

Deep Ensemble Learning for Human Activity Recognition Using Smartphone

Ran Zhu, Zhuoling Xiao*, Mo Cheng, Liang Zhou, Bo
Yan, Shuisheng Lin
University of Electronic Science and Technology of China
HongKai Wen
University of Warwick

Motivation

• Why human activity recognition based on smartphone?

-Ubiquitous

• Nearly every mobile devices

-Application

- Indoor pedestrian tracking
- Mobile health care
- Smart cities

Challenges

-Accuracy

- various motion modes
- confusing activities

-Limited data

- poor quantity
- low sampling rate
- unbalanced distribution

Going upstairs

Walking

Outline

- Motivation
- 2 DataSet
- 3 CNN-based model
- 4 Analysis & Conclusion

DataSet

Data Collection			
Subject	100 participants aged 12-51		
Device	Various smartphones (ios, andriod)		
Sensor	Accelerometer / Gyroscope / Magnetometer		
Activity	Walking / Standing / Running / Going upstairs / Going downstairs		
Placement	Texting / Swinging / Trousers pocket mode		
Sampling rate	50 Hz		

Outline

- 1 Motivation
- 2 DataSet
- 3 CNN-based model
- 4 Analysis & Conclusion

Preprocessing

- No normalization
- No de-noising
- Data segmentation

CNN-based model

• The structure of CNN-based human activity recognition model

- Filter size is set to be 7x7
- Pooling size is set to be 2x2
- Dropout is applied in the top fully-connected layer and is set to be 0.6

Ensemble Model

To tackle the confusion between certain activities like walking and going upstairs

- CNN-2, two-class network
- CNN-5, five-class network

Outline

- 1 Motivation
- 2 DataSet
- 3 CNN-based model
- 4 Analysis & Conclusion

Analysis of single CNN model

Detailed Accuracy By Activity

Activity	Model Evaluation			
	Precision	Recall	F1-score	
U	0.90	0.92	0.91	
D	0.95	0.95	0.95	
S	1.00	0.98	0.99	
R	0.99	0.99	0.99	
W	0.93	0.93	0.93	
Avg/all	0.96	0.96	0.96	

• The experiment randomly selects 10 participants as the testing set and the remaining 90 participants as the training set (10-fold evaluation).

Analysis of single CNN model

Model performance in different smartphone-placements

Texting

- the accuracy in pocket mode keeps consistent above 96.5% in all motions.
- The reason lies in the fact the motion of phone in the pocket is restricted, thus regular and easy to predict.

Analysis of ensemble model

- The single CNN achieves 95.62% accuracy and the prediction error mainly comes from the confusion between going upstairs and walking.
- Ensemble model reaches as high as 96.29% and the recognition rate of going upstairs and walking has increased.

University of Electronic Science and Technology of China

Thank you!