HW 10 & 11 CHEM 362

Available: April 21, 2008 Due: April 28, 2008

Chapter 14

- 1. The electronic structure of C in its ground state is 1s² 2s² 2p². Why does carbon typically form four single bonds and not two?
- 2. What is meant by catenation? Why does silicon have much less tendency to catenate than carbon? Could the same be said of nitrogen?
- 3. List ways in which CO can be made.
- 4. List ways in which CO_2 can be made.
- 5. On which side is the equilibrium favored? L or R? $CO_{2(aq)} + H_2O \rightleftharpoons H_3O^+ + H_3CO_3^+$
- 6. Why does CaCO₃ dissolve, to some extent, to form CO₂ saturated water? Write balanced equations for the reactions involved. (see the book)
- 7. How does HCN act in the body? Why are KCN water solutions alkaline?
- 8. The C-C bond length in graphite is 1.42 A. How does this compare with the C-C bond length in: (see the book)
 - a. diamond
 - b. ethylene
 - c. benzene

What do you expect the bond order is in graphite?

9. Explain the roles of CO and CO₂ in the environment. Be as complete as possible in your response.

Chapter 16

- 1. Complete and balance the following reactions:
 - a. $H_2O_2 + NO_2 \rightarrow$
 - b. Li $+N_2 \rightarrow$
 - c. $O_3 + NO_2 \rightarrow$
 - d. $HI + HNO_2 \rightarrow$
 - e. $C + NO_2 \rightarrow$
 - f. $Cu + NO_2 \rightarrow$
- 2. Write balanced equations for the different preparations of nitric oxide.
- 3. How can NO₂ and NO₃ be bonded to transition metals? (this was covered a long time ago but is still important)
- 4. Draw the Lewis structure and explain the geometry and hybridization at each atom in

1

- 5. Use MO theory to compare the bonding in CO, N₂, CN⁻ and NO⁺. Why does N₂ form complexes with metals much less than CO? (this is review but is being re-emphasized in this section)
- 6. Why does N_2 form a diatomic molecule unlike Phosphorus and other elements in Group VB(15)?
- 7. Give the principal products of the reactions:
 - a. $O_2 + NH_3 \rightarrow (uncatalyzed)$
 - b. Disproportionation of NO
 - c. Oxidation of NO₂ by ozone
 - d. Reduction of NO₂ by excess hydrogen
 - e. The Haber process for ammonia
 - f. Dimerization of NO₂
- 8. Outline the synthesis of HNO₃ staring from the elements.
- 9. What is the role of NO_x gases in the environment? Be as complete as possible in your response.

Chapter 18

- 1. What is the difference between oxygenation and oxidation?
- 2. Describe the interaction with water of acidic, basic and neutral oxides. Give two examples of each type.
- 3. Give the electronic configuration of the oxygen *atom*.
- 4. Explain why the oxygen atom is paramagnetic.
- 5. Describe and compare the geometries of the oxygen atoms in the following pairs of molecules:
 - a. O_2 and O_3
 - b. CH₃OH and H₂O
 - c. O_2 and O_2^{2-}
 - d. CO₂ and SO₃