Computation, learning, and phonological typology Class 1: Introduction

Adam Albright and Eric Baković CreteLing 2023 — July 2023

creteling2023.phonology.party

Setting the stage

The goal of generative phonology

The goal of generative phonology

- Theory of possible vs. impossible human phonologies
 - A theory of typology
 - A theory of learnability

The goal of generative phonology

- Theory of possible vs. impossible human phonologies
 - · A theory of typology
 - A theory of learnability
- Data: attested vs. unattested human phonologies
 - Typological description of language
 - · Better: 'verified typology'
 - Inferring what is (im)possible from what is (un)attested: a statistical problem

A possible statistical reformulation

- Frequent vs. rare vs. unattested phonologies
- Frequent = preferred in some way, rare and unattested = dispreferred/impossible

(Linear separation vs. modeling the observed distribution)

Assessing progress

If our goal is to build a model that rules in what's possible, and rules out what's impossible, then we need...

- A way to calculate the predicted typology of the model
- A way to assess fit to empirical typology

Both have generally been approached rather informally, especially prior to Optimality Theory (OT; Prince & Smolensky 2004[1993])

Calculating predicted typologies: a pre-OT example

- Hayes (1995): proposed set of parameters for stress systems
- Predicted typology = step through +/values for each parameter, selected combinations
- Focus: all known systems can be described with a combination of proposed parameter settings
- A somewhat unusual case! Not many 'complete parameter sets' for significant portions of phonological grammar

Calculating typologies in OT

Progress, but not solved

For reasons that we'll discuss in detail, Optimality
Theory has proven to be a useful framework for
calculating typologies

Calculating typologies in OT

Gordon (2002) on quantity-insensitive stress

- Proposed set of 12 constraints for quantity-insensitive stress systems
 - System formally generates 152 possible patterns (or 302, depending on certain assumptions)
 - All 24 attested patterns are generated
 - ... but 128 unattested patterns are also generated

Calculating typologies in OT

Kager (2012) on stress windows

- Compared various sets of ≈10 constraints for generating stress windows at word edges
 - · Best system formally generates 98 distinct windows
 - All 22 attested patterns are generated
 - ... but 76 unattested patterns are also generated (6/14 'default' patterns, 70/84 lexical accent patterns)

A recurring theme

- All proposed theories on the market overgenerate
- Accidental gaps
 - · Limited set of existing languages
 - Limited descriptions of existing languages
- Non-accidental, non-linguistic forces
 - Genetic relatedness, contact further limit diversity

A recurring theme (cont.)

Linguistic factors

A recurring theme (cont.)

- Linguistic factors
 - Some patterns easier or harder to identify based on naturally occurring data?
 - Some patterns dispreferred because of properties of the grammars that generate them?
 - Some patterns dispreferred due to how humans learn grammars?
 - Some patterns dispreferred due to substantive biases?

Some goals of this class

- Introduce some concepts and tools that have proven useful in reasoning about the typologies that grammatical formalisms generate
- Incorporating learnability into models of typology
 - Typology shaped by the data available to learners
 - Learning biases (evaluation metrics) favor some patterns over others
 - Survey various proposed biases and consider their consequences for typology
- Examples drawn from phonology, largely using Optimality Theory, but concepts are widely applicable

What this class will not deliver

- Set of packaged results showing dramatically improved fits to attested typology
 - · This is the kind of work we are hoping to inspire!
- Settled arguments in favor of particular learning models, biases, etc.

Using grammar to define a typology

Reminder: the challenge

- Take grammatical formalisms, and generate predicted typologies from them
- Assess fit to observed typology

We will focus mainly on the first task...

Grammar as parameter settings

- Models of grammar are sets of parameters
- Settings of parameters \Rightarrow possible languages
 - Small (light switch) or infinite (lexicon)
 - · Discrete or continuous

Parameters of rule-based approaches

The Sound Pattern of English (SPE; Chomsky & Halle 1968)

- Lexicon: strings of phonological segments, represented using phonological features
- Rules: A \rightarrow B / C _ D
 - Context and change = strings, represented using phonological features, boundary symbols, etc.
- Various properties of rules (iterative, direction of application, etc.)
- Rule ordering: sometimes $Q(P(x)) \neq P(Q(x))$

Generating a typology

Generative models

- Model of how the hypothesis (grammar) is constructed
- Generating underlying reprsentations (URs) for lexical items
- Generating rules
- Generating rule orders, etc.

