数字电路与系统

Digital Circuits and Systems

大连理工大学 电子信息与电气工程学部

第1章 数字逻辑基础

§ 1.1 数字电路

自然界的物理量,按其变化规律可分为两类:

{ 模拟量:数值和时间都可以连续取值 数字量:时间上离散,值域内只能取某些特定值

§ 1.2 数制

在计算机和数字系统中经常会遇到数制与编码。 在数字系统中经常使用二进制、八进制和十六进制, 而生活中我们多使用十进制。因此有必要了解数制之 间的转换关系。

基数: 一个数字系统中数的个数称为基数。

(radix or base)

十进制 decimal (r =10)

数制系统 | 二进制 binary (r = 2)

八进制 octal (r =8)

十六进制 hexadecimal (r=16)

1. 十进制

十进制包含10个数字: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 基数为10, 逢十进一。

一个十进制的数可以写成 多项式 的形式:

$$(194.32)_{10} = 1 \times 10^{2} + 9 \times 10^{1} + 4 \times 10^{0} + 3 \times 10^{-1} + 2 \times 10^{-2}$$

注意:位于不同位置的数大小不同。

权:表示该位置的大小 weight

每个位置的权为基数10的幂。

一般说,任何一个基数为r的数N都可以按权展开成多项式的形式:

2. 二进制

二进制系统有2个数: 0,1。

基数为2,逢二进。

0~17 列在表 1:

M

(11010.11)2 可以写成:

$$1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

=16 +8

+2

+0.5 +0.25

=26.75

从表 1 寻找规律:

从表 1 得出:

$$(128)_{10} = (2^7)_{10} = (10000000)_2$$
 $7 \ zeros$

8位数中最小的数

$$(2^n)_{10} = (10 - 0)_2$$
 是 $(n+1)$ 位数中最小的数 n zeros

$$2^{1}-1$$
 $2^{2}-1$ $2^{3}-1$ $2^{4}-1$... 1 11 111 ...

$$(2^{n}-1)_{10} = \underbrace{(11...1)_{2}}_{n \text{ ones}}$$
 是 n 位数中最大的数

例:
$$(255)_{10} = (2^8 - 1)_{10} = (111111111)_{2}$$

$$(253)_{10} = (255-2)_{10} = (111111111-10)_2 = (111111101)_2$$

re.

3. 八进制

八进制包括8个数: 0,1, 2, 3, 4, 5, 6, 7.

基数为8.

$$(326.47)_8 = 3 \times 8^2 + 2 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1} + 7 \times 8^{-2}$$
$$= 192 + 16 + 6 + 0.5 + 0.12$$
$$= (214.62)_{10}$$

4. 十六进制

十六进制有 16个数,表示为:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. 基数为 16.

$$(3CE.4B)_{16} = 3 \times 16^{2} + 12 \times 16^{1} + 14 \times 16^{0} + 4 \times 16^{-1} + 11 \times 16^{-2}$$
$$= 768 + 192 + 14 + 0.25 + 0.043$$
$$= (974.293)_{10}$$

5. 任意进制》

γ进制包括γ个数: 0,1... γ-1

§ 1.3 数制间转换

1.γ进制转换成十进制:

将γ进制的数按权展开,就实现了γ进制转换成十进制。

$$(111001.01)_2 = (1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^0 + 1 \times 2^{-2})_{10} = (57.25)_{10}$$

2. 十进制转换成 γ进制:

- 1) 整数部分,除以y取余,直到商为0为止,逆序;
- 2) 小数部分,乘ን取整,顺序。

二进制转成十进制: 将(39.2)10转换成2进制数

整数部分,除γ取余,直到商为0为止,逆序

整数:

 $(39)_{10} \rightarrow (100111)_{2}$

LSB (least significant bit)

最低有效位

逆序

MSB

(maximum significant bit)

