Statistical Methods for High Dimensional Biology STAT/BIOF/GSAT 540

Lecture 13 – Cluster Analysis

Gabriela Cohen Freue February 24 2019

Other contributors: Drs. Jenny Bryan; Sara Mostafavi; Matias Salibian-Barrera

A familiar scene in an 'omic' paper ...

Behind the scenes...

Cluster Analysis (CA)

was used to organize genes into groups (clusters) and to create dendograms.

Cluster analysis in genomics

- "Cluster analysis and display of genome-wide expression patterns" by Eisen, et al. (PNAS, Vol. 95, pp. 14863–14868, December 1998)
- Imprinted CA on the microarray community
- This precedent + explosion of array data + ease of application = widespread (over?)use of CA
- Currently, CA is used similarly in many other –omics studies.

Utility of clustering in -omics studies

 Eisen, et al., showed that coexpression (thus, cluster co-membership) is often exhibited by genes with similar roles in cellular processes

What is Clustering?

- "Clustering" Colloquially means placing/grouping a set of objects into groups/clusters.
- Clustering is a formal problem in Computer Science and in Statistics, with formal definitions and "solutions".
- Clustering is often used as a tool for visualization, hypothesis generation, selection of variables for further analysis.
 - Keep in mind, with typical use of clustering: there is no measure of "strength of evidence" or "strength of clustering structure" provided.

Many clustering methods ...

- Discrete clustering assignment
- Probabilistic cluster assignment

Clustering problem

 Goal: place a set of objects into groups or clusters in a way that similar objects are in the same cluster.

Rocks were clustered according to their color and texture.

Clustering problem (cont.)

 Goal: place a set of objects into groups or clusters in a way that similar objects are in the same cluster.

Cluster some rocks:

Note that you could have also considered a 2-cluster solution.

Clustering problem (cont.)

 Goal: place a set of objects into groups or clusters in a way that similar objects are in the same cluster.

OR, we could have also clustered the rocks according to their size

Key elements

- Goal: place a set of objects in groups or clusters
- The variables used to compare objects are called the attributes (e.g., color, texture, size)
- The analysis is based on a (dis)similarity/distance measure of the attributes

Attributes of objects within a cluster are more 'similar' than attributes of objects among different clusters

Objects

- Clusters of experimental units (e.g., subjects, rocks)
- Clusters of features (e.g., genes, customers qualities)

Attributes

 Select the variables that are going to be used to cluster objects (e.g., genes, brand loyalty and price consciousness, group averages)

Similarity

 Dissimilarity or distance measure (e.g., simple matching coefficient for binary data, or Euclidean distance for continuous data)

Algorithm

- Hierarchical methods (e.g., agglomerative with single linkage)
- Partitioning methods (e.g., k-means)
- Model-based algorithms

Number of clusters???

Example: PhotoRec Data

- Gene expression of purified photoreceptors at distinct developmental stages and from different genetic backgrounds
- Almost 30K genes and 39 samples (mice)
- 5 developmental stages: day 16 of embryonic development (E16), postnatal days 2,6 and 10 (P2, P6 and P10) as well as 4_weeks.
- 2 genetic backgrounds: wild type Nrl mice (wt) and knockout Nrl mice (NrlKO).

A peak at the data...

	Wild Type			Knock-out			•••			Wild Type			Knock-out		
		E1					4_weeks								
	Sample_20		Sample_23	Sample_16		Sample_17		Sample i		Sample_36		Sample_39	Sample_11		Sample_9
1415670_at	7.24		7.07	7.38		7.34				7.25		7.13	7.42		7.32
1415671_at	9.48		10.13	7.64		10.03				9.66		8.73	9.83		9.80
1415672_at	10.01		9.91	8.42		10.24				9.51		9.53	10.00		9.85
1415673_at	8.36		8.49	8.36		8.37				8.49		8.65	8.60		8.40
1415674_a_at	8.59		8.64	8.51		8.89				8.42		8.28	8.43		8.46
1415675_at	9.59		9.70	9.66		9.61				9.67		9.45	9.60		9.51
1415676_a_at	9.68		10.19	8.05		10.02				9.95		8.70	9.23		9.82
1415677_at	7.24		7.49	7.34		7.34				7.28		6.84	7.33		7.45
1415678_at	11.71		11.57	10.46		11.75				11.56		11.80	12.04		11.81
1415679_at	9.21		9.92	8.22		9.60				9.13		8.08	9.06		9.29
				•••		•••									•••
gene g								X_{gi}							
1460746_at	6.37		6.12	7.25		6.15				6.34		6.52	6.36		6.35

Column-driven analyses

	Wild Type			Knock-out			•••			Wild Type			Knock-out		
		E:					4_weeks								
	Sample_20		Sample_23	Sample_16		Sample_17		Sample i		Sample_36		Sample_39	Sample_11		Sample_9
1415670_at	7.24		7.07	7.38		7.34				7.25		7.13	7.42		7.32
1415671_at	9.48		10.13	7.64		10.03	•••			9.66		8.73	9.83		9.80
1415672_at	10.01		9.91	8.42		10.24	•••			9.51		9.53	10.00	•••	9.85
1415673_at	8.36		8.49	8.36		8.37				8.49		8.65	8.60		8.40
1415674_a_at	8.59		8.64	8.51		8.89				8.42		8.28	8.43		8.46
1415675_at	9.59		9.70	9.66		9.61	•••			9.67		9.45	9.60		9.51
1415676_a_at	9.68		10.19	8.05		10.02				9.95		8.70	9.23		9.82
1415677_at	7.24		7.49	7.34		7.34	•••			7.28		6.84	7.33		7.45
1415678_at	11.71		11.57	10.46		11.75				11.56		11.80	12.04		11.81
1415679_at	9.21		9.92	8.22		9.60				9.13		8.08	9.06		9.29
							•••								
gene g								X_{gi}							
													•••		
1460746_at	6.37		6.12	7.25		6.15				6.34		6.52	6.36		6.35

Samples Clustering: based on the expression of the *G* genes (attributes), how do samples (objects) cluster?

Row-driven analyses

	Wild Type			Knock-out			•••			Wild Type			Knock-out		
		E:					4_weeks								
	Sample_20		Sample_23	Sample_16		Sample_17		Sample i		Sample_36		Sample_39	Sample_11		Sample_9
1415670_at	7.24		7.07	7.38		7.34				7.25		7.13	7.42		7.32
1415671_at	9.48		10.13	7.64		10.03	_.			9.66		8.73	9.83		9.80
1415672_at	10.01		9.91	8.42		10.24				9.51		9.53	10.00		9.85
1415673_at	8.36		8.49	8.36		8.37				8.49		8.65	8.60	•••	8.40
1415674_a_at	8.59		8.64	8.51		8.89			:	8.42		8.28	8.43	:	8.46
1415675_at	9.59		9.70	9.66		9.61				9.67		9.45	9.60		9.51
1415676_a_at	9.68		10.19	8.05		10.02			:	9.95		8.70	9.23	:	9.82
1415677_at	7.24		7.49	7.34		7.34				7.28		6.84	7.33		7.45
1415678_at	11.71		11.57	10.46		11.75				11.56		11.80	12.04		11.81
1415679_at	9.21		9.92	8.22		9.60			:	9.13		8.08	9.06	:	9.29
				•••									•••	•••	
gene g								X_{gi}							
1460746_at	6.37		6.12	7.25		6.15				6.34		6.52	6.36	•••	6.35

Gene Clustering: based on the gene expressions of 39 samples (attributes), how do genes (objects) cluster?

Objects

- Clusters of experimental units (e.g., subjects, rocks)
- Clusters of features (e.g., genes, customers qualities)

Attributes

 Select the variables that are going to be used to cluster objects (e.g., genes, brand loyalty and price consciousness, group averages)

Similarity

 Dissimilarity or distance measure (e.g., simple matching coefficient for binary data, or Euclidean distance for continuous data)

Algorithm

- Hierarchical methods (e.g., agglomerative with single linkage)
- Partitioning methods (e.g., k-means)
- Model-based algorithms

Number of clusters???

