Index

A	В	Rankine panel method in
Active rudder/rudder propellers,	Bagnolds' approach (slamming),	frequency domain, 353-65
284	191, 194	strip method module, 349-53
'Acts of God', 5	Beams:	three-dimensional wave
Adjacent fluids and hydrodynamic	natural frequency, 221	resistance problem, 340-9 two-dimensional flow around
mass (vibrations):	vibration, 207-8, 210	a body in infinite fluid,
introduction, 222-5	Beaufort Number (wind), 127,	333-5
propellers, 226-7	262	two-dimensional wave
rudders, 225-6	Becker rudders, 283	resistance problem,
ship hull vertical damping,	Bernoulli:	335-40
228-31	equation	propeller flows, 48, 55
ships, 227-8 Admiralty constant (C),	airy waves, 149 BEM, 338, 344, 348, 357-8	rudder design, 296-8
117-18	CFD, 16	ship maneuvering, 259
'Admiralty formula', 117-18	lifting body methods, 261	source elements
Admiraty formula , 117-16	panel methods, 115	dipole elements, 321-2
flows, 20	RSM, 177	higher-order panel, 311-17
lubrication, 132-3	slamming, 89	Jensen panel, 309-111
Airy waves (harmonic waves	strip method, 172	point source, 301-4
of small amplitude),	wave resistance, 78	regular first order panel,
147-52	law, 48-9, 280	304-9
Algebraic grid generation, 37	Bilge keels:	Thiart element, 322-4, 363
Anti-slamming device (ASD),	appendage resistance, 125-6	vortex elements, 317-20
104	resistance and propulsion, 94,	special techniques
Appendages (resistance and	103	desingularization, 324-6
propulsion):	roll damping, 201	patch method, 326-31
bilge keels, 94, 103	strip method, 174	viscous flow computations, 32
bow thrusters, 94	Biot—Savart's law (lifting surface),	water resistance, 111
design, 125-6	259	Boundary layer equations, 14-15
fast ships, 103	Blended schemes (numerical	Boussinecq approach (turbulence),
rudders, 94	approximations), 36	25
shaft brackets and bosses, 94	Block-structured grids, 38	Bow thrusters (resistance and
shallow water, 94-5	Bottom slamming, 188 Boundary conditions (viscous	propulsion), 94
Asymmetric aftbodies, 135-6	flow), 28-31	Bow-flare slamming, 188
Average hull roughness (AHR),	Boundary element methods (BEM):	Breaking wave impact (slamming),
96, 132	CFD, 16-18	188
Azimuthing (rudder) propellers,	introduction, 299-301	Burill diagram (propellers and
69, 284	numerical examples	cavitation), 58-9, 64
,	1	

