Lab 5 - LaTex Equation

Jericho McLeod

February 3, 2019

Abstract

In this lab, we use LaTex to do mathematical typesetting.

Basics 1

In this section we demonstrate some mathematical typicating features of LaTex.

In-line Expressions 1.1

Algebra relies on variables and expressions, such as z = x + y.

Super and Subscripts

Here are some superscript and subscript examples:

$$X^{3}, X^{Y^{2}}$$

$$Y_1, Y_2$$

$$\begin{matrix} Y_1,Y_{Z_i}\\X_j^i,X_j^i\end{matrix}$$

Fraction Examples

Half of N is N/2, but N over N+1 is:

$$\frac{n}{N+1}$$

Root Examples

The square root of 2 is $\sqrt{2}$, but the cube root of 2 is $\sqrt[3]{2}$.

Ellipsis Examples

Gauss's famous equation is"

$$\frac{N(N+1)}{2} = 1 + 2 + 3 + \dots + N$$

A sum of terms is x_1, x_2, \ldots, x_N .

1.6 Greek Letter Examples

Here are some upper case Greek letters: $A, B, \Gamma, \Delta, \Upsilon$. Here are some lower case Greek letters: $\alpha, \beta, \gamma, \delta, \upsilon$.

1.7 Operator Examples

Here are some mathematical operators: $5 \le 8; 3 \ge 2; 6 \ne 8; 10 \ll 1000$.

1.8 Summation Example

Here is a summation operator:

$$\sum_{i=0}^{i=10} x_i^2 = 385$$

1.9 Integral Example

Here is an integration operator:

$$\int_{-\infty}^{+\infty} \cos(x) dx = \sin(x) + C$$

1.10 Trig Function Examples

Here is a log operator:

$$f(x) = k \log(x)$$

Here are some trig functions:

\sin	\sec	\exp	\min
\cos	\cot	\inf	max
tan	\csc	gcd	\lim

1.11 Array Examples

Here is an array environment showing a 4x4 identity matrix I:

Here is an example of an equation array, called an equarray environment:

$$x = (y+2)(y-3) (1)$$

$$x = (y+2)(y-3)$$
(1)

$$x = y^2 + (2y-3y) - 6$$
(2)

$$x = y^2 - y - 6$$
(3)

$$x = y^2 - y - 6 \tag{3}$$