Dissimilarity and Distance

- We need to compute pairwise (dis)similarities/distances between all objects.
- Many clustering algorithms use a distance to measure proximity between objects
- These measures are collect into a symmetric matrix -- the distance or dissimilarity matrix

Typical distance measures for continuous data:

Euclidean distance*

$$a \in R^p, b \in R^p : d(a,b) = \sqrt{\sum_{i=1}^p (a_i - b_i)^2}$$

Manhattan distance *

$$a \in R^p, b \in R^p : d(a,b) = \sum_{i=1}^p |a_i - b_i|$$

^{*} The data need to be standardized if variables are measured in very different scales

Suppose you measured protein activity levels (expression) for 2 genes (gene A and gene B) for 200 individuals

How close are these individuals?

Expression level of gene_1

Typical **similarity** measures in genomics

Centered correlation

$$a \in R^p, b \in R^p : \operatorname{corr}(a,b) = \frac{1}{p} \sum_{i=1}^p \left(\frac{a_i - \overline{a}}{\hat{\sigma}_a} \right) \left(\frac{b_i - \overline{b}}{\hat{\sigma}_b} \right)$$

Uncentered correlation

$$a \in R^p, b \in R^p : \operatorname{corr}(a,b) = \frac{1}{p} \sum_{i=1}^p \left(\frac{a_i}{\hat{\sigma}_a^{(0)}} \right) \left(\frac{b_i}{\hat{\sigma}_b^{(0)}} \right); \qquad \hat{\sigma}^{(0)} : \text{the center is set to 0}$$

– Correlation **Distances**:

$$dist(a,b) = 1 - corr(a,b)$$
$$dist(a,b) = 1 - |corr(a,b)|$$

Objects

- Clusters of experimental units (e.g., subjects, rocks)
- Clusters of features (e.g., genes, customers qualities)

Attributes

 Select the variables that are going to be used to cluster objects (e.g., genes, brand loyalty and price consciousness, group averages)

Similarity

 Dissimilarity or distance measure (e.g., simple matching coefficient for binary data, or Euclidean distance for continuous data)

<u>Algorithm</u>

- Hierarchical methods (e.g., agglomerative with single linkage)
- Partitioning methods (e.g., k-means)
- Model-based algorithms

Number of clusters???

Algorithms: Hierarchical

Given *N objects* with *H attributes* and a *distance metric*:

- 1. Assign each object to a cluster and compute the pairwise distances between all clusters
- 2. Find the "closest" pair of *clusters* and *merge* them into a single cluster
- 3. Compute new distances between clusters
- 4. Repeat steps 2 and 3 until all objects belong to a single cluster.


```
> round(dist(a, method='euclidean'),2)
    1    2    3    4    5    6    7    8
2  0.41
3  0.32  0.50
4  2.61  2.23  2.72
5  2.67  2.32  2.81  0.29
6  2.66  2.28  2.76  0.11  0.39
7  1.20  0    79  1.25  1.49  1.62  1.52
8  0.93  0.52  0.99  1.73  1.84  1.77  0.27
9  1.41  1.13  1.20  2.35  2.55  2.34  1.07  1.05
```


Single Linkage: The distance between two clusters is the *minimum* distance between any two elements

Complete Linkage: The distance between two clusters is the *maximum* distance between any two elements

Note: the distance between objects is the same (e.g., Euclidean)

Single Linkage

Complete Linkage

```
# Dendogram
dist.euclidean = dist(a, method = "euclidean")
# Single
ex1.hcS <- hclust(dist.euclidean, method = "single")
plot(ex1.hcS)
# identify 3 clusters
ex1.hcS.3 <- rect.hclust(ex1.hcS, k = 3)</pre>
```

```
# Complete
ex1.hcC <- hclust(dist.euclidean, method = "complete")
plot(ex1.hcC)

# identify 3 clusters
ex1.hcC.3 <- rect.hclust(ex1.hcC, k = 3)</pre>
```

Cluster Dendrogram

Height 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 5 7 7 8 1 2 3 3

Cluster Dendrogram

dist.euclidean hclust (*, "single") dist.euclidean hclust (*, "complete")

Is there an intermediate solutions?

