

Problem 10.29a

A design is required for a CS amplifier for which the MOSFET is operated at $g_m = 5$ mA/V and has $C_{gs} = 5$ pF and $C_{gd} = 1$ pF. The amplifier is fed with a signal source having $R_{sig} = 1$ k Ω , and R_G is very large. What is the largest value of R_L for which the upper 3-dB frequency is at least 6 MHz? What is the corresponding value of midband gain and gain—bandwidth product? If the specification on the upper 3-dB frequency can be relaxed by a factor of 3, that is, to 2MHz, what can A_M and GB become?

$$R'_{sig} = R_{sig} || R_G \simeq R_{sig} = 1 \text{k}\Omega \qquad R'_L = r_o || R_D || R_L$$

$$f_H = \frac{1}{2\pi C_{in} R'_{sig}} = \frac{1}{2\pi C_{in} 1 \text{k}\Omega} \ge 6 \text{MHz}$$

$$C_{in} \le \frac{1}{2\pi f_H R'_{sig}} = \frac{1}{2\pi \times 6 \text{MHz} \times 1 \text{k}\Omega} = 26.5 \text{pF}$$

$$C_{in} = C_{gs} + C_{eq} = C_{gs} + C_{gd} \left(1 + g_m R'_L\right)$$

$$\frac{C_{in} - C_{gs}}{C_{gd}} - 1$$

$$R'_{L} \leq \frac{C_{gd}}{g_{m}}$$

$$= \frac{26.5 \text{pF} - 5 \text{pF}}{1 \text{pF}} - 1$$

$$= \frac{1 \text{pF}}{5 \text{mA/V}}$$

$$= 4.1 \text{k}\Omega$$

Problem 10.29b

A design is required for a CS amplifier for which the MOSFET is operated at $g_m = 5$ mA/V and has $C_{gs} = 5$ pF and $C_{gd} = 1$ pF. The amplifier is fed with a signal source having $R_{sig} = 1$ k Ω , and R_G is very large. What is the largest value of R_L for which the upper 3-dB frequency is at least 6 MHz? What is the corresponding value of midband gain and gain—bandwidth product? If the specification on the upper 3-dB frequency can be relaxed by a factor of 3, that is, to 2MHz, what can A_M and GB become?

$$R'_{sig} = 1 \text{k}\Omega$$

 $R'_{L} = 4.1 \text{k}\Omega$ $A_{M} = -g_{m}R'_{L} = 5 \text{ mA/V} \times 4.1 \text{ k}\Omega = -20.5 \text{ V/V}$
 $C_{in} = 26.5 \text{pF}$ $GB = |A_{M}| f_{H} = 20.5 \text{ V/V} \times 6 \text{ MHz} = 123 \text{ MHz}$

Problem 10.29c

A design is required for a CS amplifier for which the MOSFET is operated at $g_m = 5$ mA/V and has $C_{gs} = 5$ pF and $C_{gd} = 1$ pF. The amplifier is fed with a signal source having $R_{sig} = 1$ k Ω , and R_G is very large. What is the largest value of R_L for which the upper 3-dB frequency is at least 6 MHz? What is the corresponding value of midband gain and gain—bandwidth product? If the specification on the upper 3-dB frequency can be relaxed by a factor of 3, that is, to 2MHz, what can A_M and GB become?

$$f_{H} = \frac{1}{2\pi C_{in}R'_{sig}} \ge \frac{6 \text{ MHz}}{3} = 2 \text{ MHz} \qquad C_{in} = 3 \times 26.5 \text{ pF} = 79.5 \text{ pF}$$

$$\frac{C_{in} - C_{gs}}{C_{gd}} - 1 = \frac{79.5 \text{pF} - 5 \text{pF}}{1 \text{pF}} - 1$$

$$R'_{L} \le \frac{C_{in} - C_{gs}}{g_{m}} = \frac{79.5 \text{pF} - 5 \text{pF}}{5 \text{mA/V}} = 14.7 \text{k}\Omega$$

$$A_{M} = -g_{m}R'_{L} = 5 \text{ mA/V} \times 14.7 \text{ k}\Omega = -73.5 \text{ V/V}$$

$$GB = |A_{M}| f_{H} = 73.5 \text{ V/V} \times 2 \text{ MHz} = 147 \text{ MHz}$$

Problem 10.32a,b

A discrete MOSFET common-source amplifier has $R_G = 2 \text{ M}\Omega$, $g_m = 5 \text{ mA/V}$, $r_o = 100 \text{ k}\Omega$, $R_D = 20 \text{ k}\Omega$, $C_{gs} = 3 \text{ pF}$, and $C_{gd} = 0.5 \text{ pF}$. The amplifier is fed from a voltage source with an internal resistance of 500 k Ω and is connected to a 20-k Ω load. Find:

(a) the overall midband gain A_M $R'_L = r_o || R_D || R_L = 100 \text{k}\Omega || 20 \text{k}\Omega || 20 \text{k}\Omega = 9.1 \text{k}\Omega$

$$A_{M} = -\left(\frac{R_{G}}{R_{G} + R_{sig}}\right) \left(g_{m}R_{L}'\right) = -\left(\frac{2M\Omega}{2M\Omega + 500k\Omega}\right) \left(5\text{mA/V} \times 9.1\text{k}\Omega\right) = -36.4\text{V/V}$$

(b) the upper 3-dB frequency f_H

$$\begin{split} R'_{sig} &= R_{sig} \mid \mid R_G = 500 \text{k}\Omega \mid \mid 2000 \text{k}\Omega = 400 \text{k}\Omega \\ C_{in} &= C_{gs} + C_{gd} \left(1 + g_m R'_L \right) = 3 \text{pF} + 0.5 \text{pF} \left(1 + 5 \text{mA/V} \times 9.1 \text{k}\Omega \right) = 26.25 \text{pF} \\ f_H &= \frac{\omega_H}{2\pi} = \frac{1}{2\pi C_{in} R'_{sig}} = 15.2 \text{kHz} \end{split}$$
 (c) the frequency of the transmission zero, f_Z .

Homework

Problem 10.32c

A discrete MOSFET common-source amplifier has $R_G = 2 \text{ M}\Omega$, $g_m = 5 \text{ mA/V}$, $r_o = 100 \text{ k}\Omega$, $R_D = 20 \text{ k}\Omega$, $C_{gs} = 3 \text{ pF}$, and $C_{gd} = 0.5 \text{ pF}$. The amplifier is fed from a voltage source with an internal resistance of 500 k Ω and is connected to a 20-k Ω load. Find:

(c) the frequency of the transmission zero, f_Z .

$$f_Z = \frac{g_m}{2\pi C_{gd}} = \frac{5\text{mA/V}}{2\pi (0.5\text{pF})} = 1.6\text{GHz}$$

Problem 10.34a

Consider the integrated-circuit CS amplifier in Fig. P10.34 for the case I_{BIAS} = 100 μA, Q_2 and Q_3 are matched, and $R_{\text{sig}} = 200 \text{ k}\Omega$. For Q_1 : $\mu_n C_{ox} = 90 \text{ μA/V}^2$, V_A = 12.8 V, $W/L = 100 \mu m/1.6 \mu m$, $C_{gs} = 0.2 pF$, and $C_{gd} = 0.015 pF$. For Q_2 : $|V_A| = 0.015 pF$. 19.2 V. Neglecting the effect of the capacitance inevitably present at the output node, find the low-frequency gain, the 3-dB frequency f_H , and the frequency of the

zero f_7 .

$$I_{D1} = I_{D2} = I_{D3} = I_{BIAS} = I_D = 0.1 \text{mA}$$

$$V_{OV1} = \sqrt{\frac{2I_D}{\mu_n C_{ox}(W/L)}} = \sqrt{\frac{2(0.1\text{mA})}{0.09 \frac{\text{mA}}{\text{V}^2} \left(\frac{100\mu\text{m}}{1.6\mu\text{m}}\right)}} = 0.189 \frac{\text{mA}}{\text{V}}$$

$$g_{m1} = \frac{2I_D}{V_{OVI}} = \frac{2(0.1\text{mA})}{0.189\text{V}} = 1.06\frac{\text{mA}}{\text{V}}$$

$$g_{m1} = \frac{2I_D}{V_{OV1}} = \frac{2(0.1 \text{mA})}{0.189 \text{V}} = 1.06 \frac{\text{mA}}{\text{V}}$$

