Solutions to Problems

Lecture 1

- 1. $P\{\max(X,Y,Z) \leq t\} = P\{X \leq t \text{ and } Y \leq t \text{ and } Z \leq t\} = P\{X \leq t\}^3 \text{ by independence. Thus the distribution function of the maximum is } (t^6)^3 = t^{18}, \text{ and the density is } 18t^{17}, 0 \leq t \leq 1.$
- 2. See Figure S1.1. We have

$$P\{Z \le z\} = \int \int_{y \le zx} f_{XY}(x, y) \, dx \, dy = \int_{x=0}^{\infty} \int_{y=0}^{zx} e^{-x} e^{-y} \, dy \, dx$$

$$F_Z(z) = \int_0^\infty e^{-x} (1 - e^{-zx}) dx = 1 - \frac{1}{1+z}, \quad z \ge 0$$

$$f_Z(z) = \frac{1}{(z+1)^2}, \quad z \ge 0$$

$$F_Z(z) = f_Z(z) = 0 \text{ for } z < 0.$$

- 3. $P\{Y=y\}=P\{g(X)=y\}=P\{X\in g^{-1}(y)\}$, which is the number of x_i 's that map to y, divided by n. In particular, if g is one-to-one, then $p_Y(g(x_i))=1/n$ for $i=1,\ldots,n$.
- 4. Since the area under the density function must be 1, we have $ab^3/3=1$. Then (see Figure S1.2) $f_Y(y)=f_X(y^{1/3})/|dy/dx|$ with $y=x^3,dy/dx=3x^2$. In dy/dx we substitute $x=y^{1/3}$ to get

$$f_Y(y) = \frac{f_X(y^{1/3})}{3y^{2/3}} = \frac{3}{b^3} \frac{y^{2/3}}{3y^{2/3}} = \frac{1}{b^3}$$

for $0 < y^{1/3} < b$, i.e., $0 < y < b^3$.

5. Let $Y = \tan X$ where X is uniformly distributed between $-\pi/2$ and $\pi/2$. Then (see Figure S1.3)

$$f_Y(y) = \frac{f_X(\tan^{-1} y)}{|dy/dx|_{x=\tan^{-1} y}} = \frac{1/\pi}{\sec^2 x}$$

with $x = \tan^{-1} y$, i.e., $y = \tan x$. But $\sec^2 x = 1 + \tan^2 x = 1 + y^2$, so $f_Y(y) = 1/[\pi(1+y^2)]$, the Cauchy density.

Lecture 2

1. We have $y_1 = 2x_1, y_2 = x_2 - x_1$, so $x_1 = y_1/2, x_2 = (y_1/2) + y_2$, and

$$\frac{\partial(y_1, y_2)}{\partial(x_1, x_2)} = \begin{vmatrix} 2 & 0 \\ -1 & 1 \end{vmatrix} = 2.$$

Figure S1.1

Figure S1.2

Thus $f_{Y_1Y_2}(y_1, y_2) = (1/2)f_{X_1X_2}(x_1, x_2) = e^{-x_1-x_2} = \exp[-(y_1/2) - (y_1/2) - y_2] = e^{-y_1}e^{-y_2}$. As indicated in the comments, the range of the y's is $0 < y_1 < 1, 0 < y_2 < 1$. Therefore the joint density of Y_1 and Y_2 is the product of a function of y_1 alone and a function of y_2 alone, which forces independence.

2. We have $y_1 = x_1/x_2, y_2 = x_2$, so $x_1 = y_1y_2, x_2 = y_2$ and

$$\frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} = \begin{vmatrix} y_2 & y_1 \\ 0 & 1 \end{vmatrix} = y_2.$$

Thus $f_{Y_1Y_2}(y_1, y_2) = f_{X_1X_2}(x_1, x_2) |\partial(x_1, x_2)/\partial(y_1, y_2)| = (8y_1y_2)(y_2)(y_2) = 2y_1(4y_2^3)$. Since $0 < x_1 < x_2 < 1$ is equivalent to $0 < y_1 < 1, 0 < y_2 < 1$, it follows just as in Problem 1 that X_1 and X_2 are independent.

3. The Jacobian $\partial(x_1, x_2, x_3)/\partial(y_1, y_2, y_3)$ is given by

$$\begin{vmatrix} y_2y_3 & y_1y_3 & y_1y_2 \\ -y_2y_3 & y_3 - y_1y_3 & y_2 - y_1y_2 \\ 0 & -y_3 & 1 - y_2 \end{vmatrix}$$

$$= (y_2y_3^2 - y_1y_2y_3^2)(1 - y_2) + y_1y_2^2y_3^2 + y_3(y_2 - y_1y_2)y_2y_3 + (1 - y_2)y_1y_2y_3^2$$

which cancels down to $y_2y_3^2$. Thus

$$f_{Y_1Y_2Y_3}(y_1, y_2, y_3) = \exp[-(x_1 + x_2 + x_3)]y_2y_3^2 = y_2y_3^2e^{-y_3}.$$

This can be expressed as $(1)(2y_2)(y_3^2e^{-y_3}/2)$, and since $x_1, x_2, x_3 > 0$ is equivalent to $0 < y_1 < 1, 0 < y_2 < 1, y_3 > 0$, it follows as before that Y_1, Y_2, Y_3 are independent.

Lecture 3

1. $M_{X_2}(t) = M_Y(t)/M_{X_1}(t) = (1-2t)^{-r/2}/(1-2t)^{-r_1/2} = (1-2t)^{-(r-r_1)/2}$, which is $\chi^2(r-r_1)$.

Figure S1.3

2. The moment-generating function of $c_1X_1 + c_2X_2$ is

$$E[e^{t(c_1X_1+c_2X_2)}] = E[e^{tc_1X_1}]E[e^{tc_2X_2}] = (1-\beta_1c_1t)^{-\alpha_1}(1-\beta_2c_2t)^{-\alpha_2}.$$

If $\beta_1 c_1 = \beta_2 c_2$, then $X_1 + X_2$ is gamma with $\alpha = \alpha_1 + \alpha_2$ and $\beta = \beta_i c_i$.

- 3. $M(t) = E[\exp(\sum_{i=1}^{n} c_i X_i)] = \prod_{i=1}^{n} E[\exp(tc_i X_i)] = \prod_{i=1}^{n} M_i(c_i t).$
- 4. Apply Problem 3 with $c_i = 1$ for all i. Thus

$$M_Y(t) = \prod_{i=1}^n M_i(t) = \prod_{i=1}^n \exp[\lambda_i(e^t - 1)] = \exp\left[\left(\sum_{i=1}^n \lambda_i\right)(e^t - 1)\right]$$

which is Poisson $(\lambda_1 + \cdots + \lambda_n)$.

