Bayesian Network

Alymzhan Toleu

alymzhan. to leu@gmail.com

Bayes decision rule

• If we know the conditional probability P(X | y) we can determine the appropriate class by using Bayes rule:

But how do we determine p(X|y)?

Maximum Likelihood Estimation

Likelihood function

$$L(\theta) \propto P(D \mid \theta) \quad \Longrightarrow \quad \hat{\theta}^{MLE} = argmax L(\theta)$$

$$\log(L(\theta)) \propto \sum_{i=1}^{n} \log(P(x^{(i)} | \theta))$$

$$\hat{\theta}^{MLE} = \operatorname{argmax} \sum_{i=1}^{n} log(P(x^{(i)} | \theta))$$

Maximize Likelihood Estimation

Naïve Bayes Classifier

- Assumption: attribute conditional independence
- Based on this assumption, we get

$$P(y|X) = \frac{P(X,y)}{P(X)} = \frac{P(X|y) * P(y)}{P(X)} = \frac{P(y)}{P(X)} \prod_{i=1}^{a} P(x_i \mid y)$$

where d is the number of attributes and x_i refers to i-th attribute's value of x.

• With MLE, and ignoring P(X) (it is sample for all classes), NB calculates

$$\operatorname{argmax}_{y} P(y) \prod_{i=1}^{d} P(x_{i} \mid y)$$

Naïve Bayes Classifier (cont.)

- NB classifier's training process is to calculate the values for the prior P(y) and the conditional probability $P(x_i \mid y)$.
- For example, D_y is a set of samples that belongs to the class y and $D_y \in D$, then
 - the prior probability: $P(y) = \frac{|D_y|}{|D|}$
 - for **discrete** attributes, D_{y, x_i} is the set of samples in D_y their attribute value equal to x_i :

 $P(x_i \mid y) = \frac{|D_{y,x_i}|}{|D|}$

 for continuous attributes, need to consider a distribution, e.g. the normal distribution:

$$P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

Semi-naïve Bayes classifiers

Semi-naïve Bayes classifiers

• Semi-naive Bayesian learning refers to a field of Supervised Classification that seeks to enhance the classification and conditional probability estimation accuracy of naive Bayes by relaxing its attribute independence assumption.

Semi-naïve Bayes classifiers

- One-Dependent Estimator (ODE)
 - assume that each attribute depends on at most one other attribute.

$$P(y|X) = P(y) \prod_{i=1}^{d} P(x_i \mid y, pa_i)$$

where pa_i is the attribute on which attribute x_i depends, and it is referred to as the parent attribute of x_i .

- For each attribute x_i , if its parent attribute is known, the probability can be estimated $P(x_i \mid y, pa_i)$.
- **Problem**: how to determine the parent attribute of each attribute?

SPODE

The most straightforward approach is to assume that all attributes depend on a single attribute, called the "super-parent," and then use model selection methods such as cross-validation to determine the super-parent attribute, forming the Super-Parent ODE (SPODE) method.

TAN

- TAN (Tree Augmented Naïve Bayes) [Friedman et al., 1997] based on the Maximum Weighted Spanning Tree algorithm [Chow and Liu, 1968].
- It simplifies the dependencies between attributes shown in the graph (c).

Steps:

• calculate the conditional mutual information between any two attributes.

$$I(x_i, x_j \mid y) = \sum_{x_i, x_j; c \in y} P(x_i, x_j \mid c) \log \frac{P(x_i, x_j \mid c)}{P(x_i \mid c)P(x_j \mid c)}$$

- construct a complete graph using attributes as nodes, and set the weight of the edge between any two nodes as $I(x_i, x_j \mid y)$
- construct the maximum weighted spanning tree of this complete graph, select a root variable, and set the edges as directed.
- add directed edges from y to each attribute.₁₀

AODE

- AODE (Averaged One-Dependent Estimator) [Webb et al. 2005] is a more powerful classifier based on ensemble learning mechanism.
- It attempts to *construct SPODE* (Super-Parent One-Dependent Estimator) by taking each attribute as a super-parent, and clusters SPODEs with sufficient training data support together as the final result.

$$P(c \mid \mathbf{x}) \propto \sum_{i=1; |D_{x_i} \geq m'|}^{d} P(c, x_i) \prod_{j=1}^{d} P(x_j \mid c, x_i)$$

$$\hat{P}(x_i, c) = \frac{|D_{c,x_i}| + 1}{|D| + N_i} \qquad \hat{P}(x_j \mid c, x_i) = \frac{|D_{c,x_i,x_j}| + 1}{|D_{c,x_i}| + N_j}$$

 N_i represents the number of values taken on the *i-th* attribute.

m' is a threshold value.

Bayesian Network

Bayesian network

- **Bayesian network**, also known as a belief network, uses a directed acyclic graph (DAG) to describe the dependency relationship between attributes, and uses conditional probability tables (CPT) to describe the joint probability distribution of attributes.
- Example:

Bayesian network: Example

Let's creating a Bayesian Network that will model the marks
 (m) of a student on his examination.

Marks (m) depend on:

Exam level (e): (difficult, easy)

IQ of the student (i): (high, low)

Marks will predict whether or not he/she will get admitted (a) to a university.

IQ will also predict the **aptitude score** (s) of the student.

How to calculate the joint probability distribution of these 5 variables?

$$P(a, m, i, e, s) = ?$$

Bayesian network: Example

$$P(a, m, i, e, s) = P(a|m) * P(m|i, e) * P(i) * P(e) * P(s|i)$$

- p(a|m) represents the conditional probability of a student getting an admission based on his marks.
- p(m|i,e) represents the conditional probability of the student's marks, given his IQ level and exam level.
- p(i) denotes the probability of his IQ level (high or low)
- p(e) denotes the probability of the exam level (difficult or easy)
- p(s | i) denotes the conditional probability of his aptitude scores, given his IQ level

Bayesian network: Structure

• The typical dependency relationship between three variables in a Bayesian network:

Gaussian Naïve Bayes Classifiers

Gaussian Naïve Bayes

• A Gaussian naïve is based on continuous variable that are assumed to have a Gaussian (normal) distribution.

Prior P(y):

$$P(y) = \frac{|D_y|}{|D|}$$

Conditional probability $P(x_i|y)$:

$$P(x_i | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

Posterior
$$P(y|X)$$
:
$$P(y|X) = P(y) \prod_{i=1}^{d} P(x_i \mid y)$$

Example with Iris Data Set

Iris Data Set

Download: Data Folder, Data Set Description

Abstract: Famous database; from Fisher, 1936

Data Set Characteristics:	Multivariate	Number of Instances:	150	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	4	Date Donated	1988-07-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	5169206

Attribute Information:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm
- 5. class:
- -- Iris Setosa
- -- Iris Versicolour
- -- Iris Virginica

Iris setosa

Iris versicolor

Iris virginica

Example with Iris Data Set

• Data (150 samples)

	sepal length	sepal width	petal length	petal width	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

Attribute Information:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm
- 5. class:
- -- Iris Setosa (0)
- -- Iris Versicolour (1)
- -- Iris Virginica (2)

Gaussian Naïve Bayes

Example of 3 Samples

	sepal length	sepal width	petal length	petal width	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0

Iris Setosa(0)

$$P(y=0) = \frac{|D_y|}{|D|} = \frac{3}{6}$$

	sepal length	sepal width	petal length	petal width	label
50	7.0	3.2	4.7	1.4	1
51	6.4	3.2	4.5	1.5	1
52	6.9	3.1	4.9	1.5	1

Iris Versicolour (1)

$$P(y=1) = \frac{|D_y|}{|D|} = \frac{3}{6}$$

Gaussian Naïve Bayes: Calculate Prior

	sepal length	sepal width	petal length	petal width	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0

Iris Setosa(0)

	sepal length	sepal width	petal length	petal width	label
50	7.0	3.2	4.7	1.4	1
51	6.4	3.2	4.5	1.5	1
52	6.9	3.1	4.9	1.5	1

Iris Versicolour (1)

se	pal length	sepal width	petal length	petal width	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0

•

(6.76, 0.262)

	sepal length	sepal width	petal length	petal width	label
50	7.0	3.2	4.7	1.4	1
51	6.4	3.2	4.5	1.5	1
52	6.9	3.1	4.9	1.5	1

se	pal length s	epal width	petal length	petal width	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
(6.76, 0.262)					

	sepal length	sepal width	petal length	petal width	label
50	7.0	3.2	4.7	1.4	1
51	6.4	3.2	4.5	1.5	1
52	6.9	3.1	4.9	1.5	1

(3.16, 0.047)

	sepal length	epal width	petal length	petal width	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
(6	1 (5.76, 0.262)	(4.89, 0	0.163)		

	sepal length	sepal width	petal length	petal width	label
50	7.0	3.2	4.7	1.4	1
51	6.4	3.2	4.5	1.5	1
52	6.9	3.1	4.9	1.5	1

We get a new sample:

- Sepal length = 6.3cm
- Sepal width = 3 cm

$$P(x_i | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

Prior:

$$P(\text{new sample} = 0) = 0.5$$

$$P(\text{new sample} = 1) = 0.5$$

Likelihood:

P(new sample |
$$y = 0$$
) = log(0.04 *6.24e-51)
= -118.819

P(new sample |
$$y = 1$$
) = log(7.18e-116 * 1.397)
= -264.794

• Thank you!