H7: Re	H7: Reversibiliteit en de derde wet van de thermodynamica		
7.1 reversibiliteit en irreversibiliteit			
reversibel proces	= proces dat op zo'n manier wordt uitgevoerd dat naderhand zowel het systeem als de onmiddellijke omgeving terug in de oorspronkelijke toestand gebracht worden > zonder de rest vh universum te veranderen		
irreversibel proces	= een proces dat niet aan deze voorwaarden voldoet		
7.1.1 uitwendige mechanische	irreversibiliteit et		
isotherm is irreversibel	er bestaan processen die arbeid omzetten in warmte > isotherm afgestaan aan een warmtereservoir vb: roeren in visceuze vloeistof, opwarmen van een weerstand		
	Nu: door de 2e wet kunnen we nooit alle warmte weer omzetten in arbeid > deze processen zijn ALTIJD irreversibel		
adiabatisch is irreversibel	beschouw processen waarbij arbeid wordt omgezet in inwendige energie, adiabatisch > inwendige energie zal verhogen volgens de arbeid die uitgevoerd wordt		
	Nu: door de 2e wet kunnen we nooit alle inwendige energie omzetten in arbeid > deze processen zijn ALTIJD irreversibel		
> dissipatieve effecten	We zien bij beide types processen dat er arbeid <i>gedissipeerd</i> wordt > vb: wrijving, elektrische weerstand, magnetische hysteresis		
7.1.2 interne mechanische irrev	versibiliteit		
interne mechanische irreversibiliteit	Bekijk een proces waarbij inwendige energie omgezet wordt in arbeid en terug in inwendige energie (vb: expansie van een ideaal gas) > volume vh gas zal veranderen > om het volume terug te brengen naar zijn oorspronkelijke toestand, moet men het langzaam isotherm samendrukken > er moet arbeid geleverd worden en hierbij zal warmte afgestaan worden aan het reservoir > om de omgeving onveranderd te laten moet alle warmte in arbeid omgezet worden > kan niet volgens 2e wet > IRREVERSIBEL		
7.1.3 externe en interne therm	ische irreversibiliteit		
thermische irreversibiliteit	overdracht warmte ve warme naar koude bron of omgekeerd > dit kan niet omgekeerd worden zonder de omgeving te veranderen nl: warmte zou overgebracht moeten worden, wat niet gaat zonder arbeid volgens de 2e wet Nu: externe thermische reversibiliteit = warmteoverdracht tss systemen interne = warmteoverdracht binnen eenzelfde systeem > kan beiden enkel irreversibel		
7.1.4 chemische reversibiliteit			
chemische thermodynamica	= studie van processen waarbij inwendige structuur verandert > gebeurt irreversibel		
	7.2 voorwaarden voor reversibiliteit		
voorwaarden reversibiliteit	proces is reversibel als: 1: het quasistatisch verloopt 2: er geen dissipatieve effecten optreden		
	> in werkelijkheid kan hier nooit aan voldaan worden > kan nog steeds handig zijn als een benadering		

