Cálculo Integral - Actividad 8

Resolver los siguientes ejercicios de forma analítica y comprobar los resultados con Python.

Método de Newton

Supongamos que deseamos aproximar la solución de f(x) = 0 y también supongamos que tenemos una aproximación inicial a esta solución, es decir x_0 . Esta aproximación inicial no es buena probablemente, de hecho podría ser una corazonada rápida, por lo que es mejor encontrar una mejor aproximación.

- 1. Reescribir la función en la forma f(x) = 0.
- 2. Establecer una estimación de x_0 como una corazonada inicial (puede intentar graficar la función para obtener un estimado de x_0). Calcular también f'(x).
- 3. Si x_n es una aproximación de una solución de f(x)=0 y si $f'(x_n)\neq 0$, la siguiente aproximación es dada por:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- 4. Si x_{n+1} y x_n estan muy cerca en un cierto número de decimales, entonces x_{n+1} es la mejor aproximación de la raíz de la función f(x).
- 5. En caso contrario, Se regresa al paso 3, y se recalcula x_{n+1} .

Use el método de Newton para aproximar la raíz de las siguientes funciones.

1. (20 puntos) $\cos x = x$ cuya solución se encuentra en el intervalo [0,2]

n	x_n	$f(x_n)$	$f'(x_n)$	x_{n+1}
0	1.000000000			
1				
2				
3	0.739085133	-0.000000000	-1.673612029	0.739085133

2. (20 puntos) $f(x) = x^3 - 7x^2 + 8x - 3$ si $x_0 = 5$

n	x_n	$f(x_n)$	$f'(x_n)$	x_{n+1}
0	5.000000000	-13.000000000	13.000000000	6.000000000
1				
2				
3				
4				
5				

3. (20 puntos) $f(x) = x \cos(x) - x^2 \text{ si } x_0 = 1$

n	x_n	$f(x_n)$	$f'(x_n)$	x_{n+1}
0				
1				
2	0.744094398	-0.006245054	-1.256466702	0.739124068
3				
4				
5		0.000000000		

4. (20 puntos) $f(x) = x^4 - 5x^3 + 9x + 3$ cuya solución se encuentra en el intervalo [4,6].

n	x_n	$f(x_n)$	$f'(x_n)$	x_{n+1}
0				
1				
2				
3				
4				

5. (20 puntos) $f(x) = 2x^2 + 5 - \mathbf{e}^x$ cuya solución se encuentra en el intervalo [3, 4].

n	x_n	$f(x_n)$	$f'(x_n)$	x_{n+1}
0	3.5			
1				
2				
3				
4		-0.000000000		