Universidad de Ingeniería y Tecnología (UTEC)

Maestría en Ciencia de Datos & IA

eToro

Análisis de Negocio y Modelado Relacional

Índice general

1.	Análisis de la Empresa: eToro	2	
	1.1. Giro de Negocio	2	
	1.2. Clientes	2	
	1.2.1. Segmentos de Clientes	2	
	1.2.2. Alcance Geográfico	2	
	1.3. Productos y Servicios	2	
	1.4. Canales	3	
2.	Modelo Entidad–Relación (ER)	4	
3.	usiness Model Canvas de eToro 1		
	3.1. Canal principal de eToro	15	
4.	nsultas SQL para la Generación de Features en Modelos de IA 16		
	4.1. Planteamiento de Preguntas de Negocio	16	
	4.2. ¿Qué tan comprometido está el usuario en los últimos 30 días?	16	
	4.3. ¿Cómo es el comportamiento y la performance de trading en los últimos		
	90 días?	18	
	4.4. ¿Qué tan concentrado está el riesgo de las posiciones abiertas del usuario?	19	
	4.5. Concentración de Riesgo	20	
	4.6. Influencia Social y Copy Trading	20	
5.	Referencias Bibliográficas	21	

Análisis de la Empresa: eToro

1.1. Giro de Negocio

eToro es una plataforma de corretaje fintech que opera en el espacio del trading e inversión en línea (multi-activos) con un componente de red social denominado "social trading". Combina funciones de bróker electrónico con elementos de *matchmaking* social, permitiendo que los usuarios copien estrategias de otros inversores. Su modelo de ingresos se basa en comisiones, *spreads* y tarifas adicionales (retiros, conversiones, inactividad, tarifas nocturnas), además de los diferenciales entre precios de compra y venta.

1.2. Clientes

1.2.1. Segmentos de Clientes

Los principales clientes de eToro son inversionistas minoristas, principiantes o intermedios que valoran la posibilidad de copiar estrategias, buscan una experiencia digital intuitiva y operan con cuentas financiadas. Aunque en algunos mercados también tienen presencia institucional, su foco principal es el cliente minorista.

1.2.2. Alcance Geográfico

Opera en más de 100 países, concentrando sus ingresos en Europa y Reino Unido, con expansión en Asia-Pacífico y América. En 2024 sus ingresos fueron de USD 931 millones, principalmente por el trading de criptomonedas y acciones.

1.3. Productos y Servicios

Activos: Acciones, criptomonedas, ETFs, divisas, materias primas e índices.

- Trading social: CopyTrader y Smart Portfolios.
- Intereses: Rendimiento sobre saldo no invertido.
- Cuentas y servicios: Conversión de divisas, depósitos, retiros y soporte.
- Recompensas: Programas para inversores populares.

1.4. Canales

Los principales canales de interacción incluyen:

- Plataforma web.
- Aplicación móvil (iOS y Android).
- Centro de ayuda y atención al cliente.
- Marketing digital, contenido educativo y redes sociales.
- Comunidad social interna.

Modelo Entidad-Relación (ER)

A continuación se muestra el esquema ER diseñado para el canal principal (aplicación móvil). Incluye la definición del proyecto, todos los *enums* y las tablas con sus relaciones.

