

equivalence of Zorn's lemma and the axiom of choice

 ${\bf Canonical\ name} \quad {\bf Equivalence Of Zorns Lemma And The Axiom Of Choice}$

Date of creation 2013-03-22 12:59:04 Last modified on 2013-03-22 12:59:04

Owner Henry (455) Last modified by Henry (455)

Numerical id 10

Author Henry (455)

Entry type Proof Classification msc 03E25 Let X be a set partially ordered by < such that each chain has an upper bound. Define $p(x) = \{y \in X \mid x < y\} \in P(X)$. Let $p(X) = \{p(x) \mid x \in X\}$. If $p(x) = \emptyset$ then it follows that x is maximal.

Suppose no $p(x) = \emptyset$. Then by the http://planetmath.org/AxiomOfChoiceaxiom of choice there is a choice function f on p(X), and since for each p(x) we have $f(p(x)) \in p(x)$, it follows that x < f(p(x)). Define $f_{\alpha}(p(x))$ for all ordinals α by transfinite induction:

```
f_0(p(x)) = x

f_{\alpha+1}(p(x)) = f(p(f_{\alpha}(p(x))))
```

And for a limit ordinal α , let $f_{\alpha}(p(x))$ be an upper bound of $f_{i}(p(x))$ for $i < \alpha$.

This construction can go on forever, for any ordinal. Then we can easily construct an injective function from Ord to X by $g(\alpha) = f_{\alpha}(p(x))$ for an arbitrary $x \in X$. This must be injective, since $\alpha < \beta$ implies $g(\alpha) < g(\beta)$. But that requires that X be a proper class, in contradiction to the fact that it is a set. So there can be no such choice function, and there must be a maximal element of X.

For the reverse, assume Zorn's lemma and let C be any set of non-empty sets. Consider the set of functions $F = \{f \mid \forall a \in \text{dom}(f) (a \in C \land f(a) \in a)\}$ partially ordered by inclusion. Then the union of any chain in F is also a member of F (since the union of a chain of functions is always a function). By Zorn's lemma, F has a maximal element f, and since any function with domain smaller than C can be easily expanded, dom(f) = C, and so f is a choice function for C.