1. 평균 구하기

<문제 설명>

정수를 담고 있는 배열 arr의 평균값을 return하는 함수, solution을 완성해보세요.

<제한 조건>

- arr은 길이 1 이상, 100 이하인 배열입니다.
- arr의 원소는 -10,000 이상 10,000 이하인 정수입니다.

arr	return
[1,2,3,4]	2.5
[5,5]	5

2. 내적

<문제 설명>

길이가 같은 두 1차원 정수 배열 a, b가 매개변수로 주어집니다. a와 b의 내적을 return 하도록 solution 함수를 완성해주세요.

이때, a와 b의 내적은 a[0]*b[0] + a[1]*b[1] + ... + a[n-1]*b[n-1] 입니다. (n은 a, b의 길이)

<제한 조건>

- a, b의 길이는 1 이상 1,000 이하입니다.
- a, b의 모든 수는 -1,000 이상 1,000 이하입니다.

<입출력예>

a	b	result
[1,2,3,4]	[-3,-1,0,2]	3
[-1,0,1]	[1,0,-1]	-2

입출력 예#1

a와 b의 내적은 1*(-3) + 2*(-1) + 3*0 + 4*2 = 3 입니다.

입출력 예#2

a와 b의 내적은 (-1)*1 + 0*0 + 1*(-1) = -2 입니다

3. 음양 더하기

<문제 설명>

어떤 정수들이 있습니다. 이 정수들의 절댓값을 차례대로 담은 정수 배열 absolutes와 이 정수들의 부호를 차례대로 담은 불리언 배열 signs가 매개변수로 주어집니다. 실제 정수들의 합을 구하여 return 하도록 solution 함수를 완성해주세요.

<제한 조건>

- absolutes의 길이는 1 이상 1,000 이하입니다.
 - absolutes의 모든 수는 각각 1 이상 1,000 이하입니다.
- signs의 길이는 absolutes의 길이와 같습니다.
 - signs[i] 가 참이면 absolutes[i] 의 실제 정수가 양수임을, 그렇지 않으면 음수임을 의미합니다.

<입출력예>

absolutes	signs	result
[4,7,12]	[true,false,true]	9
[1,2,3]	[false,false,true]	0

입출력 예#1

signs가 [true,false,true] 이므로, 실제 수들의 값은 각각 4, -7, 12입니다. 따라서 세 수의 합인 9를 return 해야 합니다.

입출력 예#2

signs가 [false,false,true] 이므로, 실제 수들의 값은 각각 -1, -2, 3입니다. 따라서 세 수의 합인 0을 return 해야 합니다.

4. 없는 숫자 더하기

<문제 설명>

0부터 9까지의 숫자 중 일부가 들어있는 정수 배열 numbers가 매개변수로 주어집니다. numbers에서 찾을 수 없는 0부터 9까지의 숫자를 모두 찾아 더한 수를 return 하도록 solution 함수를 완성해주세요.

<제한 조건>

- 1≤numbers의 길이≤9
 - 0≤numbers의 모든 원소≤9
 - numbers의 모든 원소는 서로 다릅니다.

<입출력예>

numbers	result
[1,2,3,4,6,7,8,0]	14
[5,8,4,0,6,7,9]	6

입출력 예#1

5, 9가 numbers에 없으므로, 5 + 9 = 14를 return 해야 합니다.

입출력 예#2

1, 2, 3이 numbers에 없으므로, 1 + 2 + 3 = 6을 return 해야 합니다.

5. x만큼 간격이 있는 n개의 숫자

<문제 설명>

함수 solution은 정수 x와 자연수 n을 입력 받아, x부터 시작해 x씩 증가하는 숫자를 n개 지니는 리스트를 리턴해야 합니다. 다음 제한 조건을 보고, 조건을 만족하는 함수, solution을 완성해주세요.

<제한 조건>

- x는-10000000 이상, 10000000 이하인 정수입니다.
- n은 1000 이하인 자연수입니다.

х	n	Answer
2	5	[2,4,6,8,10]
4	3	[4,8,12]
-4	2	[-4, -8]

6. 행렬의 덧셈

<문제 설명>

행렬의 덧셈은 행과 열의 크기가 같은 두 행렬의 같은 행, 같은 열의 값을 서로 더한 결과가 됩니다. 2개의 행렬 arr1과 arr2를 입력받아, 행렬 덧셈의 결과를 반환하는 함수, solution을 완성해주세요.

