T.D. n°2 : Filtrage analogique B.F et H.F - Réalisations.

Exercice n°1: Etude d'un Filtre passif – Influence de la charge du filtre.*

- **1.1**) Fonctionnement à vide (*K ouvert*).
 - **1.1.a**) Exprimer la transmittance du filtre \underline{T} en fonction de R, C et ω .
 - **1.1.b)** Mettre $\underline{\mathbf{T}}$ sous la forme : $\underline{\mathbf{T}} = \frac{\mathbf{T}_0}{\mathbf{1} + \mathbf{j} \frac{\mathbf{f}}{\mathbf{f}_C}}$ et exprimer \mathbf{T}_0

et f_C en fonction des éléments du circuit.

- **1.1.c**) En déduire les nature, fonction et ordre du filtre réalisé.
- **1.1.d**) Calculer G_{max} et la fréquence de coupure f_C du filtre.
- **1.1.e**) Calculer le Gain et $\theta_{\text{vs/ve}}$ pour f = 1768 Hz.
- **1.2**) Fonctionnement en charge (*K fermé*).

On place à la sortie du filtre (entre S et M) un Haut Parleur (HP) d'impédance Z_{HP} (que l'on suppose indépendante de la fréquence).

- **1.2.a**) Exprimer la transmittance du circuit $\underline{\mathbf{T}}_{HP}$ en fonction de R, C, Z_{HP} et ω .
- **1.2.b)** Mettre $\underline{\mathbf{T}}_{HP}$ sous la forme : $\underline{\mathbf{T}}_{HP} = \frac{\mathbf{T}_{1}}{\mathbf{1} + \mathbf{j} \frac{\mathbf{f}}{\mathbf{f}_{HP}}}$ et exprimer \mathbf{T}_{1} et \mathbf{f}_{HP} en fonction des éléments du circuit.
- 1.2.c) En déduire les nature, fonction et ordre du nouveau filtre réalisé.
- 1.2.d) En prenant $Z_{HP} = 16 \Omega$, calculer <u>le nouveau</u> G_{max} et <u>la nouvelle fréquence de coupure</u> f_{HP} du circuit.
- **1.2.e**) Calculer le Gain et $\theta_{vs/ve}$ pour f = 1768 Hz.
- 1.3) Conclure quant à la réalisation d'un filtre passif audio pour un Haut-Parleur.

Exercice n°2: Réalisation d'un Filtre Passe-Bas du 2nd ordre.*

- **2.1**) Exprimer la fonction de transfert $\underline{\mathbf{T}}_1$ du *filtre 1* en fonction de R_1 , C_1 et ω .
- **2.2**) Exprimer la fonction de transfert $\underline{\mathbf{T}}_2$ du <u>filtre 2</u> en fonct<u>ion de R₂, C₂ et ω </u>.
- 2.3) Montrer que la fonction de transfert du <u>filtre complet</u> : $\underline{\underline{T}} = \underline{\underline{V}_s}_{\underline{L}} = \underline{\underline{T}_1}.\underline{\underline{T}_2}$
- 2.4) Montrer que $\underline{\mathbf{T}}$ peut se mettre sous la forme : $\underline{\mathbf{T}} = \frac{\mathbf{T}}{\left(1 + \mathbf{j} \frac{\mathbf{f}}{\mathbf{f}_{C1}}\right) \left(1 + \mathbf{j} \frac{\mathbf{f}}{\mathbf{f}_{C2}}\right)} \left(1 + \mathbf{j} \frac{\mathbf{f}}{\mathbf{f}_{C2}}\right)$ Exprimer \mathbf{f}_{C1} et \mathbf{f}_{C2} en fonction de \mathbf{R}_1 , \mathbf{C}_1 et \mathbf{R}_2 , \mathbf{C}_2 .
- **2.5**) Calculer G_{max} et la fréquence de coupure f_C du filtre complet réalisé.
- **2.6**) En justifiant vos réponses, précisez la nature, la fonction et l'ordre du filtre complet réalisé.

