CORSO DI LAUREA IN MATEMATICA

PROVA SCRITTA DI ALGEBRA 1 14 Gennaio 2015

Nome e Cognome:	1	2	3	4	5	Σ
Matricola:						

1. Provare che per ogni $n \ge 1$ risulta

$$F_{n-1}F_{n+1} - F_n^2 = (-1)^n$$

dove F_n è l'ennesimo numero di Fibonacci.

SOLUZIONE

- Passo base:

$$F_0 = 0, F_1 = 1, F_2 = 1$$
 quindi $F_0 F_2 - F_1^2 = 1 = (-1)^1$.

- Passo di induzione: proviamo che $P(n) \Rightarrow P(n+1)$:

$$F_n F_{n+2} - F_{n+1}^2 =$$
 (definizione di numeri di Fibonacci)

$$F_n(F_{n+1}+F_n)-F_{n+1}^2=F_nF_{n+1}+F_n^2-F_{n+1}^2=$$
 (ipotesi induttiva)

$$F_n F_{n+1} + F_{n-1} F_{n+1} - (-1)^n - F_{n+1}^2 = F_{n+1} (F_n + F_{n-1}) - (-1)^n - F_{n+1}^2 = F_{n+1} (F_n + F_$$

(definizione di numeri di Fibonacci) $F_{n+1}^2 - F_{n+1}^2 + (-1)^{n+1} = (-1)^{n+1}$.

2. Sia $A = \{2, 3, 6\}$. Si consideri la seguente relazione in $A \times A$:

$$(a,b)\mathcal{R}(a',b') \iff a|a' \& b|b',$$

dove | è la relazione di divisibilità.

- **a.** Provare che \mathcal{R} è una relazione d'ordine;
- b. tracciare il suo diagramma di Hasse;
- c. l'insieme parzialmente ordinato $(A \times A, \mathcal{R})$ è un reticolo?

SOLUZIONE

a. RIFLESSIVA: $(a, b)\mathcal{R}(a, b)$ infatti $a|a \in b|b$.

ANTISIMMETRICA: $(a,b)\mathcal{R}(a',b')$ e $(a',b')\mathcal{R}(a,b) \Rightarrow (a,b) = (a',b')$ infatti a|a' e a'|a implica a=a' (essendo $a,a' \in A$); analogamente per b=b'.

TRANSITIVA $(a,b)\mathcal{R}(a',b')$ e $(a',b')\mathcal{R}(a'',b'') \Rightarrow (a,b)\mathcal{R}(a'',b'')$ infatti a|a' e a'|a'' implica a|a'' e analogamente con b,b',b''.

b.

c. No. L'insieme parzialmente ordinato $(A \times A, \mathcal{R})$ ha quattro elementi minimali mentre un reticolo finito ha un unico elemento minimale (il minimo).

- **3.** Un'urna contiene 11 palline, di cui 6 sono rosse e le altre 5 verdi. In quanti modi si possono estrarre contemporaneamente 4 palline:
 - **a.** in tutto;
 - **b.** in modo che almeno una delle palline estratte sia verde;
 - c. in modo che esattamente una delle palline estratte sia verde;
 - **d.** in modo che le 4 palline estratte siano tutte dello stesso colore?

SOLUZIONE

- a. Avendo in tutto undici palline, ci sono $\binom{11}{4} = 330$ modi di scegliere quattro palline tra queste undici.
- b. Il numero di modi di estrarre almeno una pallina verde è uguale al numero di modi totali di estrarre le quattro palline meno il numero di modi di estrarre quattro palline di cui nessuna è verde (cioè tutte le palline sono rosse). Abbiamo quindi che il numero cercato è $\binom{11}{4} \binom{6}{4} = 330 15 = 315$.
- c. Dobbiamo scegliere una pallina verde $\binom{5}{1} = 5$ modi) e scegliere le altre tre palline tra le sei palline rosse contenute nell'urna $\binom{6}{3}$ scelte). In totale abbiamo $5 \cdot \binom{6}{3} = 100$ modi possibili.
- **d.** In questo caso dobbiamo scegliere quattro palline tra le sei rosse oppure quattro palline tra le cinque verdi. Dunque in totale abbiamo $\binom{6}{4} + \binom{5}{4} = 20$ modi possibili.

4. Nel gruppo simmetrico S_6 si considerino le permutazioni:

$$\alpha = (1 \ 3 \ 5), \quad \beta = (2 \ 6 \ 4).$$

- a. Determinare il sottogruppo G generato da α e β ;
- **b.** determinare il periodo degli elementi di G;
- \mathbf{c} . dimostrare che G è commutativo;
- **d.** G è ciclico?

