DTC P0505 IDLE AIR CONTROL SYSTEM

MONITOR DESCRIPTION

The idle speed is controlled by the Electronic Throttle Control System (ETCS).

The ETCS is composed of the throttle motor, which operates the throttle valve, and the throttle position sensor, which detects the opening angle of the throttle valve.

The ECM controls the throttle motor to provide the proper throttle valve opening angle to obtain the target idle speed.

The ECM regulates the idle speed by opening and closing the throttle valve using the ETCS. The ECM concludes that the idle speed control ECM function is malfunctioning if: 1) the actual idle RPM varies more than the specified amount five times or more during a drive cycle, or 2) a learned value of the idle speed control remains at the maximum or minimum five times or more during a drive cycle. The ECM will turn on the MIL and set a DTC.

Example:

If the actual idle RPM varies from the target idle RPM by more than 200 (*1) rpm five times during a drive cycle, the ECM will turn on the MIL and a DTC is set.

*1: RPM threshold varies with engine load.

DTC No.	DTC Detection Condition	Trouble Area
P0505	Idle speed continues to vary greatly from target speed (1 trip detection logic)	Electronic throttle control system Air induction system PCV hose connection

MONITOR STRATEGY

Related DTCs	P0505: IAC Functional Check			
Required sensors / components (Main)	ETCS			
Required sensors / components (Related)	Crankshaft position sensor, ECT sensor, Vehicle speed sensor			
Frequency of operation	Continuous			
Duration	10 minutes			
MIL operation	2 driving cycles			
Sequence operation	None			

TYPICAL ENABLING CONDITIONS

The monitor will run whenever this DTC is not present	See page 05–507
Engine	Running

TYPICAL MALFUNCTION THRESHOLDS

Either of the following conditions is met:	Condition 1 or 2
1. Frequency that both of the following conditions (a) and (b) are met	5 times or more
(a) Engine RPM – Target engine RPM	Less than –100 rpm, or more than 150 rpm
(b) Vehicle condition	Stop after vehicle was driven by 6.25 mph (10 km/h) or more
2. Frequency that both of the following conditions (a) and (b) are met	Once
(a) Engine RPM – Target engine RPM	Less than –100 rpm, or more than 150 rpm
(b) IAC flow rate learning value	1.3 L/sec. or less, or 9.03 L/sec. or more

INSPECTION PROCEDURE

HINT:

Read freeze frame data using the hand-held tester or the OBD II scan tool. Freeze frame data records the engine conditions when a malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1 | CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC P0505)

(a) Read the DTC using the hand-held tester or the OBD II scan tool.

Result:

Display (DTC Output)	Proceed to
Only P0505 is output	A
P0505 and other DTCs are output	В

HINT:

If any other codes besides P0505 are output, perform the troubleshooting for those codes first.

B GO TO RELEVANT DTC CHART (See page 05–543)

2 | CHECK CONNECTION OF PCV HOSE

OK: PCV hose is connected correctly. And PCV hose has no damage.

NG

REPAIR OR REPLACE PCV HOSE

OK

3 CHECK AIR INDUCTION SYSTEM

(a) Check for vacuum leaks in air induction system.

OK: No leak in air induction system.

NG)

REPAIR OR REPLACE AIR INDUCTION SYSTEM

OK

CHECK ELECTRIC THROTTLE CONTROL SYSTEM (See page 10–12)