Doffamin Go An light-weight monitoring system for Apache Hadoop

_ Doflamingo

TITLE Kafka/ Zookeeper Monitoring Module built for Flamingo Ecosystem

DURATION March 13, 2016 ~ June 8, 2016

CLIENT EXEM PRESENTER ALPHADOOP

_ Doflamingo

TEAM ALPHADOOP

YOUNGJAE CHANG [PM]
SEUNGHYO KANG
JARYONG LEE

_ Doflamingo

CONTENTS

- 1. Project Overview
- 2. Requirements
- 3. Solution
- 4. Novelty
- 5. Contribution
- 6. Project Management
- 7. Demonstration

PART_01

PROJECT OVERVIEW

Objective

Problem Statement
Useful Cases

OBJECTIVE

Collect Performance Metrics, Visualize it, and Integrate it with Flamingo.

Objective

Problem Statement
Useful Cases

PROBLEM STATEMENT

Monitoring is critical to understand Hadoop Ecosystem.

Flamingo lacks ability to monitor Kafka/Zookeeper rather than nodes.

Objective

Problem Statement
Useful Cases

PROBLEM STATEMENT

Is all system working properly?

Doflamingo

Of Course!

Check this out!

Objective Problem Statement

Useful Cases

USEFUL CASES #1

LinkedIn processes 172,000 messages a second. It adds up to 10 billion messages a day. It encounters many engineering problems and they can only be captured via custom built monitoring tools.

Objective Problem Statement

Useful Cases

USEFUL CASES #2

NETFLIX

Netflix, as it now runs hundreds of clusters, it became confusing for even experts to understand how system works.

Typical

Questions

Why did my job run slower today than yesterday?

Can we expand the cluster to speed up my job?

What cluster did my job run on?

How do I get access to task logs?

Objective Problem Statement

Useful Cases

_USEFUL CASES #3

Hadoop have been proved to have big business implication, but the ease of maintenance blocks it from being mainstream. Hortonworks built Apache Ambari to solve the problem and give a single point for customers to work with.

PART_02

PROJECT REQUIREMENTS

Functions

Won't do
Constraints

External Interfaces

Quality Attributes

FUNCTIONS

- 1. Monitor and Report in Real-time
- 2. Visualize the metrics
- 3. Save metrics into Database

_ Doflamingo WILL NOT ...

Functions

Won't do

Constraints

External Interfaces

Quality Attributes

1. Control configuration

2. Alarm users

Functions Won't do

Constraints

External Interfaces

Quality Attributes

_CONSTRAINTS

- 1. Doflamingo Backend
 - should work on JVM
 - · should utilize Maven ecosystem
 - · should be integrated into Flamingo
- 2. Doflamingo Frontend
 - should be built with Sencha ExtJS
 - · should communicate with WebSocket

Functions
Won't do
Constraints

External Interfaces

Quality Attributes

External Interfaces: Inputs

- 1. Kafka Configuration [JSON]
 - Kafka node ip / port
- 2. Zookeeper Configuration [JSON]
 - · Zookeeper node ip / port
- 3. RRD4J Configuration [JSON]
 - Path to RRD4J database

Functions
Won't do
Constraints

External Interfaces

Quality Attributes

_External Interfaces: Ul

- 1. Overview
 - Can View Multiple Charts at Once, in Realtime.
- 2. Timeline
 - Can Investigate certain Moment in the History.

Functions
Won't do
Constraints
External Interfaces
Quality Attributes

_ SW Quality Attributes

M11 Requirement Compliance

M12 Requirement Traceability

M13 Requirement Change Rate

M21 Fault Density

M22 Bad Fix Rate

M31 Test Coverage

PART_03

SOLUTION

TECHNICAL DETAILS

[A] WHAT IS KAFKA?

A high-throughput distributed messaging system

BENEFITS

Scalable

High-throughput

Distributable

Low response time

Save on data disk

USED IN

LinkedIn

Twitter

Netflix

Tumblr

Foursquare

Summary Background

Deep cuts

Thoughts
Realization
Silver-lining

TECHNICAL DETAILS

[B] WHAT IS ZOOKEEPER?

Handles various errors in distributed systems.

Four Features

Using name service to separate loads.

Using distributed lock to handle synchronization error

Error detection and recovery

Configuration management

_ Solution

Architecture

Metric Collection

Metric Storage

Communication

Ul Design

ARCHITECTURE

[A] WHAT IS KAFKA?