5. Since the coin is unbiased, X_2 has the same distribution as the number of heads in the second experiment. Thus $X_1 + X_2$ has the same distribution as the number of heads in $n_1 + n_2$ tosses, namely binomial with $n = n_1 + n_2$ and p = 1/2.

Lecture 4

1. Let Φ be the normal (0,1) distribution function, and recall that $\Phi(-x) = 1 - \Phi(x)$. Then

$$P\{\mu - c < \overline{X} < \mu + c\} = P\{-c\frac{\sqrt{n}}{\sigma} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < c\frac{\sqrt{n}}{\sigma}\}$$

$$= \Phi(c\sqrt{n}/\sigma) - \Phi(-c\sqrt{n}/\sigma) = 2\Phi(c\sqrt{n}/\sigma) - 1 \ge .954.$$

Thus $\Phi(c\sqrt{n}/\sigma) \ge 1.954/2 = .977$. From tables, $c\sqrt{n}/\sigma \ge 2$, so $n \ge 4\sigma^2/c^2$.

2. If $Z = \overline{X} - \overline{Y}$, we want $P\{Z > 0\}$. But Z is normal with mean $\mu = \mu_1 - \mu_2$ and variance $\sigma^2 = (\sigma_1^2/n_1) + (\sigma_2^2/n_2)$. Thus

$$P\{Z > 0\} = P\{\frac{Z - \mu}{\sigma} > \frac{-\mu}{\sigma}\} = 1 - \Phi(-\mu/\sigma) = \Phi(\mu/\sigma).$$

3. Since nS^2/σ^2 is $\chi^2(n-1)$, we have

$$P\{a < S^2 < b\} = P\{\frac{na}{\sigma^2} < \chi^2(n-1) < \frac{nb}{\sigma^2}\}.$$

If F is the $\chi^2(n-1)$ distribution function, the desired probability is $F(nb/\sigma^2) - F(na/\sigma^2)$, which can be found using chi-square tables.

4. The moment-generating function is

$$E[e^{tS^2}] = E\left(\exp\left[\frac{nS^2}{\sigma^2}\frac{t\sigma^2}{n}\right]\right) = E[\exp(t\sigma^2X/n)]$$

where the random variable X is $\chi^2(n-1)$, and therefore has moment-generating function $M(t)=(1-2t)^{-(n-1)/2}$. Replacing t by $t\sigma^2/n$ we get

$$M_{S^2}(t) = \left(1 - \frac{2t\sigma^2}{n}\right)^{-(n-1)/2}$$

so S^2 is gamma with $\alpha = (n-1)/2$ and $\beta = 2\sigma^2/n$.

Lecture 5

1. By definition of the beta density,

$$E(X) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^\infty x^a (1-x)^{b-1} dx$$

and the integral is $\beta(a+1,b) = \Gamma(a+1)\Gamma(b)/\Gamma(a+b+1)$. Thus E(X) = a/(a+b). Now

$$E(X^{2}) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{0}^{\infty} x^{a+1} (1-x)^{b-1} dx$$

and the integral is $\beta(a+2,b) = \Gamma(a+2)\Gamma(b)/\Gamma(a+b+2)$. Thus

$$E(X^2) = \frac{(a+1)a}{(a+b+1)(a+b)}.$$

and

$$Var X = E(X^2) - [E(X)]^2$$

$$=\frac{1}{(a+b)^2(a+b+1)}[(a+1)a(a+b)-a^2(a+b+1)]=\frac{ab}{(a+b)^2(a+b+1)}.$$

- 2. $P\{-c \le T \le c\} = F_T(c) F_T(-c) = F_T(c) (1 F_T(c)) = 2F_T(c) 1 = .95$, so $F_T(c) = 1.95/2 = .975$. From the T table, c = 2.131.
- 3. $W = (X_1/m)/(X_2/n)$ where $X_1 = \chi^2(m)$ and $X_2 = \chi^2(n)$. Consequently, $1/W = (X_2/n)/(X_1/m)$, which is F(n, m).

- 4. Suppose we want $P\{W \leq c\} = .05$. Equivalently, $P\{1/W \geq 1/c\} = .05$, hence $P\{1/W \leq 1/c\} = .95$. By Problem 3, 1/W is F(n,m), so 1/c can be found from the F table, and we can then compute c. The analysis is similar for .1,.025 and .01.
- 5. If N is normal (0,1), then $T(n) = N/(\sqrt{\chi^2(n)/n})$. Thus $T^2(n) = N^2/(\chi^2(n)/n)$. But N^2 is $\chi^2(1)$, and the result follows.
- 6. If Y = 2X then $f_Y(y) = f_X(x)|dx/dy| = (1/2)e^{-x} = (1/2)e^{-y/2}$, $y \ge 0$, the chi-square density with two degrees of freedom. If X_1 and X_2 are independent exponential random variables, then X_1/X_2 is the quotient of two $\chi^2(2)$ random variables, which is F(2,2).

1. Apply the formula for the joint density of Y_j and Y_k with j=1, k=3, n=3, F(x)=x, f(x)=1, 0 < x < 1. The result is $f_{Y_1Y_3}(x,y)=6(y-x), 0 < x < y < 1$. Now let $Z=Y_3-Y_1, W=Y_3$. The Jacobian of the transformation has absolute value 1, so $f_{ZW}(z,w)=f_{Y_1Y_3}(y_1,y_3)=6(y_3-y_1)=6z, 0 < z < w < 1$. Thus

$$f_Z(z) = \int_{w=z}^1 6z \, dw = 6z(1-z), \quad 0 < z < 1.$$

- 2. The probability that more than one random variable falls in [x, x + dx] need not be negligible. For example, there can be a positive probability that two observations coincide with x.
- 3. The density of Y_k is

$$f_{Y_k}(x) = \frac{n!}{(k-1)!(n-k)!} x^{k-1} (1-x)^{n-k}, \quad 0 < x < 1$$

which is beta with $\alpha = k$ and $\beta = n - k + 1$. (Note that $\Gamma(k) = (k - 1)!$, $\Gamma(n - k + 1) = (n - k)!$, $\Gamma(k + n - k + 1) = \Gamma(n + 1) = n!$.)

