Chapter 8

Clustering Algorithms

8.1 The *k*-means algorithm

— The k-means clustering algorithm is used to find a set of k processing unit centers, which represent a local minimum of the total squared Euclidean distances E between the L exemplars (training patterns) x_i and the nearest of the k centers c_j .

$$E = \sum_{j=1}^{k} \sum_{i=1}^{L} \left\| c_{j} - x_{i} \right\|^{2}$$

The k-means algorithm

Step 1. Initialize:

Choose the number of cluster, k. For each of these k clusters choose an initial cluster center: $\{c_1(m), c_2(m), ..., c_k(m)\}$

where $c_i(m)$ represents the value of the cluster center at the mth iteration.

Step 2. Distribute samples:

Distribute all sample patterns.

$$x_p \in \theta_j(m)$$
 if $\|c_j(m) - x_p\| < \|c_i(m) - x_p\|$ for all $i = 1, 2, ..., k, i \neq j$

where $\theta_{j}(m)$ represents the population of cluster j at iteration m.

Step 3. Calculate new cluster center:

$$c_j(m+1) = \frac{1}{M_j} \sum_{x_p \in \theta_j(m)} x_p$$

where M_j is the number of sample patterns attached to θ_j during step 2.

Step 4. Check for convergence:

The condition for convergence is that no cluster has changed its position during step 3.

Example k = 2

Pattern $[1]=(0, 0)$	Pattern [10]=(7, 7)
Pattern [2]=(1, 0)	Pattern [11]=(7, 8)
Pattern [3]=(0, 1)	Pattern [12]=(8, 6)
Pattern [4]=(2, 1)	Pattern [13]=(8, 7)
Pattern [5]=(1, 2)	Pattern [14]=(8, 8)
Pattern [6]=(2, 2)	Pattern [15]=(8, 9)
Pattern [7]=(2, 0)	Pattern [16]=(9, 7)
Pattern [8]=(0, 2)	Pattern [17]=(9, 8)
Pattern [9]=(7, 6)	Pattern [18]=(9, 9)

Step 1. Initialize:

Cluster center [1]=(0, 0)

Cluster center [2]=(1, 0)

Step 2. Distance:

Patterns	Cluster center [1]	Cluster center [2]	Assigned to cluster	
Pattern [1]	0.0	1.0	1	
Pattern [2]	1.0	0.0	2	
Pattern [3]	1.0	1.4	1	
Pattern [4]	2.2	1.4	2	
Pattern [5]	2.2	2.0	2	
Pattern [6]	2.8	2.2	2	
Pattern [7]	2.0	1.0	2	
Pattern [8]	2.0	2.2	1	
Pattern [9]	9.2	8.5	2	
Pattern [10]	9.9	9.2	2	
Pattern [11]	10.6	10.0	2	
Pattern [12]	10.0	9.2	2	
Pattern [13]	10.6	9.9	2	
Pattern [14]	11.3	10.6	2	

Pattern [15]	12.0	11.4	2
Pattern [16]	11.4	10.6	2
Pattern [17]	12.0	11.3	2
Pattern [18]	12.7	12.0	2

Step3. Recalculate the cluster center:

Cluster center
$$[1] = (\frac{0+0+0}{3}, \frac{0+1+2}{3}) = (0, 1)$$

Cluster center $[2] = (\frac{1+2+1+2+...+9}{15}, \frac{0+1+2+2+...+9}{15}) = (5.87, 5.33)$

Iteration 2

Step 2. Distance:

. Distance.			
Patterns	Cluster center [1]	Cluster center [2]	Assigned to cluster
Pattern [1]	1.0	7.9	1
Pattern [2]	1.4	7.2	1
Pattern [3]	0.0	7.3	1
Pattern [4]	2.0	5.8	1
Pattern [5]	1.4	5.9	1
Pattern [6]	2.2	5.1	1
Pattern [7]	2.2	6.6	1
Pattern [8]	1.0	6.7	1
Pattern [9]	8.6	1.3	2
Pattern [10]	9.2	2.0	2
Pattern [11]	9.9	2.9	2
Pattern [12]	9.4	2.2	2
Pattern [13]	10.0	2.7	2
Pattern [14]	10.6	3.4	2
Pattern [15]	11.3	4.2	2
Pattern [16]	10.8	3.5	2
Pattern [17]	11.4	4.1	2
Pattern [18]	12.0	4.8	2

