1.1 Measures of System Performance

Time Length

- 1. Waiting Time: ti-to
- 2. System Time: ti-to

Customers

- 1. In Quenc
- 2. In System

Servers Time Length

- 1. Idle Time
- 2. Busy Period

Table 1.1 (Queueing nota	tion $A/B/X/Y/Z$
Characteristic	Symbol	Explanation
Interarrival-time distribution (A) Service-time distribution (B) Parallel servers (X) System capacity (Y)	M D E_k H_k PH G $1, 2, \dots, \infty$	Exponential Deterministic Erlang type k ($k = 1, 2,$) Mixture of k exponentials Phase type General \Rightarrow A
Queue discipline (Z)	1,2,,∞ FCFS LCFS RSS PR GD	First come, first served Last come, first served Random selection for service Priority General discipline

$$E_k$$
 (E_k): $\Rightarrow E_{xp} + E_{xp} + \cdots + E_{xp}$

$$E_k : \int (x; k, \mu) = \frac{k \mu (k \mu x)^{k+1}}{(k-1)!} e^{-k \mu x}$$

$$H_k$$
 (Mixture of R Exponentials):
 H_k : $f(x;k) = \sum_{i=1}^{k} P_i$ Mic $\sum_{i=1}^{k} P_i = 1$

Prob. of state

1.4 Little Law
$$L = \lambda W$$

$$L = \lambda W$$

$$V = \frac{\lambda}{\mu}$$

$$L: ave. \# Customers [1]$$

$$L: ave. rate [1/T]$$

$$V: ave. time [T]$$

$$V = \lambda W + \frac{\lambda}{\mu}$$

$$V = W_{\xi} + \frac{1}{\mu}$$

$$V = W_{\xi} + \frac{1}{\mu}$$

	Table 1.2 Summary of notation				
1/2	λ	Average arrival rate			
t	S	Random service time			
t	$\mu \equiv 1/E[S]$	Average service rate			
N	C	Number of servers			
N	$r \equiv \lambda/\mu$	Offered load			
\cap	$\rho \equiv \lambda/c\mu$	Traffic intensity or utilization			
t	T, T_q	Random time a customer spends in the system / queue			
t	W, W_q	Average time a customer spends in the system / queue			
η	N, N_q	Random number of customers in the system / queue			
N	L, L_q	Average number of customers in the system / queue			

Table 1.5 Notation and basic relationships				
Variable	Definition	Sample Relationship		
$A^{(n)}$	Arrival time of cust. n			
$S^{(n)}$	Service time of cust. n			
$T^{(n)}$	Interarrival time cust. n and $n+1$	$T^{(n)} = A^{(n+1)} - A^{(n)}$		
$U^{(n)}$	Time cust. n starts service	$U^{(n+1)} = \max\{D^{(n)}, A^{(n+1)}\}\$		
$D^{(n)}$	Departure time of cust. n	$D^{(n)} = U^{(n)} + S^{(n)}$		
$W_q^{(n)}$	Time in queue of cust. n	$W_q^{(n)} = U^{(n)} - A^{(n)}$		
$W^{(n)}$	Time in system of cust. n	$W^{(n)} = W_q^{(n)} + S^{(n)}$		