Fortgeschrittenes Physik Lab SS19

Experiment: Faraday- und Pockelseffekt

(Durchgeführt am: (01-02).09.19 bei Leena Diehl)

Erik Bode, Damian Lanzenstiel (Group 103)

9. Oktober 2019

Zusammenfassung

Im diesem Versuch geht es darum den Faraday und Pockelseffekt zu untersuchen. Dabei sollte einmal der Elektrooptische Koeffizient r_{41} mit einer Anordnung von Pockelszellen bestimmt werden. Hierbei wurden zwei Methoden verwendet die zu den Ergebnissen von $r_{41_{F1}}=(26.5\pm1.1)\frac{\rm pm}{V}$ und $r_{41_{F2}}=(22.1\pm0.9)\frac{\rm pm}{V}$ führte. Diese werden in der Diskussion mit dem Literaturwert von $r_{41}=23.4\frac{\rm pm}{V}$ verglichen. Im Zweiten Teil des Experiments soll die Materialabhängige Verdetkonstante bestimmt werden. Hierbei wird einmal eine idealisierte Spule und einmal eine reale Spule zur Bestimmung der Konstante angenommen. Im Vergleich mit den Herstellerangaben des fällt auf, dass nur der Wert der realen Spule von $V_{real}=(0.0494\pm0.0004)\frac{\rm min}{\rm Oe}\frac{\rm min}{\rm Com}$ mit den Hersteller Wert von $V_{ideal}=0.05\frac{\rm min}{\rm Oe}\frac{\rm min}{\rm Com}$ verträglich ist.

Inhaltsverzeichnis

1	\mathbf{The}	eoretische Grundlagen	2							
	1.1	Doppelbrechung	2							
	1.2	Pockels Effekt	2							
	1.3	Aufbau der Pockels Zelle	2							
	1.4	Faraday Effekt	3							
	1.5	Magnetfeld einer realen Spule	3							
2	Dur	chführung des Versuches	5							
	2.1	Vorbereitung	5							
	2.2	Pockels Effekt	5							
		2.2.1 Methoden zur Bestimmung von $U_{\lambda/2}$	5							
		2.2.2 Bestimmung von $U_{\lambda/2}$	5							
	2.3	Faraday Effekt	5							
3	Auswertung									
	3.1	Pockelseffekt	6							
		3.1.1 Methode Sägezahnspannung	6							
		3.1.2 Methode Gleichspannung	7							
	3.2	Faraday Effekt	7							
4	\mathbf{Disk}	Diskussion								
	4.1	Pockelseffekt	9							
	4.2	Faradayeffekt	9							
5	Tab	pellen	11							
6	Bild	der	11							
7	7 Bibliograpy									
Li	terat	cur	11							
8	8 Anhang									

1 Theoretische Grundlagen

1.1 Doppelbrechung

Doppelbrechung ist eine Eigenschaft von optisch anisotropen Stoffen. In diesen ist die Ausbreitungsgeschwindigkeit abhängig von Richtung und Polarisation der durchdringenden Welle. Das führt dazu, dass die Welle in zwei Teilstrahlen aufgespalten wird.

1.2 Pockels Effekt

Der Pockels Effekt tritt nur in Kristallen ohne Symmetriezentren auf: Doppelbrechung wird durch Anlegen einer externen Spannung erreicht. Die Begründung dafür is, dass die Permittität ϵ nicht konstant ist, sondern vom angelegten elektrischen Feld abhängig ist. Die Permittität ist definiert über $\epsilon = \frac{D}{E}$ wobei D definiert ist wie folgt:

$$D = aE + bE^2 + cE^3 + \dots \qquad \text{mit } a, b, c = const$$
 (1)

Daraus folgt

$$\epsilon = a + 2bE + 3cE^2 + \dots \tag{2}$$

Der Brechungsindex n ist abhängig von ϵ , sodass eine Änderung des Magnetfeldes eine Änderung im Indexellypsoid hervorruft. Dies ist der elektrooptische Pockels Effekt. Hier ist vor allem der lineare Term von 2 ausschlaggebend.

