Graph Neural Networks for Graph Drawing

GRAPH DRAWING

Gabriele Ciravegna, Matteo Tiezzi, Marco Gori

February, 3th 2022 INRIA, Université Côte d'Azur, Nice, France SAILab, University of Siena, Siena, Italy

Overview

- Introduction
- 2 Graph Drawing Techniques
- 3 The Neural Aesthete
- 4 Graph Neural Network

Introduction

What is a graph?

- In mathematics, graphs are a set of nodes connected by links
- Nodes represent objects possibly with their features
- Links represent the relations between the objects and may also be characterized by some properties

Why Graph Drawing?

- Big Data are more and more available these days
- Apart from collection, storage, analysis, of crucial importance is their visualization

Why Graph Drawing? (II)

Why Graph Drawing? (II)

Graph Drawing Techniques

Optimization-based method

- They find the position of the nodes defining a minimum of a loss function
- Mostly employ Stochastic
 Gradient Descent
- Iteratively, they update the positions of (some) of the nodes following the direction of the gradient

Optimization-based method

- They find the position of the nodes defining a minimum of a loss function
- Mostly employ Stochastic Gradient Descent
- Iteratively, they update the positions of (some) of the nodes following the direction of the gradient

Optimization-based method

- They find the position of the nodes defining a minimum of a loss function
- Mostly employ Stochastic
 Gradient Descent
- Iteratively, they update the positions of (some) of the nodes following the direction of the gradient

The loss function needs to encode a certain **Aesthetic criteria**

Minimum number of crossing edges

Optimization-based method

- They find the position of the nodes defining a minimum of a loss function
- Mostly employ Stochastic
 Gradient Descent
- Iteratively, they update the positions of (some) of the nodes following the direction of the gradient

- Minimum number of crossing edges
- Perpendicular crossing angles

Optimization-based method

- They find the position of the nodes defining a minimum of a loss function
- Mostly employ Stochastic Gradient Descent
- Iteratively, they update the positions of (some) of the nodes following the direction of the gradient

- Minimum number of crossing edges
- Perpendicular crossing angles
- Minimum variance of edge length

Optimization-based method

- They find the position of the nodes defining a minimum of a loss function
- Mostly employ Stochastic Gradient Descent
- Iteratively, they update the positions of (some) of the nodes following the direction of the gradient

- Minimum number of crossing edges
- Perpendicular crossing angles
- Minimum variance of edge length
- Minimum edge bends

Force-directed Graph Drawing

Force-directed graph drawing techniques employ forces on the set of nodes to obtain 2 and 3

Force-directed Graph Drawing

Force-directed graph drawing techniques employ forces on the set of nodes to obtain 2 and 3

 Spring-like forces are used to attract linked nodes that are far from each other

Force-directed Graph Drawing

Force-directed graph drawing techniques employ forces on the set of nodes to obtain 2 and 3

- Spring-like forces are used to attract linked nodes that are far from each other
- Repulsive forces are imposed on the nodes that are too near (similarly to the repulsion of electric particles)

Kamada-Kawai algorithm

Graph-distance $\delta_{i,j}$ should be equal to the actual distance of the nodes p_i, p_j

$$\mathsf{STRESS}: \sum_{i < j} w_{ij} \big(||p_i - p_j|| - \delta_{ij} \big)^2 \ \ (1)$$

- δ_{ij} graph theoretic distance (or shortest-path), the # of hops to reach another node
- p_i, p_j coordinates of vertices i, j
- $w_{ij} = \delta_{ij}^{-1}$, is a weighting factor inversely proportional to d_{ij}

What about avoding intersections?

Finding the intersection of 2 lines is simple as resolving this system:

$$\begin{cases} a_1x + b_1y + c_1 = 0, \\ a_2x + b_2y + c_2 = 0 \end{cases}$$
 (2)

What about avoding intersections?

