یادگیری عمیق یاییز ۱۴۰۲

تمرین سری اول: آمار!

۱) یک سکه داریم که احتمال شیر آمدن آن، p، نامشخص است. برای تخمین p سکه را n بار پرتاب کردهایم که در نتیجه p بار شیر آمده است. برآوردگر بیشترین درستنمایی (MLE) برای تخمین p را به دست آورید و اریبی و واریانس آن را محاسبه کنید.

 α, β توزیع بتا خانواده ای از توزیعهای احتمال پیوسته بر بازه ی [0,1] است که با دو پارامتر مثبت α, β مشخص می شوند و تابع چگالی آنها به صورت $f(x) = cx^{\alpha-1}(1-x)^{\beta-1}$ است. اگر در مساله ی قبل از روی کرد بیزی استفاده کنیم و توزیع پیشین $f(x) = cx^{\alpha-1}(1-x)^{\beta-1}$ پارامترهای α, β در نظری بگیریم، توزیع پسین را محاسبه کنید. برآوردگر بیش ترین احتمال پسین (MAP) را به دست آورید و درباره ی معنی و اثر پارامترها و نیز تعداد آزمایش ها توضیح دهید.

 x_i در مساله ی برآورد همزمان برای $x_i = 1, \cdots, n$ داریم $x_i = 1, \cdots, n$ و هدف تخمین $x_i = 1, \cdots, n$ است. برآوردگر بیش ترین درست نمایی برابر است با $x_i = 1, \cdots, n$ و برآوردگر جیمز استاین با فرض $x_i = 1$ به صورت $x_i = 1$ تعریف $x_i = 1$ تعریف می شود.

 $\mathbb{E}[\|\hat{\mu} - \mu\|^2] = \mathbb{E}[\|\mathbf{x} - \mu\|^2] - n + 2\sum_{i} \operatorname{cov}(\hat{\mu}_i, x_i)$ داريم $\hat{\mu}_i$ داريم $\hat{\mu}_i$ داريم $\operatorname{cov}(\hat{\mu}_i, x_i) = \mathbb{E}[\partial \hat{\mu}_i / \partial x_i]$ به کمک انتگرالگیری جزء به جزء نشان دهید $\mathbb{E}[\partial \hat{\mu}_i / \partial x_i] = \mathbb{E}[\partial \hat{\mu}_i / \partial x_i]$

 $\mathbb{E}[\|\hat{\mu}_{JS} - \mu\|^2] = n - \mathbb{E}[(n-2)^2/\|x\|^2]$ و نتیجه بگیرید که برای $n \geq 3$ برآوردگر جیمز استاین با محک میانگین مربع خطا همواره از برآوردگر بیشترین درستنمایی بهتر عمل میکند.

باشد $\mathbf{x} \geq d \geq 0$ بردار تصادفی در فضای \mathbf{x} باشد

الف) نشان دهید اگر x_i ها گاوسی با میانگین صفر و واریانس برابر باشند توزیع x شعاعی است (یعنی با دوران تغییر نمی کند) ب) نشان دهید اگر توزیع x شعاعی و مولفه های آن از هم مستقل باشند، x_i ها توزیع گاوسی با میانگین صفر و واریانس برابر دارند.

۵) در مساله ی رگرسیون خطی با n داده مشاهده شده و p متغیر کمکی (covariate)، فرض کنید $\mathbf{X}_{n \times p}$ ماتریس متغیرهای کمکی $\mathbf{y}_{n \times 1}$ بردار متغیرهای پاسخ مشاهده شده و $\mathbf{p}_{p \times 1}$ بردار ضرایب رگرسیون باشد. طبق مدل احتمالاتی رگرسیون داریم مشاهده شده و $\mathbf{y}_{n \times 1}$ بردار متغیرهای پاسخ مشاهده شده و $\mathbf{y}_{n \times 1}$ بردار ضرایب رگرسیون باشد. طبق مدل احتمالاتی رگرسیون داریم $\mathbf{y}_{n \times 1}$ که $\mathbf{y} = \mathbf{x}$ که رقبه یک امل داشته باشد و \mathbf{x} تخمین گر بیش ترین درست نمایی باشد و قرار دهیم \mathbf{x}

$$.\hat{\mathbf{y}} - \mathbf{y} = [\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T - I]\epsilon$$
 الف) نشان دهید

$$\mathbb{E}[\|\hat{\mathbf{y}} - \mathbf{y}\|^2]/n = \sigma^2(n-p)/n$$
 نشان دهيد

