Содержание

Пример

<u>Условие</u>

<u>Задача</u>

Проверка значимости отдельных коэффициентов уравнения

Построение интервальных оценок коэффициентов

<u>Интервальная оценка для уравнения регрессии у (размер издержек)</u> при x0 = 10

Пример

→ Условие

В таблице представлены данные об издержках обращения и изменения товарооборота.

у издержки обращения, тыс. руб	х товарооборот, тыс. руб
1,1	4
1,3	5
1,4	6
1,1	3
1,9	8
1,7	9
1,4	6
1,2	4
1,9	6
1,9	9

Предполагаем, что генеральное уравнение регрессии имеет вид:

$$\hat{y} = a + bx + \varepsilon$$

Точечные оценки коэффициентов регрессии уже были получены, известно, что:

- a = 0.68
- b = 0.135

Таким образом:

$$\hat{y} = 0.68 + 0.135x$$

→ Задача

Важно знать, насколько точны эти оценки. Для этого вычислим стандартные ошибки коэффициентов и построим доверительные интервалы для коэффициентов.

Проверка значимости отдельных коэффициентов уравнения

Рассчитаем несмещённую оценку остаточной дисперсии по формуле:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum (y_i - \hat{y}_i)^2 = \frac{D[X]_{OCT}}{n-2} = \frac{0.26}{8} = 0.0325$$

	у	x	x²	ху	ŷ	y–ŷ	(y-ŷ)²	(y- <u>y</u>)²	(ÿ–ŷ)²
	1,1	4	16	4,4	1,22	-0,12	0,01	0,15	0,07
	1,3	5	25	6,5	1,36	-0,06	0,00	0,04	0,02
	1,4	6	36	8,4	1,49	-0,09	0,01	0,01	0,00
	1,1	3	9	3,3	1,09	0,01	0,00	0,15	0,16
	1,9	8	64	15,2	1,76	0,14	0,02	0,17	0,07
	1,7	9	81	15,3	1,90	-0,19	0,04	0,04	0,16
	1,4	6	36	8,4	1,49	-0,09	0,01	0,01	0,00
	1,2	4	16	4,8	1,22	-0,02	0,00	0,08	0,07
	1,9	6	36	11,4	1,49	0,41	0,17	0,17	0,00
	1,9	9	81	17,1	1,90	0,01	0,00	0,17	0,16
Итого	14,90	60,00	400	94,8	14,90	0,00	0,26	0,99	0,73
Среднее значение	1,49	6,00	40	9,48					
СКО	0,31	2,00							
Дисперси я	0,10	4,00							

$$\hat{\sigma}^2 = 0.0325$$

Рассчитаем стандартные ошибки коэффициентов а и b по формулам:

$$\widehat{\sigma}_{a} = \sqrt{\frac{\widehat{\sigma}^{2} \sum x_{i}^{2}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum x_{i})^{2}}} = \sqrt{\frac{0,0325 \times 400}{10 \times 400 - 60^{2}}} = 0,18$$

$$\widehat{\sigma}_{b} = \sqrt{\frac{\widehat{\sigma}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}} = \sqrt{\frac{0,0325}{40}} = 0,0285$$

	у	x	x²	ху	ŷ	y–ŷ	(y-ŷ)²	(y- <u>y</u>)²	(ȳ-ŷ)²	(x- x ̄)²
	1,1	4	16	4,4	1,22	-0,12	0,01	0,15	0,07	4
	1,3	5	25	6,5	1,36	-0,06	0,00	0,04	0,02	1
	1,4	6	36	8,4	1,49	-0,09	0,01	0,01	0,00	0
	1,1	3	9	3,3	1,09	0,01	0,00	0,15	0,16	9
	1,9	8	64	15,2	1,76	0,14	0,02	0,17	0,07	4
	1,7	9	81	15,3	1,90	-0,19	0,04	0,04	0,16	9
	1,4	6	36	8,4	1,49	-0,09	0,01	0,01	0,00	0
	1,2	4	16	4,8	1,22	-0,02	0,00	0,08	0,07	4
	1,9	6	36	11,4	1,49	0,41	0,17	0,17	0,00	0
	1,9	9	81	17,1	1,90	0,01	0,00	0,17	0,16	9
Итого	14,90	60	400	94,8	14,90	0,00	0,26	0,99	0,73	40
Среднее значение	1,49	6,00	40	9,48						
СКО	0,31	2,00								
Дисперси я	0,10	4,00								

Для проверки гипотезы H_0 : a=0 рассчитаем статистику:

$$\hat{y} = 0.68 + 0.135x$$

$$\widehat{\sigma}_a = 0.18$$

$$t_{\text{набл}} = \frac{a}{\widehat{\sigma}_a} = \frac{0,68}{0,18} = 3,77$$

По таблице находим критическое значение распределения Стьюдента, где вероятность (уровень значимости) равна 0,05 и число степеней свободы n=2=10=2=8:

Число степеней свободы	Уровень значимости					
n	0,1	0,05	0,01			
1	6,3137	12,7062	63,6559			
2	2,9200	4,3027	9,9250			
3	2,3534	3,1824	5,8408			
4	2,1318	2,7765	4,6041			
5	2,0150	2,5706	4,0321			
6	1,9432	2,4469	3,7074			
7	1,8946	2.3646	3,4995			
8	1,8595	2,3060	3,3554			
9	1,8331	2,2022	3,2498			
10	1,8125	2,2281	3,1693			
11	1,7959	2,2010	3,1058			
12	1,7823	2,1788	3,0545			

$$t_{KDMT} = 2.3$$

Так как $t_{\text{набл}}$ = 3,77 > $t_{\text{кр}}$ = 2,31, то гипотеза H_0 отвергается и коэффициент а считается значимым.

