Discrete Structures

Jiaqi Wang

January 15, 2024

1 Counting

2 Graphs

2.1 Graphs

Definition 2.1.1 – **Isomorhpism** Two graphs G = (V, E) and G' = (V', E') are called *isomorphic* if there exists a bijection $f: V \to V'$ such that $\forall x, y \in V, x \neq y[\{x, y\} \in E \iff \{f(x), f(y)\} \in E']$ Such a bijection f is called an *isomorphism* from G to G'.

Theorem 2.1.2 – Counting graphs Let $V = \{1, 2, ..., n\}$. There are $2^{\binom{n}{2}}$ possible graphs.

2.2 Subgraphs

Definition 2.2.1 – **Subgraph** A graph G' = (V', E') is a *subgraph* of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$.

Definition 2.2.2 – **Induced subgraph** A graph G' = (V', E') is an *induced subgraph* of G = (V, E) if $V' \subseteq V$ and $E' = \{\{x, y\} \in E \mid x, y \in V'\}$.

2.3 Common graphs

Complete graphs

Definition 2.3.1 – Complete graph A graph G = (V, E) is a complete graph if $\forall x, y \in V, x \neq y[\{x,y\} \in E]$.

Proposition 2.3.2 – Let $V = \{1, 2, ..., n\}$ and K_n be the complete graph on V. Then K_n has $\binom{n}{2}$ edges.

Star graphs

Definition 2.3.3 – **Star graph** A graph G = (V, E) is a *star graph* if $V = \{u\} \cup \{v_1, \dots, v_n\}$ and $E = \{\{u, v_j\} \mid j = 1, 2, \dots, n\}.$

Proposition 2.3.4 – Let $V = \{1, 2, ..., n\}$ and S_n be the star graph on V. Then S_n has n-1 edges.

Complete bipartite graphs

Definition 2.3.5 – Complete bipartite graph A graph G = (V, E) is a complete bipartite graph if $V = V_1 \cup V_2$ and $E = \{\{x, y\} \mid x \in V_1, y \in V_2\}$.

2 GRAPHS 2.4 Walks

Proposition 2.3.6 – Let $V_1 = \{1, 2, ..., n\}$ and $V_2 = \{n + 1, n + 2, ..., n + m\}$ and $K_{n,m}$ be the complete bipartite graph on $V_1 \cup V_2$. Then $K_{n,m}$ has $n \cdot m$ edges.

Paths

```
Definition 2.3.7 - Path A graph G = (V, E) is a path if V = \{v_1, v_2, ..., v_n\} and E = \{\{v_i, v_{i+1}\} \mid i = 1, 2, ..., n-1\}.
```

Proposition 2.3.8 – Let $V = \{1, 2, ..., n\}$ and P_n be the path on V. Then P_n has n-1 edges.

Cycles

```
Definition 2.3.9 - Cycle A graph G = (V, E) is a cycle if V = \{v_1, v_2, ..., v_n\} and E = \{\{v_i, v_{i+1}\} \mid i = 1, 2, ..., n-1\} \cup \{\{v_n, v_1\}\}.
```

Proposition 2.3.10 – Let $V = \{1, 2, ..., n\}$ and C_n be the cycle on V. Then C_n has n edges.

2.4 Walks

Definition 2.4.1 – **Walk** A walk in a graph G = (V, E) is a sequence of vertices v_1, v_2, \ldots, v_n such that $\forall i \in \{1, 2, \ldots, n-1\} [\{v_i, v_{i+1}\} \in E]$. Another definition is that a walk is a sequence of edges e_1, e_2, \ldots, e_n such that $\forall i \in \{1, 2, \ldots, n-1\} [e_i = \{v_i, v_{i+1}\}]$.

2.5 Connected and Components

Definition 2.5.1 – Connected A graph G = (V, E) is connected if $\forall x, y \in V [\exists \text{ a walk from } x \text{ to } y]$.

Definition 2.5.2 – **Component** The components of a graph G are the equivalence classes defined by the relation on the set V(G), where $x \ y \iff \exists a$ walk from x to y in G

Theorem 2.5.3 – Any graph G = (V, E) where each vertex $v \in V$ has $\deg_G(v) \ge \frac{n-1}{2}$ is connected, where n = |V|.

2.6 Graph distance

Definition 2.6.1 – **Distance** The *distance* between two vertices x and y in a graph G is the length of the shortest walk from x to y in G.

Theorem 2.6.2 – Let G = (V, E) with vertex set $V = \{v_1, \ldots, v_n\}$ be a graph and let A be its adjacency matrix. Let $a_{i,j}^k$ denote the element of A^k at position (i, j). Then $a_{i,j}^k$ is the number of walks of length k from v_i to v_j .

2.7 Degree sequence

Definition 2.7.1 – **Degree sequence** The *degree sequence* of a graph G = (V, E) is the sequence of degrees of the vertices of G.

The order doesn't matter. Generally, we sort the sequence in non-decreasing order.

Example 2.7.2 The degree sequence of the graph G is (1, 2, 2, 4, 4, 4, 4, 4).

2 GRAPHS 2.8 Eulerian graphs

Example 2.7.3 A path of length n has degree sequence $(2, 1, 1, \dots, 1, 2)$.

Example 2.7.4 A cycle of length n has degree sequence (2, 2, ..., 2).

Example 2.7.5 A complete graph of n vertices has degree sequence $(n-1, n-1, \ldots, n-1)$.

Example 2.7.6 A complete bipartite graph $K_{n,m}$ has degree sequence $(m, m, \ldots, m, n, n, \ldots, n)$.

Remark 2.7.7. A sequence of non-negative integers is a degree sequence of some graph if and only if the sum of the integers is even.

Lemma 2.7.8 – Hankshake lemma For any graph G = (V, E) the number of vertices of odd degree is even.

Theorem 2.7.9 Let $D = (d_1, \ldots, d_n)$ be a sequence of natural numbers, for n > 1, where $d_1 \le d_2 \le \cdots \le d_n \le n_1$ and let D' denote the sequence (d'_1, \ldots, d'_{n-1}) where

$$d'_{i} = \begin{cases} d_{i} & \text{for } i < n - d_{n} \\ d_{i} - 1 & \text{for } i \ge n - d_{n} \end{cases}$$

Then D is a degree sequence if and only if D' is a degree sequence.

2.8 Eulerian graphs

Definition 2.8.1 — **Closed Eulerian tour** A closed walk containing all the vertices and edges, and each edge exactly once, is called a *closed Eulerian tour*.

Definition 2.8.2 – **Eulerian graph** A graph G = (V, E) is *Eulerian* if it has a closed Eulerian tour.

Theorem 2.8.3 – A graph G = (V, E) is Eulerian if and only if G is connected and each vertex has even degree.

2.9 Hamiltonian cycle

Definition 2.9.1 – **Hamiltonian cycle** A *Hamiltonian cycle* is a cycle that contains all the vertices of a graph.

2.10 Graph operations

Definition 2.10.1 – Graph operations Let G = (V, E) be a graph

- 1. Edge deletion: $G e = (V, E \setminus \{e\})$, where $e \in E$.
- 2. Edge insertion: $G + e = (V, E \cup \{e\})$, where $e \in \binom{V}{2} \setminus E$
- 3. Vertex deletion: $G v = (V \{v\}, \{e \in E \mid v \in e\})$, where $v \in V$.

4. Edge subdivision: $G\%e = (V \cup \{z\}, (E \setminus \{\{x,y\}\}) \cup \{\{x,z\}, \{z,y\}\})$ where $e = \{x,y\} \in E$ and $z \notin V$.

2.11 K-vertex-connectivity

Definition 2.11.1 – A graph G is called k-vertex-connected if $|V(G)| \ge k+1$ and G-v is connected for every $v \in V(G)$. Often we say G is k-connected.

Example 2.11.2 K_n is (n-1)-connected.

Theorem 2.11.3 – A graph G = (V, E) is 2-connected if and only if for any two vertices $v, w \in V$, there exists a cycle containing v and w.

3 Trees

3.1 Definition

Definition 3.1.1 — **Tree** A *tree* is a connected graph with no cycles.

Theorem 3.1.2 – For a non-empty graph G = (V, E), the following are equivalent:

- 1. The graph G is a tree.
- 2. For any two distinct vertices $u, v \in V$, there is a unique path from u to v. (unique paths)
- 3. The graph G is connected and $\forall e \in E, G e$ is disconnected. (minimal connected graph)
- 4. The graph G is acyclic and $\forall e \in \binom{V}{2} \setminus E, G + e$ contains a cycle. (maximal acyclic graph)
- 5. G is connected and |V| = |E| + 1. (Euler's formula)

3.2 Induction on trees

Lemma 3.2.1 – end-vertex Every tree with at least two vertices has at least two leaves.

