Q1. Dans l'AFD suivant est-ce que les états 1 et 2 sont équivalents?

	a	b
$\rightarrow 0$	0	1
1	1	2
←2	1	2

A: oui B: non

- Q2. Dans l'AFD obtenu par la déterminisation d'un automate non-déterministe l'état initial est
- A: l'ancien état initial
- **B** : la ε-clôture de l'ancien état initial

C: réponse acceptée, comme référence à un AFND ayant plus qu'un état initial

73%

non-déterministe un état est terminal s'il contient

A : au moins un état terminal **B**: que des états terminaux

Q6. Dans l'AFD minimal obtenu par les quotients du langage, un état est final si

A : il correspond à Σ^*

B: le quotient contient ε

Q11. Un système d'équations associé à un automate peut équations.

A : vrai

B: faux

Q7. L'AFD minimal obtenu par la méthode des quotients est toujours complet.

A : vrai

B: faux

Q12. Quel est le plus petit kpour lequel une expression rationnelle $r_{ij}^{\ k}$ peut prendre la valeur c(ba*b)*d

 $\mathbf{A}:2$

B:3

Q3. Dans l'AFD obtenu par la déterminisation d'un automate

Q8. Dans le fragment d'AFD suivant quelle est la valeur de r_{12}^{1} ?

	a	b
→ 1	1	2
2	3	5

 $\mathbf{A} : \mathbf{a}^{+}\mathbf{b}$ $\mathbf{B} : \mathbf{a}^* \mathbf{b}$

Q13. Un automate sans état terminal

A: est incorrect

B : reconnaît le langage vide

98%

Q4. Dans l'AFD minimal obtenu par les quotients du langage, chaque état correspond à un unique langage quotient.

A : vrai **B**: faux

Q9. Peut-on déduire l'équation $Y_0 = a^*(\varepsilon + bY_1)$ à partir du fragment d'automate suivant?

	a	b
$\rightarrow 0$	0	1
1	2	4

A : oui \mathbf{B} : non

O14. Un AFD doit avoir au moins un état final

A : vrai **B**: faux

82%

Q5. Le quotient gauche de $L=\{aba, baba, abra\}$ par ab est de cardinalité

 $\mathbf{A}:3$ $\mathbf{B}:2$

Q10. $Y_3 = b^*(a^* + c^*)$ vérifie l'équation

$$Y_3 = bY_3 + a^* + Y_3$$

A : vrai \mathbf{B} : faux

Q15. Pour compléter un AFD qui n'est pas complet on n'ajoute pas d'état final

A: vrai **B**: faux