

MSP430F5 系列 16 位超低功耗单片机模块原理 第12章 Timer A 定时器 A

版本: 1.1

日期: 2008.10. 最后更新日期:2010.8.

原文: TI slau208.pdf (5xxfamily User's Guide)

翻译: 许俊超 郑州市 软件工程师

编辑: DC 微控网总版主

注:以下文章是翻译 TI slau208.pdf 文件中的部分内容。由于我们翻译水平有限,有整理过 程中难免有所不足或错误: 所以以下内容只供参考.一切以原文为准。

文章更新详情请密切留意微控技术论坛。

第12章 Timer A

定时器 A 是一个复合了捕获/比较寄存器的十六位的定时/计数器。本章介绍 MSP430X5XX 的定时器 A。

章节

- 12.1 定时器 A 介绍
- 12.2 定时器 A 操作
- 12.3 定时器 A 寄存器

12.1 定时器 A 介绍

定时器 A 是一个十六位的定时/计数器,其捕获/比较寄存器多达七个。定时器 A 支持支持多重捕获/比较,PWM 输出和内部定时。定时器还有扩展中断功能,中断可以由定时器溢出产生或由捕获/比较寄存器产生。

定时器 A 的特性包括:

- 〇四种运行模式的异步 16 位定时/计数器
- ○可选择配置的的时钟源
- 〇多达七个可配置的捕获/比较寄存器
- 〇可配置的 PWM 输出
- 〇异步输入和输出锁存
- ○对所有 TA 中断快速响应的中断向量寄存器

定时器 A 的结构图如图 12-1

图 12-1 定时器 A 的结构图

12.2TIMER_A 操作方法

TIMERA 模块由用户软件来配置,TIMERA 的使用在下面的章节中讨论。 12.2.1

16 位定时/计数器寄存器 TAR,随着时钟信号的第个上升沿增/减(由模式所决定)。TAR 可以由软件读写。除此之外,定时器溢出时可以产生中断。TAR 可以通过设置 TACLR 位来清除。在 UP/DOWN 模式下,设置 TACLR 也可以清除时钟分频器和计数方向。

注意:修改 TIMERA 寄存器

建议在修改定时器运行模式前先停止定时器(中断使能、中断标志、TACLR 例外),以避免产生求知的误操作。

当 TACLK 与 CPU 时钟不同步时,当定时器没有运行时 TAR 的读将产生,其结果也是不可预料的。可以在定时器运行时多读几次,通过软件表决的方式来确定正确的读数。对 TAR 任何的写将是立即生效。

时钟源的选择和分频

定时器的时钟源可以是内部时钟源 ACLK, SMCLK 或者或者外部源 TACLK。时钟源由 TASSELx 位来选择, 通过 IDEXx 所选择的时钟源可以直接通过定时器或者分为 2, 4, 8 分频, 选择的时钟源可以使用 IDx 位进一步分为 2, 3, 4, 5, 6, 7, 8 分频。TACLR 置位时, 分频器复位。

注意: TIMER A 分频器

设置 TACLR 位将清除 TAR 即分频器的内容。当 TACLR 位被清除时,定时器时钟将在所选择的 TASSELx 位 TIMER_A 时钟源的第一个时钟上升沿开始计时,并持续到分频器设置 IDX 和 IDEXx 位置位。

12.2.2 开始计数器

定时器可以通过下列方式来启动或重新启动:

- ○当定时器计数到 MCXZ》 0 并且时钟源处于活动状态
- 〇当定时器模式为 up 或 up/down 模式时(即单调增和培养模式),定时器可以通过写 0 到 TACCRO 业停止计数。定时器可以通过写 不念旧恶非 0 值来重新开始计数。在这种情况下,定时器从 0 开始增计数。

1

2.2.3 定时器模式控制

定时器有 4 种操作模式,见表 12-1,他们分别是停止、单调增、连续和增减模式。操作模式由MCX 位来选择。

表 12-1 定时器模式

MCx	模式	说明
00	停止模式	定时器暂停
01	单调增模式	定时器循环地从 0 增到 TACCRO 的值
10	连续模式	定时器循环地从 0 连续增加到 0FFFFH
11	增减模式	定时器循环地从 0 增到 TACCR0 的值再连续减至 0

