

Helwan University - Faculty of Engineering (Helwan) Electronics and Communications Engineering Department

Lec-3 Diodes: Applications

Presented By:

Azza Mohamed Anis

Diode Applications

Diodes are used in many types of circuits such as:

- Digital Circuits (Logic Gates).
- ☐ Clipping Circuits.
- ☐ Clamping Circuits.
- Rectifier Circuits.

☐ Digital Circuits

All digital circuits (such as microprocessor, memory, ...) contain hardware elements called **logic gates** that perform the logical operations on binary numbers (0 and 1).

In digital circuits, binary 0 and 1 are represented by two voltage levels.

For example, zero volts (0V) represents binary 0, and +5V represents binary 1.

In actuality, because of circuit variations, binary 0 and 1 are represented by voltage ranges.

For example, any voltage between 0 and 0.9V represents binary 0 and any voltage between 2 and 5V represents binary 1.

Logic gates (AND, OR) can be made by combining diodes and resistors.

Two - Inputs AND Gate

Two – Inputs OR Gate

AND gate performs AND function, its output is 1 if both inputs are 1 and its output is 0 otherwise.

Truth Table of AND Gate

OR gate performs OR function, its output is 1 if either or both inputs is 1 and its output is 0 otherwise.

Truth Table of OR Gate

Example-1

For the circuit shown, the cut in voltage of a diode is 0.6V and the voltage drop across a conducting (forward) diode is 0.7V.

Calculate V_o for the following input voltages:

- (a) $V_1 = 5V$ and $V_2 = 5V$
- (b) $V_1 = 5V$ and $V_2 = 0V$
- (c) $V_1=0V$ and $V_2=0V$

Solution:

Cut in voltage = barrier voltage = V_B = 0.6V

Voltage drop across conducting (forward) diode is 0.7V.

Voltage across forward resistance plus barrier voltage is 0.7V.

(a)
$$V_1 = 5V$$
 and $V_2 = 5V$

Assume:

$$(V_{A1}=4) > (V_{K1}=0) + (V_B=0.6)$$

$$(V_{A2}=4) > (V_{K2}=0) + (V_B=0.6)$$

 \therefore Assume D_1 and D_2 are forward

V in any closed loop = 0

$$5 - (1k)I_1 - 0.7 - (9k)(I_1 + I_2) = 0$$

$$5 - (1k)I_2 - 0.7 - (9k)(I_1 + I_2) = 0$$

$$I_1 = 0.23 mA$$

$$I_2 = 0.23 mA$$

$$: I_1 = I_{D1} = positive value$$

$$: I_2 = I_{D2} = positive value$$

- I_{D1} and I_{D2} are in the correct direction
- \therefore our assumption is true (D_1 and D_2 are forward)

To find V_o , write KVL between V_o and the branch (that you calculate on it the voltage drop):

$$Vo - (9k)(I_1 + I_2) = 0$$

$$Vo = (9k)(I_1 + I_2)$$

$$Vo = 4.07V$$

(b)
$$V_1 = 5V$$
 and $V_2 = 0V$

Assume:

$$(V_{A1} = 4) > (V_{K1} = 0) + (V_B = 0.6)$$

$$(V_{A2}=0)<(V_{K2}=0)+(V_B=0.6)$$

 \therefore Assume D_1 is forward and D_2 is reverse

V in closed loop = 0

$$5 - (1k)I_1 - 0.7 - (9k)I_1 = 0$$
$$I_1 = 0.43mA$$

$$: I_1 = I_{D1} = positive value$$

- I_{D1} in correct direction
- \therefore our assumption is true (D_1 is forward)

To find V_o , write KVL between V_o and the branch (that you calculate on it the voltage drop):

$$Vo - (9k)I_1 = 0$$

$$Vo = (9k)I_1$$

$$Vo = 3.87V$$

(c)
$$V_1 = 0V$$
 and $V_2 = 0V$

Assume:

$$(V_{A1}=0)<(V_{K1}=0)+(V_B=0.6)$$

$$(V_{A2} = 0) < (V_{K2} = 0) + (V_B = 0.6)$$

 \therefore Assume D_1 and D_2 are reverse

To find V_o , write KVL between V_o and **the branch** (that you calculate on it the voltage drop):

