Module - III correlation and Regression

suppose two variables n and y are related in Buch a way that an increase in the value of one of these variables is a ccompanied by an increase or decrease in the value of the other. Such a relationship is called correlation.

If the values of x and y increase or decrease together, then we say that it and y are postively correlated. If the value of y decreases as the Value of n increases or vice versa, then we say that n & y are negatively correlated.

The numerical measure of correlation between two variables n & y is known as pearson's Coefficient of correlation and is defined as

$$\gamma = \frac{\sum xy}{\sum x^2 \sum y^2} \longrightarrow 0$$

where $X = n - \bar{n}$ and $Y = Y - \bar{Y}$ and $\bar{x} = \frac{\sum x_i}{n}$; $\bar{y} = \frac{\sum y_i}{n}$; $\bar{x} = \frac{\sum (n-\bar{x})^2}{n}$ $Ty = \sum (y - \overline{y})^2$, employing these expression in \mathbb{Q}

We get alternate formula $r = \frac{\sum (n-\bar{n})(y-\bar{y})}{n \, \bar{n} \, \bar{n} \, \bar{y}}$

Alternative formula for the correlation
$$\gamma = \frac{7n^2 + 7y^2 - 7n - y}{27n Ty}$$

proof: Let
$$z = x - 9$$

$$\frac{\sum z}{n} = \frac{\sum x}{n} - \frac{\sum y}{n}$$
or $z = x - y$

Hunce
$$(\overline{\chi} - \overline{\chi}) = (\overline{\chi} - \overline{\chi}) - (\overline{y} - \overline{y})$$

Squaring both side, taking summation and dividing by n, we've

$$\sum \left(\frac{z-\overline{z}}{n}\right)^{2} = \left[\frac{\sum (x-\overline{x})^{2}}{n}\right] + \left[\frac{\sum (y-\overline{y})^{2}}{n}\right]$$

$$T_{x-y}^2 = T_x^2 + T_y^2 - 2 T_x T_y$$

$$\Rightarrow \sqrt{x} + \sqrt{y} - \sqrt{x} = 2 \sqrt{x} \sqrt{y}$$

or
$$r = r_n + r_y - r_{n-y}$$

$$2r_n r_y$$

1) Find the correlation coefficient for the following data:

2	1	2	3	4	5
4	2	5	3	8	7

Soln:- Here
$$n=5$$
, we find that $\overline{n}=\frac{5}{5}[1+2+3+4+5]$

$$\overline{n}=\frac{5}{5}[1+2+3+4+5]$$

$$\overline{n}=\frac{5}{5}[2+5+3+8+7]$$

$$\overline{n}=\frac{5}{5}[2+5+3+8+7]$$

We now prepare the following table

માં	X1 = 2-9	×رع	y i	Y: = 4-y	yi2	χΥ
1	-2.	4	2	-3	9.	6
2	-1	1	5	0	D	O
3	O	D	3	-2	4	D
4	1	ſ	8	3	9	3
5	2	4	7	2	4	4
	Z	7,=10			IY = 26	13

NOW We find that

$$\gamma = \frac{\sum xy}{\sqrt{\sum x_i^2 \sum y_i^2}} = \frac{13}{\sqrt{10 \times 26}}$$

$$\Upsilon = 0.806$$

The following lable gives the intelligence ratio (T.R) and engineering ability (E.A) of 10 students obtained on the basis of psychological tests. colculate the coefficient of correlation.

				,	*	1	_			
I.R(x):	105	104	102	101	100	99	98	96	93	92
I.R(x): E.A(y);	loi	103	100	98	95	96	104	92	97	94

Semi- Here n = 10, $\bar{\lambda} = \frac{\Sigma \pi i}{n} = \frac{990}{10} = 99$ $\bar{y} = \frac{\Sigma yi}{n} = \frac{980}{10} = 98$

We now prepare the following table

7.	V V =	1 X2	1 11		1 17 5	
	$X_i = X_i - \overline{\lambda}$		y;	$\gamma_i = \gamma_{i-y}$	Yi	XiYi
105	6	36	101	3	9	18
104	5	25	103	5	25	25
102	3	9	100	2		
101	2	4	98	.0	4	G
	1	١		-3	0	D
100	D	0	95	-2	9	-3
99		1	96	G	4	O
98	-1	9	104		36	-6
96	-3		92	-6	36	18
93	-6	36	97	-1	1	6
92	-7	49	94	-4	16	28
10-		170				
		170			140	92

