UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: KJM 1110 – Organisk kjemi I

Eksamensdag: 11. juni 2014 Tid for eksamen: 9:00-13:00

Oppgavesettet er på 4 sider + 2 sider vedlegg

Vedlegg: 2 sider med spektroskopiske data og

periodesystemet (bakerst i oppgavesettet)

Tillatte hjelpemidler: Molekylbyggesett og enkel kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Alle 8 oppgaver teller likt.

Oppgave 1

En organisk forbindelse inneholder kun grunnstoffene C, H og O. Massespekteret til forbindelsen viser et tydelig signal for molekylionet ved m/z = 130. Forbindelsen har ¹H NMR-spekteret som er vist nedenfor.

- a) Hva er forbindelsens molekylformel?
- b) Foreslå en mulig struktur til forbindelsen. Forklar hvordan den foreslåtte strukturen er i overensstemmelse med alle spektroskopiske data.

Oppgave 2

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

- a) Alkoholen **A** kan omdannes til den sykliske eteren **B** i en syrekatalysert reaksjon. Vis reaksjonsmekanismen ved hjelp av elektronparforskyvningspiler. Kommenter hvert trinn kort.
- b) Tegn et reaksjonskoordinatdiagram (energidiagram) for reaksjonen. Angi posisjonen til reaktanter, intermediater og produkter. Anta at reaksjonen er eksergonisk.

Acetaler er en viktig stoffklasse i organisk kjemi. En student laget acetalet \mathbf{C} ved å reagere 2-pentanon med etan-1,2-diol i nærvær av noen dråper svovelsyre som katalysator. Hun startet med 7,5 g av 2-pentanon og 40,0 cm³ etan-1,2-diol. Etter opparbeiding isolerte hun 10,3 g av acetalet \mathbf{C} i ren form.

- c) Skriv reaksjonsligning, med strukturformler, for reaksjonen som gir C. Reaksjonsmekanismen trengs ikke.
- d) Hva ble utbyttet av **C** i reaksjonen, i % av teoretisk?

 Atommasser er gitt i periodesystemet i vedlegget. Tettheten av etan-1,2-diol er 1,11 g/cm³.

Oppgave 3

Br
$$(CH_3)_3CO^-K^+$$
 $(CH_3)_3CO^-K^+$ $(CH_3)_3CO^-K^ (CH_3)_3CO^-K^ (CH_3)_$

Sykloheksylbromidene \mathbf{D} og \mathbf{E} undergår eliminasjonsreaksjoner i nærvær av $(CH_3)_3CO^-K^+$ som vist over.

- a) Tegn de to stolkonformasjonene til **D**. Hvilken av dem vil det foreligge mest av?
- b) Tegn de to stolkonformasjonene til **E**. Hvilken av dem vil det foreligge mest av?
- c) Hvilken av forbindelsene **D** og **E** er mest stabil?
- d) Hvilken av stolkonformasjonene til **D** vil være mest reaktiv i sin eliminasjonsreaksjon?
- e) Hvilken av stolkonformasjonene til **E** vil være mest reaktiv i sin eliminasjonsreaksjon?
- f) Hvilken av forbindelsene **D** og **E** vil være mest reaktiv i eliminasjonsreaksjonen?
- g) Hvorfor dannes produktet som en racemisk blanding? Tegn 3D-strukturen til R- og S- formene.

Alle delspørsmål a)–g) skal begrunnes.

Oppgave 4

Vi ønsker å gjennomføre disse to flertrinns-syntesene. Angi reagenser og strukturer for mellomprodukter. Reaksjonsmekanismer trengs ikke.

a)
$$H_3C-C\equiv C-H$$
 ? + enantiomeren

Oppgave 5

- a) For hver av strukturene i)—iv) skal du angi om den er identisk med **F**, enantiomer til **F**, eller diastereomer til **F**.
- b) Tegn alle stereoisomerer for **G**. Angi for hver av dem hvorvidt den er kiral eller akiral.

c) Vil en 50:50 blanding av disse to forbindelsene dreie rotasjonsplanet til planpolarisert lys? Begrunn svaret.

Oppgave 6

Gi entydige IUPAC-navn på forbindelsene H-L.

Oppgave 7

- a) Vis og kommenter mekanismen for klorering av benzen med Cl₂ i nærvær av FeCl₃.
- b) Hvilken rekkefølge av klorering, acylering og nitrering egner seg best til å gjennomføre denne syntesen? Forklar, og vis mellomprodukter for den valgte ruten.

Oppgave 8

a) Tegn minst 2 resonansstrukturer til av anionet som er vist under. Vis overgangen mellom dem ved bruk av elektronparforskyvningspiler.

b) For hver av forbindelsene i)–v) under skal du angi om den er aromatisk, antiaromatisk, eller ingen av delene (det vil si, tre svaralternativer for hver struktur). Begrunn svarene.

c) En av studentene til prof. Cisgaard syntetiserte forbindelse **M**. Ved en ren tilfeldighet fremstilte en av studentene i den konkurrerende gruppen til prof. Transgaard forbindelse **N** akkurat samtidig. De to forbindelsene ble grundig karakterisert, og det viste seg at de var like i absolutt *alle* henseender: like smeltepunkt, kokepunkt, tetthet, dipolmoment, løselighet, ¹H og ¹³H NMR spektre, o.s.v. Gi en forklaring på dette. (Hint: tenk på egenskapene til mulige resonansstrukturer!)

$$H_3C$$
 H_3C
 H_3C
 N

¹H NMR kjemiske skift av protoner i forskjellige omgivelser. Dersom protonet er omgitt av flere funksjonelle grupper, vil effektene være omtrent additive (forsterkende).

Type proton		Kjemisk skift (δ)
Referanse	$Si(CH_3)_4$	0,0
Alkyl (primær)	—СН ₃	0,7-1,3
Alkyl (sekundær)	—С Н ₂ —	1,2-1,6
Alkyl (tertiær)	СН —	1,4-1,8
Allylisk	C=C-C	1,6-2,2
Metylketon	—с С Н 3	2,0-2,4
Aromatisk metyl	Aryl—CH ₃	2,4-2,7
Alkynyl	—с≡с−н	2,5-3,0
Alkylhalid	CH—Halogen	2,5-4,0
Alkohol	СОН	2,5-5,0
Alkohol, eter	>c <h< td=""><td>3,3-4,5</td></h<>	3,3-4,5
Vinylisk	C = C	4,5-6,5
Aromatisk	Aryl—H	6,5-8,0
Aldehyd	—c(H	9,7-10,0
Karboksylsyre	—с О—Н	11,0-12,0

[223]	[226]	[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]						
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub						
francium 87	radium 88	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111	ununbium 112						
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
85.47 caesium	87.62 barium	88.91	91.23 hafnium	92.91 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42	107.87 gold	mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
Rb	Sr	I	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd 112.41	In	Sn	Sb 121.76	Te	126.00	Xe
37 Db	38 C#	39 V	40 7.	41 NJ 6	42 N/1 -	43 T	44 D	45 D.b	46 Del	47 A ~	48 C-d	49 •••	50 Cm	51 Ch	52 T	53 ■	54 V •
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
39.098	40.078	44.956	47.867	50.942	51.996	54.939	55.845	58.933	58.693	63.546	65.409	69.723	72.64	74.922	78.96	79.904	83.798
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
22.990 potassium	24.305 calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.984 krypton
Na	Mg												Si	P	S	CI	Ar
11	12	13 14 15 16 Al Si P S											17	18			
sodium	magnesium	atomic weight										10.811 aluminium	silicon	phosphorus	sulphur	chlorine	argon
6.941	9.0122									atomic weight			12.011	14.007	15.999	18.998	20.180
Li	Be									ıbol		В	С	N	0	F	Ne
3	4								atomic number			5	6	7	8	9	10
1.0079 lithium	beryllium	element name boron carbon nitrogen oxygen fluorine												4.003 neon			
Н													He				
1		1 Criodes ysterios											2				
hydrogen	Periodesystemet											helium					

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]