(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 22. August 2002 (22.08.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/065557 A1

(51) Internationale Patentklassifikation7:

H01L 51/20

(21) Internationales Aktenzeichen:

PCT/DE02/00312

(22) Internationales Anmeldedatum:

29. Januar 2002 (29.01.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 05 914.0

9. Februar 2001 (09.02.2001) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BERNDS, Adolf [DE/DE]; Adabert-Stifter-Str. 11, 91083 Baiersdorf (DE). FIX, Walter [DE/DE]; Mühlstr. 20 a, 90762 Fürth (DE). ROST, Henning [DE/DE]; Heinrich-Kirchner-Str. 24, 91056 Erlangen (DE).

(74) Gemeinsamer Vertreter: SIEMENS AKTIENGE-SELLSCHAFT; Postfach 22 16 34, 80506 München (DE).

(81) Bestimmungsstaaten (national): JP, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC. NL, PT, SE, TR).

[Fortsetzung auf der nächsten Seite]

(54) Title: ORGANIC FIELD EFFECT TRANSISTOR WITH A PHOTOSTRUCTURED GATE DIELECTRIC, METHOD FOR THE PRODUCTION AND USE THEREOF IN ORGANIC ELECTRONICS

(54) Bezeichnung: ORGANISCHER FELDEFFEKT-TRANSISTOR MIT FOTOSTRUKTURIERTEM GATE-DIELEKTRIKUM, EIN VERFAHREN ZU DESSEN ERZEUGUNG UND DIE VERWENDUNG IN DER ORGANISCHEN ELEKTRONIK

- (57) Abstract: The invention relates to an organic field effect transistor which is especially characterized by a cross-linked, structured insulating layer (4) on which the gate electrode (5) is arranged. The structure of the OFET ensures that the gate electrode (5) of an OFET can be used as a strip conductor to the source electrode (2) of the next transistor and can be used in the construction of larger circuits. .
- (57) Zusammenfassung: Die Erfindung betrifft einen organischen Feldeffekt-Transistor der sich insbesondere durch eine vernetzte und strukturierte Isolatorschicht (4) auszeichnet, auf welcher die Gate-Elektrode (5) angeordnet ist. Der Aufbau des OFETs garantiert, dass die Gate-Elektrode (5) eines OFETs gleichzeitig als Leiterbahn zur Source-Elektrode (2) eines nächsten Transistors und damit zum Aufbau grösserer Schaltungen genutzt werden kann.

BEST AVAILABLE COPY

WO 02/065557 AJ

1444 1840 N UUN 191 UU IN 191 IN 191 IN 191 UU WO 02/065557 A1

Erklärungen gemäß Regel 4.17:

- hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten JP, europäisches Patent (AT. BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR)
- Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

Veröffentlicht:

mit internationalem Recherchenbericht

vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Anderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

lyimidfilm verwendet, auf den Polyanilin aufgeschichtet wird.

In dieser ersten Polyanilin-Schicht wird durch Bestrahlung durch eine erste Maske die Source- und Drain-Elektrode ausgebildet. In dieser ersten Schicht wird auch eine Halbleiter- schicht aus Poly(thienylenvinylen) PTV gebildet. Darauf wird dann Polyvinylphenol mit Hexamethoxymethylmelamin HMMM vernetzt. Diese Schicht dient als Gate-Dielektrikum und als Isolator für die nächste Schicht und die Kontaktverbindungen.

Darauf wird schließlich eine weitere Polyanilinschicht ausgebildet, in welcher durch Strukturieren die zweite Lage von Kontaktverbindungen und die Gate-Elektrode definiert wird.

Die Durchkontaktierungen werden mechanisch durch Einstechen von Nadeln erzeugt.

Bei diesem Verfahren wird vermieden, dass vorangehend aufgetragende Schichten aufgelöst oder sonst wie beschädigt werden. Es hat sich jedoch gezeigt, dass insbesondere der letzte Arbeitsschritt zur Ausbildung der Durchkontaktierungen, die auch "vias" (vertical interconnects) genannt werden, die Herstellung komplexer Schaltungen nicht zulässt.

