GMetis - Xeon Phi

David Pereira Rui Brito

August 6, 2013

Outline

- Introduction
- System characteristics
- Metis
- 4 Conclusion

Introduction

- GMetis is a graph partitioning application which uses the Galois framwork
- Consists of three major phases
 - Coarsening
 - ★ Find matching nodes
 - ★ Coarsen Graph
 - Initial Paritioning (Clustering)
 - Refinement

Stampede Host

Manufacturer	Intel
Model	Xeon E5-2680
μ Arch	Sandy Bridge
Clock freq	2.70 GHz
#CPUs (sockets)	2
#Cores/CPU	8
#Thread/Core	1
L1 cache size/core	32 KB
L2 cache size/core	256 KB
L3 shared cache size/CPU	20 MB
Vector width	256 bits (AVX)

Table 1: Intel Xeon E5-2680

Stampede Coprocessor - Xeon Phi

Intel
Xeon E5-2680
Sandy Bridge
1.1 GHz
1
61
4
32KB
512 KB
512 bits
2112
1056

Table 2: Intel Xeon Phi

Important characteristics

- Four hardware threads per core
- In-order dual issue pipeline
- Pipeline does not issue instructions from the same hardware context for two consecutive clock cycles
- Maximum issue rate only attainable with at least 2 threads per core

Number of Hardware Threads per core	Minimum Theoretical CPI per Core
1	1
2	0.5
3	0.5
4	0.5

Table 3: Minimum Theoretical CPIs

Conclusion

- Metis and mt-metis have better edgecut
- Metis and mt-metis have lower runtime for small number of partitions
- GMetis is faster for high number of partitions
- Metis graph partitioning algorithm is not suitable to run on MIC as it do not harness vector
- \bullet Metis and mt-metis are writen in C whereas GMetis is writen in C++ and uses Templates. This may explain differences in performance

GMetis - Xeon Phi

David Pereira Rui Brito

August 6, 2013

Questions & Discussion