Utilisation des connaissances pour l'apprentissage

Plan

- Formulation logique du problème d'apprentissage.
- Apprentissage inductif en logique.
 - Recherche de la meilleure hypothèse courante.
 - Algorithme d'élimination de candidats.
- Utilisation des connaissances pour l'apprentissage
 - Apprentissage à base d'explications
 - Programmation logique inductive

Connaissances et apprentissage

- Comment est-ce que l'agent peut utiliser les connaissances qu'il a sur son environnement pour aider l'apprentissage ?
- Les exemples, les classifications et les hypothèses seront représentés en logique du premier ordre.
- Les connaissances déjà connues vont pouvoir influencer la classification de nouveaux exemples.

Formulation logique

• Reprenons l'exemple du restaurant pour illustrer la nouvelle représentation logique.

Γ	Example .	Attributes									Goal	
1		Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
Γ	X_1 X_2	Yes Yes				Some Full		No No	Yes No	French Thai	0-10 30-60	Yes No

- L'exemple X1 se représente par l'énoncé logique suivant: $Alt(X_1) \wedge \neg Bar(X_1) \wedge \neg Fri(X_1) \wedge Hun(X_1) \wedge$ $Pat(X_1, Some) \land Price(X_1, \$\$\$) \land \neg Rain(X_1) \land$ $Res(X_1) \wedge Type(X_1, French) \wedge Est(X_1, 0 - 10)$
- La classification se représente par le prédicat: $WillWait(X_1)$

Formulation logique

- Chaque hypothèse propose un équivalent pour le prédicat but qui est appelé une définition candidate.
- Si C_i est une définition candidate et Q le prédicat but, alors les hypothèses H_i auront la forme:

 $\forall x \ Q(x) \Leftrightarrow C_i(x)$

Formulation logique

• Par exemple, l'arbre de décision suivant peut être représenté par l'équivalence suivante:

- $\forall r \ WillWait(r) \Leftrightarrow Patrons(r,Some) \\ \lor \ Patrons(r,Full) \land Hungry(r) \land Type(r,French) \\ \lor \ Patrons(r,Full) \land Hungry(r) \land Type(r,Thai) \land Fri/Sat(r) \\ \lor \ Patrons(r,Full) \land Hungry(r) \land Type(r,Burger) \ .$

Espace d'hypothèses

- L'espace d'hypothèse ${\bf H}$ est l'ensemble de toutes les hypothèses $\{H_I,\ \dots,\ H_n\}.$
- Une hypothèse est incompatible (inconsistent) avec une autre si elles ne s'entendent pas sur la prédiction d'au moins un exemple.
- Une hypothèse peut être incompatible avec un exemple dans deux cas:
 - Exemple faux négatif pour une hypothèse:
 - L'hypothèse dit que l'exemple devrait être négatif, mais il est positif.
 - Exemple faux positif pour une hypothèse:
 - L'hypothèse dit que l'exemple devrait être positif, mais il est négatif.

Apprentissage inductif en logique

- On part avec l'espace d'hypothèses.
- Pour chaque exemple, on retire de l'ensemble toutes les hypothèses qui sont incompatibles avec l'exemple.
- Comme l'espace d'hypothèses peut être très grand, il est souvent impossible d'énumérer toutes les hypothèses.
- On va voir deux algorithmes permettant de trouver des hypothèses compatibles sans avoir à toutes les énumérer.

Recherche de la meilleure hypothèse courante

- L'idée est de conserver une seule hypothèse et de la modifier pour conserver la compatibilité avec les exemples.
- L'algorithme généralise l'hypothèse s'il rencontre un exemple faux négatif.
- Il spécialise l'hypothèse s'il rencontre un exemple faux positif.

