









Negative-OR

#### Example



$$Y = (\overline{AB})(\overline{CD})$$

From Demorgan Theorem

$$Y = \overline{\overline{AB}} + \overline{\overline{CD}}$$



Then Y = AB + CD



$$\overline{A + B} = \overline{A} \bullet \overline{B}$$

NOR\_\_\_\_\_\_



Negative-AND



$$Y = \overline{(\overline{A + B}) + (\overline{C + D})}$$

From Demorgan Theorem

$$Y = (\overline{\overline{A + B}}) \bullet (\overline{C + D})$$

$$Y = (A + B) \bullet (C + D)$$





#### Exclusive-OR Gate XOR-gate

| I | IN |   |      |
|---|----|---|------|
| Α | В  | У |      |
| 0 | 0  | 0 | A'B' |
| 0 | 1  | 1 | A'B  |
| 1 | 0  | 1 | AB'  |
| 1 | 1  | 0 | AB   |

$$Y = \overline{A}B + A\overline{B}$$

$$Y = A \oplus B$$







$$Y = \overline{A}B + A\overline{B}$$

$$Y = A \oplus B$$



XOR represented by AND & OR & NOT











Y

$$Y = A \oplus B$$





#### Exclusive-NOR Gate XNOR-gate

| I | IN |   |      |
|---|----|---|------|
| Α | В  | У |      |
| 0 | 0  | 1 | A'B' |
| 0 | 1  | 0 | A'B  |
| 1 | 0  | 0 | AB'  |
| 1 | 1  | 1 | AB   |

$$Y = AB + \overline{AB}$$

$$Y = A \odot B$$









XNOR represented by AND & OR & NOT













# Half Adder





#### Half Adder

#### Follow The Design Procedures

(1) Determine inputs: A&B

Determine outputs: S&C

(2) Derive the truth table:

| A | В | S | С |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |

(3) Obtain the simplified Boolean functions:

$$S = A' B + A B' = A \oplus B$$

$$C = A B$$





Draw the logic diagram:





(5) Verify the correctness of the design:







#### Full Adder

(1) Inputs: A, B Cin

Output: S, C

(2)

| A | В | Cin | S | С |
|---|---|-----|---|---|
| 0 | 0 | 0   | 0 | 0 |
| 0 | 0 | 1   | 1 | 0 |
| 0 | 1 | 0   | 1 | 0 |
| 0 | 1 | 1   | 0 | 1 |
| 1 | 0 | 0   | 1 | 0 |
| 1 | 0 | 1   | 0 | 1 |
| 1 | 1 | 0   | 0 | 1 |
| 1 | 1 | 1   | 1 | 1 |

(3) S= A' B' Cin + A' B Cin' + A B' Cin' + A B Cin C= A' B Cin + A B' Cin + A B Cin' + A B Cin





(3) S= A' B' Cin + A' B Cin' + A B' Cin' + A B Cin

C= A' B Cin + A B' Cin + A B Cin' + A B Cin

S = (A' B + AB') Cin' + (A' B' + A B) Cin

$$= (A \oplus B) Cin' + (A \odot B) Cin$$

= ( 
$$A \oplus B$$
 )  $Cin' + (A \oplus B) Cin$ 

$$= A \oplus B \oplus Cin$$

Cin = Y; 
$$A \oplus B = X$$
  
 $\therefore S = XY' + X'Y \Rightarrow S = X \oplus Y$ 







$$C = AB (Cin + Cin') + Cin (A'B + AB')$$
  
=  $AB + Cin (A \oplus B)$ 













#### Decoders

Decoders are important type of combinational circuit. Address decoders with n inputs can select any of  $2^n$  locations.

They are useful in selecting a memory location according a binary value place don the address lines of a memory bas.



Black diagram for a decoder





#### Decoder 2\*4

|   | Inpu | ts | Outputs |    |    |    |
|---|------|----|---------|----|----|----|
|   | A    | В  | D3      | D2 | D1 | D0 |
| 0 | 0    | 0  | 0       | 0  | 0  | 1  |
| 1 | 0    | 1  | 0       | 0  | 1  | 0  |
| 2 | 1    | 0  | 0       | 1  | 0  | 0  |
| 3 | 1    | 1  | 1       | 0  | 0  | 0  |

Inputs = 2

Outputs = 4















#### Decoder 3\*8



#### Decoder 4\*16

| Α | 3 |      |   | $D_0$    |
|---|---|------|---|----------|
| В | 2 | DEC  | _ |          |
| C | 1 | 4*16 |   | Ъ        |
| D | 0 |      |   | $D_{15}$ |
|   |   |      |   |          |





#### Decoder with enable

Decoder works when enable = 1

Decoder doesn't work when enable = 0

| Inputs |   |   | Outputs |    |    |    |
|--------|---|---|---------|----|----|----|
| Е      | A | В | D3      | D2 | D1 | D0 |
| 0      | 0 | 0 | 0       | 0  | 0  | 0  |
| 0      | 0 | 1 | 0       | 0  | 0  | 0  |
| 0      | 1 | 0 | 0       | 0  | 0  | 0  |
| 0      | 1 | 1 | 0       | 0  | 0  | 0  |
| 1      | 0 | 0 | 0       | 0  | 0  | 1  |
| 1      | 0 | 1 | 0       | 0  | 1  | 0  |
| 1      | 1 | 0 | 0       | 1  | 0  | 0  |
| 1      | 1 | 1 | 1       | 0  | 0  | 0  |

| Inputs |   |   | Outputs |    |    |    |
|--------|---|---|---------|----|----|----|
| Е      | A | В | D3      | D2 | D1 | D0 |
| 0      | × | × | 0       | 0  | 0  | 0  |
| 1      | 0 | 0 | 0       | 0  | 0  | 1  |
| 1      | 0 | 1 | 0       | 0  | 1  | 0  |
| 1      | 1 | 0 | 0       | 1  | 0  | 0  |
| 1      | 1 | 1 | 1       | 0  | 0  | 0  |





#### Designing 3\*8 Decoder using 2\*4 decoder and enable.







#### Designing 3\*8 Decoder using 2\*4 decoder and enable.







# Multiplexer

A multiplexer has 2<sup>n</sup> inputs, 1 outputs and n selections

$$N = 3$$
= ...8 | ...8 |  $\Rightarrow 2^n$ 
| 1 | ...4 | ...8 | |  $\Rightarrow 2^n$ 
| 3 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...4 | ...

Multiplexer 2\*1

2 inputs

1 outputs

1 selection

| selection | Inp | outs | Outputs |
|-----------|-----|------|---------|
| S         | X   | Y    | Q       |
| 0         | 0   | 0    | 0       |
| 0         | 0   | 1    | 1       |
| 0         | 1   | 0    | 0       |
| 0         | 1   | 1    | 1       |
| 1         | 0   | 0    | 0       |
| 1         | 0   | 1    | 0       |
| 1         | 1   | 0    | 1       |
| 1         | 1   | 1    | 1       |

$$\mathbf{Q} = \mathbf{Y}$$
 قيم  $\mathbf{Q} = \mathbf{Y}$  فإن قيم المزج  $\mathbf{Q}$  فإن قيم  $\mathbf{S} = \mathbf{0}$ 

$$\mathbf{Q} = \mathbf{X}$$
 قيم  $\mathbf{S} = \mathbf{1}$  فإن قيم المزج  $\mathbf{Q}$  هي قيم المزج









#### Block D







### Multiplexer 4 \* 1







## Example:

Implement the following function F( X,Y,Z)=  $\Sigma$  ( 3,5,6 ) using an 8 \* 1 Multiplexer













# Thank you

