1 $y = 1 - x + \tan x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -1 + \sec^2 x$$

M1 Differentiating **A1**
$$\frac{dy}{dx}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2 \sec^2 x \tan x$$

A1
$$\frac{d^2y}{dx^2}$$

When
$$x = \frac{1}{4}\pi$$
, $y = 2 - \frac{1}{4}\pi$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4$$

Dealing with the curve

6

Let circle have eqn.
$$(x-a)^2 + (y-b)^2 = r^2$$

M1 At any stage

Then
$$2(x-a) + 2(y-b) \frac{dy}{dx} = 0$$

and
$$2 + 2(y - b) \frac{d^2 y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = 0$$

M1 (Product/Quotient Rule) A1

A1

or
$$\frac{dy}{dx} = \frac{a-x}{y-b} \implies \frac{d^2y}{dx^2} = \frac{(y-b)(-1) - (a-x)\frac{dy}{dx}}{(y-b)^2}$$

Dealing with the circle

(5)

When
$$x = \frac{1}{4}\pi$$
, $y = 2 - \frac{1}{4}\pi$, we have

Substitution

$$\left(\frac{1}{4}\pi - a\right)^2 + \left(2 - \frac{1}{4}\pi - b\right)^2 = r^2$$

M1 A1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{(x-a)}{(y-b)} = 1$$

$$\Rightarrow$$
 $-\frac{1}{4}\pi + a = 2 - \frac{1}{4}\pi - b$ or $a + b = 2$

$$2 + 2(2 - \frac{1}{4}\pi - b).4 + 2.(1)^2 = 0$$

Matching the two up

6

$$b = \frac{5}{2} - \frac{1}{4}\pi$$

A1 cao

$$a = \frac{1}{4}\pi - \frac{1}{2}$$

A1 cao

$$r^2 = (\frac{1}{2})^2 + (\frac{1}{2})^2 \implies r = \frac{1}{\sqrt{2}}$$
 A1 cso

Answers

3

 $\cos 3x = \cos(2x + x) = \cos 2x \cos x - \sin 2x \sin x$ M1 2x & x and $\sin \operatorname{or} \cos(A + B)$ used 2 **M1** Double-angles and $s^2 + c^2 = 1$ $=(2c^2-1)c-2sc.s$ $=(2c^2-1)c-2c(1-c^2)$ used somewhere $=4c^3-3c$ A1 (ANSWER GIVEN) $\sin 3x = \sin(2x + x) = \sin 2x \cos x + \cos 2x \sin x$ $= 2sc.c + (1 - 2s^2)s$ $=2s(1-s^2)+s(1-2s^2)$ $= 3s - 4s^3$ **A1 ALT.** $\cos 3x + i \sin 3x = (c + i s)^3$ **M1** de Moivre and equating Re. and Im. parts M1 binomial expansion (If 2nd result just quoted, score M0 M0 A0 A1) $I(\alpha) = \int_{0}^{\alpha} \left(7\sin x - 8\sin^{3} x\right) dx$ **(i)** ↓ **M1** Use of above result to get rid of s^3 $= \int_{0}^{\pi} (\sin x + 2\sin 3x) \, dx \quad \mathbf{A1}$ = $\left[-\cos x - \frac{2}{3}\cos 3x\right]_0^{\alpha}$ A1 ft for both " $a\cos kx$ " terms

4

(11)

 $=-\cos\alpha-\frac{2}{3}(4\cos^3\alpha-3\cos\alpha)+1+\frac{2}{3}$ M1 Use of cos3x to get expression in c $=-\frac{8}{3}c^3+c+\frac{5}{3}$ A1 legitimately from correct unsimplified form (ANSWER GIVEN)

$$I(\alpha) = 0$$
 when $c = 1$ ($\alpha = 0$) **B1**

(ii)
$$J(\alpha) = \left[\frac{7}{2}\sin^2 x - \frac{8}{4}\sin^4 x\right]_0^{\alpha}$$
 B1 both
$$= \frac{7}{2}(1 - \cos^2 \alpha) - 2(1 - \cos^2 \alpha)^2$$
 M1 Getting c's only
$$= -2c^4 + \frac{1}{2}c^2 + \frac{3}{2}$$
 A1 \checkmark MUST be simplified (here or later)

M1 A1 for subst^g. $c = -\frac{1}{6}$ into both sides: $\frac{245}{162}$ (N.B. may be done after following algebra)

M1 Equating two polynomials in *c*

$$I(\alpha) = J(\alpha)$$
 when $0 = 2c^4 - \frac{8}{3}c^3 - \frac{1}{2}c^2 + c + \frac{1}{6}$ i.e. $0 = 12c^4 - 16c^3 - 3c^2 + 6c + 1$

M1 Full factorisation attempted: $0 = (c-1)^2 (2c+1)(6c+1)$ **A1**

$$\cos \alpha = -\frac{1}{2}$$
 i.e. $\alpha = \frac{2}{3}\pi$ **A1**

$$\cos \alpha = -\frac{1}{6}$$
 i.e. $\alpha = \pi - \cos^{-1}(\frac{1}{6})$ or $\cos^{-1}(-\frac{1}{6})$ and $\alpha = 0$ **A1** both

N.B. Unfortunately, the $\alpha \in (0, \pi)$ demand disappeared, so please ignore any work towards general solutions.

2 (ii) Special Scheme for those who use $\int \sin x \, dx = -\cos x$ rather than Eustace's $\frac{1}{2}\sin^2 x$

$$J(\alpha) = \begin{bmatrix} -7\cos x - 2\sin^4 x \end{bmatrix}_0^{\alpha} \qquad \textbf{B0}$$

$$= 7 - 7\cos \alpha - 2(1 - \cos^2 \alpha)^2 \qquad \textbf{M1} \text{ Getting } c\text{'s only}$$

$$= -2c^4 + 4c^2 - 7c + 5 \qquad \qquad \textbf{A1 ft MUST be simplified (here or later)}$$

M1 A0 for subst^g.
$$c = -\frac{1}{6}$$
 into both sides: $\frac{245}{162} = \frac{4067}{648}$!

M1 Equating two polynomials in c

$$I(\alpha) = J(\alpha)$$
 when $0 = 6c^4 - 8c^3 - 12c^2 + 24c - 10$

M1 Full factorisation attempted

A1
$$0 = 2(c-1)^3 (3c+5)$$

3 (i)

M1 Subst^g. n = 0, 1, (2), 3 into given formula

$$F_0 = 0 \implies 0 = a + b \text{ or } b = -a$$

A1

$$F_1 = 1 \implies 1 = a(\lambda - \mu)$$

A1

$$[F_2 = 1 \implies 1 = a(\lambda^2 - \mu^2) \implies \lambda + \mu = 1]$$

$$F_3 = 2 \implies 2 = a(\lambda^3 - \mu^3) = a(\lambda - \mu)(\lambda^2 + \lambda\mu + \mu^2)$$

M1 Difference of 2 cubes

$$=1.(\lambda^2 + \lambda\mu + \mu^2) \implies \lambda^2 + \lambda\mu + \mu^2 = 2$$

A1 (ANSWER GIVEN)

(5)

6

$$(\lambda + \mu)^2 - \lambda \mu = 1 - \lambda \mu \implies \lambda \mu = -1$$

M1 Getting any two suitable eqns.; e.g. any two of $\lambda \mu = -1$, $\lambda - \mu = \frac{1}{a}$ and $\lambda + \mu = 1$

M1 Solving simultaneously

= 1

A1 for
$$a = \frac{1}{\sqrt{5}}$$
, $b = -\frac{1}{\sqrt{5}}$ **A1** for $\lambda = \frac{1}{2}(1 + \sqrt{5})$, $\mu = \frac{1}{2}(1 - \sqrt{5})$

(ii) M1 Using the formula $F_n = a \lambda^n + b \mu^n = \frac{1}{2^n \sqrt{5}} \{ (1 + \sqrt{5})^n - (1 - \sqrt{5})^n \}$ with n = 6

M1 Good attempt at a binomial expansion

$$F_6 = \frac{1}{2^6 \sqrt{5}} \left\{ 1 + 6\sqrt{5} + 15.5 + 20.5\sqrt{5} + 15.5^2 + 6.5^2 \sqrt{5} + 5^3 \right\}$$
 A1 576 + 256 $\sqrt{5}$

$$- \left(1 - 6\sqrt{5} + 15.5 - 20.5\sqrt{5} + 15.5^2 - 6.5^2 \sqrt{5} + 5^3 \right)$$
 M1 Conjugate of previous
$$= \frac{2}{2^6 \sqrt{5}} \left(6\sqrt{5} + 100\sqrt{5} + 150\sqrt{5} \right) = \frac{2.2^8 \sqrt{5}}{2^6 \sqrt{5}} = 8$$
 A1 Legitimately shown \bigcirc

