Homework 3

Due time: 18:30 on Oct. 28th, 2021

Turn in your homework in class or to tutorial classroom (1B110)

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.
- If needed, round the number to the nearest hundredths, i.e., rounding it to 2 decimal places.

1. For the circuit below, assume the operational amplifiers are both working in their linear mode, determine the gain v_0/v_i of the circuit using resistance R_1 to R_6 .

- 2. For the circuit below, assume the operational amplifiers are both working in their linear mode,
 - (1) Calculate V_0 in the op amp circuit.
 - (2) Calculate i_{θ} in the op amp circuit.

3. Find equivalent capacitance C_{ab} and inductance L_{ab} for the following two networks:

4. For the circuit below

$$v(t) = 5e^{-50t}V, \quad t > 0$$

$$i(t) = 150e^{-50t} mA, \quad t > 0$$

- (1) Find R and C in the circuit.
- (2) Calculate the energy dissipated on R during the time slot of $0 \le t \le 0.1s$

5. For the circuit below:

There is no energy stored in the capacitor in the circuit before t = 0s. When t = 0s, Switch 1 is closed. When $t = 20\mu$ s, Switch 2 is closed. Find $V_0(t)$ for $t \ge 0$.

6. For the circuit below, assume the operational amplifier is always working in its linear mode, $V_C(0\text{-})=5V$, R_1 = $10k\Omega$, R_2 = 500Ω , C= $10\mu F$

$$V_{S}(t) = \begin{cases} 0, & t \le 0 \\ e^{-200t}, & t > 0 \end{cases}$$

Find output voltage of the Op Amp $V_0(t)$ for t > 0.

7. For the circuit below:

The switch in the circuit has been in *position a* for a long time.

At t = 0s, it moves instantaneously to *position b*, where it remains for 5 s before moving instantaneously to *position c*.

Find the expressions for $V_0(t)$ for $t \ge 0$.

