Announcements

- Homework 0 Solutions online
- Homework 1 online due Friday
- Remember FinAid survey Due Friday
- Minor office hour schedule changes this week
 - Akhila: Thursday 4-6pm -> Friday 7-9pm
 - Oishi: Tuesday 10-11am -> Thursday 3:30-4:30pm

Note on HW0 Q2

"Exponential" runtime means 2^{cn} or maybe 2^{n^c}, but not 2^{f(n)} for any function f.

For example, $n = 2^{\log(n)}$ is not exponential and does not grow faster than polynomials.

a(n) = 2^{sqrt{log(n)}} is definitely not exponential time.

Last Time

- Directed Graphs and dependency graphs
- Topological orderings
- DAGs

Directed Graphs

Often an edge makes sense both ways, but sometimes streets are one directional.

Definition: A <u>directed graph</u> is a graph where each edge has a direction. Goes *from* v *to* w.

Draw edges with arrows to denote direction.

Dependency Graphs

A directed graph can be thought of as a graph of dependencies. Where an edge v→w means that v should come before w.

Definition: A topological ordering of a directed graph is an ordering of the vertices so that for each edge (v,w), v comes before w in the ordering.

Cycles

Definition: A <u>cycle</u> in a directed graph is a sequence of vertices v_1 , v_2 , v_3 ,..., v_n so that there are edges (v_1, v_2) , (v_2, v_3) ,..., (v_{n-1}, v_n) , (v_n, v_1)

Obstacle

Proposition: If G is a directed graph with a cycle, then G has no topological ordering.

DAGs

Definition: A <u>Directed Acyclic Graph</u> (DAG) is a directed graph which contains no cycles.

Existence of Orderings

Theorem: Let G be a (finite) DAG. Then G has a topological ordering.

Sinks

Lemma: Every finite DAG contains at least one sink.

Proof:

- Start at vertex v = v₁
- Find edges (v_1, v_2) , (v_2, v_3) , (v_3, v_4) ...
- Eventually either:
 - Some vertex repeats (create cycle)
 - Get stuck (found a sink)

Proof of Theorem

- Induction on |G|.
- Find sink v.
- Let G' = G-v.
- Inductively order G' (still a DAG).
- Add v to the end of the ordering.

Today

- Topological sort
- Strongly connected components
- Meta-graphs

Problem: Design an algorithm that given a DAG G computes a topological ordering on G.

Find sink v

- Find sink v
 - Follow chain of vertices until stuck

- Find sink v
 - Follow chain of vertices until stuck
- Compute ordering on G-v

- Find sink v
 - Follow chain of vertices until stuck
- Compute ordering on G-v
- Place v at the end

```
Ordering(G)
 If |G|=0, Return {}
 Let v E G
 While there is an edge (v,w)
    V \leftarrow W
  Return (Ordering (G-v), v)
```


Final Ordering:

Final Ordering:

Final Ordering:

Final Ordering:

Final Ordering: C D

Final Ordering: C D

Final Ordering: C D

Final Ordering: B C D

Final Ordering: B C D

Final Ordering: B C D

Final Ordering: E B C D

Final Ordering: E B C D

Final Ordering: A E B C D

Runtime

```
(|V| time to find each sink) \cdot (|V| sinks) = O(|V|^2) runtime.
```

Runtime

```
(|V| time to find each sink) \cdot (|V| sinks) = O(|V|^2) runtime.
```

This is suboptimal.

Runtime

(|V| time to find each sink) $\cdot (|V|$ sinks) = $O(|V|^2)$ runtime.

This is suboptimal.

<u>Problem:</u> After adding a sink to the end, the algorithm forgets the path that it took. Instead of backing up to start, just back up one step.

Final Ordering:

D

Final Ordering: C D

Final Ordering: C D

Final Ordering: B C D

Final Ordering: B C D

Final Ordering: B C D

Final Ordering: E B C D

Final Ordering: E B C D

Final Ordering: A E B C D

This is just DFS ordering!

Final Ordering: A E B C D

Algorithm II

```
TopologicalSort(G)

Run DFS(G) w/ pre/post numbers

Return the vertices in reverse

postorder
```

Algorithm II

```
TopologicalSort(G)

Run DFS(G) w/ pre/post numbers

Return the vertices in reverse

postorder
```

Note: Can add vertices to list as postorder assigned.

Algorithm II

```
TopologicalSort(G)

Run DFS(G) w/ pre/post numbers

Return the vertices in reverse

postorder
```

Note: Can add vertices to list as postorder assigned.

Runtime: O(|V|+|E|).

Correctness

Proposition: If G is a DAG with an edge v → w
then w.post < v.post.</pre>

Correctness

Proposition: If G is a DAG with an edge v → w
then w.post < v.post.</pre>

Implies that ordering is correct.

Correctness

Proposition: If G is a DAG with an edge v → w
then w.post < v.post.</pre>

Implies that ordering is correct.

Proof:

Break into cases based on which of v or w is discovered first.

Proof

- If v discovered first
 - w discovered while exploring v
 - w descendant of v
 - pre-post intervals nested
 - -w.post < v.post

Proof

- If v discovered first
 - w discovered while exploring v
 - w descendant of v
 - pre-post intervals nested
 - -w.post < v.post

- v cannot be a descendant (DAG)
- pre-post intervals are disjoint
- -w.post < v.post

Topological Sort

Useful algorithm.

 Many graph algorithms are relatively easy to find the answer for v if you've already found the answer for everything downstream of v.

Topological Sort

Useful algorithm.

- Many graph algorithms are relatively easy to find the answer for v if you've already found the answer for everything downstream of v.
 - Topologically sort G.
 - Solve for v in reverse topological order.

