

Scalable approach for Learning Word Representations

Name: Zhang, Zijian Matrikelnummer: 3184680

First Examiner: Prof.Dr. Avishek Anand Second Examiner: Prof. Dr. techn. Dipl.-Ing. Wolfgang Nejdl Advisor: Prof. Dr. Avishek Anand

Content

- -Background Knowledge Introductions
- -Structure of our Approach
- -Original Corpus Division
- -Merging Approaches
 - -Concatenation+PCA
 - -Manifold Alignment + Vector Averaging
- -Experiments Setup
- -Performance and Timing
- -Conclusion and Future Works

Word Vector Representation

Why Word2Vec:

```
Word representations:
```

used to be processed in computer:

popular in downstream applications

One-hot / hash tokenizing (-lose of semantic information)

LSA: directly SVD on word-doc matrix (-linear model)

Bag-of-Word: meaning defined by set of labels (-low semantic accuracy, supervised)

Words co-occurrence matrix: count of word appears together (-sparse)

Therefore Word2Vec: a predictive model preserves semantic information dense representations for larger corpus non-linear dimension reduction, relationship-preserving and robust unsupervised way a neural approach is more scalable

Challenge of Word2Vec:

larger corpus: more **expressive**, longer **time**

On 14GB English Wikidump: ≈ **36 hours**! (dim: 500 Vocabulary: 300k)

Not **scalable** w.r.t. large corpus

Skip Gram Negative Sampling

$$J(\theta) = \sum_{w \in D} \sum_{c \in l(w)} \{ \ln[p((w,c)|\theta)] + E_{\bar{c} \in V} \ln[1 - p((w,\bar{c});\theta)] \}$$
 Skip Gram Negative Sampling

Properties of Word2Vec [1]

[1]: Mikolov T, Yih W, Zweig G.
Linguistic regularities in continuous space word representations
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2013: 746-751.

Recently work:

Optimizing SGD schema (online, synchronized):
HogWild!, BLAS-3, optimizing cache usage, column-wise distribution

Adaptive SGD : SGD-Momentum, AdaGrad, RMSProp

Heterogeneous combination: Combine vectors from Word2Vec, WordNet, GloVe, ConceptNet etc.

Incremental Word2Vec training

Our contribution:

TBF

Structure of our Approach

Structure of our Approach

Research Questions:

sub-corpora sub-models

1) How do we sample 2) How do we from the original corpus? combine sub-models?

Original Corpus Division

Criterion of Division: "Mimicking" the Original Term Distribution

objective function:

$$J(\theta) = \sum_{w \in D} \sum_{c \in l(w)} \left\{ \ln \left[p((w,c)|\theta) \right] + E_{\overline{c} \in V} \ln \left[1 - p((w,\overline{c});\theta) \right] \right\}$$

local optimum:

$$\frac{\partial J(\theta)}{\partial \theta} = 0$$

final result [1]:

$$\mathbf{w} \, \mathbf{c} = \log \frac{N \, \#(\mathbf{w}, \mathbf{c})}{\#(\mathbf{w}) \#(\mathbf{c})} - \log k$$

Depends on distribution of words/central-contextual pairs only

Original Corpus Division

Distribution preservation through uniform sampling

Central contextual words pair distribution

Problem so-far:

1st Approach: Concatenation + Principle Component Analysis

Some Comments on PCA [1]

Law of cosines:

$$||d||^{2} = ||a||^{2} + ||b||^{2} - 2||a|| ||b|| \cos \theta$$
$$||a||^{2} = ||b||^{2} = 1$$
$$\cos \theta = \frac{2 - ||d||^{2}}{2 + ||a||^{2}}$$

2nd Approach: Manifold Alignment + Vector Averaging

2nd Approach: Manifold Alignment [1] + Vector Averaging

[2] X

Find a low-rank correlation of Y

 X_{final} , $Y_{final} = (1-\mu)$ (low-rank reconstruction) +µ(inter-manifold correlation)

