$$\begin{cases} x = ut - R\sin\frac{ut}{R} \\ y = R\left(1 - \cos\frac{ut}{R}\right), & \Delta r = \sqrt{x^2 + y^2} \implies \Delta r = \sqrt{\left(ut - R\sin\frac{ut}{R}\right)^2 + \left(R\left(1 - \cos\frac{ut}{R}\right)\right)^2} \implies \\ \langle v \rangle = \frac{\Delta r}{t} = \frac{R}{t}\sqrt{\frac{ut}{R}\left(\frac{ut}{R} - 2\sin\frac{ut}{R}\right) + 2\left(1 - \cos\frac{ut}{R}\right)}. \end{cases}$$
 (2)

График этой функции приведен на рисунке 2 в условии.

2.3.1. Отсчитаем на рисунке второй минимум на графике, так как время этого минимума $t_2 = 1,5$ с можно прочитать с достаточно высокой точностью. За время t_2 колесо

совершило 2 полных оборота и прошло путь $s = 2 \cdot 2\pi R = 4\pi R$. Это расстояние равно $\frac{at_2^2}{2}$.

В результате:
$$4\pi R = \frac{at_2^2}{2}$$
 \Rightarrow $a = \frac{8\pi R}{t_2^2} = \frac{8\pi \cdot 0,1}{1,5^2} = 1,12\frac{\text{м}}{\text{c}^2}$.

2.3.2. В формуле (2) для равномерного движения колеса произведение ut – это путь, пройденный колесом при равномерном движении. В данном случае его необходимо

заменить на $\frac{at^2}{2}$ — путь при равноускоренном движении из состояния покоя. В результате:

$$\langle v \rangle = \frac{\Delta r}{t} = \frac{R}{t} \sqrt{\frac{at^2}{2R} \left(\frac{at^2}{2R} - 2\sin\frac{at^2}{2R}\right) + 2\left(1 - \cos\frac{at^2}{2R}\right)}.$$
 (3)

График этой функции приведен на рисунке 3 в условии.

Задание 3. Теплоемкость процесса.

Часть 1. Политропические процессы.

3.1.1 Теплоемкость системы определяется как отношение количества теплоты, полученной системой к изменению ее температуры

$$C = \frac{\delta Q}{\Lambda T} \,. \tag{1}$$

Используя уравнение первого закона термодинамики для идеального газа

$$\delta Q = \Delta U + \delta A = C_V \Delta T + P \Delta V , \qquad (2)$$

получим требуемое в условии соотношение

$$C = \frac{\delta Q}{\Delta T} = C_V + P \frac{\Delta V}{\Delta T}.$$
 (3)

3.1.2 Запишем уравнение процесса в виде

$$PV^{n} = B, (4)$$

где B - некоторая постоянная. С помощью уравнения состояния идеального газа

$$PV = RT \tag{5}$$

Выразим явную зависимость температуры газа от его объема

$$T = \frac{B}{R}V^{1-n} \,. \tag{6}$$

Из вида этой зависимости с помощью математической подсказки находим

$$\Delta T = \frac{B}{R} V^{-n} (1 - n) \Delta V \quad \Rightarrow \quad \frac{\Delta V}{\Delta T} = \frac{RV^{n}}{B(1 - n)} . \tag{7}$$

Подставляя в уравнение (3) выражения (7) и выражения для давления в данном процессе, следующее из (7), получим

$$C = C_V + P \frac{\Delta V}{\Delta T} = \frac{3}{2} R + \frac{R}{1 - n} \,. \tag{8}$$

3.1.3 Уравнение изобарного процесса P = const следует из общего уравнения политропического процесса $PV^n = const$ при n = 0. Из общей формулы (8) следует, что в этом процессе $C = \frac{5}{2}R$.

Уравнение изотермического процесса имеет вид PV=const. Для этого процесса n=1. Следовательно, в этом процессе $C \to \infty$

Для определения параметров изохорного процесса, запишем общее уравнение политропического процесса в виде

$$PV^{n} = const \implies P^{\frac{1}{n}}V = const, \qquad (9)$$

из которого следует, что в этом процессе $n \to \infty$, поэтому $C = C_V = \frac{3}{2}R$.

