Module 4: Bayesian Methods Lecture 2: Review of Probability

Peter Hoff

Departments of Statistics and Biostatistics University of Washington

Outline

Beliefs and Probability

Bayes rule

Standard distributions

Posterior summaries

Belief functions

Let F, G, and H be three statements about the world. For example:

 $F = \{$ a woman will have breast cancer $\}$

 $G = \{$ a woman will undergo HRT $\}$

 $H = \{$ a woman has a mutation of BRAC1 $\}$

A belief function Be() assigns numbers to statements representing our beliefs:

$$Be(F|G) \stackrel{?}{>} Be(F)$$

$$Be(F|H) \stackrel{?}{>} Be(F)$$

Axioms of belief

- B1 Be(not H|H) \leq Be(F|H) \leq Be(H|H)
- **B2** Be(F or G|H) > max{Be(F|H), Be(G|H)?
- B3 Be(F and G|H) can be derived from Be(G|H) and Be(F|G and H)

Do these axioms make sense?

- **B1**: Be(F|H) is between complete disbelief and complete belief.
- B2: Belief in a statement is increasing in the number of possibilities
- **B3**: Deciding on F and G can be done by first deciding on G, then F given G.

Axioms of probability

 $F \cup G$ means "F or G," $F \cap G$ means "F and G" and \emptyset is the empty set.

P1
$$0 = \Pr(\text{not } H|H) \le \Pr(F|H) \le \Pr(H|H) = 1$$

P2
$$Pr(F \cup G|H) = Pr(F|H) + Pr(G|H)$$
 if $F \cap G = \emptyset$

P3
$$Pr(F \cap G|H) = Pr(G|H) Pr(F|G \cap H)$$

A probability function, satisfying P1, P2 and P3, also satisfies B1, B2 and B3.

Examples

[P2]
$$Pr(F \cup G|H) = Pr(F|H) + Pr(G|H)$$
 if $F \cap G = \emptyset$

- Genotype is { aa, Aa, AA} with probability {1/4, 1/2, 1/4}.
- $F = \{\text{genotype is } aa\}$, $G = \{\text{genotype is } Aa\}$

Pr(one or more a alleles) =
$$Pr(F \cup G)$$

= $Pr(F) + Pr(G)$
= $1/4 + 1/2 = 3/4$

[P3]
$$Pr(F \cap G|H) = Pr(G|H) Pr(F|G \cap H)$$

- Parents are AB/AB and AB/ab
- $F = \{ \text{ child is } A/a \text{ at first locus } \}$, $G = \{ \text{ child is } B/B \text{ at second locus } \}$

$$Pr(AB/aB) = Pr(F \cap G)$$

= $Pr(G) \times Pr(F|G)$
= $Pr(F|G)/2$

Events and partitions

Definition (Partition)

A collection of sets $\{H_1, \ldots, H_K\}$ is a partition of another set \mathcal{H} if

- 1. the events are disjoin ich we write as $H_i \cap H_j = \emptyset$ for $i \neq j$;
- 2. the union of the sets is \mathcal{H} , which we write as $\bigcup_{k=1}^K H_k = \mathcal{H}$.

If \mathcal{H} is the set of all possible truths and $\{H_1, \ldots, H_K\}$ is a partition of \mathcal{H} , then exactly one out of $\{H_1, \ldots, H_K\}$ contains the truth.

Examples:

- H=someone's number of children
 - {0, 1, 2, 3 or more};
 - {0, 1, 2, 3, 4, 5, 6, ...}.
- \mathcal{H} = the relationship between a genotype and heart disease
 - {some relationship, no relationship};
 - {negative correlation, zero correlation, positive correlation}.

Bayes' rule

The axioms of probability imply the following:

Rule of total probability :
$$\sum_{k=1}^{K} \Pr(H_k) = 1$$

Rule of marginal probability:
$$Pr(E) = \sum_{k=1}^{K} Pr(E \cap H_k)$$

= $\sum_{k=1}^{K} Pr(E|H_k) Pr(H_k)$

Bayes' rule :
$$Pr(H_j|E) = \frac{Pr(E|H_j)Pr(H_j)}{Pr(E)}$$

= $\frac{Pr(E|H_j)Pr(H_j)}{\sum_{k=1}^{K} Pr(E|H_k)Pr(H_k)}$

An example

A sonogram indicates someone will have twin girls.

