Mathematics Bootcamp

Part I: Distributions

Jordan Bryan¹ Brian Cozzi¹ Michael Valancius¹ Graham Tierney¹ Becky Tang¹

¹Department of Statistical Science Duke University

Graduate Orientation, August 2020

Outline

Random Variables

Distribution Functions of Random Variables

Univariate Distributions

Discrete

Continuous

Exponential Families

Transformations of Random Variables

Multivariate Distributions

Random Variables

Random Variables

Definition: A *random variable* is a function from a sample space to an outcome space, e.g. the real numbers, integers, etc.

Suppose we want to perform a survey, run an experiment, do some quantitative study of a population of interest...

Let Ω be the set of all possible outcomes of a study.

Let $\omega \in \Omega$ be a particular outcome unit.

 $Y=Y(\omega)$ is a function of ω and a random variable.

Random Variables - Example

The Experiment: 2 Dice are rolled together

The Sample Space: All pairs of numbers from 1 through 6

The Random Variable: The sum of the numbers

Cumulative Distribution Functions of Random Variables

Definition: The cumulative distribution function (CDF) or a random variable denoted by $F_X(x)$ is defined as:

$$F_X(x) = P_X(X \le x); \quad \forall x$$

A function is a CDF if and only if the following are true:

- ightharpoonup $\lim_{x\to-\infty}F(x)=0$ and $\lim_{x\to\infty}F(x)=1$
- ightharpoonup F(x) is a non-decreasing function of x
- ► F(x) is right continuous i.e. for every number x_0 , $\lim_{x\to x_0^+} F(x) = F(x_0)$

An important implication of CDFs: A random variable X is continuous if $F_X(x)$ is a continuous function of x. A random variable is discrete if $F_X(x)$ is a step function of x.

Cumulative Distribution Functions of Random Variables - Example

If p denotes the probability of getting a head on any toss, and the experiment consists of tossing a coin until a head appears, then we define the random variable X = the number of tosses required until a head. The CDF of this random variable is given as:

$$P(X \le x) = \sum_{i=1}^{x} (1-p)^{i-1}p$$

Density and Mass Functions of Random Variables

Also related to the notion of a random variable is the concept of probability *density* and probability *mass* functions. Specifically, a *probability mass function* (PMF) for a discrete random variable is defined as:

$$f_X(x) = P(X = x); \forall x$$

and the *probability density function* (PDF) for a continuous random variable is defined as a function that satisfies the following relationship:

$$F_X(x) = \int_{-\infty}^x f_X(t) dt; \forall x$$

Univariate Distributions

Discrete Distributions

A random variable X is discrete if the range of X, the sample space, is countable. In most situations, the random variable has integer valued outcomes

Some examples of discrete distributions:

- Binomial Distribution
- Poisson Distribution
- Negative Binomial Distribution
- Geometric Distribution

Binomial Distribution

This distribution counts the the number of successes in n independent trials all with the same fixed probability p of success

$$X \sim \operatorname{Binomial}(n, p)$$

$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}, \quad x \in \{0, 1, \dots, n\}$$

$$\mathbb{E}[X] = np$$

$$\mathbb{V}[X] = np(1-p)$$

Poisson Distribution

This distribution is used for counting the number of events over some time horizon based on an intensity parameter λ

$$X \sim \operatorname{Poisson}(\lambda)$$

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x \in \{0, 1, 2, \ldots\}$$

$$\mathbb{E}[X] = \mathbb{V}[X] = \lambda$$

Negative Binomial Distribution

This distribution counts the the number successful trials k that occur before the rth failed trial, where each trial has fixed probability p of success

$$X \sim \mathrm{NB}(r, p)$$

$$P(X = k) = {k + r - 1 \choose k} p^k (1 - p)^r, \quad k \in \{0, 1, 2, \ldots\}$$

$$\mathbb{E}[X] = \frac{pr}{1 - p}$$

$$\mathbb{V}[X] = \frac{pr}{(1 - p)^2}$$

Is highly related to the Poisson and Gamma Distributions. And be careful about parameterizations!

Geometric Distribution

The Geometric distribution gives the probability that in a series of independent Bernoulli trials, each having probability of success p, we see the first success after k failures.

Here, the Geometric distribution is parameterized in terms of the number X Bernoulli failures the first success. You may also see the distribution parameterized in terms of number of trials.

$$X \sim \mathsf{Geom}(p)$$
 $P(X = k) = (1 - p)^k p, \quad k \in \{0, 1, 2, \ldots\}$
 $\mathbb{E}[X] = \frac{1 - p}{p}$
 $\mathbb{V}[X] = \frac{-p}{p^2}$

Continuous Distributions

A random variable X is *continuous* if the range of X, the sample space, takes on an uncountably infinite number of values. In most instances the random variable has real-valued outcomes.

Some examples of Continuous Distributions

- Normal Distribution
- Chi-Squared Distribution
- Exponential Distribution
- Gamma Distribution
- Inverse-Gamma Distribution
- Student-t Distribution
- F Distribution
- Beta Distribution

Normal Distribution

A random variable $X \sim \text{Normal}(\mu, \sigma^2)$ with PDF:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$

We also sometimes express this in terms of a *precision* parameter, rather than a variance, $X \sim \operatorname{Normal}(\mu, \phi^{-1})$ which becomes useful when performing Bayesian inference. If $Z \sim \operatorname{Normal}(0,1)$ then the distribution of Z is standard normal.

Chi-Squared Distribution

If Z_1, Z_2, \dots, Z_k are independent, standard normal random variables, then

$$\sum_{j=1}^k Z_j^2 \sim \chi_k^2$$

follows a Chi-Squared distribution with k degrees of freedom. This is a special case of the Gamma distribution, discussed on the next slide.

Gamma Distribution

A random variable $X \sim \text{Gamma}(\alpha, \beta)$ with PDF:

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} \exp\{-x\beta\}$$

$$\mathbb{E}[X] = \frac{\alpha}{\beta}$$

$$\mathbb{V}[X] = \frac{\alpha}{\beta^2}$$

$$\alpha, \beta > 0$$

$$x \in (0, \infty)$$

Note: this is the shape-rate parameterization. You may also see the shape-scale parameterization, with scale $\theta = 1/\beta$.

Gamma Distribution - Important Properties

Here are some important tricks that will be useful in 711 and 601

- ▶ if $\alpha = 1$ and then $X \sim \text{Exponential}(\lambda = \beta)$
- if $\alpha = \frac{\nu}{2}$ and $\beta = \frac{1}{2}$ then $X \sim \chi^2_{\nu}$
- if $X \sim \operatorname{Gamma}(\alpha_1, \beta)$ and $Y \sim \operatorname{Gamma}(\alpha_2, \beta)$ then $X + Y \sim \operatorname{Gamma}(\alpha_1 + \alpha_2, \beta)$
- ▶ if $X \sim \operatorname{Gamma}(k, \theta)$, then $\frac{1}{X} \sim \operatorname{Inverse} \operatorname{Gamma}(k, \frac{1}{\theta})$

Student's-t Distribution

A random variable T follows a Student's-t distribution if

$$T = rac{Z}{\sqrt{V/
u}}, \ Z \sim N(0,1), \ V \sim \chi^2_
u$$

and Z and V are independent.

F Distribution

A random variable X follows a F-distribution with numerator degrees of freedom ν_1 and denominator degrees of freedom ν_2 if

$$X = \frac{V_1/\nu_1}{V_2/\nu_2}$$

where V_1 and V_2 are independent chi-squared random variables with degrees of freedom equal to ν_1 and ν_2 respectively.

Beta Distribution

A random variable $X \sim \text{Beta}(\alpha, \beta)$ with PDF:

$$f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

$$\mathbb{E}[X] = \frac{\alpha}{\alpha + \beta}$$

$$\mathbb{V}[X] = \frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$$

$$\alpha, \beta > 0$$

$$x \in (0, 1)$$

Very useful for eliciting probability distributions for proportions.

Cool distributional relationships

Exponential Families

Exponential Families

Random variables belong to the exponential family if their PMFs/PDFs can be expressed in the form:

$$f_X(x|\theta) = h(x)c(\theta) \exp\left\{\sum_{i=1}^k \omega_i(\theta)t_i(x)\right\}$$

Where:

$$h(x) \ge 0$$
 $c(\theta) \ge 0$
 $\omega_1(\theta), \dots, \omega_k(\theta) \in \mathbb{R}$
 $t_1(x), \dots t_k(x) \in \mathbb{R}$

We will show later some of the convenient properties of the exponential family distributions.

