SRK/KW/14/6959

Faculty of Engineering & Technology Third Semester B.E. (Computer Science & Engineering) (CBS) Examination COMPUTER ARCHITECTURE & ORGANIZATION

Paper—V

Time—Three Hours

[Maximum Marks - 80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Due credit will be given to neatness and adequate dimensions.
- (3) Assume suitable data wherever necessary.
- (4) Illustrate your answers wherever necessary with the help of neat sketches.
- 1. (a) Explain subroutine linkage and parameter passing methods with suitable example.
 - Explain the following assembler commands: (b)
 - **EOU** (i)
 - ORIGIN (ii)

		(iii) DATA	
		(iv) START	
		(v) END.	5
	(c)	Define effective address and base address.	2
		OR	¢
2.	(a)	Explain the operation of Hardwired control unit the help of suitable block diagram.	it with
	(b)	Compare Hardwired control unit Microprogrammed control unit.	with
	(c)	Define:	
		(i) Microprogram	
	0	(ii) Microinstruction	
		(iii) Microroutine	
		(iv) Control Word	
	,	(v) Control Store	5

3. (a) Using Booth's Algorithm solve:

(-18) * . (9)

5

(b) Using Bit-pair recording of multipliers solve (+13) * (-6).

(c) Explain IEEE standard floating point format. 3

OR

4. (a) Solve the following using Restoring Division method:

 $23 \div 9$

7

(b) Perform the following division using Non-restoring algorithm:

11101 DIV 0111

6

- 5. (a) Explain cache memories in detail and also explain different mapping techniques with diagram.
 - (b) Explain ROM, PROM, EPROM & EEPROM. 7

OR

- (a) A block set associative cache consists of a total of 64 blocks divided in 4 blocks per set the main memory contains 4096 blocks each of 128 words
 - (i) How many bits are there in main memory address?
 - (ii) How many bits are there in each of the WORD,TAG and SET field?
 - (b) Differentiate between static RAM vs Dynamic RAM.
 - (c) Design 8K × 8 bits RAM system using a 1K × 4 bits RAM IC's and appropriate decoders.
- 7. (a) Why handshaking signals are required in asynchronous data transfer? Explain with a suitable example.
 - (b) Why are interrupts preferred over programmed IO?Explain with an example.

OR

8. (a) What will be the total capacity of a hard disk having8 sectors per pack, 32 tracks per surface, and

Contd.

2 KB of data			The surfaces where each sector can store maximum	43		
9. (a) What is a stall in a pipeline? Why does it occur? (b) What is branch prediction? Why it is used? Give an example OR 10. (a) Why sometimes in pipelined architecture, we delay branch? Explain with a suitable example. (b) What is pipelining? What are interstage buffers? Why are they required? 6 11. (a) Why there is a need of multicore architecture? With a suitable diagram explain how two cores coordinate in two-core architecture. (b) What are multiprocessors?			2 KB of data	4		
9. (a) What is a stall in a pipeline? Why does it occur? (b) What is branch prediction? Why it is used? Give an example OR 10. (a) Why sometimes in pipelined architecture, we delay branch? Explain with a suitable example. (b) What is pipelining? What are interstage buffers? Why are they required? 6 11. (a) Why there is a need of multicore architecture? With a suitable diagram explain how two cores coordinate in two-core architecture. (b) What are multiprocessors?		(b)	Describe various secondary storage devices used i	11		
(b) What is branch prediction? Why it is used? Give an example OR 10. (a) Why sometimes in pipelined architecture, we delay branch? Explain with a suitable example. (b) What is pipelining? What are interstage buffers? Why are they required? 6 11. (a) Why there is a need of multicore architecture? With a suitable diagram explain how two cores coordinate in two-core architecture. (b) What are multiprocessors?			computer systems	8		
(b) What is branch prediction? Why it is used? Give an example OR 10. (a) Why sometimes in pipelined architecture, we delay branch? Explain with a suitable example. (b) What is pipelining? What are interstage buffers? Why are they required? 6 11. (a) Why there is a need of multicore architecture? With a suitable diagram explain how two cores coordinate in two-core architecture. (b) What are multiprocessors?	9.	(a)	What is a stall in a pipeline? Why does it occur	47 <u>\$</u>		
OR 10. (a) Why sometimes in pipelined architecture, we delay branch? Explain with a suitable example. 8 (b) What is pipelining? What are interstage buffers? Why are they required? 6 11. (a) Why there is a need of multicore architecture? With a suitable diagram explain how two cores coordinate in two-core architecture. 8 (b) What are multiprocessors?				5		
OR 10. (a) Why sometimes in pipelined architecture, we delay branch? Explain with a suitable example. 8 (b) What is pipelining? What are interstage buffers? Why are they required? 6 11. (a) Why there is a need of multicore architecture? With a suitable diagram explain how two cores coordinate in two-core architecture. 8 (b) What are multiprocessors?		(b)	What is branch prediction? Why it is used? Giv	i C		
 10. (a) Why sometimes in pipelined architecture, we delay branch? Explain with a suitable example. 8 (b) What is pipelining? What are interstage buffers? Why are they required? 6 11. (a) Why there is a need of multicore architecture? With a suitable diagram explain how two cores coordinate in two-core architecture. 8 (b) What are multiprocessors? 			an example.	Q		
branch? Explain with a suitable example. 8 (b) What is pipelining? What are interstage buffers? Why are they required? 6 11. (a) Why there is a need of multicore architecture? With a suitable diagram explain how two cores coordinate in two-core architecture. 8 (b) What are multiprocessors?		OR				
Why are they required? 6 11. (a) Why there is a need of multicore architecture? With a suitable diagram explain how two cores coordinate in two-core architecture. 8 (b) What are multiprocessors?	10.	(a)	Why sometimes in pipelined architecture, we delabranch? Explain with a suitable example.			
a suitable diagram explain how two cores coordinate in two-core architecture. (b) What are multiprocessors 2		(b)	What is pipelining? What are interstage buffers Why are they required?			
(b) What are multiprocessors 2	11.	(a)	a suitable diagram explain how two cores coordina	ite		
		(b)	What are multiprocessors?			

- 12. Write short notes on
 - (a) Vector processors
 - (b) Array processers
 - (c) Flynn's classification of parallel structures 1: