

Sistemas de Informação GSI016 Banco de Dados 1

Álgebra Relacional

Prof. Bruno Travençolo

Introdução

- Relembrando:
 - Um modelo de dados inclui um conjunto de OPERAÇÕES para manipular um banco de dados além dos CONCEITOS de modelagem necessários para a estruturação do BD.
 - OPERAÇÕES: Linguagem de Consulta
 - O que é LINGUAGEM DE CONSULTA?
 - É uma linguagem por meio da qual os usuários obtém informações do banco de dados
 - Linguagens de mais ALTO NÍVEL que as linguagens de programação tradicionais
 - Exemplo SQL Structured Query Language
 - O que é LINGUAGEM FORMAL DE CONSULTA ?

Álgebra Relacional

- Modelo de dados inclui
 - Conceitos para a definição das restrições e estrutura do BD
 - Conjunto de operações para manipular o BD
- Álgebra relacional
 - Maneira teórica de se manipular o BD relacional
- Importância
 - Fundamento formal para as operações no modelo relacional
 - Base para implementar e otimizar consultas em SGBDR
 - Introduz conceitos incorporados na SQL

Álgebra Relacional

- Linguagem de consulta procedural
 - usuários especificam os dados necessários e como obtê-los
- Consiste de um conjunto de operações
 - entrada: uma ou mais relações e restrições
 - saída: uma nova relação resultado

Classificação das Operações

- Unárias
 - seleção
 - projeção
 - renomear

operam sobre uma única relação

- Binárias *
 - produto cartesiano
 - união
 - diferença de conjuntos
 - intersecção de conjuntos
 - junção natural
 - divisãooperam sobre duasrelações

Esquema relacional

```
cliente (nro cli, nome_cli, end_cli,
        saldo, vendedor)
vendedor (cod vend, nome vend)
pedido (nro_ped, data, nro_clienté)
pedido_peça (nro_ped, nro_peça)
peça (nro peça, descrição peça)
```

Seleção o sigma

Seleciona tuplas da relação argumento que satisfaçam à condição de seleção

σ_{condição_seleção} (relação argumento)

- pode envolver operadores de comparação (=, <, ≤, >, ≥, ≠)
- pode combinar condições usando-se ∧, ∨, ¬

- relação
- resultado de alguma operação da álgebra relacional

Seleção o sigma

• Produz um subconjunto horizontal de uma relação

Relação Cliente

cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Liste toda a informação da relação cliente referente ao cliente de número 4.

$$\sigma_{\text{nro_cli}=4}$$
 (cliente)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Relação resultado

•	nro_cli	nome_cli	end_cli	saldo	cod_vend
	4	Rodrigo	Rua X	137,00	2

grau: mesmo grau da relação argumento

número de tuplas: menor ou igual ao número de tuplas da relação argumento

Liste toda a informação da relação cliente para clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

Relação resultado

•	nro_cli	nome_cli	end_cli	saldo	cod_vend
	1	Márcia	Rua X	100,00	1
	4	Rodrigo	Rua X	137,00	2

grau: mesmo grau da relação argumento

número de tuplas: menor ou igual ao número de tuplas da relação argumento

Vale lembrar...

- ◆ As condições booleanas ^(and), v (or) e ¬ (not) têm sua interpretação conforme segue:
 - (cond1 ^ cond 2)
 - é verdadeira se ambas cond1 e cond2 forem verdadeiras
 - caso contrário é falsa
 - (cond1 v cond 2)
 - verdadeira se cond1 ou cond2 forem verdadeiras
 - caso contrário é falsa
 - (¬ cond)
 - verdadeira se cond for <u>falsa</u>
 - caso contrário é falsa

Projeção

Produz uma nova relação contendo um subconjunto vertical da relação argumento, sem duplicações

π _{lista_atributos} (relação argumento)

- lista de atributos
- os atributos são separados por vírgula

- relação
- resultado de alguma operação da álgebra relacional

Projeção

- Extrai atributos (Colunas) específicos de uma relação específica
- Produz um subconjunto **vertical** de uma relação

