

КАЖДЫЙ СТУДЕНТ РЕШАЕТ СООТВЕТСТВУЮЩИЙ ПРИМЕР СВОЕГО ВАРИАНТА И ДЛЯ ОЦЕНИВАНИЯ РАБОТЫ ДОЛЖЕН ЗАГРУЗИТЬ ПРОДЕЛАННУЮ РАБОТУ В ФОРМАТЕ PDF В СИСТЕМУ

https://lms.tuit.uz

НОМЕР ВАРИАНТА СТУДЕНТА СООТВЕТСТВУЕТ ПОРЯДКОВОМУ НОМЕРУ В ЖУРНАЛЕ ГРУППЫ.

ЗА РАБОТУ ЗАГРУЖЕННОЕ В СИСТЕМУ НЕСООТВЕТСТВУЮЩЕГО ВАРИАНТА ВЫСТАВЛЯЕТСЯ НОЛЬ БАЛЛОВ.

Например, если студент в журнале группы по порядковому номеру стоит на 7-месте, то и вариант студента будет №7 и он должен решить именно пример №7 из нижеследующих примеров.

АРИФМЕТИЧЕСКОЕ ВЕКТОРНОЕ ПРОСТРАНСТВО

ЗАДАНИЕ №1

N-номер варианта студента

Заданы следующие системы векторов. Определить:

- 1) Показать, что система векторов $\{H_i\}$ является базисом в пространстве \mathbb{R}^3 ?
- 2) Показать, что система векторов $\{\widetilde{H}_i\}$ является базисом в пространстве \mathbb{R}^3 ?
- 3) Найти матрицу перехода от базиса $\{H_i\}$ к базису $\{\widetilde{\mathsf{H}}_j\}$ в пространстве R^3 ?
- 4) Найти матрицу перехода от базиса $\{\widetilde{\mathbf{H}}_j\}$ к базису $\{H_i\}$ в пространстве \mathbf{R}^3 ?
- 5) Найти координаты вектора $X = \binom{N+2}{-N-1}$ в базисе $\{H_i\}$?
- 6) Найти координаты вектора $X = \begin{pmatrix} N+2 \\ -N-1 \end{pmatrix}$ в базисе $\{\widetilde{\mathbf{H}}_j\}$?

$$\{H_i\}: H_1 = \begin{pmatrix} 0 \\ 0 \\ N \end{pmatrix}; H_2 = \begin{pmatrix} 0 \\ N+1 \\ 0 \end{pmatrix}; H_3 = \begin{pmatrix} N+2 \\ 0 \\ 0 \end{pmatrix}$$

$$\{\widetilde{\mathbf{H}}_j\}: \widetilde{\mathbf{H}}_1 = \begin{pmatrix} N \\ N \\ N \end{pmatrix}; \ \widetilde{\mathbf{H}}_2 = \begin{pmatrix} N \\ N+1 \\ N+2 \end{pmatrix}; \widetilde{\mathbf{H}}_3 = \begin{pmatrix} N \\ 0 \\ N \end{pmatrix}; \ X = \begin{pmatrix} N+2 \\ -N-1 \\ N \end{pmatrix}$$

ЛИНЕЙНОЕ ПРОСТРАНСТВО. ЕВКЛИДОВО ПРОСТРАНСТВО.

ЗАДАНИЕ №2

- 1. Для заданных систем матриц ответит на следующие вопросы:
- 1) Доказать, что система матриц A_1, A_2, A_3, A_4 является базисом в линейном пространстве $M_{2\times 2}$
- 2) Найти в этом базисе координаты матрицы Ү.
- 3) По известному координатному вектору X_A найти матрицу X в базисе A_1, A_2, A_3, A_4

$$A_{1} = \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix}; \quad A_{2} = \begin{pmatrix} 3 & -2 \\ -3 & 2 \end{pmatrix}; \quad A_{3} = \begin{pmatrix} -3 & -3 \\ -3 & 0 \end{pmatrix}; \quad A_{4} = \begin{pmatrix} 1 & 3 \\ 4 & -3 \end{pmatrix}$$
$$X_{A} = \begin{pmatrix} -3 & 2 \\ -2 & -2 \end{pmatrix}; \quad Y = \begin{pmatrix} 4 & -2 \\ -5 & 3 \end{pmatrix}$$

2. Для системы векторов

$$a_1 = (N, N - 1, N + 3, N - 2);$$

 $a_2 = (N + 3, N - 4, N + 1, N - 5);$
 $a_3 = (N + 4, N - 3, N + 2, N + 5)$
 $a_4 = (N - 1, N - 2, N + 2, N - 12)$

заданных в пространстве Е₄:

- 1) Найти векторы образующие базис?
- 2) Применяя процесс ортогонализации Грамма-Шмидта построить ортогональный базис, натянутые на векторы которые образуют базис и ортонормируйте эти вектора.
- 3) Найти вектор дополняющий систему векторов до ортонормированных базисов пространства E₄ ?
- 3. Евклидово пространство непрерывных функций x(t), y(t), z(t), ... на отрезке [a;b]. Скалярное произведение определено равенством

$$(x,y) = \int_a^b x(t)y(t)dt$$
. Рассматривается два вектора:

$$x = t^2 + N$$
, $y = \lambda t^2 + N + 2$.