Average Linkage: The distance between two clusters is the *average* of all pairwise distances between any two objects

```
# Average
ex1.hcA <- hclust(dist.euclidean, method = "average")
plot(ex1.hcA)
# identify 3 clusters
ex1.hcA.3 <- rect.hclust(ex1.hcA, k = 3)</pre>
```

Cluster Dendrogram

Note: in this trivial example, average and single linkages give the same result. In general, this is not true.

dist.euclidean hclust (*, "average") Ward's Criterion: The distance between two clusters is the *sum* of all pairwise distances between any two objects

```
> round(dist(a, method='euclidean'),2)

1 2 3 4 5 6 7 8

2 0.41

3 0.32 0.50

4 2.61 2.23 2.72

5 2.67 2.32 2.81 0.29

6 2.66 2.28 2.76 0.11 0.39

7 1.20 0.79 1.25 1.49 1.62 1.52

8 0.93 0.52 0.99 1.73 1.84 1.77 0.27

9 1.41 1.13 1.20 2.35 2.55 2.34 1.07 1.05
```

Sum = 5.68

```
# Ward's
ex1.hcW <- hclust(dist.euclidean, method = "ward")
plot(ex1.hcW)
# identify 3 clusters
ex1.hcW.3 <- rect.hclust(ex1.hcW, k = 3)</pre>
```

Cluster Dendrogram

dist.euclidean hclust (*, "ward")

Note: in this trivial example, Ward's criterion gives the same result as complete linkage. In general, this is not true.

Sum=2 12

photoRec: Sample Clustering

- Data: each gene has been measured on 3 or 4 biological replicates of wild-type and knockout mice, for each of 5 time points (~30K genes, 39 samples)
- Objects: 39 mice samples
- Attributes: ~30K genes

Ward showing 8 clusters

photoRec: Gene Clustering

- **Objects**: ~30K genes
- Attributes: 39 mice samples
- Since clustering genes is slow when you have a lot of genes, for the sake of time we will work with a smaller subset of genes.

Top-972 from LIMMA

972 randomly selected

week4 E16 P6 P10

P2

Objects

- Clusters of experimental units (e.g., subjects, rocks)
- Clusters of features (e.g., genes, customers qualities)

Attributes

 Select the variables that are going to be used to cluster objects (e.g., genes, brand loyalty and price consciousness, group averages)

Similarity

 Dissimilarity or distance measure (e.g., simple matching coefficient for binary data, or Euclidean distance for continuous data)

<u>Algorithm</u>

- Hierarchical methods (e.g., agglomerative with single linkage)
- Partitioning methods (e.g., k-means)
- Model-based algorithms

Number of clusters???

Algorithms: Partitioning

- These algorithms partition the objects into K groups
- Often motivated by an objective function that attains an extreme for the "correct" or "best" partition of the objects.
- K needs to be determined a priori.
- Most typical cases: k-means and partitioning around the medoids (PAM).

Partitioning algorithms: e.g., K-means

Algorithm: iterative procedure

1) Pick k random points as initial cluster centers

Randomly selected point 1

K-means algorithm (cont.)

Algorithm: iterative procedure

- 1) Pick k random points as initial cluster centers
- 2) Measure distance between all points and the cluster centers assign points to nearest cluster

K-means algorithm (cont.)

Algorithm: iterative procedure

- 1) Pick k random points as initial cluster centers
- 2) Measure distance between all points and the cluster centers assign points to nearest cluster
- 3) Compute cluster means
- 4) Reassign points to cluster based on distance
 - If not change from previous assignment, stop, else to go step 3

K-means algorithm: in words...

- Divide the data into K clusters
 Initialize the "centroids" with the mean of the object attributes in each cluster
- 2. Assign each item to the cluster with closest centroid
- When all objects have been assigned, recalculate the centroids (mean)
- Repeat 2-3 until the centroids no longer move

K-means objective function

Objective function: minimize the average squared Euclidean distance of objects from their assigned cluster centers.