C	Computational fluid dynamics	lifting surface methods,
	(CFD):	259-60
CAD (computer-aided design):	applications	slamming, 195
hulls, 4	air flows, 20	steady flow
resistance and propulsion, 121,	interior flows, 20	boundaries of modeled
124	propeller flows, 19-20	domain, 111-12
Calm-water:	resistance and propulsion,	finite difference operators,
friction resistance, 77	17-18	113-15
viscous pressure resistance,	ship seakeeping, 18	'fully non-linear' methods,
77	slamming/water-entry	115-16
wave resistance, 78-80	problems, 18-19	Kutta condition, 112
Capsizing in waves (roll motion):	zero speed seakeeping, 19	non-linear methods, 113,
cargo shifts, 196	basic techniques	115
parametric roll, 197-9	boundary element methods, 16	panel methods, 115-16
righting lever, 197	finite difference methods,	viscous flow computations,
Cartesian grids, 37	16-17	116-17
Catamarans:	finite element methods, 16-17	wave resistance, 109-16
advantages over monohulls,	finite volume methods, 16-17,	vortex-induced vibrations,
103	34-5	233-4
anti-slamming device, 104-5	numerical approaches, 3-4,	wake-improving devices, 137
foil-assisted, 104	13-14	wave impact, 192
planing, 104	bilge keels, 103	wind resistance, 95-6
semi-displacement, 104	brackets, 103	Computational tools for ship
slamming impacts, 104	cost and value	seakeeping, 144
Cauchy:	computation, 22-4	Computerized planar motor
number, 9	cost benefits, 22	carriage (CPMC), 270
scaling law, 9		Conformal mapping, 37
Cavitation:	grid generation, 23-4	
hydrofoils, 108	model generation, 23-4	Contra-rotating propellers (CRPs),
propellers	postprocessing, 23	68, 136-7
classification, 57	preprocessing, 22	Contracted and loaded tip (CLT)
description, 56-9, 109	quality benefits, 21-2	propellers, 134
fast ships, 109	robust computation, 24	Controllable-pitch propellers
tests, 60, 61-2	time benefits, 20-1	(CPPs):
tunnels, 60	fuel saving	advantages/disadvantages, 68-9
rudders	hull and appendages, 133	stopping trials, 267-8
bubble cavitation on side	propeller design, 134	Conventional propellers, 108-9
plating, 291-2	propulsion-improving devices,	Cost benefits of CFD, 22
	134-7	Crank-Nicholson scheme (viscous
introduction, 290-1	grid generation, 38	flow computation), 36
number (σ) , 290-1	non-retractable stabilizer fins,	Curvilinear grids, 37
propeller hub, 293	103	D
propeller tip vortex, 293-4	propellers, 63, 74, 134	D
sole, 292-3	resistance and propulsion, 119	D'Alembert's paradoxon, 78
surface irregularities, 294	rudders, 280, 295-6	Damping:
Central differencing scheme	shallow water, 94	propellers, 226-7
(CDS), 35	ship maneuvering	rudders, 225-6. See also roll
Chimera grids, 38-9	description, 258-62	damping
Combined RSM-GFM approach	force coefficients, 244-9, 251	Decomposition of resistance
(ship seakeeping	heel, 255	concept (calm-water), 77-8
computation), 167	lifting body methods, 260-1	Design of propellers, 62-6

Desingularization (BEM), 324-6 DGPS (differential GPS), 10 Dipole elements (BEM), 321-2 Direct spiral test (Dieudonne), 263 Displacement ships (fast monohulls), 97 Ducted propellers (wake improvement), 139-40 Dynamical similarity (models), 5-7	Finite difference (FD) operators, 113-15 Finite difference methods (FDM) and CFD, 16 Finite element methods (FEM): CFD, 16 ship vibrations engine, 232-3 grids, 212-15 numerical problems, 209 propellers, 231-2	strip methods, 179 towing tanks, 80 wave resistance, 7, 79, 110 similarity law, 8-9, 88-9, 269 Froude, William: 'law of comparison', 80 resistance, 80 Froude—Kilov force, 169, 173 Fuel saving: CO ₂ emissions, 129 false estimations, 129-30
E 147 0 152 4	slamming, 187, 194-5 Finite volume methods (FVM) and	global measures to reduce resistance
Elementary waves, 147-8, 153-4, 157	CFD, 16-17, 34-5	reduce power, 132
Elliptic equations (flows), 15	Flap rudders, 283	reduce ship size, 130
Empirical/statistical approaches, 2	Flettner rotors (wind-assisted	reduce speed, 130-1
Encounter frequency (waves),	ships), 140 Flume tanks (roll damping), 204	seaways, 131 hull
151-2, 155	Foil-assisted catamarans (FACs),	appendages optimization,
Engines vibrations, 232-3, 237	104	133
Euler flow model (ship seakeeping), 164	Force coefficients (ship	coatings and lubrication,
Excitation of vibrations:	maneuvering), 244-9	132-3
engines, 232-3	Form factor (resistance and	propeller design, 134
propellers, 231-2	propulsion), 125 Fouling and resistance, 96	propulsion-improving devices, 134-7
seaway, 233	Free surface treatment (viscous	voyage optimization, 141
vortex-induced vibrations,	flow):	wake-improving devices,
233-4	computing methods, 31-2	137-40
Experimental approaches, 2-3	iterative methods, 32-3	wind assisted ships, 140-1
F	Friction:	Full-scale trials, 9-10
Fast monohulls:	calm-water, 77	'Fully non-linear' methods (CFD
appendages, 103	resistance, 106, 132 similarity law, 7	and steady flow), 115-16
displacement ships, 97	wake, 75	G
dynamic trim, 102	Froude:	Gauss-Seidel method (viscous
planing hulls, 98-9	number	flow computation), 32
semi-displacement ships, 97,	cavitation tests, 62	Geometrical similarity (models), 5
99-101	CFD and steady flow, 110	Geosim method of Telfer
Fast ships: catamarans, 103-5	fast monohulls, 97 free-surface treatment, 31	(resistance and propulsion), 87-8
'hybrid', 105	Geosim method of Telfer, 87-8	Germanischer Lloyd:
monohulls, 97-103	'high speed strip theory', 166	vibration analyses, 212-15, 220,
problems, 105-9	high-speed strip theory, 166	233, 236
Field methods,	models and ship	wave climate, 163
ship maneuvering, 261	maneuverability, 269	GPS (Global Positioning System):
viscous flow computations, 32 whole fluid domain, 17, 95	Reynolds number, 8 rudder/hull interaction, 288	full scale trials, 3, 9 turning circle test, 262-3
Field methods (propeller flows), 56	semi-displacement hulls, 99	Green-function method (GFM) and
Fin stabilizers for bilge keels, 174,	shallow water, 94	ship seakeeping, 95, 166-7,
201-3	ship design, 117	177, 179

