Boron

From Wikipedia, the free encyclopedia

Boron is a chemical element with symbol **B** and atomic number 5. Produced entirely by cosmic ray spallation and supernovae and not by stellar nucleosynthesis, it is a low-abundance element in the Solar system and in the Earth's crust.^[12] Boron is concentrated on Earth by the water-solubility of its more common naturally occurring compounds, the borate minerals. These are mined industrially as evaporites, such as borax and kernite. The largest known boron deposits are in Turkey, the largest producer of boron minerals.

Elemental boron is a metalloid that is found in small amounts in meteoroids but chemically uncombined boron is not otherwise found naturally on Earth. Industrially, very pure boron is produced with difficulty because of refractory contamination by carbon or other elements. Several allotropes of boron exist: amorphous boron is a brown powder; crystalline boron is silvery to black, extremely hard (about 9.5 on the Mohs scale), and a poor electrical conductor at room temperature. The primary use of elemental boron is as boron filaments with applications similar to carbon fibers in some high-strength materials.

Boron is primarily used in chemical compounds. About half of all consumption globally, boron is used as an additive in glass fibers of boron-containing fiberglass for insulation and structural materials. The next leading use is in polymers and ceramics in high-strength, lightweight structural and refractory materials. Borosilicate glass is desired for its greater strength and thermal shock resistance than ordinary soda lime glass. Boron compounds are used as fertilizers in agriculture and in sodium perborate bleaches. A small amount of boron is used as a dopant in semiconductors, and reagent intermediates in the synthesis of organic fine chemicals. A few boron-containing organic pharmaceuticals are used or are in study. Natural boron is composed of two stable isotopes, one of which (boron-10) has a number of uses as a neutron-capturing agent.

In biology, borates have low toxicity in mammals (similar to table salt), but are more toxic to arthropods and are used as insecticides. Boric acid is mildly antimicrobial, and several natural boron-containing organic antibiotics are known.^[13] Boron is essential to life. Small amounts of boron compounds play a strengthening role in the cell walls

Boron, ₅B

boron (β-rhombohedral)^[1]

General properties

Name, symbol	boron, B	
Pronunciation	/ˈbɔərɒn/	

Allotropes	α -, β-rhombohedral, β-		
	tetragonal (and more)		

black brown

Appearance black-brown

Boron in the periodic table

Atomic number (Z) 5

Group, block group 13, p-block

Period period 2

Element category \square metalloid

Standard atomic $10.81^{[2]}$ (10.806-weight (A_r) 10.821)^[3]

Electron [He] 2s² 2p¹

per shell 2, 3

configuration

of all plants, making boron a necessary plant nutrient. Boron is involved in the metabolism of calcium in both plants and animals. It is considered an essential nutrient for humans, and boron deficiency is implicated in osteoporosis.

Characteristics

Allotropes

Boron chunks

Boron is similar to carbon in its capability to form stable covalently bonded molecular networks. Even nominally disordered (amorphous) boron contains regular boron icosahedra which are, however, bonded randomly to each other without long-range order.[23][24] Crystalline boron is a very hard, black material with a melting point of above 2000 °C. It forms four major polymorphs: α -rhombohedral and β -rhombohedral (α -R and β -R), γ and β tetragonal (β -T); α -tetragonal phase also exists (α -T), but is very difficult to produce without significant contamination. Most of the phases are based on B₁₂ icosahedra, but the y-phase can be described as a rocksalt-type arrangement of the icosahedra and B₂ atomic pairs.^[25] It can be produced by compressing other

boron phases to 12-20 GPa and heating to 1500-1800 °C; it remains stable after releasing the temperature and pressure. The T phase is produced at similar pressures, but higher temperatures of 1800–2200 °C. As to the α and β phases, they might both coexist at ambient conditions with the β phase being more stable. $\ensuremath{^{[25][26][27]}}$ Compressing boron above 160 GPa produces a boron phase with an as yet unknown structure, and this phase is a superconductor at temperatures 6-12 K.[28] Borospherene (fullerene-like B_{40}) molecules) and borophene (proposed graphene-like structure) have been described in 2014.

