Módulo Practico

Introducción a Redes de Creencia Bayesianas y el programa NETICA

Curso de Posgrado: "Redes Bayesianas para la toma de decisiones para el manejo y conservación de recursos naturales."

Andrea P. Goijman goijman.andrea@inta.gob.ar

Instituto Nacional de Tecnología Agropecuaria Argentina

¿Por qué son complejos los problemas de manejo de recursos naturales?

Cuantificación y valoración de procesos de un sistema socio-ecológico

- Variedad de fuentes de información (investigaciones, extrapolaciones, opiniones de expertos y locales – cualitativa y cuantitativa)
- Saber local (falta documentación)
- Valores y necesidades de lo actores locales (contexto dependiente)
- Múltiples fuentes de incertidumbre

Entendimiento de procesos ecológicos (hipótesis)

Variabilidad climática

Mediciones de efectos de practicas de manejo

Extrapolaciones a mayores escalas

El saber local es fundamental, pero variable

Lingüística

¿Cuál puede ser un enfoque metodológico para abordarlos?

Contexto-Específico

Múltiples dimensiones

Integración de complejidad de procesos

Modelos explícitos que permitan proyección de consecuencias

Incertidumbre (ej. probabilidades)

Múltiples fuentes de información

Compromisos y sinergias

Integrar necesidades y valores de los actores

ORIGEN DE INFERENCIA BAYESIANA

Reverendo Thomas Bayes

Estadístico, filósofo y teólogo del siglo XVIII
 Nacido en 1701 (o 1702?) - 1761, Londres (o Hertfordshire?) Inglaterra

LII. An Essay towards solving a Problem in the Doctrine of Chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S.

Thomas Bayes (1763) publica su hoy famoso teorema o regla.

Bayes dedujo Pr(A|B)*Pr(B) = Pr(B|A)*Pr(A) a partir de las probabilidades de eventos condicionales.

TEOREMA DE BAYES

Probabilidades Condicionales

La probabilidad de un evento <u>dado</u> que sabemos que el otro ejemplo ocurrió

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A|B) \times P(B) = P(A \cap B)$$

$$P(B|A) \times P(A) = P(A \cap B)$$

$$P(B|A) \times P(A) = P(A|B) \times P(B)$$

$$P(B|A) = \frac{P(A|B) \times P(B)}{P(A)}$$

$$Pr(hip ext{otesis}|datos) = Pr\frac{(datos|hip ext{otesis})}{Pr(datos)} * Pr(hip ext{otesis})$$

- Modelo gráfico que representa relaciones probabilísticas entre variables.
- Utiliza el teorema de Bayes para actualizar las probabilidades a medida que se obtiene nueva evidencia, lo que las convierte en una parte integral de los métodos de inferencia bayesiana.
- Por lo tanto, reciben su nombre en honor a Thomas Bayes y su trabajo pionero en la teoría de la probabilidad.

- Se basan en el **concepto de probabilidad condicional**. Estas redes modelan las relaciones probabilísticas entre variables utilizando gráficos dirigidos acíclicos (DAG).
- La probabilidad condicional es fundamental en las redes bayesianas porque cada nodo representa una variable aleatoria que está condicionada por sus nodos padres.

- La probabilidad condicional se utiliza para expresar la probabilidad de que un nodo tome un valor dado sus nodos padres.
- Las redes bayesianas utilizan la probabilidad condicional para modelar cómo las variables aleatorias dependen unas de otras en un contexto probabilístico.

- Modelos gráficos direccionados, de relaciones causa-efecto entre variables aleatorias (DAG).
- Permiten la evaluación de compromisos y sinergias entre variables
- Cálculo de probabilidades condicionales y manejo de incertidumbre
- Integra información cualitativa y cuantitativa

- Dependencia direccionada de las variables (nodos padres e hijos) indicadas con flechas y cuantificadas con tablas de probabilidad condicional (TPCs)
- Acíclico (Un nodo no puede influenciarse a sí mismo)

(TPCs)

Múltiples Integración de dimensiones complejidad Contextode procesos **Específico** Incertidumbre (ej. Múltiples fuentes probabilidades) Modelos explícitos que de información permitan proyección de consecuencias **Compromisos y** sinergias Integrar necesidades y valores de los actores

Cuándo utilizar las Redes Bayesianas

- algunos requisitos clave -

- Las variables y eventos del problema deben estar bien definidas.
- Conocer las relaciones causales entre variables, las probabilidades condicionales para cuantificarlas y las utilidades asociadas con las decisiones alternativas (cuando están presentes)
- Incertidumbre asociada con al menos algunas de las relaciones entre variables.

(Kjærulff & Madsen, 2008)

Diagramas de influencia

- Las RB pueden o no ser un diagrama de influencia
- DI es un modelo conceptual que conecta acciones con objetivos
- GRAFICAMENTE muestra las principales relaciones causales entre variables de importancia para el manejador.
- DI puede ser solo conceptual.
- Si la RB tiene nodos de decision y utilidad, es un DI

Pasos básicos para el armado de una RB

- Una red probabilistica consiste en dos componentes: Estructura y parámetros [i.e., probabilidades condicionales y utilidades (estados de preferencia)].
- La estructura es referida como la parte CUALITATIVA (o red conceptual - RC), mientras que los parámetros son referidos como la parte CUANTITATIVA.
- Como los parámetros de un modelo son determinados por su estructura, el proceso de construccion de un modelo tiene dos etapas consecutivas:
 - 1ero las variables y las relaciones causales entre variables son identificadas, proveyendo la parte CUALITATIVA del modelo
 - 2do una vez que la RC fue determinada a traves de un proceso iterativo (evaluando las variables, independencia condicional, direccion de las conexiones), los valores de los parámetros son elicitados.

Armado de una red conceptual

Fig. 6.3 Typical overall causal structure of a probabilistic network

Uso de RB en modelado ambiental

Fig. 3. Bayesian networks publications in the last two decades.

- Evaluación de compromisos (SE, productividad vs conservación, uso de la tierra, etc)
- Incorporar incertidumbre asociada a sistemas naturales y sociales
- Integra nuevas variables o estados. Permite explorar distintos escenarios y opciones alternativas
- Acomodan impactos de creencias y preferencias en el proceso de decisión, uniendo diversas fuentes de evidencia Integra información cualitativa y cuantitativa
- Representación grafica es útil cuando se quiere facilitar el trabajo con actores, especialmente no profesionales (pero no exclusivo)

(Aguilera et al. 2011)

Netica

Netica (www.norsys.com/netica.html)

Redes de Creencias Bayesianas (BBN)

- · Una representación gráfica de problemas de decisión
- Permite la actualización Bayesiana
- Incorpora incertidumbre
- Calcula el valor esperado de cada decisión

Problema

Necesidad de proveer recomendaciones de manejo para producir soja integrando la conservación de aves, con los valores y necesidades de productores agrícolas en el departamento Paraná, Entre Ríos.

OBJETIVOS

Objetivos

Fundamentales

- 1. Maximizar bienestar de productores
- 2. Maximizar presencia aves insectívoras
- 3. Minimizar costos de manejo

Construyendo una red usando Netica

- Agregar un nodo de variable ("nature node") para cada uno de los objetivos (circulo amarillo)
- Modificar las propiedades de cada nodo (doble clic en el nodo)

- Name: sencillo y sin espacios
- Title: más descriptivo (no obligatorio)
- Variable "discreta" o "continua"
- Menu "Description": En el espacio
 Blanco bajo **Description**, pueden
 Hacerse aclaraciones

Para un nodo DISCRETO

- **States:** Nombre corto y sin espacios de cada estado (Ej. "bajo", "medio", "alto")
- State Titles: Nombre de cada estado (opcional)
- Equation: Va a depender de los nodos "PADRES" y puede ser una probabilidad condicional o una ecuación.
- **State numbers:** Es el valor numérico de cada estado (*fundamental si ese nodo va a ser utilizado en la ecuación de un nodo HIJO*)

Para un nodo CONTINUO

 Discretization (en lugar de State numbers): Intervalos numéricos de una variable continua. Tener en cuenta el número de intervalos para definir el número de estados.

Agregar objetivos...

Discreto

	aves		
bajo	25.0		
mediobajo	25.0		
medio	25.0		
alto	25.0		

Continuo

costo	(u\$s)
0 to 300	20.0
300 to 600	20.0
600 to 900	20.0
900 to 1200	20.0
1200 to 4981	20.0

Continuo

Bie	enesta	r	
bajo mediobajo	25.0 25.0		
medio	25.0		
alto	25.0		

Objetivos medios

- 1. Maximizar bienestar de productores
 - Maximizar rendimiento soja
 - Minimizar contaminación x insecticidas
- 2. Maximizar presencia aves insectívoras
 - Aves en centro
 - Aves en bordes
 - Aumentar vegetación en bordes
- 3. Minimizar costos de manejo

Armar jerarquía de objetivos

Continuar agregando objetivos medios

Construimos una jerarquía de objetivos

ALTERNATIVAS

Alternativas - ¿Qué hacemos y cómo?

