1. Finite Automata and Regular Language

Deterministic Finite Automata (DFA): A 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*;
- Σ is a finite set called the *alphabet*;
- $\delta: Q \times \Sigma \to Q$ is the *transition function*;
- $q_0 \in Q$ is the *start state*;
- $F \subset Q$ is the set of acceptance states.

Computation by DFA: Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA and let $w=w_1w_2\cdots w_n$ be a string with $w_i\in\Sigma$ for all $i\in[n]$. Then M accepts w if there exists a sequence of states r_0,r_1,\cdots,r_n in Q such that

- $r_0 = q_0$;
- ullet $\delta(r_i,w_{i+1})=r_{i+1}$ for $i=0,1,\cdots,n-1$;
- $r_n \in F$.

For a set A, we say that M recognize A if $A = \{l \mid M \text{ accepts } l\}$

Regular language: A language is called **regular** iff some finite automata (here we say DFA) recognizes it..

Regular operators: Let A and B be *languages* (the subset of Σ^*). We define the following three regular operators.

- Union: $A \cup B = \{x \mid x \in A \lor x \in B\};$
- Concatenation: $A \circ B = \{xy \mid x \in A \land y \in B\}$;
- Kleene star: $A^* = \{x_1 x_2 \cdots x_k \mid k \geq 0 \land x_i \in A\}.$

Nondeterministic Finite Automata (NFA): A 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*;
- Σ is a finite set called the *alphabet*;
- $\delta:Q imes\Sigma_\epsilon o \mathcal{P}(Q)$ is the *transition function*, where $\Sigma_\epsilon=\Sigma\cup\{\epsilon\}$;
 - $\circ \mathcal{P}(Q)$ can be \emptyset , thus we can ignore those transitions.
- $q_0 \in Q$ is the *start state*;
- $F \subseteq Q$ is the set of acceptance states.

Computation by NFA: Let $N=(Q,\Sigma,\delta,q_0,F)$ be a NFA and let w be a string. Then N accepts w if we can write w as $y_1y_2\cdots y_m$, where $y_i\in\Sigma_\epsilon$ for all $i\in[m]$ and a sequence of states r_0,r_1,\cdots,r_m exists in Q such that

- $r_0 = q_0$;
- $r_{i+1} \in \delta(r_i, y_{i+1})$ for $i = 0, 1, \cdots, m-1$;
- \bullet $r_m \in F$

For a set A, we say that N **recognize** A if $A = \{l \mid N \text{ accepts } l\}$

Theorem. Every NFA has an equivalent DFA, i.e., they recognize the same language.

Tips. DFA to NFA simple. Let Q_{DFA} be $\mathcal{P}(Q_{NFA})$.

Proof. (NFA to DFA) (true, but impractical)

ullet Step 1. For any state $q\in \mathit{Q}$, compute its silently reachable class E(q).

$$\begin{aligned} & \textbf{initially set } E(q) = \{q\}; \\ & \textbf{repeat} \\ & E'(q) = E(q) \\ & \forall x \in E(q), \textbf{if } \exists y \in \delta(x, \epsilon) \land y \not \in E(q), E(q) = E(q) \cup \{y\} \\ & \textbf{until } E(q) = E'(q) \\ & \textbf{return } E(q). \end{aligned}$$

- Step 2. Build the equivalent DFA. $N=(Q,\Sigma,\delta,q_0,F)\Longrightarrow M=(Q',\Sigma,\delta',q_0',F').$
 - $\circ \ Q' = \mathcal{P}(Q)$
 - $ullet \delta'(R,a) = \cup \{E(q) \mid q \in Q \land (\exists r \in R) (q \in \delta(r,a))\};$
 - $q_0' = E(q_0);$
 - $\circ \ F' = \{R \subseteq Q' \mid R \cap F \neq \varnothing\}$

Corollary. A language is regular iff some NFA recognizes it.

Theorem. The class of regular languages is closed under $\{\cup, \circ, *\}$

- Union
- 1. $Q = \{q_0\} \cup Q_1 \cup Q_2$;
- 2. q_0 is the new start state;
- 3. $F = F_1 \cup F_2$;
- 4. For any $q \in Q$ and any $a \in \Sigma_{\epsilon}$

$$\delta(q, a) = \begin{cases} \{q_1, q_2\} & q = q_0 \land a = \epsilon \\ \emptyset & q = q_0 \land a \neq \epsilon \\ \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \end{cases}$$

- Concatenation
 - 1. $Q = Q_1 \cup Q_2$;
 - 2. the start state is q_1 ;
 - 3. the set of accept states is F_2 ;
 - 4. For any $q \in Q$ and any $a \in \Sigma_{\epsilon}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 - F_1 \\ \delta_1(q, a) & q \in F_1 \land a \neq \epsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \land a = \epsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$$

• Kleene Star

- 1. $Q = \{q_0\} \cup Q_1$;
- 2. the new start state is q_0 ;
- 3. $F = \{q_0\} \cup F_1$;
- **4**. For any $q \in Q$ and any $a \in \Sigma_{\epsilon}$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 - F_1 \\ \delta_1(q,a) & q \in F_1 \land a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \land a = \epsilon \\ \{q_1\} & q = q_0 \land a = \epsilon \\ \emptyset & q = q_0 \land a \neq \epsilon \end{cases}$$

Lemma. The class of regular languages is closed under complementation and intersection.

- Complement: $\bar{A} = \Sigma^* A$;
- Intersection: $A \cap B = \{x \mid x \in A \land x \in B\}.$

Proof.

- Complement: suppose $N=(Q,\Sigma,\delta,q,F)$ is a DFA, then $\bar{N}=(Q,\Sigma,\delta,q,Q-F)$ will recognize \bar{A} ;
- Intersection: $A\cap B=\overline{\overline{A}\cup \overline{B}}$, since the class of regular languages is closed under complement and union, then it should be closed under intersection.

Regular Expression: Given alphabet Σ , we say that R is a regular expression if R is:

- a for some $a \in \Sigma$;
- ε (empty character);
- ∅ (empty set);
- $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions;
- $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, sometimes written as R_1R_2 ;
- (R_1^*) , where R_1 is a regular expression.

Language Defined by Regular Expressions

Regular expression ${\it R}$	Language $L(R)$
a	$\{a\}$
ϵ	$\{\epsilon\}$
Ø	Ø
$(R_1 \cup R_2)$	$L(R_1) \cup L(R_2)$
$(R_1\circ R_2)$	$L(R_1)\circ L(R_2)$
(R_1^*)	$L(R_1)^*$

Theorem. A language is regular iff some regular expression describes it.

(⇐⇐) by induction, simple;

• (\Longrightarrow) Some idea as Floyd-warshall Algorithm. Let i denote q_i . Let R(i,j,k) be the regular expression from i to j and we use the intermediate state not greater than k.

$$R(i,j,k) = R(i,j,k-1) \cup R(i,k,k-1)R(k,k,k-1)^*R(k,j,k-1)$$

Then,

$$L(M) = \bigcup \{R(1, j, n) \mid j \in F\}$$

Examples.

- $L_1 = \{l \in \{0,1\}^* \mid l \text{ has an equal number of 0s and 1s} \}$ is regular (NFA is easy to construct):
- $L_2 = \{l \in \{0,1\}^* \mid l \text{ has an equal number of occurrence of } 01 \text{ and } 10 \text{ as substrings} \}$ is not regular.
- **Explanation**: In L_1 , we must remember the previous string, so we need counting and the state must be infinite; but in L_2 , the difference between occurrence of 01 and 10 as substrings can only be $0, \pm 1$, thus, we can use finite state to remember it.
- By the way, we can use the pumping lemma to prove that L_2 is not regular (First prove $\{0^n1^n\mid n\in\mathbb{N}\}$ is not regular, then let $L_2\cap 0^*1^*=\{0^n1^n\mid n\in\mathbb{N}\}$ and use contradiction to prove it.)

Lemma. (*The pumping lemma for regular languages*) If A is a regular language, then there is a number p (i.e., **the pumping length**) where if s is any string in A of length at least p, then s may be divided into three pieces, s=xyz, satisfying the following conditions.

- 1. |y| > 0;
- 2. $|xy| \le p$;
- 3. for each $i \geq 0$, we have $xy^iz \in A$.

Any string xyz in A can be pumped along y.

Proof. Let $M=(Q,\Sigma,\delta,q_1,F)$ be a DFA recognizing A and p=|Q|+1. According to the pigeonhole principle, the recognizing route must have a cycle, say y. Then the lemma is proved.

Problems from Formal Language Theory

- Accpetance Problem: does a given string belong to a given language?
- **Emptiness Problem**: is a given language empty?
- **Equality**: are two given language equal?

Problems for DFA

- **Acceptance Problem**: Given a DFA (NFA) A and a string w, does A accept w?
- **Emptiness Problem**: Given a DFA (NFA) A, is the language L(A) empty?
- **Equality**: Given two DFA (NFA) A and B, is L(A) equal to L(B)?

Proof.

- Take DFA as an example. Simple.
- Take DFA as an example, use DFS/BFS.
- Use the lemma $L(A) = L(B) \iff (L(A) L(B)) \cup (L(B) L(A)) = \varnothing$. We can use A and B to construct the DFA that can express $(L(A) L(B)) \cup (L(B) L(A))$. Then we can use the algorithm of emptiness problem to solve it.