無機化学

目次			6.4 6.5 6.6	一酸化窒素	13
第Ⅰ部	非金属元素	3	7 7.1	リン リン	14
1	水素	3	7.2	十酸化四リン	14
1.1	性質	3	7.3	リン酸	14
1.2	同位体	3	0	ш±	4.5
1.3	製法	3	8 0 1	炭素 炭素	15
1.4	反応	3	8.1 8.2	一酸化炭素	
2	貴ガス	3	8.3	二酸化炭素	
2.1	性質	3		<i>L /</i> =	40
2.2	生成	3	9	ケイ素	16
2.3	ヘリウム	3	9.1	ケイ素	
2.4	ネオン	3	9.2	一敗化クイ系・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
2.5	アルゴン	3			
3	ハロゲン	4	第Ⅱ部	3 典型金属	19
3.1	単体	4	10	アルカリ金属	19
3.2	ハロゲン化水素	5	10.1	単体	19
3.3	ハロゲン化銀	6	10.2	水酸化ナトリウム(苛性ソーダ)	19
3.4	次亜塩素酸塩	6	10.3	炭酸ナトリウム・炭酸水素ナトリウム	20
3.5	塩素酸カリウム	6	11	2 族元素	22
4	酸素	7	11.1	単体	
4.1	酸素原子	7	11.2	酸化カルシウム(生石灰)	
4.2	酸素	7	11.3	水酸化カルシウム(消石灰)	
4.3	オゾン	7	11.4	炭酸カルシウム(石灰石)	23
4.4	酸化物	8	11.5	塩化マグネシウム・塩化カルシウム	23
4.5	水	8	11.6	硫酸カルシウム	24
5	硫黄	9	11.7	硫酸バリウム	24
5.1	硫黄	9	12	12 族元素	24
5.2	硫化水素	9	12.1	単体	
5.3	二酸化硫黄(亜硫酸ガス)	10	12.2	酸化亜鉛(亜鉛華)・水酸化亜鉛	25
5.4	硫酸	11	12.3	塩化水銀 (I)・塩化水銀 (II)	25
5.5	チオ硫酸ナトリウム (ハイポ)	11			
5.6	重金属の硫化物	12	13	アルミニウム	25
•	m.±		13.1	アルミニウム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
6	空素	12	13.2	酸化アルミニウム・水酸化アルミニウム	
6.1	窒素	12	13.3	ミョウバン・焼きミョウバン	27
6.2 6.3	アンモニア		14	スズ・鉛	28
0.5		14	14.1	単体	28

14.2	塩化スズ(II)	28
14.3	酸化鉛 (IV)	29
14.4	鉛の難溶性化合物	29
第Ⅲ部	邓 遷移金属	30
15	鉄・コバルト・ニッケル	30
15.1	鉄	30
15.2	硫酸鉄 (II) 7 水和物	31
15.3	塩化鉄(Ⅲ)6水和物	32
15.4	鉄イオンの反応	32
15.5	塩化コバルト (II)	32
15.6	硫酸ニッケル(II)	32
16	銅	32
16.1	 銅	
16.2		
16.3	銅 (II) イオンの反応	
16.4	銅の合金	
17		34
17.1	銀	
17.2	銀 (I) イオンの反応	
17.3	難溶性化合物の溶解性	35
18	クロム・マンガン	36
18.1	単体	36
18.2	クロム酸カリウム・二クロム酸カリウム	36
18.3	過マンガン酸カリウム	36
18.4	マンガンの安定な酸化数	37
第 IV 部	部 APPENDIX	38
Α	気体の乾燥剤	38
В	水の硬度	38
С	金属イオンの難容性化合物	39
D	錯イオンの命名法	40
F	金属イオンの系統分離	41

第一部

非金属元素

1 水素

1.1 性質

- ① 色② 臭の③
- 最も④
- 水に溶け⑤

1.2 同位体

 $^{1}{\rm H}$ 99%以上 $^{2}{\rm H}$ (⑥)0.015% $^{3}{\rm H}$ (⑦) 微量

1.3 製法

- ナフサの電気分解 工業的製法
- 8 に9 を吹き付ける **工業的製法**
- 10 (11) の電気分解
- 12 が13 金属と希薄強酸
- 水素化ナトリウムと水

1.4 反応

- 水素と酸素 (爆鳴気の燃焼)
- 加熱した酸化銅(Ⅱ)と水素

2 貴ガス

(14) , (15) , (16) , (17) , Xe, Rn

2.1 性質

- 18 色19 臭
- 第 18 族元素であり、電子配置がオクテットを満たすため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が20
- 電気陰性度が21

2.2 生成

⁴⁰K の電子捕獲

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式: $Ar~N_2,~O_2$ に次いで 3 番目に空気中での存在量が多い (約 1%)。

第一部

非金属元素

1 水素

1.1 性質

- ①無色②無臭の③気体
- 最も④軽い
- 水に溶け⑤にくい

1.2 同位体

¹H 99% 以上 ²H (**6D**)0.015% ³H (**7T**) 微量

1.3 製法

- ナフサの電気分解 工業的製法
- ⑧赤熱したコークスに⑨水蒸気を吹き付ける 工業的製法 C + H₂O →→ H₂ + CO
- ①水 (①水酸化ナトリウム水溶液) の電気分解 $2H_2O \longrightarrow 2H_2 + O_2$
- 12イオン化傾向が13H₂ より大きい金属と希薄強酸

 \bigcirc Fe + 2 HCl \longrightarrow FeCl₂ + H₂↑

 $\bigcirc \mathbb{N}$ Zn + 2 HCl \longrightarrow ZnCl₂ + H₂ \uparrow

水素化ナトリウムと水
 NaH + H₂O → NaOH + H₂

1.4 反応

- 水素と酸素 (爆鳴気の燃焼)
 2H₂ + O₂ → H₂O
- 加熱した酸化銅(II)と水素 CuO + H₂ →→ Cu + H₂O

2 貴ガス

14He, 15Ne, 16Ar, 17Kr, Xe, Rn

2.1 性質

- 18無色19無臭
- 第 18 族元素であり、電子配置がオクテットを満たすため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が20極めて小さい
- 電気陰性度が②1定義されない

2.2 生成

 40 K の電子捕獲 40 K + e $^{-}$ \longrightarrow 40 Ar

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式: $Ar N_2$, O_2 に次いで 3 番目に空気中での存在量が多い (約 1%)。

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2	Br_2	I_2	
分子量	小 -		大		
分子間力	弱 -				
反応性	強 二				
沸点・融点	低 -				
常温での状態	22	23	24	25)	
色	26 色	27 色	28 色	29 色	
特徴	30 臭	31 臭	揮発性	32 性	
H ₂ との反応	33 でも	34 でも35 で	36 して	高温で平衡状態	
	爆発的に反応	爆発的に反応	37 により反応	38 して39 により一部反応	
水との反応	水を酸化して酸素と (41)		42	43	
八との人	40 反応	41)	(±2)	(44)	
用途	保存が困難	45 による	C=C や	47 反応で	
用 趣	Kr や Xe と反応	46 作用	C≡C の検出	48 色	

3.1.2 製法

•	フッ化水素ナトリウム KHF_2 のフッ化水素 HF 溶液の
	電気分解 工業的製法

 $KHF_2 \longrightarrow KF + HF$

法	
	以法

 ・ 50
 に51
 を加えて加熱 塩素

_	 C/3H/C	1/3H////

• 52 と53 <u>塩素</u>

•	54	と55	塩素

臭化マグネシウムと塩素 臭素
 MgBr₂ + Cl₂ → MgCl₂ + Br₂

• ヨウ化カリウムと塩素 国ウ素 $2 \, \mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2 \, \mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

•	フッ素と水素	
•	塩素と水素	
	34271	

• 臭素と水素

•	ヨウ素と水素	

•	フッ素と水	

		J
•	塩素と水	
•	臭素と水	

•	ヨウ素の固体がヨウ化物イオン有	存在下で三ヨウ化物イオ
	いた形はして次知よっては	

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2	Br_2	I_2
分子量	小 —			大
分子間力	弱 —			
反応性	強二			弱
沸点・融点	低 —			
常温での状態	22気体	23気体	24液体	25)固体
色	26淡黄 色	27黄緑色	28赤褐色	29黒紫色
特徴	30特異臭	31刺激臭	揮発性	32昇華性
H ₂ との反応	33冷暗所でも	34常温でも35光で	<u>36加熱</u> して	高温で平衡状態
112 2 47/2/10	爆発的に反応	爆発的に反応	37 <mark>触媒</mark> により反応	38加熱して39触媒により一部反応
水との反応	水を酸化して酸素と	 41 一部とけて反応	42一部とけて反応	43反応しない
/	40激しく反応			44Klaq には可溶
用途	保存が困難	45 <mark>CIO</mark> ⁻ による	C=C ₺	47)ヨウ素デンプン反応で
71,75	Kr や Xe と反応	46殺菌・漂白作用	C≡C の検出	48青紫色

3.1.2 製法

 フッ化水素ナトリウム KHF₂ のフッ化水素 HF 溶液の 電気分解 工業的製法

 $KHF_2 \longrightarrow KF + HF$

- ூ塩化ナトリウム水溶液の電気分解 塩素 工業的製法
 2 NaCl + 2 H₂O → Cl₂ + H₂ + 2 NaOH
- 50酸化マンガン (IV) に51濃塩酸を加えて加熱 塩素 $MnO_2 + 4HCI \longrightarrow MnCl_2 + Cl_2 \uparrow + 2H_2O$
- 52高度さらし粉と53塩酸塩素

 $Ca(ClO)_2 \cdot 2\,H_2O + 4\,HCl \longrightarrow CaCl_2 + 2\,Cl_2 \uparrow \, + 4\,H_2O$

• 54さらし粉と55塩酸 塩素

 $CaCl(ClO) \cdot H_2O + 2 \, HCl \longrightarrow CaCl_2 + Cl_2 \uparrow + 2 \, H_2O$

- 臭化マグネシウムと塩素 臭素
 MgBr₂ + Cl₂ → MgCl₂ + Br₂
- ヨウ化カリウムと塩素 ヨウ素
 2 KI + Cl₂ → 2 KCl + I₂

3.1.3 反応

- フッ素と水素
 H₂ + F₂ 常温で爆発的に反応 2 HF
- 塩素と水素
 H₂ + Cl₂ ^{光を当てると爆発的に反応}→ 2 HCl
- 臭素と水素 $H_2 + Br_2 \xrightarrow{\overline{Ala} \circ \overline{Dla}} 2 HBr$

- ヨウ素と水素
 H₂ + I₂ 高温で平衡
 2 HI
- フッ素と水 $2F_2 + 2H_2O \longrightarrow 4HF + O_2$
- 塩素と水 Cl₂ + H₂O ⇒ HCl + HClO
- 臭素と水
 Br₂ + H₂O ⇒ HBr + HBrO
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物イオンを形成して溶解する反応

 $l_2 + l^- \longrightarrow l_3^-$

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\quad \Delta\quad} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow \\ + 2\,\mathrm{H_2O}$

 $\mathrm{Cl}_2,\!\mathrm{HCl},\!\mathrm{H}_2\mathrm{O}$

↓**56** に通す (HCl の除去)

 $\mathrm{Cl}_2,\mathrm{H}_2\mathrm{O}$

↓57 に通す (H₂O の除去)

 Cl_2

3.1.5 塩素のオキソ酸

オキソ酸 ... 58

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HCl	HBr	HI			
色・臭い		67 色68 臭					
沸点	20°C	−85°C	$-67^{\circ}\mathrm{C}$	−35°C			
水との反応	69						
水溶液	70	71	72	73			
(強弱)	74	≪ 75 < 1	76 <	77			
用途	78 と反応	79 の検出	半導体加工	インジウムスズ			
川	⇒ ポリエチレン瓶	各種工業	十等件加工	酸化物の加工			

3.2.2 製法

- 80 に81 を加えて加熱(82)フッ化水素
 83 と84 塩化水素 工業的製法
- 85
 に86
 を加えて加熱 塩化水素 (87)
 酸・88
 酸の追い出し)

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応
- ・ フッ化水素酸 (水溶液) がガラスを侵食する反応
- 89 による90 の検出

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\begin{aligned} &\operatorname{MnO}_2 + 4\operatorname{HCl} \xrightarrow{\quad \Delta} \operatorname{MnCl}_2 + \operatorname{Cl}_2 \uparrow + 2\operatorname{H}_2\operatorname{O} \\ &\operatorname{Cl}_2, &\operatorname{HCl}, &\operatorname{H}_2\operatorname{O} \end{aligned}$

↓56 水 に通す (HClの除去)

 Cl_2,H_2O

↓57濃硫酸に通す (H₂O の除去)

 Cl_2

3.1.5 塩素のオキソ酸

オキソ酸 … 58酸素を含む酸性物質

+ VII	59HClO₄	⑥ 過塩素酸	$\begin{bmatrix} O \\ \\ H - O - Cl - O \\ \\ O \end{bmatrix}$
			O
+ V	61HClO ₃	62塩素酸	H - O - Cl - O
+ III	63HCIO ₂	64 亜塩素酸	H - O - Cl - O
+ I	65HCIO	66次亜塩素酸	H-O-Cl

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HCl	HBr	HI			
色・臭い		67無色68刺激	臭				
沸点	20°C	−85°C	−67°C	−35°C			
水との反応		69よく溶ける					
水溶液	70フッ化水素酸	71 塩酸	72臭化水素酸	73ヨウ化水素酸			
(強弱)	74弱性	嫂 ≪ 75強酸 < 76	強酸 < 77 3	d酸			
用途	78ガラス と反応	79アンモニアの検出	半導体加工	インジウムスズ			
	⇒ ポリエチレン瓶)エチレン瓶 各種工業		酸化物の加工			

3.2.2 製法

80ホタル石に81濃硫酸を加えて加熱(82)弱酸遊離)フッ化水素

 $CaF_2 + H_2SO_4 \xrightarrow{\Lambda} CaSO_4 + 2HF \uparrow$

83水素と84塩素 塩化水素 工業的製法

 $H_2 + Cl_2 \longrightarrow 2\,HCl \, \uparrow$

85塩化ナトリウムに80濃硫酸を加えて加熱 塩化水素 (87弱酸・88揮発性酸の追い出し)
 NaCl + H₂SO₄ → NaHSO₄ + HCl↑

3.2.3 反応

• 気体のフッ化水素がガラスを侵食する反応

 $SiO_2 + 4HF(g) \longrightarrow SiF_4 \uparrow + 2H_2O$

• フッ化水素酸(水溶液)がガラスを侵食する反応

 $\text{SiO}_2 + 6\,\text{HF\,(aq)} \longrightarrow \text{H}_2\text{SiF}_6\,\uparrow\, + 2\,\text{H}_2\text{O}$

• 劉塩化水素による90アンモニアの検出 $HCI + NH_3 \longrightarrow NH_4CI$

3.3 ハロゲン化銀 3 ハロゲン

3.3 ハロゲン化銀

3.3.1 性質

化学式	Ag	;F	Ag	Cl	Ag	Br	A	gI
固体の色	91	色	92	色	93	色	94	色
水との反応	95				96			
光との反応	97			感光	6性(-	→98)	

3.3.2 製法

•	酸化銀	(I)	にフ	ッ化水素酸を加えて蒸発圧縮
---	-----	-----	----	---------------

ハロゲン化水素イオンを含む水溶液と99

3.4 次亜塩素酸塩

3.4.1 性質

100 剤として反応(101 ・102 作用)

3.4.2 製法

• 水酸化ナトリウム水溶液と塩素

• 水酸化カルシウムと塩素

3.5 塩素酸カリウム

化学式: 103

3.5.1 性質

104 の生成(105) を触媒に加熱)

3.3 ハロゲン化銀 3 ハロゲン

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	AgBr	AgI
固体の色	91)黄褐色	92白色	93淡黄色	94黄色
水との反応	95よく溶ける	96ほとんど溶けない		
光との反応	97感光	感光性 (→98Ag)		

3.3.2 製法

- 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮 $Ag_2O + 2HF \longrightarrow 2AgF + H_2O$
- ハロゲン化水素イオンを含む水溶液と99硝酸銀水溶液 Ag⁺ + X⁻ → AgX↓

3.4 次亜塩素酸塩

3.4.1 性質

100酸化剤として反応 (101)殺菌・102漂白作用)CIO⁻ + 2H⁺ + 2e⁻ →→ CI⁻ + H₂O

3.4.2 製法

- 水酸化ナトリウム水溶液と塩素
 2 NaOH + Cl₂ → NaCl + NaClO + H₂O
- ・ 水酸化カルシウムと塩素 Ca(OH)₂ + Cl₂ → CaCl(ClO) · H₂O

3.5 塩素酸カリウム

化学式: 103KCIO₃

3.5.1 性質

①4酸素の生成(①5二酸化マンガンを触媒に加熱) $2\,\text{KClO}_3 \xrightarrow[\Delta]{\text{MnO}_2} 2\,\text{KCl} + 3\,\text{O}_2 \uparrow$

4 酸素

4.1 酸素原子

同106 体:酸素 (O₂),107 (O₃)

地球の地殻に108 存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式: O_2

4.2.1 性質

- 121 色122 臭の123
- 沸点 −183°C

4.2.2 製法

- 124工業的製法
- 125 (126)の127128 (129)の分解
- 130 の熱分解

4.2.3 反応

[131] 剤としての反応

4.3 オゾン

化学式: 132

4.3.1 性質

- (133) 臭((134) 臭)を持つ(135) 色の(136) (常温)
- 水に137
- 138 139 作用

4.3.2 製法

酸素中で(146) /強い(147) を当てる

4.3.3 反応

- 148 剤としての反応
- 湿らせた[149] を[150] 色に変色

4 酸素

4.1 酸素原子

同106位体:酸素 (O_2) ,107オゾン (O_3)

地球の地殻に108最も多く存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式: O_2

4.2.1 性質

- 121無色(122)無臭の(123)気体
- 沸点 −183°C

4.2.2 製法

- 124液体空気の分留 **工業的製法**
- 125水 (126水酸化ナトリウム水溶液) の(127)電気分解 $2\,H_2\,O \longrightarrow 2\,H_2\,\uparrow \,+\,O_2\,\uparrow$
- ①28過酸化水素水 (①29オキシドール) の分解
 2 H₂O₂ MnO₂ O₂↑ + 2 H₂O
- ① $\frac{130$ 塩素酸カリウムの熱分解 $2 \text{ KCIO}_3 \xrightarrow{\text{MnO}_2} 2 \text{ KCI} + 3 \text{ O}_2 \uparrow$

4.2.3 反応

131酸化剤としての反応

$$O_2 + 4\,H^+ + 4\,e^- \longrightarrow 2\,H_2O$$

4.3 オゾン

化学式: 13203

4.3.1 性質

- (133ニンニク臭((134)特異臭)を持つ(135)淡青色の(136)気体(常温)
- 水に137少し溶ける
- 138殺菌・139脱臭作用

オゾンにおける酸素原子の運動・

4.3.2 製法

酸素中で $\boxed{146}$ 無声放電/強い $\boxed{147}$ 紫外線を当てる $3O_2 \longrightarrow 2O_3$

4.3.3 反応

①48酸化剤としての反応

$$O_3 + 2H^+ + 2e^- \longrightarrow O_2 + H_2O$$

湿らせた(149)ヨウ化カリウムでんぷん紙を(150)青色に変色

$$O_3 + 2 KI + H_2O \longrightarrow I_2 + O_2 + 2 KOH$$

4.4 酸化物 4.2 酸素

4.4 酸化物

	塩基性	酸化物	両性質		酸性	酸化物	
元素	(151)	元素	152	元素	153	元素	
水との反応	154)	(155)		156	(157)	
中和	158	と反応	159	と反応	160	と反応	
両性酸化物	. (161)	(162)) ,163	(164)) ,[165	(166)) , <u>167</u>

 $\bigcirc O_2 + H_2O \longrightarrow H_2CO_3$

4.4.1 反応

酸化銅(Ⅱ)と塩化水素

• 酸化アルミニウムと硫酸

• 酸化アルミニウムと水酸化ナトリウム水溶液

4.5 水

4.5.1 性質

• 169 分子

• 周りの4つの分子と170 結合

• 異常に171 沸点

• 172 結晶構造 (密度:固体173 液体)

• 特異な174

4.5.2 反応

• 酸化カルシウムと水

二酸化窒素と水

一版儿至糸C小

)*1

(168)

^{*1} 覚え方:ああすんなり

4.4 酸化物 4 酸素

4.4 酸化物

	塩基性酸化物	両性酸化物	酸性酸化物
元素	151陽性の大きい金属元素	152陽性の小さい金属元素	153非金属元素
水との反応	154 塩基性	(155)ほとんど溶けない	(156)酸性 (157)オキソ酸)
中和	(158)酸と反応	159酸・塩基と反応	160 <mark>塩基</mark> と反応

両性酸化物 · · · [61]アルミニウム (162]Al) ,163 亜鉛 (164]Zn) ,165]スズ (166]Sn) ,167)鉛 (168]Pb) *1

 $\bigcirc O_2 + H_2O \longrightarrow H_2CO_3$

 $\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$

 $\bigcirc 3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$

4.4.1 反応

酸化銅(Ⅱ)と塩化水素
 CuO + 2 HCl → CuCl₂ + H₂O

酸化アルミニウムと硫酸
 Al₂O₃ + 3 H₂SO₄ → Al₂(SO₄)₃ + 3 H₂O

• 酸化アルミニウムと水酸化ナトリウム水溶液 $Al_2O_3 + 2 NaOH + 3 H_2O \longrightarrow 2 Na[Al(OH)_4]$

4.5 水

4.5.1 性質

- 169 極性分子
- 周りの4つの分子と170水素結合
- 異常に171高い沸点
- 172隙間の多い結晶構造(密度:固体173<液体)
- 特異な174融解曲線

4.5.2 反応

・ 酸化カルシウムと水 CaO + H₂O ---→ Ca(OH)₂

• 二酸化窒素と水

 $3\,NO_2 + H_2O \longrightarrow 2\,HNO_3 + NO$

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

名称	175	硫黄	176	硫黄	(177)	硫黄
化学式	178		(179)		(180)	
色	(181)	色	182	色	(183)	色
構造	184	結晶	185	結晶	(186)	固体
融点	113°C		119°C		不定	
構造	S S S			,,,,S S		
CS ₂ との反応	(187)		(188)		(189)	

CS₂··· 無色・芳香性・揮発性 ⇒ 190 触媒

5.1.2 反応

• 高温で多くの金属 (Au, Pt を除く) と反応

例Fe

空気中で191 色の炎を上げて燃焼

5.2 硫化水素

化学式: 192

5.2.1 性質

• 193 色194 臭

• 195 性 $\begin{cases} 196 & K_1 = 9.5 \times 10^{-8} \; \mathrm{mol/L} \\ 197 & K_2 = 1.3 \times 10^{-14} \; \mathrm{mol/L} \end{cases}$

198 剤としての反応

重金属イオン M²⁺ と(199)
 を生成

5.2.2 製法

• 硫化鉄(II)と希塩酸

• 硫化鉄 (II) と希硫酸

5.2.3 反応

• 硫化水素とヨウ素

酢酸鉛(Ⅱ)水溶液と硫化水素(200) の検出)

5 硫黄

5.1 硫黄

5.1.1 性質

名称	175斜方硫黄	176単斜硫黄	(177)ゴム状硫黄
化学式	178 <mark>S</mark> 8	179 <mark>S</mark> 8	180S _x
色	181黄色	182黄色	183 <mark>黄</mark> 色
構造	184塊状結晶	185針状結晶	186不定形固体
融点	113°C	119°C	不定
構造	S S		
CS ₂ との反応	(187)溶ける (188)溶ける		(189)溶けない

CS₂··· 無色・芳香性・揮発性 ⇒ 190 無極性触媒

5.1.2 反応

• 高温で多くの金属(Au, Pt を除く)と反応

例 $Fe Fe + S \longrightarrow FeS$

• 空気中で1911青色の炎を上げて燃焼

 $S + O_2 \longrightarrow SO_2$

5.2 硫化水素

化学式: 192H₂S

5.2.1 性質

• 193無色194腐卵臭

• 195 弱酸性

$$\begin{cases} \boxed{190} \text{H}_2 \text{S} & \rightleftharpoons \text{H}^+ + \text{HS}^- & K_1 = 9.5 \times 10^{-8} \text{ mol/L} \\ \boxed{197} \text{HS}^- & \rightleftharpoons \text{H}^+ + \text{S}^{2-} & K_2 = 1.3 \times 10^{-14} \text{ mol/L} \end{cases}$$

• 198

還元剤としての反応

$$H_2S \longrightarrow S + 2H^+ + 2e^-$$

重金属イオン M²⁺ と 199 難容性の塩を生成

$$M_2^+ + S^{2-} \Longrightarrow MS \downarrow$$

5.2.2 製法

• 硫化鉄(II)と希塩酸

$$FeS + 2 \, HCI \longrightarrow FeCl_2 + H_2S \, \uparrow$$

• 硫化鉄(II)と希硫酸

$$FeS + H_2SO_4 \longrightarrow FeSO_4 + H_2S \uparrow$$

5.2.3 反応

• 硫化水素とヨウ素

$$H_2S + I_2 \longrightarrow S + 2HI$$

 酢酸鉛(II) 水溶液と硫化水素(200H₂Sの検出) (CH₃COO)₂Pb + H₂S → 2 CH₃COOH + PbS↓ 5.3 二酸化硫黄 (亜硫酸ガス)

5.3 二酸化硫黄 (亜硫酸ガス)

化学式:201	電子式:	
- 0 4 14155		

5.3.1 性質

- 202 色、203 臭の204
- ・ 水に205
- 206 性

```
K_1 = 1.4 \times 10^{-2} \text{ mol/L}
```

- 208 剤 (209 作用)
- 210
 剤(211)
 などの強い還元剤に対して)

5.3.2 製法

硫黄や硫化物の②1② 工業的製法
 ②13 と希硫酸
 ②14) と②15

5.3.3 反応

- 二酸化硫黄の水への溶解
- 一酸ル磁帯ト磁ル水素
- 二酸化硫黄と硫化水素
- 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

5.3 二酸化硫黄(亜硫酸ガス) 5 硫黄

5.3 二酸化硫黄 (亜硫酸ガス)

化学式: 201)SO₂ 電子式: : O: S:: O

5.3.1 性質

- 202無色、203刺激臭の204気体
- 水に205溶けやすい
- 206 弱酸性

$$207SO_2 + H_2O \Longrightarrow H^+ + HSO_3^ K_1 = 1.4 \times 10^{-2} \text{ mol/L}$$

• 208 還元剤 (209 漂白作用)

$$SO_2 + 2H_2O \longrightarrow SO_4^{2-} + 4H^+ + 2e^-$$

②10酸化剤(②11)H₂Sなどの強い還元剤に対して)

$$SO_2 + 4\,H^+ + 4\,e^- \longrightarrow S + 2\,H_2O$$

5.3.2 製法

硫黄や硫化物の212燃焼 工業的製法

$$2 H_2 S + 3 O_2 \longrightarrow 2 SO_2 + 2 H_2 O$$

• **213** 亜硫酸ナトリウムと希硫酸

$$\mathsf{Na}_2\mathsf{SO}_3 + \mathsf{H}_2\mathsf{SO}_4 \xrightarrow{\quad \quad \ } \mathsf{Na}_2\mathsf{SO}_4 + \mathsf{SO}_2 \uparrow + \mathsf{H}_2\mathsf{O}$$

• 214銅と215熱濃硫酸

$$Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2H_2O$$

5.3.3 反応

• 二酸化硫黄の水への溶解

$$SO_2 + H_2O \longrightarrow H_2SO_3$$

• 二酸化硫黄と硫化水素

$$SO_2 + 2H_2S \longrightarrow 3S + 2H_2O$$

• 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

$$2 \text{ KMnO}_4 + 5 \text{ SO}_2 + 2 \text{ H}_2 \text{O} \longrightarrow 2 \text{ MnSO}_4 + 2 \text{ H}_2 \text{SO}_4 + \text{K}_2 \text{SO}_4$$

5 硫黄 5.4 硫酸

5.4 硫酸

5.4.1 性質

- 216 色217 臭の218
- ・水に219
- 溶解熱が220
- (221) を加えて希釈
- 222 性で密度が223 く、224 が大きい 濃硫酸
- 225 性·226 作用 **濃硫酸**
- 227 希硫酸

(228 $K_1 > 10^8 \text{mol/L}$

- 濃硫酸 (230 、231) の濃度が小さい)
- 232 剤として働く 熱濃硫酸

)、236 ,235 • 233 (234) と難容性の塩を生 成 希硫酸

5.4.2 製法

5.4.3 反応

• 硝酸カリウムに濃硫酸を加えて加熱

• スクロースと濃硫酸

• 水酸化ナトリウムと希硫酸

• 銅と熱濃硫酸

• 銀と熱濃硫酸

• 塩化バリウム水溶液と希硫酸

5.5 チオ硫酸ナトリウム (ハイポ)

化学式: 241

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- 244 剤として反応 例水道水の脱塩素剤(カルキ抜き) (245)

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

5.4 硫酸 5 硫黄

5.4 硫酸

5.4.1 性質

- ②16無色②17無臭の②18液体
- 水に219非常によく溶ける
- 溶解熱が220非常に大きい
- (221)水に濃硫酸を加えて希釈
- ②222不揮発性で密度が②223大きく、②224粘度が大きい 濃硫酸
- 225 吸湿性 · 226 脱水作用 濃硫酸
- 227 強酸性 希硫酸

 $\left(\begin{array}{ccc} 228 \text{H}_2 \text{SO}_4 & \Longrightarrow \text{H}^+ + \text{HSO}_4^- & K_1 > 10^8 \text{mol/L} \end{array}\right)$

- ②29弱酸性 濃硫酸 (②30水が少なく、②31)H₃O⁺ の濃度が 小さい)
- ②32)酸化剤として働く 熱濃硫酸

 $H_2SO_4 + 2H^+ + 2e^- \longrightarrow SO_2 + 2H_2O$

233アルカリ性土類金属 (234Ca,235Be)、236Pb と難容性の塩を生成 希硫酸

5.4.2 製法

237接触法 工業的製法

1. 黄鉄鉱 FeS₂ の燃焼

$$\label{eq:solution} \begin{split} \text{4 FeS}_2 + \text{11 O}_2 & \longrightarrow \text{2 Fe}_2\text{O}_3 + \text{8 SO}_2 \\ & (\mathrm{S} + \mathrm{O}_2 & \longrightarrow \mathrm{SO}_2) \end{split}$$

2. ②38酸化バナジウム触媒で酸化

 $2 SO_2 + O_2 \xrightarrow{V_2O_5} 2 SO_3$

3. 239濃硫酸に吸収させて240発煙硫酸とした後、希 硫酸を加えて希釈

 $SO_3 + H_2O \longrightarrow H_2SO_4$

5.4.3 反応

• 硝酸カリウムに濃硫酸を加えて加熱

 $KNO_3 + H_2SO_4 \longrightarrow HNO_3 + KHSO_4$

• スクロースと濃硫酸

 $C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12C + 11H_2O$

• 水酸化ナトリウムと希硫酸

 $H_2SO_4 + 2 NaOH \longrightarrow Na_2SO_4 + 2 H_2O$

• 銅と熱濃硫酸

 $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2H_2O$

• 銀と熱濃硫酸

 $2 \text{ Ag} + 2 \text{ H}_2 \text{SO}_4 \longrightarrow \text{Ag}_2 \text{SO}_4 + \text{SO}_2 + 2 \text{ H}_2 \text{O}$

塩化バリウム水溶液と希硫酸
 BaCl₂ + H₂SO₄ → BaSO₄ ↓ + 2 HCl

5.5 チオ硫酸ナトリウム (ハイポ)

化学式: 241 Na₂S₂O₃

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- ②44)還元剤として反応

例水道水の脱塩素剤 (カルキ抜き)

 $2452 S_2 O_3^{2-} \longrightarrow S_4 O_6 + 2 e^{-}$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱

 $n Na_2SO_3 + S_n \longrightarrow n Na_2S_2O_3$

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

 $I_2 + 2 \text{Na}_2 \text{S}_2 \text{O}_3 \longrightarrow 2 \text{NaI} + \text{Na}_2 \text{S}_4 \text{O}_6$

