FDU 脑科学 4. 突触传递和计算模型

本文参考以下教材:

- Fundamentals of Computational Neuroscience (2nd Edition T. Trappenberg) Chapter 2
- Mathematical Foundations of Neuroscience (G. Ermentrout, D. Terman) Chapter 7
- 神经科学的数学基础 (G. Ermentrout, D. Terman) 第7章

欢迎批评指正!

4.1 突触后电位

突触后电位 (Post-Synaptic Potential, PSP)

- ① 兴奋性突触后电位 (Excitatory Post-Synaptic Potential, EPSP) 兴奋性递质引起突触后膜 Na^+ (内流) 或 Ca^{2+} (内流) 通道开放. 神经递质: 谷氨酸 (Glu)
 - 。 NMDA 受体 (离子型受体): N-甲基 -D-天冬氨酸,结合 ${
 m Glu}$ 后打开 ${
 m Ca}^{2+}$ 离子通道,导致 ${
 m Ca}^{2+}$ 内流.

NMDA突触受体:慢时程突触兴奋性电信号EPSP

。 AMPA 受体 (离子型受体): α -氨基-3-羟基-5-甲基-4-异恶唑丙酸受体,结合 Glu 后打开 Na^+ 离子通道,导致 Na^+ 内流.

它以快时程为特征,快速激活 ($1\sim 10 ms$) 并且快速失活. 它通常只允许单价阳离子通过 (Na^+,K^+),而对 Ca^{2+} 不通透.

AMPA 受体负责 ${
m Na}^+$ 内流,提供快速的电信号,而 NMDA 受体则负责 ${
m Ca}^{2+}$ 的内流和长时间的信号调节.

- ② 抑制性突触后电位 (Inhibitory Post-Synaptic Potential, IPSP) 抑制性递质引起突触后膜突触后膜 Cl^- (内流) 或 K^+ (外流) 通道开放. 神经递质: γ -氨基丁酸 (GABA)
 - 。 GABA_A 受体 (离子型受体): 结合 GABA 后打开 Cl^- 离子通道,导致 Cl^- 内流.
 - 。 GABA_B 受体 (代谢型受体): 通过 G 蛋白耦合的机制促进 K^+ 外流或抑制 Ca^{2+} 内流.