

TD1 - RÉDUCTION D'ENDOMORPHISME

Partie I : Éléments Propres

Exercice 1

Soit $f \in \mathcal{L}(\mathbb{K}^2)$ défini par $f(x_1, x_2) = (-3x_2, x_1)$.

- a) Trouver tous les éléments propres de f pour $\mathbb{K} = \mathbb{R}$.
- b) Trouver tous les éléments propres de f pour $\mathbb{K} = \mathbb{C}$.

Exercice 2

Trouver tous les éléments propres de f (sans utiliser le polynôme caractéristique).

- 1. $f \in \mathcal{L}(\mathbb{K}^2)$ défini par $f(z_1, z_2) = (z_2, z_1)$.
- 2. $f \in \mathcal{L}(\mathbb{K}^3)$ défini par $f(z_1, z_2, z_3) = (2z_2, 0, 5z_3)$.
- 3. $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(\mathbb{K}^n)$ défini par $f(z_1, z_2, \dots, z_n) = (z_1, 2z_2, \dots, nz_n)$.

Exercice 3

Soit f l'endomorphisme de $\mathbb{R}_2[X]$ défini pour tout $P=a+bX+cX^2\in\mathbb{R}_2[X]$ par :

$$f(P) = (b+c) + (a+c)X + (a+b)X^{2}$$

Déterminer tous les éléments propres de f.

Exercice 4 (Propriétés propres d'un endomorphisme)

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Soit f et g deux endomorphismes de E.

Pour tout $k \in \mathbb{N}$, on note : $f^k = \underbrace{f \circ \ldots \circ f}_{k \ fois}$ où $f^0 = id_E$ et $f^{-k} = (f^{-1})^k$ si f est inversible.

- 1) Montrer que 0 est valeur propre de f ssi f est non bijectif.
- 2) Montrer que $f \circ g$ et $g \circ f$ ont les mêmes valeurs propres. [on admettra que : $f \circ g$ est injectif $\Leftrightarrow g \circ f$ est injectif].
- 3) Montrer que si λ est valeur propre de f, alors $\forall k \in \mathbb{N}$, λ^k est valeur propre de f^k .
- 4) Supposons que f est inversible. Soit λ une valeur propre de f.
 - a) Montrer que $1/\lambda$ est valeur propre de f^{-1} .
 - b) Montrer que : $\forall k \in \mathbb{N}^*, \lambda^{-k}$ est valeur propre de f^{-k} .

Exercice 5

Soit

$$A = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$

A est une projection $(A^2 = A)$.

- 1. Déterminer les éléments propres de A comme endomorphisme de $\mathcal{M}_{2,1}(\mathbb{R})$.
- 2. Déterminer les éléments propres de A comme endomorphisme de $\mathcal{M}_{2,1}(\mathbb{C})$.

Exercice 6

Soit

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

A est une rotation d'angle 90°.

- 1) Déterminer les éléments propres de A, comme endomorphisme de $\mathcal{M}_{2,1}(\mathbb{R})$.
- 2) Déterminer les éléments propres de A, comme endomorphisme de $\mathcal{M}_{2,1}(\mathbb{C})$.

Exercice 7 (Propriétés propres d'une matrice carrée) Soit A et B deux matrices carrées d'ordre n $(A, B \in \mathcal{M}_n(\mathbb{K}))$.

- 1) Montrer que A et A^T ont le même polynôme caractéristique. Ont-elles les mêmes valeurs propres ? Ont-elles les mêmes sous-espaces propres ?
- 2) Montrer que 0 est valeur propre de A ssi A est non inversible.
- 3) Montrer que AB et BA ont les mêmes valeurs propres.
- 4) Montrer que si λ est valeur propre de A, alors $\forall k \in \mathbb{N}$, λ^k est valeur propre de A^k .
- 5) Supposons que $\det(A) \neq 0$. Soit λ une valeur propre de A. montrer que $\forall k \in \mathbb{Z}$, λ^k est valeur propre de A^k .

Exercice 8

 $A \in \mathcal{M}_2(\mathbb{R})$. Soit :

$$A = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix} \quad \text{et} \quad V = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

- 1) Montrer que V est vecteur propre de A. A quelle valeur propre de A est-il associé?
- 2) Calculer A^2 . Montrer que V est vecteur propre de A^2 . A quelle valeur propre de A^2 est-il associé ?
- 3) Montrer que A est inversible et calculer A^{-1} . Montrer que V est vecteur propre de A^{-1} . A quelle valeur propre de A^{-1} est-il associé ?
- 4) Etudier le cas générale où $A \in \mathcal{M}_n(\mathbb{K})$ et $V \in \mathcal{M}_{n,1}(\mathbb{K})$ un vecteur propre de A.

