

Neuromorphic Semantic Communications for Future Wireless Systems

Author: Haoxiang Huang, Supervisor: Prof. Geoffrey Ye Li, CID: 02470313, M.Sc. CSP, Dept. of EEE.

Background

The Communications Paradigm Shift: From Bit Accuracy to Semantic Fidelity

- Most semantic communication models are based on ANNs:
 - Pros: spectral efficiency, robustness and high performance etc [1].
 - Cons:
 - * Floating-point computations.
 - * Energy-intensive.
 - * Additional transmission overhead.

The Intelligence Paradigm Shift: From **Deep Learning to Neuromorphic Learning**

Features:

- High energy efficiency.
- Time-coded spike-based computing.
- Always-on computation.
- Biological plausibility.

Figure 1: Comparison of ANNs (top) and SNNs (bottom).

SNNs Enabled Neuromorphic Semantic Communications

Pros:

- Well-suited for resource-constrained wireless edge scenarios.
- 2. Real-time processing with minimal generated data.
- 3. Seamless integration of semantic communications into digital channels.
- However, most existing works [2]-[4] either focus on idealize channels or over-simplified tasks.

Publication

• **H. Huang** and Y. Liu, "Attention-aware neuromorphic semantic communications," 2024 IEEE 34th **International Workshop on Machine** Learning for Signal Processing (MLSP), London, UK, 2024, accepted to appear.

System Model and Contributions

Figure 2: The system model of Att-NeuroSC.

- An initial work to build an attention module and optimize spike redundancy for taskoriented neuromorphic semantic communication systems:
 - We developed the Att-NeuroSC, a novel task-oriented neuromorphic semantic communication system, to perform remote speech recognition tasks.

Experiments

→ -Ours(Spike Rate Loss)

-Att-NeuroSC

LSTMs

SNR(dB)

Latency τ

Figure 5: Test accuracy against latency (SNR = 10 dB).

Figure 4: Test accuracy under different SNR values.

- We introduced an energy-efficient Spike Cross Attention module.
- We proposed a **Spiking Rate Loss** and analysed the spike redunency of SNNs.

Spike Cross Attention

Energy-efficient attention module tailored for SNNs.

- Jointly learn 'when' and 'where' to focus on important information.
- Improve learning performance and efficiency.

Figure 3: The architecture of SCA module.

Spike Rate Loss

- Reduce spike redundancy of SNNs.
- Introduce a spike penalty into the MSE loss.
- Train with spike rate loss as follows:

$$L = \frac{1}{T} \sum_{t=0}^{T-1} \left[\frac{1}{C} \sum_{i=0}^{C-1} (\hat{y}_{t,i} - y_{t,i})^2 \right] + \lambda \cdot \frac{1}{N} \sum_{i=0}^{N-1} o_i^2.$$

Table 3. Energy Consumption Comparison Model Att-NeuroSC FCs

LSTMs

Reference

- W. Tong and G. Y. Li, "Nine challenges in artificial intelligence and wireless communications for 6G," IEEE Wireless Commun., vol. 29, no. 4, pp. 140-145,
- 2. N. Skatchkovsky, H. Jang, and O. Simeone, "End-to-end learning of neuromorphic wireless systems for low-power edge artificial intelligence," in Proc. Asilomar Conf. Signals, Syst., and Comput., 2020, pp. 166-173.

Energy Consumption

 $3.63 \mu J$

11.73 μJ

 $17.58 \ \mu J$

- J. Chen, N. Skatchkovsky, and O. Simeone, "Neuromorphic wireless cognition: Event-driven semantic communications for remote inference," IEEE Trans. Cogn. Commun. Netw., vol. 9, no. 2, pp. 252-265, 2023.
- M. Wang, J. Li, M. Ma, X. Fan, and Y. Tian, "SNN-SC: A spiking semantic communication framework for feature transmission," arXiv preprint arXiv:2210.06836, 2022.

Future Work

- Investigating distributed sensing and **fast-changing** communication scenarios.
- Meta-learning algorithm for fast adaptation to new environments with few-shot pilots.