Stomatal response of *Pinus sylvestriformis* to elevated CO₂ concentrations during the four years of exposure

ZHOU Yu-mei, HAN Shi-jie*, LIU Ying, JIA Xia
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Abstract: Four-year-old *Pinus sylvestriformis* were exposed for four growing seasons in open top chambers to ambient CO₂ concentration (approx. 350 μ mol·mol⁻¹) and high CO₂ concentrations (500 and 700 μ mol·mol⁻¹) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42°N, 128°E). Stomatal response to elevated CO₂ concentrations was examined by stomatal conductance (g_s), ratio of intercellular to ambient CO₂ concentration (c_i/c_a) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO₂]-grown plants increased in comparison with ambient-[CO₂]-grown plants when measured at their respective growth CO₂ concentration and at the same measurement CO₂ concentration (except a reduction in 700 μ mol·mol⁻¹ CO₂ grown plants compared with plants on unchambered field when measured at growth CO₂ concentration and 350 μ mol·mol⁻¹ CO₂). High-[CO₂]-grown plants exhibited lower c_s/c_a ratios than ambient-[CO₂]-grown plants when measured at their respective growth CO₂ concentration. However, c_s/c_a ratios increased for plants grown in high CO₂ concentrations compared with control plants when measured at the same CO₂ concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO₂. However, elevated CO₂ concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.

Key words: c_2/c_a ratio; High CO₂; *Pinus sylvestriformis*; Stomatal conductance; Stomatal number; Stomatal line Abbreviations: g_s , *stomatal conductance*; c_b intercellular CO₂ concentration; c_a , ambient CO₂ concentration **CLC number**: S718.4 **Document Code**: A **Article ID**: 1007-662X(2005)01-0015-04

Introduction

Stomata directly affect the gas exchange of CO_2/H_2O between atmosphere and foliage. The impact of elevated CO_2 concentration on the stomatal behavior has attracted considerable attention. The stomatal response to CO_2 is important in understanding stomatal physiology, and vegetation-atmosphere exchanges at all scales from the individual plant up to global vegetation (Morison 1998). Short-term and long-term effects of increased CO_2 on stomata are different. In general, the short-term response of stomata is a change in aperture (usually reversible), and long-term response includes anatomical and morphological changes, for example, in stomatal number and/or in size (Morison 1998). Stomatal acclimation may occur when plants are exposed to increased CO_2 concentration for a long time.

Stomatal conductance (g_s) is most frequently used for assessing the function of stomata in reconciling the water loss and carbon gain (Zhang *et al.* 2002). It is generally accepted that an increase in the ambient CO_2 concentration can cause reductions in stomatal conductance resulted from the decrease of stomatal aperture and/or density, and the reduction varied widely (Bunce 2000; Morison 2001). A reduction in stomatal conductance is a common response of herbaceous plants to elevated CO_2 (Bunce 2000). Some experimental evidences suggested that many forest tree species show small or non-significant change in stomatal

conductance under long-term elevated CO₂ (Curtis 1996; Saxe *et al.* 1998), particular conifer (Teskey 1995).

Stomata appear to response directly to the intercellular CO_2 concentration (c_i) , rather than ambient CO_2 concentration (c_a) , as demonstrated by Mott (Mott 1988). C_3 plants normally maintain relative constancy of the ratio of intercellular to ambient CO_2 , approx. 0.7 (Lodge *et al.* 2001). Given no adjustment of stomata, the rate of CO_2 diffusion through the stomatal pores would rise in proportion to the increase in ambient CO_2 (Jarvis *et al.* 1999). Therefore, whether c_i/c_a ratio remains constant with increased c_a should be examined carefully.

The change of stomatal number of needle is a long-term response to elevated CO₂ concentration. Some literatures have reported no change in stomatal density (Poole *et al.* 2000; Lodge *et al.* 2001). There was no difference in stomata density for current-year needles of Sitka spruce trees exposed to elevated CO₂ concentration for 4 years between treatments (Barton and Jarvis, 1999), the same phenomenon also was observed on *Alnus glutinosa* (Poole *et al.* 2000).

The main objectives of this study are to determine stomatal response of *Pinus sylvestriformis* to long-term exposure to high CO_2 concentration: (a) to determine g_s and c_i/c_a ratio at different measurement of CO_2 concentration; (b) to examine the changes of stomatal number of current-year needle.

Materials and methods

The study site is located at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42°N, 128°E). Average annual rainfall is 700 mm. In 1999, seedlings of *Pinus sylvestriformis* were planted in open top chambers and on un-chambered field. Open top chamber consists of aluminium frames of 1.2 m in length, 0.9 m in width and height, and clear glass covers. CO₂ enters the chamber through perforated plastic pipe at the bottom

Foundation Item: This research was supported by National Basic Research Program of China (2002CB412502), Project of Key program of the National Natural Science Foundation of China (90411020) and National Natural Science Foundation of China (30400051).

Biography: ZHOU Yu-mei (1973-), female, Ph. Doctor, assistant research fellow, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang

110016, P. R. China. E-mail: <u>zhouyumei73@126.com</u> **Received date**: 2004-12-01

Responsible editor: Song Funan

*Corresponding author

ZHOU Yu-mei et al.

of chamber. Fan is hung in the top of the chamber to mix the gas well-proportioned. Treatments consist of three concentration levels of CO₂: ambient, 500 and 700 μmol·mol·l CO₂. Seedlings in the control chamber and on un-chambered field are given ambient CO₂, approx. 350 μmol·mol·l. The CO₂ concentrations in each chamber were checked weekly and adjusted. Elevated CO₂ concentrations were provided by the mixture of industrial high CO₂ and ambient CO₂. 500 and 700 μmol·mol·l CO₂ were obtained by adjusting the velocity and amount of flow of industrial CO₂ and ambient CO₂. CO₂ concentration was monitored by the CI—301 gas analyzer once a week. The plants were four years old, with average height of 47 cm, which are daily irrigated except rainy day.

All measurements were made on the current-year needle. The measured needles were near the top crown and received the full sunlight. The experiment was begun after the plants had been exposed to the CO_2 treatments for 3 months in the fourth growing season. Seedlings had been treated by high CO_2 concentrations (500 and 700 μ mol·mol⁻¹ CO_2) continuously (24 h·d⁻¹) during growing season from June to September since 1999.

Measurement of stomatal conductance and c_i/c_a ratio

Stomatal conductance (g_s) and c_i/c_a ratio were measured with a portable photosynthetic analyzer equipped with a conifer cuvette (LI6400, Li-Cor, Inc., Lincoln, NE). Reciprocal transfer experiment of g_s and c_i/c_a in high- and low-[CO₂]-grown plants was carried out at three levels of CO₂ concentrations (350, 500 and 700 µmol·mol·l) in the cuvette, respectively. All measurements were made directly under light saturating conditions. The readings were taken after allowing g_s to reach a steady state.

Stomatal number

Twenty needles were collected at random from 20 plants per treatment. Stomatal number was separately counted on the upper and lower surface of each needle were cut down 3-mm long epidermis along the needle, which was viewed with a microscope. The number of all stomatal lines and number of stomata per line on 3-mm long epidermis were counted.

Statistics

Mean values of stomatal conductance and c_i/c_a ratio were compared separately. One-way analysis of variance was performed for three comparisons. One contrast was carried out to compare needles grown and measured at 350 μ mol·mol⁻¹ CO₂ with those grown at 700 and 500 μ mol·mol⁻¹ CO₂ but measured at 350 μ mol·mol⁻¹ CO₂. The second contrast was to compare needles grown and measured at 500 μ mol·mol⁻¹ CO₂ with those grown at 700 and 350 μ mol·mol⁻¹ CO₂ but measured at 500 μ mol·mol⁻¹ CO₂. The third contrast was to compare needles grown and measured at 700 μ mol·mol⁻¹ CO₂ with those grown at 500 and 350 μ mol·mol⁻¹ CO₂ but measured at 700 μ mol·mol⁻¹ CO₂. Stomatal line and stomatal number on upper, lower surface and whole needle were compared among the four treatments. All statistical tests were performed using SPSS 11.5 software. The conclusions were reached by the LSD tests.

