Natural Language Processing CMPE 353 AI

By Savaş Yıldırım

Reference Text Book

Advances in NLP

- Contextual word embeddings
- Better subword tokenization algorithms for handling unseen words or rare words
- Injecting additional memory tokens into sentences, such as Paragraph ID in Doc2vec or a Classification (CLS) token in Bidirectional Encoder Representations from Transformers (BERT)
- Attention mechanisms, which overcome the problem of forcing input sentences to encode all information into one context vector
- Multi-head self-attention
- Positional encoding to case word order
- Parallelizable architectures that make for faster training and fine-tuning
- Model compression (distillation, quantization, and so on)
- TL (cross-lingual, multitask learning)

Deep Learning Models

- RNNs
- CNNs
- FFNNs
- Several variants of RNNs, CNNs, and FFNNs

... And transformers

The vocabulary size is 10
The document-term matrix shape is (3, 10)

	big	cat	chased	dog	fat	mat	on	sat	slept	the
0	0.00	0.25	0.00	0.00	0.42	0.42	0.42	0.42	0.00	0.49
1	0.61	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.61	0.36
2	0.00	0.36	0.61	0.61	0.00	0.00	0.00	0.00	0.00	0.36

Document x Word Matrix

Advantages	Disadvantages			
Easy to implement Human-interpretable results Domain adaptation	 Dimensionality curse. No solution for unseen words. Hardly capture semantic relations. such as is-a, has-a, synonym. Word order information is ignored. Slow for large vocabularies. 			

Table 1 – Advantages and disadvantages of a TF-IDF BoW model

Figure 1.4 – Visualizing word embeddings with PCA

Word Embeddings

Figure 1.1 – Word embeddings offset for relation extraction

Figure 1.5 - An RNN architecture

Figure 1.6 – An LSTM unit

Figure 1.9 – 1D CNN network for a sentence of five tokens

Attention Mechanism

Figure 1.2 - Sketchy visualization of an attention mechanism

Fig. 7. "A woman is throwing a frisbee in a park." (Image source: Fig. 6(b) in Xu et al. 2015)

Figure 1.13 - Attention mechanism in computer vision

Figure 1.14 - Multi-head attention mechanism

Figure 1.16 – A Transformer

Figure 1.19 – Multi-head attention mechanism (Image inspired from https://imgur.com/gallery/ FBQqrxw)

Transfer Learning in NLP

Figure 1.21 – Pre-training and fine-tuning procedures for BERT (Image inspired from J. Devlin et al., Bert: Pre-training of deep bidirectional Transformers for language understanding, 2018)

Pre-training Strategy in NLP

Figure 4.1 – AE versus AR language model

Advance denoising objectives

Figure 4.4 – Diagram inspired by the original BART paper

Classification Problem

Figure 5.1 – Text classification scheme

What is happening inside

	attention_mask	input_ids	label	text
0	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	[101, 22953, 2213, 4381, 2152, 2003, 1037, 947	1	Bromwell High is a cartoon comedy. It ran at t
1	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	[101, 11573, 2791, 1006, 2030, 2160, 24913, 20	1	Homelessness (or Houselessness as George Carli
2	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	[101, 8235, 2058, 1011, 3772, 2011, 23920, 575	1	Brilliant over-acting by Lesley Ann Warren. Be
3	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	[101, 2023, 2003, 4089, 1996, 2087, 2104, 9250	1	This is easily the most underrated film inn th
4	[1,1,1,1,1,1,1,1,1,1,1,1,1,1	[101, 2023, 2003, 2025, 1996, 5171, 11463, 837	1	This is not the typical Mel Brooks film. It wa
		***	***	
24995	[1,1,1,1,1,1,1,1,1,1,1,1,1,1	[101, 2875, 1996, 2203, 1997, 1996, 3185, 1010	0	Towards the end of the movie, I felt it was to
24996	[1,1,1,1,1,1,1,1,1,1,1,1,1,1	[101, 2023, 2003, 1996, 2785, 1997, 3185, 2008	0	This is the kind of movie that my enemies cont
24997	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	[101, 1045, 2387, 1005, 6934, 1005, 2197, 2305	0	I saw 'Descent' last night at the Stockholm Fi
24998	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	[101, 2070, 3152, 2008, 2017, 4060, 2039, 2005	0	Some films that you pick up for a pound turn o
24999	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	[101, 2023, 2003, 2028, 1997, 1996, 12873, 435	0	This is one of the dumbest films, I've ever se

25000 rows × 4 columns

400	0.251100	0.207064	0.918960	0.918960	0.918960	0.918960	58.724400	212.859000
600	0.237300	0.188785	0.926560	0.926554	0.926707	0.926560	58.727300	212.848000
800	0.209200	0.234559	0.923680	0.923621	0.924982	0.923680	58.750400	212.764000

Precision Recall

0.900160

0.933440

0.934800

0.934640

0.903660

0.933440

0.934927

0.934661

Runtime

58.657100

58.840300

58.819400

58.836100

Samples Per Second

213.103000

212.440000

212.515000

212.455000

[2346/2346 21:13, Epoch 3/3]

0.900160 0.899943

0.933440

0.934800

0.934640 0.934639

Step Training Loss Validation Loss Accuracy F1

0.239647

0.255035

0.269209

0.242861

0.417800

0.051300

0.045200

0.053700

200

1800

2000

2200

1000	0.128500	0.248400	0.927280	0.927280	0.927286	0.927280	58.717100	212.885000
1200	0.137400	0.251818	0.920000	0.919869	0.922771	0.920000	58.713500	212.898000
1400	0.125900	0.186671	0.930720	0.930707 e minimu	0.931054	0.930720	58.724900	212.857000
1600	0.111800	0.230385	0.932960	0.932959	0.932980	0.932960	58.695400	212.964000

0.933440

0.934795

NER

George Washington is one the presidents of the United States of America.

George Washington is a person name while *the United States of America* is a location name. A sequence tagging model is expected to tag each word in the form of tags, each containing information about the tag. BIO's tags are the ones that are universally used for standard NER tasks.

The following table is a list of tags and their descriptions:

Tag	Description
0	Out of entity
B-PER	Beginning of Person entity
I-PER	Inside of Person entity
B-LOC	Beginning of Location entity
I-LOC	Inside of Location entity
B-ORG	Beginning of Organization entity
I-ORG	Inside of Organization entity
B-MISC	Beginning of Miscellaneous entity
I-MISC	Inside of Miscellaneous entity

Table 1 - Table of BIOS tags and their descriptions

From this table, **B** indicates the beginning of a tag, and **I** denotes the inside of a tag, while **O** is the outside of the entity. This is the reason that this type of annotation is called **BIO**. For example, the sentence shown earlier can be annotated using BIO:

```
[B-PER|George] [I-PER|Washington] [O|is] [O|one] [O|the] [O|presidents] [O|of] [B-LOC|United] [I-LOC|States] [I-LOC|of] [I-LOC|America] [O|.]
```

POS Part-of-Speech

1.	CC	Coordinating conjunction	25.	TO	to
2.	CD	Cardinal number	26.	UH	Interjection
3.	DT	Determiner	27.	VB	Verb, base form
4.	EX	Existential there	28.	VBD	Verb, past tense
5.	FW	Foreign word	29.	VBG	Verb, gerund/present
6.	IN	Preposition/subordinating			participle
		conjunction	30.	VBN	Verb, past participle
7.	JJ	Adjective	31.	VBP	Verb, non-3rd ps. sing. present
	JJR	Adjective, comparative	32.	VBZ	Verb, 3rd ps. sing. present
	JJS	Adjective, superlative	33.	WDT	wh-determiner
	LS	List item marker	34.	WP	wh-pronoun
11.	MD	Modal	35.	WP\$	Possessive wh-pronoun
12.	NN	Noun, singular or mass	36.	WRB	wh-adverb
13.	NNS	Noun, plural	37.	#	Pound sign
14.	NNP	Proper noun, singular	38.	\$	Dollar sign
15.	NNPS	Proper noun, plural	39.		Sentence-final punctuation
16.	PDT	Predeterminer	40.	,	Comma
17.	POS	Possessive ending	41.		Colon, semi-colon
18.	PRP	Personal pronoun	42.	(Left bracket character
19.	PP\$	Possessive pronoun	43.		Right bracket character
20.	RB	Adverb	44.		Straight double quote
21.	RBR	Adverb, comparative	45.		Left open single quote
22.	RBS	Adverb, superlative	46.	"	Left open double quote
23.	RP	Particle	47.	,	Right close single quote
24.	SYM	Symbol (mathematical or scientific)	48.	"	Right close double quote

Figure 6.2 - Penn Treebank POS tags

QA

Article: Endangered Species Act

Paragraph: "...Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting of right and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?"

Plausible Answer: later laws

Question 2: "What was the name of the 1937 treaty?"

Plausible Answer: Bald Eagle Protection Act

Clustering

Figure 7.7 - Centroids of the cluster

Figure 7.8 – Cluster points visualization

	Topic	Count	Name
0	4	3086	4_book_read_books_who
1	-1	1818	-1_product_my_use_have
2	7	1499	7_movie_film_dvd_watch
3	5	1327	5_album_cd_songs_music
4	24	274	24_toy_daughter_we_loves
5	2	235	2_game_games_play_graphics

Figure 7.9 - BERTopic results

```
topic model.get topic(5)
```

The output is as follows:

```
[('album', 0.021777776441862785),
 ('cd', 0.0216003728561258),
('songs', 0.015716979809362878),
 ('music', 0.015336261401310738),
 ('song', 0.012883049138010031),
('band', 0.008790916825825062).
 ('great', 0.006907063839145953),
 ('good', 0.006594220889305517),
 ('he', 0.006428544176459775),
 ('albums', 0.006402900278216675)]
```

Figure 7.10 – The fifth topic words of the topic model

```
Test Question:
              What should be done if the adoption pack did not reach to me?
                                             I haven't received my adoption pack. What should I do?
             0.1494580342947357
             0.24940214249978787
                                             My adoption is a gift but won't arrive on time. What can I do?
Similari (V9761157176866
                                             How quickly will I receive my adoption pack?
              Test Ouestion:
               How fast is my adoption pack delivered to me?
             0.16582390267585112
                                             How quickly will I receive my adoption pack?
                                             I haven't received my adoption pack. What should I do?
             0.3470478678903325
                                             My adoption is a gift but won't arrive on time. What can I do?
             0.3511114386193057
              Test Question:
              What should I do to renew my adoption?
             0.04168242777718267
                                             How can I renew my adoption?
             0.2993018812386016
                                     12
                                             What animals do you have for adoption?
                                             I haven't received my adoption pack. What should I do?
             0.3014071168242859
                                     Θ
              Test Ouestion:
              What should be done to change adress and contact details ?
                                             How do I change my address or other contact details?
             0.276601898726506
                                   3
                                             How do I change how you contact me?
             0.352868128705782
                                     17
             0.4393553216276348
                                             How can I renew my adoption?
              Test Question:
              I live outside of the UK, Can I still adopt an animal?
             0.16945626472973518
                                             Can I adopt an animal if I don't live in the UK?
                                    y 4
                                             What animals do you have for adoption?
             0.200544029334076
                                     12
                                             How can I nd out more information about my adopted animal?
```

0.28782233378715627

13

Figure 7.11 – Question-question similarity

Cross Lingual Models in NLP

Figure 9.1 – Cross-lingual relation example between Turkish and English

Figure 9.9 – Russian-English sentence similarity visualization

Figure 9.11 - Flow of cross-lingual classification

Layer: 8 v Layer: 8 V [CLS] [CLS] [CLS] [CLS] The The **Interpretability** The The cat cat cat cat is is is is very very very very sad sad sad sad [SEP] [SEP] [SEP] [SEP] Because Because Because Because it it it could could could could not not not not find find find find food food food food to to to to eat eat eat eat [SEP] [SEP] [SEP] [SEP]

Figure 11.9 - Head-view output of BertViz

Figure 11.10 - Coreference pattern in the Turkish language model

Figure 11.11 - Coreference relation pattern in the German language model

Figure 11.12 – The model view of the German language model

Figure 11.14 - Neuron view of the coreference relation pattern (head <8,11>)