1) general (asl.

G camplex Semishiple Connected Lie group, 2 B Bowel.

3 = Lie G, W = Weyl gp.

Recall ref is regular if dim 2g(x) = 14y

Semishiple (resp. nilpotent) if adn: g-2g is.

Semishiple (resp. nilpotent).

Brubat decomposition G = UBwB.

flag variety B: = GB = {Borel subgets / Subalgs}

B \(\) Gr (dimt), \(\frac{4}{3} \).

Closed subvariety formed by all solvable Lie subalgs

Borel fixed point than => Plicater embedding

 $B \longrightarrow P(V_{\lambda}), \quad \lambda \quad non-degenerate, dominant.$ b - the unique (ine in V2 fixed by b. Leung:

W -> B/G/B -> [B-orbits on B] -> [G-diagonal orbits on BxB] W HD BWB. RgB 1-> B-orbit of g.B B-orbit of b 1-> G. (b., b)

b = LieB.

These maps are bijections.

Pf: follows immediately from the Bruhat decomposition Chevally restricted thin! he of any Cartan Subolay restriction map gives an isomorphism

CTJ] G ~ CTL)W. Grothandreck's simultaneous resolution 9:28(x,b) E gx B | x E b] ~ G x b Prop 3.2.5. pis induced by CThJW = CTDJG -> CTJ]

 $N((x,b)) := \times \text{mod } Cb, b) \in \frac{b}{Cb, b)} \simeq h.$

Thu: 1). The diagrams cannote.

2) $\forall x \in h$, $\mu : \nu^{+}(x) \rightarrow \varrho^{+}(x)$ is a resolution of Singmarities.

3) $\forall x \in g^{rs}$, \exists canonial free W-action on $\mu^{-}(x)$.

Making the projection $g^{rs} \rightarrow g^{rs}$ a principle W-bundle.

4) \exists finitely many G-atots on \mathcal{N} .

5) $\widetilde{\mathcal{N}} \simeq T^* \mathcal{B} \subset G_{Z}^{R} \mathcal{D}$, and $\widetilde{\mathcal{N}} \to \mathcal{N}$ is a resolution of singularities.

(Springer resolution)

2). Moment maps M a Co-manifold in the 1R-case, or Smooth alg. variety In the C-case. A symplectic Structure on M is a non-degenerate regular 2-form w such that dw = 0.

 $\underline{\mathsf{Ex}}: \mathsf{M} = \mathsf{C}^{2\mathsf{N}} \quad (\mathsf{Q}_1, -, \mathsf{Q}_n, \mathsf{P}_1, -, \mathsf{P}_n)$ m = jqpi V qd!

Ex. M= T*N, N Smooth.

Construct a one-form λ on M, and set $\omega = d\lambda$.

x6N, d∈TxN, r:T+N→N

Tx: Ta (T*N) -> TxN, JETa (T*N)

 $\lambda(\S) := \langle \lambda, \pi_* \S \rangle \in \mathbb{C}$

Ex. G C y* = the dual of y.

U = a coadjoint orbit S y*.

clain: U has a natural Symplectic Structure.

d E U, U = G/Ga, Ga = Stabilizer of d in G

TaU = g/ya.

wa: gx y > C, (x,y) +> d (Cx,y]).

Wa: gx y -> C, (x,y) H> x (Cx,y)).

check 1) Wa ([g, ga]) = 0.

 $\frac{1}{2} \frac{1}{2} \frac{1}$

2) d m, Wa gives a 2-form w, show dw = 0

(M, W) a symp manifold.

(O(M) -> Vector fields on (M

(O(M) -> St

 $\omega(\cdot, 3^{\xi}) = f$

define a bracket {.,.} on U(M) $\{f,g\}:=\omega(g_{f},g_{g})=-g_{g}(f)$ Prop: O(N) is a Lie alg w.r.t. 8-..3, and it Satisfies the Leibniz rule: {t, g.h} = {t, g}.h+ g. ft, h} (Poisson alg) Suppose a Lie Group GCM, Preserving W. ~ y - Symplectic vector fields on M. (g. Law=0) We say the action is Homiltonian if

JH/ S Symp vector

Define the moment map $\mu: M \to \mathcal{J}^*$ $M \in M$, $\chi \in \mathcal{J}$, $\mu(w)(\chi) = H_{\kappa}(m)$. $M = T^*N$, $G \in \mathcal{N}$. $\mathcal{J} \to Vector\ fields\ on\ \longrightarrow Vector\ fields$ N

Claim: Gaction on T*N is Hamiltonian,

with $H(N=\lambda | U_X) \in O(M)$, where $\lambda = \text{canoulied} 1 - \text{form on } M \text{ above}$.

