Amendment to the Claims

Please amend claims 1-10 as shown in the following listing of claims. This listing of claims will replace all prior versions, and listings, of claims in the application.

- 1 (currently amended) A simplified de-correlation method in TD-SCDMA
- 2 multi-user detection comprising: characterised in that is comprises:
- a. Receive receiving wireless symbols S;
- 4 b. Obtain obtaining a channel correlation matrix R, take taking one
- 5 part from the channel correlation matrix R and get getting a partial correlation
- 6 matrix R_P of the channel correlation matrix R;
- 7 e. Do performing an inversion operation to the partial correlation
- 8 matrix \mathbf{R}_P , and then obtain obtaining a matrix $\mathbf{V}^{(m)}$ using an inverse version of the
- 9 partial correlation matrix \mathbf{R}_P ; and obtain matrix $\mathbf{V}^{(m)}$;
- d. Recover recovering original data symbols D from the received
- symbols S by using the matrix $V^{(m)}$. that the to location of original data symbols D
- 12 corresponds to.
- 13
 - 1 2. (currently amended) A simplified de-correlation method in TD-SCDMA
 - 2 multi-user detection of claim 1, characterised in that wherein said partial
- 3 correlation matrix $\mathbf{R}_P = \{\mathbf{r}_{i,j}\}, \ i, j = 1 \dots (2P+1)K, \text{ where said partial}$
- 4 correlation matrix \mathbf{R}_P is $\underline{\mathbf{a}}$ submatrix of $\underline{\mathbf{the}}$ channel correlation matrix \mathbf{R} on
- 5 diagonal, said K is the user number in one time slot, and wherein said P is the
- 6 symbols number earlier than or latter than current symbols and have influence to
- 7 current symbols.
- 1 3. (currently amended) A simplified de-correlation method in TD-SCDMA
- multi-user detection of claim 2, characterised in that wherein said $\mathbf{V}^{(m)} = \{v_{i,j}^{(m)}\}$,
- 3 wherein where $v_{i,j}^{(m)} = (\mathbf{R}_P^{-1})_{i+(m-1)K,j}$, i = 1 ... K, j = 1 ... (2P+1)K, m =
- 4 1 ... 2P + 1.

