K Nearest Neighbour Classifier

Contents

- Eager learners vs Lazy learners
- What is KNN?
- Discussion about categorical attributes
- Discussion about missing values
- How to choose k?
- KNN algorithm choosing distance measure and k
- Solving an Example
- Weka Demonstration
- Advantages and Disadvantages of KNN
- Applications of KNN
- Comparison of various classifiers
- Conclusion
- References

Eager Learners vs Lazy Learners

- Eager learners, when given a set of training tuples, will construct a generalization model before receiving new (e.g., test) tuples to classify.
- Lazy learners simply stores data (or does only a little minor processing) and waits until it is given a test tuple.
- Lazy learners store the training tuples or "instances," they are also referred to as instance based learners, even though all learning is essentially based on instances.
- Lazy learner: less time in training but more in predicting.

-k- Nearest Neighbor Classifier

k- Nearest Neighbor Classifier

> History

- It was first described in the early 1950s.
- The method is labor intensive when given large training sets.
- Gained popularity, when increased computing power became available.
- Used widely in area of pattern recognition and statistical estimation.

What is k- NN??

 Nearest-neighbor classifiers are based on learning by analogy, that is, by comparing a given test tuple with training tuples that are similar to it.

- The training tuples are described by n attributes.
- When k = 1, the unknown tuple is assigned the class of the training tuple that is closest to it in pattern space.

When k=3 or k=5??

Remarks!!

- Similarity Function Based.
- Choose an odd value of k for 2 class problem.
- k must not be multiple of number of classes.

Closeness

 The Euclidean distance between two points or tuples, say,

X1 = (x11,x12,...,x1n) and X2 = (x21,x22,...,x2n), is

$$dist(X_1, X_2) = \sqrt{\sum_{i=1}^{n} (x_{1i} - x_{2i})^2}.$$

 Min-max normalization can be used to transform a value v of a numeric attribute A to v0 in the range [0,1] by computing

$$v' = \frac{v - min_A}{max_A - min_A},$$

What if attributes are categorical??

How can distance be computed for attribute such as colour?

-Simple Method: Compare corresponding value of attributes

-Other Method: Differential grading

What about missing values ??

- If the value of a given attribute A is missing intuple X1 and/or in tuple X2, we assume the maximum possible difference.
- For categorical attributes, we take the difference value to be 1 if either one or both of the corresponding values of A are missing.
- If A is numeric and missing from both tuples X1 and X2, then the difference is also taken to be 1.

How to determine a good value for k?

- Starting with k = 1, we use a test set to estimate the error rate of the classifier.
- The k value that gives the minimum error rate may be selected.

KNN Algorithm and Example

Distance Measures

Euclidean distance:
$$d x, y () = \sqrt{x_i - (yi)^2}$$

Squared Euclidean distance: $d x, y () = x_i - (yi)^2$

Manhattan distance: $d x, y () = |(xi - yi)|$

Which distance measure to use?

We use Euclidean Distance as it treats each feature as equally important.

How to choose K?

- If infinite number of samples available, the larger is k, the better is classification.
- k = 1 is often used for efficiency, but sensitive to "noise"

- Larger k gives smoother boundaries, better for generalization, but only if locality is preserved. Locality is not preserved if end up looking at samples too far away, not from the same class.
- Interesting relation to find k for large sample data: k = sqrt(n)/2 where n is # of examples
- Can choose k through cross-validation

KNN Classifier Algorithm

Example

• We have data from the questionnaires survey and objective testing with two attributes (acid durability and strength) to classify whether a special paper tissue is good or not. Here are four training samples:

X1 = Acid Durability (seconds)	X2 = Strength (kg/square meter)	Y = Classification
7	7	Bad
7	4	Bad
3	4	Good
1	4	Good

Now the factory produces a new paper tissue that passes the laboratory test with X1 = 3 and X2 = 7. Guess the classification of this new tissue.

Step 1 : Initialize and Define k.

Lets say, k = 3

(Always choose k as an odd number if the number of attributes is even to avoid a tie in the class prediction)

- Step 2 : Compute the distance between input sample and training sample
 - Co-ordinate of the input sample is (3,7).
- Instead of calculating the Euclidean distance, we calculate the Squared Euclidean distance.

X1 = Acid Durability (seconds)	X2 = Strength (kg/square meter)	Squared Euclidean distance
7	7	$(7-3)^2 + (7-7)^2 = 16$
7	4	$(7-3)^2 + (4-7)^2 = 25$
3	4	$(3-3)^2 + (4-7)^2 = 09$
1	4	$(1-3)^2 + (4-7)^2 = 13$

Step 3 : Sort the distance and determine the nearest neighbours based of the Kth minimum distance:

X1 = Acid Durability (seconds)	X2 = Strength (kg/square meter)	Squared Euclidean distance	Rank minimum distance	Is it included in 3-Nearest Neighbour?
7	7	16	3	Yes
7	4	25	4	No
3	4	09	1	Yes
1	4	13	2	Yes

- Step 4 : Take 3-Nearest Neighbours:
- Gather the category Y of the nearest neighbours.

