El proposito de esta nota es simular la campaña de vacunación mexicana en 2021. El gobierno ha ofrecido solamente datos del nivel general del número de vacunas aplicadas y su distribución geográfica. No tenemos detalles de cuáles vacunas se han aplicado, dónde (p. ej. a nivel de municipio) ni qué grupos de edad han sido beneficiados. La campaña ha sido sumamente desordenada y es imposible deducir estos datos de principios generales. Los detalles se encuentran en medios locales de los 33 estados y las secretarías de Salud / Bienestar locales. Quizá se pueda reconstruir de ahí pero sería un esfuerzo titánico.

Hay por lo menos dos motivos para tener cifras aunque sean aproximadas: sirve para hacer cálculos más precisos de las tasas de inmunidad por contagio vs vacunación, lo que a su vez se requiere para obtener mejores tasas de mortalidad por COVID. Otro propósito es contrafactual. La campaña de vacunación empezó tarde, ha sido lenta, caótica, y ha favorecido grotescamente a CDMX por encima del resto del país. Evaluarla con propiedad es difícil, pero tener por lo menos una indicación de su efecto permite responder pregunta tipo: si la campaña hubiera sido de tal o cual modo en vez de como sucedió, ¿cuántas muertes más/menos se hubieran obtenido?

Series de vacunación por tipo de vacuna

Nuestro punto de arranque son las series de vacunas aplicadas de Our World in Data (OWID), que provienen de la Secretaría de Salud mexicana). Dichas series contienen 3 datos diarios (con algunos agujeros):

columna H: total de vacunas aplicadas columna I: total de personas vacunadas columna J: total de personas vacunadas con dosis completas

Denotando con "1/1" las vacunas de una aplicación, "1/2" la primera dosis de las vacunas de 2 aplicaciones y con "2/2" la segunda dosis de este tipo, vemos que se complen las relaciones *acumulativas* siguientes:

```
H (vacunas aplicadas) = 1/1 + 1/2 + 2/2
I (personas vacunadas) = 1/1 + 1/2
J (personas con dosis completa) = 1/1 + 2/2
```

Despejando, obtenemos las ecuaciones para encontrar el valor acumulado a cada fecha:

```
2/2 = H - I
1/1 = J - 2/2
1/2 = I - 1/1
```

Estos totales son acumulativos. Obtenemos las nuevas cifras diarias para cada categoría calculando la diferencia entre el total de un fecha menos el total de la fecha anterior con un valor. Este procedimiento nos da tres tablas nacionales (no. aplicaciones 1a dosis, 2a, unidosis) por grupo de edad. Debe de corresponder exactamente a los valores reales pero no lo es. Un primer motivo es que la Secretaría de Salud ha hecho varios ajustes importantes en algunas fechas. Patentemente, el registro de vacunas se retrasa respecto a su aplicación, se acumulan, y las descargan de un golpe. Por ejemplo, el 30 de octubre de 2021 hicieron un ajuste de 7.2M de vacunas.

Un segundo problema es que el procedimiento indicado deja de funcionar el 28 de septiembre de 2021, cuando la cifra *acumulada* de unidosis *comienza* a caer hasta el 7 de octubre, cuando asciende de nuevo hasta el 15 de diciembre, para caer nuevamente.

No tengo idea de qué haya provocado este zig-zag ni es fácil saber cómo parchar la situación. Mi corrección tentativa consiste en volver al acumulado de unidosis estrictamente no decreciente. Ya que esto altera los totales (y la relación con las otras columnas), prorrateo cada valor acumulado de unidosis para que al final coincida la suma total de dosis con la anunciada al fin de SE-52 2021, 5.82M.

Revisando la información disponible, el uso de unidosis parece haber sido más bien bajo en esta fase de la campaña: CanSino para el magisterio y Johnson & Johnson para el estado de Baja California y su suma está en el rango de este total.

De estas series se derivan inmediatamente los totales por semana epidemiológica en 2021 de vacunas aplicadas por cada tipo de vacuna.

