Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3215</u>	К работе допущен
Студент Лавренов Д.А, Васильков Д.А.	Работа выполнена
Преподаватель Тимофеева Э.О.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.04

Исследование равноускоренного вращательного движения (маятник Обербека)

- 1. Цель работы.
 - 1) Проверка основного закона динамики вращения.
 - 2) Проверка зависимости момента инерции от положения масс относительно оси вращения.
- 2. Задачи, решаемые при выполнении работы.
 - 1) Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
 - 2) Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
 - 3) Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
 - 4) Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
 - 5) Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.
- 3. Объект исследования.

Равноускоренное вращательное движение маятника Обербека.

4. Метод экспериментального исследования.

Лабораторный эксперимент, состоящий из измерения времени, которое требуется каретке с грузами, чтобы пройти расстояние в 70 см при различных положениях утяжелителей на крестовине, с помощью цифрового секундомера. Далее проводится анализ полученных результатов измерений.

- 5. Рабочие формулы и исходные данные.
 - 1) Второй закон Ньютона (без учета сопротивления воздуха):

$$ma = mg - T$$
,

где T — сила натяжения нити.

2) Ускорение:

$$a = \frac{2h}{t^2},$$

Где h - расстояние, пройденное грузом за время t – от начала движения.

$$h = 0.7 \,\mathrm{M}$$

3) Угловое ускорение є:

$$\varepsilon = \frac{2a}{d},$$

Где d – диаметр ступицы.

$$d = 0.046 \text{ M}$$

4) Сила натяжения нити T:

$$T = m(q - a)$$
.

5) Момент силы натяжения нити:

$$M = \frac{md}{2}(g - a).$$

6) Основной закон динамики для вращения для крестовины:

$$I_{\varepsilon} = M - M_{\mathrm{rp}}$$
,

где I — момент инерции крестовины с утяжелителями.

7) Момент инерции крестовины (по теореме Штейнера):

$$I = I_0 + 4m_{\rm yr}R^2,$$

Где I_0 — сумма моментов инерции стержней крестовины, момента инерции ступицы и собственных центральных центральных моментов инерции утяжелителей.

8) Уравнение теоретической связи между моментом силы натяжения нити и угловым ускорением крестовины:

$$M = M_{\rm TD} + I_{\varepsilon}$$
.

9) Расстояние между осью $\mathcal O$ вращения и центром $\mathcal C$ утяжелителя:

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b,$$

Где l_1 — расстояние от оси вращения до первой риски; n — номер риски, на которой установлены утяжелители; l_0 — расстояние между соседними рисками; b — размер утяжелителя вдоль спицы.

$$l_1 = (0.057 \pm 0.0005) \text{ M}$$

$$l_0 = (0.025 \pm 0.0005)$$
 м

$$b = (0.04 \pm 0.0005)$$
 M

10) Абсолютная погрешность прямого измерения:

$$\Delta \langle t \rangle_{\text{CJ}} = t_s \left(a_{\text{AOB}}, N \right) \sqrt{\frac{\sum_{i=1}^n (t_{1i} - \langle t_1 \rangle)^2}{N(N-1)}}$$

11) Погрешность среднего значения времени:

$$\Delta t = \sqrt{(\Delta \langle t \rangle_{\text{CJI}})^2 + \left(\frac{2}{3} \Delta t_{\text{IIp}}\right)^2}$$

12) Погрешности углового ускорения крестовины:

$$\Delta_{\varepsilon} = \sqrt{\left(\frac{\partial \varepsilon}{\partial a} \cdot \Delta_{a}\right)^{2} + \left(\frac{\partial \varepsilon}{\partial d} \cdot \Delta_{d}\right)^{2}}$$

13) Погрешность ускорения груза:

$$\Delta_a = \sqrt{\left(\frac{\partial a}{\partial h} \cdot \Delta_h\right)^2 + \left(\frac{\partial a}{\partial t} \cdot \Delta_t\right)^2}$$

14) Погрешность момента силы натяжения нити:

$$\Delta_{M} = \sqrt{\left(\frac{\partial M}{\partial m} \cdot \Delta_{m}\right)^{2} + \left(\frac{\partial M}{\partial d} \cdot \Delta_{d}\right)^{2} + \left(\frac{\partial M}{\partial a} \cdot \Delta_{a}\right)^{2}}$$

