Semiparametric Spatio-temporal Modeling and Inference Under Local Stationarity

Jialuo Liu

Department of Statistics Colorado State University

Motivating Example: Noise Intensity Data

- 17 static sensors and 2 roving sensors.
- collected between 10:29:00 am and 11:24:00 am.
- 56 observations, one per minute, for each static sensor.
- measurements from the roving sensors are irregularly spaced in time.

Spatio-temporal Modeling

Challenges

- Irregularity in space and in time
- Stationary vs nonstationary
- Separable vs nonseparable
- Lack of an appropriate asymptotic framework

Solution

- Model
 - * linear model
 - * nonlinear model
 - * semiparametric model
- Covariance function
 - * locally stationary covariance function
- Properties of estimates
 - * a spatio-temporal asymptotic framework

Spatio-temporal Model

$$y(s,t) = \mu(s,t) + \varepsilon_1(s,t) + \varepsilon_2(s,t), \ s \in \mathcal{R} = [0,1]^d, \ t \in \mathcal{T} = [0,1],$$

- \bullet $\mu(s,t)$ is a fixed unknown spatio-temporal mean function.
- $\varepsilon_1(s,t)$ is a spatio-temporal Gaussian error process.
- $\varepsilon_2(s,t)$ follows i.i.d. Gaussian distribution with mean 0 and variance τ^2 , independent of $\varepsilon_1(s,t)$.
- Denote the covariance function of $\varepsilon(s,t) = \varepsilon_1(s,t) + \varepsilon_2(s,t)$ as $\gamma((s,t),(s',t'))$ for $(s,t),(s',t') \in \mathcal{R} \times \mathcal{T}$.

Locally Stationary Covariance: General

(LS.1). There exists a sequence of functions $g_n(\cdot,\cdot,s,t)$ such that

$$|\gamma_n((s,t),(s',t')) - g_n(s'-s,t'-t,s,t)| = \mathcal{O}(||s'-s|| + |t'-t| + \rho_n)$$

uniformly for all $(s,t), (s',t') \in \mathcal{R} \times \mathcal{T}$, where $\{\rho_n\}$ is a sequence of positive numbers such that $\rho_n \to 0$ as $n \to \infty$. In addition, we assume that there exists a function g such that

$$\lim_{n\to\infty} |g_n\left(s'-s,t'-t,s,t\right)-g(\boldsymbol{u}_1,u_2,s,t)|\to 0, \text{ as } n\to\infty,$$

where $u_1 = A_n(s'-s)$ and $u_2 = B_n(t'-t)$.

Locally Stationary Covariance: General

- (LS.2). Define $g(\boldsymbol{s},t) = g(\boldsymbol{0},0,\boldsymbol{s},t)$ with $g(\boldsymbol{u}_1,u_2,\boldsymbol{s},t)$ in (LS.1), and $g(\boldsymbol{s},t)$ is such that $|g(\boldsymbol{s},t)-g(\boldsymbol{s}',t')| \leq C_1 \|\boldsymbol{s}-\boldsymbol{s}'\| + C_2 |t-t'|$ for all $(\boldsymbol{s},t),(\boldsymbol{s}',t') \in \mathcal{R} \times \mathcal{T}$, where $C_1,C_2>0$ are constants.
- (LS.3). There exist two positive nonincreasing functions γ_0 and γ_1 satisfying $\int_0^\infty u^{d-1}\gamma_0(u)du < \infty \text{ and } \int_0^\infty \gamma_1(u)du < \infty \text{ such that } |\gamma_n((s,t),(s+u_1/A_n,t+u_2/B_n))| \leq \gamma_0(\|u_1\|)\gamma_1(|u_2|) \text{ for all } n \text{ and } \|u_1\|,|u_2|\in[0,\infty) \text{ such that } (s,t),(s+u_1/A_n,t+u_2/B_n)\in\mathcal{R}\times\mathcal{T}.$

Some Notation of Derivatives

For a parametric covariance function determined by a $q \times 1$ vector $\boldsymbol{\theta}$, we denoted it as $\gamma_n(\cdot,\cdot;\boldsymbol{\theta})$.

- $\gamma_{n,k}(\cdot,\cdot;\boldsymbol{\theta}) = \partial \gamma_n(\cdot,\cdot;\boldsymbol{\theta})/\partial \theta_k$, for $1 \leq k \leq q$.
- $\gamma_{n,kk'}(\cdot,\cdot;\boldsymbol{\theta}) = \partial \gamma_n(\cdot,\cdot;\boldsymbol{\theta})/\partial \theta_k \partial \theta_{k'}$, for $1 \leq k,k' \leq q$.

If the data are observed at N_n sampling locations and time points $(s_1,t_1),\ldots,(s_{N_n},t_{N_n}).$ Let $\Gamma=[\gamma_n((s_i,t_i),(s_j,t_j);\theta)]_{i,j=1}^{N_n}$ denote an $N_n\times N_n$ covariance matrix.

- $\Gamma_k = \partial \Gamma / \partial \theta_k$
- $\Gamma_{kk'} = \partial^2 \Gamma / \partial \theta_k \partial \theta_{k'}$

Locally Stationary Covariance: Parametric

- (LS.4). The covariance function $\gamma_n(\cdot,\cdot;\boldsymbol{\theta})$ is bounded and is twice continuously differentiable with respect to $\boldsymbol{\theta}$ in an open set.
- (LS.5). There exist two positive nonincreasing functions γ_2 and γ_3 with $\int_0^\infty u^{d-1} \gamma_2(u) du < \infty \text{ and } \int_0^\infty \gamma_3(u) du < \infty \text{ such that } \max\{|\gamma_{n,k}((s,t),(s+u_1/A_n,t+u_2/B_n))|,|\gamma_{n,kk'}((s,t),(s+u_1/A_n,t+u_2/B_n))|\} \leq \gamma_2(\|u_1\|)\gamma_3(|u_2|) \text{ for all } n \text{ and } \|u_1\|,|u_2|\in[0,\infty) \text{ such that } (s,t),(s+u_1/A_n,t+u_2/B_n)\in\mathcal{R}\times\mathcal{T} \text{ and } 1\leq k,k'\leq q.$

An Example

$$\gamma_n((\boldsymbol{s},t),(\boldsymbol{s}',t');\boldsymbol{\theta}) = \left\{ \begin{array}{ll} \frac{D(\boldsymbol{s},t)D(\boldsymbol{s}',t')\sigma^2\theta_3^{d/2}2^{1-\nu}}{(\theta_1^2u_2^2+1)^\nu(\theta_1^2u_2^2+\theta_3)^{d/2}\Gamma(\nu)} m(\boldsymbol{u}_1,u_2)^\nu K_\nu \left\{ m(\boldsymbol{u}_1,u_2) \right\}, & \text{if } \|\boldsymbol{u}_1\| > 0, \\ \frac{D(\boldsymbol{s},t)D(\boldsymbol{s}',t')\sigma^2\theta_3^{d/2}}{(\theta_1^2u_2^2+\theta_3)^{d/2}}, & \text{if } \|\boldsymbol{u}_1\| = 0, |u_2| > 0, \\ D(\boldsymbol{s},t)^2\sigma^2 + \tau^2, & \text{if } \|\boldsymbol{u}_1\| = 0, |u_2| = 0, \end{array} \right.$$

- $u_1 = \varrho_{1,n}(s'-s)$, $u_2 = \varrho_{2,n}(t'-t)$,
- $\bullet \ m(u_1,u_2) = \theta_2 \left(\frac{\theta_1^2 u_2^2 + 1}{\theta_1^2 u_2^2 + \theta_3} \right)^{1/2} \|u_1\|,$
- $K_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν ,
- D(s,t) is some fixed positive spatio-temporal function.

Proposition

Let D(s,t) be some positive known function with $D(\mathbf{0},0)=1$ and $|D(s,t)-D(s',t')| \leq \widetilde{C}_1 \|s-s'\| + \widetilde{C}_2 |t-t'|$ for all $(s,t),(s',t') \in \mathcal{R} \times \mathcal{T}$, where $\widetilde{C}_1,\widetilde{C}_2>0$ are constants. Then the generalized spatio-temporal Matérn covariance function (9) satisfies conditions (LS.1)–(LS.5).

Asymptotics in Spatial Statistics

Two traditional asymptotic frameworks

- Increasing domain asymptotic framework
 - * An increasing domain asymptotic framework does not permit the study of the "local" behavior of the covariance function.
- Infill domain asymptotic framework
 - Some parameters in the covariance function are not consistently estimable under infill asymptotics.

(L_n, T_n) -rate STDE Asymptotics

Assume that, for all n,

(A.1).
$$\delta_n/\min_{1\leq j\leq N_n} \delta_{j,n} \leq c_1$$
,

(A.2).
$$\zeta_n / \min_{1 \le j \le N_n} \zeta_{j,n} \le c_2$$
,

(A.3).
$$\delta_n^d A_n^d \zeta_n B_n \ge c_3$$
,

- $\{A_n\}$ and $\{B_n\}$ are two sequences of positive numbers, both tend to infinity as n increases.
- $\delta_{j,n} = \min\{\|s_i s_j\| : 1 \le i \le N_n, s_i \ne s_j\}, \ \delta_n = \max_{1 \le j \le N_n} \delta_{j,n}.$
- $\zeta_{j,n} = \min\{|t_i t_j| : 1 \le i \le N_n, t_i \ne t_j\}, \zeta_n = \max_{1 \le j \le N_n} \zeta_{j,n}.$
- c_1 , c_2 , and c_3 are some positive constants independent of n.

We refer to (A.1)-(A.3) as an (A_n, B_n) -rate spatio-temporal distance expanding asymptotics for fixed spatio-temporal domain (STDE).

Commonly-used Spatio-temporal Models

- Zero-mean Gaussian process model: $\mu(s,t) \equiv 0$.
- Simple linear regression model: $\mu(s,t) = x(s,t)^{\top} \beta$.
- Partially linear model: $\mu(s,t) = x(s,t)^{\top} \beta + f(t)$.

