Masterarbeit zum Thema

Photolumineszenzspektroskopie

Baran Avinc

Institut für Festkörperphysik

Inhaltsverzeichnis

1	Einleitung	5				
2	Grundlagen2.1 Bandstruktur von Gruppe-III Nitriden					
3	Aufbau 3.1 Photolumineszenzaufbau	9 zaufbau				
4	Ergebnisse	11				
	4.1 Untersuchung optisch gepumpter Laserstrukturen auf unterschied- lichen Templates	11				

Kapitel 1

Einleitung

In the spirit of Alfred Nobel the Prize rewards an invention of greatest benefit to mankind; using blue LEDs, white Light can be created in a new way.

Dieser Satz, den die Schwedische Akademie der Künste nach der Vergabe des Nobelpreises an die Entwicklung der blauen LED(kurz, light emitting diode) im Jahr 2014 an die Presse veröffentlichte, fasst treffend zusammen, wie hoch die Bedeutung der auf Halbleiterkristallen basierenden optischen Bauelemente ist. LEDs nehmen einen fundamentalen und immer bedeutender werdenden Teil unseres alltäglichen Lebens ein. Ausgezeichnet durch ihre hervorragende Effizienz, konkurrenzlosen Lebensdauer und geringen Dimension übernimmt sie durch eine immer höher werdenden Lichtausbeute zusehends neue Anwendungsbereiche. Insbesondere auf Gallium Nitrid (GaN) basierende Halbleitermaterialien haben einen bahnbrechenden Weg hingelegt, der zur Entwicklung von hoch effizienten und leuchtstarken blauen LEDs führte und ebenfalls Grundlage für die Entwicklung in andere hochenergetische Wellenlängenbereiche darstellt [5]. So ebnet GaN auch den Weg für die Erzeugung von ultraviolet emittierenden Leuchtdioden. Der ultraviolette Spektralbereich, der sich unterteilt in den UV-A (400 nm bis 320 nm), UV-B (320 nm bis 280) und UV-C Bereich (280 nm bis 200 nm) ist bedeutend für eine sehr hohe Anzahl spezieller Anwendungsbereiche. Beispielsweise bieten sich UV-Leds an die bisher für Wasseraufbereitung genutzten Quecksilberdampflampen zu ersetzen, für deren Betrieb Hochspannungsnetzteile verwendet werden, die einen mobilen Einsatz erheblich erschweren können. Hier könnten UV-LEDs Abhilfe verschaffen, die durch ihr kleines Format und durch die niedrigen Betriebsspannungen einen Mobileneinsatz ermöglichen. Ein weiteres Anwendungsgebiet ist die industrielle Aushärtung/Aufbrechung von Lacken und die Gasdetektion.

UV-LEDs leiden aber an einer geringen Effizienz die quantitativ als Externe Quanteneffizienz beschrieben wird. Die Gründe hierfür sind vielfältig. LEDs bestehen

aus einer Viezahl an Schichten, die unterschiedlichen Funktionen dienen. Diese Schichten werden auf Substraten aufgewachsen. Daher ist eine hohe Substratqualität für die optischen Eigenschaften entscheidend. Eine geringe Defektdichte im Substrat geht einher mit einer ebenfalls geringen Defektdichte in den aufgewachsenen Schichten. Ein weiteres Problem im Zusammenhang mit den geringen Defektdichten, ist ein Mangel an geeigneten Substratmaterialien. So wird aufgrund des Mangels an AlN Substrate, beruhend auf den Schwierigkeiten bei der Herstellung, auf Saphir Substrate ausgewichen. Diese sind im fernen UV transparent und zusätzlich in großen Mengen in guter Qualität hergestellt. Problematisch ist allerdings, die hohe Gitterfehlanpassung durch die relativ großen Unterschiede zwischen den Gitterkonstanten von AlN/GaN und Saphir. Durch die hohe Gitterfehlanpassung, ist AlN oder AlGaN nicht vollverspannt aufwachsbar. Bedeutet die Schichten relaxieren, wenn die Elastitzät der Schicht nicht groß genug im Vergleich zur Verspannungsenergie ist. Die Relaxation wiederum hat die Entstehung von Versetzungen und Rissen zur Folge. Diese agieren im Kristall als sogenante nichtradiative Rekombinationszentren die insbesondere durch Bestimmung der IQE mit Hilfe von Photolumineszenzmessungen bestimmt werden können.

