APPM4058A & COMS7238A: Digital Image Processing

Hairong Wang

School of Computer Science & Applied Mathematics University of the Witwatersrand, Johannesburg

2019-2-27

Contents

- Filtering in the frequency domain
- Obtaining frequency domain filter from spatial domain
- Generating filters directly in the frequency domain
- 4 Highpass (sharpening) frequency domain filters
- Selective filtering

Outline

- Filtering in the frequency domain
- Obtaining frequency domain filter from spatial domain
- Generating filters directly in the frequency domain
- 4 Highpass (sharpening) frequency domain filters
- Selective filtering

The 2D discrete Fourier transform

Let f(x,y) for $x=0,1,\ldots,M-1$, and $y=0,1,\ldots,N-1$ denote a digital image of size $M\times N$ pixels. The 2D discret Fourier transform (DFT), F(u,v) of f(x,y) is

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M+vy/N)},$$
 (1)

where u = 0, 1, ..., M - 1, and v = 0, 1, ..., N - 1.

- The frequency domain is the coordinate system spanned by F(u, v) with u and v as frequency variables.
- Analogous to the above is the spatial domain spanned by f(x, y) with x and y as the spatial variables.

The inverse DFT

The inverse DFT is given by

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)},$$
 (2)

where x = 0, 1, ..., M - 1 and y = 0, 1, ..., N - 1.

The 2D DFT cont.

- The DFT of f(x, y), F(u, v), is complex in general.
- To analyze the transform visually, we compute its spectrum, i,e, magnitude.

$$|F(u,v)| = \left(R^2(u,v) + I^2(u,v)\right)^{1/2},$$
 (3)

where R(u,v) and I(u,v) are the real and imaginary parts of F(u,v).

The phase angle of the transform is defined as

$$\phi(u,v) = \arctan\left(\frac{I(u,v)}{R(u,v)}\right) \tag{4}$$

• Using (3) and (4), F(u, v) can be expressed in polar form

$$F(u,v) = |F(u,v)|e^{j\phi(u,v)}, \tag{5}$$

• The power spectrum is defined as the square of the magnitude,

$$P(u, v) = |F(u, v)|^2$$

The 2D DFT cont.

 Fourier transform is conjugate symmetric about origin. That implies the Fourier spectrum is symmetric about the origin, i.e.,

$$|F(u,v)| = |F(-u,-v)|$$
 (7)

• F(u, v) is infinitely periodic in both u and v direction,

$$F(u,v) = F(u+k_1M,v) = F(u,v+k_2N) = F(u+k_1M,v+k_2N),$$
(8)

where the periodicity is determined by M and N.

Computing the 2D DFT

The 2D DFT is computed using function

$$F = fft2(f)$$
 in Matlab, or $F = fftpack.fft2(f)$ in Python Scipy (9) returns a FT that is size of $M \times N$, with the origin of the data at the top left, and with four quarter periods meeting at the center of the frequency rectangle.

The Fourier spectrum is obtained by

$$S = abs(F)$$
 in Matlab, or $S = numpy.abs(F)$ in Python (10) which is the square root of the sum of the squares of real and imaginary parts of FT.

- S can be displayed as an image;
- Use fftshift to shift the origin of the transform to the center of the frequency rectangle.

$$Fc = fftshift(F)$$
, in Matlab, or $Fc = fftpack.fftshift(F)$, in Python Scip

where F is obtained using fft2, and Fc is the centered transform.

Example - visualizing the Fourier spectrum

Figure: (a) An image; (b) Fourier spectrum of (a); (c) Centered spectrum of (a).

Computing the 2D DFT cont.

- The range of the Fourier spectrum is very large
- This can be handled via a log transform,

$$S2 = log(1 + abs(Fc)). \tag{12}$$

 Function ifftshift in both Matlab and Scipy reverses the shifting, i.e.,

$$F = ifftshift(Fc). (13)$$

Computing the 2D DFT cont.

To compute the phase angle, use

$$phi = atan2(I, R)$$
 in Matlab, or $phi = numpy.arctan2(I, R)$ in Python (14)

where I and R are the imaginary and real parts of F, respectively. They can be obtained using I = imag(F) and R = real(F) in Matlab or Python Numpy.

