Crittografia a chiave pubblica - Un invito a RSA

Francesco Pappalardi

15 Novembre, 2001

I due diversi tipi di Crittografia

- Chiave pubblica.
 - RSA;
 - Diffie-Hellmann;
 - Zainetti;
 - NTRU.
- Chiave privata (o simmetrica).
 - Lucifer;
 - DES;
 - AES.

 $RSA-2048 = 25195908475657893494027183240048398571429282126204 \\ 032027777137836043662020707595556264018525880784406918290641249 \\ 515082189298559149176184502808489120072844992687392807287776735 \\ 971418347270261896375014971824691165077613379859095700097330459 \\ 748808428401797429100642458691817195118746121515172654632282216 \\ 869987549182422433637259085141865462043576798423387184774447920 \\ 739934236584823824281198163815010674810451660377306056201619676 \\ 256133844143603833904414952634432190114657544454178424020924616 \\ 515723350778707749817125772467962926386356373289912154831438167 \\ 899885040445364023527381951378636564391212010397122822120720357$

RSA–2048 è un numero con 617 cifre decimali

http://www.rsa.com/rsalabs/challenges/factoring/numbers.html/

$$RSA-2048 = p \cdot q, \quad p, q \approx 10^{308}$$

PROBLEMA: Calcolare p e q

Premio: $200.000 \$ (\sim 190.000 €)!!$

Teorema. Se
$$a \in \mathbb{N}$$
 $\exists ! \ p_1 < p_2 < \cdots < p_k \ primi$
t.c. $a = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$

Purtroppo: RSAlabs ritiene che per fattorizzare in un anno:

numero	computers	memoria	
RSA-1620	1.6×10^{15}	120 Tb	
RSA-1024	342,000,000	170 Gb	
RSA-760	215,000	4Gb.	

http://www.rsa.com/rsalabs/challenges/factoring/numbers.html

Challenge Number	Prize (\$US)	Status	
RSA-576	\$10,000	Not Factored	
RSA-640	\$20,000	Not Factored	
RSA-704	\$30,000	Not Factored	
RSA-768	\$50,000	Not Factored	
RSA-896	\$75,000	Not Factored	
RSA-1024	\$100,000	Not Factored	
RSA-1536	\$150,000	Not Factored	
RSA-2048	\$200,000	Not Factored	

Storia dell' "Arte del Fattorizzare"

• 1880 Landry & Le Lasseur:

$$2^{2^6} + 1 = 274177 \times 67280421310721$$

- 1919 Pierre e Eugène Carissan (Macchina per fattorizzare)
- 1970 Morrison & Brillhart

$$2^{2^7} + 1 = 59649589127497217 \times 5704689200685129054721$$

• 1980 Crivello quadratico (QS) (Pomerance)

Antica Macchina per fattorizzazione di Carissan

Figure 1: Conservatoire Nationale des Arts et Métiers in Paris.

Figure 2: Tenente Eugène Carissan.

 $225058681 = 229 \times 982789$ 3 minuti

 $3450315521 = 1409 \times 2418769$ 2 minuti

 $3570537526921 = 841249 \times 4244329$ 18 minuti

Fattorizzare ai giorni nostri

- 1. Crivello Quadratico (QS): (8 mesi, 600 volontari, 20 paesi) D.Atkins, M. Graff, A. Lenstra, P. Leyland
- RSA 129 = 114381625757888867669235779976146612010218296721242362562561842935706 935245733897830597123563958705058989075147599290026879543541 = $= 3490529510847650949147849619903898133417764638493387843990820577 \times 32769132993266709549961988190834461413177642967992942539798288533$
 - 2. Crivello del campo numerico (NFS): (2 Feb 1999) 160 Sun workstations, 4 mesi.
 - $RSA 155 = 109417386415705274218097073220403576120037329454492059909138421314763499842 \\ 8893478471799725789126733249762575289978183379707653724402714674353159335433897 = \\ = 102639592829741105772054196573991675900716567808038066803341933521790711307779 \times \\ 106603488380168454820927220360012878679207958575989291522270608237193062808643$
 - 3. Fattorizzazione con curve ellittiche: introdotta da H. Lenstra. Adatta a trovare fattori primi con 50 cifre (piccoli).

