全国青少年信息学奥林匹克竞赛

CCF NOI 2025

第二试

时间: 2025 年 7 月 16 日 08:00 ~ 13:00

题目名称	三目运算符	集合	绝对防御	
题目类型	传统型	传统型	传统型	
目录	ternary	set	defense	
可执行文件名	ternary	set	defense	
输入文件名	ternary.in	set.in	defense.in	
输出文件名	ternary.out	set.out	defense.out	
每个测试点时限	2.0 秒	2.0 秒	4.0 秒	
内存限制	512 MiB	512 MiB	1024 MiB	
测试点数目	20	25	20	
测试点是否等分	是	是	是	
预测试点数目	20	25	20	

提交源程序文件名

对于 C++ 语言	ternary.cpp	set.cpp	defense.cpp
-----------	-------------	---------	-------------

编译选项

对于 C++ 语言	-O2 -std=c++14 -static
-----------	------------------------

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。赛后正式测试时将以选 手留在题目目录下的源代码为准。
- 2. main 函数的返回值类型必须是 int, 程序正常结束时的返回值必须是 0。
- 3. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末换行)。
- 4. 选手提交的程序源文件大小不得超过 100 KiB。
- 5. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 6. 禁止在源代码中改变编译器参数 (如使用 #pragma 命令), 禁止使用系统结构相 关指令 (如内联汇编) 或其他可能造成不公平的方法。
- 7. 因违反上述规定而出现的问题, 申诉时一律不予受理。
- 8. 选手可使用快捷启动页面中的工具 selfEval 进行自测。选手需将待测程序的源文件置于相应题目目录下。每次自测时可选择全部或部分题目进行自测。注意:自测有次数限制,且自测结果仅供选手测试参考,不作为最终正式成绩。

三目运算符(ternary)

【题目描述】

对于一个长度为 $n \ (n \ge 3)$ 的 $01 = S = s_1 \dots s_n$,定义变换 $T = f(S) = t_1 \dots t_n$ 如下:

$$t_i = \begin{cases} s_i, & i \le 2, \\ s_i, & i \ge 3 \text{ } \text{!!} \text{!!} s_{i-2} = 0, \\ s_{i-1}, & i \ge 3 \text{ } \text{!!} \text{!!} s_{i-2} = 1. \end{cases}$$

定义变换 f 的**不动点**如下: 若 01 串 T 满足 f(T) = T,则称 T 为变换 f 的不动点。记 $f^k(S)$ 为 S 经过 k 次变换得到的串。特别地,记 $f^0(S) = S$ 。求最小的自然数 k,使得 $f^k(S)$ 为变换 f 的不动点,即满足 $f^{k+1}(S) = f^k(S)$ 的最小的自然数 k。可以证明,一定存在自然数 k 使得 $f^k(S)$ 为变换 f 的不动点。

小 Z 觉得这个问题过于简单,因此他增加了 q 次修改操作。第 i ($1 \le i \le q$) 次修改会给定两个正整数 l_i, r_i ($1 \le l_i \le r_i \le n$),然后将区间 [l_i, r_i] 内的所有原有的 0 替换为 1,所有原有的 1 替换为 0。你需要对初始时及每次修改后的字符串 S,求出最小的自然数 k,使得 $f^k(S)$ 为变换 f 的不动点。

【输入格式】

从文件 ternary.in 中读入数据。

本题包含多组测试数据。

输入的第一行包含两个非负整数 c,t,分别表示测试点编号与测试数据组数。c=0表示该测试点为样例。

接下来依次输入每组测试数据,对于每组测试数据:

第一行包含两个正整数 n,q,分别表示 S 的长度和修改次数。

第二行包含一个长度为 n 的 01 串 $S = s_1 \dots s_n$,表示初始时的字符串。

第 i+2 (1 < i < q) 行包含两个正整数 l_i, r_i ,表示一次修改操作。

【输出格式】

输出到文件 ternary.out 中。

对于每组测试数据,设初始时的答案为 k_0 ,第 i $(1 \le i \le q)$ 次修改后的答案为 k_i ,输出一行一个正整数,表示 $\bigoplus_{i=0}^q ((i+1) \times k_i)$,其中 \oplus 表示二进制按位异或。

