Die langweiligste Lernvoraussetzung der Welt

Folien:

github.com/peter1328/presentations

Einbezug von Vorwissen/Vortest für:

- (1) Modellierung von Einfluss
- (2) Modellierung von Veränderung
- (3) Wichtigste Kovariate
- (4) Wichtigster Konfundierer

Within (L1) Nachtest Vortest Between (L2) Nachtest Vortest Unterstützung

The most important single factor influencing learning is what the learner already knows. Ascertain this and teach him accordingly!

David Ausubel

Optionen 1:

I'm impressed!

Gain Score/RMANOVA

Regression/ANCOVA

Optionen 1:

Gain Score/RMANOVA

Regression/ANCOVA Unterstüt-Unterstützung zung Gain Gain 0 Vortest Nachtest Nachtest Vortest

Optionen 1:

Gain Score/RMANOVA

Regression/ANCOVA

Unterstützung

Endogenität
/Dynamik

Vortest

1

Nachtest

- Kontrolle stabiler unkontrollierter

 Konfundierer
 - Common trend-Annahme
- (potentieller Verlauf der SuS mit hoher Unterstützung wäre unter wenig Unterstützung gleich wie jener der SuS mit wenig Unterstützung)

- + Keine Common trend- und Exogenitätsannahmen
- Alle Konfundierer müssen beobachtet sein

Vortest -> Unterstützung = 0 (keine Endogenität)

Optionen 2:

Haupteffekt

- + Einfacheres Modell und Schätzung
- Potentiell unrealistischer Annahme (Unterschätzung Standardfehler)
- Potentiell informative Effekte übersehen Go B (Interaktion qualifiziert/modifiziert den Haupteffekt)

Interaktion

- + Potentiell korrektes Modell
- Schwieriger zu schätzen;
 Respekt vor Überspezifikation?

Go Bayesian!

Siehe Edelsbrunner et al, 2024

Optionen 3:

Within-only Kontrolle für Vortest

- Modelliert between-Effekt in bestimmtem Ausmass mit
- Kann bei kontextuellem Effekt und Konfundierung mit Unterstützungs-Variable Bias durch Unterkontrolle erzeugen

Within-between Spezifikation

- + Potentiell korrektes Modell Rights et al., 2022
- Gefahr der Überkontrolle (Endogenität!)
- Schwieriger zu schätzen;
 Respekt vor Überspezifikation?
 Go Bayesian!

Siehe Castellano et al., 2014

Optionen 4:

Manifester Einbezug des Vortests

Latenter Einbezug des Vortests

Unterstützung

Gain

Vortest

Nachtest

- Einfacheres Modell und Schätzung
- Potentiell unrealistische Annahme (Messfehlerfreiheit)
- Unmodellierter Messfehler kann zu starkem Bias führen (z.B. Sengewald & Pohl, 2019)

- + Vermeidung von Messfehlerbias
- Schwieriger zu schätzen
- Starke theoretische Annahmen (aber siehe McNeish, 2021; Edelsbrunner, 2022)

Herrmann	RMANOVA ANCOVA	Haupt- Interaktion effekt	Within Within- /between	Manifest Latent X
Schulze	X	X	XX	X
Meschede		Kovari -aten	X	X

Berücksichtigung von Mehrebenstruktur in normalen (nichtmischverteilten) Modellen: Mehrebenmodell oder Cluster-robuste Standardfehler (siehe z.B. McNeish et al., 2017)

Berücksichtigung in Mischverteilungsmodellen: Hierarchische Klassenvariable zur Abbildung heterogener Klassengewichte über Schulklassen (siehe z.B. Flunger et al., 2021)

Kovariateneinbezug: ? (entgegen Markov-Annahme)! RMANOVA-/oder ANCOVA-Struktur?

Herrmann	RMANOVA ANCOVA	Haupt- Interaktion effekt	Within Within- /between	Manifest Latent X
Schulze	X	X	XX	X
Meschede		Kovari -aten	X	X

Gain scores: ANOVA-Ansatz; schliesst Dynamiken zwischen Unterrichtsgespräch und Selbstbez. Kog./Interesse aus (Lüdtke & Robitzsch, 2023)

-> Kausalitätsinteresse über Veränderungsfokussierte Forschungsfrage (ANCOVA modelliert auch Veränderung!)?

Normalized gains haben unbekannte Verteilungen und gewichten erreichung einfacher und schwieriger Items gleich

-> Alternative: Bayesanische zero-/one-inflated (or ordered) beta-regression?

Heiss, 2021; Kubinec, 2023

Theoretische Relevanz von (Cross-level) Interaktion?

-> Wie immer: Bayes:) Veenman et al., 2023

Einbezug auf L2: Vorsicht vor Endogenitäts-Dynamiken! Köhler et al., in Vorb.; entgegen Rights, 2022 + group-Mean Centering: R2-Anteile!

