

Universidade de Coimbra

Engenharia Informática Teoria da Informação

Trabalho Pratico nr 1

- Entropia
- Redundância
- Informação mútua

Projeto elaborado por:

Cíntia Dalila Luís Cumbane nr 2020244607 Edson Fernando Alage nr 2021244423

Entropia

É definida em termos do conjunto das mensagens que a fonte pode produzir.

Seja uma fonte discreta X com M símbolos diferentes e estatisticamente independentes.

Quando o símbolo de ordem j é transmitido a informação transportada é I_j = $-log_2P_j$ bits.

A informação média associada aos M símbolos da fonte X é a média **ponderada** das autoinformações de cada símbolo. A essa informação média por símbolo da fonte chama-se entropia e designa-se por H(X):

$$\mathbf{H}(\mathbf{X}) = \sum_{j=1}^{M} P_j \, I_j = -\sum_{j=1}^{M} P_j \log_2 \mathbf{P_j} \, \mathrm{bits/simbolo}$$

O que é que significa a **entropia** de uma fonte? Significa que:

Embora não possamos prever qual o símbolo que a fonte irá produzir a seguir, em média esperamos obter H bits de informação por símbolo, ou NH bits numa mensagem de N símbolos, se N for elevado.

Exercícios 1,2 e 3

Tem-se este histograma que corresponde a uma determinada fonte de alfabeto a qual criada por nós , simplesmente para ter uma noção de como é que deve ser feito um histograma de ocorrências .

Tem-se este histograma que corresponde ao ficheiro de texto "lyrics.txt", considerando todas as letras do alfabeto incluindo as minúscula , sem contemplar os carateres especiais, podemos verificar que a letra mais frequente de todas \acute{e} a letra \acute{e} , as duas mais comuns são: \emph{a} , \emph{t} . De tal forma conseguimos notar mais presença do alfabeto minúsculo em relação ao maiúsculo .

Olhando aqui para este histograma é de notar que em (0,255) somente toma dois valores dos quais 0 e 1, contudo não há dúvidas de que é assim que o histograma deve apresentar-se.

Relativamente a este histograma da para perceber que trata-se uma imagem muito mais colorida , de tal forma que o histograma aparece assim

Neste histograma conseguimos ver uma ligeira mistura de cores , mas também conforme se pode ver que a cor cinza é a mais frequente .

E por fim tem-se este histograma o qual podemos verificar uma simetria em relação a ocorrência dos seus símbolos .

Na tabela abaixo seguem-se os valores da entropia(em bits) e a entropia máxima para cada fonte de informação

Ficheiro	Entropia em Bits	Entropia Máxima	Taxa de Compressão
soundMono.wav	0.0003090270151401479	log2 256 = 8	99.9961
MRIbin.bmp	0.11242695838839044	log2 256 = 8	98.5946
landscape.bmp	4.2274462392398387e-05	log2 256 = 8	99.9994
MRI.bmp	0.003900239747200491	log2 256 = 8	99.951
lyrics.txt	0.03939514445381911	log2 52 = 5.7	99.30885

Para os valores da entropia máxima, tem-se: considerando os elementos equiprovaveis, é dada por *log2 N*, onde N é o número de símbolos do alfabeto e: **taxa de compressão** =

 $\frac{\textit{Entropia maxima-Entropia em Bits}}{\textit{Entropia maxima}} \times 100. \ O \ alfabeto \ considerado, \ para \ as \ imagens, \ foi \ (0 \ á \ 255), \ ou \ smelhor \ 256 \ símbolos. \ Para \ o \ ficheiro \ de texto, \ optou-se, \ apenas \ considerar todas \ as \ letras \ do \ alfabeto \ (26 \ maiúsculas \ e \ minúsculas) \ sem \ contar \ com \ carateres \ especiais.$

Estudando cada resultado de entropia obtidos para cada uma das fontes de informação, pode-se constatar que a entropia da imagem *landscape..bmp* é a mais elevada, em relação a entropia das outras imagens Estes resultados vão de acordo com o que nos já havíamos feito, quer pela observação das imagens, quer pela observação dos histogramas correspondentes.

Questão: Será possível comprimir cada uma das fontes de forma não destrutiva? Se sim, qual a compressão máxima que se consegue alcançar? Justifique.

Sim, é possível. deve-se usar um algoritmo de compressão *lossless*, ou seja, sem perdas de informação. Para obter a compreensão sem perdas geralmente são usadas duas estratégias, a codificação de redundância mínima e o método do dicionário. A redundância mínima consiste em representar os símbolos que aparecem com mais frequência utilizando menos bits, um exemplo de algoritmo que utiliza essa tática é a codificação de huffman

Exercício 4

Eis a tabela de valores da entropia e variância pela codificação de Huffman.

Nome do ficheiro:	Entropia em bits:	Variância :
soundMono.wav	0.0747126436781609	16.198404120153334
MRIbin.bmp	0.8285195114685732	0.048726157009380086
landscape.bmp	7.654361824417141e-05	0.09580706504871782
MRI.bmp	0.007516631913414755	18.703009756988813
lyrics.txt	0.0006384880602732729	0.404754577212735

A Codificação de Huffman

A codificação de Huffman é um método de computação que usa as probabilidades de ocorrência dos símbolos no conjunto de dados a ser compactado para determinar códigos de tamanho variável para cada símbolo.

O valor da **variância** do tamanho do código de Huffman exprime a relação entre a probabilidade de ocorrência dos símbolos com o tamanho do seu código: quanto maior o número de símbolos que ocorrem com maior probabilidade, menor o comprimento da cadeia que codifica o símbolo. Conforme vemos a variância é máxima para o ficheiro de som, uma vez que o ficheiro contém um número substancial de símbolos menos frequentes, codificados com um maior comprimento. No extremo oposto, a variância é

mínima para o ficheiro da imagem binária, pois este apenas apresenta dois símbolos apenas.

Questão : Será possível reduzir-se a variância? Se sim, como pode ser feito em que circunstância será útil?

Sim! é possível sim, "os códigos de Huffmana não são únicos"

Redução da variância

Se ao formar um novo conjunto de probabilidades decrescentes houver probabilidades iguais as que resultam de agrupamentos devem ser colocadas o mais alto possível. Desse modo reduz-se a variância V dos comprimentos ni das palavras de código. No entanto o comprimento médio N mantém-se.

A variância mínima tem vantagens:

- o ritmo de produção de bits é mais uniforme (o que é conveniente para o preenchimento de "buffers");
- há uma maior imunidade (resistência) a erros do canal, na descodificação.

Exercício 5

Esta tabela remete-se a entropia pelo agrupamento de símbolos dois a dois

Nome do	Entropia pelo Agrupamento de
ficheiro:	dois símbolos (em bits)
soundMono.wav	3.6521800559086772
MRIbin.bmp	0.4028703654483534
landscape.bmp	6.2040596930972045
MRI.bmp	5.193602970171974
lyrics.txt	3.3109957723669114

Como se pode constatar pela tabela , a entropia dos ficheiros aumenta , reparemos para o seguinte "soundMono.wav, MRI.bmp e lyrics.txt"aumenta quando se consideram agrupamentos binários de símbolos, o que nos levou a pensar nas cadeias de Markov.Houve um ganho ao nível da entropia.

Conclusão

Concluímos que, com este trabalho foi possível aprofundar criar mais exercício e buscar mais conhecimento no que diz respeito ao tema e todo o aprendizado que foi dado nas aulas teóricas, Assim como na proposta desde projeto o que concretiza um excelente desafio . Porém Não conseguimos terminar a ultima questão do projeto.