Logik – Klausurvorbereitung Lovis Rentsch

2025-06-08

Contents	•
----------	---

	1.1.	Aussag	genlogik	3
		1.1.1.	strukturelle Induktion	3
		1.1.2.	rekursive Funktionen	3
			1.1.2.1. Länge einer Formel	3
			1.1.2.2. Rang einer Formel	3
			1.1.2.3. Anzahl der Klammern	3
			1.1.2.4. Signatur	3
			1.1.2.5. Teilformeln	3
		1.1.3.	Interpretation	4
		1.1.4.	Modellbegriff	4
		1.1.5.	Folgerung	4
		1.1.6.	semantische Äquivalenz	4
		1.1.7.	Ersetzungstheorem	4
		1.1.8.	KNF & DNF	
		1.1.9.	Hornformel	
			1.1.9.1. Implikationsform	
			1.1.9.2. Markierungsalgorithmus	
		1.1.10.	Schnitteigenschaft	
			Resolvente	
			Resolutionsverfahren	
			Resolutionshülle	
			Kompaktheitssatz	
			Interpolationstheorem	
			Substitution	
	1.2.		atenlogik	
		1.2.1.	freie und gebundene Variablen	
		1.2.2.	Auswertung der Formel	
		1.2.3.	au-Signaturen	
		1.2.4.	Semantik	
		1.2.5.	bereinigte Formeln	
		1.2.6.	Pränexnormalform	
		1.2.7.	Skolemnormalform	
		1.2.8.	Herbrand	
		1.2.0.	1.2.8.1. Universum	
			1.2.8.2. Struktur	
			1.2.8.3. Modell	
			1.2.8.4. Satz von Löwenheim-Skolem TODO: S.240	
			1.2.8.5. Herbrand-Expansion	
			1.2.8.6. Algorithmus von Gilmore TODO: S.245	
			1.2.8.7. Grundresolution	
2	Spielz	zettel	1.2.6./. Grundresolution	
	•		ormel	9

	2.1.1.	Markierungsalgorithmus	. 9		
	2.1.2.	Schnitteigenschaft	10		
	2.1.3.	Resolvente	10		
2.2.	Berein	igt	10		
2.3.		alenformen			
	2.3.1.	Negationsnormalform	10		
	2.3.2.	Pränexnormalform (PNF)	10		
	2.3.3.	Skolemnormalform	10		
2.4.					
2.5.	Unifikationsalgorithmus				
2.6.	rekursive Formeln				
2.7.	Äquiva	alenzen	11		
2.8.	Resolu	tionshülle	11		
2.9.	Herbrand				
2.10.	0. Herbrand-Universum				
2.11.	1. Herbrand-Struktur				
2.12.	2. Herbrand-Modellsatz				
2.13.	3. Herbrand-Expansion				
2.14.	14. Algorithmus von Gilmore				
	5. Grundresolutionsalgorithmus				
2.16.	6. prädikatenlogiksche Resolution				

1. Skript

1.1. Aussagenlogik

$$\mathcal{A} = \{A_i \mid i \in \mathbb{N}\}$$
Menge der atomaren Formeln

Wir nennen $\mathcal F$ die Menge der aussagenlogischen Formeln mit den Eigenschaften

- 1. $\mathcal{A} \subseteq \mathcal{F}$
- 2. $\varphi \in \mathcal{F} \Rightarrow \neg \varphi \in \mathcal{F}$
- 3. $\varphi, \psi \in \mathcal{F} \Rightarrow (\varphi \land \psi), (\psi \lor \psi) \in \mathcal{F}$

1.1.1. strukturelle Induktion

Oder auch "Induktion über den Formelaufbau".

