

硕士学位论文

可见光多波段通信系统自适应传输 技术研究

研究生姓名:	吴满	
导师姓名:	赵春明	教授

申请学位类别_	工学硕士	学位授予单位_	东南大学
一级学科名称	信息与通信工程	论文答辩日期_	2016年1月20日
二级学科名称	通信与信息系统	学位授予日期_	
答辩委员会主席		评 阅 人	

東南大學 硕士学位论文

可见光多波段通信系统自适应传输 技术研究

专业名称:	信息与通信工程
研究生姓名:	吴满
导师姓名:	赵春明 教授

RESEARCH ON ADAPTIVE TRANSMISSION TECHNOLOGY OF MULTI VISIBLE LIGHT COMMUNICATION SYSTEM

A Thesis submitted to Southeast University

For the Academic Degree of Master of Science

BY

Man Wu

Supervised by:

Prof. Chunming Zhao

School of Information Science and Engineering
Southeast University
January 8, 2016

东南大学学位论文独创性声明

本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或
撰写过的研究成果,也不包含为获得东南大学或其它教育机构的学位或证书而使用这
的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明
并表示了谢意。

研究生签名:	日期:	
7170 <u></u>		

东南大学学位论文使用授权声明

东南大学、中国科学技术信息研究所、国家图书馆有权保留本人所送交学位论文的复印件和电子文档,可以采用影印、缩印或其他复制手段保存论文。本人电子文档的内容和纸质论文的内容相一致。除在保密期内的保密论文外,允许论文被查阅和借阅,可以公布(包括刊登)论文的全部或部分内容。论文的公布(包括刊登)授权东南大学研究生院办理。

	研究生签名:	导师签名:	日期:	
--	--------	-------	-----	--

摘要

随着移动互联网的发展,其提供的各种方便快捷的功能已经深刻的改变了人们的生活方式,物联网、智能家居等相关产业也正处于快速发展阶段,如何为多种多样的智能设备提供安全可靠而又绿色经济的无线接入方式显得格外重要。虽然目前使用的蜂窝网及 WIFI 接入能解决大部分的接入问题,但是由于频谱资源的限制及射频辐射可能危害健康促使人们寻找新的接入方式。同时 LED 作为新一代绿色高效的光源在照明市场上高歌猛进,市场占有率节节攀升。以 LED 为基础的室内可见光通信迎来了前所未有的发展机遇。本文对室内可见光通信领域的基于 OFDM 调制的自适应传输技术进行了研究,主要包括信道估计、自适应算法等内容。

本文首先介绍了可见光通信的研究背景,并对可见光通信在国内外的发展历程进行了概述。接着简要介绍了可见光通信的基本原理,包括系统模型、信道特征及光电元器件等。之后研究了光OFDM 技术,主要说明了 DCO-OFDM 和 ACO-OFDM 的工作原理及区别,在此基础上提出了一种改善 ACO-OFDM 系统 PAPR 性能的 RoC-ACO-OFDM 方案,并且在理论和数值仿真的角度论证了该方案的有效性。

随后,探讨了 OFDM 信道估计的常用方法,重点放在基于导频的方法中,系统研究了基于最小二乘法的 LS 信道估计方法、基于最小均方误差的 MMSE 方法及其基于 MMSE 两个改进方法 LMMSE 和 SVD 分解方法;然后结合可见光通信系统设计的实例,使用 ZC 序列作为导频,通过仿真的方法比较了上述方法在可见光信道下的性能,发现虽然 LS 信道估计方法在性能稍逊于 LMMSE 及 SVD 算法,但是其实现要简便得多,所以本课题硬件设计中选择使用 LS 进行信道估计;最后讨论了 OFDM 系统中信噪比的估计方法,分析了基于导频的估计方法和 EVM 方法,EVM 方法虽然需要额外的开销,但是其估计值更加吻合实际系统,是可见光自适应传输系统的首选方法。

