Konstrukcja Układów Optycznych Projektowanie Obiektywu Mikroskopowego

mgr inż. Arkadiusz Kuś prof. Tomasz Kozacki

□ Projektowanie układu optycznego mikroskopu

- Specyfikacje optyczne
- Obliczenia wstępne
- Projektowanie obiektywu: achromatyzacja
- Wybór wstępnych parametrów: promienie, grubości
- OSLO: warunki pracy
- OSLO: ocena jakości
- OSLO: optymalizacja

☐ Specyfikacjia:

- powiększenie 5X,
- apertura numeryczna 0.15,
- rozmiar obrazu ø 16 mm,
- wysoka jakość (100 l/mm),
- winietowanie 0.8,
- rodzaj korekcji- aplanat, achromat,
- odległość przedmiot obraz 189 mm,
- telecentryczność w przestrzeni przedmiotowej

Obliczenia wstępne

Model cienkosoczewkowy obiektywu mikroskopowego - wstępny

Wyniki obliczeń wstępnych z programu GABAR

liczba elem.

Nr. pow	0	1	2	3
f		26.25	1.00E+20	
d	31.5	26.25	131.25	
Н	0	4.725	3.9375	0
Alfa	-0.15	0.03	0.03	
V		-5	1	
L		189	0	
Υ	-1.6	-1.6	0	8
Beta	0	-0.06095	-0.060952381	
Q		0	1	
Т			0	

Niezmiennik L-H

Parametry wejściowe systemu optycznego uwzględniając specyfikację optyczną

Model cienkosoczewkowy obiektywu mikroskopowego - końcowy

Projektowanie obiektywu: achromatyzacja

Wymagania dla obiektywu mikroskopu: aberracja chromatyzmu

Secondary spectrum for various corrections of chromatic aberrations

Korekcja podłużnej aberracji chromatycznej dla obszaru przyosiowego

Używamy zależności

$$-\left(\frac{h_p}{h_1}\right)^2 \frac{\Delta s_p'}{s_p'^2} = \sum_{i=1}^p \left(\frac{h_i}{h_1}\right)^2 \frac{D_i}{v_i}$$

gdzie:

h – wysokość promienia aperturowego

s' – położenie obrazu

 $\Delta s'_p$ – przyosiowa poprzeczna aberacja chromatyczna

D - moc optyczna elementu

v – dyspersja (liczba Abbego)

$$v_d = \frac{n_d - 1}{n_F - n_C}$$

W tym przypadku aberracja chrmatyczna ma być minimalna, $\Delta s_p^2 = 0$. Dlatego dla dubletu klejonego dwuelementowego otrzymujemy

$$\frac{D_1}{V_1} + \frac{D_2}{V_2} = 0$$

Moc dwu cienkich soczewek w tym samym miejscu wyznacz się z

$$D = D_1 + D_2$$

Układ dwu równań daje rozwiązanie

$$D_{1} = \frac{v_{1}}{v_{1} - v_{2}} \cdot D \qquad D_{2} = -\frac{v_{2}}{v_{1} - v_{2}} \cdot D$$

Dobór szkieł

$$n_d$$

Współczynnik załamania dla linii d

(żółta linia Helu 587.6 nm)

$$v_d = \frac{n_d - 1}{n_E - n_C}$$

Liczba Abbego (współczynnik dyspersyjny) gdzie:

F jest niebieską linią wodoru 486.1 nm,

C jest czerwoną linią wodoru 656.3 nm

Dwu parametrowy dobór szkieł

Wprowadzając parametr częściowej względnej dyspersji

$$P = \frac{n_F - n_d}{n_F - n_C}$$

i używając liniowy rozkład częściowej dyspersji

$$P = a + bv$$

możemy otrzymać parametry dla katalogu Schott'a a = 0.723, b=-.000463 $n_d = n_d$,

$$n_F = n_d + \frac{n_d - 1}{v_d} P = (1+b)n + \frac{(n_d - 1)a}{v_d} - b$$

$$n_C = n_d - \frac{n_d - 1}{v} (1-P) = (1+b)n_d - \frac{(n_d - 1)(1-a)}{v} - b$$

Abbe Diagram for visible light

Diagram częściowej dyspersji dla światła widzialnego

$$P = a + bv$$
 (a = 0.723, b=-.000463)

Z wykresu Abbego wybieramy szkła BK7 i F2

Dla uzyskania małej mocy soczewek (mniejsze aberracje monochromatyczne) wybieramy szkła rozseparowane na wykresie Abbego (możliwie różne wartości liczby Abbego)

$$D_1 = \frac{v_1}{(v_1 - v_2)f'} = \frac{64.2}{(64.2 - 36.4) \cdot 26.25} = 0.088$$

$$D_2 = -\frac{v_2}{(v_1 - v_2)f'} = -\frac{36.4}{(64.2 - 36.4) \cdot 26.25} = -0.05$$

Wybór wstępnych parametrów: promienie, grubości

W naszym przypadku startujemy dubletu klejonego:

Soczewka 1: dodatnia symetryczna soczewka o równych promieniach

Soczewka 2: ujemna soczewka płasko wklęsła

Z zależności dla soczewki cienkiej

$$D = (n-1) \cdot \left(\frac{1}{r} - \frac{1}{r'}\right)$$

Dla soczewki 1 symetrycznej otrzymujemy:

$$r_1 = \frac{2(n_1 - 1)}{D_1} = \frac{2 \cdot 0.5168}{0.088} = 11.75$$

$$r_2 = -11.75$$

Dla soczewki 2 (promień 1 soczewki 2 wynosi -11.75):

$$r_3 = \frac{n_2 - 1}{\frac{n_2 - 1}{r_2} - D_2} = -214.2$$

Dobór grubości

$$\Delta = r - \sqrt{r^2 - \frac{\Phi^2}{4}}$$

Δ - sag

d_{min} – minimalna grubość dla soczewki dodatniej

$$\Delta_1 = 11.75 - \sqrt{11.75^2 - \frac{10.8^2}{4}} = 1.31$$

$$\Delta_2 = -1.31 \qquad \Delta_3 = -0.07$$

Dla soczewki dodatniej jej minimalna grubość na brzegu d_{min} - wymaganie technologiczne, dobieramy wg tabeli

Dla ujemnej soczewki grubość osiowa – d_{min} jest również konieczna

Diameter e	<i>φ [</i> mm <i>]</i>	Nominal value of d _{min}		
-	10	$d_{min} \ge 0.1 \ \phi + 0.5$		
10	50	$d_{min} \ge 0.05 \ \phi + 0.5$		
50	100	$d_{min} \ge 0.05 \phi$		
100	-	$d_{min} \ge (0.05 \div 0.1) \phi$		

Grubość soczewki 1:

Dla soczewki 1 ϕ = 10.8 mm, minimalna wartość grubości $d_{min} \ge 1.04$, stosujemy $d_{min} = 1.1$ mm

grubość 1 = 1.31 + 1.1 + 1.31 = 3.72 mm

Grubość soczewki 2:

Grubość 2 = 1.1

OSLO: warunki pracy

Otrzymane w OSLO: krzywizny, grubości, szkła

Uwaga:

- skalujemy soczewkę dla zachowania parafokalności mikroskopu
- używamy układ optyczny pracujący w odwróconej konfiguracji
- dodajemy dodatkową aperturę dla otrzymania telecentrycznego biegu promienia polowego w przestrzeni obrazu (położenie apertury – przedmiot w ogniskowej)

Warunki Pracy:

Otrzymanie telecentrycznego promienia polowego w przestrzeni obrazu poprzez wprowadzenie apertury (apertura wejściowa)

Z 'paraxial setup' otrzymujemy:

• informację o pozycji PP1:

Srf 1 to prin. pt. 1: -0.336954

odległość przysłony aperturowej od pierwszej powierzchni jest

0.336954 + 26.25 = 26.59

Total track length: 188.5

Oczekiwana wartość 189 mm

Kolejne kroki:

1. Ustawiamy warunki pracy: powiększenie -0.2, NA 0.15,

Wysokość przedmiotu 8

- 2. Wprowadzenie przysłony aperturowej
- 3. Przeskalowanie układu przez stałą

$$\frac{189}{188.5}$$

Otrzymujemy system zachowujący parafokalność mikroskopu

Wartość 188.5 uzyskujemy z 'paraxial setup'->'Total track length:'

Uzyskany układ optyczny

Lens:	No name	Zoom	1	of 1	Efl	25.942380		
Image	num aper (0.150000	Object he	ight (3.000000) Primar	y wavln	0.587560
SRF	RADIUS	TH:	CKNESS	APERTUR	E RADIUS	5 (ILASS	SPECIAL
ОВЈ	0.000000	129.7	17283	8.0000	000		AIR	
AST	0.000000	26.2	70000 🔃	3.893	271 AS]	AIR	
2	11.750000	3.7	20000 🔃	5.4000	000]	вкл С	
3	-11.750000	1.3	.00000 🚃	5.4000	000 P		F2 C	
4	-223.900000	27.6	95785	5.4000	000 P]	AIR	
IMS	0.000000	0.0	000000	1.6000	000 5]		

Telecentryczny bieg promienia: promień polowy – – – równoległy do osi optycznej

OSLO: ocena jakości dla płaszczyzny Gaussa

Ray intercept curves Analysis for paraxial focus

Spot Diagram dla płaszczyzny Gaussa

OSLO: optimization

Spot diagramy dla optymalnego defocusu-0.652 (minimum on-axis spot size (polychromatic))

Spot Diagram Analysis and MTF at optimal defocusing plane -0.652 (minimum on-axis spot size (polychromatic))

OSLO: optimization

We apply typical OSLO optimization method:

'Optimize->Generate Error Function->OSLO Spot Size/Wave Front' with addition of operand controling EFL

Spot Diagram i MTF po optymalizacji
Końcowy efekt achromatyzacji obiektywu
mikroskopowego 5x. Czarny okrąg oznacza plamkę Airy