【AI技術活用入門】はじめての物体検出YOLOに触れてみよう ~

第1回 2022/5/28(土)

全体スケジュール

- 第1回: 5/28(土) 14:00 15:00「YOLO の紹介」
- 第2回:6/18(土) 14:00 15:00 「環境構築とモデルの作成」
- 第3回: 7/23(土) 14:00 15:00 「Ras Pi で物体検出」
- 第4回:8/27(土) 14:00 15:00 「最終発表会」

本日のスケジュール

・YOLOの紹介(座学)

~ 14:20

• google colabを利用した ハンズオン ~ 14:55

・次回の内容に関するアンケート ~ 15:00

YOLOのデモ

https://www.youtube.com/watch?v=MPU2HistivI

【AI技術活用入門】はじめての物体検出 第1回

YOLOとは

You Only Look Once の略

リアルタイムに物体検出(Object detection)をする ためのアルゴリズム

2016年 最初のバージョンの論文がJoseph Redmonによって発表

2017年 YOLOv2, YOLO9000

2018年 YOLO v3

2020年 YOLO v4 (by Alexey Bochkovskiy)

2020年 YOLO v5 (by ultralytics社)

v3までの公式webサイト

https://pjreddie.com/darknet/yolo/

画像認識と物体検出

- ・機械学習の典型的なタスクに画像認識(Visual Recognition)というものがある
- ILSVRCという画像認識のコンテストでは、 2012年以降ディープラーニングの独壇場と なっている

出典: 深層学習教科書 ディープラーニングG検定(ジェネラリスト) 公式テキスト 第2版

画像認識と物体検出の違い

物体検出=物体の位置検出+物体の認識

画像認識のイメージ

この写真が 山の画像である確率 ○○% 池の画像である確率 ○○% 公園の画像である確率 ○○%

物体検出のイメージ

【AI技術活用入門】はじめての物体検出 第1回

YOLOとそれ以前の手法の違い

従来手法(R-CNN)

GIRSHICK, Ross, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2014. p. 580-587.

YOLO v1

REDMON, Joseph, et al. You only look once: Unified, real-time object detection. In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016. p. 779-788.

どれくらい速かったのか

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

REDMON, Joseph, et al. You only look once: Unified, real-time object detection. In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016. p. 779-788.

検出が早いと何が嬉しいのか

Accurate object detection is slow!

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
YOLO	69.0	45 FPS	22 ms/img

REDMON, Joseph, et al. You only look once: Unified, real-time object detection. the IEEE conference on computer vision and pattern recognition. 2016. 発表スライド https://docs.google.com/presentation/d/1kAa7NOamBt4calBU9iHgT8a86RRHz9Yz2oh4-GTdX6M/edit#slide=id.g151008b386_0_0

ちょっとだけ詳しいYOLOの話

REDMON, Joseph, et al. You only look once: Unified, real-time object detection. In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016. p. 779-788.

機械学習モデル作成の流れ

まとめ

- YOLOは物体検出を効率的に行なうためのアル ゴリズム
- リアルタイムに有意義な精度で検出を行なうことができる

参考資料

- YOLOv3 公式サイト
 https://pjreddie.com/darknet/yolo/
- darknet公式サイト
 https://pjreddie.com/darknet/
- YOLOv4リポジトリ https://github.com/AlexeyAB/darknet
- YOLO 論文
 - v1: https://pjreddie.com/media/files/papers/yolo-1.pdf
 - v2: https://pjreddie.com/media/files/papers/YOLO9000.pdf
 - v3: https://pjreddie.com/media/files/papers/YOLOv3.pdf
 - v4: https://arxiv.org/abs/2004.10934

ハンズオン

google colabヘアクセス

https://colab.research.google.com/

[ファイル] -> [ノートブックを開く]を選択 表示されたダイアログの[GitHub]タブを選択し、検 索ボックスに次のキーワードを入力

so5 YOLO

レポジトリが"so5/YOLO-seminar"になっているのを確認して、"YOLOv4.ipynb"のリンクをクリック

Githubからノートブックを取得

例	最近	Google ドライブ	GitHub	アップロード
GitHub URL を入力するか、組織またはユーザーで検索します				
so5 yolo				Q
レポジトリ: 🖸 so5/YOLO-semin パス	ブランチ: nar v <u></u> main v			
YOLOv3.ip	pynb			
YOLOv4.ip	pynb			Q Z
				キャンセル

こちらの警告は無視して大丈夫です

警告: このノートブックは Google が作成したものではありません。

このノートブックは <u>GitHub</u> から読み込まれています。Google に保存されているデータへの アクセスが求められたり、他のセッションからデータや認証情報が読み取られたりする場 合があります。このノートブックを実行する前にソースコードをご確認ください。

キャンセル

このまま実行

ハンズオン ~14:55

次回予告&アンケート

- google colabで行なった環境構築と同等のことを、 お手元のPCで実施します。
- webカメラがあると、リアルタイム検出が試せる (かもしれない)ので、興味がある方はご用意くだ さい。

アンケート

- 次回のハンズオンに使うPCのOS
- ・コマンドプロンプト(windows)、ターミナル (mac)を使った経験は?
- テキストエディタ、IDEなどは何を使っていますか?