Results

Reciprocal transfer experiment of g_s

Stomatal conductance (g_s) of Pinus sylvestriformis in the 500

μmol·mol⁻¹ CO₂ was 61% and 4% higher than those in control chamber and on un-chambered field when measured at their respective growth CO₂ concentrations. Similarly, g_s in 700 μmol·mol⁻¹ CO₂ increased by 11% and decreased by 28%, compared with those of growing in the control chamber and on un-chambered field, respectively (Table 1). The difference was significant between elevated CO₂ and ambient CO₂ (p<0.05).

When measured at 500 or 700 μ mol·mol⁻¹ CO₂, stomatal conductance of *Pinus sylvestriformis* at elevated CO₂ concentrations was substantially higher than those at ambient CO₂ concentration. g_s at 700 μ mol·mol⁻¹ CO₂ was 22% lower than that on un-chambered field when measured at 350 μ mol·mol⁻¹ CO₂. g_s at 500 μ mol·mol⁻¹ CO₂ was the highest at any measurement CO₂ concentration. g_s of both high-[CO₂]-grown and control plants declined with the increase of measurement CO₂ concentration.

Table 1. Mean stomatal conductance (mol·m 2 ·s 1) in *Pinus sylves-triformis* grown at ambient CO₂ and elevated CO₂ concentrations measured at three different CO₂ concentrations (350, 500, and 700 μ mol·mol 1 CO₂)

Growth conditions (μmol·mol ⁻¹ CO ₂)	Measurement CO ₂ concentration (μmol·mol ⁻¹)			
	350	500	700	
700	0.284±0.001	0.273±0.0002	0.262±0.0004	
500	0.399±0.001	0.379±0.001	0.371±0.002	
Control chamber (350)	0.235±0.001	0.216±0.0003	0.206±0,0003	
Un-chambered field (350)	0.365±0.004	0.235±0.001	0.181±0.003	

Note: Values shown above are means \pm standard error. Comparisons were made among the four treatments at each measurement CO₂ concentration. Results for a one-way analysis of variance showed the difference were significant (p<0.05).

Reciprocal transfer experiment of c_i/c_a ratio

When measured at their respective growth CO_2 concentration, high-[CO_2]-grown plants exhibited lower c_i/c_a ratios compared eith the control plants (Table2). c_i/c_a ratio of *Pinus sylvestri-formis* grown at 700 µmol·mol¹ CO_2 was 5% and 3% lower than those at control chamber and un-chambered field, respectively. It was 4% and 2% lower than the control chamber and un-chambered field for *Pinus sylvestriformis* grown at 500 µmol·mol¹ CO_2 . The difference was significant between elevated CO_2 and ambient CO_2 . However, the c_i/c_a ratio increased for *Pinus sylvestriformis* grown in high CO_2 concentrations when exposing to 350 µmol·mol¹ CO_2 .

Table 2. c/c_a ratio of *Pinus sylvestriformis* grown at ambient and elevated CO_2 concentrations measured at three different CO_2 concentrations (350, 500 and 700 μ mol·mol·l CO_2), respectively

Growth conditions $(\mu mol \cdot mol^{-1} CO_2)$	Measurement CO ₂ concentration (μmol·mol ⁻¹)				
	350	500	700		
700	0.719±0.003	0.685±0.001	0.667±0.001		
500	0.728±0.001	0.676±0.001	0.693±0.001		
Control chamber (350)	0.701±0.002	0.635±0.002	0.600 ± 0.001		
Un-chambered field (350)	0.687±0.002	0.686±0.0003	0.660±0.002		

Note: Values shown above are means \pm standard error. Comparisons were made among the four treatments at each measurement CO₂ concentration. Results for a one-way analysis of variance showed the difference were significant except the comparison between 700 μ mol·mol⁻¹ CO₂ and un-chambered field at 500 μ mol·mol⁻¹ CO₂ measurement CO₂ concentration (p<0.05).

When control plants grown at ambient CO_2 concentration were measured at high CO_2 concentrations (500 and 700 μ mol·mol·l CO_2) the c_i/c_a value decreased. The c_i/c_a ratios of high-[CO_2]-grown plants were higher than those of control plants when measured at the same CO_2 concentration.

