What are Block Ciphers

- Block ciphers: crypto work horse
 - o Two algorithms takes n bits as input and a key outputs n bits
 - o 3DES: n = 64 bits, k = 168 bits
 - \circ AES: n = 128 bits, k = 128, 192, 256 bits
 - The longer the key the more secure the cipher
- Built by Iteration
 - o Takes in key
 - Gets expanded to round keys using a round function R(k,m)
 - K = key
 - M = current state of message
- Performance
 - o 3DES 13 mb/sec
 - o AES 109 mb/sec
- Abstractly: PRPs and PRFs
 - Pseudo Random Function (PRF) defined over (k,x,y):
 - F: $K \times X \rightarrow Y$ such that exists "efficient" algorithm to evaluate F(k,x)
 - o Pseudo Random Permutation (PRP) defined over (k,x):
 - E: K x X -> X
 - Such that:
 - Exists "efficient" deterministic algorithm to evaluate E(k,x)
 - The function E(k,) is one-to-one
 - Exists "efficient" inversion algorithm D(k,y)
 - Will output the original input
- Running Example
 - o Functionally, any PRP is also a PRF
 - A PRP is a PRF where X=Y and is efficiently invertible
- Secure PRFs
 - Let F: K x X -> Y be a PRF
 - Funs[X,Y]: The set of all functions from X to Y
 - $S_f = \{F(k, \cdot) \text{ s.t. } k \text{ element } K \} \text{ subset } Funs[X,Y]$
 - o Intuition: a PRF is secure if
 - A random function in Funs[X,Y] is indistinguishable from a random function in S_f
 - S_f size = |K|
 - Funs[X,Y] size = $|Y| ^ |X|$
- An easy application: PRF -> PRG
 - Let F: $K \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a secure PRF
 - Then the following G: $K \rightarrow \{0,1\}$ ^ nt is a secure PRG:
 - G(k) = F(k,0) || F(k,1) || ... || F(k,t)
 - Key property: parallelizable
 - Security from PRF property: F(k,.) indist. from random function f(.)

Data Encryption Standard (DES)

- DES: core idea Feistel Network
 - o Given functions f1, ..., fd: $\{0,1\}^n \rightarrow \{0,1\}^n$
 - o Goal: build invertible function F; $\{0,1\}^2 n \rightarrow \{0,1\}^2 n$
 - o Claims: for all f1, ..., fd: $\{0,1\}^n \rightarrow \{0,1\}^n$
 - Feistel network F: $\{0,1\}^2$ n -> $\{0,1\}^2$ n is invertible
 - Proof: construct inverse
 - R i = L i + 1
 - $L_i = f_i + 1(L_i + 1) \text{ xor } R_i + 1$
- Decryption circuit
 - Inversion is basically the same circuit, with f_1, ..., f_d applied in reverse order
 - General method for building invertible functions (block ciphers) from arbitrary functions
 - Used for many block ciphers ... but no AES
- Thm:
 - o F: K x $\{0,1\}^n$ -> $\{0,1\}^n$ a secure PRF
 - 3-round Feistel F: K³ x {0,1}²n -> {0,1}²n a secore PRP
- DES: 16 round Feistel network
 - \circ F1, ..., f16: $\{0,1\}^32 \rightarrow \{0,1\}^32$, f_i(x) = F(ki,x)
 - Each ki is a round key derived from the key k
 - 64 bit input initial permutation
 - then 16 round Feistel network
 - Final permutation inverse of the initial permutation
 - Final output
- The function F(ki,x)
 - o Takes 32 bits input and maps to 48 bits using expansion box
 - o Takes 48-bit round key
 - Compute xor of expansion and round key
 - o 48 bits are broken into 8 groups of 6 bits
 - The bits go into s boxes
 - The outputs of s boxes map from 6 bits to 4 bits
 - Output is a permutation of the combined s boxes or the combined 32 bits
 - \circ S-box function $\{0,1\}^6 \rightarrow \{0,1\}^4$, implemented as look up table
 - \circ S_i(x) = A_i dot x (mod 2)
- Example: a bad S-box choice
 - o The entire DES cipher would be linear: there is a fixed binary matrix B s.t.
 - \circ DES(k,m) = 64 + (16 * 48)= 832
 - o DES(k,m1) xor DES(k,m2) xor DES(k,m3) = DES(k,m1 xor m2 xor m3)
 - o If the s boxes were completely linear DES would be completely insecure
- Choosing the S-boxes and P-box
 - Choosing the S-boxes and P-box at random would result in an insecure block cipher (key recovery after approximately 2 ^ 34 outputs)
 - o No output bit should be close to a linear function of the input bits
 - o S-boxes are 4-to-1 maps

