This listing of claims will replace all prior versions, and listings, of claims in the application:

1 Claim 1 (currently amended): A method of processing a 2 plurality of Z-vectors, each Z-vector including Z 3 elements, each element including K bits, where Z is a 4 positive integer greater than 1 and K is a positive 5 integer, the plurality of Z-vectors corresponding to a . 6 binary codeword, portions of said binary codeword having 7 a direct mapping relationship to a plurality of transmission units, said plurality of Z-vectors being 9 stored in a set of D memory arrays, where D is an integer 10 greater than zero, each memory array including Z rows of 11 memory locations, each memory location of a row 12 corresponding to a different array column, each array 13 column corresponding to a different one of said plurality 14 of Z-vectors, each Z-vector identifying one column in 15 each of said D memory arrays, the method comprising: 16 generating a series of sets of control information, 17 each set of control information including: 18 i) a Z-vector identifier: 19 ii) a row identifier; and 20 for at least one generated set of control 21 information: 22 reading P times K divided by D bits, where 23 P is a positive integer, from each column identified by 24 the Z-vector that is identified by the Z-vector identifier included in said at least one generated set of 25 26 control information; 27 wherein said method of processing is used to process 28 received transmission units; and

	wherein k is an integer greater than zero and is a
30	number of bits used to represent a soft value
31	corresponding to one bit of said binary codeword.
1	Claim 2 (original): The method of claim 1,
2	wherein said method of processing is performed by a
3	transmission device prior to transmission of said
4	transmission units;
5	wherein D is 1; and
6	wherein K is 1.
1	Claim 3 (original): The method of claim 2, further
2	comprising:
3	for said at least one generated set of control
4	information:
5	generating from said P bits read from memory, a
6	portion of the transmission unit identified by the
7	transmission unit identifier included in said at
8	least one generated set of control information.
1	Claim 4 (currently amended): The method of claim 3, A method
2	of processing a plurality of Z-vectors, each Z-vector
3	including Z elements, each element including K bits,
4	where Z is a positive integer greater than 1 and K is a
5	positive integer, the plurality of Z-vectors
6	corresponding to a binary codeword, portions of said
7	binary codeword having a direct mapping relationship to a
8	plurality of transmission units, said plurality of Z-
9	vectors being stored in a set of D memory arrays, where D
0	is an integer greater than zero, each memory array
1	including Z rows of memory locations, each memory
2	location of a row corresponding to a different array

	column, each array column corresponding to a different
	one of said plurality of Z-vectors, each Z-vector
	identifying one column in each of said D memory arrays,
	the method comprising:
	generating a series of sets of control information,
	each set of control information including:
	i) a Z-vector identifier;
	ii) a row identifier; and
	for at least one generated set of control
	information:
	reading P times K divided by D bits, where
	P is a positive integer, from each column identified by
	the Z-vector that is identified by the Z-vector
	identifier included in said at least one generated set of
•	control information;
	wherein said method of processing is performed
]	by a transmission device prior to transmission of said
į	ransmission units;
	wherein D is 1;
	wherein K is 1;
	for said at least one generated set of control
	nformation, generating from said P bits read from
r	memory, a portion of the transmission unit identified by
t	he transmission unit identifier included in said at
1	east one generated set of control information;
	wherein said plurality of Z-vectors includes n of
5	aid plurality of Z-vectors, where n is a positive
j	nteger greater than 1; and
	wherein generating a series of sets of control
i	nformation further includes:
	incrementing a Z-vector identifier value by n
	divided by M, where M is the number of portions of

45	the transmission unit having a direct mapping
46	relationship to a portion of the binary codeword
47	said portion of the binary codeword including M
48	times P bits.
i	Claim 5 (original): The method of claim 4,
2	wherein each portion of a transmission unit is a
,3	symbol; and
4	wherein the transmission unit is a dwell.
1	Claim 6 (currently amended): The method of claim 3,
2	wherein generating a series of sets of control
3	information further includes:
4	incrementing the z-vector identifier value M times;
5	after incrementing the z-vector value M times:
6	i) resetting the \pm z-vector identifier value to
7	the z-vector identifier value existing at the
8	start of said incrementing; and
9	ii) incrementing a row identifier value by P.
1	Claim 7 (previously presented): The method of claim 6,
2	wherein generating a series of sets of control
3	information further includes:
4	after incrementing the row identifier value Z
5	divided by P times, where Z divided by P times is an
6	integer,
7	setting the row identifier value to zero; and
8	incrementing the Z-vector identifier value by a
9	preselected positive integer value.
1	Claim 8 (original): The method of claim 7, wherein said
2	preselected positive integer value is one

