# 机器学习技术在推荐系统中的应用

#### 打造千人千面的个性化推荐引擎

#### 推荐搜索部

刘思喆

2014年9月27日



## 目录

推荐系统



- 1 京东推荐产品介绍
- ② 通用模型的应用
- ₃ 大规模 CTR 预测系统实例
- ₫ 总结和回顾

## 目录

推荐系统



- 1 京东推荐产品介绍
- ❷ 通用模型的应用
- ₃ 大规模 CTR 预测系统实例
- △ 总结和回顾

# 京东推荐产品

- 80+ 推荐产品,包括移动端和 Web 端
- 20+ 推荐服务, 支撑 EDM、广告、微信端等
- 遍布用户网购的各个环节

#### 推荐系统的价值

- 挖掘用户潜在购买需求
- 缩短用户到商品的距离
- 用户需求不明确时提供参考
- 满足用户的好奇心

## 推荐产品截图示例



## 不同位置的推荐产品定位不同

• 单品页:购买意图

• 过渡页:提高客单价

购物车页: 购物决策

• 无结果页:减少跳出率

订单完成页:交叉销售

• 关注推荐:提高转化

• 我的京东推荐:提高忠诚度

## 京东推荐算法优化方向

- 以数据分析为工具,提升数据的质量和覆盖度,增强对业务的理解(25%)
- 测试不同算法在不同数据源的效果,提高召回模型的质量,增加结果辨识度(50%)
- 以用户反馈为依据,融合不同类型、不同维度据源,对推荐结果重排序(15%)
- 增加数据的更新频率(5%)
- 其他(5%)

## 京东推荐算法优化方向

- 以数据分析为工具,提升数据的质量和覆盖度,增强对业务的理解(25%)
- 测试不同算法在不同数据源的效果,提高召回模型的质量,增加结果辨识度(50%)
- 以用户反馈为依据,融合不同类型、不同维度据源,对推荐结果重排序(15%)
- 增加数据的更新频率(5%)
- 其他 (5%)

## 目录

推荐系统



- 京东推荐产品介绍
- 2 通用模型的应用
- ₃ 大规模 CTR 预测系统实例
- △ 总结和回顾

## 典型推荐系统技术

按照数据的分类: 协同过滤、内容过滤、社会化过滤

按照模型的分类: 基于近邻的模型、矩阵分解模型、图模型

## 京东对推荐数据的理解

#### 用户行为

- ① 浏览
- 金 点击
  - 普通点击
  - 搜索点击
- 3 加入购物车(或关注)
- 4 购买
  - 订单
  - 用户
- 5 评分



#### 基于内容

- 标题
- 扩展属性
- 评论
- 描述
- •

## 京东对推荐数据的理解

#### 用户行为

- 1 浏览
- 点击
  - 普通点击
  - 搜索点击
- ③ 加入购物车(或关注)
- 4 购买
  - 订单
  - 用户
- 证



#### 基于内容

- 标题
- 扩展属性
- 评论
- 描述

## 目录

推荐系统



- 京东推荐产品介绍
- ② 通用模型的应用
- ₃ 大规模 CTR 预测系统实例
- △ 总结和回顾

## 推荐的 CTR 预测

什么是推荐商品的 CTR (Click Through Rate)?

- 关联推荐的情境下,根据给定主商品推出的推荐商品,在用户浏览后被点击的概率。
- 可以理解为条件概率 P(Y=1|X)

为什么要预测推荐商品的 CTR?

- 1 调整推荐商品的排序
- 2 用于多模型的融合
- 3 发现影响推荐商品点击率的重要因素

# 特征表征方法

用目标问题所在的特定领域知识或者自动化方法来生成、提取、删减或组合变化来得到特征。

#### 领域经验法

- 条件关系(=,!=)
- 几何运算
- 分段及比例
- 其他

#### 自动化技术

- PCA, ICA, NMF
- Linear Discriminant Analysis
- Collaborative Filtering
- AutoEncoder

# 最优子集(Feature selection)的优点

- 提高模型的可解释性
- 减少训练和预测的时间
- 有效降低过拟合,提升模型的适应能力

#### Feature selection methods I

- Filters select subsets of variables as a pre-processing step, independently of the chosen predictor.
- Wrappers utilize the learning machine of interest as a black box to score subsets of variable according to their predictive power.
- Embedded methods perform variable selection in the process of training and are usually specific to given learning machines.

