Математический анализ

ДЗ к Семинар 2

- а) Пусть последовательности $\{a_n\}_1^{\infty}$ и $\{b_n\}_1^{\infty}$ расходятся. Верно ли, что последовательности $\{a_n + b_n\}_1^\infty$ и $\{a_n b_n\}_1^\infty$ также расходятся?
 - b) Пусть $\{a_n\}_1^\infty$ сходится и $\{b_n\}_1^\infty$ расходится. Что можно сказать о сходимости/расходимости $\{a_n + b_n\}_1^{\infty}$ и $\{a_n b_n\}_1^{\infty}$?
- 2. Пусть последовательности $\{a_n\}_1^\infty$ и $\{b_n\}_1^\infty$ таковы, что $\lim_{n\to+\infty}a_nb_n$ = 0. Верно ли следующее:
 - a) $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = 0$?
 - b) $\lim_{n\to+\infty} a_n = 0$ или $\lim_{n\to+\infty} b_n = 0$?
- 3. Тот же вопрос что и в 2, но дополнительно известно, что $\{a_n\}_1^{\infty}$ и $\{b_n\}_1^{\infty}$ сходятся.
- 4. Найти $\inf_{n \in \mathbb{N}} \{(-1)^n \frac{3n}{2n-1}\}_1^{\infty}$ и $\sup_{n \in \mathbb{N}} \{(-1)^n \frac{3n}{2n-1}\}_1^{\infty}$.
- 5. Найти предел $\lim_{n\to+\infty} a_n$, если:
 - a) $a_n = \frac{3n^2 7n}{4n^2 + n + 5}$;
 - b) $a_n = \sqrt{n^2 + n} \sqrt{n^2 n}$;
 - c) $a_n = \frac{n^2 + 3n 2}{1 + 2 + \dots + (n-1) + n};$

d) $a_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2}$ Ніпt: сложить первый и последний член

e)
$$a_n = \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \dots + \frac{1}{\sqrt{2n-1} + \sqrt{2n+1}} \right)$$
 Hint: телескопическое суммирование

f)
$$a_n = \frac{1}{n} (\sin(1) + \sin(2) + \dots + \sin(n))$$

Hint:

- 1) домножить a_n на $\sin \frac{1}{2}$
- 2) воспользоваться формулой $2\sin x \cdot \cos x = \cos(x-y) \cos(x+y)$
- 3) телескопическое суммирование
- 4) воспользоваться формулой $\cos(x) \cos(y) = 2\sin\frac{x+y}{2} \cdot \sin\frac{y-x}{2}$ (необязательно)
- 5) заметить, что $|\sin x| \le 1$.
- 6. Пусть $\lim_{n\to+\infty}a_n=a$, доказать, что $\lim_{n\to+\infty}b_n=a$, если $b_n=\frac{a_1+a_2+\cdots+a_n}{n}$

 Π римечание. как показывает пункт f) из $\lim_{n\to+\infty}b_n$ = a не cnedyem $\lim_{n\to+\infty}a_n$ = a