- a) Hypothèse compatible
- b) Faux négatif c) Généralisation d) Faux positif
- e) Spécialisation

Algorithme

 $\textbf{function} \ \mathsf{CURRENT\text{-}BEST\text{-}LEARNING} (\textit{examples}) \ \textbf{returns} \ \mathsf{a} \ \mathsf{hypothesis}$

 $H \leftarrow$ any hypothesis consistent with the first example in *examples* for each remaining example in *examples* do

if e is false positive for H then

 $H \leftarrow$ choose a specialization of H consistent with examples else if e is false negative for H then

 $H \leftarrow$ choose a generalization of H consistent with examples if no consistent specialization/generalization can be found then fail end

return H

10

Exemple

Example	Attributes									Goal	
Lixanipie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Will Wait
X_1	Yes	No	No	Yes	Some	SSS	No	Yes	French	0-10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X_3	No	Yes	No	No	Some	5	No	No	Burger	0-10	Yes
X_4	Yes	No	Yes	Yes	Full	5	Yes	No	Thai	10-30	Yes

• Le premier exemple est positif. $Alt(X_I)$ est vrai donc on peut commencer avec l'hypothèse:

 $H_1: \ \forall \, x \ \textit{WillWait}(x) \ \Leftrightarrow \ \textit{Alternate}(x)$

 Le deuxième exemple est négatif. H_I prédit positif donc c'est un faux positif. On spécialise en ajoutant une condition.

 $H_2: \forall x \ WillWait(x) \Leftrightarrow Alternate(x) \land Patrons(x, Some)$

Exemple

Example	Attributes									Goal	
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Will Wait
X_1	Yes	No	No	Yes	Some	SSS	No	Yes	French	0-10	Yes
X_2	Yes	No	No	Yes	Full	5	No	No	Thai	30-60	No
X_3	No	Yes	No	No	Some	5	No	No	Burger	0-10	Yes
X.	Ves	No	Yes	Yes	Full	5	Yes	No	Thai	10-30	Yes

• Le troisième exemple est positif. H_2 prédit négatif, donc c'est un faux négatif. On généralise en enlevant une condition:

 $H_3: \ \forall x \ WillWait(x) \Leftrightarrow Patrons(x, Some)$

• Le quatrième exemple est positif. H_g prédit négatif donc c'est un faux négatif. On généralise en ajoutant une disjonction.

 $H_4: \ \forall x \ WillWait(x) \Leftrightarrow Patrons(x, Some) \ \lor (Patrons(x, Full) \land Fri/Sat(x))$

Difficultés de l'algorithme

- À chaque étape, il y a plusieurs spécialisation ou généralisation possibles.
- L'algorithme se doit de faire des retours arrières s'il a fait un mauvais choix.
- C'est très coûteux de vérifier la compatibilité de l'hypothèse à chaque tour avec tous les exemples précédents.

13

Algorithme d'élimination de candidats

- Cet algorithme, aussi appelé « version space learning », conserve toutes les hypothèses compatibles avec les exemples.
- Cet ensemble d'hypothèses compatibles avec les exemples d'entraînement est dénommé l'espace des versions.
- Cet ensemble est représenté à l'aide de deux ensembles frontières:
 - Ensemble S: contient les hypothèses les plus spécifiques.
 - Ensemble G: contient les hypothèses les plus générales.

14

Espace des versions

• Toutes les hypothèses compatibles sont plus spécifiques que *G* et plus générales que *S*.

Exemple

• On commence avec

 $S_0: \{ < \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset > \}$ $G_0: \{ <?,?,?,?,?,? > \}$

 • Ex 1: < Soleil, Chaud, Normal, Fort, Chaud, Stable> Cet exemple est positif, donc on doit généraliser <math>S

 $S_1: \ \{< Soleil, Chaud, Normal, Fort, Chaud, Stable > \}$

 $G_1: \{<?,?,?,?,?,?>\}$

16

Exemple

- Ex 2: < Soleil, Chaud, Élevé, Fort, Chaud, Stable> Cet exemple est positif, donc on doit généraliser S
 S2: {< Soleil, Chaud, ?, Fort, Chaud, Stable>}
 G2: {<?,?,?,?,?>}
- Ex 3: < Pluie, Froid, Élevé, Fort, Chaud, Change> Cet exemple est négatif, donc on doit spécialiser G

 $\begin{array}{ll} S_3: & \{<Soleil, Chaud, ?, Fort, Chaud, Stable>\}\\ G_3: & \{<Soleil, ?, ?, ?, ?, <?, Chaud, ?, ?, ?, ?, <\\ & <?, ?, ?, ?, Stable>\} \end{array}$

17

Exemple

 Ex 4: < Soleil, Chaud, Élevé, Fort, Froid, Change> Cet exemple est positif, donc on doit généraliser S. Dans G, il faut enlever une hypothèse, car elle vient en contradiction avec l'exemple.