5.6 重金属の硫化物

 258
 塩の溶解度積 (K_{sp})
 259

6 窒素

6.1 窒素

化学式: N_2

6.1.1 性質

- 260 色261 臭の262
- 空気の 78% を占める
- 水に溶け263 (264 分子)
- 常温で265 (食品などの266)
- 高エネルギー状態 (267) ・268) では反応

6.1.2 製法

- 269工業的製法
- 270 Ø271

6.1.3 反応

• 窒素と酸素

6.2 アンモニア

化学式: 272

6.2.1 性質

- 273 色274 臭の275
- 276 結合
- 水に277 (278 置換)
- 279 性 $\begin{pmatrix} 280 \\ K_1 = 1.7 \times 10^{-5} \text{ mol/L} \end{pmatrix}$
- 281 の検出
- 高温・高圧で二酸化炭素と反応して、282 を生成

6.2.2 製法

283工業的製法

• 288	と289	を混ぜて加熱	

温285 圧で、286 (287)触媒

6.2.3 反応

(284)

- 硫酸とアンモニア
- 塩素の検出
- アンモニアと二酸化炭素

6.3 一酸化二窒素(笑気ガス)

化学式: 290

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- 291 効果

6.3.2 製法

②92 の熱分解

6.4 一酸化窒素

化学式: 293

6.4.1 性質

- 294 色295 臭の296
- 中性で水に溶けにくい
- 空気中では297 とすぐに反応
- 血管拡張作用・神経伝達物質

6.4.2 製法

298 と**299**

5.6 重金属の硫化物

酸性でも沈澱(全液性で沈澱)				中性・	塩基性で洗	ヱ澱(酸性で	ごは溶解)		
Ag ₂ S	HgS	CuS	PbS	SnS	CdS	NiS	FeS	ZnS	MnS
246 黒色	247 黒色	248黑色	249黒色	250褐色	251 黒色	252黒色	253黒色	254 白色	255淡赤色

256)任

イオン化傾向

(257) 高

②58極小 塩の溶解度積 (K_{sp})

259<mark>/</mark>/\

6 窒素

6.1 窒素

化学式:N2

6.1.1 性質

- 260無色261無臭の262気体
- 空気の 78% を占める
- 水に溶け263にくい(264無極性分子)
- 常温で265不活性(食品などの266)酸化防止)
- 高エネルギー状態(267高温・268放電)では反応

6.1.2 製法

- 269液体窒素の分留 **工業的製法**
- 270亜硝酸アンモニウムの271熱分解 $NH_4NO_2 \longrightarrow N_2 + 2H_2O$

6.1.3 反応

• 窒素と酸素

$$\label{eq:N2+2O2} \mathsf{N_2} + 2\,\mathsf{O_2} \longrightarrow 2\,\mathsf{NO}_2 \left\{ \begin{array}{c} \mathsf{N_2} + \mathsf{O_2} \longrightarrow 2\,\mathsf{NO} \\ 2\,\mathsf{NO} + \mathsf{O_2} \longrightarrow 2\,\mathsf{NO}_2 \end{array} \right.$$

• 窒素とマグネシウム $3\,Mg + N_2 \longrightarrow Mg_3N_2$

6.2 アンモニア

化学式: 272NH3

6.2.1 性質

- 273無色274刺激臭の275気体
- 276水素結合
- 水に277非常によく溶ける(278上方置換)
- 279 塩基性

$$\left(\begin{array}{c} 280 \text{NH}_3 + \text{H}_2\text{O} \Longrightarrow \text{NH}_4^+ + \text{OH}^- \\ K_1 = 1.7 \times 10^{-5} \text{ mol/L} \end{array} \right)$$

- (281)塩素の検出
- 高温・高圧で二酸化炭素と反応して、**282**尿素を生成

6.2.2 製法

283ハーバーボッシュ法 工業的製法

284低温285高圧で、286四酸化三鉄(287Fe₃O₄)触媒 $N_2 + 3 H_2 \Longrightarrow 2 NH_3$

• 288塩化アンモニウムと289水酸化カルシウムを混ぜて 加熱

 $2 \text{ NH}_4 \text{CI} + \text{Ca(OH)}_2 \longrightarrow 2 \text{ NH}_3 \uparrow + \text{CaCl}_2 + 2 \text{ H}_2 \text{O}$

6.2.3 反応

• 硫酸とアンモニア

 $2 NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$

塩素の検出

NH₃ + HCl → NH₄Cl↓

• アンモニアと二酸化炭素 $2 NH_3 + CO_2 \longrightarrow (NH_2)_2CO + H_2O$

6.3 一酸化二窒素(笑気ガス)

化学式: 290N₂O

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- (291)麻酔効果

6.3.2 製法

292 硝酸アンモニウムの熱分解

 $NH_4NO_3 \longrightarrow N_2O + 2H_2O$

6.4 一酸化窒素

化学式: 293NO

6.4.1 性質

- 294無色295無臭の296気体
- 中性で水に溶けにくい
- 空気中では297酸素とすぐに反応
- 血管拡張作用·神経伝達物質

6.4.2 製法

298銅と299希硝酸

 $3\,Cu + 8\,HNO_3 \longrightarrow 3\,Cu(NO_3)_2 + 2\,NO + 4\,H_2O$

6.5 二酸化窒素 6 窒素

6.4.3 反応
酸素と反応
6.5 二酸化窒素
化学式: 300
6.5.1 性質
• 301 色302 臭の303
• 水と反応して304 性(305 の原因)
• 常温では306 (307 色) と308
■ 140°C 以上で熱分解
6.5.0 制注
6.5.2 製法
309 <u>2</u> 310
6.6 硝酸
化学式: ③11
6.6.1 性質
• 312 色313 臭で314 性の315
水に316
• <u>317</u> 性
(318) $K_1 = 6.3 imes 10^1 ext{mol/L}$
• 319 に保存(320)
321 剤としての反応 希硝酸
322 剤としての反応 濃硝酸
ALC C CONCAL MENTION
) by the term of the state of t
イオン化傾向が小さい Cu、Hg、Ag も溶解
• 323 ,324 ,325 ,326 ,327 li 328 h
生じて不溶に濃硝酸
=329
• <u>330</u> (<u>331</u>) :1 <u>332</u> =3:1) は、Pt,Au も溶解
• NO ₃ - は 333 → 334 で検出
6.6.2 製法
• 335
1. 336 触媒で337 を338
1. (22) 1,44,77 (221) (222)
2 (00)
2. 339

	3. ③40 と反応
•	341 に342 を加えて加熱
6.6.3	反応
•	アンモニアと硝酸
	THE COLUMN AT
•	硝酸の光分解
•	亜鉛と希硝酸
•	銀と濃硝酸

6.5 二酸化窒素 6 窒素

6.4.3 反応

酸素と反応

 $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$

6.5 二酸化窒素

化学式: 300NO₂

6.5.1 性質

- 301赤褐色302刺激臭の303気体
- 水と反応して304強酸性(305酸性雨の原因)
- 申温では300四酸化二窒素(307無色)と308平衡状態
 2NO₂ ⇒ N₂O₄
- 140°C 以上で熱分解 $2NO_2 \longrightarrow 2NO + O_2$

6.5.2 製法

309銅と310濃硝酸

 $Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + 2 H_2O$

6.6 硝酸

化学式: 311HNO₃

6.6.1 性質

- 312無色(313)刺激臭で(314)揮発性の(315)液体
- 水に316よく溶ける
- 317強酸性

 $\left(\text{ 318HNO}_3 \rightleftharpoons \text{H}^+ + \text{NO}_3^- \quad K_1 = 6.3 \times 10^1 \text{mol/L} \right)$

- 319褐色瓶に保存(320光分解)
- 321酸化剤としての反応 **希硝酸**

$$HNO_3 + H^+ + e^- \longrightarrow NO_2 + H_2O$$

322酸化剤としての反応 濃硝酸

$$HNO_3 + 3H^+ + 3e^- \longrightarrow NO + 2H_2O$$

- イオン化傾向が小さい Cu、Hg、Ag も溶解
- 323AI,324Cr,325Fe,326Co,327Ni は328酸化皮膜が生じて不溶 濃硝酸

=329不動態

- 330王水 (331濃塩酸:1332濃硝酸=3:1) は、Pt,Au も 溶解
- NO₃ は333沈殿を作らない ⇒ 334褐輪反応で検出

6.6.2 製法

335オストワルト法

$$NH_3 + 2O_2 \longrightarrow HNO_3 + H_2O$$

1. (336)白金触媒で(337)アンモニアを(338)酸化 $4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$

2. 339空気酸化

$$2 NO + O_2 \longrightarrow 2 NO_2$$

3. 340水と反応

$$3 NO_2 + H_2O \longrightarrow 2 HNO_3 + NO$$

③41)硝酸塩に③42)濃硫酸を加えて加熱

$$NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3 \uparrow$$

6.6.3 反応

• アンモニアと硝酸

$$NH_3 + HNO_3 \longrightarrow NH_4NO_3$$

• 硝酸の光分解

$$4 \text{ HNO}_3 \xrightarrow{\%} 4 \text{ NO}_2 + 2 \text{ H}_2 \text{O} + \text{O}_2$$

• 亜鉛と希硝酸

$$Zn + 2HNO_3 \longrightarrow Zn(NO_3)_2 + H_2 \uparrow$$

• 銀と濃硝酸

$$Ag + 2HNO_3 \longrightarrow AgNO_3 + H_2O + NO_2 \uparrow$$

7 リン

7.1 リン

7.1.1 性質

三種類の同343 体がある

二国際の同じ	IT 10 40 5			
名称	344 リン	345 リン	黒リン	
化学式	346	347)	P_4	
融点	44°C	590°C*2	610°C	
発火点	35°C	260°C		
光八点	③48 に保存	349	-	
密度	$1.8\mathrm{g/cm^3}$	$2.16 \mathrm{g/cm^3}$	$2.7 \mathrm{g/cm^3}$	
毒性	350	351	352	
構造	PPP	P = P P P P P P	略	
CS ₂ への溶解	353	354)	355	

7.1.2 製法

- リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 黄リン 工業的製法
- 空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200° C、 1.2×10^{9} Pa で加熱 **黒リン**

7.2 十酸化四リン

化学式: 356

7.2.1 性質

- 白色で昇華性のある固体
- 357 (水との親和性が358)
- 乾燥剤
- 水を加えて加熱すると反応(359)

7.2.2 製法

(360)

7.2.3 反応

水を加えて加熱

7.3 リン酸

化学式:361

7.3.1 性質

362

 $K_1 = 7.5 \times 10^{-3} \text{ mol/L}$

7.3.2 反応

- リン酸と水酸化カルシウムの完全中和
- リン酸カルシウムとリン酸が反応して重過リン酸石灰が 生成
- リン酸カルシウムと硫酸が反応して過リン酸石灰が生成

7 リン

7.1 リン

7.1.1 性質

三種類の同343素体がある

名称	344黄リン	345 赤リン	黒リン	
化学式	346P ₄	347 P _x	P_4	
融点	44°C	590°C*2	610°C	
発火点	35°C	260°C		
光八派	③48水中に保存	349マッチの側薬	_	
密度	$1.8 \mathrm{g/cm^3}$	$2.16 \mathrm{g/cm^3}$	$2.7\mathrm{g/cm^3}$	
毒性	350猛毒	351微毒	352微毒	
構造	PPP	P = P $P = P$ $P = P$	略	
CS ₂ への溶解	③53 溶ける	354)溶けない	③55)溶けない	

7.1.2 製法

- リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 <u>黄リン</u> <u>工業的製法</u>
 2 Ca₃(PO₄)₂ + 6 SiO₂ + 10 C → 6 CaSiO₃ + 10 CO + P₄
- 空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200° C、 1.2×10^{9} Pa で加熱 **黒リン**

7.2 十酸化四リン

化学式: 356P₄O₁₀

7.2.1 性質

- 白色で昇華性のある固体
- 357潮解性(水との親和性が358非常に高い)
- 乾燥剤
- 水を加えて加熱すると反応(359加水分解)

7.2.2 製法

360リンの燃焼

 $P_4 + 5 O_2 \longrightarrow P_4 O_{10}$

7.2.3 反応

水を加えて加熱

 $P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4$

7.3 リン酸

化学式: 361H₃PO₄

7.3.1 性質

362中酸性

 $363H_3PO_4 \rightleftharpoons H^+ + H_2PO_4^- \qquad K_1 = 7.5 \times 10^{-3} \text{ mol/L}$

7.3.2 反応

- リン酸カルシウムとリン酸が反応して重過リン酸石灰が 生成

 $Ca_3(PO_4)_2 + 4H_3PO_4 \longrightarrow 3Ca(H_2PO_4)_2$

• リン酸カルシウムと硫酸が反応して過リン酸石灰が生成 $Ca_3(PO_4)_2 + 2H_2SO_4 \longrightarrow Ca(H_2PO_4)_2 + 2CaSO_4$

8 炭素

8.1 炭素

8.1.1 性質

炭素の同364 体

- (365)
- 366 (367)
- 無定形炭素

用途 顔料・脱臭剤 (活性炭)

黒色で、黒鉛の美結晶が不規則に集合。電気伝導性を示す。

• 368

用途 医療・材料分野での応用

黒褐色で、60個の炭素原子がサッカーボール状につながった分子結晶。電気伝導性を示さない。

グラフェン

用途半導体材料への応用

黒鉛の平面性六角形状の層のうち一層だけを取り出したもの。電気伝導性を示す。

カーボンナノチューブ

用途 水素吸蔵・電池電極への応用

グラフェンを円筒状に巻いたもの。電気伝導性を示す。

名称	369	370
特徴	(371) 色(372) で屈折率が大きい固体	373 色で374 がある固体
密度	$3.5\mathrm{g/cm^3}$	$2.3 \mathrm{g/cm^3}$
構造	375 方向の376 結晶	377 構造 (378)
硬さ	379	380
沸点	(381)	382
電気伝導性	383	(384)
用途	宝石・カッターの刃・研磨剤	鉛筆・電極

8.2 一酸化炭素

化学式: 385

C, O 電子の持つ(391) による効果 C=O 間の(392) の差による効果 C = O

8.2.1 性質

- 394 色395 臭で396 な気体
- 赤血球のヘモグロビンの397 に対して強い398
- 399 性で水に溶け400 。(401 置換)
- 402 性、高温で403 性(404 との親和性が非常に高い)

8.2.2 製法

• 405 に406 を吹き付ける **工業的製法**

8 炭素

8.1 炭素

8.1.1 性質

炭素の同364素体

- 365ダイアモンド
- 366黒鉛 (367グラファイト)
- 無定形炭素

用途 顔料・脱臭剤 (活性炭)

黒色で、黒鉛の美結晶が不規則に集合。電気伝導性を示す。

• 368フラーレン

用途 医療・材料分野での応用

黒褐色で、60個の炭素原子がサッカーボール状につながった分子結晶。電気伝導性を示さない。

グラフェン

用途半導体材料への応用

黒鉛の平面性六角形状の層のうち一層だけを取り出したもの。電気伝導性を示す。

カーボンナノチューブ

用途 水素吸蔵・電池電極への応用

グラフェンを円筒状に巻いたもの。電気伝導性を示す。

名称	369ダイアモンド	370黒鉛
特徴	(371)無色(372)透明で屈折率が大きい固体	(373)黒色で(374)光沢がある固体
密度	$3.5 \mathrm{g/cm^3}$	$2.3 \mathrm{g/cm^3}$
構造	375正四面体方向の376共有結合結晶	(377)ズレた層状構造 (378)ファンデルワールスカ)
硬さ	379非常に硬い	380軟らかい
沸点	381高い	382高い
電気伝導性	383なし	<u>384</u> あり
用途	宝石・カッターの刃・研磨剤	鉛筆・電極

8.2 一酸化炭素

化学式: 385CO

C, O 電子の持つ<mark>391)電荷</mark>による効果

CO の極性は**393小さい**

C≡О間の392電気陰性度の差による効果

8.2.1 性質

- 394無色395無臭で396有毒な気体
- 赤血球のヘモグロビンの③97Fe²⁺ に対して強い③98酸化結合
- 399中性で水に溶け400にくい。(401水上置換)
- 402 可燃性、高温で403 還元性 (404 鉄 との親和性が非常に高い)

