CodeForces Problem

March 09, 2024

B. Reverse Sort

Constriants

Time Limit 2 seconds

Memory Limit 256 MB

Problem Statement

Ashish has a binary string s of length n that he wants to sort in non-decreasing order.

He can perform the following operation: Choose a subsequence of any length such that its elements are in non-increasing order. Formally, choose any k such that $1 \le k \le n$ and any sequence of k indices $1 \le i_1 < i_2 < \ldots < i_k \le n$ such that $s_{i_1} \ge s_{i_2} \ge \ldots \ge s_{i_k}$. Reverse this subsequence in-place. Formally, swap s_{i_1} with s_{i_k} , swap s_{i_2} with $s_{i_{k-1}}$, ... and swap $s_{i_{\lfloor k/2 \rfloor}}$ with $s_{i_{\lceil k/2 \rceil+1}}$ (Here $\lfloor x \rfloor$ denotes the largest integer not exceeding x, and $\lceil x \rceil$ denotes the smallest integer not less than x)

Find the minimum number of operations required to sort the string in non-decreasing order. It can be proven that it is always possible to sort the given binary string in at most n operations.

Input Description

The first line contains a single integer t ($1 \le t \le 1000$) — the number of test cases. The description of the test cases follows.

The first line of each test case contains an integer n $(1 \le n \le 1000)$ — the length of the binary string s.

The second line of each test case contains a binary string s of length n containing only 0s and 1s.

It is guaranteed that the sum of n over all test cases does not exceed 1000.

Output Description:

For each test case output the following: The minimum number of operations m in the first line $(0 \le m \le n)$. Each of the following m lines should be of the form: $k i_1 i_2 \dots i_k$, where k is the length and $i_1 < i_2 < \dots < i_k$ are the indices of the chosen subsequence. For them the conditions from the statement must hold.

Examples

```
Input
3
7
0011111
5
10100
6
001000
Output
0
1
4 1 3 4 5
1
3 3 5 6
```

Note

In the first test case, the binary string is already sorted in non-decreasing order.

In the second test case, we can perform the following operation: k=4: choose the indices $\{1,3,4,5\}$ $\underline{1}$ 0 $\underline{1}$ $\underline{0}$ $\underline{0} \rightarrow \underline{0}$ 0 $\underline{0}$ $\underline{1}$ $\underline{1}$

In the third test case, we can perform the following operation: k=3: choose the indices $\{3,5,6\}$ 0 0 1 0 0 0 0 0 0 1