Lesson 6.3.2

- 6-92. a. Geometric setting, p = 0.60; P(X = 3) = 0.096
 - b. Binomial setting, n = 8, p = 0.60; P(X = 5) = 0.2787
 - c. Geometric setting, p = 0.60; P(X > 4) = 0.0256
 - d. Binomial setting, n = 12, p = 0.60; $P(5 \le X \le 8) = 0.7174$
- 6-93. a. Normal setting, $\mu = 8$ ft, $\sigma = 0.003$ ft, P(X < 7.995) = 0.0478
 - b. Binomial setting, n = 120, p = 0.0478; P(X > 5) = 0.5139
 - c. Geometric setting, p = 0.0478; $P(X \le 4) = 0.1778$
 - d. Normal setting, $\mu = 8$, $\sigma = 0.003$; P(X > 8.002) = 0.2525
 - e. Normal setting, $\mu = 16$, $\sigma = \sqrt{0.003^2 + 0.003^2}$; P(X > 16.01) = 0.0092
- 6-94. a. Geometric setting, p = 0.031. Expected value = $\frac{1}{0.031} = 32.26$ walleyes.
 - b. Binomial setting, n = 80, p = 0.031. Expected value = 2.48 fish, standard deviation = 1.55 fish.
 - c. No. We only expect 2.48 "yes" results. This needs to be at least 10.
 - d. Binomial setting, n = 80, p = 0.031; P(X = 4) = 0.1334
 - e. Binomial setting, n = 80, p = 0.031; P(X > 5) = 0.0381
 - f. Binomial setting, n = 80, p = 0.031; $P(X \le 2) = 0.5470$
- 6-95. a. $\frac{1}{6}$
 - b. Binomial setting, n = 10, $p = \frac{1}{6}$; P(X = 4) = 0.0543
 - c. Binomial setting, n = 20, $p = \frac{1}{6}$; $P(4 \le X \le 8) = 0.4306$
 - d. Binomial setting, n = 10, $p = \frac{1}{6}$; P(X < 3) = 0.7752
 - e. Geometric setting, $p = \frac{1}{6}$; P(X > 4) = 0.4823
 - f. The number of trials n is large enough to expect 50 "yes" results and 250 "no" results—both more than 10. Normal setting, $\mu = 50$, $\sigma = 6.455$. P(X < 45) = 0.2193 or 0.1971 with continuity correction.
- 6-96. a. (320)(0.1) = 32 defective items
 - b. $\sigma_X = \sqrt{320(0.1)(1-0.1)} \approx 5.3666$ items
 - c. 1 standard deviation below 32 items is 27 items. Binomial distribution, n = 320, p = 010; $P(X < 27) = P(X \le 26) = 0.1522$
 - d. Because students expect more than 10 defective and 10 non-defective items (32 and 288 respectively), the normal approximation applies. The empirical rule now says that 1 standard deviation below the mean should be roughly 16%.

6-97. $P(\text{dog food and cash}) = \frac{2}{6} \cdot \frac{1}{2} = \frac{2}{12} = \frac{1}{6}$. See sample two-way table below.

	$P(\operatorname{Cash}) = \frac{1}{2}$	$P(\text{Credit}) = \frac{1}{2}$
3	C ∩ Ca	C∩Cr
$P(C) = \frac{3}{6}$	$\frac{3}{12} = \frac{1}{4}$	$\frac{3}{12} = \frac{1}{4}$
D(D) 2	D∩Ca	D∩Cr
$P(D) = \frac{2}{6}$	$\frac{2}{12} = \frac{1}{6}$	$\frac{2}{12} = \frac{1}{6}$
n.a. 1	S ∩ Ca	S∩Cr
$P(S) = \frac{1}{6}$	<u>1</u> 12	$\frac{1}{12}$

6-98. 35th percentile:

Using an inverse normal probability density function or table:

$$z_1 = -0.38536$$

388.527 = mean + (-0.38536)stDev

94th percentile:

Using an inverse normal probability density function or table:

$$z_1 = -0.38536$$
 $z_2 = 1.55487$
388.527 = mean + (-0.38536)stDev $505.251 = mean + (1.55487)stDev$
Solving the system of equations gives: mean = 411.71 lbs, sd = 60.16 lbs

- Observational study. It would be wrong to tell a group of students that they could 6-99. a. not eat breakfast before school.
 - b. Obtain a simple random sample of students and ask them what score they received on their last test and whether or not they ate breakfast that day.
 - c. Example: The nutritional value of the breakfast the students ate could affect the outcome.
- 6-100. (a) 0, (b) 0.9, (c) 0.7, (d) -0.7. The correlation coefficient itself is only useful when the form of the graph is linear; graphs (a) and (d) in the plots below both have stronger associations than r would imply, they are just not linear in form!