4. Logic Gates.

(Marks:-17)

Q.1 Logic Gates:-

Ans.

Gate is an electronic circuit in which only one input & two or more than output.

- > There are three basic types of logic gates:-
 - 1. AND Gate.
 - 2. OR Gate.
 - 3. NOT Gate. [Bubble/ Inverter Gate]

Logic Decision:-

Inter connection of gate to perform variety of logic decision operation is called logic decision.

Truth Table:-

A table which list all the possible communication of Input variable & corresponding output is called truth table.

1. AND Gate :-

AND Gate is logical gate in which two or more input & only one output.

Block Diagram of AND Gate:-

Truth table of AND Gate:-

Input		Output
X Y		Z=XY
0	0	0(low)
0	1	0
1	0	0
1	1	1(High)

Explain:-

If both input are low than output low, if both input are high than output high otherwise output is low.

2. OR Gate:-

OR Gate is two or more than input & only one output.

Block Diagram of OR Gate:-

Truth table of OR Gate:-

Inp	Output	
Х У		Z=X+Y
0	0	0(Low)
0	1	1
1	0	1
1	1	1(High)

Explain:-

If both input are low than output will be low otherwise output will be high. If any input high than output will be high.

3. NOT Gate [Bubble/ Inverter Gate]:-

Not Gate is inverter gate. It has only one input & only one output. It contain bubble to inverter.

Block diagram of NOT Gate:-

Truth table of NOT Gate:-

Input	Output
Α	Ā
0	1
1	0

Explain:-

If input is low than output is high & if input is high than output is low.

Q.2 Universal Gate:-

Ans.

- > There are two types of universal gate.
 - 1. NAND [AND + NOT]
 - 2. NOR [OR + NOT]

NAND & NOR perform all three basic logic [AND, OR, NOT] that's way is called universal gate.

1. <u>NAND [AND + NOT]</u>:-

NAND Gate is universal gate in which two or more than two input & only one output.

Block diagram of NAND Gate:

Truth table of NAND Gate:-

Input		Out	put
X	Y	XY	XY
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Explain:-

If both input are high then output will be low. Otherwise output will be high.

NAND Gate is communication is AND & NOT gate.

2. <u>NOR[OR+NOT]</u> :-

NOR is universal gate in which two or more than two input & only one output.

Block diagram of NOR Gate:-

Truth table of NOR Gate:

In	put	Outp	out
X	Х		X+Y
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Explain:-

If both input are low than output is high, otherwise input is high than output will be low.

NOR Gate is communication of OR+NOT Gate.

Q.3 Exclusive- OR-Gate [ex-OR]... [$\overrightarrow{AB}+\overrightarrow{AB}$] or [A (+) B]. Ans.

Block Diagram of Exclusive OR Gate:-

Truth table of Exclusive OR Gate:

Input				Output		
Α	В	Ā	B	ĀB	ΑB	AB+AB
0	0	1	1	0	0	0
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	1	0	0	0	0	0

Q.4 Exclusive- NOR-Gate [ex-NOR]... $\overline{[AB + AB]}$. Ans.

Block Diagram of Exclusive NOR Gate:-

Truth table of Exclusive NOR Gate:-

Input Output			tput				
Α	В	Ā	B	AB AB AB AB AB			ĀB+AB
0	0	1	1	0	0	0	1
0	1	1	0	1	0	1	0
1	0	0	1	0	1	1	0
1	1	0	0	0	0	0	1

Q.5 Combinational Circuit

Ans.

In combinational circuit output is depend on only present input.

Block diagram of combinational:-

- > There are two types of combinational circuit.
 - 1. Adder
 - I. Half adder (0+0)
 - II. Full adder(0+0+0)
 - 2. Subtraction
 - I. Half subtraction(0-0)
 - II. Full subtraction (0-0-0)

1. Adder:-

In combinational circuit perform addition of bit is called adder.

- There are two types of adder:-
 - I. Half adder (0+0)
 - II. Full adder(0+0+0)

I. <u>Half adder (0+0)</u> :-

In communicational circuit which can perform the addition of two bit is called half adder.

