Máster Universitario en Computación Paralela y Distribuida Modelado de Problemas en Ingeniería mediante Computación de Altas Prestaciones

Tema 2. Descomposiciones matriciales

Sistemas triangulares. Descomposición LU.

Bibliografía:

"Matrix Computations". G.Golub & C. Van Loan. Baltimore; London: Johns Hopkins University Press, 1996 (u otra edición del libro)

Lecturas recomendadas:

"Matrix Computations". G.Golub & C. Van Loan. Baltimore.

Capítulo 3. Puntos 3.1, 3.2 y 3.4

Capítulo 4. Puntos 4.1 y 4.2

Qué leer:

Lecturas indispensables

Sistemas triangulares
"Matrix Computations". G.Golub & C.Van Loan.
Capítulo 3. Puntos 3.1

Forma de ver los algoritmos:

Forma escalar Forma de bloques Notación matlab en "Matrix Computations"

Librerías numéricas:

Algoritmos implementados en librerías numéricas Exploraremos las rutinas que los resuelven

Resolución de sistemas de ecuaciones lineales

$$Ax = b$$

$$con A \in \Re^{m \times m}, b \in \Re^m, x \in \Re^m$$

Descomposiciones matriciales: permiten transformar un problema complejo en otro problema con matrices estructuradas más sencillas:

Sinch as:
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$y \qquad U \text{ triangular superior}$$

$$Ax = b \Leftrightarrow LUx = b \Leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases}$$

$$Ax = b \Leftrightarrow LUx = b \Leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

Descomposiciones matriciales:

Supongamos que A es simétrica e invertible y que existe su descomposición LU.

Definamos

$$D = diag(u_{11}, u_{22}, ..., u_{mm}) \text{ y } M^{T} = D^{-1}U \ (d_{ii} \neq 0)$$

Se tiene:

$$A = LU = LDD^{-1}U = LDM^{T}$$

con M y L triangulares inferiores unidad

Puesto que A es simétrica $M^{-1}AM^{-T}$ también lo es y

 $M^{-1}AM^{-T} = M^{-1}LD$ es triangular inferior y simétrica, por tanto $M^{-1}LD$ es diagonal.

Descomposiciones matriciales:

- * $M^{-1}AM^{-T} = M^{-1}LD$ es triangular inferior y simétrica, por tanto $M^{-1}LD$ es diagonal.
- * D no es singular, por tanto $M^{-1}L$ es diagonal.
- * Además, $M^{-1}L$ es triangular inferior unidad, por tanto $M^{-1}L = I \Rightarrow M = L \Rightarrow A = LDL^T$
- * Si $d_{ii} > 0$, $\forall i$, $D = D^{1/2}D^{1/2}$ y en este caso $A = LD^{1/2}D^{1/2}L^T = GG^T$, con G triangular inferior y $g_{ii} > 0$, $\forall i$,

Cuatro descomposiciones matriciales:

Matrices generales

- * Descomposición LU: A = LU
- * Descomposición LU con pivotamiento: PA = LU

Matrices Simétricas Indefinidas

* Descomposición LDL^T: $A = LDL^T$

Matrices Simétricas Definidas Positivas

* Descomposición de Cholesky: $A = GG^T$

$$A = \begin{vmatrix} 2 & 3 & 1 \\ 4 & 5 & 4 \\ 6 & 6 & 7 \end{vmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 4 \\ 6 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & -3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 4 \\ 6 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & -3 & 4 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & -3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$

Paso completo

$$\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & -3 & 1
 \end{bmatrix}$$

 1 & 0 & 0 & 2 & 3 & 1 \\
 -2 & 1 & 0 & 4 & 5 & 4 \\
 -3 & 0 & 1
 \end{bmatrix}

 2 & 3 & 1 \\
 4 & 5 & 4 \\
 6 & 6 & 7
 \end{bmatrix}

 2 & 3 & 1 \\
 0 & -1 & 2 \\
 0 & 0 & -2
 \end{bmatrix}

Descomposición LU y almacenamiento

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 4 \\ 6 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 4 \\ 6 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 3 & 1 \\ 2 & -1 & 2 \\ 3 & 3 & -2 \end{bmatrix}$$

$$A = \left| \begin{array}{cccc} 2 & 3 & 1 \\ 4 & 5 & 4 \\ 6 & 6 & 7 \end{array} \right|$$

1)

$$\begin{bmatrix} 1 & 0 & 0 & 2 & 3 & 1 \\ -2 & 1 & 0 & 4 & 5 & 4 \\ -3 & 0 & 1 & 6 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & -3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 4 \\ 6 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & -3 & 4 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$

Paso completo

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 4 \\ 6 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$

Descomposición LU y almacenamiento

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 4 \\ 6 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 & 0 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 1 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 & 0 & 0 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 4 \\ 6 & 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 3 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & -2 \end{bmatrix}$$

Producto de las Inversas

Matriz de Gauss de índice k: $M_k = I - re_k^T$, con $r^T = (0, ..., 0, r_{k+1}, ..., r_n)$

