

Статистический анализ данных Лекция 6. Подготовка данных

Московский авиационный институт «МАИ»

26 сентября 2021 г.

Подготовка данных (Data preprocessing)

- 1. Фундаментальные свойства данных
- 2. Виды данных
- 3. Предобработка данных
 - очистка данных (Data Cleaning)
 - сокращение данных (Data Reduction)
 - трансформация данных (Data Transformation)
 - интеграция данных (Data Integration)

More data beats clever algorithms, but better data beats more data (Peter Norvig)

computer scientists	data scientists
работает с алгоритмами	работает с данными
организовывают законы	открывают законы
ошибки — катастрофа	ошибки — естественны
их нанимают, чтобы они	их нанимают, чтобы они
делали код	находили закономерности

Нулевой этап решения задачи АД

Фундаментальные свойства данных

- Доступность (Accessibility)
- Актуальность (Timeliness)
- Ценность (Value added)
- Истинность (Believability)

Фактически это то, что нужно понять, узнать у заказчика Перечислены не все свойства

Сбор данных (Data Collection)

На что смотреть:

- размеры, размерность, число элементарных порций (объектов), разреженность, разрешение + полнота
- семантика данных, идентификация отдельных элементов и порций данных + id объектов, связи между таблицами и т.п.
- структура данных, режим доступа к данным (online / offline), способ доступа, источник данных

Виды данных

- признаковые описания (матрица объект-признак)
- измерения
- одномерные сигналы (ряды, звук и т.п.), последовательности, тексты
- изображения
- видео
- метрические данные (например, вместо признакового описания сайта измеряем близость между разными сайтами по пересечению их аудитории)
- данные в специальных форматах
 - графы
 - XML-файлы
 - пространственно-временные
 - о сырые логи
 - И Т.П.

Источники данных

Proprietary data sources	часто нельзя получить доступ	
Government data sets	Data.gov	
Academic data sets	при написании публикаций	
Web search	есть лимиты и	
vveb search	условия использования	
Sensor data	Относительно дешевы,	
Selisor data	но специфичны	

+ Ваши данные – самые ценные

Common https://datasetsearch.research.google.com/

Gov https://ukdataservice.ac.uk/

 ${\bf Academic\ https://library.columbia.edu/services/research-data-services.html}$

For money https://www.bloomberg.com/professional/datasets/

	Свойства данных	Что мешает этому свойству	Причины нарушения свойства
1	Корректность	Аномалии	Погрешность приборов,
_	(точность)	«некорректности»	ошибки при заполнении
		Пропуски	Недоступность данных,
2	Полнота	м.б. разреженность	ошибки при заполнении,
		объектов < признаков	сбои при записи
3	Непротиворечивость	«противоречия»	Различные источники
	(согласованность)	«противоречия»	данных
		Дубликаты	
4	Безызбыточность	Шум	Особенности интеграции,
•	Безызовіточность	Излишняя	ошибки при заполнении
		дискретизация	
5	Ясность	«неясности»	Плохие хранение
	TICHOCIB	« пелености»	и подготовка
6	Структурированность	Сырые данные	Нет признаковых описаний
	Однородность	сырыс данные	Признаки в разных шкалах

Средства борьбы

Способ	Свойства
Очистка данных	1, 2
Сокращение данных	2, 4
Интеграция	3
Трансформация	4, 5, 6
Генерация признаков	6

Предобработка данных

- замена, модификация или удаление частей набора данных с целью повышения непротиворечивости, полноты, корректности и ясности набора данных, а также уменьшения избыточности
- процесс преобразования данных в форму, удобную для анализа

Выполняется на полном наборе данных (и на контрольных объектах тоже)

Тонкость: не допустить утечки (информации, не доступной при функционировании модели) https://www.kaggle.com/alexisbcook/data-leakage