Find a low-rank correlation of Y

[1]:

Experiments Setup

Data Set:

- *Original corpus*: English Wikipedia dump file 2016 (14G)

- Cleaner: Wikipedia LineSentences cleaner in Gensim

Sample/Partition size: 1%, 10% of the original corpus

Baseline Model[1]:

Vocabulary: 300k words

- Dimension (size of hidden layer): 500

- *Training time*: 36 hours

Benchmarks:

- Word Similarity: MEN, RW, RG65, WS353, SimLex999, Mturk

- Analogy: Google, SemEval 2012 #2, MSR

- Categorization: AP, BLESS, Battig

Effect of Dividing (sampling/partitioning):

Approach	AP	Battig	MEN	RG65	RW	WS353	Google	SemEval2012_2
Partition(1/10,10)	0.582	0.420	0.719	0.725	0.232	0.596	0.615	0.162
Random(1/10,10)	0.604	0.435	0.740	0.757	0.209	0.637	0.654	0.188
Partition(1/100,100)	0.505	0.358	0.622	0.723	0.203	0.516	0.467	0.129
Random(1/100,100)	0.517	0.381	0.644	0.746	0.257	0.542	0.487	0.138
Baseline	0.595	0.434	0.736	0.757	0.299	0.611	0.661	0.181

Table 2: Comparison between Random(.,.) and Partition sampling approaches at different granularities. PCA is used as the merging method.

Conclusions:

Sampling performs overall better than partitioning Larger division size makes the performance better, but less scalability Surprisingly, some of our approaches even outperform the **baseline**!

Effect of Merging (concatenation/PCA/LRA):

Approach	AP	Battig	MEN	RG65	RW	WS353	Google	SemEval2012_2
Random(1/10,10) + Concat	0.595	0.429	0.742	0.765	0.268	0.611	0.645	0.187
Random(1/10,10) + LRA	0.560	0.327	0.685	0.785	0.264	0.606	0.661	0.158
Random(1/10,10) + PCA	0.604	0.435	0.740	0.757	0.209	0.637	0.654	0.188
Random(1/100,100) + Concat	0.525	0.377	0.643	0.746	0.257	0.542	0.487	0.138
Random(1/100,100) + LRA	_	_	_	_	_	_	_	_
Random(1/100,100) + PCA	0.517	0.381	0.644	0.746	0.257	0.542	0.487	0.138
Baseline	0.595	0.434	0.736	0.757	0.299	0.611	0.661	0.181

Table 3: Evaluation results for merging

Conclusions:

PCA performs overall the best LRA and Vector average is the slowest

To see the information loss in the PCA, we added the concatenation as a single line, it performs surprisingly robust, despite its higher dimensionality

Effect of sample count (10% of original corpus):

Conclusion:

Larger count of sub-models doesn't help. 8~10 for 10% approach, 20~30 for 1% approach is enough. After that it goes into flat road.

Effect of sample count (1% of original corpus):

Conclusion:

Larger count of sub-models doesn't help. 8~10 for 10% approach, 20~30 for 1% approach is enough. After that it goes into flat road.

Timing:

Subject name	Time Elapse (s)				
10% partitioning PCA	10932				
1% partitioning PCA	2093				
10% sampling PCA	12852				
1% sampling PCA	16293				
10% sampling LRA	27385				
Baseline	129015				

Conclusions:

m-part division leads to m-folds speed up
Total training time: from 36 hours @ baseline to
3.6 hours @ 10% and
< 1 hour @ 1% approach

Time of merging is in minutes

Conclusion and Future Works

Conclusions:

- Sentence-wise sampling to divide, PCA to merge
- M-fold speed up by M-splitting, sometimes even outperform the baseline.

Future works:

 Works on the go: dealing with missing-word problem between sub-models

Thank you for your attention

Questions and comments are highly appreciated

Zhang, Zijian Hannover 08. 03. 2018