Khôlles: Semaine 20

- 12 - 16 Février 2024 -

Sommaire

1	Que	estions de cours - Groupes A, B, C	1
	1.1	Définitions de sous-groupe, sous-anneau, sous-algèbre	1
	1.2	Une intersection de sous-groupes est un sous-groupe. (démo)	2
	1.3	Produit cartésien de deux groupes. C'est un groupe. (démo)	2
	1.4	Définitions de morphisme de groupe, morphisme d'anneau, d'algèbre	3
	1.5	L'image directe et l'image réciproques de sous-groupes par un morphisme de groupe sont des sous-groupes.	
		(démo)	3
	1.6	Les sous-groupes de $(\mathbb{Z},+)$. (démo)	4
	1.7	Sous-groupe engendré par une partie, sous-groupe engendré par un élément	4
	1.8	Caractérisation de l'injectivité d'un morphisme de groupes par le noyau. (démo)	5
	1.9	Définition d'un idéal et lien avec les noyaux des morphismes d'anneau.	5
2 Questions de cours, groupes B et C		estions de cours, groupes B et C	6
		L'ordre d'un élément, dans un groupe fini, divise le cardinal du groupe. (démo dans le cas abélien)	
	2.2	La somme de deux idéaux est un idéal. (démo)	7
	2.3	Dans $(\mathbb{Z},+)$, lien entre PGCD et somme d'idéaux. (démo)	7
	2.4	Eléments inversibles de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$. (démo)	
	2.5	Générateurs de ($\mathbb{Z}/n\mathbb{Z}$,+). (démo)	8
	2.6	Théorème des restes chinois. (démo)	9
	2.7	Définition de l'indicatrice d'Euler, propriétés et calcul. (démo)	10
	2.8	Théorème d'Euler. (démo)	11
		Définition du pgcd dans $\mathbb{R}[X]$	
	2.10	Théorèmes de Gauß et de Bézout dans $\mathbb{R}[X]$. (démo)	12
3	Que	estions de Cours du groupe C uniquement	13
	3.1	Un groupe monogène infini est isomorphe à $(\mathbb{Z},+)$. (démo)	13
		Un groupe cyclique de cardinal n est isomorphe à $(\mathbb{Z}/n\mathbb{Z},+)$. (démo)	14
	3.3	L'ordre d'un élément, dans un groupe fini, divise le cardinal du groupe. (démo dans le cas général, non faite	
		an classal	1.4

1 Questions de cours - Groupes A, B, C

1.1 Définitions de sous-groupe, sous-anneau, sous-algèbre

Définition: Sous-groupe

Soit (G, \star) , un groupe et $H \subset G$.

On dit que H est un sous-groupe de G si:

- H est non vide
- H est stable par \star : $\forall x, y \in H$, $x \star y \in H$
- H est stable par passage au symétrique : $\forall x \in H, \ x^{-1} \in H$

Note:-

Les deux dernières conditions sont équivalentes à vérifier : $\forall x, y \in H, x \star y^{-1} \in H$

Définition: Sous-Anneau

Soit $(A, +, \times)$, un anneau et $B \subset A$.

On dit que B est un sous-anneau de A si :

- (B,+) est un sous-groupe de (A,+)
- B est stable par \times
- $\mathbb{1}_A \in B$ (l'élément neutre pour la loi \times)

Définition: Sous-Algèbre

Soit $(A, +, \times, \cdot)$, une \mathbb{K} -Algèbre et $B \subset A$.

On dit que B est une sous-Algèbre de A si :

- B est un Sous-Espace vectoriel de A
- B est un sous-anneau de A

Note:-

La deuxième condition peut être remplacée par :

- B est stable pour la loi ×
- 1_A ∈ B

MPI* - 228

1.2 Une intersection de sous-groupes est un sous-groupe. (démo)

Preuve:

Soit (G, \star) , un groupe, avec F, H, deux sous-groupes de G. Montrons que $F \cap H$ est un sous-groupe de G:

- $F \cap H$ est non vide, car contient e (F et H étant des sous-groupes, ils héritent naturellement du neutre de la loi \star).
- Soient $x, y \in F \cap H$. Alors $x, y \in F$ et $x, y \in H$. Or, F et H sont des sous-groupes, donc $x \star y \in F$ et $x \star y \in H$, d'où $x \star y \in F \cap H$
- Soit $x \in F \cap H$. Alors $x^{-1} \in F \cap H$, car $x \in F \Rightarrow x^{-1} \in F$, ainsi que $x \in H \Rightarrow x^{-1} \in H$ Dès lors, $F \cap H$ est un sous-groupe de G.

1.3 Produit cartésien de deux groupes. C'est un groupe. (démo)

Définition: Produit (direct) de Groupes

Soient (G, \star) , (H, \cdot) , deux groupes.