Kapitel 2

Grundlagen

2.1 Bandstruktur von Gruppe-III Nitriden

Die wichtige Gruppe der III-Nitridhalbleiter setzt sich aus den Metallen der dritten Hauptgruppe Aluminium (Al), Gallium (Ga) und Indium (In) zusammen. Der Schwerpunkt dieser Arbeit liegt auf dem AlGaN-Materialsystem mit hohen Al-Konzentration. Das Mischverhältnis bestimmt hierbei die Bandlückenergie des Verbindungshalbleiters. Durch die unterschiedlichen Bandlückenergien von Aluminium mit 6.03 eV [2] und GaN mit 3.4 eV [3] eignet sich AlGaN besonders für die Emission im Wellenlängenbereich von UV-A bis UV-C. Die Bandlückenenergie von AlGaN lässt sich durch Interpolation der binären Energien von GaN und AlN in Abhängigkeit des Kompositionsverhältnisses x berechnen, wobei ein zusätzlicher Bowing-Parameter für die nichtlineare Abweichung hinzugefügt wird.

$$E_{Al_xGa1-xN} = E_{AlN} \cdot x + E_{GaN} \cdot (1-x) - b_{AlGaN} \cdot x \cdot (1-x)$$
 (2.1)

2.2 Polarisationsfeld und QCSE in III/V Halbleitern

Die Gruppe der III-Nitrid-Halbleiter kristallisiert in der Wurtzitstruktur. Anschaulich bedeutet dies, dass ausgehend von der hexagonal dichtesten Kugelpackung in Doppellagen, die Gruppe-III-Metallen und Stickstoff (N) sich entlang der c-Achse in der Abfolge A-B-A-B anordnen [1] wie in Abb. 2.1 dargestellt ist.

Aufgrund der fehlenden Inversionssymmetrie und stark unterschiedlichen Elektronegativitäten des Stickstoffs und der entsprechenden Gruppe III-Metalle bilden sich Polarisationsfelder aus, die entlang der auf der Basalebende stehenden c-Achse verlaufen. Hier unterscheidet man zwischen zwei Arten von Polarisationsfeldern, die spontane Polarisation \vec{P}^{sp} und die piezoelektrische Polarisation \vec{P}^{pz} .

Die spontante Polarisation entsteht durch Dipolmomente im Kristall die sich aufgrund von ungleichen Bindungslängen nicht komplett aufheben. Ursprung der Dipolmomente im AlGaN sind die unterschiedlichen Elektronegativitäten zwischen den Metallatomen Gallium und Aluminium gegenüber dem Stickstoffatom

Abbildung 2.1: PL-Spektren der Proben ohne Übergitter

Kapitel 3

Aufbau

3.1 Photolumineszenzaufbau

Für die experimentelle Untersuchung der UV-Photolumineszenz wurde der PL-Aufbau der AG-Kneissl verwendet, den Christoph Reich in der Zeit seiner Masterarbeit aufgebaut und während seiner Promotion erweitert hat [4]. Als Anregungsquelle für die Photolumineszenz dient ein ArF-Excimerlaser mit einer Wellenlänge von 193 nm (6, 4 eV). Mit dieser Wellenlänge ist er bestens geeignet für die Überbandanregung von Nitridhalbleitern. Des Weiteren bietet der Aufbau die Möglichkeit von temperaturabhängigen Untersuchungen von 5 K bis 300K. Dies ist auch die Grundlage für die Bestimmung der Internen Quanteneffizienz (kurz IQE), die den Großteil der Thematik dieser Arbeit ausmachen wird. Der Laser mit dem Modellnamen "Xantos" von der Firma Coherent bietet eine maximale Emissionsenergie von 5 mJ und die Frequenz ist bis zu 500 Hz einstellbar bei einer Pulsdauer von 5 ns. Durch interne Rückkopplung ist eine Energiestabilisierung möglich, die die Schwankung der Anregungsleistung auf 3 Prozent minimiert.

Die Ansteuerung des kompletten Messvorgangs erfolgt durch die Messsoftware von Christoph Reich, entwickelt in der grafischen Programmiersprache "LabView"von Texas Instruments. Mit dieser ist es möglich alle nötigen Einstellungen an Pumpen, Heizern, Laser, Filtern und Spektrometer vorzunehmen, um einen komplett automatisierten Messvorgang zu starten, der nur noch aus Sicherheitsbedingungen überwacht werden muss. Spektren können so mit verschiedenen Parametern wie Position, Anregungsleistungsdichte, Temperatur, Energiebereich und Integrationszeit aufgenommen werden und auch ein Gaswechsel ist möglich.

Beginnend vom Laser wird im ersten Schritt der Lasterstrahl durch ein Linsensystem bestehend aus einer Zerstreuungs- und Sammellinse aufgeweitet.