 S_4 : {< Soleil, Chaud, ?, Fort, ?, ? >} G_4 : {< Soleil, ?, ?, ?, ?, ?, <?, Chaud, ?, ?, ?, ?}

В

Remarques

- L'algorithme d'élimination de candidats est sensible aux erreurs dans les exemples d'entraînement.
- S'il n'y a pas suffisamment d'exemples pour en arriver à générer une seule hypothèse on peut utiliser un concept partiellement appris.
 - Fonction de majorité parmi les hypothèses
 - On peut donner une probabilité, selon les hypothèses que nous avons, qu'une instance donnée soit vraie.
 - Par exemple, si pour une instance donnée, 4 hypothèses disent qu'elle est vraie et 2 hypothèses disent qu'elle est fausse, alors on peut classer l'instance comme étant vraie avec une certitude de

19

Utilisation des connaissances pour l'apprentissage

- Méthodes d'apprentissage inductives
 - Ex: réseaux de neurones ou arbres de décision
 - Elles ont besoins de beaucoup d'exemples d'entraînement pour être performantes.
- Méthodes d'apprentissage analytiques
 - Elles utilisent les connaissances antérieures de l'agent et des techniques de raisonnement déductif pour augmenter l'information que les exemples d'entraînement procurent.
 - Ce qui réduit le nombre d'exemples nécessaires.

Processus d'apprentissage

Connaissances
antérieures

Apprentissage
inductif basé sur les connaissances

Prédictions

Apprentissage analytique

- L'hypothèse retournée doit être
 - consistante avec les exemples d'entraînement,
 - consistante avec les connaissances antérieures.
- Exemples de méthodes
 - Apprentissage à base d'explications.
 - Apprentissage basé sur la pertinence.
 - Programmation logique inductive.

22

Apprentissage à base d'explications

- Le domaine théorique (sous forme de règles) représente ce que l'on connaît déjà du monde.
- Ce domaine est utilisé pour construire une explication de l'exemple d'entraînement.
- L'explication est utilisée pour construire une règle qui est ajoutée à l'ensemble de règles.

23

Exemple

- Le problème est de simplifier $1 \times (0 + X)$.
- Dans la base de connaissances de l'agent, on a plusieurs règles d'arithmétiques:

```
 \begin{aligned} Rewrite(u,v) \wedge Simplify(v,w) &\Rightarrow Simplify(u,w) \,. \\ Primitive(u) &\Rightarrow Simplify(u,u) \,. \\ ArithmeticUnknown(u) &\Rightarrow Primitive(u) \,. \\ Number(u) &\Rightarrow Primitive(u) \,. \\ Rewrite(1 \times u,u) \,. \\ Rewrite(0 + u,u) \,. \\ &\vdots \end{aligned}
```


Exemple

• La règle apprise:

 $\begin{aligned} Rewrite(1\times(0+z),0+z) \wedge Rewrite(0+z,z) \wedge ArithmeticUnknown(z) \\ \Rightarrow Simplify(1\times(0+z),z) \ . \end{aligned}$

• Les deux premières préconditions sont vraies peu importe la valeur de z, donc on peut les enlever et obtenir la règle plus générale:

 $ArithmeticUnknown(z) \Rightarrow Simplify(1 \times (0 + z), z)$.

26

Résumé du processus

- Étapes de l'apprentissage à base d'explications:
 - Étant donné un exemple, prouver que le but peut être déduit à partir de l'exemple et des connaissances antérieures.
 - En parallèle, construire une preuve plus générale avec des variables et en appliquant exactement les mêmes étapes que pour la preuve originale.
 - 3. Construire une nouvelle règle dont la partie gauche contient les feuilles de l'arbre de preuve et la partie droite contient le but écrit avec des variables.
 - 4. Enlever toutes les conditions qui sont vraies peut importe les variables dans le but.