接着,本文探讨了 OFDM 系统的比特和功率分配算法,阐述了自适应传输的理论基础一香农信息论和注水定理;然后介绍了 OFDM 自适应传输领域三个最经典的算法,分别最优的 Hughes-Hartogs 算法、Chow 算法和 Fischer 算法,详细说明了这些算法的推导和实现步骤,并且通过仿真比较了它们的性能差异,发现在可见光通信信道下它们在固定速率和发射功率下 BER 性能相差不大;最后分析了适合子载波 SNR 相关性较大的简单分组分配算法(SBLA),因为可见光信道本身就是低通的,天然合适 SBLA 算法的应用,并且进一步利用可见光通信信道特征,提出了适应线性插值来进行功率分配的 Improved-SBLA 算法,通过仿真发现改进的算法在减少了反馈量就运算复杂度的基础上,BER 性能与 SBLA 相当,验证了改进算法合理可行。

最后,在前面几章讲解可见光通信原理及其自适应传输理论的基础上,介绍了本课题对应的硬件平台。首先对整个硬件平台进行了概述,包括各种器件的参数及其选择依据,并且简述了发射端和接收端的基带处理处理过程;然后重点描述了基带处理中与自适应技术密切相关的调制器、自适应参数生成、软解调三个模块;最后展示了整个硬件平台实物图。

关键词: 可见光通信 OFDM 信道估计 自适应传输 FPGA

Abstract

With the development of mobile Internet, which provides a variety of convenient features and has profoundly changed people's life. Meanwhile, Internet of things, smart home and other related industries are also in rapid development stage, how to provide reliable and secure wireless access to these intelligent devices in a green economy way is particularly important, although the use of cellular and WIFI can solve most of the access problem, but due to spectrum limitation and potential health problem caused by radiation forcing people to look for new technology. At the same time as a new generation of green efficient light source, LED is very popular in the lighting market, its market share is expected be more than 52 % in 2021. LED-based indoor visible light communication meets an unprecedented development opportunity. In this paper, adaptive transmission in the field of VLC based on OFDM modulation techniques are studied, including channel estimation, adaptive algorithms and so on.

At first, This paper introduces the research background and summarizes the development history of visible light communication. Then briefly introduces the basic principles of visible light communication, including system model, the channel characteristics, electro-optical and optical-electro conversion device, etc. According to the actual situation, visible communication channel is modeled as a linear channel in this paper. The optical OFDM is also studied, including the DC-biased optical OFDM(DCO-OFDM) and Asymmetrically clipped optical OFDM(ACO-OFDM). Then, a peak to average power ratio(PAPR) reduction technology for ACO-OFDM called RoC-ACO-OFDM is proposed.

Subsequently, the common OFDM channel estimation methods are discussed, including LS, MMSE, LMMSE and SVD. Then, we compares the performance of these estimation algorithms using ZC sequence as pilot, the same as in our demo system. The result shows that the performance of LS method is slightly inferior to LMMSE and SVD algorithm, but its implementation is much more simple. The SNR estimation methods are discussed at last. Pilot-based and EVM methods are analyzed. we find that EVM is much more accurate and suggest this approach in our real system design.

Then, this thesis discusses the bit and power allocation algorithm for OFDM systems. The Shannon information theory and water filling algorithm are given at first as fundamental knowledge of adaptive transmission. Then introduces three most classic allocation algorithms, they are optimal Hughes- Hartogs algorithm, Chow algorithm and Fischer algorithm. The performance of these algorithms is examined through simulation under wireless optical channel. The result reveals that they have a similar performance. At last, simple block loading algorithm(SBLA) is analysed, which is very appropriate for wireless optical channel. A improved algorithm based on SBLA is proposed aiming to reduce feedback information from receiver to transmitter.

Finally, based on the visible light communication principle and adaptive transmission theory explained in the previous chapters, we introduces our hardware demo platform. First, an overview is given to the entire hardware platform, including the parameters of a variety of devices and the reason why choose them. Then, the baseband processing at both transmitter and receiver end is described. Subsequently, the modules which

are related to adaptive transmission is analyzed in detail, including modulation module at transmitter end and demodulation module and adaptive parameter generator module at receiver end. A presentation of our demo system is given out at last.

