Stef van Buuren^{1,2}

¹Netherlands Organisation for Applied Scientific Rsearch TNO, Leiden ²Methodology and Statistics, FSBS, Utrecht University

May 15, 2013, Utrecht

How to load the built-in code?

```
> doc <- file.path(path.package("mice"),"doc")</pre>
> dir(doc)
[1] "JSScode.R"
                 "fimd1.r"
                                "fimd2.r"
                                              "fimd3.r"
 [5] "fimd4.r"
                  "fimd5.r"
                                "fimd6.r"
                                              "fimd7.r"
                  "fimd9.r"
[9] "fimd8.r"
                                "index.html"
> edit(file = file.path(doc,"fimd1.r"))
```


Regression imputation

Multiple imputation: univariate > Scheme

Universiteit Utrecht

Main steps used in multiple imputation

Incomplete data Imputed data Analysis results Pooled results

Software and examples

- R Download from http://cran.r-project.org
- R package: mice 2.17
- Optional: Install RStudio
- Example code: doc directory of the mice package
- Example code:
 - http://www.multiple-imputation.com/fimd.html

> Single imputation methods > Mean imputation

Mean imputation

Stochastic regression imputation

How to do multiple imputation in ${\tt mice} > {\tt Main}$ steps

Steps in mice

Calculation (1)

```
> library(mice)
> options(digits = 3, width = 65)
> imp <- mice(nhanes, print = FALSE, m = 10, seed = 24415)
> fit <- with(imp, lm(bmi ~ age))
> est <- pool(fit)
> attributes(est)
$names
 [1] "call" "call1" "call2" "nmis" "m"
                                                                 "qhat"
  [7] "u"
                 "qbar"
                             "ubar"
                                         "b"
                                         "lambda"
[13] "dfcom" "df"
                              "fmi"
$class
[1] "mipo"
                 "mira"
                            "matrix"
```


TNO

SvB

> How to do multiple imputation in mice > Quick walkthrough

Calculation (3)

> summary(est)

Universiteit Utrecht

TNO

SyF

 $>\,\,$ How to do multiple imputation in mice $>\,\,$ Quick walkthrough

Inspect missing data pattern

> md.pattern(nhanes)

	age	hyp	bmi	chl	
13	1	1	1	1	0
1	1	1	0	1	1
3	1	1	1	0	1
1	1	0	0	1	2
7	1	0	0	0	3
	0	8	9	10	27

TNO

SvB

 $>\,$ How to do multiple imputation in mice $>\,$ Quick walkthrough

Inspect the trace lines for convergence

How to do multiple imputation in mice $> \,\,$ Quick walkthrough

Calculation (2)

> est\$qhat

	(T-++)	
	(Intercept)	age
1	32.4	-2.77
2	32.6	-3.17
3	31.9	-2.97
4	30.8	-2.21
5	30.5	-2.21
6	31.0	-2.21
7	30.5	-2.48
8	32.3	-2.55
9	28.9	-1.42
10	28.1	-1.13

Universiteit Utrecht

 \mathbf{n}

0.0

> How to do multiple imputation in mice > Quick walkthrough

Inspect the data

```
> library("mice")
```

```
> head(nhanes)
```

```
age bmi hyp chl
1 1 NA NA NA
2 2 2 22.7 1 187
3 1 NA 1 187
4 3 NA NA NA
5 1 20.4 1 113
6 3 NA NA 184
```


Universiteit Utrecht

TNO

> How to do multiple imputation in mice > Quick walkthroug

Multply impute the data

Universiteit Utrecht

TNO

SvB

 $>\,\,$ How to do multiple imputation in mice $>\,\,$ Quick walkthrough

Fit the complete-data model

TNO

What is \hat{Q} ?

> attributes(est)

[1]	"call"	"call1"	"cal12"	"nmis"	"m"	"qhat"
[7]	"u"	"qbar"	"ubar"	"b"	"t"	"r"
[13]	"dfcom"	"df"	"fmi"	"lambda"		

\$class

[1] "mipo"

What is *Q*?

