נוסחאות עזר – מבוא להסתברות

$$;A\cup(B\cap C)=(A\cup B)\cap(A\cup C) \hspace{0.2cm};A\cap(B\cup C)=(A\cap B)\cup(A\cap C) \hspace{0.2cm};A\cap(B\cup C)=(A\cap B)\cup(A\cap C) \hspace{0.2cm}$$
 חוקי דה מורגן
$$(\bigcap_i \overline{A_i})=\overline{(\bigcup_i A_i)} \hspace{0.2cm} (\bigcup_i \overline{A_i})=\overline{(\bigcap_i A_i)} \hspace{0.2cm} (\bigcup_i \overline{A_i})=\overline{(\bigcap_i A_i)} \hspace{0.2cm}$$

 $A \cap B = \emptyset$ מאורעות זרים אם B.A

סדרת מאורעות תקרא זרים בזוגות אם כל זוג מאורעות מתוכה הם זרים.

$$P\{A\cup B\}=P\{A\}+P\{B\}-P\{A\cap B\}$$
 ; $P\{\overline{A}\}=1-P\{A\}$: חוקי ההסתברות אם: $P\{\bigcup_{i=1}^n Ai\}=\sum_{i=1}^n P\{Ai\}$: אם: $\{A_i\}_{i=1}^n$ סדרת מאורעות זרים בזוגות או

נוסחת ההכלה וההוצאה (inclusion exclusion):

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

$$P(A \cup B \cup C \cup D) = P(A) + P(B) + P(C) + P(D) - P(A \cap B) - P(A \cap C) - P(A \cap D) - P(B \cap C) - P(B \cap D) - P(C \cap D) + P(A \cap B \cap C) + P(A \cap B \cap C) + P(A \cap B \cap C) - P(A \cap B \cap C \cap D) + P(B \cap C \cap D) - P(A \cap B \cap C \cap D)$$

כללים קומבינטוריים:

, תוצאות אפשריות וסימטריות n_k שי k שלבים, ובשלב n_k אם ניסוי ניתן להצגה כמתבצע ב n_k שלבים, ובשלב ואם מרחב המדגם מוגדר כוקטורים באורך n כאשר הרכיב ה k שלו הוא תוצאת השלב ה k , אז . במרחב המדגם ש $n_1 \cdot n_2 \cdot ... \cdot n_k$ שי המדגם במרחב במרחב

מספר האפשרויות לדגימה של k מתוד n איברים:

ללא התחשבות בסדר	התחשבות בסדר הדגימה	
(מרחב מדגם לא סימטרי)	n^k	עם החזרה
$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$	$\frac{n!}{(n-k)!}$	ללא החזרה

$$P\{A\cap B\} = P\{A\}P\{B\,/\,A\}$$
 : נוסחת הכפל: $P\{A\,/\,B\} = \frac{P\{A\cap B\}}{P\{B\}}$: הסתברות מותנית:

נוסחת ההסתברות השלמה:

$$P\{A\} = \sum_{i=1}^n P\{A \, | \, Bi\} P\{Bi\}$$
 אם : $\left\{ egin{align*} \mathbf{B}_i \end{array} \right\}_{i=1}^n$ אם : אם $\left\{ \mathbf{B}_i \right\}_{i=1}^n$ אם : אם המדגם, אז מרחב המדגם, אז החב המדגם, או המדגם, או החב המדגם, או החב המדגם, או החב המדגם, או החב המדגם,

$$P(A) = \sum_{i=1}^n P\{A/B_i\}P\{B_i\} \quad \text{chart} \quad P\{B_k/A\} = \frac{P\{A/B_k\}P\{B_k\}}{P\{A\}} \quad \text{:}$$
 נוסחת בייס

 $P\{A\cap B\}=P(A)P(B)$ אי $P\{A/B\}=P(A)$ אי מתקיים B ו A : אי תלות: A ו B אי תלות: קבוצת מאורעות הם בלתי תלויים אם כל קבוצה חלקית שלהם מקיימת שהסתברות החיתוך שלהם שווה למכפלת ההסתברויות.

סדרת ניסויי ברנולי: סדרת ניסויים זהים ובלתי תלויים, כשבכל ניסוי שתי תוצאות אפשריות: הצלחה וכשלון, וכאשר ההסתברות להצלחה בניסוי בודד היא D.

משתנים מקריים:

 $F(k)=P(X\leq k)$: משתנה מקרי בדיד פונקצית ההסתברות: P(X=k) פונקצית ההתפלגות המצטברת: פונקצית ההסתברות: P(X=k) : התוחלת של P(X=k) : התוחלת של פונקציה של P(X=k) : התוחלת של P(X=k) : התוחלת של P(X=k) : התוחלת של P(X=k) : P(X=k) : התוחלת של P(X=k) : P(X=k) : השונות של P(X=k) : P(X=k) :

משתנים (בדידים) מיוחדים:

. שוות שוות בדיד): $X \sim U(N)$, מתאר משתנה המקבל את הערכים: $X \sim U(N)$ בהסתברויות שוות.

$$P\{X=k\}=rac{1}{N}$$
 $k=1,2,...,N$; $E[X]=rac{N+1}{2}$; $V[X]=rac{N^2-1}{12}$: אבור משתנה זה:

בינומי: $X \sim B(n,p)$ ניסויי ברנולי. מתאר את מספר האצלחות ב- מ

$$P\{X=k\}=inom{n}{k}p^kq^{n-k}$$
 $k=0,1,...,n$; $E[X]=np$; $V[X]=npq$: ועבור משתנה זה:

. גיאומטרי (כולל) בסדרת ניסויי ברנולי. את מספר הניסויים עד להצלחה (כולל) בסדרת ניסויי ברנולי. איאומטרי הא $X \sim G(p)$: עבור משתנה זה י

$$P(X=k) = pq^{k-1} \quad k = 1, 2, \dots \; ; \quad P(X \le k) = 1 - q^k \quad k = 1, 2, \dots \; ; \quad E[X] = \frac{1}{p}; \quad V[X] = \frac{q}{p^2}$$

איברים לא איברים שיתקבלו בבחירת איברים מספר איברים מספר איברים מיוחדים. R איברים מיוחדים.

צבור משתנה זה:

$$P\{X = k\} = \frac{\binom{R}{k} \binom{N - R}{n - k}}{\binom{N}{n}} \qquad k = 0, 1, 2, \dots n \; ; \qquad E(X) = n \frac{R}{N} \; ; \qquad V(X) = n \frac{R}{N} \frac{(N - R)}{N} \frac{(N - R)}{(N - 1)}$$

בואדוני: $X \sim Pois(\lambda)$, משמש בדרך כלל לתיאור מספר אירועים ביחידת זמן.

$$P\left(X=k
ight)=rac{\lambda^k}{k!}e^{-\lambda} \qquad k=0,1,2,... \; \; ; \qquad \mathrm{E}(\mathrm{X})=\mathrm{V}(\mathrm{X})=\lambda \quad :$$
 אבור משתנה זה:

: משתנה מקרי רציף פונקצית הצפיפות , f(x) הצפיפות פונקצית החתפלגות משתנה מקרי המצטברת

$$F(t) = P\{X \le t\} = \int_{x=-\infty}^{t} f(x)dx$$

 $E[g(X)] = \int g(x)f(x)dx$: התוחלת של g(X) , התוחלת של פונקציה של g(X) , התוחלת של g(X) , התוחלת של g(X) , התוחלת של g(X) , התוחלת של g(X) , $E[X] = \int xf(x)dx$: $E[X] = \int xf(x)dx$: E

משתנים (רציפים) מיוחדים:

אחיד (רציף): מתאר משתנה המקבל ערכים בין b ל- b כך שההסתברות לערך בקטע פרופורציונית מתאר משתנה $X \sim U(a,b)$ לאורד הקטע.

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{elsewhere} \end{cases}; \quad F(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x \ge b \end{cases}; \quad \mathrm{E}(X) = \frac{a+b}{2}; \quad \mathrm{V}(X) = \frac{(b-a)^2}{12} : \mathrm{E}(X) = \frac{a+b}{2};$$

. משמש בדרך ומערכות אורך אורך אורך אורך משמש בדרך משמש , $X \sim \exp(\lambda)$ משמייריכי (אקספוננציאלי): אורך אלקטרוניות.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}; \quad F(x) = \begin{cases} 0 & x \le 0 \\ 1 - e^{-\lambda x} & 0 \le x \end{cases}; \quad \mathrm{E}(X) = \frac{1}{\lambda}; \quad \mathrm{V}(X) = \frac{1}{\lambda^2} : \text{ and } x = 0 \end{cases}$$

