RAPPORT DE STAGE

Compression de maillage et problèmes d'évolution

Intégration temporelle et multirésolution adaptative pour les EDP en temps.

Étudiant : Alexandre EDELINE

École : ENSTA Paris - Institut Polytechnique de Paris

Période : du 14/04/2025 au 15/09/2025

Laboratoire: CMAP - École Polytechnique

Maîtres de stages: Marc Massot et Christian Tenaud

Tuteur académique : Patrick CIARLET

Remerciements

Je tiens à remercier...

Résumé

Résumé

Résumé du rapport de stage en français (150-300 mots). Présenter brièvement le contexte, les objectifs, la méthodologie, les principaux résultats et conclusions.

English abstract of the internship report (150-300 words). Briefly present the context, objectives, methodology, main results and conclusions.

Mots-clés : mot-clé 1, mot-clé 2, mot-clé 3, mot-clé 4, mot-clé 5 **Keywords :** keyword 1, keyword 2, keyword 3, keyword 4, keyword 5

Abstract

Table des matières

	Ren	nerciem	ents	2
	Rési	umé .		3
	Abs	tract .		1
	List	e des fig	gures	4
	List	e des ta	ableaux	5
	0.1	Introd	luction	6
		0.1.1	Contexte du stage	6
		0.1.2	Problématique et objectifs	6
		0.1.3	Organisation du rapport	6
1	Pré	sentat	ion du laboratoire	7
		1.0.1	Historique et activités	7
		1.0.2	La recherche au CMAP	7
		1.0.3	L'équipe HPC@Math et l'envrionnement de travail	8
2	Des	criptic	on du travail objectifs et état de l'art	9
	2.1	Préser	ntation du sujet et problématique générale	9
	2.2	Quelq	ues notions techniques	10
		2.2.1	Intégrations des EDOs	10
		2.2.2	Les équations d'advection-diffusion-réaction	12
		2.2.3	Les trois opérateurs	13
			Advection	13
			Diffusion	13
			Réaction	14
		2.2.4	Difficultés mathématiques intrinsèques	14
		2.2.5	Les stratégies de simulation	15
			L'adaptation de maillage	15
			Les techniques d'intégration	15
		2.2.6	Simulation des EDPs d'évolution	15
		2.2.7	Analyse de schéma numériques	15
		2.2.8	La Multirésolution Adaptative	15
	2.3	Objec	tifs	16
	2.4	Métho	ode de travail et outils	16
3	Cor	ntribut	ion	17
	3.1	Concl	ueion	17

.1	Annexe A : Titre de l'annexe																19
.2	Annexe B : Titre de l'annexe															_	19

Table des figures

2.1	Exemple illustratif du comportement de l'erreur de l'approximation dans le ca	
	d'un schéma d'ordre 2 avec une instabilité pour $\Delta t > 10^{-1}$	11

Liste des tableaux

0.1 Introduction

0.1.1 Contexte du stage

Présentation de l'entreprise/laboratoire d'accueil, du contexte général du stage.

0.1.2 Problématique et objectifs

Description de la problématique abordée et des objectifs fixés pour le stage.

0.1.3 Organisation du rapport

Brève description de la structure du rapport.

Chapitre 1

Présentation du laboratoire

1.0.1 Historique et activités

Le Centre de Mathématiques Appliquées de l'École Polytechnique 1 (CMAP) a été créé en 1974 lors du déménagement de l'École Polytechnique vers Palaiseau. Cette création répond au besoin émergent de mathématiques appliquées face au développement des méthodes de conception et de simulation par calcul numérique dans de nombreuses applications industrielles de l'époque(nucléaire, aéronautique, recherche pétrolière, spatial, automobile). Le laboratoire fut fondé grâce à l'impulsion de trois professeurs : Laurent Schwartz, Jacques-Louis Lions et Jacques Neveu. Jean-Claude Nédélec en fut le premier directeur, et la première équipe de chercheurs associés comprenait P.A. Raviart, P. Ciarlet, R. Glowinski, R. Temam, J.M. Thomas et J.L. Lions. Les premières recherches se concentraient principalement sur l'analyse numérique des équations aux dérivées partielles. Le CMAP s'est diversifié au fil des décennies, intégrant notamment les probabilités dès 1976, puis le traitement d'images dans les années 1990 et les mathématiques financières à partir de 1997. Le laboratoire a formé plus de 230 docteurs depuis sa création et a donné naissance à plusieurs startups spécialisées dans les applications industrielles des mathématiques appliquées.

