```
import pandas as pd

df = pd.read_csv('social_ads.csv')

df.info()
```

 $\overline{\rightarrow}$

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199

Data and war (total 100 and war)

Data	columns (total	10 columns):					
#	Column	Non-Null Count	Dtype				
0	segment	200 non-nu11	int64				
1	google	200 non-null	float64				
2	facebook	200 non-null	float64				
3	instagram	200 non-null	float64				
4	sales	200 non-null	float64				
5	size	200 non-nu11	object				
6	is_large	200 non-null	int64				
7	area	200 non-null	object				
8	area_suburban	200 non-null	int64				
9	area_urban	200 non-null	int64				
dtype	es: float64(4),	int64(4), object(2)					
memoi	ry usage: 15.8+	KB					

df. head (10)

}	9	segment	google	facebook	instagram	sales	size	is_large	area	area_suburban	area_urban
	0	1	230.1	37.8	69.2	22.1	large	1	rural	0	0
	1	2	44.5	39.3	45.1	10.4	small	0	urban	0	1
	2	3	17.2	45.9	69.3	9.3	small	0	rural	0	0
	3	4	151.5	41.3	58.5	18.5	small	0	urban	0	1
	4	5	180.8	10.8	58.4	12.9	large	1	suburban	1	0
	5	6	8.7	48.9	75.0	7.2	large	1	suburban	1	0
	6	7	57.5	32.8	23.5	11.8	large	1	suburban	1	0
	7	8	120.2	19.6	11.6	13.2	large	1	urban	0	1
	8	9	8.6	2.1	1.0	4.8	large	1	rural	0	0
	9	10	199.8	2.6	21.2	10.6	large	1	suburban	1	0
	٩ ا										

df. describe()

corr = df.corr(numeric_only=True)

corr

plt.show()

		segment	google	facebook	instagram	sales	is_large	area_suburban	area_urban
	segment	1.000000	0.017715	-0.110680	-0.154944	-0.051616	-0.110514	0.006747	0.027686
	google	0.017715	1.000000	0.054809	0.056648	0.782224	0.131097	-0.004299	-0.023388
	facebook	-0.110680	0.054809	1.000000	0.354104	0.576223	-0.078994	-0.068522	0.078618
	instagram	-0.154944	0.056648	0.354104	1.000000	0.228299	0.016979	-0.046722	0.012733
	sales	-0.051616	0.782224	0.576223	0.228299	1.000000	0.061626	-0.062942	0.052911
	is_large	-0.110514	0.131097	-0.078994	0.016979	0.061626	1.000000	-0.043605	-0.108417
	area_suburban	0.006747	-0.004299	-0.068522	-0.046722	-0.062942	-0.043605	1.000000	-0.542222
	area urban	0.027686	-0.023388	0.078618	0.012733	0.052911	-0.108417	-0.542222	1.000000
4									

prompt: Using dataframe corr: draw a heatmap
import matplotlib.pyplot as plt
import seaborn as sns

Create a heatmap
plt.figure(figsize=(10, 8)) # Adjust figure size as needed
sns.heatmap(corr, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap')

ax = sns.countplot(data=df, x="area")

ax = sns.countplot(data=df, x="size")

sns.displot(data=df, x="google", bins=20, hue="size")

ax = sns.scatterplot(data=df, x="google", y="sales")

 ${\tt\#} \ \ \, {\tt prompt:} \ \ \, {\tt create} \ \ \, {\tt a} \ \ \, {\tt interactive} \ \ \, {\tt scatter} \ \ \, {\tt plot}$

import plotly.express as px

Assuming 'df' is your DataFrame
fig = px.scatter(df, x="google", y="sales", trendline="ols")
fig.show()


```
25
20
15
10
0 50 100 150 200
google
```

```
# prompt: create a interactive scatter plot
import plotly.express as px
# Assuming 'df' is your DataFrame
fig = px.scatter(df, x="instagram", y="sales", trendline="ols")
fig.show()
```



```
# prompt: create a interactive scatter plot
import plotly.express as px
# Assuming 'df' is your DataFrame
fig = px.scatter(df, x="facebook", y="sales", trendline="ols")
fig.show()
```



```
# prompt: put the graph together
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
# Assuming 'df' is already loaded
# Create subplots
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# Heatmap
sns.heatmap(corr, annot=True, cmap='coolwarm', fmt=".2f", ax=axes[0, 0])
axes[0, 0].set_title('Correlation Heatmap')
# Countplot for 'area'
sns.countplot(data=df, x="area", ax=axes[0, 1])
axes[0, 1].set title('Distribution of Area')
# Scatterplot for 'google' vs 'sales' with trendline
sns.scatterplot(data=df, x="google", y="sales", ax=axes[1, 0])
axes[1, 0].set_title('Google Ads vs Sales')
# Countplot for 'size'
sns.countplot(data=df, x="size", ax=axes[1, 1])
axes[1, 1].set_title('Distribution of Size')
# Adjust layout
plt.tight_layout()
plt.show()
# Interactive plots using Plotly Express (shown separately)
fig1 = px.scatter(df, x="google", y="sales", trendline="ols", title='Google Ads vs Sales (Interactive)')
fig1.show()
fig2 = px.scatter(df, x="instagram", y="sales", trendline="ols", title='Instagram Ads vs Sales (Interactive)')
fig2. show()
fig3 = px.scatter(df, x="facebook", y="sales", trendline="ols", title='Facebook Ads vs Sales (Interactive)')
fig3.show()
```


Instagram Ads vs Sales (Interactive)

Facebook Ads vs Sales (Interactive)


```
# prompt: scatter plot 'google','facebook','instaram' in one figure

# Create a figure and axes
fig, ax = plt.subplots()

# Scatter plots for each platform
ax.scatter(df['google'], df['sales'], label='Google', alpha=0.7)
ax.scatter(df['facebook'], df['sales'], label='Facebook', alpha=0.7)
ax.scatter(df['instagram'], df['sales'], label='Instagram', alpha=0.7)

# Set labels and title
ax.set_xlabel('Advertising Spend')
ax.set_ylabel('Sales')
ax.set_title('Sales vs Advertising Spend on Different Platforms')

# Add a legend
ax.legend()

# Display the plot
plt.show()
```



```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

# Assuming 'df' is your DataFrame
X = df[['google', 'facebook','instagram','is_large']] # Select features
y = df['sales'] # Target variable

# Create and fit the model
model = LinearRegression()
model.fit(X, y)
model.score(X, y)
$\to$ 0.8972400790092475
```