- 1. Let X_1, \ldots, X_n be i.i.d. sample from $Normal(\theta, a\theta)$, where θ is unknown.
 - (a) Find the $1-\alpha$ confidence set for a that is obtained from the LRT of $H_0: a=a_0$ versus $H_1: a \neq a_0$.
 - (b) Assume that a=1 is known, show that $(\bar{X}-\theta)/\sqrt{a\theta/n}$ is pivot and derive a $1-\alpha$ confidence set for θ .
 - (c) Assume that a=1 is known, show that $(\bar{X}-\theta)/\sqrt{S^2/n}$ is pivot and derive a $1-\alpha$ confidence set for θ .
 - (d) Assume that a = 1 is known, show that $(n-1)S^2/\theta$ is pivot and derive a 1α confidence set for θ .
- 2. Let X be a single observation from density $f(x) = \theta x^{\theta-1}, 0 \le x \le 1$.
 - (a) Let $Y = -\log(X)^{-1}$, evaluate the confidence coefficient of the set [y/2, y].
 - (b) Find a pivotal quantity and use it to construct a confidence interval having the same confidence coefficient as in part (a).
 - (c) Compare the length from part (a) and (b).
- 3. Let X_1, \ldots, X_n be i.i.d. sample from Normal (θ, σ^2) .
 - (a) If σ^2 is known, find a minimum value of n such that a 1α confidence interval for θ will have length no more than $\delta > 0$.
 - (b) If σ^2 is unknown, find a minimum value of n such that a 1α confidence interval for θ will have expected length no more than $\delta > 0$.
 - (c) Compare the length from part (a) and (b).
- 4. Let $X_1, ..., X_n$ be iid Normal (θ, θ^2) . Give or describe four asymptotic confidence intervals for θ
- 5. A variance stabilizing approach. Let $X_1, ..., X_n$ be i.i.d. from a Poisson distribution with mean θ , and let $\widehat{\theta}_n = \bar{X}_n$ be the maximum likelihood estimator of θ .
 - (a) Find a function $g:[0,\infty)\to\mathbb{R}$ such that

$$Z_n = \sqrt{n}[g(\widehat{\theta}_n) - g(\theta)] \Rightarrow N(0, 1).$$

(b) Find a $1-\alpha$ asymptotic confidence interval for θ based on the approximate pivot Z_n .