> est\$qbar

(Intercept) age -2.3

> est\$fmi

(Intercept) age 0.643 0.806

How to do multiple imputation in ${\tt mice} > \ {\tt Quick}$ walkthrough

Stripplot of observed and imputed data

How to do multiple imputation in ${\tt mice} > {\sf How}$ to create multiple imputations

We delete gas consumption of observation 47

Universiteit Utrecht TNO

> est\$qhat

	(Intercept)	age
1	32.0	-2.737
2	32.7	-2.85
3	26.7	-0.82
4	30.0	-1.944
5	33.4	-3.132

Universiteit Utrecht

Stripplot of observed and imputed data

> stripplot(imp, pch = 20, cex = 1.2)

How to do multiple imputation in $\mathtt{mice} \,>\,$ How to create multiple imputations

Relation between temperature and gas consumption

How to do multiple imputation in ${\tt mice} > {\sf How}$ to create multiple imputations

Predict imputed value from regression line

Predicted value + noise

How to do multiple imputation in mice > How to create multiple imputations

Imputation based on two predictors

How to do multiple imputation in ${\tt mice} > {\tt Predictive}$ mean matching

Add two regression lines

How to do multiple imputation in ${\tt mice} > {\tt Predictive}$ mean matching

Define a matching range $\hat{y} \pm \delta$

Universiteit Utrecht TNO

Predicted value + noise + parameter uncertainty

> How to do multiple imputation in mice > Predictive mean matching

Predictive mean matching: Y given X

How to do multiple imputation in mice $\,>\,$ Predictive mean matching

How to do multiple imputation in ${\tt mice} > {\tt Predictive}$ mean matching

Select potential donors

Universiteit Utrecht TNO

Bayesian PMM: Draw a line

How to do multiple imputation in ${\tt mice} > {\sf Predictive}$ mean matching

Select potential donors

How to do multiple imputation in mice > Binary

Fit logistic model

Universiteit Utrecht TNO

How to do multiple imputation in ${\tt mice} > {\tt Binary}$

Read off the probability

> How to do multiple imputation in mice > Predictive mean matching

Define a matching range $\hat{y} \pm \delta$

How to do multiple imputation in mice > Binary

Imputation of a binary variable

logistic regression

$$\Pr(y_i = 1 | X_i, \beta) = \frac{\exp(X_i \beta)}{1 + \exp(X_i \beta)}.$$
 (1)

Universiteit Utrecht

How to do multiple imputation in ${\tt mice} > {\tt Binary}$

Draw parameter estimate

Universiteit Utrecht

How to do multiple imputation in ${\tt mice} > {\tt Ordinal}$

Impute ordered categorical variable

- ullet K ordered categories $k=1,\ldots,K$
- ordered logit model, or
- proportional odds model

$$\Pr(y_i = k | X_i, \beta) = \frac{\exp(\tau_k + X_i \beta)}{\sum_{k=1}^K \exp(\tau_k + X_i \beta)}$$
 (2)

Fit ordered logit model

How to do multiple imputation in ${\tt mice} > {\tt Ordinal}$

Other types of variables

- Count data
- Semi-continuous data
- Censored data
- Truncated data
- Rounded data

Imputation in mice - flat data - categorical

Method	Description	Scale type	
logreg	Logistic regression	factor, 2 levels*	-
logreg.boot	Logistic regression, bootstrap	factor, 2 levels	
polyreg	Multinomial logit model	factor, > 2 levels*	2
polr	Ordered logit model	ordered, > 2 levels*	
lda	Linear discriminant analysis	factor	
quadratic	Quadratic relations	numeric	

Multiple imputation: Multivariate > Fully Conditional Specification

Fully Conditional Specification : Con's

- Theoretical properties only known in special cases
- Cannot use computational shortcuts, like sweep-operator
- Care needed in building and checking the model

How to do multiple imputation in mice > Ordinal

Read off the probability

Univariate imputation in mice - flat data

How to do multiple imputation in mice > Univariate imputation in mice

Method	Description	Scale type	
pmm	Predictive mean matching	any*	_
norm	Bayesian linear regression	numeric	
norm.nob	Linear regression, non-Bayesian	numeric	
norm.boot	Linear regression, bootstrap	numeric	1
norm.predict	Best linear prediction	numeric	
mean	Unconditional mean imputation	numeric	
ri	drawn indicator for MNAR data	numeric	
sample	Simple random sample	any	
cart	Classification and regression trees	any	_

