In [25]:	In this lab you'll translate mathematics from lecture into practical Numpy code. Specifically, you'll implement linear least squares regression and logistic regression "from scratch" and compare the results of your own implementations to those of scikit-learn, a popular machine learning package. Warning. Many of the code cells in this notebook re-use the variable names like X or y, but assign them different data. If you run cells out of order, you may get unexpected results or errors, so be careful when switching between exercises. Run the code cell below to import the required packages. import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.linear_model Lab2 requires a good understanding of Numpy and Matplotlib. Please complete Lab1 before attempting Lab2.
	1. Plotting a 2D function and its gradient Exercises 1.1–1.4 ask you to plot a function and its gradient, then optimize it with gradient descent. Exercise 1.1 — Evaluate a function on a 2D grid
In [26]:	The Python function below takes another function, func, as an argument, and evaluates it on a 2D grid. def eval_on_grid_unvectorized(func, extent, numsteps): """ Evaluates func(x1, x2) for each combination in a 2D grid. func: callable - function to evaluate for each grid element extent: tuple - grid extent as (x1min, x1max, x2min, x2max) numsteps: int - number of grid steps (same for each dimension) """ xlmin, x1max, x2min, x2max = extent x1 = np.empty((numsteps, numsteps)) x2 = np.empty((numsteps, numsteps)) y = np.empty((numsteps, numsteps)) for i in range(numsteps): for j in range(numsteps): x1[i,j] = x1min + j*(x1max-x1min)/(numsteps-1) x2[i,j] = x2min + i*(x2max-x2min)/(numsteps-1) y[i,j] = func(x1[i,j], x2[i,j]) return x1, x2, y Run the code cell below to see an example of its output. x1, x2, y = eval_on_grid_unvectorized(lambda x1, x2: x1 + x2, (-1, 1, 0, 2), 3) print("x1:"); print(x1)
	<pre>print("x2:"); print(x2) print("y:"); print(y) x1: [[-1.</pre>
In [28]: In [29]:	<pre>x1min, x1max, x2min, x2max = extent x1, x2 = np.meshgrid(np.linspace(x1min, x1max, numsteps), np.linspace(x2min, x2m y = func(x1, x2) return x1, x2, y Check your answer by running the code cell below. args = (lambda x1, x2: x1 * x2, (-1, 1, -4, 4), 20) r1 = eval_on_grid_unvectorized(*args) # r1 = (x1, x2, y) for unvec version r2 = eval_on_grid_vectorized(*args) # r2 = (x1, x2, y) for vec version</pre>
	<pre>for v1, v2 in zip(r1, r2): np.testing.assert_almost_equal(v1, v2) # check that x1, x2, or y matches print("Correct!") import timeit args = (lambda x1, x2: x1**2 + 0.5*x2, (0, 1, 0, 1), 200) unvec_time = timeit.timeit('eval_on_grid_unvectorized(*args)', setup="frommain_ vec_time = timeit.timeit('eval_on_grid_vectorized(*args)', setup="frommain_ print("Your vectorized code ran %.1fx faster than the original code on a 200x200 grid Correct! Your vectorized code ran 299.1x faster than the original code on a 200x200 grid</pre> Exercise 1.2 — Plot a function as a heatmap
In [30]:	Consider the function $f(x_1,x_2)=(\tfrac12x_1+x_2+1)^2+(x_2-1)^2$ Write code to compute $f(x_1,x_2)$. Your code should run for x_1 and x_2 either numbers or Numpy arrays.
