

Grado en Física Facultad de Ciencias

Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal

Electromagnetismo II

Segundo control: 22 de mayo de 2020

1.- Partiendo de las expresiones generales de las ecuaciones de onda para los potenciales :

$$-\nabla^2 \phi - \frac{\partial}{\partial t} (\vec{\nabla} \cdot \vec{\mathbf{A}}) = \frac{\rho}{\varepsilon_0} ; \quad -\nabla^2 \vec{\mathbf{A}} + \frac{1}{c^2} \frac{\partial^2 \vec{\mathbf{A}}}{\partial t^2} + \vec{\nabla} \left(\vec{\nabla} \cdot \vec{\mathbf{A}} + \frac{1}{c^2} \frac{\partial \phi}{\partial t} \right) = \mu_0 \vec{\mathbf{J}}$$

obtener dichas expresiones en el *gauge* de Lorenz y expresarlas en forma covariante. **(1.25 puntos)**

2.- El campo magnético de una onda electromagnética plana en el vacío que se propaga a lo largo del eje *z* (por lo que ninguna magnitud es función ni de *x* ni de *y*) viene dado por la ecuación:

$$\vec{\mathbf{B}}(z,t) = B_0 \cos[\omega(t-z/c)]\hat{\mathbf{u}}_v$$

y además se tiene que el potencial escalar es nulo ($\phi = 0$). Determinar:

- (a) El valor del potencial vector $\vec{\bf A}$ y el vector campo eléctrico $\vec{\bf E}$ de la onda electromagnética.
- (b) Comprobar que los potenciales \vec{A} y ϕ satisfacen el gauge de Lorenz.

(1.75 puntos)

3.- Campos eléctrico y magnético creados por una carga en movimiento arbitrario: características generales, como son entre ellos y comportamiento a grandes distancias. Expresión del tiempo retardado, ¿cuál es su significado físico? ¿Cuánto valen los invariantes del campo electromagnético a grandes distancias? Razonar la respuesta.

(1.25 puntos)

4.- Una carga puntual q describe un movimiento hiperbólico a lo largo del eje x que viene dado por la ecuación

$$\vec{\mathbf{r}}'(t) = \sqrt{b^2 + (ct)^2} \,\hat{\mathbf{u}}_x \qquad (-\infty < t < +\infty)$$

[en relatividad especial, ésta es la trayectoria de una partícula sometida a una fuerza constante a lo largo del eje x y cuyo valor es $F = mc^2/b$; se denomina "movimiento hiperbólico" pues representa una rama de hipérbola en el plano x - ct].

Determinar, para un punto P situado en el eje x a la derecha de la carga:

- (a) El tiempo retardado t' en función de x y del tiempo "actual" t.
- (b) La velocidad de la carga v en función del tiempo retardado t', así como en función de x y del tiempo "actual" t.

Teniendo en cuenta que la velocidad es relativista:

(c) Demostrar que la potencia radiada es constante y calcular su valor.

(2.25 puntos)

- 5.- Una partícula de masa m y carga q se desplaza en el vacío con movimiento rectilíneo e incide en un material con velocidad inicial v_0 (v << c), de modo al interaccionar con el medio la partícula se va frenando hasta detenerse. Podemos modelizar el frenado de la partícula suponiendo que la fuerza de frenado es proporcional a la velocidad de la partícula en cada instante, siendo λ la constante de proporcionalidad, y que la trayectoria dentro del medio es aproximadamente rectilínea (por ejemplo, a lo largo del eje x). Si se ignoran los efectos de la reacción de radiación sobre el movimiento de la partícula, determinar:
 - (a) La velocidad v, la aceleración a, y la posición x de la partícula en función del tiempo t, así como la velocidad v y la aceleración a en función de x.
 - (b) La profundidad de penetración (o alcance) de la partícula en el material (distancia que recorre antes de detenerse) expresado en función de la velocidad inicial v_0 y de energía cinética inicial E_0 .
 - (c) La energía total radiada por la partícula hasta detenerse.
 - (d) La fracción f de la energía inicial que es radiada. ¿Depende el valor de f de la velocidad inicial de la partícula v_0 ? ¿Por qué? ¿Cuál debería ser el valor de λ para que f << 1 como se ha supuesto inicialmente?

[Este modelo no es precisamente muy realista. Por ejemplo, el alcance para partículas alfa con energías entre 4 y 9 MeV en aire (a 0°C y presión atmosférica) es proporcional a su energía elevada a 3/2.]

(2.25 puntos)

6.- Determinar la potencia radiada por un electrón ultrarrelativista que se mueve en una órbita circular en función de su velocidad *v* y su radio *R*. Sustituir los valores numéricos de las constantes. Evaluar numéricamente esta expresión para un electrón de energía 10 GeV en una órbita de radio 20 m y encontrar la energía perdida por radiación en cada revolución. ¿Sería fácil suministrar varias veces esta energía perdida para obtener una aceleración neta a esta velocidad?

[Energía del electrón $E = m\gamma c^2$ con $mc^2 = 0.511$ MeV.] (1.25 puntos)