【样例1输入】

```
0 2
1
  5 2
2
  11010
3
  3 3
  2 2
5
  7 3
6
7 1010100
  7 7
8
  2 4
9
  1 2
10
```

【样例1输出】

```
1 2 4
```

【样例1解释】

该样例共包含两组测试数据。

对于第一组测试数据:

- 初始时, S = 11010, f(S) = 11100, $f^2(S) = 11110$, $f^3(S) = f^4(S) = 11111$, 因此 $k_0 = 3$;
- 第一次操作后, S = 11110, $f(S) = f^2(S) = 11111$, 因此 $k_1 = 1$;
- 第二次操作后,S=10110, $f(S)=f^2(S)=10011$,因此 $k_2=1$ 。 故答案为 $\bigoplus_{i=0}^q ((i+1)\times k_i)=(1\times 3)\oplus (2\times 1)\oplus (3\times 1)=3\oplus 2\oplus 3=2$ 。 对于第二组测试数据:
- 初始时, S = 1010100, $k_0 = 1$;
- 第一次操作后, S = 1010101, $k_1 = 1$;
- 第二次操作后,S = 1101101, $k_2 = 5$;
- 第三次操作后,S = 0001101, $k_3 = 2$ 。

故答案为 $\bigoplus_{i=0}^{q} ((i+1) \times k_i) = (1 \times 1) \oplus (2 \times 1) \oplus (3 \times 5) \oplus (4 \times 2) = 4$ 。

【样例 2】

见选手目录下的 ternary/ternary2.in 与 ternary/ternary2.ans。 该样例满足测试点 $1 \sim 3$ 的约束条件。

【样例 3】

见选手目录下的 ternary/ternary3.in 与 ternary/ternary3.ans。 该样例满足测试点 $4 \sim 6$ 的约束条件。

【样例 4】

见选手目录下的 *ternary/ternary4.in* 与 *ternary/ternary4.ans*。 该样例满足测试点 13,14 的约束条件。

【样例 5】

见选手目录下的 ternary/ternary5.in 与 ternary/ternary5.ans。 该样例满足测试点 $17 \sim 19$ 的约束条件。

【数据范围】

设 N,Q 分别为单个测试点内所有测试数据的 n,q 的和。对于所有测试数据,保证:

- $1 \le t \le 5$;
- $3 < n < 4 \times 10^5$, $N < 8 \times 10^5$;
- $1 \le q \le 4 \times 10^5$, $Q \le 8 \times 10^5$;
- 对于所有 $1 \le i \le n$, 均有 $s_i \in \{0,1\}$;
- 对于所有 $1 \le i \le q$,均有 $1 \le l_i \le r_i \le n$ 。

测试点编号	$n,q \leq$	$N,Q \leq$	特殊性质
$1 \sim 3$	200	10^{3}	A
$4 \sim 6$	200	10	无
7,8	5,000	10^{4}	A
$9 \sim 11$	5,000	10	无
12	10^{5}	2×10^5	A
13, 14			В
15, 16			无
$17 \sim 19$	4×10^5	8×10^5	С
20			无

特殊性质 A: 保证初始时及每次修改后,存在整数 $p \in [2, n]$ 满足 $s_1 = s_2 = \cdots = s_p = 1$ 且 $s_{p+1} = \cdots = s_n = 0$ 。

特殊性质 B: 保证对于所有 $1 \le i \le q$,均有 $l_i = 1$, $r_i = n$ 。

特殊性质 C: 保证对于所有 $1 \le i \le q$, 均有 $l_i = 1$, 且 $r_1 \le r_2 \le \cdots \le r_q$ 。

集合(set)

【题目描述】

小 X 有 2^n 个数, 编号为 0 到 $2^n - 1$, 第 $i(0 \le i < 2^n)$ 个数为 a_i 。

对于 $S \subseteq \{0,1,\ldots,2^n-1\}$,定义 f(S) 为集合 S 中**所有数的二进制按位与**。特别地,若 S 为空集,则 $f(S)=2^n-1$ 。