7.3 het bestaan van reversibele adiabatische oppervlakken		
Caratheodory theorema	In de onmiddellijke nabijheid van om het even welke evenwichtstoestand ve systeem met een willekeurig aantal coordinaten, bevinden zich toestanden die niet bereikbaar zijn door middel van reversibele adiabatische processen	
> wiskundige afleiding voor 1 systeem	Beschouw een systeem met temp $T_{\rm e}$, veralgemeende kracht Y en veralg. verplaatsing X > 1e wet zegt: $dQ=dU-YdX.$	
	Als de toestandsvgl gekend is zijn er slechts twee onafh coords en kunnen we schrijven: $dU=(\frac{\partial U}{\partial T_e})_XdT_e\ +\ (\frac{\partial U}{\partial X})_{T_e}dX$	
	wat ons geeft: $dQ=\left(\frac{\partial U}{\partial T_e}\right)_X dT_e + \left[-Y + \left(\frac{\partial U}{\partial X}\right)_{T_e}\right] dX,$	
	voor een reversibel adiabatisch proces geldt: $ \left(\frac{\partial U}{\partial T_e}\right)_X dT_e + \left[-Y + \left(\frac{\partial U}{\partial X}\right)_{T_e}\right] dX = 0. $	
	wat we kunnen omzetten naar: $ \left(\frac{dT_e}{dX}\right)_{ad} = \frac{Y - \left(\frac{\partial U}{\partial X}\right)_{T_e}}{\left(\frac{\partial U}{\partial T_e}\right)_X}. $	
	dit geeft ons een verzameling krommen waarbij voor elke kromme geldt: $\sigma(T_e,X)=const.$	
> wiskundige afleiding voor meer onafh variabelen	Stel dat we nu de onafh coord T _e , X, Y, X', Y' hebben > de eerste wet voor een reversibel proces wordt nu: $dQ = dU - YdX - Y'dX'.$	
	Deze beschrijven vlakken in 3D ruimte > deze vlakken zullen nooit snijden, namelijk:	
	bewijs: beschouw een toestand i en twee evenwichtstoestanden f_1 en f_2 > neem f_2 verticaal boven f_1 > veronderstel dat er voor beiden een reversibel adiabatisch pad is: $i \rightarrow f_1$ EN $i \rightarrow f_2$ > neem een cyclus $i \rightarrow f_1 \rightarrow f_2 \rightarrow i$ nu: het proces $f_1 \rightarrow f_2$ gebeurt zonder verplaatsing, nl X en X' blijven hetzelfde > verhoging van inwendige energie > volgens 1e wet zal er absorptie van warmte Q gebeuren	
	echter: bij i→f₁ en f₂→i wordt er uitsluitend arbeid W uitgeoefend > in de cyclus zou dus moeten gelden: W=Q > kan niet volgens 2e wet > cyclus zal NOOIT kunnen bestaan	
	>> aangezien de formule vlakken in 3D ruimte beschrijft, zullen er altijd punten f1 en f2 bestaan die boven elkaar liggen > dit betekend dat er nooit een punt i kan bestaan > vlakken kunnen nooit snijden T1 rev. ad.	
	rev. ad. f_2 f_1 X	
	Al deze oppervlakken worden beschreven door de vgl:	
	$\sigma(T_e, X, X') = const.,$	

7.4 integreerbaarheid van dQ

uitdrukking voor dQ

Voor een systeem met coords T_e,X,Y,X',Y' kunnen we schrijven:

$$dQ = dU - YdX - Y'dX'$$

waarbij we weten uit vorige paragraaf:

$$\sigma(T_e, X, X') = const,$$

die elkaar nooit zullen snijden

> elk punt in de ruimte kan voorgesteld worden met σ, X en X'

> de inwendige energie kan dan ook geschreven worden als:

$$dU = \left(\frac{\partial U}{\partial \sigma}\right)_{XX'} d\sigma + \left(\frac{\partial U}{\partial X}\right)_{\sigma X'} dX + \left(\frac{\partial U}{\partial X'}\right)_{X\sigma} dX'$$

Dan is volgens de eerste wet:

$$dQ = \left(\frac{\partial U}{\partial \sigma}\right)_{X,X'} d\sigma + \left[-Y + \left(\frac{\partial U}{\partial X}\right)_{\sigma,X'}\right] dX + \left[-Y' + \left(\frac{\partial U}{\partial X'}\right)_{X,\sigma}\right] dX'.$$

Nu: veronderstel dat de eerste twee termen nul zijn en dX'!=0

- > dan volgt dat dσ=0 dus σ=cte
- > we hebben dus een reversibel adiabatisch proces waarvoor dQ=0
- > de coëfficiënt dX' moet dus verdwijnen uit de vgl

>> op analoge wijze kunnen we ook dX elimineren en krijgen we:

$$dQ = \left(\frac{\partial U}{\partial \sigma}\right)_{X \ X'} d\sigma.$$

definieer:

$$\lambda = \left(\frac{\partial U}{\partial \sigma}\right)_{X,X'}$$

dan:

$$dQ = \lambda d\sigma$$
.

vorm van λ

neem een hoofdsysteem met drie onafh coords T_e,X,X'

- > de RA-oppervlakken zijn bepaald door verschillende waarden van $\sigma(T_e, X, X')$
- > wanneer een hoeveelheid warmte dQ overgedragen wordt verandert σ met een waarde d σ en dQ= λ d σ

neem een referentiesysteem met drie onafh coords T_e,X_r,X'_r

- > opp gedefinieerd door waarden van σ_r(T_e,X_r,X'_r)
- > wanneer een hoeveelheid warmte d Q_r overgedragen wordt verandert σ_r met een waarde d σ_r en d Q_r = $\lambda_r d\sigma_r$
- >> het samengesteld systeem heeft 5 onafh coords T_e,X,X',X_r,X'_r
- > RA-opp gedefinieerd door een functie $\sigma_c(T_e, X, X', X_r, X'_r)$

Nu: hoofdsysteem kan uitgedrukt worden in termen van T_e, σ, X referentiesysteem T_e, σ_r, X

- > gecombineerd systeem wordt uitgedrukt door T, σ , σ _r,X,X_r
- > voor infinitesimaal proces tss 2 RA-opp bepaald door σ_c en σ_c +d σ_c is er een warmteoverdracht dQ_c= λ_c d σ_c
- > we kunnen schrijven:

$$d\sigma_{c} = \left(\frac{\partial \sigma_{c}}{\partial T_{e}}\right)_{\sigma,\sigma_{r},X,X_{r}} dT_{e} + \left(\frac{\partial \sigma_{c}}{\partial \sigma}\right)_{T_{e},\sigma_{r},X,X_{r}} d\sigma + \left(\frac{\partial \sigma_{c}}{\partial \sigma_{r}}\right)_{T_{e},\sigma,X,X_{r}} d\sigma_{r} + \left(\frac{\partial \sigma_{c}}{\partial X}\right)_{T_{e},\sigma,\sigma_{r},X_{r}} dX + \left(\frac{\partial \sigma_{c}}{\partial X_{r}}\right)_{T_{e},\sigma,\sigma_{r},X} dX_{r}.$$

veronderstel dat er in een reversibel proces een hoeveelheid warmteoverdracht d Q_c tss het warmtereservoir en gecombineerd systeem geschiedt met warmteoverdracht dQnaar het hoofdsysteem en warmteoverdracht d Q_r naar het referentiesysteem

> we kunnen schrijven:
$$dQ_c = dQ + dQ_r$$

of:

$$\lambda_c d\sigma_c = \lambda d\sigma + \lambda_r d\sigma_r$$

waaruit:

$$d\sigma_c = \frac{\lambda}{\lambda_c} d\sigma + \frac{\lambda_r}{\lambda_c} d\sigma_r$$

vorm van λ	we kunnen hieruit afleiden dat:
	$\frac{\partial \sigma_c}{\partial T_e} = 0, \frac{\partial \sigma_c}{\partial X} = 0 \text{ en } \frac{\partial \sigma_c}{\partial X_r} = 0,$
	en dus zal $\sigma_{\rm c}$ enkel afh zijn van σ en $\sigma_{\rm r}$: $\sigma_c=\sigma_c(\sigma,\sigma_r)$
	verder vinden we ook nog: $\left(\frac{\partial \sigma_c}{\partial \sigma}\right)_{\sigma_r} = \frac{\lambda}{\lambda_c} \text{ en } \left(\frac{\partial \sigma_c}{\partial \sigma_r}\right)_{\sigma} = \frac{\lambda_r}{\lambda_c},$
	dus de verhoudingen λ/λ_c en λ_r/λ_c zijn ook onafh van T_e , X en X_r
	> de λ moeten er dus uitzien als:
	$\lambda = \phi(T_e, X, X_r) f(\sigma),$ $\lambda_r = \phi(T_e, X, X_r) f_r(\sigma_r),$
	$\lambda_r = \phi(T_e, X, X_r) f_r(\sigma_r),$ $\lambda_c = \phi(T_e, X, X_r) f_c(\sigma, \sigma_r),$
	waarbij ϕ dezelfde functie is voor alle drie de λ 's
	> nu: λ is geen functie van X_r en λ_r niet van X
	> φ kan enkel afh zijn van T _e :
	$\lambda = \phi(T_e)f(\sigma),$
	$\lambda_r = \phi(T_e) f_r(\sigma_r),$
	$\lambda_c = \phi(T_e) f_c(\sigma, \sigma_r)$
	als we enkel het hoofdsysteem als representatief beschouwen, dan kunnen we schrijven: $dQ = \phi(T_e)f(\sigma)d\sigma$.
	> er bestaat steeds een integrerende factor voor dQ, die dezelfde functie is voor alle systemen en enkel afhangt van temperatuur
7.5 d	de kelvintemperatuurschaal en de derde wet van de thermodynamica
verhouding Q/Q' en temp	bekijk een systeem met 3 onafh veranderlijken T _e ,X,X'
T.	bekijk hiervoor twee isotherme oppervlakken en twee RA-opp > veronderstel dat er een reversibele isotherme hoeveelheid warmte Q uitgewisseld
1 _e	wordt tss het systeem en een reservoir op temp T _e
b Q T _e	> hierbij gaat het systeem ve toestand b op get RA-opp σ_1 naar toestand c op σ_2 > de warmte kunnen we berekenen via:
σ_1 σ_2 σ_2 σ_2 σ_2	$Q = \phi(T_e) \int_{\sigma_e}^{\sigma_2} f(\sigma) d\sigma \ (T_e \text{ constant}).$
$Q_1 = a Q'$	voor het reversibele proces $a\rightarrow d$ bij temp T_e' is de warmte Q' analoog gegeven door:
	$Q' = \phi(T'_e) \int_{\sigma_e}^{\sigma_2} f(\sigma) d\sigma \ (T'_e \text{ constant}).$
X	dus dan is de verhouding:
	$rac{Q}{Q'} = rac{\phi(T_e)}{\phi(T'_e)}$
Kelvinschaal	definieer de kelvinschaal zodat de warmteverhouding gelijk is aan de verhouding vd temp $\frac{Q}{Q'} = \frac{T_k}{T_k'}.$
	twee temp op de kelvinschaal verhouden zich dus zoals de warmte overgedragen tss de-
	zelfde twee reversibele adiabatische oppervlakken bij deze twee temps > temp op deze manier gedefinieerd is stofonafhankelijk
	> dus we hebben:

 $T_k = 273, 16K \frac{Q}{Q_{TP}}$

nl: als een stelsel een reversibel isotherm proces ondergaat, waarbij geen

warmteoverdracht gebeurt, dan is de temp waarbij dit gebeurt het absolute nulpunt Er is geen enkel thermodynamisch procedé mogelijk, dat met een eindig aantal bewerkin-

!tss twee dezelfde adiabatisch oppn!

> dus we hebben:

er bestaat een laagste temperatuur

gen toelaat het absoluut nulpunt te bereiken

absolute nulpunt

3e wet vd thermodynamica

7.6 gelijkheid van de ideaal-gastemperatuur en de Kelvintemperatuur

gelijkheid ideaal-gastemp en kelvintemp

Voor een ideaal gas kan de 1e wet in diffvorm geschreven worden als:

$$dQ = C_V dT + P dV.$$

pas deze toe op b→c, dan is de overgedragen warmte:

$$Q = \int_{V_b}^{V_c} P dV = nRT ln \frac{V_c}{V_b}.$$

en voor a→d:

$$Q' = \int_{V_a}^{V_d} P dV = nRT' ln \frac{V_d}{V_a}$$

en dus is de verhouding:
$$\frac{Q}{Q'} = \frac{Tln(V_c/V_b)}{T'ln(V_d/V_a)}.$$

vermits a→b adiabatisch is, is elk infinitesimaal gedeelte vh proces:

$$C_V dT = -PdV = -\frac{nRT}{V}dV.$$

en dus:

$$\frac{1}{nR}\int_{T'}^T C_V \frac{dT}{T} = ln \frac{V_a}{V_b},$$

analoog voor d→c:

$$\frac{1}{nR} \int_{T'}^{T} C_V \frac{dT}{T} = ln \frac{V_d}{V_c},$$

en dus:

$$ln\frac{V_a}{V_b} = ln\frac{V_d}{V_c},$$

en ook:

$$ln\frac{V_c}{V_b} = ln\frac{V_d}{V_a}.$$

dus de uitdrukking reduceert zich tot:

$$\frac{Q}{Q'} = \frac{T}{T'}$$

En we weten dat Q/Q' zich verhoudt als T_k/T_k ' dus:

$$\frac{T_k}{T_k'} = \frac{T}{T'}$$

waarbij T_k'=T'=273,16K:

>> de ideale-gastemp is dezelfde als deze van de kelvinschaal