Here is an example taken from Artin [7] (Chapter 12, Section 4). Let F be the free \mathbb{Z} -module \mathbb{Z}^2 , and let M be the lattice generated by the columns of the matrix

$$R = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}.$$

The columns (u_1, u_2) of R are linearly independent, but they are not a basis of \mathbb{Z}^2 . For example, in order to obtain e_1 as a linear combination of these columns, we would need to solve the linear system

$$2x - y = 1$$
$$x + 2y = 0.$$

From the second equation, we get x = -2y, which yields

$$-5y = 1.$$

But, y = -1/5 is not an integer. We leave it as an exercise to check that

$$\begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix},$$

which means that

$$\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix},$$

so $R = QDP^{-1}$ with

$$Q = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

The new basis (u'_1, u'_2) for \mathbb{Z}^2 consists of the columns of Q and the new basis for M consists of the columns $(u'_1, 5u'_2)$ of QD, where

$$QD = \begin{pmatrix} 1 & 0 \\ 3 & 5 \end{pmatrix}.$$

A picture of the lattice and its generators (u_1, u_2) and of the same lattice with the new basis $(u'_1, 5u'_2)$ is shown in Figure 35.1, where the lattice points are displayed as stars.

The invariant factor decomposition of a finitely generated module M over a PID A given by Theorem 35.31 says that

$$M_{\rm tor} \approx A/\mathfrak{a}_{r+1} \oplus \cdots \oplus A/\mathfrak{a}_m,$$

a direct sum of cyclic modules, with $(0) \neq \mathfrak{a}_{r+1} \subseteq \cdots \subseteq \mathfrak{a}_m \neq A$. Using the Chinese Remainder Theorem (Theorem 32.15), we can further decompose each module $A/\alpha_i A$ into a direct sum of modules of the form $A/p^n A$, where p is a prime in A.