Machine Learning, 2024 Spring Assignment 5

Notice

Plagiarizer will get 0 points.

LATEX is highly recommended. Otherwise you should write as legibly as possible.

Problem 1

(15 points) Which of the following are possible growth functions $m_{\mathcal{H}}(N)$ for some hypothesis set:

$$1 + N; 1 + N + \tfrac{N(N-1)}{2}; 2^N; 2^{\lfloor \sqrt{N} \rfloor}; 2^{\lfloor N/2 \rfloor}; 1 + N + \tfrac{N(N-1)(N-2)}{6}.$$

Solution:

It is known that $m_{\mathcal{H}}(N)$ is either equal to 2^N or has a polynomial upper bound. Therefore, all the functions except $2^{\lfloor \sqrt{N} \rfloor}, 2^{\lfloor N/2 \rfloor}$ are possible growth functions $m_{\mathcal{H}}(N)$.

Problem 2

(15 points)For an \mathcal{H} with $d_{vc}=10$, what sample size do you need (as prescribed by the generalization bound) to have a 95% confidence that your generalization error is at most 0.05?

Solution:

From
$$E_{\mathrm{out}}\left(g\right) \leq E_{\mathrm{in}}\left(g\right) + \sqrt{\frac{8}{N}\ln\left(\frac{4\left((2N)^{d_{\mathrm{vc}}}+1\right)}{\delta}\right)}$$
, we can get that

$$\sqrt{\frac{8}{N}\ln\left(\frac{4\left(\left(2N\right)^{d_{\text{vc}}}+1\right)}{\delta}\right)} \le 0.05$$

By solving the inequality, we can get the smallest N=452957.

Problem 3

(15 points)Let $\mathcal{H} = \{h_1, h_2, \dots, h_M\}$ with some finite M. Prove that $d_{vc}(\mathcal{H}) \leq \log_2 M$.

Solution:

Since there are M hypotheses, a total of M scenarios can be distinguished. $d_{\rm vc}(\mathcal{H})$ means that for $n=d_{\rm vc}(\mathcal{H})$ sets of data, these M hypotheses can distinguish all $2^{d_{\rm vc}(\mathcal{H})}$ cases, and at most M cases in total, thus

$$2^{d_{\text{vc}}(\mathcal{H})} \le M$$
$$d_{\text{vc}}(\mathcal{H}) \le \log_2 M$$

Problem 4

(15 points)Let $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_K$ be K hypothesis sets with finite VC dimension d_{vc} . Let $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2 \cup \dots \cup \mathcal{H}_K$ be the union of these models. Show that $d_{vc}(\mathcal{H}) < K(d_{vc}+1)$.

Solution:

Machine Learning (2024 Spring), ShanghaiTech.

First, we prove a conclusion

$$d_{\text{vc}}\left(\bigcup_{k=1}^{K} \mathcal{H}_{k}\right) \leq K - 1 + \sum_{k=1}^{K} d_{\text{vc}}\left(\mathcal{H}_{k}\right)$$

We prove this conclusion by mathematical induction.

Proof: when K = 2, we can get that

$$d_{\text{vc}}\left(\bigcup_{k=1}^{2} \mathcal{H}_{k}\right) \leq 1 + \sum_{k=1}^{2} d_{\text{vc}}\left(\mathcal{H}_{k}\right)$$

Suppose that

$$d_{\text{vc}}\left(\bigcup_{k=1}^{2} \mathcal{H}_{k}\right) \ge 2 + \sum_{k=1}^{2} d_{\text{vc}}\left(\mathcal{H}_{k}\right)$$

then

$$m_{\mathcal{H}_1 \bigcup \mathcal{H}_2} (d_1 + d_2 + 2) \ge 2^{d_1 + d_2 + 2}$$

However,

$$m_{\mathcal{H}_1 \bigcup \mathcal{H}_2} (d_1 + d_2 + 2) \le m_{\mathcal{H}_1} (d_1 + d_2 + 2) + m_{\mathcal{H}_2} (d_1 + d_2 + 2)$$

$$\le \sum_{i=0}^{d_1} {d_1 + d_2 + 2 \choose i} + \sum_{i=0}^{d_2} {d_1 + d_2 + 2 \choose i}$$

$$= 2^{d_1 + d_2 + 2} - {d_1 + d_2 + 2 \choose d_1 + 1} < 2^{d_1 + d_2 + 2}$$

Therefore, $d_{\text{vc}}\left(\bigcup_{k=1}^{2}\mathcal{H}_{k}\right)\leq1+\sum_{k=1}^{2}d_{\text{vc}}\left(\mathcal{H}_{k}\right)$. Suppose that when K=n, the conclusion is valid, then for K=n+1

$$d_{\text{vc}}\left(\bigcup_{k=1}^{n+1} \mathcal{H}_{k}\right) = d_{\text{vc}}\left(\left(\bigcup_{k=1}^{n} \mathcal{H}_{k}\right) \bigcup \mathcal{H}_{n+1}\right)$$

$$\leq 1 + d_{\text{vc}}\left(\bigcup_{k=1}^{n} \mathcal{H}_{k}\right) + d_{\text{vc}}\left(\mathcal{H}_{n+1}\right)$$

$$\leq 1 + n - 1 + \sum_{k=1}^{n} d_{\text{vc}}\left(\mathcal{H}_{k}\right) + d_{\text{vc}}\left(\mathcal{H}_{n+1}\right)$$

$$= n + \sum_{k=1}^{n+1} d_{\text{vc}}\left(\mathcal{H}_{k}\right)$$

Therefore, for K = n + 1, the conclusion is still valid.

As
$$\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2 \cup \cdots \cup \mathcal{H}_K$$
, $d_{vc}(\mathcal{H}_k) = d_{vc} \,\forall \, k = 1, 2, ..., K$, we can get that
$$d_{vc}(\mathcal{H}) < K - 1 + K d_{vc} < K \, (d_{vc} + 1)$$

Problem 5

(40 points)In this part, you need to complete some mathematical proofs about VC dimension. Suppose the hypothesis set

$$\mathcal{H} = \{ f(x, \alpha) = \operatorname{sign}(\sin(\alpha x)) \mid, \alpha \in \mathbb{R} \}$$

where x and f are feature and label, respectively.

• Show that \mathcal{H} cannot shatter the points $x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4$.

(Key: Mathematically, you need to show that there exists y_1, y_2, y_3, y_4 , for any $\alpha \in \mathbb{R}$, $f(x_i) \neq y_i, i = 1, 2, 3, 4$, for example +1, +1, -1, +1)

• Show that the VC dimension of \mathcal{H} is ∞ . (Note the difference between it and the first question)

(Key: Mathematically, you have to prove that for any label sets $y_1, \dots, y_m, m \in \mathbb{N}$, there exists $\alpha \in \mathbb{R}$ and $x_i, i = 1, 2, \dots, m$ such that $f(x; \alpha)$ can generate this set of labels. Consider the points $x_i = 10^{-i} \dots$)

Solution:

- 1) Shattering means that for any possible labeling of the points, there exists a parameter α such that $f(x,\alpha)=\mathrm{sign}(\sin(\alpha x))$ can produce those labels. Consider the labeling $y_1=+1,y_2=+1,y_3=-1,y_4=+1$ for $x_1=1,x_2=2,x_3=3,x_4=4$. The sine function, $\sin(\alpha x)$ is is periodic with a period of 2π . This means that it repeats its values every 2π units. For the chosen labeling, the sign of $\sin(\alpha x)$ must change between x_2 and x_3 , and then again between x_3 and x_4 . Given the periodic nature of the sine function and the distances between the points, its impossible to choose an α that will result in the sine function having the required sign changes between these specific points. The sine function would need to complete more than half a period between x_2 and x_3 and less than half a period between x_3 and x_4 , which is contradictory given the uniform spacing of the points. Therefore, it is impossible to find an α that allows $\mathcal H$ to shatter points $x_1=1,x_2=2,x_3=3,x_4=4$ with the labeling $x_1=1,x_2=1$.
- 2) Consider the labeled data set $(2\pi 10^{-i}, y_i)_{i=1}^n$ and choose, for any such data set, the parameter $\alpha = \frac{1}{2} \left(1 + \sum_{i=1}^n \frac{1-y_i}{2} 10^i\right)$. We observe that, for any point $x_j = 2\pi 10^{-j}$ in the considered data set such that $y_j = -1$, the term 10^j appears in the sum. This leads to

$$\alpha x_j = \pi 10^{-j} \left(1 + \sum_{i:y_i = -1} 10^i \right)$$

$$= \pi \left(10^{-j} + 1 + \sum_{i:y_i = -1, i > j} 10^{i-j} + \sum_{i:y_i = -1, i < j} 10^{i-j} \right)$$

For all i > j, the terms 10^{i-j} are positive powers of 10 and thus are even numbers that can be written as $2k_i$ for some $k_i \in \mathbb{N}$. Therefore, we have

$$\sum_{i:y_i=-1,i>j} 10^{i-j} = \sum_{i:y_i=-1,i>j} 2k_i = 2k$$

for some $k \in \mathbb{N}$, which gives

$$\alpha x_j = \pi \left(10^{-j} + 1 + \sum_{i:y_i = -1, i < j} 10^{i-j} \right) + 2k\pi$$

Regarding the remaining sum, we have

$$\sum_{i:y_i=-1,i< j} 10^{i-j} < \sum_{i=1}^{+\infty} 10^{-i} = \sum_{i=0}^{+\infty} 10^{-i} - 1 = \frac{1}{9}$$

Let define $\epsilon=10^{-j}+\sum_{i:y_i=-1,i< j}10^{i-j}$ and rewrite αx_j as $\alpha x_j=\pi(1+\epsilon)+2k\pi$. Since $0<\epsilon<1$, thus $\pi<\pi(1+\epsilon)<2\pi$ and $\sin(\alpha x_j)<0$. Hence, the classifier correctly predicts all negative labels $y_j=-1=\mathrm{sign}\left(\sin\left(\alpha x_j\right)\right)=f(x_j)$.

The same steps can be reproduce with positive labels $y_j = +1$ with the difference that the term 10^j does not appear in the sum defining α . This leads to

$$\alpha x_j = \pi 10^{-j} \left(1 + \sum_{i:y_i = -1, i \neq j} 10^i \right)$$

$$= \pi \left(10^{-j} + \sum_{i:y_i = -1, i > j} 10^{i-j} + \sum_{i:y_i = -1, i < j} 10^{i-j} \right)$$

$$= \pi \epsilon + 2k\pi$$

with $0 < \pi \epsilon < \pi$ and $\sin(\alpha x_i) > 0$.

Thus, all positively labeled points are also correctly classified by f using the particular choice of α . Since the steps above are valid for any labeling of the points, we proved that $\mathcal H$ shatters the set of points. In addition, the proof is valid for any number of points n, which shows that $\mathcal H$ can shatter sets of points of any size and thus has infinite VC-dimension.