ASSIGNMENT 3

JONAS TREPIAKAS

Suppose firstly that $y \in W^{\circ} \cap U^{\circ}$. Since $V = U \oplus W$, we can write an arbitrary $x \in V$ as u + w uniquely, and then y(x) = y(u + w) = y(u) + y(w) = 0 + 0 = 0 by assumption on y annihilating W and U. But then taking the contraposition of lemma 3.4.(1), we get y = 0, so $U^{\circ} \cap W^{\circ} = \{0\}$, hence $U^{\circ} \oplus W^{\circ}$ is indeed a direct sum.

The inclusion $U^{\circ} \oplus W^{\circ} \subset V'$ follows by definition, so suppose conversely that $y \in V'$. Then we can define linear functionals $y_U \in U^{\circ}$ and $y_W \in W^{\circ}$ as follows: $y_U(u+w) = y(w)$ and $y_W(u+w) = y(u)$ for $u \in U$ and $w \in W$.

There is no problem of being well defined since if u + w = u' + w' then $u - u' = w - w' \in U \cap W = \{0\}.$

Since $y_U(\lambda(u+w)+(u'+w'))=y_U(\lambda u+u'+\lambda w+w')=y(\lambda w+w')=\lambda y(w)+y(w')=\lambda y_U(u+w)+y_U(u'+w')$, we find that y_U is linear, and repeating for y_W , we find that y_W is also linear. So $y_U,y_W\in V'$.

Furthermore, if $u \in U$, then the unique way of writing it as a direct sum of an element from U and an element from W is u+0, so $y_U(u)=y_U(u+0)=y(0)=0$ since y is linear. Hence $y_U \in U^{\circ}$, and similarly, $y_W \in W^{\circ}$.

Lastly, for all $x \in V$, write x = u + w for $u \in U$ and $w \in W$. Then $y(x) = y(u+w) = y(u) + y(w) = y_W(u+w) + y_U(u+w) = (y_U + y_W)(x)$, hence $y = y_U + y_W$, so $y \in U^{\circ} \oplus W^{\circ}$ giving us the other inclusion.