Health effects of OOP

Jan Boone

Work in Progress

Outline

Introduction

Two equations to estimate

Model

Data

Estimation

Results

Conclusions

Introduction

Health insurance

- healthcare costs increase in all developed countries
- insurance can cause moral hazard
- oop payments is one way to mitigate this
- if a deductible increase reduces expenditure, we view this as welfare enhancing
- what if oop cause people to postpone valuable treatments?
- can we identify this effect across countries?

Health effects

- postponing/forgoing valuable care has health effects
- measuring health effects is not easy
- we use mortality per NUTS 2 region/year/age/gender in European countries
- time varying NUTS 1 fixed effects

Insurance generosity

- comparing insurance generosity across countries is not straightforward
- how to compare a system with high deductible but low coinsurance rate or many treatments exempted from oop with a low deductible system?
- we use variable OOP: % oop in total health expenditure in a country
- high oop is especially problematic for people on low income
- they could forgo treatment if it is expensive
- ▶ if this mechanism exists: higher mortality in regions where OOP × Poverty is high

NUTS 2 regions in Europe

Summary: effect of increase in OOP on mortality in poor regions

Mortality effects of one standard deviation increase in OOP in a region with poverty two standard deviations above the mean.

Literature: individual level data

- recent literature on relation oop and mortality
- US individual level data
- e.g. Miller et al. (2021) on Medicaid eligibility expansion:
 - introduced in different states at different times
- Chandra et al. (2021) Medicare part D prescription drug coverage
 - enrollment month
- behavioral hazard: Baicker et al. (2015)

This paper

- European regional data
- more broad brush: cannot capture effect of 1% increase in deductible
- compare health insurance systems that are more/less generous
- more variation in OOP than with Dutch individual level data
- European health insurance more homogeneous across regions in a country

Health effects of OOP

Two equations to estimate

Two equations to estimate

Number of deaths

- per age, gender, year, nuts 2 region
- ▶ k deaths out of n population: $\binom{n}{k} m^k (1-m)^{n-k}$

$$\begin{split} h_{2atg} &= \mu_{1tg}\beta_a + \mu_{ag} + \beta_{poverty,a}Poverty_{2t} + \beta_{educ,a}Educ_{2tg} \\ &+ \beta_{unmet,a}Unmet_{2t} + \beta_{lagged_log_odds}h_{2a-1t-1g} \\ m_{2atg} &= \frac{e^{h_{2atg}}}{1 + e^{h_{2atg}}} \end{split}$$

Too expensive

- one motivation for unmet medical needs is that treatment was too expensive
- fraction of people in a region indicating that they postponed/forgone treatment because it was too expensive:

$$TooExp_{2t} = b_{0,c} + b_{oop}HealthExpend_{ct}OOP_{ct} + b_{interaction}HealthExpend_{ct}OOP_{ct}Poverty_{2t}$$

Model

Ingredients

- fraction α low income I; $1-\alpha$ high income h
- probability falling ill: $\pi^I > \pi^h$
- \triangleright coinsurance ξ ; deductible D
- ▶ health effects: $1 > \sigma_x > \sigma_0 \ge 0$
- get treatment if: $\nu \sigma_{\times} u(y^j oop) > \sigma_0 u(y^j)$
- lacktriangle other factors affecting treatment decision: G(
 u)
- **>** probability treatment: $1 G\left(\frac{\sigma_0}{\sigma_x} \frac{u(y^j)}{u(y^j oop)}\right)$

Model outcomes

- mortality $m_{at} = \frac{e^{h_{at}}}{1+e^{h_{at}}}$ where health:
- $ightharpoonup h_{at} = \text{fixed effects} + \gamma h_{a-1t-1} \text{expected health}$
- expected health depends on poverty, unmet medical needs
- ▶ too expensive: $G\left(\frac{\sigma_0}{\sigma_x}\frac{u(y^j)}{u(y^j-oop)}\right) G\left(\frac{\sigma_0}{\sigma_x}\right)$
- ► OOP $\approx \frac{\zeta \xi x_0 + (1-\zeta)D}{\zeta x_0 + (1-\zeta)x_1}$
- ▶ as we vary ξ , D we generate a relation between 00P and TooExp

