

Simulation-Based Autonomous Driving in Crowded City

Mahir Efe Kaya - Cem Şahin

Outline

- 1. Motivation and Introduction
- 2. State of Current Research
- 3. Methodology Used
- 4. Experimental Results
- 5. Discussion
- 6. Outlook
- 7. References

Motivation

SS 2017

 Growing urbanization leads to increased traffic congestion and challenges for conventional driving systems.

 Autonomous driving offers potential solutions to improve traffic flow, reduce accidents, and optimize transportation.

Chapter / Lecture Title

Introduction

 Goal: Understand the current state of the art methodologies and develop a simulation-based autonomous driving system to navigate crowded city environments efficiently and safely.

 Contribution: Advancing the current state of research by proposing a novel simulation-driven approach for urban autonomous driving.

State of the Current Research

 The landscape of autonomous driving technologies spans from basic driver-assistance systems to the pursuit of fully autonomous vehicles.

 Research contributions have been significant in areas like perception systems, decision-making algorithms, and sensor fusion techniques.

 Despite progress, autonomous systems face challenges posed by intricate urban scenarios, dynamic pedestrian interactions, and the inherent unpredictability of city traffic.

State of the Current Research

- Nvidia's ChaufferNet:
 - a. Features the perception, mapping, and planning layers
 - b. Uses diverse DNNs trained on high-quality, real-world driving data and synthetic data
 - c. Generates an optimal trajectory through a series of model-based and data-driven analyses

YOLO (You Only Look Once)

Unlike traditional object detection methods that require multiple passes over an image,
 YOLO performs detection in a single forward pass.

 YOLO divides the input image into a grid and predicts bounding boxes and class probabilities directly, all in one go.

 Remarkably fast inference times, making it well-suited for real-time applications like autonomous driving.

CARLA Leaderboard

- Pivotal platform for evaluating the performance of various autonomous driving algorithms within simulated urban environments
- Provides standardized scenarios and metrics, it facilitates fair comparisons between different approaches
- Accelerates the development cycle by enabling rapid prototyping, testing, and refining of autonomous algorithms

InterFuser

- #1 in CARLA Leaderboard
- Integrates information from multiple sensors like lidar, radar, and cameras, InterFuser enhances the overall perception system
- Addresses sensor limitations by compensating for each sensor's strengths and weaknesses, leading to improved reliability

Udacity Simulator

- Nvidia's CNN Architecture
 - ~50% completion rate on Track 1
 - ~40% completion rate on Track 2
- Udacity Source Code (Experimental)
 - Changing asphalt textures to increase dataset size
 - Trained U-Net Semantic Segmentation on road detection
 - Imitation Learning on top of Semantic Segmentation

Methodologies Used

- YOLO
 - Single Pass Detection
 - Anchor Boxes
 - Non-maximum Suppression
- Rules
- GRU

Methodologies Used

OpenCV

- Contour Detection and Marking Identification
- Refinement through Contour Size Thresholding
- Lane Marking Identification and Orientation Calculation

• Experimental:

- Semantic Segmentation
- Resnet
- Semantic Segmentation and Resnet
- Sift
- Histogram
- Ratio
- Thresholding
- Shape-matching

Initial Approach

- Aimed to develop a system akin to ChauffeurNet, a prominent end-to-end learning framework.
- YOLO was employed to detect proximate vehicles, enabling the creation of a social grid for our ego vehicle.
- Convolutional Neural Network (CNN) model was employed for lane following by the ego vehicle, also to derive the global path.
- Gated Recurrent Unit (GRU) model was trained to assimilate YOLO and CNN outputs, generating a secure and comfortable trajectory for the vehicle.

Revised Approach

- YOLO's capabilities were harnessed for the detection of nearby vehicles and traffic lights, enabling comprehensive scene perception.
- OpenCV's advanced tools, like FindContours, were integrated to discern lane lines accurately.
 Additionally, orientation was extracted from three images to guide the ego vehicle along the lane.
 - However, use of contours are computationally too expensive. Which lowered to FPS to a degree model wasn't able to react.
- These perceptual inputs were utilized to direct the vehicle's behavior, enforcing established rules.
- Rule-based decision-making was introduced, encompassing critical actions such as throttling and braking in response to the presence of leading vehicles.
- Further, the system adhered to fundamental traffic regulations, halting at red lights and proceeding on green signals.

Experimental Results

- High confidence on YOLO car detection
 - Allows for a smooth throttle/break sequence depending on the cars ahead
- Mid confidence on YOLO traffic light detection
- Highly dependant on object detection
 - No red light detection may result in illegal passes

Experimental Results

- OpenCV FloodFill
 - Fell short on lane markings
- Limited sensor information bottleneck
 - Depending only on visuals
- Simulator FPS bottleneck
 - Frames are processed with 5 seconds delay

Discussion

- First Approach
 - Despite considerable efforts, first approach did not yield the desired performance
 - Minimal social grid (can only detect cars ahead)
 - Problems with lane detection on conjunctions
- Second Approach
 - Basic rules to handle basic scenarios
 - Hard to maintain rule-based approach to complex scenarios
 - Holistic approach to cover weaknesses of trained models

- Advancing the field of autonomous driving will be guided by a concerted effort to refine and expand our methodologies
- Enhanced Dataset for Trajectory Planning
 - Augmentation of our training dataset for trajectory planning
 - By enriching our dataset with diverse and intricate driving scenarios
 - Cultivate a more robust and adaptable trajectory planning model.
 - Incorporating complex urban environments, various road layouts, and diverse traffic patterns will contribute to the efficacy of our system in real-world conditions.

- Sidewalk and Pedestrian Detection
 - Addressing the safety of pedestrians and incorporating them into our system's perception framework is an imperative direction.
 - Our research will focus on the integration of sophisticated detection mechanisms to identify pedestrians and discern their presence on sidewalks.
 - The inclusion of pedestrian detection will not only enhance the overall safety of our autonomous driving system but also adhere to crucial ethical considerations.

- Rule-Based Integration of Traffic Laws
 - An essential step towards enhancing the regulatory compliance of our autonomous driving system involves the integration of traffic laws.
 - This entails incorporating rules such as speed limits, overtaking restrictions, and yielding to emergency vehicles into our decision-making framework.
 - The integration of traffic laws not only improves the legal adherence of our system but also fosters safer interactions within the broader traffic ecosystem.

- Continuous Learning and Adaptation:
 - In the dynamic landscape of autonomous driving, the capability for continuous learning and adaptation is paramount.
 - We aim to imbue our system with the capacity to learn from real-world driving experiences and adapt its behavior accordingly.
 - By leveraging reinforcement learning techniques and ongoing data collection, our system will evolve to navigate novel and complex scenarios.

References

- 1. Nvidia Blog End-to-End Deep Learning for Self-Driving Cars
- 2. Nvidia ChaufferNet
- 3. <u>InterFuser InterFuser</u>
- 4. <u>InterFuser ReasonNet</u>
- 5. <u>Trajectory-Guided Control Prediction (TCP)</u>

Thank you for listening!