18.226 PROBLEM SET (FALL 2020)

Helpful tips:

- Please read the course homepage carefully regarding homework policies (due dates, lateness, acknowledging sources on each problem, etc.)
- Only turn in problems marked ps1 and ps1* for problem set 1, etc. You are recommended to try the other problems for practice, but do not submit them.
- In a multipart problem, if a later part is marked for submission, it may be helpful to think about the earlier unassigned parts first.
- Bonus problems, marked by ⋆, are more challenging. A grade of A- may be attained by
 only solving the non-starred problems. To attain a grade of A or A+, you should solve a
 substantial number of starred problems. No hints will be given for bonus problems, e.g.,
 during office hours.
- Start each solution on a new page, and try to fit your solution within one page for each unstarred problem/part (without abusing font/margins). The spirit of this policy is to encourage you to think first before you write. Distill your ideas, structure your arguments, and eliminate unnecessary steps. If necessary, some details of routine calculations may be skipped provided that you give precise statements and convincing explanations.
- This file will be updated as the term progresses. Please check back regularly. There will be an announcement whenever each problem set is complete.
- You are encouraged to include figures whenever they are helpful. Here are some recommended ways to produce figures in decreasing order of learning curve difficulty:
 - (1) TikZ
 - (2) IPE (which supports LaTeX), Powerpoint, or other drawing app
 - (3) drawing on a tablet (e.g., Notability on iPad)
 - (4) photo/scan (I recommend the Dropbox app on your phone, which has a nice scanning feature that produces clear monochrome scans)

A. Introduction and linearity of expectations

- A1. Verify the following asymptotic calculations used in Ramsey number lower bounds:
 - (a) For each k, the largest n satisfying $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ has $n = \left(\frac{1}{e\sqrt{2}} + o(1)\right) k 2^{k/2}$.
 - (b) For each k, the maximum value of $n \binom{n}{k} 2^{1 \binom{k}{2}}$ as n ranges over positive integers is $\left(\frac{1}{e} + o(1)\right) k 2^{k/2}$.
 - (c) For each k, the largest n satisfying $e\left(\binom{k}{2}\binom{n}{k-2}+1\right)2^{1-\binom{k}{2}}<1$ satisfies $n=\left(\frac{\sqrt{2}}{e}+o(1)\right)k2^{k/2}$.
- A2. Prove that, if there is a real $p \in [0, 1]$ such that

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{t} (1-p)^{\binom{t}{2}} < 1$$

then the Ramsey number R(k,t) satisfies R(k,t) > n. Using this show that

$$R(4,t) \ge c \left(\frac{t}{\log t}\right)^{3/2}$$

for some constant c > 0.

- A3. Let G be a graph with n vertices and m edges. Prove that K_n can be written as a union of $O(n^2(\log n)/m)$ copies of G (not necessarily edge-disjoint).
 - A4. Generalization of Sperner's theorem. Let \mathcal{F} be a collection of subset of [n] that does not contain k+1 elements forming a chain: $A_1 \subsetneq \cdots \subsetneq A_{k+1}$. Prove that \mathcal{F} is no larger than taking the union of the k levels of the boolean lattice closest to the middle layer.
- A5. Let A_1, \ldots, A_m be r-element sets and B_1, \ldots, B_m be s-element sets. Suppose $A_i \cap B_i = \emptyset$ for each i, and for each $i \neq j$, either $A_i \cap B_j \neq \emptyset$ or $A_j \cap B_i \neq \emptyset$. Prove that $m \leq (r+s)^{r+s}/(r^r s^s)$.
- A6. Let G be a graph on $n \ge 10$ vertices. Suppose that adding any new edge to G would create a new clique on 10 vertices. Prove that G has at least 8n 36 edges.

Hint in white:

- A7. Prove that for every positive integer r, there exists an integer K such that the following holds. Let S be a set of rk points evenly spaced on a circle. If we partition $S = S_1 \cup \cdots \cup S_r$ so that $|S_i| = k$ for each i, then, provided $k \geq K$, there exist r congruent triangles where the vertices of the i-th triangle lie in S_i , for each $1 \leq i \leq r$.
- ps1* A8. Prove that $[n]^d$ cannot be partitioned into fewer than 2^d sets each of the form $A_1 \times \cdots \times A_d$ where $A_i \subseteq [n]$.
 - A9. Let $k \ge 4$ and H a k-uniform hypergraph with at most $4^{k-1}/3^k$ edges. Prove that there is a coloring of the vertices of H by four colors so that in every edge all four colors are represented.
- A10. Prove that there is an absolute constant C > 0 so that for every $n \times n$ matrix with distinct real entries, one can permute its rows so that no column in the permuted matrix contains an increasing subsequence of length at least $C\sqrt{n}$. (A subsequence does not need to be selected from consecutive terms. For example, (1,2,3) is an increasing subsequence of (1,5,2,4,3).)
- A11. Given a set \mathcal{F} of subsets of [n] and $A \subseteq [n]$, write $\mathcal{F}|_A := \{S \cap A : S \in \mathcal{F}\}$ (its projection onto A). Prove that for every n and k, there exists a set \mathcal{F} of subsets of [n] with $|\mathcal{F}| = O(k2^k \log n)$ such that for every k-element subset A of [n], $\mathcal{F}|_A$ contains all 2^k subsets of A.

ps1∗

- A12. Show that in every non-2-colorable *n*-uniform hypergraph, one can find at least $\frac{n}{2}\binom{2n-1}{n}$ unordered pairs of edges that intersect in exactly one vertex.
- A13. Let A be a subset of the unit sphere in \mathbb{R}^3 (centered at the origin) containing no pair of orthogonal points.

ps1

(a) Prove that A occupies at most 1/3 of the sphere in terms of surface area.

ps1*

(b) Prove an upper bound smaller than 1/3 (give your best bound).

ps1∗

- A14. Prove that every set of 10 points in the plane can be covered by a union of disjoint unit disks.
- A15. Let $\mathbf{r} = (r_1, \dots, r_k)$ be a vector of nonzero integers whose sum is nonzero. Prove that there exists a real c > 0 (depending on \mathbf{r} only) such that the following holds: for every finite set A of nonzero reals, there exists a subset $B \subseteq A$ with $|B| \ge c|A|$ such that there do not exist $b_1, \dots, b_k \in B$ with $r_1b_1 + \dots + r_kb_k = 0$.

ps1

- A16. Prove that every set A of n nonzero integers contains two disjoint subsets B_1 and B_2 , such that both B_1 and B_2 are sum-free, and $|B_1| + |B_2| > 2n/3$. Can you do it if A is a set of nonzero reals?
- A17. Let M(n) denote the maximum number of edges in a 3-uniform hypergraph on n vertices without a clique on 4 vertices.
 - (a) Prove that $M(n+1)/\binom{n+1}{3} \leq M(n)/\binom{n}{3}$ for all n, and conclude that $M(n)/\binom{n}{3}$ approaches some limit α as $n \to \infty$. (This limit is called the *Turán density* of the hypergraph $K_4^{(3)}$, and its exact value is currently unknown and is a major open problem.)
 - (b) Prove that for every $\delta > 0$, there exists $\epsilon > 0$ and n_0 so that every 3-uniform hypergraph with $n \geq n_0$ vertices and at least $(\alpha + \delta)\binom{n}{3}$ edges must contain at least $\epsilon\binom{n}{4}$ copies of the clique on 4 vertices.
- A18. Prove that every graph with n vertices and $m \ge n^{3/2}$ edges contains a pair of vertex-disjoint and isomorphic subgraphs (not necessarily induced) each with at least $cm^{2/3}$ edges, where c > 0 is a constant.

B. ALTERATION METHOD

B1. Using the alteration method, prove the Ramsey number bound

$$R(4,k) \ge c(k/\log k)^2$$

for some constant c > 0.

B2. Prove that every 3-uniform hypergraph with n vertices and $m \ge n$ edges contains an independent set (i.e., a set of vertices containing no edges) of size at least $cn^{3/2}/\sqrt{m}$, where c > 0 is a constant.

ps2

B3. Prove that every k-uniform hypergraph with n vertices and m edges has a transversal (i.e., a set of vertices intersecting every edge) of size at most $n(\log k)/k + m/k$.

ps2

B4. Zarankiewicz problem. Prove that for every positive integer $k \geq 2$, there exists a constant c > 0 such that for every n, there exists an $n \times n$ matrix with $\{0,1\}$ entries, with at least $cn^{2-2/(k+1)}$ 1's, such that there is no $k \times k$ submatrix consisting of all 1's.

ps2

- B5. Fix k. Prove that there exists a constant $c_k > 1$ so that for every sufficiently large $n > n_0(k)$, there exists a collection \mathcal{F} of at least c_k^n subsets of [n] such that for every k distinct $F_1, \ldots, F_k \in \mathcal{F}$, all 2^k intersections $\bigcap_{i=1}^k G_i$ are nonempty, where each G_i is either F_i or $[n] \setminus F_i$.
- B6. Acute sets in \mathbb{R}^n . Prove that, for some constant c > 0, for every n, there exists a family of at least $c(2/\sqrt{3})^n$ subsets of [n] containing no three distinct members A, B, C satisfying $A \cap B \subseteq C \subseteq A \cup B$.

