Statystyka w analizie i planowaniu eksperymentu lista nr 5

1 Analiza wariancji

Zadanie 1 Liczba błędów popełnionych w toku przejścia tresowanych szczurów przez labirynt ma rozkład normalny. Do pewnych dalszych doświadczeń wylosowano po 5 szczurów do 4 grup, które powinny być jednorodne pod względem stopnia wytresowania. Otrzymano dla szczurów w poszczególnych grupach następujące liczby popełnianych przez nie błędów:

GRUPA						
Lp.	I	IV				
1	10	7	8	16		
2	8	10	13	10		
3	7	6	15	8		
4	6	14	6	10		
5	11	5	3	4		

Czy średnia liczba popełnianych błędów jest jednakowa dla wszystkich grup?

Odpowiedź:

Call:

aov(formula = fit)

Terms:

group Residuals
Sum of Squares 4.95 243.60
Deg. of Freedom 3 16

Residual standard error: 3.901923 Estimated effects may be unbalanced

Df Sum Sq Mean Sq F value Pr(>F)
group 3 4.95 1.65 0.108 0.954
Residuals 16 243.60 15.22

Zadanie 2 Trzech nauczycieli języka polskiego miało ocenić w skali punktowej 1-20 wypracowania wylosowanych czterech uczniów pewnej szkoły. Wyniki były następujące: Na poziomie istotności $\alpha=0.1$ zweryfikować hipo-

Nauczyciel					
Lp.	A	В	С		
1	19	17	20		
2	20	20	19		
3	10	11	9		
4	14	15	12		

tezę, że wszyscy nauczyciele są tak samo surowi (wystawiają średnio podobne oceny). Odpowiedź:

Call:

$$aov(formula = fit)$$

Terms:

Residual standard error: 4.636809 Estimated effects may be unbalanced

Zadanie 3 Wybrano losowo po 5 królików z poszczególnych grup i otrzymano następujące wyniki (w kg): Na poziomie istotności $\alpha = 0.1$ zweryfi-

Króliki					
Lp.	A	В	С	D	
1	2.95	3.20	3.05	3.00	
2	2.80	3.05	3.30	3.30	
3	3.10	2.90	3.15	2.75	
4	3.00	3.05	3.20	2.85	
5	3.15	3.05	2.80	3.10	

kować hipotezę, że wartość oczekiwana wagi królików we wszystkich czterech grupach jest jednakowa. Odpowiedź:

Call:

aov(formula = fit)

Terms:

group Residuals
Sum of Squares 0.034375 0.450000
Deg. of Freedom 3 16

Residual standard error: 0.1677051 Estimated effects may be unbalanced

Df Sum Sq Mean Sq F value Pr(>F)
group 3 0.0344 0.01146 0.407 0.75

Residuals 16 0.4500 0.02813

Zadanie 4 Po zastosowaniu czterech różnych stężeń azotu D_1, D_2, D_3, D_4 na 20 poletkach doświadczalnych otrzymano z nich następujące ilości zbóż w kilogramach (patrz tabelka) Czy zawartość azotu w glebie ma wpływ na

Dawki azotu					
Lp.	$D_1 \mid I$		D_3	D_4	
1	30	40	60	70	
2	40	50	90	50	
3	20	40	80	60	
4	40	60	50	50	
5	20	10	110	30	

wysokość plonów? Odpowiedź:

Call:

aov(formula = fit)

Terms:

group Residuals Sum of Squares 6440 4960 Deg. of Freedom 3 16

Residual standard error: 17.60682 Estimated effects may be unbalanced

Df Sum Sq Mean Sq F value Pr(>F)
group 3 6440 2147 6.925 0.00336 **
Residuals 16 4960 310

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1

Zadanie 5 Liczba nasion, które nie wykiełkowały w n - elementowej losowej próbie wysianych nasion jest zmienną losową. Jako suma zmiennych zerojedynkowych zmienna ta ma asymptotyczny rozkład normalny. Badania nad wpływem rodzaju podłoża (A,B,C) na siłę kiełkowania nasion pomidorów na 9 doświadczalnych poletkach (po trzy poletka przeznaczono na każdy rodzaj podłoża) dały następujące wyniki dotyczące liczby wysianych nasion, które nie wykiełkowały: Czy rodzaj podłoża jest czynnikiem różnicującym średnią liczbę

Podłoże A	0	3	4
Podłoże B	4	5	1
Podłoże C	1	0	2

 $nasion,\ które\ nie\ wykiełkowały?\ Odpowiednią\ hipotezę\ proszę\ zweryfikować\ na\ poziomie\ istotności\ 0.05.$

Odpowiedź:

Call:

aov(formula = fit)

Terms:

group Residuals

Sum of Squares 8.222222 19.333333

Deg. of Freedom 2 6

Residual standard error: 1.795055 Estimated effects may be unbalanced

Df Sum Sq Mean Sq F value Pr(>F)

group 2 8.222 4.111 1.276 0.345

Residuals 6 19.333 3.222

Zadanie 6 Zbadano wydajność pracowników trzech producentów rowerów A,B,C. Miernikiem wydajności była liczba skręconych rowerów na godzinę. Uzyskano następujące dane: Czy można stwierdzić, na poziomie istotności

	A	20	25	26	30	28
ſ	В	22	18	20		
Γ	С	30	21	25	26	

0.05, że średnia wydajność pracowników w każdej z firm jest identyczna?