UMD DATA605 - Big Data Systems

Course Intro
Big Data
Data Models

Spring 2024

Dr. GP Saggese gsaggese@umd.edu

TA: Shaunak Dhande sdhande@umd.edu

UMD DATA605 - Big Data Systems Course Intro

Big Data
Data Models

Learning Outcomes

- Model and reason about data
- Process and manipulate data in different ways
 - E.g., Python, Pandas
- Introduce a variety of data models
 - E.g., relational, NoSQL, graph
 - Decide which data model is appropriate for different applications
- Use a variety of data management systems
 - E.g., PostgreSQL, MongoDB, HBase
 - Decide which system is appropriate for a data management scenario
- Build data processing pipelines
 - E.g., Docker, Airflow
- Build a big-data system end-to-end
- Contribute to an open-source project
- Project: build a (little) system with Big Data technology

Tools We Will Learn To Use

Programming languages

Python

Development tools

- Bash/Linux OS
- Git (understand data model, branching)
- GitHub (PRs, work with issues)
- Jupyter notebooks
- Docker

Big data tools

- ETL pipelines
- Relational DBs (PostgreSQL)
- NoSQL DBs (HBase, MongoDB, Couchbase, Redis)
- Graph DBs (Neo4j, OrientDB, AllegroGraph, GraphX, Giraph)
- Computing framework (Hadoop, Spark, Dask, Storm, Spark Streaming)
- Workflow manager (Airflow)
- Cloud services (AWS)
- Tutorials for all the tools we use for the class project

Todos

- DATA605 ELMS/Canvas site
 - Make sure to enable notifications
 - How to get in touch with me/TA
- DATA605 Schedule
- Clone <u>DATA605 GitHub repo</u>
- Setup your computing environment
 - Install Linux/VMware
 - Install Docker on your laptop
 - Instructions are in the class repo
- Bring your laptop to class
 - Quizzes at the beginning of class
- Lessons are recorded
 - Still come to class!

© UMD DATA605 5/58

Why I Am Interested in Big Data

- https://www.linkedin.com/in/gpsaggese/
 - Feel free to connect on LinkedIn to stay in touch

- Companies I've started
 - ZeroSoft
 - June Capital
 - Kaizen Technologies
- Open-source project I've started
 - Sorrentum
 - GitHub

Soft Skills to Succeed in the Workplace

- Work in a team
- Design software architecture (e.g., OOP, Agile, Design Patterns)
- Comment your own code
- Write external documentation (e.g., tutorials, manuals, how-tos)
- Write code that other people can understand (including future-you)
- Read other people's code
- Follow code conventions (e.g., PEP8, Google Code)
- Be clear in communications (e.g., in emails, Slack)
- File a bug report
- Reproduce (aka repro) a bug
- Have a sense of CS constants
- Have a sense of how an OS works (e.g., virtual memory, processes)
- **Goal**: model the class project to prepare you for the workplace

Class Project

- DATA605 Class project 2024
 - Each student implements 2 projects (one for midterm and one for finals)
 - Learn a cutting-edge modern big data technology
 - Write a (small) example of a system using it
 - Graded individually (each 30% of final grade)
 - Quizzes account for rest 40%
 - In class labs
 - Review 2 examples of complete projects
 - In-class presentation of projects (if there is time)
 - Will re-evaluate based on how projects go
- Check out an examples
 - Sorrentum Git repo

© UMD DATA605

UMD DATA605 - Big Data Systems

Course Intro

Big Data

Data Models

Data Science

- Promises of data science (DS)
 - Give a competitive advantages
 - Make better strategic and tactical business decisions
 - Optimize business processes
- Data science is not new, it was called:
 - Operation research (~1970-80s)
 - Decision support, Business intelligence (~1990s)
 - Predictive analytics (Early 2010s)

- ...