Generating a very simple typology

A toy example

- Lexicon: just /sa/, /ʃa/, /si/, /ʃi/
 - · Pick a number of lexical items
 - For each, pick [±anterior], pick [±high]
 - Remaining values are predictable, yielding 4 URs
- Rules: change anteriority of stridents, possibly conditioned by a vowel
 - · Pick a number of rules
 - For each, pick a change direction: [α anterior]
 - Pick whether a context is specified
 - If yes, pick vowel feature [βhigh]
 - [+strid] \rightarrow [α anterior] / ___ ([β high])

Some toy grammars

```
Lg 1 • Lexicon: /sa/, /ʃi/
        · Rules: none
Lg 2 • Lexicon: /sa/, /ʃi/
        • Rules: [+strid] \rightarrow [-ant] / __ [+high] (s \longrightarrow [/_ i)
Lg 3 • Lexicon: /sa/, /[i/
        • Rules: [+strid] \rightarrow [+ant] / [-high] ([\longrightarrow s / \_ a)
Lg 4 • Lexicon: /sa/, /ʃa/, /si/, /ʃi/
        • Rules: [+strid] \rightarrow [-ant] / __ [+high] (s \longrightarrow [/_ i)
```

...etc.

The contrast/neutralization typology

Observation: Given a potential opposition between two minimally distinct phones, 'unmarked' A (here, [s]) and 'marked' B ([ʃ]), there appear to be four basic possible distribution types.

- Full Contrast (FC):
 [s] and [[] contrast everywhere.
- Absolute Neutralization (AN): Only [s] is ever found.
- Contextual Neutralization (CN):
 Only [ʃ] is found in certain contexts (here, before [i]);
 elsewhere, [s] and [ʃ] contrast.
- Complementary Distribution (CD):
 Only [ʃ] is found before [i]; elsewhere, only [s] is found.

Analysis in terms of (ordered) rules (= SPE)

- '__ i' represents the palatalizing context potentially favoring [ʃ];
- '__ a' represents the 'elsewhere' context potentially favoring [s].

Туре	Lexicon	Rule(s)	Derivations				
1. FC	/si, ʃi, sa, ʃa/	_	_				
2a. AN-a	/si, sa/	_	_				
			UR	/si/	/ʃi/	/sa/	/ʃa/
2b. AN-b	/si, ∫i, sa, ∫a/	$\int \longrightarrow s$	$\int \longrightarrow s$	_	si	_	sa
			SR	[si]	[si]	[sa]	[sa]
			UR	/si/	/ʃi/	/sa/	/ʃa/
3. CN	/si, ʃi, sa, ʃa/	s j / i	s> ∫ / i	ʃi	_	_	_
			SR	[ʃi]	[ʃi]	[sa]	[ʃa]

Analysis in terms of (ordered) rules (= SPE)

- '__ i' represents the palatalizing context potentially favoring [ʃ];
- '__ a' represents the 'elsewhere' context potentially favoring [s].

Туре	Lexicon	Rule(s)	Derivations				
			UR	/si/	_	/sa/	_
4a. CD-a	/si, sa/	s j / i	$s \longrightarrow \int / i$	ʃi	_	_	_
			SR	[ʃi]	_	[sa]	
			UR	/si/	/ʃi/	/sa/	/∫a/
4b. CD-b	/si, ∫i, sa, ∫a/	$\int \longrightarrow s$ $s \longrightarrow \int / \longrightarrow i$	$\int \longrightarrow s$	si	si	sa	sa
45. CD 5	751, j1, 5a, ju,	$s \longrightarrow \int /i$	$s \longrightarrow \int / - i$	ʃi	ʃi	_	_
			SR	[ʃi]	[ʃi]	[sa]	[sa]

