Задания

19 марта 2021 г.

- 1. Пусть ${\bf C}$ категория предпорядка, а ${\bf D}$ нет.
 - (а) Могут ли С и D быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 2. Пусть ${\bf C}$ категория с одним объектом, а ${\bf D}$ нет.
 - (a) Могут ли **C** и **D** быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 3. Пусть ${\bf C}$ дискретная категория, а ${\bf D}$ нет.
 - (а) Могут ли С и D быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 4. Пусть **С** группоид, а **D** нет.
 - (а) Могут ли С и D быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 5. Докажите, что **Num** эквивалентна **FinSet**. Изоморфны ли эти категории?

Рассмотрим функтор $F: \mathbf{Num} \to \mathbf{FinSet}$

$$F(n) = \{1, 2, ...n\} =: A_n$$

$$F((a_1,...,a_n)) = \lambda x. \ case \ x \ of\{i \Rightarrow a_i\} : A_n \to A_k$$

Так как $|Hom_{\mathbf{Num}}(n,k)| = k^n = |Hom_{\mathbf{FinSet}}(\{1,...,n\},\{1,...,k\})|$ и $F: Hom_{\mathbf{Num}}(n,k) \to Hom_{\mathbf{FinSet}}(\{1,...,n\},\{1,...,k\})$ — инъекция, то F — сюръекция. Значит F строгий и полный.

 $\forall S \in \mathbf{Set} \ \exists A_{|S|} \simeq S$, так как равномощные множества изоморфны. Значит $\forall F(|S|) \simeq S$. F существенно сюръективен. Получается, что F — экви.

FinSet не изоморфен **Num**, так как первый состоит из континуального множества объектов, а второй — из счетного.

- 6. Докажите, что ${\bf Mat}$ эквивалентна ${\bf Mat}^{op}$. Изоморфны ли эти категории?
- 7. Докажите, что **FinSet** не эквивалентна **Set**.

Пусть $F: \mathbf{Set} \to \mathbf{FinSet}$ — экви. Тогда $|Hom_{\mathbf{Set}}(\mathbb{N}, \{0\})| = |Hom_{\mathbf{FinSet}}(F(\mathbb{N}), F(\{0\}))| < \infty$, что неверно.

8. Пусть $F,G: \mathbf{C} \to \mathbf{D}$ — пара функторов. Естественное преобразование $\alpha: F \to G$ называется естественным изоморфизмом, если для любого объекта X в \mathbf{C} морфизм $\alpha_X: F(X) \to G(X)$ является изоморфизмом. Докажите, что $\alpha: F \to G$ — естественный изоморфизм тогда и только тогда, когда α — изоморфизм в категории $\mathbf{D}^{\mathbf{C}}$.

$$F(X) \xrightarrow{\alpha_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(X) \xrightarrow{\alpha_Y} G(Y)$$

Если $\forall X: \alpha_X$ – изо, то позьмем $\beta_X:=\alpha_X^{-1}$. Для такого β диаграмма выше коммутирует, значит β – естественное проеобразование. Кроме того, $(\alpha\circ\beta)_X=\alpha_X\circ\beta_X=id_{G(X)},$ а $(\beta\circ\alpha)_X=\beta_X\circ\alpha_X=id_{F(X)}.$ Значит $\beta=\alpha^{-1}$ в $\mathbf{D}^{\mathbf{C}}.$

Если $\beta=\alpha^{-1}$ в $\mathbf{D^C}$, то $(\alpha\circ\beta)_X=\alpha_X\circ\beta_X=id_{G(X)}$ (и симметрично с другой стороны). Значит $\forall X:\ \beta_X=\alpha_X^{-1}$, то есть $\forall X:\ \alpha_X$ – изо.

9. Пусть ${\bf C}$ – декартова категория. Докажите, что функтор – \times 1 изоморфен тождественному функтору в ${\bf C}^{\bf C}$.

$$X \times 1 \xrightarrow{\pi_1} X$$

$$\langle f,! \rangle \qquad \qquad \downarrow \langle f,! \rangle$$

$$Y \times 1 \xrightarrow{\pi_1} X$$

$$\langle id,! \rangle$$

Поскольку диаграмма выше коммутирует, то $\pi_1: -\times 1 \to id$ и $\langle id,! \rangle$ — естественные преобразования, причем взаимно обратные. То есть π_1 — изоморфизм этих функторов.

