

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (W), Mumbai : 400058, India

(Autonomous College of Affiliated to University of Mumbai)

End Semester Examination

December 2022

Maxi Marks: 100

Class: S.E.

Course code: CS202

Name of the course : Data Structures

Duration: 3 hours Semester: III

ranch :COMP/DS/AIML

Q No		Max Marks
	Evaluate the following postfix expression using Stack diagrammatically.	05
	43-382/+*2\$3+	
	Correct evaluation - 05 Marks	
Q1b	Compare Priority Queue and Circular Queue. Explain Josephus' Problem.	05
	Comparison - 02 Marks Josephs problem - 03 Marks	
Q1c	Write a function to remove duplicates from ascending order sorted linked list Correct code - 04 Marks Diagram - 01 Marks	05
	Given a linked list, write a function to remove the nth node from the end of list and return its head. For example, Given linked list: 1->2->3->4->5, and n = 2. After removing the second node from the end, the linked list becomes 1->2->3->5. Note: If n is greater than the size of the list, remove the first node of the list. Correct code - 04 Marks Diagram - 01 Marks	
Q1 d	What is a Generalized linked list? ————————————————————————————————————	10

in ir p	Construct a Binary tree from given Inorder and postorder sequence. Show intermediate steps.	
Q2 b		,
Q2 b	$in[] = \{4, 8, 2, 5, 1, 6, 3, 7\}$	
Q2 b	$post[] = \{8, 4, 5, 2, 6, 7, 3, 1\}$	
	for each step - 01 Mark (Total -04) and final correct tree - 01 Mark	
	Given a Binary Search Tree(BST) and a positive number k, write a program to find the kth largest node in the BST. Assume the tree is already created. Note:Use c/c++/java. The logic of Inorder Traversal should not be used for the above function logic implementation. Logic expected to use is: 1- locate maximum using Find Max procedure by going in right subtree in rightmost.——4 marks 2- if K>1, then delete k-1 max no. from BST by using Deletion procedure in BST——4 marks 3- return kth largest 4- main function and function calls with loop ——2 marks OR Write a program to create a Binary search tree and also find an inorder predecessor of a given node. Note: Use c/c++/java. The logic of Inorder Traversal should not be used to find predecessor. 1. creation of bst — 4 mark 2. find predecessor — 4 mark 3. structure and main() — 2 mark	10
		10
Q3a	Which of the following are legal B-trees for when the minimum branching factor(minimum subtrees) is 3? Write the order of B Tree resulted. For each B tree given below determine whether it is legal or not. For those which are not legal, specify the propert violated.	

