1. The number of roots of $P_{101}(x)$ lying in the open interval (0,1) equals

(A) 49

- (B) 50
- (C) 51
- (D) 52

SOLUTION. There are 50 roots in (0,1), 50 in (-1,0) and one root at 0.

2. For x > 0, the equation $x^2y'' - x(1+x)y' + y = 0$ has a solution $xe^x \log x + \sum_{n=0}^{\infty} b_n H_n x^{n+1}$ with b_n equal to

- (A) $\frac{-1}{(n-1)!}$ (B) $\frac{-1}{n!}$ (C) $\frac{2^n}{n!}$ (D) $\frac{1}{(n-1)!}$

SOLUTION. The indicial equation is $r^2 - 2r + 1 = (r - 1)^2 = 0$ which has a repeated root. The recursion is $(r+n-1)^2a_n=(r+n-1)a_{n-1}$. Solving with $a_0=1$, we obtain

$$a_n(r) = \frac{1}{(r+n-1)\dots(r+1)r}$$

Note $a_n(1) = \frac{1}{n!}$ and $a'_n(1) = \frac{-H_n}{n!}$. So the first solution is xe^x , and the second solution is $xe^x \log x - \sum_{n=1}^{\infty} \frac{H_n}{n!} x^{n+1}$. Thus $b_n = \frac{-1}{n!}$.

3. The domain of analyticity of a real-valued function on \mathbb{R} can be

 $(A) \{0\}$

- (B) $\bigcup_{n=1}^{\infty} \{1/n\}$ (C) [0,1] (D) $(-1,1) \setminus \{0\}$

SOLUTION. The domain of analyticity is always an open set. Only $(-1,1)\setminus\{0\}$ is open. It can be realized by the function which is 1/x between -1 and 1 and discontinuous everywhere outside.

4. A pair (a,b) of real numbers is said to be good if there exists a real number p such that $aJ_p(x) + bJ_{-p}(x) = 0$ for all x > 0. The set of all good pairs is defined by

(A) $a^2 - b^2 = 0$

- (B) a = b = 0 (C) a b = 0
- (D) a + b = 0

SOLUTION. We can determine which pairs are good for a particular p. For p not an integer, only a = b = 0 is possible. When p is an integer either a = b or a = -b is possible. So good pairs are defined by $a^2 - b^2 = 0$.

5. If $x^{50} + x^{49} = \sum_{n=0}^{50} c_n P_n(x)$, then the sum of even coefficients $c_0 + c_2 + c_4 + c_6 + \dots + c_{50}$ equals

(A) 0

- (B) 1 (C) 50/99
- (D) 51/101

Solution. Put x = 1 and x = -1 respectively, add and divide by 2 to get 1. Alternatively, we can separate odd and even parts to get $x^{50} = \sum_{n=0}^{25} c_{2n} P_{2n}(x)$, and then put x = 1.

6. The equation $x(e^x - 1)y'' + (\sin x)y' + y = 0$ has a

(A) irregular singular point at x = 0

- (B) irregular singular point at x = 1
- (C) regular singular point at x=0
- (D) regular singular point at x = 1

SOLUTION. At x=0, $e^x-1=0$. Hence singular. All other points are ordinary. $\lim_{x\to 0} \frac{\sin x}{e^x-1}$ exists and is equal to 1. Also, $\lim_{x\to 0} \frac{x^2}{(e^x-1)x}$ exist and is equal to 1. Hence it is a regular singular point.

- 7. In the interval (-1,217), the equation (1+x)y' = -y/2 with y(0) = 1 has a power series solution $\sum_{n>0} a_n(x-108)^n$ with the value of $a_{207}(109)^{207}$ equal to
 - (A) $a_0 P_{414}(0)$
- (B) $a_0 P_{414}(108)$ (C) $a_0 P_{207}(0)$
- (D) $a_0J_{207}(108)$

SOLUTION. By the power series method, we get the recursion

$$a_{n+1} = \frac{-a_n(n+1/2)}{109(n+1)}.$$

for $n \geq 0$. This yields

$$a_n = \frac{(-1)^n 1/2 \cdot 3/2 \dots (1/2 + (n-1))a_0}{109^n n!} = (109)^{-n} {\binom{-1/2}{n}} a_0 = (109)^{-n} P_{2n}(0)a_0.$$

Now put n=207. Alternatively: Observe that the solution is $(1+x)^{-1/2}$ and this is valid for x > -1. Using binomial theorem,

$$(1+x)^{-1/2} = 109^{-1/2} \left(1 + \frac{x - 108}{109}\right)^{-1/2} = 109^{-1/2} \sum_{n \ge 0} {\binom{-1/2}{n}} (109)^{-n} (x - 108)^n.$$

The coefficient of $(x-108)^{207}$ is $109^{-1/2}\binom{-1/2}{207}(109)^{-207}$. Now use $\binom{-1/2}{207}=P_{414}(0)$ and $a_0 = \frac{1}{\sqrt{109}}$.

- 8. The value of $J_0^{2}(2) J_2^{2}(2)$ equals
 - (A) 0

- (B) $J_0(2)J_2'(2)$ (C) $J_1(2)J_1'(2)$ (D) $2J_1(2)J_1'(2)$

SOLUTION. Using identities of Bessel functions, one can find that $J_0(2) + J_2(2) = J_1(2)$ and $J_0(2) - J_2(2) = 2J'_1(2)$. So, the given expression evaluates to $2J_1(2)J'_1(2)$.

- 9. The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(2n)!}{3^{2n}(n!)^2} x^{2n}$ equals
 - (A) 3
- (B) 9
- (C) 3/2
- (D) 9/4

SOLUTION. Applying ratio test, we get $\frac{a_{n+1}}{a_n} = \frac{(2n+2)(2n+1)}{9(n+1)^2}x^2$ whose limit is $4/9x^2$. This is strictly less than 1 when |x| < 3/2.

- 10. Let g(x) be the quadratic polynomial with roots $\pm \sqrt{\frac{1}{3}}$ with g(1) = 2/3. Let f(x) be the polynomial solution of the equation $((1-x^2)y')'+6y=0$ with f(1)=1. The value of $\int_{-1}^{1} f(x)g(x)dx$ equals
 - (A) 0
- (B) 2/3
- (C) 2/5 (D) 4/15

SOLUTION. $f(x) = P_2(x)$ and $g(x) = 2/3P_2(x)$. Using $\int_{-1}^{1} P_2(x)^2 dx = 2/5$, the required value is 4/15.

- 11. The recursion obtained while solving y'' xy' + y = 0 by the power series method is

- (A) $(n+2)(n+1)a_{n+2} = (n-1)a_n$ (B) $(n+2)(n+1)a_{n+2} = na_n$ (C) $(n+2)(n+1)a_{n+2} = (n-1)a_{n-1}$ (D) $(n+2)(n+1)a_{n+2} = (n+1)a_{n+1} a_n$

SOLUTION. The recursion is $(n+2)(n+1)a_{n+2} = (n-1)a_n$.

- 12. Let a and b be the number of solutions of $J_0(x) = P_0(x)$ and $J_1(x) = P_1(x)$ respectively in the interval [0,1]. Then (a,b) is
 - (A) (0,1)
- (B) (0,2)
- (C)(1,1)
- (D) (1,2)

SOLUTION. (a,b) is (1,1). The function $J_0(x)$ is 1 at 0 and strictly less than 1 in [0,1]. This follows from the power series of $J_0(x)$ (or also from the graph). Thus x=0 is the only solution of $J_0(x) = P_0(x)$ in [0, 1]. Similarly, $J_1(x)$ is 0 at 0 and strictly less than x/2 in [0,1]. Thus x=0 is the only solution of $J_1(x)=P_1(x)$ in [0,1].

- 13. An inner product on \mathbb{R}^2 can be defined by setting $\langle (a_1, a_2), (b_1, b_2) \rangle$ equal to
- (A) $a_1b_1 a_2b_2$ (B) $a_1^2b_1^2 + a_2^2b_2^2$ (C) $(a_1 + a_2)(b_1 + b_2)$ (D) $2a_1b_1 a_1b_2 a_2b_1 + 5a_2b_2$

SOLUTION. $a_1b_1 - a_2b_2$ and $(a_1 + a_2)(b_1 + b_2)$ are not positive definite, while $a_1^2b_1^2 + a_2^2b_2^2$ is not linear. This only leaves $2a_1b_1 - a_1b_2 - a_2b_1 + 5a_2b_2$ which can be checked to be an inner product.

- 14. The set of all points where the Taylor series of the function $f(x) = \sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}$ around the point x = e converges to f(x) is
 - (A) Ø
- (B) (0, 2e) (C) $\mathbb{R} \setminus \{0\}$ (D) \mathbb{R}

SOLUTION. f(x) = 0 if x = 0 and $f(x) = x^2 + 1$ otherwise (by summing the geometric series). At x = 0, f(x) is discontinuous and thus not real analytic. The Taylor series of f(x) around x = e will be the quadratic $((x-e)+e)^2+1 = (x-e)^2+2e(x-e)+e^2+1$. It will converge to $x^2 + 1$. This equals f(x) on $\mathbb{R} \setminus \{0\}$.

- 15. The value of $\lim_{x\to 1^+} \frac{J_p(x^2-1)}{(x-1)^p}$ at p=4 equals
 - (A) 0
- (B) 1/24 (C) 1/120
- (D) ∞

SOLUTION. Write the power series of $J_p(x^2-1)$ and all the terms apart from the constant term go to zero. The constant term is $\frac{(x^2-1)^p}{2^p p!}$. Dividing by $(x-1)^p$ and putting p = 4 yields 1/24.