Deduce that there exists a set of at least $c(2/\sqrt{3})^n$ points in \mathbb{R}^n so that all angles determined by three points from the set are acute.

Remark. The current best lower and upper bounds for the maximum size of an "acute set" in \mathbb{R}^n (i.e., spanning only acute angles) are $2^{n-1} + 1$ and $2^n - 1$ respectively.

ps2∗

- B7. Covering complements of sparse graphs by cliques
 - (a) Prove that every graph with n vertices and minimum degree n-d can be written as a union of $O(d^2 \log n)$ cliques.
 - (b) Prove that every bipartite graph with n vertices on each side of the vertex bipartition and minimum degree n-d can be written as a union of $O(d \log n)$ complete bipartite graphs (assume $d \geq 1$).

ps2∗

B8. Let G = (V, E) be a graph with n vertices and minimum degree $\delta \geq 2$. Prove that there exists $A \subseteq V$ with $|A| = O(n(\log \delta)/\delta)$ so that every vertex in $V \setminus A$ contains at least one neighbor in A and at least one neighbor not in A.

ps2∗

B9. Prove that every graph G without isolated vertices has an induced subgraph H on at least $\alpha(G)/2$ vertices such that all vertices of H have odd degree. Here $\alpha(G)$ is the size of the largest independent set in G.

C. SECOND MOMENT METHOD

C1. Let X be a nonnegative real-valued random variable. Suppose $\mathbb{P}(X=0) < 1$. Prove that

$$\mathbb{P}(X=0) \le \frac{\operatorname{Var} X}{\mathbb{E}[X^2]}.$$

ps2

C2. Let X be a random variable with mean μ and variance σ^2 . Prove that for all $\lambda > 0$,

$$\mathbb{P}(X \ge \mu + \lambda) \le \frac{\sigma^2}{\sigma^2 + \lambda^2}.$$

ps2

- C3. Let $x, y \in \mathbb{R}^n$ be two unit vectors each orthogonal to the all-1 vector. For a permutation σ of [n], write $x^{\sigma} \in \mathbb{R}^n$ for the vector whose *i*-th coordinate is $x_{\sigma(i)}$. Write $\langle \cdot, \cdot \rangle$ for dot product.
 - (a) Compute $\operatorname{Var}\langle x^{\sigma},y\rangle$ where σ is a uniformly chosen permutation of [n].
 - (b) Prove that $\max_{\sigma} \langle x^{\sigma}, y \rangle \min_{\sigma} \langle x^{\sigma}, y \rangle \ge 2/\sqrt{n-1}$, and that equality can be achieved for even n.

ps2

C4. Show that, for each fixed positive integer k, there is a sequence p_n such that

 $\mathbb{P}(G(n, p_n) \text{ has a connected component with exactly } k \text{ vertices}) \to 1 \quad \text{as } n \to \infty.$

Hint in white:

C5. Let $p_n = (\log n + c_n)/n$. Show that, as $n \to \infty$,

$$\mathbb{P}(G(n, p_n) \text{ has no isolated vertices}) \to \begin{cases} 0 & \text{if } c_n \to -\infty, \\ 1 & \text{if } c_n \to \infty. \end{cases}$$

- ps3 C6. Prove that, with probability approaching 1 as $n \to \infty$, $G(n, n^{-1/2})$ has at least $cn^{3/2}$ edge-disjoint triangles, where c > 0 is some constant.
- (a) $G(n, n^{-2/3})$ has at least n/100 vertex-disjoint triangles. (b) $G(n, Cn^{-2/3})$ has at least 0.33n vertex-disjoint triangles, for some constant C.

