Francesca Pelosi

Dipartimento di Matematica, Università di Roma "Tor Vergata"

CALCOLO NUMERICO

a.a. 2008–2009

http://www.mat.uniroma2.it/~pelosi/

lacksquare Data una f integrabile su [a,b] consideriamo

$$I[f] := \int_{a}^{b} f(x)dx$$

- In alcuni casi non si conosce la primitiva
- Anche quando si conosce la primitiva questa può essere troppo complicata (mentre f può essere più semplice)

ES:
$$\int \frac{1}{1+t^2} dt = \arctan(x)$$

- La funzione da integrare può essere data non in forma analitica, ma per punti
- ⇒ Si cercano metodi numerici in grado di fornire una approssimazione di un integrale in termini di un numero finito di valori della funzione integranda
- ⇒ FORMULE DI QUADRATURA

Supponiamo di conoscere (o di poter valutare) la funzione integranda f(x) in punti distinti $\{x_0, x_1, \dots, x_n\}$ (scelti o prefissati) in [a, b] Costruiamo formule del tipo

$$I_{n+1}[f] \simeq \int_a^b f(x)dx, \qquad I_{n+1}[f] := \sum_{i=0}^n w_i f(x_i)$$

- $\mathbf{x}_i, i = 0, 1, \dots, n$: nodi della formula di quadratura
- $w_i, i = 0, 1, ..., n$: pesi della formula di quadratura

Si definisce l'errore di quadratura associato alla formula su n+1 punti:

$$E_{n+1}[f] = I[f] - I_{n+1}[f].$$

 \Rightarrow IDEA IMMEDIATA: Approssimare f(x) con il polinomio di grado n interpolante la funzione nei nodi $\{x_i, i = 0, 1, ..., n\}$ (unico se i nodi sono distinti):

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} (\mathcal{L}_{n}(x) + e_{n}(x))dx = \int_{a}^{b} \mathcal{L}_{n}(x)dx + \int_{a}^{b} e_{n}(x)dx$$

- \Rightarrow dove $\mathcal{L}_n(x)$ è il polinomio inerpolante i punti $(x_0, f(x_0)), \ldots, (x_n, f(x_n)),$ \Rightarrow Formule interpolatorie
- Se rappresentiamo $\mathcal{L}_n(x)$ nella forma di Lagrange

$$\mathcal{L}_n(x;f) = \sum_{i=0}^n f(x_i) \ell_i^{(n)}(x), \quad \text{con } \ell_i^{(n)}(x) = \frac{\prod_{\substack{j=0 \ j \neq i}}^n (x - x_j)}{\prod_{\substack{j=0 \ j \neq i}}^n (x_i - x_j)}, \quad i = 0, 1, \dots, n$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \mathcal{L}_{n}(x)dx + \int_{a}^{b} e_{n}(x)dx = \int_{a}^{b} \sum_{i=0}^{n} f(x_{i})\ell_{i}^{(n)}(x)dx + \int_{a}^{b} e_{n}(x)dx$$

$$= \sum_{i=0}^{n} f(x_i) \int_{a}^{b} \ell_i^{(n)}(x) dx + \int_{a}^{b} e_n(x) dx$$

FORMULE INTERPOLATORIE

Da cui si ottiene un approssimazione dell'integrale con la formula di quadratura:

$$\int_{a}^{b} f(x)dx \simeq \int_{a}^{b} \mathcal{L}_{n}(x)dx = \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} \ell_{i}^{(n)}(x)dx = \sum_{i=0}^{n} w_{i}f(x_{i})$$

ESEMPIO: Consideriamo i punti (a, f(a)) e (b, f(b)) e sostituiamo alla funzione il polinomio di grado 1 (la retta) che passa per i punti dati

$$w_0 = \int_a^b \ell_0^{(1)}(x) dx = \int_a^b \frac{x-b}{a-b} dx = \frac{1}{2} \left[\frac{(x-b)^2}{a-b} \right]_a^b = -\frac{1}{2} \frac{(a-b)^2}{a-b} = \frac{b-a}{2}$$

$$w_1 = \int_a^b \ell_1^{(1)}(x) dx = \int_a^b \frac{x-a}{b-a} dx = \frac{1}{2} \left[\frac{(x-a)^2}{b-a} \right]_a^b = \frac{1}{2} \frac{(b-a)^2}{b-a} = \frac{b-a}{2}$$