Parameters in Optimality Theory (OT)

- Lexicon: strings of phonological segments, represented using phonological features
- Constraints: convenient early assumption that these are fixed, universal (Prince & Smolensky, 2004[1993])
- Ranking of constraints: assumed to be total
 - Minimum: for k constraints, k-1 rankings A \gg B

(Tesar & Smolensky, 2000)

Marginalizing over the lexicon

- Languages that we observe have both lexicons and grammars
- When evaluating a theory of rules/constraints, it is useful to know what languages it could generate in principle
 - i.e., independent of what the lexicon happens to be
- Approach: consider the set of outputs that the grammar would favor for all possible inputs
 - This is called Richness of the Base in OT

Constraint ranking as a parameter

Consider just two constraints

- Markedness: *[+strident]
 - · Penalizes any occurrence of a [+strident] segment
 - Obeyed in Māori, Hawaiian, most Australian languages
- Faithfulness: IDENT([±strident])
 - Penalizes any change of stridency between input and output; i.e., *[+strid]↔[-strid], or *∫↔h

Different rankings, different outcomes

- Two constraints ⇒ two rankings
- English: stridents may occur everywhere

/ʃ/		𝔻:ldent([±strident])	M:*[+strident]
163F	[ʃ]	✓	*
	[h]	* W	✓ L

Māori: no stridents anywhere

/ʃ/ M:*[+strident]		\mathbb{M} :*[+strident]	\mathbb{F} :IDENT([\pm strident])
	[ʃ]	* W	√ L
曖	[h]	✓	*

Enlarging the typology

Adding one additional constraint

- M^g: *[+strident]
 - Penalizes any occurrence of a [+strident] segment
- \mathbb{M}^s : *[+strident]#
 - Penalizes any word-final [+strident] segment
 - Obeyed in Caribbean Spanish, Thai, Korean, Vietnamese
 - More accurately: no stridents unless before V (*sC, *s#)
- F: IDENT([±strident]): penalizes any change of stridency between input and output

3 constraints \Rightarrow 3! rankings = 6 (FACTORIAL TYPOLOGY)

Faithfulness rules: $\mathbb{F} \gg \{\mathbb{M}^g, \mathbb{M}^s\}$

/sæp/	F:IDENT([±str])	™ ^g :*[+str]	\mathbb{M}^s :*[+str]#
☞ [sæp]	✓	*	✓
[hæp]	* W	✓ L	✓
/pæs/	F:IDENT([±str])	™ ^g :*[+str]	\mathbb{M}^s :*[+str]#
☞ [pæs]	V	*	*
[pæh]	* W	✓ L	✓ L

- \mathbb{F} :IDENT([\pm strid]) at the top protects all stridents
- Stridents & non-stridents are contrastive in all positions

(NB. 2 of the 6 rankings)

Faithfulness tempered: $\mathbb{M}^{S} \gg \mathbb{F} \gg \mathbb{M}^{g}$

/sæp/		M ^s :*[+str]#	F:IDENT([±str])	\mathbb{M}^g :*[+str]
rg	[sæp]	✓	1	*
	[hæp]	✓	* W	✓ L

/pæs/	M ^s :*[+str]#	\mathbb{F} :IDENT([\pm str])	™ ^g :*[+str]
[pæs]	* W	√ L	*
เpæh]	1	*	✓

- Contextual \mathbb{M}^s :*[+str]# bans final stridents, but \mathbb{F} :IDENT([±str]) protects stridents elsewhere
- Stridents are contrastive only in non-final position

(NB. 1 of the 6 rankings)

Faithfulness lost: $\mathbb{M}^g \gg \mathbb{F}$ (\mathbb{M}^s is unrankable)

/sæp/	\mathbb{M}^g :*[+str]	F:ldent([±str])	M ^s :*[+str]#
เ [hæp]		*	\rangle
[sæp]	*W	L	

/pæh/	™ ^g :*[+str]	F:IDENT([±str])	M ^s :*[+str]#
เ [hæp]		* (
[pæs]	*W	L	*W

- \mathbb{M}^g :*[+strid] bans all stridents
- Stridents are never contrastive with non-stridents

(NB. remaining 3 of 6 rankings)

Factorial typologies

- k constraints yields at most k! different languages
- In practice, usually many fewer, once identical sets of outputs are grouped together
- Some patterns may be generated by many rankings, some by few or even just one
- See McCarthy (2008), Ch. 5 for further examples and discussion (uploaded as part of Background Readings)

Typology depends on CON

Naturally, changing CON affects the resulting typology

Recall the contrast/neutralization typology

1. Full Contrast (FC):

[s] and [f] contrast everywhere.

