SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 253

Prebrojavanje razapinjućih stabala grafa

Dorian Kablar

Zagreb, svibanj 2021.

Zahvaljujem mentorici, doc. dr. sc. Anamari Nakić, na motivaciji i savjetima prilikom pisanja ovog rada.

Zahvaljuem svojim roditeljima, pogotovo majci, koji su me podržavali u svakoj odluci, i koji su uvijek znali kako pomoći, čak i kad nisam bio svjestan da je pomoć potrebna.

SADRŽAJ

1.	Uvo	d	1
2.	Glav	vne definicije i rezultati	2
3.	Raza	apinjuća stabla	3
	3.1.	Broj razapinjućih stabala - primjeri	3
		3.1.1. Kotač, W_n	3
4.	Mat	rični teorem o stablima	7
	4.1.	Laplacian	7
	4.2.	Matrix-Tree teorem	8
5.	Računanje broja razapinjućih stabala pomoću matričnog teorema o sta-		
	blim	a	10
6.	Gra	phelite - računanje broja razapinjućih stabala	12
	6.1.	Računanje broja razapinjućih stabala grafa	12
	6.2.	Demonstracija rada programa	12
		6.2.1. Petersonov graf	12
		6.2.2. Kotač sa 6 vrhova, W_5	14
7.	Zak	ljučak	17
ſ.iı	iteratura		

1. Uvod

U prvom dijelu ću iznijeti glavne definicije i rezultate vezane uz grafove i stabla. U drugom dijelu će biti govora o razapinjućim stablima. Pritom ću iznijeti neke osnovne rezultate te primjere teorijskog računanja broja razapinjučih stabala. U trećem dijelu ću iskazati i dokazati matrični teorem o stablima.

U četvrtom dijelu ću, koristeći prethodno dokazani teorem, iznijeti rezultate za primjere pojedinačnih grafova, kao i za grafove s proizvoljnim brojem vrhova, n. U petom dijelu, bit će opisan relevantan (za razapinjuća stabla) dio aplikacije *Graphelite* koja je razvijena u sklopu kolegija *Projekt R* u 5. semestru, te će se na primjerima prikazati njezin rad. Naposljetku će biti donesen zaključak o svemu što je napravljeno.

2. Glavne definicije i rezultati

3. Razapinjuća stabla

3.1. Broj razapinjućih stabala - primjeri

U ovom odjeljku bavit ću se određivanjem eksplicitnih formula za računanje broja razapinjućih stabala određenih vrsta grafova. Karakteristika tih formula će biti ta da će jedina varijabla u njima biti *n*, odnosno broj vrhova grafa.

3.1.1. Kotač, W_n

Prvi primjer je graf kotač, odnosno W_n . Kotač je graf koji je sličan grafu ciklusu C_n uz razliku da se jedan od vrhova nalazi u sredini te su svi ostali vrhovi, osim što su povezani u ciklus, još povezani s vrhom u sredini.

Slika 3.1: Kotač W_6

Jedan primjer kotača je i W_6 prikazan na slici 3.1.

Za računanje će od iznimne važnosti biti sljedeći izraz:

$$T(G) = T(G - e) + T(G \setminus e)$$
(3.1)

Prije samog izračuna, potrebno je dokazati da je izraz (3.1) ispravan.

Dokaz. Neka je e neki fiksni brid od G. Uočimo da se razapinjuća stabla od G dijele na:

- razapinjuća stabla od G koja ne sadrže brid e; neka je taj broj jednak x,
- razapinjuća stabla od G koja sadrže brid e; neka je taj broj jednak y.

Vrijedi: T(G) = x + y. Uočimo sada da je:

- -x = T(G e) jer je svako razapinjuće stablo od G koje ne sadrži e, ujedno i razapinjuće stablo od G e
- $-y = T(G \setminus e)$ jer svako razapinjuće stablo od $G \setminus e$ možemo dobiti iz razapinjućeg stabla od G koje sadrži brid e postupkom konkatenacije brida e u tom stablu.

Dakle, vrijedi
$$T(G) = T(G - e) + T(G \setminus e)$$
.

