# Order Theory of Functional Equations for static cost analysis, and beyond

Louis Rustenholz $^{1,3}$ , Pedro López-García $^{2,3}$  and Manuel V. Hermenegildo $^{1,3}$ 

<sup>1</sup>Universidad Politécnica de Madrid (UPM), Spain

<sup>2</sup>Spanish Council for Scientific Research (CSIC), Spain

<sup>3</sup>IMDEA Software Institute, Spain

Example

# software

### Introduction

Functional equations arise in many places, but cannot always be solved.

They are important objects in static analysis ("the art of automatically bounding the behaviour of systems"), and other areas of science, where they can describe many systems, and encode many problems.

- Imperative and declarative programs can be given meaning by (functional) semantic equations (consider recursion, loops...),
- Resource consumption of a program may be expressed as the solution of a recurrence equation,
- Complex differential equations arise in many areas, including cyberphysical systems, biochemical reactions networks...

Problem: bound the solutions of numerical functional equations. Equivalently: produce information on numerical functions constructed recursively by operators  $\Phi \in ((\mathcal{D} \to L) \to (\mathcal{D} \to L))$ .

→ We combine insights from functional numerical equations and (order-theoretical) fixpoint equations.

# Order in function space Equations $\leftrightarrow$ Operators Solutions $\leftrightarrow$ Fixpoints Bounds $\leftarrow$ Pre/Postfixp $\mathbf{Postfp}(\mathbf{\Phi})$ $\mathbf{Prefp}(\mathbf{\Phi})$

Take a function space  $\mathcal{D} \to L$ , and order it pointwise:  $f \leq g \Leftrightarrow \forall x, f(x) \leq g(x)$ . Two flavours: purely numerical (e.g.  $L = (\overline{\mathbb{R}}, \leq)$ ) or set-based (e.g.  $L = (\mathcal{I}(\mathbb{R}), \sqsubseteq)$ ).

#### Theorem: A Knaster-Tarski corollary

Let  $\Phi: (\mathcal{D} \to L) \to (\mathcal{D} \to L)$  be a **monotone equation** (i.e.  $f \leq g \Rightarrow \Phi f \leq \Phi g$ ).

- If  $f \in \text{Postfp}(\Phi)$ , i.e.  $\Phi f \leq f$ , then  $\text{lfp } \Phi \leq f$ .
- If  $f \in \text{Prefp}(\Phi)$ , i.e.  $f \leq \Phi f$ , then  $f \leq \text{gfp }\Phi$ .

When the equation terminates unconditionally, lfp  $\Phi = \text{gfp }\Phi =: f_{sol}$ .

#### Equations as Operators Search $f: \mathbb{N}^2 \to \mathbb{R}$ such that $f = \Phi f$ , Search $f: \mathbb{N}^2 \to \mathbb{R}$ such that

f(n-1,0) + n + 300 if n > 0 and  $c \ge 100$ ,  $f(n,c) = \begin{cases} f(n-1,c+1) + n & \text{if } n > 0 \text{ and } c < 100, \end{cases}$ 



## Space exploration: examples of pre/postfixpoint search strategies



**Abstract Interpretation** 



Search on subvarieties: **Templates**,  $\forall$ -elim



Geometry-based expression Repair



Constrained **Optimisation**, with provability constraints

# Ex.: simple bound on a gcd program



Candidate  $\hat{f}$ , iterate  $\Phi \hat{f}$ , unknown solution  $f_{sol}$ .

# Some function space abstractions



#### Supported equations

Flexible. Supports affine equations with  $a_{i,j} \geq 0$ 

$$\Phi(f)(\vec{n}) = \begin{cases} \sum_{k_i}^{k_i} \left( a_{i,j}(\vec{n}) \cdot f(\phi_{i,j}(\vec{n})) \right) + b_i(\vec{n}) & \text{if } \varphi_i(\vec{n}) \\ \dots & , \end{cases}$$

min/max of equations, unbounded optimisation, some nested calls, ... We can obtain **piecewise**, **non-linear** bounds.

### Origin and Motivation: Cost Analysis

Cost Analysis: Bounds on Resource Consumption.



Pipeline implemented in Coopp (and other analysers).



#### Continuous Systems

Non-standard analysis with infinitesimal  $\epsilon$ , within hyperreals \* $\mathbb{R}$ ?

$$v: \mathbb{R}_+ \to \mathbb{R}, \qquad v(0) = v_0, \qquad \dot{v} = -\alpha \cdot v^2 - \beta \cdot v + \gamma$$

$$\in \operatorname{End}(^*\mathbb{R}_+ \to \mathcal{I}(^*\mathbb{R}), \dot{\sqsubseteq}_{\tau})$$



For  $\hat{f}: t \mapsto [0, M]$ ,  $\Phi \hat{f} \sqsubseteq_{\mathcal{I}} \hat{f}$  whenever  $x_0 \in [0, M]$ ,  $\alpha, \beta, \gamma \geq 0$  and  $M \geq \gamma/\beta$ .