In Applied Physics Letters 2000, Seite 1487 wird zur Lösung dieses Problems beschrieben, niederohmige Durchkontaktierungen mittels Fotostrukturierung von Fotoresistmaterial in die Feldeffekt-Transistorstruktur einzubringen. Hierzu wird ein anderer Aufbau des OFETs, nämlich eine sogenannte "bottomgate"-Struktur für unabdingbar gehalten. Beim Erzeugen einer "top-gate"-Struktur gleicher Zusammensetzung würden sich nicht akzeptierbar hohe Kontaktwiderstände in der Größenordnung von M Ω ergeben.

Der Aufbau und die Arbeitsschritte zur Strukturierung dieses OFETs mit "bottom-gate"-Struktur sind jedoch komplex, was eine wirtschaftliche Herstellung insbesondere komplexer Schaltungen nicht möglich macht.

25

30

10

25

Beschreibung

Organischer Feldeffekt-Transistor mit fotostrukturiertem Gate-Dielektrikum, ein Verfahren zu dessen Erzeugung und die Verwendung in der organischen Elektronik. 5

Die vorliegende Erfindung betrifft organische Feldeffekt-Transistoren, sogenannte OFETs, mit fotostrukturiertem Gate-Dielektrikum sowie ein Verfahren zu dessen Herstellung und die Verwendung dieser Feldeffekt-Transistoren in der organischen Elektronik.

Feldeffekt-Transistoren spielen auf allen Gebieten der Elektronik eine zentrale Rolle. Um sie an besondere Anwendungszwecke anzupassen, war es erforderlich sie leichter und flexibler zu gestalten. Durch die Entwicklung von halbleitenden und 15 leitenden Polymeren wurde die Erzeugung von sogenannten organischen Feldeffekt-Transistoren möglich, die in allen Teilen, einschließlich der Halbleiterschicht sowie der Source-, Drain- und Gate-Elektroden aus Polymermaterialien hergestellt 20 sind.

Bei der Herstellung organischer Feldeffekt-Transistoren müssen jedoch mehrere organische Schichten übereinander strukturiert werden, um beispielsweise ein OFET des allgemeinen Aufbaus, wie er in Fig. 1 dargestellt ist, zu erhalten. Das ist mit herkömmlicher Fotolithografie, welche eigentlich zur Strukturierung von anorganischen Materialien dient, nur sehr eingeschränkt möglich. Die bei der Fotolithografie üblichen Arbeitsschritte greifen bzw. lösen die organischen Schichten 30 an und machen diese somit unbrauchbar. Dies geschieht beispielsweise beim Aufschleudern, beim Entwickeln und beim Ablösen eines Fotolackes.

Dieses Problem wurde mit einem organischen Feldeffekt-35 Transistor gelöst, wie er in Applied Physics Letters 1998, Seite 108 ff. beschrieben ist. Als Substrat wird hier ein Po-

BNSDOCID <WO_____02065557A1_I_>

eigentliche Dicke des gesamten Bauelementes bestimmt, alle anderen Schichten sind zusammen nur etwa 1000 nm dick, sollte auch die Substratdicke so gering wie möglich gehalten werden. Sie liegt überlicherweise im Bereich von etwa 0,05 - 0,5 mm.

5

10

15

Die Source- und Drain-Elektroden können aus den verschiedensten Materialien bestehen. Die Art des Materials wird wesentlich durch die Art der bevorzugten Herstellung bestimmt werden. So können beispielsweise Elektroden aus Indium-Zinn-Oxid (ITO) durch Fotolithografie auf mit ITO beschichteten Substraten erzeugt werden. Das ITO wird dabei auf den nicht vom Fotolack bedeckten Stellen weggeätzt. Auch können Elektroden aus Polyanilin (PANI) entweder durch Fotostrukturierung oder durch Fotolithografie auf mit PANI beschichteten Substraten erzeugt werden. Gleichermaßen können Elektroden aus leitfähigen Polymeren durch aufdrucken des leitfähigen Polymeres direkt auf das Substrat erzeugt werden. Leitfähige Polymere sind beispielsweise dotiertes Polyethylen (PEDOT) oder gegebenenfalls PANI.