Nous munissons naturellement $G \times H$ d'une structure de groupe en posant ullet, loi de composition interne composante par composante. i.e :

$$\forall ((x_1,y_1),(x_2,y_2)) \in (G \times H)^2, (x_1,y_1) \bullet (x_2,y_2) = (x_1 \star x_2,y_1 \cdot y_2)$$

Preuve :

- Notons que $G \times H$ est non vide, car G et H étant des groupes, $(e_G, e_H) \in G \times H$
- Soient $(x_1, y_1), (x_2, y_2) \in (G \times H)^2$. alors $x_1 \star x_2 \in G$ et $y_1 \cdot y_2 \in H$, car G et H sont des groupes. Donc $(x_1 \star x_2, y_1 \cdot y_2) = (x_1, y_1) \bullet (x_2, y_2) \in G \times H$
- Idem, soit $(x,y) \in G \times H$. Alors $x^{-1} \in G$ et $y^{-1} \in H$, car G et H sont deux groupes. Donc $(x^{-1},y^{-1}) = (x,y)^{-1} \in G \times H$

(il est immédiat que
$$(x,y)^{-1}=(x^{-1},y^{-1})$$
, car avec $(x,y)^{-1}=(u,v)$, $(x,y)\bullet(x,y)^{-1}=e_{G\times H}\Rightarrow (x\star u,y\cdot v)=(e_G,e_H)\Rightarrow u=x^{-1}$ et $v=y^{-1}$)

 $(G \times H, \bullet)$ est bien un groupe.

1.4 Définitions de morphisme de groupe, morphisme d'anneau, d'algèbre.

Définition: Morphisme de groupe, d'anneau, d'algèbre

Soient (G,\star) et (H,\cdot) deux groupes. Soit $\phi:G\to H$, une application.

On dit que $\boldsymbol{\phi}$ est un morphisme de groupe si :

$$\forall a, b \in G, \ \phi(a \star b) = \phi(a) \cdot \phi(b)$$

Soient $(A, +, \times)$ et $(B, \overline{+}, \overline{\times})$, deux anneaux.

On dit de même que $\phi:A\to B$ est un morphisme d'anneau si :

- $\bullet \ \, \phi \ \, \text{est un morphisme de groupe}$
- $\forall a, b \in A$, $\varphi(a \times b) = \varphi(a) \overline{\times} \varphi(b)$
- $\varphi(\mathbb{1}_A) = \mathbb{1}_B$

Enfin, soient $(A, +, \times, \cdot)$ et $(B, \overline{+}, \overline{\times}, \overline{\cdot})$, deux \mathbb{K} -Algèbres, et $\varphi : A \to B$ une application.

On dit que $\phi: A \to B$ est un morphisme d'algèbre si :

- ϕ est un morphisme d'anneau
- φ est linéaire

1.5 L'image directe et l'image réciproques de sous-groupes par un morphisme de groupe sont des sous-groupes. (démo)

Preuve :

Soient (G,\star) , (H,\cdot) , deux groupes, ainsi que $G_1\subset G$, $H_1\subset H$, deux sous-groupes. Soit $\phi:G\to H$, morphisme de groupe.

 $G_1 \neq \emptyset$ par définition d'un sous-groupe : $\varphi(G_1) \neq \emptyset$ car $e_G \in G_1$.

 $\forall y_1,y_2 \in \phi(G_1), \ \exists x_1,x_2 \in G, \ \phi(x_1) = y_1 \text{ et } \phi(x_2) = y_2. \text{ Ainsi, } y_1 \cdot y_2^{-1} = \phi(x_1 \star x_2^{-1}) \text{ et } x_1 \star x_2^{-1} \in G_1 \text{ car } G_1 \text{ est un sous-groupe. Ainsi, } \phi(x_1 \star x_2^{-1}) \in \phi(G_1). \text{ Dès lors, } \phi(G_1) \text{ est un sous-groupe de } H.$

Pour H_1 : $\phi(e_G) = e_H$ et $e_H \in H_1$, ainsi, $\phi^{-1}(H_1) \neq \emptyset$, car contient e_G .

 $\forall x_1, x_2 \in \phi^{-1}(H_1), \ \ \phi(x_1) \in H_1 \ \text{et} \ \phi(x_2) \in H_1. \ \text{Or, } H_1 \ \text{est un sous-groupe, donc} \ \phi(x_1) \cdot \phi(x_2)^{-1} \in H_1 \Rightarrow \phi(x_1 \star x_2^{-1}) \in H_1 \Rightarrow x_1 \star x_2^{-1} \in \phi^{-1}(H_1).$

1.6 Les sous-groupes de $(\mathbb{Z},+)$. (démo)

Proposition Les sous-groupes de $(\mathbb{Z},+)$

Montrons que $H = n\mathbb{Z}$:

Les sous-groupes de $(\mathbb{Z},+)$ sont exactement les $n\mathbb{Z}$, pour $n\in\mathbb{Z}$

Preuve:

Soit $n \in \mathbb{Z}$, $0 = 0 \times n \in n\mathbb{Z}$: $n\mathbb{Z}$ est non-vide. Soient x et $y \in n\mathbb{Z}$, il existe $(k,p) \in \mathbb{Z}^2$ tq x = kn et y = np. D'où $x + y = n(k+p) \in n\mathbb{Z}$. Et, $-x = n(-k) \in n\mathbb{Z}$.