- 1. Árboles nativos en bordes (¿plantar? ¿cuidar? ¿no manejar?)
- Minimizar insecticidas

Combinaciones de los niveles

Tabla 1. Alternativas de decisión para alcanzar máxima ocupación de aves y bienestar de productores locales, minimizando costos en Entre Ríos, Argentina. Las alternativas son una combinación de implementar una franja de vegetación en el lote, aplicaciones de insecticidas y cómo manejar los árboles nativos en los bordes de los campos de cultivo. Ver texto para más detalles.

Decisión	Franja de vegetación	Bordes/Árboles	Insecticidas
1	Si	Dejar	Reducir
2	Si	Plantar	Reducir
3	Si	Mantener	Reducir
4	No	Dejar	Reducir
5	No	Plantar	Reducir
6	No	Mantener	Reducir
7	Si	Dejar	Igual
8	Si	Plantar	Igual
9	Si	Mantener	Igual
10*	No	Dejar	Igual
11	No	Plantar	Igual
12	No	Mantener	Igual

(*) Indica la alternativa de "no hacer nada".

Agregar nodo de decisión

IMPORTANTE!!

Sólo en redes de decisión va a haber un nodo de decisión (diagramas de influencia)

CONSECUENCIAS

Tablas de probabilidad condicional (CPT)

Agregamos consecuencias

1) "A mano": valores ingresados manualmente

Ctrl + v en una hoja de Excel De esta manera podemos llenar las tablas en Excel e ir guardando para luego copiar

				Barra de fórmulas											
А	В	С		Dania de Torridas	E	F	G	Н	1	J	K	L	М	N	0
to 100	100 to 200	200 to 300		300 to 400	400 to 600	600 to 800	900 to 1000	1000 to 200	0 2000 to 4981	inc	decision	size	tree1	normant	managa
10 100	0		0.2	300 to 400			0						tree1	percent 0 nothing	manage
	0.1	0.8	0.2	0		0	0		0 0		0 franja_rins_ 0 franja rins			0 nothing	
	0.2	0.8	0.5			0	0		0 0		0 franja_rins_	-		0 nothing	
		0.9	0.1												1/
	0			0		0	0		0 0		0 franja_rins_			0 nothing 0 half	10
	0.1	0.7	0.2	0		0	0		0 0		0 franja_rins_	-		0 half	
	0	0.9	0.1	0		0	0		0 0		0 franja_rins_	1			
	0.1	0.8	0.1	0		0	0		0 0		0 franja_rins_			0 half	
	0.3	0.6	0.1	0		0	0	-	0 0		0 franja_rins_			0 half	10
	0.1	0.8	0.1	0		0	0		0 0		0 franja_rins_	-		0 whole	
	0.1	0.7	0.2	0		0	0		0 0		0 franja_rins_	4		0 whole	
	0.1	0.7	0.2	0		0	0		0 0		0 franja_rins_			0 whole	
	0.1	0.8	0.1	0		0	0		0 0		0 franja_rins_			0 whole	10
	0	1	0	·		0	0		0 0		0 franja_rins_			1 nothing	
	0.1	0.9	0	0		0	0		0		0 franja_rins_	-		1 nothing	
	0.1	0.7	0.2	0		0	0		0 0		0 franja_rins_			1 nothing	
	0	0.8	0.2	0		0	0		0 0		0 franja_rins_			1 nothing	10
	0.1	0.8	0.1	0		0	0		0 0		0 franja_rins_			1 half	
	0.2	0.6	0.2	0		0	0	0	0 0		0 franja_rins_			1 half	
	0.2	0.8	0	0		0	0	0	0 0		0 franja_rins_			1 half	
	0.2	0.8	0	0		0	0	0	0 0		0 franja_rins_	c4 to 15		1 half	10
	0.1	0.8	0.1	0		0	0	0	0 0		0 franja_rins_	(4 to 15		1 whole	
	0	0.8	0.2	0		0	0	0	0 0		0 franja_rins_	c4 to 15		1 whole	
	0.2	0.6	0.2	0		0	0	0	0 0		0 franja_rins_	c4 to 15		1 whole	
	0	1	0	0		0	0	0	0 0		0 franja_rins_	c4 to 15		1 whole	10
	0.1	0.9	0	0		0	0	0	0 0		0 franja rins	(4 to 15		3 nothing	

Ecuaciones – consideraciones generales

- Siguen los standards comunes de ecuaciones matemáticas, y son similares a la programación en Java, C or C++.
- Algunos operadores y funciones más communes +, -, *, /, min, abs, sin, etc.
- Se usan paréntesis para agrupar.

```
X (Vel, dt, sigma) = ...
```

- La parte de la ecuación a la izquierda del "igual" consiste en el nombre del nodo y en () una lista de los nodos padres
- Errores: Si hay algún error de sintaxis, Netica va a dar un alerta con el mensaje de error (se puede mover la caja de alerta y cliquear el título de la caja de propiedades del nodo. De esta manera el cursor se ubicará donde se encuentre el error).
- Comentarios: todo entre puede ser un comentario /* y */ o // al final de la línea.

