Тема: *Системи числення та подання даних у комп'ютері*. План

- 1. Основні поняття систем числення. Арифметичні операції в позиційних системах числення.
- 2. Перетворення чисел у позиційній системи числення з основою Р у подання в десятковій системі числення і навпаки.

1. Основні поняття систем числення. Арифметичні операції в позиційних системах числення.

Сукупність засобів для зображення та найменування чисел називається системою числення. Існуючі системи числення діляться на позиційні та непозиційні.

В непозиційних системах числення зміст кожного знака (цифри) не залежить від позиції, яку займає цей знак в числі. Прикладом такої системи числення є римська система: IIII V X L-50 C-100 D-500 M-1000.

В позиційних системах числення значення кожної цифри змінюються з зміною її положення (позиції) в ряду цифр, що зображують число.

Розглянемо будь-яке число. Кожна цифра несе подвійну інформацію: своє безпосереднє значення та місце (позицію, яке займає в запису числа). Приклад:

$$2345 = 2*1000+3*100+4*10+5*1$$

Так, система запису звичайних арабських чисел заснована на тому, що десять одиниць кожного розряду об'єднуються в одну одиницю сусіднього, більш старшого розряду. Наприклад: в числі 2345 перша цифра (2) означає кількість тисяч, друга (3) - сотень, третя (4) - десятків, четверта (5) - одиниць.

Для позиційних систем числення існує таке поняття як основа системи числення. Основа системи числення це - кількість цифр, що створюють її абетку. Для звичайної системи числення якою ми користуємось, основа -10, тому її називають десятковою.

Існує велика кількість позиційних систем числення. Найбільш поширені це десяткова, двійкова, вісімкова та шістнадцяткова системи. Назва системи формується від основи системи числення. Для запису числа в різних системах числення користуються показником основи:

D – десяткова В - двійкова

О – вісімкова Н - шістнілияткова

Наприклад: 35 = 35 D; 10001(2) = 10001B

Десяткова система числення - це система з основою 10. До цієї системи входить десять цифр: 0123456789. Кожне число в десятковій системі можна зобразити у вигляді суми добутків ступенів десятки на цю цифру, де ступінь десятки визначається позицією цифри в числі.

Наприклад: $2345 = 2*10^3 + 3*10^2 + 4*10^1 + 5*10^0$

для дробових чисел 23,45= $2*10^1 + 3*10^0 + 4*10^{-1} + 5*10^{-2}$

Двійкова система числення. В сучасних ЕОМ інформація кодується за допомогою двох цифр - 0 та 1. Це зв'язано з тим, що більшість фізичних елементів в ЕОМ, мають два чітко визначених стани (наприклад: наявність чи відсутність електричної напруги). Одному з таких станів відповідає символ 0, іншому - 1. Цей спосіб застосовується тому, що відсутність або поява сигналу легко розпізнається в пристроях машини. При цьому числа зображуються в двійковій системі числення. Двійкова система числення - це система з основою 2. До цієї системи входить дві цифри - 0 та 1. Тобто будь-яке число в двійковій системі складається з цифр 0 та 1.

Вісімкова система числень. Наряду з двійковою системою числень застосовується вісімкова система числення, яка спрощує запис чисел. Вісімкова система числення - це система з основою 8. До цієї системи входять вісім цифр 01234567. Наприклад: $2345O = 2*8^3 + 3*8^2 + 4*8^1 + 5*8^0$

Шістнадцяткова система числення використовується як засіб кодування чисел при складанні адресів команд. Шістнадцяткова система числення - це система з основою 16. До цієї системи входять 0 1 2 3 4 5 6 7 8 9 A B C D E F.

Арифметичні операції у всіх позиційних системах обчислення виконуються за одними і тими ж правилами:

- переповнювання розряду наступає тоді, коли значення числа в ньому стає рівним або завбільшки основи;
- складання багаторозрядних чисел відбувається з урахуванням можливих перенесень з молодших розрядів в старші;
- віднімання багаторозрядних чисел відбувається з урахуванням можливих заїмок в старших розрядах;
- множення багаторозрядних чисел відбувається з послідовним множенням множеного на чергову цифру множника;
- перенесення в наступний розряд при складанні і заїмка із старшого розряду при відніманні визначається величиною основи системи обчислення;
- для проведення арифметичних операцій над числами, представленими в різних системах обчислення, необхідно заздалегідь перевести їх в одну систему.

Складання. В основі складання двійкової системи обчислення лежить таблиця складання однорозрядних двійкових чисел:

Зробимо перевірку в десятковій системі числення:

$$11012 = 1 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 1310;$$

$$11102 = 1 \cdot 23 + 1 \cdot 22 + 1 \cdot 21 + 0 \cdot 20 = 1410;$$

$$110112 = 1 \cdot 24 + 1 \cdot 23 + 0 \cdot 22 + 1 \cdot 21 + 1 \cdot 20 = 2710$$

Віднімання. В основі лежить таблиця віднімання однозначних двійкових чисел. При відніманні з меншого числа (0) більшого (1) проводиться заїмка із старшого розряду, тобто переходить у молодший як дві одиниці (тобто старший розряд подається двійкою більшого степеня) 2 - 1 = 1. Відповідь записуємо 1.

$$0 - 0 = 0$$

 $(1)0 - 1 = 1$ Заїмка зі старшого розряду
 $1 - 0 = 1$
 $1 - 1 = 0$

Як приклад проведемо віднімання двійкових чисел 11012 і 11012.