8.2.2 製法

 405赤熱したコークスに406水蒸気を吹き付ける 工業的製法 C+H₂O → CO+H₂ 8.3 二酸化炭素 9 ケイ素

• 炭素の407

8.2.3 反応

• 燃焼

$$CO + O_2 \longrightarrow 2 CO_2$$

鉄の精錬

8.3 二酸化炭素

8.3.1 性質

- 412 色(413) 臭で(414) 性(固体は(415))
- 大気の 0.04% を占める
- ・水に416
- 417 性 $\left(\begin{array}{cc} 418 & \text{ } & \text{ } \\ & \left(\begin{array}{cc} 418 & & K_1 = 4.3 \times 10^{-7} \text{ } \text{mol/L} \end{array} \right) \end{array} \right)$

8.3.2 製法

419 を強熱 工業的製法
 420 と 421
 422 の熱分解

8.3.3 反応

• 二酸化炭素と水酸化ナトリウム

9 ケイ素

9.1 ケイ素

9.1.1 性質

- 426 色で427 がある428 結晶
- 429

8.3 二酸化炭素 9 ケイ素

炭素の407不完全燃焼

$$2\,C + O_2 \longrightarrow 2\,CO$$

408 ギ酸に409 濃硫酸を加えて加熱

HCOOH
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 CO \uparrow + H₂O

• 410シュウ酸に411濃硫酸を加えて加熱

$$(COOH)_2 \longrightarrow CO + CO_2 + H_2O$$

8.2.3 反応

燃焼

$$CO + O_2 \longrightarrow 2CO_2$$

鉄の精錬

$$\begin{aligned} \text{Fe}_2 \text{O}_3 + 3 \, \text{CO} & \longrightarrow 2 \, \text{Fe} + 3 \, \text{CO}_2 \, \left\{ \begin{array}{c} \text{Fe}_2 \text{O}_3 + \text{CO} & \longrightarrow 2 \, \text{FeO} + \text{CO}_2 \\ \text{FeO} + \text{CO} & \longrightarrow \text{Fe} + \text{CO}_2 \, \times 2 \end{array} \right. \end{aligned}$$

8.3 二酸化炭素

8.3.1 性質

- 412無色413無臭で414昇華性 (固体は415ドライアイス)
- 大気の 0.04% を占める
- 水に416少し溶ける
- 417 弱酸性

8.3.2 製法

• 419炭酸カルシウムを強熱 **工業的製法**

$$CaCO_2 \longrightarrow CaO + CO_2$$

• 420希塩酸と421石灰石

$$CaCO_3 + 2HCI \longrightarrow CaCl_2 + H_2O + CO_2$$

422炭酸水素ナトリウムの熱分解

$$2 \text{ NaHCO}_3 \longrightarrow \text{Na}_2 \text{CO}_3 + \text{CO}_2 + \text{H}_2 \text{O}$$

8.3.3 反応

• 二酸化炭素と水酸化ナトリウム

$$CO_2 + 2 NaOH \longrightarrow Na_2CO_3 + H_2O$$

• 423 石灰水に通じると424 白濁しさらに通じると425 白濁が消える

$$Ca(OH)_2 + CO_2 \Longrightarrow CaCO_3 \downarrow + H_2O$$

 $CaCO_3 + CO_2 + H_2O \Longrightarrow Ca(HCO_3)_2$

9 ケイ素

9.1 ケイ素

9.1.1 性質

- 426灰色で427光沢がある428共有結合結晶
- 429硬いがもろい
- 430半導体に使用 (高純度のケイ素)*3

 $^{*^3}$ $6N\cdots$ 太陽電池用、 $11N\cdots$ 集積回路用

9.2 二酸化ケイ素 9 ケイ素

430 に使用(高純度のケイ素)*3
 高温にしたり微小の他電子を添加すると電気伝導性が431 (金属は高温で電気伝導性が432)

9.1.2 製法

9.2 二酸化ケイ素

化学式: 437

9.2.1 性質

- 438 色(439 の(440 結晶
- 441
- 地球の近く中に多く存在(ケイ砂、石英、水晶)
- 442 酸化物
- 443 (444) ・吸着剤)の生成に用いられる
 多孔質、適度な数の(445)

9.2.2 反応

•	446	と反応					
•	447	と反応					
•	448	や449	がガラスを	侵す反応	(450)	の生成)	
•	451	と 452	から453	の白色ゲ	ル状沈涛	費が生じる反	え応
•	454	を加熱し	てシリカゲル	を得る反応	芯		
					(0 < n	(2.0)	

 $^{^{*3}}$ $6N\cdots$ 太陽電池用、 $11N\cdots$ 集積回路用

9.2 二酸化ケイ素 9. ケイ素 9. ケイ素

高温にしたり微小の他電子を添加すると電気伝導性が4311上昇(金属は高温で電気伝導性が4322降下)

9.1.2 製法

 433ケイ砂と434一酸化炭素を混ぜて強熱 工業的製法 SiO₂ + 2 C → Si + 2 CO

 435ケイ砂と436マグネシウム粉末を混ぜて加熱 SiO₂ + 2 Mg → Si + 2 MgO

9.2 二酸化ケイ素

化学式: 437 SiO₂

9.2.1 性質

- 438無色439透明の440共有結合結晶
- 441硬い
- 地球の近く中に多く存在(ケイ砂、石英、水晶)
- 442酸性酸化物
- ④43シリカゲル(④44乾燥剤・吸着剤)の生成に用いられる
 多孔質、適度な数の④45ヒドロキシ基

9.2.2 反応

446フッ化水素と反応

 $SiO_2 + 4HF \longrightarrow SiF_4 \uparrow + 2H_2O$

447フッ化水素酸と反応

 $SiO_2 + 6HF \longrightarrow H_2SiF_6 \uparrow + 2H_2O$

• 448水酸化ナトリウムや449炭酸ナトリウムがガラスを侵す反応 (450水ガラスの生成)

```
SiO_2 + 2 NaOH \longrightarrow Na_2SiO_3 + H_2O

SiO_2 + Na_2CO_3 \longrightarrow Na_2SiO_3 + CO_2
```

• 451水ガラスと452塩酸から453ケイ酸の白色ゲル状沈澱が生じる反応

```
NaSiO_3 + 2HCI \longrightarrow H_2SiO_3 \downarrow + 2NaCI
```

• **454**ケイ酸を加熱してシリカゲルを得る反応

$$H_2SiO_3 \xrightarrow{\Lambda} SiO_2 \cdot n H_2O + (1-n)H_2O (0 < n < 1)$$

シリカゲル生成過程での構造変化

1.	二酸化ケイ素	(シリカ)	SiO_2

2. ケイ酸ナトリウム Na_2SiO_3

3. ablaイ酸 $SiO_2 \cdot n H_2O \ (0 \leq n \leq 1)$

. <u>ンリル</u>	$7 \times 510_2 \cdot n$	H_2O $(n \ll$	1)	

9 ケイ素

9.2 二酸化ケイ素 9.2 ケイ素

シリカゲル生成過程での構造変化

1. 二酸化ケイ素 (シリカ) SiO₂

2. ケイ酸ナトリウム Na₂SiO₃

3. rowall Triangle Triangl

4. シリカゲル $SiO_2 \cdot n H_2O$ $(n \ll 1)$

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で455 金属
- 全体的に反応性が高く、456 中に保存
- 原子一個あたりの自由電子が457 個(458 い459) 結合)
- 還元剤として反応

100/11/11/0	- // U

化学式	Li	Na	K	Rb	Cs		
融点	181°C	98°C	64°C	39°C	28°C		
密度	0.53	0.97	0.86	1.53	1.87		
構造	460 格子(461)						
イオン化エネルギー	大						
反応力	小 大						
炎色反応	462 色	463 色	464 色	465 色	466 色		
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池 年代測定	光電管 電子時計 (一秒の基準)		

10.1.2 製法

水酸化物や塩化物の467 (468)

法) 工業的製法

469 添加(470

10.1.3 反応

• ナトリウムと酸素

• ナトリウムと塩素

• ナトリウムと水

10.2 水酸化ナトリウム (苛性ソーダ)

化学式: 471

10.2.1 性質

- (472) 色の固体
- 473 性
- 水によくとける (水との親和性が474)
- 475 剤
- 強塩基性

 $K_1 = 1.0 \times 10^{-1} \text{mol/L}$

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で455柔らかい金属
- 全体的に反応性が高く、456灯油中に保存
- 原子一個あたりの自由電子が4571個(458弱い459金属結合)
- 還元剤として反応

 $M \longrightarrow M^+ + e^-$

化学式	Li	Na	K	Rb	Cs			
融点	181°C	98°C	64°C	39°C	28°C			
密度	0.53	0.97	0.86	1.53	1.87			
構造	(460)体心立方格子((461)軽金属)							
イオン化エネルギー	大							
反応力	小 大							
炎色反応	462赤色	463 黄色	464赤紫色	465 深赤色	466青紫色			
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池 年代測定	光電管 電子時計 (一秒の基準)			

10.1.2 製法

水酸化物や塩化物の467溶融塩電解(468ダウンズ法)工業的製法

469CaCl₂添加(470凝固点降下)

 $2 \text{ NaCl} \longrightarrow 2 \text{ Na} + \text{Cl}_2 \uparrow$

10.1.3 反応

• ナトリウムと酸素

 $4\,\text{Na} + \text{O}_2 \longrightarrow 2\,\text{Na}_2\text{O}$

• ナトリウムと塩素

 $2\,\text{Na} + \text{Cl}_2 \longrightarrow 2\,\text{NaCl}$

• ナトリウムと水

 $2 \text{ Na} + 2 \text{ H}_2 \text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2 \uparrow$

10.2 水酸化ナトリウム (苛性ソーダ)

化学式: 471 NaOH

10.2.1 性質

- 472白色の固体
- 473 潮解性
- 水によくとける (水との親和性が474)<mark>非常に高い</mark>)
- 475乾燥剤
- 強塩基性

 $\left(\begin{array}{c} 476\text{NaOH} \Longrightarrow \text{Na}^{+} + \text{OH}^{-} & K_{1} = 1.0 \times 10^{-1} \text{mol/L} \end{array}\right)$

•	空気中の477	と反応	びして、	純度が不明	
	酸の標準溶液	(478)) を月	引いた中和滴定で	で濃度決定

10.2.2 製法

(イオン交換膜法) **工業的製法**

10.2.3 反応

- 塩酸と水酸化ナトリウム
- 塩素と水酸化ナトリウム
- 二酸化硫黄と水酸化ナトリウム
- 酸化亜鉛と水酸化ナトリウム水溶液
- 二酸化炭素と水酸化ナトリウム

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナトリウム	炭酸水素ナトリウム
化学式	(481)	482
色	483 色	484 色
融点	850°C	485
液性	486 性	487 性
用途	488 や石鹸の原料	胃腸薬・ふくらし粉

空気中の477二酸化炭素と反応して、純度が不明酸の標準溶液(478シュウ酸)を用いた中和滴定で濃度決定 (COOH)₂ + 2 NaOH → (COONa)₂ + 2 H₂O)

10.2.2 製法

(479水酸化ナトリウム水溶液の(480)電気分解(イオン交換膜法) 工業的製法 2 NaCl + 2 H $_2$ O \longrightarrow 2 NaOH + H $_2$ ↑ + Cl $_2$ ↑

10.2.3 反応

- 塩酸と水酸化ナトリウム $HCI + NaOH \longrightarrow NaCI + H_2O$
- 塩素と水酸化ナトリウム $2 \text{ NaOH} + \text{Cl}_2 \longrightarrow \text{NaCI} + \text{NaCIO} + \text{H}_2\text{O}$
- 二酸化硫黄と水酸化ナトリウム
 SO₂ + 2 NaOH → Na₂SO₃ + H₂O
- 酸化亜鉛と水酸化ナトリウム水溶液 $ZnO+2 NaOH+H_2O \longrightarrow Na_2[Zn(OH)_4]$
- 二酸化炭素と水酸化ナトリウム
 2 NaOH + CO₂ → Na₂CO₃ + H₂O

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナトリウム	炭酸水素ナトリウム	
化学式	481Na ₂ CO ₃	482NaHCO ₃	
色	483白色	484 白色	
融点	850°C	485熱分解	
液性	486 塩基性	(487) <mark>弱塩基</mark> 性	
用途	488 ガラスや石鹸の原料	胃腸薬・ふくらし粉	

10.3.2 製法

10.3.3 反応

- Na₂CO₃ 513 $K_1 = 1.8 \times 10^{-4}$
- NaHCO₃ $\begin{cases} \boxed{514} & K_1 = 5.6 \times 10^{-11} \\ \boxed{515} & K_2 = 2.3 \times 10^{-8} \end{cases}$

10.3.2 製法

10.3.3 反応

• Na₂CO₃ 513CO₃²⁻ + H₂O
$$\Longrightarrow$$
 HCO₃⁻ + OH⁻ $K_1 = 1.8 \times 10^{-4}$
• NaHCO₃ $\left\{\begin{array}{ll} 514 \text{HCO}_3^- & \Longrightarrow \text{H}^+ + \text{CO}_3^{\ 2-} & K_1 = 5.6 \times 10^{-11} \\ \hline 515 \text{HCO}_3^- + \text{H}_2\text{O} & \Longrightarrow \text{CO}_2 + \text{OH}^- + \text{H}_2\text{O} & K_2 = 2.3 \times 10^{-8} \end{array}\right.$

11 2 族元素

516 ,517 ,518

11.1 単体

11.1.1 性質

化学式	519	520	521	522	523
融点	1282°C	649°C	839°C	769°C	729°C
密度 (g/cm ³)	1.85	1.74	1.55	2.54	3.59
524 力	小		大		大
水との反応	525	526	527	528	529
M(OH) ₂ の水溶性	530 性 ((531) 性)	532	性 (533)	性)
難溶性の塩	534		535		
炎色反応	536	(537)	538	539	540
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター

11.1.2 製法

塩化物の541 **工業的製法**

11.1.3 反応

•	マグネシウムの燃焼
•	マグネシウムと二酸化炭素
•	カルシウムと水

11.2 酸化カルシウム(生石灰)

化学式: 542

11.2.1 性質

• 543 £

• 544 との親和性が545 (546)

• 547 酸化物

• 水との反応熱が548 (549)

11.2.2 製法

(550) Ø(551)

11.2.3 反応

コークスを混ぜて強熱すると、552 (553)が生成554 と反応して(555) が生成

11 2 族元素

516Be,517Mg,518アルカリ土類金属

11.1 単体

11.1.1 性質

化学式	519 <mark>Be</mark>	520Mg	521Ca	522Sr	523Ba
融点	1282°C	649°C	839°C	769°C	729°C
密度 (g/cm³)	1.85	1.74	1.55	2.54	3.59
524還元力	小 -				+
水との反応	525反応しない	526熱水	527冷水	528冷水	529冷水
M(OH) ₂ の水溶性	530難溶性 (5	31)弱塩基性)	532可溶性	(533)強塩	基性)
難溶性の塩	534MCO ₃		535MCO ₃ , MSO ₄		
炎色反応	536示さない	537示さない	538橙赤	<u>539</u> 紅	540黄緑
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター

11.1.2 製法

塩化物の541溶融塩電解 工業的製法

11.1.3 反応

• マグネシウムの燃焼

 $2\,Mg + O_2 \longrightarrow 2\,MgO$

• マグネシウムと二酸化炭素

 $2 \text{ Mg} + \text{CO}_2 \longrightarrow 2 \text{ MgO} + \text{C}$

• カルシウムと水

 $Ca + 2\,H_2O \longrightarrow Ca(OH)_2 + H_2 \!\uparrow$

11.2 酸化カルシウム(生石灰)

化学式: 542 CaO

11.2.1 性質

- 543 白色
- 544水との親和性が545非常に高い(546乾燥剤)
- 547 塩基性酸化物
- 水との反応熱が548非常に大きい(549加熱剤)

11.2.2 製法

550炭酸カルシウムの(551)熱分解

 $CaCO_3 \longrightarrow CaO + CO_2$

11.2.3 反応

• コークスを混ぜて強熱すると、552炭化カルシウム(553カーバイド)が生成

 $\text{CaO} + 3\,\text{C} \longrightarrow \text{CaC}_2 + \text{CO}\,\!\!\uparrow$