* N objects, each have p attributes: $\{x_1, x_2, x_3, ..., x_n\}$

Cluster center for cluster k

* k-means objective function:
$$J = \sum_{i=1}^n \sum_{k=1, i \in k}^K (x_i - \mu_k)^2$$

Euclidian distance between each point to the center

* Given C_1 , C_2 ,..., C_K , the minimum of within cluster distance is attained estimating the center of the cluster with its sample mean

Partitioning around Medoids (PAM)

- Kaufmann and Rousseeuw provide this as a partitioning method in the `cluster` library in R
- K representative objects (= medoids) are chosen as cluster centers and objects are assigned to the center with which they have minimum dissimilarity
- Objective function is total of all object-tomedoid dissimilarities
- Similar to K-means but more robust to outliers

photoRec: Sample Clustering

- Objects: 39 mice samples (5 time points)
- Attributes: ~30K genes
- Number of clusters: K=5 (although another K may be "better")

	C_1	C_2	C ₃	C ₄	C ₅
E16	0	0	6	0	1
P2	4	0	0	0	4
P6	5	1	0	0	2
P10	1	2	0	3	2
4 w	0	2	1	5	0

k-means

PAM

	C_1	C_2	C^3	C_4	C ₅
E16	6	1	0	0	0
P2	0	1	7	0	0
P6	3	2	3	0	0
P10	0	2	1	1	4
4 w	1	0	1	4	2

photoRec: Gene Clustering

- Objects: ~1K genes (DE among 5 developmental stages, selected using limma)
- Attributes: 39 mice samples
- Number of clusters: K=5 (this value may be too low given that there are ~1K objects to cluster)

k-means: cluster 1

Algorithms to estimate K

- **GAP Statistic:** Tibshirani, Walther and Hastie, *Journal of the Royal Statistical Society*, **63, 411-423.**
- http://www.jstor.org/stable/2680607
- Slightly modified code: http://stat.rutgers.edu/~rebecka
- Clest Algorithm: Dudoit, Fridlyand, 2002. *Genome Biology* **3**(7): research0036.1 -0036.21
 - http://genomebiology.com/2002/3/7/research/0036
- Dudoit, Fridlyand, 2003. Bioinformatics 19, 1090-1099.
 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/9/1090
- Ben-Hur, Elisseeff, Guyon, 2002. Pacific Symposium on Biocomputing
 7: 6-17
 - http://www.ncbi.nlm.nih.gov/pubmed/11928511

Early conclusions

- Different algorithms, different distance metrics will produce different clusterings
 - which is best?
- Algorithms may or may not produce what you would have picked "by eye"
- Algorithms may or may not actually optimize some relevant objective function

Objects

- Clusters of experimental units (e.g., subjects, rocks)
- Clusters of features (e.g., genes, customers qualities)

Attributes

 Select the variables that are going to be used to cluster objects (e.g., genes, brand loyalty and price consciousness, group averages)

Similarity

 Dissimilarity or distance measure (e.g., simple matching coefficient for binary data, or Euclidean distance for continuous data)

Algorithm

- Hierarchical methods (e.g., agglomerative with single linkage)
- Partitioning methods (e.g., k-means)
- Model-based algorithms

Number of clusters???

Choosing the attributes

- When attributes are noisy, so is the resulting clustering
- photoRec: the attribute for each gene will be:

$$\mathbf{X}_g = (X_{g1,E16}, X_{g2,E16}, ..., X_{g39,4_\text{week}})$$

- Model: $X_{gi,DS} = \mu_{g,DS} + \varepsilon_{gi,DS}$
- Parameter-based attribute:

$$(\mu_{g,E16}, \mu_{g,P2}, \mu_{g,P6}, \mu_{g,P10}, \mu_{g,4w})$$

• **Estimated attribute**: use the within-DS averages (vectors of size 5, instead of vectors of size 39!)

