Computational Geometry (CS60064) Spring 2024-25

Instructions

- (a) The submission deadline is hard. There may be unforeseen glitches during submission. So, for safety, submit your files well ahead.
- (b) All submissions should be on moodle only. No email submission will be accepted, excepting medical reasons.
- (c) Do not forget to typeset your solutions. In particular, every mathematical expression must be properly typeset, e.g., the square of n must appear as n^2 and not as n^2 . Improper typesetting may incur up to 25% deduction in marks.
 - You can use LATEX for writing (that is what we recommend); else, typeset in Word and convert to pdf.
 - Handwritten text—converted to images or to pdf—will not be evaluated.
- (d) You must submit all the source files and the final pdf as a single zip file. The name of the zip should be your roll number, followed by a hyphen, followed by the assignment number. For example, if your roll number is XY190047, then the zip file for the 1st assignment should be named as XY190047-a1.zip. For subsequent assignments, your zip files should be named as XY190047-a2.zip, XY190047-a3.zip, ...

If you typeset in L^AT_EX, then the zip should contain one tex file, image files if any, and the final pdf.

If you typeset in Word, then the zip should contain one odt/doc/docx file and the final pdf. Image files get embedded in a Word file, so image files are not needed.

Failing this, your assignment will not be evaluated.

Assignment 1

Submission deadline: 19-Jan-2025, 11:55 PM

1.1 Polygon Construction

Given n points on the xy-plane, design an algorithm to construct a simple polygon P such that all the given points serve as vertices of P, and no other points are included as vertices. Provide a proof of correctness for your algorithm and deduce its time complexity. (A *simple polygon* is defined as one in which no two edges intersect, except possibly at their endpoints.) $\boxed{4+3+3=10 \text{ marks}}$

Solution key:

Find the leftmost point p_L and the rightmost point p_R , and join them with a straight-line segment ℓ . Project all points that are above ℓ , on ℓ . Sort these footprints and connect the original points serially in the sorted order to form the upper chain of P; do the same for the lower chain. If one side of ℓ is empty, use ℓ as an edge of the polygon P (as shown in the figure on the right). This can be done in $O(n \log n)$ time.

1.2 Point Location

A convex polygon P is provided as a counter-clockwise ordered sequence of n vertices, with their locations specified as (x, y) coordinates. Given a query point q, develop an algorithm to determine whether q lies inside P in $O(\log n)$ time, using O(n) space, including any necessary preprocessing. Justify the time and space complexities of your algorithm. $\boxed{6+2+2=10 \text{ marks}}$

Solution key:

Choose three points on the boundary of P, which are almost equispaced—can be done in O(1) time—via indexing. Construct three directed rays (cut-lines) $\overrightarrow{\ell_1}$, $\overrightarrow{\ell_2}$, $\overrightarrow{\ell_3}$ through these points—they partition the 2D-space into seven disjoint regions as shown. The location of the query point q w.r.t. these regions can be determined in O(1) time via three orientation tests. Further refined

partitioning can be done through $O(\log_3 n)$ steps, thus giving the precise location of q in $O(\log n)$ time, and in O(n) space.

In the following example, q is initially identified to lie in Region 7, characterized by the unique 3-bit label LLR—indicating that q lies left of $\overrightarrow{\ell_1}$, left of $\overrightarrow{\ell_2}$, and right of $\overrightarrow{\ell_3}$. Subsequently, its position is evaluated with respect to $\overrightarrow{\ell_1}$ and two other rays, resulting in the label LLL, thereby confirming that q lies inside P.

Assignment 2

Submission deadline: 26-Jan-2025, 11:55 PM

2.1 Point location w.r.t. line

For some algorithm, we have to test whether a point r lies to the left or right of the directed line \overrightarrow{pq} through two points p and q. Let $p = (p_x, p_y)$, $q = (q_x, q_y)$, and $r = (r_x, r_y)$.

(a) Show that the sign of the determinant

$$D = \begin{vmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{vmatrix}$$

determines whether r lies to the left or right of the line.

- (b) Show that |D| is in fact twice the area of the triangle determined by p, q, and r.
- (c) Why is this an attractive way to implement the basic test in any algorithm where the location of a point is determined w.r.t. a directed line? Provide arguments for both integer and floating-point coordinates. 6 + 2 + 2 = 10 marks

Solution key:

(a) Expanding the determinant:

$$D = \begin{vmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{vmatrix} = (q_x r_y - q_y r_x) + p_x (q_y - r_y) + p_y (r_x - q_x).$$

Let $\overrightarrow{u_x}$, $\overrightarrow{u_y}$, and $\overrightarrow{u_z}$ denote the respective unit vectors along the x-, y-, and z-axes. Then,

$$\overrightarrow{pq} \times \overrightarrow{pr} = \left((q_x - p_x) \overrightarrow{u_x} + (q_y - p_y) \overrightarrow{u_y} \right) \times \left((r_x - p_x) \overrightarrow{u_x} + (r_y - p_y) \overrightarrow{u_y} \right)$$

$$= (q_x - p_x) (r_y - p_y) \overrightarrow{u_z} - (q_y - p_y) (r_x - p_x) \overrightarrow{u_z} \quad [\text{since } \overrightarrow{u_x} \times \overrightarrow{u_y} = \overrightarrow{u_z} \text{ and } \overrightarrow{u_y} \times \overrightarrow{u_x} = -\overrightarrow{u_z}]$$

$$= \left((q_x - p_x) (r_y - p_y) - (q_y - p_y) (r_x - p_x) \right) \overrightarrow{u_z}$$

$$= D\overrightarrow{u_z}.$$

Figure 2.1: Determining the location of a point r w.r.t. the directed line p-to-q using the sign of D, which is basically the scalar value $|\overrightarrow{pq}| \cdot |\overrightarrow{pr}| \cdot \sin \theta$.

