×

Quiz 1

5/5 questions correct

Quiz passed!

Continue Course (/learn/practical-machine-learning/lecture/Bu9ns/caret-package)

Back to Week 1 (/learn/practical-machine-learning/home/week/1)

1.

Which of the following are components in building a machine learning algorithm?

aigorit	IIIII!
	Deciding on an algorithm.
Wel	l done!
	Training and test sets
Wel	l done!
	Artificial intelligence
Wel	l done!
	Statistical inference

Well done!

	Qui2 1 00010010
	Machine learning
Wel	I done!
~	2.
accura	se we build a prediction algorithm on a data set and it is 100% te on that data set. Why might the algorithm not work well if we a new data set?
0	Our algorithm may be overfitting the training data, predicting both the signal and the noise.
Wel	l done!
0	We have too few predictors to get good out of sample accuracy.
0	We have used neural networks which has notoriously bad performance.
0	We may be using a bad algorithm that doesn't predict well on this kind of data.
~	3.
What a	are typical sizes for the training and test sets?
0	20% test set, 80% training set.
0	100% training set, 0% test set.
0	90% training set, 10% test set
0	60% in the training set, 40% in the testing set.
Wel	l done!

What are some common error rates for predicting binary variables (i.e. variables with two possible values like yes/no, disease/normal, clicked/didn't click)?

	R^2
Wel	l done!
	Sensitivity
Wel	l done!
	Median absolute deviation
Wel	l done!
	Correlation
Wel	l done!
	Root mean squared error
Wel	l done!

Suppose that we have created a machine learning algorithm that predicts whether a link will be clicked with 99% sensitivity and 99% specificity. The rate the link is clicked is 1/1000 of visits to a website. If we predict the link will be clicked on a specific visit, what is the probability it will actually be clicked?

89.9%

01/03/2016 Quiz 1 | Coursera

O	90%
0	9%
Wel	ll done!