Famous Pdfs: Bern $(x|\theta) = \theta^x (1-\theta)^{1-x} = \theta^{1\{x=1\}} (1-\theta)^{1\{x=0\}}$. $\frac{\partial}{\partial \theta} \log p(\mathcal{D} \mid \theta) = 0$: $\theta_{\text{MAP}} = \frac{N_1 + a - 1}{n + a + b - 2}$. Classification and Naïve Bayes: Classification Rule: Given feature vector \mathbf{x} and class label $\operatorname{Unif}(x|a,\overline{b}) = \frac{1}{b-a}\mathbb{1}\{a \le x \le b\}. \quad \operatorname{Exp}(x|\lambda) = \lambda e^{-\lambda x}\mathbb{1}\{x \ge 0\}.$ $\overline{y \in \{1, \dots, K\}, \delta(\mathbf{x}) = k \text{ if } p(y = k \mid \mathbf{x}) \text{ is maximized.}}$ Naïve Bayes Classifier: Assuming $Bin(x|n,\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x} \text{ where } \binom{n}{x} = \frac{n!}{x!(n-x)!}.$ conditional independence, $p(\mathbf{x} \mid y = c, \theta) = \prod_{d=1}^{D} p(x_d \mid \theta_{dc})$. Using Bayes' rule: Beta $(\theta|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\theta^{a-1}(1-\theta)^{b-1}$. $\Gamma(x) = \int_0^\infty t^{x-1}e^{-t}dt$ for $x \in \mathbb{R}$. $p(y=c\mid \mathbf{x},\theta)\propto \pi(c)\prod_{d=1}^{D}p(x_d\mid \theta_{dc})$, where $\pi(c)$ is the prior probability of class c. Mixture Models and Gaussian Mixture Model (GMM): Mixture Model Definition: Suppose an Probability Basics: $\overline{\mathbb{P}((X,Y) \in A)} = \int_A p(x,y) \, dx \, dy. \quad p(x) = \int_{-\infty}^{\infty} p(x,y) \, dy. \quad p(y|x) = \frac{p(x,y)}{p(x)}.$ p(x,y) = p(x)p(y|x), If X and Y are independent, then p(x,y) = p(x)p(y).observation \mathbf{x} can be generated from one of K possible probability density functions (pdfs): $p(\mathbf{x} \mid \boldsymbol{\eta}_1), \dots, p(\mathbf{x} \mid \boldsymbol{\eta}_K)$. The generating index z follows a categorical distribution: $p(z) = \operatorname{Cat}(z \mid \boldsymbol{\pi})$. Since z is unobserved, it is a **latent variable**. The marginal distribution is: **Likelihood of i.i.d. dataset:** $p(\mathcal{D}) = \prod_{i=1}^n p(x_i)$ or $\log p(\mathcal{D}) = \sum_{i=1}^n \log p(x_i)$. where dataset $p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi(k) p(\mathbf{x} \mid \boldsymbol{\eta}_k), \text{ where } \boldsymbol{\theta} = (\boldsymbol{\pi}, \{\boldsymbol{\eta}_k\}_{k=1}^K). \text{ Gaussian Mixture Model}$ $\mathcal{D} = \{x_1, \dots, x_n\}$ is i.i.d. (GMM): If component densities are Gaussians, $p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi(k) \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$, where $\boldsymbol{\theta} = (\pi, \{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K)$. Maximum Likelihood Estimation (MLE) for GMM: Given i.i.d. Bayes' theorem: $p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(y|x)p(x)}{p(y)}$. Expectation: $\mathbb{E}[X] = \int_{-\infty}^{\infty} xp(x) \, dx$, $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) \, dx$, $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$, $\mathbb{E}[X+Y] = \int_{-\infty}^{\infty} xp(x) \, dx$, observations $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, p(\mathbf{x}_i \mid \boldsymbol{\theta}) = \sum_{k=1}^K \pi(k) p(\mathbf{x}_i \mid \boldsymbol{\eta}_k)$. The log-likelihood function: $\log p(\mathbf{x}_1, \dots, \mathbf{x}_n \mid \boldsymbol{\theta}) = \sum_{i=1}^n \log \sum_{k=1}^K \pi(k) p(\mathbf{x}_i \mid \boldsymbol{\eta}_k)$. MLE for $\boldsymbol{\theta}$ maximizes this $\mathbb{E}[A + I] = \mathbb{E}[A] + \mathbb{E}[I], \quad \mathbb{E}[A + I] = g_1 - J_{-\infty} \mathbb{E}[X] = \mathbb{E}[X]$ $\mathbb{E}[f(X)g(Y) \mid Y = y] = \mathbb{E}[f(X) \mid Y = y]g(y).$ Variance and Covariance: $\operatorname{var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2,$ $\operatorname{cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y],$ Algorithmic Issues in Mixture Models: Singularity in Likelihood: If for some k, we set $\mu_k = \mathbf{x}_i$ and $\sigma_k \to 0$, then: $\mathcal{N}(\mathbf{x}_i \mid \mu_k, \sigma_k \mathbf{I}) \propto \frac{1}{\sigma_k} \to \infty$. Unidentifiability: there is no unique global var(X + Y) = var(X) + var(Y) + 2cov(X, Y).Vector Variables: $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^{\top}, \quad \mathbb{E}[\mathbf{x}] = \begin{bmatrix} \mathbb{E}[x_1] & \mathbb{E}[x_2] & \cdots & \mathbb{E}[x_n] \end{bmatrix}^{\top}$ If \mathbf{A} is a deterministic matrix, $\mathbb{E}[\mathbf{A}\mathbf{x}] = \mathbf{A}\mathbb{E}[\mathbf{x}].$ optimum for log-likelihood function. Optimization Challenges: The log-likelihood function is non-convex, making optimization difficult. Easier Formulation with Latent Variables: If latent variables z_1, \ldots, z_n are observed, the likelihood simplifies to: Covariance: $cov(\mathbf{x}) = \mathbf{\Sigma}_{xx} = \mathbb{E}[(\mathbf{x} - \mathbb{E}\mathbf{x})(\mathbf{x} - \mathbb{E}\mathbf{x})^{\top}], \quad cov(\mathbf{A}\mathbf{x}) = \mathbf{A} cov(\mathbf{x})\mathbf{A}^{\top}$ $\log p((\mathbf{x}_1, z_1), \dots, (\mathbf{x}_n, z_n) \mid \boldsymbol{\theta}) = \sum_{i=1}^n \left(\log \pi[z_i] + \log p(\mathbf{x}_i \mid \boldsymbol{\eta}_{z_i})\right)$. This is much easier Cross-covariance: $cov(\mathbf{x}, \mathbf{y}) = \mathbf{\Sigma}_{xy} = \mathbb{E}[(\mathbf{x} - \mathbb{E}\mathbf{x})(\mathbf{y} - \mathbb{E}\mathbf{y})^{\top}]$ to maximize. Gaussian Mixture Model (GMM): Mixture Model Definition: Observed data $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^D$ are generated from a mixture of K Gaussian distributions: $p(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi(k) \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ Parameters: $\boldsymbol{\theta} = (\pi(k), \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)_{k=1}^K$. Complete Data Representation: Introduce latent variable $z_i \in \{1, \dots, K\}$ indicating which Gaussian component generated \mathbf{x}_i . Complete data likelihood: Parametric vs. Non-Parametric Models A **parametric model** assumes a fixed number of parameters. It usually belongs to a predefined family of distributions: **Probability distribution:** $p(x,y) = p(x,y \mid \theta)$ or $p(x) = p(x \mid \theta)$. **Advantages:** 1. $\log p(\mathbf{y}_1, \dots, \mathbf{y}_n \mid \boldsymbol{\theta}) = \sum_{k=1}^K \sum_{i: z_i = k} \left(\log \pi(k) + \log \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)... \mathbf{MLE}$ Faster to train (find "optimal" θ). 2. Simpler representation, but stronger assumptions about the data Estimation of Component Parameters: The MLE estimates for μ_k and Σ_k : $\hat{\mu}_k = \frac{1}{n} \sum_{i:z_i = k} \mathbf{x}_i$, $\hat{\Sigma}_k = \frac{1}{n} \sum_{i:z_i = k} (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_k) (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_k)^{\top}..$ A **non-parametric model** does not assume a fixed number of parameters; the number of parameters grows with the amount of training data: **Advantages:** 1. More flexible, capable of capturing complex Expectation-Maximization (EM) Algorithm: Basic Idea: Given incomplete data x and latent patterns. 2. No strong distributional assumptions. **Disadvantages:** Computationally expensive for large complete data \mathbf{y} , the MLE is $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta} \in \Theta} \log p(\mathbf{x} \mid \boldsymbol{\theta})$. Since $\log p(\mathbf{x} \mid \boldsymbol{\theta})$ is hard to optimize, maximize the expectation $\mathbb{E}_{p(\mathbf{y}|\mathbf{x},\hat{\boldsymbol{\theta}})} \left| \log p(\mathbf{y} \mid \boldsymbol{\theta}) \mid \mathbf{x}, \hat{\boldsymbol{\theta}} \right|$. EM Steps: (1) Initialize $\boldsymbol{\theta}^{(0)}$. (2) E-step: Bayesian Inference: Given a parametric model, the posterior is derived as: $p(\theta \mid x) = \frac{p(x|\theta)p(\theta)}{p(x)} \propto p(x \mid \theta)p(\theta)$, where p(x) is a normalization constant. If $p(x) \propto f(x)$
$$\begin{split} &Q(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(m)}) = \mathbb{E}_{p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}^{(m)})} \left[\log p(\mathbf{y} \mid \boldsymbol{\theta}) \mid \mathbf{x}, \boldsymbol{\theta}^{(m)} \right] = \int \log p(\mathbf{y} \mid \boldsymbol{\theta}) p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}^{(m)}) d\mathbf{y}. \\ &(3) \text{ M-step: Update $\boldsymbol{\theta}$ by $\boldsymbol{\theta}^{(m+1)}$ = $\arg \max_{\boldsymbol{\theta} \in \Theta} Q(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(m)})$. (4) Repeat until convergence.} \end{split}$$
for some function f(x), then p(x) = cf(x) with $c = (\int f(x)dx)^{-1}$. **Conjugate Distributions:** If prior and posterior share the same family, they are conjugate: $\overline{p(\theta \mid x)} \propto \overline{p(x \mid \theta)p(\theta)}$. The prior $p(\theta)$ is called the conjugate prior of the likelihood $p(x \mid \theta)$. **EM for GMM: Summary** Initialization: Given $\pi^{(0)}(k)$, $\mu_k^{(0)}$, $\Sigma_k^{(0)}$ for $k = 1, \ldots, K$. Advantages: Conjugate distributions allow closed-form solutions and simple implementation. Likelihood: $L^{(0)} = \frac{1}{n} \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi^{(0)}(k) \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k^{(0)}, \boldsymbol{\Sigma}_k^{(0)}) \right)$. Repeat: 1. E-step: **Limitations:** They may lack flexibility, often requiring MCMC methods. Compute responsibilities: $r_{ik}^{(m)} = \frac{\pi^{(m)}(k)\mathcal{N}(\mathbf{x}_i|\boldsymbol{\mu}_k^{(m)},\boldsymbol{\Sigma}_k^{(m)})}{\sum_{k'} \pi^{(m)}(k')\mathcal{N}(\mathbf{x}_i|\boldsymbol{\mu}_{k'}^{(m)},\boldsymbol{\Sigma}_{k'}^{(m)})}, n_k^{(m)} = \sum_{i=1}^n r_{ik}. 2.$ **Conjugate Prior for Binomial:** Given $s \sim \text{Bin}(n, \theta)$ and prior $\theta \sim \text{Beta}(a, b)$, the posterior is: $\begin{array}{c} \hline p(\theta \mid s) \propto \text{Bin}(s \mid \theta, n) \cdot \text{Beta}(\theta \mid a, b) \propto \theta^s (1-\theta)^{n-s} \cdot \theta^{a-1} (1-\theta)^{b-1} \\ \propto \theta^{s+a-1} (1-\theta)^{n-s+b-1}. \text{ Thus, the posterior follows: } p(\theta \mid s) = \text{Beta}(\theta \mid s+a, n-s+b) \\ \hline \textit{Categorical Distribution:} \qquad \text{A categorical variable X follows: } \text{Cat}(x \mid \theta_1, \ldots, \theta_K) \text{ with parameters} \\ \end{array}$ **M-step:** Update parameters: $\pi^{(m+1)}(k) = \frac{n_k^{(m)}}{n}, \boldsymbol{\mu}_k^{(m+1)} = \frac{1}{n_k^{(m)}} \sum_{i=1}^n r_{ik}^{(m)} \mathbf{x}_i,$ $\overline{\theta_k} \ge 0, \sum_{k=1}^K \theta_k = 1$. The probability mass function (pmf) is: $\operatorname{Cat}(x \mid \theta_1, \dots, \theta_K) = \theta_x$. **Joint Distribution:** Given i.i.d. samples $X_i \sim \operatorname{Cat}(\theta_1, \dots, \theta_K)$, the joint probability of $\mathbf{\Sigma}_k^{(m+1)} = rac{1}{n_i^{(m)}} \sum_{i=1}^n r_{ik}^{(m)} (\mathbf{x}_i - \boldsymbol{\mu}_k^{(m+1)}) (\mathbf{x}_i - \boldsymbol{\mu}_k^{(m+1)})^{ op}$. 3. Compute new likelihood: $\mathcal{D} = \{X_1, \dots, X_n\} \text{ is: } p(\mathcal{D}) = \prod_{i=1}^n \text{Cat}(x_i \mid \theta_1, \dots, \theta_K) = \prod_{i=1}^n \prod_{k=1}^K \theta_k^{1\{x_i = k\}}.$ $L^{(m+1)} = \frac{1}{n} \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi^{(m+1)}(k) \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}_k^{(m+1)}, \boldsymbol{\Sigma}_k^{(m+1)}) \right)$. 4. Convergence Using count notation $N_k = \sum_{i=1}^n \mathbb{1}\{x_i = k\}$, we get: $p(\mathcal{D}) = \prod_{k=1}^K \theta_k^{K}$.

