How does a Quadrotor fly? A journey from physics, mathematics, control systems and computer science towards a "Controllable Flying Object"

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it

Keynote - L.A.P. 1 Course - Jan 10, 2014

Overview

- Why Multi-rotors?
- Structure and Physics of a Quadrotor
- From Analysis to Driving: How can I impose a movement to my quadrotor?
- The ideal world and the real world: Why we need Control Systems Theory!
- Rates and Angles: Could I control the attitude?
- What about Altitude or GPS control?

Part I

Why Multi-rotors?

Flying Machines

- "To fly" has been one of the dreams of the humans
- But the story tells that building flying machines is not easy!
- A basic and common component: the wing
- Two kind of "flying machines" (excluding rockets and balloons):
 - Fixed wing, i.e. airplanes
 - Rotating wing, i.e. helicopters

Design and Implementation problems

Airplanes (fixed wing)

- Wing profile and shape
- Wing and stab size/area
- Wing load
- Position of the COG
- Motion is achieved by driving (mechanically) the mobile surfaces (aleirons, rudder, elevator)

Helicopters (rotating wing, VTOL)

- Size and structure of the rotor
- Mechanical system to control motion inclination
- Yaw balancing system for the rotor at tail
- Position of the COG
- Motion is achieved by (mechanically) changing the inclination of the rotor and the pitch of the rotor wings

Multi-rotors ...

- are mechanically simple: they have n motors and n propellers
- do not require complex mechanical parts to control the flight
- can fly and move only by changing motor speed
- are controlled only by a electronic-/computer-based system

Building them is simple!!

Part II

Structure and Physics of a Quadrotor

Structure of a Quadrotor (Mechanics)

- Four **equal** propellers generating four thrust forces
- Two possible configurations: "+" and "x"
- Propellers 1 and 3 rotates CW, 2 and 4 rotates CCW
- Required to compensate the action/reaction effect (Third Newton's Law)
- Propellers 1 and 3 have opposite pitch w.r.t. 2 and 4, so all thrusts have the same direction

Structure of a Quadrotor (Electronics)

Forces and Rotation speeds

- $\omega_1, \omega_2, \omega_3, \omega_4$: **rotation speeds** of the propellers
- T_1, T_2, T_3, T_4 : **forces** generated by the propellers
- $T_i \propto \omega_i^2$: on the basis of propeller shape, air density, etc.
- m: mass of the quadrotor
- mg: weight of the quadrotor

Moments

- M_1, M_2, M_3, M_4 : **moments** generated by the forces
- $\bullet \ M_i = L \times T_i$

Hovering Condition (Equilibrium)

- **1** Equilibrium of forces: $\sum_{i=1}^{4} T_i = -mg$
- **2** Equilibrium of directions: $T_{1,2,3,4}||g|$
- **3** Equilibrium of moments: $\sum_{i=1}^{4} M_i = 0$
- **Q** Equilibrium of rotation speeds: $(\omega_1 + \omega_3) (\omega_2 + \omega_4) = 0$

Violating one (or more) of these conditions implies to impose a certain movement to the quadrotor

Reference Systems

There are two reference systems:

- The **inertial** reference systems, i.e. the Earth frame (x_E, y_E, z_E)
- The **quadrotor** reference system, i.e. the Body frame (x_B, y_B, z_B)

Euler Angles

Three angles (ϕ, θ, ψ) define the transformation between the two systems:

- Roll, ϕ : angle of rotation along axis $x_B||x_E||$
- Pitch, θ : angle of rotation along axis $y_B||y_E||$
- Yaw, ψ : angle of rotation along axis $z_B||z_E|$

They are called **Euler Angles**

Angular Speeds

The derivative of (ϕ, θ, ψ) w.r.t. time are the **angular/rotation** speeds $(\dot{\phi}, \dot{\theta}, \dot{\psi})$ of the system:

- \bullet $\dot{\phi}$, Roll rate
- \bullet $\dot{\theta}$, Pitch rate
- \bullet $\dot{\psi}$, Yaw rate

Part III

From Analysis to Driving:

How can I impose a movement to my quadrotor?

