Math110Hw4

Trustin Nguyen

February 2023

Homework 4

Exercise 1: Let $V = \mathcal{P}_2(\mathbb{R}), W = \mathbb{R}$. Are the maps

$$T: f \mapsto f(2), S: f \mapsto \int_0^1 f(x) \, \mathrm{d}x$$

in $\mathcal{L}(V, W)$? Are they linearly independent?

Proof. We see what happens with $a_1T + a_2S = 0$. Let f be an arbitrary function. Then we have

$$a_1Tf_1 + a_2Sf_1 = 0a_1Tf_2 + a_2Sf_2 = 0$$

Let $f_1 = 3x^2$

$$a_1Tf_1 + a_2Sf_1 = 12a_1 + a_2 = 0$$

Where $a_2 = -12a_1$. But for $f_2 = 2x$,

$$a_1 T f_2 + a_2 S f_2 = 4a_1 + a_2$$

Where $a_2 = -4a_1$. So by the two equations,

$$a_2 = -12a_1a_2 = -4a_1 \qquad -4a_1 = -12a_1$$

So $a_1=0$ and that means $a_2=0$. The linear maps are linearly independent. \square

Exercise 2: Suppose V is a nonzero finite-dimensional vector space and W is infinite-dimensional. Prove that $\mathcal{L}(V,W)$ is infinite-dimensional.

Proof. It was proved in class that there was a bijection from

$$M: \mathcal{L}(V, W) \to \mathbb{F}^{\dim W \times \dim V}$$

(Injective) Suppose that M(R) = M(S). Then M(R - S) = 0. We look at an element in the null-space T. Then $Tv_0 = 0$ for any basis vector of V and therefore, any $v \in V$. So R - S = 0 and R = S.

(Surjective) Suppose that there is a W in the image of the linear transformation in $\mathcal{L}(V, W)$. Let $\{w_1, \ldots, w_{\dim W}\}$ be the basis vectors of W.

$$A = \begin{bmatrix} a_{1,1} & \dots & a_{1,v} \\ \vdots & \ddots & \vdots \\ a_{w,1} & \dots & a_{w,v} \end{bmatrix}$$

If Tv_i were set to equal the linear combination of $\{w_1, \ldots, w_{\dim W}\}$ with coefficients "a" of the i-th column, then that is a defined linear mapping. Since there is a bijection, the dimensions of $\mathcal{L}(V,W)$ and $\mathbb{F}^{\dim W \times \dim V}$ are equal. Since W is infinite dimensional, then $\mathcal{L}(V,W)$ is infinite dimensional.

Exercise 3: Suppose V is a vector space and $S, T \in \mathcal{L}(V, V)$ are such that

$$rangeS \subset nullT$$
.

Prove that $(ST)^2 = 0$.

Proof. We start from $ST^2 = STST$. Let $v \in V$. Then

$$STSTv = STS(Tv)$$

Notice that $S(Tv) \in \text{range}S$. Then $S(Tv) \in \text{null}T$. Therefore, TS(Tv) = 0. So the equation can be simplified down to

$$S(0) = 0$$

since linear maps send 0 to 0.

Exercise 4: Suppose $T: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ is defined by the formula (Tf)(x) = 2xf''(x) - f'. Check $T \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ and find a basis for the null space and a basis for the range of T.

Proof. (Linearity) To check that T is linear, we have two properties:

1.
$$T(f_1 + f_2) = T(f_1) + T(f_2)$$
:

$$T(f_1 + f_2) = 2x(f_1 + f_2)''(x) - (f_1 + f_2)'$$

= $2xf_1''(x) + 2xf_2''(x) + f_1' + f_2'$
= $T(f_1) + T(f_2)$

2.
$$T(\lambda f) = \lambda T(f)$$

$$T(\lambda f) = 2x(\lambda f)''(x) - (\lambda f)'$$
$$= 2x\lambda f''(x) - \lambda f'$$
$$= \lambda T(f)$$

(Null Space) To find the basis for the null space, we must find an f such that :

$$(Tf)(x) = 2xf''(x) - f' = 0$$
$$f' = 2xf''(x)$$

So we are looking at a function $f(x) = ax^3 + bx^2 + cx + d$ such that the equation is satisfied

$$f(x) = ax^3 + bx^2 + cx + d$$

$$f'(x) = 3ax^2 + 2bx + c$$

$$f''(x) = 6ax + 2b$$

$$f'(x) = 2xf''(x)$$

$$3ax^2 + 2bx + c = 12ax^2 + 4bx$$

$$9ax^2 + 2bx - c = 0$$

Therefore, a = 0, b = 0, c = 0, d = anything. So $\{1\}$ is a basis of the null space.

(Range or T) Elements in the range of T have the form

$$(Tf)(x) = 2xf''(x) - f'$$

So we repeat the process by breaking down the form of f:

$$f(x) = ax^3 + bx^2 + cx + d$$
$$f'(x) = 3ax^2 + 2bx + c$$
$$f''(x) = 6ax + 2b$$
$$2xf''(x) - f' = 9ax^2 + 2bx - c$$

Notice that a, b, c can be anything. So the basis is $\{x^2, x, 1\}$.

Exercise 5: Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is surjective if and only if there exists $S \in \mathcal{L}(W, V)$ such that TS is the identity map on W.

Proof. (\rightarrow) Suppose that T is surjective. Then for every $w \in W$, there is a $v \in V$ such that $Tv_0 = w_0$. We can take a function S such that

$$Sw_0 = v_0$$

We must check that there is only one $v_0 \in V$ that S maps $w_0 \in W$ to, which is not true, since the function T might not be injective. We solve the problem by picking the least v in $\hat{V_0} = \{v \in V : Tv = w_0\}$. Now we take

$$TSw_0 = Tv_0$$

By definition of the set \hat{V}_0 , this is w_0 , so TS is the identity on W.

 (\leftarrow) Suppose that there is an $S \in \mathcal{L}(W,V)$ such that TS is the identity map on W. That means for every $w \in W$,

$$TSw = w$$
$$T(Sw) = w$$

So this implies that every $w \in W$ is an image of an element in v under T. So T is surjective. \Box