TORCS Racing Computational Intelligence

A. Parnia and M.A. Jayaraj (Grop 39)

Agenda

- What Controllers were used?
- How we measured their Accuracy?
- What Fitness Function was used?
- What we did to improve performance?
- What is the final outcome?

Controllers

- Neural Networks
 - Recurrent Neural Network (Pyrenn) using RTRL
 - Echo State Network (Pyesn)
- Evolutionary Computing
 - NEAT and HyperNEAT
- Swarm Behaviour
 - Emergent Collective Behaviour

Accuracy Measure

- Neural Networks
 - 80% training and 20% spliting, measure of MSE after 100 generations
- Evolutionary Computing
 - Evolved a Recurrent NN from scratch
 - Fitness function = Maximum Distance Travelled
 - Constrain = Car should stay within track edge
 - Tested the network on 20% of test data to visualize the output
- Swarm Behaviour
 - No measure on accuracy, but only created an Emergent collective behaviour

Performance Improvement

- Feature Extraction
 - PCA
 - New features from Sensor 8,9 and 10

- Activation Functions
 - Tanh, Sigmoid, clamped and Sin
 - Sin performed the best for our network

Performance Improvement

- Normalization of Inputs
 - Angle = Angle / □
 - Speed = (max(0, min(Speed, 200)) / 100) 1
 - D center = max(min(D center / 2, 1), -1)
 - D_Edge= ((D_Edge + 1)/100.5)-1

Fitness Function

- Constraint Opmimization problem
- Maximize the fitness function
 - Fitness = Distance travelled in a lap
 - Constrain = Stay within the track edges

Predictions of ESN

Predictions of RNN

Predictions from NEAT

• NEAT- Steering Topology

NEAT- Brake Topology

Emergent Collective Behaviour

