2-11 Heapsort

Hengfeng Wei

hfwei@nju.edu.cn

May 12, 2020

Obama in a job interview at Google

2/22

Obama in a job interview at Google

"What is most efficient way to sort a million 32-bit integers?"

Obama in a job interview at Google

"What is most efficient way to sort a million 32-bit integers?"

Obama: "The bubblesort would be the wrong way to go."

O Ω Θ

O Ω Θ

Best case Worst case Average case

 $O \quad \Omega \quad \Theta$

Best case

Worst case

Average case

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $\Omega(\log n)$.

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $\Omega(\log n)$.

By Example.

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $\Omega(\log n)$.

By Example.

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $\Omega(\log n)$.

By Example.

Compare vs. Exchange

4/22

Worst-case of Max-Heapify (Section 6.2 of CLRS)

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $O(\log n)$.

Worst-case of Max-Heapify (Section 6.2 of CLRS)

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $O(\log n)$.

 $W(n) \le H(n)$

Worst-case of Max-Heapify (Section 6.2 of CLRS)

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $O(\log n)$.

 $W(n) \le H(n)$

No Examples Here!

5/22

Therefore...

Worst-case of Max-Heapify

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $\Theta(\log n)$.

	О	Ω	Θ
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$

Show that the worst-case running time of Heapsort is $\Omega(n \log n)$.

Show that the worst-case running time of Heapsort is $\Omega(n \log n)$.

By Example.

Show that the worst-case running time of Heapsort is $\Omega(n \log n)$.

By Example.

Non-proof.

$$\underbrace{\Theta(n)}_{\text{EXTRACT-MAX}} \times \underbrace{\Omega(\log n)}_{\text{MAX-HEAPIFY}} = \Omega(n \log n)$$

Show that the worst-case running time of Heapsort is $\Omega(n \log n)$.

By Example.

Non-proof.

$$\underbrace{\Theta(n)}_{\text{EXTRACT-MAX}} \times \underbrace{\Omega(\log n)}_{\text{MAX-HEAPIFY}} = \Omega(n \log n)$$

What is wrong?

Show that the worst-case running time of Heapsort is $\Omega(n \log n)$.

Heap in decreasing order?

Heap in decreasing order?

$$T(7) = 2 + 1 + 1 + 1 + 0 + 0 = 5$$

9/22

$$T(7) = 2 + 2 + 2 + 1 + 1 + 0 = 8$$

$$T(7) = 2 + 2 + 2 + 1 + 1 + 0 = 8$$

$$T(7) = 2 + 2 + 2 + 1 + 1 + 0 = 8$$

$$T(7) = 2 + 2 + 2 + 1 + 1 + 0 = 8$$

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor$$

$$T(7) = 2 + 2 + 2 + 1 + 1 + 0 = 8$$

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2$$

$$T(7) = 2 + 2 + 2 + 1 + 1 + 0 = 8$$

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2 = \Omega(n \log n)$$

Show that the worst-case running time of Heapsort is $O(n \log n)$.

Show that the worst-case running time of Heapsort is $O(n \log n)$.

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2 = O(n \log n)$$

Show that the worst-case running time of Heapsort is $O(n \log n)$.

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2 = O(n \log n)$$

No Examples Here!

Show that the worst-case running time of HEAPSORT is $O(n \log n)$.

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2 = O(n \log n)$$

No Examples Here!

$$\underbrace{\Theta(n)}_{\text{EXTRACT-MAX}} \times \underbrace{O(\log n)}_{\text{MAX-HEAPIFY}} = O(n \log n)$$

Therefore...

Worst-case of Heapsort (TC 6.4 - 4)

Show that the worst-case running time of Heapsort is $\Theta(n \log n)$.

	О	Ω	Θ
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$

Algorithm \mathcal{A}

Inputs \mathcal{I} of size n

	О	Ω	Θ
Best-case			
Worst-case			

	О	Ω	Θ
Best-case			
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$

	О	Ω	Θ
Best-case	by example		
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$

	О	Ω	Θ
Best-case	by example	"weakness" of \mathcal{A}	
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$

	О	Ω	Θ
Best-case	by example	"weakness" of \mathcal{A}	$O = \Omega$
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Best-case of Heapsort (Ex. 32, Section 5.2.3, TAOCP Vol 3)

Prove that the number of heapsort promotions, B, is always at least $\frac{1}{2}N\log N + O(N)$, if the keys being sorted are distinct.

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Best-case of Heapsort (TC 6.4-5[⋆])

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Consider the largest $m = \lceil n/2 \rceil$ elements.

The largest m elements form a subtree.

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Consider the largest $m = \lceil n/2 \rceil$ elements.

The largest m elements form a subtree.

 $\geq \lfloor m/2 \rfloor$ of m must be nonleaves of that subtree.

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Consider the largest $m = \lceil n/2 \rceil$ elements.

The largest m elements form a subtree.

- $\geq \lfloor m/2 \rfloor$ of m must be nonleaves of that subtree.
- $\geq \lfloor m/2 \rfloor$ of m appear in the first $\lfloor n/2 \rfloor$ positions.

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Consider the largest $m = \lceil n/2 \rceil$ elements.

The largest m elements form a subtree.

 $\geq \lfloor m/2 \rfloor$ of m must be nonleaves of that subtree.

 $\geq \lfloor m/2 \rfloor$ of m appear in the first $\lfloor n/2 \rfloor$ positions.

They must be promoted to the root before being Extract-Max.

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Consider the largest $m = \lceil n/2 \rceil$ elements.

The largest m elements form a subtree.