20

25

30

Die Halbleiterschicht besteht beispielsweise aus konjungierten Polymeren, wie Polythiophenen, Polythienylenvinylenen oder Polyfluorenderivaten, die aus Lösung durch spin-coating, Rakeln oder Bedrucken verarbeitbar sind. Für den Aufbau der Halbleiterschicht eignen sich auch sogenannte "small molecules", d.h. Oligomere wie Sexithiophen oder Pentacen, die durch eine Vakuumtechnik auf das Substrat aufgedampft werden.

Ein wesentlicher Aspekt des vorliegenden Erfindungsgegenstandes ist jedoch die Art und Weise des Aufbaus der Isolatorschicht. Es handelt sich um einen vernetzten Isolator, der mittels Fotolithografie, also unter partieller Belichtung vernetzt und strukturiert wird. Ein Isolatormaterial wird mit einem Vernetzer unter saurer Katalyse stellenweise vernetzt.

35

Im Rahmen der vorliegenden Erfindung geeignete Isolatormaterialen sind beispielsweise Poly-4-hydroxystyrol oder Hydro-

Aufgabe der vorliegenden Erfindung war es daher einen organischen Feldeffekt-Transistor bzw. ein Verfahren zu dessen Herstellung anzugeben, das den Einsatz der Fotolithografie ohne das Angreifen bzw. Anlösen der organischen Schichten in allen Arbeitsschritten zulässt sowie einen Strukturaufbau ermöglicht, der die Durchkontaktierung zwischen Leiterbahnen auf verschiedenen Ebenen in organischen integrierten Schaltungen in einfacher Weise ermöglicht. Die organischen Feldeffekt-Transistoren sollten dabei gleichzeitig kostengünstig und wirtschaftlich in einfachen Arbeitsschritten herstellbar sein.

Gegenstand der vorliegenden Erfindung ist demnach ein organischer Feldeffekt-Transistor, der sich dadurch auszeichnet, dass auf einem flexiblen Substrat in einer ersten Schicht Source- und Drain-Elektroden sowie ein Halbleiter angeordnet sind, auf dem in einer zweiten Schicht ein Isolator strukturiert ausgebildet und auf den in einer dritten Schicht eine Gate-Elektrode aufgebracht ist (top-gate-Struktur).

20

25

Der erfindungsgemäße organische Feldeffekt-Transistor ist leicht und äußerst flexibel, da er nur aus organischen Schichten aufgebaut ist, die überwiegend mittels Fotolithografie, jedoch ohne Verwendung von Fotolack, strukturiert sind. Durch das Strukturieren insbesondere der Isolatorschicht kann die Gate-Elektrode des erfindungsgemäßen organischen Feldeffekt-Transistors gleichzeitig als Leiterbahn zur Source-Elektorde des nächsten Transistors genutzt werden.

Vorteilhafte Ausgestaltungen des Erfindungsgegenstandes ergeben sich aus den Unteransprüchen 1 bis 10.

So können als Substrat hauchdünne Gläser, aus Kostengründen jedoch bevorzugt Kunststofffolien, eingesetzt werden. Polyethylenterephthalat- und Polyimidfolien werden insbesondere bevorzugt. Das Substrat sollte in jedem Fall so leicht und flexibel wie möglich sein. Da die Dicke des Substrates die

FET sind Kontaktfahnen 6 für die Zusammenstellung einzelner OFETs zu größeren Schaltungen erforderlich.

