Towards Efficient SimRank Computation over Large Networks

Weiren Yu^{1,2}, Xuemin Lin¹, Wenjie Zhang¹

University of New South Wales
 NICTA, Australia

Outline

SimRank overview

- Existing computing method
- Our approaches
 - Partial Sums Sharing
 - Exponential SimRank
- Empirical evaluations
- Conclusions

SimRank Overview

• Similarity Computation plays a vital role in our lives.

(418)

\$299.00

mera OR ED

Canon SX40 HS 12.1MP Digital Camera with 35x Wide Angle Optical Image Stabilized Zoom and ...

\$319.76

Sony Cyber-shot DSC-HX200V 18.2 MP Exmor R CMOS Digital Camera with 30x ...

\$348.00

Canon PowerShot SX500 IS 16.0 MP Digital Camera with 30x Wide-Angle Optical ...

\$249.00

Recommender System

SimRank Overview

SimRank

- An appealing link-based similarity measure (KDD '02)
- Basic philosophy

Two vertices are similar if they are referenced by similar vertices.

Two Forms

Original form (KDD '02)

s(a,a) = 1

damping factor

similarity btw. nodes *a* and *b*

$$s(a,b) = \frac{C}{|\mathcal{I}(a)| |\mathcal{I}(b)|} \sum_{j \in \mathcal{I}(b)} \sum_{i \in \mathcal{I}(a)} s(i,j)$$

• Matrix form (EDBT '10)

in-neighbor set of node b

$$\mathbf{S} = C \cdot (\mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^T) + (1 - C) \cdot \mathbf{I}_n$$

Existing Computing Methods

- State-of-the-art Method (VLDB J. '10)
 - Partial Sum Memoization

- Two Limitations
 - High computation time: O(Kdn²)
 - Low convergence rate:

$$\left| s_k(a,b) - s(a,b) \right| \le C^{k+1}$$

Naïve vs. VLDB J.'10

 $\mathcal{I}(a)$

 $S_{k+1}(a,b)$

• Example: Compute s(a,b), s(a,d)

 $\mathcal{I}(a)$

Naïve

$$s_{k+1}(a,b) = \frac{C}{|\mathcal{I}(a)||\mathcal{I}(b)|} \sum_{j \in \mathcal{I}(b)} \sum_{i \in \mathcal{I}(a)} s_k(i,j)$$

$$s_{k+1}(a,d) = \frac{C}{|\mathcal{I}(a)||\mathcal{I}(d)|} \sum_{i \in \mathcal{I}(d)} \sum_{i \in \mathcal{I}(a)} s_k(i,j)$$

Naïve vs. VLDB J.'10

• Example: Compute s(a,b), s(a,d)

Partial Sums Memoization (VLDB J.'10)

$$\forall j, \quad \frac{Partial_{\mathcal{I}(a)}^{s_k}(j)}{s_k} = \sum_{i \in \mathcal{I}(a)} s_k(i, j)$$

$$s_{k+1}(a,b) = \frac{C}{\left|\mathcal{I}(a)\right|\left|\mathcal{I}(b)\right|} \sum_{j \in \mathcal{I}(b)} Partial_{\mathcal{I}(a)}^{s_k}(j)$$

$$s_{k+1}(a,d) = \frac{C}{\left|\mathcal{I}(a)\right|\left|\mathcal{I}(d)\right|} \sum_{j \in \mathcal{I}(d)} Partial_{\mathcal{I}(a)}^{s_k}(j)$$

$$S_{k+1}(a,d) = \frac{C}{|\mathcal{I}(a)||\mathcal{I}(d)|} \sum_{j \in \mathcal{I}(d)} Partial_{\mathcal{I}(a)}^{s_k}(j)$$

reuse

VLDB J.'10 Limitations

• Example: Compute s(a,b), s(a,d), s(c,b), s(c,d)

$$\forall j, \quad \frac{Partial_{\mathcal{I}(a)}^{s_k}(j)}{s_k} = \sum_{i \in \mathcal{I}(a)} s_k(i, j)$$

$$s_{k+1}(a,b) = \frac{C}{|\mathcal{I}(a)||\mathcal{I}(b)|} \sum_{i \in \mathcal{I}(b)} Partial_{\mathcal{I}(a)}^{s_k}(j)$$

$$\forall j, \quad Partial_{\mathcal{I}(c)}^{s_k}(j) = \sum_{i \in \mathcal{I}(c)} s_k(i, j)$$

$$s_{k+1}(c,b) = \frac{C}{|\mathcal{I}(c)||\mathcal{I}(b)|} \sum_{j \in \mathcal{I}(b)} Partial_{\mathcal{I}(c)}^{s_k}(j)$$

