Segundo semestre - 2021

7600033 - Mecânica Clássica Computacional

Lembre-se de ler as instruções gerais que valem para todos os projetos da disciplina. Esse documento é apenas um guia. Os detalhes do projeto foram discutidos em aula.

Projeto 3 - O problema de três corpos: o efeito de Júpiter sobre a Terra, Marte e asteroides

Deixe bem claro no seu relatório quais foram as condições iniciais (posição e velocidade) utilizadas em todos os itens, bem como os outros parâmetros de entrada dos programas. Utilize unidades astronômicas para distâncias e anos para unidades de tempo.

- 1) Escreva um programa que calcule a trajetória da Terra e Júpiter orbitando o Sol. Suponha que o Sol está fixo na origem. Faça um gráfico mostrando pelo menos um período do movimento. O que acontece se a massa de Júpiter for aumentada de um fator 10? E 1000? Nesse último caso a simulação seria realística?
- 2) Repita o item 1, mas ao invés da Terra investigue o efeito de Júpiter na órbita de Marte. Discuta os seus resultados.
- 3) Escreva um programa que calcule a trajetória de 3 asteroides e Júpiter orbitando o Sol. Suponha que o Sol está fixo na origem e considere as condições iniciais da Tabela 1. Investigue o efeito de Júpiter nos asteroides sob o ponto de vista das lacunas de Kirkwood.

Tabela 1: Condições iniciais.

Objeto	a [AU]	velocidade [AU/anos]
Asteroide 1	3,000	3,628
Asteroide 2	3,276	3,471
Asteroide 3	3,700	3,267
Júpiter	5,200	2,755

Seu relatório deve ter no **máximo** 3 páginas.

Bibliografia:

[1] Computational Physics, N. J. Giordano e H. Nakanishi (segunda edição, Pearson, 2006). Seções 4.4 e 4.5.