Dieser Schritt ermöglicht es, die Anregungsleistungsdichte zu verringern, um die am Aufbau beteiligten Gerätschaften nicht mit zu hohen Leistungen zu beschädigen. Damit sind insbesondere die Filterräder gemeint. Mit Hilfe der Filterräde ist es möglich, die Anregungsleistungsdichte 61 stufig zu variieren und somit leistungsdichteabhängige IQE Messungen zu machen. Als nächstes passiert der Strahl ein Linsensystem aus zwei Sammellinsen für eine Strahlverkleinerung. Vor dem Auftreffen des Strahles am Probenhalter im Kryostaten passiert der Strahl noch eine Lochblende. Sie dient der Entfernung achsennaher Strahlen und um bei Bedarf den Strahldruchmesser noch weiter zu verringern. Um den Strahl in Richtung des Probenhalters durch das Fenster im Kryostaten zu lenken, wird ein Spiegel mit einer dielektrischen Beschichtung benutzt. Der Laserstrahl durchdringt die Fenster des Kryostaten, diese sind speziell für eine hohe Transmission in diesem Wellenlängenbereich ausgelegt. Der Kryostat selbst ist horizontal und vertikal verfahrbar um die Messung mehrerer Proben im Probenhalter in einem Vorgang zu ermöglichen. Die Proben werden mit einem Kleber auf dem Probenhalter selbst befestigt, bevor dieser in den Kryostaten geschoben wird. Die Anregung der Proben mit dem Laserstrahl führt zur Proben spezifischen Emission von Licht. Diese wird von einer Linse im Strahlengang vor dem Detektor eingefangen und von einer zweiten Linse eingefangen die auf den Monochromatorspalt fokussiert ist.

Kapitel 4

Ergebnisse

4.1 Untersuchung optisch gepumpter Laserstrukturen auf unterschiedlichen Templates

Dieses Kapitel widmet sich der Untersuchung zweier Probenreihen von optisch gepumpten Laserstrukturen, die aus Rezepten aus zwei unterschiedlichen Serien stammen. Die beiden Serien unterscheiden sich im wesentlichen dadurch, dass sie mit(Serie 2) und ohne Übergitter(Serie 1) gewachsen wurden. Die beiden Serien zeichnen sich durch eine dreifach Heterostruktur aus[]. Diese setzt sich zusammen aus zwei 5nm dicken und siliziumdotierten $Al_{0.8}Ga_{0.3}N$ -Barrieren und drei 2.2nm dicken $Al_{0.56}Ga_{0.44}N$ QWs zusammen mit Die Proben weisen noch unterschiede in ihren Substraten auf, so sind zwei Proben der Serie 1 auf AlN-Bulk zweier unterschiedlicher Hersteller (HexaTech, IKZ) gewachsen und alle anderen Proben auf ELO AlN/Sapphire mit jeweils 3 unterschiedlichen ÖffcutWinkeln. Tabellarisch sieht die Zusammenstellung wie folgt aus:

	Ser	ie 1	Serie 2		
Name	offcut	Template	Name	offcut	Template
A	$0.1^{\circ}\mathrm{m}$	Bulk(IKZ)	A	0.2°m	ELO
В	$0.1^{\circ}\mathrm{m}$	ELO	В	$0.1^{\circ}\mathrm{m}$	ELO
С	$0.1^{\circ} \mathrm{m}^*$	ELO	C	0.1°m*	ELO
D	$0.2^{\circ}\mathrm{m}$	ELO			
Е	$0.1^{\circ}\mathrm{m}$	Bulk(Hexatech)			

Abbildung 4.1: PL-Spektren der Proben Abbildung 4.2: PL-Spektren der Proben ohne Übergitter

mit Übergitter

Anhand der unterschiedlichen Intensitäten der Proben bei Raumtemperatur sind keine Rückschlüsse zur Effizienz möglich. Das liegt zum einen daran, dass die Proben nicht alle auf einen Schlag bei gleichen Bedingungen untersucht wurden und an der Art des Messaufbaus an sich.

Literaturverzeichnis

- [1] C. Buchheim. Dielektrische Funktion und elektrooptische Eigeschfaten von (Al, Ga)N/GaN Heterostrukturen. PhD thesis, Technische Universität Ilmenau, 2010.
- [2] M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann. High-excitation and high-resolution photoluminescence spectra of bulk aln. *Phys. Rev. B*, 82:075208(2), 2000.
- [3] J. Piprek. Nitride semiconductor devices: principles and simulation. John Wiley & Sons, 2007.
- [4] C. Reich. Photolumineszenzspektroskopie an (In)AlGaN-Heterostrukturen für UV-Emitter. PhD thesis, Technische Universität Berlin, 2011.
- [5] W. Risk, T. Gosnell, and A. Nurmikko. *Compact Blue-Green Lasers*. Cambridge studies in modern optics. Cambridge University Press, 2003.