Zero-mean Gaussian Process Model

Model

$$y(s,t) = \varepsilon_1(s,t) + \varepsilon_2(s,t), \quad s \in \mathcal{R}, \ t \in \mathcal{T},$$

Log-likelihood Function

$$\ell_{\mathrm{zm}}(\boldsymbol{\theta}) = -(N_n/2)\log(2\pi) - (1/2)\log\{\det\boldsymbol{\varGamma}(\boldsymbol{\theta})\} - (1/2)\boldsymbol{y}^{\top}\boldsymbol{\varGamma}(\boldsymbol{\theta})^{-1}\boldsymbol{y}.$$

The maximizer of $\ell_{\rm zm}(\boldsymbol{\theta})$, denoted by $\widehat{\boldsymbol{\theta}}_{\rm MLE,zm}$, is the maximum likelihood estimate of $\boldsymbol{\theta}$.

Consistency and Asymptotic Normality, MLE

Theorem

Under (LS.1)–(LS.5) and some regularity conditions, there exists, with probability tending to one, a local maximizer ${}^n\widehat{\theta}_{\rm zm}$ of $\ell_{\rm zm}(\theta)$ such that $\|{}^n\widehat{\theta}_{\rm zm}-\theta_0\|=\mathcal{O}_p(N_n^{-1/2})$. Moreover, the local maximizer ${}^n\widehat{\theta}_{\rm zm}$ is asymptotic normal; as $n\to\infty$,

$$N_n^{1/2}(^n\widehat{\boldsymbol{\theta}}_{\mathrm{zm}}-\boldsymbol{\theta}_0) \stackrel{D}{\longrightarrow} N(\boldsymbol{0},\boldsymbol{\mathcal{I}}_{\mathrm{zm}}(\boldsymbol{\theta}_0)^{-1}).$$

Simple Linear Regression Model

Model

$$y(s,t) = x(s,t)^{\top} \boldsymbol{\beta} + \varepsilon_1(s,t) + \varepsilon_2(s,t), \quad s \in \mathcal{R}, \ t \in \mathcal{T},$$

- $x(s,t) = (x_1(s,t), \dots, x_p(s,t))^{\top}$,
- $\bullet \ \boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^\top.$

Let $\pmb{X} = [x_j(\pmb{s}_i,t_i)]_{i=1,j=1}^{N_n,p}$ and $\pmb{\eta} = (\pmb{\beta}^\top,\pmb{\theta}^\top)^\top,$

Log-likelihood Function

$$\ell_{\text{reg}}(\boldsymbol{\eta}) = -\left(N_n/2\right) \log(2\pi) - (1/2) \log\{\det \boldsymbol{\Gamma}(\boldsymbol{\theta})\} - (1/2)(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top} \boldsymbol{\Gamma}(\boldsymbol{\theta})^{-1}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}).$$

Denote the maximizer of $\ell_{\rm reg}(\boldsymbol{\eta})$ as $\widehat{\boldsymbol{\eta}}_{\rm MLE,reg} = (\widehat{\boldsymbol{\beta}}_{\rm MLE,reg}, \widehat{\boldsymbol{\theta}}_{\rm MLE,reg})$.

Consistency and Asymptotic Normality, MLE

Theorem

Under (LS.1)–(LS.5) and some regularity conditions, there exists, with probability tending to one, a local maximizer ${}^n\widehat{\eta}_{\rm reg} = ({}^n\widehat{\beta}_{\rm reg}{}^{\top}, {}^n\widehat{\theta}_{\rm reg}{}^{\top})^{\top}$ of $\ell_{\rm reg}(\eta)$ such that $\|{}^n\widehat{\eta}_{\rm reg} - \eta_0\| = \mathcal{O}_p(N_n^{-1/2})$. Moreover, the local maximizer ${}^n\widehat{\eta}_{\rm reg}$ is asymptotic normal; as $n \to \infty$,

$$N_n^{1/2}(^n\widehat{\boldsymbol{\beta}}_{\mathrm{reg}}-\boldsymbol{\beta}_0) \stackrel{D}{\longrightarrow} N(\mathbf{0}, \boldsymbol{\mathcal{I}}_{\mathrm{reg}}(\boldsymbol{\beta}_0)^{-1})$$
 and $N_n^{1/2}(^n\widehat{\boldsymbol{\theta}}_{\mathrm{reg}}-\boldsymbol{\theta}_0) \stackrel{D}{\longrightarrow} N(\mathbf{0}, \boldsymbol{\mathcal{I}}_{\mathrm{reg}}(\boldsymbol{\theta}_0)^{-1}).$

Partially Linear Model

Model

$$y(s,t) = x(s,t)^{\top} \beta + f(t) + \varepsilon_1(s,t) + \varepsilon_2(s,t), \quad s \in \mathcal{R}, \ t \in \mathcal{T},$$

- $f(t) \neq 0$: MLE cannot be used directly.

Profile Likelihood Estimation

- ullet Let $y_i^* = y(m{s}_i, t_i) m{x}(m{s}_i, t_i)^{ op} m{eta}$ and $m{y}^* = (y_1^*, \dots, y_{N_n}^*).$
- Using local polynomial regression, minimizing

$$\sum_{i=1}^{N_n} \left\{ y_i^* - b_{0,t} - b_{1,t}(t_i - t) \right\}^2 K_h(t_i - t),$$

with respect to $\boldsymbol{b}_t = (b_{0,t}, b_{1,t})^{\top}$, where h is a bandwidth, $K_h = K(\cdot/h)/h$ with a kernel function $K(\cdot)$.

- $\bullet \ (\widehat{b}_{0,t},h\widehat{b}_{1,t})^\top = \boldsymbol{\omega}(t)\boldsymbol{y}^*, \text{ where } \boldsymbol{\omega}(t) = (\boldsymbol{D}_t^\top \boldsymbol{K}_t \boldsymbol{D}_t)^{-1} \boldsymbol{D}_t^\top \boldsymbol{K}_t.$
 - $\mathbf{K}_t = \text{diag}(K_h(t_1 t), \dots, K_h(t_{N_n} t)),$
 - $m{D}_t = (m{1}_{N_n}, m{d}_{1t})$, where $m{1}_{N_n}$ is an $N_n imes 1$ vector of 1's, and $m{d}_{1t} = \left(\frac{t_1 t}{h}, \dots, \frac{t_{N_n} t}{h} \right)^{\top}$.

Profile Likelihood Estimation

- Let ${\boldsymbol f}=(f(t_1),\dots,f(t_{N_n}))^{\top}$ and ${\boldsymbol f}'=(f'(t_1),\dots,f'(t_{N_n}))^{\top}.$
- $oldsymbol{\widetilde{f}} = Sy^* = S(y Xeta),$ where the smoother matrix is

$$S = (\boldsymbol{\omega}_1(t_1)^\top, \dots, \boldsymbol{\omega}_1(t_{N_n})^\top)^\top,$$

where $\omega_1(t) = (1,0)\omega(t)$.

- ullet Plugging \widetilde{f} , (I-S)ypprox (I-S)Xeta+arepsilon,
- ullet The estimator $(\widehat{m{eta}}^{ op},\widehat{m{ heta}}^{ op})^{ op}$ is obtained by maximizing

$$-\tfrac{1}{2}\log\{\det \boldsymbol{\varGamma}(\boldsymbol{\theta})\} - \tfrac{1}{2}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top}(\boldsymbol{I} - \boldsymbol{S})^{\top}\boldsymbol{\varGamma}(\boldsymbol{\theta})^{-1}(\boldsymbol{I} - \boldsymbol{S})(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}),$$

$$oldsymbol{\hat{f}} = oldsymbol{S}(oldsymbol{y} - oldsymbol{X} \widehat{oldsymbol{eta}})$$

Consistency and Asymptotic Normality, PMLE (1)

Theorem

Under (LS.1)–(LS.5) and some regularity conditions, there exists, with probability tending to one, a local maximizer ${}^n\widehat{\boldsymbol{\eta}}=({}^n\widehat{\boldsymbol{\beta}}^\top,{}^n\widehat{\boldsymbol{\theta}}^\top)^\top$ of $\ell(\boldsymbol{\eta})$ such that $\|{}^n\widehat{\boldsymbol{\eta}}-\boldsymbol{\eta}_0\|=\mathcal{O}_p(N_n^{-1/2})$. Moreover, the local maximizer ${}^n\widehat{\boldsymbol{\eta}}$ is asymptotic normal; as $n\to\infty$,

$$egin{aligned} N_n^{1/2}(^n\widehat{oldsymbol{eta}}-oldsymbol{eta}_0) & \stackrel{D}{\longrightarrow} N(\mathbf{0}, oldsymbol{H}^{-1}) \quad ext{and} \ N_n^{1/2}(^n\widehat{oldsymbol{ heta}}-oldsymbol{ heta}_0) & \stackrel{D}{\longrightarrow} N(\mathbf{0}, oldsymbol{\mathcal{I}}_0(oldsymbol{ heta}_0)^{-1}). \end{aligned}$$

- The estimate ${}^{n}\widehat{\eta}$ is root- N_{n} consistent.
- The asymptotic variance of $\widehat{\beta}$ is not $\mathcal{I}_0(\beta_0)^{-1}$, i.e., the asymptotic variance as if f is given.
- For ${}^{n}\widehat{\theta}$, we have the same asymptotic variance as that of the case when f is given.

Consistency and Asymptotic Normality, PMLE (2)

(C.1). Given $t \in (0,1)$, there exists a 2×2 matrix Δ_t , such that $(N_n^{-1}h)\mathbf{k}_t^{\top} \mathbf{\Gamma} \mathbf{k}_t \longrightarrow q(t)^2 \Delta_t$, where $\mathbf{k}_t = \{K_h(t_i - t)\{(t_i - t)/h\}^{j-1}\}_{i,j=1}^{N_n,2}$ is an $N_n \times 2$ matrix.

Theorem

If $f^{(3)}(t)$ is bounded, under (LS.1)–(LS.5), (C.1) and some regularity assumptions, we have, as $n \to \infty$,

$$(N_n h)^{1/2} \left\{ \widehat{\boldsymbol{F}}(t) - \boldsymbol{F}(t) - (1/2)h^2 \begin{pmatrix} \mu_2 f''(t) \\ 0 \end{pmatrix} + o(h^2) \right\}$$

$$\xrightarrow{D} N \left(\boldsymbol{0}, \begin{pmatrix} 1 & 0 \\ 0 & \mu_2^{-1} \end{pmatrix} \boldsymbol{\Delta}_t \begin{pmatrix} 1 & 0 \\ 0 & \mu_2^{-1} \end{pmatrix} \right),$$

for $t \in (0,1)$, where $\mu_k = \int_{-\infty}^{\infty} x^k K(x) dx$.

Optimal Bandwidth

 \bullet The asymptotic mean squared error (AMSE) of $\widehat{f}(t)$ is

$$AMSE(t) = (1/4)h^4\mu_2^2 f''(t)^2 + (N_n h)^{-1}(1,0)\boldsymbol{\Delta}_t(1,0)^{\top}.$$

• The asymptotic weighted mean integrated squared error is

AMISE(h) =
$$\int_0^1 AMSE(t)q(t)dt = (1/4)h^4\mu_2^2 \int_0^1 f''(t)^2 q(t)dt$$

 $+ (N_n h)^{-1} \int_0^1 (1,0) \boldsymbol{\Delta}_t (1,0)^{\top} q(t)dt.$

We obtain an asymptotically optimal bandwidth as

$$h_{\text{opt}} = N_n^{-1/5} \mu_2^{-2/5} \left\{ \frac{\int_0^1 (1,0) \boldsymbol{\Delta}_t (1,0)^{\top} q(t) dt}{\int_0^1 f''(t)^2 q(t) dt} \right\}^{1/5}.$$

• The convergence rate is $N_n^{2/5}$ and is the nonparametric optimal rate.

Some Problems of Optimal Bandwidth

- ullet The asymptotically optimal bandwidth $h_{
 m opt}$ depends on several unknown quantities:
 - Δ_t in the asymptotic variance of $\widehat{F}(t)$,
 - ullet the density of sampling time points q(t), and
 - the second-order derivative of the temporal function f''(t).
- ullet It is not practical to estimate $h_{
 m opt}$, and a more practical bandwidth selection procedure is needed.
- We propose a bandwidth selection procedure based on cross-validation.

Choice of Kernels and Bandwidth Selection

- Cross-validation method has been widely used for independent and identically distributed data.
- For correlated data, (De Brabanter et al. [2011]) showed that bandwidths selected by cross-validation methods with commonly-used kernels are biased, and tend to choose a much smaller bandwidth than the optimal one when data are positively correlated.
- <u>Bimodal kernels</u> are used to address the bias in bandwidth selection, and theoretical properties are established for one-dimensional grid data with stationary covariance (e.g. AR(1)).

Choice of Kernels and Bandwidth Selection

Theorem

Under some regularity conditions, for the spatio-temporal partially linear model with a covariance function satisfying (LS.1)–(LS.5), if there exists a sequence $C_n>0$ such that $C_nh^{-1}\to 0$ and $1/(B_n\zeta_n)\int_{B_nC_n}^{\infty}\gamma_1(u)du\to 0$ as $n\to\infty$, then we have

$$\begin{aligned} \mathbf{E}\{\mathbf{CV}(h)\} = & N_n^{-1} \sum_{i=1}^{N_n} \mathbf{E}\{f(t_i) - \widehat{f}^{(-i)}(t_i)\}^2 + \overline{\sigma^2} \\ & - K\left(0\right) \left(\frac{2}{N_n} \sum_{i=1}^{N_n} \sum_{\substack{j \neq i \\ |t_j - t_i| < C_n}} \frac{\mathbf{Cov}(\varepsilon_i, \varepsilon_j)}{b(t_i) - K(0)}\right) + o\left(\frac{1}{N_n h}\right), \end{aligned}$$

where
$$\mathrm{CV}(h) = N_n^{-1} \sum_{i=1}^{N_n} \left\{ y_i^* - \widehat{f}^{(-i)}(t_i) \right\}^2$$
, $\overline{\sigma^2} = N_n^{-1} \sum_{i=1}^{N_n} \mathrm{Var}(Y_i)$ and $b(t_i) = N_n q(t_i) h(\mu_{0,t_i} \mu_{2,t_i} - \mu_{1,t_i}^2) \mu_{2,t_i}^{-1}$.

Bimodal Kernel

We consider the bimodal kernel [De Brabanter et al., 2011]:

$$K_2(u) = \frac{2}{\sqrt{\pi}}u^2 \exp(-u^2).$$

Figure 2: K_2 kernel

Bandwidth Selection Procedure

We propose the following procedure for the selection of bandwidth h.

- (1) For a predetermined bandwidth h_0 and a kernel function K, obtain the estimated regression coefficients $\widetilde{\beta}$ by the profile likelihood method.
- (2) For given a kernel function, find the bandwidth $h_{\rm opt}$ that minimizes the cross-validation criterion

$$CV(h) = N_n^{-1} \sum_{i=1}^{N_n} \left(\frac{\widetilde{y}_i^* - \widetilde{f}_i^*}{1 - S_{ii}} \right)^2,$$
 (1)

where

- ullet $\widetilde{y}_i^* = y_i oldsymbol{x}(oldsymbol{s}_i, t_i)^{ op} \widetilde{oldsymbol{eta}}$, and
- \widetilde{f}_i^* is the profile likelihood estimate.
- (3) Use $h_{\rm opt}$ and the kernel function from Step (2) to obtain the desired estimates of both the regression coefficients β and the covariance function parameters θ .

