EXO-12-041 Approval [Backup]

E. Berry¹, S. Cooper², P. Rumerio², F. Santanastasio³

¹Brown University

²University of Alabama

 3 Rome

Tuesday, June 24, 2014

eejj preselection: electron p_T

Leading electron p_T

Second leading electron p_T

eejj preselection: jet p_T

Leading jet p_T

Second leading jet p_T

$e\nu jj$ preselection: electron p_T

$e\nu jj$ preselection: jet p_T

Leading jet p_T

Second leading jet p_T

$t\bar{t}$ background in eejj analysis: weights

Muon $ \eta $ range	Weight applied to $e\mu jj$ events
$0.0 < \eta \le 0.9$	${\cal C} = 0.458 \pm 0.005 \; ext{(stat)} \; \pm 0.005 \; ext{(syst)}$
$0.9 < \eta \le 1.2$	$\mathcal{C} = 0.458 \pm 0.005 \; (ext{stat}) \; \pm 0.005 \; (ext{syst}) \ \mathcal{C} = 0.409 \pm 0.005 \; (ext{stat}) \; \pm 0.005 \; (ext{syst})$
$1.2 < \eta \le 2.1$	$\mathcal{C} = 0.400 \pm 0.005 ext{ (stat) } \pm 0.005 ext{ (syst)}$

tt background in eejj analysis: triggers

HLT path	Run range		
HLT_Mu40_eta2p1_v9	190456 - 196531		
HLT_Mu40_eta2p1_v10	198063 - 199608		
HLT_Mu40_eta2p1_v11	199698 - 208686		

QCD background: triggers

HLT path	Run range	Effective $\mathcal{L}_{int}(pb^{-1})$
HLT_Photon30_CaloIdVL_v11	190456 - 190738	0.029672
HLT_Photon30_CaloIdVL_v12	190782 - 191419	0.086121
HLT_Photon30_CaloIdVL_v13	191691 - 196531	0.690924
HLT_Photon30_CaloIdVL_v14	198022 - 208686	2.043
HLT_Photon50_CaloIdVL_v7	190456 - 190738	0.231664
HLT_Photon50_CaloIdVL_v8	190782 - 191419	0.669828
HLT_Photon50_CaloIdVL_v9	191691 - 196531	5.374
HLT_Photon50_CaloIdVL_v10	198022 - 208686	15.894
HLT_Photon75_CaloIdVL_v10	190456 - 190738	1.385
HLT_Photon75_CaloIdVL_v11	190782 - 191419	4.019
HLT_Photon75_CaloIdVL_v12	191691 - 196531	32.243
HLT_Photon75_CaloIdVL_v13	198022 - 208686	95.363
HLT_Photon90_CaloIdVL_v7	190456 - 190738	2.769
HLT_Photon90_CaloIdVL_v8	190782 - 191419	8.038
HLT_Photon90_CaloIdVL_v9	191691 - 196531	69.509
HLT_Photon90_CaloIdVL_v10	198022 - 208686	198.024
HLT_Photon135_v4	190456 - 190738	96.404
HLT_Photon135_v5	190782 - 191419	398.151
HLT_Photon135_v6	191691 - 196531	543.603
HLT_Photon135_v7	198022 - 208686	12581
HLT_Photon150_v1	190456 - 190738	96.404
HLT_Photon150_v2	190782 - 191419	398.151
HLT_Photon150_v3	191691 - 196531	4824.
HLT_Photon150_v4	198022 - 208686	14304

QCD background: closure test method (1/2)

- Define closure test sample:
 - Single photon trigger (same as calculation)
 - Exactly two loose electrons
 - At least one jet
 - lacksquare $m_{
 m ee} > 110$ GeV, to improve QCD purity
 - E_T < 100 GeV, to improve QCD purity
- Subtract contribution from non-QCD processes using MC
- Predict N(events) with exactly one HEEP electron and at least one jet with fake rate:

$$N_{eejj}^{QCD} = \sum_{\substack{\text{loose} \\ eeij \text{ events}}} P(e_{1, \text{ tight}}|e_{1, \text{ loose}}: p_{T}, \eta) \cdot P(e_{2, \text{ tight}}|e_{2, \text{ loose}}: p_{T}, \eta)$$

QCD background: closure test method (2/2)

