4) Représentation graphique de la courbe $\mathcal C$:

5) Soient a, b et c trois réels et la fonction F définie sur \mathbb{R} par $F(x) = (ax^2 + bx + c)e^x$.

5.a)
$$F(x) = uv$$
 avec $u = ax^2 + bx + c$ et $v = e^x$. Alors $u' = 2ax + b$, $v' = e^x$ et : $F'(x) = u'v + uv' = \left[ax^2 + (2a + b)x + (b + c)\right]e^x$.

5.b)
$$F'(x) = f'(x)$$
 implique $a = -1$, $2a + b = 0$ et $b + c = 1$.

Ce qui donne : a = -1, b = 2 et c = -1.

Alors
$$F(x) = (-x^2 + 2x - 1)e^x$$
.

6) De ce qui précède on conclut que F(x) est une primitive de f(x).

Alors,
$$\mathcal{A} = \int_{0}^{1} f(x) dx = F(1) - F(0) = 1$$
.

7) Graphiquement, \mathcal{A} est l'aire comprise entre la courbe \mathcal{C} , l'axe des abscisses et l'axe des ordonnées (délimitée en rouge sur la figure ci-dessus).