

MENINGKATKAN KETEPATAN PENILAIAN HARGA RUMAH UNTUK OPTIMASI STRATEGI PENJUALAN PROPERTI DENGAN ALGORITMA MACHINE LEARNING

Adrian Irsanda Boestamam

TABLE OF CONTENT

- Business Problem
- Data Understanding
- Exploratory Data Analyst
- Data Cleaning and Feature
 Engineering
- Pre-Processing
- Modeling

- Evaluation
- Model Interpretation
- Cost Analyst
- Model Limitation
- Conclusion and
 Recommendation

Ketergantungan pada pendekatan manual dalam menentukan harga rumah. Penilaian harga sering kali bergantung pada pengalaman agen yang dapat berbeda tergantung tiap agen

Faktor penentu harga yang kompleks dan saling mempengaruhi. Karakteristik properti sulit dianalisis tanpa alat bantu analitik

BUSINESS PROBLEM

Tidak adanya sistem otomatis yang mampu memberikan rekomendasi harga yang cepat dan akurat. Hal ini dapat memperlambat proses pengambilan keputusan dalam memberikan saran ke klien

DATA UNDERSTANDING

Dataset ini merupakan data sensus California tahun 1990. Dataset ini berisikan tentang informasi letak geografis, distribusi pendapatan, nilai rumah, kepadatan penduduk, karakteristik hunian dan tipe kategori rumah. Dataset terdiri dari 14448 baris dan 10 kolom.

Longitude	Garis bujur lokasi rumah (dalam derajat)		
Latitude	Garis lintang lokasi rumah (dalam derajat)		
House Median Age	Usia median bangunan rumah di area tersebut (dalam tahun)		
Median House Value	Nilai median rumah di area tersebut (dalam USD)		
Median Income	Pendapatan median penduduk di area tersebut (dalam satuan puluhan ribu USD)		
Total Rooms	Jumlah total kamar di area tersebut		
Total Bedrooms	Jumlah total kamar tidur di area tersebut		
Population	Jumlah total penduduk di area tersebut		
Households	Jumlah total rumah tangga di area tesebut		
Ocean Proximity	Kategori lokasi rumah terhadap laut		

EXPLORATORY DATA ANALYST

- Numerical Columns
- Categorical Column

DATA CLEANSING AND FEATURE ENGINEERING

Missing Values

Duplicated Data

Handling Rare Values

Drop < 1%

0 Duplicated Data

Remove ISLAND (only 2 rows)

New Feature

Remove Feature

Handling Outlier

Population per Households Rooms per Households Bedrooms per Households Population
Households
Total Rooms
Total Bedrooms

Remove Outlier

PRE-PROCESSING

DEFINE X AND Y

Memisahkan antara target dan feature. Kolom median house value dijadikan sebagai target dan kolom lainnya dijadikan sebagai feature

TRAIN TEST SPLIT

Memisahkan data train dan data test dengan membagi proporsi 80:20 dan menggunakan random state 20

ENCODING SCALING

- Encoding : ocean proximity
- Scaling : logitude, latitude, housing median age, median income, population per household, room per household, bedroom per household
- Encoding = one hot encoder
- Scaling = robust scaler

MODELING

- Define Models
- Benchmark Models

DEFINE MODELS

- Linear Regression
- Ridge
- Lasso
- KNeighbors Regressor
- Decision Tree Regressor
- Random Forest Regressor
- XG Boost
- Gradient Boosting
- Ada Boost Regressor

BENCHMARK MODELS

Model	RMSE	MAPE	MAE
XG Boost	40529.03	0.16	27901.88
Random Forest	42920.09	0.17	29554.38
Gradient Boosting	44642.07	0.18	31977.82

Memilih model XG Boost sebagai model terbaik

EVALUATION

- Hyperparameter Tuning
- Tuning Comparison
- Learning Curve
- Residual Plot
- Actual vs Prediction
- Feature Importances

HYPERPARAMETER TUNING

modeln_estimator	200	
modelmax_depth	5	
modellearning_rate	0.2	
modelsubsample	1	
modelcolsample_bytree	1.0	
modelmin_child_weight	1	
model <u>g</u> amma	0	
modelreg_alpha	0	
modelreg_lambda	1	

TUNING COMPARISON

Model	RMSE	MAPE	MAE
Before Tuning	41307.33	0.159	27640.22
After Tuning	40667.97	0.158	27292.80

LEARNING CURVE

- Training Score
 - Model cocok untuk data train kecil
 - Nilai training error bertambah seiring bertambahnya data.
- Cross Validation Score
 - Performa meningkat seiring bertambah data
- Gap semakin sempit dengan bertambahnya data
- Menunjukkan overfit saat data sedikit, namun menjadi lebih baik saat data lebih banyak

RESIDUAL PLOT

- Distribusi terpusat di angka 0
 Tidak ada pola U atau V = model cukup baik

ACTUAL VS PREDICTION

- Distribusi titik dekat garis merah
 Pola linear yang jelas
 Sebaran residual lebih besar pada nilai tinggi
- Semakin padat titik-titik terhadap garis diagonal maka semakin baik model memprediksi

FEATURE IMPORTANCES

Ocean proximity INLAND merupakan feature yang paling kontribusi dominan dengan hampir 70% dari total importance. ini menunjukkan bahwa lokasi properti di area dekat INLAND (tidak laut) sangat berpengaruh terhadap harga rumah

MODEL INTERPRETATION

- Longitude dan latitude memiliki pengaruh besar terhadap penentuan harga
- Pendapatan berpengaruh terhadap penentuan harga rumah
- Ocean proximity INLAND memiliki harga lebih murah dibandingkan dengan rumah yang dekat dengan laut
- Kepadatan rumah tangga mengurangi penentuan harga rumah

COST ANALYST

MAPE

Ini menunjukkan bahwa ratarata kesalahan prediksi model terhadap harga rumah hanya sekitar 15,89% dari nilai sebenarnya.

MAE

Prediksi harga rumah meleset sekitar \$27 ribu dari harga sebenarnya

LIMITASI MODEL

- Fitur yang dapat digunakan
 - longitude
 - latitude
 - o housing median age
 - o median income
 - o population per household
 - o room per household
 - bedroom per household
- Model hanya dapat digunakan di wilayah california saja

CONCLUSION AND RECOMMENDATION

CONCLUSION

Model XG Boost menunjukkan performa prediktif yang cukup baik dengan MAPE 15.89%, RMSE \$40.667 dan MAE \$27.293

RECOMMENDATION

Fokus terhadap fitur dengan pengaruh tinggi

Fitur seperti median income, latitude dan ocean proximity memiliki pengaruh signifikan terhadap nilai rumah

Lakukan update dan pelatihan ulang model secara berkala

