Analízis házi feladatok 2018. április 10., 13.

Ebben a feladatban egyenlettel adunk meg implicit függvényeket. Mindegyik esetben három kérdés van:

- (a) Igazoljuk, hogy létezik a megadott $P_0(x_0, y_0)$ pont környezetében az y = f(x) implicit függvény,
- (b) Írjuk fel ebben a környezetben az f deriváltját (f'(x) = ?),
- (c) Számítsuk ki a deriváltat az x_0 helyen $(f'(x_0) =?)$.
- a) $x^y = y^x$, $P_0 = (2; 4)$,
- b) (adott a>0 esetén) $x^3+y^3-3axy=0$ (Descartes-levél), $P_0(x_0,y_0)$, ahol $x_0>0$, $y_0>0$, és P_0 rajta van a görbén.
- c) $x \cdot \sin y \cos y + \cos 2y = 0$, $P_0 = (1; \frac{\pi}{2})$,
- d) $2y \cdot e^x = x \cdot e^y$, $P_0 = (0; 0)$;
- e) $\frac{x^2 + 2xy y^2 1}{x^2 + y^2}$, $P_0 = (1; 2)$;
- f) $\frac{\ln(x^3y^2)}{xy} = 0$, $P_0 = (1; 1)$;
- g) $\frac{x}{y}$ arctg $\frac{y}{x} = 0$, $P_0 = (1; 1)$.

HF35 Határozzuk meg az alábbi függvények feltételes abszolút szélsőértékeit (szélsőértékhelyek, szélsőértékek)

- 1. Lagrange-multiplikátoros eljárással;
- 2. (ahol nem túl bonyolult) az egyik változó kifejezésével:
- (a) f(x,y) = xy, feltétel: x + y = 1;
- (b) $f(x,y) = x^2 + y^2$, feltétel: x + y = 8;
- (c) $f(x,y) = x^2 + y^2$, feltétel: $\frac{x}{a} + \frac{y}{b} = 1$;
- (d) $f(x,y) = x^2 + y^2$, feltétel: xy = 3;
- (e) $f(x, y, z) = 2x^2 + 2y^2 + 2z^2 + 2xy$, feltétel: $x^2 + y^2 + z^2 = 1$;
- (f) $f(x, y, z) = x^2 + y^2 + z^2$, feltétel: $z^2 = x^2y + 4$;
- (g) f(x,y) = x, feltétel: $x^3 y^2 = 0$;
- (h) f(x,y) = x + y, feltétel: $x^3 y^2 = 0$;
- (i) f(x,y) = y, feltétel: $x^3 y^2 = 0$;
- (j) $f(x,y) = x^3$, feltétel: $y x^2 = 0$.

- (k) $f(x,y) = \sin(x+y)$, feltétel: $x^2 + y^2 = 1$;
- HF36 Adott kerületű téglalapokat megforgatunk az egyik oldaluk körül. Mikor lesz a keletkező henger térfogata a legnagyobb?
- HF37 Az $x^2 + y^2 + z^2 = 9$ gömbfelület mely pontjai vannak legnagyobb (legkisebb) távolságra a tér egy rögzített P(a, b, c) pontjától? Pl. P(1, 5, -10), P(1, 2, 2), P(-2, 1, 0), P(0, 0, 0).
- HF38 Határozzuk meg az alábbi függvények abszolút szélsőértékeit:
 - (a) f(x,y) = 2xy 3y $((x,y) \in D)$, ahol a D halmaz az $y = x^2$ parabola, az x-tengely és az x = 2 egyenes által határolt síkrész;
 - (b) $f(x,y)=x^2-y^2-x$ $((x,y)\in D)$, ahol a D halmaz az $x^2+y^2=1$ kör és a koordinátatengelyek által határolt síkrész;
 - (c) $f(x,y) = x^3 3x^2 y^2$ $(x \ge -1, x 1 \le y \le 4)$;
 - (d) $f(x,y) = x^2 + y^2 xy$ $(0 \le x \le 4, \ 0 \le y \le x);$
 - (e) f(x,y) = 3x 2y $(4x^2 + y^2 \le 4)$;
 - (f) $f(x,y) = x^2 2xy + 2y$ $(0 \le x \le 2, 0 \le y \le 3)$.