- The *phi* is a matrix of same size as *I* and *R*, with its elements are angles of radian in $[-\pi, \pi]$ measured with respect to real axis.
- We can also use

$$phi = angle(F)$$
 (15)

in both Matlab and Python Numpy, without extracting the imaginary and real parts explicitly.

Computing the 2D DFT cont.

The inverse of DFT can be obtained using Matlab or Python Scipy

$$f = ifft2(F). (16)$$

Basics

The foundation in both spatial and frequency domain filtering is the convolution theorem,

$$f(x,y) \star h(x,y) \Leftrightarrow F(u,v)H(u,v),$$
 (17)

and, conversely,

$$f(x,y)h(x,y) \Leftrightarrow F(u,v) \star H(u,v),$$
 (18)

where * indicates the convolution of two functions.

- Images and their transforms are periodic for DFT.
- Convolving periodic functions can cause interference between adjacent periods, if the periods are close. This interference is referred to as wraparound error.
- The wraparound error can be avoided by padding the functions with zeros.

 Assume f(x, y) and h(x, y) are of size A × B and C × D, respectively. To form padded functions for f and h of size p × Q, where

$$P \ge A + C - 1,\tag{19}$$

and

$$Q \ge B + D - 1. \tag{20}$$

• If both f and h are of the same size, $M \times N$, then

$$P \ge 2M - 1,\tag{21}$$

and

$$Q \ge 2N - 1. \tag{22}$$

The periodic sequences, or padded image and filter, are formed by extending f(x, y) and h(x, y) as follows:

$$f_p(x,y) = \begin{cases} f(x,y) & 0 \le x \le A - 1 & \text{and} \quad 0 \le y \le B - 1\\ 0 & A \le x \le P & \text{or} \quad B \le y \le Q \end{cases}$$
 (23)

and

$$h_p(x,y) = \begin{cases} h(x,y) & 0 \le x \le C - 1 & \text{and} \quad 0 \le y \le D - 1\\ 0 & C \le x \le P & \text{or} \quad D \le y \le Q \end{cases}$$
 (24)

• Implement a [P, Q]=paddedsize(size(f), size(h)) function in Matlab or Python to compute the size for the padded image.
WITS

Figure: (a) The original image 'square'; (b) image lowpass filtered in the frequency domain without padding; (c) image lowpass filtered in the frequency domain with padding.

Figure: Implied infinite periodic sequence of the image 'square'. The thin white lines are not part of the image.

Figure: The same periodic sequence after padding with 0s. The thin white lines are not part of the image.

Basic steps in DFT filtering

- Convert the image to single or double;
- Obtain the padding parameters, and then create the padded image — i.e., extend the row and column ends with zeros.
- Obtain the FT for the padded image, or in Matlab you can use the following function.

$$F = fft2(f, P, Q); (25)$$

- Obtain the desired filter in frequency domain, H, of the same size as the padded image.
- Multiply the transform by the filter

$$G = H. * F; (26)$$

Obtain the inverse of FT using Matlab or Python Scipy

$$g = ifft2(G); (27)$$

- Crop the top left rectangle of g to obtain an image of the original size
- Convert the image to the class of the input image.

Outline

- Filtering in the frequency domain
- Obtaining frequency domain filter from spatial domain
- Generating filters directly in the frequency domain
- 4 Highpass (sharpening) frequency domain filters
- Selective filtering

Obtaining frequency domain filter from spatial domain

- In general, filtering in spatial domain is more efficient computationally than frequency domain filtering when the filters are small.
- Filtering using an FFT algorithm can be faster than a spatial implementation when the filters become larger, such as having more than 32 elements.
- How to convert a spatial filter into an equivalent frequency domain filter? In Matlab,

$$H = freqz2(h, P, Q), \tag{28}$$

where h is a 2D spatial filter, H is the corresponding filter in the frequency domain, and P and Q are the number of rows and columns in H.

Obtaining frequency domain filter from spatial domain cont.

• In order to obtain the corresponding filter in the frequency domain, preprocessing and postprocessing are often needed.

$$[P, Q] = paddedsize(size(f), size(h));$$

 $H = freqz2(h, P, Q);$ (29)
 $H1 = ifftshift(H);$

 In Python, you can implement this by first padding your filter to the desired size of the frequency domain filter; then find the DFT of the padded filter.

