Lecture 9-11

ALGEBRAIC THEORY VIA SCHEMES

9. Basic Theory of Group Schemes

9.1. Categorical Perspective of Schemes. Fix an algebraically closed field k. We use Sch_k to denote the category of schemes of finite type over k. For two objects X, S in Sch_k , we define an S-valued point of X to be a morphism $S \to X$ in Sch_k . Denote

$$\underline{X}(S) := \operatorname{Hom}_k(S, X).$$

The association $S \mapsto \underline{X}(S)$ defines a contravariant functor $\underline{X} : \mathsf{Sch}_k^{\mathsf{op}} \to \mathsf{Sets}$ from the opposite category of Sch_k . When X varies, we get a functor $\mathsf{Sch}_k \to \mathsf{Fun}(\mathsf{Sch}_k^{\mathsf{op}}, \mathsf{Sets})$, which is fully faithful. Granting this, we can view Sch_k as a full subcategory of $\mathsf{Fun}(\mathsf{Sch}_k^{\mathsf{op}}, \mathsf{Sets})$. Similarly, if we use Alg_k to denote the category of finitely generated k-algebras, then any $X \in \mathsf{Sch}_k$ defines a covariant functor

$$\underline{X} : \mathsf{Alg}_k \to \mathsf{Sets}, \quad \underline{X}(R) := \underline{X}(\operatorname{Spec} R) = \operatorname{Hom}_k(\operatorname{Spec} R, X).$$

The functor

$$\mathsf{Sch}_k \to \mathsf{Fun}(\mathsf{Alg}_k, \mathsf{Sets}), \quad X \mapsto \underline{X}$$

is fully faithful and we can view Sch_k as a full subcategory of $Fun(Alg_k, Sets)$.

Definition 9.1 (Group scheme). A **group scheme** is a scheme G of finite type over k together with

- a multiplication morphism $m: G \times G \to G$,
- an identity point $e: \operatorname{Spec} k \to G$, and
- an inverse morphism $i: G \to G$,

such that the following axioms hold.

(1) (Associativity) The diagram is commutative:

$$G \times G \times G \xrightarrow{m \times 1_G} G \times G$$

$$\downarrow^{1_G \times m} \qquad \qquad \downarrow^{m}$$

$$G \times G \xrightarrow{m} G$$

(2) (Axiom of the identity section) The diagram is commutative:

$$\begin{array}{ccc} G \times \operatorname{Spec} k & \xrightarrow{\operatorname{id}_G \times e} & G \times G \\ \cong & & \downarrow^m & \\ G & \xrightarrow{\operatorname{id}_G} & G \\ \cong & & \uparrow^m \\ G \times \operatorname{Spec} k & \xrightarrow{e \times \operatorname{id}_G} & G \times G \end{array}$$

(3) The diagram is commutative:

Date: Novmember, 2022.

Remark 9.2. (1) We use \underline{G} to denote the functor $\operatorname{Sch}_k^{\operatorname{op}} \to \operatorname{Sets}$ associated to G. Then G is a group scheme if and only if \underline{G} factors through the forgetful functor $\operatorname{\mathsf{Grp}} \to \operatorname{\mathsf{Sets}}$, i.e., \underline{G} is the composite

$$\underline{G}: \mathsf{Sch}^{\mathrm{op}}_{k} o \mathsf{Grp} o \mathsf{Sets}.$$

(2) For a closed point $x \in G(k)$, we can define the right translation R_x to be the composite

$$G \cong G \times \operatorname{Spec} k \xrightarrow{(\operatorname{id}_G, x)} G \times G \xrightarrow{m} G$$

and we define the left translation L_x similarly. In general, for a k-scheme $S \in \mathsf{Sch}_k$ and an S-point $x \in \underline{G}(S)$, we define the right translation R_x to be the S-morphism

$$G \times S \xrightarrow{(m \circ (\mathrm{id}_G \times x), p_2)} G \times S.$$

One can check that $R_{xy} = R_y \circ R_x$ and define L_x in a similar way.

9.2. Lie Algebras. Let $X \in \operatorname{Sch}_k$ and $\Omega_X = \Omega^1_{X/k}$ be the sheaf of relative differentials in X/k.

Definition 9.3. (1) A vector field D on X is a k-linear map $D: \mathcal{O}_X \to \mathcal{O}_X$ such that for any open subset U of X,

$$(D(U): \mathscr{O}_X(U) \to \mathscr{O}_X(U)) \in \mathrm{Der}_k(\mathscr{O}_X(U), \mathscr{O}_X(U)).$$

In other words, $D: \mathcal{O}_X \to \mathcal{O}_X$ is the composite

$$\mathscr{O}_X \stackrel{d}{\longrightarrow} \Omega_X \stackrel{f}{\longrightarrow} \mathscr{O}_X$$

where d is the canonical derivation and f is an \mathcal{O}_X -linear map.

(2) A tangent vector d of X at a closed point $x \in X$ (cf. [Har13, II, Exer 2.8]) is a k-derivation $d: \mathcal{O}_{X,x} \to k \in \mathrm{Der}_k(\mathcal{O}_{X,x}, k)$, for which

$$\operatorname{Der}_{k}(\mathscr{O}_{X,x},k) \cong \operatorname{Hom}_{\mathscr{O}_{X,x}}(\Omega^{1}_{\mathscr{O}_{X,x}/k},k)$$

$$\cong \operatorname{Hom}_{\mathscr{O}_{X,x}}(\Omega_{X,x},k)$$

$$\cong \operatorname{Hom}_{k}(\Omega_{X,x} \otimes_{\mathscr{O}_{X,x}} k,k)$$

$$\cong \operatorname{Hom}_{k}(\mathfrak{m}_{x}/\mathfrak{m}_{x}^{2},k),$$

where $\mathfrak{m}_x \subset \mathscr{O}_{X,x}$ is the maximal ideal. The last isomorphism is from [Har13, II, Prop 8.7]. Therefore, to give a tangent vector at x, say $d: \mathscr{O}_{X,x} \to k$, is equivalent to giving a k-linear map $t: \mathfrak{m}_x/\mathfrak{m}_x^2 \to k$.

(3) For a vector field $D: \mathscr{O}_X \to \mathscr{O}_X$ we define its **value** at $x \in X$ to be the tangent vector $\mathscr{O}_{X,x} \xrightarrow{D_x} \mathscr{O}_{X,x} \to k$.

For two schemes $X, Y \in \mathsf{Sch}_k$, we have a canonical isomorphism $\Omega_{X \times Y} \cong p_1^* \Omega_X \oplus p_2^* \Omega_Y$ where $p_1 : X \times Y \to X$ and $p_2 : X \times Y \to Y$ are natural projections. Let

$$D: \mathscr{O}_X \xrightarrow{d} \Omega_X \xrightarrow{f} \mathscr{O}_X$$

be a vector field on X, we define a vector field $D \otimes 1$ on $X \times Y$ that corresponds to the $\mathscr{O}_{X \times Y}$ -linear map

$$\Omega_{X\times Y} \xrightarrow{\sim} p_1^*\Omega_X \oplus p_2^*\Omega_Y \xrightarrow{(p_1^*(f),0)} \mathscr{O}_{X\times Y}$$

Definition 9.4. Let G be a group scheme over k. A vector field D on G is called **left invariant** if the following diagram commutes:

$$\mathcal{O}_{G} \xrightarrow{D} \mathcal{O}_{G}$$

$$\downarrow^{m^{*}} \qquad \downarrow^{m^{*}}$$

$$\mathcal{O}_{G \times G} \xrightarrow{1 \otimes D} \mathcal{O}_{G \times G}$$

Proposition 9.5. For any tangent vector t at e_G to G, there is a unique left invariant vector field on G whose value at e_G is exactly t.

Proof. First we give another expression of tangent vectors and vector fields. Let $\Lambda = k[\varepsilon]/(\varepsilon)^2$. Let A be a k-algebra and B be an A-algebra. Then we have a bijection between sets, say

$$D \vdash \varphi(a) = a \cdot 1_B + D(a)\varepsilon$$

$$\varphi \text{ is a k-algebra homomorphism}$$

$$\text{such that } \overline{\varphi} : A \to B \otimes_k \Lambda \quad \text{such that } \overline{\varphi} : A \to B \text{ is the structure map}$$

$$\text{read as } \overline{\varphi} : A \xrightarrow{\varphi} B \otimes_k \Lambda \quad \xrightarrow{\text{mod } \varepsilon} B$$

$$\varphi' : A \otimes_k \Lambda \to B \otimes_k \Lambda \quad \varphi' \text{ is a Λ-algebra homomorphism such that}$$

$$\varphi' \otimes_k \Lambda : A \to B \text{ is the structure map}$$

Under the above bijections:

- (i) a tangent vector t to X at $x \in X$ corresponds to a morphism $\tilde{t} : \operatorname{Spec} \Lambda \to X$ such that the composite $\operatorname{Spec} k \to \operatorname{Spec} \Lambda \xrightarrow{\tilde{t}} X$ is basically the point $x \in X$.
- (ii) a vector field D on X corresponds to a morphism over Spec Λ :

$$X \times \operatorname{Spec} \Lambda \xrightarrow{\widetilde{D}} X \times \operatorname{Spec} \Lambda$$

$$\longrightarrow \operatorname{Spec} \Lambda$$

such that $\widetilde{D} \times_{\operatorname{Spec} \Lambda} \operatorname{Spec} k : X \to X$ is id_X .

(iii) for a vector field D on X, and t_x the value of D at $x \in X$, the morphism \tilde{t}_x corresponds to the morphism

$$\operatorname{Spec} \Lambda \stackrel{\cong}{\longrightarrow} \operatorname{Spec} k \times \operatorname{Spec} \Lambda \stackrel{(x,\operatorname{id}_X)}{\longrightarrow} X \times \operatorname{Spec} \Lambda \stackrel{\widetilde{D}}{\longrightarrow} X \times \operatorname{Spec} \Lambda \stackrel{p_1}{\longrightarrow} X$$

Under the above expressions, we see that a vector field D on G is left invariant if and only if the following diagram is commutative:

$$\begin{array}{ccc} G \times G \times \operatorname{Spec} \Lambda & \xrightarrow{\operatorname{id}_G \times \widetilde{D}} & G \times G \times \operatorname{Spec} \Lambda \\ & & & \downarrow^{m \times \operatorname{id}_\Lambda} & & \downarrow^{m \times \operatorname{id}_\Lambda} \\ & & & G \times \operatorname{Spec} \Lambda & \xrightarrow{\widetilde{D}} & G \times \operatorname{Spec} \Lambda \end{array}$$

Here all arrows are morphisms over Spec Λ . We use \widetilde{D}_1 to denote the composite

$$\widetilde{D}_1: G \times \operatorname{Spec} \Lambda \xrightarrow{\widetilde{D}} G \times \operatorname{Spec} \Lambda \xrightarrow{p_1} G.$$

Then D is left invariant if and only if for any $S \in \operatorname{Sch}_k$, $x, y \in \underline{G}(S)$, and $l \in \operatorname{Spec} \Lambda(S)$, $\widetilde{D}_1(xy, l) = x\widetilde{D}(y, l)$. (Caveat: one should be very careful about the order.) Alternatively, this is equivalent to say

$$\widetilde{D}_1(x,l) = x\widetilde{D}_1(e_G(S),l),$$

where $e_G(S) \in \underline{G}(S)$ is the identity element; note that $(e_G(S), l)$ is the value of \widetilde{D} at e_G . Now given a tangent vector t of G at e_G , we define a vector field D on X that corresponds to the following with $\widetilde{t} : \operatorname{Spec} \Lambda \to G$,

$$\widetilde{D}: G \times \operatorname{Spec} \Lambda \xrightarrow{(\operatorname{id}_G, \widetilde{t}, \operatorname{id}_\Lambda)} G \times G \times \operatorname{Spec} \Lambda \xrightarrow{(m, \operatorname{id}_\Lambda)} G \times \operatorname{Spec} \Lambda.$$

In other words, \widetilde{D}_1 satisfies $\widetilde{D}_1(x,l) = x\widetilde{D}_1(e_G(S),l)$ for each $S \in \operatorname{Sch}_k$, $x \in \underline{G}(S)$, and $l \in (\operatorname{Spec} \Lambda)(S)$. It renders that \widetilde{D} is left invariant and has value t at e_G . Hence the uniqueness follows obviously.

Let D_1, D_2 be two vector fields on X. Their **Poisson bracket**

$$[D_1, D_2] = D_1 D_2 - D_2 D_1$$

is also a vector field on X. When $\operatorname{char}(k) = p > 0$, D_1^p is a vector field on X. When X = G is a group scheme, the above two operators preserve left invariant vector fields.

Definition 9.6. The **Lie algebra of a group scheme** G is the k-vector space of left invariant vector fields, together with the operation of Poisson bracket (and the pth power operation if char(k) = p > 0).

Proposition 9.7. If G is a commutative group scheme, then its Lie algebra \mathfrak{g} is abelian, i.e., $[D_1, D_2] = 0$ for all $D_1, D_2 \in \mathfrak{g}$.

Proof. We first make the following observation. Let $X \in \operatorname{Sch}_k$, D_1, D_2 be vector fields on X, and $D_3 = [D_1, D_2]$. Let $\widetilde{D}_i : X \times \operatorname{Spec} \Lambda \to X \times \operatorname{Spec} \Lambda$ be the morphism corresponding to D_i for i = 1, 2, 3. I claim that $x_3 = x_1 x_2 x_1^{-1} x_2^{-1}$. The question is local on X so we can assume that $X = \operatorname{Spec} A$ is affine. The automorphism χ_i of $X \times \operatorname{Spec} \Lambda'$ over $\operatorname{Spec} \Lambda'$ corresponds to the Λ' -algebra automorphism

$$f_i: A[\varepsilon, \varepsilon']/(\varepsilon^2, \varepsilon'^2) \longrightarrow A[\varepsilon, \varepsilon']/(\varepsilon^2, \varepsilon'^2)$$

that is defined as follows:

$$f_1: a_1 + a_2\varepsilon + a_3\varepsilon' + a_4\varepsilon\varepsilon' \longmapsto a_1 + (D_1(a_1) + a_2)\varepsilon + a_3\varepsilon' + (D_1(a_3) + a_4)\varepsilon\varepsilon',$$

$$f_2: a_1 + a_2\varepsilon + a_3\varepsilon' + a_4\varepsilon\varepsilon' \longmapsto a_1 + a_2\varepsilon + (D_2(a_1) + a_3)\varepsilon' + (D_2(a_2) + a_4)\varepsilon\varepsilon',$$

$$f_3: a_1 + a_2\varepsilon + a_3\varepsilon' + a_4\varepsilon\varepsilon' \longmapsto a_1 + a_2\varepsilon + a_3\varepsilon' + (D_3(a_1) + a_4)\varepsilon\varepsilon';$$

also, f_i^{-1} is given by replacing D_i by $-D_i$ in the above formulas. Hence

$$\begin{split} f_3^{-1} &= f_2^{-1} \circ f_1^{-1} \circ f_2 \circ f_1 : A \otimes_k \Lambda' \to A \otimes_k \Lambda', \\ & \leadsto \quad \chi_3^{-1} &= \chi_1 \circ \chi_2 \circ \chi_1^{-1} \circ \chi_2^{-1} : X \times \operatorname{Spec} \Lambda' \to X \times \operatorname{Spec} \Lambda'. \end{split}$$

Now let D_1, D_2 be two left invariant vector fields on a commutative group scheme G that corresponds to the tangent vector t_i : Spec $\Lambda \to G$ with i = 1, 2. Define $D_3 = [D_1, D_2]$ and \tilde{t}_3 that corresponds to D_3 . For i = 1, 2, 3, define $T_i \in \underline{G}(\Lambda')$ to be the composite

$$T_i:\operatorname{Spec}\Lambda'\xrightarrow{\sigma_i}\operatorname{Spec}\Lambda\xrightarrow{\tilde{f}_i}G.$$

Thus, $\chi_i: G \times \operatorname{Spec} \Lambda' \to G \times \operatorname{Spec} \Lambda'$ be the right translation by $T_i \in \underline{G}(\Lambda')$. Then

$$\chi_3^{-1} = \chi_1 \circ \chi_2 \circ \chi_1^{-1} \circ \chi_2^{-1},$$

but $\chi_1 \circ \chi_2 \circ \chi_1^{-1} \circ \chi_2^{-1}$ is the right translation by $T_2^{-1} \cdot T_1^{-1} \cdot T_2 \cdot T_2 \in \underline{G}(\Lambda')$, which is $e_G(\Lambda')$ as G is commutative. It follows that χ_3^{-1} (and hence χ_3) is the identity morphism so that $D_3 = [D_1, D_2] = 0$.

Theorem 9.8. Any group scheme over a field k of characteristic 0 is automatically smooth (and in particular reduced).

Proof. We can assume that k is algebraically closed and it suffices to prove the group scheme G is smooth at $e \in G$, the identity point. For simplicity, denote $\mathscr{O} = \mathscr{O}_{G,e}$, $\mathfrak{m} \subset \mathscr{O}$ the maximal ideal, and $\widehat{\mathscr{O}}$ the \mathfrak{m} -adic completion of \mathscr{O} . Denote $n = \dim_k \mathfrak{m}/\mathfrak{m}^2$. The multiplication map $m: G \times G \to G$ induces a continuous homomorphism

$$m^*:\widehat{\mathscr{O}}\longrightarrow\widehat{\mathscr{O}}\widehat{\otimes}_k\widehat{\mathscr{O}}.$$

Here $\widehat{\otimes}$ is the complete tensor product; that is, the $(1 \otimes \widehat{\mathfrak{m}} + \widehat{\mathfrak{m}} \otimes 1)$ -adic completion of $\widehat{\mathscr{O}} \otimes_k \widehat{\mathscr{O}}$. Since the two composites

$$G \xrightarrow{(\mathrm{id}_G,e)} G \times G \xrightarrow{m} G$$

are both identity, the composites

$$\widehat{\mathscr{O}} \xrightarrow{m^*} \widehat{\mathscr{O}} \widehat{\otimes}_k \widehat{\mathscr{O}} \longrightarrow \widehat{\mathscr{O}} \widehat{\otimes}_k k \cong \widehat{\mathscr{O}},$$

$$\widehat{\mathscr{O}} \xrightarrow{m^*} \widehat{\mathscr{O}} \widehat{\otimes}_k \widehat{\mathscr{O}} \longrightarrow k \widehat{\otimes}_k \widehat{\mathscr{O}} \cong \widehat{\mathscr{O}}$$

are both identity as well. Thus, for any $a \in \widehat{\mathfrak{m}}$,

$$m^*(a) \in 1 \otimes a + a \otimes 1 + \widehat{\mathfrak{m}} \widehat{\otimes}_k \widehat{\mathfrak{m}}.$$

Claim. For any k-linear map $f: \widehat{\mathfrak{m}}/\widehat{\mathfrak{m}}^2 \to k$, there is a k-derivation $D: \widehat{\mathscr{O}} \to \widehat{\mathscr{O}}$ such that $f = D|_{\widehat{\mathfrak{m}}} \mod \widehat{\mathfrak{m}}$.

Since we have a decomposition of k-vector spaces, $\widehat{\mathcal{O}} = k \oplus \widehat{\mathfrak{m}}$. A k-linear map $F : \widehat{\mathcal{O}} \to k$ could be found such that $F|_k = 0$ and $F|_{\widehat{\mathfrak{m}}}$ is the composite $\widehat{\mathfrak{m}} \to \widehat{\mathfrak{m}}/\widehat{\mathfrak{m}}^2 \xrightarrow{f} k$. We define D to be the composite

$$\widehat{\mathscr{O}} \xrightarrow{m^*} \widehat{\mathscr{O}} \widehat{\otimes}_k \widehat{\mathscr{O}} \xrightarrow{1 \otimes F} \widehat{\mathscr{O}} \widehat{\otimes}_k k \xrightarrow{\cong} \widehat{\mathscr{O}}.$$

Clearly D is k-linear and $D(k) \equiv 0$ as $F(k) \equiv 0$. For $a \in \widehat{\mathfrak{m}}$,

$$D(a) = (1 \otimes F)(1 \otimes a + a \otimes 1 + b) = F(a) + (1 \otimes F)(b)$$

for some $b \in \widehat{\mathfrak{m}} \widehat{\otimes}_k \widehat{\mathfrak{m}}$. Consequently, $D(a) \mod \widehat{\mathfrak{m}} = F(a) = f(a \mod \mathfrak{m}^2)$. This proves the claim that $f = D|_{\widehat{\mathfrak{m}}} \mod \widehat{\mathfrak{m}}$.

We still need to verify that D is a derivation, i.e., for all $a, b \in \widehat{\mathfrak{m}}$, we have D(ab) = aD(b) + bD(a). By a direct computation,

$$m^*(ab) = (a \otimes 1)m^*(b) + (b \otimes 1)m^*(a)$$

+ $(1 \otimes ab - ab \otimes 1 + S(1 \otimes a) + R(1 \otimes b) + RS).$

If we write $m^*(a) = 1 \otimes a + a \otimes 1 + R$, $m^*(b) = 1 \otimes b + b \otimes 1 + S$. In particular, $R, S \in \widehat{\mathfrak{m}} \widehat{\otimes}_k \widehat{\mathfrak{m}}$ and

$$T = 1 \otimes ab - ab \otimes 1 + S(1 \otimes a) + R(1 \otimes b) + RS \in \widehat{\mathscr{O}} \otimes 1 + \widehat{\mathscr{O}} \otimes \widehat{\mathfrak{m}}^{2}.$$

We infer that

$$D(ab) = (1 \otimes F)(m^*(ab))$$

$$= a(1 \otimes F)(m^*(b)) + b(1 \otimes F)(m^*(a)) + \underbrace{(1 \otimes F)(T)}_{=0}$$

$$= aD(b) + bD(a).$$

Here $(1 \otimes F)(T) = 0$ because of $T \in \widehat{\mathcal{O}} \otimes 1 + \widehat{\mathcal{O}} \otimes \widehat{\mathfrak{m}}^2$. Choose $x_1, \ldots, x_n \in \widehat{\mathfrak{m}}$ such that $\{\overline{x}_1, \ldots, \overline{x}_n\}$ forms a k-basis of $\widehat{\mathfrak{m}}/\widehat{\mathfrak{m}}^2$ and $\{f_i : \widehat{\mathfrak{m}}/\widehat{\mathfrak{m}}^2 \to k \mid i = 1, \ldots, n\}$ be the dual basis. Let $D_i : \widehat{\mathcal{O}} \to \widehat{\mathcal{O}}$ be the k-derivation such that $D_i|_{\widehat{\mathfrak{m}}} \mod \widehat{\mathfrak{m}} = f_i$ for each i. In particular, we have $D_i(x_j) \mod \widehat{\mathfrak{m}} = \delta_{ij}$ for all $1 \leq i, j \leq n$.

Define a k-algebra homomorphism

$$\alpha: k[t_1, \dots, t_n] \to \widehat{\mathcal{O}}, \quad t_i \mapsto x_i, \quad i = 1, \dots, n.$$

Since $\{x_1,\ldots,x_n\}$ generates $\widehat{\mathfrak{m}}$ by Nakayama's lemma, α is surjective. Define another k-algebra homomorphism

$$\beta: \widehat{\mathscr{O}} \to k[\![t_1, \dots, t_n]\!], \quad f \mapsto \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} \overline{\left(\frac{D^{\alpha} f}{\alpha!}\right)} \cdot t^{\alpha}.$$

Here the operator $\overline{(\cdot)}$ means modulo $\widehat{\mathfrak{m}}$ (so that the coefficients are elements in k) the power series is defined through

$$\alpha! = \alpha_1! \cdots \alpha_n!, \quad D^{\alpha} f = D_1^{\alpha_1} \cdots D_n^{\alpha_n} f, \quad t^{\alpha} = t_1^{\alpha_1} \cdots t_n^{\alpha_n}.$$

By Leibniz's formula, one can check that β is a continuous homomorphism. Moreover,

$$\beta(x_i) \equiv t_i \mod (t_1, \dots, t_n)^2, \quad i = 1, \dots, n.$$

Hence β is surjective. The composite $\beta \circ \alpha : k[t_1, \ldots, t_n] \to k[t_1, \ldots, t_n]$ is onto and satisfies $\beta \circ \alpha \equiv \operatorname{id} \operatorname{mod} (t_1, \ldots, t_n)^2$. Therefore, $\beta \circ \alpha$ is an isomorphism. So α is injective and hence an isomorphism as well. This shows

$$\widehat{\mathscr{O}} \cong k[[t_1,\ldots,t_n]],$$

which implies that $\widehat{\mathscr{O}}$ is regular, and so also is \mathscr{O} itself. This proves G is smooth at e.

 $^{^1 \}mathrm{For}$ this implication, see [Eis13, $\S 7].$

10. QUOTIENTS BY FINITE GROUP SCHEMES

10.1. The Group Scheme Action on Scheme.

Definition 10.1 (Left action of schemes). A **left action of a group scheme** G **on a scheme** X is a morphism $\mu: G \times X \to X$ such that

(1) the composite

$$X \xrightarrow{\cong} \operatorname{Spec} k \times X \xrightarrow{e_G \times 1_X} G \times X \xrightarrow{\mu} X$$

is the identity morphism;

(2) the diagram

$$G \times G \times X \xrightarrow{m \times 1_X} G \times X$$

$$\downarrow^{1_G \times \mu} \qquad \qquad \downarrow^{\mu}$$

$$G \times X \xrightarrow{\mu} X$$

is commutative;

Remark 10.2. Indeed, we have the following equivalent characterization of a G-action on X.

- (1) For any affine² scheme S we have a (left) $\underline{G}(S)$ -action on $\underline{X}(S)$, which is functorial in S.
- (2) More explicitly, for any $x \in \underline{G}(S)$, we have an automorphism over S; say the diagram

$$X \times S \xrightarrow{T_x} X \times S$$

$$\downarrow p_2$$

$$\downarrow p_2$$

$$\downarrow p_2$$

commutes and is such that

- (i) $T_x \circ T_y = T_{xy}$ for all $x, y \in \underline{G}(S)$;
- (ii) for any morphism $f: S \to S'$ in Sch_k and $x \in \underline{G}(S')$, $x \circ f \in G(S)$.

We have another commutative diagram

$$\begin{array}{c|c} X \times S & \xrightarrow{T_{x \circ f}} & X \times S \\ \downarrow^{1_X \times f} & & \downarrow^{1_X \times f} \\ X \times S' & \xrightarrow{T_x} & X \times S' \end{array}$$

For $x \in \underline{G}(S)$, the morphism $T_x: X \times S \to X \times S$ is given by (T_x', p_2) where $T_x': X \times S \to X$ is the composite

$$X\times S\cong S\times X\stackrel{f\times 1_X}{\longrightarrow}G\times X\stackrel{\mu}{\longrightarrow}X.$$

Conversely, the morphism μ can be recovered from the above datum. Take S = G and $x = \mathrm{id}_G \in \underline{G}(G)$. Then μ is the composite

$$G \times X \xrightarrow{\cong} X \times G \xrightarrow{T_x} X \times G \xrightarrow{p_1} X.$$

Definition 10.3. A morphism $f: X \to Y$ is called *G*-invariant if the following diagram is commutative³

²Note that the problem is local.

³When $Y = \mathbb{A}^1 = \operatorname{Spec} k[T]$, one can talk about the G-invariant sections.

$$G \times X \xrightarrow{\mu} X$$

$$\downarrow p_2 \downarrow \qquad \qquad \downarrow f$$

$$X \xrightarrow{f} Y$$

More explicitly, for each $S \in \mathsf{Sch}_k$, $g \in \underline{G}(S)$, $x \in \underline{X}(S)$, we have $f(\mu(g,x)) = f(x)$.

The action of G on X is **free** if he morphism $(\mu, p_2) : G \times X \to X \times X$ is a closed immersion.

Definition 10.4. Let \mathscr{F} be a coherent sheaf on X. A **lift of the action** μ **to** \mathscr{F} is an isomorphism

$$\lambda: p_2^* \mathscr{F} \xrightarrow{\sim} \mu^* \mathscr{F}$$

of sheaves on $G \times X$ such that the following diagram of sheaves on $G \times G \times X$ is commutative:

Here p_1, p_2, p_3 are natural projections from $G \times G \times X$ and

$$\xi: G \times G \times X \xrightarrow{(p_2, p_3)} G \times X \xrightarrow{\mu} X$$

$$\eta: G \times G \times X \xrightarrow{1_G \times \mu} G \times X \xrightarrow{\mu} X$$

$$\xrightarrow{m \times 1_X} G \times X$$

10.2. Classification of Quotients.

Theorem 10.5 (Quotients by finite group schemes, somehow tedious).