Exercice 9

Soit $n \in \mathbb{N}^*$ et

$$\begin{array}{ccc}
f: \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\
A & \longmapsto & A^T
\end{array}$$

- 1) Vérifier que f est linéaire.
- 2) Déterminer les valeurs propres possibles de f.
- 3) Déterminer les éléments propres de f pour n = 1 et n = 2.
- 4) Quelles sont les sous-espaces propres de f pour $n \geq 2$.

Exercice 10

Soit $E = \mathbb{R}_2[X]$. On pose :

$$\forall P \in E, \quad f(P) = (2X+1)P - (X^2-1)P'$$

- 1) Vérifier que f est un endomorphisme de E.
- 2) Ecrire la matrice A de f dans la base $\mathcal{B} = (1, X, X^2)$.
- 3) Trouver les valeurs propres de f.
- 4) Déterminer les vecteurs propres de f.
- 5) Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 11 (Eléments propres sur un espaces vectoriel de dimension infinie) Déterminer les valeurs propres et les vecteurs propres de l'endomorphisme f de $\mathbb{R}[X]$ défini par :

$$\forall P \in \mathbb{R}[X], \quad f(P) = (X+1)(X-3)P' - XP$$

Exercice 12 (Eléments propres sur un espaces vectoriel de dimension infinie) Soit $\varphi : \mathbb{R}[X] \to \mathbb{R}[X]$, l'endomorphisme de $\mathbb{R}[X]$ défini par $\varphi(P) = P'$. Déterminer les valeurs propres de φ ainsi que les sous-espaces propres associés.

Exercice 13 (Eléments propres sur un espaces vectoriel de dimension infinie) Soit $E = C^{\infty}(\mathbb{R}, \mathbb{R})$ et D l'endomorphisme de E qui à f associe sa dérivée f'. Déterminer les valeurs propres de D ainsi que les sous-espaces propres associés.

Exercice 14

Soit $A \in \mathcal{M}_n(\mathbb{K})$, telle que la somme des éléments de chaque ligne de A vaut 1. Montrer que 1 est valeur propre de A.

Partie II: Diagonalisation

Exercice 15 (Rappels sur la trace et le déterminant)

On suppose que la matrice $M \in \mathcal{M}_2(\mathbb{R})$ suivante a pour valeurs propres 7 et 8.

$$M = \left[\begin{array}{cc} 4 & 2 \\ a & b \end{array} \right]$$

Déterminer les valeurs de a et b.

Exercice 16

Diagonaliser dans $\mathcal{M}_3(\mathbb{R})$ les matrices suivantes :

1.
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ -2 & 0 & -1 \end{pmatrix}$$
 2. $B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ 3. $C = \begin{pmatrix} 11 & -5 & 5 \\ -5 & 3 & -3 \\ 5 & -3 & 3 \end{pmatrix}$

3

Exercice 17

Soit $a \in \mathbb{R}$. Diagonaliser dans $\mathcal{M}_3(\mathbb{R})$ les matrices suivantes :

1.
$$A = \begin{pmatrix} -1 & a & a^2 \\ 0 & 0 & -a \\ 0 & 0 & 1 \end{pmatrix}$$
 2. $B = \begin{pmatrix} 0 & -1 & 1 \\ -a - 1 & a & a+1 \\ -a & a & a+1 \end{pmatrix}$

Exercice 18

Diagonaliser dans $\mathcal{M}_4(\mathbb{R})$ la matrice suivante :

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

Partie III: Trigonalisation

Exercice 19

Trigonaliser dans $\mathcal{M}_2(\mathbb{R})$ la matrice suivante :

$$\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$$

Exercice 20

Etudier et proposer différentes trigonalisations dans $\mathcal{M}_3(\mathbb{R})$ de la matrice suivante :

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{pmatrix}$$

Exercice 21

Trigonaliser dans $\mathcal{M}_3(\mathbb{R})$ les matrices suivantes :

1.
$$A = \begin{pmatrix} 5 & -17 & 25 \\ 2 & -9 & 16 \\ 1 & -5 & 9 \end{pmatrix}$$
 2. $B = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 3 \end{pmatrix}$

$$2. \ B = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 3 \end{pmatrix}$$

Exercice 22

Trigonaliser dans $\mathcal{M}_4(\mathbb{R})$ la matrice suivante :

$$A = \begin{pmatrix} 1 & 0 & -1 & -1 \\ 2 & 3 & 1 & 0 \\ -1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

Exercice 23

Soit $a, b, c \in \mathbb{R}$ et soit :

$$A = \begin{pmatrix} 1 & a & 1 \\ 0 & 1 & b \\ 0 & 0 & c \end{pmatrix}$$

- 1) Donner une condition nécessaire et suffisante pour que A soit diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- 2) Diagonaliser A pour a = 0, b = 1 et c = 2.
- 3) Trigonaliser A pour a = b = c = 1.

