Top-Down Decarbonization

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #26: Monday Oct. 22 2018

Announcement No office hour today (Monday)

Considerations on Projections of Future Emissions

Grain of Salt

- Implied decarbonization rates depend on predictions of *P*, *G*, etc.
- Predicting population and economic growth are very tricky and imprecise.
- So take any of these calculations with a grain of salt.
- But are they still useful, despite the uncertainties?

How Can We Decarbonize?

Detailed Abatement Options

Economic Carbon Intensity in 2017

CO₂ Emissions 1965 – 2017

Relative improvement in carbon intensity 1990-2017

Top-Down Analysis for Australia

Projected Energy Use in 2050

- Energy Information Administration top-down projection for energy demand in Australia in 2050:
 - Total 2050 Primary Energy Use = 9.44 Quads
 - Assume *P*, *g*, and *e* are fixed.
 - Manage emissions by reducing f
 - switch from fossil fuels to clean energy

Energy Mix in 2017

Fuel	Quads	%
Coal	1.68	30.3
Natural Gas	1.43	25.8
Oil	2.08	37.6
Nuclear	0.00	0.0
Renewables	0.35	6.3
Total	5.53	100.0

Emissions Factors

Fuel	MMT CO₂ per Quad
Coal	94
Oil	70
Natural Gas	53
Nuclear	0
Renewables	0

Projected Business as Usual Emissions in 2050

Fuel		_	MMT/Quad	-
Coal	30	2.86	94	270
	26	2.44	53	129
Oil	38	3.55	70	248
Nuclear	0	0.00	0	0
Renewables	6	0.60	0	0
Total	100	9.44	NA	648

Top-down emissions-reduction

Fuel	%	Quads	MMT/Quad	MMT CO ₂
Coal	30	2.86	94	270
Natural Gas	26	2.44	53	129
Oil	38	3.55	70	248
Nuclear	0	0.00	0	0
Renewables	6	0.60	0	0
Total	100	9.44	NA	648

- Projected emissions for 2050 (no change in f): 648 MMT
- Emissions goal for 2050 = 139 MMT
- Must cut by (648 139) = 509 MMT
- Start with coal:
 - Cut 270 MMT (2.86 quads)
 - 239 MMT left
- Next, cut gas:
 - Cut 129 MMT (2.44 quads)
 - 110 MMT left
- Finally, cut oil:
 - Cut 110 MMT (1.57 quads)
- Total energy cuts = 2.86 + 2.44 + 1.57 = 6.87 quads.

Clean Energy Sources

- 11,000 megawatts (MW) for one year = 1 quad
 - See Climate Fix, p. 97)
- Nuclear Power Plant:
 - 1000 MW × 75.0% efficiency = **750 MW average**
 - 1 quad per year = 11,000 MW / (750 MW per nuclear plant)
 - = 14.7 nuclear plants
- Concentrated Solar Power:
 - 200 MW × 30.0% efficiency = **60 MW average**
 - 1 quad = 180 concentrated solar-thermal plants
- Wind Turbine:
 - 2.5 MW × 30.0% efficiency = **1 MW average**
 - 1 quad = 15,000 wind turbines

Meeting Australia's Goal

- Cut CO₂ by 509 MMT
 - 270 MMT from coal (2.86 quad)
 - 129 MMT from gas (2.44 quad)
 - 110 MMT from oil (1.57 quad)
- Total clean energy needed: quads per year
- 6.87 quads × 14.7 nuclear plants/quad =
 101 nuclear power plants in 33 years (3.1 per year)
- 6.87 quads × 180 concentrated solar plants/quad =
 1,236 concentrated solar plants in 33 years
 (37 per year, or 1 per week)
- 6.87 quads × 15,000 wind plants/quad =
 102,992 wind turbines in 33 years
 (3,121 per year, or 9 per day)

Pielke's Bottom Line

- Unfeasible to build so much clean energy so quickly
- Expense of building so much clean energy would defeat Australia's economic goals
- This is why we don't have the technology to decarbonize as quickly as politicians and activists have been promising.

But ...

- Australia used 5.53 quads in 2017.
- If it uses 9.44 quads in 2050,
 - Extra 3.91 quads
 - 20.8 coal-fired power plants per quad
 - 81 new coal-fired plants (2.5 new coal plants per year)
- Costs of building new fossil capacity
 - Costs of coal, ash disposal, etc.
 - Public health: illness, death from air pollution

Review

Bottom-Up Analysis

- Start with individual Kaya-identity variables:
 - P, g, e, f
 - Figure out historical rates of change for each
- Gross Domestic Product: $G = P \times g$
 - Rate of change of $g: r_G = r_P + r_g$
 - Rate of change of a product is the sum of the rates of change of the factors.
 - Use rate of change of *G* to extrapolate *G* in the future:

$$G(2050) = G(2017) \times exp(r_G \times (2050 - 2017))$$

Bottom-Up Analysis

- Start with individual Kaya-identity variables
- Gross Domestic Product: $G = P \times g$
- Figure out implied rate of change of emissions *F*:
 - Policy: reduce emissions in 2050 60% below 2000:

$$F(2050) = (1-0.60) \times F(2000)$$

Figure out change in F from this year:

$$r_F = \frac{\ln\left(\frac{F(2050)}{F(2017)}\right)}{2050 - 2017}$$

- Figure out implied rate of decarbonizing the economy:
 - Carbon intensity of the economy is ef = F/G.

$$r_{ef} = r_F - r_G$$

 Compare implied rate of decarbonization to historical trend to assess the difficulty of meeting the policy goals.

Top-Down Analysis

- Start with macroeconomic estimate of future energy demand E
- Use mix of energy sources and emissions factors to calculate future emissions (*F*) if the mix of energy sources does not change.
- Calculate policy goal for F the same way as for bottom-up analysis
 - (this is purely a comparison of the policy goal to today's emissions)
- Calculate difference between projected future *F* and policy goal for *F*.
- Calculate how many quads of fossil-fuel energy you would have to replace with clean energy to meet the policy goal.
 - Start with cutting coal, then cut natural gas, and finally cut oil
 - Why?
- Figure out how many power plants of different kinds you would have to build to supply the necessary clean energy.
 - Remember that the actual average power output is the nameplate power times the duty factor (also called the efficiency).