Internet of Things, Big Data & Web - Area Scientifica Dipartimento di Scienze Matematiche, Informatiche e Multimediali Università di Udine

Primo progetto di Social Computing

Anno Accademico 2020-2021

Bazzetto Luca, matricola: 144760 Campagnolo Agustin, matricola: 142294 Piovesana Edoardo, matricola: 142332 Verardo Thomas, matricola: 143735

Svolgimento dei punti

Punto 1

Per scaricare gli utenti "followers" dei cinque account richiesti, ovvero @mizzaro, @damiano10, @Miccighel., @eglu81 e @KevinRoitero, sono stati trovati inzialmente gli ID di questi account. Successivamente, anche gli ID dei loro follwers. Questi dati sono stati serializzati in un file (followers_nomeutente) per ciascun utente.

Per gli utenti "friends" è stato eseguito lo stesso procedimento (friends_nomeutente).

Punto 2

Followers dei followers

Per ogni utente son stati estratti 5 utenti followers in modo casuale dal rispettivo file. Per fare ciò è stata usata la libreria "random".

Successivamente, per ciascuno di questi, son stati scaricati ulteriori 10 utenti followers e tutti serializzati nel file followers Of Followers.

Punto 3

Following dei following

Per ogni utente son stati estratti 5 utenti following a caso dal rispettivo file *json*, per farlo è stata usata la libreria "random".

Successivamente, per ciascuno di questi, son stati scaricati ulteriori 10 utenti following nel file friends Of Friends.

Punto 4

Come prima cosa, tutti gli utenti precedentemente scaricati sono stati messi in un'unica lista. Per ottenere questo risultato è stata utilizzata la funzione mergeFiles(file_names).

Dopodiché sono stati eliminati tutti i duplicati per non impiegare maggiorn tempo nello scaricamento dei dettagli di tutti gli utenti (deleteDuplicates(allItems)).

Per ogni utente recuperato sono stati scaricati i dettagli del profilo utilizzando $api.get_user$ e salvati in nel dataframe usersDetails.csv.

I dettagli scaricati sono i seguenti: id, name, screen_name, location, followers_count e friends_count.

Punto 5

Gli utenti della lista sono stati confrontati con i 5 account iniziali per stabilire il tipo di relazione esistente. con la funzione friendship(sourceid, targetid) che, dati due utenti, restituisce la relazione fra questi.

I possibili tipi di relazione sono Both, ovvero gli utenti si seguono a vicenda, Source To Tarqet, ovvero

un utente (denominato "source") segue un altro utente ("target") ma non viceversa. Infine, c'è la relazione *TargetToSource*, che come si può intuire, è il contrario della precedente.

Successivamente, sono stati eliminati gli account che non avevano alcuna relazione con i 5 account iniziali, in modo tale da avere un grafo connesso.

Utilizzando il dataframe con i dettagli degli utenti (usersDetailsForGraph.csv) e il dataframe delle relazioni (sourceTarget.csv) sono stati creati i grafi.

Inizialmente è stato deciso di costruire due grafi con gli stessi nodi e stessi archi: uno orientato e uno non orientato. Questo per poter esaminare al meglio il grafo. Ad entrambi i grafi, son stati aggiunti i membri del gruppo del progetto come attributi del grafo.

Durante la costruzione del grafo è stato inserito l'id di ciascun utente per identificare il nodo, assieme agli attributi, ovvero name, screen_name, location, followers_count e friends_count.

Punto 6

La visualizzazione interattiva del grafo è stata resa possibile utilizzando il codice fornito a lezione ed è possibile vederla nel seguente link.

Punto 7

Per verificare se il grafo connesso è stata utilizzata la funzione "is_connected", la quale ha ritornato il valore "true" che sta a significare che il grafo è connesso, infatti tutti i nodi del grafo sono collegati da almeno un arco.

Inoltre, con la funzione "is_bipartite" è stato verificato che il grafo non è bipartito. Infatti, l'insieme dei nodi del grafo non può essere partizionato in due sottoinsiemi X e Y tali che ciascun arco del grafo ha una delle due estremità in X e l'altra in Y.

Punto 8

Le misure del centro, del diametro e del raggio possono essere calcolate solamente se il grafo è connesso, quindi dopo averlo verificato nel punto 7, sono risultate le seguenti misure:

• Centro: [19659370, 132646210, 3036907250], ovvero [@eglu81, @damiano10, @KevinRoitero];

• Diametro: 4 archi:

• Raggio: 2 archi.

Punto 9

Betweenness centrality

Misura quanto un nodo è importante nel connettere altri nodi:. Si deduce dal grafo *qui presente* che i nodi più importanti sono i nodi dei 5 utenti iniziali.

Closeness centrality

Questa misura indica quali sono i nodi centrali che possono raggiungere velocemente gli altri nodi. Da *questa figura* si nota infatti, osservado la scala di colori, quali sono i nodi con Closeness Centrality più alta.

Degree centrality

Misura un valore che più è alto, più un nodo è centrale nel grafo. Infatti, in *questo grafo*, si nota che i nodi non colorati di blu, sono quelli più centrali.

In-degree centrality

In-degree centrality misura il numero di archi entranti in un nodo. Come si può notare da *questa figura*, i nodi con più "followers" sono i 5 account iniziali.

Out-degree centrality

Out-degree centrality stima il numero di archi uscenti da un nodo. Nel grafo *qui presente* si può notare infatti che i nodi non colorati di più sono i nodi che hanno più "following", cioè che seguono più account.

Page Rank

Il Page Rank è un algoritmo che misura l'"*importanza*" di un nodo. Più un nodo è collegato da altri nodi importanti più è importante. Come in *questo caso* i nodi più importanti sono i 5 nodi iniziali.

HITS

Con l'algoritmo di HITS, noto anche come l'algoritmo di Kleinberg, vengono calcolati due score differenti: Hub e Autorità. Questi due score determinano l'"importanza" di un nodo. In questo grafo si nota come varia lo score Hub, mentre in questo come varia lo score Autorità.

Punto 10

Il sottografo del nodo @KevinRoitero si trova nel seguente *link*.

Cricca massima

Quanto gli amici di una persona sono amici fra di loro:

Dimensione della cricca massima: 5.

Punto 11

Siccome il grafo è connesso, è stato possibile calcolare la copertura minima degli archi, la quale mostra le relazioni minime tra i nodi del grafo. Successivamente, è stato disegnato il grafo con pyvis per ottenere una visualizzazione interattiva. Da questa visualizzazione è stato dedotto che il grafo ha meno archi perché anche se un nodo è collegato da più archi (relazioni), ne viene rappresentato solamente uno.

Punto 12

Coefficienti del piccolo mondo:

• Coefficiente omega: 0,000778;

• Coefficiente sigma: 0,982465.

Punto 13

La seguente tabella rappresenta la correlazione lineare di Pearson Rho. Si può notare che la variabile Closeness è la variabile che correla meno con tutte le altre variabili. Questo è dovuto al fatto che le relazioni trovate sono state create a partire dai 5 account iniziali.

La variabile Betweenness invece correla con quasi tutte le variabili perché i 5 account iniziali sono i cardini del grafo.

La tabella sottostante rappresenta la correlazione di Kendall Tau. Più il valore è alto, più due variabili hanno rank simile, di conseguenza, più il valore è vicino allo 0, più il rank fra queste due variabili è diverso.

Un esempio fra due variabili che correlano tra loro è *Hub* e *Out-Degree*.

