TEMA D'ESAME

Domanda A

Si dimostri per via algebrica che se P è un implicante sia per f(x) sia per g(x) allora è anche un implicante per f(x)g(x). A tal fine si ricorda che P è un implicante per f(x) se e solo se $P \le f(x)$.

Domanda B

Sia $X = [x_{15} \ x_{14} \ ... \ x_0]$ la rappresentazione binaria naturale di un numero intero positivo. Si vuole calcolare una approssimazione $Y = [y_7 \ y_6 \ ... \ y_0]$ della radice quadrata di X sfruttando la seguente relazione:

$$Y = \sqrt{X}$$
 \Rightarrow $\ln_2 Y = \frac{1}{2} \ln_2 X$ \Rightarrow $Y = 2^{1/2 \ln_2 X}$

e ricordando che una approssimazione del logaritmo in base 2 di un numero X è data dalla posizione dell'1 più significativo nella rappresentazione binaria naturale di X. Tenendo presenti queste considerazioni:

si progetti per via strutturale, ricorrendo a moduli standard, un circuito in grado di calcolare il valore Y.

Si detemini area (numero di porte logiche generiche) e ritardo (numero di livelli logica) del circuito realizzato.

Si spieghi in modo chiaro la ragione per cui non è possibile progettare un circuito che calcola la radice quadrata (seppur approssimata) secondo una architettura bit-sliced.

Domanda C

Si consideri la macchina a stati finiti descritta dalla tabella di trasizione di stato riportata a lato, per la quale A è lo stato di reset. Si determini la macchina minima equivalente e la si sintetizzi mediante flip-flop JK.

	0	1
Α	A/0	E/1
В	A/0	F/1
С	C/0	F/1
D	A/1	B/0
Е	D/1	B/1
F	D/1	A/1

Domanda D

Si considerino i due circuiti riportati nella figura seguente, in cui il contatore CNT_A è un contatore binario naturale modulo 4, mentre il contatore CNT_B è un contatore Moebius a 4 bit. Si progetti in modo ottimo la rete combinatoria RC presente nel secondo circuito in maniera tale che la sequenza di conteggio prodotta sulle uscite [B1 B0] sia identica a quella prodotta dal primo circuito sulle uscite [A1 A0].

