函数的微分

王二民(■wagermn@126.com)

2019 至 2020 学年

郑州工业应用技术学院·基础教学部

估计正方形面积的增量

估计正方形面积的增量

$$(a + \Delta x)^2 - a^2 = 2a\Delta x + (\Delta x)^2$$

$$\Delta x \qquad a\Delta x \qquad a$$

$$a \qquad a^2 \qquad \Delta x$$

当 $\Delta x \rightarrow 0$ 时 $(\Delta x)^2$ 是关于 Δx 的高阶无穷小, 从而 x^2 在 x = a 附近的函数值增量主要由 $2a\Delta x$ 的大小决定。

 函数的微分
 2 / 15

1. 微分的定义

2. 微分的运算法则

3. 微分的应用

定义(微分)

设函数 y = f(x) 在 a 的某个邻域内有定义,当 x 有增量 Δx 时 y 的增量为 $\Delta y = f(a + \Delta x) - f(a)$,

定义(微分)

设函数 y = f(x) 在 a 的某个邻域内有定义,当 x 有增量 Δx 时 y 的增量为 $\Delta y = f(a + \Delta x) - f(a)$, 若存在常数 A 使得 $\Delta y = A\Delta x + o(\Delta x)$, $(\Delta x \rightarrow 0)$.

定义(微分)

设函数 y = f(x) 在 a 的某个邻域内有定义,当 x 有增量 Δx 时 y 的增量为 $\Delta y = f(a + \Delta x) - f(a)$, 若存在常数 A 使得

$$\Delta y = A\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

则称函数 f 在点 a 处**可微**,

定义(微分)

设函数 y = f(x) 在 a 的某个邻域内有定义,当 x 有增量 Δx 时 y 的增量为 $\Delta y = f(a + \Delta x) - f(a)$, 若存在常数 A 使得

$$\Delta y = A\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

则称函数 f 在点 a 处**可微**,称 $A\Delta x$ 为函数 f 在点 a 处有增量 Δx 时的**微分**,

定义(微分)

设函数 y = f(x) 在 a 的某个邻域内有定义,当 x 有增量 Δx 时 y 的增量为 $\Delta y = f(a + \Delta x) - f(a)$, 若存在常数 A 使得

$$\Delta y = A\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

则称函数 f 在点 a 处**可微**,称 $A\Delta x$ 为函数 f 在点 a 处有增量 Δx 时的**微分**, 记为 $dy|_{x=a}$,即

$$dy|_{x=a} = A\Delta x.$$

定义(微分)

设函数 y = f(x) 在 a 的某个邻域内有定义,当 x 有增量 Δx 时 y 的增量为 $\Delta y = f(a + \Delta x) - f(a)$, 若存在常数 A 使得

$$\Delta y = A\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

则称函数 f 在点 a 处**可微**,称 $A\Delta x$ 为函数 f 在点 a 处有增量 Δx 时的**微分**, 记为 $dy|_{x=a}$,即

$$dy|_{x=a} = A\Delta x$$
.

○ 常数 A 和 Δx 无关,但一般跟 a 有关。

定义(微分)

设函数 y = f(x) 在 a 的某个邻域内有定义,当 x 有增量 Δx 时 y 的增量为 $\Delta y = f(a + \Delta x) - f(a)$, 若存在常数 A 使得

$$\Delta y = A\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

则称函数 f 在点 a 处**可微**,称 $A\Delta x$ 为函数 f 在点 a 处有增量 Δx 时的**微分**, 记为 $dy|_{x=a}$,即

$$dy|_{x=a} = A\Delta x$$
.

- 常数 A 和 Δx 无关,但一般跟 a 有关。
- \bigcirc dy 也称为 \triangle y 关于 \triangle x 的**线性主部**。

定义(微分)

设函数 y = f(x) 在 a 的某个邻域内有定义,当 x 有增量 Δx 时 y 的增量为 $\Delta y = f(a + \Delta x) - f(a)$, 若存在常数 A 使得

$$\Delta y = A\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

则称函数 f 在点 a 处**可微**,称 $A\Delta x$ 为函数 f 在点 a 处有增量 Δx 时的**微分**, 记为 $dy|_{x=a}$,即

$$dy|_{x=a} = A\Delta x$$
.

- \bigcirc 常数 A 和 Δx 无关,但一般跟 a 有关。
- \bigcirc dy 也称为 \triangle y 关于 \triangle x 的**线性主部**。
- $\triangle \Delta y = dy + o(\Delta x), (\Delta x \rightarrow 0).$

例 1. 利用定义求函数 y = ax + b 的微分。

例 1. 利用定义求函数 y = ax + b 的微分。

解. 计算可得

$$\Delta y = (a(x + \Delta x) + b) - (ax + b) = a\Delta x$$

例 1. 利用定义求函数 y = ax + b 的微分。

解. 计算可得

$$\Delta y = (a(x + \Delta x) + b) - (ax + b) = a\Delta x$$

从而由微分的定义可知

$$dy = a\Delta x$$
.

例 1. 利用定义求函数 y = ax + b 的微分。

解. 计算可得

$$\Delta y = (a(x + \Delta x) + b) - (ax + b) = a\Delta x$$

从而由微分的定义可知

$$dy = a\Delta x$$
.

 \bigcirc 若令 a=1, b=0, 则 y=x, 从而 $dx=dy=\Delta x$.

例 1. 利用定义求函数 y = ax + b 的微分。

解. 计算可得

$$\Delta y = (a(x + \Delta x) + b) - (ax + b) = a\Delta x$$

从而由微分的定义可知

$$dy = a\Delta x$$
.

定理

自变量的微分等于自身的增量。

例 1. 利用定义求函数 y = ax + b 的微分。

解. 计算可得

$$\Delta y = (a(x + \Delta x) + b) - (ax + b) = a\Delta x$$

从而由微分的定义可知

$$dy = a\Delta x$$
.

定理

自变量的微分等于自身的增量。

为了对称,通常把定义中的微分写成

$$dy = A dx$$
.

例 2. 求函数 $y = f(x) = x^2$ 的增量 Δy 和微分 dy, 并进一步计算 x = 1, $\Delta x = 0.1$ 时的增量 Δy 和微分 dy.

例 2. 求函数 $y = f(x) = x^2$ 的增量 Δy 和微分 dy, 并进一步计算 x = 1, $\Delta x = 0.1$ 时的增量 Δy 和微分 dy.

例 2. 求函数 $y = f(x) = x^2$ 的增量 Δy 和微分 dy, 并进一步计算 x = 1, $\Delta x = 0.1$ 时的增量 Δy 和微分 dy.

解. 计算可得

$$\Delta y = f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2$$

例 2. 求函数 $y = f(x) = x^2$ 的增量 Δy 和微分 dy, 并进一步计算 x = 1, $\Delta x = 0.1$ 时的增量 Δy 和微分 dy.

解. 计算可得

$$\Delta y = f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2$$
$$= 2x\Delta x + (\Delta x)^2$$

例 2. 求函数 $y = f(x) = x^2$ 的增量 Δy 和微分 dy, 并进一步计算 x = 1, $\Delta x = 0.1$ 时的增量 Δy 和微分 dy.

解. 计算可得

$$\Delta y = f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2$$
$$= 2x\Delta x + (\Delta x)^2$$

显然 $(\Delta x)^2$ 是 Δx 趋于 0 时的高阶无穷小,从而 $dy = 2x\Delta x.$

例 2. 求函数 $y = f(x) = x^2$ 的增量 Δy 和微分 dy, 并进一步计算 x = 1, $\Delta x = 0.1$ 时的增量 Δy 和微分 dy.

解. 计算可得

$$\Delta y = f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2$$
$$= 2x\Delta x + (\Delta x)^2$$

显然 $(\Delta x)^2$ 是 Δx 趋于 0 时的高阶无穷小,从而

$$dy = 2x\Delta x$$
.

把 x = 1, $\Delta x = 0.1$ 代入上面的公式可得

$$dy = 0.2$$

$$\Delta y = 0.21.$$

若函数 f 在点 a 处可微,则

$$\Delta y = A\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

若函数 f 在点 a 处可微,则

$$\Delta y = A\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

由无穷小的定义,可以等价为

$$\lim_{\Delta x \to 0} \frac{\Delta y - A \Delta x}{\Delta x} = 0$$

若函数 f 在点 a 处可微,则

$$\Delta y = A\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

由无穷小的定义,可以等价为

$$\lim_{\Delta x \to 0} \frac{\Delta y - A \Delta x}{\Delta x} = 0$$

化简可得

$$\lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} - A \right) = 0$$

若函数 f 在点 a 处可微,则

$$\Delta y = A\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

由无穷小的定义,可以等价为

$$\lim_{\Delta x \to 0} \frac{\Delta y - A \Delta x}{\Delta x} = 0$$

化简可得

$$\lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} - A \right) = 0$$

由无穷小与一般极限的关系可得

$$A = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(a).$$

定理

函数 y = f(x) 在点 a 处可微的充要条件是 y = f(x) 在点 a 处可导,且

$$f'(a) = A \iff dy|_{x=a} = A dx$$

定理

函数 y = f(x) 在点 a 处可微的充要条件是 y = f(x) 在点 a 处可导,且

$$f'(a) = A \iff dy|_{x=a} = A dx$$

从定理中可以得到微分的计算公式:

$$dy = df(x) = f'(x) dx$$
.

定理

函数 y = f(x) 在点 a 处可微的充要条件是 y = f(x) 在点 a 处可导,且

$$f'(a) = A \iff dy|_{x=a} = A dx$$

从定理中可以得到微分的计算公式:

$$dy = df(x) = f'(x) dx$$
.

○ 一元函数中可微与可导是等价的。

定理

函数 y = f(x) 在点 a 处可微的充要条件是 y = f(x) 在点 a 处可导,且

$$f'(a) = A \iff dy|_{x=a} = A dx$$

从定理中可以得到微分的计算公式:

$$dy = df(x) = f'(x) dx$$
.

- 一元函数中可微与可导是等价的。
- 导数可表示为微分的商,简称为微商,即

$$f'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}f(x)}{\mathrm{d}x}.$$

例 3. 求函数 $y = \arctan e^x$ 的微分。

例 3. 求函数 $y = \arctan e^x$ 的微分。

$$dy = (\arctan e^x)' dx = \frac{(e^x)'}{1 + e^{2x}} dx = \frac{e^x dx}{1 + e^{2x}}.$$

例 3. 求函数 $y = \arctan e^x$ 的微分。

解. 计算可得

$$dy = (\arctan e^x)' dx = \frac{(e^x)'}{1 + e^{2x}} dx = \frac{e^x dx}{1 + e^{2x}}.$$

例 4. 求函数 $y = \sin(2x + 1)$ 在 $x = -\frac{1}{2}$, dx = 0.01 时的微分。

例 3. 求函数 $y = \arctan e^x$ 的微分。

解. 计算可得

$$dy = (\arctan e^x)' dx = \frac{(e^x)'}{1 + e^{2x}} dx = \frac{e^x dx}{1 + e^{2x}}.$$

例 4. 求函数 $y = \sin(2x + 1)$ 在 $x = -\frac{1}{2}$, dx = 0.01 时的微分。

$$dy = (\sin(2x + 1))' dx = 2\cos(2x + 1) dx.$$

例 3. 求函数 $y = \arctan e^x$ 的微分。

解. 计算可得

$$dy = (\arctan e^x)' dx = \frac{(e^x)'}{1 + e^{2x}} dx = \frac{e^x dx}{1 + e^{2x}}.$$

例 4. 求函数 $y = \sin(2x + 1)$ 在 $x = -\frac{1}{2}$, dx = 0.01 时的微分。

$$dy = (\sin(2x + 1))' dx = 2\cos(2x + 1) dx.$$

当
$$x = -\frac{1}{2}$$
, $dx = 0.01$ 时可得

$$dy = 2\cos(2x + 1) dx = 2(\cos 0) \cdot 0.01 = 0.02.$$

1. 微分的定义

2. 微分的运算法则

3. 微分的应用

在函数 y = f(x) 的微分的定义中,因为 x 为自变量,所以 $dx = \Delta x$,从而可以把微分 $A\Delta x$ 写成 Adx. 如果 x 不是自变量而是中间变量,还能这样写吗?

设 y = f(x), x = g(t), 则 y = f(g(t)), 从而

设
$$y = f(x), x = g(t), 则 y = f(g(t)), 从而$$

 $dy = d(f(g(t)))$

设
$$y = f(x), x = g(t), 则 y = f(g(t)), 从而$$

 $dy = d(f(g(t))) = f'(g(t)) \cdot g'(t) dt$

设
$$y = f(x), x = g(t), 则 y = f(g(t)), 从而$$

$$dy = d(f(g(t))) = f'(g(t)) \cdot g'(t) dt = f'(g(t)) dx$$

设
$$y = f(x), x = g(t), 则 y = f(g(t)), 从而$$

$$dy = d(f(g(t))) = f'(g(t)) \cdot g'(t) dt = f'(g(t)) dx$$

$$= f'(x) dx.$$

在函数 y = f(x) 的微分的定义中,因为 x 为自变量,所以 $dx = \Delta x$,从而可以把微分 $A\Delta x$ 写成 Adx. 如果 x 不是自变量而是中间变量,还能这样写吗?