Gemäß Fig. 2 wird für die Erzeugung eines erfindungsgemäßen 5 OFETs von einer ähnlichen Grundstruktur wie bei einem herkömmlichen OFET ausgegangen. Mit anderen Worten, auf einem Substrat 1 sind Source- und Drain-Elektroden 2 und 2' sowie eine Halbleiterschicht 3 ausgebildet. Source- und Drain-Elektroden 2 und 2' sowie der Halbleiter 3 liegen in einer Schicht. Auf dieser Schicht wird durch spin-coating, Rakeln . 10 oder ähnliche Arbeitsweisen flächig eine dünne Schicht eines Isolatormateriales, beispielsweise Poly-4-Hydroxystyrol (PVP) oder Hydroxylgruppen enthaltende Melamin-Formaldehyd-Harze, aufgebracht. In der zum Aufbringen benötigten Lösung sind ne-15 ben dem Isolatormaterial ein säureempfindlicher Vernetzer, wie beispielsweise Hexamethoxymethylmelamin (HMMM) sowie ein Fotoinitiator, zum Beispiel Diphenyliodoniumtetrafluoroborat oder Triphenylsulfoniumhexafluoroantimonat, enthalten. Diese Schicht 4a wird dann durch eine Schattenmaske 7, vorzugsweise mit UV-Licht, belichtet. Durch die Belichtung erzeugt der Fo-20 toinitiator gemäß Reaktionsschema (a) in Fig. 3 eine Säure, welche die Vernetzung zwischen dem Isolatormaterial und dem Vernetzer unter Einwirkung von Temperatur, also in einem nachfolgendne Temperschritt, vernetzt (Reaktionsschema (b) in Fig. 3). Das Tempern wird bei relativ niedrigen Temperaturen, 25 etwa zwischen 100°C und 140°C, vorzugsweise bei 120°C, vorgenommen. Dadurch wird sichergestellt, dass die unbelichteten Stellen unvernetzt bleiben, da ohne Katalysator wesentlich höhere Temperaturen zum Vernetzen benötigt werden. In einem abschließenden Entwicklungsschritt wird der unvernetzte Iso-30 lator mit einem geeigneten Lösungsmittel, beispielsweise n-Butanol oder Dioxan, durch abspülen entfernt. Wie in der Fig. 2 dargestellt ist, wird dadurch direkt über der Halbleiterschicht 3 eine vernetzte und strukturierte Isolatorschicht 4b erzeugt, auf welcher schlussendlich die Gate-Elektrode wie 35 oben beschrieben aufgebracht wird.

xylgruppen enthaltende Melamin-Formaldehyd-Harze. Der Vernetzer ist säureempfindlich und insbesondere Hexamethoxymethylmelamin (HMMM). Die saure Katalyse wird mittels eines Fotoinitiators, beispielsweise Diphenyliodoniumtetrafluoroborat oder Triphenylsulfoniumhexafluoroantimonat bewirkt, die unter dem Einfluss von Licht eine Säure bilden.

Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines organischen Feldeffekt-Transistors, bei dem man in üblicher Weise ein flexibles Substrat mit einer Source- und Drain-Elektrode sowie einem Halbleiter versieht und sich dadurch auszeichnet, dass man auf dem Halbleiter einen Isolator aufbringt, indem eine Lösung eines Isololatormaterials, die einen säureempfindlichen Vernetzer sowie einen Fotoinitiator enthält, aufträgt, durch eine Schattenmaske, welche Source- und Drain-Elektroden abdeckt, belichtet und anschlie-15 ßend tempert, wobei an den belichteten Stellen eine Vernetzung bewirkt wird und auf den so vernetzten und strukturierten Isolator die Gate-Elektrode aufgebracht wird.

20

10

Einzelheiten und bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens ergeben sich aus den Unteransprüchen 12 bis 18. Die Erfindung wird im Folgenden anhand der Fig. 1 bis 3 sowie eines Ausführungsbeispieles näher erläutert.

25

In den Zeichnungen zeigen:

- den Aufbau eines herkömmlichen OFETs; Fig. 1
- den Aufbau eines erfindungsgemäßen OFETs; und
- chemische Reaktionen, die der Herstellung der ver-Fig. 2 netzten, strukturierten Isolatorschicht zugrunde-Fig. 3 30 liegen.
- Ein herkömmlicher OFET besteht aus einem Substrat 1, Sourcebzw. Drain-Elektroden 2 und 2', einem Halbleiter 3, einem Isolator 4 und der Gate-Elektrode 5. Bei dem herkömmlichen 0-35

Patentansprüche

Organischer Feldeffekt-Transistor, d a d u r c h
g e k e n n z e i c h n e t , dass auf einem flexiblen
Substrat (1) in einer ersten Schicht Source- und DrainElektroden (2, 2') sowie ein Halbleiter (3) angeordnet
sind, auf dem in einer zweiten Schicht ein Isolator (4)
strukturiert ausgebildet und auf dem in einer dritten
Schicht eine Gate-Elektrode (5) aufgebracht ist.

10

- Organischer Feldeffekt-Transistor nach Anspruch 1, dadurch gekennzeichnet, das das Substrat dünnstes Glas (Glasfolie) oder eine Kunststofffolie ist.
- 3. Organischer Feldeffekt-Transistor nach Anspruch 2, dadurch gekennzeichnet, dass das Substrat (1) Polyethylenterephthalat oder insbesondere Polyimidfolie ist.
- 4. Organischer Feldeffekt-Transistor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Source- und
 Drain-Elektroden (2, 2') aus Indium-Zinn-Oxid (ITO), Polyanilin (PANI) und/oder leitfähigen Polymeren gebildet
 ist.
- Organischer Feldeffekt-Transistor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Halbleiter
 (3) aus konjugierten Polymeren oder Oligomeren gebildet ist.
- 30 6. Organischer Feldeffekt-Transistor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Isolator (4) aus einem mit einem Vernetzer in Gegenwart eines Fotoinitiators vernetzten Isolatormaterial gebildet ist.
- 7. Organischer Feldeffekt-Transistor nach Anspruch 6, dadurch gekennzeichnet, dass das Isolatormaterial aus Poly-

Bei dem vorliegenden Verfahren wird also das GateDielektrikum durch Fotolithografie ohne Verwendung von Fotolack erzeugt. Im Resultat ergibt sich ein OFET dessen GateElektrode gleichzeitig als Leiterbahn zur Source-Elektrode
des nächsten Transistors genutzt werden kann. Eine Durchkontaktierung zwischen Leiterbahnen auf verschiedenen Ebenen in
organischen integrierten Schaltungen wird ermöglicht.

Hierfür wird nachfolgend ein Ausführungsbeispiel angegeben, 10 das die Reaktionsbedingungen im Einzelnen angibt.

Ausführungsbeispiel für das Erzeugen eines Gate-Dielektrikums

5ml einer 10%igen Lösung von Poly-4-Hydroxystyrol in Dioxan

15 werden mit 20 mg Hexamethoxymethylmelamin und einer katalytischen Spur Diphenyliodoniumtetrafluoroborat versetzt und
durch spin-coating auf ein Substrat, auf dem sich bereits Elektroden und Halbleiter befinden, flächig aufgebracht. Das
Substrat wird durch eine Schattenmaske belichtet und anschließend 30 Minuten bei 120°C getempert. Nach dem Abkühlen
wird der Isolator an den nichtbelichteten und damit nichtvernetzten Stellen durch intensives Spülen bzw. Einlegen mit
bzw. in n-Butanol entfernt. Die Gate-Elektrode wird darauf
ausgebildet.

25

Die erfindungsgemäßen OFETs eignen sich hervorragend für Anwendungen im Bereich der organischen Elektronik und insbesondere bei der Herstellung von Identifizierungsstickern (IdentTags), elektronischen Wasserzeichen, elektronischen BarCodes, elektronischem Spielzeug, elektronischen Tickets, für
die Anwendung im Produkt- bzw. Plagiatschutz oder der AntiDiebstahlssicherung.

- 13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass der Vernetzer säureempfindlich, insbesondere
 Hexamethoxymethylmelamin (HMMM) ist.
- 5 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Fotoinitiator unter Einwirkung von Licht eine Säure bildet und insbesondere aus Diphenyliodoniumtetrafluoroborat und Triphenylsulfoniumhexaantimonat ausgewählt wird.

10

15. Verfahren nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die das Isolatormaterial, den Vernetzer und den Fotoinitiator enthaltende Lösung durch spincoating oder Rakeln aufgetragen wird.

15

- 16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass mit UV-Licht belichtet wird.
- 17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch ge20 kennzeichnet, dass bei einer Temperatur zwischen 100°C
 und 140°C getempert wird.
 - 18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass bei einer Temperatur von 120°C getempert wird.