Pro

Projeção

 π pi

Liste o número e o nome de todos os clientes

π nro_cli, nome_cli (cliente)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Relação resultado

grau: número de atributos listados em lista_atributos

nro_cli	nome_cli
1	Márcia
2	Cristina
3	Manoel
4	Rodrigo

número de tuplas: menor ou igual ao número de tuplas da relação argumento

Liste o endereço de todos os clientes

Relação Resultante - sem repetição

•	nro_cli	nome_cli	end_cli	saldo	cod_vend
	1	Márcia	Rua X	100,00	1
	2	Cristina	Avenida 1	10,00	1
	3	Manoel	Avenida 3	234,00	1
	4	Rodrigo	Rua X	137,00	2

Operações Propriedades dos operadores unários

- A operação de Seleção é comutativa
 - $\sigma_{< condição-A>}(\sigma_{< condição-B>})$
- ◆ Uma sequência de seleções pode ser executada em qualquer ordem, ou pode ser transformada em uma única seleção com uma condição conjuntiva (termos cujo valor é VERDADEIRO ou FALSO, ligados pelo operador ∧ (AND))
 - $\bullet \quad \sigma_{< condição-1>}(\sigma_{< condição-2>}(\dots(\sigma_{< condição-n>}(R))))$
 - $\sigma_{\text{condição-1}} \land \text{condição-2} \land \dots \text{condição-n}(R)$

Operações Propriedades dos operadores unários

- A operação de Projeção não é comutativa
- Se Se Se Se atribs_B> contém Se atribs_A>, então ambas as expressões seguintes são corretas, e vale a igualdade:
 - $\blacksquare \pi_{\text{<lista_atribs_A>}} (\pi_{\text{<lista_atribs_B>}} R) = \pi_{\text{<lista_atribs_A>}} R$

Liste o número e o nome de todos os clientes que possuam saldo devedor inferior a 200,00 reais e morem na Rua X.

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Passos

- realizar uma operação de <u>seleção</u> para criar uma nova relação que contém somente aqueles clientes com o saldo e o endereço apropriados;
- realizar uma projeção sobre a relação resultante do passo anterior, restringindo o resultado desejado às colunas indicadas.

Primeiro passo

Segundo passo

π nro_cli, nome_cli (primeiro passo)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
4	Rodrigo	Rua X	137,00	2

Liste o número e o nome de todos os clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

```
\pi_{\text{nro\_cli, nome\_cli}} (\sigma_{\text{saldo\_dev} < 200,00 ^ end\_cli} = \text{"Rua X"} (cliente))
```

Relação Resultado

nro_cli	nome_cli
1	Márcia
4	Rodrigo

Atribuição

- Funcionalidades
 - associa uma relação argumento a uma relação temporária
 - permite o uso da relação temporária em expressões subsequentes

relação temporária ← relação argumento

Liste o número e o nome de todos os clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

```
\pi_{\text{nro\_cli, nome\_cli}} (\sigma_{\text{saldo\_dev} < 200,00 ^{end\_cli} = \text{"Rua X"}} (cliente))
```

- Usando atribuição
 - temp $\leftarrow \sigma_{\text{saldo_dev} < 200,00 ^ end_cli = "Rua X"}$ (cliente)
 - $\blacksquare \pi_{\text{nro_cli, nome_cli}}$ (temp)

Atribuição

- Características adicionais
 - permite renomear os atributos de relações intermediárias e final
 - R(código, nome) $\leftarrow \pi_{\text{nro cli, nome cli}}$ (temp)
- Observações
 - não adiciona semântica adicional à álgebra relacional
 - geralmente utilizada para expressar consultas complexas

Renomear $(\rho = r\hat{o})$

- Renomeia
 - nome da relação
 - nomes dos atributos da relação
 - nome da relação e nomes dos atributos

Renomear

Exemplos

- ρ comprador (cliente)
- P(código, nome, rua, saldo, vendedor) (cliente)
- P comprador (código, nome, rua, saldo, vendedor) (cliente)

Observação

 indicada para ser utilizada quando uma relação é usada mais do que uma vez para responder à consulta