Hanno "tempi di esecuzione sub-esponenziale"

Il crittosistema RSA

1978 R. L. Rivest, A. Shamir e L. Adleman (Brevetto scaduto nel 1999)

Problema: Alice vuole spedire il messaggio \mathcal{P} a Bernardo e non vuole farlo leggere a Carlo.

$$A (Alice) \longrightarrow B (Bernardo)$$

$$\uparrow$$

$$C (Carlo)$$

- 1. Generazione della chiave.
- 2. Cifratura.
- 3. Decifratura.
- 4. Attacco al sistema.

Deve farla Bernardo.

Deve farla Alice.

Deve farla Bernardo.

Vorrebbe farlo Carlo.

Bernardo genera la chiave.

- Sceglie in modo casuale p e q primi $(p, q \approx 10^{100});$
- Calcola $M = p \times q, \, \varphi(M) = (p-1) \times (q-1);$
- Sceglie *e* intero t.c.

$$0 \le e \le \varphi(M)$$
, e $\gcd(e, \varphi(M)) = 1$;

N.B. Si potrebbe anche prendere e=3 e $p\equiv q\equiv 2$ mod 3. Gli esperti suggeriscono $e=2^{16}+1$.

- Calcola l'inverso aritmetico d di e modulo $\varphi(M)$ (i.e. $d \in \mathbb{N}$ (unico $\leq \varphi(M)$) t.c. $e \times d \equiv 1 \pmod{\varphi(M)}$;
- Pubblica (M, e) chiave pubblica e conserva chiave segreta d.

Problema: Come fa Bernardo a fare tutto ciò?- Ci torneremo

Alice cifra.

Si rappresenta il messaggio \mathcal{P} come un elemento di $\mathbb{Z}/M\mathbb{Z}$.

(per esempio)
$$A \leftrightarrow 1$$
 $B \leftrightarrow 2$ $C \leftrightarrow 3$... $Z \leftrightarrow 26$ $AA \leftrightarrow 27 ...;$

$$\texttt{PESCARA} \leftrightarrow 16 \cdot 26^6 + 5 \cdot 26^5 + 18 \cdot 26^4 + 3 \cdot 26^3 + 26^2 + 17 \cdot 26 + 1 = 5010338711.$$

N.B. È bene che i testi non siano troppo corti. Altrimenti si fa il padding.

$$C = E(\mathcal{P}) = \mathcal{P}^e \pmod{M}$$

Esempio: $p=9049465727, q=8789181607, M=79537397720925283289, e=2^{16}+1=65537, \mathcal{P}=\texttt{PESCARA}:$

$$E(\mathtt{PESCARA}) = 5010338711^{65537} \pmod{79537397720925283289}$$

= 9378189840637776750 = TYFWDKYEQFCGT

Bernardo Decifra.

$$\mathcal{P} = D(\mathcal{C}) = \mathcal{C}^d \pmod{M}$$

N.B. Bernardo decifra perchè è l'unico che conosce d.

Il Piccolo Teorema di Fermat. Se $a, m \in \mathbb{N}$, gcd(a, m) = 1,

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

Se $n_1 \equiv n_2 \mod \varphi(m)$ allora $a^{n_1} \equiv a^{n_2} \mod m$.

Quindi $(ed \equiv 1 \mod \varphi(M))$

$$D(E(\mathcal{P})) = \mathcal{P}^{ed} \equiv \mathcal{P} \mod M$$

Esempio(cont.): $d = 65537^{-1} \mod \varphi(9049465727 \cdot 8789181607) = 57173914060643780153$ D(TYFWDKYEQFCGT) =

 $9378189840637776750^{57173914060643780153} (\bmod 79537397720925283289) = \mathtt{PESCARA}$

L'algoritmo dei quadrati successivi

Problema: Come si fa a calcolare $a^b \mod c$?

 $9378189840637776750^{57173914060643780153} \pmod{79537397720925283289}$

• Espansione binaria di $b = \sum_{j=0}^{\lfloor \log_2 b \rfloor} \epsilon_j 2^j$:

• Calcolare ricorsivamente. $a^{2^j} \mod c, j = 1, \ldots, [\log_2 b]$

$$a^{2^j} \bmod c = \left(a^{2^{j-1}} \bmod c\right)^2 \bmod c.$$

• Moltiplicare gli $a^{2^j} \mod c$ con la $\epsilon_j = 1$;

$$a^b \bmod c = \left(\prod_{j=0, \epsilon_j=1}^{\lceil \log_2 b \rceil} a^{2^j} \bmod c\right) \bmod c.$$

