Exercícios resolvidos - CAP 3 - Estatística Inferencial

Tatiane Chassot

Exercícios

1. A concentração de compostos químicos do solo foi medida em dez amostras aleatórias de um solo de uma área contaminada. A concentração medida, em mg/Kg, foi 1,4 0,6 1,2 1,6 0,5 0,7 0,3 0,8 0,2 e 0,9. Calcule o intervalo de 99% para a média de concentração.

```
concentracao=c(1.4, 0.6, 1.2, 1.6, 0.5, 0.7, 0.3, 0.8, 0.2 )
t.test(concentracao, conf.level = 0.99)
```

```
##
## One Sample t-test
##
## data: concentracao
## t = 4.9815, df = 8, p-value = 0.001078
## alternative hypothesis: true mean is not equal to 0
## 99 percent confidence interval:
## 0.2647664 1.3574558
## sample estimates:
## mean of x
## 0.8111111
```

2. Uma pesquisa foi realizada para verificar a satisfação dos alunos de uma escola em relação aos serviços fornecidos pela cantina. Utilizando-se uma amostra aleatória de 25 alunos, as respostas fornecidas foram:

satisfeito	não satisfeito	satisfeito	satisfeito	satisfeito
satisfeito	satisfeito	satisfeito	não satisfeito	satisfeito
não satisfeito	não satisfeito	não satisfeito	satisfeito	satisfeito
não satisfeito	satisfeito	satisfeito	não satisfeito	não satisfeito
não satisfeito	não satisfeito	satisfeito	satisfeito	satisfeito

Construa o intervalo de confiança para a proporção populacional dos alunos satisfeitos considerando um nível de confiança de 90%.

```
prop.test(14, 25, conf.level = 0.90)
```

```
##
## 1-sample proportions test with continuity correction
##
## data: 14 out of 25, null probability 0.5
## X-squared = 0.16, df = 1, p-value = 0.6892
## alternative hypothesis: true p is not equal to 0.5
```

```
## 90 percent confidence interval:
## 0.3802979 0.7266203
## sample estimates:
## p
## 0.56
```

3. (Morettin e Bussab 2009) Uma companhia de cigarros anuncia que o índice médio de nicotina dos cigarros que fabrica apresenta-se abaixo de 23 mg por cigarro. Um laboratório realiza seis análises desse índice, obtendo: 27, 24, 21, 25, 26, 22. Pode-se aceitar a afirmação do fabricante?

```
nicotina=c(27, 24, 21, 25, 26, 22)
t.test(nicotina, alt="less", mu=23)
```

```
##
## One Sample t-test
##
## data: nicotina
## t = 1.2336, df = 5, p-value = 0.8639
## alternative hypothesis: true mean is less than 23
## 95 percent confidence interval:
## -Inf 26.0724
## sample estimates:
## mean of x
## 24.16667
```

4. (Fonseca e Martins 2010) As estaturas de 20 recém-nascidos foram tomadas no Departamento de Pediatria da FNRP, cujos resultados em cm são: 41 50 52 49 49 54 50 47 52 49 50 52 50 47 49 51 46 50 49 50. Teste a hipótese de que a média desses recém nascidos é 50 cm.

```
estatura=c(41,50,52,49,49,54,50,47,52,49,50,52,50,47,49,51,46,50,49,50)
t.test(estatura, alt="two.sided", mu=50)
```

```
##
## One Sample t-test
##
## data: estatura
## t = -1.0688, df = 19, p-value = 0.2986
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 48.07709 50.62291
## sample estimates:
## mean of x
## 49.35
```

5. A fim de determinar a eficiência de um medicamento antitérmico, a temperatura corporal (em graus Celsius) de 15 indivíduos foi medida. Em seguida, foi administrado o medicamento e após uma hora a temperatura foi medida novamente. Os resultados podem ser encontrados na tabela abaixo.

Antes

Depois

37,5

```
37,8
36,0
36,4
39,0
37,6
38,0
37,2
37,8
36,9
38,5
37,7
36,9
36,8
39,4
38,1
37,2
36,7
38,1
37,3
39,3
38,0
37,5
37,1
38,5
36,6
37,8
35,0
39,0
39,0
Houve ou não diminuição da temperatura dos indivíduos?
antes = c(37.5, 36.0, 39.0, 38.0, 37.8, 38.5, 36.9, 39.4, 37.2, 38.1, 39.3, 37.5, 38.5, 37.8, 39.0)
depois = c(37.8, 36.4, 37.6, 37.2, 36.9, 37.7, 36.8, 38.1, 36.7, 37.3, 38.0, 37.1, 36.6, 35.0, 39.0)
t.test(antes, depois, paired=TRUE)
##
##
   Paired t-test
##
## data: antes and depois
```

```
## t = 3.7383, df = 14, p-value = 0.002204
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.3495417 1.2904583
## sample estimates:
## mean difference
## 0.82
```

6. (https://www.passeidireto.com/arquivo/25297344/aula-19-testes-para-proporcao) Uma pesquisa conclui que 90% dos médicos recomendam aspirina a pacientes que têm filhos. Teste a afirmação contra a alternativa de que a percentagem é inferior a 90%, se numa amostra aleatória de 100 médicos, 80 recomendam aspirina.

```
prop.test(80, 100, p=0.90, alt="greater")
```

```
##
## 1-sample proportions test with continuity correction
##
## data: 80 out of 100, null probability 0.9
## X-squared = 10.028, df = 1, p-value = 0.9992
## alternative hypothesis: true p is greater than 0.9
## 95 percent confidence interval:
## 0.7212471 1.0000000
## sample estimates:
## p
## 0.8
```

7.(http://www.im.ufrj.br/probest/Exercicios/C9_Exercicios.pdf) Foi obtida uma amostra com 20 pilhas elétricas da marca A. Todas elas foram examinadas e sua duração, em horas, foi medida. O mesmo foi feito com uma amostra de 18 pilhas do mesmo tipo, porém da marca B.

Marca A: 176 162 153 137 140 139 165 128 149 148 159 134 173 171 142 142 173 155 157 139

 $\mathbf{Marca\ B:\ 183\ 196\ 157\ 180\ 188\ 172\ 159\ 184\ 152\ 180\ 169\ 163\ 191\ 151\ 172\ 192\ 121\ 146}$

Existe diferença entre as marcas de pilha quanto a sua duração?

```
marcaa = c(176,162,153,137,140,139,165,128,149,148,159,134,173,171,142,142,173,155,157,139)

marcab = c(183,196,157,180,188,172,159,184,152,180,169,163,191,151,172,192,121,146)

var.test(marcaa,marcab)
```

```
##
## F test to compare two variances
##
## data: marcaa and marcab
## F = 0.55121, num df = 19, denom df = 17, p-value = 0.211
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2093348 1.4149415
## sample estimates:
## ratio of variances
## 0.5512057
```

Referências

Fonseca, Jairo Simon da, e Gilberto de Andrade Martins. 2010. Curso de Estatística. 6° ed. São Paulo: Atlas.

Morettin, Pedro Alberto, e Wilton de Oliveira Bussab. 2009. Estatística Básica. 6° ed. São Paulo: Saraiva.