Mask R-CNN

Presenter: Mira Kim

Instance Segmentation

Object Detection

Semantic Segmentation

Instance Segmentation

Mask R-CNN

- Framework for Object Instance Segmentation
- Extends Faster R-CNN by adding a branch for predicting an object mask

Figure 1. The Mask R-CNN framework for instance segmentation.

Prerequisite 1. (slow) R-CNN

R-CNN: Regions with CNN features

warped region

1. Input image

2. Extract region proposals (~2k)

CNN features

4. Classify regions

tvmonitor? no.

aeroplane? no.

> person? yes.

Multiple Stages → Too Slow and Complex⊗

Prerequisite 2. Fast R-CNN

R-CNN

- Extract image regions
- 1 CNN per region (2000 CNNs)
- Classify region-based features
- Complexity: ~224 × 224 × 2000

SPP-net & Fast R-CNN (the same forward pipeline)

- · 1 CNN on the entire image
- Extract features from feature map regions
- Classify region-based features
- Complexity: ~600 × 1000 × 1
- ~160x faster than R-CNN

Prerequisite 2. Fast R-CNN

Prerequisite 2. Fast R-CNN

Prerequisite 3. Faster R-CNN

ZFNet[8] 논문에서 보여준 feature map activation 시각화

Prerequisite 3. Faster R-CNN

Prerequisites Summary

Mask Head on Faster R-CNN

Parallel!

$$L = L_{cls} + L_{box} + L_{mask}$$

Lcls: Softmax Cross Entropy

Lbox: Regression

Lmask: Binary Cross Entropy

Mask Branch Only Learns How to Mask independent of Class

```
# of class = K,
= mask branch는 Rol마다 K개의 mask를 만든다.

\rightarrow Output of mask branch = Km^2 for each Rol
(K개의 m^2 사이즈의 binary mask)
```

Mask R-CNN

Segmentation First Strategy (e.g. FCN Outputs)

- 1) Per pixel-classification result
- 2) Cut the pixels of the same category into different instances
- → Slow, Less accurate

Mask R-CNN

- 1) Instance First Strategy
- 2) Parallel prediction of masks and class labels
- **→** Simpler, Faster

Ablation Experiments

2) Multinomial vs Independent Masks

	AP	AP50	AP ₇₅
softmax	24.8	44.1	25.1
sigmoid	30.3	51.2	31.5
	+5.5	+7.1	+6.4

(b) Multinomial vs. Independent Masks
(ResNet-50-C4): Decoupling via perclass binary masks (sigmoid) gives large
gains over multinomial masks (softmax).

Mask R-CNN

•

decouples mask and class prediction
Box branch predicts class label
Without competition, each class has its
own mask

→ Per-pixel sigmoid, binary loss

VS

Per-pixel softmax, multinomial loss(FCNs)

Ablation Experiments

3) Class-Specific vs. Class-Agnostic Masks

	Mask AP
Class-specific mask	30.3
Class-agnostic mask	29.7

Mask R-CNN: class-specific mask

Interestingly,

Class-agnostic mask is nearly effective

Ablation Experiments

5) Mask Branch

Class label, bounding box offset → fc layers → vector type
Mask representation → pixel to pixel → extract spatial structure

	mask branch	AP	AP50	AP ₇₅
MLP	fc: $1024 \rightarrow 1024 \rightarrow 80.28^2$	31.5	53.7	32.8
MLP	fc: $1024 \rightarrow 1024 \rightarrow 1024 \rightarrow 80.28^2$	31.5	54.0	32.6
FCN	conv: $256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 80$	33.6	55.2	35.3

(e) **Mask Branch** (ResNet-50-FPN): Fully convolutional networks (FCN) vs. multi-layer perceptrons (MLP, fully-connected) for mask prediction. FCNs improve results as they take advantage of explicitly encoding spatial layout.

Mask R-CNN 2) Rol Align

Rol Pooling vs. Rol Align

Mask R-CNN

Ablation Experiments

4) RoI Align(ResNet-50-C4 stride 16, ResNet-50-C5 stride 32)

		align?	bilinear?	agg.	AP	AP_{50}	AP ₇₅	
	RoIPool [12]			max	26.9	48.8	26.4	
	RolWarp [10]		✓	max	27.2	49.2	27.1	
			✓	ave	27.1	48.9	27.1	
	RoIAlign	✓	✓	max	30.2	51.0	31.8	
		✓	✓	ave	30.3	51.2	31.5	

layers. Our RoIAlign layer improves AP by \sim 3 points and AP₇₅ by \sim 5 points. Using proper alignment is the only factor that contributes to the large gap between RoI layers.

	AP	AP50	AP ₇₅	APbb	AP_{50}^{bb}	AP_{75}^{bb}
RolPool	23.6	46.5	21.6	28.2	52.7	26.9
RolAlign	30.9	51.8	32.1	34.0	55.3	36.4
	+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5

(d) **RoIAlign** (ResNet-50-**C5**, *stride 32*): Mask-level and box-level AP using *large-stride* features. Misalignments are more severe than with stride-16 features (Table 2c), resulting in big accuracy gaps.

