```
1 (y+ \x2-y2 dx -xdy)= 0
              \left(\frac{y}{x} + \sqrt{1-\left(\frac{y}{x}\right)^2}\right) dx - dy = 0
                                                                                                                                                                                                                  y = u ~> y = ux
x dy = volx + xdu
               (u+ J1-u2 )dx- (udx+xdu)=0
                ( 1/4 JI- 12 -6) dx = xdu -> JI- 12 dx = xdv -> Sdx = Sdv = 
                                                                                                                                                                                                                                                                                  In IXI= Arcsinu+C
                                                                                                                                                                                                                                                                     In Ixl= Aresin x +C
                           4°) Homogen vega dossikenlerne agrilabelen hale geterslebelen dit. dent.
              (a,x+b,y+c,)dx + (a2x+b2y+c2)dy=0
                          i) \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0 = ) a_1 \times + b_1 y + c_1 = 0 \begin{cases} x = h \\ y = k \end{cases} \begin{cases} x = h \\ y = k \end{cases} \begin{cases} x = h \\ y = k \end{cases} \begin{cases} x = h \\ y = k \end{cases}
                                    x=x+h? dx=dx? donisomo rie denklem (a1x+b, y)dx+(a2x+b2y)dg=0
y=y+ks dy=dy } homogen dif. denk. obsistorolerek asistor
 1 (x+y-3)dx + (-x+y+1)dy=0
                                                                                                                                                                                                               x=\bar{x}+2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2 
                                 x+y+3=0 x+y=3 x=2 x+y+1=0 x+y+1=0 x+y=1 y=1
                          (x+x+j+x+s) dx+(-x-x+g+x+x)dg=>
                        (\bar{x} + \bar{y}) d\bar{x} + (\bar{y} - \bar{x}) d\bar{y} = 0 (1+ \bar{y}) d\bar{x} + (\bar{y} - 1) d\bar{y} = 0
                                                                                                                                                               (1+u)dx+(v-1)(vdx+xdv)=0
                                                       g= u.x
dg= udx+ xdu
           15 = U
                                                                                                                                                                (1+1/4+12+10)dx + x (-1+1)du = 0
                                                                                                                                                                      (1+02) dx = x (1-0) du
                                                                                                                                                                                  \frac{d\bar{x}}{\bar{x}} = \frac{1-\nu}{1+\nu^2} \cdot d\nu
                                                                                                                                                                  \int \frac{d\bar{x}}{\bar{x}} = \int_{1+u^2}^{1} du - \frac{1}{2} \int_{1+u^2}^{2u} du
                                                                                                                                                              11 x = Arctanu - 1 11 1+v=1+6
               \ln \bar{x} = Arctan \frac{\bar{y}}{\bar{x}} - \frac{1}{2} \ln \left| 1 + \left( \frac{\bar{y}}{x} \right)^2 \right| + C \rightarrow \bar{x} = x - 2
                                          |x-2| = Arctan \left(\frac{y-1}{x-2}\right) - \frac{1}{2} |n| |1 + \left(\frac{y-1}{x-2}\right)^2 + C
```

						The second second		1		1.7
éé)	a1 b	2 = 0	-> a	91x+619	+(120	3	Xzh Yzk	85 G	iem Jok!	
c	ue a, du= a,dx	x+6,4 +6,dy	~~~ ,	dy= a	lu - a, di b,	x	dönsi hele ge	emo sle Boslevek	deziskenler	ine q
Ömz (1		dx+(2								
	2 2	=0	0	u = x + y $ u = dx + y$	dy m	dy-	adu-dx		3)	
(+ (20+						V	-11	
		20-2) di			Hole					, k, a
	-	udx+(2)	1+1)du	20 -	dx=	(20	+1) du			
		dx = 52	2 du + 5	1. du						
		X= 20+	In lul+	د سع	x=2(x	+7)+	n lxtgl	+c		
Ödeuz	(2x+4	y+2) d>	-lux	+84-3	1dy=0)				
	4 8	= 0 x = (2u	2x+4 2dx+4	y = U	→ d	y = dv	-2dx			
	(0+2)0	$\frac{dx - (2u)}{-\frac{3}{2}} dx$	-3)(<u>du</u>	1-2dx)=	-0	N12		60	2 1 10 3	
1	(0+2+0	$-\frac{3}{2}$) dx	+(20+3	4) du = 1	o					
	(2	$\left(\frac{1}{2}\right)d$	x = (1/2)	,-3 du		10-	3 \ 1			
		80+2)0	×-(0-	a) 20						
					dx=	320+	3 8			

5) Tan Differensigel Denklemler Materlatina: Toplan Diferensiyel f(x,y)=c ifadesinin toplam diferensiyeli $\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 0$ rot. Örnegin: 2x3y2 = c'nin toplem diferensiyeli 6 x2y2 dx + 4 x3ydy = 0 'dir. P(x,y) dx + Q(x,y) dy = 0 diferensiyel denklemi eger u(x,y) = C gibs bor ifadenin toplam objectionsiyels ise your Du . dx + Du . dy=) sektade ise P(x,y). dx + Q(x,y)dy= 2 tom df. derk. Hatislatma: 320 = 320 sols. Eger P(x,y) dx + Q(x,y) dy = 0 tom def. rse 20 dx+ 20 dy = 0 retlande role. Bu durumda P(x,y) = 20 ; Q(x,y)= 24 dige tobl edebiring. Agrice $\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y} \rightarrow \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x}\right) = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y}\right)$ Tam Def. Olma Soti = 2 P(x,y) = 2Q(x,y) dec. 20 dx + 20 dy 20 > v(x,y)20 P(x,y)dx + Q(x,y)dy = 0 m) of - 20 Sortin soslorse tom old obstemolar. $\frac{\partial U}{\partial x} = P(x,y)$ $\frac{\partial U}{\partial x} = Q(x,y) = 0$ $\frac{\partial v}{\partial x} = P(x,y) = \int \partial v = \int P(x,y) dx + R(y)$.. 20 = Q(x,j) [u= S P(x,y)dx + R(y)) · · du = Q(x,y) => du = du | Spexy)dx + dR(y) = Q(x,y) dR(y) getsleret integre eatler. R(y) believer. U= SP(x,y)dx + R(y) de yersne yezelis Sonua: U(x,y)=c holine gotisteset son assiste

GIPTA

GIPTA