April 10, 2022

Instructor: Vincent J Hilser

- 1. For the above equilibrium between the Acid (Red) and Base (Blue) forms of the molecule, match the statement with the appropriate panel.
- a) Panel 1: pH > pKa; Panel 2: pH = pKa; Panel 3: pH < pKa.
- b) Panel 1: pH < pKa; Panel 2: pH = pKa; Panel 3: pH > pKa.
- c) Panel 1: pH = pKa; Panel 2: pH > pKa; Panel 3: pH < pKa.
- d) Panel 1: pH = pKa; Panel 2: pH < pKa; Panel 3: pH > pKa.
- e) Panel 1: pH > pKa; Panel 2: pH < pKa; Panel 3: pH = pKa.

- 2. If the pKa for this reaction is 8, what is the pH in Panel 2
- a) pH = 10
- b) pH = 9
- c) pH = 8
- d) pH = 7
- e) pH = 6

- 3. For the above equilibrium between the bound (B) and free (F) forms of DNA, match the statement about ΔG (= $G_B G_F$) with the correct panel ?
- a) Panel 1: $\Delta G < 0$; Panel 2: $\Delta G > 0$; Panel 3: $\Delta G = 0$.
- b) Panel 1: $\Delta G > 0$; Panel 2: $\Delta G < 0$; Panel 3: $\Delta G = 0$.
- c) Panel 1: $\Delta G < 0$; Panel 2: $\Delta G = 0$; Panel 3: $\Delta G > 0$.
- d) Panel 1: $\Delta G > 0$; Panel 2: $\Delta G = 0$; Panel 3: $\Delta G < 0$.
- e) Panel 1: $\Delta G = 0$; Panel 2: $\Delta G > 0$; Panel 3: $\Delta G < 0$.

- 4. For the above equilibrium, what expression is true?
- a) $K=e^{-\Delta S/RT}$.
- b) $P_u=K_u/Q$.
- c) $Q = \Sigma K$
- d) $P_u = Q/K_u$
- e) (b) and (c)

5. For the two-state transition above, match the expressions with the corresponding letters in the table.

i) 1
ií) e-∆Gu/RT/Q
iii) 1/Q
iv) 0
v) e-∆Gu/RT
vi) ∆G _u
vii) 1+ e-∆Gu/RT

ΔG	Stat. Wt. Probability		
Α	С	E	
В	D	F	

Q = G

a)	A is (iv);	B is (ii);	C is (i);	D is (vi);	E is (vii),	F is (iii);	G is (v)
b)	A is (i);	B is (v);	C is (iv);	D is (vi);	E is (iii),	F is (ii);	G is (vii)
c)	A is (vi);	B is (iv);	C is (v);	D is (i);	E is (ii),	F is (iii);	G is (iv)
d)	A is (iv);	B is (vi);	C is (i);	D is (v);	E is (iii),	F is (ii);	G is (vii)
e)	A is (v);	B is (ii);	C is (i);	D is (vi);	E is (iii),	F is (vii);	G is (iv)

6. For the above equilibrium between the folded (F) and unfolded (U) forms of the protein where ΔG (= G_U-G_F), match the temperature with the panel that most closely captures the stability ?

- 7. The hypothetical protein above has two states that are in equilibrium, T (Blue) and R (Red). Both T and R bind protons (H+) but the T state binds with higher affinity. At pH 7, ΔG° (G°_{R} - G°_{T}) =0 (Panel 2). What statement best describes the effect of lowering the pH of the solution on the T to R equilibrium?
 - a) R will be stabilized (Panel 3).
 - b) T will be destabilized (Panel 3).
 - c) R will be destabilized (Panel 2).
 - d) T will be stabilized (Panel 1)
 - e) No change

Panel 1

- 8. For the above equilibrium between the bound (ML) and free (M) forms of the molecule, match the statement with the appropriate panel.
- a) Panel 1: [L] < K_d ; Panel 2: [L] > K_d ; Panel 3: [L] = K_d . b) Panel 1: [L] = K_d ; Panel 2: [L] > K_d ; Panel 3: [L] < K_d .
- c) Panel 1: [L] > K_d ; Panel 2: [L] = K_d ; Panel 3: [L] < K_d . d) Panel 1: [L] = K_d ; Panel 2: [L] < K_d ; Panel 3: [L] > K_d .
- e) Panel 1: [L] > K_d ; Panel 2: [L] > K_d ; Panel 3: [L] = K_d .

9. If the K_d = 10⁻⁴ M, what is the concentration of [L] in Panel 3?

- a) [L] = 10^{-7} M
- b) [L] = 10^{-6} M
- c) [L] = 10^{-5} M
- d) [L] = 10^{-4} M
- e) $[L] = 10^{-3} M$

10. For the above case of a protein with three independent binding sites, what is the partition function.

- a) Q = 1 + 3[L]/ K_d + 3[L]²/ K_d ² + [L]³/ K_d ³
- b) $Q = (1 + [L]/K_d)^3$
- c) $Q = Q = 1 + 3[L]/K_d + 3[L]^2/K_d^2 + [L]^3/K_d^3$
- d) (a) and (b)
- e) (b) and (c)

- 11. For the above case of a protein with two binding sites, match the statement about the relationship between K_{d1} and K_{d2} and the curve showing fraction bound as a function of Log[L].
- a) (I) $K_{d2} < K_{d1}$ (II) $K_{d2} > K_{d1}$ (III) $K_{d2} = K_{d1}$
- b) (I) K_{d2} > K_{d1} c) (I) K_{d2} > K_{d1} (II) $K_{d2} < K_{d1}$ (II) $K_{d2} = K_{d1}$ (III) $K_{d2} = K_{d1}$
- (III) $K_{d2} < K_{d1}$
- d) (I) $K_{d2} < K_{d1}$ (II) $K_{d2} > K_{d1}$ e) (I) $K_{d2} < K_{d1}$ (II) $K_{d2} = K_{d1}$ (III) $K_{d2} = K_{d1}$ (III) $K_{d2} > K_{d1}$
- 1.0 ⊕ (= Fraction Bound) 0.8 0.6 (III) 0.4 0.2

- 12. Which statement(s) about the cooperativity of the processes is true.
- a) Panel 1 (curve C) shows positive cooperativity.
- b) Panel 2 (curve A) shows positive cooperativity.
- c) Panel 3 (curve B) shows no cooperativity.
- d) (a) and (c)
- e) None

Panel 3

- 13. The hypothetical protein above has two states that are in equilibrium, T (Blue) and R (Red), where only the R state can bind a ligand (L). In the absence of ligand the intrinsic equilibrium ΔG° (G°_{R} - G°_{T}) = 0 (Panel 1). If the ligand binds to the R-state with a K_{d} = 10^{-9} , what are the ligand concentrations in panels 2 and 3?
- a) Panel 2: [L] = 10-6 M; Panel 3: [L] = 10-7 M;
- b) Panel 2: [L] = 10-9 M; Panel 3: [L] = 10-8 M;
- c) Panel 2: [L] = 10-8 M; Panel 3: [L] = 10-10 M;
- d) Panel 2: [L] = 10⁻¹⁰ M; Panel 3: [L] = 10⁻⁸ M;

- 14. The hypothetical protein above has two states that are in equilibrium, T (Blue) and R (Red), where only the R state can bind a ligand (L). In the absence of ligand the T state is favored by a ratio of 10:1 (Panel 1). If the ligand binds to the R-state with a K_d = 10^{-9} , what are the ligand concentrations in panels 2 and 3?
- a) Panel 2: [L] = 10^{-6} M; Panel 3: [L] = 10^{-7} M;
- b) Panel 2: [L] = 10-9 M; Panel 3: [L] = 10-8 M;
- c) Panel 2: [L] = 10-8 M; Panel 3: [L] = 10-10 M;
- d) Panel 2: [L] = 10⁻¹⁰ M; Panel 3: [L] = 10⁻⁸ M;

