

Learning Guide Module

Subject Code Math 3Mathematics 3Module Code 5.0Other Types of FunctionsLesson Code 5.2.3Piecewise-Defined Functions 3Time Frame30 minutes

TARGET

Time Allocation:	1 minute	
Actual Time Allocation:	minutes	

At the end of this learning guide, the students should be able to:

- Define floor, ceiling, and signum functions; and
- Graph floor, ceiling, and signum functions in the coordinate plane.

HOOK

Time Allocation:	1 minute
Actual Time Allocation:	minutes

From the previous learning guide, you have learned to graph a piecewise-defined function. Piecewise functions are functions defined by different formulas or rules that apply to different parts of the domain.

In this leaning guide, you will learn how to graph a special type of piecewise function called step functions. The graph of this type of function is a series of horizontal lines for different parts of the domain.

IGNITE

Time Allocation:	16 minutes
Actual Time Allocation:	minutes

Definition. The floor function $\lfloor x \rfloor$, also called the greatest integer function or greatest integer value, gives the largest integer less than or equal to x.

Example 1. Find the following values:

- 1. 0.5
- 2. $\left\lfloor \sqrt{2} \right\rfloor$
- 3. [3.1212...]
- $4. \quad \left| -\frac{4}{3} \right|$

Solution. From the definition, the floor of x, $\lfloor x \rfloor$, is the nearest integer less than or equal to x.

Thus,

|0.5| = 0, since the nearest integer that is less than or equal 0.5 is 0.

 $\sqrt{2}$ = 1, since the nearest integer that is less than or equal $\sqrt{2} \approx 1.4142$ is 1.

|3.1212...| = 3, since the nearest integer that is less than or equal 3.1212... is 3.

 $\left| -\frac{4}{3} \right| = \left[-1.333... \right] = -2$, since the nearest integer that is less than or equal -1.333... is -2.

Example 2. Given the function y = |x|. Complete the table of values below.

x	У
0	
0.5	
0.6	
0.8	
0.99	

х	у
1	
1.2	
1.3	
1.8	
1.99	

х	у
2	
2.13	
2.5	
2.6	
2.99	

x	у
-1	
-0.6	
-0.7	
-0.8	
-0.99	

Note that $y = \lfloor x \rfloor$ is read as 'y is equal to the floor of x'.

To complete the table of values, compute the values of y in the same manner as in Example 1. Look for the nearest integer that is less than or equal to the given value of x. Thus, we get,

х	у
0	0
0.5	0
0.6	0
0.8	0
0.99	0

X	у
1	1
1.2	1
1.3	1
1.8	1
1.99	1

х	у
2	2
2.13	3 2
2.5	2
2.6	2
2.99	9 2

Example 3. Graph $y = \lfloor x \rfloor$.

Using our result in Example 2, plot the points on the cartesian plane and we get the following graph,

Note that a solid dot means "including" and an open (hollow) dot means "not including". The floor function is sometimes called a 'step function' since it looks like an infinite staircase.

Definition. The ceiling function $\lceil x \rceil$ also called the smallest integer function or integer value, gives the smallest integer greater than or equal to x.

Example 4. Find the following values:

- 1. [0.6]
- 2. $\lceil \pi \rceil$
- 3. [-0.32]
- $4. \quad \left[-\frac{4}{3} \right]$

From the definition, the ceiling of x, $\lceil x \rceil$, is the nearest integer greater than or equal to x. Thus,

 $\lceil 0.6 \rceil = 1$, since the nearest integer greater than or equal to 0.6 is 1.

 $\lceil \pi \rceil = 4$, since the nearest integer greater than or equal to $\pi \approx 3.1416$ is 4.

[-0.32] = 0, since the nearest integer greater than or equal to -0.32 is 0.

 $\left[-\frac{4}{3}\right] = \left[-1.33...\right] = -1$, since the nearest integer greater than or equal to -1.33... is -1.

Example 5. Given the function $y = \lceil x \rceil$. Complete the table of values below.

