

SQL como DDL

Definición de tablas

y restricciones básicas

Tipos de datos

- Numéricos exactos
- Numéricos aproximados
 - •Fecha y hora
 - Cadenas de caracteres
- •Cadenas de caracteres Unicode
 - Cadenas binarias
 - •Otros tipos de datos

Numéricos exactos (I)

Tipo de datos	Intervalo	Almacenamiento
bigint	De -2^63 (-9.223.372.036.854.775.808) a 2^63-1 (9.223.372.036.854.775.807)	8 bytes
int	De -2^31 (-2.147.483.648) a 2^31-1 (2.147.483.647)	4 bytes
smallint	De -2^15 (-32.768) a 2^15-1 (32.767)	2 bytes
tinyint	De 0 a 255	1 byte

Numéricos exactos (II)

decimal y numeric

-Tipos de datos numéricos que tienen precisión y escala fijas

```
-decimal[(p[,s])]ynumeric[(p[,s])]
```

−P indica el número total de cifras significativas y s el número de cifras decimales

•bit

-Tipo de datos entero que puede aceptar los valores 1, 0 o NULL

Numéricos exactos (III)

money y smallmoney

•Tipos de datos que representan valores monetarios o de moneda

Tipo de datos	Intervalo	Almacenamiento
money	De -922.337.203.685.477,5808 hasta 922.337.203.685.477,5807	8 bytes
smallmoney	De - 214.748,3648 a 214.748,3647	4 bytes

Numéricos aproximados

float y real

Tipo de datos	Intervalo	Almacenamiento
float	De - 1,79E+308 a -2,23E-308, 0 y de 2,23E-308 a 1,79E+308	Depende del valor de <i>n</i> .
real	De - 3,40E + 38 a -1,18E - 38, 0 y de 1,18E - 38 a 3,40E + 38	4 bytes

Fecha y hora

Tipo de datos	Intervalo	Precisión
datetime	Del 1 de enero de 1753 hasta el 31 de diciembre de 9999	Se redondea en incrementos de 0,000, 0,003 o 0.007 segundos
datetime2	Del 1 de enero del año 1 D.C. al 31 de diciembre de 9999	100 nanosegundos
datetimeoffset	Del 1 de enero del año 1 D.C. al 31 de diciembre de 9999	100 nanosegundos
smalldatetime	Del 1 de enero del año 1900 al 6 de junio de 2079	1 minuto
date	Del 1 de enero del año 1 D. C. al 31 de diciembre de 9999	1 dia
time	De 00:00:00.0000000 a 23:59:59.9999999	100 nanosegundos

Cadenas de caracteres

- •char (n)
- -Cadena de longitud fija
- varchar (n)
- -Cadena de longitud variable
- -n entre 1 y 8.000
- varchar (max)
- -Hasta 2³²-1 bytes
- -Sustituye a text

Cadenas de caracteres Unicode

- •nchar (n)
- -Cadena de longitud fija
- nvarchar (n)
- -Cadena de longitud variable
- -n entre 1 y 4.000
- •nvarchar (max)
- -Hasta 2³²-1 bytes
- –Sustituye a text

Cadenas binarias

- •binary (n)
- -Datos binarios de longitud fija
- varbinary (n)
- -Datos binarios de longitud variable
- -n entre 1 y 8.000
- •varbinary (max)
- -Hasta 2³²-1 bytes
- -Sustituye a image

Otros tipos de datos

- •cursor
- •SQL variant
- •table
- -timestamp
- •uniqueidentifier
- .XML
- hierarchyid

Crear una tabla

```
COCHES(MATRICULA, MARCA, MODELO,
CILINDRADA, PRECIO, FECHA COMPRA)
CREATE TABLE COCHES (
  Matricula char(7) Constraint
PK_Coches Primary Key
, Marca VarChar(15)Not Null
, Modelo VarChar(20) Not Null
,Cilindrada decimal (2,1) Null
, Precio SmallMoney Not Null
,Fecha_Compra Date Null
```


Otro ejemplo

```
CREATE TABLE LM_VENTAS(
Codigo Venta SMALLINT NOT NULL
,Fecha DATE NOT NULL
,ID Cliente INT NULL DEFAULT 1
,Precio Venta SMALLMONEY NOT NULL
,CONSTRAINT PK_Ventas PRIMARY KEY
(Codigo venta)
, CONSTRAINT FK Ventas Clientes FOREIGN KEY
(ID Cliente) REFERENCES LM CLIENTES(ID) ON
DELETE NO ACTION ON UPDATE CASCADE
```


Columnas identificadoras

Si queremos que el servidor genere los valores de la PK automáticamente podemos usar columnas IDENTITY

```
CREATE TABLE Clientes(
IDCliente INT Not NULL IDENTITY (1,1)
,Nombre NVarChar(20) Not NULL
...
,CONSTRAINT PK_Clientes PRIMARY KEY
(IDClientes)
)
```


Columnas identificadoras

Otra forma es declarar nuestra columna con un tipo especial

```
CREATE TABLE Clientes(
IDCliente UniqueIdentifier Not NULL
,Nombre NVarChar(20) Not NULL
...
,CONSTRAINT PK_Clientes PRIMARY KEY
(IDClientes)
)
```

Los valores se generan con la función **NEWID**()