlation condition module".	2016/01/15
3.9	Removed "Double objects requirements condition with spatial correlation", because not used anymore in the future, replaced by Correlation conditions.	2016/01/08
3.8	Minor changes in text and updated Figure 9.	2016/01/08
3.7	Changed colour in Figure 10 and updated text for correlation conditions (see section 4.4.14.	2016/01/07
3.6	Updated Figures 9 and 8 and text in calo calo correlation condition module.	2015/12/21
3.5	Inserted drawing of VHDL structure of cuts for correlation conditions (see Figure 11).	2015/11/18
3.4	Updated muon η ranges (Table 13) and inserted correlation conditions. Created scheme for conversion of calorimeter η and φ to muon scale for calo-muon-correlation conditions.	2015/11/17
3.3	Added Text in sections calo comparator module and muon comparator module.	2015/10/08
3.2	Updated Text in section "Final Desicion Logic" (5).	2015/10/06
3.1	Updated Figure 13 and Tables 26. Remaned section "Calorimeter conditions module - version 2" to "Calorimeter conditions module - version 3", section "Muon conditions module" to "Muon conditions module - version 2" and section "Muon comparators module" to "Muon comparators module - version 2".	2015/10/02
3.0	Updated text and tables of η ranges for Calorimeter objects (see 4.4.2).	2015/09/22
2.9	Renewed Figures in GTL and FDL (see Figure 7, 8 and 9) and FDL(see Figure 13 and 14). Added register bits description of FDL Register map (see section 5.5.7.1).	2015/09/16
2.8	Updated text, tables and listings of section "VHDL-Templates for VHDL-Producer".	2015/09/15
2.7	Corrected calculation of muon η step width (see 4.4.4).	2015/09/10
2.6	Edited text in Table 20.	2015/08/28

Doc Rev	Description of Change	Revision Date
2.5	Updated definition of η ranges for Calorimeter objects and Muon objects.	2015/08/20
2.4	Added section Calo Muon Correlation condition.	2015/08/19
2.3	Added section "Register map" (5.5.7.1) for μ FDL.	2015/06/26
2.2	Updated figures (7, 8 and 9) for GTL and edited section "Correlation conditions" (see 4.4.14).	2015/05/08
2.1	Added tables for calorimeter isolation-bits and for muon quality- and isolation-bits definition (12, 15 and 17). Edited section glossary and acronyms.	2015/05/07
2.0	Added text for "Energy sum conditions" (4.4.9) and updated chapters for "Calorimeter conditions" for version 2. Inserted isolation bits for electron/ γ and tau objects (4.4.2).	2015/05/06
1.9	Minor changes "Demux Lane Data" (see 3.2.2) and "Muon data" (see 4.4.4).	2014/11/06
1.8	Edited Section "Energy sum quantities conditions" (see 4.4.9).	2014/10/08
1.7	1.7 Added sections "Configuration of optical connections" (3.2.1), "Demux Lane Data" (3.2.2) and "Lane Mapping Process" (3.2.3) to framework. Removed tables of optical interfaces from gtl and referenced to tables in framework.	
1.6	Minor changes in "Calorimeter conditions" and "Muon conditions" .	2014/07/01
1.5	Updated with minor changes in "Muon conditions".	2014/06/17
1.4	Fixed bug in Figure 10.	2014/04/30
1.3	Updated section "Muon conditions".	2014/04/22
1.2	Removed section "Muon charge module" and added new section "Muon charge correlation module" (see 4.4.6). Edited text in section and subsections "Muon conditions definition".	2014/04/15
1.1	Changed Figure 10 and minor changes in text for anti- clockwise behaviour in φ .	2014/04/04
1.0	•	
0.9	Changed text of condition description in subsections Calo conditions definition and Muon conditions definition.	2014/02/12
0.8	Updated calorimeter data structure in 4.2.1.	2013/12/03
0.7	Updated muon data structure in 4.2.2	2013/12/02
0.6	Moved decription of VHDL templates for TME to "VHDL-Templates for VHDL-Producer".	2013/11/18
0.5	Subsection 4.2 added to section 4.	2013/11/11

Doc Rev	Description of Change	Revision Date
0.4	GTL and FDL firmware implemented for new data structure (GTL firmware version v1.0.0 [fix part of GTL], FDL firmware version v1.0.0)	2013/11/06
0.3	New framework implementation based on new object types definition. Additionally, the ROP is implemented based on production requirements.	
0.2	First framework implementation $+$ ROP .	2012/07/01
0.1	Document created.	2012/02/22

Contents

1	Glo	bal Tr	igger System overview	9
2	Fir	nware	overview	9
	2.1	Firmw	vare versions	10
	2.2	Direct	ory structure of Global Trigger firmware	10
		2.2.1	Implementation in firmware	10
		2.2.2	Simulation and build of firmware	12
		2.2.3	Testing firmware	12
3	Fra	mewor	k	13
	3.1	Imple	mentation in firmware	13
	3.2	Main	parts	16
		3.2.1	Configuration of optical connections	16
		3.2.2	Demux Lane Data	18
		3.2.3	Lane Mapping Process	18
			3.2.3.1 Implementation	18
		3.2.4	SPY Memory	19
			3.2.4.1 Implementation	19
			3.2.4.1.1 SPY Trigger	19
			3.2.4.1.2 SPY memory I	20
			3.2.4.1.3 SPY memory II	20
		3.2.5	Timer Counter Manager	20
			3.2.5.1 Counter Overview	21
			3.2.5.2 Counters for bunch crossing-, orbit- and luminosity segment number	21
			3.2.5.3 Bunch crossing counter error	22
			3.2.5.4 Counters for event- and trigger number	22
		3.2.6	Software Reset	22
		3.2.7	Registers	23
			3.2.7.1 Register map	23
			3.2.7.2 Register details	24

4	Glo	bal Tri	igger Logic	30
	4.1	$\mu { m GTL}$	Interface	30
	4.2	Definit	tion of optical interfaces	31
		4.2.1	Calo-Layer2 optical interfaces	31
		4.2.2	Global Muon Trigger optical interfaces	32
	4.3	Impler	mentation in firmware	34
		4.3.1	Top-of-hierarchy module	34
	4.4	$\mu { m GTL}$	structure	37
		4.4.1	Data ±2bx	37
		4.4.2	Definitions of Calorimeter data	37
		4.4.3	Definitions of Energy sum quantities data	41
		4.4.4	Definitions of Muon data	43
		4.4.5	Calculation of object cuts	46
			4.4.5.1 Object cuts	46
		4.4.6	Calculation of correlation cuts	51
		4.4.7	Calculation of look-up-tables (LUTs) for correlation cuts	55
		4.4.8	Combination conditions	60
			4.4.8.1 Combination conditions definition	60
		4.4.9	Energy sum quantities conditions	62
			4.4.9.1 Energy sum quantities conditions module (including Asymmetry conditions)	62
		4.4.10	Muon shower bits	64
		4.4.11	Minimum bias trigger conditions	64
		4.4.12	Towercount condition	64
		4.4.13	Centrality condition	64
		4.4.14	Correlation conditions	65
			4.4.14.1 Correlation condition module	67
		4.4.15	Anomaly Detection Trigger	70
		4.4.16	External Conditions	70
		4 4 17	Algorithms logic	70

5	Fin	al Desicion Logic	71				
	5.1	$\mu { m FDL}$ Interface	71				
	5.2	MP7 Final-OR hardware solution	72				
	5.3	Data flow	72				
	5.4	Implementation in firmware	74				
	5.5	Main parts	77				
		5.5.1 Algo-bx-masks	77				
		5.5.2 Rate-counters	77				
		5.5.3 Prescalers	78				
		5.5.3.1 Prescaler logic	78				
		5.5.4 Finor-masks	79				
		5.5.5 Veto-masks	79				
		5.5.6 Finor	79				
		5.5.7 Registers and memories	80				
		5.5.7.1 Register map	80				
6	Rea	adout-Process	89				
7	Apj	pendices	90				
	7.1	Description of simulation, synthesis and hardware tests	90				
	7.2	GTH I/Os	91				
		7.2.1 GTH input connections	91				
		7.2.2 GTH output connections	93				
	7.3	Configuration of GTHs	96				
	7.4	Configuration of optical input links	97				
	7.5	Configuration of links to AMC13 (readout)	97				
	7.6	Optical patch panel	98				
	7.7	Description of simulation, synthesis and hardware tests	98				
8	Glo	ossary	100				
9	Acr	ronyms	102				
T.i	st of	Tables	103				
Lı	st or	Figures	104				

1 Global Trigger System overview

The Global Trigger System is based on uTCA technology and 10Gbps optical links. A set of 6 MP7 boards (for MP7 documentation see [1], for MP7 firmware see [2]) with FPGAs of the powerful Xilinx Virtex-7 family is available. The Global Trigger firmware is implemented on these FPGAs. Every FPGA contains a part of the VHDL representation of a L1 Menu, the partitioning is done by VHDL Producer tool. The trigger decision of every MP7 board is collected on an AMC502 board to generate the "final OR" signal which triggers the readout of the detector.

2 Firmware overview

The figure 1 shows the architecture of μ GT payload. It consists of framework and the algorithm logic which consists of the following modules:

- 1. Global Trigger Logic Data Mapping
- 2. μ GTL
- 3. μ FDL

The output mux (part of framework) collects data for read-out record which are send via MP7 read-out to AMC13.

The IPBus system allows the control of hardware via a 'virtual bus', using a standard IP-over-gigabit-Ethernet network connection.

Figure 1: μ GT payload

2.1 Firmware versions

This firmware description is based on following versions:

Table 2: Firmware versions

entity	version		
Global Trigger firmware	v1.21.5		
Framework	v1.3.1		
Global Trigger Logic	v1.18.0		
Final Decision Logic	v1.4.1		

2.2 Directory structure of Global Trigger firmware

In Global Trigger repository all files for building firmware are in directory firmware with subdirectories for synthesis configuration files (cfg and ucf), for VHDL source files (hdl), for memory files build from IPs (ngc) and simulation files (sim).

All defintions for VHDL code are in hdl/packages, VHDL source files representing Global Trigger firmware are in hdl/payload with subdirectories (for qtl, fdl, frame and ipbus).

2.2.1 Implementation in firmware

Top-of-hierarchy of VHDL code is mp7_payload.vhd (in hdl/payload).

Listing 1 contains the entity-declaration of the top-of-hierarchy file (mp7_payload.vhd).

Listing 1: Entity declaration of mp7_payload.vhd

```
entity mp7_payload is
   port (
       clk: in std_logic; -- ipbus signals
       rst: in std_logic;
       ipb_in: in ipb_wbus;
       ipb_out: out ipb_rbus;
       clk_payload : in std_logic_vector(2 downto 0);
       rst_payload : in std_logic_vector(2 downto 0);
       clk_p: in std_logic; -- data clock
       rst_loc: in std_logic_vector(N_REGION - 1 downto 0);
       clken_loc: in std_logic_vector(N_REGION - 1 downto 0);
       ctrs: in ttc_stuff_array;
       lla: in std_logic; -- L1A input
       bc0: out std_logic;
       d: in ldata(4 * N_REGION - 1 downto 0); -- data in
       q: out ldata(4 * N_REGION - 1 downto 0); -- data out
        gpio: out std_logic_vector(29 downto 0); -- IO to mezzanine connector
        gpio_en: out std_logic_vector(29 downto 0) -- IO to mezzanine connector (
           three-state enables)
   );
end mp7_payload;
```

Table 3: Explanation of Listing 1

Item	Explanation	
clk	IPBus clock input.	
rst	IPBus reset input.	
ipb_in	IPBus data input.	
ipb_out	IPBus data output.	
clk_payload	$clock inputs [clk_payload(0)=lhc_clock].$	
rst_payload	reset inputs.	
clk_p	clock 240MHz.	
rst_loc	not used.	
clken_loc	not used.	
ctrs	TTC signals input.	
11a	L1A signal input.	
bc0	bunch counter reset output.	
d	data input (from optical links).	
q	data output (to optical links).	
gpio	signal outputs to mezzanine board.	
gpio_en	enable (signal) outputs to mezzanine board.	

All the declarations for arrays ('type'), parameters ('constant') and look-up-tables ('constant') used in modules are available in gtl_pkg.vhd package-file.

2.2.2 Simulation and build of firmware

In document README.md one can find instructions for setting up simulation and build environments. For simulating and building of firmware access rights to GitLab (MP7 firmware) are mandatory.

2.2.3 Testing firmware

Testing of firmware in hardware at CMS P5 (see 7.7) is done with script "multiboard_function_test" ("tdf run multiboard_function_test -h"). Therefore a XML file of the L1Menu and a test vector file must be available at the crate. The firmware of the L1Menu which should be tested must be loaded into the 6 MP7 boards before testing ("tdf run uploadfw_gt -h"). For checking crate status execute "tdf run crate_status".

This testing is restricted to persons with access to uGT crates at P5.

3 Framework

This description is for version v1.3.1 of Framework.

Remark:

with frame v1.2.3 "Delay Manager" (dm.vhd) and "Data Source Multiplexer" (dsmux.vhd) are removed because these features were never used in production system, only for tests. Simmem data not used anymore, because of removed dsmux. The reason of removing is to get more available resources.

Data from the GTH interfaces is demultiplexed (from 240 MHz clock domain to LHC clock domain, see Demux Lane Data 3.2.2) and mapped to objects structure in Lane Mapping Process (LMP) for μ GTL input and SPY I memory.

3.1 Implementation in firmware

Listing 2 contains the entity-declaration of the frame.vhd.

Listing 2: Entity declaration of frame.vhd

```
entity frame is
   generic (
        NR_LANES : positive
    );
   port (
        ipb_clk : in std_logic;
        ipb_rst : in std_logic;
        ipb_in : in ipb_wbus;
        ipb_out : out ipb_rbus;
        ctrs : in ttc_stuff_array; --mp7 ttc ctrs
        clk240 : in std_logic;
        lhc_clk : in std_logic;
        lhc_rst_o : out std_logic;
        bc0 : in std_logic;
        ec0 : in std_logic;
        oc0 : in std logic;
        start : in std_logic;
        11a : in std_logic;
        bcres_d : out std_logic;
        bcres_d_FDL : out std_logic;
        start_lumisection : out std_logic;
        lane_data_in : in ldata(NR_LANES-1 downto 0);
        lane_data_out : out ldata(NR_LANES-1 downto 0);
        lhc_data_2_gtl_o : out lhc_data_t;
        prescale_factor_set_index_rop : in std_logic_vector(7 downto 0);
        algo_after_gtLogic_rop : in std_logic_vector(MAX_NR_ALGOS-1 downto 0);
        algo_after_bxomask_rop : in std_logic_vector(MAX_NR_ALGOS-1 downto 0);
        algo_after_prescaler_rop : in std_logic_vector(MAX_NR_ALGOS-1 downto 0);
        local_finor_rop : in std_logic;
        local_veto_rop : in std_logic;
```

```
finor_rop : in std_logic;
    local_finor_with_veto_2_spy2 : in std_logic
);
end frame;
```

Table 4: Explanation of Listing 2

Item	Explanation
NR_LANES	number of used optical links.
ipb_clk	IPBus clock input.
ipb_rst	IPBus reset input.
ipb_in	IPBus data input.
ipb_out	IPBus data output.
ctrs	TTC control signals input.
c1k240	clock input 240 MHz.
lhc_clk	clock input (LHC clock).
lhc_rst_o	reset output.
bc0	TTC BGo bunch counter reset input.
ec0	TTC BGo event counter reset input.
oc0	TTC BGo orbit counter reset input.
start	TTC BGo start input.
l1a	L1 access signal input.
bcres_d	delayed bunch counter reset output.
bcres_d_FDL	delayed bunch counter reset output fot μ FDL.
start_lumisection	begin of lumisection output.
lane_data_in	data from GTHs (optical links) input (240MHz domain).
lane_data_out	data to GTHs (optical links) output (240MHz domain).
lhc_data_2_gtl_o	data to μ GTL output (40MHz domain).
prescale_factor_set_in	prescale factor set data input.
algo_after_gtLogic_rop	algos after μGTL input.
algo_after_bxomask_rop	algos after BX mask input.
algo_after_prescaler_rop	algos after prescaler input.
local_finor_rop	local FINOR input.
local_veto_rop	local VETO input.
finor_rop	FINOR input.
local_finor_with_veto_2_spy2	local FINOR with VETO to spy mem input.

3.2 Main parts

The top-of-hierarchy module (frame.vhd) contains

- demultiplexer of lane data
- lane mapping
- spy memories
- timer counter manager
- \bullet register

3.2.1 Configuration of optical connections

The configuration of the optical connections from GMT, Calo-Layer2 and External conditions is done as described in Table 5, where frame means 32 bits data in a 240 MHz domain.

Table 5: Configuration of optical connections

	frame					
link	0	1	2	3	4	5
0	reserved	reserved	muon obj. 0 [031]	muon obj. 0 [3263]	muon obj. 1 [031]	muon obj. 1 [3263]
1	reserved	reserved	muon obj. 2 [031]	muon obj. 2 [3263]	muon obj. 3 [031]	muon obj. 3 [3263]
2	reserved	reserved	muon obj. 4 [031]	muon obj. 4 [3263]	muon obj. 5 [031]	muon obj. 5 [3263]
3	reserved	reserved	muon obj. 6 [031]	muon obj. 6 [3263]	muon obj. 7 [031]	muon obj. 7 [3263]
4	electron/ γ obj. 0	electron/ γ obj. 1	electron/ γ obj. 2	electron/ γ obj. 3	electron/ γ obj. 4	electron/ γ obj. 5
5	electron/ γ obj. 6	electron/ γ obj. 7	electron/ γ obj. 8	electron/ γ obj. 9	electron/ γ obj. 10	electron/ γ obj. 11
6	jet obj. 0	jet obj. 1	jet obj. 2	jet obj. 3	jet obj. 4	jet obj. 5
7	jet obj. 6	jet obj. 7	jet obj. 8	jet obj. 9	jet obj. 10	jet obj. 11
8	tau obj. 0	tau obj. 1	tau obj. 2	tau obj. 3	tau obj. 4	tau obj. 5
9	tau obj. 6	tau obj. 7	tau obj. 8	tau obj. 9	tau obj. 10	tau obj. 11
	ET	НТ	$ET_{ m miss}$	$HT_{ m miss}$	ET^{HF}_{miss}	HT^{HF}_{miss}
10	ETTEM	TOWER- COUNT	ASYMET	ASYMHT	ASYM- ETHF	ASYM- HTHF
	MBT0HFP	MBT0HFM	MBT1HFP	MBT1HFM	CENT[3:0]	CENT[7:4]
11	free	free	free	free	free	free
12	external- conditions [031]	external- conditions [3263]	reserved	reserved	reserved	reserved
13	external- conditions [6495]	external- conditions [96127]	reserved	reserved	reserved	reserved
14	external- conditions [128159]	external- conditions [160191]	reserved	reserved	reserved	reserved
15	external- conditions [192223]	external- conditions [224255]	reserved	reserved	reserved	reserved

3.2.2 Demux Lane Data

Data from GTH interfaces is in the 240 MHz clock domain. The demultiplexing to the LHC clock domain (about 40 MHz) is done in demux_lane_data.vhd, which is instantiated in frame.vhd for currently 16 input links.

3.2.3 Lane Mapping Process

In the Lane Mapping Process module data from the links are mapped to objects structure defined in lhc_data_pkg.vhd.

3.2.3.1 Implementation

Currently lane mapping is "fixed" in lmp.vhd module, see Table 6 (energy sum quantities ¹: including minimum bias trigger bits, towercounts, asymmetry and centrality bits).

Table 6: Current lane mapping

lane	objects		
0	muon objects 01		
1	muon objects 23		
2	muon objects 45		
3	muon objects 67		
4	electron/ γ objects 05		
5	electron/ γ objects 611		
6	jet object 05		
7	jet object 611		
8	tau object 05		
9	tau object 611		
10	energy sum quantities ¹		
11	n/a (currently not used)		
12	external-conditions [063]		
13	external-conditions [64127]		
14	external-conditions [128191]		
15	external-conditions [192255]		

3.2.4 SPY Memory

Remark:

with frame v1.2.3 simulation memory (SIM Memory) data not useable anymore, because of removed "Data Source Multiplexer". The reason for removing "Data Source Multiplexer" is to get more available resources.

SPY memory III for ROP data is not used anymore.

Figure 2 shows the SPY memory subsystem of Framework. It is used to calibrate the system and to record results of the μ GTL and μ FDL.

3.2.4.1 Implementation

The memory subsystem consists of four three parts, which will be discussed in more detail in the following sections:

- SPY Trigger
- SPY Memory I
- SPY Memory II

3.2.4.1.1 SPY Trigger

The SPY trigger controls the SPY memories and decides when data is recorded. It can be configured and controlled using software registers 3.1 and 3.2.

Listing 3 contains the entity-declaration of the spytrig.vhd.

Listing 3: SPY trigger interface specification

```
entity spytrig is
   port
       lhc_clk
                  : in std_logic;
                  : in std_logic;
       lhc_rst
                  : in orbit_nr_t;
       orbit_nr
                  : in bx_nr_t;
       bx nr
                  : in sw_reg_spytrigger_in_t;
       sw_reg_i
                  : out sw_reg_spytrigger_out_t;
       sw_req_o
                  : out std_logic;
       spy1_o
       spy2_o
                 : out std_logic
   );
end;
```

When the SPY trigger receives a spy12 command (next or once) over the software register interface it asserts the spy1 and spy2 signals for the appropriate orbit. This means that the spy signals go high with the bunch crossing counter reaching the value zero and stay high until it reaches zero again (overflow).

Figure 2: Memory subsystem

3.2.4.1.2 SPY memory I

SPY memory I stores data from LMP (coming from GTHs) to check the alignment of the data, for simulation and test purposes. It is composed of 72 4096x32 bits memories (to cover 3564 bunch crossings with 32 bits datawidth) for all input data. The 4096x32 memory has an input port for 32 bits data at the 40MHz clock domain and an IPBus interface to read the content. Memory address is given by bunch crossing counter (40MHz clock domain).

3.2.4.1.3 SPY memory II

SPY memory II is divided into two subcomponents, to store the *algos* and *finor* outputs of the μ FDL, where memory for *algos* has 16 4096x32 bits memories (16x32=512 algos) and *finor* is made of only one (for finor with veto). Both have the same architecture as SPY memory I.

3.2.5 Timer Counter Manager

The Timer Counter Manager (TCM) provides different counters, listed in Table 7 and a set of resisters.

3.2.5.1 Counter Overview

Table 7: Counters of Timer Counter Manager

Counter	range	increase condition	reset condition	Comments
bx_nr (3.3)	03563	rising_edge(lhc_clk)	overflow	
event_nr (3.4)	$02^{32} - 1$	l1a=1 and rising_edge(lhc_clk)	BGo: event counter reset	
trigger_nr (3.5)	$02^{48} - 1$	l1a=1 and rising_edge(lhc_clk)	BGo: start run	
orbit_nr (3.6)	$02^{48} - 1$	overflow of bx_nr	BGo: orbit counter reset	
luminosity_seg_nr (3.7)	$02^{32} - 1$	rising_edge(orbit_nr(18))	BGo: orbit counter reset	

3.2.5.2 Counters for bunch crossing-, orbit- and luminosity segment number

The counter for bunch crossing number (bx_nr) is zero at startup and increased at every LHC clock cycle as depicted in figure 3. Its maximal value is 3563 (0xdeb), then it automatically overflows and starts at zero again (see figure 4). Exactly when $bx_nr = 0$, delayed BC0 $(bcres_d)$ has to be asserted. Otherwise the counter is out of synchronization. If this happens, the software register err_det is set and the counter waits for the next $bcres_d$ to synchronize again. The value of bunch crossing number can be read from "TCM Bunch Crossing Number Register" (3.3).

The counter for orbit number $(orbit_nr)$ is 1 at startup and increased at every end of orbit $(bx_nr = 3563)$. It is set to 1 with orbit counter reset (TTC signal oc0). The value of orbit number can be read from "TCM Orbit Number Register" (3.6).

The counter for luminosity segment number ($luminosity_seg_nr$) is increased, if signal start (TTC signal) was applied and counter for orbit number ($orbit_nr$) is greater than a given value for length of luminosity segment period (currently = 262144 [0x40000], see gt_mp7_core_pkg.vhd). The value of luminosity segment number can be read from "TCM Luminosity Segment Number Register" (3.7).

Figure 3: start of the bunch crossing number with the first bcres_d

Figure 4: normal operation of the bunch crossing number

3.2.5.3 Bunch crossing counter error

As stated above, $bcres_d$ has to be asserted exactly when $bx_nr = 0$, otherwise the bunch crossing counter is out of sync. Then the software register err_det is set as depicted in figure 5. Signal err_det can be reset via software event register $err_det_reset_event$ as depicted in figure 6.

Figure 5: set of the software register err_det when bc_res_d is not asserted correctly

Figure 6: reset of the software register err_det when err_det_reset_event toggles

The TCM implements two additional counters (bx_nr_chk and bx_nr_max) for debugging purposes. These counters are not visible with any other module but readable via software. Counter bx_nr_chk has 32 bits that increased with every LHC clock cycle and set to 0 with $bcres_d$. Value bx_r_max holds the highest bx_nr_chk ever reached (should be 3563, if the link is aligned).

3.2.5.4 Counters for event- and trigger number

The counters for event number $(event_nr)$ and trigger number $(trigger_nr)$ are increased with L1A signal. Event number counter is set to 0 with $ec\theta$ signal, trigger number counter with start (TTC signals). The values of event number and trigger number can be read from "TCM Event Number Register" (3.4) and "TCM Trigger Number Register" (3.5).

3.2.6 Software Reset

The software reset module provides the possibility for a software reset via the software reset register sw_reset_event , see 3.17.

3.2.7 Registers

3.2.7.1 Register map

The register map for Framework has a base address of 0x80000000.

Table 8: Framework register map

Offset	Register name	Access	Description
0x80000000	Timestamp	r	read-only register for timestamp begin of synthesis.
0x80000001	Hostname	r	4 read-only registers for hostname of synthesis platform.
0x80000009	Username	r	4 read-only registers for username of synthesis.
0x80000012	Frame version	r	read-only register for Global Trigger firmware version.
0x80000013	Build version	r	read-only register for build version of Global Trigger firmware.
0x80000800	Reset register	r/w	register for reset pulse and counter reset of counters.
0x80200000	Spy mem finor	r/w	$4096\ \mathrm{memory}$ addresses for finor and veto.
0x80240000	Spy mem algos (0)	r/w	4096 memory addresses for algos[31:0].
0x80241000	Spy mem algos (1)	r/w	4096 memory addresses for algos $[63:32]$.
•••	•••		
0x8024F000	Spy mem algos (15)	r/w	4096 memory addresses for algos[511:480].
0x80300000	Spy mem (0)	r/w	4096 memory addresses for input data.
0x80301000	Spy mem (1)	r/w	4096 memory addresses for input data.
		•••	
0x80347000	Spy mem (71)	r/w	4096 memory addresses for input data.
0x80700000	Spytrigger: orbit nr low	r/w	register for lower 32 bits of spy trigger orbit number.
0x80700001	Spytrigger: orbit nr high	r/w	register for higher 32 bits of spy trigger orbit number.
0x80700002	Spytrigger: control	r/w	control register for spy12.
0x80700003	Software reset	r/w	software reset register.
0x80700010	Spytrigger status	r	status register of spytrigger.
0x80700012	TCM status	\mathbf{r}	status register of TCM.
0x80700016	TCM status: orbit nr low	r	read-only register for lower 32 bits of orbit number.
0x80700017	TCM status: orbit nr high	r	read-only register for higher 32 bits of orbit number.

Table 8: Framework register map

Offset	Register name	Access	Description
0x80700019	TCM status:	r	read-only register for maximum Bx num-
	bx nr max		ber.
0x8070001C	TCM status:	\mathbf{r}	read-only register for luminosity segment
	lum seg nr		number.

3.2.7.2 Register details

Register 3.1: SPY TRIGGER ORBIT NUMBER REGISTERS

31 0

Teserved Othik nt high of the second o

orbit_nr_low 32 low bits of the 48 bit orbit number, used for the spy once trigger.

orbit_nr_high 16 high bits of the 48 bit orbit number, used for the spy once trigger.

Register 3.3: TCM Bunch Crossing Number Register

12 11 0 0 0

Register 3.2: SPY TRIGGER CONFIGURATION REGISTER

şŠ	99 95 93	13, e2, 13, e2, 10e2,	41.5 294 6	regerted	Ş	કર્ણ કર્ણ	91 1919 1919	हते. इते इते	86 57 84 84	igh once
31	29	27	26	6	5	4	3	1	0	
0	0	0		0	0	0	0	0	0	Reset
spy	12	(onc	Triggers the recording of the selected orbit and II, when written with 1.	to	SF	PΥ	m	em	ories l

Triggers the recording of the next whole orbit to SPY memories $spy12_next$ I and II, when written with 1.

Clears the ready flag of the SPY trigger for SPY memories I and clr_spy12_rdy II, when written with 1.

Clears the ready flag of the SPY trigger for SPY memory III, clr_spy3_rdy when written with 1.

Clears the error flag, when written with 1. clr_spy12_err

Indicates that the SPY trigger for SPY memories I and II is spy12_bsy busy.

spy12_rdy Indicates that one orbit has been recorded in SPY memories I and II and that the SPY trigger is ready for new commands.

spy12_err Indicates an error condition (Set only when the selected orbit number for the spy once trigger lies in the past and can therefore not be recorded).

31

Register 3.4: TCM EVENT NUMBER REGISTER

event./

Register 3.5: TCM Trigger Number Registers

31 0

Reserved

16 15 0

0 0

trigger_nr_l 32 low bits of the 48 bit trigger number.

trigger_nr_h 16 high bits of the 48 bit trigger number.

Register 3.6: TCM ORBIT NUMBER REGISTERS

31 0

Reserved

31 16 15 0

0 0

orbit_nr_l 32 low bits of the 48 bit orbit number.

orbit_nr_h 16 high bits of the 48 bit orbit number.

0

Register 3.7: TCM LUMINOSITY SEGMENT NUMBER REGISTER

Register 3.8: TCM Bunch Crossing Number μ FDL Register

Register 3.9: TCM Bunch Crossing Number Check Register

Register 3.10: TCM Bunch Crossing Number Max Register

Register 3.11: TCM CMD_IGN_BCRES

cmd_ign_bcres bcres is ignored (not checked) when this is set.

err_det set when out of synchronization.

Register 3.13: TCM ERR_DET_RESET_EVENT

err_det_reset_event resets err_det.

Register 3.14: TCM BGo SIGNALS

Reset

BGo signals for simulation of BGo signals.

Register 3.15: TCM BGO_EVENT

Register 3.15: TCM BGO_EVENT

Register 3.15: TCM BGO_EVENT

Reset

1 0

0 Reset

BGo_event replaces the BGo input signals with the sw-register BGo signals for exactly one clock cycle.

Reset

sw_reset_event generates a reset signal for exactly one clock cycle.

4 Global Trigger Logic

This description is for version v1.18.0 of Global Trigger Logic.

The Global Trigger Logic (μ GTL) firmware contains conditions and algorithms for trigger decision (see Figure 7).

Definitions are based on document [5].

Figure 7: μ GTL firmware

4.1 μ GTL Interface

Inputs:

- Calo-Layer2 data
 - Electron/ γ objects
 - Jet objects
 - Tau objects
 - Energy summary information:
 - * Total Et (ET)
 - * Total Et from ECAL only (ETTEM)
 - * Total calibrated Et in jets (HT)
 - * Missing Et (ET_{miss})
 - * Missing Et including HF (ET_{miss}^{HF})
 - * Missing Ht objects (HT_{miss})
 - * Missing Ht including HF (HT_{miss}^{HF})

- * "Asymmetry" information (ASYMET, ASYMHT, ASYMETHF, ASYMHTHF)
- Minimum bias HF bits (included in energy summary information data structure)
- Towercount bits (number of firing HCAL towers, included in energy summary information data structure)
- "Centrality" bits
- Global Muon Trigger data
- External conditions

Outputs:

• Algorithms

4.2 Definition of optical interfaces

Remark:

All definitions for scales in the following chapters are from a CMS Detector Note: "Scales for inputs to μ GT" (see [5]).

4.2.1 Calo-Layer2 optical interfaces

The data structure of an electron/ γ object (bits 27..31 are not defined yet, reserved for quality, ...):

31	27	26 25	24 17	16 9	8 0
qual,	/spare	iso	φ	η	$E_{ m T}$

The data structure of a jet object (bits 30..31 are spare bits):

31	30	29 28	27	26 19	18 11	10 0
٤	sp	qu	D	φ	η	$E_{ m T}$

D = DISP bit, qu = quality flags, sp = spare bits.

The data structure of a tau object (bits 27..31 are not defined yet, reserved for quality, ...):

31 27	26 25	24	17	16 9	8	_
qual/spare	iso	4)	η	$E_{ m T}$	

The data structure of "Total Et" (ET) quantity [including "Total Et from ECAL only" (ET-TEM) and "minimum bias HF+ threshold 0" bits]:

31	28	27 24	23	2 11 0
MBT0HF	'P	spare	$E_{ m T}$ [ETTEM]	$E_{ m T}$ [ET]

The data structure of "Total calibrated Et in jets" (HT) quantity [including "towercount" and "minimum bias HF- threshold 0" bits]:

31	28	27 25	24 12	11 0
M	1BT0HFM	spare	TOWERCOUNT	$E_{ m T}$

The data structure of "Missing Et" (ET_{miss}) quantity [including "Asymmetry" ASYMET and "minimum bias HF+ threshold 1" bits]:

31 28	27 20	19 12	11 0
MBT1HFP	ASYMET	φ	$E_{ m T}$

The data structure of "Missing Ht" (HT_{miss}) quantity [including "Asymmetry" ASYMHT and "minimum bias HF- threshold 1" bits]:

31 28	27 20	19 12	11 0
MBT1HFM	ASYMHT	φ	$E_{ m T}$

The data structure of "Missing Et including HF" (ET_{miss}^{HF}) quantity [including "Asymmetry" ASYMETHF and "Centrality" bits (3:0)]:

31 28	27	20 19	12	11 0	
[CENT3:0]) ASYMETHF		φ	$E_{ m T}$	

The data structure of "Missing Ht including HF" (HT^{HF}_{miss}) quantity [including "Asymmetry" ASYMHTHF and "Centrality" bits (7:4)]:

31 28	27	20 19	12 11		0
CENT[7:4]	ASYMHTHF	φ		$E_{ m T}$	

4.2.2 Global Muon Trigger optical interfaces

The data structure of a muon object (64 bits - bit 34 = charge sign, bit 35 = charge valid, bit 61 is a spare bit, bit 63..62 = impact parameter):

 $\mathrm{ch}=\mathrm{charge}$ bits, s = muon shower bit (on MU0, MU2, MU4 and MU6), imp = impact parameter.

4.3 Implementation in firmware

The firmware of μ GTL consists of two main parts:

A top-of-hierarchy file (gtl_module.vhd), which contains the pipeline for ±2bx data, the instantiations of calculators for differences in η and φ, the instantiations of conditions, the instantiations of charge correlation logic of muons and the Algorithms logic for 512 Algorithms, as well as a package file (gtl_pkg.vhd) for declarations. Currently 6 AMC (MP7) boards are used to contain Algorithms.

A software tool called Trigger Menu Editor (TME) [3] is available to create a L1Menu with up to 512 Algorithms, which are partitioned by VHDL Producer [4] to the 6 MP7 boards.

The VHDL Producer for every Trigger Menu creates VHDL snippets files (algo_-index.vhd, gtl_module_instances.vhd, gtl_module_signals.vhd, ugt_-constants.vhd).

These snippets are inserted into templates for gtl_module.vhd (gtl_module_-tpl.vhd), algo_mapping_rop.vhd (algo_mapping_rop_tpl.vhd) and fdl_-pkg.vhd (fdl_pkg_tpl.vhd) during simulation and synthesis (see Figure 8).

• A set of VHDL-files exists for all the modules instantiated in top-of-hierarchy and the modules in the hierarchy. These files, called the "fixed part", are not influenced by VHDL Producer.

The latency of μ GTL is fixed to 5 bunch-crossings, 2 bunch-crossings for the pipeline of ± 2 bx data (for data with ± 2 bx and ± 1 bx), 2 bunch-crossings for conditions (fixed), also for the conditions requested in the future, 1 bunch-crossing for the logic of Algorithms (see Figure 9).

4.3.1 Top-of-hierarchy module

The top-of-hierarchy module (gtl_module.vhd) contains

- the pipeline for $\pm 2bx$ data
- the instantiations of charge correlation logic of muons (generated by VHDL Producer)
- the instantiations of calculators for differences in η and φ (generated by VHDL Producer)
- the instantiations of conditions (generated by VHDL Producer)
- a boolean logic for Algorithms (generated by VHDL Producer)

Listing 4 contains the entity-declaration of the top-of-hierarchy file (qtl_module.vhd).

All the declarations for arrays ('type'), parameters ('constant') and look-up-tables ('constant') used in modules are available in gtl_pkg.vhd package-file.

Figure 8: VHDL file generation by VHDL Producer

Table 9: Explanation of Listing 4

Item	Explanation
lhc_clk gtl_data algo_o	clock input (LHC clock). input data (±2bx data). algorithms output.

Listing 4: Entity declaration of gtl_module.vhd

```
entity gtl_module is
    port(
        lhc_clk : in std_logic;
        gtl_data : in gtl_data_record;
        algo_o : out std_logic_vector(NR_ALGOS-1 downto 0));
end gtl_module;
```

4.4 μ GTL structure

4.4.1 Data $\pm 2bx$

The μ GTL input data flow through a register pipeline of four stages. With those data it is possible to have conditions with objects from different bunch-crossings (within ± 2 bunch-crossings), electron/ γ for Correlation conditions.

See Figure 9 for a scheme of μ GTL pipeline structure. The data "data_p_1bx" and "data_p_-2bx" occur 1 respectively 2 bunch-crossings after data for a certain bunch-crossing, therefore we got 2 bunch-crossings of latency from those data. The data "data_m_1bx" and "data_-m_2bx" have no influence on latency, because coming before data for a certain bunch-crossing.

Figure 9: Scheme of μ GTL pipeline structure

4.4.2 Definitions of Calorimeter data

The calorimeter trigger processing identifies electron/ γ , jet and tau objects and energy sum quantities.

See also 4.2.

electron/ γ :

Twelve objects are passed to the μ GT for each event.

For each selected object, the Calo-Layer2 sends parameters for $p_{\rm T}$ and for position and isolation - encoded in 32 bits:

- 9 bits $p_{\rm T}$, range = 0..255 GeV (HW index = 0..0x1FF), step = 0.5, the highest bin will mark an overflow (HW index 0x1FF): meaning has to be defined
- 8 (7+1 sign) bits pseudo-rapidity (η) position, range = -5.0 to 5.0, step = 0.087/2, linear scale, 230 bins (HW index = 0x8E..0x72)
- 8 bits azimuth angle (φ) position, range = 2π , step $\approx 2\pi/144$ ($=2.5^{\circ}$), 144 bins (HW index = 0..0x8F), HW index starting at 0° (anti-clockwise)
- 2 bits isolation
- 5 bits spare

jet:

Twelve objects are passed to the μGT for each event.

For each selected object, the Calo-Layer2 sends parameters: $p_{\rm T}$, for position information, a DISP bit and quality information - encoded in 32 bits:

- 11 bits $p_{\rm T}$, range = 0..1023 GeV (HW index = 0..0x7FF), step = 0.5, the highest bin will mark an overflow (HW index 0x7FF): meaning has to be defined
- 8 (7+1 sign) bits pseudo-rapidity (η) position, range = -5.0 to 5.0, step = 0.087/2, linear scale, 230 bins (HW index = 0x8E..0x72)
- 8 bits azimuth angle (φ) position, range = 2π , step $\approx 2\pi/144~(=2.5^{\circ})$, 144 bins (HW index = 0..0x8F), HW index starting at 0° (anti-clockwise)
- 1 DISP bit (will be used to flag a jet as delayed / displaced based on HCAL timing and depth profiles that are indicative of a LLP decay. If this bit is set to 1, then the jet has been tagged as an LLP jet.)
- 2 bits for "quality flags" currently not used.
- 2 bits spare

tau:

Twelve objects are passed to the μ GT for each event.

For each selected object, the Calo-Layer2 sends parameters for $p_{\rm T}$ and for position information and isolation - encoded in 32 bits:

• 9 bits $p_{\rm T}$, range = 0..255 GeV (HW index = 0..0x1FF), step = 0.5, the highest bin will mark an overflow (HW index 0x1FF): meaning has to be defined

- 8 (7+1 sign) bits pseudo-rapidity (η) position, range = -5.0 to 5.0, step = 0.087/2, linear scale, 230 bins (HW index = 0x8E..0x72)
- 8 bits azimuth angle (φ) position, range = 2π , step $\approx 2\pi/144$ ($\triangleq 2.5^{\circ}$), 144 bins (HW index = 0..0x8F), HW index starting at 0° (anti-clockwise)
- 2 bits isolation
- 5 bits spare

The representation of the 8 bits (called "hardware index [HW index]") in η is expected as Two's Complement notation as shown below.

 η bin HW index η range 114*0.087/2 to 115*0.087/2 0x72114 0.087/2 to 2*0.087/20x011 0 to 0.087/20x000 0xFF0 to -0.087/2-1 0xFE-0.087/2 to -2*0.087/2-2

Table 10: η scale of calorimeter objects

The representation of the 8 bits in φ is expected as shown in Table 11.

0x8E

Table 11: φ scale of calorimeter objects

-114*0.087/2 to -115*0.087/2

-115

HW index	φ range	φ range [degrees]	φ bin
0x00	0 to $2\pi/144$	0 to 2.5	0
0x01	$2\pi/144$ to $2*2\pi/144$	2.5 to 5.0	1
0x8F	$143*2\pi/144 \text{ to } 2\pi$	357.5 to 360	143

The representation of the 2 bits for isolation (e/ γ and tau) is expected as shown in Table 12.

Table 12: Definition of e/γ and tau isolation bits

bits [2625]	definition
00	not isolated
01	isolated
10	TBD
11	TBD

4.4.3 Definitions of Energy sum quantities data

See also 4.2.

energy sum quantities:

Consists of following quantities (naming convention see in "Glossary"):

- ET
- HT
- ET_{miss}
- HT_{miss}
- ETTEM
- \mathbf{ET}_{miss}^{HF}
- $\mathbf{H}\mathbf{T}_{miss}^{HF}$
- ASYMET
- ASYMHT
- ASYMETHF
- ASYMHTHF
- CENTO
- .
- CENT7

Calo-Layer2 sends 6 frames (each 32 bits) with Energy sum quantities containing the following information:

- $E_{\rm T}$, 12 bits, range = 0..2047 GeV (HW index = 0..0xFFF), step = 0.5, the highest bin will mark an overflow (HW index 0xFFF): meaning has to be defined
- azimuth angle (φ) position, 8 bits, range = 2π , step $\approx 2\pi/144~(=2.5^{\circ})$, 144 bins (HW index = 0..0x8F), HW index starting at 0° (anti-clockwise)
- "Towercount", 13 bits, range = 0..8191
- "Minimum bias", 4 bits, range = 0..15
- "Asymmetry", 8 bits, range = 0..255 (used 0..100)
- "Centrality", 8 bits, used as signals

- Frame 0: The data structure of "Total Et" (ET) quantity [including "Total Et from ECAL only" (ETTEM) and "minimum bias HF+ threshold 0" bits].
- Frame 1: The data structure of "Total calibrated Et in jets" (HT) quantity [including "towercount" and "minimum bias HF- threshold 0" bits].
- Frame 2: The data structure of "Missing Et" (ET_{miss}) quantity [including "Asymmetry" ASYMET and "minimum bias HF+ threshold 1" bits].
- Frame 3: The data structure of "Missing Ht" (HT_{miss}) quantity [including "Asymmetry" ASYMHT and "minimum bias HF- threshold 1" bits].
- Frame 4: The data structure of "Missing Et including HF" (ET^{HF}_{miss}) quantity [including "Asymmetry" ASYMETHF and "Centrality" bits (3:0)].
- Frame 5: The data structure of "Missing Ht including HF" (HT^{HF}_{miss}) quantity [including "Asymmetry" ASYMHTHF and "Centrality" bits (7:4)].

4.4.4 Definitions of Muon data

Eight Muon objects are provided by Global Muon Trigger. One Muon object has a 64 bits data structure with parameters for $p_{\rm T}$, for unconstrained $p_{\rm T}$, for impact parameter, for position, charge, quality and isolation information (see also 4.2.2):

- 10 bits azimuth angle (φ) position, range = 2π , step $\approx 2\pi/576$ ($=0.625^{\circ}$), 576 bins (HW index = 0..0x23F), HW index starting at 0° (anti-clockwise)
- 9 bits $p_{\rm T}$, range = 0..255 GeV (HW index = 0..0x1FF), step = 0.5, the highest bin will mark an overflow (HW index 0x1FF): meaning has to be defined
- 4 bits quality, 16 types for quality (meaning not defined yet!)
- 9 (8+1 sign) bits pseudo-rapidity (η) position, range = -2.45 to 2.45, step = 0.087/8, linear scale, 451 bins (-225..225, HW index = 0x11F..0x0E1)
- 2 bits isolation, 4 types for isolation (meaning not defined yet!)
- 1 bit charge sign, charge sign = '0' means "positive" charge, charge sign = '1' means "negative" charge
- 1 bit charge valid (='1' means "valid")
- 7 index bits
- 10 bits azimuth angle (φ) position, raw data
- 8 bits unconstrained $p_{\rm T}$, range = 0..255 GeV (HW index = 0..0xFF), step = 1.0, the highest bin will mark an overflow (HW index 0xFF)
- 1 spare bit
- 2 bits impact parameter

The representation of the 9 bits (called "hardware index [HW index]") in η is expected as Two's Complement notation as shown in Table 13.

The central value of the bin 0 (-0.010875/2 to +0.010875/2) = 0.0, the left edge of the bins will range from $-255 \times 0.010875 - 0.010875/2 = -2.7785625$ to $+255 \times 0.010875 - 0.010875/2 = 2.7676875$. The central value of the bins will range between ± 2.773125 . The physical η range of the muon detectors is about ± 2.45 , so that not all possible η bins will be used.

The representation of the 10 bits in φ is expected as shown in Table 14.

The representation of the 4 bits for quality is expected as shown in Table 15.

The representation of the 2 bits for isolation is expected as shown in Table 17.

The representation of the 2 bits for impact parameter is expected as shown in Table 17.

Table 13: η scale of muon objects

HW index	η range	η bin
0x0E1	224.5*0.087/8 to 225.5*0.087/8	225
0x0E0	223.5*0.087/8 to 224.5*0.087/8	224
•••		•••
0x001	0.5*0.087/8 to 1.5*0.087/8	1
0x000	0.5*-0.087/8 to 0.5*0.087/8	0
0x1FF	0.5*-0.087/8 to 1.5*-0.087/8	-1
0x1FE	1.5*-0.087/8 to -2.5*0.087/8	-2
•••		
0x11F	-224.5*0.087/8 to -225.5*0.087/8	-225

Table 14: φ scale of muon objects

HW index	φ range	φ range [degrees]	φ bin
0x000	0 to $2\pi/576$	0 to 0.625	0
0x001	$2\pi/576$ to $2*2\pi/576$	0.625 to 1.250	1
0x23F	$575*2\pi/576 \text{ to } 2\pi$	359.375 to 360	575

Table 15: Definition of muon quality bits

bits [2219]	definition
0000	quality "level 0"
0001	quality "level 1"
1110	quality "level 14"
1111	quality "level 15"

Table 16: Definition of muon isolation bits

bits [3332]	definition
00	not isolated
01	isolated
10	TBD
11	TBD

Table 17: Definition of muon impact parameter bits

bits [6362]	definition
00	TBD
01	TBD
10	TBD
11	TBD

4.4.5 Calculation of object cuts

List of object cuts:

- p_T
- η
- (2
- isolation
- DISP
- charge
- quality
- unconstrained $p_{\rm T}$
- impact parameter

4.4.5.1 Object cuts

The comparisons for objects cuts are done by:

A comparator between the energy (p_T) and a threshold (pt_threshold) with 'mode-selection'. Similar for unconstrained p_T .

The comparison in η is done with five "window"-comparators, so one gets max. five ranges for η . The η value (HW index) has a Two's Complement notation, the comparisons is done signed. Number of windows is given for η .

The comparison in φ is done with two "window"-comparators, so one gets two ranges for φ . The comparisons is done unsigned. Number of windows is given for φ .

There are two cases how the limits of one "window"-comparator could be set (see also Figure 10):

- Upper limit is less than lower limit $=> \varphi$ range between the limits, including the φ bin with value =0 (HW index).
- Upper limit is greater/equal than lower limit => φ range between the limits, not including the φ bin with value = 0 (HW index).

Only one of the required ranges ("windows") must be fulfilled by η and φ values ("or").

The comparisons for isolation, quality and impact parameter are done with LUTs. The comparison for charge is done with requested charge.

If DISP bit is set to 1, then the jet has been tagged as an LLP jet. A one bit requirement is given for DISP for comparison.