- Exhaustive Search Attacks
- Exhaustive Search for block cipher key
 - Goal: given a few input output pairs (mi, ci = E(k,mi)) I = 1, ..., 3 find key k
 - Find the key that does the mapping (m1 m2 m3) ->_k (c1 c2 c3)
 - Lemma: Suppose DES is an ideal cipher
 - (2⁵⁶ random invertible functions {0,1}⁶⁴ -> {0,1}⁶⁴)
 - Then there is a m, c there is at most one key k s.t. c = DES(k,m)
 - With prob >= 1 1/256 approximately equal to 99.5%
 - o Proof:
 - Pr[there is k' != k: c = DES(k,m) = DES(k',m)] <= summation of k' over all the keys the probability that [DES(k,m1) = DES(k',m)] <= $1/2^64 * 2^56 = 1/256$
 - This is the probability that the key is not unique
- Exhaustive Search for block cipher key
 - \circ For two DES pairs (m1,c1=DES(k,m1)), (m2,c2 = DES(k,m2))
 - unicity prob approximately equal $1 \frac{1}{2}^71$
 - the mapping from (m1, m2) -> (c1, c2)
 - o For AES-128: given two input/output pairs, unicity prob a= $1 \frac{1}{2}^128$
 - o Two input / output pairs are enough for exhaustive key search
- DES challenge
 - O Msg = "The unknown messages is: XXXX ..."
 - \circ CT = c1 c2 c3 c4
 - o Goal find k element $\{0,1\}^5$ 6 s.t. DES(k,mi) = ci for I = 1,2,3
- Strengthening DES against ex. Search
 - Method 1: Triple DES
 - Let E: K x M -> M be a block cipher
 - Define $3E:K^3 \times M -> M$ as $3E((k_1,k_2,k_3),m) =$
 - E(k1,D(k2,E(k3,m)))
 - o FOR 3DES: KEY-SIZE = 3 * 56 = 168 3 * slower
- Why not double DES?
 - Define $2E((k_1,k_2),m) = E(k_1,E(k_2,m))$
 - Key-len = 112 bits for DES
 - \circ M -> E(k2,) -> E(k1,) -> c
 - o Attack: M = (m1,...,m10), C=(c1,...,c10)
 - Find(k1,k2) s.t. E(k1,E(k2,M)) = C
 - K(k2,m) = D(k,c)
 - Attack
 - Step 1: build table sort on 2nd column
 - Step 2: for all k element {0,1}^56 do: test if D(k,C) is in 2nd column
 - If so then $E(k^{\Lambda}I,M) = D(k,C) => (k^{\Lambda}I,k) = (k^{\Lambda}I,k)$
- Method 2: DESX
 - E: K x M -> M a block cipher
 - o E: $K \times \{0,1\}^n \rightarrow \{0,1\}^n$ a block cipher
 - O Define EX as $EX((k1,k2,k3),m) = k1 \times E(k2,m \times k3)$
 - o For DESX: key-len = 64 + 56 + 64 = 184 bits

- But easy attack in time 2^64 + 56 = 2^120
- Note if xor only on the outside of the encryption or only on the inside of the encryption the cipher does nothing

