Audio Multi-label Classification and Applications

Khrylchenko Kirill Mazaev Pavel Ivanov Sergey Kodryan Maxim

June 19, 2019

Data Preparation

Available data¹:

- 4970 audio samples
- 80 audio tags: screaming, yell, bark, sigh, gasp, etc. . .

Multi-label classification: given an audiofile, assign probabilities of 80 independent classes (not softmax, sigmoid).

Data preparation approaches:

- melspectrograms:
 - images, 128 x 128
 - ullet sequences of frame feature vectors, T imes 128
- raw input 2 seconds \times 44100 = 88200 numbers
- mu-law encoding not going to discuss it

Signal Processing Audio Classification June 19, 2019 2 / 16

Melspectrograms

- Audiofile is represented as a sequence of 128 overlapping frames
- Feature vector of size 128 is calculated for every frame
- librosa.feature.melspectrogram calculates melspectrogram

June 19, 2019

Augmentations

- An obvious idea: merge several files and their labels
- Random samples!
- With random weights!
- Natural filters! reverberation with a random IR from a set

Also attempted: Normal noise, pitch shift

- √ No overfitting
- × Slow (by iterations)
- × Very slow (by time)

Augmentations

Figure: Without augmentation

Figure: With augmentation

Classification Models

Melspectrogram-based neural networks:

- Deep Convolutional Neural Network for Environmental Sound Classification — original model and modification
- Masked Conditional Neural Networks for Audio Classification
- CNN Classifiers pretrained on ImageNet² didn't work
- Kaggle-based Model
- GRU-based Model

Raw input neural networks:

- SampleCNN analogue of VGG
- ReSE2-Multi analogue of ResNet

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · か९○

Deep Convolutional Neural Network for Environmental Sound Classification³

Figure: DCNN Model

Modifications:

- Replace ReLU with LeakyReLU
- BatchNorm2D before activations
- try InstanceNorm2D?
- increase amount of filter maps

Masked Conditional Neural Networks for Audio Classification⁴

General ideas

- 1d convolutions along the features
- Multiple convolutions applied to a window
- $y_t = f(b + \sum_{u=-n}^n x_{u+t} W_u)$

ㅁㅏㆍ4 @ ㅏ ㆍ 돌 ㅏ ㆍ 돌 ㆍ 쒸익♡

MCNN

Masks

- Weights are masked
- Different channels have different source channels
- $\bar{W}_u = W_u \odot M$
- Provides a little performance boost

Figure: A mask for one W_u

Sample-level Deep Convolutional Neural Networks⁵

Sample CNN

- √ may take into account phase
- memory-heavy (look at the first layer)

Ideas

- strided convolutions at the beginning
- pooling with kernel=3 instead 2

June 19, 2019

Raw Waveform-based Audio Classification⁶

ReSE-2-Multi Model

- √ allows to increase number of convolutional layers
- × still memory-heavy

Ideas

- add residual connections
- concatenate features from several last layers

June 19, 2019

Results

Model	Lwlrap ⁷	Time ⁸ , sec
DCNN	0.6295	1
modDCNN	0.7028	1
GRU	0.4639	2.15
Kaggle	0.7876	15.1
MCNN, no augmentations	0.6149	4.53
MCNN, no augmentations, no masks	0.5573	4.41
MCNN, augmentations	0.6727	76.04
MCNN, augmentations, no masks	0.6313	76.17
SampleCNN	0.6356	14.09
ReSE-2-Multi	0.6882	25.25

⁷evaluation description

 $^{^81}$ epoch time

Audio-image Style Transfer?

- Audio-audio style transfer⁹ is boring...
- Why not try audio-image ST?!
- Apply ST model to melspectrograms images and use Griffin-Lim to restore audio!
- What do we get? Let's listen!

Signal Processing Audio Classification June 19, 2019 13 / 16

⁹https://github.com/inzva/Audio-Style-Transfer - () - () - ()

ST model

Contribution

- Khrylchenko: data preparation, training pipeline, DCNN, GRU, Kaggle models;
- Mazaev: augmentation experiments, augmentation pipeline, MCNN model and experiments;
- Ivanov: raw input pipeline, SampleCNN and ReSE-2-Multi models;
- Kodryan: style transfer, code review, article discussion.

Thanks for your **attention**¹⁰!