Multi-GPU training of deep learning models on Piz Daint

Synchronous Distributed Training with Data Parallelism

Rafael Sarmiento ETHZürich / CSCS CSCS/USI Summer University 2022

Outline

- Stochastic Gradient Descent
- [lab] Simple SGD with TensorFlow
- Synchronous Distributed SGD with data parallelism
- Ring Allreduce Algorithm
- [lab] Simple Distributed SGD with TensorFlow and Horovod

We want to train a model on this data

We choose a model and a cost function

$$y = mx + n$$

$$L = \frac{1}{N} \sum_{i}^{N} (\hat{y}_i - y_i)^2$$

We choose a model and a cost function

$$y = mx + n$$

$$L = \frac{1}{N} \sum_{i}^{N} (\hat{y}_i - y_i)^2$$

$$L = \frac{1}{N} \sum_{i=1}^{N} (mx_i + n - y_i)^2$$

We choose a model and a cost function

$$y = mx + n$$

$$L = \frac{1}{N} \sum_{i}^{N} (mx_i + n - y_i)^2$$

We need to choose an optimizer

We need to choose an optimizer

• Evaluate the loss function $L=\frac{1}{N}\sum_{i}^{N}l(\hat{y}_{i},y_{i})$ for a batch of N samples $\{x,y\}$ (forward pass)

- Evaluate the loss function $L=\frac{1}{N}\sum_{i}^{N}l(\hat{y}_{i},y_{i})$ for a batch of N samples $\{x,y\}$ (forward pass)
- Compute the gradients of the loss function with respect to the parameters of the model $\frac{\partial L}{\partial W}\big|_{\{x,y\}}$ (backpropagation)

- Evaluate the loss function $L = \frac{1}{N} \sum_{i}^{N} l(\hat{y}_i, y_i)$ for a batch of N samples $\{x, y\}$ (forward pass)
- Compute the gradients of the loss function with respect to the parameters of the model $\frac{\partial L}{\partial W}\big|_{\{x,y\}}$ (backpropagation)
- Update the parameters $W_t = W_{t-1} \eta \frac{\partial L}{\partial W}|_{\{x,y\}_{t-1}}$

Gradient
Descent
batch_size = training_set_size

Gradient Descent

batch_size = training_set_size

Stochastic Gradient

Descent

batch_size = 1

Gradient
Descent
batch_size = training_set_size

Stochastic Gradient
Descent
batch_size = 1

Minibatch Stochastic Gradient Descent 1 < batch_size < training_set_size

[lab] Simple Stochastic Gradient Descent

Let's run the notebook sgd/1-linear_regression_sgd_single_gpu.ipynb. There we use an unidimensional linear model to understand the trajectories of the SGD minimization.

Let's try different batch sizes and see how the trajectory changes.

Gradient
Descent
batch_size = training_set_size

Stochastic Gradient
Descent
batch_size = 1

Minibatch Stochastic Gradient Descent 1 < batch_size < training_set_size

• The batch size is a hyperparameter

- The batch size is a hyperparameter
- Large batches may not fit on the GPU memory

- The batch size is a hyperparameter
- Large batches may not fit on the GPU memory
- Splitting the training into multiple nodes/GPUs enables the use of large batches

- The batch size is a hyperparameter
- Large batches may not fit on the GPU memory
- Splitting the training into multiple nodes/GPUs enables the use of large batches
- Multiple nodes/GPUs does not necessarily mean more throughput or faster convergence!

Distributing the training with data parallelism

Distributing the training with data parallelism

Distributing the training with data parallelism

The Allreduce operation

- The Allreduce name comes from the MPI standard.
- MPI defines the function MPI_Allreduce to reduce values from all ranks and broadcast the result of the reduction such that all processes have a copy of it at the end of the operation.
- Allreduce can be implemented in different ways depending on the problem.

65 18 20 21 40 11 50 5

10 36 1 34 6 17 9 1

Worker 2 2 32 7 5 10 3 12 45

- ullet Each of the N workers communicates only with two other workers 2(N-1) times.
- ullet The values of the reduction are obtained with the first N-1 communications.
- ullet The second N-1 communications are performed to update the reduced values on all workers.
- The total amount of data sent by each worker $\left[2(N-1)\frac{\text{array_size}}{N}\right]$ is virtually independent of the number of workers.

Communication between Cray XC50 Nodes on Piz Daint

- Aries interconnect with the Dragonfly topology
- Direct communication between nodes on the same electrical group (2 cabinets / 384 nodes)
- Communication between nodes on different electrical groups
 passes by switches (submit with the option #SBATCH --switches=1 to
 make your job wait for a single-group allocation)
- More info at CSCS user portal

NVIDIA Collective Communications Library (NCCL)

- NCCL implements multi-GPU and multi-node collective communication primitives that are performance optimized for NVIDIA GPUs
- It provides routines such as Allgather, Allreduce and Broadcast, optimized to achieve high bandwidth over PCIe and NVLink high-speed interconnect

Horovod is an open-source distributed training framework for TensorFlow, Keras, PyTorch, and MXNet developed by Uber. The goal of Horovod is to make distributed Deep Learning fast and easy to use

- Minimal code modification required
- Uses bandwidth-optimal communication protocols
- Seamless integration with Cray-MPICH and use of the NVidia Collective Communications Library (NCCL-2)
- Actively developed
- Growing community

- torch.nn.parallel.DistributedDataParallel enables multi-node data parallelism with minimum code changes
- torch.utils.data.DistributedSampler can be used to split the batch over multiple processes when using torch.nn.parallel.DistributedDataParallel
- torch.distributed implements the support for sending tensors across processes
- More info at PyTorch's homepage

CNNs on Imagenet Benchmark results on Piz Daint (TensorFlow+Horovod)

num layers : 347 num weights: 44,601,832

num layers : 313 num weights: 23,817,352

num layers : 23 num weights: 138.357.544

Running distributed a training on Piz Daint

```
#!/bin/bash -l
#SBATCH --iob-name=train distr
#SBATCH --time=00:15:00
#SBATCH --nodes=16
#SBATCH --ntasks-per-core=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=12
#SBATCH --hint=nomultithread
#SBATCH --constraint=gpu
#SBATCH --account=<account>
module load daint-gpu
module load PvTorch # or TensorFlow Horovod
export OMP NUM THREADS=$SLURM CPUS PER TASK
export NCCL DEBUG=INFO
export NCCL IB HCA=ipogif0
srun python my_script.py
```


Some additional considerations

- Data must be split equally by workers to avoid load imbalance.
- If applicable, data can be split such that each worker does not need to read all files.
- Consider scaling the learning rate (lr * dist.get_world_size())

[lab] Simple Distributed SGD with TensorFlow and Horovod

We continue with the notebook sgd/2-exercise-linear_regression_sgd_horovod.ipynb that uses the same model that we saw in the previous lab. The solution is given in the notebook sgd/2-solution-linear regression sgd horovod.ipynb

Thank you for your attention!