х	у
0.5	
0.6	
0.8	
0.99	
1	

х	у
1.2	
1.3	
1.8	
1.99	
2	

х	у
2.13	
2.5	
2.6	
2.99	
3	

х	у
-0.6	
-0.7	
-0.8	
-0.99	
0	

Solution. To complete the table of values, compute the values of y in the same manner as in Example 4. Look for the nearest integer that is greater than or equal to the given value of x. Thus, we get,

x	у
0.5	1
0.6	1
0.8	1
0.99	1
1	1

x	у
1.2	2
1.3	2
1.8	2
1.99	2
2	2

x	у
2.13	3
2.5	3
2.6	3
2.99	3
3	3

х	у
-0.6	0
-0.7	0
-0.8	0
-0.99	0
0	0

Example 6. Graph $y = \lceil x \rceil$.

Using our result in Example 5, plot the points on the cartesian plane and we get the graph below.

Figure 2: Graph of $y = \lceil x \rceil$

Note that a solid dot means "including" and an open dot means "not including".

Example 7. Graph
$$y = \left[\frac{1}{3}x + 1\right]$$
.

Let us graph this function by identifying some ordered pairs in the table below.

_		<u> </u>				<u>, </u>									
	х	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5
	у	0	1	1	1	1	1	1	2	2	2	2	2	2	3

From this table, we can observe that if x is in the interval (-3,0], y = 1. Also, if x is in the interval (0,3], y = 2. Plotting these points on the coordinate plane, we'll get the graph below.

Definition. The sign function (also called sgn or **signum** function), denoted by sgn(x), is defined as follows:

$$\operatorname{sgn}(x) = \begin{cases} -1 & \text{if} \quad x < 0 \\ 0 & \text{if} \quad x = 0 \\ 1 & \text{if} \quad x > 0 \end{cases}$$

Notice that we only have three possible output for x, i.e., -1, 0, and 1, which are all constants. If x < 0, the output is -1. If x = 0, the output is 0. If x > 0, the output is 1. Thus, our resulting graph is,

Figure 4: Graph of Signum Function

Retrieved from https://calculushowto.com/sign-function/

Example 8. Graph y = sgn(x - 3).

To create a table of ordered pairs, let us identify three values of x. Let us think of an x – value that will make the expression inside the parentheses equal to zero. Then, get two more numbers greater than and less than this value.

х	2	3	4
у	-1	0	1

The value of x that will make x-3 equal to zero is 3. For x values greater than 3, the sign of x-3 is positive, therefore, y=1 for these x values. For x values less than 3, the sign of x-3 is negative, hence, y=-1 for these x values. Graphing the function, we'll have

Figure 5: Graph of y = sgn(x - 3)

Time Allocation: 10 minutes
Actual Time Allocation: minutes

Note: Items marked with an asterisk (*) will be graded.

- I. Find the following values:
 - 1. |-3.2|
 - 2. $|\pi|$
 - 3. |1.999|
 - 4. [-1.87]
 - 5. [e]
 - 6. [4.45]
- II. Graph the following functions:
 - 7. f(x) = [x 3]
 - 8. $g(x) = \left[\frac{1}{2}x\right]$
 - $9. \quad h(x) = sgn(4x+2)$

KNOT

Time Allocation: 2 minutes
Actual Time Allocation: ____ minutes

In summary, here are the things we need to remember about floor, ceiling and signum Functions:

- The floor function will round any number down to the nearest integer and the ceiling function will round any number up to the nearest integer.
- The sign function (or signum function) is a special function which gives us three possible outputs: -1 if x < 0, 1 if x > 0, and 0 if x = 0.
- It is a *real-valued step function* that tells us, numerically, whether a particular value of x is positive, negative, or zero.

References:

- 1. Albarico, J.M. (2013). THINK Framework. Based on Ramos, E.G. and N. Apolinario. (n.d.) *Science LINKS*. Quezon City: Rex Bookstore Inc
- 2. Pierce, Rod. (20 Jan 2018). "Floor and Ceiling Functions". Math Is Fun. Retrieved 20 Sep 2020 from http://www.mathsisfun.com/sets/function-floor-ceiling.html
- 3. Retrieved September 20, 2020 from https://calculushowto.com/sign-function/

Prepared by: Methos Kristy V. Donesa Reviewed by: Arvin C. Fajardo

Position: Special Science Teacher (SST) III Position: Special Science Teacher (SST) III

Campus: PSHS-SRC Campus: PSHS-CLC

Answer Key:

I.

- 1. -4
- 3. 1
- 5. 3

II.

7)

