| 4.         | 9 | F | text  |
|------------|---|---|-------|
| <b>4</b> . | ~ |   | INEVL |

4.2.1 All coefficients = 0

1 Partitioning total variability

$$\Sigma(\gamma_i - \overline{\gamma})^2 = \Sigma(\hat{\gamma}_i - \overline{\gamma})^2 + \Sigma(\gamma_i - \hat{\gamma}_i)^2$$

2 Distributions.

$$\frac{\text{Res. 55}}{\sigma^2} \sim \chi^2_{n-p'} \perp \frac{\text{Reg. 55}}{\sigma^2} \sim \chi^2_{p,\lambda} \implies \frac{\text{TSS}}{\sigma^2} \sim \chi^2_{n-\epsilon,\lambda} , \quad \lambda = \frac{1}{\sigma^2} \sum_{i,j=1}^{p} \beta_i \beta_j S_{k_i k_j}$$

## Oct. 16

3 Test.

$$H_0$$
.  $\beta_1 = \cdots = \beta_p = 0$ .

Test Stat: 
$$F = \frac{\text{Reg. 9S/P}}{\text{RSS/(n-p-1)}} \sim F(p, n-p-1)$$

Reject Ho if  $F > F_{\alpha}(p, n-p-i)$ .  $P(F > F_{\alpha}) = \alpha$ 





## ANOUA table:

| Source     | Sum of squares (S.S.)                              | d.f. | Mean Squares (M.S.) | F                                                                        |
|------------|----------------------------------------------------|------|---------------------|--------------------------------------------------------------------------|
| Regression | Reg.S.S = $\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$ | p    | $SS_{reg}/p$        | $F = rac{SS_{reg}/p}{SS_{res}/(n-p')} = rac{MS_{reg}}{\hat{\sigma}^2}$ |
| Residual   | Res. S.S. = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$   | n-p' | $SS_{res}/(n-p')$   |                                                                          |
| Total      | Total S.S. = $\sum_{i=1}^{n} (y_i - \bar{y})^2$    | n-1  |                     |                                                                          |

## 4.2.2 Subset of regression coefficients

- Whether a reduced model (under Ho) is good eaough.

-Partitioning reg.SS

$$\sim \sigma^2 \chi^2(\rho, \lambda) \sim \sigma^2 \chi^2(\rho_r, \lambda) \sim \sigma^2 \chi^2(r, \lambda_2)$$

# free parameters reduced by Ho.

Ho: B= B= 0

- Test

| Test stat: $F = \frac{\text{Increase in Beg.SS}}{\hat{\sigma}^2} \sim F(r, n-p-v)$ .                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Reject Ho if F> Fa(r,n-p-i).                                                                                                                  |
|                                                                                                                                               |
| 4.2.3 Generalized linear hypothesis (including above as special cases)                                                                        |
| Ho: $C\beta = d$ Test stat: $F = \frac{(C\beta - d)^T [C(x^Tx)^T C^T]^T (C\beta - d)}{r\beta^2} \stackrel{Ho}{\sim} F(r, n-p-1), r = rank(c)$ |
| Reject Ho if F > Fa(r, n-p-i)                                                                                                                 |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |