PSQF 4143: Section 13

Brandon LeBeau

Dependent Groups

- Dependency between groups usually occurs in one of the following ways:
 - 1. Repeated measures
 - 2. Matching
 - 3. Obtaining sets of identical twins or litter mates
 - 4. Obtaining pairs of participants who are matched by mutual selection (e.g. husband-wife pairs, business partners).

Exprimental Designs

- 1. Random Assignment (Independent Groups)
- 2. Matched Pairs (Dependent Groups)
- 3. Repeated Measures (Dependent Groups)

Random Assignment Example

- Randomly select 50 UI freshmen
- Randomly assign 25 to E-group and 25 to C-group
- assuming the experiment is properly executed, with no biasing influences, the difference is due to
 - chance factors associated with random assignment, and
 - the treatment effect

Matched Pairs Example

- Randomly select 100 UI freshmen
- Rank order by IQ
- Form 50 matched pairs by randomly assigning one person from the first pair to E-group and the other to C-group, etc.

- assuming the experiment is properly executed, with no biasing influences, the difference $\bar{X}_E \bar{X}_C$ is due to
 - chance factors associated with random assignment, and
 - the treatment effect, but
 - not IQ, because it has been controlled for by matching

Repeated Measures Example

- Randomly select 50 UI freshmen
- Administer pre-test
- All participants take speed reading course
- Administer post-test
- Assuming no memory or practice effects associated with the pre-test, the difference $\bar{X}_{post} \bar{X}_{pre}$ is due to
 - chance factors associated with random assignment, and
 - the treatment effect, but
 - not IQ, nor any other individual background characteristics, because they have been controlled for (each person serves as his/her own control)

Example 1

- Does speed reading help or hurt reading comprehension?
- Random sample of UI freshman students, n = 100
- Students are rank ordered on ACT composite score
- 50 matched pairs of students are formed
- One student from each pair is randomly assigned to the E-group, the other to the C-group
- Experimental group ($n_E = 50$): speed reading course
- Control group $(n_C = 50)$

Two ways to analyze

- There are two ways to analyze this data, the easy way and the hard way.
 - The easy way we have seen before, the hard way is something completely new.

Pair	Experimental	Control	Difference
1	38	36	2
2	37	38	-1
50	28	25	3

- Easy Way:
 - We take the mean and standard deviation of the difference scores
- Hard Way:
 - Mean of both groups, standard deviations of both groups and the correlation between the two groups.

Example 1 (cont)

- Suppose:
 - $\bar{D}=4$
 - $-S_D=7$
- Is $\bar{D} = 4$ an unlikely outcome?
- We need a probability distribution for \bar{D} .

Sampling Distribution of difference scores

Figure 1:

Example 2

13.4An investigator wants to determine whether automobiles achieve higher average mileage with gasohol than with unleaded gasoline. A random sample of six compact cars is selected and each is driven under identical conditions with the two types of fuel. The table below shows the resulting miles-per-gallon figures.

Test the hypothesis that the population means are equal against the alternative that the population mean is higher for gasohol. Use an alpha of .05. (*Hint:* Compute \overline{D} and $\hat{\sigma}_{\overline{D}}$.)

Automobile Number	Gasohol	Unleaded Gasoline	Difference
1	23	24	-1
2	26	25	1
3	24	23	1
4	28	27	1
5	25	24	1
6	24	24	1
			$\overline{D} =$

 $S_D =$

Figure 2:

Standard Error Hard Way

Standard Error Formulas for the t-Test: Unknown Population Variances

Independent (Uncorrelated) Means:

$$\hat{\sigma}_{\overline{X}-\overline{Y}} = \sqrt{\frac{n_X S_X^2 + n_Y S_Y^2}{(n_X - 1) + (n_Y - 1)}} \left(\frac{1}{n_X} + \frac{1}{n_Y}\right)$$

Dependent (Correlated) Means:

$$\hat{\sigma}_{\overline{X}-\overline{Y}} = \sqrt{\frac{S_X^2}{n_X - 1} + \frac{S_Y^2}{n_Y - 1} - 2r_{XY} \frac{S_X}{\sqrt{n_X - 1}} \cdot \frac{S_Y}{\sqrt{n_Y - 1}}}$$

