Sławomir Kulesza

Technika cyfrowa Układy arytmetyczne

Wykład dla studentów III roku Informatyki

Układy arytmetyczne

LOGICZNA (ALU)

Dodawanie liczb binarnych (bez znaku)

Reguły dodawania liczb dwójkowych na pozycji i (i = 0,1...,n-1)

Ci	pi	q_i	Sį	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
		•		•

suma modulo 2: s_i = p_i ⊕ q_i

Półsumator 1-bitowy

Półsumator jest układem sumującym nie uwzględniającym bitu przeniesienia wstępnego (z pozycji niższej).

Pełny sumator 1-bitowy

Pełny sumator jest układem uwzględniającym bit przeniesienia wstępnego c_i (z pozycji niższej) i bit przeniesienia na pozycję wyższą c_{i+1} .

Pełny sumator 1-bitowy

Pełny sumator powstaje z połączenia dwóch półsumatorów.

Pełny sumator wielobitowy

Wynik Y dodawania liczb P i Q oraz przeniesienia wstępnego co:

$$P + Q + c_0 = Y = c_n \circ S$$
 czyli $L(Y) = 2^n c_n + L(S)$

Przykład:

Pozycja 4 3 2 1 0
$$P = 1 0 0 1 L(P) = 9$$
 $Q = 1 1 0 0 1 L(Q) = 13$

Wynik Y = 1 0 1 1 0 $L(Y) = 22$

Przeniesienia: 1 1

Pełny sumator 4-bitowy

Zapis liczb ze znakiem

Znak liczby koduje się na bicie MSB: 0 (+), 1 (–). (1) kod znak-moduł (ZM),

- (2) kod uzupełnienie do 1 (U1),
- (3) kod uzupełnienie do 2 (U2).

Liczba dziesiętna	ZM	ZU1	ZU2
-8 (-1)			1.000
-7 (-0.875)	1.111	1.000	1.001
-6 (-0.75)	1.110	1.001	1.010
-5 (-0.625)	1.101	1.010	1.011
-4 (-0.5)	1.100	1.011	1.100
-3 (-0.375)	1.011	1.100	1.101
-2 (-0.25)	1.010	1.101	1.110
-1 (-0.125)	1.001	1.110	1.111
-0	1.000	1.111	
0			0.000
+0	0.000	0.000	
1 (0.125)	0.001	0.001	0.001
 7 (0.875)	0.111	0.111	 0.111

Kod znak-moduł ZM

Dodawanie/odejmowanie w kodzie ZM

Różne sposoby realizacji dodawania i odejmowania, połączone ponadto z koniecznością porównywania wartości bezwzględnych liczb.

Zapis liczb ze znakiem

Znak liczby koduje się na bicie MSB: 0 (+), 1 (-).

- kod znak-moduł (ZM),
- (2) kod uzupełnienie do 1 (U1),
- (3) kod uzupełnienie do 2 (U2).

	Liczba dziesiętna	ZM	ZU1	ZU2
1	-8 (-1)			1.000
	-7 (-0.875)	1.111	1.000	1.001
	-6 (-0.75)	1.110	1.001	1.010
ì	-5 (-0.625)	1.101	1.010	1.011
e	-4 (-0.5)	1.100	1.011	1.100
	-3 (-0.375)	1.011	1.100	1.101
	-2 (-0.25)	1.010	1.101	1.110
	-1 (-0.125)	1.001	1.110	1.111
	-0	1.000	1.111	
	0			0.000
	+0	0.000	0.000	
o	1 (0.125)	0.001	0.001	0.001
	7 (0.875)	 0.111	0.111	 0.111

Uzupełnienia liczb binarnych – U1

Uzupełnienie do 1 powstaje przez zanegowanie wszystkich bitów liczby wyjściowej:

Ex.:
$$P = 1011100_{ZM} = 0100011_{U1}$$

Dodawanie/odejmowanie w kodzie U1

Konieczność obsługi bitu przeniesienia zwrotnego, ale za to dodawanie i odejmowanie realizowane identycznie.