Da wir uns auf $f \in \mathcal{F}$ beziehen gilt es zu zeigen, dass nach dem Induktionsschritt die Formel noch in \mathcal{F} ist. Die Induktionen haben allgemein diese Form:

- 1. Induktionsanfang: Aussage gilt $\forall A \in \mathcal{A}$
- 2. Induktionsschritt: Aussage gilt für φ, ψ zu zeigen ist dann, dass es auch für
 - ¬φ
 - $\psi \circ \varphi$

gilt

1.1.2. rekursive Funktionen

1.1.2.1. Länge einer Formel

$$\begin{split} l(A) &= 1 \\ l(\neg \varphi) &= 1 + l(\varphi) \\ l((\varphi \circ \psi)) &= 1 + l(\varphi) + 1 + l(\psi) + 1 \end{split}$$

1.1.2.2. Rang einer Formel

$$\begin{split} r(A) &= 0 \\ r(\neg \varphi) &= r(\varphi) + 1 \\ r((\varphi \circ \psi)) &= \max(r(\varphi), r((\psi))) + 1 \end{split}$$

1.1.2.3. Anzahl der Klammern

$$k(A) = 0$$

$$k(\neg \varphi) = k(\varphi)$$

$$k((\varphi \circ \psi)) = 1 + k(\varphi) + k(\psi) + 1$$

1.1.2.4. Signatur

$$s(A) = \{A\}$$

$$s(\neg \varphi) = s(\varphi)$$

$$s((\varphi \circ \psi)) = s(\varphi) \cup s(\psi)$$

1.1.2.5. Teilformeln

$$\begin{split} t(A) &= \{A\} \\ t(\neg\varphi) &= t(\varphi) \cup \{\neg\varphi\} \\ t((\varphi \circ \psi)) &= t(\varphi) \cup t(\psi) \cup \{\varphi \circ \psi\} \end{split}$$

1.1.3. Interpretation

Eine Abbildung $I:A\to\{0,1\}$ heißt Belegung/Interpretation. Wir nennen $\mathcal{B}=\{I\mid I:A\to\{0,1\}\}$ die Menge aller Interpretationen.

Für ein I definieren wir $I^*: \mathcal{F} \to \{0, 1\}$

- 1. $I^*: A \to \{0, 1\} \text{ mit } A \mapsto I^*(A) = I(A)$
- 2. $I^*(\neg \varphi) = f_{\neg}(I^*(\varphi)) = ((I^*(\neg \varphi) = 1) \Leftrightarrow (I^*(\varphi) = 0))$
- 3. $I^*(\varphi \circ \psi) = f_{\circ}(I^*(\varphi), I^*(\psi))$

Wenn wir alle Belegungen darstellen wollen verwenden wir Wahrheitstabellen.

1.1.4. Modellbegriff

Eine Belegung I heißt Modell von φ , sofern $I(\varphi)=1$. Wir setzen $\operatorname{Mod}(\varphi)=\{I\in\mathcal{B}\mid I \text{ ist Modell von }\varphi\}.$

erfüllbar	$\operatorname{Mod}(\varphi) \neq \emptyset$
unerfüllbar	$\operatorname{Mod}(\varphi)=\emptyset$
falsifizierbar	$\operatorname{Mod}(\varphi) \neq \mathcal{B}$
tautologisch	$\operatorname{Mod}(\varphi) = \mathcal{B}$
kontingent	$\emptyset\subset\operatorname{Mod}(\varphi)\subset\mathcal{B}$

Wir definieren weiterhin

$$\forall I \in \mathcal{B} : I(\top) = 1$$

 $\forall I \in \mathcal{B} : I(\bot) = 0$

Und sei $T \subseteq \mathcal{F}$, dann definieren wir $\operatorname{Mod}(T) = \bigcap_{\varphi \in T} \operatorname{Mod}(\varphi)$.

1.1.5. Folgerung

Sei $T \subseteq \mathcal{F}$ und $\varphi \in \mathcal{F}$. Wir sagen φ folgt logisch aus T, falls $\operatorname{Mod}(T) \subseteq \operatorname{Mod}(\varphi)$ und schreiben $T \vDash \varphi$. T ist eine Menge von Formeln, φ ist eine einzelne Formel. Weiterhin gilt

$$T, \varphi \vDash \psi \Leftrightarrow T \vDash \varphi \to \psi$$

insbesondere für $T = \emptyset$, also

$$\underbrace{\varphi \vDash \psi}_{\text{Metasprache}} \Leftrightarrow \underbrace{\varphi \Rightarrow \psi}_{\text{Objektsprache}}$$

1.1.6. semantische Äquivalenz

Zwei Formeln sind semantisch äquivalent wenn ihre Modelle gleich sind. $\varphi, \psi \in \mathcal{F}$ sind äquivalent, oder auch $\varphi \equiv \psi$ wenn $\operatorname{Mod}(\varphi) = \operatorname{Mod}(\psi)$.

