# Is learning for the unit commitment problem a low-hanging fruit?

EURO 2022 (July 4-7 2022)

#### Salvador Pineda and Juan Miguel Morales

OASYS group, University of Málaga (Spain)



### Machine learning in power systems

- The blast wave of machine learning has reached power systems
- Most papers propose black-box tools that run as follows:
  - Select a very hard problem to solve (usually NP-hard)
  - Set hyperparameters  $\mu, \epsilon_0, \alpha, \beta, \lambda, \ldots$  (without explaining how)
  - Train a deep neural network (using available software)



 Discuss the computational savings of the proposed learning-based method with that of solving the original problem

#### Questions we want to address

• Are power system problems so complex that any fortuitous learning-based method may involve significant computational savings?

 Do simpler and interpretable learning-based methods perform similarly to complex black-box methods?

• Should black-box methods be benchmarked against simpler methods in power systems applications?

#### Unit commitment problem

| Unit Commitment Problem |                        |  |  |  |  |
|-------------------------|------------------------|--|--|--|--|
| Horizon                 | 24 hours               |  |  |  |  |
| Obj                     | Min production cost    |  |  |  |  |
| Var                     | On/off status (binary) |  |  |  |  |
| Vai                     | Generating dispatches  |  |  |  |  |
|                         | Generation = Demand    |  |  |  |  |
| Con                     | Unit technical limits  |  |  |  |  |
|                         | Line technical limits  |  |  |  |  |



#### AIM

Leverage past unit commitment solutions to solve new instances of the problem

#### Unit commitment formulation

$$\min_{\mathbf{x} \in \mathbb{R}^n, \, \mathbf{y} \in \{0,1\}^m} \quad f(\mathbf{x}, \mathbf{y}) \tag{1a}$$

$$g_i(\mathbf{x}, \mathbf{y}) \leqslant 0, \quad \forall i$$
 (1b)

$$h_j(\mathbf{x}, \mathbf{d}) \leqslant 0, \quad \forall j$$
 (1c)

- ullet Varying input parameters  $oldsymbol{d}$ : demand, renewable power generation
- Continuous variables x: power dispatches, power flows through lines
- ullet Binary variables  $oldsymbol{y}$ : on/off status of the generating units
- Objective function (1a) minimizes the total generation costs
- Equation (1b): technical constraints of generating units
- Equation (1c): technical constraints of network
- Even if all functions are linear, problem (1a)-(1c) is **NP-hard**

#### Historical data

We have access to a set of historical data including:

ullet Input parameters  $\{\mathbf d_1, \mathbf d_2, \dots, \mathbf d_N\}$ 

 $\bullet$  Optimal continous decisions  $\{\mathbf{x}_1^*,\mathbf{x}_2^*,\dots,\mathbf{x}_N^*\}$ 

ullet Optimal binary decisions  $\{\mathbf{y}_1^*, \mathbf{y}_2^*, \dots, \mathbf{y}_N^*\}$ 

#### KNN + LP approach

#### For a new input vector $\tilde{\mathbf{d}}$ do:

- Among  $\{\mathbf{d}_1,\mathbf{d}_2,\ldots,\mathbf{d}_N\}$ , find the K nearest neigborst to  $\tilde{\mathbf{d}}$ .
- ullet For each neighbor k do
  - Fix binary variables to  $\mathbf{y}_k^*$
  - Solve the linear program

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x}, \mathbf{y}_k^*) \tag{2a}$$

$$g_i(\mathbf{x}, \mathbf{y}_k^*) \leqslant 0, \quad \forall i$$
 (2b)

$$h_j(\mathbf{x}, \tilde{\mathbf{d}}) \leqslant 0, \quad \forall j$$
 (2c)

- $\bullet$  Denote the optimal solution and optimal value as  $\mathbf{x}_k^L$  and  $z_k^L$
- Choose the neighbor with minimum cost  $\tilde{k} \in \arg\min_{k} \{z_k^L\}$
- $\bullet$  Provide the optimal solution  $\mathbf{x}_{\tilde{k}}^L$  and  $\mathbf{y}_{\tilde{k}}^*$