Keywords: Visible Light Communication OFDM Channel Estimation Adaptive Transmission FP-GA

目 录

摘要·					•			•		•	•		•		•	•	 •	•	•	•	•]
Abstract	t · · ·															•						 Ш
插图目录	₹ · · ·															•						 VI
表格目录	₹ · · ·																					 IX
缩略词																	 •					 XI
第一章	可见光	2多波	段自	适应)	通信	系	统硬	其件	设	计												 1
1.1	引言.																					 1
1.2	硬件平	台概	述 .																			 1
	1.2.1	硬件	型号》	及参	数简	i介																 2
	1.2.2	发射	端基位	带处理	理 .																	 2
	1.2.3	接收	端基	带处理	理 .																	 4
1.3	自适应	模块	方案记	设计																		 5
	1.3.1		应调制																			5
	1.3.2		比估i																			
	1.3.3		应软角																			7
1.4	系统展																					8
1.5	本章小																					9
参考文献																						11
少 有人用	ν				•			•	• •	•	•	 •	•	• •	•	•	 •	•	•	•	•	 11
作者简介	٠٠٠ ا				•			•		•	•	 •	•		•	•	 •		•	•		 13
致谢 ·																						 15

插图目录

1.1	可见光通信硬件平台示意图	1
1.2	发射端基带处理原理框图	3
1.3	发射端基带处理时序图	3
1.4	接收端基带处理原理框图	4
1.5	接收端基带处理时序图	5
1.6	自适应调制模块示意图	6
1.7	自适应参数生成模块示意图	7
1.8	自适应软解调模块示意图	7
1.9	硬件平台展示	8

表格目录

1.1	调制器 FIFO 参数设置	6
1.2	收发机距离 100 cm 采样频率为 150 MHz 下各色光的调制及 BER	9

缩略词

非对称光 OFDM 调制 **ACO-OFDM** Asymmetrically-clipped optical OFDM **ADC** Analog to Digital Converter 模拟数字变换器 APD Avalanche Photo Diode 雪崩型光电二极管 BER Adaptive 最小误比特率准则 BA Bit Error Rate 误比特率 BER **CCDF** Complementary Cumulative Distribution Function 互补累积分布函数 信道冲激响应 **CIR** Channel Impose Response CP Cyclic Prefix 循环前缀 循环冗余校验 **CRC** Cyclic Redundancy Check **CSI Channel State Information** 信道状态信息 数字模拟变换器 DAC Digital to Analogue Converter 直流偏置光 OFDM 调制 DCO-OFDM DC-biased optical OFDM 直接检测 **Direct Detection** DD **DMT** Discrete Multi-Tone 离散多音调制 **DOW** 漫反射光信道 Diffuse Optical Channel 数字用户线路 DSL Digital Subscriber Line **EVM** Error Vector Magnitude 误差向量幅度 FFT Fast Fourier Transform 快速傅里叶变换 First In First Out 先入先出队列 **FIFO FOV** Field of View 接收机视场角 现场可编程门阵列 **FPGA** Field Programmable Gate Array 美国电子电气工程师协会 **IEEE** Institute of Electrical and Electronics Engineers **IFFT** Inverse Fast Fourier Transform 逆傅里叶变换 强度调制 IM **Intensity Modulation** ISI Inter Symbol Interference 符号间干扰 LD Laser Diode 激光二极管 **LDPC** Low Density Parity Code 低密度奇偶校验码 发光二极管 LED Light Emitting Diode Linear Minimum Mean Square Error 线性最小均方误差准则 **LMMSE** LOS Light of Sight 直达径

LS

Least Square

最小二乘法准则

LUT Look Up Table 查找表

MA Margin Adaptive 最小发射功率准则

MMSE Minimum Mean Square Error 最小均方误差估计准则

MSE Mean Square Error 均方误差

NSF National science foundation 美国国家科学基金会

OFDM Orthogonal Frequency Division Modulation 正交频分复用调制

PAPR Peak to Average Power Ratio 峰均比

PD Photo Diode 光电二极管

QAM Quadrature amplitude modulation 正交幅度调制

RA Rate Adaptive

RAM Random Access Memory 随机存取存储器

SBLA Simple Blockwise Loading Algorithm 简单分组分配算法

最大速率准则

SNR Signal Noise Ratio 信噪比

SVDSingular Value Decomposition奇异值分解VLCVisible Light Communication可见光通信

VLCC Visible Light communication consortium 可见光通信协会

WDMWavelength Division Multiplexing波分复用WPANWireless Personal Area Network无线私域网

ZC Seq. Zadoff-Chu Sequence ZC 序列

第一章 可见光多波段自适应通信系统硬件设计

1.1 引言

我们在前面四章介绍了可见光通信的基本原理及关键技术,特别针对自适应传输这个核心重点研究了信道估计及比特功率分配算法,并且针对本课题对应的硬件平台的实际情况进行了必要的仿真,选出了合适的技术方案,如使用低复杂度的 LS 算法进行信道估计、使用高精度的 EVM 方法进行信噪比估计、使用专为可见光通信设计的 Improved-SBLA 比特功率分配算法得到自适应参数。本章将对可见光通信的硬件系统做一个简要的介绍,还将概述自适应模块的逻辑设计。

