

Lecture due Oct 5, 2021 20:30 IST

Practice

Parameterize a function

2/2 points (graded)

The image below shows the graph of $y=\sin x$ in the xy-plane for $-2\pi \leq x \leq 2\pi$. Find an equation for

$$ec{r}\left(t
ight)=inom{x\left(t
ight)}{y\left(t
ight)}$$
 whose trajectory is the curve shown for $-2\pi\leq t\leq 2\pi$.

(There is more than one correct answer. The answer boxes are graded together. This means e.g. you could have a correct x(t), but if y(t) is not correct, then both boxes will be marked as incorrect.)

$$x\left(t
ight)=igg|_{\mathsf{t}}$$
 Answer: t

? INPUT HELP

Solution:

Since we want $y = \sin x$, a simple option is $(t, \sin t)$. For every value of t, the point $(t, \sin t)$ is on the curve $y = \sin x$.

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

Rotate a sine wave

2/2 points (graded)

The image below shows a rotated sine wave that runs along the line $m{y}=m{x}$. Find an equation for

$$ec{r}\left(t
ight)=egin{pmatrix}x\left(t
ight)\yline y\left(t
ight)\end{pmatrix}$$
 whose trajectory is the curve shown for $-2\leq t\leq 2$.

Hint: write $\vec{r}(t)$ as a sum of two vectors, one that is parallel to $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and one that is perpindicular to $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

? INPUT HELP

Solution:

The particle's position may be described as the sum of two vectors: $ec{r} = \overrightarrow{v_1} + \overrightarrow{v_2}$.

First, for a given t, we should move a distance of t in the direction $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Since $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ has a length of $\sqrt{2}$ this means $\overrightarrow{v_1} = \frac{t}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Second, for a given t, we should move a distance of $\sin t$ in the perpindicular direction, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Thus

$$\overrightarrow{r_2} = rac{\sin t}{\sqrt{2}}igg(rac{-1}{1}igg).$$

In total we have

$$ec{r} = \overrightarrow{v_1} + \overrightarrow{v_2}$$

$$=\frac{\iota}{\sqrt{2}}\left(\frac{1}{1}\right)+\frac{\sin\iota}{\sqrt{2}}\left(\frac{1}{1}\right) \tag{6.104}$$

$$= \begin{pmatrix} \frac{t-\sin t}{\sqrt{2}} \\ \frac{t+\sin t}{\sqrt{2}} \end{pmatrix} \tag{6.105}$$

Therefore,

$$x(t) = \frac{t - \sin t}{\sqrt{2}} \tag{6.106}$$

$$y(t) = \frac{t + \sin t}{\sqrt{2}} \tag{6.107}$$

One can also obtain this answer by applying the rotation matrix $R_{\pi/4}=egin{pmatrix}1/\sqrt{2}&-1/\sqrt{2}\\1/\sqrt{2}&1/\sqrt{2}\end{pmatrix}$ to the

$$ec{r}\left(t
ight) =inom{t}{\sin t}.$$

Submit

You have used 1 of 8 attempts

1 Answers are displayed within the problem

3. Transformed Curves

Hide Discussion

Topic: Unit 5: Curves and Surfaces / 3. Transformed Curves

Add a Post

Show all posts by recent activity

Typo in problem "Rotate a sine wave"?

I think t lies between -2 pi and 2 pi, not between -2 and 2.

Previous

Next >

© All Rights Reserved

edX

About
Affiliates
edX for Business
Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>