

Структура курса

- 1. Математическая логика
 - 1.1. Логика высказываний
 - 1.2. Алгебра логики
 - 1.3. Логика предикатов
- 2. Аксиоматический метод
- 3. Теория алгоритмов

- 1.Игошин, В. И. Математическая логика и теория алгоритмов. Москва, 2008.
- 2. Молчанов, В. А. Логика высказываний: учебное пособие для студентов факультета компьютерных наук и информационных технологий. Саратов, 2014.
- 3. Ершов, Ю. Л., Е. А. Палютин. Математическая логика. Москва, 2011.
- 4. Игошин, В. И. Задачи и упражнения по математической логике и теории алгоритмов: учеб. пособие. Москва, 2007.

МАТЕМАТИЧЕСКАЯ **ЛОГИКА**

Предмет математической логики

Логика возникла в VI—IV вв. до н. э. как «анализ мышления», т.е. анализ принципов правильных рассуждений.

Основоположник логики – древнегреческий ученый Аристотель (384-322 гг. до н. э.), который в сочинениях «Аналитики» впервые изложил идею дедуктивного вывода.

ЛОГИКА (ФОРМАЛЬНАЯ)

изучает формы, в которых проявляются законы причинно-следственных связей, вне зависимости от содержания (смысла) тех явлений (предметов), к которым эти законы относятся.

Математическая логика занимается обоснованием правильных способов рассуждений с помощью математического аппарата.

Главная цель классической математической логики — формализация и обоснование правильных способов **математических рассуждений** с целью точного определения понятия «математическое доказательство».

Этапы развития математической логики:

Английский математик Дж.Буль (1815—1864) создал алгебру логики.

Немецкий математик Г.Фреге (1848—1925) разработал логико-математические языки и теорию их осмысления (так называемую семантику).

Немецкий математик Д.Гильберт (1862—1943) разработал программу обоснования математики на основе **аксиоматического подхода.**

Главная задача современной математической логики — изучение формальных теорий, представляющих собой множества теорем, получающихся из исходных аксиом с помощью дедуктивных умозаключений.

Проблемы: непротиворечивость, полнота и разрешимость теорий.

Проблема разрешимости теорий – первоисточник теории алгоритмов!

В настоящее время актуальность математической логики и теории алгоритмов обусловлена:

- широким применениеми информационнокоммуникационных технологий,
- необходимостью создания теоретических основ обработки и передачи информации, математического моделирования самых разнообразных задач и процессов,
- созданием искусственного интеллекта (ИИ).

ИИ – интеллектуальный агент (система), который воспринимает окружающую среду с помощью специальных датчиков и воздействует на эту среду с помощью исполнительных механизмов.

Логические агенты – агенты, основанные на знаниях и принимающие решения с помощью выводов по определенным правилам.

Логика высказываний

Высказывание - повествовательное предложение, о котором можно судить, истинное оно или ложное.

Обозначаются высказывания A, B, C, ...

Uстинностное значение высказывания A обозначается символом $\lambda(A)$ и определяется по формуле:

 $\lambda(A)=1$, если высказывание A истинно, и $\lambda(A)=0$, если A ложно.

Алгебра высказываний

Из высказываний путем соединения их с помощью связок «не», «и», «или», «следует», «равносильно» можно составлять новые, более сложные высказывания.

При этом главное внимание уделяется функциональным зависимостям истинностных значений высказываний, в которых истинность или ложность новых высказываний определяется истинностью или ложностью составляющих их высказываний.

Определение. Отрицанием высказывания A называется высказывание $^{\neg A}$ (читается «не A »), которое истинно в том и только том случае, если высказывание A ложно.

Таблица истинностных значений операции отрицания

Α	$\neg A$	
1	0	
0	1	

Определение. Конъюнкцией высказываний A, B называется высказывание $A \wedge B$ (читается «A и B»), которое истинно в том и только том случае, если оба высказывания A, B истинны.

Дизьюнкцией высказываний A, B называется высказывание $A \lor B$ (читается «A или B»), которое ложно в том и только том случае, если оба высказывания A, B ложны.

Импликацией высказываний A, B называется высказывание $A \Rightarrow B$ (читается «A влечет B»), которое ложно в том и только том случае, если высказывание A истинно, а высказывание B ложно.

