

Week 6: Conjoint Questions

m EMSE 6035: Marketing Analytics for Design Decisions

John Paul Helveston

iii October 06, 2020

Quiz 2

Link is on the schedule

Make sure to download the zip file on the first page!

10:00

Upcoming events

- Society of Women Engineers (SWE) Conference Boot Camp: Friday, October 8, 4-5:30 p.m.
- Virtual Media, Journalism, & Public Affairs Fair: Oct. 19 Time: 4:30 p.m. 6 p.m.
- Fundamentals of Engineering (FE) Exam Prep Workshop: November 1, 4-5:30 p.m.
- Virtual Government & Nonprofit Fair: Nov. 19 Time: 1 p.m. 4 p.m.

Some RMarkdown tips

Convert a data frame to a markdown table with kable ()

library(tidyverse)

mtcars %>%
 kable()

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4

Example from team Omao (cups)

```
library(tidyverse)
library(here)

df <- read_csv(here("data", "competitors.csv"))
df %>%
   kable()
```

brand	volumelnOz	quantity	price	pricePerCup	biodegrability	opacity	logo
greatValue	9	50	\$2.98	\$0.06	FALSE	TRUE	FALSE
decorRack	9	50	\$5.99	\$0.12	FALSE	TRUE	FALSE
tigerChef	9	100	\$7.99	\$0.08	FALSE	TRUE	FALSE
smartly	9	80	\$2.79	\$0.03	FALSE	FALSE	FALSE
solo	9	50	\$4.04	\$0.08	FALSE	FALSE	FALSE
greatValue	9	100	\$3.76	\$0.04	FALSE	FALSE	FALSE
ecoProducts	9	1000	\$187.69	\$0.19	TRUE	FALSE	TRUE
worldCentric	9	2000	\$220.00	\$0.11	TRUE	FALSE	TRUE
hefty	18	50	\$3.98	\$0.08	FALSE	TRUE	FALSE

More kable() formatting options: {kableExtra} package

References

Simple approach: Insert a footnote with ^[]

markdown

```
The Eiffel Tower is 324 meters tall^[From the [Eiffel Tower wikipedia page](https://en.wikipedia.org/wiki/Eiffel_Tower)]
```

render

The Eiffel Tower is 324 meters tall¹

¹From the Eiffel Tower wikipedia page

References

Complex (but more complete) approach: Use bibtex

https://bookdown.org/yihui/rmarkdown-cookbook/bibliography.html

You can insert citations with [@citekey], and a "References" table will be automatically created.

Footnotes are perfectly fine for this class

Week 6: Conjoint Questions

- 1. Defining choice questions in R
- 2. Displaying choice questions in RMarkdown

BREAK

3. Choice questions in formr

Week 6: Conjoint Questions

- 1. Defining choice questions in R
- 2. Displaying choice questions in RMarkdown

BREAK

3. Choice questions in formr

Download the logitr-cars repo from GitHub

We'll be using the {conjontTools} package today

```
install.packages("remotes")
remotes::install_github("jhelvy/conjointTools")
```

Choice question components

- 1. Define the attributes and levels
- 2. Define a "design of experiment" data frame
- 3. Define a "survey" data frame

Open logitr-cars.Rproj

Basic survey

Any combination of attributes can be shown in each choice question

Question 1

Option:123Price:\$15\$25\$15Fuel Economy:20 (mpg)25 (mpg)25 (mpg)Accel. Time:8 (s)6 (s)6 (s)Powertrain:ElectricElectricElectric

Question 2

Option:	1	2	3
Price:	\$25	\$25	\$20
Fuel Economy:	20 (mpg)	25 (mpg)	30 (mpg)
Accel. Time:	8 (s)	8 (s)	6 (s)
Powertrain:	Electric	Gasoline	Electric

Labeled survey

One attribute is used as the "label" - choice options are fixed according to the label

Question 1

Option: Electric Gasoline

Price: \$15 \$25

Fuel Economy: 20 (mpg) 25 (mpg)

Accel. Time: 7 (s) 6 (s)

Question 2

Option: Electric Gasoline

Price: \$25 \$25

Fuel Economy: 25 (mpg) 20 (mpg)

Accel. Time: 8 (s) 7 (s)

Survey with an "Outside Good"

An "outside good" means they can choose an "other" option (usually "None")

Question 1

Question 2

Option:	1	2	3	None	Option:	1	2	3	None
Price:	\$20	\$25	\$25		Price:	\$25	\$20	\$25	
Fuel Economy:	30 (mpg)	30 (mpg)	30 (mpg)		Fuel Economy:	30 (mpg)	25 (mpg)	30 (mpg)	
Accel. Time:	8 (s)	6 (s)	8 (s)		Accel. Time:	8 (s)	8 (s)	6 (s)	
Powertrain:	Electric	Electric	Gasoline		Powertrain:	Gasoline	Electric	Gasoline	

Attribute-specific features

Some attributes may only be valid for certain levels of other attributes

Example: The driving range of an electric vehicle (EV) only applies to EVs and not gasoline-powered vehicles.

To implement this, set the attribute to 0 for the non-applicable cases (do this *after* using makeSurvey())

Your Turn

- 1. With your team, discuss the specific choice question design for your project
- Regular or labeled?
- Include a "none" option (outside good) or not?
- 1. Edit the make_choice_questions. R file to design your choice questions.

Week 6: Conjoint Questions

- 1. Defining choice questions in R
- 2. Displaying choice questions in RMarkdown

BREAK

3. Choice questions in formr

Displaying your choice questions online

- 1. Export your choice questions as a .csv file
- 2. Upload your .csv file somewhere
- 3. Use R code to extract the values to display
- 4. Use RMarkdown to display the values

1. Export your choice questions as a .csv file

```
write_csv(survey, here('choice_questions.csv'))
```

2. Upload your .csv file somewhere

Inside a formr run (private)

github.com (public)

apples example

Use R code to extract the values to display

- Read choice_questions.csv from web
- Randomly choose a respondent ID
- Filter rows for that respondent ID
- Serialize the data frame to json format

Side note on serializing a data frame

Converts a data frame to one long string

```
df
     altID price fuelEconomy accelTime powertrain
                                         Electric
        1 15
                          20
                                     6 Electric
                                       Electric
                          25
df json <- jsonlite::toJSON(df)</pre>
df ison
#> [{"altID":1,"price":15,"fuelEconomy":20,"accelTime":8,"powertrain":"Electric"},
{"altID":2,"price":25,"fuelEconomy":25,"accelTime":6,"powertrain":"Electric"},
{"altID":3,"price":15,"fuelEconomy":25,"accelTime":6,"powertrain":"Electric"}]
```

Use RMarkdown to display the values

Create separate data frames for each alternative

```
library(dplyr)
alts <- jsonlite::fromJSON(df_json)
alt1 <- alts %>% filter(altID == 1)
alt2 <- alts %>% filter(altID == 2)
alt3 <- alts %>% filter(altID == 3)
```

Use RMarkdown formatting to display content in each alternative

```
**Option 1**

**Price**: $ `r alt1$price`

**Powertrain**: $ `r alt1$powertrain`

**Fuel Economy**: `r alt1$fuelEconomy` mpg

**0-60 Accel. Time**: `r alt1$accelTime` s
```

Option 1

Price: \$ 15

Powertrain: \$ Electric Fuel Economy: 20 mpg O-60 Accel. Time: 8 s

Show options in a table with kable()

```
library(dplyr)
alts <- jsonlite::fromJSON(df json) %>%
  # Add units to attributes
  mutate(
    price = scales::dollar(price),
    fuelEconomy = paste(fuelEconomy, "
(mpq)"),
    accelTime = paste(accelTime, "(s)"))
%>%
  # Make nicer attribute labels
  select(
    `Option:` = altID,
    `Powertrain:` = powertrain,
    `Price: ` = price,
    `Fuel Economy: ` = fuelEconomy,
    `Accel. Time:` = accelTime)
# Drop row names
row_names(alts) <- NULL
```

Display the *transpose*, t(alts)

kable(t(alts))					
Option:	1	2	3		
Powertrain:	Electric	Electric	Electric		
Price:	\$15	\$25	\$15		
Fuel Economy:	20 (mpg)	25 (mpg)	25 (mpg)		
Accel. Time:	8 (s)	6 (s)	6 (s)		

Download the formr4conjoint repo from GitHub

(code used in the related blog post)

Your Turn

- 1. With your team, upload your choice_questions.csv file somewhere online, like inside a formr run or on a github repo.
- 2. Edit the p2-choice-questions.Rmd or p2-choice-questions-table.Rmd file to implement your choice questions in RMarkdown.

You should be able to knit the file to visually test how one of your choice questions is rendering.

Week 6: Conjoint Questions

- 1. Defining choice questions in R
- 2. Displaying choice questions in RMarkdown

BREAK

3. Choice questions in formr

Your first few rows

- Read choice_questions.csv from web
- Randomly choose a respondent ID
- Filter rows for that respondent ID
- Serialize the data frame to json format

Using the calculate type (example sheet)

RMarkdown

```
# Read in the choice questions
library(tidyverse)
survey <-
read_csv("https://raw.githubusercontent.com/
# Define the respondent ID
respondentID <- sample(survey$respID, 1)</pre>
# Create the subset of rows for that
respondent ID
df <- survey %>%
    filter(respID == respondentID) %>%
    mutate(image =
paste0("https://raw.githubusercontent.com/j
 image))
# Convert df to json
df_json <- jsonlite::toJSON(df)</pre>
```

Google sheet

С	D	E	K
type	optional	name	value
calculate		time3	Sys.time()
calculate		survey	<pre>library(tidyverse) read_csv("https://raw.githubusercontent.com/jhelvy/for</pre>
calculate		respondentID	<pre>sample(survey\$respID, 1)</pre>
calculate		df	<pre>survey %>% filter(respID == respondentID) %>% mutate(image = paste0("https://raw.githubusercontent.com/jhelvy/formr4conjo int/master/survey/images/", image))</pre>
calculate		df_json	jsonlite::toJSON(df)

Random choice questions as buttons (example sheet)

Use the mc_button question type

label

- Show your question text
- Insert a code chunk to create one-row data frame for each alternative

choice columns

Insert RMarkdown code to display each alternative

Random choice questions as table (example sheet)

Use the mc_button question type

label

- Show your question text
- Insert a code chunk to modify alts data frame & display it using kable()
- Use kableExtra to control table styling

choice columns

• Simple text / number for each option

Your Turn

- 1. Discuss the layout you would prefer to implement for your choice questions (buttons or table).
- 2. Make a Google Sheet using your team Google account to start implementing your conjoint questions.

buttons example sheet

table example sheet