单调增模式

单调增模式用于计数周期不是 0FFFFH 的情况。定时器重复增计数值寄存器 TACCRO 的值,而 TACCRO 的值取决于定时周期,如图 12-2,定时器周期为 TACCRO+1。当定时器的值等于 TACCRO 时,定时器就回到 0 重新计数。如果当定时器的值大于 TACCRO,而此时选择单调增模式,定时器立即从 0 重新开始计数。

当定时器计数到 TACCRO 的值时,中断标志 CCIFG 位置位。当定时器由 TACCRO 返回 0时, TAIFG 中断标志置位。图 12-3 说明了标志循环。

图 12-3 单调增模式标志位的变化

修改周期寄存器 TACCR0

在定时器在运行时修改 TACCRO,如果新的周期值大于或等于旧的周期值,或大于当前的定时器计数值,那么定时器立刻开始执行新周期计数。如果新周期小于当前的计数值,那么定时器回到 0。但是,在回到 0 之前会多一个额外的计数。

连续模式

在连续模式中,定时器重复计数到 0FFFFH,然后重新从 0 开始增计数,如图 12-4。捕获/比较寄存器 TACCR0 以及其他捕获比较器工作方式一样。

当定时器从 0FFFFH 到 0 时, TAIFG 中断标志置位。图 12-5 表示了标志位的设置

图 12-5 连续模式标志位的设置

连续模式的使用

连续模式可以用于产生独立的时间间隔和输出频率。当每个时间间隔完成时就产生一个中断。下一个时间间隔的值在进入中断服务了程序时写入 TACCRX。图 12-6 显示了 2 个独立的

时间间隔 t0 和 t1 写入捕获/比较寄存器。在该应用中,时间间隔由硬件而不是软件控制,与中断响应没有冲突。如果想产生多于 3 个时间间隔可以使用所有的捕获比较寄存器。

图 12-6 连续模式时间间隔

时间间隔可以由其他模式产生,TACCR0 也可以作为周期寄存器使用。如果旧的 TACCR0X 的数据之和与新的相比,要比 TACCR0 大,那么操作就会复杂得多。当旧的 TACCRX 的值加上 tx 比 TACCR0 的值大,那么 TACCR0 的值必须被减掉以获得正确的时间间隔。

增减模式

增减模式在定时器周期不是 0FFFFH 且需要产生对称的脉冲时使用。定时器增计数到 TACCR0 再从 TACCR0 减计数到 0,如图 12-7,周期是 TACCR0 值的 2 倍。

该模式下,计数方向是固定的,即让定时器停止后再重新启动定时器,它就沿着停止时的计数方向和数值开始计数。如果不希望这样,就需要将 TACLR 置位来清除方向。TACLR 位也会清除 TAR 的值和定时器的时钟分频。

在增减模式,在 TACCR0 中,CCIFG 中断标志和 TAIFG 中断标志在一个周期中只能置位一次,由 1/2 定时器周期隔开。当定时器计数到由 TACCR0-1 变到 TACCR0 时,CCIFG 置位;而定时器完成减计数从 0001h 到 0000h 时,TAIFG 置位。图 12-8 表示了标志位的置位状况。

图 12-8 增减模式下的标志位

改变 TACCRO 周期寄存器

当定时器运行时,改变 TACCR0 的值,如果正处于减计数的情况,定时器会继续减到 0,新的周期在减到 0 后开始。

如果正处于增计数状态,新周期大于等于原来的周期,或比当前计数值要大,定时器会增计数到新的周期;如果正牌增计数状态,新周期小于原来的周期,定时器立刻开始减计数,但是,在定时器开始减计数之前会多计一个数。

增减模式的使用

增减模式支持在输出信号之间有死时间的应用(参阅 TIMERA 输出章节)。例如,避免出现过载情况,2个输出驱动一个H桥不能同时为高。在图12-9的例中,tdead为

Tdead = ttimer*(TACCR1-TACCR2)

Tdead—同时输出时必须没有反应的时间段

Ttimer—定时器时钟周期

TACCRX—捕获比较寄存器 X 的内容。

TACCRX 寄存器并不是缓冲,写入时立即更新,因此,任何所要求的死区时间不会自动保留。

图 12-9 增减模式的输出

12.2.4 捕获/比较模块

定时器 A 中有 3 个或 5 个相同的捕获比较模块 TACCRX, 其中的任何一个模块可以用于定时器数据的捕获或产生时间间隔。

捕获模块

当 CAP=1 时,选择捕获模式。捕获模式用于记录时间事件,比如速度估计或时间测量。捕获输入 CCIXA 和 CCLXB 连接外部的引脚或内部的信号,这通过 CCISX 位来选择。CMX 位选择捕获输入信号触发沿;上升沿、下降沿或两者都捕获。捕获事件发生于所选择的输入信号的触发沿。如果发生了捕获事件:

- 〇定时器的值复制到 TACCRX 寄存器中
- 〇中断标志位 CCIFG 置位

内部信号可以在任一时间通过 CCI 位来读取。MSP430X5XX 系列的器件允许 CCIXA 和 CCIXB 连接于不同的信号(请参考器件手册)。捕获信号可能会和定时器时钟不同步,并导致竞争条件的发生。将 SCS 位置位可以在下个定时器时钟使捕获同步,见图例 12-10

图 12-10 捕获信号 (scs=1)

如果一个第二次捕获在第一次捕获的值被读取之前发生,捕获比较寄存器就会产生一个溢出逻辑, COV 位在此时置位,如图 12-11, COV 位必须软件清除。

图 12-11 捕获周期

12.2.4.0.1 通过软件初始化捕获

捕获可以由软件初始化。CMX 位可以配置捕获的触发沿。CCISI=1 和 CCIS0 位可以捕获电压在 VCC 和 GND 之间的信号,初始化捕获器举例

MOV #CAP+SCS+CCISI+CM_3, &TACCTLx;配置 TACCTLx XOR #CCIS0,&TACCTLx; TACCTLx=TAR

比较模式

CAP=0 时选择比较模式。比较模式用于选择 PWM 输出信号或在特定的时间间隔中断。当 TAR 计数到 TACCRx 的值时:

- ○中断标志 CCIFG 置位;
- 〇内部信号 EQUx=1
- ○EQUx根据输出模式来影响输出信号
- ○输入信号 CCI 锁存到 SCCI

12.2.5 输出单元

每个捕获比较模块包含一个输出单元。输出单元用于产生如 PWM 这样的信号。每个输出单元可以根据 EQU0 和 EQUx 产生 8 种模式的信号。

输出模式

输出模式由 OUTMODx 位来确定,如表 12-2。对于所有模式来说(模式 0 除外),OUTx 信号随着定时器时钟的上升沿而改变。输出模式 2,3,6 和 7 对输出单元 0 无效,因为在这些模式下,EQUx=EQU0。

OUTMODx	模式	说明
000	输出	输出信号 OUTx 由 OUTx 位定义。当 OUTx 位更
000	刑 凸	新时,OUTx信号立刻更新
001	置位	当定时器计数到 TACCRX 值时,输出置位,并保
001	且.7以.	持置位直到定时器复位或选择了另一个输出模式
010	翻转/复位	当定时器计数到 TACCRX 值时,输出翻转。当定
010	翻转/复型	时器计数到 TACCRO 值时,输出复位
011	置位/复位	当定时器计数到 TACCRX 值时,输出置位。当定
011		时器计数到 TACCRO 值时,输出复位
100	翻转	当定时器计数到 TACCRX 值时,输出翻转。输出
100		信号的周期是定时器的2倍
101	复位	当定时器计数到 TACCRX 值时,输出复位,并保
101		持复位直到选择了另一个输出模式
110	翻转/置位	当定时器计数到 TACCRX 值时,输出翻转。当定
110	田切 4女/	时器计数到 TACCRO 值时,输出置位
111	复位/置位	当定时器计数到 TACCRX 值时,输出复位。当定
111	友世/直世	时器计数到 TACCRO 值时,输出置位

表 12-2 输出模式

输出举例—定时器处于增模式

当定时器计数到 TACCRX 的值或从 TACCR0 到 0 时,OUTx 信号根据输出模式而改变。使用 TACCR0 和 TACCR1 如图 12-12 所示。

输出举例—定时器处于连续模式

当定时器计数到 TACCRX 和 TACCR0 时,OUTx 信号按选择的输出模式发生改变。图 12-13 是使用 TACCR0 和 TACCR1 的例子

Figure 12-13. Output Example—Timer in Continuous Mode

图 12-13 输出举例—定时器处于连续模式

输出举例—定时器处于增减模式

当定时器的值在任一计数方向上出现了等于 TACCRX 和等于 TACCR0 的值时,OUTX 信号按选择的输出模式发生改变,使用方法如图 12-14

图 12-14 输出举例—定时器处于增减模式

注意:输出模式的切换

当需要在输出模式之间进行切换时,OUTMODX的一个位必须在过度时保持置位,除非是切换到模式 0, 否则会由于或非门解码输出模式 0 而导致出现脉冲干扰。输出模式之间的安全切换的方法之一是用输出模式 7 作为过度状态,例如:

BIS#OUTMOD_7,&TACCTLx;设置为输出模式 7 BIC#OUTMODx,&TACCTLx;清除不需要的位

12.2.6 定时器 A 的中断

16 位定时器 A 有 2 个中断向量:

- ○TACCR0 CCIFG 的 TACCR0 中断向量
- ○所有其他 CCIFG 和 TAIFG 的 TAIV 中断向量

在捕获模式下,当一个定时器的值捕获到相应的 TACCRx 寄存器时,CCIFG 标志置位。在比较模式下,如果 TAR 计数到相应的 TACCRx 值时,CCIFG 标志置位。软件可以清除或置位任何一个 CCIFG 标志。当相应的 CCIE 和 GIE 置位时,CCIFG 标志就会产生一个中断。

TACCR0 中断

TACCR0 CCIFG 标志拥有定时器 A 的最高中断优先级,并有一个专用的中断向量,如图 12-15。当进入 TACCR0 中断后,TACCR0 CCIFG 标志自动复位。

如图 12-15 捕获比较 TACCRO 中断标志

TAIV,中断向量发生器

TACCR1 CCIFG TACCR2 CCIFG 和 TAIFG 标志共用一个中断向量。中断向量寄存器 TAIV 用于确定它们中的那个要求响应中断。最高优先级的中断在 TAIV 寄存器中产生一个数字(见寄存器说明),这个数字是规定的数字,可以在程序中识别并自动进入相应的子程序。定时器 A中断不会影响 TAIV 的值。对 TAIV 的读写会自动复位最高优先级的挂起中断标志。如果另一个中断标志置位,在结束原告的中断响应后会,该中断响应立即发生。例如,当中断服务子程序访问 TAIV 时,如果 TACCR1 和 TACCR2 CCIFG 标志位置位,TACCR1 CCIFG 自动复位。在中断服务子程序的 RETI 命令执行后,TACCR2 CCIFG 标志会产生另一个中断。

TAIV 软件示例

以下软件说明了 TAIV 的使用和操作。TAIV 的值加入 PC 指针来自跳转到相应的子程序。 右边空白处的数字表明 CPU 每条指令需要的周期。不同的中断源的软件包含中断响应时间和返 回中断周期,但并不包含任务本身的执行时间。响应时间定义为:

- ○捕获比较模块 TACCRO 为 11 个时钟周期
- ○捕获/比较模块 TACCR1, TACCR2: 16 个时钟周期
- 〇定时器溢出标志 TAIFG: 14 个时钟周期

; TACCR0 CCIFG的中断周期	J.	周期数
CCIFG_0_HND		
;;中断响应开始		6
RETI		5
; TAIFG, TACCR1 和TACCF	R2 CCIFG的中断处理.	
TA_HND ;	中断响应	6
ADD &TAIV,PC	;加偏移量跳转到标号table	3
RETI	; Vector 0:无中断	5
JMP CCIFG_1_HND	;中断2: TACCR1	2
JMP CCIFG_2_HND	;中断4: TACCR2	2
RETI	;中断6:保留	5
RETI	; 中断8: 保留	5
RETI	;中断10:保留	5
RETI	;中断 12 :保留	5
TAIFG_HND	;中断14: TAIFG Flag	
;开始任务	_	
RETI		5
CCIFG_2_HND	;中断4: TACCR2	
;开始任务		
RETI;返回主程序		5