定义两个 $\{0,1,\ldots,2^n-1\}$ 的子集 P,Q (可以为空)构成的有序对 (P,Q) 是特别的 当且仅当 $P\cap Q=\varnothing$ 且 f(P)=f(Q)。定义有序对 (P,Q) 的权值为编号包含在 $P\cup Q$ 内的所有数的乘积,即 $\prod_{i\in P\cup Q}a_i$ 。特别地,若 $P\cup Q=\varnothing$,则有序对 (P,Q) 的权值为 1。

小 X 想要知道所有特别的有序对的权值之和,请你帮助他求出这个值。由于答案可能较大,你只需要求出答案对 998,244,353 取模后的结果。

【输入格式】

从文件 set.in 中读入数据。

本题包含多组测试数据。

输入的第一行包含两个非负整数 c,t,分别表示测试点编号与测试数据组数。c=0表示该测试点为样例。

接下来依次输入每组测试数据,对于每组测试数据:

第一行包含一个正整数 n,表示有 2^n 个数。

第二行包含 2^n 个非负整数 $a_0, \ldots, a_{2^{n-1}}$ 。

【输出格式】

输出到文件 set.out 中。

对于每组测试数据,输出一行一个整数,表示所有特别的有序对的权值之和对 998,244,353 取模后的结果。

【样例1输入】

```
1 0 2
2 2
3 1 2 3 4
4 3
5 1 1 1 1 1 1 1 1
```

【样例1输出】

1 117

2 2091

【样例1解释】

该样例共包含两组测试数据。

对于第一组测试数据,以下是所有特别的有序对 (P,Q):

- $P = \emptyset$, $Q = \emptyset$, 权值为 1;
- $P = \emptyset$, $Q = \{3\}$, 权值为 $a_3 = 4$;
- $P = \{3\}$, $Q = \emptyset$, 权值为 $a_3 = 4$;
- $P = \{0\}$, $Q = \{1, 2\}$, 权值为 $a_0 \times a_1 \times a_2 = 6$;
- $P = \{0\}$, $Q = \{1, 2, 3\}$, 权值为 $a_0 \times a_1 \times a_2 \times a_3 = 24$;
- $P = \{0,3\}$, $Q = \{1,2\}$, 权值为 $a_0 \times a_1 \times a_2 \times a_3 = 24$;
- $P = \{1, 2\}, Q = \{0\}, \text{ 权值为 } a_0 \times a_1 \times a_2 = 6;$
- $P = \{1, 2, 3\}, Q = \{0\}, \text{ 权值为 } a_0 \times a_1 \times a_2 \times a_3 = 24;$
- $P = \{1, 2\}$, $Q = \{0, 3\}$, 权值为 $a_0 \times a_1 \times a_2 \times a_3 = 24$; 故答案为 1 + 4 + 4 + 6 + 24 + 24 + 6 + 24 + 24 = 117。

【样例 2】

见选手目录下的 set/set2.in 与 set/set2.ans。 该样例满足测试点 2 的约束条件。

【样例 3】

见选手目录下的 set/set3.in 与 set/set3.ans。 该样例满足测试点 3 的约束条件。

【样例 4】

见选手目录下的 set/set4.in 与 set/set4.ans。 该样例满足测试点 9 的约束条件。

【数据范围】

对于所有测试数据,保证:

• 1 < t < 3;

- $2 \le n \le 20$;
- 对于所有 $0 \le i < 2^n$,均有 $0 \le a_i < 998, 244, 353$ 。

测试点编号	$n \leq$	特殊性质
1	4	В
2	4	无
3	0	В
4	8	无
5	10	В
6		无
7,8	12	В
9		无
$10 \sim 12$	16	В
13, 14	10	无
15, 16		AB
17, 18	20	A
$19 \sim 21$	20	В
$22 \sim 25$		无

特殊性质 A: 保证至多存在 24 个 i 满足 $a_i \neq 0$ 。

特殊性质 B: 保证对于所有 $0 \le i < 2^n$, 均有 $a_i \ne 998, 244, 352$ 。

绝对防御 (defense)

