PRIMEIRA PROVA DE TERMODINÂMICA E MÁQUINAS TÉRMICAS (EQE-363) Prof. Frederico W. Tavares

1) (40 Pontos) A figura a seguir mostra o processo de produção de um composto A, gasoso, a partir de A líquido saturado a 10 atm. No processo, 500 mols/min de A são produzidos. Calcule a taxa de calor e a temperatura T₃ para duas condições: a) **gás ideal** e b) **equação do virial.**

Dados: Corrente 2: vapor saturado

i- Equação de estado do virial : Z = 1 + BP/(RT), onde $BP_C/(RT_C) = 0.08 - 0.4(T_C/T)$

ii-
$$C_P(T,10atm) = 10cal/(gmolK)$$
 e $P^{SAT} = P_C \exp[7,0-7,0(T_C/T)]$

iii-
$$\Delta S_n^{VAP} = 8.0 + 1.897 \ln(T_n)$$
 e $\frac{\Delta H_2^{VAP}}{\Delta H_1^{VAP}} = \left(\frac{T_2 - T_C}{T_1 - T_C}\right)^{0.38}$

iv-
$$T_C = 500K$$
, $P_C = 30atm$, $w = 0.3$

v- $R = 1,987 \text{ cal/(gmol K)} = 82,05 \text{ (atmcm}^3)/\text{(gmol K)}$

vi- dH =
$$C_P dT + [V - T(\frac{\partial V}{\partial T})_P] dP$$
 e $dS = (\frac{C_P}{T}) dT - (\frac{\partial V}{\partial T})_P dP$

2) (40 Ptos) O ciclo de Rankine utilizado para produção de energia elétrica de uma fábrica.

Dados: Corrente 1, corrente que sai da caldeira: 1100 ºF e 800 Psia;

Corrente 2, corrente que sai da turbina: 20 psia (a turbina trabalha com 80 % de eficiência)

Corrente 3, corrente que sai do condensador: 212 ⁰F

- a) Calcule as propriedades P, T, H e S das correntes.
- b) Calcule a potência elétrica produzida quando são gastos 50000 Btu/min na caldeira.
- 3) (20 Ptos) Um tanque de 1000 cm³ é carregado com gás natural (metano) a 200 0 C. Calcular a quantidade máxima de metano dentro do tanque sabendo-se que a pressão limite de trabalho é de 15 atm. Dados: Equação de Redlich-Kwong:

$$P = \frac{RT}{(V-b)} - \frac{aT^{-1/2}}{V(V+b)}, \ a = 5,4x10^8 (cm^3 / gmol)^3 K^{1/2} atm \ e \ b = 120 (cm^3 / gmol)$$

Tabela de propriedades da água nas unidades:

[T] em 0F, [P] em psia, [H] em Btu/lbm, [S] em Btu/(lbm $^0F),$ [V] em ft³/lbm Notar que: 144 Btu/lbm = 778 ft³psia/lbm