- 500 instances, leave-one-out
- K = 50
- $\bullet \ \mathsf{MIP} \ \mathsf{gap} = 0.01\%$

| System  | Av. error (%) | Max error (%) | < 0.01% | # Infes | Speedup |
|---------|---------------|---------------|---------|---------|---------|
| 1888rte | 0.0174        | 0.2394        | 230     | 1       | 116.5×  |
| 1951rte | 0.0382        | 0.3759        | 47      | 8       | 150.4×  |
| 2848rte | 0.0186        | 0.1332        | 179     | 2       | 132.6x  |
| 3012wp  | 0.0485        | 0.4864        | 37      | 5       | 188.8x  |
| 3375wp  | 0.1256        | 0.8073        | 9       | 13      | 215.9x  |
| 6468rte | -0.0001       | 0.0175        | 498     | 0       | 41.2x   |
| 6470rte | -0.0016       | 0.0187        | 496     | 0       | 171.9x  |
| 6495rte | -0.0001       | 0.0481        | 496     | 0       | 41.0x   |
| 6515rte | -0.0009       | 0.0133        | 497     | 0       | 101.7×  |

| System  | Av. error (%) | Max error (%) | < 0.01% | # Infes | Speedup |
|---------|---------------|---------------|---------|---------|---------|
| 1888rte | 0.0174        | 0.2394        | 230     | 1       | 116.5x  |
| 1951rte | 0.0382        | 0.3759        | 47      | 8       | 150.4x  |
| 2848rte | 0.0186        | 0.1332        | 179     | 2       | 132.6x  |
| 3012wp  | 0.0485        | 0.4864        | 37      | 5       | 188.8x  |
| 3375wp  | 0.1256        | 0.8073        | 9       | 13      | 215.9x  |
| 6468rte | -0.0001       | 0.0175        | 498     | 0       | 41.2x   |
| 6470rte | -0.0016       | 0.0187        | 496     | 0       | 171.9x  |
| 6495rte | -0.0001       | 0.0481        | 496     | 0       | 41.0x   |
| 6515rte | -0.0009       | 0.0133        | 497     | 0       | 101.7×  |

- No need for complicated learning techniques for these systems, as naive strategies involve time reductions with negligible errors.
- For these systems, the naive learning strategy involves errors slightly higher than the set MIP gap, but with substantial time reductions.
- For these systems, the naive approach involves higher errors and some infeasible cases. Thus, other learning approaches may be required.  $\frac{9}{9/12}$

| System  | Av. error (%) | Max error (%) | < 0.01% | # Infes | Speedup |
|---------|---------------|---------------|---------|---------|---------|
| 1888rte | 0.0174        | 0.2394        | 230     | 1       | 116.5x  |
| 1951rte | 0.0382        | 0.3759        | 47      | 8       | 150.4x  |
| 2848rte | 0.0186        | 0.1332        | 179     | 2       | 132.6x  |
| 3012wp  | 0.0485        | 0.4864        | 37      | 5       | 188.8x  |
| 3375wp  | 0.1256        | 0.8073        | 9       | 13      | 215.9x  |
| 6468rte | -0.0001       | 0.0175        | 498     | 0       | 41.2x   |
| 6470rte | -0.0016       | 0.0187        | 496     | 0       | 171.9x  |
| 6495rte | -0.0001       | 0.0481        | 496     | 0       | 41.0x   |
| 6515rte | -0.0009       | 0.0133        | 497     | 0       | 101.7×  |

- No need for complicated learning techniques for these systems, as naive strategies involve time reductions with negligible errors.
- For these systems, the naive learning strategy involves errors slightly higher than the set MIP gap, but with substantial time reductions.
- For these systems, the naive approach involves higher errors and some infeasible cases. Thus, other learning approaches may be required.

