

Matching and synthetic controls

Nils Droste

2021 ClimBEco course

Introduction

Matching

exact match distance match machine-learning

Synthetic Controls

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

Introduction

Matahina

exact match
distance match
machine-learning
model comparisor

intuition

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

matching approaches

Introduction

Matching

distance match machine-learning

intuition

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

- matching approaches
 - classical
 - machine-based learning

Introduction

Matching

distance match machine-learning

intuition

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

- matching approaches
 - classical
 - machine-based learning
- synthetic controls

Intuition

Introduction

Consider a situation where the untreated are very different from the treated:

Image source: Schleicher et al. 2020

Intuition

Introduction

Matching

distance match machine-learning

Synthetic Control

intuition

References

Consider a situation where the untreated are very different from the treated:

Matching, def: any method that strategically subsamples dataset to balance covariate distribution in treated and control groups such that after matching both groups share an equal probability of treatment.

Non-Random Treatment Assignment

Average Treatment Effect on the Treated + Selection Bias

to Subsample

Image source: Image source: Sizemore and Alkurdi 2019

Intuition

Introduction

Matching

distance match machine-learning

Synthetic Control

References

Consider a situation where the untreated are very different from the treated:

Matching, def: any method that strategically subsamples dataset to balance covariate distribution in treated and control groups such that after matching both groups share an equal probability of treatment.

Non-Random Treatment Assignment

Average Treatment Effect on the Treated + Selection Bigs

to Subsample

Image source: Image source: Sizemore and Alkurdi 2019

→ matching is a *pre-analytical procedure*, allowing unbiased inference.

Procedure

Introduction

Matching

distance match machine-learning model comparison

Synthetic Controls

intuition

Procedure

Introduction

Matching

exact match
distance match
machine-learning
model comparison

Synthetic Control

intuition

References

Image source: Schleicher et al. 2020

Introduction

Matching

distance match machine-learning model comparison

Synthetic Controls

intuition

References

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]

Introduction

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - $(Y(1), Y(0)) \perp T$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - \blacksquare or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp T | X$

Introduction

Matching

distance match machine-learning model comparison

Synthetic Control

References

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - \blacksquare $(Y(1), Y(0)) \perp T$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - \blacksquare or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp T | X$

$$\rightarrow \pi(X_i) = Pr(D_i = 1|X_i)$$
 or propensity score can be used for matching

Introduction

Matching

distance match machine-learning model comparison

Synthetic Control

Potoronooo

References

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - \blacksquare $(Y(1), Y(0)) \perp T$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - \blacksquare or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp T | X$
- $\to \pi(X_i) = Pr(D_i = 1 | X_i)$ or propensity score can be used for matching
- \rightarrow but should maybe not (King and R. Nielsen 2019), we will see alternatives

Overview

Here is a general overview of possible matching methods

Introduction

Matching exact match

distance match machine-learning model comparison

Synthetic Control

.........

References

Image source: Sizemore and Alkurdi 2019

Introduction

Matching

distance match machine-learning

Synthetic Control

References

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
 (1)

Introduction

Matching exact match

distance match machine-learning model comparison

Synthetic Controls

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
 (1)

How to find the sufficiently similar subsamples?

Matching

Consider that we aim to estimate conditional average treatment effect (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
 (1)

King and Nielsen (2019) formulate a general pruning (matching) function M:

$$X_{\ell} = M(X|A_{\ell}, T_i = 1, T_j = 0, \delta) \equiv M(X|A_{\ell}) \subseteq X$$
 (2)

providing X_{ℓ} , subset of matched observation based on condition A_{ℓ} .

Introduction

Matching

distance match machine-learning model comparisor

Synthetic Controls

References

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
(1)

King and Nielsen (2019) formulate a general pruning (*matching*) function *M*:

$$X_{\ell} = M(X|A_{\ell}, T_i = 1, T_j = 0, \delta) \equiv M(X|A_{\ell}) \subseteq X$$
 (2)

providing X_{ℓ} , subset of matched observation based on condition A_{ℓ} .

 \rightarrow in what follows we will look at different pruning method ℓ to produce the best matched subset δ .

Exact matching

ntroductio

Matching

exact match

machine-learning

Synthetic Control

References

For exact matching we find exactly equal pairs

$$X_{EM} = M(X|X_i = X_j) \tag{3}$$

Note: X can be a vector of covariates.

Coarsened Exact Matching (CEM)

ntroductio

Matching

exact match

machine-learning

Synthetic Control

intuition

Reference

For coarsened exact matching we approximate

$$X_{CEM} = M(X|C_{\delta}(X_i) = C_{\delta}(X_i))$$
 (4)

where C_{δ} is a vector of same dimensions as X, but coarsened values, e.g. at "natural breakpoints" such as years in one school type, levels of income, etc.