1.1.7. Ersetzungstheorem

Wenn $\xi, \xi' \varphi, \psi \in \mathcal{F}$ mit $\varphi \equiv \psi$ und $\varphi \in t(\xi)$. Wenn ξ' eine Formel ist die sich durch Ersetzung eines Vorkommens von φ in ξ durch ψ ergibt, dann gilt $\xi \equiv \xi'$.

1.1.8. KNF & DNF

Eine Formel φ ist in konjunktiver Normalform, sofern

$$\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} L_{i,j} \right)$$

Analog ist eine Formel in disjunktiver Normalform, sofern

$$\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{m_i} L_{i,j}\right)$$

Für DNF Formeln ist die Erfüllbarkeit in Linearzeit lösbar. Für KNF Formeln ist die Tutologie in Linearzeit überprüfbar.

$$\forall \varphi \in \mathcal{F}: \exists \varphi_D \wedge \varphi_K: \varphi \equiv \varphi_D \equiv \varphi_K$$
 mit φ_D in DNF $\wedge \varphi_K$ in KNF

1.1.9. Hornformel

 $\varphi \in \mathcal{F}$ ist eine Hornformel wenn

- 1. φ in KNF
- 2. jedes Konjunkt $\bigvee_{j=1}^{m_j} L_{i,j}$ besitzt maximal ein positives Literal

1.1.9.1. Implikationsform

Eine Hornformel kann in eine semantisch äquivalente Form gebracht werden kann

1.
$$\neg A_1 \lor \dots \lor A_n \lor A_{n+1} = A_1 \land \dots \land A_n \Rightarrow A_{n+1}$$

- $2. \ A_{n+1}=1 \Rightarrow A_{n+1}$
- 3. $\neg A_1 \vee \ldots \vee \neg A_n = A_1 \vee \ldots \vee A_n \Rightarrow 0$

1.1.9.2. Markierungsalgorithmus

Ist ein Erfüllbarkeitstest für Hornformeln.

- 1. Markiere jedes Vorkommen von A für Implikationen $1 \Rightarrow A$
- 2. Wiederhole
 - Markiere jedes Vorkommen von B für Implikationen $A_1 \wedge ... \wedge A_n \Rightarrow B$ wobei $A_1,...,A_n$ schon markiert
 - Falls ein B=0 markiert, gib unerfüllbar aus und stoppe
- 3. Andernfalls: Gib $M = \{A \mid A \text{ wurde markiert}\}$ aus

1.1.10. Schnitteigenschaft

Eine $\varphi \in \mathcal{F}$ hat die Schnitteigenschaft sofern $\forall M, M' \in \operatorname{Mod}(\varphi) : M \cap M' \in \operatorname{Mod}(\varphi)$.

- jede Hornformel hat die Schnitteigenschaft
- φ hat Schnitteigenschaft $\Rightarrow \exists \psi : \varphi \equiv \psi$ mit ψ Hornformel

1.1.11. Resolvente

Seinen C_1, C_2 Klauseln. Eine Klausel R heißt Resolvente von C_1, C_2 , falls es ein Literal L gibt, sodass

$$L \in C_1, \overline{L} \in C_2$$

$$R = (C_1 \setminus \{L\}) \cup \left(C_2 \setminus \left\{\overline{L}\right\}\right)$$

1.1.12. Resolutionsverfahren

Eine Klausel ist eine endliche Menge von Literalen. Die leere Klausel nennen wir \square . Einer KNF wird Klauselmenge $M(\varphi)=\{C_1,...,C_n\}$ zugeordnet, wobei $C_i=\left\{L_{i,1},...,L_{i,m_i}\right\}$

1.1.13. Resolutionshülle

Sei M eine Klauselmenge.

$$\operatorname{Res}(M) = M \cup \{R \mid R \text{ ist Resolvente zweier Klauseln} \in M\}$$

$$\begin{aligned} \operatorname{Res}^0(M) &= M \\ \operatorname{Res}^{i+1} &= \operatorname{Res} \big(\operatorname{Res}^i(M) \big) \\ \operatorname{Res}^*(M) &= \bigcup_{i \in \mathbb{N}} \operatorname{Res}^i(M) \end{aligned}$$