- 1) Найти значения λ , при котором векторы x и y ортогональны на отрезке [0;1].
- 2) Проверить справедливость теоремы Пифагора $|x|^2 + |y|^2 = |x + y|^2$ для этих векторов.

ЛИНЕЙНЫЕ ОПЕРАТОРЫ И ИХ СВОЙТВА

ЗАДАНИЕ №3

Проверить заданные операторы на линейность. Для линейного оператора вычислить следующее:

- 1) Найти матрицу линейного оператора.
- **2)** С помощью линейного оператора найти образ вектора $x = 5\vec{e}_1 2\vec{e}_2$
- 3) Найти обратный оператор и соответствующую матрицу линейного оператора.
- **4)** Найти матрицу линейного оператора в новом базисе $\begin{cases} e_1' = 3e_1 2e_2 \\ e_2' = 4e_1 3e_2 \end{cases}$
- 5) Найти собственные числа и собственные векторы линейного оператора.

$$\tilde{A}(x) = (3x_1 - 2x_2, 6x_1 - 5x_2),$$

1.
$$\tilde{B}(x) = (2x_1 - 3x_2, x_2 + 2),$$

 $\tilde{C}(x) = (x_2 - 2x_1, x_2^2)..$

$$\tilde{A}(x) = (x_1 + 2x_2, 6x_1^2 - x_2),$$

2.
$$\tilde{B}(x) = (5x_1 + 7x_2, x_1 - x_2),$$

 $\tilde{C}(x) = (x_2 + 2, x_1 + 2x_2).$

$$\tilde{A}(x) = (2x_1 + 6x_2, 4x_1),$$

3.
$$\tilde{B}(x) = (3x_1 + x_2, 6 + x_2),$$

 $\tilde{C}(x) = (x_2 + 2, x_1^2 + 2x_2).$

$$\tilde{A}(x) = (2x_1 + x_2, 3x_1^2 + x_2),$$

4.
$$\tilde{B}(x) = (5x_1 + 7, x_1 - x_2),$$

 $\tilde{C}(x) = (x_1 - x_2, x_1 + 3x_2).$

$$\tilde{A}(x) = (2x_1 + x_2, 3x_1 + 2),$$

5.
$$\tilde{B}(x) = (2x_1 + 7x_2, 2x_1 - 3x_2),$$

 $\tilde{C}(x) = (x_1x_2, x_1 + 3x_2).$

$$\tilde{A}(x) = (7x_1 + 6x_2, 4x_1 + 2x_2),$$

6.
$$\tilde{B}(x) = (0, 2x_1 + 3x_2),$$

 $\tilde{C}(x) = (x_1^2 - x_2, x_1 + 3x_2).$

$$\tilde{A}(x) = (x_1 - 5x_2, 4),$$

7.
$$\tilde{B}(x) = (7x_1 + 6x_2, x_1 + 3x_2^2),$$

 $\tilde{C}(x) = (5x_1 + 2x_2, -6x_1 - 3x_2).$

$$\tilde{A}(x) = (3x_1 - x_2, 7x_1 + 6x_2)$$

8.
$$\tilde{B}(x) = (x_1 + 6x_2, 7x_1 + 6),$$

 $\tilde{C}(x) = (5x_1 + 2x_2, 7x_1^2).$

$$\tilde{A}(x) = (2x_1 + x_2, 3x_1^2 + 2),$$

9.
$$\tilde{B}(x) = (3x_1 + 7x_2, 2x_1 - 2x_2),$$

 $\tilde{C}(x) = (5x_1 + x_2, 2 + 3x_2).$

$$\tilde{A}(x) = (3x_1 - 6x_2, 2x_1 - 5x_2)$$

10.
$$\tilde{B}(x) = (6x_1 + 3x_2, 2x_1 - 5),$$

 $\tilde{C}(x) = (2x_1 + 3x_2, x_2^2).$

$$\tilde{A}(x) = (x_1 - 8x_2, \quad 0),$$

11.
$$\tilde{B}(x) = (x_1^2 + 3x_2, 2x_1 - 2x_2^2),$$

 $\tilde{C}(x) = (-3x_1 - 7x_2, -2x_1 + 2x_2).$

$$\tilde{A}(x) = (2x_1 + x_2, 2x_1^2 + 3x_2),$$

12.
$$\tilde{B}(x) = (7x_1 + 5x_2, 2x_1 + 3),$$

 $\tilde{C}(x) = (2x_1 - 6x_2, -4x_1 + 7x_2).$

$$\tilde{A}(x) = (5x_1 + 6x_2, -2x_1 - 3x_2),$$

13.
$$\tilde{B}(x) = (6x_1 + 3x_2, -2x_1 - 3),$$

