Prediction and Analysis of Visa Application Acceptance using Deep Learning

Pranav Bhandari, Dushyant Singh Udawat, Krzysztof Dutka, Leo Franco Soto

Team Name: Bond (Group Number 2)

December 8th, 2022

Problem Statement

- 1. Predict the result of an application (Approved / Denied / Withdrawn)
- 2. Find out if the dataset is self-exciting?
 - a. Self-exciting describe random sequences of events where the occurrence of an event increases the likelihood that subsequent events occur nearby in time and space
- 3. Make various models to predict the percentage of applications getting Approved / Denied / Withdrawn
 - a. Logistic Regression
 - b. **C**onvolutional **N**eural **N**etwork (CNN)
 - c. **L**ong **S**hort-**T**erm **M**emory (LSTM)

Data preprocessing

Inputs
Employer City
Employer State
Worksite City
Worksite State
No. of Employees in Worksite
Application Date
Outputs
Status of Application

Data Visualization Maps by Employer State

Data Visualization by Number of Applications

Data Visualization by Number of Applications

Number of Results per day within 2 weeks

- Day 6 is the greatest in terms of replies
- With a total of 350000+ all landing on day 6

Number of Results per day 2+ weeks

- Anything past the first two weeks usually gets very little replies.
- This is possibly due to the number of withdrawn and denied applications in the first two weeks

Breakdown of results per day within 4 weeks

- Most applicants get accepted with two weeks
- Past two weeks, mostly withdrawals

Breakdown of results per day past 4 weeks

Benchmarking using Logistic Regression

PERFORMANCE_OF_LOGISTIC_REGRESSION_TRAINING = 0.9558854230093422 PERFORMANCE_OF_LOGISTIC_REGRESSION_TESTING = 0.9563949505822488

	precision	recall	f1-score	support
C	0.96	1.00	0.98	47503
CW	1.00	0.57	0.72	2402
W	0.00	0.00	0.00	233
D	0.00	0.00	0.00	957
accuracy			0.96	51095
macro avg	0.49	0.39	0.43	51095
weighted avg	0.94	0.96	0.94	51095

Good at Classifying Certified and Certified Withdrawn Cases.

In our case, They comprise of 99.5% of the data. Performs horribly bad on W, and D cases.

Accuracy Overall - 95.6 %. (Pretty good) Avg F-score - 0.43 (Not good) Avg weighted Fscore - 0.94

- 1. No. of Epochs 100
- 2. Architecture
 - a. Layersize 8(input), 16, 16, 8, 8, 8, 4 (output)
 - b. ReLU on all layers and Softmax on the last layer.
- 3. Performance doesn't become better after 20th epoch.

Accuracy of the model in MSE: 0.2030531363147079

PERFORMANCE_OF_CNN_REGRESSION_TRAINING = 0.9597627911831735

PERFORMANCE_OF_CNN_REGRESSION_TESTING = 0.9601722282023681

		precision	recall	f1-score	support
	C	0.96	1.00	0.98	47503
(CW	0.99	0.65	0.79	2402
	W	0.00	0.00	0.00	233
	D	0.00	0.00	0.00	957
accura	су			0.96	51095
macro a	vg	0.49	0.41	0.44	51095
weighted a	vg	0.94	0.96	0.95	51095

Slightly Better Performance that Logistic Regression.

But since the model isn't interpretable, we shouldn't choose it as best model.

The data is not complex enough to require neural net to predict status.

Accuracy Overall - 96.0 %. (Pretty good) Avg F-score - 0.44 (Not good) (All slightly better than logistic regression)

Avg weighted F-score - 0.95

Running CNN with Different Optimizers (AdamW)

Accuracy of the model in MSE: 0.20039142773265486

PERFORMANCE_OF_LINEAR_REGRESSION_TRAINING = 0.9598476018162523

PERFORMANCE_OF_LINEAR_REGRESSION_TESTING = 0.959643800763284

	precision	recall	f1-score	support
C CW W D	0.96 0.99 0.00 0.00	1.00 0.65 0.00 0.00	0.98 0.78 0.00 0.00	47447 2464 255 929
accuracy macro avg weighted avg	0.49 0.94	0.41	0.96 0.44 0.95	51095 51095 51095

Running CNN with Different Optimizers (RAdam)

Accuracy of the model in MSE: 0.20046971327918583

PERFORMANCE_OF_LINEAR_REGRESSION_TRAINING = 0.9597497433934692

PERFORMANCE_OF_LINEAR_REGRESSION_TESTING = 0.9595655152167532

	precision	recall	f1-score	support
C CW W D	0.96 1.00 0.00 0.00	1.00 0.64 0.00 0.00	0.98 0.78 0.00 0.00	47447 2464 255 929
accuracy macro avg weighted avg	0.49 0.94	0.41 0.96	0.96 0.44 0.95	51095 51095 51095

Running CNN with Different Optimizers (SGD)

Accuracy of the model in MSE: 0.23182307466484

PERFORMANCE_OF_LINEAR_REGRESSION_TRAINING = 0.9287112263182616

PERFORMANCE OF LINEAR REGRESSION TESTING = 0.9286035815637538

	precision	recall	f1-score	support
C CW W	0.93 0.00 0.00	1.00 0.00 0.00	0.96 0.00 0.00	47447 2464 255
accuracy macro avg weighted avg	0.00 0.23 0.86	0.00 0.25 0.93	0.00 0.93 0.24 0.89	929 51095 51095 51095

LSTM Model

I

Data Preprocessing

LSTM Architecture

Input Layer

Hidden Layer 1: 100 nodes Hidden Layer 2: 100 nodes Dense Layer 1: 25 nodes Dense Layer 2: 1 node

Epochs: 50, Optimizer: Adam, Loss: MSE

Loss vs Epoch

RSME: 19.95

LSTM Result - Withdrawn

Loss vs Epoch

RSME: 23.49

RSME: 4.35

LSTM Result - Denied

Loss vs Epoch

RSME: 0.24

Code Snippets

```
approved pred = approved predictor(False).to(device)
batch size, lr = 10000, 5e-4
print(approved pred)
approved pred, losses = train(approved pred, x tr tensor, y tr tensor oh, learningRate=lr)
plt.plot(losses)
plt.vlabel('loss')
plt.xlabel('epoch')
plt.title("Learning rate %f"%(lr))
plt.show()
y p te = np.around( np.array(torch.argmax(approved pred(x te tensor.float())) , dim=1).detach().cpu()))
v p tr = np.around( np.array(torch.argmax(approved pred(x tr tensor.float()), dim=1).detach().cpu()))
conf mat tr = confusion matrix(v tr. v p tr)
conf mat te = confusion matrix(y te, y p te)
print("Training Confusion Matrix")
print(confusion matrix(y tr, y p tr))
print("\nTesting Confusion Matrix")
print(confusion matrix(y te, y p te))
print("\nAccuracy of the model in MSE: " , mean squared error(y te, y p te) )
#print('r2 score test :' ,r2 score(v te, v n te))
                                # Finding the best strategies for the data to altered and preprocessed for Lea
test models regression['deep l
                                  strategy = {}
                                  for i in range(len(train data.columns)):
                                      print(train data.columns[i] , train data.iloc[:, i].nunique(dropna = True)
                                      if (train data.iloc[:, i].nunique(dropna = True) != train data.iloc[:, i].
                                          strategy[i] = 'most frequent'
                                      if (train data.iloc[:, i].nunique(dropna = True) != train data.iloc[:, i].
```

strategy[i] = 'median'

