Class 7: Machine Learning

Leah Kim A16973745

Table of contents

Clustering	1
K-means	3
Hierarchical Clustering	6
Principal Component Analysis (PCA)	8
Data import	8
PCA to the Rescue	1

Today we will explore unsupervised machine learning methods starting with clustering and dimensionality reduction.

Clustering

To start let's make up some data to cluster where we know what the answer should be.

```
hist(rnorm(10000, mean = 3))
```

Histogram of rnorm(10000, mean = 3)

Return a vector with 30 numbers centered on -3 and 30 centered on +3.

```
tmp <- c(rnorm(30, mean = -3), rnorm(30, mean = 3))
x <- cbind(x = tmp, y = rev(tmp))
```

Make a plot of x.

```
plot(x)
```


K-means

The main function in "base" R for K-means clustering is called kmeans().

```
km <- kmeans(x, centers = 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 -2.867830 3.429867
2 3.429867 -2.867830
```

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 71.9275 71.9275
(between_SS / total_SS = 89.2 %)
```

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

The kmeans() function returns a "list" with 9 components. You can see the named components of any list with the attributes() function.

attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

Q. How many points are in each cluster.

km\$size

[1] 30 30

Q. Cluster assignment/membership vector?

km\$cluster

Q. Cluster centers

km\$centers

х у

1 -2.867830 3.429867

2 3.429867 -2.867830

Q. Make a plot of our kmeans() results showing cluster assignment using different colors for each cluster/group of points and cluster centers

```
plot(x, col = km$cluster)
points(km$centers, col = "blue", pch=15, cex=1.5)
```


Q. Run kmeans() again on x adn this cluster into four groups/clusters and plot the same result figure as above.

```
km2 <- kmeans(x, centers = 4)
plot(x, col = km2$cluster)
points(km2$centers, col = "blue", pch=15, cex=1.5)</pre>
```


Key point: K0means clustering is super populr but can be misused. One big limitation is that it can impose a clustering pattern on your data even if clear natural grouping doesn't exist - i.e. it does what you tell it to do in terms of centers.

Hierarchical Clustering

The main function in "base" R for hierarchical clsutering is called hclust().

You cannot just pas our dataset as is into hclust(). You must give a "distance matrix" as an input. We can ge this from the dist() function.

```
d <- dist(x)
hc <- hclust(d, method = "complete")</pre>
```

Helust cannot use have a special plot() method

```
plot(hc)
abline(h=8, col="red")
```

Cluster Dendrogram

d hclust (*, "complete")

To get our main cluster assignment (membership vector), we need to cut the tree at the goal posts with cutree().

```
grps <- cutree(hc, h=8)
grps</pre>
```

```
table(grps)
```

```
plot(x, col = grps)
```


Hierchical clustering is distinct in that the dendrogram (tree figure) can reveal the potential grouping in your data (unlke K-means).

Principal Component Analysis (PCA)

PCA is a common and highly useful dimensionality reduction technique used in many field - particularly bioinformatics.

Here we will analyze some data from the UK on food consumption.

Data import

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
head(x)</pre>
```

	Х	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586

```
4 Fish 147 160 122 93
5 Fats_and_oils 193 235 184 209
6 Sugars 156 175 147 139
```

```
#will gradually remove columns when run over and over again until there are no columns in the rownames(x) <- x[,1] x <- x[,-1] \\ head(x)
```

	${\tt England}$	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
#fixes the above issue by reading the input differently
x <- read.csv(url, row.names = 1)
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))

One conventional plot that can be useful is called a "pairs" plot.

PCA to the Rescue

The main function in bse R for PCA is called prcomp().

#transpose of x, x and y axis flipped
t(x)

	Cheese	Carcass_	meat	Other	_meat	Fish	Fats_and	oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	potatoes	Fresl	n_Veg	Other	_Veg	Processed	d_potat	toes
England		720)	253		488			198
Wales		874	:	265		570			203
Scotland		566	;	171		418			220
N.Ireland		1033	}	143		355			187
	Process	sed_Veg	Fresh	fruit	Cere	als 1	Beverages	Soft_d	drinks
England		360		1102	2 :	1472	57		1374

Wales	365	1137	1582	73	1256
Scotland	337	957	1462	53	1572
N.Ireland	334	674	1494	47	1506
	Alcoholic_drinks	Confection	ery		
England	375		54		
Wales	475		64		
Scotland	458		62		
N.Ireland	135		41		

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

The prcomp() function returns a list object of our results.

attributes(pca)

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

The two main "results" from here are pca\$x and pca%rotation. The first of these (pca\$x) contains the scores of the data on the new PC axis - we use these to make our PCA plot.

pca\$x

	PC1	PC2	PC3	PC4
England	-144.99315	-2.532999	105.768945	-4.894696e-14
Wales	-240.52915	-224.646925	-56.475555	5.700024e-13
Scotland	-91.86934	286.081786	-44.415495	-7.460785e-13
N.Ireland	477.39164	-58.901862	-4.877895	2.321303e-13

```
library(ggplot2)
library(ggrepel)
# Make a plot of pca$x with PC1 vs PC2

ggplot(pca$x) +
  aes(PC1, PC2, label = rownames(pca$x)) +
  geom_point() +
  geom_text_repel()
```


This figure shows the PC values of each nation in the PC1 and PC2 axes The distance between the points on this axis represents how similar they are to each other. For this data, on the PC1 axis, all the nations in Great Britain are grouped together and North Ireland is separate, indicating North Ireland is noticeably different.

The second major result is contained within the pca\$rotation object or component. Let's plot this to see what PCa is picking up...

```
ggplot(pca$rotation) +
  aes(PC1, rownames(pca$rotation)) +
  geom_col()
```


This figure shows how strongly the variables / dimensions contributed the most to the calculation of PCA1 and in what way, with longer columns signifying a higher contribution. For this data, the further to the right the column leads, the more that specific food is consumed in North Ireland compared to the other nations, and the further left the column leads, the more that specific food is consumed in Great Britain.