4. We have $Y_k > p$ if and only if at most k-1 observations are in [0, p]. But the probability that a particular observation lies in [0, p] is p/1 = p. Thus we have n Bernoulli trials with probability of success p on a given trial. Explicitly,

$$P\{Y_k > p\} = \sum_{i=0}^{k-1} \binom{n}{i} p^i (1-p)^{n-i}.$$

Lecture 7

1. Let $W_n = (S_n - E(S_n))/n$; then $E(W_n) = 0$ for all n, and

$$\operatorname{Var} W_n = \frac{\operatorname{Var} S_n}{n^2} = \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 \le \frac{nM}{n^2} = \frac{M}{n} \to 0.$$

It follows that $W_n \xrightarrow{P} 0$.

- 2. All X_i and X have the same distribution (p(1) = p(0) = 1/2), so $X_n \xrightarrow{d} 0$. But if $0 < \epsilon < 1$ then $P\{|X_n X| \ge \epsilon\} = P\{X_n \ne X\}$, which is 0 for n odd and 1 for n even. Therefore $P\{|X_n X| \ge \epsilon\}$ oscillates and has no limit as $n \to \infty$.
- 3. By the weak law of large numbers, \overline{X}_n converges in probability to μ , hence converges in distribution to μ . Thus we can take X to have a distribution function F that is degenerate at μ , in other words,

$$F(x) = \begin{cases} 0, & x < \mu \\ 1, & x \ge \mu. \end{cases}$$

4. Let F_n be the distribution function of X_n . For all x, $F_n(x) = 0$ for sufficiently large n. Since the identically zero function cannot be a distribution function, there is no limiting distribution.

Lecture 8

- 1. Note that $M_{X_n} = 1/(1-\beta t)^n$ where $1/(1-\beta t)$ is the moment-generating function of an exponential random variable (which has mean β). By the weak law of large numbers, $X_n/n \xrightarrow{P} \beta$, hence $X_n/n \xrightarrow{d} \beta$.
- 2. $\chi^2(n) = \sum_{i=1}^n X_i^2$, where the X_i are iid, each normal (0,1). Thus the central limit theorem applies.
- 3. We have n Bernoulli trials, with probability of success $p = \int_a^b f(x) dx$ on a given trial. Thus Y_n is binomial (n,p). If n and p satisfy the sufficient condition given in the text, the normal approximation with $E(Y_n) = np$ and $\operatorname{Var} Y_n = np(1-p)$ should work well in practice.
- 4. We have $E(X_i) = 0$ and

Var
$$X_i = E(X_i^2) = \int_{-1/2}^{1/2} x^2 dx = 2 \int_0^{1/2} x^2 dx = 1/12.$$

By the central limit theorem, Y_n is approximately normal with $E(Y_n) = 0$ and $\operatorname{Var} Y_n = n/12$.

5. Let $W_n = n(1 - F(Y_n))$. Then

$$P\{W_n \ge w\} = P\{F(Y_n) \le 1 - (w/n)\} = P\{\max F(X_i) \le 1 - (w/n)\}$$

hence

$$P\{W_n \ge w\} = \left(1 - \frac{w}{n}\right)^n, \quad 0 \le w \le n,$$

which approaches e^{-w} as $n \to \infty$. Therefore the limiting distribution of W_n is exponential.

1. (a) We have

$$f_{\theta}(x_1,\ldots,x_n) = \theta^{x_1+\cdots+x_n} \frac{e^{-n\theta}}{x_1!\cdots x_n!}$$

With $x = x_1 + \cdots + x_n$, take logarithms and differentiate to get

$$\frac{\partial}{\partial \theta}(x \ln \theta - n\theta) = \frac{x}{\theta} - n = 0, \quad \hat{\theta} = \overline{X}.$$

(b) $f_{\theta}(x_1, \dots, x_n) = \theta^n(x_1 \cdots x_n)^{\theta-1}, \theta > 0$, and

$$\frac{\partial}{\partial \theta}(n \ln \theta + (\theta - 1) \sum_{i=1}^{n} \ln x_i) = \frac{n}{\theta} + \sum_{i=1}^{n} \ln x_i = 0, \quad \hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln x_i}.$$

Note that $0 < x_i < 1$, so $\ln x_i < 0$ for all i and $\hat{\theta} > 0$.

(c) $f_{\theta}(x_1, \dots, x_n) = (1/\theta^n) \exp[-(\sum_{i=1}^n x_i)/\theta]$. With $x = \sum_{i=1}^n x_i$ we have

$$\frac{\partial}{\partial \theta}(-n\ln\theta - \frac{x}{\theta}) = -\frac{n}{\theta} + \frac{x}{\theta^2} = 0, \quad \hat{\theta} = \overline{X}.$$

(d) $f_{\theta}(x_1, \ldots, x_n) = (1/2)^n \exp[-\sum_{i=1}^n |x_i - \theta|]$. We must minimize $\sum_{i=1}^n |x_i - \theta|$, and we must be careful when differentiating because of the absolute values. If the order statistics of the x_i are $y_i, i = 1, \ldots, n$, and $y_k < \theta < y_{k+1}$, then the sum to be minimized is

$$(\theta - y_1) + \cdots + (\theta - y_k) + (y_{k+1} - \theta) + \cdots + (y_n - \theta)$$

The derivative of the sum is the number of y_i 's less than θ minus the number of y_i 's greater than θ . Thus as θ increases, $\sum_{i=1}^{n} |x_i - \theta|$ decreases until the number of y_i 's less than θ equals the number of y_i 's greater than θ . We conclude that $\hat{\theta}$ is the *median* of the X_i .

(e) $f_{\theta}(x_1, \dots, x_n) = \exp[-\sum_{i=1}^n x_i]e^{n\theta}$ if all $x_i \ge \theta$, and 0 elsewhere. Thus

$$f_{\theta}(x_1,\ldots,x_n) = \exp\left[-\sum_{i=1}^n x_i\right]e^{n\theta}I[\theta \le \min(x_1,\ldots,x_n)].$$

The indicator I prevents us from differentiating blindly. As θ increases, so does $e^{n\theta}$, but if $\theta > \min_i x_i$, the indicator drops to 0. Thus $\hat{\theta} = \min(X_1, \dots, X_n)$.

2. $f_{\theta}(x_1,\ldots,x_n)=1$ if $\theta-(1/2)\leq x_i\leq \theta+(1/2)$ for all i, and 0 elsewhere. If Y_1,\ldots,Y_n are the order statistics of the X_i , then $f_{\theta}(x_1,\ldots,x_n)=I[y_n-(1/2)\leq \theta\leq y_1+(1/2)]$, where $y_1=\min x_i$ and $y_n=\max x_i$. Thus any function $h(X_1,\ldots,X_n)$ such that

$$Y_n - \frac{1}{2} \le h(X_1, \dots, X_n) \le Y_1 + \frac{1}{2}$$

for all X_1, \ldots, X_n is an MLE of θ . Some solutions are $h = Y_1 + (1/2)$, $h = Y_n - (1/2)$, $h = (Y_1 + Y_n)/2$, $h = (2Y_1 + 4Y_n - 1)/6$ and $h = (4Y_1 + 2Y_n + 1)/6$. In all cases, the inequalities reduce to $Y_n - Y_1 \le 1$, which is true.

