Лекция 6. Интегралы комплекснозначных функций по путям

Теория функций комплексного переменного

Кусочно-гладкие пути

Определение 4.1. Непрерывное отображение $\gamma: [A; B] \to \mathbb{C}$, где $[A; B] \subset \mathbb{R}$ — отрезок, называется *кусочно гладким путем* на комплексной плоскости, если существует такое конечное разбиение $A = A_0 < A_1 < \ldots < A_n = B$, что ограничение γ на каждый отрезок $[A_j; A_{j+1}]$ является гладким путем.

В частности, у кусочно гладкого пути в каждой точке должны существовать односторонние производные. В дальнейшем слово «путь» будет всегда означать «кусочно гладкий путь», если явно не оговорено противное.

Интеграл по пути

Определение 4.2. Пусть $\gamma \colon [A;B] \to \mathbb{C}$ — кусочно гладкий путь и f — непрерывная функция с комплексными значениями, определенная на множестве $\gamma([A;B]) \subset \mathbb{C}$ (или на некотором открытом множестве, содержащем $\gamma([A;B])$). Тогда *интегралом* f по γ называется число

$$\int_{\gamma} f(z) dz := \int_{A}^{B} f(\gamma(t)) \gamma'(t) dt.$$

(Мотивировка: если $z = \gamma(t)$, то $dz = \gamma'(t) \, dt$, как в формуле для замены переменной.)

Можно определить и через интегральные суммы $\sum_{i=0}^{n-1} f(\zeta_i) \Delta z_i$.

Независимость интеграла от параметризации пути

Предложение 4.3. Пусть выполнены условия определения 4.2 и $\varphi: [A_1; B_1] \to [A; B]$ — биективная дифференцируемая функция со всюду положительной производной. Тогда

$$\int_{\gamma \circ \varphi} f(z) \, dz = \int_{\gamma} f(z) \, dz.$$

Если производная функции φ всюду отрицательна, то

$$\int_{\gamma \circ \varphi} f(z) dz = -\int_{\gamma} f(z) dz.$$

При определении через интегральные суммы независимость от параметризации очевидна.

Интеграл по замкнутому пути

Рис. 4.1. Интеграл по замкнутому пути не зависит от выбора начальной точки

Пример интеграла по окружности

Пример 4.7. Если γ — окружность радиуса r > 0 с центром в точке $a \in \mathbb{C}$, ориентированная положительно (т. е. против часовой стрелки), то

$$\int_{\gamma} \frac{dz}{z-a} = 2\pi i.$$

В самом деле, параметризуем окружность так: $\gamma(t) = a + re^{it}$, $t \in [0; 2\pi]$. Теперь имеем:

$$z = \gamma(t) = a + re^{it}; \qquad dz = \gamma'(t) dt = ire^{it} dt;$$
$$\frac{dz}{z - a} = \frac{ire^{it} dt}{re^{it}} = i dt; \qquad \int_{\gamma} \frac{dz}{z - a} = \int_{0}^{2\pi} i dt = 2\pi i.$$

А что вообще можно интегрировать по путям?

- Дифференциальную 1-форму f(z)dz. На «бесконечно малом» отрезке $[z,z+\Delta z]$ она принимает значение $f(z)\Delta z$, и их мы «суммируем».
- Дифференциальную 1-форму a(x,y)dx + b(x,y)dy. Ее же можно записать как $f(z)dz + g(z)d\overline{z}$.
- Элемент длины $\sqrt{dx^2+dy^2}$ или $\varphi(x,y)\sqrt{dx^2+dy^2}$.
- Вообще, $\eta(dx, dy)$, где η положительно однородная функция степени 1.

Первообразная и интеграл

Определение 4.8. Пусть $U \subset \mathbb{C}$ — открытое множество и $f: U \to \mathbb{C}$ — непрерывная функция. Будем говорить, что функция $F: U \to \mathbb{C}$ является *первообразной* для функции f, если она голоморфна в U и F'(z) = f(z) для всякого $z \in U$.

Предложение 4.10. Пусть $U \subset \mathbb{C}$ — открытое множество, и пусть $f: U \to \mathbb{C}$ — непрерывная функция, имеющая в U первообразную F. Если γ — путь в U, соединяющий точки $p \in U$ и $q \in U$, то

$$\int_{\gamma} f(z) dz = F(q) - F(p).$$

Важные следствия

Следствие 4.11. Если функция f, определенная на открытом множестве $U \subset \mathbb{C}$, имеет на этом множестве первообразную, то интеграл от F по любому замкнутому пути, лежащему в U, равен нулю.

Следствие 4.12. Если f — голоморфная функция на связном открытом множестве $U \subset \mathbb{C}$ и если f'(z) = 0 для всех $z \in U$, то f постоянна.

Доказательство. Соединим две точки из U путем в U и воспользуемся 4.10.

Равномерная сходимость интегралов

Предложение 4.13. Пусть $\gamma: [A; B] \to \mathbb{C}$ — кусочно гладкий путь, и пусть $\{f_n\}$ — последовательность функций, определенных и непрерывных на $\gamma([A; B])$, равномерно сходящаяся на $\gamma([A; B])$ к функции f. Тогда

$$\lim_{n\to\infty}\int_{\gamma}f_n(z)\,dz=\int_{\gamma}f(z)\,dz.$$

Это сводится к соответствующей теореме об интегралах на отрезке.

Некоторые оценки

$$\left| \int_{\gamma} f(z) \, dz \right| \le \sup_{z \in \gamma([A;B])} |f(z)| \cdot \operatorname{length}(\gamma). \quad \operatorname{length}(\gamma) = \int_{A}^{B} |\gamma'(t)| \, dt.$$

$$\left| \int_{\gamma} f(z) \, dz \right| \leq \int_{\gamma} |f(z)| \, |dz|. \qquad \int_{\gamma} f(z) \, |dz| = \int_{A}^{B} f(\gamma(t)) |\gamma'(t)| \, dt.$$

В конечном счете, путем предельного перехода, эти неравенства сводятся к неравенству треугольника.

Индекс кривой относительно точки

Рис. 4.2. Левая кривая имеет индекс 0 относительно точки a, индекс 1 относительно точки b и индекс 2 относительно точки c; правая кривая имеет индекс -1 относительно точки d

Неформально, индекс = число оборотов.

Что такое угол?

Лемма 4.18. Пусть $\gamma: [A; B] \to \mathbb{C}$ — кусочно гладкий путь, и пусть а — точка на комплексной плоскости, через которую он не проходит. Тогда найдутся кусочно гладкие функции $r, \varphi: [A; B] \to \mathbb{R}$, для которых $\gamma(t) = a + r(t)e^{i\varphi(t)}$.

В топологических терминах: корректно определена функция $\widetilde{\varphi}: [A,B] \to \mathbb{R}/2\pi\mathbb{Z}$; ее можно поднять на универсальное накрытие.

Определение индекса

Предложение-определение 4.19. Пусть $\gamma \colon [A;B] \to \mathbb{C}$ — замкнутый путь, не проходящий через точку $a \in \mathbb{C}$. Если записать $\gamma(t) = a + r(t)e^{i\varphi(t)}$, где $r, \varphi \colon [A;B] \to \mathbb{R}$ — кусочно гладкие функции (такое представление возможно ввиду леммы 4.18), то отношение

$$\operatorname{Ind}_a \gamma = \frac{\varphi(B) - \varphi(A)}{2\pi}$$

является целым числом, не зависящим от выбора функции φ . Это число называется *индексом пути* γ *относительно точки а*. Более того, имеет место равенство

$$\operatorname{Ind}_{a} \gamma = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a}.$$
 (4.2)

Индексы кривых

В лекции использованы иллюстрации и материалы из следующих источников:

- С.М. Львовский, «Принципы комплексного анализа». МЦНМО.
- https://wikipedia.org

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