Liaison de coordination

Biblio : Cours M. Vérot, livre prépa, Housecroft, L'indispensable en liaison chimique, Shriver, Atkins, Chimie3, Huheey, Jean&Volatron

<u>COMPLEXE DE COORDINATION</u>: association d'un atome central généralement métallique autour duquel sont liées d'autres groupes appelés ligands

Théorie du champ cristallin

Bethe et van Vleck ~1930

Voir livre prépa, l'indispensable, Chimie3p1270, Shriver p227

Hypothèses

- Ligands sont assimilés à des charges ponctuelles négatives
- Modèle purement électrostatique
- On ne considère que les orbitales d du métal et on regarde l'effet de l'environnement des ligands sur les énergies de chacune. Housecroft p640

Conséquence:

- La liaison métal-ligand est purement ionique, pas de partage d'électron entre M et L
- Structure électronique du complexe dépend de sa géométriesLes spécificités des ligands ne sont pas prises en compte
- Théorie adaptée pour expliquer les phénomènes physico-chimiques dus au métal mais pas ceux dus au ligand.

Diagramme Oh Champ sphérique : perturbation uniforme autour du métal. Répulsion entre entre les électrons et le champ sphérique déstabilise les orbitales d. Symétrie sphérique : orbitales restent dégénérées. Si les charges sont localisées sur les sommets d'un octaèdre autour du métal \rightarrow groupe Oh \rightarrow levée de dégénérescence. Schéma Δ o : énergie du champ cristallin Casalot p139

ODG, facteur l'influencçant Shriver p228, Housecroftp642,

nature du ligand, DO du métal, nature de l'ion métallique, géométrie.

Énergie d'appariement- ESCC = EOh -Esphérique

Complexe haut et bas spin Chimie3p1275, Housecroft p642, ODG: Huheey p402

Δo à comparer à l'énergie d'appariement.

Facteur influençant P : diminue sur une colonne les orbitales d sont plus diffuses et la répulsion électrostatique entre les électrons diminue.

Diagramme Td $\Delta t = 4/9\Delta o$, le champ est pratiquement tout le temps faible.

Autres géométries Housecroft p645

Effet Jahn-Teller Cours M. Vérot, Chimie3p1278, Shriver p235

Applications Spectro; Huheey p399, Housecroft p642

Magnétique: Housecroft p670, ex: Gruber p209

Limites du modèle : Permet de prédire les propriétés électroniques (remplissage), magnétiques. Mais pas toutes les propriétés optiques des complexes, surtout l'influence des ligands (Série spectrophotochimique, transfert ML ex : KMnO4) N'explique pas non plus stabilité du complexe Cours M.Vérot

Théorie du champ des ligands

Griffith et Orgel 1957 Basé sur la théorie des orbitales moléculaires. Plus de liaison purement ionique. Ribeyre p513-524, Shriver p236, Jean Ligand σ donneur

Ligands interagissent avec un doublet non liant.

Construction du diagramme : Housecroft p650

Même éclatement qu'avec théorie du champ cristallin Ligand π donneurs

Si ligand possède orbitales occupées de symétrie t2g

Transfert d'électrons supplémentaire des orbitales du ligand vers celles du métal.

Déstabilise le complexe \rightarrow diminution de Δ o Housecroft p651 Ligand π accepteurs

Si ligand possède orbitales vacantes de symétrie t2g Rétrodonation (PC) \rightarrow stabilise le complexe \rightarrow augmentation de Δ o. Housecroft p651

Série spectrochimique Cours M.Vérot

Propriétés des complexes :

- Propriétés optiques : transfert LM-ML Chimie3p1281
- Magnétique:Chimie3p1283 Catalytique : Chatt-Dewar Duncanson Ribeyre p525

Effet néphélauxétique Déplacement du nuage électronique. Paramètre de Racah Paramètre néphélauxétique β =B/Bo, B paramètre de Racah et Bo celui de l'ion métallique libre. Série néphélauxétique

Diagramme de Tanabé-Sugano