Example

Figure: Lowpass filtering. (a) The original image; (b) The Fourier spectrum of (a); (c) Spatial domain filtering using a vertical Sobel mask, (d) Frequency domain filtering using a filter obtained from vertical Sobel; (e), (f) absolute values of (c) and (d), respectively; (g), (h) thresholded versions of (e), (f), respectively.

Outline

- Filtering in the frequency domain
- Obtaining frequency domain filter from spatial domain
- Generating filters directly in the frequency domain
- 4 Highpass (sharpening) frequency domain filters
- Selective filtering

Generating filters directly in the frequency domain

An ideal low-pass filter (ILPF) has the transform function

$$H(u, v) = \begin{cases} 1 & \text{if } D(u, v) \le D_0 \\ 0 & \text{if } D(u, v) > D_0 \end{cases}$$
 (30)

where D_0 is a positive number and D(u, v) is the distance from point (u, v) to the center of the filter.

Since G = H. * F, an ILPF "cuts off" all components of F(u, v) outside the circle, and leaves unchanged all components on, or inside the circle.

Computing the distance in the frequency rectangle

 To implement filters in frequency domain, we need to create the meshgrid arrays for distance computation.

In Matlab

```
1 %set up range of variables
2 u=single(0:(M-1));
3 v=single(0:(N-1));
4 %compute the indices to use in meshgrid
5 idx=find(u>M/2);
6 u(idx)=u(idx)-M;
7 idy=find(v>N/2);
8 v(idy)=v(idy)-N;
9 [V,U]=meshgrid(v,u);
10 %compute the distance from every point to the origin
11 D=hypot(V,U);
```


Example

- Compute the distance from every point in a matrix to the origin (the point at (0,0)).
- Using meshgrid simplified the computation to sqrt (V.^2 + U.^2).

```
M=5, N=7;
   1 2 3 -3 -2 -1
1 2 3 -3 -2 -1
1 2 3 -3 -2 -1
1 2 3 -3 -2 -1
                             -3 -2 -1
```

Computing the distance in the frequency rectangle

In Python

```
#set up range of variables
import numpy as np
u=np.arange(0,5,1.0)

v=np.arange(0,7,1.0)

fcompute the indices to use in meshgrid
idx=np.where(u>M/2)
u[idx]=u[idx]-M
idy=np.where(v>N/2)
v[idy]=v[idy]-N

V,U=np.meshgrid(v,u)

#D=np.sqrt(V**2+U**2)
D=V**2+U**2
```



```
1 array([
2 [ 0., 1., 4., 9., 9., 4., 1.],
3 [ 1., 2., 5., 10., 10., 5., 2.],
4 [ 4., 5., 8., 13., 13., 8., 5.],
5 [ 4., 5., 8., 13., 13., 8., 5.],
6 [ 1., 2., 5., 10., 10., 5., 2.]
7 ])
```

```
1 >>> ft.fftshift(D)
2 array([
3 [13., 8., 5., 4., 5., 8., 13.],
4 [10., 5., 2., 1., 2., 5., 10.],
5 [ 9., 4., 1., 0., 1., 4., 9.],
6 [10., 5., 2., 1., 2., 5., 10.],
7 [13., 8., 5., 4., 5., 8., 13.]
8 ])
```


To compute a filter in frequency domain

```
% assume we use a D0 equals to 5% of the padded image (with size P * Q) width  2 \ D0 = 0.05 * Q \\ 3 \ H = exp(-(D.^2)/(2*(D0^2)))
```


Butterworth lowpass filter (BLPF)

BLPF has the transform function

$$H(u,v) = \frac{1}{1 + (D(u,v)/D_0)^{2n}},$$
(31)

where *n* is the order of BLPF. n = 2 is often used.

 Compared to ILPF, BLPF does not have a sharp discontinuity at D₀.

Gaussian lowpass filter (GLPF)

GLPF has the transform function

$$H(u, v) = e^{-D^2(u, v)/2\sigma^2},$$
 (32)

where σ is the standard deviation, and a measure of the spread of the Gaussian curve.

