About the course

Books

DIP by Gonzalez and Woods Fundamentals of DIP by Jain + other sources

Assessment

```
2 mid semester exams* (30\%) + 1 Final exam* (25\%) = 55\% (theory)
Weekly assignments* (25\%) + 1 final project* (20\%) = 45\% (practice)
```

*If you fail to submit more than 1 assignment you will get 0/25 for the assignment component; If copying is detected, you get 0 marks for the assignment.

Portal for the course website http://courses.iiit.ac.in Portal for Image processing virtual lab http://deploy.virtual-labs.ac.in/labs/cse19/index.php

^{*} Weights may change depending on the final numbers in the class

Visual information (in a digital image) processing: challenges

Why Image processing?

Proliferation of cameras

- Variety of uses for images
 - Personal, journalism/news, medical diagnostics, satellite, deep space probes, under water exploration...

Routine tasks of interest

Input

Processed output

Enhance the image

Input

output

Correct the view point

De-noise

De-blur

Higher order tasks of interest

"Find and Replace" in images

Replace Madras with Chennai

How many legs does this elephant have?

Locate the faces and text in these images

Operation 'Hide and Seekh' reporting, Sir! We have found a lot of black bucks...

Seeing is effortless for us....

The challenge is to endow computers with the same ability!

Image processing is the first step in that direction

Which of the tasks is DIP concerned with?

Mostly

• Routine tasks: $I_{in} \rightarrow I_{out}$

Partly

• Higher order tasks: $I_{in} \rightarrow$ detection/recognition

Constraints

- An image is a set of integers
 - intensity/colour values, an objective quantity
- Each number depends on several factors
 - Surface property, illumination strength and wavelength

• The image is a 2D projection of a 3D scene

- What we perceive is *brightness*
 - A subjective sensation

Imaging -Sensor layout in cameras

Traditional

Novel

Imaging in Humans

Cone Sensitivities

Retinal sensors

Sensors: rods and cones

- Rods are achromatic
 - contribute mostly to low resolution peripheral vision

- Cones are chromatic
 - contribute to high resolution central colour vision

Retinal sensor layout

Unequal rod-cone distribution within retina

• Unequal distribution of colour sensor (cones) within the fovea

• The ratio of R,G cones varies across individuals (~1:1 to 16:1) Neuroscience 2005

Processing in HVS

Image basics

An image.....

- Is a 2D signal, I.e. a function of **intensity** values $f(x,y): \Re^2 \to \Re$ or $\Re^3 \to \Re$
 - -(x,y) or (x,y,z) spatial coordinates
 - domain and range of f is real

Intensity depends on many factors:

- Sensor
 - spectral characteristics
 - optics (lens)
- Environment and object
 - illumination
 - surface characteristics of the object

Digital image

- The intensity function is a <u>digital</u> signal
 - f(x,y) or f(x,y,z) is sampled and quantised
 - -(x,y) or $(x,y,z) \rightarrow (m,n)$ or (m,n,k)
 - $-f \rightarrow I$ integers
- the dimensionality of the spatial coordinates results in a 2-D pixel or 3-D voxel as the basic element

In this course, we deal with 2-D planar images

 \therefore digital image I(m,n): $\mathbb{Z}^2 \rightarrow \mathbb{Z}$

How do we sample a 2-D space?

Options for sampling lattice

A point in the image is now expressed as $[m \ n] L m,n$ are integer coordinates, L is the lattice

Luminosity and Brightness

- Luminosity from a certa
 - reflected fr
- Brightness i or received

Brightness is not a simple function of intensity

Human perception is not fully understood!!

Peı

 \mathbf{A}

- (
- § , etc.

Pixel depth

Current standard is 8 bits/colour plane

- Dolby is proposing 12-16 bits/colour plane
- Display brightness in candellas/m² (nits)
- Current std: 48 (legacy from film projectors) Dolby proposes 4000