Gaussian (Normal) Distribution: A random variable X follows a normal distribution: **check:** Stop if $|L^{(m+1)} - L^{(m)}| \le \epsilon$. $\begin{array}{l} \overline{\mathcal{N}(x\mid\mu,\sigma^2)} = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}.\\ \underline{\textbf{\textit{Properties:}}} \quad \text{If } X \sim \mathcal{N}(\mu,\sigma^2) \text{, then: } aX \sim \mathcal{N}(a\mu,a^2\sigma^2) \text{ for any } a \in \mathbb{R}\\ \overline{X+c} \sim \mathcal{N}(\mu+c,\sigma^2). \text{ If } Z \sim \mathcal{N}(0,1), \text{ then } X = \sigma Z + \mu \sim \mathcal{N}(\mu,\sigma^2). \text{ If } X \sim \mathcal{N}(\mu,\sigma^2)\\ \text{and } Y \sim \mathcal{N}(\xi,\nu^2) \text{ are independent: } X + Y \sim \mathcal{N}(\mu+\xi,\sigma^2+\nu^2). \end{array}$ **K-Means Algorithm** Assumptions: GMM with $\Sigma_k = \sigma^2 I$ and $\pi(k) = 1/K$ are fixed. Only μ_k are inferred. **E-step:** Assign each x_i to its nearest cluster center: $k_i = \arg\min_k \|x_i - \mu_k^{(m)}\|^2$. Define hard assignment: $r_{ik}^{(m)} = 1$ if $k = k_i$, otherwise $r_{ik}^{(m)} = 0$. Objective Function: $Q(\theta \mid \theta^{(m)}) = -\frac{1}{2\sigma^2} \sum_{i=1}^n \|x_i - \mu_{k_i}^{(m)}\|^2 + \text{const. M-step:}$ Update cluster centers: $\mu_k^{(m+1)} = \frac{1}{N_k} \sum_{i:k_i=k} x_i$, where $N_k = \sum_{i=1}^n \mathbb{1}\{k_i=k\}$. Interpretation: Update each cluster center using the mean of its assigned points. Multivariate Gaussian Distribution: A random vector X follows a multivariate normal distribution: $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{K/2} (\det \boldsymbol{\Sigma})^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$. Definition: EM Algorithm for MAP Estimation MAP Estimation: Given data x, the posterior is $\mathbf{X} = [X_1, \dots, X_n]^{\top}$ is *jointly Gaussian* if for any vector $\mathbf{a} \in \mathbb{R}^n$, the linear combination: $\frac{1}{p(\theta \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \theta)p(\theta)}{p(\mathbf{x})}}. \text{ The MAP estimate is } \theta_{MAP} = \arg\max_{\theta} (\log p(\mathbf{x} \mid \theta) + \log p(\theta)).$ $\mathbf{a}^{\top}\mathbf{X} = \sum_{i=1}^n a_i X_i$ is Gaussian. Linear Transformations: If $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, then: $\mathbf{X} = \mathbf{AZ} + \boldsymbol{\mu}$ **Algorithm:** 1. Pick initial guess $\theta^{(0)}$. 2. **E-step:** At iteration m+1, compute is jointly Gaussian with mean and covariance: $\mathbb{E}[\mathbf{X}] = \boldsymbol{\mu}, \quad \operatorname{cov}(\mathbf{X}) = \mathbf{A}\mathbf{A}^{ op}$. Two-Dimensional Gaussian: $\boldsymbol{\mu} = \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_X^2 & \operatorname{cov}(X,Y) \\ \operatorname{cov}(X,Y) & \sigma_Y^2 \end{bmatrix}. \quad \rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$ $Q(\theta \mid \theta^{(m)}) = \int p(\mathbf{y} \mid \mathbf{x}, \theta^{(m)}) \log p(\mathbf{y} \mid \theta) d\mathbf{y}$. 3. **M-step:** Update $\theta^{(m+1)} = \arg \max_{\theta} \left(Q(\theta \mid \theta^{(m)}) + \log p(\theta) \right)$. 4. Repeat until convergence. MAP Estimation **Likelihood Functions for Common Distributions:** 1. Bernoulli: If $x_i \sim \text{Bern}(\theta)$ i.i.d., where $\theta \in [0,1]$, then: $p(\mathcal{D} \mid \theta) = \theta^{N_1} (1-\theta)^{N_0}$, $N_k = \sum_{i=1}^n \mathbb{1}\{x_i = k\}$. 2. Exponential: If for GMM: 1. Add priors on π , μ_k , Σ_k to regularize parameters. 2. Higher dimensional $\mathbf x$ increases the number of parameters in θ . 3. MLE via EM may suffer from singular matrices, whereas MAP helps $x_i \sim \text{Exp}(\lambda)$ i.i.d., where $\lambda > 0$, then: $p(\mathcal{D} \mid \lambda) = \lambda^n \exp\left(-\lambda \sum_{i=1}^n x_i\right)$. 3. Gaussian: If regularize. **Markov Chains** A discrete-time sequence $\mathbf{x} = \{x[0], x[1], \dots\}$, where each $x_i \sim \mathcal{N}(\mu, \sigma^2)$ i.i.d., then $\theta = (\mu, \sigma^2)$ and: $\overline{x[t]} \in \{1, 2, \dots, M\}$, satisfies the Markov property: $p(\mathcal{D} \mid \theta) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right).