Typed Systems

- Typed systems allow ...
 - To capture different types via common syntax and semantics
 - ... at the price of ambiguity
 - ... which has to be resolved
- Case of Bims:
 - Typed expressions instead of boolean and arithmetic ones
 - Syntax of typed Bims:

$$e ::= e_1 = e_2 \mid e_1 < e_2 \mid \neg e_1 \mid e_1 \wedge e_2$$

$$\mid n \mid x \mid e_1 + e_2 \mid e_1 * e_2 \mid e_1 - e_2 \mid (e_1)$$
 $S ::= x := e \mid \text{skip} \mid S_1; S_2 \mid \text{if } e \text{ then } S_1 \text{ else } S_2 \mid \text{while } e \text{ do } S$

Note that expressions combine logical and arithmetic operations

Typed Expressions

- BS-semantics for expressions:
 - A state s is a partial function s : Var → Z ∪ {ff, tt}
 - Transition system: (Exp $\cup \mathbb{Z} \cup \{ff, tt\}, \rightarrow, \mathbb{Z} \cup \{ff, tt\}$)
 - Replace a_i with e_i and \rightarrow_A with \rightarrow_E in the BS-semantics of Aexp:

Type violation if (or vice versa)

v can be both integer

... modify the BS-semantics of booleans accordingly

Typed Statements

- BS-semantics for statements:
 - Replace a,b with e and \rightarrow_A , \rightarrow_B with \rightarrow_E

Note, similarly to before, that type violations are possible

Type Environments

- Introduce type environments to avoid type violations
- Type environments are partial functions $E: \mathbb{Var} \to \{Bool, Int\}$
- $E \vdash e$: T means that expression e is of type T in environment E
- The type rules for expressions are:

$$[SUBS_{EXP}] \qquad \frac{E \vdash e_1 : Int \quad E \vdash e_2 : Int}{E \vdash e_1 - e_2 : Int} \qquad [NUM_{EXP}] \qquad E \vdash n : Int$$

$$[ADD_{EXP}] \qquad \frac{E \vdash e_1 : Int \quad E \vdash e_2 : Int}{E \vdash e_1 + e_2 : Int} \qquad [VAR_{EXP}] \qquad \frac{E(x) = T}{E \vdash x : T}$$

$$[MULT_{EXP}] \qquad \frac{E \vdash e_1 : Int \quad E \vdash e_2 : Int}{E \vdash e_1 * e_2 : Int} \qquad [PAREN_{EXP}] \qquad \frac{E \vdash e_1 : T}{E \vdash (e_1) : T}$$

$$[EQUAL_{EXP}] \qquad \frac{E \vdash e_1 : T \quad E \vdash e_2 : T}{E \vdash e_1 = e_2 : Bool}$$

$$[AND_{EXP}] \qquad \frac{E \vdash e_1 : Bool}{E \vdash e_1 \land e_2 : Bool} \qquad [NEG_{EXP}] \qquad \frac{E \vdash e_1 : Bool}{E \vdash \neg e_1 : Bool}$$

• Deduction rule for $e_1 < e_2$? Answer: $[LT_{EXP}] \frac{E \vdash e_1:Int \quad E \vdash e_2:Int}{E \vdash e_1 < e_2:Bool}$

Type Environments

- Introduce type environments to avoid type violation
- $E \vdash S$: ok means that S is well-typed in environment E
- The type rules for statements are:

$$\begin{split} & [\text{SKIP}_{\text{STM}}] \qquad E \vdash \text{skip}: \text{ok} \\ & \frac{E \vdash x : T \quad E \vdash a : T}{E \vdash x := a : \text{ok}} \\ & [\text{IF}_{\text{STM}}] \qquad \frac{E \vdash e : \text{Bool} \quad E \vdash S_1 : \text{ok} \quad E \vdash S_2 : \text{ok}}{E \vdash \text{if} \ e \ \text{then} \ S_1 \ \text{else}; S_2 : \text{ok}} \\ & [\text{WHILE}_{\text{STM}}] \qquad \frac{E \vdash e : \text{Bool} \quad E \vdash S : \text{ok}}{E \vdash \text{while} \ e \ \text{do} \ S : \text{ok}} \\ & [\text{COMP}_{\text{STM}}] \qquad \frac{E \vdash S_1 : \text{ok} \quad E \vdash S_2 : \text{ok}}{E \vdash S_1 : \text{ok} \quad E \vdash S_2 : \text{ok}} \\ & E \vdash S_1 : \text{ok} \quad E \vdash S_2 : \text{ok}} \end{split}$$

Safety Properties

- Every type system is supposed to be safe
- We expect that $E \vdash e: T$ ensures that expression e has type T in environment E
- To prove it formally, we ...
 - Denote by set(T) the set of possible values associated to a type, i.e., $set(Int) = \mathbb{Z}$ and $set(Bool) = \{ff, tt\}$
 - Say that ``state s is in agreement with environment E'' if, for all $x \in \mathbb{Var}$, it holds that E(x) = T implies that $s(x) \in set(T)$
- Theorem (Safety of expressions): If state s agrees with environment E and $E \vdash e: T$, then $s \vdash e \rightarrow_E v$ with $v \in set(T)$.

Proof: By induction on the height of the derivation tree of $E \vdash e: T_{\cdot 6}$

Safety Properties

- From previous slide:
 - Denote by set(T) the set of possible values associated to a type, i.e., $set(Int) = \mathbb{Z}$ and $set(Bool) = \{ff, tt\}$
 - Say that state s in agreement with environment E if, for all $x \in \mathbb{Var}$, it holds that E(x) = T implies that $s(x) \in \operatorname{set}(T)$
- $E \vdash S$: ok should ensure that a processing statement S does not result in a state that is not in agreement with environment E.
- Theorem (Safety of statements): Assume that s agrees with environment E and $E \vdash S$: ok. Then, provided that $\langle S, s \rangle \rightarrow s'$, state s' is in agreement with environment E.

Proof: By induction on the height of the derivation tree of $\langle S, s \rangle \rightarrow s'$.

Limitations of Type Systems

Consider the following statement S:

```
if 0=1
then
    x := true
else
    x := 44
```

Math lingo: If $A \Leftrightarrow B$, then:

- A is sufficient for B and
- A is necessary for B

- We have that $\neg (E \vdash S: ok)$
- At the same time, if E(x) = Int, then $\langle S, s \rangle \to s'$ with s'(x) = 44.
- Intuition: Our type system is sufficient to exclude type violations. It is, however, not necessary to exclude type violations.
- Question: Can we find a type system that ``characterizes'' type violations? Answer: No. (Computability theory)