Programmation logique inductive

- Algorithme de FOIL
 - Commence avec une règle très générale
 - Spécialise la règle en ajoutant des conditions jusqu'à ce que la règle ne couvre plus aucun exemple négatif.
 - Enlève tous les exemples positifs couverts par la règle.
 - Continue à apprendre des règles jusqu'à ce que tous les exemples positifs soient couverts.

28

FOIL

- L'algorithme génère de nouveaux prédicats utilisés pour spécialiser la règle:
 - $-Q(v_1,\ldots,v_{\rm r})$, où Q est le nom d'un prédicats apparaissant dans la liste des prédicats et où les $v_{\rm i}$ sont des nouvelles variables ou des variables déjà présentent dans la règle.
 - • Au moins une des variables $v_{\rm i}$ doit être déjà présente dans la règle.
 - $\acute{E}gale(x_j,x_k)$, où $x_{\rm j}$ et $x_{\rm k}$ sont des variables déjà présentent dans la règle.
 - La négation d'une des deux formes précédentes.

29

Exemple

- Considérons l'apprentissage de la règle PetiteFille(x,y).
 - La liste des prédicats contient: $P\`{e}re$ et Femme pour décrire les exemples.
- La recherche commence avec la règle la plus générale:
 - $\Rightarrow PetiteFille(x, y)$
- Pour spécialiser la règle, on considère les prédicats suivants:
 - $\begin{array}{l} -Egale(x,y), \ Femme(x), \ Femme(y), \ P\`ere(x,y), \ P\'ere(y,x), \\ P\'ere(x,z), \ P\'ere(z,x), \ P\'ere(y,z), \ P\'ere(z,y), \\ PetiteFille(x,y), \ PetiteFille(z,y), \ PetiteFille(x,z), \\ PetiteFille(y,x), \ PetiteFille(y,z), \ PetiteFille(z,x) \end{array}$
 - Et la négation de tous ces prédicats.

4	ı	1	٦
1		l	1

Exemple

 Supposons que c'est le prédicat Père(y,z) qui a été choisi comme étant le prédicat le plus prometteur. On obtient donc:

 $P\`ere(y,z) \Rightarrow PetiteFille(x,y)$

- La liste des prédicats pour spécialiser cette règle contient tous les prédicats de l'étape précédente, plus les prédicats suivants: Femme(z), Egale(z,x), Egale(z,y), Père(z,w), Père(w,z) et leur négation.
- Ces nouveaux prédicats sont considérés à cette étape parce que la variable z a été ajoutée à l'étape précédente.

31

Exemple

• Si l'algorithme de FOIL choisit le prédicat $P\grave{e}re(z,x)$ à cette étape et Femme(y) à l'étape suivante, alors on obtiendrait la règle suivante qui ne couvre aucun exemple négatif et qui couvre tous les exemples positifs, donc qui l'algorithme arrêterait.

 $P\`ere(y, z) \land P\`ere(z, x) \land Femme(y) \Rightarrow PetiteFille(x, y)$

32

Sélection du meilleur prédicat

- Pour choisir le meilleur prédicat parmi les candidats à chaque étape, l'algorithme regarde la performance de la règle sur les exemples d'entraînement.
- Pour cela, il considère toutes les instanciations de variables possibles et se base sur le nombre d'instanciations positives et négatives avant et après l'ajout du prédicat.
- L'algorithme va choisir le prédicat ayant la plus grande valeur pour la fonction Foil_Gain (voir acétate suivant).

Sélection du meilleur prédicat

• Plus précisément, considérons la règle R. Soit R' la règle créée par l'ajout du prédicat L à la règle R. La valeur de $Foil_Gain(L,R)$ pour l'ajout de L à la règle R est:

 $Foil_Gain(L,R) \equiv t \left(\log_2 \frac{p_1}{p_1 + n_1} - \log_2 \frac{p_0}{p_0 + n_0} \right)$

- $-\ p_0$ est le nombre d'instanciations positives de la règle R , $-\ n_0$ est le nombre d'instanciations négatives de la règle R ,
- $-p_1$ est le nombre d'instanciations positives de la règle R^i , $-p_1$ est le nombre d'instanciations positives de la règle R^i , $-n_1$ est le nombre d'instanciations négatives de la règle R^i ,
- -t est le nombre d'instanciations positives de la règle R qui sont encore couverts après l'ajout de L à R.