15) Среднее арифметическое:

$$\bar{t} = \frac{1}{N} \sum_{i=1}^{N} t_i$$

16) Абсолютная погрешность косвенного измерения:

$$\Delta_z = \sqrt{\left(\frac{\partial f}{\partial x_1} \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2} \Delta_{x_2}\right)^2 + \dots + \left(\frac{\partial f}{\partial x_n} \Delta_{x_n}\right)^2}$$

17) Угловой коэффициент линейной зависимости y(x) = a + bx:

$$b = \frac{\Sigma(x_i - \bar{x})(y_i - \bar{y})}{\Sigma(x_i - \bar{x})^2}$$

18) Свободный член линейной зависимости y(x) = a + bx:

$$a = \bar{y} - b\bar{x}$$

19) Погрешность углового коэффициента:

$$d_{i} = y_{i} - (a + bx_{i})$$

$$D = \Sigma(x_{i} - \bar{x})^{2}$$

$$\Delta b = t_{a,N} \cdot \sqrt{\frac{\Sigma d_{i}^{2}}{D(n-2)}}$$

20) Погрешность свободного члена:

$$\Delta a = t_{a,N} \cdot \sqrt{\left(\frac{1}{n} + \frac{\overline{x^2}}{D}\right) \frac{\Sigma d_i^2}{n-2}}$$

21) Среднеквадратическое отклонение $S_{m_{vr}}$:

$$S_{m_{\rm yr}} = \sqrt{\frac{1}{D} \cdot \frac{\Sigma M_i - \left(M_{\rm Tp} + I_0 \cdot R_i^2\right)}{n - 2}}$$

22) Среднеквадратическое отклонение S_{i_0} :

$$S_{i_0} = \sqrt{\left(\frac{1}{n} + \frac{Rcp^2}{D}\right) \cdot \frac{\Sigma d_i^2}{n-2}}$$

23) Диаметр ступицы: $d = (46.0 \pm 0.5)$ мм

24) Высота сброса груза: $h = (700 \pm 0.5)$ мм

25) Коэффициент Стьюдента для $\alpha = 0.95$, N = 3: $t_{0.95,3} = 4.3$

26) Ускорение свободного падения в Санкт-Петербурге: $g = 9.82 \text{м/c}^2$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	электронный	0-60 c	0.01 c
2	Линейка	аналоговый	0-80 см	0.5 мм

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рисунок 1. Схема измерительного стенда.

1) *m* — груз

2) Ст - ступица

3) Бл - блок

- 4) Кр крестовина
- 5) Cп спицы
- 6) $m_{\rm vr}$ груз-утяжелитель
- 7) R расстояние утяжелителей от оси вращения крестовины
- 8) $m\vec{p}$ векторная сумма силы тяжести
- 9) \vec{T} сила натяжения нити
- 10) h расстояние, пройденное грузом за время t от начала движения
- 11) d диаметр ступицы

Рисунок 2. Стенд лаборатории механики.

- 1) Основание
- 2) Рукоятка сцепления крестовин
- 3) Устройства принудительного трения
- 4) Поперечина
- 5) Груз крестовины
- 6) Трубчатая направляющая
- 7) Передняя крестовина
- 8) Задняя крестовина
- 9) Шайбы каретки
- 10) Каретка
- 11) Система передних стоек

Рисунок 3. Определение расстояние от центра груза-утяжелителя до оси вращения.

- 1) *0* ось вращения
- 2) C центр утяжелителя
- 3) l_1 расстояние от оси вращения до первой риски
- 4) l_0 расстояние между соседними рисками
- 5) b размер утяжелителя вдоль спицы
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1: Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине (измерения также представлены в приложении).

		Положение утяжелителей							
Масса груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска			
	4,99	5,21	6,20	7,39	4,86	8,91	t_1		
m_1	4,74	5,45	6,45	7,28	8,03	9,05	t_2		
,	4,86	5,74	6,10	7,25	7,93	8,77	t_3		
	4,86	5,47	6,25	7,31	6,94	8,91	$t_{ m cp}$		
	3,22	4,04	4,41	5,26	5,92	6,57	t_1		
m_2	3,29	3,91	4,53	5,31	5,90	6,77	t_2		
	3,23	3,92	4,64	5,36	5,90	6,65	t_3		
	3,25	3,96	4,53	5,31	5,91	6,66	$t_{ m cp}$		
	2,75	3,16	3,89	4,49	4,96	5,78	t_1		
m_3	2,83	3,18	3,81	4,35	5,15	5,74	t_2		
3	2,80	3,15	3,85	4,40	4,96	5,59	t_3		
	2,79	3,16	3,85	4,41	5,02	5,70	$t_{ m cp}$		
	2,39	2,80	3,29	3,59	4,43	4,78	t_1		
m_4	2,65	2,78	3,42	3,89	4,32	4,88	t_2		
4	2,43	2,79	3,29	3,80	4,28	4,79	t_3		
	2,49	2,79	3,33	3,76	4,34	4,82	$t_{ m cp}$		

