neco	neco
neco	neco

1 Teoretický úvod

Dělič napětí nebo-li napěťoví dělič je elktrotechnické zapojení, které slouží k rozdělení napětí na n částí, kde n je počet impedancí v obvodu. Napěťové děliče můžeme rozdělit například na dvě skupiny:

Schéma č. 1: Nezatížený napěťový dělič

Nezatížený napěťový dělič Jak je vidět ze schématu zapojení, tak nemá pžipojený zaťežovací rezistor. Dá se popsat rovnicemi (1) a (2).

$$U_1 = U \cdot \frac{R_1}{R_1 + R_2} \tag{1}$$

$$U_2 = U \cdot \frac{R_2}{R_1 + R_2} \tag{2}$$

Schéma č. 2: Zatížený napěťový dělič

Zatížený napěťový dělič Jak již název napovídá má je tvořen nezatíženým napěťovím děličem a zatěžovacím rezistorem R_3 . Dá se popsat rovnicemi (3) a (4).

$$U_1 = U \cdot \frac{R_1}{R_1 + \frac{R_2 R_3}{R_2 + R_3}} \tag{3}$$

$$U_2 = U \cdot \frac{\frac{R_2 R_3}{R_2 + R_3}}{R_1 + \frac{R_2 R_3}{R_2 + R_3}} \tag{4}$$

2 Schéma

Schéma č. 3: Měření závislosti U_2 na R_3

3 Tabulka použitých přístrojů

Označení v zapojení	Přístroj	Typ	Evidenční číslo	Poznámka
V_1	DMM	FKEM420A	-	$3^{1}/_{2}$
V_2	DMM	MASTECH MY-64	0659	$3^{1}/_{2}$
Z_1	symetrický zdroj	BK-125	0149	-
R_3	odporová dekáda	P33	0498	-

4 Postup měření

- \bullet Připojíme V_1 na svorky zdroje BK-125 (konkrétně se jedná o svorky 15 V a 0 V) a z DMM zjistíme napětí $U_1.$
- DMM který obsahuje měřič V2 změříme rezistory z přípravku.
- Sestavíme zapojení dle schématu.
- Odpojíme jeden vodič který vede k odporové dekádě.
- Nastavujeme hodnoty rezistoru R_3 na odporové dekádě podle zadání a hodnoty kontrolujeme DMM který obsahuje měřiš V_2 .
- Vždy když nastavíme správnou hodnotu R_3 připojíme odpojený vodič vedoucí k odporové dekádě. Přepneme DMM který obsahuje měřič V_2 na měření napětí a zaznamenáme hodnoty které naměřil V_1 a V_2 .

5 Tabulky naměřených a vypočítaných hodnot

Nárev rezistoru	$k\Omega$	digit $[\Omega]$	$\delta_{digit\%}$ [%]	$\delta_{\%}[\%]$	$\Delta R[\Omega]$
R_1	4,92	1	0,020	0,820	40,36
R_2	2,17	1	0,846	0,846	18,36
R_C	7,09	1	0,814	0,814	57,72

Tabulka č. 1: Měřeno meřičem MY-64 na MR 20 $k\Omega$

$U_1[V]$	$U_2[V]$	$R_3[\Omega]$
15,40	0,283	100
15,40	0,777	300
15,40	1,170	500
15,40	1,872	1 k
15,40	2,67	2 k
15,40	3,60	5 k
15,40	4,07	10 k
15,40	4,45	30 k
15,40	4,54	50 k
15,40	4,60	95 k
15,40	0	∞

Tabulka č. 2: Měřeno meřičem MY-64 na MR 20 $k\Omega$

digit $[V]$	$\delta_{digit\%}$ [%]	$\delta_{\%}[\%]$	$\Delta U_1[V]$
0,01	0,325	1,824	0,281
0,01	0,325	1,824	0,281
0,01	0,325	1,824	0,281
0,01	0,325	1,824	0,281
0,01	0,325	1,824	0,281
0,01	0,325	1,824	0,281
0,01	0,325	1,824	0,281
0,01	0,325	1,824	0,281
0,01	0,325	1,824	0,281
0,01	0,325	1,824	0,281
0,01	0,325	1,824	0,281

Tabulka č. 3: U_1 spočítané hodnoty

digit $[V]$	$\delta_{digit\%} [\%]$	$\delta_{\%}[\%]$	$\Delta U_1[V]$	U_{2V}
0,001	0,353	0,853	0,002	0,294
0,001	0,129	0,628	0,005	0,783
0,001	0,085	0,585	0,00	1,174
0,001	0,053	$0,\!553$	0,00	1,880
0,01	0,375	0,874	0,023	2,688
0,01	0,278	0,778	0,028	3,622
0,01	0,246	0,745	0,030	4,096
0,01	0,225	0,724	0,032	4,488
0,01	0,220	0,720	0,032	4,575
0,01	0,217	0,717	0,033	4,639
0,01	-	-	-	-

Tabulka č. 4: U_2 spočítané hodnoty

digit $[\Omega]$	$\delta_{digit\%}$ [%]	$\delta_{\%}[\%]$	$\Delta R_3[\Omega]$
10	10	10,8	10,8
10	3,333	4,133	12,4
10	2	2,8	14
10	1	1,8	18
10	$0,5 \ 0,5$	1,3	26
10	0,2	1	50
10	0,1	0,9	90
10	3,333	4,133	$1,\!24~{ m k}$
1000	2	2,8	1,4 k
1000	1,052	1,853	1,76 k
1000	-	-	-

Tabulka č. 5: R_3 spočítané hodnoty

6 Vzory vápočtů

$$\delta_{digit\%} = 100 \cdot \frac{digit}{U_2} = 100 \cdot \frac{0,001}{0,283} = 0,353\%$$
 (5)

$$\delta_{\%} = \pm \delta_{digit\%} \pm \delta_{MH\%} = \pm 0,353 \pm 0,5 = 0,853\%$$
(6)

 U_{2V} bylo spočítáno dozazením do vstahu (4)

7 Grafy

8 Závěr

8.1 Chyby měřících přístrojů

Relativní procentní chyby zvoleného veltmetru V_1 npřesáhla 1 %, tudíž by se dal považovat na vyhovující danné úloze.

Schema c. 4. Zavisiosi $C_2 = f(R_3)$

Relativní procentní chyby voltmetru V_2 na použitých rezsazích nepřekročila 2 %. Maximální relativní chyba 1,824 % už je poměrně dost, ale pro orientační měření tato chyby postačí.

8.2 Zhodnocení

Napětí U_1 bylo měřeno voltmetrem V_1 , hodnoty dokarují že použitý zdroj BD-125 dodával konstantní napětí.

Napětí U_2 bylo měřeno voltmetrem V_2 . Změřené hodnoty se mírně lišili od teoreticky spočítaných hodnot U_{2V} . To může způsobovat chyba použitého voltmetru.

Rezistor R_1 a R_2 byl měřen DMM s funkcí V_2 .

 R_C (rezistory R_1 a R_2 zapojeny seriově) byl změřen stejně jako teoreticky spočítaný. Z toho by se dalo usuzovat, že meření bylo dostatečně přesné.

Rezistor R_3 byl měřen DMM s funkcí V_2 . Měření prokázalo že použitou odporovou dekádou lze použít pro dannou úlohu, protože měřením se dali naměřit hodnoty záteže, které vyžadovalo zadání.