- Finally, compare predicted vs observed N(events) with exactly one HEEP electron:
 - N(predicted) = 13100 ± 400
 - $N(observed) = 12100 \pm 400$
 - $N(predicted)/N(observed) = 1.08 \pm 0.05$
- After applying $S_T = p_T(e_1) + p_T(e_2) + p_T(j) > 450$ GeV (comparable to final selection S_T cut), agreement worsens:
 - $N(predicted) = 599 \pm 53.6$
 - $N(observed) = 876 \pm 46.7$
 - $N(predicted)/N(observed) = 1.46 \pm 0.15$
- \blacksquare Best agreement given 1σ fluctuation at $S_{\rm T}>450$ is 30%, so we assign a systematic uncertainty of 30% per electron to the QCD background estimate.

QCD background: closure test plots

Leading electron p_T

S_{T}

Run period dependence

Events passing $e\nu jj$ $M_{LQ}=650$ GeV selection

Events passing final selection in both analyses are evenly distributed in time

Data-driven background using muons: overview

- Use muon events to simulate electron events:
 - lacktriangle eejj analysis: use $\mu\mu jj$ events

$$N_{ ext{ee}jj}^{ ext{data}} = \mathcal{C}_{\mu\mu jj} imes N_{\mu\mu jj}^{ ext{data}} = \left(rac{\epsilon_{ejj}^{ ext{trigger}}}{\epsilon_{\mu}^{ ext{trigger}}} imes rac{\epsilon_{eejj}^{ ext{reco/ID/Iso}}}{\epsilon_{\mu\mu jj}^{ ext{reco/ID/Iso}}}
ight) imes N_{\mu\mu jj}^{ ext{data}}$$

 \bullet $e\nu jj$ analysis: use $\mu\nu jj$ events

$$N_{e
u jj}^{
m data} = \mathcal{C}_{\mu
u jj} imes N_{\mu
u jj}^{
m data} = \left(rac{\epsilon_{ejj}^{
m trigger}}{\epsilon_{\mu}^{
m trigger}} imes rac{\epsilon_{e
u jj}^{
m reco/ID/Iso}}{\epsilon_{\mu
u jj}^{
m trigger}}
ight) imes N_{\mu
u jj}^{
m data}$$

- Still use QCD fake rate method to model "fake" electrons
- Only used as a cross-check!

Data-driven background using muons: eejj (1/2)

m_{ee} at *eejj* preselection

S_{T} at *eejj* preselection

- "Real electrons": eejj events with no fake electrons (modeled with $\mu\mu jj$)
- Difference in muon vs. electron p_T resolution ⇒ difference in m_{ee} peak

Data-driven background using muons: eejj (2/2)

M_{LQ}	LQ Signal	Real electrons (from data)	QCD (from data)	Data	Total Background
Presel	-	12399.1 ± 110.7	10.87 ± 0.10	12442	12410.0 ± 110.7
300	12855.1 ± 75.9	1146.7 ± 33.6	5.282 ± 0.052	1244	1152.02 ± 33.63
350	6137.3 ± 31.6	677.3 ± 25.8	3.215 ± 0.036	736	680.54 ± 25.84
400	2928.6 ± 14.2	353.0 ± 18.7	1.696 ± 0.023	389	354.66 ± 18.65
450	1429.7 ± 6.8	201.4 ± 14.1	0.890 ± 0.016	233	202.24 ± 14.10
500	727.5 ± 3.4	126.3 ± 11.2	0.485 ± 0.011	148	126.78 ± 11.16
550	389.2 ± 1.8	70.0 ± 8.3	0.2758 ± 0.0084	81	70.25 ± 8.30
600	213.96 ± 0.98	43.4 ± 6.5	0.1527 ± 0.0065	57	43.56 ± 6.54
650	119.31 ± 0.55	26.6 ± 5.1	0.0760 ± 0.0040	36	26.67 ± 5.12
700	69.09 ± 0.32	16.7 ± 4.1	0.0448 ± 0.0029	17	16.77 ± 4.06
750	40.86 ± 0.19	10.8 ± 3.3	0.0258 ± 0.0023	12	10.85 ± 3.26
800	24.81 ± 0.11	8.8 ± 2.9	0.0193 ± 0.0022	7	8.85 ± 2.94
850	15.147 ± 0.068	5.9 ± 2.4	0.0111 ± 0.0015	5	5.89 ± 2.40
900	9.303 ± 0.042	4.9 ± 2.2	0.0069 ± 0.0012	3	4.91 ± 2.19
950	5.770 ± 0.026	4.9 ± 2.2	0.00451 ± 0.00085	1	4.90 ± 2.19
1000	3.659 ± 0.017	2.0 ± 1.4	0.00374 ± 0.00082	1	1.97 ± 1.39
1050	2.442 ± 0.011	2.0 ± 1.4	0.00374 ± 0.00082	1	1.97 ± 1.39
1100	1.6055 ± 0.0068	2.0 ± 1.4	0.00374 ± 0.00082	1	1.97 ± 1.39
1150	1.0686 ± 0.0044	2.0 ± 1.4	0.00374 ± 0.00082	1	1.97 ± 1.39
1200	0.7108 ± 0.0029	2.0 ± 1.4	0.00374 ± 0.00082	1	1.97 ± 1.39