$ $p(x[t] \mid x[1], \dots, x[t-1]) = p(x[t] \mid x[t-1])$ i.e., The transition probability is **Maximum Likelihood Estimation (MLE): Definition:** The MLE of parameter θ is: $T(i,j) = p_{x[t]|x[t-1]}(j \mid i)$, and the transition matrix is $\mathbf{T} = [T(i,j)]_{i,j=1}^{M}$. Maximum Electrode Estimaton (MLE): Definition: The MLE of parameter θ is: $\theta_{\text{ML}} = \arg\max_{\theta} p(\mathcal{D} \mid \theta)$. For i.i.d. data $\mathcal{D} = \{x_1, \dots, x_n\}$, we maximize the log-likelihood: $\log p(\mathcal{D} \mid \theta) = \sum_{i=1}^n \log p(x_i \mid \theta)$. Bernoulli MLE: If $x_i \sim \text{Bern}(\theta)$, then: $p(\mathcal{D} \mid \theta) = \theta^{N_1} (1 - \theta)^{N_0}$, $\log p(\mathcal{D} \mid \theta) = N_1 \log \theta + N_0 \log(1 - \theta)$. Solving $\frac{\theta}{\partial \theta} \log p(\mathcal{D} \mid \theta) = 0$: $\theta_{\text{ML}} = \frac{N_1}{N_0 + N_1} = \frac{N_1}{n}$. Exponential MLE: If $x_i \sim \text{Exp}(\lambda)$, then: $\log p(\mathcal{D} \mid \lambda) = n \log \lambda - \lambda \sum_{i=1}^n x_i$. Solving $\frac{\theta}{\partial \lambda} \log p(\mathcal{D} \mid \lambda) = 0$: $\lambda_{\text{ML}} = \frac{n}{\sum_{i=1}^n x_i}$. **Transition Matrix** Each row of **T** sums to one: $\sum_{j=1}^{M} T(i,j) = \sum_{j=1}^{M} p_{x[t]|x[t-1]}(j \mid i) = 1.$ ${f T}$ is a (row) stochastic matrix. Example for a two-state system: ${f T}=\begin{bmatrix} 1-lpha \\ eta \end{bmatrix}$ $\begin{bmatrix} \alpha \\ 1-\beta \end{bmatrix}$ Given initial distribution $\mathbf{p}_0 = [p_0(1), p_0(2), \dots, p_0(M)]$, the distribution at time t=1 is: $p_1(i) = \sum_{j=1}^M p(x[1] = i, x[0] = j) = \sum_{j=1}^M p(x[1] = i \mid x[0] = j) p_0(j) = \sum_{j=1}^M p(x[1] = j) p_0(j) = \sum_{j=1}^M$ **Linear Regression Model:** Given input $\mathbf{x} = (x_1, x_2, \dots, x_D)$, the response variable follows: $\sum_{j=1}^M T(j,i)p_0(j) = (\mathbf{p}_0\mathbf{T})(i)$. Thus, $\mathbf{p}_1 = \mathbf{p}_0\mathbf{T}$. For general t, let $p_t = [p_t(1), \dots, p_t(M)]$, then: $\mathbf{p}_t = \mathbf{p}_0 \mathbf{T}^t$. **MLE for Transition Matrix** Estimate prior π and transition matrix \mathbf{T} from training data: $p(x[0], \dots, x[t] \mid \pi, \mathbf{T}) = \pi(x[0]) \mathbf{T}(x[0], x[1]) \mathbf{T}(x[1], x[2]) \dots \mathbf{T}(x[t-1], x[t])$. Given n observed sequences $\mathcal{D} = \{\mathbf{x}_1[0:t_1], \dots, \mathbf{x}_n[0:t_n]\}$, each of varying length $t_i + 1$, assume all the prior \mathbf{T} . Let \mathbf{Fit} the \mathbf{T} the \mathbf{T} that \mathbf{T} is \mathbf{T} . $y = \mathbf{w}^{\top} \mathbf{x} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$. Thus, the likelihood is: $p(y \mid \mathbf{x}, \mathbf{w}) = \mathcal{N}(y \mid \mathbf{w}^{\top} \mathbf{x}, \sigma^2)$. MLE for w: Given i.i.d. training data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}$, the log-likelihood is: $\log p(\mathbf{y} \mid \mathbf{\Phi}, \mathbf{w}) = -\frac{1}{2\sigma^2} \|\mathbf{\Phi}\mathbf{w} - \mathbf{y}\|^2 + \text{const, where } \mathbf{\Phi} = [\mathbf{x}_1 \dots \mathbf{x}_n]^\top \text{ is the design matrix.}$ Maximizing w.r.t. w gives the least squares solution: $\mathbf{w}_{\mathrm{ML}} = (\mathbf{\Phi}^{\top} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\top} \mathbf{y}$. Basis Function **Expansion:** We model non-linear relationships using basis functions: $\phi(\mathbf{x}) = \begin{bmatrix} \varphi_1(\mathbf{x}) & \varphi_2(\mathbf{x}) & \cdots & \varphi_M(\mathbf{x}) \end{bmatrix}^\top, \quad y = \mathbf{w}^\top \phi(\mathbf{x}) + \epsilon.$ **Example: Polynomial** data points follow the same **T**. **Log-likelihood**: $\log p(\mathcal{D} \mid \pi, \mathbf{T}) = \sum_{i=1}^{n} \log \pi(x_i[0]) + \sum_{i=1}^{n} \sum_{t=1}^{t_i} \log \mathbf{T}(x_i[t-1], x_i[t])$ $= \sum_{x=1}^{M} N_x \log \pi(x) + \sum_{x=1}^{M} \sum_{y=1}^{M} N_{xy} \log \mathbf{T}(x, y).$ Counts: $N_x = \sum_{i=1}^{n} \mathbb{1}(x_i[0] = x)$ **Basis Functions:** For $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\phi(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2]$, $N_{xy} = \sum_{i=1}^{n} \sum_{t=1}^{t_i} \mathbb{1}(x_i[t-1] = x, x_i[t] = y)$. MLE Estimates: $\hat{\pi}(x) = \frac{N_x}{n}$, $\hat{\mathbf{T}}(x,y) = \frac{N_{xy}}{\sum_{z=1}^{M} N_{xz}}$. Problem: Overfitting Some state transitions may have zero count if data is $y=w_1+w_2x_1+w_3x_2+w_4x_1^2+w_5x_2^2+\epsilon.