ALGEBRA LINEARE E GEOMETRIA

4º appello — 6 febbraio 2024

Esercizio 1. In \mathbb{R}^4 sia U_{α} il sottospazio generato da $u_1=(2,-1,0,1),\ u_2=(-1,1,1,-2),\ u_3=(\alpha,-1,2,-1),\ \mathrm{con}\ \alpha\in\mathbb{R}.$

- (a) Determinare la dimensione di U_{α} al variare di α .
- (b) Per il valore di α per cui dim $U_{\alpha} = 2$ trovare una base ortogonale di U_{α} .
- (c) Si ponga ora $\alpha = 0$ per tutto il resto dell'esercizio. Trovare una base di U_0^{\perp} .
- (d) Nel sottospazio W di equazione $2x_1+x_2-x_3-x_4=0$ si trovi un vettore w tale che la sua proiezione ortogonale sul sottospazio U_0 sia u=(1,0,1,-1).

Soluzione. (a) Il vettore u_3 è combinazione lineare di u_1 e u_2 se e solo se $\alpha=4$. Pertanto, per $\alpha=4$ si ha dim $U_{\alpha}=2$ e per $\alpha\neq 4$ si ha dim $U_{\alpha}=3$.

- (b) Poniamo ora $\alpha = 4$. Una base di U_{α} è $\{u_1, u_2\}$. Poniamo $u'_1 = u_1$ e $u'_2 = u_2 + \lambda u_1$. Imponendo che $u'_1 \cdot u'_2 = 0$ si trova $\lambda = 5/6$, quindi $u'_2 = u_2 + \frac{5}{6}u_1$. I vettori u'_1 e u'_2 sono una base ortogonale di U_{α} .
- (c) Poniamo ora $\alpha = 0$. Una base di U_0 è $\{u_1, u_2, u_3\}$. Richiedendo che un vettore (x_1, x_2, x_3, x_4) sia ortogonale ai vettori u_1, u_2, u_3 si ottiene il sistema

$$\begin{cases} 2x_1 - x_2 + x_4 = 0 \\ -x_1 + x_2 + x_3 - 2x_4 = 0 \\ -x_2 + 2x_3 - x_4 = 0 \end{cases}$$

da cui si ricava

$$\begin{cases} x_1 = 0 \\ x_2 = x_4 \\ x_3 = x_4 \end{cases}$$

quindi una base di U_0^{\perp} è data dal vettore $u^{\perp} = (0, 1, 1, 1)$.

(d) Il vettore w deve essere del tipo $w = u + \lambda u^{\perp} = (1, \lambda, 1 + \lambda, -1 + \lambda)$, per qualche $\lambda \in \mathbb{R}$. Richiedendo che w soddisfi l'equazione $2x_1 + x_2 - x_3 - x_4 = 0$ del sottospazio W si ottiene $\lambda = 2$, per cui il vettore cercato è $w = u + 2u^{\perp} = (1, 2, 3, 1)$.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare data da

$$f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 - 2x_3 - x_4 \\ 3x_1 + x_2 - x_3 - 2x_4 \\ -3x_1 + x_2 + tx_3 + x_4 \end{pmatrix}$$

ove $t \in \mathbb{R}$ è un parametro.

- (a) Scrivere la matrice A di f rispetto alle basi canoniche del dominio e codominio e determinare il rango di A al variare di $t \in \mathbb{R}$.
- (b) Ora si ponga t = 0 fino alla fine dell'esercizio. Trovare basi di Ker f e di Im f.
- (c) Determinare l'antiimmagine del vettore (0, 3, -2).
- (d) Consideriamo i vettori $v_1 = (1, 0, 0, 1)$, $v_2 = (0, -1, 0, 1)$, $v_3 = (-1, 0, 1, 0)$, $v_4 = (0, 1, 1, 1)$. Scrivere la matrice B di f rispetto alla base $\{v_1, v_2, v_3, v_4\}$ del dominio e alla base canonica del codominio. Determinare una matrice P tale che B = AP.

Soluzione. (a) La matrice di f è

$$A = \begin{pmatrix} 1 & 1 & -2 & -1 \\ 3 & 1 & -1 & -2 \\ -3 & 1 & t & 1 \end{pmatrix}$$

Riducendo la matrice A in forma a scala si ottiene

$$\begin{pmatrix} 1 & 1 & -2 & -1 \\ 0 & -2 & 5 & 1 \\ 0 & 0 & t+4 & 0 \end{pmatrix}$$

da cui si deduce che il rango è 2 se e solo se t = -4, altrimenti il rango è 3.

(b) Ponendo t = 0 la matrice in forma a scala diventa

$$\begin{pmatrix} 1 & 1 & -2 & -1 \\ 0 & -2 & 5 & 1 \\ 0 & 0 & 4 & 0 \end{pmatrix}$$

Usiamo questa matrice per trovare i vettori del nucleo di f. Si ottiene il sistema di equazioni

$$\begin{cases} x_1 + x_2 - 2x_3 - x_4 = 0 \\ -2x_2 + 5x_3 + x_4 = 0 \\ 4x_3 = 0 \end{cases}$$

da cui si ricava

$$\begin{cases} x_1 = x_2 \\ x_4 = 2x_2 \\ x_3 = 0 \end{cases}$$

Pertanto il nucleo di f ha dimensione 1 e una base è data dal vettore u = (1, 1, 0, 2). Per quanto riguarda l'immagine di f, questa ha dimensione 3, quindi si ha $\text{Im}(f) = \mathbb{R}^3$ e quindi come base di Im(f) possiamo prendere la base canonica di \mathbb{R}^3 .

(c) Per trovare l'antiimmagine del vettore (0,3,-2) bisogna risolvere il sistema $f(x_1,x_2,x_3,x_4)=(0,3,-2)$. Riducendo la matrice completa in forma a scala e risolvendo il sistema corrispondente si trova

$$\begin{cases} x_1 = \lambda \\ x_2 = \lambda \\ x_3 = 1 \\ x_4 = 2\lambda - 2 \end{cases}$$

quindi l'insieme delle soluzioni può essere anche scritto nella forma

$$(0,0,1,-2) + \lambda (1,1,0,2).$$

(d) Si ha $f(v_1)=(0,1,-2), f(v_2)=(-2,-3,0), f(v_3)=(-3,-4,3), f(v_4)=(-2,-2,2).$ Quindi la matrice B è

$$B = \begin{pmatrix} 0 & -2 & -3 & -2 \\ 1 & -3 & -4 & -2 \\ -2 & 0 & 3 & 2 \end{pmatrix}$$

La matrice di cambiamento di base P è la matrice le cui colonne sono le coordinate dei vettori v_1, v_2, v_3, v_4 :

$$P = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

Esercizio 3. Consideriamo la matrice $A_t = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 4 & 0 \\ t & 0 & 3 \end{pmatrix}$ ove $t \in \mathbb{R}$ è un parametro.

- (a) Determinare il polinomio caratteristico e gli autovalori di A_t .
- (b) Determinare per quali valori di $t \in \mathbb{R}$ la matrice A_t ha autovalori con molteplicità > 1.

- (c) Per ciascuno dei valori di t trovati al punto (b) dire se la matrice A_t è diagonalizzabile.
- (d) Si dica se esistono dei valori di t per i quali esiste una base **ortonormale** di \mathbb{R}^3 formata da autovettori di A_t (la risposta deve essere adeguatamente giustificata).

Soluzione. (a) Il polinomio caratteristico è

$$(4-x)(x^2-4x+3+2t)$$

per cui gli autovalori sono 4, $2 + \sqrt{1-2t}$, $2 - \sqrt{1-2t}$.

(b) Se t=1/2 gli autovalori sono 2, 2, 4. L'unico altro caso si ha quando

$$2 + \sqrt{1 - 2t} = 4$$

da cui si ricava t = -3/2. In questo caso gli autovalori sono 4, 4, 0.

(c) Per t = 1/2 l'autovalore $\lambda = 2$ ha molteplicità 2, ma si verifica che l'autospazio corrispondente ha dimensione 1. Questo significa che per t = 1/2 la matrice non è diagonalizzabile.

Per t=-3/2 l'autovalore $\lambda=4$ ha molteplicità 2 e si verifica che l'autospazio corrispondente ha dimensione 2. Questo significa che per t=-3/2 la matrice è diagonalizzabile.

(d) Dalla teoria sappiamo che esiste una base **ortonormale** di \mathbb{R}^3 formata da autovettori di A_t se e solo se la matrice A_t è simmetrica e questo è il caso se e solo se t = -2.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati il punto P=(1,-1,-1) e la retta r di equazioni

$$r: \begin{cases} 2x - y - 4 = 0 \\ 2x + z - 3 = 0 \end{cases}$$

- (a) Scrivere l'equazione cartesiana del piano π che contiene la retta r e passa per P.
- (b) Scrivere le equazioni parametriche della retta s passante per P, contenuta nel piano π e perpendicolare alla retta r.
- (c) Sulla retta r trovare il punto H di minima distanza dal punto A=(5,-3,2).
- (d) Consideriamo i piani σ che hanno equazione del tipo $2x + \alpha y + 3z + \beta = 0$, con $\alpha, \beta \in \mathbb{R}$. Trovare i valori di α e β tali che il piano σ contenga la retta r.

Soluzione. (a) L'equazione del fascio di piani di asse r è

$$\lambda(2x - y - 4) + \mu(2x + z - 3) = 0$$

Imponendo il passaggio per il punto P si trova $\lambda = -2\mu$, per cui possiamo prendere $\lambda = 2$ e $\mu = -1$. Da ciò si deduce che l'equazione del piano π è la seguente:

$$\pi : 2x - 2y - z - 5 = 0.$$

(b) Due punti della retta r sono $R_1=(2,0,-1)$ e $R_2=(3,2,-3)$, quindi un vettore della retta r è $v_r=R_2-R_1=(1,2,-2)$. Il vettore perpendicolare al piano π è n=(2,-2,-1). Un vettore direttore della retta s è quindi dato da $v_s=v_r\times n=(-6,-3,-6)$. Questo vettore è multiplo di (2,1,2), quindi possiamo anche prendere $v_s=(2,1,2)$. Possiamo ora scrivere le equazioni parametriche della retta s:

$$s: \begin{cases} x = 1 + 2t \\ y = -1 + t \\ z = -1 + 2t \end{cases}$$

(c) Un punto generico X della retta r è dato da $X = R_1 + t v_r$, quindi le sue coordinate sono

$$\begin{cases} x = 2 + t \\ y = 0 + 2t \\ z = -1 - 2t \end{cases}$$

Consideriamo il vettore

$$\vec{AX} = X - A = (t - 3, 2t + 3, -2t - 3)$$

- e imponiamo la condizione $\vec{AX} \cdot v_r = 0$. Si ottiene l'equazione 9t + 9 = 0, da cui si ricava t = -1. Sostituendo questo valore nelle coordinate di X si ottengono le coordinate del punto H = (1, -2, 1).
- (d) Richiedere che il piano σ contenga la retta r equivale a richiedere che σ passi per i punti R_1 e R_2 . La condizione di passaggio per R_1 fornisce l'equazione $1+\beta=0$. La condizione di passaggio per R_2 fornisce l'equazione $-3+2\alpha+\beta=0$. Risolvendo queste due equazioni si trova $\alpha=2$ e $\beta=-1$.