Chú ý: Thí sinh không được sử dung tài liêu và giám thi phải ký xác nhân số đề vào bài thi

Câu 1. Tính giới hạn $\lim_{x\to 0} (1-\cos x)^{\tan x}$.

Câu 2. Cho $f(x) = \frac{1}{\sqrt{1+x}}$. Tính đạo hàm cấp cao $f^{(50)}(x)$.

Câu 3. Tìm các tiệm cận của đồ thị hàm số $y = \frac{x^2 \arctan x}{1 + x^2}$.

Câu 4. Tính tích phân $\int_{0}^{\sqrt{3}} \arccos \frac{x}{2} dx$.

Câu 5. Tính diện tích mặt tròn xoay tạo bởi khi quay đường cong $\begin{cases} y = \sqrt{4 - x^2}, \\ -1 \le x \le 1 \end{cases}$ quanh trục Ox một vòng.

Câu 6. Cho hàm số $z = \operatorname{arccot} \frac{y}{x}$. Tính các vi phân dz, d^2z .

Câu 7. Tìm các cực trị của hàm số $z = 3xe^y - x^3 - e^{3y}$.

Câu 8. Tính giới hạn $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2}$.

Câu 9. Tính giới hạn $\lim_{x \to +\infty} \frac{\int\limits_0^x (\arctan t)^3 dt}{\sqrt{3 \perp v^2}}$.

Câu 10. Xét sự hội tụ, phân kì của tích phân suy rộng

$$\int_{0}^{+\infty} \frac{x - \sin x}{\sqrt[3]{x^{10}}} dx.$$

ĐỀ THI CUỐI KÌ MÔN GIẢI TÍCH 1 - Học kì 20173 Mã HP: MI1111, Nhóm ngành 1, Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số đề vào bài thi

ĐỀ 2

Câu 1. Tính giới hạn $\lim_{x\to 0} (1-\cos x)^{\sin x}$. **Câu 2.** Cho $f(x)=\sqrt{1+x}$. Tính đạo hàm cấp cao $f^{(50)}(x)$.

Câu 3. Tìm các tiệm cận của đồ thị hàm số $y = \frac{x^2 \operatorname{arccot} x}{1 + x^2}$.

Câu 4. Tính tích phân $\int_{0}^{\sqrt{3}} \arcsin \frac{x}{2} dx$.

Câu 5. Tính diện tích mặt tròn xoay tạo bởi khi quay đường cong $\begin{cases} y = \sqrt{9 - x^2}, \\ -2 \le x \le 2 \end{cases}$ quanh trục Ox một vòng.

Câu 6. Cho hàm số $z = \arctan \frac{x}{y}$. Tính các vi phân dz, d^2z .

Câu 7. Tìm cực trị của hàm số $z = 3ye^x - y^3 - e^{3x}$.

Câu 8. Tính giới hạn $\lim_{(x,y)\to(0,0)} \frac{x^5}{x^4+y^4}$.

Câu 9. Tính giới hạn $\lim_{x\to +\infty} \frac{\int\limits_0^x (\arctan t)^4 dt}{\sqrt{2+r^2}}$.

Câu 10. Xét sự hội tụ, phân kì của tích phân suy rộng

$$\int_{0}^{+\infty} \frac{x - \sin x}{\sqrt{x^7}} dx.$$

Mỗi câu 1 điểm

ĐỀ THI CUỐI KÌ MÔN GIẢI TÍCH 1 - Học kì 20173 Mã HP: MI1112, Nhóm ngành 2, Thời gian: 90 phút ú: Thí sinh không được sử dụng tài liệu và giám thị nh

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (2đ). Tính các giới hạn

a)
$$\lim_{x \to 0} \frac{\ln(1+x) - x}{x^2}$$
,

b)
$$\lim_{x\to 0} \frac{\ln(1+2\tan x)}{e^x - \cos x}$$
.

Câu 2 (1đ). Tìm và phân loại điểm gián đoạn của hàm số

$$y = \arctan(e^{\frac{1}{x}}).$$

Câu 3 (1đ). Cho $f(x) = \ln \frac{x+1}{x+2}$. Tính vi phân cấp cao $d^{(10)}f(x)$.

Câu 4 (1đ). Tìm tiệm cận xiên của đồ thị hàm số $y = x + \operatorname{arccot} x$.

Câu 5 (1đ). Tính tích phân $\int \frac{\sin x + \cos x}{\sin^2 x} dx$.

Câu 6 (1đ). Tính tích phân $\int_{0}^{1} \operatorname{arccot}\sqrt{x}dx$.

Câu 7 (1đ). Tính độ dài của cung $y = \frac{1}{2}(e^x + e^{-x}), x \in [0, \ln 2].$

Câu 8 (1đ). Chứng minh rằng $\arctan x + \operatorname{arccot} x = \frac{\pi}{2}$ với mọi $x \in \mathbb{R}$.

Câu 9 (1đ). Xét sự hội tụ, phân kì của tích phân suy rộng

$$\int_{0}^{+\infty} \frac{\sin x dx}{x + x^3}.$$

ĐỀ THI CUỐI KÌ MÔN GIẢI TÍCH 1 - Học kì 20173 Mã HP: MI1112, Nhóm ngành 2, Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (2đ). Tính các giới hạn

a)
$$\lim_{x\to 0} \frac{\arctan x - x}{x^3}$$
,

ĐỀ 4

b)
$$\lim_{x \to 0} \frac{\ln(1 + 3\sin x)}{e^x - \cos x}$$
.

Câu 2 (1đ). Tìm và phân loại điểm gián đoạn của hàm số

$$y = \operatorname{arccot}(e^{\frac{1}{x}}).$$

Câu 3 (1đ). Cho $f(x) = \ln \frac{x-2}{x-1}$. Tính vi phân cấp cao $d^{(10)}f(x)$.

Câu 4 (1đ). Tìm tiệm cận xiên của đồ thị hàm số $y = x + \arctan x$.

Câu 5 (1đ). Tính tích phân $\int \frac{\sin x + \cos x}{\cos^2 x} dx.$

Câu 6 (1đ). Tính tích phân $\int_{0}^{1} \arctan \sqrt{x} dx$.

Câu 7 (1đ). Tính độ dài của cung $y = \frac{1}{2} \left(\frac{x^2}{2} - \ln x \right)$, $x \in [1, 2]$.

Câu 8 (1đ). Chứng minh rằng $\arcsin x + \arccos x = \frac{\pi}{2}$ với mọi $x \in [-1,1]$.

Câu 9 (1đ). Xét sự hội tụ, phân kì của tích phân suy rộng

$$\int_{0}^{+\infty} \frac{\sin x dx}{x + x^4}.$$