Produto Cartesiano

- Combina tuplas de duas relações (quaisquer)
- Tuplas da relação resultante
 - todas as combinações de tuplas possíveis entre as relações participantes

relação argumento 1 x relação argumento 2

- relação
- resultado de alguma operação da álgebra relacional

Produto Cartesiano

 Utilizado quando se necessita obter dados presentes em duas ou mais relações

Relações Cliente e Vendedor

cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

vendedor (cod_vend, nome_vend)

cod_vend	nome_vend
1	Adriana
2	Roberto

Cliente x Vendedor

nro_cli	nome_cli	end_cli	saldo	cliente. cod_vend	vendedor.c od_vend	nome_vend
1	Márcia	Rua X	100,00	1	1	Adriana
1	Márcia	Rua X	100,00	1	2	Roberto
2	Cristina	Avenida 1	10,00	1	1	Adriana
2	Cristina	Avenida 1	10,00	1	2	Roberto
3	Manoel	Avenida 3	234,00	1	1	Adriana
3	Manoel	Avenida 3	234,00	1	2	Roberto
4	Rodrigo	Rua X	137,00	2	1	Adriana
4	Rodrigo	Rua X	137,00	2	2	Roberto

grau: número de atributos de cliente + número de atributos de vendedor número de tuplas: número de tuplas de cliente * número de tuplas de vendedor

Exemplo 1

- Considere as seguintes relações
 - usuário (<u>cliente_nome</u>, gerente_nome)
 - cliente (<u>cliente_nome</u>, rua, cidade)

cliente_nome	gerente_nome
Márcia	Manoel
Rodrigo	Maria

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá

Liste o nome de todos os usuários atendidos pelo gerente Manoel, assim como as cidades nas quais eles vivem

- Primeiro passo
 - determinar quem são os usuários atendidos pelo gerente Manoel

$$temp_1 \leftarrow \pi_{cliente_nome} (\sigma_{gerente_nome = "Manoel"} (usuário))$$

■ relação resultado temp₁

cliente_nome

Márcia

- Segundo passo
 - realizar o produto cartesiano das relações temp₂ ← temp₁ x cliente

relação resultado temp₂

temp ₁ . cliente_nome	cliente. cliente_nome	rua	cidade
Márcia	Márcia	Rua X	Itambé
Márcia	Rodrigo	Rua X	Maringá

Terceiro passo

eliminar informações inconsistentes
 temp₃ ← σ temp_{1.cliente_nome} = cliente.cliente_nome
 (temp₂)

relação resultado temp₃

temp ₁ . cliente_nome	cliente. cliente_nome	rua	cidade	
Márcia	Márcia	Rua X	Itambé	

- Quarto passo
 - exibir as informações solicitadas

$$\pi_{\text{temp1.cliente_nome, cidade}}$$
 (temp3)

relação resultado

temp ₁ . cliente_nome	cidade
Márcia	Itambé

Exemplo 2

- Considere a seguinte relação
 - cliente (<u>cliente_nome</u>, rua, cidade)

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá
Cristina	Rua XTZ	Maringá
Sofia	Rua X	Maringá
Ricardo	Rua AAA	Itambé

Liste o nome dos clientes que moram na mesma rua e na mesma cidade que Rodrigo (exceto o próprio Rodrigo)

- Primeiro passo
 - determinar o nome da rua e o nome da cidade na qual Rodrigo mora

temp₁
$$\leftarrow \pi_{\text{rua,cidade}}$$
 ($\sigma_{\text{cliente_nome} = \text{"Rodrigo"}}$ (cliente))

■ relação resultado temp₁

rua	cidade	
Rua X	Maringá	

- Segundo passo
 - realizar o produto cartesiano das relações temp₂ ← temp₁ x cliente
 - relação resultado temp₂

temp ₁ .rua	temp ₁ .cidade	cliente_nome	cliente.rua	cliente.cidade
Rua X	Maringá	Márcia	Rua X	Itambé
Rua X	Maringá	Rodrigo	Rua X	Maringá
Rua X	Maringá	Cristina	Rua XTZ	Maringá
Rua X	Maringá	Sofia	Rua X	Maringá
Rua X	Maringá	Ricardo	Rua AAA	Itambé

- Terceiro passo
 - eliminar informações indesejadas

$$temp_3 \leftarrow \sigma_{cliente_nome <> "Rodrigo"} (temp_2)$$

relação resultado temp₃

temp ₁ .rua	temp ₁ .cidade	cliente_nome	cliente.rua	cliente.cidade
Rua X	Maringá	Márcia	Rua X	Itambé
Rua X	Maringá	Cristina	Rua XTZ	Maringá
Rua X	Maringá	Sofia	Rua X	Maringá
Rua X	Maringá	Ricardo	Rua AAA	Itambé