$\#\{\mathbf{oper.\ in}\ \mathbb{Z}/c\mathbb{Z}\ \mathbf{per\ calc.}\ a^b \bmod c\} \leq 2\log_2 b$

TYFWDKYEQFCGT si decifra con 131 operazioni in $\mathbb{Z}/79537397720925283289\mathbb{Z}.$

AQS - PSEUDO CODICE: $e_c(a, b) = a^b \mod c$

$$e_c(a,b,c) = \text{if} \qquad b=1 \quad \text{then} \quad a \bmod c$$

$$\text{if} \qquad 2|b \quad \text{then} \quad e_c(a,\frac{b}{2})^2 \bmod c$$

$$\text{else} \qquad \qquad a*e_c(a,\frac{b-1}{2})^2 \bmod c$$

Per cifrare con $e = 2^{16} + 1$ bastano 17 operazioni in $\mathbb{Z}/M\mathbb{Z}$.

Generazione della chiave RSA

Problema. Produrre un primo in modo casuale $p \approx 10^{100}$.

Algoritmo probabilistico (tipo Las Vegas).

- 1. Let $p = \text{Random}(10^{100})$;
- 2. If ISPRIME(p)=1 then Output=p else goto 1.

Sotto problemi:

- A. Quante iterazioni sono necessarie?

 (i.e. come sono distribuiti i numeri primi?)
- B. Come si verifica se p è primo? (i.e. come si calcola ISPRIME(p)?) \leadsto Test di primalità

Falsa leggenda metropolitana: Verificare la primalità è equivalente a fattorizzare.

A. Distribuzione dei numeri primi:

$$\pi(x) = \#\{p \le x \text{ t. c. } p \text{ è primo}\}.$$

Teorema (Hadamard - de la vallee Pussen - 1897)

$$\pi(x) \sim \frac{x}{\log x}.$$

Versione quantitativa:

Teorema (Rosser - Schoenfeld) se $x \ge 67$

$$\frac{x}{\log x - 1/2} < \pi(x) < \frac{x}{\log x - 3/2}.$$

Quindi

 $0.0043523959267 < Prob \ (\mathtt{Random}(10^{100}) = \mathtt{primo} \ < 0.004371422086$

Se P_k è la probabilità che tra k numeri casuali $\leq 10^{100}$ ce ne sia uno primo, allora

$$P_k = 1 - \left(1 - \frac{\pi(10^{100})}{10^{100}}\right)^k$$

Quindi

$$0.663942 < P_{250} < 0.66554440$$

Per fare più in fretta so possono considerare solo numeri casuali dispari e non divisibili né per 3 né per 5 se:

$$\Psi(x,30) = \# \{ n \le x \text{ t.c.} \gcd(n,30) = 1 \}$$

allora

$$\frac{4}{15}x - 4 < \Psi(x, 30) < \frac{4}{15}x + 4$$

Dunque se P_k è la probabilità che tra k numeri casuali $\leq 10^{100}$ coprimi con 30 ce ne sia uno primo, allora

$$P'_k = 1 - \left(1 - \frac{\pi(10^{100})}{\Psi(10^{100}, 30)}\right)^k$$

е

$$0.98365832 < P'_{250} < 0.98395199$$

B. Test di primalità.

Pseudo Primi e Pseudo Primi Forti.

Teorema. (Eulero) Se
$$p$$
 è primo, $p \nmid a \in \mathbb{N}$
$$a^{p-1} \equiv 1 \bmod p.$$

Test di NON-primalità:

 $M \in \mathbb{Z}, \ 2^{M-1} \not\equiv 1 \bmod M \Longrightarrow M \text{composto!}$

Esempio: $2^{RSA-2024-1} \not\equiv 1 \mod RSA-2024$. Quindi RSA-2024 è composto.

Il Teorema di Eulero non si inverte. Infatti

$$2^{93960} \equiv 1 \pmod{93961}$$
 però $93961 = 7 \times 31 \times 433$.

Definizione. $m \in \mathbb{N}$ dispari e composto si dice pseudo primo in base a se

$$a^{m-1} \equiv 1 \pmod{m}$$

Se m è pseudo primo rispetto a qualsiasi base a allora di dice numero di Carmichael.

Esempio $561 = 3 \times 11 \times 17$ è un numero di Carmichael.

Teorema. Alford, Granville & Pomerance (1995) Esistono infiniti numeri di Carmichael

Idea da buttar via? NO.