Stomatal number

Stomata of Pinus sylvestriformis occur in a few of straight lines running along the length of the needle on both sides of the needle. The number of stomatal line per needle (including upper and lower surface) at high CO2 concentrations was significantly lower than that on un-chambered field (Table 3). The number of stomatal line at 700 µmol·mol⁻¹ CO₂ approximately equals to that at 500 µmol·mol⁻¹ CO₂. The number of stomatal line of plants grown on un-chambered field was higher than that in the control chamber though both accepted ambient CO2 concentration. The stomatal line of plants in the control chamber was 10% higher than those at 700 and 500 μmol·mol⁻¹ CO₂. But there was no significant differences between control chamber and elevated CO₂ concentrations. The allocation of stomatal line and number of stomata was different between upper and lower surface of needle for high- and low-[CO₂]-grown plants. Stomatal line and number of stomata on upper surface were more than those on

lower surface. The number of stomatal line on the upper surface of needle grown at 700 and 500 µmol·mol-1 CO₂ decreased by 16% and 8%, respectively, compared with that in the control chamber,. Similarly, the number of stomatal line on the upper surface of needle grown at 700 and 500 µmol·mol⁻¹ CO₂ decreased by 25% and 19%, respectively, compared with that on un-chambered field. The number of stomatal line on the lower surface of needle grown at 700 µmol·mol-1 CO₂ showed no reduction and was 11% lower grown at 500 µmol·mol⁻¹ CO₂, compared with that in the control chamber. Pinus sylvestriformis grown at 700 and 500 µmol·mol⁻¹ CO₂ exhibited that the numbers of stomatal line on the lower surface of needle were 11% and 23% separately lower than that at the un-chambered field. There was no significant difference on the number of stomata on lower surface among four treatments. Stomatal number per unit long needle on upper surface at 700 μmol·mol⁻¹ CO₂ was much higher (increased by 16%) than that on the un-chambered field. However, elevated CO₂ did not significantly change the total stomatal number (including upper and lower surface). The results of variance on the stomatal line and stomatal number among four treatments were shown at Table 4.

Table 3. Stomatal line and stomatal number of current-year needle of *Pinus sylvestriformis* exposure to high CO₂ concentrations for four growing seasons

Indexes	Growth CO ₂ concentration (μmol·mol ⁻¹ CO ₂)					
	700	500	Control chamber (350)	Unchambered field (350)		
Number of stomatal line on upper surface of needle	7.6±0.413	8.3±0.442	9.0±0.397	10.2±0.485		
Number of stomata 1mm long needle on upper surface	12.1±0.252	11.4±0.249	11.7±0.246	11.3±0.163		
Number of stomatal line on lower surface of needle	6.3±0.448	5.5±0.256	6.2±0.296	7.1±0.352		
Number of stomata 1mm long needle on lower surface	10.8±0.171	10.7±0.229	11.0±0.256	10.8±0.183		
Number of stomatal line per needle	13.9±0.737	13.8±0.627	15.2±0.601	17.3±0.781		
Number of stomata 1mm long needle	22.9±0.359	22.1±0.389	22.6±0.443	22.2±0.294		

Table 4. Results of one-way analysis of variance of stomatal line and stomatal number (P: 0.05 level)

	1-2	1-3	1-4	2-3	2-4	3-4
Number of stomatal line on upper surface of needle	0.227	0.021	0	0.259	0.003	0.055
Number of stomata 1mm long needle on upper surface	0.056	0.231	0.034	0.464	0.832	0.345
Number of stomatal line on lower surface of needle	0.106	0.838	0.129	0.156	0.002	0.086
Number of stomata 1mm long needle on lower surface	0.693	0.537	0.923	0.315	0.766	0.476
Number of stomatal line per needle	0.959	0.171	0.001	0.156	0.001	0.039
Number of stomata 1mm long needle	0.156	0.591	0.167	0.385	0.971	0.405

Note: 1: 700 μmol·mol⁻¹ CO₂; 2: 500 μmol·mol⁻¹ CO₂; 3: control chamber; 4: un-chambered field

Discussion

Stomatal conductance, ratio of intercellular to ambient CO_2 concentration and stomatal number are main parameters of assessing stomatal behavior at elevated CO_2 concentration. Stomatal conductance can well describe the dynamic changing trend of stomatal characteristics, while relative stable properties can be provided by stomatal number (Zhang et al. 2002).

It is widely stated that elevated CO₂ concentration will cause the reduction of stomatal conductance. Stomatal conductance is affected primarily by stomatal aperture and the number of stomata i.e. stomatal density (Weyers and Lawson 1997). Thus changes in size and number of stomatal aperture play key roles in stomatal conductance. Since stomatal number of *Pinus sylvestri*-

formis was decreased by elevated CO_2 concentrations, the increase of stomatal conductance at elevated CO_2 concentrations mainly related to stomatal aperture. Pinus sylvestriformis grown at 500 µmol·mol¹ CO_2 showed the highest stomatal conductance at any measuring CO_2 concentration. However, the change of stomatal conductance of Pinus sylvestriformis grown at 700 µmol·mol¹ CO_2 was related to the measuring CO_2 concentration. Stomata are sensitive to some environmental stimuli, particular light, humidity and CO_2 . Therefore, changes of stomatal conductance in 700 µmol·mol¹ CO_2 could be caused mainly by the change of environmental CO_2 concentration. Therefore, the simplest interpretation is that the difference in stomatal conductance between high- and ambient-[CO_2]-grown plants was a result of the direct adjustment of stomatal aperture.

The change of stomatal aperture or conductance could affect

ZHOU Yu-mei et al.

the c_i/c_a ratio of stomata which are directly sensitive to intercellular CO₂ concentration (Mott, 1990). g_s and c_i/c_a ratio in high-[CO₂]-grown plants were higher than those of control plants when measured at high CO₂ concentrations, confirming that stomata of *Pinus sylvestriformis* acclimated to long-term exposure to high CO₂ concentrations. High-[CO₂]-grown plants showed a decrease for the ratio of c_i/c_a compared with control plants when measured at their respective CO₂ concentration of growth. The decrease of c_i/c_a ratio in high-CO₂-grown plants was mainly caused by higher ambient CO₂ concentration (700 and 500 μ mol·mol·lCO₂).

Given no adjustment to the change of increasing atmospheric CO_2 concentration the c_i/c_a ratio would remain constant. However, Ellsworth (1999) found a similar tendency in c_i/c_a ratio for well-watered P. taeda. Sage (1994) and Drake et al. (1997) also demonstrated it in many experiments, including those in which plants were grown for long periods in high CO₂ concentration. But it is surprising that the ratio of c_i/c_a unchanged at high CO₂ concentration. Sage (1994) found that except under water and humidity stress, c_i/c_a exhibited inconsistent change in a variety of C₃ species. In our study, high-[CO₂]-grown Pinus sylvestriformis exhibited that c_i/c_a ratio was below the control plants when measured at their respective growth condition, as also demonstrated by Wong (1993). c_i/c_a ratio increased high-[CO₂]-grown plants when measured under 700 and 500 μmol·mol⁻¹ CO₂, confirming that stomata do not always maintain c_i/c_a constant.

Stomatal number of current-year needle of Pinus sylvestriformis decreased under 700 and 500 µmol·mol⁻¹ CO₂, and the allocation pattern of stomata between upper and lower surface of needle gave rise to change. Stomatal lines on the upper surface of needle showed larger reduction at 700 μmol·mol⁻¹ CO₂, and that on the lower surface showed larger decline at 500 µmol·mol⁻¹ CO₂. The difference was not significant though the total stomatal lines of whole needle (including upper and lower surface) in the control chamber were higher than that in elevated CO2. The total stomatal lines of needle on un-chambered field were remarkably higher than those in the open top chambers (including 700, 500 μmol·mol⁻¹ CO₂ and control chamber). Therefore, the microenvironment of open top chamber can affect the number of stomatal line of P. sylvestriformis. That is both elevated CO₂ and microenvironment of open top chamber decreased the number of stomatal line, but they did not change the stomatal number per unit long needle. Therefore, the total stomatal number of P. sylvestriformis had a decrease at 700 and 500 μmol·mol-1 CO₂ by decreasing stomatal line on upper and lower surface of needle. The change of stomatal number is a result of long-term exposure to high CO₂ concentrations. The decline of stomatal number for Pinus sylvestriformis did not significantly affect the change of stomatal conductance. Some studies showed stomata density did not change at high CO₂ concentration.