Grid generation (CFD cost and	fuel saving, 132-3	numerical approaches (CFD),
value), 23-4	hydrofoils, 107	10-24
Grid generation (viscous flow	planing, 98-9	problems and approaches, 1-5
computation):	rudder interaction, 288-9	viscous flow computations,
algebraic, 37	semi-displacement, 99	24-39
block-structured, 38	ship vibrations, 205, 209-11	Inviscid flow methods (propeller
cartesian, 37	spray generation, 101-2	design), 19
chimera, 38-9	wake-equalizing devices, 137	ISO:
conformal mapping, 37	Humans and vibrations, 237-9	speed and trials, 10
differential equations, 38	'Hybrid ships', 105	vibrations
single-block structure, 38	Hydro-elastic approaches in	engine, 235, 237
staggered grids, 38	slamming, 194-5	humans, 237-9
unstructured grids, 39	Hydrodynamic mass:	ship, 236
Grim wheel (vanes):	propeller damping, 226-7	iterative methods (viscous flow
contra-rotating propellers, 68	rudder damping, 225-6	computations), 32-3
propulsion, 135-6	ships, 227-8	ITTC:
Grothues spoilers, 138-9	term, 222	maneuvering tests, 262
Oromacs sponers, reco	'Hydrodynamic stiffness', 222	method (resistance and
Н	propeller damping, 226-7	propulsion)
	Hydrofoils:	1957, 84-5, 90-1, 98, 276
Hamburg Ship Model Basin, 22	cavitation, 108	1978, 86-7, 90
Hard rudder test, 268	conventional propellers, 108-9	1978 performance prediction,
Heel of ship:	fast and unconventional ships,	89-93
bearing rudders, 282-3	105-9	partial ducts and fuel saving, 138
maneuvering, 255-6		
seakeeping, 195	Hyperbolic equations (flows), 15	propulsion-improving devices, 134-7
Helmholtz's laws, 50	т	
'High-speed strip theory' (HSST),	I	Rankine singularity methods,
166, 179	IMO regulations:	174-7
Higher-order panel (BEM), 311-17	CO ₂ emissions, 129	resistance test, 82-3
Hitachi Zosen nozzle, 137	hard rudder test, 268	speed trials, 10
HSVA (ship consultancy):	maneuvering of ships,	turbulence, 25
hydrofoils and cavitation, 107,	CFD requirement, 18	waterjets, 70, 109
108	minimum requirement, 241	-
HYKAT cavitation tunnel, 60	rudders, 295	J
planing hulls, 98	tests for full-scale ships in sea	Japan Marine Standards
propellers, 63-6	trials, 262-8	Association, 10
resistance	ship safety, 3	Jensen panel (BEM), 309-11
catamarans, 105	Ince-strutt diagram (roll motion),	Jet thrusters (simulation with
propulsion, 122	198	known coefficients), 257-8
semi-displacement hulls, 99	Indirect (reverse) spiral test (Bech),	JONSWAP spectrum (wind and
trim angles, 102	263	seaway), 156
Hub Vortex Vane (HVV), 137	Interior flows (sloshing), 20	'Joukowski condition' (steady
Hughes—Prohaska method	International Standards	flow), 112, 260, 343
(resistance and propulsion),	Organization. See ISO	110W), 112, 200, 313
85-6, 87-8	International Towing Tank	K
*	e e	
Hulls:	Conference. See ITTC	Kappel propellers, 134
appendages optimization (fuel	Introduction to ship	Kelvin methods (wave resistance),
saving), 133	hydrodynamics:	110, 113
coatings and lubrication, 132-3	full-scale trials, 9-10	Kinematic similarity (models),
efficiency, 122	model tests - similarity laws, 5-9	5-6

