Линейная алгебра и геометрия первое полугодие 1 курса Коллоквиум А.Л. Городенцев

20 октября 2019 г.

Содержание

1	Задачи для подготовки к коллоквиуму 1	•
	1.1 1	
	1.2 2	•
	1.3 3	
	1.4 4	,
	1.5 5	4
	1.6 6	4
	1.7 7	4
	1.8 8	4
	1.9 9	4
	1.10 10	4
	1.11 11	
	1.12 12	
	1.13 13	
	1.14 14	
	1.15 15	
	1.16 16	
	1.17 17	(
	1.18 18	(
	1.19 19	(
	1 20 20	6

1 Задачи для подготовки к коллоквиуму 1

1.1 1

Пусть аффинное преобразование из условия - $M(x) = \begin{pmatrix} M_{1\ 1} & M_{2\ 1} \\ M_{1\ 2} & M_{2\ 2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$. Заметим, что для всех $c_1, c_2, x_1, x_2 : \begin{pmatrix} M_{1\ 1} & M_{2\ 1} \\ M_{1\ 2} & M_{2\ 2} \end{pmatrix} \begin{pmatrix} x_1 + c_1 \\ M_{1\ 2} & M_{2\ 2} \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} M_{1\ 1} & M_{2\ 1} \\ M_{1\ 2} & M_{2\ 2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} b_1 + c_1 \\ b_2 + c_2 \end{pmatrix}$ то есть $\begin{pmatrix} M_{1\ 1} * x_1 + M_{1\ 1} * c_1 + M_{2\ 1} * x_2 + M_{2\ 1} * c_2 + b_1 \\ M_{1\ 2} * x_1 + M_{1\ 2} * c_1 + M_{2\ 2} * x_2 + b_2 + c_2 \end{pmatrix} = \begin{pmatrix} M_{1\ 1} * x_1 + M_{2\ 1} * x_2 + b_1 + c_1 \\ M_{1\ 2} * x_1 + M_{2\ 2} * x_2 + b_2 + c_2 \end{pmatrix}$ откуда $1.M_{1\ 1} * c_1 + M_{2\ 1} * c_2 = c_1$ $2.M_{1\ 2} * c_1 + M_{2\ 2} * c_2 = c_2$

Заметим, что (1.) выполнено для всех пар $(c_1; c_2)$, то есть и для пары (1;0), откуда $M_{1\ 1}=1$. Поэтому $M_{2\ 1}=0$.

Аналогично $M_{1\ 2}=0; M_{2\ 2}=1.$ Заметим, что тогда $M(x)=\begin{pmatrix} x_1+b_1\\x_2+b_2 \end{pmatrix}$, то есть M(x) - сдвиг, что очевидно коммутирует со всеми сдвигами.

1.2 2

Заметим, что можно выбрать такой базис, что одна из 3х прямых - $x_1=0$, вторая - $x_1=1$, тогда третья - $x_1=\alpha$. Далее будем работать в этом базисе. Покажем, что нет преобразования переводящее $x_1=0->x_1=0$, $x_1=1->x_1=1$, $x_1=\alpha->x_1=\beta$ Пусть есть такое аффинное преобразование $M(x)=\begin{pmatrix} M_{1\,1} & M_{2\,1} \\ M_{1\,2} & M_{2\,2} \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$. При этом точка вида $(0;y)->(M_{2\,1}*y+b_1;M_{2\,2}*y+b_2)$, откуда $M_{2\,1}*y+b_1=0$ для всех y, откуда $b_1=0$, $b_2=0$. Аналогично $b_3=0$ 0, откуда $b_3=0$ 1, $b_3=0$ 2, откуда $b_3=0$ 3, откуда следует, что прямая $b_3=0$ 3, $b_3=0$ 4, откуда следует, что $b_3=0$ 5, откуда следует, что $b_3=0$ 6, $b_3=0$ 7.

1.3 3

$$2x - y = 5$$
 $x + 3y = 2$

Пусть $n_1 = (1, 2), n_2 = (3, -1)$. Тогда прямые задаются уравнениями:

$$l_1:(n_1,x)=(n_1,(0;-5))=-10l_2:(n_2,x)=(n_2,(2;0))=6$$

Заметим, что множество точек, равноудалённых от прямых l_1 и l_2 :

$$\left|\frac{-10 - (n_1, a)}{|n_1|}\right| = \left|\frac{6 - (n_2, a)}{|n_2|}\right|$$