Da cui si ottiene la Regola dei Trapezi

$$\int_{a}^{b} f(x)dx \simeq I_{2}[f] = \frac{b-a}{2}[f(a) + f(b)]$$

LE INTERPOLAT

ESEMPIO: Consideriamo i punti (-h, f(-h)), (0, f(0)) e (h, f(h)) e sostituiamo alla funzione il polinomio di grado 2 che passa per i punti dati

$$w_0 = \int_{-h}^{h} \ell_0^{(2)}(x) dx = \int_{-h}^{h} \frac{x(x-h)}{2h^2} dx = \frac{1}{2h^2} \left(\frac{1}{3}x^3 - \frac{1}{2}x^2h \right) \Big]_{-h}^{h} = \frac{h}{3}$$

$$w_1 = \int_{-h}^{h} \ell_1^{(2)}(x) dx = \int_{-h}^{h} \frac{(x+h)(x-h)}{-h^2} dx = \frac{1}{h^2} \left(-\frac{1}{3}x^3 + h^2x \right) \Big]_{-h}^{h} = \frac{4}{3}h$$

$$w_2 = \int_{-h}^{h} \ell_2^{(2)}(x) dx = \int_{-h}^{h} \frac{x(x+h)}{2h^2} dx = \frac{1}{2h^2} \left(\frac{1}{3}x^3 + \frac{1}{2}x^2h \right) \Big]_{-h}^{h} = \frac{h}{3}$$

Da cui si ottiene la Regola di Simpson

$$\int_{-h}^{h} f(x)dx \simeq I_3[f] = \frac{h}{3} \left[f(-h) + 4f(0) + f(h) \right]$$

e su un generico intervallo
$$[a,b]$$
:
$$\int_a^b f(x)dx \simeq I_3[f] = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

FORMULE INTERPOLATORIE

TRAPEZI SIMPSON

Grado di precisione

La precisione di una formula di quadratura è legata alla bontà con cui $I_{n+1}[f]$ approssima $I[f] = \int_a^b f(x) dx$, pertanto in generale è dipendente dalla funzione integranda.

Si esamina per quale classe di funzioni è esatta (cioè $I_{n+1}[f] = I[f]$)

DEFINIZIONE: Una formula di quadratura ha grado di precisione k se è esatta quando la funzione integranda è un polinomio di grado k, ed esiste almeno un polinomio di grado k+1 per cui l'errore risulti non nullo

(Tale definizione è giustificata dal teorema di Weierstrass.)

Vale il teorema seguente

TEOREMA: Le formule di quadratura interpolatorie costruite su n+1 nodi, hanno grado di precisione almeno n.

Deriva dall'espressione dell'errore di interpolazione

$$e_n(x)=f(x)-\mathcal{L}_n(x)=\omega_{n+1}(x)f[x_0,x_1,\ldots,x_n,x]$$
, tenendo presente che $f[x_0,x_1,\ldots,x_n,x]=0$ per $f\in\mathbb{P}_n$.

Grado di precisione

ES: La formula di Simpson ha grado di precisione 3:

- la formula è esatta per
 - $f(x) = x^{0}:$ $\int_{-h}^{h} x^{0} dx = x]_{-h}^{h} = 2h \Leftrightarrow I_{3}[x^{0}] = \frac{h}{3}[f(-h) + 4f(0) + f(h)] = \frac{h}{3}[1 + 4 + 1] = 2h$
 - $f(x) = x^{1}$ $\int_{-h}^{h} x^{1} dx = \frac{x^{2}}{2} \Big|_{-h}^{h} = 0 \Leftrightarrow I_{3}[x] = \frac{h}{3} [f(-h) + 4f(0) + f(h)] = \frac{h}{3} [-h + h] = 0$
 - $f(x) = x^{2}$ $\int_{-h}^{h} x^{2} dx = \frac{x^{3}}{3}\Big|_{-h}^{h} = \frac{2}{3}h^{3} \Leftrightarrow I_{3}[x^{2}] = \frac{h}{3}[f(-h) + 4f(0) + f(h)] = \frac{h}{3}[(-h)^{2} + h^{2}] = \frac{2}{3}h^{3}$
 - $\int_{-h}^{h} x^3 dx = \frac{x^4}{4} \Big]_{-h}^{h} = 0 \Leftrightarrow I_3[x^3] = \frac{h}{3} [f(-h) + 4f(0) + f(h)] = \frac{h}{3} [-h^3 + h^3] = 0$
- **•** mentre non è esatta per $f(x) = x^r$ con $r \ge 4$

$$\int_{-h}^{h} x^4 dx = \frac{x}{5} \Big]_{-h}^{h} = \frac{2}{5} h^5 \iff I_3[x^4] = \frac{h}{3} [f(-h) + 4f(0) + f(h)] = \frac{h}{3} [(-h)^4 + h^4] = \frac{2}{3} h^5$$

Formule di quadratura su nodi equidistanti

NEWTON-COTES (tipo chiuso) :

Dato [a, b] posto $h = \frac{b-a}{n}$, consideriamo i punti equispaziati:

$$x_i = a + ih, \quad i = 0, \dots, n$$

cerchiamo l'espressione dei pesi delle formula interpolatoria corrispondente:

$$\sum_{i=0}^{n} w_i f(x_i) : \quad w_i = \int_{x_0}^{x_n} \ell_i^{(n)}(x) dx = \int_{x_0}^{x_n} \frac{\prod_{\substack{j=0 \ j \neq i}}^{n} (x - x_j)}{\prod_{\substack{j=0 \ j \neq i}}^{n} (x_i - x_j)} dx$$

utilizziamo il cambiamento di variabili x = a + th da cui dx = hdt:

$$w_{i} = h \int_{0}^{n} \frac{\prod_{\substack{j=0 \ j \neq i}}^{n} (a + th - (a + jh))}{\prod_{\substack{j=0 \ j \neq i}}^{n} (a + ih - (a + jh))} dt = h \int_{0}^{n} \frac{\prod_{\substack{j=0 \ j \neq i}}^{n} (t - j)h}{\prod_{\substack{j=0 \ j \neq i}}^{n} (i - j)h} dt = h \alpha_{i}$$

Formule di quadratura su nodi equidistanti

Quindi una formula di Newton-Cotes su [a, b] generico può essere scritta nella forma:

$$I_{n+1}[f] = h \sum_{i=0}^{n} \alpha_i f(x_i), \quad h = \frac{b-a}{n}$$

dove gli α_i sono pesi in [0, n].

Poichè gli α_i non dipendono da h ma solo da n, sono stati tabulati su delle tabelle al variare di n (nelle tabelle si sfutta la simmetria centrale degli α_i ovvero $\alpha_i = \alpha_{n-i}$)

n	α_0	α_1	$lpha_2$	α_3	Errore
1	$\frac{1}{2}$				$-\frac{1}{12}h^3f^{(2)(\eta)}$
2	$\frac{1}{3}$	$\frac{4}{3}$			$-rac{1}{90}h^5f^{(4)(\eta)}$
3	$\frac{3}{8}$	$\frac{9}{8}$			$-rac{3}{80}h^5f^{(4)(\eta)}$
4	$\frac{14}{45}$	$\frac{64}{45}$	$\frac{24}{45}$		$-\frac{8}{945}h^7f^{(6)(\eta)}$
5	$\frac{95}{288}$	$\frac{375}{288}$	$\frac{250}{288}$		$-\frac{275}{12096}h^7f^{(6)(\eta)}$

