Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Carthage

Ecole Supérieure de la Statistique et de l'Analyse de l'Information

Examen				
Module : Modèle linéaire	Enseignant: Mokhtar KOUKI			
Classe : 2 ^{ème} Année	Nombre de pages : 02			
Date : 6 juin 2018	Durée : 1h30min			
Session : Contrôle	Documents : non autorisés			

Exercice 1 (12 points : 2+3+1+2+2+2)

On considère la régression entre le logarithme de la production (q), le logarithme du stock de capital (k) et le logarithme de l'emploi (l) pour 63 entreprises :

$$q_i = \alpha + \beta_1 k_i + \beta_2 l_i + \epsilon_i, i = 1, 2, \cdots, 63$$

où ϵ_i , sont des termes aléatoires identiquement et indépendamment distribués d'espérance mathématique zéro et de variance σ^2 , α , β_1 et β_2 sont des paramètres à estimer. On dispose des statistiques suivantes :

$$\sum_{i=1}^{63} q_i = 126; \sum_{i=1}^{63} k_i = 252; \sum_{i=1}^{63} l_i = 189, \sum_{i=1}^{63} q_i^2 = 230; \sum_{i=1}^{63} k_i^2 = 1120;$$

$$\sum_{i=1}^{63} l_i^2 = 300, \sum_{i=1}^{63} q_i k_i = 600, \sum_{i=1}^{63} q_i l_i = 422 \text{ et } \sum_{i=1}^{63} k_i l_i = 800$$

- Donner l'interprétation économique de la relation définie précédemment ainsi que celle des paramètres β₁ et β₂
- 2. Donner l'expression des estimateurs par la méthode des moindres carrés ordinaires des paramètres α , β_1 et β_2 , que l'on note $\widehat{\alpha}$, $\widehat{\beta}_1$ et $\widehat{\beta}_2$ et calculer leurs valeurs numériques. Commenter.
- Donner le valeur numérique de l'estimateur sans biais de la variance des résidus, notée ô².

4. Calculer la variance estimée duveeteur
$$\hat{\beta} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix}$$

- Dresser le tableau d'analyse de la variance.
- Sous l'hypothèse de la normalité des résidus, tester, au seuil de 5%.
 l'hypothèse H₀: β₁ + β₂ = 1 contre H₁: β ≠ 1. Interpréter ce résultat.

Exercice 2 (8 points: 1+1+2+2+2)

On considère la relation entre la teneur en huile des olives (Y), mesurée par la quantité d'huile (en litre) par 100 kg d'olives, et 4 variétés d'oliviers. Cette relation est définie par :

$$Y_{ij} = \theta_i + \epsilon_{ij}, i = 1, 2, 3, 4 \text{ et } j = 1, \cdots, n_i$$

avec ϵ_{ij} identiquement et indépendamment distribués selon la loi normale centrée et de variance σ^2 et j la plantation. On suppose que les autres facteurs qui influent sur la teneur en huile sont identiques.

- 1. Déterminer l'expression des estimateurs des paramètres θ_i , notée $\widehat{\theta}_i$.
- 2. L'observation des récoltes a permis d'obtenir les mesures suivantes :

Variétés	n_i	$\sum_{j=1}^{n_i} Y_{ij}$	$\sum_{j=1}^{n_i} Y_{ij}^2$
1	21	525	13200
2	30	600	12200
3	25	251	3300
4	40	400	4200

- i. Calculer les valeurs numériques des estimateurs $\widehat{\theta}_i, i=1,..4.$
- Calculer la somme des carrés des résidus du modèle défini précédemment.
- Calculer la somme des carrés des résidus sous l'hypothèse que les olives ont la même teneur en huile quelque-soit la variété.
- iv. Y-a-t-il une différence significative de la teneur en huile entre les différentes variétés? Justifier.

NB: Arrondir à 4 chiffres après la virgule, P(F(2,60) > 3.15) = 0.05, P(|N(0,1)| > 1.96) = 0.95, P(F(3,111) > 2,686) = 0.05.

Controle 2018

$$X = \begin{pmatrix} k_1 & k_2 \\ \vdots & k_{C3} & k_{C3} \end{pmatrix}$$
 $Y = \begin{pmatrix} q_1 \\ \vdots \\ q_{C3} \end{pmatrix}$ $X = dy = dennées rendrées$

$$\hat{\beta} = \begin{pmatrix} \hat{\beta} \\ \hat{\beta} \end{pmatrix} : \hat{\beta} = \begin{pmatrix} x'x \end{pmatrix}^T x'y$$

$$\hat{\lambda} = \hat{q} - \hat{\beta}, \hat{k} - \hat{\beta}, \hat{l} \quad (\hat{\lambda}, \hat{\gamma} - \hat{l} \hat{\beta} \text{ over } \hat{\tau} \cdot (\hat{k}, \hat{l}))$$

calculons (Z'Z)-1: on pose A = Z'Z rq A symologue done il sulli

Commentaire :

- . \hat{\beta}, = 0,7 : Si le capital augmente de 17. alors la producter augmentern de 0,7 %
- · Bz = 0,4 & Si le travail "
- · La production est plus sensible au capital qu'au travail car
- · B.+B. = 1,1% > 1% = Pendement d'exhelle >

(1)
$$\hat{V}(\hat{\Theta}): \hat{\sigma}^2 (Z^1Z)^{-1} = \begin{pmatrix} 0.4483 & 0 & -0.1412 \\ 0 & 0.0241 & -0.0388 \\ -0.1412 & -0.0388 & 0.0488 \end{pmatrix}$$

$$\Rightarrow \hat{V}(\hat{\beta}): \begin{pmatrix} 0.0241 & -0.0388 \\ -0.0388 & 0.0488 \end{pmatrix}$$

5) Tableau d'analyse de la variance:

4	7 carrie	dell	Corrée mojen	Fisher
medile	SCE = 84,8	2.1	SCE - 42,4	F = SCE 1k SCR/10-K+1) : 27,2967 P(F(2,60))3.15): 0.05 >315 enrejette que tent les reeff sent nuts
residu	SCR . 93,2	60	€2° 1'2233	
total	SCT = 178	62	SCT . 2,3709	

$$F(-1)' = \frac{(R\beta - r)' = V(\beta)R']^{-1}(R\beta - r)}{rang(R)} = F(1.60) = E^{2}(60)}$$

$$F(rang(R), r-(x-1))$$

la lei normale

· F(1,60) lusque neleve +2_1+2 dencentrele dens X2(1)=1,462

$$= \hat{\theta}_{1} = \frac{525}{21} = 20 \qquad \hat{\theta}_{3} = \frac{251}{26} = 10.04$$

$$\hat{\theta}_{2} = \frac{600}{30} = 20 \qquad \hat{\theta}_{4} = \frac{400}{40} = 10$$

SCR.
$$Y_{ij} = 0 + E_{ij}$$

SCR. $Y_{ij} = 0 + E_{ij}$
SCR. $Y_{ij} = 0 + E_{ij}$
SCR. $Y_{intra} + Y_{inter}$
SCR. $Y_{intra} + Y_{inter}$
Or $Y_{intra} + Y_{inter}$
 $Y_{intra} + Y_{inter}$
 $Y_{inter} + Y_{inter}$

← F (3,112)

interpretation: