Amendments to the Claims

The following listing of the claims will replace all prior versions, and listings of the claims in the application:

Listing of Claims

1-39 Canceled

- 40. (Currently amended) A method for configuring an equivalent $2^n \times 2^n$ k-stage bit-permuting network based on a given $2^n \times 2^n$ k-stage bit-permuting network having the \underline{a} representation $[\sigma_0:\sigma_1:\sigma_2:...:\sigma_{k-1}:\sigma_k]_n$, the method comprising: specifying a permutation κ on integers from 1 to n that preserves n, and implementing the equivalent network as $[\sigma_0:\sigma_1:...:\sigma_{j-1}\kappa:\kappa^{-1}\sigma_j:...:\sigma_k]_n$, j=1,2,..., or k.
- 41. (Previously presented) The method as recited in claim 40 wherein the given network is a banyan-type network and the equivalent network is a banyan-type network.
- 42. (Currently amended) A method for configuring an equivalent $2^n \times 2^n$ k-stage bit-permuting network based on a given $2^n \times 2^n$ k-stage bit-permuting network having the \underline{a} representation $[\sigma_0 : \sigma_1 : \sigma_2 : \ldots : \sigma_{k-1} : \sigma_k]_n$, the method comprising:

specifying permutations $\kappa_1, \, \kappa_2, \, \ldots \,$, κ_k on integers from 1 to n that preserve n, and implementing the equivalent network as $[\sigma_0 \kappa_1 : \kappa_1^{-1} \sigma_1 \kappa_2 : \kappa_2^{-1} \sigma_2 \kappa_3 : \ldots : \kappa_{k-1}^{-1} \sigma_{k-1} \kappa_k : \kappa_k^{-1} \sigma_k]_n$.

43. (Previously presented) The method as recited in claim 42 wherein the given network is a banyan-type network and the equivalent network is a banyan-type network.

44. (Currently amended) A method for configuring an equivalent $2^n \times 2^n$ bit-permuting network based on a given $2^n \times 2^n$ bit-permuting network composed of stages and exchanges, the method comprising:

identifying one stage from the stages of the given network, the identified stage having a preceding exchange immediately before it and a succeeding exchange immediately after it,

specifying a permutation on the integers 1 to n that preserves n,

rearranging the preceding exchange and the succeeding exchange with reference to the permutation to generate a rearranged preceding exchange and a rearranged succeeding exchange, respectively, and

implementing the equivalent network so that a stage in the equivalent network corresponding to the identified stage has the rearranged preceding exchange and the rearranged succeeding exchange.

- 45. (Previously presented) The method as recited in claim 44 wherein the permutation, denoted as κ , induces a $2^n \times 2^n$ cell rearrangement X_{κ} , and the rearranging includes multiplying the preceding exchange by X_{κ} from the right-hand side to produce the rearranged preceding exchange and multiplying the succeeding exchange by $X_{\kappa^{-1}}$ from the left-hand side to produce the rearranged succeeding exchange.
- 46. (Previously presented) The method as recited in claim 45 wherein the given network has k-stages, the given network has the representation $[\sigma_0:\sigma_1:\sigma_2:\ldots:\sigma_{k-1}:\sigma_k]_n$, the identified stage is stage j, and the equivalent network is of the form, $[\sigma_0:\sigma_1:\ldots:\sigma_{j-1}\kappa:\kappa^{-1}\sigma_j:\ldots:\sigma_k]_n$, $j=1,2,\ldots$, or k.
- 47. (Previously presented) The method as recited in claim 44 wherein the given network is a banyan-type network and the equivalent network is a banyan-type network.

48. (Currently amended) A method for configuring an equivalent $2^n \times 2^n$ bit-permuting network by cell rearrangement based on a given $2^n \times 2^n$ bit-permuting network composed of stages and exchanges, the method comprising:

identifying one stage from the stages of the given network, the identified stage having a preceding exchange and a succeeding exchange,

specifying a permutation, denoted as κ , on the integers 1 to n that preserves n and induces a $2^n \times 2^n$ cell rearrangement X_{κ} ,

rearranging the preceding exchange of the identified stage by multiplying the preceding exchange with X_{κ} from the right-hand side to produce a rearranged preceding exchange and rearranging the succeeding exchange of the identified stage by multiplying the succeeding exchange by $X_{\kappa^{-1}}$ from the left-hand side to produce a rearranged succeeding exchange, and

implementing the equivalent network so that a stage in the equivalent network corresponding to the identified stage has the rearranged preceding exchange and the rearranged succeeding exchange.

