3 | Higher Homotopy Groups

3.1 Notation.

$$I^{n} = \{(s_{1}, ..., s_{n}) \mid s_{i} \in [0, 1], i = 1, ..., n\}$$

$$\partial I^{n} = \{(s_{1}, ..., s_{n}) \in I^{n} \mid s_{i} \in \{0, 1\} \text{ for some } i\}$$

$$D^{n} = \{(x_{1}, ..., x_{n}) \in \mathbb{R}^{n} \mid \sum_{i} x_{i} \leq 1\}$$

$$S^{n-1} = \{(x_{1}, ..., x_{n}) \in \mathbb{R}^{n} \mid \sum_{i} x_{i} = 1\}$$

Recall that the fundamental group $\pi_1(X, x_0)$ of a pointed space (X, x_0) is the group whose elements are homotopy classes of maps $\omega : (I, \partial I) \to (X, x_0)$. Multiplication is given by concatenation of such maps.

Alternatively, $\pi_1(X, x_0)$ can be described as a group whose elements are homotopy classes of maps $\omega \colon (S^1, s_0) \to (X, x_0)$. In this setting, the multiplication in $\pi_1(X, x_0)$ is defined using the pinch map $p \colon S^1 \to S^1 \vee S^1$:

This construction can be generalized to define higher homotopy groups.

3.2 Definition/Proposition. Let (X, x_0) be a pointed space. For $n \ge 1$ the n-th homotopy group of (X, x_0) is the group $\pi_n(X, x_0)$ whose elements are homotopy classes of maps $\omega \colon (I^n, \partial I^n) \to (X, x_0)$. Multiplication in $\pi_n(X, x_0)$ is defined as follows. If $\omega, \tau \colon (I^n, \partial I^n) \to (X, x_0)$ then

$$[\omega] \cdot [\tau] = [\omega * \tau]$$

where $\omega * \tau : (I^n, \partial I^n) \to (X, x_0)$ is given by

$$(\omega * \tau)(s_1, s_2, \dots, s_n) = \begin{cases} \omega(2s_1, s_2, \dots, s_n) & \text{for } s_1 \in [0, \frac{1}{2}] \\ \tau(2s_1 - 1, s_2, \dots, s_n) & \text{for } s_1 \in [\frac{1}{2}, 1] \end{cases}$$

The trivial element of $\pi_n(X, x_0)$ is the homotopy class of the constant map $c_{x_0} \colon I^n \to X$. Also, for $[\omega] \in \pi_1(X, x_0)$ we have $[\omega]^{-1} = [\overline{\omega}]$ where $\overline{\omega} \colon (I^n, \partial I^n) \to (X, x_0)$ is given by

$$\overline{\omega}(s_1, s_2, \ldots, s_n) = (1 - s_1, s_2, \ldots, s_n)$$

3.3 Note. A part of Definition 3.2 makes sense also for n=0. In this case we have $I^0=\{*\}$ and $\partial I^0=\varnothing$. We define $\pi_0(X,x_0)$ as the set of homotopy classes of maps $\omega\colon (I^0,\partial I^0)\to (X,x_0)$. Giving such a map is the same as selecting a point $\omega(*)=x_\omega\in X$. Giving a homotopy of such maps is equivalent to giving a path between the corresponding points. Thus two points x_ω and x_τ represent the same element of $\pi_0(X,x_0)$ if they belong to the same path connected component. In other words, we get

$$\pi_0(X, x_0) \cong \begin{pmatrix} \text{path connected} \\ \text{components of } X \end{pmatrix}$$

The trivial element of $\pi_0(X, x_0)$ is given by the map $c_{x_0} \colon I^0 \to X$ such that $c_{x_0}(*) = x_0$. This corresponds to the path connected component of x_0 in X. In this way $\pi_0(X, x_0)$ becomes a pointed set. There is no multiplication defined in $\pi_0(X, x_0)$.

3.4 Theorem. For $n \ge 2$ then the group $\pi_n(X, x_0)$ is abelian for any pointed space (X, x_0) .

Pictorial proof. A homotopy $\omega * \tau \simeq \tau * \omega$ can be depicted as follows:

ω	τ	21	<i>x</i> ₀	τ	21	τ	21	τ	<i>x</i> ₀	~	τ	ω
			ω	<i>x</i> ₀		ω		<i>x</i> ₀	ω			

The shaded squares in the pictures are mapped to the basepoint $x_0 \in X$.

A more rigorous proof can be obtained using the following fact.

3.5 Eckmann–Hilton Theorem. Let M be a set equipped with two binary operations

$$\circ: M \times M \to M$$
, $\bullet: M \times M \to M$

Assume that there exist elements 1_{\circ} , $1_{\bullet} \in M$ such that $m \circ 1_{\circ} = 1_{\circ} \circ = m$ and $m \bullet 1_{\bullet} = 1_{\bullet} \bullet = m$ for all $m \in M$. Assume also, that for any m_1 , m_2 , n_1 , $n_2 \in M$ we have

$$(m_1 \circ m_2) \bullet (n_1 \circ n_2) = (m_1 \bullet n_1) \circ (m_2 \bullet n_2)$$

Then for any $m, n \in M$ we have $m \circ n = m \bullet n$, and $m \circ n = n \circ m$.