- (A) Let G be a finite group scheme acting on a scheme X such that the orbit of any point in contained in an affine open subset of X. Then there is a pair (Y, π) where Y is a scheme and $\pi: X \to Y$ a morphism, satisfying the following conditions:
 - (1) as a topological space, (Y, π) is the quotient of X for the action of the underlying finite group;
 - (2) the morphism $\pi: X \to Y$ is G-invariant, and if $\pi_*(\mathscr{O}_X)^G$ denotes the subsheaf of $\pi_*\mathscr{O}_X$ of G-invariant functions, the natural homomorphism $\mathscr{O}_Y \to \pi_*(\mathscr{O}_X)^G$ is an isomorphism. The pair (Y, π) is uniquely determined up to isomorphism by these conditions. The morphism π is finite and surjective; Y will be denoted X/G, and it has the functorial property that for any G-invariant morphism $f: X \to Z$, there is a unique morphism $g: Y \to Z$ such that $f = g \circ \pi$.

(B) Suppose further that the action of G is free and $G = \operatorname{Spec} R$, $n = \dim_k R$. Then π is a flat morphism of degree n, i.e., $\pi_* \mathscr{O}_X$ is a locally free \mathscr{O}_Y -module of rank n, and the subscheme of $X \times X$ defined by the closed immersion

$$(\mu, p_2): G \times X \to X \times X$$

is equal to the subscheme $X \times_Y X \subset X \times X$. Finally, if \mathscr{F} is a coherent \mathscr{O}_Y -module, $\pi_*\mathscr{F}$ has a natural defined G-action lifting that on X, and $\mathscr{F} \mapsto \pi^*\mathscr{F}$ is an equivalence between the category of coherent \mathscr{O}_Y -modules (resp. locally free \mathscr{O}_Y -modules of finite rank) and the category of coherent \mathscr{O}_X -modules with G-action (resp. locally free \mathscr{O}_X -modules of finite rank with G-action).

Remark 10.6. (1) The assumption that the orbit of any point in contained in an affine open subset of X can be expressed as follows: for any closed point $x \in X(k)$, the morphism

$$G \cong G \times \operatorname{Spec} k \xrightarrow{1_G \times x} G \times X \xrightarrow{\mu} X$$

factors through an open affine subset of X, i.e., we obtain $G \to U \subset X$. This holds for X quasi-projective over k.

(2) $G_{\text{red}} = \text{Spec}(R_{\text{red}})$ is a closed subgroup scheme of G, and the action of G on X induces an action

$$\mu_{\rm red}:G_{\rm red}\times X\to X$$

of G_{red} on X. As a scheme over k,

$$G_{\mathrm{red}} \cong \bigsqcup_{g \in G(k)} \operatorname{Spec} k,$$

and we are in the situation of varieties. Theorem 10.5 (A)(1) says that as a topological space, (Y, π) only depends on the action μ_{red} of G_{red} on X.

(3) Under the assumption of (B), we have an isomorphism

$$(\mu, p_2): G \times X \xrightarrow{\sim} X \times_Y X,$$

and $\pi: X \to Y$ is faithfully flat. Let \mathscr{F} be a coherent sheaf on X. Under the above isomorphism, a lift of the action μ to \mathscr{F} becomes an isomorphism $\lambda: p_2^*\mathscr{F} \xrightarrow{\sim} p_1^*\mathscr{F}$ (sheaves on $X \times_Y X$) such that the diagram

commutes.4

10.3. Proof of Theorem (A).

Proof. We can reduce to the case for $X = \operatorname{Spec} A$ affine. Recall that $G = \operatorname{Spec} R$ and $n = \dim_k R$. Consider the k-algebra homomorphisms in the following correspondences:

Algebraic Homomorphisms	Geometric Morphisms
$\varepsilon:R\to k$	$e: \operatorname{Spec} k \to G$
$m^*:R\to R\otimes_k R$	$m:G\times G\to G$
$\mu^*:A\to R\otimes_k A$	$\mu:G\times X\to X$

⁴This is the standard descent theory. See [MA67, Chap VII].

For any k-algebra S, $R \otimes_k S$ is a free S-module of rank n. We have a norm map Nm_S : $R \otimes_k S \to S$, i.e., for any $x \in R \otimes_k S$ the multiplication by x defines an S-linear map $l_x : R \otimes_k S \to R \otimes_k S$, and $\operatorname{Nm}_S(x) = \det l_x$. Also,

$$\operatorname{Nm}_S(ax) = a^n \operatorname{Nm}_S(x), \quad \forall a \in S, \ x \in R \otimes_k S,$$

and Nm_S is multiplicative.

Also define $B = \{a \in A \mid \mu^*(a) = 1 \otimes a\} \subset A$ to be the k-subalgebra of A consisting of G-invariant sections; that is, for $a \in A$, the morphism $X \to \mathbb{A}^1$ corresponding to $k[T] \to A$, $T \mapsto G$ is G-invariant if and only if $a \in B$. Define the composite

$$N: A \xrightarrow{\mu^*} R \otimes_k A \xrightarrow{\operatorname{Nm}_A} A.$$

Note that N is multiplicative and k-homogeneous of degree n.

Claim.
$$N(A) \subset B$$
, i.e., $\mu^*(N(a)) = 1 \otimes N(a)$ for each $a \in A$.

Proof of Claim. We define two k-algebra homomorphisms (with their geometric correspondences) as follows:

$$\phi: A \to R \otimes_k A, \quad a \mapsto 1 \otimes a$$

corresponding to

$$p_2: G \times X \to X, \quad (g, x) \mapsto x;$$

and

$$\psi: R \otimes_k R \otimes_k A \to R \otimes_k R \otimes_k A, \quad x \otimes y \otimes a \mapsto (m^*(x) \otimes 1) \cdot (1 \otimes y \otimes a)$$

corresponding to

Spec
$$\psi: G \times G \times X \to G \times G \times X$$
, $(g, h, x) \mapsto (gh, h, x)$.

Firstly, we make a remark. If $f: S_1 \to S_2$ is a k-algebra homomorphism, then the diagram commutes, namely, $f \circ \operatorname{Nm}_{S_1} = \operatorname{Nm}_{S_2} \circ (1_R \otimes f)$.

$$R \otimes_k S_1 \xrightarrow{\operatorname{Nm}_{S_1}} S_1$$

$$\downarrow_{1_R \otimes f} \qquad \qquad \downarrow_f$$

$$R \otimes_k S_2 \xrightarrow{\operatorname{Nm}_{S_2}} S_2$$

So, by the above remark, we obtain that

$$\mu^* \circ N = \mu^* \circ \operatorname{Nm}_A \circ \mu^* = \operatorname{Nm}_{R \otimes_{k} A} \circ (1_R \otimes \mu^*) \circ \mu^*.$$

Moreover,

$$\operatorname{Nm}_{R\otimes_k A} \circ (1_R \otimes \mu^*) \circ \mu^* = \operatorname{Nm}_{R\otimes_k A} \circ (m^* \otimes 1_A) \circ \mu^* = \operatorname{Nm}_{R\otimes_k A} \circ \psi \circ (1_R \otimes \phi) \circ \mu^*$$

because of the two diagrams are commutative:

Let us regard $R \otimes_k (R \otimes_k A)$ as an $R \otimes_k A$ -algebra via the last two factors, i.e., via the k-algebra homomorphism

$$R \otimes_k A \to R \otimes_k R \otimes_k A, \quad r \otimes a \mapsto 1 \otimes r \otimes a.$$

Then $\psi: R \otimes_k R \otimes_k A \to R \otimes_k R \otimes_k A$ is an $R \otimes_k A$ -algebra automorphism; equivalently, we need to verify that

$$G \times G \times X \xrightarrow{\operatorname{Spec} \psi} G \times G \times X$$

$$G \times X \xrightarrow{p_{23}} G \times X$$

is an automorphism. Thus,

$$\operatorname{Nm}_{R\otimes_k A} \circ \psi = \operatorname{Nm}_{R\otimes_k A}$$
.

And therefore,

$$\mu^* \circ N = \operatorname{Nm}_{R \otimes_{k} A} \circ (1_R \otimes \phi) \circ \mu^* = \phi \circ \operatorname{Nm}_A \circ \mu^* = 1 \otimes N.$$

This proves our claim.

We extend the G-action on X to $X \times \mathbb{A}^1$ such that G acts trivially on \mathbb{A}^1 with $\mu \times \mathrm{id}_{\mathbb{A}^1}: G \times X \times \mathbb{A}^1 \to X \times \mathbb{A}^1$. Correspondingly, $\mu^*: A \to R \otimes_k A$ can be extended to a k-algebra homomorphism $A[T] \to R \otimes_k A[T]$. So we can extend the map $N: A \to A$ to $N: A[T] \to A[T]$. For $a \in A$, we set $\chi_a(T) = N(T-a)$ and we can extend χ_a to a k-algebra homomorphism $k[T] \to A[T]$ (and hence determines a morphism $X \times \mathbb{A}^1 \to \mathbb{A}^1$).

It is straightforward to verify that $\chi_a(T) \in A[T]$ is the characteristic polynomial of the A-linear map

$$l_{\mu^*(a)}: R \otimes_k A \to R \otimes_k A$$

that is induced by the multiplication by $\mu^*(a)$, and $\chi_a(T)$ is G-invariant, i.e., the morphism $X \times \mathbb{A}^1 \to \mathbb{A}^1$ determined by $\chi_a(T)$ is G-invariant. So

$$\chi_{n}(T) = T^{n} + s_{1}T^{n-1} + \dots + s_{n} \in A[T]$$

is monic of degree n, and $s_i \in B$ for all i; namely, $\chi_a(T) \in B[T]$.