 $n\mathbb{Z}$ est stable par somme et par opposé. $n\mathbb{Z}$ est alors un sous-groupe de \mathbb{Z}

Soit H, un sous-groupe de \mathbb{Z} . Si $H = \{0\}$, $H = 0\mathbb{Z}$. Sinon, il existe $x \in H$, $x \neq 0$. Alors, H contient un élément strictement positif : Si x > 0, x convient. Sinon, -x convient ($-x \in H$ car H est un sous-groupe de \mathbb{Z} donc est stable par opposé). Notons $n = \min(\mathbb{N}^* \cap H)$ (Partie non-vide de \mathbb{N} donc admet un plus petit élément).

 $0 \in H$ car c'est un sous-groupe de \mathbb{Z} , $n \in H$ par hypothèse.

 $2n = n + n \in H$ car H est stable par somme. $3n = 2n + n \in H$...

Par récurrence immédiate, $np \in H$ pour tout $p \in \mathbb{N}$. Or, si p < 0, $np = -n(-p) \in H$ car H est stable par opposé. Finalement, $n\mathbb{Z} \subset H$.

Réciproquement, soit $x \in H$, $x \neq 0$. D'après le principe de division euclidienne : il existe $p \in \mathbb{Z}$ et $r \in [0; n-1]$, tels que x = np + r. Or, $x \in H$, $np \in H$, et H est un sous-groupe de \mathbb{Z} donc est stable par somme (et par inverse) : $x - np = r \in H$. Or, si $r \neq 0$, $0 \le r < n$ et $n = \min(\mathbb{N}^* \cap H)$. Ce qui est absurde. Donc $x \in n\mathbb{Z}$, $H \subset n\mathbb{Z}$:

$$H = n\mathbb{Z}$$

1.7 Sous-groupe engendré par une partie, sous-groupe engendré par un élément.

Définition

Soit (G, \star) , un groupe. Soit $A \subset G$.

On appelle Sous-groupe engendré par A le groupe : $Gr(A) = \bigcap_{\substack{\text{H sous-groupe} \\ A \subset H}} \text{H.}$

Cet ensemble:

- Existe
- Est un groupe
- Est le plus petit sous-groupe de G (pour l'inclusion) contenant A.

Preuve

- G est un sous-groupe de G : L'intersection existe
- $\operatorname{Gr}(A)$ est une intersection de sous-groupes : c'est un sous-groupe.
- $\forall H_0 \subset G$, sous-groupe tel que $A \subset H_0$, alors $Gr(A) \subset H_0$ par définition.

:

1.8 Caractérisation de l'injectivité d'un morphisme de groupes par le noyau. (démo)

Proposition

Soient (G,\star) et (H,\cdot) , deux groupes et $\phi:G\to H$, morphisme de groupe.

$$\varphi$$
 est injective \iff Ker $(\varphi) = \{e_G\}$

Preuve:

Supposons que ϕ est injective. Alors, par définition d'un morphisme de groupe : $\phi(e_G) = e_H$. Or, ϕ est injective, et e_G convient : e_G est donc le seul élément envoyé sur e_H : $Ker(\phi) = \{e_G\}$

Réciproquement, supposons que $\text{Ker}(\phi) = \{e_G\}$. Alors, soient $x_1, x_2 \in G$, tels que $\phi(x_1) = \phi(x_2)$. Dès lors :

$$\varphi(x_1) \cdot \varphi(x_2)^{-1} = e_H$$

 $\varphi(x_1 \star x_2^{-1}) = e_H$

Or, $Ker(\phi) = \{e_G\}$, $donc \ x_1 \star x_2^{-1} = e_G \Rightarrow x_1 = x_2 : \phi \ est \ alors \ injective.$

1.9 Définition d'un idéal et lien avec les noyaux des morphismes d'anneau.

Définition: Idéal

Soit $(A, +, \times)$, un anneau <u>Commutatif</u> et $I \subset A$.

On dit que I est un idéal de A si:

- I est un sous-groupe de (A, +)
- I est absorbant pour \times : $\forall x \in A, \forall a \in I, a \times x \in I$

Proposition Lien avec les noyaux des morphismes d'anneaux

Soient $(A, +, \times)$ et $(B, \overline{+}, \overline{\times})$, deux anneaux et $\varphi : A \to B$, un morphisme d'anneau.

Alors, $Ker(\phi)$ est un idéal.

Preuve :

Soit $I = Ker(\phi)$. Alors, (I, +) est un sous-groupe de A:

- $0_A \in Ker(\phi) = I$ par définition d'un morphisme d'anneau
- $\forall a, b \in I$, $\varphi(a-b) = \varphi(a) \overline{-} \varphi(b) = 0_B$

Soit $x \in I$, $a \in A$. Alors, $\varphi(x \times a) = \varphi(x) \overline{\times} \varphi(a) = 0_B \overline{\times} \varphi(a)$.

Or, le neutre est absorbant pour le produit : $\varphi(\alpha \times x) = 0_B$ donc $\alpha \times x \in I \Rightarrow I$ est un idéal.

2 Questions de cours, groupes B et C

2.1 L'ordre d'un élément, dans un groupe fini, divise le cardinal du groupe. (démo dans le cas abélien)

Proposition

Soit (G, \star) , groupe fini.