Da bismo mogli pronaći eksplicitnu formulu za računanje broja razapinjućih stabala kotača s proizvoljnim brojem vrhova, potrebno je definirati nekoliko familija grafova koje ćemo koristiti.

Slika 3.2: Pet familija grafova koje će se koristiti za nalaženje eksplicitne formule za računanje broja razapinjućih stabala grafa kotača W_n (n označava broj vrhova).

Koristimo izraz (3.1) nad označenim bridovima sa slike 3.2, te dobivamo sustav rekurzivnih relacija:

$$T(W_n) = T(A_n) + T(B_{n-1})$$

$$T(A_n) = T(C_{n-1}) + T(W_{n-1})$$

$$T(B_n) = T(D_n) + T(B_{n-1})$$

$$T(C_n) = T(C_{n-1}) + T(D_{n-1})$$

$$T(D_n) = T(C_n) + T(D_{n-1}) = T(D_{n-1}) + T(B_{n-1})$$

Uzmimo sada u obzir relacije za $T(C_n)$ i $T(D_n)$. Dobivamo:

$$T(C_{n+1}) = T(C_n) + T(D_n) = 2T(C_n) + T(D_{n-1}) = 3T(C_n) - T(C_{n-1})$$

ili

$$T(C_{n+1}) - 3T(C_n) + T(C_{n-1}) = 0$$

odnosno

$$T(C_n) - 3T(C_{n-1}) + T(C_{n-2}) = 0$$

i

$$T(C_{n-1}) - 3T(C_{n-2}) + T(C_{n-3}) = 0$$

Oduzmemo li prethodne dvije relacije, dobit ćemo konačnu rekurzivnu relaciju za $T(C_n)$:

$$T(C_n) - 4T(C_{n-1}) + 4T(C_{n-2}) - T(C_{n-3}) = 0$$

Promotrimo sada relacije za $T(W_n)$ i $T(A_n)$. Obzirom da je $T(B_{n-1}) = T(C_n)$, imamo $T(W_n) = T(A_n) + T(C_n)$ i, posljedično, $T(W_{n-1}) = T(A_{n-1}) + T(C_{n-1})$. Supstitucijom u relaciju $T(A_n) = T(C_{n-1}) + T(W_{n-1})$ dobivamo:

cijom u relaciju $I(A_n) \equiv I(C_{n-1}) + I(W_{n-1})$ dobivamo:

$$T(A_n) = T(A_{n-1}) + 2T(C_{n-1})$$

$$T(A_n) - T(A_{n-1}) = 2T(C_{n-1})$$

Obzirom da je $T(C_{n-1}) - 3T(C_{n-2}) + T(C_{n-3}) = 0$, imamo:

$$2T(C_{n-1}) - 2(3)T(C_{n-2}) + 2T(C_{n-3}) = 0$$

$$[T(A_n) - T(A_{n-1})] - 3[T(A_{n-1}) - T(A_{n-2})] + [T(A_{n-2}) - T(A_{n-3})] = 0$$

iz čega, sređivanjem izraza, slijedi:

$$T(A_n) - 4T(A_{n-1}) + 4T(A_{n-2}) - T(A_{n-3}) = 0$$

što je konačna rekurzivna relacija za $T(A_n)$.

Primjetimo da sada i $T(A_n)$ i $T(C_n)$ imaju homogenu rekurzivnu relaciju trećeg reda:

$$x_n - 4x_{n-1} + 4x_{n-2} - x_{n-3} = 0$$

iz čega proizlazi da i $T(W_n) = T(A_n) + T(C_n)$ mora imati identičnu relaciju. Karakteristična jednadžba koja korespondira s ovom relacijom je:

$$r^{3} - 4r^{2} + 4r + 1 = 0$$
$$(r - 1)(r^{2} - 3r + 1) = 0$$

Ta jednadžba ima karakteristične korijene $r_1 = \frac{3+\sqrt{5}}{2}$, $r_2 = \frac{3-\sqrt{5}}{2}$ i $r_3 = 1$. Dakle, opće rješenje od $T(W_n)$ je:

$$T(W_n) = \alpha (\frac{3+\sqrt{5}}{2})^n + \beta (\frac{3-\sqrt{5}}{2})^n + \gamma$$