We've $\gamma = \frac{\sum x_i y_i}{\sum x_i^2 \sum y_i^2} = \frac{92}{\sqrt{170 \times 140}} = 0.59$

3 Employ the formula $\gamma = \frac{r_1^2 + r_2^2 - r_{n-y}}{2r_n r_y}$ de

determine the correlation coefficient à for the following data:

x	. 92	89	87	86	83	77	71	63	53	50
y	86	83	91	77	68	85	52	87	37	57

Solv: - Here
$$n = 10$$
, $\bar{\chi} = \frac{751}{10} = 75.1$; $\bar{y} = \frac{718}{10} = 71.8$

Let
$$z = \frac{1}{10} = \frac{1}{10} \sum z_i = \frac{1}{10} \sum (x_i - y_i)$$

$$\overline{2} = \frac{33}{10} = 3.3$$

$$\Gamma_{\chi}^{2} = \frac{1}{n} \sum_{i} \chi_{i}^{2} - (\bar{\chi}_{i})^{2} = \frac{1}{10} \left[(92)^{2} + (89)^{2} + (86)^{2} + (83)^{2} + (77)^{2} \right] + (71)^{2} + (63)^{2} + (53)^{2} + (57)^{2} \right] - (75.1)^{2}$$

$$=58487 - (15.1)^2 = 208.69$$

$$\Gamma y^{2} = \frac{1}{n} \Sigma y_{i}^{2} - (9)^{2} = \frac{54390}{10} - (71.8)^{2} = 283.76$$

$$r_{\lambda-y} = r_{\overline{z}}^{1} = \frac{1}{2} = \frac{1}{2} = \frac{1485}{10} - (3.3)^{2} = 137.61$$

NOW
$$\gamma = \frac{\sqrt{1 + \sqrt{2} - \sqrt{1 - y}}}{2\sqrt{1 + \sqrt{y}}} = \frac{208.69 + 283.76 - 137.61}{2 \times \sqrt{208.69 \times 283.76}}$$

Re gression

Suppose We are given in pairs of values (x1, y1) (x3, y2) ---- (xn, yn) of two variables it & y. If we fit a straight line to this data by taking it as independent variable, then dent variable and y as dependent variable, then the istraight line obtained its called the line of regression of y on x. Similarly, if we fit a straight line to the data by taking y as independent straight line to the data by taking y as independent variable, the lene variable and x as defendent variable, the lene obtained is the line of regression of x on y.

We've Line of regression of y on x in $y-y=x\frac{ry}{rx}(x-x)$

Line of regression of 21 on y is

$$\lambda - \overline{\chi} = \sqrt[3]{Ty} \left(y - \overline{y} \right)$$

Note: Wêve alternative formula

(i) $r = \sqrt{(coyf of n)(coeff of y)}$ for coefficient of cohrelation

 $0 \quad Y = \frac{\sum XY}{\sum X^{2}} \quad X \quad 3 \quad X = \frac{\sum XY}{\sum Y^{2}} \quad Y \quad \text{for lines of }$

prove that if
$$\dot{0}$$
 is the angle between the lines of regression then $tan o = \frac{Tn Ty}{T_2^2 + Ty^2} \left(\frac{1-r^2}{r} \right)$

Bi- W.K.T if o is accute, the angle blw the lines. $y = m_1 x + c_1$, $y = m_2 x + c_3$ is given by $m_2 - m_1$

$$tanno = \frac{m_2 - m_1}{1 + m_1 m_2} \longrightarrow 0$$

We've
$$m_1 = \gamma \frac{\Gamma y}{\Gamma x}$$
; $m_2 = \gamma \frac{\sigma x}{\Gamma y}$ $\rightarrow 2$

$$= \frac{1}{\gamma} \cdot \frac{\sigma y}{\sigma x}$$

SUB @ vin (1)

$$tano = \frac{1}{\sqrt[3]{7n}} - \frac{\sqrt[3]{7n}}{\sqrt[3]{n}} - \frac{\sqrt[3]{7n}}{\sqrt[3]{n}}$$

1) Find the coefficient of correlation and obtain the lines of degression for the following data:

x: 1	1	2	3	4	5	6	<u>ה</u>	8	9
y ;	9	8	10	12	11	13	14	16	15

Obtain an estimate for y which corresponds to x=6.2

Soon: - We've n=q, $\bar{n}=\frac{1}{h}\Sigma n_i=\frac{45}{9}=5$; $\bar{y}=\frac{108}{9}=12$ We prepare the following table

