Introduction to Embedded Systems

Introduction to Embedded Systems
Programming
Lecture 1

Reference: Chapters (1..4) Arduino Cookbook, Michael Margolis, 1st Edition, 2011, O'Reilly books

Agenda

- Introduction
- Basic Board Programming
- Programming with C/C++
- Electronics Review

Introduction

Requirements

- Required Background Knowledge
 - Logic Design
 - C/C++ Programming
 - Basic Electronics
 - Basic Computer Architecture
- Required Resources
 - Arduino UNO Board with ATMega328P microcontroller
 - Arduino Development Environment
 - ISIS/Proteus Software (Version 8.X)

Arduino UNO Board

- ATMega328P Microcontroller
- 5V (40 ma for I/O PINs)
- 14 Digital I/O (6 with PWM)
- 6 Analog IP (10 Bit ADC)
- Analog Comparator
- Flash Memory 32KB (0.5K for Arduino Boot-loader)
- SRAM 2KB
- EEPROM 1KB
- 16 MH7
- 2 8-Bit Real Time Timers, 1 Watchdog Timer
- 1 16-Bit Counter
- Communication SPI/I2C/Serial

- USB2Serail to Interface with Computer (Programming and Communication)
- Indicators (LEDs) for Serial Communication
 PINs (1,2) and PIN 13
- Standalone Power
- Reset Button

On/Off Board Led


```
void setup() {
   Serial.begin(9600);
}

void loop() {
   Serial.println("Hello world.");
}
```

```
Hello world.
```

```
int incomingByte = 0; // for incoming serial data
void setup() {
  Serial.begin(9600); // opens serial port, sets data rate to 9600 bps
void loop() {
  // send data only when you receive data:
  if (Serial.available() > 0) {
    // read the incoming byte:
                                           Virtual Terminal
    incomingByte = Serial.read();
    // say what you got:
    Serial.print("I received: ");
    Serial.println(incomingByte, DEC);
```

```
void setup() {
  Serial.begin(9600); // opens serial port, sets data rate to 9600 bps
void loop() {
  if (Serial.available())
    Serial.read();
    Serial.println(78);
    Serial.println(1.23456);
    Serial.println('N');
    Serial.println("Hello world.");
    Serial.print(78, BIN);
    Serial.print(", ");
    Serial.print(78, OCT);
    Serial.println("");
    Serial.print(78, DEC);
    Serial.print(", ");
    Serial.print(78, HEX);
    Serial.println("");
    Serial.println(1.23456, 0);
    Serial.println(1.23456, 2);
    Serial.println(1.23456, 4);
```

```
78
1.23
N
Hello world.
1001110, 116
78, 4E
1
1.23
1.2346
```

Programming with C/C++

Supported Data Types

- int
 - 2 byte signed integer value, Range: -32768 to 32767
- unsigned int
 - 2 byte unsigned integer value, Range: 0 to 65535
- long
 - 4 byte signed integer value, Range: -2147483648 to 2147483647
- unsigned long
 - 4 byte unsigned integer value, Range: 0 to 4294967295
- flaot/double
 - 4 byte real vale, Range: -3.4028235E+38 to 3.4028235E+38
 - Resolution: 3.4028235E-38

Supported Data Types

- boolean
 - 1 byte integer value. false (0) or true (1)
- char
 - 1 byte signed integer value, Range: -128 to 127
- byte
 - 1 byte signed integer value, Range: 0 to 255
- string
 - C++ class represents array of chars
- void
 - used by function to indicate no value is returned
 - used by pointers to indicate unknown data type

Using Float Data Type

```
float value = 1.1;
void setup()
{
     Serial.begin(9600);
void loop()
     value = value - 0.1;
     if( value == 0)
          Serial.println("The value is exactly zero");
     else if(fabs(value) < .0001)</pre>
          Serial.println("The value is close enough to zero");
     else
          Serial.println(value);
     delay(100);
```

```
int inputPins[] = {2,3,4,5};
int ledPins[] = {10,11,12,13};
                                               Using Arrays
void setup()
     for(int index = 0; index < 4; index++)</pre>
          pinMode(ledPins[index], OUTPUT);
          pinMode(inputPins[index], INPUT);
void loop()
     for(int index = 0; index < 4; index++)</pre>
          int val = digitalRead(inputPins[index]);
          if (val == LOW)
               digitalWrite(ledPins[index], HIGH);
          else
               digitalWrite(ledPins[index], LOW);
```

```
String text1 = "Welcome to ";
                                           Using Strings
String text2 = " Arduino";
String text;
void setup()
     Serial.begin(9600);
     text = text1 + text2 + " board";
     Serial.println(text);
     Serial.print("Length : ");
     Serial.println(text.length());
     for(int i=0;i<text.length();i++)</pre>
          Serial.print(text[i]); Serial.print(" ");
     Serial.println("");
     text = text.toUpperCase();
     Serial.println(text);
     text = " hello ";
     text = text.trim();
     Serial.println(text);
void loop(){}
```

Electronics Review

Using ISIS Proteus Software

Electronics Review

- Resistance
- Capacitor
- Diodes
- Transistors
- Operational Amplifier

Resistance

Volt to Current Relation

• I = V/R

Volt to Current Relation

 Current Increase when Resistance Decrease

Series Resistors

Parallel Resistors

Produce Variable Voltage using Potentiometer (Variable Resistance)

Capacitors

Low Pass RC Filter Remove Sharp Edges and Noise

Low Pass RC Filter Remove Sharp Edges and Noise

Diodes

Switch Diode On/Off

Protecting Diode Circuits using Series Resistance

Forward and Reverse Diode Connection

7-Segment Display (7 Diodes)

Transistor

Control High Voltage using Small Voltage

Operational Amplifier

Inverting Amplifier

Amplification Only

Low Pass Filter (Noise Removal)

Protecting Output Voltage