- 36 events observed at M(LQ) = 650
- MC analysis predicts 20.49 ± 2.14 (stat) ± 1.01 (syst)
- $lue{}$ DD analysis (this table) predicts 26.67 ± 5.12 (stat)

Data-driven background using muons: $e\nu jj$ (1/2)

$S_{\rm T}$ at $e\nu jj$ preselection

- "Real electrons": $e\nu jj$ events with no fake electrons (modeled with $\mu\nu jj$)
- $m_{T, e\nu}$ in $\mu\nu jj$ events reweighted to match data

Data-driven background using muons: $e\nu jj$ (2/2)

M_{LQ}	LQ Signal	Real electrons (from data)	QCD (from data)	Data	Total Background
Presel	-	99103.1 ± 323.9	5950.5 ± 20.1	105164	105053.6 ± 324.5
300	4641.6 ± 49.8	2346.6 ± 51.1	117.9 ± 1.5	2455	2464.50 ± 51.11
350	2112.1 ± 21.1	827.0 ± 29.3	59.11 ± 0.97	908	886.15 ± 29.31
400	945.8 ± 9.3	343.0 ± 18.4	32.88 ± 0.69	413	375.86 ± 18.38
450	457.5 ± 4.5	144.5 ± 11.8	14.13 ± 0.42	192	158.64 ± 11.81
500	226.7 ± 2.2	77.8 ± 8.6	7.76 ± 0.30	83	85.55 ± 8.60
550	118.2 ± 1.2	28.3 ± 5.2	3.89 ± 0.21	44	32.18 ± 5.17
600	64.65 ± 0.64	13.2 ± 3.5	2.29 ± 0.17	28	15.53 ± 3.54
650	36.25 ± 0.36	9.5 ± 3.0	1.18 ± 0.12	18	10.65 ± 3.00
700	21.18 ± 0.21	4.7 ± 2.1	0.85 ± 0.10	6	5.58 ± 2.12
750	12.56 ± 0.12	1.8 ± 1.3	0.514 ± 0.091	4	2.32 ± 1.28
800	7.412 ± 0.073	0.90 ± 0.90	0.317 ± 0.067	3	1.22 ± 0.90
850	4.591 ± 0.045	$0.000^{1.14}_{-0.00}$	0.117 ± 0.029	2	$0.117^{+1.140}_{-0.029}$
900	2.853 ± 0.028	$0.000^{1.14}_{-0.00}$	0.076 ± 0.024	1	$0.076^{+1.140}_{-0.024}$
950	1.791 ± 0.017	$0.000^{1.14}_{-0.00}$	0.069 ± 0.023	1	$0.069^{+1.140}_{-0.023}$
1000	1.272 ± 0.011	$0.000^{1.14}_{-0.00}$	0.069 ± 0.023	1	$0.069^{+1.140}_{-0.023}$
1050	0.8788 ± 0.0074	$0.000^{1.14}_{-0.00}$	0.069 ± 0.023	1	$0.069^{+1.140}_{-0.023}$
1100	0.6063 ± 0.0049	$0.000^{1.14}_{-0.00}$	0.069 ± 0.023	1	$0.069^{+1.140}_{-0.023}$
1150	0.4196 ± 0.0032	$0.000^{1.14}_{-0.00}$	0.069 ± 0.023	1	$0.069^{+1.140}_{-0.023}$
1200	0.2894 ± 0.0021	$0.000^{1.14}_{-0.00}$	0.069 ± 0.023	1	$0.069^{+1.140}_{-0.023}$

- 18 events observed at M(LQ) = 650
- MC analysis predicts 7.54 ± 1.20 (stat) ± 0.52 (syst)
- DD analysis (this table) predicts 10.65 ± 3.00 (stat)

Data-driven background using muons: limits

$$\beta = 1.0$$
: *eejj* analysis, μ -bkgd.

 $\beta = 0.5$: $e\nu jj$ analysis, μ -bkgd.

■ Expected limits: M_{LQ} < 980 (890) GeV for eejj ($e\nu jj$)

M_{LO} (GeV)

■ Observed limits: $M_{LQ} < 1015$ (825) GeV for eejj ($e\nu jj$)

- Data-driven predictions agree with MC predictions at final selection $(M_{LQ} = 650 \text{ GeV})$ within stat. uncertainties in both analyses
- Conclusion: Data-driven background prediction confirms MC background prediction
- However:
 - Data-driven prediction mean values are higher than MC
 - Data-driven stat uncertainty is larger than MC
 - So the significance of the excess with data-driven background estimates is less than the significance with MC background estimates
 - And the sensitivity of the analysis with data-driven background estimates is worse than the sensitivity with MC background estimates

Comparison with LQ2

M_{LQ}	eejj Total Background	<i>eejj</i> Data	$\mu\mu jj$ Total Background	μμjj Data
300	1444.96 ± 13.65	1539	$1415 \pm 20 \pm 45 \text{ (syst)}$	1461
350	726.71 ± 9.78	759	$730 \pm 15 \pm 16 (\text{syst})$	714
400	399.70 ± 7.23	423	$384.8 \pm 10.7 \pm 9.3 \text{ (syst)}$	394
450	208.02 ± 5.18	235	$205.3 \pm 7.6 \pm 5.5 \text{ (syst)}$	210
500	118.74 ± 4.00	145	$121.6 \pm 5.7 \pm 4.8 \text{ (syst)}$	128
550	71.50 ± 3.25	94	$68.1 \pm 4.2 \pm 2.7 \text{ (syst)}$	75
600	42.44 ± 2.40	67	$44.7 \pm 3.4 \pm 2.0 \text{ (syst)}$	44
650	26.99 ± 1.93	43	$28 \pm 2.6 \pm 1.3 \text{ (syst)}$	24
700	16.42 ± 1.52	22	$18.6 \pm 2.2 \pm 1.3 \text{ (syst)}$	15
750	10.27 ± 1.23	14	$9.32^{+1.29}_{-1.22}\pm 0.87{ m (syst)}$	11
800	5.08 ± 0.77	10	$6.53^{+1.2}_{-1.13}\pm0.85$ (syst)	9
850	2.97 ± 0.54	4	$3.88^{+1.0}_{-0.92}\pm0.67~{ m (syst)}$	5
900	1.71 ± 0.41	3	$1.47^{~+0.81}_{~-0.37}\pm0.43$ (syst)	3
950	1.04 ± 0.31	1	$0.83^{+0.91}_{-0.26}\pm0.29$ (syst)	1
1000	0.62 ± 0.24	0	$0.383^{~+0.894}_{~-0.171}\pm0.031$ (syst)	0
1050	0.62 ± 0.24	0	$0.383^{+0.894}_{-0.171}\pm0.031$ (syst)	0
1100	0.62 ± 0.24	0	$0.383^{~+0.894}_{~-0.171} \pm 0.031 \text{ (syst)}$	0
1150	0.62 ± 0.24	0	$0.383^{~+0.894}_{~-0.171} \pm 0.031 \text{ (syst)}$	0
1200	0.62 ± 0.24	0	$0.383~^{+0.894}_{-0.171}~\pm~0.031~{ m (syst)}$	0

- Apply S_{T} , $m_{\mathsf{e}i}^{\mathsf{min}}$, and $m_{\ell\ell}$ cuts from LQ2 (EX0-12-042)
- lacktriangle eejj bkgd prediction, $\mu\mu jj$ bkgd prediction, and $\mu\mu jj$ data agree well
- Discrepancy comes from *eejj* data

Electron η vs. ϕ

Electrons in events passing final selection in both analyses are evenly distributed in the ECAL

 $m_{\text{T. e}\nu}$ before reweighting

Can we improve agreement in these distributions by reweighting?

