

Introduction

Pourquoi ce cours?

- ✓ Les données tabulaires sont omniprésentes : feuilles Excel, bases SQL, fichiers CSV/JSON.
- ✓ Elles sont essentielles pour :
 - Comprendre les tendances de marché
 - Évaluer la **performance d'une organisation**
 - Analyser des résultats scientifiques ou économiques

Ce que vous allez apprendre

- Charger des données avec pandas en python (CSV, Excel, JSON...)
- Nettoyer, transformer et rendre les données exploitables
- Effectuer des calculs
- Exporter et partager vos résultats de manière professionnelle

À qui s'adresse ce cours??

- Étudiants, professionnels ou curieux de la data
- Aucune expertise préalable nécessaire
- Idéal pour poser les bases solides en Data Science

Introduction aux Données Tabulaire

Qu'est-ce qu'une donnée tabulaire?

Organisation en **lignes (observations)** et **colonnes (variables)**, comme dans :

- Fichiers CSV, Excel
- Bases de données SQL, NoSQL
- Index Elasticsearch

Nom	Ville	Entrées
Musée des Beaux-Arts	Lyon	334459
Musée d'Art Roger-Quillot	Clermont	78386
Musée Dauphinois	Grenoble	76413
Musée Alpin	Chamonix	35747
Musée d'art contemporain	Lyon	135000

Introduction aux Données Tabulaire

Flexibilité

- Traite des fichiers locaux ou massifs, formats variés (JSON, SQL, API...)
- S'intègre dans des pipelines automatisés et des apps data

Pourquoi Python?

Connectivité étendue

- Bases SQL (PostgreSQL, MySQL, SQLite...)
- APIs REST, fichiers web, systèmes NoSQL (MongoDB...)
- Big Data (Spark, Hadoop

Bibliothèques puissantes

- NumPy : calcul rapide sur tableaux numériques (ndarray)
- Pandas : manipulation intuitive de données tabulaires (DataFrame, Series)
 Chargement, nettoyage, filtrage, jointures, séries temporelles

Numpy et Pandas

Numpy: Calcul numérique

- **Performance** : Code optimisé en C sous le capot
- Structure de base : les tableaux ndarray
- Calcul numérique haute performance
- Performances: 100x plus rapide que les listes Python pour les opérations vectorielles.

Pandas : Manipulation de données tabulaires

- Structures de données principales : DataFrame (tableau 2D)
- Lecture/écriture : CSV (read_csv), Excel (read_excel), SQL (read_sql), JSON (read_json), etc.
- Sélection et filtrage : Colonnes, Lignes, Filtres booléens
- **Productivité**: Moins de code pour des opérations complexes.
- Interopérabilité : Compatible avec NumPy, Matplotlib, Scikit-learn.
- Optimisé pour les données tabulaires (jusqu'à quelques Go).

Exploration des Données avec Pandas

Voir le tutoriel

https://github.com/openDataSenegal/Open-Learning-Data-Science/blob/main/Python/ExplorationManipula tionDonnesTabulairesNumpyPandas.md

Manipulation des Données avec Pandas

Voir le tutoriel

https://github.com/openDataSenegal/Open-Learning-Data-Science/blob/main/Python/ExplorationManipula tionDonnesTabulairesNumpyPandas.md

Cas Pratique

Projet

https://github.com/openDataSenegal/Open-Learning-Data-Science/blob/main/Python/ExplorationManipula tionDonnesTabulairesNumpyPandas.ipynb

Visualisation des Données

Pour visualiser les données, nous pouvons utiliser Matplotlib ou Seaborn en complément de Pandas