1.2 硬件平台概述

本课题对应的硬件演示平台如图1.1所示,该系统目前已经实现了"编译级"的自适应传输,所谓"编译级"就是代码支持通过改变调制参数然后需要再编译来实现调制的改变,而真正的自适应传输系统因为时间紧迫及反向链路方案尚未确定等因素没有完成。不过本系统已有了自适应传输的雏形了,只是信道估计、计算自适应参数、改变调制等需要离线进行,下面对该系统进行概述。

图 1.1 可见光通信硬件平台示意图

首先信源比特通过以太网接口(UDP 协议)按帧发送到用于基带处理的 FPGA 芯片(整个传输过程都是按帧进行的,并且用于同步和信道估计的 ZC 序列符号只在帧头处放置,整个帧中所有的 OFDM 符号都使用这个 ZC 序列估计出来的信道参数解调),

接着在 FPGA 中完成扰码、信道编码、调制和 IFFT 等数字处理过程,然后将时域数字信号输入到数字模拟变换器(Digital to Analogue Converter,DAC)变成模拟信号,最后该模拟信号加上偏置电流之后去驱动 LED 灯,整个发射过程完成。接收端通过 PD 接收 LED 光信号,并将光信号强弱的变化转换成电信号的大小,然后将此模拟电信号送入模拟/数字变换器(Analog to Digital Converter,ADC)中抽样量化为数字信号,再送到接收端基带处理 FPGA 进行解调、解码和校验等操作,最后输出接收到的帧到接收端计算机。

1.2.1 硬件型号及参数简介

本系统中用于基带处理的 FPGA 芯片选择美国 Xilinx 公司生产的 Virtex-6,具体型号为 XC6VSX315T,基于 40 nm 工艺,具有高性能、接口丰富等多方面优点。该芯片内部包含 49,200 个片逻辑单位,每个片逻辑单元中有 4 个查找表(Look Up Table,LUT)和 8 个触发器;内置 1,344 个 DSP48 数值计算块,每个数值计算块中包含一个 25 × 18bit 乘法器、一个加法器和一个累加器;同时还有最大存储容量为 25,244 kb 的嵌入式存储 RAM;并且支持千兆网卡[1]。这些资源为我们下面的基带逻辑处理及复杂的 LDPC 解码运算提供了硬件基础。

DAC 选用美国 TI 公司生成的八通道高速数模转换芯片,型号为 DAC3484,其输入数值信号位宽为 16 bit,最高支持 1 GSps 的采样率;ADC 芯片同样使用 TI 公司产品,型号为 DAC9643,该芯片支持最高达 250 MHz 的采样速率,量化精度为 14 比特。

发射端模拟电路主要包括三部分,功率放大器、直流偏置模块和 LED 灯。功率放大器选用美国 Mini-Circuits 公司的 ZHL-3A 中功率放大器,其 3 dB 带宽范围是 0.4 MHz 150 MHz,功率增益 25 dB,最大输出功率为 30 dBm; 采用的直流偏置模块 ZFBT-6GW+同样是 Mini-Circuits 公司产品,其 3 dB 带宽范围为 0.1 MHz 6 GHz,支持最大偏置电流 0.5 A。发光二极管选用美国硅谷光擎(LED Engin)生产的多色混光型发光二极管 LED——LZC-03MA07,其发光光谱图如图??所示。

接收端模拟电路主要由滤光片、光电二极管即放大器。本系统为可见光多波段通信系统,不同的色光用不同的滤波片,分别是蓝光滤光片 DTB435、绿光滤光片 DTB530、红光滤光片 HB610。光电转换模块选用雪崩型光电二极管(APD),具体型号为 C5331-11,生产商为日本滨松公司(Hamamatsu),其 3 dB 通带为 4 KHz 100 MHz,感光区直径 1 mm。接收端低噪声放大器选用美国 TI 公司生成的 OPA847,其带宽增益积为 3.9 GHz,输入噪声为 $0.85nV/\sqrt{Hz}$