2. Absolute Neutralization (AN):

Only [s] is ever found.

3. Contextual Neutralization (CN):

Only [ʃ] is found in certain contexts (here, before [i]); elsewhere, [s] and [ʃ] contrast.

4. Complementary Distribution (CD):

Only [ʃ] is found before [i]; elsewhere, only [s] is found.

Analysis in terms of ranked constraints (= OT)

- Constraints: $\int \longrightarrow s = \mathbb{M}^g : * f \gg \mathbb{F} : * s \leftrightarrow f$ $s \longrightarrow \int / \underline{\quad} i = si \longrightarrow \int i = \mathbb{M}^s : * si \gg \mathbb{F} : * s \leftrightarrow f$
- 3 constraints: $3! = 3 \times 2 \times 1 = 6$ total rankings
- Inputs: /si/, /ʃi/, /sa/, /ʃa/
- Candidate outputs: [Si], [ʃi], [Sa], [ʃa] (NB. only s ↔ f changes)
- Unfaithful input-output mappings are marked with underlining, e.g. /si/ \longrightarrow [[i]]

Full contrast (FC): $\mathbb{F} \gg \{\mathbb{M}^s, \mathbb{M}^g\}$

/si/	F: *s↔∫	™s:*si	. M ^g :∗∫	/ʃi/
เ⊛ [si]		*		ß [∫i]
[[i]	*W	L	*W	[<u>s</u> i
/sa/	F: *s↔∫	™s:*si	M ^g :∗∫	/ʃa

*W

*W

☞ [sa] [ʃa]

/ʃi/	F: *s↔∫	™s:*si	\mathbb{M}^g :* \int
13 [ji]			*
[<u>s</u> i]	*W	*W	L

/ʃa/	F: * <i>s</i> ↔ <i>∫</i>	™s:*si	. M ^g :∗∫
☞ [ʃa]			*
[<u>s</u> a]	*W		L

(NB. 2 of 6 total rankings)

Absolute neutralization (AN): $\mathbb{M}^g \gg \{\mathbb{M}^s$, $\mathbb{F}\}$

/si/	M ^g :*∫	™s:*si	『 F:*s↔ʃ
☞ [si]		*	I
[[i]	*W	L	*W
/sa/	\mathbb{M}^g :* f	™s:*si	Γ:*s↔Γ

/ʃi/	\mathbb{M}^g :* f	™s:*si	『:* <i>s</i> ↔∫
☞ [<u>s</u> i]		*	*
[ʃi]	*W	L	L

/sa/	™ ^g :*∫	™s:*si	F:* <i>s</i> ↔ <i>∫</i>
☞ [sa]			l
[ʃa]	*W		*W

/ʃa/	M ^s :*∫	\mathbb{M}^g :*si	『:* <i>s</i> ↔∫
☞ [<u>s</u> a]			*
[ʃa]	*W		L

(NB. 2 of 6 total rankings)

Contextual neutralization (CN): $\mathbb{M}^{\mathcal{S}}\gg\mathbb{F}\gg\mathbb{M}^{\mathcal{G}}$

/si/	™s:*si	F :*s↔∫	M ^g :*∫
☞ [si]		*	*
[[i]	*W	L	L

/ʃi/	™s:*si	F :*s↔∫	\mathbb{M}^g :* \int
☞ [ʃi]			*
[<u>s</u> i]	*W	*W	L

/sa/	™s:*si	F :* <i>s</i> ↔ <i>∫</i>	™ ^g :*∫
☞ [sa]			
[ʃa]		*W	*W

/ʃa/	™s:*si	F :*s↔∫	\mathbb{M}^g :* \int
☞ [ʃa]			*
[<u>s</u> a]		*W	L

(NB. 1 of 6 total rankings)