Multiple imputation: Multivariate > Fully Conditional Specification

Multivariate Imputation by Chained Equations (MICE)

- MICE algorithm
- Specify imputation model for each incomplete column
- Fill in starting imputations
- And iterate
- Model: Fully Conditional Specification (FCS)

Multiple imputation: Multivariate > Fully Conditional Specification

Fully Conditional Specification: Pro's

- Extremely flexible
- Easy to communicate
- Subset selection of predictors
- Splits missing data and complete data problem
- Modular, can preserve valuable work
- Appears to work quite well in practice

Multilevel imputation

mice, transcan, mi

SPSS V17 procedure multiple imputation

SAS IVEware, SAS 9.3

STATA ice command, multiple imputation command

Stand-alone Solas, Mplus

Univariate imputation in mice two-level data

Method	Description	Scale type
2l.norm	Two-level linear model, heteroskedastic	numeric
2l.pan	Two-level linear model, homoskedastic	numeric
2lonly.mean	2nd level, class mean	numeric
2lonly.norm	2nd level, normal model	numeric
2lonly.pmm	2nd level, predictive mean matching	any
2l.logit	2nd level, logistic regression	binary*
2lmixed.logit	2nd level, mixed level predictors	binary*

^{*} in development, by Ross Boylan

Linear two-level model

$$y_j = Z_j \beta_j + \epsilon_j$$

 $\beta_j = W_j \beta + u_j$

 y_j ($n_j imes 1$) outcomes in class j

 Z_i ($n_i \times q$) level-1 predictors, β_i varying coefficients

 W_i $(q \times p)$ level-2 predictors, β fixed effect

 u_j $(q \times 1)$ random effects, $u_j \sim N(0, \Omega)$

 $\epsilon_{j} \; (n_{j} \times 1) \; \text{residuals}, \; \epsilon_{j} \sim \textit{N}(0, \sigma_{j}^{2}\textit{I}(n_{j}))$

 $\sigma_i^2 = \sigma^2$, homogeneity

 $\epsilon_j \perp u_j$, independence

Universiteit Utrecht

TNO

Multilevel imputation > Multilevel model with missing data

Where are the missing data? Missing y_i

$$y_j = Z_j \beta_j + \epsilon_j$$

 $\beta_j = W_j \beta + u_j$

- Laird and Ware (1982) EM-algorithm
- Jennrich and Schluchter (1986), speed-up
- Verbeke and Molenberghs (2000), many applications
- Daniels and Hogan (2008), MNAR for longitudinal case

Multilevel imputation > Multilevel model

Linear mixed-effects model

$$y_j = X_j \beta + Z_j u_j + \epsilon_j$$

 y_j $(n_j \times 1)$ outcomes in class j

 X_{j} $(n_{j} \times p)$ design matrix, β fixed effects

 Z_{j} $(n_{j} \times q)$ design matrix, u_{j} random effects $u_{j} \sim N(0,\Omega)$

 $\epsilon_j (n_j \times 1)$ residuals, $\epsilon_j \sim N(0, \sigma_j^2 I(n_j))$

 $\sigma_i^2 = \sigma^2$, homogeneity

 $\epsilon_j \perp u_j$, independence

Where are the missing data?

$$y_j = Z_j \beta_j + \epsilon_j$$
$$\beta_i = W_i \beta + u_i$$

 y_j standard problem in multilevel analysis

 Z_j non-standard problem at first level

 W_j non-standard problem at 2nd level

j missing class variable, non-standard

Where are the missing data? Missing y_i

$$y_j = Z_j \beta_j + \epsilon_j$$

 $\beta_j = W_j \beta + u_j$

- \bigcirc The missing data are confined to y_i ,
- The MAR assumption is plausible,
- O Any factors in the MAR mechanism are included into the multilevel model,
- The multilevel model for the complete data is correctly specific.

3

³See: van Buuren S (2011) Multiple imputation of multilevel data. In Hox J, J. & Roberts J, K. (Eds), *The Handbook of Advanced Multilevel Analysis*. Routledge, Milton Park, UK, pp. 173-196. Multilevel imputation > Multilevel model with missing data

Where are the missing data? Missing j

• Missing class variable j: usually case deletion.

