

LEY DE LA INERCIA

Un cuerpo permanecerá en reposo o en movimiento rectilíneo uniforme, hasta que una fuerza actúe sobre él.

EJEMPLO

El cinturón de seguridad justamente evita, cuando un vehículo choca o frena de golpe, que nuestro cuerpo al querer mantener el movimiento que traía, sea despedido hacia delante.

Un ejemplo contrario se produce cuando el cuerpo tiende a quedarse quieto cuando un vehículo arranca bruscamente.

EL PRINCIPIO DE MASA

Se encarga de cuantificar el concepto de fuerza. La fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la siguiente relación:

F = MA

M=F/A

EJEMPLO

Se empuja un ladrillo con una fuerza de 1,2 N y adquiere una aceleración de 3 m/s2, ¿cuál es la masa del ladrillo?

F = 1.2 Na = 3 m/s2 m = ?

Solución:

$$\vec{F} = m \cdot \vec{a}$$
 \Rightarrow $m = \frac{F}{a} = \frac{1.2N}{3m/s^2} = 0.4 \text{ kg}$

LEY DE ACCIÓN Y REACCIÓN

Cuando un cuerpo ejerce una fuerza sobre otro (acción), este último ejerce una fuerza de sentido contrario pero de igual magnitud sobre el primero (reacción).

EJEMPLO

Un caballo tira de un carro que está detenido y lo pone en movimiento. Los cuerpos involucrados en las interacciones son: El carro, el caballo y el suelo. Las fuerzas que representan estas interacciones son:

T: Fuerza con que el caballo tira del carro y con la que el carro tira del caballo.

R: Fuerza con la que el caballo empuja al suelo hacia atrás, y por lo tanto, con la que el suelo empuja al caballo hacia delante.

F: Fuerza análoga a R, que ejerce el carro con el suelo y viceversa.

