HOMEWORK 4

- (1) Let Y be a subspace of X. If Y is closed in X and A is closed in Y, then show that A is closed in X.
- (2) Show that

$$X \setminus \operatorname{Cl} A = \operatorname{Int} (X \setminus A).$$

 $X \setminus \operatorname{Int} A = \operatorname{Cl} (X \setminus A).$

- (3) Show that \mathbb{Q} has empty interior in \mathbb{R} but its closure is whole of \mathbb{R} .
- (4) Show using the topology given by the basis $B_{d,r}$ on \mathbb{Z} that there are infinitely many prime numbers.
- (5) Show that \mathbb{R}_{ℓ} is separable, and any subspace of \mathbb{R}_{ℓ} is also separable.
- (6) Topology (Munkres), Chapter 2, Section 17, Exercise (16)(a).
- (7) Topology (Munkres), Chapter 2, Section 17, Exercise (19).
- (8) Topology (Munkres), Chapter 2, Section 17, Exercise (20).
- (9) Topology (Munkres), Chapter 2, Section 17, Exercise (21).