$$1. \ (-10 - (n_1, a)) \cdot \sqrt{10} = +(6 - (n_2, a)) \cdot \sqrt{5}$$

$$-(n_1, a) \cdot \sqrt{2} + (n_2, a) = 10\sqrt{2} + 6$$

$$((-\sqrt{2} + 3; -2\sqrt{2} - 1), a) = 10\sqrt{2} + 6$$

$$2. \ (-10 - (n_1, a)) \cdot \sqrt{10} = -(6 - (n_2, a)) \cdot \sqrt{5}$$

$$-(n_1, a) \cdot \sqrt{2} - (n_2, a) = 10\sqrt{2} - 6$$

$$((-\sqrt{2} - 3; -2\sqrt{2} + 1), a) = 10\sqrt{2} - 6$$

Откуда нормальные векторы биссектрисс: $(-\sqrt{2}+3;-2\sqrt{2}-1)$ и $(-\sqrt{2}-3;-2\sqrt{2}+1)$, поэтому напрявляющие - $(2\sqrt{2}+1;-\sqrt{2}+3)$ и $(2\sqrt{2}-1;-\sqrt{2}-3)$

1.4 4

Заметим, что размерность любого подпространства меньше или равна размерности пространства, так как базис пространства является порождающим для подпространства. При этом все возможные мощности, меньшие или равные счётной - конечные или счётные (так как любое подмножество натуральных чисел либо конечно, либо можно в явном виде посчитать).

При этом несчётное множество линейно зависимо, так как иначе базис не может быть счётным.

1.5 5

Считаем, что вершины гиперкуба имеют координаты "0"или "1"в каждой из осей (не обязательно одновременно).

Заметим, что каждый куб можно задать уравнением вида (x,y,z,t), где ровно одно из чисел - константа, равная 0 или 1. (к примеру (x,y,z,0)). Аналогично можно задать стену в кубе, зафиксировав одну из переменных, которые остались (к примеру (x,y,0,0)).

A)

Заметим, что противоложная дверь стены (x,y,0,0) для куба (x,y,z,0) : (x,y,1,0), то есть имеющую противоположную координату в соотв. оси. Аналогично это верно для всех стен во всех кубах. Теперь начнём путь: без огр общ считаем, что изначально мы в кубе (x,y,z,0) и вошли из стены (x,y,0,0), далее:

откуда видно, что всего комнат -4. В)

1.6 6

Заметим, что если l параллельна Π (это русская букова), то нет, не заметают, так как любая точка a из плоскости α , параллельной Π и проходещей через l не может быть полученна, так как любая прямая, проходящая через a и точку на l лежит в плоскости α , что не лежит в плоскости Π .

Заметим, что если же l не параллельна Π , то есть существует пересечение l и Π , то любая точка b может быть получена, так как рассмотрим плоскость, натянутую на b и l. Заметим, что она пересекает Π хотя бы по прямой, откуда следует, что если на плоскости есть 2 прямые и все прямые, проходящие через пары точек на этих 2x прямых, замощают плоскость, то в трёхмерной задаче прямые через l и Π замощают пространство. Заметим, что утверждение на плоскости выполнено, так как для любой точки можно выбрать прямую, не параллельную ни одной из 2x данных, тогда эта прямая пересекает 2 данные в каких то точках, откуда и следует, что для каждой точки можно указать прямую, проходящую через неё.

1.7 7

```
Центры треугольников имеют координаты (\frac{1}{3};\frac{1}{3};\frac{1}{3};0;0) и (0;0;\frac{1}{3};\frac{1}{3};\frac{1}{3}) соотв. Тогда середина между этими центрами имеет координаты X:(\frac{1}{6};\frac{1}{6};\frac{1}{6};\frac{1}{6};\frac{1}{6}) Заметим, что Y:(\alpha;0;0;0;1-\alpha), Z:(0;b;c;d;0) (при b+c+d=1). Откуда прямая XY не может проходить через Z, если \alpha\neq 1-\alpha, поэтому \alpha=\frac{1}{2}, при этом Z=\beta*Y+(1-\beta)*X, откуда \beta*\frac{1}{2}=-(1-\beta)*\frac{1}{6}\Leftrightarrow\beta*\frac{1}{3}=-\frac{1}{6}\Leftrightarrow\beta=-\frac{1}{2}\Rightarrow Z:(0;\frac{1}{4};\frac{1}{2};\frac{1}{4};0). Из того, что \beta=-\frac{1}{2} следует, что \overrightarrow{XY}:\overrightarrow{YZ}=2:1
```

1.8 8

Рассмотрим пространство α над ABCD, рассмотрим точку пересечения прямой EP с α . (пусть это точка E_1). Назовём такую операцию P-проекцией (которая была проведена с точкой E). Заметим, что P-проекция точки, лежащей на отрезке EA, лежит на прямой E_1A . Заметим, что в плоскости α можно выбрать такую прямую l, которая не будет пересекаться ни с одной из прямых пар точек A,B,C,D,E_1 . Проведём через эту прямую l и P плоскость. Заметим, что она не пересекает ни одно "ребро так как это означает, что через

1.9 9

1.10 10

Докажем, что любой прямой ровно q точек: рассмотрим 2 различные точки a,b, проведём черех них прямую. Рассмотрим всевозможные произведения $v=\overrightarrow{ab}$ со всеми элементами из поля. Заметим, что получится q различных векторов, так как иначе $\alpha \cdot v = \beta \cdot v \Leftrightarrow v \cdot (\alpha - \beta) = 0 \Leftrightarrow \alpha - \beta = 0 \Leftrightarrow \alpha = \beta$. Тогда все точки вида $\gamma \cdot v + a$ лежат на прямой ab, при этом все они различны и других нет, откуда и следует, что точек на прямой -q.