1.3 Aufbau der Pockels Zelle

Die im Versuch verwendete Pockels Zelle besteht aus 4 Ammoniumdihydrogenphosphat (ADP, $NH_4H_4PO_4$) Kristallen, welche im 45° -Y-Cut vorliegen.

Der Indexellipsoid des Kristalls bis zu ersten Ordnung ist wie folgt:

$$\frac{x_1^2}{n_1^2} + 2r_{41}x_2E_1x_3 + \frac{x_2^2}{n_1^2} + 2r_{41}x_1E_2x_3 + \frac{x_3^2}{n_3^2} + 2r_{63}x_1x_2E_3 = 1$$
 (3)

Hierbei ist optische Achse im feldfreien Fall die x_3 Achse. Wenn ein Elektrisches Feld entlang der x_1 Achse angelegt ist, gilt das Folgende:

$$\frac{x_1^2}{n_1^2} + 2R_{41}x_2E_1x_3 + \frac{x_2^2}{n_1^2} + \frac{x_3^2}{n_3^2} = 1$$
 (4)

Y-Cut: Koordinatenwechsel durch Drehung con 45° um x_1 Achse:

$$x_2 = \frac{1}{\sqrt{2}} (x_2' x_3') \qquad x_3 = \frac{1}{\sqrt{2}} (x_2' x_3')$$
 (5)

Nach der Herleitung in der Versuchsanleitung [1] folgt nun für dem Brechungsindex der jeweiligen Polarisationskomponenten bei Lichteinfall der x_2' (x_3') Richtung

$$n_{x_2'} = \frac{n_x}{\sqrt{1 + r_{41} E_1 n_x^2}} \approx n_x + \frac{1}{2} r_{41} E_1 n_x^3 \tag{6}$$

In einem Kristall der Länge l lautet die Phasenverschiebung nun

$$\omega t = \frac{2\pi}{\lambda} \left(n_1 - n_{x_2'} \right) \tag{7}$$

Weil die optische Achse und der k-Vektor in einem Winkel von 45° zueinander stehen, trennt sich der eingehende Lichtstrahl in einen ordentlichen und außerordentlichen Strahl, welche durch einen zweiten ADP Kristall, der um 180° zum ersten verdreht ist. So werden die strahlen wieder vereinigt. Ihre Phasenverschiebung aufgrund der unterschiedlichen Ausbreitungsgeschwindigkeiten ist nun

$$\omega t = \frac{2\pi}{\lambda} \cdot 2 \cdot \left(n_1 - n_{x_2'} \right) \tag{8}$$

Es ist zusätzlich noch die Natürliche Doppelbrechung vorhanden, welche um ein weiteres Kristallpaar mit Winkel 90° verbaut ist. Dass der Pockels Effekt nicht gleichzeitig kompensiert wird, wurde das Elektrische Feld an diesen umgekehrt. Dieser Aufbau mit Strahlengang ist in Abbildung 1 erkennbar. Die resultierende Phasenverschiebung ist somit

$$\omega t = \frac{4\pi}{\lambda} r_{41} E_1 n_x^3 l \tag{9}$$

Bei einer Phasenverschiebung um π und einem Elektrischen Feld von $E = \frac{U}{d}$ gilt somit:

$$r_{41} = \frac{\lambda d}{4lU_{\lambda/2}} \sqrt{\frac{1}{2} \left(\frac{1}{n_1^2} + \frac{1}{n_3^2}\right)^3}$$
 (10)

Abbildung 1: Das Bild zeigt den Aufbau der verwendeten Pockels Zelle. Die Elektroden für den Aufbau der elektrischen Felder sowie die Strahlenverläufe sind auch eingezeichnet.