最高有效位

小数: 小数部分,乘γ取整,顺序

$$(0.2)_{10} \rightarrow (.0011)_2$$
 $(39.2)_{10} = (100111.0011)_2$

十进制转换成八进制:

将 (179.46)10 转换成 八 进制数

十进制转换成十六进制:

将 (178.46)10 转换成 十六进制数

$$(178.46)_{10} = (B2.7)_{16}$$

3. 二进制与八进制之间的转换

方法: 以小数点为界向两侧划分,三位一组,不够添0

$$(253.16)_8 = (010101011011 \cdot 001110)_2$$

两端的0可以略去

4. 二进制与十六进制之间的转换

16=24 一位十六进制数可以用4位二进制数表示

方法: 以小数点为界向两侧划分,四位一组,不够添0

§1.4 代码

代表信息的数码称为代码 (code)。常用在计算机和数字系统中处理、存储以及传输各种信息。

1.4.1 8421 BCD 码

BCD: binary coded decimal (二进制编码的十进制)
BCD 码是有权码.

BCD码用4位二进制数表示1位十进制数。8421BCD 是应用最广泛的一种BCD码,因为其位权与二进制数位权相同。

表 1.

Decimal	Binary	Octal	Hexadecimal	8421BCD
0	0	0	0	0000
1	1	1	1	0001
2	10	2	2	0010
3	11	3	3	0011
4	100	4	4	0100
5	101	5	5	0101
6	110	6	6	0110
7	111	7	7	0111
8	1000	10	8	1000
9	1001	11	9	1001
10	1010	12	Α	0001 0000
11	1011	13	В	0001 0001
12	1100	14	С	0001 0010
13	1101	15	D	0001 0011
14	1110	16	E	0001 0100
15	1111	17	F	0001 0101
16	10000	20	10	0001 0110
17	10001	21	11	0001 0111

- 十进制与8421BCD 之间可以直接转换;
- •二进制与 BCD 码不能直接转换,要先转成十进制。

脚标 8421BCD 必须写

(1001 0101 0010.0111 0110) 8421BCD

1.4.2 格雷码 (The Gray Code)

格雷码的最重要的特征:

任意两个相邻码之间只有一位不同

格雷码是一种无权码。

Decimal	Binary	Gray code	Decimal	Binary	Gray code
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

在典型的 n 位格雷码中,0 和最大数 (2ⁿ - 1) 之间也只有一位不同,所以它是一种循环码。格雷码的这个特点使它在传输过程中引起的误差较小。

例如,二进制 7:0111

8: 1000

在7和8的边界上,二进制的四位数都发生变化,都处于模糊状态。

Gray 码 7: 0100 在二者边界上仅存在一位发

8: 1100 生变化,带来的误差不会大

于1(即7和8之差)。

§ 1.5 带符号的二进制数

十进制中,用(+)表示正数,(-)表示负数。

二进制中,有几种方法表示正负数。

1. 原码,反码,补码

原码:原码:二进制数

 $(13)_{10} = (1101)_2$ **1101:** 原码

反码:

原码全部取反(1变成0,0变成1),为该二进制数的反码。

1011 的反码为: 0100

补码: 反码末位加1,即为该二进制数的补码

1101原码0010反码+ 1补码

由原码直接求补码:

从右侧数第一个1不动,向左依次求反。

原码 1101 反码求反为原码 补码 0011 补码求补为原码

2. 正负数表示

最左侧一位为符号位:

0表示正数,1表示负数

正数:

0 + 二进制数

符号位0 + 原码

正数 {原码表示法 } 都相同:符号位0 +原码 补码表示法 }

+13: 0,1101

1+原码 原码表示法:

负数: { 反码表示法: 1+反码 补码表示法: 1+补码

$$-13 = (-1101)_2$$

原码表示: 1,1101

反码表示: 1,0010

补码表示: 1,0011

注:原码最高位加0,补码最高位加1,不改变数值 (不包括符号位).