RWTH Aachen, SS 2021 Release date: June 22th, 2021 Solution: June 29th, 2021

Applied Data Analysis

R-Laboratory 9

Logistic Regression - Baseline-Category Logit Model - Cumulative Link Model

Do not use functions from additional R packages (except when it is explicitly stated in the Task, Hint or list of useful packages and functions).

Useful packages and functions:

• pROC

• pROC::roc()

• pROC::plot.roc()

• pROC::auc()

• pchisq()

• confint()

• ftable()

VGAM

• VGAM::vglm()

• VGAM::step4()

• xtabs()

• deviance()

• df.residuals()

• matplot()

Task 26

- (a) Download the file *FieldGoal.csv* from RWTHmoodle and load it as a data frame into your workspace.
- (b) Fit a logistic regression model that predicts Good. using Dist as explanatory variable and plot the predicted probabilities for a good kick as a function of Dist.
- (c) Calculate the percentage of correct classified observations according to the model in (b).
- (d) Test at significance level $\alpha = 0.05$ the hypotheses

$$H_0: \beta_1 = 0$$
 versus $H_1: \beta_1 \neq 0$

in the model from (b), where β_1 is the parameter of the attribute Dist. Base your test decision on the Wald's test statistic.

- (e) Compute 90% profile likelihood confidence intervals for the parameters of intercept and Dist, as well as for the probability of a successful kick when the distance to the goal is 19, 39 and 64 yards.
- (f) Fit a logistic regression model, that predicts Good. using the attributes Dist, Blk., Pressure, Roof.type, Altitude and Field. Select the model with smallest AIC using a backwards stepwise selection algorithm. Calculate the percentage of correct classified observations according to this model and compare it with the percentage from (e).

(g) Plot (in a single figure) the ROC curves for the model in (b) and the selected model in (f). Evaluate for both models the area under the curve (AUC).

Task 27

(a) Load the dataset Hoyt into your workspace and transform it to a 'flat' contingency table, with 4 columns, each corresponding to a level of the nominal attribute Status.

Hint: You may use the function ftable with the argument col.vars="Status".

Explanation of ftable: The function ftable creates a flat contingency table which means that the usual information contained in a contingency table are re-arranged as a matrix. The rows and columns of this matrix correspond to the combinations of the levels of the involved factors. ftable can be applied to a data frame or a contingency table generated with xtabs for example, where xtabs creates a contingency table from cross-classifying all involved factors which is returned as a table and not re-arranged as a matrix

(b) Fit a baseline-category logit model for Status with explanatory variables Rank, Occupation, Sex and their pairwise interaction terms.

Hint: You may use the function vglm from the package VGAM with the key command

vglm(formula,family,data).

You can fit grouped data by placing a matrix as response in formula.

- (c) Given the model you fitted in (b), test at significance level $\alpha = 0.05$, if there is any influence of the explanatory variables on Status.
- (d) Given the model you fitted in (b), test the significance of the effect of Sex:Rank on Status at significance level $\alpha = 0.05$.
- (e) Select the model with smallest AIC and with smallest BIC using a backwards stepwise selection algorithm starting with the model from (b).

Task 28

- (a) Load the dataset Vietnam into your workspace and transform it to a 'flat' contingency table, with 4 columns, each corresponding to a level of the ordinal attribute response.
- (b) Compute the baseline-category sample log-odds of response at all levels of sex and year and the cumulative sample log-odds and plot them as a function of year (of study) for each gender, with genders indicated by different colors.

 Hint: You may use the function matplot.
- (c) Fit a cumulative logit model for response with explanatory variables sex and year. Hint: Use the arguments parallel=FALSE and link="logitlink" within the family argument.
- (d) Fit a cumulative probit model for response with explanatory variables as in (c). Hint: Use the arguments parallel=TRUE and link="probitlink" within the family argument.

- (e) For both models in (b) and (c) compute the Pearson's X^2 and the deviance in order to perform a goodness of fit test at significance level $\alpha = 0.01$.
 - *Hint:* You may use the function predict with argument type="response" to compute the estimated response probabilities for each factor level of Status, conditional on the values of the explanatory variables.