- Quarto passo
 - exibir as informações solicitadas

```
\pi cliente_nome (\sigma temp<sub>1</sub>.rua = cliente.rua ^ temp<sub>1</sub>.cidade = cliente.cidade (temp<sub>3</sub>))
```

relação resultado

cliente_nome

Sofia

Discussão

Solução proposta

```
temp<sub>1</sub> \leftarrow \pi_{\text{rua,cidade}} (\sigma_{\text{cliente\_nome} = \text{"Rodrigo"}} (cliente))
temp<sub>2</sub> \leftarrow \text{temp}_1 \times \text{cliente}
temp<sub>3</sub> \leftarrow \sigma_{\text{cliente\_nome} != \text{"Rodrigo"}} (temp<sub>2</sub>)
\pi_{\text{cliente\_nome}} (\sigma_{\text{temp}_1.rua} = \text{cliente.rua} \land \text{temp}_1.cidade} = \text{cliente.cidade} (temp<sub>3</sub>))
```

Operação de atribuição

```
temp<sub>1</sub>(rua_rodrigo, cidade_rodrigo) \leftarrow
\pi_{rua,cidade} (\sigma_{cliente\_nome = "Rodrigo"} (cliente))
temp<sub>2</sub> \leftarrow temp<sub>1</sub> x cliente
temp<sub>3</sub> \leftarrow \sigma_{cliente\_nome != "Rodrigo"} (temp<sub>2</sub>)
<math display="block">\pi_{cliente\_nome} (\sigma_{rua\_rodrigo = rua \land cidade\_rodrigo = cidade} (temp<sub>3</sub>))
```

Discussão

Operação renomear (1)

```
temp<sub>1</sub> \leftarrow \pi_{\text{rua,cidade}} (\sigma_{\text{cliente\_nome} = \text{"Rodrigo"}} (cliente))
temp<sub>2</sub> \leftarrow \rho_{\text{(rua\_rodrigo, cidade\_rodrigo)}} (temp1) x cliente
temp<sub>3</sub> \leftarrow \sigma_{\text{cliente\_nome}} (\sigma_{\text{rua\_rodrigo}} (temp<sub>2</sub>)
\sigma_{\text{cliente\_nome}} (\sigma_{\text{rua\_rodrigo}} (temp<sub>3</sub>))
```

Operação renomear (2)

```
\begin{array}{l} \text{temp}_1 \leftarrow \pi_{\text{rua,cidade}} \left( \sigma_{\text{cliente\_nome} = \text{``Rodrigo''}} \left( \text{cliente} \right) \right) \\ \text{temp}_2 \leftarrow \rho_{\text{dados\_rodrigo(rua\_rodrigo,cidade\_rodrigo)}} \left( \text{temp1} \right) \text{ x cliente} \\ \text{temp}_3 \leftarrow \sigma_{\text{cliente\_nome}} \leftarrow \sigma_{\text{cliente\_nome}} \left( \text{temp2} \right) \\ \pi_{\text{cliente\_nome}} \left( \sigma_{\text{rua\_rodrigo}} = \text{rua } \wedge \text{cidade\_rodrigo} = \text{cidade} \left( \text{temp3} \right) \right) \end{array}
```

Junção

- Concatena tuplas relacionadas de duas relações em tuplas únicas
- Simplifica consultas que requerem produto cartesiano
 - forma um <u>produto cartesiano</u> dos argumentos

Junção

cliente (<u>nro_cli</u>, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	RuaX	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	RuaX	137,00	2

vendedor (<u>cod_vend</u>, nome_vend)

cod_vend	nome_vend
1	Adriana
2	Roberto

Cliente $\bowtie_{cod\ vend\ =\ cod\ vend}$ Vendedor

•	nro_cli	nome_cli	end_cli	saldo	cod_ven d	cod_ven d	nome_ve nd
	1	Márcia	Rua X	100,00	1	1	Adriana
	2	Cristina	Avenida 1	10,00	1	1	Adriana
	3	Manoel	Avenida 3	234,00	1	1	Adriana
	4	Rodrigo	Rua X	137,00	2	2	Roberto

grau: número de atributos de cliente + número de atributos de vendedor

número de tuplas: entre zero e o (número de tuplas de cliente * número de tuplas de vendedor)

Próxima aula...

- Junções
- União
- Intersecção
- Diferença
- Subconsulta
- Divisão
- Agregação

Atividades complementares

- Slides cedidos pelo Prof. Humberto Razente
- Leitura para casa
 - Capítulo 6, "Álgebra e cálculo relacional"
 do livro: Elmasri, Ramez; Navathe, Shamkant B.
 Sistemas de banco de dados, 6ª. edição (2011).