This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

 (Currently Amended) Liquid-crystalline medium based on a mixture of polar compounds of positive dielectric anisotropy, eharacterised in that it emprisescomprising one or more compounds of the formula I

$$R^1$$
 H H O L^2 L^3 L^3

and one or more compounds of the formula IA

$$R^2$$
 H A Z^1 B Z^2 O L^3 L^4

where the proportion of the compounds of the formula I in the medium is at least 18% by weight, and in which the individual radicals have the following meanings:

R¹ is an alkenyl radical having from 2 to 8 carbon atoms,

R² is H, an alkyl radical having from-1 to 15 carbon atoms which is halogenated, substituted by CN or CF₃ or unsubstituted, where, in addition, one or more CH₂ groups in these radicals may each, independently of one another, be replaced by -C=C-, -CO-, -CH=CH-, -O-, or in such

a way that O atoms are not linked directly to one another,

X¹ is an alkyl radical, alkenyl radical, alkoxy radical or alkenyloxy radical, each having up to 6 carbon atoms, in the case where a = 1 also F, Cl, CN, SF₅, SCN, NCS or OCN,

X² is F, Cl, CN, SF₅, SCN, NCS, OCN, a halogenated alkyl radical, halogenated alkenyl radical, halogenated alkoxy radical or halogenated alkenyloxy radical, each having up to 6 carbon atoms,

 Z^1 and Z^2 are each, independently of one another, -CF₂O-, -OCF₂- or a single bond, where $Z^1 \neq Z^2$.

a is 0 or 1, and

 $L^{1.4}$ are each, independently of one another, H or F_a with the proviso that formula IA is not

 (Currently Amended) Liquid-crystalline medium according to Claim 1, eharacterised in that it comprises comprising one, two or more compounds of the formulae IA-1 to IA-30

$$R^2$$
 H O O CF_2O O F $IA-1$

$$R^2$$
 H O O CF_2O O F $IA-2$

$$R^2$$
 H O CF_2O F F $IA-3$

$$R^2$$
 H O O CF_2O O OCF_3 $IA-4$

$$R^2 \hspace{-0.5cm} \begin{array}{c} \hspace{-0.5cm} \text{H} \hspace{-0.5cm} \begin{array}{c} \hspace{-0.5cm} \hspace{-0.5cm} \text{O} \hspace{-0.5cm} \begin{array}{c} \hspace{-0.5cm} \text{F} \\ \hspace{-0.5cm} \text{O} \hspace{-0.5cm} \end{array} \hspace{-0.5cm} \begin{array}{c} \hspace{-0.5cm} \text{F} \\ \hspace{-0.5cm} \text{F} \end{array} \hspace{-0.5cm} \hspace{-0.5cm} \text{IA-6} \\ \end{array}$$

$$R^2$$
 H O O CF_2O O $IA-10$

$$R^2 \hspace{-0.5cm} \begin{array}{c} \hspace{-0.5cm} \text{H} \hspace{-0.5cm} \hspace{-0.5cm}$$

$$R^2$$
 H O O CF_2O O CI $IA-12$

$$R^2$$
 H O O CF_2O O CF_3 $IA-13$

$$R^2$$
 H O O CF_2O O CF_3 $IA-14$

$$R^2$$
 H O O CF_2O O CF_3 $IA-15$

$$R^2$$
 H O CF_2O O F $IA-16$

$$R^2$$
 H O CF_2O O F $IA-17$

$$R^2$$
 H O CF_2O O $OCHF_2$ $IA-23$

$$R^2$$
 H O CF_2O O $OCHF_2$ $IA-24$

$$R^2$$
 H O CF_2O O CI $IA-2$:

$$R^2$$
 H O CF_2O O CI $IA-2O$

$$R^2$$
 H O CF_2O O CI $IA-27$

$$R^2$$
 H O O CF_2O O CF_3 $IA-28$

$$R^2$$
 H O CF_2O O CF_3 $IA-3C$

in which R2 is as defined in Claim 1.

 (Currently Amended) Liquid-crystalline medium according to Claim 1, eharacterised in that it comprises comprising one or more compounds of the formulae I-1 to I-5

in which alkenyl is an alkenyl radical having from 2 to 8 carbon atoms and alkyl is

9

a straight-chain alkyl radical having 1-15 carbon atoms.

 (Currently Amended) Liquid-crystalline medium according to Claim 1, eharacterised in that it-additionally eomprises comprising one or more compounds selected from the group consisting of the general-formulae II, III, IV, V and VI

in which the individual radicals have the following meanings:

R⁰ is H, n-alkyl, alkoxy, oxaalkyl, fluoroalkyl, alkenyloxy or alkenyl,

each having up to 9 carbon atoms,

X⁰ is F, Cl, halogenated alkyl, alkenyl, alkenyloxy or alkoxy having up to 6 carbon atoms,

$$\begin{split} Z^0 & \qquad \text{is $-C_2F_{4^*}$, $-CF=CF^*$, $-CH=CF^*$, $-CF=CH^*$, $-C_2H_{4^*}$, $-CH=CH^*$, $-O(CH_2)_3$, $-(CH_2)_3O^*$, $-(CH_2)_{4^*}$, $-CF_2O^*$, $-OCF_2^*$, $-OCH_{2^*}$ or $-CH_2O^*$, $-CH$$

Y¹⁻⁴ are each, independently of one another, H or F,

r is 0 or 1,

and the compound of the formula Π is not identical with the compound of the formula I.

- (Currently Amended) Liquid-crystalline medium according to Claim 4, eharacterised in thatwherein the proportion of compounds of the formulae IA and I to VI together in the mixture as a whole is at least 50% by weight.
- (Currently Amended) Liquid-crystalline medium according to Claim 1, eharacterised in that it additionally eomprises comprising one or more compounds of the formulae Ea to Ef

$$R^0$$
 H COO O F Ea

$$R^0$$
 H COO O F Ec

$$R^0$$
 H COO O OCF_3 Eb

$$R^0$$
 \longrightarrow H \longrightarrow COO \longrightarrow OCF_3 Ed

$$R^0$$
 H O COO O F Ee

in which R^0 is H, n-alkyl, alkoxy, oxaalkyl, fluoroalkyl, alkenyloxy or alkenyl, each having up to 9 carbon atoms.

 (Currently Amended) Liquid-crystalline medium according to Claim 1, eharacterised in that it comprises comprising one or more compounds of the formulae IIa to IIg

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow F$$
 IIa

in which R^0 is H, n-alkyl, alkoxy, oxaalkyl, fluoroalkyl, alkenyloxy or alkenyl, each having up to 9 carbon atoms.

 (Currently Amended) Liquid-crystalline medium according to Claim 1, eharacterised in that it additionally eomprises comprising one or more compounds of the formulae RI to RVII

Πg

in which

R* is n-alkyl, alkoxy, oxaalkyl, fluoroalkyl or alkenyloxy, each having up to 9 carbon atoms, and

alkyl and

alkyl* are each, independently of one another, a straight-chain or branched alkyl radical having 1-9 carbon atoms.

RVII

- (Currently Amended) Liquid-crystalline medium according to Claim 1, eharacterised in thatwherein the proportion of compounds of the formula IA in the mixture as a whole is from 5 to 40% by weight.
- 10. (Canceled).
- (Original) Electro-optical liquid-crystal display containing a liquid-crystalline medium according to Claim 1.