Student Name

Duration 50 minutes

Quiz-II

March 25, 2019

Instructor Name

Student Roll number ____

- 1. Random variables X and Y have a joint probability density function that is uniform on the disc with centre as origin and radius 2.
 - (1 point) The marginal pdf of X, i.e., $f_X(x)$ is

Answer: $f_X(x) = \frac{\sqrt{4 - x^2}}{2\pi}$, $x \in (-2, 2)$

• (1 point) The conditional pdf of X given Y = y, i.e., $f_{X|Y}(x \mid y)$ is

Answer: $f_{X|Y}(x \mid y) = \frac{1}{2\sqrt{4-y^2}}, \quad x \in \left(-\sqrt{4-y^2}, \sqrt{4-y^2}\right)$

• (1 point) The Cov(X, Y) is

Answer: $\boxed{0}$

• (1 point) The value of $f_{XY}(0,0) - f_X(0) f_Y(0)$ is

Answer: $\frac{1}{4\pi} - \frac{1}{\pi^2} = -0.0217$

2. $\{X_i\}_{i=1}^n$ are drawn from a PDF given by

$$f_X(x) = \frac{a}{2} \exp(-a|x|), \quad \forall x \in \mathbb{R}$$

where a > 0.

• (2 points) The moment generating function $M_X(s)$ for the random variable X is

Answer: $M_X(s) = \frac{a^2}{a^2 - s^2}, \quad s \in (-a, a)$

• (1 point) The domain of the variable s in the moment generating function $M_X(s)$ is

Answer: $s \in (-a, a)$

 \bullet (2 points) The maximum likelihood estimator for a is

Answer: $\hat{a} = \frac{n}{|X_1| + |X_2| + \dots + |X_n|}$

- 3. A manufacturer measures the diameter of n pipe fittings by drawing them at random. Assume that the diameter is normally distributed with standard deviation of 10^{-1} cm.
 - (2 points) The sample mean for n=20 is 2cm; 95% confidence interval for mean is

Answer: (1.956cm, 2.044cm)

• (1 point) Value of n for a 99% confidence interval of length 10^{-2} cm is

Answer: n = 2642

4. Let X be the annual household income in lakhs. It is given that the mean annual income of a household is 1 lakh.

• (1 point) Upper bound on the $\mathbb{P}(X \ge 5)$ (using Markov inequality) is ______ Solution: $\boxed{\mathbb{P}(X \ge 5) \le 0.2}$

• (2 points) If standard deviation is 0.4 lakhs, $\mathbb{P}(X \ge 5)$ (using Chebyshev inequality) is ______Solution: $\boxed{\mathbb{P}(X \ge 5) \le 0.01}$

5. The processing times (in minutes) of different parts are independent random variables, uniformly distributed in [1,6] and 100 parts need to be processed. (Use Central Limit Theorem)

• (2 points) The time taken to guarantee 98% probability for the above task is

Answer: T = 379.589 minutes

• (1 point) The probability that the total process time is within 6 hours is **Answer**: $\mathbb{P}(T \le 6 \text{ hours}) = 0.755$

6. Probability density function of a random variable X is $f_X(x) = \lambda \exp(-\lambda x)$ with $x \ge 0$. Let $Y = \sqrt{X}$.

• (1 point) The probability density function for Y, i.e., $f_Y(y)$ is

Answer: $f_Y(y) = 2\lambda y \exp\left(-\lambda y^2\right), \quad y \ge 0$

• (1 point) $\mathbb{E}(Y^2)$ is

Answer: $\mathbb{E}(Y^2) = \mathbb{E}(X) = \frac{1}{\lambda}$