SWARM INTELLIGENCE METHODS FOR STATISTICAL REGRESSION

Lecture 3

Soumya D. Mohanty

University of Texas Rio Grande Valley

STOCHASTIC OPTIMIZATION METHODS

Brief overview

METAHEURISTICS

• Example: Markov Chain Monte Carlo

Nature inspired

- Physics (e.g. Simulated Annealing)
- Biology

Randomized local optimization

 Example: Stochastic gradient descent Well-established approaches in stochastic optimization literature

The boundaries of the metaheuristics are permeable

New metaheuristics arise quite often

OPTIMIZATION IN BIOLOGICAL PHENOMENA

BIOLOGY INSPIRED METHODS

Evolutionary computation (EC)

Species fitness

- Natural evolution
- Communication: Sexual reproduction
- Example: Genetic Algorithm (GA)
- Agents die and are born

Swarm intelligence (SI)

Find food/avoid predators

- Flocking
- Communication: Monitor the fitness of neighbors
- Example: Particle swarm optimization (PSO)
- Agents do not die

Find food

- Foraging
- Communication: chemical trails
- Example: Ant colony optimization (ACO)
- Agents do not die

GENETIC ALGORITHM

Initialization

- Genome: Representation of agent location
- Genome fitness: Fitness function value at agent location

Crossover & Mutation

- Mix parent genomes to produce a child genome
- Random changes in child genome

Selection:

 Genomes with better fitness have higher chances of surviving

BigDat 2019, Cambridge, UK

- 6

DIFFERENTIAL EVOLUTION

Initialization

- Genome: position vector
- Genome fitness: Fitness function value at agent location

Crossover & Mutation

- Linear combination of three random genomes
- Crossover with current particle genome

Selection:

Select genomes with better fitness

ANT COLONY OPTIMIZATION

- Based on the foraging behavior of ants
- Each ant leaves a "pheromone" trail
- More pheromone attracts more ants
- Better suited to discrete optimization (like GA)
 - Shortest path problems

http://www.sciencedirect.com/science/article/pii/S0142061515005840

PARTICLE SWARM OPTIMIZATION

Kinematics and Dynamics – Basic PSO

BigDat 2019, Cambridge, UK

PARTICLE SWARM OPTIMIZATION

- A swarm intelligence method inspired by the flocking behavior of birds
- Search for the biggest food source: Each bird moves under random attraction towards the best food sources that it and the swarm have found but also continues exploration

PARTICLE SWARM OPTIMIZATION

Initialization

- Particle: agent location
- Particle fitness: Fitness value at location
- Particle "velocity": Displacement vector to new position

Velocity update

- New velocity: sum of old velocity + acceleration terms
- Acceleration strengths are random

Position update

Particles move to new positions

PSO TERMINOLOGY

Term	Definition	
Particles	Locations in search space	
$ar{x}^{(i)}[k]$	• Position of i^{th} particle in k^{th} iteration • $\bar{x}^{(i)}[k]=(x_0^{(i)}[k],x_1^{(i)}[k],,x_D^{(i)}[k])$	
$ar{v}^{(i)}[k]$	• Velocity of i^{th} particle in k^{th} iteration • $\bar{v}^{(i)}[k]=(v_0^{(i)}[k],v_1^{(i)}[k],\dots,v_D^{(i)}[k])$	
$pbest \ (ar{p}^{(i)} \ [k])$	Personal best: Best location found by the i^{th} particle over iterations 1 through k	
gbest $(ar{g}[k])$	Global best: Best location found among all particles over iterations 1 through k	
v_{max}	Maximum velocity $\text{``Velocity Clamping'': } v_j^{(i)}[k] \in [-v_{max}, v_{max}]$	

VELOCITY UPDATE

$$v_j^{(i)}[k+1] = w \ v_j^{(i)}[k] + c_1 r_{1,j}(p_j^{(i)}[k] - x_j^{(i)}[k]) + c_2 r_{2,j}(g_j[k] - x_j^{(i)}[k])$$

 $r_{m,j}$: random variable with uniform distribution in [0,1]

 c_1, c_2 : "acceleration constants"

w: "inertia" $\rightarrow w v_j^{(i)}[k]$: "Inertia Term"

 $c_1 r_{1,j}(p_i^j[k] - x_i^j[k])$:"Cognitive term"

 $c_2 r_{2,j}(g[k] - x_i^j[k])$: "Social term"