Ecuaciones

Escribir ecuación en las propiedades del nodo

bienestar (cosecha, ins2) = $((cosecha - 1800)/(2576 - 1800))^*0.6 - ins2^*0$

- Cerrar
- > Click en Equation To Table

Estandarizo el valor para que sea comparable con "ins" y hago un promedio ponderado

IMPORTANTE!!

Como el resultado de este nodo es numérico, tengo que ponerle valores a cada estado!!

Escribir ecuación en las propiedades del nodo

bienestar (cosecha, ins2) = ((cosecha-1800)/(2576-1800))*0.6 - ins2*0.4

Ecuaciones CONDICIONALES determinísticas

 Escribir ecuación en las propiedades del nodo

```
birds (acenter, avesborde) =
((avesborde==no) && (acenter==yes))?1:
((avesborde==yes) && (acenter==no))?2:
((avesborde==yes) && (acenter==yes))?3:0
```

- Cerrar
- Click en Equation To Table
- Chequeo que la Tabla este completa

Ecuaciones CONDICIONALES determinísticas

```
birds (acenter, avesborde) =
((avesborde==no) && (acenter==yes))?1:
((avesborde==yes) && (acenter==no))?2:
((avesborde==yes) && (acenter==yes))?3:0
```

Simbología

```
(avesborde==no) Si "avesborde" es no
&&
    y
(avescentro==si) Si "avescentro" es si
? entonces
1 el Resultado es
: sino
0 el resto es 0
```


Ecuaciones CONDICIONALES probabilísticas

> Ej. Se incorpora la incertidumbre (Ej. Incertidumbre estructural, Hipótesis)

Ecuaciones PROBABILÍSTICAS

Escribir ecuación en las propiedades del nodo

```
p (X | Y1, Y2) =
Y1==STATE1Y1? (X== STATE1X? funcion1:funcion2):
Y1==STATE2Y1? (X== STATE1X? funcion3:funcion3*Y2):
0
```

```
p (acenter | modelcent, ins2) =
modelcent==No_efecto? (acenter==yes? 1/(1+\exp(-2.74)): 1-(1/(1+\exp(-2.74))):
modelcent==Insecticida? (acenter==yes? 1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)))
1.873+0.99*ins2))))
:0
                                                                                                   OK
                                                                                          Apply
                                                           Node: acenter
                                                                                                  Close
                                                            Chance
                                                                          % Probability -
                                                                                          Reset
                                                           Modelos centro
                                                                         Insecticida
                                                                                               no
                                                                         Si
                                                           No efecto
                                                                                       93.935
                                                                                                6.065
                                                            No efecto
                                                                         No
                                                                                       93.935
                                                                                                6.065
                                                                         Si
                                                            Insecticida
                                                                                       70.744
                                                                                               29.256
                                                            Insecticida
                                                                         No
                                                                                       86.681
                                                                                               13.319
```

Ecuaciones PROBABILÍSTICAS

Escribir ecuación en las propiedades del nodo

```
p (X | Y1, Y2) =
Y1==STATE1Y1? (X== STATE1X? funcion1:funcion2):
Y1==STATE2Y1? (X== STATE1X? funcion3:funcion3*Y2):
0
```

```
p (acenter | modelcent, ins2) =
modelcent==No efecto? acenter==yes? 1/(1+exp(-2.74)): 1-(1/(1+exp(-2.74)))):
modelcent==Insecticida? (acenter==yes? 1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1+\exp(-1.873+0.99*ins2)):1-(1/(1
1.873+0.99*ins2))))
:0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               OK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Apply
                                                                                                                                                                                                                                                                                                                                                                   Node: acenter
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Close
                                                                                                                                                                                                                                                                                                                                                                      Chance
                                                                                                                                                                                                                                                                                                                                                                                                                                                             % Probability -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Reset
                                                                                                                                                                                                                                                                                                                                                                   Modelos centro
                                                                                                                                                                                                                                                                                                                                                                                                                                                    Insecticida
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      no
                                                                                                                                                                                                                                                                                                                                                                                                                                                    Si
                                                                                                                                                                                                                                                                                                                                                                    No efecto
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      93.935
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           6.065
                                                                                                                                                                                                                                                                                                                                                                     No efecto
                                                                                                                                                                                                                                                                                                                                                                                                                                                     No
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      93.935
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           6.065
                                                                                                                                                                                                                                                                                                                                                                                                                                                     Si
                                                                                                                                                                                                                                                                                                                                                                     Insecticida
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      70.744
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       29.256
                                                                                                                                                                                                                                                                                                                                                                     Insecticida
                                                                                                                                                                                                                                                                                                                                                                                                                                                     No
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      86.681
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      13.319
```