Listing 2.1: Modelo ER completo: proyecto, enums y tablas

```
Project etoro_mobile_app { database_type: "PostgreSQL"}
2
   Enum device_platform {
3
     ios
4
     android}
6
   Enum order_side {
7
     buy
     sell}
9
10
   Enum order_type {
11
     market
12
     limit
13
     stop
14
     stop_limit}
16
   Enum time_in_force {
17
     day
     gtc
19
     ioc
20
     fok}
21
   Enum order_status {
23
     pending
24
     placed
25
     partial_filled
26
     filled
27
     canceled
28
     rejected}
```

```
30
   Enum position_status {
31
     open
32
     closed}
33
34
   Enum kyc_status {
35
     pending
36
     approved
37
     rejected
38
     resubmission_required}
39
40
   Enum risk_level {
41
     low
42
     medium
43
     high
44
     very_high}
45
46
   Enum payment_method {
47
     card
48
     bank_transfer
49
     ewallet
50
     crypto}
51
52
   Enum payment_status {
53
     initiated
54
     settled
55
     failed
56
     reversed}
57
58
   Enum notification_channel {
59
     in_app
60
     push}
61
62
   Enum event_source {
63
     app_ui
64
     background
65
     push_open
66
     deep_link
67
     sdk}
68
   Enum instrument_type {
70
     equity
71
     etf
72
     crypto
73
     forex
74
     commodity
75
     index}
```

```
77
   Table users {
78
      id uuid [pk]
79
      email varchar [unique, not null]
80
     phone varchar
     display_name varchar
82
     country_code varchar(2)
83
     created_at timestamptz [not null]
84
      status varchar(20) // active, suspended, closed}
85
86
   Table user_auth {
87
     id uuid [pk]
88
     user_id uuid [not null, ref: > users.id]
89
     provider varchar(50) // password, apple, google, etc.
90
     provider_uid varchar(200)
91
     last_login_at timestamptz
92
     mfa_enabled bool}
93
94
   Table kyc_profiles {
95
     id uuid [pk]
96
     user_id uuid [not null, ref: > users.id]
97
     status kyc_status [not null, default: 'pending']
98
     document_type varchar(30) // id_card, passport, driver_license
99
     document_country varchar(2)
100
     submitted_at timestamptz
101
     reviewed_at timestamptz}
102
103
   Table risk_assessments {
104
     id uuid [pk]
105
     user_id uuid [not null, ref: > users.id]
106
     level risk_level [not null]
107
     questionnaire_version varchar(20)
108
     score int
109
      assessed_at timestamptz [not null]}
110
111
   Table regulatory_consents {
112
     id uuid [pk]
113
     user_id uuid [not null, ref: > users.id]
114
     consent_code varchar(50) // tos, privacy, marketing, pds, etc.
115
     accepted bool [not null, default: true]
116
     accepted_at timestamptz [not null]
117
     locale varchar(10)}
118
119
   Table devices {
120
     id uuid [pk]
121
     user_id uuid [not null, ref: > users.id]
122
     platform device_platform [not null]
```

```
os_version varchar(40)
124
      app_version varchar(20)
125
     device_model varchar(80)
126
     installed_at timestamptz
127
     last_seen_at timestamptz}
128
129
   Table push_tokens {
130
     id uuid [pk]
131
     device_id uuid [not null, ref: > devices.id]
132
     token varchar(300) [not null]
133
     provider varchar(20) // apns, fcm
134
     valid bool [default: true]
135
      created_at timestamptz
136
      invalidated_at timestamptz}
137
138
   Table app_sessions {
139
     id uuid [pk]
140
     user_id uuid [not null, ref: > users.id]
141
     device_id uuid [not null, ref: > devices.id]
142
     started_at timestamptz [not null]
143
     ended_at timestamptz
144
     city varchar(100)
145
     ip inet
146
     is_foreground bool}
147
148
   Table app_events {
149
     id uuid [pk]
150
     session_id uuid [not null, ref: > app_sessions.id]
151
     user_id uuid [ref: > users.id]
152
     device_id uuid [ref: > devices.id]
153
