Chapter 10: Regression

Wang Shujia

Contents

1	Regression Model and Estimation					
		Model				
	1.2	Estimation				
2	Model Assessment and Inference					
	2.1	Assessment				
	2.2	Inferences				
3	Fitting Regression Models in R					
	3.1	Murder rate in USA				
	3.2	Selecting the "best" regression model				
		3.2.1 Testing-Based Procedures				
		3.2.2 Criterion-Based Procedures				

1 Regression Model and Estimation

1.1 Model

Workflow For Building a Regression Model

Regression analysis is used for modeling the relationship between a single variable Y, called the **response** or **dependent** variable, and one or more **explanatory** variables, also called **predictor**(s) or **independent** variable(s).

- 1. Describing the Data. Use the plot(), boxplot() and summary() commands
- 2. Data Transformation (If needed). Use the log command
- 3. Model. Use the lm() and summary() commands
- 4. Diagnostics. Fitted values vs standardised residuals. Influence and Cook's distance
- 5. Variable Selection. Use the t and p-values from summary (model)
- 6. Fitting. Re-run the model. Interpret the coefficients.
- 7. Prediction. Use the *predict.lm()* command.

Linear Regression Model

The Multiple Linear Regression (MLR) Model:

$$Y = \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \varepsilon$$

where ε represents the random error, in general $\varepsilon \sim N(0, \sigma^2)$.

- If p = 1, the linear model is called the **simple linear regression** model.
- β_i : If x_i increases by one unit holding the other x's constant, then Y will react by β_i units.
- Remark: there are p predictors here while (p-1) in the textbook.

Matrix Formulation of the Regression Model

The MLR model with observations is

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_n x_{ni} + \varepsilon_i \ (i = 1, 2, \dots, n)$$

or

$$Y_i = \boldsymbol{x}_i'\boldsymbol{\beta} + \varepsilon_i (i = 1, 2, \dots, n)$$

where $\mathbf{x}_{i}^{'} = (1, x_{1i}, x_{2i}, \dots, x_{pi})$.

The MLR model with matrix

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times (p+1)}\boldsymbol{\beta}_{(p+1)\times 1} + \boldsymbol{\varepsilon}_{n\times 1}, \text{ where } \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$$

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{p1} \\ 1 & x_{12} & x_{22} & \cdots & x_{p2} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{pn} \end{bmatrix} \ \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}$$

Model Assumptions

The models are valid underlying the following assumptions:

- 1. For given values of x, the Y values are normally distributed (Normality).
- 2. The E(Y|x) is a linear function of $\boldsymbol{x}=(1,x_1,x_2,\ldots,x_p)^{'}$ (Linearity) .
- 3. The standard deviations of Y_i are equal (Homoscedasticity).
- 4. The $Y_i (i = 1, 2, ..., n)$ are statistically independent (Independence).
- 5. There's also the issue of outliers and influential observations.

1.2 Estimation

Least Squares and Maximum Likelihood Estimates

The Least Squares Estimates (LSE) of the unknown parameters minimize

$$Q(\boldsymbol{\beta}) = \sum [y_i - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi})]^2$$
$$= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

The Maximum Likelihhod Estimates (MLE) maximize

$$L(\boldsymbol{\beta}, \sigma^{2}) = \frac{1}{(2\pi\sigma)^{n/2}} \exp\left\{\frac{1}{\sigma^{2}} [(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})]\right\}$$

By differentiating $Q(\beta)$ and $L(\beta, \sigma^2)$ with respect to β yields

$$(\mathbf{X}'\mathbf{X})\boldsymbol{\beta} = \mathbf{X}'\mathbf{Y}$$

Hence the estimator of β (LSE and MLE both) are

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Properties of the coefficient estimators

1. The fitted or predicted values are given by

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{H}\mathbf{Y}$$

where $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is appropriately named the **hat matrix** because it "puts the hat on \mathbf{Y} "

2. $\hat{\boldsymbol{\beta}}$ is an unbiased estimate of $\boldsymbol{\beta}$, and

$$\hat{\boldsymbol{\beta}}|\mathbf{X} \sim N[\boldsymbol{\beta}, \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}]$$

3. It can be shown that S^2 is an unbiased estimate of σ^2 , which

$$S^2 = \frac{SSE}{n - p - 1}$$

where $SSE = \sum_{i} (y_i - \hat{y}_i)^2$ and $S = \sqrt{S^2}$ is called the **standard error**.