$$m_1 = 0,267$$
 кг

$$m_3 = 0,707$$
 кг

$$m_4 = 0,927$$
 кг

Пример расчета среднего времени: $t_{\text{m1 cp. 1p.}} = \frac{4,99+4,74+4,86}{3} = 4,8 \text{ c.}$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 2: ускорение груза $a \text{ м/c}^2$.

	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
m_1	0,059	0,047	0,036	0,026	0,029	0,018
m_2	0,133	0,089	0,068	0,05	0,04	0,032
m_3	0,179	0,14	0,094	0,072	0,055	0,043
m_4	0,226	0,18	0,126	0,099	0,074	0,06

 $m_2 = 0,487$ кг

Пример расчета ускорения груза $a \text{ м/c}^2$:

$$a_1 = \frac{2h}{t^2} = \frac{2 \cdot 0.7}{4.86^2} = \frac{3500}{59049} = 0.059 \text{ m/c}^2$$

Таблица 3: угловое ускорение крестовины ε рад/ c^2 .

	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
m_1	2,574	2,037	1,558	1,14	1,263	0,767
m_2	5,775	3,888	2,971	2,159	1,745	1,371
m_3	7,801	6,083	4,107	3,125	2,412	1,871
m_4	9,818	7,82	5,478	4,306	3,227	2,624

Пример расчета углового ускорения крестовины ϵ рад/ c^2 :

$$\varepsilon_1 = \frac{2a}{d} = \frac{2 \cdot 0,059}{0,046} = \frac{59}{23} = 2,574 \text{ рад/c}^2$$
:

Таблица 4: момент силы натяжения нити M Нм.

	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
m_1	0,06	0,06	0,06	0,06	0,06	0,06
m_2	0,109	0,109	0,109	0,109	0,11	0,11
m_3	0,157	0,157	0,158	0,158	0,159	0,159
m_4	0,205	0,206	0,207	0,207	0,208	0,208

Пример расчета момента силы натяжения нити М Нм:

$$M = \frac{md}{2}(g-a) = \frac{0,267 \cdot 0,046}{2}(9,82-0,059) = \frac{6141}{1000000} \cdot \frac{9761}{1000} = 0,06 \text{ HM}$$

Таблица 5: данные для нахождения зависимостей $M(\varepsilon)$ и $I(R^2)$.

	Риска 1	Риска 2	Риска 3	Риска 4	Риска 5	Риска 6	Среднее
R M	0,077	0,102	0,127	0,152	0,177	0,202	0,14
$R^2 \text{ m}^2$	0,006	0,01	0,016	0,023	0,031	0,041	0,021
$M_{\rm Tp}$ Нм	0,003	0,102	0	0,008	-0,026	0	0,015
I кг · м 2	0,02	0,025	0,038	0,047	0,074	0,081	0,044

Примеры расчетов:

$$\begin{split} I_1 &= \frac{\Sigma \left(\varepsilon_i - \varepsilon_{\mathrm{cp}} \right) \cdot \left(M_i - M_{\mathrm{cp}} \right)}{\Sigma \left(\varepsilon_i - \varepsilon_{\mathrm{cp}} \right)^2} = \frac{0,573}{28,642} = 0,02 \; \mathrm{kf} \cdot \mathrm{m}^2 \\ M_{\mathrm{Tp} \; 1} &= M_{\mathrm{cp}} - I \cdot \varepsilon_{\mathrm{cp}} = \; 0,132 \; - \; 0,02 \, \cdot \, 6,492 \; = \; 0,003 \; \mathrm{Hm} \\ R_1 &= l_1 + (n-1)l_0 + \frac{1}{2}b = 0,057 + (1-1) \cdot 0,025 + 0,02 = 0,077 \; \mathrm{m} \\ R_2^2 &= 0,077^2 = 0,006 \; \mathrm{m}^2 \end{split}$$