Lemma 3.2.2 - **tree-growing** Let G be a graph and v be a leaf in G. Then G - v is a tree.

3.3 Rooted trees

Definition 3.3.1 – **Rooted tree** A rooted tree is a pair (T, r) where T is a tree and $r \in V(T)$ is a distinguished vertex of T called the root.

A node u in a rooted tree T may have a:

- 1. parent: the unique vertex $v \in V(T)$ such that $\{u, v\} \in E(T)$ and v lies on the unique path from u to r,
- 2. ancestor: a vertex $v \in V(T)$ such that v lies on the unique path from u to r,
- 3. child: a vertex $v \in V(T)$ where u is the parent of v,
- 4. descendant: a vertex $v \in V(T)$ where u is an ancestor of v,

3.4 Subtree

Definition 3.4.1 – **Subtree** The subtree rooted at $v \in V(T)$ in a rooted tree is the induced subgraph defined by all vertices that are descendants of v, rooted at v.

3.5 Binary trees

Definition 3.5.1 – **Binary tree** A *binary tree* is a rooted tree where each node has at most two children.

Definition 3.5.2 — **Strict binary tree** A *strict binary tree* is a rooted tree where each node has exactly zero or two children.

Lemma 3.5.3 A strict binary tree with n vertices has $\frac{n-1}{2}$ internal vertices.

3.6 Ear decomposition

Lemma 3.6.1 – Let G = (V, E) be a 2-connected graph, then

- 1. G%e is 2-connected graph, where $e \in E$
- 2. G + e is a 2 connected graph, where $e \in \binom{V}{2} \setminus E$

Proposition 3.6.2 – Any 2-connected graph G = (V, E) can be connected from K_3 by a sequence of edges subdivisions and edge additions.

Definition 3.6.3 – Ear decomposition An ear decomposition of a graph G = (V, E) is a sequence of subgraphs G_0, G_1, \ldots, G_k of G such that

- 1. G_0 is a cycle,
- 2. $G_k = G$,
- 3. $G_i = G_{i-1}\%e_i$ or $G_i = G_{i-1} + e_i$ for i = 1, 2, ..., k.

Theorem 3.6.4 – Any 2-connected graph G has an ear decomposition.

4 Directed Graphs

4.1 Definition

Definition 4.1.1 – **Directeed graph** A directed graph G is an order pari (V, E), where V is some set of elements and $E \subseteq V \times V$.

A directed edge e = (u, v), called an edge from u to v, has head v and tail u.

The indegree $\deg_G^+(v)$ of a vertex v is the number of edges having v as head. The outdegree $\deg_G^-(v)$ is the number of edges having v as tail.

4.2 Connectedness

Definition 4.2.1 – **Symmetrization** The *symmetrization* of a directed graph G = (V, E) is the undirected graph $Sym(G) = (V, \overline{E})$ where $\overline{E} = \{\{u, v\} \mid (u, v) \in E \lor (v, u) \in E\}$

Definition 4.2.2 – Weakly connected A directed graph G is called weakly connected if its symmetrization Sym(G) is connected.

Definition 4.2.3 – Strongly connected A directed graph G is called *strongly connected* if for every two vertices $u, v \in V$ there is a directed path from u to v and a directed path from v to u.

Definition 4.2.4 – Weakly connected components Weakly connected components of a directed graph G are the equivalence classes defined by the relation on the set V(G), where $x \ y \iff \exists a \text{ walk from } x \text{ to } y \text{ in } \operatorname{Sym}(G)$

Definition 4.2.5 – Strongly connected components Strongly connected components of a directed graph G are the equivalence classes defined by the relation on the set V(G), where $x \ y \iff \exists$ a directed walk from x to y and from y to x in G

4.3 Eulerian directed graphs

Definition 4.3.1 — **Eulerian directed tour** A closed directed walk containing all the vertices and edges, and each edge exactly once is an *Eulerian directed tour*.

Definition 4.3.2 – Eulerian directed graph A directed graph G is Eulerian if it has an Eulerian directed tour.

Theorem 4.3.3 – A directed graph is Eulerian if and only if its symmetrization is connected and $\deg^+(v) = \deg^-(v)$ for all $v \in V$.