554水と反応して**555アセチレン**が生成

 $CaC_2 + 2H_2O \longrightarrow C_2H_2 \uparrow + Ca(OH)_2$

11.3 水酸化カルシウム (消石灰)

化学式: 556

11.3.1 性質

- 557 色
- 水に558 固体
- 559 (560 $K_1 = 5.0 \times 10^{-2}$)
- 水溶液は561

11.3.2 製法

562 と 563 **工業的製法**

11.3.3 反応

• 塩素と反応して、564 が生成

580°C以上で565

二酸化炭素との反応

• 塩化アンモニウムとの反応

11.4 炭酸カルシウム(石灰石)

化学式:566

11.4.1 性質

- 567 色で、水に568
- 569 の形成

11.4.2 反応

• 800°C 以上で570

<u>671</u> を多く含む水に<u>672</u>

11.5 塩化マグネシウム・塩化カルシウム

化学式: 573 · 574

11.5.1 性質

[575] 性があり、水に[576] (水との親和性が[577])

578 剤 塩化カルシウム、579 剤

11.5.2 製法

- 海水から得た580 を濃縮 塩化マグネシウム 工業的製法
- <u>581</u> (<u>582</u>) <u>塩化カルシウム</u> 工業的製法

11.3 水酸化カルシウム(消石灰)

化学式: 556Ca(OH)2

11.3.1 性質

- 557 白色
- 水に558少し溶ける固体
- 559強塩基 (560Ca(OH)₂ \Longrightarrow Ca(OH)⁺ + OH⁻ $K_1 = 5.0 \times 10^{-2}$)
- 水溶液は561石灰水

11.3.2 製法

[562]酸化カルシウムと[563]水 **工業的製法**

 $CaO + H_2O \longrightarrow Ca(OH)_2$

11.3.3 反応

- 塩素と反応して、564さらし粉が生成 Ca(OH)₂ + Cl₂ → CaCl(ClO) · H₂O
- 580°C 以上で565熱分解

 $Ca(OH)_2 \longrightarrow CaO + H_2O$

• 二酸化炭素との反応

 $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$

• 塩化アンモニウムとの反応

 $2\,\text{NH}_4\text{Cl} + \text{Ca}(\text{OH})_2 \longrightarrow \text{CaCl}_2 + 2\,\text{NH}_3 \uparrow + 2\,\text{H}_2\text{O}$

11.4 炭酸カルシウム(石灰石)

化学式: 566 CaCO3

11.4.1 性質

- 567 白色で、水に568 溶けにくい
- 569鍾乳洞の形成

11.4.2 反応

• 800°C 以上で570熱分解

 $CaCO_3 \longrightarrow CaO + CO_2$

• [571] 二酸化炭素を多く含む水に[572] 溶解

 $CaCO_3 + CO_2 + H_2O \Longrightarrow Ca(HCO_3)_2$

11.5 塩化マグネシウム・塩化カルシウム

化学式: 573MgCl₂·574CaCl₂

11.5.1 性質

<u>575</u>潮解性があり、水に<u>576</u>よく溶ける (水との親和性が<u>577</u>非常に高い)

578乾燥剤 塩化カルシウム、579融雪剤

11.5.2 製法

- 海水から得た580にがりを濃縮 **塩化マグネシウム 工業的製法**
- 581アンモニアソーダ法 (582)ソルベー法) 塩化カルシウム **工業的製法**

11.6 硫酸カルシウム 12 12族元素

11.6 硫酸カルシウム

化学式: 583

11.6.1 性質

[584] を約 150°C で加熱すると、[585] が生成

<u>586</u> を加えると、<u>587</u> ・<u>588</u> ・<u>589</u> して<u>590</u> に戻る

用途 医療用ギプス・石膏像・建材

11.7 硫酸バリウム

化学式: 591

11.7.1 性質

• 592 色で、水に593 固体

反応性が594 く、X線を遮蔽

12 12 族元素

12.1 単体

12.1.1 性質

化学式	595	596	597	
融点	420°C	321°C	−39°C	
密度	7.1	8.6	13.6	
$M^{2+}aq + H_2S$	598 色の599 ↓	600 色の601 ↓	602 色の603 ↓	
(沈澱条件)	(604)	(605)	(606)	
特性	高温の水蒸気と反応	Cd ²⁺ は Ca ²⁺ と類似	607 を作りやすい	
44年	608 元素	⇒ イタイイタイ病	(609)	
用途	610 (鉄にメッキ)	ニカド電池 (Ni-Cd)	体温計・蛍光灯	

- 12族の硫化物は611 や612 に利用
- HgS は 450°C で消火させると**613** 色に変化

12.1.2 製法

関亜鉛鉱を焙焼して得た酸化亜鉛に、コークスを混ぜて加工 **工業的製法**

12.1.3 反応

- 高温の水蒸気と反応 亜鉛
- 塩酸と反応 亜鉛
- 水酸化ナトリウム水溶液と反応 亜鉛

• 小阪にアドリソム小俗似と反心 | | | | | | | | |

11.6 硫酸カルシウム 12 12族元素

11.6 硫酸カルシウム

化学式: 583 CaSO₄

11.6.1 性質

584セッコウを約 150°C で加熱すると、585焼きセッコウが生成

586水を加えると、587発熱・588膨張・589硬化して590セッコウに戻る

 $CaSO_4 \cdot 2 H_2O \stackrel{\Delta}{\underset{\overline{\text{ (d)}}}{\longleftarrow}} CaSO_4 \cdot \frac{1}{2} H_2O + \frac{3}{2} H_2O$

用途 医療用ギプス・石膏像・建材

11.7 硫酸バリウム

化学式: 591 BaSO₄

11.7.1 性質

- 592白色で、水に593ほとんど溶けない固体
- 反応性が594低く、X線を遮蔽

12 12 族元素

12.1 単体

12.1.1 性質

化学式	<u>595</u> Zn	596 <mark>Cd</mark>	(597)Hg
融点	420°C	321°C	−39°C
密度	7.1	8.6	13.6
$M^{2+}aq + H_2S$	598 <u>台</u> 色の599ZnS↓	600黄色の601CdS↓	602黒色の603HgS↓
(沈澱条件)	(604)中塩基性)	(605)全液性)	(606全液性)
特性	高温の水蒸気と反応	Cd ²⁺ は Ca ²⁺ と類似	<u>607</u> 合金を作りやすい
44年	608両性元素	⇒ イタイイタイ病	(609アマルガム)
用途	610トタン(鉄にメッキ)	ニカド電池 (Ni-Cd)	体温計・蛍光灯

- 12 族の硫化物は611 **顔料**や612 染料に利用
- HgS は 450°C で消火させると613赤色に変化

12.1.2 製法

閃亜鉛鉱を焙焼して得た酸化亜鉛に、コークスを混ぜて加工 工業的製法

 $2\,\text{ZnS} + 3\,\text{O}_2 \longrightarrow 2\,\text{ZnO} + 2\,\text{SO}_2$

 $ZnO + C \longrightarrow Zn + CO$

12.1.3 反応

• 高温の水蒸気と反応 **亜鉛**

 $Zn + H_2O \longrightarrow ZnO + H_2 \uparrow$

塩酸と反応 亜鉛

 $Zn + 2HCI \longrightarrow ZnCl_2 + H_2 \uparrow$

• 水酸化ナトリウム水溶液と反応 亜鉛

 $Zn + 2 NaOH + 2 H₂O \longrightarrow Na₂[Zn(OH)₄] + H₂ \uparrow$

12.2 酸化亜鉛 (亜鉛華) · 水酸化亜鉛

化学式: 614 · 615

12.2.1 性質

- 616 色で、水に617 固体
- 酸化亜鉛は618
- 619 酸化物/水酸化物

620 ・(強) 621 と反応 Zn²⁺ は、622 とも623 とも錯イオンを形成

12.2.2 製法

- 亜鉛を燃焼 **工業的製法**酸化亜鉛
- ・ 亜鉛イオンを含む水溶液に、少量の624
 を加える 水酸化亜鉛

12.2.3 反応

• 酸化亜鉛と塩酸

酸化亜鉛と水酸化ナトリウム水溶液

水酸化亜鉛と塩酸

水酸化亜鉛と水酸化ナトリウム水溶液

• 水酸化亜鉛の過剰な625 との反応

12.3 塩化水銀(Ⅱ)・塩化水銀(Ⅱ)

化学式: 626 · 627

12.3.1 性質

- 白色で、水に溶けにくい固体で、微毒 塩化水銀 (I)
- 白色で、水に少し溶ける固体で、猛毒 **塩化水銀 (Ⅱ)**

12.3.2 製法

水酸化銀(II)と水銀の混合物を加熱

13 アルミニウム

13.1 アルミニウム

13.1.1 性質

• 密度が628 、629 金属

12.2 酸化亜鉛(亜鉛華)・水酸化亜鉛

化学式: 614ZnO·615Zn(OH)₂

12.2.1 性質

- 616白色で、水に617とけにくい固体
- 酸化亜鉛は618 顔料
- ⑥19両性酸化物/水酸化物
 ⑥20酸・(強) ⑥21塩基と反応 Zn²⁺ は、⑥22〇H⁻ とも⑥23NH₃ とも錯イオンを形成

12.2.2 製法

• 亜鉛を燃焼 **工業的製法**酸化亜鉛

 $2 Zn + O_2 \longrightarrow 2 ZnO$

• 亜鉛イオンを含む水溶液に、少量の624OH を加える 水酸化亜鉛

 $Zn^{2+} + 2OH^{-} \longrightarrow Zn(OH)_{2} \downarrow$

12.2.3 反応

• 酸化亜鉛と塩酸

 $ZnO + 2HCI \longrightarrow ZnCl_2 + H_2O$

• 酸化亜鉛と水酸化ナトリウム水溶液

 $ZnO + 2 NaOH + H_2O \longrightarrow Na_2[Zn(OH)_4]$

• 水酸化亜鉛と塩酸

 $Zn(OH)_2 + 2HCI \longrightarrow ZnCl_2 + 2H_2O$

• 水酸化亜鉛と水酸化ナトリウム水溶液

 $Zn(OH)_2 + 2 NaOH \longrightarrow Na_2[Zn(OH)_4]$

• 水酸化亜鉛の過剰な**625アンモニア**との反応

 $Zn(OH)_2 + 4NH_3 \longrightarrow [Zn(NH_3)_4](OH)_2$

12.3 塩化水銀(Ⅰ)・塩化水銀(Ⅱ)

化学式: 626Hg₂Cl₂·627HgCl

12.3.1 性質

- 白色で、水に溶けにくい固体で、微毒 塩化水銀 (I)
- 白色で、水に少し溶ける固体で、猛毒 **塩化水銀(II)**

12.3.2 製法

水酸化銀(II)と水銀の混合物を加熱

 $HgCl_2 + Hg \longrightarrow Hg_2Cl_2$

13 アルミニウム

13.1 アルミニウム

13.1.1 性質

密度が628小さく、629やわからかい金属

13.1 アルミニウム 13 アルミニウム

屋枠 な体が600 季 屋 新屋道をが604
・ 展性・延性が630 、電気・熱伝導率が631 電気・熱伝導性が高い金属 ————————————————————————————————————
632 > 633 > 634 > 635
• 636 元素 (637) には638 となり反応しない)
表面の緻密な 639 が内部を保護 $(640$ $,641$ $,642$ $,643$ $,644$ *4)
電気分解(645) 極)で人工的に厚い酸化被膜をつける製品加工(646))
イオン化傾向が647 、648 力が649
• 650 反応 (多量の651) ・652 が発生)
13.1.2 製法
653 から得た(654) (655))の溶融塩電解 工業的製法
• バイヤー法
1. 656 を濃い657 水溶液に溶解
2. 溶解しない不純物をろ過して、ろ液を水で希釈して Al(OH)3 の種結晶を入れる
3. 成長した650 を独然
1. 659 Na ₃ AlF ₆ を融解し、酸化アルミニウムを溶解
VIH FE:
2. 660 電極で電気分解 {
13.1.3 反応
1. アルミニウムの燃焼
2. アルミニウムと高温の水蒸気
3. テルミット反応

*4 てつこに

無機化学 26/41 空欄編

• 展性・延性が630大きく、電気・熱伝導率が631高い

- 電気・熱伝導性が高い金属 ―

632Aq > 633Cu > 634Au > 635Al

630両性元素(637濃硝酸には638不動態となり反応しない)
 表面の緻密な639酸化被膜が内部を保護(640AI,641)Cr,642Fe,643Co,644Ni*4)
 電気分解(645陽極)で人工的に厚い酸化被膜をつける製品加工(646アルマイト)

- イオン化傾向が647大きく、648還元力が649高い
- 650 テルミット反応 (多量の651 熱・652 光が発生)

13.1.2 製法

- 653ボーキサイトから得た654酸化アルミニウム(655)アルミナ)の溶融塩電解 **工業的製法**
- バイヤー法
 - 1. 656ボーキサイトを濃い657水酸化ナトリウム水溶液に溶解 $Al_2O_3 + 2$ NaOH + 3 $H_2O \longrightarrow 2$ Na[Al(OH)₄]
 - 2. 溶解しない不純物をろ過して、ろ液を水で希釈して Al(OH)3 の種結晶を入れる $Na[Al(OH)_4] \longrightarrow NaOH + Al(OH)_3 \downarrow$
 - 成長した658AI(OH)₃ を強熱
 2 AI(OH)₃ → AI₂O₃ + 3 H₂O
- ホールエール法
 - 1. $\overline{659}$ 水晶石 Na_3AlF_6 を融解し、酸化アルミニウムを溶解

2. ⑥⑥ 大素電極で電気分解
$$\left\{ egin{array}{ll} \begin{array}{ll} \begin{a$$

13.1.3 反応

1. アルミニウムの燃焼

$$4\,\text{Al} + 3\,\text{O}_2 \longrightarrow 2\,\text{Al}_2\text{O}_3$$

2. アルミニウムと高温の水蒸気

$$2 AI + 3 H_2 O \longrightarrow AI_2 O_3 + 3 H_2 \uparrow$$

3. テルミット反応

$$Fe_2O_3 + 2AI \longrightarrow AI_2O_3 + 2Fe$$

^{*4} てつこに

13.2 酸化アルミニウム・水酸化アルミニウム

化学式: 661 ・662 酸化アルミニウムの別称: 663

13.2.1 性質

- 664 色で、水に665
- 666 酸化物/水酸化物

667 ・(強) 668 と反応

Al³⁺ は**669** と錯イオンを形成し、**670** とは形成しない

13.2.2 製法

- バイヤー法
- アルミニウムイオンを含む水溶液に、少量の**671** を加える **水酸化アルミニウム**

13.2.3 反応

• 酸化アルミニウムと塩酸

節のひつコミーウェレル輸化上し口ウェー

• 酸化アルミニウムと水酸化ナトリウム水溶液

• 水酸化アルミニウムと塩酸

• 水酸化アルミニウムと水酸化ナトリウム水溶液

13.3 ミョウバン・焼きミョウバン

化学式: 672 · 673

13.3.1 性質

- 674 色で、水に675 固体
- 676

(677) $K_1 = 1.1 \times 10^{-5} \text{ mol/L}$

Al³⁺ は価数が678 陽イオン

粘土 (679 の680 コロイド) で濁った水の浄水処理 (681)

水への溶解

13.3.2 製法

硫酸化アルミニウムと硫酸カリウムの混合水溶液を濃縮

13.2 酸化アルミニウム・水酸化アルミニウム

化学式: 661 Al₂O₃・662 Al(OH)₃ 酸化アルミニウムの別称: 663 アルミナ

13.2.1 性質

- 664 白色で、水に665 溶けにくい
- 666 両性酸化物/水酸化物

667酸・(強) 668塩基と反応

Al³⁺ は669OH⁻ と錯イオンを形成し、670NH₃ とは形成しない

13.2.2 製法

- バイヤー法
- アルミニウムイオンを含む水溶液に、少量の671塩基を加える 水酸化アルミニウム $Al_3^+ + 3 OH^- \longrightarrow Al(OH)_3 \downarrow$

13.2.3 反応

• 酸化アルミニウムと塩酸

 $Al_2O_3 + 6HCI \longrightarrow 2AlCl_3 + 3H_2O$

• 酸化アルミニウムと水酸化ナトリウム水溶液

 $Al_2O_3 + 2 NaOH + 3 H_2O \longrightarrow 2 Na[Al(OH)_4]$

• 水酸化アルミニウムと塩酸

 $AI(OH)_3 + 3HCI \longrightarrow AICI_3 + 3H_2O$

• 水酸化アルミニウムと水酸化ナトリウム水溶液

 $AI(OH)_3 + NaOH \longrightarrow Na[AI(OH)_4]$

13.3 ミョウバン・焼きミョウバン

化学式: 672AIK(SO₄)₂·12H₂O·673AIK(SO₄)₂

13.3.1 性質

- 674 白色で、水に675 溶ける固体
- 676酸性

 $\left(\begin{array}{ccc} \boxed{\text{677Al}^{3+} + \text{H}_2\text{O}} & \longrightarrow \text{Al}(\text{OH})_2 + \text{H}^+ & K_1 = 1.1 \times 10^{-5} \text{ mol/L} \end{array}\right)$

• Al³⁺ は価数が678大きい陽イオン

粘土 (679負の680 疎水コロイド) で濁った水の浄水処理 (681) 凝析)

• 水への溶解

 $AIK(SO_4)_2 \longrightarrow AI_3^+ + K^+ + SO_4^{2-}$

13.3.2 製法

硫酸化アルミニウムと硫酸カリウムの混合水溶液を濃縮

14 スズ・鉛

14.1 単体

14.1.1 性質

化学式	682	683
特徴	灰白色で柔らかい金属	青白色で柔らかい金属
融点	232°C	328°C
密度	7.28	11.4
特性	684	元素
用途	685 (鉄にメッキ)	686 電池の687 極
用逐	688	の遮蔽

【合金】

 $\mathrm{Cu} + \mathrm{Sn} \cdots \textbf{689}$

 $\mathrm{Sn} + \mathrm{Pb} \cdots \mathbf{690}$

14.1.2 製法

•	錫石 SnO_2 にコークスを混ぜて加熱 $\boxed{ 工業的製法 \boxed{スズ} }$
•	
4	2 F 🕏

14.1.3 反応

•	鉛と691 酸		
	鉛と692 酸		
•	スズと693		
•	鉛蓄電池における反応		
	\int	正極	
		負極	

14.2 塩化スズ(Ⅱ)

14.2.1 性質

694 剤として働く

14.2.2 製法

スズと695

14.2.3 反応

塩化鉄(Ⅲ)水溶液と塩化スズ(Ⅱ)水溶液

14 スズ・鉛

14.1 単体

14.1.1 性質

化学式	682 <mark>Sn</mark>	683Pb
特徴	灰白色で柔らかい金属	青白色で柔らかい金属
融点	232°C	328°C
密度	7.28	11.4
特性	684 <mark>両性</mark>	生元素
用途	685ブリキ(鉄にメッキ)	686 <mark>鉛蓄</mark> 電池の687 <mark>負</mark> 極
川歴	688放射線	。 <mark>象</mark> の遮蔽

【合金】

Cu + Sn··· 689青銅

 $\operatorname{Sn} + \operatorname{Pb} \cdots 690$ はんだ

14.1.2 製法

• 錫石 SnO_2 にコークスを混ぜて加熱 工業的製法 スズ

$$SnO_2 + 2C \longrightarrow Sn + 2CO$$

• 方鉛鉱 PbS を焙焼してから、コークスを混ぜて加熱 工業的製法 鉛

$$2\,PbS + 3\,O_2 \longrightarrow 2\,PbO + 2\,SO_2$$

 $PbO + C \longrightarrow Pb + CO$

14.1.3 反応

• 鉛と691希硝酸

$$3\,Pb + 8\,HNO_3 \longrightarrow 3\,Pb(NO_3)_2 + 4\,H_2O + 2\,NO$$

鉛と692酢酸

$$2\,Pb\,+\,4\,CH_3COOH\,+\,O_2\longrightarrow 2\,(CH_3COO)_2Pb\,+\,2\,H_2O$$

スズと693塩酸

$$Sn + 2HCI \longrightarrow SnCl_2 + H_2 \uparrow$$

• 鉛蓄電池における反応

14.2 塩化スズ(Ⅱ)

14.2.1 性質

694還元剤として働く

$$PbO_2 + 4H^+ + 2e^- \longrightarrow Pb^{2+} + 2H_2O$$

14.2.2 製法

スズと695塩酸

$$Sn + 2HCI \longrightarrow SnCl_2 + H_2 \uparrow$$

14.2.3 反応

塩化鉄(Ⅲ) 水溶液と塩化スズ(Ⅱ) 水溶液

$$2 \, \text{FeCl}_3 + \text{SnCl}_2 \longrightarrow 2 \, \text{FeCl}_2 + \text{SnCl}_4$$

14.3 酸化鉛 (IV) 14 スズ・鉛

備考 塩化スズ (IV) 水溶液と硫化水素

14.3 酸化鉛(IV)

14.3.1 性質

696 剤として働く

14.3.2 製法

酢酸鉛(II)水溶液にさらし粉を加える

14.3.3 反応

酸化鉛(IV)に濃塩酸を加えて加熱

14.4 鉛の難溶性化合物

14.4.1 性質

- 加熱すると溶けやすい
- 697 紙を用いた698 の検出(699 色)

14.3 酸化鉛 (IV) 14 スズ・鉛

備考 塩化スズ (IV) 水溶液と硫化水素

 $SnCl_4 + 2H_2S \longrightarrow SnS + S + 4HCI$

14.3 酸化鉛(IV)

14.3.1 性質

696還元剤として働く

 $\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+} + 2 e^{-}$

14.3.2 製法

酢酸鉛(Ⅱ)水溶液にさらし粉を加える

14.3.3 反応

酸化鉛(IV)に濃塩酸を加えて加熱

 $PbO_2 + 4\,HCI \longrightarrow PbCl_2 + 2\,H_2O + Cl_2\,\uparrow$

14.4 鉛の難溶性化合物

14.4.1 性質

- 加熱すると溶けやすい
- 697酢酸鉛(Ⅱ)紙を用いた698硫化水素の検出(699黒色)

第Ⅲ部

遷移金属

d 軌道・f 軌道 (内殻) の秋に電子が入っていき、最外殻電子の数は700

(701) · 702 : f 軌道に入っていく過程)

同族元素だけでなく、同周期元素も性質が似ている。

- 単体は密度が703 く、融点が704 金属
- d 軌道の一部の電子も価電子
- 化合物やイオンは705 色のものが多い
- 安定な706 を形成しやすい (707)
- 単体や化合物は708
 になるものが多い*5
- 酸化数が { 小さい 大きい } 酸化物は { 709 710 } 剤

15 鉄・コバルト・ニッケル

15.1 鉄

15.1.1 性質

- 常温で711 性
- イオン化傾向が水素より712い

713 と反応 (714) には715 となり反応しない)

- 716 と反応して717 な718 が生成(酸化被膜)
- 湿った空気中では<u>719</u> い<u>720</u> を生成

酸化鉄 (Ⅲ)	Fe_2O_3	721	色	722	性
四酸化三鉄	Fe ₃ O ₄	723	色	724	性
酸化鉄(II)	FeO	725	色	726	性

軟鋼	(727)	728	729	KS 磁石鋼
C0.2% 未満	C2% 未満	C2% 以上	730	Co, W, Cr
加工しやすい	硬くて弾性あり	硬くてもろい	錆びにくい	_
鉄筋・鉄骨	レール・バネ	鋳物	キッチン	人工永久磁石

^{*5} \bigcirc VsO₅, MnO₂, Fe₃O₄, Pt

第Ⅲ部

遷移金属

d 軌道・f 軌道 (内殻) の秋に電子が入っていき、最外殻電子の数は7001 か 2 (701)ランタノイド・702アクチノイド:f 軌道に入っていく過程)

同族元素だけでなく、同周期元素も性質が似ている。

- 単体は密度が703大きく、融点が704高い金属
- d 軌道の一部の電子も価電子
- 化合物やイオンは705 白色のものが多い
- 安定な(706)錯イオンを形成しやすい(707)d 軌道に空きがある)
- 単体や化合物は708触媒になるものが多い*5

15 鉄・コバルト・ニッケル

15.1 鉄

15.1.1 性質

- 常温で711強磁性
- イオン化傾向が水素より712大きい713強酸と反応(714濃硝酸には715不動態となり反応しない)
- 716高温の水蒸気と反応して717緻密な718黒錆が生成(酸化被膜)
- 湿った空気中では719粗い720赤錆を生成

酸化鉄 (Ⅲ)	Fe_2O_3	721 赤褐色	722常磁性
四酸化三鉄	Fe ₃ O ₄	723 黒色	724強磁性
酸化鉄(II)	FeO	(725)黒色	726

軟鋼	(727)鉄鋼	728	(729)ステンレス鋼	KS 磁石鋼
C0.2% 未満	C2% 未満	C2% 以上	730Cr, Ni	Co, W, Cr
加工しやすい	硬くて弾性あり	硬くてもろい	錆びにくい	_
鉄筋・鉄骨	レール・バネ	鋳物	キッチン	人工永久磁石

^{*5} \bigcirc VsO₅, MnO₂, Fe₃O₄, Pt

15.1.2 製法

鉄の製錬 工業的製法

15.1.3 反応

• 塩酸との反応

• 高温の水蒸気との反応

微量に含まれる炭素・鉄・水による(753) (754) などが溶けていたら反応速度上昇)
正極 (755))
負極 (756))

757 の生成 (758 色)

速やかに(759) が酸素により酸化

760 の脱水

 $Fe(OH)_3 \longrightarrow FeO(OH) + H_2O$ (酸化水酸化鉄(III)濃橙色) $2 Fe(OH)_3 \longrightarrow Fe_2O_3 \cdot n H_2O + (3-n)H_2O$ (761) 色) (エバンスの実験)

15.2 硫酸鉄(Ⅱ)7水和物

化学式: 762

15.2.1 性質

- 763 色の固体
- Fe²⁺ 半反応式
- 空気中で表面が764 (765 色)

15.2.2 製法

鉄に**766** を加えて、蒸発濃縮

15.1.2 製法

鉄の製錬 工業的製法

15.1.3 反応

• 塩酸との反応

$$\text{Fe} + 2\,\text{HCl} \longrightarrow \text{FeCl}_2 + \text{H}_2 \!\uparrow$$

• 高温の水蒸気との反応

$$3 \text{ Fe} + 4 \text{ H}_2 \text{O} \longrightarrow \text{Fe}_3 \text{O}_4 + 4 \text{ H}_2 \uparrow$$

微量に含まれる炭素・鉄・水によるで33局部電池(で54)食塩などが溶けていたら反応速度上昇)
 正極(で550) O₂ + 2 H₂O + 4 e⁻ → 4 OH⁻

負極 (
$$756$$
Fe) Fe \longrightarrow Fe²⁺ + 2e⁻

⑦57水酸化鉄(Ⅱ)の生成

$$Fe^{2+} + 2OH^{-} \longrightarrow Fe(OH)_{2}$$
 (758緑色)

・ 速やかに759水酸化鉄 (Ⅱ) が酸素により酸化

$$4 \operatorname{Fe}(OH)_2 + O_2 + 2 \operatorname{H}_2O \longrightarrow 4 \operatorname{Fe}(OH)_3$$

760水酸化鉄(Ⅲ)の脱水

$$\operatorname{Fe}(\operatorname{OH})_3 \longrightarrow \operatorname{FeO}(\operatorname{OH}) + \operatorname{H}_2\operatorname{O}$$
(酸化水酸化鉄(III)濃橙色) $2\operatorname{Fe}(\operatorname{OH})_3 \longrightarrow \operatorname{Fe}_2\operatorname{O}_3 \cdot n\operatorname{H}_2\operatorname{O} + (3-n)\operatorname{H}_2\operatorname{O}$ (761赤褐色) (エバンスの実験)

15.2 硫酸鉄(Ⅱ)7水和物

化学式: 762FeSO₄·7H₂O

15.2.1 性質

- 763青緑色の固体
- Fe²⁺ 半反応式 Fe²⁺ → Fe³⁺ + e⁻
- 空気中で表面が764Fe₂(SO₄)₃(765黄褐色)

15.2.2 製法

鉄に766希硫酸を加えて、蒸発濃縮

Fe +
$$H_2SO_4 \longrightarrow FeSO_4 + H_2 \uparrow$$

15.3 塩化鉄 (Ⅲ) 6 水和物 16 銅

15.3 塩化鉄 (Ⅲ) 6 水和物

化学式: 767

15.3.1 性質

• 768 色で769 性のある固体

• 770

$$(771)$$
 $K_1 = 6.0 \times 10^{-3} \text{ mol/L}$

15.3.2 製法

鉄に希塩酸を加えてから、塩素を通じる。

15.4 鉄イオンの反応

	NaOH		Н	$K_4[Fe(CN)_6]$		K ₃ [Fe(0	$(CN)_6$	H ₂ S(酸性)		KSCN	
Fe ²	+	772		Fe ₂ [Fe(C	$(N)_6]\downarrow$	KFe[Fe(C	CN) ₆]↓	773		774	
775	色	776	色	777	色	778	色	779	色	(780)	色
Fe ³	+	781		KFe[Fe(C	CN) ₆]↓	Fe[Fe(C]	$N)_6]aq$	782		[Fe(NC	$[S]^{2+}$
783	色	784	色	(785)	色	786	色	(787)	色	788	色

- $\mathrm{Fe^{2+}},\mathrm{Fe^{3+}}$ は、 $\overline{789}$ とも $\overline{790}$ とも錯イオンを形成しない
- ベルリンブルーとターンブルブルーは791

15.5 塩化コバルト(Ⅱ)

化学式: 792

15.5.1 性質

- 793 色で794 性のある固体
- 6 水和物は795 色
- 塩化コバルト紙を用いた796 の検出
- CO³⁺ は797 と錯イオンを形成

15.6 硫酸ニッケル(Ⅱ)

化学式: 798

- 黄緑色で潮解性のある固体
- 6 水和物は青緑色
- Ni²⁺ は **799** と錯イオンを形成

16 銅

16.1 銅

16.1.1 性質

800 色の金属光沢

15.3 塩化鉄 (Ⅲ) 6 水和物 16 銅

15.3 塩化鉄 (Ⅲ) 6 水和物

化学式: 767 FeCl3 · 6 H2O

15.3.1 性質

768黄褐色で769潮解性のある固体

• 770酸性

15.3.2 製法

鉄に希塩酸を加えてから、塩素を通じる。

Fe + $2 HCI \longrightarrow FeCl_2 + H_2 \uparrow$

 $2 \, \text{FeCl}_2 + \text{Cl}_2 \longrightarrow 2 \, \text{FeCl}_3$

15.4 鉄イオンの反応

	NaOH	$K_4[Fe(CN)_6]$	$K_3[Fe(CN)_6]$	H_2S (酸性)	KSCN
Fe ²⁺	772Fe(OH) ₂ ↓	$\text{Fe}_2[\text{Fe}(\text{CN})_6]\downarrow$	$KFe[Fe(CN)_6]\downarrow$	(773)変化なし	(774)変化なし
775淡緑色	776緑白色	777青白色	778濃青色	779淡緑色	780淡緑色
Fe ³⁺	781Fe(OH) ₃ ↓	$KFe[Fe(CN)_6] \downarrow$	$Fe[Fe(CN)_6]aq$	782)Fe ²⁺ aq	$[Fe(NCS)]^{2+}$
783黄褐色	(784) <mark>赤褐</mark> 色	785濃青色	786暗褐色	787 淡緑色	788 <mark>血赤</mark> 色

- $\mathrm{Fe^{2+}},\mathrm{Fe^{3+}}$ は、 $\overline{789}$ OH $^-$ とも $\overline{790}$ NH $_3$ とも錯イオンを形成しない
- ベルリンブルーとターンブルブルーは[791]同一物質

15.5 塩化コバルト(Ⅱ)

化学式: 792 CoCl₂

15.5.1 性質

- 793青色で794潮解性のある固体
- 6水和物は795淡赤色
- 塩化コバルト紙を用いた796水の検出
- CO³⁺ は797NH₃ と錯イオンを形成

15.6 硫酸ニッケル(Ⅱ)