Other model-based alternatives

- If 'time' is a condition of interest, the attribute could be the time-specific expectations
- For example, we can fit a linear models and use the regression parameters as attributes:

$$X_g(t) = \beta_{0g} + \beta_{1g}t + \beta_{2g}t^2 + \varepsilon_g(t)$$

$$Attr_g = (\beta_{1g}, \beta_{2g})$$

Gene Clustering (k-means, k=4) based on DS attributes

Summary Notes

- Many choices to make when you want to cluster a set of objects:
 - Objective, algorithm, attributes/features, distance metric, number of clusters.
- Not possible to say which method is best. It all depends on data and goal.
- Clustering is very powerful, but reckless application leads to misguided conclusions.
- CA is still a good way to explore the data and summarize results

References on Cluster Analysis

- "Applied multivariate statistical analysis" by R. A. Johnson and D. W. Wichern. Prentice-Hall.
- "Finding Groups in Data: An Introduction to Cluster Analysis" by Leonard Kaufman, P J Rousseeuw. Wiley Blackwell, 2005.
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, and Jerome Friedman.New York: Springer-Verlag, 2001. ISBN 0-387-95284-5. (available online at library.ubc.ca)
- "Problems in gene clustering based on gene expression data" by J. Bryan. Journal of Multivariate Analysis 90 (2004) (special issue on Bioinformatics).

Bonus Slides

Algorithms: k-means

Note that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} d(\mathbf{X}_{i}, \mathbf{X}_{j}) = \sum_{r=1}^{K} \sum_{i \in C_{r}} \sum_{j=1}^{n} d(\mathbf{X}_{i}, \mathbf{X}_{j})$$

$$= \sum_{r=1}^{K} \sum_{i \in C_{r}} \left[\sum_{j \in C_{r}} d(\mathbf{X}_{i}, \mathbf{X}_{j}) + \sum_{j \notin C_{r}} d(\mathbf{X}_{i}, \mathbf{X}_{j}) \right]$$

$$= \sum_{r=1}^{K} \sum_{i,j \in C_{r}} d(\mathbf{X}_{i}, \mathbf{X}_{j}) + \sum_{r=1}^{K} \sum_{i \in C_{r}} \sum_{j \notin C_{r}} d(\mathbf{X}_{i}, \mathbf{X}_{j})$$

$$T = W + B$$

When $d(\mathbf{X}_i, \mathbf{X}_j) = \|\mathbf{X}_i - \mathbf{X}_j\|^2$

$$W = \sum_{r=1}^{K} \sum_{i,j \in C_r} \|\mathbf{X}_i - \mathbf{X}_j\|^2 = \sum_{r=1}^{K} \sum_{i \in C_r} \|\mathbf{X}_i - \bar{\mathbf{X}}_r\|^2$$

- Given $\overline{X}_1, \overline{X}_2,..., \overline{X}_K$, the minimum of W is attained assigning X_i to the cluster C_r with the closest mean (\overline{X}_r) .
- Given C_1 , C_2 ,..., C_K , the minimum of W is attained estimating the center of the cluster with its sample mean $\overline{\mathbf{X}}_r$.

$$\min_{\hat{\boldsymbol{\mu}}_1, \dots, \hat{\boldsymbol{\mu}}_K} \sum_{r=1}^K \sum_{i \in \mathcal{C}_r} \|\mathbf{x}_i - \hat{\boldsymbol{\mu}}_r\|^2 \longrightarrow \hat{\boldsymbol{\mu}}_r = \bar{\mathbf{X}}_r = \frac{1}{n_r} \sum_{i \in \mathcal{C}_r} \mathbf{x}_i$$

Distance measures for binary data are based on the number of matches and mismatches:

	0	1
0	m	r
1	S	t

$$a_i \in \{0,1\}, b_i \in \{0,1\}, i = 1,..., p$$

 $m = \#\{a_i = b_i = 0, i = 1,..., p\}$
 $r = \#\{a_i = 0, b_i = 1, i = 1,..., p\}$

• • •

– Example:

	Gender	Race	Obese	Smoke
Subject a	0	0	1	1
Subject b	1	0	1	1

$$m = 1, t = 2$$

$$r = 1, s = 0$$

- Typical examples of distance measures for binary data are
 - Simple matching coefficient

$$a_i \in \{0,1\}, b_i \in \{0,1\}, i = 1,..., p : d(a,b) = \frac{m+t}{m+r+s+t}$$

Jaccard coefficient

$$a_i \in \{0,1\}, b_i \in \{0,1\}, i = 1,..., p : d(a,b) = \frac{m}{m+r+s}$$