What has changed

- Now learning and applying DS is easy
 - No need for hiring a consulting company
- Tools are open-source
 - E.g., Python + pydata stack (numpy, scipy, Pandas, sklearn)
- Large data sets available
- Cheap computing (e.g., AWS, Google Cloud)

Motivation: Data Overload

- "Data science is the number one catalyst for economic growth"
 - McKinsey, 2013
- Explosion of data in every domain
 - Sensing devices/networks monitor processes 24/7
 - E.g., temperature of your room, your vital signs, pollution in the air
 - Sophisticated smart-phones (80% of the world population)
 - Internet and social networks make it easy to publish data
 - Internet of Things (IoT): everything is connected to the internet
 - E.g., power supply, toasters
 - Scientific experiments and simulations produce enormous volumes of data
 - <u>Datafication</u>: turn all aspects of life into data
 - E.g., what you like/enjoy turned into a stream of your "likes"

Challenges

- How to handle the increasing amount data?
- How to extract actionable insights and scientific knowledge from data?

© UMD DATA605 11/58

Scale of Data Size

- **Megabyte** = 2^{10} \approx 10^6 bytes
 - Typical English book
- **Gigabyte** = 10^9 bytes = 1000 MB
 - 1/2 hour of video
 - Wikipedia (compressed, without media) is 22GB
- Terabyte = 1M MB
 - Human genome: ~1TB
 - 100,000 photos
 - LHC generates 100TB of data per day
 - \$50 to buy 1TB HDD, \$23/mo on AWS S3
- **Petabyte** = 1000 TB
 - 13 years of HD video
 - \$250k/year on AWS S3
- Exabyte = 1M TB
 - Global yearly Internet traffic in 2004
- **Zetabyte** = 1B TB = 10^{21} bytes
 - Global yearly Internet traffic in 2016
- **Yottabytes** = 10^{24} bytes
 - Yottabyte costs \$100T
- **Brontobytes** = 10^{27} bytes

Scale of Data Size

TERABYTE	Will fit 200,000 photos or mp3 songs on a single 1 terabyte hard drive.	
PETABYTE	Will fit on 16 Backblaze storage pods racked in two datacenter cabinets.	
EXABYTE	Will fit in 2,000 cabinets and fill a 4 story datacenter that takes up a city block.	
ZETTABYTE	Will fill 1,000 datacenters or about 20% of Manhattan, New York.	A. A. B.
YOTTABYTE	Will fill the states of Delaware and Rhode Island with a million datacenters.	

Constants Everybody Should Know

From Latency Numbers Every Programmer Should Know (by year)

- A CPU running at 3GHz executes an instruction every 0.3ns
- L1 cache reference/register: 1ns
- L2 cache reference: 4ns
- Main memory reference: 100ns
- Send 1KB over network: 10ns
- Read 1MB from memory: 2us
- SSD random read: 16us
- Disk seek: 2ms
- Packet round-trip from CA to Netherland: 150ms

- Personalized marketing
- Target each consumer instead of the consumers at large
 - E.g., Amazon personalizes suggestions using signals from:
 - Your shopping history
 - What you have searched for (or clicked, browsed)
 - Other consumers and trends
 - Reviews (through NLP and sentiment analysis)
- Brands want to understand how customers relate to products
 - Use sentiment analysis from:
 - Social media, on-line reviews, blogs, surveys
 - Positive, negative, neutral feeling
 - E.g.,
 - In 2022, \$600B spent on digital marketing
 - 50 Stats Showing The Power Of Personalization

Mobile advertisement

- Mobile phones are ubiquitous
 - 80% of world population has one
 - 6.5b smart phones
- Integration of on-line and off-line databases, e.g.,
 - GPS location
 - Search history
 - Credit card transactions
- E.g.,
 - You've bought a new house
 - You google questions about house renovations
 - You watch shows about renovations
 - Your phone tracks where you are
 - Google sends you coupons for the closest Home Depot
 - "I feel like Google is following me", "it's like Facebook is reading my mind"

© UMD DATA605

Biomedical data

- Personalized medicine
 - Patients can receive treatment tailored to them to maximize efficacy
 - Genetics
 - Daily activities
 - Environment
 - Habits
- Genome sequencing
- Health tech
 - Personal health trackers (e.g., smart rings, phones)

Smart cities

- Interconnected mesh of sensors
 - E.g., traffic sensors, camera networks, satellites
- Goals:
 - Monitor air pollution
 - Minimize traffic congestion
 - Optimal urban services
 - Maximize energy savings

