

Explaining Machine Learning Models

Armen Donigian

Director of Data Science Engineering

Roadmap

- Definition of Interpretability
- + The Need for Interpretability
- + Role of Interpretability in Data Science Process
- + Relevant Application Domains
- Barriers to Adoption
- + Conveying Interpretations
- + Research Directions

Working Definition of Interpretability

"The ability to explain or to present in understandable terms to a human."

Paper titled "Towards A Rigorous Science of Interpretable Machine Learning"

The Need for Interpretability

In Supervised ML, we learn a model to accomplish a specific goal by minimizing a loss function.

Purpose is to *trust* & *understand* how the model uses inputs to make predictions.

Validation loss is *Not Enough*! Can't encode needs below into single loss function...

Bias: Non-stationarity

Fairness: Overlook gender-biased word embeddings (or other protected classes)

(Refer paper titled: "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings")

Safety: Infeasible to test all failure scenarios

Regulatory compliance: Adverse Action & Disparate Impact **Mismatched Objectives**

- **Single-Objective:** Overly associates wolves with snow
- Multi-Objective trade-off: Privacy vs Prediction Quality

Security: Is model vulnerable to an adversarial user?

Test

Validation

(b) Explanation

Interpretability: The Need to Keep Up

zest finance

As our methods to learn patterns from data become more complex...

Failure Modes: Adversarial examples (more complex model can have less intuitive failure modes)

Paper titled "Explaining and Harnessing Adversarial Examples"

Role of Interpretability: Data Science Process zest finance

Improve existing hypothesis/Generate a new one

Reference Figure 1

Application Domains for Interpretability

Credit UW (Equal Credit Opportunity Act)

- Adverse Action
- Disparate Impact

Neural machine translation

- Bridge translation gap between source & target languages
- Large corpus, unwanted co-occurrences of words which bias the model

Medical diagnoses

- Show physician regions where lesions appear in retina

Autonomous driving

- Saliency map of what model used to predict orientation & direction of steering

Scientific discoveries

- Show how molecules interact w/ enzymes, potential to learn causal relationships

Think of the cost of an incorrect prediction!

Figure 2

Original Image

DR Grade: Moderate (With Score: 0.4564)

Response of Investil

Figure 1

Figure 3

Barrier to Adoption in Underwriting

The Explainable Machine Learning Challenge

FICO teams up with Google, UC Berkeley, Oxford, Imperial, MIT and UC Irvine to sponsor a contest to generate new research in the area of algorithmic explainability

- Home Equity Line of Credit (HELOC) dataset
- Lines of credit \$5,000 to \$150,000

The black box nature of machine learning algorithms means that they are currently neither interpretable nor explainable... Without explanations, these algorithms cannot meet regulatory requirements, and thus cannot be adopted by financial institutions.

- FICO blog

Catalogue Methods by Output

Visualizations (Intuitive)

Partial Dependence Plots, Correlations, Dim Reduction, Clustering

Text

For image captioning, we can use stochastic neighborhood embedding using n-dims to find relative neighborhoods

DeepDream

Asked to find bananas, DeepDream finds bananas in noise Figure 1

Examples

Find most influential training samples by unweighing different samples & observe sensitivity

'Sunflower': 59.2% conf.

Figure 3

Original

Influence Functions

t-SNE

Figure 2

Ways to Convey Interpretability (Feat Level)

Naturally Interpretable Models

$$f(x) = a_1 x_1 + a_2 x_2 + b$$

Sensitivity Analysis: "What makes the shark less/more a shark?"

- Measure sensitivity of output to changes made in the input features
- Randomly shuffle feature values one column at a time and measure change on performance
- Saliency map of what model was looking for when it made decision
 - Which pixels lead to increase/decrease of prediction score when changed?

Approach: Permutation Impact

Decomposition: "What makes the shark a shark?"

- Breaks down relevance of each feature to the prediction as a whole
- Done with respect to some reference
- Feature attributions must add up to the whole prediction (normalizing factor)

Approach: Backprop

Figure 1

Naturally Interpretable Models

Linear Models

$$f(x) = a_1x_1 + a_2x_2 + b$$

$$[contrib(x_i) = a_ix_i]$$

$$f(x) - f(x_0) = \sum_i contrib(x_i)$$

$$baseline:$$

$$x_0 = (0,0)$$

Decomposition: assigns blame to causes (some reference cause)

Sensitivity: Take gradient of this model w/ respect to input, coefficients remain.

Decision Trees

Trace path of each decision & observe how it changes the regression value.

