#### Selección de Modelo

#### Fernando Lozano

Universidad de los Andes

22 de septiembre de 2017



• Datos  $(x, y) \sim \mathcal{D}$ 

- Datos  $(x,y) \sim \mathcal{D}$
- $\bullet$  clase de hipótesis  $\mathcal{H}$  (p.ej. Redes Neuronales con arquitectura dada).

- Datos  $(x, y) \sim \mathcal{D}$
- $\bullet$  clase de hipótesis  $\mathcal{H}$  (p.ej. Redes Neuronales con arquitectura dada).
- Meta:

- Datos  $(x,y) \sim \mathcal{D}$
- $\bullet$  clase de hipótesis  $\mathcal{H}$  (p.ej. Redes Neuronales con arquitectura dada).
- Meta: encontrar  $h \in \mathcal{H}$  que minimiza error

$$e(h) = \mathbf{P}_{\mathcal{D}}[h(x) \neq y]$$

- Datos  $(x,y) \sim \mathcal{D}$
- ullet clase de hipótesis  ${\cal H}$  (p.ej. Redes Neuronales con arquitectura dada).
- Meta: encontrar  $h \in \mathcal{H}$  que minimiza error

$$e(h) = \mathbf{P}_{\mathcal{D}}[h(x) \neq y]$$

• Intuición: Hipótesis  $h \in \mathcal{H}$  que minimiza error en los datos sobre suficientes datos, produce un error e(h) pequeño.

- Datos  $(x,y) \sim \mathcal{D}$
- $\bullet$  clase de hipótesis  $\mathcal{H}$  (p.ej. Redes Neuronales con arquitectura dada).
- Meta: encontrar  $h \in \mathcal{H}$  que minimiza error

$$e(h) = \mathbf{P}_{\mathcal{D}}[h(x) \neq y]$$

- Intuición: Hipótesis  $h \in \mathcal{H}$  que minimiza error en los datos sobre suficientes datos, produce un error e(h) pequeño.
- Queremos balancear la complejidad de  $\mathcal{H}$  con el ajuste de  $h \in \mathcal{H}$  a los datos de entrenamiento:

- Datos  $(x, y) \sim \mathcal{D}$
- $\bullet$  clase de hipótesis  $\mathcal{H}$  (p.ej. Redes Neuronales con arquitectura dada).
- Meta: encontrar  $h \in \mathcal{H}$  que minimiza error

$$e(h) = \mathbf{P}_{\mathcal{D}}[h(x) \neq y]$$

- Intuición: Hipótesis  $h \in \mathcal{H}$  que minimiza error en los datos sobre suficientes datos, produce un error e(h) pequeño.
- Queremos balancear la complejidad de  $\mathcal{H}$  con el ajuste de  $h \in \mathcal{H}$  a los datos de entrenamiento:
  - $\mathcal{H}$  muy simple puede no contener una buena aproximación a la función que queremos aprender

- Datos  $(x,y) \sim \mathcal{D}$
- $\bullet$  clase de hipótesis  $\mathcal{H}$  (p.ej. Redes Neuronales con arquitectura dada).
- Meta: encontrar  $h \in \mathcal{H}$  que minimiza error

$$e(h) = \mathbf{P}_{\mathcal{D}}[h(x) \neq y]$$

- Intuición: Hipótesis  $h \in \mathcal{H}$  que minimiza error en los datos sobre suficientes datos, produce un error e(h) pequeño.
- Queremos balancear la complejidad de  $\mathcal{H}$  con el ajuste de  $h \in \mathcal{H}$  a los datos de entrenamiento:
  - $\mathcal{H}$  muy simple puede no contener una buena aproximación a la función que queremos aprender
  - $\mathcal{H}$  muy compleja puede ajustarse bien a los datos pero predecir pobremente.