Step 3. Recalculate the cluster center:

Cluster center [1] = (1.0, 1.0)

Cluster center [2] = (8.0, 7.5)

```
Data Mining, Hsu, J.-H.
Dep. of Applied Mathematics

Iteration 3
:
:
:
Step 3. Recalculate the cluster center:
Cluster center [1] = (1.0, 1.0)
Cluster center [2] = (8.0, 7.5)
```

Step 4. Check for convergence:

Since the cluster center did not change, the algorithm has converged. Thus the final cluster centers are as follows:

Cluster center [1] = (1.0, 1.0)Cluster center [2] = (8.0, 7.5)

8.2 The Fuzzy C-means algorithm

—Fuzzy C-means algorithm was powerful data cluster algorithm was introduced by Bezdek (1981).

Fuzzy Clustering

- Consider a finite of the *p*-dimensional Euclidean space R^p , that is, $x_j \in R^p$ for j = 1,2,...n, the problem is to perform a partition of this collection of patterns into c fuzzy sets with respect to a given criterion, where c is a given number of clusters.
- The criterion is usually to optimizes an *objective function*, which acts as a performance index of clustering.
- The end result of fuzzy clustering can be express by a partition matrix U, such that $U = [u_{ij}]_{i=1,2,...,n}$.

where u_{ij} is a numerical value in [0, 1] and expresses the degree to which the element x_i belongs to *i*th cluster.

- There are two additional constraints on the value of u_{ij} .
 - (1) A total membership value of the pattern $x_j \in X$ to all classes is equal to 1.

That is,
$$\sum_{i=1}^{c} u_{ij} = 1$$
, for all $j = 1, 2, ..., n$

(2) Every constructed cluster is nonempty and different from the entire set. That is,

$$0 < \sum_{i=1}^{n} u_{ij} < n$$
, for all $j = 1, 2, ..., n$

— A general form of the fuzzy clustering objective function, denoted J_m as:

$$J_m(u_{ij}, v_k) = \sum_{i=1}^c \sum_{j=1}^k u_{ij}^m ||x_j - v_i||^2, \quad \text{for } m > 1$$

where v_k is the center vector of the kth cluster, m is called the exponential weight which influences the degree of fuzziness of the membership

(partition) matrix.

— A constrained fuzzy partition $\{c_1, c_2, ... c_k\}$ can be a local minimum of the objective function J_m only if the following conditions are satisfied:

$$v_i = \frac{\sum_{j=1}^{n} (u_{ij})^m x_j}{\sum_{i=1}^{n} (u_{ij})^m}, \qquad i = 1, 2, ..., c.$$
 (8.1)

$$u_{ij} = \frac{\left(\frac{1}{\|x_{j} - v_{k}\|^{2}}\right)^{\frac{1}{m-1}}}{\sum_{k=1}^{c} \left(\frac{1}{\|x_{j} - v_{k}\|^{2}}\right)^{\frac{1}{m-1}}}, \quad i = 1, 2, ..., c; j = 1, 2, ..., n.$$

$$(8.2)$$

Fuzzy C-means Algorithm

- Step 1. Fix a number of clusters c $(2 \le c \le n)$ and exponential weight m $(1 \le m \le \infty)$. Choose an initial partition matrix $U^{(0)}$ and termination error ε . Set the iteration index l to zero.
- Step 2. Calculate the fuzzy cluster centers $\{v_i^{(l)} \mid i=1,2,...,c\}$ by $U^{(l)}$ and formula (8.1).
- Step 3. Calculate the new partition matrix $U^{(l+1)}$ by using $\{v_i^{(l)} | i = 1,2,...,c\}$ and formula (8.2).
- Step 4. Calculate $\Delta = \left\| U^{(l+1)} U^{(l)} \right\| = \max_{i,j} |u_{ij}^{(l+1)} u_{ij}^{(l)}|$, if $\Delta > \varepsilon$, then set l = l+1 and got to step 2. If $\Delta \leq \varepsilon$, then stop.