设
$$y = f(x)$$
, $x = g(t)$, 则 $y = f(g(t))$, 从而
$$dy = d(f(g(t))) = f'(g(t)) \cdot g'(t) dt = f'(g(t)) dx$$
$$= f'(x) dx.$$

所以,无论 x 是不是自变量,只要函数 f 可微,都有 df(x) = f'(x) dx.

称此性质为**微分的形式不变性**。

在函数 y = f(x) 的微分的定义中,因为 x 为自变量,所以 $dx = \Delta x$,从而可以把微分 $A\Delta x$ 写成 Adx. 如果 x 不是自变量而是中间变量,还能这样写吗?

设
$$y = f(x), x = g(t), 则 y = f(g(t)), 从而$$

$$dy = d(f(g(t))) = f'(g(t)) \cdot g'(t) dt = f'(g(t)) dx$$
$$= f'(x) dx.$$

所以,无论 x 是不是自变量,只要函数 f 可微,都有 df(x) = f'(x) dx.

称此性质为**微分的形式不变性**。

○ 求微分时,无论是对自变量求还是对因变量求,方式都是一样的。

微分的运算法则

由微分的计算公式

$$df(x) = f'(x) dx$$

及导数的四则运算法则不难得到

微分的运算法则

由微分的计算公式

$$df(x) = f'(x) dx$$

及导数的四则运算法则不难得到

$$d (f \pm g) = df \pm dg$$

$$d (f \cdot g) = df \cdot g + f \cdot dg$$

$$d \frac{f}{g} = \frac{df \cdot g - f \cdot dg}{g^2}$$

微分的运算法则

由微分的计算公式

$$df(x) = f'(x) dx$$

及导数的四则运算法则不难得到

$$d (f \pm g) = df \pm dg$$

$$d (f \cdot g) = df \cdot g + f \cdot dg$$

$$d \frac{f}{g} = \frac{df \cdot g - f \cdot dg}{g^2}$$

由微分的形式不变性可知

$$d(f \circ g) = df \circ g \cdot dg$$

例 5. 设 y = sin(2x + 1), 求 dy.

例 5. 设 y = sin(2x + 1), 求 dy.

解. 计算可得

$$dy = d\sin(2x + 1) =$$

函数的微分 > 微分的运算法则

例 5. 设 y = sin(2x + 1), 求 dy.

解. 计算可得

$$dy = d \sin(2x + 1) = \cos(2x + 1) d(2x + 1)$$

函数的微分 > 微分的运算法则

例 5. 设 y = sin(2x + 1), 求 dy.

$$dy = d \sin(2x + 1) = \cos(2x + 1) d(2x + 1)$$
$$= \cos(2x + 1) \cdot 2 dx = 2 \cos(2x + 1) dx.$$

例 5. 设 y = sin(2x + 1), 求 dy.

解. 计算可得

$$dy = d \sin(2x + 1) = \cos(2x + 1) d(2x + 1)$$
$$= \cos(2x + 1) \cdot 2 dx = 2 \cos(2x + 1) dx.$$

例 6. 设 y = ln(x² + e^x), 求 dy.

例 5. 设 y = sin(2x + 1), 求 dy.

解. 计算可得

$$dy = d \sin(2x + 1) = \cos(2x + 1) d(2x + 1)$$
$$= \cos(2x + 1) \cdot 2 dx = 2 \cos(2x + 1) dx.$$

例 6. 设 y = ln(x² + e^x), 求 dy.

$$dy = d \ln(x^2 + e^x)$$
$$= \frac{2x dx + e^x dx}{x^2 + e^x}$$

例 5. 设 y = sin(2x + 1), 求 dy.

解. 计算可得

$$dy = d \sin(2x + 1) = \cos(2x + 1) d(2x + 1)$$
$$= \cos(2x + 1) \cdot 2 dx = 2 \cos(2x + 1) dx.$$

例 6. 设 y = ln(x² + e^x), 求 dy.

$$dy = d \ln(x^{2} + e^{x}) = \frac{d(x^{2} + e^{x})}{x^{2} + e^{x}}$$
$$= \frac{2x dx + e^{x} dx}{x^{2} + e^{x}}$$

例 5. 设 y = sin(2x + 1), 求 dy.

解. 计算可得

$$dy = d \sin(2x + 1) = \cos(2x + 1) d(2x + 1)$$
$$= \cos(2x + 1) \cdot 2 dx = 2 \cos(2x + 1) dx.$$

例 6. 设 y = ln(x² + e^x), 求 dy.

$$dy = d \ln(x^{2} + e^{x}) = \frac{d(x^{2} + e^{x})}{x^{2} + e^{x}} = \frac{dx^{2} + de^{x}}{x^{2} + e^{x}}$$
$$= \frac{2x dx + e^{x} dx}{x^{2} + e^{x}}$$

例 5. 设 y = sin(2x + 1), 求 dy.

解. 计算可得

$$dy = d \sin(2x + 1) = \cos(2x + 1) d(2x + 1)$$
$$= \cos(2x + 1) \cdot 2 dx = 2 \cos(2x + 1) dx.$$

例 6. 设 y = ln(x² + e^x), 求 dy.

$$dy = d \ln(x^{2} + e^{x}) = \frac{d(x^{2} + e^{x})}{x^{2} + e^{x}} = \frac{dx^{2} + de^{x}}{x^{2} + e^{x}}$$
$$= \frac{2x dx + e^{x} dx}{x^{2} + e^{x}} = \frac{2x + e^{x}}{x^{2} + e^{x}} dx.$$

- 1. 微分的定义
- 2. 微分的运算法则
- 3. 微分的应用
- 3.1 曲线的切线
- 3.2 函数的一阶近似式

若函数 y = f(x) 在点 a 处可微,则

$$\Delta y = f(a + \Delta x) - f(a) = f'(a)\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

若函数 y = f(x) 在点 a 处可微,则

$$\Delta y = f(a+\Delta x) - f(a) = f'(a)\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

记 $x = a + \Delta x$, 则有

$$f(x) = f(a) + f'(a)(x - a) + o(x - a), (x \to a).$$

若函数 y = f(x) 在点 a 处可微,则

$$\Delta y = f(a + \Delta x) - f(a) = f'(a)\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

记 $x = a + \Delta x$, 则有

$$f(x) = f(a) + f'(a)(x - a) + o(x - a), (x \to a).$$

去掉高阶无穷小部分 o(x - a), 记

$$L(x) = f(a) + f'(a)(x - a).$$

若函数 y = f(x) 在点 a 处可微,则

$$\Delta y = f(a + \Delta x) - f(a) = f'(a)\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

记 $x = a + \Delta x$, 则有

$$f(x) = f(a) + f'(a)(x - a) + o(x - a), (x \to a).$$

去掉高阶无穷小部分 o(x - a), 记

$$L(x) = f(a) + f'(a)(x - a).$$

称为函数 f 在点 a 处的**一阶近似函数**,此时有

$$f(x)\approx f(a)+f'(a)(x-a).$$

若函数 y = f(x) 在点 a 处可微,则

$$\Delta y = f(a + \Delta x) - f(a) = f'(a)\Delta x + o(\Delta x), \quad (\Delta x \to 0).$$

记 $x = a + \Delta x$, 则有

$$f(x) = f(a) + f'(a)(x - a) + o(x - a), (x \to a).$$

去掉高阶无穷小部分 o(x - a), 记

$$L(x) = f(a) + f'(a)(x - a).$$

称为函数 f 在点 a 处的**一阶近似函数**,此时有

$$f(x) \approx f(a) + f'(a)(x - a).$$

几何上直线 y = f(a) + f'(a)(x - a) 就是曲线 y = f(x) 在点 (a, f(a)) 处的切线。

在 x = 0 处,有下列的一阶近似式

$$(1 + x)^{a} \approx e^{x} \approx e^{x} \approx \ln(1 + x) \approx \sin x \approx \cos x \approx \tan x \approx \arcsin x \approx \arctan x \approx \arctan x \approx 0$$

