Elaborato di **Calcolo Numerico** Anno Accademico 2016/2017

Gabriele Puliti - 5300140 - gabriele.puliti@stud.unifi.it Luca Passaretta - 5436462 - luca.passeretta@stud.unifi.it

September 30, 2017

Capitoli

1 1 1 1 1 1 1 1 1 1 1	.2 Eserci .3 Eserci .4 Eserci .5 Eserci .6 Eserci .7 Eserci .8 Eserci .9 Eserci .10 Eserci .11 Eserci .12 Eserci	zio 11 .								 		 				 	 		1 1 2 2 3 3
1 1 1 1 1 1 1 1 1 1 1	.3 Eserci .4 Eserci .5 Eserci .6 Eserci .7 Eserci .8 Eserci .9 Eserci .10 Eserci .11 Eserci .12 Eserci	zio 3 zio 4 zio 5 zio 6 zio 7 zio 8 zio 9 zio 10 . zio 11 .							· · · · · · · · · · · · · · · · · · ·	 		 	 			 	 		1 2 2 3
1 1 1 1 1 1 1 1 1	.4 Eserci .5 Eserci .6 Eserci .7 Eserci .8 Eserci .9 Eserci .10 Eserci .11 Eserci	zio 4 zio 5 zio 6 zio 7 zio 8 zio 9 zio 10 zio 11 .						 		 		 	· · · ·			 	 		2 2 3
1 1 1 1 1 1 1 1 1	.5 Eserci .6 Eserci .7 Eserci .8 Eserci .9 Eserci .10 Eserci .11 Eserci .12 Eserci	zio 5 zio 6 zio 7 zio 8 zio 9 zio 10 zio 11 .				· · · · · ·	· · · · · · · · · · · · · · · · · · ·	 		 		 			 		 		2 3
1 1 1 1 1 1 1	.6 Eserci .7 Eserci .8 Eserci .9 Eserci .10 Eserci .11 Eserci	zio 6 zio 7 zio 8 zio 9 zio 10 .										 					 		3
1 1 1 1 1 1	.7 Eserci .8 Eserci .9 Eserci .10 Eserci .11 Eserci .12 Eserci	zio 7 zio 8 zio 9 zio 10 . zio 11 .	 																
1 1 1 1 1	.8 Eserci .9 Eserci .10 Eserci .11 Eserci .12 Eserci	zio 8 zio 9 zio 10 . zio 11 .	 																3
1 1 1 1 1	.9 Eserci .10 Eserci .11 Eserci .12 Eserci	zio 9 zio 10 . zio 11 .								 		 							
1 1 1 1	.10 Eserci .11 Eserci .12 Eserci	zio 10 . zio 11 .								 		 							4
1 1 1	.10 Eserci .11 Eserci .12 Eserci	zio 10 . zio 11 .								 		 							4
1 1 1	.11 Eserci	zio 11 .																	4
1 1	.12 Eserci																		5
1		210 12																	5
	LA ESERCI	zio 13 .																	5
0 (.10 Lbcrci	210 10 .				• •			• •	 • •	• •	 • •		•	•	 •	 •	•	0
2 (Capitolo 2	2																	7
2	.1 Eserci	zio 1								 		 							7
2	.2 Eserci	zio 2								 		 							7
2	.3 Eserci	zio 3								 		 							8
2	.4 Eserci	zio 4								 		 							9
2		zio 5																	10
2		zio 6																	10
	-	zio 7																	11
2		zio 8																	12
_		oni MatL																	13
_	2.9.1	Metodo																	13
	2.9.2	Metodo		-	•														13
	2.9.3	Metodo		_	•														13
	2.9.4	Metodo			-	•										•			13
	2.9.4 $2.9.5$	Metodo																	10
	2.9.6				Mod:							 							
	2.9.7					ificat	to.			 		 	· ·						14
	4.0.1		di acc	eleraz	ione	ificat di <i>A</i>	to . Aitk∈	 en .		 		 	· ·		 				14 14
	208	Metodo	di acc delle s	eleraz secant	ione i	ificat di <i>A</i>	to . Aitk∈ 	 en . 		 		 			 	 	 		14 14 15
	2.9.8	Metodo Metodo	di acci delle si delle si	eleraz secant corde	ione i	ificat di A 	to . Aitke 	 en . 	· · · · · ·	 		 				 	 		14 14 15 15
	2.9.8 2.9.9	Metodo	di acci delle si delle si	eleraz secant corde	ione i	ificat di A 	to . Aitke 	 en . 	· · · · · ·	 		 				 	 		14 14 15
3 (Metodo Metodo	di acci delle si delle si	eleraz secant corde	ione i	ificat di A 	to . Aitke 	 en . 	· · · · · ·	 		 				 	 		14 14 15 15
	2.9.9 Capitolo	Metodo Metodo	di acc delle s delle d della	eleraz secant corde bisezio	ione i one .	ificat di A	to . Aitke 	en .		 		 				 	 		14 14 15 15 16
3	2.9.9 Capitolo : .1 Eserci	Metodo Metodo Metodo	di acc delle s delle d della	eleraz secant corde bisezio	ione i one .	ificat di A	to . Aitke 	en .		 		 				 	 		14 14 15 15 16 17
3 3	2.9.9 Capitolo 3 .1 Eserci .2 Eserci	Metodo Metodo Metodo S zio 1	di acc delle s delle d della	eleraz secant corde bisezio	ione i	di A	to . Aitke 	en .				 				 	 		14 14 15 15 16 17 17
3 3 3	2.9.9 Capitolo : .1 Eserci .2 Eserci .3 Eserci	Metodo Metodo Metodo zio 1 zio 2	di accidelle si delle si della i	eleraz secant corde bisezio	ione i one	di A	to . Aitke	en .				 							14 14 15 15 16 17 17
3 3 3	2.9.9 Capitolo: .1 Eserci .2 Eserci .3 Eserci .4 Eserci	Metodo Metodo Metodo sio 1 zio 2 zio 3	di accidelle si delle si della i	eleraz secant corde bisezio	ione i one	di A	to . Aitke	en .									 		14 14 15 15 16 17 17 17
3 3 3 3	2.9.9 Capitolo : .1 Eserci .2 Eserci .3 Eserci .4 Eserci .5 Eserci	Metodo Metodo Metodo si zio 1 zio 2 zio 3 zio 4	di accidelle si delle si della i	eleraz secant corde bisezio	ione i one	di A	to . Aitke	en											14 14 15 15 16 17 17 17 18 18
3 3 3 3 3	2.9.9 Capitolo 3 1 Eserci 2 Eserci 3 Eserci 4 Eserci 5 Eserci 6 Eserci	Metodo Metodo Metodo Sizio 1 zio 2 zio 3 zio 4 zio 5	di accidelle si delle si della si	eleraz secant corde bisezio	ione i one	ificat di A	to . Aitke	en			· · · · · · · · · · · · · · · · · · ·								14 14 15 15 16 17 17 17 18 18 18
3 3 3 3 3	2.9.9 Capitolo 3 .1 Eserci .2 Eserci .3 Eserci .4 Eserci .5 Eserci .6 Eserci .7 Eserci	Metodo Metodo Metodo S zio 1 zio 2 zio 3 zio 5 zio 6 zio 7	di accidelle si delle si delle si della i	eleraz secant corde bisezio	ione i	fificate di A	to	en											14 14 15 15 16 17 17 18 18 18 19
3 3 3 3 3 3	2.9.9 Capitolo 3 .1 Eserci .2 Eserci .3 Eserci .4 Eserci .5 Eserci .6 Eserci .7 Eserci .8 Eserci	Metodo Metodo Metodo 3 zio 1 zio 2 zio 3 zio 4 zio 6 zio 7	di accidelle si delle si delle si della i	eleraz secant corde bisezio	i	fificate di A	to	en											14 14 15 15 16 17 17 18 18 18 19
3 3 3 3 3 3 3	2.9.9 Capitolo 3 .1 Eserci .2 Eserci .3 Eserci .4 Eserci .5 Eserci .6 Eserci .7 Eserci .8 Eserci .9 Eserci	Metodo Metodo Metodo Zio 1 zio 2 zio 3 zio 5 zio 6 zio 7 zio 8	di accidelle si delle si delle si della i	eleraz secant corde bisezio	i	afficat	to	en											14 14 15 15 16 17 17 18 18 18 19 19
3 3 3 3 3 3 3 3	2.9.9 Capitolo : 1 Eserci 2 Eserci 3 Eserci 4 Eserci 5 Eserci 6 Eserci 7 Eserci 8 Eserci 9 Eserci 10 Eserci	Metodo Metodo Metodo 3 zio 1 zio 2 zio 3 zio 4 zio 5 zio 6 zio 7 zio 8 zio 9 zio 10 .	di accidelle si delle si delle si della i	eleraz secant corde bisezio	ione i	afficated in A	to	en											14 14 15 15 16 17 17 18 18 19 19 20 20 20
3 3 3 3 3 3 3 3 3	2.9.9 Capitolo 3 1 Eserci 2 Eserci 3 Eserci 4 Eserci 5 Eserci 6 Eserci 7 Eserci 8 Eserci 9 Eserci 10 Eserci 11 Eserci	Metodo Metodo Metodo Szio 1 zio 2 zio 3 zio 5 zio 6 zio 7 zio 8 zio 9 zio 10 .	di accidelle si delle si delle si della i	eleraz secant corde bisezio	ione i	afficated in A	tto	en											14 14 15 15 16 17 17 17 18 18 19 20 20 20 21
3 3 3 3 3 3 3 3 3	2.9.9 Capitolo 3 1 Eserci 2 Eserci 3 Eserci 4 Eserci 5 Eserci 6 Eserci 7 Eserci 8 Eserci 9 Eserci 10 Eserci 11 Eserci 12 Eserci	Metodo Metodo Metodo Sizio 1 zio 2 zio 3 zio 4 zio 5 zio 6 zio 7 zio 8 zio 10 . zio 11 .	di accidelle si delle si delle si della	eleraz secant corde bisezio	ione i	di A		en											14 14 15 15 16 17 17 17 18 18 18 19 20 20 20 21 21
3 3 3 3 3 3 3 3 3 3	2.9.9 Capitolo 3 1 Eserci 2 Eserci 3 Eserci 4 Eserci 5 Eserci 6 Eserci 7 Eserci 8 Eserci 10 Eserci 11 Eserci 11 Eserci 12 Eserci 13 Eserci	Metodo Metodo Metodo Szio 1 zio 2 zio 3 zio 5 zio 6 zio 7 zio 8 zio 9 zio 10 . zio 11 . zio 12 .	di accidelle si delle si delle si della	eleraz secant corde bisezio	ione i	ficat di A	tto	en											14 14 15 15 16 17 17 18 18 18 19 20 20 21 21 22
3 3 3 3 3 3 3 3 3 3	2.9.9 Capitolo 3 1 Eserci 2 Eserci 3 Eserci 4 Eserci 6 Eserci 7 Eserci 8 Eserci 10 Eserci 11 Eserci 11 Eserci 12 Eserci 13 Eserci 14 Eserci	Metodo Metodo Metodo S zio 1	di accidelle si delle	eleraz secant corde bisezio	ione i	di A	to	en											14 14 15 15 16 17 17 18 18 19 20 20 20 21 21 22 22
33 33 33 33 33 33 33 33 33 33	2.9.9 Capitolo 3 1 Eserci 2 Eserci 3 Eserci 4 Eserci 6 Eserci 6 Eserci 7 Eserci 9 Eserci 10 Eserci 11 Eserci 12 Eserci 13 Eserci 14 Eserci 15 Eserci	Metodo Metodo Metodo S zio 1 zio 2 zio 3 zio 5 zio 6 zio 7 zio 8 zio 10 zio 11 . zio 12 . zio 13 . zio 14 .	di accidelle si delle	eleraz secant corde bisezio	ione i	di A	to	en											14 14 15 15 16 17 17 18 18 18 19 20 20 20 21 21 22 22 23
33 33 33 33 33 33 33 33 33 33 33	2.9.9 Capitolo 3 1 Eserci 2 Eserci 3 Eserci 4 Eserci 5 Eserci 6 Eserci 7 Eserci 8 Eserci 10 Eserci 11 Eserci 11 Eserci 12 Eserci 13 Eserci 14 Eserci 15 Eserci 16 Eserci 16 Eserci	Metodo Metodo Metodo S zio 1 zio 2 zio 3 zio 4 zio 5 zio 6 zio 7 zio 8 zio 10 . zio 11 . zio 12 . zio 13 . zio 14 . zio 15 . zio 16 .	di accidelle si delle	eleraz secant corde bisezio	ione i	di A	to	en											14 14 15 15 16 17 17 18 18 18 19 20 20 21 21 22 22 23 25
33 33 33 33 33 33 33 33 33 33 33 33 33	2.9.9 Capitolo 3 1 Eserci 2 Eserci 3 Eserci 4 Eserci 5 Eserci 6 Eserci 7 Eserci 8 Eserci 10 Eserci 11 Eserci 11 Eserci 12 Eserci 13 Eserci 14 Eserci 15 Eserci 16 Eserci 17 Eserci 17 Eserci	Metodo Metodo Metodo Si zio 1	di accidelle si delle	eleraz secant corde bisezio	ione i	di A	tto	en											14 14 15 15 16 17 17 18 18 18 19 20 20 21 21 22 22 23 25 27
33 33 33 33 33 33 33 33 33 33 33 33 33	2.9.9 Capitolo 3 1 Eserci 2 Eserci 3 Eserci 4 Eserci 5 Eserci 6 Eserci 7 Eserci 10 Eserci 11 Eserci 11 Eserci 12 Eserci 14 Eserci 14 Eserci 15 Eserci 16 Eserci 17 Eserci 18 Eserci 18 Eserci 19 Eserci 11 Eserci	Metodo Metodo Metodo Metodo Signatura de Carlo Sign	di accidelle si delle	eleraz secant corde bisezio	ione i	ficat di A	tto	en											14 14 15 15 16 17 17 18 18 18 19 20 20 21 21 22 22 23 25 27 27
33 33 33 33 33 33 33 33 33 33 33 33 33	2.9.9 Capitolo 3 1 Eserci 2 Eserci 3 Eserci 4 Eserci 5 Eserci 6 Eserci 7 Eserci 8 Eserci 10 Eserci 11 Eserci 11 Eserci 12 Eserci 13 Eserci 14 Eserci 15 Eserci 16 Eserci 17 Eserci 17 Eserci	Metodo Metodo Metodo Sizio 1	di accidelle si delle	eleraz secant corde bisezio	ione i	ficat di A	tto	en											14 14 15 15 16 17 17 18 18 18 19 20 20 21 21 22 22 23 25 27

	3.22	Funzioni MatLab Usate	30
		3.22.1 Risoluzione sistema lineare	30
		3.22.2 Risoluzione diagonale matrice LDLT di un sistema lineare	31
		3.22.3 Risoluzione di sistemi di equazioni non lineari mediante Newton	31
4	Cap	pitolo 4	32
	4.1	Esercizio 1	32
	4.2	Esercizio 2	32
	4.3	Esercizio 3	33
	4.4	Esercizio 4	33
	4.5	Esercizio 5	34
	4.6	Esercizio 8	34
	4.7	Esercizio 9	35
	4.8	Esercizio 10	35
	4.9	Funzioni MatLab Usate	35
		4.9.1 Differenze divise	35
		4.9.2 Horner Generalizzato	36
		4.9.3 Funzione di valutazione	36
		4.9.4 Ascisse Equispaziate	36
		4.9.5 Chebyshev	36
		4.9.6 valutazione Spline	37
		4.9.7 Sistema sovradeterminato	37
5	Cap	pitolo 5	38
	5.1	Esercizio 5.1	38
	5.2	Esercizio 5.2	38
	5.3	Esercizio 5.3	38
	5.4	Esercizio 5.4	39
	5.5	Esercizio 5.5	40
	5.6	Esercizio 5.6	41
6	Gra	fici	42

1 Capitolo 1

1.1 Esercizio 1

Sapendo che il metodo iterativo è convergente a x^* allora per definizione si ha:

$$\lim_{k \to +\infty} x_k = x^*$$

inoltre per definizione di Φ si calcola il limite:

$$\lim_{k \to +\infty} \Phi(x_k) = \lim_{k \to +\infty} x_{k+1} = x^*$$

infine ipotizzando che la funzione Φ sia uniformemente continua, è possibile calcolare il limite:

$$\lim_{k \to +\infty} \Phi(x_k) = \Phi(\lim_{k \to +\infty} x_k) = \Phi(x^*)$$

dai due limiti si ha la tesi:

$$\Phi(x^*) = x^*$$

1.2 Esercizio 2

Dal momento che le variabili intere di 2 byte in Fortran vengono gestite in Modulo e Segno, la variabile numero inizializzata con:

integer*2 numero

varia tra $-32768 \le numero \le 32767 \ (-2^{15} \le numero \le 2^{15} - 1)$.

Durante la terza iterazione del primo ciclo for si arriva al valore massimo rappresentabile tramite gli interi a 2 byte; alla quarta iterazione si avrà quindi la somma del numero in modulo e segno:

Nel secondo ciclo for, durante la quinta iterazione, al numero viene sottratto 1:

Da cui si spiega l'output del codice.

1.3 Esercizio 3

Per definizione si ha che la precisione di macchina u, per arrotondamento e' data da:

$$u = \frac{1}{2}b^{1-m}$$

Se b = 8, m = 5 si ha:

$$u = \frac{1}{2} \cdot 8^{1-5} = \frac{1}{2} \cdot 8^{-4} = 1, 2 \cdot 10^{-4}$$

1.4 Esercizio 4

Il codice seguente:

```
1
    format long e;
2
3
    h=zeros(12,1);
4
    f=zeros(12,1);
6
    for i=1:12
7
        h(i) = power(10,-i);
8
    end
9
    for j=1:12
11
        f(j)=lim(0,h(j));
12
13
14
15
    function p=lim(x,y)
16
        p=(exp(x+y) - exp(x))/y;
18
   end
```

restituisce questo risultato (assumendo che $f(x) = e^x$ e $x_0 = 0$):

h	$\Psi_h(0)$
10^{-1}	1.051709180756477e + 00
10^{-2}	1.005016708416795e+00
10^{-3}	1.000500166708385e+00
10^{-4}	$1.000050001667141\mathrm{e}{+00}$
10^{-5}	$1.000005000006965\mathrm{e}{+00}$
10^{-6}	1.000000499962184e+00
10^{-7}	1.000000049433680e+00
10^{-8}	9.999999939225290e-01
10^{-9}	1.000000082740371e+00
10^{-10}	1.000000082740371e+00
10^{-11}	1.000000082740371e+00
10^{-12}	$1.000088900582341e{+00}$

Si vede che i valori di $\Psi_h(0)$ diminuiscono fino ad $h = 10^{-8}$, in cui si ha il minimo valore di $\Psi_h(0)$. Dopodichè il margine di errore inizia a crescere come mostra la tabella e il relativo plot a pagina 42.

1.5 Esercizio 5

Per dimostrare le due uguaglianze è necessario sviluppare in serie di taylor f(x) fino al secondo ordine:

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2 f''(x_0)}{2} + O((x - x_0)^2)$$

Da cui possiamo sostituire con i valori di x = x + h e x = x - h:

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2 f''(x_0)}{2} + O(h^2)$$

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2 f''(x_0)}{2} + O(h^2)$$

Andando a sostituire questi valori si ottiene, nel primo caso:

$$\frac{f(x_0+h)-f(x_0+h)}{2h} =$$

$$= \frac{(f(x_0)+hf'(x_0)+\frac{h^2f''(x_0)}{2}+O(h^2))-(f(x_0)-hf'(x_0)+\frac{h^2f''(x_0)}{2}+O(h^2))}{2h} =$$

$$= \frac{2hf'(x_0) + O(h^2)}{2h} = f'(x_0) + O(h^2)$$

nel secondo caso:

ando caso:
$$\frac{f(x_0 + h) - 2f(x_0) - f(x_0 + h)}{h^2} =$$

$$= \frac{f(x_0) + hf'(x_0) + \frac{h^2 f''(x_0)}{2} + O(h^2) - 2f(x_0) + f(x_0) - hf'(x_0) + \frac{h^2 f''(x_0)}{2} + O(h^2)}{h^2} =$$

$$= \frac{h^2 f''(x_0) + O(h^2)}{h^2} = f''(x_0) + O(h^2)$$

Abbiamo quindi dimostrato che:

$$\frac{f(x_0+h) - f(x_0+h)}{2h} = f'(x_0) + O(h^2)$$
$$\frac{f(x_0+h) - 2f(x_0) - f(x_0+h)}{h^2} = f''(x_0) + O(h^2)$$

1.6 Esercizio 6

Il codice MatLab, indicando con $x=x_n$ e $r=\epsilon$:

```
format longEng
2
3
    conv=sqrt(2);
    x=[2,1.5];
5
    r=[x(1)-conv,x(2)-conv];
6
7
    for i= 2:6
8
        x(i+1) = (x(i)*x(i-1)+2)/(x(i)+x(i-1));
9
    end
11
    for i=3:7
12
        r(i)=x(i)-conv;
13
    end
14
    Χ
16
    r
```

restituisce i valori:

n	x_n	ϵ
0	2.000000000000000000000000000000000000	585.786437626905e-003
1	1.5000000000000000000000000000000000000	85.7864376269049e-003
2	$1.42857142857143\mathrm{e}{+000}$	14.3578661983335e-003
3	$1.41463414634146\mathrm{e}{+000}$	420.583968367971e-006
4	$1.41421568627451\mathrm{e}{+000}$	2.12390141496321e-006
5	$1.41421356268887\mathrm{e}{+000}$	315.774073555986e-012
6	$1.41421356237310\mathrm{e}{+000}$	0.00000000000000000e+000

I valori indicano che per valori di n superiori a 5 l'errore, indicato con ϵ , è dell'ordine di 10^{-12} .

1.7 Esercizio 7

Sapendo che la rappresentazione del numero è stata fatta usando l'arrotondamento, la precisione di macchina si calcola:

$$u = \frac{b^{1-m}}{2}$$

il cui valore sappiamo essere pari a:

$$u \approx 4.66 \cdot 10^{-10}$$

dato che stiamo cercando il numero di cifre binarie allora si deve avere b=2, è quindi possibile ricavare m:

$$m = 1 - log_2(2 \cdot 4.66 \cdot 10^{-10}) = 1 - log_2(9.32 \cdot 10^{-10}) = 1 - (-29.9999999) \approx 31$$

possiamo pertanto affermare che servono 31 cifre dedicate alla mantissa per rappresentare il numero con precisione macchina $4.66 \cdot 10^{-10}$.

1.8 Esercizio 8

Sapendo che la mantissa in decimale è calcolabile tramite la funzione:

- $m = 1 log_{10}(u)$ (troncamento)
- $m = 1 log_{10}(2 \cdot u)$ (arrotondamento)

e che la precisione di macchina assuma un valore accettabilmente piccolo in modo tale che il $log_{10}u >> 1$ allora è possibile scrivere:

- $m = 1 log_{10}u \approx -log_{10}u$ (troncamento)
- $m = 1 log_{10}2u = 1 log_{10}2 log_{10}u \approx -log_{10}u$ (arrotondamento)

Possiamo fare l'esempio con i valori b=10 e $u\approx 4.66\cdot 10^{-10}$ ottenendo così:

- m = 10.3316 (troncamento)
- m = 10.0306 (arrotondamento)

che è una buona approssimazione di $-log_{10}u = 9.33161$.

1.9 Esercizio 9

dato che il valore di $delta=[0,1]_{10}$ in binario si scrive $delta=[0,\overline{00011}]_2$ allora si nota che la rappresentazione del valore di delta in binario è periodica. Al passo 10 la rappresentazione di x sarà diversa da 1, perchè somma di numeri periodici, essendo x=1 l'unica condizione di uscita dello while il ciclo non si arresterà mai. Possiamo provarlo effettuando le somme binarie:

$$\begin{split} \left[\frac{1}{10}\right]_{10} &= \left[0, \overline{00011}\right]_2 \\ \left[0, \overline{00011}\right]_2 + \left[0, \overline{00011}\right]_2 + \underbrace{\dots}_{6volte} + \left[0, \overline{00011}\right]_2 + \left[0, \overline{00011}\right]_2 = \\ &= [1, 00010]_2 \approx [1.0625]_{10} \neq [1.0000]_{10} \end{split}$$

che spiegherebbe il motivo del loop dello while.

1.10 Esercizio 10

All'interno della radice può presentarsi un problema di overflow dato che la somma dei due quadrati potrebbe essere molto grande, tanto grande da poter superare il limite massimo rappresentabile dalla macchina:

$$realmax = (1 - b^{-m}) \cdot b^{b^s - \nu}$$

Per risolvere questo problema è necessario prendere il massimo valore tra le due variabili:

$$m = \max\{|x|, |y|\}$$

e moltiplicare e dividere per questo valore:

$$\sqrt{x^2+y^2}=m\cdot\frac{\sqrt{x^2+y^2}}{m}=m\cdot\sqrt{\frac{x^2+y^2}{m^2}}=m\cdot\sqrt{\left(\frac{x}{m}\right)^2+\left(\frac{y}{m}\right)^2}$$

In questo modo si eviterà il problema di overflow, il problema è ben condizionato dato che potenza e radice sono ben condizionate e grazie alla modifica proposta indicata sopra.