Тогда заметим, что всего прямых $-\frac{A(A-1)}{q(q-1)}$, где $A=q^n=|M|$ (M - аффинное пространство из условия), так

как каждая прямая однозначно задаётся парой точек, то каждая прямая была посчитана q(q-1) раз. Заметим, что треугольников — $\frac{A(A-1)(A-q)}{3!}$, так как каждый треугольник задаётся тремя точками общего положения, и каждая тройка точек была посчитана 3! раз.

Каждая плоскость содержит q^2 точек, так как каждая плоскость изоморфна 2-мерному пространству: каждая плоскость задаётся тремя неколлиниарными точками o,a,b, остальные задаются $o+\overrightarrow{oa} \cdot \alpha + \overrightarrow{ob} \cdot \beta$, при этом все точки различны (это нетрудно видеть, так как иначе точки лежат на одной прямой). Тогда сопоставим точку o точке (0;0), точку a,b — точкам $(1;0),\ (0;1)$. Остальные точки задаются однозначно. Тогда плоскостей — $\frac{A(A-1)(A-q)}{q^2(q^2-1)(q^2-A)}$.

1.11 11

Если поле из 27 элементов — расширение поля из 9 размерности n, то в нем $9^n = 27$ элементов. Но в этом случае n — не целое число, а размерность расширения нецелой быть не может.

Ответ: нет

1.12 12

а,b) Нет, так как пусть есть N прямых. Заметим, что тогда точек с целочисленными координатами от α до $\alpha+N+1$: $(N+1)^2$ (выберем такое α , что нет прямых вида $x_2=c$, где $\in [\alpha,\alpha+N+1]$), при этом каждая прямая (не вида $x_2=c$), содержит не более N+1 точку (то есть каждой x_2 сопоставляется не более одной x_1), при этом прямых - N, откуда точек, принадлежащим прямым не более N*(N+1), что меньше $(N+1)^2$. с) Пусть N подпространств размерности k. (если есть пространства меньшей размерности - разширим их до k) (Тогда пространство размерности хотя бы k+1). Рассмотрим точки с целочисленными координатами от 0 до N+1. Таких точек хотя бы $(N+1)^{k+1}$, при этом каждое подпростанство размерности k имеет не более $(N+1)^k$ точек (заметим, что подпространство размерности k либо вырождено, то есть вида $(a_1,a_2,...,a_k,0)$, где a_i - параметры, 0 - константа, при этом константа не обязательно в последней координате, либо по первым k координатам однозначно восстанавливается последняя), откуда всего точек в объединении не более $(N+1)^k*N < (N+1)^{k+1}$.

1 13 13

Да. Докажем по индукции:

База: V содержит все многочлены нулевой степени – это верно, так как есть хотя бы 1 многочлен нулевой степени, остальные выражаются линейно комбинацией. Переход: V содержит все многочлены степени k, тогда содержит и все многочлены степени k (при $k \leq m$). Заметим, что есть хотя бы один многочлен степени k, тогда ax^k лежит в этом векторном пространстве (так как можно вычесть многочлен с коэффициэнтами меньших степеней). Любой многочлен степени k можно представить в виде $\alpha*x^k+P(x)$, где степень P(x) < k. Заметим, что из этого следует, что любой многочлен степени k лежит в этом векторном пространстве.

- 1.14 14
- 1.15 15
- 1.16 16
- 1) Покажем, что сложение в F_2 такое же, что и в нашем векторном пространстве V (которое образовано следующим образом: это |M|-мерное пространство, то есть сопоставим каждой координате элемент из M. Каждому множеству C сопоставим следующий вектор $v=[v_1,\ v_2,\ ...]$: пусть $m_i\in M$ (m_i соответсвует i-той координате), тогда $m_i\in C \Leftrightarrow v_i=1$.):

Складываем множества A и B (и соответствующие вектора $a=[a_1,\ a_2,\ ...],\ b=[b_1,\ b_2,\ ...])$ Проверим для каждого элемента, что соответствующая ему координата соответствует нахождению (или отсутствию) элемента в сумме. Если $m_i \in A$ и $m_i \notin B$, то $m_i \in A+B$, как и 1+0=1. Аналогично для случая наоборот. Если $m_i \notin A, B$, то $m_i \notin A, B$, как и 0+0=0. Если $m_i \in A, B$, то $m_i \notin A, B$, как и 1+1=0. Так же заметим, что умножение также соответствует умножению в F_2 .

