Домашнее задание №1 «Математические модели геометрических объектов»

к.ф.-м.н., доц. каф. ФН-11, Захаров Андрей Алексеевич, ауд.: 930a(УЛК)

> моб.: 8-910-461-70-04, email: azaharov@bmstu.ru

> > 25 марта 2024 г.

1 Описание.

Во всех заданиях обязательно использование библиотеки WebGL для вывода графики. Результатом работы программ должен являться вывод заданного количества точек сплайна. Теория и формулы для построения сплайнов содержатся в лекциях.

По результатам выполнения домашнего задания необходимо написать отчёт и выслать его преподавателю. Отчёт обязательно должен содержать:

- 1. Формулировку задания.
- 2. Основные формулы, которые использовались для выполнения задания.
- 3. Рисунки с результатами работы программы и кратким комментарием, что на них изображено.
- 4. Часть кода программы, в которой выполняются основные построения.

2 Задания

Амелин: Напишите программу построения естественного кубического сплайна кривой. Используйте краевые условия пятого типа и программу л.р. № 1.

	(x, y, z)	(x, y, z)	(x, y, z)	(x, y, z)
(1.7, 0.0, 0.45)	(1.7, 0.66, 0.45)	(1.7, 0.66, 1.275)	(1.7, 0.0, 1.275)
(3	3.1, 0.0, 0.675)	(3.1, 0.66, 0.675)	(2.6, 0.66, 1.275)	(2.6, 0.0, 1.275)
(2	(2.4, 0.0, 1.875)	(2.4, 0.25, 1.875)	(2.3, 0.25, 1.95)	(2.3, 0.0, 1.95)
(3.3, 0.0, 2.25)	(3.3, 0.25, 2.25)	(2.7, 0.25, 2.25)	(2.7, 0.0, 2.25)

Таблица 1: Данные для профиля носика чайника (верхняя часть)

(x, y, z)	(x, y, z)	(x, y, z)	(x, y, z)
(3.3, 0.0, 2.25)	(3.3, 0.25, 2.25)	(2.7, 0.25, 2.25)	(2.7, 0.0, 2.25)
(3.525, 0.0, 2.34375)	(3.525, 0.25, 2.34375)	(2.8, 0.25, 2.325)	(2.8, 0.0, 2.325)
(3.45, 0.0, 2.3625)	(3.45, 0.1, 2.3625)	(2.9, 0.1, 2.325)	(2.9, 0.0, 2.325)
(3.2, 0.0, 2.25)	(3.2, 0.15, 2.25)	(2.8, 0.15, 2.25)	(2.8, 0.0, 2.25)

Таблица 2: Данные для профиля носика чайника (нижняя часть)

Бочкова: Напишите программу, рисующую поверхность носика чайника (рис. 1). Носик состоит из четырёх кубических лоскутов Безье. Поверхность носика симметрична относительно плоскости xz. Весь верхний y-положительный лоскут содержит 16 контрольных точек, координаты которых приведены в табл. 1. Нижний y-положительный лоскут также содержит 16 контрольных точек, координаты которых приведены в табл. 2. Используйте шаблон программы л.р. № 2 (Примечание: координаты контрольных точек задаются в функции generateControlPoints).

Рис. 1: Носик чайника: а) носик в разрезе; б) визуализированная поверхность

Рис. 2: Квадрат, образуемый пятью взвешенными контрольными точками для построения окружности

Рис. 3: NURBS-полуокружность, построенная на базе 4 контрольных точек, расположенных на границе описанного квадрата

Быков: Напишите программу построения единичной окружности с центром в начале координат с помощью NURBS-кривой на базе пяти контрольных точек (рис. 2). Однородные координаты точек равны: $\mathbf{p}_0 = (0,1,1), \ \mathbf{p}_1 = (1,0,0), \ \mathbf{p}_2 = (0,-1,1), \ \mathbf{p}_3 = (-1,0,0), \ \mathbf{p}_4 = (0,1,1).$ Вектор узлов имеет вид: $\{0,0,0,1,1,2,2,2\}$. Используйте программу unitCircle.zip.

