Aprendizado de Máquina

Métodos probabilísticos

Prof. Dr. André C. P. L. F. de Carvalho Posdoutorando: Isvani Frias-Blanco ICMC-USP

Principais tópicos

- Métodos baseados em probabilidade
- Métodos discriminativos
 - Regressão Logística
- Métodos generativos
 - Teoria das probabilidades
 - Teorema de Bayes
 - Naive Bayes

02/06/2017

André de Carvalho - ICMC/USF

Introdução

- Muitos problemas de classificação são não determinísticos
 - Relação entre atributos de entrada e classe é probabilística
 - Ruído nos dados
 - Algumas informações importantes não são capturadas pelos atributos preditivos usados
 - Informações capturadas pelos atributos preditivos usados são incompletas ou imprecisas

02/06/2017

André de Carvalho - ICMC/USP

Exemplo

- Predizer se uma pessoa terá problemas cardíacos
 - Atributos preditivos: peso e frequência de exercício
 - Ignora outras possíveis causas:
 - Bebida
 - Hereditariedade
 - Fumo
 - Stress

02/06/2017

André de Carvalho - ICMC/USF

Métodos probabilísticos

- Em várias aplicações é importante estimar a probabilidade de um exemplo pertencer a uma classe
- Modelam relacionamento probabilístico entre atributos preditivos e atributo alvo
- Tipos de modelos induzidos:
 - Modelos discriminativos
 - Modelos generativos

02/06/2017

André de Carvalho - ICMC/USP

Métodos discriminativos

- Modelam a distribuição de probabilidade a posteriori (condicional) P(Y/X)
- Dado X, retornam a distribuição de probabilidade para Y
 - Ex.: Regressão logística

02/06/2017

Métodos generativos

- Modelam a distribuição de probabilidade conjunta P(X,Y)
 - Com a distribuição conjunta é possível derivar qualquer distribuição condicional
- Induzidos por algoritmos baseados no teorema de Bayes
 - Métodos Bayesianos
 - Ex.: Naive Bayes

02/06/2017

André de Carvalho - ICMC/USP

Discriminante linear

- Induz função linear
 - Função discriminante
 - Ajusta parâmetros da função discriminante $f(x) = w_0 + w_1 x_1 + w_2 x_2 + ...$
 - Valor de f(x)
 - Distância de *x* à fronteira
 - Chance de x pertencer à classe + (-)
 - Semelhante à rede Perceptron

02/06/2017

André de Carvalho - ICMC/USP

Discriminante linear

- Distância de exemplos a fronteira de decisão definida por uma função linear
- Problema:
 - Distância: $-\infty < f(x) < +\infty$
 - Modelos probabilísticos:
 - Probabilidade: 0 < f(x) < 1
- Solução:
 - Regressão logística

© André de Carvalho - ICMC/USP

Regressão logística

- Apesar do nome, é usada para tarefas de classificação
- Estima probabilidade que um exemplo pertence a uma dada classe
 - Ajusta uma função logística a um conjunto de dados
 - Gera um hiperplano de separação
 - Utiliza um conjunto de treinamento

02/06/2017

André de Carvalho - ICMC/USP

Regressão logística

Probabilidade (P ₊)	Chance (P ₊ /(1-P ₊)	Log(Chance)
0,5	50:50 = 1	0,00
0,9	90:10 (9:1) = 9	2,19
0,999	999:1 = 999	6,91
0,01	1:99 = 0,0101	-4,60
0.001	1:999 = 0.001001	-6.91

- Encontrar f(x) que modela log(Chance)
 - Permite estimar probabilidade usando modelo gerado por discriminante linear

© André de Carvalho - ICMC/USP

Regressão logística

- Probabilidade de exemplo pertencer a classe positiva
 - Evento ocorreu

Função
$$\log\left(\frac{p_+(x)}{1-p_+(x)}\right) = f(x) = w_0 + w_1x_1 + w_2x_2 + \dots$$

$$p_+(x) = \frac{1}{1+e^{-f(x)}}$$

$$g(x,w) = \begin{cases} p_+(x) & \text{se } x \not \in + \\ 1-p_+(x) & \text{se } x \not \in - \end{cases}$$
 Função objetivo para ajuste dos pesos