1.1.14. Kompaktheitssatz

 $T \subseteq \mathcal{F}$. Es gilt:

T erfüllbar $\Leftrightarrow \forall \emptyset \neq T' \subseteq T$ erfüllbar

Hier lässt sich folgern

$$M$$
 unerfüllbar $\Leftrightarrow \Box \in \operatorname{Res}^*(M)$

1.1.15. Interpolationstheorem

Gegeben $\varphi, \psi \in \mathcal{F}$ mit $\varphi \models \psi \Rightarrow \exists$ Interpolante $\xi \in \mathcal{F}$ mit

1.
$$s(\xi) \subseteq s(\varphi) \cup s(\psi)$$

2.
$$\varphi \models \xi \land \xi \models \psi$$

1.1.16. Substitution

$$A_i \in \mathcal{A}, \xi \in \mathcal{F}$$
$$[\xi/A_i] : \mathcal{F} \to \mathcal{F} \text{ mit } \varphi \mapsto \varphi[\xi/A_i]$$
$$A_{j[\xi/A_i]} = \begin{cases} \xi &, i = j \\ A_j, \text{ sonst} \end{cases}$$
$$(\neg \varphi)[\xi/A_i] = \neg(\varphi[\xi/A_i])$$
$$(\varphi \circ \psi)[\xi/A_i] = \varphi[\xi/A_i] \circ \psi[\xi/A_i]$$

Weiterhin definieren wir für $I \in \mathcal{B}$

$$x \in \{0,1\}$$

$$I_{[A \mapsto x]} \big(A_j\big) = \begin{cases} x & \text{, } i = j \\ I\big(A_j\big), \text{ sonst} \end{cases}$$

also zB. $I_{[A\mapsto 1]}(\varphi)=I(\varphi[\top/A])$

1.2. Prädikatenlogik

$$\begin{split} \mathcal{V} &= \{x_1, x_2, \ldots\} \\ \mathcal{P} &= \{P_1, P_2, \ldots\} \\ \mathcal{F} &= \{f_1, f_2, \ldots\} \end{split}$$

Die Menge der Terme $\mathcal T$ ist definiert als

- 1. $\mathcal{V} \cup \mathcal{C} \subseteq \mathcal{T}$
- 2. Falls $f^n\in\mathcal{F}$ mit $n\geq 1$ und $t_1,...,t_n\in\mathcal{T}$ dann $f^n(t_1,...,t_n)\in\mathcal{T}$

mit $\mathcal C$ der Menge der Konstanten.

Die Menge der prädikatenlogischen Formeln ist definiert durch:

- 1. $P^n \in \mathcal{P}$ und $t_1,...,t_n \in \mathcal{T}$ dann $P^n(t_1,...,t_n) \in \mathcal{F}_{\!\!\text{PL}}$
- 2. $\varphi \in \mathcal{F}_{PL} \Rightarrow \neg \varphi \in \mathcal{F}_{PL}$
- 3. $\varphi, \psi \in \mathcal{F}_{PL} \Rightarrow \varphi \circ \psi \in \mathcal{F}_{PL}$

4.
$$x \in \mathcal{V} \land \varphi \in \mathcal{F}_{PL} \Rightarrow (\exists x \varphi), (\forall x \varphi) \in \mathcal{F}_{PL}$$

1.2.1. freie und gebundene Variablen

Wir unterscheiden zwischen freien und gebundenen Variablen.

