Speed Planning for Solar-Powered EVs

Mingsong Lv, Nan Guan, Ye Ma, **Dong Ji**, Xue Liu, Erwin Knippel, Wang Yi

Northeastern University

McGill University

BMW Brilliance Automotive Ltd.

CONTENT.

- Motivation
- Problem
- Solution
- Experimental Results
- Conclusion
- Discussion

ELECTRIC VEHICLES - FUTURE TRANSPORTATION.

Less CO2 emission
Less noise
Higher energy conversion efficiency
Smooth operation

WHY SOLAR-POWERED ELECTRIC VEHICLES?

PEV is not enough

- Battery energy density is low
- Charge time is long
- Lack of a charging infrastructure

Solar-powered EVs

- Truly green energy used
- Abundant solar energy
- Be charged when running

WHY SOLAR-POWERED ELECTRIC VEHICLES?

Tour vehicles in an ancient city

- Insufficient charging piles due to protection requirements.
- Charging is too time consuming

SOLAR ENERGY FEASIBILITY – EFFICIENCY TRENDS.

SOLAR ENERGY FEASIBILITY – PRICE TRENDS.

Average U.S. PV System Prices over Time by SunShot, U.S. Department of Energy

SOLAR-POWERED EV FEASIBILITY – INDUSTRIAL DEMOS.

Ford C-MAX Solar Energi Concept demonstrated at CES 2014

Daily range: 60km

Hanergy SolarPower Concept unveiled in 2015

Daily range: 40km

INTRODUCING SOLAR POWER INTO EVS.

Electric vehicles will be the future means of transportation

However, charging limitations are still a major obstacle

We consider solar-powered EVs as a solution, with

- Increasing solar panel efficiency
- Decreasing prices

THE IMPACT OF SHADINGS.

Shadings by buildings, trees, tunnels, etc. make solar input unstable

THE SPEED PLANNING PROBLEM.

Plan B: lower and variable speeds, successfully finish the whole trip

THE SPEED PLANNING PROBLEM.

A solar EV driver must carefully plan his speed

To reach the destination

To minimize overall travel time

THE SPEED PLANNING PROBLEM - FORMULATION.

A constraint non-linear programming problem

Objective
$$T_{min} = minimize \sum_{i=1}^{n} (\frac{S_i^I}{V_i^I} + \frac{S_i^S}{V_i^S})$$

Constraints At the end of each road segment: $E_i^* \ge 0$

The problem will be very complex if there are many interleaving illuminated and shaded road segments

Energy output
$$E_{\text{out}} = S \times (aV^2 + b)$$
 (Energy Usage)

A KEY PROPERTY.

Intuition

At the end of each shaded segment, the remained energy is zero, to maximize speed for the previous macro segment

Global Optimal

Energy transfer from S1 to S2 ($E_1 > 0$), otherwise, the EV has to run very slowly in $S_2^{\ \ l}$ to collect enough energy to survive $S_2^{\ \ S}$

A KEY PROPERTY.

FINDING THE ZERO-ENERGY POINTS - CHALLENGES.

First, we do not know how many zero-energy points exist; Second, we do not know where these point locates

2^N possibilities to try!!

FINDING THE ZERO-ENERGY POINTS – DYNAMIC PROGRAMMING.

FINDING THE ZERO-ENERGY POINTS – DYNAMIC PROGRAMMING.

	Μ	T41-	T1 T:	OPT	GS
No.	Macro	Length	Travel Time		
	Segments	(km)	(min)	(sec)	(sec)
1	2	3.9	44.56	2	3
2	2	5.3	67.14	3	34
3	3	16.3	193.24	3	34
4	4	13.2	147.94	8	158
5	5	13.3	145.62	30	125
6	6	9.8	105.25	18	152
7	7	9.5	105.10	23	174
8	8	11.5	129.83	90	129
9	9	11.7	127.56	58	1076
10	10	12.7	138.49	98	937
11	11	15.7	169.45	64	1151
12	12	19.1	218.15	78	827
13	13	20.3	227.22	122	1044
14	14	22.9	271.81	123	2430
15	15	27.8	314.45	106	2900
16	16	20.4	235.60	150	8215
17	17	28.0	321.48	153	9441
18	18	24.8	286.20	171	4788
19	19	28.7	330.35	200	9436
20	20	27.5	314.46	278	N/A

20 paths containing 2 ~ 20 macro segments

Path length: 3.9 ~ 27.5km

Travel Time: 44.56 ~ 330.35min

OPT: Our approach

GS: GlobalSearch in Matlab

SOLUTION OVERVIEW.

