第三章 补充作业

习题 3.1. 假设二维随机变量 (r,θ) 表示二维平面上的某点的极坐标。写一段程序,产生 1000 对 (r,θ) ,使其代表的点在以圆点为圆心的单位圆内均匀分布。

习题 3.2. 写一段程序, 用蒙特卡罗方法计算下面的定积分:

$$\int_0^1 \frac{e^{-x}}{\sqrt{x}} \mathrm{d}x$$

习题 3.3. 假设利用加速器产生了从原点出发沿 z 轴正向运动的单能 K_s^0 粒子,能量 $E_K = \frac{M_K^2 c^2}{2m_\pi}$ 。 K_s^0 粒子平均寿命为 τ ,在实验室系飞行一段距离后衰变成 $\pi^+\pi^-$ 粒子对。在 K_s^0 质心系中, π^\pm 的角分布各向同性。粒子束流前效置了一个圆盘状的探测器以记录未态粒子 π^\pm ,圆盘半径 $R=7\,\mathrm{cm}$,轴线与 z 轴重合,距离 原点 $D=14\,\mathrm{cm}$ 。见图 3.1。

末态粒子对 $\pi^+\pi^-$ 同时击中探测器则表明探测到了 $K_{\rm s}^0$ 粒子的衰变。求探测器的接受效率。(已知质量 $M_K=0.498\,{\rm GeV}/c^2,\;m_\pi=0.140\,{\rm GeV}/c^2,\;$ 寿命 $\tau=8.954\times10^{-11}\,{\rm s},\;$ 光速 $c=3\times10^8\,{\rm m/s}_\circ$)

图 3.1: 关于探测效率的估计的示意图。

习题 3.4. 假设粒子在穿过气体时可以发生两种相互独立的过程 A 和 B。如果仅存在 A 过程,其平均自由程为 L_A ,即粒子从发生上一次 A 过程到发生一下次 A 过程之间飞行的距离 $X \sim f_A(x) = \frac{1}{L_A} e^{-x/L_A}$ 。如果仅存在 B 过程,其平均自由程为 L_B ,即粒子从发生上一次 B 过程到发生一下次 B 过程之间飞行的距离 $X \sim f_B(x) = \frac{1}{L_B} e^{-x/L_B}$ 。请问:在 A 过程和 B 过程同时存在的情况下,粒子的平均自由程是多少?可解析计算,也可用蒙特卡罗方法计算(取 $L_A = 1$ cm, $L_B = 2$ cm)。