化学式: 798NiSO₄

- 黄緑色で潮解性のある固体
- 6 水和物は青緑色
- Ni²⁺ は799NH₃ と錯イオンを形成

16 銅

16.1 銅

16.1.1 性質

800赤色の金属光沢

16.2 硫酸銅(Ⅱ)5水和物 16 銅

- 他の金属とさまざまな色の801
- 展性・延性が802 く、電気・熱伝導性が803 い
- イオン化傾向が水素より804 く、酸化力のある酸と反応
- 空気中で徐々に酸化して、緻密な錆(805) に溶解)が生成
 806 色の酸化銅(I) 乾・807 色の錆(808)) 湿

16.1.2 製法

16.1.3 反応

銅と希硝酸

• 銅と濃硝酸

• 銅と熱濃硫酸

● 空気中で 1000°C 未満で加熱して、**820** 色の**821** 生成

• さらに 1000°C 以上で加熱して、**822** 色の**823** 生成

・ 銅イオンから水酸化銅(Ⅱ)の生成

水酸化銅(Ⅱ)とアンモニアの反応

水酸化銅(Ⅱ)の加熱

16.2 硫酸銅(Ⅱ)5水和物

16.2.1 性質

- 824 色の固体(結晶中の825 の色)
- Cu²⁺ による**832** 作用(農薬)

16.2 硫酸銅(Ⅱ)5 水和物 16 銅

- 他の金属とさまざまな色の(801)合金
- 展性・延性が802大きく、電気・熱伝導性が803高い
- イオン化傾向が水素より804低く、酸化力のある酸と反応
- 空気中で徐々に酸化して、緻密な錆(805)酸に溶解)が生成
 806赤色の酸化銅(I) 乾・807青緑色の錆(808)緑青)温

16.1.2 製法

銅の製錬 粗銅・809電解精錬 純銅 工業的製法

16.1.3 反応

• 銅と希硝酸

$$3 \text{ Cu} + 8 \text{ HNO}_3 \longrightarrow 3 \text{ Cu}(\text{NO}_3)_2 + 4 \text{ H}_2\text{O} + 2 \text{ NO} \uparrow$$

• 銅と濃硝酸

$$Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 H_2O + 2 NO_2 \uparrow$$

• 銅と熱濃硫酸

$$Cu + 2\,H_2SO_4 \longrightarrow CuSO_4 + 2\,H_2O + SO_2 \,\uparrow$$

- 空気中で1000°C未満で加熱して、820黒色の821酸化銅(Ⅱ)生成
 - $2\,Cu + O_2 \longrightarrow 2\,CuO$
- さらに 1000°C 以上で加熱して、822赤色の823酸化銅(Ⅰ) 生成

$$4 \text{ CuO} \longrightarrow 2 \text{ Cu}_2\text{O} + \text{O}_2$$

• 銅イオンから水酸化銅(II)の生成

$$Cu_2^+ + 2OH^- \longrightarrow Cu(OH)_2 \downarrow$$

• 水酸化銅(II)とアンモニアの反応

$$Cu(OH)_2 + 4NH_3 \longrightarrow [Cu(NH_3)_4]^{2+} + 2OH^{-}$$

• 水酸化銅(II)の加熱

$$Cu(OH)_2 \longrightarrow CuO + H_2O$$

16.2 硫酸銅(Ⅱ)5水和物

16.2.1 性質

- 824青色の固体(結晶中の825[Cu(H₂O)₄]²⁺ の色)
- 温度による物質変化

$$5$$
 水和物 $\xrightarrow{102^{\circ}\text{C}}$ 8263 水和物 $\xrightarrow{113^{\circ}\text{C}}$ 8271 水和物 $\xrightarrow{150^{\circ}\text{C}}$ 828無水和物 $\xrightarrow{650^{\circ}\text{C}}$ 829酸化銅(II) 830青色 \leftarrow + $_{12}\text{O}$ (検出)

還元性を持つ有機化合物の検出*6
 833
 色の酸化銅(I)が生成

16.2.2 製法

銅に834 をかけてから835 。

16.3 銅(Ⅱ) イオンの反応

	少々の	塩基	過剰の	NH_3	濃塩	酸	H ₂ S (83	6))
Cu^{2+}	837)		838		839		840		
841 色	842	色	843	色	844	色	845	色	

• 炎色反応: 846 色

• 加熱すると847

• Cu²⁺ は848 と錯イオンを形成し、849 とは形成しない

16.4 銅の合金

850	(真鍮) (芝白) (芝白) (芝白) (芝白) (芝白) (芝白)		852	853	854		
855		856		857	858	859	(主成分)
適度な強度と加工性		柔軟で錆	歩びにくい	柔軟で錆びにくい	硬くて錆びにくい	軽く	て丈夫
楽器・水道用具		食器・	装飾品	五十円玉・五百円玉	像	航空	機・車両

17 銀

17.1 銀

17.1.1 性質

- 展性・延性が860 、電気・熱伝導性が861
- イオン化傾向が水素より862

863 力のある酸 (864 ・865) と反応

• 空気中で酸化しにくいが、866 とは容易に反応

17.1.2 製法

_	銅の雷解精錬の867	丁業的製法

銀の化合物の熱分解・光分解 酸化銀の熱分解

PX IU.	エス・ファ	バノコノ	11.		
ハロ	ゲンイ	匕銀	AgX	の感	光

17.1.3 反応

•	銀と希硝酸	
	AND A MILES OF	
•	銀と濃硝酸	

^{*6} フェーリング液・ベネディクト液

16.3 銅(Ⅱ) イオンの反応 17 銀

還元性を持つ有機化合物の検出*6
 833赤色の酸化銅(I)が生成

16.2.2 製法

銅に834濃硫酸をかけてから835加熱。

16.3 銅(Ⅱ) イオンの反応

	少々の塩基	過剰の NH ₃	濃塩酸	H ₂ S(836全液性)	
Cu^{2+}	837Ca(OH) ₂ ↓	838[Ca(NH ₃) ₄] ²⁺ aq	839[CuCl ₄] ²⁻ aq	840CuS↓	
841青色	842青白色	843深青色	844黄緑色	845 黒色	

炎色反応:846青緑色

• 加熱すると847分解

• Cu²⁺ は848NH₃ と錯イオンを形成し、849OH⁻ とは形成しない

16.4 銅の合金

850黄銅 (真鍮)	851)洋銀 (洋白)	852白銅	853青銅	854ジュラルミン
855 <mark>Z</mark> n	856Zn, Ni	857 <mark>N</mark> i	858 <mark>Sn</mark>	859 <mark>AI</mark> (主成分)
適度な強度と加工性	柔軟で錆びにくい	柔軟で錆びにくい	硬くて錆びにくい	軽くて丈夫
楽器・水道用具	食器・装飾品	五十円玉・五百円玉	像	航空機・車両

17 銀

17.1 銀

17.1.1 性質

- 展性・延性が860大きく、電気・熱伝導性が861最も高い
- イオン化傾向が水素より862小さい863酸化力のある酸(864硝酸・865熱濃硫酸)と反応
- 空気中で酸化しにくいが、866硫化水素とは容易に反応

17.1.2 製法

- 銅の電解精錬の867陽極泥 工業的製法
- 銀の化合物の熱分解・光分解 酸化銀の熱分解

 $2\,Ag_2O \longrightarrow 4\,Ag + O_2$

ハロゲン化銀 AgX の感光

 $2 \text{ AgX} \longrightarrow 2 \text{ Ag + X}_2$

17.1.3 反応

• 銀と希硝酸

 $3 \text{ Ag} + 4 \text{ HNO}_3 \longrightarrow 3 \text{ AgNO}_3 + 2 \text{ H}_2\text{O} + \text{NO} \uparrow$

• 銀と濃硝酸

 $Ag + 2HNO_3 \longrightarrow AgNO_3 + H_2O + NO_2 \uparrow$

^{*6} フェーリング液・ベネディクト液

17.2 銀(I)イオンの反応 17 銀

•	銀と熱濃硫酸
•	銀と硫化水素

17.2 銀(I)イオンの反応

868	水溶液

		少量の	塩基	過剰の	NH_3	HC	1	H_2S (869)	性)	K ₂ Cr	O_4
Ag^{2+}		870		871		872		873		874	
875 色	1	876	色	877	色	878	色	879	色	880	色

•	・ 銀と少量の塩基	
•	- 銀と過剰の NH ₃	
•	銀と HCl	
•	銀と H ₂ S	
•	銀と K ₂ CrO ₄	

17.3 難溶性化合物の溶解性

			HNO_3	NH_3	NaS_2O_3	KCN
${ m Ag_2S} \downarrow$	881	色	882	883	884	885
${ m Ag_2O}\downarrow$	886	色	887)	888	889	890
AgCl↓	891	色	892	893	894	895
AgBr↓	896	色	897)	898	899	900
AgI↓	901	色	902	903	904)	905
溶解している物質	906	色	907	908	909	910

17.2 銀(I)イオンの反応 17 銀

• 銀と熱濃硫酸

$$2\,\mathsf{Ag} + 2\,\mathsf{H}_2\mathsf{SO}_4 \longrightarrow \mathsf{Ag}_2\mathsf{SO}_4 + 2\,\mathsf{H}_2\mathsf{O} + \mathsf{SO}_2\,\!\!\uparrow$$

• 銀と硫化水素

$$4\,Ag + 2\,H_2S + O_2 \longrightarrow 2\,Ag_2S + 2\,H_2O$$

17.2 銀(I)イオンの反応

868 硝酸銀水溶液

	少量の塩基	過剰の NH ₃	HCl	H ₂ S(869 全液性)	K_2CrO_4
Ag^{2+}	870Ag ₂ O↓	871[Ag(NH ₃) ₂] ⁺	872AgCI↓	873Ag ₂ S↓	874)Ag ₂ CrO ₄ ↓
875無色	876褐色	877無色	878白色	879 <mark>黒</mark> 色	880赤褐色

• 銀と少量の塩基

$$2 \text{ Ag}^+ + 2 \text{ OH}^- \longrightarrow \text{Ag}_2 \text{O} \downarrow + \text{H}_2 \text{O}$$

• 銀と過剰の NH₃

$$Ag_2O + 4NH_3 + H_2O \longrightarrow 2[Ag(NH_3)_2]^+ + 2OH^-$$

• 銀と HCl

$$Ag^+ + CI^- \longrightarrow AgCI \downarrow$$

• 銀と H₂S

$$2 \text{ Ag}^+ + \text{S}_2^- \longrightarrow \text{Ag}_2 \text{S} \downarrow$$

• 銀と K₂CrO₄

$$\mathsf{AgCI} + 2\,\mathsf{NH}_3 \longrightarrow \left[\mathsf{Ag}(\mathsf{NH}_3)_2\right]^+ + \mathsf{CI}^-$$

17.3 難溶性化合物の溶解性

		HNO_3	NH_3	$\mathrm{NaS_{2}O_{3}}$	KCN
$ m Ag_2S\downarrow$	881黒色	882 溶ける	883溶けない	884溶けない	<u>885</u> 溶ける
$Ag_2O\downarrow$	886褐色	887 <mark>溶ける</mark>	888 溶ける	889 <mark>溶ける</mark>	<u>890溶ける</u>
AgCl↓	891 白色	892溶けない	893溶ける	894)溶ける	<u>895</u> 溶ける
AgBr↓	896淡黄色	897溶けない	898 やや溶ける	899溶ける	900溶ける
AgI↓	901黄色	902溶けない	903溶けない	904)溶ける	<u>905</u> 溶ける
溶解している物質	906無色	907Ag ⁺ (AgNO ₃)	908[Ag(NH ₃) ₂] ⁺	909[Ag(S ₂ O ₃) ₂] ³⁻	910[Ag(CN) ₂]

18 クロム・マンガン

化学式: 911 · 912

18.1 単体

18.1.1 性質

- 913 と反応 (914 は915 には916 となり反応しない)
- 空気中で錆び917 (918) ⇒919 (Fe, Cr, Ni) クロム
 空気中で錆び920 マンガン
- **921** 合金 (Fe, Cr, Mn) (電熱線・発熱体)

18.1.2 反応

18.2 クロム酸カリウム・ニクロム酸カリウム

化学式: 923 · 924

18.2.1 性質

• 二つは平衡状態にある

18.2.2 製法

クロム(Ⅲ) イオンに少量の水酸化ナトリウム水溶液を加える
 さらに水酸化ナトリウム水溶液を加える(過剰の水酸化ナトリウム水溶液を加える)
 過酸化水素水を加えて加熱

18.2.3 反応

クロム酸イオンと銀イオン
 クロム酸イオンと銀イオン
 (933 色)
 クロム酸イオンと銀イオン
 クロム酸イオンと銀イオン
 (935 色)

18.3 過マンガン酸カリウム

化学式: 936

18 クロム・マンガン

化学式: 911 Cr· 912 Mn

18.1 単体

18.1.1 性質

- <u>913強酸と反応(914Cr</u>は<u>915濃硝酸</u>には<u>916不動態</u>となり反応しない)
- 空気中で錆び917にくい (918不動態) ⇒919ステンレス鋼 (Fe, Cr, Ni) クロム
 空気中で錆び920やすい マンガン
- 921ニクロム合金 (Fe, Cr, Mn) (電熱線・発熱体)

18.1.2 反応

• クロムと希塩酸

```
Cr + 2HCl \longrightarrow CrCl_2 + H_2 \uparrow (Cr^{2+} : 青色)
```

• マンガンと希塩酸

$$Mn + 2HCl \longrightarrow MnCl_2 + H_2 \uparrow (Mn^{2+} : 922)淡桃色)$$

18.2 クロム酸カリウム・二クロム酸カリウム

化学式: 923K2CrO4 · 924K2Cr2O7

18.2.1 性質

• 二つは平衡状態にある

```
9252 CrO<sub>4</sub><sup>2−</sup> + H<sup>+</sup> ← 926 Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup> + OH<sup>−</sup>

927 塩基性・928 黄色 929 酸性・930 赤橙色
```

• 931 酸化剤として反応 **ニクロム酸カリウム**

```
Cr_2O_7^{2-} + 14 H^+ + 6 e^- \longrightarrow 2 Cr^{3+} + 7 H_2O (932) 硫酸酸性下)
```

18.2.2 製法

1. クロム(Ⅲ) イオンに少量の水酸化ナトリウム水溶液を加える

$$Cr^3 + 3OH^- \longrightarrow Cr(OH)_3 \downarrow$$

2. さらに水酸化ナトリウム水溶液を加える(過剰の水酸化ナトリウム水溶液を加える)

```
Cr(OH)_3 + OH^- \longrightarrow [Cr(OH)_4]^-
```

3. 過酸化水素水を加えて加熱

$$2 [Cr(OH)_4]^- + 3 H_2 O_2 + 2 OH^- \longrightarrow 2 CrO_4^{2-} + 8 H_2 O$$

18.2.3 反応

• クロム酸イオンと銀イオン

$$CrO_4^{2-} + 2Ag^+ \longrightarrow Ag_2CrO_4 \downarrow (933赤褐色)$$

• クロム酸イオンと銀イオン

• クロム酸イオンと銀イオン

18.3 過マンガン酸カリウム

化学式: 936KMnO₄

1	R	.3	1	,	性質

- 937 色の固体
- 938 剤として反応

939 酸性

中・塩基性

18.3.2 製法

1. 酸化マンガン (IV) と水酸化ナトリウムを混ぜて空気中で加熱

	1		
	$(MnO_2: 940)$	色 $/$ K_2MnO_4 : 941	色)

2. (a) 酸性にする

設任にする	_		
	$(MnO_4^{2-}:942)$	色/MnO ₄ -: 943	色)

(b) 電気分解する

(944) 極)

18.4 マンガンの安定な酸化数

残留酸素の定量 (ウィンクラー法)

1. マンガン(Ⅲ) イオンを含む水溶液に塩基を加える

2. 水酸化マンガン(II)が水溶液中の溶存酸素と速やかに反応

3. 希硫酸を加える

(945) 剤)

18.3.1 性質

- 937黒紫色の固体
- 938酸化剤として反応

```
939硫酸酸性 MnO_4^- + 8 H^+ + 5 e^- \longrightarrow Mn^{2+} + 4 H_2 O
中·塩基性 MnO_4^- + 2 H_2 O + 3 e^- \longrightarrow MnO_2 + 4 O H^-
```

