

Aprendizado de Máquina Aula 2.1 - Algoritmos de Regressão

Adriano Rivolli

rivolli@utfpr.edu.br

Especialização em Inteligência Artificial

Universidade Tecnológica Federal do Paraná (UTFPR) Câmpus Cornélio Procópio Departamento de Computação

Conteúdo

- 1 Introdução
- 2 Regressão linear
- 3 Regularização
- 4 Regressão Polinomial

×

Introdução

Regressão

- Tarefa do aprendizado supervisionado
- O atributo alvo é um valor real
- É usada para prever o valor de uma variável dependente com base em uma ou mais variáveis independentes
- Explora o relacionamento entre as variáveis do problema

Aplicações

- Previsão de custos, preços e vendas
- Estimativa de consumo e demanda
- Previsão de pontuação, crédito e taxas
- Preenchimento de valores ausentes

Algoritmos

- Regressão Linear
- Regressão Polinomial
- Support Vector Regression
- Decision Tree Regression
- Random Forest Regression
- K-nearest neighbors regression

Regressão linear

Regressão Linear

- Assume que os dados (entrada/saída) são lineares (viés do algoritmo)
- Aprende uma função linear que melhor aproxima a entrada em saída
- Há diferentes formas de estimar modelos lineares

Vamos conhecer o Mínimos Quadrados (Least Squares)

Exemplo

Modelo

$$\hat{y} = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

- \blacksquare β_0 intercepto (também chamado de viés)
- \blacksquare β_i coeficientes associados às variáveis preditivas
- \blacksquare x é a instância que se deseja prever o valor de \hat{y}
- \blacksquare O treinamento consiste em aprender os valores de β

Least Squares (exemplo)

lacktriangle os coeficientes eta são definidos visando diminuir a soma dos erros residuais

$$RSS = Residual Sum-of-Squares$$

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - \hat{y})^2$$
$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{i=1}^{p} \beta_i x_{ij})^2$$

Erros residuais

Fonte: Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.), pg. 45

Interpretando os coeficientes

- \blacksquare β_0 intercepto: Valor predito quando todas as variáveis independentes são iguais a zero
- Coeficientes β_i : Cada coeficiente está associado a uma variável independente específica
 - Coeficiente positivo sugere que um aumento na variável independente está associado a um aumento no valor predito
 - Coeficiente negativo é o contrário
 - Valores próximos a 0 indicam que a variável independente em questão não possui relevância para a predição

>

Erro padrão e Z-score

- Além dos valores dos coeficientes é possível entender a confiabilidade e significância estatística dos valores estimados
- Std. Error (Erro Padrão): Quanto menor, mais confiável é a estimativa do coeficiente
- **Z-score**: Valor absoluto maior que 1.96 indica que o coeficiente é estatisticamente significativo ao nível de significância de 5%

Exemplo

Term	Coefficient	Std. Error	Z Score
Intercept	2.46	0.09	27.60
lcavol	0.68	0.13	5.37
lweight	0.26	0.10	2.75
age	-0.14	0.10	-1.40
lbph	0.21	0.10	2.06
svi	0.31	0.12	2.47
lcp	-0.29	0.15	-1.87
gleason	-0.02	0.15	-0.15
pgg45	0.27	0.15	1.74

Fonte: Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.), pg. 50

Regularização

Evitando overfitting

- A regularização é uma penalidade adicionada a função de custo
- Utilizada para controlar a magnitude dos coeficientes
- O seu uso faz com que o valor de alguns coeficientes sejam próximos de 0 (penaliza coeficientes grandes)
- Ajuda na seleção dos atributos mais relevantes

Lasso

- Least Absolute Shrinkage and Selection Operator
- Útil para dados com alta dimensionalidade e atributos irrelevantes
- Utiliza a norma L1 (distância Manhattan)
- \blacksquare Custo = RSS + $\alpha \sum_{i=1}^{p} |\beta_i|$
 - ightharpoonup lpha controla a força da regularização

Ridge

- Útil para dados com atributos redundantes
- Utiliza a norma L2 (distância Euclidiana)
- **Usto** = RSS + $\alpha \sum_{i=1}^{p} \beta_i^2$
 - ightharpoonup lpha controla a força da regularização

L1 vs L2

L1 vs L2 (características)

- L1: soma dos valores absolutos dos coeficientes
 - ▶ Tende a produzir coeficientes esparsos ($\beta_i = 0$)
 - Seleção de variáveis
- L2: soma dos quadrados dos coeficientes
 - Penalização suave e distribuída
 - Reduz a magnitude de todos os coeficientes proporcionalmente

>

Regressão Polinomial

Transformação dos dados

- Um caso especial de regressão linear
- Aplica-se um mapeamento dos dados
- O modelo se torna:

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_n x^n$$

- n é grau do polinômio
- É possível capturar relacionamentos mais complexos nos dados

Dados polinomiais

Atributos polinomiais

- \blacksquare Dado 2 atributos [a, b]
- Aplicação da transformação polinomial de grau 2 resulta:
 - \triangleright [1, a, b, a^2 , ab, b^2]
- O número de atributos gerados é dado por:

$$\frac{(p+d)!}{p!d!}$$

onde p é o grau do polinômio e d o número de atributos

A escolha do grau

