轉動慣量測量及角動量守恆實驗結報

一、 實驗結果

A. 實驗 A:

1. 實驗數據:(R1為外徑,R2為內徑)

	M(kg)	$R_1(m)$	$R_2(\mathbf{m})$	力臂 r(m)	懸掛物 m(kg)
圓盤	1.483	0.115		0.0085	0.04035
圓環	1.503	0.064	0.054	0.0085	0.04035
圓盤+圓環	2. 986			0.0085	0. 04035

圓盤轉動慣量理論值:

$$I = \frac{1}{2}MR^2 = \frac{1}{2} \times 1.483 \times 0.115^2 = 0.00981 \text{ (kg/m}^2)$$

圓環轉動慣量理論值:

$$I = \frac{1}{2}M(R_1^2 + R_2^2) = \frac{1}{2} \times 1.503 \times (0.064^2 + 0.054^2) = 0.00527 \text{ (kg/m}^2)$$

圓盤角加速度: $\alpha = 0.294 \text{ (rad/s}^2)$

圓盤摩擦力造成的角加速度: $\alpha_0 = -0.0795 \; (rad/s^2)$

圓盤轉動慣量實驗值:

$$I = \frac{mr^2(g - r\alpha)}{\alpha + |\alpha_0|} = \frac{0.4035 \times 0.0085^2(9.8 - 0.0085 \times 0.294)}{0.294 + 0.0795} = 0.00900 \text{ (kg/m}^2)$$

圓盤摩擦力:
$$f = \frac{I\alpha_0}{r} = \frac{0.0157 \times (-0.0795)}{0.0085} = -0.147$$
 (N)

誤差: (|0.00900 - 0.00981|) ÷ 0.00981 = 8.26%

圓盤+圓環角加速度: $\alpha = 0.1499 \text{ (rad/s}^2)$

圓盤+圓環摩擦力造成的角加速度: $\alpha_0 = -0.0658 \; (rad/s^2)$ 圓盤+圓環轉動慣量實驗值:

$$I = \frac{mr^2(g - r\alpha)}{\alpha + |\alpha_0|} = \frac{0.4035 \times 0.0085^2(9.8 - 0.0085 \times 0.1499)}{0.1499 + 0.0658} = 0.0156 \text{ (kg/m}^2)$$

圓盤+圓環摩擦力:
$$f = \frac{I\alpha_0}{r} = \frac{0.0400 \times (-0.0658)}{0.0085} = -0.309$$
 (N)

圓環轉動慣量實驗值: 0.0156 - 0.00900 = 0.00658 (kg/m²)

誤差: $([0.00658 - 0.00527]) \div 0.00527 = 24.9\%$

B. 實驗 B:

1. 實驗數據:

	M(kg)	R(m)	d(m)	m(kg)	r(m)
第一組	1. 483	0.115	0.050	0.04035	0.0085
第二組	1. 483	0.115	0.100	0.04035	0.0085
第三組	1. 483	0.115	0.150	0. 09085	0.0085

I 理論值:

$$I = \frac{1}{2}MR^2 + Md^2$$

第一組理論值:
$$I = \frac{1}{2}1.483 \times 0.115^2 + 1.483 \times 0.050^2 = 0.0135 \text{ (kg/m}^2)$$

第二組理論值:
$$I = \frac{1}{2}1.483 \times 0.115^2 + 1.483 \times 0.100^2 = 0.0246$$
 (kg/m²)

第三組理論值:
$$I = \frac{1}{2}1.483 \times 0.115^2 + 1.483 \times 0.150^2 = 0.0432$$
 (kg/m²)

第一組圓盤角加速度: $\alpha = 0.0900 \text{ (rad/s}^2)$

第一組圓盤摩擦力造成的角加速度: $\alpha_0 = -0.0470 \; (rad/s^2)$

第一組圓盤轉動慣量實驗值:

$$I = \frac{mr^2(g - r\alpha)}{\alpha + |\alpha_0|} = \frac{0.4035 \times 0.0085^2(9.8 - 0.0085 \times 0.0900)}{0.0900 + 0.0470} = 0.0245 \text{ (kg/m}^2)$$