Mahalanobis Distance Method (MDM)

For multidimensional data, we can identify nearest neighbours in an n-dimensional space.

exact match

distance match

model comparison

Synthetic Control

intuition

References

$$md(X_i, X_j) = \{(X_i - X_j)^{\top} S^{-1} (X_i - X_j)\}^{\frac{1}{2}}$$

(Above) Mahalanobis distance measure, where S denotes the covariance matrix of X. [24]

(Left) A contour plot is overlaid on a Mahalanobis distance scatter plot of 100 observations randomly drawn from a bivariate normal distribution. The centroid, in blue, is the reference point for distance between two points.

Image credit and description: Statistics How To: Mahalanobis Distance, Simple Definitions, Examples. Retrieved 10-08-2019 from: https://www.statisticshowto.datasciencecentral.com/mahalanobis-distance/

Image source: Sizemore and Alkurdi 2019

Propensity score matching (PSM)

Introduction

Matching

distance match

machine-learning

model compariso

Synthetic Control

intuition

Reference

Else, we can estimate probability of being treated, aka propensity score $\pi(X_i) = Pr(D_i = 1|X_i)$ by logistic regression

<u>Advantages</u>	<u>Disadvantages</u>
solves matching problem for high dimensions	misspecification of PS model = bad matches
many available R packages for easy implementation	matched pairs may be dissimilar across X

Image source: Sizemore and Alkurdi 2019

Introductior

exact match

distance match

model compariso

Synthetic Controls

intuition

Introductio

Matching

distance match

machine-learning

model compariso

Synthetic Control

Reference:

> m.out

A matchit object

- method: Optimal full matching

- distance: Propensity score

- estimated with logistic regression

- number of obs.: 614 (original), 614 (matched)

- target estimand: ATT

- covariates: age, educ, race, married, nodegree, re74, re75

ntroduction

Matching

exact match distance match

machine-learning

model comparison

Synthetic Controls

intuition

References

Code source: Greifer 2020

Introductio

exact match

distance match

machine-learning

model comparison

Synthetic Control

intuition

ntroduction

Matching

distance match

machine-learning

model comparison

Synthetic Control

intuition

Intermediate discussion

introductio

exact match

distance match

machine-learning

Synthetic Centrel

intuition

Reference

There is a bit of critique on PSM

- King and Nielsen (2019)
 - "PSM is ... uniquely blind to the often large portion of imbalance"
 - "easy to avoid by switching to one of the other popular methods of matching"
 - i.e.: CEM and MDM
 - Sizemore and Alkurdi (2019)
 - test PSM against machine learning based methods
 - logistic PSM > random forest PSM > genetic matching
 - CEM ???

Random forest (RF)

Code source: Wikipedia

RF are multiple regression trees classifying the data by partitioning

machine-learning

We can use this to predict treatment (aka propensity scores)

eXtreme Gradient Boosting (XGBoost)

Machine learning such as XGBoost or even ensambles can also be used to

Code source: Quant Insti

20/31

→ predict treatment (aka propensity scores)

Introduction

exact match

machine-learning model comparisor

Synthetic Control

Genetic matching

Genetic Matching combines PSM and MDM

 $GMD(X_i, X_j, W) = \sqrt{(X_i)^T (S^{-\frac{1}{2}})^T W S^{-\frac{1}{2}} (X_i - X_j)}$ (5)

Image source: Sizemore and Alkurdi 2019

ntroduction

Matching

distance matc

machine-learning

Synthetic Controls

comparison - fitting distributions

Distributional Balance for "age"

Distributional Balance for "educ"

Matching

model comparison

comparison - mean absolute error

troduction

Matching

exact match

model comparison

Synthetic Controls

intuition

Introduction

Matching exact match

distance match

machine-learnin

model comparison

Synthetic Control

intuition

References

for the comparison above I used nearest neighbour matching, reducing sample size

Introduction

exact match

distance match machine-learning model comparison

Synthetic Controls

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)

Introduction

watenin

distance match machine-learning model comparison

Synthetic Control

intuition

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)

Introduction

Matchii

exact match
distance match
machine-learning
model comparison

intuition

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018a; Dieng et al. 2018b), text matching (Roberts, Stewart and R. A. Nielsen 2020), generalized optimal matching (Kallus 2020)

model comparison

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018a: Dieng et al. 2018b), text matching (Roberts, Stewart and R. A. Nielsen 2020). generalized optimal matching (Kallus 2020)
- R packages include MatchIt, Matching, and PanelMatch

model comparison

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018a: Dieng et al. 2018b), text matching (Roberts, Stewart and R. A. Nielsen 2020). generalized optimal matching (Kallus 2020)
- R packages include Matchlt, Matching, and PanelMatch
- for the debate around propensity score matching (King and R. Nielsen 2019), see also Hünermund, (2019)

Introduction

Matching exact match

distance match machine-learning model comparison

Synthetic Controls

intuition

References

WANTED TO THE PARTY OF THE PART

What if we do only have one treated unit?