C7. Simple nibble. Prove that, with probability approaching 1 as $n \to \infty$,

- [ps3*] C8. Is the threshold for the bipartiteness of a random graph coarse or sharp? (You are not allowed to use any theorems that we did not prove in class/notes.)
- Ps3* C9. Prove that there is an absolute constant C > 0 so that the following holds. For every prime p and every $A \subseteq \mathbb{Z}/p\mathbb{Z}$ with |A| = k, there exists an integer x so that $\{xa : a \in A\}$ intersects every interval of length at least Cp/\sqrt{k} in $\mathbb{Z}/p\mathbb{Z}$.
- ps3* C10. Prove that there is a constant c > 0 so that every hyperplane containing the origin in \mathbb{R}^n intersects at least c-fraction of the 2^n closed unit balls centered at $\{-1,1\}^n$.
- C11. Let $v_1 = (x_1, y_1), \dots, v_n = (x_n, y_n) \in \mathbb{Z}^2$ with $|x_i|, |y_i| \leq 2^{n/2}/(100\sqrt{n})$ for all $i \in [n]$. Show that there are two disjoint sets $I, J \subseteq [n]$, not both empty, such that $\sum_{i \in I} v_i = \sum_{j \in J} v_j$.

D. CHERNOFF BOUND

D1. Let $X \sim \text{Binomial}(n, p)$. Prove that for $0 < q \le p < 1$,

$$\mathbb{P}(X \le nq) \le e^{-nH(q||p)}$$
 and $\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(X \le nq) = -H(||p|)$

and for 0 ,

Hint in white:

$$\mathbb{P}(X \ge nq) \le e^{-nH(q||p)}$$
 and $\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(X \ge nq) = -H(||p),$

where

ps3

$$H(q||p) := q \log \frac{q}{p} + (1-q) \log \frac{1-q}{1-p}.$$

is known as the *relative entropy* or *Kullback-Leibler divergence*, in this case, between two Bernoulli distributions.

- D2. Prove that with probability 1 o(1) as $n \to \infty$, every bipartite subgraph of G(n, 1/2) has at most $n^2/8 + 10n^{3/2}$ edges.
 - D3. Show that for every k there is some $m = O(k \log k)$ such that for sufficiently large $n > n_0(k)$, there exists a collection \mathcal{F} of m subsets of [nk] such that for every partition $[nk] = A_1 \cup \cdots \cup A_k$ with $|A_i| = n$ for each $i \in [k]$, there exists some $F \in \mathcal{F}$ with $|A_i \cap F| \in [0.4n, 0.6n]$ for each $i \in [k]$.
 - D4. (a) Prove that there is some constant c > 1 so that there exists $S \subset \{0,1\}^n$ with $|S| \ge c^n$ so that every pair of points in S differ in at least n/4 coordinates.

(b) Prove that there is some constant c > 1 so that the unit sphere in \mathbb{R}^n contains at least c^n points, where each pair of points is at distance at least 1 apart.

ps3*

D5. Prove that there exists a constant c > 1 such that for every n, there are at least c^n points in \mathbb{R}^n so that the angle spanned by every three distinct points is at most 61° .

D6. Planted clique. Give a deterministic polynomial-time algorithm solving the following problem

ps3

so that it succeeds over the random input with probability approaching 1 as $n \to \infty$: Input: an *n*-vertex unlabeled graph G created as the union of G(n,1/2) and a clique on vertex subset of size $t = \lfloor 100\sqrt{n\log n} \rfloor$

Output: a clique in G of size t

D7. Weighing coins

ps3

(a) Prove that if $k \leq 1.99n/\log_2 n$ and n is sufficiently large, then for every $S_1, \ldots, S_k \subseteq [n]$, there are two distinct subsets $X, Y \subseteq [n]$ such that $|X \cap S_i| = |Y \cap S_i|$ for all $i \in [k]$.

ps3*

(b) Show that there is some constant C such that (a) is false if 1.99 is replaced by C. (Bonus competition: additional points to the student who correctly proves the smallest C in the class; if m students acheive the same lowest C, then each is awarded min $\{10, \lfloor 24/m \rfloor\}$ points additional to the 10 points for a correct solution. You are not allowed to cheat by looking up the solution.)

E. Lovász local lemma

ps4

- E1. Show that it is possible to color the edges of K_n with at most $3\sqrt{n}$ colors so that there are no monochromatic triangles.
- E2. Prove that it is possible to color the vertices of every k-uniform k-regular hypergraph using at most $k/\log k$ colors so that every color appears at most $O(\log k)$ times on each edge.

ps4

E3. Prove that there is some constant c > 0 so that given a graph and a set of k acceptable colors for each vertex such that every color is acceptable for at most ck neighbors of each vertex, there is always a proper coloring where every vertex is assigned one of its acceptable colors.

