

Advanced Python and Machine Learning

Dr. Maxim Samarin Vitali Nesterov

16th / 17th / 23rd / 24th March 2023

- B.Sc. and M.Sc. in Physics, Ph.D. in Machine Learning
- Research in Generative AI, Computer Vision, Deep Learning theory and various applications
- Lecturing Python classes

- B.Sc. and M.Sc. in Computer Science
- Research in Deep Learning and Generative AI in Physics applications
- Quantitative Finance at BKB

- B.Sc. and M.Sc. in Physics, Ph.D. in Machine Learning
- Research in Generative AI, Computer Vision, Deep Learning theory and various applications
- Lecturing Python classes

- B.Sc. and M.Sc. in Computer Science
- Research in Deep Learning and Generative AI in Physics applications
- Quantitative Finance at BKB

Your Experience and Goal

• What is your programming experience so far and an intermediate goal for you?


```
Alexander ---> Gina ---> Maria ---> Caner ---> Pius --->
---> Frederick ---> Lukas ---> Yunrui ---> Sebastian L. ---> Claire --->
---> Patrick ---> Felix ---> Fabio ---> Maria ---> Leonidas-Dimitrios --->
---> Jana ---> Dietger ---> Larissa ---> Sebastian Z. ---> Han
```

Machine Learning Landscape

Supervised and unsupervised learning

• Discriminative and generative models

Reinforcement learning

Supervised vs. Unsupervised

- Supervised learning: Labeled data guides learning
 - Classification: Class labels separate groups of data
 - Regression: Functional relationship between inputs (predictors) x and responses $y \rightarrow f(x) = y$
- Unsupervised learning: No labels available
 - Clustering: Identifying clusters inherent to the data
 - Dimensionality reduction: Identifying relevant predictors / dimensions or factors of variation in data

Supervised

Unsupervised

Discriminative vs. Generative

• Discriminative models: Learn decision boundary to differentiate data and provide accurate predictions to new, unseen data

Discriminative

• Generative models: Approximate data distribution to provide accurate predictions but also allow generating artificial data similar to training data

Reinforcement Learning

- Agents explore environment, select actions, receive rewards, and form strategies / policies → exploration and exploitation
- Modelling (Markov) decision processes
- Challenging in (large) uncertain environments
- Application in games, robotic, and finance

Source: G. Berseth and C. Pal

Start your Working Environment

- 1. Access the course environment via Noto link provided in E-Mail and sign in with your SWITCH edu-ID ("Use your Switch AAI login")
- 2. Or: Download new material, start Jupyter Lab and open notebooks
- Suggestions on how to work in this course:

Follow presentation, while executing scripts yourself, making adjustments and notes in your own notebook

Follow presentation, switch to programming environment for exercises

Bias-Variance Trade-off

- Flexible models are prone to overfitting
- Training / validation / test splits to ensure generalisation to new data
- Watch out for imbalance in training data

Machine Learning Topics

Regression & Classification

Dim. Reduction & Clustering

Kernel Methods Neural Networks

Linear / Ridge / Logistic Regression

Decision Trees & Random Forests

k-Nearest Neighbors

Support Vector Machines

Naïve Bayes

Principal Component Analysis

k-Means

Gaussian Mixture Models

Factor Analysis

Independent Component Analysis Kernel Ridge Regression

Gaussian Process

Kernel Density Estimation

Kernel PCA

Kernel SVIV

Kernel ...

Feed-Forward Neural Networks

Convolutional Neural Networks

Variational Autoencoder

Transforme

Generative Adversaria Networks

How to Continue with ML & Python

- Machine Learning scikit-learn tutorials https://scikit-learn.org/stable/tutorial/index.html
- TensorFlow tutorials https://www.tensorflow.org/resources/learn-ml
- Quick overview with interactive tutorials on some basic topics and more advanced concepts: https://www.learnpython.org/
- Great tutorials on specific (advanced) topics, easy-to-read books: https://www.realpython.com/

How to Continue Programming

- Use an integrated development environment (IDE) like
 - PyCharm: https://www.jetbrains.com/pycharm/
 - Visual Studio Code: https://code.visualstudio.com/
- Use high-performance computing (GPUs, TBs of RAM) cluster sciCORE
 - Getting started: https://scicore.unibas.ch/using-scicore/getting-started/
 - Courses: https://scicore.unibas.ch/events/teaching-training/

Suggestions for the Feedback

- Preparation information / YouTube videos adequate?
- What did / didn't you like about Noto?
- Content appropriate: anything missing for you (Python and Machine Learning)?
- Too fast or slow, shallow or deep?
- Insightful exercises and enough time?

Thank you and good luck on your Machine Learning journey! ©