18.3.2 製法

1. 酸化マンガン(IV)と水酸化ナトリウムを混ぜて空気中で加熱 $2\,\text{MnO}_2 + 4\,\text{KOH} + \text{O}_2 \longrightarrow 2\,\text{K}_2\text{MnO}_4 + 2\,\text{H}_2\text{O} \,\,(\text{MnO}_2: \cite{1.000}{940} \cite{1.000}{\cite{1.000}{$1.0000}{$1.0000}{$1.0000}{$1.0000}{$1.0000}{$1.0000}{$1.0000}$

2. (a) 酸性にする

$$3 \text{ MnO}_4^{2-} + 4 \text{ H}^+ \longrightarrow 2 \text{ MnO}_4^- + \text{ MnO}_2 + 2 \text{ H}_2 \text{ O} (\text{MnO}_4^{2-} : 942 禄色/\text{MnO}_4^- : 943 赤紫色)$$

(b) 電気分解する

18.4 マンガンの安定な酸化数

残留酸素の定量(ウィンクラー法)

- マンガン (Ⅲ) イオンを含む水溶液に塩基を加える Mn²⁺ + 2 OH⁻ → Mn(OH)₂↓
- 水酸化マンガン(II)が水溶液中の溶存酸素と速やかに反応
 2 Mn(OH)₂ + O₂ → 2 MnO(OH)₂
- 3. 希硫酸を加える

```
MnO(OH)_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 3H_2O (945)酸化剂)
```

第IV部

APPENDIX

A 気体の乾燥剤

固体の乾燥剤は① につめて、液体の乾燥剤は② に入れて使用。

				•											
性質	乾燥剤	化学式	対象	対象外 (不適)											
酸性	3	4	酸性・中性	塩基性の気体(⑤)											
100 注	6	7	酸性・甲性	+8 (9)											
中性	10	11)	ほとんど全て	(12)											
中注 	13	14)	はこんと主く	特になし											
塩基性	(15)	16	中性・塩基性	酸性の気体											
温玄性	17)	18	「中は・塩基性	19 ,20 ,21 ,22 ,23 ,24											

B 水の硬度

水の中の重荷 $\mathrm{Ca^{2+}}$ と $\mathrm{Mg^{2+}}$ を $\mathrm{CaCO_3}$ として換算した時の濃度 $[\mathrm{mg/L}]$

煮沸する②5 が沈澱して軟化可能(一時硬水)
 便成素カルシウム水溶液
 便成酸水素カルシウム水溶液
 便成酸水素マグネシウム水溶液
 煮沸しても軟化不可能(永久硬水)

第IV部

APPENDIX

気体の乾燥剤

固体の乾燥剤は①U字管につめて、液体の乾燥剤は②洗気瓶に入れて使用。

性質	乾燥剤	化学式	対象	対象外 (不適)				
酸性	③十酸化四リン	4P ₄ O ₁₀	酸性・中性	塩基性の気体(⑤NH ₃)				
酸性	6濃硫酸	⑦H₂SO₄	酸性・中性	+®H ₂ S (9還元剤)				
中性	10塩化カルシウム	11CaCl ₂	ほとんど全て	12NH ₃				
中性	13シリカゲル	14SiO ₂ · <i>n</i> H ₂ O	はこんと主て	特になし				
塩基性	15酸化カルシウム	16CaO	中性・塩基性	酸性の気体				
塩基性	①フソーダ石灰	18CaO と NaOH	「中は・塩基性」	19Cl ₂ ,20HCl,21H ₂ S,22SO ₂ ,23CO ₂ ,24NO ₂				

В 水の硬度

水の中の重荷 $\mathrm{Ca^{2+}}$ と $\mathrm{Mg^{2+}}$ を $\mathrm{CaCO_3}$ として換算した時の濃度 $[\mathrm{mg/L}]$

煮沸する25炭酸塩が沈澱して軟化可能(一時硬水)

例炭酸水素カルシウム水溶液

 $\text{Ca(HCO}_3)_2 \longrightarrow \text{CaCO}_3 \downarrow \text{+ H}_2\text{O} + \text{CO}_2$

煮沸しても軟化不可能 (永久硬水)

C 金属イオンの難容性化合物

	Cl	-	SO_4	2-	H_2	S	H_2	S	ОН	-	ОН	_	NH	[3
					酸性	生	中・塩	基性	NH	3	過乗	——— 削	過乗	判
K ⁺	26		27		28		29		30		31		32	
11	33	色	34	色	35	色	36	色	37	色	38	色	39	色
Ba ²⁺	40		41)		42		43		44)		45		46	
	47	色	48	色	49	色	50	色	51	色	52	色	53	色
Sr^{2+}	54		55		56		57		58		59		60	
	61	色	62	色	63	色	64	色	65	色	66	色	67)	色
Ca ²⁺	68		69		70		71		72		73		74	
	75	色	76	色	77	色	78	色	79	色	80	色	81)	色
Na ⁺	82		83		84		85		86		87		88	
	89	色	90	色	91)	色	92	色	93	色	94	色	95	色
Mg^{2+}	96		97		98		99		100		101		102	
	103	色	104	色	105	色	106	色	107	色	108	色	109	色
Al ³⁺	110		111		112		113		114		115		116	
	117	色	118	色	119	色	120	色	121	色	122	色	123	色
Mn ²⁺	124		125		126		127		128		129		130	
	131	色	132	色	133	色	134	色	135	色	136	色	137	色
Zn^{2+}	138		139		140		141		142		143		144	
	145	色	146	色	147	色	148	色	149	色	150	色	(151)	色
Cr ³⁺	152		153		154		155		156		157		158	
	159	色	160	色	(161)	色	162	色	163	色	164	色	165	色
Fe ²⁺	166		167		168		169		170		171		172	
	173	色	174	色	175	色	176	色	177	色	178	色	179	色
Fe ³⁺	180		181		182		183		184		185		186	
	187	色	188	色	189	色	190	色	191	色	192	色	193	色
Cd^{2+}	194		195		196		197		198		199		200	
2.1	201	色	202	色	203	色	204	色	205	色	206	色	207	色
Co ²⁺	208		209		210		211		212		213		214	
21	215	色	216	色	217	色	218	色	219	色	220	色	221	色
Ni ²⁺	222	<i>F</i> •	223	<i>F</i> •	224	<i>F</i> •	225		226	+	227	.	228	<i>F</i> •
G 2+	229	色	230	色	231	色	232	色	233	色	234	色	235	色
Sn ²⁺	236	Ħ.	237	Ħ.	238	Ħ.	239	Ħ.	240	Ħ.	241	Ħ.	242	Ħ.
Pb ²⁺	243	色	244	色	245 252	色	246	色	247	色	248	色	249	色
Pb .	250 257	色	251) 258)	色	259	色	253 260	色	254 261	色	255 262	色	256 263	色
Cu ²⁺	264		265		266		267		268		269		270	
Cu	271	色	272	色	273	色	274	色	275	色	276	色	277	色
Hg^{2+}	278)		279		280		281		282		283		284	
118	285	色	286	色	287	色	288	色	289	色	290	色	291	色
Hg ₂ ²⁺	292	J	293		294	J	295		296		297		298	
1-82	299	色	300	色	301	色	302	色	303	色	304	色	305	色
Ag ⁺	306		307		308		309		310		311		312	
8	اا		ا ا		ا ا		ر ا		ا ت		ن ا			

C 金属イオンの難容性化合物

	Cl^-	$\mathrm{SO_4}^{2-}$	$ m H_2S$	$\mathrm{H_2S}$	OH-	OH^-	NH_3
			酸性	中・塩基性	NH3	過剰	過剰
K ⁺	26—	27—	28_	29_	30—	31)—	32_
	33-色	34—色	35—色	36—色	37—色	38—色	39—色
Ba ²⁺	40_	41BaSO ₄	42_	43—	44)—	45—	46—
	47—色	48白色	49—色	50—色	51)—色	52—色	53—色
Sr^{2+}	54—	55SrSO ₄	56—	57 —	58—	59—	60—
	61—色	62白色	63-色	64—色	65—色	66—色	67—色
Ca ²⁺	68—	69CaSO ₄	70-	71—	72Ca(OH) ₂	73Ca(OH) ₂	74Ca(OH) ₂
	75—色	76白色	77-色	78—色	79白色	80台色	81台色
Na ⁺	82_	83—	84)—	85—	86—	87—	88—
	89—色	90—色	91—色	92—色	93—色	94—色	95—色
Mg^{2+}	96—	97—	98_	99—	100Mg(OH) ₂	101Mg(OH) ₂	102—
	103-色	104—色	105—色	106—色	107 白色	108台色	109—色
Al ³⁺	110—	111)—	112—	113AI(OH) ₃	114AI(OH) ₃	115[Al(OH) ₄]	116AI(OH) ₃
	117—色	118—色	119—色	120台色	121 白色	122白色	123 白色
Mn^{2+}	124—	125—	126—	127 <mark>MnS</mark>	128Mn(OH) ₂	129Mn(OH) ₂	130Mn(OH) ₂
	131—色	132—色	133—色	134淡桃色	135 白色	136 白色	137 白色
Zn^{2+}	138—	139—	140—	141 <mark>ZnS</mark>	(142)Zn(OH) ₂	143[Zn(OH) ₄] ²⁻	144[Zn(NH ₃) ₄] ²⁺
	145—色	146—色	147—色	148白色	149 白色	(150無色	151 <mark>無</mark> 色
Cr^{3+}	152—	153—	154—	(155)—	156Cr(OH) ₃	157[Cr(OH) ₄]	158Cr(OH) ₃
	159—色	160—色	161一色	162—色	163灰緑色	(164) <mark>緑</mark> 色	165灰緑色
Fe ²⁺	166—	<u>167</u> —	168—	169FeS	170Fe(OH) ₂	171)Fe(OH) ₂	172Fe(OH) ₂
	173—色	174—色	175—色	176黒色	177禄白色	178緑白色	179緑白色
Fe ³⁺	180—	181—	182Fe ²⁺	183FeS	184Fe(OH) ₃	185Fe(OH) ₃	186Fe(OH) ₃
	187—色	188—色	189淡緑色	190黒色	191)赤褐色	192)赤褐色	193)赤褐色
Cd^{2+}	194—	195—	196CdS	(197)CdS	198Cd(OH) ₂	199Cd(OH) ₂	200[Cd(NH ₃) ₄] ²⁻
	201)—色	202—色	203 <mark>黄</mark> 色	204黄色	205白色	206白色	207 無色
Co ²⁺	208—	209—	210CoS	211)Co(OH) ₂	212Co(OH) ₂	213Co(OH) ₂	214Co(OH) ₂
	215—色	216—色	217 黒色	218青色	219青色	220青色	221青色
Ni ²⁺	222—	223—	224NiS	225Ni(OH) ₂	226Ni(OH) ₂	227Ni(OH) ₂	228[Ni(NH ₃) ₆] ²⁺
	229—色	230—色	231)黒色	232緑白色	233緑白色	234 緑白色	235青紫色
Sn ²⁺	236—	237)—	238 <mark>SnS</mark>	239 <mark>SnS</mark>	240Sn(OH) ₂	241[Sn(OH) ₄] ²⁻	242Sn(OH) ₂
	243—色	244—色	245褐色	246褐色	247 白色	248白色	249 白色
Pb^{2+}	250PbCI	251)PbSO ₄	252)PbS	253PbS	254Pb(OH) ₂	255[Pb(OH) ₄] ²⁻	256Pb(OH) ₂
	257白色	258白色	259黒色	260黒色	261 白色	262 無色	263 白色
Cu ²⁺	264)—	<u> 265</u> —	266CuS	267 CuS	268Cu(OH) ₂	269Cu(OH) ₂	270[Cu(NH ₃) ₄] ²⁺
	271)—色	272—色	273 白色	274 白色	275青白色	276青白色	277)深青 色
Hg^{2+}	278—	279—	280HgS	281)HgS	282HgO	283HgO	284)HgO
	285—色	286—色	287 黑色	288黒色	289黄色	290黄色	291黄色
$\mathrm{Hg_2}^{2+}$	292)Hg ₂ Cl ₂	293—	294)HgS	295HgS	296HgO	297HgO	298HgO
	299白色	300-色	301黒色	302黒色	303黄色	304黄色	305黄色
Ag ⁺	306AgCl	307—	308Ag ₂ S	309Ag ₂ S	310Ag ₂ O	311)Ag ₂ O	$312[Ag(NH_3)_2]^+$

Cl	Cl ⁻		$\mathrm{SO_4}^{2-}$		$\mathrm{H_2S}$		S	ОН	_	OH-		NH	[3
					酸性		中・塩基性		NH3		過剰		钊
313	色	314	色	315	色	316	色	317	色	318	色	319	色

D 錯イオンの命名法

(主に遷移) 金属イオンに対して、320 を持つ321 や322 が323 結合

「配位子の数(数詞)配位子 金属(価数)酸(陰イオンの場合)イオン」

金属イ	゚オン	オン Ag ⁺ Cu ⁺		Cu ²⁺		Zn^{2+}	Zn^{2+}		Fe^{3+}	Co^{3}	Ni ²	+ Cr	3+	Al^{3+}
配位	配位数 324			325										
327 系 328 形 329 形 330 形														
数	1	1 2		3		4		5 6			7		8	
数詞	331	1) (332)		333	333 334		(33	35	336	336 337		338		
		339		340	340									
配位子	配位子 NH ₃ CN ⁻		H_2	H ₂ O			Cl^-	H_2N	$H_2N - CH_2CH_2 - NI$					
名称	名称 341 342		343 344			345		346						

- [Zn(OH)₄]²⁻
- $[Zn(NH_3)_4]^{2+}$

350

• $[Ag(S_2O_3)_2]^{3-}$

351

 $\bullet \ [\mathrm{Cu}(\mathrm{H_2NCH_2CH_2NH_2})]^{2+}$

352

Cl ⁻	$\mathrm{SO_4}^{2-}$	$\mathrm{H_2S}$	$_{ m H_2S}$	OH-	OH-	NH_3
		酸性	中・塩基性	NH3	過剰	過剰
313 白色	314—色	315 <mark>黒</mark> 色	316黒色	317褐色	318褐色	319無色

D 錯イオンの命名法

(主に遷移)金属イオンに対して、320非共有電子対を持つ321分子や322イオンが323配位結合

「配位子の数(数詞)配位子 金属(価数)酸(陰イオンの場合)イオン」

金属イ	゚オン	Ag	+ C1	u ⁺	Cu^{2+}	Zn^{2+}		Fe ²⁺	Fe ³⁺	Co ³⁺	Ni ²	+ Cr	3+	Al ³⁺	
配位	拉数		<u>324</u> 2			<u>325</u> 4		<u>326</u> 6							
327直線系 328正方形						329正四面	329正四面体形 330正八面体形								
数	1		2		3	4		5		6	7		8		
数詞	331) T	三 ノ	332	ジ	333トリ	334テトラ	33	5ペンタ	336ヘキサ		337ヘプタ		338	オクタ	
			339 Ł	ごス	340トリス	•									
配位子	配位子 NH ₃		CN^-	$\mathrm{CN}^ \mathrm{H_2O}$		OH ⁻ Cl		Cl-	$ H_2N$		$-\mathrm{CH_2CH_2} - \mathrm{NH}$		NH ₂		
名称	34	リアン	ミン	(34)	2シアニド	343 アクア	343アクア 344		ニドロキシド 345クロ		1リド 346		3 エチレンジアミン		ミン

エチレンジアミン … 1 分子あたり 2 か所で<u>347</u>配位結合する(2 座配位子)(<u>348</u>キレート錯体)

- $[Zn(OH)_4]^{2-}$
 - ③49テトラヒドロキシド亜鉛(Ⅱ)酸イオン
- $[Zn(NH_3)_4]^{2+}$
 - 350テトラアンミン亜鉛(Ⅱ)イオン
- $[Ag(S_2O_3)_2]^{3-}$
 - ③51)ビス(チオスルファト)銀(I)イオン
- $\left[Cu(H_2NCH_2CH_2NH_2) \right]^{2+}$
 - ③52)ビス(エチレンジアミン)銅(Ⅱ)イオン

E 金属イオンの系統分離

E 金属イオンの系統分離

