Academia Sabatina de Jóvenes Talento

Polinomios I

Encuentro: 2 Curso: Álgebra

Semestre: I

Nivel: Preolímpico IMO

Fecha: 26 de abril de 2025

Instructor: Kenny Jordan Tinoco
Instructor Aux: Jonathan Gutiérrez

Índice

1	Fun	$\operatorname{idamentos}$	1
	1.1	Conceptos	1
	1.2	División de polinomios	2
	1.3	Raíces	3
		1.3.1 Raíces en intervalos	4
	1.4	Interpolación de Lagrange	4
2	Pro	blemas	

1. Fundamentos

En esta segunda sesión repasaremos aspectos fundamentales sobre los polinomios que debemos conocer, veremos conceptos de polinomios, divisiones, raíces y una serie de teoremas importantes.

1.1. Conceptos

Definición 1.1. Un *monomio* en la variable x es una expresión cx^k donde c es una constante y k un entero no negativo.

Un polinomio es la suma de finitos monomios. En otras palabras un polinomio es una expresión de la forma

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

Asumamos que $a_n \neq 0$. En este caso, los números $a_n, a_{n-1}, \ldots, a_1, a_0$ se llaman los coeficientes del polinomio, y n es llamado el grado del polinomio.

Los polinomios pueden ser sumados y multiplicados. Para $A(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ y $B(x) = b_0 + b_1x + b_2x^2 + \ldots + b_nx^n$ definimos

$$A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots$$
$$A(x)B(x) = a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \dots$$

Para los motivos de este documento consideraremos a los polinomios con coeficientes reales, racionales, enteros, complejos o incluso valores que son residuos en módulo de algún primo p.

1.2. División de polinomios

Definición 1.2. Para los polinomios F(x) y G(x), llamamos *cociente* y *resto* a los polinomios Q(x) y R(x), respectivamente, si

$$F(x) = Q(x)G(x) + R(x)$$

 $y \deg R < \deg G$.

Teorema 1.1 (División polinómica). El cociente y resto siempre existen y son únicos.

Teorema 1.2 (Bezout version 1). El resto de P(x) dividido por (x-a) es igual a P(a).

Teorema 1.3 (Bezout version 2). Un número a es raíz de P(x) si y solo si (x-a)|P(x).

Corolario 1.1. Si a_1, a_2, \ldots, a_n son raíces distintas de P(x), entonces

$$(x-a_1)(x-a_2)\dots(x-a_n)|P(x).$$

Teorema 1.4. El polinomio P(x) con grado n tiene a lo más n raíces.

Corolario 1.2. Si A(x) y B(x) no son iguales, y su grado es a lo máximo n, entonces la ecuación A(x) = B(x) tiene a lo sumo n raíces.

Ejemplo 1.1. Probar que

$$a\frac{(x-b)(x-c)}{(a-b)(a-c)} + b\frac{(x-c)(x-a)}{(b-c)(b-a)} + c\frac{(x-a)(x-b)}{(c-a)(c-b)} = x.$$

Solución. Denotemos por P(x) al lado izquierdo de la ecuación. Sabemos que P(x) es un polinomio con grado a lo sumo 2 y P(a) = a, P(b) = b y P(c) = c. Por tanto, por el corolario previo P(x) = x.

Ejemplo 1.2. Dado el entero positivo n. El polinomio P(x) satisface $P(i) = 2^i$ para todo i = 0, 1, ..., n. Probar que deg $P \ge n$.

Solución. Considere el polinomio Q(x) = 2P(x) - P(x+1). Es obvio que deg $Q = \deg P$. Y los números $0, 1, \ldots, n-1$ son raíces de Q, por lo cual deg $Q \ge n$.

Ejemplo 1.3. Dado el polinomio P(x) con grado tres. Llamaremos a una tripleta de números reales (a, b, c) cíclica si P(a) = b, P(b) = c y P(c) = a. Probar que existen a lo más nueve tripletas cíclicas.

Solución. Dividamos la solución

1. Tripletas cíclicas diferentes no tienen elementos compartidos. Supongamos lo contrario y que hay dos tripletas cíclicas con números iguales (a, b, c) y (a, d, e). Con base en la definición de tripleta cíclica, b = P(a) y d = P(a), por tanto d = b. Y c = P(b) y e = P(d) = P(b), por tanto c = e. Esto implica que las tripletas son iguales.

