

Herramientas Open-Source para desarrollo de FPGAs

GDG Gasteiz 2022/05/20 Iñigo Muguruza

Agenda

- Intro FPGAs uso, que son, campos, workflow, herramientas
- F4PGA, el "gcc" de las FPGAs
- Ecosistema open-software/hardware para FPGAs
- Live Demo
- Extras Links y recursos

Intro - ¿Cómo son?

Suele contener:

- Interconexiones
- Logic Elements o CLB
- DPSs
- Block RAM
- PLLs
- o Transceivers PCIe,
- Hard IPs especializados: por ejemplo ADCs
- Pines de IO

labclk1-

labclkena1labclkena2-

Figure 3. Intel® Cyclone® 10 LP Device Family LEs

Intro

- Las FPGAs están de moda de nuevo:
 - Mercados nuevos: Al, robotica, coches autonomos, investigación sobre nuevas arquitecturas de computación, emuladores de consolas implementadas en hw (doom), ...
- Pero siempre han estado ahí:
 - Mercados clasicos: electrónica de potencia, ferroviario, espacio y defensa, procesamiento de audio y video, criptografia, desarrollo de ASICs, data-centers o software-defined radio.
- La filosofía del mundo software ha entrado también en este campo
 - Desarrollos open-source (por ejemplo opencores) y herramientas open-source (iverilog, verilator, gtkwave, f4pga o cpu cores y RISC-V).

Intro

Ventajas:

- Verdadero paralelismo de computación
- Ad-hoc a la aplicacion
- Computación/Watts vs CPUs y GPUs
- Reconfigurables (son como un lienzo) parcial o total
- "Real-Time"

Desventajas

- La principal, curva de aprendizaje => pensar en lógica digital
- Tipicamente, se programan en hdl (hardware description language), no es lo mismo que C/Python/C++, lógica digital.

Intro - Workflow

Intro - Herramientas

- Intel (Altera) y AMD/Xilinx los fabricantes más grandes de FPGAs
- Intel => Quartus Prime
- Xilinx => Vivado y Vitis

Renesas ha anunciado FPGAs, parece que con herramientas open-source,

<u>link</u>.

F4PGA

- Antes ya existían herramientas open-source, sobre todo, para simulacion:
 Icarus Verilog, Verilator o GTKWave, por ejemplo.
- Proyecto compuesto por diferentes partes que cubre el workflow de diseño de FPGAs.
- Mucha documentación y ingeniería inversa para entender los formatos de bistreams de cada fabricante
- Cantidad limitada de FPGAs soportadas.
- Un futuro prometedor!

F4PGA - Arquitectura

F4PGA - Arquitectura

F4PGA - FPGA soportadas

	Project Icestorm	Project Trellis	Project X-Ray	QuickLogic Database
Basic Tiles:	~	~	~	~
- Logic	~	~	~	~
- Block RAM	~	~	* ×	~
Advanced Tiles:	~	~	✓×	~
- DSP	~	~	×	~
- Hard Blocks	~	~	×	~
- Clock Tiles	~	~	~	~
- IO Tiles	~	~	~	~
Routing:	~	~	~	~
- Logic	~	~	~	~
- Clock	~	~	~	~

Ecosistema - placas Open-Hadware

- Icezum <u>Alhambra</u>
- ICEBreaker
- OrangeCrab (Linux ⊘)
- <u>ULX3S</u> (Linux ⊘)

Ecosistema - herramientas

SoftCores

- LibreCores
- o OpenCores
- Puedes encontrar muchas IP Cores listas para utilizar
- De todo tipo, comunicaciones, controladores, ...

Simuladores

- Permiten verificar la logica codificada
- <u>Icarus Veriloq</u>
- Verilator

Project	Files	Statistics	Status	License	Wishbone version
16 Bit Microcontroller	•	Stats	wbc	LGPL	
16-bit CPU based loosely on Caxton Foster's Blue architecture	•	Stats		LGPL	
16-bit Open uRISC core Processor	•	Stats		LGPL	
1664 microprocessor	•	Stats		Others	
32 bit Processor	•	Stats		LGPL	
4004 CPU and MCS-4 family chips	•	Stats		Others	
6502VHDL	•	Stats			
6809 and 6309 Compatible core	•	Stats		LGPL	
68hc05	•	Stats			
68hc08	•	Stats			
8-BIT HARDWIRED PROCESSOR	•	Stats	done	LGPL	
8-bit microcontroller with extended peripheral set	•	Stats		LGPL	
8-BIT MICROPROGRAMMED PROCESSOR	•	Stats	done	LGPL	
8-bit Piepelined Processor	•	Stats		LGPL	
8-bit uP	•	Stats	done	GPL	
8051 core	•	Stats	wbc		
8080 Compatible CPU	•	Stats	done		
A lightweight 8085 verilog implementation	•	Stats		LGPL	
A-Z80 CPU	•	Stats	done	LGPL	
ae18	•	Stats	done wbc	LGPL	
<u>aeMB</u>	•	Stats	done wbc	LGPL	
ag_6502 soft core with phase-level accuracy	•	Stats	done	GPL	
AltOr32 - Alternative Lightweight OpenRisc CPU	•	Stats	done wbc	LGPL	
alt_ISA	•	Stats		LGPL	
Alwcpu - A light weight CPU	•	Stats	done wbc	LGPL	

FuseSoc

- Es un package manager de IP Cores
- Contiene sistema para compilar los cores
- El objetivo es maximizar la reutilización de los cores

RISC-V

- Existen cores totalmente open-source, donde se siguen <u>estándares</u> de RISC-V
- Desde microcontroladores de 8-bits, a microprocesadores de 32-bits capaces de ejecutar Linux.

Ejemplos:

- Picorv32
- o Picorv32 en Alhambra, aqui
- Serv, microcontrolador de 8 bits

• <u>LiteX</u>

- Herramienta basada en Python para generación de SoCs completos
- Utiliza Mygen (lenguaje HDL) para codificar.
- Pueden contener
 - CPUs
 - Controladores, PCle, memoria SRAM, ...
 - Perifericos, I2C, SPI, Ethernet, HDMI,...
- Presentacion, <u>aquí</u>

 Existen nuevos lenguajes de programación de hdl: <u>Chisel</u>, nmigen o <u>spinalhdl</u>, mas modernos.

LiteX - Ejemplos

LiteX - Ejemplos

Demo

- Blinky en Alhambra y ULX3S
- <u>UART</u> en Alhambra
- PicoRV en Alhambra
- LiteX

Links Adicionales

- Tutoriales Verilog/Vdhl:
 - https://github.com/Obijuan/open-fpga-verilog-tutorial
 - https://www.nandland.com/
 - https://www.reddit.com/r/FPGA/comments/omrnrk/list_of_useful_links_for_beginners_and_vet_erans/
 - https://www.fpqa4fun.com/SiteInformation.html

Eskerrik asko zuen arregatik!

Galderarik?