Goal of Data Science

- Goal: from data to wisdom
 - Data (raw bytes)
 - Information (organized, structured)
 - Knowledge (learning)
 - Wisdom (understanding)
- Insights enable decisions and actions
- Combine streams of big data to generate new data
 - New data can be "big data" itself

Four V's of Big Data

- · Characteristics of big data
- Volume
 - Vast amount of data is generated
- Variety
 - Different forms
- Velocity
 - Speed at which data is generated
- Veracity
 - Biases, noise, abnormality in data
 - Uncertainty, trustworthiness
- (Valence)
 - Connectedness of big data in the form of graphs
- (Value)
 - Data needs to be valuable
 - Big data needs to benefit an organization

© UMD DATA605 21/58

Four V's of Big Data

Volume

- Exponentially increasing amount of data
- Every day 2.5 exabytes (1m of TB) of data is generated
 - 90% of all the data in the world was generated in the last 2 years
 - Total amount of stored data doubles every 1.2 years
- Twitter: 500M tweets/day (2022)
- Google processes 8.5B queries/day (2022)
- Meta generates 4PB of data/day (2022)
- Walmart: 2.5PB of unstructured data/hour (2022)

Variety

- Data has different forms
 - Structured data (e.g., spreadsheets, relational data)
 - Semi-structured data (e.g., text, sales receipts, your class notes)
 - Unstructured data (e.g., photos, videos)
- Data comes in different formats (e.g., binary, CSV, XML, JSON)

© UMD DATA605 22/58

Four V's of Big Data

Velocity

- Relates to the speed at which data is generated
 - E.g., sensors generate data streams
- Sometimes data can be processed off-line
- Real-time analytics: consume data as fast as it is generated

Veracity

- Relates to data quality
- How to remove noise and bad data?
- How to fill in missing values?
- What is an outlier?
- How do you decide what data to trust?

JMD DATA605 23/58

Sources of Big Data

- We can distinguish Big Data in terms of its source
 - Machines
 - People
 - Organizations

© UMD DATA605 24/58

Sources of Big Data: Machines

- Machines generate data
 - Real-time sensors (e.g., sensors on Boeing 787)
 - Cars
 - Website tracking
 - Personal health trackers
 - Scientific experiments

Pros

Highly structured

Cons

- Can't be easily moved, but need to be computed in-place or in centralized fashion
- Streaming, not batch

Sources of Big Data: People

- People and their activities generate data
 - Social media (e.g., Instagram, Twitter, LinkedIn)
 - Video sharing (e.g., YouTube, TikTok)
 - Blogging and commenting on a website
 - Internet searches
 - Text messages (e.g., SMS, Whatsapp, Signal, Telegram)
 - Personal documents (e.g., Google Docs, emails)

- Allow personalization
- Highly valuable for business intelligence

Cons

- Typically semi-structured or unstructured data
 - Text, images, movies
- It takes an investment before you can reap the value
 - Acquire \rightarrow Store \rightarrow Clean \rightarrow Retrieve \rightarrow Process \rightarrow Insights
- Surveillance capitalism

Sources of Big Data: Orgs

- Organizations generate data
 - Commercial transactions
 - Credit cards
 - E-commerce
 - Banking
 - Medical records
 - Clicks on a website

Pros

Highly structured

Cons

- Need to store every event in the past to predict the future
 - Missing opportunities
- Stored in "data silos" with different data models
 - Each department has its own data system
 - · Additional complexity
 - Data is outdated/not visible
 - Cloud computing helps (e.g., data lakes, data warehouses)

© UMD DATA605 27/58

Is Data Science Just Hype?

- Big data (or data science)
 - "Any process where interesting information is inferred from data"
- Data scientist called the "sexiest job" of the 21st century
 - The term has becoming very muddled at this point
- Is it all hype?

© UMD DATA605 28/58

Is Data Science Just Hype?

No

- Extracting insights and knowledge from data is very important and will continue to increase in importance
- Big data techniques are revolutionizing the world in many domains
 - E.g., education, food supply, disease epidemics, ...

• But

Not much different from what statisticians have been doing for many years

What is different?

- Much more data is digitally available than ever before
- Easy-to-use programming frameworks (e.g., Hadoop) = much easier to analyze
 it
- Cloud computing (e.g., AWS) = much cheaper to analyze it
- Often large-scale data + simple algorithms >> small data + complex algorithms

© UMD DATA605 29/58

What was Cool in 2012?

