

ok then mayne i specified the filter incorrectly, because A_t(lambda) should equal exp(ilambda(theta(t)-t)) so that phi_t(lambda)=exp(llambdatheta(t)). Determine the h_t(u) corresponding to that

Great clarification!

You want the family of functions

$$\phi_t(\lambda) = e^{i\lambda heta(t)}$$

and you want to express this as

$$A_t(\lambda) = e^{i\lambda(heta(t)-t)}$$

in the form

$$X_t = \int A_t(\lambda) e^{i\lambda t} dZ(\lambda)$$

and to identify the time-varying filter \$ h_t(u) \$ corresponding to this \$ A_t(\lambda) \$.

Step 1: Express \$ A_t(\lambda) \$ in Terms of \$ h_t(u) \$

Recall from Priestley:

$$A_t(\lambda) = \int e^{i\lambda u} h_t(u) du$$

with the inverse (for nice enough \$ h_t \$):

$$h_t(u) = rac{1}{2\pi} \int e^{-i\lambda u} A_t(\lambda) \, d\lambda$$

Given

$$A_t(\lambda) = e^{i\lambda(\theta(t)-t)}$$

so

$$h_t(u) = rac{1}{2\pi} \int e^{-i\lambda u} e^{i\lambda(heta(t)-t)} d\lambda = rac{1}{2\pi} \int e^{-i\lambda[u-(heta(t)-t)]} d\lambda$$

Step 2: Evaluate the Integral

$$h_t(u) = rac{1}{2\pi} \int e^{-i\lambda[u-(heta(t)-t)]} \, d\lambda$$

But

$$rac{1}{2\pi}\int e^{-i\lambda a}d\lambda=\delta(a)$$

Therefore,

$$h_t(u) = \deltaig(u - [heta(t) - t]ig)$$

Step 3: Write Final Answer

$$oxed{h_t(u) = \delta \Big(u - [heta(t) - t]\Big)}$$

In words:

- The filter at time \$ t \$ is a pure delay of \$ \theta(t) t \$.
- The corresponding family is \$ \phi_t(\lambda) = e^{i \cdot (t)} \$.

Check:

Plugging back into the formula:

$$A_t(\lambda) = \int e^{i\lambda u}\,\delta(u - [heta(t) - t])\,du = e^{i\lambda(heta(t) - t)}$$

which matches your requirement.

Summary Table

Quantity	Formula
\$ \phi_t(\lambda) \$	\$ e^{i\lambda \theta(t)} \$
\$ A_t(\lambda) \$	\$ e^{i\lambda (\theta(t)-t)} \$
Corresponding filter \$ h_t(u) \$	\$ \delta(u - [\theta(t)-t]) \$

If you want to know what sort of process X_t results when a stationary process is filtered through this h_t (u) h_t let me know!