Exercice n°3: Association de 2 filtres passifs sans adaptation d'impédances.**

On associe en cascade 2 filtres Passe-Bas du 1^{er} ordre, identiques, de la façon suivante :

- **3.1)** Quelle est la nature du filtre réalisé ?
- **3.2**) Peut-on effectuer le produit des fonctions de transfert de chaque structure R-C? Si non pourquoi?
- **3.3**) Calculer le G_{max} et la fréquence de coupure f_C de chacun <u>des filtres 1 et 2</u>.
- **3.4**) Recherche de la transmittance du filtre.
- **3.4.a**) Ecrire la loi des nœuds.
- **3.4.b)** Ecrire la loi d'Ohm (*complexe*) pour les 2 condensateurs.
- **3.4.c**) En déduire l'expression de \underline{I} en fonction de \underline{V} et \underline{V}_S .
- **3.4.d)** Ecrire les 2 lois des mailles (une pour chaque filtre).
- **3.4.e**) Remplacer \underline{I} et \underline{I}_2 par leur expression respective, dans les 2 équations de mailles.
- 3.4.f) Obtenir alors plus qu'une équation, et montrer que la transmittance du filtre se met sous la forme :

$$\underline{\mathbf{T}} = \frac{1}{1 + 3j\mathbf{R}\mathbf{C}\omega + (j\mathbf{R}\mathbf{C}\omega)^2}$$

- **3.5**) On a relevé la réponse fréquentielle du filtre complet (figure 6).
 - **3.5.a**) Mesurer G_{Tmax} et la fréquence de coupure f_{TC} du filtre complet.
 - **3.5.b**) Déterminer alors la fonction et l'ordre du filtre complet ainsi réalisé (justifier).
 - **3.5.c)** Tracer (sur la figure 6) la courbe de gain que l'on aurait obtenu s'il y avait eu adaptation d'impédances entre les filtres 1 et 2.
 - **3.5.d**) Comparer les 2 réponses fréquentielles et conclure sur les performances des 2 résultats.

Exercice n°4: Réalisation d'un filtre à résonance.**

- **4.1**) Exprimer la transmittance complexe $\underline{\mathbf{T}}$ du filtre en fonction de R, L, C et ω .
- **4.2**) Montrer que pour $\mathbf{R} = \frac{1}{2} \cdot \sqrt{\frac{\mathbf{L}}{\mathbf{C}}}$ on obtient : $\mathbf{\underline{T}} = \mathbf{\overline{T}}$

 $\frac{\mathbf{T} = \frac{1}{\left(1 + \mathbf{j} \cdot \frac{\omega}{\omega_0}\right)^2}$ $\operatorname{avec}: \omega_0 = \frac{1}{\sqrt{\mathbf{L} \cdot \mathbf{C}}}$

- **4.3**) Dans ces conditions :
 - **4.3.a**) Déterminer le module et l'argument de T;
 - **4.3.b**) Calculer le Gain et l'argument pour $\omega = \omega_0$;
 - **4.3.c**) Calculer la fréquence de coupure a 3 dB du filtre.
- **4.3.d**) Quels sont les nature, fonction, ordre du filtre réalisé (justifier).

Exercice n°5: Sonde atténuatrice pour oscilloscope.*

Pour le circuit ci-dessous, $[R_1, C_1]$ représentent les éléments d'une sonde atténuatrice d'un oscilloscope (figure 5) et $[R_2, C_2]$ constituent l'impédance d'entrée de l'oscilloscope qui lui est adapté.

- **5.1**) Exprimer l'impédance complexe \underline{Z}_2 , équivalente à l'association de R_2 et C_2 , en fonction de R_2 , C_2 et ω .
- **5.2**) Application numérique : Montrer que $\underline{Z}_2 = \frac{1.10^6}{1 + j.27.10^{-6}.\omega}$
- **5.3**) Exprimer l'impédance complexe \underline{Z}_1 , équivalente à l'association de R_1 et C_1 , en fonction de R_1 , C_1 et ω .
- **5.4**) Application numérique : Montrer que $\underline{Z}_{I} = \frac{9.10^{6}}{1 + j.27.10^{-6}.\omega}$
- **5.5**) Exprimer \underline{V}_S en fonction de \underline{V}_E , \underline{Z}_1 et \underline{Z}_2 .
- **5.6**) Montrer, alors que \underline{V}_S peut se mettre sous la forme : $V_S = T_\theta . V_E$ Donner alors la valeur de T_0 .
- **5.7**) La tension appliquée en entrée de sonde correspond à la tension du réseau monophasé EDF: $v_E(t) = 230.\sqrt{2}.\sin(2\pi.50.t)$. Déterminer l'équation de la courbe $v_S(t)$ observée sur l'écran d'oscilloscope.
- **5.8**) En fait, la capacité C_1 de la sonde est en réalité ajustable. Si C_1 est bien ou mal réglée, on peut observer les résultats suivants à l'oscilloscope :

Indiquer alors (dans les encadrés ci-dessus), suivant le réglage de C_1 , le type de filtrage réalisé par l'association sonde-oscilloscope (justifier).

Exercice n°6: Etude de la réponse fréquentielle d'un filtre actif.

On a relevé (figure 6), pour un filtre, son diagramme de Bode (représentation fréquentielle du comportement du circuit).

- **6.1**) Déterminer la nature, fonction et ordre du filtre ainsi réalisé (justifier chacune des qualités).
- **6.2**) Rappeler l'expression du modèle de la transmittance correspondante à ce filtre.
- **6.3**) Déterminer les valeurs des 2 coefficients constants de ce modèle.
- 6.4) Proposer un circuit de réalisation de ce filtre ainsi que les valeurs des composants choisis (justifier chacune des valeurs).
- 6.5) On applique à l'entrée de ce filtre un signal triangulaire dont la décomposition est :

$$u_{\rm E}(t) = 4 + \frac{40}{\pi^2} \sin(800\pi. t) + \frac{40}{9.\pi^2} \sin(2400\pi. t + \pi) + \frac{40}{25.\pi^2} \sin(4000\pi. t)$$

- **6.5.a**) Déterminer l'expression de la tension de sortie $u_S(t)$ de ce filtre.
- **6.5.b**) Conclure sur le rôle joué par ce filtre sur le signal.

Exercice n°7 : Filtre à retard de phase.

On désire étudier le comportement fréquentiel du circuit représenté figure 7.1.

On donne la valeur des composants utilisés : $R_1 = 10 \text{ k}\Omega$; $R_2 = 100 \text{ k}\Omega$ et C = 100 nF.

Module EPU-E6-EA1

- **7.1**) Exprimer \underline{V}^+ en fonction de \underline{V}_E , R_1 , C et ω .
- **7.2**) Exprimer \underline{V} en fonction de \underline{V}_E et \underline{V}_S .
- **7.3**) En déduire l'expression de \underline{V}_S en fonction de \underline{V}_E , R_1 , C et ω .
- **7.4**) Montrer que la transmittance de ce circuit s'écrit sous la forme :

$$\underline{\mathbf{T}} = \frac{\underline{\mathbf{V}_{s}}}{\underline{\mathbf{V}_{e}}} = \mathbf{T}_{0} \cdot \frac{-1 + \mathbf{j} \frac{\mathbf{f}}{\mathbf{f}_{0}}}{1 + \mathbf{j} \frac{\mathbf{f}}{\mathbf{f}_{0}}}$$

Exprimer f_{θ} en fonction des éléments du circuit.

Filtrage analogique - réalisations

- **7.5**) Calculer f_{θ} .
- **7.6**) Calculer le module $|\underline{\mathbf{T}}|$ puis le Gain de ce filtre.
- 7.7) Exprimer l'argument $\theta_{vs/ve}$ de \underline{T} . Tracer son évolution (figure 7.2), en fonction de la fréquence f.