Vo = (9k)(0A) = 0V

Truth Table of OR Gate

Input		Output
V_1	V_2	V_{o}
$0V \equiv Binary 0$	$0 \lor \equiv Binary 0$	$0V \equiv Binary 0$
$5V \equiv Binary 1$	$0V \equiv Binary 0$	$3.87 V \equiv Binary 1$
$0V \equiv Binary 0$	$5 \lor \equiv Binary 1$	$3.87V \equiv Binary 1$
5∨ <i>≡ Binary 1</i>	$5V \equiv Binary 1$	4.07V <i>≡ Binary 1</i>

Example-2

For the circuit shown, assume identical diodes with barrier potential (V_B) of 0.6V and forward resistance (R_f) of 30Ω

Calculate the output voltage (V_o) for the following input voltages:

(a)
$$V_1 = 0V$$
 and $V_2 = 0V$.

(b)
$$V_1 = 5V$$
 and $V_2 = 0V$.

(c)
$$V_1 = 5V$$
 and $V_2 = 5V$.

Solution:

(a)
$$V_1 = 0V$$
 and $V_2 = 0V$

Assume:

$$(V_{A1}=4) > (V_{K1}=0) + (V_{B}=0.6)$$

$$(V_{A2}=4) > (V_{K2}=0) + (V_B=0.6)$$

 \therefore Assume D_1 and D_2 are forward

The positive value of currents indicates our assumption is true $(D_1 \text{ and } D_2 \text{ are forward})$.

To find V_o , write KVL between V_o and the branch (that you calculate on it the voltage drop):

$$5 - 4.7k (I_1 + I_2) - V_0 = 0$$

$$5 - 4.7k (0.454mA + 0.454mA) = V_o$$

$$5 - 4.3 = V_0$$

$$V_0 = 0.7 \text{V}$$

(b)
$$V_1 = 5V$$
 and $V_2 = 0V$

Assume:

$$(V_{A1}=4)<(V_{K1}=4.5)+(V_{B}=0.6)$$

$$(V_{A2}=4) > (V_{K2}=0) + (V_B=0.6)$$

 \therefore Assume D_1 is reverse and D_2 is forward

$$\sum V \text{ in closed loop} = 0$$

$$V_{1} = 5V$$

$$V_{1} = 5V$$

$$V_{1} = 5V$$

$$V_{2} = 0$$

$$V_{3} = 0$$

$$V_{2} = 0$$

$$V_{3} = 0$$

$$V_{3} = 0$$

$$V_{4} = 0$$

$$V_{2} = 0$$

$$V_{3} = 0$$

$$V_{4} = 0$$

$$V_{2} = 0$$

$$V_{3} = 0$$

$$V_{4} = 0$$

$$V_{4} = 0$$

$$V_{2} = 0$$

$$V_{3} = 0$$

$$V_{4} = 0$$

$$V_{5} = 0$$

$$V_{5} = 0$$

$$V_{7} = 0$$

$$V_{8} =$$

The positive value of current indicates our assumption is true $(D_2 \text{ is forward})$.

To find V_o , write KVL between V_o and the branch (that you calculate on it the voltage drop):

$$5 - 4.7k xI_2 - V_0 = 0$$

$$5 - 4.7k \times 0.88mA = V_o$$

$$5 - 4.1 = V_0$$

$$V_0 = 0.9 \text{V}$$

(c)
$$V_1 = 5V$$
 and $V_2 = 5V$

Assume:

$$(V_{A1}=4)<(V_{K1}=4.5)+(V_{B}=0.6)$$

$$(V_{A2}=4)<(V_{K2}=4.5)+(V_B=0.6)$$

 \therefore Assume D_1 and D_2 are reverse

To find V_o , write KVL between V_o and **the branch** (that you calculate on it the voltage drop):

$$5 + 4.7k \times (0A) - V_o = 0$$

$$V_o = 5V$$

Truth Table of AND Gate

Input		Output
V_1	V_2	V_o
$0V \equiv Binary 0$	$0 \lor \equiv Binary 0$	$0.7V \equiv Binary 0$
$5V \equiv Binary 1$	$0V \equiv Binary 0$	$0.9 V \equiv Binary 0$
$0V \equiv Binary 0$	$5V \equiv Binary 1$	$0.9V \equiv Binary 0$
5∨ <i>≡ Binary 1</i>	$5V \equiv Binary 1$	5V <i>≡ Binary 1</i>

☐ Clipping Circuits

Used to clip off (cut) parts of input signal above or below certain levels.

Clipping circuits can be made by combining diodes and resistors.

