INTRODUCCIÓN A LAS FPGAs LIBRES

Eladio Delgado Mingorance

27 de Abril de 2022

Modelo Procesador + Software

Procesador + Software

Circuito Digital (Hardware)

Alta	Complejidad	Depende de la tarea
------	-------------	---------------------

Alta **Fiabilidad** Óptima

Secuencial **Procesamiento** Paralelo

Tiempo Real 🗸

Eficiencia

¿Un circuito para cada tarea?

FPGA (Field Programable Gate Array)

La FPGA contiene elementos lógicos que podemos interconectar para sintetizar el circuito deseado. **Bitstream:** cada bit determina qué punto de las matrices de interconexión de elementos se activa, creando el circuito digital.

FPGA: Eficiencia, Procesamiento Paralelo, Simplicidad, Robustez... + Versatilidad

Evolución de la Tecnología de Semiconductor

Año	1971	1985	2004	2017	2020	2023
Tecnología (nm)	10000	1000	90	10	5	3

Datos actuales (2022):

- Entre 14 y 22 nm es estándar
- 4 y 5 nm en dispositivos móviles de gama alta
- Transistores por chip: https://en.wikipedia.org/wiki/Tr ansistor count

Avances en potencia de proceso

Aumento de frecuencia de reloj

HW en paralelo, HW dedicado (CPUs multicore, GPUs, Codecs HW...)

FPGA:

- Complementa el modelo CPU + Software
- Herramienta para aprender diseño digital

FPGAs Libres

Proyecto Icestorm (Clifford Wolf, 2015)

Juan González (Obijuan) crea la comunidad EPGAwars

Entorno gráfico de código abierto para diseño de circuitos digitales

Alhmabra II Placa FPGA Open Source

¡Gracias!

https://github.com/EladioDM/Slides

Eladio Delgado Mingorance www.alhambrabits.com @EladioDM

