(新教材) 2021-2022 学年上学期高二

第一次月考备考金卷

学 (A)

注意事项:

座位号

倒

江

 $\Box \langle$

- 1. 答题前, 先将自己的姓名、准考证号填写在试题卷和答题卡上, 并将准 考证号条形码粘贴在答题卡上的指定位置。
- 2. 选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答 案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
- 3. 非选择题的作答: 用签字笔直接答在答题卡上对应的答题区域内。写在 试题卷、草稿纸和答题卡上的非答题区域均无效。
 - 4. 考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷

- 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个 选项中,只有一项是符合题目要求的.
- 1. 已知空间向量 $\mathbf{a} = (-3,2,5)$, $\mathbf{b} = (1,x,-1)$, 且 $\mathbf{a} = \mathbf{b} = \mathbf{a}$, 则 \mathbf{x} 等于 ()
- B. 1
- C. 3
- D. 2
- 2. 设点 A(4,2,-1), O(0,0,0), M(1,-1,2), 若 $\overrightarrow{OM} = \overrightarrow{AB}$, 则点 B 的坐标为 ()
- A. (-1,3,-3)

B. (1,-3,3)

C. (5,1,1)

- D. (-5,-1,-1)
- 3. 如图,在长方体 $ABCD A_1B_1C_1D_1$ 中,下列各式运算结果为 $\overrightarrow{AC_1}$ 的有(

$$(4)(\overrightarrow{AB} + \overrightarrow{AD}) + \overrightarrow{DD_1}; (5)(\overrightarrow{AB} + \overrightarrow{AA_1}) + \overrightarrow{A_1D_1}; (6)(\overrightarrow{AB} + \overrightarrow{AD}) + \overrightarrow{AA_1}.$$

- A. 3个
- B. 4个
- C. 5个
- D. 6个
- 4. 如图,ABCD-EFGH 是棱长为 1 的正方体,若 P 在正方体内部且满足 $\overrightarrow{AP} = \frac{3}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{AE}$, $\square P \supseteq AB$ 的距离为 ()

- A. $\frac{3}{4}$
- B. $\frac{4}{5}$
- C. $\frac{5}{6}$
- D. $\frac{3}{5}$
- 5. 如图, 在直三棱柱 $ABC A_1B_1C_1$ 中, $\angle ACB = 90^\circ$, $CA = CC_1 = 2CB$, 则直线 BC_1 与 AB_1 直线夹角的余弦值为()

- A. $\frac{\sqrt{5}}{5}$ B. $-\frac{\sqrt{5}}{5}$ C. $-\frac{2\sqrt{5}}{5}$
- 6. 已知平面 α 内两向量 a = (1,1,1), b = (0,2,-1), 若 c 为平面 α 的法向量且

c = ma + nb + (4, -4, 1), 则 m, n 的值分别为 ()

- A. -1, 2
- B. 1, -2
- C. 1, 2
- D. -1, -2
- 7. 如图,已知空间四边形OABC,其对角线为OB, AC, M, N分别是对边OA, BC的中点,点G在线段MN上,且分 \overrightarrow{MN} 所成的定比为2,现用基向量 $\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$ 表示 向量 \overrightarrow{OG} , 设 $\overrightarrow{OG} = x\overrightarrow{OA} + y\overrightarrow{OB} + z\overrightarrow{OC}$, 则x, y, z 的值分别为 (

A.
$$x = \frac{1}{3}$$
, $y = \frac{1}{3}$, $z = \frac{1}{3}$

A.
$$x = \frac{1}{3}$$
, $y = \frac{1}{3}$, $z = \frac{1}{3}$ B. $x = \frac{1}{3}$, $y = \frac{1}{3}$, $z = \frac{1}{6}$

C.
$$x = \frac{1}{3}$$
, $y = \frac{1}{6}$, $z = \frac{1}{3}$

C.
$$x = \frac{1}{3}$$
, $y = \frac{1}{6}$, $z = \frac{1}{3}$ D. $x = \frac{1}{6}$, $y = \frac{1}{3}$, $z = \frac{1}{3}$

8. 如图,点P为矩形 ABCD 所在平面外一点,PA 上平面 ABCD,Q为 AP 的中点,AB=3,

BC=4, PA=2, 则点P到平面BQD的距离为()

A. $\frac{5}{13}$ B. $\frac{12}{13}$

- 二、多项选择题: 本题共 4 小题,每小题 5 分,共 20 分. 在每小题给出的选项 中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得 0分.
- 9. 在正方体 $ABCD A_1B_1C_1D_1$ 中,设 $\overrightarrow{AB} = a$, $\overrightarrow{AD} = b$, $\overrightarrow{AA_1} = c$, $\{a,b,c\}$ 构成空间的 一个基底,则下列向量不共面的是(

A. a, a+b, c

B. $a \cdot a + b \cdot a - b$

C. c, a+b, a-b

- D. c, a+b+c, a+b
- 10. 直线l的方向向量为a,两个平面 α , β 的法向量分别为n,m,则下列命题为真 命题的是()