· More attacks on block ciphers

- Attacks on the implementation
 - Side channel attacks:
 - Measure time to do enc/dec, measure power for enc/dec
 - Fault attacks
 - Computing errors in the last round expose the secret key k
- Linear and differential attacks
 - Given many inputs / outputs pairs, can recover key in time less than 2 ^
 56
 - Linear cryptanalysis (overview): let c = DES(k,m)
 - Suppose for random k,m:
 - Pr[m[i1]xor...xorm[ir] xor c[jj]xor...xorc[jv] = k[l1]xor..xork[lu]] =
 ½ + epsilon
 - o For some epsilon. For DES, this exists with epsilon = $\frac{1}{2}^2$
- Linear attacks
 - Relationship Thm: given 1/epsilon ^ 2 random (m, c=DES(k,m)) pairs then k[l1,...,lu] = MAJ[m[i1,...,ir] xor c[ji,...,jv]] = ½ + epsilon with prob. >= 97.7%
 - For DES, epsilon = ½^21 = with 2^42 input/output pairs can find k[11,...,lu] in time 2^42
 - o Roughly speaking: can find 14 key "bits" this way in time 2^42
 - o Brute force remaining 56-14=42 bits in time 2^42
 - Total attack time approximately equal 2^43 with 2^42 random input/output pairs
- Lesson
 - A tiny bit of linearly in S_5 lead to a 2^42 attack
 - Don't design ciphers yourself
- Quantum attacks
 - o Generic search problem
 - Let f: X -> {0,1} be a function
 - Goal: find x element of X s.t. f(x) = 1
 - \circ Classical computer: best generic algorithm time = O(|X|)
 - o Quantum computer: time = $O(|X|^{1/2})$
 - o Can quantum algorithms be built: unknown
- Quantum exhaustive search
 - \circ Given m, c = E(k,m) define
 - F(k) = 1 if E(k,m) = c
 - 0 otherwise
 - k is element of K
 - o Grover -> quantum computer can find k in time $O(|k|^{(1/2)})$
 - Quantum computer => 256-bits key ciphers (e.g. AES-256)
 - Secure

- The AES process
 - o Key sizes 128, 192, 256 bits
 - o Block size: 128 bits
- AES is a Subs-Perm network (not Feistel)
 - All the bits are changed in each round
 - Xor the current state with the round key
 - o Blocks of state are replaced with other blocks
 - o Permutation state bits are permuted and shuffled around
 - Repeat and then output
 - The whole process needs to be invertible
- AES 128 schematic
 - Operates on a 128 bit block which is 16 bytes, we write this as a 4 by 4 matrix
 - Xor with the first round key
 - o byteSub, shiftRow, and MixColumn
 - o repeat this process 10 times the last round however
 - byteSub
 - ShiftRow
 - o Round keys themselves come from a 16 byte key
 - Key expansion: 16 bytes -> 176 bytes
 - 11 keys each being 16 bytes
- The round function
 - o ByteSub: a 1 byte S-box. 256 byte table (easily computable)
 - For all I,j A[I,j] <- S[A[I,j]]
 - The lookup table is A containing a 4 by 4 byte matrix
 - ShiftRows
 - Cyclic shift of the rows in the matrix
 - MixColumns
 - Performs a linear transformation to the columns
 - Applied independently to each one of the columns
- Javascript AES
 - AES in the browser
 - The code that is sent to the browser has no pre-computed tables
 - Thus has fairly small code
 - Once the code lands on the browser the pre-computation of the tables is done
 - Once have the pre-computed tables encrypt
 - AES in hardware
 - AES instructions in intel Westmere:
 - Aesenc, aesenclast: do one round of AES 128-bit registers: xmm1=state, xmm2=round key
 - Aesenc xmm1, smm2; puts result in xmm1
 - Aeskeygenassist: performs AES key expansion
 - Claim 14 x speed-up over OpenSSL on same hardware
- Attacks

- o Best key recovery attack:
 - For times better than ex.search
 - 128-bit key => 126 bit key
- o Related key attack on AES-256
 - Given 2^99 input/output pairs from four related keys in AES-256 can recover keys in time approximately equal to 2^99
- Block ciphers
- Can we build a PRF from a PRG
 - Let G: K -> K^2 be a secure PRG
 - Define 1-bit PRF F: $K \times \{0,1\} \to K$ as F(k,x) = G(k)[x]
 - o Theorem: If G is a secure PRG then F is a secure PRF
 - o Can we build a PRF with larger domain?
- Extending PRG
 - o Let G: $k => k^2$
 - o Define G1:K->K^4 as G1(k) = G(G(k)[0]) || G(G(k)[1])
 - o Output of the PRG is indistinguishable from two random values in k
 - The function G takes in the input k and creates two outputs using the generator twice we obtain the 4 output as desired.
 - We get a 2-bit PRF:
 - $F(k, x \text{ element } \{0,1\}^2) = G_1(k)[x]$
- G_1 is a secure PRG
 - What we want to argue is that this distribution is indistinguishable from random four tuple in K⁴
 - We know that the generator is secure so the output of the first level is indistinguishable from random.
 - o Replace the first level by truly random strings
 - Output of the PRG is indistinguishable from random
 - So we replace the output with random
 - o Replace the pseudo outputs with truly random outputs
 - o Get the distribution that we want from replacing by truly random.
- Extending more
 - Gradually change the outputs in truly random outputs then can extend into a multiple of 2
 - We get a 3-bit PRF
 - F(k,101)
- Extending even more: the GGM PRF
 - o Let G: K -> K ^ 2 define PRF F: K x $\{0,1\}$ ^ n -> K as for input x = x0 x1 .. xn-1 element of $\{0,1\}$ ^n do:
 - Security: G a secure PRG => F is a secure PRF on {0,1}^n
 - Not used in practice due to slow performance
- Secure block cipher from a PRG?
 - Can we build a secure PRP from a secure PRG
 - Yes

- Using block ciphers: Crypto work horse
 - Canonical examples:
- Abstractly: PRPs and PRFs
 - o Pseudo random Function (PRF) defined over (K,X,Y)
 - F: K x X -> Y
 - Such that exists "efficient" algorithm to evaluate F(k,x)
 - Pseudo random Permutation (PRP) defined over (K,X):
 - E: K x X -> X such that:
 - 1. Exists "efficient " deterministic algorithm to evaluate E(k,x)
 - 2. The function E(k, .) is one to one
 - 3. Exists "efficient" inversion algorithm D(k,x)
- Secure PRFS
 - Let F: K x X -> Y be a PRF
 - Funs[X,Y]: the set of all functions from X to Y
 - S $f = \{F(k, .)s.t. k element K \}$ subset Funs[X,Y]
 - o Intuition: a PRF is secure if
 - A random function in Funs[X,Y] is indistinguishable from a random function in S f
 - $S_f \leftarrow size |k|$
 - Func[X,Y] \leftarrow size $|Y|^{N}$
- Secure PRF: definition
 - o For b=0,1 define experiment EXP(b) as:
 - Challenger choose a random pusedo random function
 - B = 0: k < -K, f < -F(k, .)
 - $\bullet \quad B = 1: f < -Funs[X,Y]$
 - Advisory outputs b' element {0,1} EXP(b)
 - Def: F is secure PRF if for all efficient A:
 - $Adv_prf[A,F] := |Pr[EXP(0) = 1] Pr[EXP(1) = 1]|$ is "negligible."
- Secure PRP (secure block cipher)
 - Same as the experiment before setup for the Secure PRF except Perms[X]
 - o Def: E is a secure PRP if for all "efficient" A:
 - $Adv_prp[A,E] = |Pr[EXP(0) = 1] Pr[EXP(1) = 1] | is "negligible."$
 - Pseudo random and random indistinguishable
- Example secure PRPs
 - o 3DES, AES
 - \circ AES-128: K x X -> X where K = X = $\{0,1\}^{128}$
 - An example concrete assumption about AES:
 - All 2^80 algs A have Adv_prp[A,AES] < 2^-40