Sketch the output voltage waveform (V_o versus time), assuming ideal diode and $V_{in} = 5$ sinwt.

Diode is reverse and appears as open switch (ideal diode) when: R $V_A \leq V_K + V_B$ $V_{in} \le 0 + 0$ D Forward D Reverse $V_{in} \leq 0$

The output voltage waveform:

Sketch the output voltage waveform, assuming practical diode with barrier potential $V_B = 0.7V$ and $V_{in} = 5$ sinwt

Diode is reverse and appears as open switch $(R_r = \infty)$ when:

$$V_A \le V_K + V_B$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$V_{in} \le 0 + 0.7$$

$$V_{in} \leq 0.7$$

D Reverse

D Forward

The output voltage waveform:

Sketch the output voltage waveform, assuming practical diode with barrier potential $V_B = 0.7V$ and $V_{in} = 5$ sinwt R_1

Diode is reverse and appears as open switch $(R_r = \infty)$ when:

Sketch the output voltage waveform, assuming a practical diode with barrier potential $V_B = 0.6V$ and $V_{in} = 5$ sinwt.

D Reverse

Diode is reverse and appears as open switch $(R_r = \infty)$ when:

$$V_A \le V_K + V_B$$

$$\downarrow \qquad \qquad \downarrow$$

$$V_{in} \le 2 + 0.6$$

$$V_{in} \le 2.6$$

2.6

D Forward

To find V_o , write KVL between V_o and the branch (that you calculate on it the voltage drop):

$$V_o - I_D(10k) - 0.6 - 2 = 0$$

$$V_o = I_D(10k) + 2.6$$

$$: I_D = \frac{V_{in} - 2.6}{20k}$$

$$V_o = \left(\frac{V_{in} - 2.6}{20k}\right) (10k) + 2.6$$

$$V_o = \frac{V_{in} - 2.6}{2} + 2.6$$

Sketch the output voltage waveform, assuming practical diode with barrier potential $V_B = 0.7V$ and $V_{in} = 5 sinwt$

D Forward

D Reverse

Diode is reverse and appears as open switch $(R_r = \infty)$ when:

 $1.3 \leq V_{in}$

D is forward

$$V_o + 0.7 - 2 = 0$$

 $V_o = 2 - 0.7 = 1.3V$

[2]
$$1.3 < V_{in} \le 5$$

Assume practical diodes with barrier potential $V_B = 0.7V$. Sketch the output voltage waveform when $V_{in} = 10 sinwt$.

D1 is reverse and appears as open switch $(R_r = \infty)$ when:

$$V_{A1} \leq V_{K1} + V_{B}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$V_{in} \leq 5 + 0.7$$

$$V_{in} \leq 5.7$$

D2 is reverse and appears as open switch $(R_r = \infty)$ when:

$$[2] - 5.7 \le V_{in} \le 5.7$$

D1 is reverse

D2 is reverse

$$V_o - V_{in} = 0$$

$$V_o = V_{in}$$

[3]
$$5.7 < V_{in} \le 10$$

D1 is forward

D2 is reverse

$$V_o - 0.7 - 5 = 0$$

$$V_o = 5.7V$$

Sketch the output waveform (V_o versus time) of the circuit shown, assuming practical diode with barrier potential $V_B = 0.6V$ and $V_{in} = 10 \text{ sinwt}$.

D2 is reverse $(R_r = \infty)$ when:

$$[1] - 10 \le V_{in} < -4.6$$

D1 is reverse

D2 is forward

$$V_o + 0.6 + 4 = 0$$

 $V_o = -4.6$

$$[2] - 4.6 \le V_{in} \le 2.6$$

D1 is reverse D2 is reverse

$$V_o - V_{in} = 0$$

$$V_o = V_{in}$$

[3]
$$2.6 < V_{in} \le 10$$

D1 is forward

D2 is reverse

$$V_{in} - I_D(10k + 10k) - 0.6 - 2 = 0$$

$$\frac{V_{in} - 2.6}{20k} = I_D$$

 R_1

To find V_o , write KVL between V_o and the branch:

$$V_0 - I_D(10k) - 0.6 - 2 = 0$$

$$V_0 = I_D(10k) + 2.6$$

$$: I_D = \frac{V_{in} - 2.6}{20k}$$

$$V_o = \left(\frac{V_{in} - 2.6}{20k}\right)(10k) + 2.6$$

$$V_o = \frac{V_{in} - 2.6}{2} + 2.6$$