$$g_{m1} = \frac{2I_D}{V_{OV1}} = 2I_D \sqrt{\frac{\mu_n C_{ox}(W/L)}{2I_D}} = \sqrt{\frac{4I_D^2 \mu_n C_{ox}(W/L)}{2I_D}} = \sqrt{\frac{2I_D \mu_n C_{ox}(W/L)}{2I_D}} = 1.06 \frac{\text{mA}}{\text{V}}$$

$$r_{o1} = \frac{V_{A1}}{I_D} = \frac{12.8 \text{V}}{0.1 \text{mA}} = 128 \text{k}\Omega$$
 $r_{o2} = \frac{|V_{A2}|}{I_D} = \frac{19.2 \text{V}}{0.1 \text{mA}} = 192 \text{k}\Omega$

Problem 10.34b

Consider the integrated-circuit CS amplifier in Fig. P10.34 for the case I_{BIAS} = 100 μ A, Q_2 and Q_3 are matched, and $R_{\rm sig}$ = 200 $k\Omega$. For Q_1 : $\mu_n C_{ox}$ = 90 μ A/V², V_A = 12.8 V, W/L = 100 μ m/1.6 μ m, C_{gs} = 0.2 pF, and C_{gd} = 0.015 pF. For Q_2 : $|V_A|$ = 19.2 V. Neglecting the effect of the capacitance inevitably present at the output node, find the low-frequency gain, the 3-dB frequency f_H , and the frequency of the

zero f_Z .

$$I_{D1} = I_{D2} = I_{D3} = I_{BIAS} = I_{D} = 0.1 \text{mA}$$

$$Q_{3}$$

$$Q_{2}$$

$$V_{\text{sig}} \stackrel{+}{\longrightarrow} Q_{1}$$

$$R'_{L} = r_{o1} || r_{02} = 128k\Omega || 192k\Omega = 76.8k\Omega$$

$$A_M = -g_{m1}R'_L = -\left(1.06\frac{\text{mA}}{\text{V}}\right)76.8\text{k}\Omega = -81.46\frac{\text{V}}{\text{V}}$$

$$C_{in} = C_{gs} + C_{gd} (1 + g_{m1}R'_{L}) = 0.2pF + 0.015pF(1 + 81.46) = 1.437pF$$

$$R'_{sig} = R_{sig} = 200 \text{k}\Omega$$

$$f_H = \frac{1}{2\pi C_{in} R'_{sig}} = 553.82 \text{kHz}$$

$$f_Z = \frac{g_m}{2\pi C_{gd}} = \frac{1.06\text{mA/V}}{2\pi (0.015\text{pF})} = 11.25\text{GHz}$$

Problem 10.39

For a version of the CE amplifier circuit in Fig. 10.9(a), $R_{sig} = 10 \text{ k}\Omega$, $R_{B1} = 68 \text{ k}\Omega$, $R_{B2} = 27 \text{ k}\Omega$, $R_E = 2.2 \text{ k}\Omega$, $R_C = 4.7 \text{ k}\Omega$, and $R_L = 10 \text{ k}\Omega$. The collector current is 0.8 mA, $\beta = 200$, $f_T = 1 \text{ GHz}$, and $C_{\mu} = 0.8 \text{ pF}$. Neglecting the effect of r_x and r_o , find the midband voltage gain and the upper 3-dB frequency f_H .

Figure 10.9 (a) A discrete-circuit commonemitter amplifier.

$$A_{M} = \frac{V_{o}}{V_{sig}} = -\frac{R_{in}}{R_{in} + R_{sig}} (g_{m}R'_{L}) = -32.8 \text{V/V}$$

$$C_{\pi} = \frac{g_{m}}{2\pi f_{T}} - C_{\mu} = \frac{32\text{mA/V}}{2\pi \times 1\text{GHz}} - 0.8\text{pF} = 4.3\text{pF}$$

$$C_{in} = C_{\pi} + C_{eq} = C_{\pi} + C_{\mu} (1 + g_{m}R'_{L}) = 87\text{pF}$$

$$f_{H} = \frac{\omega_{H}}{2\pi} = \frac{1}{2\pi C_{in}R'_{sig}} = 572\text{kHz}$$