وجود مثبت λ عدد مثبت λ و بردار \mathbf{x} با اندازه های $n \times p$ و $n \times p$ داده شده اند. نشان دهید برای هر عدد مثبت λ عدد مثبت λ وجود \mathbf{x} و بردار \mathbf{x} برابر است. \mathbf{x} عدد مثبت \mathbf{x} و بردار \mathbf{x} برابر است. \mathbf{x} عدد مثبت \mathbf{x} و بردار \mathbf{x} و بردار \mathbf{x} برابر است. \mathbf{x} عدد مثبت \mathbf{x} و بردار $\mathbf{x$

۷) فرض کنید در یک مساله ی رگرسیون خطی ماتریس کواریانس تجربی، $\mathbf{X}^T\mathbf{X}$ ، برابر با ماتریس همانی شده است! اگر $\hat{\boldsymbol{\beta}}$ تخمینگر کمترین مربعات برای مساله ی رگرسیون باشد نشان دهید تخمینها با اضافه کردن منظمسازی به صورتهای زیر تغییر میکنند:

 $\hat{\beta}_i \mathbf{1}_{\mathrm{rank}(\beta_i) < M}$: (Best Subset) الف) برای رگرسیون بهترین زیرمجموعه

 $\hat{\beta}_i/(1+\lambda)$: (Ridge) برای رگرسیون ستیغی

 $\operatorname{sign}(\hat{\beta}_i)(|\hat{\beta}_i| - \lambda)_+$: (Lasso) پ) برای رگرسیون لاسو

۸) از تعدادی مهندس خواسته شده که محیط یک بیضی را اندازه بگیرند و تخمینهای x_1, \cdots, x_n به دست آمده است. تخمینها مختلفی مستقل از هم و نااریب هستند. فرض کنید مقدار واقعی محیط برابر μ باشد و μ باشد و μ باشد و نااریب هستند. فرض کنید مقدار واقعی محیط برابر μ باشد و میکنند σ_i ها لزوما با هم برابر نیستند و مقدارشان هم نامشخص است. هدف به دست آوردن تخمین تا جای ممکن بهتری برای μ است.

الف) اگر σ_i ها را بدانیم چه تخمین گری برای μ پیشنهاد میکنید؟ چرا؟

ب) تابع درستنمایی را بنویسید و برای به دست آوردن برآوردگر بیش ترین درستنمایی تلاش کنید.

 $\lambda_1, \dots, \lambda_n \sim \Gamma(a, b)$ به روش بیزی عمل کنید: λ_i را معکوس σ_i^2 بگیرید. در توزیع پیشین فرض کنید μ و شال مستقل اند و واریانس مغروش و واریانس و تابع چگالی توزیع گاما به شکل $g(\lambda) = c\lambda^{a-1}e^{-b\lambda}$ است) همچنین توزیع پیشین μ را گاوسی با میانگین صفر و واریانس بی نهایت (واریانسی که به بی نهایت میل می کند) بگیرید. توزیع پسین را محاسبه کنید و برآوردگر بیشترین احتمال پسین را به دست آورید.

9) یک تابع غیرخطی مناسب مانند f بر بازه ی [0,1] و تعدادی نقطه x_1, \cdots, x_{100} در این بازه انتخاب کنید. x_i, \cdots, x_{100} و تعدادی نقطه σ^2 هستند. σ^2 هستند میاده از روی x_i هم و گاوسی با میانگین صفر و واریانس σ^2 هستند.

الف) برای $D=1,2,\cdots,10$ بهترین چندجملهای \hat{f} از درجهی $D=1,2,\cdots,10$ را به دادهها برازش کنید.

ب) برای $D=1,2,\cdots,10$ را به دادهها برازش کنید. \hat{f} از درجهی $D=1,2,\cdots,10$

 ψ) با تكرار قسمتهای الف و ب به تعداد زیاد، $\|\hat{f} - f\|_{\infty}$ را تخمین بزنید. و دو نمودار خطا بر حسب درجه، D، در هر حالت رسم كنید.