SE	01/02/22	02/02/22	01/01/22
1	415418	1959	1
2	53291	1476	0
3	135733	21751	0
4	27044	16657	0
5	6196	33994	0
6	25803	10362	0
7	572619	366857	0
8	653569	112368	0
9	355619	38916	0
10	1484754	5542	0
11	1165478	106887	0
12	1271987	134171	0
13	1756726	260825	0
14	1401080	609665	216377
15	1115451	1392884	288552
16	143296	1333405	408023
17	94899	1398091	296215
18	1134657	1278199	258298
19	750367	590259	327568
20	2130386	594278	363788
21	3209070	348890	159527
22	2435904	1701806	16278
23	2119757	911511	20561
24	1073040	1061010	355222
25	1427594	1502415	468915
26	2408742	787763	54654
27	2683354	817625	74222
28	2790519	880494	33264
29	3760328	2057275	123057
30	4960119	1514371	200336
31	2957930	1191687	93173
32	3020095	1666805	152501
33	2222911	1656385	134740
34	1126140	2532343	23230
35	500465	1168992	599468
36	1259108	2852629	369188
37	923004	2221834	252262
38	1103065	2608001	126731
39	1913358	2529947	8032
40	2310157	2380596	0
41	902886	1916462	0
42	1896564	2594419	0
43	4075343	6519844	62321

44	302955	1571828	16690
45	375934	1062742	78532
46	273188	747324	92534
47	659990	585258	54586
48	1561998	402749	60114
49	2071246	679465	30106
50	3963333	3130940	5569
51	955036	6861587	0
52	0	0	0

Aumentando en algo el grado de incertidumbre, podemos seguir un procedimiento similar para cada estado. Tenemos, de los totales oficiales en <u>vacunacovid.gob.mx</u>, los totales por estado a SE-40. Podemos distribuir dichas vacunas por grupo de edad usando los totales nacionales respecto a la distribución de la población por cada estado.

Ejemplo. Cálculo de unidosis para edad 60-64 en el estado de Oaxaca. En el país, ese grupo de edad es el 3.83% y se llevó el 1.98% de todas las vacunas. Oaxaca, por su parte, tiene 3.78% de la población en esas edades. Calculamos:

Población Vacunas

Nacional: 0.0383 0.0198

Oaxaca: 0.0378 x = 0.0378*0.0198 / 0.0383 = 0.01954

Sabemos por otro lado que a SE-40 2021 se han aplicado 2,550,136 vacunas. Multiplicando el porcentaje obtenido por el total de vacunas, concluimos que a ese estado, en ese grupo de edad, le corresponden aproximadamente 49,834 vacunas.

(Hay que hacer un ajuste al final: los estados tienen una estructura poblacional ligeramente diferente a la nacional. Calculo primero los totales para cada celda de la matriz según lo describí. De ahí calculo el factor tal para que la suma de celdas multiplicadas por él dé exactamente 2,550,136 y recalculo cada celda multiplicándola por dicho factor.)

Obtenemos tres tablas para cada estado según dosis, con los totales aplicados a SE-40 para cada grupo de edad. A partir de ahí, puedo aplicar el mismo procedimiento que se usó para los totales nacionales y desenrollar cada celda de la matriz a lo largo del tiempo. El resultado son **tres tablas para cada estado** según dosis, con vacunas distribuidas por grupo de edad y semanas 1 a 40 de 2021.

(Un ejercicio pendiente es comparar los resultados hipotetizados con los reales para el caso de la CDMX, de la que excepcionalmente tenemos más información de la campaña de aplicación de vacunas, desglosada por tipo de dosis.)

Fechas (sitio gobierno):

etapa 1 (p. salud): diciembre-febrero

etapa 2 (60+): febrero mayo etapa 3: (50-59): mayo – junio etapa 4 (40-49): junio – julio

etapa 5: resto

(prensa)

educativo: 20 abril-28 mayo

etapa 6? menores 15-17 comenzo 29 nov 2021 en DF