Advanced NGS Analysis (Day 2) Session IV

Lyda Hill department of Bioinformatics 2022 Nanocourse Series

Date & Time: June 27-28: 9AM-5PM (NG3.202)

Course Instructors: Bo Li, Daehwan Kim, Christopher Chaney, & Micah Thornton

UTSouthwestern Medical Center

What you will learn in this Session (2 Parts)

- Some Theoretical Considerations:
 - What is Pseudo/Quasi-Alignment
 - What is Alignment
 - What is Expectation Maximization
 - What is Expectation Maximization for Gene Transcript Quantification
 - What is the resolution of Genetic Transcript Data?

- *Some Practical Considerations:*
 - What is Kallisto
 - What is Salmon
 - What is H2Q

Part 1: Pseudo and Quasi Alignment & Quantification Resolution

RNA-Seq Experiments

- RNA-Seq experiments are fundamentally distinct from DNA-seq experiments, and seeks to answer a different set of questions.
- Usually we are seeking to determine whether the level of expression of a particular gene is related to a phenotypic characteristic of interest.

Pseudo/Quasi Alignment in RNA Experiments

- Sometimes the *exact* position of a sequencing read is not of critical import.
 - There are a few approaches for resolving the *approximate* location of a read.
 - Procedures work by determining the subset of *transcript isoforms* compatible with a read.
 - Two such approaches are known as:
 - Pseudo-Alignment
 - The Approach used by Kallisto.
 - Uses the De Brujin ('Deh-Broine') graph procedure.
 - Quasi-Alignment
 - The Approach used by **Salmon.**
 - Uses a *K*-mer Hash table and Suffix Array.

Resources - Kallisto (Pseudo-alignment)

- 1. https://tinyheero.github.io/2015/09/02/pseudoalignments-kallisto.html (Higher Level Overview pseudo alignment)
- 2. https://www.youtube.com/watch?v=f-ecmECK7lw (Video Describing how To Build The De Brujin graph)
- 3. https://www.nature.com/articles/nbt.2023 (Nature Primer on Using De Brujin Graphs for Genomic Alignments).

Resources - Salmon (Quasi-alignment)

- 1. https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon-flipped/lessons/08 quasi alignment salmon.html (Higher Level Overview Quasi-Alignment)
- 2. https://academic.oup.com/bioinformatics/article/32/12/i192/2288985?login=true (RapMap Paper and Description).

Typical 'DNA-Seq Like' Experiment

Typical 'RNA-Seq Like' Experiment

Recall that in most typical sequencing experiments we are dealing with a large collection of shorter subsequences called *reads*, which we attempt to map to a larger sequence known as the *reference*.

UTSouthwestern Medical Center

Part 2: Expectation Maximization & Gene Transcript Quantification

