Density Arguments, Floor Functions

Andres Buritica Monroy

1 Techniques

Density arguments: these involve taking a "global" view that involves estimating how many numbers have a specific property in a specific range. The aim is usually to apply pigeonhole.

Floor functions: recall $\lfloor x \rfloor$ is the largest integer which is at most x. Most often, problems which involve $\lfloor x \rfloor$ will be solved by considering $x - \lfloor x \rfloor$ (also denoted $\{x\}$), or $\lceil x \rceil - x$.

2 Problems

- 1. Is there a positive integer which can be written as the sum of 2023 distinct 2022nd powers in at least 2021 different ways?
- 2. Prove that the sequence $a_i = \lfloor (\sqrt{2} + 1)^i \rfloor$ alternates between even and odd integers.
- 3. Let r be an irrational root of a polynomial P(x) of degree d with integer coefficients. Prove that there is a real number C such that for any integer q we have $\{qr\} \ge \frac{C}{q^{d-1}}$.
- 4. Define

$$q(n) = \left\lfloor \frac{n}{\lfloor \sqrt{n} \rfloor} \right\rfloor.$$

Determine all positive integers n for which q(n) > q(n+1).

- 5. Let x be an irrational number. Prove that there are infinitely many positive integers n such that $\{nx\} < \frac{1}{n}$.
- 6. Prove that for some constant C > 0, the following statement holds:

Let $m \geq 2$ be an integer, A a finite set of integers (not necessarily positive), and B_1, B_2, \ldots, B_m subsets of A. Suppose that for every $k = 1, 2, \ldots, m$, the sum of the elements of B_k is 2^k . Then A contains at least $\frac{Cm}{\log_2 m}$ elements.

3 Homework

1. Determine all positive integers M such that the sequence a_0, a_1, a_2, \ldots defined by

$$a_0 = M + \frac{1}{2}$$
 and $a_{k+1} = a_k \lfloor a_k \rfloor$ for $k = 0, 1, 2, ...$

contains at least one integer term.

- 2. Let n > 1 be an integer, and let a be an integer coprime to n. Prove that there exist integers x, y with $0 < |x| < \sqrt{n}$, $0 < |y| < \sqrt{n}$ and $ay \equiv x \pmod{n}$.
- 3. Prove that every positive integer is the root of a polynomial all of whose coefficients are of the form $2^a 2^b$ for positive integers a and b.