| System  | Av. error (%) | Max error (%) | < 0.01% | # Infes | Speedup |
|---------|---------------|---------------|---------|---------|---------|
| 1888rte | 0.0174        | 0.2394        | 230     | 1       | 116.5x  |
| 1951rte | 0.0382        | 0.3759        | 47      | 8       | 150.4×  |
| 2848rte | 0.0186        | 0.1332        | 179     | 2       | 132.6x  |
| 3012wp  | 0.0485        | 0.4864        | 37      | 5       | 188.8x  |
| 3375wp  | 0.1256        | 0.8073        | 9       | 13      | 215.9x  |
| 6468rte | -0.0001       | 0.0175        | 498     | 0       | 41.2x   |
| 6470rte | -0.0016       | 0.0187        | 496     | 0       | 171.9x  |
| 6495rte | -0.0001       | 0.0481        | 496     | 0       | 41.0x   |
| 6515rte | -0.0009       | 0.0133        | 497     | 0       | 101.7x  |

- No need for complicated learning techniques for these systems, as naive strategies involve time reductions with negligible errors.
- For these systems, the naive learning strategy involves errors slightly higher than the set MIP gap, but with substantial time reductions.
- For these systems, the naive approach involves higher errors and some infeasible cases. Thus, other learning approaches may be required. 9/14

#### KNN + MIP approach

For a new input vector **d** do:

- Among  $\{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_N\}$ , find the K nearest neighborst to  $\hat{\mathbf{d}}$ .
- Set upper bound of **y** to  $\left[\frac{1}{K}\sum_{k}\mathbf{y}_{k}^{*}\right]$ .
- Set lower bound of **y** to  $\left|\frac{1}{K}\sum_{k}\mathbf{y}_{k}^{*}\right|$ .
- Solve the mixed-integer linear program

$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n, \, \mathbf{y} \in \{0,1\}^m} \quad f(\mathbf{x}, \mathbf{y}) & \text{(3a)} \\ g_i(\mathbf{x}, \mathbf{y}) \leqslant 0, \quad \forall i & \text{(3b)} \end{aligned}$$

$$g_i(\mathbf{x}, \mathbf{y}) \leqslant 0, \quad \forall i$$
 (3b)

$$h_j(\mathbf{x}, \tilde{\mathbf{d}}) \leqslant 0, \quad \forall j$$

$$\left\lfloor \frac{1}{K} \sum_{k} \mathbf{y}_{k}^{*} \right\rfloor \leqslant \mathbf{y} \leqslant \left\lceil \frac{1}{K} \sum_{k} \mathbf{y}_{k}^{*} \right\rceil \tag{3d}$$

(3c)

| System  | Av. error (%) | Max error (%) | < 0.01% | # Infes | Speedup |
|---------|---------------|---------------|---------|---------|---------|
| 1888rte | -0.0004       | 0.0141        | 499     | 0       | 30.7x   |
| 1951rte | 0.0002        | 0.0227        | 499     | 0       | 7.7x    |
| 2848rte | 0.0004        | 0.0228        | 497     | 0       | 20.0x   |
| 3012wp  | -0.0001       | 0.0199        | 497     | 0       | 15.4x   |
| 3375wp  | 0.0001        | 0.0198        | 494     | 0       | 14.6x   |
| 6468rte | -0.0002       | 0.0217        | 499     | 0       | 18.9x   |
| 6470rte | 0.0007        | 0.0174        | 499     | 0       | 15.9x   |
| 6495rte | -0.0001       | 0.0086        | 500     | 0       | 8.5x    |
| 6515rte | 0.0003        | 0.0151        | 498     | 0       | 26.5×   |

- Most cases below GAP
- No infeasible cases
- $\bullet$  Speedup factor between 7.7x and 30.7x



#### Questions we want to address

 Are power system problems so complex that any fortuitous learning-based method may involve significant computational savings?

Yes, specially in combinatorial problems like UC

• Do simpler and interpretable learning-based methods perform similarly to complex black-box methods?

Yes, depending on problem structure and data

 Should black-box methods be benchmarked against simpler methods in power system applications?

Yes. Otherwise, irrelevant publications will continue

### Takeaway message

In many cases the simplicity of less is more



## Thanks for the attention!! Questions??

Electric Power Systems Research 207 (2022) 107851



Contents lists available at ScienceDirect

#### Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr



Is learning for the unit commitment problem a low-hanging fruit?



S. Pineda\*, J.M. Morales

University of Malaga, Spain



More info: oasys.uma.es

Email: spineda@uma.es