yash-dsbdal-a6

February 22, 2024

Title of the Assignment: 1. Implement Simple Naïve Bayes classification algorithm using Python/R on iris.csv dataset. 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

Import libraries and create alias for Pandas, Numpy

```
[]: import pandas as pd import numpy as np
```

Import the Iris Dataset

```
[]: from google.colab import files files.upload()
```

<IPython.core.display.HTML object>

Basic Operations

```
[ ]: df.head()
```

[]: df.describe()

[]:	: Id		${\tt SepalLengthCm}$	${\tt SepalWidthCm}$	${\tt PetalLengthCm}$	${\tt PetalWidthCm}$	
	count	150.000000	150.000000	150.000000	150.000000	150.000000	
	mean	75.500000	5.843333	3.054000	3.758667	1.198667	
	std	43.445368	0.828066	0.433594	1.764420	0.763161	
	min	1.000000	4.300000	2.000000	1.000000	0.100000	
	25%	38.250000	5.100000	2.800000	1.600000	0.300000	
	50%	75.500000	5.800000	3.000000	4.350000	1.300000	
	75%	112.750000	6.400000	3.300000	5.100000	1.800000	
	max	150.000000	7.900000	4.400000	6.900000	2.500000	

Check for Null Values

```
[]: df.isnull().sum()
```

```
[]: Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
```

```
PetalWidthCm
                     0
    Species
                     0
    dtype: int64
[]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 150 entries, 0 to 149
    Data columns (total 6 columns):
                       Non-Null Count
         Column
                                       Dtype
         _____
                       -----
     0
                       150 non-null
                                       int64
         Ιd
     1
         SepalLengthCm 150 non-null
                                       float64
     2
         SepalWidthCm
                       150 non-null
                                       float64
         PetalLengthCm 150 non-null
                                       float64
         PetalWidthCm
                       150 non-null
                                       float64
     5
         Species
                       150 non-null
                                       object
    dtypes: float64(4), int64(1), object(1)
    memory usage: 7.2+ KB
    Use Naive Bayes algorithm (Train the Machine ) to Create Model
[]: X = df.drop(['Species'], axis = 1)
    Y = df['Species']
[]: from sklearn.model_selection import train_test_split
    xtrain, xtest, ytrain, ytest = train_test_split(X, Y, test_size =0.
      42, random_state = 0)
[]: from sklearn.naive_bayes import GaussianNB
    gaussian = GaussianNB()
[]: gaussian.fit(xtrain, ytrain)
[]: GaussianNB()
    Predict the y_pred for all values of train_x and test_x
[]: y_pred = gaussian.predict(xtest)
[]: print(xtrain)
    print("----\n")
    print(xtest)
    print("----\n")
    print(ytrain)
    print("----\n")
    print(ytest)
```

print("----\n")

print(y_pred)

	Id	${\tt SepalLengthCm}$	${\tt SepalWidthCm}$	${\tt PetalLengthCm}$	${\tt PetalWidthCm}$
137	138	6.4	3.1	5.5	1.8
84	85	5.4	3.0	4.5	1.5
27	28	5.2	3.5	1.5	0.2
127	128	6.1	3.0	4.9	1.8
132	133	6.4	2.8	5.6	2.2
	•••	•••	•••	•••	•••
9	10	4.9	3.1	1.5	0.1
103	104	6.3	2.9	5.6	1.8
67	68	5.8	2.7	4.1	1.0
117	118	7.7	3.8	6.7	2.2
47	48	4.6	3.2	1.4	0.2

[120 rows x 5 columns]