第一組圓盤摩擦力:
$$f = \frac{I\alpha_0}{r} = \frac{0.0782 \times (-0.0470)}{0.0085} = -0.432$$
 (N)

第二組圓盤角加速度: $\alpha = 0.0516$ (rad/s²)

第二組圓盤摩擦力造成的角加速度: $\alpha_0 = -0.0312$ (rad/s²)

第二組圓盤轉動慣量實驗值:

$$I = \frac{mr^2(g - r\alpha)}{\alpha + |\alpha_0|} = \frac{0.4035 \times 0.0085^2(9.8 - 0.0085 \times 0.0516)}{0.0516 + 0.0312} = 0.0406 \text{ (kg/m}^2)$$

第二組圓盤摩擦力:
$$f = \frac{I\alpha_0}{r} = \frac{0.165 \times (-0.0312)}{0.0085} = -0.605$$
 (N)

第三組圓盤角加速度: $\alpha = 0.0878 \, (rad/s^2)$

第三組圓盤摩擦力造成的角加速度: $\alpha_0 = -0.0463$ (rad/s²)

第三組圓盤轉動慣量實驗值:

$$I = \frac{mr^2(g - r\alpha)}{\alpha + |\alpha_0|} = \frac{0.9085 \times 0.0085^2(9.8 - 0.0085 \times 0.0878)}{0.0878 + 0.0463} = 0.0564 \text{ (kg/m}^2)$$

第三組圓盤摩擦力:
$$f = \frac{I\alpha_0}{r} = \frac{0.182 \times (-0.0463)}{0.0085} = -0.993$$
 (N)

C. 實驗 C:

1. 實驗數據:

	ω(rad/s)	$I(kg/m^2)$	$\omega I(kg \cdot m^2/s)$
圓盤	15. 0	0.00981	0.147
圓盤+圓環	9. 55	0. 0151	0.144

0.147 ≈ 0.144 → 角動量守恆

二、習題

提示:①如填滿了 \$150,积的巨域

$$\rho = \frac{M}{\pi R^2 H}$$

$$\int_0^H \int_0^{2\pi} \int_{R_1}^{R_2} r^3 (\rho \, dr \, d\theta \, dz)$$

$$= \rho \int_0^H \int_0^{2\pi} \frac{R_2^4 - R_1^4}{4} d\theta \, dz$$

$$= \rho \int_0^H \frac{R_2^4 - R_1^4}{4} 2\pi$$

$$= \rho \frac{R_2^4 - R_1^4}{4} 2\pi H$$

$$= \frac{R_1^2 + R_2^2}{2} (R_1^2 - R_2^2) \pi H \rho$$

$$= \frac{1}{2} M (R_1^2 + R_2^2)$$

習題2: 證明 I= <u>mr(g-rx)</u> α+|x₀| (普物實驗室網站是錯的)

$$\begin{cases} \vec{\tau} = \vec{\tau}_t + \vec{\tau}_f = \vec{T} \times \vec{r} + I\vec{\alpha}_0 = I\vec{\alpha} \\ mg - T = m\alpha \rightarrow T = m(g - \alpha) \cdot \alpha = \alpha r \end{cases}, \alpha = \alpha_t - |\alpha_0|,$$

$$I = \frac{\vec{T} \times \vec{r}}{I\vec{\alpha}_t} = \frac{Tr\sin 90^\circ}{I(\alpha + |\alpha_0|)} = \frac{m(g - \alpha)}{\alpha + |\alpha_0|} = \frac{m(g - r\alpha)}{\alpha + |\alpha_0|}$$

三、 心得

這次實驗準備的還算充足,實驗過程中沒遇到什麼太大的阻礙,只是 Coolterm 有時候會當機有點麻煩,剩下的部分還算順利。