Contact: lp2528@nyu.edu Sep. 21st, 2020

CSCI-SHU 220 - Algorithms

Recitation 1 - Solutions

Here are solutions to the exercises which are *not* covered during Recitation 1.

A. Exercises

- 1. Describe Θ and Ω notations in English words.
- 2. Suppose $T(n) = a_k n^k + \cdots + a_1 n + a_0$, where k is a non-negative integer and the a_i 's are real numbers. Prove that $T(n) = O(n^k)$.
- 3. Let $k \ge 1$ be a positive integer and let $T(n) = n^k$. Prove that T(n) is not $O(n^{k-1})$. Solution. Suppose for the sake of contradiction that $T(n) = O(n^{k-1})$. Then there are two positive constants c_0 and n_0 such that

$$n^k \le c_0 n^{k-1}, \quad \text{for all} \quad n \ge n_0 \tag{1}$$

$$\iff n \le c_0, \text{ for all } n \ge n_0.$$
 (2)

This is a contradiction, because $n = \lceil \max\{n_0, c_0\} \rceil + 1$ violates (2).

- 4. For $T(n) = 2^{n+100}$, prove or disprove: $T(n) = O(2^n)$. Solution. It suffices to prove $T(n) = O(2^n)$. Take $c_0 = 2^{100} + 1$, $n_0 = 1$ and apply the definition of the Big-O notation.
- 5. For $T(n) = 2^{100n}$, prove or disprove: $T(n) = O(2^n)$. Solution. We will show that T(n) is not $O(2^n)$. Suppose for the sake of contradiction that $T(n) = O(2^n)$. Then there are two positive constants c_0 and n_0 satisfying

$$2^{100n} \le c_0 2^n$$
, for all $n \ge n_0$ (3)

$$\iff 2^{99n} \le c_0, \text{ for all } n \ge n_0.$$
 (4)

There is some choice of n that voilates (4). Find it.

- 6. Let f and g denote functions from the positive integers to the non-negative real numbers, and define $T(n) = \max(f(n), g(n))$ for each n > 1. Prove that $T(n) = \Theta(f(n) + g(n))$.

 Solution. Let us first prove T(n) = O(f(n) + g(n)). This is easy because $\max(f(n), g(n)) \le f(n) + g(n)$ where we used that both f(n) and g(n) are non-negative (What are c_0 and n_0 ?). Then we will show that $T(n) = \Omega(f(n) + g(n))$. This is equally easy because $\max(f(n), g(n)) \ge (f(n) + g(n))/2$ (What are c_0 and n_0 ?).
- 7. Let f and g be non-decreasing real-valued functions defined on the positive integers, and $f(1) \ge 1$ and $g(1) \ge 1$. Prove or disprove that $f(n) = O(g(n)) \Rightarrow 2^{f(n)} = O(2^{g(n)})$.

Solution. This solution is motivated by the student who pointed out one of my mistakes in Recitation 1. (My another mistake: we shall have his name here!)

To disprove it we provide a counter-example. Let $f(n) = 2\log_2 n$ and $g(n) = \log_2 n$. Then we see that f(n) = O(g(n)). But $2^{f(n)} = n^2$ and $2^{g(n)} = n$, so $2^{f(n)} \neq O(2^{g(n)})$.

If given in addition that $f(n) \leq g(n)$ for sufficiently large n, can we prove that $2^{f(n)} = O(2^{g(n)})$?

- 8. Arrange the following functions in order of increasing growth rate, with g(n) following f(n) in your list if and only if f(n) = O(g(n)).
 - a) $n^2 \log_2 n$
 - b) 2^{n}
 - c) 2^{2^n}
 - d) $n^{\log_2 n}$
 - e) n^2

Solution. $n^2 = O(n^2 \log_2 n) = O(n^{\log_2 n}) = O(2^n) = O(2^n)$. We will only prove $n^2 \log_2 n = O(n^{\log_2 n})$. That is, we are going to find some positive c_0 and n_0 such that for every $n \ge n_0$ it holds that

$$n^2 \log_2 n \le c_0 n^{\log_2 n}. \tag{5}$$

Let $k = \log_2 n$ and so $n = 2^k$ (here k is not necessarily a positive integer). we need to prove for some $c_0 > 0$ and $n_0 > 0$ it holds that

$$(2^k)^2 k \le c_0(2^k)^k \iff 2^{2k} k \le c_0 2^{k^2} \iff k \le c_0 2^{k^2 - 2k}$$
(6)

for every $2^k \ge n_0$. Which c_0 and n_0 will make the above hold?