X;	× c= η; -λ	x	y:	Yi=8:-9	Y	xiyi
1	-4	16	9	-3	9	12
2	- 3	9	8	- 4	16	17
3	-1	4	10	-2	4	4
4	-1	1	12	0	0	0
5	O	D	11	-1	1	0
6		J	13	1	1	1
7	2	4	14	2_	4	4
8	3	9	16	4	16	12
9	4	16	15	3	9	12
	,	60		,	60	<i>5</i> 7

Thus correlation coefficient is

$$\Upsilon = \frac{\sum xy}{\sqrt{\sum x_i^2 \sum y_i^2}} = \frac{57}{60} = 0.95$$

Also
$$T_{\chi}^{2} = \frac{\sum \chi_{i}^{2}}{n} = \frac{60}{9} = 6.6667 \Rightarrow T_{\chi} = \sqrt{6.6667}$$

 $= \frac{1}{2} \cdot 5819$
 $= \frac{5}{2} \cdot \frac{5}{2} \cdot \frac{1}{2} = \frac{60}{9} = \frac{6.6667}{9} = \frac{5}{2} \cdot \frac{5}{2}$

Thus line of regression of you n

$$y - \overline{y} = r \frac{Tny}{Tn} (n - \overline{n})$$

$$y - 12 = 0.95. \frac{2.5819}{2.5819} (x - 5)$$

$$y = 0.95x + 7.25$$
 $\Rightarrow y = 13.14$

Line of regression of 2 on y is

(8)

Dobtain the lines, of regression and hence that the coefficient of correlation for the data:

X	l	3	4	2	5	8	9	10	13	15
y	8	6	10	8	12	16	16	10	32	32

John

Here n = 10, $\bar{\chi} = \frac{70}{10} = 7$; $\bar{y} = 15$

We've $X = \chi - \chi$: $Y = y - \overline{y}$

We now prepare the fall. table

X	y	X = X - T	Y= y-9	X	Y	хγ
J	8	-6	-7	36	49	41
3	6	-4	-9	16	81	36
4	10	-3	-5	9	25	15
2	8	-5	-7	25	49	35
5	12	- 2	-3	4	9	6
8	16	, v	1	1	1	1
9	16	2	1	4	1	2
10	10	3	-5	9	25	-15
13	32	6	17	36	289	102
15	32	8	17	64	289	136
				204	818	360

wive line of regression of y on X $Y = \frac{\sum XY}{\sum X^{2}}.X$

$$y - \bar{y} = \frac{\sum xy}{\sum x^{2}} \cdot (x - \bar{x})$$

$$y - 15 = \frac{360}{204} (x - 7)$$

$$y = 1.76x + 2.68$$

Also line of regression of
$$\lambda$$
 on y in $\lambda - \bar{\chi} = \frac{\sum x V}{\sum y^2} (y - \bar{y})$

$$\lambda - 7 = \frac{360}{818} (y - 15)$$

$$\lambda = 0.44y + 0.4$$

Thus correlation =
$$\gamma = \sqrt{(\cos \theta \, g \, x)} \, (\cos \theta \, g \, y)$$

Coefficient $\gamma = \sqrt{(1.76)(0.44)}$

3 Given

	r-Serie	y-sony
mean	18	100
SD	14	20

5 8 = 0.8

write down the equation of the line of regression and hence find the most probable value only when n=70

Sun by data $\bar{n} = 18$, $\bar{y} = 100$ $\bar{n} = 14$ $\bar{n} = 20$

Line of regression of y = x i yy - y = x i y (x - x) y - 100 = 0.8.20 (x - 18)

 $\Rightarrow y = 1.147 + 79.48$

When n=70; [y=159.28]