Для проверки гипотезы H_0 : b=0 рассчитаем статистику:

$$\hat{y} = 0.68 + 0.135x$$

$$\widehat{\sigma}_{\mathrm{b}} = 0.0285$$

$$t_{\text{набл}} = \frac{b}{\widehat{\sigma}_b} = \frac{0,135}{0,0285} = 4,736$$

По таблице находим критическое значение распределения Стьюдента, где вероятность (уровень значимости) равна 0,05 и число степеней свободы n-2=10-2=8:

Число степеней свободы	Уровень значимости					
n	0,1	0,05	0,01			
1	6,3137	12,7062	63,6559			
2	2,9200	4,3027	9,9250			
3	2,3534	3,1824	5,8408			
4	2,1318	2,7765	4,6041			
5	2,0150	2,5706	4,0321			
6	1,9432	2,4469	3,7074			
7	1,8946	2.3646	3,4995			
8	1,8595	2,3060	3,3554			
9	1,8331	2,2022	3,2498			
10	1,8125	2,2281	3,1693			
11	1,7959	2,2010	3,1058			
12	1,7823	2,1788	3,0545			

$$t_{\text{крит}} = 2,3$$

Так как $t_{\text{набл}}$ = 4,736 > $t_{\text{кр}}$ = 2,31, то гипотеза H_0 отвергается и коэффициент b считается значимым, то есть товарооборот значимо влияет на издержки обращения.

Построение интервальных оценок коэффициентов

Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значения прогнозируемого показателя.

Интервальная оценка для параметра а:

$$\hat{a} - t_{\kappa p} \, \hat{\sigma}_a \le a \le \hat{a} + t_{\kappa p} \, \hat{\sigma}_a$$

где $t_{\kappa\rho}$ определяется из таблицы распределения Стьюдента для уровня значимости α и числа степеней свободы $\nu=n-2$.

Обычно уровень значимости берут равным 0,05 (доверительный интервал 95%) или 0,01 (доверительный интервал 99%).

Аналогично определяется интервальная оценка для коэффициента b:

$$\hat{b} - t_{\kappa p} \, \hat{\sigma}_b \le b \le \hat{b} + t_{\kappa p} \, \hat{\sigma}_b$$

Найдём 95% доверительные интервалы для каждого коэффициента регрессии.

Интервальная оценка для параметра а:

$$\hat{a} - t_{\kappa p} \hat{\sigma}_a \le a \le \hat{a} + t_{\kappa p} \hat{\sigma}_a$$

$$\hat{y} = 0.68 + 0.135x$$

$$\hat{\sigma}_a = 0.18$$

$$0.68 - 2.31 \times 0.18 \le a \le 0.68 + 2.31 \times 0.18$$

$$0,264 \le a \le 1,096$$

Интервальная оценка для параметра b:

$$\hat{\mathbf{b}} - \mathbf{t}_{\kappa p} \, \hat{\mathbf{\sigma}}_{\mathbf{b}} \le \mathbf{b} \le \hat{\mathbf{b}} + \mathbf{t}_{\kappa p} \, \hat{\mathbf{\sigma}}_{\mathbf{b}}$$

$$\hat{y} = 0.68 + 0.135x$$

$$\widehat{\sigma}_{b} = 0.0285$$

$$0.135 - 2.31 \times 0.0285 \le b \le 0.135 + 2.31 \times 0.0285$$

$$0.069 \le b \le 0.201$$

Доверительный интервал имеет наименьшую величину, когда \mathbf{X}_0 = $\mathbf{\bar{X}}$, а по мере удаления \mathbf{X}_0 от $\mathbf{\bar{X}}$ ширина доверительного интервала увеличивается, и точность оценки у снижается.

Интервальная оценка для уравнения регрессии у (размер издержек) при $x_0 = 10$

Точечная оценка:

$$\hat{\mathbf{v}} = 0.68 + 0.135\mathbf{x} = 0.68 + 0.135 \times 10 = 2.03$$

Интервальная оценка для $x_0 = 10$:

$$(a+bx) - t_{\kappa p} \, \widehat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}} \leq y \leq (a+bx) - t_{\kappa p} \, \widehat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}$$

$$2,03 - 2,31 \times 0,1803 \times \sqrt{\frac{1}{10} + \frac{(10 - 6)^2}{40}} \le y \le 2,03 + 2,31 \times 0,1803 \times \sqrt{\frac{1}{10} + \frac{(10 - 6)^2}{40}}$$

$$1,736 \le y \le 2,324$$

Получено, что доверительный интервал для прогноза издержек обращения при товарообороте x = 10 тыс. руб. находится в пределах от 1,736 тыс. руб. до 2,354 тыс. руб. с 95% уровнем надёжности.