Deep-Learning-Aided Successive-Cancellation Decoding of Polar Codes

Seyyed Ali Hashemi¹, Nghia Doan², Thibaud Tonnellier², Warren Gross²

¹Stanford University, USA ²McGill University, Canada

Asilomar Conference on Signals, Systems, and Computers Pacific Grove, USA November 5, 2019

Motivation

- ▶ Polar codes: selected for the eMBB control channel in 5G
- 5G has stringent requirements:
 - Low implementation complexity
- Successive-cancellation (SC) list (SCL) decoding:
 - Good error-correction performance for large list sizes
 - Complexity increases with list size

Motivation

- Polar codes: selected for the eMBB control channel in 5G
- 5G has stringent requirements:
 - Low implementation complexity
- Dynamic SC flip (DSCF) decoding:
 - Comparable error-correction performance with SCL
 - Complexity close to SC at practical SNR
 - Costly computations for a bit-flipping metric

This talk

- ▶ A bit-flipping metric based on correlations between the bits
- ▶ A training framework to learn the correlations between the bits

Polar codes

- \triangleright $\mathcal{P}(N, K)$, N: code length, K: message length
- ► Code construction: based on polarization phenomenon
 - \triangleright K most reliable channels: information bits \mathcal{A}
 - \triangleright N-K least reliable channels: frozen bits \mathcal{A}^c

 $\mathcal{P}(8,5)$ with u_0 , u_1 , and u_2 as frozen bits

SC Decoding

$$, \hat{v}_{s,i+2^s} \circ - = - \circ L_{s+1,i+2^s}, \hat{v}_{s+1,i+2^s}$$

Right-to-left: soft values (LLRs)

$$L_{s,i} = f(L_{s+1,i}, L_{s+1,i+2^s})$$

$$L_{s,i+2^s} = g(L_{s+1,i}, L_{s+1,i+2^s}, \hat{\nu}_{s,i})$$

Left-to-right: hard values (bits)

$$\hat{\nu}_{s+1,i} = \hat{\nu}_{s,i} \oplus \hat{\nu}_{s,i+2^s}$$
$$\hat{\nu}_{s+1,i+2^s} = \hat{\nu}_{s,i+2^s}$$

where

$$f(a, b) = \min(|a|, |b|) \operatorname{sgn}(a) \operatorname{sgn}(b)$$

 $g(a, b, c) = b + (1 - 2c)a,$

where

$$\hat{u}_i = \hat{\nu}_{0,i} = \begin{cases} 0 & \text{if } u_i \text{ is frozen,} \\ \frac{1-\operatorname{sgn}(L_{0,i})}{2} & \text{otherwise.} \end{cases}$$

Successive Cancellation Flip (SCF) Decoding

Example: all-zero codeword

Flipping position: $\underset{\forall i \in \mathcal{A}}{\mathsf{rg min}} |L_{0,i}|$

Afisiadis'14

Successive Cancellation Flip (SCF) Decoding

Example: all-zero codeword

Flipping position: $\underset{\forall i \in \mathcal{A}}{\text{rig min}} |L_{0,i}| = 4$

Afisiadis'14

- Introduced a bit-flipping metric for high-order errors
- ▶ Bit-flipping probability at the *i*-th information bit:
 - \triangleright \mathcal{E}_{ω} : set of bit-flipping position at error order ω

$$p_i^* = Pr(\hat{u}_i = u_i | \hat{u}_0^{i-1} = u_0^{i-1}) \approx \frac{1}{1 + \exp(-\alpha |L_{0,i}|)}$$

• $\alpha > 0$ is a perturbation parameter

$$Pr(\mathsf{BF}_i) = \prod_{\forall j \in \mathcal{E}_{\omega}, \ j \leq i} \left(1 - p_j^*\right) \prod_{\forall j \in \mathcal{A} \setminus \mathcal{E}_{\omega}, \ j < i} p_j^*$$