1.2.2 发射端基带处理

发射端 FPGA 基带处理流程如图1.5所示,本演示系统信源帧长定为 1358 byte (设置为该值主要是因为本系统主要以视频传输演示为主,而视频帧帧长就是 1358 byte),为了系统设计简便起见,当通过以太网接口接到的帧不足 1358 byte 时,会自动在后面补零再传输。

基带处理芯片接收到信源帧之后,第一步就是对其加循环冗余校验(Cyclic Redun-

图 1.2 发射端基带处理原理框图

dancy Check,CRC),这里我们使用 24 bit 的循环校验码,循环校验比特的生成模块其实就是一个由生成多项式决定的除法电路,输入数据就是被除数,而余数就是我们需要的校验比特,当然为了加快计算速度,本系统 CRC 使用 8 位并行计算方法,即不是像真的除法电路那样逐比特地输入,而是一次输入 8 比特,整个运算速度提高了 8 倍。由于篇幅限制,在这里就不对 CRC 模块再进行过多的展开。得到 24 bit(3 byte) 校验位之后添加到原信源数据之后,又因为本系统使用的是输入为 1362 byte 的低密度奇偶校验码(Low Density Parity Code,LDPC)作为信道编码,所以 1358 byte 数据帧加入 3 byte 的校验码之后还要补零 1 byte。为了防止过长的连 0 连 1 影响系统传输性能,所以还要把加了 CRC 及补零后的数据进行扰码再送入 LDPC 编码器。

信道编码是通过在发射数据中增加冗余以便在接收端可以进行信道解码纠错,本系统使用码率为 3/4 的 LDPC 码,输入数据长度为 1362 × 8 bit,输出为 14528 bit 选择 LDPC 码的原因是其纠错性能佳,几乎适合所有信道,并且相对于 Turbo 码而言其解码器实现复杂度要低很多。这里使用的 LDPC 码的编码矩阵大小为 48 × 227,所以输入数据位宽要为 48 bit,而我们在 CRC 模块中输出数据位宽为 8 bit,所以这里需要位宽变换,可以使用 FPGA 提供的 RAM 或先入先出队列(First In First Out,FIFO)数据结构来实现。编码之后的校验比特插在等间隔的插在信息数据中间,因为码率为 3/4,每 6 字节信息数据后插入 2 个校验字节。

图 1.3 发射端基带处理时序图

经过编码的帧数据长度变为 1816 byte,送入自适应调制模块,其功能是将信息比特分配到 OFDM 各个子载波上,并映射到星座图中的点,输出 OFDM 符号频域数据,这部分属于自适应设计的核心部分,将在下一节详细介绍。

经自适应模块调制后得到 N 个 OFDM 符号, N 的值也调制的选择有关,假设根据自适应参数每个 OFDM 符号传输 R 比特,则有 N=[14528/R],其中 [·] 表示向上取整运算。为了提高传输速率,要保证所有的操作在一个 OFDM 帧周期内完成,所以要将将已调制符号交替存入两个 RAM 中,进行乒乓操作,即如果自适应模块再往其中 RAM中写数据,则 IFFT 模块应该在另一个 RAM 中读数据去进行 IFFT 运算,到下一帧时这两个 RAM 的角色交换。IFFT 模块可以使用 Xilinx 公司提供的 IP 核实现,并且可以通过设置自动添加添加循环前缀,非常方便。得到 OFDM 时域符号之后,在每帧的头部再加上 ZC 导频序列之后输入到 DAC 芯片输出,整个发射过程的时序安排如图1.3所示。

1.2.3 接收端基带处理

图 1.4 接收端基带处理原理框图

接收端基带处理过程如图1.4所示,模拟信号经过 AD 变化之后先与导频时域 ZC 序列进行互相关同步运算,互相关结果的峰值所在位置就是导频的开始位置,在现实时为了避免找最大值这样复杂的运算,会通过另外一个模块估计接收信号的功率,从而得到一个互相关阀值,如果互相关结果大于这个阀值就可以认为是同步峰。使用这个特性就能把接收到的信号重新分成一个个 OFDM 符号,包含 1 个导频符号和 N 个信息符号。