(iii)
$$\sum_{n=0}^{\infty} \frac{F_n}{2^{n+1}} = \frac{a}{2} \sum_{n=0}^{\infty} \left(\frac{\lambda}{2}\right)^n - \frac{a}{2} \sum_{n=0}^{\infty} \left(\frac{\mu}{2}\right)^n$$
 M1 Use of formula

A1 cao

M1 Split into 2 series (& something useful done with them)

$$= \frac{1}{2\sqrt{5}} \left(\frac{1}{1 - \frac{1}{4} (1 + \sqrt{5})} \right) - \frac{1}{2\sqrt{5}} \left(\frac{1}{1 - \frac{1}{4} (1 - \sqrt{5})} \right)$$

$$= \frac{1}{2\sqrt{5}} \left(\frac{4}{3 - \sqrt{5}} \right) - \frac{1}{2\sqrt{5}} \left(\frac{4}{3 + \sqrt{5}} \right)$$

$$= \frac{2}{\sqrt{5}} \left(\frac{3 + \sqrt{5}}{9 - 5} \right) - \frac{2}{\sqrt{5}} \left(\frac{3 - \sqrt{5}}{9 - 5} \right)$$

$$= \frac{2}{\sqrt{5}} \left(\frac{2\sqrt{5}}{4} \right)$$
M1 Simplifying
$$= \frac{2}{\sqrt{5}} \left(\frac{3 + \sqrt{5}}{9 - 5} \right) - \frac{2}{\sqrt{5}} \left(\frac{3 - \sqrt{5}}{9 - 5} \right)$$
M1 Rationalising denominators (or equivalent)
$$= \frac{2}{\sqrt{5}} \left(\frac{2\sqrt{5}}{4} \right)$$

Note: (ii) F_6 can be found by $a \lambda^6 + b \mu^6 = a(\lambda^6 - \mu^6) = a(\lambda^3 - \mu^3)(\lambda^3 + \mu^3) = F_3(\lambda^3 + \mu^3)$ etc.

4(i) M1 Using the substn.
$$y = a - x$$
 M1 Full substn. involving $dy = -dx$ and $(0, a) \rightarrow (a, 0)$

$$\int_{0}^{a} \frac{f(x)}{f(x) + f(a - x)} dx = \int_{a}^{0} \frac{f(a - y)}{f(a - y) + f(y)} - dy$$

$$= \int_{0}^{a} \frac{f(a - y)}{f(a - y) + f(y)} dy = \int_{0}^{a} \frac{f(a - x)}{f(x) + f(a - x)} dx$$
A1

Then
$$2I = \int_{0}^{a} \frac{f(x) + f(a - x)}{f(x) + f(a - x)} dx = \int_{0}^{a} 1 \cdot dx = [x]_{0}^{a} = a \implies I = \frac{1}{2}a$$
 M1 A1

Let
$$f(x) = \ln(1 + x)$$
 M1

Then
$$\ln(2 + x - x^2) = \ln[(1 + x)(2 - x)]$$
 M1 Factorisation
= $\ln(1 + x) + \ln(2 - x)$ **M1** Log. work

and
$$\ln(2-x) = \ln(1 + [1-x]) = f(a-x)$$
 with $a = 1$ **M1** Or shown via $x \to 1-x$

so that
$$\int_{0}^{1} \frac{f(x)}{f(x) + f(1-x)} dx = \frac{1}{2}$$
 A1

$$\int_{0}^{\pi/2} \frac{\sin x}{\sin(x + \frac{1}{4}\pi)} dx = \int_{0}^{\pi/2} \frac{\sin x}{\sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}}} dx$$

$$= \sqrt{2} \int_{0}^{\pi/2} \frac{\sin x}{\sin x + \sin(\frac{1}{2}\pi - x)} dx$$

$$= \frac{1}{4}\pi\sqrt{2}$$
A1

M1 sin(A + B) used; A1 incl. the $\sqrt{2}$

(ii) M1 for $u = \frac{1}{x}$ M1 Full substn. involving $du = -\frac{1}{x^2} dx$ and $(\frac{1}{2}, 2) \rightarrow (2, \frac{1}{2})$

Then
$$\int_{0.5}^{2} \frac{1}{x} \cdot \frac{\sin x}{\left(\sin x + \sin\left(\frac{1}{x}\right)\right)} dx = \int_{0.5}^{2} \frac{1}{x^{2}} \cdot \frac{x \sin x}{\left(\sin x + \sin\left(\frac{1}{x}\right)\right)} dx$$
$$= \int_{2}^{0.5} \frac{\frac{1}{u} \cdot \sin\left(\frac{1}{u}\right)}{\left(\sin\left(\frac{1}{u}\right) + \sin u\right)} - du$$
$$= \int_{0.5}^{2} \frac{1}{u} \cdot \frac{\sin\left(\frac{1}{u}\right)}{\left(\sin u + \sin\left(\frac{1}{u}\right)\right)} du \quad \text{or} \quad \int_{0.5}^{2} \frac{1}{x} \cdot \frac{\sin\left(\frac{1}{x}\right)}{\left(\sin x + \sin\left(\frac{1}{x}\right)\right)} dx \quad \mathbf{A1}$$

Adding then gives
$$2I = \int_{0.5}^{2} \frac{1}{x} dx = [\ln x]_{0.5}^{2} = 2 \ln 2 \implies I = \ln 2$$
 M1 A1

5
$$\cos 2\alpha = \frac{(1, 1, 1) \bullet (5, -1, -1)}{\sqrt{3} \cdot \sqrt{27}} = \frac{1}{3}$$
 M1 Scalar product/product of moduli A1

(i) l_1 equally inclined to OA and OB iff

$$\frac{(m, n, p) \bullet (1, 1, 1)}{\sqrt{m^2 + n^2 + p^2} . \sqrt{3}} = \frac{(m, n, p) \bullet (5, -1, -1)}{\sqrt{m^2 + n^2 + p^2} . \sqrt{27}}$$
 M1 Two expressions of this form **A1 A1**

i.e.
$$3(m+n+p) = 5m-n-p$$
 or $m = 2(n+p)$ M1 equated A1 relationship

For
$$l_1$$
 the angle bisector, we also require $\frac{m+n+p}{\sqrt{m^2+n^2+p^2}} = \cos \alpha$ M1

Now
$$\cos 2\alpha = 2\cos^2 \alpha - 1 = \frac{1}{3} \implies \cos \alpha = \frac{\sqrt{2}}{\sqrt{3}}$$
 M1 A1

so
$$m + n + p = \sqrt{m^2 + n^2 + p^2}.\sqrt{2}$$

Squaring both sides:
$$m^2 + n^2 + p^2 + 2mn + 2np + 2pm = 2(m^2 + n^2 + p^2)$$
 M1
 $\Rightarrow 2mn + 2np + 2pm = m^2 + n^2 + p^2$ A1

M1 Setting m = 2n + 2p (or equivalent) then gives

$$2np + (2n + 2p)^2 = (2n + 2p)^2 + n^2 + p^2$$

which gives $(n-p)^2 = 0$ M1 simplifying $\Rightarrow p = n$, m = 4n

and
$$\binom{m}{n} = \binom{4}{1}$$
 (or any non-zero multiple) **A1**

Form rhombus OADB. Then angle bisector is in the direction $\overrightarrow{OD} = 8\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ M2 A1 this way

(5)

(ii) We already have this (if first method used above);
namely,
$$2uv + 2vw + 2wu = u^2 + v^2 + w^2$$
 M1 A1

In this case,
$$2xy + 2yz + 2zx = x^2 + y^2 + z^2$$
 gives **M1** all lines inclined at an angle $\cos^{-1} \frac{\sqrt{2}}{\sqrt{3}}$ to *OA*

describing the surface which is a (double-) cone M1 Ignore lack of "double" here vertex at O, having central axis OA A1 Must say this & "double"

Take
$$M = \text{midpt.} AB = \text{origin}$$
, the x -axis along AB and the y -axis along MC .

Then
$$A = \left(-\frac{1}{2}, 0, 0\right), B = \left(\frac{1}{2}, 0, 0\right)$$
 (A1)

$$C = (0, \frac{\sqrt{3}}{2}, 0)$$
 by trig. or Pythagoras **M1 A1**

$$P = \left(0, \frac{\sqrt{3}}{6}, 0\right)$$
 A1

$$PA ext{ (or } PB) = \frac{\sqrt{3}}{3} ext{ by Pythagoras}$$

and
$$PD = \frac{\sqrt{6}}{3}$$
 or $\sqrt{\frac{2}{3}}$ by Pythagoras A1 6 i.e. $D = \left(0, \frac{\sqrt{3}}{6}, \frac{\sqrt{6}}{3}\right)$