► Flipping position: $\underset{\forall i \in A}{\text{Fr}}(\mathsf{BF}_i)$

Chandesris'18

$$\triangleright$$
 $\omega = 1$:

p_i^*	$1-p_i^*$	$Pr(BF_i)$
0.53	0.47	-
0.51	0.49	-
0.53	0.47	-
0.60	0.40	-
0.67	0.33	-
	0.53 0.51 0.53 0.60	0.53 0.47 0.51 0.49 0.53 0.47 0.60 0.40

$$\triangleright$$
 $\omega = 1$:

i	p_i^*	$1 - p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.51	0.49	-
5	0.53	0.47	-
6	0.60	0.40	-
7	0.67	0.33	-

▶
$$Pr(BF_3) = 1 - p_3^*$$

$$\sim \omega = 1$$
:

i	p_i^*	$1 - p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.51	0.49	0.26
5	0.53	0.47	-
6	0.60	0.40	-
7	0.67	0.33	-

$$Pr(BF_4) = p_3^* \times (1 - p_4^*)$$

$$\triangleright$$
 $\omega = 1$:

i	p_i^*	$1-p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.51	0.49	0.26
5	0.53	0.47	0.13
6	0.60	0.40	-
7	0.67	0.33	-

►
$$Pr(BF_5) = p_3^* \times p_4^* \times (1-p_5^*)$$

Example: all-zero codeword, $p_i^* = \frac{1}{1 + \exp(-\alpha |L_{0,i}|)}$, $\alpha = 0.3$

 \triangleright $\omega = 1$:

i	p_i^*	$1-p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.51	0.49	0.26
5	0.53	0.47	0.13
6	0.60	0.40	0.06
7	0.67	0.33	-

►
$$Pr(BF_6) = p_3^* \times p_4^* \times p_5^* \times (1 - p_6^*)$$

Example: all-zero codeword, $p_i^* = \frac{1}{1 + \exp(-\alpha |L_{0,i}|)}$, $\alpha = 0.3$

i	p_i^*	$1-p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.51	0.49	0.26
5	0.53	0.47	0.13
6	0.60	0.40	0.06
7	0.67	0.33	0.03

►
$$Pr(BF_7) = p_3^* \times p_4^* \times p_5^* \times p_6^* \times (1 - p_7^*)$$

Example: all-zero codeword, $p_i^* = \frac{1}{1 + \exp(-\alpha|L_{0,i}|)}$, $\alpha = 0.3$

i	p_i^*	$1-p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.51	0.49	0.26
5	0.53	0.47	0.13
6	0.60	0.40	0.06
7	0.67	0.33	0.03

Example: all-zero codeword,
$$p_i^* = \frac{1}{1 + \exp(-\alpha |L_{0,i}|)}$$
, $\alpha = 0.3$

i	p_i^*	$1-p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.83	0.17	-
5	0.51	0.49	-
6	0.61	0.39	-
7	0.46	0.54	-

$$\sim \omega = 2$$
:

i	p_i^*	$1 - p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.83	0.17	0.08
5	0.51	0.49	-
6	0.61	0.39	-
7	0.46	0.54	-

►
$$Pr(BF_4) = (1 - p_3^*) \times (1 - p_4^*)$$

Example: all-zero codeword, $p_i^* = \frac{1}{1 + \exp(-\alpha|L_{0,i}|)}$, $\alpha = 0.3$

i	p_i^*	$1-p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.83	0.17	0.08
5	0.51	0.49	0.19
6	0.61	0.39	-
7	0.46	0.54	-

►
$$Pr(BF_5) = (1 - \rho_3^*) \times \rho_4^* \times (1 - \rho_5^*)$$

Example: all-zero codeword, $p_i^* = \frac{1}{1 + \exp(-\alpha|L_{0,i}|)}$, $\alpha = 0.3$

i	p_i^*	$1-p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.83	0.17	0.08
5	0.51	0.49	0.19
6	0.61	0.39	0.07
7	0.46	0.54	-

►
$$Pr(BF_6) = (1 - p_3^*) \times p_4^* \times p_5^* \times (1 - p_6^*)$$

Example: all-zero codeword, $p_i^* = \frac{1}{1 + \exp(-\alpha |L_{0,i}|)}$, $\alpha = 0.3$

i	p_i^*	$1-p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.83	0.17	0.08
5	0.51	0.49	0.19
6	0.61	0.39	0.07
7	0.46	0.54	0.06

►
$$Pr(BF_7) = (1 - p_3^*) \times p_4^* \times p_5^* \times p_6^* \times (1 - p_7^*)$$

Example: all-zero codeword, $p_i^* = \frac{1}{1 + \exp(-\alpha|L_{0,i}|)}$, $\alpha = 0.3$

 $\sim \omega = 2$:

i	p_i^*	$1-p_i^*$	$Pr(BF_i)$
3	0.53	0.47	0.47
4	0.83	0.17	0.08
5	0.51	0.49	0.19
6	0.61	0.39	0.07
7	0.46	0.54	0.06

DSCF Decoding Issues

Numerical stability: $Q_i = -\frac{1}{\alpha} \ln(Pr(BF_i))$

$$Q_i = \sum_{\substack{\forall j \in \mathcal{A} \\ j \leq i}} \frac{1}{\alpha} \ln \left(1 + \exp \left(-\alpha |L_{0,j}| \right) \right) + \sum_{\substack{\forall j \in \mathcal{E}_{\omega} \\ j \leq i}} |L_{0,j}|$$

- Computing Q_i requires costly In and exp functions!
- ▶ Simplifying Q_i : $ln(1 + exp(x)) \approx ReLU(x)$

$$\tilde{Q}_i = \sum_{\substack{\forall j \in \mathcal{A} \\ j \leq i}} \frac{1}{\alpha} \operatorname{ReLU} \left(-\alpha |L_{0,j}| \right) + \sum_{\substack{\forall j \in \mathcal{E}_{\omega} \\ j \leq i}} |L_{0,j}| = \sum_{\substack{\forall j \in \mathcal{E}_{\omega} \\ j \leq i}} |L_{0,j}|$$

DSCF Decoding Issues

DSCF Decoding Issues

Use the likelihood ratios directly:

$$I_{i_{\omega}}^* = \max \left\{ \frac{\Pr(\hat{u}_{i_{\omega}} = 0 | \boldsymbol{y}, \boldsymbol{u})}{\Pr(\hat{u}_{i_{\omega}} = 1 | \boldsymbol{y}, \boldsymbol{u})}, \frac{\Pr(\hat{u}_{i_{\omega}} = 1 | \boldsymbol{y}, \boldsymbol{u})}{\Pr(\hat{u}_{i_{\omega}} = 0 | \boldsymbol{y}, \boldsymbol{u})} \right\}$$

- ▶ Indicates how likely $\hat{u}_{i_{\omega}}$ is decoded correctly given y and u
- First-order erroneous bit is

$$i_{\omega}^* = \underset{\forall i_{\omega} \in \mathcal{A}}{\operatorname{arg min}} I_{i_{\omega}}^*.$$

Use the likelihood ratios directly:

$$I_{i_{\omega}}^* = \max \left\{ \frac{\Pr(\hat{u}_{i_{\omega}} = 0 | \boldsymbol{y}, \boldsymbol{u})}{\Pr(\hat{u}_{i_{\omega}} = 1 | \boldsymbol{y}, \boldsymbol{u})}, \frac{\Pr(\hat{u}_{i_{\omega}} = 1 | \boldsymbol{y}, \boldsymbol{u})}{\Pr(\hat{u}_{i_{\omega}} = 0 | \boldsymbol{y}, \boldsymbol{u})} \right\}$$

- ▶ Indicates how likely $\hat{u}_{i_{\omega}}$ is decoded correctly given \boldsymbol{y} and \boldsymbol{u}
- First-order erroneous bit is

$$i_{\omega}^* = \underset{\forall i_{\omega} \in \mathcal{A}}{\operatorname{arg min}} I_{i_{\omega}}^*.$$

▶ But we don't have **u**!

- We need to estimate $I_{i_{\omega}}^*$
- Let's model it as a function of what we have:

$$I_{i_{\omega}}^{*} pprox \prod_{\forall i \in \mathcal{A}} I_{i}^{\beta_{i_{\omega},i}}$$

where

$$I_i = \max \left\{ \frac{\Pr(\hat{u}_i = 0 | \boldsymbol{y}, \hat{\boldsymbol{u}}_0^{i-1})}{\Pr(\hat{u}_i = 1 | \boldsymbol{y}, \hat{\boldsymbol{u}}_0^{i-1})}, \frac{\Pr(\hat{u}_i = 1 | \boldsymbol{y}, \hat{\boldsymbol{u}}_0^{i-1})}{\Pr(\hat{u}_i = 0 | \boldsymbol{y}, \hat{\boldsymbol{u}}_0^{i-1})} \right\}$$
$$= \exp(|L_{0,i}|)$$

and $\beta_{i_{i_{i_{i}},j}} \in \mathbb{R}$ are perturbation parameters:

- $\beta_{i_{\omega},i_{\omega}} = 1$

Numerical stability:

$$Q_{i_{\omega}} = \ln(l_{i_{\omega}}^{*}) \approx \ln\left(\prod_{\forall i \in \mathcal{A}} \exp\left(\beta_{i_{\omega},i}|L_{0,i}|\right)\right)$$

= $\sum_{\forall i \in \mathcal{A}} \beta_{i_{\omega},i}|L_{0,i}|$

In matrix form:

$$Q = |L_0| \cdot \beta$$

$$i_{\omega}^* = \underset{\forall i_{\omega} \in \mathcal{A}}{\operatorname{arg \, min}} \, Q_{i_{\omega}}$$

Numerical stability:

$$Q_{i_{\omega}} = \ln(I_{i_{\omega}}^{*}) \approx \ln\left(\prod_{\forall i \in \mathcal{A}} \exp\left(\beta_{i_{\omega},i}|L_{0,i}|\right)\right)$$
$$= \sum_{\forall i \in \mathcal{A}} \beta_{i_{\omega},i}|L_{0,i}|$$

In matrix form:

$$Q = |\mathbf{L}_0| \cdot \boldsymbol{\beta}$$

 $\triangleright i_{\omega}^* = \operatorname*{arg\,min}_{\forall i_{\omega} \in \mathcal{A}} Q_{i_{\omega}}$

We call β the correlation matrix!

Designing β

- ► Deep learning:
 - ightharpoonup Each element in β is a trainable parameter
 - ightharpoonup Stochastic gradient-descent (SGD) is used to train eta
 - All-zero codeword dataset
- ▶ The goal is to have a bit-flipping vector \hat{T} :

$$\hat{\mathcal{T}}_i = \begin{cases} -1 & \text{if } i = i_\omega^* \\ +1 & \text{if } i \neq i_\omega^* \end{cases}$$

Not differentiable with respect to $Q_{i_{\omega}}$!

Designing β

▶ We use a soft estimate for \hat{T}_i

$$\tilde{T}_i = \tanh(Q_i - au)$$

au is the average of the first and the second minima of Q_i

- Only one bit is flipped!
- Loss function:

$$\frac{1}{K} \sum_{i=0}^{K-1} \mathcal{L}\left(\frac{1-\tilde{T}_{i}}{2}, \frac{1-T_{i}}{2}\right) + \lambda \sum_{i_{\omega}=0}^{K-1} \sum_{i=i_{\omega}+1}^{K-1} (\beta_{i_{\omega},i})^{2}$$
Binary Cross-Entropy

L2 Regularization

Training Setup

minibatch size	128	
learning rate	10^{-4}	
dataset size	2^{18}	
E_b/N_0	5 dB	
λ	0.25	

All the elements in eta that are in $[-10^{-4},10^{-4}]$ are set to zero!

Results

 $\mathcal{P}(128,64)$ with CRC of length 24 used in 5G.

Results

Number of operations for $\mathcal{P}(128,64)$

Decoders	×	+	In/exp
DSCF	7832	4004	7832
DLSC	2652 (66% ↓)	2564 (36% ↓)	0
DLSCL2	3116 (60% ↓)	3028 (24% ↓)	0
DLSCL4	3238 (59% ↓)	3150 (21% ↓)	0
DLSCL8	3176 (59% ↓)	3088 (23% ↓)	0

How Does β Look Like?

DLSCL8

Conclusion

- A new bit-flipping metric is proposed for DSCF decoding
 - Based on a correlation matrix
 - No computationally expensive transcendental functions
- ► A training framework is introduced to design the correlation matrix
- Compared to DSCF decoding:
 - Almost no error-correction performance loss
 - ▶ Up to 66% and 36% savings in the number of ×'s and +'s respectively
- ► Future works:
 - ► Generalize it for all code rates (and lengths)
 - Use the correlation matrix for belief propagation decoding

Thank You!