Errore Formule di quadratura

Per formule di tipo interpolatorio:

$$E_{n+1} = \int_{a}^{b} (f(x) - \mathcal{L}_n(x)) dx = \int_{a}^{b} e_n(x) dx = \int_{a}^{b} \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0) \cdots (x - x_n) dx$$

Per formule di Newton-Cotes con $h = \frac{b-a}{n}$:

$$E_{n+1} = \int_{a}^{b} \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^{n} (x - (a+jh)) dx = x = a+th dx = hdt$$

$$= \int_0^n \frac{f^{(n+1)}(\xi)}{(n+1)!} \left(\prod_{j=0}^n (t-j)h \right) h dt = \frac{h^{n+2}}{(n+1)!} \int_0^n f^{(n+1)}(\xi) \prod_{j=0}^n (t-j)dt$$

ES: per la formula dei trapezi: $E_2 = -\frac{h^3}{2!} \int_0^1 f^{(2)}(\xi) t(1-t) dt$ dove $t(1-t) \ge 0$ in [0,1].

Errore Formule di quadratura

Studiando meglio l'integrale si può ottenere il seguente (se la funzione non cambia segno si può applicare il teorema della media integrale)

TEOREMA: Data una formula di quadratura di Newton-Cotes sui nodi $x_i=a+ih$, con $h=\frac{b-a}{n},\,i=0,\ldots,n$, si ha per l'errore le seguenti espressioni

ullet per n pari e $f \in C^{n+2}[a,b]:$

$$E_{n+1}[f] = \frac{f^{(n+2)}(\eta)h^{n+3}}{(n+2)!} \int_0^n \prod_{j=0}^n t(t-j)dt$$

• per n dispari e $f \in C^{n+1}[a,b]$:

$$E_{n+1}[f] = \frac{f^{(n+1)}(\overline{\eta})h^{n+2}}{(n+1)!} \int_0^n \prod_{j=0}^n (t-j)dt$$

dove
$$\eta, \overline{\eta} \in [a, b] = [x_0, x_n]$$
.

Errore Formule di quadratura

- Le formule di quadratura con n pari (numero dispari di nodi) hanno grado di precisione n+1
 - **Solution** Es: la formula di Simpson n=2 ha grado di precisione 3 in quanto l'errore coinvolge la derivata $f^{(4)}(\eta)$ che è nulla per $f \in \mathbb{P}_3$
- ullet Le formule di quadratura con n dispari (numero pari di nodi) hanno grado di precisione n
 - Es: la formula dei Trapezi n = 1 ha grado di precisione 1, in quanto l'errore coinvolge la derivata $f^{(2)}(\eta)$ che è nulla per $f \in \mathbb{P}_1$
- \Rightarrow È più conveniente usare formule con n pari.

Convergenza

Dal teorema di Weierstrass discende anche il seguente

TEOREMA: Sia $\{I_{n+1}[f]\}$ una successione di formule di quadratura tali che $I_{n+1}[f]$ abbia grado di precisione almeno n, ed equilimitate (i.e. $\exists C: ||I_{n+1}|| < C, \forall n$). Allora si ha

$$\lim_{n \to \infty} I_{n+1}[f] = I[f]$$

DIM: Poichè la formula di quadratura ha grado di precisione almeno n si ha che $I_{n+1}[p] = I[p], \forall p \in \mathbb{P}_n$, ne segue

$$E_{n+1}[f] = I[f] - I_{n+1}[f] = I[f] - I[p] + I_{n+1}[p] - I_{n+1}[f]$$

$$= I[f-p] - I_{n+1}[f-p] \implies |E_{n+1}[f]| \le (||I|| + ||I_{n+1}||) ||f-p|| \le (||I|| + C) ||f-p||$$

Per il Teorema di Weierstrass $\exists p \in \mathbb{P}_n$ convergente a $f \Rightarrow E_{n+1}[f] \to 0$

TEOREMA: Data una famiglia di formule di quadratura interpolatorie $I_{n+1}[f]$ tali che $\exists H:$ tale che $\sum_{i=0}^n |w_i| < H.$ Allora $\lim_{n \to \infty} E_{n+1}[f] = 0$

