Uvod u programiranje

VJEŽBA 01 – bez rješenja Grupa 01, Šimić, 2005.

Prikaz pozitivnih cijelih brojeva

- Odrediti dekadsku vrijednost u registru (memoriji) za broj bez korištenja i uz korištenje dvojnog komplementa
 - Recimo registar od 3 bita i broj 2+2:

$$2_{10} = 010_2 -> 2_{10} + 2_{10} = 100_2 ->$$
 4₁₀ $2_{10} = 010_2 -> 2_{10} + 2_{10} = 100_2$ (dvojni komplement) -> komplement = $011_2 -> + 1 = 100_2 ->$ **-4**₁₀

- Odrediti dekadsku vrijednost cijelog broja uz korištenje tehnike dvojnog komplementa
 - Primjer 01011_2 i 11011_2 $01011_2 = 11_{10}$ $11011_2 = (dvojni \ komplement) -> -> komplement = <math>00100_2 \ -> + 1 = 00101_2 \ -> \mathbf{5}_{\mathbf{10}}$

Cjeline za vježbanje

- Cijeli brojevi
 - Prikaz pozitivnih cijelih brojeva
 - Raspon cijelih brojeva
 - Prikaz negativnih cijelih brojeva
 - Raspon brojeva različitih tipova podataka
- Realni brojevi
 - Prikaz komponenti realnih brojeva
 - Prikaz vrijednosti realnih brojeva
 - Preciznost realnog broja
 - · Raspon realnih brojeva
- Brojevni sustavi (hexa, octal itd.)

Prikaz pozitivnih cijelih brojeva

- Nakon zadane računske operacije odrediti sadržaj registra
 - Primjer 3+3+1 u 3 bitnom registru

$$3+3+1=7_{10} = 111_2$$

- Ili isti broj u 2 bitnom registru
 11₂ = 3₁₀
- Odrediti maksimalni cijeli broj koji se može prikazati u registru s dvostrukim komplementom i bez njega
 - Primjer za 2 bitni i 4 bitni registar

2ⁿ-1 =>
$$2^{2}$$
-1 = **3**, 2^{4} -1 = **15 2ⁿ⁻¹-1** => 2^{2} -1-1 = **1**, 2^{4-1} -1 = **7** -> 2 puta više bita -> __ puta veći broj = 2_-puta.više.bita+1

- Odrediti broj različitih vrijednosti koje se može prikazati
 - Prethodni primjer
 za 2 bita ___ vrijednosti i za 4 bita ___ vrijednosti = 2⁻⁻⁻

Prikaz pozitivnih cijelih brojeva

- Kako izgleda zbroj dva binarna broja
 - $1101_2 + 1011_2$ registru 11000_2 $(24=13+11)_{10}$
- Koji broj je prikazan u prethodnom primjeru ukoliko se primjeni tehnika dvojnog komplementa?

```
11000_2 -> komplement = 00111_2 (dvojni komplem.) +1 -> 01000_2 = -8_{10}
```

- Pretvoriti dekadski broj u binarni
 - Primjer 199₁₀
 11000111₂
- Množenje razlomljenog binarnog broja
 - Primjer množenje s 2₁₀
 binarni zarez (točka) se pomiče ___ x u desno

Raspon cijelih brojeva

- Raspon brojeva u binarnom prikazu
 - char (oktet, byte):

s predznakom u tehnici dvojnog komplementa unsigned (bez predznaka) $[-128, 127] \hspace{1.5cm} [0 \; , \; 255] \hspace{.2cm} [0 \; , \; 2^{-1}]$

• short int (16 bita):

```
unsigned (bez predznaka) s predznakom u tehnici dvojnog komplementa \begin{bmatrix} 0 & , & 2^{-1} \end{bmatrix} \begin{bmatrix} 0 & , & 65535 \end{bmatrix} \begin{bmatrix} -2 & ^{-1}, & 2 & ^{-1}-1 \end{bmatrix}
```

Raspon cijelih brojeva

- Različiti pozitivni brojevi u binarnom prikazu
 - Recimo registar od 3 bita:
 000, 001, 011, 010 -> __ različita broja općenito vrijedi
- Različiti negativni brojevi u binarnom prikazu
 - Recimo registar od 3 bita:
 100, 101, 111, 110 -> ___ različita broja općenito vrijedi
- Raspon brojeva u binarnom prikazu
 - Recimo registar od 5 bita:
 bez predznaka s predznakom u tehnici dvojnog komplementa
 [0, 31] [-16, 15]