- 1) Higher IoU → Higher AP gap
- 2) More accurate with ResNet-50-C5, stride 32 than C4, stride 16
- → Solves the accuracy problem with larger stride in detection and segmentation problem

Mask R-CNN Backbone

→ ResNeXt-101-FPN

Ablation Experiments

1) Architecture

net-depth-features	AP	AP ₅₀	AP ₇₅	
ResNet-50-C4	30.3	51.2	31.5	
ResNet-101-C4	32.7	54.2	34.3	
ResNet-50-FPN	33.6	55.2	35.3	
ResNet-101-FPN	35.4	57.3	37.5	
ResNeXt-101-FPN	36.7	59.5	38.9	

(a) **Backbone Architecture**: Better backbones bring expected gains: deeper networks do better, FPN outperforms C4 features, and ResNeXt improves on ResNet.

Mask AP

C4 < FPN ResNet < ResNeXt

Mask R-CNN Training & Inference

Training

- 1) Rol = positive if IoU > 0.5
- 2) L mask only in positive Rol
- 3) Mask Target = Intersection between Rol and groundtruth mask
- 4) Minibatch size = 16
- 5) # of sampled Rol:

C4: 64

FPN: 512

6) RPN = 5 scale, 3 aspect ratio

Inference

1) # of sampled Rol:

C4: 300

FPN: 1000

- 2) box prediction branch + NMS on each Rol
- 3) Top 100 biggest scoring detection box
- → mask branch (inference 단계에서는 parallel X)
- → fewer & more accurate Rol 사용
- → speed up inference time
 - + small overhead

Bounding Box Detection Results

	backbone	APbb	AP_{50}^{bb}	APbb 75	AP^bb_S	${ m AP}_{M}^{ m bb}$	AP^bb_L
Faster R-CNN+++ [19]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [27]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [21]	Inception-ResNet-v2 [41]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [39]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

(mask output ignored)

Table 3. **Object detection** single-model results (bounding box AP), vs. state-of-the-art on test-dev. Mask R-CNN using ResNet-101-FPN outperforms the base variants of all previous state-of-the-art models (the mask output is ignored in these experiments). The gains of Mask R-CNN over [27] come from using RoIAlign (+1.1 AP^{bb}), multitask training (+0.9 AP^{bb}), and ResNeXt-101 (+1.6 AP^{bb}).

	backbone	AP	AP_{50}	AP75	AP_S	AP_M	AP_L
MNC [10]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [26] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [26] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	H	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

Table 1. **Instance segmentation** *mask* AP on COCO test-dev. MNC [10] and FCIS [26] are the winners of the COCO 2015 and 2016 segmentation challenges, respectively. Without bells and whistles, Mask R-CNN outperforms the more complex FCIS+++, which includes multi-scale train/test, horizontal flip test, and OHEM [38]. All entries are *single-model* results.

Mask R-CNN for Human Pose Estimation

Figure 7. Keypoint detection results on COCO test using Mask R-CNN (ResNet-50-FPN), with person segmentation masks predicted from the same model. This model has a keypoint AP of 63.1 and runs at 5 fps.

Keypoint location = one-hot m * m binary mask # of Keypoints = K → K binary masks (only one pixel is labeled as a foreground)

Mask R-CNN for Human Pose Estimation

	APkp	AP ₅₀	AP ₇₅	AP_M^{kp}	AP^kp_L
CMU-Pose+++ [6]	61.8	84.9	67.5	57.1	68.2
G-RMI [32] [†]	62.4	84.0	68.5	59.1	68.1
Mask R-CNN, keypoint-only	62.7	87.0	68.4	57.4	71.1
Mask R-CNN, keypoint & mask	63.1	87.3	68.7	57.8	71.4

Table 4. **Keypoint detection** AP on COCO test-dev. Ours is a single model (ResNet-50-FPN) that runs at 5 fps. CMU-Pose+++ [6] is the 2016 competition winner that uses multi-scale testing, post-processing with CPM [44], and filtering with an object detector, adding a cumulative ~5 points (clarified in personal communication). †: G-RMI was trained on COCO *plus* MPII [1] (25k images), using two models (Inception-ResNet-v2 for bounding box detection and ResNet-101 for keypoints).

Keypoint detection benefits from **multitask training**, While not helping other tasks.

	APbb person	AP _{person}	APkp
Faster R-CNN	52.5	-	-
Mask R-CNN, mask-only	53.6	45.8	0.70
Mask R-CNN, keypoint-only	50.7	-	64.2
Mask R-CNN, keypoint & mask	52.0	45.1	64.7

Table 5 Multi-task learning of box, mask, and keypoint about the person category, evaluated on minival. All entries are trained on the same data for fair comparisons. The backbone is ResNet-50-FPN. The entries with 64.2 and 64.7 AP on minival have test-dev AP of 62.7 and 63.1, respectively (see Table 4).

		APkp	AP ₅₀	AP ₇₅	AP_M^{kp}	AP_L^{kp}	
Ro	IPool	59.8	86.2	66.7	55.1	67.4	
Ro	lAlign	64.2	86.6	69.7	58.7	73.0	

Table 6. RoIAlign vs. RoIPool for keypoint detection on minival. The backbone is ResNet-50-FPN.

Q & A

Presenter: Mira Kim