NPTEL MOOC, JAN-FEB 2015 Week 8, Module 5

DESIGN AND ANALYSIS OF ALGORITHMS

Reductions

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Bipartite Matching

- * Each instructor is willing to teach a set of courses
- * Find an allocation so that
 - * Each course is taught by a single instructor
 - * Each instructor teaches only one course, which he/she is willing to teach

Teachers Courses Abbas Math Chitra **History** Madan **Biology** Sunita **Economics**

Bipartite Matching

- * V partitioned into V₀,V₁
- * All edges from Vo to V1
- * Matching: subset of edges so that no two of them share an endpoint
- * Find largest matching
 - * If possible, a perfect matching, all nodes covered

Teachers Courses Abbas Math Chitra **History** Madan **Biology** Sunita **Economics**

Bipartite Matching

* Add a source and sink

* All edge capacities are 1

* Find a maximum flow from s to t!

Teachers Courses Abbas Math Chitra History Madan **Biology**

- * We want to solve problem A
- * We know how to solve problem B
- * Convert input for A into input for B
- * Interpret output of B as output of A

Algorithm for A

- * A reduces to B
- * Can transfer efficient solution from B to A
 - * But preprocessing and postprocessing must also be efficient!
 - * Typically, both should be polynomial time

Algorithm for A

- * Bipartite matching reduces to max flow
- * Max flow reduces to LP
 - * Number of variables, constraints is linear in the size of the graph

- * Reverse interpretation is also useful
- * If A is known to be intractable and A reduces to B, then B must also be intractable
 - * Otherwise, solution for B will yield solution for A

Big hammers

- * LP and network flows are powerful tools
- * Many algorithmic problems can be reduced to them
- * Efficient, off-the-shelf implementations are available
- * Useful to understand what can (and cannot) be modelled in terms of LP and flows