49. (Currently amended) A method for cell rearrangement of a 2ⁿ×2ⁿ bit-permuting network composed of stages and exchanges, the method comprising:

selecting one stage from the stages of the given network to identify a preceding exchange and a succeeding exchange,

specifying a permutation, denoted as κ , on the integers 1 to n that preserves n and induces a $2^n \times 2^n$ cell rearrangement X_{κ} , and

multiplying the preceding exchange with X_{κ} from the right-hand side to implement a rearranged preceding exchange and multiplying the succeeding exchange by $X_{\kappa^{-1}}$ from the left-hand side to implement a rearranged succeeding exchange.

50. (Currently amended) A method for cell rearrangement of a given stage of a 2ⁿ×2ⁿ

bit-permuting network composed of stages and exchanges, the method comprising:

specifying a permutation, denoted as κ , on the integers 1 to n that preserves n and induces a $2^n \times 2^n$ cell rearrangement X_{κ} , and

multiplying the \underline{a} preceding exchange immediately before the given stage by X_{κ} from the right-hand side to implement a rearranged preceding exchange for the given stage and multiplying the \underline{a} succeeding exchange immediately after the given stage exchange by $X_{\kappa^{-1}}$ from the left-hand side to implement a rearranged succeeding exchange for the given stage.

51. (Currently amended) A method for rearranging a given $2^n \times 2^n$ k-stage bit-permuting network having the <u>a</u> representation $[\sigma_0 : \sigma_1 : \sigma_2 : \ldots : \sigma_{k-1} : \sigma_k]_n$ to an equivalent $2^n \times 2^n$ bit-permuting network having the representation $[\pi_0 : \pi_1 : \pi_2 : \ldots : \pi_{k-1} : \pi_k]_n$, the method comprising:

determining permutations $\kappa_1, \, \kappa_2, \, \ldots, \, \kappa_k$ on integers from 1 to n that preserve n, and implementing the equivalent network with exchanges determined from $\pi_1 = \kappa_1^{-1} \sigma_1 \kappa_2, \, \pi_2 = \kappa_2^{-1} \sigma_2 \kappa_3, \, \ldots, \, \pi_{k-1} = \kappa_{k-1}^{-1} \sigma_{k-1} \kappa_k \text{ so that the equivalent network can be further expressed as } [\alpha: \kappa_1^{-1} \sigma_1 \kappa_2: \kappa_2^{-1} \sigma_2 \kappa_3: \ldots: \kappa_{k-1}^{-1} \sigma_{k-1} \kappa_k: \beta]_n \text{ for some permutations } \alpha \text{ and } \beta.$

- 52. (Previously presented) The method as recited in claim 51 wherein the input exchange α of the equivalent network is equal to π_0 .
- 53. (Previously presented) The method as recited in claim 51 wherein the output exchange β of the equivalent network is equal to π_k .
- 54. (Previously presented) The method as recited in claim 51 wherein the input exchange α of the equivalent network is equal to π_0 and the output exchange β of the equivalent network is equal to π_k .
 - 55. (Currently amended) A method for configuring a given 2ⁿ×2ⁿ k-stage bit-permuting

network to achieve a desired trace, the method comprising:

determining a permutation σ on the integers 1 to n that maps the <u>a</u> trace of the given network term-by-term to the desired trace, and

prepending the given network with an extra input exchange induced by σ^{-1} if the permutation σ exists.

- 56. (Previously presented) A method as recited in claim 55 wherein k = n and the bit-permuting network is a $2^n \times 2^n$ banyan-type network.
- 57. (Previously presented) A method as recited in claim 55 wherein the trace of the given network is the sequence $t_1, t_2, ..., t_k$, the desired trace is the sequence $t'_1, t'_2, ..., t'_k$, and $t'_j = \sigma(t_j)$ for j = 1, 2, ..., k.
- 58. (Currently amended) A method for configuring a given $2^n \times 2^n$ k-stage bit-permuting network to achieve a desired guide, the method comprising:

determining a permutation π on the integers 1 to n that maps the <u>a</u> guide of the given network term-by-term to the desired guide, and

appending the given network with an extra output exchange induced by π if the permutation π exists.

