DATA-DRIVEN MIXED PRECISION SPARSE MATRIX VECTOR MULTIPLICATION FOR GPUS

Khalid Ahmad, Hari Sundar and Mary Hall

School of Computing University of Utah

Motivation

- Scientific applications use double precision for higher accuracy
- Downcasting precision leads to intolerable inaccuracies
- MpSpMV
 - alternative data-driven approach
 - lowers precision based on nonzero values

Values Closer to Zero are Well Represented

IEEE 754 floating point representation

Matrix Split

(a) NNZ=1,362,087

< |2|

Single precision matrix

(b) NNZ=746,785

Double precision matrix

(c) NNZ=615,302

Contributions

execution time

parallelism

data movement

accuracy compared to single precision

Results

- Average speedup of 1.06X
- Maximum speedup over double precision of 2.61X
- On average one decimal digit more accurate than single precision

Compressed Sparse Row (CSR)

Dense Representation

0.1	0.2	0.3	0.4	0	0
0	1.2	1.3	0	0	0
0	0	2.3	2.4	2.5	2.6
0	0	0	3.4	3.5	0
0	0	0	0	0	4.6
0	0	0	0	0	5.6

NxN

Sparse Representation

Α	0.1	0.2	0.3	0.4	1.2	1.3	2.3	2.4	2.5	2.6	3.4	3.5	4.6	5.6	
---	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

Auxiliary Data Structures

co]	0	1	2	3.	1	2	2	3	4	5	3	4	5	5

Sequential SpMV CSR Computation

```
for (i=0; i<N; i++) {

for (j=index[i]; j<index[i+1]; j++) {

y[i] += A[j] * x[col[j]];

}
}
```

CUSP SpMV CSR Vector Implementation

```
for (i=0; i < n; i++)
   for (j=index[i]; j<index[i+1]; j++){
       T[j] = a[j] *x[col[j]];
       y[i] += T[j]
          Reduction
            Sum
```

CUSP SpMV CSR Vector Implementation

SpMV Kernel Difference

Kernel Section / Precision	Single	Mixed	Double		
Prototype	A, x, y	As, x_s, Ad, x_d, y	A, x, y		
Partial Products	Just one set	Two sets: single precision; double precision	Just one set		
Reduction		One reduction for all			

Mixed precision is profitable: 2N + 1 < NNZ_s

^{*} Kernel code available in the paper

Sparse Matrix Collection

Experimental Evaluation

- Methodology
 - Select representative subset of matrices
 - Nvprof metrics collected
- Results
 - V100 and P100
 - Average of 500 SpMV runs recorded

Selecting Representative Matrices

- K Dimension Algorithm
- We used 4 dimensions to select a representative subset of matrices:
 - MpSpMV speedup over DpSpMV
 - Number of non zeros in a sparse matrix
 - Density of the sparse matrix
 - Ratio of nonzero values inside the range

Speedup Comparison of MpSpMV and SpSpMV over DpSpMV on V100 and P100 GPUs

11 matrices show speedup using mixed precision.

Performance for rest of matrices → mixed precision ≈ double Precision.

Executed IPC

Global Hit Rate

Matrix Name

Accuracy

$$X_{\tau} = \frac{1}{9}$$

$$X_A = 0.111$$

$$|X_{\tau} - X_A| = 0.00011$$

3 significant decimal digits

SpSpMV Accuracy

Less than six significant digits of accuracy

Six significant digits of accuracy

More than six significant digits of accuracy

OF UTAH

MpSpMV Accuracy

Seven significant digits of accuracy

More than seven significant digits of accuracy

Conclusion

New data driven mixed precision implementation

- execution time
- narallelism
- data movement
- accuracy compared to single precision

Results

- Average speedup of 1.06X
- Maximum speedup over double precision of 2.61X
- On average one decimal digit more accurate than single precision