3. (a) X_i is Poisson (θ) so $E(X_i) = \theta$. The method of moments sets $\overline{X} = \theta$, so the estimate of θ is $\theta^* = \overline{X}$, which is consistent by the weak law of large numbers.

(b)
$$E(X_i) = \int_0^1 \theta x^{\theta} d\theta = \theta/(\theta+1) = \overline{X}, \theta = \theta \overline{X} + \overline{X}$$
, so

$$\theta^* = \frac{\overline{X}}{1 - \overline{X}} \xrightarrow{P} \frac{\theta/(\theta + 1)}{1 - [\theta/(\theta + 1)]} = \theta$$

hence θ^* is consistent.

- (c) $E(X_i) = \theta = \overline{X}$, so $\theta^* = \overline{X}$, consistent by the weak law of large numbers.
- (d) By symmetry, $E(X_i) = \theta$ so $\theta^* = \overline{X}$ as in (a) and (c).
- (e) $E(X_i) = \int_{\theta}^{\infty} x e^{-(x-\theta)} dx = (\text{with } y = x \theta) \int_{0}^{\infty} (y+\theta) e^{-y} dy = 1 + \theta = \overline{X}$. Thus $\theta^* = \overline{X} 1$ which converges in probability to $(1+\theta) 1 = \theta$, proving consistency.
- 4. $P\{X \leq r\} = \int_0^r (1/\theta) e^{-x/\theta} dx = \left[-e^{-x/\theta}\right]_0^r = 1 e^{-r/\theta}$. The MLE of θ is $\hat{\theta} = \overline{X}$ [see Problem 1(c)], so the MLE of $1 e^{-r/\theta}$ is $1 e^{-r/\overline{X}}$.
- 5. The MLE of θ is X/n, the relative frequency of success. Since

$$P\{a \le X \le b\} = \sum_{k=a}^{b} \binom{n}{k} \theta^k (1-\theta)^{n-k},$$

the MLE of $P\{a \leq X \leq b\}$ is found by replacing θ by X/n in the above summation.

Lecture 10

- 1. Set $2\Phi(b) 1$ equal to the desired confidence level. This, along with the table of the normal (0,1) distribution function, determines b. The length of the confidence interval is $2b\sigma/\sqrt{n}$.
- 2. Set $2F_T(b) 1$ equal to the desired confidence level. This, along with the table of the T(n-1) distribution function, determines b. The length of the confidence interval is $2bS/\sqrt{n-1}$.
- 3. In order to compute the expected length of the confidence interval, we must compute E(S), and the key observation is

$$S = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{nS^2}{\sigma^2}} = \frac{\sigma}{\sqrt{n}} \sqrt{\chi^2(n-1)}.$$

If f(x) is the chi-square density with r = n - 1 degrees of freedom [see (3.8)], then the expected length is

$$\frac{2b}{\sqrt{n-1}} \frac{\sigma}{\sqrt{n}} \int_0^\infty x^{1/2} f(x) \, dx$$

and an appropriate change of variable reduces the integral to a gamma function which can be evaluated explicitly.

4. We have $E(X_i) = \alpha \beta$ and $Var(X_i) = \alpha \beta^2$. For large n,

$$\frac{\overline{X} - \alpha\beta}{\sqrt{\alpha}\beta/\sqrt{n}} = \frac{\overline{X} - \mu}{\mu/\sqrt{\alpha n}}$$

is approximately normal (0,1) by the central limit theorem. With $c=1/\sqrt{\alpha n}$ we have

$$P\{-b < \frac{\overline{X} - \mu}{c\mu} < b\} = \Phi(b) - \Phi(-b) = 2\Phi(b) - 1$$

and if we set this equal to the desired level of confidence, then b is determined. The confidence interval is given by $(1 - bc)\mu < \overline{X} < (1 + bc)\mu$, or

$$\frac{\overline{X}}{1+bc} < \mu < \frac{\overline{X}}{1-bc}$$

where $c \to 0$ as $n \to \infty$.

5. A confidence interval of length L corresponds to $|(Y_n/n) - p| < L/2$, an event with probability

$$2\Phi\left(\frac{L\sqrt{n}/2}{\sqrt{p(1-p)}}\right) - 1.$$

Setting this probability equal to the desired confidence level gives an inequality of the form

$$\frac{L\sqrt{n}/2}{\sqrt{p(1-p)}} > c.$$

As in the text, we can replace p(1-p) by its maximum value 1/4. We find the minimum value of n by squaring both sides.

In the first example in (10.1), we have L=.02, L/2=.01 and c=1.96. This problem essentially reproduces the analysis in the text in a more abstract form. Specifying how close to p we want our estimate to be (at the desired level of confidence) is equivalent to specifying the length of the confidence interval.

Lecture 11

1. Proceed as in (11.1):

$$Z = \overline{X} - \overline{Y} - (\mu_1 - \mu_2)$$
 divided by $\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}$

is normal (0,1), and $W = (nS_1^2/\sigma_1^2) + (mS_2^2/\sigma_2^2)$ is $\chi^2(n+m-2)$. Thus $\sqrt{n+m-2}Z/\sqrt{W}$ is T(n+m-2), but the unknown variances cannot be eliminated.

2. If $\sigma_1^2 = c\sigma_2^2$, then

$$\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m} = c\sigma_2^2 \left(\frac{1}{n} + \frac{1}{cm}\right)$$

and

$$\frac{nS_1^2}{\sigma_1^2} + \frac{mS_2^2}{\sigma_2^2} = \frac{nS_1^2 + cmS_2^2}{c\sigma_2^2}.$$

Thus σ_2^2 can again be eliminated, and confidence intervals can be constructed, assuming c known.

Lecture 12

- 1. The given test is an LRT and is completely determined by c, independent of $\theta > \theta_0$.
- 2. The likelihood ratio is $L(x) = f_1(x)/f_0(x) = (1/4)/(1/6) = 3/2$ for x = 1, 2, and L(x) = (1/8)/(1/6) = 3/4 for x = 3, 4, 5, 6. If $0 \le \lambda < 3/4$, we reject for all x, and $\alpha = 1, \beta = 0$. If $3/4 < \lambda < 3/2$, we reject for x = 1, 2 and accept for x = 3, 4, 5, 6, with $\alpha = 1/3$ and $\beta = 1/2$. If $3/2 < \lambda \le \infty$, we accept for all x, with $\alpha = 0, \beta = 1$.