Per formule interpolatorie si ha $\sum_{i=0}^{n} w_i = b - a$ (essendo esatte su f(x) = 1 si ha $b - a = \int_a^b dx = I[1] = \sum_{i=0}^{n} w_i \cdot 1$)

Formule Composite (Newton-Cotes)

- Contrariamente a quanto potrebbe sembrare "a prima vista" non conviene usare formule di Newton-Cotes di grado di precisione via via crescente
- I pesi tendono a crescere in modulo e ad essere di segno alterno, dando luogo a rilevanti errori di arrotondamento (per es. errori di cancellazione)
- Per avere la convergenza e contemporaneamente $w_i \geq 0$ conviene considerare n basso e h piccolo, ossia suddividere [a,b] in N sottointervalli $[z_k,z_{k+1}],\ k=0,\ldots,N$ e su ciascuno applicare una formula di quadratura con basso grado (di precisione)

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{N-1} \int_{z_{k}}^{z_{k+1}} f(x)dx \simeq \sum_{k=0}^{N-1} I_{n+1}^{(k)}[f]$$

 $I_{n+1}^{(k)}$ può essere ad esempio la formula di Newton-Cotes con n+1 nodi in $[z_k,z_{k+1}]$

Formula Composita dei Trapezi

$$\int_{a}^{b} f(x)dx \simeq \sum_{k=0}^{N-1} \frac{(z_{k+1} - z_k)}{2} \left(f(z_{k+1} - f(z_k)) \right)$$

$$\Rightarrow I_T^N[f] := \frac{(b-a)}{2N} \left[f(a) + \sum_{k=1}^{N-1} 2f(z_k) + f(b) \right]$$

Formula Composita di Simpson

$$\int_{a}^{b} f(x)dx \simeq \sum_{k=0}^{N-1} \frac{(z_{k+1} - z_{k})}{2} \left[\frac{1}{3} f(z_{k}) + \frac{4}{3} f\left(\frac{z_{k+1} + z_{k}}{2}\right) + \frac{1}{3} f(z_{k+1}) \right]$$

$$\Rightarrow I_S^N[f] := \frac{(b-a)}{6N} \left[f(a) + \sum_{k=1}^{N-1} 2f(z_k) + 4 \sum_{k=0}^{N-1} f\left(\frac{z_{k+1} + z_k}{2}\right) + f(b) \right]$$

Grado di precisione (Formule composite)

- Il grado di precisione delle formule composite è lo stesso delle corrispondenti formule di Newton-Cotes "semplici"
- Si può facilmente dimostrare che

$$|E_T^N[f]| \le \frac{(b-a)}{12} \left(\frac{b-a}{N}\right)^2 ||f^{(2)}||_{\infty}$$

$$|E_S^N[f]| \le \frac{(b-a)}{180} \left(\frac{b-a}{2N}\right)^4 ||f^{(4)}||_{\infty}$$

Per funzioni sufficientemente regolari si ha quindi

$$\lim_{N \to \infty} |E_{n+1}^N[f]| = 0$$

Implementazione

- In pratica è importante determinare un valore adeguato del numero di suddivisioni dell'intervallo che bisogna fare.
- Si parte da N piccolo e si aumenta iterativamente il numero di suddivisioni, stimando l'errore in modo automatico:

$$|I_{n+1}^{N2}[f] - I_{n+1}^{N1}[f]|$$

- Di solito è conveniente considerare N2 = 2N1, per sfruttare le valutazioni di f fatte per costruire $I_{n+1}^{N1}[f]$
- Le formule composite con suddivisione uniforme dell'intervallo di integrazione sono ormai superate, tranne in casi particolari (funzioni periodiche). Si usano formule di tipo adattivo:
 - Quando la funzione integranda presenta delle irregolarità c'è la necessità di addensare nodi nelle vicinanze delle irregolarità
 - L'intervallo viene suddiviso in sottointervalli di ampiezza diversa
 - Si usano molti nodi solo dove necessario
 - Per capire dove infittire la sequenza dei nodi si usano stime dell'errore.