Phosphorus Release from Eroded Soil in the Aquatic Systems

Antti-Jussi Kallio

May 17, 2018

University of Helsinki

Phosphorus cycle

Erosion

- * Erosion control measures are applied all over the world, in many cases to protect the soil itself, or to reduce off- site impacts
- * Does controlling soil erosion inhibit aquatic eutrophication (rehevöityminen)?
 - The main interest of our study
 - We study the mineralization pathways of Fe, which is coupled to C, S and P cycling.
 - The amount of C, S, aerobic vs anaerobic.

- * (The following summarize applies to estuary (murtovesi), or any SO₄ rich recipient.)
- * If the estuary receives a high input of Fe oxides and a modest level of dissolved P, we may see moderate levels of eutrophication.
- * The settling flux has a low C/Fe ratio and the sediment is mainly in Fe reduction state.
 - As a result the estuary may respond to erosion control because the P concentrations are not maintained by strong P release from the sediment due to coupled cycling of P and Fe.
- * The biotic fauna releases Fe and P from the oxides which then react with O₂ in the aerobic estuary.
 - No P release from sediment to the aquatic system, keeps the "ferrous wheel" spinning.

Figure 1: Fe and P cycle in aerobic estuary

- * If erosion control takes place, typically dissolved P increases as we reduce the input of Fe oxides.
- * Increased bioavailable P triggers algal (levä) production, which increases the flux of organic C to the sediment surface \rightarrow SO₄ reduction becomes important
- * The lowered flux of Fe oxides means higher C/Fe ratio.
- * When SO_4 reduction rates increase, more of the sediment Fe is transformed to non-sorptive Fe sulfides \rightarrow massive release of Fe-bound P stored in sediments.

Figure 2: Fe and P cycle in anaerobic estuary

X-ray Absorption Spectroscopy

Small theory section

HelXAS

Measurement preparations

Some early results

Dry soil samples

Wet aerobic soil mixed with sea water