G & H - Differentiation & Integration

What are the derivatives of		
sin(kx) and cos(kx)?	f(x)	f'(x)
	sin(kx)	kcos(kx)
	cos(kx)	-ksin(kx)
What does it mean when f"(x) < 0, = 0, > 0? And how do you find points of inflection?	 f"(x) > 0 ⇒ concave ⇒ maximum point. f"(x) = 0 ⇒ MAYBE a point of inflection YET point of inflection ⇒ f"(x) = 0. To make sure you have a point, check for a change in concavity either side of the point (if so, is a point of inflection) and consider points where the f"(x) is undefined. f"(x) > 0 ⇒ convex ⇒ minimum point. 	
Using rectangles to integrate	$\lim_{n \to \infty} \sum_{i=1}^{n} y_i \delta s$	$x = \int_{a}^{b} y dx$