Grafos

Algoritmo de Floyd-Warshall

Prof. Edson Alves

Faculdade UnB Gama

Robert W. Floyd (1962)

Robert W. Floyd (1962)

Stephen Warshall (1962)

Robert W. Floyd (1962)

Stephen Warshall (1962)

Bernard Roy (1959)

 \star Computa o caminho mínimo entre todos os pares de vértices de G(V,E)

- \star Computa o caminho mínimo entre todos os pares de vértices de G(V,E)
- * É capaz de processar arestas negativas

- \star Computa o caminho mínimo entre todos os pares de vértices de G(V,E)
- * É capaz de processar arestas negativas
- * Não processa, mas identifica ciclos negativos

- \star Computa o caminho mínimo entre todos os pares de vértices de G(V,E)
- * É capaz de processar arestas negativas
- * Não processa, mas identifica ciclos negativos
- * As distâncias são reduzidas por meio do uso de vértices intermediários

- \star Computa o caminho mínimo entre todos os pares de vértices de G(V,E)
- * É capaz de processar arestas negativas
- * Não processa, mas identifica ciclos negativos
- * As distâncias são reduzidas por meio do uso de vértices intermediários
- \star Complexidade: $O(V^3)$

Pseudocódigo

Entrada: um grafo G(V,E)

Saída: uma matriz d tal que d[u][v] é a distância mínima em G entre u e v

- 1. Faça:
 - (a) d[u][u] = 0, para todos $u \in V$
 - $(b) \ d[u][v] = w$, se $(u,v,w) \in E$
 - $(c) \ d[u][v] = \infty$, caso contrário
- 2. Para cada vértice k e todos os pares $(u,v)\in V^2$, faça

$$d[u][v] = \min(d[u][v], d[u][k] + d[k][v])$$

3. Retorne d