 χ^1

INTERPRETATION

- Inertia term: promotes exploration
 - $w < 1 \Rightarrow v[k+1] = wv[k] < v[k]$
 - Avoids "particle explosion"
- Social and cognitive terms: promote exploitation
 - Randomization in these terms promotes exploration

PSO DYNAMICAL EQUATIONS

Velocity update

$$v_j^{(i)}[k+1] = w \ v_j^{(i)}[k] + c_1 r_{1,j} (p_j^{(i)}[k] - x_j^{(i)}[k]) + c_2 r_{2,j} (g_j [k] - x_j^{(i)}[k])$$

Position update

$$x_j^{(i)}[k+1] = x_j^{(i)}[k] + v_j^{(i)}[k+1]$$

INITIALIZATION

Initialization

- $x_j^{(i)}[0]$ is picked from a uniform distribution over $[a_i, b_i]$
- Search space assumed to be a hypercube

Initial velocity (variations)

- Uniform distribution with velocity clamping
- Zero initial velocities
- Boundary constrained:
 - $v_j^{(i)}[0] \sim U(a_j x_j^{(i)}[0], b_j x_j^{(i)}[0])$ & velocity clamping

TERMINATION (VARIATIONS)

Stop when maximum number of iterations reached

Stop when an acceptable solution has been found

- If x^* is known (e.g., benchmark functions), stop when $|f(x_k) f(x^*)| < \epsilon$
- Stop if the average change in particle positions is small
- Stop if the average velocity over a number of iterations is close to zero
- Stop if there is no significant improvement in the fitness value over a number of iterations

Stop when the normalized swarm radius is close to zero

•
$$R_{norm} = \frac{R_{max}}{\text{initial } R_{max}}; R_{max} = \max_{i} ||\bar{x}^{(i)}[k] - \bar{g}[k]||$$

Wang, Mohanty, Physical Review D, 2010

 Stop when the best particle does not move out of a small box over a specified number of iterations

BOUNDARY CONDITIONS

- "Let them fly": set fitness to +∞
 outside the boundary and continue
 to iterate the dynamical equations
 - pbest and gbest eventually pull the particle back
- "Reflecting walls": Change the sign of the velocity component perpendicular to the boundary surface
- "Absorbing Walls": zero the velocity component perpendicular to the boundary surface

 $+\bar{g}[k]$ Let them fly $rac{1}{\bar{v}^{(i)}[k]}$ $+\bar{g}[k]$ Reflecting $\uparrow \bar{p}^{(i)}[k]$ $+\bar{g}[k]$ Absorbing

PSO VARIANTS

Not a comprehensive review!

VELOCITY CONSTRICTION

 Velocity constriction is another way besides velocity clampling and inertia to contain particle explosion

$$v_{j}^{(i)}[k+1] = K \left[v_{j}^{(i)}[k] + c_{1}r_{1,j} \left(p_{j}^{(i)}[k] - x_{j}^{(i)}[k] \right) + c_{2}r_{2,j} \left(g_{j}[k] - x_{j}^{(i)}[k] \right) \right]$$

K is called the constriction factor

$$K = \frac{2}{|2 - c - \sqrt{c^2 - 4c}|};$$

$$c = c_1 + c_2 > 4$$

- Standard choice for K is 0.729 corresponding to c=4.01
- Normally, $c_1 = c_2 \Rightarrow 2.05$
- Even without velocity constriction, $c_1=c_2\simeq 2$ is widely adopted in the literature

INERTIA DECAY

• For termination after a fixed number, N_{iter} , of iterations

$$\underbrace{\text{Linear decay}}_{w \to w[k] = 0.9 - 0.5} \frac{k - 1}{N_{iter} - 1}$$

- Transition from exploration to exploitation behavior
- Other laws of inertia decay have been proposed

COMMUNICATION TOPOLOGY

$$v_{j}^{(i)}[k+1] = w[k]v_{j}^{(i)}[k] +$$

$$c_{1}r_{1,j}\left(p_{j}^{(i)}[k] - x_{j}^{(i)}[k]\right) +$$

$$c_{2}r_{2,j}(g_{j}[k] - x_{j}^{(i)}[k])$$

Local best PSO

 $\bar{g}[k] \rightarrow \bar{l}^{(i)}[k]$: best value in a neighborhood of the i^{th} particle

 $lbest: \overline{l}^{(i)}[k]$

lbest PSO

Local best PSO
$$\bar{g}[k] \rightarrow \bar{l}^{(i)}[k]$$

Information about global best (e.g., particle
 #5) shared through common particles

$$\dots$$
, $(1, 2, 3)$, $(2, 3, 4)$
 $(2, 3, 4)$, $(3, 4, 5)$, \dots

- Information about global best propagates more slowly through the swarm
- Less social attraction: extended exploration

LBEST VS. GBEST PSO

- Tends to become better than gbest PSO as:
 - the dimensionality increases and/or
 - fitness function becomes more rugged
- Penalty: More fitness function evaluations

From Bratton & Kennedy, 2007

TOPOLOGIES

- Gbest
- Ring
- Star
- Wheel
- Pyramid
- Four Clusters
- Von-Neumann
- •

MEMETIC SEARCH

- PSO converges slowly at late stages
- Local optimizers, e.g., steepest descent, can converge to a local minimum much faster
- I. Use local search in each iteration to refine *gbest* or *lbest*, or ...
- 2. Use stochastic local search in a neighborhood of gbest or lbest

MEMETIC SEARCH

- A danger is finding a good local minimum too early
- gbest stays locked to this local minimum and attracts all the particles
- This shortens the exploration phase and increases the chances of missing the global minimum

RECOMMENDED PSO PARAMETER SETTINGS

- Follows Bratton and Kennedy, 2007
- Optimum particle number (N_{part}) ?
 - Too few ⇒ Less exploration
 - Too many ⇒ Premature convergence
- lbest PSO with ring topology (2 nearest neighbors)
 - Increases exploration
 - Slower convergence but often better probability of success

Setting Name	Setting Value
Position initialization	$x_j^{(i)}[0]$ drawn from $U(x;0,1)$
	$v_j^{(i)}[0]$ drawn from
Velocity initialization	$U(x;0,1) - x_j^{(i)}[0]$
$v_{ m max}$	0.5
$N_{ m part}$	40
$c_1 = c_2$	2.0
w[k]	Linear decay from 0.9 to 0.4
Boundary condition	Let them fly
Termination condition	Fixed number of iterations
	Ring topology;
lbest PSO	Neighborhood size $= 3$

PSO APPLICATIONS

Parametric and non-parametric regression

PARAMETRTIC REGRESSION

• Least-squares fit:

$$\min_{\bar{\theta}} \sum_{i=0}^{N-1} (y_i - f(x_i; \bar{\theta}))^2$$

Non-linear model:

Quadratic chirp (*Lecture 1)

$$f(x; \bar{\theta}) = A \sin(2\pi\Phi(x))$$

$$\Phi(x) = a_1 x + a_2 x^2 + a_3 x^3$$

BigDat 2019, Cambridge, UK

NON-PARAMETRIC REGRESSION

Regression spline (*Lecture 1)

$$f(x; \bar{\alpha}, \bar{b}) = \sum_{j=0}^{M-1} \alpha_j B_{j,4}(x; \bar{b})$$

Least-squares:

$$\min_{\overline{\alpha},\overline{b}} \sum_{i=0}^{N-1} (y_i - f(x_i; \overline{\alpha}))^2$$

• Fixed number (\underline{M}) but not fixed locations of breakpoints (\overline{b})

STEP I: ANALYTIC MINIMIZATION

$$\min_{\overline{\theta}} \sum_{i=0}^{N-1} (y_i - f(x_i; \overline{\theta}))^2$$

Parametric

$$f(x; \bar{\theta}) = A \sin(2\pi\Phi(x))$$

$$\Phi(x) = a_1 x + a_2 x^2 + a_3 x^3$$

- $\min_{(a_1,a_2,a_3)} \left(\min_{A} \sum_{i=0}^{N-1} (y_i A \sin(2\pi\Phi(x)))^2 \right)$
- A can be minimized analytically
- PSO handles the optimization over phase parameters $a_i, 1 \le i \le 3$

Non-parametric

$$f(x; \bar{\alpha}, \bar{b}) = \sum_{j=0}^{M-1} \alpha_j B_{j,4}(x; \bar{b})$$

- $\min_{\bar{b}} \left(\min_{\bar{\alpha}} \sum_{i=0}^{N-1} (y_i \sum_{j=0}^{M-1} \alpha_j B_{j,4}(x; \bar{b}))^2 \right)$
- Inner minimization can be done analytically
- PSO handles the optimization over the breakpoints \bar{b}

STEP 2: DEGENERACY CONTROL

Example: Unconstrained optimization over breakpoints

$$\bar{b} = (b_0, b_1, \dots, b_{M-1})$$

Search space: $b_i \in (0, T), \forall i$

- Permutations of \bar{b} correspond to the same spline since the sequence must be ordered before the corresponding spline can be generated
- Degeneracy: Multiple widely-separated points have same fitness values

BigDat 2019, Cambridge, UK

DEGENERACY IN PARAMETRIC REGRESSION

- Quadratic chirp: Multiple local minima in fitness function even in the absence of noise
- Multiple local minima are a hallmark of nonlinear regression
- Note: Degeneracy is not restricted to equally deep minima

34

FITNESS FUNCTION DEGENERACY

- Degeneracy of a fitness function in the absence of noise leads to multiple local minima
- A stochastic optimization method must escape from local minima
- → Multiple local minima make the search for the global minimum harder

CONSTRAINED SEARCH

• 1st solution to degeneracy in regression spline: Constrained search

$$b_i < b_{i+1}$$

- ⇒ Search space shape is a simplex in M dimensions
- PSO does not perform well when the search space is not a hypercube
 - ⇒ Excessive leakage of particles from the search space

REPARAMETRIZATION

• 2nd solution: Reparametrization

$$\alpha_i = \frac{b_i - b_{i-1}}{T - b_{i-1}}$$
; $\alpha_0 = \frac{b_0}{T}$

• Guarantees ordered breakpoint sequence while keeping the search space hypercubical: $\alpha_i \in (0,1)$; $\forall i$

*Further reparametrization (see book): center the uniformly spaced breakpoint sequence

STEP 3: PSO VARIANT

- Exploration-exploitation trade-off
- Examine the extent of degeneracy to get an idea of which PSO variant to use
- Greater ruggedness of fitness function
 ⇒ Use longer exploration phase
 - Example: Use *lbest* PSO to extend exploration phase
 - *Other options such as slower inertia decay

BigDat 2019, Cambridge, UK

PSO VARIANTS

- If the fitness function has a periodic dependence on a variable, the corresponding boundary condition should be periodic
 - Very helpful in the case of gravitational wave searches because two of the parameters are sky angles
- Consider splitting the search space into smaller domains

39

STEP4: TUNING

Recommended: Best-of-M-runs (BMR)

BMR TUNING OF PSO

- PSO parameters have robust values and do not need to be changed in most cases
- Two main parameters to tune
 - Number of iterations: N_{iter}
 - Number of independent PSO runs in BMR: N_{runs}

Setting Name	Setting Value
Position initialization	$x_j^{(i)}[0]$ drawn from $U(x;0,1)$
	$v_j^{(i)}[0]$ drawn from
Velocity initialization	$U(x;0,1) - x_j^{(i)}[0]$
$v_{ m max}$	0.5
$N_{ m part}$	40
$c_1 = c_2$	2.0
w[k]	Linear decay from 0.9 to 0.4
Boundary condition	Let them fly
Termination condition	Fixed number of iterations
	Ring topology;
lbest PSO	Neighborhood size $= 3$

TUNING PSO FOR REGRESSION

TUNING FOR REGRESSION PROBLEMS

Simulate data realizations based on assumed models

Cost function for each data realization as an independent fitness function

Use statistical metrics ⇒
Robustness across data realizations

BigDat 2019, Cambridge, UK

DATA SIMULATION

- In the case of the regression examples:
 - Keep the parameters of the true signal (quadratic chirp or spline) fixed
 - Add different noise realizations (pseudorandom numbers)
- Each data realization ⇒ one fitness function realization

44

STATISTICAL TUNING APPROACH

- For the same true signal parameters, the global minimizer will be different for different data realizations
- The best fitness value will always occur away from the true parameters
 - This is why we get error in parameter estimates in the presence of noise
- This fact can be used to develop a tuning procedure that is well-suited to regression

BigDat 2019, Cambridge, UK

PSO TUNING FOR REGRESSION PROBLEMS

 Key idea: The global minimum must be lower than the fitness at the true parameters

$$f^{opt} < f^{true}$$

- PSO is working well if this condition is satisfied for a sufficiently high fraction of data realizations
- Proposed in:
 - Wang, Mohanty, Physical Review D, 2010
 - Normandin, Mohanty, Weerathunga, Physical Review D, 2018

PARAMETRIC REGRESSION

- The true parameters are known for simulated data
- \Rightarrow Possible to check $f^{opt} < f^{true}$ for each data realization
- Set up a grid of values in
 - *N*_{iter}: Number of iterations
 - N_{runs} : Number of runs in BMR strategy
- For each combo (N_{iter}, N_{runs}) : Get fraction X of N data realizations where this condition is satisfied
- Get all (N_{iter}, N_{runs}) for which X is below some preset value
- Pick the combo in this set with the lowest computational cost

NON-PARAMETRIC REGRESSION

- No explicit parametrization of models $\Rightarrow f^{opt} < f^{true}$ not easy to check
- The non-parametric fit may never capture every feature of the true signal ⇒
 Fitness will typically be worse than fitness for true signal
- Further development of the basic idea needed: $f^{opt} \in f^{true} + [-\epsilon, \epsilon]$?
- \Rightarrow Seat-of-the-pants approach but not very difficult for PSO due to only two tuning parameters: N_{iter} and N_{runs}

RESULTS

Parametric and non-parametric regression

NON-PARAMETRIC REGRESSION

True signal:

$$f(x; \bar{\theta}) = 10 \times B_{0,4}(x; \bar{c});$$

 \bar{c} : Breakpoint locations
 $\bar{c} = (0.3, 0.4, 0.45, 0.5, 0.55)$

- White Gaussian Noise (WGN): iid Normal with mean = 0 and variance = 1
- 100 data realizations
- PSO Search space (after <u>reparametrization</u> of breakpoints):

$$\bar{b} \to \bar{\alpha}; \alpha_i \in (0,1)$$

*True breakpoints not uniformly spaced ⇒ not centered in search space

BigDat 2019, Cambridge, UK

FIXED NUMBER OF BREAKPOINTS

- The true signal has 5 breakpoints
- We keep the same number of breakpoints for the spline to be fitted
- PSO tuning:
 - $N_{runs} = 4$
 - $N_{iter} = 200$
- PSO optimized breakpoints show much better performance than uniformly spaced breakpoints

VARIABLE NUMBER OF BREAKPOINTS

- In a realistic application, we do not have prior knowledge of the number of breakpoints to use
- ⇒ Use model selection:
 - Fit the data with different breakpoint numbers (≡ different models)
 - Select the best number of breakpoints using the Akaike Information Criterion (AIC)
- *Model selection is a vast topic and AIC is not the only approach

MODEL SELECTION

Example

- Best model found has 7 breakpoints
 - 5 breakpoints in true signal
- Variable number of breakpoints ⇒ Excessive freedom in the model
- Conspiracy: Excess knots cluster and coefficients $\bar{\alpha}$ increase to fit outliers
- Smoothness constraint on solution is violated

BigDat 2019, Cambridge, UK

PENALIZED SPLINE

 Penalized spline fit: Add a penalty term (regulator) to the cost function

$$\min_{\overline{b}} \left(\min_{\overline{\alpha}} \left(\sum_{i=0}^{N-1} \left(y_i - \sum_{j=0}^{M-1} \alpha_j B_{j,4}(x_i; \overline{b}) \right)^2 + \lambda \sum_{j=0}^{M-1} \alpha_j^2 \right) \right)$$

- λ : Regulator gain
- Penalize solutions that have large values of α_i

REGULARIZATION AND MODEL SELECTION

Cardinal spline fit

- Breakpoints spaced uniformly
- Model selection used

Regression spline fit

- Breakpoints optimized by PSO
- Model selection used
- Penalized spline used
- 100 data realizations
- Breakpoint numbers: {5,6,7,8,9}

SUMMARY

BREAKING THE OPTIMIZATION BARRIER

BREAKING THE OPTIMIZATION BARRIER

Parametric regression

Non-linear model

Optimization: Challenging

Swarm intelligence

SWARM INTELLIGENCE AND BIG DATA

Big data era: datasets and inference problems have become more complex

Flexible modeling \Rightarrow Non-parametric regression methods \Rightarrow large number of parameters \Rightarrow Optimization bottleck

• Forced to use linear models but non-linear models may be better

Swarm intelligence methods like PSO should be in the toolbox of every big data analyst

Not a magic pill! Try SI methods on simpler problems first