UNIVERSIDADE FEDERAL DE MATO GROSSO CAMPUS UNIVERSITÁRIO DO ARAGUAIA BACHARELADO EM ENGENHARIA CIVIL 1ª LISTA DE CÁLCULO III - 2024/1

Professor: Jocirei Dias Ferreira

- 1) Calcule as integrais duplas abaixo. Desenhe o domínio de integração.
- a) $\iint_R 3 \ dx \ dy$, onde $R = \{(x, y) \in \mathbb{R}^2 / -2 \le x \le 2, \ 1 \le y \le 6\}$
- b) $\int \int_{R} (5-x) dx dy$, onde $R = \{(x,y) \in \mathbb{R}^2 / 0 \le x \le 5, \ 0 \le y \le 3\}$
- c) $\int \int_{R} (4-2y) \ dx \ dy$, onde $R = [0,1] \times [0,1]$
- 2) Desenhe o conjunto $B=\{(x,y,z)\in\mathbb{R}^3\ /\ 0\le x\le 1,\ 0\le y\le 1,\ e\ 0\le z\le x^2+y^2\}.$ Cálcule o volume de B.
- 3) Desenhe o conjunto $B=\{(x,y,z)\in\mathbb{R}^3\ /\ x\geq 0,\ y\geq 0,\ x+y\leq 1\ e\ 0\leq z\leq 1-x^2\}.$ Cálcule o volume de B.
- 4) Cálcule a área da região compreendida entre os gráficos das funções y=x e $y=-x^2+x+1$, com $-1 \le x \le 1$. Desenhe a região antes de calcular a área.
- 5) Desenhe o conjunto $B=\{(x,y)\in\mathbb{R}^2\ /\ 1\leq x\leq 2\ e\ 0\leq y\leq 1\}$. Cálcule $\int\int_B f(x,y)\ dx\ dx$. Interprete geometricamente a integral.
- 6) **Proposição:** Sejam f(x) e g(y) duas funções contínuas, respectivamente, nos intervalos [a,b] e [c,d]. Então vale: $\int \int_R f(x)g(y) \ dx \ dy = \left(\int_a^b f(x) \ dx\right) \left(\int_c^d g(y) \ dy\right)$ onde $R = \{(x,y) \in \mathbb{R}^2 \ / \ a \le x \le b \ e \ c \le y \le d\}.$ Utilizando a Proposição, calcule: $\int \int_R xy e^{x^2-y^2} \ dx \ dy, \text{ onde a } = -1, \ b = 1, \ c = 0$ e d = 3.
- 7) Desenhe o triangulo de vétices (0,0), (1,0) e (1,1). Sendo B o triangulo, calcule $\int \int_{\mathbb{R}} y \ dx \ dy.$
- 8) Inverta a ordem de integração na integral $\int_0^3 \left[\int_x^{4x-x^2} f(x,y) \, dy \right] dx$, onde f(x,y) é suposta contínua em \mathbb{R}^2 . Desenhe a região antes de inverter a ordem de integração.

- 9) Inverta a ordem de integração na integral $\int_0^{\pi} \left[\int_0^{senx} f(x,y) \ dy \right] dx$, onde f(x,y) é suposta contínua em \mathbb{R}^2 . Desenhe a região antes de inverter a ordem de integração.
- 10) Desenhe o conjunto $B=\{(x,y,z)\in\mathbb{R}^3\ /\ x^2+4y^2\leq 4,\ e\ x+y\leq z\leq x+y+1\}.$ Cálcule o volume de B.
- 11) Seja B o círculo $x^2+y^2\leq 1$. Sejam $f(x,y)=\frac{x^2}{x^2+y^2}$, se $(x,y)\neq (0,0)$, e $g:B\to R$ definida por

$$g(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$
 (1)

Mostre que

$$\int \int_{B} \frac{x^{2}}{x^{2} + y^{2}} dx dy = \int \int_{B} g(x, y) dx dy.$$

- 12) Inverta a ordem de integração e calcule $\int_0^1 \left[\int_{\sqrt{y}}^1 sen \ x^3 \ dx \right] dy$.
- 13) Calcule $\int \int_B \sqrt{x^2 + y^2} dx dy$, onde B é o triângulo de vértices (0,0), (1,0) e (1,1).
- 14) Calcule $\int \int_B (2x+y)\cos(x-y)dx\ dy$, onde B é o paralelogramo de vértices $(0,0),\ (\frac{\pi}{3},\frac{\pi}{3}),\ (\frac{2\pi}{3},\frac{-\pi}{3})$ e $(\frac{\pi}{3},-\frac{2\pi}{3})$.
- 15) Calcule o volume do conjunto B de todos os pontos (x,y,z) tais que $x \le z \le 1-y^2, \ x \ge 0$ e $y \ge 0$.
- 16) Calcule o volume do conjunto B de todos os pontos (x,y,z) tais que $z \ge x^2 + y^2$, e $x^2 + y^2 + z^2 = 2$.
- 17) Calcule a integral tripla.
- a) $\int \int \int_B x \ dx \ dy \ dz$, onde B é o conjunto $0 \le x \le 1$, $0 \le y \le 1$ e $x+y \le z \le x+y+1$.
- b) $\iint_B (x^2 + z^2) dx dy dz$, onde Béo cilindro $x^2 + y^2 \le 1$ e $0 \le z \le 1$.
- 18) Calcule o volume do conjunto B de todos os pontos (x, y, z) tais que $x^2 + y^2 \le z \le 2x + 2y 1$.
- 19) Calcule o volume do conjunto B de todos os pontos (x, y, z) tais que $0 \le x \le 1$, $0 \le y \le 1$ e $0 \le z \le 5 x^2 3y^2$.
- 20) Calcule $\int \int \int_B \sqrt{x^2+y^2+z^2}\ dx\ dy\ dz$, onde B é a interseção da semi-esfera $x^2+y^2+z^2\leq 4,\ z\geq 0$, com o cilindro $x^2+y^2\leq 1$.

21) Calcule $\int \int \int_B \sqrt{x^2 + y^2 - z} \ dx \ dy \ dz$, onde B é é o conjunto de todos os pontos (x,y,z) tais que $0 \le y \le x, \ 0 \le x \le 1$ e $0 \le z \le x^2 + y^2$.