Amendments in the Title

Kindly amend the title as follows:

Amine-substituted diphenyldiphosphines biphenyldiphosphines

Amendments in the Specification

Page 1, please replace the paragraph spanning lines 1-4 with the following rewritten paragraph:

The present invention relates to <u>diphenyldiphosphines</u> <u>biphenyldiphosphines</u> having at least one amine substituent in the para position relative to the phosphine group, a process for preparing them, intermediates, metal complexes with these diphosphines as catalysts for enantioselective syntheses and the use of the metal complexes for enantioselective syntheses.

Page 3, please replace the paragraph spanning lines 1-4 with the following rewritten paragraph:

However, for the above reasons, it is not possible to foresee whether diphenyldiphosphines biphenyldiphosphines having an amino group in the para position relative to the phosphine can be prepared and are sufficiently stable as ligands in metal complexes in order to be able to be used in catalytic reactions.

Page 9, please replace the paragraphs spanning line 6 through page 10, line 5, with the following rewritten paragraphs:

In a preferred embodiment, the <u>diphenyldiphosphines</u> of the invention correspond to the formula Ic,

$$R_2$$
 R_3
 Q
 R_5
 X_2
 R_6
(Ic)

where R_1 is hydrogen and R_2 and R_3 are each, independently of one another, C_1 - C_4 -alkyl, preferably methyl or ethyl, or R_1 , R_2 and R_3 are each, independently of one another C_1 - C_4 -alkyl, preferably methyl or ethyl, R_5 is hydrogen or an OR_3 group, R_6 is hydrogen or

an NR_1R_2 group, or R_5 and R_6 together are –CH=CH-CH=CH-, and X_1 and X_2 are each secondary phosphino. The abovementioned embodiments and preferences apply to X_1 and X_2 .

In another preferred embodiment, the <u>diphenyldiphosphines</u> of the invention correspond to the formula Id,

$$\begin{array}{c} R_1 \\ N \\ N \\ R_{12} \\ N \\ R_5 \\ X_2 \end{array} \qquad \text{(Id)}$$

where R_1 is hydrogen and R_2 and R_3 are each, independently of one another, C_1 - C_4 -alkyl, preferably methyl or ethyl, or R_1 , R_2 and R_3 are each, independently of one another, C_1 - C_4 -alkyl, preferably methyl or ethyl, R_5 and R_6 are each hydrogen or R_5 and R_6 together are an -NR₁-R₁₂-O- group, X_1 and X_2 are each secondary phosphino, and R_{12} is 1,2-ethylene, 1,2-ethenylene, -C(O)- or a group of the formula

where R_{11} is branched C_3 - C_8 -alkyl, C_5 - C_6 -cycloalkyl, phenyl or benzyl. The abovementioned embodiments and preferences apply to X_1 and X_2 .

Page 49, please replace the paragraph spanning lines 12-21 with the following rewritten paragraph:

e) g) Preparation of

4 ml of aqueous hydrochloric acid 37% and 7.5 ml of formalin 36% are added to a suspension of 10.53 g of compound 19 in 130 ml of methanol and 25 ml of THF while stirring. While cooling (0-5°C), 3.4 g of sodium cyanoborohydride are added a little at a time and the mixture is subsequently stirred at RT for 2 hours. The reaction mixture is evaporated on a rotary evaporator. It is then extracted twice with dichloromethane in the presence of water. The organic phases are dried over sodium sulfate and evaporated to dryness on a rotary evaporator. Drying over blue gel at 70°C in a high vacuum gives 20 as a white foam.

¹H NMR (CDCl₃): 7.13 (d, 2H), 6.57 (d, 2H), 4.23 (t, 4H), 3.28 (m, 4H), 2.90 (s, 6H).