Reweighting method

- Find weight functions for both $\not\!\!E_T$ and $m_{T,e\nu}$ at $e\nu jj$ preselection:
 - 1 Do not apply any W^{\pm} +jets or $t\bar{t}$ rescaling
 - Find and apply weight function for first
 - 3 Then find and apply weight function for $m_{T, e\nu}$
 - Finally, find and apply new W^{\pm} +iets and $t\bar{t}$ rescaling
- Compare $m_{T,e\nu}$ and $\not\!\!E_T$ dists. before and after reweighting
- Repeat final selection for both *eejj* and $e\nu jj$ analysis

Find $\not\!\!E_{\rm T}$ function

$\not\!\!E_{T}$ before reweighting

∉_T reweighting function

Get reweighting function by fitting:

$$\mathcal{R}_1(\not\!\!E_T) = \frac{N_{i,\mathsf{Data}}(\not\!E_T) - N_{i,\mathsf{QCD}}(\not\!E_T)}{N_{i,\mathsf{W+jets}}(\not\!E_T) + N_{i,t\bar{t}}(\not\!E_T) + N_{i,\mathsf{Other}}(\not\!E_T)}$$

$\not\!\!E_{\rm T}$ function details

■ Use the following linear fit function to define E_T reweighting:

$$w_1(\not\!\!E_{\mathsf{T}}) = a_0 + a_1 \cdot \not\!\!E_{\mathsf{T}}$$

■ Fit returns the following parameters:

Parameter symbol	Parameter title	Mean value	Uncertainty
a_0	Linear offset	0.989	0.0112
a_1	Linear slope	$-9.67 \cdot 10^{-4}$	$8.86 \cdot 10^{-5}$

Brown University

Apply ₽_T function

Find $m_{T. e\nu}$ function

$N(Events) \times (10.0)/(bin width)$ CMS Preliminary W + iets $\sqrt{s} = 8 \text{ TeV}$ Other background QCD multijets M., (e. PFMET) (GeV) [Preselection]

E_T reweighting function

Get reweighting function by fitting:

$$\mathcal{R}_2(\textit{m}_{\mathsf{T, e}\nu}) = \frac{\mathsf{N}_{\textit{i},\mathsf{Data}}(\textit{m}_{\mathsf{T, e}\nu}) - \mathsf{N}_{\textit{i},\mathsf{QCD}}(\textit{m}_{\mathsf{T, e}\nu})}{\mathsf{N}_{\textit{i},\mathsf{W}+\mathsf{jets}}(\textit{m}_{\mathsf{T, e}\nu}) + \mathsf{N}_{\textit{i},\mathsf{t}\bar{\mathsf{t}}}(\textit{m}_{\mathsf{T, e}\nu}) + \mathsf{N}_{\textit{i},\mathsf{Other}}(\textit{m}_{\mathsf{T, e}\nu})}$$

$m_{\text{T. e}\nu}$ function details

■ Use the following linear fit function to define $m_{\rm T}$ _{ev} reweighting:

$$w_2(m_{\mathsf{T, e}\nu}) = b_0 + b_1 \cdot m_{\mathsf{T, e}\nu} + B \cdot e^{-\frac{1}{2} \cdot \left(\frac{m_{\mathsf{T, e}\nu} - \mu}{\sigma}\right)^2}$$

■ Fit returns the following parameters:

Parameter symbol	Parameter title	Mean value	Uncertainty
<i>b</i> ₀	Linear offset	.942	0.0181
b_1	Linear slope	$3.82 \cdot 10^{-4}$	$1.68 \cdot 10^{-4}$
В	Gaussian constant	0.104	0.0279
μ	Gaussian width	38.2	11.6
σ	Gaussian mean	162	10.1

Rescale W^{\pm} +jets and $t\bar{t}$

- First apply $w_{\text{total}} = w_1(\not\!\!E_T) \cdot w_2(m_{T,e\nu})$ to each MC event
- Then rescale W^{\pm} +jets and $t\bar{t}$ as before
- Note: no W $^{\pm}$ +jets and $t\bar{t}$ rescaling applied so far

