We have learned what the epan of vectors $v_1, ..., v_n$ is, and the definition of linear independence of vectors $v_1, v_2, ..., v_n$ is.

These two concepts come together in the following important definition:

Def. A basis for V is a set of vectors having the following properties.

1. The vectors in V are linearly independent

2. The vectors in most span the space V.

A basis B can be thought of as a generating set for V: Since it spans V, it means that every vector $v \in V$ can be written as a linear combination of vectors in B.

The fact that vectors in B are linearly independent actually gives us more: It tells us that this linear combination is unique:

If B= & v1, ..., vKJ is a basis of V, and

 $w = a_1 v_1 + \cdots + a_k v_k$ and also $w = b_1 v_1 + \cdots + b_k v_k$

Then subtracting the two egns gives

(a,-b,)v, + (a,-b,)v,=0

But V1, ..., Ve are linearly independent,

80 $a_1-b_1=0$, $a_2-b_2=0$, ..., $a_k-b_k=0$ $i\cdot e\cdot$, $a_1=b_1$, $a_2=b_2$, ..., a_k-b_k .

Examples of basis of a vector space:

1. $V = \mathbb{R}^3$.

Consider: $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$

* These on linearly independent because if we consider the linear combination (1e1 + c2e2 + C3e3 = 0

i.e., $C_1(1,0,0) + C_2(0,1,0) + C_3(0,0,1) = (0,0,0)$ then we get the equations comparing.

1. $C_1 + 0.C_2 + 0.C_3 = 0 \rightarrow 1^{\text{st}}$ components on both cides 0. $C_1 + 1.C_2 + 0.C_3 = 0$ 0. $C_1 + 0.C_2 + 1.C_3 = 0 \Rightarrow C_1 = C_2 = C_3 = 0$.

* The set $\{e_1, e_2, e_3\}$ is a spanning set for \mathbb{R}^3 , because an arbitrary vector $(a_1b,c) \in \mathbb{R}^3$ can be written as $(a_1b,c) = ae_1 + be_2 + ce_3$.

In general, for $V = \mathbb{R}^n$, the set of vectors $\{e_1, ..., e_n\}$ where e_i is a tuple that has 0 in all coordinates except the ith coordinate, which is equal to 1, forms a basis for \mathbb{R}^n . This is often denoted as the standard basis

for R".

- 2. $V = M_{2\times 2}(\mathbb{R})$ $\begin{cases}
 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{cases}$ forms a basis.
- 3. $V = P_n$, the space of polynomials in $\mathbb{R}[x]$ with degree at most n has $[x_1, x_1, x_2, x_3]$

as a basis.

Does V have a unique basis? No. e. \mathbb{R}^2 : (1,0), (1,1) is a basis for \mathbb{R}^2 , (1,2), (0,3) is a basis for \mathbb{R}^2 .

Recall: In the case of two vectors & v., v. ? we saw that these are linearly dependent salar fand only of they are multiples of each other i.e., $v_1 = cv_2$ for some $c \in \mathbb{R}$.

Thus, in \mathbb{R}^2 , if $v_i^*(\alpha_i, b_i)$ $v_2^*(\alpha_2, b_2)$, then $\{v_1, v_2\}$ is guaranteed to be linearly independent if $(\alpha_i, b_i) \neq c(\alpha_2, b_2)$ for any $c \in \mathbb{R}$. Same as easying v_1 and v_2 are Not multiples of each other.

But how do we know if this is a spanning set for \mathbb{R}^2 ? i.e., we want every $(P_1P) \in \mathbb{R}^2$ to be expressed as a linear combination of (a_1,b_1) and (a_2,b_2) . This amounts to friedry $(a_1,c_2) \in \mathbb{R}$ such that $(a_1+c_2) = (a_1+c_2) = (a_2)$

het us see just with an example:

Let $(a_1,b_1) = (1,2)$ $(a_2,b_2) = (3,4)$.