	Id	${\tt SepalLengthCm}$	${\tt SepalWidthCm}$	${\tt PetalLengthCm}$	${\tt PetalWidthCm}$
114	115	5.8	2.8	5.1	2.4
62	63	6.0	2.2	4.0	1.0
33	34	5.5	4.2	1.4	0.2
107	108	7.3	2.9	6.3	1.8
7	8	5.0	3.4	1.5	0.2
100	101	6.3	3.3	6.0	2.5
40	41	5.0	3.5	1.3	0.3
86	87	6.7	3.1	4.7	1.5
76	77	6.8	2.8	4.8	1.4
71	72	6.1	2.8	4.0	1.3
134	135	6.1	2.6	5.6	1.4
51	52	6.4	3.2	4.5	1.5
73	74	6.1	2.8	4.7	1.2
54	55	6.5	2.8	4.6	1.5
63	64	6.1	2.9	4.7	1.4
37	38	4.9	3.1	1.5	0.1
78	79	6.0	2.9	4.5	1.5
90	91	5.5	2.6	4.4	1.2
45	46	4.8	3.0	1.4	0.3
16	17	5.4	3.9	1.3	0.4
121	122	5.6	2.8	4.9	2.0
66	67	5.6	3.0	4.5	1.5
24	25	4.8	3.4	1.9	0.2
8	9	4.4	2.9	1.4	0.2
126	127	6.2	2.8	4.8	1.8
22	23	4.6	3.6	1.0	0.2
44	45	5.1	3.8	1.9	0.4
97	98	6.2	2.9	4.3	1.3

```
93
      94
                     5.0
                                    2.3
                                                    3.3
                                                                   1.0
26
      27
                     5.0
                                    3.4
                                                    1.6
                                                                   0.4
137
        Iris-virginica
84
       Iris-versicolor
27
           Iris-setosa
        Iris-virginica
127
132
        Iris-virginica
9
           Iris-setosa
103
        Iris-virginica
67
       Iris-versicolor
117
        Iris-virginica
47
           Iris-setosa
Name: Species, Length: 120, dtype: object
114
        Iris-virginica
62
       Iris-versicolor
33
           Iris-setosa
107
        Iris-virginica
7
           Iris-setosa
100
        Iris-virginica
40
           Iris-setosa
86
       Iris-versicolor
76
       Iris-versicolor
71
       Iris-versicolor
134
        Iris-virginica
51
       Iris-versicolor
73
       Iris-versicolor
54
       Iris-versicolor
63
       Iris-versicolor
37
           Iris-setosa
78
       Iris-versicolor
90
       Iris-versicolor
45
           Iris-setosa
16
           Iris-setosa
121
        Iris-virginica
66
       Iris-versicolor
24
           Iris-setosa
8
           Iris-setosa
126
        Iris-virginica
22
           Iris-setosa
44
           Iris-setosa
97
       Iris-versicolor
93
       Iris-versicolor
26
           Iris-setosa
```

```
Name: Species, dtype: object
    ['Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-virginica'
     'Iris-setosa' 'Iris-virginica' 'Iris-setosa' 'Iris-versicolor'
     'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor'
     'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa'
     'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa'
     'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa'
     'Iris-virginica' 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor'
     'Iris-versicolor' 'Iris-setosa']
    Evaluate the performance of Model for train_y and test_y
[]: from sklearn.metrics import
      ⇔precision_score,confusion_matrix,accuracy_score,recall_score,_
      →classification_report
     cm= confusion_matrix(ytest, y_pred)
    Confusion Matrix
[]: cm= confusion_matrix(ytest, y_pred)
     cm
[]: array([[11, 0, 0],
            [ 0, 13, 0],
            [0, 0, 6]]
    Accuracy Score
[]: print ("Accuracy : ", accuracy_score(ytest, y_pred))
    Accuracy: 1.0
    Error Rate
[]: error_rate = 1- accuracy_score(ytest, y_pred)
[]: error_rate
[]: 0.0
    Classification
[]: print("classification report: ",classification_report(ytest, y_pred))
    classification report:
                                             precision
                                                          recall f1-score
                                                                             support
        Iris-setosa
                          1.00
                                    1.00
                                              1.00
                                                          11
    Iris-versicolor
                          1.00
                                    1.00
                                              1.00
                                                          13
     Iris-virginica
                          1.00
                                    1.00
                                              1.00
                                                           6
```

accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30