$$\begin{array}{ll} \textit{N}_{\text{data}}^{1} = \mathcal{R}_{t\bar{t}} \textit{N}_{t\bar{t}}^{1} + \mathcal{R}_{\textit{W}} \textit{N}_{\textit{W}}^{1} + \textit{N}_{\text{QCD}}^{1} + \textit{N}_{\text{Others}}^{1} & \mathcal{R}_{t\bar{t}} = 1.08 \pm 0.03 \text{ (stat)} \pm 0.01 \text{ (syst)} \\ \textit{N}_{\text{data}}^{2} = \mathcal{R}_{t\bar{t}} \textit{N}_{t\bar{t}}^{2} + \mathcal{R}_{\textit{W}} \textit{N}_{\textit{W}}^{2} + \textit{N}_{\text{QCD}}^{2} + \textit{N}_{\text{Others}}^{2} & \mathcal{R}_{\textit{W}} = 0.97 \pm 0.02 \text{ (stat)} \pm 0.01 \text{ (syst)} \end{array}$$

Brown University

Apply $\not\!E_T$ and $m_{T, e\nu}$ reweights and rescale MC

Apply μ and $m_{\parallel,\,e u}$ reweights and rescale in

Agreement much better in both $\not\!\!E_T$ and $m_{T, e\nu}$ distributions after reweighting and rescaling

$e\nu jj$ final selection before reweighting

M_{LQ}	LQ Signal	W [±] +jets	tī	QCD	Other	Data	Total background
Presel	-	58284.8 ± 197.0	32196.7 ± 69.8	5950.5 ± 20.1	6590.8 ± 231.6	105164	103022.8 ± 312.6
300	4765.5 ± 51.1	822.1 ± 22.4	1191.3 ± 12.0	117.9 ± 1.5	210.5 ± 7.7	2455	2341.90 ± 26.58 ± 163.90 (syst)
350	2168.4 ± 21.6	275.9 ± 14.5	441.4 ± 7.2	59.11 ± 0.97	102.1 ± 5.4	908	878.55 ± 17.08 ± 58.66 (syst)
400	971.1 ± 9.6	110.4 ± 7.8	184.2 ± 4.7	32.88 ± 0.69	51.5 ± 3.8	413	378.98 ± 9.91 ± 24.79 (syst)
450	469.7 ± 4.6	53.1 ± 5.8	74.7 ± 3.0	14.13 ± 0.42	25.7 ± 2.7	192	$167.64 \pm 7.06 \pm 11.01 \text{ (syst)}$
500	232.7 ± 2.3	20.5 ± 3.3	34.4 ± 2.0	7.76 ± 0.30	15.3 ± 2.1	83	$77.99 \pm 4.41 \pm 4.83 \text{ (syst)}$
550	121.4 ± 1.2	8.6 ± 1.8	14.9 ± 1.4	3.89 ± 0.21	7.8 ± 1.6	44	35.24 ± 2.76 ± 2.18 (syst)
600	66.37 ± 0.66	2.3 ± 1.0	7.08 ± 0.93	2.29 ± 0.17	4.6 ± 1.2	28	$16.27 \pm 1.84 \pm 0.96 \text{ (syst)}$
650	37.22 ± 0.37	0.41 ± 0.29	3.82 ± 0.70	1.18 ± 0.12	2.13 ± 0.92	18	$7.54 \pm 1.20 \pm 0.52 \text{ (syst)}$
700	21.74 ± 0.21	0.41 ± 0.29	2.61 ± 0.60	0.85 ± 0.10	0.58 ± 0.24	6	$4.45 \pm 0.71 \pm 0.34 \text{ (syst)}$
750	12.90 ± 0.13	$0.00^{+0.94}_{-0.00}$	1.75 ± 0.47	0.514 ± 0.091	0.27 ± 0.15	4	$2.535^{+1.062}_{-0.504} \pm 0.20 \text{ (syst)}$
800	7.610 ± 0.075	$0.00^{+0.94}_{-0.00}$	1.10 ± 0.37	0.317 ± 0.067	0.27 ± 0.15	3	$1.696^{+1.019}_{-0.404}\pm0.13$ (syst)
850	4.713 ± 0.046	$0.00^{+0.94}_{-0.00}$	0.90 ± 0.34	0.117 ± 0.029	0.140 ± 0.087	2	$1.153^{+0.999}_{-0.353}\pm0.08$ (syst)
900	2.929 ± 0.028	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.076 ± 0.024	0.084 ± 0.069	1	$0.530^{+0.962}_{-0.226} \pm 0.04 \text{ (syst)}$
950	1.839 ± 0.018	0.00+0.94	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226} \pm 0.04 \text{ (syst)}$
1000	1.306 ± 0.012	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226} \pm 0.04 \text{ (syst)}$
1050	0.9022 ± 0.0076	0.00+0.94	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226} \pm 0.04 \text{ (syst)}$
1100	0.6225 ± 0.0050	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226}\pm0.04$ (syst)
1150	0.4308 ± 0.0032	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226} \pm 0.04 \text{ (syst)}$
1200	0.2971 ± 0.0022	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226} \pm 0.04 \text{ (syst)}$