1.0.2 La recherche au CMAP

Le CMAP comprend trois pôles de recherche : le pôle analyse, le pôle probabilités et le pôle décision et données. Chaque pôle acceuil en son sein plusieurs équipes :

1. Analyse

- ♦ EDP pour la physique.
- ♦ Mécanique, Matériaux, Optimisation de Formes.
- ♦ HPC@Maths (calcul haute performance).
- ♦ PLATON (quantification des incertitudes en calcul scientifique), avec l'INRIA.

2. Probabilités

- ♦ Mathématiques financières.
- ♦ Population, système particules en interaction.
- ♦ ASCII (interactions stochastiques coopératives), avec l'INRIA.

 $^{1. \ \, \}text{https://cmap.ip-paris.fr}$

♦ MERGE (évolution, reproduction, croissance et émergence), avec l'INRIA.

3. Décision et données

- ♦ Statistiques, apprentissage, simulation, image.
- ♦ RandOpt (optimisation aléatoire).
- \diamond Tropical (algèbre (max, +)), avec lINRIA.

J'ai intégré l'équipe **HPC@Maths pole analyse**. De nombreuses équipe sont partagées entre le CMAP et l'INRIA ce qui démontre l'aspect appliqué du laboratoire.

1.0.3 L'équipe HPC@Math et l'envrionnement de travail

L'équipe HPC@Math L'équipe HPC@Math ² travaille à l'interface des mathématiques de la physique (mécanique des fluides, thrermodynamique) et de l'informatique pour développer des méthodes numériques complètes (schéma, nalayse d'erreur, implémentation) pour la simulation des EDP. L'éuipe se centre sur les problèmes multi-échelles; les EDPs cibles qui typiquemebnt étudiées sont les équations d'advection-réaction-diffusion qui représente de manière générale le couplage entre la mécanique des fluides, la thermodynamique et la chimie (typiquement un problème de combustion). Tout cela se fait dans le contexte HPC (high performance computing). Le HPC désigne l'usage optimimal des ressources informatiques disponibles cela peut être développer une simulation efficace sur une petite machine comme des schéma hautement parallélisable dans des paradigmes de calculs hybrides ou dans des contextes hexascale ³. Ainsi l'application des méthodes développées est au coeur des réflexions de l'équipe.

Envrionnement de travail

 $^{2. \} https://initiative-hpc-maths.gitlab.labos.polytechnique.fr/site/index.html\\$

^{3.} Plateformes de calculs ayant une capacité de calcul théorique de 10¹⁶ opérations par seconde (hexaflops).

Chapitre 2

Description du travail objectifs et état de l'art

Cette partie décrit les objectifs de mon travail et les méthodes employées. Elle introduit également le lecteur au sujet et ses problématiques et fournis un état de l'art élémentaire des différents domaines convoqués.

2.1 Présentation du sujet et problématique générale

Mon travail participe à l'élaboration de méthodes numériques pour l'approximations des équations au dérivées partielles d'évolution. En particulier, j'ai travaillé sur les équations d'advections-diffusion-réaction. Elles représentent typiquement des systèmes physiques couplant mécanique des fluides, thermodynamique et réactions chimiques ¹. Ces équations sont difficiles à simuler du fait de leur caractère multi-échelle ². Pour gérer les différentes échelles spatiales, des méthodes de compression de maillage ont été mises en oeuvre. La méthode de compression utilisée ici est la multirésolution adaptative, Les différentes échelles temporelles ³ sont usuellement gérées par force brute ou par séparation d'opérateurs. Ici nous allons égalmeent étudier des méthodes hybrides : les méthodes implcites-explicites (ImEx). Mon travaille vise principalement à comprendre comment s'agence la multirésolution adaptative avec les différentes méthodes d'intégrations temporelles.

^{1.} Typiquement des problèmes de combustion.

^{2.} Une réaction chimique a des temps et distances typiques généralement plusieurs ordres de grandeurs plus faibles que les temps et distances typiques de la mécanique des fluides.

^{3.} En terme technique, les différents termes des équations étudiées ont des raideurs très différentes.

2.2 Quelques notions techniques

2.2.1 Intégrations des EDOs

Bien des techniques d'approximation d'EDPs d'évolution font intervenir à un moment la résolution d'une équation différentielle ordinaire (EDO ⁴), c'est à dire une équation différentielle ne faisant intervenir qu'une seule variable de difénretiation (ici le temps). Nous commeçons donc cette section par rappeler quelques notions d'analyse et de simulation des EDOs ⁵.

Définition 2.2.1 (Équation différentielle ordinaire). Une équation différentielle ordinaire est une équation de la forme :

$$u' = f(u,t) \quad u: t \in \mathbb{R}^+ \mapsto u(t) \in \mathbb{R}^d$$

$$u(0) = u_0.$$
(2.1)

Schémas explicites et implcites. L'approximation des EDO se fait grâce à des schéma numériques. Ceux-ci se divisent en deux catégories, les schéma explicites et les schéma implicite ⁶. Dans ce qui suit on note u^n l'approximation de la solution d'une EDO au pas de temps n, c'est à dire que donné un pas de discrétisation temporel Δt l'objectif est d'avoir $u^n \approx u(t = n\Delta t)$.

Définition 2.2.2 (Schéma explicite). Un schéma numérique est dit explicite si le pas de temps n + 1 est obtenu grâce au pas de temps n, c'est à dire :

$$u^{n+1} = u^n + f(u^n, \Delta t). (2.2)$$

Définition 2.2.3 (Schéma implicite). Un schéma numérique est dit implicite si le pas de temps n + 1 est obtenu grâce au pas de temps n et n + 1, c'est à dire :

$$u^{n+1} = u^n + f(u^{n+1}, \Delta t). (2.3)$$

Ainsi, une itétation d'un schéma implcite nécessite l'inversion d'un système linéaire ou non linéaire.

De fait une itéraiton implcite est souvent plus couteuse qu'une itération d'un schéma explicite ⁷. Cependant pour des raisons de stabilités les méthodes explicites peuvent nécessiter des pas de temps bien plus fin, et donc bien plus d'itérations. Le choix entre méthode explicite et implcite dépend de bien des facteurs (du problème, du niveau de précision voulu, de la difficulté d'implémentation etc...) c'est un enjeu central de la simulation numérique.

Stabilité des schémas numériques Un schéma numérique d'ordre p converge vers la solution exacte de l'EDO avec une erreur qui décroît asymptotiquement en Δt^p lorsque le pas de

^{4.} On utilisera aussi le terme système dynamique, même si en toute rigueur ce concept est un peu plus large.

^{5.} Pour nos besoins nous nous restreignons au EDO du premier ordre.

^{6.} Nous présentons ici seulement les schéma à un pas et non pas les schémas multi-pas. Ce choix est fait en raison de la barrière de Dhalquist.

^{7.} En particulier si la dimension de la solution d est grande.

temps diminue. Cependant, cette convergence n'est garantie que si le schéma reste stable. L'instabilité se manifeste par une divergence de la solution numérique : au-delà d'un pas de temps critique Δt_0 , la norme de la solution discrète $||u^n||$ tend vers l'infini⁸. Cette instabilité peut s'interpréter de deux manières complémentaires : d'un point de vue mathématique, le schéma se comporte comme une suite géométrique de raison |r| > 1; d'un point de vue physique, le schéma introduit artificiellement de l'énergie dans le système à chaque itération. La contrainte de stabilité impose donc $\Delta t < \Delta t_0$. Lorsque ce seuil est très restrictif, la résolution de l'EDO nécessite un nombre important d'itérations, augmentant considérablement le coût calculatoire. Comme évoqué précédemment les méthodes explicites sont généralement plus bien sensibles à cette limitation que les méthodes implicites.

FIGURE 2.1 – Exemple illustratif du comportement de l'erreur de l'approximation dans le ca d'un schéma d'ordre 2 avec une instabilité pour $\Delta t > 10^{-1}$.

Définition 2.2.4 (Stabilité d'un schéma numérique). Un schéma numérique $n \mapsto u^n \in \mathbb{R}^d$ est stable si est seulement si :

$$||u^{n+1}|| \le ||u^n||. \tag{2.4}$$

Pour un schéma d'intégration et une ODE fixée, cette condition peut être vérifiée ou non en fonction de la valeur du pas discrétisation Δt .

La stabilité d'une méthode d'intégration d'EDO dépend entre autre de l'opérateur intervenant dans l'équation. Un opérateur prompt à poser des problèmes de stabilité.

Définition 2.2.5 (Problème raide). Un système dynamque, est dit raide si les méthodes ex-

^{8.} Phénomène communément appelé "explosion" de la solution numérique.

plicites ne sont pas adaptées à sa résolution. En termes plus mathématiques le système

$$\frac{\mathrm{d}u}{\mathrm{d}t} = f(u,t) \quad u(t) \in \mathbb{R}^d \, \forall t \ge 0. \tag{2.5}$$

est dit raide si la jacobienne de f, J_f possède de grandes valeurs propres négatives 9 .

En simplfiaint, si un opérateur est raide, il impose une condition de stabilité très restrictive aux méthodes explicites et force à choisir des méthodes implicites ¹⁰.

Exemple 2.2.6 (Équation de Dhalquist). Pour saisir de manière plus intuitive le concept de raideur, prenons le cas symple de l'équation de Dhalquist définissant le système suivant ¹¹:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -\lambda u, \quad \lambda > 0$$

$$u(t=0) = u_0$$
(2.6)

La solution analytique est : $u(t) = u_0 e^{-\lambda t}$. Ainsi passé quelque $1/\lambda$ la dynamqiue du système est au point mort. Grossièrement la dynamqiue digne d'intérêt du système se concentre entre t=0 et $t=\frac{10}{\lambda}$. Au delà, $u(t>\frac{10}{\lambda})=o(u_0)$, la dynamqiue est terminée. Ainsi le lecteur comprend aisément que si l'on souhaite simuler le comportement d'un tel système, il faut prendre des pas de temps petits devant $|\lambda|^{-1}$. Si λ est de grande amplitude cela peut devenir très contraignant... Si l'on souhaite utiliser des méthodes explicites, c'est encore pire car la raideur du sysème n'est plus un simple contrainte de précision mais de stabilité. En effet si l'on cherche à approximer le sysètme par un schéma d'Euler explicite, alors : $U^{n+1}=U^n(1-\lambda\Delta t)$ alors la contrainte de stabilité est $\Delta t \lambda < 1/2$ ce qui est contraignant si λ est grand. Si $\lambda=10^5$ alors il faut avoir $\Delta t/approx10^{-5}$ donc pour simuler le système entre t=0 et t=1 il faut cent-milles points! A l'inverse si l'on choisit un schéma d'Euler implicite : $u^{n+1}=u^n-\lambda\Delta tu^{n+1}$, alors la condition de stabilité devient : $||(1+\lambda\Delta t)^{-1}|| \le 1$ ce qui est toujours vrai, quelque soit $-\lambda \in \mathbb{R}^-$, la raideur du système n'est pas un problème pour la méthode implicite. On comprend mieux la définition précédente Un système dynamqiue, est dit raide si les méthodes explicites ne sont pas adaptées à sa résolution.

Il existe plusieurs type de stabilité comme la A-stabilité (méthode stable indépedemment de la raideur du problème), la L-stabilité (schéma amortissant les hautes fréquences), par soucis de concision nous n'irons pas plus loins mais le lecteur intéressé se réfèrera à [2].

2.2.2 Les équations d'advection-diffusion-réaction

Plaçons nous dans le contexte physique naturel des équations d'advection, diffusion, réaction : Des particules sont placées dans un milieu fluide où elles **diffusent**, ce milieu fluide est en mouvement, cet écoulement déplace les particules, il les **advecte**. Enfin les particules **réagissent** entre-elles et ces réactions modifient les grandeurs thermodynamiques (température, pression) et in fine les propriétés du milieu fluide. Les équations d'advection, diffusion, réaction modélisent donc ces trois phénomènes et leurs couplages respectifs.

^{9.} Ici grand est à comprendre au sens de grande aplitude devant d'autres valeurs propres.

^{10.} La réalité est plus nuancée, nous le verrons.

^{11.} C'est le cas le plus simple d'une valeur propre négative

2.2.3 Les trois opérateurs

Advection

L'advection désigne le transport d'une quantité par un flot. L'opérateur d'advection le plus simple est l'opérateur de transport $c\frac{\partial}{\partial x}$:

$$\frac{\partial u}{\partial t} = c \frac{\partial u}{\partial x} \tag{2.7}$$

De manière générale un opérateur d'advection d'une quantité u par un flot \underline{a} s'écrit $\underline{a} \cdot \underline{\nabla} u$. Par exemple dans les équations de Navier-Stokes, l'opérateur $\underline{v} \cdot \underline{\nabla} \underline{v}$ représente la vitesse \underline{v} qui est transportée par elle même. Une version simplifiée de ce phénomène est l'équation bien connue de Bürgers.