- 59. (Previously presented) A method as recited in claim 58 wherein k = n and the bit-permuting network is a $2^n \times 2^n$ banyan-type network.
- 60. (Previously presented) A method as recited in claim 58 wherein the guide of the given network is the sequence $g_1, g_2, ..., g_k$, the desired guide is the sequence $g'_1, g'_2, ..., g'_k$, and $g'_j = \pi(g_j)$ for j = 1, 2, ..., k.

61. (Currently amended) A method for configuring a given $2^n \times 2^n$ k-stage bit-permuting network to achieve a desired trace and a desired guide, the method comprising:

determining a permutation σ on the integers 1 to n that maps the \underline{a} trace of the given network term-by-term to the desired trace,

determining a permutation π on the integers 1 to n that maps the <u>a</u> guide of the given network term-by-term to the desired guide, and

if both the permutations σ and π exist, prepending the given network with an extra input exchange induced by σ^{-1} , and appending the given network with an extra output exchange induced by π .

- 62. (Previously presented) A method as recited in claim 61 wherein k = n and the bit-permuting network is a $2^n \times 2^n$ banyan-type network.
- 63. (Previously presented) A method as recited in claim 61 wherein the trace of the given network is the sequence $t_1, t_2, ..., t_k$, the desired trace is the sequence $t'_1, t'_2, ..., t'_k$, and $t'_j = \sigma(t_j)$ for j = 1, 2, ..., k and wherein the guide of the given network is the sequence $g_1, g_2, ..., g_k$, the desired guide is the sequence $g'_1, g'_2, ..., g'_k$, and $g'_j = \pi(g_j)$ for j = 1, 2, ..., k.
- 64. (Currently amended) A method for rearranging a given $2^n \times 2^n$ banyan-type network having the <u>a</u> representation $[\sigma_0 : \sigma_1 : \sigma_2 : ... : \sigma_{n-1} : \sigma_n]_n$ to an equivalent $2^n \times 2^n$ banyan-type network having the representation $[\pi_0 : \pi_1 : \pi_2 : ... : \pi_{n-1} : \pi_n]_n$, the method comprising:

determining permutations $\kappa_1, \kappa_2, \ldots, \kappa_n$ on integers from 1 to n that preserve n, and implementing the equivalent network with exchanges determined from $\pi_1 = \kappa_1^{-1} \sigma_1 \kappa_2$, $\pi_2 = \kappa_2^{-1} \sigma_2 \kappa_3, \ldots, \pi_{n-1} = \kappa_{n-1}^{-1} \sigma_{n-1} \kappa_n$ so that the equivalent network can be further expressed as $[\alpha : \kappa_1^{-1} \sigma_1 \kappa_2 : \kappa_2^{-1} \sigma_2 \kappa_3 : \ldots : \kappa_{n-1}^{-1} \sigma_{n-1} \kappa_n : \beta]_n$ for some permutations α and β .

65. (Previously presented) The method as recited in claim 64 wherein the input

exchange α of the equivalent network is equal to π_0 .

- 66. (Previously presented) The method as recited in claim 64 wherein the output exchange β of the equivalent network is equal to π_k .
- 67. (Previously presented) The method as recited in claim 64 wherein the input exchange α of the equivalent network is equal to π_0 and the output exchange β of the equivalent network is equal to π_k .
- 68. (Currently amended) A method for rearranging a first $2^n \times 2^n$ banyan-type network having the \underline{a} representation $[\sigma_0 : \sigma_1 : \ldots : \sigma_{n-1} : \sigma_n]$ with a first trace induced by a permutation τ on integers 1 to n and a first guide induced by a permutation γ on integers 1 to n to a second $2^n \times 2^n$ banyan-type network having the representation $[\lambda \sigma_0 : \sigma_1 : \ldots : \sigma_{n-1} : \sigma_n \pi]$, the method comprising:

prepending an additional input exchange X_{λ} to the first network, and

appending an additional output exchange X_{π} to the first network, wherein the second network is characterized by a second trace induced by a permutation τ' on integers 1 to n and a second guide induced by a permutation γ' on integers 1 to n such that $\tau' = \tau \lambda^{-1}$ and $\gamma' = \gamma \pi$.