$ **Model Evaluation Metrics:** Residual Sum of Squares (RSS): Measures error between predictions \hat{y}_i and true values y_i : RSS $=\sum_{i=1}^n (y_i-\hat{y}_i)^2$. Root Mean Squared Error (RMSE): Standardized HMM: Hidden Markov Model A hidden Markov model consists of: 1. A discrete state Markov chain measure of prediction error: RMSE = $\sqrt{\frac{1}{n}}$ RSS. Coefficient of Determination (R^2): Measures with hidden states or latent variables $z[t] \in \{1,\ldots,M\}, t=0,1,\ldots$, with initial distribution π and transition matrix T. 2. An observation model with emission probabilities variance explained by the model: $R^2=1-\frac{\text{RSS}}{\text{TSS}}=1-\frac{\text{RSS}}{\sum_{i=1}^n(y_i-\bar{y})^2}$, where $\bar{y}=\frac{1}{n}\sum_i y_i$ is the $p(\mathbf{x}[t] \mid z[t]) = p(\mathbf{x}[t] \mid \phi_{z[t]})$, where $\phi = (\phi_1, \dots, \phi_M)$. **Applications** 1. Long-range dependencies 2. Speech recognition 3. Gene finding 4. Emission probabilities (Gaussian example) **Baum-Welch Algorithm for HMM Training** 1. Initialize $\theta^{(0)}$. 2. **E step**: Use Forward-Backward empirical mean. - $R^2 = 0$: Model predicts mean of y. - $R^2 < 0$: Model is worse than mean prediction. Maximum A Posteriori (MAP) Estimation: Definition: The MAP estimate maximizes the posterior: $\theta_{\text{MAP}} = \arg \max_{\theta} p(\theta \mid \mathcal{D})$. Using Bayes' theorem: $p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta)p(\theta)$, Algorithm to compute $\gamma_{i,t}(z) = p(z_i[t] = z | \mathbf{x}_i[0:t_i], \theta^{(m)}) \propto \alpha_j(z)\beta_j(z),$ $\log p(\theta \mid \theta) = \log p(\mathcal{D} \mid \theta) + \log p(\theta) + \operatorname{const.} \mathbf{Example} \text{ (Bernoulli with Beta Prior): Given:}$ $p(\mathcal{D} \mid \theta) = \theta^{N_1} (1 - \theta)^{N_0}, \quad p(\theta) = \operatorname{Beta}(\theta \mid a, b),$ $\log p(\mathcal{D} \mid \theta) = \theta^{N_1} (1 - \theta)^{N_0}, \quad p(\theta) = \operatorname{Beta}(\theta \mid a, b),$ $\log p(\mathcal{D} \mid \theta) p(\theta) = (N_1 + a - 1) \log \theta + (N_0 + b - 1) \log(1 - \theta).$ Solving $\xi_{i,t}(z,z') = p(z_i[t-1] = z, z_i[t] = z'|\mathbf{x}_i[0:t_i], \theta^{(m)}),$ $\propto \alpha_{t-1}(z)p(\mathbf{x}_i[t]|z_i[t] = z')\beta_t(z')p(z_i[t] = z'|z_i[t-1] = z).$ 3. **M step**: Update parameters

 $\hat{\pi}(z) = \frac{\sum_{i=1}^n \gamma_{i,0}(z)}{n}, \hat{T}(z,z') = \frac{\sum_{i=1}^n \sum_{t=1}^{t_i} \xi_{i,t}(z,z')}{\sum_{u} \sum_{i=1}^n \sum_{t=1}^{t_i} \xi_{i,t}(z,u)}, \hat{\phi}_z = \text{emission probability parameters. 4. Repeat E and M steps until convergence.}$ $z_d^{(k)} \sim p(\cdot \mid z_1^{(k)}, \dots, z_{d-1}^{(k)})$. Discard burn-in samples Generating Approximate i.i.d. Samples: • Option 1: Run r independent Gibbs chains of length m, use final sample from each • Option 2: Run one long chain, discard burn-in, take every d-th sample final sample from each • Option 2: Kun one long chain, unscaled outlinin, take every a in some proof a in Full Conditionals: To derive $p(z_1 \mid z_2, \dots, z_d)$, use: $p(z_1 \mid z_2, \dots, z_d) = \frac{p(z_1, \dots, z_d)}{p(z_2, \dots, z_d)}$ Interestee in HMMs Filtering: Estimate latent state $p(z[t]|\mathbf{x}[0:t])$ using observations up to time t (Forward Algorithm). Smoothing: Estimate $p(z[t]|\mathbf{x}[0:t])$, using both past and future observations • Start from joint $p(z_1,\ldots,z_d)$. • Drop constants not involving z_1 . • Use known distributions to find (Forward-Backward Algorithm). **Fixed-lag smoothing**: Estimate $p(z[t-l]|\mathbf{x}[0:t])$ for online inference (Forward-Backward Algorithm). **Prediction**: Estimate $p(z[t+h]|\mathbf{x}[0:t])$, where h>0 is closed form for $p(z_1 \mid z_2, \ldots, z_d)$. the prediction horizon: $p(z[t+h]|\mathbf{x}[0:t]) = \sum_{z[t],...,z[t+h-1]} p(z[t+h]|z[t+h-1]) p(z[t+h-1]|z[t+h-2]) \cdots p(z[t+1]|z[t]) \cdot p(z[t]|\mathbf{x}[0:t])$. **MAP sequence**: Estimate <u>Artificial Neuron Model</u> An artificial neuron computes $y = f\left(\sum_{j=0}^{m} w_j x_j\right)$ with $x_0 = 1$, $w_0 = b$. Common activations: sigmoid $f(x) = \frac{1}{1+e^{-x}}$, ReLU $f(x) = \max(0, x)$.