(ii) Angle betn. adjacent faces is
$$\angle DMP = \cos^{-1} \left(\frac{\frac{1}{6} \sqrt{3}}{\frac{1}{2} \sqrt{3}} \right)$$
 in Rt. \angle d. $\triangle DMP$

or
$$\angle DMC = \cos^{-1} \left(\frac{\frac{3}{4} + \frac{3}{4} - 1}{2 \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}} \right)$$
 by the Cosine Rule in $\triangle DMC$

M1 Suitable Δ

M1 Appropriate method for chosen Δ

A1 correct unsimplified

$$= \cos^{-1} \frac{1}{3}$$
 A1 Legit. (ANSWER GIVEN)

(iii) Centre of sphere, S, is on PD M1 equidistant from each vertex M1

M1 Valid Δ A1 A1 A1 Correct relevant lengths

By Pythagoras,
$$x^2 = \frac{1}{12} + \left(\frac{6}{9} - 2\frac{\sqrt{6}}{3}x + x^2\right)$$
 M1

$$\Rightarrow x = \frac{\sqrt{6}}{4}$$
 A1

Then
$$r = x \sin(90^{\circ} - (ii)) = \frac{1}{3} x = \frac{\sqrt{6}}{12}$$
 M1 A1

ALT.1: By similar Δ s with same lengths.

ALT.2: By working with $\angle DAS = \angle PAS = \frac{1}{2}$ (answer to (ii)).

Then (e.g.)
$$\cos\theta = \frac{1}{3} \implies \tan\theta = 2\sqrt{2} \implies t = \tan\frac{1}{2}\theta$$
 g.b. $t^2\sqrt{2} + t - \sqrt{2} = 0$ and so $t = \frac{1}{\sqrt{2}}$ and $r = \frac{\sqrt{3}}{6}\tan\frac{1}{2}\theta = \frac{\sqrt{6}}{12}$

ALT.3: Of course, if they know that the sphere's centre is at the centre of mass of the tetrahedron $(\frac{1}{4}(\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}))$ then the answer is just $\frac{1}{4}DP = \frac{\sqrt{6}}{12}$

4

7(i)
$$y = x^3 - 3qx - q(1+q) \implies \frac{dy}{dx} = 3(x^2 - q) = 0$$
 M1 Diff^g.

M1 setting $\frac{dy}{dx} = 0$ for TPs

M1 Subst^g. either/both x's back

When
$$x = +\sqrt{q}$$
, $y = -q(\sqrt{q} + 1)^2$

< 0 since a > 0

E1 Explained (or via all terms < 0)

When
$$x = -\sqrt{q}$$
, $y = -q(\sqrt{q} - 1)^2$

M1 Compl^g. the sq. attempted (or \equiv)

< 0 since q > 0 and $q \ne 1$

E1 Both needed

Since both TPs below x-axis,

the curve crosses the x-axis once only

E1 explained (possibly with sketch)

3

 \bigcirc

(ii)
$$x = u + \frac{q}{u} \implies x^3 = u^3 + 3uq + 3\frac{q^2}{u} + \frac{q^3}{u^3}$$
 B1

$$0 = x^3 - 3qx - q(1+q) = u^3 + 3uq + 3\frac{q^2}{u} + \frac{q^3}{u^3} - 3qu - 3\frac{q^2}{u} - q - q^2$$
 M1 substn.

$$\Rightarrow u^3 + \frac{q^3}{u^3} - q(1+q) = 0 \text{ or } (u^3)^2 - q(1+q)(u^3) + q^3 = 0 \quad \mathbf{M1} \text{ quadratic in } u^3 \quad \mathbf{A1}$$

$$u^{3} = \frac{q(1+q) \pm \sqrt{q^{2}(1+q)^{2}-4q^{3}}}{2} = \frac{q}{2} \left\{ 1 + q \pm \sqrt{1+2q+q^{2}-4q} \right\}$$
 M1 quadratic formula

$$= \frac{q}{2} \left\{ 1 + q \pm \sqrt{(1-q)^2} \right\} = \frac{q}{2} \left\{ 1 + q \pm (1-q) \right\} = q \text{ or } q^2 \qquad \mathbf{M1} \text{ Compl}^g. \text{ the sq.}$$

giving
$$u = q^{\frac{1}{3}}$$
 or $q^{\frac{2}{3}}$ and $x = q^{\frac{1}{3}} + q^{\frac{2}{3}}$ **A1**

(iii)
$$\alpha + \beta = p$$
, $\alpha\beta = q \Rightarrow \alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ M1

 $= p^3 - 3qp$ A1 legit. (ANSWER GIVEN)