ps4*

- E4. Prove that there is a constant C > 0 so that for every sufficiently small $\epsilon > 0$, one can choose exactly one point inside each grid square $[n, n+1) \times [m, m+1) \subset \mathbb{R}^2$, $m, n \in \mathbb{Z}$, so that every rectangle of dimensions ϵ by $(C/\epsilon) \log(1/\epsilon)$ in the plane (not necessarily axis-aligned) contains at least one chosen point.
- E5. Prove that there exists k_0 and a red/blue coloring of \mathbb{Z} without any monochromatic k-term arithmetic progressions with $k \geq k_0$ and common difference less than 1.99^k .

ps4

- E6. Prove that, for every $\epsilon > 0$, there exists ℓ_0 and some $(a_1, a_2, \dots) \in \{0, 1\}^{\mathbb{N}}$ such that for every $\ell > \ell_0$ and every i > 1, the vectors $(a_i, a_{i+1}, \dots, a_{i+\ell-1})$ and $(a_{i+\ell}, a_{i+\ell+1}, \dots, a_{i+2\ell-1})$ differ in at least $(\frac{1}{2} \epsilon)\ell$ coordinates.
- E7. A periodic path in a graph G with respect to a vertex coloring $f: V(G) \to [k]$ is a path $v_1v_2 \dots v_{2\ell}$ for some positive integer ℓ with $f(v_i) = f(v_{i+\ell})$ for each $i \in [\ell]$ (reminder: no repeated vertices allowed in a path).
 - Prove that for every Δ , there exists k so that every graph with maximum degree at most Δ has a vertex-coloring using k colors with no periodic paths.

ps4

E8. Prove that every graph with maximum degree Δ can be edge-colored using $O(\Delta)$ colors so that every cycle contains at least three colors and no two adjacent edges have the same color.

ps4∗

E9. Prove that for every Δ , there exists g so that every bipartite graph with maximum degree Δ and girth at least g can be properly edge-colored using $\Delta + 1$ colors so that every cycle contains at least three colors.

ps4∗

- E10. Prove that for every positive integer r, there exists C_r so that every graph with maximum degree Δ has a *proper* vertex coloring using at most $C_r\Delta^{1+1/r}$ colors so that every vertex has at most r neighbors of each color.
- E11. Let H = (V, E) be a hypergraph satisfying, for some $\lambda > 1/2$,

$$\sum_{f \in E: v \in f} \lambda^{|f|} \le \frac{1}{2} - \frac{1}{4\lambda} \quad \text{ for every } v \in V$$

(here |f| is then number of vertices in the edge f). Prove that H is 2-colorable.

E12. Vertex-disjoint cycles in digraphs. (Recall that a directed graph is k-regular if all vertices have in-degree and out-degree both equal to k. Also, cycles cannot repeat vertices.)

ps4

(a) Prove that every k-regular directed graph has at least $ck/\log k$ vertex-disjoint directed cycles, where c>0 is some constant.

ps4∗

(b) Prove that every k-regular directed graph has at least ck vertex-disjoint directed cycles, where c > 0 is some constant. Hint in white:

E13. (a) Generalization of Cayley's formula. Using Prüfer codes, prove the identity

$$x_1 x_2 \cdots x_n (x_1 + \cdots + x_n)^{n-2} = \sum_{T} x_1^{d_T(1)} x_2^{d_T(2)} \cdots x_n^{d_T(n)}$$

where the sum is over all trees T on n vertices labeled by [n] and $d_T(i)$ is the degree of vertex i in T.

- (b) Let F be a forest with vertex set [n], with components having f_1, \ldots, f_s vertices so that $f_1 + \cdots + f_s = n$. Prove that the number of trees on the vertex set [n] that contain F is exactly $n^{n-2} \prod_{i=1}^s (f_i/n^{f_i-1})$.
- (c) Independence property for uniform spanning tree of K_n . Deduce from (b) that if H_1 and H_2 are vertex-disjoint subgraphs of K_n , then for a uniformly random spanning tree T of K_n , the events $H_1 \subseteq T$ and $H_2 \subseteq T$ are independent.

ps4∗

(d) Packing rainbow spanning trees. Prove that there is a constant c > 0 so that for every edge-coloring of K_n where each color appears at most cn times, there exist at least cn edge-disjoint spanning trees, where each spanning tree has all its edges colored differently.

ps4

E14. Prove that there is a constant c > 0 so that if H is an n-vertex m-edge graph with maximum degree at most cn^2/m , then one can find two edge-disjoint copies of H in the complete graph K_n .

ps4∗

E15. Prove that there is a constant c > 0 so that every $n \times n$ matrix where no entry appears more than cn times contains cn disjoint Latin transversals.