Kites (wind-assisted ships), 140-1 Korobkin's theory and water	Long-term distributions, numerical predictions (ship	Naval Ships' Technical Manual (NSTM) rating, 96
compressibility, 193	seakeeping), 185-7	Navier—Stokes equation, 11-15.
Kutta condition (steady flow):	Low-surface energy (LSE)	See also RANSE
boundary element methods	coatings, 132	Newton's law of similarity, 6
propeller flows, 48, 55	ζ,	Newton-Rader propellers, 109
Rankine panel method in	M	Nominal wake, 75
frequency domain, 353	Magnus effect (rudders), 283	Nomoto equation (rudder effects),
Thiart element, 322-4	Man-overboard maneuver	248
three-dimensional wave	(Williamson turn), 268	Non-linear methods:
resistance problem, 340	Maneuvering of ships:	CFD and steady flow, 113, 115
vortex elements, 317-20,	hydrodynamic performance, 1	slamming theories based on
345	introduction, 241-3	self-similar flow, 191
flow separation and aftbody,	model tests, 268-70	Norrbin equation (rudder effects),
164	rudders, 270-98	248
lifting body methods, 260-1	simulation with known	North Atlantic wind field, 163
lifting surface methods, 259-60	coefficients, 243-62	Nozzled propellers, 67-8
Rankine singularity methods,	tests for full scale ship in sea	Numerical approaches:
174-7	trials, 262-8	computational fluid dynamics,
resistance and propulsion, 108	Mathieu equation (roll motion), 198	10-15
rudder design, 295	'measured mile trials', 10	problems, 3-4
Kutta-Joukowski law, 260	Michell, J.H., 110	viscous flow computation, 34-6
_	Models:	Numerical predictions (ship
L	CFD, 23-4	seakeeping):
Laplace equation:	fast ships, 105-6	combined RSM-GFM
boundary element methods, 299,	hull vibrations, 211	approach, 167
333, 341	maneuvering of ship tests,	computational methods
continuity of mass, 165	268-70	overview, 163-5
elliptic equations, 15	ship seakeeping, 144, 146	green-function method, 166-7
green function method, 166	tests and similarity laws, 5-9	'high-speed strip theory', 166
numerical approaches, 14	towing tanks, 80-1	long-term distributions, 185-7 problems for fast and
Rankine singularity method, 174	turbulence, 26	unconventional ships, 177-80
wave resistance, 111	vibrations tests, 9	Rankine singularity method, 167,
Large-eddy simulations (LES):	Momentum theory (propellers), 47-50	174-7
numerical approaches, 13	Motion of ship analysis, 168-9,	regular waves, 180
RANSE and propeller flows, 48	175	ship responses in stationary
turbulence, 26	Multigrid methods (viscous flow	seaway, 181-3
Laser-Doppler velocimetry (LDV),	computations), 33-4	strip method, 165-6, 167-74
2-3	computations), 35-4	time domain simulation
'Law of comparison', 80 Lewis sections (Strip method), 165,	N	methods, 183-5
250	Natural frequencies:	unified theory, 166
Lifting-line methods (propeller	rectangular plates, 223	Numerical Towing Tank
flows), 48, 50-2	ship motion and resistance	Symposium (NuTTS), 117
Lifting-surface methods (propeller	design, 128-9	
flows), 48, 52-4	structures, 206, 217-19	0
Linear, undamped free roll, 195-6	Natural modes:	Oblique towing tests, 270
Linear upward differencing scheme	distributed mass systems, 220	Open-water (propeller flows), 45,
(LUDS), 35-6	natural frequency for beams, 221	60-1
Long-crested seaway, 155	Natural seaway, 153-5	Orthogonal grids, 37
<i>3</i>		<i>z z</i> ,