What is the probability that the girls are monozygotic?

- $\mathcal{H} = \{H_1, H_2\} = \{ \text{ monozygotic , dizygotic } \}$
- *E* = { twins are girls }

An example

- $\mathcal{H} = \{H_1, H_2\} = \{ \text{ monozygotic , dizygotic } \}$
- *E* = { twins are girls }

Observed data: twins are girls.

Prior information: One third of twins are monozygotic (identical).

$$\begin{array}{lll} \Pr(H_1|E) & = & \frac{\Pr(E|H_1)\Pr(H_1)}{\Pr(E)} \\ & = & \frac{\Pr(E|H_1)\Pr(H_1)}{\Pr(E|H_1)\Pr(H_1) + \Pr(E|H_2)\Pr(H_2)} \\ & = & \frac{1/2 \times 1/3}{1/2 \times 1/3 + 1/4 \times 2/3} \\ & = & \frac{1/6}{1/6 + 1/6} \\ & = & 1/2 > 1/3 = \Pr(H_1) \end{array}$$

Bayesian inference

 $\{H_1, \ldots, H_K\}$ often refer to disjoint hypotheses or states of nature

E refers to the outcome of a survey, study or experiment.

Post-experimental evaluation of hypotheses are via the posterior odds ratio:

$$\frac{\Pr(H_i|E)}{\Pr(H_j|E)} = \frac{\Pr(E|H_i)\Pr(H_i)/\Pr(E)}{\Pr(E|H_j)\Pr(H_j)/\Pr(E)}$$

$$= \frac{\Pr(E|H_i)\Pr(H_i)}{\Pr(E|H_j)\Pr(H_j)}$$

$$= \frac{\Pr(E|H_i)}{\Pr(E|H_j)} \times \frac{\Pr(H_i)}{\Pr(H_j)}$$

$$= \text{"Likelihood ratio"} \times \text{"prior odds"}$$

Twin example

Prior odds:

$$\frac{\Pr(H_1)}{\Pr(H_2)} = \frac{1/3}{2/3} = 1/2$$

Prior favors H2

Likelihood ratio:

$$\frac{\Pr(E|H_1)}{\Pr(E|H_2)} = \frac{1/2}{1/4} = 2$$

Data is better explained by H_1

Posterior odds:

$$\frac{\mathsf{Pr}(H_1)}{\mathsf{Pr}(H_2)}\frac{\mathsf{Pr}(E|H_1)}{\mathsf{Pr}(E|H_2)} = 1$$

Independence

F and G are conditionally independent given H if

$$\Pr(F \cap G|H) = \Pr(F|H)\Pr(G|H)$$

Interpretation: By Axiom **P3**, the following is always true:

$$Pr(F \cap G|H) = Pr(G|H) Pr(F|H \cap G).$$

If F and G are conditionally independent given H, then we must have

$$\Pr(G|H) \Pr(F|H \cap G) \stackrel{\text{always}}{=} \Pr(F \cap G|H) \stackrel{\text{independence}}{=} \Pr(F|H) \Pr(G|H)$$

$$\Pr(G|H) \Pr(F|H \cap G) = \Pr(F|H) \Pr(G|H)$$

$$\Pr(F|H \cap G) = \Pr(F|H).$$

Conditional independence therefore implies that $Pr(F|H \cap G) = Pr(F|H)$.

If H is known and F and G are conditionally independent given H, then knowing G does not change our belief about F.

Independence

Example:

```
F = \{ \text{ a patient will develop cancer } \}
G = \{ \text{ the parents' genotypes } \}
H = \{ a patient's genotype \}
```

$$Pr(F|H) \stackrel{?}{=} Pr(F|G,H)$$

Discrete random variables

Let Y be a random variable, an unknown numerical quantity.

Let \mathcal{Y} be the set of all possible values of Y.

Y is discrete if the set of possible outcomes is countable, meaning that \mathcal{Y} can be expressed as $\mathcal{Y} = \{y_1, y_2, \ldots\}$.

Examples

- Y = number of people in a population with a specific allele
- Y = number of children of a randomly sampled person
- Y = number of years of education of a randomly sampled person

Probability distributions and densities

Pr(Y = y) is the probability that the outcome Y takes on the value y.

