Подготовка к ЦТ Физика Вариант 11

При расчетах принять:

ion pue ierua nomario.	
Модуль ускорения свободного падения $g = 10 \text{ м/c}^2$	Скорость света в вакууме $c = 3 \cdot 10^8 \text{ м/c}$
Постоянная Авогадро $N_A = 6.02 \cdot 10^{23} \text{ моль}^{-1}$	Постоянная Больцмана $k = 1,38 \cdot 10^{-23} \text{Дж/K}$
Электрическая постоянная $\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\Phi}{M}$; $\frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{K\pi^2}$	Элементарный заряд $e = 1,6 \cdot 10^{-19} \text{ Кл}$
Универсальная газовая постоянная $R = 8,31 \frac{\cancel{\cancel{A}}\cancel{\cancel{M}}\cancel{$	Масса электрона $m_e = 9,1 \cdot 10^{-31} \text{ кг}$
1 эВ = 1,6·10 ⁻¹⁹ Дж π = 3,14; $\sqrt{2}$ = 1,41; $\sqrt{3}$ = 1,73; $\sqrt{5}$ = 2,24	Постоянная Планка $h = 6,63 \cdot 10^{-34}$ Дж·с

Множители и приставки для образования десятичных кратных и дольных единиц.

Множитель	10^{12}	10^{9}	10^{6}	10^{3}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
Приставка	тера	гига	мега	кило	санти	милли	микро	нано	пико
Обозначение приставок	T	Γ	M	К	c	M	МК	Н	П

Часть А

В каждом задании части А только **ОДИН** из предложенных ответов является верным. В бланке ответов под номером задания поставьте метку

(х) в клет	ке, соответствующей номеру выбранного Вами ответа.	
A1	Единицей угловой скорости в СИ является:	1) м/с; 2) м/с ² ; 3) рад/с; 4) кг/м ³ ; 5) рад/с ² .
A2	Кинематический закон прямолинейного движения тела вдоль оси Ox имеет вид: $x = A + Bt$, где $A = 0{,}100$ км, $B = 7{,}2$ км/ч. Координата x тела в момент времени $t = 1{,}00$ с равна:	1) 0,102 km; 2) 0,107 km; 3) 2,1 km; 4) 7,3 km; 5) 26,0 km.
A3	На рисунке представлены графики зависимости координаты x тела от времени t для двух тел (I и II), движущихся вдоль оси Ox . Модуль скорости $v_{\text{отн}}$ первого тела относительно второго тела равен:	1) 120 км/ч; 2) 100 км/ч; 3) 80 км/ч; 4) 60 км/ч; 5) 40 км/ч.
A4	Мотоциклист начал движение в тот момент, когда мимо него проехал равномерно движущийся велосипедист, модуль скорости которого $\upsilon=18~\frac{\kappa M}{q}$. Если за промежуток времени $\Delta t=20$ с мотоциклист догонит велосипедиста, то модуль ускорения a мотоциклиста равен:	1) $90 \frac{cM}{c^2}$; 2) $75 \frac{cM}{c^2}$; 3) $60 \frac{cM}{c^2}$; 4) $55 \frac{cM}{c^2}$; 5) $50 \frac{cM}{c^2}$.
A5	Материальная точка равномерно движется по окружности радиусом $R=40$ см. Если модуль центростремительного ускорения материальной точки $a=19,6$ м/с², то за промежуток времени $\Delta t=2$ с радиус-вектор, проведённый из центра окружности к материальной точке, повернётся на угол $\Delta \phi$, равный:	1) 10 рад; 2) 12 рад; 3) 14 рад; 4) 16 рад; 5) 20 рад.
A6	Тело массой $m=2,0$ кг движется под действием нескольких сил вдоль оси Ox . Если движение тела описывается уравнением $x=A+Bt+Ct^2$, где $A=3,0$ м, $B=2,0$ $\frac{M}{c}$, $C=-2,0$ $\frac{M}{c^2}$, то проекция на ось Ox равнодействующей всех сил, приложенных к телу, F_x равна:	1) - 8,0 H; 2) - 4,0 H; 3) 2,0 H; 4) 4,0 H; 5) 8,0 H.

