Notes on the Proof of Lovasz Local Lemma

Lu Jiaxin Student ID: 518030910412

April 7, 2020

Lemma 1 (Lovasz Local Lemma [1]). For events E_1, \ldots, E_n with a dependency graph G, suppose,

- (1) $\forall i \exists p \in (0,1), P(E_i) \leq p$
- (2) $\max \deg_G(V) \leq d$
- $(3) \ 4dp \le 1$

then,

$$P(\bigcap E_i^C) > 0$$

Proof. To prove the lemma, we need to first introduce two statements. For $s=0,1,\ldots,N-1,\,\forall |S|\leq s,$

(a)
$$P(\bigcap_{j \in S} E_j^C) > 0$$

(b)
$$\forall k \in [N] \backslash S, P(E_k \cap \bigcap_{j \in S} E_j^C) \leq 2pP(\bigcap_{j \in S} E_j^C)$$

We first prove two statements by induction. s = 0: When s = 0, we have $S = \emptyset$, so,

(a)
$$P(\bigcap_{j \in S = \emptyset} E_j^C) = 1 > 0$$

(b)
$$\frac{P(E_k\cap\bigcap_{j\in S}E_j^C)}{P(\bigcap_{i\in S}E_i^C)}=P(E_k)\leq p\leq 2p$$

s>0 : Suppose two statements holds for $0,\dots,s-1.$ For s,

(a)

$$P(\bigcap_{j \in S} E_j^C) = \frac{P(\bigcap_{j \in [s]} E_j^C)}{P(\bigcap_{j \in [s-1]} E_j^c)} \times \frac{P(\bigcap_{j \in [s-1]} E_j^c)}{P(\bigcap_{j \in [s-2]} E_j^c)} \times \dots \times \frac{P(\bigcap_{j \in [2]} E_j^c)}{P(\bigcap_{j \in [1]} E_j^c)} \times \frac{P(\bigcap_{j \in [1]} E_j^c)}{1}$$
(1)

Since statements (b) holds for $0, \ldots, s-1, \forall 1 \leq s' \leq s$,

$$\frac{P(\bigcap_{j \in [s']} E_j^C)}{P(\bigcap_{j \in [s'-1]} E_j^C)} \ge 1 - 2p$$

So,

$$P(\bigcap_{j \in S} E_j^C) \ge (1 - 2p)^n$$

Since we have $4dp \le 1$, we can derive $2p \le \frac{1}{2d} \le \frac{1}{2}$, so, $1 - 2p \ge \frac{1}{2}$. Thus,

$$P(\bigcap_{j \in S} E_j^C) > 0$$

(b) We need to prove

$$\frac{P(E_k \cap \bigcap_{j \in S} E_j^C)}{P(\bigcap_{j \in S} E_j^C)} = P(E_k \mid \bigcap_{j \in S} E_j^C) \le 2p$$

Let $S_1 = j \in S : j \sim k$ in $G, S_2 = S \setminus S_1$.

When
$$S_1 = \emptyset$$
, $P(E_k \mid \bigcap_{j \in S} E_j^C) = P(E_k) \le p < 2p$.

Otherwise, $S_1 \neq \emptyset$, $|S_2| < S$.

Let $F_{S_1} := \bigcap_{j \in S_1} E_j^C$, $F_{S_2} := \bigcap_{j \in S_2} E_j^C$, we have,

$$P(E_k \cap F_{S_1} \mid F_{S_2}) \le P(E_k \mid F_{S_2})$$

= $P(E_k) \le p$

and,

$$P(F_{S_1} | F_{S_2}) = P(\bigcap_{i \in S_1} E_i^C | \bigcap_{j \in S_2} E_j^C)$$

$$\geq 1 - \sum_{i \in S_1} P(E_i | \bigcap_{j \in S_2} E_j^C)$$

$$\geq 1 - 2pd \geq \frac{1}{2}$$

So,

$$P(E_k \mid \bigcap_{j \in S} E_j^C) = P(E_k \mid F_{S_1} \cap F_{S_2})$$

$$= \frac{P(E_k \cap F_{S_1} \mid F_{S_2})}{P(F_{S_1} \mid F_{S_2})}$$

$$\leq \frac{p}{\frac{1}{2}} \leq 2p$$

Now we have both statements (a) and (b) stand, we substitute N into s in Eq. (1). We now can derive that all the denominators on the right hand side is larger than 0, and,

$$P(\bigcap E_i^C) = P(\bigcap_{i \in [N]} E_i^C) \ge (1 - 2p)^N \ge \left(\frac{1}{2}\right)^N > 0$$

Here is an application of Lemma 1.

Definition 2 (Conjunctive Normal Form). A formula is said to be in Conjunctive Normal Form (CNF) if it consists of AND's of several clause. For instance, $(x \lor y) \land (y \lor \neg z \lor w)$ is a CNF formula.

Definition 3 (k-SAT). A k-SAT problem is that, given a CNF formula f, in which each clause has exactly K literals, decide whether there is an assignment satisfying all the clauses in f.

Theorem 4. Suppose variables appear in a CNF formula f are $\{x_1, \ldots, x_n\}$, and they can only be assigned by 0 or 1 with equal probability. If every variable appears in at most $\frac{2^k}{4k}$ clauses, there exists an assignment satisfying all the clauses in f.

proof of Theorem 4. Let E_i be the event that the i-th clauses is wrong. Since every variable is assigned with equal probability, we have,

$$P(E_i) \le \frac{1}{2^k} =: p$$
 (in the Lovasz Local Lemma)

Consider the clauses as the vertices in a dependency graph, and two vertices have an edge only if they share a same variable. So in this dependency graph, we have,

$$\deg E_i \le (\frac{2^k}{4k} - 1)k \le \frac{2^k}{4} =: d \text{ (in the Lovasz Local Lemma)}$$

Note that,

$$4dp = 4\frac{2^k}{4} \frac{1}{2^k} \le 1$$

So by Lemma 1, we have $P(\bigcap E_i^C) > 0$.

Thus, there exists an assignment satisfying all the clauses in f.

References

[1] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In *Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II*, pages 609–627. Colloq. Math. Soc. János Bolyai, Vol. 10. 1975.