 $\tilde{C}(x) = (5x_1 + 6x_2^2, -2x_1 - 3x_2).$

$$\tilde{A}(x) = (7x_1 - 5x_2, 5),$$

14.
$$\tilde{B}(x) = (x_1 - 2x_2, 3x_1^2),$$

 $\tilde{C}(x) = (7x_1 - 2x_2, 5x_1).$

$$\tilde{A}(x) = (2x_1 - 5x_2, 4x_1^2 + 3x_2),$$

15.
$$\tilde{B}(x) = (2x_1 - 5, 4x_1 + 3x_2),$$

 $\tilde{C}(x) = (2x_1 + 6x_2, 4x_1 + 7x_2).$

$$\tilde{A}(x) = (2x_1 + 2x_2, 7x_1 - 3x_2),$$

16.
$$\tilde{B}(x) = (6x_1 + 3x_2, 7x_1 - 3),$$

 $\tilde{C}(x) = (5x_1 + 6x_2^2, 7x_1 - 3x_2).$

$$\tilde{A}(x) = (5x_1 + x_2, 7x_1^2),$$

17.
$$\tilde{B}(x) = (5x_1 + x_2, 7x_1 - x_2),$$

 $\tilde{C}(x) = (5x_1 + x_2, 7 + 3x_2).$

$$\tilde{A}(x) = (5x_1 - x_2, 6x_1^2 + 7x_2),$$

18.
$$\tilde{B}(x) = (x_1 + 4x_2, 6x_1 + 7x_2),$$

 $\tilde{C}(x) = (x_1 + 4x_2, 6 + 7x_2).$

$$\tilde{A}(x) = (7x_1 - 4x_2, -6x_1 + 2x_2),$$

19.
$$\tilde{B}(x) = (2x_1 + 7x_2, -6x_1 + 2),$$

 $\tilde{C}(x) = (2x_1^2 + 7x_2, x_1 + 3x_2).$

$$\tilde{A}(x) = (-x_1 + 7x_2, x_1 + 5x_2^2),$$

20.
$$\tilde{B}(x) = (5x_1 + 7x_2, 5),$$

 $\tilde{C}(x) = (-x_1 + 7x_2, x_1 + 5x_2).$

$$\tilde{A}(x) = (-x_1 - 4x_2, -6x_1 + 2),$$

21.
$$\tilde{B}(x) = (2x_1 + 6x_2, 4x_1 + 7x_2),$$

 $\tilde{C}(x) = (2x_1 + 6x_2^2, 4x_1 + 3x_2).$

$$\tilde{A}(x) = (2x_1 - 3x_2, -6x_1 + 2),$$

22.
$$\tilde{B}(x) = (3x_1 + x_2, -x_1 + x_2),$$

 $\tilde{C}(x) = (3x_1^2 + x_2, x_1 + 3x_2).$

$$\tilde{A}(x) = (2x_1 + x_2, 2x_1 + 5x_2^2),$$

23.
$$\tilde{B}(x) = (2x_1 + x_2, 2x_1 + 5),$$

 $\tilde{C}(x) = (x_1 - 2x_2, 2x_1 + 5x_2).$

$$\tilde{A}(x) = (5x_1 - 2x_2, 2x_1^2 + x_2),$$

24.
$$\tilde{B}(x) = (5x_1 - 2x_2, 2x_1 + x_2),$$

 $\tilde{C}(x) = (5x_1 - 2x_2, 2x_1 + 5).$

$$\tilde{A}(x) = (5x_1 - x_2, 4x_1 + x_2),$$

25.
$$\tilde{B}(x) = (x_1 - 5x_2, 4x_1^2 + x_2),$$

 $\tilde{C}(x) = (5x_1 - x_2, 4 + x_2).$

$$\tilde{A}(x) = (-x_1 + 3x_2, x_1 - 5x_2),$$

26.
$$\tilde{B}(x) = (-x_1 + 3x_2, 5x_1 - x_2^2),$$

 $\tilde{C}(x) = (-x_1 + 3, x_1 - 5x_2).$

$$\tilde{A}(x) = (2x_1 + 3, 8x_1 - 3x_2),$$

27.
$$\tilde{B}(x) = (2x_1 + 3x_2, x_1 + 4x_2^2),$$

 $\tilde{C}(x) = (2x_1 + 3x_2, 8x_1 + 4x_2).$

$$\tilde{A}(x) = (4x_1 - x_2^2, x_1 - 5x_2),$$

28.
$$\tilde{B}(x) = (4x_1 + 6x_2, 4x_1 + 2x_2),$$

 $\tilde{C}(x) = (4x_1 + 6, 4x_1 - 2x_2).$

$$\tilde{A}(x) = (4x_1 + 3x_2, 8x_1 + 2x_2),$$

29.
$$\tilde{B}(x) = (4x_1 + 3x_2, 8x_1^2 + 2x_2),$$

 $\tilde{C}(x) = (4x_1 + 3, 8x_1 - 2x_2).$

$$\tilde{A}(x) = (6x_1 + 7, 2x_1 + 3x_2),$$

30.
$$\tilde{B}(x) = (6x_1 + 7x_2, 2x_1 - 3x_2),$$

 $\tilde{C}(x) = (5x_1 + 7x_2, 2x_1 - 3x_2^2).$