7.8) Justifier le nom donné à ce type de filtre (*filtre à retard de phase*). Quel intérêt ce type de filtre peut-il avoir dans un traitement du signal à application audio phonique, où l'on a filtré les B.F., les M.F. et les H.F., pour alimenter 3 H.P.différents (*Boomer, Médium et Tweeter*).

Exercice n°8: Amplificateur audio-fréquence pour l'aide auditive.*

On désire réaliser un amplificateur audio-fréquence (à bas coût) pour des personnes malentendantes, ayant perdues une sensibilité globale de 5 dBa à 10 dBa, sur l'ensemble des sons audibles (figure 8). Le dispositif étudié dispose d'un sélecteur à 3 niveaux (1-2-3) d'amplification globale et d'un sélecteur fréquentiel voix – bruit (H(Human) - N(Noise)). On rappelle que la voix humaine (en mode parlé) s'étend entre 200 Hz et 3500 Hz.

La Transmittance de cet amplificateur s'écrit :

$$\underline{\mathbf{T}} = \frac{\mathbf{T}_0}{\left(1 + \mathbf{j} \frac{\mathbf{f}}{\mathbf{f}_H}\right) \left(1 - \mathbf{j} \frac{\mathbf{f}_B}{\mathbf{f}}\right)} \qquad (f_H > f_B)$$

8.1) Comportement fréquentiel de l'amplificateur.

- **8.1.a**) Pour $f \to \infty$, donner l'expression approchée de $\underline{\mathbf{T}}$ en fonction de f et f_H . Quelle est le tau de variation de gain (en $dB/d\acute{e}cade$), pour $f > f_H$?
- **8.1.b**) Pour $f \to 0$, donner l'expression approchée de $\underline{\mathbf{T}}$ en fonction de f et f_B . Quelle est le tau de variation de gain (en dB/décade), pour $f < f_B$?
- **8.1.c)** Montrer que $|\underline{\mathbf{T}}|_{\text{max}} = \mathbf{T_0}$ et que cette valeur est obtenue pour une fréquence f_0 dont vous déterminerez l'expression en fonction de f_B et f_H .
- **8.1.d)** Déterminer la nature, fonction et ordre du filtre ainsi réalisé (justifier chacune des qualités).

8.2) Réglage de l'amplificateur.

Dans le cas d'un réglage sur le mode Human (sélecteur en H) et pour un utilisateur avec perte auditive globale de 5 dBa (sélecteur en 1).

- **8.2.a**) Déterminer les valeurs de f_H et f_B .
- **8.2.b**) Déterminer la valeur de T_0 .
- **8.2.c**) A l'aide de votre calculatrice *(en mode Param.)*, tracer la courbe de Gain de cet amplificateur et mesurer la Bande Passante du filtre réalisé. Calculer alors le facteur de qualité Q du filtre réalisé.
- **8.2.d**) Vérifier qu'aux fréquences f_H et f_B il n'y a ni atténuation, ni amplification du signal. Dans le cas contraire, déterminer la nouvelle valeur à donner à T_0 .

Dans le cas d'un réglage sur le mode Noise (sélecteur en N) et pour un utilisateur avec perte auditive globale de 10 dBa (sélecteur en 3).

8.2.e) Déterminer les valeurs de f_H et f_B .

- **8.2.f**) Déterminer la valeur de T_0 .
- **8.2.g**) A l'aide de votre calculatrice *(en mode Param.)*, tracer la courbe de Gain de cet amplificateur et mesurer la Bande Passante du filtre réalisé. Calculer alors le facteur de qualité Q du filtre réalisé.
- **8.2.h**) Vérifier qu'aux fréquences f_H et f_B il n'y a ni atténuation, ni amplification du signal. Dans le cas contraire, déterminer la nouvelle valeur à donner à T_0 .

Exercice n°9: Filtrage de la mesure d'un niveau dans un réservoir.*

La hauteur d'eau « h » dans un réservoir est mesurée par l'intermédiaire d'un capteur de pression relative.

