

# EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

#### PROBA D

Varianta ....091

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

◆ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

# La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex  $\sin 1 i \cos 1$ .
- (4p) b) Să se calculeze distanța de la punctul D(4,3,2) la planul x+2y+3z+6=0.
- (4p) c) Să se calculeze produsul scalar al vectorilor  $\vec{v} = \vec{i} + \vec{j}$  și  $\vec{w} = \vec{i} + 2\vec{j}$
- (4p) d) Să se arate că  $\sin 1 > \cos 1$ .
- (2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(0, 1, 2), B(1, 2, 0), C(2, 0, 1) și D(4, 3, 2).
- (2p) f) Să se determine  $a,b \in \mathbb{R}$ , astfel încât să avem egalitatea de numere complexe  $(-1+i)^{12} = a+bi$ .

## SUBIECTUL II (30p)

1.

- (3p) a) Să se arate că  $\log_3 4 > \log_4 3$ .
- (3p) b) Să se calculeze probabilitatea ca un element  $\hat{x} \in \mathbf{Z}_{12}$  să verifice relația  $\hat{x}^2 = \hat{1}$ .
- (3p) c) Dacă funcția  $f: \mathbf{R} \to \mathbf{R}$ ,  $f(x) = 3x^3 + x + 1$ , are inversa  $g: \mathbf{R} \to \mathbf{R}$ , să se calculeze g(5).
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația  $3^x + 2 \cdot 9^x = 3$ .
- (3p) e) Să se calculeze  $\sqrt{110}$  cu o zecimală exactă.
  - **2.** Se consideră funcția  $f: \mathbf{R} \to \mathbf{R}$ ,  $f(x) = 2^x x 1$ .
- (3p) a) Să se calculeze f'(x),  $x \in \mathbb{R}$ .
- (3p) b) Să se calculeze  $\int_{a}^{1} f(x)dx$ .
- (3p) c) Să se arate că funcția f este convexă pe  $\mathbf{R}$ .
- (3p) d) Să se calculeze  $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$ .
- (3p) e) Să se calculeze  $\lim_{x\to\infty} \frac{f'(x)}{f(x)}$ .



### SUBIECTUL III (20p)

Se consideră polinomul  $f = X^3 + aX^2 + bX + c$ , unde  $a,b,c \in \mathbb{R}$ , cu rădăcinile

$$x_1, x_2, x_3 \in \mathbf{C}$$
. Notăm  $S_k = x_1^k + x_2^k + x_3^k$ ,  $\forall k \in \mathbf{N}^*$ ,  $S_0 = 3$ ,  $A = \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{pmatrix}$  și

 $\Delta = \det(A \cdot A^T)$ , unde prin  $A^T$  am notat transpusa matricei A.

- **(4p)** a) Să se arate că  $det(A) = (x_2 x_1)(x_3 x_1)(x_3 x_2)$ .
- **(4p) b)** Să se verifice că  $S_1 = -a$  și  $S_2 = a^2 2b$ .
- **(4p)** c) Să se arate că,  $S_{n+3} + aS_{n+2} + bS_{n+1} + cS_n = 0$ ,  $\forall n \in \mathbb{N}$ .
- (2p) d) Să se calculeze  $S_3$  şi  $S_4$  în funcție de a, b şi c.
- (2p) e) Să se verifice că  $A \cdot A^{T} = \begin{pmatrix} S_{0} & S_{1} & S_{2} \\ S_{1} & S_{2} & S_{3} \\ S_{2} & S_{3} & S_{4} \end{pmatrix}$ .
- (2p) **f**) Să se calculeze determinantul  $\Delta = \begin{vmatrix} S_0 & S_1 & S_2 \\ S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \end{vmatrix}$  în funcție de a, b și c.
- (2p) g) Știind că  $\det(X \cdot Y) = \det(X) \cdot \det(Y)$ ,  $\forall X, Y \in M_3(\mathbf{C})$ , să se arate că  $x_1, x_2, x_3 \in \mathbf{R}$  dacă și numai dacă  $\Delta \ge 0$ .

## SUBIECTUL IV (20p)

Se consideră funcția  $f:(0,\infty)\to \mathbf{R}$ ,  $f(x)=x^a$ , unde  $a\in \mathbf{R}$ .

- (4p) a) Să se calculeze f'(x),  $x \in (0, \infty)$ .
- (4p) b) Utilizând teorema lui *Lagrange*, să se arate că există c(a) (care depinde de a),  $c(a) \in (17,19)$  și d(a) (care depinde de a),  $d(a) \in (1974,1976)$ , astfel încât  $19^a 17^a = 2a(c(a))^{a-1}$  și  $1976^a 1974^a = 2a(d(a))^{a-1}$ .
- (2p) c) Să se arate că pentru orice funcții  $g: \mathbf{R} \to (17, 19)$  și  $h: \mathbf{R} \to (1974, 1976)$ , ecuația  $x(g(x))^{x-1} = x(h(x))^{x-1}$  are numai soluțiile x = 0 și x = 1.
- (2p) d) Să se rezolve în mulțimea numerelor reale ecuația  $17^x + 1976^x = 19^x + 1974^x$ .
- **(4p)** e) Să se arate că  $\sqrt{19} + \sqrt{1974} > \sqrt{17} + \sqrt{1976}$
- (2p) **f**) Să se arate că  $\frac{18}{ln19} + \frac{1973}{ln1974} > \frac{16}{ln17} + \frac{1975}{ln1976}$ .
- (2p) g) Să se arate că  $\frac{18 \cdot 19}{ln19} + \frac{1973 \cdot 1974}{ln1974} < \frac{16 \cdot 17}{ln17} + \frac{1975 \cdot 1976}{ln1976}.$