Upper limit is greater/equal than lower limit

Upper limit is less than lower limit

Figure 10: Setting the limits for "window"-comparators for φ

The comparison of isolation (for electron/ γ , tau and muon) is done with a LUT (Table 18). [To ignore quality comparison, all bits in the LUT have to be '1'.]

The comparison of impact parameter is done with LUT (Table 19). [To ignore quality comparison, all bits in the LUT have to be '1'.]

The comparison of quality is done with LUT (Table 20). [To ignore quality comparison, all bits in the LUT have to be '1'.]

Charge valid and charge sign bits must be equal to the requested charge.

Table 18: LUT contents for isolation comparison

LUT content (4 bits)	isolation (2 bits)	trigger
X"0"	XX	no trigger
X"1"	00	trigger on isolation bits $= 00$
X"2"	01	trigger on isolation bits $= 01$
X"3"	00 or 01	trigger on isolation bits $= 00$ or 01
X"4"	10	trigger on isolation bits $= 10$
X"5"	00 or 10	trigger on isolation bits $= 00$ or 10
X"6"	01 or 10	trigger on isolation bits $= 01$ or 10
X"7"	00 or 01 or 10	trigger on isolation bits = 00 or 01 or 10
X"8"	11	trigger on isolation bits $= 11$
X"9"	00 or 11	trigger on isolation bits $= 00$ or 11
X"A"	01 or 11	trigger on isolation bits $= 01$ or 11
X"B"	00 or 01 or 11	trigger on isolation bits $= 00$ or 01 or 11
X"C"	10 or 11	trigger on isolation bits $= 10$ or 11
X"D"	00 or 10 or 11	trigger on isolation bits $= 00$ or 10 or 11
X"E"	01 or 10 or 11	trigger on isolation bits $= 01$ or 10 or 11
X"F"	00 or 01 or 10 or 11	trigger on isolation bits = 00 or 01 or 10 or 11 (= "ignore" isolation)

Table 19: LUT contents for impact parameter comparison

LUT content (4 bits)	impact parameter (2 bits)	trigger
X"0"	XX	no trigger
X"1"	00	trigger on impact parameter bits = 00
X"2"	01	trigger on impact parameter bits = 01
X"3"	00 or 01	trigger on impact parameter bits = 00 or 01
X"4"	10	trigger on impact parameter bits = 10
X"5"	00 or 10	trigger on impact parameter bits = 00 or 10
X"6"	01 or 10	trigger on impact parameter bits = 01 or 10
X"7"	00 or 01 or 10	trigger on impact parameter bits = 00 or 01 or 10
X"8"	11	trigger on impact parameter bits = 11
X"9"	00 or 11	trigger on impact parameter bits = 00 or 11
X"A"	01 or 11	trigger on impact parameter bits = 01 or 11
X"B"	00 or 01 or 11	trigger on impact parameter bits = 00 or 01 or 11
X"C"	10 or 11	trigger on impact parameter bits = 10 or 11
X"D"	00 or 10 or 11	trigger on impact parameter bits = 00 or 10 or 11
X"E"	01 or 10 or 11	trigger on impact parameter bits = 01 or 10 or 11
X"F"	00 or 01 or 10 or 11	trigger on impact parameter bits = 00 or 01 or 10 or 11 (= "ignore" impact parameter)

Table 20: LUT contents for quality comparison of muon objects $\,$

LUT content (16 bits)	quality bits (4 bits)	trigger
X"0000"	xxxx	no trigger
X"0001"	0000	trigger on quality "level 0"
X"0002"	0001	trigger on quality "level 1"
X"0003"	0001 or 0000	trigger on quality "level 1" or "level 0"
X"0004"	0010	trigger on quality "level 2"
X"8000"	1111	trigger on quality "level 15"
X"C000"	1111 or 1110	trigger on quality "level 15" or "level 14"
X"FFFF"	XX	trigger on all quality "levels" (= "ignore")

4.4.6 Calculation of correlation cuts

The following cuts are used for two objects correlations:

- $\Delta \eta$ (DETA).
- $\Delta \varphi$ (DPHI).
- ΔR (DR).
- charge correlation (only for muon).
- Cuts for mass (MASS) of following mass types:
 - Invariant mass.
 - Invariant mass with unconstrained pt (for muons only).
 - Invariant mass over ΔR .
 - Transverse mass.
- Two-body pt.

There is one mass cut for correlations with three objects:

• Invariant mass for three objects (MASS).

The generation of look-up-tables (LUTs) for calculations of correlation cuts is described in chapter "Calculation of look-up-tables (LUTs) for correlation cuts" (see 4.4.7).

Calculation of $\Delta \eta$

The calculation of $\Delta \eta$ of two objects is done with formula:

$$\Delta \eta = abs(\eta 1 - \eta 2)$$

where $\eta 1$ and $\eta 2$ are represented in signed hardware indices.

Calculation of $\Delta \varphi$

The calculation of $\Delta \varphi$ of two objects is done with formula:

 $\Delta \varphi = \text{abs}(\varphi 1 - \varphi 2)$ with (" φ full bin range"- $\Delta \varphi$) when ($\Delta \varphi > "\varphi$ half bin range").

where $\varphi 1$ and $\varphi 2$ are represented in unsigned hardware indices.

ΔR calculation

The calculation of ΔR of two objects is done with formula:

$$\Delta R = \sqrt{(\eta 1 - \eta 2)^2 + (\varphi 1 - \varphi 2)^2}.$$

The calculation of ΔR^2 in VHDL (no square root in VHDL) is done by adding the square of $\Delta \eta$ and $\Delta \varphi$ LUT values.

Invariant mass calculation

The calculation of *invariant mass of two objects* is done with formula:

$$M = \sqrt{2pt_1pt_2(\cosh(\eta 1 - \eta 2) - \cos(\varphi 1 - \varphi 2))}$$
.

The calculation of $\frac{M^2}{2}$ in VHDL (no square root in VHDL) is done by multiplying LUT values of pt1, pt2 and the difference of $\cosh(\Delta \eta)$ and $\cos(\Delta \varphi)$.

Transverse mass calculation

The calculation of transverse mass of two objects is done with formula:

$$M = \sqrt{2pt_1pt_2(1-\cos(\varphi 1-\varphi 2))}$$
.

Calculation similar to "Invariant mass calculation".

Invariant mass over ΔR calculation

The formulas for invariant mass over ΔR of two objects are:

$$M = \sqrt{2pt_1pt_2(\cosh(\eta 1 - \eta 2) - \cos(\varphi 1 - \varphi 2))}.$$

$$\Delta R = \sqrt{(\eta 1 - \eta 2)^2 + (\varphi 1 - \varphi 2)^2}.$$

The calculation of invariant mass over ΔR of two objects is done with $\frac{M^2}{2} \times (1/\Delta R^2)$ (no square root in VHDL).

A direct calculation of $1/\Delta R^2$ is not possible in firmware (VHDL code), therefore the implementation of the calculation is done by LUTs. In the hardware the values of these LUTs are stored in "large" ROMs, which was realized using the Block RAMs (BRAMs) of the Virtex chip.

Due the limited number of available BRAMs there are some restrictions for creating algorithms with invariant mass over ΔR :

- Objects must have the same type (e.g.: "muon muon", "eg eg", ...)
- Objects must be of same bx
- Resolution of $\Delta \eta$ and $\Delta \varphi$:
 - Full resolution for calos (max. deta bins=230, max. dphi bins=72)
 - Half resolution only for muons (max. deta bins=226, max. dphi bins=144)
- If $1/\Delta R^2=0$ ($\Delta \eta=0$ and $\Delta \varphi=0$) then correlation cut invariant mass over ΔR is true
- The values of LUTs are only valid for current definitions and restrictions. Every change might cause a recalculation of the values and a regeneration of IPs (representing LUTs in BRAMs) in Vivado (firmware generation tool)

The values of LUTs in firmware are listed in coe files of ROMs (created by same scripts mentioned above), currently 5 ROMs for "calo calo" and 6 ROMs for "muon muon" (see lut_calo_inv_dr_sq_rom1.coe, etc. and lut_muon_inv_dr_sq_rom1.coe, etc.). The addresses of the BRAMs are given by $\Delta \eta$ and $\Delta \varphi$. All ROMs for calos have 4096 addresses, for muons 8192 addresses. The data width of ROMs is different depending on the highest LUT value in ROM. Because of these different data widths, the partitioning of several ROMs was done to save BRAM resources. Currently 873 BRAMs (36kb) are available per Virtex chip. Following numbers of BRAMs (36kb) are needed for:

• "calo calo": 660

• "muon muon": 672

Currently one calculation of invariant mass over ΔR of "calo calo" or "muon muon" is possible in one Virtex chip, but one can have some algorithms containing invariant mass over ΔR with different thresholds, but with same objects and same bx.

Invariant mass calculation for three objects

The calculation of *invariant mass calculation for three objects* is done by calculating the invariant mass for all two-object combinations and take the sum of the three invariant masses of the two-object combinations.

Two-body pt calculation

The calculation of two-body pt is done with formula:

$$pt = \sqrt{pt_1^2 + pt_2^2 + 2pt_1pt_2(\cos(\varphi 1)\cos(\varphi 2) + \sin(\varphi 1)\sin(\varphi 2))}$$

The calculation of pt^2 in VHDL (no square root in VHDL) using LUTs for pt1, pt2, $\cos(\varphi)$ and $\sin(\varphi)$.

Muon charge correlation

For definition of muon charge, see 4.4.4.

In the muon charge correlation module (muon_charge_correlations.vhd), the charge correlations are made for different muon conditions-types. The module is instantiated in the top-of-hierarchy module (gtl_module.vhd) and not inside of a muon conditions module. The charges of objects (number of objects depends on muon condition type) are compared to get "like sign charge" ("LS") or "opposite sign charge" ("0S"), "LS" means that the charges (charge sign) of objects are the same, "0S" means that at least one object has different charge than the others. This information is used in all instatiated muon conditions. There is no charge correlation for single type conditions.

In all cases the "charge valid" bit of the objects must be set.

In TME one can select "LS", "0S" or ignore for charge correlation in muon conditions.

Table 21: Muon charge correlation - Double Muon

```
x x | I ignore (charge x = +, -, I)
+ + LS both positive muons
- - LS both negative muons
I I LS both muons with the same sign, positive or negative
+ - OS two muons of opposite sign
- + OS idem
I I OS idem
```

Table 22: Muon charge correlation - Triple Muon

```
x x x
H + + + LS three muons of positive charge
- - - LS three muons of negative charge
I I I LS three muons of the same sign (positive or negative)
+ + - OS a pair plus a positive muon
+ - - OS a pair plus a negative muon
+ - I OS a pair plus a negative or positive muon
```

Table 23: Muon charge correlation - Quad Muon

```
x x x x
x I ignore (charge x = +, -, I)
+ + + + + + LS four muons of positive charge
- - - - - LS four muons of negative charge
I I I I LS four muons of the same sign (positive or negative)
+ + + - - OS a pair plus two positive muons
+ + - - - OS two pairs
+ - - - OS a pair plus two negative muons
+ - I I OS a pair plus two negative or positive muons
```

4.4.7 Calculation of look-up-tables (LUTs) for correlation cuts

LUTs are defined as a VHDL "constant" in gtl_luts_pkg.vhd (VHDL package file). The values of precision and step size are given by "scale_set" in XML file of a L1 menu.

Overview of precision types for correlation cuts (an example for electron/ γ electron/ γ correlation):

- EG-EG-Delta relevant for DeltaEta and DeltaPhi LUTs
- EG-EG-MassPt relevant for pt and unconstrained pt LUTs (used in mass and two-body pt calculations)
- EG-EG-Math relevant for cos(DeltaPhi) and cosh(DeltaEta) LUTs (used in mass calculations)
- EG-EG-InverseDeltaRMath relevant for 1/DeltaR LUTs (used in mass over deltaR calculations)
- EG-EG-TwoBodyPtMath relevant for cos(Phi) and sin(Phi) LUTs (used in two-body pt calculations)
- EG-EG-DeltaOverlapRemoval is obsolete, used EG-EG-Delta (same scales for η and φ)
- EG-EG-Mass currently not used
- EG-EG-TwoBodyPt is obsolete, used EG-EG-MassPt

Overview of precision names (example for "MassPt"):

EG-EG-MassPt

EG-JET-MassPt

EG-TAU-MassPt

JET-JET-MassPt

JET-TAU-MassPt

EG-ETM-MassPt

JET-ETM-MassPt

TAU-ETM-MassPt

EG-HTM-MassPt

JET-HTM-MassPt

TAU-HTM-MassPt

EG-ETMHF-MassPt

JET-ETMHF-MassPt

TAU-ETMHF-MassPt

EG-MU-MassPt

JET-MU-MassPt

TAU-MU-MassPt

MU-MU-MassPt

MU-ETM-MassPt

MU-HTM-MassPt

MU-ETMHF-MassPt

LUTs for p_T and unconstrained p_T used in mass and two-body pt calculations

The values of $p_{\rm T}$ or unconstrained $p_{\rm T}$ LUT are calculated by building the half difference of maximum and minimum value of a bin, adding minimum value, rounding at precision position after decimal point and multiplying with $10^{\rm precision}$ to get integer values.

The address input of the LUT for $p_{\rm T}$ or unconstrained $p_{\rm T}$ is the value of hardware index of $p_{\rm T}$ or unconstrained $p_{\rm T}$.

The precision values in XML file are given by (an example for electron/ γ electron/ γ correlation):

LUTs for $\Delta \eta$

The values of the LUT are calculated by multiplying $\Delta \eta$ in hardware indices with η step size, rounding at precision position after decimal point and multipling the result with $10^{\rm precision}$ to get integer values.

The address of the LUT is the value of $\Delta \eta$ in hardware indices.

```
The precision value in XML file is given by (an example for electron/\gamma electron/\gamma correlation): 
 < scale> < object>PRECISION</object> < type>EG-EG-Delta</type> ... <math>< n_bits>3</n_bits> < < scale> where < n_bits> is the precision value and < type> represents a precision name. The \eta (=\Delta\eta) step size in XML file is given by (an example for electron/\gamma): < scale> < object>EG</object> < type>ETA</type>
```

```
... < step>+4.3499999999999997E-02</step> ... <math>< / scale> VHDL names of \Delta\eta LUTs: CALO_CALO_DIFF_ETA_LUT CALO_MU_DIFF_ETA_LUT MU_MU_DIFF_ETA_LUT
```

LUTs for $\Delta \varphi$

The values of the LUT are calculated by multiplying $\Delta \varphi$ in hardware indices with φ step size, rounding at precision position after decimal point and multipling the result with $10^{\text{precision}}$ to get integer values.

The address of the LUT is the value of $\Delta \varphi$ in hardware indices.

The precision values of $\Delta \varphi$ are identical with $\Delta \eta$.

```
The \varphi (=\Delta\varphi) step size in XML file is given by (an example for electron/\gamma): <object>EG</object> <type>PHI</type> ... <math><step>+4.3633231299858237E-02</step> ... </scale> VHDL names of \Delta\varphi LUTs: CALO_CALO_DIFF_PHI_LUT CALO_MU_DIFF_PHI_LUT MU_MU_DIFF_PHI_LUT
```

LUTs for $\cosh(\Delta \eta)$ used in mass calculations

The values in the LUT are calculated by multiplying $\Delta \eta$ in hardware indices with η step size, calculating cosine hyperbolic, rounding at "Math" precision position after decimal point and multipling the result with $10^{\text{precision}}$ to get integer values.

The address of the LUT for $\cosh(\Delta \eta)$ is the value of $\Delta \eta$ in hardware indices.

For calo muon correlations one has to use the muon step size.

The precision values in XML file are given by (an example for electron/ γ electron/ γ correlation):

```
<scale> <object>PRECISION</object> <type>EG-EG-Math</type>
```

```
... < n\_bits > 3 < /n\_bits > < /scale > used for \cosh(\Delta \eta) and \cos(\Delta \varphi). 
VHDL names of \cosh(\Delta \eta) LUTs: CALO_CALO_COSH_DETA_LUT CALO_MUON_COSH_DETA_LUT MU MU COSH_DETA_LUT
```

LUTs for $\cos(\Delta\varphi)$ used in mass calculations

The values in the LUT are calculated by multiplying $\Delta \varphi$ in hardware indices with φ step size, calculating cosine, rounding at "Math" precision position after decimal point and multipling the result with $10^{\rm precision}$ to get integer values.

