

2. Supervised Learning: Simple Linear Regression

Linear Regression

Example

- Prediction of second-hand car prices based on features such as mileage
- It is a supervised learning problem because one has access to inputoutput examples
- It is a regression problem because the output variable is continuousvalued
- Input variables also known as features or regressors
- Output variable also known as response or prediction

Training set

	Input Variable (Mileage, Km)	Output Variable (Cost, £)	
1	25,000 105,000 120,000 140,000 45,000	16,000 11,500 6,000 3,000 13,500	Training sample (x_i, y_i)

Testing set

Input Variable (Mileage, Km)	Output Variable (Cost, £)	
50,000 90,000	?	Test sample

Linear Regression: Approach

Process

- One is given access to a training data –
 consisting of various feature-response pairs –
 and testing data consisting of features
 points with unknown response.
- One is also given a **hypothesis** (or **model**) **class** containing a series of **hypotheses** (or **models**) that potentially explain the relationship between the features and responses.
- The learning algorithm selects a hypothesis (or model) from the hypothesis (or model) class that fits the training data.
- Such selected hypothesis can then be used on the testing data to determine the response associated with the new features.

Linear Regression: Model

Linear Model

In linear regression, the relationship between the input and output variables is expressed as follows:

$$y = \alpha + \beta x$$

where α and β are model parameters

Examples

$$\alpha = 0$$
; $\beta > 0$

Linear Regression: Model

Linear Model

In linear regression, the relationship between the input and output variables is expressed as follows:

$$y = \alpha + \beta x$$

where α and β are model parameters

Examples

$$\alpha = 0$$
; $\beta < 0$

How does the learning algorithm select the linear hypothesis / model? We need a cost function...

How does the learning algorithm select the linear hypothesis / model? We need a cost function...

How does the learning algorithm select the linear hypothesis / model? We need a cost function...

How does the learning algorithm select the linear hypothesis / model? We need a cost function...

Cost Function – Sum-of-Squared Residuals

We can now define two quantities that can be used $(x_i, \hat{y}_i) = (x_i, \alpha + t o_{x_i})$ where $(x_i, \hat{y}_i) = (x_i, \alpha + t o_{x_i})$ where $(x_i, \hat{y}_i) = (x_i, \alpha + t o_{x_i})$ is a second of the data:

(1) The individual residual measures how much the predicted output value deviates from the true output value given the input value:

$$\epsilon_i = y_i - \hat{y}_i = y_i - (\alpha + \beta x_i)$$

(2) The sum of squared residuals measures how well overall the model fits the data:

$$SSR(\alpha, \beta) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - (\alpha + \beta x_i))^2$$

Linear Regression: Learning Algorithm

Learning Algorithm

We should select the linear regression model parameters that minimize the sum-of-squared residuals as follows:

$$(\alpha^*, \beta^*) = \underset{\alpha, \beta}{\operatorname{argmin}} SSR(\alpha, \beta) = \underset{\alpha, \beta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - (\alpha + \beta x_i))^2$$

This leads to the optimal model parameters given by:

$$\alpha^* = \bar{y} - \beta^* \cdot \bar{x}$$

$$\beta^* = \frac{\sum_{i=1}^n x_i (y_i - \bar{y})}{\sum_{i=1}^n x_i (x_i - \bar{x})}$$

where
$$\bar{x} = 1/n \cdot \sum_{i=1}^{n} x_i$$
 and $\bar{y} = 1/n \cdot \sum_{i=1}^{n} y_i$

New Predictions

The new response \hat{y} associated with a new data point x is now given by:

$$\hat{y} = \alpha^* + \beta^* x$$