Connectivity in Digraphs

In undirected graphs, we had a very clean description of reachability: v was reachable from w if and only if they were in the same connected component.

Connectivity in Digraphs

In undirected graphs, we had a very clean description of reachability: v was reachable from w if and only if they were in the same connected component.

This no longer works for digraphs.

Connectivity in Digraphs

In undirected graphs, we had a very clean description of reachability: v was reachable from w if and only if they were in the same connected component.

This no longer works for digraphs.

What is the right notion of connected components for digraphs?

- Reachability no longer symmetric
 - can reach w from v but not v from w.

- Reachability no longer symmetric
 - can reach w from v but not v from w.
- Maybe allow reachability in either direction?

- Reachability no longer symmetric
 - can reach w from v but not v from w.
- Maybe allow reachability in either direction?

- Reachability no longer symmetric
 - can reach w from v but not v from w.
- Maybe allow reachability in either direction?

 Maybe allow you to follow edges in either direction?

Problems

- Reachability no longer symmetric
 - can reach w from v but not v from w.
- Maybe allow reachability in either direction?

- Maybe allow you to follow edges in either direction?
 - This basically treats digraph as undirected.

Strongly Connected Components

<u>Definition:</u> In a directed graph G, two vertices v and w are in the same <u>Strongly Connected</u>

<u>Component</u> (SCC) if v is reachable from w and w is reachable from v.

Strongly Connected Components

<u>Definition:</u> In a directed graph G, two vertices v and w are in the same <u>Strongly Connected</u> <u>Component</u> (SCC) if v is reachable from w and w is reachable from v.

Question: Can you actually partition the vertices into such components?

Let $v \sim w$ if v reachable from w and visa versa.

<u>Claim:</u> This is an <u>equivalence relation</u>. Namely:

Let $v \sim w$ if v reachable from w and visa versa.

Claim: This is an <u>equivalence relation</u>. Namely:

v ~ v. (v reachable from itself)

Let $v \sim w$ if v reachable from w and visa versa.

Claim: This is an <u>equivalence relation</u>. Namely:

v ~ v. (v reachable from itself)

• If $v \sim w$ then $w \sim v$. (relation is symmetric)

Let $v \sim w$ if v reachable from w and visa versa.

Claim: This is an equivalence relation. Namely:

v ~ v. (v reachable from itself)

• If $v \sim w$ then $w \sim v$. (relation is symmetric)

• If $u \sim v$ and $v \sim w$ then $u \sim w$.

Let $v \sim w$ if v reachable from w and visa versa.

Claim: This is an <u>equivalence relation</u>. Namely:

v ~ v. (v reachable from itself)

• If $v \sim w$ then $w \sim v$. (relation is symmetric)

• If $u \sim v$ and $v \sim w$ then $u \sim w$.

Components

Whenever you have an equivalence relation you can split a set into components (equivalence classes) so that $v \sim w$ if and only if v and w are in the same component.

Components

Whenever you have an equivalence relation you can split a set into components (equivalence classes) so that $v \sim w$ if and only if v and w are in the same component.

Take any v, the set of all w so that v ~ w is the component of v. Everything connects to everything else in this class and does not connect (both ways) to anything outside.

Question: SCCs

How many strongly connected components does the graph below have?

- B) 2
- C) 3
- D) 4
- E) 5

Question: SCCs

How many strongly connected components does the graph below have?

- B) 2
- C) 3
- D) 4
- E) 5

Connectivity

 Do strongly connected components completely describe connectivity in G?

Connectivity

- Do strongly connected components completely describe connectivity in G?
 - No! In directed case, can have edges between SCCs.

Connectivity

- Do strongly connected components completely describe connectivity in G?
 - No! In directed case, can have edges between SCCs.

Need extra information to describe how SCCs connect.

Metagraph

<u>Definition:</u> The <u>metagraph</u> of a directed graph G is a graph whose vertices are the SCCs of G, where there is an edge between C_1 and C_2 if and only if G has an edge between some vertex of C_1 and some vertex of C_2 .

Example

Example

Example

Example **BCDE**

Result

Theorem: The metagraph is any directed graph is a DAG.

Result

Theorem: The metagraph is any directed graph is a DAG.

Proof (sketch):

- Assume for sake of contradiction it is not.
- Then metagraph has a cycle.
- Use this to show that separated components should be connected.

Computing SCCs

Problem: Given a directed graph G compute the SCCs of G and its metagraph.

Computing SCCs

Problem: Given a directed graph G compute the SCCs of G and its metagraph.

Easy Algorithm:

- For each v compute vertices reachable from v.
- Find pairs v, w so that v reachable from w and visa versa.
- For each v the corresponding w's are the SCC of v.

Computing SCCs

<u>Problem:</u> Given a directed graph G compute the SCCs of G and its metagraph.

Easy Algorithm:

- For each v compute vertices reachable from v.
- Find pairs v, w so that v reachable from w and visa versa.
- For each v the corresponding w's are the SCC of v.

Runtime: O(|V|(|V|+|E|)). We can do better.

Suppose that SCC(v) is a sink in the metagraph.

G has no edges from SCC(v) to another SCC.

- G has no edges from SCC(v) to another SCC.
- Run explore (v) to find all vertices reachable from v.

- G has no edges from SCC(v) to another SCC.
- Run explore (v) to find all vertices reachable from v.
 - Contains all vertices in SCC(v).

- G has no edges from SCC(v) to another SCC.
- Run explore (v) to find all vertices reachable from v.
 - Contains all vertices in SCC(v).
 - Contains no other vertices.

- G has no edges from SCC(v) to another SCC.
- Run explore (v) to find all vertices reachable from v.
 - Contains all vertices in SCC(v).
 - Contains no other vertices.
- If v in sink SCC, explore (v) finds exactly v's component.