Complexes, analyse

Exercice 1.

- 1) Exprimer $\cos(5x)$ en fonction de $\cos(x)$.
- 2) En déduire la valeur exacte de $\cos\left(\frac{\pi}{10}\right)$.

Exercice 2.

Partie A : calculs de limite

- 1) Calculer $\lim_{x \to 0} \frac{\sin(x)}{x}$.
- 2) Calculer $\lim_{x\to 0} \frac{\cos(x)-1}{x}$.
- 3) Montrer que, pour tout réel x non nul, $\frac{\cos(x) 1}{x^2} = \frac{-2\sin^2\left(\frac{x}{2}\right)}{x^2}$.
- 4) En déduire $\lim_{x\to 0} \frac{\cos(x) 1}{x^2}$.
- 5) Montrer que, pour tout réel x non nul, $\frac{\sin(x)}{x} 1 = \frac{2\sin\left(\frac{x}{2}\right)}{x} \times \frac{\cos\left(\frac{x}{2}\right) \frac{x}{2\sin\left(\frac{x}{2}\right)}}{x}.$
- 6) Calculer $\lim_{x\to 0} \frac{\frac{\sin(x)}{x} 1}{x}$.

 $Partie\ B$: utilisation en analyse

Soit
$$f: \left\{ \begin{array}{ll} \mathbb{R} & \to & \mathbb{R} \\ x \neq 0 & \mapsto & \frac{\sin(x)}{x} \\ 0 & \mapsto & 1 \end{array} \right.$$

Autrement dit, si $x \neq 0$, $f(x) = \frac{\sin(x)}{x}$ et f(0) = 1.

- 1) Montrer que f est continue sur \mathbb{R} . [On distinguera deux cas : continuité sur \mathbb{R}^* et continuité en 0.]
- 2) Montrer que f est dérivable sur \mathbb{R}^* et calculer f'(x) pour $x \neq 0$.
- 3) Montrer que f est dérivable en 0 et calculer f'(0).
- 4) f' est-elle continue en 0? sur \mathbb{R} ?

Exercice 3.

Soient
$$n \in \mathbb{N}^*$$
 et $g_n : \begin{cases} [-\pi; \pi] \to \mathbb{R} \\ x \mapsto \sum_{k=1}^n \cos(kx) \end{cases}$.

1) Que vaut $g_n(0)$?

- 2) Montrer que pour tout réel $x \in [-\pi; \pi] \setminus \{0\}$, $g_n(x) = \cos\left(\frac{(n+1)x}{2}\right) \frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)}$.
- 3) En déduire que pour tout réel $x \in [-\pi; \pi] \setminus \{0\}$, $g_n(x) = \frac{\sin((2n+1)\frac{x}{2})}{2\sin(\frac{x}{2})} \frac{1}{2}$.
- 4) Que vaut $\lim_{x\to 0} \frac{\sin\left((2n+1)\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)}$?