Perceptron Decision Rule: Binary output: 1 if $\mathbf{w}^T \mathbf{p} + b > 0$, else 0. Decision boundary: $\mathbf{w}^T \mathbf{p} + b = 0$. OR Gate Perceptron Design: Given $\mathbf{w} = [1, 1]^T$, point $\mathbf{p} = [0, 0.5]^T$ lies on the boundary. Then $1 \cdot 0 + 1 \cdot 0.5 + b = 0 \Rightarrow b = -0.5$. XOR and Multi-Layer Perceptron: the most probable sequence $\mathbf{z}^*[0:T] = \arg\max_{z[0:T]} p(z[0:T]|\mathbf{x}[0:T])$ using Viterbi Sampling Using Cdf If $X \sim F$, then: $\mathbb{P}(X \leq x) = F(x)$, Let $U \sim \text{Unif}(0,1)$, define: $X = F^{-1}(U) \Rightarrow X \sim F$. Key identity: $\mathbb{P}(F^{-1}(U) \leq x) = \mathbb{P}(U \leq F(x)) = F(x)$. Sampling procedure: $U \sim \text{Unif}(0,1)$, $X = F^{-1}(U)$. Single-layer fails on XOR. Use hidden layer: Neuron 1: $\mathbf{w}_1 = [1, 1]^T$, b = -0.5; Neuron 2: $\mathbf{w}_2 = [-1, -1]^T$, b = 1.5. Output neuron: $\mathbf{w}_{\text{out}} = [1, 1]$, b = -1.5. Universal **Approximation Theorem:** A 1-hidden-layer network with non-constant, bounded, continuous activation **Transformations of Random Variables** If Y = f(X), then $p_Y(y) = \sum_{k=1}^K \frac{p_X(x_k)}{|f'(x_k)|}$, where x_k are the solutions to f(x)=y Note: Requires solving f(x)=y and knowing f'(x)Rejection Sampling Target distribution: $p(z)=\frac{1}{M}\tilde{p}(z)$, where M unknown. Choose proposal can approximate any continuous function on compact domains (with enough hidden units). Forward **Propagation:** Given $W_1, W_2, W_3, b_1, b_2, b_3$, input \mathbf{p} , compute: $\mathbf{h}_1 = \sigma(W_1\mathbf{p} + b_1)$, $\overline{q(z)}$, and constant $k \geq \frac{\tilde{p}(z)}{q(z)}$ for all z. Support condition: $\operatorname{supp}(p) \subseteq \operatorname{supp}(q)$, where q(z), the constant $x \subseteq q(z)$ for an z-deploy tenders an supp $(p) \subseteq \text{supp}(q)$, where $\sup p(p) = \{z : p(z) > 0\}$. Sampling Procedure: 1. Sample $z \sim q(z)$ 2. Sample $u \sim \text{Unif}[0, kq(z)]$ 3. Accept z if $u \leq \tilde{p}(z)$. Acceptance Probability: $\mathbb{P}(z \text{ accepted}) = \int \frac{\tilde{p}(z)}{kq(z)} q(z) \, dz = \frac{M}{k}$. Goal: choose smallest possible k s.t. $kq(z) \geq \tilde{p}(z) \, \forall z$. **Correctness:** Accepted $z \sim p(z) \, \mathbb{P}(z \le z_0 \mid \text{accepted}) = \frac{1}{M} \int_{z \le z_0} \tilde{p}(z) \, dz \to \text{Accepted samples}$ follow the CDF of p(z) Rejection Sampling for Bayesian Inference Bayes posterior: $p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}$. Often intractable due to unknown $p(\mathcal{D}) \to$ use rejection sampling on $\tilde{p}(\theta) = p(\mathcal{D} \mid \theta)p(\theta)$. If choose proposal $q(\theta) = p(\theta)$, then: $k = \max_{\theta} \frac{\tilde{p}(\theta)}{q(\theta)} = \max_{\theta} p(\mathcal{D} \mid \theta)$ \rightarrow corresponds to MLE of θ <u>Importance Sampling</u> Goal: Estimate expectation $\mathbb{E}_p[f(z)] = \int f(z)p(z) dz$, where p(z) is hard to sample. Use proposal q(z) and importance weights $w(z) = \frac{p(z)}{q(z)}$, rewrite as $\mathbb{E}_p[f(z)] = \int f(z)w(z)q(z)\,dz \approx \frac{1}{n}\sum_{i=1}^n w(z_i)f(z_i)$, where $z_i \sim q(z)$. Support: $\mathrm{supp}(f(\cdot)p(\cdot)) \subseteq \mathrm{supp}(q)$. No rejection: Keep all samples; no need $q(z) \geq p(z)$. Efficiency: Better if q(z) is large where |f(z)|p(z) is large. Normalized Importance Sampling: If p(z) and q(z)automatic differentiation. known up to constants, use normalized weights $w_n(z_i) = \frac{w(z_i)}{\sum_i w(z_i)}$, then $\mathbb{E}_p[f(z)] \approx \sum_{i=1}^n w_n(z_i) f(z_i).$ **Sampling Importance Resampling (SIR)** Goal: Convert importance weighted samples into unweighted samples from p(z). Steps: 1. Sample z_1, \ldots, z_n from q(z). 2. Compute weights $w_n(z_1),\ldots,w_n(z_n)$. 3. Resample with replacement from $\{z_1,\ldots,z_n\}$ using weights $(w_n(z_1),\ldots,w_n(z_n))$. Each resampled \tilde{z}_i drawn from multinomial over $\{z_1,\ldots,z_n\}$ with weights $w_n(z_i)$. Asymptotic correctness: For large n, $\mathbb{P}(\tilde{z} \leq a) = \sum_{i=1}^n w_n(z_i) \mathbb{1}_{\{z_i \leq a\}} \to \int_{z \leq a} p(z) \, dz$. SIR for Bayesian Inference Goal: Sample from posterior $p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{n(\mathcal{D})}$. Take unnormalized $\tilde{p}(\theta) = p(\mathcal{D} \mid \theta) p(\theta)$, sample $\theta_1, \ldots, \theta_n$ from $q(\theta) = p(\theta)$. Weights: $w_n(\theta_i) = \frac{\tilde{p}(\theta_i)/q(\theta_i)}{\sum_j \tilde{p}(\theta_j)/q(\theta_j)} = \frac{p(\mathcal{D} \mid \theta_j)}{\sum_j p(\mathcal{D} \mid \theta_j)}$. Resample $\theta_1, \ldots, \theta_n$ according to weights $(w_n(\theta_1), \ldots, w_n(\theta_n))$. Sampling for EM (Expectation Maximization) Setup: Observed data x, latent variable z. Need to compute: $Q(\theta \mid \theta^{(m)}) = \int p(\mathbf{z} \mid \mathbf{x}, \theta^{(m)}) \log p(\mathbf{x}, \mathbf{z} \mid \theta) dz$. Monte Carlo estimate: $Q(\theta \mid \theta^{(m)}) \approx \frac{1}{n} \sum_{i=1}^{n} \log p(\mathbf{x}, \mathbf{z}_i \mid \theta)$, where $\mathbf{z}_i \sim p(\mathbf{z} \mid \mathbf{x}, \theta^{(m)})$. Note: Rejection and importance sampling not suitable for high-dimensional $\mathbf{z} \to \text{need MCMC}$ methods Stationary Distribution Consider homogeneous Markov chain with transition probability $\overline{p(x_t=y\mid x_{t-1}=x)}=\mathbf{T}(x,y)$. π is a stationary distribution if $\sum_x \pi(x)\mathbf{T}(x,y)=\pi(y)$ for all states y. Also called invariant distribution — does not change