Les opérateurs d'advections sont généralement à valeurs propres imaginaires ¹². Ainsi ils sont peu raides mais résonnants. Les méthodes explicites sont généralements les plus adaptées pour les traiter.

Diffusion

La diffusion désigne l'éparpillement de particules au sein d'un milieu fluide ¹³. Ce phénomène est la limite macroscopique du déplacement microscopiques des particules à cause de l'agitation thermique. L'opérateur de diffusion le plus classique est celui de l'équation de la chaleur :

$$\frac{\partial u}{\partial t} = D\Delta u. \tag{2.8}$$

Le spectre de cet opérateur est \mathbb{R}^- , il est donc infiniement raide. Lorsqu'il est discrétisé seul une partie de sa raideur est captée, en pratique la raideur de l'opérateur augmente quadratiquement avec la finesse de la discrétisation spatiale.

Cet opérateur est donc moyennement raide. Ainsi on pourrait penser qu'une méthode implcite est adéquate. Cependant ce n'est généralement pas le cas. En effet le coefficient de diffusion est généralement fonciton de la températeur, et donc l'éoprateur $D(T) \times \Delta(\cdot)$ varie généalement dans le temps et l'espace. Ainsi il faut inverser à chaque itération l'opérateur implcite, et comme c'est un opérateur non local ¹⁴, il faut inverser une matrice de taille d >> 1 dont la structure peut être très hétérogène. (car le coefficient de diffusion dépend de T et du milieu, donc in fine de \underline{x}). Aujourd'hui il est d'usage d'utiliser des méthodes explicites stabilisées qui parviennent à gérer la raideur moyenne ¹⁵ comme les méthodes ROK2 et ROK4[1].

^{12.} Par abus, s'il s'agit d'un opréteur non-linéiare on lui associera les valeurs propres de sa Jacobienne.

^{13.} En théorie de l'information cela décrit la tendance de l'entropie augmenter et l'information à se moyenner, se flouter.

^{14.} Si l'opérateur de diffusion était local on pourrait résoudre plusieurs petit systèmes, potentiellements en parallèle ce qui est bien moins couteux qu'inverser un grand système. Pour se convaincre, inverser un matrice pleine de taille 10^6 coute au moins 10^{18} opérations, alors qu'inverser 100 systèmes de taille 10^4 coute $100 \times 10^{12} = 10^{14}$ soit dix mille fois moins, et si ces résolution étaient parallélisé ce serait un million de fois moins.

^{15.} Nous reviendrons sur ce qualificatif au prochain paragraphe.

Réaction

Les phénomène sont en général bien adaptés aux méthodes implcites car extrêmements raides et locaux. En effet, les temps typiques d'une réaction chimique ¹⁶ sont de l'ordre de la nanoseconde. De fait, les réactions chimiques sont très diffciles à simuler par des méthodes explicites. Et les méthodes implcites ne sont pas très chères dans ce contexte, en effet comme les réactions sont locales (à chaque pas de temps les particules les particules au sein d'une cellules ne réagissent qu'avec les autres particules de la même cellule) les méthodes explicites peuvent se paralléliser. En d'autres termes il est possible de mettre en oeuvre une méthode implcite par cellule, ce qui revient à inverser un opérateur de petite dimension en chaque cellule, et il n'est pas nécessaire d'inverser un énorme système.

2.2.4 Difficultés mathématiques intrinsèques

La simulations des équations d'advections-réaction-diffusion se heurte à deux difficultés majeur, le couplage des trois opérateurs mentionnés précédemment et le caractère multi-échelles des solutions.

