Задача 1.

Намерете всички двойки от естествено число ${\mathfrak n}$ и просто число ${\mathfrak p},$ такива че $\phi(\phi({\mathfrak n}))={\mathfrak p}^2.$

Задача 2.

- Нека G образува група. Нека $a, b \in G$. Докажете, че редовете на елементите a и $b^{-1}ab$ съвпадат;
- Нека G образува група. Нека $\mathfrak{a} \in G$ и нека \mathfrak{a} е единственият елемент от ред 2. Докажете, че \mathfrak{a} комутира с всеки елемент на групата.

Задача 3.

Нека $R = \left\{ \begin{pmatrix} a & b \\ -10b & a \end{pmatrix} \mid a,b \in \mathbb{Z} \right\}$. Нека I е главният идеал, породен от $\begin{pmatrix} 3 & 1 \\ -10 & 3 \end{pmatrix}$. Докажете

• R образува комутативен пръстен с единица;

•
$$I = \left\{ \begin{pmatrix} a & b \\ -10b & a \end{pmatrix} \mid a, b \in \mathbb{Z} \& 19 \mid b - 6a \right\};$$

 $\bullet \ R/I \simeq \mathbb{Z}_{19}.$

Задача 4.

Нека $f = x^4 + ax^3 + bx^2 + cx + d \in \mathbb{R}[x]$ има корени x_1, x_2, x_3, x_4 , които не са реални числа и $x_1 + x_2 = 1 + i$ и $x_3x_4 = 1 - i$. Намерете a, b, c.