Motivation

- Prior Work (VLDB J. '10)
 - High time complexity: O(Kdn²)
 - Duplicate computation among partial sums memoization
 - Slow (geometric) convergence rate
 - Require $K = [\log_{\mathbb{C}} \epsilon]$ iterations to guarantee accuracy ϵ

- Our Contributions
 - Propose an adaptive clustering strategy to reduce the time from O(Kdn²) to O(Kd'n²), where d'≤ d.
 - Introduce a new notion of SimRank
 to accelerate convergence from geometric to exponential rate.

Eliminating Partial Sums Redundancy

- Main idea
 - share common sub-summations among partial sums

$$s_{k+1}(a,b) = \frac{C}{|\mathcal{I}(a)||\mathcal{I}(b)|} \sum_{j \in \mathcal{I}(b)} \sum_{\Delta \in \mathscr{P}(\mathcal{I}(a))} \frac{Partial_{\Delta}^{s_k}(j)}{|\mathcal{I}(a)|}$$

• Example

NP-hard to find "best" partition for $\mathcal{I}(a)$

fine-grained partial sums

Existing Approach (3 additions)

$$Partial_{\mathcal{I}(a)}^{s_k}(g) = s_k(b,g) + s_k(g,g)$$

$$Partial_{\mathcal{I}(c)}^{s_k}(g) = s_k(b,g) + s_k(g,g) + s_k(d,g)$$

Duplicate Computation !!

Our Approach (only 2 additions)

Partition
$$\mathcal{I}(c) = \mathcal{I}(a) \bigcup \{d\}$$

$$Partial_{\mathcal{I}(a)}^{s_k}(g) = s_k(b,g) + s_k(g,g)$$

$$Partial_{\mathcal{I}(c)}^{s_k}(g) = Partial_{\mathcal{I}(a)}^{s_k}(g) + s_k(d,g)$$

Heuristic for Finding Partitions

Find: partitions for each in-neighbor set
 Minimize: the total cost of all partial sums

- Main Idea
 - Calculate transition cost btw. in-neighbor sets

$$\mathcal{TC}_{\mathcal{I}(a) \to \mathcal{I}(b)} \triangleq \min\{|\mathcal{I}(a) \ominus \mathcal{I}(b)|, |\mathcal{I}(b)| - 1\}$$

• Construct a weighted digraph $\mathscr{G} = (\mathscr{V}, \mathscr{E})$ s.t.

$$\mathscr{V} = \{ \mathcal{I}(a) \mid a \in \mathcal{V} \} \cup \{\varnothing\}$$

 $(\mathcal{I}(a), \mathcal{I}(b)) \in \mathscr{E} \text{ if } |\mathcal{I}(a)| \leq |\mathcal{I}(b)|$
weight of $(\mathcal{I}(a), \mathcal{I}(b)) = \mathcal{TC}_{\mathcal{I}(a) \to \mathcal{I}(b)}$

Find a MST of \(\mathscr{G} \) to minimize the total transition cost

Example

(d) Partial Sums Order

(c) Minimum Spanning Tree $\mathscr T$ of $\mathscr G$

(3)

vertex	$\mathcal{I}(\star)$
a	$\{b,g\}$
e	$\{f,g\}$
h	$\{b,d\}$
c	$\{b,d,g\}$
b	$\{f,g,e,i\}$
d	$\{f, a, e, i\}$

	$\mathcal{I}(a)$	$\mathcal{I}(e)$	$\mathcal{I}(h)$	$\mathcal{I}(c)$	$\mathcal{I}(b)$	$\mathcal{I}(d)$
Ø	1	1	1	2	3	3
$\mathcal{I}(a)$		1	1	1#	3	3
$\mathcal{I}(e)$			1	2	2#	3
$\mathcal{I}(h)$				1#	3	3
$\mathcal{I}(c)$					3	3
$\mathcal{I}(b)$						2#

