Exercise Round 1.

Exercise 1. (Linear Least Squares Estimation)

Assume that we have obtained n measurement pairs (y_k, x_k) from the linear regression model

$$y_k = a_1 x_k + a_2, \qquad k = 1, \dots, n.$$
 (1)

The purpose is now to derive an estimate to the parameters a_1 and a_2 such that the following error is minimized (LS-estimate):

$$E(a_1, a_2) = \sum_{k=1}^{n} (y_k - a_1 x_k - a_2)^2.$$
 (2)

A) Define $\mathbf{y} = (y_1 \dots y_n)^T$ and $\mathbf{a} = (a_1 \ a_2)^T$. Show that the set of Equations (1) can be written in matrix form

$$y = X a$$

with a suitably defined matrix X.

- **B**) Write the error function in Equation (2) in matrix form in terms of y, X and a.
- C) Compute the gradient of the matrix form error function and solve the LS-estimate of the parameter a by finding the point where the gradient is zero.

Exercise 2. (ZOH Discretization of State Space Model)

Consider the following differential equation model for a forced linear spring:

$$\frac{d^2x(t)}{dt^2} = -c^2 x(t) + w(t), \qquad x(0) = x_0, x'(0) = v_0,$$

where c, x_0 and v_0 are constants and w(t) is some given force function.

- **A)** Solve the equation as follows:
 - 1. Express the equation in form of first order vector differential equation $d\mathbf{x}/dt = \mathbf{F} \mathbf{x} + \mathbf{L} w$.
 - 2. Solve the equation by using $G(t) = \exp(-F t)$ as the integrating factor (note that this is a matrix exponential, not an ordinary one).
- **B)** Assume that w(t) is piecewise constant between the sampling points $t_0 = 0, t_1 = \Delta t, t_2 = 2\Delta t, \ldots$ and express the solution in recursive form

$$\mathbf{x}(t_k) = \mathbf{A} \, \mathbf{x}(t_{k-1}) + \mathbf{B} \, w_{k-1},$$

where w_{k-1} is the value of w(t) on the interval $[t_{k-1}, t_k]$.

- C) Assume that the piece-wise constant value w_{k-1} is a zero mean Gaussian random variable with variance $q_c/\Delta t$. Further assume that we measure the value $x_1(t_k)$ plus Gaussian noise at the sampling instants. Write the model in form of linear Gaussian state space model.
- **D)** Note that in this exercise we have approximated the stochastic input w(t) as a piece-wise constant process, thus this could be called zeroth-order-hold (ZOH) discretization. However, it is also possible to compute exact discretization for a system, where we model w(t) as a continuous-time white noise process. In that solution the term $\mathbf{B} w_{k-1}$ gets replaced with random variable \mathbf{q}_{k-1} with zero mean and the following covariance:

$$\mathbf{Q}_{k-1} = \int_0^{\Delta t} \exp((\Delta t - s) \mathbf{F}) \mathbf{L} q_c \mathbf{L}^T \exp((\Delta t - s) \mathbf{F})^T ds.$$

Compute this covariance for the case c=0 and compare it to the corresponding ZOH discretization covariance.

Exercise 3. (Kalman filtering with EKF/UKF Toolbox)

A) Download and install the EKF/UKF toolbox to some Matlab computer from the web page:

```
http://www.lce.hut.fi/research/mm/ekfukf/
```

Run the following demonstrations:

```
demos/kf_sine_demo/kf_sine_demo.m
demos/kf_cwpa_demo/kf_cwpa_demo.m
```

After running them read the contents of these files and try to understand how they have been implemented. Also read the documentations of functions kf_predict and kf_update (type e.g. "doc kf_predict" in Matlab).

B) Consider the following state space model:

$$\mathbf{x}_{k} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{x}_{k-1} + \mathbf{w}_{k-1}$$

$$y_{k} = \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x}_{k} + v_{k}$$
(3)

where $\mathbf{x}_k = (x_k \ \dot{x}_k)^T$ is the state, y_k is the measurement, and $\mathbf{w}_k \sim \mathrm{N}(\mathbf{0}, \mathrm{diag}(1/10^2, 1^2))$ and $v_k \sim \mathrm{N}(0, 10^2)$ are white Gaussian noise processes.

Simulate 100 step state sequence from the model and plot the signal x_k , signal derivative \dot{x}_k and the simulated measurements y_k . Start from initial state drawn from zero-mean 2d-Gaussian distribution with identity covariance.

C) Use Kalman filter for computing the state estimates \mathbf{m}_k using the following kind of Matlab-code:

```
m = [0;0]; % Initial mean
P = eye(2); % Initial covariance
for k = 1:100
    [m,P] = kf_predict(m,P,A,Q);
    [m,P] = kf_update(m,P,y(k),H,R);
    % Store the estimate m of state x_k here
end
```

D) Plot the state estimates \mathbf{m}_k , the true states \mathbf{x}_k and measurements y_k . Compute the RMSE error of using the first components of vectors \mathbf{m}_k as the estimates of first components of states \mathbf{x}_k . Also compute the RMSE error that we would have if we used the measurements as the estimates.