★ Dado un vector $\mathbf{x} \in \mathbb{R}^n$, con $\mathbf{x}_k \neq 0$, la matriz $\mathbf{M}_k = \mathbf{I} - \mathbf{r}_{(k)} \mathbf{e}_k^T$, permite hacer 0's en las n - k últimas componentes de \mathbf{x} , si se elige $\mathbf{r}_{(k)}^T = (0, ..., 0, \mathbf{x}_{k+1} / \mathbf{x}_k, ..., \mathbf{x}_n / \mathbf{x}_k)$

En efecto
$$M_{k}x = (I - re_{k}^{T})x = x - (e_{k}^{T}x)r = x - x_{k}r = \begin{bmatrix} x_{1} \\ .. \\ x_{k} \\ x_{k+1} \end{bmatrix} - x_{k} \begin{bmatrix} 0 \\ .. \\ 0 \\ x_{k+1}/x_{k} \end{bmatrix} = \begin{bmatrix} x_{1} \\ .. \\ 0 \\ .. \\ x_{n}/x_{k} \end{bmatrix}$$

Además

*
$$M_k^{-1} = I + r_{(k)} e_k^T$$

*
$$M_k^{-1} I + I_{(k)} O_k$$

* $M_1^{-1} M_2^{-1} ... M_k^{-1} = I + \sum_{i=1}^k r_{(i)} e_i^T = I + [r_{(1)} r_{(2)} ... r_{(k)} 0 0... 0]$, para cualquier $k \in \{1, 2, ..., n-1\}$

Algoritmo de eliminación Gaussiana

Dada $A \in \Re^{n \times n}$, con A(1:k,1:k) invertible para k=1,2,...,n-1, el siguiente algoritmo obtiene la descomposición LU de A L=I Para k=1,2,...,n-1 Calcula la matriz de Gauss, M_k , que hace 0's en la columna k de A $A=M_kA$ $L=LM_k^{-1}$

Finpara

Descomposición *LU*: Algoritmo escalar *kij*

Dada
$$A \in \Re^{n \times n}$$
, sobreimprime A con la descomposición LU de A Para $k=1,2,...,n-1$
Si $A_{kk}=0$
el algoritmo fracasa
en otro caso
Para $i=k+1,...,n$

$$A_{ik}=\frac{A_{ik}}{A_{kk}}$$
Para $j=k+1,...,n$

$$A_{ij}=A_{ij}-A_{ik}A_{kj}$$
Finpar a
Finpara

Características del algoritmo

Coste:
$$\frac{2}{3}n^3$$
 flops

Eficiencia.

•En cada paso del bucle k se accede a casi toda la matriz para

lectura y para escritura

•Su implementación solo permite el uso de BLAS 1

sscal
$$A_{k+1:n,k} = \left(\frac{1}{A_{kk}}\right) A_{k+1:n,k}$$

$$A_{k+1:n,j} = A_{k+1:n,j} - (A_{kj}) A_{k+1:n,k}$$

Robustez: El algoritmo fracasa si A(1:k,1:k) no es invertible $\left(A_{kk}^{(k)}=0\right)$

Descomposición LU por columnas: Algoritmo *jki*

Dada la Desc. LU de A
$$M_{n-1}M_{n-2}...M_1A = U$$

También puede expresarse como

$$M_{n-1}M_{n-2}...M_1A = [M_1A_1, M_2M_1A_2,...,M_{n-1}M_{n-2}..M_1A_n] = U$$

Descomposición LU de A orientada por columnas

Para
$$j = 1, 2, ..., n$$

Para
$$k=1,.2,..,j-1$$

$$A_j = M_k A_j$$

Finpara

Calcula M_i

$$A_j = M_j A_j$$

Almacena $M_{j+1:n,j}$ en $A_{j+1:n,j}$

Finpara

usando la propiedad

$$\begin{bmatrix} 1 & & & & & \\ & 1 & & & & \\ & & 1 & & \\ & & m & 1 \end{bmatrix} \begin{bmatrix} a \\ a \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ a \\ 0 \\ 0 \end{bmatrix}$$

Descomposición LU por columnas: Algoritmo *jki*

Finpara

```
Dada A \in \Re^{n \times n}, sobreimprime A con la descomposición LU de A
Para j = 1, 2, ..., n
      Para k=1,.2,..,j-1
            Para i = k + 1,...,n
                 A_{ij} = A_{ij} - A_{ik} A_{kj}
            Finpara
      Finpara
      Para i = j + 1, j + 2,...,n
      Finpara
```

Algoritmo jki utilizando BLAS2

Dada $A \in \Re^{n \times n}$, sobreimprime A con

la descomposición LU de A

Para
$$j = 1, 2, ..., n$$

Para
$$k=1,.2,..,j-1$$

Para
$$i = k + 1,...,j - 1$$

$$A_{ij} = A_{ij} - A_{ik} A_{kj}$$

Finpara

Finpara

Para
$$k=1,.2,..,j-1$$

Para
$$i = j, j + 1,...,n$$

$$A_{ij} = A_{ij} - A_{ik} A_{kj}$$

Finpara

Finpara

Para
$$i = j + 1, j + 2,...,n$$

$$A_{ij} = \frac{A_{ij}}{A_{ii}}$$

Finpara

Finpara

BLAS2: Resolver un sistema de ecuaciones triangular inferior

Bucle dividido en dos

BLAS2: Producto matriz-vector

Descomposición LU por bloques

$$A_{11} \quad A_{12} = \begin{bmatrix} L_{11} \\ A_{21} \end{bmatrix}$$

I	
	\hat{A}

U_{II}	U_{12}
	I

$$A_{11}\!\!=\!\!L_{11}U_{11}$$

$$\rightarrow [L_{II}, U_{II}] = lu(A_{II})$$

$$A_{12} = L_{11}U_{12}$$

$$A_{21} = L_{21}U_{11}$$

$$\begin{array}{ll} A_{II} = L_{II} U_{II} & \boldsymbol{\rightarrow} [L_{II}, U_{II}] = \operatorname{lu}(A_{II}) \\ A_{12} = L_{11} U_{12} & \boldsymbol{\rightarrow} \text{ Resuelve el sistema triangular } L_{II} U_{12} = A_{12} \\ A_{21} = L_{21} U_{11} & \boldsymbol{\rightarrow} \text{ Resuelve el sistema triangular } U_{II}{}^T L_{2I}{}^T = A_{2I}{}^T \\ A_{22} = L_{21} U_{12} + \hat{A} & \boldsymbol{\rightarrow} \hat{A} = A_{22} - L_{2I} U_{I2} \end{array}$$

$$A_{22} = L_{21}U_{12} + \hat{A}$$

$$\rightarrow \hat{A} = A_{22} - L_{21}U_{12}$$

Si se calcula $\hat{A} = \hat{L}\hat{U}$ se tiene:

U_{II}	U_{12}
	Û

Algoritmo Descomposición LU por bloques

Descomposición LU: A=LU

tb -

Sobreimprime A con su descomposición LU organizada por bloques

 λ : indice de la primera fila (o columna) de un bloque,

 μ : indice de la última fila (o columna) de un bloque,

tb: tamaño de un bloque,

$\lambda = 1$

Mientras $\lambda \leq n$

$$\mu = \min(n, \lambda + tb - 1)$$

 $A(\lambda : \mu, \lambda : \mu) \leftarrow [\hat{L}, \hat{U}] = lu(A_{11})$ (* obtenida por un algoritmoescalar*)

Resuelve $\hat{L}Z = A(\lambda : \mu, \mu + 1 : n)$ (*BLAS3*)

 $A(\lambda: \mu, \mu+1: n) \leftarrow Z$

Resuelve $\hat{U}^T W^T = A(\mu + 1: n, \lambda : \mu)^T$ (*BLAS3*)

 $A(\mu+1:n,\lambda:\mu) \leftarrow W$

 $A(\mu+1:n,\mu+1:n) = A(\mu+1:n,\mu+1:n) - WZ$ (*BLAS3*)

 $\lambda = \mu + 1$

Finmientras

A_{II}	A_{12}		L_{II}	
A_{2I}	A_{22}	=	L_{21}	I

I	
	\hat{A}

U_{II}	U_{12}
	I

Fracción de uso del BLAS 3

Algoritmo escalar *kij*: 100% BLAS1; 0% BLAS 3

Algoritmo por bloques:

Supongamos que N=n/tb

Fracción que no usa BLAS3: paso de la descomposición LU de un bloque que se hace mediante un algoritmo escalar.

Por tanto:

Fracción del algoritmo que se hace con BLAS3:

$$F_{BLAS3} = 1 - \frac{\frac{2}{3}tb^3}{\frac{2}{3}n^3}(N) = 1 - \frac{\frac{2}{3}(n/N)^3}{\frac{2}{3}n^3}(N) = 1 - \frac{N}{N^3} = 1 - \frac{1}{N^2}$$

Si N=10: $F_{BLAS3}=0.99 \rightarrow 99\% BLAS3$

Ejercicios propuestos

Implementa un programa en Matlab:

- 1. Que resuelva un sistema de ecuaciones triangular inferior
- 2. Que resuelva un sistema de ecuaciones triangular superior
- 3. Que calcule la LU de una matriz usando el algoritmo kij
- 4. Que calcule la LU de una matriz usando el algoritmo jki

Máster Universitario en Computación Paralela y Distribuida Modelado de Problemas en Ingeniería mediante Computación de Altas Prestaciones

Tema 2. Descomposiciones matriciales Descomposición LU con pivotamiento.

Bibliografía:

"Matrix Computations". G.Golub & C. Van Loan. Baltimore; London: Johns Hopkins University Press, 1996 (u otra edición del libro)

Lecturas recomendadas:

"Matrix Computations". G.Golub & C. Van Loan. Baltimore.

Capítulo 3. Puntos 3.1, 3.2 y 3.4

Capítulo 4. Puntos 4.1 y 4.2

Robustez de la descomposición LU

1)
$$\begin{bmatrix} 1 \\ m & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \implies m = -\frac{4}{0} \text{ Algoritmo fracasa}$$

*
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 0 & 2 \end{bmatrix}$$
 Si aplicamos a esta matriz el algoritmo LU, ya no fracasa

$$\begin{vmatrix} 1 & 0 & 0 \\ -0.5 & 1 & 0 \\ -0.5 & 0 & 1 \end{vmatrix} \begin{vmatrix} 4 & 2 & 1 \\ 2 & 1 & 3 \\ 2 & 7 & 5 \end{vmatrix} = \begin{vmatrix} 4 & 2 & 1 \\ 0 & 0 & 2.5 \\ 0 & 6 & 4.5 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & m & 1 \end{vmatrix} \begin{bmatrix} 4 & 2 & 1 \\ 0 & 0 & 2.5 \\ 0 & 6 & 4.5 \end{vmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ 0 & 0 & 2.5 \\ 0 & * & * \end{bmatrix} \Rightarrow m = -\frac{6}{0}$$
 Algoritmo fracasa

Matrices de permutación: son matrices que difieren de la matriz identidad únicamente en el orden de sus filas

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{1}^{T} \\ \mathbf{e}_{2}^{T} \\ \mathbf{e}_{3}^{T} \\ \mathbf{e}_{4}^{T} \end{bmatrix} \qquad E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{1}^{T} \\ \mathbf{e}_{4}^{T} \\ \mathbf{e}_{3}^{T} \\ \mathbf{e}_{2}^{T} \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{3}^{T} \\ \mathbf{e}_{4}^{T} \\ \mathbf{e}_{4}^{T} \end{bmatrix}$$

Propiedades:

- Son matrices ortogonales: P-1=PT
 Su cálculo no tienen coste
- Su actuación solo provoca intercambios: no tiene coste en flops
- No se almacenan como matrices. Si fuera necesario se almacenan como un vector:

$$I=(1\ 2\ 3\ 4);$$
 $E=(1\ 4\ 3\ 2);$ $P=(2\ 4\ 1\ 3);$

Matrices de permutación: son matrices que difieren de la matriz identidad únicamente en el orden de sus filas

$$P = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_3^T \\ \mathbf{e}_1^T \\ \mathbf{e}_2^T \\ \mathbf{e}_2^T \end{bmatrix} = [\mathbf{e}_2 \ \mathbf{e}_4 \ \mathbf{e}_1 \ \mathbf{e}_3]$$

Efecto al multiplicar a otra matriz

Por delante

$$PA = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 & 1 \\ 8 & 6 & 7 & 5 \\ 4 & 2 & 4 & 3 \\ -3 & 9 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 4 & 3 \\ 2 & 3 & 4 & 1 \\ -3 & 9 & 1 & 2 \\ 8 & 6 & 7 & 5 \end{bmatrix}$$

Por detrás

$$AP = \begin{bmatrix} 2 & 3 & 4 & 1 \\ 8 & 6 & 7 & 5 \\ 4 & 2 & 4 & 3 \\ -3 & 9 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 & 4 \\ 6 & 5 & 8 & 7 \\ 2 & 3 & 4 & 3 \\ 9 & 2 & -3 & 2 \end{bmatrix}$$

Dada
$$A \in \Re^{n \times n}$$
: $M_{n-1}E_{n-1}...M_2E_2M_1E_1A = U$

Para k = 1, 2, ..., n-1

Calcula la posición, t, del elemento de mayor valor absoluto de $\{A_{k,k}, A_{k+1,k} \dots A_{n,k}\}$

Calcula la permutación E_k que intercambia las fila t y k de A

$$A = E_k A$$

Calcula la matriz de Gauss, M_k , que hace 0's en la columna k de A

$$A = M_k A$$

Finpara

Entrada: $A \in \Re^{n \times n}$

Salida: $A \in \Re^{n \times n}$ sobreimpresa con la Desc. LU dePA.

$$P = E_{n-1} * ... E_2 * E_1$$

Multiplicadores tienen valor absoluto menor o igual que 1

```
Dada A \in \Re^{n \times n}, sobreimprime A con la descomposición LU de A
Para k = 1, 2, ..., n-1
     Determina t, con k \le t \le n tal que |A_{tk}| = \max\{A_{k,k}|, |A_{k+1,k}|, ..., |A_{n,k}|\}
      Intercambia filas k y t: (A_{k,1} A_{k,2} ... A_{k,n}) \leftrightarrow (A_{t,1} A_{t,2} ... A_{t,n})
      piv(k) = t
      Si A_{kk} \neq 0
              Para i = k+1,...,n
                     Para j = k + 1,..,n
                           A_{ij} = A_{ij} - A_{ik} A_{kj}
                     Finpara
              Finpara
Finpara
```

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -4 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 4 & 5 & 1 \\ 4 & 2 & -1 & 3 \\ 1 & 4 & 2 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 3 & -1 \\ 0 & -6 & -5 & -1 \\ 0 & 2 & 1 & 5 \end{bmatrix} \Rightarrow a_{22} = 0$$
 Siguiente paso del Algoritmo LU fracasa

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 4 & 5 & 1 \\ 4 & 2 & -1 & 3 \\ 1 & 4 & 2 & 6 \end{bmatrix} = \begin{bmatrix} 4 & 2 & -1 & 3 \\ 2 & 4 & 5 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 4 & 2 & 6 \end{bmatrix}$$

$$E_{1}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 2 & -1 & 3 \\ 0 & 3 & 5.5 & -0.5 \\ 0 & 1.5 & 1.25 & 0.25 \\ 0 & 3.5 & 2.25 & 5.25 \end{bmatrix} = \begin{bmatrix} 4 & 2 & -1 & 3 \\ 0 & 3.5 & 2.25 & 5.25 \\ 0 & 1.5 & 1.25 & 0.25 \\ 0 & 3 & 5.5 & -0.5 \end{bmatrix}$$

$$E_2$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & 2 & -1 & 3 \\ 0 & 3.5 & 2.25 & 5.25 \\ 0 & 0 & 0.2857 & -2 \\ 0 & 0 & 3.5714 & -5 \end{bmatrix} = \begin{bmatrix} 4 & 2 & -1 & 3 \\ 0 & 3.5 & 2.25 & 5.25 \\ 0 & 0 & 3.5714 & -5 \\ 0 & 0 & 0.285 & -2 \end{bmatrix}$$

 E_3

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -0.5 & 1 & 0 & 0 \\ -0.25 & 0 & 1 & 0 \\ -0.25 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & -1 & 3 \\ 2 & 4 & 5 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 4 & 2 & 6 \end{bmatrix} = \begin{bmatrix} 4 & 2 & -1 & 3 \\ 0 & 3 & 5.5 & -0.5 \\ 0 & 1.5 & 1.25 & 0.25 \\ 0 & 3.5 & 2.25 & 5.25 \end{bmatrix}$$

$$M_1$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -0.4286 & 1 & 0 \\ 0 & -0.8571 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & -1 & 3 \\ 0 & 3.5 & 2.25 & 5.25 \\ 0 & 1.5 & 1.25 & 0.25 \\ 0 & 3 & 5.5 & -0.5 \end{bmatrix} = \begin{bmatrix} 4 & 2 & -1 & 3 \\ 0 & 3.5 & 2.25 & 5.25 \\ 0 & 0 & 0.2857 & -2 \\ 0 & 0 & 3.5714 & -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -0.08 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & -1 & 3 \\ 0 & 3.5 & 2.25 & 5.25 \\ 0 & 0 & 3.5714 & -5 \\ 0 & 0 & 0.2857 & -2 \end{bmatrix} = \begin{bmatrix} 4 & 2 & -1 & 3 \\ 0 & 3.5 & 2.25 & 5.25 \\ 0 & 0 & 3.5714 & -5 \\ 0 & 0 & 0 & -1.6 \end{bmatrix}$$

 M_3

$$A = \begin{vmatrix} 1 & 2 & 1 & 1 \\ 2 & 4 & 5 & 1 \\ 4 & 2 & -1 & 3 \\ 1 & 4 & 2 & 6 \end{vmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.25 & 1 & 0 & 0 \\ 0.5 & 0 & 1 & 0 \\ 0.25 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0.8571 & 1 & 0 \\ 0 & 0.4286 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0.08 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.25 & 1 & 0 & 0 \\ 0.5 & 0.8571 & 1 & 0 \\ 0.25 & 0.4286 & 0.08 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 4 & 2 & -1 & 3 \\ 0 & 3.5 & 2.25 & 5.25 \\ 0 & 0 & 3.5714 & -5 \\ 0 & 0 & 0 & -1.6 \end{bmatrix}$$

$$P*A=L*U$$

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 4 & 5 & 1 \\ 4 & 2 & -1 & 3 \\ 1 & 4 & 2 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.25 & 1 & 0 & 0 \\ 0.5 & 0.8571 & 1 & 0 \\ 0.25 & 0.4286 & 0.08 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & -1 & 3 \\ 0 & 3.5 & 2.25 & 5.25 \\ 0 & 0 & 3.5714 & -5 \\ 0 & 0 & 0 & -1.6 \end{bmatrix} = \begin{bmatrix} 4 & 2 & -1 & 3 \\ 1 & 4 & 2 & 6 \\ 2 & 4 & 5 & 1 \\ 1 & 2 & 1 & 1 \end{bmatrix}$$

Características del algoritmo

Coste:
$$\frac{2}{3}n^3$$
 flops + $(n-1)$ cálculos de un máximo $\approx \frac{2}{3}n^3$ flops

Eficiencia:

- •Se pueden construir algoritmos orientados por columnas, *jki*, o con otras ordenaciones de los bucles
- •Se pueden hacer implementaciones por bloques que permitan el uso de BLAS 3

Robustez:

- •El algoritmo no fracasa si A(1:k,1:k) es invertible
- •Se puede continuar aunque un elemento pivote A(k,k)=0
- •Multiplicadores son menores o iguales que 1 (en valor absoluto): no hay problemas de overflow

Ejercicios propuestos

Implementa un programa en Matlab que calcule la LU con pivotamiento de una matriz usando el algoritmo kij

Máster Universitario en Computación Paralela y Distribuida Modelado de Problemas en Ingeniería mediante Computación de Altas Prestaciones

Tema 2. Descomposiciones matriciales

Descomposición LDLT. Descomposición de Cholesky

Bibliografía:

"Matrix Computations". G.Golub & C. Van Loan. Baltimore; London: Johns Hopkins University Press, 1996 (u otra edición del libro)

Lecturas recomendadas:

"Matrix Computations". G.Golub & C. Van Loan. Baltimore.

