Probleme

- Tangentenproblem
 - Gerade, welche Funktionsgraph in x0 berührt
 - Tangentengleichung: $y = f(x_0) + k(x x_0)$
 - Steigung k ist zu bestimmen
 - * $k = \lim x \to x_0 \frac{f(x) f(x_0)}{x x_0}$
 - * Differenzenquotient
- Problem der ersten Näherung
 - $-\frac{f(x)-f(x_0)}{x-x_0} = k + r(x)$
 - r(x) Fehler
 - stetig, wenn Fehler gegen 0 geht

*
$$\frac{f(x)-f(x_0)}{x-x_0} = k + r(x) <==> k = \lim x \to x_0 \frac{f(x)-f(x_0)}{x-x_0}$$

- Problem der Momentangeschwindigkeit
 - * $\frac{s(t)-s(t_0)}{t-t_0}$ mittlere Geschwindigkeit
 - * $\lim t \overset{\circ}{\to} t_0 \frac{s(t) s(t_0)}{t t_0}$ Momentangeschwindigkeit zum Zeitpunkt t_0

Differenzierbarkeit

- differenzierbar, wenn
 - $f: [a,b] \rightarrow \mathbb{R} \text{ stetig}$
 - in jedem Punkt $x_0 \in [a,b]$ existiert der Grenzwert $\lim x \to x_0 \frac{f(x) f(x_0)}{x x_0}$
- f': [a,b]–> \mathbb{R} , x–> $\lim x \to x_0 \frac{f(x)-f(x_0)}{x-x_0}$ ist die erste Ableitung
- f in x_0 differenzierbar ==> f in x_0 stetig
 - Umkehrung gilt nicht

Rechenregeln

- f, g sind differenzierbar
- Summenregel

$$- (f+g)(x) = f(x) + g(x) = > (f+g)' = f' + g'$$

 \bullet Produktregel

$$- (f * g)(x) = > (f * g)' = f' * g + f * g'$$

• Kettenregel

$$- (f.g)'(x) = f'(g(x)) * g'(x)$$

• Quotientenregel

$$- \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

• Umkehrregel

$$-(f^{-1})' = \frac{1}{f'}$$

Ableitungen elementarer Funktionen

•
$$f(x) = x^n = > f'(x) = nx^{n-1}$$

•
$$f(x) = 1/x ==> f'(x) = -\frac{1}{x^2}$$

•
$$f(x) = 1/x^n ==> f'(x) = -nx^{-n-1}$$

$$\bullet \ f(x) = e^x ==> f'(x) = e^x$$

•
$$ln'(x) = \frac{1}{x}$$

$$\bullet \ (a^x)' == > a^x * ln(a)$$

 $[[{\rm test/a.md/Analysis}]]$