# Phys 111: Lecture 6

Ross Miller

University of Idaho

September 12, 2019

# "The Dark World's 6th Crystal"

Homework Wk #3 Due Today 9/12/19

Exam #1 Tuesday 9/24/19

## **Today's Topics**

- 1. Forces
- 2. Force Laws
- 3. Types of Forces

### Force & Inertia

**Force:** A force is any push or pull acted upon one object by a second object that will cause a change in motion in the second object unless countered by an other force.

- Forces are vector quantities as direction matters.
- Forces are a cause and acceleration is the effect. (or balancing)
- ▶ Some forces don't require mechanical contact ("touch").
- ▶ SI unit: 1 newton = 1  $N = 1 kg \cdot m/s^2$

**Inertia:** Inertia is the natural tendency of an object to resist changes to its current motion. Mass is the quantitative measure of the inertia of an object.

- ▶ Mass is a measure of how much matter (stuff) an object is made of.
- Mass is a scalar quantity
- Objects with more mass require more force for the same acceleration.
- ▶ SI unit: 1 kilogram = 1 kg

# Force Diagrams



Figure: 5.6 Force Diagrams

# Force Concept & Diagrams



Figure: 5.6 Force Diagrams

- Note how the two forces applied to the third skater are added up as any two vectors would be.
- Note how simplified the free-body diagram is compared to a realistic sketch of the event.

### Law of Inertia

### Newton's 1st Law

An object continues in a state of rest or in a state of motion at a constant velocity (constant speed in a constant direction), unless compelled to change that state by a net force.

**In other words,** the motion of an object won't change without a force to cause the change.



Figure: 6.1 Galileo's thought experiment for law of inertia

## Cause & Effect Quantified

### Newton's 2<sup>nd</sup> Law In Words

If you observe the velocity of an object changing, then there is a net force causing that acceleration. Conversely, if the velocity of an object is not changing, then there are either no forces or completely balanced forces acting on said object.

### Math

$$\sum_{i} \mathbf{F}_{i} = m\mathbf{a}$$

$$\sum_{i} \mathbf{F}_{i} = m\mathbf{a}$$
$$\mathbf{a} = \frac{1}{m} \sum_{i} \mathbf{F}_{i}$$

## Concept Check #1

**C&J FOC 4.2.1** An object is moving at a constant velocity. All but one of the following statements could be true. Which one cannot be true?

- a. No forces act on the object.
- b. A single force acts on the object.
- c. Two forces act simultaneously on the object.
- d. Three forces act simultaneously on the object.

## Exercise #2

**C&J** 4.3.3 Two horizontal forces,  $\mathbf{F}_1$  and  $\mathbf{F}_2$ , are acting on a box, but only  $\mathbf{F}_1$  is shown in the drawing.  $\mathbf{F}_2$  can point either to the right or to the left. The box moves only along the x axis. There is no friction between the box and the surface. Suppose that  $\mathbf{F}_1 = 9.0~N$  and the mass of the box is 3.0~kg. Find the magnitude and direction of  $\mathbf{F}_2$  when the acceleration of the box is

- a.  $+5.0 \ m/s^2$
- b.  $-5.0 \ m/s^2$
- c.  $0 m/s^2$

## Exercise #2

**C&J 4.3.3** Suppose that  $\mathbf{F}_1 = 9.0~N$  and the mass of the box is 3.0~kg. Find the magnitude and direction of  $\mathbf{F}_2$  when the acceleration of the box is

- a.  $+5.0 \ m/s^2$
- b.  $-5.0 \ m/s^2$
- c.  $0 \ m/s^2$



Figure: 6. Two, 1D forces on a block

### "Use The Force Luke"

Newton's first law (and also the second law) can appear to be invalid to certain observers. These observers are said to be in a non-inertial reference frame.

**Inertial Reference Frames** A reference frame which is moving with constant velocity. A non-accelerating reference frame.

Non-inertial Reference Frames A reference frame that is accelerating.

"You'll find that many of the truths we cling to depend greatly on our own point of view" - Ben Kenobi

#### Interactions

### Newton's 3rd Law

"Semi-formal" An object can't interact with itself and so it won't feel a force until it can interact with a second object.

"Formal" Whenever one object exerts a force on a second object, the second object exerts an oppositely directed force of equal magnitude on the first object.

## Exercise #3

**C&J** 4.6.14 A billiard ball strikes and rebounds from the cushion of a pool table perpendicularly. The mass of the ball is 0.38~kg. The ball approaches the cushion with a velocity of +2.1~m/s and rebounds with a velocity of -2.0~m/s. The ball remains in contact with the cushion for a time of  $3.3\times10^{-3}~s$ . What is the average net force (magnitude and direction) exerted

- a. on the ball by the cushion?
- b. on the cushion by the ball?

### Fundamental Forces

Fundamental forces are the ones that are truly unique, in the sense that all other forces can be explained in terms of them.

#### To Date

- Gravitational Non-chemical attraction of matter
- Strong Nuclear Binds Nuclei of Atoms
- ► Electroweak Electromagnetism; Chemical Effects

## **Gravitational Force**



Figure: 6.2 Gravitational force between Earth and Moon

$$\mathbf{F}_G = G \frac{m_1 m_2}{r^2} \hat{\mathbf{r}}$$

## Normal Force



Figure: 6.3 Normal force on block from table

# Friction



Figure: 6.4 Source of friction

## Static Friction Force



Figure: 6.5 Static friction keeps objects from moving

## Kinetic Friction Force



Figure: 6.6 Friction that slows down an object

# Tension Force



Figure: 6.7 Tension force in a simple machine

# More Types of Forces

### Non-exhaustive List

- Compression Forces
- ► Air Resistance (Drag)
- ► Centripetal Force
- ► Centrifugal Force
- Vibration Forces

## Laws of Motion Big Picture

- Changes in motion are caused by forces. No force, no change in velocity.
- 2. Net acceleration is directly caused by net force.
- 3. Forces arise from interactions. "It takes two to tango."

#### Extra Practice

**C&J** 4.3.1 An airplane has a mass of  $3.1\times10^4~kg$  and takes off under the influence of a constant net force of  $3.7\times10^4~N$ . What is the net force that acts on the plane's 78.0~kg pilot?

**C&J 4.4.12** At an instant when a soccer ball is in contact with the foot of a player kicking it, the horizontal or x component of the ball's acceleration is  $810\ m/s^2$  and the vertical or y component of its acceleration is  $1100\ m/s^2$ . The ball's mass is  $0.43\ kg$ . What is the magnitude of the net force acting on the soccer ball at this instant?

## Extra Practice

**C&J 4.4.11** Only two forces act on an object (mass = 3.00~kg), as in the drawing. Find the magnitude and direction (relative to the x axis) of the acceleration of the object.



Figure: 6.8 2D forces on a block