Зодача^{ТМ} 6 Фестиваль Языков

Артем Семидетнов, Эльхан Качабеков, ЛНМО

Miazister Miazasyasii

Аннотация

Решили вообще все, представили классные обобщения, красавцы-молодцы

Часть І

Полезные факты и определения

Определение 0.1. Определим функцию $f_{\alpha}: \mathbb{Z} \to \mathbb{Z}$ как $f_{\alpha}(x) = \alpha \cdot x$.

Замечание 0.2. Понятно, что $f_{\alpha}(\mathbb{Z})$ - перестановка стульев участником α .

Замечание 0.3. Заметим, что функция f_{α} - эндоморфизм группы по сложению.

Замечание 0.4. Понятно, что в случае n - ного года программа фестиваля будет выгядеть следующим образом:

$$\bigcup_{i=1}^{n} A_i = \mathbb{Z}$$

 Γ де каждое A_i является смежным классом по сложению i с подгруппой по сложению, порожденной $\{n\}$, то есть

$$\forall i \in \mathbb{Z}_n \quad A_i = i + \langle n \rangle = i + n\mathbb{Z}$$

T.e

$$n\mathbb{Z} \cup 1 + n\mathbb{Z} \cup 2 + n\mathbb{Z} \cup \ldots \cup n - 1 + n\mathbb{Z} = \mathbb{Z}$$

Определение 0.5. Множество $H \subset \mathbb{Z}$ будем называть **дневной группой**¹, если каждые два человека из этого множества учили язык друг друга.

Определение 0.6. Участник фестиваля - ленивый, если в тот момент, когда он организатор, все люди из его дневной группы остаются в своих комнатах.

Определение 0.7. Участник фестиваля - продвинутый, если на нем он учил все языки.

 $^{^{1}}$ Название "группа" занято одноименной алгебраической структурой

Часть II

Основное содержание

Предложение 0.8. Человек x сидит в комнате $A_i \iff$ остаток от деленения x на n равен i.

Доказательство. Достаточность(⇒):

$$x \in A_i \Leftrightarrow x = i + n \cdot k, \ k \in \mathbb{Z} \Leftrightarrow x \mod n = i$$

Heoбxoдимость(⇐):

$$x \mod n = i \Leftrightarrow x = i + n \cdot k, \ k \in \mathbb{Z} \Leftrightarrow x \in A_i$$

Следствие **0.9.** Решен пункт 1(c).i

Определение 0.10. Переформулируем условие продвинутости участника: Участник x- продвинутый, если $\forall i \in \mathbb{Z}_n \quad \exists \alpha \in \mathbb{Z} \quad f_{\alpha}(x) \mod n = i$

Теорема 0.11. Участник x будет продвинутым на n-ном фестивале тогда и только тогда, когда он не является делителем нуля в кольце \mathbb{Z}_n .

Доказательство. Совершенно понятно, что раз $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$ можно вместо x рассматривать [x] в факторгруппе. То есть условие эквивалентно тому, что $\forall i \in \mathbb{Z}_n \quad [x]$ делит [i], а такому соответствуют только взаимно простые с n числа, чему удовлетворяют только не-делители нуля в \mathbb{Z}_n – доказано в википедии.

Замечание 0.12. Тогда, когда год проведения - простое число никакой участник не продвинутый.

Лемма 0.13. Множество $A_0 = n\mathbb{Z} = \langle n \rangle u$ только оно является идеалом в кольце \mathbb{Z} среди семейства множеств $\{A_i\}_{i=0}^{n-1}$.

Доказательство. Строго говоря, в \mathbb{Z} идеалами кроме тривиальных 2 являются множества вида $\{k \cdot n | k \in \mathbb{Z}\}, n \in \mathbb{Z}$ - для доказательства возьмем идеал \mathcal{I} и его минимальное натуральное число n. Понятно, что все числа вида $k \cdot n$ также лежат в \mathcal{I} . Покажем, что других там нет. Действительно, пускай $m \in \mathcal{I}$. Поделим m на n с остатком:

$$m = n \cdot q + r \implies r = 0 \lor 0 < r < n$$

В первом случае $m : n \Rightarrow m = n \cdot k$, во втором получаем противоречие минимальности n. Понятно, что среди семейства $\{A_i\}_{i=0}^{n-1}$ такой вид имеет только множество A_0

Следствие 0.14. Решен пункт 2(b) - год проведения фестиваля будет n=1, ведь если это не так, первая комната будет не продвинутая.