- Datos  $(x,y) \sim \mathcal{D}$
- ullet clase de hipótesis  ${\cal H}$  (p.ej. Redes Neuronales con arquitectura dada).
- Meta: encontrar  $h \in \mathcal{H}$  que minimiza error

$$e(h) = \mathbf{P}_{\mathcal{D}}[h(x) \neq y]$$

- Intuición: Hipótesis  $h \in \mathcal{H}$  que minimiza error en los datos sobre suficientes datos, produce un error e(h) pequeño.
- Queremos balancear la complejidad de  $\mathcal{H}$  con el ajuste de  $h \in \mathcal{H}$  a los datos de entrenamiento:
  - $\mathcal{H}$  muy simple puede no contener una buena aproximación a la función que queremos aprender
  - $\mathcal{H}$  muy compleja puede ajustarse bien a los datos pero predecir pobremente.
- Crítico cuando:



- Datos  $(x,y) \sim \mathcal{D}$
- $\bullet$  clase de hipótesis  $\mathcal{H}$  (p.ej. Redes Neuronales con arquitectura dada).
- Meta: encontrar  $h \in \mathcal{H}$  que minimiza error

$$e(h) = \mathbf{P}_{\mathcal{D}}[h(x) \neq y]$$

- Intuición: Hipótesis  $h \in \mathcal{H}$  que minimiza error en los datos sobre suficientes datos, produce un error e(h) pequeño.
- Queremos balancear la complejidad de  $\mathcal{H}$  con el ajuste de  $h \in \mathcal{H}$  a los datos de entrenamiento:
  - $\mathcal{H}$  muy simple puede no contener una buena aproximación a la función que queremos aprender
  - $\mathcal{H}$  muy compleja puede ajustarse bien a los datos pero predecir pobremente.
- Crítico cuando:
  - Número de datos es pequeño.



- Datos  $(x, y) \sim \mathcal{D}$
- $\bullet$  clase de hipótesis  $\mathcal{H}$  (p.ej. Redes Neuronales con arquitectura dada).
- Meta: encontrar  $h \in \mathcal{H}$  que minimiza error

$$e(h) = \mathbf{P}_{\mathcal{D}}[h(x) \neq y]$$

- Intuición: Hipótesis  $h \in \mathcal{H}$  que minimiza error en los datos sobre suficientes datos, produce un error e(h) pequeño.
- Queremos balancear la complejidad de  $\mathcal{H}$  con el ajuste de  $h \in \mathcal{H}$  a los datos de entrenamiento:
  - $\mathcal{H}$  muy simple puede no contener una buena aproximación a la función que queremos aprender
  - $\mathcal{H}$  muy compleja puede ajustarse bien a los datos pero predecir pobremente.
- Crítico cuando:
  - Número de datos es pequeño.
    - Datos ruidosos.

• Complejidad de la clase de modelos es una variable a determinar por el algoritmo de aprendizaje.

- Complejidad de la clase de modelos es una variable a determinar por el algoritmo de aprendizaje.
- Considere la secuencia anidada de clases de hipótesis:

$$\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \cdots \mathcal{H}_d \subseteq \cdots$$

- Complejidad de la clase de modelos es una variable a determinar por el algoritmo de aprendizaje.
- Considere la secuencia anidada de clases de hipótesis:

$$\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \cdots \mathcal{H}_d \subseteq \cdots$$

• Selección de modelo procede en dos pasos:

- Complejidad de la clase de modelos es una variable a determinar por el algoritmo de aprendizaje.
- Considere la secuencia anidada de clases de hipótesis:

$$\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \cdots \mathcal{H}_d \subseteq \cdots$$

- Selección de modelo procede en dos pasos:
  - Seleccione una función candidata  $h_i$  de cada clase  $\mathcal{H}_i$  (usualmente minimizando criterio de error empírico en  $\mathcal{H}$ ).

- Complejidad de la clase de modelos es una variable a determinar por el algoritmo de aprendizaje.
- Considere la secuencia anidada de clases de hipótesis:

$$\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \cdots \mathcal{H}_d \subseteq \cdots$$

- Selección de modelo procede en dos pasos:
  - Seleccione una función candidata  $h_i$  de cada clase  $\mathcal{H}_i$  (usualmente minimizando criterio de error empírico en  $\mathcal{H}$ ).
  - ② Use algún criterio para seleccionar  $h \in \{h_1, h_2, \dots, h_d, \dots\}$  tal que e(h) sea pequeño.