Complementary distribution (CD): $\mathbb{M}^{s}\gg\mathbb{M}^{s}\gg\mathbb{F}$

/si/	™s:*si	\mathbb{M}^g :* f	ℙ: *s↔∫
13 [[i]		*	*
[si]	*W	L	L

/ʃi/	™s:*si	M ^g :*∫	F: *s↔∫
☞ [ʃi]		*	
[<u>s</u> i]	*W	L	*W

	/sa/	™s:*si	\mathbb{M}^g :* f	ℙ: *s↔∫
D	☞ [sa]			
	[<u>ʃ</u> a]		*W	*W

/ʃa/	™s:*si	M ^g :*∫	F: *s↔∫
☞ [<u>s</u> a]			*
[ʃa]		*W	L

(NB. remaining 1 of 6 total rankings)

An alternative constraint set

- Constraints: $\int \longrightarrow s = \mathbb{M}^g: *f \gg \mathbb{F}^u: *f \to s$ $s \longrightarrow \int / \underline{\quad} i = si \longrightarrow \int i = \mathbb{M}^s: *si \gg \mathbb{F}^m: *s \to f$
- 4 constraints: $4! = 4 \times 3 \times 2 \times 1 = 24$ total rankings
- Inputs: /si/, /ʃi/, /sa/, /ʃa/
- Candidate outputs: [si], [ʃi], [sa], [ʃa] (NB. only s↔∫ changes)
- Unfaithful input-output mappings are marked with underlining, e.g. /si/ \longrightarrow [[i]]

FC: $\mathbb{F}^u\gg \mathbb{M}^g\gg \mathbb{M}^s$ or $\left\{\left(\mathbb{F}^m\gg \mathbb{M}^s\right)$ & $\left(\mathbb{F}^u\gg \mathbb{M}^g\right) ight\}$

/si/		$rac{\mathbb{F}^u}{*f}{ o}s$	*f	™s *si	/ʃi/		$rac{\mathbb{F}^u}{*f}{ o}s$	*[™s *si
☞ [si]	(*	เ⊛ [ʃi]			*	
[[i]	*W <		*W	L	[<u>s</u> i]		*W	L	*W
/sa/		F^u * $\int \rightarrow s$	™g *∫	™s *si	/ʃa/	_F ^m ⟨⟨ *s→∫ ⟨⟨	F^u * $\int \rightarrow s$	*f	™s *si
☞ [sa]	(☞ [ʃa]			*	
[[a]	*W (*W		[<u>s</u> a]	(*W	L	

(NB. 8 of 24 total rankings)

AN: $\mathbb{M}^g\gg\left\{\mathbb{F}^u$, $\mathbb{M}^s\right\}$ (\mathbb{F}^m is unrankable)

/si/		*f	_F u *∫→s	™ ^s *si	/ʃi/	*S→∫ ⟨	*f	_{F^u} *∫→s	ı M ^s ı *si
☞ [si]	(*	☞ [si]		·	*	*
[[i]]	*W <	*W		L	[[i]		*W	L	L
/sa/		\mathbb{M}^g	_F u *∫→s	ı M⁵ ı ∗si	/ʃa/		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	_F ^u *∫→s	ı M ^s ı ∗si
☞ [sa]	(l 	☞ [sa]		·	*	l I
[[a]	*W <	*W			[[a]		*W	L	!