Chemistry of the element

Elemental boron is rare and poorly studied because the pure material is extremely difficult to prepare. Most studies of "boron" involve samples that contain small amounts of carbon. The chemical behavior of boron resembles that of silicon more than aluminium. Crystalline boron is chemically inert and resistant to attack by boiling

Physical properties

Phase solid

2349 K (2076 °C. **Melting point**

3769 °F)

Boiling point 4200 K (3927 °C.

7101 °F)

Density

when liquid, at m.p.

 2.08 g/cm^{3}

50.2 kl/mol Heat of fusion

Heat of vaporization 508 kl/mol

Molar heat

11.087 I/(mol·K)

capacity

Vapor pressure

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	2348	2562	2822	3141	3545	4072

Atomic properties

Oxidation states 3. 2. 1. -1. $-5^{[4][5]}$ (a

mildly acidic oxide)

Electronegativity Pauling scale: 2.04

Ionization energies

1st: 800.6 kJ/mol 2nd: 2427.1 kl/mol

3rd: 3659.7 kl/mol

(more)

empirical: 90 pm **Atomic radius**

84±3 pm **Covalent radius** Van der Waals

radius

192 pm

Miscellanea

rhombohedral **Crystal structure**

hydrofluoric or hydrochloric acid. When finely divided, it is attacked slowly by hot concentrated hydrogen peroxide, hot concentrated nitric acid, hot sulfuric acid or hot mixture of sulfuric and chromic acids.^[20]

The rate of oxidation of boron depends on the crystallinity, particle size, purity and temperature. Boron does not react with air at room temperature, but at higher temperatures it burns to form boron trioxide:^[37]

$$4 B + 3 O_2 \rightarrow 2 B_2 O_3$$

Boron undergoes halogenation to give trihalides; for example,

$$2 B + 3 Br_2 \rightarrow 2 BBr_3$$

The trichloride in practice is usually made from the oxide.[37]

Chemical compounds

In the most familiar compounds, boron has the formal oxidation state III. These include oxides, sulfides, nitrides, and halides.^[37]

The trihalides adopt a planar trigonal structure. These compounds are Lewis acids in that they readily form adducts with electron-pair donors, which are called Lewis bases. For example, fluoride (F^-) and boron trifluoride (BF_3) combined to give the tetrafluoroborate anion, BF_4^- . Boron trifluoride is used in the petrochemical industry as a catalyst. The halides react with water to form boric acid. [37]

Boron is found in nature on Earth entirely as various oxides of B(III), often associated with other elements. More than one hundred borate minerals contain boron in oxidation state +3. These minerals resemble silicates in some respect, although boron is often found not only in a totach adval according to the property of the property

Speed of sound 16,200 m/s (at 20 °C) thin rod β form: 5–7 μm/(m·K) **Thermal** expansion (at 25 °C)^[6] Thermal 27.4 W/(m·K) conductivity **Electrical** $\sim 10^6 \,\Omega \cdot m$ (at 20 °C) resistivity **Magnetic ordering** diamagnetic^[7] ~9.5 Mohs hardness 7440-42-8 **CAS Number History Discovery** Joseph Louis Gay-Lussac and Louis lacques Thénard^[8] (30 June 1808)

First isolation Humphry Davy^[9]

(9 July 1808)

Most stable isotopes of boron

iso	NA	half-life	DM	DE (MeV)	DP
¹⁰ B	20%	is stable	with	5 neutrons ^{[1}	.0]
11B	80%	is stable	with	6 neutrons ^{[1}	.0]

 $^{10}\mathrm{B}$ content may be as low as 19.1% and as high as 20.3% in natural samples. $^{11}\mathrm{B}$ is the remainder in such cases. $^{[11]}$

is often found not only in a tetrahedral coordination with oxygen, but also in a trigonal planar configuration. Unlike silicates, the boron minerals never contain boron with coordination number greater than four. A typical motif is exemplified by the tetraborate anions of the common mineral borax, shown at left. The formal negative charge of the tetrahedral borate center is balanced by metal cations in the minerals, such as the sodium (Na⁺) in borax.^[37]

Ball-and-stick model of tetraborate anion, $[B_4O_5(OH)_4]^{2-}$, as it occurs in crystalline borax, $Na_2[B_4O_5(OH)_4]\cdot 8H_2O$. Boron atoms are pink, with bridging oxygens in red, and four hydroxyl hydrogens in white. Note two borons are trigonally bonded sp² with no formal charge, while the other two borons are tetrahedrally bonded sp³, each carrying a formal charge of -1. The oxidation state of all borons is III. This mixture of boron coordination numbers and formal charges is characteristic of natural boron minerals.

Boranes are chemical compounds of boron and hydrogen, with the generic formula of B_xH_y . These compounds do not occur in nature. Many of the boranes readily oxidise on contact with air, some violently. The parent member BH_3 is called borane, but it is known only in the gaseous state, and dimerises to form diborane, B_2H_6 . The larger boranes all consist of boron clusters that are polyhedral, some of which exist as isomers. For example, isomers of $B_{20}H_{26}$ are based on the fusion of two 10-atom clusters.

The most important boranes are diborane B_2H_6 and two of its pyrolysis products, pentaborane B_5H_9 and decaborane $B_{10}H_{14}$. A large number of anionic boron hydrides are known, e.g. $[B_{12}H_{12}]^{2-}$.

The formal oxidation number in boranes is positive, and is based on the assumption that hydrogen is counted as -1 as in active metal hydrides. The mean oxidation number for the borons is then simply the ratio of hydrogen to boron in the molecule. For example, in diborane B_2H_6 , the boron oxidation state is

+3, but in decaborane $B_{10}H_{14}$, it is $^7/_5$ or +1.4. In these compounds the oxidation state of boron is often not a whole number.

Boron (III)
trifluoride
structure,
showing
"empty"
boron p
orbital in pitype
coordinate
covalent
bonds

The boron nitrides are notable for the variety of structures that they adopt. They exhibit structures analogous to various allotropes of carbon, including graphite, diamond, and nanotubes. In the diamond-like structure, called cubic boron nitride (tradename Borazon), boron atoms exist in the tetrahedral structure of carbons atoms in diamond, but one in every four B-N bonds can be viewed as a coordinate covalent bond, wherein two electrons are donated by the nitrogen atom which acts as the Lewis base to a bond to the Lewis acidic boron(III) centre. Cubic boron nitride, among other applications, is used as an abrasive, as it has a hardness comparable with diamond (the two substances are able to produce scratches on each other). In the BN compound analogue of graphite, hexagonal boron nitride (h-BN), the positively charged boron and negatively charged nitrogen atoms in each plane lie adjacent to the oppositely charged atom in the next plane. Consequently, graphite and h-BN have very different properties, although both are lubricants, as these planes slip past each other easily. However, h-BN is a relatively poor electrical and thermal conductor in the planar directions. [38][39]

Organoboron chemistry

A large number of organoboron compounds are known and many are useful in organic synthesis. Many are produced from hydroboration, which employs diborane, B_2H_6 , a simple borane chemical. Organoboron(III) compounds are usually tetrahedral or trigonal planar, for example, tetraphenylborate, $[B(C_6H_5)_4]^-$ vs. triphenylborane, $B(C_6H_5)_3$. However, multiple boron atoms reacting with each other have a tendency to form novel dodecahedral (12-sided) and icosahedral (20-sided) structures composed completely of boron atoms, or with varying numbers of carbon heteroatoms.