Herrmann	RMANOVA ANCOVA	Haupt- Interaktion effekt	Within Within- /between	Manifest Latent X
Schulze	X	X	XX	X
Meschede		Kovari -aten	X	X

Ausschluss von Vortestwerten nachvollziehbar begründet (EAP/PV Rel. .52; *Validitätsproblem?*)

Generell: Vorsicht bei Messfehlerbehafteten Kovariaten:

Bias! z.B. Sengewald & Pohl, 2019

Alternativen:

- 1) Latente Variable
- -> Anspruchsvolle Schätzung
- 2) Einfache Korrektur für Reliabilitätsminderung
- -> Starke Annahmen; Bayes (brms); siehe Veenman et al., 2023 (+ Bayes: Vorteil bei geringen ICCs)
- 3) Plausible Values (pot. Minderungskorrektur bei

Hintergrundmodell) siehe Monseur & Adams, 2009

- 4) Theoretische Erwägung: Interne Konsistenz von Inhaltswissen überhaupt erwünscht und realistisch?
- -> Retest-/Val.-Evidenz/VIF

Siehe Stadler et al., 2012; Edelsbrunner et al., in Vorb.

Nicola Meschede et al.

Science,
Sprachf., kog.
Fäh.

Konzeptwissen

Konzeptwissen

Adaptive

Gesprächs-

führung

Vorwissen modellieren - das geht doch ganz einfach? :)

Folien:

github.com/peter1328/presentations

beta regression brms—Google Search. (n.d.). Retrieved March 16, 2024, from https://www.google.com/search?client=firefox-b-d&q=beta+regression+brms
Castellano, K. E., Rabe-Hesketh, S., & Skrondal, A. (2014). Composition, Context, and Endogeneity in School and Teacher Comparisons. *Journal of Educational and Behavioral Statistics*, 39(5), 333–367. https://doi.org/10.3102/1076998614547576

Edelsbrunner, P. A. (2022). A model and its fit lie in the eye of the beholder: Long live the sum score. Frontiers in Psychology, 7.

Flunger, B., Trautwein, U., Nagengast, B., Lüdtke, O., Niggli, A., & Schnyder, I. (2021a). Using Multilevel Mixture Models in Educational Research: An Illustration with Homework Research. *The Journal of Experimental Education*, 89(1), 209–236. https://doi.org/10.1080/00220973.2019.1652137

Flunger, B., Trautwein, U., Nagengast, B., Lüdtke, O., Niggli, A., & Schnyder, I. (2021b). Using Multilevel Mixture Models in Educational Research: An Illustration with Homework Research. *The Journal of Experimental Education*, 89(1), 209–236. https://doi.org/10.1080/00220973.2019.1652137

Heiss, A. (n.d.). *A guide to modeling proportions with Bayesian beta and zero-inflated beta regression models*. Andrew Heiss. Retrieved March 16, 2024, from https://www.andrewheiss.com/blog/2021/11/08/beta-regression-guide/

Kubinec, R. (2023). Ordered beta regression: A parsimonious, well-fitting model for continuous data with lower and upper bounds. *Political Analysis*, *31*(4), 519–536. Lüdtke, O., & Robitzsch, A. (2023). ANCOVA versus Change Score for the Analysis of Two-Wave Data. *The Journal of Experimental Education*, 1–33. https://doi.org/10.1080/00220973.2023.2246187

McNeish, D., Stapleton, L. M., & Silverman, R. D. (2017). On the unnecessary ubiquity of hierarchical linear modeling. *Psychological Methods*, 22(1), 114. McNeish, D., & Wolf, M. G. (2020). Thinking twice about sum scores. *Behavior Research Methods*, 52(6), 2287–2305. https://doi.org/10.3758/s13428-020-01398-0

Monseur, C., & Adams, R. (2009). Plausible values: How to deal with their limitations. *Journal of Applied Measurement*, 10(3).

https://orbi.uliege.be/bitstream/2268/120934/1/JAM Monseur Adams.pdf

Rights, J. D. (2022). Aberrant distortion of variance components in multilevel models under conflation of level-specific effects. Psychological Methods. https://psycnet.apa.org/record/2023-06114-001

Sengewald, M.-A., & Pohl, S. (2019). Compensation and amplification of attenuation bias in causal effect estimates. *Psychometrika*, 84(2), 589–610.

Stadler, M., Sailer, M., & Fischer, F. (2021). Knowledge as a formative construct: A good alpha is not always better. New Ideas in Psychology, 60, 100832.

Veenman, M., Stefan, A. M., & Haaf, J. M. (2023). Bayesian hierarchical modeling: An introduction and reassessment. Behavior Research Methods.

https://doi.org/10.3758/s13428-023-02204-3