Hovering Condition (Equilibrium)

- **1** Equilibrium of forces: $\sum_{i=1}^{4} T_i = -mg$
- **2** Equilibrium of directions: $T_{1,2,3,4}||g|$
- **3** Equilibrium of moments: $\sum_{i=1}^{4} M_i = 0$
- **4** Equilibrium of rotation speeds: $(\omega_1 + \omega_3) (\omega_2 + \omega_4) = 0$

As a consequence:

$$\bullet \ \dot{\phi} = 0 \quad \dot{\theta} = 0 \quad \dot{\psi} = 0$$

$$\phi = 0$$
 $\theta = 0$ $\psi = 0$

Going Up and Down

- **1** No equilibrium of forces: $\sum_{i=1}^{4} T_i \neq -mg$
- **2** Equilibrium of directions: $T_{1,2,3,4}||g|$
- **Solution Equilibrium of moments**: $\sum_{i=1}^{4} M_i = 0$
- **Q** Equilibrium of rotation speeds: $(\omega_1 + \omega_3) (\omega_2 + \omega_4) = 0$

By increasing/decreasing the rotation speed of **all** the propellers we can:

- **Go Up**: $\sum_{i=1}^{4} T_i > -mg$
- **Go Down**: $\sum_{i=1}^{4} T_i < -mg$

Euler angles and rates remain 0

Yaw Rotation

- **Q** Equilibrium of forces: $\sum_{i=1}^{4} T_i = -mg$
- **2** Equilibrium of directions: $T_{1,2,3,4}||g|$
- **3** Equilibrium of moments: $\sum_{i=1}^{4} M_i = 0$
- No equilibrium of prop speeds: $(\omega_1 + \omega_3) (\omega_2 + \omega_4) \neq 0$

As a consequence:

$$\dot{\psi} = k_{\mathsf{Y}}((\omega_1 + \omega_3) - (\omega_2 + \omega_4)) \qquad \psi = \int \dot{\psi} dt$$

Roll Rotation

No equilibrium of moments: $\sum_{i=1}^{4} M_i \neq 0$... by unbalancing propeller speeds as:

$$(\omega_1 + \omega_4) - (\omega_2 + \omega_3) \neq 0$$

As a consequence:

- $\dot{\phi} = k_R((\omega_1 + \omega_4) (\omega_2 + \omega_3))$ $\phi = \int \dot{\phi} dt$
- No equilibrium of directions: $T_{1,2,3,4}$ not parallel to g

Roll Rotation and Translated Flight

Total thrust $T = \sum_{i=1}^{4} T_i$ is decomposed in:

- Lift Force: $T_L = T \cos \phi$
- Drag Force: $T_D = T \sin \phi$

Avoiding diving implies $T_L = T \cos \phi = -mg$ thus in **translated flight** we need more power w.r.t. **hovering** or **yawing**.

Pitch Rotation

No equilibrium of moments: $\sum_{i=1}^{4} M_i \neq 0$... by unbalancing propeller speeds as:

$$(\omega_1 + \omega_2) - (\omega_3 + \omega_4) \neq 0$$

As a consequence:

- $\dot{\theta} = k_P((\omega_1 + \omega_2) (\omega_3 + \omega_4))$ $\theta = \int \dot{\theta} dt$
- Also in this case the total thrust is decomposed thus we need more power w.r.t. hovering or yawing.

Equations of Movement

We assume a common factor of proportionality k and $F = \sqrt{T}$ (we will see that such an assumption is not a problem!):

$$\begin{array}{lcl} \dot{\phi} & = & k((\omega_{1} + \omega_{4}) - (\omega_{2} + \omega_{3})) & = & k\omega_{1} - k\omega_{2} - k\omega_{3} + k\omega_{4} \\ \dot{\theta} & = & k((\omega_{1} + \omega_{2}) - (\omega_{3} + \omega_{4})) & = & k\omega_{1} + k\omega_{2} - k\omega_{3} - k\omega_{4} \\ \dot{\psi} & = & k((\omega_{1} + \omega_{3}) - (\omega_{2} + \omega_{4})) & = & k\omega_{1} - k\omega_{2} + k\omega_{3} - k\omega_{4} \\ F & = & k((\omega_{1} + \omega_{2} + \omega_{3} + \omega_{4})) & = & k\omega_{1} + k\omega_{2} + k\omega_{3} + k\omega_{4} \end{array}$$

or, using matrices:

$$\begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \\ F \end{pmatrix} = \begin{pmatrix} k & -k & -k & k \\ k & k & -k & -k \\ k & -k & k & -k \\ k & k & k & k \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{pmatrix}$$

Equations of Movement

$$\begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \\ F \end{pmatrix} = \begin{pmatrix} k & -k & -k & k \\ k & k & -k & -k \\ k & -k & k & -k \\ k & k & k & k \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{pmatrix} = K \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{pmatrix}$$

This equation gives the **angular velocities** of the quadrotor, given the speed of the **propellers**.

But if we want to **control** the quadrotor we must understand *how to set* ω_i in order to impose a certain rotation rate of axis in the body frame.

Controlling Roll, Pitch and Yaw Rates, and Total Thrust

Part IV

The ideal world and the real world: Why we need Control Systems Theory!

Can we really set the rotation rate of propellers??

Motor/Propeller Driving Schema

Drivers, motors and propellers are chosen to be of the same type for the four arms.

Software (firmware) controls PWM, but ...

- Are the drivers really all the same?
- Are the motors really all the same?
- Are the propellers really all the same?
- Is the COG placed at the center of the quadrotor?

The answer is: In general, No!!

Can we really set the rotation rate of propellers??

Motor/Propeller Driving Schema

Same PWM signals applied different driver/motor/propeller chains provoke different thrust forces, even if the components are of the same type!

The "Real world" effect

Problem

We need to set ω_i by

$$\begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{pmatrix} = K^{-1} \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \\ F \end{pmatrix}$$

but we don't have a direct control on ω_i and propeller thrust

The Mathematician/Physicists Solution

Solution ??

Let's characterize **each driver/motor/propeller chain** and derive the functions:

$$T_i = f_i(PWM_i)$$

Then, let's invert the functions:

$$PWM_i = f_i^{-1}(T_i)$$

But...

- Characterization is not so easy
- If we change a component, we must repeat the process
- There are unpredictable variables, e.g. air density, wind, etc.

The Computer Scientist/Engineer Solution

Solution ??

Let's sperimentally tune:

- an offset for each channel
- a gain for each channel

until the system behaves as expected!

But...

- Tuning is not so easy
- If we change a component, we must repeat the process
- There are unpredictable variables, e.g. air density, wind, etc.

The Control System Engineer Solution

Solution!!!! Use feedback!

- Measure your variable through a sensor
- Compare the measured value with your desired set point
- Apply the correction to the system on the basis of the error
- Go to 1
 - Tuning is easy and, if the controller is properly designed ...
 - it works no matter the components
 - it works also in the presence of uncontrollable variables, e.g. air density, wind, etc.

Our Scenario

Our measures:

- Actual angular velocities on the three axis $(\phi_M, \theta_M, \psi_M)$
- They are measured through a 3-axis gyroscope!

Our set-points:

- **Desired** angular velocities on the three axis $(\dot{\phi_T}, \dot{\theta_T}, \dot{\psi_T})$
- They are given through the remote control

Using Feedback to Control the Quadrotor

The overall schema of the feedback controller is:

Using Feedback to Control the Quadrotor

Algorithmically

```
while True do

On \Delta T timer tick;
(\dot{\phi_T}, \dot{\theta_T}, \dot{\psi_T}, F) = \text{sample\_remote\_control()};
(\phi_M, \theta_M, \psi_M) = \text{sample\_gyro()};
e_{\dot{\phi}} := \phi_T - \phi_M; \quad e_{\dot{\theta}} := \dot{\theta_T} - \theta_M; \quad e_{\dot{\psi}} := \dot{\psi_T} - \dot{\psi_M};
C_{\dot{\phi}} := \text{roll\_rate\_controller}(e_{\dot{\phi}});
C_{\dot{\theta}} := \text{pitch\_rate\_controller}(e_{\dot{\theta}});
C_{\dot{\psi}} := \text{yaw\_rate\_controller}(e_{\dot{\psi}});
(pwm_1, pwm_2, pwm_3, pwm_4)^T := K^{-1}(C_{\dot{\phi_T}}, C_{\dot{\theta_T}}, C_{\dot{\psi_T}}, F)^T;
\text{send\_to\_motors}(pwm_1, pwm_2, pwm_3, pwm_4);
```