Эквивалентностью высказываний A, B называется высказывание $A \Leftrightarrow B$ (читается «A равносильно B»), которое истинно в том и только том случае, если высказывания A и B имеют одинаковое истинностное значение.

Таблица истинностных значений логических операций.

A	В	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

<u>Определение</u>. *Алгеброй высказываний* называется множество всех высказываний \mathscr{S} с логическими операциями $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$.

Формулы алгебры высказываний

Свойства алгебры высказываний \mathscr{S} описываются с помощью формул, которые строятся из переменных символов с помощью знаков логических операций. Такие формулы приято называть также *пропозициональными* формулами

Символы логических операций $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$ называются *пропозициональными связками*.

Переменные символы X, Y, Z, ..., которые используются для обозначения высказываний, называются пропозициональными переменными.

Определение. Формулы алгебры высказываний индуктивно определяются по правилам:

- 1) каждая пропозициональная переменная является формулой,
- 2) если Ф, Ч формулы, то формулами являются также выражения

$$(\neg \Phi)$$
, $(\Phi \land \Psi)$, $(\Phi \lor \Psi)$, $(\Phi \Rightarrow \Psi)$, $(\Phi \Leftrightarrow \Psi)$.

Множество всех формул алгебры высказываний обозначим \mathcal{F}_{AB} .

Для упрощения записи формул скобки в них по возможности опускаются с учетом следующего **приоритета выполнения логических операций**: ¬,∧,∨ и остальные.

Так, формула

$$\left(\left(\left(\left(\neg X\right) \land \left(\neg Y\right)\right) \lor \left(\neg \left(\neg Z\right)\right)\right) \Rightarrow \left(X \lor \left(\neg Y\right)\right)\right)$$

сокращенно записывается в виде

$$\neg X \land \neg Y \lor \neg \neg Z \Rightarrow X \lor \neg Y.$$

Если в формулу Φ входят переменные $X_1,...,X_n$, то записывают $\Phi = \Phi(X_1,...,X_n)$.

Из индуктивного определения формул следует, что если в формулу Φ вместо переменных $X_1,...,X_n$ подставить произвольные конкретные высказывания $A_1,...,A_n$, то получится некоторое сложное высказывание $\Phi(A_1,...,A_n)$.

Истинностное значение высказывания $\lambda(\Phi(A_1,...,A_n))$ определяется истинностными значениями исходных высказываний $\lambda(A_1),...,\lambda(A_n)$ согласно таблицам истинностных значений логических операций $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$.

Формула Ф определяет функцию n переменных F_{Φ} , которая каждому упорядоченному набору $(\lambda(X_1),...,\lambda(X_n))$ n элементов множества $\{0,1\}$ ставит в соответствие элемент $\lambda(\Phi(X_1,...,X_n))$ этого же множества.

Функция F_{Φ} называется истинностной функцией формулы Φ и графически представляется истинностной таблицей.

Такая таблица содержит 2^n строк и имеет одно из 2^{2^n} возможных распределений значений 0 и 1 в последнем столбце.

<u>Пример.</u> Формула $\Phi = (\neg X \land \neg Y \Leftrightarrow X \lor \neg Y)$ имеет следующую истинностную таблицу:

X	Y	$\neg X$	$\neg Y$	$\neg X \land \neg Y$	$X \lor \neg Y$	$\neg X \land \neg Y \Leftrightarrow X \lor \neg Y$
0	0	1	1	1	1	1
0	1	1	0	0	0	1
1	0	0	1	0	1	0
1	1	0	0	0	1	0

Пример.
Составим
таблицу
истинности
для

формулы
1
5
2
4
3

 $(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$

P	Q	1	2	3	4	5
0	0	1	1	1	1	1
0	1	1	0	1	1	1
1	0	0	1	0	0	1
1	1	1	0	0	1	1

Таблица показывает, что, какого бы истинностного значения высказывания ни подставлялись в данную формулу вместо пропозициональных переменных P и Q, формула всегда превращается в истинное высказывание.

Определение. Формула Ф называется:

- тавтологией (или тождественно истинной формулой) и обозначается $\models \Phi$, если ее истинностная функция тождественно равна 1;
- -противоречием (или тождественно ложной формулой), если ее истинностная функция тождественно равна 0;
- -*выполнимой*, если ее истинностная функция не равна тождественно 0;
- -*опровержимой*, если ее истинностная функция не равна тождественно 1.

Тавтологии являются общими схемами построения истинных высказываний и в этом смысле выражают определенные *логические* законы.

Примеры таких законов являются:

 $|= X \lor \neg X -$ закон исключенного третьего, $|= \neg \neg X \Leftrightarrow X -$ закон двойного отрицания, $|= \neg (X \land \neg X) -$ закон противоречия, $|= (X \Rightarrow Y) \Leftrightarrow (\neg Y \Rightarrow \neg X) -$ закон контрапозиции.

Новые тавтологии можно получить с помощью следующего правила.

Правило подстановки:

если $\models \Phi(X_1,...,X_n)$, то для любых формул $\Phi_1,...,\Phi_n$ тавтологией является формула $\Phi(\Phi_1,...,\Phi_n)$.

Логическая равносильность формул

Определение. Формулы Ф, Ч называются логически равносильными (или просто равносильными), если они принимают одинаковые логические значения при любых истинностных значениях их переменных.

Это равносильно условию $\models \Phi \Leftrightarrow \Psi$.

Для обозначения логически эквивалентных формул используется символическая запись $\Phi = \Psi$, или $\Phi \cong \Psi$.

Такие выражения называются логическими равенствами или просто равенствами формул.

<u>Лемма 1.</u> Справедливы следующие равенства формул:

- 1) $X \lor (Y \lor Z) = (X \lor Y) \lor Z$, $X \land (Y \land Z) = (X \land Y) \land Z$
- свойства ассоциативности дизъюнкции и конъюнкции;
- 2) $X \lor Y = Y \lor X$, $X \land Y = Y \land X$ свойства коммутативности дизъюнкции и конъюнкции;
- 3) $X \lor X = X$, $X \land X = X$ свойства идемпотентности дизъюнкции и конъюнкции;
- 4) $X \wedge (Y \vee Z) = (X \wedge Y) \vee (X \wedge Z)$, $X \vee (Y \wedge Z) = (X \vee Y) \wedge (X \vee Z)$ законы дистрибутивности конъюнкции относительно дизъюнкции и дизъюнкции относительно конъюнкции;

- 5) $\neg (X \land Y) = \neg X \lor \neg Y$, $\neg (X \lor Y) = \neg X \land \neg Y$ законы де Моргана;
- 6) $(X \land Y) \lor X = X$, $(X \lor Y) \land X = X$ законы поглощения;
- 7) $\neg \neg X = X$ закон двойного отрицания;
- 8) $X \Rightarrow Y = \neg X \lor Y$, $X \Rightarrow Y = \neg (X \land \neg Y)$ взаимосвязь импликации с дизъюнкцией и конъюнкцией;
- 9) $X \Leftrightarrow Y = (X \Rightarrow Y) \land (Y \Rightarrow X)$, $X \Leftrightarrow Y = (\neg X \lor Y) \land (X \lor \neg Y)$ взаимосвязь эквивалентности с импликацией, дизъюнкцией и конъюнкцией.

<u>Лемма (Правило замены).</u> Если формулы Φ,Φ' равносильны, то для любой формулы $\Psi(X)$, содержащей переменную X, выполняется равенство: $\Psi(\Phi) = \Psi(\Phi')$.

Это правило означает, что при замене в любой формуле $\Psi = \Psi(\Phi)$ некоторой ее подформулы Φ на равносильную ей формулу Φ' получается формула $\Psi' = \Psi(\Phi')$, равносильная исходной формуле Ψ .

Такие переходы называются равносильными преобразованиями формул.

Пример.

Формула $\Phi = (X \Rightarrow Y) \Rightarrow Z$ с помощью равенств 5),7),8) из леммы 1 равносильно преобразовывается следующим образом:

$$\Phi = (X \Rightarrow Y) \Rightarrow Z = \neg (X \Rightarrow Y) \lor Z =$$
$$= \neg (\neg (X \land \neg Y)) \lor Z = (X \land \neg Y) \lor Z \cdot$$