ALT.
$$\alpha = \frac{1}{2} \left\{ p + \sqrt{p^2 - 4q} \right\}, \ \beta = \frac{1}{2} \left\{ p - \sqrt{p^2 - 4q} \right\}$$

Then
$$\alpha^3 + \beta^3 = \frac{1}{8} \left\{ p^3 + 3p^2 \sqrt{p^2 - 4q} + 3p(p^2 - 4q) + (p^2 - 4q)\sqrt{p^2 - 4q} \right\}$$

 $+ \frac{1}{8} \left\{ p^3 - 3p^2 \sqrt{p^2 - 4q} + 3p(p^2 - 4q) - (p^2 - 4q)\sqrt{p^2 - 4q} \right\} = p^3 - 3qp$

One root the square of the other $\Leftrightarrow \alpha = \beta^2$ or $\beta = \alpha^2 \Leftrightarrow 0 = (\alpha^2 - \beta)(\alpha - \beta^2)$ **E1**

$$(\alpha^2 - \beta)(\alpha - \beta^2) = \alpha^3 + \beta^3 - \alpha\beta - (\alpha\beta)^2 \quad \mathbf{M1} = p^3 - 3qp - q(1+q) \quad \mathbf{A1}$$

 $\Leftrightarrow p = q^{\frac{1}{3}} + q^{\frac{2}{3}}$ A1 ft (ii)'s final answer only

ALT. Let roots be
$$\alpha$$
 and α^2 . Then $p = \alpha + \alpha^2$ and $q = \alpha^3$; i.e. $p = q^{\frac{1}{3}} + q^{\frac{2}{3}}$

8

The curves meet each time $\sin x = 1$ M1 when $x = 2n\pi + \frac{\pi}{2}$ (n = 0, 1, 2, ...) M1

G1 Enveloped between C_1 and $-C_1$

(5)

 $\int (e^{-x} \sin x) dx$ M1 attempted by parts

$$= -e^{-x} \cdot \cos x - \int (e^{-x} \cdot \cos x) dx \text{ or } -e^{-x} \cdot \sin x - \int (e^{-x} \cdot \sin x) dx \text{ A1}$$

$$= -e^{-x} \cdot \cos x - \left\{ e^{-x} \cdot \sin x + \int (e^{-x} \cdot \sin x) dx \right\} \text{ M1 } 2^{\text{nd}} \text{ round of parts}$$

$$\Rightarrow I = -e^{-x} (\cos x + \sin x) - I \text{ M1 by "looping"}$$

$$= -\frac{1}{2} e^{-x} (\cos x + \sin x) \text{ A1} \text{ Anywhere it appears}$$

$$A_n = \int_{-\infty}^{x_{n+1}} (e^{-x} - e^{-x} \sin x) dx$$
 M1 (ignore limits for now)

$$A_{n} = \left[-e^{-x} + \frac{1}{2}e^{-x}(\cos x + \sin x) \right]_{x_{n}}^{x_{n+1}} \text{ or } \left[\frac{1}{2}e^{-x}(\cos x + \sin x - 2) \right]_{x_{n}}^{x_{n+1}} \mathbf{M1} \text{ use of insert working}$$

$$= \frac{1}{2}e^{-\frac{1}{2}\pi(4n+1)}(0+1-2) - \frac{1}{2}e^{-\frac{1}{2}\pi(4n-3)}(0+1-2) \mathbf{M1} \text{ use of limits}$$

$$= \frac{1}{2}e^{-\frac{1}{2}\pi(4n+1)}(-1+e^{2\pi}) \mathbf{A1} \text{ (ANSWER GIVEN)}$$

Note that
$$A_1 = \frac{1}{2}e^{-\frac{5}{2}\pi}(e^{2\pi} - 1)$$
 and $A_{n+1} = e^{-2\pi}A_n$ M1
so that $\sum_{n=1}^{\infty} A_n = A_1 \left\{ 1 + (e^{-2\pi}) + (e^{-2\pi})^2 + ... \right\}$
 $= \frac{1}{2}e^{-\frac{5}{2}\pi}(e^{2\pi} - 1) \times \frac{1}{1 - e^{-2\pi}} = \frac{1}{2}e^{-\frac{5}{2}\pi}(e^{2\pi} - 1) \times \frac{e^{2\pi}}{e^{2\pi} - 1}$ M1 $S \infty$ GP used
 $= \frac{1}{2}e^{-\frac{1}{2}\pi}$ A1