

Ionic Product of water

$$\mathbf{K_{w}} = (\mathbf{H_{3}O^{+}J(OH^{-}J} = \mathbf{1} \times \mathbf{10^{-14}M^{2}})$$

$$\therefore$$
 (OH⁻) = (H⁺) = 10⁻⁷ M @ 298 K

$$PK_w = PK_a + PK_b = 14$$

OStwald'S Dilution Law

Applicable for weak K electrities

$$\therefore \mathbf{K_c} = \mathbf{C}\alpha^2 \text{ or } \alpha = \sqrt{\frac{\mathbf{K_c}}{\mathbf{C}}}$$

So,
$$\alpha = \frac{1}{\sqrt{c}} \operatorname{or} \alpha \propto \sqrt{v}$$

where V is the volume of Solution at infinite dilution

Solubility Product + (KSP)

$$K_{SP} = (C)^{c}(D)^{d}$$

Hydrolysis of Salts

Salts of Strong base and Strong acid neutral Solution and does not undergo hydrolysis. eg. Nacl. KCl

Salt of weak base and Strong Acid

$$K_{h} = \frac{K_{w}}{K_{b}}; P^{H} = \frac{1}{2}(PK_{2} - PK_{b} - \log c)$$

Salt of weak Acid and weak base

$$K_{h} = \frac{K_{w}}{K_{a} \times K_{b}}; P^{H} = \frac{1}{2}(PK_{w} - PK_{a} - PK_{b})$$

Acids and Base

AcidS: LiberateS H, on reacting with metalS Turns blue litumus into red

Base: Taste bitter and feel soapy Turns red litmus into blue

Acidic \Rightarrow (H_3O^+) > (OH^-)

Basic \Rightarrow (H_3O^+) < (OH^-)

Neutral \Rightarrow (H_3O^+) = (OH^-)

factor's of reaction

Le Chatlier's Principle

Effect of concentration change concentration -. equilibrium Shift forward.

Effect of pressure change equilibrium will Shift in the direction having Smaller number of moles.

Effect of temperature change

for exothermic -> low temperature favors formation of reactants.

for Endothermic \rightarrow High temperature favors formation of products.

Effect of inert gas \rightarrow No change

Effect of catalyst \rightarrow No change

Law of chemical Equilibrium

Equilibrium Law

$$K_c = \frac{(C)^c(D)^c}{(A)^a(B)^c}$$

Here K, is equilibrium constant

Relation between equilibrium constant ckp + kc

$$K_{P} = K_{c}(RT)^{\Delta Ng}$$

Definition

Chemical reaction reach a State of dynamic equilibrium in which the rate of forward reaction and reaction are same and there is no net charge in composition

Homogeneous

Reactant and Product are in same phase

Equilibrium Set up in a Physical process like evaporation of water

etc. (S)<u></u> (U)

Direction of

reaction

Q < K

from left to right

Reaction goes from

G < K

right to left

occurs

 $Q_c = K_c$

No net reaction

Reaction goes

(L)====(g)

Hetrogeneous

Reactant and

product are in

different Phase

(g)===== (S)

3H₂ + N₂ = 2NH₃

Chemical

Equilibrium attained in

a chemical reaction

Possible only in a closed system.

Both reaction occur at Same rate

All measurable property remains constant

Gibb's energy

AG = RTINK

 $\triangle G$ = -ve. Spontaneous reaction Reaction proceeds forward. $\Delta G = +ve$, Non Spontaneous

reation

Reaction proceeds backward △G = zero, equilibrium achieved

$$P^{H} = -\log(H^{+})$$

$$P^{H} = -\log(H_3O^+)$$

for weak acid
$$\rightarrow P^{H} = \frac{1}{2}(C_{P}K_{a} - \log c)$$

PH Concept