2) Рассмотрим следующий базис: все множества из одного элементаю. Заметим, что это базис: он порождающий, так как любое множество представимо в виде объединения одноэлементных множеств, он линейно независим, так как пусть один (содержащий элемент m_i) выражается через остальные, но заметим, что во всех векторах і-тая координата нулевая, а сумма нулей равна 0, при этом в m_i эта координата равна единице, противоречие.

Размерность этого базиса -|M|.

3) Заметим, что если множество не лежит в объединении других, то в этом множестве есть элемент, не принадлежащий объединению (очевидно, что если все элементы из множества принадлежат объединению, то само множество принадлежит объединению). Откуда множества X_i линейно независимы.

1.17 17

Пусть нам даны точки $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), (x_5, y_5)$ Тогда возьмем уравнение $a_{(2\ 0)}x^2 + a_{(1\ 1)}xy + a_{(0\ 2)}y^2 + a_{(1\ 0)}x + a_{(0\ 1)}y + a_{(0\ 0)} = 0$ и подставим в него наши точки, получим:

$$\det \begin{vmatrix} x^2 & xy & y^2 & x & y & 1 \\ x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1 \\ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1 \\ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 \end{vmatrix} = 0$$

$$(1)$$

И эта матрица задает искомую прямую.

1.18 18

A)

Покажем, что да. Пусть даны матрицы A содержащее $a_{i\ j}$ и B содержащее $b_{i\ j}$ (считаем, что матрицы $\mathbb{N}x\mathbb{N}$) (первый индекс – столбец, второй – строка).

Заметим, что сумма l строки матрицы $A \cdot B$ равна сумме произведений всех возможных пар чисел $(a_{i_a}\ _l;\ b_{l}\ _{i_b})$, где i - параметры. Сумма произведений пар $(a_{\alpha}\ _l;\ b_{l}\ _{j_b})$ равна $a_{\alpha}\ _l$, так как сумма $b_{l}\ _{j_b}$ равна 1. Тогда сумма всех произведений равна сумме чисел вида $a_{i_a}\ _l=1\cdot 1=1$. Аналогично заметим, что сумма h столбца матрицы $A\cdot B$ равна сумме произведений всех возможных пар чисел $(a_{h}\ _{i_a};b_{i_b}\ _h)$, где i - параметры. И аналогично эта сумма равна 1.

B)

Пусть существует такие A и B: $(E-A) \cdot B = E$. Заметим, что в (E-A) сумма во всех столбцах и строках равна 0, откуда следует, что $(E-A) \cdot B$ обладает таким же свойством, что нетрудно видеть из доказательнства пункта (а). Тогда $(E-A) * B \neq E$, так как E не обладает таким свойтвом. Откуда ответ – да

1.19 19

(1) Заметим, что в любой момент времени количество красок каждого типа в банках равно $\frac{p}{10^q}$, где $p,q\in N\cap 0$. Заметим, что множество таких чисел замкнуто относительно сложения, вычитания и деления. При этом переливание - следующая операция над парой векторов $a=(a_1,\ a_2,\ ...,\ a_7), b=(b_1,\ b_2,\ ...,\ b_7)$: $a\to a-\frac{a}{1-|b|}$; $b\to b+\frac{a}{1-|b|}$, где $|x|=x_1+x_2+...+x_7$. Откуда следует утверждение (1). Предположим в какой-то момент появилась банка с одинаковым отношением красок. Заметим, что в момент,

Предположим в какой-то момент появилась банка с одинаковым отношением красок. Заметим, что в момент, когда она появилась, её объём краски в ней равен 1, то есть каждая краска имеет объём $\frac{1}{7} \neq \frac{p}{10^q}$, откуда следует, что такого момента не может быть, поэтому ответ к задаче — нет.

1.20 20

Пусть:

$$A = \begin{vmatrix} a_{0\ 0} & a_{1\ 0} & \cdots & a_{n-1\ 0} & a_{n\ 0} \\ a_{0\ 1} & a_{1\ 1} & \cdots & a_{n-1\ 1} & a_{n\ 0} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{0\ n-1} & a_{1\ n-1} & \cdots & a_{n-1\ n-1} & a_{n\ 0} \\ a_{0\ n} & a_{1\ n} & \cdots & a_{n-1\ n} & a_{n\ n} \end{vmatrix}$$

Тогда
$$(E+A)(E+B) = E+A+B+A\cdot B$$
 $A+A\cdot B = A(E+B)$ $A+A^{m-1}\cdot C = 0$