

Serial No. : 09/590,447
 Filed : June 9, 2000

AMENDMENTS AND STATUS OF CLAIMS

1. (Currently amended) A method of treating an FXR-mediated pathological condition in a mammal comprising the step of administering to a mammal in need thereof a pharmaceutically acceptable composition comprising a synthetic FXR ligand able to stimulate, block, or inhibit the activity of a mammalian FXR receptor, said synthetic FXR ligand comprising a compound of the formula

formula (3)

wherein the dashed line represents a bond or absence of a bond;

X is S, O, NR' where R' is H or alkyl of 1 to 6 carbons, or

X is (C(R1)2)n, where R1 is H or alkyl of 1 to 6 carbons, and n is an integer having the value of 0 or 1;

R2 is hydrogen, lower alkyl of 1 to 6 carbons, F, Cl, Br, I, CF3, fluoro substituted alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 12 carbons, or alkylthio of 1 to 12 carbons, benzyloxy or C1 - C12 alkylbenzyloxy;

R3 is hydrogen, lower alkyl of 1 to 6 carbons or F;

m is an integer having the value of 0 - 3;

o is an integer having the value of 0 - 4 when the dashed line represents absence of a bond, and 0 - 3 when the dashed line represents a bond;

[R3] R'3 is hydrogen, lower alkyl of 1 to 6 carbons, F or (R15)r-phenyl, (R15)r-naphthyl, or (R15)r-heteroaryl where the heteroaryl group has 1 to 3 heteroatoms selected from the group consisting of O, S and N, r is an integer having the values of 0 - 5;

Serial No. : 09/590,447
Filed : June 9, 2000

R₄ is alkyl of 1 to 8 carbons, or phenyl;

Y is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R₂ groups;

R₁₅ is independently H, F, Cl, Br, I, NO₂, N(R₈)₂, NH(R₈), COR₈, NR₈CON(R₈)₂, OH, OCOR₈, OR₈, CN, an alkyl group having 1 to 10 carbons, fluoro substituted alkyl group having 1 to 10 carbons, an alkenyl group having 1 to 10 carbons and 1 to 3 double bonds, alkynyl group having 1 to 10 carbons and 1 to 3 triple bonds, or a trialkylsilyl or trialkylsilyloxy group where the alkyl groups independently have 1 to 6 carbons;

A is (CH₂)_q where q is 0-5, lower branched chain alkyl having 3-6 carbons, cycloalkyl having 3-6 carbons, alkenyl having 2-6 carbons and 1 or 2 double bonds, alkynyl having 2-6 carbons and 1 or 2 triple bonds;

B is hydrogen, COOH, NO₂, P(O)(OH)₂, P(O)(OH)OR₈, P(O)(OR₈)₂, SO₂OH, SO₂(OR₈), COOR₈, CONR₉R₁₀, -CH₂OH, CH₂OR₁₁, CH₂OCOR₁₁, CHO, CH(OR₁₂)₂, CHOR₁₃O, -COR₇, CR₇(OR₁₂)₂, CR₇OR₁₃O, or tri-lower alkylsilyl, where R₇ is an alkyl, cycloalkyl or alkenyl group containing 1 to 5 carbons, R₈ is an alkyl group of 1 to 10 carbons or trimethylsilylalkyl where the alkyl group has 1 to 10 carbons, or a cycloalkyl group of 5 to 10 carbons, or R₈ is phenyl or lower alkylphenyl, R₉ and R₁₀ independently are hydrogen, an alkyl group of 1 to 10 carbons, or a cycloalkyl group of 5-10 carbons, or phenyl or lower alkylphenyl, R₁₁ is lower alkyl, phenyl or lower alkylphenyl, R₁₂ is lower alkyl, and R₁₃ is divalent alkyl radical of 2-5 carbons, or a pharmaceutically acceptable salt of said compound.

2. (Original) A method in accordance with Claim 1 where X is (C(R1)2)n and n is 1.
3. (Original) A method in accordance with Claim 1 where X is S.
4. (Original) A method in accordance with Claim 1 where X is O.
5. (Original) A method in accordance with Claim 1 where X is NR.
6. (Original) A method in accordance with Claim 1 where Y is phenyl.
7. (Original) A method in accordance with Claim 1 where Y is thienyl.

Serial No. : 09/590,447
Filed : June 9, 2000

8. (Original) A method in accordance with Claim 1 wherein said compound has a structure selected from formulas (1) and (2).

9. (Original) A method in accordance with Claim 8 wherein said compound has a structure of formula (1) where the dashed line represents absence of a bond.

10. (Original) A method in accordance with Claim 8 wherein said compound has a structure of formula (1) where the dashed line represents a bond.

11. (Original) A method in accordance with Claim 1 wherein said compound has a structure selected from formulas (3) and (4).

12. (Original) A method in accordance with Claim 11 wherein said compound has a structure of formula (3) where the dashed line represents absence of a bond.

13. (Original) A method in accordance with Claim 11 wherein said compound has a structure of formula (3) where the dashed line represents a bond.

