Cost-Aware Bayesian Optimization with Adaptive Stopping via Gittins Indices

Qian Xie 谢倩 (Cornell ORIE)

Joint work with Linda Cai (UC Berkeley), Raul Astudillo (MBZUAI), Theodore Brown (UCL), Peter Frazier, Alexander Terenin, Ziv Scully (Cornell), Yu Yu and Li Jin (SJTU)

INFORMS Annual Meeting 2025 Job Market Showcase

Optimization Under Uncertainty

ML model training:

Training hyperparameters (e.g., learning rate, # layers)

Optimization Under Uncertainty

Black-box optimization:

Input $x \longrightarrow$

non-analytical & no gradient info

 \rightarrow Performance metric f(x)

ML model training:

Training hyperparameters → (e.g., learning rate, # layers)

Accuracy

Optimization Under Uncertainty

Black-box optimization:

Input $x \longrightarrow$

 \rightarrow Performance metric f(x)

ML model training:

Training hyperparameters (e.g., learning rate, # layers)

Adaptive experimentation:

Decision/design variables

(e.g., layout, pricing level)

Revenue

Black-Box Optimization

Input $x \longrightarrow$

expensive-to-evaluate

Performan

Performance metric f(x)

ML model training:

Training hyperparameters (e.g., learning rate, # layers)

Training time

Compute credits

Adaptive experimentation:

Decision/design variables

(e.g., layout, pricing level)

Operational cost User experience

-----> Revenue

Deployment

Black-Box Optimization

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value $\mathbb{E} \max_{t=1,2,...,T} f(x_t)$

Data-Driven Black-Box Optimization

High-level goal: Choose x_1, \dots, x_T to maximize the expected best observed value

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Data-Driven Black-Box Optimization

adaptively

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value $\mathbb{E} \max_{t=1,2,...,T} f(x_t)$

Efficient framework: Bayesian optimization

Black-box function

Probabilistic model

0.6

0.4

0.2

(e.g., Gaussian process)

Probabilistic model (e.g., Gaussian process)

Acquisition function

(e.g., UCB, TS)

Probabilistic model

(e.g., Gaussian process)

Black-box function

Acquisition function

optimization)

(e.g., UCB, TS)

Probabilistic model

(e.g., Gaussian process)

scoring (worth

of each point

(e.g., Gaussian process)

of each point

15

Existing Design Principles

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling

16

New Design Principle: Gittins Index

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- Gittins Index

New Design Principle: Gittins Index

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- Gittins Index

Our Contribution: Gittins Index Principle

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- Gittins Index
- Why another principle?
- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Our Contribution: Gittins Index Principle

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- Gittins Index
- Why another principle?
- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Under-explored Practical Considerations

Observable multi-stage feedback

Under-explored Practical Considerations

Observable multi-stage feedback

New design principle:
Gittins index

New design principle: Gittins index

Observable multi-stage feedback

Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems

Varying evaluation costs

Features in Pandora's box

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback

Features in Markovian bandits

New design principle: Gittins index

Optimal in related sequential decision problems

What is Pandora's Box?

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback Features in Markovian bandits

New design principle: Gittins index

Optimal in related sequential decision problems

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$
Flexible stopping time

$$t = 0$$

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

$$t = 1$$

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{I} c(x_t)$$

$$t = 2$$

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

$$t = 3$$

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

t = T, stop

High-level goal: Choose x_1, \dots, x_T to maximize the expected utility

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$$

Continuous

Correlated

Fixed-iteration

Expected best-observed value

$$\mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$$

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected utility $\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$

Continuous

Correlated

Fixed-iteration

Expected best-observed value

$$\mathbb{E} \max_{t=1,2,...,T} f(x_t)$$

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected utility cumulative cost $\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$

Continuous

Correlated

Fixed-iteration

Expected regret

$$\mathbb{E} \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) - \mathbb{E} \max_{t=1,2,\dots,T} f(\mathbf{x}_t)$$

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected utility cumulative cost $\mathbb{E} \max_{t=1,2,...,T} f(x_t) - \mathbb{E} \sum_{t=1}^{T} c(x_t)$

Continuous

Correlated

Fixed-iteration

Expected regret $\mathbb{E} \max_{x \in \mathcal{X}} f(x) - \mathbb{E} \max_{t=1,2,...,T} f(x_t)$

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

$$\mathbb{E} \max_{x \in \mathcal{X}} f(x) - \mathbb{E} \max_{t=1,2,\dots,T} f(x_t) + \mathbb{E} \sum_{t=1}^{T} c(x_t)$$
 cumulative cost

Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Optimal policy: Gittins index

Optimal Policy: Gittins Index

Step 1: Assign each box a Gittins index (higher is better)

Optimal Policy: Gittins Index

Step 2: Open the box with highest index if it is closed

Optimal Policy: Gittins Index

Step 2': Select the box with highest index if it is opened and stop

Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Gittins index is optimal

43

Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Gittins index is optimal

Our Contribution: Gittins Index Principle

- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- Gittins Index (PBGI)
 - Why another principle?
 - 1. Naturally handles practical considerations
 - 2. Performs competitively on benchmarks
 - 3. Comes with theoretical guarantees

Gittins Index vs Baselines on AutoML Benchmark

Correlated

Fixed-budget / Flexible-stopping

Expected (cost-adjusted) regret

Is Gittins index good?

Pandora's Box

[Weitzman'79]

Discrete

Independent

Flexible-stopping

Expected cost-adjusted regret

Gittins index is optimal

47

Our Contribution: Gittins Index Principle

- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds
- Thompson sampling
- Gittins Index
- Why another principle?
- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Theoretical Guarantee and Empirical Validation

Theorem (No worse than stopping-immediately)

 $\mathbb{E}[R(\text{ours}; PBGI)] \le R[\text{stopping immediately}]$

Implication:

- Matches the best achievable performance in the worst case (evaluations are all very costly).
- Avoids over-spending a property many cost-unaware stopping rules lack.

Studied problem

Varying evaluation costs

Adaptive stopping time

Impact

Competitive empirical performance & interests from practitioners

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea

Link to Pandora's Box problem & Gittins index theory

Ongoing work

Sharper theoretical guarantees & blackbox optimization w/ multi-stage feedback

"Cost-aware Stopping for Bayesian Optimization." Under review.

Studied problem

Varying evaluation costs

Adaptive stopping time

Impact

Competitive empirical performance & interests from practitioners

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea

Link to Pandora's Box problem & Gittins index theory

Ongoing work

LLM-driven black-box optimization

"Cost-aware Stopping for Bayesian Optimization." Under review.

Recap: Bayesian Optimization

Ongoing: LLM-Driven Black-Box Optimization

Acquisition function

(e.g., Softmax sampling)

Probabilistic model

(e.g., autoregressive model)

Ongoing: LLM-Driven RL Training Optimization

Mixed-autonomy traffic control:

(RL training & evaluation)

Acquisition function (e.g., Softmax sampling)

Probabilistic model (large language model)

Studied problem

Varying evaluation costs

Impact

Competitive empirical performance & interests from practitioners

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea

Link to Pandora's Box problem & Gittins index theory

Ongoing work

LLM-driven black-box optimization

"Cost-aware Stopping for Bayesian Optimization." Under review.