12

PCT/IB2005/050848

CLAIMS:

WO 2005/088544

1. A method of artifact correction in a data set of an object of interest, the method comprising the step of: reconstructing an image of the object of interest on the basis of the data set; wherein a statistical weighing is performed during reconstruction of the image.

5

- 2. The method according to claim 1, wherein the data set is a projection data set acquired by means of a source of electromagnetic radiation generating a beam and by means of a radiation detector detecting the beam.
- The method according to claim 2, wherein the source of electromagnetic radiation is a polychromatic x-ray source; wherein the source moves along a helical path around the object of interest; and wherein the beam has one of a cone beam geometry and a fan beam geometry.
- 15 4. The method according to claim 1, wherein the reconstruction of the image is performed on the basis of an iterative algorithm comprising a plurality of update steps until an end criterion has been fulfilled.
- 5. The method according to claim 4, wherein the iterative algorithm is a maximum likelihood algorithm; wherein the reconstructed image has the highest likelihood; and wherein the weighing is performed in each update step of the plurality of update steps.
- 6. The method according to claim 2, further comprising the step of:
 25 determining a number of detected photons during acquisition of the data set; wherein the weighing is based on a statistical error of the number of detected photons.

WO 2005/088544 PCT/IB2005/050848

13

7. The method according to claim 5, further comprising the step of: determining a number of detected photons Y_i during acquisition of the data set; wherein the weighing is based on a statistical error σ_{γ_i} of the number of detected photons Y_i ; wherein an update of an attenuation parameter μ_j^{n+1} is calculated from the attenuation

$$\mu_{j}^{n+1} = \mu_{j}^{n} + \mu_{j}^{n} \frac{\sum_{i} l_{ij} \frac{\sum_{i} l_{ij} \left[d_{i} e^{-\langle l_{i}, \mu^{n} \rangle} - Y_{i} \right] / \sigma_{Y_{i}}^{2}}{\sum_{i} l_{ij} / \sigma_{Y_{i}}^{2}}}{\sum_{i} l_{ij} < l_{i}, \mu^{n} > d_{i} e^{-\langle l_{i}, \mu^{n} \rangle}}$$

- wherein d_i is a number of photons emitted by the source of radiation; wherein l_{ij} is a basis function of an i-th projection; wherein l_i is a vector of basis functions l_{ij} of the i-th projection; and wherein $\langle l_i, \mu \rangle = \sum_j l_{ij} \mu_j$ is an inner product.
- 15 8. The method according to claim 2, wherein the reconstruction of the image is based on a sub-set of at least two projections of all acquired projections of the projection data set.
- 9. A data processing device, comprising: a memory for storing a data set of an object of interest; a data processor for performing artifact correction in the data set of the object of interest, wherein the data processor is adapted for performing the following operation: loading the data set; reconstructing an image of the object of interest on the basis of the data set; wherein a statistical weighing is performed during reconstruction of the image.

25

parameter μ_iⁿ by

10. The data processing device according to claim 9, wherein the reconstruction of the image is performed on the basis of an iterative algorithm comprising a plurality of update steps until an end criterion has been fulfilled; wherein

WO 2005/088544 PCT/IB2005/050848

14

the iterative algorithm is a maximum likelihood algorithm; wherein the reconstructed image has the highest likelihood; and wherein the weighing is performed in each update step of the plurality of update steps.

- A CT scanner system, comprising: a memory for storing a data set of an object of interest; a data processor for performing artifact correction in the data set of the object of interest, wherein the data processor is adapted for performing the following operation: loading the data set; reconstructing an image of the object of interest on the basis of the data set; wherein a statistical weighing is performed during reconstruction of the image.
- 12. A computer program for performing artifact correction in a data set of an object of interest, wherein the computer program causes a processor to perform the following operation when the computer program is executed on the processor: loading the data set; reconstructing an image of the object of interest on the basis of the data set; wherein a statistical weighing is performed during reconstruction of the image.