A high-throughput distributed messaging system

BENEFITS

Scalable

High-throughput

Distributable

Low response time

Save on data disk

USED IN

LinkedIn

Twitter

Netflix

Tumblr

Foursquare

Architecture

Metric Collection
Metric Storage
Communication
Ul Design

_ARCHITECTURE

[B] WHAT IS ZOOKEEPER?

Safe storage for distributed systems

Four Features

Using name service to separate loads.

Using distributed lock to handle synchronization error

Error detection and recovery

Configuration management

Architecture

Metric Collection
Metric Storage
Communication
Ul Design

Architecture

Metric Collection
Metric Storage
Communication
Ul Design

_ARCHITECTURE

Architecture

Metric Collection

Metric Storage
Communication
Ul Design

METRIC COLLECTION

- 1. JMX protocol is used to extract metrics from target system.
- 2. JMXTrans schedule collection job every 2 seconds.
- 3. Subprocess calls writer classes.

Architecture
Metric Collection

Metric Storage

Communication
Ul Design

METRIC STORAGE

- 1. JMXTrans calls Rrd4jWriter.
- 2. RRD4J saves metrics with several predetermined timescale.
- 3. RRD4J data is saved to a file.

Architecture
Metric Collection
Metric Storage
Communication
Ul Design

COMMUNICATION

- 1. JMXTrans calls WebSocketWriter.
- 2. WebSocketWriter broadcasts data to all whom subscribes the topic.
- 3. Past data can be retrieved via AJAX call to RRD4J.

Architecture
Metric Collection
Metric Storage
Communication
UI Design

_UIDESIGN

- 1. Sencha ExtJS is used as main framework.
- 2. SockJS and STOMP.js.
- 3. D3.js is used to draw charts.

Architecture
Metric Collection
Metric Storage
Communication
UI Design

UI DESIGN: TWO NEEDS

To ensure the normal operation of the system

To find out the cause of abnormal behavior

Architecture
Metric Collection
Metric Storage
Communication
UI Design

UI DESIGN: PAGE #1

Architecture
Metric Collection
Metric Storage
Communication
UI Design

_UIDESIGN: PAGE #2

response time (ms)

request/sec

msg in/sec

response time (ms)

PART_04

NOVELTY

_ Novelty

Patent Research

Sematext SPM
Kafka Offset Monitor
Comparison

PATENT RESEARCH

APPARATUS AND METHOD FOR MANAGING DATA STREAM DISTRIBUTED PARALLEL PROCESSING SERVICE

KR 2013-0095910 A

ETRI Assignee

_ Novelty

Patent Research

Sematext SPM
Kafka Offset Monitor
Comparison

PATENT RESEARCH

APPARATUS AND METHOD FOR ANALYZING BOTTLENECKS IN DATA DISTRIBUTED PROCESSING SYSTEM

KR 2015-0050689 A

SAMSUNG ELECTRONICS SEOUL NATIONAL UNIV.

_ Novelty

Patent Research

Sematext SPM

Kafka Offset Monitor
Comparison

SPM KAFKA: CONSUMER LAG

Patent Research

Sematext SPM

Kafka Offset Monitor
Comparison

Sematext SPM

- 1. SPM alert user when abnormal event occurs via anomaly detection.
- 2. Provide abundant set of metrics: ~100 metrics are now being supported.
- 3. Integrated with Log Analyzer.

Patent Research
Sematext SPM

Kafka Offset Monitor

Comparison

Kafka Offset Monitor

Patent Research
Sematext SPM

Kafka Offset Monitor

Comparison

Kafka Offset Monitor

- Concentrate on single metric:
 Offset Position of each topic.
- 2. The program also shows configuration of nodes participating in Kafka.
- 3. Built with python.

Patent Research
Sematext SPM
Kafka Offset Monitor
Comparison

_COMPARISON

Features	SPM Kafka	Kafka Offset Monitor	Doflamingo
Communicate with WebSocket?	X	X	O
Can view past trends?	X	X	O
Work with Flamingo?	X	X	0
Open Source?	X	O	0

PART_05

CONTRIBUTIONS

Trends

Obstacles
Positioning
Future

TRENDS: \$\$ WITH BIG DATA

Trends

Obstacles
Positioning
Future

TRENDS: \$\$ WITH BIG DATA

Trends

Obstacles

Positioning

Future

OBSTACLES

" The biggest obstacle we're running into is " not knowing what's possible.

Praveen Kankariya, the founder of Impetus Technologies

Trends

Obstacles

Positioning

Future

_ POSITIONING

SINGLE POINT APPROACH

POSITIONING

Trends

Obstacles

Positioning

Future

Even a simple monitoring tool may be a great indicator to tell what can be done and what can't be done.