因为要使用 EVM 方法进行信噪比估计,此时需要将用于 EVM 估计的前导序列放在信息符号发送,我们称这种帧为 EVM 帧。将这些时域 OFDM 符号去掉 CP,再送入

FFT 模块,FFT 模块输出频域 OFDM 符号,其中导频符号用于信道估计(使用 LS 算法),待得到信道估计之后,对信息符号进行单系数均衡,如果是数据帧则送入自适应 软解调模块就行解调;如果是 EVM 帧怎送入信噪比估计模块估计 SNR,之后再使用 Improved-SBLA 算法计算自适应参数,反馈到发射端,这部分也将在下一节展开。

图 1.5 接收端基带处理时序图

软解调得到的软件被送入 LDPC 码解码模块进行解码,软解调的输出位宽因调制阶数不同不同,如使用 4QAM 调制的子载波软解调输出位宽为 16(8×2)bit、16QAM 为 32(8×4)bit、64QAM 为 48(8×6)bit、256QAM 对应为 64(8×8)bit,而解码器的输入位宽为 256 = 8×32 bit,所以这里也存在数据位宽变换的问题,可以先将各阶调制得到的软量存在各自的 RAM 中,然后统一以 64 bit 位宽读出到一个 FIFO 中,再以 256 bit 位宽读出送入 LDPC 解码器解码。如接收端基带处理时序图1.5所示,解码过程所需要的时间也迭代次数成正比,具体为迭代次数加 1 再乘以 227,本系统设置迭代次数为 20,故整个解码过程为 4767 clk。解码器输出位宽为 48 bit,经位宽变换为 8 bit 之后送入 CRC 模块进行校验,以统计误帧率,这是系统 QoS 一个重要的指标。如果通过 CRC 校验帧正确,则通过以太网接口送入接收端计算机,否则丢弃该帧。

1.3 自适应模块方案设计

上节从硬件参数到基带设计对整个硬件平台进行了简略的介绍,我们已经对整个系统有了一定的认识。在原来的系统上实现自适应传输功能只需就行几个模块的改造,而发射端编码器及之前、接收端译码器及之后等部分都不要变。下面详细介绍这几个涉及到自适应传输的模块。

1.3.1 自适应调制模块

发射端的自适应调制模块设计如图1.6所示,已完成信道编码的数据放在一个位宽为8 bit 的 RAM 中,现在要将这些数据分配到各个子载波上,本系统设计中我们的调制方式限定为4QAM、16QAM、64QAM和256QAM,而每种不同的调制每个符号能够携

图 1.6 自适应调制模块示意图

带的信息比特数也不同,每个 M-QAM 携带的比特数为 $\log_2(M)$ 。因此先要把已编码的数据根据比特分配表放到不同的 FIFO 中去,因为 FIFO 的性质是 FIFO 的数据位宽要是输入输出的位宽的倍数,所以用于缓存 FIFO 的位宽及输入输出位宽如下表所示:所以

FIFO	数据位宽	输入位宽	输出位宽
FIFO_4QAM	8 bit	8 bit	2 bit
FIFO_16QAM	8 bit	8 bit	4 bit
FIFO_64QAM	24 bit	24 bit	6 bit
FIFO_64QAM	8 bit	8 bit	8 bit

表 1.1 调制器 FIFO 参数设置

对于 64QAM 调制,缓存时需要先拼成 24 bit 输入,在以 6 bit 位宽读出。

数据缓存之后,使用查表法进行星座映射。具体是先把各阶 QAM 调制的已归一化星座点存到不同的 ROM 中,实部和虚部都按 14 bit 量化,然后按照各个子载波上的调制阶数,依次从各个 FIFO 中读出数据,并以此数据为地址,去读该调制下的星座图 ROM,输出的数据就是归一化过的星座点,最后再根据功率分配表,乘上功率系数之后存到 RAM 缓存,同时要注意与之前固定调制不同,这里考虑的功率分配的因素,所以为了接收端简化起见,要在导频 ZC 序列上各个子载波也要乘以功率系数,这样接收端在解调的时候就不要再专门除以功率系数,会在单系数均衡中处理掉。整个自适应调制器由一个专门的控制器模块来进行时序控制和状态转换。

