6

60

6

6

0

6

0

6

6

6

5

5

6

which are called the normal equations for the 50 least-squares lines Ty: = do +an Ixi IN Ixiyi = au / Ixi + au / Ixi2 \Rightarrow $\bar{y} = a_0 + a_1 \bar{x}$ IN IXIYO = aox + ay IXI Multiplying the above equ. by \overline{x} and sussibaling from the second gives. (\ Ix: Y: - xy) = a/(\(\siz x:^2 - \siz^2) $Cov(x, y) = a_{y} Var(x).$ $\Rightarrow a_{y} = \frac{Cov(x, y)}{Var(x)} = \frac{Cov(x, y)}{\sqrt{x^{2}}}$ Then from the first equation: $a_0 = \overline{y} - \frac{cor(x,y)}{\overline{x}} \overline{x}$ The equation for the least-square line given by 00 $\gamma = \overline{\gamma} + \frac{\text{cov}(x,y)}{\sigma_x^2}(x-\overline{x})$ or, $(\sqrt{y} - \sqrt{y}) = \frac{c_{oV}(x,y)}{C^2}(x - \overline{x})$ w, $(y-\bar{y}) = r \frac{Gy}{Gx} (x-\bar{x})$ — 3 where $[r = \frac{Cov(x,y)}{\sigma_x \sigma_y}]$ is called the correlation Eqn. 3 is called as linear regression of y on X. Similarly one can have the linear regression of X on Y as $(x-\overline{x}) = x \frac{\partial}{\partial x} (y-\overline{y}) - G$

DEquation 3 and 6 are equal "A and only of r= 11. Carried States on such a case too lines are identical and there is perfect linear correlation between X and Y. 6 9 9t r=0. The lines are at right angles and there is no linear correlation between X and y. 6 6 € The value of r lies between . -1 4 x 4 1 4 6 $-1 \leq r \leq 1$ 6 For data grouped as in a birariate frequency take

Wein $Y = \frac{\text{Cov}(X,Y)}{\sqrt{x}}$ Where $\text{Cov}(X,Y) = \frac{1}{N} \sum_{i,j} f_{i,j} X_{i}^{*} Y_{j}^{*} - \frac{1}{N} Y_{j}^{*}$ 6 -6 6 $\sigma_{x}^{\perp} = \frac{1}{N} \sum_{i}^{\infty} f_{ij} \times_{i}^{2} - \overline{x}^{2}$ Mere fie and fis are marginal distributions for x and y. ---1 * when r'>0, we call it positive correlation and when r<0, we call it negative correlate negative correlation 7-7- (x-x) (x-x) (x-x) (x,7) en r= ±1 Tx 70 y-y = ± x-x Ty >0 $\frac{y-y}{\sigma_y} = \gamma \frac{x-x}{\sigma_x}$ S. $\frac{1}{\sqrt{2}} y = \frac{\sqrt{2}}{\sqrt{2}} x + (y - \sqrt{2} x)$ c X y = m x' + c -2 2 YLO, mLO