The address of the LUT for $\cos(\Delta\varphi)$ is the value of $\Delta\varphi$ in hardware indices. For calo muon correlations one has to use the muon step size.

```
VHDL names of \cos(\Delta\varphi) LUTs: CALO_CALO_COS_DPHI_LUT CALO_MUON_COS_DPHI_LUT MU_MU_COS_DPHI_LUT
```

LUTs for $1/\Delta R^2$ used in mass over deltaR calculations

The calculation of $1/\Delta R^2$ is done by multiplying $\Delta \eta$ in hardware indices with η step size, making the square, doing the same for $\Delta \varphi$, adding the squares, inverting the sum, rounding at "InverseDeltaRMath" precision position after decimal point and multipling the result with $10^{\rm precision}$ to get integer values. The address of the two-dimensional LUT for $1/\Delta R^2$ consists of values of $\Delta \eta$ and $\Delta \varphi$ in hardware indices.

The precision values in XML file are given by (an example for electron/ γ electron/ γ correlation):

```
 < scale > \\ < object > PRECISION < / object > \\ < type > EG-EG-InverseDeltaRMath < / type > \\ ... \\ < n\_bits > 5 < / n\_bits > \\ < / scale > \\  Precision names for "InverseDeltaRMath": EG-EG-InverseDeltaRMath JET-JET-InverseDeltaRMath TAU-TAU-InverseDeltaRMath MU-MU-InverseDeltaRMath
```

The LUTs are located in BRAMs.

For calo-calo mass over deltaR 5 ROMs are needed to represend the LUT. The content of the LUT one can see in lut_calo_inv_dr_sq_rom1.coe (and so on).

For muon-muon mass over deltaR 6 ROMs are needed to represend the LUT. The content of the LUT one can see in lut_muon_inv_dr_sq_rom1.coe (and so on).

The access to a certain ROM depends on the values of $\Delta \eta$ and $\Delta \varphi$ (see description_rom_-lut_calo_inv_dr_sq.txt and rom_lut_calo_inv_dr_sq_all.vhd, respectively description_rom_lut_muon_inv_dr_sq.txt and rom_lut_muon_inv_dr_sq_all.vhd).

LUTs for $\cos(\varphi)$ used in two-body pt calculations

The values in the LUT are calculated by building the half difference of maximum and minimum value of a φ bin, adding minimum value, calculating cosine, rounding at "TwoBodyPtMath" precision position after decimal point and multipling the result with $10^{\text{precision}}$ to get integer values.

The precision values in XML file are given by (an example for electron/ γ electron/ γ correlation):

```
 < scale > \\ < object > PRECISION < / object > \\ < type > EG-EG-TwoBodyPtMath < / type > \\ ... \\ < n\_bits > 3 < / n\_bits > \\ < / scale > \\ used for <math>\cos(\varphi) and \sin(\varphi).  \\ VHDL \ names \ of \ \cos(\varphi) \ LUTs: \\ CALO\_COS\_PHI\_LUT \\ MUON\_COS\_PHI\_LUT \\
```

LUTs for $\sin(\varphi)$ used in two-body pt cuts

The values in the LUT are calculated by building the half difference of maximum and minimum value of a φ bin, adding minimum value, calculating sine, rounding at "TwoBodyPtMath" precision position after decimal point and multipling the result with $10^{\text{precision}}$ to get integer values.

```
VHDL names of \sin(\varphi) LUTs: CALO_SIN_PHI_LUT MUON_SIN_PHI_LUT
```

4.4.8 Combination conditions

4.4.8.1 Combination conditions definition

A condition consists of input data and a set of requirements, which contain the requirements to be complied. The requirements are called "object cuts".

The requirement list contains:

thresholds for $p_{\rm T}$, ranges for η and φ , LUTs for isolation, LUTs for quality, requisted charges, thresholds for unconstrained $p_{\rm T}$, a LUT for impact parameter. The condition is complied, if every comparison between object parameters and requirements is valid for the following object cuts (only for requested cuts):

For Calorimeter input data:

- $p_{\rm T}$ greater-equal (or equal) threshold
- η in range
- φ in range
- iso LUT

For Muon input data:

- $p_{\rm T}$ greater-equal (or equal) threshold
- η in range
- φ in range
- iso LUT
- requested charge
- quality LUT
- unconstrained $p_{\rm T}$ greater-equal (or equal) threshold
- impact parameter LUT

There are different types of conditions implemented, depending of how many objects have to comply the requirements.

- "Quad objects requirements condition": this condition type consists of requirements for 4 different trigger objects of the same object type. For each object the requirements can be different. To fulfill this condition, there must exist at least one set of 4 different objects, each of which fulfills at least one of the requirements.
- "Triple objects requirements condition": this condition type consists of requirements for 3 different trigger objects of the same object type. For each object the requirements can be different. To fulfill this condition, there must exist at least one set of 3 different objects, each of which fulfills at least one of the requirements.

- "Double objects requirements condition": this condition type consists of requirements for 2 different trigger objects of the same object type. For each object the requirements can be different. To fulfill this condition, there must exist at least one set of 2 different objects, each of which fulfills at least one of the requirements.²
- "Single object requirement condition": this condition type consists of one requirement for one trigger object of a given object type. To fulfill this condition, there must exist at least one object which fulfills the requirement.

The values of the requirements are given by VHDL Producer for every Trigger Menu. The input data objects have to be of same type and same bunch-crossing.

With "Double objects requirements condition" a correlation cut of "two-body pt" can be required (calorimeter and muon objects).

Additionally charge correlation cuts with "Double objects requirements condition", "Triple objects requirements condition" and "Quad objects requirements condition" of muon objects can be required.

 $^{^2}$ "Double objects requirements condition with spatial correlation" not used anymore, replaced by Correlation conditions

Table 24: Explanation of Listing 5

Item	Explanation
et_ge_mode	'mode-selection' for the $E_{\rm T}$ comparator. Valid strings are 'true' and 'false' (type is boolean), 'true' means comparator works on greater/equal, 'false' means equal (for tests only)
obj_type	valid strings are 'ETT_TYPE', 'HTT_TYPE', 'ETM_TYPE', 'HTMTYPE' and 'ETMHF_TYPE'.
et_threshold	threshold value for comparison in $E_{\rm T}$. The size of the std_logic_vector depends on the number of $E_{\rm T}$ bits.
phi_full_range	boolean to set full range of φ .
phi_w1_upper_limits	"upper limit" of "window"-comparator 1 for φ .
phi_w1_lower_limits	"lower limit" of "window"-comparator 1 for φ .
phi_w2_ignore	boolean to ignore "window"-comparator 2 for φ .
phi_w2_upper_limits	"upper limit" of "window"-comparator 2 for φ .
phi_w2_lower_limits	"lower limit" of "window"-comparator 2 for φ .
clk	clock input (LHC clock).
data_i	input data, structure defined in obj_type.
condition_o	output of condition (routed to Algorithms logic, see 4.4.17).

4.4.9 Energy sum quantities conditions

4.4.9.1 Energy sum quantities conditions module (including Asymmetry conditions)

For the entity-declaration of esums_conditions.vhd, see Listing 5.

Listing 5: Entity declaration of esums_conditions.vhd

```
entity esums_conditions is
   generic
        et_ge_mode : boolean;
        obj_type : natural := ETT_TYPE; -- ett=0, ht=1, etm=2, htm=3
        et_threshold: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0);
        phi_full_range : boolean;
        phi_w1_upper_limit: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0)
        phi_w1_lower_limit: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0)
        phi_w2_ignore : boolean;
        phi_w2_upper_limit: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0)
        phi_w2_lower_limit: std_logic_vector(MAX_ESUMS_TEMPLATES_BITS-1 downto 0)
   );
   port (
        clk : in std_logic;
        data_i : in std_logic_vector(MAX_ESUMS_BITS-1 downto 0);
        condition_o : out std_logic
   );
end esums_conditions;
```

A comparator between $E_{\rm T}$ and a threshold (et_threshold) and, depending on object type, a comparison in φ with two "window"-comparators is done in this module. The value for $E_{\rm T}$ threshold, the 'mode-selection' for the $E_{\rm T}$ comparator and the limits for the "window"-comparators are given in the generic interface list of the module. The selection whether a comparison in φ is part of the condition is done with the value of the generic parameter 'obj_type' ('ETM_TYPE', 'ETMHF_TYPE', 'HTM_TYPE' and 'HTMHF_TYPE' force a comparison). The comparison in φ is done in the same way as for calorimeter conditions. Additionally the data-structure of input data (data_i in port interface list) is provided as a record in this list. The output signal of the module is in high state, if all comparisons are true.

Data for Asymmetry trigger are received on 4 frames on bits 27..20 (8 bits). For every type a comparision with an 8-bit threshold (greater-equal [or equal]) is done. Asymmetry data are interpreted as counts.

4.4.10 Muon shower bits

Muon shower bits MUS0, MUS1, MUSOOT0 (muon shower out of time), MUSOOT1 (muon bit 61 on MU0, MU2, MU4 and MU6) can be selected by TME to an algo or combined with other conditions to an algo.

4.4.11 Minimum bias trigger conditions

Data for Minimum bias trigger are received on the 4 MSBs of 4 frames used for Energy sum quantities (see 4.4.9).

- MBT0HFP: "minimum bias HF+ threshold 0" bits
- MBT0HFM: "minimum bias HF- threshold 0" bits
- MBT1HFP: "minimum bias HF+ threshold 1" bits
- MBT1HFM: "minimum bias HF- threshold 1" bits

In minimum bias trigger conditions module there is a comparision with a 4-bit threshold (greater-equal [or equal]).

4.4.12 Towercount condition

Data for Towercount trigger (number of firing HCAL towers) are received on frame HT (see 4.4.9) on bits 24..12 (13 bits) of HT data structure.

In towercount condition module there is a comparision with a 13-bit threshold (greater-equal [or equal]).

4.4.13 Centrality condition

Centrality bits used as a signals for triggers (similar to external signals).

4.4.14 Correlation conditions

The correlation conditions contain a combination of two "Single object requirement conditions" of two object types or one "Double objects requirement condition" of objects of the same type. In addition with object cuts there are correlation cuts for $\Delta \eta$, $\Delta \varphi$, ΔR , mass, mass divided by ΔR and "two-body pt".

The correlation condition of "Invariant mass for three objects" contains one "Triple objects requirement condition" of objects of the same type with one object cut for mass.

List of correlation cuts in 4.4.6.

Figure 11: VHDL structure of cuts for correlation conditions

Overview of correlation cuts in conditions

The following list gives an overview of possible correlation cuts in conditions:

- Calo conditions:
 - two-body pt (for double condition)
- Calo conditions overlap removal:

 $\begin{array}{l} -\ \Delta \eta \ {\rm overlap\ removal} \\ -\ \Delta \varphi \ {\rm overlap\ removal} \\ -\ \Delta {\rm R} \ {\rm overlap\ removal} \end{array}$

- two-body pt (for double condition)

$- \text{ charge correlation} \\ - \text{ two-body pt (for double condition)} \\ \bullet \text{ Calo calo correlation condition with calo overlap removal:} \\ - \Delta \eta \text{ overlap removal} \\ - \Delta \varphi \text{ overlap removal} \\ - \Delta R \text{ overlap removal} \\ - \Delta \eta \\ - \Delta \varphi \\ - \Delta \varphi \\$
• Calo calo correlation condition with calo overlap removal: $ -\Delta \eta \text{ overlap removal} $ $ -\Delta \varphi \text{ overlap removal} $ $ -\Delta R \text{ overlap removal} $ $ -\Delta \eta $
$-\Delta\eta$ overlap removal $-\Delta\varphi$ overlap removal $-\Delta R$ overlap removal $-\Delta\eta$
$-\Delta \varphi$ overlap removal $-\Delta R$ overlap removal $-\Delta \eta$
$-\Delta R$ overlap removal $-\Delta \eta$
$ \Delta\eta$
$-\Delta \phi$
— <i>r</i>
$ \Delta \mathrm{R}$
- invariant mass
- two-body pt
• Calo calo correlation condition:
$ \Delta\eta$
$ \Delta arphi$
$ \Delta \mathrm{R}$
- invariant mass
- two-body pt
• Calo calo correlation condition for invariant mass divided by ΔR :
– invariant mass divided by ΔR
• Calo calo correlation condition mass with three objects:
- invariant mass with three objects
• Calo muon correlation condition:
$ \Delta\eta$
$ \Deltaarphi$
$ \Delta \mathrm{R}$
- invariant mass
- two-body pt
• Calo esums correlation condition:

- $-\Delta\varphi$
- transverse mass
- two-body pt
- Muon muon correlation condition:
 - charge correlation
 - $-\Delta\eta$
 - $-\Delta\varphi$
 - $-\Delta R$
 - invariant mass or invariant mass unconstraint pt
 - two-body pt
- Muon muon correlation condition for invariant mass divided by ΔR :
 - charge correlation
 - invariant mass divided by ΔR
- Muon muon correlation condition mass with three objects:
 - charge correlation
 - invariant mass with three objects
- Muon esums correlation condition:
 - $-\Delta\varphi$
 - transverse mass
 - two-body pt

4.4.14.1 Correlation condition module

As described in section Correlation conditions (4.4.14), correlations of two object types are available. Therefore several correlations (objects 1-objects 2) are possible:

- Correlation condition with calorimeter objects electron/ γ -electron/ γ -, electron/ γ -jet, electron/ γ -tau, jet-jet, jet-tau and tau-tau.
- Correlation condition with calorimeter objects and energy sum quantities ($ET_{\rm miss}$, ET_{miss}^{HF} and $HT_{\rm miss}$ only) electron/ γ -etm, jet-etm, tau-etm, electron/ γ -htm, jet-htm, tau-htm, electron/ γ -etmhf, jet-etmhf and tau-etmhf.
- Correlation condition with calorimeter objects and muons objects electron/ γ -muon, jet-muon and tau-muon.
- Correlation condition with muon objects

• Correlation condition with muon objects and energy sum quantities (ET_{miss} , ET_{miss}^{HF} and HT_{miss} only) muon-etm, muon-etmhf and muon-htm.

There are two correlations for mass with three objects:

- Correlation condition for mass with three objects with calorimeter objects (same type, same bunch-crossing)
- Correlation condition for mass with three objects with muon objects

In correlation condition with calorimeter and muons objects we have different scales of calorimeter and muon objects in η and φ , therefore LUTs for conversion of the calorimeter bins to muon bins are used (in gtl_pkg.vhd: e.g. EG_ETA_CONV_2_MUON_ETA_LUTand EG_PHI_CONV_2_MUON_PHI_LUT).

Remark:

The center value of bins are used as reference value for conversion. The content of EG_ETA_-CONV_2_MUON_ETA_LUTis calculated with formular:

```
"converted-calo-eta[bin] = calo-eta[bin] \times 4 + 2", of EG_PHI_CONV_2_MUON_PHI_LUTwith formular: "converted-calo-phi[bin] = calo-phi[bin] \times 4 + 2".
```

Definitions of scales (see Tables 10, 11, 13 and 14):

• Calorimeter objects:

```
- \eta bin width = \frac{0.087}{2} (bin 0 from 0.0 to \frac{0.087}{2})

- \phi bin width = \frac{2\pi}{144} (bin 0 from 0.0 to \frac{2\pi}{144})
```

• Muon objects:

```
- \eta bin width = \frac{0.087}{8} (bin 0 from 0.5 \times \frac{-0.087}{8} to 0.5 \times \frac{+0.087}{8})

- \phi bin width = \frac{2\pi}{576} (bin 0 from 0.0 to \frac{2\pi}{576})
```

Conversion: calo eta to muon eta -4x 0.087/8 -3x 0.087/8 -2x 0.087/8 4x 0.087/8 -1x 0.087/8 1x 0.087/8 2x 0.087/8 3x 0.087/8 0.000 muon eta scale -3 -2 0 +2 -4 +3 -1 +1+4 calo eta scale 0 -1 -0.5x 0.087/2 0.5x 0.087/2 Conversion: converted-calo-eta[bin] = calo-eta[bin] × 4 + 2 Conversion: calo phi to muon phi -3.5x 2*PI/576 -2.5x 2*Pl/576 -1.5x 2*Pl/576 -0.5x 2*PI/576 0.5x 2*Pl/576 1.5x 2*Pl/576 2.5x 2*Pl/576 3.5x 2*Pl/576 muon phi scale -3 -2 -1 0 +1 +2 +3 calo phi scale -1 0 -0.5x 2*PI/144 0.5x 2*PI/144

Figure 12: Conversion of calorimeter η and φ to muon scales

Conversion: converted-calo-phi[bin] = calo-phi[bin] \times 4 + 2

4.4.15 Anomaly Detection Trigger

The possibility of implementing "Anomaly detection Trigger" is forseen in this version of μ GTL. The VHDL code is given by "Anomaly detection Trigger" group in ../firmware/hdl/payload/gtl/anomaly_detection with anomaly_detection.vhd as top module. In adt_wrapper.vhd module anomaly_detection.vhd is instantiated and a comparison of the output of anomaly_detection.vhd ("anomaly_score") with a given threshold is implemented to get an "Anomaly detection Trigger". External condition bits are used as placeholder for the definition of thresholds for "Anomaly detection Trigger" (e.g.: EXT_ADT_25, which mean threshold=25). External condition bits 192..223 are reserved for "Anomaly detection Trigger" thresholds.