- Consider the 1-bit PRP from the previous question: E(k,x) = x x or k
 - o Is it a secure PRF?
 - Note that Funs[X,X] contains four functions
 - No
 - Simple Attack
 - Attack A:
 - 1) query f(.) at x = 0 and x = 1
 - 2) if f(0) = f(1) output "1", else "0"
 - AdvPRF[A,E] = $[0-1/2] = \frac{1}{2}$
- PRF Switching Lemma
 - o Any secure PRP is also a secure PRF, if |X| is sufficiently large
 - o Lemma: Let E be a PRP over (K,X)
 - Then for any q-query adversary A: (makes at most q queries)
 - $|Adv_PRF[A,E] Adv_PRP[A,E]| < q^2 / 2|X|$
 - o since X is very large this quantity is negligible
 - Suppose |X| is large so that q^2 / 2|X| is "negligible"
 - o Then Adv_prp[A,E] "negligible" => Adv_prf[A,E] "negligible"
- Final Note
 - Suggestion:
 - Don't thing about the inner-workings of AES and 3DES
 - We assume both are secure PRPs and will see how to use them
- Modes of operation: One time key
- Using PRPs and PRFs
 - o Goal: build "secure" encryption from a secure PRP
 - o This segment: **one-time keys**
 - Adversary's power:
 - Adv sees only one ciphertext (one-time key)
 - Adversary's goal:
 - Learn info about PT from CT (semantic security)
- Incorrect use of a PRP
 - Electronic Code Block (ECB)
 - Break message into blocks
 - In case of AES break message into 16 byte blocks
 - Then encrypt each block separately
 - o Problem:
 - If m1=m2 then c1=c2
- Semantic Security (one-time key)
 - Challenger sends
 - o Advisory outputs two messages m0, and m1 |m0| = |m1|
 - o The advisory then gets the encryption of m0 and m1
 - Two different experiments
 - The goal is to say that the advisory cannot distinguish between these two experiments
 - o $Adv_ss[A,OTP] = |Pr[EXP(0)=1] Pr[EXP(1)=1]| should be "neg"$

- ECB is not Semantically Secure
 - ECB is not semantically secure for messages that contain more than one block
 - When the advisory encrypts the message c1=c2 output 0, else output 1
 - \circ Then Adv_ss[A,ECB] = 1
- Secure Construction 1
 - Deterministic counter mode from a PRF F:
 - E_DETCTR(k,m) = message xor function
 - Each block of the message is xor with the function(k,INT)
 - Obtain the cipher
 - Stream cipher built from a PRF (e.g. AES, 3DES)
- Det. Counter-mode security
 - Theorem: For any L > 0, If F is a secure PRF over (K,X,X) then E_detctr is sem. Sec. cipher over (K,X^l,X^l). In particular, for any eff. Adversary A attacking E_detctr there exists a n eff. PRF adversary B s.t.:
 - Adv_ss[A,E_dtctr] = 2 * Adv_prf[B,F]
 - Adv_prf[B,F] is negligible (since F is a secure PRF) Hence, Adv_ss[A,E_detctr] must be negligible
- Security for many-time key
- Semantic Security for many-time key
 - Key used more than once => adv. Sees many CTs with the same key
 - Adversary's power: chosen-plaintext attack (CPA)
 - Can obtain the encryption of arbitrary messages of his choice (conservative modeling of real life)
 - Adversary's goal:
 - Break sematic security
- Semantic Security for many-time key
 - \circ E = (E,D) a cipher defined over (K,M,C). For b=0.1 define EXP(b) as
 - Challenger
 - k <- K
 - Advisory
 - Advisory queries the challenger by submitting two messages m10 and m11 element of M |m10| = |m11|
 - Advisory receives the encryption of one of the two messages
 - Can does this for i=1,...,q
 - Chosen plain text attack
 - If adv. Wants c = E(k,m) it queries with mj0 = mj1 = m
 - Def: E is sem.sec. under CPA if for all 'efficient' A:
 - Adv_cpa [A,E] = |Pr[EXP(0)=1] Pr[EXP(1)=1]| is "negligible"
- Ciphers insecure under CPA
 - O Suppose E(k,m) always outputs same ciphertext for msg m. Then:
 - Attack sends the same message as the query m0, m0 element M
 - Obtains the cipher text for E(k,m0) c0
 - Attacker sends a query m0 and m1 element of M