In [31]:	$ \begin{array}{l} {\rm \bf v=f(2.5,\ -4.0)} \\ {\rm \bf assert\ isinstance(v,\ float),\ "Expected\ float\ args\ to\ give\ float\ result"} \\ {\rm \bf assert\ v==28.0625,\ "Wrong\ return\ value\ for\ float"} \\ {\rm \bf v=f(np.eye(3,\ 4),\ np.arange(12).reshape(3,\ 4))} \\ {\rm \bf assert\ isinstance(v,\ np.ndarray),\ "Expected\ ndarray\ args\ to\ give\ ndarray\ result"} \\ {\rm np.testing.assert_equal(v,\ [[3.25,\ 4.,\ 10.,\ 20.],\ [34.,\ 58.25,\ 74.,\ 100.],\ [130.,\ 16] \\ {\rm print("Correct!")} \\ \\ {\rm Correct!} \\ \\ {\rm \bf Write\ plotting\ code\ to\ visualize\ your\ } f(x_1,x_2)\ {\rm function\ over\ the\ interval\ } x_1\in[-6,6]\ {\rm and\ } x_2\in[-3,3]. \ {\rm Your\ plot\ should\ look\ like\ this:} \\ \\ \end{array} $
In [32]:	 Use your eval_on_grid_vectorized to compute all the grid positions and function values at sufficient resolution. Use plt.figure with a figsize designed to make the plot twice as wide as it is tall Use plt.imshow and specify origin and extent to ensure the function values are plotted at the right positions. Use plt.colorbar and specify fraction=0.046/2 to make its height match the main figure Use plt.contour and use np.logspace to plot 5 contours logarithmically spaced between 0.1 and 10 inclusive. Configure the axis labels and title. def plot_exercise12(): extent = (-6, 6, -3, 3) x1, x2, y = eval_on_grid_vectorized(f, extent, 100) plt.figure(figsize=(10, 5)) plt.imshow(y, extent=extent, origin="lower") plt.colorbar(fraction=0.046/2) plt.contour(x1, x2, y, levels=np.logspace(-1, 1, 5), colors="white", linestyles=
	plt.xlabel("\${x_1}\$") plt.ylabel("\${x_2}\$") plt.title("Plot of \${f(x_1, x_2)}\$") plot_exercise12() Plot of f(x_1, x_2) -1 -2 -3 -6 -4 -2 0 2 4 6
In [33]:	Exercise 1.3 — Plot gradients as a vector field $\nabla f(x_1,x_2) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x_1,x_2) \\ \frac{\partial f}{\partial x_2}(x_1,x_2) \end{bmatrix}$ Write code to compute $\nabla f(x_1,x_2)$. You'll need to use basic calculus (differentiation) to figure out the correct formulas to implement, by yourself. Consider using $np.stack$ to form the final array of gradients. $\det f = \operatorname{grad}(x_1, x_2) : \lim_{n \to \infty} \operatorname{Returns} f = \operatorname{grad}(x_1, x_2) : \lim_{n \to \infty} \operatorname{Returns} f = \operatorname{grad}(x_1, x_2) : \lim_{n \to \infty} \operatorname{Returns} f = \operatorname{grad}(x_1, x_2) : \lim_{n \to \infty} \operatorname{Returns} f = \operatorname{grad}(x_1, x_2) : \lim_{n \to \infty} \operatorname{Returns} f = \operatorname{grad}(x_1, x_2) : \lim_{n \to \infty} \operatorname{Returns} f = \operatorname{grad}(x_1, x_2) : \lim_{n \to \infty} \operatorname{grad}(x_1, x_2) : \lim_{n $
In [34]:	Check your answer by running the code cell below.
In [35]:	Use <i>plt.quiver</i> to plot the vector field of gradients.
	Exercise 1.4 — Gradient descent on a function
	Gradient descent is an iterative algorithm that repeatedly takes steps in the direction opposite the gradient: $\mathbf{x}_{\text{new}} = \mathbf{x}_{\text{old}} - \eta \nabla f(\mathbf{x}_{\text{old}})$ where $\mathbf{x} = (x_1, x_2)$. The step size is scaled by the <i>learning rate</i> , which is chosen to be some constant $\eta > 0$. Write a function that runs a specific number of steps of gradient descent on the function $f(x_1, x_2)$ from Exercise 1.2. To do this, use the f_grad function that you wrote for Exercise 1.3.