What was Cool in 2017?

What was Cool in 2022?

© UMD DATA605 32/58

What is Cool in 2023?

© UMD DATA605 33/58

Key Shifts Before/After Big-Data

- 1) Datasets: small, curated, clean → large, uncurated, messy
 - Before:
 - Statistics based on small, carefully collected random samples
 - Costly and careful planning for experiments
 - Hard to do fine-grained analysis
 - Today:
 - Easily collect huge volume of data
 - Feed it into algorithms
 - Usually the signal is strong enough to overcome the noise

2) Causation → Correlation

- Goal: figure out what caused what
- Causation very hard to figure out → give up causation for correlation
 - Finding out if two things are correlated is good enough
 - E.g., people buying diapers and beer together at the supermarket
- 3) "Data-fication"
 - process of converting abstract things into concrete data
 - E.g., "sitting posture" is data-fied by 100's of sensors placed in your seat
 - Your preference is data-fied into a stream of likes
- From: Rise of Big Data, 2013

© UMD DATA605 34/58

Examples: Election Prediction

- Nate Silver and the 2012 Elections
 - 49 out of 50 in calling each state in 2008 US elections
 - 50 out of 50 in 2012 US elections
 - Didn't work that well in 2016, did it?
- Some reasons why he got things right
 - Many sources of data, irrespective of quality
 - Incorporation of historical accuracy
 - Use of statistical models
 - Understanding correlations
 - Monte-Carlo simulations to compute the probabilities of electoral college
 - Focus on probabilities instead of predictions
 - Great communication and presentation skills

© UMD DATA605 35/58

Examples: Google Flu Trends

- 5% to 20% of US population contracts flu every year and 40k deaths
- Earlier warnings allow prevention and control
 - Google Flu Trends
 - Early warning of flu outbreaks by analyzing search queries
 - What terms people searched for (45 search terms)
 - IP to determine location
 - Predict regional outbreaks of flu up to 1 or 2 weeks ahead of CDC
 - Service in activity from 2008 to 2015
- Caveat: accuracy not as good any more
 - Google claimed 97% accuracy
 - Out of sample accuracy lower (overshot CDC data by 30%)
 - People search about flu without knowing how to diagnose flu
 - E.g., people searching for "fever" and "cough"
 - Google Flu Trends: The Limits of Big Data

© UMD DATA605 36/58

Data Scientist

Very ambiguous and ill-defined term

From <u>Drew Conway's Venn Diagram</u>

© UMD DATA605 37/58

Typical Data Scientist Workflow

From <u>Data Science Workflow</u>

Where Data Scientist Spends Most Time

- 80-90% of the work is data cleaning and wrangling
- <u>'Janitor Work' in Data</u>
 <u>Science</u>
- Research Directions in Data Wrangling

© UMD DATA605

What a Data Scientist Should Know

- From: How to hire a data scientist
- Data grappling skills
 - How to move data around and manipulate it with some programming language
 - Scripting languages (e.g., Python)
 - Data storage tools like relational databases, key-value stores
 - Programming frameworks like SQL, Hadoop, Spark, etc.

Data visualization experience

- How to draw informative pictures of data
- Many tools (e.g., D3.js, plotting libraries)
- Harder question is knowing what to draw

Knowledge of statistics

- E.g., error-bars, confidence intervals
- Python libraries; Matlab; R

Experience with forecasting and prediction

- Basic machine learning techniques
- Communication skills
 - Tell the story, communicate the findings

DATA605

UMD DATA605 - Big Data Systems Course Intro Big data Data Models

Data Models

Data modeling

- = process of representing and capturing the structure and properties of real-world entities
- Process of abstraction: real-world → representation

Data model

- = description of how data is represented (e.g., relational, key-value) and accessed (e.g., insert operations, how to query)
- E.g., schema in a DB describes a specific collection of data, using a given data model

Why do we need data model?