1.3.2 信噪比估计与自适应参数计算

信噪比估计及自适应参数计算方案设计如图1.7所示,之前也提过,系统要传输专门的 EVM 序列来进行 SNR 估计,这样的帧成为 EVM 帧,可以隔固定的时间发送一

图 1.7 自适应参数生成模块示意图

次,所以处理 EVM 帧其实就是求当前信道下的自适应参数。

EVM 序列频域符号在接收端也是已知的,所以得到已经均衡过的时域符号之后,可以根据公式求得各个子载波上的 SNR 和噪声方差,每个 OFDM 符号都能得到一组 SNR 和噪声方差,可以通过几组值相加求平均的方法来提高估计精度。得到各个子载 波上的 SNR 之后,根据设置的子载波总数和组数,求得每组子载波的平均 SNR,然后 利用 Improved-SBLA 算法来进行比特和功率分配,为了简便起见,保证系统的鲁棒性,我们设置目标 BER 为 10^{-2} ,同时只按原算法进行初始分配,而不设置目标速率,这样 就少了算法后来的循环累加或类减过程。在门限比较时,可以从高门限到低门限比较, 当遇到 SNR 大于某个门限时,就取其对应的调制阶数。得到各个子载波组上分配的比特之后,使用公式求得各个子载波组的第一个子载波和最后一个子载波的功率。将此 比特分配和功率分配按照一定的数据格式发送给发射端。

1.3.3 自适应软解调模块

图 1.8 自适应软解调模块示意图

当传输的是数据帧时,自适应软解调按图1.8所示方案进行软解调,其基本思路是查表法,并且只使用 256QAM 调制一张表,其他的三种低阶调制通过一些数据变换来时候这张表,按照软量计算理论,实部和虚部分开进行软量计算,并且使用的方法是一样的。下面来介绍具体过程。

经过了单系数均衡后的各个子载波上的频域符号先要进行幅度调制,即乘以其对应的调制阶数的归一化因子,恢复各个调制符号在原始星座图上的幅度,并且要根据调制阶数进行相应的饱和处理,将其限定在对应星座图的范围内,如 256-QAM 限定在(-16,16)的范围内,64-QAM 限定在(-8,8)范围内。然后采用坐标平移的方法让低阶调制能够使用 256QAM 的软量表,需要对其坐标点搬移到最高阶调制星座图上的合适位

置。首先读取当前子载波所用的调制阶数以进行判断,从最低的 4QAM 移动到 16QAM 坐标值减 2, 16QAM 移动到 64QAM 坐标值减 4,以此类推,即 2^k -QAM 向高阶移一阶 坐标值减 $2^k/2$ 。因此,对于本设计中各种调制都要移动到 256QAM 上,256QAM 本身 不用移动,64QAM 要减去 8,16QAM 减去 12,4QAM 减去 14。这样处理完了之后的 实部和虚部数据就可以去查软量表了。因为对应的软量是 256QAM 的,并且软量是按 8 bit 量化的,所以从软量表输出的是 32(4 × 8)bit 软量,而低阶调制只是取其中的一部 分,如 4QAM 实部和虚部各传输 1 bit,所以取软量表输出最后的 8 bit,依次类推就能得到所有的比特软量了。从前所述不难看出,各个 OFDM 子载波因为调制阶数的不同,所以生成比特软量的速率也不同,所以要把得到的软量按顺序缓存下来,再送入 LDPC 译码器。

1.4 系统展示

本课题设计的硬件平台如图1.9所示,左边的三台计算机用于产生发射信源,T_Red、T_Blue 和 T_Green 发出的数据分别通过多色 LED 的红光、蓝光和绿光三个通道发送到接收端;右边三台计算机 R_Red、R_Blue 和 R_Green 接收响应色光的数据并显示。

图 1.9 硬件平台展示

表1.2给出了我们系统在发射端 LED 与接收端 PD 之间的距离为 100 cm、采样频率 为 150 MHz 时选择的一组调制方式,其中 OFDM 子载波总数为 128,分为 8 组,每个

子载波组放置 16 个子载波,并且将 0 3,112 127 号子载波设置为虚拟子载波。可得每路的空间接口速率为 291Mbps,总速率 873 Mbps。

表 1.2 收发机距离 100 cm 采样频率为 150 MHz 下各色光的调制及 BER

子载波组 色光	1	2	3	4	5	6	7	8	BER
Red	256	64	64	64	16	16	4	-	0.0043
Green	256	64	64	64	16	16	4	-	0.0041
Blue	256	64	64	64	16	16	4	-	0.0029

