

Introducción al Machine Learning en *Python*

Ronald Delgado 2022.

Presentación

Ronald Delgado

Licenciado en Física - Mención Física Computacional (UCV) Científico de Datos - Machine Learning / Deep Learning - Percepción Remota

> Jefe Unidad de Observación de la Tierra Agencia Bolivariana para Actividades Espaciales, ABAE

Machine Learning Specialist – Agrobit (Argentina)

LinkedIn: www.linkedin.com/in/ronald-delgado/

• Introducción al Machine Learning

- Introducción al Machine Learning
- Regresión Lineal
- Regresión Polinómica
- Regularización en Modelos Lineales
- Regresión Lineal Múltiple
- Imputación de Variables, Datos Categóricos y Feature Engineering
- Validación Cruzada
- · Regresión con Vectores de Soporte
- Regresión con Árboles de Decisión
- Regresión con Bosques Aleatorios

- Introducción al Machine Learning
- Regresión Lineal
- Regresión Polinómica
- Regularización en Modelos Lineales
- Regresión Lineal Múltiple
- Imputación de Variables, Datos Categóricos y Feature Engineering
- Validación Cruzada
- · Regresión con Vectores de Soporte
- Regresión con Árboles de Decisión
- Regresión con Bosques Aleatorios
- Clasificación
- Regresión Logística
- Clasificación por K Vecinos Cercanos
- · Clasificación con Vectores de Soporte
- Clasificación con Árboles de Decisión
- Clasificación con Bosques Aleatorios

- Introducción al Machine Learning
- Regresión Lineal
- Regresión Polinómica
- · Regularización en Modelos Lineales
- Regresión Lineal Múltiple
- Imputación de Variables, Datos Categóricos y Feature Engineering
- Validación Cruzada
- · Regresión con Vectores de Soporte
- Regresión con Árboles de Decisión
- Regresión con Bosques Aleatorios
- Clasificación
- Regresión Logística
- Clasificación por K Vecinos Cercanos
- Clasificación con Vectores de Soporte
- Clasificación con Árboles de Decisión
- Clasificación con Bosques Aleatorios

- Agrupamiento
- Algoritmo de K Medios
- Algoritmo DBSCAN

- Introducción al Machine Learning
- Regresión Lineal
- Regresión Polinómica
- Regularización en Modelos Lineales
- Regresión Lineal Múltiple
- Imputación de Variables, Datos Categóricos y Feature Engineering
- Validación Cruzada
- Regresión con Vectores de Soporte
- Regresión con Árboles de Decisión
- Regresión con Bosques Aleatorios
- Clasificación
- Regresión Logística
- Clasificación por K Vecinos Cercanos
- Clasificación con Vectores de Soporte
- Clasificación con Árboles de Decisión
- Clasificación con Bosques Aleatorios

- Agrupamiento
- Algoritmo de K Medios
- Algoritmo DBSCAN
- Análisis de Componentes Principales
- · Selección de Modelos
- Validación Cruzada K-Fold
- Afinación de Hiperparámetros
- Conclusiones

Generalidades

Inteligencia Artificial

Machine Learning

Deep Learning

Inteligencia Artificial

Machine Learning

Deep Learning Teoría y desarrollo de sistemas capaces de realizar tareas que normalmente requieren de inteligencia humana, como la percepción visual, reconocimiento de voz, toma de decisiones y traducción de lenguajes.

-Diccionario de Oxford.

Inteligencia Artificial

Machine Learning

Deep Learning "Es el área de estudio que le da a las computadoras la habilidad de aprender sin haberles sido explícitamente programadas para ello."

-Arthur Samuel, 1959.

"Se dice que un programa de computadora aprende de la experiencia E con respecto a una cierta tarea T y una medida de desempeño P, si su desempeño sobre T, medido por P, mejora con la experiencia E."

-Tom Mitchell, 1997.

Inteligencia Artificial

Machine Learning

Deep / Learning

El Deep Learning es un subconjunto del Machine Learning, caracterizado por ser redes neuronales con tres o más capas, las cuales intentan simular el comportamiento del cerebro humano, otorgándoles la posibilidad de "aprender" a partir de grandes cantidades de datos.

- IBM.com

O1 Aprendizaje Supervisado

En este tipo de aprendizaje, los datos con que se alimentan los algoritmos incluyen las soluciones deseadas, generalmente conocidas como "etiquetas" (o *labels*, en inglés).

01 **Aprendizaje Supervisado**

En este tipo de aprendizaje, los datos con que se alimentan los algoritmos incluyen las soluciones deseadas, generalmente conocidas como "etiquetas" (o labels, en inglés).

Entrenamiento

Aprendizaje Supervisado

Gatos

O2 Aprendizaje No Supervisado

En este tipo de aprendizaje, los datos con que se alimentan los algoritmos no incluyen las soluciones deseadas, es decir, las etiquetas. En este caso, el algoritmo intenta aprender patrones subyacentes sin la ayuda de un "maestro".

O2 Aprendizaje No Supervisado

En este tipo de aprendizaje, los datos con que se alimentan los algoritmos no incluyen las soluciones deseadas, es decir, las etiquetas. En este caso, el algoritmo intenta aprender patrones subyacentes sin la ayuda de un "maestro".

Entrenamiento

Aprendizaje No Supervisado

O3 Aprendizaje Semisupervisado

En este tipo de aprendizaje, solo una porción pequeña de los datos con los que se alimentan los algoritmos incluyen las etiquetas, mientras que el resto no.

O3 Aprendizaje Semisupervisado

En este tipo de aprendizaje, solo una porción pequeña de los datos con los que se alimentan los algoritmos incluyen las etiquetas, mientras que el resto no.

Gato

Entrenamiento

O4 Aprendizaje por Refuerzo

En este tipo de aprendizaje, el sistema que aprende se define como un *agente* que puede *percibir* su *entorno*, moverse y ejecutar *acciones*. El agente aprenderá dependiendo de los **refuerzos** o **castigos** que reciba del ambiente tras realizar dichas acciones.

O4 Aprendizaje por Refuerzo

En este tipo de aprendizaje, el sistema que aprende se define como un *agente* que puede *percibir* su *entorno*, moverse y ejecutar *acciones*. El agente aprenderá dependiendo de los **refuerzos** o **castigos** que reciba del ambiente tras realizar dichas acciones.

Tipos de Problemas en Machine Learning

Regresión

- Predicción de valores
- Evaluación de riesgos
- Interpolación
- Extrapolación

Tipos de Problemas en Machine Learning

Regresión

- Predicción de valores
- Evaluación de riesgos
- Interpolación
- Extrapolación

Clasificación

- Imágenes
- Correo Spam
- Detección de Fraude
- Diagnóstico médico

Tipos de Problemas en Machine Learning

Regresión

- Predicción de valores
- Evaluación de riesgos
- Interpolación
- Extrapolación

Clasificación

- Imágenes
- Correo Spam
- Detección de Fraude
- Diagnóstico médico

Clustering

- Biología
- Planificación Urbana
- Marketing Digital
- Finanzas

Diferencia del Machine Learning con la Computación Tradicional

Diferencia del Machine Learning con la Computación Tradicional

1943

Modelo Matemático de Neurona Artificial

McCulloch & Pitts.

1943

Modelo Matemático de Neurona Artificial

McCulloch & Pitts.

1943

Modelo Matemático de Neurona Artificial

McCulloch & Pitts.

1943

Modelo Matemático de Neurona Artificial

McCulloch & Rosenblatt.

El Problema de la Separabilidad Lineal

1969

El Problema XOR

Minsky & Papert.

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	1

<i>x</i> ₁	x_2	у
0	0	0
0	1	0
1	0	0
1	1	1

1	+	XOR	-
	-	?	+
0			1

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	0

1969

El Problema XOR

Minsky & Papert.

Comienza el Invierno IA

Comienza el Invierno IA

1986

Retropropagación

Rumelhart, Hinton, Williams.

Summary: the equations of backpropagation

$$\delta^L = \nabla_a C \odot \sigma'(z^L) \tag{BP1}$$

$$\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l) \tag{BP2}$$

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \tag{BP3}$$

$$\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \tag{BP4}$$

1986

Retropropagación

Rumelhart, Hinton, Williams. 1989

Perceptrón Multicapa

Rumelhart et al.

El Perceptron Multicapa podía resolver problemas linealmente no separables

1992

Support Vector Machines

Vapnik.

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$

subject to $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1$

$$\mathbf{Y} \cdot (\mathbf{X}\mathbf{w} + b) \ge \mathbf{1}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \cdot \begin{pmatrix} \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1d} \\ x_{21} & x_{22} & \dots & x_{2d} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nd} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix} + b \ge \mathbf{1}^n$$

Support Vector Machines

Vapnik.

RNN & LSTM

Rumelhart, Hochreiter y Schimdhuber.

1992

Support Vector Machines

Vapnik.

1997

RNN & LSTM

Rumelhart, Hochreiter y Schimdhuber.

1992
Support Vector Machines

Vapnik.

1997

RNN & LSTM

Rumelhart, Hochreiter y Schimdhuber.

1992

Support Vector Machines

Vapnik.

1997

RNN & LSTM

Rumelhart, Hochreiter y Schimdhuber.

1998

Redes Neuronales Convolucionales - LeNet

LeCun.

1998

Redes Neuronales
Convolucionales - LeNet

LeCun.

1998

Redes Neuronales Convolucionales - LeNet

LeCun.

1998

Redes Neuronales Convolucionales - LeNet

LeCun.

1999

Gradient Boosting

Friedman.

1998

Redes Neuronales
Convolucionales - LeNet

LeCun.

1999

Cradient Boosting

Bosques Aleatorios

Breiman.

2001

Bosques Aleatorios

Breiman.

2001

Bosques Aleatorios

Breiman.

2012

ImageNet – AlexNet GPUs

¡Boom del Deep Learning!

2001

Bosques Aleatorios

Breiman.

2012

ImageNet – AlexNet GPUs

¡Boom del Deep Learning!

2014

Redes Adversarias Generativas

Goodfellow.

2014

Redes Adversarias Generativas

Goodfellow.

2014

Redes Adversarias Generativas

Goodfellow.

2014

U-NET

Freiburg Univ.

2014

U-NET

Freiburg Univ.

2015

YOLO

Washington Univ.

2015

YOLO

Washington Univ.

2017

Transformers AlphaGo

Google Brain, Google DeepMind.

2015

YOLO

Washington Univ.

2017

Transformers AlphaGo

Google Brain, Google DeepMind.

2019

AlphaStar

Google Deepmind

2019

AlphaStar

Google Deepmind

2019

AlphaStar

Google Deepmind

2022

Dall-E 2

OpenAl

Aplicaciones del Machine Learning

¿Cuáles son algunas de las aplicaciones más conocidas del **Machine Learning** y **Deep Learning**?

Google

Las herramientas para el Machine Learning

Las herramientas para el Machine Learning

