TRAFFIC JUNCTION TUNER

AN EVOLUTIONARY SOLUTION FOR TRAFFIC JUNCTION OPTIMIZATION

Alessandro Cacco Andrea Ferigo

THE PROBLEM

- Crossroads have a big impact on traffic
- Traffic lights should be adjusted depending on traffic
- Both marked and traffic light controlled crossroads have pros and cons

HOW TO HANDLE THE PROBLEM

- Change crossroads types
- Fine tune traffic light timings
- Try out different combinations for a specific zone

EXPENSIVE AND TIME CONSUMING

SUMO: Simulation of Urban Mobility

- Open source road simulation framework
- Query system via TCP socket (TraCl interface)
 - TraCl python library
- Random route generation tool
- Editable xml map files
- Partial map of Trento city centre

EVOLUTIONARY MODEL

- Each individual is a setting combination for all crossroads in the map
 - Fixed genome
- Evolutionary Algorithm:
 - NSGA-II, Non dominating Sorting Algorithm
 - Multi objective

INSPYRED BENCHMARK DESIGN (1)

- Initialization
 - Random setting in the boundaries for each crossroad
- Evaluation
 - Generation of custom maps based on individuals of the population
 - Perform the simulation in Sumo, with data collection
 - Pareto front
- Boundaries
 - Customizable parameters for traffic lights timings limits

INSPYRED BENCHMARK DESIGN (2)

- Crossover
 - Random weighted average of traffic light timings
 - Random crossroad type between parents' types
- Mutation
 - Self adaptive uncorrelated mutation with one sigma
- Observer
 - Saves population to file for data analysis

EXECUTED RUNS

	Run 1	Run 2	Run 3
Objectives	Average speed, arrived at destination, un-jamming teleports, accidents		
Generations	25		
Population Size	20		
Offspring	10		
Mutation Rate	0,5	0,15	0,5
Crossover Rate	0,5	0,8	0,8
Simulation Time	1 hour (NB: for each individual)		
Red/green light boundaries	1÷40 seconds		
Yellow light boundaries	1÷10 seconds		

RUN 1: MR=0.5 and CR=0.5

RUN 2: MR=0.15 and CR=0.8

RUN 3: MR=0.5 and CR=0.8

PROBLEMS OF THE MODEL

- Traffic Lights programs:
 - Hard to build
 - High complexity if considering simultaneous green lights on the same junction
- OpenStreetMap maps:
 - Imprecise
 - Assumption on road types, wrong number of lanes
 - Frequent duplicated edges
 - Sumo doesn't have any automatic map-cleaning tool

MODEL SIMPLIFICATIONS

- Traffic lights:
 - Traffic light turns green only on single edges: no combinations
 - The traffic light is the same for each lane of an edge entering a junction:
 e.g. no right-turn lanes
- Map errors:
 - We expect the algorithm to get around errors by itself with more generation to develop
- Vehicle type:
 - We only considered normal cars, no long-vehicles, motorcyles, cycles and pedestrians

THANKS FOR YOUR ATTENTION!

Andrea & Alessandro