Block diagram of Half adder:-

Truth table of Half adder:

Input		Output		
X	Y	S	С	
			• • • • • • • • • • • • • • • • • • • •	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Logic of Half adder of Sum:-

$$[\overline{X}Y + X\overline{Y}]$$

Circuit of Half adder of Sum: -

Page **9** of **24**

<u>Circuit of Half adder of carry</u>: - [logic: - XY]

II. <u>Full adder(0+0+0)</u> :-

In communicational can which three bit addition is called full adder.

Block diagram of Full adder:-

Truth table of Full adder:-

	Input	Out	put	
X	Y	Z	S	С
	151			
0	0	0	0	0
0	0	1	1	0
	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Logic of Full adder of sum:-

$$= \overline{X} \overline{Y} Z + \overline{X} Y \overline{Z} + X \overline{Y} \overline{Z} + X Y Z$$

$$= \overline{X} (\overline{Y} Z + Y \overline{Z}) + X (\overline{Y} \overline{Z} + Y Z)$$

$$=\overline{X}(Y(+)Z)+X\overline{(Y(+)Z)}$$

=
$$(\overline{Y} (+) \overline{Z}) == K$$
 ધારતાં

$$= XK + XK$$

$$= X (+) K$$

$$= X (+) Y (+) Z$$

Circuit of Full adder of sum:-

Logic of Full adder of carry:-

$$= \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ}$$

$$=Z(\overline{X}Y+X\overline{Y})+XY(\overline{Z}+Z)$$

$$= Z(X(+)Y) + XY(1)$$

$$= ZX+ZY+XY$$

Circuit of Full adder of carry:-

2. Subtraction:-

There are two types of subtraction:-

- Half subtraction (0-0)
- II. Full subtraction (0-0-0)

I. Half subtraction(0-0):-

In communicational circuit which can perform difference between two bit.

Block diagram of half subtraction:-

Page 12 of 24

Truth table of half subtraction:-

Input		Output		
X	Υ	D B		
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

Logic of half subtraction of Difference:-

$$=\overline{X}Y+X\overline{Y}$$

$$= X (+) Y$$

<u>Circuit of half subtraction of difference:</u>

Logic of half subtraction of borrow:-

$$=\overline{X}Y$$

Circuit of half subtraction of borrow:-

II. Full subtraction (0-0-0):-

In communicational circuit which can perform different between 3 bits is called full subtraction.

Block diagram of full subtraction:-

Truth table of full subtraction:-

Input			Out	put
X	Υ	Z	D	В
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1
			~	

Logic of full subtraction of different:-

$$=\overline{X}\overline{Y}Z+\overline{X}Y\overline{Z}+X\overline{Y}\overline{Z}+XYZ$$

$$=\overline{X}(Y(+)Z)+X(\overline{Y(+)Z})$$

$$=\overline{X}(K)+X(\overline{K})$$

$$= X(+)K$$

$$= X (+) Y (+) Z$$

Circuit of subtraction of difference:-

Logic of full subtraction of borrow:-

$$=\overline{XYZ} + \overline{XYZ} + \overline{XYZ} + XYZ$$

$$= \overline{X} (\overline{Y}Z+YZ) + YZ (\overline{X}+X)$$

$$= X (Y (+) Z) + YZ (1)$$

$$= XY + XZ + YZ$$

Circuit of full subtraction of borrow:-

Q.6 Decoder:-

Ans.

Decoder is combinational that convert binary Information from n input line 2ⁿ output line.

Block diagram of Decoder:-

- > There are two types of decoder:-
 - 1. (2*4) Decoder or 2*4 line Decoder.
 - 2. (3*8) Decoder or 3*8 line Decoder.

1. (2*4) Decoder or 2*4 line Decoder:-

A Decoder is having two input line & $2^n = 2^2 = 2*2 = 4$ decoder is called 2*4 decoder.