     event_name varchar(100) [not null] // e.g., 'PlaceOrder_Tap'
154
     event_source event_source [not null, default: 'app_ui']
155
     event_ts timestamptz [not null]
     screen varchar(100)
157
     metadata jsonb}
158
159
   Table notifications {
160
     id uuid [pk]
161
     user_id uuid [not null, ref: > users.id]
162
     channel notification_channel [not null]
163
     title varchar(140)
164
     body text
165
     created_at timestamptz [not null]
166
     delivered_at timestamptz
167
     opened_at timestamptz
168
     deeplink varchar(300)}
169
170
```

```
Table attribution_installs {
171
      id uuid [pk]
      device_id uuid [not null, ref: > devices.id]
173
      network varchar (60)
174
      campaign varchar(120)
175
      adgroup varchar (120)
176
      click_ts timestamptz
177
      install_ts timestamptz}
178
179
   Table currencies {
180
      code varchar(3) [pk] // ISO
181
      name varchar(30)
182
      symbol varchar(5)}
183
184
185
   Table exchange_rates {
      id uuid [pk]
186
      base_currency varchar(3) [not null, ref: > currencies.code]
187
      quote_currency varchar(3) [not null, ref: > currencies.code]
188
      rate numeric(18,8) [not null]
189
      as_of timestamptz [not null]}
190
191
   Table accounts {
192
      id uuid [pk]
193
      user_id uuid [not null, ref: > users.id]
194
      base_currency varchar(3) [not null, ref: > currencies.code]
195
      opened_at timestamptz [not null]
196
      is_margin_enabled bool [default: false]
197
      status varchar(20) // active, restricted, closed}
198
199
   Table account_balances {
200
      id uuid [pk]
201
      account_id uuid [not null, ref: > accounts.id]
202
      currency varchar(3) [not null, ref: > currencies.code]
203
      cash_available numeric(20,2) [not null, default: 0]
204
      cash_locked numeric(20,2) [not null, default: 0]
205
      updated_at timestamptz [not null]}
206
207
   Table ledger_entries {
208
      id uuid [pk]
209
      account_id uuid [not null, ref: > accounts.id]
210
      currency varchar(3) [not null, ref: > currencies.code]
211
      amount numeric(20,2) [not null] // +credit, -debit
212
      type varchar(40) // trade_fill, deposit, withdrawal, fee,
213
         fx_conversion, interest
      reference_id uuid
214
      created_at timestamptz [not null]}
215
```

```
Table payments {
217
     id uuid [pk]
218
     user_id uuid [not null, ref: > users.id]
219
     method payment_method [not null]
220
     status payment_status [not null]
221
      currency varchar(3) [not null, ref: > currencies.code]
222
      amount numeric(20,2) [not null]
223
     provider varchar(40)
224
      created_at timestamptz [not null]
225
      settled_at timestamptz
226
     failure_reason varchar(200)}
227
228
   Table deposits {
229
     id uuid [pk]
230
     account_id uuid [not null, ref: > accounts.id]
231
     payment_id uuid [not null, ref: > payments.id]
232
     amount numeric(20,2) [not null]
233
      created_at timestamptz [not null]}
234
235
   Table withdrawals {
236
     id uuid [pk]
237
     account_id uuid [not null, ref: > accounts.id]
238
     payment_id uuid [not null, ref: > payments.id]
239
     amount numeric(20,2) [not null]
240
     fee numeric(20,2) [default: 0]
241
     created_at timestamptz [not null]
242
243
244
   Table instruments {
245
     id uuid [pk]
246
     symbol varchar(30) [not null] // e.g., AAPL, BTC
247
     name varchar (120)
248
     type instrument_type [not null]
249
     quote_currency varchar(3) [ref: > currencies.code]
250
      is_tradable bool [default: true]}
251
252
   Table instrument_prices {
253
     id uuid [pk]
254
     instrument_id uuid [not null, ref: > instruments.id]
255
     price numeric(20,8) [not null]
256
     as_of timestamptz [not null]
257
     source varchar(40)}
258
259
   Table orders {
260
     id uuid [pk]
261
     account_id uuid [not null, ref: > accounts.id]
262
      instrument_id uuid [not null, ref: > instruments.id]
```

```
side order_side [not null]
264
      type order_type [not null]
265
     tif time_in_force [not null, default: 'gtc']
266
     quantity numeric (28,10) [not null]
267
     limit_price numeric(20,8)
268
     stop_price numeric(20,8)
269
      status order_status [not null, default: 'pending']
270
     placed_at timestamptz [not null]
271
     placed_via varchar(20) // mobile, web, api}
272
273
   Table order_fills {
274
     id uuid [pk]
275
      order_id uuid [not null, ref: > orders.id]
276
     fill_ts timestamptz [not null]
277
     quantity numeric(28,10) [not null]
278
     price numeric(20,8) [not null]
     fee numeric(20,8) [default: 0]}
280
281
   Table positions {
282
     id uuid [pk]
283
     account_id uuid [not null, ref: > accounts.id]
284
      instrument_id uuid [not null, ref: > instruments.id]
285
     status position_status [not null, default: 'open']
286
     quantity numeric(28,10) [not null]
287
      avg_price numeric(20,8) [not null]
288
     opened_at timestamptz [not null]
289
      closed_at timestamptz}
290
291
   Table portfolios {
292
     id uuid [pk]
293
     user_id uuid [not null, ref: > users.id]
294
     name varchar(80)
295
     created_at timestamptz [not null]
296
     type varchar(20) // user, smart}
297
298
   Table portfolio_positions {
299
     id uuid [pk]
300
     portfolio_id uuid [not null, ref: > portfolios.id]
301
     position_id uuid [not null, ref: > positions.id]
302
     weight numeric (9,6)
304
305
   Table smart_portfolios {
306
      id uuid [pk]
307
     name varchar(120) [not null]
308
     description text
309
     base_currency varchar(3) [not null, ref: > currencies.code]
```

```
rebal_freq varchar(20) // monthly, quarterly
311
      created_at timestamptz [not null]}
312
313
   Table smart_portfolio_allocations {
314
      id uuid [pk]
315
      smart_portfolio_id uuid [not null, ref: > smart_portfolios.id]
316
      instrument_id uuid [not null, ref: > instruments.id]
317
      target_weight numeric(9,6) [not null]}
318
319
   Table copy_trading_links {
320
      id uuid [pk]
321
      follower_user_id uuid [not null, ref: > users.id]
322
      leader_user_id uuid [not null, ref: > users.id]
323
      account_id uuid [not null, ref: > accounts.id]
324
325
      allocation_pct numeric(6,3) [not null]
      started_at timestamptz [not null]
326
      stopped_at timestamptz}
327
328
   Table watchlists {
329
      id uuid [pk]
330
      user_id uuid [not null, ref: > users.id]
331
      name varchar(60)
332
      created_at timestamptz [not null]}
333
334
   Table watchlist_items {
335
      id uuid [pk]
336
      watchlist_id uuid [not null, ref: > watchlists.id]
337
      instrument_id uuid [not null, ref: > instruments.id]
338
      added_at timestamptz [not null]}
339
340
   Table social_posts {
341
      id uuid [pk]
342
      user_id uuid [not null, ref: > users.id]
343
      created_at timestamptz [not null]
344
      content text
345
      instrument_id uuid [ref: > instruments.id]}
346
347
   Table social_comments {
348
      id uuid [pk]
349
      post_id uuid [not null, ref: > social_posts.id]
350
      user_id uuid [not null, ref: > users.id]
351
      created_at timestamptz [not null]
352
      content text}
353
354
   Table social_likes {
355
      id uuid [pk]
356
      post_id uuid [not null, ref: > social_posts.id]
```

```
user_id uuid [not null, ref: > users.id]
created_at timestamptz [not null]}

Table follows {
  id uuid [pk]
  follower_user_id uuid [not null, ref: > users.id]
  followed_user_id uuid [not null, ref: > users.id]
  created_at timestamptz [not null] }
```


Figura 2.1: Gráfico 1. Modelo de Datos de eToro ERP

Fuente: Elaboración propia.

Business Model Canvas de eToro

Cuadro 3.1: Matriz: Elemento vs. Detalle para eToro

Elemento	Detalle para eToro
Segmentos de Clientes	Inversores minoristas, desde principiantes hasta avanzados.
Propuesta de Valor	Plataforma multi-activo y social trading con interfaz intuitiva y comunidad global.
Canales	Aplicación móvil, plataforma web, soporte, redes sociales y marketing digital.
Relación con Clientes	Comunidad integrada, soporte directo y programas de recompensa.
Fuentes de Ingresos	Spreads, tarifas, comisiones y conversiones de divisas.
Recursos Clave	Plataforma tecnológica, red de usuarios y licencias regulatorias.
Actividades Clave	Desarrollo tecnológico, cumplimiento normativo y marketing estratégico.
Socios Clave	Proveedores de liquidez, instituciones financieras y organismos reguladores.
Estructura de Costos	Infraestructura tecnológica, soporte operativo, pagos y marketing.

Nota: Este esquema coincide con descripciones públicas de su modelo de negocio (por ejemplo, plataformas tipo CanvasBusinessModel analizan estos mismos componentes para eToro).

3.1. Canal principal de eToro

Aunque eToro emplea múltiples canales para interactuar con los clientes (aplicación móvil, plataforma web, marketing digital, contenido educativo y redes sociales), el canal principal de eToro es claramente su **plataforma digital** (aplicación + plataforma web) como medio de entrega de sus servicios de inversión y trading. (Referencia 30)

Razonamientos:

- Todo el servicio de *trading*, *copy trading* y gestión de activos ocurre dentro de su plataforma digital (web o app).
- El cliente principal de eToro llega, inicia sesión, realiza operaciones y utiliza funciones sociales directamente en dicha plataforma.
- Otros canales (marketing, educación, atención al cliente) son complementarios para atraer, retener y apoyar al usuario, pero la plataforma es donde ocurre el "producto".
- En su propio sitio web promocionan su "app de inversión fácil de usar" y el acceso a más de 7,000 activos como su oferta central.
- En descripciones del funcionamiento de eToro, se menciona que su red de distribución es principalmente digital, alcanzando una audiencia global a través de la plataforma en línea y el marketing estratégico. (Referencia 31)

Consultas SQL para la Generación de Features en Modelos de IA

4.1. Planteamiento de Preguntas de Negocio

A continuación se plantean y resuelven cinco preguntas de negocio orientadas a la creación de *features* relevantes para el desarrollo de modelos de inteligencia artificial en el contexto de eToro. Estas consultas se apoyan en datos de comportamiento, trading, riesgo y dinámica social, permitiendo una caracterización robusta del usuario y su interacción con la plataforma.

4.2. ¿Qué tan comprometido está el usuario en los últimos 30 días?

Esta pregunta analiza qué tan comprometido se mantiene el usuario en los últimos 30 días, empleando indicadores como sessions_30d, active_days_30d, events_30d y push_open_rate_30d. Estas variables permiten estimar el nivel de engagement o retención activa.

Un usuario con mayor número de sesiones, más días activos y una alta tasa de apertura de notificaciones tiende a presentar una baja probabilidad de abandono, mientras que una disminución en estos indicadores es señal temprana de desinterés o riesgo de *churn*. En modelos de IA, estos valores son clave para la predicción de abandono, la estimación del *Customer Lifetime Value* (CLV) y la personalización de campañas de fidelización.

Script SQL:

Listing 4.1: Compromiso del usuario en los últimos 30 días

```
WITH time_window AS (

SELECT now()::timestamptz AS as_of, (now() - interval '30 days')::

timestamptz AS since
```

```
),
3
   sessions AS (
     SELECT s.user_id,
5
            COUNT(*) AS sessions_30d,
6
            COUNT(DISTINCT date_trunc('day', s.started_at)) AS
                active_days_30d
     FROM app_sessions s, time_window w
8
     WHERE s.started_at >= w.since
9
     GROUP BY s.user_id
10
  ),
11
   events AS (
12
     SELECT e.user_id,
13
            COUNT(*) AS events_30d
14
     FROM app_events e, time_window w
15
     WHERE e.event_ts >= w.since
16
     GROUP BY e.user_id
17
  ),
18
  pushes AS (
19
     SELECT n.user_id,
20
            COUNT(*) FILTER (WHERE n.channel = 'push') AS pushes_sent_30d,
21
            COUNT(*) FILTER (WHERE n.channel = 'push' AND n.opened_at IS
22
                NOT NULL) AS pushes_opened_30d
     FROM notifications n, time_window w
23
     WHERE n.created_at >= w.since
24
     GROUP BY n.user_id
25
26
   SELECT u.id AS user_id,
27
          COALESCE(s.sessions_30d,0) AS sessions_30d,
28
          COALESCE(s.active_days_30d,0) AS active_days_30d,
29
          COALESCE (e.events_30d,0) AS events_30d,
30
          COALESCE (p.pushes_sent_30d,0) AS pushes_sent_30d,
31
          COALESCE (p.pushes_opened_30d,0) AS pushes_opened_30d,
32
          CASE WHEN COALESCE(p.pushes_sent_30d,0) = 0 THEN 0.0
33
               ELSE p.pushes_opened_30d::numeric / p.pushes_sent_30d::
34
                   numeric END AS push_open_rate_30d
  FROM users u
35
  LEFT JOIN sessions s ON s.user_id = u.id
36
  LEFT JOIN events e
                         ON e.user_id = u.id
37
  LEFT JOIN pushes p
                         ON p.user_id = u.id;
```

4.3. ¿Cómo es el comportamiento y la performance de trading en los últimos 90 días?

Esta consulta busca comprender el comportamiento y desempeño del trading durante los últimos 90 días, extrayendo variables como trade_count_90d, win_rate_90d, avg_trade_notional_usd_90d, realized_pnl_usd_90d, instruments_traded_90d y currencies_traded_90d

Estas métricas permiten distinguir estilos y rendimientos de traders (activos, pasivos, rentables o con pérdidas) y facilitan la creación de modelos de clasificación de inversores, detección de anomalías y recomendaciones personalizadas.

Script SQL:

Listing 4.2: Performance de trading en los últimos 90 días

```
WITH time_frame AS (
     SELECT now()::timestamptz AS as_of, (now() - interval '90 days')::
        timestamptz AS since
  ),
3
  latest_fx AS (
4
     SELECT c.code AS currency,
5
            COALESCE((SELECT er.rate FROM exchange_rates er
6
                       WHERE er.base_currency = c.code AND er.quote_currency
                           = 'USD'
                       ORDER BY er.as_of DESC LIMIT 1), 1.0)::numeric AS
8
                          to_usd
     FROM currencies c
  ),
10
  fills AS (
11
     SELECT o.account_id, a.user_id, o.side, f.quantity, f.price, i.
12
        quote_currency, f.fill_ts, i.symbol
     FROM orders o
13
     JOIN order_fills f ON f.order_id = o.id
14
     JOIN accounts a ON a.id = o.account_id
15
     JOIN instruments i ON i.id = o.instrument_id, time_frame w
16
     WHERE f.fill_ts >= w.since
17
  ),
18
  per_user AS (
19
     SELECT f.user_id,
20
            COUNT(*) AS trade_count_90d,
21
            COUNT(*) FILTER (WHERE (CASE WHEN f.side='sell' THEN f.quantity
               *f.price ELSE -f.quantity*f.price END) > 0) AS
               winning_trades_90d,
            AVG(ABS(f.quantity*f.price)*COALESCE(fx.to_usd,1.0)) AS
23
               avg_trade_notional_usd_90d,
            COUNT(DISTINCT f.quote_currency) AS currencies_traded_90d
24
     FROM fills f
25
     LEFT JOIN latest_fx fx ON fx.currency = f.quote_currency
26
```

```
GROUP BY f.user_id
27
  ),
28
  realized AS (
29
     SELECT f.user_id,
30
            SUM((CASE WHEN f.side='sell' THEN f.quantity*f.price ELSE -f.
                quantity*f.price END)*COALESCE(fx.to_usd,1.0)) AS
               realized_pnl_usd_90d,
            COUNT(DISTINCT f.symbol) AS instruments_traded_90d
32
     FROM fills f
33
     LEFT JOIN latest_fx fx ON fx.currency = f.quote_currency
34
     GROUP BY f.user_id
35
36
   SELECT u.id AS user_id,
37
          COALESCE(p.trade_count_90d,0) AS trade_count_90d,
38
          CASE WHEN COALESCE(p.trade_count_90d,0)=0 THEN 0.0 ELSE p.
39
             winning_trades_90d::numeric / p.trade_count_90d::numeric END
             AS win_rate_90d,
          COALESCE(p.avg_trade_notional_usd_90d,0) AS
40
             avg_trade_notional_usd_90d,
          COALESCE (r.realized_pnl_usd_90d,0) AS realized_pnl_usd_90d,
41
          COALESCE(r.instruments_traded_90d,0) AS instruments_traded_90d,
42
          COALESCE(p.currencies_traded_90d,0) AS currencies_traded_90d
43
   FROM users u
44
  LEFT JOIN per_user p ON p.user_id = u.id
45
  LEFT JOIN realized r ON r.user_id = u.id;
46
```