1

Claim 9 (original): The method of claim 2, wherein said 2 binary codeword is a low density parity check codeword. Claim 10 (canceled): Claim 11 (original): The method of claim 10, where D is 2 equal to K or 1. 1 Claim 12 (original): The method of claim 11, further 2 comprising: 3 for said at least one generated set of control 4 information: 5 supplying the P bits read from memory to a 6 demodulator. 1 Claim 13 (previously presented): The method of claim 10, further comprising: for said at least one generated set of control 4 information: 5 generating, from said P bits read from memory, 6 a portion of the transmission unit identified by the 7 transmission unit identifier included in said each generated set of control information. 1 Claim 14 (previously presented): The method of claim 13, 2 wherein said plurality of Z-vectors includes n of 3 said Z-vectors, where n is a positive integer greater than 1; and 5 wherein generating a series of sets of control 6 information further includes:

/	incrementing a Z-vector identifier value n
8	divided by M, where M is the number of portions of
9	the transmission unit having a mapping relationship
10	to a portion of the binary codeword said portion of
11	the binary codeword including M times P bits.
I	Claim 15 (previously presented): The method of claim 13,
2	wherein generating a series of sets of control
3	information further includes:
4	incrementing a row identifier value by P
5	incrementing the Z-vector identifier value M times;
6	after incrementing the Z-vector value M times:
7	i) resetting the Z-vector identifier value to
8	the Z-vector identifier value existing at the
9	start of said incrementing; and
10	ii) incrementing a row identifier value by P.
,	
l 2	Claim 16 (previously presented): The method of claim 15,
2	wherein generating a series of sets of control
3	information further includes:
4	after incrementing the row identifier value Z
5	divided by P times, where Z divided by P times is an
6	integer,
7	setting the row identifier value to zero; and
8	incrementing the Z-vector identifier value by a
9 .	preselected positive integer value.
1	Claim 17 (original): The method of claim 16, wherein
2	said preselected positive integer value is one.

- Claim 18 (currently amended): The method of claim 1 10,
- 2 wherein said binary codeword is a low density parity
- 3 check codeword.
- Claim 19 (currently amended): An apparatus for
- 2 processing a plurality of Z-vectors, each Z vector
- including Z elements, each element including K bits,
- 4 where Z is a positive integer greater than 1 and K is a
- 5 positive integer, the plurality of Z vectors
- 6 corresponding to a binary codeword, portions of said
- 7 binary codeword having a direct mapping relationship to a
- 8 plurality of transmission units, said apparatus
- 9 comprising:

21

- memory including a set of D memory arrays for

 storing said plurality of Z-vectors, where D is an

 integer greater than zero, each memory array including Z

 rows of memory locations, each memory location of a row

 corresponding to a different array column, each array

 column corresponding to a different one of said plurality
- of Z vectors, each Z-vector identifying one column in
- 17 each of said D memory arrays;
- memory access control module for generating a series of sets of control information, each set of control information including:
 - i) a Z-vector identifier;
- 22 ii) a row identifier; and
- 23 means for reading P times K divided by D bits,
- from said memory, where P is a positive integer greater
- 25 than zero, from each column identified by the Z-vector
- 26 that is identified by the Z-vector identifier included in
- 27 at least one generated set of control information; and

```
28
            wherein K is an integer greater than zero and is a
29
       number of bits used to represent a soft value
30
       corresponding to one bit of said binary codeword.
       Claim 20 (original): The method of claim 1,
 1
 2
            wherein D is 1; and
 3
            wherein K is 1.
 1
       Claim 21 (previously presented): The method of claim 19,
 2
       wherein said memory access control modules includes:
 3
            a first counter for generating said Z-vector
 4
       identifier; and
 5
            a second counter for generating said row identifier.
 1
      Claim 22 (currently amended): A machine readable medium
2
      comprising machine executable instructions for
3
      controlling a computer device to process a plurality of
       Z-vectors, each Z-vector including Z elements, each
      element including K bits, where Z is a positive integer
      greater than 1 and K is a positive integer, the plurality
6
7
      of Z-vectors corresponding to a binary codeword, portions
8
      of said binary codeword having a direct mapping
9
      relationship to a plurality of transmission units, said
      machine executable instructions including instructions
10
11
      used to control the computer device to:
12
           generate a series of sets of control information.
13
      each set of control information including:
14
                 i) a Z-vector identifier; and
15
                 ii) a row identifier; and
16
           for at least one generated set of control
17
      information:
```

18	read P times K divided by D bits, where P is a
19	positive integer greater than zero, from each column
20	identified by the Z-vector that is identified by the Z-
21 .	vector identifier included in said at least one generated
22	set of control information; and
23	wherein K is an integer greater than zero and
24	is a number of bits used to represent a soft value
25	corresponding to one bit of said binary codeword.