Technology and Artificial Intelligence League

DECISION TREE

1. Introdução

A Árvore de Decisão é um modelo de Machine Learning usado para classificação ou para regressão. O objetivo desse método é dividir um problema em subseções consecutivas (fluxo de processamento recursivo).

Alguns exemplos em que pode ser aplicado:

- Resolvendo problemas que focam em prever chance de algum evento ocorrer (ex: desenvolvimento de diabetes);
- São muito utilizadas para análise de decisão.

Exemplo gráfico do Decision Tree.

2. Componentes

- Nó interno (decision node);
- Folha (leaf node);
- Nó raiz (root node);
- Divisão (splitting);
- Ramificação (branch);
- Poda (prunning).

3. Entropia

O algoritmo faz uso da fórmula de Entropia e Ganho de Informação para definir os níveis de cada atributo previsor.

$$Entropy = \sum_{i=1}^{C} -p_i * \log_2(p_i)$$

Fórmula da Entropia

$$Gain(S, D) = H(S) - \sum_{V \in D} \frac{|V|}{|S|} H(V)$$

Fórmula de Ganho de Informação

4. Exemplo

Considere a seguinte tabela como exemplo:

Salário	Localização	Função	Decisão
alto	longe	interessante	SIM
baixo	perto	desinteressante	NÃO
baixo	longe	interessante	SIM
alto	longe	desinteressante	NÃO
alto	perto	interessante	SIM
baixo	longe	desinteressante	NÃO

Tabela de predição de aceite ou não do emprego

4. Exemplo

Considere os seguintes cálculos de Entropia e Ganho de Informação:

O atributo com maior Ganho de Informação fica no topo da árvore.

```
Entropia(alto) = -(2/3)*log2(2/3)-(1/3)*log2(1/3) = 0,918

Entropia(baixo) = -(1/3)*log2(1/3)-(2/3)*log2(2/3) = 0,918

Entropia(longe) = -(2/4)*log2(2/4)-(2/4)*log2(2/4) = 1,0

Entropia(perto) = -(1/2)*log2(1/2)-(1/2)*log2(1/2) = 1,0

Entropia(desinteressante) = -(3/3)*log2(3/3) = 0,0

Entropia(interessante) = -(3/3)*log2(3/3) = 0,0

Entropia(decisão) = -(1/2)*log2(1/2)-(1/2)*log2(1/2) = 1,0
```

A entropia, por sua vez, mede o grau de impureza dos valores dos atributos.

A partir dos cálculos podemos criar a seguinte árvore:

A poda é um método de exclusão de subconjuntos da árvore, com o intuito de minimizar o erro do modelo.

Referências

LAURETTO, Marcelo S... Árvores de Decisão. Disponível em: https://edisciplinas.usp.br/pluginfile.php/4469825/mod_resource/content/1/ArvoresDecisao_normalsize_npdf>. Acesso em 05 de Outubro de 2020;

ZUBEN, Von; ATTUX, Romis R. F.. Árvores de Decisão. Disponíleo em: http://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ia004_1s10/notas_de_aula/topico7_IA004_1s10.pdf>. Acesso em 05 de Outubro de 2020;

CHOWDARY, Davuluri Hemanth. Decision Trees Explained With a Practical Example. Disponível em: https://towardsai.net/p/programming/decision-trees-explained-with-a-practical-example-fe47872d3b53 > Acesso em 05 de Outubro de 2020.