

Error Control Correction and Detection Schemes

Error Control

- Split binary data stream in to words
 - Each word is m bits long
 - Add r extra bits in special, known positions
 - The r bits can be examined by the receiver to
 - Detect if bits have been incorrectly flipped
 - Locate and correct the flipped bits
 - The r bits are then removed and the m-bit data word is delivered

000	0000
001	0011
010	0101
011	0110
100	1001
101	1010
110	1100
111	1111

- Parity Bits detect single-bit errors in a given data word
 - m can be arbitrarily large
 - But if 2 bits are flipped instead of one the parity check will pass and an error will be missed
 - Larger m increases likelihood of this

- For any values of m and r we can say some things about a given hypothetical code
 - A scheme produces 2^{m+r} receivable words
 - 2^m will be valid words
 - 2^{m+r} 2^m will be invalid words
- An error detection scheme can tell the difference between a valid and an invalid word
- An error *correction* scheme can work out which of the 2^m valid words an invalid word must have been upon transmission.

- Some number of bit-flips = d will change a valid word in to another valid word
 - d is the hamming distance of the code
 - e.g. Our 4-bit parity scheme required just two flips to go from one valid word to another, d = 2
 - An error detection scheme to detect ≤ d errors must have a hamming distance = d+1
 - Why...?

 An error detection scheme to detect ≤ d errors must have a hamming distance = d+1

 To correct single errors, an m-bit scheme must have r bits such that:

$$(m + r + 1)2^m \le 2^{m+r}$$

Why?

- Explanation 1 (Reserve Invalid Words):
 - We have 2^m valid words (see our 4-bit parity code)
 - For each one, take each bit in turn and flip it
 - This generates m+r invalid words

- Explanation 1 (Reserve Invalid Words):
 - In total there are 2^{m+r} 2^m invalid words
 - Each has distance = 1 from a valid original
 - The receiver will always be able to correct to the valid original if it receives one of these words, because no other valid word is within distance = 1
 - (This is the fundamental principle of error correcting codes)

- Explanation 1 (Reserve Invalid Words):
 - Because we need to keep this property, each valid word 'reserves' m+r invalid words
 - The total number of possible words is 2^{m+r}
 - Therefore:

$$2m + (m+r)2m = (m+r+1)2m$$

- Explanation 2 (Encode Enough Positions)
 - Start by rearranging the equation a bit:

```
(m+r+1)2^m \le 2^{m+r}

(m+r+1) \le 2^r (divide both sides by 2^m)
```

- 2^r is the number of distinct words we can make out of the *r* parity bits.
- In order to correct errors, the parity word must tell us both
 - · if an error has occurred
 - if one has, which bit position is wrong

- Explanation 2 (Encode Enough Positions)
 - To do this, we need to have 'parity words' for
 - No error,
 - Error in position 1
 - Error in position 2
 - •
 - Error in position *m*+*r*
 - Therefore 2^r must be able to express this many positions, and so

$$(m+r) + 1 \le 2^r$$

(That is, we must have enough parity 'words' to express 'error' in each bit position + 1 word for 'no errors')

- Optimal error correction for single-bit errors
 - Use multiple parity bits (r > 1)
 - Each parity bit checks a subset of the data bits
 - Cross check which parities are wrong to determine which data bit has been flipped
- Central idea:
 - The set of parity bits describe the position of the incorrect bit

- A Simple Code
 - -m = 4
 - -r = 3
 - r¹ checks m1, m2, m3
 - r² checks m2, m3, m4
 - r³ checks m1, m2, m4

- An Example:
 - For the given data bits '0011'
 - What should our 3 parity bits be?

$$\begin{array}{c}
\mathbf{r^1} \longrightarrow \mathbf{m^1} \ \mathbf{m^2} \ \mathbf{m^3} \\
\mathbf{r^2} \longrightarrow \mathbf{m^2} \ \mathbf{m^3} \ \mathbf{m^4} \\
\mathbf{r^3} \longrightarrow \mathbf{m^1} \ \mathbf{m^2} \ \mathbf{m^4}$$

- Another Example:
 - For the given data bits '1010'
 - What should our 3 parity bits be?

- An Example:
 - Flip any one data bit and at least two parity bits will be incorrect
 - Each data bit is checked by a different set of parity bits, so we always know which one was flipped

- An Example:
 - The pattern of correct/incorrect in the parity bits form parity words
 - Each unique parity word describes the position of the error in the data word

r ¹	r ²	r ³	error bit
*		*	m^1
*	*	*	m^2
*	*	✓	m^3
/	*	*	m ⁴

- But isn't there a problem here...?
 - r¹ checks m¹, m², m³
 - r² checks m², m³, m⁴
 - r³ checks m¹, m², m⁴

- But isn't there a problem here...?
 - r¹ checks m¹, m², m³
 - r² checks m², m³, m⁴
 - $-r^3$ checks m^1 , m^2 , m^4 ...
 - ... so who checks $r^{1,2,3}$?

• In a real Hamming code, the *r* bits are in positions 2⁰, 2¹, 2²,...,2ⁱ

 They check the data bits, but they also check each other...

 Each bit has its position expressed as a sum of powers of 2

$$-$$
 e.g. m^4 in position $7 = 4 + 2 + 1 = 2^2 + 2^1 + 2^0$

 A position is checked by the parity bits in the positions used to calculate its sum

	1	2	3	4	5	6	7	8	9	10	11	12
r ¹ (1)	✓											
r ² (2)		√	√			/	√			√	√	
r ³ (4)				√	√	/	√					✓
r ⁴ (8)								√	√	√	√	✓

	1	2	3	4	5	6	7	8	9	10	11	12
r ¹ (1)	✓											
r ² (2)		√	√			√	√			√	√	
r ³ (4)				√	√	√	√					✓
r ⁴ (8)								✓	✓	√	√	✓

	1	2	3	4	5	6	7	8	9	10	11	12
r ¹ (1)	✓											
r ² (2)		√	√			√	√			√	√	
r ³ (4)				√	√	√	√					✓
r ⁴ (8)								✓	✓	√	√	✓

• error in m²...

1 2 3 4 5 6 7 8 9 10 11 12 1 0 0 1 1 0 0 1 1 0 0 r¹ r² m¹ r³ m² m³ m⁴ r⁴ m⁵ m⁶ m⁷ m⁸

	1	2	3	4	5	6	7	8	9	10	11	12
r ¹ (1)	✓											
r ² (2)		√	√			√	√			√	√	
r ³ (4)				√	√	√	√					✓
r ⁴ (8)								✓	✓	/	√	✓

• ...parity incorrect for r¹ and r³

• error in m⁶...

1 2 3 4 5 6 7 8 9 10 11 12 1 0 0 1 0 0 0 1 0 0 r¹ r² m¹ r³ m² m³ m⁴ r⁴ m⁵ m⁶ m⁷ m⁸

	1	2	3	4	5	6	7	8	9	10	11	12
r ¹ (1)	✓											
r ² (2)		√	√			√	√			√	√	
r ³ (4)				√	√	√	√					✓
r ⁴ (8)								✓	✓	/	√	✓

• ...parity incorrect for r² and r⁴

error in r⁴...

	1	2	3	4	5	6	7	8	9	10	11	12
r ¹ (1)	✓											
r ² (2)		√	√			√	√			√	√	
r ³ (4)				√	√	√	√					✓
r ⁴ (8)								✓	✓	/	√	✓

• ...parity incorrect for r⁴

- General case...
 - Iterate over each parity bit...
 - If the bit is not in correct parity, add the value of its position to a counter...
 - At the end...
 - ...if the counter == 0 there are no errors
 - ...else, the counter's value indicates the incorrect position
 - Why?
 - Because it is a sum of the incorrect parity positions
 - NOTE! Each position is described by a unique sum

Example:

$$5 = 4 + 1$$

 $6 = 4 + 2$
 $7 = 4 + 2 + 1$

- Iterate over each parity bit...
- If the bit is not in correct parity, add the value of its position to a counter...
- At the end...
 - ...if the counter == 0 there are no errors
 - ...else, the counter's value indicates the incorrect position

Example:

- Iterate over each parity bit...
- If the bit is not in correct parity, add the value of its position to a counter...
- At the end...
 - ...if the counter == 0 there are no errors
 - ...else, the counter's value indicates the incorrect position

Hamming Code Summary

- Hamming codes correct single bit errors in a given data word
 - Embed r parity bits at positions 2⁰, 2¹, 2², ...
 - Each parity bit checks a unique subset of the other bit positions (and itself)
 - If a single bit error occurs a unique combination of the parity bits will be incorrect
 - This unique combination is used to locate and correct the flipped bit