RS∧°Conference2016

San Francisco | February 29 – March 4 | Moscone Center

SESSION ID: SBX1-R05

Tactical Survival Tips
Internet of Things (IoT) Systems

Connect **to** Protect

Brian Witten

Senior Director, IoT Symantec Corporation @WittenBrian

IoT betters our lives countless ways...

Already 20 Billion Microcontrollers (MCU) annually 5 Billion Connected Today, 20 Billion by 2020

Quick History of Actual Events

Multi-Kiloton
Pipeline Explosion

Hundreds of Critical Infrastructure Sites

Cars: Digitally Stolen, Remotely Crashed

Steel Mill Blast Furnace Damaged

National Scale
Power Grid Crashed

Hospitals Breached via Medical Devices

What changed?

PC / Datacenter Era
Security - most easily
delivered by disk
or by download

IoT / Cloud Era
Security - must be
integrated by design
to be effective

Information Technology (IT)		Internet of Things (IoT)
All verticals have <u>same</u> Hardware/OS supply chain	Fragmentation	Each vertical has <u>different</u> Hardware/OS supply chain
"3" (Mostly UDP, TCP, IP)	Protocols	Thousands of Protocols (Hundreds in each vertical)
"5" (Mostly Windows, Linux, OSX, iOS, Android)	Operating Systems (OS)	Dozens (Heavily fragmented by vertical)
"2" X86 and x64 by Intel and AMD	Chipset Architectures	Many 8/16/32/64 bit, AVR, ARM, MIPS, Over 12 vendors

Internet of Things (IoT) Cornerstones of Security

Manage Devices

Cloud/Data Center **Understand Your System**

Gateway

Devices & Sensors

Protect the Device

Protect the Communications

Protect The Communications

Protect the Communications

Required: Authentication

Helpful: Encryption

Note: Signing "objects" can avoid decrypt/re-encrypt burden

What's needed?				
Crypto Libraries:	Several good open-source and commercial options			
Certificates:	Over a Billion IoT devices chain to a world class Certificate Authority (CA)			
Roots of Trust:	IoT "Roots of Trust" can help identify foreign devices			

Can extremely constrained devices do meaningful security?

Early 80's grade chip

Benchmark: ECC/ECDSA256

8 bit 8 Mhz 2 k SRAM

25 seconds

AA Battery: 20+ years

Leading 10 year old chips

\$0.25 16 bit, 16 Mhz 30 k SRAM

3 seconds

AA Battery: 20+ years

Current 32 bit chips

\$0.50 **32** bit, 84 Mhz

30+ k SRAM

150 ms

AA: 20 years

RSAConference2016

Protecting Devices (Boot Time)

- Never run unsigned code.
- Never trust unsigned configuration data.
- Never trust unsigned data. (Period.)
- Provide run-time protection for each device.

Protect the Code that Drives IoT

Protecting Devices (Run Time)

Traditional Approach: Malware Blocking

Signature based

Internet access required

Reactive

Ineffective on zero-day

Ensures self-protection

Customization or separate product

Large footprint

Whitelisting Behaviors: Sandboxing

Behavior / policy based

No internet access required

Proactive

Effective on zero day

Protects OS critical resources

Protects applications from each other

Small footprint

Internet of Things (IoT) Cornerstones of Security

Cloud/Data Center **Understand Your System**

Gateway

Run Time

Devices & Sensors

Boot Time

Protect the Device

Protect the Communications

Safely & Effectively Managing IoT Devices

Why update devices?

Build in Over The Air (OTA) updates from the start

Granular Updates Save Battery & Bandwidth

"Build it Right Once"

(Use it for Both General & Security Management)

General & Security Telemetry
Functionality & Security Updates
Configuration Changes
Diagnostics & Remediation
Network Access Control (NAC)
Credentials/Permissions, Policies

Understand Your System To Detect Strategic Threats

- No matter how well you do everything else, some threats will still get past even the best defenses.
- Detecting such threats requires strong understanding of what your network "should" be doing.
- Machine learning (ML) distills models of "normal" that can run in compact Single Board Computers (SBC).
- Some ML can "learn" in resource constrained gateways and small SBC to detect anomalies specific to specific networks.
- Such IoT Security Analytics are crucial in finding advanced threats.

Internet of Things (IoT) Cornerstones of Security

Manage Devices

Updates

Cloud/Data Center **Understand Your System**

Embedded Analytics

Policies

Gateway

Run Time

Devices & Sensors

Boot Time

Protect the Device

Protect the Communications

Agenda

■ Define a Simpler Framework for Building Security Into IoT Things

Practical Example (2 slides)

Tips & Tricks for Companies Leveraging (not Building) IoT Things

TCU: Telecommunications Unit

IVI: In Vehicle Infotainment

RTOS: Real Time OS

ECU: Engine Control Unit BCM: Body Control Module

xxM: Other Modules

CAN: Controller Area Network CAN1/2: Hi, Med, Lo Speed CAN

GWC: "gateway chip"

OBD2: On Board Diagnostics port

UBI: Usage Based Insurance GSM: Global System for Mobile Comm's, aka "a modem"

Business Constraints:

- -- Consumers won't pay for security they "assume"
- -- OEM & Tier 1 Suppliers: extremely thin margins
- -- Security \$ must be < "few %" of any car/module

CAMP VSC3, HIS SHE, EVITA HSM

Authenticate Comm's

Cornerstones of Security Automotive Vehicles

OMA DM, SCOMO

Manage Devices

ECU: Engine Control Unit BCM: Body Control Module xxM: Other Modules **CAN: Controller Area Network** CAN1/2: Hi, Med, Lo Speed CAN **GWC: "gateway chip" OBD2: On Board Diagnostics port UBI: Usage Based Insurance GSM: Global System for Mobile**

TCU: Telecommunications Unit

IVI: In Vehicle Infotainment

RTOS: Real Time OS

CAMP: Crash Avoidance Metrics Program

VSC3: Vehicle Safety Comm's HIS: Hersteller Initiative Software SHE: Secure Hardware Extensions

EVITA: E-safety Vehicle Intrusion Protected Applications

Comm's, aka "a modem"

HSM: Hardware Security Module

OMA DM: Open Mobile Alliance (OMA) Device Management (DM) **SCOMO: Software Component Management Object**

18

Tips & Tricks LEVERAGING IoT Devices

Internet of Things (IoT) Cornerstones of Security

Manage Devices

Updates

Cloud/Data Center **Understand Your System**

Embedded Analytics

Policies

Gateway

Run Time

Devices & Sensors

Boot Time

Protect the Device

Protect the Communications

IoT Security "Recipe"

- Protect your devices: [(high assurance boot) + (runtime protection)]
- Protect communications: design in strong authentication mechanisms
- Manage your devices: build in update mechanisms for granular updates
- Understand your system: leverage analytics to catch strategic threats

Strong Foundations Cover All Four IoT Security Cornerstones!

Apply What You Have Learned Today

Owners/Buyers of IoT Things:

- Next week: meet with your Procurement team to begin adding Security Requirements to all RFP for equipment and/or component suppliers
- Next quarter: start educating other stakeholders on what it means to "build security into these things."
- Next year: refuse to buy equipment without adequate security
- Makers / Builders / Venders of IoT Things:
 - Ensure you adequately cover all four "cornerstones" of security for your Things!

bwitten@symantec.com

Internet of Things (IoT)
Security Reference Architecture:
www.symantec.com/iot

