Année scolaire 2024/2025

Prof:

Exercice 1 Le champ magnétique créée par des aimants droits

On dispose de deux barreaux aimantés (A) et (B). L'intensité du champ magnétique créée en un point M par l'aimant (A) est

 $B_A = 30 \text{mT}$ et celle créée par l'aimant (B) est $B_B = 25 \text{mT}$

- En utilisant l'échelle $1cm \rightarrow 10mT$, représenter les vecteurs du champ magnétique $\overrightarrow{B}_1(M)$, $\overrightarrow{B}_2(M)$ et le vecteur du champ magnétique résultant et $\overrightarrow{B}(M)$
- Déduire l'intensité du champ magnétique en M.
- **3** Dessiner une aiguille aimantée au point *M* .
- ullet En se basant sur une méthode analytique retrouver l'intensité du champ magnétique au point M.
- 6 On tourne l'aimant (B) jusqu'à ce que l'angle entre les deux aimants, devient : $\alpha = 30^{\circ}$
 - a Dessiner le schéma montrant les deux aimants, une aiguille aimantée au point M ainsi que le vecteur du champ magnétique créé au point M
 - **b** Montrer que l'intensité du champ magnétique créé par les deux aimants au point **M** est :

$$B = \sqrt{B_A^2 + B_B^2 + 2B_A \cdot B_B \cos(\alpha)}$$
. Calculer sa valeur.

Exercice 2 Étude du champ magnétique créé par un courant électrique

On place une aiguille aimantée en un point M à l'intérieur d'un solénoïde relié à un circuit électrique. La direction du solénoïde est normale au plan méridien terrestre

- 1 Lorsque le circuit électrique est ouvert, le vecteur du champ magnétique $\overrightarrow{B}(M)$ s'orioente selon le méridien magnétique terrestre (voir la figure \bigcirc)
 - a Déterminer les caractéristiques du vecteur du champ magnétique au point M
 - b Représenter sur la figure $\mathbf{0}$, le vecteur du champ magnétique $\mathbf{B}(M)$
- ② On ferme le circuit électrique est on constate que le vecteur du champ magnétique $\vec{B}(M)$ forme un angle $\alpha = 23^{\circ}$ avec la direction du solénoïde voir la figure ②.
 - a Calculer l'intensité du champ magnétique créé au point M
 - b Calculer l'intensité du champ magnétique créé par le solénoïde au point M
 - c Calculer l'intensité du courant traversant le circuit et indique son sens sur la figure **Q** .
 - La longueur du solénoïde L = 40cm
 - Données
- Le nombre de spire du solénoïde : N = 1000
 La perméabilité du vide μ₀ = 4π × 10⁻⁷(SI)
- La composante horizontale du champ magnétique terrestre $B_H = 5 \times 10^{-5} T$

Exercice 3 Dosage acido-basique

Pour déterminer la concentration C_A d'une solution aqueuse (S_A) de l'acide éthanoïque CH_3COOH , on titre un volume $V_A = 10mL$ de la solution (S_A) par une solution aqueuse (S_B) de hydroxyde de sodium $(Na_{(aq)}^+ + HO_{(aq)}^-)$ de concentration $C_B = 2 \times 10^{-2} mol. L^{-1}$

Le volume de la solution titrante ajouter à l'équivalence est : $V_E = 25mL$

Les couples mis en jeu sont : CH_3COOH/CH_3COO^- et H_2O/HO^-

- 🚺 Citer deux caractéristiques de la réaction du dosage ?
- 🧿 Quelle est la différence entre le dosage conductimétrique, et le dosage colorimétrique ?
- 3 Faire un schéma légendé du montage du dosage.
- 4 Ecrire l'équation de la réaction du dosage .
- 5 Construire le tableau d'avancement associé à la réaction du dosage à l'état d'équivalence .
- **6** Déterminer la concentration C_A de la solution (S_A)
- 7 Pour un volume du titrant versé $V_B = \frac{3}{5}V_E$:
 - a Déterminer le réactif limitant.
 - **b** Construite le tableau d'avancement
 - c Montrer que $n_f(CH_3COOH) = \frac{2}{5}C_AV_A$
 - d Déduire la composition du système dans ce cas.