(a) In-neighbors in $\ensuremath{\mathcal{G}}$

(b) Transition Costs (Edge Weights) in \mathscr{G}

Example

Partial Sums Order

Partitions of $\mathcal{I}(\star)$ in \mathcal{G}

	$\mathscr{P}(\star)$
$\mathcal{I}(a)$	$\{\{b,g\}\}$
$\mathcal{I}(e)$	$\{\{f,g\}\}$
$\mathcal{I}(h)$	$\{\{b,d\}\}$
$\mathcal{I}(c)$	$\{\mathcal{I}(a), \{d\}\}$
$\mathcal{I}(b)$	$\{\mathcal{I}(e), \{e, i\}\}$
$\mathcal{I}(d)$	$\{\mathcal{I}(b)\backslash\{g\},\{a\}\}$

In-neighbors in G

vertex	$\mathcal{I}(\star)$
a	$\{b,g\}$
e	$\{f,g\}$
h	$\{b,d\}$
c	$\{b,d,g\}$
b	$\{f,g,e,i\}$
d	$\{f, a, e, i\}$

Outer Partial Sums Sharing

Partitions of $\mathcal{I}(\star)$ in \mathcal{G}

	. ,
	$\mathscr{P}(\star)$
$\mathcal{I}(a)$	$\{\{b,g\}\}$
$\mathcal{I}(e)$	$\{\{f,g\}\}$
$\mathcal{I}(h)$	$\{\{b,d\}\}$
$\mathcal{I}(c)$	$\{\mathcal{I}(a), \{d\}\}$
$\mathcal{I}(b)$	$\{\mathcal{I}(e), \{e, i\}\}$
$\mathcal{I}(d)$	$\{\mathcal{I}(b)\backslash\{g\},\{a\}\}$

• (Inner) partial sums sharing

$$Partial_{\mathcal{I}(a)}^{s_k}(\star) = s_k(b, \star) + s_k(g, \star)$$

$$Partial_{\mathcal{I}(c)}^{s_k}(\star) = Partial_{\mathcal{I}(a)}^{s_k}(\star) + s_k(\mathbf{d}, \star)$$

Outer partial sums sharing

$$OuterPartial_{\mathcal{I}(a)}^{\mathcal{I}(\bigstar),s_{k}} = \sum_{y \in \{b,g\}} Partial_{\mathcal{I}(\bigstar)}^{s_{k}}(y)$$

$$OuterPartial_{\mathcal{I}(c)}^{\mathcal{I}(\bigstar),s_{k}} = OuterPartial_{\mathcal{I}(a)}^{\mathcal{I}(\bigstar),s_{k}} + Partial_{\mathcal{I}(\bigstar)}^{s_{k}}(d)$$

$$OuterPartial_{\mathcal{I}(c)}^{\mathcal{I}(\star),s_k} = OuterPartial_{\mathcal{I}(a)}^{\mathcal{I}(\star),s_k} + Partial_{\mathcal{I}(\star)}^{s_k}(d)$$

$$s_{k+1}(a,\star) = \frac{C}{|\mathcal{I}(a)||\mathcal{I}(\star)|} \ OuterPartial_{\mathcal{I}(a)}^{\mathcal{I}(\star),s_k}$$

Exponential SimRank

Existing Approach (VLDB J. '10)

$$\left\|\mathbf{S}_{k}-\mathbf{S}\right\|_{\max}\leq C^{k+1}$$

Geometric Rate

For C=0.8, to guarantee the accuracy $\epsilon=0.0001$, there are

$$K = \lceil \log_{0.8} 0.0001 \rceil = 41$$
 iterations.

Our Approach

$$\|\hat{\mathbf{S}}_k - \hat{\mathbf{S}}\|_{\max} \le \frac{C^{k+1}}{(k+1)!}$$
 Exponential Rate

For C=0.8, $\epsilon=0.0001$, we need only 7 iterations.

Exponential SimRank

Key Observation

Geometric Sum

$$\mathbf{S} = C \cdot (\mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^T) + (1 - C) \cdot \mathbf{I}_n \quad \mathbf{S} = (1 - C) \cdot \sum_{i=0}^{\infty} \mathbf{C}^i \cdot \mathbf{Q}^i \cdot (\mathbf{Q}^T)^i$$

The effect of C^i is to *reduce* the contribution of *long* paths relative to *short* ones

Main Idea

 Accelerate convergence by replacing the geometric sum of SimRank with the exponential sum.

$$\frac{d\hat{\mathbf{S}}(t)}{dt} = \mathbf{Q} \cdot \hat{\mathbf{S}}(t) \cdot \mathbf{Q}^{T}, \quad \hat{\mathbf{S}}(0) = e^{-C} \cdot \mathbf{I}_{n}.$$

$$\hat{\mathbf{S}} = e^{-C} \cdot \sum_{i=0}^{\infty} \frac{C^{i}}{i!} \cdot \mathbf{Q}^{i} \cdot (\mathbf{Q}^{T})^{i}$$

Differential Equation

Initial Condition

Normalized Factor

Exponential Sum

UNSW SimRank Differential Equation

Recursive form for Differential SimRank

$$\frac{d\hat{\mathbf{S}}(t)}{dt} = \mathbf{Q} \cdot \hat{\mathbf{S}}(t) \cdot \mathbf{Q}^T, \quad \hat{\mathbf{S}}(0) = e^{-C} \cdot \mathbf{I}_n.$$

- Conventional computing method
 - Euler iteration: Set $t_k = k \cdot h$,

$$\hat{\mathbf{S}}_{k+1} = \hat{\mathbf{S}}_k + h \cdot \mathbf{Q} \cdot \hat{\mathbf{S}}_k \cdot \mathbf{Q}^T, \quad \hat{\mathbf{S}}_0 = \hat{\mathbf{S}}(0) = e^{-C} \cdot \mathbf{I}_n.$$

- Disadvantage: Hard to determine the value of h.
- Our approach

$$\begin{cases} \mathbf{T}_{k+1} = \mathbf{Q} \cdot \mathbf{T}_k \cdot \mathbf{Q}^T \\ \mathbf{\hat{S}}_{k+1} = \mathbf{\hat{S}}_k + e^{-C} \cdot \frac{C^{k+1}}{(k+1)!} \cdot \mathbf{T}_{k+1} \end{cases} \text{ with } \begin{cases} \mathbf{T}_0 = \mathbf{I}_n \\ \mathbf{\hat{S}}_0 = e^{-C} \cdot \mathbf{I}_n \end{cases}$$

UNSW SimRank Differential Equation

• Accuracy Guarantee
$$\left\{ \begin{array}{l} \mathbf{T}_{k+1} = \mathbf{Q} \cdot \mathbf{T}_k \cdot \mathbf{Q}^T \\ \hat{\mathbf{S}}_{k+1} = \hat{\mathbf{S}}_k + e^{-C} \cdot \frac{C^{k+1}}{(k+1)!} \cdot \mathbf{T}_{k+1} \end{array} \right. \text{ with } \left\{ \begin{array}{l} \mathbf{T}_0 = \mathbf{I}_n \\ \hat{\mathbf{S}}_0 = e^{-C} \cdot \mathbf{I}_n \end{array} \right.$$

$$\|\mathbf{\hat{S}}_k - \mathbf{\hat{S}}\|_{\max} \le \frac{C^{k+1}}{(k+1)!}$$

- #-Iterations
 - Use Lambert W function

$$K' \ge \left\lceil \frac{\ln \epsilon'}{W(\frac{1}{e \cdot C} \cdot \ln \epsilon')} \right\rceil, \text{ with } \epsilon' = \left(\sqrt{2\pi} \cdot \epsilon\right)^{-1}$$

• Use Log function (for $0 < \epsilon < \frac{1}{\sqrt{2\pi}}e^{-C \cdot e^2}$)

$$K' \ge \left\lceil \frac{-\ln(\sqrt{2\pi} \cdot \epsilon)}{\eta - \ln(\eta)} \right\rceil \text{ with } \eta = \ln(-\frac{1}{e \cdot C} \cdot \ln(\sqrt{2\pi} \cdot \epsilon)).$$

Example (C=0.8, $\epsilon=0.0001$)

$$\eta = \ln(-\frac{1}{e \cdot 0.8} \cdot \ln(\sqrt{2\pi} \cdot 0.0001)) = 1.3384,$$

$$K' \ge \left\lceil \frac{-\ln(\sqrt{2\pi} \cdot 0.0001)}{1.3384 - \ln(1.3384)} \right\rceil = \left\lceil \frac{8.2914}{1.0469} \right\rceil = 7.$$