2. Todos los números en cualquier tripleta cíclica son raíces del polinomio Q(x) = P(P(P(x))) - x. Consideremos cualquier tripleta cíclica (a, b, c).

$$P(P(P(a))) = P(P(b)) = P(c) = a.$$

3. El grado del polinomio P(P(P(x))) - x es 27, ya que si existen 10 tripletas cíclicas distintas, entonces existen 30 raíces distintas para Q(x). Lo cual es absurdo.

1.3. Raíces

Teorema 1.5 (Teorema Fundamental del álgebra). Cualquier polinomio no constante con coeficientes complejos tiene al menos una raíz compleja. Equivalentemente, todo polinomio de grado $n \geq 1$ con coeficientes complejos pude factorizarse como

$$P(z) = a_n(z - z_1)(z - z_2) \dots (z - z_n),$$

donde $a_n \neq 0$, y $z_1, z_2, \dots, z_n \in \mathbb{C}$ (considerando la multiplicidad).

Ejemplo 1.4. Dado el polinomio $P(x) \in \mathbb{R}[x]$ tal que $P(x) \geq 0$ para todo real a. Probar que existen polinomios $Q(x), R(x) \in \mathbb{R}[x]$ para el cual $P(x) = Q(x)^2 + R(x)^2$.

Solución. Sea $P(x) \in \mathbb{R}[x]$ sea un polinomio con coeficientes reales. Por el teorema Fundamental del álgebra, P(x) puede factorizarse como

$$P(x) = c \prod j = 1c(x - \alpha_j),$$

donde $c \in \mathbb{R}$ y $\alpha_j \in \mathbb{C}$. Ya que P(x) tiene coeficientes reales, cualquier raíz no real α debe tener su conjugado complejo $\overline{\alpha}$ en la factorización. De esta manera, los factores reales de P(x) son productos de

- Factores lineales: $(x-r)^{2k}$, correspondientes a raíces reales.
- Factores cuadráticos irreducibles: $ax^2 + bx + c$ con $b^2 4ac < 0$.

Si consideramos un polinomio cuadrático $x^2 + bx + c$ sin raíces reales (es decir $b^2 - 4c < 0$) y completando cuadrados, obtenemos que

$$x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + \left(c - \frac{b^{2}}{4}\right) = \left(x + \frac{b}{2}\right)^{2} + \frac{4c - b^{2}}{4}.$$

Esto puede escribirse como

$$x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + \left(\frac{\sqrt{4c - b^{2}}}{2}\right)^{2}$$

Por la identidad de Brahmagupta sabemos que el producto de dos sumas de dos cuadrados es igual a la suma de dos cuadrados, esto es

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$$

Así que cada factor de P(x) puede ser representado como la suma de dos cuadrados, por lo cual, P(x) puede ser escrito de la forma

$$P(x) = Q(x)^2 + R(x)^2$$

$$con Q(x), R(x) \in \mathbb{R}[x].$$

1.3.1. Raíces en intervalos

Aquí haremos uso de algunos teoremas de cálculo y sus corolarios.

Teorema 1.6 (Teorema del valor intermedio). Sea f(x) una función continua en un intervalo cerrado [a, b], asumamos que se toman los valores extremos con signos opuestos, es decir

$$f(a)\cdot(b)<0,$$

entonces existe un punto $c \in (a, b)$ tal que f(c) = 0.

1.4. Interpolación de Lagrange

Teorema 1.7. Para reales distintos x_0, x_1, \ldots, x_n y cualesquiera y_0, y_1, \ldots, y_n definimos

$$P_i(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n)}{(x_i-x_0)(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_n)},$$

así, el único polinomio P(x) con grado como máximo n tal que $P(x_i) = y_i$ para todo $i = 0, 1, \ldots, n$ es igual a

$$y_0P_0(x) + y_1P_1(x) + \ldots + y_nP_n(x)$$

Ejemplo 1.5. Dado el polinomio P(x) con coeficientes reales y grado 10. ¿Cuál es el mayor número de intersecciones que y = P(x) y el círculo $x^2 + y^2 = 1$ puede tener?

Solución. La respuesta es 20. Supongamos que hay más de 20 intersecciones, considerando el polinomio $Q(x) = x^2 + P(x)^2 - 1$. Si (x_0, y_0) es un punto de intersección, entonces x_0 es raíz de Q(x). Pero deg Q(x) es que solo pueden existir a lo máximo 20 valores x_0 .

2. Problemas

Ejercicio 1.

Problema 2.1.