$$\begin{split} \operatorname{geb} \big(P^{n(t_1, \dots, t_n)} \big) &= \emptyset \\ \operatorname{geb} (\neg \varphi) &= \operatorname{geb} (\varphi) \\ \operatorname{geb} ((\varphi \circ \psi)) &= \operatorname{geb} (\varphi) \cup \operatorname{geb} (\psi) \\ \operatorname{geb} (\kappa x \varphi) &= \operatorname{geb} (\varphi) \cup \{x\} \quad \text{mit } \kappa \in \{\exists, \forall\} \\ \operatorname{frei} \big(P^{n(t_1, \dots, t_n)} \big) &= \operatorname{var} (t_1) \cup \dots \cup \operatorname{var} (t_n) \\ \operatorname{frei} (\neg \varphi) &= \operatorname{frei} (\varphi) \\ \operatorname{frei} ((\varphi \circ \psi)) &= \operatorname{frei} (\varphi) \cup \operatorname{frei} (\psi) \\ \operatorname{frei} (\kappa x \varphi) &= \operatorname{frei} (\varphi) \setminus \{x\} \qquad \text{mit } \kappa \in \{\exists, \forall\} \end{split}$$

Eine Formel ohne freie Variablen nennt man auch einen Satz (/geschlossene Formel).

1.2.2. Auswertung der Formel

Um eine Formel auswerten zu können (ihr einen Wahrheitswert zuordnen) müssen wir wissen:

- ullet Über welchem Grunduniversum U betrachten wir die Formel
- was sind die Konstanten
- was sind die Funktionen und Relationen

1.2.3. τ -Signaturen

Sei $\tau = (\mathcal{P}, \mathcal{F})$ eine Signatur. Eine τ -Struktur $\mathfrak{U} = (U, I)$ besteht aus:

- einer nichtleeren Menge U (Universum)
- einer Interpretation I, sodass
 - $\forall P^n \in \mathcal{P} \text{ ist } I(P^n) \subseteq U^n$
 - $\forall f^n \in \mathcal{F} \text{ ist } I(f^n): U^n \to U$

Wir schreiben auch $P^{\mathfrak{U}}$ für I(P) bzw $f^{\mathfrak{U}}$ für I(f) und analog für $U^{\mathfrak{U}}$ das Universum und $I^{\mathfrak{U}}$ die Interpretation.

1.2.4. Semantik

Sei $\mathfrak U$ eine au-Struktur. Eine Belegung in $\mathfrak U$ ist eine Abbildung $\beta:\mathcal V\to U^n$. Wir erweitern rekursiv zu $\beta'\mathcal T\to U^n$

$$\begin{split} \beta'(x) &= \beta(x) & , x \in \mathcal{V} \\ \beta'(c) &= c^{\mathfrak{U}} & , c \in \mathcal{C} \\ \beta'(f(t_1,...,t_n)) &= f^{\mathfrak{U}}(\beta'(t_1),...,\beta'(t_n)) \; , f \in \mathcal{F}, t_i \in \mathcal{T} \end{split}$$

Ein Paar (U, β) heißt Interpretation.

Weiterhin definieren wir

$$\beta_{[x \mapsto a]}(y) = \begin{cases} a, x = y \\ \beta(y), \text{sonst} \end{cases}$$

Mit gegebenem (\mathfrak{U}, β) definieren wir

$$\begin{split} (\mathfrak{U},\beta)(P(t_1,...,t_n)) &= 1 \Leftrightarrow (\beta(t_1),...,\beta(t_n)) \in P^{\mathfrak{U}} \\ (\mathfrak{U},\beta)(t_1=t_2) &= 1 & \Leftrightarrow \beta(t_1) = \beta(t_2) \\ (\mathfrak{U},\beta)(\neg\varphi) &= 1 & \Leftrightarrow (\mathfrak{U},\beta)(\varphi) = 0 \\ (\mathfrak{U},\beta)(\varphi \wedge \psi) &= 1 & \Leftrightarrow (\mathfrak{U},\beta)(\varphi) \wedge (\mathfrak{U},\beta)(\psi) \\ (\mathfrak{U},\beta)(\varphi \vee \psi) &= 1 & \Leftrightarrow (\mathfrak{U},\beta)(\varphi) \vee (\mathfrak{U},\beta)(\psi) \\ (\mathfrak{U},\beta)(\exists x\varphi) &= 1 & \Leftrightarrow \exists a \in U^{\mathfrak{U}} : \left(U,\beta_{[x\mapsto a]}\right)(\varphi) = 1 \\ (\mathfrak{U},\beta)(\forall x\varphi) &= 1 & \Leftrightarrow \forall a \in U^{\mathfrak{U}} : \left(U,\beta_{[x\mapsto a]}\right)(\varphi) = 1 \end{split}$$

Interpretation (\mathfrak{U}, β) heißt Modell von φ falls $(\mathfrak{U}, \beta)(\varphi) = 1$.