In [36]:	Runs num_steps of gradient descent from point x_init using the given learning rate, and returns the new x coordinate. Here x_init is an ndarray with shape (2,). """ for _ in range(num_steps): x_init = x_init - learn_rate * f_grad(x_init[0], x_init[1]) return x_init Check your answer by running the code cell below
In [38]:	x = gradient_descent_on_f (np.array([2, 0]), 0.25, 1) assert np.array_equal(x, [1.5, -0.5]), "The first gradient step seems to be wrong!" x = gradient_descent_on_f(x, 0.1, 3) assert np.allclose(x, [1.1294375, -0.369625]), "The gradient seems to be wrong after print("Correct!") Correct! Plot the path of gradient descent by running the code cell below. You should see a path of little red 'x' marks that converge near $(x_1^*, x_2^*) = (-4, 1)$.
	Optional: Advanced students can try adding "momentum" to their implementation of gradient_descent_on_f, and then see how it effects the path of optimization. Relevant formulas and helpful visualizations regarding momentum can be found for example in Why Momentum Really Works.
	2. Linear least squares regression Exercises 2.1–2.5 ask you to implement linear least squares regression, and to compare your results to applying the scikit-learn LinearRegression model. Exercise 2.1 — Vectorized code for generating predictions from a basic linear model Recall from Lecture 1 that a basic linear model has the form: $\hat{y}(\mathbf{x}, \mathbf{w}) = \mathbf{x}^T \mathbf{w}$ where $\mathbf{x} = \begin{bmatrix} 1 & x_1 & \dots & x_D \end{bmatrix}^T \tag{1}$ $\mathbf{w} = \begin{bmatrix} w_0 & w_1 & \dots & w_D \end{bmatrix}^T \tag{2}$ If both \mathbf{x} and \mathbf{w} are column vectors, the following Python function would evaluate the linear model
	$ \hat{y}(\mathbf{x}, \mathbf{w}) \text{ correctly:} $ $ \text{ def linear_model_predict}(\mathbf{x}, \ \mathbf{w}): $ $ \text{"""Returns a prediction from linear model } \mathbf{y}(\mathbf{x}, \ \mathbf{w}) \text{ at point } \mathbf{x} \text{ using } $ $ \text{parameters } \mathbf{w}.\text{"""} $ $ \text{return } \mathbf{x}.\mathbf{T} \ @ \ \mathbf{w} \ \# \text{ Return the inner product (dot product) of vectors } \mathbf{x} $ and $\mathbf{w} $ $ \text{However, we want a version of } \text{linear_model_predict} \text{ that vectorizes across many } \mathbf{x} \text{ simultaneously.} $ $ \text{Specifically, given a matrix of inputs:} $ $ X = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix} $ $ \mathbf{we want } \text{linear_model_predict} \text{ to compute a vector of outputs:} $ $ \hat{\mathbf{y}} = \begin{bmatrix} \mathbf{x}_1^T \mathbf{w} \\ \vdots \\ \mathbf{x}_N^T \mathbf{w} \end{bmatrix} $
In [39]:	However, if we substitute x with X we can no longer use expression $X.T$ @ w; the matrix $X^T \in \mathbb{R}^{(D+1)\times N}$ isn't even the right shape to be on the left-hand side of the product. Writing vectorized code is full of annoying little problems like this. Write a function that evaluates the linear model in vectorized fashion. Specifically, when given a matrix $X \in \mathbb{R}^{N \times (D+1)}$ as an argument, you should figure out what mathematical expression would result in the $\hat{\mathbf{y}} \in \mathbb{R}^N$ vector shown above. Hint: the solution is only a small change from $X.T$ @ w . $\mathbf{def} \ \ $
in [40]:	return X @ w Check your answer by running the code cell below. # Parameters corresponding to the X = np.array([[1., -3.], [1., 3.], [1., 5.]]) # Evaluate at x1 = -3, 2, 5 y = linear_model_predict(X, w) # Predict y for all X using w assert is instance(y, np.ndarray), "Expected an ndarray!" assert np.array_equal(y, [0.5, 3.5, 4.5]), "Wrong predictions!\n%s" % y try: y = linear_model_predict(X, w.reshape(-1, 1)) except ValueError: raise AssertionError("Your answer works when 'w' is 1-dimensional, but not when w = np.array([1, 0.5, 0.25]) # Parameters corresponding to the X = np.array([[1., -3., 1.], [1., 3., 0.], [1., 5., -2.]]) # Evaluate at difference y = linear_model_predict(X, w) # Predict y for all X using w assert np.array_equal(y, [-0.25, 2.5, 3.0]), "Wrong predictions for 2-dimensional femprint("Correct!") Correct! Plot several predictions at once by running the code cell below.