Uzupełnienia liczb binarnych – U2

Uzupełnienie do 2 powstaje przez dodanie 1 do liczby U1(P). Reguła mnemotechniczna:

Przepisz wszystkie mniej znaczące zera i pierwszą najmniej znaczącą jedynkę słowa P, a następnie zaneguj wszystkie pozostałe bity: $P = 1011100_{ZM} = 0100100_{U2}$

Dodawanie/odejmowanie w kodzie U2

5	0 1 1 1 0 1 0 1	-7	1000
3	0011	2 _	1100
-8	01000	7	1 ₀ 111
Overflo	ow	Overflo	ow
5	0000	-3	1111
2	0010	<u>-5</u>	1011
7	00111	-8	1 1 0 0 0
No ove	erflow	No over	flow

Jeśli przeniesienie na bit znaku i bit nadmiaru są takie same, ignoruj je. Jeśli są różne, występuje błąd przepełnienia (overflow).

Prostota algorytmu dodawania/odejmowania czyni kod U2 najczęściej wykorzystywanym do operacji arytmetycznych na liczbach binarnych.

Błąd przepełnienia (overflow)

Błąd przepełnienia powstaje, gdy znak wyniku różni się od znaków operandów (bit przeniesienia na pozycję znaku różni się od bitu nadmiaru).

Błąd przepełnienia (overflow)

Jeżeli **obydwie** dodawane liczby są dodatnie albo ujemne, to wystąpienie przeniesienia 1 z sumy modułów na pozycję znaku zmienia znak wyniku. Wówczas wynik jest błędny!

Przykład z użyciem kodu ZU2

Bit znaku
+69 0.1000101
+103 0.1100111
+172 1.0101100 - 84 w ZU2?

$$c_z = 0$$

 c_m – przeniesienie z modułu sumy

 c_z – przeniesienie z bitu znaku

$$c_z \oplus c_m = 1$$

czyli błąd występuje gdy te bity przeniesień mają różne wartości.

Błąd przepełnienia (overflow)

Aby wyeliminować możliwość wystąpienia błędu, należy zwiększyć długość słowa danych przynajmniej o 1 bit

W porównaniu z kodem U2 potrzebne są dwa dodatkowe bity!

Dodawanie/odejmowanie liczb w kodzie U2

- (A) Dodawanie liczb o tych samych znakach w kodzie U2 wymaga wcześniejszego zwiększenia długości słowa modułu każdej liczby o 1 bit.
- (B) Długość słowa argumentów operacji w kodzie U2 jest większa o 2 bity: bit znaku oraz bit nadmiaru.

Np.
$$-4 + (-15) = -19$$

 $NB(4) = 100, \quad NB(15) = 1111$
 \blacktriangleright wyrównujemy formaty: $NB(4) = 0100$
 \blacktriangleright obliczamy uzupełnienia: $U2(4) = 1100, \quad U2(15) = 0001$

Spróbujmy dodać -4 + (-15) w kodzie ZU2

1.1100

$$\frac{1.0001}{40.1101} \rightarrow +13???$$

Przeniesienie z pozycji znaku $c_z = 1$ i z pozycji MSB modułu $c_m = 0$

Test nadmiaru: $c_z \oplus c_m = 1 \rightarrow ERROR!!!$

Sumator z przeniesieniami szeregowymi (sumator kaskadowy, ripple carry adder RCA)

Symbole graficzne sumatora

$$c_n^{\circ} F = P + Q + c_0$$

Wada: długi czas dodawania (transmisji przeniesień do uzyskania poprawnych bitów f_{n-1} i c_n)

Zaleta: prostota budowy

Opóźnienia w sumatorze 1-bitowym

Opóźnienia w sumatorze kaskadowym 4-bitowym

Sumator-subtraktor kaskadowy 4-bitowy

Dodawanie: S = 0, $C_0 = 0$: $S_3S_2S_1S_0 = A_3A_2A_1A_0 + B_3B_2B_1B_0 + C_0 = A + B$

Odejmowanie: S = 1, C_0 = 1: $S_3S_2S_1S_0 = A_3A_2A_1A_0 + \overline{B}_3\overline{B}_2\overline{B}_1\overline{B}_0 + 1 = A + U2(B) = A - B$

Sumator z przeniesieniami równoległymi (carry-lookahead adder CLA)

Generacja przeniesień równoległych

Zauważmy, że w przypadku FA:

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = A \cdot B + (A + B)C_{in} = A \cdot B + (A \oplus B)C_{in}$$

Wprowadźmy oznaczenia:

(A) Generacja przeniesienia:

$$G = A \cdot B$$

(B) Propagacja przeniesienia:

$$P = A \oplus B$$

Wówczas:

$$S = P \oplus C_{in}$$

$$C_{out} = G + P \cdot C_{in}$$

Generacja przeniesień równoległych

Aby wygenerować <u>jednocześnie</u> wszystkie bity przeniesień należy zbudować funkcję niezależną od przeniesień wstępnych c_i ($i \ge 1$). Korzystając z bitów generacji G_i i propagacji P_i przeniesień sumatora:

$$C_{1} = G_{0} + P_{0} \cdot C_{0}$$

$$C_{2} = G_{1} + P_{1} \cdot C_{1} = G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot C_{0}$$

$$C_{i+1} = G_{i} + P_{i} \cdot C_{j} = G_{i} + f(A, B, C_{0})$$

Przeniesienie na pozycję (i+1) realizowane jest więc <u>rekurencyjnie</u>. Sumatory CLA są o ok. 40 % szybsze niż RCA, aczkolwiek nie buduje się układów większych niż 4-bitowe (komplikacja układu).

Generacja przeniesień równoległych

4-bitowy sumator CLA

16-bitowy sumator CLA

Generator przeniesień równoległych (Look Ahead Carry Generator) układ 74182 (Texas Instruments)

FUNCTION TABLE FOR GOUTPUT

	INPUTS								
G3	G2	Ğ1	G0	ĒЗ	P2	P1	Ğ		
L	X.	х	×	X	х	х	L		
×	L	x	×	L	x	х	L		
×	x	Ł	×	L.	L	x	L		
×	x	x	Ŀ	L	L.	L	L		
	All other combinations								

FUNCTION TABLE FOR P OUTPUT

	INP	OUTPUT		
P3	P2	Ē1	ΡO	P
Ľ	L	L	L	L
	All c	н		
cc	mbi	natio	ons	

FUNCTION TABLE

II	NPUT	ООТРОТ	
Ğο	ΡO	C _{n+x}	
L	×	×	H
x	L	н	н
A	II oth	L	
com	binati	ions	

FUNCTION TABLE FOR Cn+y OUTPUT

	1N	OUTPUT			
Ğ1	Ğ0	₽1	ΡO	Cn	Cn+y
L	×	Х	×	×	н
×	Ł	L	×	X	н
×	x	L	L	н	н
	Al	L			

FUNCTION TABLE FOR Cotz OUTPUT

	INPUTS							
Ğ2	Ğ1	ĞΟ	P2	P1	ΡO	Cn	C _{n+z}	
L	×	×	×	х	х	х	Н	
×	L	x	L	x	×	х	н	
x	×	L	L	L	x	х	н	
×	x	х	L	L	L	н	н	
	L							

H = high level, L = low level, X = irrelevant

Any inputs not shown in a given table are irrelevant with respect to

that output.

P3 or X3 (6) G3 or Y3 (5) P2 or X2 (15) G2 or Y2 (14) P1 or X1 (2) G1 or Y1 (12) C_{n+x} F0 or X0 (4) G0 or Y0 (3) C_n or C_n (13)

Pin numbers shown on logic notation are for D, J or N packages.

4-bitowy sumator binarny z przeniesieniem równoległym (CLA) – układ 7483 (CEMI)

Dodawanie liczb w kodzie BCD

Aby operować na liczbach binarnych w kodzie BCD należy korygować wynik generując bity przeniesienia w przypadku, gdy liczba jest większa niż $9_{10} = 1001_{NB}$ (przeniesienie dekadowe d). Uzyskuje się je poprzez dodanie do korygowanego wyniku liczby $6_{10} = 0110_{NB}$.

	iczba esiętna	Suma nie skorygowana cs ₃ s ₂ s ₁ s ₀	Suma skorygowana $df_3f_2f_1f_0$
1	0 1 2 3 4 5 6 7 8	0 0000 0 0001 0 0010 0 0011 0 0100 0 0101 0 0110 0 0111 0 1000	to samo (korekcja zbyteczna)
	9 10 11 12 13 14 15 16 17 18 19	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10000 10001 10010 10011 10100 10101 10110 10111 11000 11001

Sumator BCD

Przeniesienie dekadowe:

$$d = c + s_1 s_3 + s_2 s_3$$

- ADD **0110** WHEN C_N=1
- ADD 0000 WHEN C_N=0

Sumator BCD – układ 74F583 (Philips)

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM V_{CC} = PIN 18 GND = PIN 8

Mnożenie liczb binarnych 4-bitowych

Akumulacja iloczynów częściowych

Multiplikator matrycowy 4x4

Kombinacyjny multiplikator 4x4 (układy SN74284 + SN74285 Texas Instruments)

Spłaszczanie bloków funkcjonalnych

Wygodną techniką projektowania bloków funkcjonalnych jest ich spłaszczanie (kontrakcja), polegająca na usuwaniu nadmiarowości poprzez wprowadzanie określonych stałych wejściowych.