【题目描述】

小 Q 在与电脑玩一款名为"绝对防御"的回合制卡牌游戏。

小 Q 有一个大小为 n 的牌堆,包含两种牌:攻击牌与防御牌。游戏开始时,小 Q 会从**牌堆顶**抽取 k $(1 \le k \le n)$ 张牌作为初始手牌,接下来他会与电脑进行若干轮**对战**。

每轮对战开始时,小Q从牌堆顶抽取2张牌。特别地,若牌堆只剩余1张牌,则小Q只抽取1张。一轮对战分为两个回合:

- 第一回合: 小 Q 为攻击方,电脑为防御方;
- 第二回合: 小 Q 为**防御方**, 电脑为**攻击方**。

在每**回**合中,攻击方**必须**从手牌打出一张**攻击牌**进行攻击,防御方**必须**从手牌打出一张**防御牌**进行防御。无法按要求出牌者立即判负。

电脑的攻击牌与防御牌都是无限的,即每回合中电脑永远能打出对应牌。为平衡电脑的实力,小 Q 可以使用一种特殊技能: 当小 Q 为**防御方**时,他可以从手牌打出一张攻击牌进行防御。该技能每 3 轮对战才能使用一次,即在某轮使用技能后,接下来的 2 轮对战中均不能使用该技能。

在给定规则下,小 Q 的获胜目标为在电脑猛烈攻势中存活,即存在某轮对战结束后,牌堆被抽空。特别地,若游戏开始时牌堆已被抽空,则小 Q 直接达成获胜目标。小 Q 想知道最小的初始抽牌数 k,使得他能达成获胜目标。

小 Q 觉得这个问题过于简单,因此他增加了 q 次修改操作。第 i ($1 \le i \le q$) 次修改操作会给定一个正整数 x_i ,改变从牌堆顶到牌堆底的第 x_i 张牌的类型,即将攻击牌变为防御牌,将防御牌变为攻击牌。你需要对初始时及每次修改后的牌堆,求出最小的初始抽牌数 k,使得小 Q 能达成获胜目标。

【输入格式】

从文件 defense.in 中读入数据。

本题包含多组测试数据。

输入的第一行包含两个非负整数 c,t,分别表示测试点编号与测试数据组数。c=0表示该测试点为样例。

接下来依次输入每组测试数据,对于每组测试数据:

第一行包含两个非负整数 n,q,分别表示牌堆大小与修改次数。

第二行包含一个长度为 n 的字符串 $s_1 ldots s_n$,分别表示从牌堆顶到牌堆底的每张牌,其中 $s_i = 0$ 表示第 i 张牌为攻击牌, $s_i = 1$ 表示第 i 张牌为防御牌。

第 i+2 $(1 \le i \le q)$ 行包含一个正整数 x_i ,表示第 i 次修改的牌为从牌堆顶到牌堆底的第 x_i 张牌。

【输出格式】

输出到文件 defense.out 中。

对于每组测试数据,设初始时的答案为 k_0 ,第 i ($1 \le i \le q$) 次修改后的答案为 k_i ,输出一行 q+1 个正整数 k_0, k_1, \ldots, k_q ,表示初始时及每次修改后的最小抽牌数,使得小 Q 能达成获胜目标。

【样例1输入】

```
1 0 3
2 5 1
3 01010
4 4
5 7 0
6 0001000
7 10 0
8 0001010000
```

【样例1输出】

```
1 1 1
2 3
3 2
```

【样例1解释】

该样例共包含三组测试数据。

对于第一组测试数据:

- 初始时, 牌堆为 01010。若初始抽牌数为 1, 小 Q 的一种可能的出牌方式为:
 - 初始时手牌为 {0};
 - 从堆顶抽取两张牌,打出一张攻击牌,一张防御牌,手牌变为 {0};
 - 从堆顶抽取两张牌,打出一张攻击牌,一张防御牌,手牌变为 {0},此时牌堆被抽空。

由于初始至少需要抽取一张牌,所以最小初始抽牌数为 1,故 $k_0 = 1$ 。

- 第一次修改后, 牌堆变为 01000。若初始抽牌数为 1, 小 Q 的一种可能的出牌方式为:
 - 初始时手牌为 {0};

