## Exercise 1. Duality

- (1) Show that the probability in bond percolation at  $p = \frac{1}{2}$  on  $\mathbb{Z}^2$  restricted to the rectangle  $[0, n] \times [0; n+1]$  that there is an open crossing from top to bottom is exactly  $\frac{1}{2}$ .
- (2) Suppose we have a discretisation of a simply connected domain  $\Omega$  with smooth boundary with three distinct points a, b, c on  $\partial\Omega$  (in counter-clockwise order). Considering the honeycomb face percolation at  $p = \frac{1}{2}$ , show that the probability that there is an open cluster which connects all three boundary segments [a, b], [b, c], [c, a] is  $\frac{1}{2}$ .
- (3) Considering again the honeycomb face percolation at  $p = \frac{1}{2}$  and  $\Omega$  a Jordan domain with three distinct points a, b, c on  $\partial\Omega$  (in counter-clockwise order), prove that the two following events have the same probability (black lines represent a black connection, red lines represent a white connection). To be more precise:  $\mathcal{E}_1$  is the event that there exists a black path connecting the arc  $a_1a_2$  to the arc  $a_3a_4$ .  $\mathcal{E}_2$  is the event that there exists a black path connecting the arc  $a_1a_2$  to the arc  $a_3a_4$  and at the same time there exists a white path connecting the black path to  $a_4a_1$  (note that if the black path directly touches the arc  $a_4a_1$  we still consider the event  $\mathcal{E}_2$  to occur as the white path can be empty).



FIGURE 0.1. The events  $\mathcal{E}_1$  and  $\mathcal{E}_2$ 

(4) For the honeycomb face percolation at  $p = \frac{1}{2}$ , define events  $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4, \mathcal{E}_5$  as in the figure below (solid lines represent a white connection, dashed lines represent a black connection). Show that

$$\mathbb{P}\left(\mathcal{E}_{2}\right)=\mathbb{P}\left(\mathcal{E}_{4}\right)=\frac{\mathbb{P}\left(\mathcal{E}_{1}\right)-\mathbb{P}\left(\mathcal{E}_{5}\right)}{2}\text{ and }\mathbb{P}\left(\mathcal{E}_{3}\right)=\frac{\mathbb{P}\left(\mathcal{E}_{1}\right)+\mathbb{P}\left(\mathcal{E}_{5}\right)}{2}$$



Hint 1: Prove that  $\mathcal{E}_1 = \mathcal{E}_2 \sqcup \mathcal{E}_3$  and then  $\mathcal{E}_1 = \mathcal{E}_2 \sqcup \mathcal{E}_4 \sqcup \mathcal{E}_5$ . Hint 2: For the first equality, prove the two equalities in the Figure 0.2 (on the second equality, the black path is the right most black path):



FIGURE 0.2. Steps for  $\mathcal{E}_1 = \mathcal{E}_2 \sqcup \mathcal{E}_3$ .

## Exercise 2. Arzela-Ascoli theorem

We will use the same notation as in the lectures:

$$\mathcal{H}^1_{\delta}(z) = \mathbb{P}_{\frac{1}{2}}$$
 (a black path disconnects  $\{a_1, z\}$  from  $\{a_2, a_3\}$ )

where we consider the face percolation at  $p = \frac{1}{2}$  on the honeycomb lattice,  $\Omega_{\delta}$  the discretization of a Jordan domain  $\Omega$ , and  $a_1, a_2, a_3$  are anti-clockwise ordered points on the boundary  $\partial \Omega$  (z is a vertex of the hexagonal lattice). You have seen in the lesson how to deduce the following Hölder estimate:

$$|\mathcal{H}_{\delta}^{1}(x) - \mathcal{H}_{\delta}^{1}(y)| \leq Cd_{\Omega_{\delta}}(x,y)^{\alpha},$$

where  $d_{\Omega_{\delta}}$  is calculated by taking the length of the shortest path between x and y in  $\Omega_{\delta}$ . Our goal is to use this estimate to extract a limit for  $(\mathcal{H}_{\delta}^1)_{\delta}$ . For this, we extend the discrete function  $\mathcal{H}_{\delta}^1$  defined on the vertices of  $\Omega_{\delta}$  to a continuous function defined on  $\Omega \cup \partial \Omega$  by piecewise linear interpolation.

- (1) Recall Arzela-Ascoli theorem.
- (2) Show that  $(\mathcal{H}^1_{\delta})_{\delta}$  is uniformly bounded. Hint: this can be done using the estimate above, but it makes more sense to go back to the definition.
- (3) Show that the above Hölder estimate implies that the family  $(\mathcal{H}_{\delta}^{1})_{\delta}$  is uniformly equicontinuous.
- (4) Deduce that we can extract a limit in  $(\mathcal{H}^1_{\delta})_{\delta}$ .