Intervals, Transformations, and Slope Solution (version 18)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7, -5) \cup (-3, 0)$
Negative	$(-5, -3) \cup (0, 6)$
Increasing	$(-7, -6) \cup (-4, -2)$
Decreasing	$(-6, -4) \cup (-2, 6)$
Domain	(-7,6)
Range	(-9,3)

Intervals, Transformations, and Slope Solution (version 18)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=61$ and $x_2=76$. Express your answer as a reduced fraction.

x	g(x)
31	61
58	76
61	58
76	31

$$\frac{f(76) - f(61)}{76 - 61} = \frac{31 - 58}{76 - 61} = \frac{-27}{15}$$

The greatest common factor of -27 and 15 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-9}{5}$$

2