4.4. ¿Qué tan concentrado está el riesgo de las posiciones abiertas del usuario?

Esta consulta evalúa la concentración de riesgo de las posiciones abiertas del usuario utilizando el Índice de Herfindahl-Hirschman (hhi_open_positions), junto con el número de instrumentos distintos (distinct_instruments_open) y el indicador margin_enabled.

Un HHI alto indica concentración de riesgo, mientras que un valor bajo refleja diversificación. Es clave para modelos de riesgo, exposición sistémica y estrategias de cobertura.

Script SQL:

Listing 4.3: Concentración de riesgo de posiciones abiertas

```
FROM currencies c
  ),
  latest_price AS (
8
     SELECT DISTINCT ON (ip.instrument_id) ip.instrument_id, ip.price
9
     FROM instrument_prices ip
     ORDER BY ip.instrument_id, ip.as_of DESC
11
  ),
12
   open_value AS (
13
     SELECT a.user_id, p.instrument_id,
14
            (COALESCE(lp.price,0)*p.quantity * COALESCE(fx.to_usd,1.0)) AS
15
               position_value_usd
     FROM positions p
     JOIN accounts a ON a.id = p.account_id
17
     LEFT JOIN instruments i ON i.id = p.instrument_id
18
     LEFT JOIN latest_price lp ON lp.instrument_id = p.instrument_id
19
     LEFT JOIN latest_fx fx ON fx.currency = i.quote_currency
20
     WHERE p.status = 'open'
21
22
   weights AS (
23
     SELECT user_id, instrument_id, position_value_usd,
24
            position_value_usd / NULLIF(SUM(position_value_usd) OVER (
25
               PARTITION BY user_id),0) AS w
     FROM open_value
26
27
   SELECT u.id AS user_id,
28
          COALESCE(SUM(w.w*w.w) FILTER (WHERE w.user_id=u.id), 0) AS
             hhi_open_positions,
          COUNT(DISTINCT w.instrument_id) FILTER (WHERE w.user_id=u.id) AS
30
             distinct_instruments_open,
          EXISTS (SELECT 1 FROM accounts a WHERE a.user_id=u.id AND a.
31
             is_margin_enabled) AS margin_enabled
  FROM users u
32
  LEFT JOIN weights w ON w.user_id = u.id
  GROUP BY u.id;
```

4.5. Concentración de Riesgo

Evalúa la diversificación del portafolio mediante el índice HHI (Herfindahl-Hirschman).

4.6. Influencia Social y Copy Trading

Identifica líderes sociales usando métricas de seguidores, copiers, likes y comentarios.

Referencias Bibliográficas

Bibliografía

- [1] Wikipedia. EToro. Recuperado de: https://en.wikipedia.org/wiki/EToro
- [2] Business Model Zoo. eToro Business Model Overview. Recuperado de: https://www.businessmodelzoo.com/exemplars/etoro/
- [3] Routine Wealth. *How Does eToro Make Money?*. Recuperado de: https://www.routinewealth.com/finance/how-does-etoro-make-money/
- [4] eToro. Trading Platforms. Recuperado de: https://www.etoro.com/es/trading/platforms/
- [5] Product Mint. eToro Business Model How Does eToro Make Money?. Recuperado de: https://productmint.com/etoro-business-model-how-does-etoro-make-money/
- [6] ElectroIQ. eToro Statistics. Recuperado de: https://electroiq.com/stats/etoro-statistics/
- [7] eToro. Sitio Oficial. Recuperado de: https://www.etoro.com/es/