over time in the chain. If M states, \mathbf{T} is an $M \times M$ matrix with $\pi \mathbf{T} = \pi$. Asymptotic Steady State Initial distribution: π_0 . Markov evolution: $\overline{\pi_1 = \pi_0 \mathbf{T}}, \ \overline{\pi_2 = \pi_1 \mathbf{T}}, \dots, \ \pi_k = \pi_0 \mathbf{T}^k$. If the limit $\pi = \lim_{k \to \infty} \pi_k = \lim_{k \to \infty} \pi_0 \mathbf{T}^k$ exist, π must satisfy $\pi \mathbf{T} = \pi \to \mathbf{a}$ stationary distribution 2 hidden + output. **Reversible Markov Chain (MC)** Sufficient condition for π to be stationary: The reversible Markov Chair (MC) and $(x,y) = \pi(y)\mathbf{T}(y,x)$ for all $x,y \to \text{This chain is } reversible$. Summing both sides over x: $\sum_x \pi(x)\mathbf{T}(x,y) = \sum_x \pi(y)\mathbf{T}(y,x) = \pi(y)\sum_x \mathbf{T}(y,x) = \pi(y)$. Sampling from target distribution $\pi(x)$: Design transition $\mathbf{T}(x,y)$ such that \triangleright Ergodicity conditions hold \triangleright Usually make \mathbf{T} reversible and aperiodic $\triangleright \pi(x)$ is stationary distribution. MCMC idea: Generate sample path z_0, z_1, \dots, z_n from any z_0 . If n large, then $p(z_n) \approx \pi(z_n) \to \text{We obtain samples from } \pi$ — this is the basic MCMC. the basis of MCMC *Metropolis-Hastings Algorithm* Goal: Sample from complex target $\pi(\mathbf{x})$ (e.g., $\mathcal{X} = \mathbb{R}^{1000}$) Assume we can compute unnormalized density $\tilde{\pi}(\mathbf{x})$. Choose proposal $q(\mathbf{x}, \mathbf{y})$ that is irreducible, aperiodic, and easy to sample — this is the *proposal distribution*. **Markov chain**: Let Z_0, Z_1, \ldots the chain states. At step m: 1. Let $\mathbf{x} = Z_{m-1}$. 2. Sample $\mathbf{y} \sim q(\mathbf{x}, \cdot)$. 3. Accept \mathbf{y} with probability $A(\mathbf{x}, \mathbf{y}) = \min\left(1, \frac{\tilde{\pi}(\mathbf{y})q(\mathbf{y}, \mathbf{x})}{\tilde{\pi}(\mathbf{x})q(\mathbf{x}, \mathbf{y})}\right)$. 4. If accepted, $Z_m = \mathbf{y}$; else $Z_m = Z_{m-1}$. Properties: • Sequence Z_0, Z_1, \ldots is a Markov chain (only depends on Z_{m-1}) • Like rejection/importance sampling, does not need normalization constant of $\tilde{\pi} \bullet$ Suitable for high-dimensional $\pi(\mathbf{x})$ since sampling, does not need in the information of the sampling is from simple $q(\mathbf{x}, \cdot)$ and the sampling is from simple $q(\mathbf{x}, \cdot)$ and the sampling is from simple $q(\mathbf{x}, \cdot)$ and the sampling is from simple $q(\mathbf{x}, \cdot)$. It is designed to converge to stationary distribution $\pi(\cdot)$. For large $m, Z_m \sim \pi$ approximately. **Burn-in period:** discard first 1000–5000 samples **Choice of Proposal Distribution:** $\triangleright q(\mathbf{x}, \mathbf{y}) = q(\mathbf{y} - \mathbf{x}) - random walk MH. \bullet \mathbf{y} - \mathbf{x} \sim \mathcal{N}(0, \Sigma)$ Gaussian centered at \mathbf{x} . • $\mathbf{y} - \mathbf{x} \sim \text{Unif}[-\delta, \delta]^d$ — Uniform around \mathbf{x} . If $q(\mathbf{x}, \mathbf{y}) = q(\mathbf{y}, \mathbf{x})$, then $A(\mathbf{x}, \mathbf{y}) = \min\left(1, \frac{\tilde{\pi}(\mathbf{y})}{\tilde{\pi}(\mathbf{x})}\right)$ — known as the Metropolis Algorithm. learnable parameters. *Remark*: Variance in q affects mixing — too small \Rightarrow slow, too large \Rightarrow high rejection Flatten and FC Layer **Independence Chain MH:** $\triangleright q(\mathbf{x}, \mathbf{y}) = q(\mathbf{y})$, i.e. next state is independent of current Works well if connects to all inputs. $q(\mathbf{y})$ closely approximates $\pi(\mathbf{y})$ and is heavy-tailed Exploiting Structure of π : Suppose $\pi(\mathbf{x}) \propto \psi(\mathbf{x})h(\mathbf{x})$, with known $h(\mathbf{x})$, bounded $\psi(\mathbf{x})$ Choose $q(\mathbf{x}, \mathbf{y}) = h(\mathbf{y})$, then: $A(\mathbf{x}, \mathbf{y}) = \min\left(1, \frac{\tilde{\pi}(\mathbf{y})q(\mathbf{y}, \mathbf{x})}{\tilde{\pi}(\mathbf{x})q(\mathbf{x}, \mathbf{y})}\right) = \min\left(1, \frac{\psi(\mathbf{y})h(\mathbf{y})h(\mathbf{x})}{\psi(\mathbf{x})h(\mathbf{x})h(\mathbf{y})}\right) = \min\left(1, \frac{\psi(\mathbf{y})}{\psi(\mathbf{x})}\right)$ **Proposal Variance** Important to tune proposal variance σ . • σ too small \rightarrow slow mixing, high acceptance rate, stuck in local region. • σ too large \rightarrow large jumps, low acceptance rate, stuck for long time. **Rules of thumb:** • Random walk MH: target acceptance rate of 0.25 to 0.5. • Independence chain MH: acceptance rate close to 1 **Burn-In** Burn-in phase: discard early samples before chain reaches stationary distribution. Hard to detect exact burn-in length. E.g., $x_0 \sim \text{Unif}(\{0, 1, \dots, 20\})$, takes over 400 steps to "forget" initial **Thinning** Thinning: reduce correlation between samples by taking every d-th sample. Useful when σ is too large \rightarrow MC stuck for long time at same location. Subsample every d samples: z_0, z_d, z_{2d}, \ldots Gibbs Sampling Special case of Metropolis-Hastings, for multivariate $p(z_1,\ldots,z_d)$ (hard to sample jointly when d is large). For each i, define $\mathbf{z}_{-i}=\{z_1,\ldots,z_{i-1},z_{i+1},\ldots,z_d\}$. If we can compute full conditionals $p(z_i \mid \mathbf{z}_{-i})$, we can perform Gibbs sampling:. • Initialize $(z_1^{(0)}, \dots, z_d^{(0)})$. • For each iteration k, sequentially sample:: $z_1^{(k)} \sim p(\cdot \mid z_2^{(k-1)}, \dots, z_d^{(k-1)})$ $z_2^{(k)} \sim p(\cdot \mid z_1^{(k)}, z_3^{(k-1)}, \dots)$... $z_j^{(k)} \sim p(\cdot \mid z_1^{(k)}, \dots, z_{j-1}^{(k)}, z_{j+1}^{(k-1)}, \dots)$...