At the end of some shaded segments, the remained energy is zero.

The whole path is partitioned into chunks by these zero-energy points.

A dynamic programming approach to find the zero-energy points with complexity O(n²)

A VALIDATION PLATFORM.

Component	Specifications			
Solar Panel	Module: Yingli Solar YL270C-30b Technology: Monocrystaline Power Output (STC): 270W Module Efficiency: 16.6% Dimensions: 1640X990X40 (mm) Weight: 18.5kg			
MPPT Controller	Module: BlueSolar MPPT 100/50 Rated Charge Current: 50A Max. Efficiency: 98%			
Electric Vehicle	Dimensions: 2050X1220X1570(mm) Kerb Mass: 580kg Drive Type: rear wheel Motor Type: Brushless DC motor Rated Motor Power: 2.2kW Max. Speed: 35km/h			

EXPERIMENTAL RESULTS – CLEAR DAY.

Segments	Distance (km)	Travel Time (min)		Energy Input (Wh) (Solar energy harvested)		Energy Output (Wh) (EV energy consumed)		
		Predicted (our algo.)	Real (Measured)	Predicted (our algo.)	Real (Measured)	Predicted (our algo.)	Real (Measured)	
S_1^I (illuminated)	1.76	23.59	23.80	82.55	78.17	58.43	66.38	
S ₁ ^S (shaded)	0.54	1.48	1.55	0	1.29	20.42	21.18	
S ₂ ^I (illuminated)	1.22	16.35	16.82	57.22	58.01	40.50	49.60	
S_2^S (shaded)	0.54	1.48	1.55	0	1.33	20.42	22.89	
Total	4.06	42.90	43.72	139.77	138.80	139.77	160.05	

Travel Time, Energy input, and output predicted by our approach is close to those obtained from the solar EV prototype

EXPERIMENTAL RESULTS – CLOUDY DAY.

Cloudy Day $E_0=60Wh$ $P_{max}=60W$ Experiment Time: 13:21:26 ~ 14:44:12							
Segments	Distance (km)	Travel Time (min)		Energy Input (Wh) (Solar energy harvested)		Energy Output (Wh) (EV energy consumed)	
		Predicted (our algo.)	Real (Measured)	Predicted (our algo.)	Real (Measured)	Predicted (our algo.)	Real (Measured)
S_1^I (illuminated)	1.76	45.12	45.05	45.12	87.12	58.18	76.75
S_1^S (shaded)	0.54	2.24	2.65	0	0.35	18.95	19.73
S_2^I (illuminated)	1.22	31.28	32.70	31.28	48.76	40.33	54.40
S_2^S (shaded)	0.54	2.24	2.38	0	0.19	18.94	18.64
Total	4.06	80.88	82.78	76.40	136.42	136.40	166.52

We witness a difference between our prediction and real solar EV, solar input is very unpredictable with the movement of cloud.

EXPERIMENTAL RESULTS – CLOUDY DAY. SOLAR ENERGY HARVESTED

CONCLUSION.

- (1) We studied the problem of speed planning for Solar-Powered EVs
 - Goal: to successfully finish a trip with minimal travel time by the Solar- Powered EV
- (2) We model it as a multi-constraint non-linear programming problem
- (3) Solution: an optimal structure + dynamic programming
 - Complexity: $O(n^2)$, n is the trip macro segment
- (4) Validation with a Real Solar-Powered EV prototype

DISCUSSION.

Further extension for practical implementation

- Unpredictable weather, and unpredictable traffic conditions
- Variable solar input due to changing solar angle
- Acceleration energy

Thank you