Finding the intersection of 2 lines is simple as resolving this system:

$$\begin{cases} a_1x + b_1y + c_1 = 0, \\ a_2x + b_2y + c_2 = 0 \end{cases}$$
 (2)

If we are only given the four vertices, we have also to find a_i, b_i, c_i

$$a_1 = B.x - A.x$$

 $b_1 = B.y - A.y$
 $c_1 = a_1 * A.x + b1 * Ay$

Finding Intersections

```
def LineIntersection (A, B, C, D)
       # Line AB represented as a1x + b1y = c1
       a1 = B.x - A.x
5
       b1 = A.y - B.y
       c1 = a1*A.x + b1*A.v
6
7
       # Line CD represented as a2x + b2y = c2
       a^2 = D \times - C \times
9
       b2 = C.v - D.v
10
       c2 = a2*C.x + b2*C.y
11
12
       determinant = a1*h2 - a2*h1
13
14
15
       if determinant == 0:
            return False
16
17
       else
18
            return True
```

However, you can clearly see that we cannot optimize this:

- The result is either 0 or 1
- We cannot optimize noncontinuous loss functions with SGD

The Neural Aesthete

Neural Aesthete

A Neural Network can **learn** to predict boolean values!

Neural Aesthete

A Neural Network can learn to predict boolean values!

Therefore we can:

- Create a dataset of intersecting/non-intersecting lines
- Train an MLP to predict the edge intersection
- Use its loss function to move the points in such a way that edge do not intersect

Training a Neural Aesthete

• 10000 lines intersecting and non-intersecting with vertices $p \in [0,1]^2$

Training a Neural Aesthete

- 10000 lines intersecting and non-intersecting with vertices $p \in [0,1]^2$
- ullet A simple MLP reaches \sim 98 % accuracy on a separate test set
- It employs [100, 300, 10] hidden neurons and is trained to minimize the standard Cross Entropy loss with an SGD optimizer.

The Cross Entropy loss $H(\hat{y}, y)$ can not only be used to train, but also **to draw!**

When training:

$$f^* = \arg\min_{f} \sum_{i}^{N} H(\hat{y}_i, y_i)$$

When training:

$$f^* = \arg\min_{f} \sum_{i}^{N} H(\hat{y}_i, y_i)$$

To draw non-intersecting lines:

$$e_1^*, e_2^* = \underset{e_1, e_2}{\operatorname{arg \, min}} H(\hat{y}, \frac{\mathbf{0}}{\mathbf{0}})$$
 (3)

When training:

$$f^* = \arg\min_{f} \sum_{i}^{N} H(\hat{y_i}, y_i)$$

To draw non-intersecting lines:

$$e_1^*, e_2^* = \arg\min_{e_1, e_2} H(\hat{y}, 0)$$
 (3)

- * we go towards non-intersection $H(\hat{y}, 0)$
- * $f(e_i, e_j) = \hat{y}$ is the trained MLP
- * edges are defined as pair of points $e_i = (p_h, p_k)$

Examples

Graph Neural Network

Why using GNN?

No need to optimize every graph

- During training graph layouts are learnt
- During test the GNN:
 - In input receives the adjacency matrix
 - In output produces the graph layout

How to train GNN for Graph Drawing?

Supervised approach

y: position of the output nodes

- Labels created by standard graph drawing techniques
- E.g. Kamada Kawai force-directed algorithm

How to train GNN for Graph Drawing?

Supervised approach

y: position of the output nodes

- Labels created by standard graph drawing techniques
- E.g. Kamada Kawai force-directed algorithm

Training GNN: Supervised Approach

Problem: difficult learning setting

- Two graph drawings could be equally "good" but very different
- $\mathcal{L} = \|P \hat{P}\|_2$??
 - P: position of the nodes as for label y
 - ullet \hat{P} positions predicted by the GNN

Training GNN: Supervised Approach (II)

Solution: Procrustes Statistic

$$R^{2} = 1 - \frac{\left(\operatorname{Tr}(P^{T}\hat{P}\hat{P}^{T}P)^{\frac{1}{2}}\right)^{2}}{\operatorname{Tr}(P^{T}P)\operatorname{Tr}(\hat{P}^{T}\hat{P})} \tag{4}$$

$$Tr(A) = \sum_{i=1}^{n} a_{ii}$$

Training GNN: Supervised Approach (II)