G Lie group, PSG Subgr. GCGp. T*(Gp)~G×p(LieP) = GXpJ*

Prop: the moment wap is

$$M: T^*(\mathcal{G}) = Gx_p(\text{Liep})^{\perp} \rightarrow \mathcal{G}^*$$
 $(g, \alpha) \mapsto gxg^{-1}.$

Pf: $M(g, \alpha)(x) = H(x)(g, \alpha), x \in \mathcal{G}.$
 $H(x) = \lambda(\widetilde{U}_x).$
 $T: T^*(\mathcal{G}_p) \rightarrow \mathcal{G}_p$

$$T_{(ga)}(T^*\%) \ni \widetilde{\mathcal{U}}_{x} \qquad gdg^{-1} \in T_{g}^{*}(\%)$$

= < x, Wx , gag >

= < gdg', x >

JZ*

Tg(Gp)

Ux

H(x)(g,x)=)(ũx)(g,x)

Hence, the Springer resolution / Gnothendieck resolution maps are given by the moment maps.

(V, W) Symplectic Vector Space,

 $W \leq V$, $W^{\perp \omega} := \{ N \in V \mid \omega(N, W) = 0 \}$ $Def : W \cap S \text{ and}$

- 1) (sotropic if w|w=0. 2) isotropic if W u is isotropic
- 2) isotropic it W is isomore
 3) Lagrangian if W=WLW

Det A subvariety Z of a symplectic manifold (M, W)

is Called an isotropic (resp. coisotropic, Lagrangian)

Subvariety of M, if for any smooth point & EZ,

To Z is an isotropic (resp. coisotropic, Lagrangian) subspace

of ToM.

Def X a manifod, YEX submanifod. The comormal bundle TXX STXX is the set of all covectors over Y, which annihilate the subbundle TYETXLY.

Prop: TXXSTXX is Lagrangian, and it's stable under the dilatons along the fibers of TXX.

Pf: the canonical one-from 2 restricts to TXX is

o by definition. $\omega = d\lambda = \omega \left(\frac{\pi}{\sqrt{\chi}} \right) = 0$

dim 7/ X = dim X = 1 dim T*X

Prop (kashiwara)

1 ST*X a closed irreducible algebraic C*-stable

Lagrangian subvariety. $\pi: T^*X \to X$, $\gamma = \text{Smooth part of}$

Try). Then $N = \overline{T_1^*X}$ Pf: I natural dilaton C*-action on T*X. Eu: = the corresponding vector field. then in w= x = the canonical (- form. (locally, 91, --, 24 (ocal coordhotes on X, P1, -. Py the dual coordinates on the fiber, then W= Idpindqi, n= Ipidqi, Eu= Ipidpi.). 1 is CX-Stable => En is tangent to Med = regular (ocus of A. Shee A is Lagrangian, for any 3 tangent to her, 0= W(Ex, S)= X(S). $\exists \lambda \setminus \lambda = 0$ Fix d ∈ 1 reg, y= T(d). Then by the definition of 1. & Javishes on the image of the map

Tan Ty Y.

Furtherwore, Bertini-Sard Lewman implies that I a

Zariski open dense subset Λ generic $\subseteq \Lambda^{reg}$, such

=) d((y)()== V ~ ()

∋ Ngenavi'c ⊆ Ty X.

=) $\Lambda = \sqrt{generic} = T_1^*X$ as both of them are irreducible with the Same dim. D

Bertini: the Set of critical values (image of the

Bertini: the set of critical values critical points) of a Swooth

critical points) of a Swooth function f: M→N has Lebesgue measure o.