Odds of Relapse Mortality with HHV-6 positivity by Stem Cell Source

Study	HH\ Deaths	/–6 + Total ∣		/-6 - Total	Odds Ratio	OR	95%-Cl Weight
Stem cell source = CB7 Aoki 2015	35	138	28	98	 	0.85	[0.47; 1.52] 23.4%
Stem cell source = Nor Baker 2016 Kadakia 1996 Random effects model Heterogeneity: $I^2 = 0\%$, τ^2	0	25 12 37	35 5	105 14 119 -		0.04 0.16 0.09	[0.00; 0.66] 5.9% [0.02; 1.67] 7.9% [0.00; 704.60] 13.7%
Stem cell source = CB7 Zhou 2019 de Pagter 2008 Zerr 2012 Random effects model Heterogeneity: $I^2 = 30\%$, τ	13 3 9	61 39 111 211	206 1 11	677 19 204 900		0.62 1.50 1.55 0.91	[0.33; 1.17] 22.8% [0.15; 15.46] 7.8% [0.62; 3.86] 19.6% [0.23; 3.57] 50.3%
Stem cell source = Sou Han 2020 Random effects model Heterogeneity: $I^2 = 40\%$, τ Test for subgroup difference	10 ² = 0.5760	77 463 , $p = 0$.	12	25 1142	0.001 0.1 1 10 1000	1.72 0.74	[0.35; 8.42] 12.6% [0.28; 1.96] 100.0%