Example

A company has three jobs, which the similarity degree of matrix was shown as:

Please clustering these jobs, using the Fuzzy C-means algorithm.

	x_1	x_2	x_3
x_1	1	0.8	0.4
x_2	0.8	1	0.6
x_3	0.4	0.6	1

Step1:

Let c = 2, exponential weigh (m)=2, termination error $(\varepsilon)=0.01$, and

the partition matrix,
$$U^{(0)} = \begin{bmatrix} 0.566 & 0.4 & 0.395 \\ 0.434 & 0.6 & 0.605 \end{bmatrix}$$
.

Step 2: Calculate the fuzzy cluster centers $\{v_i^{(l)} | i = 1, 2, ..., c\}$

$$v_i^{(l)} = \frac{\sum_{j=1}^{n} (u_{ij})^m x_j}{\sum_{j=1}^{n} (u_{ij})^m}, \quad i = 1, 2, ..., c$$

$$v_1^{(0)} = \frac{0.566^2(1, 0.8, 0.4) + 0.4^2(0.8, 1, 0.6) + 0.395(0.4, 0.6, 1)}{0.566^2 + 0.4^2 + 0.395^2} = (0.803, 0.801, 0.597)$$

$$v_2^{(0)} = \frac{0.434^2(1, 0.8, 0.4) + 0.6^2(0.8, 1, 0.6) + 0.605^2(0.4, 0.6, 1)}{0.434^2 + 0.6^2 + 0.605^2} = (0.681, 0.799, 0.719)$$

Step 3: Calculate the new partition matrix $U^{(l+1)}$

$$u_{ij} = \frac{\left(\frac{1}{\|x_{j} - v_{i}\|^{2}}\right)^{\frac{1}{m-1}}}{\sum_{i=1}^{c} \left(\frac{1}{\|x_{j} - v_{i}\|^{2}}\right)^{\frac{1}{m-1}}}, \quad i = 1, 2, ..., c; \quad j = 1, 2, ..., n.$$

Calculate the distance from each job (x_i) to each cluster center (v_k) :

$$||x_{j} - v_{k}||^{2}$$

$$||x_{1} - v_{1}||^{2} = (1 - 0.803)^{2} + 0.8 - 0.801)^{2} + (0.4 - 0.597)^{2} = 0.078$$

$$||x_{2} - v_{1}||^{2} = (0.8 - 0.803)^{2} + (1 - 0.801)^{2} + (0.6 - 0.597)^{2} = 0.040$$

$$||x_{3} - v_{1}||^{2} = (0.4 - 0.803)^{2} + (0.6 - 0.801)^{2} + 1 - 0.597)^{2} = 0.365$$

$$||x_{1} - v_{2}||^{2} = (1 - 0.618)^{2} + (0.8 - 0.799)^{2} + (0.4 - 0.719)^{2} = 0.203$$

$$||x_{2} - v_{2}||^{2} = (0.8 - 0.681)^{2} + (1 - 0.799)^{2} + (0.6 - 0.719)^{2} = 0.069$$

$$||x_{3} - v_{3}||^{2} = (0.4 - 0.681)^{2} + (0.6 - 0.799)^{2} + (1 - 0.719)^{2} = 0.197$$