Подсчет значений I_0 и $m_{
m yr}$ с помощью теоремы Штейнера:

$$\begin{split} m_{\rm yT} &= \frac{\Sigma \left(R_i^2 - R_{\rm cp}^2\right) \cdot \left(I_i - I_{\rm cp}\right)}{\Sigma \left(R_i^2 - R_{\rm cp}^2\right)} = \frac{0{,}001}{0.0046} = 0{,}461~\rm \kappa \Gamma \\ I_0 &= I_{\rm cp} - 4m_{\rm yT} \cdot R_{\rm cp}^2 = 0{,}047~ + 4 \cdot 1{,}843 \cdot 0{,}21 = 0{,}008~\rm \kappa \Gamma \cdot m^2 \end{split}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Абсолютная погрешность прямого измерения и погрешность среднего значения времени для первого значения $t_{\rm cn}$:

$$\begin{split} \Delta \langle t \rangle_{\text{CJI}} &= t_s \Big(a_{\text{ДOB}}, N \Big) \sqrt{\frac{\sum_{i=1}^n (t_{1i} - \langle t_1 \rangle)^2}{N(N-1)}} \\ &= 4,302 \sqrt{\frac{(4,99 - 4,86)^2 + (4,74 - 4,86)^2 + (4,86 - 4,86)^2}{3(3-1)}} \\ &= 4,302 \sqrt{\frac{0,13^2 + (-0,12)^2}{6}} = \frac{2151}{500} \cdot \sqrt{\frac{313}{60000}} = \frac{2151\sqrt{313}}{50000\sqrt{6}} = \frac{717\sqrt{1678}}{100000} = 0,31 \text{ c} \\ \Delta t &= \sqrt{(\Delta \langle t \rangle_{\text{CJI}})^2 + \left(\frac{2}{3}\Delta t_{\text{IIP}}\right)^2} = \sqrt{0,31^2 + \left(\frac{2}{3} \cdot 0,01\right)^2} = \sqrt{\frac{8653}{90000}} = \frac{\sqrt{8653}}{300} = 0,31 \text{ c} \end{split}$$

Погрешность ускорения груза для первого значения a:

$$\Delta_{a} = \sqrt{\left(\frac{\partial a}{\partial h} \cdot \Delta_{h}\right)^{2} + \left(\frac{\partial a}{\partial t} \cdot \Delta_{t}\right)^{2}} = \sqrt{\left(\frac{2}{t^{2}} \cdot \Delta_{h}\right)^{2} + \left(-\frac{4h}{t^{3}} \cdot \Delta_{t}\right)^{2}} =$$

$$= \sqrt{\left(\frac{2}{4,86^{2}} \cdot 0,0005\right)^{2} + \left(-\frac{4 \cdot 0,7}{4,86^{3}} \cdot 0,31\right)^{2}} = 0,008\text{м}/c^{2}$$

$$\Delta_{\varepsilon} = \sqrt{\left(\frac{\partial \varepsilon}{\partial a} \cdot \Delta_{a}\right)^{2} + \left(\frac{\partial \varepsilon}{\partial d} \cdot \Delta_{d}\right)^{2}} = \sqrt{\left(\frac{2}{d} \cdot \Delta_{a}\right)^{2} + \left(-\frac{2a}{d^{2}} \cdot \Delta_{d}\right)^{2}}$$

$$= \sqrt{\left(\frac{2}{0.046} \cdot 0,008\right)^{2} + \left(-\frac{2 \cdot 0,059}{0.046^{2}} \cdot 0,0005\right)^{2}} = 0,33 \text{ рад/c}^{2}$$

$$\begin{split} & \Delta_{M} = \sqrt{\left(\frac{\partial M}{\partial m} \cdot \Delta_{m}\right)^{2} + \left(\frac{\partial M}{\partial d} \cdot \Delta_{d}\right)^{2} + \left(\frac{\partial M}{\partial a} \cdot \Delta_{a}\right)^{2}} \\ & = \sqrt{\left(\frac{d(g-a)}{2} \cdot \Delta_{m}\right)^{2} + \left(\frac{m(g-a)}{2} \cdot \Delta_{d}\right)^{2} + \left(-\frac{md}{2} \cdot \Delta_{a}\right)^{2}} = \\ & = \sqrt{\left(\frac{0.046(9.82-0.059)}{2} \cdot 0.0005\right)^{2} + \left(\frac{0.267(9.82-0.059)}{2} \cdot 0.0005\right)^{2} + \left(-\frac{0.267 \cdot 0.046}{2} \cdot 0.008\right)^{2}} \\ & = 0.001 \ \mathrm{Hm} \end{split}$$

Таблица 6: значения погрешностей для первых значений a, ε, M .

