Sistemas Embarcados

Prof. MSc. Raphael de Souza Nunes Escola Tecnológica da FPFtech Curso de Extensão

Quem sou eu?

- Técnico em Eletrônica IFAM;
- Engenheiro de Controle e Automação UEA;
- Pós-graduação em Engenharia de Controle e Automação Industrial – Faculdade Única;
- Mestrado em Engenharia Elétrica UFAM;
- Doutorando em Engenharia Elétrica UFAM;
- Desenvolvedor de Firmware e Software na FPFtech;
- Desenvolvedor Backend PsicoNote;
- Desenvolvedor Full Stack Freelancer;
- E-mail: raphael.nunes@fpf-etech.com

Raphael Nunes

Quem são vocês?

- Nome e idade;
- Onde trabalha e/ou estuda?
- O que são sistemas embarcados? (pode citar exemplos).
- O que espera do curso?

Informações Importantes

https://classroom.google.com/c/NzkwOTA4NzExMTgy?cjc=walfwj3z

Código da turma: walfwj3z

Objetivos do Curso

 Capacitar profissionais para o mercado de trabalho com conhecimentos necessários para dar vazão ao crescimento da internet, IoT, e da diversificação de equipamentos que utilizam microcontroladores e microprocessadores, empregados em praticamente todos os dispositivos móveis, com funcionalidades cada vez maiores.

Conteúdo Programático

- Módulo 1: Introdução à Eletrônica;
- Módulo 2: Introdução aos Sistemas Embarcados;
- Módulo 3: Programação em Sistemas Embarcados;
- Módulo 4: Trabalhando com Sensores e Atuadores;
- Módulo 5: Interfaces de Comunicação;
- Módulo 6: Introdução ao *IoT*;
- Módulo 7: Projeto Final;

Informações Importantes

- Horário das aulas: 18h00 21h30;
- Localização: FPFtech, bloco 4, laboratório 6.
- Período do Curso: 04/08/25 até 22/08/25 (60h);
- Chamadas às 18h40 e às 21h20;
- Intervalo de 20 min: 19h40 20h00

Recomendações

- Seja pontual para evitar atrasos nas atividades;
- Leve material de anotação para acompanhar melhor a aula;
- Utilize o e-mail para dúvidas e comunicados fora do horário de aula;
- As justificativas de falta podem ser realizadas através do atendimento ao estudante;
- Não teremos avaliações, porém, tomar cuidado com o limite de faltas!

Bibliografia

- 1. CROVADOR, Álvaro. Eletricidade e eletrônica básica. 1. ed. São Paulo: Contentus, 2020. E-book. Disponível em: https://plataforma.bvirtual.com.br. Acesso em: 29 out. 2024.
- 2. SCHMIDT, Walfredo. Materiais elétricos: condutores e semicondutores. 3. ed. São Paulo: Blucher, 2020. E-book. Disponível em: https://plataforma.bvirtual.com.br. Acesso em: 29 out. 2024.
- 3. SANTOS, Altair Martins dos; RIBEIRO, Sylvio Nascimento. Arduino: do básico à internet das coisas. Rio de Janeiro, RJ: Brasport, 2023. E-book. Disponível em: https://plataforma.bvirtual.com.br. Acesso em: 29 out. 2024.
- 4. FIGUEIREDO, Rodrigo Marques de. Sistemas digitais: princípios, teoria, técnicas e aplicações. Belo Horizonte, MG: Dialética, 2024. E-book. Disponível em: https://plataforma.bvirtual.com.br. Acesso em: 29 out. 2024.
- 5. HAUPT, Alexandre; DACHI, Édison. Eletrônica digital. 1. ed. São Paulo: Blucher, 2016. E-book. Disponível em: https://plataforma.bvirtual.com.br. Acesso em: 29 out. 2024.

Bibliotecas Virtuais

- Biblioteca Virtual Catalogus;
- Biblioteca Virtual Pearson;

Afinal, o que são Sistemas Embarcados?

Afinal, o que são Sistemas Embarcados?

- "Sistemas embarcados são dispositivos com capacidade de processamento de dados e que estão inseridos em um determinado dispositivo ou produto, de forma a desempenhar uma função ou servir a uma aplicação específica. O núcleo destes sistemas são os microcontroladores e microprocessadores, que nada mais são que unidades de processamento bastante flexíveis em termos de sua utilização e facilidade de aplicação."
- "Um sistema embarcado (*Embedded System*) é um sistema computacional, conjunto de hardware e software, projetado para executar uma tarefa específica em um sistema maior. Eles são **integrados** em outros produtos ou equipamentos, visando controlar ou monitorar uma determinada função, ou processo. Esses sistemas são geralmente projetados para serem simples e de **baixo custo**, sendo compostos por um conjunto limitado de componentes, como microcontroladores, microprocessadores, sensores e atuadores."

Exemplos de Sistemas Embarcados

Exemplos de Sistemas Embarcados

Microcontroladores e Microprocessadores

- Um microcontrolador é um dispositivo completo, podendo ser comparado a um computador com diversos recursos embutidos num único chip, apresentando características específicas;
- O que o microprocessador faz exige a utilização de dispositivos complementares, trata-se de um dispositivo de propósito geral;

Arquitetura genérica de um microprocessador

Arquitetura genérica de um microcontrolador

Diagrama ATmega328p

Exemplos de Microcontroladores

Arduino Nano - RP2040

Raspberry Pi Pico - RP2040

ESP32 WROOM - ESP32-D0WDQ6

Arduino UNO - ATmega328p

STM32 Devkit - STM32F103C8T6

Microbit - Nordic nRF52833 ARM Cortex-M4

Exemplos de Microprocessadores

Raspberry 4 Model B - Broadcom BCM2711

Orange Pi Zero 3 – Allwinner H618 quad-core Cortex-A53

Cuidado! Não confundir!

Devkit

Módulo de aplicação

Microcontrolador

E quais seriam as habilidades necessárias?

1. Programação e Desenvolvimento de Firmware

- 1. Habilidade em linguagens como C e C++ (especialmente para microcontroladores);
- 2. Conhecimento em Python para automação de testes e prototipagem rápida;
- 3. Experiência com linguagens de montagem (Assembly) para microcontroladores específicos;

2. Conhecimento de Microcontroladores e Arquiteturas

- Familiaridade com diferentes famílias de microcontroladores (por exemplo, ARM Cortex, ESP32, STM32, PIC, AVR);
- 2. Entendimento de arquiteturas de hardware e software embarcados;

3. Eletrônica e circuitos

- 1. Compreensão de eletrônica analógica e digital para conectar sensores, atuadores e outros dispositivos ao microcontrolador;
- 2. Habilidade em interpretar diagramas de circuitos e trabalhar com osciloscópios e multímetros;

4. Interfaces de Comunicação

- 1. Conhecimento de protocolos como UART, SPI, I2C, CAN, RS-485, e protocolos de comunicação sem fio (Bluetooth, Wi-Fi, Zigbee);
- 2. Capacidade de depuração e análise de dados nas interfaces de comunicação.

5. Sistemas Operacionais Embarcados (RTOS)

- 1. Experiência com sistemas operacionais de tempo real (RTOS) e suas aplicações em sistemas embarcados;
- 2. Entendimento de conceitos como multitarefa, gerenciamento de memória e interrupções;

E quais seriam as habilidades necessárias?

6. Design para Confiabilidade e Eficiência Energética

- 1. Técnicas de design de baixo consumo de energia para sistemas portáteis;
- 2. Habilidades para identificar e mitigar falhas em sistemas críticos e garantir a confiabilidade;

7. Habilidades de Depuração e Testes

- 1. Experiência com ferramentas de depuração e diagnóstico de firmware;
- 2. Habilidade em realizar testes em nível de sistema e automatizar processos de validação;

8. Integração de Sensores e Atuadores

- 1. Experiência em trabalhar com sensores (temperatura, pressão, aceleração, etc.) e atuadores (motores, LEDs, relés);
- 2. Conhecimento de aquisição e tratamento de dados para processamento eficiente;

9. Habilidades de Desenvolvimento de Software e Integração

- 1. Capacidade de integração de sistemas e de desenvolvimento para plataformas específicas (por exemplo, Raspberry Pi, Beaglebone);
- 2. Familiaridade com controle de versão (Git) e ferramentas de CI/CD para manutenção de firmware;

10. Organização, Capacidade de Análise e Solução de Problemas

1. Habilidades analíticas para identificar e resolver problemas complexos no nível de hardware e software;

E que tecnologias utilizar?

Hardware dedicado

Software executando em hardware genérico

Implementação	Custo de projeto	Custo unitário	Upgrades, correções de bugs	Tamanho	Consumo	Velocidade
Lógica discreta	Baixo	Médio	Difícil	Grande	?	Muito rápido
ASIC	Alto \$500K/ conjunto máscara	Muito baixo	Difícil	Minúsculo 1 die	Baixo	Rapidíssimo
Lógica programável – FPGA, PLD	Baixo	Médio	Fácil	Pequeno	Médio para alto	Muito rápido
Microprocessador + memória + periféricos	Baixo para médio	Médio	Fácil	Pequeno para médio	Médio	Moderado
Microcontrolador (int. memória e periféricos)	Baixo	Médio para baixo	Fácil	Pequeno	Médio	Lento a moderado
PC embarcado	Baixo	Alto	Fácil	Médio	Médio para alto	Moderado

EMBEDDED SYSTEMS ENGINEERING ROADMAP

AEROSPACE ...

Exemplo de Fluxo de Desenvolvimento

atividades & Cronograma do Projeto

Como Programar os Dispositivos?

Como Desenvolver o Hardware?

Como comprar?

⊕ www.fpf-etech.com

⊕ | www.fpftech.com

in /fpf

© @escola.etech

© @fpf.tech

f @fpftech