- Obtains the encryption of either m0 or m1
- The attacker checks if c = c0 then outputs 0 if c = c0
- o So what?
 - An attack can learn that two encrypted files are the same, two encrypted packet's are the same, etc
 - Attacker's advantage is 1 meaning that the system can not be CPA secure
 - Every message is always encrypted to the same cipher text
- If secret key is to be used multiple times => given the same plaintext message twice, encryption must produce different outputs
- Solution 1: randomized encryption
 - o E(k,m) is a randomized algorithm
 - When encrypting a message the message is mapped to a ball and outputs the encryption
 - When the decryption algorithm is running the algorithm will always map back to the original message
 - Encrypting same message twice gives different ciphertexts (w.h.p)
 - W.h.p meaning with high probability
 - Ciphertext must be longer than plaintext
 - Roughly speaking: CT-size = PT-size + "#random bits"
- Randomized encryption
 - Let F; K x R -> M be a secure PRF
 - For m element M define $E(k,m) = [r \leftarrow R_R, output(r,F(k,r) \times r m)]$
 - Is E semantically secure under CPA?
 - Yes, but only if R is large enough so r never repeats (w.h.p)
- Solution 2: nonce-based Encryption
 - o Encryption algorithm takes in three inputs
 - E(k,m,n) = c
 - Decryption algorithm takes the nonce as input along with the cipher and obtains the original message
 - Nonce n: a value that changes from message to message. (k,n) pair never used more than once
 - Method1: nonce is a counter (e.g. packet counter)
 - Used when encryptor keeps state from message to message
 - If decryptor has same state, need not send nonce with CT
 - Method 2: encryptor choose a random nonce, n < N (w.h.p)

- CPA security for nonce-based encryption
 - o System should be secure when nonces are chosen adversarially
 - Advisory
 - Sends the query containing the message and nonce
 - o Challenger
 - Sends the encryption containing the message k and nonce
 - E(k,mib,ni)
 - All nonces {n1,...nq} must be distinct
 - o Def: nonce-based E is sem.ec. under CPA if for all "efficient" A:
 - Adv_cpa[A,E] = |Pr[EXP(0)=1 Pr[EXP(1)=1]| is "negligible"
- Modes of operation: many time key
- Construction 1: CBC with random IV
 - Let(E,D) be a PRP.
 - o E_cbc(k,m) choose random IV element X and do:
 - o IV is one block the message in the case of AES the IV would be 16 bytes
 - o IV xor with m0
 - o The result is then encrypted with the key and output is the cipher text
 - We then use the first block of the cipher as a mask for the next message
 - o M1 is xor with the first cipher block
 - o It is then encrypted
 - o Repeat the process for the entire message
 - o Final cipher text is IV and all the cipher blocks
 - IV = Initialization vector
- Decryption circuit
 - o In symbols: $c[0] = E(k, IV \times m[0]) \Rightarrow m[0] = D(k,c[0]) \times m[0]$
- CBC: CPA Analysis
 - \circ CBC Theorem: For any L > 0
 - If E is a secure PRP over (K,X) then E_cbc is a sem.sec. under CPA over (K,X^l,X^l+1). In particular, for a q-query adversary A attacking E_cbc there exists a PRP adversary B s.t.:
 - Adv_cpa[A,E_cbc] <= 2 * Adv_prp[B,E] + 2 * q^2 * l^2 / |X|
 - \circ Note: CBC is only secure as long as q^2L^2 << |X|
 - L = length of the message
 - Q is the number of cipher texts
 - The number of times we use the key k to encrypt messages
- An example
 - O Adv_cpa[A,E_cbc] <= 2 * Adv_prp[B,E] + 2 * q^2 * l^2 / |X|</p>
 - \circ Q = the number of messages encrypted with k, L = length of the max message
 - o Suppose we want Adv_cpa[A,E_cbc] $\leq 1/(2^32) \leq q^2L^2/|X| \leq 1/(2^32)$
 - AES: $|X| = 2^{(128)} = q L < 2^{(48)}$
 - So, after 2^48 AES blocks, must change key
 - 3DES: $|X| = 2^64 = q L < 2^16$