print(strategy)

```
class approved predictor(nn.Module):
   def init (self, d date=True):
       super(approved predictor, self). init
       self.d date = d date
       inputSize = 11 if d date else 8
       self.model = nn.Sequential(
           nn.Linear(inputSize, 16),
           nn.ReLU(),
            nn.Linear(16.16).
           nn.ReLU(),
           nn.Linear(16,8),
            nn.ReLU().
           nn.Linear(8,8),
            nn.ReLU().
           nn.Linear(8,8),
            nn.ReLU().
           nn.Linear(8,8),
           nn.ReLU().
           nn.Linear(8,4),
           nn.Softmax(dim=1)
     ef forward(self, x):
       if self.d date == False:
           x = x[:.:8]
       return self.model(x)
```

```
for itr in range(MAX iter):
    # Clear gradient buffers
    optimizer.zero grad()
    # Create the iterations batch and labels
    rand vec = torch.randint(0, points.size()[0
    batch = points.float()[rand vec,:]
    batch labels = labels.float()[rand vec]
    # get output from the model, given the input
    outputs = model(batch)
    # get loss for the predicted output
    lossvalue = loss(outputs, batch labels)
    if itr%100 == 0:
     losses.append(lossvalue.item())
    # get gradients w.r.t to parameters
    lossvalue.backward()
    optimizer.step()
   if itr % printEvery == 0:
        print("Epoch {}: loss={:.5f}".format(it
return model, losses
```

Code Snippets

```
def plotmap1(column, value, title):
      demo = data_viz.loc[data_viz['CASE_STATUS'] == value]
      experiment = demo.groupby(column).sum().rename(columns = {'WORKSITE_WORKERS' : 'Count'})
      fig = px.choropleth(experiment,
                          locations=experiment.index,
                          locationmode="USA-states",
                          scope="usa",
                          color='Count',
                          color continuous scale="Viridis r"
      fig.update_layout(
            title text = title.
            title_font_family="Times New Roman",
            title_font_size = 22,
            title_font_color="black",
            title x=0.45,
            showlegend=False
      fig.show()
```

```
[ ] # Dropping rows with missing values
    data x.dropna(inplace = True)
[ ] # Converting Decision date and received date to date time
    data_x['DECISION_DATE'] = pd.to_datetime(data_x['DECISION_DATE'])
    data_x['RECEIVED_DATE'] = pd.to_datetime(data_x['RECEIVED_DATE'])
   # Sorting by decision date
    data_x.sort_values(by = ['DECISION_DATE'],inplace = True)
    #Dropping columns not needed in LSTM
    data x.drop(['RECEIVED_DATE', 'EMPLOYER_CITY', 'EMPLOYER_STATE', 'WORKSITE_CITY', 'WORKSITE_STATE', 'WORKSITE_WORKSITE_WORKERS'], axis = 1, inplace = Ti
# Adding total visas processed per data to dataframe
    trial = {}
    for i in data x['DECISION DATE']:
     if i not in trial:
        trial[i] = 1
        trial[i] += 1
     for k,v in trial.items():
      data_x.loc[data_x['DECISION_DATE'] == k, 'TOTAL_COUNT'] = int(v)
[ ] #Restting the index to get correct dates
    data x.reset index(drop=True, inplace=True)
```

```
def data prep lstm(case):
     # Creating a copy of the dataset
     data_x_copy = data_x.copy()
     # Filtering to particular case status
     certified = data x copy[data x copy["CASE STATUS"] == case]
     #Finding percentage of case status with respect to total visas given that day
     certified1 = {}
     sum = 0
     for i in certified['DECISION DATE']:
       if i not in certified1:
         certified1[i] = 1
       else:
         certified1[i] += 1
     for k.v in certified1.items():
       certified.loc[certified['DECISION_DATE'] == k, 'COUNT'] = int(v)
     #Dropping duplicate decision dates
     certified = certified.drop duplicates(subset=['DECISION DATE'], keep='last')
     certified['Percentage'] = (certified['COUNT']/certified['TOTAL_COUNT'])*100
     #Dropping unrequired columns
     certified.drop(['CASE_STATUS','TOTAL_COUNT','COUNT'],axis = 1,inplace = True)
     #Setting decision date as the index
     certified.reset_index(drop=True, inplace=True)
     certified.set index('DECISION DATE', inplace = True)
```


Thanks!