

710
N 93-27898
12

THE MIDDECK ACTIVE CONTROL EXPERIMENT (MACE):

IDENTIFICATION FOR ROBUST CONTROL

Dr. Valery I. Karlov

Moscow Aviation Institute (MAI)

Identification For Robust Control

Stages of Design

Three Levels of Iaenaujan canon

	①	②	③
A g o r i h m	<ul style="list-style-type: none"> • Empirical Transfer Function Estimate • Eigen Value Analysis • 	<ul style="list-style-type: none"> • Least Square • Maximum Likelihood • Prediction Error •Methods 	<ul style="list-style-type: none"> • Extended Kalman-type filters (state and parameter estimation)
M o d e l	<ul style="list-style-type: none"> • SISO • MIMO (deterministic) 	<ul style="list-style-type: none"> • TF • ARMAX $A(q)y(t)=B(q)u(t) + e(t)$ $t = 0, \dots, K$ 	<ul style="list-style-type: none"> • State-space $\dot{x} = A(\alpha)x + B(\beta)u + \xi$ $y = C(\beta)x + D(\beta)u + \eta, \quad t \in (0, T)$
P r o d u c t	<ul style="list-style-type: none"> • Model structure (number of modes, preliminary estimates) 	<ul style="list-style-type: none"> • Fitted estimates [but of "indirect" parameters $\gamma = \phi(\alpha, \beta)$] 	<ul style="list-style-type: none"> • High-precision estimates of "direct" parameters: <ul style="list-style-type: none"> - α (frequencies, damping ratios) - β (mode shapes, masses) • Realistic bounds

Basic Elements of The Approach

1. Non-linear problem of Riccati equation control for augmented covariance matrix:

$$\begin{bmatrix} P_x & P_{x\alpha} \\ P_{\alpha x} & P_\alpha \end{bmatrix}$$

2. Equivalent linear problem
(Received on the basis of non-traditional usage of RE analytical properties)
3. Converge numerical algorithm of optimization
4. Extended Kalman filter
(Solution on the basis of decomposition with respect to frequencies)
5. Robust control problem
 - Cost averaging techniques (use the "Post-ID" bounds directly)
 - Petersen - Hollot's bounds (need modification)

a). $SA_0^T + A_0^T S + (K + \beta \gamma NWN^T) - S(BR^{-1}B^T - \beta \gamma^{-1} LVL^T)S = 0$
 $\beta < 1, VW = P_\alpha$

b). Duality principle for design of dynamical feedback

Virtual time approach provides

- Realistic statistical model of uncertainty
(accuracy characteristics are received in the state-space model with "separated" noises in sensors and actuators)
- Active ID: Optimization of open- and close-loop inputs directly with respect to robust control performance
- Taking into account constraints on excitation
(desirable ID accuracy can be achieved with much less excitation, extremely important for experiments in the space)
- Possibility to identify time-varying parameters
(in case of moving rigid payloads)

Advantages of "Post-ID" Model of Uncertainty

α is Gaussian vector
with covariance
matrix P_α

quadratic bounds
interval bounds
realistic bounds
"worst combination"
(causes conservatism of robust control,
for large N dramatically)

- Reveals "cost" of different errors
- Reveals covariances between parameters
- Prevents non-realistic "worst combination" of parameters
(degrades conservatism of robust control)

Curvatures of optimization

- Further degrading the conservatism
- Better coping with "difficulties" in the model, e.g. close modes (*excitation in optimal directions amplifies the difference between modes*)
- The best compromise between excitation and robust control performance

$$J = J_R + p J_E \text{ where } p \text{ is a "price" of ID}$$

All J are quadratic forms

Practical Realization

- Simulation of identification and robust control processes for MACE
(important for confirming convergence of parameter estimates to "true" ones)

- **Ground experiment**

- **Experiment in space**