- Need to know the structure of the data (to some extent) to be able to write general purpose code
- Allow to share data across programs, organizations, systems
- Need to integrate information from multiple sources
- Preprocess data to make access efficient (e.g., building an index on a data field)

© UMD DATA605 42/58

Multiple Layers of Data Modeling

Physical layer

- How is the data physically stored
- How to represent complex data structures (e.g., B-trees for indexing)

Logical layer

- Entities
- Attributes
- Type of information stored
- Relationships among the above

Views

- Restrict information flow
- Security and/or ease-of-use

Data Models: Logical Layer

Modeling constructs

- A collection of concepts used to represent the structure in the data
- E.g.,
 - Types of entities
 - Entity attributes
 - Types of relationships between entities
 - Types of relationships between attributes

Integrity constraints

- Ensure data integrity
 - Goal: avoid errors and data inconsistencies
 - E.g., a field can't be empty, is an integer

Manipulation constructs

E.g., insert, update, delete data

Examples of Data Models

- We will cover:
 - Relational model (SQL)
 - Entity-relationship (ER) model
 - XML
 - Object-oriented (OO)
 - Object-relational
 - RDF
 - Property graph
- Serialization formats are also data models
 - CSV
 - Parquet
 - JSON
 - Protocol Buffer
 - Avro/Thrift
 - Python Pickle

© UMD DATA605 45/58

Good Data Models

- We would like a data model to be:
 - Expressive
 - Capture real-world data well
 - Easy to use
 - Good performance
- Tension between the above characteristics
 - More powerful models
 - Can represent more datasets
 - Harder to use/to query
 - Less efficient (e.g., more memory, more time)
- The evolution of data modeling tools is an attempt to capture the structure in the data
 - Structured data → Relational DBs
 - Semi-structured web data → XML, JSON
 - Unstructured data → NoSQL DBs

Data Independence

Logical data independence

- Can change the representation of data without changing programs that operate on it
- E.g., an API abstracting the backend

Physical data independence

- Can change the layout of data on disk and programs won't change
 - Index the data
 - Partition/distribute/replicate the data
 - Compress the data
 - Sort the data

© UMD DATA605 47/58

- 1960s: Early beginning
 - Computers finally become attractive technology
 - Enterprises start adopting computers
 - Most applications initially used their own data stores
 - Each application had its own format
 - Data was basically unavailable to other programs
 - Database: term coined in military information systems to denote
 "shared data banks" by multiple applications
 - Define a data format
 - Store it as a "data dictionary" (schema)
 - Implement general-purpose "database management" software to access data
 - Issues:
 - How to write data dictionaries?
 - How to access data?
 - Who controls the data?
 - E.g., integrity, security, privacy concerns

© UMD DATA605 48/58

- 1960s, Hierarchical and network model (before relational model)
 - Both allowed connecting records of different types
 - E.g., connect accounts with customers
 - Network model attempted to be very general and flexible
- IBM designed <u>IMS hierarchical database</u> in 1966 for the Apollo space program
 - Predates hard disks
 - Still around today!
 - .. more than 95 percent of the top Fortune 1000 companies use IMS to process 50 billion transactions a day and manage 15 million gigabytes of critical business data (from IBM Website on IMS)
- Cons:
 - Hierarchical/network models exposed too much of the internal data (e.g., structures/pointers to the users)
 - Leaky abstraction

© UMD DATA605 49/58

Relational, Hierarchical, Network model

Relational model

- Data is represented as tuples grouped in relations
- Omnipresent SQL

Customer ID	Tax ID	Name	Address	[More fields]
1234567890	555-5512222	Ramesh	323 Southern Avenue	
2223344556	555-5523232	Adam	1200 Main Street	
3334445563	555-5533323	Shweta	871 Rani Jhansi Road	
4232342432	555-5325523	Sarfaraz	123 Maulana Azad Sarani	

Hierarchical model

- Data is organized into a tree-like structure
 - Each record has one parent record and many children
 - Records connected through links
- Resurgence in 1990s with XML DBs

Network model

- Data is organized in a graph
 - Each record can have multiple parent and child records
- Resurgence in 2010s with graph DBs

- 1970s: Relational model
 - Set theory, first-order predicate logic
 - Ted Codd developed the Relational Model
 - Elegant, formal model
 - Provided almost complete data independence
 - Users didn't need to worry about how the data was stored, processed
 - High-level query language
 - SQL based on relational algebra
 - Notion of normal forms
 - Allowed one to reason about data and its relations
 - Remove redundancies
- Influential projects:
 - INGRES (UC Berkeley), System R (IBM)
 - Didn't care about IMS compatibility (as IBM had to)
- Many debates between Relational Model vs Network Model proponents