Погрешности				
а	$0,008 \mathrm{m/c^2}$			
ε	0,33 рад/c ²			
M	0,001 Нм			

Погрешность углового коэффициента:
$$D = \Sigma \big(R_i^2 - R_{cp}^2\big) = -0.014 - 0.009 - 0.003 + 0.004 + 0.012 + 0.021 = 0.011$$

Среднеквадратическое отклонение $S_{m_{vr}}$ и S_{i_0} :

$$\begin{split} S_{m_{\text{yt}}} &= \sqrt{\frac{1}{D} \cdot \frac{\Sigma M_i - \left(M_{\text{Tp}} + I_0 \cdot R_i^2\right)}{n-2}} = \sqrt{91,429 \cdot 0,00002} = \sqrt{0,002} = 0,047 \text{ kg} \\ S_{i_0} &= \sqrt{\left(\frac{1}{n} + \frac{Rcp^2}{D}\right) \cdot \frac{\Sigma d_i^2}{n-2}} = \sqrt{1,946 \cdot 0,00002} = \sqrt{0,00004} = 0,007 \text{ kg} \cdot \text{m}^2 \end{split}$$

Погрешности массы утяжелителя и сумма моментов инерции стрежней крестовины $\Delta m_{\scriptscriptstyle
m VT}$ и ΔI_0 соответственно:

$$\Delta m_{
m yt} = 2 \cdot S_{m_{
m yt}} = 2 \cdot S_{m_{
m yt}} = 0,094 \;
m kg$$

$$\Delta I_0 = 2 \cdot S_{i_0} = 0,014 \;
m kg \cdot m^2$$

11. Графики.

График 1: точки зависимости $M(\varepsilon)$ и графики аппроксимации $M=M_{\mathrm{Tp}}+I\varepsilon$.

График 2: точки зависимости $I(R^2)$ и график аппроксимации $I=i_0+4m_{_{
m VT}}R^2$.

12. Окончательные результаты.

Зависимость $M(\varepsilon)$ является линейной. Коэффициенты представлены в таблице 5 и изображены на первом графике (для каждого положения утяжелителей).

Зависимость $I(R^2)$ также является линейной (в пределах погрешностей). $\Delta I_0 = 0.008 \, \pm 0.014 \, \mathrm{kr} \cdot \mathrm{m}^2 \\ m_{\mathrm{vr}} = \, 0.0461 \, \pm 0.094 \, \mathrm{kr}$

13. Выводы и анализ результатов работы.

С использованием маятника Обербека было установлено, что существует линейная зависимость между моментом вращения и угловым ускорением. Второй график подтвердил эту линейную зависимость, показав, что момент инерции тела зависит от расстояния утяжелителей до оси вращения, причем угловой коэффициент этого графика соответствует массе тела. Погрешности в измерениях в основном связаны с человеческим фактором и точностью секундомера.

14. Замечания преподавателя (исправления, также помещают в этот пункт).	вызванные замечаниями преподавателя,

Basus Nos Emmin M3215
Nagre mes Brus min M3215
Of. 09. 2023

J 04

факультет ФТМФ ИТМО

MWW

Физический факультет ФТМФ ИТМО

Приложение

Таблица 1: Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине

Macca		Положение утяжелителей							
груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска			
	t14.59	5.21	6.20	7.39	7.86	4.74	8.91		
m_1	t2 4:74 t3 4.86	5.79	6.10	7.28	7,93	J.74	9,05		
	$t_{ m cp}$								
	6, 3.22	4.04	4.41	5.26	5.92	6.57			
ma	tz 3.29	3.91	4.53	5.31	5.90	6.77			
m_2	t3 3.23	3.92	4.69	5.36	5.90	0.65	1		
	&cp								
	6, 2,75	3.16	3.89	4.49	4.96	5.47	5.78		
m -	42.83	3.18	3.41	4.35	5.15	5,34	5.24		
m_3	ts 2,80	3.15	3.25	9.40	4.98	5.59	1		
	7-06		在位,一千七						
	6, 2,39	2,80	3.29	3.7/8	4.43	4.74	7.73		
200	tz 2.65	2.78	3.42	3.89	4.32	5,08	4.80		
m_4	tz 2.43	2.79	3.29	3.80	4.28	4,35	1.70		
	top			F1 -					

+3.59 ·8.03 ·4.89