Solution: Procrustes Statistic

$$R^{2} = 1 - \frac{\left(\operatorname{Tr}(P^{T}\hat{P}\hat{P}^{T}P)^{\frac{1}{2}}\right)^{2}}{\operatorname{Tr}(P^{T}P)\operatorname{Tr}(\hat{P}^{T}\hat{P})} \tag{4}$$

$$Tr(A) = \sum_{i=1}^{n} a_{ii}$$

Good loss function:

- Measure shape difference among graph layouts
- Independent to affine transformations:
 - Translation
 - Rotation
 - Scaling

Training GNN: Supervised Approach (II)

Solution: Procrustes Statistic

$$R^{2} = 1 - \frac{\left(\operatorname{Tr}(P^{T}\hat{P}\hat{P}^{T}P)^{\frac{1}{2}}\right)^{2}}{\operatorname{Tr}(P^{T}P)\operatorname{Tr}(\hat{P}^{T}\hat{P})}$$
(5)

GNN Models

Message Passing Neural Networks (MPNNs)

$$x_{(i,j)}^{(t-1)} = MSG^{(t)}\left(x_i^{(t-1)}, x_j^{(t-1)}, I_{(i,j)}\right)$$
 (6)

$$x_i^{(t)} = AGG^{(t)}\left(x_i^{(t-1)}, \sum_{j \in \mathcal{N}_i} x_{(i,j)}^{(t-1)}, l_i\right)$$
 (7)

GNN Models

Message Passing Neural Networks (MPNNs)

$$x_{(i,j)}^{(t-1)} = MSG^{(t)}\left(x_i^{(t-1)}, x_j^{(t-1)}, I_{(i,j)}\right)$$
 (6)

$$x_i^{(t)} = AGG^{(t)}\left(x_i^{(t-1)}, \sum_{j \in \mathcal{N}_i} x_{(i,j)}^{(t-1)}, I_i\right)$$
 (7)

Table: Common implementations of AGG mechanisms.

$$\begin{array}{ll} \text{GCN: Mean} & \sigma\big(W_0^{(t)}x_v^{(t-1)} + \sum_{u \in \mathcal{N}_v} c_{u,v} W_1^{(t)}x_u^{(t-1)}\big) \\ \text{GAT: Attention} & \sigma\big(\sum_{u \in \mathcal{N}_v} \alpha_{u,v}^{(t-1)} W^{(t)}x_u^{(t-1)}\big) \\ \text{GIN: Sum} & \text{MLP}^{(t)}\big((1+\epsilon)x_v^{(t-1)} + \sum_{u \in \mathcal{N}_v} x_u^{(t-1)}\big) \end{array}$$

Results Supervised Approach

Results Supervised Approach (II)

Model	Train Loss		Test Loss	
	Rome	Sparse	Rome	Sparse
GCN	5.70	7.90	5.74	8.09
GAT	4.18	5.55	4.29	5.76
GIN	4.26	5.66	7.91	9.24

Table: Average Stress loss value obtained on the training set and test set by the various models and for each dataset.

Training GNN: Unsupervised Approach

Iteratively optimizing aesthetic loss at training time:

$$\mathcal{L}(P) = \mathsf{STRESS}(P) + \lambda H(P). \tag{8}$$

Combination of STRESS(P) and Neural Aesthete loss H(P)At test time, only a forward pass is computed

Result Unsupervised Approach

What is missing?

Node, Edge initialization

Random initialization of both node and edge feature vectors

- ⇒ GNNs do not learn
 - Not sufficient information in the adjacency matrix only

Node, Edge Initialization (II)

Possible initialization:

- Enriching edge features with shortest path
 - PROs: help optimization and generalization
 - CONs: does not scale

Node, Edge Initialization (II)

Possible initialization:

- Enriching edge features with shortest path
 - PROs: help optimization and generalization
 - CONs: does not scale (require processing a complete graph)
- Enriching Node feature with Laplacian eigenvectors
 - PROs: describe the position of nodes inside the graph describe the neighboring structure

$$x_i^{(0)} = L_i,$$

 $L = I - D^{-1/2}AD^{-1/2} = U^T\Lambda U,$