Można w ten sposób zrealizować następujące funkcje:

- inkrementację/dekrementację,
- mnożenie/dzielenie przez stałą,
- dopełnianie/uzupełnianie zerami i in.

Nowa funkcja musi być jednak realizowalna przez dany blok funkcjonalny po doprowadzeniu określonych sygnałów wejściowych – tu: stanów logicznych 0 lub 1, nie zaś X lub \overline{X} .

Inkrementer/dekrementer

Spłaszczenie sumatora z przeniesieniem szeregowym i wprowadzenie słowa B = 001 daje inkrementer 3-bitowy. Wprowadzenie jako B liczby ujemnej daje dekrementer 3-bitowy. Powielenie środkowej komórki pozwala wydłużyć słowo inkrementowane/dekrementowane.

Mnożenie/dzielenie przez 2ⁿ

Mnożenie przez stałą

Mnożenie B przez 101

Każde mnożenie/dzielenie binarne można zrealizować jako złożenie przesunięcia i sumowania, tu:

$$B \cdot 101 = (B + 2^{-2} \cdot B) \cdot 2^{2}$$

Jednostka arytmetyczno-logiczna (ALU)

° Funkcje ALU

- Dwa argumenty wielobitowe (słowa wejściowe)
- Słowo sterujące F określa operację
- DataOut ma tyle bitów co oba słowa wejściowe (DataA and DataB)
- ° ALU jest układem kombinacyjnym
- ° Słowo C określa specyficzne wyniki wykonanych operacji (np. przepełnienie).

Traktuj ALU jak zbiór układów logicznych i arytmetycznych w jednym pudełku. Słowo F adresuje blok.

Jednostka arytmetyczno-logiczna (ALU)

Function Table

S2	S ₁	So	Operation	Comments
0	0	0	CLEAR	$F_3F_2F_1F_0 = 0000$
0	0	1	B minus A	1
0	1	0	A minus B	Needs C _N = 1
0	1	1	A plus B	Needs C _N = 0
1	0	0	A⊕B	Exclusive-OR
1	0	1	A + B	OR
1	1	0	AB	AND
1	1	1	PRESET	$F_3F_2F_1F_0 = 1111$

Notes:

S inputs select operation.

OVR = 1 for signed-number overflow.

(b)

A = 4-bit input number

B = 4-bit input number

C_N = carry into LSB position

S = 3-bit operation select inputs

F = 4-bit output number

 C_{N+4} = carry out of MSB position

OVR = overflow indicator

Rozszerzanie linii danych ALU

Notes: Z1 adds lower-order bits. Z2 adds higher-order bits.

 $\Sigma_7 - \Sigma_0 = 8$ -bit sum.

OVR of Z2 is 8-bit overflow indicator.

Jednostka arytmetyczno-logiczna (ALU)

	Selection		M = 1	M = 0, Arithmetic Functions		
S 3	S2	S1	S0	Logic Function	Cn = 0	Cn = 1
0	0	0	0	F = not A	F = A minus 1	F = A
0	0	0	1	F = A nand B	F = A B minus 1	F=AB
0	0	1	0	F = (not A) + B	F = A (not B) minus 1	F = A (not B)
0	0	1	1	F = 1	F = minus 1	F = zero
0	1	0	0	F = A nor B	F = A plus (A + not B)	F = A plus (A + not B) plus 1
0	1	0	1	F = not B	F = A B plus (A + not B)	F = A B plus (A + not B) plus 1
0	1	1	0	F = A xnor B	F = A minus B minus 1	F = (A + not B) plus 1
0	1	1	1	F = A + not B	F = A + not B	F = A minus B
1	0	0	0	F = (not A) B	F = A plus (A + B)	F = (A + not B) plus 1
1	0	0	1	F = A xor B	F = A plus B	F = A plus (A + B) plus 1
1	0	1	0	F=B	F = A (not B) plus (A + B)	F = A (not B) plus (A + B) plus 1
1	0	1	1	F = A + B	F = (A + B)	F = (A + B) plus 1
1	1	0	0	F = 0	F = A	F = A plus A plus 1
1	1	0	1	F = A (not B)	F = A B plus A	F = AB plus A plus 1
1	1	1	0	F=AB	F= A (not B) plus A	F = A (not B) plus A plus 1
1	1	1	1	F = A	F = A	F = A plus 1