Chapitre IV: Algèbre Relationnelle

Plan de cours

- I. Introduction aux bases de données.
- II. Modèle Entité-Association
- III. Modèle relationnel
- IV. Passage du modèle E-A au modèle Relationnel
- V. Algebre Relationnelle
- VI. Langage SQL
- VII. Normalisation

Introduction

- Langage procédural : indique comment construire une nouvelle relation à partir d'une ou plusieurs relations existantes
- Langage abstrait, avec des opérations qui travaillent sur une (ou plusieurs) relation(s) pour définir une nouvelle relation sans changer la (ou les) relation(s) originale(s)
- le résultat de toute opération est une relation (propriété de fermeture)

Operateurs algébriques

Opérateurs ensemblistes

- union
- intersection
- difference
- produit

Opérateurs relationnels spécifiques

- sélection
- projection
- jointure
- division

Tables d'exemple

- CLIENT(<u>numéro</u>, nom, adresse, téléphone)
- PRODUIT (<u>référence</u>, marque, prix)
- VENTE(<u>numéro</u>, ref_produit#, no_client#, date)

Client				
numéro	nom	adresse	téléphone	
101	Durand	Nice	0493939393	
106	Fabre	Paris	NULL	
110	Prosper	Paris	NULL	
125	Antonin	Marseille	0491919191	

Produit			
référence	marque	prix	
153	BMW	8 000 €	
589	Peugeot	7 450 €	
	Toyota	6 725 €	
589	Citroën	7 000 €	

Vente					
numéro	ref_produit#	no_client#	date		
102	153	101	12/10/2004		
809	589	108	20/01/2005		
11005	158	108	15/03/2005		
12005	589	125	30/03/2005		

Opérations unaires

Soit $R(a_1, a_2, ..., a_N)$ une relation.

Sélection : $\sigma_{predicat}(R)$

La sélection travaille sur R et définit une relation qui ne contient que les tuples de R qui satisfont à la condition (ou prédicat) spécifiée.

Projection : $\pi_{a_1,...,a_k}(R)$

La projection travaille sur R et définit une relation restreinte à un sous-ensemble des attributs de R, en extrayant les valeurs des attributs spécifiés et en supprimant les doublons.

Opérateur SELECTION

La sélection : opérateur SELECT - sélection d'un sous-ensemble de tuples d'une relation qui vérifient une condition

exemple: oadresse=PARIS (Client)

Client	numéro	nom	adresse	téléphone
relation résultante	101	Durand	NICE	0493942613
	106	Fabre	PARIS	
	110	Prosper	PARIS	
_	125	Antonin	MARSEILLE	0491258472

La relation résultante : même schéma que la relation sur laquelle porte la sélection

Exercice

- 1. Afficher les clients qui habitent Paris ou Nice
- 2. Afficher les ventes du client n° 120 du 20 oct 04
- 3. Afficher les clients qui n'habitent pas Nice

```
Q1: \sigma adresse = PARIS or adresse = Nice (Client)

Q2: \sigma numéro_client = 120 and date = 20 oct 04 (Vente)

Q3: \sigma adresse \neq Nice (Client)
```

Vente

numéro	référence_produit	numéro_client	date
00102	153	101	12/10/04
00809	589	108	20/01/05
11005	158	108	15/03/05
12005	589	125	30/03/05

Opérateur PROJECTION

La projection : opérateur PROJECT – sélection de certaines colonnes d'une relation

exemple: π nom, téléphone (Client)

7.3		580
	27	
		пτ
	lle	111
_		

numéro	nom	adresse	téléphone
101	Durand	NICE	0493942613
106	Fabre	PARIS	NULL
110 :	Prosper	PARIS	NULL
125 🦯	Antonin	MARSEILLE	0491258472
			1924

Fabre à la place de Propser?

Relation résultante

Exercice

- 1. Afficher la référence du produit et numéro de client
- 2. Afficher le nom et l'adresse des clients de Nice

```
Q1: π Référence_produit, numéro_client (Vente)

Q2: π nom, adresse (Client)
```

Vente

numéro	référence_produit	numéro_client	date
00102	153	101	12/10/04
00809	589	108	20/01/05
11005	158	108	15/03/05
12005	589	125	30/03/05

Opérations ensemblistes (1)

Soient $R(a_1,...,a_N)$ et $S(b_1,...,b_M)$ deux relations.

Union: $R \cup S$

L'union de deux relations R et S définit une relation qui contient tous les tuples de R, de S ou à la fois de R et S, les tuples en double étant éliminés.

Différence d'ensembles : R - S

La différence d'ensemble définit une relation qui comporte les tuples qui existent dans la relation R et non dans la relation S.

Intersection : $R \cap S$

L'intersection définit une relation constituée de l'ensemble de tous les tuples présents à la fois dans R et dans S.

Opérations ensemblistes (2)

Produit cartésien : $R \times S$

Le produit cartésien définit une relation constituée de la concatenation de tous les tuples de la relation R avec tous ceux de la relation S

Relations de schemas quelconques

Opérateur UNION

Soit deux relations R1 et R2 de même schéma

R1 UR2 est la relation contenant les tuples appartenant à R1 ou à R2

R1

A1	A2	A3
a1	a2	a3
b1	b2	b3
c1	c2	c3
d1	d2	d3

R2

2	A1	A2	A3	
	a1	a2	a3	*
	e1	e2	e3	
	b1	b2	b3	*

UNION R1UR2

A1 A2 A3 a2 a3 a1 b3 b1 b2 c1 c2 c3 d2 d3 d1 e1e2 e3

Suppression des lignes identiques

Relation temporaire

commutatif: $[R1 \cup R2] = [R2 \cup R1]$

associatif: $[(R1 \cup R2) \cup R3] = [R2 \cup (R1 \cup R3)]$

Opérateur INTERSECTION

Soit deux relations R1 et R2 de même schéma

R1 \cap R2 est la relation contenant les tuples appartenant à R1 et à R2

21	A1	A2	А3	
CIT	a1	a2	a 3	*
8	b1	b2	b3	*
	c1	c2	c3	
	d1	d2	d3	Ti.

22	A1	A2	A3	
`-[a1	a2	a3	*
	e1	e2	е3	
	b1	b2	b3	*

INTERSECTION

R1∩R2

A1	A2	A3
a1	a2	a3
b1	b2	b3

On garde que les lignes identiques

Relation temporaire

commutatif: $[R1 \cap R2] = [R2 \cap R1]$

associatif: $[(R1 \cap R2) \cap R3] = [R2 \cap (R1 \cap R3)]$

Opérateur DIFFERENCE

Soit deux relations R1 et R2 de même schéma

R1 - R2 est la relation contenant les tuples de R1 n'appartenant pas à R2

R1	A1	A2	A3	92 Sec
	a1	a2	a3	*
	b1	b2	b3	*
	c1	c2	сЗ	
	d1	d2	d3	

R2	A1	A2	A3	
~~	a1	a2	a3	*
	e1	e2	e3	
	b1	b2	b3	*

DIFFERENCE

R1-R2

 A1
 A2
 A3

 c1
 c2
 c3

 d1
 d2
 d3

Relation temporaire

Non commutatif: $[R1 - R2] \neq [R2 - R1]$

Non associatif: $[(R1 - R2) - R3] \neq [R2 - (R1 - R3)]$