ABS PRESS PSIA (SAT TEMP)		SAT WATER	SAT STEAM	TEMPERATURE	, DEG F 250	300	350	400	450	500
(101.74)	VUHS	0.0161 69.73 69.73 0.1326	333.60 1044.1 1105.8 1.9781	392.5 1077.5 1150.2 2.0509	422.4 1094.7 1172.9 2.0841	452.3 1112.0 1195.7 2.1152	482.1 1129.5 1218.7 2.1445	511.9 1147.1 1241.8 2.1722	541.7 1164.9 1265.1 2.1985	571.5 1182.8 1288.6 2.2237
(162.24)	V U H S	0.0164 130.18 130.20 0.2349	73.532 1063.1 1131.1 1.8443	78.14 1076.3 1148.6 1.8716	84.21 1093.8 1171.7 1.9064	90.24 1111.3 1194.8 1.9369	96.25 1128.9 1218.0 1.9664	102.2 1146.7 1241.3 1.9943	108.2 1164.5 1264.7 2.0208	114.2 1182.6 1288.2 2.0460
10 (193.21)	VUHS	0.0166 161.23 161.26 0.2836	38.420 1072.3 1143.3 1.7879	38.84 1074.7 1146.6 1.7928	41.93 1092.6 1170.2 1.8273	44.98 1110.4 1193.7 1.8593	48.02 1128.3 1217.1 1.8892	51.03 1146.1 1240.6 1.9173	54.04 1164.1 1264.1 1.9439	57.04 1182.2 1287.8 1.9692
14.696 (212.00)	SHO.	0.0167 180.12 180.17 0.3121	26.799 1077.6 1150.5 1.7568		28.42 1091.5 1168.8 1.7833	30.52 1109.6 1192.6 1.8158	32.60 1127.6 1216.3 1.8460	34.67 1145.7 1239.9 1.8743	36.72 1163.7 1263.6 1.9010	38.77 1181.9 1287.4 1.9266
15 (213.03)	SHO.	0.0167 181.16 181.21 0.3137	26.290 1077.9 1150.9 1.7552		27.84 1091.4 1168.7 1.7809	29.90 1109.5 1192.5 1.8134	31.94 1127.6 1216.2 1.8436	33.96 1145.6 1239.9 1.8720	35.98 1163.7 1263.6 1.8988	37.98 1181.9 1287.3 1.9242
20 (227.96)	V HS	0.0168 196.21 196.27 0.3358	20.087 1082.0 1156.3 1.7320		20.79 1090.2 1167.1 1.7475	22.36 1108.6 1191.4 1.7805	23.90 1126.9 1215.4 1.8111	25.43 1145.1 1239.2 1.8397	26.95 1163.3 1263.0 1.8666	28.46 1181.6 1286.9 1.8921
25 (240.07)	V UHS	0.0169 208.44 208.52 0.3535	16.301 1085.2 1160.6 1.7141		16.56 1089.0 1165.6 1.7212	17.83 1107.7 1190.2 1.7547	19.08 1126.2 1214.5 1.7856	20.31 1144.6 1238.5 1.8145	21.53 1162.9 1262.5 1.8415	22.74 1181.2 1286.4 1.8672
30 (250.34)	NH N	0.0170 218.84 218.93 0.3682	1087.9			14.81 1106.8 1189.0 1.7334	15.86 1125.5 1213.6 1.7647	16.89 1144.0 1237.8 1.7937	17.91 1162.5 1261.9 1.8210	18.93 1180.9 1286.0 1.8467
ABS PRESS PSIA (SAT TEMP)		SAT WATER	SAT STEAM	TEMPERATURE,	DEG F 750	800	900	1000	1100	1200
725 (507.01)	V H S	0.0206 493.5 496.3 0.6975	0.6318 1116.5 1201.3 1.4268	0.8729 1227.0 1344.1 1.5624	0.9240 1249.9 1373.8 1.5876	0.9732 1272.0 1402.6 1.6109	1.068 1315.3 1458.5 1.6536	1. 159 1358. 1 15 13. 7 1. 6927	1.249 1401.3 1568.8 1.7293	1.337 1444.9 1624.3 1.7638
750 (510.84)	V U H S	0.0207 498.0 500.9 0.7022	0.6095 1116.1 1200.7 1.4232	0.8409 1225.8 1342.5 1.5577	0.8907 1248.9 1372.5 1.5830	0.9386 1271.2 1401.5 1.6065	1.031 1314.6 1457.6 1.6494	1.119 1357.6 1512.9 1.6886	1,206 1400.8 1568.2 1,7252	1.292 1444.5 1623.8 1.7598
775 (514.57)	V U I W	0.0208 602.4 605.4 0.7067	0.5886 1115.6 1200.1 1.4197	0.8109 1224.6 1340.9 1.5530	0.8595 1247.9 1371.2 1.5786	0.9062 1270.3 1400.3 1.6022	0,9957 1313.9 1456.7 1.6453	1.082 1357.0 1512.2 1.6846	1.166 1400.3 1567.6 1.7213	1.249 1444.1 1623.2 1.7559
800 (518.21)	V U H S	0.0209 506.7 509.8 0.7111	0.5690 1115.2 1199.4 1.4163	0.7828 1223.4 1339.3 1.5484	0.8303 1246.9 1369.8 1.5742	0.8759 1269.5 1399.1 1.5980	0.9631 1313.2 1465.8 1.6413	1.047 1356.4 1511.4 1.6807	1.129 1399.8 1566.9 1.7175	1.209 1443.7 1622.7 1.7522
825 (521.76)	VUHS	0.0210 510.9 514.1 0.7155	0.5505 1114.6 1198.7 1.4129	0.7564 1222.2 1337.7 1.5440	0.8029 1245.9 1368.5 1.5700	0.8473 1268.6 1398.0 1.5939	0.9323 1312.6 1454.9 1.6374	1.014 1355.9 1510.7 1.6770	1.094 1399.3 1566.3 1.7138	1.172 1443.3 1622.2 1.7485
850 (525.24)	Y U H S	0.0211 515.1 518.4 0.7197	0.5330 1114.1 1198.0 1.4096	0.7315 1221.0 1336.0 1.5396	0.7770 1244.9 1367.1 1.5658	0.8205 1267.7 1396.8 1.5899	0.9034 1311.9 1454.0 1.6336	0.9830 1355.3 1510.0 1.6733	1.061 1398.9 1565.7 1.7102	1.137 1442.9 1621.6 1.7450