Из определения адиабатного процесса, как процесса без теплообмена, следует, что в этом процессе C=0. Тогда из формулы (8) следует

$$C = \frac{3}{2}R + \frac{R}{1-n} = 0 \implies n = \frac{5}{3}.$$
 (10)

Полученные значения сведены в таблице.

Таблица.

No	Процесс	Показатель	Молярная
1	11. 6	n	теплоемкость С
1	Изобарный	n = 0	$C = \frac{5}{2}R$
2	Изотермический	n=1	$C \to \infty$
3	Изохорный	$n \to \infty$	$C = \frac{3}{2}R$
4	Адиабатный	$n = \frac{5}{3}$	C = 0

Часть 2. «Разорванный» цикл.

3.2.1 Из приведенного графика следует, что все участки приведенного цикла являются

политропическими процессами. В процессах 2-3 и 3-1 легко узнать изохорный и изобарный процессы, соответственно.

В процессе 1-2 теплоемкость постоянна и равна C=2R, поэтому показатель политропы в этом процессе равен

$$\frac{3}{2}R + \frac{R}{1-n} = 2R \quad \Rightarrow \quad n = -1. \tag{11}$$

Следовательно, уравнение этого процесса имеет вид $PV^{-1} = const = B$, или

$$P = BV (12)$$

Т.е. в этом процессе давление прямо пропорционально объему!

Из графика следует, что температура в этом процессе возросла в 9 раз. Подставляя уравнение процесса (12) в уравнения состояния, получим

$$BV^2 = RT. (13)$$

Отсюда следует, что в данном процессе объем и давление возрастают в три раза.

Это позволяет построить график процесса в требуемых координатах $\left(\frac{P}{P_0}, \frac{V}{V_0}\right)$ (см. рисунок).

3.2.2 Работа, совершенная за цикл численно равна площади цикла в координатах (P,V). Поэтому в данном случае

$$A_{\Sigma} = \frac{1}{2} (P_2 - P_3) (V_3 - V_1) = 2P_0 V_0$$
 (14)

Используя уравнения состояния, последнее выражение можно записать в виде, который дает возможность найти численное значение работы

$$A = 2P_0V_0 = 2RT_0 = 5.0 \,$$
кДж (15)

3.2.3 Очевидно, что в данном циклическом процессе газ получает теплоту только на участке 1-2. Согласно первому закону термодинамики это количество теплоты рассчитывается по формуле

$$Q_{12} = \Delta U_{12} + A_{12}. \tag{16}$$

Здесь изменение внутренней энергии

$$\Delta U_{12} = \frac{3}{2}R(T_3 - T_1) = 12RT_0 = 12P_0V_0; \tag{17}$$

А работа на этом участке равна площади трапеции под отрезком прямой 1-2:

$$A_{12} = \frac{P_1 + P_3}{2} (V_3 - V_1) = 4P_0 V_0 . {18}$$

Таким образом, КПД цикла равен

$$\eta = \frac{A_{\Sigma}}{Q_{12}} = \frac{2P_0V_0}{12P_0V_0 + 4P_0V_0} = \frac{1}{8} = 12,5\% . \tag{19}$$

3.2.4 Процесс, в котором давление возрастает пропорционально объему можно реализовать в сосуде с подвижным поршнем, если поршень прикреплен ко дну сосуда пружиной. Если пренебречь длиной пружины в недеформированном состоянии и внешним давлением, то процесс расширения газа будет описываться уравнением (12).

11 класс

Задание 1. Разминка. Как будет лучше?

1.1. По какой бы траектории фермер не двигался, часть пути ему будет необходимо преодолеть по полю. Достичь какой-либо точки D на поле из точки A быстрее всего будет, конечно же, по прямой, так как в этом случае длина пути минимальна. Далее, если в какойто момент времени фермер оказался на проселочной дороге, то дальше ему, очевидно, выгоднее идти домой в точку C именно по ней, так как скорость движения фермера по