項目反応理論

2021年6月21日

3 尺度地の推定

3.3 数值解法

3.3.2 挟み撃ち法

前回は方程式を解く解析的解法を紹介した。しかし、解析的に解くことが困難な場合には、 関数の具体的な形状に依存しない解法が求められる。数値解法の1種である挟み撃ち法を紹介 する。以下のアルゴリズムで方程式を解く。

- (1) 正の値をとる収束精度 ϵ を定める。
- (2) $LL'(\theta_D) > 0$ なる下限値 θ_D を定める。
- (3) $LL'(\theta_D) < 0$ なる上限値 θ_U を定める。

(4)
$$\theta_M = \frac{(\theta_D + \theta_U)}{2}$$

- (5) $LL'(\theta_M) > \epsilon$ なら $\theta_D = \theta_M$ として (4) に戻る。
- (6) $LL'(\theta_M) < -\epsilon$ なら $\theta_U = \theta_M$ として (4) に戻る。
- (7) $|LL'(\theta_M)| \leq \epsilon$ なら尺度地の推定値 $\hat{\theta}_i = \theta_M$ として計算終了。

[具体例]

- 1. (1) 収束精度を $\epsilon = 0.00001$ と定める。
- 2. (2)LL'(-20.0) = 1.64388 で正になる下限値 $\theta_D = -20.0$ を定める。
- 3. (3)LL'(10.0) = -1.50686 なる上限値 θ_U を定める。

4.
$$(4) \frac{-20.0 + 10.0}{2} = -5.0$$

5.~(5)LL'(-5.0) = 1.39742 なので $\theta_D = \theta_M$ として (4) に戻る。

6.
$$(4)\frac{(-5.0+10.0)}{2} = 2.5$$

7. (5)LL'(2.5) = -0.34504 なので $\theta_U = \theta_M$ として (4) に戻る。

8.

9. (3)
$$\frac{(-1.8087 + (-1.8085))}{2} = -1.80859$$

10. (7) $|LL'(-1.80859)| \leq 0.00001$ なので、 $\hat{\theta_i} = -1.80859$ で計算終了。

3.3.3 ニュートン法