New Model

March 16, 2016

Let e be the number of evening spots. $e \in [1, ..., 21]$

Let i be the course which have evening prelims; S,P, and T represents 1,2 and 3 prelims respectively. So, we would have $i \in S \cup P \cup T$.

For each
$$i \in S$$
, $S_i = \{S_j : S_j = \{e_j^1\}\}$ where $j = 1, ..., S_i$
For each $i \in P$, $P_i = \{P_j : P_j = \{e_j^1, e_j^2\}\}$ where $j = 1, ..., P_i$
For each $i \in T$, $T_i = \{T_j : T_j = \{e_j^1, e_j^2, e_j^3\}\}$ where $j = 1, ..., S_i$

Let X_{ik} be the course i has the k legal configuration of prelims. And we have $\sum_{k=1}^{K_i} X_{ik} = 1$ for i = 1, ..., C

$$y_{ii'e} = \begin{cases} 1, & i \text{ selects } e \in k \\ 0, & i' \text{ selects } e \in k' \end{cases}$$

So, we would have $X_{ik} + X_{i'k'} \le 1 + y_{ii'e}$ for each e and each $k \in K_i$, and $k' \in K_{i'}$ where e is in both k and k'. To generate conflicts, we would have $X_{ik} = 1$, $X_{i'k'} = 1$ and $e \in k \cap k'$. We denote it the number of conflicts as $n_{ii'}$.

Then, we would have $\sum_{i}\sum_{e\in k}n_{i}X_{ik}\leq L$. And the objective function would be $\sum_{e}\sum_{i}\sum_{i'}n_{ii'}y_{ii'e}$