Dictionaries

Lecture 1: Intro, implementation using Arrays and Linked Lists

Definition

Dictionary is an abstract data structure that supports the following operations:

- search(K key)
 (returns the value associated with the given key)¹
- insert(K key, V value)
- delete(K key)

Each element stored in a dictionary is identified by a key of type K. Dictionary represents a mapping from keys to values.

Dictionaries have numerous applications

¹Search can return a special value if key is absent in dictionary

Examples

- contact book key: name of person; value: telephone number
- table of program variable identifiers key: identifier; value: address in memory
- property-value collection key: property name; value: associated value
- natural language dictionary key: word in language X; value: word in language Y
- etc.

Implementations

- simple implementations: sorted or unsorted sequences, direct addressing
- hash tables
- binary search trees (BST)
- AVL trees
- self-organising BST
- red-black trees
- (a,b)-trees (in particular: 2-3-trees)
- B-trees
- and other ...

Understanding the Data Type

Consider an empty unordered dictionary and the following set of operations:

Operation	Dictionary	Output	
insertItem(5,A)	$\{(5,A)\}$		
insertItem(7,B)	$\{(5,A), (7,B)\}$		
insertItem(2,C)	$\{(5,A), (7,B), (2,C)\}$		
insertItem(8,D)	$\{(5,A), (7,B), (2,C), (8,D)\}$		
insertItem(2,E)	$\{(5,A), (7,B), (2,C), (8,D), (2,E)\}$		
findItem(7)	$\{(5,A), (7,B), (2,C), (8,D), (2,E)\}$	В	
findItem(4)	$\{(5,A), (7,B), (2,C), (8,D), (2,E)\}$	NO_SUCH_KEY	
findItem(2)	$\{(5,A), (7,B), (2,C), (8,D), (2,E)\}$	C	
findAllItems(2)	$\{(5,A), (7,B), (2,C), (8,D), (2,E)\}$	C, E	
size()	$\{(5,A), (7,B), (2,C), (8,D), (2,E)\}$	5	
removeItem(5)	$\{(7,B), (2,C), (8,D), (2,E)\}$	A	
removeAllItems(2)	$\{(7,B), (8,D)\}$	C, E	
findItem(4)	$\{(7,B), (8,D)\}$	NO_SUCH_KEY	

AdvanceDataStructures-Unit-1(Dictionaries)

	Insertion	Removal	Retrieval	Traversal
Unsorted array-based	O(1)	O(n)	O(n)	O(n)
Unsorted link-based	O(1)	O(n)	O(n)	O(n)
Sorted array-based	O(n)	O(n)	$O(\log n)$	O(<i>n</i>)
Sorted link-based	O(<i>n</i>)	O(<i>n</i>)	O(<i>n</i>)	O(n)
Binary search tree	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)