Summary of previous lecture

- Factoring algorithm (Shor's algorithm)
 - Discrete Fourier transform → Quantum Fourier transform → Example of QFT circuit
 - Origin of quantum speed-up
 - Simultaneous calculation of $a^x \pmod{N}$ for x from 0 to $2^{2 \cdot \text{ceil}(\log_2 N)}$
 - Fast Quantum Fourier transform
- Grover search algorithm
 - Algorithm is designed to maximize the probability of measuring the answer to the given search problem.
 - Quantum speed-up
 - In classical case: $O\left(\frac{N}{M}\right)$ oracle query
 - In quantum case: $O\left(\sqrt{\frac{N}{M}}\right)$ oracle query

Quantum Cryptography

- Quantum communication? Quantum cryptography?
- 양자 암호, 양자 암호 통신, 양자 통신, 양자 인터넷, ...
- Currently the terminology is not precisely defined
- Public key system
 - Example: RSA (Rivest–Shamir–Adleman) public-key cryptosystem
 - The security of RSA is guaranteed by the difficulty of factoring a large number → RSA factoring challenge
 - Also very useful for authentication
- Symmetric key system
 - Quantum key distribution (QKD) system

Post-Quantum Cryptography (PQC)

- Is the current security system safe until the working quantum computer will be fully developed?
 - X years: the number of years to develop a large-scale quantum computer
 - Y years: the number of years to develop a new security system which is resilient to quantum computing attack
 - Z years: the lifetime of a secret

Alternative: lattice-based cryptography

Quantum Key Distribution (QKD)

- QKD: Quantum Key Distribution
 - One-time pad (OTP) → guarantees the absolute security
 - Provable security system compared to public key infrastructure
- If there is an attempt to eavesdrop on secret key distribution, it can detected by the no-cloning property and superposition principle of quantum mechanics

Secret key o oo11 o11...

0 0011 011...

- Secret key does not contain any information by itself
 - Not all the keys need to be transmitted

If there is any attempt for eavesdropping, the affected key can be dropped

Special Property of the Secrete Key

- Recall: secret key does not contain any information by itself
 - Not all the keys need to be transmitted
 - If there is any attempt for eavesdropping, the affected key can be dropped

Secret key o oo11 o11...

0 0011 011...

Summary of BB84 QKD protocol I

- 1. Choice of sender's basis
 - The sender chooses one basis out of two possible bases (, x)
- 2. Choice of sender's bit
 - The sender randomly chooses either 0 (→, \) or 1 (1, \/) corresponding to basis selected in the step 1 and send the photon.
- 3. Choice of receiver's basis
 - The receiver also chooses one basis out of two possible basis (+, ×) randomly
- 4. Measurement by the receiver
 - The receiver measures the polarization of the received photon using the basis selected in the step 3.
- 5. Repeat step 1 to 4 for a fixed number of times without any additional information exchange
- 6. Comparison of the basis only
 - The sender and the receiver announces their choice of the basis (in step 1 and 3) for each photon through a public channel
 - However the sender do not share the choice in step 2 and the receiver keeps the measurement result in step 4 secretly

Summary of BB84 QKD protocol II

7. Generation of the 1st -stage secrete key

- When there is no eavesdropping attack, whenever they used the same basis, the sender's bit in step 2 and the value measured by the receiver in step 4 should be the same
- These bit sequences become the secret key (sifted key)
- They discard the bit information when they used the different basis

8. Detection of eavesdropping

- The sender and the receiver compare randomly-selected part of the secret key generated in step 7 (this can be done in public channel)
- If there is no discrepancy in this comparison, they can conclude that there was no eavesdropping attack
- They keep the unexposed part of the 1st –stage secret key as the 2nd –stage secret key

9. Error correction

- To check if there is any error in the 2nd –stage key obtained in step 8, they calculate a checksum value using a block of secret key. It can be as simple as parity bit.
- By comparing these checksum values, either error can be corrected or that block can be discarded

10. Privacy amplification

- During error correction process in step 9, some amount of information about the secret key is exposed
- To minimize the leakage, the final key with smaller number of bits is extracted from the key from step 9.