

Beijing-Dublin International College

SEMESTER 2 FINAL EXAMINATION - (2017/2018)

School of Computer Science

COMP2007J Principles of Computer Organisation

Prof. Pádraig Cunningham Dr. Seán Russell* Dr Shen Wang*

Time Allowed: 120 minutes

Instructions for Candidates:

All questions carry equal marks.

Answer all questions.

BJUT Student ID: UCD Student ID:
I have read and clearly understand the Examination Rules of both Beijing University of Tech-
nology and University College Dublin. I am aware of the Punishment for Violating the Rules of
Beijing University of Technology and/or University College Dublin. I hereby promise to abide
by the relevant rules and regulations by not giving or receiving any help during the exam. If
caught violating the rules, I accept the punishment thereof.
Honosty Pladge (Signature)

Instructions for Invigilators

Non-programmable calculators are permitted. No rough-work paper is to be provided for candidates.

Question 1:

a. Name and describe the four main structural components of a computer

(6%)

b. The processor instruction cycle is typically made up of two sub-cycles, name and describe them.

(6%)

- c. Table 1 shows the contents of a computers memory. This computer has 5 bit memory addresses, a block size of 4 and 2 lines of cache that are allocated using **direct mapping**. Given this information, for each of the requested address state if it is a cache hit or miss and show the state of the cache after **each** request.
 - 00110
 - 10001
 - 00100
 - 01110
 - 00111
 - 10010

Address	Data	Address	Data	Address	Data	Address	Data
00000	AA	01000	0E	10000	BB	11000	12
00001	AB	01001	0B	10001	BA	11001	02
00010	0C	01010	2C	10010	CE	11010	5A
00011	0D	01011	20	10011	3A	11011	16
00100	3E	01100	30	10100	4A	11100	1F
00101	4F	01101	41	10101	0A	11101	1E
00110	00	01110	01	10110	03	11110	14
00111	2F	01111	21	10111	1A	11111	11

Table 1: Memory Contents

(13%)

(Question Total 25%)

Question 2:

a. Describe the main difference between bus and point-to-point based interconnection systems. Give one advantages and disadvantages of each.

(6%)

b. Describe the difference between direct and associative mapping of caches.

(4%)

c. Table 2 shows the initial state of a von Neumann computer. The available opcodes are:

Address	Data
000	100A
001	200B
002	200C
003	200D
004	300E
005	400F
006	0000
007	$200\mathrm{C}$
008	200E
009	300F
00A	0014
00B	0010
00C	0015
00D	0030
00E	004D
00F	0000
	0009

Iteration	PC	AC	IR
0	0000	0000	0000
1			
2			
3			
4			
5			
6			
7			

Table 3: Answer Format

Table 2: Inital State of Computer

0: Jump to address (set value of program counter)

1: Load memory address into accumulator (AC)

2 : Add the value in memory address to AC

3 : Subtract the value in memory address from AC

4 : Store value in AC to memory address

Show the state of the program counter (PC), accumulator (AC) and instruction register (IR) after each of the first 7 iterations of the program in a table similar to Table 3. This should be done in your answer book.

(12%)

d. After the program has completed, what value will be stored in memory location 000F? What does the value mean or what calculation was performed?

(3%)

(Question Total 25%)

Question 3:

a. To detect and correct errors occurred when writing or reading data to or from memory, SEC-DED Hamming Code is widely used. For simplicity, when a word length is 4 bits, we use Venn diagram. As shown in Figure 1, please generate check bits and overall parity bit when writing data into memory. Draw relevant diagrams in your answer book. As shown in Figure 2, when data is read from memory, state whether it has error(s). Correct it if necessary. Draw relevant diagrams in your answer book.

(6%)

Figure 1: Writing a word data into memory

Figure 2: Read a word data from memory

b. The following 2 words data is going to be stored in memory using SEC encoding: 1101110100101001.

Determine the Error Correction Code for each word and display the entire stored string.

(3%)

c. When reading from internal memory, the following values are read:

a) 1100000001101 b) 11111111100111

These values are encoded using SEC-DED Hamming Code where the right-most bit is the overall parity bit. Please state what is the Error Correct Code in these read values and determine how many error(s) detected. Correct error if necessary.

(6%)

d. Describe what is meant by data striping in RAID? What is the difference between RAID 2-3 and RAID 4-6 in terms of data striping?

(5%)

e. Which RAID level uses reduced mode? What benefit it can bring? How does the reduced mode work?

(5%)

(Question Total 25%)

Question 4:

a. Describe the reading/writing process using movable-head magnetic disk. You should use terms for magnetic disk components, and terms for the time spent at each main stage.

(5%)

b. Explain how to read data from optical disc. You should use terms for optical disc components, and explain when it is read as "0" or "1".

(4%)

c. Explain what is so called "solid state" for SSD. How flash memory can keep data when the power is off? What are the main advantages and disadvantages of magnetic tapes?

(5%)

d. Briefly describe the key characteristics of three main technologies for I/O operations: programmed I/O, interrupt-driven I/O, and DMA.

(6%)

e. Use one sentence to briefly describe each of five main functions of I/O module.

(5%)

(Question Total 25%)

(Paper Total 100%)