1.2.5. bereinigte Formeln

Eine Formel φ heißt bereinigt, sofern $\operatorname{frei}(\varphi) \cap \operatorname{geb}(\varphi) = \emptyset$, und alle Quantoren binden verschiedene Variablen.

Für jede Formel φ existiert eine Formel ψ , sodass:

- 1. $\varphi \equiv \psi$
- 2. ψ ist bereinigt

1.2.6. Pränexnormalform

Eine Formel φ ist in PNF, sofern sie bereinigt ist und von der Form

$$Q_1x_1...Q_nx_n\xi$$

mit Quantorenblock $(Q_1,...,Q_n) \in \{ \forall \exists \}^n$ und quantorenfreier Formel ξ , die sogenannte Matrix von φ .

Für jede Formel φ existiert eine Formel ψ , sodass:

- 1. $\varphi \equiv \psi$
- 2. ψ ist in PNF

1.2.7. Skolemnormalform

Eine Formel φ ist in SNF, wenn sie in PNF vorliegt und ihr Quantorenblock nur Allquantoren enthält.

1.2.8. Herbrand

Es geht darum die Erfüllbarkeit einer Formel in SNF zu zeigen.

1.2.8.1. Universum

Das Herbrand-Universum $D(\varphi)$ ist definiert als

$$\begin{split} D(\varphi) = \begin{cases} s(\varphi) \cap \mathcal{C}, \text{falls } s(\varphi) \cup \mathcal{C} \neq \emptyset \\ \{c\} &, \text{sonst} \end{cases} \\ \forall f^n \in s(\varphi) \cap \mathcal{F} \wedge t_1, ..., t_n \in D(\varphi) : f(t_1, ..., t_n) \in D(\varphi) \end{split}$$

1.2.8.2. Struktur

Sei φ ein Satz in SNF. Eine Struktur $\mathfrak U$ heißt Herbrand-Struktur für φ , falls:

1.
$$U^{\mathfrak{U}} = D(\varphi)$$

2.
$$f\in s(\varphi)\cap\mathcal{F}$$
 und $t_1,...,t_n\in U^{\mathfrak{U}}:f^{\mathfrak{U}}(t_1,...,t_n)=f(t_1,...,t_n)$

Hierbei ist anzumerken, dass die Belegung der Prädikatensymbole in φ noch offen ist (die Variablen auch aber das ist irrelevant, denn φ ist geschlossen).

Herbrand-Struktur + Modell = Herbrand-Modell

Sei $\mathfrak A$ eine Struktur, β eine Belegung, x eine Variable, t ein Term und φ eine Formel. Sofern $\mathrm{var}(t) \cap \mathrm{geb}(\varphi) = \emptyset$, dann

$$(\mathfrak{A},\beta)(\varphi[x/t]) = \left(\mathfrak{A},\beta_{[x\mapsto\beta(t)]}\right)\!(\varphi)$$

für Herbrand-Struktur \mathfrak{A} , Belegung β und $t \in U^{\mathfrak{A}}$:

- $\operatorname{var}(t) \cap \operatorname{geb}(\varphi) = \emptyset$ da variablenfrei
- $\beta(t) = t^{\mathfrak{A}} = t$

1.2.8.3. Modell

Sei φ ein gleichheitsfreier Satz in SNF

$$\varphi$$
 erfüllbar $\Leftrightarrow \varphi$ besitzt Herbrand-Modell

(Fundermentalsatz der Prädikatenlogik)

- falls keine Funktionssymbole auftauchen, ist Herbrand-Universum endlich
 - Bsp

$$\begin{split} \varphi &= \forall x \forall y (P(z) \to Q(x,y)) \\ \psi &= \exists z \forall x \forall y (P(z) \to Q(x,y)) \\ \xi &= \forall x \forall y (P(c) \to Q(x,y)) \quad \text{SNF} \\ D(\xi) &= \{c\} \end{split}$$