Prikaz negativnih brojeva

- Potreban broj bita za prikaz nekog negativnog broja
 - Recimo broj -42₁₀:
 42₁₀ = 101010₂ -> komplement = 010101₂
 (dvojni komplement) +1 -> 010110₂
 Potrebno je minimalno _ bitova.
- Zapis negativnog broja tehnikom dvojnog komplementa
 - Recimo broj -3 u 16 bitnom registru:
 3₁₀ = 0000 0000 0000 0011₂ -> komplement = 1111 1111 1111 1100₂
 (dvojni komplement) +1 -> 1111 1111 1111 1101₂

)

Prikaz negativnih brojeva

- Prikazati dekadski broj heksadecimalno primjenom tehnike dvojnog komplementa
 - Recimo -21₁₀ u 8 bitnom registru :

```
21_{10} = 0001 \ 0101_2 -> komplement = 1110 1010_2 (dvojni komplement) +1 -> 1110 1011_2 = EB_{16}
```

• Recimo -121₁₀ u 9 bitnom registru :

$$121_{10} = 0\ 0111\ 1001_2$$
 -> komplement = 1 1000 0110₂ (dvojni komplement) +1 -> **1 1000 0111**₂ = **187**₁₆

- Sadržaj registra opisan hexadecimalno u dekadski
 - Recimo da je u 4 bitnom registru zapisano B₁₆

$${\bf B_{16}}={\bf 1011_2}$$
 komplement = 0100_2 (za dvojni kompl.) + 1 = 0101_2 = ${\bf -5_{10}}$

Prikaz realnih brojeva

- Raspon binarnog eksponenta (BE)
 - [-126, 127] za standardnu preciznost
 - K=BE+127 (bita za karakteristiku)
 - K=255 posebno značenje (M!=0 -> ____, M=0 -> ____)
 - K=0 posebno značenje (M!=0 -> ___, M=0 -> _____ broj)
 - [-1022, 1023] za dvostruku preciznost
 - K=BE+1023 (__ bita za karakteristiku)
 - K=2047 posebno značenje (M!=0 -> ____, M=0 -> ____)
- Duljina mantise određuje preciznost
 - __ bita za standardnu preciznost (+ skriveni bit) prec. __ dek. znam.
 - __ bita za dvostruku preciznost (+ skriveni bit) prec. __ dek. znam.
- Dodavanje jako malog broja jako velikom broju
 - Na primjer 1,0e33 + 1,0e-33
 Ne mijenja veliki broj jer ______!

Vrijednost u varijabli nakon pridruživanja

vrijednost₁₀ (bin. ili hex.) char char c = -8;1111 1000 char c = 121;c = c + 7;-1281000 0000 char c = 125;c = c + 9;-1221000 0110 char c = -125;c = c - 6;125 0111 1101

short

10

Prikaz realnih brojeva

- Rezultat množenja binarnog broja
 - 101101 s 2⁻⁵

1.01101

• 101.101 s 2²

10110.1

- Karakteristika za realni broj u standardnoj preciznosti
 - Realni broj 33,257

11

Dovoljno je gledati samo cijelobrojni dio: 33_d = 100001_b

- \Rightarrow treba množiti s 2⁻⁻ da se dobije = 1.00001 => BE=5
- \Rightarrow K=5+127=132 _d => 1000100_b

Broj bita mantise i dekadskih znamenaka

- Broj potrebnih bita **nb** za dekadski broj s **nd** znamenaka
 - $2^{nb} = 10^{nd}$ -> nb = nd/log2 = nd/0.3
 - Recimo za dekadski broj s 6 znamenaka:
 nb = 5/0,3 = 16,7 = 17 bita -> 16 bita mantisa (uz skriveni bit)
- Broj dekadskih znamenaka **nd** uz zadani broj bita **nb**
 - $2^{nb} = 10^{nd}$ -> nd = nb*log2 = nb*0,3
 - Recimo za mantisu sa 23 bita: nd = 24*0,3 = 7,2 = 7 decimalnih znamenaka
- Imati na umu raspodjelu bita na P + K + M
 - Za preciznost imati na umu i skriveni bit **nb = M +1**

Određivanje mantise za realni broj

- Prikaz u binarnom i heksadecimalnom obliku
- Primjer -118.625₁₀

13

Binarno: $1110110.101_2=1.110110101\cdot 2^6$ Binarno u standardnoj preciznosti: $BE=2 \rightarrow K=6+127=133$

Primjer 5.25₁₀
 Binarno: 101.01₂ = 1.0101·2²
 Binarno u standardnoj preciznosti:

BE=2 -> K=2+127=129

40A80000 16

Za vježbu:

Prikazati -9.125 u binarnoj standardnoj preciznosti te hexadecimalno i oktalno