Feature importances. How often a feature is used to make a decision?
 Check out <u>SHapley Additive exPlanations</u>, <u>treeinterpreter</u>

Permutation Feature Importance

Permutation feature importance

Randomly shuffle feature values one column at a time and measure change on performance

Pros

Simple implementation Model agnostic

Cons

No variable interaction

Computationally expensive

Works when few features are important & operate independently

Single pixel perturbation does not change prediction

Surrogate Models (LIME)

Local Interpretable Model-Agnostic Explanations

Learn a simple interpretable model about the test point using proximity weighted

samples

Figure 1
Top 3 predicted classes

(a) Original Image

(d) Explaining Labrador

Pros

Model-agnostic

Cons

Computationally Expensive

Figure 2

BAD	CUSTOMER_DTI	LOAN_PURPOSE	CHANNEL	
0	0.18	MORT	7	
1	0.42	HELOC	10	
0	0.11	MORT	10	
0	0.21	MORT	1	

1. Train a complex machine learning model

X₂

h₁₁

h₂₁

y

X₃

h₁₃

X₄

Complex neural network

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

Figure 3

	PREDICTED_BAD	CUSTOMER_DTI	LOAN_PURPOSE	CHANNEL
0	0.47	0.18	MORT	7
1	0.82	0.42	HELOC	10
0	0.18	0.11	MORT	10
0	0.12	0.21	MORT	1

2. Train an interpretable model on the original inputs and the predicted target values of the complex model

Interpretable linear

model

Backpropagation Based Approaches

Gradients (saliency map)

- Start w/ particular output
- Assign importance scores to neurons in layer below depending on function connecting those 2 layers
- Repeat process until you reach input
- With a single backward prop, you get importance scores for all features in the input

Gradient w/ respect to inputs gives us feature attributions

$$S_c(I) \approx w^T I + b,$$

$$w = \left. rac{\partial S_c}{\partial I} \right|_{I_c}$$

Pros

Simple and efficient GPU-optimized implementation

Cons

Fails in flat regions (e.g. ReLU)...gives 0 when contribution isn't zero

Backprop Approaches

Improving gradients

Dealing with absence of signal

Towards decomposition

Define a set of axioms:

If 2 feature vectors differ only on a single feature but have different predictions then the differing feature attributions should be non-zero attribution.

$$f(x) - f(x_0) = \Sigma_i attr(x_i)$$

 $\frac{\partial f}{\partial g} = \frac{\partial f}{\partial h} \cdot \frac{\partial h}{\partial g}$

Backprop Approaches

Better way to backprop thru RELUs

DeconvNet

Equivalent to gradients, but ReLU in backwards direction

Guided Backprop

Gradients, but ReLU in both directions

PatternNet/Attribution

Correct gradient for correlated distracting noise

Layerwise Relevance Propagation

Equivalent to input-scaled gradients

Some other interesting approaches...

- Integrated Gradients

Path integral of gradients from baseline

- <u>DeepLIFT</u>

True decomposition relative to baseline with discrete jump

Deep Taylor Decomposition

Taylor approximation about a baseline for each neuron

Integrated Gradients

- Pick starting value, scale up linearly from reference to actual value, compute gradients along the way
- Positive & negative contribution scores

DeepLift

- Compare activation of each neuron to its reference activation
- Assign contribution scores based on difference
- Positive & negative contribution scores
- Generalizes to all activations
- Importance is propagated even when gradient is 0

Evaluating Interpretability Methods

If we have a set of feature contributions...

Spearman's Rank-Order Correlation What % of Top-K intersect

Experimental Evaluation Approaches

Assign a user (domain expert) tasks based on the produced feature attributions

- Show saliency maps, ask user to choose which classifier generalizes better
- Show attributions & ask user to perform feature selection to improve the model
- Ask user to identify classifier failure modes

Adversarial Examples

Interpretability can suffer from adversarial attacks independently of prediction

Integrated Gradients

1.0
0.9
0.8
Center attack
Center attack
Random Sign Perturbation

0.5
0.0
0.1
0.0
0.1
0.2
0.1
0.0
0 1 2 4 8

Attack types

Figure 1 Paper titled "Interpretation of Neural Networks is Fragile"

Figure 2

Top-k attack

Take top 5 features, create distortion which drops their rank

Center attack

Take center of mass, try to move it as far as it can with some constrained distortion, goal to move the center of mass of the saliency map

Research Directions

Better loss functions for interpretability

Understand what makes certain models more *interpretable* and how interpretability *fails*

Explain models in unsupervised learning, sequence learning (RNNs), and reinforcement learning

E.g. generating text explanations of the actions of a reinforcement learning agent

Develop interpretability techniques into tools for model diagnostics, security, and compliance

Meet ZestFinance

Founded in 2009 by Douglas Merrill, former CIO and VP, Engineering, Google

Located in Los Angeles, CA

100+ Employees primarily comprised of Data Scientists, Engineering and Business Analysts from top US institutions

Investors

"Synchrony is looking at making adjustments to its underwriting approaches... It is testing technology from vendors including ZestFinance",

"we worked with ZestFinance to harness the capability of machine learning to analyze more data and to analyze our data differently"- Ford Credit CRO, Joy Falotico

Machine-learning is also good at automating financial decisions,...Zest Finance has been in the business of automated credit-scoring since its founding in 2009."

The Economist ZestFinance is one of the five most promising financial artificial intelligence companies in the world.

Backup Slides

Two Related Concepts

Transparency - understand the inner workings of a model

Attention - model learns regions of input to focus on

(b) Yellow-breast chat

A woman is throwing a frisbee in a park.

A little <u>girl</u> sitting on a bed with a teddy bear.

A dog is standing on a hardwood floor.

A group of <u>people</u> sitting on a boat in the water.

A stop sign is on a road with a mountain in the background.

A giraffe standing in a forest with trees in the background.