Exponential Families - Example

Consider the binomial PMF for a random variable $X \sim \operatorname{Binomial}(n, p)$

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$

This is an exponential family PMF. We can show this by re-expressing terms:

$$P(X = x) = \binom{n}{x} (1 - p)^n \exp\left\{x \log\left(\frac{p}{1 - p}\right)\right\}$$

$$h(x) = \binom{n}{x} \mathbb{I}_{x=0,\dots,n}$$

$$c(p) = (1 - p)^n$$

$$\omega_1(p) = \log\left(\frac{p}{1 - p}\right)$$

$$t_1(x) = x$$

Exponential Families - Exercise

Consider the following normal PDF for $X \sim \operatorname{Normal}(\mu, \sigma^2)$

$$f_X(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$

Show that this is an exponential family PDF

Exponential Families - Exercise Cont.

Consider the following PDF

$$f_X(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$

Expanding the exponential yields the following

$$f_X(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{\mu^2}{2\sigma^2}\} \exp\{-\frac{x^2}{2\sigma^2} + \frac{\mu x}{\sigma^2}\}$$

$$h(x) = 1$$

$$c(\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{\frac{-\mu^2}{\sigma^2}\}; \mu \in \mathbb{R} \ \sigma^2 > 0$$

$$\omega_1(\mu, \sigma) = \frac{1}{\sigma^2} \ \omega_2 = \frac{\mu}{\sigma^2}$$

$$t_1(x) = \frac{-x^2}{2} \ t_2(x) = x$$

Transformations of Random Variables

Transformations of Random Variables using the Change of Variables Formula

Assume that X has a pdf $f_X(x)$ and that Y=g(X) where g is a monotone function. Suppose that $f_X(x)$ is continuous on \mathcal{X} , and that g^{-1} has a continuous derivative on \mathcal{Y} where \mathcal{X}, \mathcal{Y} are such that $\mathcal{X}=\{x:f_X(x)>0\}$ and $\mathcal{Y}=\{y:y=g(x)\}$. Then the pdf of Y is given as follows:

$$f_Y(y) = f_X(g^{-1}(y)) |\frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y)|$$

Transformations of Random Variables - Example

Assume that $X \sim f_X(x) = 1$ i.e. $X \sim \mathrm{Uniform}(0,1)$. Furthermore, $Y = -\log(X)$. What is the PDF of Y?

First note that $g(X) = Y = -\log(X) \rightarrow g^{-1}(Y) = e^{-Y}$. Therefore, using the formulation from earlier:

$$f_Y(y) = 1 \cdot |-e^{-y}| = e^{-y}$$

 $Y \sim \text{Exponential}(\lambda = 1)$

Transformations of Random Variables - Exercise

Assume that $X \sim \text{Normal}(0,1)$. Let $Y = X^2$. What is the distribution of Y?

The PDF of the standard normal distribution is given as follows:

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}$$

Transformations of Random Variables - Exercise Cont.

Consider that $Y=g(X)=X^2\to g^{-1}(Y)=\pm\sqrt{Y}$. Hence, consider that we can partition the support of X into two pieces $S_1=(-\infty,0)$ and $S_2=(0,\infty)$ where the function g(X) is monotone. Note that $\mathcal{Y}=(0,\infty)$. Use the change of variables formulation over the two partitions and sum:

$$f_Y(y) = \frac{1}{\sqrt{2\pi}} \exp\{\frac{-(-\sqrt{Y})^2}{2}\}| - \frac{1}{2\sqrt{y}}| + \frac{1}{\sqrt{2\pi}} \exp\{\frac{-(\sqrt{Y})^2}{2}\}| \frac{1}{2\sqrt{y}}|$$
$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{Y}} \exp\{\frac{-y}{2}\}$$