CCIFG_1_HND ; 中断2: TACCR1

...; 开始任务

RETI ; 返回主程序 5

12.3定时器A寄存器

定时器A的Timer_A7寄存器如表12-3,这是可以使用的最大配置。在设置使用手册中可以找到基地址。

表,定时器A寄存器

寄存器	简写	寄存器 类型	寄存器入 口类型	寄存器地址	初始状态
Timer_A7 控制寄存器	TACTL	读/写	Word	00h	0000h
	TACTL_L	读/写	Byte	00h	00h
	TACTL_H	读/写	Byte	01h	00h
Timer_A7捕获比较控制寄存器 0	TACCTL0	读/写	Word	02h	0000h
	TACCTL0_L	读/写	Byte	02h	00h
	TACCTL0_H	读/写	Byte	03h	00h
Timer_A7捕获比较控制寄存器 1	TACCTL1	读/写	Word	04h	0000h
	TACCTL1_L	读/写	Byte	04h	00h
	TACCTL1_H	读/写	Byte	05h	00h
Timer_A7捕获比较控制寄存器 2	TACCTL2	读/写	Word	06h	0000h
	TACCTL2_L	读/写	Byte	06h	00h
	TACCTL2_H	读/写	Byte	07h	00h
Timer_A7捕获比较控制寄存器 3	TACCTL3	读/写	Word	08h	0000h
	TACCTL3_L	读/写	Byte	08h	00h
	TACCTL3_H	读/写	Byte	09h	00h
Timer_A7捕获比较控制寄存器 4	TACCTL4	读/写	Word	0Ah	0000h
	TACCTL4_L	读/写	Byte	0Ah	00h
	TACCTL4_H	读/写	Byte	0Bh	00h
Timer_A7捕获比较控制寄存器 5	TACCTL5	读/写	Word	0Ch	0000h
	TACCTL5_L	读/写	Byte	0Ch	00h
	TACCTL5_H	读/写	Byte	0Dh	00h
Timer_A7捕获比较控制寄存器 6	TACCTL6	读/写	Word	0Eh	0000h
	TACCTL6_L	读/写	Byte	0Eh	00h
	TACCTL6_H	读/写	Byte	0Fh	00h
Timer_A7 计数器	TAR	读/写	Word	10h	0000h
	TAR_L	读/写	Byte	10h	00h
	TAR_H	读/写	Byte	11h	00h
Timer_A7 捕获比较控制 0	TACCR0	读/写	Word	12h	0000h
	TACCR0_L	读/写	Byte	12h	00h
	TACCR0_H	读/写	Byte	13h	00h
Timer_A7 捕获比较控制 1	TACCR1	读/写	Word	14h	0000h
	TACCR1_L	读/写	Byte	14h	00h
	TACCR1_H	读/写	Byte	15h	00h
Timer_A7 捕获比较控制 2	TACCR2	读/写	Word	16h	0000h
	TACCR2_L	读/写	Byte	16h	00h
	TACCR2_H	读/写	Byte	17h	00h

Timer_A7 捕获比较控制 3	TACCR3	读/写	Word	18h	0000h
	TACCR3_L	读/写	Byte	18h	00h
	TACCR3_H	读/写	Byte	19h	00h
Timer_A7 捕获比较控制 4	TACCR4	读/写	Word	1Ah	0000h
	TACCR4_L	读/写	Byte	1Ah	00h
	TACCR4_H	读/写	Byte	1Bh	00h
Timer_A7 捕获比较控制 5	TACCR5	读/写	Word	1Ch	0000h
	TACCR5_L	读/写	Byte	1Ch	00h
	TACCR5_H	读/写	Byte	1Dh	00h
Timer_A7 捕获比较控制 6	TACCR6	读/写	Word	1Eh	0000h
	TACCR6_L	读/写	Byte	1Eh	00h
	TACCR6_H	读/写	Byte	1Fh	00h
Timer_A7 中断向量	TAIV	读/写	Word	2Eh	0000h
	TAIV_L	读/写	Byte	2Eh	00h
	TAIV_H	读/写	Byte	2Fh	00h
Timer_A7 扩展	TAEX0	读/写	Word	20h	0000h
	TAEX0	读/写	Byte	20h	00h
	TAEX0	读/写	Byte	21h	00h

TACTL, Timer_A 控制寄存器

15	14	13	12	11	10	9	8				
			Unused			TASS	ELx				
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)				
7	6	5	4	3	2	1	0				
IDx		MCx	Unu	sed	TACLR	TAIE	TAIFG				
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)				
未使	用	15-10	未使用位 TA 时钟 00 TAC	炉源选择							
TASS	ELx	9-8	01 ACL								
10 SMCLK 11 INCLK 输入分频。这些位为输入时钟 00 /1 IDx 7-6 01 /2 10 /4 11 /8 模式控制,当定时器 A 不用于 00 停止模式: 定时器停止					: A 不用于节省 器停止	功耗时,将 MC)	← 00h				
MC	X	5-4			数到 TACCRO						
			10 连续模式,定时器计数到 0FFFH 11 增减模式:定时器计数到 TACCR0 然后送到 0000H								
Unus	sed	3	未使用位								
TAC	LR	2	定时器清零位。该位置位会复位 TAR,时钟分频和计数方向。 TACLR 位会自动复位并值为 0								
TAI	ΙE	1	TA 中断; 0 中断禁		允许 TAIFG 中国						

