année scolaire 2022-2023

Professeur : Zakaria Haouzan Établissement : Lycée SKHOR qualifiant

Devoir Surveillé N°1

2ème année baccalauréat Sciences physiques Semestre 2 - Durée 2h00

Chimie 7pts - 42min

Etude d'une solution aqueuse d'ammoniac (7 pts)

L'ammoniac NH3 est un gaz qui, dissous dans l'eau, donne une solution basique d'ammoniac. Des solutions commerciales d'ammoniac sont utilisées, après dilution, comme produits de nettoyage. Cette partie de l'exercice se propose d'étudier une solution aqueuse d'ammoniac. On prépare une solution aqueuse S_b , de volume V, en diluant 100 fois une solution commerciale d'ammoniac S_0 de concentration C_0 .

Données:

- Toutes les mesures sont effectuées à 25°C.
- Le produit ionique de l'eau : $K_e = 10^{-14}$.

12 10 8 6 4 2 0 3 6 9 12 15 18 21 V_a(mL

Figure 1

1. Dosage de la solution Sb:

On réalise un dosage pH-métrique d'un volume $V_b = 15mL$ de la solution S_b de concentration Cb par une solution aqueuse Sa d'acide chlorhydrique $(H_3O^+_{(eq)} + Cl^-_{(eq)})$ de concentration $C_a = 10^{-2} mol.L^{-1}$.

La courbe de la (figure 1) représente les variations du pH du mélange en fonction du volume V_a versé de la solution S_a : $pH = f(V_a)$

- 0,5 | **1.1.** Ecrire l'équation de la réaction de dosage.
- 0,25 | **2.2.** Ecrire, à l'équivalence, la relation entre C_b , C_a , V_b et V_{aE} le volume versé de la solution S_a à l'équivalence.
- 1,5 | **3.3.** Montrer que la concentration de la solution S_b est: $C_b = 10^{-2} mol/L$. En déduire C_0 .
- 0,5 **4.4.** Choisir, parmi les indicateurs colorés suivants, l'indicateur adéquat pour réaliser ce dosage. Justifier votre réponse.

Indicateur coloré	hélianthine	rouge de méthyle	phénolphtaléine
Zone de virage	3,1 - 4,4	4,2 - 6,2	8,2 - 10

2. Etude de la solution S_b :

La mesure du pH de la solution aqueuse Sb donne: pH = 10,6.

- 0,25 | **2.1.** Ecrire l'équation de la réaction de l'ammoniac avec l'eau.
 - 1 | 2.2. Calculer la concentration molaire effective des ions hydroxyde HO^- dans la solution S_b .
 - 1 | 2.3 Calculer le taux d'avancement final τ de cette réaction.
 - 1 | **2.4** Vérifier que le quotient de la réaction à l'équilibre est: $Q_{r,eq} = 1,65.10^{-5}$
 - 1 | **2.5** En déduire la valeur du pK_A du couple NH_4^+/NH_3 .

 $_{ ext{-}}$ Physique 13pts - 78min $_{ ext{-}}$

Les parties sont indépendantes

Partie 1 : Réponse d'un dipôle RC à un échelon de tension(2pts)

On réalise le montage, représenté sur le schéma de la figure 1, constitué des éléments suivants :

- Un générateur idéal de tension de force électromotrice E
- Un condensateur D de capacité C initialement déchargé
- Un conducteur ohmique de résistance $R = 10^3 \Omega$.
- Un interrupteur K.

On ferme l'interrupteur à un instant choisi comme origine des dates t = 0. Un système d'acquisition informatisé permet de tracer la courbe de la figure 2, représentant les variations de $\frac{du_c}{dt}$ en fonction de u_c . u_c étant la tension à un instant t.

1 **1.1.** Montrer que l'équation différentielle vérifiée par la tension $u_c(t)$ s'écrit sous la forme : $\frac{du_c}{dt} = -\frac{1}{RG}$, $u_c + \frac{E}{RG}$

s'écrit sous la forme : $\frac{du_c}{dt} = -\frac{1}{RC}.u_c + \frac{E}{RC}$ 1.2. En exploitant la figure 2 , montrer que la capacité du condensateur est : $C = 12\mu F$

Partie 2 : Réponse d'un dipôle RL à un échelon de tension (3pts)

On réalise le montage schématisé sur la figure1. Ce montage comporte :

Figure 2

- Une bobine d'inductance L et de résistance r.
- un conducteur ohmique de résistance $R = 90\Omega$
- un générateur de force électromotrice E et de résistance interne négligeable ;
- un interrupteur K.

On ferme l'interrupteur à un instant de date t = 0. Un système d'acquisition informatisé permet de tracer les courbes (C1) et (C2) représentant successivement l'évolution de l'intensité du courant i(t) traversant le circuit et l'évolution de la tension uL (t) aux bornes de la bobine. La droite (T) représente la tangente à la courbe (C1) à t = 0. (figure 2).

- 1 **2.1.** Montrer que l'équation différentielle vérifiée par l'intensité du courant i(t) s'écrit ainsi: $\frac{di}{dt} + \frac{R+r}{L} \cdot i = \frac{E}{L}$
- 2.2. En exploitant les deux courbes (C1) et (C2), lorsque le régime permanent est atteint, déterminer la valeur de r.
- 1 | 2.3. Vérifier que L = 1H.

Partie 3 : Circuit RLC série.

. (8pts)

On considère le circuit électrique schématisé dans la figure 4, comportant :

• Un générateur de tension continue (G), de f.é.m U_0 et de résistance interne négligeable, Un condensateur (c) de capacité C et d'armatures A et B ;

- Une bobine (B) d'inductance L et de résistance négligeable ;
- Deux interrupteurs K_1 et K_2 .
- 1. K_2 étant ouvert, on ferme K_1 . Après une brève durée, le condensateur porte une charge maximale Q_0 et emmagasine une énergie électrostatique E_0 . Donner l'expression de Q_0 en fonction de U_0 et C. et l'expression de E_0 en fonction de Q_0 et C.

Le condensateur étant chargé, à t = 0 on ouvre K_1 et on ferme K_2 . A t quelconque, l'armature A du condensateur porte une charge q.

- 0,5 | 2. Exprimer l'énergie électromagnétique E en fonction de L, C, q et i.
- 0.5 3. Montrer, sans faire aucun calcul que cette énergie se conserve et elle est égale à $\frac{Q_0^2}{2.C}$
- 0,75 | 4. Déduire l'équation différentielle des oscillations électriques.
- 0,5 | 5. Déterminer l'expression de la période propre T_0 en fonction de L et C.
- 1 **6.** Ecrire l'expression de la charge q en fonction du temps.
- 0.75 7. Donner l'expression de l'énergie magnétique E_L en fonction de L et i
 - 8. Montrer que l'expression de cette énergie E_L en fonction du temps s'écrit :

1,5 $E_L = \frac{E_0}{2} \cdot \left(1 + \cos\left(\frac{4\pi}{T_0} \cdot t + \pi\right)\right)$

Une étude expérimentale a permis de tracer les courbes (1) et (2) (ci-dessous) traduisant respectivement les variations de l'énergie magnétique EL en fonction de i et en fonction du temps.

- 0,25 | 9. En exploitant les courbes , Déterminer la valeur de T_0 .
- 1,75 | **10.** déduire la valeur de C, Q_0 et U_0