end

Using Feedback to Control the Quadrotor

Algorithmically

```
while True do
```

end

```
On \Delta T timer tick; (\dot{\phi_T}, \dot{\theta_T}, \dot{\psi_T}, F) = \text{sample\_remote\_control}(); (\dot{\phi_M}, \dot{\theta_M}, \dot{\psi_M}) = \text{sample\_gyro}(); e_{\dot{\phi}} := \dot{\phi_T} - \dot{\phi_M}; e_{\dot{\theta}} := \dot{\theta_T} - \dot{\theta_M}; e_{\dot{\psi}} := \dot{\psi_T} - \dot{\psi_M}; C_{\dot{\phi}} := \text{roll\_rate\_controller}(e_{\dot{\phi}}); C_{\dot{\theta}} := \text{pitch\_rate\_controller}(e_{\dot{\theta}}); C_{\dot{\psi}} := \text{yaw\_rate\_controller}(e_{\dot{\psi}}); (pwm_1, pwm_2, pwm_3, pwm_4)^T := K^{-1}(C_{\dot{\phi_T}}, C_{\dot{\theta_T}}, C_{\dot{\psi_T}}, F)^T; send_to_motors(pwm_1, pwm_2, pwm_3, pwm_4);
```

The key is in the controllers!!

The P.I.D. Controller

The most common used controller type is the **Proportional-Integral-Derivative** controller, represented by the following function:

PID Function

C := xxx_rate_controller(e);

That is:

$$C(t) := \mathcal{K}_{p} \mathbf{e}(t) + \mathcal{K}_{i} \int_{0}^{t} \mathbf{e}(au) \ d au + \mathcal{K}_{d} rac{d\mathbf{e}(t)}{dt}$$

In a discrete world (at k^{th} sampling instant):

$$C(k) := \mathcal{K}_p e(k) + \mathcal{K}_i \sum_{j=0}^k e(j) \Delta T + \mathcal{K}_d \frac{e(k) - e(k-1)}{\Delta T}$$

The P.I.D. Controller

PID Function

$$C(k) := \mathcal{K}_p e(k) + \mathcal{K}_i \sum_{j=0}^k e(j) \ \Delta T + \mathcal{K}_d \frac{e(k) - e(k-1)}{\Delta T}$$

Constants K_p , K_i , K_d regulate the behaviour of the controller:

- K_p drives the short-term action
- K_i drives the long-term action
- K_d drives the action on the basis of the "error trend"

Constants K_p , K_i , K_d are tuned:

- Using a specific tuning method (Ziegler-Nichols)
- Sperimentally by means of "trial-and-error"

Part V

Rates and Angles:

Could I control the attitude?

Rates are not Angles

The above schema controls rates:

- suppose a roll angle of $\phi = 10^{o}$
- but no roll rotation (rate), i.e. $\dot{\phi}=0$
- and no roll rotation command (sticks set to center)
- ⇒ the quadrotor is **not** horizontal and performs a translated flight

Could we control angles instead of rates?

Measuring Angles (instead of Rates): Gyros

First we must **measure** euler angles (ϕ, θ, ψ) ! We could do this by using **Gyroscopes**, **Accelerometers**, **Magnetometers**, but...

Gyroscopes measure *angular velocities* which can be **integrated** in order to derive the angle $\alpha(t) = \int_0^t \dot{\alpha}(\tau) d\tau$, but:

- Numeric integration is affected by approximation errors
- Gyroscopes are affected by an offset, i.e. they give non-zero value when the measure should be zero
- Such an offset is not constant over time and depends on the temperature

The estimated angle is not reliable!

Measuring Angles: Accelerometers

An accelerometer is a sensor measuring the acceleration over the three axis (a_x, a_y, a_z) .

- If the sensor is static sensed values are the projections of g vector in the sensor reference system
- Two functions (using arctan) determines pitch and roll:

$$\phi = \tan^{-1} \frac{-a_y}{-a_z}$$

$$\theta = \tan^{-1} \frac{a_x}{\sqrt{a_y^2 + a_z^2}}$$

 But if the object is moving (e.g. shaking) other accelerations appear

The computed angles are not reliable!

Measuring Angles: Two sensors, No reliability!

