Importing of Libraries

In []:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
```

Dataset Loading

In []:

```
df = pd.read_csv("/content/abalone.csv")
df
```

Out[]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	

4177 rows × 10 columns

In []:

df.shape

Out[]:

(4177, 10)

Visualization

Out[]:

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_we
Sex							
1	0.427746	0.326494	0.107996	0.431363	0.191035	0.092010	0.128
M	0.561391	0.439287	0.151381	0.991459	0.432946	0.215545	0.281
F	0.579093	0.454732	0.158011	1.046532	0.446188	0.230689	0.302

In []:

#boxplot
sns.boxplot(x=df.Age,color='orange')

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fe456598810>


```
plt.hist(df['Sex'])
```

Out[]:

In []:

```
sns.histplot(x=df.Diameter,palette='Rainbow')
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fe45a5fe690>


```
#bi-varient analysis
#boxplot

sns.boxplot(x=df.Sex,y=df.Diameter,data=df)
plt.show()
```


In []:

```
#scatter plot

plt.scatter(df.Viscera_weight,df.Shell_weight)
plt.xlabel("Viscera_weight")
plt.ylabel("Shell_weight")
```

Out[]:

Text(0, 0.5, 'Shell_weight')


```
#Multi-varient analysis
sns.pairplot (df, hue="Sex", size=3)
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:2076: UserWarning: The `size` parameter has been renamed to `height`; please update your code.

warnings.warn(msg, UserWarning)


```
#heatmap

x = df.corr()
sns.heatmap(x,xticklabels=x.columns,yticklabels=x.columns)
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fe459e6d210>

Statistics

In []:

df.describe()

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	1.052909	0.523992	0.407881	0.139516	0.828742	0.359367
std	0.822240	0.120093	0.099240	0.041827	0.490389	0.221963
min	0.000000	0.075000	0.055000	0.000000	0.002000	0.001000
25%	0.000000	0.450000	0.350000	0.115000	0.441500	0.186000
50%	1.000000	0.545000	0.425000	0.140000	0.799500	0.336000
75%	2.000000	0.615000	0.480000	0.165000	1.153000	0.502000
max	2.000000	0.815000	0.650000	1.130000	2.825500	1.488000
4						>

```
df.mean()
Out[ ]:
Sex
                    1.052909
Length
                    0.523992
Diameter
                   0.407881
Height
                   0.139516
Whole_weight
                   0.828742
Shucked_weight
                   0.359367
Viscera_weight
                   0.180594
Shell_weight
                   0.238831
Rings
                   9.933684
                  11.444577
Age
dtype: float64
In [ ]:
df.mode()
```

Out[]:

_		Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_wei
_	0	2.0	0.550	0.45	0.15	0.2225	0.175	0.1715	0.
	1	NaN	0.625	NaN	NaN	NaN	NaN	NaN	1
4									•

In []:

df.median()

Out[]:

Sex	1.0000
Length	0.5450
Diameter	0.4250
Height	0.1400
Whole_weight	0.7995
Shucked_weight	0.3360
Viscera_weight	0.1710
Shell_weight	0.2340
Rings	9.0000
Age	10.5000
dtype: float64	

```
#Checking of Null values
df.isnull().sum()
```

Out[]:

Sex 0 Length 0 Diameter 0 Height 0 Whole_weight 0 Shucked_weight 0 Viscera_weight 0 Shell_weight 0 Rings 0 Age 0 dtype: int64

In []:

```
#Encoding

from sklearn.preprocessing import LabelEncoder
encode = LabelEncoder()
df.Sex = encode.fit_transform(df.Sex)
df
```

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	
4173	2	0.590	0.440	0.135	0.9660	0.4390	0.2145	
4174	2	0.600	0.475	0.205	1.1760	0.5255	0.2875	
4175	0	0.625	0.485	0.150	1.0945	0.5310	0.2610	
4176	2	0.710	0.555	0.195	1.9485	0.9455	0.3765	
4177 r	ows >	< 10 colu	ımns					

Independent and dependent variables

```
In [ ]:
```

```
x=df.iloc[:,:8]
```

```
In [ ]:
```

```
print("Independent variable")
```

