Algèbre II Clément Chivet

TD5: Théorie de Galois

23/10/2023

Exercice 1 : Exemples de groupes de Galois

- 1. Déterminer $Gal(\mathbb{C}, \mathbb{R})$ et $Gal(\mathbb{R}, \mathbb{Q})$.
- **2.** Déterminer $Gal(\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q})$.
- **3.** Préciser les corps intermédiaires de L/K lorsque $K = \mathbb{Q}$ et $L = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.
- **4.** Préciser les corps intermédiaires de L/K lorsque $K = \mathbb{Q}$ et L est un corps de décomposition de $X^3 2$. Quels sont ceux qui sont normaux sur K?
- **5.** Soit α une racine dans \mathbb{C} de $P(X) = X^3 + X^2 2X 1$. Montrer que $\alpha' = \alpha^2 2$ est aussi racine de P. Calculer $Gal(\mathbb{Q}(\alpha) : \mathbb{Q})$ et montrer que l'extension $\mathbb{Q}(\alpha)/\mathbb{Q}$ est normale.

Exercice 2: Corps cyclotomiques

- **1.** Quel est le groupe de Galois de $\mathbb{Q}(exp(\frac{2i\pi}{35}))/\mathbb{Q}$? Est-il cyclique?
- **2.** Combien $\mathbb{Q}(exp(\frac{2i\pi}{35}))$ a-t-il de sous-corps de degré 12? De degré 6?

Exercice 3 : Le groupe de Galois comme groupe de permutations des racines d'un polynôme.

Soient K un corps de caractéristique $\neq 2$ et $P \in K[X]$. On note L un corps de décomposition de P sur K. On note a_1, \ldots, a_n les racines distinctes de P dans L. On note $G := \operatorname{Gal}(L/K)$.

- 1. Montrer que G s'identifie naturellement à un sous-groupe de S_n .
- **2.** On suppose que G agit transitivement sur $\{a_1, \ldots, a_n\}$. Montrer qu'alors il existe $Q \in K[X]$ irréductible tel que L est le corps de décomposition de Q sur K.

On rappelle que le discriminant de P est défini par

$$D = \Delta^2 \quad \text{avec} \quad \Delta := (-1)^{\frac{n(n-1)}{2}} \prod_{i < j} (a_i - a_j).$$
 (1)

On suppose que les racines de P dans L sont simples (on a alors deg P = n).

- **3.** Montrer que $D \in K$.
- **4.** Montrer que $G \subset \mathcal{A}_n$ si et seulement si $\Delta \in K$.
- **5.** On note $H := G \cap \mathcal{A}_n$. Montrer que $L^H = K(\Delta)$.

Exercice 4 : Groupes de Galois et groupes symétriques

Soit p un nombre premier, P un polynôme irréductible sur \mathbb{Q} de degré p. On suppose que P admet exactement deux zéros non réels.

- 1. Montrer que $\operatorname{Gal}_{\mathbb{Q}}(P)$ s'identifie à un sous-groupe de \mathcal{S}_p . Montrer qu'il contient un p-cycle et une transposition.
 - **2.** En déduire que $\operatorname{Gal}_{\mathbb{Q}}(P) \simeq \mathcal{S}_p$.

Exercice 5 : Groupe de Galois d'un polynôme de degré 3.

Soit $P=X^3+pX+q$ avec $p,q\in\mathbb{Q}$ et $K\subset\mathbb{C}$ l'extension de \mathbb{Q} engendrée par es racines complexes (éventuellement confondues) z_1,z_2,z_3 de P. On note $G=Gal(K/\mathbb{Q})$.

- **1.** Montrer la formule $\operatorname{disc}(P) = -\prod_i P'(z_i)$. En déduire la formule $\operatorname{disc}(P) = -4p^3 27q^2$.
- **2.** Si P est réductible dans \mathbb{Q} , déterminer G en fonction du nombre de racines de P dans \mathbb{Q} .

On suppose désormais P sans racine dans \mathbb{Q} .

3. Montrer que les racines de P sont simples.

On plonge G dans S_3 en le faisant agir sur les racines.

