Credit Card Fraud Detection

Ahmad Aldhaheri Devin Thakker Yash Gollapudi

Table of contents

01 02 03

Background Dataset Attributes

04 05 06

Methods & Goals Challenges Key Takeaways

01

Background

What is the importance and history of fraud detection?

\$28.7 Trillion

Total value of credit card transactions as of 2019

Fraud VS Transactions

As credit card use increases, fraud increases.

Total Losses From Credit Card Fraud

It Has Taken a Toll on EVERYONE!

02 Dataset

What dataset did we use?

Simulated Dataset

- → Dataset obtained from a Kaggle page
- → Generated from the Sparkov simulator
 - Created by Brandon Harris
- → The simulator is tuned to the parameters which included:
 - ◆ Date range from: January 1st 2019 to December 31st 2020
 - Around 1000 customers and cards
 - ◆ 800 different merchants for purchases
 - Included legitimate and fraudulent for testing
- → Prior to starting, we also split into the test and train set

03

Attributes

What were the main variables to look at?

<u>A</u> state <u></u>	# zip ==	Δ lat =	# long =	# city_pop =	∆ job =	□ dob =	⇔ trans_num 🖃	# unix_time =	# merch_lat =	# merch_long =
SC	29209	33.9659	-80.9355	333497	Mechanical engineer	1968-03-19	2da90c7d74bd46a 0caf3777415b3eb d3	1371816865	33.986391	-81.200714

trans_date =	# cc_num =	▲ merchant =	A category =	# amt =	∆ first =	A last =	∆ gender =	∆ street =	<u>A</u> city <u></u>
2020-06-21 12:14:25	229116393386724 4	fraud_Kirlin and Sons	personal_care	2.86	Jeff	Elliott	М	351 Darlene Green	Columbia

Our model utilized many attributes to decide on whether a transaction is fraudulent or not.

The main ones we used are:

- Merchant
- Amount
- Date

04

Methods Used & Results

What was the outcome?

Implementation

```
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier, plot_tree, export_text
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error, mean_absolute_percentage_error
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, accuracy_score
from sklearn.preprocessing import StandardScaler
```

	Unnamed: 0	cc_num	merchant	category	amt	gender	zip	lat	long	merch_lat	merch_long	year	month	day	hour	minute	second	
0	0	2703186189652095	514	8	4.97	0	28654	36.0788	-81.1781	36.011293	-82.048315	2019	1		0	0	18	
1		630423337322	241	4	107.23	0	99160	48.8878	-118.2105	49.159047	-118.186462	2019		1	0	0	44	
2	2	38859492057661	390	0	220.11		83252	42.1808	-112.2620	43.150704	-112.154481	2019	1	1	0	0	51	
3	3	3534093764340240	360	2	45.00		59632	46.2306	-112.1138	47.034331	-112.561071	2019		1	0		16	
4	4	375534208663984	297	9	41.96		24433	38.4207	-79.4629	38.674999	-78.632459	2019	1		0	3	6	
								+ Code + Markdown										

Methods Used

Decision Tree

Naive Bayes

K-NN

LNR-Regression

Decision Tree

- Supervised learning method for classification or regression.
- Data set required a classification model so utilized a decision tree classifier.
- Tuned the classifier to a max depth of 9 which produced the best results.

Sample of Tree

```
feature 4 <= 695.45
 -- feature_4 <= 259.04
     -- feature 14 <= 21.50
       --- feature_14 <= 3.50
            --- feature 4 <= 24.04
                    feature_3 <= 3.50
                     -- feature 3 <= 1.50
                          -- feature 3 <= 2.50
                             --- feature_4 <= 21.71
                                --- class: 1
                               - feature_4 > 21.71
                                 --- class: 0
                            feature_3 > 2.50
                              -- feature 4 <= 16.03
                                |--- class: 0
                              -- feature 4 > 16.03
                                I--- class: 0
                        feature 4 <= 6.30
                           - feature_3 <= 10.00</pre>
                              -- feature_3 <= 8.50
                                |--- class: 0
                            --- feature 3 > 8.50
```

Results

Accuracy

99.83%

Precision

82.17%

Recall

69.83%

F1 Score

75.5%

R2 Score

54.51%

Matrix

[[553249 325] [647 1498]]

Other Models

LNR-Regression

- Mean Absolute Error:
 0.995%
- Mean Squared Error:0.385%
- 3. Root Mean Squared Error: 6.204%
- 4. R2 Score: -0.0012893538391397 942

K-NN

- 1. Accuracy: 99.54%
- 2. Precision: 0.2.98%
- 3. Recall: 0.559%
- 4. F1 Score: 0.942%
- 5. Confusion Matrix: [[553184, 390] [2133, 12]]

Naive Bayes

- 1. Accuracy: 99.61%
- 2. Mean Absolute Error: 0.386%
- Mean Squared Error:0.386%
- 4. Root Mean Squared Error: 6.213%
- 5. Confusion Matrix: [[553574, 0] [2145, 0]]

Clallenges & Key Takeaways

What have we learned and what obstacles did we face?

Dataset

Very small proportion of actual fraudulent data (0.3% of transactions were fraudulent)

Model Selection

Very large data set doesn't allow for tuning of hyperparameters

Thank You!