- 69. (Previously presented) The method as recited in claim 68 wherein the permutations τ and γ that induce the first trace and the first guide are converted to any τ' and γ' , respectively, with the prepended input exchange X_{λ} and the appended output exchange X_{π} by computing $\lambda = \tau'^{-1}\tau$ and $\pi = \gamma^{-1}\gamma'$.
- 70. (Currently amended) A method for configuring a given $2^n \times 2^n$ banyan-type network to achieve a desired trace wherein the <u>a</u> trace of the given network is induced by a permutation τ on integers 1 to n, and the desired trace is induced by another permutation τ' on integers 1 to n,

the method comprising:

determining a permutation $\lambda = \tau^{-1}\tau$, and prepending the given network with an extra input exchange induced by λ .

- 71. (Previously presented) A method as recited in claim 70 wherein the desired trace is 1, 2, ..., n and the permutation $\lambda = \tau$.
- 72. (Previously presented) A method as recited in claim 70 wherein the desired trace is n, n-1, ..., 1 and the permutation $\lambda = \sigma_{\leftrightarrow}^{(n)} \tau$.
- 73. (Currently amended) A method for configuring a given $2^n \times 2^n$ banyan-type network to achieve a desired guide wherein the <u>a</u> guide of the given network is induced by a permutation γ on integers 1 to n, and the desired guide is induced by another permutation γ' on integers 1 to n, the method comprising:

determining a permutation $\pi = \gamma^{-1} \gamma'$, and appending the given network with an extra output exchange induced by π .

- 74. (Previously presented) A method as recited in claim 73 wherein the desired guide is 1, 2, ..., n and the permutation $\pi = \gamma^{-1}$.
- 75. (Previously presented) A method as recited in claim 73 wherein the desired guide is n, n-1, ..., 1 and the permutation $\pi = \gamma^{-1} \sigma_{\leftrightarrow}^{(n)}$.
- 76. (Currently amended) A method for configuring a given $2^n \times 2^n$ banyan-type network to achieve a desired trace and a desired guide wherein the <u>a</u> trace of the given network is induced by a permutation τ on integers 1 to n, the desired trace is induced by another permutation τ' on

integers 1 to n, the <u>a</u> guide of the given network is induced by a permutation γ on integers 1 to n, and the desired guide is induced by another permutation γ' on integers 1 to n, the method comprising:

determining a permutation $\lambda = \tau'^{-1}\tau$, determining a permutation $\pi = \gamma^{-1} \gamma'$, prepending the given network with an extra input exchange induced by λ , and appending the given network with an extra output exchange induced by π .

77. (Currently amended) An equivalent $2^n \times 2^n$ k-stage bit-permuting network based on a given $2^n \times 2^n$ k-stage bit-permuting network having the \underline{a} representation $[\sigma_0 : \sigma_1 : \sigma_2 : \ldots : \sigma_{k-1} : \sigma_k]_n$ the equivalent network comprising:

permutation means for computing a permutation κ on integers from 1 to n that preserves n, and

a $2^n \times 2^n$ k-stage bit-permuting network configured as $[\sigma_0 : \sigma_1 : \ldots : \sigma_{j-1} \kappa : \kappa^{-1} \sigma_j : \ldots : \sigma_k]_n$, $j = 1, 2, \ldots$, or k.

78. (Currently amended) An equivalent $2^n \times 2^n$ k-stage bit-permuting network based on the j-th stage of a given $2^n \times 2^n$ k-stage bit-permuting network having the <u>a</u> representation $[\sigma_0 : \sigma_1 : \sigma_2 : ... : \sigma_{k-1} : \sigma_k]_n$ and based on a permutation κ on integers from 1 to n that preserves n, the equivalent network comprising:

an input exchange $\sigma_0 \kappa$ if j=l, or an input exchange σ_0 if j=2,3,...,k, an output exchange $\kappa^{-1} \sigma_k$ if j=k, or an output exchange σ_k if j=1,2,...,k-l, and interstage exchanges $\sigma_1,\sigma_2,...,\sigma_{j-l}\kappa,\kappa^{-1}\sigma_j,...,\sigma_{k-l}$ if j=2,..., or k-1, or interstage exchanges $\kappa^{-1}\sigma_1,\sigma_2,...,\sigma_j,...,\sigma_{k-1}$ if j=1, or interstage exchanges $\sigma_1,\sigma_2,...,\sigma_j,...,\sigma_{k-2},\sigma_{k-1}\kappa$ if j=k.