4. Déterminer G en fonction des valeurs de $\operatorname{disc}(P)$.

Algèbre II Clément Chivet

5. Montrer que P est irréductible sur $\mathbb{Q}(\sqrt{\operatorname{disc}(P)})$.

Exercice 6:

Soit $P = (X^2 + 3)(X^3 - 3X + 1) \in \mathbb{Q}[X]$. Et G le groupe de Galois de P.

- 1. Montrer que G se plonge dans $\mathbb{Z}/2\mathbb{Z} \times \mathcal{S}_3$.
- **2.** Déterminer G. Est-il commutatif? cyclique?

Exercice 7:

On pose $a = \sqrt{5 + \sqrt{21}}$ et on note $K = \mathbb{Q}(a)$.

- **1.** Calculer $[K:\mathbb{Q}]$.
- **2.** Montrer que K/\mathbb{Q} est galoisienne.
- **3.** Déterminer le groupe de Galois de l'extension K/\mathbb{Q} .
- 4. Déterminer les sous-corps de K.
- **5.** L'extension $\mathbb{Q}(\sqrt{5+\sqrt{15}})/\mathbb{Q}$ est-elle galoisienne?

Exercice 8 : Compositum de deux Corps

- **1.** Soient $k \subset E, F \subset K$ des corps. On définit EF comme le plus petit sous-corps de K contenant E et F. On a EF = E(F) = F(E).
- a. Supposons que l'extension F/k est galoisienne. Montrer que EF/E et $F/F \cap E$ sont galoisienne et que $\operatorname{res}_{|E|} : \operatorname{Gal}(EF/E) \to \operatorname{Gal}(F/F \cap E)$ est un isomorphisme.
 - b. Dans ce cas, en déduire la relation sur les degrés :

$$[EF:k] = \frac{[F:k][E:k]}{[E \cap F:k]}$$

- c. Supposons maintenant que E/k et F/k sont galoisiennes. Montrer que EF/k et $E \cap F/k$ sont galoisiennes et que l'application $\sigma \to (\sigma_{|E}, \sigma_{|F})$ de $\operatorname{Gal}(EF/k) \to \operatorname{Gal}(E/k) \times \operatorname{Gal}(F/k)$ est un morphisme de groupe injectif et déterminer son image.
- **2.** Soient m en n deux entiers naturels non nuls. On pose N = ppcm(m, n) et d = pgcd(m, n). Pour tout entier naturel non nul t, on désigne par ζ_t une racine primitive t-ème de l'unité dans \mathbb{C} .
 - a. Montrer que $\mathbb{Q}(\zeta_m)\mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_N)$.
 - b. Montrer que $\mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_d)$.

Exercice 9 : Méthode de Hilbert et Galois inverse

Soient K un corps de caractéristique nulle et $K \subseteq L$ une extension galoisienne de degré 3.

- 1. Déterminer le groupe de Galois de L/K.
- **2.** Montrer qu'il existe un polynôme $P \in K[X]$ irréductible de degré 3 tel que L soit le corps de décomposition de P.
- **3.** Donner l'exemple d'un corps K et d'un polynôme $P \in K[X]$ irréductible de degré 3 dont le corps de décomposition est de degré 6 sur K.

Soient σ l'automorphisme de corps qui fixe les éléments de K et qui envoie X sur $\frac{1}{1-X}$ et G le sous-groupe de $\operatorname{Gal}(K(X)/K)$ engendré par σ .

- 4. Montrer que σ est un automorphisme d'ordre 3.
- 5. Montrer que le corps fixe $K(X)^G$ est de la forme K(T), où l'extension $K(T) \subseteq K(X)$ est galoisienne de degré 3 et où T est une fraction rationnelle que l'on explicitera.

Supposons l'existence de $t \in K$ tel que le polynôme

$$P = X^3 - tX^2 + (t - 3)X + 1 \in K[X]$$

Algèbre II Clément Chivet

soit irréductible.

6. Montrer que le corps de décomposition de P est une extension galoisienne de degré 3 de K.

Exercice 10 : Encore des exemples

Calculer les groupes de Galois suivants :

- (i) $X^3 3X + 1 \text{ sur } \mathbb{Q}$,
- (ii) $X^3 3TX T T^2$ sur $\mathbb{C}(T)$,
- (iii) $X^6 3X^2 1$,
- (iv) $X^3 + 2X^2 + 3X + 2 \text{ sur } \mathbb{Q}, \mathbb{Q}(\sqrt{7}), \text{ et } \mathbb{Q}(i\sqrt{7}).$

Exercice 11 : Equation non résoluble par radicaux

On considère le polynôme

$$P(X) = X^5 - 5X^2 + 1 \in \mathbb{Q}[X]$$
 (2)

et G le groupe de Galois de P sur \mathbb{Q} .

1. Montrer que G se plonge dans S_5 .

Soit \bar{P} la réduction de P dans $\mathbb{F}_2[X]$.

- **2.** Montrer que \bar{P} est irréductible dans $\mathbb{F}_2[X]$.
- **3.** En déduire que P est irréductible dans $\mathbb{Z}[X]$ puis dans $\mathbb{Q}[X]$.
- 4. Montrer que G possède un élément d'ordre 5.

On note σ la conjugaison complexe.

- **5.** Montrer que $\sigma \in G$ et déterminer le type de l'image de σ dans S_5 .
- **6.** Déterminer le cardinal de G. L'équation P(x) = 0 est-elle résoluble par radicaux?

Exercice 12 : Groupe de Galois mod p

Soit $P(X) = X^n + a_{n-1}X^{n-1} + \ldots + a_0 \in \mathbb{Z}[X]$ un polynôme unitaire à coefficients entiers. Notons z_1, \ldots, z_n ses racines complexes et $K := \mathbb{Q}(z_1, \ldots, z_n) \subset \mathbb{C}$ le corps de décomposition de P, et $G = \operatorname{Gal}(K/\mathbb{Q})$. Soit p un nombre premier, \overline{P} la réduction de P dans $\mathbb{F}_p[X]$ et \overline{G} le groupe de Galois de \overline{P} .

On note $A = \mathbb{Z}[z_1, \dots, z_n]$ sous-anneau de K.

1.

- a. Montrer que l'action de G sur K laisse A stable.
- b. Pour $a \in A$, $N(a) := \prod_{a \in G} g(a)$. Montrer que $N(a) \in \mathbb{Z}$.
- c. Montrer que l'idéal pA est distinct de A.
- d. Soit \mathfrak{m} un idéal maximal de A contenant pA. Montrer que $k:=A/\mathfrak{m}$ est un corps de décomposition de \overline{P} .
- **2.** On pose $D_{\mathfrak{m}} := \{g \in G, g(\mathfrak{m}) = \mathfrak{m}\}$, et on note $\{\mathfrak{m}_1, \ldots, \mathfrak{m}_i\} = \{g(\mathfrak{m}), g \in G \setminus D_{\mathfrak{m}}\}$ l'ensemble des idéeaux distincts conjugués à \mathfrak{m} .
 - a. Montrer que $D_{\mathfrak{m}}$ est un sous-groupe de G.
 - b. Montrer que pour tout i, $\mathfrak{m}_i + \mathfrak{m} = A$, puis que $\mathfrak{m} + \mathfrak{m}_1 \dots \mathfrak{m}_r = A$.
- c. Montrer qu'il existe $x \in A$ tel que $\overline{x} \in k$ engendre l'extension k/\mathbb{F}_p . Montrer qu'il existe $z \in A$ tel que $\overline{z} = \overline{x}$ et $g(z) \in \mathfrak{m}$ pour tout $g \in G \setminus D_{\mathfrak{m}}$.
 - d. Montrer que le polynôme $\mu(X) := \prod_{g \in G} (X g(z))$ est à coefficients dans \mathbb{Z} .
- e. Si $g \in D_{\mathfrak{m}}$, expliquer pourquoi g induit un élément $\overline{g} \in \overline{G}$. Montrer que le morphisme $\psi : g \in D_{\mathfrak{m}} \to \overline{g} \in \overline{G}$ est un isomorphisme.
 - f. Si \overline{P} est séparable, montrer que ψ est surjectif.
 - **3.** Quelle est la nature de \overline{G} ?