Topologie

David Wiedemann

Table des matières

1	Quotients topologiques		
	1.1	La topologie quotient	4
	1.2	Relations d'equivalence	5
	1.3	Separation et quotients	6
	1.4	Conditions de separation du quotient	6
	1.5	Quotients par des actions de groupe	9
	1.6	SO(n)	10
	1.7	Recollements	10
	1.8	Attachement de cellules	12
2	Hoi	motopies et Groupe Fondamental	13
	2.1	Homotopie	13
	2.2	Attachement de cellules	14
	2.3	Homotopie et π_0	15
	2.4	Invariance Homotopique	15
	2.5	Groupe Fondamental	16
	2.6	Surfaces	18
	2.7	Bouteille de Klein	19
3	The	eorie Combinatoire des Groupes	19
	3.1	Groupes libres	19
	3.2	Presentations	20
	3.3	Graphes de Cayley	20
	3.4	Produits libres	21
	3.5	Pushouts de groupes	21
4	Seif	ert-van Kampen	22
	4.1	Groupe fondamental d'un recollement	22
	4.2	Groupe fondamental d'un Wedge	24
	4.3	Attachement de cellules standard	26
	44	Classification des surfaces	27

List of Theorems

1	Definition (Topologie quotient)	4
3	Proposition	4
4	Proposition	4
5	Proposition	4
6	Theorème	4
7	Proposition	4
8	Proposition	5
2	Definition	5
9	Proposition (Proprietes universelles)	5
3	Definition	5
4	Definition (Reunion disjointe)	6
5	Definition	6
6	Definition	6
11	Proposition	6
12	Proposition	6
13	Proposition	7
14	Corollaire	8
7	Definition (Espaces projectifs)	8
17	,	8
8		8
9	, ,	9
20	, – – ,	9
10	Definition	9
11		9
22		9
23		.0
12		0
26		1
27	-	1
28		1
29		2
31		2
13		.3
14	` - '	.3
32	` /	.3
15		4
16	- /	4
33		4
35	•	.5
36		5

37	Corollaire	15
38	Proposition	15
39	Proposition	16
40	Corollaire	16
17	Definition (Pinch and Fold)	16
18	Definition (Fold)	17
41	Proposition	17
42	Proposition	18
19	Definition (Surface)	18
20	Definition (Somme connexe)	18
21	Definition (Groupe libre)	19
47	Proposition	19
48	Lemme	20
22	Definition	20
23	Definition (Graphe de Cayley)	20
50	Proposition	21
24	Definition (Pushout)	21
52	Proposition	21
53	Lemme	22
56	Lemme	25
57	Proposition	25
25	Definition (Retracte)	25
26	Definition (Retracte de deformation)	25
27	Definition (Retracte de deformation fort)	26
62	Proposition	26
63	Corollaire	26
64	Proposition	27

1 Quotients topologiques

Un espace topologique (X, τ) est ecrit X si la topologie est claire. Le singloton $\{*\}$ est note *.

La boule unite de \mathbb{R}^n est notee D^n et la version ouverte sera $int(D)^n$.

1.1 La topologie quotient

But : Construire de nouveaux espaces a l'aide d'espaces connus en identifiant des points.

Soit X un espace, Y un ensemble et $q: X \to Y$ surjective.

Definition 1 (Topologie quotient)

La topologie quotient sur Y est la topologie des $V \subset Y$ tel que $q^{-1}(V)$ est ouvert dans X.

Remarque

q est alors continue et on verifie que c'est une topologie.

Exemple

X = [0,1] et $Y = (0,1) \cup \{*\}$ et q l'application qui envoie 0 et 1 sur *.

Alors q est surjective et donc Y peut etre muni de la topologie quotient et est homeomorphe a un cercle.

On definit $f: S^1 \to Y: e^{2\pi i t} \mapsto t \text{ si } 0 < t < 1 \text{ et} * sinon.$

Proposition 3

Soit $q: X \to Y$ une application continue, surjective et ouverte, alors q est un quotient.

Proposition 4

Soit $V \subset Y$ un sous-ensemble tel que $q^{-1}(V)$ est ouverte dans X. Comme q est surjective, alors $V = q(q^{-1}(V))$ et c'est un ouvert car q envoie les ouverts sur les ouverts.

Proposition 5

Une composition de quotients est un quotient.

Theorème 6

La topologie quotient est la plus fine qui rend q continue. De plus, pour $g: Y \to Z$, g est continue si et seulement si $g \circ q$ est continue.

Proposition 7

 $Si\ q: X \rightarrow Y\ est\ continue,\ la\ preimage\ d'un\ ouvert\ de\ Y\ est\ ouvert\ dans\ X.$

La topologie quotient est celle qui contient le plus d'ouvert possibles.

Clairement, si g est continue, alors $g \circ q$ l'est aussi.

Si $g \circ q$ est continue, soit $W \subset Z$ un ouvert, alors $(g \circ q)^{-1}(W) = q^{-1}(g^{-1}(W))$ est ouvert et par definition $g^{-1}(W)$ est ouvert dans Y.

Proposition 8

Le quotient d'un compact est compact

Preuve

L'image d'un compact est compacte.

1.2 Relations d'equivalence

Si $q: X \to Y$ est un quotient, on definit sur X une relation d'equivalence \sim par $x \sim x'$ ssi q(x) = q(x'), alors les points de Y sont les classes d'equivalence [x].

Definition 2

 $Si \simeq est \ une \ relation \ d'equivalence \ sur \ X, \ alors \ X/\sim est \ l'espace \ quotient \ des \ classes \ d'equivalence.$

Proposition 9 (Proprietes universelles)

Soit \sim une relation d'equivalence sur X et $f: X \to Z$ tel que $x \sim x' \implies f(x) = f(x')$, alors il existe un unique $\overline{f}: X/\sim Z$ tel que $\overline{f}\circ q = f$

Preuve

Pour que le triangle commute, on doit poser $\overline{f}([x]) = f(x)$ et l'application est bien definie par hypothese et donc unique.

On sait que \overline{f} est continue ssi $\overline{f} \circ q$ l'est.

Definition 3

Si $A \subset X$, on pose $x \sim x' \iff x = x'$ ou $x, x' \in A$. Le collapse X/A est l'espace quotient X/\sim

Par exemple $I/\{0,1\}$.

Exemple

$$D^n/\partial D^n = D^n/S^{n-1} = S^n$$

Pour deux espaces bien connus, pointes (X_1, x_1) et (X_2, x_2) , on peut construire un nouvel espace en identifiant x_1 et x_2 .

Definition 4 (Reunion disjointe)

Soit I un ensemble, X_{α} un espace pour chaque $\alpha \in I$. La reunion disjointe $\bigcup X_{\alpha}$ est l'ensemble $\bigcup_{\alpha \in I} X_{\alpha} \times \{\alpha\}$ dont la topologie est engendree par les sous-ensemble de la forme $U_{\alpha} \times \{\alpha\}$

Definition 5

Soit I un ensemble et pour tout $\alpha \in I$, (X_{α}, x_{α}) un espace pointe. Le wedge $\bigvee_{\alpha} X_{\alpha}$ est le collapse de la reunion disjointe ou on identifie les points de base

Definition 6

Soit X un espace. Le cylindre Cyl(X) est $X \times I$ et le cone CX est le collapse du cylindre a la base.

1.3 Separation et quotients

On definit sur $\mathbb{R} \times \{0;1\}$ une relation d'equivalence \sim par $(x,0) \sim (x,1)$ si $x \neq 0$.

Le quotient est la droite a deux origines dont on ne peut separer les deux origines (0,1) et (0,0) par des ouverts.

Regardons le graphe de \sim dans $\mathbb{R} \times \{0;1\} \times (\mathbb{R} \times \{0,1\})$ (ie. une copie de 4 plans)

Proposition 11

 $Si~X/\sim est~separe,~alors~le~graphe~de\sim dans~X\times X~est~ferme.$

Preuve

La preimage de $\Delta \subset X/\sim \times X/\sim par\ q\times q\ est\ \Gamma_{\sim}$. Comme Δ est ferme, sa preimage aussi.

Lecture 2: Conditions de Separation

Sat 26 Feb

1.4 Conditions de separation du quotient

On donne une condition necessaire et une condition suffisante pour que le quotient soit separe

Proposition 12

Soit \sim une relation d'equivalence sur un espace X. Si X/\sim est separe, le graphe Γ de la relation est ferme dans $X\times X$

Preuve

 $Si~X/\sim est~separe,~par~un~lemme,~la~diagonale~\Delta\subset X/\sim \times X/\sim est~ferme.$

Considerons $q \times q : X \times X \to X/\sim X/\sim$. Cette application est continue et donc $(q \times q)^{-1}(\Delta)$ est un ferme de $X \times X$. Or cette preimage est l'ensemble des paires de points $(x,y) \in X \times X$ t $q(x) = q(y) \iff x \sim y$.

On donne maintenant une condition suffisante permettant de conclure qu'un quotient est separe.

Proposition 13

Soit \sim une relation d'equivalence sur un espace X separe. Si $q^{-1}(q(x))$ est compact pour tout point $x \in X$ et de plus que pour $F \subset X$ ferme $q^{-1}(q(F))$ est ferme, alors le quotient est separe.

Preuve

Soit $\overline{x} = q(x)$ et $\overline{y} = q(y)$ deux points distincts de X/\sim .

Les saturations $q^{-1}(\overline{x}), q^{-1}(\overline{y})$ sont des compacts par hypothese.

Comme X est separe, on peut separer des compacts avec des ouverts disjoints U et V.

On a donc

$$q^{-1}(\overline{x}) \subset U, q^{-1}(\overline{y}) \subset V \ et \ U \cap V = \emptyset$$

Posons $E = X \setminus U, F = X \setminus V$ deux fermes de X.

Par hypothese, les saturations $q^{-1}(q(E))$ et $q^{-1}(q(F))$ sont fermes. Ainsi $U' = X \setminus q^{-1}(q(E))$ et $V' = X \setminus q^{-1}(q(F))$ sont des ouverts. On observe que $E \subset q^{-1}(q(E)), F \subset q^{-1}(q(F)),$ alors $U' \subset U, V' \subset V$.

De plus $q^{-1}(q(x)) \subset U'$ et $q^{-1}(q(y)) \subset V'$.

Il reste a montrer que q(U') et q(V') sont ouverts dans X/\sim et disjoints. Pour le premier point, il suffit de verifier que $q^{-1}(q(U'))$ est ouvert dans X. On pretend que $q^{-1}(q(U')) = U'$.

En effet, $U' \subset q^{-1}(q(U'))$ est toujours vrai, il faut donc montrer l'inclusion inverse.

Soit $u \in q^{-1}(q(U'))$, donc $q(u) \in q(U')$. Donc $q(u) \notin q(E)$ et donc $u \in U'$ Le meme resultat est vrai pour V'.

Il faut donc finalement encore montrer que q(U') et q(V') sont des voisinages ouverts, de \overline{x} et \overline{y} disjoints.

Supposons qu'il existe $u' \in U', v' \in V'$ tel que q(u') = q(v'). Alors $u' \in q^{-1}(q(v')) \subset q^{-1}(q(V')) = V'$.

Donc $U' \cap V' \neq \emptyset$, contradiction.

Lecture 3: Groupes topologiques

Mon 28 Feb

Corollaire 14

Soit $A \subset X$ un sous-espace compact d'un espace X separe. Alors le collapse $\mathfrak{X}A$ est separe.

Preuve

Il suffit de verifier les proprietes du theoreme.

Soit $\overline{x} \in \mathfrak{X}A$.

Si $x \in A$, $q^{-1}(x) = A$ est compact. Si $x \notin A$, $q^{-1}(\overline{x}) = \{x\}$ qui est compact. Soit F un ferme de X, alors si $F \cap A = \emptyset$, on a que $q^{-1}(q(F)) = F$ ferme, sinon $F \cap A \neq \emptyset$ et alors

$$q^{-1}(q(F)) = F \cup A$$

Comme A est compact et X separe, alors A ferme.

Exemple

Soit \sim une relation d'equivalence sur \mathbb{R}^2 defini par $(x,y) \sim (x',y') \iff (x-x',y-y') \in \mathbb{Z}^2$.

Alors

$$\mathbb{R}^2 \sim$$

est un tore, separe, or la proposition ne s'applique pas car $q^{-1}(0,0) = \mathbb{Z}^2$.

Definition 7 (Espaces projectifs)

L'espace projectif reel $\mathbb{R}P^n$ est le quotient de S^n par la relation antipodale $x \sim y \iff x = \pm y \ pour \ x, y \in S^n \subset \mathbb{R}^{n+1}$

Exemple

$$-\mathbb{R}P^0 = \mathfrak{S}^{\mathfrak{o}} \sim = *, \mathbb{R}P^1 = \mathfrak{S}^1 \sim \cong S^1.$$

— De plus $\mathbb{R}P^2 = S^2/\sim$ est le plan projectif

Proposition 17

 $\mathbb{R}P^n$ est compact et separe

Suit immediatement des propositions.

L'analogue complexe donne

Definition 8 (Espace projectif complexe)

L'espace projectif complexe $\mathbb{C}P^n$ est le quotient de $S^{2n+1} \subset \mathbb{C}^{n+1}$ par la relation $x \sim y \iff \exists \alpha \in S^1$ tel que $x = \alpha y$.

De meme, pour les quaternions \mathbb{H} , on peut definir $\mathbb{H}P^n$, pour les octonions

1.5 Quotients par des actions de groupe

Definition 9 (Groupe topologique)

Un groupe topologique est un groupe G tel que les applications de multiplication $\mu: G \times G \to G$ et l'inverse $\iota: G \to G$ sont continues.

Tout groupe peut etre vu comme un groupe topologique discret.

