Analysis of Alzheimer's Disease using Supervised ML Algorithms

Group Members:

- MD. Tanvir Zahid 22366028
- SK. Mamunur Rashid 22366050
- MD. Asaduzzaman Sarker Anik 23166031

Student Tutor

MEHNAZ ARA FAZAL

Research Assistant

SANIA AZHMEE BHUIYAN

Introduction

- What is Alzheimer's disease? Progressive and irreversible brain disorder.
- Our Goal Detect AD in the early stage.
- → Further work Analyse the models.

Literature Review

Eke et al. [1]
Support Vector Machine.(96%)

→ Shoukry et al. [2]

CNN, RNN and others. Requires large datasets and ideal bias selection.

→ Datta and Pazzani [3]
Six ML algorithms.

Takes responses from patients.

Escudero et al. [4]

Personalized ML approach. (80%)

Cost effective

Alvarez et al. [5]

Automatic diagnostic tool. PCA,SVM.

Dataset

- Dataset is taken from the famous Open Access Series of Imaging Studies (OASIS) website.
- Two dataset files contains some pre-determining factors such as MMSE, eTIV, ASF etc.
- We omit some unwanted features from our dataset such as OASIS_ID, MRI_ID etc.

FEATURE DESCRIPTION OF THE DATASET

Feature Name	Feature Description
Gender	Gender of the individual
Age	Age of the individual
Educ	Years of education
SES	Socioeconomic status
MMSE	Mini-Mental State Examination (MMSE) score
CDR	Clinical Dementia Rating (CDR)
eTIV	Estimated total intracranial volume
nWVB	normalized whole-brain volume
ASF	Atlas Scaling Factor

Methodology

- → Data Normalization
- Splitting
- Model Training

Algorithms

- Logistic Regression
- → XGBoost
- → Random Forest
- → KNN
- Gradient Boosting
- → Voting Classifier(Hard)

→ SVM

→ Voting Classifier(Soft)

→ AdaBoost

→ Gaussian NB

References

- "Dementia." World Health Organization, www.who.int/news-room/factsheets/detail/dementia. Accessed 16 May 2023.
- 2. Al-Shoukry, Suhad, Taha H. Rassem, and Nasrin M. Makbol. "Alzheimer's diseases detection by using deep learning algorithms: a mini-review." IEEE Access 8 (2020): 77131-77141.
- 3. Shankle, W. R., Mani, S., Pazzani, M. J., Smyth, P.(1997). Dementia Screening with Machine Learning Methods. In Springer eBooks (pp. 149–165). https://doi.org/10.1007/978-1-4615-6059-39.
- 4. Machine Learning-Based Method for Personalized and Cost-Effective Detection of Alzheimer's Disease. (2013, January 1). IEEE Journals Magazine IEEE Xplore. https://ieeexplore.ieee.org/document/6263281.
- Ivarez, I., Go rriz, J. M., Ram irez, J., Salas-Gonzalez, D., Lopez, M. A., Segovia, F., Puntonet, C. G., Prieto, B. (2009). Alzheimer's Diagnosis Using Eigenbrains and Support Vector Machines. In Springer eBooks (pp. 973–980). https://doi.org/10.1007/978-3-642-02478-8122.