КН, 20.04.2024
Контролна работа 1

Точната формула за оценка се формира в зависимост от резултатите. За приблизителна, може да използвате 2 + брой точки. Време за работа: 3 часа. Успех.

Задача 1. На базата на предишни игри, Ангел моделира резултата си като сл. вел. с очакване 5011 точки и дисперсия 4000.

Приблизително колко игри ще са нужни на Ангел, за да е счита с вероятност поне 99%, че:

- 1. (0.5 т.) общият брой точки от тези игри ще е поне 1 милион?
- $2.~(0.5~\mathrm{T.})$ рекордът му от тези игри ще е поне $10000~\mathrm{точки}?$

Задача 2. (1 т.) Нека ξ и η са независими случайни величини, $\xi \sim Exp(2)$ и $\eta \sim U(0,3)$, т.е.

$$f_{\xi}(x) = egin{cases} 2e^{-2x}, & \text{ако } x > 0 \\ 0, & \text{иначе.} \end{cases}, \quad f_{\eta}(x) = egin{cases} rac{1}{3}, & \text{ако } 0 < x < 3 \\ 0, & \text{иначе.} \end{cases}$$

Намерете корелация на ξ и η , $P(\xi < \eta)$ и плътността на ξ/η .

Задача 3. Нека X,Y са независими експоненциално разпределени сл. вел. с параметри съответно $1/\alpha$ и $1/\beta$ и X_1,\ldots,X_n са независими наблюдения над X.

1. (0.25 т.) Нека $\overline{X} := (X_1 + \dots + X_n)/n$. За големи n, намерете c, такова, че $\mathbb{P}(|\alpha - \overline{X}| > c) \le 1\%$.

Нека $Z = \sqrt{X/Y}$ и $Z_1, \dots Z_n$ са независими наблюдения над Z.

2. (0.75 т.) Вярно ли е, че

$$\frac{Z_1 + \dots + Z_n}{n} \xrightarrow[n \to \infty]{\text{II.c.}} \sqrt{\frac{\mathbb{E}[X]}{\mathbb{E}[Y]}}?$$

Ако да, го докажете, а ако не - намерете каква е границата.

Задача 4. Целта в тази задача е да намерим целочислените моменти на нормално разпределена случайна величина $X \sim N(\mu, \sigma^2)$. За улеснение, първоначално ще работим със $Z \sim N(0, 1)$.

- 1. (0.25 т.) Намерете $\mathbb{E}\left[e^{\lambda Z}\right]$ за $\lambda>0$. Намерете $\mathbb{E}\left[Z^{k}\right]$ за $k\leq 6$.
- 2. (0.25 т.) Докажете, че $\mathbb{E}[f(Z)Z] = \mathbb{E}[f'(Z)]$ за функции f, такива че последните две очаквания са добре дефинирани.
- 3. (0.25 т.) Намерете $\mathbb{E}\left[Z^k\right]$ за всяко $k\geq 0$. Можете ли да получите респективния резултат за $\mathbb{E}\left[X^k\right]$?
- 4. (0.25 т.) Намерете вероятността $\mathbb{P}(Z^k > Z^{k-1})$ за $k \geq 5$.