Что бывает в данных

	дата	пол	образование	сумма	платёжная строка	число просрочек	?????	x_m
0	12/01/2017	1	высшее	5000.0	0000	0	0	0.00000
1	13/01/2017	1	высшее	2500.0	0000	1	1	1.00000
2	13/01/2017	1	высшее	2500.0	001000	1	1	1.00000
3	13/01/2017	0		13675.0	111	3	3	0.00000
4	25/01/2017	0		NaN	0	0	0	0.00000
5		1	начальное	NaN	00	0	0	0.00000
6	02/02/2017	1	среднее	1000.0		0	0	0.00000
7	01/01/0001	13/01/2017	среднее	0.0		-7	-7	-0.00001

Что бывает в данных

	дата	пол	образование	сумма	платёжная строка	чис просро	сло чек	?????	x_m	неясность
0	12/01/2017	1	высшее	5000.0	0000		0	0	0.00000	
1	13/01/2017	1	высшее	2500.0	0000	ектность	1	1	1.00000	дубликаты
2	13/01/2017	1	высшее	2500.0	001000	EKINOCIB	1	1	1.00000	
3	13/01/2017	0		13675.0	111		3	3	0.00000	
4	25/01/2017	0		NaN	0		0	0	0.00000	
5		1	начальное	NaN	00		0	0	0.00000	
6	02/02/2017	1	среднее	1000.0		1	0	0	0.00000	
7	01/01/0001	13/01/2017	среднее	0.0	пропус	1614	-7	-7	-0.00001	
	ошибка		нечисловой признак	İ	пропус		дубл	икаты	выброс	

Очистка данных (Data Cleaning)

Обнаружение и удаление / замена

- аномалий / выбросов (Anomaly detection)
- пропусков (Missing data imputation)
- шумов (Noise identification)
- некорректных значений (Filter incorrect data)

Сокращение данных (Data Reduction)

- сэмплирование (Sampling)
- сокращение размерности (Dimensionality reduction)
- отбор признаков (Feature subset selection)
- отбор объектов (Instance selection)
- удаление дубликатов

Трансформация данных (Data Transformation)

- Переименование признаков, объектов, значений признаков, преобразование типов
- Кодирование значений категориальных переменных (отдельная лекция)
- Дискретизация (Discretization / Binning)
- Нормализация
- Сглаживание
- Создание признаков (отдельная лекция)
- Агрегирование
- Обобщение
- Деформация значений

Интеграция данных (Data Integration)

• Объединение данных из разных источников

Переименования

Названия переменных (и их значения ?!) должны быть интуитивны

Они используются в том числе при передачи данных коллегам, презентации результатов и т.п.

	X5XX.	X5XV.	price(\$)	date
0	200\$	Jan.1.2018	200	2018-01-01
1	150\$	Feb.13.2017	150	2017-02-13
2	7000\$		7000	NaT
3	110\$	Jun.13.1996	110	1996-06-13

Преобразования типов данных

Нужно использовать типы, которые поддерживает Ваша среда программирования

```
df.rename(columns={'X5XX.': 'price($)'}, inplace=True)
df['price($)'] = df['price($)'].apply(lambda x: int(x[:-1]))
# no \(\partial pyzomy\)
df['price($)'] = df['price($)'].apply(lambda x: x.replace('$', '')).astype(int)
df['date'] = pd.to_datetime(df['X5XV.'], errors='coerce')
# как еще можно?
```


Кодировки

Как правило, компьютер работает с числами ⇒ категории представляем числами (векторами)

	ans	weather	ans_coded	weather_coded
0	yes	warm	1	0
1	no	cool	0	1
2	yes	cold	1	2
3	no	warm	0	0

```
dct = {'yes': 1, 'no': 0}
df['ans_coded'] = df['ans'].map(dct)
# 6ыстрее?!
df['weather_coded'] = df.weather.factorize()[0]
```