2 Model Assessment and Inference

2.1 Assessment

ANOVA Table

<u>''</u>	NOVA Table										
	Source	Degree	Sum	Mean							
	of	of	of	Squares	F						
	Variation	Freedom	Squares								
	Regression	p	SSR	MSR = SSR/p							
	Error	n-p-1	SSE	$MSE = \frac{SSE}{n-p-1}$	$F = \frac{MSR}{MSE}$						
	Total	n-1	SST	•							

$$SST = \sum_{i} (y_i - \bar{y})^2$$
$$SSR = \sum_{i} (\hat{y}_i - \bar{y})^2$$
$$SSE = \sum_{i} (y_i - \hat{y}_i)^2$$

Goodness-of-Fit

• Coefficient of determination

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

• Interpretation: the proportion of the variance in the outcome variable that can be accounted for by the predictor

• The adjusted R^2

$$R_{adj}^2=1-\frac{SSE/(n-p-1)}{SST/(n-1)}$$

where n is sample size and p is the number of predictors.

• Advantage: when add more predictors to the model, the adjusted R_{adj}^2 value will only increase if the new variables improve the model performance more than you'd expect by chance.

F-test for the Significance of the Model

Testing the model as a whole (Analysis of variance when p > 2)

 $H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$

 H_1 : at least one of $\beta_1, \beta_2, \dots, \beta_p$ is not 0

F-test:

$$F = \frac{SSR/p}{SSE/(n-p-1)} \stackrel{H_0}{\sim} F(p,n-p-1)$$

2.2 Inferences

t-test for the significance of coefficients

• Tests the significance for individual coefficients

$$H_0: \beta_i = 0 \text{ against } H_1: \beta_i \neq 0 (i = 1, ..., p)$$

• t-test

$$T_{i} = \frac{\hat{\beta}_{i} - \beta_{i}}{\operatorname{SE}(\hat{\beta}_{i})} \stackrel{H_{0}}{\sim} t(n - p - 1)$$

where $SE(\hat{\beta}_i)$ is the *i*th diagonal element of $s^2(\mathbf{X}'\mathbf{X})^{-1}$ (Note that $\hat{\boldsymbol{\beta}}|\mathbf{X} \sim N[\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1}]$).

• summary()

Confidence Interval for the Regression Coefficient

A $(1-\alpha)100\%$ confidence interval for coefficient β_i is

$$CI(\beta_i) = \hat{\beta}_i \pm t_{1-\alpha/2}(n-p-1)SE(\hat{\beta}_i)$$

In R: confint(model, level=0.95)

Confidence and Prediction Intervals for a Future Value

The **confidence interval** for the mean value $E(\mathbf{Y}|\mathbf{x}_0)$ of a future observation $\mathbf{x}_0 = (1, x_{10}, x_{20}, \dots, x_{p0})'$ are given by

$$\mathbf{x}_0' \hat{\boldsymbol{\beta}} \pm t_{1-\alpha/2} (n-p-1) S \sqrt{\mathbf{x}_0' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0}$$

The **prediction interval** for a new observation \mathbf{Y}_0 at \mathbf{x}_0 are given by

$$\mathbf{x}_{0}'\hat{\boldsymbol{\beta}} \pm t_{1-\alpha/2}(n-p-1)S\sqrt{1+\mathbf{x}_{0}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{0}}$$

Example: Google Stock Returns

Consider a CAPM regression for Google's stock

$$Google_t = \alpha + \beta sp500_t + \epsilon_t$$

This is a market model.

- Alpha: The alpha of the portfolio measures the performance of a stock (a fund).
- Beta: The beta of a portfolio measures how sensitive the portfolio's return is to the movement of the overall market.

Question:

- is Google related to the market?
- Does Google out-perform the market in a consistent fashion?
- is Google better than Apple?

Example: Google data and log-returns

```
> library(quantmod)
> getSymbols('GOOG', from = "2005-01-01")

## [1] "GOOG"

> # Data from SPY, the ETF tracks SP500
> getSymbols('SPY', from = "2005-01-01")

## [1] "SPY"

> x <- SPY$SPY.Close
> y <- GOOG$GOOG.Close
> n <- length(y)
> ret <- diff(log(y))
> ret <- ret[-1]
> SP500ret <- diff(log(x))
> SP500ret <- SP500ret[-1]</pre>
```

Example: Google 2010-2017

```
> plot(y,type="1",col=20,main="Google",xlab="Price",ylab="$")
```


Example: CAPM Market Model

Google Market Model

Example: CAPM Market Model

```
> googlemkt<-lm(ret~SP500ret); summary(googlemkt)</pre>
## Call:
## lm(formula = ret ~ SP500ret)
##
## Residuals:
##
         Min
                    1Q
                          Median
                                        3Q
                                                 Max
   -0.109065 -0.006459 -0.000355 0.006182
##
                                            0.172141
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.0005020 0.0002635
                                     1.905
                                              0.0569
## SP500ret
              0.9256294 0.0221102 41.864
                                              <2e-16 ***
## --
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01499 on 3234 degrees of freedom
## Multiple R-squared: 0.3515, Adjusted R-squared: 0.3513
## F-statistic: 1753 on 1 and 3234 DF, p-value: < 2.2e-16
```

Example: Prediction

Suppose the SP500's return will be 1% and 1.2% next week, You want to predict:

- The average return at that market return levels.
- The daily return of GOOGLE if the market returns are 1% and 1.2% respectively.

R Usage

After running model= $lm(y \sim x)$,

- Define a vector data for prediction new=data.frame(x=c(1,1.2))
- Predicted interval: for one sample value predict.lm(model,new,interval="prediction")
- Predicted confidence interval: for average value predict.lm(model,new,interval="confidence")

Predicting the Google Returns

```
> new <- data.frame(SP500ret = c(1, 1.2))
> predict.lm(googlemkt,new,interval="prediction")

## fit lwr upr
## 1 0.9261314 0.8737656 0.9784972
## 2 1.1112573 1.0515169 1.1709976

> predict.lm(googlemkt,new,interval="confidence")

## fit lwr upr
## 1 0.9261314 0.8827871 0.9694757
## 2 1.1112573 1.0592432 1.1632713
```

3 Fitting Regression Models in R

3.1 Murder rate in USA

States dataset

The state.x77 in the dataset package is a matrix with 8 columns giving statistics for the states:

- 1. Population estimate as of July 1, 1975;
- 2. Per capita Income (1974);
- 3. Illiteracy (1970, percent of population);
- 4. Life Expectancy in years (1969-71);
- 5. Murder and non-negligent manslaughter rate per 100,000 population (1976);
- 6. Percent High-school Graduates (1970);
- 7. Mean Number of days with min temperature below freezing (1931-1960) in capital or large city;
- 8. Land Area in square miles.

Goal: explore the relationship between a state's murder rate and other characteristics, including population, illiteracy rate, average income, and frost levels

Correlations and scatter plots

Extract the relative variables from state.x77 as a data frame:

```
> library("datasets")
> states <- as.data.frame(state.x77[,c("Murder", "Population",
                      "Illiteracy", "Income", "Frost")])
> round(cor(states),3)
##
            Murder Population Illiteracy Income Frost
             1.000 0.344 0.703 -0.230 -0.539
## Murder
## Population 0.344
                                 0.108 0.208 -0.332
                       1.000
## Illiteracy 0.703
                        0.108
                                 1.000 -0.437 -0.672
            -0.230
                       0.208
                                 -0.437 1.000 0.226
## Income
                       -0.332 -0.672 0.226 1.000
            -0.539
## Frost
```

scatterplotMatrix() in the car package

```
> library(car); scatterplotMatrix(states)
```


Some descriptive conclusions

- Murder rate may be bimodal
- Each of the predictor variables is skewed to some extent
- Murder rates rise with population and illiteracy
- Murder rates fall with higher income levels and frost

- Colder states have lower illiteracy rates
- Colder states have lower population and higher incomes

Fit the model with all variables

```
> fit<-lm(Murder~.,data = states); summary(fit)</pre>
## Call:
## lm(formula = Murder ~ ., data = states)
##
## Residuals:
    Min
            1Q Median 3Q
##
## -4.7960 -1.6495 -0.0811 1.4815 7.6210
##
## Coefficients:
     Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.235e+00 3.866e+00 0.319 0.7510
## Population 2.237e-04 9.052e-05 2.471 0.0173 *
## Illiteracy 4.143e+00 8.744e-01 4.738 2.19e-05 ***
## Income 6.442e-05 6.837e-04 0.094 0.9253
## Frost
            5.813e-04 1.005e-02 0.058 0.9541
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
\#\# Residual standard error: 2.535 on 45 degrees of freedom
## Multiple R-squared: 0.567, Adjusted R-squared: 0.5285
## F-statistic: 14.73 on 4 and 45 DF, p-value: 9.133e-08
```

anova(model)

Fit the model with all variables

```
> library("xtable")
> xtable(summary(fit))
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.2346	3.8661	0.32	0.7510
Population	0.0002	0.0001	2.47	0.0173
Illiteracy	4.1428	0.8744	4.74	0.0000
Income	0.0001	0.0007	0.09	0.9253
Frost	0.0006	0.0101	0.06	0.9541

Interpretations

- The coefficients for Illiteracy and Population are significantly different from zero
- The coefficient for **Illiteracy** is 4.14, suggesting that an increase of 1 percent in illiteracy is associated with a 4.14 percent increase in the murder rate, controlling for population, income, and temperature
- The coefficient for **Population** is 0.0002, suggesting that the population is statistical significant but isn't economic significant
- Frost and Income are't significant, suggesting that Frost, Income and Murder are't linearly related when controlling for the other predictor variables
- $R^2 = 57\%$: taken all the predictor variables together, account for 57 percent of the variance in murder rates across states

Fit the model with significant variables Only

```
> fit2<-lm(Murder~Population+Illiteracy, data = states)</pre>
> summary(fit2)
## Call:
## lm(formula = Murder ~ Population + Illiteracy, data = states)
## Residuals:
##
      Min
              1Q Median
                            3Q
## -4.7652 -1.6561 -0.0898 1.4570 7.6758
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.652e+00 8.101e-01 2.039 0.04713 *
## Population 2.242e-04 7.984e-05 2.808 0.00724 **
## Illiteracy 4.081e+00 5.848e-01 6.978 8.83e-09 ***
## -
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.481 on 47 degrees of freedom
## Multiple R-squared: 0.5668, Adjusted R-squared: 0.5484
## F-statistic: 30.75 on 2 and 47 DF, p-value: 2.893e-09
```

3.2 Selecting the "best" regression model

3.2.1 Testing-Based Procedures

Stepwise regression

- In **stepwise** selection, variables are added to or deleted from a model one at a time, until some stopping criterion is reached
- Forward stepwise regression you add predictor variables to the model one at a time
- Backward stepwise regression you start with a model that includes all predictor variables, and then delete them one at a time until removing variables would degrade the quality of the model
- step() function or stepAIC() function in the MASS package

Backward stepwise selection

```
> fit<-lm(Murder~., data=states)</pre>
> step(fit,direction="backward")
## Start: AIC=97.75
## Murder ~ Population + Illiteracy + Income + Frost
                Df Sum of Sq RSS
                                        AIC
##
## - Frost 1 0.021 289.19 95.753
## - Income 1 0.057 289.22 95.759
                             289.17 97.749
## <none>
## - Population 1 39.238 328.41 102.111
## - Illiteracy 1 144.264 433.43 115.986
## Step: AIC=95.75
## Murder ~ Population + Illiteracy + Income
##
                Df Sum of Sq RSS
##
               1 0.057 289.25 93.763
## - Income
## <none>
                               289.19 95.753
## - Population 1 43.658 332.85 100.783
## - Illiteracy 1 236.196 525.38 123.605
## Step: AIC=93.76
## Murder ~ Population + Illiteracy
##
                Df Sum of Sq RSS
##
              289.25 93.763
## - Population 1 48.517 337.76 99.516
## - Illiteracy 1 299.646 588.89 127.311
##
## Call:
## lm(formula = Murder ~ Population + Illiteracy, data = states)
##
## Coefficients:
## (Intercept) Population Illiteracy
## 1.6515497 0.0002242 4.0807366
```

3.2.2 Criterion-Based Procedures

Criteria

 \bullet R_{adi}^2 :

$$R_{adj}^2 = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$$

• Mallows's C_p : if p regressors are selected from a set of k > p, C_p for that particular set of regressors is defined as:

 $C_p = \frac{SSE_p}{S^2} + 2p - n$

Desirable models have small p and C_p less than or equal to p.

Criteria

• Bayesian Information Criterion (BIC):

$$BIC = -2 \ln L(\hat{\theta}_{MLE}|\mathbf{x}) + (p+1) \ln(n)$$

= $n \ln(SSE/n) + (p+1) \ln(n) + \text{constant}$

Models with smaller BIC values indicating preferred.

• Akaike Information Criterion (AIC):

$$AIC = -2 \ln L(\hat{\theta}_{MLE}|\boldsymbol{x}) + 2(p+1)$$

BIC will favor smaller models than will AIC (BIC penalizes larger models as AIC (assuming $n > e^2 = 7.3891$).

Model comparison using anova()

anova(): can be used to compare nested models

Nested model: one whose terms are completely included in the other model

```
> fit1 <- lm(Murder ~ . , data=states)
> fit2 <- lm(Murder Population+Illiteracy, data=states)
> anova(fit2,fit1)

## Analysis of Variance Table
##
## Model 1: Murder ~ Population + Illiteracy
## Model 2: Murder ~ Population + Illiteracy + Income + Frost
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 47 289.25
## 2 45 289.17 2 0.078505 0.0061 0.9939
```

Conclusion: the Income and Frost are nonsignificant (p = .994), should be dropped from our model

Model Comparison Using Information Criterion

```
> AIC(fit2,fit1)
##     df     AIC
## fit2     4 237.6565
## fit1     6 241.6429
> BIC(fit2,fit1)
##     df     BIC
## fit2     4 245.3046
## fit1     6 253.1151
```

Conclusion: the AIC values suggest that the model without Income and Frost is the better model

All subsets regression

In all subsets regression, every possible model is inspected regsubsets() function in the leaps package Model selecting criteria:

- Adjusted R-squared
- Mallows Cp statistic
- BIC

 $plot(\)$ function in the leaps package

Run the best subset regression

Display the best subset by plot() in leaps

```
> plot(fitsub,scale="bic")
```


What's your conclusions?