Hence, we get that $Y \sim \chi^2_{df=1}$

Multivariate Distributions

Random Vectors

If we have d random variables X_1, X_2, \ldots, X_d , each defined on the real line, we can write them as the d dimensional column vector

$$\mathbf{X} = (X_1, \cdots X_d)^T$$

which we call a d-dimensional **random vector**. The joint distribution function of the random vector \mathbf{X} is

$$F_X(\mathbf{x}) = F_X(x_1, \dots, x_d)$$

$$= P(X_1 \le x_1, \dots, X_d \le x_d)$$

$$= P(\mathbf{X} \le \mathbf{x})$$

If F_X is absolutely continuous, then the joint density function f_X of ${\bf X}$ is

$$f_X(\mathbf{x}) = f_X(x_1, \dots, x_d) = \frac{\partial^d F_X(x_1, \dots, x_d)}{\partial x_1 \cdots \partial x_d}$$

Random Vectors

To find the marginal density of a subset of the d variables, you can just integrate the others out. For example, if we have a joint bivariate density $f_{X_1,X_2}(x_1,x_2)$, then

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) dx_2$$
 $f_{X_2}(x_2) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) dx_1$

The components of a random vector \mathbf{X} are **independent** if the joint distribution function is a product of the marginal distribution functions

$$F_X(\mathbf{x}) = \prod_{i=1}^d F_i(x_i)$$

In addition, the joint density is the product of marginals

$$f_X(\mathbf{x}) = \prod_{i=1}^d f_i(x_i)$$

Expectation and Covariance

If **X** is a random vector with values in \mathbb{R}^d , then its expected value is given by the d dimensional vector

$$\mu_X = E(\mathbf{X}) = (E(X_1), \dots, E(X_d)) = (\mu_1, \dots, \mu_d)^T$$

and the $d \times d$ covariance matrix of **X** is

$$\begin{aligned} \mathbf{\Sigma}_{XX} &= \mathsf{cov}(\mathbf{X}, \mathbf{X}) \\ &= E[(\mathbf{X} - \mu_X)(\mathbf{X} - \mu_X)^T] \\ &= E[(X_1 - \mu_1, \cdots, X_d - \mu_d)(X_1 - \mu_1, \cdots, X_d - \mu_d)^T] \\ &= \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{d}^2 \end{pmatrix} \end{aligned}$$

Correlation Matrix

The **correlation matrix** of **X** can be obtained by from Σ_{XX} by dividing the *i*th row by σ_i and the *j*th column by σ_j . The $d \times d$ matrix is then

$$P_{XX} = \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1d} \\ \rho_{21} & 1 & \dots & \rho_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{d1} & \rho_{d2} & \dots & 1 \end{pmatrix}$$

where

$$ho_{ij} =
ho_{ji} = egin{cases} rac{\sigma_{ij}}{\sigma_i \sigma_j} & i
eq j \ 1 & ext{otherwise} \end{cases}$$

is the pairwise correlation coefficient between X_i and X_j . The correlation coefficient will always lie between -1 and 1 and is a measure of association between X_i and X_j .

Linear Functions of Random Vectors

If Y is a linear function of X such that

$$Y = AX + b$$

the mean vector and covariance matrix of \boldsymbol{Y} is given by

$$\mu_Y = \mathbf{A}\mu_X + \mathbf{b}$$
 $\mathbf{\Sigma}_{YY} = \mathbf{A}\mathbf{\Sigma}_{XX}\mathbf{A}^T$

Multivariate Normal Distribution

The form of the multivariate normal looks similar to that of the univariate normal. A random d vector \mathbf{X} follows a multivariate normal distribution with mean vector μ and positive definite symmetric covariance matrix $\mathbf{\Sigma}$ if it has the density function

$$f(\mathbf{x}|\mu, \mathbf{\Sigma}) = (2\pi)^{-d/2} |\mathbf{\Sigma}|^{-1/2} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)}$$

Notation: we denote a d dimensional normal distribution as

$$\mathbf{X} \sim N_d(\mu, \mathbf{\Sigma})$$

Multivariate Normal Distribution

The **Mahalanobis distance** from ${\bf x}$ to μ is given by the quadratic form

$$\Delta = \sqrt{(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

An important result is that a random vector **X** follows a multivariate distribution if and only if every linear function of **X** follows a univariate normal distribution.

In linear models, we often assume that ${\bf \Sigma}=\sigma^2{\bf I_d}$, in which case the density function reduces to

$$f(\mathbf{x}|\mu,\sigma) = (2\pi\sigma)^{-d/2} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T(\mathbf{x}-\mu)}$$