PDF: Pr(Y = y) = p(y) is often called the *probability density function* (pdf) of Y

- 1. $0 \le p(y) \le 1$ for all $y \in \mathcal{Y}$;
- $2. \sum_{y \in \mathcal{Y}} p(y) = 1.$

We can derive various probabilities from p(y):

$$\Pr(Y \in A) = \sum_{y \in A} p(y)$$

If A and B are disjoint subsets of \mathcal{Y} , then

$$\Pr(Y \in A \text{ or } Y \in B) \equiv \Pr(Y \in A \cup B) = \Pr(Y \in A) + \Pr(Y \in B)$$
$$= \sum_{y \in A} p(y) + \sum_{y \in B} p(y).$$

Probability densities

If (to a rough approximation) $\mathcal{Y} = \mathbb{R}$, then we cannot define $\Pr(Y < 5)$ as equal to $\sum_{y < 5} p(y)$ because the sum does not make sense.

Instead, we define a probability density as a function p(y) such that

$$\Pr(Y \in A) = \int_A p(y) \ dy$$

- 1. 0 < p(y) for all $y \in \mathcal{Y}$;
- 2. $\int_{\mathbb{R}} p(y) dy = 1$.

As in the discrete case, probability statements about Y can be derived from the pdf: $Pr(Y \in A) = \int_{y \in A} p(y) dy$, and if A and B are disjoint subsets of \mathcal{Y} , then

$$Pr(Y \in A \text{ or } Y \in B) \equiv Pr(Y \in A \cup B) = Pr(Y \in A) + Pr(Y \in B)$$
$$= \int_{y \in A} p(y) \ dy + \int_{y \in B} p(y) \ dy.$$

Notes: Unlike the discrete case.

- p(y) can be larger than 1;
- p(y) is not "the probability that Y = y."

However, if $p(y_1) > p(y_2)$ we will sometimes informally say that y_1 "has a higher probability" than v_2 .

Standard distributions

The binary distribution

Let $\mathcal{Y} = \{0, 1\}.$

The outcome Y has a binary distribution with probability θ if

$$Pr(Y = y|\theta) = p(y|\theta) = \begin{cases} \theta & \text{if } y = 1\\ (1 - \theta) & \text{if } y = 0 \end{cases}$$

Alternatively, we can write

$$\Pr(Y = y|\theta) = \rho(y|\theta) = \theta^{y}(1-\theta)^{1-y}$$

Independent binary outcomes

Suppose the prevalence of an allele in a population is θ .

Let Y_1, \ldots, Y_n indicate the presence of the allele for n individuals randomly sampled from the population.

$$Pr(Y_1 = y_1, \dots, Y_n = y_n | \theta) = p(y_1, \dots, y_n | \theta)$$

$$= \left(\theta^{y_1} (1 - \theta)^{1 - y_1}\right) \times \dots \times \left(\theta^{y_n} (1 - \theta)^{1 - y_n}\right)$$

$$= \theta^{\sum y_i} (1 - \theta)^{n - \sum y_i}$$

Note that $p(y_1, \ldots, y_n | \theta)$ depends only on $\sum y_i$.

Often, we only record $y = \sum y_i$ and n.

The binomial distribution

What is the probability that y people in a sample of size n will have the allele? Consider all *n*-sequences with *y* 1's:

$$Pr(Y_1 = 0, Y_2 = 1, Y_3 = 0, ..., Y_n = 1 | \theta) = \theta^y (1 - \theta)^{n-y}$$

$$\vdots \qquad \vdots$$

$$Pr(Y_1 = 1, Y_2 = 0, Y_3 = 1, ..., Y_n = 0 | \theta) = \theta^y (1 - \theta)^{n-y}$$

There are $\binom{n}{\nu}$ such sequences, so

$$\Pr(\sum Y_i = y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$$

The binomial distribution

Standard distributions

Let $\mathcal{Y} = \{0, 1, 2, \dots, n\}$ for some positive integer n. The outcome $Y \in \mathcal{Y}$ has a binomial distribution with probability θ if

$$\Pr(Y = y | \theta) = \text{dbinom}(y, n, \theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}.$$

For example, if $\theta = .25$ and n = 4, we have:

$$Pr(Y = 0 | \theta = .25) = {4 \choose 0} (.25)^{0} (.75)^{4} = .316$$

$$Pr(Y = 1 | \theta = .25) = {4 \choose 1} (.25)^{1} (.75)^{3} = .422$$

$$Pr(Y = 2 | \theta = .25) = {4 \choose 2} (.25)^{2} (.75)^{2} = .211$$

$$Pr(Y = 3 | \theta = .25) = {4 \choose 3} (.25)^{3} (.75)^{1} = .047$$

$$Pr(Y = 4 | \theta = .25) = {4 \choose 4} (.25)^{4} (.75)^{0} = .004.$$

The binomial distribution

Likelihood inference for θ

y = 9 out of n = 50 randomly sampled subjects have a particular allele.