• Estimación directa de  $e(h_i)$ 

- Estimación directa de  $e(h_i)$ 
  - **1** Datos S ise dividen en subconjuntos  $S_{train}$  and  $S_{test}$ , con  $|S_{train}| = (1 \gamma)|S|$  y  $|S_{test}| = \gamma|S|$ ,  $\gamma \in (0, 1)$ .

- Estimación directa de  $e(h_i)$ 
  - **1** Datos S ise dividen en subconjuntos  $S_{train}$  and  $S_{test}$ , con  $|S_{train}| = (1 \gamma)|S|$  y  $|S_{test}| = \gamma |S|$ ,  $\gamma \in (0, 1)$ .
  - ② Se halla hipótesis candidata en  $h_d \in \mathcal{H}_d$  minimizando error empírico (o función sustituta) en $S_{train}$ .

- Estimación directa de  $e(h_i)$ 
  - **①** Datos S ise dividen en subconjuntos  $S_{train}$  and  $S_{test}$ , con  $|S_{train}| = (1 \gamma)|S|$  y  $|S_{test}| = \gamma|S|$ ,  $\gamma \in (0, 1)$ .
  - ② Se halla hipótesis candidata en  $h_d \in \mathcal{H}_d$  minimizando error empírico (o función sustituta) en $S_{train}$ .
  - 3 Se selecciona la hipótesis candidata  $h_d$  con el menor error empírico en  $S_{test}$ :

$$h_{d^{\star}} = \underset{\{h_1, h, 2, \dots,\}}{\arg\min} \hat{e}_{S_{test}}(h_d)$$

$$|S_{test}| \ge$$

$$|S_{test}| \ge \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$

$$|S_{test}| \ge \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$

• En la práctica es posible que no tengamos suficientes datos.

$$|S_{test}| \ge \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$

- En la práctica es posible que no tengamos suficientes datos.
- Selección de  $\gamma$ ?

$$|S_{test}| \ge \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$

- En la práctica es posible que no tengamos suficientes datos.
- Selección de  $\gamma$ ?
  - $\bullet$  Muy pequeño  $\Rightarrow$

$$|S_{test}| \ge \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$

- En la práctica es posible que no tengamos suficientes datos.
- Selección de  $\gamma$ ?
  - Muy pequeño  $\Rightarrow$  estimación pobre de e(h).

$$|S_{test}| \ge \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$

- En la práctica es posible que no tengamos suficientes datos.
- Selección de  $\gamma$ ?
  - Muy pequeño  $\Rightarrow$  estimación pobre de e(h).
  - Muy grande  $\Rightarrow$

$$|S_{test}| \ge \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$

- En la práctica es posible que no tengamos suficientes datos.
- Selección de  $\gamma$ ?
  - Muy pequeño  $\Rightarrow$  estimación pobre de e(h).
  - $\bullet\,$  Muy grande  $\Rightarrow$  aprendizaje pobre.

$$|S_{test}| \ge \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$

- En la práctica es posible que no tengamos suficientes datos.
- Selección de  $\gamma$ ?
  - Muy pequeño  $\Rightarrow$  estimación pobre de e(h).
  - Muy grande  $\Rightarrow$  aprendizaje pobre.
  - Típicamente  $\gamma \approx 0.1$ .

$$|S_{test}| \ge \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$

- En la práctica es posible que no tengamos suficientes datos.
- Selección de  $\gamma$ ?
  - Muy pequeño  $\Rightarrow$  estimación pobre de e(h).
  - Muy grande  $\Rightarrow$  aprendizaje pobre.
  - Típicamente  $\gamma \approx 0.1$ .
- Estimativo de  $e(h_d)$  es usualmente ruidoso.

$$|S_{test}| \ge \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$

- En la práctica es posible que no tengamos suficientes datos.
- Selección de  $\gamma$ ?
  - Muy pequeño  $\Rightarrow$  estimación pobre de e(h).
  - Muy grande  $\Rightarrow$  aprendizaje pobre.
  - Típicamente  $\gamma \approx 0.1$ .
- Estimativo de  $e(h_d)$  es usualmente ruidoso.
- En la práctica se usa validación cruzada k-múltiple.