So we want to solve

$$C_1 + 3C_2 = P$$

(OR)
$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} P \\ q \end{pmatrix}$$

Augmented $\begin{pmatrix} 1 & 3 & P \\ 2 & 4 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & T \\ 0 & -2 & 9-2P \end{pmatrix}$

which can be solved to get a unique solution Observe that in general we get

$$\begin{pmatrix} a_1 & b_1 & P \\ a_2 & b_2 & q \end{pmatrix} \sim \begin{pmatrix} a_1 & b_1 & P \\ 0 & b_2 - a_2 b_1 & q - a_2 P \\ R_2 \mapsto R_2 - a_2 R_1 & a_1 \end{pmatrix}$$

This would have a unique solution as Long as $b_2 \neq \frac{a_2b_1}{a_1}$, i.e., $\frac{b_2}{b_1} \neq \frac{a_2}{a_1}$

which is equivalent to saying (a, b,) = c(a21b2) for any CER.

Dimension of a vector space

A vector space can have infinitely many distinct bases, but the <u>number</u> of basis vectors remains constant.

Def. The number of elements in any basis of a vector space V is called the dimension of V.

- eq.1) The dimension of Rn is n.
 - 2) The dimension of Mn(IR) is n2.
 - 3) The dimension of Pn is n+1.

Iwo important results that we will state without proof:

1) Any linearly independent set in V can be extended to a basis, by

adding more vectors if necessary.

2) Any spanning set can be reduced to a basis, by removing vectors y necessary.

In other words, a basis is a <u>maximal</u> independent set, and <u>minimal</u> spanning set.

Examples:

1. Find the dimension of CCA) where $A = \begin{bmatrix} 1 & 0 \\ 1 & 3 & 1 \\ 3 & 1 & -1 \end{bmatrix}$

$$\frac{\text{Soln} \cdot C(A)}{\sum_{i=1}^{n} C(A)} = \frac{1}{2} \left(\frac{1}{3} \right) \cdot \left(\frac{1}{3} \right)$$

we need to check if this is a linearly independent set:

Set
$$C_1 V_1 + C_2 V_2 + C_3 V_3 = 0$$
.

i.e.,
$$C_1 \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$C_1 + C_2 = 0 - 0$$

$$3c_1 + c_2 - c_3 = 0 \quad -3$$

Solve: use 0 to get c2 = -c, and pluy it 3.0:

$$-2C_{1}+C_{3}=0$$

 $2C_{2}-C_{3}=0$ => $C_{3}=2C_{2}$

:. The set is lin. dependent.

$$V_1 = V_2 + 2V_3$$
.

: Span {v,, v2, v3} = Span & v2, v3}.

{V2, V3} is a linearly independent set since V2 & V3 are not multiples of each other.

Thus, a basis for CIA) is $\{v_2, v_3\}$ and the

dimension = 2.

2. Find a bessis for the null space N(A).

We want to solve: $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Obsone, this is the same system as before. The solution set is given by $C\begin{bmatrix} 1\\-1\\-2\end{bmatrix}$.

:. $N(A) = \text{span} \left\{ \begin{pmatrix} -1 \\ -2 \end{pmatrix} \right\}$.

Basis for $N(A) = \left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}$ Disserve the difference $N(A) = \left\{ c\begin{pmatrix} -1 \\ -2 \end{pmatrix} \right\}$ infinite set?

Basis is one vector: $\left\{ \begin{pmatrix} -1 \\ -2 \end{pmatrix} \right\}$

In come cases we can find a basis by looking at the min. no. of vectors needed to span the vector space and come up with a guess for a basis.

Example: Find a basis for the foll. Subspaces of R3 and compute its dimension.

a)
$$W_1 = \{ (\chi_1, \chi_2, \chi_3), \in \mathbb{R}^3 : \chi_1 = \chi_2 = \chi_3 \}$$

b)
$$W_2 = \{ (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^3 : \chi_1 + \alpha_2 + \alpha_3 = 0 \}$$

- a) basis par W1: {(1,1,1)}
- b) bossis for wz: {(1,0,1), (0,1,-1)}

Definition:

- The rank of a materix A is the dimension of C(A), its column space.
- The nullity of a matrix A is the dimension of N(A), its null space.