#### Feature selection methods II

- Subset Selection (Stepwise and Stagewise Selection)
- Shrinkage Methods (Ridge Regression and Lasso )
- Methods Using Derived Input Directions(Principal Components Regression, Partial Least Squares)

## 如何对商品属性进行描述

### 对商品的形容:

品牌词、中心词、修饰词;类目属性、扩展属性;

#### 基于用户行为的在商品上的反映:

- 销量、PageRank、评论数、好评度
- 商品的标签(如时间标签、地域标签、性别标签等)

对于商品标签(以时间差异构建的时间 feature 为例):

假设 9:00-19:00 为白天(D),19:00-9:00 为夜间(N),则在这两个时间段内的用户购买则构成了该商品的时间标签,该商品标签的一般性定义为:

$$\frac{\sum_{u \in D} M_{u,i}}{\sum_{u \in D} M_{u,i} + \sum_{u \in N} M_{u,i}} - \frac{\sum_{u \in D} M_u}{\sum_{u \in D} M_u + \sum_{u \in N} M_u}$$

## 商品的组合属性

#### 基于单一属性组合产生的属性,有以下三种:

- 相同类属性的组合:如时序上的销量(趋势系数),销量的方差
- 不同类属性的组合:如商品的展示和点击组合(如 CTR)、点击和购买的组合(如 CVR)
- 推荐主商品和推荐品属性的组合。比如品牌词是否一致,价格的比值是否在一定范围内。

推荐主商品和推荐品三级类目关系需要使用两两配对的 feature 表征形式。

## 数据预处理及建模过程

- 去掉样本量较小的类,共25个一级类需要预测
- 对不均衡样本采取了 undersampling 策略,同时配置 5 次重复抽样预测
- 训练数据量为 500w,在并行 CV 选取  $\lambda$  的时间为 15-20 分钟
- 预测重排序数据为 6 亿条
- 预测所有数据, 16 线程情况约为 1 小时

## 不同 $\lambda$ 交叉验证的 MSE 曲线



# 部分三级类组合系数展示

| 1  | 9863  | 1478  | -0.08 | 便携桌椅床 | 床     |
|----|-------|-------|-------|-------|-------|
| 2  | 9756  | 12100 | -0.08 | 板鞋    | 跑步鞋   |
| 3  | 1695  | 1698  | -0.07 | 篮球    | 羽毛球   |
| 4  | 9790  | 12153 | -0.07 | 其它    | 太阳镜   |
| 5  | 1474  | 1478  | -0.07 | 便携桌椅床 | 睡袋/吊床 |
| 6  | 12123 | 12131 | -0.07 | 户外风衣  | 冲锋衣裤  |
| 7  | 2629  | 1471  | -0.07 | 户外鞋袜  | 户外配饰  |
| 8  | 1355  | 9767  | -0.07 | 套装    | T恤    |
|    |       |       |       |       |       |
| 9  | 1698  | 9757  | 0.23  | 篮球鞋   | 篮球    |
| 10 | 1671  | 1694  | 0.24  | 乒乓球   | 纸品湿巾  |
| 11 | 12122 | 9756  | 0.24  | 跑步鞋   | 轮滑滑板  |
| 12 | 5152  | 1476  | 0.26  | 户外照明  | 军迷用品  |
| 13 | 1392  | 12121 | 0.27  | 骑行装备  | 面膜    |
| 14 | 1478  | 12153 | 0.29  | 其它    | 便携桌椅床 |
| 15 | 9765  | 12103 | 0.29  | 运动配饰  | T恤    |
| 16 | 2690  | 12131 | 0.29  | 户外风衣  | 户外服装  |
| 17 | 1474  | 12127 | 0.39  | 休闲衣裤  | 睡袋/吊床 |
|    |       |       |       |       |       |

# 过渡页购买还购买 CTR 预测模型实验

#### 实验效果

- 实验流量 10%
- 观测时长 30 天
- 请求点击率:提升 14%
- 千次请求订单行数:提升1%

## 不同平台(架构)的特点

| 平台            | 算法支持 | 成熟度  | 特征表征 | 训练速度 | 预测速度 | 工程化  | 扩展性 |
|---------------|------|------|------|------|------|------|-----|
| SPARK         | 有限   | 持续开发 | 较复杂  | 很快   | 很快   | 较难   | 较高  |
| MPI           | 重新开发 | 较高   | 复杂   | 很快   | 很快   | 较难   | 较高  |
| Vowpal wabbit | 较多   | 较高   | 很方便  | 很快   | 较慢   | 非常方便 | 一般  |
| R             | 很多   | 较高   | 需写函数 | 较快   | 很快   | 需开发  | 较高  |

## 目录

推荐系统



- 京东推荐产品介绍
- ② 通用模型的应用
- ₃ 大规模 CTR 预测系统实例
- 4 总结和回顾

## 总结和回顾

- 数据的理解高于算法的理解,简单模型配以优质有效数据有更加的效果
- CTR 预测模型可以迅速学习出合理的模式做推断外延,关键点在于特征工程的合理程度

• ...

# 谢谢! Thank you!

北京市朝阳区北辰西路8号北辰世纪中心A连6层 6F Building A. North-Star Century Center, 8 Beichen West Street, Chaoyang District, Beijing 1001011 T. 010-5895 1234 F. 010-5895 1234 E. xinomino@ld.com www.id.com