Other Bandwidth Selection Criteria

- A popular alternative to the cross-validation criterion (1) is the generalized cross-validation [GCV; Golub et al., 1979] criterion, in which S_{ii} is replaced by $N_n^{-1} \operatorname{tr}(S)$.
- For dependent data, Francisco-Fernandez and Opsomer [2005] proposed a bias-corrected generalized cross-validation criterion (GCV_c), replacing S_{ii} by $N_n^{-1}\operatorname{tr}(SR(\boldsymbol{\theta}))$; that is,

$$GCV_{c}(h) = N_n^{-1} \sum_{i=1}^{N_n} \left(\frac{\widetilde{y}_i^* - \widetilde{f}_i^*}{1 - N_n^{-1} \operatorname{tr}(SR(\boldsymbol{\theta}))} \right)^2, \tag{2}$$

• In practice, a pilot estimate of the covariance parameters is required.

Simulations Set-up

- ullet N_s sampling locations, s_1,\ldots,s_{N_s} , within the spatial domain $[0,1]^2$.
- At each sampling location, we consider N_t time points t_1,\ldots,t_{N_t} , where $t_i=(i-1/2)/N_t$ for $i=1,\ldots,N_t$ and $N_t=1000$, and each time point has a probability 0.04 being sampled.
- The sampling locations and the sampling time points are generated once and remain fixed throughout the simulation study.
- $\beta = (4, 3, 2, 1)^{\top}$.
- The covariates are drawn (once) from a multivariate normal distribution with zero mean, unit variance, and a cross-covariate correlation of 0.5.
- $f(t) = 2(1 \cos(2\pi t))$.
- 400 iterations.

Simulation Set-up

The first covariance structure: an exponential spatio-temporal covariance function

$$\operatorname{Cov}\{\epsilon(\boldsymbol{s}_i,t_i),\epsilon(\boldsymbol{s}_j,t_j)\} = \left\{ \begin{array}{ll} \sigma^2(1-c) \exp\{-\varrho_{1,n} \|\boldsymbol{s}_i - \boldsymbol{s}_j\|/c_s - \varrho_{2,n} |t_i - t_j|/c_t\}, & \text{if } i \neq j; \\ \sigma^2, & \text{if } i = j. \end{array} \right.$$

- ullet σ^2 is the variance of the error process,
- $c \in [0,1]$ is a nugget proportion such that $c\sigma^2$ is the nugget effect,
- ullet c_s and c_t are positive range parameters in space and time, respectively.
- $\sigma^2 = 9.0, c = 0.2, c_s = 1$ and $c_t = 1$.

Simulation Results: Bandwidth Selection

(b) Bimodal Kernel

Simulation Results: Parameter Estimates

Table 1: Sample mean, sample standard deviation (SD), averaged estimated standard deviation (SDm) of regression and covariance parameters, and mean-squared prediction error (MSPE) for $N_s=20$ for COV-1.

Method	Truth		PLM			ALT_1			ALT_2	
		mean	SD	SDm	mean	SD	SDm	mean	SD	SDm
β_1	4.0	3.985	0.104	0.112	3.991	0.120	0.132	3.985	0.104	0.112
β_2	3.0	3.017	0.123	0.116	3.017	0.140	0.136	3.018	0.122	0.117
β_3	2.0	2.006	0.109	0.114	2.003	0.127	0.132	2.005	0.109	0.114
$rac{eta_4}{\sigma^2}$	1.0	0.996	0.110	0.115	0.988	0.131	0.134	0.996	0.110	0.115
σ^2	9.0	9.111	0.569	0.546	9.101	0.589	0.453	8.944	0.525	0.528
c	0.2	0.209	0.077	0.074	_	_	_	0.202	0.078	0.077
c_s	1.0	1.090	0.224	0.213	_	_	_	1.025	0.198	0.200
c_t	1.0	1.087	0.243	0.213	_	_	_	1.029	0.224	0.204
MSPE	_		6.501			9.245			6.484	

Simulation Results: Nonparametric Estimation

- solid line: true temporal function $f(t) = 2(1 \cos(2\pi t))$.
- dotted line: average of estimated temporal function
- dashed line: 95% pointwise estimated confidence intervals.
- grey region: 95% pointwise empirical confidence intervals

Simulation Results: Nonparametric Estimation

Figure 4: Estimated standard deviations

- solid line: pointwise simulation standard deviation
- dashed line: pointwise estimated standard deviation using true covariance parameters
- grey lines: pointwise estimated standard deviation from each iteration

Other Covariance Functions

Consider the generalized spatio-temporal Matérn covariance function

$$\operatorname{Cov}\{\epsilon(\boldsymbol{s}_i,t_i),\epsilon(\boldsymbol{s}_j,t_j)\} = \left\{ \begin{array}{l} D(\boldsymbol{s}_i,t_i)D(\boldsymbol{s}_j,t_j)\frac{\sigma^2}{(a^2|T_n(t_i-t_j)|^2+1)^{3/2}}\exp\{-bL_n\|\boldsymbol{s}_i-\boldsymbol{s}_j\|\}, & \text{if } i\neq j; \\ D(\boldsymbol{s}_i,t_i)D(\boldsymbol{s}_j,t_j)\sigma^2+c\sigma^2, & \text{if } i=j. \end{array} \right.$$