© UMD DATA605 51/58

Entity-Relationship Model

- 1976: Peter Chen proposed "Entity-Relationship Model"
- Data model describing knowledge in terms of entities and relationships
- Entities are physical or logical objects that can be uniquely identified
 - "Nouns"
- Relationships between entities
 - "Verbs"
- An ER model can be mapped onto a relational DB
 - Entities, relationships → tables

- 1980s: Widespread acceptance of relational model
 - SQL emerged as a standard, in large part because of IBM's backing
 - Enriching the expressive power of relational model
 - Set-valued attributes, aggregation, etc.
- Late 80's
 - Object-oriented DBs
 - Store objects instead of tables
 - Get around impedance mismatch between programming languages and databases
 - Object-relational DBs
 - Allow user-defined types
 - Get many benefits of object-oriented while keeping the essence of relational model
 - No expressive difference from pure relational model

UMD DATA605 53/58

Object-Oriented

- OOP is a data model
 - Object behavior is described through data (stored as fields) and code (in the form of methods)

Composition

- Aka `has-a` relationships
- E.g., an Employee class has an Address class

Inheritance

- Aka `is-a` relationships
- E.g., an Employee class derives from a Person class

Polymorphism

- Code executed depends on the class of the object
- One interface, many implementations
- E.g., draw() method on a Circle vs Square object, both descending from Shape class

Encapsulation

- E.g., private vs public fields/members
- Prevents external code from being concerned with inner workings of an object

© UMD DATA605 54/58

- Late 90's-today
- Web/Internet emerges
- XML: eXtensible Markup Language
 - Intended for semi-structured data
 - Tree-like structure
 - Flexible schema

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- Edited by XMLSpy \rightarrow
 <CATALOG>
     <CD>
      <TITLE>Empire Burlesque</TITLE>
      <ARTIST>Bob Dylan</ARTIST>
      <COUNTRY>USA</COUNTRY>
      <COMPANY>Columbia</COMPANY>
      <PRICE>10.90</PRICE>
      <YEAR>1985</YEAR>
    </CD>
    <CD>
      <TITLE>Hide your heart</TITLE>
      <ARTIST>Bonnie Tyler</ARTIST>
      <COUNTRY>UK</COUNTRY>
      <COMPANY>CBS Records</COMPANY>
      <PRICE>9.90</PRICE>
      <YEAR>1988</YEAR>
     </CD>
```

Resource Description Framework

- Aka RDF
- Key construct: a
 "subject-predicate-object"
 triple, e.g.
 - subject=sky
 - predicate=has-the-color
 - object=blue
- Can be mapped to a labeled, directed multi-graph
 - More general than a tree
- Typically stored in:
 - Relational DBs
 - Dedicated "triple-stores" DBs

01 http://example.org/bob#me

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://xmlns.com/foaf/0.1/Person.

02 <a href="http://e

03 <http://example.org/bob#me> <http://schema.org/birthDate> "1990-07-04"^^<http://www.w3.org/2001/XMLSchema#date> .

04 http://example.org/bob#me

http://xmlns.com/foaf/0.1/topic interest>

http://www.wikidata.org/entity/Q12418 .

05 http://www.wikidata.org/entity/Q12418

http://purl.org/dc/terms/title "Mona Lisa" .

06 http://www.wikidata.org/entity/Q12418>

http://purl.org/dc/terms/creator

http://dbpedia.org/resource/Leonardo_da_Vinci.

)7

http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619 http://purl.org/dc/terms/subject

http://www.wikidata.org/entity/Q12418 .

© UMD DATA605 56/58

Property Graph Model

Graph:

- with vertices and edges
- with properties
 associated with
 each edge and
 vertex
- Typically stored in:
 - Relational DBs
 - Graph DBs

Class Project: TODOs

- Clone <u>Class GitHub repo</u>
- Look at <u>DATA605 Class project</u>
- Look at <u>Sorrentum GitHub repo</u>
- Next:
 - Dr Saggese + TA come up with list of projects