[n [41]:	<pre>w = np.array([2, 0.5]) # Parameters corresponding to the 1D line y = 2 + 0 x0 = np.ones(20) # A column of 1s so that the bias term w[0] gets acc x1 = np.linspace(-5, 5, 20) # A column of x values ranging from [-5, 5] X = np.column_stack([x0, x1]) # A 20x2 matrix where X[i,:] is the ith x vector y = linear_model_predict(X, w) # Evaluate all x values plt.scatter(x1, y, 10, 'r') plt.xlabel("\$x_1\$") plt.ylabel("\$x_1\$") plt.title("Sample predictions for linear model \$y=2 + \\frac{1}{2}x_1 </pre>
In [42]:	Fits a linear model by gradient descent. If the feature matrix X has shape (N,D) the targets y should have shape (N,D) and the initial parameters w _init should have shape (D,D) .
In [43]:	Returns a new parameter vector w that minimizes the squared error to the targets """ for _in range(num_steps): loss = ((X.T @ X) @ w_init) - (X.T @ y) w_init -= learn_rate * loss return w_init Check your answer by running the code cell below. X = np.array([[1, 0.0], [1, 1.0], [1, 2.0]]) y = np.array([4.0, 3.0, 2.0]) w = linear_regression_by_gradient_descent(X, y, np.array([0.0, 0.0])) assert isinstance(w, np.ndarray), "Expected ndarray!" assert w.shape == (2,), "Wrong shape for final parameters!\n%s" % w assert np.allclose(w, [4, -1]), "Wrong values for final parameters!\n%s" % w print("Correct!") Correct! Exercise 2.3 — Linear least squares regression by direct solution As discussed in class, the optimal parameters w* for linear least squares regression can be solved
In [44]: In [45]:	"""Fits a linear model by directly solving for the optimal parameter vector w."" return np.linalg.inv(X.T @ X) @ X.T @ y
	For this exercise you'll need to define Numpy arrays that correspond to the following training data: $X = \begin{bmatrix} 1 & -2.2 \\ 1 & -0.3 \\ 1 & 1.5 \\ 1 & 4.8 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1.2 \\ 1.5 \\ 4.2 \\ 5.3 \end{bmatrix}$ Write code to create the following plot: image Your code should follow this sequence of steps: 1. Make ndarrays X and \mathbf{y} that contain the above training set. 2. Plot the training set in blue. Use the x coordinates from the second column of X , ignoring the first column. 3. Run linear least squares regression on (X, \mathbf{y}) to get fitted parameters \mathbf{w} ; use your linear_regression_by_direct_solve function. 4. Define a "test set" of 20 equally-spaced values of x in range $[-5, 5]$. You will need to build a new matrix X_{test} with 1 in the first column and the 20 distinct x values in the second column. See how this is done in the last code cell of Exercise 2.1. 5. Predict 20 y values corresponding to the 20 rows of X_{test} by applying a linear model with your fitted parameters \mathbf{w} . Do this with single call to your linear_model_predict function. 6. Plot the predictions on the test set.
	<pre># 1. Define the training set. X, y = np.array([[1, -2.2], [1, -0.3], [1, 1.5], [1, 4.8]], dtype="float64"), np.arr # 2. Plot the training set. plt.plot(X[:, 1], y, "bo", mfc="none", label="training points") # 3. Run linear least squares regression on the training set to compute 'w'. w = linear_regression_by_direct_solve(X, y) # 4. Define the test set matrix of shape (20,2). x0, x1 = np.ones(20), np.linspace(-5, 5, 20) test_set = np.vstack((x0, x1)).T # 5. Use the linear model to make predictions on the test set. prediction = linear_model_predict(test_set, w) # 6. Plot the test predictions. plt.plot(x1, prediction, "r.", label="prediction") plt.legend() plt.xlabel("\$x 1\$") plt.ylabel("\$x 1\$") plt.ylabel("\$y\$") plt.title("linear least squares regression")</pre> Text(0.5, 1.0, 'linear least squares regression')
	Exercise 2.5 — Run scikit-learn LinearRegression The scikit-learn package provides a LinearRegression object to perform linear least squares regression (also known as "ordinary" least squares).
In [47]:	 Write code to fit a LinearRegression model using the same training matrix X that you defined as part of Exercise 2.4. There are only two steps: 1. Create the LinearRegression object. Use the fit_intercept=False option when creating the LinearRegression object (see documentation), since the X matrix already has a column of 1s corresponding to an intercept parameter (the 'bias' parameter). 2. Fit the LinearRegression object to the training matrix X and targets y. Use the object's fit method. The variable holding a reference to your LinearRegression object should be called linear_model, so that your answer can be checked. linear model = sklearn.linear model.LinearRegression(fit intercept=False)
Out[47]: In [48]:	<pre>linear_model.fit(X, y) LinearRegression(fit_intercept=False) Check your answer by running the code cell below. assert 'linear_model' in globals(), "You didn't create a variable named 'linear_model assert isinstance(linear_model, sklearn.linear_model.LinearRegression), "Expected a assert hasattr(linear_model, 'coef_'), "No model coefficients yet! You didn't fit the assert linear_model.intercept_ == 0.0, "You forgot to disable fitting of the interce assert np.allclose(linear_model.coef_, [[1.57104472, 0.92521608]]), "The model parame print("Correct!") Correct! Plot several LinearRegression model predictions at once by running the code cell below. x0 = np.ones(20) # A column of 1s so that the bias term w[0] # A column of x values ranging from [-5, 5]</pre>
	<pre>X_test = np.column_stack([x0, x1]) # A 20x2 matrix where X[i,:] is the ith x very y-test = linear_model.predict(X_test) # Evaluate all x values plt.scatter(x1, y_test, 10, 'r') plt.scatter(X[:,1], y, edgecolor='b', facecolor='none') plt.xlabel("\$x_1\$") plt.ylabel("\$y\$") plt.title("Sample predictions for LinearRegression model");</pre> Sample predictions for LinearRegression model
	You can also compare the model's <code>coef_</code> attribute (coefficients, i.e. model parameters) to the parameter vector w that your own implementation gave from Exercise 2.4 (just use <code>print(w)</code> in your previous answer to see those values). 3. Logistic regression
	Exercises 3.1–3.4 ask you to implement logistic regression, and to compare your results to applying the scikit-learn LogisticRegression model.
[n [50]:	Lecture 1. Write a function that evaluates the logistic model in vectorized fashion, just like you did for Exercise 2.1.
In [51]:	<pre>return 1 / (1 + np.exp(-(X @ w))) Check your answer by running the code cell below. y = sigmoid(np.array([-1., 0., 1.5])) assert isinstance(y, np.ndarray), "Expected an ndarray!" assert np.allclose(y, [0.26894142, 0.5, 0.81757448]), "Values from sigmoid() appear w = np.array([2, 1.5])</pre>
In [52]:	w = np.array([2, 1.5])
	Exercise 3.2 — Logistic regression by gradient descent Recall from Lecture 1 that the basic logistic regression training objective (learning objective) is: $\ell_{\mathrm{LR}}(\mathbf{w}) = \sum_{i=1}^{N} y_i \ln \sigma(\mathbf{w}^T\mathbf{x}_i) + (1-y_i) \ln \left(1-\sigma(\mathbf{w}^T\mathbf{x}_i)\right)$ The "basic" gradient for the above training objective is on a slide titled "Maximum likelihood estimate for LR" from Lecture 1, and reproduced here: $\nabla \ell_{\mathrm{LR}}(\mathbf{w}) = \sum_{i=1}^{N} (\sigma(\mathbf{w}^T\mathbf{x}_i) - y_i) \mathbf{x}_i$
In [53]:	Write a function to implement logistic regression by gradient descent. Your answer to _logistic_regression grad should ideally be fully vectorized (no for-loops), but this may take a while to figure out. If you can't figure out the vectorization, it's OK — just compute the gradient however you can. Your answer to _logistic_regression should use your _logistic_regression grad function to compute the gradient at each step. Implementing _logistic_regression grad is the hardest exercise in this lab because a vectorized implementation requires using the @ matrix multiply operator to compute all the $\mathbf{w}^T\mathbf{x}$ products, reshaping the vector of residuals into a column-vector to use Numpy's broadcasting feature, and then summing over a specific axis (over training cases $i=1,\ldots,N$).
