last update: Jan. 3rd, 2021 Changes are purple marked

電磁學 (一) Electromagnetics (I)

17. 馬克士威爾方程式

Maxwell's Equations

授課老師:國立清華大學 電機工程學系 黃衍介 教授

Yen-Chieh Huang, National Tsing Hua University, Taiwan

In this lecture, we will start to see how timevarying electric and magnetic fields are coupled together. The Maxwell's equations describe such coupling.

- 17.1 Faraday's Law of Electromagnetic Induction 法拉第電磁感應定理
- 17.2 Electric Generator 發電機
- 17.3 Maxwell's Equations 馬克士威爾方程式
- 17.4 Boundary Conditions for Time-varying Fields 時變場的邊界條件
- **17.5 Review** 單元回顧

馬克斯威爾方程式 Maxwell's Equations

17.1 法拉第電磁感應定理
Faraday's Law of Electromagnetic
Induction

Faraday's Law of Electromagnetic Induction

For a single current loop in a timevarying magnetic flux, an emf is generated Lenz's Law

$$V_{emf} = \frac{1}{d} \frac{d\Phi}{dt}$$

$$\Rightarrow V_{emf} = \oint_{C} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{s}$$

 V_{emf} is the electromotive force (emf) induced along a conducting loop C, generating a current in such a way that the current opposes the change of the magnetic flux.

For N loops,
$$V_{emf} = -\frac{d\Lambda}{dt}$$
 $\Lambda = N\Phi$ is the magnetic linkage.

Transformer emf

For a stationary current loop C,

$$V_{emf} = \oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_S \vec{B}(t) \cdot d\vec{s} \implies V_{emf} = \oint_C \vec{E} \cdot d\vec{l} = -\int_S \frac{\partial B}{\partial t} \cdot d\vec{s}$$

Flux Cutting (motional) emf

An electric field is induced in a moving metal wire (contains charges) cutting a magnetic flux.

The charge in a wire moving with velocity u in a magnetic field B experiences a magnetic force, or an equivalent electric field given by

*Recall the Lorentz force

$$\vec{E} = \frac{F}{q} = \vec{u} \times \vec{B}$$

 $= \frac{1}{G} = \vec{u} \times \vec{B} \qquad \vec{F} = q\vec{u} \times \vec{B}$

where \vec{u} is the velocity vector of the moving wire.

The voltage induced on a wire of loop C Is therefore

$$V_{emf} = \oint_{C} \vec{E} \cdot d\vec{l} = \oint_{C} \vec{u} \times \vec{B} \cdot d\vec{l}$$

17.1 法拉第電磁感應定理

Faraday's Law of Electromagnetic Induction

 A electromotive force (emf) is generated from a time-varying magnetic flux, according to $V_{emf} = \oint_C \vec{E} \cdot d\vec{l} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{s}$

For a stationary loop, the so-called transformer emf is given by

$$V_{emf} = \oint_{C} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s}$$

For a moving wire, the so-called flux-cutting emf is given by

$$V_{emf} = \oint_C \vec{E} \cdot d\vec{l} = \oint_C \vec{u} \times \vec{B} \cdot d\vec{l}$$

馬克斯威爾方程式 Maxwell's Equations

17.2 發電機 Electric Generator

Total emf

Recall the Faraday's Law of $V = \frac{-d\phi}{dt} \Rightarrow \oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{s}$ Electromagnetic Induction

Flux-cutting emf
$$V_{emf} = \oint_{C} \vec{u} \times \vec{B} \cdot d\vec{l}$$

Indeed, mathematically, it can be shown that

$$-\frac{d}{dt}\int_{S}\vec{B}\cdot d\vec{s} = -\int_{S}\left[\frac{\partial\vec{B}}{\partial t} - \nabla \times (\vec{u}\times\vec{B})\right]\cdot d\vec{s}$$

Therefore, the total emf is the sum of the transformer emf and flux-cutting emf $V = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} + \oint_{C} (\vec{u} \times \vec{B}) \cdot d\vec{l}$

$$\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} + \oint_{C} (\vec{u} \times \vec{B}) \cdot d\vec{l}$$

Electric Generator — rotating wire loop in B

i. First Approach

Use
$$V = -\frac{d\Phi}{dt}$$
.

Calculate the total flux in the current loop:

$$\Phi = \int \vec{B} \cdot d\vec{s} = (wh)B\cos\alpha$$

But $\alpha = \omega t$ with ω being the angular frequency of the rotor.

Finally,
$$V = -\frac{d\Phi}{dt} = (wh)B\omega\sin\omega t$$
 *Note that $-\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} = 0$

ii. Second Approach

Start from
$$V = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} + \oint_{C} (\vec{u} \times \vec{B}) \cdot d\vec{l}$$
Because the magnetic field is

Because the magnetic field is stationary, the transformer emf is zero or $V_{emf} = -\int_{S} \frac{\partial B}{\partial t} \cdot d\vec{s} = 0$

Use $V = \oint_C (\vec{u} \times \vec{B}) \cdot d\vec{l}$ for the flux-cutting emf along the

2 *h*-lengths (why not w?), where the velocity vector is $\vec{u} = \frac{w}{2}\omega\hat{a}_{\phi}$.

Therefore, $V = \frac{w}{2} \omega B \sin(\alpha) \times 2h = (wh)B\omega \sin \omega t$, as expected.

17.2 發電機

Electric Generator

- A rotating wire loop in a magnetic field generates an emf and thus a current around the wire loop.
- The emf can be calculated directly from the Faraday's law of magnetic induction, given by $d\Phi$

 Since the problem does not involve a time-varying magnetic field, the emf can also be calculated from the flux-cutting emf.

馬克士威爾方程式 Maxwell's Equations

17.3 馬克士威爾方程式 Maxwell's Equations In electrostatics and magentostatics, we have the postulates

$$abla imes \vec{E} = 0 \quad
abla \cdot \vec{D} = \rho \quad
abla imes \vec{H} = \vec{J} \quad
abla \cdot \vec{B} = 0$$

However, for a stationary loop in a time-varying magnetic field, we have

field, we have
$$V = \oint_C \vec{E} \cdot d\vec{l} = -\int_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} \qquad (')$$
 Apply the Stokes theorem to $V = \oint_C \vec{E} \cdot d\vec{l}$

and write
$$V = \oint_C \vec{E} \cdot d\vec{l} = \int_S \nabla \times \vec{E} \cdot d\vec{s}$$
 (2)

Comparing (1) and (2), we have $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ at a point in space.

Revising the Ampere's Law

Consider the equation of continuity $abla \cdot \vec{J} = -rac{\mathcal{O}\mathcal{P}}{2}$

However, if we apply the divergence to the Ampere's law in magnetostatics $\nabla \cdot (\nabla \times \vec{H} = \vec{J}) \longrightarrow \nabla \cdot \nabla \times \vec{H} = \nabla$

magnetostatics
$$\nabla \cdot (\nabla \times H = J)$$
 $\nabla \cdot \nabla \times H = \nabla \cdot J$ $\nabla \cdot \nabla \times \vec{H} = 0$ $\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} \neq 0$

We have to modify the Ampere's law by writing

$$\nabla \cdot (\nabla \times \vec{H} + ?) = \nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} \implies \nabla \cdot (?) = -\frac{\partial \rho}{\partial t}$$
Recall $\nabla \cdot \vec{D} = \rho \implies ? = -\frac{\partial \vec{D}}{\partial t}$
Therefore, the revised Ampere's Law is $\nabla \times \vec{H} = \frac{\partial \rho}{\partial t}$

Therefore, the revised Ampere's Law is $\nabla \times \vec{H} = \frac{\partial D}{\partial t} + \vec{J}$

$$=rac{\partial ec{D}}{\partial t}+ec{J}$$

Note that $\frac{\partial \vec{D}}{\partial t} = \vec{J}_d$ can be considered as a kind of current,

called displacement current.

Consider the capacitive circuit -

According to Ampere's law

$$\oint_{a} \vec{H} \cdot d\vec{l} = \int_{S} \vec{J} \cdot d\vec{s}$$

The *abcd* loop can be defined by (1) the surface S_1 intercepting a physical current density J or (2) the surface S_2 intercepting a displacement current J_d through the capacitor C.

(1) For
$$S_1$$

$$\int_{S_1} \vec{J} \cdot d\vec{s} = I_c = C \frac{dV}{dt} = C \frac{d(V_0 \sin \omega t)}{dt} = CV_0 \omega \cos \omega t$$

In
$$\oint_{a,b,c,a} \vec{H} \cdot d\vec{l} = \int_{S} \vec{J} \cdot d\vec{s}$$

The abcd loop can also be defined by the surface S_2 intercepting a displacement current J_d through the capacitor C.

For S_2 , use $C = \varepsilon S / d$ and apply surface integration to the displacement current density

$$\int_{s_2} \vec{J}_d \cdot d\vec{s} = \int_{s_2} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{s} = I_d = \frac{\partial (\varepsilon V/d)}{\partial t} \cdot S = \frac{\varepsilon S}{d} \frac{\partial (V_0 \sin \omega t)}{\partial t}$$
$$= CV_0 \omega \cos \omega t = \int_{S_1} \vec{J} \cdot d\vec{s}$$

Therefore,
$$\int_{S_1} \vec{J} \cdot d\vec{s} = \int_{S_2} \vec{J}_d \cdot d\vec{s}$$
 J_d is indeed a kind of current!

Maxwell's Equations

Integral form

Faraday's induction
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 $\oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{s} = -\frac{d\Phi}{dt}$

$$\frac{\partial \mathbf{B}}{\partial t}$$

Gauss law
$$\nabla \cdot \vec{D} = \rho$$

$$\partial t$$

Gauss law
$$\nabla \cdot \vec{D} = \rho$$
 Ampere's circuital law $\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}$

$$\vec{q} = \rho$$
 $\vec{q} = \partial \vec{r}$

$$\oint_{C} \vec{D} \cdot d\vec{s} = Q$$

$$\oint_{C} \vec{H} \cdot d\vec{l} = I + \int_{S} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{s}$$

Magnetic Gauss law
$$\nabla \cdot \vec{B} = 0$$

$$\vec{Q} \cdot \vec{R} = 0$$

$$\oint \vec{B} \cdot d\vec{s} = 0$$

Two fundamental equations

Lorentz force equation

$$\vec{F} = q\vec{E} + q\vec{u} \times \vec{B}$$

Equation of continuity

$$\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$$

The Maxwell's equations, along with the two equations above, describe ALL known phenomena in electromagnetism.

*Note that,

in a Ohmic material, the relationship applies

$$\vec{I} = \sigma \vec{E}$$

in a simple medium, the relationships apply

$$\vec{D} = \varepsilon \vec{E} = \varepsilon_r \varepsilon_0 \vec{E}$$
 $\vec{B} = \mu \vec{H} = \mu_r \mu_0 \vec{H}$

17.3 馬克士威爾方程式

Maxwell's Equations

Differential form

Integral form

Faraday's induction law

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\oint_{C} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{s} = -1$$

Gauss law $\nabla \cdot \vec{D} = \rho$

$$\oint_{S} \vec{D} \cdot d\vec{s} = Q$$

Ampere's circuital law

$$abla imes \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}$$

$$\oint_C \vec{H} \cdot d\vec{l} = I + \int_S \frac{\partial \vec{D}}{\partial t} \cdot d\vec{s}$$

Magnetic Gauss law

$$\nabla \cdot \vec{B} = 0$$

$$\oint_{S} \vec{B} \cdot d\vec{s} = 0$$

馬克士威爾方程式 Maxwell's Equations

17.4 Boundary Conditions for Timevarying Fields 時變場的邊界條件

Tangential Components of Electric Field

(1) Apply Faraday's law to a loop path/surface at the boundary

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \Rightarrow \oint_C \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{s} = 0$$
The surface area under integration is zero, as $\delta W \to 0$.
$$\oint_C \vec{E} \cdot d\vec{l} = 0 \quad \text{gives} \quad E_{t1} = E_{t2}$$
(Lecture 6)
$$\vec{E}_1 = 0 \quad \text{Material 2}$$

Tangential components of electric field intensity are continuous across the boundary.

Tangential components of Magnetic Field

Material 1

Material 2

 $\delta W \to 0$

 H_{2t}

(2) Apply Ampere's law to a loop path/surface at the boundary

at the boundary
$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J} \quad \Rightarrow \oint_C \vec{H} \cdot d\vec{l} = I + \int_S \frac{\partial \vec{D}}{\partial t} \cdot d\vec{s}$$

Again the surface area is taken to approach zero, as $\delta W \rightarrow 0$.

$$\oint_{C} \vec{H} \cdot d\vec{l} = \int \vec{J}_{s} \cdot d\vec{l} \implies \hat{a}_{n2} \times (\vec{H}_{1} - \vec{H}_{2}) = \vec{J}_{s}$$
(Lecture 14)

The tangential components of magnetic field intensity are discontinuous, if there exists a surface current at the boundary.

Normal Components of Electric Field

(3) Apply Gauss's law to a infinitesimally thin pillbox on the boundary

$$\oint_{S} \vec{D} \cdot d\vec{s} = Q$$

to obtain

$$\hat{a}_{n2} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s$$

(Lecture 6)

The normal components of electric flux density are discontinuous, if there exists a surface charge at the boundary.

Normal Components of Magnetic Field

Material

Material 2

(4) Apply
$$\oint_{S} \vec{B} \cdot d\vec{s} = 0$$

to a infinitesimally thin pillbox on the boundary to obtain

$$B_{n1} - B_{n2} = 0$$
 (Lecture 14)

The normal components of magnetic flux density are continuous across a boundary.

Fields in a Perfect Conductor E_{ex}

Surface

1. dielectric

2. conductor

electrons

 E_{int}

A time-varying E = 0 in a perfect conductor for the same reason as that for a static $E = 0 \implies D = 0$

that for a static
$$E=0 \Rightarrow D=0$$
. conductor $E_{net}=E_{ext}-E_{int}=0$ (Lecture 6)

From
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
, $E = 0$ in a conductor \Rightarrow time-varying \vec{B} is zero in a conductor.

E.g. Dielectric-conductor interface

Inside a conductor
$$\vec{E} = 0, \vec{D} = 0, \vec{H} = 0, \vec{B} = 0$$

$$E_{t1} = E_{t2} \Rightarrow E_{1t} = 0, \quad \hat{a}_{n2} \times (\vec{H}_1 - \vec{H}_2) = \vec{J}_s \Rightarrow \hat{a}_{n2} \times \vec{H}_1 = \vec{J}_s$$

$$\hat{a}_{n2} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s \Rightarrow \hat{a}_{n2} \cdot \vec{D}_1 = \rho_s, \quad B_{n1} - B_{n2} = 0 \Rightarrow B_{n1} = 0$$

17.4 時變場的邊界條件

Boundary Conditions for Timevarying Field

- Tangential components of the electric-field intensity are continuous.
- Normal components of the electric flux density differ by the surface charge density.
- Tangential components of the magnetic-field intensity differ by the surface current density.
- Normal components of the magnetic-flux density are continuous.

馬克士威爾方程式 Maxwell's Equations

17.5 單元回顧 Review

1. Faraday's law of electromagnetic induction: An electromotive force (emf) is generated from a time-varying magnetic flux, according to

$$V_{emf} = \oint_C \vec{E} \cdot d\vec{l} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{s}$$

2. For a stationary loop, a transformer emf is generated from a time-varying magnetic flux

$$V_{emf} = \oint_{C} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial B}{\partial t} \cdot d\vec{s}$$

3. For a moving wire in a magnetic field, a flux-cutting emf is generated from the wire boundary cutting the magnetic flux, given by

$$V_{emf} = \oint_C \vec{E} \cdot d\vec{l} = \oint_C \vec{u} \times \vec{B} \cdot d\vec{l}$$

4. The total emf associated with a general current loop is therefore

$$V_{emf} = \oint_{C} \vec{E} \cdot d\vec{l} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{s} \implies V = -\int_{S} \frac{\partial B}{\partial t} \cdot d\vec{s} + \oint_{C} (\vec{u} \times \vec{B}) \cdot d\vec{l}$$

5. An electric generator can be a rotating wire loop between magnets, generating flux-cutting emf across the loop.

6. The Ampere's law for time-varying field is given by

$$abla imes ec{H} = rac{\partial ec{D}}{\partial t} + ec{J},$$

where $\vec{J}_d = \frac{\partial \vec{D}}{\partial t}$ is call the displacement current and \vec{D} is sometimes called the displacement vector.

Integral Form

 $\oint_{C} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{s} = -\frac{d\Phi}{dt}$

 $\oint_{S} \vec{D} \cdot d\vec{s} = Q$

 $\oint_C \vec{H} \cdot d\vec{l} = I + \int_S \frac{\partial D}{\partial t} \cdot d\vec{s}$

 $\oint \vec{B} \cdot d\vec{s} = 0$

7. The Maxwell's equations describe all known electromagnetic
phenomena

 $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial \vec{B}}$

 $\nabla \cdot \vec{D} = \rho$

 $\nabla \cdot \vec{B} = 0$

 $\nabla \times \vec{H} = \frac{\partial D}{\partial t} + \vec{J}$

Differential Form

Faraday's induction

Ampere's circuital law

Magnetic Gauss law

law

Gauss law

8. The boundary conditions for time-varying fields:

 Tangential components of the electric-field intensity are continuous:

$$E_{t1} = E_{t2}$$

 Normal components of the electric flux density differ by the surface charge density:

$$\hat{a}_{n2} \cdot (\vec{D}_1 - \vec{D}_2) = \rho_s$$

 Tangential components of the magnetic-field intensity differ by the surface current density:

$$\hat{a}_{n2} \times (\vec{H}_1 - \vec{H}_2) = \vec{J}_s$$

• Tangential components of the magnetic-flux density are continuous: $B_{n1} = B_{n2}$

9. In a perfect conductor, both time-varying electric and magnetic fields are zero.

$$E_{net} = E_{ext} - E_{int} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \to 0$$

THANK YOU FOR YOUR ATTENTION