Calculate the new partition:

$$u_{11}^{(1)} = \frac{\left(\frac{1}{0.078}\right)^{\frac{1}{2-1}}}{\left(\frac{1}{0.078}\right)^{\frac{1}{2-1}} + \left(\frac{1}{0.203}\right)^{\frac{1}{2-1}}} = 0.722$$

$$u_{21}^{(1)} = \frac{\left(\frac{1}{0.203}\right)^{\frac{1}{2-1}}}{\left(\frac{1}{0.078}\right)^{\frac{1}{2-1}} + \left(\frac{1}{0.203}\right)^{\frac{1}{2-1}}} = 0.178$$

$$u_{12}^{(1)} = \frac{\left(\frac{1}{0.040}\right)^{\frac{1}{2-1}}}{\left(\frac{1}{0.040}\right)^{\frac{1}{2-1}} + \left(\frac{1}{0.069}\right)^{\frac{1}{2-1}}} = 0.633$$

$$u_{22}^{(1)} = \frac{\left(\frac{1}{0.069}\right)^{\frac{1}{2-1}}}{\left(\frac{1}{0.040}\right)^{\frac{1}{2-1}} + \left(\frac{1}{0.069}\right)^{\frac{1}{2-1}}} = 0.367$$

$$u_{13}^{(1)} = \frac{\left(\frac{1}{0.365}\right)^{\frac{1}{2-1}}}{\left(\frac{1}{0.365}\right)^{\frac{1}{2-1}} + \left(\frac{1}{0.197}\right)^{\frac{1}{2-1}}} = 0.351$$

$$u_{23}^{(1)} = \frac{\left(\frac{1}{0.197}\right)^{\frac{1}{2-1}}}{\left(\frac{1}{0.365}\right)^{\frac{1}{2-1}} + \left(\frac{1}{0.197}\right)^{\frac{1}{2-1}}} = 0.649$$

Thus, the new partition matrix is:

$$U^{1} = \begin{bmatrix} 0.722 & 0.633 & 0.351 \\ 0.278 & 0.367 & 0.649 \end{bmatrix}$$

Step 4: Calculate
$$\Delta = ||U^{(l+1)} - U^{(l)}|| = Max | u_{i,j}^{(l+1)} - u_{ij}^{(l)} |$$

$$U^{1} = \begin{bmatrix} 0.722 & 0.633 & 0.351 \\ 0.278 & 0.367 & 0.649 \end{bmatrix} \qquad U^{(0)} = \begin{bmatrix} 0.566 & 0.4 & 0.395 \\ 0.434 & 0.6 & 0.605 \end{bmatrix}$$

$$\Delta = \max\{0.722 - 0.566|, |0.633 - 0.4|, |0.351 - 0.395|, |0.278 - 0.434|, |0.367 - 0.6|, |0.649 - 0.605|\}$$

$$= \max\{0.156, 0.233, 0.044, 0.156, 0.233, 0.044\}$$

$$= 0.233 > 0.01$$

Go to Step 2

$$U^2 = \begin{bmatrix} 0.896 & 0.881 & 0.116 \\ 0.104 & 0.119 & 0.884 \end{bmatrix}$$

$$\Delta = 0.248 > 0.01$$

Go to Step 2

$$U^3 = \begin{bmatrix} 0.96 & 0.938 & 0.001 \\ 0.04 & 0.062 & 0.999 \end{bmatrix}$$

$$\Delta = 0.115 > 0.01$$

Go to Step 2

•

•

$$U^4 = \begin{bmatrix} 0.963 & 0.938 & 0.000 \\ 0.037 & 0.062 & 1.000 \end{bmatrix}$$

$$\Delta = 0.003 < 0.01$$

According to, the result of the partition matrix U^4 , the job 1 and job2 belong to cluster1, and the job3 belongs to cluster2.

8.3 SOM

Kohonen Self-Organizing Maps

Kohonen's SOM

- -- Unsupervised learning.
- -- A topological map.
- -- A two-layered network (the two layers are fully interconnected).
- -- Usually the second layer is organized as a two-dimensional grid.
- -- Random values may be assigned for the initial weights.
- -- SOM can be used to cluster a set of continuous-valued vectors $\mathbf{x} = (x_1, x_2, ..., x_n)$ into m clusters.