1.11 Esercizio 11

Le due espressioni in aritmetica finita vengono scritte tenendo conto dell'errore di approssimazione sul valore reale:

- $fl(fl(fl(x) + fl(y)) + fl(z)) = ((x(1 + \varepsilon_x) + y(1 + \varepsilon_y))(1 + \varepsilon_a) + z(1 + \varepsilon_z))(1 + \varepsilon_b)$
- $fl(fl(x) + fl(fl(y) + fl(z))) = (x(1 + \varepsilon_x) + (y(1 + \varepsilon_y) + z(1 + \varepsilon_z))(1 + \varepsilon_a))(1 + \varepsilon_b)$

Indichiamo con $\varepsilon_x, \varepsilon_y, \varepsilon_z$ i relativi errori di x, y, z e con $\varepsilon_a, \varepsilon_b$ gli errori delle somme, per calcolare l'errore relativo delle due espressioni consideriamo $\varepsilon_m = \max\{\varepsilon_x, \varepsilon_y, \varepsilon_z, \varepsilon_a, \varepsilon_b\}$, dalla definizione di errore relativo si ha quindi:

$$\varepsilon_{1} = \frac{((x(1+\varepsilon_{x})+y(1+\varepsilon_{y}))(1+\varepsilon_{a})+z(1+\varepsilon_{z}))(1+\varepsilon_{b})-(x+y+z)}{x+y+z} \approx \frac{x(1+\varepsilon_{x}+\varepsilon_{a}+\varepsilon_{b})+y(1+\varepsilon_{y}+\varepsilon_{a}+\varepsilon_{b})+z(1+\varepsilon_{z}+\varepsilon_{b})-x-y-z}{x+y+z} \leq \frac{3\cdot x\cdot \varepsilon_{m}+3\cdot y\cdot \varepsilon_{m}+2\cdot z\cdot \varepsilon_{m}}{x+y+z} \leq \frac{3\cdot \varepsilon_{m}\cdot (x+y+z)}{x+y+z} = 3\cdot \varepsilon_{m}$$

• seguendo gli stessi procedimenti del punto precedente possiamo scrivere:

$$\varepsilon_{2} = \frac{(x(1+\varepsilon_{x}) + (y(1+\varepsilon_{y}) + z(1+\varepsilon_{z}))(1+\varepsilon_{a}))(1+\varepsilon_{b}) - (x+y+z)}{x+y+z} =$$

$$= \dots \le \frac{2 \cdot x \cdot \varepsilon_{m} + 3 \cdot y \cdot \varepsilon_{m} + 3 \cdot z \cdot \varepsilon_{m}}{x+y+z} \le \frac{3 \cdot \varepsilon_{m} \cdot (x+y+z)}{x+y+z} = 3 \cdot \varepsilon_{m}$$

Otteniamo quindi che i valori degli errori ε_1 e ε_2 sono $\leq 3 \cdot \varepsilon_m$.

1.12 Esercizio 12

Sapendo che il numero di condizionamento del problema è dato da:

$$k = \left| f_x' \cdot \frac{x}{f(x)} \right|$$

Dato che la nostra funzione è $f(x) = \sqrt{x}$ allora la derivata è data da $f'(x) = \frac{1}{2 \cdot \sqrt{x}}$, sostituendo i valori otteniamo, come volevamo:

$$k = \left| \frac{1}{2 \cdot \sqrt{x}} \cdot \frac{x}{\sqrt{x}} \right| = \left| \frac{1}{2} \right| = \frac{1}{2}$$

1.13 Esercizio 13

Nella riga 11 abbiamo calcolato e restituito in output il valore interno al logaritmo $\left|3(1-\frac{4}{3})+1\right|$ che teoricamente è zero, invece si ottiene 2.220446049250313e-16. Si può vedere che il codice MatLab:

```
format long;
1
2
    x=linspace(2/3,2,1001);
4
   y= [];
5
6
    for i = 1:1001
7
        y(i) = log(abs(3*(1-x(i))+1))/80 + x(i)^2 +1;
8
    end
9
   plot(x,y);
11
   xlabel('x');
   ylabel('f(x)');
12
13
   disp ('valore interno al limite in x=4/3: ');
14
   disp (abs(3*(1-4/3)+1))
   disp ('la funzione calcolata in 4/3 ha in output:');
   disp(log(abs(3*(1-(4/3))+1))/80 + (4/3)^2 +1);
```

calcola i valori della funzione ottenendo il grafico a pagina 43 e si può notare che l'asintoto verticale in $x=\frac{4}{3}$ non viene rappresentato come tale. Il problema è che stiamo rappresentando dei numeri reali in un calcolatore, quindi la loro rappresentazione comporta delle approssimazioni. In questo caso infatti abbiamo il valore di 4/3 che è un numero periodico, ma il calcolatore lo dovrà rappresentare con un numero di cifre finite causando un errore di rappresentazione che in questo caso risulta rilevante. Si allega sotto l'output del codice soprastante:

2 Capitolo 2

Le funzioni usate nei codici seguenti sono in fondo al capitolo (pag. 13)

2.1 Esercizio 1

Per ricercare la radice quadrata di un numero è possibile sfruttare una modifica al problema delle radici di una funzione. Infatti partendo da $x=\sqrt{\alpha}$ è possibile svilupparla trovando una funzione f(x) utilizzabile nel metodo di Newton:

$$x = \sqrt{\alpha}$$
$$x^2 = (\sqrt{\alpha})^2$$
$$x^2 - \alpha = 0$$

possiamo quindi considerare $f(x) = x^2 - \alpha$ e $f'(x) = 2 \cdot x$. La procedura iterativa è definita quindi da:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - \alpha}{2 \cdot x_n} = x_n - \frac{x_n}{2} + \frac{\alpha}{2 \cdot x_n} = \frac{x_n}{2} + \frac{\alpha}{2 \cdot x_n} = \frac{1}{2} \cdot \left(x_n + \frac{\alpha}{x_n}\right)$$

che ci permette di implementare il seguente script matlab e la funzione $y = NewtonSqrt(alpha, x_0, imax, tol)$:

```
x_0 = 3;

alpha = 3;

n = NewtonSqrt(alpha, x_0, 100, 10^(-8));
```

Che restituisce in output valori che abbiamo rappresentato nella tabella seguente:

i	x_i
1	1.75000000000000000000000000000000000000
2	1.732142857142857e+00
3	1.732050810014727e+00
4	$1.732050807568877\mathrm{e}{+00}$

2.2 Esercizio 2

E' possibile effettuare gli stessi passaggi dell'esercizio precedente, ricordandosi che la radice in questo caso non è quadrata ma ennesima:

$$x = \sqrt[n]{\alpha}$$
$$x^n = \left(\sqrt[n]{\alpha}\right)^n$$
$$x^n - \alpha = 0$$

consideriamo quindi la funzione $f(x) = x^n - \alpha$ e $f'(x) = n \cdot x^{n-1}$. La procedura iterativa è definita quindi da:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^n - \alpha}{n \cdot x_n^{n-1}} = x_n - \frac{x_n}{n} + \frac{\alpha}{n \cdot x_n^{n-1}} =$$

$$= \left((n-1) \cdot x_n - \frac{\alpha}{x_n^{n-1}} \right) \cdot \frac{1}{n} = \frac{\left((n-1) \cdot x_n^n + \alpha \right)}{n \cdot x_n^{n-1}}$$

La radice da approssimare in questo caso ha grado ennesimo quindi sono necessarie delle modifiche alla funzione matlab usata nell'esercizio precedente che chiamiamo $y = NewtonSqrt(n, alpha, x_0, imax, tol)$. Lo script MatLab corrispondente ai casi n = 3, 4, 5 è il seguente:

```
1  x_0 = 3;
2  alpha = 3;
3  disp('n=3');
4  n3 = NewtonSqrtN(3, alpha, x_0, 100, 10^(-8));
5  disp('n=4');
6  n4 = NewtonSqrtN(4, alpha, x_0, 100, 10^(-8));
7  disp('n=5');
8  n5 = NewtonSqrtN(5, alpha, x_0, 100, 10^(-8));
```

Mostriamo l'output in forma tabellare con i che rappresenta le iterazioni del metodo e x_i i relativi risultati:

i	$x_i \text{ con } n = 3$	$x_i \text{ con } n = 4$	$x_i \text{ con } n = 5$
1	$1.631784138709347\mathrm{e}{+00}$	$1.771797299323380\mathrm{e}{+00}$	$1.943788863498140\mathrm{e}{+00}$
2	1.463411989089094e+00	$1.463688102853308e{+00}$	$\left 1.597060655491283\mathrm{e}{+00} \right $
3	$1.442554125137959e{+00}$	$1.336940995805593\mathrm{e}{+00}$	$1.369877122538772\mathrm{e}{+00}$
4	$1.442249634601091\mathrm{e}{+00}$	1.316557487370408e+00	$1.266284124539191\mathrm{e}{+00}$
5	$1.442249570307411\mathrm{e}{+00}$	1.316074279204018e+00	$\left 1.246387399421677\mathrm{e}{+00} \right $
6		1.316074012952573e+00	$1.245731630753065\mathrm{e}{+00}$
7			$1.245730939616284\mathrm{e}{+00}$

2.3 Esercizio 3

Per ricercare la radice quadrata di un numero è possibile sfruttare una modifica al problema delle radici di una funzione. Infatti partendo da $x = \sqrt{\alpha}$ è possibile svilupparla trovando una funzione f(x) utilizzabile per il metodo delle secanti:

$$x = \sqrt{\alpha}$$
$$x^2 = (\sqrt{\alpha})^2$$
$$x^2 - \alpha = 0$$

possiamo quindi considerare $f(x) = x^2 - \alpha$. La procedura iterativa è definita quindi da:

$$x_{n+1} = \frac{(x_n^2 - \alpha) \cdot x_{n-1} - (x_{n-1}^2 - \alpha)x_n}{x_n^2 - x_{n-1}^2} = \frac{\alpha \cdot (x_n - x_{n-1}) + x_n \cdot x_{n-1} \cdot (x_n - x_{n-1})}{(x_n + x_{n-1}) \cdot (x_n - x_{n-1})} = \frac{\alpha + x_n \cdot x_{n-1}}{x_n + x_{n-1}}$$

che ci permette di implementare il seguente script matlab e la funzione $y = SecSqrt(alpha, x_0, imax, tol)$:

```
disp('metodo delle secanti');
s = SecSqrt(3,3,100,10^(-8));
disp('metodo di newton');
n = NewtonSqrt(3,3,100,10^(-8));
```

I risultati ottenuti dall'utilizzo del metodo delle secanti sono:

i	metodo di Newton	metodo delle secanti	newton- $\sqrt{3}$	secanti- $\sqrt{3}$
1	1.75000000000000000000000000000000000000	$1.736842105263158e{+00}$	1.794919243112281e-02	4.791297694280772e-03
2	1.732142857142857e + 00	$1.732142857142857\mathrm{e}{+00}$	9.204957398001312e-05	9.204957397979108e-05
3	1.732050810014727e+00	1.732050934706042e+00	2.445850189047860e-09	1.271371643518648e-07
4	1.732050807568877e+00	$1.732050807572256\mathrm{e}{+00}$	0	3.378630708539276e-12
5		$1.732050807568877\mathrm{e}{+00}$		2.220446049250313e-16

Dalla tabella possiamo dunque notare che il metodo di Newton arriva più velocemente al valore cercato rispetto al metodo delle secanti.

2.4 Esercizio 4

Abbiamo scritto delle funzioni MalLab che ci permettono di effettuare il raffronto tra i vari metodi (in ordine: metodo di Newton, metodo di Newton modificato, metodo di accelerazione di Aitken), è possibile vederle a pag. 13. Scritte le Function, le abbiamo usate nel seguente script:

```
funct = @(x) (x-pi)^10;
 2
    dfunct = @(x) 10*(x-pi)^9;
    disp('metodo newton funct 1');
 4
 5
    for i=0:5
 6
        N1(i+1) = Newton(funct, dfunct, 5, 50, 10^(-i));
 7
    end
 8
 9
    disp('newton modificato funct 1');
    for i =0:5
        NM1(i+1) = NewtonMod(funct, dfunct, 1, 5, 50, 10^(-i));
12
    end
13
    disp('aitken funct 1');
14
15
    for i = 0:5
16
        A1(i+1) = Aitken(funct, dfunct, 5, 50, 10^(-i));
17
    end
18
19
20
    funct = @(x) ((x-pi)^10)*(exp(1)^(2*x));
21
    dfunct = @(x) (5+x-pi)*(x-pi)^9*2*exp(1)^(2*x);
22
23
    disp('metodo newton funct 2');
24
    for i=0:5
25
        N2(i+1) = Newton(funct, dfunct, 5, 50, 10^(-i));
26
27
28
    disp('newton modificato funct 2');
29
    for i=0:5
30
        NM2(i+1) = NewtonMod(funct, dfunct, 1, 5, 50, 10^(-i));
31
    end
32
33
    disp('aitken funct 2');
34
    for i=0:5
        A2(i+1) = Aitken(funct, dfunct, 5, 50, 10^(-i));
36
    end
38
    format long
39
40
    N1
41
    NM1
42
    Α1
43
    N2
    NM2
44
45
    A2
```

Questo codice esegue i metodi di Newton, Newton modificato e Aitken per le funzioni date. Rispetto alla funzione $f_1(x) = (x - \pi)^{10}$ rappresentiamo l'output del codice precedente in forma tabellare:

tolx	Newton	Newton modificato	Aitken
10^{0}	4.814159265358979	4.814159265358979	2.66666666666666
10^{-1}	4.030463126315021	4.030463126315021	3.141592653589783
10^{-2}	3.229126031324792	3.229126031324792	3.141592653589783
10^{-3}	3.150212685926121	3.150212685926121	3.141592653589783
10^{-4}	il metodo non converge	il metodo non converge	3.141592653589783
10^{-5}	il metodo non converge	il metodo non converge	3.141592653589783

Rispetto alla funzione $f_2(x) = (x - \pi)^{10} \cdot e^{2 \cdot x}$ si hanno invece i valori:

tolx	Newton	Newton modificato	Aitken
10^{0}	4.864516114854061	4.864516114854061	3.068982105941251
10^{-1}	4.200823975656096	4.200823975656096	3.140645194956157
10^{-2}	3.226469748549500	3.226469748549500	3.141592492095279
10^{-3}	il metodo non converge	il metodo non converge	3.141592492095279
10^{-4}	il metodo non converge	il metodo non converge	3.141592516390607
10^{-5}	il metodo non converge	il metodo non converge	3.141592516390607

2.5 Esercizio 5

Il metodo di bisezione è applicabile in f se è:

- 1. continua nell'intervallo [a, b]
- 2. f(a)f(b) < 0

il metodo di bisezione non è possibile utilizzarlo a causa della seconda condizione dato che $f_1(x)=(x-\pi)^{10}>0 \forall x$ e $f_2(x)=e^{2x}(x-\pi)^{10}>0 \forall x$ sono sempre positive quindi non è possibile stabilire un intervallo [a,b] tale che f(a)f(b)<0, $\forall a,b\in\mathbb{R}$

2.6 Esercizio 6

Per poter costruire una tabella abbiamo scritto il seguente codice MatLab (lo script usa function definite a parte che è possibile vedere a pagina 13):

```
f = Q(x) (1-x-(1+\cos(10*x)/2)*\sin(x));
2
   df = @(x) (5*sin(x)*sin(10*x)-cos(x)*(cos(10*x)/2 + 1)-1);
3
4
   x0 = 0;
5
   x1 = 1;
   tol = logspace(-1, -10, 10);
7
   imax = 100;
   iter = zeros(10,3);
9
   res = zeros(10,3);
   for i=1:10
        [res(i,1), iter(i,1)] = Newton(f,df,x0,imax,tol(i));
11
12
        [res(i,2), iter(i,2)] = secanti(f,df,x0,imax, tol(i));
13
        [res(i,3), iter(i,3)] = corde(f,df,x0,imax, tol(i));
14
   end
16
   disp('La prima colonna sono riferite al metodo di Newton (iterazioni e risultato)');
   disp('La seconda colonna sono riferite al metodo delle secanti (iterazioni e risultato)')
   disp('La terza colonna sono riferite al metodo delle corde (iterazioni e risultato)');
18
19
   iter
```

Sotto forma tabellare rappresentiamo il numero di iterazioni effettuate dai 3 algoritmi (salvate nella matrice iter):

tol_x	Newton	Secanti	Corde
10^{-1}	2	3	2
10^{-2}	3	3	8
10^{-3}	3	4	15
10^{-4}	3	5	22
10^{-5}	4	5	28
10^{-6}	4	5	35
10^{-7}	4	5	42
10^{-8}	4	6	48
10^{-9}	4	6	55
10^{-10}	5	6	62

Questo risultato è possibile vederlo in maniera grafica a pagina 44. Il numero di condizionamento del problema è dato da:

$$k = \frac{1}{\left| f'(x^*) \right|}$$

Per poterlo calcolare è necessario trovare la derivata della nostra funzione che è pari a:

$$f'(x) = -1 - \cos(x) + 5 \cdot \sin(10 \cdot x) - \frac{\cos^2(10 \cdot x)}{2}$$

Essendo la radice della nostra funzione $x^* = 0,488944$ il relativo numero di condizionamento è dato da:

$$k = \frac{1}{\left| f'(x^*) \right|} = \frac{1}{\left| f'(0, 488944) \right|} = \frac{1}{\left| -4, 27233 \right|} = \frac{1}{4, 27233} = 0,234064$$

questo significa che il problema è ben condizionato.

2.7 Esercizio 7

Lo script usato è il seguente:

```
format long
 2
3
    f = @(x) (1-x-(1+\cos(10*x)/2)*\sin(x));
    df = @(x) (5*sin(x)*sin(10*x)-cos(x)*(cos(10*x)/2 + 1)-1);
5
    tol = logspace(-1, -10, 10);
6
8
    for i=1:10
9
        [res, iterB(i,1)] = bisect(f,0,1,tol(i));
    disp('il numero di iterazioni del metodo di bisezione con tolleranza decrescente da
        10^{(-1)} a 10^{(-10)} e'' il seguente');
13
    iterB
14
15
    for i=1:10
        iter(i,4) = iterB(i);
16
17
   end
18
19
    plot(iter)
20
   xlabel('10^{-x}');
   ylabel('numero di iterazioni');
```

Il numero di iterazioni del metodo di bisezione risultanti sono:

tol_x	bisezione
10^{-1}	2
10^{-2}	7
10^{-3}	10
10^{-4}	14
10^{-5}	17
10^{-6}	20
10^{-7}	24
10^{-8}	27
10^{-9}	30
10^{-10}	34

Si può vedere dal grafico l'andamento dei vari metodi usati a pagina 45.

2.8 Esercizio 8

Per determinare la radice della funzione data, abbiamo scritto il seguente script MatLab:

```
f = @(x) (x-pi)*(exp(1)^(10*x));
df = @(x) (exp(1)^(10*x))*(10*x-10*pi+1);

disp('Con punto iniziale x0=0');
[res,nit] = Newton(f,df, 0, 100, 10^(-2))
disp('Con punto iniziale x0=4');
[res,nit] = Newton(f,df, 4, 100, 10^(-2))
```

Con risultato in output:

```
Con punto iniziale x0=0
il metodo non converge
res =
  -10.246212624496760
nit =
    100
Con punto iniziale x0=4
res =
    3.142020948244105
nit =
    12
```

Si può vedere che il metodo non converge per il punto iniziale x0=0, ma con punto iniziale diverso x0=4 il metodo converge. Questo significa che il metodo può convergere localmente. Dobbiamo quindi studiare la convergenza locale della funzione f(x). Tale convergenza risulta essere garantita solo in un intorno della radice, in questo caso in un intorno di π . Essendo la funzione $f(x)=(x-\pi)\cdot e^{10\cdot x}$ la funzione di iterazione che definisce il metodo è determinata da:

$$\Phi(x) = x - \frac{(x-\pi) \cdot e^{10 \cdot x}}{e^{10 \cdot x} \cdot (10 \cdot x - 10 \cdot \pi + 1)} = x - \frac{(x-\pi)}{(10 \cdot x - 10 \cdot \pi + 1)}$$

Per convergere localmente si deve avere π punto fisso della funzione di iterazione $\Phi(x)$. si ha infatti che:

$$\Phi(\pi) = \pi - \frac{(\pi - \pi)}{(10 \cdot \pi - 10 \cdot \pi + 1)} = \pi - 0 = \pi$$

Questo conferma il fatto che la funzione f(x) è convergente localmente in un intorno di π , confermando i risultati ottenuti dallo script precedente.

2.9 Funzioni MatLab Usate

2.9.1 Metodo Newton per $\sqrt{\alpha}$

```
function y = NetwtonSqrt(alpha, x0, imax, tol)
1
2
        format long e
3
        x = [x0, (x0+alpha/x0)/2];
4
        i = 2;
5
        while(i < imax) && (abs(x(i)-x(i-1))>tol)
6
            x(i+1) = (x(i) + alpha/x(i))/2;
            disp(x(i+1));
8
            i = i+1;
9
        end
10
        y = x(i);
   end
```

2.9.2 Metodo Newton per $\sqrt[n]{\alpha}$

```
1
   function y = NetwtonSqrtN(n, alpha, x0, imax, tol)
2
       format long e
3
       x = [x0, (((n-1)*x0^n + alpha)/x0^(n-1)) / n];
4
       i = 2;
5
       while(i < imax) && (abs(x(i)-x(i-1))>tol)
6
           x(i+1) = (((n-1)*x(i)^n + alpha)/(x(i)^(n-1)) / n);
7
           disp(x(i+1));
8
           i = i+1;
9
       end
       y = x(i);
  end
```

2.9.3 Metodo delle secanti per $\sqrt{\alpha}$

```
function x = SecSqrt(x0, alpha, imax, tol)
1
2
      x1 = NewtonSqrt(alpha, x0, 1, 0.00000001);
3
      x = [x0,x1,(alpha+x1*x0)/(x1+x0)];
4
      i = 3;
      while(i < imax) && (abs(x(i)-x(i-1))>tol)
5
6
          x(i+1) = (alpha + x(i)*x(i-1))/(x(i)+x(i-1));
7
          disp(x(i+1));
8
          i = i+1;
9
      end
      y = x(i);
  end
```

2.9.4 Metodo di Newton

```
function [x, i] = Newton(fx, dfx, x0, imax, tolx)
  fx0 = feval(fx,x0);
3
  dfx0 = feval(dfx,x0);
  x = x0 - fx0/dfx0;
4
5
  i=0;
6
  while (i<imax) & (abs(x-x0)>tolx)
7
       i=i+1;
8
       x0=x;
9
       fx0=feval(fx,x0);
       dfx0=feval(dfx,x0);
```

2.9.5 Metodo di Newton Modificato

```
function x = NewtonMod(fx, dfx, m, x0, imax, tol)
   fx0 = feval(fx,x0);
3 | dfx0 = feval(dfx,x0);
   x = x0 - m * fx0 / dfx0;
5
   i = 0;
6
   while((i < imax) & abs(x-x0) > tol)
7
       i = i+1;
8
       x0=x;
9
        fx0 = feval(fx, x0);
10
        dfx0 = feval(dfx, x0);
11
        x = x0 - m * fx0 / dfx0;
12 end
13
   if abs(x-x0)>tol
14
        disp('il metodo non converge');
15
   end
```

2.9.6 Metodo di accelerazione di Aitken

```
1
    function y = Aitken(fx, dfx, x0, imax, tol)
 2
        i = 0;
 3
        x=x0;
 4
        diverror=1;
        while((i < imax) && diverror)</pre>
 5
 6
            i=i+1;
 7
            x0=x;
 8
            fx0 = feval(fx, x0);
 9
            dfx0 = feval(dfx,x0);
10
            x1 = x0 - fx0/dfx0;
11
            fx0 = feval (fx,x1);
12
            dfx0 = feval (dfx, x1);
            x = x1 - fx0/dfx0;
13
            if (x-2*x1+x0 == 0)
14
15
                disp('divisione per zero');
16
                diverror = 0;
17
                break;
18
            end
19
            x = (x*x0-x1^2)/(x-2*x1+x0);
20
            diverror = abs(x-x0)>tol;
21
        end
22
        if(diverror)
23
            disp('Il metodo non converge');
24
        end
25
        y = x;
26
   end
```

2.9.7 Metodo delle secanti

```
function [x, i] = secanti(f,df,x0,imax, tol)
2 \mid fx = feval(f,x0);
3 | f1x = feval (df, x0);
4 | x = x0 - fx/f1x;
5 \mid i = 0;
   while (i<imax) & (abs(x-x0)>tol)
6
7
        i = i+1;
8
       fx0 = fx;
9
       fx = feval(f,x);
       x1 = (fx*x0-fx0*x)/(fx-fx0);
11
       x0 = x;
12
       x = x1;
13 end
14
   if (abs(x-x0)>tol), disp('il metodo non converge'), end
15
   end
```

2.9.8 Metodo delle corde

```
function [x,i]=corde(fx,dfx,x0,imax,tol)
   fx0 = feval(fx,x0);
3
   dfx0 = feval(dfx,x0);
4
   x = x0 - fx0/dfx0;
5
6
   while (i<imax) & (abs(x-x0)>tol)
7
       i=i+1;
8
       x0=x;
9
       fx0=feval(fx,x0);
10
       x=x0-fx0/dfx0;
11
   end
12
13 | if abs(x-x0)>tol
14
       disp('il metodo non converge');
15
   end
```

2.9.9 Metodo della bisezione

```
function [x,i]=bisect(f,a,b,tol)
 1
 2
        fa = feval (f,a);
 3
        fb = feval (f,b);
 4
        x = (a+b)/2;
 5
        fx = feval(f,x);
 6
        imax = ceil (log2(b-a) - log2(tol));
 7
        for i=2:imax
            f1x = abs((fb-fa)/(b-a));
 8
9
            if abs(fx)<=tol*f1x</pre>
10
                break
11
            elseif fa*fx<0</pre>
12
                b=x;
13
                fb=fx;
14
            else
15
                a=x;
16
                fa=fx;
17
            end
18
            x = (a+b)/2;
19
            fx = feval(f,x);
20
        end
21
    end
```

3 Capitolo 3

Le funzioni usate nei codici seguenti sono in fondo al capitolo

3.1 Esercizio 1

Una matrice $L \in M_{n \times n}$ è definita triangolare inferiore se preso $l_{i,j} \in L$ vale la proprietà:

$$l_{i,j} = 0$$
 $i < j$ $\forall i, j \in [1, ..., n]$

Possiamo dimostrare facilmente che la somma di due matrici triangolari inferiori è ancora una matrice triangolare inferiore. Prendiamo due matrici $L, K \in M_{n \times n}$ con relativi elementi $l_{ij} \in L$ e $k_{ij} \in K$ per definizione di triangolare inferiore deve valere che:

$$l_{i,j} + k_{i,j} = 0 + 0 = 0$$
 $i < j \quad \forall i, j \in [1, ..., n]$

che è la definizione di matrice triangolare inferiore, come volevasi dimostrare. Dimostriamo ora che il prodotto di due matrici triangolari inferiori è ancora una matrice triangolare inferiore. Indichiamo con $A \in M_{n \times n}$ la matrice risultante del prodotto delle 2 matrici L e K, gli elementi della nuova matrice $a_{i,j} \in A$ sono calcolati come segue:

$$a_{i,j} = \sum_{m=1}^{n} (l_{i,m} \cdot k_{m,j})$$
 $\forall i, j \in [1,..,n].$

questa somma può essere scritta anche:

$$\sum_{m=1}^{n} (l_{i,m} \cdot k_{m,j}) = \underbrace{\sum_{i < j} (l_{i,m} \cdot k_{m,j})}_{0} + \sum_{i \ge j} (l_{i,m} \cdot k_{m,j})$$

gli elementi $a_{i,j} = \sum_{i < j} (l_{i,m} \cdot k_{m,j})$, con indici $i < j \ \forall i, j \in [1,..,n]$, sono pari a zero che è la definizione di matrice triangolare inferiore.

(Allo stesso modo si può dimostrare per matrici triangolari superiori).

3.2 Esercizio 2

Una matrice triangolare inferiore $L \in M_{n \times n}$ è detta a diagonale unitaria se i suoi elementi sulla diagonale sono pari a 1:

$$l_{i,i} = 1 \quad \forall i \in [1, ..., n]$$

Prendiamo una seconda matrice $K \in M_{n \times n}$ triangolare inferiore a diagonale unitaria, calcoliamo il prodotto tra K e L:

$$\sum_{m=1}^{n} (l_{i,m} \cdot k_{m,j}) = \underbrace{\sum_{i < j} (l_{i,m} \cdot k_{m,j})}_{0} + \underbrace{\sum_{i = j} (l_{i,m} \cdot k_{m,i})}_{1} + \underbrace{\sum_{i > j} (l_{i,m} \cdot k_{m,j})}_{1}$$

La risultante matrice assume valori:

- $\sum_{i < j} (l_{i,m} \cdot k_{m,j}) = 0 \quad \forall i, j \in [1,..,n]$
- $\sum_{i=j} (l_{i,m} \cdot k_{m,j}) = 1 \quad \forall i, j \in [1, ..., n]$
- $\sum_{i>j} (l_{i,m} \cdot k_{m,j}) \in \mathbb{R}$ $\forall i, j \in [1,..,n]$

che non è altro che la definizione di matrice triangolare inferiore a diagonale unitaria, come volevamo dimostrare.

(Allo stesso modo si può dimostrare per matrici triangolari superiori).

3.3 Esercizio 3

Indichiamo con $A \in M_{n \times n}$ una matrice triangolare inferiore con elementi sulla diagonale non nulli, tale matrice può essere scritta come:

$$A = D(I_n + U)$$

in cui D è una matrice diagonale dove diag(D) = diag(A), la matrice I_n è la matrice identità e U è una matrice strettamente triangolare inferiore, cioè con diagonale nulla, e gli unici elementi non nulli sono gli stessi elementi della matrice A. Una matrice strettamente triangolare inferiore è anche una matrice nilpotente, questo significa che $\exists n \in \mathbb{R}$ tale che $U^n = 0_{n \times n}$. Dobbiamo quindi dimostrare che A^{-1} è ancora una matrice triangolare inferiore, se A^{-1} è l'inversa A deve valere:

$$A \cdot A^{-1} = D(I_n + U) \cdot A^{-1} = I_n$$
$$A^{-1} = (I_n + U)^{-1} \cdot D^{-1}$$

Sappiamo che l'inversa di una matrice diagonale è ancora una matrice diagonale, quindi D^{-1} è diagonale. Per scoprire che tipo di matrice è $(I_n + U)^{-1}$ è necessario sviluppare in serie:

$$(I_n + U)^{-1} = \sum_{i=0}^{n} (-U)^n = \underbrace{(-U)^0}_{I_n} + (-U)^1 + (-U)^2 + \dots + (-U)^{n-1} + \underbrace{(-U)^n}_{0_{n \times n}} = \underbrace{(-U)^n}_{0_{n \times n}} = \underbrace{(-U)^n}_{0_{n \times n}} + \underbrace{(-U)^n}_{0_{n \times n}} = \underbrace{(-U)^n}_{0_{n \times n}} = \underbrace{(-U)^n}_{0_{n \times n}} + \underbrace{(-U)^n}_{0_{n \times n}} = \underbrace{(-U)^n}_{0_{n \times n}} = \underbrace{(-U)^n}_{0_{n \times n}} = \underbrace{(-U)^n}_{0_{n \times n}} + \underbrace{(-U)^n}_{0_{n \times n}} = \underbrace{(-U)^n}_{0_{n \times n}} = \underbrace{(-U)^n}_{0_{n \times n}} = \underbrace{(-U)^n}_{0_{n \times n}} + \underbrace{(-U)^n}_{0_{n \times n}} = \underbrace{(-U)^n}$$

$$= I_n - U + U^2 - \dots + (-1)^{n-1} \cdot U^{n-1} + 0_{n \times n} = I_n - U + U^2 - \dots + (-1)^{n-1} \cdot U^{n-1}$$

che sono somme di matrici triangolari inferiori, questo implica che $(I_n + U)^{-1}$ è di quel tipo. Abbiamo quindi dimostrato che anche A^{-1} è una matrice triangolare inferiore. Nel caso in cui A sia una matrice triangolare inferiore a diagonale unitaria la dimostrazione non varia dato che gli elementi dell'inversa di D rimangono unitari nel processo di inversione. (Allo stesso modo si può dimostrare per matrici triangolari superiori).

3.4 Esercizio 4

L'eliminazione nella prima colonna richiede n somme ed n prodotti per n-1 righe, quindi in totale (n+n)(n-1)=2n(n-1) flops. L'eliminazione della seconda richiede n-1 somme ed n-1 prodotti per n-2 righe, quindi in totale [(n-1)+(n-1)](n-2)=2(n-1)(n-2) flops. Procedendo la successione fino alla prima riga si ottiene la sommatoria:

$$\sum_{i=0}^{n} 2(n-i)(n-i+1).$$

Operando la sostituzione j = n - i + 1 si ha che la somma diviene :

$$\begin{split} 2\cdot \sum_{j=n+1}^{1} j(j-1) &= 2\cdot \Big(\sum_{j=1}^{n+1} (j^2-j)\Big) = 2\cdot \Big(\sum_{j=1}^{n+1} (j^2) - \sum_{j=1}^{n+1} (j)\Big) = 2\cdot \Big(\sum_{j=1}^{n-1} (j^2) + n^2 + (n+1)^2 - \sum_{j=1}^{n-1} (j) - n - n - 1\Big) = \\ &= 2\cdot \Big(\frac{n\cdot (n-1)\cdot (2n-1)}{6} + 2\cdot n^2 + 2\cdot n + 1 - \frac{n\cdot (n-1)}{2} - 2\cdot n - 1\Big) = 2\cdot \Big(\frac{2\cdot n^3 - 3\cdot n^2 + n}{6} + 2\cdot n^2 - \frac{n^2 - n}{2}\Big) = \\ &= 2\cdot \Big(\frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6} + 2\cdot n^2 - \frac{n^2}{2} + \frac{n}{2}\Big) = 2\cdot \Big(\frac{n^3}{3} + n^2 + \frac{2}{3}\cdot n\Big) \approx \frac{2}{3}\cdot n^3 \end{split}$$

quindi si ha che il numero di flop è circa $\frac{2}{3} \cdot n^3$, come volevamo dimostrare.

3.5 Esercizio 5

L'algoritmo di fattorizzazione LU con pivoting parziale da noi implementato è il seguente:

```
function [L,U,P]=factLUP(A)
[m,n]=size(A);
if m~=n
    error('La matrice inserita non e'' quadrata');
end
```

```
6
   L=eye(n);
 7
   P=eye(n);
8
   U=A;
9
    for k=1:n
        [pivot, m]=max(abs(U(k:n,k)));
        if pivot==0
12
            error('La matrice inserita e'' singolare');
13
        end
        m=m+k-1;
        if m~=k
            U([k,m], :) = U([m, k], :);
17
            P([k,m], :) = P([m, k], :);
18
            if k \ge 2
19
                L([k,m],1:k-1) = L([m,k],1:k-1);
20
            end
21
        end
22
        L(k+1:n,k)=U(k+1:n,k)/U(k,k);
        U(k+1:n,:)=U(k+1:n,:)-L(k+1:n,k)*U(k,:);
24
   end
```

è possibile vedere il funzionamento di questa function nell'esercizio 14 a pagina 22.

3.6 Esercizio 6

Supponendo che in ingresso si abbiano le matrici di fattorizzazione LU con pivoting parziale di una matrice quadrata non singolare qualsiasi $A \in \mathbb{R}^{n \times n}$, rispettivamente:

- L matrice triangolare inferiore
- U matrice triangolare superiore
- P matrice delle permutazioni

e il vettore dei termini noti b, è possibile scrivere la function linLUP che risolve sistemi lineari:

```
function [x] = linLUP(L,U, P, b)
    x = triInf(L,P*b);
    x = triSup(U,x);
end
```

Abbiamo sfruttato le function triInf e triSup, la loro implementazione si trova a fine capitolo a pagina 30.

3.7 Esercizio 7

Per dimostrare che la matrice $A \in \mathbb{R}^{n \times n}$ sia SDP deve sottostare a due proprietà:

- deve essere simmetrica, cioè $A = A^T$;
- $\forall x \in \mathbb{R}^n$ tale che $x \neq 0$ vale $x^T A x > 0$

Le matrici AA^T e A^TA per essere SDP devono dimostrare le proprietà sopra:

• proprietà di simmetria:

$$(AA^{T})^{T} = (A^{T})^{T}A^{T} = AA^{T}$$

 $(A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A.$

la proprietà è quindi confermata;

• definita positiva:

$$x^{T}AA^{T}x = xx^{T}AA^{T}xx^{T} = x(A^{T}x)^{T}(x^{T}A)^{T}x^{T} = (\underbrace{x^{T}A^{T}x}_{>0})^{T} \cdot (\underbrace{x^{T}Ax}_{>0})^{T} > 0$$

$$x^{T} A^{T} A x = x x^{T} A^{T} A x x^{T} = x (A x)^{T} (x^{T} A^{T})^{T} x^{T} = (\underbrace{x^{T} A x}_{>0})^{T} \cdot (\underbrace{x^{T} A^{T} x}_{>0})^{T} > 0$$

anche questa proprietà è confermata.

Tenendo conto che la matrice A è non singolare se le sue righe sono linearmente indipendenti allora per ogni vettore x non nullo la combinazione lineare $\sum_{i=1}^{n} (x_i \cdot A_i)$ deve essere un vettore non nullo e vale anche l'inverso, possiamo quindi affermare che le matrici AA^T e A^TA sono simmetriche definite positive.

3.8 Esercizio 8

Se la matrice A ha rango massimo significa che la matrice è invertibile, di conseguenza il suo determinante è non nullo che implica che la matrice è nonsingolare. Dalla dimostrazione dell'esercizio precedente (**Esercizio 7**) si ha quindi che se la matrice ha rango massimo allora $A^T A$ è SDP.

3.9 Esercizio 9

La matrice $A \in \mathbf{R}^{n \times n}$ può essere scritta come:

$$A = \frac{A}{2} + \frac{A}{2} + \frac{A^{T}}{2} - \frac{A^{T}}{2} = \frac{A + A^{T}}{2} + \frac{A - A^{T}}{2} \equiv A_{s} + A_{a}$$

si ha quindi che $A_s \equiv \frac{1}{2} \cdot (A + A^T)$ e $A_a \equiv \frac{1}{2} \cdot (A - A^T)$. Possiamo inoltre dimostrare che preso un $x \in \mathbf{R}^n$ risulta:

$$x^{T}Ax = x^{T}(A_{s} + A_{a})x = x^{T}A_{s}x + x^{T}A_{a}x = x^{T}A_{s}x + x^{T}\frac{(A - A^{T})}{2}x =$$

$$= x^{T}A_{s}x + \underbrace{\frac{1}{2}(x^{T}Ax - x^{T}A^{T}x)}_{=0} = x^{T}A_{s}x$$

il termine $\frac{1}{2}(x^TAx - x^TA^Tx) = \frac{1}{2}(x^TAx - (Ax)^Tx)$ è pari a zero e possiamo vederlo tramite la sostituzione y = Ax:

$$x^T A x - (Ax)^T x \underbrace{=}_{y = Ax} x^T y - y^T x = 0$$

dato che $x^T y = y^T x$ allora la loro differenza non può essere altro che zero.

3.10 Esercizio 10

Prendiamo $i \in [1, ..., n]$ colonne della matrice, possiamo vedere che l'algoritmo esegue i-1 somme di 2 prodotti quindi 2(i-1) e in più esegue un'operazione di sottrazione e una di divisione che equivale a 2 flop. Queste operazioni vengono eseguite per n-i volte, cioè per ogni colonna della matrice, il che significa che il numero di flop sono:

$$\begin{split} \sum_{i=1}^n 2(n-i)(i-1) &= 2 \cdot \sum_{i=1}^n (i \cdot n - n - i^2 + i) = 2 \cdot \left[(n+1) \sum_{i=1}^n i - n^2 - \sum_{i=1}^n i^2 \right] = \\ &= 2 \cdot \left[(n+1) \cdot n + \frac{(n+1)(n-1)n}{2} - n^2 - n^2 - \frac{n(n-1)(2n-1)}{6} \right] = 2 \cdot \left(n - n^2 + \frac{n^3 - n}{2} - \frac{2n^3 - 3n^2 + n}{6} \right) = \\ &= 2 \cdot \left[n^3 \cdot \left(\frac{1}{2} - \frac{1}{3} \right) + n^2 \cdot \left(-1 + \frac{1}{6} + \frac{1}{2} \right) + n \cdot \left(1 - \frac{1}{2} - \frac{1}{6} \right) \right] = \frac{2}{6} n^3 + \frac{2}{3} n^2 + \frac{2}{3} n \approx \frac{1}{3} n^3 \end{split}$$

quindi l'algoritmo di fattorizzazione LDL^T ha un costo di $\frac{n^3}{3}flop$.

3.11 Esercizio 11

L'algoritmo di fattorizzazione LDL^T da noi implementato è il seguente:

```
function [L,D] = factLDLT(M)
 1
2
        A = M;
3
        [m,n]=size(A);
4
        if m~=n
5
             error('La matrice non e'' quadrata')
6
 7
        if A(1,1) <= 0
             error('La matrice non e'' SDP')
8
9
10
        A(2:n,1)=A(2:n,1)/A(1,1);
11
        for j=2:n
             v = (A(j,1:(j-1))').*diag(A(1:(j-1),1:(j-1)));
            A(j,j) = A(j,j)-A(j,1:(j-1))*v;
14
             if A(j,j) \le 0
                 error('La matrice non e'' SDP');
16
             A((j+1):n,j)=(A((j+1):n,j)-A((j+1):n,1:(j-1))*v)/A(j,j);
17
18
        end
19
        for j=1:n
20
          for i=1:n
21
                if i==j
22
                     D(i,j) = A(i,j);
23
                     L(i,j) = 1;
24
                end
25
                if i>j
26
                     D(i,j) = 0;
27
                     L(i,j) = A(i,j);
28
                end
29
                if i<j</pre>
                     D(i,j) = 0;
30
                     L(i,j) = 0;
32
                end
           end
34
        end
    end
```

è possibile vedere il funzionamento di questa function nell'esercizio 22.

3.12 Esercizio 12

Supponendo che in ingresso si abbiano le matrici di fattorizzazione LDL^T di una qualsiasi matrice $M \in \mathbb{R}^{n \times n}$ SDP, rispettivamente:

- L matrice triangolare inferiore a diagonale unitaria
- D matrice diagonale con elementi diagonali positivi

e b vettore dei termini noti, è possibile scrivere la function linLDL che risolve sistemi lineari:

Abbiamo sfruttato le function triInf, triSup e linDiag, la cui implementazione si trova a fine capitolo (pagina 30).

3.13 Esercizio 13

format short

Per verificarlo abbiamo usato il seguente codice MatLab:

```
disp('matrice A1');
3
  A1 = [1,1,1,1;1,2,2,2;1,2,3,3;1,2,3,4]
  [L1,D1] = factLDLT(A1)
  disp('matrice A2');
  A2 = [1,1,1,1;1,2,2,2;1,2,3,3;1,2,3,2]
6
  [L2,D2] = factLDLT(A2)
   Che restituisce l'output:
   >> es13
   matrice A1
   A1 =
                1
                               1
                2
                       2
                               2
                2
                       3
                2
                       3
   L1 =
                0
                1
                       0
                1
                       1
   D1 =
                0
                       0
                              0
         0
                1
         0
                0
                       1
                              0
```

1 2 3 2 Error using <u>factLDLT</u> (<u>line 15</u>)

1

2

3

1

2

La matrice non e' SDP

0

1

2

2

0

1

1

matrice A2

A2 =

Error in <u>es13</u> (<u>line 7</u>)

[L2,D2] = factLDLT(A2)

L'output è molto chiaro, la seconda matrice A_2 non può essere fattorizzata LDL^T di conseguenza non è SDP.

3.14 Esercizio 14

In entrambi i casi abbiamo usato la matrice $A \in M^{3\times 3}$ con elementi:

$$A = \begin{pmatrix} 15 & -3 & 2 \\ -4 & 9 & 2 \\ 6 & 0 & 10 \end{pmatrix}$$

e il vettore dei termini noti $b \in \mathbb{R}^3$ con valori:

$$b = (3.2, 2.3, 3.1)^T$$

Usando il codice MatLab sottostante è possibile risolvere questi 2 esempi:

```
1
   format shortE
2
3
   % 3.5 3.6
   disp('Vettore residuo con fattorizzazione LU con pivoting parziale:');
   A=[15,-3,2;-4,9,2;6,0,10];
   [L,U,P] = factLUP(A);
   b = [3.2,2.3,3.1]';
   [x] = linLUP(L,U,P,b);
9
   r=A∗x −b
11
   % 3.11 3.12
   disp('Vettore residuo con fattorizzazione LDLT:');
12
13 A=[15,-3,2;-4,9,2;6,0,10];
14
   [L,D] = factLDLT(A);
15 \mid b = [3.2, 2.3, 3.1]';
16 [x] = linLUP(L,D*L',eye(3),b);
17
  r=A∗x −b
```

Il codice sopra restituisce l'output: La soluzione ottenuta

3.15 Esercizio 15

Per confrontare i risultati tra il nostro procedimento di calcolo di $k_{\infty}(A)$ e quello della function cond di MatLab, abbiamo scritto il seguente script:

```
format shortE
2 | v = [1,1,1,1,1,1,1,1,1];
 3 A = (diag(v*(-100), -1) + eve(10))
4 | disp('Il numero di condizionamento k senza la function cond e'':');
5 | disp('con norma infinito');
   normAinf = norm(A,inf);
    normAlinf = norm(inv(A),inf);
   kinf = normAinf*normAIinf
   disp('con norma 1');
9
10 | normA1 = norm(A,1);
11 \operatorname{normAI1} = \operatorname{norm(inv(A),1)};
12 | k1 = normA1*normAI1
disp('Il numero di condizionamento k con la funzione cond e'':');
14 | disp('con norma infinito');
15 | cond(A,inf)
16 | disp('con norma 1');
   cond(A,1)
```

Che restituisce come output:

```
>> es15
     0
         -100
                               0
     0
            0
              -100
                               0
                      0 -100
            0
     0
                               0
                                     0
                                            0
Il numero di condizionamento k senza la function cond e':
con norma infinito
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 9.801980e-21.
> In <u>es15 (line 9</u>)
kinf =
   1.0202e+20
con norma 1
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 9.801980e-21.
> In <u>es15</u> (<u>line 13</u>)
   1.0202e+20
Il numero di condizionamento k con la funzione cond e':
con norma infinito
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 9.801980e-21.
> In <u>cond</u> (<u>line 46</u>)
 In es15 (line 18)
   1.0202e+20
con norma 1
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 9.801980e-21.
> In <u>cond</u> (<u>line 46</u>)
  In <u>es15</u> (<u>line 20</u>)
   1.0202e+20
```

Dall'output possiamo vedere che k_{∞} che per k_1 risultano uguali con valore pari a $1.0202 \cdot 10^{20}$. Inoltre sia cond che inv restituiscono come warning:

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 9.801980e-21.

che significa che il problema dell'inversione della matrice può non essere accurato perchè la matrice è mal condizionata. Dobbiamo ora dimostrare che $k_{\infty}(A) = k_1(A)$, cioè:

$$\left|\left|A\right|\right|_{\infty}\cdot\left|\left|A^{-1}\right|\right|_{\infty}=\left|\left|A\right|\right|_{1}\cdot\left|\left|A^{-1}\right|\right|_{1}$$

Possiamo calcolare $||A||_{\infty}$ che ovviamente sarà pari a 101 dato che gli unici 2 valori ottenuti dalla somma dei valori assoluti degli elementi riga della matrice sono 1 e 101, da cui possiamo affermare che il massimo tra i due è 101. Per $||A||_{1}$ i valori delle somme dei valori assoluti degli elementi colonna della matrice sono 1 e 101, come per la precedente norma otteniamo quindi il valore massimo 101. Sappiamo quindi che $||A||_{\infty} = ||A||_{1}$. Rimane da dimostrare che $||A^{-1}||_{\infty} = ||A^{-1}||_{1}$. Per farlo possiamo andare a calcolare la matrice inversa $A^{-1} = \frac{1}{\det(A)}A^{*}$, in cui A^{*} è la matrice aggiunta calcolata come segue:

$$a_{1,1}^* = \det |A_{1,1}| = 1 = a_{2,2}^* = a_{3,3}^* = \dots = a_{10,10}^*$$

 $a_{2,1}^* = \det |A_{1,2}| = 10^2 = a_{3,2}^* = a_{4,3}^* = \dots = a_{10,9}^*$
 $a_{3,1}^* = \det |A_{1,3}| = 10^4 = a_{4,2}^* = a_{5,3}^* = \dots = a_{10,8}^*$

.

$$a_{10,1}^* = \det |A_{1,10}| = 10^{18}$$

$$a_{1,2}^* = \det |A_{2,1}| = 0 = a_{1,3}^* = \dots = a_{1,10}^*$$

(Abbiamo usato la notazione $A_{n,m}$ per la matrice che si ottiene a partire da A eliminando la riga n e la colonna m). Per i valori al di sopra della diagonale possiamo dire che sono in valore assoluto << 1. Dato che det(A) = 1 allora $A^{-1} = A^*$:

Notiamo che la somma dei valori della riga 10 e della colonna 1 della matrice inversa sono identici, inoltre sono anche i valori ottenuti effettuando $\left|\left|A^{-1}\right|\right|_{\infty}$ e $\left|\left|A^{-1}\right|\right|_{1}$. Possiamo quindi affermare che $\left|\left|A^{-1}\right|\right|_{\infty} = \left|\left|A^{-1}\right|\right|_{1}$.

3.16 Esercizio 16

Abbiamo implementato il codice seguente per poter rispondere alle domande dell'esercizio:

```
V = [1,1,1,1,1,1,1,1,1];
 2
    A = (diag(v*(-100), -1) + eye(10));
 3
    b = [1, -99*ones(1,9)]';
 4
    c = 0.1*[1,-99*ones(1,9)]';
 5
 6
    x = ones(10,1);
 7
    y = 0.1*x;
8
9
    format shortE
11
    rx = A*x -b
12
    ry = A*y -c
13
14
    x(1)=b(1);
15
    for i=2:10
16
        x(i)=b(i)+100*x(i-1);
    end
18
    x=x(:)
19
20
    y(1)=c(1);
21
    for i=2:10
22
        y(i)=c(i)+100*y(i-1);
23
    end
24
    y=y(:)
25
26
    rx = A*x -b
27
    ry = A*y -c
```

Possiamo confermare che le soluzioni x e y dei sistemi lineari $A \cdot x = b$ e $A \cdot y = c$ sono giuste dato che calcolando i loro residui otteniamo:

Nel passo successivo si usa la serie di istruzioni forniteci dall'esercizio. Nel caso del vettore x si perviene alla stessa soluzione precedentemente fornita dall'esercizio. Invece nel caso del vettore y abbiamo una propagazione degli errori nella soluzione trovata, che si può vedere a partire dall'elemento y_7 . Possiamo vederlo dall'output:

Tuttavia questa propagazione degli errori non risulta essere malcondizionato come risulta della seguente differenza:

3.17 Esercizio 17

L'algoritmo di fattorizzazione QR, mediante metodo di householder, da noi implementato è il seguente:

```
function A = factQRH(A)
2
        [m,n] = size(A);
3
        for i=1:n
            alpha = norm(A(i:m, i));
4
5
            if alpha==0
6
                error('La matrice A non ha rango massimo')
7
            end
8
            if A(i,i) >= 0
9
                alpha = -alpha;
10
            end
11
            v = A(i,i) - alpha;
12
            A(i,i) = alpha;
13
            A(i+1:m,i) = A(i+1:m,i)/v;
14
            beta = -v/alpha;
            A(i:m,i+1:n) = A(i:m, i+1:n) - (beta*[1; A(i+1:m,i)])*([1 A(i+1:m,i)']*A(i:m,i+1:n))
15
                n));
16
        end
   end
```

è possibile vedere il funzionamento di questa function nell'esercizio 19 a pagina 28.

3.18 Esercizio 18

Supponendo che in ingresso si abbiano:

- la matrice $A \in M^{n \times m}$ (con $n > m \in \mathbb{N}$) già fattorizzata QR
- $\bullet\,$ il vettore dei termini noti $b\in\mathbb{R}^n$

 $\grave{\text{e}}$ possibile scrivere la function solve QRH che risolve sistemi lineari sovradeterminati:

```
function [x] = solveQRH( A, b )
    [m,n] = size(A);
    Qt = eye(m);
    for i=1:n
        Qt= [eye(i-1) zeros(i-1,m-i+1); zeros(i-1, m-i+1)' (eye(m-i+1)-(2/norm([1; A(i+1:m, i)], 2)^2)*([1; A(i+1:m, i)]*[1 A(i+1:m, i)']))]*Qt;
end
    x = TriSup(triu(A(1:n, :)), Qt(1:n, :)*b);
end
```

è possibile vedere il funzionamento di questa function nell'esercizio 19 a pagina 28.

3.19 Esercizio 19

Il codice usato è:

```
format shortE
2
3
   A = [3,2,1;1,2,3;1,2,1;2,1,2]
4
   b = [6;6;4;4]
5
6
   x = solveQRH(A,b)
7
8
   r = A*x-b
9
   disp('Norma di r : ')
11
   norm(r,2)^2
```

che ha generato questo risultato:

```
>> es19
A =

    3     2     1
    1     2     3
    1     2     1
    2     1     2
b =

    6     6
    4     4

x =

    3.6762e+00
-1.0057e+01
8.2286e+00
r =

    -6.8571e+00
2.2476e+00
-1.2210e+01
9.7524e+00
Norma di r :
ans =
2.9625e+02
```

3.20 Esercizio 20

La funzione data è

$$F(x_1, x_2) = \begin{cases} x_2 - \cos(x_1) \\ x_1 x_2 - 1/2 \end{cases}$$

Vogliamo trovare $F(x_1, x_2) = 0$ partendo da $x_1(0) = 1$, $x_2(0) = 1$ Troviamo quindi il Jacobiano della funzione:

$$J = \begin{pmatrix} sin(x_1) & 1\\ x_1 & x_2 \end{pmatrix}$$

Applicando il metodo di Newton si va a risolvere:

$$\begin{cases} J_F(\underline{x}^{(k)})\underline{d}^{(k)} = -F(\underline{x}^{(k)}) \\ \underline{x}^{(k+1)} = \underline{x}^{(k)} + \underline{d}^{(k)} \end{cases}$$

Usando il codice MatLab:

```
format shortE
2
3
   x(1)=1;
4
   x(2)=1;
5
   imax=1000;
6
   tolx=0.0001;
8
   F = @(x) [x(2) - \cos(x(1)); x(1)*x(2)-1/2];
9
   J = Q(x) [sin(x(1)), 1; x(2), x(1)];
11
   [x] = nonLinearNewton(F, J, x, imax, tolx , 1);
```

si ottengono i risultati:

```
>> es20
iterata:
norma dell'incremento:
5.0007e-01
valori di x:
ans =
7.4577e-01
7.5423e-01
iterata:
norma dell'incremento:
3.1450e-01
valori di x:
ans = 5.5311e-01
    8.6530e-01
iterata:
3
norma dell'incremento:
9.2853e-02
valori di x:
   6.0420e-01
8.2406e-01
iterata:
4 norma dell'incremento:
    1.0230e-02
valori di x:
ans =
    6.0996e-01
8.1968e-01
iterata:
5
norma dell'incremento:
1.2686e-04
valori di x:
ans =
6.1003e-01
    8.1963e-01
```

Che in forma tabellare sono rappresentati da:

i	x_1	x_2	Norma incremento
1	0.7458	0.7542	0.50007
2	0.5531	0.8653	0.31450
3	0.6042	0.8241	0.09285
4	0.6100	0.8197	0.01023
5	0.6100	0.8196	0.00013

3.21 Esercizio 21

Un punto stazionario $(\hat{x_1}, \hat{x_2})$ è tale per cui $J(\hat{x_1}, \hat{x_2}) = 0$. Il sistema lineare è definito quindi da:

$$F(\underline{x}) = \underline{0} \text{ con } F = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 4x_1^3 + 2x_1 + x_2 \\ x_1 + 2x_2 - 2 \end{pmatrix}.$$

Il Jacobiano della funzione è quindi dato da:

$$J = \begin{pmatrix} 12x_1^2 + 2 & 1\\ 1 & 2 \end{pmatrix}$$

da cui si ottiene il minimo della funzione:

$$\min f(x_1, x_2) \approx -0.2573$$

Il codice matlab per il calcolo del minimo è:

```
format shortE
3
   x(1)=1;
4
   x(2)=1;
   imax=1000;
6
   tolx=0.0001;
7
   F = Q(x) [x(2) - cos(x(1)); x(1)*x(2)-1/2];
9
   J = Q(x) [sin(x(1)), 1; x(2), x(1)];
10
    [x] = nonLinearNewton(F, J, x, imax, tolx, 0);
11
13
   disp ('Usando l''algoritmo di Newton la radice ottenuta e'': ');
14
   disp (x);
15
   disp ('F(x): ');
16
   disp ([x(2) - \cos(x(1)), x(1)*x(2)-1/2]);
```

3.22 Funzioni MatLab Usate

3.22.1 Risoluzione sistema lineare

```
function [x] = triInf(A, b)
1
2
        x = b;
3
        for j=1:length(A)
4
            if A(j,j) \sim = 0
                 x(j) = x(j)/A(j,j);
6
7
                 error('La matrice e'' singolare')
8
            end
9
            for i=j+1:length(A)
                 x(i) = x(i)-A(i,j)*x(j);
11
            end
12
        end
13
   end
```

```
function [b] = triSup(A, b)
for j=size(A):-1:1
if A(j,j)==0
error('[Attenzione] La matrice non e'' singolare')
else
b(j)=b(j)/A(j,j);
```

3.22.2 Risoluzione diagonale matrice LDLT di un sistema lineare

3.22.3 Risoluzione di sistemi di equazioni non lineari mediante Newton

```
1
    function [x] = nonLinearNewton(F,J, x, imax, tolx, out)
2
        i=0;
3
        xold = x+1;
4
        while (i< imax )&&( norm (x-xold )> tolx )
5
            i=i+1;
6
            xold =x;
7
            [L,U,P] = factLUP(feval(J,x));
8
            x=x+linLUP(L,U, P, -feval(F,x));
9
            if out
                disp(norm(x—xold));
11
                disp(x);
12
            end
13
        end
14
   end
```

4 Capitolo 4

Le funzioni usate nei codici seguenti sono in fondo al capitolo

4.1 Esercizio 1

```
function [pval] = newtonHor(xi, fi, xval)
dd = diffDiv(xi, fi);
pval = hornerGen(xi,dd,xval);
end
```

4.2 Esercizio 2

Il codice MatLab usato è il seguente:

```
Rungef = @(x) 1./(1.+x.^2);
 2
    a=-5; b=5;
 3
   res_err = zeros(4,10);
 4 [errors, plots, l] = evaluatePoli(Rungef, a,b, 20, 10, 0, 100);
 5 | plots = cat(2,plots', Rungef(l)');
 6 res_err(1,:) = max(abs(errors'))';
   plot(l,plots');
   lgd=legend('2','4','6','8','10','\infty');
   title(lgd, 'Ascisse');
 9
10 | plot(l,errors')
11 | lgd=legend('2','4','6','8','10');
12 | title(lgd, 'Ascisse');
13 | [errors, plots, l] = evaluatePoli(Rungef, a,b, 20, 10, 1, 100);
14 \mid res\_err(2,:) = max(abs(errors'))';
plots = cat(2,plots', Rungef(l)');
16 | plot(l,plots');
   lgd=legend('2','4','6','8','10','12','14','16','18','20','\infty');
17
   title(lgd, 'Ascisse');
18
19 plot(l,errors')
20 | lgd=legend('2','4','6','8','10','12','14','16','18','20');
21 | title(lqd, 'Ascisse');
22
23 | Sinf = inline('x.*sin(x)');
24 a=0; b=pi;
25 \text{ max}_n = 20;
26 [errors, plots, l] = evaluatePoli(Sinf, a,b, max_n, 10, 0, 100);
27
   res_err(3,:) = max(abs(errors'))';
28
29 | plots = cat(2,plots', Sinf(l)');
30 | lgd=legend('2','4','6','8','10','12','14','16','18','20','\infty');
31 | title(lgd, 'Ascisse');
32
    plot(l,plots');
   plot(l,errors')
34
   lgd=legend('2','4','6','8','10','12','14','16','18','20');
35 | title(lgd, 'Ascisse');
36 [errors, plots, l] = evaluatePoli(Sinf, a,b, max_n, 10, 1, 100);
37 | res_err(4,:) = max(abs(errors'))';
38
39 | plots = cat(2,plots', Sinf(l)');
40 | plot(l,plots');
41 \ | \ \mathsf{lgd=legend('2','4','6','8','10','12','14','16','18','20','\setminus infty');}
42 | title(lgd, 'Ascisse');
43 plot(l,errors')
```

```
44 | lgd=legend('2','4','6','8','10','12','14','16','18','20');
45 | title(lgd, 'Ascisse');
```

che genera questi risultati:

RungeEq	RungeCheb	SinEq	SinCheb
0.646	0.4371	0.6381	0.4371
0.4383	0.02286	0.04127	0.02286
0.6164	0.0004779	0.001343	0.0004779
1.045	$5.332 \cdot 10^{-6}$	$2.575 \cdot 10^{-5}$	$5.332 \cdot 10^{-6}$
1.915	$3.688 \cdot 10^{-8}$	$3.238 \cdot 10^{-7}$	$3.688 \cdot 10^{-8}$
3.612	$1.734 \cdot 10^{-10}$	$2.843 \cdot 10^{-9}$	$1.734 \cdot 10^{-10}$
7.189	$5.892 \cdot 10^{-13}$	$1.873 \cdot 10^{-11}$	$5.892 \cdot 10^{-13}$
14.01	$3.417 \cdot 10^{-15}$	$1.261 \cdot 10^{-13}$	$3.417 \cdot 10^{-15}$
27.51	$1.776 \cdot 10^{-15}$	$8.933 \cdot 10^{-14}$	$1.776 \cdot 10^{-15}$
58.41	$2.327 \cdot 10^{-15}$	$1.768 \cdot 10^{-13}$	$2.327 \cdot 10^{-15}$

Possiamo vedere la differenza tra 7 e 5, nella prima all'aumentare delle ascisse la funzione interpolata degenera, mentre nella seconda già con n=5 abbiamo una buona interpolazione. Nel caso della seconda funzione possiamo vedere che la differenza tra 11 e 9 non è molto rilevante. Infatti già con 4 ascisse abbiamo un interpolazione quasi perfetta. Nelle figure 8 6 12 10 e' possibile vedere l'andamento dell'errore per i vari metodi di interpolazione.

4.3 Esercizio 3

```
1
    function [ m ] = moment(phi, xi, dd)
2
        n = length(xi) + 1;
3
        u = zeros(1, n - 1);
4
        l = zeros(1, n-2);
5
        dd = 6 * dd;
6
        u(1) = 2;
7
        for i = 2 : n - 1
8
            l(i) = phi(i) / u(i - 1);
9
            u(i) = 2 - l(i) * xi(i - 1);
10
        end
11
        y = zeros(1, n - 1);
12
        y(1) = dd(1);
13
        for i = 2 : n - 1
14
            y(i) = dd(i) - l(i) * y(i - 1);
        end
        m = zeros(1, n-1);
16
17
        m(n-1) = y(n-1) / u(n-1);
        for i = n - 2 : -1 : 1
18
            m(i) = (y(i) - xi(i) * m(i + 1)) / u(i);
19
20
21
        m = [0, m, 0];
22
   end
```

4.4 Esercizio 4

```
function [ xx ] = eval(p, s, xx)
n=length(p) - 1;
k=1;
j=1;
for i = 1 : n
inInt = 1;
while j <= length(xx) && inInt
if xx(j) >= p(i) && xx(j) <= p(i + 1)</pre>
```

```
9
                     j = j + 1;
                 else
                     inInt = 0;
11
12
                 end
13
             end
14
            xx(k : j - 1) = subs(s(i), xx(k : j - 1));
15
             k = j;
16
        end
17
    end
```

4.5 Esercizio 5

Il seguente listato valuta la spline naturale e quella not-a-knot per le funzioni date:

```
1
   Rungef = @(x) 1./(1.+x.^2);
 2
   a=-5; b=5;
 3 \text{ max}_n = 20;
 4 \mid n_{steps} = 5;
 5 [plots, l] = evalSpline(Rungef,a,b, max_n, n_steps, 0, 1000);
 6
   hold on;
   grid on;
   plot(l, plots);
 8
9
   hold off
10 [plots2, l] = evalSpline(Rungef,a,b, max_n, n_steps, 1, 1000);
11 hold on;
12 grid on;
13 plot(l, plots2);
14
   hold off
15
16
   error = plots' - plots2';
17
   boxplot(error(:,1:5), 4:4:max_n);
18
19 | Sinf = @(x) x.*sin(x);
20 a=0; b=pi;
21
   [plots, l] = evalSpline(Sinf,a,b, max_n, n_steps, 0, 1000);
22
   hold on;
   grid on;
23
24
   plot(l, plots);
25
   hold off
26
27 | [plots2, l] = evalSpline(Sinf,a,b, max_n, n_steps, 1, 1000);
28 | hold on;
29 | grid on;
30 plot(l, plots2);
31
   hold off
32
   error = plots' - plots2';
34
   boxplot(error(:,1:5), 4:4:max_n);
```

con i risultanti grafici: grafico runge not-a-knot 13 grafico errori runge not-a-knot 15 grafico not-a-knot funzione 14 grafico errori not-a-knot funzione 16

4.6 Esercizio 8

```
1 x=[0,0,0,3,4,3,2];

2 y=[1,2,5,2.1,1,2.2,0];

3 res = sisSov(x,y, 4)
```

4.7 Esercizio 9

```
f1 = @(x,e,l) 5*x+ 2 +e*l;
2
   f2 = @(x,e,l) 3*x^2 + 2*x +1 + e*l;
3 | l=rand(1);
4 e= 0.1:
5 | s= linspace(-1,1,10);
6
   y1 = zeros(10,1);
7
   y2 = zeros(10,1);
8
9
   for i=1:10
       l=rand(1);
11
       y1(i) = f1(s(i),e,l);
12
       y2(i) = f2(s(i),e,l);
13
14
   end
15
16 res1 = sisSov(s,y1',1);
17
   res2 = sisSov(s,y2',2);
```

4.8 Esercizio 10

```
f1 = @(x,e,l) 5*x+ 2 +e*l;
2 | l=rand(1);
3 = 0.1;
   s = linspace(-1,1,10);
  y1 = zeros(10,1);
5
6 | y = zeros(2,10);
   for i=1:10
8
       l=rand(1);
9
        y1(i) = f1(s(i),e,l);
   end
11
12
   fit = sisSov(s, y1',1);
13 | y(1,:)=polyval(fit, s);
14
15 | invfit = sisSov(y1',s,1);
16 | y(2,:)=polyval(invfit',y1);
17 | plot(y1',y);
```

vedi 17 per il grafico

4.9 Funzioni MatLab Usate

4.9.1 Differenze divise

```
function [fi] = diffDiv(xi, fi)
for i=1:length(xi)-1
for j=length(xi):-1:i+1
fi(j) = (fi(j) - fi(j-1))/(xi(j)-xi(j-i));
end
end
end
end
```

4.9.2 Horner Generalizzato

```
1
   function [p] = hornerGen(xi, dd, xval)
2
     n=length(dd);
3
     for i=1:length(xval)
4
       p(i)=dd(n);
5
       for k=n-1:-1:1
6
         p(i)=p(i)*(xval(i)-xi(k))+dd(k);
7
       end
8
     end
9
  end
```

4.9.3 Funzione di valutazione

```
1
   function [errors, plots, l] = evaluatePoli(funct, a, b, maxn, n_steps, cheb_asc,
       plot_steps)
2
        errors = zeros(n_steps,plot_steps);
       plots = zeros(n_steps,plot_steps);
3
4
       l = linspace(a,b,plot_steps);
5
        steps = linspace(2, maxn, n_steps);
6
        for i=1:n_steps
7
            if cheb_asc == 0
8
                ascisse = eqAscisse(a, b, steps(i));
9
            elseif cheb_asc == 1
                ascisse = cheby(a, b, steps(i));
11
            end
12
            fInt = newtonHor(ascisse, funct(ascisse), l);
13
14
            errors(i,:) = funct(l)-fInt;
15
            plots(i,:) = fInt;
        end
16
17
   end
```

4.9.4 Ascisse Equispaziate

```
function [ptx] = eqAscisse(a, b, n)
h = (b-a)/n;
ptx = zeros(n+1, 1);
for i=1:n+1
ptx(i) = a +(i-1)*h;
end
end
```

4.9.5 Chebyshev

```
function [xi] = cheby(a,b,n)
    xi = zeros(n+1, 1);
    for i=0:n
        xi(n+1-i) = (a+b)/2 + cos(pi*(2*i+1)/(2*(n+1)))*(b-a)/2;
    end
end
```

4.9.6 valutazione Spline

```
1
   function [plots, value_space] = evalSpline(funct, a, b, max_n, n_steps, nak, plot_steps)
2
       value_space = linspace(a,b,plot_steps);
3
       plots = zeros(n_steps+1,plot_steps);
       ste = linspace(4,max_n,n_steps);
4
5
        for i=1:n_steps
           l = linspace(a,b,ste(i));
6
7
          if nak
8
               plots(i,:) = fnval(csapi(l,funct(l)), value_space);
9
          else
               plots(i,:) = eval(l,splineNat(l, funct(l)),value_space)';
11
          end
        end
12
13
        plots(n_steps+1,:) = funct(value_space);
14
   end
```

4.9.7 Sistema sovradeterminato

```
1
    function [y] = sisSov(x,y, m)
2
3
      if length(unique (x)) < m+1
4
        error('[Errore] Non ci sono m ascisse distinte');
5
6
      V(:,m+1) = ones(length(x),1);
7
      for j = m:-1:1
8
       V(:,j) = x.*V(:,j+1);
9
      end
      y = V \setminus y';
11
      y=y';
12
   end
```

5 Capitolo 5

5.1 Esercizio 5.1

5.2 Esercizio 5.2

```
format long
1
2
   F = @(x) x*exp(1)^-x*cos(2*x);
3
   y = (3*(exp(1)^{(-2*pi)} -1) -10*pi*exp(1)^{(-2*pi)})/25;
4
   nmax = 8;
5
   err = zeros(nmax, 2);
6
    rap = zeros(nmax-1,2);
7
    for i=1:8
8
        err(i,1) = abs(y - trapeziComp(F,0,2*pi,2^i));
9
        err(i,2) = abs(y - simpsonComp(F,0,2*pi,2^i));
11
            rap(i-1,:) = err(i,:)./err(i-1,:);
12
        end
13
   end
14
   semilogy([1:8],err);
16
   plot([2:nmax],rap);
```

Al posto di riportare i dati in una tabella abbiamo ritenuto più opportuno mostrare l'andamento dell'errore mediante l'uso di grafici 19 20. L'andamento del rapporto tra gli errori è scorrelato per i primi 2^5 sottointervalli, ma dopo si stabilizza con un rapporto costante.

5.3 Esercizio 5.3

```
f = @(x) x*exp(-x)*cos(2*x);

[In,px] = simpsonAda(f,0,2*pi,10^-5, 5);

disp(In);
disp(px);

[In,px] = trapeziAda(f,0,2*pi,10^-5,3);

disp(In);
```

```
11 | disp(px);
```

```
1
    function [In,pt] = simpsonAda(f, a, b, tol)
2
     pt=5
3
     h = (b-a)/6;
4
     m = (a+b)/2;
5
     m1 = (a+m)/2;
6
     m2 = (m+b)/2;
 7
     In1 = h*(feval(f, a) + 4*feval(f, m) + feval(f, b));
     In = In1/2 + h*(2*feval(f, m1) + 2*feval(f, m2) - feval(f, m));
8
9
     err = abs(In-In1)/15;
     if err>tol
        [intSx, ptSx] = simpsonAdattativaRicorsiva(f, a, m, tol/2, 1);
11
        [intDx, ptDx] = simpsonAdattativaRicorsiva(f, m, b, tol/2, 1);
13
        In = intSx+intDx;
14
        pt = pt+ptSx+ptDx;
15
     end
16
   end
```

5.4 Esercizio 5.4

```
function [xn, i, err] = jacobi(A, b, x0, tol, nmax)
2
      D = diag(diag(A));
3
      J = -inv(D)*(A-D);
4
      q = D \backslash b;
5
      xn = J*x0 + q;
6
      i = 1;
7
      err(i) = norm(xn-x0)/norm(xn);
8
      while (i<=nmax && err(i)>tol)
9
        x0 = xn;
10
        xn = J*x0+q;
        i = i+1;
12
        err(i) = norm(xn-x0)/norm(xn);
13
      end
14
      if i>nmax
15
        disp('Jacobi non converge nel numero di iter fissato');
16
      end
17
   end
```

```
function [xn, i, err] = gaussSeidel(A, b, x0, tol, nmax)

D=diag(diag(A));

L=tril(A)-D;

U=triu(A)-D;

DI=inv(D+L);

GS=-DI*U;

bl=(D+L)\b;

xn=GS*x0+b1;
```

```
9
      i=1;
      err(i)=norm(xn-x0,inf)/norm(xn);
11
12
      while(err(i)>tol && i<=nmax)</pre>
13
        x0=xn;
14
        xn=GS*x0+b1;
15
        i=i+1;
16
        err(i)=norm(xn-x0,inf)/norm(xn);
17
      if i>nmax
18
19
        error('Gauss—Seidel non converge nel numero di iterazioni fissato');
20
      end
21
      i=i-1;
22
    end
```

5.5 Esercizio 5.5

```
A = [-4,2,1;1,6,2;1,-2,5];
b = [1,2,3]';
x0 = [0,0,0]';

[z,j,jerr] = jacobi(A,b,x0,1.e-3,25)
[y,i,gerr] = gaussSeidel(A,b,x0,25,1.e-3)
```

Il sistema Ax = b è formato dagli elementi:

$$A = \begin{pmatrix} -4 & 2 & 1\\ 1 & 6 & 2\\ 1 & -2 & 5 \end{pmatrix}$$
$$b = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$$

partendo dal vettore iniziale

$$x_0 = \left(\begin{array}{c} 0\\0\\0\end{array}\right)$$

il metodo di Jacobi mi restituisce in output il vettore:

$$\left(\begin{array}{c} -0.02682\\ 0.1201\\ 0.6534 \end{array}\right)$$

con il metodo di Gauss-Seidel si ottiene invece il vettore:

$$\left(\begin{array}{c}
-0.02688 \\
0.12 \\
0.6532
\end{array}\right)$$

Oltre a calcolare il vettore risultante, le due funzioni usate nel codice mi dicono anche quante iterazioni avvengono:

Metodo	Iterazioni
Jacobi	12
Gauss-Seidel	8

5.6 Esercizio 5.6

```
\mathsf{H} \; = \; [\,0\,,0\,,0\,,0\,,0\,;1\,,0\,,1\,,0\,,0\,;1\,,1\,,0\,,0\,,0\,;0\,,1\,,0\,,0\,,0\,;0\,,1\,,0\,,0\,,0\,]\,;
 2
    p=0.85;
 3
 4
 5
    [n,m] = size(H);
    if(n~=m), error('Matrice non quadrata'); end
 6
 7
    s = sum(H);
 8
    S=zeros(n,n);
 9
    for i=1:n
         if s(i) \sim = 0
11
              S(:,i)=H(:,i)/s(i);
12
         else
13
              S(:,i)=(1/n);
14
         end
15
    end
16
    A= eye(n) - p*S;
17
    b = ((1-p)/n).*ones(n,1);
18
    tols= logspace(-1,-10,10);
19
    iters = zeros(10,3);
20
21
    for i=1:10
22
         v=zeros(n,4);
23
         [v(:,1),iters(i,1)]=PotenzePR(S,p,tols(i));
24
         [v(:,2),iters(i,2)]=jacobi(A,b,ones(n,1), tols(i), 10000);
25
         [v(:,3),iters(i,3)]=gaussSeidel(A,b,ones(n,1), tols(i), 10000);
26
    end
27
    plot(iters)
```

Nel grafico 18 é mostrato l'andamento dei vari metodi numerici per il calcolo dell'autovettore. Si nota come al crescere della tolleranza i metodi di Jacobi e delle Potenze non divergano sostanzialmente, mentre il metodo di Gauss-Seidel mostra una maggior efficienza anche per valori di tolleranza ridotti.

6 Grafici

Figure 1: Andamento della funzione $\Psi_h(0)$

Figure 2: Plot Mat Lab della funzione $f(x) = \frac{\ln(|3(1-x)+1|)}{80} + x^2 + 1$

Figure 3: Andamento del numero delle iterazioni al decrescere della tolleranza per i metodi Newton, Secanti, Corde

Figure 4: Aggiunta dell'andamento del metodo di Bisezione rispetto ai precedenti metodi

Figure 6: Runge Chebyshev Errori

Figure 7: Runge con ascisse equidistanti

Figure 8: Runge con ascisse equidistanti errori

Figure 9: Funzione xsinx Chebyshev

Figure 10: Funzione xsinx Chebyshev errori

Figure 11: Funzione xsinx ascisse equidistanti

Figure 12: Funzione xsinx ascisse equidistanti errori

Figure 13: Runge not-a-knot

Figure 14: Funzione xsinx not-a-knot

Figure 15: Errori Runge

Figure 16: Errori funzione xsinx

Figure 17: Esercizio 4.10

Figure 18: Esercizio 5.2

Figure 19: Esercizio 5.2

Figure 20: Esercizio 5.6