Capítulo 4. Puntos 4.1 y 4.2

Cuatro descomposiciones matriciales:

Matrices generales

- * Descomposición LU: A = LU
- * Descomposición LU con pivotamiento: PA = LU

Matrices Simétricas Indefinidas

* Descomposición LDLT: $A = LDL^T$

Matrices Simétricas Definidas Positivas

* Descomposición de Cholesky: $A = GG^T$

Matrices Simétricas Indefinidas

Descomposición LDL^T: $A = LDL^T$

```
 \begin{pmatrix} 4 & 3 & 1 & 1 \\ 3 & 8 & 1 & 2 \\ 1 & 1 & 16 & 1 \\ 1 & 2 & 1 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.75 & 1 & 0 & 0 & 0 \\ 0.25 & 0.0435 & 1 & 0 & 0 \\ 0.25 & 0.2174 & 0.0442 & 1 \end{pmatrix} \begin{pmatrix} 4 & 3 & 1 & 1 \\ 0 & 5.75 & 0.25 & 1.25 \\ 0 & 0 & 15.7391 & 0.6957 \\ 0 & 0 & 0 & 9.4475 \end{pmatrix}
```

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.75 & 1 & 0 & 0 \\ 0.25 & 0.0435 & 1 & 0 \\ 0.25 & 0.2174 & 0.0442 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 5.75 & 0 & 0 \\ 0 & 0 & 15.7391 & 0 \\ 0 & 0 & 0 & 9.4475 \end{pmatrix} \begin{pmatrix} 1 & 0.75 & 0.25 & 0.25 \\ 0 & 1 & 0.0435 & 0.2174 \\ 0 & 0 & 1 & 0.0442 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 A_1

Descomposición LDL^T: $A = LDL^T$

$$\begin{pmatrix} a_{11} & a & a & a \\ a_{21} & a_{22} & a & a \\ a_{31} & a_{32} & a_{33} & a \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} = \begin{pmatrix} 1 & & & & \\ I_{21} & 1 & & & \\ I_{31} & I_{32} & 1 & & \\ I_{41} & I_{42} & I_{43} & 1 \end{pmatrix} \begin{pmatrix} d_1 & & & & \\ d_2 & & & & \\ & d_3 & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$$

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & & & \\ I_{21} & 1 & & & \\ \vdots & \vdots & \ddots & \vdots \\ I_{21} & I_{21} & & & \\ \vdots & \vdots & \ddots & \vdots \\ I_{n1} & I_{n2} & \ddots & \ddots & 1 \end{bmatrix} \begin{bmatrix} d_1 \\ 0 & & & \\ d_1 = a_{11} \\ \vdots & & & \\ d_1 = a_{11} \\ \vdots & & & \\ d_1 = a_{11} \\ \vdots & & & \\ I_{21} = a_{21}/d_1 \\ \vdots & & & \\ \vdots & & & \\ I_{n1} = a_{n1}/d_1 \end{bmatrix}$$

 $(DL^{T})_{1}$

Matrices Simétricas Indefinidas

Descomposición LDLT: $A = LDL^T$

Descomposición LDLT: $A = LDL^T$

Entrada: $A \in \Re^{n \times n}$, $A = A^{T}$ tal que existe la Desc. LU de A

Salida: L, triangular inferior unidad, y D, diagonal, tales que $A = LDL^{T}$

Cáculo de L y D

Para
$$j = 1, 2, ..., n$$

Para $i = 1, 2, ..., j - 1$
 $v_i = d_i L_{ji}$
Finpara

$$v_j = A_{jj} - \sum_{k=1}^{j-1} L_{jk} v_k$$

$$d_j = v_j$$
Para $i = j + 1, j + 2, ..., n$

$$L_{ij} = \left(A_{ij} - \sum_{k=1}^{j-1} L_{ik} v_k\right) / v_j$$
Finpara

Finpara

Ly D sobreimprimen A

Para
$$j = 1, 2, ..., n$$

Para $i = 1, 2, ..., j - 1$
 $v_i = A_{ii}A_{ji}$
Finpara

$$v_j = A_{jj} - \sum_{k=1}^{j-1} A_{jk}v_k$$

$$A_{jj} = v_j$$
Para $i = j + 1, j + 2, ..., n$

$$A_{ij} = \left(A_{ij} - \sum_{k=1}^{j-1} A_{ik}v_k\right)/v_j$$
Finpara
Finpara

Coste:
$$\frac{1}{3}n^3$$
 flops $Ax = b \Leftrightarrow LDL^T x = b \Leftrightarrow \begin{cases} Ly = b \\ L^T x = D^{-1}y \end{cases}$

Matrices Simétricas Definidas Positivas

* Descomposición de Cholesky: $A = GG^T$

Sea $A \in \Re^{n \times n}$, $A = A^T$ tal que A es definida positiva: $x^T A x > 0$, $\forall x \in R^n / x \neq 0$

