No-Regret Learning in Games with Noisy Feedback: Faster Rates and Adaptivity via Learning Rate Separation

Yu-Guan Hsieh¹ Kimon Antonakopoulos² Volkan Cevher² Panayotis Mertikopoulos^{1,3,4} (¹UGA, Inria ²EPFL ³CNRS ⁴Criteo Al Lab)

Online Learning in Continuous Games

At each round t = 1, 2, ..., each player $i \in \mathcal{N} := \{1, ..., N\}$

- Plays an action $x_t^i \in \mathcal{X}^i$ (closed convex)
- Suffers loss $\ell^i(\mathbf{x}_t)$ and receives estimate g_t^i of $\nabla_i \ell^i(\mathbf{x}_t)$
- $\ell^i(\cdot, \mathbf{x}^{-i})$ is convex and $\nabla_i \ell^i(\mathbf{x}_t)$ is Lipschitz continuous
- Nash equilibrium \mathbf{x}_{\star} : $\forall i \in \mathcal{N}, \ \forall x^i \in \mathcal{X}^i, \ \ell^i(x^i_{\star}, \mathbf{x}_{\star}^{-i}) \leq \ell^i(x^i, \mathbf{x}_{\star}^{-i})$
- Individual regret of agent i:

$$\operatorname{Reg}_{T}^{i}(\mathcal{P}^{i}) = \max_{p^{i} \in \mathcal{P}^{i}} \sum_{t=1}^{T} \left(\underbrace{\ell^{i}(x_{t}^{i}, \mathbf{x}_{t}^{-i}) - \ell^{i}(p^{i}, \mathbf{x}_{t}^{-i})}_{\text{cost of not playing } p^{i} \text{ in round } t \right)$$

Opponents can be adversarial or optimizing their own objectives

The Callenge: Noisy Feedback

We consider

- Additive noise: $g_t^i = \nabla_i \ell^i(\mathbf{x}_t) + \xi_t^i$
- Multiplicative noise: $g_t^i = \nabla_i \ell^i(\mathbf{x}_t)(1 + \xi_t^i)$

Example. unconstrained two-player zero-sum bilinear games

$$\ell^{1}(\mathbf{x}) = -\ell^{2}(\mathbf{x}) = x^{1}x^{2}; \quad \mathcal{X}^{1} = \mathcal{X}^{2} = \mathbb{R}; \quad x_{\star} = (0, 0)$$

Left: Additive Gaussian noise $\xi_t^1, \xi_t^2 \sim \mathcal{N}(0, I)$

Right: Multiplicative noise (ξ_t^1, ξ_t^2) is (2,-2) or (-2,2) with prob 1/2 for each

TL;DR

We show that optimistic gradient methods with learning rate separation achieve constant regret and last-iterate convergence in variationally stable games under multiplicative noise, and devise adaptive methods that achieve this automatically.

Optimistic Methods with Learning Rate Separation

- Optimistic gradient: $x_{t+1}^i = x_t^i 2\eta_{t+1}^i g_t^i + \eta_t^i g_{t-1}^i$
- Rewrite with $X_{t+1}^i = x_t^i$ and separate the optimistic learning rate from the update learning rate

$$X_{t+\frac{1}{2}}^{i} = X_{t}^{i} - \begin{bmatrix} \gamma_{t}^{i} \\ \gamma_{t}^{i} \end{bmatrix} g_{t-1}^{i}, \qquad X_{t+1}^{i} = X_{t}^{i} - \begin{bmatrix} \eta_{t+1}^{i} \\ \eta_{t+1}^{i} \end{bmatrix} g_{t}^{i}$$
 (OG+)

$$X_{t+\frac{1}{2}}^{i} = X_{t}^{i} - \frac{\gamma_{t}^{i}}{y_{t}^{i}} g_{t-1}^{i}, \qquad X_{t+1}^{i} = X_{t}^{i} - \frac{\eta_{t+1}^{i}}{y_{t+1}^{i}} g_{t}^{i}$$

$$X_{t+\frac{1}{2}}^{i} = X_{t}^{i} - \frac{\gamma_{t}^{i}}{y_{t}^{i}} g_{t-1}^{i}, \qquad X_{t+1}^{i} = X_{1}^{i} - \frac{\eta_{t+1}^{i}}{y_{t+1}^{i}} \sum_{s=1}^{t} g_{s}^{i}$$
(OG+)