- Warning: an attack on CBC with rand. IV
 - o CBC where attacker can predict the IV is not CPA-secure
 - Suppose given c <- E_cbc(k,m) can predict IV for next message
 - o Example
 - Advisory sends query 0 element of X
 - Advisory gets back encryption of the one block xor IV
 - C1 <- [IV1,E(k,0xorIV1]
 - Advisory sends message
 - M0 = IV xor IV1, m1! = m0
 - Challenger sends encryption to advisory [IV,E(k,IV1)]
 - What's encrypted is (IV xor IV1) xor IV = IV1
 - If the IV is predictable there is no security
- Construction 1': nonce-based CBC
 - Cipher block chaining with unique nonce: key=(k,k1)
 - Unique nonce means: (key,n) pair is used for only one message
 - Nonce is included if unknown to decryptor text
 - o If nonce is not unique need to perform the extra encryption step
- An example Crypto API (OpenSSL)
 - Void AES_cbc_encrypt();
 - When nonce is non random need to encrypt it before use
- A CBC technicality: padding
 - o If the last block is less then 16 bytes then add padding
 - o TLS: for n>0 n byte pad is n|n|n|...|n
 - Pad removed during decryption
 - o If no pad needed, add a dummy block
 - Adding dummy block of 16 blocks last block check last byte if 16 remove the blocks
- Modes of Operation: Many Time Key (CTR)
- Construction 2: rand ctr-mode
 - o Let F be a secure PRF
 - \circ F:K x $\{0,1\}^n \rightarrow \{0,1\}^n$
 - Method
 - Choose random IV
 - First encryption is IV then IV+1
 - Obtain the cipher text
 - IV chosen at random for every message
 - Note: parallelizable (unlike CBC)
- Construction 2': nonce ctr-mode
 - o To ensure F(k,x) is never used more than once, choose IV as:
 - Have a normal nonce in the left hand side and the counter on the right hand side of IV
 - The counter is incremented for each block
- Rand ctr-mode (rand.IV): CPA analysis
 - Counter-mode Theorem: For any L>0 If F is a secure PRF over (K,X,X) then E ctr is a sem.sec. under CPA over (K,X^L,X^L+1)

- o In particular, for a q-query adversary A attacking E_ctr there exists a PRF adversary B s.t.:
 - Adv_cpa[A,E_ctr] <= 2 * Adv_prf[B,F] + 2 q ^ 2 L / |X|
- Note: ctr mode only secure as long as q^2 L << |X|. Better than CBC!
- An example
 - O Adv_cpa[A,E_ctr] <= 2 * Adv_prf[B,E] + 2 q^2 L / |X|</p>
 - o Q number of messages encrypted with k, L = length of max message
 - o Suppose we want Adv_cpa[A,E_ctr] $\leq 1/(2^32) \leq q^2 L/|X| \leq 1/(2^32)$
- AES: $|X| = 2 ^ 128 = q L ^ 1/2 < 2 ^ 48$
 - So, after 2 ^ 32 CTs each of len 2^32, must change key (total of 2 ^ 64 AES blocks)
- Comparison: ctr vs. CBC

Comparison: ctr vs. CBC

	СВС	ctr mode
uses	PRP	PRF ⇐
parallel processing	No	Yes 🚤
Security of rand. enc.	q^2 L^2 << X	q^2 L << X 🥧
dummy padding block	Yes	No 🥧
1 byte msgs (nonce-based)	16x expansion	no expansion

- Summary
 - o PRPs and PRFs: a useful abstraction of block ciphers
 - We examined two security notions:
 - 1. Semantic security against one-time CPA
 - 2. Semantic security against many-time CPA.
 - Note: neither mode ensures data integrity
 - Stated security results summarized in the following table:

Power	one-time key	Many-time key (CPA)	CPA and integrity
Sem. Sec.	steam-ciphers det. ctr-mode	rand CBC rand ctr-mode	later