Стоит заметить, что если год проведения первый - на фестивале представлена только одна комната: все множество \mathbb{Z} , которое является идеалом в себе.

Следствие 0.15. Все люди из первой комнаты не будут продвинутыми на любой год проведения фестиваля, кроме первого.

Следствие 0.16. Каждый участник на фестивале выучит учить язык A_0 .

Теорема 0.17. $\varphi \in End(\mathbb{Z}) \& \varphi$ инъективен $\Longrightarrow \exists t \in \mathbb{Z} \quad \forall x \quad \varphi(x) = t \cdot x$

Доказательство. Покажем, что $t\stackrel{def}{=} \varphi(1)$ подходит. При x>0:

$$\varphi(x) = \varphi(\underbrace{1+1+\cdots+1}_{x \text{ pas}}) = \varphi(1) \cdot x$$

 $^{^2{\}rm M}$ ножества из аннулятора и всех элементов

При x=0 $\varphi(x)=0$ (в силу гомоморфности отображения), тогда:

$$\varphi(x) = 0 = 0 \cdot \varphi(1)$$

При x < 0:

$$\varphi(x) = -\varphi(-x) = -(-x \cdot \varphi(1)) = x \cdot \varphi(x)$$

Теорема 0.18. Пусть (G,+) - циклическая группа, $H \triangleleft G$ $G/_H$ - фактор группа, такая что $[G:H] < \infty$. Задан эндоморфизм - мономорфизм φ - такой, что $\exists t \, \forall x \, \varphi(x) = x \cdot t$ - он является возведением в степень. Тогда

$$\forall \mathfrak{d} \in G/_H \quad \exists \mathfrak{b} \in G/_H \quad f(\mathfrak{d}) \subset \mathfrak{b}$$

Доказательство. Пусть $\mathfrak{d} = \delta + H \in G/_H$, тогда

$$\varphi(\mathfrak{d}) = \varphi(\delta + H) = \varphi(\delta) + \varphi(H) = t \cdot \delta + t \cdot H \subset t \cdot \delta + H \in G/_H$$

Следствие 0.19. Условия теоремы удовлетворяют $(\mathbb{Z},+)$ по подгруппе $< n >= n\mathbb{Z}$ для любого отображения f_{α} , где $\alpha \neq 0$, при нулевых же альфа $f_{\alpha}(\mathbb{Z}) = \{0\}$, а тогда все люди будут в одной комнате, а значит решен пункт 1(a).

Предложение 0.20. Введем бинарное отношение $\Gamma \subseteq \mathbb{Z} \times \mathbb{Z}$ такое, что

$$(a,b) \in \Gamma \Leftrightarrow \exists \alpha_1, \alpha_2 \in \mathbb{Z}$$

$$\alpha_1 \cdot a \mod n = b \mod n \quad \& \quad \alpha_2 \cdot b \mod n = a \mod n$$

Понятно, что люди а и b будут в одной дневной группе тогда и только тогда, когда а Γ b и b Γ a

Замечание 0.21. Понятно, что на фестивале представлено две дневные группы $-A_0$ и $R = \{x \mid \gcd(x,n) = 1\}$ - множество продвинутых участников.

Определение 0.22. Более формально зададим понятние ленивого участника. Участник γ ленивый \iff

$$\forall x \in \mathbb{Z} \quad f_{\gamma}(x) \mod n = x \mod n$$

Замечание 0.23. $\forall \gamma \in A_0$ - он не ленивый.

Доказательство. Прямое следствие идеальности A_0 - достаточно взять $x \in A_{l>0}$ - образ этого элемента будет лежать в A_0 — а значит $\gamma \in A_0$ быть ленивым не может.