Comparison

• Geometric vs. Exponential SimRank

	(Geometric) SimRank	Exponential SimRank
Closed form	$\mathbf{S} = C \cdot (\mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^T) + (1 - C) \cdot \mathbf{I}_n$	$\frac{d\hat{\mathbf{S}}(t)}{dt} = \mathbf{Q} \cdot \hat{\mathbf{S}}(t) \cdot \mathbf{Q}^{T}, \qquad \hat{\mathbf{S}}(0) = e^{-C} \cdot \mathbf{I}_{n}.$
Series form	$\mathbf{S} = (1 - C) \cdot \sum_{i=0}^{\infty} C^{i} \cdot \mathbf{Q}^{i} \cdot (\mathbf{Q}^{T})^{i}$	$\hat{\mathbf{S}} = e^{-C} \cdot \sum_{i=0}^{\infty} \frac{C^i}{i!} \cdot \mathbf{Q}^i \cdot (\mathbf{Q}^T)^i$
Iterative form	$\mathbf{S}_0 = \mathbf{I}_n$ $\mathbf{S}_{k+1} = C \cdot (\mathbf{Q} \cdot \mathbf{S}_k \cdot \mathbf{Q}^T) + (1 - C) \cdot \mathbf{I}_n$	$\begin{cases} \mathbf{T}_{k+1} = \mathbf{Q} \cdot \mathbf{T}_k \cdot \mathbf{Q}^T \\ \hat{\mathbf{S}}_{k+1} = \hat{\mathbf{S}}_k + e^{-C} \cdot \frac{C^{k+1}}{(k+1)!} \cdot \mathbf{T}_{k+1} \end{cases} \text{ with } \begin{cases} \mathbf{T}_0 = \mathbf{I}_n \\ \hat{\mathbf{S}}_0 = e^{-C} \cdot \mathbf{I}_n \end{cases}$
Accuracy	$\left\ \mathbf{S}_k - \mathbf{S} \right\ _{\max} \le C^{k+1}$	$\ \mathbf{\hat{S}}_k - \mathbf{\hat{S}}\ _{\max} \leq \frac{C^{k+1}}{(k+1)!}$

Experimental Settings

Datasets

- Real graph: BERKSTAN, PATENT, DBLP (D02, D05, D08, D11)
- Synthetic data: SYN100K (via GTGraph generator)

Compared Algorithms

- OIP-DSR: Differential SimRank + Partial Sums Sharing
- OIP-SR: Conventional SimRank + Partial Sums Sharing
- psum-SR [VLDB J. '10]: Without Partial Sums Sharing
- mtx-SR [EDBT '10]: Matrix-based SimRank via SVD

Evaluations

- Efficiency: CPU time, memory space, convergence rate
- Effectiveness: relative order preservation of OIP-DSR

Time Efficiency

(c) Effect of Density

Space & Convergence Rate

(<u>a</u>)	Convergence	Rate
(e	Convergence	Kate

Err ϵ	OIP- SR	OIP- DSR	LamW Est.	Log Est.
10^{-2}	19	4	4	-
10^{-3}	30	5	5	5
10^{-4}	43	6	7	7
10^{-5}	50	7	8	9
10^{-6}	64	8	9	10

(f) Lam W & Log Bound on K

Relative Order Preservation

(g) Relative Ordering

#	Co-authors	#	Co-authors
1	Hongjun Lu	16	Aoying Zhou
2	Lu Qin	17	Xiang Lian
3	Xuemin Lin	18	Cheqing Jin
2 3 4 5	Wei Wang	19	Baichen Chen
5	Lei Chen	20	Byron Choi
6	Lijun Chang	21	Wenfei Fan
6 7 8 9	Yiping Ke	22	Rong-Hua Li
8	Haifeng Jiang	23	Hong Cheng ▼
9	Philip S. Yu	24	Jun Gao ▲
10	Gabriel Pui Cheong Fung	25	Xiaofang Zhou
11	James Cheng	26	Ke Yi
12	Weifa Liang	27	Yufei Tao
13	Ying Zhang	28	Nan Tang
14	Bolin Ding	29	Jinsoo Lee
15	Haixun Wang	30	Kam-Fai Wong

(h) Top-30 Co-authors of "Jeffrey Xu Yu"

Conclusions

- Two efficient methods are proposed to speed up the computation of SimRank on large graphs.
 - A novel clustering approach to eliminate duplicate computations among the partial summations.
 - A differential SimRank model for achieving an exponential convergence rate.
- Empirical evaluations to show the superiority of our methods by one order of magnitude.

