Student:Zili <u>Luo</u> Student#:20001744

CISC 235 Assignment 2

Data Analyze part

```
when n = 1000 RtResult = 0,0,184,309,7 when n = 1000 RmResult = 0,0,4,43,453 when n = 2000 RtResult = 0,0,145,349,6 when n = 2000 RmResult = 0,0,3,15,482 when n = 4000 RtResult = 0,0,119,379,2 when n = 4000 RmResult = 0,0,2,9,489 when n = 8000 RtResult = 0,0,73,425,2 when n = 8000 RmResult = 0,0,1,3,496 when n = 16000 RtResult = 0,0,75,422,3 when n = 16000 RmResult = 0,0,1,4,495
```

Run the program serval times and get similar result.

The tables of Rt and Rm as following.

Here is the Rt table:

N	Rt<0.5	0.5≤Rt<0.75	0.75≤Rt≤1.25	1.25 <rt≤1.5< th=""><th>Rt>1.5</th></rt≤1.5<>	Rt>1.5
1000	0%	O%	36.8%	61.8%	1.4%
2000	0%	O%	29%	69.8%	1.2%
4000	0%	O%	23.8%	75.8%	0.4%
8000	0%	O%	14.6%	85.0%	0.4%
16000	O%	0%	15%	84.4%	0.6%

From the Rt table, we can conclude most of time Rt is between 1.25 and 1.5. So the Average Search time of Red-Black tree is better than simple Binary Search Tree in most of time. And when n increase, the result group more tightly in range of 1.25 and 1.5.

Here is the Rm table:

N	Rm<0.5	0.5≤Rm<0.75	0.75≤Rm≤1.25	1.25 <rm≤1.5< th=""><th>Rm>1.5</th></rm≤1.5<>	Rm>1.5
1000	O%	O%	0.8%	8.6%	90.6%
2000	O%	0%	0.6%	3%	96.4%
4000	O%	0%	0.4%	1.8%	97.8%
8000	O%	0%	0.2%	0.6%	99.2%
16000	O%	0%	0.2%	0.8%	99%

From the Rm table, we can conclude nearly all the time Rm is greater than 1.5, which means Red-Black Tree's worst cases are always better than simple Binary Search Tree's worst case. And when when n increase, the result group more tightly in range of 1.5 and higher.

Conclusion: The Red-Black Tree are superior to simple Binary Search Trees in both structure and worst-case-protect, the difference is more significant when n becomes greater.