Input: x

Weights: wj

The matching value for each unit j is $\|\mathbf{x} - \mathbf{w}_j\|$. The unit with the lowest matching value (the best match) wins the competition.

The operation of a Kohonen network

1. Compute a matching value for each unit in the competitive layer.

- 2. Find the best match.
- 3. Identify the neighborhood around the winner unit.
- 4. Weights are updated for all units are in the neighborhood of the winning unit.

$$\Delta w_{ij} = \begin{cases} \eta(x_i - w_{ij}) & \text{if unit } j \text{ is in the neighborhood } N_c \\ 0 & \text{otherwise} \end{cases}$$

$$w_{ij}^{new} = w_{ij}^{old} + \Delta w_{ij}$$

0	0	0	0	0	0	0
0	0	0	О	0	О	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	О	О

Neighborhoods for rectangular grid

Neighborhoods for hexagonal grid

There are two parameters that must be specified:

- 1. The value of the learning rate η .
- 2. The size of the neighborhood N_c .

Example:

$$\eta_0 = 0.2 \sim 0.5$$

$$\eta_t = \eta_0 (1 - \frac{t}{T})$$

$$R_t = R_0 \left(1 - \frac{t}{T} \right)$$

t: the current training iteration

T: the total number of training iterations to be done.

Typical values for R_0 may be chosen at a half or a third of the width of the competitive layer of processing units.

Note: The learning rate η is a slowly decreasing function of time (or training

epochs).

The radius of the neighborhood around a cluster unit also decrease as the clustering process progresses.

Algorithm (Fausett, L, 1994)

Step 1: Initialize weights w_{ij}

Set topological neighborhood and learning rate parameters.

Step 2: While stopping condition is false, do Steps 3-9.

Step 3: For each input vector **x**, do Steps 4-6.

Step 4: For each j, compute:

$$D(j) = \sum_{i} (w_{ij} - x_i)^2$$

Step 5: Find index j such that D(j) is a minimum.

Step 6: For all unit j within a specified neighborhood of j, and for

all i:

$$w_{ij}^{new} = w_{ij}^{old} + \eta(x_i - w_{ij}^{old})$$

Step 7: Update learning rate.

Step 8: Reduce radius of topological neighborhood at specified times.

Step 9: Test stopping condition.

Simple example

For example, A SOM to cluster four vectors

Let the vector to be clustered be

$$(1,1,0,0)$$
; $(0,0,0,1)$; $(1,0,0,0)$ and $(0,0,1,1)$.

The maximum number of cluster to be formed is m = 2.

Suppose the learning is $\eta(0) = 0.6$, $\eta(t+1) = 0.5\eta(t)$.

Only the winning unit is allowed to learn, i.e., R = 0.

Step 1: initial weight matrix:

Initial radius: R = 0. Initial learning rate: $\eta(0) = 0.6$.

For the first vector (1,1,0,0),

$$D(1) = (0.2 - 1)^2 + (0.6 - 1)^2 + (0.5 - 0)^2 + (0.9 - 0)^2 = 1.86;$$

$$D(2) = (0.8 - 1)^2 + (0.4 - 1)^2 + (0.7 - 0)^2 + (0.3 - 0)^2 = 0.98.$$

The input vector is closest to output node 2, so j = 2.

The weights on the winning unit are updated:

$$w_{i2}^{new} = w_{i2}^{old} + \eta(0)(x_i - w_{i2}^{old})$$

$$= \begin{bmatrix} 0.8 \\ 0.4 \\ 0.7 \\ 0.3 \end{bmatrix} + (0.6) \begin{bmatrix} 0.2 \\ 0.6 \\ -0.7 \\ -0.3 \end{bmatrix} = \begin{bmatrix} 0.92 \\ 0.76 \\ 0.28 \\ 0.12 \end{bmatrix}$$

This gives the weight matrix:

:

 $\begin{bmatrix} 0.0 & 1.0 \\ 0.0 & 0.5 \\ 0.5 & 0.0 \\ 1.0 & 0.0 \end{bmatrix}$