

Datenmanagement

Wintersemester 2022/2023

Prof. Dr. Carsten Felden Technische Universität Bergakademie Freiberg (Sachsen) Institut für Wirtschaftsinformatik Silbermannstraße 2, 09599 Freiberg (Sachsen), Deutschland

OLAP vs. OLTP

OLAP vs. OLTP

Merkmal	OLTP	OLAP
Anwendungsbereich	Operative Systeme	Entscheidungsunterstützungs- bzw.
	(Administrations- und Dispositionssysteme)	Data Warehouse-Systeme
Nutzer	Sachbearbeiter	Entscheidungs- und Führungskräfte
Datenstruktur	zweidimensional, anwendungsbezogen	multidimensional, subjektbezogen
Dateninhalt	detaillierte, nicht verdichtete Einzeldaten	verdichtete und abgeleitete Daten
Datenverwaltungsziele	transaktionale Konsistenzerhaltung	zeitbasierte Versionierung
Datenaktualität	aktuelle Geschäftsdaten	historische Verlaufsdaten
Datenaktualisierung	durch laufende Geschäftsvorfälle	periodische Datenaktualisierung
		(Snapshot)
Zugriffsform	lesen/schreiben/löschen	lesen/verdichten
Zugriffsmuster	vorhersehbar, repetitiv	ad hoc, heuristisch
Zugriffshäufigkeit	hoch	mittel bis niedrig
Antwortzeit	kurz (Sekundenbruchteile)	mittel bis lang (Sekunden bis Minuten)
Transaktionsart und Dauer	kurze Lese und Schreiboperationen	lange Lesetransaktionen

Data Warehouse

Dimensionen

Beschreiben den Kontext der zu analysierenden Fakten in einem multidimensionalen Datenraum. Typische Dimensionen sind etwa "Produkt", "Kunde", "Zeit". Qualifizierende Informationen (Kanten des Würfels)

Kennzahlen/Fakten

Fakten (Facts) sind Kennzahlen in einem multidimensionalen Datenraum, die in BI-Anwendungen analysiert werden. Sie werden über Dimensionen spezifiziert. Quantifizierende Information (Zellen des Würfels)

- Dimensionen
- Fakten / Kennzahlen

Slice und Dice

Pivotisierung / Rotation

Roll-Up & Drill Down

Roll-Up

- Erzeugen neuer Informationen durch Aggregierung der Daten entlang des Konsolidierungspfades
- Dimensionalität bleibt erhalten
- Beispiel: Tag → Monat → Quartal → Jahr

Drill-Down

- komplementär zu Roll-Up
- Navigation von aggregierten Daten zu Detail-Daten entlang der Klassifikationshierarchie

Multidimensionale Datenmodelle

Star-Schema

Beispiel Vertrieb

Multidimensionales ER - Modell

Beispiel

Aufgabe 1

Ein Automobilproduzent hat das Ziel die Kosten seiner Werkstätten miteinander zu vergleichen. Bei der Modellierung eines ME/R-Modells sollen dabei folgende Sachverhalte berücksichtigt werden:

- Es werden folgende Kennzahlen erhoben: Materialkosten, Lohnkosten, Gesamtkosten, Mitarbeiteranzahl und Bearbeitungsdauer. Diese sollen als Attribut der zentralen Faktentabelle Autoreparatur modelliert werden.
- Reparaturkosten lassen sich nach Kundenkategorien und Fahrzeugmodell zwischen den verschiedenen Werkstätten der Niederlassungen miteinander vergleichen. Zudem soll die
- Ein Kunde wird dabei durch die Attribute Alter und Einkommen näher beschrieben.
- Ein Fahrzeug wird einem Typ und dieser wiederum einer Marke zugeordnet.
- Eine Werkstatt wird einem Werkstattyp und einer Region zugeordnet. Die Region wiederum ist einem Land zugeordnet.
- Ein Kunde kann ebenfalls einer Region zugeordnet werden.
- Zudem soll das Datum der Reparatur berücksichtigt werden.

Modellierungsvorschlag Aufgabe 1

Application Design for Analytical Processing Technologies

- konzeptionelles Datenmodell für mehrdimensionale Datenstrukturen von OLAP- Systemen
- bis dahin entwickelte Modelle bilden die Verarbeitungslogik von Analyseprozessen und multidimensionalen Strukturen nur unzureichend ab
- unterliegt keinem speziellen Datenbanksystem
- Ansatz stellt eine Methode dar, die im Zuge des praktischen Aufbaus von Data Warehouse- und OLAP-Systemen entwickelt wurde
- http://www.symcorp.com/tech_expertise_design.html zum Download der Visio-Shapes

Objekte zur Dimensionsmodellierung

Verbindungsobjekte für die Dimensionsmodellierung

Beziehungstypen

Objekt	Bedeutung	
\otimes	Umfassendes Exklusiv-Oder	
	Umfassendes Oder	
X	Partielles Exklusiv-Oder	
	Partielles Oder	

In der Bezeichnung der Beziehungen bedeutet *Exklusiv-Oder*, dass die beteiligten Teilmengen disjunkt sind, das nichtexklusive *Oder* hingegen erlaubt Überlappungen. Bildet die Vereinigung der Teilmengen die Gesamtheit, wird dies als *umfassend* bezeichnet. Andernfalls wird dies mit *partiell* umschrieben.

Beziehungstypen

Attribute

Abbildung von Berechnungsvorschriften

Verbindungsobjekte für die Dimensionsmodellierung

Beispiel 1

Beispiel 2

Aufgabe 2

Ein Hochschulinformationssystem soll Analysen von Universitäten hinsichtlich Struktur, Personal, Studenten und geographischer Verteilung von Standorten in Deutschland über einen längeren Zeitraum erlauben. In einem ersten Schritt ist ein konzeptioneller Entwurf multidimensional mittels ADAPT zu modellieren. Zu erstellen sind die Dimensionen, sinnvolle Kennzahlen mit Berechnungsvorschriften sowie denkbare Szenarios.

Vielen Dank für die Aufmerksamkeit

Fragen?

Sebastian.Trinks@bwl.tu-freiberg.de

