Relatório Trabalho Prático Análise Numérica I

Pilar Trindade 54855 e Rita Rodrigues 54859

1 Introdução

Neste trabalho elaborámos duas funções Octave para calcular e ilustrar graficamente a aproximação de um conjunto de dados discretos por uma função de um tipo previamente definido.

Os dados são constituídos por uma matriz de tipo $n \times 2$, cuja primeira coluna contém as abcissas dos pontos e que na segunda coluna contém as respetivas ordenadas.

2 Desenvolvimento do código

As funções que desenvolvemos em Octave foram as funções regressao e graficos.

A função regressao recebe como parâmetros ${\tt X}$ e ${\tt k}$. ${\tt X}$ é uma matriz $n\times 2$ cuja primeira coluna contém as abcissas dos pontos e que na segunda coluna contém as respetivas ordenadas. ${\tt k}$ é um inteiro entre 1 e 4 e indica qual o tipo de função a ajustar. Devolve ${\tt c}$, um vetor que contém os coeficientes a e b da função que melhor se ajusta aos dados.

A função graficos recebe X, k e c (caracterizados como na função anterior), e gera, numa janela gráfica, um gráfico com os dados originais representados apenas com um marcador e, sobreposto, um gráfico da função do tipo especificado com os coeficientes contidos no vetor c.

2.1 Função 1

Primeiro aproximámos os dados por uma função do tipo y = a + bx. Dados (x_i, y_i) i = 0, ..., n, procuramos uma reta da forma y = a + bx. Queremos minimizar a soma dos quadrados das distâncias na vertical:

$$\phi(a,b) = \sum_{i=0}^{n} (y_i - (a+bx))^2$$

 ϕ tem um mínimo que se pode determinar procurando o ponto onde o gradiente de ϕ se anula:

$$\frac{\delta\phi}{\delta a}(c_1, c_2) = 0 \qquad \frac{\delta\phi}{\delta b}(c_1, c_2) = 0$$

Vamos então calcular o gradiente de ϕ .

$$\frac{\delta\phi}{\delta a}(a,b) = \sum_{i=0}^{n} 2(y_i - (a+bx_i))(-1) = 2\sum_{i=0}^{n} (-y_i + a + bx_i)$$
$$\frac{\delta\phi}{\delta b}(a,b) = \sum_{i=0}^{n} 2(y_i - (a+bx_i))(-x_i) = 2\sum_{i=0}^{n} (-x_iy_i + ax_i + bx_i^2)$$

E agora vamos calcular o ponto (c_1, c_2) que minimiza ϕ .

$$\frac{\delta\phi}{\delta a}(c_1, c_2) = 0 \qquad \frac{\delta\phi}{\delta b}(c_1, c_2) = 0$$

$$\frac{\delta\phi}{\delta a}(c_1, c_2) = -\sum_{i=0}^n y_i + c_1 \sum_{i=0}^n 1 + c_2 \sum_{i=0}^n x_i = 0$$

$$\frac{\delta\phi}{\delta b}(c_1, c_2) = -\sum_{i=0}^n x_i y_i + c_1 \sum_{i=0}^n x_i + c_2 \sum_{i=0}^n x_i^2 = 0$$

Obtemos então um sistema linear:

$$\left(\sum_{i=0}^{n} 1\right) c_1 + \left(\sum_{i=0}^{n} x_i\right) c_2 = \sum_{i=0}^{n} y_i$$

$$\left(\sum_{i=0}^{n} x_i\right) c_1 + \left(\sum_{i=0}^{n} = x_i^2\right) c_2 = \sum_{i=0}^{n} x_i y_i$$
isto é,
$$\begin{bmatrix} n+1 & \sum_{i=0}^{n} x_i \\ \sum_{i=0}^{n} x_i & \sum_{i=0}^{n} x_i^2 \end{bmatrix} \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} y_i \\ \sum_{i=0}^{n} x_i y_i \end{bmatrix}$$

Resolvendo este sistema, obtemos a reta de regressão $y = c_1 + c_2 x$. Foi isso que fizemos no Octave.

Primeiro definimos a matriz: $A = \begin{bmatrix} n+1 & \sum_{i=0}^{n} x_i \\ \sum_{i=0}^{n} x_i & \sum_{i=0}^{n} x_i^2 \end{bmatrix}$ escrevendo o código:

$$A = [size(X)(1) sum(X)(1); sum(X)(1) sum(X.^2)(1)]$$

Nota: size(X) corresponde a um vetor cuja primeira coordenada é o número de linhas da matriz X, assim, obtemos o número de pontos que a matriz contém.

Depois definimos a matriz: $b = \begin{bmatrix} \sum_{i=0}^{n} y_i \\ \sum_{i=0}^{n} x_i y_i \end{bmatrix}$ escrevendo o código:

$$b = [sum(X)(2); sum(prod(X,2))]$$

Para resolvermos o sistema basta introduzir a seguinte linha de código:

$$c = A \setminus b$$

O vetor c tem coordenadas (a, b), logo para definirmos a função f(x) = a + bx, basta correr o código:

$$f = 0(x) c(1)+c(2)*x$$

2.2 Função 2

Para aproximar os dados por uma função do tipo $y = ab^x$, considerámos a transformação gerada pela aplicação do logaritmo natural:

$$\log y = \log a + x \log b$$

Transformámos os dados iniciais em $(x_i, \log y_i)$ através do código:

$$X(:,2) = log(X(:,2))$$

Depois definimos as matrizes A e b e aplicámos a regressão linear que aplicámos na Função 1.

```
A = [size(X)(1) sum(X)(1); sum(X)(1) sum(X.^2)(1)];
```

b = [sum(X)(2); sum(prod(X,2))];

