EE160 Lab Assignment-6

Lab section 1A

Open and Short Circuit Test of a Transformers

Objectives:

Perform Open and Short circuit test to find out the value of R_C , X_M , R_{Eq} , X_{Eq} and Estimate the value of resistance and reactance of the primary and secondary windings respectively, *i.e.*, R_P , X_P , R_S , X_S .

Parameters for Open Circuit Test:

Input voltage = (7.35e+05)*sqrt(2) V Frequency = 50Hz

Transformer Parameters:

Open Circuit:

Power Factor =
$$\cos \theta = P_{OC}/(V_{OC} \times I_{OC})$$

= 0.64432

Admittance
$$Y_E = (I_{OC} / V_{OC}) \angle - \theta$$
 mho
= 1.4465 × 10⁻⁶ mho
= (1/1079951.15) + j (1/903995.66) mho

 $R_C = 1079951.15$ ohm

 $X_M = 903995.66$

That means $L_M = 903995.66 / 2\pi f = 2877.05 H$

Verification:

- i) Magnetization Resistance (Rm) = 1.0804 x 106 Ohms (Theoretical) Rc = 1.07 x 106 Ohms (Practical)
- ii) Inductance (Lm) = 2866 H (Theoretical) Lm = 2882.87 H (Practical)

Parameters for Short Circuit Test:

Input voltage = (7.35e+05)*sqrt(2)*0.13365 V Frequency = 50Hz

(Transformer Parameters are the same as in the previous test.)

Short Circuit Test:

Power Factor =
$$\cos \theta = P_{SC}/(V_{SC} \times I_{SC})$$

= 0.03365
 $\theta = 88.0716^{\circ}$
Impedance $Z_E = (V_{SC} / I_{SC}) \angle \theta$ ohm
= 288.3857 ohm
= (9.7) + j (288.22) ohm
= R_{Eq} + j X_{Eq} ohm

$$R_{Eq}$$
= 9.7 ohm X_{Eq} = 288.22 ohm

Verification:

Req = Rp + a2 *Rs Req = 4.3218 + (2.3333)2 * 0.7938 Req = 8.6435 Ohms (Theoretical) Req = 7.86044 Ohms (Practical)

Xeq = Xp + a2 *Xs Xeq = $(0.45856 + (2.3333)^2 \times 0.084225) \times 2\pi f$ Xeq = 287.97104 Ohms (Theoretical) Xeq = 288.22617 Ohms (Practical)

Conclusions:

- 1. The practical as well as theoretical values of R_{C} and X_{M} are approximately equal. Hence, the values found practically are correct.
- 2. The practical as well as theoretical values of Req and Xeq are approximately equal. Hence, the values found practically are correct