4.4.16 External Conditions

Maximal 256 External Conditions are possible in Global Trigger. They are provided as inputs in the Algorithms logic of μ GTL. External Conditions will include the "Technical Trigger" of the legacy system.

4.4.17 Algorithms logic

The outputs of all the instantiated conditions are combined in the Algorithms logic with boolean algebra given by TME for every single Algorithm. These Algorithms are registered and provided as inputs for Final Decision Logic.

5 Final Desicion Logic

This description is for version v1.4.1 of Final Desicion Logic.

The Final Desicion Logic (μ FDL) firmware contains algo-bx-masks, suppression of algos caused by calibration trigger, prescalers, veto-masks and rate-counters ("before prescalers", "after prescalers" and "post dead time") for each Algorithm and the local Final-OR- and veto-logic.

Figure 13: μ FDL firmware

5.1 μ FDL Interface

Inputs:

- Algorithms from μ GTL
- IPBus interface (for registers, counters and memories)
- LHC clock
- Reset signal
- BC0, BGo test-enable, L1A
- Begin of lumi-section

Outputs:

• Prescale factor set index to Readout-Process

- Algorithms after GTLogic to Readout-Process
- Algorithms after algo-bx-masks to Readout-Process
- Algorithms after prescalers to Readout-Process
- Algorithms after Final-OR-masks to Readout-Process
- Local Final-OR to Readout-Process
- Local veto to Readout-Process
- Local Final-OR with veto to Readout-Process
- Local Final-OR to mezzanine
- Local veto to mezzanine
- Local Final-OR with veto to mezzanine

5.2 MP7 Final-OR hardware solution

The firmware of μFDL in this document is based on a hardware configuration with maximum 6 μGT modules.

5.3 Data flow

Figure 14: μ FDL pipeline

Every Algorithm, in total 512 coming from μ GTL, passes a algo-bx-mask, the logic for suppression of algos caused by calibration trigger (5.17) and a prescaler, which reduces the trigger rate by a given factor. The factor has a precision of two digits after comma ("fractional prescale factor"). Prescaled Algorithms signals are combined to a local final-or-signal (Final-OR). For every Algorithm there is a rate-counter before prescaler and after prescaler, which are incremented by LHC clock if the Algorithm is true. In addition there are post-dead-time counters, one for each Algorithm, which are incremented, if the Algorithm and the L1A-signal are true at the same bunch-crossing. Algorithms after GTLogic, after algo-bx-masks, after prescalers, the local Final-OR- and local Veto-signal are provided for read-out-record.

If there are not enough firmware resources in one μ GT board, more boards could be used. Therefore the 512 Algorithms are partitioned by TME. TME will set the number of Algorithms as constant in the package module gtl_pkg.vhd. This means μ GTL and μ FDL firmware considered as a unit for synthesis. In the case of more μ GT boards, the local Final-OR and local veto are routed via a mezzanine board on MP7 (located on "General Purpose I/O connector") to the FINOR-AMC502 module, where the total Final-OR is created and send to TCDS.

A mapping for Algorithms is provided, to give flexibility for setting the index of Algorithms:

- creating a mapping instance (algo_mapping_rop.vhd) by VHDL Producer, this component will be instantiated in fix part of FDL, and new calculation will done each time over TME.
- TME delivers just the number of Algorithms, which will be built on each card.
- from FDL point of view, FDL see incremented number of Algorithms indexes, e.g. 0, 1, 2, which is e.g. 69, 200, 300.
- TME should take care of assignment of each Algorithm to a number, that means if in card 1 algo_59 is defined, nobody allows to produce the same number again.

5.4 Implementation in firmware

The entity-declaration of fdl_module.vhd is shown in 5.3.

Listing 6 contains the entity-declaration of the fdl_module.vhd.

Listing 6: Entity declaration of fdl_module.vhd

```
entity fdl_module is
   generic (
       SIM_MODE : boolean := false; -- if SIM_MODE = true, "algo_bx_mask" is
          given by "algo_bx_mask_sim".
       PRESCALE_FACTOR_INIT : ipb_regs_array(0 to MAX_NR_ALGOS-1);
       MASKS_INIT : ipb_regs_array(0 to MAX_NR_ALGOS-1);
       PRESCALE_FACTOR_SET_INDEX_WIDTH : positive := 8;
       PRESCALE_FACTOR_SET_INDEX_REG_INIT : ipb_regs_array(0 to 1) := (others =>
           X"00000000");
       L1A_LATENCY_DELAY_INIT : ipb_regs_array(0 to 1) := (others => X"00000000"
          );
       CNTRL_REG_INIT : ipb_regs_array(0 to 1) := (others => X"00000000");
-- Input flip-flops for algorithms of fdl_module.vhd - used for tests of
   fdl_module.vhd only
       ALGO_INPUTS_FF: boolean := false
   );
   port (
                        : in std_logic;
       ipb_clk
       ipb_rst
                        : in std_logic;
       ipb_in
                        : in ipb_wbus;
       ipb_out
                        : out ipb_rbus;
-- ------
       lhc_clk
                        : in std_logic;
       lhc rst
                        : in std_logic;
       bcres
                        : in std_logic;
       test_en
                        : in std_logic;
                       : in std_logic;
       begin_lumi_section : in std_logic;
                        : in std_logic_vector(NR_ALGOS-1 downto 0);
       bx_nr_out : out std_logic_vector(11 downto 0);
       prescale_factor_set_index_rop : out std_logic_vector(
          PRESCALE_FACTOR_SET_INDEX_WIDTH-1 downto 0);
       algo_after_gtLogic_rop : out std_logic_vector(MAX_NR_ALGOS-1 downto 0);
       algo_after_bxomask_rop : out std_logic_vector(MAX_NR_ALGOS-1 downto
          0);
       algo_after_prescaler_rop
                                 : out std_logic_vector(MAX_NR_ALGOS-1
          downto 0);
       : out std_logic; -- to LEMO
       finor_preview_2_mezz_lemo : out std_logic; -- to LEMO
       veto_2_mezz_lemo : out std_logic; -- to LEMO
       local_finor_with_veto_o
-- HB 2016-03-02: v0.0.21 - algo_bx_mask_sim input for simulation use with
   MAX_NR_ALGOS (because of global index).
       algo_bx_mask_sim : in std_logic_vector(MAX_NR_ALGOS-1 downto 0)
```

```
);
end fdl_module;
```

Table 25: Explanation of Listing 6

Item	Explanation
SIM_MODE	switch for simulation mode.
PRESCALE_FACTOR_INIT	init value for prescale factor.
MASKS_INIT	init value for BX mask.
PRESCALE_FACTOR_SET_INDEX_WIDTH	width of prescale factor set index.
PRESCALE_FACTOR_SET_INDEX_REG_INIT	init value prescale factor set index register.
L1A_LATENCY_DELAY_INIT	init value of L1A latency delay.
CNTRL_REG_INIT	init value control register.
ALGO_INPUTS_FF	switch for algos input flip-flops.
ipb_clk	IPBus clock input.
ipb_rst	IPBus reset input.
ipb_in	IPBus data input.
ipb_out	IPBus data output.
lhc_clk	clock input (LHC clock).
lhc_rst	reset input.
bcres	TTC BGo bunch counter reset input.
test_en	TTC BGo test enable input.
l1a	L1A input.
begin_lumi_section	begin of lumisection input.
algo_i	algos input.
bx_nr_out	bunch crossing number output.
prescale_factor_set_index	prescale factor set data output.
algo_after_gtLogic_rop	algos after GTL output.
algo_after_bxomask_rop	algos after BX mask output.
algo_after_prescaler_rop	algos after prescaler output.
local_finor_rop	local FINOR output.
local_veto_rop	local VETO output.
finor_2_mezz_lemo	${\it FINOR}$ to MP7 mezzanine board and via LEMO connection to ${\it FINOR}$ board.
finor_preview_2_mezz_lemo	FINOR preview to MP7 mezzanine board and via LEMO connection to FINOR preview board.
veto_2_mezz_lemo	VETO to MP7 mezzanine board and via LEMO connection to FINOR board.
finor_w_veto_2_mezz_lemo	FINOR with VETO to MP7 mezzanine board and via LEMO connection to FINOR board.
local_finor_with_veto_o	local FINOR with VETO output.
algo_bx_mask_sim	algo-bx-mask input for simulation.

5.5 Main parts

The top-of-hierarchy module (fdl_module.vhd) contains

- · version registers
- a command pulse register
- prescalers for all Algorithms
- registers for prescale factors
- register for prescale factor set index
- rate-counters for all Algorithms, finor, veto, L1A and post-dead-time
- read only registers for rate-counter values
- algo-bx-masks for all Algorithms
- Final-OR-masks for all Algorithms
- veto-masks for all Algorithms
- the Final-OR-logic

5.5.1 Algo-bx-masks

Every Algorithm passes a logic where at every bunch-crossing of the orbit the Algorithm is enabled (or not). The algo-bx-masks are implemented as dual-port memories and loaded at the begin of run. The size of the algo-bx-masks memory is number of bunch-crossings per orbit for address length and number of Algorithms for data-depth (3564 [4096] x 512 bits). The address (bx-number) of the memory for masking the Algorithm is delivered by an address-counter for algo-bx-masks memory, which is reseted with a delay-able bcres signal, to get the correct relations between Algorithms and masks from memory.

5.5.2 Rate-counters

Every Algorithm has rate-counters with 32 bits, because of the length of one luminosity segment period. There are counters before and after prescalers and post-dead-time counters (5.1, 5.3 and 5.4). The counters before and after prescalers are incremented, if the Algorithm signal is in high state and a positive edge of LHC clock occur. The post-dead-time counters are incremented, if the Algorithm signal, delayed by L1A latency delay (5.12), is in high state, a L1A signal and a positive edge of LHC clock occur. The content of a counter is updated into a register (for reading the counter value) and is set to 0 at the begin of a luminosity segment period. So there is one luminosity segment period time to read the registers with the counter values by software. In addition there are rate-counters for Final-OR-signal, Veto-signal and L1A-signal implemented (5.11, 5.14 and 5.13). All counters count the occurancy of the signal in one luminosity segment.

5.5.3 Prescalers

Every Algorithm has a prescaler with a prescale factor of 24 bits (5.2). The prescaler reduces the trigger-rate per Algorithm with a factor. So a factor of 2 lets every second trigger request of this Algorithm pass, a factor of 3 every third request and so on. A prescale factor of 1 lets all triggers pass while a factor of 0 inhibits all trigger requests of the corresponding Algorithm. Since 2019 the logic allows also for fractional prescale factor values. Prescale factors are listed in integer or float format in prescale tables. The precision of the fractional prescale factor values in the current implementation is 2 (2 digits after decimal point). Software multiplies the fractional prescale factor with 10^{precision} (i.e., currently by 100) and loads it into a register. At the beginning of a new "luminosity section" ("lumi section") the factor is updated if during the preceding lumi section the update was requested by software. For this, in the "command pulses" register (5.10) the value of "request update factor pulse" is first set to 1 and then back to 0. The prescaler then uses the updated factor. A register for the "prescale factor set index" (5.6) contains a value which represents a certain set of prescale factors (commonly referred to as "prescale column" in CMS). The content of this register can be seen in the Readout-record, too. The "prescale factor set index" is loaded into the register by software and updated at the beginning of the next lumi section (5.15 and 5.16).

5.5.3.1 Prescaler logic

With each trigger request of the Algorithm, a counter is incremented by 10^{precision} as long as the incremented counter is less than the prescale factor. If the incremented counter is greater or equal than the prescale factor, the trigger request of the prescaled Algorithm is forwarded to the Final Decision Logic (for one clock cycle) and the prescale factor is subtracted from the incremented counter during the next clock cycle.

Figure 15: Fractional prescaler

In Figure (15) one can see the simulation of a fractional prescaler. In this example the fractional prescale factor is 2.48 and the signal "prescale factor int" shows this value multiplied by $10^{\text{precision}}$, i.e., currently by 100 (so, 248). The signal "algo" is always true, in other words, without prescale this Algorithm would be firing (sending a trigger request) in every bunch crossing. Signal "prescaled algo o" shows when the trigger request of the prescaled Algorithm is allowed to pass. Signals "algo cnt sim" and "prescaled algo cnt sim" show the number of this Algorithm's trigger requests before and after the prescale logic. At the cursor point a factor 47/19 (≈ 2.4737) is reached. With "algo cnt sim" reaching higher numbers, on average

the effective prescale factor gets closer and closer to the requested value of 2.48. The prescaler is reseted with B-Go "start" signal, at the begin of a run.

5.5.4 Finor-masks

Every Algorithm passes a Final-OR-mask, which enables the Algorithm for Final-OR. The Final-OR-masks are implemented as registers (5.5) and loaded at the begin of a run. Configuration of Final-OR-masks is done by a "run settings key" (e.g. UGT_RS_KEYS => ugt_rs_algo_finor_mask_empty/v4)

5.5.5 Veto-masks

Every Algorithm passes a veto-mask, if at least one Algorithm, which is enabled by veto-mask, becomes high state, then Final-OR is disabled as long as the Algorithm is in high state. The veto-masks are implemented as registers (5.5) and loaded at the begin of a run. Configuration of veto-masks is done by a "run settings key" (e.g. UGT_RS_KEYS => ugt_rs_algo_finor_veto_all_zero/v2)

5.5.6 Finor

The Final-OR-signal is a disjunction of all Algorithms passed the Final-OR-bx-masks. An Algorithm enabled by veto-mask, disables the Final-OR. This is done on the FINOR-AMC502 module.

5.5.7 Registers and memories

All registers and memories are 32 bits wide. (Definition of addresses is shown in Table 26.)

- Dual-port memories for the algo-bx-masks are implemented. For each Algorithm there is a mask bit at every bunch crossing of one orbit. Therefore in total memories of 4096 x 512 bits are implemented. Because of the 32 bit data interface, 16 memories each with a size of 4096 x 32 bits are instantiated.
- Read-only registers for the value of rate-counters (before and after prescalers, post-dead-time counters) are implemented, 512 registers, one for every Algorithm. Rate-counter value has 32 bits.
- Registers for prescale factor of the prescalers are implemented, 512 registers, one for every Algorithm. A prescale factor value has 24 bits.
- Registers for masks (Final-OR- and veto-masks) are implemented, 512 registers.
- One register for prescale factors set index is implemented. This register contains a value, which is unique for a given set of prescale factors. The content of this register is part of Readout-record.
- One register for command pulses is implemented. One bit of this register (bit 0) is used for "setting the request signal for updating prescale factors high", which enables, that the prescale factors and the prescale factor set index are loaded at the begin of a luminosity segment period. (Other bits are not defined yet.)
- One control register is implemented (the content has to be defined).
- 32 register for L1 Trigger Menu name for μ GTL is implemented.
- 4 register for L1 Trigger Menu UUID for μ GTL is implemented.
- One register for L1 Trigger Menu compiler version is implemented.
- One register for μ FDL firmware version is implemented.
- One register for μ GTL firmware (fixed code) version is implemented.

5.5.7.1 Register map

The register map for μFDL has a base address of 0x90000000.

Remark:

Register "SVN revision number" is used for firmware version of Framework VHDL code (SVN revision number is obsolete).