For $\alpha = .1$, set $\lambda = 3/2$, accept when x = 3, 4, 5, 6, reject with probability a when x = 1, 2. Then $\alpha = (1/3)a = .1$, a = .3 and $\beta = (1/2) + (1/2)(1 - a) = .85$.

3. Since (220-200)/10=2, it follows that when c reaches 2, the null hypothesis is accepted. The associated type 1 error probability is $\alpha = 1 - \Phi(2) = 1 - .977 = .023$. Thus the given result is significant even at the significance level .023. If we were to take additional observations, enough to drive the probability of a type 1 error down to .023, we would still reject H_0 . Thus the p-value is a concise way of conveying a lot of information about the test.

Lecture 13

1. We sum $(X_i - np_i)^2/np_i$, i = 1, 2, 3, where the X_i are the observed frequencies and the $np_i = 50, 30, 20$ are the expected frequencies. The chi-square statistic is

$$\frac{(40-50)^2}{50} + \frac{(33-30)^2}{30} + \frac{(27-20)^2}{20} = 2 + .3 + 2.45 = 4.75$$

Since $P\{\chi^2(2) > 5.99\} = .05$ and 4.75 < 5.99, we accept H_0 .

2. The expected frequencies are given by

For example, to find the entry in the 2C position, we can multiply the row 2 sum by the column 3 sum and divide by the total number of observations (namely 600) to get

(306)(200)/600=102. Alternatively, we can compute P(C)=(114+86)/600=1/3. We multiply this by the row 2 sum 306 to get 306/3=102. The chi square statistic is

$$\frac{(33-49)^2}{49} + \frac{(147-147)^2}{147} + \frac{(114-98)^2}{98} + \frac{(67-51)^2}{51} + \frac{(153-153)^2}{153} + \frac{(86-102)^2}{102}$$

which is 5.224+0+2.612+5.020+0+2.510=15.366. There are $(h-1)(k-1)=1\times 2=2$ degrees of freedom, and $P\{\chi^2(2)>5.99\}=.05$. Since 15.366>5.94, we reject H_0 .

3. The observed frequencies minus the expected frequencies are

$$a - \frac{(a+b)(a+c)}{a+b+c+d} = \frac{ad-bc}{a+b+c+d}, \quad b - \frac{(a+b)(b+d)}{a+b+c+d} = \frac{bc-ad}{a+b+c+d},$$

$$c - \frac{(a+c)(c+d)}{a+b+c+d} = \frac{bc - ad}{a+b+c+d}, \quad d - \frac{(c+d)(b+d)}{a+b+c+d} = \frac{ad - bc}{a+b+c+d}.$$

The chi-square statistic is

$$\frac{(ad-bc)^2}{a+b+c+d} \left[\frac{1}{(a+b)(c+d)(a+c)(b+d)} \right] \times$$

$$[(c+d)(b+d) + (a+c)(c+d) + (a+b)(b+d) + (a+b)(a+c)]$$

and the expression in small brackets simplifies to $(a+b+c+d)^2$, and the result follows.

Lecture 14

1. The joint probability function is

$$f_{\theta}(x_1,\ldots,x_n) = \prod_{i=1}^n \frac{e^{-\theta}\theta^{x_i}}{x_i!} = \frac{e^{-n\theta}\theta^{u(x)}}{x_1!\cdots x_n!}.$$

Take $g(\theta, u(x)) = e^{-n\theta}\theta^{u(x)}$ and $h(x) = 1/(x_1! \cdots x_n!)$.

2. $f_{\theta}(x_1, \dots, x_n) = [A(\theta)]^n B(x_1) \cdots B(x_n)$ if $0 < x_i < \theta$ for all i, and 0 elsewhere. This can be written as

$$[A(\theta)]^n \prod_{i=1}^n B(x_i) I \left[\max_{1 \le i \le n} x_i < \theta \right]$$

where I is an indicator. We take $g(\theta, u(x)) = A^n(\theta)I[\max x_i < \theta]$ and $h(x) = \prod_{i=1}^n B(x_i)$.

- 3. $f_{\theta}(x_1,\ldots,x_n)=\theta^n(1-\theta)^{u(x)}$, and the factorization theorem applies with h(x)=1.
- 4. $f_{\theta}(x_1,\ldots,x_n)=\theta^{-n}\exp[-(\sum_{i=1}^n x_i)/\theta]$, and the factorization theorem applies with h(x)=1.

5. $f_{\theta}(x) = (\Gamma(a+b)/[\Gamma(a)\Gamma(b)])x^{a-1}(1-x)^{b-1}$ on (0,1). In this case, $a=\theta$ and b=2. Thus $f_{\theta}(x) = (\theta+1)\theta x^{\theta-1}(1-x)$, so

$$f_{\theta}(x_1, \dots, x_n) = (\theta + 1)^n \theta^n \left(\prod_{i=1}^n x_i \right)^{\theta - 1} \prod_{i=1}^n (1 - x_i)$$

and the factorization theorem applies with

$$g(\theta, u(x)) = (\theta + 1)^n \theta^n u(x)^{\theta - 1}$$

and $h(x) = \prod_{i=1}^{n} (1 - x_i)$.

6. $f_{\theta}(x) = (1/[\Gamma(\alpha)\beta^{\alpha}])x^{\alpha-1}e^{-x/\beta}, x > 0$, with $\alpha = \theta$ and β arbitrary. The joint density is

$$f_{\theta}(x_1, \dots, x_n) = \frac{1}{[\Gamma(\alpha)]^n \beta^{n\alpha}} u(x)^{\alpha - 1} \exp\left[-\sum_{i=1}^n x_i/\beta\right]$$

and the factorization theorem applies with $h(x) = \exp[-\sum x_i/\beta]$ and $g(\theta, u(x))$ equal to the remaining factors.

7. We have

$$P_{\theta}\{X_1'=x_1,\ldots,X_n'=x_n\}=P_{\theta}\{Y=y\}P\{X_1=x_1,\ldots,X_n=x_n|Y=y\}$$

We can drop the subscript θ since Y is sufficient, and we can replace X'_i by X_i by definition of B's experiment. The result is

$$P_{\theta}\{X_1'=x_1,\ldots,X_n'=x_n\}=P_{\theta}\{X_1=x_1,\ldots,X_n=x_n\}$$

as desired.