- $\geq \lfloor m/2 \rfloor$ of m must be nonleaves of that subtree.
- $\geq \lfloor m/2 \rfloor$ of m appear in the first $\lfloor n/2 \rfloor$ positions.

They must be promoted to the root before being Extract-Max.

$$\sum_{k=1}^{\lfloor m/2\rfloor} \lfloor \log k \rfloor = \frac{1}{2} m \log m + O(m)$$

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Consider the largest $m = \lceil n/2 \rceil$ elements.

The largest m elements form a subtree.

- $\geq \lfloor m/2 \rfloor$ of m must be nonleaves of that subtree.
- $\geq \lfloor m/2 \rfloor$ of m appear in the first $\lfloor n/2 \rfloor$ positions.

They must be promoted to the root before being Extract-Max.

$$\sum_{k=1}^{\lfloor m/2\rfloor} \lfloor \log k \rfloor = \frac{1}{2} m \log m + O(m)$$

$$B(n) \geq \frac{1}{4} n \log n + O(n) + B(\lfloor n/2 \rfloor)$$

Best-case of Heapsort (TC 6.4-5[⋆])

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \log n)$.

Consider the largest $m = \lceil n/2 \rceil$ elements.

The largest m elements form a subtree.

- $\geq \lfloor m/2 \rfloor$ of m must be nonleaves of that subtree.
- $\geq \lfloor m/2 \rfloor$ of m appear in the first $\lfloor n/2 \rfloor$ positions.

They must be promoted to the root before being EXTRACT-MAX.

$$\sum_{k=1}^{\lfloor m/2 \rfloor} \lfloor \log k \rfloor = \frac{1}{2} m \log m + O(m)$$

$$B(n) \ge \frac{1}{4}n\log n + O(n) + B(\lfloor n/2 \rfloor) \implies B(n) \ge \frac{1}{2}n\log n + O(n)$$

Show that when all elements are distinct, the best-case running time of HEAPSORT is $O(n \log n)$.

Show that when all elements are distinct, the best-case running time of HEAPSORT is $O(n \log n)$.

By Example.

Show that when all elements are distinct, the best-case running time of HEAPSORT is $O(n \log n)$.

By Example.

"On the Best Case of Heapsort" (1994)

"On the Best Case of Heapsort" (1994)

$$B(n) \le \frac{1}{2}n\log n + O(n\log\log n)$$

Therefore...

Best-case of Heapsort (TC 6.4 - 5)

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Theta(n \log n)$.

	О	Ω	Θ
Best-case	by example	"weakness" of \mathcal{A}	$O = \Omega$

	О	Ω	Θ
Best-case			
Worst-case			
Average-case			

	О	Ω	Θ
Best-case			
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$
Average-case			

	О	Ω	Θ
Best-case	by example	"weakness" of \mathcal{A}	$O = \Omega$
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$
Average-case			

	О	Ω	Θ
Best-case	by example	"weakness" of \mathcal{A}	$O = \Omega$
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$
Average-case	<u> </u>	<u> </u>	

	О	Ω	Θ
Best-case	by example	"weakness" of \mathcal{A}	$O = \Omega$
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$
Average-case	<u> </u>	<u> </u>	$O = \Omega$

Average-case of HEAPSORT

Assume that all elements are distinct. Show that the average-case running time of HEAPSORT is $\Theta(n \log n)$.

Average-case of HEAPSORT

Assume that all elements are distinct. Show that the average-case running time of HEAPSORT is $\Theta(n \log n)$.

Average-case of Heapsort

Assume that all elements are distinct. Show that the average-case running time of HEAPSORT is $\Theta(n \log n)$.

I said simple, not easy.

"By a surprisingly short counting argument."

Robert Sedgewick

"By a surprisingly short counting argument."

Robert Sedgewick

D. E. Knuth

"It is elegant.

"By a surprisingly short counting argument."

Robert Sedgewick

D. E. Knuth

"It is elegant. see exercise 30."

$$\forall h \geq 1: \lceil \log(\lfloor \frac{1}{2}h \rfloor + 1) \rceil + 1 = \lceil \log(h+1) \rceil$$

$$\forall h \ge 1 : \lceil \log(\lfloor \frac{1}{2}h \rfloor + 1) \rceil + 1 = \lceil \log(h+1) \rceil$$

$$\lceil \log(h+1) \rceil = \lfloor \log h \rfloor + 1, \forall h \ge 1$$

$$\forall h \ge 1 : \lceil \log(\lfloor \frac{1}{2}h \rfloor + 1) \rceil + 1 = \lceil \log(h+1) \rceil$$

$$\lceil \log(h+1) \rceil = \lfloor \log h \rfloor + 1, \forall h \ge 1$$

$$\lfloor \log \lfloor \frac{1}{2}h \rfloor \rfloor + 1 = \lceil \log(\lfloor \frac{1}{2}h \rfloor + 1) \rceil = \lceil \log(h+1) \rceil - 1 = \lfloor \log h \rfloor$$

$$\forall h \geq 1: \lceil \log(\lfloor \frac{1}{2}h \rfloor + 1) \rceil + 1 = \lceil \log(h+1) \rceil$$

$$\lceil \log(h+1) \rceil = \lfloor \log h \rfloor + 1, \forall h \ge 1$$

$$\lfloor \log \lfloor \frac{1}{2}h \rfloor \rfloor + 1 = \lceil \log(\lfloor \frac{1}{2}h \rfloor + 1) \rceil = \lceil \log(h+1) \rceil - 1 = \lfloor \log h \rfloor$$

Depth of h = (Depth of the parent of h) + 1

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn