Oppgave 2.2)		
$y'(x) = 2 \sqrt{y(x)}$ (uter vallet (1.0)		
$y'(x) = 2 \sqrt{y(x)}$ (uter vallet (1,0)		
g(y) = Ty		
y' = dy		
$\frac{d_0}{dt} = g(y) f(t) \implies \int \frac{dy}{dy} dy = \int f(t) dt$		
5 to dy = 52 dt		
Sy= 2 Jy = 52d+		
1 = 2+ + C		
2 7 = 2+ + C		
273 = 2+ + C 75 = + + C y = (+ + C) ²		
y =(t + C)		
Vi har en teorem som sier at:		
La fogg være funksjoner som er definer fer kontinuelis, os at ger dariverbar	t for alle reelle tall. Anta at	
J: flerensiallikningen	mec Kantinuentig cenivent. Dellast	
dy = f(t)g(g)		
Gjennom hvert puht (to , yo) i ty-planet gar	det de nogaktig én integralkurue.	
Ved var diffrensial likuing er gly ikke .	Jeriverbor i M=0. Vi ser 058à	
Ved var diffrensial likning er gly ikke, out C=1 og C=-1 gir samme svar i	Jeriverbor i y=0. V; ser ossion y(0), fross det siv 2 forskjellise	
Ved var diffrensial likuing er gly ikke ant C=1 Gg C=-1 gir sammu svar i lutegral kurver som vist under.	Jeriverbor i y=0. Vi ser osså y(0), fross det siv 2 forskjellise	
Ved var diffrensial likuing er gly ikke at C=1 GS C=-1 gir samme svar i lutegælkorder som vist under.	Jeriverbor i y=0. V; ser osså y(0), frass det giv 2 farskjellise	
Ved var diffrensial likuing er gly ikke ant C=1 gg C=-1 gir samme svar i Integral kurver som vist under.	Jeriverbor i y=0. V; ser ossion y(0), fross det sir 2 forskjellise	
Ved var diffrensial likuing er gly ikke at C=1 Gg C=-1 gir samme svar i Integral kurver som vist under.	Jeriverbor i y=0. V; ser ossion y(0), fross det siv 2 forskjelise	
Ved var diffrensial likuing er gly ikke ant C=1 og C=-1 gir samme svar i Integral korver som vist under.	Jeriverbor i y=0. V; ser ossis. y(0), fross det siv 2 forskjellise	
Ved var diffrensial likuing er gly ikke ant C=1 as C=-1 gir samme svar i lategorikurur som vist under.	Jeriverbor i y=0. V; ser ossis. y(0), fross det siv 2 forskjellise	
Ved var diffrensial likuing er gly ikke out C=1 Gg C=-1 gir samme svar i lategord kurver som vist under.	Jeriverbor i y=0. V; ser ossis. y(0), fross det siv 2 forskjellise	
Ved var diffrensial likuing er gly ikke ant C=1 gg C=-1 gir samme svar i Integral kurver som vist under.	Jeriverbor i y=0. V; ser ossis. y(0), fross det siv 2 forskjellise	
Ved var diffrensial likuing er gly ikke at C=1 Gg C=-1 gir samme svar i lategral kurver som vist under.	Jeriverbor i y=0. V; ser ossis. y(0), fross det siv 2 forskjellise	
Ved var diffrensial likning er gly ikke at C=1 Gg C=-1 gir samme svar i Integral korner som vist under.	Jeriverbor i y=0. V; ser ossis. y(0), fross det siv 2 forskjellise	
Ved var diffrensial likuing er g(y) ikke at C=1 gg C=-1 gir samme svar i Integral korver som vist under.	Jeriverber i y=0. V; ser ossis. y(0), fross det giv 2 forskjellise	
Ved var diffrensial likuing er g(y) ikke at C=1 Gs C=-1 gir samme svar i Integral kurver som vist under.	Jerivelour i y= 0. Vi ser ossin y(0), fross det siv 2 forskjellise	
Ved var diffrensial likuing er gly ikke at C=1 gg C=-1 gir samme svar i Integral kurver som vist under.	Jerivelour i y=0. Vi ser ossin y(0), fross det giv 2 forskjellise	
Ved var diffrensial likning er g(y) ikke at C=1 og C=-1 gir samme svar i Integral kurver som vist under.	Jeriverber i y=0. V; ser ossén y(0), fiross det siv 2 forskellise	
Ved var diffrensial likning er gly ikke ant C=1 GG C=-1 gir samme svar i Integral kuner sam vist under.	Jeriverbor i y=0. Vi ser ossis. y(0), fross det siv 2 forskjelise	