中山大学计算机学院高等代数 2022 年期中开卷题

- 1. Let A and B be $n \times n$ matrices. Prove that if A is symmetric, then B^TAB is symmetric.
- 2. Let A and B be $n \times n$ matrices. Prove that if A, B and A + B are all invertible, then $A^{-1} + B^{-1}$ is invertible, via the following two steps:
 - a) Prove that $A^{-1} + B^{-1} = A^{-1}(A + B)B^{-1}$.
 - b) Prove that $A^{-1}(A+B)B^{-1}$ is invertible.
- 3. Let A be an $n \times n$ matrix and n is an odd number, which satisfies $A^T A = I$ and $|A| \neq -1$. Prove that I A is not invertible.
- 4. Let A and B be symmetric matrices. Prove that AB is a symmetric matrix if and only if AB = BA.
- 5. Let α_1 , α_2 , α_3 , α_4 be n-dimensional vectors, which satisfy that α_4 is not a linear combination of α_1 , α_2 , α_3 , but α_1 is a linear combination of α_2 , α_3 , α_4 . Prove that α_1 is a linear combination of α_2 , α_3 .
- 6. Let A be an $n \times n$ matrix and A is invertible. A^* is the adjugate of A, aka adj A.
 - a) Please show that $|A^*| = |A|^{n-1}$.
 - b) Prove that A^* is invertible and $(A^*)^{-1} = (A^{-1})^*$.
- 7. Let A be an $n \times n$ matrix satisfying $A^2 + 2A 4I = 0$. Prove that A I is invertible, and find the inverse matrix of A I.
- 8. Let A be an $m \times n$ matrix. Prove: Rank $(A^T A)$ =Rank(A).