Aufgabe 1:

Erstelle für die Funktion $f(x) = -0.5(x+1)^2 + 2.5$ eine Wertetabelle und zeichne den dazugehörigen Graphen im Bereich von x = -3 bis x = 3 in ein Koordinatensystem.

		l			2	
0.5	2.0	2.5	2.0	0.5	-2.0	-5.5

Aufgabe 2:

Gib für die folgenden Parabeln Scheitelpunkt, Symmetrieachse, Nullstellen und Öffnung an. Gib weiter an, ob die Parabeln durch Streckung oder Stauchung aus der Normalparabel entstehen.

	Scheitelpunkt	Symmetrieachse	Nullstellen	Öffnung	Form
f_1	S(1 -2)	x = 1	$x_1 = 0 x_2 = 2$	oben	gestreckt
f_2	S(-1 1)	x = -1	Keine Nullstelle	oben	normal
f_3	S(-1 2)	x = -1	Keine Nullstelle	oben	normal

Aufgabe 3:

Streiche die Graphen, die nicht zur Funktionsgleichung passen.

$$f_1(x) = -3x^2 - 2$$

Aufgabe 4:

Unterstreiche die Funktionsgleichung, die zum Graphen passt.

$$f_1(x) = 2x^2 - 1$$

$$f_2(x) = -4(x+2)^2 + 1$$

$$f_3(x) = -(x+1)^2 - 2$$

$$f_4(x) = \frac{4x^2}{3} - 1$$

Aufgabe 5:

Bringe die Funktionsgleichungen auf Normalform.

a)
$$f_1(x) = 2(x+1)^2 - 2$$

 $f_1(x) = 2x^2 + 4x$

c)
$$f_3(x) = -(x+2)^2 + 1$$

 $f_3(x) = -x^2 - 4x - 3$

e)
$$f_5(x) = 3(x-2)^2 - 2$$

 $f_5(x) = 3x^2 - 12x + 10$

b)
$$f_2(x) = -3(x-2)^2 - 1$$

 $f_2(x) = -3x^2 + 12x - 13$

d)
$$f_4(x) = -(x-1)^2 + 1$$

 $f_4(x) = -x^2 + 2x$

f)
$$f_6(x) = (x+1)^2 - 1$$

 $f_6(x) = x^2 + 2x$

Aufgabe 6:

Bringe die Funktionsgleichungen auf Scheitelpunktform.

a)
$$f_1(x) = x^2 + 1$$

 $f_1(x) = x^2 + 1$

c)
$$f_3(x) = x^2 + 4x + 1$$

 $f_3(x) = (x+2)^2 - 3$

e)
$$f_5(x) = -2x^2$$

 $f_5(x) = -2x^2$

b)
$$f_2(x) = x^2 - 4x + 4$$

 $f_2(x) = (x - 2)^2$

d)
$$f_4(x) = x^2 + 2$$

 $f_4(x) = x^2 + 2$

f)
$$f_6(x) = x^2 - 2x - 2$$

 $f_6(x) = (x - 1)^2 - 3$