Class: MATH 2410

Mathematical Statement

Statement is any declarative sentence which is either true

Atomic if it cannot be divided into smaller statements.

Molecularif it can be divided into smaller statements.

conjunction $p \wedge q$ equivalent to "p and q". $p \vee q$ equivalent to "p or q". disjunction

where p is the hypothesis and q the conclusion.

 $p \to q$ equivalent to "if p then q". Implication

Biconditional $p \leftrightarrow q$ equivalent to "if and only if p then q".

Negation $\neg p$ equivalent to "not p".

Converse

There is a x

Contrapositive $\exists x$ For all x $\forall x$

Naive Set Theory

Set Notation

Universal set ΠJ

 $\emptyset = \{\}, \text{ Remember: } \forall A(\emptyset \subset A)$ Empty set

Power set $\mathcal{P}(A)$ is the set of all the subsets of A. Partition of AA collection of nonempty, pairwise-disjoint

subsets whose union is A.

Element of \in . Example: $2 \in \{1, 2, 3\}$

 \subseteq . Example: $\{A, B, C\} \subseteq \{B, C, D\}$ Subset of

 $A \subseteq B \Leftrightarrow \forall x$

Proper subset of \subset . Example: $\{A, B, C\} \subset \{A, B, C, D\}$

Intersection $\bigcap_{i \in I} A_i = \{ x \in \mathbb{U} | \forall i \in I, x \in A_i \}$

 $A \cap B = \{x \in \mathbb{U} | x \in A \land x \in B\}$ $\bigcup_{i \in I} A_i = \{ x \in \mathbb{U} | \exists i \in I, x \in A_i \}$ Union

 $A \cup B = \{x \in \mathbb{U} | x \in A \lor x \in B\}$

Difference $A \backslash B = \{ x \in A | x \notin B \}$

Symmetric difference $A\Delta B = (A\backslash B) \cup (B\backslash A)$ $A \times B = \{(x, y) | x \in A \land y \in B\}$ Cartesian Product

 $A^C = \bar{A} = \{ x \in \mathbb{U} | x \notin A \}$ Complement of

Cardinality

Cardinality(|A|) The number of elements in a set. finite set Let X be a finite set then $|X| \in \mathbb{N}$

countable set A set S is countable if and only if that is

finit or $|S| = |\mathbb{N}|$.

aleph null. $\aleph_0 = |\mathbb{N}|$

Axiom 1 (Axiom of extensionality) Two sets are equal if and only if they have the same elements.

Theorem 1 Let A and B be sets, then |A| = |B| if and only if there is a one-to-one correspondence from A to B.

Theorem 2 If A and B are countable, then $A \cup B$ is countable.

Theorem 3 (Cantor's Theorem) For every set A, |A| < $|\mathcal{P}(A)|$.

Theorem 4 (Schröder-Bernstein) If there are injective function(one-to-one) functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is a one-to-one correspondence between A and B. In other words If A and B are set with $|A| \neq |B|$ and $|B| \neq |A|$, then |A| = |B|.

Properties 1 Let S be the universal set. \bullet if $A \subseteq B$ and $B \subseteq A$ then A = b. $\bullet \forall A, A \subseteq A \bullet |\mathcal{P}(A)| = 2^{|A|} \bullet A \cup A = A \cap A = A$

 $\bullet \ A \cup \emptyset \ = \ A \ \bullet \ A \cap \emptyset \ = \ \emptyset \ \bullet \ A \cup S \ = \ S \ \bullet \ A \cap S \ = \ A$

 $\bullet \ (A \cup B) \cup C = A \cup (B \cup C) \ \bullet \ (A \cap B) \cap C = A \cap (B \cap C)$

 $\bullet \ A \cup B = B \Leftrightarrow A \subseteq B \bullet A \cup B = A \Leftrightarrow A \subseteq B \bullet A \backslash B \neq B \backslash A$

 $\bullet A \setminus \emptyset = A \bullet A \setminus S = \emptyset \bullet A \setminus \emptyset = A \Leftrightarrow A \subseteq B \bullet A \setminus S = A^C$ $\bullet \ A \times (B \cup C) = (A \times B) \cup (A \times C) \bullet A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $\bullet (A \cup B)^C = A^C \cap B^C \bullet (A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C) = A \cap (B \setminus C)$

• $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Functions

Functions A rule that assigns each input exactly one

Domain The set of all input of a function. $(X \text{ in } f: X \to Y)$ The set of all output a function.(Y in $f: X \to Y$) Codomain

Is the subset of Y of elements that have an Range

antecedent in X by f

 $f: x \to y$ a function f with a domain x and a codomain y.

Recursive f.

Surjective

Injective every element of the codomain is the image of

 $f(a) = f(b) \Rightarrow a = b$

at most one element from the domain.

every element of the codomain is the image of

at least one element from the domain. Bijection A function that is **Injective** and **Surjective**.

 $f(A) = \{f(a) \in Y : a \in A\}, \text{ where } A \subset \text{domain.}$ Image

Inverse Image $f^{-1}(B) = \{f(b) \in X : b \in B\}, \text{ where }$

 $B \subset \text{codomain}$.

Function Set B^A contains all functions from A to B $(A \to B)$.

Counting

n-bit string

bit string weight the number of 1 in a bit string.

 $\mathbf{B}_{\mathbf{k}}^{\mathbf{n}}$ the set of all **n-bit strings** of weight k.

Factorial $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1$

Additive Principle

General Definition: if event A can occur in m ways, and even B can occur in n disjoint (A and B can't apen at the same time.) ways, then A and B can occur in m+n ways.

Set Definition: Given 2 sets A and B, then $|A \cup B| =$ $|A|+|B|-|A\cap B|$. Given 3 sets A, B and C, then $|A\cup B\cup C|=$ $|A| + |B| + |C| - |A \cap B| - |A \cap C| - |C \cap B| + |A \cap B \cap C|$.

Multiplicative Principle

General Definition: if event A can occur m ways, and each possibility for A allows for exactly n ways for event B, then the event "A and B" can occur $m \cdot n$ ways.

Set Definition: Given 2 sets A and B, we have $|A \times B| = |A| \cdot |B|$.

Binomial coefficient

Formula: n choose $k = \binom{n}{k} = C_k^n = \frac{n!}{(n-k)!k!}$

Theorem 5 (Binomial Theorem) $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

Properties 2 • $\binom{n}{k}$ is the number of subset of size n each of **Template:** Assume p. [derive consequences] Therefore q. cardinality k. \bullet $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \bullet \binom{n}{k} = |\mathbf{B_k^n}|$

Sequences

Symbolic Logic

Name	\mathbf{Symbol}	Translate to
Disjonction	$A \wedge B$	A and B .
Conjunction	$A \vee B$	$A ext{ or } B.$
Negation	$\neg A$	not A .
Condition/Implication	$A \Rightarrow B$	if A then B .
Bicondition	$A \Leftrightarrow B$	if and only if A then B .
Exclusive Disjunction	$A \oplus B$	Either A or B , but not be
Universal	$\forall x$	For all x 's.
Existential	$\exists x$	There is at least one x .
Unique Existential	$\exists ! x$	There is exactly one x .
Equivalence	$A \equiv B$	A is identical to B .

Proof by Contrapositive

Goal: Prove $p \Rightarrow q$.

Idea: Instead of proving $p \Rightarrow q$, prove $\neg q \Rightarrow \neg p$.

Template: To prove $p \Rightarrow q$, assume $\neg q$ and derive $\neg p$; therefore $\neg q \Rightarrow \neg p$, so $p \Rightarrow q$.

Proof by Counter Example

both.**Goal:** Disprove $\forall x P(x)$ (show $\exists x \neg P(x)$).

Idea: Exhibit a specific counterexample x_0 with $\neg P(x_0)$.

Template: Identify the claim form (usually $\forall x P(x)$). Choose a concrete x_0 in the domain and verify $\neg P(x_0)$ holds by computa-

tion or definition checking.

Important Equivalences & Properties

- $\bullet \neg (\neg A) \equiv A \bullet p \land T \equiv p \bullet p \land \bot \equiv \bot \bullet p \lor T \equiv T \bullet p \lor \bot \equiv P$
- $\bullet \ A \oplus B \equiv (A \lor B) \land \neg (A \land B) \bullet p \Rightarrow q \equiv \neg p \Rightarrow \neg q \bullet p \Rightarrow q \equiv \neg p \lor q$
- $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$ $\neg (p \Leftrightarrow q) \equiv \neg p \Leftrightarrow q \equiv p \Leftrightarrow \neg q$

Properties 3 • $A \lor B \equiv B \lor A \bullet A \lor (B \lor C) \equiv C \lor (A \lor B)$

- $A \land B \equiv B \land A$ $A \land (B \land C) \equiv C \land (A \land B)$ $A \oplus B \equiv B \oplus A$
- $A \oplus (B \oplus C) \equiv C \oplus (A \oplus B)$

Proof by Cases

Goal: Prove the claim.

Idea: Split into exhaustive, mutually exclusive cases and prove the claim in each case.

Template: Partition the domain into cases C_1, \ldots, C_k that cover all possibilities. For each i, assume C_i and show the statement holds. Conclude it holds in all cases by exhaustion.

deMorganLaws

- $\bullet \neg \forall x P(x) = \exists x P(\neg x) \bullet \neg \exists x P(x) = \forall x P(\neg x) \\ \bullet \neg \exists x \exists y P(x,y) = \forall x \exists y P(\neg x,y) \bullet \neg (\bigwedge_{i=0}^{n} a_i) \equiv \bigvee_{i=0}^{n} \neg a_i \\ \bullet \neg (\bigvee_{i=0}^{n} a_i) \equiv \bigwedge_{i=0}^{n} \neg a_i$

Proof by Contradiction

Goal: Prove a statement S.

Idea: Assume $\neg S$ and derive a contradiction; conclude S.

Template: Suppose $\neg S$. Deduce an impossibility such as $P \wedge \neg P$ or a known falsehood. Contradiction; therefore S.

Proofs

Direct Proof

Goal: Prove $p \Rightarrow q$.

Idea: Assume p and use definitions/algebra to derive q.

Graph Theory