Final Summer Course Exercise 1

1. Population Optimizer of absolute loss

Prove that for absolute loss: $L_{abs}(Y, f(X)) = |Y - f(X)|$, EPE is minimized by setting $f^*(x) = Median(Y|X = x)$

Hint: you may find the following identity useful:

$$\int_{y>c} (y-c)dP(y) = \int_{y>c} Pr(Y>y)dy.$$

Generalization to quantile loss The τ th quantile loss for $0 < \tau < 1$ is defined as:

$$L_{\tau}(Y, f(X)) = \begin{cases} \tau \times (Y - f(X)) & \text{if } Y - f(X) > 0 \\ -(1 - \tau) \times (Y - f(X)) & \text{otherwise} \end{cases}$$

Prove that the EPE is minimized by setting $f^*(x)$ to be the τ th quantile of P(Y|X=x), i.e., $P(Y \le f^*(x)|X=x) = \tau$

2. **ESL 2.3:** Derive equation (2.24) (expected median distance to origin's nearest neighbor in an ℓ_p ball):

$$d(p,n) = (1 - \frac{1}{2}^{1/n})^{1/p}$$

Suggested approach:

- (a) Find the probability that all observations are outside a ball of radius r < 1, as a function of r.
- (b) You are looking for r such that this probability is 1/2.

Plot d(p, n) against p for $n \in \{100, 5000, 100000\}$ and $p \in \{3, 5, 10, 20, 50, 100\}$ (make one curve for every value of n — use the R functions plot() and lines()) and interpret the graph.

- 3. **ESL 2.7:** Compare classification performance of k-NN and linear regression on the $zipcode^1$ data, on the task of separating the digits 2 and 3. Use $k \in \{1, 3, 5, 7, 15\}$. Plot training and test error for k-NN choices and linear regression. Comment on the shape of the graph.
- 4. **ESL 2.9 (second edition only)** Consider a linear regression model, fit by least squares to a set of training examples $T = \{(X_1, Y_1), ..., (X_N, Y_N)\}$, drawn i.i.d from some population. Let $\hat{\beta}$ be the least squares estimate. Suppose we also have some other ("test") data drawn independently from the same distribution $\{(\tilde{X}_1, \tilde{Y}_1), ..., (\tilde{X}_M, \tilde{Y}_M)\}$. Prove that:

$$\frac{1}{N}\mathbb{E}(\sum_{i=1}^{N}(Y_{i}-X_{i}^{T}\hat{\beta})^{2}) \leq \frac{1}{M}\mathbb{E}(\sum_{i=1}^{M}(\tilde{Y}_{i}-\tilde{X}_{i}^{T}\hat{\beta})^{2}),$$

that is, the expected squared error in-sample is always bigger than out of sample in least squares fitting. Note that the values X are also random variables here, and the expectation is over everything that is random, including X, Y and $\hat{\beta}$.

 $^{^1\}mathrm{Training:}\ \mathrm{http://statweb.stanford.edu/^\tilde{t}ibs/ElemStatLearn/datasets/zip.train.gz}$ Testing: $\mathrm{http://statweb.stanford.edu/^\tilde{t}ibs/ElemStatLearn/datasets/zip.test.gz}$ Info: $\mathrm{http://statweb.stanford.edu/^\tilde{t}ibs/ElemStatLearn/datasets/zip.info}$

5. Hard problem: Optimality of k-NN in fixed dimension

Assume $X \sim \text{Unif}([0,1]^p)$, and $Y = f(X) + \epsilon$ with $\epsilon \sim (0,\sigma^2)$ (that is, f(x) = E(Y|X=x)). Assume f is Lipschitz: $||x_1 - x_2|| < \delta \Rightarrow |f(x_1) - f(x_2)| < c\delta$, $\forall x_1, x_2 \in [0,1]^p$. Choose any sequence k(n) such that:

$$k(n) \xrightarrow{n \to \infty} \infty$$
 $k(n)/n \xrightarrow{n \to \infty} 0$

Then:

EPE(k-NN using
$$k(n)$$
) $\stackrel{n\to\infty}{\longrightarrow} EPE(f) = \sigma^2$

(The proof does not have to be completely formal, for example you can replace a binomial with its normal approximation without proof of the relevant asymptotics).

6. (May be postponed to Exercise 2) Guaranteed error reduction via Ridge Regression Assume the linear model is correct, i.e., $E(Y|X=x)=x^T\beta$. Consider making a prediction at a new

point x_0 based on a Ridge Regression with smoothing parameter λ : $\hat{Y} = x_0^T \hat{\beta}^{\text{ridge}}(\lambda)$

- (a) Derive explicit expressions for the bias and variance of \hat{Y} as a function of λ (use the SVD of X for the variance).
- (b) Set $MSE(\lambda) = bias^2(\lambda) + Var(\lambda)$ from above, show that

$$\left. \frac{d}{d\lambda} MSE(\lambda) \right|_{\lambda=0} < 0$$

Suggested approach:

- i. Show by differentiation that $\frac{d}{d\lambda} Var(\lambda)|_{\lambda=0} < 0$.
- ii. Show that $\frac{d}{d\lambda} \text{bias}^2(\lambda)|_{\lambda=0} = 0$. Look at the expression for bias to find a simple argument, avoid complex differentiations!
- (c) Briefly explain the meaning of this result what happens when we add a little ridge penalty to standard linear regression?

Surprisingly, the same is true for the Lasso. The proof, however, is much more involved.