Échelle d'évaluation standard : **Notation en attente du traitement des éventuelles demandes de précision**

Échelle d'évaluation pondérée : **Notation en attente du traitement des éventuelles demandes de précision**

Algorithmique avancée : Algorithmique et complexité (CCTL)

Échelle d'évaluation standard : Notation en attente du traitement des éventuelles demandes de précision

3 Question 1 Question d'association

Mettez dans l'ordre de temps de calcul asymptotiquement croissant les ordres de grandeur de complexité algorithmique suivantes :

- **a** : $O(n^2)$
- **b** : O(n)
- **c** : $O(2^n)$
- **d** : $O(n^3)$
- **e** : O(n!)
- $\mathbf{f}: O(\log(n))$

Réponses correctes

0 discordance

Élément à associer	Réponse attendue	Réponse saisie	Réponse discordante
1	f	f	Non
2	b	b	Non
3	a	а	Non
4	d	d	Non
5	С	С	Non
6	е	е	Non

3 Question 2 Question à réponse unique

Complétez:

Si un algorithme a une complexité temporelle asymptotique O(g(n))...

	Réponse attendue	Réponse saisie	Réponse discordante	
Α			Non	Si la quantité de données est suffisamment grande, il faut au pire $c \times n$ opérations à l'algorithme pour résoudre une instance de taille $G(n)$, avec c une constante
В			Non	Si la quantité de données est suffisamment grande, il faut au mieux $c \times n$ opérations à l'algorithme pour résoudre une instance de taille $g(n)$, avec c une constante
С	abla	abla	Non	Si la quantité de données est suffisamment grande, il faut $c \times g(n)$ opérations à l'algorithme résoudre une instance de taille n , avec c une constante
D			Non	Si la quantité de données est suffisamment petite, il faut au pire $c \times n$ opérations à l'algorithme pour résoudre une instance de taille $g(n)$, avec c une constante
Е			Non	Si la quantité de données est suffisamment petite, il faut $c \times g(n)$ opérations à l'algorithme résoudre une instance de taille n , avec c une constante
F			Non	Si la quantité de données est suffisamment petite, il faut au mieux $c \times n$ opérations à l'algorithme pour résoudre une instance de taille $g(n)$, avec c une constante

? Question 3 **Question à réponses** multiples Que signifie $f(x) \in O(g(x))$? Réponses correctes 0 discordance Réponse Réponse Réponse attendue discordante saisie \checkmark \checkmark f est bornée par g à un facteur près pour un x suffisamment grand Non Α g est bornée par f à un facteur près pour un x suffisamment grand В Non C Il existe un algorithme de complexité f qui est bornée asymptotiquement Non par *g* D Il existe un algorithme de complexité g qui est bornée asymptotiquement Non par f \checkmark \checkmark Tout algorithme de complexité f peut être considéré comme un algorithme Ε Non de complexité O(g(x))

O Question 4	Question à ré	nonco uni	
Question 4	Question à ré	ponse uni	que

On considère un algorithme calculant le degré maximal d'un graphe d'ordre n:

max = 0
Pour chaque sommet i du graphe :
si max < degré(i)
max = degré(i)

Dans une représentation par matrice d'adjacence, quelle est la complexité temporelle au pire de cet algorithme ? L'opération degré(i) est réalisée en O(1)

	Réponse attendue	Réponse saisie	Réponse discordante	
Α			Non	constante
В	\checkmark	ightharpoons	Non	linéaire
С			Non	logarithmique
D			Non	quadratique
Е			Non	cubique
F			Non	exponentielle

 3 Question 5
 Question à réponses multiples

On considère la complexité temporelle d'un algorithme. Sélectionnez l(es) affirmation(s) exacte(s)