Independent variable

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	
4173	2	0.590	0.440	0.135	0.9660	0.4390	0.2145	
4174	2	0.600	0.475	0.205	1.1760	0.5255	0.2875	
4175	0	0.625	0.485	0.150	1.0945	0.5310	0.2610	
4176	2	0.710	0.555	0.195	1.9485	0.9455	0.3765	

4177 rows × 8 columns

In []:

y=df.iloc[:,9:]

```
In [ ]:
```

```
print("Dependent variable")
```

Dependent variable

Out[]:

	Age	
0	16.5	
1	8.5	
2	10.5	
3	11.5	
4	8.5	
4172	12.5	
4173	11.5	
4174	10.5	
4175	11.5	
4176	13.5	

4177 rows × 1 columns

Handling of outliers

In []:

```
outliers=df.quantile(q=(0.25,0.75))
outliers
```

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_v
0.25	0.0	0.450	0.35	0.115	0.4415	0.186	0.0935	
0.75	2.0	0.615	0.48	0.165	1.1530	0.502	0.2530	
4								>

```
a=df.Age.quantile(0.25)
b=df.Age.quantile(0.75)
c=b-a
lower_limit = a-1.5*c
df.median(numeric_only=True)
```

Out[]:

Sex	1.0000
Length	0.5450
Diameter	0.4250
Height	0.1400
Whole_weight	0.7995
Shucked_weight	0.3360
Viscera_weight	0.1710
Shell_weight	0.2340
Rings	9.0000
Age	10.5000
dtype: float64	

In []:

```
df['Age'] = np.where(df['Age'] < lower_limit, 7, df['Age'])</pre>
sns.boxplot(x=df.Age,showfliers = False)
```

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fe4513ba890>

Feature Scaling

```
In [ ]:
```

```
from sklearn import preprocessing
standardisation = preprocessing.StandardScaler()
new_x = standardisation.fit_transform(x)
print(new_x)
[ 1.15198011 -0.57455813 -0.43214879 ... -0.60768536 -0.72621157
 -0.63821689]
 [ 1.15198011 -1.44898585 -1.439929 ... -1.17090984 -1.20522124
 -1.21298732]
 [-1.28068972 0.05003309 0.12213032 ... -0.4634999 -0.35668983
 -0.20713907]
 [ 1.15198011 0.6329849
                          0.67640943 ... 0.74855917 0.97541324
  0.49695471]
 [-1.28068972 0.84118198 0.77718745 ... 0.77334105 0.73362741
  0.41073914]
 [ 1.15198011 1.54905203 1.48263359 ... 2.64099341 1.78744868
  1.84048058]]
```

Splitting the data training and testing

In []:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y)
```

Building the model

In []:

```
from sklearn.linear_model import LinearRegression
mlr=LinearRegression()
mlr.fit(x_train,y_train)
```

Out[]:

LinearRegression()

In []:

```
#training and testing
x_test[0:5]
```

Out[]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_
1957	0	0.645	0.520	0.210	1.5535	0.6160	0.3655	
1238	1	0.375	0.280	0.080	0.2025	0.0825	0.0480	
3277	0	0.465	0.390	0.140	0.5555	0.2130	0.1075	
2111	1	0.455	0.355	0.080	0.4520	0.2165	0.0995	
2649	2	0.505	0.400	0.135	0.7230	0.3770	0.1490	
4								

```
In [ ]:
y_test[0:5]
Out[ ]:
      Age
1957 17.5
1238
       9.5
3277 16.5
 2111 10.5
2649
       8.5
In [ ]:
mlr.predict(x_test[0:10])
Out[ ]:
array([[15.53831908],
       [ 8.69250731],
       [12.33347255],
       [ 8.94053076],
       [ 9.85983137],
       [13.11162417],
       [ 8.5778736 ],
       [12.08984937],
       [10.91753115],
       [10.64247071]])
In [ ]:
from sklearn.metrics import r2_score
r2_score(mlr.predict(x_test),y_test)
Out[ ]:
```

0.10551972009791755