A no es singular
$$A \text{ es definida positiva:} \begin{cases} A \text{ no es singular} \\ e_i^T A e_i = A_{ii} > 0 \end{cases}$$

$$A \text{ singular}$$

$$A \text{ is } A \text{ es definida positiva:} \begin{cases} A \text{ is } A \text{ es algún } i \end{cases}$$

$$A = LDL^{T} = LD^{1/2}D^{1/2}L^{T} = (LD^{1/2})(LD^{1/2})^{T} = GG^{T}$$

$$\begin{pmatrix} 4 & 3 & 1 & 1 \\ 3 & 8 & 1 & 2 \\ 1 & 1 & 16 & 1 \\ 1 & 2 & 1 & 10 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 1.5 & 2.3979 & 0 & 0 & 0 \\ 0.5 & 0.1043 & 3.9673 & 0.1753 & 3.0737 \end{pmatrix} \begin{pmatrix} 2 & 1.5 & 0.5 & 0.5 \\ 0 & 2.3979 & 0.1043 & 0.5213 \\ 0 & 0 & 3.9673 & 0.1753 \\ 0 & 0 & 0 & 3.0737 \end{pmatrix}$$

Matrices Simétricas Definidas Positivas

Descomposición de Cholesky: $A = GG^T$

$$a_{11} = g_{11}^2 \rightarrow g_{11} = a_{11}^{1/2}$$

Paso 1

$$\begin{bmatrix} a_{21} \\ a_{31} \\ a_{41} \end{bmatrix} = g_{11} \begin{bmatrix} g_{21} \\ g_{31} \\ g_{41} \end{bmatrix} \Rightarrow \begin{bmatrix} g_{21} \\ g_{31} \\ g_{41} \end{bmatrix} = \begin{bmatrix} a_{21}/g_{11} \\ a_{31}/g_{11} \\ a_{41}/g_{11} \end{bmatrix}$$
 Paso 2

$$\begin{pmatrix} a_{22} & a & a \\ a_{32} & a_{33} & a \\ a_{42} & a_{43} & a_{44} \end{pmatrix} = \begin{pmatrix} g_{21} \\ g_{31} \\ g_{41} \end{pmatrix} \begin{pmatrix} g_{21} & g_{31} & g_{41} \\ g_{31} & g_{41} \end{pmatrix} + \begin{pmatrix} g_{22} \\ g_{32} & g_{33} \\ g_{42} & g_{43} & g_{44} \end{pmatrix} \begin{pmatrix} g_{22} & g_{32} & g_{42} \\ g_{33} & g_{43} \\ g_{44} \end{pmatrix}$$

Reiterar

Matrices Simétricas Definidas Positivas

Descomposición de Cholesky: $A = GG^T$

Sea $A \in \Re^{n \times n}$, $A = A^T$, tal que A es definida positiva

Este algoritmo sobreimprime A con el factor triangular de Cholesky, G

Para
$$k = 1, 2, ..., n$$

$$A_{kk} = \sqrt{A_{kk}}$$
Para $i = k+1, k+2, ..., n$

$$A_{ik} = A_{ik} / A_{kk}$$
Para $j = k+1, k+2, ..., i$

$$A_{ij} = A_{ij} - A_{ik}A_{jk}$$
Finpara
Finpara

Coste:
$$\frac{1}{3}n^3$$
 flops $Ax = b \Leftrightarrow GG^Tx = b \Leftrightarrow \begin{cases} Gy = b \\ G^Tx = y \end{cases}$

Descomposiciones LDL^T y de Cholesky

Ejercicios propuestos

Implementa un programa en Matlab:

- 1. Que calcule la Descomposición LDLT de una matriz con cálculo explícito de la L y la D
- 2. Que calcule la Descomposición LDLT de una matriz A sobreimprimiéndola sobre A
- 3. Que calcule la Descomposición de Cholesky de una matriz

Máster Universitario en Computación Paralela y Distribuida Modelado de Problemas en Ingeniería mediante Computación de Altas Prestaciones

Tema 2. Descomposiciones matriciales

Operaciones basadas en la descomposición LU.

Operaciones basadas en la descomposición LU.

Resolución de Sistemas de Ecuaciones Lineales:

$$Ax = b$$

 $con A \in \Re^{n \times n}, b \in \Re^n, x \in \Re^n$

• LU sin pivotamiento

$$M_{n-1}...M_2M_1Ax = M_{n-1}...M_2M_1b$$

 $Ux = c$ con $c = L^{-1}b$

• LU con pivotamiento

$$M_{n-1}.E_{n-1}..M_2E_2M_1E_1Ax = M_{n-1}.E_{n-1}..M_2E_2M_1E_1b$$
 $Ux = c ext{con } c = L^{-1}Pb ext{ y } P=E_{n-1}..E_2E_1$

Operaciones basadas en la descomposición LU.

Resolución de Sistemas de Ecuaciones Lineales:

```
Dados A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n transforma Ax = b en
Ux = c mediante la descomposición LU de A
U y c están sobreimpresas en A y b
Para k = 1, 2, ..., n-1
      Si A_{\nu\nu} = 0
             el algoritmo fracasa
      en otro caso
             Para i = k + 1....n
                   A_{ik} = \frac{A_{ik}}{A_{ik}}
                   Para j = k+1,...,n
                         A_{ii} = A_{ii} - A_{ik}A_{ki}
                   Finpara
                   b_i = b_i - A_{ik}b_i
             Finpara
Finpara
```

```
Dados A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n transforma Ax = b en
Ux = c mediante la desc. LU con pivotamiento de A
U y c están sobreimpresas en A y b
Para k = 1, 2, ..., n-1
      Determina t, con k \le t \le n
                 tal que |A_{tk}| = \max\{|A_{k,k}|, |A_{k+1,k}|, \dots, |A_{n,k}|\}
      Intercambia filas k y t: (A_{k_1}A_{k_2}...A_{k_n}) \leftrightarrow (A_{t_1}A_{t_2}...A_{t_n})
      Intercambia componentes k y t de b: (b_k) \leftrightarrow (b_k)
      piv(k) = t
       Si A_{kk} \neq 0
             Para i = k + 1....n
                    A_{ik} = \frac{A_{ik}}{A_{ik}}
                     Para j = k+1,...,n
                           A_{ii} = A_{ii} - A_{ik}A_{ki}
                     Finpara
                     b_i = b_i - A_{i\nu}b_{\nu}
              Finpara
Finpara
```

Operaciones basadas en la descomposición LU.