- σ^2 is the variance of the error process,
- $c \in [0,1]$ is a nugget proportion such that $c\sigma^2$ is the nugget effect,
- ullet a and b are positive range parameters in time and space, respectively,
- COV-2:

*
$$D(\mathbf{s}_i, t_i) = dt_i + 1$$

* $\sigma^2 = 9, c = 0.2, a = 1, b = 1, d = 1$

• COV-3:

*
$$D(\mathbf{s}_i, t_i) = dt_i + es_{1i} + fs_{2i} + 1.$$

* $\sigma^2 = 9.0, c = 0.2, a = 1, b = 1, d = 0.5, e = 0.5, f = 0.5$

Simulation Results: Parameter Estimates, COV-2

Table 2: Sample mean, sample standard deviation (SD), averaged estimated standard deviation (SDm) of regression and covariance parameters, and mean-squared prediction error (MSPE) for $N_s=20$ for COV-2.

Method	Truth		PLM			ALT_1			ALT_2	
		mean	SD	SDm	mean	SD	SDm	mean	SD	SDm
β_1	4.0	3.969	0.136	0.146	3.987	0.197	0.209	3.969	0.137	0.146
β_2	3.0	3.020	0.165	0.153	3.027	0.218	0.215	3.023	0.164	0.153
β_3	2.0	2.011	0.146	0.152	1.998	0.201	0.209	2.008	0.146	0.152
β_4	1.0	1.003	0.144	0.148	0.983	0.208	0.213	1.004	0.144	0.148
σ^2	9.0	9.075	1.610	1.569	22.751	1.658	1.133	8.934	1.543	1.544
c	0.2	0.229	0.121	0.102	_	_	_	0.227	0.120	0.103
a	1.0	0.980	0.117	0.101	_	_	_	0.996	0.118	0.104
b	1.0	0.973	0.139	0.131	l —	_	_	1.001	0.140	0.135
d	1.0	1.020	0.246	0.238	_	_	_	1.021	0.242	0.237
MSPE	_		13.454			24.114			13.429	

Simulation Results: Parameter Estimates, COV-3

Table 3: Sample mean, sample standard deviation (SD), averaged estimated standard deviation (SDm) of regression and covariance parameters, and mean-squared prediction error (MSPE) for $N_s=20$ for COV-3.

Method	Truth		PLM			ALT_1			ALT_2	
		mean	SD	SDm	mean	SD	SDm	mean	SD	SDm
β_1	4.0	3.964	0.154	0.165	3.984	0.220	0.238	3.963	0.154	0.165
β_2	3.0	3.025	0.184	0.171	3.029	0.248	0.246	3.027	0.183	0.172
β_3	2.0	2.014	0.162	0.172	1.994	0.230	0.238	2.011	0.161	0.172
$\frac{\beta_4}{\sigma^2}$	1.0	1.002	0.163	0.168	0.981	0.238	0.242	1.003	0.163	0.168
σ^2	9.0	9.322	2.418	2.397	29.520	2.115	1.471	9.066	2.374	2.343
c	0.2	0.238	0.151	0.134	_	_	_	0.240	0.155	0.138
a	1.0	0.982	0.115	0.098	l —	_	_	0.996	0.116	0.101
b	1.0	0.977	0.135	0.127	l —	_	_	1.001	0.135	0.130
d	0.5	0.509	0.222	0.222	_	_	_	0.513	0.221	0.224
e	0.5	0.502	0.223	0.217	—	_	_	0.515	0.228	0.220
f	0.5	0.514	0.193	0.197	<u> </u>	_	_	0.524	0.198	0.200
MSPE	_		13.107			23.673			13.062	

Nonseparable but Stationary Covariance Functions

Consider the generalized spatio-temporal Matérn covariance function

$$\begin{split} & \text{Cov}\{\epsilon(\boldsymbol{s}_{i}, t_{i}), \epsilon(\boldsymbol{s}_{j}, t_{j})\} \\ &= \left\{ \begin{array}{l} \frac{D(\boldsymbol{s}_{i}, t_{i})D(\boldsymbol{s}_{j}, t_{j})\sigma^{2}(1-c)\theta_{3} \exp\{-\theta_{2} \left(\frac{\theta_{1}^{2}|\varrho_{2,n}(t_{i}-t_{j})|^{2}+1}{\theta_{1}^{2}|\varrho_{2,n}(t_{i}-t_{j})|^{2}+\theta_{3}}\right)^{1/2} \varrho_{1,n} \|\boldsymbol{s}_{i}-\boldsymbol{s}_{j}\|\}}{(\theta_{1}^{2}|\varrho_{2,n}(t_{i}-t_{j})|^{2}+1)^{1/2}(\theta_{1}^{2}|\varrho_{2,n}(t_{i}-t_{j})|^{2}+\theta_{3})}, & \text{if } i \neq j; \\ D(\boldsymbol{s}_{i}, t_{i})D(\boldsymbol{s}_{j}, t_{j})\sigma^{2} + c\sigma^{2}, & \text{if } i = j. \end{array} \right. \end{split}$$