Fix $a \in A$. The map $\varepsilon : R \to k$ corresponding to the section $e : \operatorname{Spec} k \to G$ extends to an A-linear map $\varepsilon \otimes 1_A : R \otimes_k A \to A$ such that the composite $A \xrightarrow{\mu^*} R \otimes_k A \xrightarrow{\varepsilon \otimes 1_A} A$ is nothing but id_A . Thus the A-linear map $l_{\mu^*(a)-a} : R \otimes_k A \to R \otimes_k A$ induces the zero map on the quotient $\varepsilon \otimes 1_A : R \otimes_k A \to A$. It follows that

$$\chi_a(a) = \det(l_{a-u^*(a)}) = 0,$$

namely, a is integral over B. Hence A is integral over B. Since A is a finitely generated k-algebra, there exists a finitely generated k-subalgebra $B' \subset B$ such that A is integral and finite over B'. Then B is finite over B'. Hence B is a finitely generated k-algebra. If we use $\pi: X \to Y = \operatorname{Spec} B$ to denote the morphism corresponding to the inclusion $B \hookrightarrow A$, then π is definitely finite and surjective.

Now we prove that π separates orbits, i.e. for two closed points $x_1, x_2 \in X(k)$, if $G_{\text{red}}(k) = G'$ and $G' \cdot x_1 \cap G' \cdot x_2 = \emptyset$, then $\pi(x_1) \neq \pi(x_2)$. Define

$$N_{\mathrm{red}}: A \xrightarrow{\mu_{\mathrm{red}}^*} R_{\mathrm{red}} \otimes_k A \xrightarrow{\mathrm{Nm}} A.$$

By the argument in the previous lectures for Chapter II, we can find $a \in A$ such that $a(g'x_1) = 1$, $a(g'x_2) = 0$ for all $g' \in G'$. Granting this, we obtain

$$N_{\text{red}}(a)(x_1) = 1, \quad N_{\text{red}}(a)(x_2) = 0.$$

From the commutative diagrams (with $\alpha \in R \otimes_k A$ arbitrarily fixed):

$$A \xrightarrow{\mu^*} R \otimes_k A \xrightarrow{l_{\alpha}} R \otimes_k A$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$R_{\text{red}} \otimes_k A \xrightarrow{l_{\overline{\alpha}}} R_{\text{red}} \otimes_k A$$

We can verify that $N(a)(x_1) \neq 0$, $N(a)(x_2) = 0$. Their implications are that $l_{\overline{\alpha}}(x_1)$ is an isomorphism (hence is surjective), and $l_{\overline{\alpha}}(x_2)$ is not surjective, respectively. One can actually show

$$N_{\text{red}}(T-a)(x_1) = (T-1)^n, \quad N_{\text{red}}(T-a)(x_2) = T^n.$$

On the other hand, since $N(a) \in B$, it forces $\pi(x_1) \neq \pi(x_2)$.

By definition, $\pi_*(\mathscr{O}_X)^G$ is the kernel of the \mathscr{O}_Y -linear map

$$\pi_* \mathscr{O}_X \to \pi_* \mathscr{O}_X \otimes_k R, \quad f \mapsto \mu^*(f) - f \otimes 1.$$

Then $\pi_*(\mathscr{O}_X)^G$ is coherent on Y, and $\mathscr{O}_Y \cong \pi_*(\mathscr{O}_X)^G$. Finally, the universal property of (Y,π) naturally follows from the construction. This finishes the proof of (A).

10.4. Proof of Theorem (B).

Proof. Given a coherent sheaf \mathscr{F} on Y, we have a canonical isomorphism

$$\lambda: p_2^*(\pi^*\mathscr{F}) \to \mu^*(\pi^*\mathscr{F})$$

as the two composites

$$G \times X \xrightarrow{p_2 \nearrow} X \xrightarrow{\pi} Y$$

are equal. One can verify that this defined a lift of μ to $\pi^* \mathscr{F}$, i.e., can check the diagram is commutative:

Conversely, let \mathscr{G} be a coherent sheaf on X and we have a lift of μ to \mathscr{G} . In case when $Y = \operatorname{Spec} B$ and $X = \operatorname{Spec} A$ are affine, $\mathscr{G} = \widetilde{N}$ for some A-module N. We define $\pi_*(\mathscr{G})^G$ to be the coherent \mathscr{O}_Y -module corresponding to the B-module

$$N^G = \{n \in N \mid \lambda(\underbrace{1 \otimes n}_{p_2^*(n)}) = \mu^*(n) = n \otimes_{A,\mu^*} 1 \in N \otimes_{A,\mu^*} (R \otimes_k A)\}.$$

We run this construction for all open affine G-stable subsets of X, and can define $\pi_*(\mathscr{G})^G$ in general.

Now we assume that the action of G on X is free. The requirement is to prove:

- (1) π is flat; alternatively, $B \to A$ is flat;
- (2) $G \times X \xrightarrow{\sim} X \times_Y X$ is an isomorphism;
- (3) the functors

$$\mathsf{Mod}_{\mathscr{O}_Y} o \mathsf{Mod}_{(G,\mathscr{O}_X)}, \quad \mathscr{F} \mapsto \pi^*\mathscr{F}$$

and

$$\mathsf{Mod}_{(G,\mathscr{O}_X)} o \mathsf{Mod}_{\mathscr{O}_Y}, \quad \mathscr{G} \mapsto \pi_*(\mathscr{G})^G$$

are inverses to each other. For this, it suffices to show $T(\mathcal{G}): \pi^*\pi_*(\mathcal{G})^G \to \mathcal{G}$ is an isomorphism for each (G, \mathcal{O}_X) -module \mathcal{G} .

Now we assume $X = \operatorname{Spec} A$ is affine. As the G-action is free, $(\mu, p_2) : G \times X \to X \times X$ is a closed immersion. Since it factors through $X \times_Y X$, we get a surjective k-algebra homomorphism

$$\varphi: A \otimes_B A \to R \otimes_k A, \quad a_1 \otimes a_2 \mapsto \mu^*(a_1)(1 \otimes a_2).$$

Then it boils down to prove that

- (1') A is flat over $B = A^G$, and φ is injective;
- (2') for each coherent (G, A)-module M, the natural map $M^G \otimes_B A \to M$ is an isomorphism;
- (3') if M is a projective A-module, M^G is projective as a B-module.

We first explain that (1')(2') imply (3'). It suffices to show that M^G is flat as a B-module, or equivalently, the functor

$$(\cdot) \otimes_B M^G : \mathsf{Mod}_B o \mathsf{Mod}_B$$

is exact. Since $B \to A$ is faithfully flat by (1'), this is to prove that the functor

$$((\cdot) \otimes_B M^G) \otimes_B A : \mathsf{Mod}_B \to \mathsf{Mod}_A$$

is exact. For any B-module N, we have

$$(N \otimes_B M^G) \otimes_B A \cong (N \otimes_B A) \otimes_A (A \otimes_B M^G)$$

 $\cong (N \otimes_B A) \otimes_A M$ by granting (2')
 $\cong N \otimes_B M$.

And since M is A-flat with A being B-flat, the functor is morally exact. Therefore, we are left to prove (1')(2').

(1') Replacing B by $B_{\mathfrak{m}}$ where $\mathfrak{m} \subset B$ is the maximal ideal and A by $A \otimes_B B_{\mathfrak{m}}$, we may assume, without loss of generality, that B is local and A is semi-local. Regard $A \otimes_B A$ and $A \otimes_B A$ as A-algebras via the second factor. The map

$$\varphi: A \otimes_B A \to R \otimes_k A, \quad a_1 \otimes a_2 \mapsto \mu^*(a_1)(1 \otimes a_2)$$

is a homomorphism of A-algebras. Since φ is onto, $R \otimes_k A$ is generated by $\mu^*(a)$ with $a \in A$ as an A-algebra. Since A is semi-local one can find $\{a_1, \ldots, a_n\}$ in A such that $\{\mu^*(a_i) \mid 1 \leq i \leq n\}$ form a basis of $R \otimes_k A$ as an A-module.⁵

⁵Here are more details about this step of argument. Since $R \otimes_k A$ is a free A-module of rank n, it suffices to show that $\{\mu^*(a_i) \mid 1 \leqslant i \leqslant n\}$ generates $R \otimes_k A$ as an A-module for some suitable $\{a_i\}_{1 \leqslant i \leqslant n}$. By Nakayama's lemma, it reduces to the case where $A = \prod_{i=1}^m k$. We are to prove the following: if M is a free A-module of rank n, and a k-subspace $\Sigma \subset M$ is a set of generators of M, then there exist $x_1, \ldots, x_n \in \Sigma$

Claim. For $a, \lambda_1, \ldots, \lambda_n \in A$,

(*)
$$\mu^*(a) = \sum_{i=1}^n (1 \otimes \lambda_i) \cdot \mu^*(a_i) \quad \Longleftrightarrow \quad a = \sum_{i=1}^n \lambda_i \cdot a_i \text{ with } \lambda_1, \dots, \lambda_n \in B.$$

For (\Leftarrow) , apply μ^* to $a = \sum_{i=1}^n \lambda_i \cdot a_i$ and use the fact that $\mu^*(\lambda_i) = 1 \otimes \lambda_i$ as $\lambda_i \in B$. For (\Rightarrow) , since $(1_R \otimes \mu^*)(\mu^*a) = (m^* \otimes 1_A)(\mu^*a)$ in $R \otimes_k R \otimes_k A$, we have

$$\sum_{i=1}^{n} (1 \otimes \mu^*(\lambda_i)) (1_R \otimes \mu^*) (\mu^*(a_i))$$

$$= \sum_{i=1}^{n} (1 \otimes 1 \otimes \lambda_i) (m^* \otimes 1_A) (\mu^*(a_i))$$

$$= \sum_{i=1}^{n} (1 \otimes 1 \otimes \lambda_i) (1_R \otimes \mu^*) (\mu^*(a_i)).$$

Since $\{\mu^(a_i) \mid 1 \leqslant i \leqslant n\}$ is a basis of $R \otimes_k A$ as an A-module, $(1_R \otimes \mu^*)(\mu^*(a_i))$ is a basis of $R \otimes_k R \otimes_k A$ as an $R \otimes_k A$ -module via the last two factors. (Here we have used $(R \otimes_k A) \otimes_{A,\mu^*} (R \otimes_k A) \cong R \otimes_k R \otimes_k A$.) Thus, in $R \otimes_k R \otimes_k A$,

$$1 \otimes \mu^*(\lambda_i) = 1 \otimes 1 \otimes \lambda_i.$$

So all λ_i 's land in B. Apply $\varepsilon \otimes 1$ to $\mu^*(a) = \sum_{i=1}^n (1 \otimes \lambda_i)(\mu^*(a_i))$, we have $a = \sum_{i=1}^n \lambda_i \cdot a_i$. So we have proved (*). However, (*) implies that A is a free B-module with basis $\{a_1, \ldots, a_n\}$. This shows A is flat over B. Moreover, the A-linear map $\varphi: A \otimes_B A \to R \otimes_k A$ is a map between free A-modules of rank n and takes a basis $\{a_i \otimes 1\}$ to a basis $\{\mu^*(a_i)\}$. So φ is an isomorphism.