1.4 Faraday Effekt

Der Faraday Effekt ist eine Magnetfeldinduzierte Doppelbrechung, auch Magnetooptischer Effekt genannt. Er erfolgt in isotropen Medien bei Anlegung eines Magnetfeldes parallel zur Ausbreitungsrichtung des Lichts. Das linear polarisierte eingehende licht kann in zwei entgegengesetzt drehende zirkularpolarisierte Wellen aufgespalten werden. Die Links- und Rechtsdrehenden zirkularpolarisierten Teilwellen können das Medium bei angelegtem Magnetfeld nicht gleich schnell durchqueren. Dies führt bei verlassen des Mediums zu einer Phasenverschiebung der linear polarisierten Kombination der beiden zirkularpolarisierten Wellen. Dieser Drehwinkel α kann über die Nachfolgende Formel aus der Magnetischen Feldstärke H, der Länge des Mediums l und der Verdetkonstante V, welche materialabhängig ist, bestimmt werden.

$$\alpha = V \cdot l \cdot H \tag{11}$$

1.5 Magnetfeld einer realen Spule

Für die Berechnung des Magnetfeldes einer realen Spule wird das Biot-Savart'sche Gesetz verwendet. Es ist definiert als

$$dB = \frac{\mu_0}{4\pi} I d\vec{l} \times \frac{\vec{r} - \vec{r'}}{\left|\vec{r} - \vec{r'}\right|^3} \tag{12}$$

Nach der Herleitung im Staatsexamen von B.Herrmann [3], erhält man für das Magnetfeld der realen Spule nach Integration über Länge und Dicke den nachfolgenden Ausdruck:

$$H(z) = \frac{NI}{2L(x_2 - x_1)} \left[(L - z) \ln \left(\frac{x_2 + \sqrt{(L - z)^2 + x_2^2}}{x_1 + \sqrt{(L - z)^2 + x_1^2}} \right) + z \ln \left(\sqrt{\frac{x_2 + \sqrt{z^2 + x_2^2}}{x_1 + \sqrt{z^2 + x_1^2}}} \right) \right]$$
(13)

Hierbei sind x_1 der innerer Spulenradius, x_2 der äußere und L die Länge der Spule. Bei einsetzen der Parameter folgt nach [3] für die Gleichung 11:

$$\alpha = V \cdot 2556 \cdot I \tag{14}$$

2 Durchführung des Versuches

2.1 Vorbereitung

Es wurde damit begonnen, die benötigten Geräte einzuschalten. Besonders wichtig war es, die Wasserkühlung der Magnetspule für die Faraday Effekt Messungen frühzeitig einzuschalten.

2.2 Pockels Effekt

2.2.1 Methoden zur Bestimmung von $U_{\lambda/2}$

Es gibt zwei Arten, $U_{\lambda/2}$ zu bestimmen. Für die erste wird eine an der Pockels Zelle angelegte Sinusspannung mit einer Gleichspannung verschoben, bis das Intensitätssignal des Laserstrahls sich verändert: Die Frequenz verdoppelt sich und die Amplitude verringert sich deutlich. Sobald eine Veränderung des Intensitätssignals eintritt, wurde entweder der untere oder obere Grenzwert von $U_{\lambda/2}$ bestimmt. Nachdem der zweite Grenzwert bestimmt wurde, kann $U_{\lambda/2}$ bestimmt werden:

$$U_{\lambda/2} = U_{\text{Max}} - U_{\text{Min}} \tag{15}$$

 $U_{\lambda/2}$ wurde außerdem mithilfe von einer Sägezahnspannung bestimmt: An Stelle der obigen Sinusspannung wurde eine Sägezahnspannung an die Pockels Zelle angelegt. Dies führt zu einem annähernd Sinusförmigen Intensitätsverlauf. Zum Zeitpunkt des Maximums und Minimums der Intensität wird nun die Spannung der Sägezahnspannung gemessen. Die Differenz der beiden Punkte wird analog zu 15 verwendet um $U_{\lambda/2}$ zu bestimmen.

2.2.2 Bestimmung von $U_{\lambda/2}$

Als erstes wurde $U_{\lambda/2}$ mittels der Sägezahnspannungsmethode bestimmt. Hierzu wurden 15 Messungen durchgeführt, dass am Ende der Mittelwert gebildet werden kann.

Zur darauffolgend wurden die Gleichstrommessungen durchgeführt. Es wurde abwechselnd eine Positive oder Negative Gleichspannung angelegt. Insgesamt wurden sechs solcher Paare aufgezeichnet.

2.3 Faraday Effekt

Für die Messungen des Faraday Effektes wurde der Strom zur Felderzeugung in 0.5 A schritten hoch geregelt. Hierbei wurde immer der Drehwinkel des lichtes mittels des Halbschattenpolarimeters bestimmt. Als 5 A erreicht wurden, wurde die Richtung des Feldes umgekehrt und die Messung wiederholt.

Nach Abschluss der Messreihen wurden die 2ϵ Messungen durchgeführt.

3 Auswertung

3.1 Pockelseffekt

3.1.1 Methode Sägezahnspannung

Zur Auswertung des Pockelseffekt werden die Elektrooptischen Konstanten auf zwei Arten bestimmt.

Für die Auswertung der Methode bei der eine Sägezahnspannung an den Pockelszellen angelegt wurde werden als erstes die 15 Datensätze geplottet und mit dem Python Packet scipy.optimize über curve_fit angepasst. Hierbei wurde für den anstieg der Sägezahnspannung die Form einer Geraden gewählt. Für die Spannung der Photodiode wurde als erstes die Form eines Sinus verwendet. Hier ließ sich jedoch die Kurve mit diesem nicht gut anpassen (siehe Abbildung 4). Aus diesem Grund wurde ein Polynom neunten Grades (siehe Gleichung 16) an die Kurve gefittet. Dieser ist zusammen mit dem Linearen Fit in Abbildung 2 zu finden.

$$f(x) = ax^{9} + bx^{8} + cx^{7} + dx^{6} + ex^{5} + fx^{4} + gx^{3} + hx^{2} + ix + g$$
(16)

Von diesem wurde dann das Maximum und Minimum bestimmt. Mit den x-Werten dieser konnten nun

Abbildung 2: Datenpunkte der ersten Messmethode mit Sägezahnspannung. In rot der Fit an die Steigung der Sägezahnkurve und in grün die Polynom Anpassung an die Datenpunkte der Photodiode.

die Spannungen der Sägezahnkurve bestimmt werden, indem sie in den Linearen Fit eingesetzt wurde:

$$U_{\text{Sägezahn}} = mx_{\text{max/min}} + c \tag{17}$$

Der Fehler auf die Spannung ergibt sich über Gaußsche Fehlerfortpflanzung durch Gleichung 18

$$\sigma_{U_{\text{Sägezahn}}} = \sqrt{\left(mx_{\text{max/min}}\sigma_c\right)^2 + \left(\left(c + x_{\text{max/min}}\right)\sigma_m\right)^2}$$
(18)

Nun können die beiden Werte der Spannung voneinander abgezogen werden und man erhält die Spannungsdifferenz $U_{\frac{\lambda}{2}}$. Der Fehler bekommt man durch:

$$\sigma_{U_{\lambda/2}} = \sqrt{\left(U_{\text{max}}\sigma_{U_{\text{min}}}\right)^2 + \left(U_{\text{min}}\sigma_{U_{\text{max}}}\right)^2} \tag{19}$$

Da 15 Messreihen erstellt wurde wird nun der Gewichtete Mittelwert dieser Werte genommen. Für dies wird Gleichung 20 verwendet, der Fehler gibt sich wie in Gleichung 21.

$$\bar{x}_g = \frac{\sum_i g_i x_i}{\sum_i g_i}$$
 with $g_i = \frac{1}{\sigma_i^2}$ (20)

$$\sigma_{\bar{x}_g} = \frac{1}{\sqrt{\sum_i 1/\sigma_i^2}} \tag{21}$$

Als Wert ergibt sich für die Spannung dadurch

$$U_{\frac{\lambda}{2}} = 2.1278 \pm 0.0024 \,\mathrm{V}$$

Um nun die Elektrooptische Konstante r_{41} zu bestimmen wird Gleichung 14 verwendet. Die Spannung muss davor jedoch noch um den Faktor 100 vergrößert werden, da sie im Versuch um diesen Faktor gedämpft wurde. Die Werte für die Rechnung sind in der Versuchsanleitung [1] zu finden und wurden als fehlerfrei betrachtet. Damit ergab sich über die 1.Methode ein Wert von