Cálculo del determinante de A:

$$A = LU \Rightarrow \det(A) = \det(LU) = \det(L)\det(U) = \det(U) = \prod_{i=1}^{n} u_{ii}$$

$$PA = LU \Rightarrow \det(PA) = \pm \det(A) = \det(LU) = \det(U) = \prod_{i=1}^{n} u_{ii}$$

Cálculo de la inversa de A:

$$A = LU \Rightarrow A^{-1} = (LU)^{-1} = U^{-1}L^{-1}$$

$$PA = LU \Rightarrow (PA)^{-1} = (LU)^{-1} \Rightarrow A^{-1}P^{T} = U^{-1}L^{-1} \Rightarrow A^{-1} = U^{-1}L^{-1}P$$

Las Descomposiciones LU/LDLT/Cholesky en las Librerías Matriciales

Matlab:

```
Desc.LU→ [L,U]=lu(A);
Factor de Cholesky: G=chol(A);
Resolución del sistema Ax=b: x=A\b;
Determinante: det(A);
Inversa: inv(A);
```

BLAS/LAPACK

http://www.netlib.org/blas/#_level_2 http://www.netlib.org/lapack/double/

Resolución de sistemas triangulares:

```
subroutine <u>dtrsv</u> (UPLO, TRANS, DIAG, <u>N</u>, A, <u>LDA</u>, X, INCX) subroutine <u>dtrsm</u> (SIDE, UPLO, TRANSA, DIAG, M, <u>N</u>, ALPHA, A, <u>LDA</u>, B, <u>LDB</u>)
```

Las Descomposiciones LU/LDLT/Cholesky en las Librerías Matriciales

BLAS/LAPACK

Descomposición LU:

SUBROUTINE DGETRF(M, N, A, LDA, IPIV, INFO) (*Descomposición*) SUBROUTINE DGETRS(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO) (*Resuelve un sistema usando la LU de DGETRF*)

Descomposición de Cholesky:

SUBROUTINE DPBSTF(UPLO, N, KD, AB, LDAB, INFO) (*Descomposición*)

SUBROUTINE DPOTRF(UPLO, N, A, LDA, INFO) (*Descomposición*)

SUBROUTINE DPOTRI(UPLO, N, A, LDA, INFO) (*calcula la inversa usando DPOTRF*)

SUBROUTINE DPOTRS(UPLO, N, NRHS, A, LDA, B, LDB, INFO) (*Resuelve un sistema usando DPOTRF *)

Las Descomposiciones LU/LDLT/Cholesky en las Librerías Matriciales

BLAS/LAPACK

Descomposición LDLT:

- SUBROUTINE DSYTRF(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) (*Descomposición*)
- SUBROUTINE DSYTRI(UPLO, N, A, LDA, IPIV, WORK, INFO) (*Inversa*)
- SUBROUTINE DSYTRI2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) (*Inversa con BLAS3*)
- SUBROUTINE DSYTRS(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO) (*Resolución de sistema*)
 SUBROUTINE DSYTRS2(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO) (*Resolución de sistema con BLAS3*)

Las Descomposiciones LU/LDLT/Cholesky en las Librerías Matriciales

•BLAS/LAPACK

Cálculo de la inversa:

SUBROUTINE DGETRI(N, A, LDA, IPIV, WORK, LWORK, INFO)

Resolución de sistemas:

- SUBROUTINE DSGESV(N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, SWORK, ITER, INFO) (*Sistema general con múltiples lados derechos*)
- SUBROUTINE DGESVX(FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO) (*Sistema general con múltiples lados derechos*)
- SUBROUTINE DPOSV(UPLO, N, NRHS, A, LDA, B, LDB, INFO) (*Sistema con matriz simétrica definida positiva*)
- SUBROUTINE DPOSVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO) (*Sistema con matriz simétrica definida positiva*)
- SUBROUTINE DSYSV(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO) (*Sistema con matriz simétrica indefinida*)
- SUBROUTINE DSYSVX(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, IWORK, INFO) (*Sistema con matriz simétrica indefinida*)

Ejercicios propuestos

- 1. Escribe un programa en Matlab que resuelva un sistema de ecuaciones, Ax=b, utilizando la descomposición LU sin pivotamiento de A
- 2. Escribe un programa en Matlab que resuelva un sistema de ecuaciones, Ax=b, utilizando la descomposición LU con pivotamiento de A
- 3. Escribe una función en Matlab que calcule el determinante de una matriz *A*, utilizando la descomposición LU sin pivotamiento de *A*