CS200 - Computer Organization Performance Metrics - Part 1

Aravind Mohan

Allegheny College

September 21, 2021

Motivation to learn performance metrics

- When we say "Computer A" has better performance than "Computer B," what do we mean?
- What are the different way of measuring performance of computers?
- Is there any definitive way to state that one computer is better than another?

Metrics

- Response time
 - How long does it take to complete a task?
- Throughput
 - How much work is completed per unit time?
 - e.g., tasks per hour, transactions per hour, etc

...

Metrics

- How are response time and throughput affected by
 - Replacing the processor with a faster version?
 - Adding more processors?
- We'll focus on response time for now!

How do we compute Performance?

Performance =
$$\frac{1}{ExecutionTime}$$

- To maximize performance, we should minimize execution time (same as response time).
- In general Smaller response time leads to Larger throughput

Comparing Performance

Given two computers X and Y, if the performance of X is greater than the performance of Y, then . . .

 $Performance_X > Performance_Y$

$$\frac{1}{ExecutionTime_{\mathsf{X}}} > \frac{1}{ExecutionTime_{\mathsf{Y}}}$$

 $ExecutionTime_{\mathsf{X}} < ExecutionTime_{\mathsf{Y}}$

...the execution time of X is less than the execution time of Y!

Example-1

Let us suppose an Apple Mac Pro (A) runs program P_x in 10 seconds, and Dell Inspiron (B) runs the same program P_x in 15 seconds, how much faster is Mac over Dell?

Execution $Time_B/Execution Time_A = 15s/10s = 1.5$

So Mac (A) is 1.5 times faster than Dell (B)!

How do we compute Execution Time?

- Elapsed time
 - Total response time, including all aspects:
 - Processing, I/O, OS overhead, idle time.
 - Determines system performance.

How do we compute Execution Time?

- CPU time
 - Time spent on processing a given job.
 - Discounts I/O time.
 - Comprises user CPU time and system CPU time.
 - Different programs are affected differently by CPU and system performance.

CPU Clocking

- Operation of digital hardware governed by a constant-rate clock
- Clock period: duration of a clock cycle
 - e.g., $250ps = 0.25ns = 250 \times 10^{-12}s$
- Clock frequency (rate): cycles per second
 - e.g., 4.0GHz = 4000MHz = 4.0×10^9 Hz

CPU Time

CPU Time = CPU Clock Cycles × Clock Cycle Time CPU Clock Cycles
Clock Rate

CPU Time

- Performance could be improved by:
 - Reducing number of clock cycles.
 - Increasing clock rate.
 - Hardware designer must often trade off clock rate against cycle count.

Example-2

- Computer A has:
 - 2GHz clock rate
 - 2 10s CPU time
- Computer B:
 - 6s CPU time
 - Number of clock cycles is 1.2 times as much as the number of clock cycles of Computer A.
- So what is the clock rate of computer B??

Example-2 (contd)

$$\label{eq:clock_point} \text{Clock Rate}_{B} = \frac{\text{Clock Cycles}_{B}}{\text{CPU Time}_{B}}$$

$$= \frac{1.2 \times \text{Clock Cycles}_{\text{A}}}{6s}$$

Example-2 (contd)

Clock Cycles_A = CPU Time_A × Clock Rate_A
=
$$10s \times 2GHz = 20 \times 10^9$$

Example-2 (contd)

$$\text{Clock Rate}_{\text{B}} = \frac{1.2 \times 20 \times 10^{\text{9}}}{6s} = \frac{24 \times 10^{\text{9}}}{6s}$$

= 4GHz

So which machine is faster? Computer A or B?

Exercise

- computer A has:
 - 4GHz clock rate
 - 8s CPU time
- computer B:
 - 6s CPU time
 - 2 Number of clock cycles is 1.4 times as much as the number of clock cycles of Computer A.
- computer C:
 - 4s CPU time
 - Number of clock cycles is 1.8 times as much as the number of clock cycles of Computer B.
- So what is the clock rate of computer C?? and which among the three computers is faster?

Exercise

 Upload your solution, either an image of hand-written solution file or typed down reflection file to your lesson3 repository. Submission will be counted towards class participation credits.

Reading Assignment

Section 1.6 in PH

Questions

Do you have any questions from this class discussion?