Binary Search Trees

Instructor: Meng-Fen Chiang

COMPCSI220: WEEK 9

OUTLINE

- Tree Data Structure
- Binary Search Tree Operations
- Time Complexity Analysis

In Order Traversal: 1 2 3 4 5 6 7

Tree Structure of Binary Search

Binary Search Tree: Left-Right Ordering of Keys

- Left-to-right numerical ordering in a BST: for every node i,
 - the values of all the keys $k_{\text{left}:i}$ in the left subtree are smaller than the key k_i in i and
 - the values of all the keys $k_{\mathrm{right}:i}$ in the right subtree are larger than the key k_i in i: $\{k_{\mathrm{left}:i}\} \ni l < k_i < r \in \{k_{\mathrm{right}:i}\}$

Binary Search Tree: Left-Right Ordering of Keys

Binary Search Tree Operations

- BST is an explicit data structure implementing the table ADT.
 - BST are more complex than heaps: any node may be removed, not only a root or leaves.
 - The only practical constraint: no duplicate keys (attach them all to a single node).
- Basic operations
 - Find a given search key or detect that it is absent in the BST.
 - Insert a node with a given key to the BST if it is not found.
 - FindMin: find the minimum key.
 - findMax: find the maximum key.
 - Remove a node with a given key and restore the BST if necessary.

BST Operations: Find / Insert a Node

find: a successful binary search

insert: creating a new node at the point where an unsuccessful search stops.

BST Operations: FindMin / FindMax

- Extremely simple: starting at the root, branch repeatedly left (findMin) or right (findMax) as long as a corresponding child exists.
- The root of the tree plays a role of the pivot in quicksort and quickselect.
- As in quicksort, the in-order traversal of the tree can sort the items:
 - First visit the left subtree;
 - Then visit the root, and
 - Then visit the right subtree.
- $O(\log n)$ average-case and O(n) worst-case running time for find, insert, findMin, and findMax operations, as well as for selecting a single item

BST Operations: Remove a Node

- The most complex because the tree may be disconnected. Need to reconnect some nodes!
 - Reconnection must retain the ordering condition.
 - Reconnection should not needlessly increase the tree height.

BST Operations: Remove a Node

• Standard method of removing a node i with c children:

c	ACTION
0	Simply remove the leaf <i>i</i> .
1	Remove the node <i>i</i> after linking its child to its parent node.
2	Swap the node i with the node j having the smallest key k_j in the right subtree of the node i .
	After swapping, remove the node <i>i</i> (as now it has at most one right child).

BST Operation: Remove a Node

BST Operation: Remove a Node

The Worst-Case Time Complexity

- The find, insert, and remove operations in a BST all take time in O(h) in the worst case, where h is the height of the tree.
- **Proof**: The running time T(n) of these operations is proportional to the number of nodes visited.
 - Find / insert: 1+*h*.
 - Remove: "1 + the depth of the node + the height of its highest subtree" \rightarrow 1+h.
 - In each case $T(n) = \Theta(h)$.
 - For a well-balanced BST, $T(n) \in O(\log n)$ (logarithmic time).
 - In the worst case $T(n) \in \Theta(n)$ (linear time) because insertions and deletions may heavily destroy the balance.

The Worse-Case Time Complexity

BSTs of height $h \approx \log n$

BSTs of height $h \approx n$

The Average-Case Time Complexity

- More balanced trees are more frequent than unbalanced ones.
- **Definition** (Internal Path Length): The total internal path length, $S_{\tau}(n)$, of a binary tree τ is the sum of the depths of all its nodes.

• Average complexity of a successful search in τ : the average node depth, $1/n S_{\tau}(n)$, e.g. 1/8 $S_{\tau}(8)$ =15/8=1.875 in this example.

The Average-Case Time Complexity (Contd.)

- Average-case complexity of searching:
 - Averaging $S_{\tau}(n)$ for all the trees of size n, i.e. for all possible n! Insertion orders, occurring with equal probability $\frac{1}{n!}$

The $\Theta(\log n)$ Average-case BST Operations

- Let S(n) be the average of the total internal path length, $S_{\tau}(n)$, over all BST τ created from an empty tree by sequences of n random insertions, each sequence considered as equally possible.
- The expected time for successful and unsuccessful search (insertion and deletion) in such BST is $\Theta(\log n)$
- **Proof**: It should be proven that $S(n) \in \Theta(n \log n)$
 - Obviously, S(1) = 0.
 - Any n-node tree, n>1, contains a left subtree with i nodes, a root at level 0, and a right subtree with n-i-1 nodes; $0 \le i \le n-1$.
 - For a fixed i, S(n) = (n-1) + S(i) + S(n-i-1), as the root adds 1 to the path length of each other node.

The $\Theta(\log n)$ Average-case BST Operations (Contd.)

• After summing these recurrences for $0 \le i \le n-1$ and averaging, just the same recurrence as for the average-case quicksort analysis is obtained:

$$S(n) = (n-1) + \frac{2}{n} \sum_{i=0}^{n-1} S(i)$$

- $S(n)=(n-1)+\frac{2}{n}\sum_{i=0}^{n-1}S(i)$ Therefore, $S(n)\in\Theta(n\log n)$, and the expected depth of a node is $\frac{1}{n}S(n)\in\Theta(\log n)$.
- Thus, the average-case search and insertion time is in $\Theta(\log n)$.
- It is possible to prove (but in a more complicate way) that the average-case deletion time is also in $\Theta(\log n)$.
- The BST allow for a special balancing, which prevents the tree height from growing too much, i.e. avoids the worst cases with linear time complexity $\Theta(n)$.

SUMMARY

- Tree Data Structure
- Binary Search Tree Operations
 - find, insert, and remove operations
- Time Complexity Analysis

In Order Traversal: 1 2 3 4 5 6 7