

AM430e Specifications

Version 1.1, 12-2013

Table of Contents

TABLE OF CONTENTS1
SECTION 1: SPECIFICATION CONDITIONS
SECTION 2: DEVICE CAPABILITIES3
SECTION 3: SPECIFICATIONS4
3.1 VOLTAGE PROGRAMMING AND MEASUREMENT ACCURACY
SECTION 4: SUPPLEMENTAL SPECIFICATIONS6
4.1 TYPICAL STEP RESPONSE7
SECTION 5: TRIGGERS
5.1 TRIGGER INPUTS
SECTION 6: OTHERS
SECTION 7: REVISION HISTORY
SECTION 8: CONTACT US

Section 1: Specification Conditions

This document contains the specifications and supplemental information of AM430e four-channel source-measure unit (SMU).

Specifications are the standards against which the AM430e SMU is tested. Upon leaving the factory the AM430e SMU meets these specifications. Supplemental and typical values are non-warranted, apply at 23°C, and are provided solely as useful information.

The source and measurement accuracies are specified at the terminals under the following conditions:

- 1. Ambient temperature $23^{\circ}\text{C} \pm 5^{\circ}\text{C}$
- 2. After 30 minutes warm-up
- 3. 1 PLC aperture time, unless otherwise stated
- 4. Remote sense operation
- 5. Calibration period: 6 months

The following table and figure illustrate the voltage and the current source and sink ranges of the AM430e SMU.

Channels	DC Voltage Ranges	DC Current Source and Sink Ranges
	±1 V	1 UA
	±2 V	10 μΑ
o through 3	±5 V	100 μΑ
o tilloogii 3	±10 V	1 mA
		10 mA
		100 mA

Table 1: DC Voltage Ranges and DC Current Source and Sink Ranges

Figure 1: Voltage vs Current Envelope

Note:

1. Channels o through 3 are isolated from earth ground but share a common LO.

3.1 Voltage Programming and Measurement Accuracy

Range	± (% of Voltage + Offset)	Temperature Coefficient ± (ppm of Voltage + ppm of Range) / °C	Resolution
	Tcal ± 5 °C	13 °C to 33 °C	
1 V	o.o5 % + 500 uV		20 UV
2 V	0.05 % + 1 mV	25 + 21	10 UV
5 V	0.05 % + 2.3 mV		25 UV
10 V	0.015 % + 600 μV	25 + 6	8ο υV

Table 2 : Voltage Programming and Measurement Accuracy

3.2 Current Programming and Measurement Accuracy

Range	± (% of Voltage + Offset)	Temperature Coefficient ± (ppm of Voltage + ppm of Range) / °C	Resolution
	Tcal ± 5 °C	13 °C to 33 °C	
1 UA	o.1% + 1 nA	11 + 120	10 pA
10 UA	0.03% + 1.5 nA	10 + 10	20 pA
100 UA	0.03% + 15 nA	28 + 5	200 pA
1 mA	0.03% + 150 nA	15 + 5	2 nA
10 mA	0.03% + 1.5 μA	25 + 5	20 nA
100 mA	0.03% + 15 μA	28 + 8	1 UA

Table 3: Current Programming and Measurement Accuracy

Note:

- 1. Tcal is the temperature recorded by the SMU at the completion of the calibration
- 2. Resolution is noise-limited. Specifications are valid for an aperture time of 2 PLCs. See SMU Noise/Resolution vs. Measure Speed for typical performance at higher sample rates.

3.3 Noise and Resolution vs. Measurement Aperture

The following figure illustrates typical noise and resolution as a function of measurement aperture for the SMU.

Figure 2: Resolution VS Aperture

To derive a resolution in absolute units from the previous figure, complete the following steps:

- Select a voltage or current range.
- For a given aperture time, find the corresponding resolution.
- To convert resolution from ppm of range to absolute units, multiply resolution in ppm of range by the selected range.

For example, the AM430e has a resolution of 10ppm when set to a 50ms aperture time. In the 100mA range, resolution can be calculated by multiplying 100mA by 10ppm, as shown in the following example:

$$100mA * 10ppm = 0.1A * 10 * 1×10-6 = 1µA$$

Likewise, in the 10V range, resolution can be calculated by multiplying 10V by 10ppm, as shown in the following example:

$$10V * 8ppm = 10V * 8 * 1 \times 10 - 6 = 80 \mu V$$

- Settling time, typical: < 100us to settle to 0.1% of voltage step, fast transient response Note: Current limit set to ≥1 mA
- 2. Cable guard output impedance, typical: $1k\Omega$
- 3. Remote sense

Voltage: Add o.1% of LO lead drop to voltage accuracy specification

Current: Add 0.02% of range per volt of total HI and LO lead drop to

current accuracy spec

Maximum lead drop: Up to 1 V drop per lead

4. Isolation

Channel-to-earth ground: 6oV Absolute maximum voltage between any terminal and LO: 2oV

5. Sampling speed

Measure sampling rate: 1MS/s
Maximum source update rate: 267kS/s

4.1 Typical Step Response

The following figures illustrate the effect of the transient response setting on the step response of the AM430e for different loads

- 1. 10mA Range, No Load Step Response (10V), typical
 - a. Fast transient response. Settling time < 100us to settle to 0.1% of voltage step

Figure 3: Fast transient response, 10mA, 10V

b. Normal transient response. Settling time < 200 us to settle to 0.1% of voltage step

Figure 4: Normal transient response, 10mA, 10V

c. Slow transient response. Settling time < 500 us to settle to 0.1% of voltage step

Figure 5: Slow transient response, 10MA, 10V

- 2. 10mA Range, 10onF Load Step Response (1V), typical
 - a. Fast transient response

Figure 6: Fast transient response, 100nF, 1V

b. Normal transient response

Figure 7: Normal transient response, 100nF, 1V

c. Slow transient response

Figure 8: Slow transient response, 100nF, 1V

d. Custom transient response

Figure 9: Custom transient response, 100nF, 1VFast transient response, 100nF, 1V

5.1 Trigger Inputs

Specification	Value	Comments
	PXI trigger lines	PXI_TRIG[0:7]
Sources	Software trigger	0-1
	External trigger	1
Types	Measure, Measure Array	
Polarity	High, Low, Rising, Falling	Configurable
Pulse Width	>=200NS	
Destination	PXI trigger lines 0-7, External trigger	

Table 4 : Trigger Inputs

5.2 Trigger Outputs

Specification	Value	Comments
Types	Source Complete, Measure Complete, Enter Compliance, Exit Compliance, During Source, Software Trigger[o-1]	
Polarity	Active High	
Pulse Width	Between 1us and 50ms	Configurable
Destination	PXI trigger lines o-7, External trigger	

Table 5: Trigger Outputs

Section 6: Others

1. Output

Signals: 5-wires (Force High, Force Low, Sense High, Sense Low and Guard) Front Panel Connectors: 25 position D-Sub Female; BNC Socket

2. Dimension: 3U 1-slot space

Section 7: Revision History

1.0	JULY2013	INITIAL RELEASE
1.1	DEC 2013	REVISED FORMATTING

To obtain service, warranty or technical assistance, please contact Aemulus.

Aemulus Corporation Sdn. Bhd. Krystal Point, B-2-04, B-2-05, B-2-06 & B-2-07 303, Jalan Sultan Azlan Shah, 11900 Penang, Malaysia Tel: +604 6446399

Fax: +604 6466799

Web: www.aemulus.com

Email: enquiry@aemulus.com

Product specifications and descriptions in this document are subject to change without prior notice.