Standard Error Formulas for the t-Test: Known Population Variances

Independent (Uncorrelated) Means:

$$\sigma_{\overline{X}-\overline{Y}} = \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$$

Dependent (Correlated) Means:

$$\sigma_{\overline{X}-\overline{Y}} = \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y} - 2\rho_{XY} \frac{\sigma_X}{\sqrt{n_X}} \cdot \frac{\sigma_Y}{\sqrt{n_Y}}}$$

Figure 3:

Standard Error Hard Way 2

• Independent (uncorrelated) means:

$$\sigma_{\bar{X}-\bar{Y}} = \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$$

• Dependent (correlated) means:

$$\sigma_{\bar{X}-\bar{Y}} = \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y} - 2\rho_{XY} \frac{\sigma_X}{\sqrt{n_X}} \frac{\sigma_Y}{\sqrt{n_Y}}}$$

- When $\rho = 0$, $SE_{dep} = SE_{ind}$
- When $\rho > 0$, $SE_{dep} < SE_{ind}$
- When $\rho < 0$, $SE_{dep} > SE_{ind}$

Advantages of dependent means design

- Repeated measures or pairing of observations makes possible the elimination of an extraneous source of variation
- The reduction in standard error that is induced by pairing the observations depends on the value of ρ_{XY} (population correlation between X and Y)
- so how do we know whether ρ_{XY} is 0, +, or -?
 - when the matching variable is positively related to the outcome of interest, ρ_{XY} is positive
 - when the matching variable is negatively related to the outcome of interest, ρ_{XY} is negative

Advantages of dependent means design 2

- When pairing is on the basis of a variable that is positively and importantly related to the performance of the participants on the outcome variable, ρ_{XY} will be higher than otherwise
 - consequently, the reduction in the standard error will be greater
 - decreased standard error results in increased power

Advantages of dependent means design 3

- However, note that pairing of observations cuts the df in half
 - smaller df results in decreased power
 - the smaller the df, the thicker the tails of the t-distribution
 - and the further out in the tails the critical region
 - this effect is especially pronounced when sample size is small (n < 50)
- Thus, ρ_{XY} must be large enough to offset the decrease in power, induced by the lower df which results from pairing

Assumptions

- In testing $H_0: \mu_D = 0$, it is assumed that the population of differences (D = X Y) is normally distributed
 - These differences will be normally distributed if X and Y are normally distributed

- If repeated measures are obtained, it is assumed that participants are a random sample from the population of interest
 - The order in which the conditions are presented should be randomized for each participant if the nature of the independent variable permits it
- If pairs of matched participants are used, the participants in each pair should be randomly assigned to experimental and control conditions

Calculating a confidence interval

• Recall speed reading data

$$-n = 50; \bar{D} = 4; S_D = 7$$

- Suppose we wanted to calculate a 99% CI for μ_D
- We can do that with the following form:

$$\bar{X}_D \pm t_{crit} * \frac{S_D}{\sqrt{n-1}}$$

Interpreting a confidence interval

- Interpretations for 99% CI [1.32, 6.68]:
 - 1. Does μ_D fall in this interval?
 - 2. Is there a 99% chance that μ_D falls in this interval?
 - 3. If 100 intervals were constructed, about how many intervals would contain μ_D ?
 - 4. If we constructed an infinte number of intervals, how many would contain μ_D ?

Using confidence intervals to conduct a two-tailed hypothesis

- You can use a confidence interval to conduct a two-tailed hypothesis of any null hypothesis.
 - $-\,$ If the hypothesized value falls within the CI, fail to reject H_0
 - If the hypothesized value falls outside the CI, reject H_0
- Using the previous example [1.32, 6.68], would we fail to reject or reject H_0 ?

Three Experimental Designs

- 1. Random Assignment (Independent Groups)
 - Randomly select 50 UI freshmen
 - Randomly assign 25 to E-group and 25 to C-group

- 2. Matched Pairs (Dependent Groups)
 - Randomly select 100 UI freshmen
 - Rank order by IQ
 - Randomly assign one person from the first pair to E-group and the other to C-group, etc.
- 3. Repeated Measures (Dependent Groups)
 - Randomly select 50 UI freshmen
 - Administer pre-test
 - All participants take speed reading course
 - Administer post-test