Trends
Obstacles
Positioning
Future

FUTURE

"Software as a Service"

Trends
Obstacles
Positioning
Future

FUTURE

"Extreme Abstraction"

PART_06

PROJECT MANAGEMENT

Team

Methodology
Objectives
Metrics

__TEAM

TEAM _ ALPHADOOP

SEUNGHYO
KANG the hadoop master

JARYONG
LEE the spring master

YOUNGJAE
CHANG the sencha master

Team

Methodology

Objectives Metrics

_ METHODOLOGY

AGILE APPROACH

1 SPRINT = 2 WEEKS

TOTAL 5 SPRINTS along the semester

OBJECTIVES

Team

Methodology

Objectives

Metrics

SPRINT

O1: Set up an environment for Flamingo

O2: Define Kafka measurement metrics, visualization forms

O3: Implement API server which provides collected metrics

O4: Implement charts with Sencha

O5: Integrate with Flamingo Ecosystem

SPRINT 3

O6: Define Zookeeper measurement metric, visualization

07: Implement a Zookeeper monitoring module on Flamingo

ZOOKEEPER MODULE

KAFKA MODULE

M2

SPRINT 5

53

Team
Methodology
Objectives
Metrics

_OBJECTIVES

Objectives	Spaces
O1: Set up an environment for Flamingo	0
O2: Define Kafka measurement metrics, visualization forms	
O3: Implement API server which provides collected metrics	
O4: Implement charts with Sencha	
O5: Integrate with Flamingo Ecosystem	X
O6: Define Zookeeper measurement metric, visualization	
O7: Implement a Zookeeper monitoring module on Flamingo	X

	Sprint#1~2 is for res	ooroh onz	ironmont	catur	M11. Requirement compliance		M12. Requirement traceability		
	Collection step	Version	Date	Inspection time (min.)	UCR	ICP	ICT	(해당 단계) 요구사항수	설계/코딩에 반영된 요구사항 수
	SPRINT#3	v1a	4/27	_	2	0	0	3	1
		v1b	5/8	_	2	0	0	3	3
	SPRINT#4	v2a	5/9	20	1	0	0	3	1
		v2b	5/16	20	1	1	1	3	3
	SPRINT#5	v2a	5/23	20	0	0	0	3	1
		v2b	6/7	20	0	0	0	3	3

Kafka, Zookeepr JMX

Requirements clearly understood

				M13. Requirement change rate		M31. Test coverage	
Collection step	Version	Date	Inspection time (min.)	(이전 단계) Baseline 요구 사항 수	변경된 요구사항 수	(해당 단계) 요구사항 수	요구사항 대비 테스트 통과 수
SPRINT#3	vla	4/27	-	3	0	2	2
SPRINT#3	v1b	5/8	_	2	1	3	2
	v2a	5/9	20	3	0	3	1
SPRINT#4	v2b	5/16	20	3	0	3	3
CDD INTT#E	v2a	5/23	20	3	0	2	1
SPRINT#5	v2b	6/7	20	3	0	2	2

— Kafka, Zookeeper

Not working code

				M21. Fault density		M22. Bad fix rate	
Collection step	Version	Date	Inspection time (min.)	결함수	결함제거노력 (hour)	전체 결함 수	Side-effect 발생 수
SPRINT#3	v1a	4/27	_	0	0		0
SFRIN1#3	v1b	5/8	_	0	0	0	0
CDD INITUA	v2a	5/9	20	0	0		0
SPRINT#4	v2b	5/16	20	0	0	0	0
CDD INTT#E	v2a	5/23	20	0	0		0
SPRINT#5	v2b	6/7	20	0	0	U	0

About 10,000 inspection points

→ Because of extra library (Ext.js, d3.js etc)

Only Performed Code Cleanup

→ Reduced to 8,651

Requirements	Specified		Done	
Built as a part of Flamingo system	_			
Monitor and Report in Real-time	Implement Websocket writer			
	Connect Wohandrat writer to IMV	Kafka	О	
	Connect Websocket writer to JMX	Zookeeper	X	
Utilize JVM ecosystem	_			
Visualize the metrics, avoid numbers	Using d3.js, show metrics with graphs			
	Implement RRD4j			
Save metrics into Database	Compact DDD4:itanta IMW	Kafka	О	
	Connect RRD4j writer to JMX	Zookeeper	X	
Special caution on log management	Timeline			

PART_07

DEMONSTRATION

_ Demonstration

Scenario

Demo

_ Demonstration

Scenario

Demo

_ Demonstration

Scenario

Demo

THANKYOU

FOR LISTENING