Exemple

Le cercle unite $S^1 \subset \mathbb{C}$ muni de la multiplication complexe est un groupe topologique

Remarque

Les seules spheres qui sont des groupes topologiques sont S^0, S^1, S^3

Lemme 20

 $Si\ H < G\ est\ un\ sous-groupe\ d'un\ groupe\ topologique\ G,\ la\ topologie\ induite\ en\ fait\ un\ groupe\ topologique.$

Definition 10

Une action d'un groupe topologique G sur un espace X est une application $\mu: X \times G \to X$ telle que

$$\mu(x, 1_G) = x \forall x \in X \ et \ \mu(x, gg') = \mu(\mu(x, g), g')$$

Definition 11

Soit μ une action de G sur X, l'espace des orbites $\mathfrak{X}G$ et l'espace quotient de X par la relation $x \sim y \iff \exists g \in G$ tel que $y = \mu(x,g)$

Remarque

Si H < G est un groupe topologique, alors H agit sur G par multiplication a droite et $\mathfrak{G}H$ est l'espace des orbites gH. Si H est un sous-groupe normal, ce quotient est un groupe.

Proposition 22

Soit μ une action d'un groupe topologique G sur un espace X, alors

- 1. $q: X \to \mathfrak{X}G$ est ouverte
- 2. Si X est compact, le quotient est compact
- 3. Si X et G sont compact et separe, alors $\mathfrak{X}G$ aussi.

Soit $U \subset X$ ouvert, q(U) est ouvert car $q^{-1}(q(U)) = \bigcup_{g \in G} U \cdot g$ et $U \cdot g$ est ouvert car la translation est continue et est meme un homeomorphisme. La propriete 2 est immediate.

On considere $X \times X \times G \to X \times X$ en envoyant $(x, y, g) \mapsto (x, yg)$, cette application est continue.

Le graphe Γ de la relation definie par μ est l'image de $\Delta \times G$.

Comme X est separe, Δ est ferme donc compact et G est compact.

Ainsi Γ est compact dans $X \times X$ separe donc Γ est ferme.

Soient xG et yG deux orbites differentes, ie. $(x,y) \notin \Gamma$.

Il existe donc des ouverts $x \in U, y \in V$ tel que $U \times V \cap \Gamma = \emptyset$.

Comme q est ouverte, q(U), q(V) sont des voisinages ouverts des orbites xG et yG respectivement. On conclut en remarquant que ces images sont disjointes.

Sinon on aurait zG commun, ie. $zg \in U, zg' \in V$ pour $g, g' \in G$ et alors $(zg, zgg^{-1}g') \in \Gamma \cap (U \times V)$

1.6 SO(n)

Proposition 23

Soit G compact et X separe. Soit μ une action transitive de G sur X. Alors, si G_x , alors

$$\mathfrak{G}G_x = X$$

pour tout $x \in X$.

Preuve

On definit $\mu_x: G \to X$ envoyant $g \mapsto xg$, continue.

On observe que μ_x envoie G_x sur x et par transitivite, μ_x est surjective.

Par la propriete universelle du quotient, μ_x passe au quotient.

 $\bar{\mu}_x$ est une bijection continue. C'est un homeo car $\mathfrak{G}G_x$ est compact, X separe.

Lecture 4: Attachements de Cellules

Mon 07 Mar

1.7 Recollements

On construit de nouveaux espaces a l'aide de pieces plus simple. On se donne $f:A\to X,g:A\to Y$ deux applications. On recolle X et Y le long de A

Definition 12 (Recollement)

Le recollement de X et Y le long de A est le quotient de $X \coprod Y$ par la relation d'equivalence engendree par $f(a) \sim g(a) \forall a \in A$

Remarque

Il ne suffit pas d'identifier $f(a) \sim g(a)$ pour que la relation soit une relation d'equivalence.

Pour garantir la transitivite, on a des zigszags d'equivalence $f(a) \sim g(a) = g(b) \sim f(b) = f(c) \sim g(c) \dots$

Exemple

Si $A = *, f(*) = x_0 \in X, g(*) = y_0 \in Y$, alors le recollement $X \cup_* Y$ est le wedge $X \vee Y$

On notera le recollement $X \cup_A Y$.

Si $q: X \coprod Y \to X \cup_A Y$ est le quotient, alors l'inclusion $i_1: X \to X \coprod Y$ induit $i = q \circ i_i: X \to X \cup_A Y$ et de meme pour l'inclusion de Y.

Proposition 26

Le recollement $X \cup_A Y$ est le pushout de $Y \leftarrow A \rightarrow X$.

Preuve

On doit montrer l'existence et l'unicite de θ .

Puisque chaque element de $X \cup_A Y$ admet un representant dans X ou Y, on doit poser $\theta([x]) = \alpha(x) \forall x \in X$ et $\theta([y]) = \beta(y) \forall y \in Y$.

 $On\ montre\ l'existence.$

Posons $\Theta: X \coprod Y \to Z$ l'application determinee par α et β .

On verifie que Θ est compatible avec \sim . Soit $a \in A$, alors $\Theta(f(a)) = \alpha(f(a)) = \beta(g(a)) = \Theta(g(a))$.

Ainsi Θ passe au quotient et induit θ , qui est donc bien continue. \square

Des maintenant, on suppose que $g:A\subset Y$ est l'inclusion d'un sous-espace ferme.

Lemme 27

Soit $C \subset Y$, alors la saturation de C est

$$f(C\cap A)\prod (C\cup f^{-1}\circ f(C\cap A))$$

Preuve

On va regarder ce qui se passe pour tout $c \in C$.

Si
$$c \notin A$$
, alors $q^{-1}(q(c)) = \{c\}$, sinon $q^{-1}(q(c))$ contient $f(c) \in X$ et $f^{-1}(f(c)) \subset Y$

Lemme 28

$$Si\ C\subset X\ ,\ q^{-1}(q(C))=C\prod f^{-1}(C)\subset X\coprod Y$$

Comme ci-dessus, si $c \in C$ n'est pas dans l'image de f, on a $q^{-1}(q(c)) = \{c\}$, sinon on a $c \in X$ et $f^{-1}(c) \subset A \subset Y$

Proposition 29

Soient X et Y deux espaces separes, $g: A \subset Y$ l'inclusion d'un compact, alors $X \cup_A Y$ est separe.

Preuve

On observe que $X \coprod Y$ est separe. Avant d'appliquer le critere de separabilite, on montre que l'application quotient est fermee. Comme un ferme de $X \coprod Y$ est la reunion disjointe de deux fermes on a deux cas.

Si $C \subset X$ ferme, alors q(C) est ferme $\iff q^{-1}(q(C))$ est fermee. Par le lemme ci-dessus.

$$q^{-1}(q(C)) = C \prod f^{-1}(C)$$

qui sont fermes.

Si
$$C \subset Y$$
, alors $q^{-1}(q(C)) = f(C \cap A) \coprod (C \cup f^{-1}(f(C \cap A)))$

On a $f(C \cap A)$ compact et donc ferme puisque Y est separe.

Pour conclure, on verifie les deux conditions du critere.

Pour conclure, on verifie les deux conditions du critere, la saturation d'un ferme est fermee grace aux preparatifs.

Soit $z \in X \coprod Y$, on doit montrer que $q^{-1}(q(z))$ est compact, les lemmes cidessus permettent de conclure parce que si $z = a \in A, f^{-1}(f(a))$ est un ferme d'un compact et est donc compacte.

1.8 Attachement de cellules

Ici
$$g: A \subset CA = {}^{A} \times {}^{I}/_{A \times 1}$$
.

Soit $f:A\to X$, le recollement $X\cup_A CA$ aussi note $X\cup_f CA$ est appele attachement d'une A-cellule sur X le long de f.

