```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

data.head()

	Inv oic e ID	Br an ch	City	Cust ome r type	Ge nd er	Prod uct line	U ni t pr ic e	Qua ntit y	Tax 5%	Tot al	Date	Ti m e	Pay me nt	co gs	gross marg in perc enta ge	gro ss inc om e	Ra tin g
0	75 0- 67- 84 28	А	Yang on	Me mbe r	Fe ma le	Healt h and beau ty	74 .6 9	7	26. 141 5	548. 971 5	1/5/ 2019	13 :0 8	Ewa llet	52 2.8 3	4.76 1905	26. 141 5	9.
1	22 6- 31- 30 81	С	Nay pyita w	Nor mal	Fe ma le	Elect ronic acce ssori es	15 .2 8	5	3.8 200	80.2 200	3/8/ 2019	10 :2 9	Cas h	76. 40	4.76 1905	3.8 200	9. 6
2	63 1- 41- 31 08	Α	Yang on	Nor mal	Ma le	Hom e and lifest yle	46 .3 3	7	16. 215 5	340. 525 5	3/3/ 2019	13 :2 3	Cre dit car d	32 4.3 1	4.76 1905	16. 215 5	7. 4

	Inv oic e ID	Br an ch	City	Cust ome r type	Ge nd er	Prod uct line	U ni t pr ic e	Qua ntit y	Tax 5%	Tot al	Date	Ti m e	Pay me nt	co gs	gross marg in perc enta ge	gro ss inc om e	Ra tin g
3	12 3- 19- 11 76	А	Yang on	Me mbe r	Ma le	Healt h and beau ty	58 .2 2	8	23. 288 0	489. 048 0	1/27 /201 9	20 :3 3	Ewa llet	46 5.7 6	4.76 1905	23. 288 0	8.
4	37 3- 73- 79 10	Α	Yang on	Nor mal	Ma le	Spor ts and trave	86 .3 1	7	30. 208 5	634. 378 5	2/8/ 2019	10 :3 7	Ewa llet	60 4.1 7	4.76 1905	30. 208 5	5. 3

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 17 columns):
    Column
                              Non-Null Count
                                              Dtype
     _____
                              _____
                                              ----
0
    Invoice ID
                              1000 non-null
                                              object
                              1000 non-null
1
    Branch
                                              object
2
    City
                              1000 non-null
                                              object
3
    Customer type
                              1000 non-null
                                              object
    Gender
                              1000 non-null
                                              object
    Product line
5
                              1000 non-null
                                              object
                                              float64
    Unit price
                              1000 non-null
7
    Quantity
                              1000 non-null
                                              int64
8
    Tax 5%
                                              float64
                              1000 non-null
9
    Total
                              1000 non-null
                                              float64
10
    Date
                              1000 non-null
                                              object
    Time
11
                              1000 non-null
                                              object
12
                              1000 non-null
                                              object
    Payment
13
                              1000 non-null
                                              float64
     cogs
                                              float64
 14
     gross margin percentage 1000 non-null
```

```
15 gross income 1000 non-null float64
16 Rating 1000 non-null float64
```

dtypes: float64(7), int64(1), object(9)

memory usage: 132.9+ KB

```
data['Date']=pd.to_datetime(data['Date'])
```

```
data1=data.copy()
```

```
data1['day']=(data1['Date']).dt.day
data1['month']=(data1['Date']).dt.month
data1['year']=(data1['Date']).dt.year
```

data1.head()

	In vo ic e ID	Br an ch	City	Cus to me r typ e	Ge nd er	Pro duc t line	U ni t p ri c	Qu ant ity	Ta x 5%	Tot al	D at e	Ti m e	Pa ym ent	co gs	gros s mar gin per cen tag e	gr os s inc o m e	R at in g	d a y	m o nt h	y e a r
0	75 0- 67 - 84 28	Α	Yan gon	Me mb er	Fe m al e	Hea Ith and bea uty	7 4. 6 9	7	26 .1 41 5	54 8.9 71 5	2 0 1 9- 0 1- 0 5	1 3: 0 8	Ew all et	52 2. 83	4.7 619 05	26 .1 41 5	9. 1	5	1	2 0 1 9