 $a = A \setminus b;$

O vetor a tem coordenadas ($\log a, \log b$). Como $e^{\log a} = a$ e $e^{\log b} = b$, para obtermos a e b, definimos o vetor c como $c = [e^a(1) e^a(2)]$. Assim o vetor c tem coordenadas (a, b), logo para definirmos a função $f(x) = ab^x$, basta correr o código:

$$f = 0(x) c(1)*c(2).^x$$

2.3 Função 3

Para aproximar os dados por uma função do tipo $y = ax^b$, considerámos a transformação gerada pela aplicação do logaritmo natural:

$$\log y = \log a + b \log x$$

Transformámos os dados iniciais em $(\log x_i, \log y_i)$ através do código:

$$X = log(X)$$

Depois definimos as matrizes A e B e aplicámos a regressão linear que aplicámos na Função 1.

```
A = [size(X)(1) sum(X)(1); sum(X)(1) sum(X.^2)(1)];
```

b = [sum(X)(2); sum(prod(X,2))];

 $a = A \setminus b;$

O vetor a tem coordenadas ($\log a, b$). Como

$$e^{\log a} = a$$

Para obtermos a e b, definimos o vetor c como c = [e^a(1) a(2)]. Assim o vetor c tem coordenadas (a,b), logo para definirmos a função $f(x) = ax^b$, basta correr o código:

$$f = 0(x) c(1)*x.^c(2)$$

2.4 Função 4

Para aproximar os dados por uma função do tipo $y = \frac{1}{a+bx}$, considerámos a transformação gerada pela inversão:

$$\frac{1}{y} = a + bx$$

Transformámos os dados iniciais em $(x_i, \frac{1}{y_i})$ através do código:

$$X(:,2) = 1./X(:,2)$$

Depois definimos as matrizes A e B e aplicámos a regressão linear que aplicámos na Função 1.

 $A = [size(X)(1) sum(X)(1); sum(X)(1) sum(X.^2)(1)];$

b = [sum(X)(2); sum(prod(X,2))];

 $c = A \setminus b$

O vetor c tem coordenadas (a, b), logo para definirmos a função $f(x) = \frac{1}{a+bx}$, basta correr o código:

$$f = 0(x) 1./(c(1)+c(2)*x)$$

2.5 Organização do código

Na função regressão construímos um comando condicional para se escolher o tipo de função. Assim, o código final da função regressão é:

```
function c = regressao (X, k)
  if k == 1
    A = [size(X)(1) sum(X)(1); sum(X)(1) sum(X.^2)(1)];
    b = [sum(X)(2); sum(prod(X,2))];
    c = A \setminus b;
  elseif k == 2
    X(:,2) = log(X(:,2));
    A = [size(X)(1) sum(X)(1); sum(X)(1) sum(X.^2)(1)];
    b = [sum(X)(2); sum(prod(X,2))];
    a = A \setminus b;
    c = [e^a(1) e^a(2)];
  elseif k == 3
    X = log(X);
    A = [size(X)(1) sum(X)(1); sum(X)(1) sum(X.^2)(1)];
    b = [sum(X)(2); sum(prod(X,2))];
    a = A \setminus b;
    c = [e^a(1) \ a(2)];
  elseif k == 4
    X(:,2) = 1./X(:,2);
    A = [size(X)(1) sum(X)(1); sum(X)(1) sum(X.^2)(1)];
    b = [sum(X)(2); sum(prod(X,2))];
    c = A \setminus b;
  end
endfunction
```

Na função graficos, para os gráficos dos polinómios ajustados gerámos um vetor com bastantes pontos. Para isso executámos:

```
xx = linspace(X(1,1),X(end,1),101)
```

Depois de um comando condicional onde é escolhida e definida a função que se quer desenhar, corre-se a linha

```
plot(X(:,1),X(:,2),"ok","linewidth",2,xx,f(xx),"r","linewidth",2)
```

para realmente desenhar o gráfico. Em conclusão, o código final da função graficos é o que se encontra na página seguinte.

```
function graficos (X,c,k)
    xx = linspace(X(1,1),X(end,1),101);
    if k == 1
        f = @(x) c(1)+c(2)*x;
    elseif k == 2
        f = @(x) c(1)*c(2).^x;
    elseif k == 3
        f = @(x) c(1)*x.^c(2);
    elseif k == 4
        f = @(x) 1./(c(1)+c(2)*x);
    end
    plot(X(:,1),X(:,2),"ok","linewidth",2,xx,f(xx),"r","linewidth",2)
endfunction
```

3 Testes desenvolvidos e conclusão

No final do desenvolvimento do código executámos o ficheiro de testes sugerido pelo professor.

```
x=[0.2 \ 0.4 \ 0.7 \ 1.2 \ 1.3 \ 1.4]
y=[1.2 1.1 0.8 0.9 0.5 0.7]
X=[x, y];
c1=regressao(X,1)
c2=regressao(X,2)
c3=regressao(X,3)
c4=regressao(X,4)
subplot(2,2,1)
graficos(X,c1,1)
subplot(2,2,2)
graficos(X,c2,2)
subplot(2,2,3)
graficos(X,c3,3)
subplot(2,2,4)
graficos(X,c4,4)
print -dpng figura1.png
```

Os gráficos obtidos foram os seguintes:

Os gráficos estão de acordo com os resultados que tínhamos pensado previamente.

4 Versão

• O trabalho foi executado na versão 5.2.0 do Octave.

5 Bibliografia

• Para desenvolvermos este trabalho recorremos aos pdf disponíveis na página moodle da cadeira.