JUMO GmbH & Co. KG

36035 Fulda, Germany Telefax 49 661 6003–9695 e-mail: JUMO_de@e-mail.com Россия, 000 «Фирма ЮМО»

109147, г. Москва, ул. Марксистская, д. 34, корп. 8 тел. (495) 961–32–44, факс (495) 911–01–86 www.jumo.ru e-mail: jumo@jumo.ru Россия, Северо-западное бюро JUMO 199034, С-Петербург, 13 линия В.О., д. 14 тел. (812) 718-36-30 т./ф (812) 327-46-61, факс (812) 327-19-00

www.jumo.spb.ru e-mail: office@jumo.spb.ru

Типовой лист 70.7040

страница 1/8

JUMO dTRANS T04

Четырехпроводной измерительный преобразователь с настройкой DIP – переключателями /Setup-программой

Для подключения к термометру сопротивления Pt100, Pt1000 или потенциометру;

для монтажа на рейку в щитах управления

Краткое описание

Преобразователи предназначены для промышленного применения и используются для измерения температуры или сопротивления от термометров сопротивления Pt100, Pt1000 или потенциометров по двух– или трехпроводной схеме подключения.

Выходной сигнал 0...20мА, 4...20 мА или 0...10 В линейно зависит от измеряемого сигнала температуры/сопротивления. Непрерывное аналоговое преобразование делает возможным быструю реакцию выходного сигнала на изменение температуры (в отличие от аналого-цифрового преобразование).

В результате на выходе формируется малошумящий помехозащищенный сигнал. Высокая точность, даже на малых диапазонах обеспечивается возможностью изменения коэффициента преобразования.

Структурная схема

Элементы обслуживания

Выбор диапазонов измерения и параметров выхода может осуществляться DIP-перек-лючателями.При использовании PC-Setup программы возможно конфигурирование дополнительных диапазонов и параметров.

dTRANS T04 Typ 707040/...

Особенности

- Выбор диапазона измерения осуществляется DIP—переключателем или при помощи Setup—программы.
- Типы выходного сигнала:0 ... 10В, 0 ... 20мА и 4 ... 20мА;
- Небольшое время реакции благодаря непрерывному (аналоговому) преобразованию.
- Малошумный, помехозащищенный токовый сигнал.
- Гальваническая развязка входа и выхода от питающего напряжения.
- Выходные сигналы: ток, напряжение.

Технические данные

Входы

Измерительный вход	Pt 100 DIN EN 60 751	Pt 1000 DIN EN 60 751	Потенциометр			
Границы диапазонов измерения	−200 +850°C	−200 +850°C	0 11000Ω			
Тип подключения	Двух-, трехпроводная схема					
Конфигурация	с DIP-переключателем или с Setup-программой					
Наименьший интервал измерения	25°C	25°C	250Ω			
Максимальный интервал измерения	1050°C	1050°C	11000Ω			
Начало диапазона измерения для наименьшего интервала	−50°C +20°C	−50°C +20°C	0 500Ω			
Начало диапазона измерения для других интервалов	См. стр.5, 6					
Единица измерения	°C (°F устанавливается Setup-программой)	°C (°F устанавливается Setup-программой)	Ω			
Сопротивление сигнального провода при трехпроводном подключении	≤ 11Ω на кабель					
Сопротивление сигнального провода при двухпроводном подключении	Заводская установка: 0Ω ,настраивается Setup-программой					
Измерительный ток	≤ 0,5mA	≤ 0,1mA	≤ 0,1mA			
Частота измерений	Непрерывное (аналоговое) измерение					

Выходы

Измерительный вход	Pt 100 DIN EN 60 751	Pt 1000 DIN EN 60 751	потенциометр			
Выходной сигнал – ток: – напряжение:	Через DIP-переключатель или Setup-программу Постоянный ток 0 20мА или 4 20мА Постоянное напряжение 0 10В					
Передаточная характеристика – для термометра сопротивления: – у потенциометра:	линейно зависит от температуры линейно зависит от сопротивления					
Точность передаточной характеристики		≤ ± 0,1%¹				
Остаточная пульсация		≤ ± 0,2%¹				
Сопротивление нагрузки (для токового выхода)	≤ 750Ω					
Влияние сопротивления нагрузки	$\leq \pm 0.01\% / 100\Omega^{1}$					
Ограничение тока	> 21,6мА < 28мА (стандартно 24мА)					
Сопротивление нагрузки (для выхода сигнала напряжения)	≥ 10k					
Влияние нагрузки	$\leq \pm 0.1\%^{1}$					
Ограничение напряжения	> 11V < 14V (стандартно 12V)					
Время установки при изменении температуры	≤ 30mc					
Время установки при включении питания или сбросе.	≤ 200mc					
Условия калибровки	AC 230B / 23°C (± 5°C)					
Точность калибровки	$\leq \pm 0.3\%^{12}$ или $\leq \pm 0.3^{\circ}$ C2 $\leq \pm 0.3\%^{12}$ или $\leq \pm 0.3^{\circ}$ C2 $\leq \pm 0.3\%^{1}$					
Влияние напряжения питания	≤ ± 0,05%¹					