Reweighting study

$e \nu j j$ final selection after reweighting

M_{LQ}	W+Jets	t₹	QCD	Other	Data	Total BG
Presel	59725.3 ± 201.9	33176.5 ± 71.7	5950.5 ± 20.1	5943.8 ± 205.5	105164	104796.0 ± 297.6
300	859.6 ± 23.1	1233.0 ± 12.4	117.9 ± 1.5	187.6 ± 6.907	2455	2398.04 ± 27.16
350	280.4 ± 14.4	446.3 ± 7.3	59.11 ± 0.97	88.6 ± 4.649	908	874.28 ± 16.83
400	108.5 ± 7.7	180.6 ± 4.6	32.88 ± 0.69	43.7 ± 3.229	413	365.71 ± 9.55
450	50.5 ± 5.5	70.8 ± 2.8	14.13 ± 0.42	21.3 ± 2.257	192	156.75 ± 6.62
500	19.0 ± 3.0	31.6 ± 1.9	7.76 ± 0.30	12.4 ± 1.734	83	70.81 ± 3.93
550	7.9 ± 1.7	13.3 ± 1.2	3.89 ± 0.21	6.3 ± 1.288	44	31.36 ± 2.43
600	2.2 ± 0.9	6.13 ± 0.80	2.29 ± 0.17	3.5 ± 0.959	28	14.08 ± 1.57
650	0.43 ± 0.30	3.22 ± 0.59	1.18 ± 0.12	1.59 ± 0.736	18	6.43 ± 1.00
700	0.43 ± 0.30	2.17 ± 0.50	0.85 ± 0.10	0.35 ± 0.150	6	3.80 ± 0.61
750	$0.00^{+0.94}_{-0.00}$	1.49 ± 0.41	0.514 ± 0.091	0.117 ± 0.061	4	$2.116^{+1.025}_{-0.420}$
800	$0.00^{+0.94}_{-0.00}$	0.87 ± 0.30	0.317 ± 0.067	0.116 ± 0.061	3	$1.308^{+0.986}_{-0.313}$
850	0.00+0.94	0.70 ± 0.27	0.117 ± 0.029	0.054 ± 0.032	2	$0.874^{+0.975}_{-0.278}$
900	0.00+0.94	0.27 ± 0.16	0.076 ± 0.024	0.019 ± 0.012	1	$0.366^{+0.948}_{-0.159}$
950	0.00+0.94	0.27 ± 0.16	0.069 ± 0.023	0.019 ± 0.012	1	$0.359^{+0.948}_{-0.159}$
1000	0.00+0.94	0.27 ± 0.16	0.069 ± 0.023	0.019 ± 0.012	1	$0.359^{+0.948}_{-0.159}$
1050	0.00+0.94	0.27 ± 0.16	0.069 ± 0.023	0.019 ± 0.012	1	$0.359^{+0.948}_{-0.159}$
1100	0.00+0.94	0.27 ± 0.16	0.069 ± 0.023	0.019 ± 0.012	1	$0.359^{+0.948}_{-0.159}$
1150	$0.00^{+0.94}_{-0.00}$	0.27 ± 0.16	0.069 ± 0.023	0.019 ± 0.012	1	$0.359^{+0.948}_{-0.159}$
1200	$0.00^{+0.94}_{-0.00}$	0.27 ± 0.16	0.069 ± 0.023	0.019 ± 0.012	1	$0.359^{+0.948}_{-0.159}$

- Discrepancy at 650 selection increases after reweighting
- No change made to the analysis

eejj extra plots

eνjj extra plots

eejj N-1 plots: M(LQ) = 450 selection

eejj N-1 plots: M(LQ) = 650 selection

$e\nu jj$ N-1 plots: M(LQ)=450 selection

$e\nu jj$ N-1 plots: M(LQ) = 650 selection