$$r_{41_1} = (26.489 \pm 0.030) \frac{\text{pm}}{V}$$

Die Annahme die Werte als Fehler frei zu betrachten stellte sich als Problematisch heraus, da dadurch der relative Fehler mit 0.11% sehr klein wurde. Deshalb wurden für die Länge und Dicke des Kristalls weitere Fehler wie im Staatsexamen[3] von 0.1 mm abgeschätzt. Der Fehler der neue Fehler auf den Koeffizienten r_{41} wird mit Gleichung 22 bestimmt. Der Wert mit diesen Fehlern beträgt:

$$r_{41_{F1}} = (26.5 \pm 1.1) \frac{\text{pm}}{\text{V}}$$

$$\sigma_{r_{41}} = \sqrt{\left(\frac{\sigma_d a}{l U_{\lambda/2}}\right)^2 + \left(\frac{\sigma_l da}{l^2 U_{\lambda/2}}\right)^2 + \left(\frac{\sigma_{U_{\lambda/2}} a}{l U_{\lambda/2}^2}\right)^2}$$
(22)

3.1.2 Methode Gleichspannung

Die zweite Methode die Konstante zu bestimmen ist über Gleichspannung. Hierbei ist die Spannung die Differenz zwischen den beiden gemessenen Gleichspannungssignalen. Da sich diese sehr schlecht haben einstellen lassen wurden für positive so wie negative Spannung das Signal sechs mal gemessen. Aus diesen wir nun als erstes der Arithmetische Mittelwert bestimmt so wie dessen Fehler. Hierbei werden die Gleichungen 23 und 24 verwendet um den Fehler zu bestimmen.

$$\sigma_x = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \tag{23}$$

$$\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}} \tag{24}$$

Mit dem Mittelwert der beiden Spannungen wird nun der die Differenz der beiden Bestimmt. Der Fehler berechnet sich hier wie bei der Gleichung 19. Damit ergibt sich als Wert für die Spannung

$$U_{\frac{\lambda}{2}} = (255.60 \pm 0.30) \,\mathrm{V}$$

Dies kann wie bei der ersten Methode in die Gleichung 14 eingesetzt werden wodurch sich der Wert für die Elektrooptische Konstante von

$$r_{41_2} = (22.051 \pm 0.026) \frac{\text{pm}}{\text{V}}$$

ergibt. Da bei beiden Werten der Relative Fehler mit 0.11% sehr klein war und sich eine eindeutige Unverträglichkeit zeige, wurde wie bei Methode eins auch hier die Werte nochmal mit einem geschätzten Fehler auf Dicke und Länge des Kristalls von 0.1 mm bestimmt. Fehler auch hier mit Gleichung 22.

$$r_{41_{F2}} = (22.1 \pm 0.9) \frac{\text{pm}}{\text{V}}$$

3.2 Faraday Effekt

Für die Auswertung des Faraday Effekts soll der Material abhängige Verdetkonstante bestimmt werden. Hierfür wird als erstes die Eingestellte Stromstärke gegen den gemessenen Drehwinkel aufgetragen. Die mit curve_fit angepasste Gerade ist in Abbildung 3 zu finden. Die Geradengleichung lautet:

$$\alpha = (2.642 \pm 0.021) \frac{\circ}{\text{A}} \cdot I + (0.70 \pm 0.06)^{\circ}$$

Abbildung 3: In rot die gemessenen Datenpunkte und in blau der lineare Fit an diese. Es wurden keine Fehler mit eingezeichnet da diese zu klein waren um sie sinnvoll darzustellen.

Nun wird einmal für eine reale und eine ideale Spule die Verdetkonstante bestimmt.

Für eine reale Spule kann man Gleichung 25 nehmen. Hierbei ist $\frac{\alpha}{I}$ gerade die Steigung der Geraden und der Faktor 2556 ein Wert der im Staatsexamen[2] mit der Gleichung 13 für eine reale Spule berechnet wurde.

$$V_{real} = \frac{\alpha}{A \cdot 2556} \tag{25}$$

Damit ergibt sich ein Wert für die Konstante von

$$V_{real} = (0.001034 \pm 0.000008) \frac{\circ}{\text{A}}$$

Für eine ideale Spule wird die Gleichung 26 verwendet.

$$V_{ideal} = \frac{\alpha}{A} \frac{L}{Nl} \approx \frac{\alpha}{A \cdot 3086}$$
 (26)

Hierbei ist L die Länge der Spule l die Länge des Materials in der Spule und N die Anzahl der Windungen. Werte sind in der Versuchsanleitung zu finden[1]. Hier ergibt sich für die Verdetkonstante ein Wert von:

$$V_{ideal} = (0.000856 \pm 0.000007) \frac{\circ}{\Lambda}$$

Um diese mit der Angabe des Herstellers von $V_{HS}=0.05\,\frac{\rm min}{\rm O\,e\,\,cm}$ zu vergleichen müssen die Werte umgerechnet werden dabei gilt:

$$1 A = \frac{100}{79.59} Oe cm$$
 $1 Grad = 60 min$

Damit ergeben sich die Werte von:

$$V_{real} = (0.0494 \pm 0.0004) \frac{\text{min}}{\text{Oe cm}}$$

$$V_{ideal} = (0.04088 \pm 0.00032) \frac{\min}{\text{Oe cm}}$$

4 Diskussion

4.1 Pockelseffekt

Im Versuchsteil wurde über zwei Methoden die Elektrooptischen Koeffizienten bestimmt indem die Halbwellenspannung gemessen wurde. Hierbei erhielt wurden folgende Werte errechnet:

$$r_{41_1} = (26.489 \pm 0.030) \frac{\text{pm}}{V}$$

$$r_{41_2} = (22.051 \pm 0.026) \times \frac{\text{pm}}{\text{V}}$$

Der Literaturwert welcher in der Versuchsanleitung gegeben wurde beträgt 23.4 $\frac{pm}{V}$ bei einer Temperatur von 21°C. Wenn man die Werte mit der Gleichung 27 mit dem Literaturwert vergleicht (siehe Tabelle 1), stellt man fest, dass die Werte beide nicht mi dem Literaturwert kompatibel sind. Trotzdem ist die Messung mit der zweiten Gleichspannungsmethode etwas näher am echten Wert als die erste Methode, auch ist der Fehler bei dieser kleiner.

		r_{41_1}	r_{41_2}	$r_{41_{F1}}$	$r_{41_{F2}}$
$t ext{ in } [c$	7]	102.97	51.88	2.82	1.44

Tabelle 1: Vergleich der bestimmten Werte des Elektrooptischen Koeffizienten mit dem Literaturwert.

Es gibt eine Reihe an möglichen Gründen für die großen Diskrepanzen. Als erstes haben wir natürlich einen möglichen systematischen Fehler durch die Temperatur welche von der beim Literaturwert angegebenen Temperatur von $21^{\circ}C$ abweichen könnte. Auch könnte der Piezoeffekt einen Systematischen Fehler verursacht haben, aber dieser sollte laut Versuchsanleitung bei ADP Kristallen vernachlässigbar sein.

Wenn man die relativen Fehler bestimmt fällt auf, dass diese mit 0.11% recht klein sind. Da bei der Berechnung der Halbwellenspannung keine geschätzten Fehler verwendet wurden, ist es möglich dass Fehler, neben dem auf $U_{\frac{\lambda}{2}}$, bei der Berechnung der Koeffizienten berücksichtigt hätten werden sollen. Aus diesem Grund wurde wie im Staatsexamen beschrieben ein Fehler auf die Dicke und Länge des Kristalls von $0.1\,mm$ geschätzt. Die Hierdurch bestimmten Werte sind:

$$r_{41_{F1}} = (26.5 \pm 1.1) \frac{\text{pm}}{V}$$

$$r_{41_{F2}} = (22.1 \pm 0.9) \frac{\text{pm}}{\text{V}}$$

Diese sind wenn man sich die Vergleichswerte in Tabelle 1 anschaut schon um einiges besser. Trotzdem ist der Wert für die erste Messmethode immer noch unverträglich mit dem Literaturwert.

Der große Unterschied der beiden Messmethoden ist möglicherweise dadurch zu erklären, dass die Dämpfung die erste Methode stärker gedämpft hat als angenommen oder zumindest ein Fehler bei dieser zu berücksichtigen wäre.

Allgemein kann man jedoch sagen, dass obwohl die beiden Methoden wegen mangelnder Eichung des Oszillographen und Sägezahngenerators, als ungenügend für eine exakte Bestimmung sind[3], die Werte relativ gut am Literaturwert liegen.

$$t = \frac{|x_{Value} - x_{Literatur}|}{\sigma_{x_{Value}}} \tag{27}$$

4.2 Faradayeffekt

Für die Auswertung des Faradayeffekts wurde die Verdetkonstante bestimmt. Hierzu wurde einmal eine reale Spule angenommen und einmal eine ideale. Die dabei erhaltenen Werte für die Material abhängig Verdetkonstante sind:

$$V_{real} = (0.0494 \pm 0.0004) \frac{\text{min}}{\text{Oe cm}}$$

$$V_{ideal} = (0.04088 \pm 0.00032) \frac{\min}{\text{Oe cm}}$$

Diese können nun mit Gleichung 27 mit den Herstellerangaben von $V=0.05\,\frac{\rm min}{\rm Oe~cm}$ verglichen werden und sind in Tabelle 2 notiert. Es fällt als erstes auf, dass die reale Spule mit der Herstellerangabe kompatibel

	V_{ideal}	V_{real}
$t \text{ in } [\sigma]$	28.50	1.50

Tabelle 2: Vergleichswerte der bestimmten Verdetkonstanten mit der Herstellerangabe.

ist, jedoch die der idealisierten Spule nicht. Dies entspricht natürlich auch den Erwartungen. Am Ende wurde noch der 2ϵ -Winkel bestimmt. Bei diesem wurde ein Wert von:

$$2\epsilon = 14.50 \pm 0.07^{\circ}$$

bestimmt.

5 Tabellen

7 0 1	11		•	- 1	•
Tabe	П	enverze	21	ch	nis

1	Vergleich der bestimmten Werte des Elektrooptischen Koeffizienten mit dem Literaturwert.	 9
2	$\label{thm:constant} Vergleichswerte der bestimmten Verdetkonstanten mit der Herstellerangabe. \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	 10

6 Bilder

Abbildungsverzeichnis

1	Autbau der Pockels Zelle	3
2	Plot zu Versuchsteil 1	6
3	Datenpunkte und Fit der Faraday Messung	8
4	Sinus Fit an die Messpunkte Versuchsteil 1	12
5	Plot zu Versuchsteil 1 Nr.2	13
6	Plot zu Versuchsteil 1 Nr.3	13
7	Plot zu Versuchsteil 1 Nr.4	14
8	Plot zu Versuchsteil 1 Nr.5	14
9	Plot zu Versuchsteil 1 Nr.6	15
10	Plot zu Versuchsteil 1 Nr.7	15
11	Plot zu Versuchsteil 1 Nr.8	16
12	Plot zu Versuchsteil 1 Nr.9	16
13	Plot zu Versuchsteil 1 Nr.10	17
14		17
15	Plot zu Versuchsteil 1 Nr.12	18
16	Plot zu Versuchsteil 1 Nr.13	18
17	Plot zu Versuchsteil 1 Nr.14	19
18	Plot zu Versuchsteil 1 Nr.15	19

7 Bibliograpy

Literatur

- [1] Versuchsanleitung: Fortgeschrittenen Praktikum Teil 1 Faraday- und Pockelseffekt.
- [2] Simon Amrein. Halbleiter und halbleiterdetektoren, 1.4.2008.
- [3] Bernd Herrmann. Elektrooptischer effekt und faraday-effekt, 1977.

8 Anhang

Abbildung 4: Sinus Fit für Versuchsteil 1. Es ist klar erkennbar, dass die Maxima, an denen man interessiert ist, nicht in der nähe der Messpunkte liegen.

Abbildung 5: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 6: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 7: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 8: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 9: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 10: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 11: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 12: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 13: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 14: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 15: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 16: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 17: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.

Abbildung 18: Datenpunkte der ersten Messmethode mit Hilfe der Sägezahnspannung. Grüner Fit mit Hilfe eines Polynoms neunter Ordnung.