Generating Natural Language Question-Answer Pairs from a Knowledge Graph Using a RNN Based Question Generation Model

Samsung Electronics, DMC R&D

IBM Research India

Indian Institute of Technology Madras

Motivation

The generated question answer pairs can be used in downstream applications' performance.

In this paper, it proposed that triples from knowledge graphs can be used for automatically generating Question Answer pairs.

ex1.

Predicate	CEO	
Subject	Sundar Pichai	
Object	Google	
Parent Predicate	designation	
Domain	person	
Range	organization	
	CEO, designation,	
Keywords	Sundar Pichai, person,	
	Google, organization	

Table 1: An example set of keywords constructed from the triple *CEO*(*Sundar Pichai*, *Google*)

Domain: subject type

Range: object type

Contributions

- 1. It propsed a method for extracting triples and keywords from a knowledge graph for constructing question keywords and answer pairs.
- 2. It formulate the problem of generating natural language questions from keywords as seq-to-seq learning problem.
- 3. It trained the model using 1M questions from WikiAnswers ensuring that it is not tied to any specific knowledge graph.
- 4. QA system appended with the generated QA pairs get better performance.

Approach

Question Keywords and Answer Extractor

Retrieving all the neighbours of n.

	Column A	Column B	Column C
Subject	United Kingdom	Stephen Wolfram	London
Domain	Country	Person	Location
Predicate	Capital	Birth Place	Contains
Object	London	London	Buckingham Palace
Range	City	Location	Location

The rules to generate QKA pairs from 5-tuples.

Unique Forward Relaton:

If p_i is unique for $sub(p_i)$ in KG, then Q_k will include $sub(p_i)$, p_i and $range(p_i)$. A_k will be obj_{p_i} . 注: 如果主语发生了这个谓语动作只能产生一个结果,那么取出。否则忽略。

Unique Reverse Relation:

If p_i is unique for obj_{p_i} in KG, then Q_k will include obj_{p_i} , p_i and $domain(p_i)$ 注: 如果宾语发生谓语动作只能产生一个结果,那么取出。否则忽略。

RNN based Natural Langeuage Queston Generator

Treat the keywords $QK=qk_1,...,qk_m$ as an input sequence and the question, $Q=q_1,...,q_l$ as the output sequence.

注:输入序列keywords是有序的,不同的顺序产生的问题应该是不同的。

encoder: LSTM1

decoder: LSTM2

so easy!!!

Training

Using a large collection of open-domain questions available from WikiAnswers dataset. Extracting keywords from the selected by retaining only Nouns, Verbs and Adjectives in question. This sequence of keywords along with the original question forms one input-output sequence pair for training.

Inference

Beam search