	In vo ic e ID	Br an ch	City	Cus to me r typ	Ge nd er	Pro duc t line	U ni t p ri c e	Qu ant ity	Ta x 5%	Tot al	D at e	Ti m e	Pa ym ent	co gs	gros s mar gin per cen tag e	gr os s inc o m e	R at in g	d a y	m o nt h	y e a r
1	22 6- 31 - 30 81	С	Nay pyit aw	No rm al	Fe m al e	Elec tron ic acc ess orie s	1 5. 2 8	5	3. 82 00	80. 22 00	2 0 1 9- 0 3- 0 8	1 0: 2 9	Ca sh	76 .4 0	4.7 619 05	3. 82 00	9. 6	8	3	2 0 1 9
2	63 1- 41 - 31 08	А	Yan gon	No rm al	M al e	Ho me and lifes tyle	4 6. 3 3	7	16 .2 15 5	34 0.5 25 5	2 0 1 9- 0 3- 0 3	1 3: 2 3	Cr edi t car d	32 4. 31	4.7 619 05	16 .2 15 5	7. 4	3	3	2 0 1 9
3	12 3- 19 - 11 76	А	Yan gon	Me mb er	M al e	Hea Ith and bea uty	5 8. 2 2	8	23 .2 88 0	48 9.0 48 0	2 0 1 9- 0 1- 2 7	2 0: 3 3	Ew all et	46 5. 76	4.7 619 05	23 .2 88 0	8. 4	2 7	1	2 0 1 9
4	37 3- 73 - 79 10	А	Yan	No rm al	M al e	Spo rts and trav el	8 6. 3 1	7	30 .2 08 5	63 4.3 78 5	2 0 1 9- 0 2-	1 0: 3 7	Ew all et	60 4. 17	4.7 619 05	30 .2 08 5	5.	8	2	2 0 1 9

	In vo ic e ID	Br an ch	City	Cus to me r typ	Ge nd er	Pro duc t line	U ni t p ri c e	Qu ant ity	Ta x 5%	Tot al	D at e	Ti m e	Pa ym ent	co gs	gros s mar gin per cen tag e	gr os s inc o m e	R at in g	d a y	m o nt h	y e a r	
											0										

```
for i in data_col:
    print(i + ': ')
    print(data1[i].unique())

Branch:
['A' 'C' 'B']
City:
['Yangon' 'Naypyitaw' 'Mandalay']
Customer type:
['Member' 'Normal']
Gender:
['Female' 'Male']
```

```
Product line:
['Health and beauty' 'Electronic accessories' 'Home and lifestyle'
    'Sports and travel' 'Food and beverages' 'Fashion accessories']
Quantity:
[ 7  5  8  6  10  2  3  4  1  9]
Payment:
['Ewallet' 'Cash' 'Credit card']
month:
[1  3  2]
year:
[2019]
```

```
data2=data1.copy()
```

```
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
```

```
data2.head()
```

	In vo ice ID	Br an ch	C it y	Cus to me r typ	Ge nd er	Pr od uct lin e	U ni t pr ic e	Qu ant ity	Ta x 5%	Tot al	D at e	Ti m e	Pay me nt	co gs	gros s mar gin perc enta ge	gr oss inc om e	Ra ti ng	d a y	m on th	y e ar
0	75 0- 67 - 84 28	0	2	0	0	3	7 4. 6 9	7	26. 14 15	548 .97 15	2 0 1 9- 0 1- 0 5	1 3: 0 8	2	52 2. 83	4.76 190 5	26. 14 15	9. 1	5	1	2 0 1 9
1	22 6- 31 - 30 81	2	1	1	0	0	1 5. 2 8	5	3.8 20 0	80. 220 0	2 0 1 9- 0 3- 0 8	1 0: 2 9	0	76 .4 0	4.76 190 5	3.8 20 0	9.	8	3	2 0 1 9
2	63 1- 41 - 31 08	0	2	1	1	4	4 6. 3 3	7	16. 21 55	340 .52 55	2 0 1 9- 0 3- 0 3	1 3: 2 3	1	32 4. 31	4.76 190 5	16. 21 55	7. 4	3	3	2 0 1 9
3	12 3- 19 - 11 76	0	2	0	1	3	5 8. 2 2	8	23. 28 80	489 .04 80	2 0 1 9- 0 1- 2 7	2 0: 3 3	2	46 5. 76	4.76 190 5	23. 28 80	8. 4	2 7	1	2 0 1 9

