1 Clase 14 - 4/10/2018

(x emilopez)

- Ejercicio 1 de la Guía Práctica Anova Factorial
- En Estadistica.Aplicada.2018/02_Disenio_Factorial_y_bloques/Practica_Anova_Factorial

In [8]:

```
library(lattice)
interaction.plot(Tempf, Telaf, Porc, col=c('magenta', 'green', 'blue', 'black')
```


In [9]:

```
1 modelo = aov(Porc~Telaf*Tempf)
2 summary(modelo)
```

```
Df Sum Sq Mean Sq F value
                                        Pr(>F)
Telaf
              41.88
                        13.96 279.18 5.05e-14 ***
Tempf
             3 283.94
                        94.65 1892.91 < 2e-16 ***
Telaf:Tempf
               15.86
                         1.76
                               35.24 7.09e-09 ***
           9
Residuals
            16
                 0.80
                         0.05
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

In [18]:

```
shapiro.test(modelo$residuals) # no puedo arreglar mucho teniendo precaucion pode library(car)
leveneTest(modelo) # no es confiable el test por los pocos datos
library(MASS)
boxcox(modelo) # me dice que no puedo mejorar mucho, no puedo hacer transformace
# entonces, o bien aceptamos como esta o vamos por otro camino porque ninguna t
# aplicar a estos datos para que anova me quede mejor condicionado
```

Shapiro-Wilk normality test

data: modelo\$residuals
W = 0.93155, p-value = 0.04327

Warning message in anova.lm(lm(resp ~ group)): "ANOVA F-tests on an essentially perfect fit are unreliable"

	Df	F value	Pr(>F)	
group	15	5.265436e+28	1.258744e-226	
	16	NA	NA	


```
In [11]:
```

```
#f) aceptamos enotnces como esta, ahora vamos a hacer el analisis de tendencia

g = 4
contrasts(Tempf) = contr.poly(g, scores = c(210,215,220,225)) # porque no esta
modelo = aov(Porc~Telaf*Tempf)
summary.lm(modelo)
# vemos que el cubico es significativo, estamos testeando 15 cosas al mismo tie
# fijemos con que valor de alpha comparamos, con benferroni alpha_PC = 1 - (1-9 # alpha0_que_quiero = 0.05
```

```
Call:
```

aov(formula = Porc ~ Telaf * Tempf)

Residuals:

Min 1Q Median 3Q Max -0.3000 -0.1125 0.0000 0.1125 0.3000

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
               4.12500
                          0.07906 52.178 < 2e-16 ***
                          0.11180 10.957 7.59e-09 ***
Telaf2
               1.22500
Telaf3
               3.18750
                          0.11180 28.510 3.82e-15 ***
                          0.11180
Telaf4
               1.76250
                                   15.764 3.62e-11 ***
Tempf.L
                          0.15811 28.284 4.33e-15 ***
               4.47214
Tempf.Q
               1.40000
                          0.15811 8.854 1.45e-07 ***
                          0.15811 -3.536 0.00275 **
Tempf.C
              -0.55902
Telaf2:Tempf.L 0.67082
                          0.22361
                                   3.000 0.00848 **
                          0.22361 14.250 1.64e-10 ***
Telaf3:Tempf.L 3.18640
Telaf4:Tempf.L 1.15158
                          0.22361
                                    5.150 9.68e-05 ***
Telaf2:Tempf.Q -0.30000
                          0.22361 -1.342
                                          0.19845
Telaf3:Tempf.Q 0.07500
                          0.22361
                                    0.335
                                           0.74167
                                    5.478 5.06e-05 ***
Telaf4:Tempf.Q 1.22500
                          0.22361
Telaf2:Tempf.C 1.22984
                          0.22361
                                    5.500 4.85e-05 ***
Telaf3:Tempf.C 0.16771
                          0.22361
                                    0.750 0.46414
Telaf4:Tempf.C 0.68200
                          0.22361
                                    3.050 0.00764 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Multiple R-squared: 0.9977, Adjusted R-squared: 0.9955 F-statistic: 455.6 on 15 and 16 DF, p-value: < 2.2e-16

Residual standard error: 0.2236 on 16 degrees of freedom

In [19]:

```
1 alpha = 0.05
2 (alpha_PC = 1 - (1- alpha)^(1/15))
3 # 0.003413
4 # veo que no me puedo sacar de encima el cubico, los p-valores que son menores
5 # son los que tengo que mirar en la tabla previa
```

```
In [20]:
    datos$interaccion = factor(paste0(Telaf, Tempf))
 2
    attach(datos)
The following objects are masked from datos (pos = 3):
```

```
Porc, Tela, Temp
The following objects are masked from datos (pos = 6):
    interaccion, Porc, Tela, Temp
The following objects are masked from datos (pos = 10):
    Porc, Tela, Temp
The following objects are masked from datos (pos = 12):
```

In [21]:

Porc, Tela, Temp

```
# volvemos a ajustar
2 m2 = aov(Porc~interaccion)
3 summary(m2)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
                341.7
                        22.78
                                455.6 <2e-16 ***
interaccion 15
Residuals
            16
                  0.8
                         0.05
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

In [15]:

```
# 0J0, DEMORA
  source("/home/emiliano/EstadisticaAplicada/practica/mymultcomp.R")
  minHSU(Porc, interaccion, alpha=0.05, 0.05, 16) # el mejor es el q encoje poco
  # este nos dice que el mejor es 1210 y solamente son equivalentes a 1215 y 2210
5
  # probablemente si uno usa tukey probablemente encontraría alguno mas porque ti
```

```
[1] "WARNING: esta funcion considera que todos los ni son iguales"
[1] "1210"
```

- [1] "1215"
- [1] "2210"

```
NA '1210' '1215' '2210'
```

In [16]:

```
library(lsmeans)
medias = lsmeans(m2, ~interaccion)
plot(medias)
```

The 'lsmeans' package is being deprecated.
Users are encouraged to switch to 'emmeans'.
See help('transition') for more information, including how
to convert 'lsmeans' objects and scripts to work with 'emmeans'.

In []:

1

In []:

1