4.4 De Bruijn Graphs

Lemma 4.4.1 – Every vertex v in a De Bruijn graph has $\deg^+(v) = \deg^-(v)$.

Lemma 4.4.2 – For any De Bruijn graph G, Sym(G) is connected.

4.5 Directed acyclic graphs

Definition 4.5.1 — **Directed acyclic graph** A *directed acyclic graph* is a directed graph with no directed cycles.

Definition 4.5.2 – **Source** A *source* in a directed graph G is a vertex v such that $\deg^+(v) = 0$.

Definition 4.5.3 – **Sink** A *sink* in a directed graph G is a vertex v such that $\deg^-(v) = 0$.

Theorem 4.5.4 – Every (finite) DAG G = (V, E) has at least one sink.

5 Planar Graphs

5.1 Definitions

Definition 5.1.1 – **Planar graph** A *planar graph* is a graph that can be drawn in the plane without any edges crossing.

Definition 5.1.2 - Arc An arc is an injective continuous function $\gamma:[0,1]\to\mathbb{R}^2$.

Definition 5.1.3 – **Drawing** A drawing of a graph G = (V, E) is an assignment:

- to every vertex $v \in V$ a point b(v) of the plane
- to every edge $e = \{u, v\} \in E$, assign an arc a(e) in the plane with endpoints b(u) and b(v)

such that

5 PLANAR GRAPHS 5.2 Faces

- \bullet the mapping b is injective
- no point b(v) lies on any of the arcs a(e) unless it is an endpoint of that arc

Definition 5.1.4 – Topological graph A topological graph is a graph together with a drawing.

5.2 Faces

Definition 5.2.1 – Face A face of a drawing of a graph G is a maximal connected subset of the plane whose boundary consists of arcs a(e) for edges $e \in E$.

Definition 5.2.2 – **Jordan curve** A *Jordan curve* is an arc whose endpoints coincide.

Theorem 5.2.3 — Any Jordan curve k divides the plane into exactly two connected parts, the "interior" and the "exterior" of k, and k is the boundary of both the interior and exterior.

5.3 Planar graphs

Proposition 5.3.1 – K_1 , K_2 , K_3 , K_4 are planar. K_5 is not planar.

Proposition 5.3.2 – $K_{3,3}$ is not planar

Theorem 5.3.3 – Kuratowski's theorem A graph G is planar if and only if it has no subgraph isomorphic to a subdivision of $K_{3,3}$ or to a subdivision of K_5

5.4 Properties of planar graphs

Theorem 5.4.1 – Euler's formula Let G = (V, E) be a connected planar graph and let f be the number of faces of some planar drawing of G. Then we have

$$|V| - |E| + f = 2$$

Theorem 5.4.2 – Let G = (V, E) be a planar graph with at least 3 vertices. Then

$$|E| \le 3|V| - 6.$$

Corollary 5.4.3 – Every planar graph contains a vertex of degree at most 5.

5.5 Coloring maps

Definition 5.5.1 – A mapping $c: V \to \{1, 2, ..., k\}$ is called a *coloring* of a graph G = (V, E) if $c(u) \neq c(v)$ for every edge $\{u, v\} \in E$.

Definition 5.5.2 – Chromatic number The *chromatic number*, denoted by $\chi(G)$, of a graph G is the smallest k such that G has a coloring $c: V \to \{1, 2, \ldots, k\}$.

Example 5.5.3 $\chi(K_n) = n$.

Example 5.5.4 $\chi(K_{n,m}) = 2$.

Example 5.5.5 $\chi(C_n) = \begin{cases} 2 & \text{if } n \text{ even} \\ 3 & \text{if } n \text{ odd} \end{cases}$.

Example 5.5.6 $\chi(P_n) = 2$.

Example 5.5.7 $\chi(T_n) = 2$.

Theorem 5.5.8 – Any planar graph satisfies $\chi(G) \leq 4$.

6 Double Counting

6.1 Double Counting

Theorem 6.1.1 – If G = (V, E) is a triangle-free graph with n vertices, then G has at most $\frac{n^2}{4}$ edges.

Theorem 6.1.2 – If G=(V,E) is a n-vertex graph without a $K_{2,2}$ subgraph, then G has at most $\frac{1}{2}(n^{\frac{3}{2}}+n)$ edges