Première difficulté: le couplage des opérateurs Les développements précédents auront convaincu le lecteur que résoudre chaque phénomène individuellement, n'est pas insurmontable. Cependant, les résoudre tous en même temps, c'est à dire les coupler, est en pratique très difficile. En effet, lorsque l'on couple les trois opérateurs, il en résulte un unique opérateur qui doit être traité par une méthode numérique. C'est là que surgissent les difficultés : si la méthode est explicite (éventuellement stabilisée), la raideur de la réaction impose des pas de temps extrêments restricitfs, à l'inverse si l'on choisit une méthode implicite, la non-localité de la diffusion demande l'inversion d'un système de taille déraisonnable. Cette approche naïve, monolithique, n'est donc pas adaptée. Il faut trouver d'autres stratégies de pour simuler ces équations d'advetion-réaction-diffusion.

Seconde difficulté : le caractère multi-échelles des solutions Les solutions des solutions étudiées sont souvent multi-échelles, en temps et en espace. Cela signifie que certaines zones spatio-temporelles nécessitent une finesse d'approximation élevée pour pouvoir reproduire fidèlement le comportement physique, alors qu'en d'autres zones une approximation grossière est suffisante. Prenont l'exemple d'un incendie dans un local. Au début le foyer est très restreint et seul cette zone doit être maillée finement, car partout ailleurs il ne se passe rien, petit à petit l'incendie se propage et la zone à mailler finement augmente. Un autre exemple de phénomène multi-échelle serait une détonnation, il faut mailler finement, au foyer de l'explosion et le front de l'onde de choc. Mais la zone exterieure à l'explosion, qui n'a pas encore reçu le choc, pourrait être maillée très grossièrement. Ainsi si l'on maille naïvement, et que 90% du domaine est maillé avec un pas d'espace 100 fois plus fin que nécessaire; alors il y a une grande inefficacité ¹⁷.

^{16.} En réalité une réaction chimique simple (une simple combustion H_2/O_2 fait intervenir une dizaine de composés et reactions intermédaires, dont les temps typiques sont très faibles.)

^{17.} À cela s'ajoute le fait que ce problème augmente fortement avec la dimension.

2.2.5 Les stratégies de simulation

L'adaptation de maillage

La multi-résolution adaptative

Autres méthodes

Les techniques d'intégration

Les méthodes ImEx

La séparation d'opérateurs

2.2.6 Simulation des EDPs d'évolution

Définition 2.2.7 (Méthode des lignes). Une méthode des lignes est une famille de méthodes numériques pour approximer les EDP d'évolutions Elle consiste à discrétiser les opérateurs spatiaux de l'équation afin d'obtenir une équation semi-discrétisée en espace, puis à utiliser une technique d'intégration en temps, pour obtenir la discrétisation complète de l'équation.

Définition 2.2.8 (Méthodes d'intégration espace temps).

Dans la suite de notre étude nous allons utiliser la paradigme des volumes finis. Les volumes finis sont particulièrement adaptés au lois de conservations. Les volumes finis discrétisent la valeur moyenne sur les mailles, alors que les différences finies discrétisent la valeur au noeuds du maillage et les éléments finis discrétisent l'espace fonctionnel lui même.

Définition 2.2.9 (Volumes finis). Donné un maillage $(C_j)_{j\in J}$ d'un domaine Ω , la discrétisation par volume fini approxime les quantités :

$$U_j = \frac{1}{|C_j|} \int_{C_j} u(x) d\Omega. \tag{2.9}$$

2.2.7 Analyse de schéma numériques

Staiblité... Convergence...

Définition 2.2.10 (Procédure de Cauchy-Kovaleskaya).

Définition 2.2.11 (Équation modifiée).

2.2.8 La Multirésolution Adaptative

...

- 2.3 Objectifs
- 2.4 Méthode de travail et outils

Chapitre 3

Contribution

...

3.1 Conclusion

Bibliographie

- [1] Assyr Abdulle. "Fourth Order Chebyshev Methods with Recurrence Relation". In: SIAM Journal on Scientific Computing 23.6 (2002), p. 2041-2054. DOI: 10.1137/S1064827500379549.
- [2] Ernst Hairer, Syvert P. Nørsett et Gerhard Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. 2e éd. T. 8. Springer Series in Computational Mathematics. Springer Berlin, Heidelberg, 1993, p. XV, 528. ISBN: 978-3-540-56670-0. DOI: 10.1007/978-3-540-78862-1. URL: https://doi.org/10.1007/978-3-540-78862-1.

BIBLIOGRAPHIE 19

.1 Annexe A: Titre de l'annexe

Contenu de la première annexe.

.2 Annexe B: Titre de l'annexe

Contenu de la deuxième annexe.