California introduces tobacco control in 1988, cf. Abadie et al. 2010

and an idea

Introduction

Matching

exact match
distance match
machine-learning
model comparison

Synthetic Control

intuition

References

How about we compare to a weighted average of untreated?

California introduces tobacco control in 1988, cf. Abadie et al. 2010

and a notation

ntroduction

Matching

distance match machine-learning

Synthetic Controls

References

$$\hat{Y}_{t,post(0)} = \mu + \sum_{i=1}^{N} w_i Y_{i,T}^{obs}$$
(6)

"In other words, the imputed control outcome for the treated unit is a linear combination of the control units, with intercept μ and weights w_i for control unit i." Doudchenko and Imbens 2016

the process

We compare the treated to the non-treated

Matching

model comparison

intuition

Figure 5. Per-capita cigarette sales gaps in California and placebo gaps in 34 control states (discards states with pre-Proposition 99

the process

And compute a synthetic control out of a weighted set of the untreated

gap in per-capita cigarette sales (in packs) -20 -10 0 10 20 30

1970

1975

Figure 3. Per-capita cigarette sales gap between California and synthetic California.

1985

vear

1990

1995

2000

Passage of Proposition 99 ->

1980

.....

exact match

machine-learning model comparison

Synthetic Controls intuition

References I

Introduction

Matching exact match

machine-learning model comparison

Synthetic Control

- Abadie, Alberto et al. (2010). 'Synthetic control methods for comparative case studies: Estimating the effect of California's Tobacco control program'. In: *Journal of the American Statistical Association* 105.490, pp. 493–505. ISSN: 01621459. DOI: 10.1198/jasa.2009.ap08746.
- Abrevaya, Jason, Yu Chin Hsu and Robert P. Lieli (2015). 'Estimating Conditional Average Treatment Effects'. In: *Journal of Business and Economic Statistics* 33.4, pp. 485–505. ISSN: 15372707. DOI: 10.1080/07350015.2014.975555.
- Colson, K. Ellicott et al. (2016). 'Optimizing matching and analysis combinations for estimating causal effects'. In: *Scientific Reports* 6.March, pp. 1–11. DOI: 10.1038/srep23222. URL: http://dx.doi.org/10.1038/srep23222.
- Dieng, Awa et al. (2018a). 'Almost-Exact Matching with Replacement for Causal Inference'. In: arXiv, pp. 1–28. arXiv: 1806.06802. URL: http://arxiv.org/abs/1806.06802.
- (2018b). 'Collapsing-Fast-Large-Almost-Matching-Exactly: A Matching Method for Causal Inference'. In: arXiv, pp. 1–27. arXiv: 1806.06802. URL: https://arxiv.org/pdf/1806.06802.pdf.
- Doudchenko, Nikolay and Guido W Imbens (2016). 'Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis'. URL: http://www.nber.org/papers/w22791.
- Kallus, Nathan (2020). 'Generalized optimal matching methods for causal inference'. In: *Journal of Machine Learning Research* 21, pp. 1–54. ISSN: 15337928. arXiv: 1612.08321.

References II

Introduction

exact match

machine-learning

model comparison

intuition

- King, Gary, Christopher Lucas and Richard A. Nielsen (2017). 'The Balance-Sample Size Frontier in Matching Methods for Causal Inference'. In: *American Journal of Political Science* 61.2, pp. 473–489. DOI: 10.1111/ajps.12272.
- King, Gary and Richard Nielsen (2019). 'Why Propensity Scores Should Not Be Used for Matching'. In: *Political Analysis* 27.4, pp. 435–454. ISSN: 14764989. DOI: 10.1017/pan.2019.11.
- Roberts, Margaret E., Brandon M. Stewart and Richard A. Nielsen (2020). 'Adjusting for Confounding with Text Matching'. In: *American Journal of Political Science* 64.4, pp. 887–903. DOI: 10.1111/aips.12526.
- Schleicher, Judith et al. (2020). 'Statistical matching for conservation science'. In: Conservation Biology 34.3, pp. 538–549. ISSN: 15231739. DOI: 10.1111/cobi.13448.
- Sizemore, Samantha and Raiber Alkurdi (2019). Matching Methods for Causal Inference: A Machine Learning Update. URL: https://humboldt-wi.github.io/blog/research/applied%7B%5C_%7Dpredictive%7B%5C_%7Dmodeling%7B%5C_%7D19/matching%7B%5C_%7Dmethods/ (visited on 01/05/2021).