Si $A = S^{n-1}$ alors cet attachement est celui d'une n-cellule

Remarque

 $CS^{n-1} \simeq D^n$, on note $X \cup_f CS^{n-1} = X \cup_f e^n$ ou $X \cup_f D^n$ et on appelle $e^n \simeq D^n$ une n-cellule (fermee.)

Proposition 31

Si X est separe et A est compact et separe, alors $X \cup_f CA$ est separe. Si en plus X est compact

Preuve

Le premier point suit de la proposition precedente car CA est separe, le 2eme point suit du critere de compacite car $X \coprod Ca$ est compact.

Definition 13 (Suspension)

La suspension de A est le quotient $A \times I/(a,0) \sim (a',0)$ et $(a,1) \sim (a',1)$

Lecture 5: Homotopies et groupe fondamental

Sat 12 Mar

2 Homotopies et Groupe Fondamental

2.1 Homotopie

Definition 14 (Homotopie entre applications)

Soient $f,g:X\to Y$ des applications. On dit que f et g sont homotopes et on note $f\simeq g$ s'il existe une application $H:X\times I\to Y$ tel que H(-,0)=f et H(-,1)=g.

On appelle H une homotopie.

Proposition 32

La relation \simeq est une relation d'equivalence.

Preuve

Reflexivite

Suit du fait qu'on peut definir une homotopie constante.

$$H: X \times I \to Y: (x,t) \mapsto f(x)$$

Symetrie

La symetrie suit du fait qu'on peut parcourir une homotopie dans l'autre sens.

Ainsi, soit $H: X \times I \to Y$ une homotopie entre f et g. On pose

$$G: X \times I \to Y: (x,t) \mapsto H(x,1-t)$$

Transitivite

Supposons que $H: X \times I \to Y, G: X \times I \to Y$ sont des homotopies, $f \simeq g \simeq h$. On construit une homotopie $K: X \times I \to Y$ entre f et h

$$(x,t) \mapsto \begin{cases} H(x,2t) \ si \ 0 \le t \le \frac{1}{2} \\ G(x,2t-1) \ si \ \frac{1}{2} < t \le 1 \end{cases}$$

On voit que K est continue et montre que $f \simeq h$.

Definition 15 (Classes d'homotopie)

On note [X,Y] l'ensemble des classes d'homotopies d'applications $f:X\to Y$.

 $C'est\ donc\ C(X,Y)_{\geq}$.

Lecture 6: Homotopies

Mon 14 Mar

Definition 16 (Espaces Homotopes)

Deux espaces X et Y sont homotopes ou homotopiquement equivalent, note $X \simeq Y$, s'il existe $f: X \to Y$ et $g: Y \to X$ tel que

$$g \circ f \simeq \mathrm{Id}_X \ et \ f \circ g \simeq \mathrm{Id}_Y$$

On dit que f et g sont des equivalences homotopiques et qu'elles sont inverses homotopiques l'une de l'autre.

Proposition 33

$$CX \simeq *$$

Preuve

 $\textit{Posons } CX = {}^{\textstyle X} \times {}^{\textstyle I}\!/_{\textstyle X} \times 0.$

On pose $f: * \rightarrow CX$ par f(*) = [x, 1] et on prend $g: CX \rightarrow *$.

On a $g \circ f = \mathrm{Id}_*$, il reste a voir que $f \circ g \simeq \mathrm{Id}_{CX}$. On construit une homotopie $H: CX \times I \to CX$, defini par

$$H([x,t],s)\mapsto [x,ts]$$

C'est une application (trivialement bien definie) et c'est une homotopie entre $f\circ g\simeq \mathrm{Id}_{CX}$

Remarque

Si f et sont des applications pointees $(X, x_0) \to (Y, y_0)$ qui sont homotopes au sens non pointe, il est faux en general que $f \simeq_* g$ au sens pointe.

Par exemple $f, g: S^1 \to S^1 \bigvee S^1$, f est donnee par a et g est donnee par $b \star a \star b^{-1}$ (concatenation).

On a que $f \simeq g$ pour $f_t: S^1 \to S^1 \bigvee S^1$ donne par $b|_{[1-t,1]} \star a \star \overline{b}|_{[0,t]}$

2.2 Attachement de cellules

 $\underline{\mathrm{But}}: f \simeq g: A \to X, \, \mathrm{alors}$

$$X \cup_f CA \simeq X \cup_G CA$$

Proposition 35

Si $f, g: A \to X$ sont homotopes, alors $X \cup_f CA \simeq X \cup_g CA$

Preuve

Pour comparer les deux espaces $Y = X \cup_f CA$ et $Y' = X \cup_g CA$, on construit des applications $h: Y \to Y'$ et $k: Y' \to Y$.

On definit $h: Y \to Y'$ par la propriete universelle du pushout.

On choisit $\iota':X\to Y'$ l'application donnee par la construction de Y'.

On pose

$$\alpha: CA \to Y'[a,t] \qquad \mapsto \begin{cases} H(a,2t) \text{ si } t \leq \frac{1}{2} \\ [a,2t-1] \text{ si } t > \frac{1}{2} \end{cases}$$

Si t = 0, alors H(a, 0) = f(a) donc le diagramme commute.

Si $t = \frac{1}{2}$, H(a, 1) = g(a). On construit k comme h, mais avec H(-, 1 - t).

On doit montrer que $k \circ h \simeq \operatorname{Id}_Y$ (et de meme $h \circ k \simeq \operatorname{Id}_{Y'}$)

Corollaire 36

$$Si\ f,g:S^{n-1}\to X\ et\ f\simeq g,\ alors\ X\cup_f e^n\simeq X\cup_g e^n.$$

Corollaire 37

Si $f: A \to X$ est homotope a c_x constante, alors $X \cup_f CA \simeq X \bigvee \sum A$

2.3 Homotopie et π_0

Soit $S_0 = \{\pm 1\}$ sphere unite de \mathbb{R} .

On etudie les applications pointees de $(S_0, 1) \to (X, x_0)$. Ainsi $f(1) = x_0$ et f(-1) = x abritraire.

Deux telles applications f donnee par x et f' donee par x' sont homotopes (au sens pointe) s'il existe une homotopie pointee

$$H: S^0 \times I \to X$$

H est donc simplement donne par H(-1,t), un chemin dans X de x vers x'. Donc x et x' sont dans la meme composante connexe par arcs.

Proposition 38

L'ensemble $\pi_0 X$ des composantes connexes par arcs est en bijection avec $[S_0, X]_*$

2.4 Invariance Homotopique

Soit $f: X \to Y$, elle induit une application

$$f_*: [A, X] \rightarrow [A, Y]$$

$$[g] \mapsto [f \circ g]$$

 $On\ veut\ montrer\ que\ l'application\ ci-dessus\ est\ bien\ definie.$

Si $g \sim g'$ via l'homotopie G, alors $f \circ g \simeq f \circ g'$ via $f \circ G$

Proposition 39

Si $f \simeq f': X \to Y$, alors $f_* = f'_*$.

Preuve

On choisit $H: X \times I \to Y$ une homotopie entre H(-,0) = f et H(-,1) = f'.

On veut montrer que $f \circ g \simeq f' \circ g$.

On construit $G: A \times I \to X \times I \to Y$ en envoyant

$$(a,t)\mapsto (g(a),t)\mapsto H(g(a),t)$$

Corollaire 40

Si $X \simeq Y$, alors $[A, X] \simeq [A, Y]$ comme ensembles.

Preuve

On a $f: X \to Y$ et $f': Y \to X$ inverses homotopes l'une de l'autre. Alors $[A, X] \to [A, Y] \to [A, X]$

Lecture 7: Groupe Fondamental

Mon 21 Mar

2.5 Groupe Fondamental

Un lacet

$$\alpha:I\to X$$

est une application satisfaisant $\alpha(0)=x_0=\alpha(1)$ ce qui signifie qu'il existe une application induite

$$\overline{\alpha}:S^1\to X$$

Et on note alors

$$\pi_1(X,x_0)=\pi_1X=[(S^1,1),(X,x_0)]$$

 $\pi_1 X$ a une structure de groupe donnee par la concatenation de lacets $\alpha \star \beta$

Definition 17 (Pinch and Fold)

L'application pinch

$$pinch: \sum A = {}^{A} \times {}^{I} /\!\!\! \sim \rightarrow \sum {}^{A} /\!\!\! /_{A \times \frac{1}{2}} \simeq \sum A \vee \sum A$$

Definition 18 (Fold)

Le pliage est une application

$$\nabla: X \vee X \to X$$

definie par la propriete universelle du pushout du diagramme $X \leftarrow * \rightarrow X$ avec le cone $\mathrm{Id}_X: X \rightarrow X$

La concatenation de deux lacets $\alpha, \beta: S^1 \to X$ est representee par

$$\alpha * \beta : S^1 \xrightarrow{\mathrm{pinch}} S^1 \vee S^1 \xrightarrow{\alpha \vee \beta} X \vee X \xrightarrow{\nabla} X$$

On a vu que la concatenation equipe $[S^1,X]_*$ d'une structure de groupe. L'associativite du groupe fondamental revient a dire que le diagramma suivant commute : A REMPLIR

En fait le groupe fondamental π_1 est un foncteur $\top_* \to Gr$, des espaces pointes vers les groupes

Proposition 41

Une application pointee $f: X \to Y$ induit un homomorphisme de groupes $f_*: \pi_1 X \to \pi_1$

Preuve

On sait que la postcomposition avec f induit une application $f_*: [S_1, X]_* \to [S_1, Y]_*$.

On montre que c'est un homomorphisme.

Soient $\alpha, \beta: S^1 \to X$, pointees, alors le diagramme suivant commute A REMPLIR

On a que 1 et 2 commutent et 3 commute aussi par la propriete universelle \square

On souhaite calculer $\pi_1(X \times Y)$, on note $C_*(S^1, X)$ l'ensemble des applications pointees $\alpha: S^1 \to X$.

Le groupe $\pi_1(X)$ en est un quotient $[S^1,X]_* = C_*(S^1,X)_{\simeq}$.

La propriete universelle du produit est qu'une application $\omega: S^1 \to X \times Y$ est donnee par ses projections $p_1 \circ \omega$ et $p_2 \circ \omega$, ie.

$$F: C_*(S^1, X) \times C_*(S^1, Y) \to C_*(S^1, X \times Y)$$
$$(\alpha, \beta) \mapsto (\omega: S^1 \to X \times Y)$$

est une bijection d'inverse

$$G: C_*(S^1, X \times Y) \to C_*(S^1, X) \times C_*(S^1, Y)$$

donne par la projection.

Proposition 42

Le foncteur π_1 preserve les produits.

Preuve

Les bijections F et G passent au quotient.

On montre que si $\alpha \simeq \alpha', \beta \simeq \beta'$, alors $F(\alpha, \beta) \simeq F(\alpha', \beta')$ et de meme, si $\omega \simeq \omega'$, alors la postcomposition par p_i donne des applications homotopes. La compatibilite avec la structure de groupes vient du fait que G est definie par $(p_1)_*$ et $(p_2)_*$ sur les deux composantes.

2.6 Surfaces

Definition 19 (Surface)

Une surface S est un espace topologique connexe par arcs, compact, sans bord tel que tout point $s \in S$ admet un voisinage ouvert U homeomorphe a D^2 avec $\partial U \simeq S^1$

Definition 20 (Somme connexe)

Soient S et T deux surfaces, la somme connexe S#T est la surface obtenue en choisissant $s\in S, t\in T$, des voisinages $s\in U\simeq D^2$ et $t\in V$ et un homeomorphisme $f:\partial U\to S^1\to \partial V$ et en recollant

$$S\#T = {(S \setminus U) \coprod}_{x \simeq f(x)} \forall x \in \partial U$$

Remarque

S#T est bien defini (sans preuve), de plus

$$T \# S^2 \simeq T$$

Exemple

 $T^2 \# T^2$ est une surface de genre 2, un tore a deux trous.

Lecture 8: Tore a deux trous

Exemple

Posons $T = S = T^2$, on construit $T^2 \# T^2$, un tore a deux trous.

$$T^2 = I \times I /_{\sim} = \mathbb{R}^2 /_{\mathbb{Z}^2}.$$

On va choisir des points s,t dans S et T respectivement de coordonnees $(\frac{4}{5}, \frac{4}{5})$ et $(\frac{1}{5}, \frac{4}{5})$.

Mon 28 Mar

On choisit U et V comme deux goutes autour de s respectivement V.

Le quotient du pentagone par $A \sim A'$ donne un espace homeomorphe a $I \times I \setminus U$.

Lecture 9: Theorie combinatoire des groupes

Mon 28 Mar

2.7 Bouteille de Klein

Soit K la bouteille de Klein, quotient de I^2 . On comprend que K s'ecrit comme

$$K = (S_a^1 \vee S_b^1) \cup_{abab^{-1}} e^2$$

On decoupe $I \times I$ le long de deux segments verticaux le long de $(\frac{1}{3}, t)$ et $(\frac{2}{3}, t)$ Ainsi, K est un quotient de trois bandes verticales, et aussi de deux bandes A_2 et $A_1 \coprod A_3/b' \sim b''$.

3 Theorie Combinatoire des Groupes

But : Decrire et manipuler des groupes de maniere agreable pour pouvoir construire des pushouts.

3.1 Groupes libres

Exemple

Le groupe ayant un seul generateur a, sujet a aucune relation autre que les axiomes de groupe est le groupe $\{a^n|n\in\mathbb{Z}\}/a^0=1\simeq\mathbb{Z}$.

On observe que pour tout groupe $G \hom_{Gr}(F(a), G) \simeq \hom_{Set}(\{a\}, UG)$.

Definition 21 (Groupe libre)

Soit I un ensemble, le groupe libre F(I) a I generateur est obtenu en associant a chaque indice $\alpha \in I$ un generateur $x_{\alpha} \in F(I)$.

Tous les mots sont obtenus par concatenation de x_{α}^{n} pour $n \in \mathbb{Z}$ avec les identifications $x_{\alpha}^{0} = 1, 1 \cdot x_{\alpha} = x_{\alpha} = x_{\alpha} \cdot 1$ et $x_{\alpha} x_{\alpha}^{-1} = 1$

De la construction de F(I), on comprend qu'un homomorphisme $\phi: F(I) \to G$ est determine et meme equivalent a la donnee des images $g_{\alpha} = \phi(x_{\alpha})$.