Energy inequality

If all players play run OG+ or OptDA+, for any $p^i \in \mathcal{X}^i$, it holds

$$\begin{split} \mathbb{E}_{t-1} \left[\frac{||X_{t+1}^{i} - p^{i}||^{2}}{\eta_{t+1}^{i}} \right] &\leq \mathbb{E}_{t-1} \left[\frac{||X_{t}^{i} - p^{i}||^{2}}{\eta_{t}^{i}} + \left(\frac{1}{\eta_{t+1}^{i}} - \frac{1}{\eta_{t}^{i}} \right) ||u_{t}^{i} - p^{i}||^{2}}{(\text{linearized regret})} \right. \\ &- 2 \langle V^{i}(\mathbf{X}_{t+\frac{1}{2}}), X_{t+\frac{1}{2}}^{i} - p^{i} \rangle \\ &- \gamma_{t}^{i} \left(||V^{i}(\mathbf{X}_{t+\frac{1}{2}})||^{2} + ||V^{i}(\mathbf{X}_{t-\frac{1}{2}})||^{2} \right) \\ &- \frac{||X_{t}^{i} - X_{t+1}^{i}||^{2}}{2\eta_{t}^{i}} + \gamma_{t}^{i} ||V^{i}(\mathbf{X}_{t+\frac{1}{2}}) - V^{i}(\mathbf{X}_{t-\frac{1}{2}})||^{2} \\ &- \frac{||X_{t}^{i} - X_{t+1}^{i}||^{2}}{2\eta_{t}^{i}} + 2 \frac{1}{\eta_{t}^{i}} ||V^{i}(\mathbf{X}_{t+\frac{1}{2}}) - V^{i}(\mathbf{X}_{t-\frac{1}{2}})||^{2} \\ &- \frac{1}{\eta_{t}^{i}} ||S_{t-\frac{1}{2}}^{i}||^{2} + L ||S_{t-\frac{1}{2}}^{i}||^{2} \\ &+ 2 \frac{\eta_{t}^{i}}{\eta_{t} + \gamma_{t}}||^{2} \end{split}$$

- $V^i = \nabla_i \ell^i$ and $\|\boldsymbol{\xi}_{t-\frac{1}{2}}\|_{(\boldsymbol{\eta}_t + \boldsymbol{\gamma}_t)^2}^2 \coloneqq \sum_{j=1}^N (\eta_t^j + \gamma_t^j)^2 \|\boldsymbol{\xi}_{t-\frac{1}{2}}^j\|^2$
- $u_t^i = X_t^i$ if player i runs OG+ and $u_t^i = X_1^i$ if player i runs OptDA+

Results

	Adversarial	All players run the same algorithm				
		Additive noise		Multiplicative noise		9
	Regret	Regret Convergence Regret Convergence				
OG	X	X	X	X	X	
OG+	X	$\sqrt{t} \log t$		cst		
OptDA+	\sqrt{t}	\sqrt{t}	_	cst		
Adapt	$t^{1/2+q}$	\sqrt{t}		cst		

Assumptions

- Unconstrained action sets
- For the adversarial setup we assume bounded feedback
- For the game-theoretic setup (i.e., when all players play the same algorithm) we assume variational stability, that is, the set \mathcal{X}_{\star} of Nash equilibria of the game is nonempty and

$$\langle \mathbf{V}(\mathbf{x}), \mathbf{x} - \mathbf{x}_{\star} \rangle \coloneqq \sum_{i=1}^{N} \langle \nabla_{i} \ell^{i}(\mathbf{x}), x^{i} - x_{\star}^{i} \rangle \ge 0 \quad \text{for all } \mathbf{x} \in \mathcal{X}, \mathbf{x}_{\star} \in \mathcal{X}_{\star}$$

Examples: • Convex-concave zero-sum • Zero-sum polymatrix

Adaptive Learning Rate

For some fixed, $q \in (0, 1/4]$ we consider the learning rates

$$\gamma_t^i = \left(1 + \sum_{s=1}^{t-2} ||g_s^i||^2\right)^{\frac{q-\frac{1}{2}}{2}} \quad \eta_t^i = \left(1 + \sum_{s=1}^{t-2} \left(||g_s^i||^2 + ||X_s^i - X_{s+1}^i||^2\right)\right)^{-\frac{1}{2}}$$

- The method is adaptive in the following sense
- Implementable by individual player using only local information and without any prior knowledge of the setting's parameters
- Guarantee sublinear regret in the adversarial setup
- Retain the same $\mathcal{O}(\sqrt{T})$ and $\mathcal{O}(1)$ regrets respectively under additive and multiplicative noise when employed by all players.
- Small q provides better fallback guarantee against arbitrary bounded sequence while larger q is more favorable in the game-theoretic setup (e.g., $\mathcal{O}(\exp(1/2q))$ regret)

Future directions. • Trajectory convergence for dual averaging under additive noise • Constraints • Bandit feedback • Partial adherence to the algorithm • Policy regret

