Inteligencja obliczeniowa

projekt

Symulacja świata 2D

Tematem jest zbadanie różnych technologii do optymalizacji parametrów do prostego świata 2D i porównanie ich wyników

O symulacji

Symulacja działa na dwuwymiarowej tablicy która posiada organizmy: Fox,Bunny,Grass, może być jeden organizm na pole. Organizmy jak są wystarczająco najedzone mogą stworzyć dziecko, trawa w przeciwieństwie do lisów i królików może tworzyć dziecko samemu, symulacja jest uznana za skończoną gry ilość któregoś z organizmów wynosi 0

Zmienne

Symulacja przyjmuje: ilość różnych organizmów na pierwszą turę ile tur organizmy żyją ile potrzebują jeść

ile dzieci na raz tworzą co ile tur mogą tworzyć dzieci

Pyswarm

Algorytm działający na podstawie roju, cząstki poruszają się według parametrów c1(podążanie za własnym wyżem) ,c2(podążanie za wyżem ogółu) i w(pęd)

Fox: 34 bunny: 26 grass: 7

PyGad

Algorytm mutujący populacje wybierający najlepszych do bycia rodzicami następnej, dzieci mają lekkie mutacje

Fox: 23 bunny: 22 grass: 40

Optuna

Zaczyna losowo po czym "uczy się" które parametry warto dalej testować przez tworzenie przybliżonego modelu na podstawie dotychczasowych prób poprzez propabilistyke

Modeluje funkcję celu jako rozkład prawdopodobieństwa, a nie jako czarną skrzynkę.

- Bazuje na wcześniejszych wynikach, by przewidywać, które parametry warto sprawdzić.
- Wybiera kolejne próby tam, gdzie prawdopodobieństwo poprawy jest największe (acquisition function).

Fox: 14 bunny: 26 grass: 7

CMA-ES

Covariance Matrix Adaptation Evolution Strategy

Działa ewolucyjnie z wykorzystaniem macierzy kowariancji do powiązania parametrów i bardziej "inteligentnej" ewolucji, jest dobrze przystosowany do skomplikowanych funkcji z "szumem"

CMA-ES: Fitness vs Iteracja

CMA-ES: Fitness vs Skumulowany czas

CMA-ES: Czas jednej iteracji Czas [s]

Iteracja

CMA-ES: Rozkład Fitness **Fitness**

Fitness

Fox: 19 bunny: 39 grass: 49

Porównanie parametrów

						Bunny		Bunny	Bunny		FoxCo			FoxLiv		Grass	Grass	Grass	
Algoryt	InitialG	InitialB	InitialF	Bunny	Bunny	Coold	Bunny	Childr	LiveLe	FoxSt	oldow	FoxFe	FoxCh	eLengt	Grass	Coold	Childr	LiveLe	Fitnes
m	rass	unny	ох	Start	Food	own	Fed	en	ngth	art	n	d	ildren	h	Food	own	en	ngth	s
CMA-																			
ES	49	39	19	49	49	1	9	4	49	40	13	38	3	49	38	1	3	32	314
Optun																			
а	7	26	14	44	28	1	26	5	16	19	12	12	5	49	13	1	4	9	292
PyGA																			
D	40	22	23	48	44	1	11	4	22	27	13	3	3	43	38	2	2	31	281
PySwa																			