What is the allele frequency in the general population?

The likelihood:

$$Pr(Y = 9|\theta = 0.15) = 0.033$$

 $Pr(Y = 9|\theta = 0.35) = 0.004$
 $Pr(Y = 9|\theta = 0.65) \approx 10^{-11}$
 $Pr(Y = 9|\theta = 0.90) \approx 10^{-32}$

As a function of θ , $\Pr(Y = y | \theta) = p(y | \theta)$ is called the *likelihood of* θ .

The binomial likelihood

Posterior inference via Bayes' rule

Suppose

- $\Theta = \{0.01, 0.02, 0.03, \dots, 0.99, 1.00\}$ and
- $p(\theta) = 1/100$ for each $\theta \in \Theta$.

Bayes' rule says

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\sum_{\theta \in \Theta} p(y|\theta)p(\theta)}$$

```
n<-50
y<-9
theta<-seq(.01,1,length=100)

py.theta<-dbinom(y,n,theta)
ptheta<-rep(1/100,length=length(theta))

ptheta.y<- py.theta*ptheta / sum( py.theta*ptheta )</pre>
```

The posterior distribution

The posterior distribution

Now suppose

- $\Theta = [0,1]$ and
- $p(\theta) = 1$ for each $\theta \in \Theta$.

Bayes' rule says

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int_0^1 p(y|\theta)p(\theta)}$$

The next lecture shows $p(\theta|y)$ is a beta (1+y, 1+n-y) distribution, and

$$\mathsf{E}[\theta|y] = \frac{1}{2} \left(\frac{2}{2+n} \right) + \frac{y}{n} \left(\frac{n}{2+n} \right)$$

```
n<-50
y<-9
theta<-seq(0,1,length=500)
ptheta.y<-dbeta(theta,1+y,1+n-y)</pre>
```

The posterior distribution

The Poisson distribution

Let $\mathcal{Y} = \{0, 1, 2, \ldots\}$. The outcome $Y \in \mathcal{Y}$ has a Poisson distribution with mean θ if

$$Pr(Y = y|\theta) = dpois(y, \theta) = \theta^y e^{-\theta}/y!.$$

For example, if $\theta = 2.1$ (the 2006 U.S. fertility rate),

$$\begin{array}{lll} \Pr(Y=0|\theta=2.1) = & (2.1)^0 e^{-2.1}/(0!) = & .12 \\ \Pr(Y=1|\theta=2.1) = & (2.1)^1 e^{-2.1}/(1!) = & .26 \\ \Pr(Y=2|\theta=2.1) = & (2.1)^2 e^{-2.1}/(2!) = & .27 \\ \Pr(Y=3|\theta=2.1) = & (2.1)^3 e^{-2.1}/(3!) = & .19 \\ & \vdots & \vdots & \vdots \end{array}$$

The Poisson distribution

Standard distributions

Poisson distributions with means of 2.1 and 21.

The Poisson likelihood

Let Y_i be the number of intestinal tumors for mouse i, i = 1, ... n.

What is the mean tumor count in this population?

The likelihood:

$$Pr(Y_1 = y_1, ..., Y_n = y_n | \theta) = p(y_1, ..., y_n | \theta)$$

$$= \prod_{i=1}^n p(y_i | \theta)$$

$$= \prod_{i=1}^n \theta^{y_i} e^{-\theta} / y_i!$$

$$= \theta^{\sum y_i} e^{-n\theta} \times (\prod y_i!)^{-1}$$

Simplification: Let $Y = \sum Y_i$. Then $\{Y | \theta\} \sim \mathsf{Poisson}(n\theta)$ and so

$$Pr(Y = y|\theta) = \theta^y e^{-n\theta} \times (n^y/y!)$$

The Poisson likelihood

Suppose
$$n = 20$$
 and $y = \sum y_i = 324$ ($y/n = 16.2$).

Posterior inference

Similar populations of mice suggest $\theta \approx 10$.