Вахрамеева: Напишите программу построения полуокружности с помощью NURBS-кривой на базе четырёх контрольных точек, лежащих на границе описанного квадрата (рис. 3). Веса контрольных точек равны $h_0 = h_3 = 1, h_1 = h_2 = \frac{1}{2}$. Узловой вектор имеет вид: $\left\{0,0,0,\frac{1}{2},1,1,1\right\}$. Используйте программу circle.zip.

Рис. 4: Окружность, рассматриваемая как совокупность трёх или четырёх дуг

Долотова: На рис 4а приведена окружность, вписанная в равносторонний треугольник. Одну треть этой окружности можно нарисовать с помощью рационального сплайна Безье на базе точек \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 и весов: $h_0 = h_2 = 1$, $h_1 = \frac{1}{2}$. Тогда окружность целиком может быть нарисована как совокупность трёх дуг, причём каждая из них базируется на трёх точках. Для заданного положения центра окружности и её радиуса рассчитайте координаты контрольных точек и нарисуйте эту окружность с помощью рациональных сплайнов Безье. Используйте программу circle.zip.

(x, y, z)	(x, y, z)	(x, y, z)	(x, y, z)
(-1.6, 0.0, 1.875)	(-1.6, 0.3, 1.875)	(-1.5, 0.3, 2.1)	(-1.5, 0.0, 2.1)
(-2.3, 0.0, 1.875)	(-2.3, 0.3, 1.875)	(-2.5, 0.3, 2.1)	(-2.5, 0.0, 2.1)
(-2.7, 0.0, 1.875)	(-2.7, 0.3, 1.875)	(-3.0, 0.3, 2.1)	(-3.0, 0.0, 2.1)
(-2.7, 0.0, 1.65)	(-2.7, 0.3, 1.65)	(-3.0, 0.3, 1.65)	(-3.0, 0.0, 1.65)

Таблица 3: Данные для профиля ручки чайника (верхняя часть)

(x, y, z)	(x, y, z)	(x, y, z)	(x, y, z)
(-2.7, 0.0, 1.65)	(-2.7, 0.3, 1.65)	(-3.0, 0.3, 1.65)	(-3.0, 0.0, 1.65)
(-2.7, 0.0, 1.425)	(-2.7, 0.3, 1.425)	(-3.0, 0.3, 1.2)	(-3.0, 0.0, 1.2)
(-2.5, 0.0, 0.975)	(-2.5, 0.3, 0.975)	(-2.65, 0.3, 0.7875)	(-2.65, 0.0, 0.7875)
(-2.0, 0.0, 0.75)	(-2.0, 0.3, 0.75)	(-1.9, 0.3, 0.45)	(-1.9, 0.0, 0.45)

Таблица 4: Данные для профиля ручки чайника (нижняя часть)

Киселев: Напишите программу, рисующую поверхность ручки чайника (рис. 5). Ручка состоит из четырёх лоскутов Безье. Поверхность ручки симметрична относительно плоскости xz. Верхний и нижний лоскуты находятся на y-положительной стороне относительно плоскости xz, а зеркальные отражения верхнего и нижнего лоскутов расположены на y-отрицательной стороне. Весь верхний y-положительный лоскут содержит 16 контрольных точек, координаты которых приведены в табл. 3. Нижний y-положительный лоскут также содержит 16 контрольных точек, координаты которых приведены в табл. 4. Используйте шаблон программы л.р. № 2 (Примечание: координаты контрольных точек задаются в функции generateControlPoints).

Рис. 5: Ручка чайника: а) сечение ручки и её контрольного полиэдра; б) визуализированная поверхность

Рис. 6: Корпус чайника: а) профиль корпуса; б) визуализированная поверхность

k	x	z
0	1.4	2.25
1	1.3375	2.38125
2	1.4375	2.38125
3	1.5	2.25
4	1.75	1.725
5	2	1.2
6	2	0.75
7	2	0.3
8	1.5	0.075
9	1.5	0

Таблица 5: Данные для профиля корпуса чайника

Климачева: Напишите программу, рисующую поверхность корпуса чайника (рис. 6). Корпус является поверхностью вращения, профиль которого состоит из трёх кривых Безье в плоскости xz на базе 10 контрольных точек, представленных в табл. 5. Первая кривая Безье определяется контрольными точками 0, 1, 2, 3; вторая — точками 3, 4, 5, 6, а третья — точками 6, 7, 8, 9. Для построения поверхности вращения этого профиля вокруг оси z можно использовать рациональные поверхности Безье. В табл. 6 приводятся однородные координаты контрольных точек для построения половины поверхности вращения (y-положительная). Вторую половину постройте аналогичным образом, отразив контрольные точки относительно плоскости xz. Используйте шаблон программы л.р. № 2 (Примечание: координаты контрольных точек задаются в функции generateControlPoints).

k	(x, y, z, h)	(x, y, z, h)	(x,y,z,h)
0	(1.4, 0, 2.25, 1)	(0, 1.4, 0, 0)	(-1.4, 0, 2.25, 1)
1	(1.3375, 0, 2.38125, 1)	(0, 1.3375, 0, 0)	(-1.3375, 0, 2.38125, 1)
2	(1.4375, 0, 2.38125, 1)	(0, 1.4375, 0, 0)	(-1.4375, 0, 2.38125, 1)
3	(1.5, 0, 2.25, 1)	(0, 1.5, 0, 0)	(-1.5, 0, 2.25, 1)
4	(1.75, 0, 1.725, 1)	(0, 1.75, 0, 0)	(-1.75, 0, 1.725, 1)
5	(2,0,1.2,1)	(0, 2, 0, 0)	(-2,0,1.2,1)
6	(2,0,0.75,1)	(0,2,0,0)	(-2, 0, 0.75, 1)
7	(2,0,0.3,1)	(0, 2, 0, 0)	(-2,0,0.3,1)
8	(1.5, 0, 0.075, 1)	(0, 1.5, 0, 0)	(-1.5, 0, 0.075, 1)
9	(1.5, 0, 0, 1)	(0, 1.5, 0, 0)	(-1.5, 0, 0, 1)

Таблица 6: Данные для построения поверхности вращения (у-положительная половина)

Клячко: Напишите программу построения естественного бикубического сплайна по контрольным точкам, лежащим на цилиндрической поверхности заданного радиуса. Используйте краевые условия третьего типа по угловой координате и первого типа по параметрической координате вдоль оси цилиндра (для их задания используйте разностные аппроксимации). Используйте программу л.р. № 2 (Примечание: в функции generateControlPoints, в которой генерируются координаты контрольных точек, используйте параметрические уравнения для цилиндрической поверхности заданного радиуса).

Кортенко: Напишите программу построения естественного бикубического сплайна по контрольным точкам, лежащим на цилиндрической поверхности заданного радиуса. Используйте краевые условия третьего типа по угловой координате и пятого типа по параметрической координате вдоль оси цилиндра. Используйте программу л.р. № 2 (Примечание: в функции generateControlPoints, в которой генерируются координаты контрольных точек, используйте параметрические уравнения для цилиндрической поверхности заданного радиуса).

Куприн: Реализовать построение линий тока для заданного двухмерного векторного поля на четырехугольной, треугольной и гибридной сетке.

Рис. 7: Четверть поверхности цилиндра, построенная с помощью рациональной поверхности Безье

Писаревский: Напишите программу, которая строит четверть поверхности цилиндра с помощью рациональной поверхности Безье (рис. 7). Рациональная поверхность Безье строится на базе точек, имеющих однородные координаты $\mathbf{p}_{00} = (1,1,0,1), \ \mathbf{p}_{10} = (1,1,1,1), \ \mathbf{p}_{20} = (2,0,2,2), \ \mathbf{p}_{01} = (-1,1,0,1), \ \mathbf{p}_{11} = (-1,1,1,1), \ \mathbf{p}_{21} = (-2,0,2,2).$ Воспользуйтесь программой л.р. № 2 (Примечание: координаты контрольных точек задаются в функции generateControlPoints).

Рис. 8: Окружность, построенная с помощью рациональной кривой Безье

Полетаева: Напишите программу для построения единичной окружности с помощью рациональной кривой Безье с центром в начале координат (рис. 8) на базе точек $\mathbf{p}_0 = (0, -1)$, $\mathbf{p}_1 = (4, -1)$, $\mathbf{p}_2 = (2, 3)$, $\mathbf{p}_3 = (-2, 3)$, $\mathbf{p}_4 = (-4, -1)$, $\mathbf{p}_5 = (0, -1)$ и весов: $h_0 = h_5 = 5$, $h_1 = h_2 = h_3 = h_4 = 1$. Используйте программу unitCircle.zip.

(x, y, z, h)	(x, y, z, h)	(x, y, z, h)
(-2, -1, 0, 1)	(0,0,2,0)	(2,-1,0,1)
(-3,0,0,1)	(0,0,3,0)	(3,0,0,1)
$\left(-\frac{3}{2},\frac{1}{2},0,1\right)$	$(0,0,\frac{3}{2},0)$	$(\frac{3}{2},\frac{1}{2},0,1)$
$(-2, \bar{1}, 0, 1)$	$(0,0,\bar{2},0)$	(2,1,0,1).

Таблица 7: Данные для построения поверхности вращения (передняя половина)

Рис. 9: Поверхность вращения: а) образующий профиль и (x,y,z)-координаты его контрольных точек; б) передняя половина поверхности

Рожков: Напишите программу для построения поверхности вращения, профиль которой определяется кривой Безье в плоскости xy на базе 4-х точек (см. рис. 9), а сама поверхность формируется вращением профиля вокруг оси y. Половину этой поверхности, точки которой имеют положительные координаты z, можно построить с помощью рациональной поверхности Безье по контрольным точкам, однородные координаты которых приведены в табл. 7. Вторую половину постройте аналогичным способом, отразив контрольные точки относительно плоскости xy. Используйте шаблон программы л.р. № 2 (Примечание: координаты контрольных точек задаются в функции generateControlPoints).

Рис. 10: Окружность, рассматриваемая как совокупность двух дуг

Чернышкова: На рис. 10 показана окружность, вписанная в квадрат. Окружность имеет радиус равный 1 и центр в начале координат. Половину этой окружности можно нарисовать с помощью рациональной кривой Безье на базе точек, имеющих однородные координаты $\mathbf{p}_0 = (0,1,1), \ \mathbf{p}_1 = (1,0,0), \ \mathbf{p}_2 = (0,-1,1).$ Тогда эта окружность целиком может быть нарисована как совокупность двух дуг, причём каждая из них базируется на трёх точках. Найдите координаты точек для построения второй дуги и нарисуйте окружность с помощью рациональных сплайнов Безье. Используйте программу unitCircle.zip.

k	x	z
0	0	3
1	0.8	3
2	0	2.7
3	0.2	2.55
4	0.4	2.4
5	1.3	2.4
6	1.3	2.25

Таблица 8: Данные для профиля крышки чайника

Рис. 11: Крышка чайника: а) кривая профиля крышки; б) визуализированная крышка

Янович: Напишите программу, рисующую поверхность крышки чайника. Крышка — это поверхность вращения, которая описывается двумя кубическими кривыми Безье (рис. 11) в плоскости xz, данные для их построения приведены в табл. 8. Используйте шаблон программы л.р. № 2 (Примечание: координаты контрольных точек задаются в функции generateControlPoints).