(NB. 8 of 24 total rankings)

CN: $(\{\mathbb{F}^u, \mathbb{M}^s\} \gg \mathbb{M}^g)$ & $(\mathbb{M}^s \gg \mathbb{F}^m)$

/si/	_𝔽 ^u *∫→s	™ ^s *si	*f	 *S→∫	/ʃi/	\mathbb{F}^u * $\int \rightarrow s$	™ ^s *si	*∫	
r⊛ [ʃi]			*	*	™ [ʃi]		l I	*	
[<u>s</u> i]		*W	L	L	[<u>s</u> i]	*W	*W	L	
/sa/	_F ^u *∫→s	™ ^s *si	™g *∫		/ʃa/	\mathbb{F}^u * $f \rightarrow s$	™ ^s *si	™g *∫	
☞ [sa]					☞ [ʃa]		 	*	
[[a]			*W	*W	[<u>s</u> a]	*W		L	

(NB. 4 of 24 total rankings)

CD: $(\mathbb{M}^s \gg \mathbb{M}^g \gg \mathbb{F}^u)$ & $(\mathbb{M}^s \gg \mathbb{F}^m)$

/si/	™ ^s *si	™a *}	_𝔻 ^u *∫→s	 *s→∫	/ʃi/	™s *si	*[_F ^u *∫→s	_ℙ m *s→∫
133 [∫i]		*		*	เ⊛ [ʃi]		*		
[<u>s</u> i]	*W	L		L	[<u>s</u> i]	*W	L	*W	
/sa/	™ ^s *si	™g *∫	_F ^u *∫→s	\mathbb{F}^m * $s \rightarrow f$	/ʃa/	™ ^s *si	*f	_F ^u *∫→s	_E m *s→∫
☞ [sa]					☞ [sa]			*	
[[a]		*W		*W	[[a]		*W	L	

(NB. 3 of 24 total rankings)

Reverse neutralization! (RN): $\mathbb{F}^m \gg \overline{\mathbb{M}}^s \gg \mathbb{M}^g \gg \mathbb{F}^u$

/si/	_ℙ m *S→∫	™s *si	™g *∫	\mathbb{F}^u * $\int \rightarrow s$	/ʃi/	_ℙ m *S→∫	™ ^s *si	*f	_F ^u *∫→s
☞ [si]		*			☞ [ʃi]			*	
[[i]	*W	L	*W		[<u>s</u> i]		*W	L	*W
, ,	\mathbb{F}^m	\mathbb{M}^s	\mathbb{M}^g	\mathbb{F}^u		\mathbb{F}^m	\mathbb{M}^s	\mathbb{M}^g	\mathbb{F}^u
/sa/	* <i>S</i> →∫	*si	*∫	*∫→s	/ʃa/	* <i>S</i> →∫	*si	*∫	*∫→s
☞ [sa]					☞ [sa]				*
[[a]	*W		*W		[[a]			*W	L

(NB. remaining 1 of 24 total rankings)

Factorial typology and universal CON

- Ability to enumerate entire predicted typology was an interesting selling point for OT
- Useful assumption in guiding formulation of new constraints
- Fixed universal CON made calculating typology easy and accessible*

*But it's still *very* challenging to do by hand! Software helps.

Relaxing these assumptions

- Finite set, but constraints can be active/inactive
 - Expands number of possible rankings considerably
 - · Sum of factorials, but still finite
- Infinite constraint set
 - Can't be enumerated, but can be sampled (similar to SPE rules)
 - Sampling requires a probability distribution over rules/constraints, such as that assigned by a generative model
- Next: how properties of rules/constraints may affect their probability

References

- Chomsky, Noam, and Morris Halle. 1968. *The Sound Pattern of English*. New York: Harper and Row.
- GORDON, MATTHEW. 2002. A factorial typology of quantity-insensitive stress. Natural Language & Linguistic Theory 20.491–552.
- Hayes, Bruce. 1995. *Metrical Stress Theory: Principles and Case Studies*. Chicago, IL: The University of Chicago Press.
- KAGER, RENÉ. 2012. Stress in windows: Language typology and factorial typology. Lingua 122.1454–1493.
- McCarthy, John J. 2008. Doing Optimality Theory. Malden, MA: Wiley-Blackwell.
- Prince, Alan, and Paul Smolensky. 2004[1993]. *Optimality theory: Constraint interaction in generative grammar*. Malden: Blackwell. Available on ROA (http://roa.rutgers.edu).
- Tesar, Bruce, and Paul Smolensky. 2000. Learnability in Optimality Theory. Cambridge, MA: MIT Press.