Relation OOP and TooExp

Data

Eurostat data: 2009-2019; ages 2-85

Table: Summary statistics main variables

	count	mean	std	dim.
population	514212.00	10051.42	9441.60	nuts 2, age, g
deaths	514212.00	71.14	134.86	nuts 2, age, g
poverty	212820.00	17.13	7.92	nuts 2
too exp.	113700.00	2.14	3.21	nuts 2
unmet	113700.00	5.02	3.87	nuts 2
out-of-pocket	411980.00	18.75	7.54	country
low educ.	504216.00	24.11	13.67	nuts 2, g
expend. per head	452072.00	3129.58	1646.01	country

Missing values

- we have missing values
- but cannot afford to drop them
- variables based on sums are normally distributed
- ▶ we standardize variables: mean 0.0 and standard deviation 1.0
- when value is missing, we draw a value from this distribution
- allows us to estimate the relevant effects
- keep the uncertainty in the posterior distributions

Estimation

Estimation technique

- ▶ Bayesian analysis: are we 95% sure that the following chain of effects is present:
 - higher oop leads to higher unmet needs in areas with high poverty
 - which then leads to higher mortality
- we approximate the posterior distribution using Automatic Differentiation Variational Inference (ADVI)
- ► Gaussian Processes for coefficients that depend on age: $\beta(a)$ is more closely correlated with $\beta(a+1)$ then with $\beta(a+20)$
- squared exponential kernel

Results

Fit

Figure: Fit of estimated and observed mortality across all observations.

Coefficients

$$TooExp_{2t} = b_{0,c} + b_{oop}HealthExpend_{ct}OOP_{ct} + b_{interaction}HealthExpend_{ct}OOP_{ct}Poverty_{2t}$$

$$\begin{split} \textit{h}_{2\text{atg}} &= \mu_{1\text{tg}}\beta_{\textit{a}} + \mu_{\textit{ag}} + \beta_{\textit{poverty},\textit{a}}\textit{Poverty}_{2t} + \beta_{\textit{educ},\textit{a}}\textit{Educ}_{2\text{tg}} \\ &+ \beta_{\textit{unmet},\textit{a}}\textit{Unmet}_{2t} + \beta_{\textit{lagged}_log_odds}\textit{h}_{2\textit{a}-1t-1\textit{g}} \end{split}$$

Table: Summary statictics for estimated coefficients

variable	mean	sd	hdi_3%	hdi_97%
eta lagged_log_odds	-0.032	0.232	-0.464	0.402
b_{oop}	0.018	0.005	0.009	0.029
b _{interaction}	0.017	0.003	0.012	0.022

GP for β_{unmet}

Main result: in a poor region

Figure: One std. increase in OOP: From Dutch to Finish system; Finland to Switzerland; Switzerland to Greece

Robustness analysis

- ▶ include voluntary health insurance payments in OOP measure
- material deprivation as poverty measure
- separate effect of TooExp and other unment needs on mortality

Conclusions

Bayesian analysis

- we find the following:
 - consider a country with high OOP
 - people in a region with high poverty rate
 - are more likely to report unmet medical needs because treatment was too expensive
 - unmet medical needs increase mortality
- ► for people above age 45 living in a poor region we are at least 95% sure that an increase in oop increases mortality
- ▶ the increase in mortality due to a std. increase in OOP is comparable to mortality due to lung cancer in the EU for the ages above 45

Policy implications

- increasing oop leads to more costs than just risk aversion
- in poor areas, increase in mortality is comparable to lung cancer
- doing without oop is not an option:
 - means tested oop
 - let copayments vary with cost effectiveness of treatments