Multilevel imputation > Multilevel model with missing data

• Take complete level-1 cases: MLwiN, HLM, PROC MIXED, nlme, arm, MIXED, and so on

 $y_j = Z_j \beta_j + \epsilon_j$ $\beta_j = W_j \beta + u_j$

• Multiple imputation of the class variable appears straightforward,

• FIML: Full Information Maximum Likelihood, Mplus

Multilevel imputation > Multilevel imputation JM

Joint modeling approach

$$y_j = Z_j \beta_j + \epsilon_j$$

$$\beta_j = W_j \beta + u_j$$

 $y_j = Z_j \beta_j + \epsilon_j$ $\beta_j = W_j \beta + u_j$

• Take complete level-2 classes (standard, but very wasteful)

- ullet Put all incomplete level-1 variables in y_j
- y_j , β_j , β , u_j and ϵ_j become matrices
- Assume $\epsilon_i \sim N(0, \Omega_{1i})$
- Assume $u_i \sim N(0, \Omega_2)$
- ullet Standard case: Assume $\Omega_{1j}=\Omega_1$ for all j
- Generalizes Schafer's joint models to multilevel data

Universiteit Utrecht

TNO

Universiteit Utrecht

but has never been tried.

Joint modeling approach: Software

- PAN, mlmmm (Schafer & Yucel, 2002; Yucel 2008; Yucel 2011)
- REALCOM-IMPUTE (Carpenter, Goldstein & Kenward, 2011; Carpenter & Kenward, 2013, Ch. 9)
- Extensions to categorical data have been proposed
- Imputes both at level-1 and level-2
- Requires $\epsilon_j \sim N(0,\Omega_1)$ and $u_j \sim N(0,\Omega_2)$

Multilevel imputation > Multilevel imputation FCS

Fully Conditional Specification: Does it work?

$$y_j = Z_j \beta_j + \epsilon_j$$

 $\beta_j = W_j \beta + u_j$

- Ian White's note (personal communication):
- ullet y_1 and y_2 are two level-1 response variables
 - \bigcirc $p(y_1|y_2,x)$ depends on the cluster mean of y_2 , $\bar{y}_{2,j}$
 - $oldsymbol{\bigcirc}$ regression weight for $ar{y}_{2,j}$ depends on n_j
 - o spread of $p(y_1|y_2,x)$ depends on n_j
- Thus, ignoring the multilevel structure for level-1 variables can create invalid imputations
- On the other hand, almost nothing is known about the impact of violations

Fully Conditional Specification

$$y_j = Z_j \beta_j + \epsilon_j$$

 $\beta_j = W_j \beta + u_j$

- Impute variable-by-variable using univariate multilevel model
- Allow for σ_i^2 , heterogenous error variance per class
- ullet Iteratively draw eta, u_i , Ω and σ_i^2 by Markov Chain Monte Carlo

$$\dot{\beta} \sim p(\beta|u_i, \sigma^2)$$
 (3)

$$\dot{u}_j \sim p(u_j|\beta,\Omega,\sigma^2)$$
 (4)

$$\dot{\Omega} \sim p(\Omega|u_j)$$
 (5)

$$\begin{array}{lcl} \dot{\beta} & \sim & \rho(\beta|u_j,\sigma^2) & & (3) \\ \dot{u}_j & \sim & \rho(u_j|\beta,\Omega,\sigma^2) & & (4) \\ \dot{\Omega} & \sim & \rho(\Omega|u_j) & & (5) \\ \dot{\sigma}_j^2 & \sim & \rho(\sigma^2|\beta,u_j) & & (6) \end{array}$$

ullet On converge, draw \dot{y}_j given the current values of the parameters.

Fully Conditional Specification: Simulations

- Zhao and Yucel (2009) compared two methods:
 - JM: Multivariate linear mixed-effect model (PAN)
 - FCS: Univariate generalized linear mixed-effect model (Gibbs sampler)
- Their conclusions
 - For continuous variables, FCS performed "reasonably well"
 - For binary variables, FCS outperforms PAN in almost all scenarios
 - Moderate missingness rates do not impact performance
 - Role of the priors negligible in most settings.