Now, consider an alternative way of evaluating the vector $\overrightarrow{pq} \times \overrightarrow{pr}$, as illustrated in Figure 2.1. Recall the cross-product formula that the vector $\overrightarrow{pq} \times \overrightarrow{pr}$ is given as $(|\overrightarrow{pq}| \cdot |\overrightarrow{pr}| \cdot \sin \theta) \overrightarrow{u_z}$, where, θ is the angle measured counterclockwise from \overrightarrow{pq} to \overrightarrow{pr} . Since either of the above two ways gives the same vector, we have

$$D = \left| \overrightarrow{pq} \right| \cdot \left| \overrightarrow{pr} \right| \cdot \sin \theta.$$

Hence, D is positive, negative, or zero depending on the signed value of $\sin \theta$. In other words, the sign of D determines the position of r, as follows:

- (i) $D > 0 \implies 0^{\circ} < \theta < 180^{\circ} \implies r \in \operatorname{left}(\overrightarrow{pq})$.
- (ii) $D < 0 \implies 180^{\circ} < \theta < 360^{\circ} \implies r \in \text{right}(\overrightarrow{pq})$.
- (iii) $D = 0 \implies \theta = 0^{\circ} \implies r \text{ lies on } \overrightarrow{pq}.$
- (b) The area of a triangle formed by points p, q, and r is given by

$$\frac{1}{2} \Big| |\overrightarrow{pr}| \sin \theta \cdot |\overrightarrow{pq}| \Big| = \frac{|D|}{2}.$$

- (c) (i) Integer coordinates: The determinant D is computed using only integer arithmetic, ensuring correct output.
 - (ii) Floating-point coordinates: When dealing with high-precision values (e.g., small numbers with numerous decimal places), the determinant computation may yield inaccurate results due to floating-point rounding errors.

2.2 Point location in strip

Let S be a set of n disjoint line segments whose upper endpoints lie on the line y=1 and whose lower endpoints lie on the line y=0. These segments partition the horizontal strip $[-\infty : \infty] \times [0:1]$ into n+1 regions: R_1, \ldots, R_{n+1} . Give an $O(n \log n)$ -time algorithm to build a binary search tree on the segments in S such that the region containing a query point can be determined in $O(\log n)$ time. Also, describe the query algorithm in full detail.

Solution key:

See Figure 2.2. Any horizontal line within the strip intersects the segments of S in the same order as the order of their lower (or upper) endpoints. A query point q lies in R_i if and only if to its

Figure 2.2: Determining the region of a query point in a strip.

immediate left lies the (i-1)st segment. The sole exception is when q lies in R_1 , in which case there is no segment to the left of q.

Using this observation, we construct a height-balanced binary search tree ordered by the x-coordinates of the lower endpoints of the n segments. (Write the steps in detail.) This construction can be completed in $O(n \log n)$ time.

To determine the region of $q = (q_x, q_y)$, use q_x as the search key to find the segment immediately to its left. (Write the steps in detail.) Since the height of the tree is $O(\log n)$, the time complexity for this search is $O(\log n)$.

Assignment 3

Submission deadline: 03-Feb-2025, 11:55 PM

3.1 Diameter of convex polygon

Diameter of a convex polygon is a/the longest line segment contained within it. Given a convex polygon P with n vertices in counterclockwise order, design an O(n)-time algorithm to find a diameter of P. Justify its correctness and why its time complexity is O(n). 5+3+2=10 marks

To design the algorithm, you may use Observation 1 based on the notion of a tangent. Recall that a **tangent** to a convex polygon P is a straight line passing through a vertex or edge of P such that the interior of P lies entirely on one side of it. Two vertices u and v comprise an **antipodal pair** if there exist two tangents, say T_u and T_v , passing through u and v, such that v are parallel to each other and v is sandwiched between them.

Observation 1. The endpoints of a diameter always comprise an antipodal pair. However, an antipodal pair may not form a diameter, as shown in Figure 3.1.

Figure 3.1: Left: \overline{uv} is a diameter of a convex polygon. Middle and right: Not diameters because they are not longest.

3.2 Convex polygon containment

Let P and Q be two convex polygons with m and n vertices, respectively, given in counterclockwise order. Suggest an $O(m \log n)$ -time algorithm to check whether P contains Q. Suggest another algorithm that will take time O(m+n).

Derive the time complexities of both.

$$(2+2) + (3+3) = 10$$
 marks