Если алгоритм позволяет работать с исходными категориями, то можно не кодировать

Корректировка значений

	время	давление	в.давл.	н.давл.	время
0	23:10	120/80	120	80	2018-09-13 23:10:00
1	10 часов	120/70	120	70	2018-09-13 10:00:00
2	7:40	110/70	110	70	2018-09-13 07:40:00

Пропуски — как выглядят в данных

- пустые значения
- специальные значения (NA, NaN, null, ...)
- специальный код (–999, mean, число за пределами значения признака)

df[name].isnull().sum() # число «нанов»
 df[name].count() # число не «нанов»

Пропуски — что делать

• оставляем

(но не все модели могут работать с пропусками)

 удаляем описания объектов с пропусками / признаки (радикальная мера, которая редко используется) df.dropna(how='any', axis=1)

• заменяем на фиксированное значение

```
(например, если признак бинарный, то на 0.5, значение —999, как правило, плохое — является выбросом) df.fillna(-1)
```

• заменяем на легко вычислимое значение

(среднее, медиана, мода) df.fillna(df.mean())

восстановление значения

- экспертная замена
- решаем отдельную задачу для восстановления пропущенных значений признака, объявляя его целевой переменной

Пропуски — итеративная процедура (IterativeImputer)

https://scikit-learn.org/stable/modules/impute.html

Хорошо добавить признак, который считает число пропусков для объекта (можно отдельно для каждого признака)

Пропуски в последовательностях, сигналах

	ts	ts2	ts3	ts4	ts = pd.Series(vals, index=index)
2015-01-01	1.0	1.0	1.00	1.00	ts2 = ts.interpolate()
2015-01-02	NaN	1.5	1.33	1.17	ts3 = ts.interpolate(method='time
2015-01-04	2.0	2.0	2.00	2.00	•
2015-01-10	NaN	6.0	8.86	8.37	ts4 = ts.interpolate(method='poly)
2015-01-11	10.0	10.0	10.0	10.0	order=2)

olate(method='time') olate(method='polynomial',

Пропуски — тонкости

- добавлять характеристический признак пропусков «is_nan» тогда модель сама определит оптимальное значение для заполнения
- заполнять пропуски лучше после генерации признаков
 иначе возникают дополнительные неопределённости
- не допускать ликов при заполнении пропусков Общий пайплайн: предобработка данных + классификация при заполнении пропусков нельзя брать информацию из будущего
 - Пример: нельзя считать среднее по всей выборке, включая тестовую

исходные

перед созданием

после создания

	площадь	цена	цена/кв.м.	площадь	цена	цена/кв.м.	площадь	цена	цена/кв.м.
0	82.0	5200000.0	63414.634146	82.0	5200000.0	63414.634146	82.0	5200000.0	63414.6
1	70.0	4400000.0	62857.142857	70.0	4400000.0	62857.142857	70.0	4400000.0	62857.1
2	74.0	4200000.0	56756.756757	74.0	4200000.0	56756.756757	74.0	4200000.0	56756.8
3	60.0	NaN	NaN	60.0	4350000.0	72500.000000	60.0	4350000.0	61009.5
4	NaN	3600000.0	NaN	71.5	3600000.0	50349.650350	71.5	3600000.0	61009.5
5	NaN	NaN	NaN	71.5	4350000.0	60839.160839	71.5	4350000.0	61009.5

```
df['цена/кв.м.'] = df['цена'] / df['площадь'] df.fillna(df.mean())
```


Важно понимать природу пропуска:

- значение может не быть доступно
 Пример: клиент банка не указал в анкете свой возраст
 отсутствие информации тоже информация!
- значение может не существовать Пример: «Доход» для детей моложе $16 \Rightarrow = 0$
- значение не является числом
 Пример: деление на ноль 0/0 = NaN (средняя покупка в категории товаров)
- значение вызвано предобработкой данных Пример: при конкатенации таблиц несуществующие колонки
- характер (распределение) пропусков на обучении и тесте должен быть одинаковый
 Пример: изменение модели датчиков и уменьшение числа пропусков

Можно посмотреть, зависит ли факт пропуска от других данных

	data	площадь	target
0	train	82.0	0
1	train	NaN	1
2	train	74.0	0
3	test	60.0	0
4	test	NaN	1
5	test	50.0	0

целевой признак — характеристический признак пропуска выкидываем «площадь» и решаем задачу для target, который учитывает пропуски

Зашумлённые данные (Noisy Data)

Что делать (аналогия с пропусками)

- оставляем (но будет погрешность при моделировании)
- удаляем сильно зашумлённые признаки
- удаляем сильно зашумлённые объекты
- замена аномальных значений

могут нести важную информацию!

Главный вопрос: «Почему в данных есть это?»

Причины

- ошибка сбора данных (погрешность прибора, ввода и т.п.)
- ошибка обработки данных
- свойство данных (выброс зарплата СЕО)

Винсоризация (Winsorizing)

$$x2 = df.x.clip(lower = df.x.quantile(0.05), upper = df.x.quantile(0.95))$$

import scipy

x3 = scipy.stats.mstats.winsorize(x, limits = 0.05)

Зашумлённые данные — Тонкости

- если есть шум, можем ли доверять и другим признакам
- выбросы в обычном признаке / целевом
- плохо для линейных моделей, но есть модели «устойчивые к выбросам»

Пример: прогноз количества покупок товара в интернет-магазине, пришёл оптовик за покупками и мы получаем выброс

Второй случай чаще встречается на практике

Агрегирование (Aggregation)

f	_ 1	f_2	f_3	f_4	f_5	f_mean	$f_{_}std$	$f_{\sf max}$	$f_{\sf min}$
	L4	15	18	23	10	16.0	4.85	23	10
3	36	13	14	21	16	20.0	9.46	36	13
•	LO	14	16	17	20	15.4	3.71	20	10
	L3	20	15	25	13	16.0 20.0 15.4 17.2	5.22	25	13

Слагаемые, например, замеры разными датчиками и т.п.

Иногда новые признаки просто сортировка значений в строке

Обобщение (Generalization)

	товар	group_1	group_2
0	стол	офис	дерево
1	тетрадь	офис	бумага
2	горшок	дом	пластик
3	стул kv-15	дом	пластик

Создание новых описательных признаков

Применяется редко из-за трудоемкости и требования знания предметной области

Интеграция

Интеграция данных (Data Integration)

Обычно — из разных источников

	client	date	contract		client	age	account		cont ract	sum
0	1001	12.01.05	200547	0	1001	34	12000	0	200547	100000
1	1002	14.01.05	200545	1	1002	52	0	1	200565	200000
2	1003	15.01.05	200558	2	1003	25	10000			
3	1004	16.01.05	200565	3	1004	33	NaN			

	client	d at e	contract	age	account	sum
0	1001	12.01.05	200547	34	12000	100000
1	1002	14.01.05	200545	52	0	200000
2	1003	15.01.05	200558	25	10000	
3	1004	16.01.05	200565	33	NaN	

df.merge(df2, how = 'left').merge(df3, how = 'left')

Интеграция

Интеграция данных

		Анкета		
id	пол	возраст	сумма	карт
12	М	34	10000	0
15	М	23	50000	1
37	Ж	37	90000	2

		БКИ	
id	дата	сумма	delay
12	10.11.12	1000	0
12	01.02.13	2000	1
15	19.10.11	1000	0
15	05.03.12	2000	0
15	03.07.13	3000	1
15	09.09.13	2000	0
37	23.11.13	5000	1

сумма + веса среднее максимум минимум медиана

Использование интеграции или нет

Ha	уровень	транзакций
	JPODCIID	· pansakq m

id	user	target	id	user	activity	id	user	activity	target	
0	1	0	0	1	10.0	0	1	10.0	0	
1	3	1	1	1	20.5	1	1	20.5	0	
2	6	0	2	3	10.4	2	3	10.4	1	
3	7	0	3	3	18.0	3	3	18.0	1	
4	8	1	4	3	3.0	4	3	3.0	1	

