Applicant: Gracme C. McKinnon

Serial No.: 09/804,430 Filed : August 10, 2000 Page : 2 of 8

Attorney's Docket No.: 10527-651RE1 / PC8721B

Amendments to the Claims:

Please amend claims 28, 40, 49, 50 54 and 56 as follows:

28. (thrice amended) A medical apparatus for imaging a wall of a body cavity in a
patient by interacting with a magnetic resonance imaging (MRI) system which generates a
magnetic field gradient and electromagnetic (EM) radiation externally from the patient and
transmits the gradient and EM radiation into the patient and receives a response signal indicative
of a resonant response from the patient, the apparatus comprising:
an open wire length antenna including an open conductor length configured to be inserted
into the cavity and provide the response signal, based on the resonant response from a region of
the patient closely proximate the antenna, to the MRI system, where the open conductor length
includes at least one open ended conductive element; and
a controller coupled to the antenna and configured to receive the response signal to obtain
an image of the cavity wall proximate the antenna.
40. (thrice amended) A method of generating an image of a wall of a body cavity in a
patient, the method comprising:
inserting an open wire length antenna including an open conductor length into the cavity,
where the open conductor length includes at least one open ended conductive element;
generating a magnetic field gradient and electromagnetic (EM) radiation external from
the patient and transmitting the gradient and EM radiation into the patient;
transmitting a response signal, based on a detected resonant response from a region of the
patient closely proximate the antenna, to a magnetic resonance imaging (MRI) processor;
receiving the response signal at the MRI processor; and
obtaining an image of the cavity wall proximate the antenna based on the response signal.

Applicant: Gracme C. McKinnon

Serial No. : 09/804,430 Filed : August 10, 2000

Page : 3 of 8

Attorney's Docket No.: 10527-651RE1 / PC8721B

49. (thrice amended) A method of generating an image of a blood vessel wall of a blood vessel in a patient, the method comprising:

inserting an open wire length antenna including an open conductor length into the blood vessel, where the open conductor length includes at least one open ended conductive element:

passing the antenna through the blood vessel to a site to be imaged;

generating a magnetic field pradient and electromagnetic (EM) radiation external from the patient and transmitting the gradient and EM radiation into the patient:

transmitting a response signal, based on a detected resonant response from a region of the patient closely proximate the antenna, to a magnetic resonance imaging (MRI) processor;

receiving the response signal at the MRI processor;

and obtaining an image of the blood vessel wall proximate the antenna based on the response signal.

50. (thrice amended) A medical apparatus for imaging a blood vessel wall of a blood vessel in a patient by interacting with a magnetic resonance imaging (MRI) system which generates a magnetic field gradient and electromagnetic (EM) radiation external from the patient and transmits the gradient and EM radiation into the patient and receives a response signal indicative of a resonant response from the patient, the apparatus comprising:

an open wire length antenna configured to be inserted into the blood vessel and

passed along the blood vessel to a site to be imaged and to provide the

response signal, based on the resonant response from a region of the patient

closely proximate the antenna, to the MRI system, the antenna including an

open conductor length comprising at least one open ended conductive

element; and

Applicant: Graeme C. McKinnon

Serial No.: 09/804,430 Filed: August 10, 2000

Page : 4 of 8

Attorney's Docket No.: 10527-651RE1 / PC8721B

a controller coupled to the antenna and configured to receive the response signal and repeatedly calculate antenna location to obtain an image of the blood vessel wall proximate the antenna.

- 54. (thrice amended) A medical apparatus for imaging a body cavity wall of a body cavity in a patient by interacting with a magnetic resonance imaging (MRI) system which generates a magnetic field gradient and electromagnetic (EM) radiation external from the patient and transmits the gradient and EM radiation into the patient and receives a response signal indicative of a resonant response from the patient, the apparatus comprising:
 - an MRI open wire length antenna configured to be inserted into the body cavity
 and passed along the body cavity to a site to be imaged and to provide the
 response signal, based on the resonant response from a region of the patient
 closely proximate the antenna, to the MRI system, the antenna including an
 open conductor length comprising at least one open ended conductive
 element.
- 56. (twice amended) A method of generating an image of a wall of a body cavity in a patient, the method comprising:
 - inserting a magnetic resonance imaging (MRI) open wire length antenna into the body cavity, the antenna including an open conductor length comprising at least one open ended conductive element;
 - passing the MRI open wire length antenna through the body cavity to a site to be imaged; and

obtaining an MRI image of the body cavity wall proximate the antenna.