SC 607: Optimization Spring 2019

Lecture 14: March 5 2019

Instructor: Ankur A. Kulkarni Scribes: Irina Merin Baby, Sushmita Hoskeri

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

14.1 Review

In the previous lecture, convex function and its properties were introduced. Let us recall some of the concepts that were discussed.

Definition 14.1. On a convex set S, a function $f: S \to \mathbb{R}$ is said to be convex if $\forall x, y \in S, \lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Lemma 14.1. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, then f is convex if and only if

$$f(y) \geqslant f(x) + \nabla f(x)^{\top} (y - x), \ \forall x, y.$$

Theorem 14.2. If f is convex function and S is convex set (convex optimization problem), then every local minima is a global minima.

14.2 Introduction

In this lecture, we will derive a necessary and sufficient condition for x^* to be a minimizer for convex optimization problem. We will also find a condition on local minimizer x^* , where x^* is constrained over the tangent cone set $T(x^*, S)$, where S need not be convex.

14.3 Minimizer of Convex Optimization Problem

Theorem 14.3. Let S be a convex set and let f be a continuously differentiable (C^1) convex function. Consider the following convex optimization problem:

$$f(x), subject to x \in S$$
 (14.1)

Then x^* is minimizer if and only if $\nabla f(x^*)^{\top}(y-x^*) \ge 0$, for all $y \in S$.

Proof. (Sufficiency)

Suppose that $x^* \in S$ satisfies

$$\nabla f(x^*)^\top (y - x^*) \geqslant 0, \ \forall \ y \in S.$$
 (14.2)

14-2 Lecture 14: March 5 2019

By the Lemma 14.1,

$$f(y) \geqslant f(x^*) + \nabla f(x^*)^{\top} (y - x^*), \ \forall \ x^*, y.$$
 (14.3)

Combining (15.3) and (15.4) gives

$$f(y) \geqslant f(x^*), \ \forall \ y \in S. \tag{14.4}$$

This implies that x^* is a global minima.

(Necessity)

Let x^* be a global minima, which implies $f(x^*) \leq f(y), \forall y \in S$. Suppose $\nabla f(x^*)^{\top}(y-x^*) < 0$, for some $y \in S$.

Let $z(t) = x^* + t(y - x^*)$. We will show that $f(z(t)) < f(x^*)$ for small enough t. Consider

$$\frac{f(z(t)) - f(x^*)}{t} = \frac{f(x^* + t(y - x^*)) - f(x^*)}{t}$$
(14.5)

Taking limit as $t \to 0$ gives,

$$\lim_{t \to 0} \frac{f(x^* + t(y - x^*)) - f(x^*)}{t} = \nabla f(x^*)^\top (y - x^*)$$

$$< 0$$
(14.6)

from initial assumption. Hence, there exits t small enough such that $f(z(t)) < f(x^*)$. But this contradicts that x^* is a global minima. Therefore, $\nabla f(x^*)^\top (y-x^*) \ge 0$, $\forall y \in S$.

Remarks.

- 1. Geometrically, the above condition imposes that gradient of the function f at x^* should make an acute angle with vector $(y x^*)$, $\forall y \in S$.
- 2. If f is C^1 and convex function and x^* satisfies $\nabla f(x^*)^\top (y-x^*) \ge 0$, $\forall y \in S$, then x^* is global minima over S.
- 3. If S is convex set, f is C^1 and x^* is a local minima, then $\nabla f(x^*)^\top (y-x^*) \geqslant 0, \ \forall \ y \in S$.
- 4. In particular, if $S = \mathbb{R}^n$ and x^* is local minima, then $\nabla f(x^*) = 0$.

14.4 Tangent Cone

For $x^* \in S$, the tangent cone $T(x^*; S)$ is defined as:

$$T(x^*, S) := \left\{ d \mid \exists \ x_k \subseteq S : x_k \to x^* \ \& \ t_k \downarrow 0 \ s.t. \ d = \lim_{k \to \inf} \frac{x_k - x^*}{t_k} \right\}.$$
 (14.7)

Tangent cone of a set captures the precise shape of the set.

14.4.1 A more relaxed necessary condition for local minima over non-convex set S

Before we state the next theorem, we provide some preliminary background regarding the O(t) and o(t) notations.

Lecture 14: March 5 2019 14-3

Consider two sequences $\{a_k\}$ and $\{b_k\}$. We know that $\lim_{k\to\infty}\frac{a_k}{b_k}=L\in(0,\infty)$ \Longrightarrow For large enough k, $\frac{a_k}{b_k}\approx L$, i.e., $a_k=Lb_k+o(b_k)$ \Longrightarrow $\frac{a_k}{b_k}=L+\frac{o(b_k)}{b_k}$. Thus, for $\lim_{k\to\infty}\frac{a_k}{b_k}=L\in(0,\infty)$ to even hold in the first place, we must have $\frac{o(b_k)}{b_k}\downarrow 0$ as $b_k\downarrow 0$.

Note that $o(t) := \text{term such that } \frac{o(t)}{t} \to 0 \text{ as } t \to 0 \text{ and } O(t) := \text{term such that } \frac{O(t)}{t} \to \text{some finite constant} \neq 0 \text{ as } t \to 0.$ With slight abuse of notation, $o(1) := \text{a quantity} \to 0 \text{ as } t \to 0 \text{ and } O(1) := \text{a quantity} \to \text{some constant} \neq 0 \text{ as } t \to 0.$

With some simple calculations, we can show that: $o(t) \times o(t) \le o(t)$, $o(t) \times O(t) = o(t)$, $O(t) \times O(t) = O(t^2)$. So also, o(t) + o(t) = o(t), o(t) + O(t) = O(t), o(t) + O(t) = O(t).

With this background, we now come to the main statement of the theorem.

Theorem 14.4. Consider the optimization problem:

Minimize
$$f(x)$$

subject to $x \in S$

where $f \in C^1$. If x^* is a local minimum, then $\nabla f(x^*)^{\top} d \ge 0$, $\forall d \in T(x^*, S)$.

Proof. Suppose not, i.e., $\exists d \in T(x^*, S)$ such that $\nabla f(x^*)^{\top} d < 0$. $\exists \{x_k\} \to x^*$ and $t_k \downarrow 0$ such that $t_k d = (x_k - x^*) + o(t_k)$. Recarranging the terms, we get, $x_k = x^* + t_k d + o(t_k)$. Recall Taylor's theorem: $f(x+p) = f(x) + \nabla f(x+tp)^{\top} p$ for some $t \in (0,1)$. We thus obtain:

$$f(x_k) = f(x^* + t_k d + o(t_k)) = f(x^*) + \nabla f(x^* + \delta(t_k d + o(t_k)))^{\top} (t_k d + o(t_k)), \text{ where } \delta \in (0, 1).$$

Note that, as $k \to \infty$, $t_k \downarrow 0$, hence the $\delta(.)$ term in $\nabla f(.)$ vanishes. This leaves us with $\nabla f(x^*)$, which is in fact O(1). Since $O(1) \times o(t_k) = o(t_k)$, we get $f(x_k) = f(x^*) + \nabla f(x^* + \delta(t_k d + o(t_k)))^{\top} t_k d + o(t_k)$. This can be written as $f(x_k) = f(x^*) + \nabla f(x^*)^{\top} t_k d + \left[\nabla f(x^* + \delta(t_k d + o(t_k))) - \nabla f(x^*) \right]^{\top} t_k d + o(t_k)$. Once again notice that the term [.] vanishes as $t_k \downarrow 0$, and therefore, [.] $t_k d$ becomes $o(t_k)$.

So, we are finally left with:

$$f(x_k) = f(x^*) + \nabla f(x^*)^{\top} t_k d + o(t_k) = f(x^*) + t_k \left[\nabla f(x^*)^{\top} d + \frac{o(t_k)}{t_k} \right].$$

We know that $\frac{o(t_k)}{t_k} \downarrow 0$ as $t_k \downarrow 0$. Also, we started our proof with the assumption that $\nabla f(x^*)^\top d < 0$. This makes the term $\left(t_k \left[\nabla f(x^*)^\top d + \frac{o(t_k)}{t_k}\right]\right) < 0$ as $t_k \downarrow 0$, which in turn implies that for large k, $f(x_k) < f(x^*)$. This is contradictory to the fact of x^* being the local minimum. Hence, our initial assumption was wrong and indeed $\nabla f(x^*)^\top d \geqslant 0$, $\forall d \in T(x^*, S)$.