 $^{^{\}rm 1}$ данные относятся к конечному значению выходной величины 10В или 20мА $^{\rm 2}$ применимо большее значение

Контроль измерительных цепей по рекомендациям NAMUR NE43

Выход за нижнюю границу диапазона измерений: – токовый выход 4 20мА – токовый выход 0 20мА – выход по напряжению 0 10В	падает до 3,6мА < 0мА (стандартно -0,15мА) < 0В (стандартно -0,6В)
Выход за верхнюю границу диапазона измерений – токовый выход 4 20мА – токовый выход 0 20мА – выход по напряжению 0 10В	повышается до > 21,6мА < 28мА (стандартно 24мА) повышается до > 21,6мА < 28мА (стандартно 24мА) повышается до > 11В < 14В (стандартно 12В)
Короткое замыкание датчика: – токовый выход 4 20мА – токовый выход 0 20мА – выход по напряжению 0 10В	≥ 1,5мА ≤ 3,6мА (стандартно 2мА) < 0мА (стандартно -0,15мА) < 0В (стандартно -0,6В)

Обрыв датчика и кабеля:	Сигнализация конфигурируется.
	Положительная сигнализация: > 21,6mA < 28мA (стандартно 24 мA)
– токовый выход 4 20мА	Отрицательная сигнализация: ≥ 1,5мА ≤ 3,6мА (стандартно 2 мА) Положительная сигнализация: > 21.6мА < 28мА (стандартно 24 мА)
– токовый выход 0 20мА	Отрицательная сигнализация: < 0мА (стандартно -0,15 мА)
– выход по напряжению 0 10B	Положительная сигнализация: > 11В < 14В (стандартно 12 В) Отрицательная сигнализация: < 0В (стандартно -0,6В)

Электрические характеристики

Напряжение питания	AC 110 240В +10/-15%, 48 63Гц		
Потребление мощности	4BA		
Электробезопасность	по DIN EN 61 010, часть 1 категория перенапряжения II, степень загрязнения 2, класс безопасности 1		
Испытательное напряжение	3700B		
Гальваническая развязка	 напряжение питания гальванически развязано от входов и выходов, отсутствует гальваническая развязка между входом, выходом и Setup-штекером. 		

Влияние окружающей среды

Диапазон рабочих температур	−25 +55°C				
Диапазон температур хранения	-40 +90°C				
Влажность при хранении	Относительная влажность ≤ 85% без конденсации				
Влияние температуры	$\leq \pm 0.01\% \ / \ ^{\circ}C^{-1}$				
Климатическая устойчивость	DIN EN 60721-3-3 3K3 Среднегодовая относительная влажность ≤ 85% без конденсации				
Устойчивость к вибрациям	Соответствует GL, характеристике 2				
Электромагнитная совместимость – излучение помех – помехоустойчивость	DIN EN 61 326 класс В Промышленные требования				
IP	IP 20 no DIN EN 60 529				

все данные относятся к конечному значению выходной величины 10В или 20мА

Корпус

Материал	поликарбонат			
Класс воспламеняемости	UL 94 V0			
Размеры (Д х Ш х В)	22,5мм х 93,5мм х 60мм			
Винтовое соединение	2,5мм² поперечное сечение провода / 2,5мм диаметр провода			
Монтаж	Ha DIN-рейку 35мм x 7,5мм по DIN EN 60 715 А.1,для монтажа в щиты управления			
Положение при монтаже	любое			
Bec	около 100гр.			

Setup-программа

Setup-программа применяется для конфигурации и проведения точной настройки измерительного преобразователя с помощью ПК (например для устранения постоянного смещения датчика). Подключение к Setup-интерфейсу прибора осуществляется через интерфейс ПК при помощи TTL/RS232-преобразователя и адаптера. Для конфигуриривани преобразователь должен быть подключен к напряжению питания.

Конфигурируемые параметры

- TAG-номер (14 знаков)
- параметры распознавания обрыва датчика / кабеля
- начало диапазона измерения, конец диапазона измерения
- выходной сигнал 0(4) ... 20мA или 0 ... 10B
- сопротивление кабеля при двухпроводном включении

Точная настройка

Под точной настройкой необходимо понимать коррекцию выходного сигнала конфигурируемого измерительного преобразователя. Систематическая ошибка, обусловленная конструкцией датчика, также может быть скомпенсирована. Сигнал подвергается корректировке в диапазоне от ±0,2мА в случае токового выхода и ±0,1В в случае выхода по напряжению. Точная настройка осуществляется исключительно при помощи Setup-программы.