Lecture 17

- 1. Take u(X) = X.
- 2. The joint density is

$$f_{\theta}(x_1,\ldots,x_n) = \exp\left[-\sum_{i=1}^n (x_i - \theta)\right] I[\min x_i > \theta]$$

so Y_1 is sufficient. Now if $y > \theta$, then

$$P\{Y_1 > y\} = (P\{X_1 > y\})^n = \left(\int_y^\infty \exp[-(x - \theta)] dx\right)^n = \exp[-n(y - \theta)],$$

SO

$$F_{Y_1}(y) = 1 - e^{-n(y-\theta)}, \quad f_{Y_1}(y) = ne^{-n(y-\theta)}, \quad y > \theta.$$

The expectation of $g(Y_1)$ under θ is

$$E_{\theta}[g(Y_1)] = \int_{\theta}^{\infty} g(y) n \exp[-n(y-\theta)] dy.$$

If this is 0 for all θ , divide by $e^{n\theta}$ to get

$$\int_{\theta}^{\infty} g(y)n \exp(-ny) \, dy = 0.$$

Differentiating with respect to θ , we have $-g(\theta)n\exp(-n\theta) = 0$, so $g(\theta) = 0$ for all θ , proving completeness. The expectation of Y_1 under θ is

$$\int_{\theta}^{\infty} y n \exp[-n(y-\theta)] \, dy = \int_{\theta}^{\infty} (y-\theta) n \exp[-n(y-\theta)] \, dy + \theta \int_{\theta}^{\infty} n \exp[-n(y-\theta)] \, dy$$

$$= \int_0^\infty z n \exp(-nz) dz + \theta = \frac{1}{n} + \theta.$$

Thus $E_{\theta}[Y_1 - (1/n)] = \theta$, so $Y_1 - (1/n)$ is a UMVUE of θ .

3. Since $f_{\theta}(x) = \theta \exp[(\theta - 1) \ln x]$, the density belongs to the exponential class. Thus $\sum_{i=1}^{n} \ln X_i$ is a complete sufficient statistic, hence so is $\exp[(1/n)\sum_{i=1}^{n} \ln X_i] = u(X_1, \ldots, X_n)$. The key observation is that if Y is sufficient and g is one-to-one, then g(Y) is also sufficient, since g(Y) conveys exactly the same information as Y does; similarly for completeness.

To compute the maximum likelihood estimate, note that the joint density is $f_{\theta}(x_1, \ldots, x_n) = \theta^n \exp[(\theta - 1) \sum_{i=1}^n \ln x_i]$. Take logarithms, differentiate with respect to θ , and set the result equal to 0. We get $\hat{\theta} = -n / \sum_{i=1}^n \ln X_i$, which is a function of $u(X_1, \ldots, X_n)$.

4. Each X_i is gamma with $\alpha = 2, \beta = 1/\theta$, so (see Lecture 3) Y is gamma $(2n, 1/\theta)$. Thus

$$E_{\theta}(1/Y) = \int_{0}^{\infty} (1/y) \frac{1}{\Gamma(2n)(1/\theta)^{2n}} y^{2n-1} e^{-\theta y} dy$$

which becomes, under the change of variable $z = \theta y$,

$$\frac{\theta^{2n}}{\Gamma(2n)}\int_0^\infty \frac{z^{2n-2}}{\theta^{2n-2}}e^{-z}\frac{dz}{\theta}=\frac{\theta^{2n}}{\theta^{2n-1}}\frac{\Gamma(2n-1)}{\Gamma(2n)}=\frac{\theta}{2n-1}.$$

Therefore $E_{\theta}[(2n-1)/Y] = \theta$, and (2n-1)/Y is the UMVUE of θ .

- 5. We have $E(Y_2) = [E(X_1) + E(X_2)]/2 = \theta$, hence $E[E(Y_2|Y_1)] = E(Y_2) = \theta$. By completeness, $E(Y_2|Y_1)$ must be Y_1/n .
- 6. Since $X_i/\sqrt{\theta}$ is normal (0,1), Y/θ is $\chi^2(n)$, which has mean n and variance 2n. Thus $E[(Y/\theta)^2] = n^2 + 2n$, so $E(Y^2) = \theta^2(n^2 + 2n)$. Therefore the UMVUE of θ^2) is $Y^2/(n^2 + 2n)$.

7. (a) $E[E(I|Y)] = E(I) = P\{X_1 \le 1\}$, and the result follows by completeness.

(b) We compute

$$P\{X_1 = r | X_1 + \dots + X_n = s\} = \frac{P\{X_1 = r, X_2 + \dots + X_n = s - r\}}{P\{X_1 + \dots + X_n\} = s}.$$

The numerator is

$$\frac{e^{-\theta}\theta^r}{r!}e^{-(n-1)\theta}\frac{[(n-1)\theta]^{s-r}}{(s-r)!}$$

and the denominator is

$$\frac{e^{-n\theta}(n\theta)^s}{s!}$$

so the conditional probability is

$$\binom{s}{r} \frac{(n-1)^{s-r}}{n^s} = \binom{s}{r} \left(\frac{n-1}{n}\right)^{s-r} \left(\frac{1}{n}\right)^r$$

which is the probability of r successes in s Bernoulli trials, with probability of success 1/n on a given trial. Intuitively, if the sum is s, then each contribution to the sum is equally likely to come from X_1, \ldots, X_n .

(c) By (b), $P\{X_1 = 0|Y\} + P\{X_1 = 1|Y\}$ is given by

$$\left(1 - \frac{1}{n}\right)^{Y} + Y\left(\frac{1}{n}\right)\left(1 - \frac{1}{n}\right)^{Y-1} = \left(\frac{n-1}{n}\right)^{Y} \left[1 + \frac{Y/n}{(n-1)/n}\right]$$

$$= \left(\frac{n-1}{n}\right)^Y \left[1 + \frac{Y}{n-1}\right].$$

This formula also works for Y = 0 because it evaluates to 1.

8. The joint density is

$$f_{\theta}(x_1,\ldots,x_n) = \frac{1}{\theta_2^n} \exp\left[-\sum_{i=1}^n \frac{(x_i-\theta_1)}{\theta_2}\right] I\left[\min_i X_i > \theta_1\right].$$

Since

$$\sum_{i=1}^{n} \frac{(x_i - \theta_1)}{\theta_2} = \frac{1}{\theta_2} \sum_{i=1}^{n} x_i - n\theta_1,$$

the result follows from the factorization theorem.

1. By (18.4), the numerator of $\delta(x)$ is

$$\int_0^1 \theta \theta^{r-1} (1-\theta)^{s-1} \binom{n}{x} \theta^x (1-\theta)^{n-x} d\theta$$

and the denominator is

$$\int_0^1 \theta^{r-1} (1-\theta)^{s-1} \binom{n}{x} \theta^x (1-\theta)^{n-x} d\theta.$$

Thus $\delta(x)$ is

$$\frac{\beta(r+x+1,n-x+s)}{\beta(r+x,n-x+s)} = \frac{\Gamma(r+x+1)}{\Gamma(r+x)} \frac{\Gamma(r+s+n)}{\Gamma(r+s+n+1)} = \frac{r+x}{r+s+n}.$$

2. The risk function is

$$E_{\theta} \left[\left(\frac{r+X}{r+s+n} - \theta \right)^{2} \right] = \frac{1}{(r+s+n)^{2}} E_{\theta} \left[(X - n\theta + r - r\theta - s\theta)^{2} \right]$$

with $E_{\theta}(X - n\theta) = 0$, $E_{\theta}[(X - n\theta)^2] = \text{Var } X = n\theta(1 - \theta)$. Thus

$$R_{\delta}(\theta) = \frac{1}{(r+s+n)^2} [n\theta(1-\theta) + (r-r\theta-s\theta)^2].$$

The quantity in brackets is

$$n\theta - n\theta^2 + r^2 + r^2\theta^2 + s^2\theta^2 - 2r^2\theta - 2rs\theta + 2rs\theta^2$$

which simplifies to

$$((r+s)^2 - n)\theta^2 + (n - 2r(r+s))\theta + r^2$$

and the result follows.

3. If $r = s = \sqrt{n/2}$, then $(r+s)^2 - n = 0$ and n - 2r(r+s) = 0, so

$$R_{\delta}(\theta) = \frac{r^2}{(r+s+n)^2}.$$

4. The average loss using δ is $B(\delta) = \int_{-\infty}^{\infty} h(\theta) R_{\delta}(\theta) d\theta$. If $\psi(x)$ has a smaller maximum risk than $\delta(x)$, then since R_{δ} is constant, we have $R_{\psi}(\theta) < R_{\delta}(\theta)$ for all θ . Therefore $B(\psi) < B(\delta)$, contradicting the fact that θ is a Bayes estimate.

Lecture 20

1.

$$Var(XY) = E[(XY)^2] - (EXEY)^2 = E(X^2)E(Y^2) - (EX)^2(EY)^2$$
$$= (\sigma_X^2 + \mu_X^2)(\sigma_Y^2 + \mu_Y^2) - \mu_X^2 \mu_Y^2 = \sigma_X^2 \sigma_Y^2 + \mu_X^2 \sigma_Y^2 + \mu_Y^2 \sigma_X^2.$$

2.

$$Var(aX + bY) = Var(aX) + Var(bY) + 2ab Cov(X, Y)$$
$$= a^{2}\sigma_{X}^{2} + b^{2}\sigma_{Y}^{2} + 2ab\rho\sigma_{X}\sigma_{Y}.$$

3.

$$Cov(X, X + Y) = Cov(X, X) + Cov(X, Y) = Var X + 0 = \sigma_X^2$$
.

4. By Problem 3,

$$\rho_{X,X+Y} = \frac{\sigma_X^2}{\sigma_X \sigma_{X+Y}} = \frac{\sigma_X}{\sqrt{\sigma_X^2 + \sigma_Y^2}}.$$

5.

$$Cov(XY, X) = E(X^2)E(Y) - E(X)^2E(Y)$$

$$= (\sigma_X^2 + \mu_X^2)\mu_Y - \mu_X^2\mu_Y = \sigma_X^2\mu_Y.$$

6. We can assume without loss of generality that $E(X^2) > 0$ and $E(Y^2) > 0$. We will have equality iff the discriminant $b^2 - 4ac = 0$, which holds iff $h(\lambda) = 0$ for some λ . Equivalently, $\lambda X + Y = 0$ for some λ . We conclude that equality holds if and only if X and Y are linearly dependent.

Lecture 21

1. Let $Y_i = X_i - E(X_i)$; then $E[\left(\sum_{i=1}^n t_i Y_i\right)^2] \ge 0$ for all \underline{t} . But this expectation is

$$E[\sum_i t_i Y_i \sum_j t_j Y_j] = \sum_{i,j} t_i \sigma_{ij} t_j = \underline{t}' K \underline{t}$$

where $\sigma_{ij} = \text{Cov}(X_i, X_j)$. By definition of covariance, K is symmetric, and K is always nonnegative definite because $\underline{t}'K\underline{t} \geq 0$ for all \underline{t} . Thus all eigenvalues λ_i of K are nonnegative. But K = LDL', so $\det K = \det D = \lambda_1 \cdots \lambda_n$. If K is nonsingular then all $\lambda_i > 0$ and K is positive definite.

- 2. We have $\underline{X} = C\underline{Z} + \underline{\mu}$ where C is nonsingular and the Z_i are independent normal random variables with zero mean. Then $\underline{Y} = A\underline{X} = AC\underline{Z} + A\underline{\mu}$, which is Gaussian.
- 3. The moment-generating function of (X_1, \ldots, X_m) is the moment-generating function of (X_1, \ldots, X_n) with $t_{m+1} = \cdots = t_n = 0$. We recognize the latter moment-generating function as Gaussian; see (21.1).
- 4. Let $Y = \sum_{i=1}^{n} c_i X_i$; then

$$E(e^{tY}) = E\left[\exp\left(\sum_{i=1}^{n} c_i t X_i\right)\right] = M_{\underline{X}}(c_1 t, \dots, c_n t)$$

$$= \exp\left(t \sum_{i=1}^{n} c_{i} \mu_{i}\right) \exp\left(\frac{1}{2} t^{2} \sum_{i,j=1}^{n} c_{i} a_{ij} c_{j}\right)$$

which is the moment-generating function of a normally distributed random variable. Another method: Let $W = c_1 X_1 + \cdots + c_n X_n = \underline{c'} \underline{X} = \underline{c'} (A\underline{Y} + \underline{\mu})$, where the Y_i are independent normal random variables with zero mean. Thus $W = \underline{b'} \underline{Y} + \underline{c'} \underline{\mu}$ where $\underline{b'} = \underline{c'} A$. But $\underline{b'} \underline{Y}$ is a linear combination of independent normal random variables, hence is normal.