9. Prove that

$$\log(n!) = \Theta(n \log n). \tag{7}$$

Hint: To show an upper bound, compare n! with n^n . To show a lower bound, compare it with $(n/2)^{n/2}$. 10. Prove that

$$\sum_{k=1}^{2^{n}} \frac{1}{k} = \Theta(n). \tag{8}$$

Solution. First of all we have

$$\sum_{k=1}^{2^{n}} \frac{1}{k} = 1 + \sum_{i=1}^{n} \sum_{k=2^{i-1}+1}^{2^{i}} \frac{1}{k}$$
(9)

$$\geq 1 + \sum_{i=1}^{n} \sum_{k=2^{i-1}+1}^{2^{i}} \frac{1}{2^{i}} \tag{10}$$

$$\geq 1 + \sum_{i=1}^{n} \frac{2^{i-1}}{2^i} \tag{11}$$

$$\ge 1 + \frac{n}{2} \tag{12}$$

This proves $\sum_{k=1}^{2^n} \frac{1}{k} = \Omega(n)$ (Why?). On the other hand, we have

$$\sum_{k=1}^{2^{n}} \frac{1}{k} = 1 + \sum_{i=1}^{n} \sum_{k=2^{i-1}+1}^{2^{i}} \frac{1}{k}$$
(13)

$$\leq 1 + \sum_{i=1}^{n} \sum_{k=2^{i-1}+1}^{2^{i}} \frac{1}{2^{i-1}} \tag{14}$$

$$\leq 1 + \sum_{i=1}^{n} \frac{2^{i-1}}{2^{i-1}} \tag{15}$$

$$\leq 1 + n. \tag{16}$$

This proves $\sum_{k=1}^{2^n} \frac{1}{k} = O(n)$ (Why?). In sum we finished the proof. To learn more from this problem, check:

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)

See also the final problem (50 points) and (think about it if you want and) its solution in "Chinese High School Mathematics League, 2012":

https://wenku.baidu.com/view/5e7c0fadd1f34693daef3e9c.html

B. The watermelon problem.

Let us go back to the watermelon problem in mathematical terms.

- (a) What is the maximum number L_n of 2D regions defined by n lines of \mathbb{R}^2 ? Examples: $L_1 = 2, L_2 = 4, L_3 = 7$. Hint: find a relation between L_n and L_{n-1} . Solution. $L_n = L_{n-1} + n$.
- (b) Let there be n planes of \mathbb{R}^3 ; any two of them are not parallel but the intersections of the n planes (which are lines) are parallel. What is the maximum number P_n of 3D regions defined by these n planes of \mathbb{R}^3 ? Solution. This is the same as (a). So the recurrence relation is $P_n = P_{n-1} + n$.
- (c) Next we will ask you for the maximum number P_n of 3D regions defined by n different and non-parallel planes of \mathbb{R}^3 . Think about the moment when you have n-1 such planes and you are going to add a new one to obtain the regions defined by those n planes. At most how many lines does the newly added plane contain as the intersections with other n-1 planes? What is the maximum number of 2D regions defined by those lines?
 - Solution. There are at most n-1 lines contained in the newly added plane as the intersections with the other n-1 planes. Those n-1 lines give rise to at most L_{n-1} regions as per (1).
- (d) What is the maximum number P_n of 3D regions defined by n different and non-parallel planes of \mathbb{R}^3 ? Solution. Combining (a), (b), and (c), we get $P_n = P_{n-1} + L_{n-1}$.