

Intro
Theory
Module
Testing
Outro

Vladimír VESELÝ, Vít Rek, Ondřej RYŠAVÝ

3RD OMNET++ SUMMIT
15TH-16TH SEPTEMBER 2016, BRNO, CZECH REPUBLIC

BABEL

Intro

Theory
Module
Testing
Outro

EIGRP

BABEL

def is a routing protocol

- multi-address family support (IPv4, IPv6)
- hybrid distance-vector
- open-source alternative to EIGRP
- policy-based metric calculation
- codified in RFC 6126

Implementations

- babeld
- Pybabel
- Sbabeld
- Unavailable in any other major simulator NS-2/3, OPNET, etc.
 - We need Babel in order to compare it with our EIGRP
 - We want to use it in frame if PRISTINE project

Intro

Theory Module Testing

BEST ROUTE SELECTION

Feasibility condition

Intro Theory

Module

Testing

Outro

The best known metric m_A (lower means better) together with a sequence number s_A (higher means more current) to a destination network N from a router A denotes its feasible distance $FD_A(N)$

$$D_B(\mathbf{N}) = (s_B, m_B), FD_A(\mathbf{N}) = (s_A, m_A):$$

 $D_B(\mathbf{N}) < FD_A(\mathbf{N}) \leftrightarrow (s_B = s_A \land m_B < m_A) \lor s_B > s_A$

Metric

- is a sum of link costs: $m_A = m_B + c$
- Programmable link cost calculation
 - ◆ k-out-of-j
 - ETX

MESSAGES

- Communication
 - Multicast addresses 224.0.0.111 and ff02::1:6
 - UDP on port 6696

Intro

Theory

Module

Testing

Outro

Babel messages employs TLV protocol extensions

- Hello neighbor discovery
- AckReq and Ack solicited ack request and confirmation response
- IHU I Hear You confirms mutual reachbility of neighbors
- Router-id unique router identifier
- NextHop nexthop IP address
- Update advertises or withdraws routes
- RouteReq request for specific route
- SeqNoReq request for route with specific sequence number
- Pad1, PadN padding

IMPLEMENTATION

Intro

Theory

Module

Testing

SCENARIO

Comparing real and simulated network

Intro
Theory
Module

Testing

- a) Establishing neighborship
- b) Routing table convergence
- c) Link failure and subsequent routing information propagation

A) ESTABLISHING NEIGHBORSHIP

Intro
Theory
Module

Testing

Ord.	TLVs	$S \rightarrow R$	Simul.[s]	Real [s]
#1	Hello, RouteReq	R1→R2	0.092	0.006
#2	Hello, IHU, Update	R2→R1	0.292	0.007
#3	Hello, IHU	R1→R2	0.492	0.040
#4	Hello, IHU	R2→R1	0.692	0.134
#5	RouteReq	R2→R1	0.692	0.903
#6	Hello, IHU, Update	R1→R2	0.892	1.084
#7	RouteReq	R1→R2	0.892	1.085
#8	Update, IHU	R2→R1	1.902	1.744
#9	Hello, IHU	R2→R1	5.632	5.111

Intro Theory Module

Testing

Outro

B) ROUTING TABLE CONVERGENCE

```
btt.getRoutes() (std::vector<BabelRoute *>)
```

```
E btt.getRoutes()[13] (BabelRoute *)

-[0] = > 2001:db8:a::/64 local metric:0 orig:1111:1111:1111

-[1] = > 2001:db8:12::/64 local metric:0 orig:1111:1111:1111

-[2] = > 2001:db8:13::/64 local metric:0 orig:1111:1111:1111

-[3] = > 2001:db8:c::/64 NH:fe80:13::3 metric:96 orig:3333:3333:3333 from:fe80:13::3 RD:(31921, 0), in RT

-[4] = > 2001:db8:23::/64 NH:fe80:13::3 metric:96 orig:3333:3333:3333 from:fe80:13::3 RD:(31921, 0), in RT

-[5] = 2001:db8:13::/64 NH:fe80:13::3 metric:96 orig:3333:3333:3333 from:fe80:13::3 RD:(31921, 0)

-[6] = > 2001:db8:b::/64 NH:fe80:12::2 metric:96 orig:2222:2222:2222 from:fe80:12::2 RD:(27469, 0)

-[7] = 2001:db8:12::/64 NH:fe80:12::2 metric:96 orig:2222:2222:2222 from:fe80:12::2 RD:(27469, 0)

-[9] = > 2001:db8:24::/64 NH:fe80:12::2 metric:96 orig:2222:2222:2222 from:fe80:12::2 RD:(27469, 0)

-[10] = 2001:db8:12::/64 NH:fe80:13::3 metric:192 orig:2222:2222:2222 from:fe80:12::2 RD:(27469, 96)

-[11] = 2001:db8:13::/64 NH:fe80:12::2 metric:192 orig:2222:2222:2222 from:fe80:12::2 RD:(31921, 96)

-[12] = > 2001:db8:da:/64 NH:fe80:12::2 metric:192 orig:3333:3333:3333 from:fe80:12::2 RD:(53887, 96), in RT
```

Flag Prefix	Met	RD	Router-Id	Next-Hop
> 2001:db8:a::/64	0			
> 2001:db8:12::/64	0			
> 2001:db8:13::/64	0			
> 2001:db8:b::/64	96	0	2222:2222:222:222	fe80:12::2
> 2001:db8:c::/64	96	0	3333:3333:3333:3333	fe80:13::3
> 2001:db8:d::/64	192	96	4444:4444:4444:4444	fe80:12::2
2001:db8:12::/64	96	0	2222:2222:2222:2222	fe80:12::2
2001:db8:13::/64	192	96	3333:3333:3333:3333	fe80:12::2
2001:db8:12::/64	192	96	2222:2222:222:222	fe80:13::3
2001:db8:13::/64	96	0	3333:3333:3333:3333	fe80:13::3
> 2001:db8:23::/64	96	0	2222:2222:222:222	fe80:12::2
2001:db8:23::/64	96	0	3333:3333:3333:3333	fe80:13::3
> 2001:db8:24::/64	96	0	2222:2222:2222:2222	fe80:12::2

C) LINK-FAILURE

```
Intro
Theory
Module
```

Testing

Ord.	TLVs	$S \rightarrow R$	Simul.[s]	Real [s]
#1	SeqNoReq	R2→R3	0.187	0.208
#2	SeqNoReq	R3→R1	0.347	1.079
#3	Update	R1→R3	0.595	1.152
#4	Update	R3→R2	0.673	1.275

Intro

Theory

Module

Testing

Outro

THE END

- ANSAINET extends INET with new simulation modules
 - ◆ IS-IS, TRILL
 - EIGRP, OSPFv3
 - LISP
 - CDP, LLDP
 - HSRP, VRRP, GLBP

Please do not go anywhere ©

Invited Speaker: Vladimír Veselý
Introducing OMNeT++-based Research Frameworks: ANSAINET

INET is well-known OMNeT++ framework allowing simulation and modeling of traditional TCP/IP-based networks. ANSAINET extends the functionality of original INET framework with various technologies focused on wired networks. ANSAINET contributed to INET with multicast routing, PIM protocol, RIP and others in the past. During the last year, we have successfully migrated our framework to INET 3.3 (compatible with OMNeT++ 5.0). Moreover, we developed a lot of new In simulation modules (e.g., EIGRP, Babel, IS-IS, TRILL, LISP, CDP, LLDP, HSRP, VRRP, GLBP) and we would like to tell the community about them. For more information, take a look at the project's Github repository.

Thank you for your attention! Questions?