機器學習期末報告 Predict Future Sales

資工系四年A班 學號 1061443 資工系四年A班 學號 1061416 資工系四年C班 學號 1063337

一、 組員名單與分工(請標註工作佔比)

- 請詳細列出工作項目,以及在專題的工作佔比

學號	工作內容	專題佔
		比
1061443	Survey paper、LSTM 模型實作、製	40%
	作報告、報告主講、demo 影片	
1061416	Survey paper、XGBoost 模型實作	30%
1063337	Survey paper、Random Forest 模	30%
	型實作	

二、 開發動機與目標

做銷售量預測,可以對店家有正向的幫助,店家透過預測可以

知道有些時段銷售量是高是低,可以根據這個預測去考量進貨的量,

減少成本。消費者端也可以透過銷售量預測,或許銷售量低的時候,

價格也會促銷,撿到便宜!

我們希望我們這個比賽可以達到比賽前 15%

三、 參考文獻探討

-此題目是否有相關的 paper 也是這個題目

Predicting Future Sales of Retail Products using Machine Learning [2020-08-18]

-說明文獻上怎麼做,有什麼缺點

這篇論文也是參與相同的比賽,他們的缺點我覺得在於資料前處理還可以做得更好,shop_id、item_category_id 這兩個欄位他們並沒有去多做處理,我們自己就有多做這方面的處理,再來就是論文中的 lag feature 取 1-3 months 跟 12 months,我覺得可以再取 6 months,以半年來做數據統計也是有意義的。

-用一個表格說明這些文獻與你的方法的差異

論文的方法	我們的方法		
shop_id \ item_category_id	利用		
未做處理	shop_id \ item_category_id		
	取出		
	city_code \ type_code \		
	subtype_code		
Lag_feature	Lag_feature		
取 1-3 months、12 months	取 1-3 months、6 months、		
	12 months		

四、解決方案介紹

- 提出的方法架構

我們使用了三種方法:

- 1. LSTM
- 2. XGBoost
- 3. RandomForest
- 蒐集的資料

使用 Kaggle 競賽提供的資料:

檔案說明:

- sales_train.csv the training set. Daily historical data from January 2013 to October 2015.
- **test.csv** the test set. You need to forecast the sales for these shops and products for November 2015.
- sample_submission.csv a sample submission file in the correct format.
- **items.csv** supplemental information about the items/products.
- **item_categories.csv** supplemental information about the items categories.
- **shops.csv** supplemental information about the shops.

欄位說明:

- **ID** an Id that represents a (Shop, Item) tuple within the test set
- **shop_id** unique identifier of a shop

- item id unique identifier of a product
- item_category_id unique identifier of item category
- **item_cnt_day** number of products sold. You are predicting a monthly amount of this measure
- item_price current price of an item
- date date in format dd/mm/yyyy
- date_block_num a consecutive month number, used for convenience. January 2013 is 0, February 2013 is 1,..., October 2015 is 33
- item name name of item
- shop_name name of shop
- item_category_name name of item category
 - 資料前處理
 - 1. 觀察資料數值分佈,去除離峰值。
 - 2. 觀察資料欄位。若發現 NA,則根據商店、商品以及日銷售量的欄位取平均值來填補。
 - 3. 將店名相同但商店 id 不同的資料統一。
 - 4. 根據店家名稱,分析商店所在城市。
 - 5. 根據商品項目,分析主要類型以及次要類型。
 - 6. 對城市、商品主要類型和次要類型做 label encoding。
 - 7. 根據商店和商品資料計算商品的月銷售量,並將月銷售量小於 0 的欄位補 0,大於 20 的欄位補 20。(比賽有特別說明月銷售量只會介於 0 到 20 之間)
- 8. 透過 mean encoding 的方法增加資料欄位。針對日銷售量、商品 id、 商店 id、商品項目 id、商品主要類型、商品次要類型的欄位以不同方

式組合做 mean encoding。

- 9. 計算商品日銷售額和同商品平均銷售額之間的差異。
- 10. 計算商店日銷售額和同商店平均銷售額之間的差異。
- 11. 計算每間商店、每樣商品和前一次售出日日銷售量之間的差異。
- 12. 計算每樣商品和前一次售出日日銷售量之間的差異。
- 13. 計算每間商店、每樣商品和售出最少日日銷售量之間的差異。
- 14. 計算每樣商品和售出最少日日銷售量之間的差異。
- 15. 增加月份以及當月天數的欄位。

總體來說,資料前處理部分有去除離峰值、填補空缺值、針對有字串的欄位做 label encoding、透過 mean encoding 的方法增加新欄位、以不同方法計算日銷售額的差異以及增加日期天數的欄位。

除此之外,將 34 個月的資料內容切割成前 32 個月訓練集,第 33 個月驗證集和第 34 個月測試集。由於前 3 個月在產生新欄位時,欄位內容無可追朔性,所以刪除前 3 個月的資料。