4

Fully Conditional Specification: Simulations

- Van Buuren (2011) compared four methods:
 - CC: Complete Case Analysis (CC)
 - FF: Multiple Imputation Flat File
 - SC: Multiple imputation treating class as fixed factor
 - ML: Multiple multilevel imputation (21.norm)
- Conclusions

 - CC is bad strategy with missing data in Z_j FF biases the ICC downwards, SC biases upwards, ML is about right
 - Smaller classes makes the problem more difficult
 - ML is a considerable improvement over CC, and better than FF and SC. However, coverage often fails to achieve nomimal level

 5 See: van Buuren S (2011) Multiple imputation of multilevel data. In Hox J, J. & Roberts J, K. (Eds), The Handbook of Advanced Multilevel Analysis. Routledge, ton Park, UK, pp. 173-196.

Multilevel imputation > Multilevel imputation FCS

Two-level imputation methods: Software II

- mice.impute.2lonly.mean()
 - Fills in the class mean
 - Use only for repair
- mice.impute.2lonly.norm()
 - Numerical data
 - Draw value from normal distribution
- mice.impute.2lonly.pmm()
 - Any data
 - Draw value by predictive mean matching
- All impute 2nd level variables
- All 'string out' the imputed value to all members in the class

Predictive mean matching with class variable

- A practical alternative: mice.impute.pmm()
 - Include class variable as dummy
 - Use predictive mean matching for flat files
 - Check ICC before and after imputation
 - Can also be used for discrete data
 - Has 'worked well' in some cases (i.e. similar ICC's)
 - · Little is yet known about statistical properties

Conclusions

- Can we apply multiple imputation to multilevel data?
- Depends on where the missing data are: y_j , Z_j , W_j , j
- Joint modeling: REALCOM-IMPUTE, PAN
- Fully conditional specification: mice
- Not yet covered: categorical level-1 variables, pooling of random effect, White's theoretical problem, coverage not always optimal
- Current software slow, and some pecularities
- If possible, make the 'wide' data matrix
- Flat predictive mean matching emerged as a remarkable alternative

Two-level imputation methods: Software I

- mice.impute.21.norm() in mice.
 - Implemented the MCMC method
 - Assumes $\sigma_i^2 \neq \sigma^2$
 - Best method, but not so fast
- mice.impute.21.pan() in mice.
 - Uses Schafer's pan method
 - Faster than mice.impute.21.norm()
 - Assumes homogeneity $\sigma_j^2=\sigma^2$, and thus less flexible
- Both impute first level variables, clustered in classes
- At present, no dedicated multilevel methods for discrete variables

Calling mice.impute.21.norm() from mice()

```
> library("mice")
> popmis[1:3,]
  pupil school popular sex texp const teachpop
      1
               1
                       NA
                             1
                                  24
       2
                             0
                                  24
                       NA
3
      3
                                  24
                                                     6
               1
                             1
> ini <- mice(popmis, maxit=0)</pre>
> pred <- ini$pred
> pred["popular",] <- c(0, -2, 0, 2, 2, 2, 0)
> imp <- mice(popmis, meth = c("","","21.norm","","","",""),</pre>
                pred = pred, maxit=1, m = 2, seed = 71152)
 iter imp variable
      1 popular
       2 popular
```

Multilevel imputation > Ignoring multilevel structure

Universiteit Utrecht

How bad is ignoring the multilevel structure?

Table: Intra-class correlation under flat file imputation methods

vars	truth	observed	norm	normclass	pmm
orig					
popular	0.363	0.340	0.276	0.360	0.362
popteach	0.341	0.314	0.253	0.339	0.346
texp	1.000	1.000	0.435	0.999	1.000

6

Further reading

- Van Buuren, S. and Groothuis-Oudshoorn, C.G.M. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67.
- Van Buuren, S. (2012). Flexible Imputation of Missing Data. Chapman & Hall/CRC, Boca Raton, FL.

Universiteit Utrecht

Flexible Imputation of Missing Data (FIMD)

Universiteit Utrecht

TNO

SvB