The Invertible Matrix Theorem

- 1. A is invertible.
- 2. A is row equivalent to I_n .
- 3. A has n pivotal columns (all columns are pivotal).
- 4. Ax = 0 has only the trivial solution.
- 5. The columns of A are linearly independent.
- 6. The equation $A \sim \mathbf{x} = \mathbf{A} \mathbf{x} = \mathbf{b}$ has a solution for all $b \in \mathbb{R}^n$
- 7. The columns of A span \mathbb{R}^n
- 8. There is a $n \times n$ matrix C so that $CA = I_n$ (A has a left inverse.)
- 9. There is a $n \times n$ matrix D so that $AD = I_n$ (A has a right inverse.)
- 10. A^T is invertible

Example:

Is
$$\begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ 0 & -1 & -1 \end{bmatrix}$$
 invertible?
$$RREF \begin{pmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ 0 & -1 & -1 \end{bmatrix} \end{pmatrix} = I_3$$

Every column is pivotal.

So,
$$\begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ 0 & -1 & -1 \end{bmatrix}$$
 is **invertible**!