Lecture 22

1. If y is the best estimate of Y given X = x, then

$$y - \mu_Y = \frac{\rho \sigma_Y}{\sigma_X} (x - \mu_X)$$

and [see (20.1)] the minimum mean square error is $\sigma_Y^2(1-\rho^2)$, which in this case is 28. We are given that $\rho\sigma_Y/\sigma_X=3$, so $\rho\sigma_Y=3\times 2=6$ and $\rho^2=36/\sigma_Y^2$. Therefore

$$\sigma_Y^2(1 - \frac{36}{\sigma_Y^2}) = \sigma_Y^2 - 36 = 28, \quad \sigma_Y = 8, \quad \rho^2 = \frac{36}{64}, \quad \rho = .75.$$

Finally, $y = \mu_Y + 3x - 3\mu_X = \mu_Y + 3x + 3 = 3x + 7$, so $\mu_Y = 4$.

2. The bivariate normal density is of the form

$$f_{\theta}(x,y) = a(\theta)b(x,y)\exp[p_1(\theta)x^2 + p_2(\theta)y^2 + p_3(\theta)xy + p_4(\theta)x + p_5(\theta)y]$$

so we are in the exponential class. Thus

$$(\sum X_i^2, \sum Y_i^2, \sum X_i Y_i, \sum X_i, \sum Y_i)$$

is a complete sufficient statistic for $\theta = (\sigma_X^2, \sigma_Y^2, \rho, \mu_X, \mu_Y)$. Note also that any statistic in one-to-one correspondence with this one is also complete and sufficient.

Lecture 23

1. The probability of any event is found by integrating the density on the set defined by the event. Thus

$$P\{a \le f(X) \le b\} = \int_A f(x) dx, \quad A = \{x : a \le f(x) \le b\}.$$

2. Bernoulli: $f_{\theta}(x) = \theta^{x}(1-\theta)^{1-x}, x=0,1$

$$\frac{\partial}{\partial \theta} \ln f_{\theta}(x) = \frac{\partial}{\partial \theta} [x \ln \theta + (1 - x) \ln(1 - \theta)] = \frac{x}{\theta} - \frac{1 - x}{1 - \theta}$$

$$\frac{\partial^2}{\partial \theta^2} \ln f_{\theta}(x) = -\frac{x}{\theta^2} - \frac{1-x}{(1-\theta)^2}$$

$$I(\theta) = E_{\theta} \left[\frac{X}{\theta^2} + \frac{1 - X}{(1 - \theta)^2} \right] = \frac{1}{\theta} + \frac{1}{1 - \theta} = \frac{1}{\theta(1 - \theta)}$$

since $E_{\theta}(X) = \theta$. Now

$$\operatorname{Var}_{\theta} Y \ge \frac{1}{nI(\theta)} = \frac{\theta(1-\theta)}{n}.$$

But

$$\operatorname{Var}_{\theta} \overline{X} = \frac{1}{n^2} \operatorname{Var}[\operatorname{binomial}(n, \theta)] = \frac{n\theta(1 - \theta)}{n^2} = \frac{\theta(1 - \theta)}{n}$$

so \overline{X} is a UMVUE of θ .

Normal:

$$f_{\theta}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp[-(x-\theta)^2/2\sigma^2]$$

$$\frac{\partial}{\partial \theta} \ln f_{\theta}(x) = \frac{\partial}{\partial \theta} \left[-\frac{(x-\theta)^2}{2\sigma^2} \right] = \frac{x-\theta}{\sigma^2}$$

$$\frac{\partial^2}{\partial \theta^2} \ln f_{\theta}(x) = -\frac{1}{\sigma^2}, \quad I(\theta) = \frac{1}{\sigma^2}, \quad \operatorname{Var}_{\theta} Y \ge \frac{\sigma^2}{n}$$

But $\operatorname{Var}_{\theta} \overline{X} = \sigma^2/n$, so \overline{X} is a UMVUE of θ .

Poisson: $f_{\theta}(x) = e^{-\theta} \theta^x / x!, x = 0, 1, 2...$

$$\frac{\partial}{\partial \theta} \ln f_{\theta}(x) = \frac{\partial}{\partial \theta} (-\theta + x \ln \theta) = -1 + \frac{x}{\theta}$$

$$\frac{\partial^2}{\partial \theta^2} \ln f_{\theta}(x) = -\frac{x}{\theta^2}, \quad I(\theta) = E\left(\frac{X}{\theta^2}\right) = \frac{\theta}{\theta^2} = \frac{1}{\theta}$$

$$\operatorname{Var}_{\theta} Y \geq \frac{\theta}{n} = \operatorname{Var}_{\theta} \overline{X}$$

so \overline{X} is a UMVUE of θ .

1.

$$K(p) = \sum_{k=0}^{c} \binom{n}{k} p^{k} (1-p)^{n-k}$$

with c=2 and p=1/2 under H_0 . Therefore

$$\alpha = \left[\binom{12}{0} + \binom{12}{1} + \binom{12}{2} \right] (1/2)^n = \frac{79}{4096} = .019.$$

2. The deviations, with ranked absolute values in parentheses, are

16.9(14), -1.7(5), -7.9(9), -1.2(4), 12.4(12), 9.8(10), -.3(2), 2.7(6), -3.4(7), 14.5(13), 24.4(16), 5.2(8), -12.2(11), 17.8(15), .1(1), .5(3)

The Wilcoxon statistic is W=1-2+3-4-5+6-7+8-9+10-11+12+13+14+15+16=60

Under H_0 , E(W) = 0 and Var W = n(n+1)(2n+1)/6 = 1496, $\sigma_W = 38.678$

Now W/38.678 is approximately normal (0,1) and $P\{W \ge c\} = P\{W/38.678 \ge c/38.678\} = .05$. From a normal table, c/38.678 = 1.645, c = 63.626. Since 60 < 63.626, we accept H_0 .

3. The moment-generating function of V_j is $M_{V_j}(t)=(1/2)(e^{-jt}+e^{jt})$ and the moment-generating function of W is $M_W(t)=\prod_{j=1}^n M_{V_j}(t)$. When $n=1,\ W=\pm 1$ with equal probability. When n=2,

$$M_W(t) = \frac{1}{2}(e^{-t} + e^t)\frac{1}{2}(e^{-2t} + e^{2t}) = \frac{1}{4}(e^{-3t} + e^{-t} + e^t + e^{3t})$$

so W takes on the values -3, -1, 1, 3 with equal probability. When n = 3,

$$M_W(t) = \frac{1}{4}(e^{-3t} + e^{-t} + e^t + e^{3t})\frac{1}{2}(e^{-3t} + e^{3t})$$

$$= \frac{1}{8}(e^{-6t} + e^{-4t} + e^{-2t} + 1 + 1 + e^{2t} + e^{4t} + e^{6t}).$$

Therefore $P\{W=k\}=1/8$ for $k=-6,-4,-2,2,4,6,\ P\{W=0\}=1/4,$ and $P\{W=k\}=0$ for other values of k.