- mögliche Herbrand-Strukturen $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}$

$$\begin{split} P^{\mathfrak{A}} &= \emptyset, \quad Q^{\mathfrak{A}} = \emptyset \\ P^{\mathfrak{B}} &= \{c\}, Q^{\mathfrak{B}} = \emptyset \\ P^{\mathfrak{C}} &= \emptyset, \quad Q^{\mathfrak{C}} = \{(c, c)\} \\ P^{\mathfrak{D}} &= \{c\}, Q^{\mathfrak{D}} = \{(c, c)\} \end{split}$$

1.2.8.4. Satz von Löwenheim-Skolem TODO: \$.240

1.2.8.5. Herbrand-Expansion

Sei $\varphi = \forall x_1 ... \forall x_n \xi$ Satz in SNF. Die Herbrand-Expansion $E(\varphi)$ ist definiert durch

$$E(\varphi) = \{ \xi[x_1/t_1]...[x_n/t_n] \mid t_1,...,t_n \in D(\varphi) \}$$

1.2.8.6. Algorithmus von Gilmore TODO: \$.245

1.2.8.7. Grundresolution

2. Spickzettel

2.1. Hornformel

1. Höchstens ein positives Literal pro Klausel

$$(\neg A_1 \lor \neg A_2 \lor A_3) \equiv (A_1 \land A_2 \to A_3)$$

2. eine Hornformel ist ein Konjunkt von Klauseln

2.1.1. Markierungsalgorithmus

1. Markiere jedes A wenn das Muster $1\Rightarrow A$ existiert

2. Wiederhole

- Markiere jedes B wenn das Muster $A_1 \wedge ... \wedge A_n \Rightarrow B$ existiert wobei $A_1,...,A_n$ schon markiert
- Falls B = 0 markiert, stoppe und gib unerfüllbar aus

2.1.2. Schnitteigenschaft

Jede Hornformel hat die Schnitteigenschaft und φ Schnitteigenschaft $\Rightarrow \exists \psi : \varphi \equiv \psi$

$$\forall M, M' \in \text{Mod}(\varphi) : M \cap M' \in \text{Mod}(\varphi)$$

2.1.3. Resolvente

$$L \in C_1, \overline{L} \in C_2$$

$$R = (C_1 \setminus \{L\}) \cup \left(C_2 \setminus \left\{\overline{L}\right\}\right)$$

2.2. Bereinigt

Alle Quantoren binden unterschiedliche Variablen

2.3. Normalenformen

2.3.1. Negationsnormalform

- 1. nur Atome sind negiert
- 2. $kein \rightarrow oder \Leftrightarrow$

2.3.2. Pränexnormalform (PNF)

Alle Quantoren stehen vorne und die Formel ist bereinigt.

2.3.3. Skolemnormalform

Eine Formel ist in SNF wenn sie in PNF ist und nur Allquantoren enhält.

2.4. Folgerung

$$\operatorname{Mod}(T) \subset \operatorname{Mod}(\varphi) \Leftrightarrow T \vDash \varphi$$

$$\begin{array}{ccc} \text{Und} & \underbrace{\varphi \vDash \psi} & \Leftrightarrow & \underbrace{\varphi \Rightarrow \psi} \\ & \text{Metasprache} & \text{Objektsprache} \end{array}$$

2.5. Unifikationsalgorithmus

- σ heißt Unifikator für S wenn $L_1\sigma=\ldots=L_n\sigma.$
- σ ist der Allgemeinste Unifikator für $S = \{L_1, ..., L_n\}$ wenn
 - 1. σ ist Unifikator
 - 2. falls τ Unifikator für S, dann $\sigma \leq \tau$
- 1. solange $|\{L\sigma \mid L \in S\}| > 1$, (noch nicht unifiziert) finde erste Position, an der sich $L_1\sigma$, $L_2\sigma$ mit $L_1, L_2 \in S$ unterscheiden
 - falls, an dieser Position weder $L_1\sigma$ noch $L_2\sigma$ eine Variable aufweist, gib "nicht unifizierbar" aus und stoppe (Clash)
 - sonst, d.h. ein Zeichen Variable x und andere Term t
 - falls, $x \in var(t)$, gib "nicht unifizierbar" aus und stoppe (Cycle)
 - andernfalls, erweitere Substitution: $\sigma := \sigma[x/t]$
- 2. gib "unifizierbar mit mgu σ " aus und stoppe

