Intro to Al Assignment 3 - Probabilistic Reasoning

Rajeev Atla - 2008003072 Dhvani Patel - 21006030 Jasmin Badyal - 2008003131

May 3, 2025

§1 Problem 1

§1.1 Part a

The joint probability for the events A, B, C, D, E is defined by the chain rule as:

$$P(A, B, C, D, E) = P(A) \cdot P(B) \cdot P(C) \cdot P(D|A, B) \cdot P(E|B, C)$$

For the specific case where all events are true (T), the joint probability is:

$$P(A = T, B = T, C = T, D = T, E = T) = P(A = T) \cdot P(B = T) \cdot P(C = T)$$

 $\cdot P(D = T|A = T, B = T) \cdot P(E = T|B = T, C = T)$

Substituting the provided numerical values:

$$P(A = T, B = T, C = T, D = T, E = T) = 0.2 \cdot 0.5 \cdot 0.8 \cdot 0.1 \cdot 0.3$$

= 0.0024

Thus, the likelihood of the combined event where A, B, C, D and E are all true is 0.0024.

§1.2 Part b

Now, let's analyze the scenario where all these events are false (F). The joint probability is:

$$P(A = F, B = F, C = F, D = F, E = F) = P(A = F) \cdot P(B = F) \cdot P(C = F)$$

 $\cdot P(D = F|A = F, B = F) \cdot P(E = F|B = F, C = F)$

Inserting the given probabilities for this scenario:

$$P(A = F, B = F, C = F, D = F, E = F) = 0.8 \cdot 0.5 \cdot 0.2 \cdot 0.1 \cdot 0.8$$

= 0.0064

Consequently, the probability of the joint event where A, B, C, D, and E are all false is $\boxed{0.0064}$.

§1.3 Part c

We aim to determine the conditional probability $P(\neg A|B,C,D,E)$. Employing Bayes' theorem, this can be expressed as proportional to the joint probability $P(\neg A,B,C,D,E)$:

$$P(\neg A|B,C,D,E) \propto P(\neg A,B,C,D,E)$$
.

Let the normalization factor be α , defined as:

$$\alpha = \frac{1}{P(A, B, C, D, E) + P(\neg A, B, C, D, E)}.$$

We are given the calculation for α :

$$\alpha = \frac{1}{(0.2 \cdot 0.5 \cdot 0.8 \cdot 0.1 \cdot 0.3) + (0.8 \cdot 0.5 \cdot 0.8 \cdot 0.6 \cdot 0.3)}.$$

$$\alpha = \frac{1}{0.0024 + 0.0576} = \frac{1}{0.06} = \frac{50}{3}.$$

Now, we can compute the conditional probability $P(\neg A|B,C,D,E)$:

$$P(\neg A|B, C, D, E) = \alpha \cdot P(\neg A, B, C, D, E).$$

$$P(\neg A|B, C, D, E) = \frac{50}{3} \cdot 0.0576.$$

$$P(\neg A|B, C, D, E) = 0.96.$$

Therefore, the conditional probability $P(\neg A|B,C,D,E)$ is $\boxed{0.96}$.

§2 Problem 2

§2.1 Part a

Our goal is to determine the conditional probability P(Burglary|JohnsCalls = true, MaryCalls = true). We are given the formulation:

$$P(B|J,M) = \alpha \cdot P(B) \sum_{E} P(E) \sum_{A} P(A|B,E) \cdot P(J|A) \cdot P(M|A)$$

where
$$\alpha = \frac{1}{P(J, M)}$$
.

Following the provided steps and correcting the final calculation:

$$\begin{split} P(B|J,M) &= \alpha \cdot \begin{pmatrix} 0.00059224259 \\ 0.0014918576 \end{pmatrix} \\ \text{(where the top element corresponds to } B = T \text{ and the bottom to } B = F) \\ \left(\text{and } \alpha = \frac{1}{0.0020853609} \right) \\ &= \frac{1}{0.0020853609} \cdot \begin{pmatrix} 0.00059224259 \\ 0.0014918576 \end{pmatrix} \\ &= \begin{pmatrix} \frac{0.00059224259}{0.0020853609} \\ \frac{0.0014918576}{0.0020853609} \end{pmatrix} \\ &= \begin{pmatrix} 0.284 \\ 0.716 \end{pmatrix} \end{split}$$

Here, $\boxed{0.284}$ signifies the probability of a burglary occurring given that John and Mary call, while $\boxed{0.716}$ represents the probability of no burglary under the same conditions.

§2.2 Part b

What is the computational cost of determining $P(X_1|X_n = \text{true})$ via enumeration? What is the cost using variable elimination?

§2.2.1 Complexity via Enumeration

To compute $P(X_1|X_n = \text{true})$ by enumeration, we initially assess two binary trees for each state of X_1 . Each of these trees possesses a depth of n-2. Consequently, the aggregate computational effort for enumeration amounts to $O(2^n)$.

§2.2.2 Complexity via Variable Elimination

Moving on to variable elimination, the size of the factors will not exceed two variables. For instance, when computing $P(X_1|X_n = \text{true})$:

$$P(X_1|X_n = \text{true}) = \alpha \cdot P(X_1) \cdots \sum_{x_{n-2}} P(x_{n-2}|x_{n-3}) \sum_{x_{n-1}} P(x_{n-1}|x_{n-2}) P(X_n = \text{true}|x_{n-1})$$

$$= \alpha \cdot P(X_1) \cdots \sum_{x_{n-2}} P(x_{n-2}|x_{n-3}) \sum_{x_{n-1}} f_{X_{n-1}}(x_{n-1}, x_{n-2}) f_{X_n}(x_{n-1})$$

$$= \alpha \cdot P(X_1) \cdots \sum_{x_{n-2}} P(x_{n-2}|x_{n-3}) f_{\frac{x_{n-2}}{X_{n-1} \cdot X_n}}$$

As evident, this mirrors a problem with n-1 variables rather than n. Hence, the computational work remains constant, independent of n, and the overall complexity is O(n).

§3 Problem 3

§4 Problem 4

We can model the system as a hidden Markov model. We can model X_t as a Markov chain with the states $\{A, B, C, D, E, F\}$ and transition matrix:

$$T_{i,j} = P(X_t = j | X_{t-1} = i)$$

$$T = \begin{pmatrix} 0.2 & 0.8 & 0 & 0 & 0 & 0 \\ 0 & 0.2 & 0.8 & 0 & 0 & 0 \\ 0 & 0 & 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 0 & 0.2 & 0.8 & 0 \\ 0 & 0 & 0 & 0 & 0.2 & 0.8 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

In addition, we have the observation matrices for hot and cold:

We know that the rover starts at state A with probability 1, so $P(X_1 = A) = 1$. The initial state vector is therefore $f_1 = [1, 0, 0, 0, 0, 0]^T$.

§4.1 Part 1

We are being asked to compute the state distribution f_3 given the observations $O_1 = \text{hot}$, $O_2 = \text{cold}$, and $O_3 = \text{cold}$.

§4.2 Part 2

We know that

$$f_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

We can then compute

$$b_3 = TO_{\text{cold}}b_4$$

$$= [0.8, 1, 0.2, 0.8, 1, 0]$$

$$P(X_2|\text{hot}_1, \text{cold}_2, \text{cold}_3) = b_3 \circ f_2$$

$$= [0, 1, 0, 0, 0, 0]$$

§4.4 Part 4

We can simply do

$$P(X_4|\text{hot}_1, \text{cold}_2, \text{cold}_3) = Tf_3$$

= $[0, 0.04, 0.32, 0.64, 0, 0]$

§4.3 Part 3

Using the results of part 4,

$$P(\text{hot}_4|\text{hot}_1, \text{cold}_2, \text{cold}_3) = P(X_4 = A \text{ or } X_4 = D|\text{hot}_1, \text{cold}_2, \text{cold}_3)$$

= 0 + 0.64
= 0.64

§5 Problem 5