Parallel Seam Carving

Augusto Blomer Victor Konen

Introduction

- Resize images while maintaining content clarity
- Reduce image warping while downsizing
- Adjust aspect ratio with minimal distortion

Classic Example

Scaling

Cropping

Original

Seam Carving

Algorithm

- Retrieve and store pixel data for an image
- Remove seams from the image until it is the desired dimensions
- For each seam to be removed from the image:
 - Compute the "energy" of each pixel based on an energy function
 - Compute the seam with the least total energy
 - Remove that seam
- Store the resulting pixel data as an image

Lowest Energy Seams

Parallel Implementation

Energy Function Component

- Divide and Conquer Approach
 - Divide pixels evenly among processes
 - Compute energy for pixels assigned to each process
 - Communicate data to all processes

Parallel Implementation

Lowest Energy Seam Component

- Considerably more complex
- Dynamic programming exercise
- For each pixel in a row or column
 - Cost to get to that pixel is its energy plus the lowest cost to get to the previous adjacent pixel

Parallel Implementation

Lowest Energy Seam Component

- Approach
 - Divide pixels in a given row or column evenly among processes
 - Compute lowest cost to get to each pixel from adjacent pixels
 - Communicate pixel information to processes working on adjacent portions of the image
 - Repeat for every row or column to find the lowest cost seam
 - Perform seam removal in serial

Test Results and Analysis

Energy Function Component

- Significant speedup over serial implementation for 2 to 4 processes
- Significant slowdown compared to serial implementation for more than 8 processes because of communication tradeoff

Test Results and Analysis

Lowest Energy Seam Component

- Exponential slowdown compared to serial implementation as the number of processors increases
- Communication overhead far exceeds computational gain

Test Results and Analysis

Combined Components

- Most significant speedup factor of 1.54 for the parallel implementation over the serial implementation for 4 processors
- Work for energy function and lowest cost seam finding computation divided
- Same communication tradeoff as number of processors increases

Acknowledgements

- Testing performed on the Bluewave cluster at the University of Maryland,
 Baltimore County
- CImg library used for image processing
- SL Vector library used for image processing and pixel data manipulation

Bibliography

Seam carving. (2016, January 16). Retrieved March 05, 2016, from https://en.wikipedia.org/wiki/Seam_carving
Provides a summary of seam carving, the typical algorithm, its downsides, and possible improvements. Castle example images pulled from this source.

Clmg Library Project. The C++ Template Image Processing Toolkit. Project Manager David Tschumperle. Included library file for serial implementation. http://datahole.ddns.net/uploads/seam_carver/cimg.h
The Clmg library used for image processing to manipulate pixel data.

Berkeley Fluid Animation & Simulation Toolkit. Primary Author James F. O'Brien. Regents of the University of California. Included library files for serial implementation. http://datahole.ddns.net/uploads/seam_carver/sl_vector.h
http://datahole.ddns.net/uploads/seam_carver/sl_vector.h

Vector 3 implementation to store pixel data for energy function calculations and comparisons.

Questions