Numeri di Carmichael

Ecco tutti i 43 numeri di Carmichael fino a 10^6 :

561	46657	252601	530881	1105	52633	278545	552721
1729	62745	294409	656601	2465	63973	314821	658801
2821	75361	334153	670033	6601	101101	340561	748657
8911	115921	399001	825265	10585	126217	410041	838201
15841	162401	449065	852841	29341	172081	488881	997633
41041	188461	512461					

FATTI SUI NUMERI DI CARMICHAEL.

- 1. m di Carmichael $\Rightarrow m$ privo di fattori quadratici (sfq);
- 2. m dispari, sfq è di Carmichael $\langle == \rangle \forall p | m, \quad p-1 | m-1;$
- 3. m è di Carmichael, \Rightarrow m è il prodotto di almeno tre primi;

Pseudo primi forti

D'ora innanzi $m \equiv 3 \mod 4$. (Solo per semplificare le notazioni)

Definizione. $m \in \mathbb{N}, m \equiv 3 \mod 4$, composto si dice *pseudo primo* forte (PSPF) in base a se

$$a^{(m-1)/2} \equiv \pm 1 \pmod{m}.$$

N.B. Se p > 2 primo $\implies a^{(p-1)/2} \equiv \pm 1 \pmod{p}$.

Sia
$$S = \{a \in \mathbb{Z}/m\mathbb{Z} \text{ t.c. } \gcd(m, a) = 1, a^{(m-1)/2} \equiv \pm 1 \pmod{m}\}$$

- 1. $S \subseteq (\mathbb{Z}/m\mathbb{Z})^*$ sottogruppo;
- 2. Se m è composto \Rightarrow sottogruppo proprio;
- 3. Se m è composto \Longrightarrow $\#S \leq \frac{\varphi(m)}{4}$;
- 4. Se m è composto $\Rightarrow Prob(mPSPF \text{ in base } a) \leq 0,25.$

Test di Primalità di Miller–Rabin

Sia $m \equiv 3 \mod 4$.

ALGORITMO MILLER RABIN CON k ITERAZIONI

```
N=(m-1)/2; for j=0 to k do a={\rm Random}(m); if a^N\not\equiv \pm 1 \bmod m then {\rm OUPUT}=(m \text{ composto}): END endfor; {\rm OUTPUT}=(m \text{ primo})
```

Test probabilistico montecarlo:

 $Prob(Miller Rabin dice m primo e m è composto) \lesssim \frac{1}{4^k}.$

Nel mondo reale il software applica il test di Miller Rabin con k = 10.

Perchè RSA è sicuro?

- È chiaro che se Corrado è capace a fattorizzare M, allora è in grado di calolare $\varphi(M)$ e poi anche d e quindi a decifrare i messaggi;
- Per Corrado calcolare $\varphi(M)$ è equivalente a fattorizzare M. Infatti

$$p, q = \frac{M - \varphi(M) + 1 \pm \sqrt{(M - \varphi(M) + 1)^2 - 4M}}{2}.$$

• Ipotesi RSA L'unico modo per calcolare efficientemente

$$x^{1/e} \mod M, \quad \forall x \in \mathbb{Z}/M\mathbb{Z}$$

(cioè decifrare i messaggi) è fattorizzare M.

In altre parole

i due problemi sono polinomialmente equivalenti.

Certificazione di primalità

Teorema. Se m è composto e vale $\underline{\mathbf{GRH}}$, allora $\exists a \leq 2 \log^2 m$ t.c. m non è pseudo primo forte in base a.

Conseguenze: Miller-Rabin si può "de-randomizzare".

(i.e. per mostrare che m dispari è primo basta controllare che:

$$a^{(m-1)/2} \equiv \pm 1 \mod m \quad \forall a \le 2 \log^2 m.$$

Altri metodi per certificare la primalità:

Teorema [Pocklington]. m dispari, $F|m-1, F > \sqrt{m}, a \in (\mathbb{Z}/m\mathbb{Z})^*$ t.c.

- 1. $a^{m-1} \equiv 1 \mod m$;
- 2. $\forall q | F, q \text{ primo, } \gcd(a^{\frac{m-1}{q}} 1, m) = 1$

Allora m è **primo**.

Esempio. $2^6 \cdot 3^{33} \cdot 5^2 \cdot 7^{58} \cdot 11^{59} + 1$. è un primo (certificabile).