Da bi se ova relacija rješila, potrebno je pronaći vrijednosti konstanti α , β i γ takvih da se opće rješenje slaže s početnim uvjetima $T(W_3)=16$, $T(W_4)=45$ i $T(W_5)=121$ (uz uvjet n>=3). Dobivamo sustav:

$$T(W_n) = \alpha \left(\frac{3+\sqrt{5}}{2}\right)^3 + \beta \left(\frac{3-\sqrt{5}}{2}\right)^3 + \gamma = 16$$

$$T(W_n) = \alpha \left(\frac{3+\sqrt{5}}{2}\right)^4 + \beta \left(\frac{3-\sqrt{5}}{2}\right)^4 + \gamma = 45$$

$$T(W_n) = \alpha \left(\frac{3+\sqrt{5}}{2}\right)^5 + \beta \left(\frac{3-\sqrt{5}}{2}\right)^5 + \gamma = 121$$

Sustav se može rješiti na razne načine, jedan od njih je i preko matrice sustava:

$$\begin{bmatrix} (\frac{3+\sqrt{5}}{2})^3 & (\frac{3-\sqrt{5}}{2})^3 & 1 & 16\\ (\frac{3+\sqrt{5}}{2})^4 & (\frac{3-\sqrt{5}}{2})^4 & 1 & 45\\ (\frac{3+\sqrt{5}}{2})^5 & (\frac{3-\sqrt{5}}{2})^5 & 1 & 121 \end{bmatrix}$$

Cilj je da na lijevoj strani ostane jedinična matrica, i onda će vrijednosti s desne strane biti rješenja sustava. Ovaj sustav ima jedinstveno rješenje $\alpha=\beta=1$ i $\gamma=-2$ iz čega slijedi da je broj razapinjučih stabala grafa kotača W_n jednak:

$$T(W_n) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3-\sqrt{5}}{2}\right)^n - 2 \tag{3.2}$$

4. Matrični teorem o stablima

Cilj ovog poglavlja je izvesti rezultat koji broj razapinjućih stabala grafa računa kao determinantu matrice čije vrijednosti ovise o grafu. Te matrice nazivaju se *Laplacijani*.

4.1. Laplacian

Neka je G neusmjereni graf s n vrhova, i neka d_i označuje stupanj vrha i. Laplacian L je modificirana verzija matrice susjedstva grafa G, definirana na sljedeći način:

 $L_{ij}=d_i$ ako je i = j, $L_{ij}=-1$ ako su vrhovi i i j povezani, te $L_{ij}=0$ inače.

Slika 4.1: Primjer grafa s 4 vrha

Laplacian L grafa sa slike 4.1 je:

$$L = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}$$

Primjetimo da je suma svakog retka i stupca od L jednak 0. Zbog toga je determinanta od L uvijek jednaka 0.

Da bismo bili u mogućnosti iskazati matrični teorem o stablima, potrebno je uvesti još jedan komad notacije. Pretpostavimo li matricu A s dimenzijama $n \times n$, s $A^{(ij)}$ će se označavati matrica dimenzija $(n-1) \times (n-1)$ dobivena brisanjem i-tog redka i j-tog

stupca matrice A. Takve matrice se nazivaju *minore*. Sljedeći teorem nam govori da nam minore *Laplaciana* daju upravo rezultat koji tražimo.

4.2. Matrix-Tree teorem

Teorem 4.2.1 (Matrix-Tree teorem). Neka je G nepovezani graf ili multigraf i neka T(G) označava broj razapinjućih stabala u G. Za bilo koji i, $T(G) = \det L^{(ii)}$, gdje je L laplacian od G. Preciznije, $\det L^{(ii)}$ je jednak za svaki i.

Dokaz. Teorem se dokazuje matematičkom indukcijom. Pretpostavimo da teorem vrijedi za povezane grafove s manje vrhova ili bridova. Kao bazu indukcije, pretpostavimo da se graf G sastoji od samo jednog vrha. U tom slučaju, T(G)=1, i teorem daje ispravan rezultat: L=(0) i $L^{(11)}$ je matrica dimenzija 0×0 , čija je determinanta po definiciji jednaka 1.