Treinamento

- Encontrar valores de w_i que minimizem erro no conjunto de treinamento
 - Aproximação numérica da máxima verossimilhança
 - Gradiente descendente estocástica
 - Para grandes conjuntos de dados
 - Exemplo para 1 atributo preditivo
 - w₀: posição da função sigmoidal
 - w₁: inclinação da função sigmoidal

02/06/2017

André de Carvalho - ICMC/USP

Teoria das probabilidades

- Espaço amostral (Ω) : todos as possíveis observações de um experimento
- Evento (A): subconjunto de possíveis observações em Ω
- Ex.: Jogar um dado 8 vezes
 - $\Omega = \{1, 3, 3, 4, 2, 5, 1, 6\}$
 - A = valor do dado < 4 = {1, 3, 3, 2, 1}
 - P(A): probabilidade de um evento ocorrer

02/06/2017

André de Carvalho - ICMC/USP

Teoria das probabilidades

- P(A) satisfaz axiomas de Kolmogorov
 - P(A) ≥ 0
 - $P(\Omega) = 1$
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - Se A e B s\u00e3o eventos mutuamente exclusivos
 - (A ∩ B) = ∅
 - P(A ∩ B) = 0
 - $_{-}$ P(A ∪ B) = P(A) + P(B)

02/06/2017

André de Carvalho - ICMC/USP

Probabilidade conjunta

- Probabilidade conjunta
 - Probabilidade de dois eventos ocorrerem simultaneamente
 - P(A ∩ B) ou P(A,B)
 - Se s\u00e3o eventos independentes
 - A ocorrência de um não afeta a probabilidade de ocorrência do outro
 - $P(A \cap B) = P(A) * P(B)$

02/06/2017

André de Carvalho - ICMC/USP

Probabilidade e AM

- Sejam dois eventos A e B
 - A: atributo alvo (presença de uma doença)
 - Variável aleatória com dois valores: presença e ausência
 - B: atributo de entrada (resultado de um exame)
 - Variável aleatória com dois valores: positivo e negativo
 - P(A): probabilidade do evento A ocorrer (presença da doença)
 - $P(A) = 1 P(\neg A)$
 - P(B): probabilidade do evento B ocorrer (exame positivo)
 - P(B) = 1 − P(¬B)

02/06/2017

André de Carvalho - ICMC/USP

18

Probabilidade

- Probabilidade a priori x a posteriori de um indivíduo estar doente
 - Probabilidade a priori :
 - Probabilidade de alguém esta cursando AM no ICMC
 - Probabilidade a posteriori :
 - Probabilidade de alguém esta cursando AM no ICMC dado que faz pós no ICMC
 - P(doente) ≠ P(doente/exame)

02/06/2017

André de Carvalho - ICMC/USP

Probabilidade condicional

- Probabilidade de ocorrência de um evento depende da ocorrência de outro
 - P(A/B)
 - Probabilidade de ocorrência de um evento A depende da ocorrência de um evento B
 - Ex.: Probabilidade de estar doente (A) dado que um exame (B) deu positivo

22

 Atributos (eventos) independentes: P(A/B) = P(A)

02/06/2017

André de Carvalho - ICMC/USP

Probabilidade condicional

- Fácil estimar pela frequência as probabilidades a priori
 - P(B): prob. do resultado do exame ser positivo
 - P(A): prob. do resultado do paciente estar doente
 - P(B/A): prob. do resultado do exame ser positivo dado que o paciente esta doente
- Difícil estimar probabilidade a posteriori
 - P(A/B): probabilidade do paciente estar doente dado que seu exame deu positivo
 - Teorema (regra) de Bayes

02/06/2017

André de Carvalho - ICMC/USP

Probabilidade condicional

- Lei da probabilidade condicional
 - $P(A/B) = P(A \cap B) / P(B)$
- Teorema de Bayes
 - Permite calcular probabilidade a posteriori de um evento
 - $P(A \cap B) = P(A/B)P(B) = P(B/A)P(A)$
 - P(A/B) = P(B/A)P(A)/P(B)
 - Posteriori = (verossimilhança x priori) / evidência
 - P(B): lei da probabilidade total