## Validación Cruzada k-múltiple

 $\bullet$  Idea es suavizar estimativo de e(h)

- $\bullet$  Idea es suavizar estimativo de e(h)
- ullet Para una clase  $\mathcal{H}$ :

- Idea es suavizar estimativo de e(h)
- Para una clase  $\mathcal{H}$ :
  - $\bullet$  S se divide en  $S_1, S_2, \ldots, S_k$ .

| $\begin{bmatrix} 1 & 2 & 3 & \cdots & k-1 & k \end{bmatrix}$ | 1 | 2 | 3 | } | $\kappa - 1$ | k |
|--------------------------------------------------------------|---|---|---|---|--------------|---|
|--------------------------------------------------------------|---|---|---|---|--------------|---|

- Idea es suavizar estimativo de e(h)
- Para una clase  $\mathcal{H}$ :
  - $\bullet$  S se divide en  $S_1, S_2, \ldots, S_k$ .

|   |   |   | , |     |   |
|---|---|---|---|-----|---|
| 1 | 2 | 3 |   | k-1 | k |

 $\ \ \, \mbox{\bf 2} \,$  Para cada  $i=1,2,\ldots,k$ 

- Idea es suavizar estimativo de e(h)
- Para una clase  $\mathcal{H}$ :
  - $\bullet$  S se divide en  $S_1, S_2, \ldots, S_k$ .

|  |  | 1 | 2 | 3 |  | k-1 | k |
|--|--|---|---|---|--|-----|---|
|--|--|---|---|---|--|-----|---|

- **2** Para cada i = 1, 2, ..., k
  - $\bullet$  Se halla  $h_i$  minimizando error empírico en  $\bigcup_{j\neq i} S_j$

- Idea es suavizar estimativo de e(h)
- Para una clase  $\mathcal{H}$ :
  - $\bullet$  S se divide en  $S_1, S_2, \ldots, S_k$ .



- - **1** Se halla  $h_i$  minimizando error empírico en  $\bigcup_{j\neq i} S_j$
  - **2** Se estima error calculando error empírico  $\hat{e}_{S_i}(h_i)$

- Idea es suavizar estimativo de e(h)
- Para una clase  $\mathcal{H}$ :
  - $\bullet$  S se divide en  $S_1, S_2, \ldots, S_k$ .

|--|

- - **1** Se halla  $h_i$  minimizando error empírico en  $\bigcup_{j\neq i} S_j$
  - **2** Se estima error calculando error empírico  $\hat{e}_{S_i}(h_i)$
  - 3 Se promedian valores obtenidos:

$$\hat{e}(h_d) = \frac{1}{k} \sum_{i=1}^{k} \hat{e}_{S_i}(h_i)$$

- Idea es suavizar estimativo de e(h)
- Para una clase  $\mathcal{H}$ :
  - $\bullet$  S se divide en  $S_1, S_2, \ldots, S_k$ .

| $1  2  3  \cdots  k-1  k$ | ε |
|---------------------------|---|
|---------------------------|---|

- - **1** Se halla  $h_i$  minimizando error empírico en  $\bigcup_{j\neq i} S_j$
  - **2** Se estima error calculando error empírico  $\hat{e}_{S_i}(h_i)$
  - 3 Se promedian valores obtenidos:

$$\hat{e}(h_d) = \frac{1}{k} \sum_{i=1}^{k} \hat{e}_{S_i}(h_i)$$

• Para  $d^*$  que corresponde al menor valor de  $\hat{e}(h_d)$ , se halla h minimizando error empírico en  $\mathcal{H}_{d^*}$  en S.

 $\bullet$  Procedimiento es costoso computacionalmente.

- Procedimiento es costoso computacionalmente.
- Usado ampliamente en la práctica.

- Procedimiento es costoso computacionalmente.
- Usado ampliamente en la práctica.
- Carece de soporte teórico, es un problema abierto importante.

- Procedimiento es costoso computacionalmente.
- Usado ampliamente en la práctica.
- Carece de soporte teórico, es un problema abierto importante.
- Errores no son v.a. normales, no son independientes.