- 从堆顶抽取两张牌,打出一张攻击牌,一张防御牌,手牌变为 {0};
- 从堆顶抽取两张牌,打出一张攻击牌,使用特殊技能再次打出一张攻击牌进 行防御,手牌变为 {0},此时牌堆被抽空。

由于初始至少需要抽取一张牌,所以最小初始抽牌数为 1, 故 $k_1 = 1$ 。

对于第二组测试数据:

若初始抽牌数为 3, 小 Q 的一种可能的出牌方式为:

- 初始时手牌为 {0,0,0};
- 从堆顶抽取两张牌,打出一张攻击牌,一张防御牌,手牌变为 {0,0,0};
- 从堆顶抽取两张牌,打出一张攻击牌,使用特殊技能再次打出一张攻击牌进行防御,手牌变为 {0,0,0},此时牌堆被抽空。

可以证明,不存在比3更小的初始抽牌数能够抽空牌堆,故答案为3。

对于第三组测试数据:

若初始抽牌数为 2, 小 Q 的一种可能的出牌方式为:

- 初始时手牌为 {0,0};
- 从堆顶抽取两张牌,打出一张攻击牌,使用特殊技能再次打出一张攻击牌进行防御,手牌变为 {0,1};
- 从堆顶抽取两张牌, 打出一张攻击牌, 一张防御牌, 手牌变为 {0,1};
- 从堆顶抽取两张牌, 打出一张攻击牌, 一张防御牌, 手牌变为 {0,0};
- 从堆顶抽取两张牌,打出一张攻击牌,使用特殊技能再次打出一张攻击牌进行防御,手牌变为 {0,0},此时牌堆被抽空。

可以证明,不存在比2更小的初始抽牌数能够抽空牌堆,故答案为2。

【样例 2】

见选手目录下的 *defense/defense2.in* 与 *defense/defense2.ans*。 该样例满足测试点 2 的约束条件。

【样例 3】

见选手目录下的 defense/defense3.in 与 defense/defense3.ans。 该样例满足测试点 $5 \sim 7$ 的约束条件。

【样例 4】

见选手目录下的 defense/defense4.in 与 defense/defense4.ans。 该样例满足测试点 9,10 的约束条件。

【样例 5】

见选手目录下的 *defense/defense5.in* 与 *defense/defense5.ans*。 该样例满足测试点 11 的约束条件。

【样例 6】

见选手目录下的 defense/defense6.in 与 defense/defense6.ans。 该样例满足测试点 $12 \sim 14$ 的约束条件。

【数据范围】

设 N,Q 分别为单个测试点内所有测试数据的 n,q 的和。对于所有测试数据,保证:

- $1 \le t \le 10^4$;
- $1 \le n \le 2 \times 10^5$, $N \le 5 \times 10^5$;
- $0 \le q \le 2 \times 10^5$, $Q \le 5 \times 10^5$;
- 对于所有 $1 \le i \le n$,均有 $s_i \in \{0,1\}$;
- 对于所有 $1 \le i \le q$, 均有 $1 \le x_i \le n$ 。

测试点编号	$n \leq$	$q \leq$	$N,Q \leq$	特殊性质
1	20	20	60	
2	10^{2}	10^{2}	10^{3}	
3,4	3,000	3,000	10^{4}	无
$5 \sim 7$	10^{5}	0	3×10^5	
8	2×10^5	200	5×10^5	
9,10				AB
11				AC
$12 \sim 14$	10^{5}	10^{5}	3×10^{5}	AD
$15 \sim 17$				E
18, 19				
20	2×10^5	2×10^5	5×10^5	

特殊性质 A: 保证对于所有 $1 \le i \le n$, s_i 均在 $\{0,1\}$ 中**独立均匀随机**生成。

特殊性质 B: 保证所有的 x_i 互不相同,且对于所有 $1 \le i \le q$,均有 $s_{x_i} = 1$ 。

特殊性质 C: 保证所有的 x_i 互不相同,且对于所有 $1 \le i \le q$,均有 $s_{x_i} = 0$ 。

特殊性质 D: 保证对于所有 1 < i < q, x_i 均在 [1, n] 中独立均匀随机生成。

特殊性质 E: 保证对于所有 $0 \le i \le q$, 均有 $1 \le k_i \le 45$ 。