IFBA – Instituto Federal de Educação, Ciência e Tecnologia da Bahia Departamento de Ciência da Computação Bacharelado em Administração

INF027 – Lógica de Programação

Prof.: Frederico Barboza	/ José Dihego Oliveira	/ Romilson Sam	paio – Data:	22/07/2024
--------------------------	------------------------	----------------	---------------------	------------

Aluno:	Nota:	

I^a Avaliação Individual – 2024.2

Instruções (leia com atenção):

- Controle o seu tempo. Ele faz parte da avaliação
- É permitida consulta exclusivamente a material físico e próprio.
- É vedado o empréstimo ou troca de qualquer material.
- É vedado o acesso a qualquer material digital ou acesso à Internet

QUESTÃO I

O hotel da Colônia de Férias dos Professores está com uma promoção para as férias de julho. A promoção é válida para quem chegar a partir do dia 1 de julho e sair no dia 1 de agosto. O preço da diária do hotel é menor para quem chegar mais cedo, e vai aumentando a cada dia.

Mais precisamente, a promoção funciona assim:

- A diária do hotel para cada quem chegar no dia 1 é D Reais. Assim, quem chegar no dia 1 vai pagar um total de 31 x D Reais.
- A diária do hotel aumenta A reais por dia. Ou seja, a diária é D + A Reais para quem chegar no dia 2; D + 2 × A Reais no dia 3; D + 3 × A Reais no dia 4 e assim por diante.
- A partir do dia 16 a diária não aumenta mais.

Note que quem chegar no dia 2 vai pagar um total de $30 \times (D + A)$ reais; quem chegar no dia 3 vai pagar um total de $29 \times (D + 2 \times A)$ reais, e assim por diante.

A sua tarefa é escrever um programa em C que leia férias, o valor da diária (D), o valor do aumento diário (A) e a data de entrada do professor hóspede, calcule e escreva o valor total da hospedagem.

ADAPTADO DA OBI2022

QUESTÃO II

Um treinador de basquete deseja otimizar a pontuação dos seus atletas durante os jogos. Para tanto, ele mediu o percentual de acertos dos atletas em três faixas de distância para a cesta: arremessos realizados dentro do garrafão (valem dois pontos), arremessos de meia distância (feitos fora do garrafão, mas dentro da linha de três pontos, que também valem dois pontos) e arremessos de longa distância (além da linha de três pontos e que valem 3 pontos).

Com estes percentuais de acerto, ele consegue calcular a esperança de pontuação por arremesso do jogador. Assim, para Stephen Curry o mapa de lançamentos, o percentual de acertos e a esperança de pontos por arremesso está apresentado na tabela abaixo:

Área de Jogo	Percentual de Acerto	Esperança de Pontos por Arremesso	
Arremessos dentro do Garrafão	0.580	0.580 * 2 = 1.160	
Arremessos de Meia Distância	0.460	0.460 * 2 = 0.920	
Arremessos de Longa Distância	0.450	0.450 * 3 = 1.350	

Escreva um programa em C que receba como entrada as porcentagens de acerto de cada tipo de arremesso (em valores decimais entre 0 e 1, representando a probabilidade de acerto) e imprima qual tipo de arremesso, o jogador deve priorizar. Por exemplo, no caso de Curry, o programa deve gerar como saída: "Preferir arremessos de longa distância (1.350 pontos por arremesso)".