Za korak indukcije pretpostavljamo graf G koji ima barem dva vrha, te odabiremo jedan od tih vrhova, recimo vrh i. Ako i nije incidentan s nijednim bridom, onda G nema razapinjuće stablo. U ovom slučaju će teorem vrijediti jer je $L^{(ii)}$ zapravo Lapla-cian ostatka grafa te će njezina determinanta biti jednaka nuli, kao što je navedeno u odjeljku 4.1.

Slika 4.2: G - e je graf koji se dobije brisanjem brida e, a $G \setminus e$ je graf koji se dobije kontrakcijom brida e i spajanjem incidentnih vrhova u jedan vrh.

Sada pretpostavimo da je i povezan s nekim drugim vrhom j, te neka e označava brid (i,j). Kao što je prikazano na slici 4.2, postoje dva načina na koje se može modificirati G: brid e možemo jednostavno izbrisati, ili možemo kontrakcijom vrhove i i j spojiti u jedan vrh. Takve grafove označujemo s G - e i $G \setminus e$. Sada tvrdimo da je broj razapinjučih stabala T(G) zadan sa sljedećim rekurzivnim izrazom:

$$T(G) = T(G - e) + T(G \setminus e) \tag{4.1}$$

Ispravnost izraza (4.1) je dokazana u poglavlju 3.

Prtpostavimo sada da matrični teorem vrijedi za G - e i za $G \setminus e$. Možemo razmjestiti vrhove od G tako da su i i j prva dva vrha. Sada Laplacian L od G možemo napisati kao:

$$L_{G} = \begin{bmatrix} d_{i} & -1 & r_{i}^{T} \\ -1 & d_{j} & r_{j}^{T} \\ \hline r_{i} & r_{j} & L' \end{bmatrix}$$

Ovdje r_i i r_j predstavljaju (n-2)-dimenzionalne vektore koji opisuju konekcije vrhova i i j s ostalih n-2 vrha od G (r_i^T i r_j^T su transponirani vektori), a L' je (n-2)-dimenzionalna minora koja predstavlja laplacian ostatka grafa. Laplaciane grafova G-e i $G \setminus e$ pišemo na sljedeći način:

$$L_{G-e} = \begin{bmatrix} d_i - 1 & 0 & r_i^T \\ \hline 0 & d_j - 1 & r_j^T \\ \hline r_i & r_j & L' \end{bmatrix}, L_{G \setminus e} = \begin{bmatrix} d_i + d_j - 2 & r_i^T + r_j^T \\ \hline r_i + r_j & L' \end{bmatrix}$$

Da bi se indukcija završila, potrebno je pokazati:

$$detL_G^{(ii)} = detL_{G-e}^{(ii)} + detL_{G\backslash e}^{(jj)}$$

$$\tag{4.2}$$

ili, u matričnom zapisu:

$$det\left(\begin{array}{c|c} d_j & r_j^T \\ \hline r_j & L' \end{array}\right) = det\left(\begin{array}{c|c} d_j - 1 & r_j^T \\ \hline r_j & L' \end{array}\right) + detL'.$$

Ovaj rezultat slijedi iz činjenice da determinanta matrice može biti napisana kao linearna kombinacija njenih *kofaktora*, tj. determinanti njenih minora. Za bilo koju matricu *A* vrijedi

$$det A = \sum_{j=1}^{n} (-1)^{j} A_{1,j} det A^{(1,j)}.$$
(4.3)

Dakle, ako se dvije matrice razlikuju samo u njihovim (1,1) ćelijama, a $A_{ij}=B_{ij}$ za svaki drugi i i j, njihove determinante se razlikuju za determinantu njigovih (1,1) minora, odnosno $det A=det B+det A^{(1,1)}$. Primjenimo li ovo za $L_G^{(ii)}$ i $L_{G-e}^{(ii)}$, dobit ćemo izraz (4.2), čime se dovršava dokaz ovog teorema.

5. Računanje broja razapinjućih stabala pomoću matričnog teorema o stablima

Da bismo se uvjerili da je rezultat prethodnog teorema zaista ispravan, u ovom poglavlju razraditi ćemo primjere.