02/06/2017

23

Probabilidade condicional

- Lei da probabilidade total
 - Evento A pode ter 2 possíveis resultados, A (A₁) e \neg A (A₂), que formam uma partição em Ω

$$P(B) = P(B \cap A_1) + P(B \cap A_2)$$

$$P(B) = P(B/A_1)P(A_1) + P(B/A_2)P(A_2)$$

 Evento A pode ter n possíveis resultados mutuamente exclusivos, A₁, A₂, ..., A_n, que formam uma partição em Ω

$$P(B) = \sum_{i=1}^{n} P(B/A_i)P(A_i)$$

02/06/2017

André de Carvalho - ICMC/USP

Classificação Bayesiana

- Sejam y_i, i = 1, 2, ..., m, as possíveis classes
 - Novo exemplo pertence a classe com probabilidade a posteriori máxima
 - $Y_{MAP} = arg max P(y_i/X)$
- Definição de P(y_i/X)
 - $P(y_i/X) = P(X/y_i) P(y_i) / P(X)$

02/06/2017

Redes Neurais - André Ponce de Leon F. de Carvalho - LABIC/USP

Classificação Bayesiana

- Exp. $P(X/y_i) P(y_i) / P(X)$ pode ser simplificada
 - P(X) é comum a todas as classes
 - Considerar as classes equiprováveis (P(y_i) = P(y_j))
- Exemplo x pertence a classe com máxima verossimilhança
 - $h_{MV} = arg \max_{i} P(X/y_i)$
- Difícil calcular valores
 - Precisa de um número de exemplos muito grande

02/06/2017

André de Carvalho - ICMC/USP

Classificação Bayesiana

- Inferência Bayesiana
 - Cálculo da probabilidade a posteriori a partir da probabilidade a priori
- Várias alternativas para estimar P(X/y_i)
 - Produzem diferentes funções discriminantes
 - Ex.: Classificador Naive Bayes

02/06/2017

André de Carvalho - ICMC/USP

Naive Bayes

- Classificador Bayesiano mais simples
- Assume que os atributos são independentes
 - $P(X/y_i) = P(x_1/y_i) * ... * P(x_d/y_i)$

$$P(y_i/X) \propto P(y_i) \prod_{i=1}^d P(x_j/y_i)$$

 $\log P(y_i/X) \propto \log P(y_i) + \sum_{i=1}^d \log P(x_i/y_i)$

02/06/2017

Naive Bayes

Para duas classes

$$\log \frac{P(y_1/X)}{P(y_2/X)} \propto \log \frac{P(y_1)}{P(y_2)} + \sum_{j=1}^{d} \log \frac{P(x_j/y_1)}{P(x_j/y_2)}$$

- Sinal do primeiro log indica a classe
- Sinal de cada termo do somatório indica contribuição de cada atributo

02/06/2017

André de Carvalho - ICMC/USP

Exemplo

- Conjunto tem 625 exemplos em 3 classes
 - Esquerda, direita e equilíbrio
 - Domínio de valores para atributos preditivos é {1, 2, 3, 4, 5}
 - Definir P(Classe/Atribuitos)

	Freq(classe) P(classe)	Equilíbrio 49 0,0784	Esquerda 288 0,4608	Direita 288 0,4608	
	P(Distancia = co.1/Equilíbrio) P(Peso = co.1/Equilíbrio)				

P(Distancia_{Esq2}/Equilibrio) P(Peso_{Esq2}/Equilibrio) ...

02/06/2017

André de Carvalho - ICMC/USP

Exercício

- Usar Naive Bayes para gerar um modelo probabilístico
 - Usar exemplos de treinamento (001, -1) e (110, +1)
 - Definir a classe dos exemplos: 111, 000, 100 e 011

© André de Carvalho - ICMC/USP

Exercício

Seja o seguinte cadastro de pacientes:

Nome	Febre	Enjôo	Manchas	Dores	Diagnóstico
João	sim	sim	pequenas	não	doente
Pedro	não	não	grandes		saudável
Maria	não	sim	pequenas		saudável
José	sim	sim	grandes		doente
Ana	sim	não	pequenas		saudável
Leila	não	não	grandes		doente

© André de Carvalho - ICMC/USP

6

Exercício

- Utilizar Naive Bayes para induzir modelo capaz de distinguir:
 - Pacientes potencialmente saudáveis
 - Pacientes potencialmente doentes
- Testar o modelo para novos casos
 - (Luis, não, não, pequenas, sim)
 - (Laura, sim, sim, grandes, sim)

© André de Carvalho - ICMC/USP

Conclusão

- Métodos baseados em probabilidade
- Teorema de Bayes
- Naive Bayes
- Classificadores Bayesianos
- Classificadores Bayesianos com k dependências

02/06/2017