10. Пусть \Rightarrow – категория, состоящая из двух объектов $\{v,e\}$ и четырех морфизмов $\{id_v: v \to v, id_e: e \to e, d: v \to e, c: v \to e\}$. Докажите, что категории **Graph** (эта категория определяется в предыдущем ДЗ) и **Set** \Rightarrow оквивалентны. Изоморфны ли эти категории?

Рассмотрим функтор $F: \mathbf{Graph} \to \mathbf{Set}^{\Rightarrow^{op}}$.

F((V,E))=g, где g — функтор \Rightarrow op \to **Set** определененный следующим образом:

$$g(v) := V$$

 $g(e) := E(V \times V)$
 $g(c^{op}) := \pi_1 \circ E^{-1}$
 $g(d^{op}) := \pi_2 \circ E^{-1}$

 $F((f_V, f_E)) = \alpha$, где $\alpha_v = f_V, \alpha_e = f_E$

$$E(V^{2}) \xrightarrow{f_{E}} f_{E}(E)(f_{V}(V)^{2})$$

$$\downarrow \qquad \qquad \downarrow$$

$$V \xrightarrow{f_{V}} f_{V}(V)$$

Так как $g(c^{op}), g(d^{op})$ — функции, сопоставляющие ребрам их начала и концы, а f_E сохраняет их (переводит ребро $x \to y$ в ребро $f_V(x) \to f_V(y)$), то данная диаграмма коммутирует (при любых значениях на ребрах, идущих вниз, подходящих под определение ЕП), а значит α — естественное преобразование.

Кроме того, можно заметить, что $F((f_V, f_E) \circ (h_V, h_E)) = \beta$, где $\beta_v = f_V \circ h_V, \beta_e = f_E \circ h_E$, при этом, если обозначить $\alpha_x^f = f_X, \alpha_x^h = h_X$, где $(x, X) \in \{(v, V), (e, E)\}$, то $\beta = \alpha^f \circ \alpha^h = F((f_V, f_E)) \circ F((h_V, h_E))$ а значит F — корректный функтор.

Рассмотрим теперь функтор $G:\mathbf{Set}^{\Rightarrow^{op}}\to\mathbf{Graph}$ G(f)=(f(v),E'), где $E'(x,y):=(f(c^{op}))^{-1}(x)\cap(f(d^{op}))^{-1}(y)$ $G(\alpha)=(\alpha_v,\alpha_e)$ Из диаграммы выше следует также, что $G(\alpha\circ\beta)=((\alpha\circ\beta)_v,(\alpha\circ\beta)_e)=(\alpha_v\circ\alpha_e)\circ(\beta_v,\beta_e)=G(\alpha)\circ G(\beta),$ то есть G корректный.

 $F\circ G$ и $G\circ F$ тождественны, так как F переводит функцию для ребер в функцию, которая по ребру возвращает его начало или конец, а G — наоборот.

Категории изоморфны, а значит и тождественны.

- 11. Пусть **D** рефлективная подкатегория **C**.
 - (а) Докажите, что рефлектор $\mathrm{Ob}(\mathbf{C}) \to \mathrm{Ob}(\mathbf{D})$ является фнуктором $R: \mathbf{C} \to \mathbf{D}.$
 - (b) Докажите, что η является естественным преобразованием между $\mathrm{Id}_{\mathbf{C}}$ и $i \circ R$, где $i : \mathbf{D} \to \mathbf{C}$ функтор вложения.
- 12. Пусть $F: \mathbf{CMon} \to \mathbf{Ab}$ рефлектор вложения $i: \mathbf{Ab} \to \mathbf{CMon}$.

- (a) Приведите пример конечного нетривиального коммутативного моноида X, такого что |F(X)| = |X|.
- (b) Приведите пример конечного коммутативного моноида X, такого что |F(X)| < |X|.
- (c) Приведите пример коммутативного моноида X, такого что $\eta_X: X \to i(F(X))$ не сюръективна.
- (d) Докажите, что для любого конечного коммутативного моноида X функция $\eta_X: X \to i(F(X))$ является сюръективной. В частности $|F(X)| \leq |X|$.