Alors, tout élément de G est d'ordre fini. De plus, $\forall \alpha \in G$, $O(\alpha) \mid |G|$

Preuve Cas de G abélien:

Lemme

 $\phi_\alpha: \begin{cases} G \to G \\ g \mapsto \alpha \star g \end{cases} \text{ est bijective. (n'est pas un morphisme de groupe dans le cas général)}.$

On peut aisément trouver ϕ^{-1} , ou bien : $\forall g_1, g_2 \in G$, $\phi(g_1) = \phi(g_2) \Rightarrow \alpha \star g_1 = \alpha \star g_2 \Rightarrow g_1 = g_2$. Or, G est fini, donc injective \iff bijective.

Posons n = |G|, ainsi que $G = \{g_1, ..., g_n\}$.

Considérons $x=g_1\star\cdots\star g_n$. Alors, $x=\phi(g_1)\star\cdots\star\phi(g_n)$ car ϕ est bijective et G est abélien.

Alors, $x = a * g_1 * a * g_2 * \cdots * a * g_n = a^n * g_1 * \cdots * g_n = a^n x$.

Dès lors, $a^n = e_G \Rightarrow O(a) | n = |G|$

2.2 La somme de deux idéaux est un idéal. (démo)

Proposition

Soit $(A, +, \times)$, anneau commutatif. Soient I_1, I_2 , deux idéaux de A.

On note $I_1 + I_2 = \{a + b \mid a \in I_1, b \in I_2\} = \{y \in A, \mid \exists (a, b) \in I_1 \times I_2, y = a + b\}.$

Alors, $I_1 + I_2$ est un idéal de A

Preuve:

 $I_1 + I_2 \neq \emptyset$ car $0 \in I_1$ et I_2 , donc $0 \in I_1 + I_2$.

 $\forall a, b \in I_1 + I_2, \ \exists \alpha, \beta, \gamma, \delta \in I_1^2 \times I_2^2, \ a = \alpha + \gamma \text{ et } b = \beta + \delta.$

Alors, $a + b = (\alpha + \beta) + (\gamma + \delta) \in I_1 + I_2 \text{ car } \alpha, \beta \in I_1 \text{ et } \gamma, \delta \in I_2$.

 $\forall x \in I_1 + I_2, \ \forall z \in A, \ \exists (a,b) \in I_1 \times I_2, \ x = a + b.$

Dès lors, xz = (a+b)z = az + bz. Or, I_1 et I_2 sont deux idéaux : $az \in I_1$ et $bz \in I_2 \Rightarrow xz \in I_1 + I_2 \Rightarrow I_1 + I_2$ est un idéal de $(A, +, \times)$

2.3 Dans $(\mathbb{Z},+)$, lien entre PGCD et somme d'idéaux. (démo)

Note:-

Les idéaux de $(\mathbb{Z}, +, \times)$ sont exactement les $n\mathbb{Z}$ avec $n \in \mathbb{Z}$.

Définition

Soient $a, b \in \mathbb{Z}^*$, alors, $\exists! n \in \mathbb{N}^*$, $a\mathbb{Z} + b\mathbb{Z} = n\mathbb{Z}$

On appelle ce $\mathfrak n$ le PGCD de $\mathfrak a$ et $\mathfrak b$, on note $\mathfrak n=\mathfrak a \wedge \mathfrak b$

Proposition

Cette notion de PGCD coïncide avec le PGCD déjà défini sur $\mathbb Z$

Preuve:

Notons n_1 le nouveau PGCD, et n_2 l'ancien PGCD.

D'après le théorème de Bézout : $\exists u, v \in \mathbb{Z}$, $au + bv = n_2$.

Or, $au + bv \in a\mathbb{Z} + b\mathbb{Z} \Rightarrow n_2 \in n_1\mathbb{Z} \Rightarrow n_1 \mid n_2$.

Par définition, $n_2 \mid a$ et $n_2 \mid b \Rightarrow \exists c, d \in \mathbb{Z}, a = n_2 c, b = n_2 d$.

 $n_1 \in n_1 \mathbb{Z} \Rightarrow n_1 \in a \mathbb{Z} + b \mathbb{Z} \Rightarrow \exists u, v \in \mathbb{Z}, \ n_1 = au + bv = n_2(cu + dv) \Rightarrow n_2 \mid n_1 \Rightarrow n_2 = n_1$

2.4 Eléments inversibles de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$. (démo)

Proposition

Soit $n \in \mathbb{N}^*$, soit $k \in \mathbb{Z}$. Alors :

$$\overline{k}$$
 est inversible dans $(\mathbb{Z}/n\mathbb{Z},+,\times) \iff k \wedge n = 1$
 $\iff \overline{k}$ est un générateur de $(\mathbb{Z}/n\mathbb{Z},+)$

Preuve :

 \overline{k} est inversible donne l'existence de $p \in \mathbb{Z}$, tel que $\overline{k} \times \overline{p} = \overline{1} \Rightarrow \overline{kp} = \overline{1}$

Ainsi,
$$kp-1 \in n\mathbb{Z}$$
, donc $\exists q \in \mathbb{Z}$, $kp-1 = nq \Rightarrow kp-nq = 1$.
Par le théorème de Bézout : $k \land n = 1$

Réciproquement : Si
$$k \wedge n = 1$$
, par le théorème de Bézout : $\exists u, v \in \mathbb{Z}, \ \overline{ku + nv} = \overline{1} \Rightarrow \overline{ku} + \overline{0} = \overline{1}$ $\Rightarrow \exists u \in \mathbb{Z}, \ \overline{k} \times \overline{u} = \overline{1}$.

Ainsi, \overline{k} est inversible.

2.5 Générateurs de $(\mathbb{Z}/n\mathbb{Z},+)$. (démo)

Proposition

Soit $n \in \mathbb{N}^*$:

- $(\mathbb{Z}/n\mathbb{Z}, +)$ est cyclique
- Soit $k \in \mathbb{Z}$. Alors \overline{k} est générateur de $(\mathbb{Z}/n\mathbb{Z},+)$ si et seulement si $k \wedge n = 1$

Preuve:

- $(\mathbb{Z}/n\mathbb{Z},+)$ est fini, de cardinal n. Or, $Gr(\{\overline{1}\})=\{\overline{0},\overline{1},\overline{1+1},\ldots,\overline{n-1}\}=\mathbb{Z}/n\mathbb{Z}$
- Par le théorème de Bézout : Supposons \overline{k} générateur de $\mathbb{Z}/n\mathbb{Z}$. Alors, $Gr(\overline{k}) = \mathbb{Z}/n\mathbb{Z}$. En particulier : $\exists p \in \mathbb{Z}, \ \overline{kp} = \overline{1} \Rightarrow \overline{kp-1} \in n\mathbb{Z}$.

Dès lors,
$$\exists q \in \mathbb{Z}, \ kp-1=nq \Rightarrow \ kp-nq=1 \Rightarrow \ k \wedge n=1$$
 par théorème de Bézout.

Réciproquement, par théorème de Bézout :
$$\exists p,q \in \mathbb{Z}, \ kp+nq=1 \Rightarrow \overline{pk}+\overline{qn}=\overline{1}$$

Donc,
$$\overline{uk} + \overline{0} = 1$$
, donc \overline{k} engendre $\overline{1}$, donc $\mathbb{Z}/n\mathbb{Z}$: $Gr(\overline{k}) = \mathbb{Z}/n\mathbb{Z}$

2.6 Théorème des restes chinois. (démo)

Théorème des Restes chinois

Soient $n, m \in \mathbb{Z}^*$ tels que $n \wedge m = 1$

Alors, $(\mathbb{Z}/(n \times m)\mathbb{Z}, +, \times)$ est naturellement isomorphe à $(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}, +, \times)$

Théorème des Restes chinois (V.2)

Soient n, m, a, b $\in \mathbb{Z}$ tels que n \land m = 1

Alors,
$$\exists ! c \in [0, mn-1], \begin{cases} x \equiv a[m] \\ x \equiv b[n] \end{cases} \iff x \equiv c[nm]$$

Preuve:

Si $k \in \mathbb{Z}$, on note \overline{k} sa classe dans $\mathbb{Z}/nm\mathbb{Z}$, on note également \overline{k} sa classe dans $\mathbb{Z}/m\mathbb{Z}$ et \overline{k} sa classe dans $\mathbb{Z}/n\mathbb{Z}$

$$\text{Consid\'erons } \phi: \begin{cases} \mathbb{Z}/mn\mathbb{Z} \to (\mathbb{Z}/n\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z}) \\ \overline{k} \mapsto (\overline{\overline{k}}, \overline{\overline{k}}) \end{cases}$$

1. ϕ est correctement définie :

$$\forall k_1, k_2 \in \mathbb{Z} \text{ tels que } \overline{k_1} = \overline{k_2} : \exists p \in \mathbb{Z}, \ k_1 - k_2 = nmp, \text{Alors } \overline{\overline{k_1 - k_2}} = \overline{\overline{pmn}} = \overline{\overline{0}} \text{ car } \overline{\overline{m}} = 0$$

Par le même raisonnement avec $\overline{\overline{\overline{k_1-k_2}}}$, on trouve $\phi(k_1)=\phi(k_2)$

2. φ est un morphisme d'anneau :

$$\forall \overline{k_1}, \overline{k_2} \in \mathbb{Z}/n\mathbb{Z} : \phi(\overline{k_1} + \overline{k_2}) = \phi(\overline{k_1 + k_2}) = (\overline{\overline{k_1 + k_2}}, \overline{\overline{k_1 + k_2}}) = (\overline{\overline{k_1}} + \overline{\overline{k_2}}, \overline{\overline{k_1}} + \overline{\overline{k_2}}) = \phi(\overline{k_1}) + \phi(\overline{k_2})$$

$$De \ plus: \phi(\overline{k_1} \times \overline{k_2}) = \phi(\overline{k_1 \times k_2}) = (\overline{\overline{k_1 \times k_2}}, \overline{\overline{\overline{k_1 \times k_2}}}) = (\overline{\overline{k_1}} \times \overline{\overline{k_2}}, \overline{\overline{\overline{k_1}}} \times \overline{\overline{\overline{k_2}}}) = \phi(\overline{k_1}) \times \phi(\overline{k_2})$$

Finalement, $(\overline{\overline{1}}, \overline{\overline{\overline{1}}})$ est le neutre pour \times dans $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.

3. Utilisons le fait que ϕ soit un morphisme de groupes :

$$\begin{split} \forall \overline{k} \in \text{Ker}(\phi) : \phi(\overline{k}) = (\overline{\overline{0}}, \overline{\overline{\overline{0}}}) \Rightarrow \overline{\overline{k}} = \overline{\overline{0}} \text{ et } \overline{\overline{k}} = \overline{\overline{\overline{0}}}. \\ \Rightarrow k \in m\mathbb{Z}, \ k \in n\mathbb{Z} \\ \Rightarrow mn \mid k \text{ car } m \land n = 1 \text{ d'après le théorème de Gauß} \\ \Rightarrow \overline{k} = \overline{0} \Rightarrow \text{Ker}(\phi) = \{\overline{0}\} \\ \Rightarrow \phi \text{ est Injective} \end{split}$$

4. $Card(\mathbb{Z}/mn\mathbb{Z}) = mn$ et $Card(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}) = mn \Rightarrow \phi$ est bijective car injective entre deux ensembles de même cardinal.

2.7 Définition de l'indicatrice d'Euler, propriétés et calcul. (démo)

Définition: Indicatrice d'Euler

Soit $n \in \mathbb{N}^*$. On note :

$$\begin{split} \phi(n) &= \text{Card}\{k \in [\![1,n]\!] \mid k \wedge n = 1\} \\ &= \text{Card}\left(\mathbb{Z}/n\mathbb{Z}\right)^* \quad (n \geqslant 2) \\ &= \text{Nombres de générateurs de }(\mathbb{Z}/n\mathbb{Z}, +) \end{split}$$

Proposition

- 1. Soient $m, n \in \mathbb{N}^*$, si m et n sont Copremiers, alors $\varphi(nm) = \varphi(n) \times \varphi(m)$
- 2. $\forall p \in \mathbb{P}, \ \forall k \in \mathbb{N}^*, \ \phi(p^k) = (p-1)p^{k-1}$

Preuve :

1. D'après le théorème des restes chinois : $\mathbb{Z}/nm\mathbb{Z} \sim \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$. Donc, $(\mathbb{Z}/nm\mathbb{Z})^*$ est naturellement isomorphe à $(\mathbb{Z}/n\mathbb{Z})^* \times (\mathbb{Z}/m\mathbb{Z})^*$.

Lemme permettant d'affirmer l'isomorphisme précédent

Soit $\varphi: A \to B$ un isomorphisme. Alors $a \in A$ est inversible si et seulement si $\varphi(a) = b$ est inversible.

Soit $(a,b) \in A \times B$, (a,b) inversible dans $A \times B \iff a$ et b inversibles.

Dès lors,
$$\varphi(mn) = |(\mathbb{Z}/mn\mathbb{Z})^*| = |(\mathbb{Z}/n\mathbb{Z})^*| \times |(\mathbb{Z}/m\mathbb{Z})^*| = \varphi(m) \times \varphi(n)$$

 $2. \ \, \text{Soit} \, p \in \mathbb{R}, \ \, k \in \mathbb{N}^*. \, \, \text{Posons} \, A = \{ n \in [\![1, p^k]\!] \, \mid \, n \wedge p^k \neq 1 \} = \{ n \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^{k-1}]\!] \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, q \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \mid n \} = \{ pq \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \, p \in [\![1, p^k]\!] \, \mid \,$

 $\text{D\`es lors, Card}(A) = p^{k-1}. \text{ Posons \'egalement } B = \{ \mathfrak{n} \in \llbracket 1, \mathfrak{p}^k \rrbracket \ | \ \mathfrak{n} \wedge \mathfrak{p}^k = 1 \}. \text{ Donc } B = \llbracket 1, \mathfrak{p}^k \rrbracket \setminus A.$

Ainsi,
$$\varphi(p^k) = Card(B) = p^k - Card(A) = p^{k-1}(p-1)$$

Proposition

Soit $n \in \mathbb{N}^*$

$$\phi(n) = n \times \prod_{p \in Div_p(n)} \left(1 - \frac{1}{p}\right) \quad \text{où } Div_p(n) \text{ sont les diviseurs premiers de } n$$

Preuve :

D'après la propriété précédente :

$$\begin{split} \phi(n) &= \phi(p_1^{\alpha_1} \times p_2^{\alpha_2} \times \dots \times p_k^{\alpha_k}) \\ &= \prod_{i=1}^k (p_i - 1) p_i^{\alpha_i - 1} \\ &= n \times \frac{(p_1 - 1) \times \dots \times (p_k - 1)}{p_1 \times \dots \times p_k} \\ &= n \times \prod_{i=1}^k \left(1 - \frac{1}{p_i}\right) \end{split}$$

2.8 Théorème d'Euler. (démo)

Théorème d'Euler

Soit $n \in \mathbb{N}$, $(n \geqslant 2)$, $a \in \mathbb{Z}$.

Si a est premier avec n, alors $a^{\phi(n)} \equiv 1[n]$.

De plus, si n est premier, $\phi(n)=n-1$, donc $a \wedge n=1 \Rightarrow a^{n-1} \equiv 1[n]$ (pour a quelconque : $a^n \equiv a[n]$)

Preuve:

 $a \wedge n = 1 \Rightarrow \overline{a} \in (\mathbb{Z}/n\mathbb{Z})^*$. Or, $(\mathbb{Z}/n\mathbb{Z})^*$ est un groupe pour \times , de cardinal $\phi(n)$ (cardinal fini).

 $\text{Donc, } \overline{\alpha} \text{ est d'ordre fini et } O(\overline{\alpha}) \mid \phi(\mathfrak{n}) \Rightarrow \, \alpha^{\phi(\mathfrak{n})} = \overline{1} \left(= \overline{\alpha}^{O(\overline{\alpha})^k} \right) \Rightarrow \, \alpha^{\phi(\mathfrak{n})} \equiv 1 [\mathfrak{n}]$

 $MPI^* - 228$

2.9 Définition du pgcd dans $\mathbb{R}[X]$.

Définition

Soient P, $Q \in \mathbb{K}[X]$, avec P et $Q \neq \emptyset$

- 1. Alors, $P\mathbb{K}[X]$ et $Q\mathbb{K}[X]$ sont des idéaux, donc $P\mathbb{K}[X] + Q\mathbb{K}[X]$ est un idéal. Alors, $\exists ! R \in \mathbb{K}[X]$, tel que R soit unitaire et $P\mathbb{K}[X] + Q\mathbb{K}[X] = R\mathbb{K}[X]$. On pose alors par définition R = PGCD(P,Q)
- 2. Cette notion de PGCD Coïncide avec celle de première année.

Preuve :

P ∈ PK[X] + QK[X] = RK[X]
$$\Rightarrow$$
 R | P. Idem, R | Q Ainsi, R | (P \land Q)

Notons
$$T = P \land Q$$
. $P\mathbb{K}[X] + Q\mathbb{K}[X] = R\mathbb{K}[X] \Rightarrow R \in P\mathbb{K}[X] + Q\mathbb{K}[X]$.
Ainsi, $\exists U, V \in \mathbb{K}[X]$ tels que $R = PU + QV$. Or, $T \mid P$ et $T \mid Q$, donc $T \mid R = PU + QV$.

Ainsi, $R \mid T$ et $T \mid R$, donc R = T car sont tous deux unitaires.

2.10 Théorèmes de Gauß et de Bézout dans $\mathbb{R}[X]$. (démo)

Théorème de Bézout

Soient P, $Q \in \mathbb{K}[X]$.

- 1. $P \wedge Q = 1 \iff \exists U, V \in \mathbb{K}[X], PU + QV = 1$
- 2. On note $R = P \land Q$. Alors, $\exists U, V \in \mathbb{K}[X]$, PU + QV = R

Preuve:

1.
$$P \wedge Q = 1 \Rightarrow P \mathbb{K}[X] + Q \mathbb{K}[X] = \mathbb{K}[X]$$
. Or, $1 \in \mathbb{K}[X] \Rightarrow \exists U, V \in \mathbb{K}[X]$, $PU + QV = 1$

Réciproquement, s'il existe $U, V \in \mathbb{K}[X]$ tels que PU + QV = 1, alors $1 \in P\mathbb{K}[X] + Q\mathbb{K}[X]$ qui est un idéal, donc $P\mathbb{K}[X] + Q\mathbb{K}[X] = \mathbb{K}[X] \Rightarrow P \wedge Q = 1$

2. On note $R = P \land Q$. Alors $P \mathbb{K}[X] + Q \mathbb{K}[X] = R \mathbb{K}[X] \Rightarrow \exists U, V \in \mathbb{K}[X], \ PU + QV = R$

Théorème de Gauß

Soient A, B, $C \in \mathbb{K}[X]$. Si $A \mid BC$ et $A \land B = 1$, alors $A \mid C$

Preuve:

D'après le théorème de Bézout, $\exists U, V \in \mathbb{K}[X]$, AU + BV = 1.

Ainsi,
$$AUC + BVC = C$$
. Or, $A \mid BC \Rightarrow \exists P \in \mathbb{K}[X], AP = BC$. Ainsi, $AUC + APV = C \Rightarrow A(UC + PV) = C$, donc $A \mid C$

3 Questions de Cours du groupe C uniquement

3.1 Un groupe monogène infini est isomorphe à $(\mathbb{Z},+)$. (démo)

Preuve :

Soit (G,\star) , groupe monogène infini engendré par $a\in G.$

Nous avons alors $\forall k_1, k_2 \in \mathbb{Z}$, $a^{k_1} = a^{k_2} \iff k_1 = k_2$, car si $k_1 \neq k_2$ et $a^{k_1} = a^{k_2}$,

alors $a^{k_1-k_2}=e_G\Rightarrow a$ d'ordre fini $\Rightarrow G$ fini : Absurde.

Il suffit de poser le morphisme $\phi: \begin{cases} \mathbb{Z} \to G \\ k \mapsto \alpha^k \end{cases}$.

On vérifie facilement:

- $\forall k_1, k_2 \in \mathbb{Z}$, $\phi(k_1 + k_2) = a^{k_1 + k_2} = a^{k_1} \star a^{k_2} = \phi(k_1) \star \phi(k_2)$
- φ est injective : Déjà fait
- ϕ est surjective, car a est générateur de G.

Alors (G, \star) et $(\mathbb{Z}, +)$ sont isomorphes.

3.2 Un groupe cyclique de cardinal n est isomorphe à $(\mathbb{Z}/n\mathbb{Z},+)$. (démo)

Preuve:

 (G,\star) est cyclique : Il est donc monogène (tel que $G=Gr(\{\alpha\})$ pour $\alpha\in G)$

Il existe de plus $n \in \mathbb{Z}$ tel que $a^n = e_G$ (tel que O(a) = n). Alors, $G = \{e, a, a^2, \dots, a^{n-1}\}$.

Posons
$$\phi$$
:
$$\begin{cases} (\mathbb{Z}/n\mathbb{Z}, +) \to (G, \star) \\ \overline{k} \mapsto \alpha^k \end{cases}$$

Montrons que ϕ est correctement définie (les points suivants sont identiques à la démonstration précédente): Soient $k_1, k_2 \in \mathbb{Z}$, tels que $\overline{k_1} = \overline{k_2}$.

Alors,
$$k_1 - k_2 \in n\mathbb{Z} \Rightarrow \exists q \in \mathbb{Z}, \ k_1 - k_2 = nq$$
, donc $a^{k_1} = a^{k_2 + nq} = a^{k_2} \star a^{nq} = a^{k_2} \Rightarrow \varphi$ est correctement définie.

3.3 L'ordre d'un élément, dans un groupe fini, divise le cardinal du groupe. (démo dans le cas général, non faite en classe)

Preuve Démo personnelle, signalez les erreurs s'il y en a! :

Soit $H \subset G$ un sous-groupe. Pour $x, y \in G$, on définit la relation \mathcal{R} , telle que $x\mathcal{R}y$ si $x^{-1}y \in H$.

Montrons que \mathcal{R} est une relation d'équivalence :

- Réflexivité : $\forall x \in G$, $x^{-1}x = e_G \in H$ par définition d'un sous-groupe
- Symétrie: $\forall x, y \in G$ tels que $x \mathcal{R} y$, alors $x^{-1} y \in H$. Or, $(x^{-1} y)^{-1} \in H$ car H est un sous-groupe. Alors, $y^{-1} x \in H \Rightarrow y \mathcal{R} x$.
- Transitivité: $\forall x, y, z \in G$, tels que $x \mathcal{R} y$ et $y \mathcal{R} z$: Alors $xy^{-1} \in H$ et $yz^{-1} \in H$. Alors, puisque H est un sous-groupe, ce dernier est stable par composition: $xy^{-1}yz^{-1} = xz^{-1} \in H$. Ainsi, $x\mathcal{R} z$

 \mathcal{R} est alors une relation d'équivalence.

Montrons que toute les classes d'équivalence de $\mathcal R$ ont le même cardinal.

Soient C_1, C_2 , deux classes (qu'on suppose distinctes) de \mathscr{R} . Alors, $\exists \alpha \in C_1$ et $b \in C_2$, tels que $x \not\in C_2$ et $y \not\in C_1$.

Posons
$$\varphi_{(a,b)}$$
:
$$\begin{cases} C_1 \to C_2 \\ x \mapsto xa^{-1}b \end{cases}$$

Montrons que $\phi_{(\mathfrak{a},\mathfrak{b})}$ est bien définie : Soit $x \in C_1$. Alors, $\phi(x) = x\mathfrak{a}^{-1}\mathfrak{b}$, et cet élément est en relation avec \mathfrak{b} : $x\mathfrak{a}^{-1}\mathfrak{b}\mathfrak{b}^{-1} = x\mathfrak{a}^{-1} \in H$ car x est dans la classe de \mathfrak{a} .

De plus, $\phi_{(\mathfrak{a},b)}$ est une bijection, nous pouvons expliciter sa réciproque $\phi_{(\mathfrak{a},b)}^{-1}$: $\begin{cases} C_2 \to C_1 \\ y \mapsto yb^{-1}a \end{cases}.$

Soient $x \in C_1$ et $y \in C_2$.

Alors,
$$\varphi_{(a,b)}^{-1}(\varphi_{(a,b)}(x)) = xa^{-1}bb^{-1}a = x$$

et
$$\varphi_{(a,b)}(\varphi_{(a,b)}^{-1}(y)) = yb^{-1}aa^{-1}b = y$$

Ainsi, ces deux classes d'équivalences possèdent le même cardinal par l'existence d'une bijection entre ces deux ensembles. (car G est fini, tout sous groupe l'est également). Donc toutes les classes d'équivalences de $\mathcal R$ sont de même cardinal fini.

En particulier, nous avons pour la classe de l'élément neutre : $x \in \overline{e} \iff ex^{-1} \in H \iff x^{-1} \in H \iff x \in H$ car H est un sous-groupe.

Ainsi, $\overline{e} = H$, donc Card(\overline{e}) = |H|: toute classe d'équivalence de \mathcal{R} est de cardinal |H|.

Par définition des classes d'équivalences, ces dernières forment une partition de G, ainsi, puisque G est fini, il existe un nombre fini de classes d'équivalences (On note P cette partition). Or, ces classes sont toutes de cardinal H:

$$|G| = \sum_{p \in P} |p| = \sum_{p \in P} |H| = |H| \times |P|$$

Ainsi, |H| | |G|. Il ne reste qu'à appliquer avec $H = Gr(\{a\})$.