在
$$x = 0$$
 处,有下列的一阶近似式

$$(1 + x)^{a} \approx 1 + ax$$

$$e^{x} \approx$$

$$\ln(1 + x) \approx$$

$$\sin x \approx$$

$$\cos x \approx$$

$$\tan x \approx$$

$$\arcsin x \approx$$

$$\arctan x \approx$$

在
$$x = 0$$
 处,有下列的一阶近似式
$$(1 + x)^a \approx 1 + ax$$

$$e^x \approx 1 + x$$

$$ln(1 + x) \approx$$

$$sin x \approx$$

$$cos x \approx$$

$$tan x \approx$$

$$arcsin x \approx$$

$$arctan x \approx$$

在
$$x = 0$$
 处,有下列的一阶近似式
$$(1 + x)^{a} \approx 1 + ax$$

$$e^{x} \approx 1 + x$$

$$ln(1 + x) \approx x$$

$$sin x \approx x$$

$$cos x \approx$$

$$tan x \approx$$

$$arcsin x \approx$$

在
$$x = 0$$
 处,有下列的一阶近似式
$$(1 + x)^{a} \approx 1 + ax$$

$$e^{x} \approx 1 + x$$

$$ln(1 + x) \approx x$$

$$sin x \approx x$$

$$cos x \approx 1$$

$$tan x \approx$$

$$arcsin x \approx$$

在
$$x = 0$$
 处,有下列的一阶近似式
$$(1 + x)^a \approx 1 + ax$$

$$e^x \approx 1 + x$$

$$ln(1 + x) \approx x$$

$$sin x \approx x$$

$$cos x \approx 1$$

$$tan x \approx x$$
 arcsin $x \approx x$

在
$$x = 0$$
 处,有下列的一阶近似式
$$(1 + x)^a \approx 1 + ax$$

$$e^x \approx 1 + x$$

$$ln(1 + x) \approx x$$

$$sin x \approx x$$

$$cos x \approx 1$$

$$tan x \approx x$$

$$arcsin x \approx x$$

在
$$x = 0$$
 处,有下列的一阶近似式
$$(1 + x)^a \approx 1 + ax$$

$$e^x \approx 1 + x$$

$$ln(1 + x) \approx x$$

$$sin x \approx x$$

$$cos x \approx 1$$

 $tan x \approx x$

 $\arcsin x \approx x$

例 7. 用函数 $f(x) = \sqrt{x}$ 的一阶近似式求 $\sqrt{3.98}$ 的近似值。

例 7. 用函数 $f(x) = \sqrt{x}$ 的一阶近似式求 $\sqrt{3.98}$ 的近似值。

解. 求 f 的导数可得 $f'(x) = \frac{1}{2\sqrt{x}}$,

例 7. 用函数 $f(x) = \sqrt{x}$ 的一阶近似式求 $\sqrt{3.98}$ 的近似值。

解. 求 f 的导数可得 $f'(x) = \frac{1}{2\sqrt{x}}$, 从而由 f(4) = 2, $f'(4) = \frac{1}{4}$,

例 7. 用函数 $f(x) = \sqrt{x}$ 的一阶近似式求 $\sqrt{3.98}$ 的近似值。

解. 求 f 的导数可得 $f'(x) = \frac{1}{2\sqrt{x}}$, 从而由 f(4) = 2, $f'(4) = \frac{1}{4}$, 可知 f(x) 在 x = 4 处的一阶近似式为

$$L(x) = f(4) + f'(4)(x - 4) = 2 + \frac{x - 4}{4} = 1 + \frac{x}{4}.$$

例 7. 用函数 $f(x) = \sqrt{x}$ 的一阶近似式求 $\sqrt{3.98}$ 的近似值。

解. 求 f 的导数可得 $f'(x) = \frac{1}{2\sqrt{x}}$, 从而由 f(4) = 2, $f'(4) = \frac{1}{4}$, 可知 f(x) 在 x = 4 处的一阶近似式为

$$L(x) = f(4) + f'(4)(x - 4) = 2 + \frac{x - 4}{4} = 1 + \frac{x}{4}.$$

从而当 x = 3.98 时有

$$\sqrt{3.98} = f(3.98) \approx L(3.98) = 1 + \frac{3.98}{4} = 1.995.$$

即 √3.98 ≈ 1.995.

例 7. 用函数 $f(x) = \sqrt{x}$ 的一阶近似式求 $\sqrt{3.98}$ 的近似值。

解. 求 f 的导数可得 $f'(x) = \frac{1}{2\sqrt{x}}$, 从而由 f(4) = 2, $f'(4) = \frac{1}{4}$, 可知 f(x) 在 x = 4 处的一阶近似式为

$$L(x) = f(4) + f'(4)(x - 4) = 2 + \frac{x - 4}{4} = 1 + \frac{x}{4}.$$

从而当 x = 3.98 时有

$$\sqrt{3.98} = f(3.98) \approx L(3.98) = 1 + \frac{3.98}{4} = 1.995.$$

即 √3.98 ≈ 1.995.

 \bigcirc 实际上, $\sqrt{3.98}$ = 1.9949937 ···, 所求近似值的误差小于 10⁻⁵.

作业: 习题 2-5

- 3.(2), 3.(7),
- 4.(2), 4.(5), 4.(7).