Table 26: $\mu {\rm FDL}$ register map

Offset	Register name	Access	Description
0x90000000	Algo BX masks(0)	r/w	4096 memory addresses of algo-bx-masks for Algorithms 0-31.
0x90001000	Algo BX masks(1)	r/w	4096 memory addresses of algo-bx-masks for Algorithms 32-63.
0x9000F000	Algo BX masks(15)	r/w	4096 memory addresses of algo-bx-masks for Algorithms 480-511.
0x90010000	Rate counter before prescaler (5.1)	r	512 read-only registers for rate-counter values before prescalers.
0x90010200	Prescale factors (5.2)	r/w	512 registers for prescale factors.
0x90010400	Rate counter after prescaler (5.3)	r	512 read-only registers for rate-counter values after prescalers.
0x90010600	Rate counter (5.4) post-dead-time	r	512 read-only registers for post-dead-time rate-counter values.
0x90010800	Masks (5.5)	r/w	512 registers for Final-OR-masks and veto-masks. Bit $0 = \text{Final-OR-mask}$, bit $1 = \text{veto-mask}$.
0x90091880	Prescale factors set index (5.6)	r/w	Register for prescale factors set index.
0x900918C0	L1tm name	r	32 registers for L1 Trigger Menu name for μGTL .
0x900918E0	L1tm uuid	r	4 registers for L1 Trigger Menu UUID for μGTL .
0x900918E4	L1tm compiler (5.7) version	r	Register for L1 Trigger Menu compiler version.
0x900918E5	GTL FW version (5.8)	r	Register for firmware version of μ GTL VHDL code.
0x900918E6	FDL FW version (5.9)	r	Register for firmware version of μFDL VHDL code.
0x900918E7	L1tm FW uuid	r	4 registers for L1 Trigger Menu FW UUID for $\mu {\rm GTL}.$
0x900918EB	SVN revision number	r	Register for firmware version of framework VHDL code.
0x900918EC	L1tm uuid hash	r	Register for L1 Trigger Menu UUID hash for μGTL .

Table 26: $\mu {\rm FDL}$ register map

Offset	Register name	Access	Description
0x900918ED	L1tm FW uuid hash	r	Register for L1 Trigger Menu FW UUID hash for μ GTL.
0x900918EE	Module ID	r	Register for Module ID of L1 Trigger Menu.
0x90091900	Command Pulses (5.10)	r/w	Register for command pulses (request_update_factor_pulse).
0×90091980	Rate counter finor (5.11)	r	One read-only registers for finor rate- counter value.
0×90092200	L1A latency delay (5.12)	r/w	Register for L1A latency delay value (used for post-dead-time counter).
0x90093000	Rate counter L1A (5.13)	r	One read-only registers for L1A rate-counter value.
0x90094000	Rate counter veto (5.14)	r	One read-only registers for veto rate- counter value.
0x90095000	Current prescale set index (5.15)	r	Read-only register for prescale factors set index, which was "updated" with begin of current lumi-section ("prescale_factors_set_index_reg_updated(0)" in VHDL).
0x90095001	Previous prescale set index (5.16)	r	Read-only register for prescale factors set index, which was "updated" with begin of previous lumi-section for monitoring "prescale_factors_set_index_regupdated(1)" in VHDL).
0x90096000	Calibration trigger gap (5.17)	r/w	Register for begin and end (in Bx) of calibration trigger gap.

Register 5.1: Rate counter before prescaler

Take counter height prescaler

10

Reset

rate_counter_before_prescaler Rate counter before prescaler. Counts the occurancy of an algo (given by register address) in one luminosity segment.

prescale_factor Prescale factor of an algo (given by register address). Prescale factor = 0 means "disable alg". The factor has a precision of two digits after comma, therefore values in register are equal to factor * 100 (e.g.: factor=1.00 => 100 [0x64]).

rate_counter_after_prescaler Rate counter after prescaler. Counts the occurancy of an algo (given by register address) in one luminosity segment.

Register 5.4: RATE COUNTER POST-DEAD-TIME

rate_counter_postdeadtime Rate counter post-dead-time. Counts the occurancy of an algo (given by register address) and L1A at the same bx in one luminosity segment.

Register 5.5: Masks

	te ^{sett} ed.	√e ^t	ر مر	day day
3	2	1	0	
	0	0	1	Reset

veto_mask Selection of a veto (by an algo, given by register address) for veto-or.

finor_mask Selection of an algo (given by register address) for final-or.

Register 5.6: Prescale factors set index

prescale_factor_set_index Index for a certain set of prescale factors.

Register 5.7: L1TM COMPILER VERSION

	reserved	Thailot	ninoi	residion	
3:	1 24	23 16	15 8	7 0	
	0	0	0	0	Reset

major Major version of VHDL producer.

minor Minor version of VHDL producer.

revision Revision version of VHDL producer.

Register 5.8: GTL FW VERSION

reserved	Thailot	pittor	revision.	
31 24	23 16	15 8	7 0	I
0	0	0	0	Reset

major Major version of GTL firmware.

minor Minor version of GTL firmware.

revision Revision version of GTL firmware.

Register 5.9: FDL FW VERSION

iegeried.	najot	ningt	revision	
31 2	23 16	15 8	7 0	
0	0	0	0	Reset

major Major version of FDL firmware.

minor Minor version of FDL firmware.

revision Revision version of FDL firmware.

Register 5.10: Command Pulses Register

Tegerical reduces Industre factor Industre

Tegerical 1 0 0 Reset

request_update_factor_pulse A sequence of applying 1 followed by 0 generates the "request update factors pulse". (Updating is done at the next "begin of luminosity segment".)

rate_counter_finor Rate counter finor. Counts the occurancy of finor in one luminosity segment.

lla_latency_delay L1A latency delay value (used for post-dead-time counter).

rate_counter_l1a Rate counter L1A. Counts the occurancy of L1A in one luminosity segment.

rate_counter_veto Rate counter veto. Counts the occurancy of veto in one luminosity segment.

prescale_factor_set_index_updated Index for a certain set of prescale factors, which was "updated" with begin of current lumi-section.

prescale_factor_set_index_updated Index for a certain set of prescale factors, which was "updated" with begin of previous lumi-section.

begin_calibration_trigger_gapBegin of calibration trigger gap (in Bx).end_calibration_trigger_gapEnd of calibration trigger gap (in Bx).

6 Readout-Process

Data for readout are collected in output_mux.vhd (part of frame.vhd). The readout of Global Trigger data is done via GTH transmitter of MP7 to AMC13.

7 Appendices

7.1 Description of simulation, synthesis and hardware tests

Workflow for simulation and synthesis of firmware is described in README file.

List of useful TDF routines and commands for hardware tests:

• Check crate status

```
$ tdf run crate_status
```

• Enable TTC signals on AMC13 for all MP7 modules

```
$ tdf run ttc_enable
```

• Check lock of BC0 and LHC clock

```
$ tdf unittest <module> default
```

• Reset module

```
$ tdf mp7butler reset <module> -clksrc external -clkcfg default-ext
```

• Load firmware to scansd card on all MP7 modules [and load it into FPGAs]

```
$ tdf run uploadfw_gt <tar file path> [-rebootfpga]
```

• Load firmware from scansd card into FPGAs

```
$ tdf run loadfw_gt <fw build nr> <nr modules>
```

• Compare hardware results with test vector pattern (for a certain firmware build)

```
$ tdf run multiboard_function_test -h
```

• Setup links (GTHs)

```
$ tdf mp7butler rxmgts <module> -e <links>
```

• Align links (GTHs)

```
$ tdf mp7butler rxalign <module> -e <links> [-to-bx <alignment point>]
```

• Check minipods

```
$ tdf mp7butler minipods <module>
```

• ... (other routines are available in /nfshome0/ugtdev/software/tdf/etc/routines)

7.2 GTH I/Os

7.2.1 GTH input connections

The following Table contains the GTH input connections from MP7 MTP front connectors³:

MTP48	minipod	GTH ch.	MP7 ch.	pp conn.	data
RX1/1	rx3/1	X1Y35	0x00	1	muon
RX1/2	rx3/2	X1Y34	0x02	2	muon
RX1/3	rx3/3	X1Y33	0x04	3	muon
RX1/4	rx3/4	X1Y32	0x06	4	muon
RX1/5	rx3/5	X1Y31	0x08	5	eg
RX1/6	rx3/6	X1Y30	0x0A	6	eg
RX1/7	rx3/7	X1Y29	0x0C	7	jet
RX1/8	rx3/8	X1Y28	0x0E	8	jet
RX1/9	rx3/9	X1Y27	0x10	9	tau
RX1/10	rx3/10	X1Y26	0x12	10	tau
RX1/11	rx3/11	X1Y25	0x14	11	esums
RX1/12	rx3/12	X1Y24	0x16	12	free
RX1/13	rx4/1	X1Y23	0x18	13	external conditions
RX1/14	rx4/2	X1Y22	0x1A	14	external conditions
RX1/15	rx4/3	X1Y21	0x1C	15	external conditions
RX1/16	rx4/4	X1Y20	0x1E	16	external conditions
RX1/17	rx4/5	X1Y19	0x20	17	free
RX1/18	rx4/6	X1Y18	0x22	18	free
RX1/19	rx4/7	X1Y17	0x24	19	free
RX1/20	rx4/8	X1Y16	0x26	20	free
RX1/21	rx4/9	X1Y15	0x28	21	free
RX1/22	rx4/10	X1Y14	0x2A	22	free
RX1/23	rx4/11	X1Y13	0x2C	23	free
RX1/24	rx4/12	X1Y12	0x2E	24	free
RX1/25	rx5/1	X1Y11	0x30	nc	-
RX1/26	rx5/2	X1Y10	0x32	nc	-
RX1/27	rx5/3	X1Y09	0x34	nc	-
RX1/28	rx5/4	X1Y08	0x36	nc	-
RX1/29	rx5/5	X1Y07	0x38	nc	-
RX1/30	rx5/6	X1Y06	0x3A	nc	-
RX1/31	rx5/7	X1Y05	0x3C	nc	-

³"ch." means "channel", "pp conn." means "optical patch panel connector number"

MTP48	minipod	GTH ch.	MP7 ch.	pp conn.	data
RX1/32	rx5/8	X1Y04	0x3E	nc	-
RX1/33	rx5/9	X1Y03	0x40	nc	-
RX1/34	rx5/10	X1Y02	0x42	nc	-
RX1/35	rx5/11	X1Y01	0x44	nc	-
RX1/36	rx5/12	X1Y00	0x46	nc	-
RX2/1	rx0/1	X0Y35	0x48	nc	-
RX2/2	rx0/2	X0Y34	0x4A	nc	-
RX2/3	rx0/3	X0Y33	0x4C	nc	-
RX2/4	rx0/4	X0Y32	0x4E	nc	-
RX2/5	rx0/5	X0Y31	0x50	nc	-
RX2/6	rx0/6	X0Y30	0x52	nc	-
RX2/7	rx0/7	X0Y29	0x54	nc	-
RX2/8	rx0/8	X0Y28	0x56	nc	-
RX2/9	rx0/9	X0Y27	0x58	nc	-
RX2/10	rx0/10	X0Y26	0x5A	nc	-
RX2/11	rx0/11	X0Y25	0x5C	nc	-
RX2/12	rx0/12	X0Y24	0x5E	nc	-
RX2/13	rx1/1	X0Y23	0x60	nc	-
RX2/14	rx1/2	X0Y22	0x62	nc	-
RX2/15	rx1/3	X0Y21	0x64	nc	-
RX2/16	rx1/4	X0Y20	0x66	nc	-
RX2/17	rx1/5	X0Y19	0x68	nc	-
RX2/18	rx1/6	X0Y18	0x6A	nc	-
RX2/19	rx1/7	X0Y17	0x6C	nc	-
RX2/20	rx1/8	X0Y16	0x6E	nc	-
RX2/21	rx1/9	X0Y15	0x70	nc	-
RX2/22	rx1/10	X0Y14	0x72	nc	-
RX2/23	rx1/11	X0Y13	0x74	nc	-
RX2/24	rx1/12	X0Y12	0x76	nc	-
RX2/25	rx2/1	X0Y11	0x78	nc	-
RX2/26	rx2/2	X0Y10	0x7A	nc	-
RX2/27	rx2/3	X0Y09	0x7C	nc	-
RX2/28	rx2/4	X0Y08	0x7E	nc	-
RX2/29	rx2/5	X0Y07	0x80	nc	-
RX2/30	rx2/6	X0Y06	0x82	nc	-
RX2/31	rx2/7	X0Y05	0x84	nc	-

MTP48	minipod	GTH ch.	MP7 ch.	pp conn.	data
RX2/32	rx2/8	X0Y04	0x86	nc	-
RX2/33	rx2/9	X0Y03	0x88	nc	-
RX2/34	rx2/10	X0Y02	0x8A	nc	-
RX2/35	rx2/11	X0Y01	0x8C	nc	-
RX2/36	rx2/12	X0Y00	0x8E	nc	-

$7.2.2 \quad {\rm GTH \ output \ connections}$

The following Table contains the GTH output connections to MP7 MTP front connectors:

MTP48	minipod	GTH ch.	MP7 ch.	pp conn.	data
TX1/1	tx3/1	X1Y35	0x01	nc	-
TX1/2	tx3/2	X1Y34	0x03	nc	-
TX1/3	tx3/3	X1Y33	0x05	nc	-
TX1/4	tx3/4	X1Y32	0x07	nc	-
TX1/5	tx3/5	X1Y31	0x09	nc	-
TX1/6	tx3/6	X1Y30	0x0b	nc	-
TX1/7	tx3/7	X1Y29	0x 0 d	nc	-
TX1/8	tx3/8	X1Y28	0x0f	nc	-
TX1/9	tx3/9	X1Y27	0x11	nc	-
TX1/10	tx3/10	X1Y26	0x13	nc	-
TX1/11	tx3/11	X1Y25	0x15	nc	-
TX1/12	tx3/12	X1Y24	0x17	nc	-
TX1/13	tx4/1	X1Y23	0x19	nc	-
TX1/14	tx4/2	X1Y22	0x1b	nc	-
TX1/15	tx4/3	X1Y21	0x1d	nc	-
TX1/16	tx4/4	X1Y20	0x1f	nc	-
TX1/17	tx4/5	X1Y19	0x21	nc	readout (AMC13)
TX1/18	tx4/6	X1Y18	0x23	nc	readout (AMC13)
TX1/19	tx4/7	X1Y17	0x25	nc	readout (AMC13)
TX1/20	tx4/8	X1Y16	0x27	nc	readout (AMC13)
TX1/21	tx4/9	X1Y15	0x29	nc	readout (AMC13)
TX1/22	tx4/10	X1Y14	0x2b	nc	readout (AMC13)
TX1/23	tx4/11	X1Y13	0x2d	nc	readout (AMC13)
TX1/24	tx4/12	X1Y12	0x2f	nc	readout (AMC13)
TX1/25	tx5/1	X1Y11	0x31	nc	readout (AMC13)
TX1/26	tx5/2	X1Y10	0x33	nc	readout (AMC13)

MTP48	minipod	GTH ch.	MP7 ch.	pp conn.	data
TX1/27	tx5/3	X1Y09	0x35	nc	-
TX1/28	tx5/4	X1Y08	0x37	nc	-
TX1/29	tx5/5	X1Y07	0x39	nc	-
TX1/30	tx5/6	X1Y06	0x3b	nc	-
TX1/31	tx5/7	X1Y05	0x3d	nc	-
TX1/32	tx5/8	X1Y04	0x3f	nc	-
TX1/33	tx5/9	X1Y03	0x41	nc	-
TX1/34	tx5/10	X1Y02	0x43	nc	-
TX1/35	tx5/11	X1Y01	0x45	nc	-
TX1/36	tx5/12	X1Y00	0x47	nc	-
TX2/1	tx0/1	X0Y35	0x49	nc	-
TX2/2	tx0/2	X0Y34	0x4b	nc	-
TX2/3	tx0/3	X0Y33	0x4d	nc	-
TX2/4	tx0/4	X0Y32	0x4f	nc	-
TX2/5	tx0/5	X0Y31	0x51	nc	-
TX2/6	tx0/6	X0Y30	0x53	nc	-
TX2/7	tx0/7	X0Y29	0x55	nc	-
TX2/8	tx0/8	X0Y28	0x57	nc	-
TX2/9	tx0/9	X0Y27	0x59	nc	-
TX2/10	tx0/10	X0Y26	0x5b	nc	-
TX2/11	tx0/11	X0Y25	0x5d	nc	-
TX2/12	tx0/12	X0Y24	0x5f	nc	-
TX2/13	tx1/1	X0Y23	0x61	nc	-
TX2/14	tx1/2	X0Y22	0x63	nc	-
TX2/15	tx1/3	X0Y21	0x65	nc	-
TX2/16	tx1/4	X0Y20	0x67	nc	-
TX2/17	tx1/5	X0Y19	0x69	nc	-
TX2/18	tx1/6	X0Y18	0x6b	nc	-
TX2/19	tx1/7	X0Y17	0x6d	nc	-
TX2/20	tx1/8	X0Y16	0x6f	nc	-
TX2/21	tx1/9	X0Y15	0x71	nc	-
TX2/22	tx1/10	X0Y14	0x73	nc	-
TX2/23	tx1/11	X0Y13	0x75	nc	-
TX2/24	tx1/12	X0Y12	0x77	nc	-
TX2/25	tx2/1	X0Y11	0x79	nc	-
TX2/26	tx2/2	X0Y10	0x7b	nc	-

MTP48	minipod	GTH ch.	MP7 ch.	pp conn.	data
TX2/27	tx2/3	X0Y09	0x7d	nc	-
TX2/28	tx2/4	X0Y08	0x7f	nc	-
TX2/29	tx2/5	X0Y07	0x81	nc	-
TX2/30	tx2/6	X0Y06	0x83	nc	-
TX2/31	tx2/7	X0Y05	0x85	nc	-
TX2/32	tx2/8	X0Y04	0x87	nc	-
TX2/33	tx2/9	X0Y03	0x89	nc	-
TX2/34	tx2/10	X0Y02	0x8b	nc	-
TX2/35	tx2/11	X0Y01	0x8d	nc	-
TX2/36	tx2/12	X0Y00	0x8f	nc	-

7.3 Configuration of GTHs

The FPGA on MP7 board receives and transmits data via GTH transceivers. In Figure 16 configuration of GTHs [6] for Global Trigger is shown.

Objects	Link	MGT_BANK	GTHE2_CHANNEL	RX	TX
MU0 & MU1	0	118	X1Y35	Х	
MU2 & MU3	1	118	X1Y34	X	
MU4 & MU5	2	118	X1Y33	Х	
MU6 & MU7	3	118	X1Y32	Х	
EG0EG5	4	117	X1Y31	Х	
EG6EG11	5	117	X1Y30	Х	
JET0JET5	6	117	X1Y29	Х	
JET6JET11	7	117	X1Y28	Х	
TAU0TAU5	8	116	X1Y27	Х	
TAU6TAU11	9	116	X1Y26	Х	
ESUMS	10	116	X1Y25	Х	
free	11	116	X1Y24	Х	
EXT_COND[0:63]	12	115	X1Y23	Х	
EXT_COND[64:127]	13	115	X1Y22	Х	
EXT_COND[128:191]	14	115	X1Y21	Χ	
EXT_COND[192:255]	15	115	X1Y20	Х	
ALGO_AFTER_GTLOGIC[0:191]	16	114	X1Y19		х
ALGO_AFTER_GTLOGIC[192:383]	17	114	X1Y18		Х
ALGO_AFTER_GTLOGIC[384:511]	18	114	X1Y17		Х
ALGO_AFTER_BXMASK[0:191]	19	114	X1Y16		Х
ALGO_AFTER_BXMASK[192:383]	20	113	X1Y15		Х
ALGO_AFTER_BXMASK[384:511]	21	113	X1Y14		х
ALGO_AFTER_PRESCALER[0:191]	22	113	X1Y13		Х
ALGO_AFTER_PRESCALER[192:383]	23	113	X1Y12		Х
ALGO_AFTER_PRESCALER[384:511]	24	112	X1Y11		Х
Bunchcounters,	25	112	X1Y10		Х

Figure 16: Configuration of GTHs

Configuration of optical input links 7.4

Figure 17 shows the configuration of optical links to Global Trigger. Links 0..3 contains muon data from GMT, links 4..11 data from GCT and links 12..15 external conditions from AMC502 boards.

Frame/Link	Link 0 [mp7 ch 0x00]	Link 1 [mp7 ch 0x02]	Link 2 [mp7 ch 0x04]	Link 3 [mp7 ch 0x06]	Link 4 [mp7 ch 0x08]	Link 5 [mp7 ch 0x0a]	Link 6 [mp7 ch 0x0c]	Link 7 [mp7 ch 0x0e]	Link 8 [mp7 ch 0x10]	Link 9 [mp7 ch 0x12]	Link 10 [mp7 ch 0x14]	Link 11 [mp7 ch 0x16]	Link 12 [mp7 ch 0x18]	Link 13 [mp7 ch 0x1a]	Link 14 [mp7 ch 0x1c]	Link 15 [mp7 ch 0x1e]
Frame 0	free	free	free	free	EG0	EG6	JET0	JET6	TAU0	TAU6	MBP0 & ETTEM & ETT (No HF)	free	E(31:0)	E(95:64)	E(159:128)	E(223:192)
Frame 1	MU0 eta raw on bits 21:13 & MU1 eta raw on bits 30:22	MU2 eta raw on bits 21:13 & MU3 eta raw on bits 30:22	MU4 eta raw on bits 21:13 & MU5 eta raw on bits 30:22	MU6 eta raw on bits 21:13 & MU7 eta raw on bits 30:22	EG1	EG7	JET1	JET7	TAU1	TAU7	MBM0 & TOWERCNT & HTT (No HF)	free	E(63:32)	E(127:96)	E(191:160)	E(255:224)
Frame 2	MU0(31:0)	MU2(31:0)	MU4(31:0)	MU6(31:0)	EG2	EG8	JET2	JET8	TAU2	TAU8	MBP1 & ETmiss (No HF) & ASYM	free	free	free	free	free
Frame 3	MU0(63:32)	MU2(63:32)	MU4(63:32)	MU6(63:32)	EG3	EG9	JET3	JET9	TAU3	TAU9	MBM1 & HTmiss (No HF) & ASYM	free	free	free	free	free
Frame 4	MU1(31:0)	MU3(31:0)	MU5(31:0)	MU7(31:0)	EG4	EG10	JET4	JET10	TAU4	TAU10	ETmiss (With HF) & ASYM & CENT	free	free	free	free	free
Frame 5	MU1(63:32)	MU3(63:32)	MU5(63:32)	MU7(63:32)	EG5	EG11	JET5	JET11	TAU5	TAU11	[bits 190 reserved for: HTmiss (With HF)] & ASYM & CENT	free	free	free	free	free

Figure 17: Optical link inputs to Global Trigger

Configuration of links to AMC13 (readout) 7.5

Figure 18 shows the configuration of links from Global Trigger to AMC13 (readout). Links 16..24 contains algo data (after GTL, after BX mask and after prescalers), link 25 contains several counter values.

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
	Lane 16 [mp7 ch	Lane 17 [mp7 ch	Lane 18 [mp7 ch	Lane 19 [mp7 ch	Lane 20 [mp7 ch	Lane 21 [mp7 ch	Lane 22 [mp7 ch	Lane 23 [mp7 ch	Lane 24 [mp7 ch	Lane 25 [mp7 ch
	0x21]	0x23]	0x25]	0x27]	0x29]	0x2b]	0x2d]	0x2f]	0x31]	0x33]
Frame	algo_after_gtLogic	algo_after_gtLogic	algo_after_gtLogic	algo_after_bxmask	algo_after_bxmask	algo_after_bxmask	algo_after_prescaler	algo_after_prescaler	algo_after_prescaler	tcm bunch counter (on bits 110)
0	0-31	192-223	384-415	0-31	192-223	384-415	0-31	192-223	384-415	
Frame	algo_after_gtLogic	algo_after_gtLogic	algo_after_gtLogic	algo_after_bxmask	algo_after_bxmask	algo_after_bxmask	algo_after_prescaler	algo_after_prescaler	algo_after_prescaler	mp7 ttc bunch counter (on bits 110)
1	32-63	224-255	416-447	32-63	224-255	416-447	32-63	224-255	416-447	
Frame	algo_after_gtLogic	algo_after_gtLogic	algo_after_gtLogic	algo_after_bxmask	algo_after_bxmask	algo_after_bxmask	algo_after_prescaler	algo_after_prescaler	algo_after_prescaler	tcm bunch counter for FDL (on bits 110)
2	64-95	256-287	448-479	64-95	256-287	448-479	64-95	256-287	448-479	
Frame 3	algo_after_gtLogic 96-127	algo_after_gtLogic 288-319	algo_after_gtLogic 480-511	algo_after_bxmask 96-127	algo_after_bxmask 288-319	algo_after_bxmask 480-511	algo_after_prescaler 96-127	algo_after_prescaler 288-319	algo_after_prescaler 480-511	[coming soon for scouting: orbit counter 4732 (on bits 150)]
Frame 4	algo_after_gtLogic 128-159	algo_after_gtLogic 320-351	32bit hash of menu name	algo_after_bxmask 128-159	algo_after_bxmask 320-351	spare	algo_after_prescaler 128-159	algo_after_prescaler 320-351	veto + finor [0]	[coming soon for scouting: orbit counter 310]
Frame 5	algo_after_gtLogic 160-191	algo_after_gtLogic 352-383	32bit hash of firmware uuid	algo_after_bxmask 160-191	algo_after_bxmask 352-383	spare	algo_after_prescaler 160-191	algo_after_prescaler 352-383	prescale_factor_index [1]	free

The local finor & local veto are the values from the local MP7 uGT module.

[1]: In this field, the 8 bit prescale factor index is stored: "0000000000000000000" + prescale_factor_index

- inthm results algo-after_git.ogic: algorithm result after applying the criteria from uGT algorithm expression

 algo_after_git.ogic: algorithm result after applying the mask of BX number in an orbit in hardware, the mask is applied on the algo_after_git.ogic

 algo_after_prescaler: algorithm result after applying the prescale factor in hardware, prescaling is done after applying the BX in orbit mask.

 This is the final algorithm result, used to compute the finor (together with the veto masks)

Figure 18: Outputs from Global Trigger to AMC13

7.6 Optical patch panel

Figure 19 shows the connections on Global Trigger patch panel for optical links.

Figure 19: Global Trigger patch panel for optical link

7.7 Description of simulation, synthesis and hardware tests

Workflow for simulation and synthesis of firmware is described in README file.

List of useful TDF routines and commands for hardware tests:

- Check crate status
 - \$ tdf run crate status
- Enable TTC signals on AMC13 for all MP7 modules \$ tdf run ttc_enable
- Check lock of BC0 and LHC clock
 - \$ tdf unittest <module> default
- Reset module

```
$ tdf mp7butler reset <module> -clksrc external -clkcfg default-ext
```

• Load firmware to scansd card on all MP7 modules [and load it into FPGAs]

```
$ tdf run uploadfw_gt <tar file path> [-rebootfpga]
```

• Load firmware from scansd card into FPGAs

```
$ tdf run loadfw qt <fw build nr> <nr modules>
```

• Compare hardware results with test vector pattern (for a certain firmware build)

```
$ tdf run multiboard_function_test -h
```

- Setup links (GTHs)
 - \$ tdf mp7butler rxmgts <module> -e <links>

• Align links (GTHs)

```
$ tdf mp7butler rxalign <module> -e <links> [-to-bx <alignment point>]
```

• Check minipods

```
$ tdf mp7butler minipods <module>
```

• ... (other routines are available in /nfshome0/ugtdev/software/tdf/etc/routines)

8 Glossary

```
electron/\gamma = electron/gamma objects over Calo-Layer2 (VHDL: eg)
jet = jet objects over Calo-Layer2 (VHDL: jet)
tau = tau objects over Calo-Layer2 (VHDL: tau)
muon = muon objects over \muGMT (VHDL: muon)
ET = Scalar sum of transverse energy components over Calo-Layer2 (VHDL: ett)
ETTEM = Scalar sum of transverse energy components from ECAL only over Calo-Layer2
     (VHDL: ettem)
MBTxHFy = Minimum bias HF bits (VHDL: MBT0HFP, MBT0HFM, MBT1HFP, MBT1HFM)
HT = Magnitude of the vectorial sum of transverse energy of jets (hadronic) over Calo-
     Layer2 (VHDL: htt)
TOWERCOUNT = tower counts (VHDL: towercount)
ET_{\text{miss}} = 2\text{-vector sum of transverse energy over Calo-Layer2 (VHDL: etm)}
HT_{\text{miss}} = Missing Total transverse energy of jets over Calo-Layer2 (VHDL: htm)
\mathbf{ET}_{miss}^{HF} = 2-vector sum of transverse energy including HF over Calo-Layer2 (VHDL: etmhf)
\mathbf{HT}_{miss}^{HF} = \text{Missing Total transverse energy of jets including HF over Calo-Layer2} (VHDL:
     htmhf)
ASYMET = Asymmetry of ET over Calo-Layer2 (VHDL: asymet)
ASYMHT = Asymmetry of HT over Calo-Layer2 (VHDL: asymht)
ASYMETHF = Asymmetry of ET including HF over Calo-Layer2 (VHDL: asymethf)
ASYMHTHF = Asymmetry of HT including HF over Calo-Layer2 (VHDL: asymhthf)
CENTx = Centrality bits [7:0] over Calo-Layer2 (VHDL: cent7, cent6, ...)
p_{\rm T} = transverse momentum of muon objects(VHDL: pt)
E_{\rm T} = {\rm energy \ of \ calorimeter \ objects \ (VHDL: et)}
\eta = \text{pseudo-rapidity position (VHDL: eta)}
\varphi = azimuth angle position (VHDL: phi)
isolation = isolation information (VHDL: iso)
quality = quality information (VHDL: qual)
charge = charge information of muon objects (VHDL: ch)
```

unconstrained $p_{\rm T}$ = transverse momentum of muon objects (VHDL: upt)

impact parameter = impact parameter information of muon objects (VHDL: ip)

hadronic shower = hadronic shower (muon shower [mus]) information, on bit 61 of MU0, MU2, MU4 and MU6 (VHDL: mus0, mus1, musoot0, musoot1)

DISP = displaced bit of jet objects (VHDL: disp)

index bits = index bits of muon objects - currently not used

9 Acronyms

AMC13 AMC board in uTCA crate for several features (readout, ...)

DAQ Data Acquisition

FDL Final Decision Logic Module

GCT Calorimeter Trigger Layer-2

 \mathbf{GMT} Global Muon Trigger

 ${\bf GT}$ Global Trigger

 ${f GTL}$ Global Trigger Logic Module

ROP Readout Process Module

TCM Timing Counter Manager Module

 \mathbf{TCDS} Trigger, Control and Distribution System

 \mathbf{TDF} Test and Development Framework

List of Tables

2	Firmware versions	10
3	Explanation of Listing 1	11
4	Explanation of Listing 2	15
5	Configuration of optical connections	17
6	Current lane mapping	18
7	Counters of Timer Counter Manager	21
8	Framework register map	23
8	Framework register map	24
9	Explanation of Listing 4	36
10	η scale of calorimeter objects	39
11	φ scale of calorimeter objects	39
12	Definition of e/γ and tau isolation bits	40
13	η scale of muon objects	44
14	arphi scale of muon objects	44
15	Definition of muon quality bits	44
16	Definition of muon isolation bits	44
17	Definition of muon impact parameter bits	45
18	LUT contents for isolation comparison	48
19	LUT contents for impact parameter comparison	49
20	LUT contents for quality comparison of muon objects	50
21	Muon charge correlation - Double Muon	54
22	Muon charge correlation - Triple Muon	54
23	Muon charge correlation - Quad Muon	54
24	Explanation of Listing 5	62
25	Explanation of Listing 6	76
26	$\mu { m FDL}$ register map	81
26	uFDL register man	82

List of Figures

1	μGT payload	9
2	Memory subsystem	20
3	start of the bunch crossing number with the first $bcres_d$	21
4	normal operation of the bunch crossing number	21
5	set of the software register err_det when bc_res_d is not asserted correctly .	22
6	reset of the software register err_det when $err_det_reset_event$ toggles	22
7	μGTL firmware	30
8	VHDL file generation by VHDL Producer	35
9	Scheme of μ GTL pipeline structure	37
10	Setting the limits for "window"-comparators for φ	47
11	VHDL structure of cuts for correlation conditions	65
12	Conversion of calorimeter η and φ to muon scales	69
13	μ FDL firmware	71
14	$\mu { m FDL}$ pipeline	72
15	Fractional prescaler	78
16	Configuration of GTHs	96
17	Optical link inputs to Global Trigger	97
18	Outputs from Global Trigger to AMC13	97
19	Global Trigger patch panel for optical link	98

References

- [1] MP7 documentation: http://www.hep.ph.ic.ac.uk/mp7 1
- [2] MP7 firmware repository: https://gitlab.cern.ch/cms-cactus/firmware/mp7 1
- [3] Trigger Menu Editor repository: https://github.com/cms-l1-globaltrigger/tm-editor 4.3
- [4] VHDL Producer repository: https://github.com/cms-l1-globaltrigger/tm-vhdlproducer 4.3
- [5] Calo-layer2 and Global Muon Trigger interface documentation: https://raw.githubusercontent.com/cms-l1-globaltrigger/mp7_ugt_legacy/master/doc/scales_inputs_2_ugt/pdf/scales_inputs_2_ugt.pdf_4, 4.2
- [6] Xilinx Series 7 Transceivers (GTHs) documentation: https://www.xilinx.com/support/documentation/user_guides/ug476_7Series_ Transceivers.pdf 7.3