Finding the closest point in a plane

Goal: Given a point **b** and a plane, find the point in the plane closest to **b**.

Finding the closest point in a plane

Goal: Given a point \mathbf{b} and a plane, find the point in the plane closest to \mathbf{b} .

By translation, we can assume the plane includes the origin.

The plane is a vector space V. Let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis for V.

Goal: Given a point \mathbf{b} , find the point in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ closest to \mathbf{b} .

Example:

$$\mathbf{v}_1 = [8, -2, 2] \text{ and } \mathbf{v}_2 = [4, 2, 4]$$

$$\mathbf{b} = [5, -5, 2]$$
 point in plane closest to \mathbf{b} : $[6, -3, 0]$.

Closest-point problem in in higher dimensions

Goal: An algorithm that, given a vector \mathbf{b} and vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$, finds the vector in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ that is closest to \mathbf{b} .

Special case: We can use the algorithm to determine whether **b** lies in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$:

If the vector in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ closest to \mathbf{b} is \mathbf{b} itself then clearly \mathbf{b} is in the span; if not, then \mathbf{b} is not in the span.

Let
$$A = \left[\begin{array}{c|c} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{array}\right]$$
.

Using the linear-combinations interpretation of matrix-vector multiplication, a vector in Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ can be written $A\mathbf{x}$.

Thus testing if **b** is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is equivalent to testing if the equation $A\mathbf{x} = \mathbf{b}$ has a solution.

More generally:

Even if $A\mathbf{x} = \mathbf{b}$ has no solution, we can use the algorithm to find the point in $\{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\}$ closest to \mathbf{b} .

Moreover: We hope to extend the algorithm to also find the best solution **x**.

Closest point and coefficients

Not enough to find the point p in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ closest to \mathbf{b}

We need an algorithm to find the representation of p in terms of $\mathbf{v}_1, \dots, \mathbf{v}_n$.

Goal: find the coefficients x_1, \ldots, x_n so that $x_1 \mathbf{v}_1 + \cdots + x_n \mathbf{v}_n$ is the vector in Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ closest to \mathbf{b} .

Equivalent: Find the vector
$$\mathbf{x}$$
 that minimizes $\begin{bmatrix} \mathbf{b} \end{bmatrix} - \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{x} \end{bmatrix} \begin{bmatrix} \mathbf{x} \end{bmatrix}$

Equivalent: Find the vector
$$\mathbf{x}$$
 that minimizes $\left\| \begin{bmatrix} \mathbf{b} \end{bmatrix} - \begin{bmatrix} \mathbf{v}_1 \\ \cdots \end{bmatrix} \mathbf{v}_n \right\| \left\| \mathbf{x} \right\| \right\|^2$

Equivalent: Find the vector
$$\mathbf{x}$$
 that minimizes $\left\| \begin{bmatrix} \mathbf{b} \end{bmatrix} - \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix} \begin{bmatrix} \mathbf{x} \end{bmatrix} \right\|^2$

Equivalent: Find the vector **x** that minimizes $(\mathbf{b}[1] - \mathbf{a}_1 \cdot \mathbf{x})^2 + \cdots + (\mathbf{b}[m] - \mathbf{a}_m \cdot \mathbf{x})^2$

This last problem was addressed using gradient descent in Machine Learning lab.

Closest point and least squares

Find the vector **x** that minimizes
$$\left\| \begin{bmatrix} \mathbf{b} \end{bmatrix} - \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \mathbf{x} \end{bmatrix} \right\|^2$$

Equivalent: Find the vector \mathbf{x} that minimizes $(\mathbf{b}[1] - \mathbf{a}_1 \cdot \mathbf{x})^2 + \cdots + (\mathbf{b}[m] - \mathbf{a}_m \cdot \mathbf{x})^2$

This problem is called *least squares* ("méthode des moindres carrés", due to Adrien-Marie Legendre but often attributed to Gauss)

Equivalent: Given a matrix equation $A\mathbf{x} = \mathbf{b}$ that might have no solution, find the best solution available in the sense that the norm of the error $\mathbf{b} - A\mathbf{x}$ is as small as possible.

- ▶ There is an algorithm based on Gaussian elimination.
- ▶ We will develop an algorithm based on orthogonality (used in solver)

Much faster and more reliable than gradient descent.