## Chapter 15

# **Spanning trees**

A **spanning tree** of a graph consists of the nodes of the graph and some of the edges of the graph so that there is a path between any two nodes. Like trees in general, spanning trees are connected and acyclic. Usually there are several ways to construct a spanning tree.

For example, consider the following graph:



A possible spanning tree for the graph is as follows:



The weight of a spanning tree is the sum of the edge weights. For example, the weight of the above spanning tree is 3 + 5 + 9 + 3 + 2 = 22.

A **minimum spanning tree** is a spanning tree whose weight is as small as possible. The weight of a minimum spanning tree for the example graph is 20, and such a tree can be constructed as follows:



In a similar way, a **maximum spanning tree** is a spanning tree whose weight is as large as possible. The weight of a maximum spanning tree for the example graph is 32:



Note that there may be several minimum and maximum spanning trees for a graph, so the trees are not unique.

This chapter discusses algorithms for constructing spanning trees. It turns out that it is easy to find minimum and maximum spanning trees, because many greedy methods produce optimals solutions. We will learn two algorithms that both process the edges of the graph ordered by their weights. We will focus on finding minimum spanning trees, but similar algorithms can be used for finding maximum spanning trees by processing the edges in reverse order.

## 15.1 Kruskal's algorithm

In **Kruskal's algorithm**<sup>1</sup>, the initial spanning tree only contains the nodes of the graph and does not contain any edges. Then the algorithm goes through the edges ordered by their weights, and always adds an edge to the tree if it does not create a cycle.

The algorithm maintains the components of the tree. Initially, each node of the graph belongs to a separate component. Always when an edge is added to the tree, two components are joined. Finally, all nodes belong to the same component, and a minimum spanning tree has been found.

## Example

Let us consider how Kruskal's algorithm processes the following graph:



The first step in the algorithm is to sort the edges in increasing order of their weights. The result is the following list:

<sup>&</sup>lt;sup>1</sup>The algorithm was published in 1956 by J. B. Kruskal [43].

| edge | weight |
|------|--------|
| 5–6  | 2      |
| 1-2  | 3      |
| 3–6  | 3      |
| 1-5  | 5      |
| 2-3  | 5      |
| 2-5  | 6      |
| 4-6  | 7      |
| 3–4  | 9      |

After this, the algorithm goes through the list and adds each edge to the tree if it joins two separate components.

Initially, each node is in its own component:



The first edge to be added to the tree is the edge 5–6 that creates the component {5,6} by joining the components {5} and {6}:



After this, the edges 1–2, 3–6 and 1–5 are added in a similar way:



After those steps, most components have been joined and there are two components in the tree:  $\{1,2,3,5,6\}$  and  $\{4\}$ .

The next edge in the list is the edge 2–3, but it will not be included in the tree, because nodes 2 and 3 are already in the same component. For the same reason, the edge 2–5 will not be included in the tree.

Finally, the edge 4–6 will be included in the tree:



After this, the algorithm will not add any new edges, because the graph is connected and there is a path between any two nodes. The resulting graph is a minimum spanning tree with weight 2+3+3+5+7=20.

#### Why does this work?

It is a good question why Kruskal's algorithm works. Why does the greedy strategy guarantee that we will find a minimum spanning tree?

Let us see what happens if the minimum weight edge of the graph is not included in the spanning tree. For example, suppose that a spanning tree for the previous graph would not contain the minimum weight edge 5–6. We do not know the exact structure of such a spanning tree, but in any case it has to contain some edges. Assume that the tree would be as follows:



However, it is not possible that the above tree would be a minimum spanning tree for the graph. The reason for this is that we can remove an edge from the tree and replace it with the minimum weight edge 5–6. This produces a spanning tree whose weight is *smaller*:



For this reason, it is always optimal to include the minimum weight edge in the tree to produce a minimum spanning tree. Using a similar argument, we can show that it is also optimal to add the next edge in weight order to the tree, and so on. Hence, Kruskal's algorithm works correctly and always produces a minimum spanning tree.

#### **Implementation**

When implementing Kruskal's algorithm, the edge list representation of the graph is convenient. The first phase of the algorithm sorts the edges in the list in  $O(m \log m)$  time. After this, the second phase of the algorithm builds the minimum spanning tree as follows:

```
for (...) {
  if (!same(a,b)) union(a,b);
}
```

The loop goes through the edges in the list and always processes an edge a-b where a and b are two nodes. Two functions are needed: the function same determines if the nodes are in the same component, and the function union joins the components that contain nodes a and b.

The problem is how to efficiently implement the functions same and union. One possibility is to implement the function same as a graph traversal and check if we can get from node a to node b. However, the time complexity of such a function would be O(n+m) and the resulting algorithm would be slow, because the function same will be called for each edge in the graph.

We will solve the problem using a union-find structure that implements both functions in  $O(\log n)$  time. Thus, the time complexity of Kruskal's algorithm will be  $O(m \log n)$  after sorting the edge list.

### 15.2 Union-find structure

A **union-find structure** maintains a collection of sets. The sets are disjoint, so no element belongs to more than one set. Two  $O(\log n)$  time operations are supported: the union operation joins two sets, and the find operation finds the representative of the set that contains a given element<sup>2</sup>.

#### Structure

In a union-find structure, one element in each set is the representative of the set, and there is a chain from any other element of the set to the representative. For example, assume that the sets are  $\{1,4,7\}$ ,  $\{5\}$  and  $\{2,3,6,8\}$ :



<sup>&</sup>lt;sup>2</sup>The structure presented here was introduced in 1971 by J. D. Hopcroft and J. D. Ullman [35]. Later, in 1975, R. E. Tarjan studied a more sophisticated variant of the structure [57] that is discussed in many algorithm textbooks nowadays.

In this case the representatives of the sets are 4, 5 and 2. For each element, we can find its representative by following the chain that begins at the element. For example, the element 2 is the representative for the element 6, because we follow the chain  $6 \rightarrow 3 \rightarrow 2$ . Two elements belong to the same set exactly when their representatives are the same.

Two sets can be joined by connecting the representative of one set to the representative of another set. For example, the sets  $\{1,4,7\}$  and  $\{2,3,6,8\}$  can be joined as follows:



The resulting set contains the elements {1,2,3,4,6,7,8}. From this on, the element 2 is the representative for the entire set and the old representative 4 points to the element 2.

The efficiency of the union-find structure depends on how the sets are joined. It turns out that we can follow a simple strategy: always connect the representative of the smaller set to the representative of the larger set (or if the sets are of equal size, we can make an arbitrary choice). Using this strategy, the length of any chain will be  $O(\log n)$ , so we can find the representative of any element efficiently by following the corresponding chain.

#### **Implementation**

The union-find structure can be implemented using arrays. In the following implementation, the array k contains for each element the next element in the chain or the element itself if it is a representative, and the array s indicates for each representative the size of the corresponding set.

Initially, each element belongs to a separate set:

```
for (int i = 1; i <= n; i++) k[i] = i;
for (int i = 1; i <= n; i++) s[i] = 1;
```

The function find returns the representative for an element x. The representative can be found by following the chain that begins at x.

```
int find(int x) {
    while (x != k[x]) x = k[x];
    return x;
}
```

The function same checks whether elements a and b belong to the same set. This can easily be done by using the function find:

```
bool same(int a, int b) {
   return find(a) == find(b);
}
```

The function union joins the sets that contain elements a and b (the elements has to be in different sets). The function first finds the representatives of the sets and then connects the smaller set to the larger set.

```
void union(int a, int b) {
    a = find(a);
    b = find(b);
    if (s[a] < s[b]) swap(a,b);
    s[a] += s[b];
    k[b] = a;
}</pre>
```

The time complexity of the function find is  $O(\log n)$  assuming that the length of each chain is  $O(\log n)$ . In this case, the functions same and union also work in  $O(\log n)$  time. The function union makes sure that the length of each chain is  $O(\log n)$  by connecting the smaller set to the larger set.

## 15.3 Prim's algorithm

**Prim's algorithm**<sup>3</sup> is an alternative method for finding a minimum spanning tree. The algorithm first adds an arbitrary node to the tree. After this, the algorithm always chooses a minimum-weight edge that adds a new node to the tree. Finally, all nodes have been added to the tree and a minimum spanning tree has been found.

Prim's algorithm resembles Dijkstra's algorithm. The difference is that Dijkstra's algorithm always selects an edge whose distance from the starting node is minimum, but Prim's algorithm simply selects the minimum weight edge that adds a new node to the tree.

### Example

Let us consider how Prim's algorithm works in the following graph:



<sup>&</sup>lt;sup>3</sup>The algorithm is named after R. C. Prim who published it in 1957 [48]. However, the same algorithm was discovered already in 1930 by V. Jarník.

Initially, there are no edges between the nodes:



An arbitrary node can be the starting node, so let us choose node 1. First, we add node 2 that is connected by an edge of weight 3:



After this, there are two edges with weight 5, so we can add either node 3 or node 5 to the tree. Let us add node 3 first:



The process continues until all nodes have been included in the tree:



#### **Implementation**

Like Dijkstra's algorithm, Prim's algorithm can be efficiently implemented using a priority queue. The priority queue should contain all nodes that can be connected to the current component using a single edge, in increasing order of the weights of the corresponding edges.

The time complexity of Prim's algorithm is  $O(n + m \log m)$  that equals the time complexity of Dijkstra's algorithm. In practice, Prim's and Kruskal's algorithms are both efficient, and the choice of the algorithm is a matter of taste. Still, most competitive programmers use Kruskal's algorithm.