P	CFD, 63	tests, 60
	conventional, 108	thrust, 74
Panel methods, CFD and steady	curves, 44-6	unconventional
flow, 115-16	design, 62-6	azimuthing, 69
Parabolic equations (flows), 15	experimental approach	contra-rotating, 68
Parametric roll, 199	cavitation tests, 61-2	controllable-pitch, 68-9
Particle image velocimetry (PIV), 2	cavitation tunnels, 60	nozzled, 67-8
Patch method (BEM), 326-31	open-water tests, 45, 60	podded drives, 69
Pierson-Moskowitz spectrum	fast ships	surface-piercing, 71
(wind and seaway), 156-7	cavitating, 109	Voith Schneider, 71-2
PISO (pressure implicit with	conventional, 108-9	waterjets, 70-1
splitting of operators), 32	surface-piercing, 109	vibrations, 231-2
PIV. See particle image velocimetry	flow analysis	Wageningen, 44, 62, 64
Planar motor mechanisms (PMMs),	boundary element/panel, 48	wake-improving devices,
270	CFD, 19-20	139. See also cavitation
Planing catamarans, 104	high-skew, 47	Propulsion test (resistance and
Planing hulls:	lifting-line, 48	propulsion), 88-9
fast monohulls, 97-103	lifting-surface, 48	Propulsion-improving devices
fast and unconventional ships,	momentum theory, 47-8	(PIDs):
126	RANSE, 48	CFD simulations, 134
Podded drives (propellers), 69-70	fuel saving	contra-rotating propellers,
Point source (BEM), 301-3	contra-rotating, 136	136-7
Postprocessing (CFD), 23	contracted and loaded tip, 134	Grim vane wheel, 135
Potential wake, 75	Kappel, 134	Hub Vortex vane, 137
Power (fast ships):	rotational energy losses, 135	pre-swirl devices, 135
planing hulls, 99	Sparenberg—DeJong, 134	propeller boss cap fins, 137
semi-displacement hulls, 99-101	HSVA design and testing, 63	rudder thrust fins, 135
Pre-swirl devices (propulsion),	hydrodynamic mass and	Propulsive efficiency, 121-2
135	damping, 226-7	Pull-out maneuver, 264-5
Preprocessing (CFD), 22	introduction	
Pressure—velocity coupling, 32	blade area, 42-4	Q
'Primary wave pattern', 79	blade number, 43	•
Problems for fast and	geometry, 41-2	Quality benefits and CFD, 21-2
unconventional ships:	helicoidal surfaces, 42	D
hydrofoils, 107-8	pitch, 42	R
models, 105-6	profile shape, 43	Rankine method (wave resistance),
numerical prediction, 177-88	rake, 43	110-11
planing hulls, 106	skew back, 43	Rankine panel method:
propellers	model tests and ship	frequency domain (BEM),
cavitating, 109	maneuverability, 268	353-65
conventional, 108-9	Newton-Rader, 109	seakeeping, 18
surface-piercing, 109	propeller-induced pressures,	Rankine singularity method (RSM)
surface effect ships, 108	66-7	167, 174-7, 179
surface-piercing propellers, 109	propulsion test, 88-9	RANSE (Reynolds-averaged
waterjet propulsion, 109	RANSE, 30-1, 48, 56	Navier—Stokes equation):
Propeller boss cap fins (PBCFs),	rudder interaction, 135, 284-8	CFD
137	ship, 74-5	description, 13-20
Propeller-induced pressures, 66-7	stopping, 257	ship maneuvering, 255, 258,
Propellers:	submarine, 60, 63	261-2
blade vibrations, 9	surface-piercing, 109	steady flow, 113, 116

free-surface simulations, 164,	natural period for ship motion,	rudders, 276, 278, 296
194-5	128-9	towing tanks, 81
grids, 39	prediction methods, 120-1	turbulence models, 27-8
hydrofoils and cavitation, 108	propulsive efficiency, 121-2	similarity, 82, 94, 130
propellers, 30-1, 48, 56	relative rotative efficiency, 124	stresses, 24-6
rudder design, 295	speed loss in wind and waves,	Righting lever (capsizing in waves),
ship flows, 32	126-8	197
SIMPLE algorithm, 32	thrust deduction factor, 122-3	Roll damping:
sloshing, 19	viscous pressure resistance	bilge keels, 201
turbulence, 24	coefficient, 125	flume tanks, 204
viscous flow computation,	wake fraction, 122-3	roll stabilizing tanks, 203
116-17	wetted surface, 124-25	Roll motion:
vortex-induced vibrations,	wind resistance, 126	capsizing in waves, 196-9
234	experimental approach	linear, undamped free roll, 195-6
water impact problems, 4	Geosim method of Telfer, 87-8	roll damping, 199-204
waterjet propulsion, 109	Hughes—Prohaska, 85-6, 87	stabilizing tanks, 203
wave resistance, 80	ITTC1957, 84-5, 90	time-domain simulation, 184
RAOs (response amplitude	ITTC1978, 86-7, 90	Rotating arm tests, 270
operators):	ITTC 1978 performance	Rotating cylinder rudders, 283-4
regular waves, 180	prediction, 89-93	Royal Institute of Naval Architects,
ships and stationary seaway,	propulsion test, 88-9	70, 80
181-3	resistance test, 82-3	Rudder propellers. See azimuthing
Strip method, 174, 179	towing tanks, 80-2	propellers
time-dimension simulation,	fast ships	Rudders:
183-5	catamarans, 103-5	air ventilation, 279-80
Regular first order panel, (BEM),	fast monohulls, 97-103	Becker, 283
304-9	problems, 105-9	Bernoulli's law, 280
Regular waves (numerical	fuel saving, 129-41	CFD and flows, 295-8
predictions), 180	ship hydrodynamic	definition, 270-4
Relative rotative efficiency, 124	performance, 1	design, 295-8
Resistance and propulsion:	Resonance in ship structures, 211	dynamic pressure, 280-2
additional resistance	Response amplitude operators. See	engine, 274
appendages, 94	RAOs	fast ships, 103
roughness, 94, 96-7	Reynolds:	fuel saving, 133
seaway, 94, 97	law, 8	hard rudder test, 268
shallow water, 94-5	number	hull interaction, 288-9
wind, 94, 95-6	appendage resistance, 125-6	hydrodynamic mass and
CFD	bilge keels, 126	damping, 225-6
resistance and propulsion, 17-18	blended schemes, 36	hydrodynamics, 274-82
steady flow, 109-16	cavitation tests, 62	introduction, 270-4
concepts	Froude number, 8	maneuvering effectiveness, 272
decomposition of resistance,	hydrofoils, 107-8, 276	model tests and ship
76-80	ITTC 1978 performance	maneuverability, 268
ship and propeller, 74-6	prediction, 89-93	profile thickness, 278
design	model tests, 8-9	propeller interaction, 135,
appendage resistance, 125-6	models and ship	284-8
CAD, 121, 124	maneuverability, 268	resistance, 4, 94
empirical methods, 117	open-water tests, 60-1	stall angle, 278
form factor, 125	planing hulls, 98	stern position, 271-2
hull efficiency, 122	propellers, 89, 231-2	thrust fins, 135

Rudders: (Continued)	vibrations, 1, 18	Solar power (wind-assisted ships),
types	viscosity, 164	140-1
active/propeller, 284	wave climate, 163	SolarSailor Ferry, Sydney, 140
flap, 283	waves and seaway, 147-63	Spade rudders, 283
heel bearing, 282	wind and seaway, 156-63	Sparenberg—DeJong propellers,
rotating cylinders, 283-4	Short-crested seaway, 155	134
semi-balanced, 283	SIMBEL simulation method, 184	Speed:
spade, 283	SIMPLE (semi implcit pressure	loss in wind and waves, 126-8
steering nozzle, 284. See also	linked equation), 32-3	trials, 10
cavitation	SIP (strong implicit procedure),	Spiral tests:
Runge-Kutta integration	32-3	'direct', 263-4
(time-domain simulation),	Simulation with known coefficients	'indirect', 263
183-4, 250	(ship maneuvering):	yaw stable/unstable, 264
G.	CFD, 258-62	Spoilers and wake-improvement,
S	force coefficients, 244-9, 251	138-9
'Sauna tanks', 9	heel, 255-6	Spray generation and hull design,
Schneekluth nozzle, 137	introduction/definition, 243-4	101-2
Schichtling's hypothesis (wave	jet thrusters, 257-8	Steering nozzle with rudder, 284
resistance), 95	physical explanation and force	STF (Salvesen, Tuck and Faltinsen)
Sea spectra and wind duration,	estimation, 249-55	strip methods, 165
161	shallow water, 256	Stopping:
Sea strengths and wind, 128	stopping, 257	simulation with known coeffi-
Seaway:	Slamming (ship seakeeping):	cients (ship maneuvering),
excitation of vibrations, 233	air trapping, 191-2	257
fuel saving, 131	computational fluid dynamics,	trial (ship maneuverability),
resistance, 94, 97	192	267-8
wind, 156-63. See also ship	hydro-elastic approaches, 194-5	Strip method module (BEM),
seakeeping	introduction, 187-8	349-53
'Secondary wave pattern', 79	linear slamming theories, 188-9	Strip method (numerical
Semi-balanced rudders, 283-4	simple non-linear slamming	predictions), 165-6, 167-74,
Semi-displacement ships:	theories based on	177
catamarans, 103-5	self-similar flow, 191	Submarine propellers, 60, 63
fast monohulls, 97-103	slamming theories including air	Sumitomo Integrated Lammern
Shaft brackets/bosses (resistance),	trapping, 191-2	Duct (SILD), 137
94, 103	three-dimensional slamming	Surface effect ships (SES), 20,
Shallow water:	theories, 193-4	108
resistance and propulsion, 94-5	Wagner's theory, 190, 193	Surface-piercing propellers, 71, 109
simulation with known	Watanabe's theory, 190, 194	Surface-treatment composites
coefficients, 256	water compressibility, 193	(STC), 132
Ship seakeeping:	wave impact classification, 187	SWAN (Ship Wave ANalysis) code,
computations, 144, 163-87	wet-deck, 188	115, 167
experimental approaches,	Slamming/water-entry problems,	Swell (waves), 156, 162
145-7	18-19	Swirl and asymmetric aftbodies,
introduction, 143-5	Slender-body theory (ship	135-6
natural seaway, 153-5	maneuvering), 253, 260	
numerical predictions, 163-87	Slewable propellers. See	T
roll motion, 195-204	azimuthing propellers	Telfer's method (resistance), 87-8
sea nature, 5	Sloshing (interior flows), 20	Tests for full scale ships in sea
slamming, 187-95	Slow steaming (fuel saving), 131	trials:
stationary seaway, 181-3	Smith effect (waves), 150	hard rudder test, 268

man-overboard maneuver, 268	V	Vortex elements (BEM), 317-20 Vortex-induced vibrations,
pull-out maneuver, 264-5	Vibrations:	233-4
spirals, 263-4	adjacent fluids, hydrodynamic	Vortex-lattice methods (VLM),
stopping trial, 267-8	mass, 222-30	54
turning circle, 262-3	beams, 207, 209	Voyage optimization and fuel
zigzag maneuver, 265-6	effects	saving, 141
Thiart element (BEM), 322-4, 363	humans, 237-9	
Three-dimensional slamming	introduction, 234	W
theories, 193-4	ship, 236	
Three-dimensional wave resistance	excitation, 231-4	Wageningen propellers, 44, 62, 64
problem (BEM), 340-9	finite element methods, 209,	Wagner's theory (slamming), 190,
Thrust:	211 fraguency 206, 217, 10, 220, 1	193
deduction factor, 122-3	frequency, 206, 217-19, 220-1	Wake:
loading coefficient (open-water),	global ship hulls, 209-11	field, 83
45	introduction, 205-6 local structures, 211-22	fraction, 89, 92, 123
propeller, 74	Rayleigh method, 209	friction, 75
'Thrust identity approach'	ship hydrodynamic	nominal, 73
(resistance and propulsion),	performance, 1	potential, 75
89	spectral methods, 209	wave, 75
'Thrust identity' (propulsion test),	theory, 206-9	Wake fraction, 269
89 Time hand to and CED, 20.1	Viscosity and ship seakeeping, 164	Wake-equalizing devices, 137
Time benefits and CFD, 20-1 'Torque identity' (propulsion test),	Viscous flow computations:	Wake-improving devices:
89	boundary conditions, 28-31	CFD simulations, 138
Towing tanks:	dynamic viscosity, 7	ducted propellers, 139-40
cavitation tests and propellers, 9	free surface treatment, 31-2	Hitachi Zosen nozzle, 137
fast and unconventional ships,	grid generation, 36-9	Schneekluth nozzle, 137
105-9	iterative methods, 32-3	spoilers, 138
resistance, 80-1, 82-3	kinematic viscosity, 8	Sumitomo Integrated Lammern
ship seakeeping, 145	multigrid methods, 33-4	Duct, 137
Tugs design, 118	numerical approximations, 34-6	Watanabe's theory (slamming),
Turbulence:	pressure-velocity coupling,	190, 194
large-eddy simulations, 26	32	Water compressibility and
models, 24-8	RANSE codes, 32	slamming, 193
viscous flow computations, 24-8	resistance and propulsion,	Waterjets:
Turning circle test, 262-3, 269	116-17	propellers, 70
Two-dimensional flow around	steady flow, 116-17	propulsion, 109
a body in infinite fluid	turbulence, 24-8	Wave resistance:
(BEM), 333-5	Viscous pressure resistance:	calm-water, 78-80
Two-dimensional wave resistance	calm-water, 77	CFD, 109-16 design, 119
problem (BEM), 335-40	coefficient, 125	hull and appendages, 133
	Voith—Schneider propellers	Schlichtling's hypothesis, 95
\mathbf{U}	(VSPs), 71, 242	wake, 73
Unified theory and numerical	Völker formula, 118	'Wave resistance problem', 80,
predictions (ship	Volume-of-fluid formulation	111, 336
seakeeping), 166	(VOF), 32 Von Karman's impact model	Waves:
Unstructured grids, 39	(slamming), 187-9	airy, 147-52
Upwind differencing scheme	Von-Mises stress criterion	capsizing, 196-9
(UDS), 35	(propellers), 66	climate, 163
· //	(properiors), oo	,

Waves: (Continued)
elementary, 147-8, 153-4, 157
encounter frequency, 151-2,
155
frequency, length and encounter
frequency, 151-2
impact, 188, 192
numerical predictions, 180
regular, 180
Smith effect, 150
swell, 156
wind, 160

Wet-deck slamming, 188
Wetted surface (resistance and propulsion), 124-5
Wind:
Beaufort Number, 126
duration and sea spectra, 167
resistance, 95-7, 126
sea strengths, 128
seaway, 156-63
waves, 160
Wind-assisted ships (fuel saving):
Flettner rotors, 140

kites, 140-1 solar power, 140-1 Wöhler curve (ship vibrations), 236

Y

Young's modulus, 208

\mathbf{Z}

Zero speed seakeeping, 19 Zigzag maneuver, 265-6, 270