Proof. Exercise. □

Proof of Theorem 3.4. Recall that multiplication in $\pi_n(X, x_0)$ is defined by If $\omega, \tau \colon (I^n, \partial I^n) \to (X, x_0)$ then

$$[\omega] \cdot [\tau] = [\omega * \tau]$$

where $\omega * \tau : (I^n, \partial I^n) \to (X, x_0)$ is given by

$$(\omega * \tau)(s_1, s_2, \dots, s_n) = \begin{cases} \omega(2s_1, s_2, \dots, s_n) & \text{for } s_1 \in [0, \frac{1}{2}] \\ \tau(2s_1 - 1, s_2, \dots, s_n) & \text{for } s_1 \in [\frac{1}{2}, 1] \end{cases}$$

Since $n \ge 2$, we can also define a multiplication in $\pi_n(X, x_0)$ by

$$[\omega] \odot [\tau] = [\omega \circledast \tau]$$

where

$$(\omega \circledast \tau)(s_1, s_2, \dots, s_n) = \begin{cases} \omega(s_1, 2s_2, \dots, s_n) & \text{for } s_2 \in [0, \frac{1}{2}] \\ \tau(s_1, 2s_2 - 1, \dots, s_n) & \text{for } s_2 \in [\frac{1}{2}, 1] \end{cases}$$

Notice that for any ω_1 , ω_2 , τ_1 , τ_2 : $(I^n, \partial I^n) \to (X, x_0)$ we have

$$(\omega_1 * \omega_2) \circledast (\tau_1 * \tau_2) = (\omega_1 \circledast \tau_1) * (\omega_2 \circledast \tau_2)$$

The result follows from Theorem 3.5.

3.6 Alternative construction. Just as for the fundamental group, higher homotopy groups can be also described using maps from spheres. Since $I^n/\partial I^n \cong S^n$, giving a map $(I^n, \partial I^n) \to (X, x_0)$ is equivalent to giving a map $(S^n, s_0) \to (X, x_0)$ for some basepoint $s_0 \in S^n$. Thus elements of $\pi_n(X, x_0)$ can be described as homotopy classes of such maps.

To describe multiplication in $\pi_n(X, x_0)$ in this setting, consider the pinch map $p: S^n \to S^n \vee S^n$ that maps the upper hemisphere of S^n onto one copy of $S^n \subseteq S^n \vee S^n$, the lower hemisphere onto the second copy, and the equator of S^n to the basepoint of $S^n \vee S^n$:

Given two basepoint preserving maps $\omega, \tau: (S^n, s_0) \to (X, x_0)$, let $\omega \vee \tau: S^n \vee S^n \to X$ be the function that maps the first copy of S^n using ω and the second copy using τ . Then we have

$$[\omega] \cdot [\tau] = [(\omega \vee \tau) \circ \rho]$$

The following fact is often useful:

3.7 Proposition. A map $\omega: (S^n, s_0) \to (X, x_0)$ represents the trivial element of $\pi_n(X, x_0)$ if and only if there exists a map $\omega': D^{n+1} \to X$ such that $\omega'|_{S^n} = \omega$.

3.8 Functoriality. Let $f:(X,x_0)\to (Y,y_0)$ be a map of pointed spaces. For any $\omega:(I^n,\partial I^n)\to (X,x_0)$, composition with f gives a map $f\circ\omega:(I^n,\partial I^n)\to (Y,y_0)$. If $\omega,\tau:(I^n,\partial I^n)\to (X,x_0)$ and $\omega\simeq\tau$, then $f\circ\omega\simeq f\circ\tau$. Therefore we get a well defined function

$$f_*: \pi_n(X, x_0) \to \pi_n(Y, y_0)$$

given by $f_*([\omega]) = [f \circ \omega]$. If $n \ge 0$ then f_* is a homomorphism of groups. For maps $f: (X, x_0) \to (Y, y_0)$ and $g: (Y, y_0) \to (Z, z_0)$ we have $(gf)_* = g_*f_*$. Also, if $\mathrm{id}_X: (X, x_0) \to (X, x_0)$ is the identity map, then $\mathrm{id}_{X*}: \pi_n(X, x_0) \to \pi_n(X, x_0)$ is the identity homomorphism. This shows that the assignments $(X, x_0) \to \pi_n(X, x_0)$ define functors:

$$\pi_0 \colon \mathsf{Top}_* \to \mathsf{Set}_*$$

 $\pi_1 \colon \mathsf{Top}_* \to \mathsf{Gr}$
 $\pi_n \colon \mathsf{Top}_* \to \mathsf{Ab}$

for $n \ge 2$, where \mathbf{Top}_* is the category of pointed topological spaces, and \mathbf{Set}_* , \mathbf{Gr} , \mathbf{Ab} are the categories of pointed sets, groups, and abelian groups, respectively.

As a consequence, if $f:(X,x_0)\to (Y,y_0)$ is a homeomorphism, then $f_*\colon \pi_n(X,x_0)\to \pi_n(Y,y_0)$ is an isomorphism for $n\geq 0$.