

Universidade Presbiteriana Mackenzie

Análise, Projeto e Desenvolvimento III

Profa. Ana Claudia Rossi

Faculdade de Computação e Informática

Visão Planta

Hidraulica

Contexto

Contexto

Interfacing

and

Visualization application

application

End user

application

Arquitetura de Referência -**BigData**

Portal de Estágios

Arquitetura de software

- Existem três elementos importantes nos sistemas computacionais
 - Hardware, software, dados

 A arquitetura de um sistema intensive-software é a estrutura ou as estruturas do sistema composta pelos elementos de software, as propriedades externas e visíveis destes elementos e os relacionamentos entre estes elementos

Estruturas do sistema

- Estrutura estática
 - Define os elementos internos do software na concepção do projeto (design-time)
 - Módulos, objetos, classes, pacotes, serviços, stored-procedure, outros
 - Formas de agrupamento: Associações, relacionamentos ou conexões
 - Depende do contexto
- Estrutura dinâmica
 - Elementos ("runtime") e sua iterações
 - Como o sistema trabalha, que acontece "runtime" e como responde aos estímulos externos ou internos
 - Exemplo: fluxo de informações entre elementos

Propriedades externas

- Comportamento externamente visível
 - Iterações funcionais entre o sistema e o seu ambiente
 - Fluxo de informação de entrada e saída, como o sistema responde aos estímulos externos, o contrato publicado ou API que a arquitetura tem com o mundo exterior
 - O comportamento externo deve ser modelado observando o sistema como caixa preta
- Propriedades de qualidade
 - Propriedades não funcionais, externas e visíveis
 - Desempenho, segurança, outros
 - Como o sistema se comporta do ponto de vista de um observador externo

Exemplo

- Sistema de reserva de viagem
 - Processa diferentes tipos de transações
 - Check in, update e cancel
 - Comportamento externo e visível
 - Resposta a trai
 - Propriedade
 - Tempo médio de respe
 - Número máximo de p
 - Disponibilidade
 - Tempo de recuperação

Solução 1

- Client-Server
 - Clientes comunicam-se com o servidor central de BD via rede Wan
 - Estrutura estática: Programa do cliente, servidor de BD, e a conexão entre eles
 - Estrutura requisiçã
 - A requisição o
 - A resposta do

modelo de

Solução 2

- Thin- Client ou three tier
 - A apresentação é processada no cliente e a logica de negócios e a base de dados roda no servidor de aplicação
- Estrutura estática
 - Programa do cliente: Dividido em camada de apresentação e rede
 - Servidor de aplicação: Dividido em camada de lógica de negócios, banco de dados e rede
 - Servidor de banco e conexões
- Estrutura dinâmica
 - Modelo deve ter camadas de requisição e resposta

Arquitetura candidata

- A arquitetura candidata de um sistema é um conjunto de estruturas estáticas e dinâmicas que tem
 o potencial de mostrar o comportamento externo e visível e propriedades de qualidade
- A propriedades externas e visíveis do sistemas são determinadas pela combinação de comportamentos funcionais dos elementos internos
- As propriedades de qualidade do sistema se originam das propriedades de qualidade de seus elementos internos

Elementos arquiteturais

- É o elemento ou elementos básicos que se utilizam para construir o sistema
- A natureza do elemento arquitetural depende do tipo de sistema e de seu contexto
 - Bibliotecas de programas, subsistemas, unidades distribuídas (Enterprise java beans e active X control), aplicações
 - Componentes ou módulos
- Deve possuir um conjunto de atributos principais
 - Conjunto de responsabilidades
 - Restrições
 - Interfaces
 - Define os serviços que oferece aos outros elementos arquiteturais

Stakeholders

- Sistema
 - Usado, construído, testado, operado, mantido, melhorado, pago
- Pessoa, grupo, ou instituição com interesses ou "Concern" com a realização da arquitetura
- Concern
 - É um requisito, um objetivo, uma intenção ou aspiração que o stakeholder tem com sua arquitetura
- Uma boa arquitetura é aquela que atinge os objetivos, metas e necessidades dos stakeholders

Stakeholders
Gerência da
Organização
Desenvolvimento

Stakeholders Marketing

Stakeholders Usuário final

Stakeholders Organização de Manutenção

Stakeholders Cliente

Comportamento, Desempenho, segurança, Confiabilidade, Usabilidade

Novidades nas características, tempo curso – mercado, Baixo custo, competitivo com os concorrentes

Baixo custo, manter as pessoas empregadas

Arquiteto

Baixo custo, entrega no prazo, mudanças não frequentes

Modificabilidade

Ohh...

The Architecture Business Cycle

Descrição arquitetural

 Conjunto de produtos que documentam uma arquitetura de forma que os stakeholders consigam entender e demonstrar que seus "Concerns" foram atingidos

Processo de Desenvolvimento de Software

Orientação a Objetos

Por que modelar?

- Gerenciamento da complexidade
- Comunicação entre as pessoas envolvidas
- Ajuda a gerenciar custos de desenvolvimento
- Previsão do comportamento futuro do sistema.

Modelagem de Sistemas de Software consiste na utilização de notação gráficas e textuais com o objetivo de construir modelos que representam as partes essenciais de um sistema, considerando as várias perspectivas diferentes e complementares.

Principais atividades do desenvolvimento de software

Processo de Desenvolvimento – Abordagem Iterativa

- Cenários
- Visão Lógica
- Visão de Processos
- Visão da Implementaçã
- Visão da Implantação

Cenários

- Descreve a funcionalidade do sistema.
- Casos de uso e cenários são considerados o ponto de partida e também de consolidação das outras visões
- Detalha ações e condições em cada caso de uso/cenário

- Visão Lógica
 - Descreve requisitos comportamentais e a decomposição do sistema em um conjunto de abstrações
 - Classes e objetos são os principais elementos nesta visão
 - Diagramas de classes, sequência e colaboração mostram os relacionamer entre estes elementos

- Visão de Processos
 - Descreve os processos do sistema e como eles se comunicam
 - Útil quando se tem múltiplos processos ou threads concorrentes
 - Permite avaliar requisitos não funcionais relacionados à execução e comunicação:
 - Desempenho, disponibilidade
 - Diagramas de atividades são úteis para descrever esta visão

- Visão da Implementação
 - Usada para descrever os módulos do sistema
 - Módulos são elementos mais abstratos que classes e objetos
 - Pacotes e biblioteca de classes, componentes sã exemplos de módulos er alguns ambientes de programação.

- Visão da Implantação
 - Descreve como a aplicação é instalada e como executa em uma rede de computadores.
 - Componentes executáveis são alocados a nós processadores.
 - Esta visão permite avaliar requisitos não-funcionais desempenho, disponibilidade confiabilidade, escalabilidade