1 中断允许

TAIFG		0	TA 中版 0 无中国 1 中断					
TAR.	Timer A	A 寄存器	:					
15	14	13	12	11	10	,	9	8
				TARx				
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		rw-(0)	rw-(0)
7	6	5	4	3 TARx	2		1	0
rw-(0)	` '	rw-(0)	rw-(0)	rw-(0)	rw-(0)		rw-(0)	rw-(0)
	位 15-0							
Timer_	A 寄存器	F, TAR	寄存器 Time	er_A 的计数器	+			
TACCI	·····································	比较控制	1900年1190日					
1 ACC 1	LX,拥狱 14	: CL 牧 22 市 13	可句付 裔 12	11	10	9		8
CMx	17	CCISx			Unused	3	(CAP
	rw-(0)		rw-(0) rw		r 0		rw-(0)	
. ,	. ,	. ,		, ,		4	()	0
7 OUTM	6 ODv	5	CCIE C	3	2 OUT	1 COV		CCIFG
	rw-(0)	rw-(0)			rw-(0)	rw-(rw-(0)
(0)	(0)	(0)	(5)	•	(5)	(O)	(0)
СМх		15-14		族 凸捕获 凸捕获 □下降沿都捕	族 ^医 择 TACCRx 的	输λ信号	上 详同	哭
CCISx		13-12	00 CCIx/ 01 CCIxE 10 GND 11 VCC	A 3	- 将捕获通信和F			HH 1 /W
scs		11	0 异步捕		小1世3人20日4月	111111111111111111111111111111111111111		
000			1 同步捕					
SCCI		10	同步的捕		所选择的 CCI	输入信号	計由 EQU	Jx 信号锁
Unused		9	未使用	地				
0.10.00	-		捕获模式					
CAP	;	8	0 比较模	式				
OUTM	ODx ·	7-5		位。由于在模 因此这些模式 位的值	莫式 2,3,6 和 对 TACCR0 无刻		QUx	

		011 置位/复位
		100 翻转
		101 复位
		110 翻转/置位
		111 复位/置位
		捕获比较中断允许位,该位允许相应的 CCIFG 标志中断请求
CCIE	4	0 中断禁止
		1 中断允许
CCI	3	捕获比较输入,所选择的输入信号可以通过该位读取
		对于输出模式 0,该位直接控制输出状态
OUT	2	0 输出低电平
		1 输出高电平
		捕获溢出位。该位表示一个捕获溢出发出。COV 必须由软件复
COV	1	位。
COV	ı	0 没有捕获溢出发生
		1 有捕获溢出发生
		捕获比较中断标志位
CCIFG	0	0 没有中断挂起
		1 有中断挂起

TAIV,Timer_A 中断向量寄存器

15	14	13	12	11	10	9		8	
0	0	0	0	0	0	0		0	
r0	r0	r0	r0	r 0	r 0	r0	r0		,
7	6	5	4	3	2	1			0
0	0	0	0		TAIVx			0	
r0	r0	r0	r0	r O	r 0	r0		r0	,

TAIVx Bits 15-0 Timer_A 中断向量值

TAIV 的内容	中断源	中断标志	中断优先级
00H	无中断挂起		
02H	捕获比较 1	TACCR1 CCIFG	最高
04H	捕获比较 2	TACCR2 CCIFG	
06H	捕获比较3	TACCR3 CCIFG	
08H	捕获比较 4	TACCR4 CCIFG	
0AH	捕获比较5	TACCR5 CCIFG	
0CH	捕获比较6	TACCR6 CCIFG	
0EH	定时器溢出	TAIFG	最低位

TAEX0,Timer_A扩展寄存器 0

15	14	13	12	11	10	9			8
Unused	Unused	Unused	Unused	Unused	Unused	Unu	sed		Unused
r0	r0 r	0	r0 ı	r 0	r 0	r0		r0	
_	_	_	_	_		_			
7	6	5	4	3		2	1	0	
Unused	Unused	Unused	Unused	Unused	IDEX				
r0	r0	r0	r0	r 0		rw_(0)	rw_	_(0)	rw_(0)

Page **16** of **17**

未使用 位 15—3 未使用,只读,总为 0。

IDEX 位 2—0,输入分频器。由 IDX 的这些位来选择输入时钟

000 /1

001/2

010/3

011 /4

100 /5

101/6

100 /7

111 /8