	Réponse attendue	Réponse saisie	Réponse discordante	
A	abla	\checkmark	Non	Un ordinateur ne peut pas exécuter un algorithme de complexité exponentielle
В			Non	Une complexité polynomiale est moins bonne qu'une complexité linéaire
С	abla	\checkmark	Non	La complexité temporelle permet d'évaluer le temps que met un algorithme pour se terminer
D			Non	Un algorithme de complexité quadratique est inexploitable
Е	\checkmark	~	Non	La complexité temporelle est exprimée de manière asymptotique

2 Question 6 Question d'association

En supposant que P≠NP, placez les différentes catégories de classes de complexité aux différentes zones du schéma ci-dessous

Réponses correctes 0 discordance

Élément à associer	Réponse attendue	Réponse saisie	Réponse discordante
Zone 1	NP-Difficile	NP-Difficile	Non
Zone 2	NP-Complet	NP-Complet	Non
Zone 3	NP	NP	Non
Zone 4	Р	Р	Non

? Question 7

Quel est l'ordre du graphe suivant ?

Départes sorrectes	0	diccordance
Réponses correctes	U	discordance

Réponse attendue	Réponse saisie	Réponse discordante
[7;7]	7	Non

Commentaire de correction de la proposition

? Question 11 **Question d'association**

On considère le graphe suivant :

Indiquez si les propositions suivantes sont vraies ou fausses.

Il existe un chemin eulérien dans ce graphe.

Réponses correctes	0	discordance	
Élément à associer	Réponse attendue	Réponse saisie	Réponse discordante
Il existe un cycle eulérien dans ce graphe.	faux	faux	Non

vrai

5/13

Non

vrai

? Question 12 Question à valeurs numériques

Combien de sommets possède le graphe représenté par la liste d'adjacence suivante, dont les numéros de sommet commencent à 1 ?

Head: 1, 2, 3, 6, 7, 7 Succ: 2, 1, 1, 3, 6, 3, 5

Réponses correctes

0 discordance

Réponse attendue	Réponse saisie	Réponse discordante
[5;5]	5	Non

Commentaire de correction de la proposition

? Question 13

Question à réponse ouverte et courte

On considère le graphe représenté par la liste d'adjacence suivante, dont les numéros de sommet commencent à 1

Head: 1, 2, 3, 6, 7, 8 Succ: 2, 1, 1, 3, 6, 3, 5

Quels sont les successeurs du sommet 3 ?

La réponse sera donnée sous forme de liste de numéros classés par ordre croissant, un espace entre chaque nombre.

Exemple: 1 2 3 4

Réponse incorrecte

13.6

Réponse attendue

1 3 6

3 Question 14 Question à réponse unique

Quelle est la bonne définition d'un graphe eulérien ?

	Réponse attendue	Réponse saisie	Réponse discordante	
A			Non	Un graphe est eulérien s'il existe une chaîne qui passe par toutes les arêtes du graphe une et une seule fois.
В	abla		Non	Un graphe est eulérien s'il existe un cycle qui passe par toutes les arêtes du graphe une et une seule fois.
С			Non	Un graphe est eulérien s'il existe une chaîne qui passe par tous les sommets du graphe une et une seule fois.
D			Non	Un graphe est eulérien s'il existe un cycle qui passe par tous les sommets du graphe une et une seule fois.
Е			Non	Un graphe est eulérien s'il existe un cycle qui passe par toutes les arêtes du graphe au moins une fois.

 3 Question 15
 Question à réponses multiples

On considère le graphe représenté par la matrice d'adjacence suivante :

0	1	0	0	1
1	0	0	1	0
0	0	0	1	1
0	1	1	0	0
1	0	1	0	0

Quelles sont les affirmations vraies ?

C

D

Е

 \checkmark

 \checkmark

Non

Non

Non

Réponses correctes) discordance	
	Réponse attendue	Réponse saisie	Réponse discordante		
А			Non	Le graphe n'est pas connexe.	
В	V	V	Non	Le graphe est eulérien.	
С			Non	Le graphe n'est pas hamiltonien.	
D	~	\checkmark	Non	Le degré moyen du graphe est de 2.	
Е			Non	Le graphe est orienté.	

3 Qı	3 Question 16 Question à réponses multiples						
Parmi ces problèmes, lesquels se modélisent bien avec des graphes ?							
Rép	onses correct	es		0 discordance			
Réponse Réponse attendue saisie discordante							
Α	\checkmark	V	Non	Effectuer le routage des données dans un réseau filaire			
В			Non	Optimiser le placement d'objets dans des conteneurs			

côté d'un ennemi

Rechercher la présence d'un mot dans un texte

Maximiser l'occupation de machines dans une usine

Établir un plan de table qui minimise le nombre de personnes assises à

2 Question 17 Question d'association

Placez les différentes catégories de classes de complexité aux différentes zones du schéma ci-dessous

Réponses correctes	0 discordance
Reportses correctes	U discordan

Élément à associer	Réponse attendue	Réponse saisie	Réponse discordante
1	NP	NP	Non
2	Р	Р	Non
3	NP-complet	NP-complet	Non
4	NP-difficile	NP-difficile	Non

3 Question 18 Question d'association

Associez les classes suivantes avec leurs définitions.

Réponses correctes 0 discordance

Élément à associer	Réponse attendue	Réponse saisie	Réponse discordante
La classe P	La classe des problèmes de décision pouvant être résolus en temps polynomial	La classe des problèmes de décision pouvant être résolus en temps polynomial	Non
La classe NP	La classe des problèmes pouvant être résolue en temps polynomial par une machine de Turing non déterministe.	La classe des problèmes pouvant être résolue en temps polynomial par une machine de Turing non déterministe.	Non
La classe NP- difficile	La classe des problèmes au moins aussi difficile que tous les autres problèmes de la classe NP.	La classe des problèmes au moins aussi difficile que tous les autres problèmes de la classe NP.	Non
La classe NP- complet	La classe des problèmes pour lesquels il n'existe aucun algorithme polynomial qui peut le résoudre, mais dont une solution peut être vérifiée en temps polynomial.	La classe des problèmes pour lesquels il n'existe aucun algorithme polynomial qui peut le résoudre, mais dont une solution peut être vérifiée en temps polynomial.	Non

3 Question 19 Question à réponse unique

Le nombre d'opérations du programme suivant est :

Réponses incorrectes

	Réponse attendue	Réponse saisie	Réponse discordante	
А	\checkmark		Oui (+1)	5n+1
В			Non	5n
С			Non	5n-1
D		ightharpoons	Oui (+1)	n
Е			Non	n+1

? Question 20 Question à réponse unique

La complexité de ce programme est :

	Réponse attendue	Réponse saisie	Réponse discordante	
А	\checkmark		Non	Polynomiale
В			Non	Constante
С			Non	Logarithmique
D			Non	Quadratique
Е			Non	Exponentielle

3 Question 21 Question à réponse unique

Si un algorithme a une complexité temporelle asymptotique O(f(n)) :

Réponses correctes

	Réponse attendue	Réponse saisie	Réponse discordante		
А			Non	Au pire il faut en ordre de grandeur n opérations à l'algorithme pour résoudre une instance de taille $f(n)$	
В			Non	En moyenne il faut en ordre de grandeur $f(n)$ opérations à l'algorithme pour résoudre n'importe quelle instance.	
С			Non	Au pire il faut en ordre de grandeur $m{n}$ opérations à l'algorithme pour résoudre une instance de taille $m{n}$	
D			Non	Au pire il faut en ordre de grandeur $f(n)$ opérations à l'algorithme pour résoudre une instance de taille $f(n)$	
E	\checkmark	\checkmark	Non	Au pire il faut en ordre de grandeur $f(n)$ opérations à l'algorithme pour résoudre une instance de taille n	

3 Question 22 Question à valeurs numériques

Quel est l'ordre du graphe suivant ?