- A. 若 $a \perp n$, 则直线l//平面 α
- B. 若a//n,则直线l 上平面 α
- C. $\Xi \cos \langle a, n \rangle = \frac{1}{2}$, 则直线 l 与平面 α 所成角的大小为 $\frac{\pi}{6}$
- D. 若 $\cos\langle m, n \rangle = \frac{\sqrt{3}}{2}$, 则平面 α , β 所成角的大小为 $\frac{\pi}{6}$
- 11. 以下命题正确的是()
- A. 若 p 是平面 α 的一个法向量,直线 b 上有不同的两点 A , B ,则 b// α 的充要条件是 $\mathbf{p} \cdot \overrightarrow{AB} = 0$
- B. 已知 A, B, C 三点不共线, 对于空间任意一点 O, 若 $\overrightarrow{OP} = \frac{2}{5}\overrightarrow{OA} + \frac{1}{5}\overrightarrow{OB} + \frac{2}{5}\overrightarrow{OC}$, 则P, A, B, C四点共面

C. 已知
$$\mathbf{a} = (-1,1,2)$$
, $\mathbf{b} = (0,2,3)$, 若 $\frac{25}{\lambda} - \frac{4}{6-\lambda} = 1 = 2\mathbf{a} - \mathbf{b}$ 垂直,则 $k = -\frac{3}{4}$

- D. 已知 $\triangle ABC$ 的顶点坐标分别为 A(-1,1,2), B(4,1,4), C(3,-2,2),则 AC 边上的高 BD的长为 $\sqrt{13}$
- 12. 如图,在正方体 $ABCD A_iB_iC_iD_i$ 中, $E \setminus F \setminus G$ 分别为 $BC \setminus CC_i \setminus BB_i$ 的中点, 则()

A. $D_1D \perp AF$

- B. $A_1G//$ 平面 AEF
- C. $\overrightarrow{A_1C} \cdot (\overrightarrow{A_1B_1} \overrightarrow{A_1A}) = 0$
- D. 向量 $\overrightarrow{A_1B}$ 与向量 $\overrightarrow{AD_1}$ 的夹角是60°

第Ⅱ卷

三、填空题:本大题共4小题,每小题5分.

- 13. 已知空间直角坐标系中,点 A(-1,1,2), B(-3,0,4), 若|c|=6, $c \parallel \overrightarrow{AB}$,则 c =______.
- 14. 在 $\triangle ABC$ 中,A(1,-2,-1),B(0,-3,1),C(2,-2,1).若向量n与平面ABC垂直,且 $|n| = \sqrt{21}$,则n的坐标为______.
- 15. 已知空间向量a,b,c满足a+b+c=0,|a|=3,|b|=1,|c|=4,则 $a\cdot b+b\cdot c+c\cdot a$ 的值为_____.
- 16. 在棱长为 2 的正方体 $ABCD A_1B_1C_1D_1$ 中,Q 是棱 BB_1 的中点,点 P 在侧面 BCC_1B_1 (包含边界).
- (1) 若点P与点Q重合,则点P到平面 ACC_1A_1 的距离是_____;
- (2) 若 $A_1P \perp DQ$,则线段 CP 长度的取值范围是_____.

四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.

- 17. (10 分) 已知 a = (1,4,-2), b = (-2,2,4).
- (1) 若 $c = \frac{1}{2}b$, 求 $\cos\langle a,c\rangle$ 的值;
- (2) 若(ka+b)//(a-3b), 求实数k的值;
- (3) 若(ka+b) $\bot (a-3b)$, 求实数 k 的值.

- 18. (12分)如图,在多面体 ABCDE 中,AE 上平面 ABC,点 D 到平面 ABC 的距离为
- 2, $\triangle ABC$ 是正三角形, $BD = CD = \sqrt{5}$, AE = AB = 2.
- (1) 证明: *BC* ⊥ *DE*;
- (2) 求直线 CE 与平面 BED 所成角的正弦值.

- 19. (12 分) 如图,四棱锥 P-ABCD 的底面 ABCD 是菱形, $\angle BCD=120^{\circ}$, PA 上底面 ABCD, PA=AD=2, E 是 AD 的中点, F 为 PD 上一点,且 PB // 平面 CEF .
- (1) 求*PF*;
- (2) 求平面 PAB 与平面 CEF 所成角的正弦值.

- (1) 求证: *EF* 上平面 *BCF*;
- (2) 若M 为线段EF 上一点,且 $FM = \lambda EF$,是否存在实数 λ ,使平面MAB 与平面ABC 所成锐二面角为 $\frac{\pi}{3}$?若存在,求出实数 λ ,若不存在,请说明理由.

20. (12 分) 如图所示,在等腰梯形 ABCD中, $AB/\!\!/ CD$, $\angle DAB = 60^\circ$, $AE/\!\!/ CF$, AE = CF, $CF \perp$ 平面 ABCD, DC = BC = AD = CF = 1.

- 21. (12 分) 如图,在四棱锥 P-ABCD 中,底面 ABCD 是矩形, $PA \perp$ 平面 ABCD, PA = AD = 4, AB = 2, $M \neq PD$ 中点.
- (1) 求直线 AD 与平面 ACM 的夹角余弦值;

- (2) 求平面 ACD 和平面 ACM 的夹角的余弦值;
- (3) 求点P到平面ACM的距离.

- (1) 若 M 为 AB 的中点,且直线 MF 与由 A, D, E 三点所确定平面的交点为 O,试确定点 O 的位置,并证明直线 OD//平面 EMC;
- (2) 是否存在点 M,使得直线 DE 与平面 EMC 所成的角为 60° ,若存在,求此时二面角 M-EC-F 的余弦值,若不存在,说明理由.

22. (12 分) 已知正方形的边长为 4,E,F 分别为 AD,BC 的中点,以 EF 为棱将正方形 ABCD 折成如图所示的 60° 的二面角,点 M 在线段 AB 上.