Block diagram of 2*4 Decoder:

Truth table of 2*4 Decoder:-

In	Input		Output				
X	Υ	D ₀	D0 D1 D2 D3				
0	0	1	0	0	0		
0	1	0	1	0	0		
1	0	0	0	1	0		
1	1	0	0	0	1		

Logic of 2*4 Decoder:-

$$D_0 = \overline{X}\overline{Y}$$
 $D_2 = X\overline{Y}$

$$D_1 = \overline{X}Y$$
 $D_3 = XY$

Circuit of 2*4 Decoder:-

2. 3*8 Decoder or 3*8 line Decoder:-

A decoder having three input line $2^n=2^3=2*2*2=8$ output line is called 3*8 decoder.

Block diagram of 3*8 line Decoder:-

Truth table of 3*8 line Decoder:-

Input			Output (Octal)							
X	Υ	Z	D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Logic of 3*8 line Decoder:-

$$D_0 = \overline{X} \, \overline{Y} \, \overline{Z} \qquad D_3 = \overline{X} \, Y \, Z \qquad D_6 = X \, Y \, \overline{Z}$$

$$D_1 = \overline{X} \overline{Y} Z$$
 $D_4 = X \overline{Y} \overline{Z}$ $D_7 = X Y Z$

$$D_2 = \overline{X} Y \overline{Z} \qquad D_5 = X \overline{Y} Z$$

Q.7 Encoder:-

Ans.

Encoder is digital circuit that product operation from decoder. Encoder has 2ⁿ input & n output line.

Block diagram of encoder:-

Explain:-

Octal to binary encoder consist of 8 input & 3 output which generate binary run.

Truth table of encoder:-

Input	Output					
Octal	X	Υ	Z			
D_0	0	0	0			
D_1	0	0	1			
D ₂	0	1	0			
D ₃	0	1	1			
D ₄	1	0	0			
D ₅	1	0	1			
D ₆	1	1	0			
D_7	1	1	1			

Logic of encoder:-

$$X=D_4+D_5+D_6+D_7$$

$$Y=D_2+D_3+D_6+D_7$$

$$Z=D_1+D_3+D_5+D_7$$

Circuit of encoder:-

Q.8 write short note on 8 4 2 1 BCD code [BCD: - Binary Code Decimal].

Ans.

The 8 4 2 1 BCD code is a weighted code is also sequence is called so it is useful for mathematical operation.

In this code each decimal digits 0 to 9 is coded by 4 bit binary number.

It is called natural binary because of the 8 4 2 1 wait attached to it.

There are six invalid communicational 1010, 1011, 1100, 1101, 1110 & 1111 they are not a part of 8 4 2 1 BCD code.

Advantages of BCD code:-

~ It is easy to convert from decimal. Ex. 31 0011 0001

Disadvantages of BCD code:-

~ It required more bit to represent of number

BCD Arithmetic:-

(1) Additions:

BCD addition is perform by adding the corresponding digits of for bit binary.

If there is query out a group to the next group or if the result is eagle them 0110 (6) is called to the group.

(2) <u>Subtraction</u>:-

BCD subtraction is borrow from next row them 0110 (6) is subtracted from the group.

Q.9 Excess three code (XS-3)

Ans.

- ~ Excess-3 also called (XS-3) code.
- ~ Excess-3 also called non-weighted.

XS-3 code derived from each binary code corresponding 8 4 2 1 plus 0011 (3).

It can be used arithmetic operation.

Table of XS-3

Decimal	8	4	2	1	XS-3 code
0	0	0	0	0	0011 (0+3)=3
1	0	0	0	1	0100(1+3)=4
2	0	0	1	0	0101(2+3)=5
3	0	0	1	1	0110(3+3)=6
4	0	1	0	0	0111(4+3)=7
5	0	1	0	1.	1000(5+3)=8
6	0	1	1	0	1001(6+3)=9
7	0	1	1	1	1010(7+3)=10
8	1	0	0	0	1011(8+3)=11
9	1	0	0	1	1100(8+4)=12

XS-3 code has six invalid state like 0000, 0001, 0010, 1101, 1110, 1111.