Зробимо перевірку в десятковій системі числення:

$$11101_2 = 25_{10}$$
;

```
1101_2 = 13_{10};

25_{10} - 13_{10} = 12_{10};

1100_2 = 12_{10}.
```

Множення. В основі множення лежить таблиця множення однозначних чисел:

$$0 \cdot 0 = 0$$

 $0 \cdot 1 = 0$
 $1 \cdot 0 = 0$
 $1 \cdot 1 = 1$

Як приклад проведемо множення двійкових чисел 1112 і 1012.

Зробимо перевірку в десятковій системі числення:

$$\begin{aligned} &111_2 = 7_{10};\\ &101_2 = 5_{10};\\ &7_{10} \cdot 5_{10} = 35_{10};\\ &100011_2 = 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 32 + 2 + 1 = 35_{10}.\end{aligned}$$

Ділення. Ділення двійкових чисел здійснюється за тими ж правилами, що й для десяткових. При цьому використовуються таблиці двійкового множення і віднімання. Як приклад проведемо розподіл числа 101010₂ на 111₂.

Зробимо перевірку в десятковій системі числення:

$$101010_2 = 42_{10};$$

 $111_2 = 7_{10};$
 $42_{10} : 7_{10} = 6_{10};$
 $110_2 = 6_{10}.$

Аналогічно, можна виконувати арифметичні дії у вісімковій і шістнадцятковій системах числення.

2. Перетворення чисел у позиційній системи числення з основою Р у подання в десятковій системі числення і навпаки.

Переклад чисел з десяткової системи числення в двійкову. Для цього необхідно :

- 1) поділити з остачею число в десятковій системі на двійку;
- 2) частку від попереднього ділення поділити з остачею на 2;
- 3) виконувати операцію 2 доти, доки частка від ділення буде дорівнювати 0 або 1
- 4) записати частку від останнього ділення і далі остачу від ділення з права вліво у послідовності їх одержання. Тобто першою цифрою двійкового аналогу буде частка від останнього ділення (якщо вона не дорівнює нулю), а останні

цифри - остачі від ділення у послідовності їх одержання. Наприклад: перекласти число 21(10) в двійкову систему

Переклад чисел з двійкової системи числення в десяткову. Для цього необхідно скласти суму добутків степенів двійки на кожну з цифр, де степінь двійки визначається позицією цифри в числі. При чому степінь двійки при останній цифрі - 0.

Наприклад : перекласти число
$$1011101_{(2)}$$
 в десяткову систему. $1*2^6 + 0*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = 64+0+16+8+4+0+1=93$ $1011101_{(2)}=93_{(10)}$

Переклад чисел з десяткової системи числення в вісімкову. Для заміни десяткового цілого числа на рівне йому вісімкове використовується алгоритм послідовного ділення цього числа на 8. Наприклад: перекласти число 317(10) в вісімкову систему

Переклад чисел з вісімкової системи числення в двійкову. Розглянемо правило заміни вісімкового числа на рівне йому двійкове, попередньо звернувшись до таблиці, де кожній вісімковій цифрі відповідає трьохзначне двійкове число: кожну цифру вісімкового запису слід замінити її двійковим аналогом.

Наприклад: перекласти число $475_{(8)}$ в двійкову систему $475O = 100\ 111\ 101\ B$

8C/Y	2С/Ч	8С/Ч	2С/Ч
0	000	4	100
1	001	5	101
2	010	6	110
3	011	7	111

Переклад чисел з двійкової системи числення в вісімкову. Зворотній перехід від двійкового представлення числа до вісімкового здійснюється за правилом: в двійковому запису числа потрібно виділити тріаду (ліворуч та праворуч від коми), замінити кожну тріаду відповідною вісімковою цифрою. У випадку необхідності неповні тріади доповнюються нулями. Наприклад: перекласти число 1010110В в вісімкову систему числення

$$1010110 = 001$$
 010 $110B = 126O$ 1 2 6

Переклад чисел з шістнадцяткової системи числення в двійкову, десяткову та навпаки. Кожну шістнадцяткову цифру потрібно замінити

відповідною їй двійковою тетрадою. Неповні тетради доповнюються нулями. Розбивку виконують для цілої частини числа з права вліво, для дробової - зліва направо. Кожну з цих тетрад (груп) позначають символом у відповідності до таблиці.

Десятичні цифри	16С/Ч	2С/Ч	Десятичні цифри	16С/Ч	2С/Ч
цифри			цифри		
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	A	1010
3	3	0011	11	В	1011
4	4	0100	12	C	1100
5	5	0101	13	D	1101
6	6	0110	14	E	1110
7	7	0111	15	F	1111

Наприклад:

$$15D = FH$$

$$6CH = 0110 1100B$$

$$111110111_{16} = 0111$$
 1101 $1111B = 7DFH$ 7 D F