1.5 本章小结

本章在前面几章讲解可见光通信原理及其自适应传输理论的基础上,介绍了本课题 对应的硬件平台。首先对整个硬件平台进行了概述,包括各种器件的参数及其选择依 据,并且简述了发射端和接收端的基带处理处理过程;然后重点描述了基带处理中与 自适应技术密切相关的调制器、自适应参数生成、软解调三个模块;最后展示了整个硬 件平台实物图。

参考文献

1 Xilinx. Virtex-6 Family Overview[EB/OL]. http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf, 2015.

作者简介(包括论文和成果清单)

• 期刊论文

 W. Xu, M. Wu, H. Zhang, X. You, C. Zhao, "ACO-OFDM-Specified Recoverable Upper Clipping With Efficient Detection for Optical Wireless Communications". Photonics Journal, IEEE, 2014, 6(5): 1-17.

专利

- 许威, 吴满, 张华, "一种采用削波搬移的低峰均比无线光传输方法", 申请号: 201410206887.X, 2014年5月.
- 赵春明, 吴满, 黄鹤, "一种多色 LED 可见光通信自适应传输方法", 申请号: 201510019678.9, 2015 年 1 月.

致 谢

时光荏苒,在硕士毕业论文即将完成之际,也意味着紧张、愉快且收获颇丰的研究生生涯就要结束,将要走向人生的下一段旅程,在此,请允许笔者对曾经指导,教育和帮助过我的老师和同学们略表感情之情。

首先要衷心感谢我的指导老师赵春明教授,在三年的研究生学习中,赵老师的悉心指导让我受益终生。研一时,虽然已上课为主,但是赵老师还是每周给我们开例会,让我们提前接触科研,为了我之后的发展指明方向;在研究生的第二年,赵老师又亲力亲为指导我们完成科研项目,他丰富的工程经验帮助我们解决了很多难题,少走了许多弯路;到了研三找工作时,赵老师也为我们的职业发展提供了很多高价值的建议。如果没有赵老师一路来的引导教育,整个研究生生涯将失色不少。

我也要特别感谢许威老师,许老师负责我研一时的具体指导工作,对我的科研工作进行了启蒙教育。正是许老师严格、细心而又不设限的指导方式让我很快地进入了科研的节奏,并在研一时就取得了一点点成绩。同时许老师在科研学习中给我充分的自由,当我提出想做些工程方面的工作,许老师也坚定不移地支持我的想法,让我有机会得到了工程方面的经验。许老师认真、热情、勤奋,与同学们亦师亦友,从他身上我学到了许多。

我还要感谢张华老师,姜明老师,黄鹤老师,梁霄老师在科研生活中给予我的指导和帮助。张 华老师除了对我的科研学习上进行指导外,还经常跟我讨论行业、产业发展的趋势,为我的职业选 择提供了宝贵的意见;姜明老师负责实验室很多具体的事物,姜老师的辛勤付出,为了我们营造了 一个舒心完善的科研环境;黄鹤老师精通硬件逻辑编程,教授了我很多工程实现经验;梁霄老师擅 长硬件设计,也曾给我很多指导和帮助。课题组的老师们都非常认真负责,而又平易近人,是他们 给了我一个完美的研究生学习经历。

特别感谢实验室的朱清豪,陶于阳,张俊,张立碧,吴宪,刘晶,王佳,邱朗,梁凌轩,官伟,凌欣彤同学,他们让整个实验室在学习过程中充满欢乐,从他们每个人身上我都学习到了很多。和他们在一起学习和生活的日子,是我研究生生涯中最美好的回忆。感谢实验室成员在项目开发中的互助合作,正是有大家的帮助才使得本论文得以顺利进行。

另外,我还要特别感谢我的父母和我的哥哥,他们是我最坚强的后盾和最温暖的港湾,我的每一点的进步和成绩都蕴含着他们的心血,也都属于他们。

最后,我还要感谢我的女朋友黄岚,是她伴我成长,给予我学习和生活中的诸多帮助,她也是我不断奋斗的动力源泉。

吴满 2016年1月5日