Агрегаты

id	user	ac_mean	$ac_{_}std$	ac_max	ac_min	target
0	1	15.25	7.42	20.5	10.0	0
1	3	10.47	7.50	18.0	3.0	1
2	6	9.83	7.52	17.0	2.0	0
3	7	7.25	3.89	10.0	4.5	0
4	8	9.00	12.73	18.0	0.0	1

Интеграция

Использование интеграции или нет

Агрегаты

На уровень транзакций

```
data2.merge(data, on = 'user').head()
```

Второй способ, конечно, менее эффективен, но помогает при блендинге результатов с первым способом.

Нормировки (Data Normalization)

Для большинства алгоритмов машинного обучения необходимо, чтобы все признаки были вещественными и «в одной шкале»

• Стандартизация (Z-score Normalization / Variance Scaling)

$$\{u_i\}_{i\in I} \to \left\{\frac{u_i - \operatorname{mean}\{u_t\}_{t\in I}}{\operatorname{std}\{u_t\}_{t\in I}}\right\}_{i\in I}$$

• Нормировка на отрезок (Min-Max Normalization)

$$\{u_i\}_{i \in I} \to \left\{ \frac{u_i - \min\{u_t\}_{t \in I}}{\max\{u_t\}_{t \in I} - \min\{u_t\}_{t \in I}} \right\}_{i \in I}$$

• Нормировка по максимуму

$$\{u_i\}_{i\in I} \to \left\{\frac{u_i}{\max\{u_t\}_{t\in I}}\right\}_{i\in I}$$

Decimal Scaling Normalization

$$N_{ds}(x) = \frac{x}{10^{\min\{i:10^i > x\}}}$$

суть: $17,87 \to 0,1787$, используется редко

Ранговая нормировка (tiedrank, rankdata)
 1; 2; 3; 4; 10 → 1/5; 2/5; 3/5; 4/5; 5/5

Ранговая нормировка (разные способы)

id	data	average	min	max	dense	ordinal
0	1	1.5	1	2	1	1
1	2	4.0	3	5	2	3
2	2	4.0	3	5	2	4
3	5	6.0	6	6	3	6
4	2	4.0	3	5	2	5
5	1	1.5	1	2	1	2
6	10	7.0	7	7	4	7

import scipy.stats as ss
from scipy.stats import rankdata
for method in ['average', 'min', 'max', 'dense', 'ordinal']:
df[method] = ss.rankdata(df.feat, method = method)

Зависимость моделей от масштаба

«признак 1» imes 10, «признак 2» imes 10, нормальный масштаб

Модели по-разному реагируют на изменение масштаба по признакам

Нормировки — тонкости

- общий пайплайн: предобработка + классификация https://scikitlearn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
- параметры нормировок вычисляются по выборке использовать все данные не всегда корректно
- если вычислить параметры на обучении, то на контроле может не быть желаемого эффекта
 Пример: выход за пределы [0,1]

Если данные имеют смысл векторов (признаки однородны), то можно нормировать вектора

import sklearn.preprocessing as preproc
nrm = preproc.Normalizer()
X2 = nrm.fit_transform(X)

тонкости:

• не центрируйте разреженные данные

Нормировки в пределах группы

id	gr	sum	std
0	alpha	1	0.00
1	beta	4	1.12
2	alpha	0	-1.00
3	beta	0	-0.80
4	beta	1	-0.32
5	alpha	2	1.00

$$z_score = lambda \ x: (x - x.mean()) \ / \ x.std()$$

$$df[\ 'stand'\] = df.groupby(\ 'gr'\).transform(z_score)$$

Трансформации

Box-Cox Transformation положительного признака

$$f_{\lambda}(x) = \begin{cases} \frac{x^{\lambda} - 1}{\lambda}, & \lambda > 0, \\ \ln(x) & \lambda = 0. \end{cases}$$

Как правило применяют, чтобы распределение признака стало похожим на нормальное, можно оценивать схожесть распределения преобразованных данных и нормального

$$x2 = np.log1p(x) # с предварительным +1$$

 $x2 = np.log(x)$

Преобразование Йео-Джонсона (и для x < 0)

$$\mathrm{yd}_{\lambda}(x) = \left\{ \begin{array}{ll} \displaystyle \frac{(x+1)^{\lambda}-1}{\lambda}, & \lambda \neq 0, \, x \geq 0, \\ \\ \log(x+1) & \lambda = 0, \, x \geq 0, \\ \\ -\log(-x+1) & \lambda = 2, \, x \leq 0, \\ \\ \displaystyle \frac{(-x+1)^{2-\lambda}-1}{\lambda-2}, & \lambda \neq 2, \, x \leq 0. \end{array} \right.$$

https://academic.oup.com/biomet/article/87/4/954/232908

https://www.kaggle.com/kenmatsu4/yeo-johnson-conversion-was-applied

Сглаживание (Smoothing)

Moving Average


```
def smooth(y, box_pts):
    box = np.ones(box_pts)/box_pts
    y_smooth = np.convolve(y, box, mode = 'same')
    return y_smooth
y MA = smooth(y, 5)
```


LOWESS (locally weighted scatterplot smoothing)

import statsmodels.api as sm lowess = sm.nonparametric.lowess(y, x, frac=0.1)[:1]

подгоняет полиномом определённой степени в окрестности x

Savitzky-Golay filter

from scipy.signal import savgol_filter y_sg = savgol_filter(y, 11, 2)

Преобразование Фурье (Fast Fourier Transform)


```
\begin{split} & \text{import scipy.fftpack} \\ N &= \text{len}(y) \\ w &= \text{scipy.fftpack.rfft}(y) \\ \text{spectrum} &= w^**2 \\ \text{theta} &= 0.1 \\ w2 &= w.\text{copy}() \\ w2[\text{spectrum} &< (\text{theta*spectrum.max}())] = 0 \\ y2 &= \text{scipy.fftpack.irfft}(w2) \end{split}
```

Можно просто: заменять выбросы на сглаженные значения

Дискретизация (биннинг, квантование)

— переход от вещественного признака к порядковому за счёт кодирования интервалов одним значением

Улучшает интерпретацию

Позволяет решать задачу простыми алгоритмами (качество ухудшается)

categories	counts	freqs	
ребенок	8	0.16	bins = pd.cut(df[name], 5)
юноша	9	0.18	points = [0, 12, 18, 25, 50, 100] labels = ['ребёнок', 'юноша', 'молодой
молодой	7	0.14	человек', 'мужчина', 'пожилой']
человек			factors = pd cut(ages, points,
мужчина	26	0.52	labels = labels) factors.describe()
пожилой	0	0.00	

Способы дискретизации

Equal-width (distance) partitioning

Делим область значения признаков на области-интервалы равной длины м.б. в другой шкале, например, в логарифмической

counts	freqs	
14	0.2000	
21	0.3000	factors = pd.cut(ages, 4)
15	0.2143	
20	0.2857	
	14 21 15	14 0.2000 21 0.3000 15 0.2143

Equal-width partitioning

- + простая быстрая реализация
- неравномерные бины

Есть средства бинаризации:

from sklearn.cluster import Binarizer bn = Binarizer(threshold=0.9) new = bn.transform(old)

Equal-depth (frequency) partitioning

Делим область значения признаков на области-интервалы: в каждую попало одинаковое число точек

categories	counts	freqs	
(5.99, 17.0)	18	0.2571	
(17.0, 25.0)	17	0.2429	factors = pd.qcut(ages, 4)
(25.0, 34.0)	18	0.2571	
(34.0, 42.0)	17	0.2429	

