Hệ thống điều khiển phân tán

Chương 5: Kiến trúc PC-based Control

Chương 5: Kiến trúc PC-based Control

5.1 Tại sao sử dụng giải pháp PC
5.2 Các vấn đề cơ bản của giải pháp PC
5.3 Cấu hình cơ bản một hệ PC-based Control
Các loại giải pháp khác nhau
5.4 Hệ điều khiển phân tán trên nền PC
5.5 Các điểm mấu chốt trong kiến trúc PC-based
Control

5.1 Tại sao sử dụng giải pháp IPC?

- Hiệu năng tính toán cao với giá thành thấp, chu kỳ điều khiển có thể xuống tới 1ms
- Kiến trúc máy tính phổ thông, quen thuộc
- Tính năng mở
 - Hệ điều hành thông dụng
 - Nối mạng đơn giản
 - Lập trình tự do, công cụ lập trình mạnh
 - Sử dụng các thành phần chuẩn (off-the-shelf components) => component-based system (khác với integrated system)
- Có thể kết hợp các chức năng điều khiển cơ sở, điều khiển cao cấp và vận hành-giám sát (all-in-one system),
- Dễ dàng ghép nối với các ứng dụng cấp trên
- Độ tin cậy ngày càng được cải thiện
- Ghép nối vào/ra đơn giản qua bus trường

Thị trường PC-based Control ở châu Âu

(Theo Computerzeitung 5/1998)

Các phạm vi ứng dụng tiêu biểu

- Các dây chuyền chế tạo, lắp ráp, đóng bao:
 - Thay thế giải pháp PLC truyền thống => Slot-PLC, Soft-PLC
 - Kết hợp chức năng điều khiển và vận hành-giám sát tại chỗ
 - Độ tin cậy không phải là vấn đề đáng lo ngại
- Điều khiển chuyển động:
 - Thay thế giải pháp CNC truyền thống => Soft-CNC
 - Điều khiển tay máy
- Điều khiển một nhóm thiết bị, máy móc đơn lẻ
- Điều khiển quá trình: công nghệ thực phẩm, dược phẩm, xử lý nước sạch, nước thải, CN bán dẫn,...
- SCADA
- Khả năng xử lý nhanh, hỗn hợp, linh hoạt, dễ tích hợp HMI và các chức năng cao cấp

5.2 Các vấn đề cơ bản của giải pháp PC

Nâng cao độ tin cậy:

- Sử dụng các chủng loại PC công nghiệp hoặc ít ra phải là PC có thương hiệu tin cậy
- Nếu có thể, nên sử dụng FlashROM thay cho đĩa cứng
- Cần hệ điều hành tốt, hoạt động ổn định
- Loại trừ hoàn toàn các chương trình ứng dụng khác
- Cần giải pháp dự phòng nóng trong trường hợp cần thiết

Đảm bảo tính năng thời gian thực:

 Hệ điều hành thời gian thực hoặc ít ra là HĐH đa nhiệm có đáp ứng phần cơ bản về tính năng thời gian thực (quan trọng nhất: chu kỳ điều khiển và độ rung, jitter)

Lập trình thuận tiện

- Nếu dùng ngôn ngữ bậc cao: cần thư viện mạnh, dễ sử dụng
- Tốt hơn hết: công cụ lập trình trực quan + phần mềm khung

5.3 Cấu hình cơ bản

Bắt buộc sử dụng vào/ra từ xa hoặc thiết bị bus trường

Slot-PLC, Embedded PLC

- PC + PLC dưới dạng một card ISA/PCI
- PLC cho điều khiển, PC cho lập trình & vận hànhgiám sát
- PLC hoạt động độc lập, chỉ sử dụng nguồn cấp từ PC
- PLC được cài đặt hệ điều hành TGT
- Lập trình hoàn toàn tương tự như cho PLC thông thường
- Giao tiếp PC <=> PLC đơn giản qua bus PCI/ISA
- Ưu điểm: gọn nhẹ, tương đối tin cậy
- Nhược điểm:
 - Chưa lợi dụng được thế mạnh thực sự của PC
 - Ít có sự lựa chọn các khối vào/ra

