Basics of genomics & quality control: II

1st EvoGenomics Methods Workshop

Anne Chambers (eachambers@berkeley.edu)

There are several key data visualizations that can help us troubleshoot or identify potential "red flags" in our data before moving forward with analyses

Distribution of basic summary statistics

There are several key data visualizations that can help us troubleshoot or identify potential "red flags" in our data before moving forward with analyses

Distribution of basic summary statistics

PCA for dimensional reduction

What types of things might correspond to different PCA groupings?

There are several key data visualizations that can help us troubleshoot or identify potential "red flags" in our data before moving forward with analyses

Distribution of basic summary statistics

PCA for dimensional reduction

What types of things might correspond to different PCA groupings?

- Libraries
- Samples with very high amounts of missing data
- Might have real biological significance: population structure, presence of inversions, etc.

There are several key data visualizations that can help us troubleshoot or identify potential "red flags" in our data before moving forward with analyses

Distribution of basic summary statistics

PCA for dimensional reduction

Basic **clustering** or population structure analyses

https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning

Admixture

admixture is similar to STRUCTURE, fastSTRUCTURE, etc.

Model-based clustering method, agnostic to sampling

User-specified number of clusters (K), method will cluster samples accordingly

Admixture

admixture is similar to STRUCTURE, fastSTRUCTURE, etc.

Model-based clustering method, agnostic to sampling

User-specified number of clusters (K), method will cluster samples accordingly

admixture file.bed 5

Figure from Kardos et al. (2023) https://doi.org/10.1038/s41559-023-01995-0

Other good QC visualizations that can be used

Relatedness plot

 $\verb|plink2 --vcf file.vcf --out outfile_name --make-king-square|\\$

https://www.cog-genomics.org/plink/2.0/distance

Neighbor-joining tree

EXERCISE 2: data visualization for quality control

Download the worksheet here:

https://github.com/eachambers/EvoGeno-Methods-Workshop/blob/main/Workshop1/Exercises/EvoGenomics Ws1 Ex2.txt

Download the R script here:

https://github.com/eachambers/EvoGeno-Methods-Workshop/blob/main/Workshop1/Exercises/Workshop1_

Exercise2.R

Genetic distance matrix (plink)

plink --vcf file.vcf --out prefix_name --distance square

- Genetic distance matrix (plink)
- Runs of homozygosity (bcftools or plink)

bcftools roh --threads 10 -G30 --AF-dflt 0.4 -0 z -o output.roh file.vcf

- Genetic distance matrix (plink)
- Runs of homozygosity (bcftools or plink)

bcftools roh --threads 10 -G30 --AF-dflt 0.4 -0 z -o output.roh file.vcf

- Genetic distance matrix (plink)
- Runs of homozygosity (bcftools or plink)

bcftools roh --threads 10 -G30 --AF-dflt 0.4 -0 z -o output.roh file.vcf

- Genetic distance matrix (plink)
- Runs of homozygosity (bcftools or plink)
- Imputation of missing genotypes