In [54]:	<pre>for _ in range(num_steps): w_init -= learn_rate * logistic_regression_grad(X, y, w_init) return w_init Check your answer by running the code cell below. X = np.array([[1, -1.0], [1, 1.0], [1, 2.0]]) y = np.array([0.0, 0.0, 1.0]) grad = logistic_regression_grad(X, y, np.array([0.0, 1.0])) assert isinstance(grad, np.ndarray), "Expected ndarray from logistic_regression_grad assert grad.shape == (2,), "Expected gradient to have shape (2,) but was %s" % (grad assert np.allclose(grad, [0.88079708, 0.22371131]), "Wrong value for gradient!" grad = logistic_regression_grad(X, y, np.array([-1.0, 1.5])) assert np.allclose(grad, [0.57911459, 0.30819531]), "Wrong value for gradient!" w = logistic_regression(X, y, np.array([1.0, 0.0])) assert isinstance(w, np.ndarray), "Expected ndarray from logistic_regression!"</pre>
	_
In [55]:	•
Out[55]:	<pre>predictions = logistic_model_predict(test_set, w) # 6. Plot the test predictions. plt.plot(x1, predictions, "r.", label="test predictions") plt.legend() plt.xlabel("\$x_1\$") plt.ylabel("\$y\$") plt.title("logistic regression") Text(0.5, 1.0, 'logistic regression')</pre>

penalty) "k	c_model, so that your answer can be checked. garding the fact that scikit-learn's LogisticRegression object applies regularization (a by default": Dimage c_model = sklearn.linear_model.LogisticRegression(fit_intercept=False, c_model.fit(X, y) Regression(fit intercept=False, penalty='none')
assert assert assert assert print ("Correct!	Regression(fit_intercept=False, penalty='none') Ir answer by running the code cell below. 'logistic_model' in globals(), "You didn't create a variable named 'logistic_model' in globals(), "You didn't create a variable named 'logistinstance(logistic_model, sklearn.linear_model.LogisticRegression), "Inasattr(logistic_model, 'coef_'), "No model coefficients yet! You didn't logistic_model.intercept_ == 0.0, "You forgot to disable fitting of the parameters (logistic_model.coef_, [[18.5251137, 10.49283446]]), "The parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the LogisticRegression are much largest the model parameters (coefficients) found by the Logistic Regression are much largest the model parameters (coefficients) found by the Logistic Regression are much largest the model parameters (coefficients) found by the Logistic Regression are much largest the mod
optimization descent ca Plot sever x0 = np x1 = np X_test : y_test : plt.scar plt.xlad	d by your gradient descent solver. That is only because scikit-learn uses a more power algorithm and can learn very sharp decision boundaries in fewer steps than mere general. If you increase your <i>num_steps</i> argument your solver will find similarly large coefficiental LogisticRegression predictions at once by running the code cell below. Lones (50) A column of 1s so that the because (50) A column of x values ranging and procolumn_stack([x0, x1]) A 20x2 matrix where X[i,:] is a logistic_model.predict_proba(X_test) # Evaluate all x values and general (x1, y_test[:,1], 10, 'r') # Plot probability of class 1 tere (X[:,1], y, edgecolor='b', facecolor='none') Decl("\$x_1\$")
plt.ylal	coel("\$y\$") le("Sample predictions for LogisticRegression model"); Sample predictions for LogisticRegression model
0.2 -	-4 -2 0 2 4 x_1