A suitable prior distribution for θ would reflect this:

$$eta \sim \operatorname{gamma}(10,1)$$
 $\operatorname{E}[heta] = 10$
 $\operatorname{SD}[heta] = \sqrt{10} \approx 3.16$


```
n<-20
sy<-324
theta<-seq(0,30,length=500)
psy.theta<-dpois(sy, n*theta)</pre>
p.theta<-dgamma(theta,10,1) ; p.theta<-p.theta/sum(p.theta)</pre>
p.theta.y<- psy.theta * p.theta / sum( psy.theta * p.theta)</pre>
```


The gamma posterior distribution

Standard distributions

It can be shown that if

- $\theta \sim \text{gamma}(a, b)$ and
- $Y_1, \ldots, Y_n | \theta \sim \mathsf{Poisson}(\theta)$ then

$$\{\theta | \sum Y_i = y\} \sim \mathsf{gamma}(a + y, b + n)$$

$$E[\theta|\sum Y_i = y] = \frac{a+y}{b+n}$$

$$= \frac{a}{b}\left(\frac{b}{b+n}\right) + \frac{y}{n}\left(\frac{n}{b+n}\right)$$

The gamma posterior distribution

```
a<-10 ; b<-1
                                         # prior
sy<-324; n<-20
                                         # data
theta<-seq(0,30,length=500)
p.theta.y<- dgamma(theta, a+sy, b+n) # posterior</pre>
```


The normal distribution

Let $\mathcal{Y} = (-\infty, \infty)$. The outcome $Y \in \mathcal{Y}$ has a normal distribution with mean θ and variance σ^2 if

$$p(y|\theta,\sigma^2) = \operatorname{dnorm}(y,\theta,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2}\left(\frac{y-\theta}{\sigma}\right)^2\right\}.$$

The normal posterior distribution

It can be shown that if

- $heta \sim \operatorname{normal}(\mu_0, au_0^2)$ and
- $Y_1, \ldots, Y_n | \theta \sim \text{normal}(\theta, \sigma^2)$

then

$$\{\theta|y_1,\ldots,y_n\}\sim\mathsf{normal}(\mu_n, au_n^2)$$

where

$$Var[\theta|y_1,...,y_n] = \tau_n^2 = [1/\tau_0^2 + n/\sigma^2]^{-1}$$
$$1/\tau_n^2 = 1/\tau_0^2 + n/\sigma^2$$

and

$$E[\theta|y_1,...,y_n] = \mu_n = \frac{\mu_0/\tau_0^2 + \bar{y}n/\sigma^2}{1/\tau_0^2 + n/\sigma^2}$$

$$= \mu_0 \left(\frac{1/\tau_0^2}{1/\tau_0^2 + n/\sigma^2}\right) + \bar{y}\left(\frac{n/\sigma^2}{1/\tau_0^2 + n/\sigma^2}\right)$$

Describing posterior location

The posterior mean or expectation of an unknown quantity θ is given by

$$\mathsf{E}[\theta|y] = \int_{\theta \in \Theta} \theta p(\theta|y) \ d\theta$$

The mean is the center of mass of the distribution.

However, it is not in general equal to either of the *mode*: "the most probable value of θ ," or the *median*: "the value of θ in the middle of the distribution."

For skewed distributions the mean can be far from a "typical" sample value

Mean, median and mode

Variance and SD

How spread out is $p(\theta|y)$?

Popular measures of spread are the variance and standard deviation :

$$Var[\theta] = E[(\theta - E[\theta|y])^2]$$
$$= E[\theta^2|y] - E[\theta|y]^2.$$

The variance is the average squared distance of θ to $E[\theta|y]$.

The standard deviation is the square root of the variance, and has the same units as θ .

Quantiles

Alternative measures of spread are based on quantiles.

The α -quantile is the value θ_{α} such that $\Pr(\theta \leq \theta_{\alpha}|y) = \alpha$.