14-30 (Cancelled)

31. (Previously amended) A method of treating a hypercholesterolemic mammal comprising the steps: administering to a mammal in need thereof a pharmaceutically acceptable composition comprising an FXR antagonist having the following formula

formula (3)

wherein the dashed line represents a bond or absence of a bond;

X is S, O, NR' where R' is H or alkyl of 1 to 6 carbons, or

X is (C(R₁)₂)_n, where R₁ is H or alkyl of 1 to 6 carbons, and n is an integer having the value of 0 or 1;

R₂ is hydrogen, lower alkyl of 1 to 6 carbons, F, Cl, Br, I, CF₃, fluoro substituted

Serial No. : 09/590,447
Filed : June 9, 2000

alkyl of 1 to 6 carbons, OH, SH, alkoxy of 1 to 12 carbons, or alkylthio of 1 to 12 carbons, benzyloxy or C₁ - C₁₂ alkylbenzyloxy;

R₃ is hydrogen, lower alkyl of 1 to 6 carbons or F;

m is an integer having the value of 0 - 3;

o is an integer having the value of 0 - 4 when the dashed line represents absence of a bond, and 0 - 3 when the dashed line represents a bond;

R'₃ is hydrogen, lower alkyl of 1 to 6 carbons, F or (R₁₅)_r-phenyl, (R₁₅)_r-naphthyl, or (R₁₅)_r-heteroaryl where the heteroaryl group has 1 to 3 heteroatoms selected from the group consisting of O, S and N, r is an integer having the values of 0 - 5;

R₄ is alkyl of 1 to 8 carbons, or phenyl;

Y is a phenyl or naphthyl group, or heteroaryl selected from a group consisting of pyridyl, thienyl, furyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiazolyl, oxazolyl, imidazolyl and pyrazolyl, said phenyl and heteroaryl groups being optionally substituted with one or two R₂ groups;

R₁₅ is independently H, F, Cl, Br, I, NO₂, N(R₈)₂, NH(R₈), COR₈, NR₈CON(R₈)₂, OH, OCOR₈, OR₈, CN, an alkyl group having 1 to 10 carbons, fluoro substituted alkyl group having 1 to 10 carbons, an alkenyl group having 1 to 10 carbons and 1 to 3 double bonds, alkynyl group having 1 to 10 carbons and 1 to 3 triple bonds, or a trialkylsilyl or trialkylsilyloxy group where the alkyl groups independently have 1 to 6 carbons;

A is (CH₂)_q where q is 0-5, lower branched chain alkyl having 3-6 carbons, cycloalkyl having 3-6 carbons, alkenyl having 2-6 carbons and 1 or 2 double bonds, alkynyl having 2-6 carbons and 1 or 2 triple bonds;

B is hydrogen, COOH, NO₂, P(O)(OH)₂, P(O)(OH)OR₈, P(O)(OR₈)₂, SO₂OH, SO₂(OR₈), COOR₈, CONR₉R₁₀, -CH₂OH, CH₂OR₁₁, CH₂OCOR₁₁, CHO, CH(OR₁₂)₂, CHOR₁₃O, -COR₇, CR₇(OR₁₂)₂, CR₇OR₁₃O, or tri-lower alkylsilyl, where R₇ is an alkyl, cycloalkyl or alkenyl group containing 1 to 5 carbons, R₈ is an alkyl group of 1 to 10 carbons or trimethylsilylalkyl where the alkyl group has 1 to 10 carbons, or a cycloalkyl group of 5 to 10 carbons, or R₈ is phenyl or lower alkylphenyl, R₉ and R₁₀ independently are hydrogen, an alkyl group of 1 to 10 carbons, or a cycloalkyl group of 5-10 carbons, or phenyl or lower alkylphenyl, R₁₁ is lower alkyl, phenyl or lower alkylphenyl, R₁₂ is lower alkyl, and R₁₃ is divalent alkyl radical of 2-5 carbons, or a pharmaceutically acceptable salt of said compound.

Serial No. : 09/590,447
Filed : June 9, 2000

32. (Currently amended) A method of treating an FXR-mediated pathological condition in a mammal comprising the step of providing to said mammal a pharmaceutically acceptable composition comprising a synthetic FXR ligand able to stimulate, block, or inhibit the activity of a mammalian FXR receptor.

33. (Original) The method of claim 32 wherein said pathological condition comprises hypercholesterolemia.

34. (Original) The method of claim 32 wherein said pathological condition comprises hypcholesterolemia.

35. (Original) The method of claim 32 wherein said pathological condition is characterized by the overproduction of bile acids.

36. (Original) The method of claim 32 wherein said pathological condition is characterized by the underproduction of bile acids.

37. (Currently amended) A method of treating an FXR-mediated pathological condition in a mammal comprising the step of administering to a mammal in need thereof a pharmaceutically acceptable composition comprising a synthetic FXR ligand able to stimulate, block, or inhibit the activity of a mammalian FXR receptor, said synthetic FXR ligand having the formula

wherein R₂ is H or lower alkyl, R₄ is lower alkyl of 1 to 8 carbons and B is CH₂OH or COOR₈ where R₈ is H or ethyl.

38. (Original) A method in accordance with Claim 31 where R₂ is H and R₄ is ethyl.

39. (Original) A method in accordance with Claim 32 where B is CH₂OH.

40. (Original) A method in accordance with Claim 33 where B is COOR₈.