Réponses correctes 0 discordance

Réponse attendue	Réponse saisie	Réponse discordante	
[9;9]	9	Non	

Commentaire de correction de la proposition

3 Question 23 Question d'association

Mettez dans l'ordre de temps de calcul asymptotiquement croissant les ordres de grandeur de complexité algorithmique suivantes :

a : $O(n^2)$

b : *O*(*n*)

c : *O*(2^{*n*})

d : $O(n^3)$

e : O(n!)

f : *O*(log(*n*))

Réponses correctes			0 discordance	
Élément à associer	Réponse attendue	Réponse saisie	Réponse discordante	
1	f	f	Non	
2	b	b	Non	
3	а	а	Non	
4	d	d	Non	
5	С	С	Non	
6	е	е	Non	

8 (Question 24			Question à réponses multiples	
Que	e signifie <i>f(x)</i>				
Ré	ponses correct	tes		0 discordance	
	Réponse	Réponse	Réponse discordante		

	Réponse attendue	Réponse saisie	Réponse discordante	
А	\checkmark	V	Non	f est bornée par g à un facteur près pour un x suffisamment grand
В			Non	g est bornée par f à un facteur près pour un x suffisamment grand
С			Non	Il existe un algorithme de complexité f qui est bornée asymptotiquement par g
D			Non	Il existe un algorithme de complexité g qui est bornée asymptotiquement par f
Е	\checkmark	~	Non	Tout algorithme de complexité f peut être considéré comme un algorithme de complexité $O(g(x))$

3 Question 25 Question à réponse unique

On considère un algorithme calculant le degré maximal d'un graphe d'ordre n:

max = 0
Pour chaque sommet i du graphe :
si max < degré(i)
max = degré(i)

Dans une représentation par matrice d'adjacence, quelle est la complexité temporelle au pire de cet algorithme ? L'opération degré(i) est réalisée en O(1)

Réponses correctes

	Réponse attendue	Réponse saisie	Réponse discordante	
Α			Non	constante
В	\checkmark	\checkmark	Non	linéaire
С			Non	logarithmique
D			Non	quadratique
E			Non	cubique
F			Non	exponentielle

3 Question 26	Question à réponses
	multiples

On considère la complexité temporelle d'un algorithme. Sélectionnez l(es) affirmation(s) exacte(s)

Réponses correctes 0 discordance

	Réponse attendue	Réponse saisie	Réponse discordante	
Α	\checkmark	\checkmark	Non	Un ordinateur ne peut pas exécuter un algorithme de complexité exponentielle
В			Non	Une complexité polynomiale est moins bonne qu'une complexité linéaire
С	~	\checkmark	Non	La complexité temporelle permet d'évaluer le temps que met un algorithme pour se terminer
D			Non	Un algorithme de complexité quadratique est inexploitable
Е	abla	✓	Non	La complexité temporelle est exprimée de manière asymptotique

3 Question 27	Question à réponse unique

Soit le problème de la coupe maximale dans un graphe

Données : Un graphe *G*

Problème : Quel est le nombre maximal d'arêtes que l'on peut retirer de G sans qu'il devienne non connexe ?

Le problème de décision correspondant est :

	Réponse attendue	Réponse saisie	Réponse discordante	
A			Non	Étant donné un graphe G , est-il possible de retirer k arêtes de G sans le déconnecter ?
В			Non	Étant donnés un graphe G et un entier k , est-il possible de retirer k arêtes sans déconnecter G ?
С			Non	Étant donné un graphe G , existe-t-il un entier k tel qu'il est possible de retirer k arêtes à G sans le déconnecter ?
D			Non	Étant donné un graphe G , quel est l'entier k tel qu'il est possible de retirer k arêtes sans déconnecter G ?
E			Non	Étant donnés un graphe G et un entier k , quelles sont les k arêtes que l'on peut retirer de G sans le déconnecter ?