DIS

1 Risk Minimization with Doubt

Suppose we have a classification problem with classes labeled 1, ..., c and an additional "doubt" category labeled c + 1. Let $f : \mathbb{R}^d \to \{1, ..., c + 1\}$ be a decision rule. Define the loss function

$$L(f(\mathbf{x}), y) = \begin{cases} 0 & \text{if } f(\mathbf{x}) = y \quad f(\mathbf{x}) \in \{1, \dots, c\}, \\ \lambda_c & \text{if } f(\mathbf{x}) \neq y \quad f(\mathbf{x}) \in \{1, \dots, c\}, \\ \lambda_d & \text{if } f(\mathbf{x}) = c + 1 \end{cases}$$
(1)

where $\lambda_c \ge 0$ is the loss incurred for making a misclassification and $\lambda_d \ge 0$ is the loss incurred for choosing doubt. In words this means the following:

- When you are correct, you should incur no loss.
- When you are incorrect, you should incur some penalty λ_c for making the wrong choice.
- When you are unsure about what to choose, you might want to select a category corresponding to "doubt" and you should incur a penalty λ_d .

In lecture, you saw a definition of risk over the expectation of data points. We can also define the risk of classifying a new individual data point \mathbf{x} as class $f(\mathbf{x}) \in \{1, 2, ..., c+1\}$, and reason about what the risk would be for all possible values of \mathbf{x} . We define the risk as

$$R(f(\mathbf{x})|\mathbf{x}) = \sum_{i=1}^{c} L(f(\mathbf{x}), i) P(Y = i|\mathbf{x}).$$

- (a) Show that the following policy $f_{opt}(x)$ obtains the minimum risk:
 - (R1) Find the non-doubt class i such that $P(Y = i|\mathbf{x}) \ge P(Y = j|\mathbf{x})$ for all j, meaning you pick the class with the highest probability given x.
 - (**R2**) Choose class *i* if $P(Y = i|\mathbf{x}) \ge 1 \frac{\lambda_d}{\lambda_c}$
 - (R3) Choose doubt otherwise.

Hint: It will first help you to approach the risk function on a case-by-case basis to help simplify the expression. What is the risk if we choose the "doubt" class? What is it if we choose a non-doubt class as our prediction?

In order to prove that $f_{opt}(x)$ minimizes risk, consider proof techniques that show that $f_{opt}(x)$ "stays ahead" of all other policies that don't follow these rules. For example, you could take a

proof-by-contradiction approach: assume there exists some other policy, say f'(x), that minimizes risk more than $f_{opt}(x)$. What are the scenarios where the predictions made by $f_{opt}(x)$ and f'(x) might differ? In these scenarios, and based on the rules above that $f_{opt}(x)$ follows, why would f'(x) not be able to beat $f_{opt}(x)$ in risk minimization?

(b) How would you modify your optimum decision rule if $\lambda_d = 0$? What happens if $\lambda_d > \lambda_c$? Explain why this is or is not consistent with what one would expect intuitively.

2 The Classical Bias-Variance Tradeoff

Consider a random variable X, which has unknown mean μ and unknown variance σ^2 . Given n iid realizations of training samples $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$ from the random variable, we wish to estimate the mean of X. We will call our estimate of μ the random variable \hat{X} , which has mean $\hat{\mu}$. There are a few ways we can estimate μ given the realizations of the n samples:

- 1. Average the *n* samples: $\frac{x_1+x_2+...+x_n}{n}$.
- 2. Average the *n* samples and one sample of 0: $\frac{x_1+x_2+...+x_n}{n+1}$.
- 3. Average the *n* samples and n_0 samples of 0: $\frac{x_1+x_2+...+x_n}{n+n_0}$.
- 4. Ignore the samples: just return 0.

In the parts of this question, we will measure the *bias* and *variance* of each of our estimators. The *bias* is defined as

$$E[\hat{X} - \mu]$$

and the variance is defined as

$$Var[\hat{X}].$$

(a) What is the bias of each of the four estimators above?

(b) What is the variance of each of the four estimators above?

(c)	Suppose we have constructed an estimator \hat{X} from some samples of X . We now want to know how well \hat{X} estimates a new independent sample of X . Denote this new sample by X' . Derive a general expression for $E[(\hat{X}-X')^2]$ in terms of σ^2 and the bias and variance of the estimator \hat{X} . Similarly, derive an expression for $E[(\hat{X}-\mu)^2]$. Compare the two expressions and comment on the differences between them.
(d)	It is a common mistake to assume that an unbiased estimator is always "best." Let's explore this a bit further. Compute $E[(\hat{X} - \mu)^2]$ for each of the estimators above.
(e)	Demonstrate that the four estimators are each just special cases of the third estimator, but with different instantiations of the hyperparameter n_0 .
(f)	What happens to bias as n_0 increases? What happens to variance as n_0 increases?