Organoboron chemicals have been employed in uses as diverse as boron carbide (see below), a complex very hard ceramic composed of boron-carbon cluster anions and cations, to carboranes, carbon-boron cluster chemistry compounds that can be halogenated to form reactive structures including carborane acid, a superacid. As one example, carboranes form useful molecular moieties that add considerable amounts of boron to other biochemicals in order to synthesize boron-containing compounds for boron neutron capture therapy for cancer.

Compounds of B(I) and B(II)

Although these are not found on Earth naturally, boron forms a variety of stable compounds with formal oxidation state less than three. As for many covalent compounds, formal oxidation states are often of little meaning in boron hydrides and metal borides. The halides also form derivatives of B(I) and B(II). BF, isoelectronic with N_2 , cannot be isolated in condensed form, but B_2F_4 and B_4Cl_4 are well characterized. [40]

Binary metal-boron compounds, the metal borides, contain boron in negative oxidation states. Illustrative is magnesium diboride (MgB_2) . Each boron atom has a formal -1 charge and magnesium is assigned a formal charge of +2. In this material, the boron centers are trigonal planar with an extra double bond for each boron, forming sheets akin to the carbon in graphite. However, unlike hexagonal boron nitride, which lacks electrons in the plane of the covalent atoms, the delocalized electrons in magnesium diboride allow it to conduct electricity similar to isoelectronic graphite. In 2001, this material was found to be a high-temperature superconductor. $[^{41}][^{42}]$

Certain other metal borides find specialized applications as hard materials for cutting tools. Often the boron in borides has fractional oxidation states, such as -1/3 in calcium hexaboride (CaB₆).

From the structural perspective, the most distinctive chemical compounds of boron are the hydrides. Included in this series are the cluster compounds dodecaborate ($B_{12}H_{12}^{2-}$), decaborane ($B_{10}H_{14}$), and the carboranes such as $C_2B_{10}H_{12}$. Characteristically such compounds contain boron with coordination numbers greater than four.^[37]

Isotopes

Boron has two naturally occurring and stable isotopes, 11 B (80.1%) and 10 B (19.9%). The mass difference results in a wide range of 511 B values, which are defined as a fractional difference between the 11 B and 10 B and traditionally expressed in parts per thousand, in natural waters ranging from -16 to +59. There are 13 known isotopes of boron, the shortest-lived isotope is 7 B which decays through proton emission and alpha decay. It has a half-life of 3.5×10^{-22} s. Isotopic fractionation of boron is controlled by the exchange reactions of the boron species 8 B(OH) 3 and 8 B(OH) 4 D. Boron isotopes are also fractionated during mineral crystallization, during 4 D phase changes in hydrothermal systems, and during hydrothermal alteration of rock. The latter effect results in preferential removal of the 10 B(OH) 4 D ion onto clays. It results in solutions enriched in 11 B(OH) 3 B and therefore may be responsible for the large 11 B enrichment in seawater relative to both oceanic crust and continental crust; this difference may act as an isotopic signature. 144 D

The exotic ¹⁷B exhibits a nuclear halo, i.e. its radius is appreciably larger than that predicted by the liquid drop model. ^[45]

The 10 B isotope is useful for capturing thermal neutrons (see neutron cross section#Typical cross sections). The nuclear industry enriches natural boron to nearly pure 10 B. The less-valuable by-product, depleted boron, is nearly pure 11 B.

Commercial isotope enrichment

Because of its high neutron cross-section, boron-10 is often used to control fission in nuclear reactors as a neutron-capturing substance. Several industrial-scale enrichment processes have been developed; however, only the fractionated vacuum distillation of the dimethyl ether adduct of boron trifluoride (DME-BF $_3$) and column chromatography of borates are being used. Used [47][48]

Enriched boron (boron-10)

Enriched boron or 10 B is used in both radiation shielding and is the primary nuclide used in neutron capture therapy of cancer. In the latter ("boron neutron capture therapy" or BNCT), a compound containing 10 B is incorporated into a pharmaceutical which is selectively taken up by a malignant tumor and tissues near it. The patient is then treated with a beam of low energy neutrons at a relatively low neutron radiation dose. The neutrons, however, trigger energetic and short-range secondary alpha particle and lithium-7 heavy ion radiation that are products of the boron + neutron nuclear reaction, and this ion radiation additionally bombards the tumor, especially from inside the tumor cells. $^{[49][50][51][52]}$

In nuclear reactors, ¹⁰B is used for reactivity control and in emergency shutdown systems. It can serve either function in the form of borosilicate control rods or as boric acid. In pressurized water reactors, boric acid is added to the reactor coolant when the plant is shut down for refueling. It is then slowly filtered out over many months as fissile material is used up and the fuel becomes less reactive.^[53]

In future manned interplanetary spacecraft, ¹⁰B has a theoretical role as structural material (as boron fibers or BN nanotube material) which would also serve a special role in the radiation shield. One of the difficulties in dealing with cosmic rays, which are mostly high energy protons, is that some secondary radiation from interaction of cosmic rays and spacecraft materials is high energy spallation neutrons. Such neutrons can be moderated by materials high in light elements such as polyethylene, but the moderated neutrons continue to be a radiation hazard unless actively absorbed in the shielding. Among light elements that absorb thermal neutrons, ⁶Li and ¹⁰B appear as potential spacecraft structural materials which serve both for mechanical reinforcement and radiation protection. ^[54]

Depleted boron (boron-11)

Radiation-hardened semiconductors

Cosmic radiation will produce secondary neutrons if it hits spacecraft structures. Those neutrons will be captured in ¹⁰B, if it is present in the spacecraft's semiconductors, producing a gamma ray, an alpha particle, and a lithium ion. Those resultant decay products may then irradiate nearby semiconductor "chip" structures, causing data loss (bit flipping, or single event upset). In radiation-hardened semiconductor designs, one countermeasure is to use *depleted boron*, which is greatly enriched in ¹¹B and contains almost no ¹⁰B. This is useful because ¹¹B is largely immune to radiation damage. Depleted boron is a byproduct of the nuclear industry.^[53]

Proton-boron fusion

¹¹B is also a candidate as a fuel for aneutronic fusion. When struck by a proton with energy of about 500 keV, it produces three alpha particles and 8.7 MeV of energy. Most other fusion reactions involving hydrogen and helium produce penetrating neutron radiation, which weakens reactor structures and induces long-term radioactivity, thereby endangering operating personnel. However, the alpha particles from ¹¹B fusion can be turned directly into electric power, and all radiation stops as soon as the reactor is turned off.^[55]

NMR spectroscopy

Both 10 B and 11 B possess nuclear spin. The nuclear spin of 10 B is 3 and that of 11 B is $\frac{3}{2}$. These isotopes are, therefore, of use in nuclear magnetic resonance spectroscopy; and spectrometers specially adapted to detecting the boron-11 nuclei are available commercially. The 10 B and 11 B nuclei also cause splitting in the resonances of attached nuclei. $^{[56]}$

Occurrence

Boron is rare in the Universe and solar system due to trace formation in the Big Bang and in stars. It is formed in minor amounts in cosmic ray spallation nucleosynthesis and may be found uncombined in cosmic dust and meteoroid materials. In the high oxygen environment of Earth, boron is always found fully oxidized to borate. Boron does not appear on Earth in elemental form. Extremely tiny elemental boron was detected in Lunar regolith^{[57][58]}

Although boron is a relatively rare element in the Earth's crust, representing only 0.001% of the crust mass, it can be highly concentrated by the action of water, in which many borates are soluble. It is found naturally combined in compounds such as borax and boric acid (sometimes found in volcanic spring waters). About a hundred borate minerals are known.

Source

Wikipedia: Boron (https://en.wikipedia.org/wiki/Boron)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Boron&oldid=752806289"