1	Month	argoling Hrs	-> UW Pays \$1500 per month per arader	
	March	450	-) Each grader -> 17 hours / month	
	April	600	-) 25 graders employed	
	May	55 0	-> FC of \$500 for the department, for histing a new greader 1	Ð
	June	400	-> Fire or soline for a one time cost of \$1000/grader D	
	July	450		
			-> All grading must be done by the end of the 5th	
		•	monon c July	

-) Carried over grading work must not exceed 600 hours at the end of each intermediate month

1-1 Parameters

Hi= Number of grading hours required in month (=(1,2,3,4,5))
H= (450,600,550,400,450)

Ni: Number of active graders at the begining of month i

DV

xi: #9 graders hired, at the beginning of each month i [i=1,2,3,4,5]
yi: #84 graders red at the beginning of the month i [i=1,2,3,4,5]
zi: #84 graders working in month;
ci: #84 graders working in month;

obj min total cost to be depositionent

lons reaints

$$\chi_{1}, \chi_{1}, \chi_{2}, \chi_{1}, \chi_{2}$$
 $\chi_{1}, \chi_{2}, \chi_{1}, \chi_{2}, \chi_{1}, \chi_{2}$
 $\chi_{1}, \chi_{2}, \chi_{2}$
 χ_{1}, χ_{2}
 χ_{2}
 χ_{1}
 χ_{2}
 χ_{1}
 χ_{2}
 χ_{1}
 χ_{2}
 χ_{3}
 χ_{4}
 χ_{4}

```
2-1 N1 = # 8/ vats 8/mink produced with nemod \

X2 = #8/ vats 11 11 11 12

Y1 = #8/ cups 0/ speciality sproad produced

Revenue : 3(9x1+4x2) + 10(2x1+3x2) + (30x1+40x2-12-71) +20 4/

Processing (1545 -) 3x1+4x2 +341

Row material > 26 (x1+x2)

Objective > Profit = Revenue - Lost

Max 49x1 + 63x2 +5y1
```

subject to 2

71, 22, 4 >,0

0.5(x1+x2)+1.2x1+2+2 +3y1 =300

9 ×1 + 4×2 € 500

2×1 +3×2 5250

30 x + 40 x2 + 12 y = 5000 y = (30 x + 40 x2)

2-2

0 Phi mal objective is \$ 4283.3 $\chi_1 = 33.3 \text{ Nats}$ $\chi_2 = 50 \text{ Nats}$ $y_1 = 250 \text{ Cups of spread}$

DN	Activity	6st I Revenue	produces	6nsumes
χ_1	sell mix 1	47.5	MIX 1	91461
12	Sell MIX 2	+ S	m142	92+62
Pa	Produced P	-	PA	_
Pa	Produced B	_	PB	_
V				
01	Ain mix 1	-	_	_
02	Ain mix2	-	_	_
6	Binmixi	-	-	_
62	Bin mix 2		_	_
- 0				
TA	Chemical A produced	-	A	Q1+ R2
TB	Chemical B produced	_	В	RI+R2
121	Pro025 1	-	4A,4B	3RM + 3 mg
22	Pro cos 2	-	4 B, 1.5B	2Rm + 4 hr
Sı	Purchase Raw Material			1 RM

Objective max 7.5 x, + 5x2

Subject to SI 5110

3R1+4R2 £ 130

Raw material SI = 3.5R1+2R2

Pa = 4R, + 4R2

Pb = yRIF 1.5R2

m1x 1 91 7, 0.7 x1

m(x2 a2>,0.5x2

x1,x2, Pa, Pb, a1, a2, b1, b2, 7A, 7B, R1, R2, S1 >0

u) xi= amt of mixture i produced i&m

Ye = amt of chemial; produced using process &

objective-smax & cixi

Subject to $\leq xi = \leq yx$

Cj · xi = Z (Yu)

S tu Yu Es

E SKYK ER

Ni 3 9 K >10