X1 = Acid Durability (seconds)	X2 = Strength (kg/square meter)	Squared Euclidean distance	Rank minimum distance	Is it included in 3-Nearest Neighbour?	Y = Category of the nearest neighbour
7	7	16	3	Yes	Bad
7	4	25	4	No	-
3	4	09	1	Yes	Good
1	4	13	2	Yes	Good

- Step 5 : Apply simple majority
- Use simple majority of the category of the nearest neighbours as the prediction value of the query instance.
- We have 2 "good" and 1 "bad". Thus we conclude that the new paper tissue that passes the laboratory test with X1 = 3 and X2 = 7 is included in the "good" category.

Iris Dataset Example using Weka

- Iris dataset contains 150 sample instances belonging to 3 classes. 50 samples belong to each of these 3 classes.
- Statistical observations
- Let's denote the true value of interest as θ (expected) and the value estimated using some algorithm as θ (observed)
- Kappa Statistics: The kappa statistic measures the agreement of prediction with the true class -- signifies complete agreement. It measures the significance of the classification with respect to the observed value and expected value.
- Mean absolute error:

$$\mathrm{MAE} = \frac{1}{N} \sum_{i=1}^{N} |\hat{\theta}_i - \theta_i|$$

Root Mean Square Error:

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\hat{\theta}_i - \theta_i \right)^2}$$

Relative Absolute Error:

$$\text{RAE} = \frac{\sum_{i=1}^{N} |\hat{\theta}_i - \theta_i|}{\sum_{i=1}^{N} |\bar{\theta} - \theta_i|}$$

Root Relative Squared Err

RRSE =
$$\sqrt{\frac{\sum_{i=1}^{N} (\hat{\theta}_i - \theta_i)^2}{\sum_{i=1}^{N} (\bar{\theta} - \theta_i)^2}}$$

Complexity

- Basic kNN algorithm stores all examples
- Suppose we have n examples each of dimension d
- O(d) to compute distance to one examples
- O(nd) to computed distances to all examples
- Plus O(nk) time to find k closest examples
- Total time: O(nk+nd)
- Very expensive for a large number of samples
- But we need a large number of samples for kNN to to work well!!

■ Advantages of KNN classifier :

- Can be applied to the data from any distribution for example, data does not have to be separable with a linear boundary
- Very simple and intuitive
- Good classification if the number of samples is large enough

Disadvantages of KNN classifier :

- Choosing k may be tricky
- Test stage is computationally expensive
- No training stage, all the work is done during the test stage
- This is actually the opposite of what we want. Usually we can afford training step to take a long time, but we want fast test step

Applications of KNN Classifier

- Used in classification
- Used to get missing values
- Used in pattern recognition
- Used in gene expression
- Used in protein-protein prediction
- Used to get 3D structure of protein
- Used to measure document similarity

Comparison of various classifiers

Algorithm	Features	Limitations
C4.5 Algorithm	 Models built can be easily interpreted Easy to implement Can use both discrete and continuous values Deals with noise 	 Small variation in data can lead to different decision trees Does not work very well on small training dataset Over-fitting
ID3 Algorithm	It produces more accuracy than C4.5Detection rate is increased and space consumption is reduced	 Requires large searching time Sometimes it may generate very long rules which are difficult to prune Requires large amount of memory to store tree
K-Nearest Neighbour Algorithm	 Classes need not be linearly separable Zero cost of the learning process Sometimes it is robust with regard to noisy training data Well suited for multimodal 	 Time to find the nearest neighbours in a large training dataset can be excessive It is sensitive to noisy or irrelevant attributes Performance of the algorithm depends on the number of

/				
	Naïve Bayes Algorithm	 Simple to implement Great computational efficiency and classification rate It predicts accurate results for most of the classification and prediction problems 	-	The precision of the algorithm decreases if the amount of data is less For obtaining good results, it requires a very large number of records
	Support vector machine Algorithm	 High accuracy Work well even if the data is not linearly separable in the base feature space 	-	Speed and size requirement both in training and testing is more High complexity and extensive memory requirements for classification in many cases
	Artificial Neural Networks Algorithm	 It is easy to use with few parameters to adjust A neural network learns and reprogramming is not needed. Easy to implement Applicable to a wide range of problems in real life. 	-	Requires high processing time if neural network is large Difficult to know how many neurons and layers are necessary Learning can be slow

Conclusion

- KNN is what we call lazy learning (vs. eager learning)
- Conceptually simple, easy to understand and explain
- Very flexible decision boundaries
- Not much learning at all!
- It can be hard to find a good distance measure
- Irrelevant features and noise can be very detrimental
- Typically can not handle more than afew dozen attributes
- Computational cost: requires a lot computation

References

- "Data Mining: Concepts and Techniques", J. Han, J. Pei, 2001
- "A Comparative Analysis of Classification Techniques on Categorical Data in Data Mining", Sakshi, S. Khare, International Journal on Recent and Innovation Trends in Computing and Communication, Volume: 3 Issue: 8, ISSN: 2321-8169
- "Comparison of various classification algorithms on iris datasets using WEKA", Kanu Patel et al, IJAERD, Volume 1 Issue 1, February 2014, ISSN: 2348 - 4470

Thank you ©

