Vorlesung Architekturen und Entwurf von Rechnersystemen

Prof. Andreas Koch, Yannick Lavan, Johannes Wirth, Mihaela Damian

Wintersemester 2022/2023 Theorieblatt 4

4.1 AXI4

In dieser Aufgabe beschäftigen Sie sich noch mal genauer mit den verschiedenen AXI4 Varianten. Sie können für die Abhängigkeiten der Handshake-Signale die AXI Spezifikation[1] zur Hilfe nehmen.

4.1.1 AXI4 vs. AXI4-Lite vs. AXI4-Stream

Erläutern Sie die wesentlichen Unterschiede der Protokolle AXI4, AXI4-Lite und AXI4-Stream. Gehen Sie bei AXI4 und AXI4-Lite auch auf die Unterschiede aus Hardware-Sicht ein.

4.1.2 AXI vs. Bluespec

Wie unterscheiden sich Bluespecs RDY/EN-Handshake von AXIs Valid/Ready-Handshake? Hinweis: Machen Sie sich klar warum (* always enabled *) in Bluespec (* always ready *) impliziert.

4.1.3 Transfers

Sie können für diese Aufgabe die bereitgestellten Tabellen benutzen.

a) Nehmen Sie an, dass das Protokoll AXI4-Lite für die Transfers in Abbildung 1 verwendet wurde. Geben Sie den Zustand des Slave-Moduls nach Durchführung aller Transfers an. Die Datenworte und Adressen sind in hexadezimaler Notation gegeben.

Adresse	Wert (hexadezimal)
0x00000000	
0x0815ADD0	
0x13374224	
0x4213372C	
0x42C01330	
0xFA57F000	

Abbildung 1: AXI4-Lite Transfers

Abbildung 2: AXI4-Transfers auf dem Write-Kanal

b) In Abbildung 2 wurde AXI4 verwendet. Für uns uninteressante Signale wurden im Diagramm ausgelassen. Geben Sie auch hier den Zustand des Slave-Speichers nach Beendigung aller Transfers an. Alle Werte sind hexadezimal angegeben. Es gilt außerdem AxLEN=3, AxSIZE=2. Nehmen Sie weiterhin an, dass immer der letzte geschriebene Wert an der entsprechenden Speicher-Adresse steht.

Adresse	Wert (hexadezimal)				

4.2 Rekonfigurierbares Rechnen und TaPaSCo

4.2.1 Task Parallel System Composer (TaPaSCo)

- a) Erläutern Sie die grundliegende Idee hinter TaPaSCo. Welche Probleme werden von TaPaSCo adressiert?
- b) Was ist eine DSE und wofür wird sie eingesetzt?
- c) Gegeben sei die aus der Vorlesung bekannte Address Map in Abbildung 3. An welche Adresse müssen Sie schreiben, wenn sie das Argument 1 Register von target_ip_00_000 setzen möchten? Sie möchten einen 32-Bit Wert aus dem Return Value Register lesen und den Interrupt bestätigen, nachdem target ip 00 011 einen Interrupt gesetzt hat. Von

welcher Adresse müssen Sie lesen, an welche Adresse müssen Sie welchen Wert schreiben?

• 🖽 Data (32 address bits : 0x40000000 [1G],0x80000000	[1G])			
- InterruptControl/axi_intc_00	s_axi	Reg	0x8180_0000	64K	▼ 0x8180_FFFF
- Threadpool/target_ip_00_000	s_axi_AXILiteS	Reg	0x43C0_0000	64K	▼ 0x43CO_FFFF
- Threadpool/target_ip_00_001	s_axi_AXILiteS	Reg	0x43C1_0000	64K	▼ 0x43C1_FFFF
- Threadpool/target_ip_00_002	s_axi_AXILiteS	Reg	0x43C2_0000	64K	▼ 0x43C2_FFFF
- Threadpool/target_ip_00_003	s_axi_AXILiteS	Reg	0x43C3_0000	64K	▼ 0x43C3_FFFF
- Threadpool/target_ip_00_004	s_axi_AXILiteS	Reg	0x43C4_0000	64K	▼ 0x43C4_FFFF
- Threadpool/target_ip_00_005	s_axi_AXILiteS	Reg	0x43C5_0000	64K	▼ 0x43C5_FFFF
- Threadpool/target_ip_00_006	s_axi_AXILiteS	Reg	0x43C6_0000	64K	▼ 0x43C6_FFFF
- Threadpool/target_ip_00_007	s_axi_AXILiteS	Reg	0x43C7_0000	64K	▼ 0x43C7_FFFF
- Threadpool/target_ip_00_008	s_axi_AXILiteS	Reg	0x43C8_0000	64K	▼ 0x43C8_FFFF
- Threadpool/target_ip_00_009	s_axi_AXILiteS	Reg	0x43C9_0000	64K	▼ 0x43C9_FFFF
- Threadpool/target_ip_00_010	s_axi_AXILiteS	Reg	0x43CA_0000	64K	▼ 0x43CA_FFFF
- Threadpool/target_ip_00_011	s_axi_AXILiteS	Reg	0x43CB_0000	64K	▼ 0x43CB_FFFF
- Threadpool/target_ip_00_012	s_axi_AXILiteS	Reg	0x43CC_0000	64K	▼ 0x43CC_FFFF
- Threadpool/target_ip_00_013	s_axi_AXILiteS	Reg	0x43CD_0000	64K	▼ 0x43CD_FFFF
- Threadpool/target_ip_00_014	s_axi_AXILiteS	Reg	0x43CE_0000	64K	▼ 0x43CE_FFFF
- Threadpool/target_ip_00_015	s_axi_AXILiteS	Reg	0x43CF_0000	64K	▼ 0x43CF_FFFF
∟ m tpc status	SOO AXI	SOO AXI rea	0x7777_0000	64K	▼ 0x7777_FFFF

Abbildung 3: Adressmap aus der TaPaSCo Vorlesung

4.2.2 Rekonfigurierbares Rechnen

- a) Was ist der Unterschied zwischen einer Lookup Table (LUT) und einem Configurable Logic Block (CLB)?
- b) Setzen Sie die Funktion $Y = \bar{C}D + A\bar{B}$ in der untenstehenden LUT um, wobei + für das logische ODER steht. Setzen Sie hierfür $S_1 = 0$. Bilden Sie Y auf S_0 ab.

Α	В	С	D	S_1	S_0

Wichtige Abkürzungen

CLB Configurable Logic Block

DMA Direct Memory Access

DSP Digital Signal Processor

FPGA Field-Programmable Gate Array

FPU Floating-Point Unit

LUT Lookup Table

PL Programmable Logic

PS Processing System

RAM Random-Access Memory

ROM Read-Only Memory

rSoC Reconfigurable System-on-Chip

TaPaSCo Task Parallel System Composer

Literatur

 $[1] \quad http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI4_specification.pdf.$