(2') Morally, this follows from the general descent theory. We only list out a sketch. View $M \otimes_B A$ and $A \otimes_B M$ as $A \otimes_B A$ -modules in the obvious way. Then a G-action on M is an isomorphism of $A \otimes_B A$ -modules $\tau : A \otimes_B M \to M \otimes_B A$ such that

Note that the right vertical map is given by τ on the first and the third factors together with 1_A on the second factor.

such that $\{x_1,\ldots,x_n\}$ is a basis of M as an A-module. To see this, one can use induction on $n=\operatorname{rank}_A M$. When n=1, it suffices to find an element $x\in\Sigma$ such that if $x=(x^1,\ldots,x^m)$ then $x^i\neq 0$ for all $i=1,\ldots,m$. We can prove this by induction on m and use the fact that $k=\overline{k}$ is algebraically closed. And hence k is infinite. In general, suppose the statement holds for n and M is a free A-module of rank n+1. Then one may find $x_1\in M$ if we write $x_1=(x_1^1,\ldots,x_1^m)$ under the decomposition $A=\prod_{i=1}^m k$. Thus $x_1^i\neq 0$ for each $i=1,\ldots,m$, i.e., $Ax_1\subset M$ is a free A-submodule of rank 1. Since A is isomorphic to m-copies of k, any (finitely generated) A-module is locally free and hence projective. Therefore, there exists $M_1\subset M$ that is free of rank n such that $M=Ax_1\oplus M_1$. Apply the inductive hypothesis to M_1 and get the desired $\{x_1,\ldots,x_{n+1}\}$.

Define

$$N = \{ m \in M \mid \tau(1 \otimes m) = m \otimes 1 \}.$$

We need to show that $N \otimes_B A \to M$ is an isomorphism. Notice that

$$N = \operatorname{Ker}(\phi : M \to M \otimes_B A), \quad m \mapsto m \otimes 1 - \tau(1 \otimes m)$$

and $B \to A$ is flat, we have

$$N \otimes_B A = \left\{ \sum_i m_i \otimes a_i \in M \otimes_B A \middle| \sum_i m_i \otimes 1 \otimes a_i = \sum_i \tau(1 \otimes m_i) \otimes a_i \right\}.$$

Applying the commutative diagram above to $1 \otimes 1 \otimes m \in A \otimes A \otimes M$, we have

$$\tau(1\otimes M)\subset N\otimes_B A$$

as subsets in $M \otimes_B A$. We view $M \otimes_B A$ as an A-module via the second factor, then $\tau(1 \otimes M)$ and $N \otimes_B A$ are A-submodules of $M \otimes_B A$; and $N \otimes_B A$ is generated by those $n \otimes 1$ with $n \in N$. Since $n \otimes 1 = \tau(1 \otimes n) \in \tau(1 \otimes M)$, we have $M \otimes_B A = \tau(1 \otimes M)$. On the other hand, as $B \to A$ is faithfully flat, the map $M \to A \otimes_B M$ is injective and we have an isomorphism

$$M \xrightarrow{\sim} 1 \otimes M \xrightarrow{\tau} \tau (1 \otimes M)$$

$$m \longmapsto 1 \otimes m$$

so we get a canonical isomorphism $N \otimes_B A \cong M$.

We have accomplished the proof of (B).

INTERLUDE: ON SEESAW'S THEOREM

This is a preliminary part of the upcoming lecture which recalls and generalizes the classical Seesaw's theorem we have mentioned in Chapter II.

Theorem 10.7 (Seesaw). Let X be a complete variety, T any variety, and \mathcal{M} a line bundle on $X \times T$. Then the set

$$T_1 = \{t \in T \mid \mathcal{M}|_{X \times \{t\}} \text{ is trivial on } X \times \{t\}\}$$

is closed in T, and if $p_2: X \times T_1 \to T_1$ is the second projection, then $\mathscr{M}|_{X \times T_1} \cong p_2^* \mathscr{N}$ for some line bundle \mathscr{N} on T_1 . Also, T_1 has the reduced closed subscheme structure.

Proposition 10.8 (Generalized Seesaw). Let X be a complete variety, Y a scheme, and \mathcal{M} a line bundle on $X \times Y$. Then there exists a unique and closed subscheme $Y_1 \hookrightarrow Y$ with the following properties.

- (1) If $\mathcal{M}_1 = \mathcal{M}|_{X \times Y_1}$, there is a line bundle \mathcal{N}_1 on Y_1 and an isomorphism $p_2^* \mathcal{N}_1 \cong \mathcal{M}_1$ on $X \times Y_1$; or alternatively, if $i_1 : Y_1 \hookrightarrow Y$ denotes the first natural closed immersion, we obtain $p_2^* \mathcal{N}_1 \cong (1_X \times i_1)^* \mathcal{M}$.
- (2) If $f: Z \to Y$ is a morphism such that there exists a line bundle \mathscr{K} on Z and an isomorphism $p_2^*\mathscr{K} \cong (1_X \times f)^*\mathscr{M}$ on $X \times Z$, then f factors as

$$f: Z \to Y_1 \hookrightarrow Y$$
.

Remark 10.9. For any closed point $y_1 \in Y_1(k)$, we have

$$\mathscr{M}|_{X\times\{y_1\}}\cong\mathscr{M}_1|_{X\times\{y_1\}}\cong(p_2^*\mathscr{N}_1)|_{X\times\{y_1\}}$$

being trivial. So the closed subvarieties given by the above two Seesaw's are homeomorphic as topological spaces. But the closed subscheme Y_1 in the second proposition may have nonreduced closed subscheme structure so that the universal property (2) holds.

We refer the closed subscheme Y_1 of Y in Proposition 10.8 as the maximal closed subscheme of Y over which \mathcal{M} is trivial. (Caveat: the notation is a little misleading as $\mathcal{M}|_{X\times Y_1}$ is NOT a trivial line bundle in general. Sorry for this!)

11. THE DUAL ABELIAN VARIETY IN ANY CHARACTERISTIC

In Chapter II, we defined a reduced closed subscheme $K(\mathcal{L})$ of X, for every line bundle \mathcal{L} on an abelian variety X, i.e.,

$$K(\mathcal{L}) = \{ x \in X(k) \mid T_x^* \mathcal{L} \cong \mathcal{L} \}.$$

We want to make $K(\mathcal{L})$ as a (nonreduced) closed subgroup scheme of X.

Definition 11.1. Consider the line bundle $\mathscr{M} = m^*\mathscr{L} \otimes p_1^*\mathscr{L}^{-1} \otimes p_2^*\mathscr{L}^{-1}$ on $X \times X$. We define $K(\mathscr{L})$ to be the maximal closed subscheme of X such that $\mathscr{M}|_{X \times K(\mathscr{L})}$ is trivial.

Remark 11.2. We apply the generalized Seesaw theorem (Proposition 10.8) to $\mathscr{M} \in \operatorname{Pic}(X \times X)$ and get a line bundle \mathscr{N}_1 on $K(\mathscr{L})$ and an isomorphism $p_2^*\mathscr{N}_1 \cong \mathscr{M}|_{X \times K(\mathscr{L})}$. But $\mathscr{N}_1 \cong (p_2^*\mathscr{N}_1)|_{\{e_X\} \times K(\mathscr{L})} \cong \mathscr{M}|_{\{e_X\} \times K(\mathscr{L})}$ is trivial as $\mathscr{M}|_{\{e_X\} \times K(\mathscr{L})}$ is trivial. So that $\mathscr{M}|_{X \times K(\mathscr{L})}$ is trivial as well.

In the upcoming context we are to verify that $K(\mathcal{L})$ is a closed subgroup scheme of X. Recall we have defined the "translation by f" morphism, say T_f , as an automorphism over S as follows:

$$X \times S =: X_S \xrightarrow{T_f} X_S$$

Also, $p_1 \circ T_f : X_S \to X$ is the composite

$$X \times S \stackrel{1_X \times f}{\longrightarrow} X \times X \stackrel{m}{\longrightarrow} X.$$

Here X is a commutative group scheme, so there is no difference between left and right translations.

Lemma 11.3. Set $\mathscr{L}_S = p_1^* \mathscr{L} \in \operatorname{Pic}(X_S)$. Then $f \in K(\mathscr{L})(S)$ if and only if $T_f^* \mathscr{L}_S \cong \mathscr{L}_S \otimes p_2^* \mathscr{N}$ for some $\mathscr{N} \in \operatorname{Pic}(S)$.

