1. The worst case of the methods:

	isEmpty	Size	insert	findMin	deleteMin
BinaryHeap	O(1)	O(1)	O(log n)	O(1)	O(log n)
ThreeHeap	O(1)	O(1)	O(log n)	O(1)	O(log n)
MyPQ	O(1)	O(1)	O(n)	O(1)	O(n)

2. Time

	Insert		deleteMin	
	n	Time(ns)	n	Time(ns)
BinaryHeap	1000	85000	1000	90000
	2000	220000	2000	260000
	4000	500000	4000	560000
	8000	800000	8000	1000000
	16000	1370000	16000	2200000
ThreeHeap	1000	74000	1000	120000
	2000	150000	2000	260000
	4000	290000	4000	680000
	8000	750000	8000	1500000
	16000	1400000	16000	3400000
MyQueue	1000	3200000	1000	160000
	2000	8000000	2000	290000
	4000	42000000	4000	1400000
	8000	170000000	8000	5900000
	16000	640000000	16000	25000000

- 3. a. The asymptotic analysis for the three implementations are not very reliable. It show the right trend of time as n increases, but the results are not precise.
 - b. The runtime of insert and deleteMin should be log but both the results show more linearly. And for MyPQ, the expectation is linear relation, but the results are more likely to be quadratic. As for the reason, I believe that this is because the number n is not big enough. Since cases very so that the n should be large enough to get a precise trend. But if n were too large, my computer just could not run the results fast. Also, while inserting new items, the size will double when the original heap is full, which will also take some time.
 - c. Comparing the speed, MyQueue is obviously slower than the other two. BinaryHeap and ThreeHeap have basically the same speed. But I recommend the BinaryHeap since when percolate up or down, comparing the priority of parent with 2 children is much easy to operate than comparing with 3 children. And the algorithm of BinaryHeap is easier to understand than that of the ThreeHeap.

- 4. To test the implementation, I create a test file. I divide it by 3 parts. It first test the methods insert and size by inserting 10 random doubles and then report the size. The second part is to test findMin, isEmpty and deleteMin. The findMin found the min in the existing 10-double-PQ. Then insert the same double as min, and deleteMin for twice to see whether the two results of deleteMin are thes same. This is to test whether the deleteMin run as expected when there are 2 same min. Then will go through deleteMin until the isEmpty becomes true. If all successful, the second part ends. The third part is totest makeEmpty. Firstly insert 100 random double and then excute makeEmpty. If the PQ becomes empty, third part succeeds.
- 5. a. For index of parent is i

Children:

Binary: 2i, 2i+1

Three: 3i-1, 3i, 3i+1

Four: 4i-2, 4i -1, 4i, 4i+1 Five: 5i-3, 5i-2, 5i-1, 5i, 5i+1

b. i*d-d+2