Equal-depth partitioning

+ равномерные бины X['name'].quantile([.2, .4, .6, .8]) # пороги-квантили x2 = pd.qcut(x, 10, labels=False) # квантильная дискретизация

Кластеризация


```
from sklearn.cluster import KMeans
model = KMeans(n_clusters=4, random_state=0)
a = model.fit_predict(x)
c = np.sort(model.cluster_centers_[:, 0])
c = (c[1:] + c[:-1]) / 2
c = np.concatenate([min(x), c, max(x)])
```


Если не угадать с кластеризацией...

Кластеризация

Если есть группа однородных признаков, то можно с помощью кластеризации получить новый категориальный признак «номер кластера» или «расстояние до центра кластера»

Способы кодирования при дискретизации:

- первым / последним значением из бина
- средним (арифметическим, медианой и т.п)
- номером бина

Пример: разобьём на два бина [1, 1, 1, 2, 2]; [4, 4, 7, 8, 9]

Кодировки:

первым: 1, 1, 1, 1, 1, + 4, 4, 4, 4, 4

последним: 2, 2, 2, 2, 2, + 9, 9, 9, 9

mean: 1.4, 1.4, 1.4, 1.4, 1.4, + 6.4, 6.4, 6.4, 6.4, 6.4

медианой: 1, 1, 1, 1, 1, + 7, 7, 7, 7

номером: 1, 1, 1, 1, 1, + 2, 2, 2, 2

Сокращение данных

Сокращение данных (Data Reduction)

- уменьшение объёма исходных данных, сохраняя полезную информацию
 - отбор признаков (отдельная тема)

 отбор объектов (Instance Selection)
 редко используется, как правило, по анализу или экспертами (пример с ремонтами в РЖД)

• удаление дубликатов, «пустых» данных

 дискретизация, огрубление информации (Discretization) увеличение шага дискретизации, перевод вещественных признаков в дискретные

• сэмплированое (Sampling)

- сокращение размерности (Dimensionality reduction)
 - факторный анализ (factor analysis)
 - метод главных компонент (PCA), SVD, случайные проекции
 - нелинейные модели: LLE, ISOMAP
 - многомерное шкалирование (MDS)

Сокращение данных

Цели сокращения данных

- удаление лишних (нерелевантных) данных
- повышение качества решения задачи
- уменьшение стоимости данных
- увеличение скорости последующего анализа (в частности, настройка моделей)
- повышение интерпретируемости моделей

Сокращение данных

Удаление дубликатов

df['is_dup'] = df.duplicated(subset=['date', 'sum'], keep = 'first')
df.drop_duplicates(subset = ['date', 'sum'], keep = 'first')

id	date	sum	k	is_dup					
0	01.01.2012	55	1.2	False	id	date	sum	k	is_dup
1	02.03.2012	117	4.3	False	0	01.01.2012 02.03.2012	55	1.2	False
0	01.01.2012	55	1.5	True	1	02.03.2012	117	4.3	False
0	01.01.2012 02.03.2012 01.01.2012 02.03.2012	117	0.2	True					

Тонкости

- дубликаты могут быть по подмножеству признаков (шум)
- факт дублирования м.б. важен (лучше установить причину)
- совет: смотреть данные, отсортированные по отдельным признакам

По числу уникальных значений, можно догадаться, что категориальные признаки равны

id	а	b	С	d	е
0	1	0.05	В	1.12	0.76
1	1	0.76	В	1.12	0.96
2	2	0.05	F	0.78	0.79
3	1	0.56	В	1.12	0.96
4	3	0.47	Α	1.09	0.15
5	2	0.22	F	0.78	0.79
6	2	0.69	F	0.78	0.66
7	3	0.59	Α	1.09	0.25
8	2	0.43	F	0.78	0.79

Сокращение данных

2	4	F	4
1	3	В	3
3	2	Α	2
Name:	a,dtype: int64	Name:	c, dtype: int64
0.05	2	0.78	4
0.56	1	1.12	3
0.43	1	1.09	2
0.47	1	Name:	d,dtype: int64
0.76	1	0.79	3
0.22	1	0.96	2
0.59	1	0.15	1
0.69	1	0.76	1
Name:	b,dtype: int64	0.66	1
		0.66	1
		0.25	1
		Name:	e,dtype: int64

Сэмплирование

Сокращение данных — сэмплирование

Цели

- для более быстрого поиска оптимальных параметров
- составляющая часть алгоритма (RF)
- для получения выборки, обладающей специальными свойствами

Способы

- Без возвратов (Simple random sampling without replacement)
- С возвратами (Simple random sampling with replacement)
- Сбалансированное (Balanced sampling) сэмплирование при котором подвыборка будет удовлетворять некоторому заранее заданному условию (например, 90% объектов будет соответствовать пациентам старше 60 лет)

Сэмплирование

- Кластерное (Cluster sampling) предварительно данные разбиваются на кластеры и выбирается подмножество кластеров.
- Стратифицированное (Stratified sampling) —
 предварительно данные разбиваются на кластеры, в
 каждом кластере отдельно осуществляется сэмплирование,
 таким образом в подвыборку попадают представители всех
 кластеров

Может производиться с предварительно заданными вероятностями выбора каждого объекта Вероятности выбираются исходя из:

- сложности классификации объектов (например, для получения трудных подвыборок
- весам в функциях ошибок
- свежести данных / доверия к данным / стоимости данных

Сокращение размерности (Dimensionality reduction)

from sklearn.decomposition import PCA pca_transformer = PCA()
$$X2 = pca_transformer.fit_transform(X)$$

$$X = X - X.mean(axis=0)$$

U, L, $V = svd(X)$

Сокращение размерности

Для изображений (Изначальный размер изображения 300×451)

from numpy.linalg import
svd U, L, V = svd(image)
k = 5
plt.imshow(U[:,:k].dot(np.diag(L[:k]).dot(V[:k,:])),
cmap=plt.cm.gray)

План работы с данными (до разбиения train/test)

- удаление
 - служебных признаков и признаков, содержащих утечки (информацию о целевом векторе или из будущего)
 - категориальных переменных, если число уникальных значений \simeq число объектов или одно уникальное значение
 - признаков, которые в будущем не будем собирать
- преобразование типов данных
- предобработка строк (общий регистр), устранение дубликатов
- обработка редких категорий (если не использовать данные)
- заполнение пропусков (если не использовать данные, т.е. константами)
- генерация признаков (если не использовать данные)

После разбиения на обучение и контроль, т.е. не заглядывая в test

- масштабирование признаков (в том числе стандартизация), деформации, ОНЕ
- обработка редких категорий
- заполнение пропусков
- генерация признаков

Выводы

- Предобработка данных нужна, чтобы данные обладали желаемым свойством
- Предобработка может производиться с учётом модели (особенно, если тесно связана с конструированием признаков)
- качественные данные ⇒ качественная модель (очень трудозатратно, м.б. до 90% времени)
- Главный вопрос: «Почему в данных есть это?»
- Не забываем о pipeline https://www.kaggle.com/alexisbcook/pipelines

Ссылки

- J. Brownlee. Data preparation for machine learning. eBook, 2020
- Fraboni Ec « Data preprocessing» https://www.slideshare.net/FraboniEc/data-preprocessing-61426734

Примеры

- https://www.kaggle.com/jolasa/eda-anda-data-preparation-4th-place
- https://medium.com/analytics-vidhya/part-1-datapreparation-made-easy-with-python-e2c024402327
- https://www.kaggle.com/iamleonie/intro-to-time-seriesforecasting