ì	In vo ice ID	Br an ch	C it y	Cus to me r typ	Ge nd er	Pr od uct lin e	U ni t pr ic e	Qu ant ity	Ta x 5%	Tot al	D at e	Ti m e	Pay me nt	co gs	gros s mar gin perc enta ge	gr oss inc om e	Ra ti ng	d a y	m on th	y e ar	
4 -	37 3- 73 - 79 10	0	2	1	1	5	8 6. 3 1	7	30. 20 85	634 .37 85	2 0 1 9- 0 2- 0 8	1 0: 3 7	2	60 4. 17	4.76 190 5	30. 20 85	5. 3	8	2	2 0 1 9	

```
for k in label_data:
    sns.countplot(x=data2[k])
    plt.show()
```



```
sns.countplot(x=data2['month'])
<AxesSubplot:xlabel='month', ylabel='count'>
```



```
data3=data2.copy()
```

```
data3.head()
```

	Bran ch	Cit y	Custo mer type	Gen der	Prod uct line	Uni t pric e	Quan tity	Tax 5%	Total	Paym ent	cogs	gross margin percent age	gross inco me	Rati ng
0	0	2	0	0	3	74. 69	7	26.14 15	548.9 715	2	522. 83	4.7619 05	26.14 15	9.1
1	2	1	1	0	0	15. 28	5	3.820 0	80.22 00	0	76.4 0	4.7619 05	3.820 0	9.6
2	0	2	1	1	4	46. 33	7	16.21 55	340.5 255	1	324. 31	4.7619 05	16.21 55	7.4
3	0	2	0	1	3	58. 22	8	23.28 80	489.0 480	2	465. 76	4.7619 05	23.28 80	8.4
4	0	2	1	1	5	86. 31	7	30.20 85	634.3 785	2	604. 17	4.7619 05	30.20 85	5.3

```
data3 = data3.reindex(columns=['Branch', 'City', 'Customer type', 'Gender',
    'Product line',
        'Unit price', 'Quantity', 'Tax 5%', 'Payment', 'cogs',
        'gross margin percentage', 'gross income', 'Rating', 'Total'])
```

```
x=data3.drop(['Total'],axis=1)
y=data3[['Total']]
x.shape, y.shape, data3.shape
((1000, 13), (1000, 1), (1000, 14))
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4,random_stat
e=42)
x_train.shape,x_test.shape,y_train.shape,y_test.shape
((600, 13), (400, 13), (600, 1), (400, 1))
from sklearn.preprocessing import StandardScaler
stand= StandardScaler()
x_train=stand.fit_transform(x_train)
x_test=stand.transform(x_test)
from sklearn.ensemble import RandomForestRegressor
rfc=RandomForestRegressor(n_estimators=100)
rfc.fit(x_train,y_train)
RandomForestRegressor()
```

from sklearn.metrics import r2_score

```
rfc_y_predict=rfc.predict(x_test)
```

```
r2_score(y_test, rfc_y_predict)
0.9999350661657065
```

```
for z in range(0,20):
    diff=y_test.values[z]-rfc_y_predict[z]
    print(y_test.values[z] , ' ', rfc_y_predict[z],' ', diff )
[523.971]
            521.2057199999999 [2.76528]
[616.98]
           616.4257049999995
                               [0.554295]
[408.7335]
            408.61380000000014
                                  [0.1197]
                                  [-0.28119]
[135.3555]
             135.636690000000002
[45.927] 44.60925000000004
                               [1.31775]
                                [-1.3146]
[618.975] 620.289599999999
[127.827] 127.36531499999994
                                 [0.461685]
                                 [-0.0567]
[731.6925] 731.7491999999995
            451.34858999999994
                                 [-1.24509]
[450.1035]
[138.1275]
             137.48920500000008
                                  [0.638295]
[422.73]
           422.38307999999995
                                [0.34692]
[463.428]
           462.1820699999998
                                [1.24593]
[212.7825]
             213.20018999999982
                                  [-0.41769]
[252.252]
                                 [0.06636]
            252.18563999999998
[290.0835]
            289.80965999999984
                                  [0.27384]
            329.26487999999995
                                 [1.86312]
[331.128]
[587.664]
            587.83557
                        [-0.17157]
[216.846]
            216.920130000000009
                                 [-0.07413]
[757.365]
            757.3464150000001
                                [0.018585]
[185.094]
            185.0490599999999
                                [0.04494]
```