Ce capteur comporte 2 orifices, un soumis à la pression P_1 au fond du bassin, l'autre à la pression atmosphérique P_{atm} . P_1 est égale à la somme de la pression atmosphérique P_{atm} et de la pression de la colonne de fluide. La tension électrique V_P , fournie par le capteur, étant proportionnelle à $(P_1 - P_{atm})$, on a simplement : $V_P = \alpha.\mathbf{h}$, où α est un paramètre ne dépendant que de la construction du capteur.

Cependant, à cause du mouvement à la surface de l'eau, cette tension comporte un bruit (voir figure 9.1) que l'on veut réduire à l'aide d'un filtre.

- **9.1**) Evaluer à quel type de système est équivalent le système hydraulique étudié.
- **9.2**) Mesurer la valeur de la constante de temps τ de ce système. En déduire la fréquence de coupure équivalente.
- 9.3) Que peut-on dire de la nature du bruit de mesures (H.F. ou B.F.). Justifier.
- 9.4) Déduire des résultats précédents le type de filtrage à réaliser pour « lisser » la courbe.
- 9.5) La fonction de transfert du filtre choisi est de la forme : $\underline{\mathbf{T}} = \frac{1}{1 + 2 \cdot \mathbf{m} \cdot \left(\mathbf{j} \frac{f}{f_0}\right) \left(\frac{f}{f_0}\right)^2}$

Le diagramme de Bode de ce type de filtre est donné, figure 9.2, pour diverses valeurs de m.

- **9.5.a**) A partir des résultats trouvés aux questions **9.2**) et **9.3**), estimer la valeur à donner à f_0 pour atténuer les harmoniques à partir du rang 9.
- **9.5.b)** Que vaut $|\mathbf{T}|$ pour f = 0. Comment agit ce filtre sur la valeur moyenne du signal?
- **9.5.c**) Pour $\mathbf{m} = \mathbf{0}, \mathbf{1}$ quelle valeur faut-il donner à f_0 pour qu'une harmonique de fréquence 288 Hz soit atténué à -20 dB. Quel nom complet (fonction, ordre et type de réponse) donne-t-on à ce type de filtre ?
- **9.5.d**) Pour $\mathbf{m} = \mathbf{0}$, 1 on applique à l'entrée du filtre une harmonique de fréquence f_0 et d'amplitude 1 V. Quelle est l'amplitude du signal de sortie du filtre ?
- **9.5.e)** Quelle(s) valeur(s) de **m** faut-il choisir si on veut à la fois :
 - qu'une harmonique ne soit pas atténué pour $f < f_0$?
 - qu'aucune harmonique ne soit amplifié dans un rapport > 2,5.
- 9.6) Afin de réaliser le filtre avec $\mathbf{m} = \mathbf{1}$, on utilise la structure de Sallen-Key représenté *figure 9.3*, en prenant : $R = 10 \text{ k}\Omega$ et C = 166 nF.
 - **9.6.a**) En appliquant le théorème de Millman en A, exprimer \underline{V}_A en fonction de \underline{V}_E , \underline{V}_S , R, C et ω .
 - **9.6.b**) En déduire l'expression de \underline{V}^+ en fonction de \underline{V}_A , R, C et ω .
 - **9.6.c**) Après avoir trouver l'expression de \underline{V}^- , exprimer \underline{V}_d en fonction de \underline{V}_E , \underline{V}_S , R, C et ω .
- **9.6.d**) Montrer alors que $\underline{\mathbf{T}}$ se met sous la forme : $\underline{\mathbf{T}} = \frac{1}{\left(1 + \mathbf{j} \frac{\mathbf{f}}{\mathbf{f}_0}\right)^2}$ avec $f_0 = \frac{1}{2.\pi R.C}$
- **9.6.e**) En identifiant à la forme standardisée donnée au 9.5), montrer que m = 1.
- **9.6.f**) Calculer la fréquence de coupure f_C de ce filtre.

