Agang, treng segen g agents M

ļ.

Title: LOAD DISTRIBUTION FAILURE RECOVERY SYSTEM AND METHOD Inventor(s): Hirokazu TAKATAMA, et al. DOCKET NO.: 043034/0167

1/6

Inventor(s): Hirokazu TAKATAMA, et al.

WINER

DOCKET NO.: 043034/0167

FQ5-535

2/6

A control of Arth Home form shorts per service to the state of the service of the Margi State of the £ , £ * FQ5-535

Inventor(s): Hirokazu TAKATAMA, et al. DOCKET NO.: 043034/0167

3/5

FIG. 3

FIG. 4

Hard trees species at her men to the trees there are not been the second to the second trees the second tree

DOCKET NO.: 043034/0167

METHOD RDNER

2045/051

* FQ5-535

FIG. 5A

4/6

<u> 161</u>

		<i></i>	
LINK	AVAILABLE BANDWIDTH	DELAY TIME	DATA ARRIVAL INTERVAL FLUCTUATION
a, b	50 Mbps	5 msec	2 msec
b, d	40 Mbps	10 msec	1 msec
a, d	25 Mbps	3 msec	1 msec
a, c	70 Mbps	6 msec	2 msec
c, d	90 Mbps	5 msec	3 msec
•	:	:	:

FIG. 5B

171

ROUTE CANDIDATE	AVAILABLE BANDWIDTH	DELAY TIME	DATA ARRIVAL INTERVAL FLUCTUATION
a, b, d	40 Mbps	15 msec	3 msec
a, d	25 Mbps	3 msec	1 msec
a, c, d	70 Mbps	11 msec	5 msec

)NER

288 3

FQ5-535

5/6

tend dead of the first tends of

£ , 2

DOCKET NO.: 043034/0167

FIG. 8A

<u> 181</u>

DATA ARRIVAL INTERVAL FLUCTUATION LINK AVAILABLE BANDWIDTH **DELAY TIME** a, b 50 Mbps 5 msec 2 msec b, d 40 Mbps 10 msec 1 msec 25 Mbps → 0 Mbps a, d 3 msec → ∞ msec 1 msec → ∞ msec 70 Mbps a, c 6 msec 2 msec c, d 90 Mbps 5 msec 3 msec

FIG. 8B

ROUTE CANDIDATE	AVAILABLE BANDWIDTH	DELAY TIME	DATA ARRIVAL INTERVAL FLUCTUATION	
a, b, d	40 Mbps	15 msec	3 msec	
a, d	0 Mbps	∞ msec	∞ msec	
a, c, d	70 Mbps	11 msec	5 msec	