2.5, 25, 50 75 and 97.5 quantiles of a beta distribution

Quantile-based confidence intervals

A popular way to construct a confidence interval is with quantiles:

Allele frequency example: $\theta | y \sim beta(1 + y, 1 + n - y)$


```
a<-1 ; b<-1 #prior
n<-50; y<-9 #data
qbeta(c(.025,.5,.975),a+y,b+n-y)
## [1] 0.09824 0.18834 0.30873
```

Tumor count example: $\theta | y \sim \text{gamma}(a + y, b + n)$


```
a<-10 ; b<-1 #prior
v<-324 ; n<-20 #data
qgamma(c(.025,.5,.975),a+y,b+n)
  [1] 14.24 15.89 17.66
```

Posterior descriptions involve integrals we'd often like to avoid:

$$\begin{split} \mathsf{E}[\theta|y] &= \int \theta p(\theta|y) \; d\theta \\ \\ \mathsf{median}[\theta|y] &= \theta_{1/2} : \int_{-\infty}^{\theta_{1/2}} p(\theta|y) = 1/2 \\ \\ \mathsf{Pr}(\theta_1 < \theta_2|y_1, y_2) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\theta_2} p(\theta_1, \theta_2|y_1, y_2) \; d\theta_1 \; d\theta_2 \end{split}$$

We can easily approximate such integrals arbitrarily closely with Monte Carlo approximation.

The basic principle: If
$$\theta^{(1)}, \dots, \theta^{(S)}$$
 iid $p(\theta|y)$, then histogram $\{\theta^{(1)}, \dots, \theta^{(S)}\} \approx p(\theta|y)$

This implies that

$$\begin{array}{cccc} \frac{1}{5}\sum \theta^{(s)} & \approx & \mathsf{E}[\theta|y] \\ & & & \\ \frac{\#\{\theta^{(s)} < c\}}{S} & \approx & \mathsf{Pr}(\theta < c|y) \\ & & \\ \mathsf{median}\{\theta^{(1)}, \dots, \theta^{(S)}\} & \approx & \mathsf{median}[\theta|y] \end{array}$$

etc. with the approximation improving with increasing S.


```
## correct values
qbeta(c(.025,.5,.975),a+y,b+n-y)
## [1] 0.09824 0.18834 0.30873
## Monte Carlo simulated data
theta.sim < -rbeta(3000, a+y, b+n-y)
## MC estimate based on 30 sims
quantile(theta.sim[1:30],c(.025,.5,.975))
## 2.5% 50% 97.5%
## 0.1273 0.1763 0.2831
## MC estimates based on 300 sims
quantile(theta.sim[1:300],c(.025,.5,.975))
## 2.5% 50% 97.5%
## 0.1019 0.1901 0.3313
## MC estimates based on 3000 sims
quantile(theta.sim[1:3000],c(.025,.5,.975))
##
    2.5% 50% 97.5%
## 0.1002 0.1866 0.3164
```

Monte Carlo for two sample comparisons

Suppose we want to compare the prevalence of a gene in two populations.

- θ_1 = prevalence rate in population 1
- θ_2 = prevalence rate in population 2

Prior:

$$\theta_1, \theta_2 \sim \mathsf{uniform}(0,1)$$

Data:

- $n_1 = 50$, $y_1 = 10$, y/n = 0.200
- $n_2 = 27$, $v_2 = 8$ v/n = 0.296

Posterior:

- $\theta_1 \sim \text{beta}(1 + y_1, 1 + n_1 y_1) = \text{beta}(11, 41)$
- $\theta_2 \sim \text{beta}(1 + y_2, 1 + n_2 y_2) = \text{beta}(9, 20)$

Monte Carlo for two sample comparisons

```
a<-1; b<-1
n1<-50; y1<-10
n2<-27; y2<-8

theta1.sim<-rbeta(5000,a+y1,b+n1-y1)
theta2.sim<-rbeta(5000,a+y2,b+n2-y2)

mean(theta1.sim<theta2.sim)

## [1] 0.8368

quantile( theta1.sim-theta2.sim,prob=c(.025,.5,.975))

## 2.5% 50% 97.5%

## -0.3036 -0.1014 0.1011
```

Monte Carlo for two sample comparisons

Summary

- Probability distributions encapsulate information
 - $p(\theta)$ describes prior information
 - $p(y|\theta)$ describes information about y for each θ
 - $p(\theta|y)$ describes posterior information
- Posterior distributions can be calculated via Bayes' rule

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta) \ d\theta}$$

- Posteriors can be plotted/summarized with commands in R
 - dbeta, dgamma, dnorm
 - qbeta, qgamma, qnorm
- Posterior integrals can be approximated with Monte Carlo methods.
 - 1. simulate $\theta^{(1)}, \ldots, \theta^{(S)} \sim \text{ iid } p(\theta|y)$
 - 2. approximate integrals with simulation averages.