多参数的链式法则

Dezeming Family

2022年2月2日

DezemingFamily 系列书和小册子因为是电子书,所以可以很方便地进行修改和重新发布。如果您获得了 DezemingFamily 的系列书,可以从我们的网站 [https://dezeming.top/] 找到最新版。对书的内容建议和出现的错误欢迎在网站留言。

目录

一 介绍	1
二 多参数	1
三 证明	3
参老 立 献	3

一介绍

本文来自于我在学习 miniTorch[1] 项目的自动微分时遇到的问题,多参数也是 [1] 中的描述方法(实际为多元复合导数)。

虽然这是微积分中必学的知识点,但是本人由于当初本科课程并没有涉及到这些内容,所以甚至没有任何的印象,并不清楚这些知识,而是自己花了不少时间推导,感叹自己知识储备不足的同时,在这里进行一下记录和描述来引以为戒。

本文的介绍依赖于 [1] 的过程和 [2] 中关于多元复合函数导数的理论。

二 多参数

例子 1

我们先把计算图画出来(上面表示 forward() 过程,下面表示 backward() 过程):

其中, var 表示变量, F表示函数。我们设:

$$F1(x) = 2x \tag{\Box.1}$$

$$F2(x,y) = x * y \tag{\Box.2}$$

因此:

$$var4 = F2(var2, var3) = F2(F1(var1), F1(var1))$$
 (\equiv .3)

先考虑正向过程,设 var1 = 2,则 var2 = var3 = 4, var4 = var2 * var3 = 16。

设反向传播的 $d_out = 1$,则 $d1 = \frac{d \; (var2*var3)}{d \; var2} = var3 = 4$,同理 d2 = 4; $d3 = 4*\frac{d \; 2*var2}{d \; var2} = 8$, d4 = 8 。 现在的关键是变量 var1 的导数,也就是 d5 是多少?可能一开始有人会觉得(比如我) d5 = d3 = d4 = 8 。 我们先看下面的这个例子。

例子 2

我们再换个例子:

我们设:

$$F1(x) = 2x \tag{\Box.4}$$

$$F2(x) = 3x + 1 \tag{1.5}$$

$$F2(x,y) = x * y \tag{\Box.6}$$

先考虑正向过程,设 var1 = 2,则 var2 = 4, var3 = 7, var4 = var2 * var3 = 28。

设反向传播的 $d_out=1$,则 $d1=\frac{d~(var2*var3)}{d~var2}=var3=7$,d2=4; $d3=7*\frac{d~2*var2}{d~var2}=14$,d4=12。此时 $d3\neq d4$,因此,d5=d4=d3 是肯定不对的。

实际结果

针对例子 1, $var4 = 2(var1) * 2(var1) = 4(var1)^2$, 因此, $\frac{d\ var4}{d\ var1} = 8var1 = 16$ 。 16 = 8 + 8。

针对例子 2, $var4 = 2(var1)*(3(var1)+1) = 6(var1)^2 + 2(var1)$, 因此, $\frac{d\ var4}{d\ var1} = 12var1 + 2 = 26$ 。 26 = 14 + 12。

我们可以看到,分叉处的导数就是两边的导数的和。这也很好理解,我们可以想象,设函数一开始时 $F1(x) \equiv F2(x) = 2x$; 然后当 F2 变为 F2(x) = 3x 后,整个函数的求导对于 var1 来说肯定会变大。在这里,var1 相当于分开了两条支路,各自去进行计算:

三证明

对于一元函数链式法则,可以描述如下:

$$\frac{d \ F2(F1(x))}{d \ x} = \frac{d \ F1(x)}{d \ x} \times \frac{d \ F2(F1(x))}{d \ F1(x)} \tag{\Xi.1}$$

我们当前的情景为多元复合函数,求其微积分的方式可见[2]:

$$\frac{d \ F3(F1(x),F2(x))}{d \ x} = \frac{d \ F3(F1(x),F2(x))}{d \ F1(x)} \times \frac{d \ F1(x)}{d \ x} + \frac{d \ F3(F1(x),F2(x))}{d \ F2(x)} \times \frac{d \ F2(x)}{d \ x} \qquad (\Xi.2)$$

参考文献

- [1] https://minitorch.github.io/backpropagate.html
- [2]《高等数学第7版》下册同济大学