Cấu trúc phần cứng Slot-PLC

Mô hình phần mềm Slot-PLC

Ví dụ sản phẩm:

- Phoenix Contact: PC WORX (sử dụng Interbus)
- Siemens: WinAC, Component-based Automation

Soft-PLC, SoftLogic

- PC thực hiện với vai trò như một PLC
- Yêu cầu phần mềm chạy (PLC runtime engine)
- Mô hình lập trình hoàn toàn tương tự như cho PLC thông thường
- Có thể tích hợp chức năng ĐK cao cấp, vận hànhgiám sát
- Ưu điểm: gọn nhẹ, rẻ
- Nhược điểm: độ tin cậy phụ thuộc vào PC

Mô hình phần mềm Soft-PLC

Ví dụ sản phẩm:

Softing: 4Control (nhiều loại bus trường)

Siemens: WinLC
 Chương 5: Kiến trúc PC-based Control

Mô hình giải pháp tự do

Mô hình giao tiếp qua COM và OPC

Giao diện COM thông thường:

Hiệu suất cao Khó tích hợp các công cụ chuyên dụng

Giao diên OPC:

Hiệu suất khá cao Đa năng

5.4 Hệ điều khiển phân tán trên nền PC

Máy tính điều khiển

- Cấu hình phần cứng tiêu biểu:
 - CPU: Pentium XX, RAM: > 64 MB
 - Không cần màn hình
 - Đĩa cứng hoặc FlashROM
 - Giao diện bus trường (DP, FF, DeviceNet,...)
 - Giao diện LAN
- Cấu hình phần mềm tiêu biểu
 - Hệ điều hành: WinCE/NT/2000, VxWorks, QNX, RTLinux
 - Control Runtime: Quản lý tác vụ, vào/ra, chẩn đoán, thư viện chức năng,...
 - Phần mềm giao tiếp: COM/OPC Server
- Phương pháp lập trình
 - Công cụ chuyên dụng theo IEC 61131-3
 - Có thể sử dụng bổ sung: C/C++, Java,...

Trạm vận hành/Trạm kỹ thuật

- Cấu hình phần cứng tiêu biểu:
 - CPU: Pentium IV, RAM: > 256 MB
 - Màn hình 21" (x 2) cho OS và 19" cho ES
 - Dung lượng ổ cứng: > 40GB
 - Giao diện Fast Ethernet
- Cấu hình phần mềm tiêu biểu
 - Hệ điều hành: NT/2000/XP
 - SCADA Runtime
 - COM/OPC Client
 - Đối với ES: Công cụ lập trình, công cụ SCADA,...
- Phương pháp tạo ứng dụng
 - Công cụ SCADA/HMI chuyên dụng, độc lập
 - Có thể sử dụng bổ sung: C/C++, Java,...

Dự phòng máy tính điều khiển

5.5 Các điểm mấu chốt của kiến trúc PC-based Control

- Kiến trúc hệ thống:
 - Mở, xây dựng trên cơ sở các thành phần chuẩn hóa, off-theshelf-components
 - Điều khiển phânt tán hoặc tập trung đều phù hợp
 - Chức năng điều khiển chủ yếu trên PC
 - Giao tiếp qua các chuẩn công nghiệp
- Phát triển hệ thống: Thông thường riêng biệt cho từng phần (trừ giải pháp PC-based DCS)
- Giao diện quá trình:
 - Chủ yếu dựa trên công nghệ bus trường (vào/ra từ xa hoặc sử dụng trực tiếp thiết bị bus trường
 - Với PC có cấu trúc module (ví dụ PC-104) có thể sử dụng vào/ra tập trung cho ứng dụng qui mô nhỏ

DCS, PLC hay PC?

	DCS	PLC	PC
Qui mô ứng dụng	vừa/lớn	vừa/nhỏ	vừa/nhỏ
Thời gian	>100ms	> 20ms	> 1ms
Điều khiển	liên tục	rời rạc	lai
Tính sẵn sàng	++	+	+/o
Giá thành	cao	vừa phải	vừa phải
Phát triển	++	+	+/++
Tính năng mở	0	0	++
Chủ động	0	+	++