Slika 5.1: Primjer grafa s 5 vrhova

Na slici 5.1 prikazan je graf s 5 vrhova. Matrica susjedstva *A* navedenog grafa, te njezin laplacian *L* su sljedeći:

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}, L = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

Kao sljedeći korak, stvorimo, na primjer, matricu $L^{(22)}$ dobivenu brisanjem drugog retka i drugog stupca matrice L.

$$L^{(22)} = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 4 & -1 & -1 \\ 0 & -1 & 3 & -1 \\ 0 & -1 & -1 & 3 \end{bmatrix}$$

Determinanta prethodne matrice, a ujedno i broj razapinjućih stabala grafa sa slike 5.1 je: $T(G) = \det L^{(22)} = 40$. Jednak bi se rezultat dobio da smo matricu $L^{(ii)}$ stvorili tako da smo maknuli bilo koji drugi redak i stupac matrice L.

6. Graphelite - računanje broja razapinjućih stabala

Graphelite je web-aplikacija razvijena u 5. semestru u sklopu kolegija *Projekt R* u suradnji s još dvoje kolega. To je aplikacija koja korisniku dopušta da crta jednostavne grafove i nad njima provodi razne algoritme i dobije zanimljive rezultate o nacrtanim grafovima. Moguće je crtati grafove, nacrtanom grafu odrediti najmanje razapinjuće stablo, odrediti duljinu struka (najkraći ciklus), odrediti kromatski broj, obojati vrhove grafa, te izračunati broj razapinjućih stabala.

6.1. Računanje broja razapinjućih stabala grafa

Broj razapinjućih stabala grafa kojeg korisnik nacrta u aplikaciji se računa pomoću matričnog teorema o stablima, teorema koji je obrađen u 4. poglavlju ovoga rada. Odabere li korisnik opciju "Number of trees" pokrenut će se algoritam za izračunavanje broja razapinjućih stabala. Taj algoritam je sljedeći:

Algorithm 1 Računanje broja razapinjućih stabala grafa

```
Ulaz: matrix – matrica susjedstva grafa G.
Ulaz: n – broj vrhova grafa G
Izlaz: broj razapinjućih stabala grafa G
L11 := array[n-1][n-1]
for (i := 0; i < n - 1; i + +) do
  for (j := 0; j < n - 1; j + +) do
    if i == j then
      num := 0
      for (k := 0; k < n; k + +) do
         if matrix[i+1][k] == 1 then
           num := num + 1
         end if
      end for
      L11[i][j] := num
    else if matrix[i+1][j+1] == 1 then
      L11[i][j] := -1
    else
       L11[i][j] := 0
    end if
  end for
end for
rez := determinanta(L11)
return rez
```

6.2. Demonstracija rada programa

Prikazat ćemo rad algoritma za računanje broja razapinjućih stabala na primjerima Petersonovog grafa, i kotača sa 6 vrhova, W_6 .

6.2.1. Petersonov graf

Na slici 6.1 se vidi Petersonov graf nacrtan u aplikaciji *Graphelite*.

Slika 6.1: Petersonov graf

Na slici 6.2 vidi se matrica susjedstva Petersonovog grafa te broj razapinjućih stabala istog. Vidimo da je taj broj 2000.

6.2.2. Kotač sa 6 vrhova, W_5

Na slici 6.3 se vidi graf kotač s 6 vrhova, W_5 nacrtan u aplikaciji *Graphelite*.

Na slici 6.4 vidi se matrica susjedstva za W_5 te broj razapinjućih stabala istog. Vidimo da je taj broj 121.

Slika 6.2: Broj razapinjućih stabala Petersonovog grafa

Slika 6.3: Kotač W_5

Slika 6.4: Broj razapinjućih stabala grafa ${\cal W}_5$

7. Zaključak

Zaključak.

LITERATURA

Prebrojavanje razapinjućih stabala grafa

Sažetak

Sažetak na hrvatskom jeziku.

Ključne riječi: grafovi, stabla, razapinjuća stabla, matrix-tree teorem

Counting the spanning trees

Abstract

Abstract.

Keywords: graphs, trees, spanning trees, matrix-tree theorem