Line of regression of 2 on y is

$$\chi - \chi = \chi \frac{\chi}{\chi} \left(\chi - \overline{\chi} \right)$$

 $2 - 18 = 0.8 \frac{14}{20} (y - 100)$

n = 0.56y - 3.8

(4) Given 8x-10y+66=0, 40x-18y=214 are eno regulssim lines. Find the means of x's & y's and correlation coefficient. Find Ty if Ta=3? Son! - We know that lines of regression passes theoregh RPY = $8\overline{n} - 10\overline{y} = -66$ 401 - 18 y = 214 on solving $\pi = 13$, $\overline{y} = 17$ Regression conficents are 871 - 10y+66=0 1 40x-18y=214 10y= 8x +66 40x= 18y+214 $y = (0.8) \times +6.6$ n= (0.45)y + 5.35) Thus coefficient of $= x = \sqrt{(coeff of x)(coeff of y)}$ = (0.8)(0.45)8=0.6 By data Fx =3; of Ty = Regression line your 0.6. 14 = 0.8 $\Rightarrow \nabla y = \frac{0.8 \times 3}{0.6} = \frac{4}{}$

(5) If the coefficient of correlation between two variables n g g are o.5, acute angle b(w) their lines of regression is $tan^{-1}(3(s))$. S.T $y=2\ln p$ p f f f f f f

Sour GIVE $\gamma = 0.5$, $\theta = \tan \left(\frac{3}{5}\right) = \tan \theta = \frac{3}{5}$

We'Ve

 $tano = \frac{\sqrt{n} \sqrt{y}}{\sqrt{n} + \sqrt{y}} \left[\frac{1 - r^2}{\sqrt{y}} \right]$ Since $r = \frac{1}{2}$

 $\frac{3}{5} = \frac{\sqrt{x}\sqrt{y}}{\sqrt{x^2+\sqrt{y^2}}} \left(\frac{3}{4}\cdot \frac{1}{2}\right)$

 $\Rightarrow \frac{1}{5} = \frac{\sigma_n ry}{2(\tau_n^2 + ry^2)}$

 $=) 2 \sqrt{12} + 2 \sqrt{2} = 5 \sqrt{12}$

 $\Rightarrow 2 \sqrt{n} - 5 \sqrt{n} \sqrt{y} + 2 \sqrt{y}^2 = 0$ $(2 \sqrt{n} - \sqrt{y}) (\sqrt{n} - 2 \sqrt{y}) = 0$

 $\mathcal{D}_{\mathcal{L}} = \mathcal{D}_{\mathcal{Y}}$ $\mathcal{D}_{\mathcal{L}} = \mathcal{D}_{\mathcal{Y}}$

(6) In a bivariate distribution $r_n = r_y$ and the angle b(w) the regression lines is $tan^1(3)$. Find the Correlation coefficient.

Son: - Given $\theta = \tan^{1}(3) \implies \tan \theta = 3$ if $\pi = \pi y$ We've $\tan \theta = \frac{\sqrt{2} + \sqrt{2}}{\sqrt{2} + \sqrt{2}} \left(\frac{1 - r^{2}}{r}\right)$

 $3 = \frac{\sqrt{n^2}}{2\sqrt{n^2}} \left(\frac{1 - r^2}{r} \right)$

 $\Rightarrow 67 = 1 - 7^2$ $0 \quad 7^2 + 67 - 1 = 0$

 $\gamma = 0.1623$ or $\gamma = -6.6125$

Bue $|\gamma| \leq 1 \Rightarrow [\gamma = 0.1623]$

Fig. 1 f y are random variables with SD's, It was found that random variables at y, n-4, laty resply have variance 15, 11, 29. and also the compute SD's of a sy resply and also the coefficient of correlation.

(11)

Semi By data $\frac{1}{n+y} = 15$, $\frac{1}{n-y} = 11$, $\frac{1}{2n+y} = 29$ We've $\frac{2}{2n+by} = \frac{1}{2n+by} = \frac{1}{2n+by$

Taking [a,b] = (1,1)(1,-1) + (2,1) $\{x+y + x-y = 2x+y\}$

Eqn (1) $= \sqrt{1 + \sqrt{1 + 20}} = \sqrt{15} = \sqrt{2}$ $\sqrt{1 + \sqrt{1 + 20}} = \sqrt{15} = \sqrt{3}$

 $4\pi^{2}+\pi^{2}+4\pi\pi^{2}=29\longrightarrow \textcircled{6}$

Egn 3 + 3 gives

2 T2 + 2 Ty = 26

 $\sqrt{n} + \sqrt{y} = 13 \rightarrow 6$

Egrax3+4 gru

 $6 \sqrt{1 + 3} \sqrt{y^2} = 51$

252 + 5y = 17 -6

on solving \$ \$ 6

 $\nabla x^2 = 4$; $\nabla y^2 = 9$

usub these values in \mathcal{D} $4+9+28.2\times3=15$ $\gamma=0.17$