What is claimed is:

1. An optical glass having optical constants of a refractive index (n_d) within a range from 1.75 to 1.85 and an Abbe number (ν_d) within a range from 35 to 45 and comprising, said optical glass being free of Yb₂O₃, Y₂O₃ and TeO₂, in mass % on the basis of the oxides:

$SiO_2 + B_2O_3$		16.5 - less than 30%
in which	SiO_2	1 - 7.5%
	$\mathrm{B}_2\mathrm{O}_3$	15.5 - 25%
La_2O_3		25-40%
${ m ZrO_2}$		1.5 - 10%
$\mathrm{Nb_2O_5}$		1 - 15%
Ta_2O_5		1 - 10%
WO_3		1 – 10%
ZnO		15.5 - 30%
Li ₂ O		0.6 - 5%.
$\mathrm{Sb_2O_3}$		0 - 1%

said optical glass having a transition point (Tg) within a range from 500°C to 590°C and a yield point (At) within a range from 530°C to 630°C, and being free from devitrification in a devitrification test conducted under a condition of 950°C/2 hours.

2. An optical glass having optical constants of a refractive index (n_d) within a range from 1.75 to 1.85 and an Abbe number (ν_d) within a range from 35 to 45 and comprising, said optical glass being free of Yb₂O₃, Y₂O₃ and TeO₂, in mass % on the basis of the oxides:

$$SiO_2 + B_2O_3 \\ in which SiO_2 \\ B_2O_3 \\ La_2O_3 \\ 16.5 - 29.5\% \\ 1 - less than 6\% \\ 25 - 40\%$$

${ m ZrO_2}$	2 - 6.5%
$\mathrm{Nb_2O_5}$	3 - 12%
Ta_2O_5	1 - 8%
WO_3	more than $5\% - 10\%$
ZnO	17-28%
${ m Li}_2{ m O}$	0.6 - 3%
${ m GeO_2}$	0 - 5%
TiO_2	0 - 5%
$\mathrm{Al}_2\mathrm{O}_3$	0 - 1%
BaO	0 - 1%
$\mathrm{Sb}_2\mathrm{O}_3$	0 - 1%.

- 3. An optical glass as defined in claim 2 having a transition point (Tg) within a range from 500° C to 590° C and a yield point (At) within a range from 530° C to 630° C, and being free from devitrification in a devitrification test conducted under a condition of 950° C/2 hours.
- 4. An optical glass as defined in claim 1 wherein difference in temperature At Tg between the yield point and the transition point is $30 60^{\circ}C$.
- 5. An optical glass as defined in claim 2 wherein difference in temperature At Tg between the yield point and the transition point is $30 60^{\circ}$ C.
- 6. An optical glass as defined in claim 3 wherein difference in temperature At Tg between the yield point and the transition point is 30 60°C.