Proof. By direct computation, we have

$$T_f^* \mathscr{L}_S = T_f^* p_1^* \mathscr{L} \cong (1_X \times f)^* (m^* \mathscr{L}),$$

and hence $T_f^*\mathscr{L}_S|_{\{e_X\}\times S}\cong f^*\mathscr{L}$; the restriction $\mathscr{L}_S|_{\{e_X\}\times S}$ is trivial. So if $T_f^*\mathscr{L}_S\cong \mathscr{L}_S\otimes p_2^*\mathscr{N}$ for some $\mathscr{N}\in \operatorname{Pic}(S)$, by restricting to $\{e_X\}\times S$, we have $\mathscr{N}\cong f^*\mathscr{L}$. Hence

$$T_f^* \mathscr{L}_S \cong \mathscr{L}_S \otimes p_2^* \mathscr{N}$$

$$\iff (1_X \times f)^* m^* \mathscr{L} \cong p_1^* \mathscr{L} \otimes p_2^* f^* \mathscr{L}$$

$$\iff (1_X \times f)^* m^* \mathcal{L} \otimes p_1^* \mathcal{L}^{-1} \otimes p_2^* (f^* \mathcal{L})^{-1} \cong (1_X \times f)^* \mathcal{M} \text{ is trivial on } X \times S$$

 \iff f factors through $K(\mathcal{L})$.

This is equivalent to say $f \in K(\mathcal{L})(S)$.

It follows from Lemma 11.3 that $K(\mathcal{L})(S)$ is a subgroup of X(S).

Hence $K(\mathcal{L})$ is a subgroup scheme of X. Now we are ready to construct the dual abelian variety over any characteristic. Fix an ample line bundle \mathcal{L} on X. Then $K(\mathcal{L})$ is a closed finite subgroup scheme of X. Define $\widehat{X} = X/K(\mathcal{L})$ where $K(\mathcal{L})$ acts on X via translation

and $\pi: X \to \widehat{X}$ is the natural morphism. One can verify that \widehat{X} is also an abelian variety and π is an isogeny of abelian varieties, i.e., a finite surjective homomorphism. Consequently,

$$\widehat{X}(k) \stackrel{\sim}{-\!\!\!-\!\!\!-\!\!\!-} X(k)/K(\mathscr{L})(k) \stackrel{\sim}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \mathrm{Pic}^0(X).$$

There is another isomorphism of abelian groups $\widehat{X}(k) \cong \operatorname{Pic}^0(X)$. As before, we want to define the Poincaré bundle $P \in \operatorname{Pic}(X \times \widehat{X})$ such that $(1_X \times \pi)^*(P) = \mathscr{M}$, via the isogeny $1_X \times \pi : X \times X \to X \times \widehat{X}$ with its kernel $K = 1 \times K(\mathscr{L})$. So it suffices to define a lift of the action of K on $X \times X$ to \mathscr{M} . More precisely, we need to find an isomorphism

$$\lambda: p_2^* \mathcal{M} \to \mu^* \mathcal{M}$$

where $p_2: K \times (X \times X) \to X \times X$ is the natural projection. (Also recall that $\mu: K \times (X \times X) \to X \times X$ is the translation morphism.

In general, for a scheme S and an S-valued point $(e, x) : S \to K = 1 \times K(\mathcal{L})$ of K (so $x \in K(\mathcal{L})(S)$), let

$$T_{(e,x)}: X_S \times_S X_S \to X_S \times_S X_S$$

be the translation by $(e,x) \in K(S) \subset (X \times X)(S)$ and $T_x : X_S \to X_S$ be the translation by $x \in X(S)$. Let \mathscr{M}_S be the inverse image of \mathscr{M} under the projection $X_S \times_S X_S \cong S \times X \times X \to X \times X$ and \mathscr{L}_S the image of \mathscr{L} under $X_S = X \times S \to X$. Then we have $T_{(e,x)}^*\mathscr{M}_S \cong m_S^*T_x^*\mathscr{L}_S \otimes p_{1,S}^*\mathscr{L}_S^{-1}$. Since $x \in K(\mathscr{L})(S)$ we have an isomorphism

$$T_x^* \mathscr{L}_S \cong \mathscr{L}_S \otimes p_S^* \mathscr{N}, \quad \text{ for some } \mathscr{N} \in \text{Pic}(S).$$

Here $p_S: X_S = X \times S \to S$ is the natural projection. Fix such an isomorphism and we obtain an isomorphism on $X_S \times_S X_S$:

$$\lambda_S: \mathscr{M}_S \xrightarrow{\sim} T_{(e,x)}^* \mathscr{M}_S.$$

In particular we take $S = 1 \times K(\mathcal{L}) = K$ and $(e, x) \in K(S)$ to be the identity morphism. We get an isomorphism

$$\lambda: p_2^* \mathcal{M} \to \mu^* \mathcal{M}$$

as before. Here λ cannot be chosen arbitrarily as it must satisfy some extra condition. In general, we want to have a "canonical" isomorphism $\lambda_S: \mathcal{M}_S \to T^*_{(e,x)}\mathcal{M}_S$ on $X_S \times_S X_S$ for all S. Fortunately, this can be done by restricting to $e_S \times_S S \hookrightarrow X_S \times_S X_S$. (Check this; as an exercise).

As a consequence, we obtain a Poincaré bundle P on $X \times \widehat{X}$ such that $P|_{\{e_X\} \times \widehat{X}}$ is trivial and for all $\alpha \in \widehat{X}(k)$, $P|_{X \times \{\alpha\}}$ corresponds to the element in $\operatorname{Pic}^0(X)$ under the isomorphism $\widehat{X}(k) \cong \operatorname{Pic}^0(X)$, i.e., (\widehat{X}, P) satisfies the first property of Theorem 8.3, in Chapter II, that characterizes \widehat{X} . But some modification towards the second property is required. It generalizes as follows.

Theorem 11.4. Let S be any scheme. Let $\mathscr{L} \in \operatorname{Pic}(X \times S)$ be such that $\mathscr{L}|_{\{e_X\} \times S}$ is trivial and $\mathscr{L}|_{X \times \{s\}} \in \operatorname{Pic}^0(X)$ for each closed point $s \in S(k)$. Then there exists a unique morphism $\phi: S \to \widehat{X}$ such that $\mathscr{L} \cong (1_X \times \phi)^*P$.

Proof. As before, we consider the line bundle $\mathcal{M} = p_{13}^* P \otimes p_{12}^* \mathcal{L}^{-1}$ on $X \times S \times \hat{X}$ and let Γ_S be the maximal closed subscheme of $S \times \widehat{X}$ over which \mathscr{M} is trivial.⁶ The goal is to show

$$f: \Gamma_S \hookrightarrow S \times \widehat{X} \xrightarrow{p_1} S$$

is an isomorphism. We know f is a homeomorphism on the underlying topological spaces. It suffices to show that for any closed subscheme S_0 of S such that $|S_0|$ is a single point of S. Then the morphism

$$f \times_S S_0 : \Gamma_S \times_S S_0 \to S_0$$

is an isomorphism. In fact, if this is valid, then f is bijective on closed points, and hence fis quasi-finite. Since f is proper, we have f being finite by the Zariski Main Theorem.

The statement follows from the fact. let (A, \mathfrak{m}) be a local ring and B a finite A-algebra. If $A/\mathfrak{m}^n \to B/\mathfrak{m}^n B$ is an isomorphism for any m, then $A \to B$ is an isomorphism. So we may assume $S = \operatorname{Spec} B$ where B is a finite local k-algebra and $S = \{s\}$ a single point. Moreover, we can assume that $\mathscr{L}|_{X\times\{s\}}$ is trivial. Consider the line bundle $\mathscr{M}=p_{13}^*P\otimes p_{12}^*\mathscr{L}^{-1}$ on $X \times S \times \widehat{X}$. Since $\mathscr{M}|_{\{e_X\} \times \{s\} \times \widehat{X}} \cong P|_{\{e_X\} \times \widehat{X}}$ is trivial (and hence belongs to $\operatorname{Pic}^0(\widehat{X})$, we have $\mathcal{M}|_{\{x\}\times\{s\}\times\widehat{X}}\in \operatorname{Pic}^0(\widehat{X})$ for all $x\in X(k)$. On the other hand,

$$\pi^*(\mathscr{M}|_{\{x\}\times\{s\}\times\widehat{X}})\cong (T_x^*\mathscr{L}_a)\otimes\mathscr{L}_a^{-1},$$

where \mathcal{L}_a is the ample line bundle on X we have chosen before to construct \hat{X} . So there are only finitely many $x \in X(k)$ such that $\mathscr{M}|_{\{x\} \times \{s\} \times \widehat{X}}$ is trivial.

Since $H^i(\widehat{X}, \mathscr{L}_{\widehat{X}}) = 0$ for all $i \geqslant 0$ and $0 \neq \mathscr{L}_{\widehat{X}} \in \operatorname{Pic}^0(\widehat{X})$, the support of $R^i p_{12,*} \mathscr{M}$ on $X \times S$ is the disjoint union of finitely many closed points. So

$$H^n(X \times S, R^i p_{12.*} \mathscr{M}) = 0, \quad n \geqslant 1.$$

By the Leray spectral sequence

$$H^{i}(X \times S, R^{j}p_{12,*}\mathscr{M}) \Rightarrow H^{i+j}(X \times S \times \widehat{X}, \mathscr{M})$$

we have the canonical isomorphisms

$$H^n(X \times S \times \widehat{X}, \mathscr{M}) \cong H^0(X \times S, R^n p_{12,*} \mathscr{M}).$$

Now apply the projection formula (cf. [Har13, III, Exer 8.3]),

$$R^{n}p_{12,*}\mathcal{M} = R^{n}p_{12,*}(p_{13}^{*}P \otimes p_{12}^{*}\mathcal{L}^{-1})$$

$$\cong R^{n}p_{12,*}p_{13}^{*}P \otimes \mathcal{L}^{-1}$$

$$\cong R^{n}p_{12,*}p_{13}^{*}P.$$

The last step above uses the fact that $R^n p_{12,*} p_{13}^* P$ has support on finitely many closed points. Therefore, in summary,

$$H^n(X\times S\times \widehat{X},\mathscr{M})\cong H^n(X\times S\times \widehat{X},p_{13}^*P) \begin{tabular}{l}\cong\\ \uparrow\\ \text{by flat base change theorem}\\ \end{tabular}$$

⁶Here recall the fact at work that $\mathcal{M}|_{\{e_X\}\times S\times \widehat{X}}$ is trivial.