 $\begin{array}{l} \mathbf{h}_2 = \sigma(W_2 \mathbf{h}_1 + b_2), \, \hat{y} = \sigma(W_3 \mathbf{h}_2 + b_3). \\ \underline{\textbf{Feedforward Computation}} \quad \text{A multilayer NN maps input } x \text{ to output } y \text{ via:} \\ \overline{y = f(x) = \sigma(W_L \sigma(W_{L-1} \ldots \sigma(W_1 x + b_1) \cdots + b_{L-1}) + b_L)}. \quad \text{All layers use weight} \end{array}$ matrices \hat{W}_i and bias vectors b_i . Activation Functions • Sigmoid: $\sigma(x) = \frac{1}{1+e^{-x}}$, output in (0,1), saturates. • Tanh: $\tanh(x)$, output in (-1,1), zero-centered. • ReLU: $\max(0,x)$, avoids vanishing gradient, fast to compute. • Leaky ReLU: $f(x) = \alpha x$ if x < 0, else x, avoids dead neurons. • Linear: f(x) = cx, used in regression output layer. • Softmax: softmax $(z_i) = \frac{e^{z_i}}{\sum_j e^{\overline{z_j}}}$, output is probability distribution. $\begin{array}{c} \underline{\textit{Loss Functions}} & \text{ • Classification: Cross-entropy loss } & \mathcal{L}(\theta) = -\sum_{k=1}^K y_k \log \hat{y}_k & \text{ • Regression: } \\ \underline{\textit{Mean squared error (MSE): }} & \mathcal{L}(\theta) = \frac{1}{n}\sum_i (y_i - \hat{y}_i)^2. & \underline{\textit{Mean absolute error (MAE): }} & \sum_i |y_i - \hat{y}_i| \\ \underline{\textit{Gradient Descent (GD)}} & \underline{\textit{Minimize loss }} & \mathcal{L}(\theta) \text{ by updating weights: } & \theta_{\text{new}} = \theta_{\text{old}} - \alpha \nabla_{\theta} \mathcal{L}(\theta_{\text{old}}) \\ \underline{\textit{Where }} & \text{is learning rate.} & \underline{\textit{\bullet}} & \underline{\textit{Stabelian of CD: compute gradients over full dataset.}} \\ \end{array}$ subset (e.g., 32–256 samples). • SGD: mini-batch size = 1, fast but noisy. Backpropagation

or Combines forward pass + backward pass using chain rule to compute gradients of executive to expect the second of the secon **Optimization Variants** • Momentum: $v_t = \beta v_{t-1} + (1-\beta)\nabla \mathcal{L}$, improves convergence. Nesterov Momentum: lookahead at future parameters before computing gradient. • Adam: combines momentum and adaptive learning rate: keeps moving average of gradients and squared gradients. Other: RMSprop, Adagrad, Adadelta. **Learning Rate (LR)** • Too small \rightarrow slow convergence. • Too large \rightarrow divergence or oscillations. • LR scheduling: reduce α over time. Approaches: step decay, exponential decay, reduce-on-plateau, Regularization Techniques $beta_k | \theta_k |$, promotes sparsity.

• ℓ_2 regularization: $\mathcal{L}_{\text{reg}} = \mathcal{L}(\theta) + \lambda \sum_k \theta_k^2$ • ℓ_1 regularization: • Elastic net: mix of ℓ_1 and ℓ_2 . • Dropout: randomly deactivate neurons during training (e.g., p = 0.5). • Early stopping: monitor validation loss, stop if no improvement after n epochs. **Batch Normalization** • Normalize each mini-batch: $\hat{x} = \frac{x-\mu}{\sigma}$ • Accelerates training, reduces internal covariate shift, allows higher learning rate. **Data Preprocessing** • Standardization: zero mean, unit variance. $x' = \frac{x-\mu}{\sigma}$ • Normalization: Scale to $[0,1]: x' = \frac{x - \min(x)}{\max(x) - \min(x)}$ Hyperparameter T_{\min} • Examples: layer size, learning rate, regularization strength, batch size, activation. • Methods: grid search, random search, Bayesian optimization. • Use k-fold cross-validation if data is limited. Generalization and Model Capacity • Underfitting: high train + validation error (model too simple). • Overfitting: low train error, high validation error (model too complex). • Use validation set, regularization, early stopping to improve generalization.

Common Architectures

- Classification: last layer = softmax, loss = cross-entropy.

- Regression:

- Regression:

- "3-layer NN" = input + 1 hidden + output.

- "3-layer NN" = input + 1 Why MLP Fails on Images MLPs are not translation invariant: shifting the input changes the output drastically. CNNs solve this with local receptive fields and shared weights. **Convolution Operation (1D)** Convolution flips and slides a kernel w over input x, performing elementwise multiplication and summation. Example: $x = [1, 2, 3, 4], w = [5, 6, 7] \rightarrow \text{output}$ z = [5, 16, 34, 52, 45, 28]2D Convolution Apply 2D filter over 2D image by elementwise multiplication and sum. Edge detectors (e.g., Laplacian) highlight directional features. $\begin{array}{c} \textit{CNN Advantages} \\ \textit{receptive fields.} \end{array} \begin{array}{c} \bullet \mbox{ Parameter sharing via convolution filters.} & \bullet \mbox{ Sparse connections via local} \\ \bullet \mbox{ Translation invariance.} & \bullet \mbox{ Fewer parameters than MLPs} \rightarrow \mbox{ faster training.} \end{array}$ Convolutional Layer Details • Each filter spans full input depth. • Produces one activation map per Spatial Dimensions For input of size $W_1 \times H_1 \times C$, filter size F, stride S, padding P: $W_2 = \frac{W_1 - F + 2P}{S} + 1$. $W_2 = \frac{H_1 - F + 2P}{S} + 1$. Number of parameters per filter: $F^2C + 1$ (bias), total: $K(F^2C+1)$ for K filters. **Example Calculation:** Input: $32 \times 32 \times 3$, Filters: 10 of size 5×5 , stride 1, padding 2 Output spatial size: $(32+2*2-5)/1+1=32 \rightarrow 32 \times 32 \times 10$ Params: 5*5*3+1=76 per filter \rightarrow total 760 parameters. **Padding Strategy** Zero-padding preserves spatial size. To preserve size: use padding $P = \frac{F-1}{2}$ if **Pooling Layer** • Reduces spatial size, parameters, overfitting. • Max pooling: keep largest value in window. • Avg pooling: keep mean value. Output size: $W_2 = \frac{W_1 - F}{S} + 1$, same for H_2 . No • Flatten: convert activation map to 1D before FC. • FC: standard dense layer CNN Architecture Typical: [CONV - ReLU] \times N - [POOL] \times M - [FC - ReLU] \times K - Softmax. Modern trends: deep models (VGG, ResNet), small filters (3 \times 3), less pooling. **Residual Networks (ResNets)** • Use identity skip connections: output = layer(x) + x. • Help prevent vanishing gradients. • Enable very deep models (e.g., 18, 50, 152 layers).