<제한 조건>

■ 행렬 arr1, arr2의 행과 열의 길이는 500을 넘지 않습니다.

arr1	arr2	return
[[1,2],[2,3]]	[[3,4],[5,6]]	[[4,6],[7,9]]
[[1],[2]]	[[3],[4]]	[[4],[6]]

7. 최소직사각형

<문제 설명>

명함 지갑을 만드는 회사에서 지갑의 크기를 정하려고 합니다. 다양한 모양과 크기의 명함들을 모두 수납할 수 있으면서, 작아서 들고 다니기 편한 지갑을 만들어야 합니다. 이러한 요건을 만족하는 지갑을 만들기 위해 디자인팀은 모든 명함의 가로 길이와 세로 길이를 조사했습니다. 아래 표는 4가지 명함의 가로 길이와 세로 길이를 나타냅니다.

<제한 조건>

- sizes의 길이는 1 이상 10,000 이하.
 - sizes의 원소는 [w, h] 형식입니다.
 - w는 명함의 가로 길이를 나타냅니다.
 - h는 명함의 세로 길이를 나타냅니다.
 - w와 h는 1 이상 1,000 이하인 자연수입니다.

	60	50
_	30	70
	60	30
	80	40

	10	7
	12	3
_	8	15
	14	7
	5	15

1	4	4	
1	9	6	
(ô	16	
1	8	7	
•	7	11	

<입출력 예>

sizes	result
[[60, 50], [30, 70], [60, 30], [80, 40]]	4000
[[10, 7], [12, 3], [8, 15], [14, 7], [5, 15]]	122
[[14, 4], [19, 6], [6, 16], [18, 7], [7, 11]]	133

입출력 예#1

명함들을 적절히 회전시켜 겹쳤을 때, 모든 명함을 포함하는 가장 작은 지갑의 크기는 4000(=80 x 50)입니다.

입출력 예#2

명함들을 적절히 회전시켜 겹쳤을 때, 3번째 명함(가로: 8, 세로: 15)이 다른 모든 명함보다 크기가 큽니다. 따라서 지갑의 크기는 3번째 명함의 크기와 같으며, 120(=8 x 15)을 return.

입출력 예#3

명함들을 적절히 회전시켜 겹쳤을 때, 모든 명함을 포함하는 가장 작은 지갑의 크기는 133(=19 x 7)입니다.

8. 제일 작은 수 제거하기

<문제 설명>

정수를 저장한 배열, arr 에서 가장 작은 수를 제거한 배열을 리턴하는 함수, solution을 완성해주세요. 단, 리턴하려는 배열이 빈 배열인 경우엔 배열에 -1을 채워 리턴하세요. 예를들어 arr이 [4,3,2,1]인 경우는 [4,3,2]를 리턴하고, [10]면 [-1]을 리턴 합니다.

<제한 조건>

- arr은 길이 1 이상인 배열입니다.
- 인덱스 i, j에 대해 i ≠ j이면 arr[i] ≠ arr[j] 입니다.

arr	return
[4,3,2,1]	[4,3,2]
[10]	[-1]

9. 같은 숫자는 싫어

<문제 설명>

배열 arr의 각 원소는 숫자 0부터 9까지로 이루어져 있습니다. 이때, 배열 arr에서 연속적으로 나타나는 숫자는 하나만 남기고 전부 제거하려고 합니다. 단, 제거된 후 남은 수들을 반환할 때는 배열 arr의 원소들의 순서를 유지해야 합니다. 예를 들면,

- arr = [1, 1, 3, 3, 0, 1, 1] 이면 [1, 3, 0, 1] 을 return 합니다.
- arr = [4, 4, 4, 3, 3] 이면 [4, 3] 을 return 합니다.

배열 arr에서 연속적으로 나타나는 숫자는 제거하고 남은 수들을 return 하는 solution 함수를 완성해 주세요.

<제한 조건>

- 배열 arr의 크기: 1,000,000 이하의 자연수
- 배열 arr의 원소의 크기:0보다 크거나 같고 9보다 작거나 같은 정수

arr	return
[1,1,3,3,0,1,1]	[1,3,0,1]
[4,4,4,3,3]	[4,3]