In particular, $H^n(X \times S \times \widehat{X}, \mathcal{M})$ are free *B*-modules for all $n \ge 0$. Similarly, we consider the projection $p_{23}: X \times S \times \widehat{X} \to S \times \widehat{X}$. As $\mathcal{L}|_{X \times \{s\}}$ is trivial by our assumption, we get

$$\mathcal{M}|_{X\times\{s\}\times\{\alpha\}}\cong P|_{X\times\{\alpha\}}\otimes\mathcal{L}^{-1}|_{X\times\{s\}}\cong P|_{X\times\{\alpha\}},$$

which further implies that $M|_{X\times\{s\}\times\{\alpha\}}\in \operatorname{Pic}^0(X)$ for all $\alpha\in\widehat{X}(k)$ and it is trivial if and only if $\alpha=e_{\widehat{X}}$. We infer that $R^ip_{23,*}\mathscr{M}$ is supported at the point $(s,e_{\widehat{X}})$ of $S\times\widehat{X}$. Then

$$H^n(X \times S \times \widehat{X}, \mathcal{M}) \cong H^0(S \times \widehat{X}, R^n p_{23,*} \mathcal{M}) = (R^n p_{23,*} \mathcal{M})_{(s,e_{\widehat{\varphi}})},$$

the stalk of the sheaf at the closed point $(s,e_{\widehat{X}})$. For simplicity, we use \mathscr{O} to denote the stalk $\mathscr{O}_{\widehat{X},e_{\widehat{X}}}$ of \widehat{X} at $e_{\widehat{X}}$. Then the stalk A of $S \times \widehat{X}$ at $(s,e_{\widehat{X}})$ is given by $B \otimes_k \mathscr{O}$. Consider the following Cartesian diagram

$$\begin{array}{cccc}
\mathcal{M}_A & \longleftarrow & \mathcal{M} \\
 & & | \\
X \times \operatorname{Spec} A & \longrightarrow & X \times S \times \widehat{X} \\
\downarrow^{p} & & \downarrow^{p_{23}} \\
\operatorname{Spec} A & \longrightarrow & S \times \widehat{X}
\end{array}$$

and we have $R^i p_{23,*} \mathcal{M}|_{(s,e_{\widetilde{X}})} \cong R^i p_* \mathcal{M}_A$. Since $p: X \times \operatorname{Spec} A \to \operatorname{Spec} A$ is proper and flat, and \mathcal{M}_A is a line bundle on $X \times \operatorname{Spec} A$, by the main theorem (Theorem 5.2) in *Cohomology* and base change, there is a finite complex

$$K^{\bullet}: 0 \to K^0 \to K^1 \to \cdots \to K^g \to 0$$

of finitely generated free A-modules such that

$$H^i(K^{\bullet}) \cong R^i p_{23,*} \mathscr{M}|_{(s,e_{\widehat{X}})} \cong R^i p_* \mathscr{M}_A = H^i(X \times \operatorname{Spec} A, \mathscr{M}_A).$$

where $g = \dim X = \dim \mathcal{O}$. This is crucial in the computation of cohomology groups of P and \mathcal{O}_X .

Lemma 11.5. Let \mathcal{O} be a regular local ring of dim g, and

$$0 \to K^0 \to \cdots \to K^g \to 0$$

be a complex of finitely generated free \mathscr{O} -modules. If $H^i(K^{\bullet})$ are artinian \mathscr{O} -modules, we have $H^i(K^{\bullet}) = 0$ for each $0 \leq i < g$.

Resume on. By this lemma, we see that $R^i p_{23,*} \mathcal{M} = 0$ for each $0 \le i < g$, and we get an exact sequence of A-modules:

$$0 \to K^0 \to \cdots \to K^g \to N \to 0$$

such that $N=(R^gp_{23,*}\mathscr{M})_{(s,e_{\widehat{X}})}\cong H^g(X\times S\times \widehat{X},\mathscr{M})$ which is a free B-module.

Now we apply $\operatorname{Hom}_A(\cdot, A)$ to the complex K^{\bullet} , and get another complex

$$\widehat{K}^{\bullet}: \quad 0 \to \widehat{K}^g \to \cdots \to \widehat{K}^0 \to 0$$

and by the lemma above, we get an exact sequence

$$0 \to \widehat{K}^g \to \cdots \to \widehat{K}^0 \to K \to 0$$

⁷Exercise: we only know K^{\bullet} should be bounded by the theorem. Why is it bounded on [0, g]?

of A-modules. Since

$$H^{0}(K^{\bullet} \otimes_{A} k) \cong H^{0}(X \times \{s\} \times \{e_{\widehat{X}}\}, \mathcal{M}|_{X \times \{s\} \times \{e_{\widehat{X}}\}})$$

$$\cong k = \operatorname{Ker}(K^{0} \otimes_{A} k \to K^{1} \otimes_{A} k),$$

we see $K \otimes_A k = \operatorname{Ker}(\widehat{K}^1 \otimes_A k \to \widehat{K}^0 \otimes_A k)$ is 1-dimensional over k. Thus, for some ideal I, there is an isomorphism of A-modules $K \cong A/I$. Then one can show the closed subscheme Γ_S of $S \times \widehat{X}$ is the closed subscheme of Spec A defined by the ideal I and the map $B \to B \otimes_k \mathscr{O} = A \to A/I$ is an isomorphism. In other words, the composite $\Gamma_S \hookrightarrow S \times \widehat{X} \xrightarrow{p_1} S$ is an isomorphism. So we get a morphism

$$\phi: S \xrightarrow{\sim} \Gamma_S \xrightarrow{p_2} \widehat{X}$$

which is the unique morphism we need.

The importance of the proof is that it helps us to compute the cohomology groups of P and \mathscr{O}_X .

Corollary 11.6. As for the cohomology groups of P, we have

$$H^{i}(X \times \widehat{X}, P) = \begin{cases} 0, & i \neq g = \dim X; \\ k, & i = g = \dim X. \end{cases}$$

Proof. In the previous proof, we take $S = \operatorname{Spec} k$ and \mathscr{L} is trivial. So that

$$H^n(X \times \widehat{X}, P) \cong H^n(K^{\bullet}), \quad n \geqslant 0.$$

In this case $\Gamma_S = \operatorname{Spec} k$ and $\phi: S \to \widehat{X}$ is given by $e_{\widehat{X}}$. Thus, $K \cong k$ and we have an exact sequence of A-modules:

$$0 \to \widehat{K}^g \to \widehat{K}^{g-1} \to \cdots \to \widehat{K}^0 \to k \to 0.$$

i.e., \widehat{K}^{\bullet} is a free resolution of k. Since $\mathscr{O} = \mathscr{O}_{\widehat{X}, e_{\widehat{X}}}$ is a regular local ring of dimension g, the \mathscr{O} -module k has a standard resolution by free \mathscr{O} -modules that is called the Koszul complex L_{\bullet} and is defined as follows.

Let (x_1, \ldots, x_g) be a system of generators of \mathscr{O} . Take

$$L_k := \text{free } \mathcal{O}\text{-modules with basis } \{e_{i_1 \cdots i_k} \mid 1 \leqslant i_1 < i_2 < \cdots < i_k \leqslant g\},$$

and the differentials

$$d_k: L_k \to L_{k-1}, \quad e_{i_1 \cdots i_k} \mapsto \sum_{l=1}^k (-1)^l \chi_{i_l} e_{i_1 \cdots \widehat{i_l} \cdots i_g}.$$

Then we have a resolution

$$0 \to L_q \to L_{q-1} \to \cdots \to L_0 \to k \to 0$$

of k. Hence L_{\bullet} is homotopic to \widehat{K}^{\bullet} as chain complexes. Therefore,

$$H^{i}(X \times \widehat{X}, P) \cong H^{i}(K^{\bullet}) \cong H_{g-i}(L_{\bullet}) = \begin{cases} 0, & i \neq g; \\ k, & i = g. \end{cases}$$

For more details, see [Mat80, §18].

Corollary 11.7. Let $g = \dim X$. Then

$$\dim_k H^p(X,\mathscr{O}_X) = \binom{g}{p}.$$

Proof. Using the same notation as in the proof of Corollary 11.6 above. We have

$$H^p(X, \mathscr{O}_X) \cong H^p(K^{\bullet} \otimes_A k) \cong H^p(L_{\bullet} \otimes_A k) = L_{g-p}.$$

Hence

$$\dim_k H^p(X, \mathscr{O}_X) = \binom{g}{g-p} = \binom{g}{p}.$$

Corollary 11.8. There is a canonical isomorphism between the tangent space at $e_{\widehat{X}}$ on \widehat{X} and $H^1(X, \mathcal{O}_X)$. That is,

$$\operatorname{Lie} \widehat{X} \cong H^1(X, \mathscr{O}_X).$$

Proof. Trivial.

References

- [Eis13] David Eisenbud. Commutative algebra: with a view toward algebraic geometry, volume 150 of Graduate Text in Mathematics. Springer Science & Business Media, 2013.
- [Har13] Robin Hartshorne. Algebraic geometry, volume 52. World Publishing Co., Beijing, China, 2013.
- [MA67] Jacob P. Murre and Siva Anantharaman. Lectures on an introduction to Grothendieck's theory of the fundamental group. 1967.
- [Mat80] Hideyuki Matsumura. Commutative algebra. Benjamin/Cummings Pub. Co, Reading, Mass, 2nd edition, 1980.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $\it Email\ address$: daiwenhan@pku.edu.cn