Ces isomorphismes etant naturels, on a que

Proposition 47

Le foncteur F(-) est adjoint a gauche de U.

Le groupe libre abelien est un quotient de F(a,b) via $\phi: F(a,b) \to \mathbb{Z} \times \mathbb{Z}$ determine par $\phi(a) = (1,0)$ et $\phi(b) = (0,1)$.

 $\ker \phi$ contient $aba^{-1}b^{-1}=[a,b]$, ainsi, il contient aussi $[a,b]^n$ pour $n\in\mathbb{Z}$ qui forment un sous-groupe cyclique infini dans F(a,b).

Cependant, ce sous-groupe n'est pas normal et en fait ker ϕ est le sous-groupe

normal engendre par [a, b].

3.2 Presentations

Lemme 48

Tout groupe est quotient d'un groupe libre.

Preuve

Soit G un groupeet $\{g_{\alpha}|\alpha\in I\}$ un ensemble de generateurs (par exemple tous les $g\in G$).

On definit $\phi: F(I) \to G: x_{\alpha} \mapsto g_{\alpha}$, alors ϕ est surjective.

Definition 22

Soit $\phi: F(I) \to G$ un homomorphisme surjectif. Un element de $\ker \phi$ represente par un mot r_{β} en les generateurs x_{α} est un relateur. Pour un choix de generateurs, $\beta \in J$ de $\ker \phi$ comme sous-groupe normal de F(I) on appelle $\langle x_{\alpha}, \alpha \in I | r_{\beta}, \beta \in J \rangle$ une presentation de G. Chaque relateur correspond a une relation $r_{\beta} = 1$ dans le quotient de F(I)

Autrement dit G est isomorphe a ce quotient.

3.3 Graphes de Cayley

On cherche a representer geometriquement un groupe donne par une presentation.

Definition 23 (Graphe de Cayley)

Soit $G = \langle x_{\alpha} | r_{\beta} \rangle$, le graphe de Cayley $\Gamma(G, \{x_{\alpha}\})$ est le graphe oriente et colore dont les sommets sont $g \in G$ et les aretes relient g et gx_{α} , oriente de g vers gx_{α} , de couleur α .

Remarque

Comme espace topologique, ce graphe est un quotient d'intervalles, un pour chaque arete, et on identifie les sommets a l'element du groupe voulu.

Lecture 10: Amalgamations

Mon 04 Apr

3.4 Produits libres

Soit $G = \langle x_{\alpha} | r_{\beta} \rangle$ et $H = \langle y_{\gamma} | s_{\delta} \rangle$, on forme le produit libre

$$G * H = \langle x_{\alpha}, y_{\gamma} | r_{\beta}, s_{\delta} \rangle$$

Proposition 50

Le produit libre G * H est le coproduit de G et H dans la categorie des groupes, ie. $hom(G * H, M) \simeq hom(G, M) \times hom(H, M)$ pour tout groupe M.

Preuve

Soit $G \hookrightarrow G * H \hookleftarrow H$.

Soit $\omega: G*H \to M$, alors on peut lui associer $\omega \circ \iota$ et $\omega \circ j$.

Conversement, etant donne $\phi: G \to M$ et $\psi: H \to M$, montrons que

 $\exists ! \omega : G * H \to M \ tel \ que \ \omega \circ \iota = \phi \ et \ \omega \circ j = \psi.$

Pour l'existence, on definit $\tilde{\omega}: F(x_{\alpha}, y_{\gamma}) \to M$.

Comme $\phi(r_{\beta}) = 1 = \psi(s_{\delta})$, $\tilde{\omega}$ passe au quotient et induit une application $\omega : G * H \to M$.

L'unicite de ω suit du fait que ce soit une colimite.

Remarque

On definit de la meme facon un produit libre d'un nombre arbitraire de groupes.

3.5 Pushouts de groupes

Soient $\alpha:K\to G$ et $\beta:K\to H$ deux homomorphismes, on veut construire le pushout de $G\leftarrow K\to G$

Definition 24 (Pushout)

Le pushout ou amalgame $G *_K H$ est le quotient de $G *_H H$ par le sousgroupe normal genere par les elements de la forme $\iota(\alpha(x))j(\beta(x)^{-1})$

On appelle aussi i et j les compositions $G\to G*H\to G*_KH$ et $H\to G*H\to G*_KH.$

On a ainsi un carre commutatif

$$\begin{array}{ccc} K & \stackrel{\alpha}{\longrightarrow} G \\ \beta \Big\downarrow & & \downarrow^{\iota} \\ H & \stackrel{j}{\longrightarrow} G *_{K} H \end{array}$$

Proposition 52

Le pushout est un pushout.

On construit $\tilde{\omega}: G*H \to M$ par la propriete universelle du produit libre (a l'aide de ϕ et ψ).

Cet homomorphisme $\tilde{\omega}$ passe au quotient parce que $\tilde{\omega}(\iota(\alpha(x))j(\beta(x))^{-1}) = \psi(\alpha(x))\psi(\beta(x))^{-1} = 1$ et on a une application induite $\omega: G*_K H \to M$. L'unicite est immediate.

4 Seifert-van Kampen

On souhaite calculer le groupe fondamental d'un pushout d'espaces et l'identifier.

4.1 Groupe fondamental d'un recollement

Soient $A, B \subset X, X = A \cup B$, deux sous-espaces ouverts tels que $C = A \cap B$ est connexe par arcs.

On choisit $x_0 \in C$ comme point de base pour C, A, B et X.

On appelle $\iota:A\subset X,j:B\subset X,\alpha:C\subset A,\beta:C\subset B$.

On obtient alors un pushout :

$$\begin{array}{ccc}
C & \xrightarrow{\alpha} & A \\
\beta \downarrow & & \downarrow^{\iota} \\
B & \xrightarrow{j} & X
\end{array}$$

On va montrer que

$$\pi_1(C, x_0) \xrightarrow{\alpha_*} \pi_1(A, x_0)$$

$$\beta_* \downarrow \qquad \qquad \downarrow^{\iota_*}$$

$$\pi_1(B, x_0) \xrightarrow{j_*} \pi_1(X, x_0)$$

est un pushout.

Par la propriete universelle du pushout, ce carre nous fournit $\phi: \pi_1(A, x_0) *_{\pi_1(A, x_0)} \pi_1(B, x_0) \to \pi_1(X, x_0)$

Lemme 53

 ϕ est surjectif.

Soit $\gamma: I \to X$ un lacet base en x_0 .

Le recouvrement de X par A et B donne un recouvrement ouvert $\gamma^{-1}(A), \gamma^{-1}(B)$ de l'intervalle I, un espace metrique compact.

donc il existe un nombre de lebesgue $\delta > 0$ tel que tout sous-ensemble de I de diametre $< \delta$ est contenu dans $\gamma^{-1}(A)$ ou $\gamma^{-1}(B)$ (ou les deux.)

On choisit donc $n > \frac{1}{\delta}$, $n \in \mathbb{N}$ de sorte que $\gamma_{\left[\frac{k}{n}, \frac{k+1}{n}\right]}$ est un chemin dans A ou dans B.

Pour alternet les images dans A et dans B, on concatene les chemins qui se suivent dans le meme ouvert pour choisir $s_0=0 < s_1=\frac{k_1}{n} < \ldots < \frac{k_r}{n}=1$ de telle sorte que γ envoie $[s_0,s_1]$ dans (disons) A, $[s_1,s_2]$ dans B etc. On definit $\gamma_i=\gamma|_{[s_{i-1},s_i]}$.

Comme C est connexe par arcs, il existe des chemins γ^i dans C, allant de x_0 a $\gamma(s_i)$.

On decompose a homotopie pres, le chemin γ en concatenation de lacets (d'abord des chemins).

$$\gamma \simeq \gamma_1 \star \gamma_2 \star \dots \star \gamma_r
\simeq \gamma_1 \star \overline{\gamma^1} \star \gamma^1 \star \dots
\simeq \underbrace{(\gamma_1 \star \overline{\gamma^1})}_{\omega_1} \star \underbrace{(\gamma^1 \star \gamma_2 \star \overline{\gamma^2})}_{\omega_2} \star \dots$$

ou ω_1 est un lacet base en x_0 et entierement contenu dans A ou dans B. Alors $[\gamma] = [\omega_1]....[\omega_r] = i_*(\omega_1)j_*(\omega_2)...$

Pour montrer que ϕ est un isomorphisme, on cherche a identifier le noyau de $\pi_1 A * \pi_1 B \to \pi_1 A *_{\pi_1} C \pi_1 B \to \pi_1 X$.

Soit γ la concatenation de lacets $\gamma_1 * \ldots * \gamma_r$, avec γ_{2i+1} dans A, et γ_{2i} dans B. On suppose que $[\gamma] = 1$ dans $\pi_1 X$, ie. que $\gamma \simeq c_{x_0} \iff \exists H: I^2 \to X$ entre γ et c_{x_0} .

Par le meme argument de nombre de lebesgue, on decoupe le carre en rectangles que H envoie entierement dans A ou dans B.

Lecture 11: Fin Seifert Van-Kampen

Mon 11 Apr

On veut montrer que l'application ϕ definie la derniere fois est une application de $\ker N = \ker(\pi_1 A * \pi_1 B \to \pi_1 A *_{\pi_1 C} \pi_1 B)$.

On decoupe donc $I \times I$ en nm carres tels que $H|_{C_k} \subset A$ ou B.

On construit ω_k comme indique sur le dessin.

On a $\omega_0 = c_{x_0}$ et $\omega_{nm} = \gamma$.

Ainsi, $H|_{C_k}$ fournit une homotopie entre ω_k et ω_{k-1} .

On va montrer que $\omega_k * \overline{\omega_{k-1}} \in N$.

En effet, alors $\omega_{nm} = \omega_{nm} * \overline{\omega_{nm-1}} \dots * \omega * \overline{\omega_0}$.

Pour chaque k, on fixe $H|_{C_k}$ est vue dans ou B si elle est dans $C = A \cap B$.

De meme, pour chaque chemin correspondant aux 4 cotes du rectangle.

Mettons que pour k, l'homotopie est dans A, alors les cotes "a gauche et en haut" sont choisis dans A.

Ainsi, les deux autres sont choisis dans A ou B selon k = 1 et k - n.

S'ils sont tous dans A, alors $H|_{C_k}$ est une homotopie dans A entre chemin dans A, $\omega_k * \overline{\omega_{k-1}} \in N$.

Supposons qu'un cote au moins est un chemin dans B

$$\omega_k * \overline{\omega_{k-1}} = \lambda_1 * \lambda_2 * \overline{\lambda_2} * \lambda_3 = \lambda_1 * \lambda_3$$

Comme le point y (le cote en haut a droite du carre) appartient a C, on choisit un chemin γ^1 de H(y) a x_0 , de meme γ^2 pour z (le point en bas a droite du carre).

$$\lambda_1 * \lambda_3 = \lambda_1 * \gamma^1 * \overline{\gamma^1} * \lambda_4 * \gamma^2 * \overline{\gamma^2} * \lambda_5$$

Le chemin λ_4 est dans B, appelons λ_4' le meme chemin vu dans A, $H|_{C_k}$ est une homotopie dans A tel que le chemin $\lambda_1 \simeq \overline{\lambda_5} * \overline{\lambda_4'}$

$$= \overline{\lambda_5} * \gamma^2 * \overline{\gamma^2} * \overline{\lambda_4'} * \gamma^1 * \overline{\gamma^1} * \lambda^4 * \gamma^2 * \overline{\gamma^2} * \lambda_5$$
$$= \overline{\epsilon} * \overline{\alpha} * \beta * \epsilon$$

Represente un conjugue par ϵ dans $\pi_1 A * \pi_1 B$ du meme lacet λ_4 vu dans B ou λ_4' vu dans A.

Par definition de $\pi_1 A *_{\pi_1 C} \pi_1 B$, c'est un element de N

Exemple

$$\mathbb{R}P^2 = D^2 / \sim \simeq S^1 \cup_2 e^2.$$

Pour recouvrir $\mathbb{R}P^2$ par des ouverts, on epaissit $\mathbb{R}P^1$ et on amincit e^2 .

On pose $A=\dot{D}_{\frac{3}{4}}, B=D^2\setminus D_{\frac{1}{4}}.$

Comme A, B, C sont satures, q(A), q(B), q(C) sont ouverts, on a donc

$$a(A) = *, a(B) = a(S^1) = S^1 \text{ et } a(C) = a(S^1) = S^1$$

L'inclusion $C \subset B$ induit une application $q(C) \to q(B)$

4.2 Groupe fondamental d'un Wedge

On suppose que tous nos espaces sont pointes et bien pointes dans le sens ou le point de base x_0 admet un voisinage ouvert et contractile au sens pointe, $U \simeq \{0\}$ et l'homotopie $\mathrm{Id}_U \simeq c_{x_0}$ fixe x_0

Exemple

 S^1 est bien pointe, toutes les surfaces aussi, le peigne du topologue ne l'est pas en (0,1).

Lemme 56

 $Si~X,Y~sont~bien~pointes,~X\vee Y~aussi~(~X\times Y~aussi).$

Preuve

Soient $U \ni x_0, V \ni y_0$ des voisinages contractiles de x_0 resp. y_0 . Dans $X \lor Y = X \coprod Y/x_0 \sim y_0$, on choisit l'image de $U \coprod V \subset X \coprod Y$. Les homotopies $H : \mathrm{Id}_U \simeq c_{x_0}, F : \mathrm{Id}_V \simeq c_{y_0}$ donne une homotopie $H \coprod F : \mathrm{Id}_{U \coprod V} \to c_{x_0} \coprod c_{y_0}$ passe au quotient comme elle preserve le point de base. \square

Proposition 57

Soient $(X, x_0), (Y, y_0)$ deux espaces bien pointes, alors $\pi_1(X \vee Y) \simeq \pi_1 X * \pi_1 Y$

Preuve

On prend $A = X \vee V$ et $B = Y \vee U$, alors on conclut par le lemme ci-dessus et Seifert.

Lecture 12: Retractes

Thu 21 Apr

Definition 25 (Retracte)

Un sous-espace $\iota: A \hookrightarrow X$ est un retracte de X s'il existe une retraction $r: X \to A$ tel que $r \circ \iota = \mathrm{Id}_A$.

Exemple

- 1. S^1 est un retracte de $S^1 \vee S^1$.
- 2. Tout point $x_0 \in X$ est un retracte de $X : X \to \{x_0\}$.

Remarque

 S^1 n'est pas un retracte du disque D^2 , il n'existe aucune application continue $r:D^2\to S^1$ tel que r(x)=x si $x\in S^1$.

Sinon $\pi_1 S^1 \xrightarrow{\iota_*} \pi_1 D^2 \xrightarrow{r_*} \pi_1 S^1$.

Si la composition $r \circ \iota$ etait l'identite, la composition $\mathbb{Z} \to 0 \to \mathbb{Z}$ serait l'identite, ce qui est impossible.

Definition 26 (Retracte de deformation)

Un retracte $\iota:A\hookrightarrow X$ est un retracte de deformation de X s'il existe une homotopie $\iota\circ r\simeq \operatorname{Id}_X$

Exemple

Le peigne du topologue P $\{(0,1)\}\subset P$ est un retracte de deformation. On definit l'homotopie H en trois temps.

- 1. Contracter les dents du peigne
- 2. Contracter la base du peigne.

3. Remonter en (0,1)

Cette homotopie n'a pas fixe le point (0,1)

Definition 27 (Retracte de deformation fort)

Un retracte de deformation $\iota: A \hookrightarrow X$ est un retracte de deformation fort si l'homotopie $H: \iota \circ r \simeq \operatorname{Id}_X$ peut etre choisie relative a A, ie, H(a,t) = a pour tout $t \in I$ et pour tout $a \in A$

Exemple (Le collier)

Soit A un espace et $Col(A) = A \times [0, \frac{3}{4}[$, l'inclusion de $A \times 0 \hookrightarrow Col(A)$ est un retracte de deformation fort.

On pose $r(a,t) = (a,0) \forall a \in A, \forall t$.

On definit donc $H: Col(A) \times I \to Col(A)$ en envoyant $(a,t,s) \mapsto (a,ts)$ qui verifie clairement toutes les hypotheses ci-dessus.

Lecture 13: Consequence de Seifert

Mon 25 Apr

Proposition 62

Soit $f: A \to X$ une application pointee avec A connexe par arcs. Soit $Y = X \cup_f CA$, alors $\pi_1 Y \simeq \pi_1 X *_{\pi_1 A} 1$

Preuve

Y est recouvert par q(X) et q(CA), mais ce ne sont pas des ouverts de Y, il faut les epaissir.

On pose $X' = q(X \coprod Col(A))$ et $C'A = A \times]\frac{1}{4}, 1]/A \times 1$ un "petit" cone ouvert.

On voit que $C'A \simeq *$ (comme CA) et C'A et X' sont des ouverts de Y car ce sont des images par q d'ouverts satures.

De plus, X' admet X comme retracte de deformation fort.

Enfin,
$$X' \cap C'A = q\left(Col(A) \cap (A \times]\frac{1}{4}, 1]\right)/A \times 1 = q\left(A \times]\frac{1}{4}, \frac{3}{4}\right) \simeq A$$
.

On peut donc appliquer le theoreme de Seifert van Kampen car A est connexe par arcs.

Pour conclure, on affirme que $j: C'A \cap X' \hookrightarrow X'$ induit $f_*: \pi_1A \to \pi_1X$. On considere $X' \hookrightarrow A' \times]\frac{1}{4}, \frac{3}{4}[\to A']$

4.3 Attachement de cellules standard

Si $Y = X \cup_f e^n$ Comme $\pi_1 S^{n-1} = 1$, pour $n \ge 3$ on a

Corollaire 63

 $Si \ n \geq 3, \ \pi_1 Y \simeq \pi_1 X.$

Si $n=2, \pi_1 Y \simeq \pi_1 X_{N_f}$ ou N_f est le sous-groupe normale engendre

$$par f_*(1) ou f_* : \mathbb{Z} \simeq \pi_1 S^1 \to \pi_1 X qui envoie 1 \mapsto f_*(1)$$

Par la proposition on a un pushout de groupes
$$\pi_1 X \leftarrow \pi_1 S^1 \rightarrow \pi_1(CS^1)$$
 qui est $\pi_1 Y$, donc $\pi_1 Y \simeq \pi_1 X *_{\pi_1 S^1} 1 \simeq {\pi_1 X}/{N_f}$

Il reste a etudier les attachements de 1 cellule.

If y a deux cas pour $f: S^0 \to (X, x_0)$.

SI f(-1) et x_0 ne sont pas dans la meme composante connexe, alors $\pi_1 Y = \pi_1(X, x_0) * \pi_1(X, f(-1))$.

Si x_1 et x_0 sont dans la meme composante connexe, alors f est homotope a l'application $g = c_{x_0}$ via γ un chemin entre x_0 et x_1 .

Alors $X \cup_f e^1 \simeq X \cup_g e^1$ (puisque des applications homotopes donnent des attachements homotopes) or puisque g est constante, ceci est homotope a $X \vee e^1$. Ainsi, si X est bien pointe, alors $\pi_1 Y \simeq \pi_1 X * \mathbb{Z}$.

4.4 Classification des surfaces

Rappel : Une surface est un espace compact, hausdorff et localement homeomorphe a \mathbb{R}^2 .

On va supposer connu que toute surface est triangularisable, ie. S est un quotient d'une reunion disjointe finie de triangles en identifiant uniquemenet des paires de cotes, a homeomorphisme pres.

On va supposer que S est le quotient d'un polygone P a 2k cotes $a'_1, \ldots, a'_k, a''_1, \ldots, a''_k$ ou a'_i et a''_i sont identifies deux a deux, et tous les sommets sont identifies a un point.

On reconnait dans cette description la somme connexe de i copies de $\mathbb{R}P^2$ et de tores.

Proposition 64

Si S est le quotient de P par une relation donnee par un mot w, P un 2k-gone et S' est le quotient de P par une relation donce par un mot w', P' un 2l gone, alors S#S' est le quotient d'un (2k+2l) gone par la relation donnee par ww'

Preuve

On appelle A_0, \ldots, A_{2k-1} les sommets de P et on choisit un voisinage U d'un point interieur dont le bord ne recontre ∂P qu'en A_0 .

De memme pour P' avec U' et $\partial U \cap P' = \{A'_0\}$.

Comme $P \setminus U$ est le quotient d'un (2k + 1)-gone dont les cotes sont $a'_1, a''_1, \ldots, a'_k, a''_k$ et b entre B_0 et A_0 .

Ici, B_0 est la deuxieme extremite de a_k'' .

La somme connexe est le quotient d'un (2k+1)-gone et un (2l+1)-gone, vu que le quotient d'un quotient est un quotient, S#S' est construite en identi-

fiant d'abord b et b' de sorte a obtenir un (2k+2l)-gone puis en identif	iant
les cotes 2 a 2 selon les instructions données par le mot parcouru de A_0	sur
le bord dans le sens trigonometrique.	
C'est bien la concatenation ww'.	