Требования к аппаратному и программному обеспечению

Для установки и работы Setup-программы должны выполняться следующие требования:

- IBM-PC или совместимый ПК с процессором Pentium или лучше,
- 64 МВ оперативной памяти
- 15МВ свободного места на жестком диске
- CD-ROM-дисковод
- 1 свободный последовательный интерфейс
- Win 98, ME или Win NT4.0, 2000, XP

Конфигурация DIP-переключателями

Диапазон измерений	Диапазон измерений для потенциометра		DIP-переключатели					
для Pt 100 и Pt 1000			2	3	4	5	6	
ΠK-Setup¹	ΠK–Setup¹							
Выход 0 10В	Выход 0 10V							
Выход 0 20мА	Выход 0 20mA							
Выход 4 20мА	Выход 4 20mA							
Диапазон измерений 0 50°C	Диапазон измерений0 500Ω							
Диапазон измерений 0 60°C	Диапазон измерений0 1kΩ							
Диапазон измерений 0 100°C	Диапазон измерений 0 2kΩ							
Диапазон измерений 0 150°C	Диапазон измерений 0 3kΩ							
Диапазон измерений 0 200°С	Диапазон измерений 0 4kΩ							
Диапазон измерений 0 250°C	Диапазон измерений 0 5k Ω							
Диапазон измерений 0 300°С	Диапазон измерений 0 6k Ω							
Диапазон измерений 0 400°С	Диапазон измерений 0 7k Ω							
Диапазон измерений 0 500°С	Диапазон измерений 0 8k Ω							
Диапазон измерений 0 600°С	Диапазон измерений 0 9k Ω							
Диапазон измерений -20 +80°C	Диапазон измерений 0 10kΩ							
Диапазон измерений -30 +60°C	Диапазон измерений 0 11kΩ							
Диапазон измерений -30 +70°C				•				
Диапазон измерений -40 +60°C								
Диапазон измерений -50 +50°C								

¹ конфигурация входов и выходов через Setup-программу осуществляется при помощи ПК.

Организация диапазона измерений (термометр сопротивления)

Все возможные величины значений начала диапазона по отношению к диапазону находятся внутри серой области.

Величина диапазона = конец диапазона измерений - начало диапазона измерений

Пример: начало диапазона измерений = -50° C, конец диапазона измерений = 275° C

величина диапазона = конец диапазона измерений – начало диапазона измерений = 275°C – (-50°C) = 325°C

Внимание: при выборе начала диапазон необходимо убедиться в том, что он находится внутри серой области.

Организация диапазона измерений (потенциометр)

Начало диапазона измерения Ω

Все возможные величины значений начала диапазона по отношению к диапазону находятся внутри серой области.

Величина диапазона = конец диапазона измерений - начало диапазона измерений

Пример: начало диапазона измерений = 100Ω , конец диапазона измерений = 3100Ω

величина диапазона = конец диапазона измерений – начало диапазона измерений = 3100Ω – 100 = 3000Ω

Внимание: при выборе начала диапазон необходимо убедиться в том, что он находится внутри серой области.

Схема подключения

Размеры

Данные для заказа: JUMO dTRANS T04

Четырехпроводной измерительный преобразователь с настройкой через DIP-переключатели/Setup-программу

(1) основное исполнение1

			707040/1	dTRANS T04 для термометра сопротивления Pt100
			707040/2	dTRANS T04 для термометра сопротивления Pt1000
			707040/3	dTRANS T04 для потенциометра
				(2) Вход
х	x	x	888 888	настраивается на производстве ² (трехпроводное подключение, 0 100°C)
x x	x x	x x	888 888 999	настраивается на производстве 2 (трехпроводное подключение, 0 100°C) настраивается на производстве 2 (трехпроводное подключение, 0 1k Ω) конфигурация по запросу клиента (задается в контексте) 3
			888 999	настраивается на производстве ² (трехпроводное подключение, 0 100°C) настраивается на производстве ² (трехпроводное подключение, 0 1kΩ) конфигурация по запросу клиента (задается в контексте) ³ (3) Выход
x	x	х	888	настраивается на производстве 2 (трехпроводное подключение, 0 100°C) настраивается на производстве 2 (трехпроводное подключение, 0 1k Ω) конфигурация по запросу клиента (задается в контексте) 3
x x	x	x x	888 999 888	настраивается на производстве ² (трехпроводное подключение, 0 100°C) настраивается на производстве ² (трехпроводное подключение, 0 1kΩ) конфигурация по запросу клиента (задается в контексте) ³ (3) Выход настраивается на производстве (0 20мА)
x x	x	x x	888 999 888	настраивается на производстве ² (трехпроводное подключение, 0 100°C) настраивается на производстве ² (трехпроводное подключение, 0 1kΩ) конфигурация по запросу клиента (задается в контексте) ³ (3) Выход настраивается на производстве (0 20мА) настраивается по запросу клиента (задается в контексте) ³

	(1)		(2)		(3)		(4)
Код заказа		_		_		_	
Пример заказа	707040/1	_	888	_	888	_	23

¹ Переключение между типами датчиков невозможно.

Серийные принадлежности

- Инструкция

Дополнительные принадлежности

- Setup-программа, на нескольких языках
- интерфейсный кабель с TTL/RS232-преобразователем и адаптером

 $^{^{2}}$ Другие диапазоны выбираются через DIP-переключатель или Setup-программу (см. стр. 4).

³ Просьба проверить, возможна ли настройка выбранного диапазона измерения и выхода через DIP-переключатель. Если да, то «заводская настройка» возможна.