- 4. (currently amended) A simplified de-correlation method in TD-SCDMA
- 2 multi-user detection of claim 1, characterised in that wherein the location of
- original data symbols D have three situations: situation:
- 1) when $1 \le n \le P$, $\mathbf{V}^{(m)} = \mathbf{V}^{(n)}$, $\mathbf{D}^{(n)}$ can be recovered as $\widehat{\mathbf{D}}^{(n)} =$
- 5 $\mathbf{V}^{(n)}\mathbf{S}_{P}^{(n)}$
- 6 2) when $P+1 \le n \le N-P$, $\mathbf{V}^{(m)} = \mathbf{V}^{(P+1)}$, $\mathbf{D}^{(n)}$ can be recovered as
- $7 \quad \widehat{\mathbf{D}}^{(n)} = \mathbf{V}^{(P+1)} \mathbf{S}_P^{(n)}$
- 8 3) when $N + 1 P \le n \le N$, $\mathbf{V}^{(m)} = \mathbf{V}^{(2P+1+n-N)}$, $\mathbf{D}^{(n)}$ can be recovered
- 9 as $\widehat{\mathbf{D}}^{(n)} = \mathbf{V}^{(2P+1+n-N)} \mathbf{S}_P^{(n)}$, said $\widehat{\mathbf{D}}^{(n)}$ is the estimation of original symbol, said n
- is location of chip.
- 5. (currently amended) A simplified de-correlation method in TD-SCDMA
- 2 multi-user detection of claim 1, characterised in that wherein:
- When $P + 1 \le n \le N P$, received wireless symbols S can be defined as
- 4 $S_{p}^{(n)} =$
- $5 \qquad \left(\underbrace{\hat{S}_{1}^{(n-P)}, \hat{S}_{2}^{(n-P)}, \dots, \hat{S}_{K}^{(n-P)}}_{n-P^{th} \ symbols \ of \ all \ K \ users}, \dots, \underbrace{\hat{S}_{1}^{(n)}, \hat{S}_{2}^{(n)}, \dots, \hat{S}_{K}^{(n)}}_{n^{th} \ symbols \ of \ all \ K \ users}, \dots, \underbrace{\hat{S}_{1}^{(n+P)}, \hat{S}_{2}^{(n+P)}, \dots, \hat{S}_{K}^{(n+P)}}_{n+P^{th} \ symbols \ of \ all \ K \ users} \right),$
- 6 wherein, where said $\hat{S}_1^{(n-P)}$, $\hat{S}_2^{(n-P)}$, ..., $\hat{S}_K^{(n-P)}$ is $(n-P)^{\text{th}}$ symbols of all K users,
- said $\hat{S}_1^{(n)}$, $\hat{S}_2^{(n)}$, ..., $\hat{S}_K^{(n)}$ is $(n)^{\text{th}}$ symbols of all K users, said
- 8 $\hat{S}_1^{(n+P)}$, $\hat{S}_2^{(n+P)}$, ..., $\hat{S}_K^{(n+P)}$ is $(n+P)^{\text{th}}$ symbols of all K users;
- When $1 \le n \le P$, received wireless symbols S can be defined as
- 10 $S_P^{(n)} =$
- 11 $\left(\underbrace{\hat{S}_{1}^{(1)}, \hat{S}_{2}^{(1)}, ..., \hat{S}_{K}^{(1)}}_{1^{th} \text{ symbols of all K users}},, \underbrace{\hat{S}_{1}^{(n)}, \hat{S}_{2}^{(n)}, ..., \hat{S}_{K}^{(n)}}_{n^{th} \text{ symbols of all K users}},, \underbrace{\hat{S}_{1}^{(2P+1)}, \hat{S}_{2}^{(2P+1)}, ..., \hat{S}_{K}^{(2P+1)}}_{2P+1^{th} \text{ symbols of all K users}}\right)_{2}$
- where Here, said $\hat{S}_1^{(1)}$, $\hat{S}_2^{(1)}$, ..., $\hat{S}_K^{(1)}$ is 1th symbols of all K users, said $\hat{S}_1^{(n)}$, $\hat{S}_2^{(n)}$, ..., $\hat{S}_K^{(n)}$ is $(n)^{\text{th}}$
- symbols of all K users, said $\hat{S}_1^{(2P+1)}$, $\hat{S}_2^{(2P+1)}$, ..., $\hat{S}_K^{(2P+1)}$ is $2P+1^{th}$ symbols of all K users;
- When $N + 1 P \le n \le N$, received wireless symbols S can be defined as $S_P^{(n)} =$
- 15 $\left(\underbrace{\hat{S}_{1}^{(N-2P)}, \hat{S}_{2}^{(N-2P)}, \dots, \hat{S}_{K}^{(N-2P)}}_{N-2P^{th} \text{ symbols of all K users}}, \dots, \hat{S}_{1}^{(N)}, \hat{S}_{2}^{(N)}, \dots, \hat{S}_{K}^{(N)}, \dots,$

Attorney Docket No. CN 020047 Serial No. 10/540,692

- where wherein, said [[.]] $\hat{S}_1^{(N-2P)}$, $\hat{S}_2^{(N-2P)}$, ..., $\hat{S}_K^{(N-2P)}$ is N-2Pth symbols of all K users,
- said $\hat{S}_1^{(n)}$, $\hat{S}_2^{(n)}$, ..., $\hat{S}_K^{(n)}$ is n^{th} symbols of all K users, said $\hat{S}_1^{(N)}$, $\hat{S}_2^{(N)}$, ..., $\hat{S}_K^{(N)}$ is N^{th} symbols
- of all K users.
- 6. (currently amended) A simplified de-correlation method in TD-SCDMA
- multi-user detection of claim 2, characterised in that said wherein $1 \le K \le 16$.
- 1 7. (currently amended) A simplified de-correlation method in TD-SCDMA
- 2 multi-user detection of claim 4 [[2]], characterised in that wherein said P is an
- integer[[,]] and said N is 22.
- 1 8. (currently amended) A simplified de-correlation method in TD-SCDMA
- 2 multi-user detection of claim 7, characterised in that wherein said P is 2.
- 1 9. (currently amended) A UE system in TD-SCDMA comprising:
- 2 characterised in that is comprises:
- a correspond calculate equipment to define the a partial correlation
- 4 matrix \mathbf{R}_P of a channel correlation matrix \mathbf{R} ;
- a draw out and inversed matrix equipment to define new matrix
- 6 $V^{(m)}$ using the partial correlation matrix \mathbf{R}_P ; and
- 7 a matrix-vector multiplication to multiply received wireless
- 8 symbols S by said matrix $V^{(m)}[[;]]$.
- 1 10. (currently amended) A UE system in TD-SCDMA of claim 9 characterised
- 2 in that further comprising is also comprises K matching filters and K buffer
- 3 storages that are connected to said K matching filters which connected correspond
- 4 to said matching filter one by one.