Physical Rendering

Paolo Bettelini

Contents

	Measurements
	.1 Radiant Flux
	.2 Irradiance
	.3 Radiance
2	Cerminology
3	Rendering equation

1 Measurements

1.1 Radiant Flux

The radiant flux (or power) Φ is the total amount of energy passing through a surface per second and is measured in [W] (watts) as $\frac{J}{s}$.

1.2 Irradiance

The irradiance E is the measurements of the radiant flux per unit area and is measured in $[W][M]^{-2}$ as $\frac{\Phi}{m^2}$.

1.3 Radiance

The radiance L is the irradiance per unit solid angle (steradian) and is measured in $[W][M]^{-2}[M]^{-2}[sr]^{-1}$ as $\frac{E}{sr}$.

2 Terminology

- \hat{V} direction torwards the camera
- \hat{N} surface normal
- \hat{L} vector pointing torward the light source
- \hat{R} reflected ray direction
- θ_i, θ_r incident and reflected angles

$$\hat{R} = \hat{L} - 2\hat{N}(\hat{L} \cdot \hat{N})$$

3 Rendering equation

The rendering equation tells us how much light is exiting a $surface\ point$ in a given direction

References

 $[1] \quad \hbox{K'aroly Zsolnai-Feh'er. } \begin{tabular}{ll} TU Wien Rendering Course. https://users.cg.tuwien.ac.at/zsolnai/gfx/rendering-course/. 2018. \end{tabular}$