- 19. Verwendung des organischen Feldeffekttransistors nach einem der vorhergehenden Ansprüche in der organischen Elektronik.
- 30 20. Verwendung des organischen Feldeffekttransistors nach einem der vorhergehenden Ansprüche für Identifizierungssticker (Ident-Tags), elektronische Wasserzeichen, elektronische Bar-Codes, elektronisches Spielzeug, elektronische Tickets, im Produkt- bzw. Plagiatschutz oder der Anti-Diebstahlsicherung.

4-hydroxystyrol oder aus Hydroxylgruppen enthaltenden Melamin-Formaldehydharzen ausgewählt ist.

- 8. Organischer Feldeffekt-Transistor nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Vernetzer säureempfindlich, insbesondere Hexamethoxymethylmelamin (HMMM) ist.
- 9. Organischer Feldeffekt-Transistor nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Fotoinitator aus Diphenyliodoniumtetrafluoroborat und Triphenylsulfoniumhexafluoroantimonat ausgewählt ist.
- 10.Organischer Feldeffekt-Transistor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Gate-Elektrode aus Polyanilin, anderen leitfähigen Polymeren oder Carbon Black gebildet ist.
- 11. Verfahren zur Herstellung eines organischen Feldeffekt-Transistors bei dem man in üblicher Weise ein flexibles Substrat (1) mit einer Source- und Drain-Elektrode (2, 20 2') sowie einem Halbleiter (3) versieht, dadurch gekennzeichnet, dass man auf dem Halbleiter (3) einen Isolator (4) aufbringt, indem eine Lösung eines Isolatormaterials, die einen säureempfindlichen Vernetzer sowie einen Fotoinitiator enthält aufträgt, 25 durch eine Schattenmaske, welche Source- und Drain-Elektroden (2, 2') abdeckt, belichtet und anschließend tempert, wobei an den belichteten Stellen eine Vernetzung bewirkt wird und auf den so vernetzten und strukturierten Isolator (4) die Gate-Elektrode (5) aufgebracht wird. 30
 - 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Isolatormaterial aus Poly-4-hydroxystyrol oder aus Hydroxylgruppen enthaltenden Melamin-Formaldehydharzen ausgewählt wird.

BNSDOCID: <WO____02065557A1_I_>

1/3

Stand der Technik

PCT/DE 02/00312

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H01L51/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC $\frac{7}{100}$ H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, PAJ

	INTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 100 06 257 A (IBM) 14 September 2000 (2000-09-14) figure 4	1-3
X	DE LEEUW D M ET AL: "Polymeric integrated circuits and light-emitting diodes" ELECTRON DEVICES MEETING, 1997. TECHNICAL DIGEST., INTERNATIONAL WASHINGTON, DC, USA 7-10 DEC. 1997, NEW YORK, NY, USA, IEEE, US, 7 December 1997 (1997-12-07), pages 331-336, XP010265518 ISBN: 0-7803-4100-7	19,20
A	the whole document	11
A	WO 01 08241 A (E INK CORP) 1 February 2001 (2001-02-01) abstract; figure 4	11
	-/	

-	-/
Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the international filing date L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but later than the priority date claimed	'T' tater document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
11 June 2002	19/06/2002
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Königstein, C

Form PCT/ISA/210 (second sheet) (July 1992)

Information on patent family members

PCT/DE 02/00312

				1 , .		
Patent document cited in search report		Publication date		Patent family member(s)	Publication date	
DE 10006257	A	14-09-2000	US CN DE JP SG TW	6180956 B1 1266287 A 10006257 A1 2000260999 A 82680 A1 461116 B	30-01-2001 13-09-2000 14-09-2000 22-09-2000 21-08-2001 21-10-2001	
WO 0108241	Α	01-02-2001	AU EP WO	6358000 A 1198851 Al 0108241 Al	13-02-2001 24-04-2002 01-02-2001	
US 5691089	Α	25-11-1997	US US US	5567550 A 5677041 A 5942374 A	22-10-1996 14-10-1997 24-08-1999	

Form PCT/ISA/210 (patent family annex) (July 1992)

LOWE J ET AL: "POLY(3-(2-ACETOX MODEL POLYMER FOR	Where appropriate, of the relevant passages YETHYL)THIOPHENE): A R ACID-CATALYZED ELSEVIER SEQUOIA,	Rela	evant to claim No.
LOWE J ET AL: "POLY(3-(2-ACETOX MODEL POLYMER FOR	YETHYL)THIOPHENE): A R ACID-CATALYZED , ELSEVIER SEQUOIA,	Leie	
"POLY(3-(2-ACETOX MODEL POLYMER FOR	ELSEVIER SEQUOIA,		11
LAUSANNE, CH, vol. 85, 1997, pa XP000826731 ISSN: 0379-6779 the whole docume			
A US 5 691 089 A (25 November 1997 abstract; figure	SMAYLING MICHAEL C) (1997-11-25) 3		11
P,X SCHRODNER M ET A based on semicon FIRST INTERNATIO POLYMERS AND ADH AND PHOTONICS. I ADHESIVES IN ELE (CAT. NO.01TH859 IEEE CONFERENCE IN MICR,	L: "Plastic electronics ducting polymers" NAL IEEE CONFERENCE ON ESIVES IN MICROELECTRONICS NCORPORATING POLY, PEP & CTRONICS. PROCEEDINGS 92), FIRST INTERNATIONAL ON POLYMERS AND ADHESIVES (P001077730 /, NJ, USA, IEEE, USA 20-4		1-5,10
			•

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN					
Kalegorie*	Bezelchnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.			
A	LOWE J ET AL: "POLY(3-(2-ACETOXYETHYL)THIOPHENE): A MODEL POLYMER FOR ACID-CATALYZED LITHOGRAPHY" SYNTHETIC METALS, ELSEVIER SEQUOIA, LAUSANNE, CH, Bd. 85, 1997, Seiten 1427-1430, XP000826731 ISSN: 0379-6779 das ganze Dokument	11			
A	US 5 691 089 A (SMAYLING MICHAEL C) 25. November 1997 (1997-11-25) Zusammenfassung; Abbildung 3	11			
P,X	SCHRODNER M ET AL: "Plastic electronics based on semiconducting polymers" FIRST INTERNATIONAL IEEE CONFERENCE ON POLYMERS AND ADHESIVES IN MICROELECTRONICS AND PHOTONICS. INCORPORATING POLY, PEP & ADHESIVES IN ELECTRONICS. PROCEEDINGS (CAT. NO.01TH8592), FIRST INTERNATIONAL IEEE CONFERENCE ON POLYMERS AND ADHESIVES IN MICR, Seiten 91-94, XP001077730 2001, Piscataway, NJ, USA, IEEE, USA ISBN: 0-7803-7220-4 das ganze Dokument	1-5,10			

PCT/DE 02/00312 A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 H01L51/20 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, INSPEC, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie* 1-3 DE 100 06 257 A (IBM) X 14. September 2000 (2000-09-14) Abbildung 4 19,20 "Polymeric integrated DE LEEUW D M ET AL: X circuits and light-emitting diodes" ELECTRON DEVICES MEETING, 1997. TECHNICAL DIGEST., INTERNATIONAL WASHINGTON, DC, USA 7-10 DEĆ. 1997, NEW YORK, NY, USA, IEEÉ, US, 7. Dezember 1997 (1997-12-07), Seiten 331-336, XP010265518 ISBN: 0-7803-4100-7 11 das ganze Dokument Α 11 WO 01 08241 A (E INK CORP) Α 1. Februar 2001 (2001-02-01) Zusammenfassung; Abbildung 4 Siehe Anhang Patentfamille Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondem nur zum Verständnis des der entnehmen Besondere Kategorien von angegebenen Veröffentlichungen A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröftentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) ausgerunn) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeidedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

11. Juni 2002

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

19/06/2002

Bevollmächtigter Bediensteter

Königstein, C

PCT/DE 02/00312

	T		
Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) d Patentfamilie	
DE 10006257 A	14-09-2000	US 618099 CN 126628 DE 1000625 JP 200026099 SG 8268 TW 46111	87 A 13-09-2000 57 A1 14-09-2000 99 A 22-09-2000 80 A1 21-08-2001
WO 0108241 A	01-02-2001	AU 635800 EP 119885 WO 010824	51 A1 24-04-2002
US 5691089 A	25-11-1997	US 556755 US 567704 US 594237	11 A 14-10-1997

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

