TEA013 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P01B, 04 nov 2022

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Sabendo que

Prof. Nelson Luís Dias

$$\mathcal{L}\left\{\mathbf{e}^{at}\right\} = \frac{1}{\mathbf{s} - a},$$

Calcule a transformada de Laplace do cosh(t).

SOLUÇÃO DA QUESTÃO:

$$\mathcal{L}\left\{\cosh(t)\right\} = \mathcal{L}\left\{\frac{\mathrm{e}^t + \mathrm{e}^{-t}}{2}\right\}$$

$$= \frac{1}{2}\left[\mathcal{L}\left\{\mathrm{e}^t\right\} + \mathcal{L}\left\{\mathrm{e}^{-t}\right\}\right]$$

$$= \frac{1}{2}\left[\frac{1}{s-1} + \frac{1}{s+1}\right]$$

$$= \frac{1}{2}\frac{s+1+s-1}{s^2-1^2}$$

$$= \frac{s}{s^2-1^2} \blacksquare$$

$$x'' - 7x' + 12x = \text{sen}(t),$$
 $x(0) = 0, x'(0) = 1.$

SOLUÇÃO DA QUESTÃO:

$$x'' - 7x' + 12x = \operatorname{sen}(t),$$

$$s^{2}\overline{x} - sx(0) - x'(0) - 7[s\overline{x} - x(0)] + 12\overline{x} = \frac{1}{s^{2} + 1},$$

$$(s^{2} - 7s + 12)\overline{x} - 1 = \frac{1}{s^{2} + 1},$$

$$(s^{2} - 7s + 12)\overline{x} = 1 + \frac{1}{s^{2} + 1} = \frac{s^{2} + 2}{s^{2} + 1},$$

$$\overline{x} = \frac{s^{2} + 2}{(s^{2} - 7s + 12)(s^{2} + 1)},$$

$$\overline{x} = \frac{A}{s - 3} + \frac{B}{s - 4} + \frac{Cs + D}{s^{2} + 1}$$

$$= \frac{7s + 11}{170(s^{2} + 1)} - \frac{11}{10} \frac{1}{s - 3} + \frac{18}{17} \frac{1}{s - 4};$$

$$x(t) = \frac{7}{170} \cos(t) + \frac{11}{170} \operatorname{sen}(t) - \frac{11}{10} e^{3t} + \frac{18}{17} e^{4t} \blacksquare$$

3 [25] Podemos discretizar a equação da onda cinemática como

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = -c \frac{3u_i^n - 4u_{i-1}^n + u_{i-2}^n}{2\Delta x}.$$

Calcule o fator de amplificação complexo $e^{a\Delta t}$ desse esquema em função do número de Courant Co, de um número de onda k_l arbitrário (um modo de Fourier qualquer), e de Δx .

SOLUÇÃO DA QUESTÃO:

Escrevemos o esquema em termos do número de Courant como:

$$u_i^{n+1} = u_i^n - \frac{c\Delta t}{2\Delta x} [3u_i^n - 4u_{i-1}^n + u_{i-2}^n];$$

$$u_i^{n+1} = u_i^n - \frac{\text{Co}}{2} [3u_i^n - 4u_{i-1}^n + u_{i-2}^n].$$

Cada modo de Fourier do erro de arredondamento obedece à mesma equação:

$$\begin{split} \xi_l \mathrm{e}^{a(t_n + \Delta t)} \mathrm{e}^{\mathrm{i}k_l i \Delta x} &= \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i}k_l i \Delta x} \\ &\quad - \frac{\mathrm{Co}}{2} \big[3 \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i}k_l i \Delta x} - 4 \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i}k_l (i-1) \Delta x} + \xi_l \mathrm{e}^{at_n} \mathrm{e}^{\mathrm{i}k_l (i-2) \Delta x} \big]; \\ \mathrm{e}^{a\Delta t} &= 1 - \frac{\mathrm{Co}}{2} \big[3 - 4 \mathrm{e}^{-\mathrm{i}k_l \Delta x} + \mathrm{e}^{-2\mathrm{i}k_l \Delta x} \big] \, \blacksquare \end{split}$$

$$\int_{-\infty}^{x} H(\xi - a) \cos(\xi) \, \mathrm{d}\xi.$$

SOLUÇÃO DA QUESTÃO:

$$\int_{-\infty}^{x} \underbrace{H(\xi - a) \cos(\xi) \, \mathrm{d}\xi}_{u} = uv \Big|_{-\infty}^{x} - \int_{-\infty}^{x} v \, \mathrm{d}u;$$

$$\mathrm{d}u = \delta(\xi - a);$$

$$v = \mathrm{sen}(x);$$

$$\int_{-\infty}^{x} H(\xi - a) \cos(\xi) \, \mathrm{d}\xi = H(\xi - a) \, \mathrm{sen}(\xi) \Big|_{-\infty}^{x} - \int_{-\infty}^{x} \mathrm{sen}(\xi) \delta(\xi - a) \, \mathrm{d}x$$

$$= H(x - a) \, \mathrm{sen}(x) - H(x - a) \, \mathrm{sen}(a)$$

$$= H(x - a) \, [\mathrm{sen}(x) - \mathrm{sen}(a)] \quad \blacksquare$$