MultiPanoWise: Holistic Deep Architecture for Multi-Task Dense Prediction from a Single Panoramic Image

Uzair Shah¹, Muhammad Tukur¹, Mahmood Alzubaidi¹, Giovanni Pintore², Enrico Gobbetti³, Mowafa Househ¹, Jens Schneider¹, Marco Agus¹
¹College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

²Visual and Data-intensive Computing, CRS4, Italy

³National Research Center in HPC, Big Data, and Quantum Computing, Italy

Introduction and Background

- > **Objective**: Present a novel holistic deep-learning approach for multi-task learning from a single indoor panoramic image.
- ➤ **Background**: Explain the use of spherical cameras for capturing comprehensive indoor environments and the challenges of multitask inference systems.
- > Key Points:
 - Holistic approach for dense prediction.
 - MultiPanoWise leverages vision transformers.
 - Achieves state-of-the-art performance for joint extraction of multiple signals.
- ➤ Importance of 360 Views: Enhance understanding of spatial layouts, facilitate realistic environment visualization, improve design and user interaction.
- > Challenges and Proposed Solution:
- Existing methods excel in single-task predictions but lack integrated multi-task capabilities.
- *MultiPanoWise* addresses this with a transformer-based architecture tailored for indoor 360° imagery.

Figure 1. *MultiPanoWise* architecture provides accurate joint dense predictions from single panoramic images. Top: Example inferences on a synthetic RGB from Structured3D showing RGB input, depth, semantics, normals, reflectance, and shading. Bottom Left: Radar plot comparing *MultiPanoWise* with state-of-the-art single predictions on Structured3DBottom Right: Performance with different hyperparameter α values on Stanford2D3D. For $\alpha = 0.5$, MultiPanoWise reaches state-of-the-art performance for both semantic and depth predictions.

Methods and Architecture

Architecture Overview: MultiPanoWise extends PanoFormer with a multi-head encoder-decoder architecture for multi-task prediction.

Figure 2. MultiPanoWise architecture, based on PanoFormer [1], includes a context adjustment layer to refine semantic, albedo, and shading outputs by fusing them with low-level features

Context Adjustment Layer: Enforces knowledge distillation between the encoder and multiple heads and uses skip connections and refinement layers to enhance signal quality.

- ➤ Hybrid Loss Scalarization: Balances the performance of multiple tasks during training and provides Pareto-optimal solutions without gradient instability.
- ➤ Task Losses: Components: Depth, shading, normal, and reflectance estimation using Berhu loss; semantic segmentation using cross-entropy and Dice loss.

Results and Conclusion

> Datasets: Structured3D (synthetic) and Stanford2D3D (real-world).

> Performance on Structured3D:

Methods	Depth			Semantic	Albedo		Shading	Normal
	MAE ↓	MRE ↓	$\sigma_1 \uparrow$	mIoU↑	MSE ↓	PSNR ↑	MSE ↓	MANE ↓
Li et. al [10]	n/a	n/a	n/a	n/a	0.073	n/a	n/a	24.7
Guttikonda et. al [6]	n/a	n/a	n/a	68.34	n/a	n/a	n/a	n/a
Yun et. al [36]	0.034	0.028	0.981	n/a	n/a	n/a	n/a	n/a
Pintore et. al [18]	0.091	0.054	0.954	n/a	n/a	n/a	n/a	n/a
Shen et al [26]	0.087	0.049	0.937	64.47	0.030	20.9	0.0916	7.25
MultiPanoWise (Ours)	0.056	0.019	0.975	69.61	0.021	22.45	0.0795	5.94

Figure 4. Comparison with PanoFormer [1] on Structured3D, showing inferences for depth, albedo, normal, semantic, and shading. See supplementary material for larger versions and zoomed insets.

Performance on Stanford2D3D

- **Depth Estimation:** Achieved impressive metrics with an MRE of 0.038, MAE of 0.065, and σ 1 of 0.945.
- Semantic Segmentation: mloU of 54.6%, surpassing SOTA in [2]

Conclusion

MultiPanoWise achieves state-of-the-art performance in multi-task dense prediction for indoor panoramic images. Future Work: Extend to more complex tasks like inverse rendering and virtual staging.

References

- Shen et al. PanoFormer: Panorama transformer for indoor 360 depth estimation. In Computer Vision ECCV 2022, pages 195–211, Cham, 2022. Springer Nature.
- 2. Zhifeng et. Al. 360bev: Panoramic semantic mapping for indoor bird's-eye view. In 2024 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV), 2024