- 模型說明

LSTM

Layer (type)	Output Shape	Param #
lstm_1 (LSTM)	(None, 64)	16896
dropout_1 (Dropout)	(None, 64)	9
dense_1 (Dense)	(None, 1)	65
Total params: 16,961 Trainable params: 16,961 Non-trainable params: 0		

- 1 LSTM layer
- 1 Dropout layer
- 1 Dense layer
- Loss: root mean squared error
- Optimizer: adamBatch_size: 4096
- Epochs: 10

XGBoost

- max_depth=12
- n_estimators=300
- min_child_weight=162
- colsample_bytree=0.6
- subsample=0.8
- eta=0.008
- seed=42

Randomforest

- max_depth=8
- n_estimators=70
- random_state=0
- n_jobs=-1

五、 模型預測結果

- 參賽結果

於 12726 名對手中排名第 1576 名,成績為 0.89647。

- 比較多個模型的預測效果

	Kaggle Score			
LSTM	1.01950			
XGBoost	0.89647	1.02610 (w/o feature)	lag	0.92784 (paper)
RandomForest	0.94685	0.93215 (w/o feature)	lag	

從表格可以得知,XGBoost 的效果最好,以及有沒有做 lag feature 其實對分數是有差距的,有做 lag feature 不管是在哪個模型,分數都有顯著的提升!

六、 開發最耗時的部份與原因

- 遇到的問題

這比賽的資料是俄文,像是 shop_name、item_category_name,這些欄位其實都是俄文,我們又要取出店名中城市的部分,所以我們就瘋狂翻譯 X D

- 未來可改善的地方

LSTM 我覺得很有機會做得更高,我們光是沒做什麼前處理就有 1.02 score,我覺得未來前處理做多一點很有機會超越 XGBoost

七、 小組互動照片

- 合照、討論專題時的照片

八、專案開發心得

1061443 - 專題開發心得

這應該算是我第一次正式參加完整個 kaggle 比賽,成績方面我其實算是蠻滿意的,有達到我們當初設下的目標,前 15%,可喜可賀。透過這次的比賽其實學到很多工具跟資料前處理的方法,工具的部分我們有使用 optuna 這個框架去做參數優化,如果我今天沒做這個專案我還真的不知道 X D,這個框架真的很好用,大家可以去用用看!再來就是資料前處理,lag feature 也是我第一次接觸,原來 lag feature 在時間序列分析這方面的問題是這麼有用的,不管是什麼模型,有做 lag feature 就是硬加個 10%,真的很厲害,也讓我體認到模型優化其實不是最重要的,資料前處理也是很重要的一環。最後感謝我的隊友互相分工,感謝各位!

1061416 - 專題開發心得

這是我第一次參加 kaggle 上的比賽。由於 kaggle 平台上有些其他 人的開源程式碼可以參考,所以我可以透過平台上的開源程式碼,學習 到時序性資料的許多處理方式,也可以認識到哪種類型的題目,大家都 會選用甚麼樣的模型。在尋找相關資料時,我看到很多人都有使用 lag feature 和 mean encoding 的方法來增加資料量,於是我和我的組員也 決定實做這個方法。整體的資料前處理,我們採用了平常比較常聽到的 label encoding 的方法,並去除離峰值、填補缺失值,再加上 mean encoding 的方法增加新欄位。我們也有比較過有使用 mean encoding 方法和沒有使用 mean encoding 方法的差異,發現有使用 mean encoding 的方法效果真的會好很多。同時,在查詢資料的過程中,我們 也有找到 optuna 這個參數調整的架構。透過 xgboost 加上 optuna, 我們可以輕鬆地找出最佳的參數組合,大幅省去我們嘗試不同參數的時 間。整體來說,整個比賽過程獲益良多。為了提升準確度,嘗試多種不同 的前處理方式,也更加了解模型裡面參數的意思。

1063337 - 專題開發心得

資料收集過程中首次接觸到 lag feature 與 mean encoding·經過比較後發現透過這些 feature 可以讓模型的準確度大幅提升·這時候才發現自己對於資料前處技術理的視野仍過於狹窄。透過組員介紹而得知 Optuna·比較可惜的是我所負責的 RandomForest Regression 無法透過 GPU 訓練·難以藉由 Optuna來自動優化參數。在 kaggle 中大致瀏覽過就會發現·在參考其他高手分享的 EDA的時候·也要把下方的 comment 看完·在 comment 中能看到他人的提問·當我看完原作者的解答後可以快速瞭解原始碼其中的細節。課程中所學的模型大部份都是第一次使用,透過期末專題將不同模型、不同前處理做交叉測試與比較,讓我更加瞭解機器學習這門學問的意義·而 lag feature、mean encoding 與Optuna 是本次專案中最大的收穫。