A16	Сила тока в катушке, индуктивность которой $L=0.05$ Гн, равномерно уменьшилась от значения $I_1=3.5$ A до значения I_2 за промежуток времени	1) 0,5 A; 2) 1,0 A;
	$\Delta t = 50$ мс. Если при этом в катушке возникла ЭДС самоиндукции $\varepsilon_c = 2.5$ В, то	3) 1,5 A;
	конечное значение силы тока I_2 в катушке равно:	4) 2,0 A;
	- 7 1	5) 2,5 A.
A17	Шарик массой $m = 5,0$ г подвешен на длинной невесомой нерастяжимой нити.	1) 3 Гц;
	Шарик отклоняют от положения равновесия и отпускают. Если амплитуда	2) 19 Гц;
	гармонических колебаний шарика $A = 3.0$ см, а его максимальная кинетическая	3) 38 Гц;
	энергия $(W_{\kappa})_{\text{max}} = 32$ мДж, то частота v колебаний шарика равна:	4) 46 Гц;
		5) 68 Гц.
A18	Дифракционная решётка, на каждый миллиметр которой приходится $N = 500$	1) 1;
	штрихов, освещается нормально падающим на неё светом с длиной волны	2) 2;
	$\lambda = 720$ нм. Наибольший порядок m_{max} дифракционного максимума, который	3) 3;
	можно наблюдать с помощью этой решётки, равен:	4) 4;
		5) 5.
A19	Если модуль импульса фотона, частота которого соответствует красной	1) 0,8 9B;
	границе фотоэффекта, $p = 8.0 \cdot 10^{-28} \text{ H} \cdot \text{c}$, то работа выхода $A_{\text{вых}}$ электрона с	2) 1,0 9B;
	поверхности фотокатода равна:	3) 1,3 9B;
		4) 1,5 ₉ B;
		5) 1,8 ₉ B.
A20	В результате двух последовательных β^- -распадов ядра радиоактивного	1) 84; 2) 86;
	изотопа радия ${}^{228}_{88}$ Ra образуется ядро изотопа, содержащее число протонов Z ,	3) 88; 4) 90;
	$_{88}$ пзотона радия $_{88}$ па образуется ядро изотона, содержащее число протонов Z ,	5) 92.
	равное:	

Часть В

Ответы, полученные при выполнении заданий части В запишите в бланке ответов. Искомые величины, обозначенные многоточием должны быть вычислены в указанных в заданиях единицах.

Если в результате вычислений получается дробное число, округлите его до целого, пользуясь правилами приближенных вычислений, и в бланк ответов запишите округленное число, начиная с первой клеточки. Каждую цифру и знак минуса (если число отрицательное) пишите в отдельной клеточке.

Единицы измерения величин (кг, м, Φ , мА, ${}^{\circ}C$ и др.) не пишите.

	nugoi измеренил величин (кг, м, Ψ , мл, C и ор.) не нишите.
B1	Средняя скорость пути автомобиля за всё время его движения $\langle \upsilon \rangle$ = 10 м/с. Первую четверть этого времени автомобиль двигался со скоростью, модуль которой υ_1 = 16 м/с. В оставшееся время
	автомобиль двигался с о скоростью, модуль которой $v_1 = 10$ м/с. В оставшееся время автомобиль двигался с постоянной скоростью, модуль которой v_2 равен дм/с.
B2	Шарик массой $m=0,20$ кг, подвешенный на нерастяжимой нити, описывает окружность в горизонтальной плоскости, совершая $N=10$ оборотов за промежуток времени $\Delta t=5,0$ с. Если длина нити $l=50$ см, то модуль силы $F_{\rm H}$ натяжения нити равен H.
В3	Лежащий на земле груз массой $m=2,0$ кг под действием силы \vec{F} был поднят вертикально вверх на высоту $h=10$ м в течение промежутка времени $\Delta t=2,0$ с. Если груз двигался равноускоренно, то сила \vec{F} при этом совершила работу A , равную Дж.
B4	В сообщающиеся вертикальные трубки с поперечными сечениями $S_1 = 20 \text{ см}^2$, $S_2 = 30 \text{ см}^2$ налита вода ($\rho = 1.0 \text{ г/см}^3$). В трубке сечением S_1 плавает деревянная шайба массой $m = 80 \text{ г}$. После удаления шайбы из трубки уровень воды изменится на величину Δh , модуль которой равен мм.
B5	В баллоне находится идеальный газ при температуре $T_1 = 350$ К. Если $\alpha = 60,0$ % содержащегося в баллоне газа выпустить, а температуру понизить до $T_2 = 280$ К, то оставшийся газ создаёт давление $p_2 = 128$ кПа. Первоначальное давление p_1 газа равно кПа.
В6	За промежуток времени $\tau = 3,0$ мин температура стального $\left(c = 460 \frac{\mathcal{Д} ж}{\kappa \varepsilon \cdot K}\right)$ сверла массой $m = 75$ г
	увеличилась на $\Delta t = 90$ °C. Если при сверлении металлической пластины на нагревание сверла расходуется $\alpha = 23$ % полной работы механизма, обеспечивающего сверление, то средняя мощность
	$\langle P \rangle$, развиваетая этим механизмом при сверлении, равна Вт.

B7	Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние B (см. рис.). Если в состоянии A давление газа $p_0=100$ кПа, а его объём $V_0=10$ л, то в ходе процесса газ получил количество теплоты Q , равное кДж.
B8	На горизонтальном дне водоёма лежит тонкое плоское зеркало. Луч света падает из воздуха на
	поверхность воды под углом $\alpha = 30^\circ$ к вертикали. После преломления луч попадает на зеркало и,
	отразившись от него, выходит из воды обратно в воздух на расстоянии $d = 1,30$ м от точки падения на
D0	воду. Если показатель преломления воды $n = 1,33$, то глубина h водоёма равна дм.
B9	Электрон влетает в плоский конденсатор параллельно его обкладкам со скоростью, модуль которой
	$v_0 = 2.0 \cdot 10^7 \frac{M}{c}$. Длина пластин конденсатора $l = 5.0$ см. Если напряжение между его обкладками
	U = 200 B и за время полёта в конденсаторе смещение электрона от первоначального направления
	движения составило $h = 5.5$ мм, то расстояние d между обкладками конденсатора равно мм.
B10	В электрической цепи, схема которой показана на рисунке, электроёмкость конденсатора $C=3,2$ мкФ, ЭДС источника тока $\varepsilon=6,0$ В, его внутреннее сопротивление $r=2,0$ Ом, сопротивления резисторов $R_1=4,0$ Ом, $R_2=5,0$ Ом. Заряд q конденсатора равен мкКл.
B11	${\sf B}$ идеальном колебательном ${\it LC}$ -контуре, состоящем из катушки индуктивности и конденсатора,
	зависимость заряда от времени имеет вид $q = q_0 \sin At$, где $A = 5.0 \cdot 10^3 \frac{pao}{c}$. Если индуктивность
	катушки $L = 1,0.10^{-3}$ Гн, то ёмкость C конденсатора равна мкФ.
B12	Электрическая цепь состоит из источника постоянного тока с ЭДС ε , трёх
	резисторов сопротивлениями $R_1 = 10$ Ом, $R_2 = 60$ Ом, $R_3 = 20$ Ом и идеальной катушки индуктивностью $L = 2,0\cdot 10^{-3}$ Гн (см. рис.). В начальный момент времени ключ K был замкнут и в цепи протекал постоянный ток. После размыкания ключа K на резисторе R_1 выделяется количество теплоты $Q_1 = 70$ мкДж. Если внутренним сопротивлением источника тока и потерями энергии на излучение электромагнитных волн пренебречь, то
	DHC a very very many D

Ответы **В** – 11

OTDCTDI L	, 11									
№ задачи	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
№ ответа	3	1	1	5	3	1	3	2	2	3
№ задачи	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
№ ответа	4	1	1	4	2	2	2	2	4	4

ЭДС ε источника тока равна ... **В.**

№ задачи	B1	B2	В3	B4	B5	В6	В7	B8	В9	B10	B11	B12
№ ответа	80	16	300	16	400	75	27	16	20	10	40	14