SOLUZIONE

a. Essendo α e β cicli disgiunti si ha $\alpha \cdot \beta = \beta \cdot \alpha$. Inoltre, entrambe sono cicli di lunghezza 3, quindi hanno periodo 3; questo significa che

$$\alpha^2 = \alpha^{-1} = (1 \ 5 \ 3), \quad \beta^2 = \beta^{-1} = (2 \ 4 \ 6).$$

Allora, per lo stesso motivo, anche α^2 e β^2 commutano. Dunque

$$G = \{id, \alpha, \beta, \alpha \cdot \beta, \alpha^2, \beta^2, \alpha^2 \cdot \beta^2, \alpha \cdot \beta^2, \alpha^2 \cdot \beta\}$$

.

- **b.** Essendo α , β , α^2 , β^2 cicli di lunghezza 3, il loro periodo è 3. Essendo $\alpha \cdot \beta$, $\alpha^2 \cdot \beta$, $\alpha \cdot \beta^2$, $\alpha^2 \cdot \beta^2$ prodotti di cicli disgiunti di lunghezza 3 il loro periodo è 3. Dunque tutti gli elementi di G eccetto l'identità hanno periodo 3.
- **c.** Due elementi di G generici sono della forma $\alpha^i \cdot \beta^j$ con $0 \le i, j \le 2$ e $\alpha^k \cdot \beta^l$ con $0 \le k, l \le 2$. Siccome α e β commutano,

$$\alpha^i \cdot \beta^j \cdot \alpha^k \cdot \beta^l = \alpha^{i+k} \cdot \beta^{j+l} = \alpha^k \cdot \beta^l \cdot \alpha^i \cdot \beta^j$$

quindi G è commutativo.

d. G non è ciclico perchè la sua cardinalità è 9, ma non contiene elementi di periodo 9.

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix}; a, b \in \mathbb{Z}_3, b \neq 0 \right\}.$$

- **a.** Dimostrare che G è un gruppo rispetto all'operazione di prodotto righe per colonne.
- **b.** Determinare l'ordine di G e il periodo dei suoi elementi.
- c. Dimostrare che la funzione $f:G\to\mathbb{Z}_3^*$ definita da

$$f\left(\left[\begin{array}{cc} 1 & 0 \\ a & b \end{array}\right]\right) = b$$

è un omomorfismo del gruppo G nel gruppo moltiplicativo \mathbb{Z}_3^* .

d. Sia

$$H = \left\{ \left[\begin{array}{cc} 1 & 0 \\ a & 1 \end{array} \right] ; a \in \mathbb{Z}_3 \right\}.$$

Dimostrare che H è un sottogruppo normale di G.

SOLUZIONE

a. Siano
$$\begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix}$$
 e $\begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix}$ due elementi di G . Allora

$$\left[\begin{array}{cc} 1 & 0 \\ a & b \end{array}\right] \times \left[\begin{array}{cc} 1 & 0 \\ c & d \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ a + bc & bd \end{array}\right]$$

appartiene a G perché $b \neq 0$ e $d \neq 0 \Rightarrow bd \neq 0$.

Inoltre, data $A = \begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix}$ in G, essendo $b \neq 0$ e dunque invertibile in \mathbb{Z}_3 , l'inversa della matrice A è la matrice di G data da $\begin{bmatrix} 1 & 0 \\ -ab^{-1} & b^{-1} \end{bmatrix}$. Dunque G è un gruppo con l'operazione di prodotto righe per colonne ed ha come elemento neutro la matrice identica 2×2 .

b. L'elemento a può essere scelto in 3 modi, mentre per b ci sono solo 2 scelte (1 e -1 = 2); quindi l'ordine di G è 6. Abbiamo poi per ogni $a \in \mathbb{Z}_3$:

$$\begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 \\ 2a & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix}^3 = I,$$

mentre per ogni $a \in \mathbb{Z}_3$:

$$\left[\begin{array}{cc} 1 & 0 \\ a & -1 \end{array}\right]^2 = I.$$

Quindi gli elementi di G diversi dall'identità hanno periodo 2 oppure 3.

c. Siano $\begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix}$ e $\begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix}$ due elementi di G. Allora

$$f\left(\left[\begin{array}{cc} 1 & 0 \\ a & b \end{array}\right] \times \left[\begin{array}{cc} 1 & 0 \\ c & d \end{array}\right]\right) = f\left(\left[\begin{array}{cc} 1 & 0 \\ a + bc & bd \end{array}\right]\right) = bd = f\left(\left[\begin{array}{cc} 1 & 0 \\ a & b \end{array}\right]\right) f\left(\left[\begin{array}{cc} 1 & 0 \\ c & d \end{array}\right]\right),$$

quindi f è un omomorfismo.

d. Si noti che H = kerf dove f è l'omomorfismo di gruppi discusso nel punto (c). Il nucleo di un omomorfismo è sempre un sottogruppo normale.