The Entity-Relationship Model (Part II)

R &G - Chapter 2

Last Lecture

- ER model: model data conceptually
 - Entities & entity set
 - Relationships & relationship set
 - Keys (superkey, candidate keys, primary keys)

E-R Diagrams

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Ellipses represent attributes
- Underline indicates primary key attributes

- Degree of relationship set:
 - □ Binary, ternary, n-ary...

Unary Relationship Set

- Unary (degree 1) relationship:
 - A unary relationship exists when both participating entity sets are the same
 - Example: A group of employees is managed by another employee (i.e., manager)
 - Only one entity set: *Employees*
 - Also called as recursive relationship

 How can we draw the unary relationship set?

Case 1: Different Roles in Unary Relationships

Different entities are involved in the same relationship with different "roles".

•Examples:

- Employee A is the supervisor of Employee B
 (i.e., Employee B is the subordinate of Employee A)
 - I.e., same entity pair (A, B) is involved in the Reports To relationship with different roles

•How to draw the ER diagram:

- Add two connections (links) between the entity set and the relationship set
- Write down the role beside each link

Different Roles in Unary Relationships (Cont.)

The corresponding *Reports_To* table will look like this:

Employee_supervisor	Employee_subordinate
Alice	Bob
Bob	Carol

Reports_To table

Example 2: Different Roles in Unary Relationships

Husband	Wife
Bob	Alice
Joe	Betty

Married table

Case 2: Same Role in Unary Relationships

- The participant entities are involved in the relationship with the same role
- Can we have the ER diagram shown at the right side?
 - One entity set, one relationship, one link
- NO
 - There should be (again) two connections (links) between entity set and relationship set, even though they are of the same roles
 - Write down the role names. Make the role names distinct (such as Role 1 and Role 2), even Role 1 and Role 2 refer to the same role.

More Example: Same Roles in Relationship

Buddy 1	Buddy 2
Bob	Alan
Bob	Joe
Alan	Joe

Buddy table

- In Twitter, there are two types of relationships between users
 - Following others: you are subscribing to their Tweets as a follower
 - Being followed: You have followers

- Question:
 - Draw the ER diagram of the relationship
 Connect

- Assume you want to design an annual student directory (a prototype of Facebook II)
- The main concepts you need to describe include
 - Users (ID, age, gender, school)
 - Friend & enemy relations among users

Questions

Draw the ER diagram with the relationships.

Can we draw the ER diagram as following?

Hint: what will the table look like for this ER

diagram? Is this correct?

Friend	Enemy
Bob	Alan
Bob	Joe
Alan	Joe

Can we draw the ER diagram as the following?

- Answer: NO
 - Friend and enemy are two different types of relationships,
 NOT the different roles in the same relationship!
 - The same pair of users (A, B) cannot be involved in the same Connect relationship with A as friend of B but B is enemy of A!

Correct solution:

The corresponding tables

Friend 1	Friend 2
Alice	Bob
Bob	Carol

Enemy 1	Enemy 2
Alice	Carol
Daisy	Alice

Today's Lecture

- Unary relationships
- Constraints on ER diagram
 - Cardinality constraints in ER diagram
 - Participation constraint
 - Weak entities

Cardinality Constraints in E-R Diagram

- Cardinality ratio of R: the number of entities of E2 that an entity of E1 can possibly be associated thru R
- Four possibilities are usually specified:
 - one-to-one (1-1)
 - one-to-many (1-N)
 - many-to-one (N-1)
 - many-to-many (M-N)

One-to-One (1-1) Relationship

- An entity in A is associated with at most one entity in B and vice versa
- e.g. A: driver, B: driver's license
- More examples of 1-1 relationship?

Draw 1-1 Relationship in ER Diagram

Both lines (R, A) and (R, B) must be arrowed:
 each arrow pointing to R

One-to-Many (1-N) Relationship

- One-to-many from A to B
 - An entity in A is associated with any number of entities in B
 - An entity in B is associated with at most one entity in A
 - e.g. A: biological-mother, B: children
 - More examples of 1-N relationships?

Many-to-1

Draw 1-N Relationship in ER Diagram

Assume:

- R is a 1-N relationship between entity sets A and B
- A is the entity set at 1-side
- B is the entity set at many-side

The line between R & B must be arrowed:

 The arrow leaves entity set at many-side and points to entity set at 1-side

Many-to-Many (M-N) Relationship

- many-to-many from A to B:
 - An entity in A is associated with any number of entities in B and vice versa
- e.g. A: student, B: course
- More examples of M-N relationship?

Many-to-Many

Draw M-N Relationship in ER Diagram

NO special treatment: no arrow.

Exercise: Cardinality constraints

- What are the cardinality constraints of following relationships?
 - A: Country; B: Capital; R: has
 - A: Movie; B: Director; R: has
 - A: Movie; B: actor; R: play
 - A: Person; B: email address; R: has
 - A: book; B: author; R: write
 - A: doctor; B: patient; R: treat