Computer Architecture EE 2-13

Department of Computing Examinations — 2015–2016 Session Confidential							
MODEL ANSWER and MARKING SCHEME							
Exami	iner W.L	Paper Code C2(0					
		Question Page out of	/				
Questi	ion labels in left margin	Mark allocations in right	margin				
10	$m \times 9 = \partial m + m$, so show	(\$2,\$1,3 1 \$2,\$1.\$2					
	take 31 cycles, $5/3 = 1.6$	7 times faster than the multi-instruction	6				
b	1 K = 1022 = 111111111	, need 9 slifts and 8 adds , \$2 contains the result 9m					
	Let \$1 contains the number m	, \$2 contains the result 9m					
	(1) 12 51 1	\$3 provides temperary strage					
	5U 53 f1 2 1 all \$2 \$2 \$3						
	ell \$3 \$1 3						
	2 all \$2 \$2 \$5						
	3 ALD 43 \$1 4 2 ALD 42 \$3						
	zM 23 21 2						
	= ndd \$2 \$2 \$3 = sd \$3 \$1 6						
	5 all \$2 \$2 \$3 cl \$3 \$1 7	shifts and 8 alds					
	6 add 92 52 53 This	takes $9n + S(2n) = 25n$,					
	7 cyld \$2 \$2 \$5 501 \$3 \$1 9 6 cyld \$2 \$2 \$3	5 times slaver than 'mult' instruction	6				
	Using Booth's algorithm, replace	e the 8 alds by 1 subtrant, since					
	$m \times 1022 = m(10;4-2) = 1024m - 2m$						
	multiply by 1024 is shift left by 10 bits, so						
	5H \$2 \$1 2 5H \$3 \$1 10 5N \$2 \$3 \$2	This takes 4n cycles, 5 times faster than the mult instruction	8				

Department of Computing Examinations – 2015 -	Confidential			
MODEL ANSWERS and MARKING SCHEME				
First Examiner: David Thomas	Second Examiner:	Wayne Luk		
Paper: C210=E2.13 - Computer Architecture	Question: 2	Page 1 of 3		

- 2a i) Considering L1 vs L3 cache levels, describe two properties of caches and how you would expect them to vary between L1 and L3.
 - * The capacity of the L1 cache will be smaller than the L3.
 - * The hit time of the L1 cache will be lower than the L3.
 - * The associativity of the L1 cache will be lower than the L3.

Marks:

2

ii) Give a fragment of code that demonstrates both temporal locality and spatial locality. You can use any language as long as semantics are clear.

```
uint32_t *pX = ...;
uint32_t acc=0;
for(int i=0;i<100;i++){
    // Loops over sequential words (spatial)
    // Visits each word 10 times (temporal)
    acc=acc+pX[i%10];
}
Marks:</pre>
3
```

iii) Assume a 2-way set associative cache with w bytes per word, b words per block, and a total cache size of c bytes. Given a byte-address, give statements for calculating the set_index. Use intermediate variables that show your working.

```
word_address = byte_address / w;
block_address = word_address / b;
num_sets = c / (w*b*2);
set_index = block_address % num_sets;

Marks:
```

b A CPU designer has suggested that the MIPS ISA is extended with an integer multiply-accumulate instruction, with the following syntax and semantics:

```
mul_add a, b, c // a = a + b * c where a, b, and c are all registers.
```

i) How many data operand registers does a MIPS R-type instruction support?

```
Three (1 destination; 2 source).

Marks:
```

Department of Computing Examinations – 2015	Confidential			
MODEL ANSWERS and MARKING SCHEME				
First Examiner: David Thomas	Second Examiner:	Wayne Luk		
Paper: C210=E2.13 - Computer Architecture	Question: 2	Page 2 of 3		

ii) How would the register-file of a 5-stage pipelined MIPS need to be modified in order to support this instruction?

At the moment the register-file only supports the reading of two operands per cycle. This instruction needs to read three operands, so another read port would need to be added.

Marks:

2

iii) Give a sequence of standard MIPS instructions that is equivalent to muladd. You may use the register \$t as a temporary register.

```
mulu $b, $c
nop // Needed according to MIPS ISA
mflo $t
add $a, $a, $t

Marks:
```

iv) Assume that both the standard MIPS and extended MIPS execute one instruction per cycle, and caches are warm. Provide a quantitative estimate for the speedup that mul_add could provide for the following function.

State any assumptions, with a brief explanation of why they are reasonable.

```
uint32_t dot_product(uint32_t n, uint32_t *a, uint32_t *b)
{
  uint32_t acc=0;
  for(uint32_t i=0; i<n; i++) {
    acc = acc + a[i] * b[i];
  }
  return acc;
}</pre>
```

The inner loop of the function must contain:

- * Two loads
- * A multiply accumulate
- * Two loop increments
- * A branch.

My assumptions (others could be acceptable, e.g. loop pipelining) are:

Department of Computing Examinations – 2015 -	Confidential			
MODEL ANSWERS and MARKING SCHEME				
First Examiner: David Thomas	Second Examiner:	Wayne Luk		
Paper: C210=E2.13 - Computer Architecture	Question: 2	Page 3 of 3		

- * The compiler can avoid load-use stalls, for example by loop skewing.
- * No loop pipelining is used, as the compiler is optimising for code size.
- * One instruction can be placed in the delay slot, as there are a couple of increments.
- * For the standard MIPS, I assume one instruction can be placed in the NOP.

This results in standard MIPS = 2+3+2+1=8, and extended MIPS = 2+1+2+1=6. So asymptotically an estimate of speed-up is 8/6 = 4/3 = 1.25x.

Marks:

7

The two parts carry, respectively, 45%, and 55% of the marks.