2.6. rekursive Formeln

• Länge

$$l(A) = 1, l(\neg \varphi) = 1 + l(\varphi), l((\varphi \circ \psi)) = 2 + l(\varphi) + l(\psi)$$

Klammern

$$k(A) = 0, k(\neg \varphi) = k(\varphi), k((\varphi \circ \psi)) = 2 + k(\varphi) + k(\psi)$$

Rang

$$r(A) = 0, r(\neg \varphi) = r(\varphi) + 1, r((\varphi \circ \psi)) = \max(r(\varphi), r(\psi)) + 1$$

• Signatur

$$s(A) = \{A\}, s(\neg \varphi) = s(\varphi), s((\varphi \circ \psi)) = s(\varphi) \cup s(\psi)$$

• Teilformeln

$$t(A) = \{A\}, t(\neg \varphi) = t(\varphi) \cup \{\neg \varphi\}, t((\varphi \circ \psi)) = t(\varphi) \cup t(\psi) \cup \{\varphi \circ \psi\}$$

2.7. Äquivalenzen

$$\neg \forall x \varphi \equiv \exists x \neg \varphi, \neg \exists x \varphi \equiv \forall x \neg \varphi$$
$$\forall x (\varphi \land \psi) \equiv \forall x \varphi \land \forall x \psi, \exists x (\varphi \lor \psi) \equiv \exists x \varphi \lor \exists x \psi x \notin \operatorname{frei}(\psi) \Rightarrow \forall x (\varphi \land \psi) \equiv \forall x \varphi \land \psi$$

2.8. Resolutionshülle

$$\begin{aligned} \operatorname{Res}^0(M) &= M \\ \operatorname{Res}^{i+1} &= \operatorname{Res} \big(\operatorname{Res}^i(M) \big) \\ \operatorname{Res}^*(M) &= \bigcup_{i \in \mathbb{N}} \operatorname{Res}^i(M) \end{aligned}$$

2.9. Herbrand

$$\varphi = \forall x \forall y (P(h(y), x) \lor R(f(y, y)))$$

2.10. Herbrand-Universum

$$D(\varphi) = \{c, h(c), f(c, c), h(h(c)), h(f(c, c)), f(c, h(c)), f(h(c), c), f(h(c), h(c)), \ldots\}$$

2.11. Herbrand-Struktur

Alle Variablen werden mit allen Termen/FUnktionen substituiert über Herbrand-Universum \rightarrow Undenlich, abzählbare Menge mit allen Prädikaten und Funktionen

2.12. Herbrand-Modellsatz

 φ in SNF und φ hat Herbrand-Modell, dann φ erfüllbar (\mathfrak{A},β) ist Herbrand-Modell von φ , da $\forall t_1,t_2\in U^{\mathfrak{A}}: \big(\mathfrak{A},\beta_{[x\mapsto t_1,y\mapsto t_2]}\big)(P(h(y),x))=1$

2.13. Herbrand-Expansion

Menge die durch Ersetzung jeder freien Variable durch jeden Term entsteht

$$E(\varphi) = \{ P(h(c), c) \lor R(f(c, c), P(h(h(c)))), P(h(h(c))), \lor R(f(h(c), h(c))), \ldots \}$$

Die Formeln können dann als Aussagenlogik interpretiert werden

2.14. Algorithmus von Gilmore

Ziel: Unerfüllabrkeit zeigen (semantisch) Teste $\varphi_1,...,\varphi_n\in E(\varphi)$ für i1,...,n ob $\varphi_1\wedge\varphi_2\wedge...\wedge\varphi_i$ ob erfüllbar

2.15. Grundresolutionsalgorithmus

Wie Gilmore nur mit Resolution über $M(\varphi_1) \cup \ldots \cup M(\varphi_i)$

$$M(P(c) \circ \neg P(f(f(c)))) = \{ \{ P(c) \}, \{ \neg P(f(f(c))) \} \}$$

2.16. prädikatenlogiksche Resolution

Ein σ finden, sodass die Prädikate wie aussagenlogische Formeln resolviert werden können.