• Secuencia anidada de clases de hipótesis:

$$\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \cdots \mathcal{H}_d \subseteq \cdots$$

• Secuencia anidada de clases de hipótesis:

$$\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \cdots \mathcal{H}_d \subseteq \cdots$$

 $\bullet$  Función candidata  $h_d$  de cada clase  $\mathcal{H}_d$  minimiza error empírico en  $\mathcal{H}_d)$ 

• Secuencia anidada de clases de hipótesis:

$$\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \cdots \mathcal{H}_d \subseteq \cdots$$

- $\bullet$  Función candidata  $h_d$  de cada clase  $\mathcal{H}_d$  minimiza error empírico en  $\mathcal{H}_d)$
- Se escoge  $d^*$  de acuerdo a:

$$d^* = \arg\min_{d} \hat{e}(h_d) + p(d)$$

• Secuencia anidada de clases de hipótesis:

$$\mathcal{H}_1 \subseteq \mathcal{H}_2 \subseteq \cdots \mathcal{H}_d \subseteq \cdots$$

- $\bullet$  Función candidata  $h_d$  de cada clase  $\mathcal{H}_d$  minimiza error empírico en  $\mathcal{H}_d)$
- Se escoge  $d^*$  de acuerdo a:

$$d^* = \arg\min_{d} \hat{e}(h_d) + p(d)$$

donde p(d) es una función creciente de d que penaliza funciones de complejidad alta.









• Si  $VC(\mathcal{H}_d) = d$  con alta probabilidad, tenemos

• Si  $VC(\mathcal{H}_d) = d$  con alta probabilidad, tenemos

$$\sup_{h \in \mathcal{H}_d} |e(h) - \hat{e}(h)| \le O\left(\sqrt{\frac{d \log m}{m}}\right)$$

• Si  $VC(\mathcal{H}_d) = d$  con alta probabilidad, tenemos

$$\sup_{h \in \mathcal{H}_d} |e(h) - \hat{e}(h)| \le O\left(\sqrt{\frac{d \log m}{m}}\right)$$

• Podemos escoger  $p(d) = O\left(\sqrt{\frac{d \log m}{m}}\right)$ 

• Si  $VC(\mathcal{H}_d) = d$  con alta probabilidad, tenemos

$$\sup_{h \in \mathcal{H}_d} |e(h) - \hat{e}(h)| \le O\left(\sqrt{\frac{d \log m}{m}}\right)$$

- Podemos escoger  $p(d) = O\left(\sqrt{\frac{d \log m}{m}}\right)$
- Más precisamente, la complejidad óptima se escoge de acuerdo a la regla:

$$d^* = \arg\min_{d} \left\{ \hat{e}(d) + \frac{d(\frac{\ln(2m)}{d} + 1)}{m} \left(1 + \sqrt{\left(1 + \frac{\hat{e}(d)m}{d(\frac{\ln(2m)}{d} + 1)}\right)}\right) \right\}$$

• p(d) no depende de  $\mathcal{D}$ .

- p(d) no depende de  $\mathcal{D}$ .
- $\bullet\,$  Es la misma penalización para cualquier distribución de los datos.

- p(d) no depende de  $\mathcal{D}$ .
- Es la misma penalización para cualquier distribución de los datos.
- En casos prácticos no se conoce la dimensión VC sino sólo una cota superior.

- p(d) no depende de  $\mathcal{D}$ .
- Es la misma penalización para cualquier distribución de los datos.
- En casos prácticos no se conoce la dimensión VC sino sólo una cota superior.
- Constantes no son óptimas.

- p(d) no depende de  $\mathcal{D}$ .
- Es la misma penalización para cualquier distribución de los datos.
- En casos prácticos no se conoce la dimensión VC sino sólo una cota superior.
- Constantes no son óptimas.
- En la práctica es dificil balancear error y penalización.

- p(d) no depende de  $\mathcal{D}$ .
- Es la misma penalización para cualquier distribución de los datos.
- En casos prácticos no se conoce la dimensión VC sino sólo una cota superior.
- Constantes no son óptimas.
- En la práctica es dificil balancear error y penalización.
- Tiende a sobre penalizar.