

Aufgabe 4.1:

- a) Drei Widerstände mit R_1 = 500 Ω , R_2 = 2000 Ω und R_3 = 10 Ω werden in Reihe geschaltet. Skizzieren Sie die Schaltung und berechnen Sie den Gesamtwiderstand R_{Reihe} .
- b) Die gleichen Widerstände (s. Aufgabe a)) werden parallel geschaltet. Skizzieren Sie wiederum die Schaltung und berechnen Sie den Gesamtwiderstand R_{Parallel}.
- c) Kirchhoff'sche Regeln: Stellen Sie für das in der nebenstehenden Abbildung gezeigte Netzwerk die Gleichungen für die beiden Maschen M₁ und M₂ und die Knoten K₁ und K₂ auf.

Aufgabe 4.2:

Zwei Widerstände R₁ und R₂ werden a) in Reihe geschaltet, bzw. b) parallel geschaltet.

- a) Wie groß wird der Ersatzwiderstand für jede Schaltungsart, wenn $R_1 = 100 \Omega$ und $R_2 = 1 \Omega$?
- b) Wie groß wird in beiden Fällen der Ersatzwiderstand, wenn $R_1 = R_2 = 50 \Omega$ ist?

Hinweis: Skizzieren Sie die Schaltung jeweils!

Aufgabe 4.3:

Gegeben sei folgende Schaltung:

- a) Berechnen Sie den Gesamtwiderstand der skizzierten Schaltung.
- b) Berechnen Sie Spannung und Strom an jedem Widerstand, wenn zwischen den Klemmen eine Spannung $U_{\text{Ges}} = 12V$ anliegt.

Aufgabe 4.4:

Wieviel Strom fließt durch den Widerstand R₃ der skizzierten Schaltung? Begründen Sie ihre Antwort!