.... משמש לצרכים רבים , $\mathbf{X} \sim \mathbf{N}(\mu, \sigma^2)$: נורמלי

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty \le x \le \infty$$
 ; $E(X) = \mu$; $V(X) = \sigma^2$: אינבור משתנה זה:

חישוב הסתברויות עבור משתנה זה בעזרת טבלת ההתפלגות המצטברת של המשתנה הסטנדרטי

,
$$P\{X \leq t\} = P\{Z \leq \frac{t-\mu}{\sigma}\} = \Phi(\frac{t-\mu}{\sigma})$$
 : והחישוב מתבצע על ידי , $Z = \frac{X-\mu}{\sigma} \sim N(0,1)$ את הערך $\Phi(-a) = 1 - \Phi(a)$: את הערך $\Phi(t)$ קוראים בטבלה, הוא מקיים

 $P(X=x_i,Y=y_j)=P_{X,Y}(x_i,y_j)$: משתנה דו ממדי בדיד : פונקצית ההסתברות המשותפת : X פונקצית ההסתברות ההסתברות השולית של ב $P_X(k)=P\{X=k\}=\sum_j P\{X=k,Y=j\}$

$$\begin{split} E[aX+b] &= aE[X] + b \quad ; \quad V[aX+b] = a^2V[X] \\ &= \sum_{i=1}^n X_i \big] = \sum_{i=1}^n E[X_i] \quad ; \quad V[\sum_{i=1}^n X_i] = \sum_{i=1}^n V[X_i] + \sum_{i\neq j}^{n^2-n^n} Cov(X_{i,}X_j) = \sum_{i=1}^n V(X_i) + 2\sum_{i>j} Cov(X_i,X_j) \\ &= \sum_{i=1}^n V(X_i) + 2\sum_{i>j} Cov(X_i) \\ &= \sum_{i=$$

משתנים מקריים נורמליים ב"ת:

עבור
$$X_i$$
 עבור $X_i \sim N\left(\mu_i, \, \sigma_i^{\, 2}\right), \;\; i=1,2,...,n \;\; \Rightarrow \;\; \sum_{i=1}^n a_i X_i \; \sim \; N\left(\sum_{i=1}^n a_i \mu_i, \; \sum_{i=1}^n a_i^{\, 2} \sigma_i^{\, 2}\right)$

מדגם מקרי פשוט הוא אוסף של מיימ בלתי תלויים, לכולם אותה התפלגות.

$$E[\overline{X_n}] = E[X]$$
 ; $V[\overline{X_n}] = \frac{V[X]}{n}$: והוא מקיים , $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$: ממוצע המדגם הוא

 $n \geq 30$ מספיק גדול מדגם מקרי פשוט קיים, עבור מדגם עבור מדגם עבור מדגם משפט הגבול המרכזי: עבור מדגם מקרי פשוט איים, עבור

 $V(X) = \sigma^2$ ושונות $E(X) = \mu$ אזי: אזיי משתנה מקרי עם תוחלת אזיי

$$\overline{X_n} \sim N(\mu, \frac{\sigma^2}{n})$$

$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

 $X \sim B(n,p)$ בינומי: עבור X משתנה בינומי: למשתנה בינומי

 $X \sim N(np,npq)$: מתקיים (מתקיים אור א היים מספיק (אור א היים אור א היים אור א היים מספיק (אור א היים אור א היים א היים א היים אור א היים א היים אור א היים אור א היים אור א היים א היים א היים א היים א היים אור א היים אור א היים אור א היים א היים

$$P\{X \leq k\} = \Phi\left(\frac{k+0.5-np}{\sqrt{npq}}\right) \quad ; \qquad P\{X < k\} = \Phi\left(\frac{k-0.5-np}{\sqrt{npq}}\right) \quad :$$

ושונות μ ושונות בעלת תוחלת מהתפלגות בעלת מקרי של n תצפיות מקרי של n הוא מדגם מקרי של $X_1, X_2, ..., X_n$ אז':

- . μ הוא אומד חסר הטיה עבור התוחלת $\overline{X}_n = \dfrac{\displaystyle\sum_{i=1}^n X_i}{n}$ א. ממוצע המדגם
 - :ב. אומד חסר הטיה עבור השונות σ^2 ניתן על ידי

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}}{n-1}$$

רווח בר-סמך עבור תוחלת כאשר שונות ידועה:

'יהיו σ^2 אם n הוא מספיק גדול, אז . σ^2 (ידועה) ושונות (ידועה בעלת מהתפלגות בעלת מהתפלגות בעלת μ אם $1-\alpha$ אם $1-\alpha$ עבור $1-\alpha$

$$\left[\overline{X}_n - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \quad \overline{X}_n + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

רווח בר-סמך עבור פרופורציה:

"אם p עבור פרופורציה p של הצלחות, $X{\sim}$ Bin(n,p) אם N

$$\left[\hat{p} - z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \quad \hat{p} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$

.
$$\hat{p} = \frac{X}{n}$$
 כאשר

רווח בר-סמך עבור תוחלת כאשר שונות לא ידועה:

יהיו σ^2 הם פרמטרים לא התוחלת התוחלת נורמלית, מהתפלגות נורמלית, הם פרמטרים לא $X_1,...,X_n$ ידועים. רווח בר-סמך ברמת סמך $1-\alpha$ עבור μ

$$\left[\overline{X}_n - t_{1-\alpha/2,n-1} \frac{S}{\sqrt{n}}, \quad \overline{X}_n + t_{1-\alpha/2,n-1} \frac{S}{\sqrt{n}}\right]$$

 σ^2 כאשר S^2 הוא האומד הבלתי מוטה עבור

 ${f C}$ -אזור הדחייה ומסומן ב- ומסומן ב- דחייה ומסומן ב- אזור הדחייה ומסומן ב-

טעות מסוג I (טעות מסוג ראשון) הינה הטעות הנגרמת מדחיית השערת האפס בטעות כלומר כאשר היא למעשה נכונה:

$$\alpha = P(I)$$
טעות מסוג $= P_{H_0}(C)$

טעות מסוג II שעות מסוג שני) הינה הטעות הנגרמת מקבלת השערת האפס בטעות כלומר כאשר וווו מסוג $\mathbf{H}_{_{\mathrm{I}}}$ נכונה:

$$\beta = P(II)$$
טעות מסוג $= P_{H_1}(\overline{C})$

בינה: האלטרנטיבה נכונה: π היא ההסתברות לדחיית השערת האפס, כאשר האלטרנטיבה נכונה:

$$\pi = P_{H_1}(C) = 1 - P_{H_1}(\overline{C}) = 1 - \beta$$

מובהקות התוצאה הינה ההסתברות לקבל תוצאה קיצונית לפחות כמו התוצאה שהתקבלה בניסוי, בהנחה שהשערת האפס נכונה. ההסתברות מסומנת ב- p_value .

בדיקת השערות על התוחלת כאשר שונות האוכלוסייה ידועה:

<u>ההשערות הנבדקות הן:</u>

.
$$z_{\overline{x}} = \dfrac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$$
 או \overline{X} או מסתמך על

lpha סיכום כללים לדחיית H_0 ברמת מובהקות

$H_{\scriptscriptstyle \perp}$ אלטרנטיבה	H_0 ית	אזור דחי	p_value
$H_1: \mu > \mu_0$	$\overline{X} > \mu_0 + z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}}$	$z_{\overline{X}} > z_{1-\alpha}$	$P(Z \ge z_{\overline{X}}) = 1 - \Phi(z_{\overline{X}})$
$H_1: \mu < \mu_0$	$\overline{X} < \mu_0 - z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}}$	$z_{\overline{X}} < -z_{1-\alpha}$	$P(Z \le z_{\overline{X}}) = \Phi(z_{\overline{X}})$
	$\overline{X} > \mu_0 + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$		
$H_1: \mu \neq \mu_0$	או	1 1	$2 \cdot P(Z \ge \left z_{\overline{X}} \right) = 2 \cdot [1 - \Phi(\left z_{\overline{X}} \right)]$
	$\overline{X} < \mu_0 - z_{1 - \frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$	$\left z_{\overline{X}}\right > z_{1-\frac{\alpha}{2}}$	

בדיקת השערות על התוחלת כאשר שונות לא ידועה:

ההשערות הנבדקות הן:

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

או
$$H_0: \mu = \mu_0 \label{eq:H0}$$

$$H_1: \mu < \mu_0 \label{eq:H0}$$

או
$$H_{_0}: \mu = \mu_0 \ H_{_1}: \mu
eq \mu_0$$

$$.\,t_{\overline{X}}=rac{\overline{X}-\mu_0}{S/\sqrt{n}}$$
 או \overline{X} או מסתמך מסתמד

lpha סיכום כללים לדחיית $H_{\scriptscriptstyle 0}$ ברמת מובהקות

$H_{\scriptscriptstyle \perp}$ אלטרנטיבה	H_0 דחיית	p_value	
$H_1: \mu > \mu_0$	$\overline{X} > \mu_0 + t_{1-\alpha, n-1} \frac{S}{\sqrt{n}}$	$t_{\overline{X}} > t_{1-\alpha,n-1}$	$P(T \ge t_{\overline{X}})$
$H_1: \mu < \mu_0$	$\overline{X} < \mu_0 - t_{1-\alpha, n-1} \cdot \frac{S}{\sqrt{n}}$	$t_{\overline{X}} < -t_{1-\alpha,n-1}$	$P(T \le t_{\overline{X}})$
$H_1: \mu \neq \mu_0$	$\overline{X} > \mu_0 + t_{1-lpha/2,n-1} \cdot rac{S}{\sqrt{n}}$ וא	$\left t_{\overline{X}}\right > t_{1-\alpha/2,n-1}$	2 P/T > 1
	$\overline{X} < \mu_0 - t_{1-\alpha/2, n-1} \cdot \frac{S}{\sqrt{n}}$		$2 \cdot P(T \ge \left t_{\overline{X}} \right)$

ומספר נוסחאות מתמטיות לסיום:

$$\boldsymbol{a}_{n} = \boldsymbol{a} \cdot \boldsymbol{q}^{n-1}$$

יות לסיום:
$$a_n = a \cdot q^{n-1} \qquad ; \qquad \sum_{i=1}^n a_i = a \frac{(1-q^n)}{1-q} \qquad a_n = a_1 + (n-1) \cdot d \qquad ; \qquad \sum_{i=1}^n a_i = \frac{(a_1+a_n) \cdot n}{2}$$

$$\sum_{i=1}^\infty a_i = a \frac{1}{1-q} \qquad \qquad 0 \le q < 1$$
ובפרט כאשר $\sum_{i=1}^n a_i = \frac{(1+n) \cdot n}{2}$:יספרים הטבעיים הוא:

$$\sum_{i=1}^{n} a_{i} = a \frac{(1 - q^{n})}{1 - q}$$

$$a_n = a_1 + (n-1) \cdot d$$

$$\sum_{i=1}^{n} i = \frac{(1+n) \cdot n}{2}$$

Table of Normal Commulative Distribion Function

Z	0.00	0.01	0.02	0.02	0.04	0.05	0.04	0.07	0.00	0.00
		0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
L		L	L	L	L	l	L	l	I .	L

φ(Z)	0.75	0.8	0.85	0.9	0.95	0.975	0.98	0.99	0.995	0.999
Z	0.674	0.842	1.036	1.282	1.645	1.960	2.054	2.326	2.576	3.090

critical values of the t distribution											
d.f.\q	0.6	0.7	0.75	0.8	0.85	0.9	0.95	0.975	0.99	0.995	0.999
1	0.325	0.727	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	318.309
2	0.289	0.617	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327
3	0.277	0.584	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215
4	0.271	0.569	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173
5	0.267	0.559	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893
6	0.265	0.553	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208
7	0.263	0.549	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785
8	0.262	0.546	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501
9	0.261	0.543	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297
10	0.260	0.542	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144
11	0.260	0.540	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025
12	0.259	0.539	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930
13	0.259	0.538	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852
14	0.258	0.537	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787
15	0.258	0.536	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733
16	0.258	0.535	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686
17	0.257	0.534	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646
18	0.257	0.534	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610
19	0.257	0.533	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579
20	0.257	0.533	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552
21	0.257	0.532	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527
22	0.256	0.532	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505
23	0.256	0.532	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485
24	0.256	0.531	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467
25	0.256	0.531	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450
26	0.256	0.531	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435
27	0.256	0.531	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421
28	0.256	0.530	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408
29	0.256	0.530	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396
30	0.256	0.530	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385
40	0.255	0.529	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307
50	0.255	0.528	0.679	0.849	1.047	1.299	1.676	2.009	2.403	2.678	3.261
60	0.254	0.527	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232
70	0.254	0.527	0.678	0.847	1.044	1.294	1.667	1.994	2.381	2.648	3.211
80	0.254	0.526	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195
90	0.254	0.526	0.677	0.846	1.042	1.291	1.662	1.987	2.368	2.632	3.183
100	0.254	0.526	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174
inf	0.253	0.524	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090