Tutorial 2: Traction vector

APL 104 - 2022 (Solid Mechanics)

- **Q1**. Show that if $\underline{t}^n = \sum_i \underline{t}^i (\underline{n} \cdot \underline{e}_i) = \sum_i \underline{\hat{t}}^i (\underline{n} \cdot \underline{\hat{e}}_i)$, i.e, the formula is independent of what three planes are chosen to determine \underline{t}^n !
- **Q2.** Suppose, $[\underline{t}^1] = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $[\underline{t}^2] = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix}$, $[\underline{t}^3] = \begin{bmatrix} 0 \\ 7 \\ 9 \end{bmatrix}$ in $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ coordinate system.

What will be the traction on a plane with normal $\underline{n} = \hat{\underline{e}}_1$ where $(\hat{\underline{e}}_1, \hat{\underline{e}}_2, \hat{\underline{e}}_3)$ is the rotation of $(\underline{e}_1, \underline{e}_2, \underline{e}_3)$ about \underline{e}_3 by 45°?

- **Q3**. Show that component of traction on \underline{n} plane in the direction \underline{m} equals components of traction on \underline{m} plane in the direction \underline{n} !
- Q4. Consider a vertical bar having a mass density ρ . Assuming that the bar of length H is subjected to a uniform body force due to gravity, find the traction vector acting on plane with unit outward normal

$$\underline{n} = -\sin\theta \ \underline{e}_1 + \cos\theta \ \underline{e}_2$$

at a height y from the base. Also find the normal and tangential components of the traction vector along the plane.