Ecuaciones PROBABILÍSTICAS condicionales

Escribir ecuación en las propiedades del nodo

```
p (X | Y1, Y2) =
Y1==STATE1Y1? (X== STATE1X? funcion1:funcion2):
Y1==STATE2Y1? (X== STATE1X? funcion3:funcion3*Y2):
0
```


Ecuaciones PROBABILÍSTICAS

Ecuaciones PROBABILÍSTICAS condicionales

- Escribir ecuación en las propiedades del nodo
- Cerrar
- Click en Equation To Table
- Chequeo que la Tabla este completa


```
p (avesborde | modelbor, Narbol) =
modelbor==No efecto? (avesborde==yes? 1/(1+\exp(-0.29)): 1-(1/(1+\exp(-0.29)))):
modelbor == Arboles? (avesborde == yes? 1/(1 + exp(0.56 - 0.74*Narbol)): 1 - (1/(1 + exp(0.56 - 0.74*Narbol))):
0
```

COMPROMISOS

Función de utilidad Utilidad esperada

IMPORTANTE!!

Sólo en redes de decisión va a haber un nodo utilidad (diagramas de influencia)

- 1. Agregar Nodo de Utilidad (Hexágono)
- Utilidad
- 2. Asegurarse que cada objetivo fundamental tenga asociados valores a cada nivel
- 3. Estandarizar valores de cada objetivo fundamental entre cero y uno (puede hacerse en la misma función de utilidad)

$$U(x_i) = \frac{[x_i - peor(x_i)]}{mejor(x_i) - peor(x_i)}$$

- 4. Agregar Ecuación de Utilidad
 - U (Bienestar, Costo, Aves) =
- 5. Equation to table

Se utiliza para calcular el valor esperado de la decisión

ANÁLISIS DE SENSIBILIDAD

Ordenamos por la magnitud de la diferencia

ensibilidad d	e las variables	al BIENESTAR A	LTO	
	valor bajo	differencia	valor alto	
Costo	9.44	9.36	18.8	
aves	50.9	13.2	64.1	
polucion	0.96	63.94	64.9	

Grafico de barra apilada

Bienestar Alto

Lo mismo podemos hacer para las decisiones que sean de interés

- Netica (libre y de pago): https://www.norsys.com/netica.html
- Genie (libre): https://www.bayesfusion.com/genie-modeler
- Huggins (de pago): https://www.hugin.com/

- Aplicaciones con extrapolaciones espaciales
 - QGIS y Netica (Landuyt et al. 2015)
 - GIS y Genie (Gonzalez-Redin et al., 2016)

Welcome to Netica's Help System

This onscreen system is designed to offer the most up-to-date documentation on Netica Application, the world's most widely used Bayesian network development software, from Norsys Software Corp.

https://www.norsys.com/WebHelp/NETICA.htm

- Gonzalez-Redin, J., Luque, S., Poggio, L., Smith, R., & Gimona, A. (2016). Spatial Bayesian belief networks as a planning decision tool for mapping ecosystem services trade-offs on forested landscapes. Environmental Research, 144, 15–26.
- Landuyt, D., Van der Biest, K., Broekx, S., Staes, J., Meire, P., & Goethals, P. L. M. (2015). A GIS plug-in for Bayesian belief networks: Towards a transparent software framework to assess and visualise uncertainties in ecosystem service mapping. Environmental Modelling and Software, 71, 30–38.
- KJAERULFF, Uffe B.; MADSEN, Anders L. Bayesian networks and influence diagrams. Springer Science+ Business Media, 2008, vol. 200, p. 114.
- AGUILERA, Pedro Aguilera, et al. Bayesian networks in environmental modelling. Environmental Modelling & Software, 2011, vol. 26, no 12, p. 1376-1388.