Exercice 24

Diagonaliser ou trigonaliser les matrices suivantes :

4

Partie IV : Suites Récurrentes

Exercice 25

Soit $(x_0, y_0) \in \mathbb{R}^2$ donné. Considérons le système de suites réelles récurrentes $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ défini par :

$$\forall n \in \mathbb{N}, \quad \left\{ \begin{array}{l} x_{n+1} = 2x_n + y_n \\ y_{n+1} = x_n + 2y_n \end{array} \right.$$

Pour tout $n \in \mathbb{N}$:

- 1) Ecrire le système sous la forme matricielle $X_{n+1} = AX_n$, en précisant les différentes matrices.
- 2) Calculer A^n . En déduire x_n et y_n en fonction de x_0 , y_0 et n.

Exercice 26

Soit $a, b \in \mathbb{R}$ avec $a \neq 1$. Etudier la nature des suites réelles $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ définies par :

$$u_0$$
 et v_0 sont données et $\forall n \in \mathbb{N}$,
$$\begin{cases} u_{n+1} = au_n + bv_n \\ v_{n+1} = v_n \end{cases}$$
 (S)

- 1) En utilisant une récurrence.
- 2) En écrivant (S) sous forme matricielle.

Exercice 27

On considère la suite $(X_n)_{n\in\mathbb{N}}$ de matrices de $\mathcal{M}_{2,1}(\mathbb{R})$ définie pour tout $n\in\mathbb{N}$ par

$$X_{n+1} = AX_n + B$$

avec

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} \end{pmatrix}, \quad B = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix}, \quad X_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}, \text{ et } X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \text{ est donn\'e.}$$

- 1) Montrer que la matrice $(I_2 A)$ est inversible et calculer son inverse $(I_2 A)^{-1}$.
- 2) Montrer qu'il existe une solution constante à cette suite récurrente, c'est-à-dire trouver une matrice $X \in \mathcal{M}_{2,1}(\mathbb{R})$ telle que X = AX + B.
- 3) $\forall n \in \mathbb{N}$ on note $U_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$ et on pose $U_n = X_n X$.
 - a) Justifier que pour tout $n \in \mathbb{N}$: $U_{n+1} = AU_n$.
 - b) Montrer que pour tout $n \in \mathbb{N}$: $U_n = A^n U_0$.
 - c) Calculer A^n .
 - d) Donner en fonction de n, u_0 et v_0 l'expression des suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.
 - d) Etudier $\lim_{n\to\infty} U_n$.
- 4) En déduire que la suite de matrices colonnes $(X_n)_{n\in\mathbb{N}}$ converge vers X.

Exercices Supplémentaires

Exercice 28

Diagonaliser dans $\mathcal{M}_4(\mathbb{R})$ les matrices suivantes :

$$A = \begin{pmatrix} -1 & 2 & -2 & 4 \\ -3 & 4 & 2 & 1 \\ 0 & 0 & -2 & 3 \\ 0 & 0 & -4 & 5 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & 3 & 0 & 0 \\ 4 & 2 & 0 & 0 \\ 1 & -1 & 5 & -3 \\ 2 & 0 & 4 & -2 \end{pmatrix}$$

Exercice 29

Soit f l'endomorphisme de $\mathbb{R}_n[X]$ définie par

$$\forall P \in \mathbb{R}_n[X], \quad f(P) = P - (X+1)P'$$

- 1) Justifier que f définit un endomorphisme de $\mathbb{R}_n[X]$.
- 2) Déterminer les valeurs propres de f et justifier que f est diagonalisable.

Exercice 30

Soit $t \in \mathbb{R}$ et :

$$A = \begin{pmatrix} 0 & 1 & -\sin t \\ -1 & 0 & \cos t \\ -\sin t & \cos t & 0 \end{pmatrix}$$

Soit E un \mathbb{R} -espace vectoriel de dimension 3 et $B = (e_1, e_2, e_3)$ une base de E. Soit $f \in \mathcal{L}(E)$ t.q. :

$$\mathcal{M}_B(f) = A$$

- 1) La matrice A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?
- 2) Montrer que $B' = (f^2(e_3), f(e_3), e_3)$ est une base de E.
- 3) Donner la matrice T de f dans la base $B^{'}$ et en déduire une trigonalisation de A.

Exercice 31

Soit $m \in \mathbb{R}^*$. Considérons la matrice :

$$A = \begin{pmatrix} 0 & m & m^2 \\ 1/m & 0 & m \\ 1/m^2 & 1/m & 0 \end{pmatrix}$$

A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$? Calculer A^n pour tout $n \in \mathbb{N}$.