- \bullet σ^2 is the variance of the error process,
- $c \in [0,1]$ is a nugget proportion such that $c\sigma^2$ is the nugget effect,
- θ_1 and θ_2 are positive range parameters in time and space, respectively,
- $\sigma^2 = 9, c = 0.2, \theta_1 = 1, \theta_2 = 1, \theta_3 = 4.$

Simulation Results: Parameter Estimates

Table 4: Sample mean, sample standard deviation (SD), averaged estimated standard deviation (SDm) of regression and covariance parameters, and mean-squared prediction error (MSPE) for $N_s=20$.

Method	Truth		PLM			ALT_1			ALT_2	
		mean	SD	SDm	mean	SD	SDm	mean	SD	SDm
β_1	4.0	3.985	0.090	0.097	3.988	0.131	0.145	3.984	0.090	0.097
β_2	3.0	3.017	0.109	0.101	3.016	0.155	0.149	3.018	0.109	0.101
β_3	2.0	2.004	0.095	0.099	1.999	0.143	0.145	2.003	0.095	0.099
β_4	1.0	0.998	0.094	0.099	0.989	0.148	0.147	0.998	0.094	0.099
σ^2	9.0	9.235	0.949	0.890	10.955	2.995	_	8.990	0.871	0.857
c	0.2	0.198	0.045	0.043	_	_	_	0.201	0.046	0.045
θ_1	1.0	0.925	0.230	0.217	_	_	_	0.967	0.208	0.214
θ_2	1.0	0.962	0.421	0.441	_	_	_	1.039	0.415	0.473
θ_3	4.0	4.525	3.112	3.816	_	_	_	4.827	3.093	4.109
MSPE	_		4.915			11.206			4.908	

Real Data Analysis: Noise Intensity Data

Real Data Analysis

Model

$$y(\mathbf{s},t) = \beta_1 s_1 + \beta_2 s_2 + f(t) + \varepsilon(\mathbf{s},t), \text{ with } \mathbf{s} = (s_1, s_2).$$

Three Covariance Structures

- Stationary: $D_1(s,t)=1$
- Nonstationary:
 - $D_2(s,t) = 1 + dt$.
 - $D_3(s,t) = 1 + dt + e(t-\tau)_+$, τ is chosen as 11:02:00.

Real Data Analysis: Summary

	$D_1(\boldsymbol{s},t)$	$D_2(\boldsymbol{s},t)$	$D_3(\boldsymbol{s},t)$	$D_3(\boldsymbol{s},t)$ (penalized)						
h	0.0193	0.0193	0.0193	0.0193						
Regression parameters										
β_1	-0.3922(0.0820)	-0.4492(0.0652)	-0.4569(0.0546)	-0.4600(0.0636)						
β_2	0.3015(0.0565)	0.4048(0.0440)	0.4135(0.0413)	0.3954(0.0425)						
	Covariance parameters									
σ^2	50.8840(8.7442)	8.8096(1.7254)	15.3138(2.9336)	14.7628(2.7797)						
c	0.0007(0.0001)	0.0020(0.0005)	0.0010(0.0002)	0.0009(0.0002)						
c_s	0.1662(0.0040)	0.1677(0.0037)	0.1654(0.0036)	0.1723(0.0038)						
c_t	0.0152(0.0025)	0.0215(0.0033)	0.0191(0.0030)	0.0237(0.0036)						
d	_	1.9218(0.2647)	0.3114(0.1514)	0.1982(0.1723)						
e	_	<u> </u>	12.1972(1.1460)	3.0394(0.4177)						

- the estimate of the coefficient of $(t-\tau)_+$ in D_3 (e) is unusually large.
- a common phenomenon in spline smoothing with truncated polynomial basis functions.
- consider a penalized approach by adding an additional penalty term $-\lambda|e|$ to the log-likelihood function, where $\lambda=20$.

Real Data Analysis

Figure 6: Estimated standard deviation

Real Data Analysis: Estimated Temporal Trend

- solid line: estimated temporal function
- dashed line: 95% pointwise estimated confidence intervals
- The function estimates $\widehat{f}(t)$ from D_1 , D_2 and D_3 are similar.
- \bullet Penalized D_3 has the narrowest confidence intervals.

Kriging Map Based on D_3 (penalized)

- A possible noise source on the upper-left corner.
- A change of the overall noise intensity at 11:10:00.
- A horizontal separation around y = 30 before 11:10:00.

Reference

- K. De Brabanter, J. De Brabanter, J. A. K. Suykens, and B. De Moor. Kernel regression in the presence of correlated errors. *Journal of Machine Learning Research*, 12:1955–1976, 2011.
- M. Francisco-Fernandez and J. D. Opsomer. Smoothing parameter selection methods for nonparametric regression with spatially correlated errors. *Canadian Journal of Statistics*, 33: 279–295, 2005.
- G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method for choosing a good ridge parameter. *Technometrics*, 21(2):215–223, 1979.