There was difference in stomatal response for *Pinus sylvestri-formis* to 700 and 500 μ mol·mol⁻¹ CO₂. The increases of stomatal conductance and c_i/c_a ratio of plants grown at 500 μ mol·mol⁻¹ CO₂ were relatively bigger than those at 700 μ mol·mol⁻¹ CO₂. In addition, the allocation of stomatal line on upper and lower surface was different, too. Stomatal behavior of plants in the control chamber was also different from that on

un-chambered field. By this study, we found that the microenvironment of open-top chamber affected the physiological characteristics of *Pinus sylvestriformis*. But we still do not confirm which factors and how these factors operate.

References

- Barton, C.V.M. and Jarvis, P.G. 1999. Growth response of branches of *Picea sitchensis* to four years exposure to elevated atmospheric carbon dioxide concentration [J]. New Phytologist, 144: 233–243.
- Bunce, J.A. 2000. Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field [J]. Global Change Biology, 6: 371–382.
- Curtis, P.S. 1996. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide [J]. Plant, Cell and Environment, 19: 127–137.
- Drake, B.G., Gonzàlez-Meler, M.A. and Long, S.P. 1997. More efficient plants: a consequence of rising atmospheric CO₂? [J]. Annual Review Plant Physiology and Plant Molecular Biology, 48: 607–637.
- Ellsworth, D.S. 1999. CO₂ enrichment in a maturing pine forest: are CO₂ exchange and water status in the canopy affected? [J]. Plant, Cell and Environment, **22**: 461–472.
- Jarvis, A.J., Mansfield, T.A. and Davies, W.J. 1999. Stomatal behavior, photosynthesis and transpiration under rising CO₂ [J]. Plant, Cell and Environment. 22: 639-648.
- Lodge, R.J., dijkstra, P., Drake, B.G. and Morison, J.I.L. 2001. Stomatal acclimation to increased CO₂ concentration in a Florida scrub oak species *Quercus myrtifolia* Willd [J]. Plant, Cell and Environment, **24**: 77–88.
- Morison, J.I.L. 1998. Stomatal response to increased CO₂ concentration [J]. Journal of Experimental Botany, 49: 443–452.
- Morison, J.I.L. 2001. Increasing atmospheric CO₂ and stomata [J]. New Phytologist, **149**: 154–156.
- Mott, K.A. 1988. Do stomata respond to CO₂ concentrations other than intercellular? Plant Physiology, 86: 200–203.
- Mott, K.A. 1990. Sensing of atmospheric CO₂ by plants [J]. Plant, Cell and Environment. 13: 731–737.
- Poole, I., Lawson T., Weyers, J.D.B. and Raven, J.A. 2000. Effect of elevated CO₂ on the stomatal distribution and leaf physiology of Alnus glutinosa [J]. New Phytologist, **145**: 511–521.
- Sage, R.F. 1994. Acclimation of photosynthesis to increasing atmospheric CO₂: the gas exchange perspective [J]. Photosynthesis Research, 39: 351–368.
- Saxe, H., Ellsworth, D.S. and Heath, J. 1998. Tree and forest functioning in an enriched CO₂ atmosphere [J]. New Phytologist, 139: 395–436.
- Teskey, R.O. 1995. A field study of the effects of elevated CO₂ on carbon assimilation, stomatal conductance and leaf and branch growth of *Pinus taeda* trees [J]. Plant, Cell and Environment, **18**: 565–573.
- Weyers, J.D.B. and Lawson, T. 1997. Heterogeneity in stomatal characteristics [J]. Advances in Botanical Research, 26: 317–352.
- Wong, S.C. 1993. Interaction between elevated atmospheric concentration of CO₂ and humidity on plant growth: Comparison between cotton and radish [J]. Vegetatio, **104/105**: 211–221.
- Zhang, S.R., Ma, K.P. and Chen, L.Z. 2002. Tempo-Spatial variations in stomatal conductance, aperture and density of *Ligustrum sinense* acclimated to different light environments [J]. Acta Botany of Sinica, 44: 1225–1232.