2-3-trees, 98	insertion, 94
,	search, 95
access rights, 115	B-tree, 83–100, 156
Ackermann's function, 126	deletion, 90
Adelson-Velsky, G., 65	depth, 86
affix code, 202	insertion, 86
algorithm	background concept
Boyer–Moore, 1–12, 116	approximation of a sum, 144
Dijkstra, 47	asymptotic notations, 20
Heapsort, 110	average complexity, 161
Karp–Rabin, 148	binary search, 15
Knuth–Morris–Pratt, 2	birthday paradox, 135
Kruskal, 126	depth of a tree, 65
Mergesort, 26	Fibonacci sequence, 70
probabilistic, 148	mergesort, 26
allocation	modular arithmetic, 133
linked, 16	number of binary trees, 53
sequential, 15	prime numbers, 131
alphabet, 4	proving properties of trees, 67
amortized analysis, 89	recurrence relations, 175
ASCII, 129, 132, 179	summation, 19, 142
asymptotic notation, 20	swapping two elements, 108
AVL tree, 65–82, 86, 159	BFS, see search
balance factor, 71	big-O, 20
deletion, 77	binary representation, 133
depth, 66	binary search, 15
insertion, 71	binary search tree, 58
rotation, 75	binary tree, 52, 182
	complete, 56
B*-trees, 96–98	full, 56, 103
deletion, 97	number, 53
insertion, 96	birthday, 135
B ⁺ -trees, 93–95, 156	bitmap, 114
deletion, 95	compression, 41
·	*

Bloom filters, 149	edge, 33
Boyer, J S., 1	Elias code, 190
bubblesort, 153, 157	Elias, P., 190
	entropy, 185, 202
C programming language, 132	error-correcting code, 199
Caesar's code, 201	error correction, 194
Catalan numbers, 54	error detection, 195
chaining, 137	expectation, 141, 161
character frequency, 179	expression
chmod command, 115	arithmetic, 22, 56
ciphertext, 200	extraction
circular list, 29	queue, 17
cleartext, 200	
cluster, 138	Fibonacci
code	code, 193
affix, 202	numbers, 81
breaking, 201	sequence, 70
complete, 183, 202	fields, 14
compression, 179	FIFO, 17
cryptographic, 179	
error-correcting, 179	game of Hex, 125
fixed length, 178	γ-code, 190
Hamming, 197	geometric progression,
robustness, 194	142
unary, 190	geometric series, 110
universal, 179	golden ratio, 70
variable length, 45, 180	graph, 33-49
codes, 178–203	exploration, 40
complete code, 183	planar, 208
complexity, 5, 161	representation, 38
compression	tree, 35
bitmaps, 41	greedy, 44
data, 129, 148	
concordance, 116	Hamming code, 197
counting sort, 157	Hamming distance, 43
cryptography, 199	Hamming, R., 197
	harmonic series, 144, 170
De Bruijn sequence, 48	hashing, 127–151
decision tree, 158	deletion, 147
deduplication, 148	double, 139
δ-code, 190	insertion, 141
$\Delta_1, 5$	search, 143
Δ_2 , 7	uniform, 140, 151, 170
depth	worst case, 150
node, 57	heaps, 101–113, 154
deque, 30	array implementation, 105
derivative, 165	construction, 106
DFS, see search	max-heap, 112
dictionary, 44, 116, 189	min-heap, 112
Dijkstra, E. W., 47	ternary, 113
divide and conquer, 15, 26, 166	heapsort, 110, 153, 154, 166,
doubly linked list, 29	196

heuristic	modulus, 133
bad-character, 4	Moore, R. S., 1
good-suffix, 7	
Horner's rule, 134	natural logarithm, 146
Huffman	Nobel laureates, 136, 185
higher-order, 203	node
Huffman code	balancing, 90
decompression, 186	merging, 91
optimality, 187	splitting, 87
Huffman coding, 183–189	notation
Huffman, D., 185	asymptotic, 20
	Polish, 22
in-order, 55	reversed Polish, 23
induction, 57	
infix, 23	Ω , 21
information content, 184	open addressing, 137
information retrieval, 41, 115, 149,	operand, 56
192	operator, 56
insertion	overflow, 17
queue, 17	. 1. 105
insertion sort, 153	parity bit, 195
instantaneous code, 181	parsing, 44
inverted files, 116	password, 201
	path compression, 123
k-largest element, 170	π , 134, 151, 153
k-layer sort, 154	pop, 22
Karp, R. M., 148	post-order, 55
Kruskal, J. B., 126	postfix, 23
I 1' F 65	pre-order, 55
Landis, E., 65	prefix, 23
Lempel, A., 190	prefix code, 18, 181
LIFO, 21	prefix property, 181
linear lists, 14–32, 33	prime
cycle, 206	twin, 140
linked list, 16	prime number, 131, 199
	primitive function, 146
neighbors, 39	priority, 24 priority queue, 101
load factor, 141	
log*, 124, 126	probe sequence, 138 problem
lower bound, 156	four color, 48
matrix 20	program stack, 25
matrix, 30 adjacency, 38, 115	pseudo random number, 129
•	push, 22
sparse, 31 maximum flow, 37, 47	pusii, 22
median, 170	query, 115
mergesort, 26, 153, 157, 166	range, 150
merging	queue, 16, 41
sequences, 64	extraction, 17
trees, 64	insertion, 17
middle square method, 129	quicksort, 157, 166–170
minimum spanning tree, 36, 43, 126	worst case, 168, 169
minimum spanning acc, 50, 45, 120	worst case, 100, 109

règle par neuf, 151	stack, 21, 41
Rabin, M. O., 148	string, 1
radix sort, 157	string matching, 1, 116, 148
records, 14	summation, 19
recursion, 25	swap, 108, 167
reduction, 36	
remainder, 130	text, 1
	θ , 21
search, 126	tree
approximate, 150	AVL, see AVL trees
binary, 15	data structure, 50-64
breadth first (BFS), 40	decision, 158
depth first (DFS), 40	depth, 65
search tree	graph, 35
binary, 58, 123	height-balanced, 66
deletion, 61	red-black, 80
higher-order, 83	rooted, 118
insertion, 60	ternary, 64, 113
search, 59	twin prime, 131
selection sort, 153, 196	
sentinel, 24, 29, 63, 167	UD, see uniquely decipherable
sequence	Union-Find, 117-124
De Bruijn, 48	uniquely decipherable, 180
Fibonacci, 70	universal codes, 189-194
set, 114-126	Unix, 115
merging, 118	
Shannon, C. E., 185	vertex, 33
shortest path, 36, 45	Vigenère, B., 201
signature files, 149	von Neumann, J., 129
singleton, 115, 158	
sorting, 152–177	xor, 42, 108, 130, 195
average, 160	
worst case, 156	Ziv, J., 190