МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

ЭФФЕКТ ПОККЕЛЬСА

Выполнил:

Деревянченко Михаил

Группа:

Б03-106

1. Теоретические сведения

Эффект Поккельса – изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития $LiNbO_3$ с цетрольноосевой симметрией вдоль оси Z. Для световой волны с E перпендикулярно Z показатель преломления будет n_o , а для волны с E вдоль Z n_e . В случае, когда луч света идёт под углом heta к оси, есть два значение показателя преломления n_1 и n_2 : $n_1 = n_0$ для волны с E перпендикулярным плоскости (k,Z) (обыкновенная волна) и n_2 для волны с Е в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_o^2} + \frac{\sin^2 \theta}{n_e^2}.$$

Нетрудно видеть, что при $\theta = 0$ и 90° n_2 равен n_{\circ} и n_{e} соответственно.

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности – рещультат интерфернции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен тёмные и наоборот). В случаи, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером m равен

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,$$

где L – расстояние от центра кристалла до экрана, l – длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\scriptscriptstyle \mathrm{эл}}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_0 . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления n_0 – Δn и n^o + Δn Рис. 2. Эффект Поккельса — (быстрая и медленная ось), причём $\Delta n = A*E_{\text{эл}}$.

появление новых главных направлений при наложении электрического поля

Пусть свет на входе в кристалл поляризован вертикально, а на выходе стоит анализатор, пропускающий горизонтальную поляризацию. Разложим исходный световой вектор $E = E_0^{ei(\omega t - kz)}$ по осям ξ и η : $E_\xi = E_\eta = E_0/\sqrt{2}$. После прохождения кристалла между векторами E_ξ и E_η появится разность фаз

$$\delta = \frac{2\pi l}{\lambda} 2\Delta n = \frac{4\pi l}{\lambda} A E_{\text{эл}} = \frac{4\pi}{\lambda} \frac{l}{d} A U,$$

где $U = E_{\tiny{\rm эл}} \cdot d$ — напряжение на кристалле, d — размер кристалла в поперечном направлении. Результирующее поле после анализатора — это сумма проекций E_{ξ} и E_{η} на направление X, т. е.

$$E_{\text{вых}} = \frac{E_0}{2} e^{i(\omega t - kl)} (e^{i\delta/2} - e^{-i\delta/2}) = E_0 e^{i(\omega t - kl)} \sin\left(\frac{\delta}{2}\right)$$

Интенсивность свет а пропорциональна квадрату модуля вектора электрического поля в волне, поэтому:

$$I_{\text{вых}} = I_0 \sin^2\left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}}\right),$$

где $U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{l}$ — полуволновое напряжение, d — поперечный размер кристалла. При напряжении $U = E_{\scriptscriptstyle 3,1} * d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

Напряжение $U_{\lambda/2}$ называют также управляющим напряжением. Оно уменьшается с уменьшением длины волны света λ и с увеличением отношения λ /d кристалла (это справедливо для поперечного электрооптического эффекта, который используется в нашем опыте). Характерная величина полуволнового напряжения в ниобате лития для видимого света составляет несколько сотен вольт.

2. Экспериментальная

установка

Рис. 1: Схема для наблюдения интерфереционной картины.

Оптическая часть установки представлена на рис. 1. Свет гелий-неонового лазера, поляризованный в вертикальной плоскости, проходя сквозь матовую пластинку, рассеивается и падает на двоякопреломляющий кристалл под различными углами. Кристалл ниобата лития с размерами 3×3×26 мм вырезан вдоль оптической оси Z. На экране, расположенном за скрещенным поляроидом, видна интерференционная картина.

Для $\lambda = 0.63$ мкм (длина волны гелий-неонового лазера) в ниобате лития $n_0 = 2.29$.

Убрав рассеивающую пластинку и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла.

Заменив экран фотодиодом (рис. 3) и подав на кристалл переменное напряжение, можно исследовать поляризацию луча с помощью осциллографа.

Рис. 3. Схема для изучения двойного лучепреломления в электрическом поле

3. Проведение измерений и обработка результатов

3.1 Коноскопическая картина

L, см	V(размер)	\mathbf{n}_0	λ, нм	
97	3*3*26мм	2.29	630	

Номер	1	2	3	4	5	6
R, мм	43.5	60.2	76.7	88.3	100.8	110.8

Построим график зависимости квадрата радиуса колец от порядка $r^2(m)$:

Коэффициент наклона графика:

$$k = \frac{\lambda}{l} \frac{(n_0 L)^2}{(n_0 - n_e)} m = 20.98 \pm 0.73 \, \text{cm}^2$$

откуда находим двулучепреломление ниобата лития:

$$n_0 - n_e = \frac{\lambda}{l} \frac{(n_0 L)^2}{k} m = (60 \pm 1.8) * 10^{-3}$$

3.2 Определение полуволнового напряжения

Постоянное напряжение					
U_{λ} , κ ${f B}$	$U_{\scriptscriptstyle \lambda/2}$, к ${f B}$	$U_{\scriptscriptstyle \lambda/4}$, k ${f B}$			
0.855	0.43	0.21			
Переменное напряжение					
$U_{\scriptscriptstyle \lambda/2}$, к ${f B}$	U_{λ} , к ${f B}$	$U_{\scriptscriptstyle 3\lambda/2}$, к ${f B}$			
0.435	0.87	1.31			
Ι _{λ/2} , мΑ	Ι _λ , мА	$I_{3\lambda/2}$, mA			
29	58	87			

4. Вывод

В работе изучена интерференция рассеянного света, прошедшего кристалл ниобата лития: получена зависимость квадрата радиуса темного кольца интерференционной картины от номера минимума r^2 (m), которая является линейной при малых углах отклонения луча от оптической оси кристалла и близких значениях показателей преломления для обыкновенной и необыкновенной волн. Однако полученное экспериментальное значение $n_0 - n_e = (60 \pm 1.8) * 10^{-3}$ отличается от теоретического $n_0 - n_e = 90 * 10^{-3}$.

Были найдены полуволновые напряжения, совпадающие при постоянном и при переменном напряжениях, а также наблюдались фигуры Лиссажу при переменном напряжении, отражающие зависимость интенсивности выходного сигнала от подаваемой амплитуды напряжения I(U) при скрещенных и параллельных поляризациях. Картинки для поляризаций отличаются по фазе на $\pi/2$