Maps – exercises

Peter Rowlett

1. Are the following maps injective or surjective?

- 2. Write down all the maps of the set $A = \{a, b\}$ into $B = \{1, 2, 3\}$. How many of these are injective?
- 3. Which of the following maps are (i) injective; (ii) surjective?
 - (a) $\theta: \mathbb{Z} \to \mathbb{Z}$, $\theta(x) = x^2$ for all $x \in \mathbb{Z}$;
 - (b) $\theta: \mathbb{Z} \to \mathbb{Z}$, $\theta(x) = -x$ for all $x \in \mathbb{Z}$;
 - (c) $\theta: \mathbb{Z} \to \mathbb{Z}$, for all $x \in \mathbb{Z}$, $\theta(x) = \begin{cases} \frac{1}{2}x & \text{if } x \text{ is even;} \\ 0 & \text{if } x \text{ is odd.} \end{cases}$
 - (d) $\theta: \mathbb{Z} \to \mathbb{Z}$, $\theta(x) = 2x + 1$ for all $x \in \mathbb{Z}$;
 - (e) $\theta: \mathbb{R} \to \mathbb{R}$, $\theta(x) = 5x 3$ for all $x \in \mathbb{R}$.
 - (f) $\theta: \mathbb{R} \to \mathbb{R}$, $\theta(x) = x^2 + 2x + 3$ for all $x \in \mathbb{R}$.
- 4. The formula $f(x) = \frac{1}{x-3}$ does not define a map from $\mathbb{R} \to \mathbb{R}$.
 - (a) Why not?
 - (b) Can you write down a set X for which $f: X \to \mathbb{R}$?
- 5. Show that \mathbb{N} has the same cardinality as
 - (a) square numbers;
 - (b) the negative odd numbers;
 - (c) integers greater than 100;
 - (d) the set $\{1, 1/2, 1/3, \dots, 1/n, \dots\}$.