• By letting $\sigma = D_0$, we have

$$H(u, v) = e^{-D^2(u, v)/2D_0^2},$$
 (33)

where D_0 is the cutoff frequency.

Example using GLPF

Figure: Lowpass filtering. (a) the original image; (b) Gaussian LPF shown as an image; (c) Spectrum of (a); (d) Filtered image.

Outline

- Filtering in the frequency domain
- Obtaining frequency domain filter from spatial domain
- Generating filters directly in the frequency domain
- 4 Highpass (sharpening) frequency domain filters
- Selective filtering

Highpass frequency domain filtering

- Lowpass filtering and highpass filtering are a pair of opposite processes.
- Low pass filtering blurs an image, while highpass filtering sharpens the image;
- Given the transform function $H_{LP}(u, v)$ of a lowpass filter, the transform function for highpass filter is

$$H_{HP} = 1 - H_{LP}(u, v).$$
 (34)

Highpass frequency domain filtering cont.

	Lowpass $H(u, v)$	Highpass $H(u, v)$
Ideal	$\begin{cases} 1 & \text{if } D(u, v) \leq D_0 \\ 0 & \text{if } D(u, v) > D_0 \end{cases}$	$\begin{cases} 0 & \text{if } D(u, v) \leq D_0 \\ 1 & \text{if } D(u, v) > D_0 \end{cases}$
Butterworth	$\frac{1}{1 + (D(u,v)/D_0)^{2n}}$	$\frac{1}{1+(D_0/D(u,v))^{2n}}$
Gaussian	$e^{-D^2(u,v)/2\sigma^2}$	$1 - e^{-D^2(u,v)/2\sigma^2}$

Table: Frequency domain filters

Highpass frequency domain filtering cont.

Highpass frequency emphasis filtering

- Highpass filters zero out the mean component, reducing the average value of an image to zero.
- The remedy add an offset to a highpass filter, called high frequency emphasis filtering.

$$H_{HFE} = a + bH_{HP}(u, v), \tag{35}$$

where a is the offset, b is the multiplier, H_{HP} is the transform function of a highpass filter.

Example of highpass frequency domain filtering

Figure: Highpass filtering. (a) the original image; (b) the result of filtering using Butterworth filter; (c) Using highpass emphasis filtering; (d) After histogram equalization of (c).

Outline

- Filtering in the frequency domain
- Obtaining frequency domain filter from spatial domain
- Generating filters directly in the frequency domain
- 4 Highpass (sharpening) frequency domain filters
- Selective filtering

Bandreject and bandpass filters

- Table 2 shows expressions for ideal, Butterworth, and Gaussian bandreject filters.
- We obtain a bandpass filter $H_{BP}(u, v)$ from a given bandreject filter $H_{BR}(u, v)$ using

$$H_{BP}(u, v) = 1 - H_{BR}(u, v).$$
 (36)

$$H(u,v)$$
 Ideal
$$\begin{cases} 0 & \text{for } D_0 - \frac{W}{2} \leq D(u,v) \leq D_0 + \frac{W}{2} \\ 1 & \text{otherwise} \end{cases}$$
 Butterworth
$$\frac{1}{1 + \left(\frac{WD(u,v)}{D^2(u,v) - D_0^2}\right)^{2n}}$$
 Gaussian
$$1 - e^{-\left(\frac{D^2(u,v) - D_0^2}{WD(u,v)}\right)^2}$$

Bandreject and bandpass filters example

Figure: (a) An ideal bandreject filter with the origin at the top left corner; (b) An ideal bandreject filter with the origin at the center; (c) The corresponding bandpass filter of (b); (d) A Gaussian bandreject filter; (e) The corresponding bandpass filter of (d). Parameters used: M = N = 800, D0 = 200, W 20.

References

- Further reading in [Gonzalez and Woods, 2008, Chapter 4], [Gonzalez et al., 2009, Chapter 4].
- Further reading at http: //www.cs.unm.edu/~brayer/vision/fourier.html
- Gonzalez, R. C. and Woods, R. E. (2008). *Digital Image Processing*. Pearson Prentice Hall, Upper Saddle River, NJ 07458, third edition.
- Gonzalez, R. C., Woods, R. E., and Eddins, S. L. (2009). *Digital Imageage Processing using MATLAB*. Gatesmark Publishing.