Gyros

- Drift
- Approximate discrete integration

Accelerometers

Precise only if sensor is not "shaking"

We have **two different source** of the **same** information which are affected by **two different error** types.

We can use **both** measures by *fusing* them in order to adjust the error and obtain a reliable information.

Sensor Fusion

Basic Algorithm

while True do

```
On \Delta T timer tick;

(\dot{\phi}, \dot{\theta}, \dot{\psi}) = \text{sample\_gyro()};

(a_x, a_y, a_z) = \text{sample\_accel()};

(\phi, \theta, \psi) = (\phi, \theta, \psi) + \Delta T(\dot{\phi}, \dot{\theta}, \dot{\psi});

\hat{\phi} = \text{tan}^{-1}(-a_y/-a_z);

\hat{\theta} = \text{tan}^{-1}(a_x/\sqrt{a_y^2 + a_z^2});

(\phi, \theta, \psi) = \text{fusion\_filter}(\phi, \theta, \psi, \hat{\phi}, \hat{\theta});

end
```

290

Sensor Fusion: Algorithms

The key is the **filter function**!

- DCM (Direction Cosine Matrix)
- Complementary filters
- Kalman filters

Basic idea:

- Derive an **error function** e(t) = real(t) estimated(t)
- Design a **controller** able to guarantee $\lim_{t\to\infty} e(t) = 0$

Sensor Fusion: Algorithms

High computational load due to:

- Rotations in the 3D space
- Matrix calculations

May we reduce the load?

Representing Rotations in 3D

Direction Cosine Matrix

$$egin{aligned} extstyle DCM = \left(egin{array}{ccc} c heta c\psi & s\phi s heta c\psi - c\phi s\psi & c\phi s heta c\psi + s\phi s\psi \ c heta s\psi & s\phi s heta s\psi + c\phi c\psi & c\phi s heta s\psi - s\phi c\psi \ -s heta & s\phi c heta & c\phi c heta \end{array}
ight) \end{aligned}$$

$$s = \sin, c = \cos$$

This matrix is re-computed at each iteration!!

Rotating a vector v = (x, y, z) implies the product $DCM \cdot v$.

Representing Rotations in 3D

Quaternions

A **quaternion** is a complex number with one real part and three imaginary parts:

$$q = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$$

 $\mathbf{i}, \mathbf{j}, \mathbf{k} = imaginary units$

$$\boldsymbol{i}^2 = \boldsymbol{j}^2 = \boldsymbol{k}^2 = \boldsymbol{i}\boldsymbol{j}\boldsymbol{k} = -1$$

While **Complex numbers** can be used to represent **rotations** in **2D**, **Quaternions** can be used to represent **rotations** in **3D**.

Rotations in 3D and Quaternions

Transformations from Euler angles to quaternion exist:

$$egin{aligned} oldsymbol{q} & o (\phi, heta, \psi) \ (\phi, heta, \psi) & o oldsymbol{q} \end{aligned}$$

- Rotating a vector v using a quaternion implies the product $q\overline{v}q^*$ where q^* is the conjugate of q and $\overline{v} = \{0, v_x, v_y, v_z\}$.
- The overall fusion algorithm can be written using quaternion algebra, thus avoiding continuous sin, cos calculation.
- Quaternions avoid gimbal lock!
- The attitude can be easily obtained by using:

$$q \rightarrow (\phi, \theta, \psi)$$

So far so good: Controlling attitude

- Attitude control is achieved using (once again) feedback controllers.
- We set the **Target (desired) Attitude** $(\phi_T, \theta_T, \dot{\psi}_T)$ from remote controller.
- Current quad attitude $(\phi_M, \theta_M, \psi_M)$ is computed using sensor fusion.
- The error signals (differences) are sent to PID controllers whose output are the target rates for rate controllers.
- The basic model is "cascading controllers": attitude controllers which drives rate controllers.

Let's remind the schema of Rate Controllers

Complete Attitude Controller

Control "loops": Requirements

- Two control loops in the schema
 - rate control (inner);
 - attitude control (outer);
- Attitude control "drives" rate control, thus rate control must have "enough time" to reach the desired target.
- Loops must have different dynamics, i.e. sampling time
- T_r = rate control sampling time
- T_a = attitude control sampling time
- $T_a >> T_r$, $T_a = nT_r$, $n \in \mathcal{N}$, n > 1
- In our quad: $T_r = 5ms$, $T_a = 50ms$

Finally, the overall algorithm

end

```
while True do
     On T_r timer tick;
     (\phi_M, \theta_M, \psi_M) = \text{sample\_gyro()};
     (a_x, a_y, a_z) = \text{sample\_accel}();
     (\phi_M, \theta_M) = fusion\_filter(\phi_M, \theta_M, \psi_M, a_x, a_y, a_z);
     if after N loops then
          (\phi_T, \theta_T, \psi_T, F) = sample_remote_control();
          \phi_T := \text{roll\_controller}(\phi_M, \phi_T);
          \theta_T := \mathsf{pitch\_controller}(\theta_M, \theta_T);
     end
     C_{\dot{\phi}} := \text{roll\_rate\_controller}(\phi_M, \phi_T);
     C_{\dot{\theta}} := \text{pitch\_rate\_controller}(\dot{\theta}_M, \dot{\theta}_T);
     C_{i} := yaw_rate_controller(\psi_M, \psi_T);
     (pwm_1, pwm_2, pwm_3, pwm_4)^T := K^{-1}(C_{\dot{\phi}_{\tau}}, C_{\dot{\phi}_{\tau}}, C_{\dot{\psi}_{\tau}}, F)^T;
     send_to_motors(pwm_1, pwm_2, pwm_3, pwm_4);
```

Part VI

What about Altitude or GPS control?

Let's repeat the schema!

Do you need another kind of control? Repeat the schema!

- Identify your source of measure m
- Identify your target t
- Identify the variables to drive v
- Identify the sampling time
- Use a (PID) controller v = pid(t, m)

Altitude Control

- H_T = our target height
- H_M = measured height (from a sensor)
- F = output variable to control (desired thrust)
- MT_r = altitude control sampling time, M > N

```
while True do
    On T<sub>r</sub> timer tick;
...;
if after M loops then
    H<sub>M</sub> = sample_altitude_sensor();
    F :=altitude_controller(H<sub>M</sub>, H<sub>T</sub>);
end
...
end
```

GPS Control

- Lat_T , Lon_T = our target position
- Lat_M , Lon_T = measured position (from a GPS sensor)
- ϕ_T , θ_T = target variables to control (desired pitch and roll)
- $GT_r = GPS$ control sampling time, G > N

```
while True do
    On T_r timer tick ;
    if after G loops then
        (Lat_M, Lon_M) = sample\_gps();
        \phi_T := \operatorname{qps\_lon\_controller}(Lon_M, Lon_T);
        \theta_T := gps_lat_controller(Lat_M, Lat_T);
    end
end
```

Note: for a proper GPS navigation, a compass (with related yaw control) is mandatory.

Vision-based Control

Conclusions

It seems easy

... but, where is the trick?

- Are sensors reliable?
 - Sometimes, NO!
 - Noise due to mechanical vibrations (MEMS-IMU to be filtered by applying Fourier analysis)
 - False positives due to wiring problems (Magnetometers, ADC, etc.)

• Are execution platforms reliable?

- Check it!
- Controllers need precise (real-time) timing
- DO NOT Windows to stabilize your quad!!!
- You can try with RT-Linux

Is PID Tuning really easy?

- NO! You must learn it!
- ... and be sure to have a large set of propellers!!

• Are all those things fun?

• OF COURSE!!!! ¨

Will Multi-rotors be the future of personal transportation systems?

Where do I park my multi-rotor??

Demonstration Flight

First prototype: PROBLEMS!!!

- DIY is fun but ...
 - The frame is not well balanced... but the control will do the job
 - Too many vibrations (many of them suppressed using Chebyshev filters)
 - Wrong choice of motors (specs report a thurst of 400gr each, but ...)

Wiring/Electronics problems

- Current spikes reset the ultrasonic sensor
- I2C sometimes locks (a watchdog intervenes and turn-off motors)

Firmware problems

 Still working on the sensor fusion algorithm, since it is not satisfactory (we want more stability...)

How does a Quadrotor fly? A journey from physics, mathematics, control systems and computer science towards a "Controllable Flying Object"

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it

Keynote - L.A.P. 1 Course - Jan 10, 2014