

R2.09 Méthodes Numériques

Thibault Godin, Lucie Naert, Anthony Ridard IUT de Vannes Informatique

On va étudier les suites définies par $u_{n+1} = f(u_n)$ où f est une fonction.

La question principale est "que peut-on dire de $(u_n)_{n\in\mathbb{N}}$ si on connaît f".

Par exemple on a vu que $\lim u_n = \ell \Rightarrow f(\ell) = \ell$ (on dit que ℓ est un point fixe de la fonction ℓ).

Pourquoi la suite d'Héron $u_0=A$; $u_{n+1}=\frac{u_n+\frac{A}{2n}}{2}$ semble-t-elle converger vers \sqrt{A}

$$\sim$$
 on voit \sqrt{A} est un point fixe de $f: \mathbb{R}^*_+ \longrightarrow \mathbb{R}$
 $x \longmapsto \frac{x+\frac{x}{2}}{2}$

Inégalité des accroissements finis

Soit $f:I\to\mathbb{R}$ une fonction dérivable sur un intervalle I ouvert. S'il existe une constante M telle que pour tout $x\in I$, $\left|f'(x)\right|\leq M$ alors $\forall x,y\in I$ $\left|f(x)-f(y)\right|\leq M|x-y|$

Soit $f: I \to \mathbb{R}$ une application et k > 0. f est dite k-lipschitzienne sur I, si

$$(\forall x \in I) (\forall y \in I) (|f(x) - f(y)| \le k |x - y|)$$

Un application k-lipschitzienne avec k < 1 est dite contractante

(un) Théorème du point fixe

Soit $f:[a;b] \rightarrow [a;b]$ une fonction vérifiant, pour tout $x \in [a;b]$ et tout $y \in [a;b]$

$$|f(x) - f(y)| \le L|x - y|$$
 avec $0 < L < 1$

Alors, la suite définie par :

$$\begin{cases} x_0 \in [a; b] \\ x_{n+1} = f(x_n) \end{cases}$$

converge vers l'unique solution \overline{x} de l'équation x = f(x)

Montrer que la fonction $x \mapsto x^2$ est contractante sur $]-\frac{1}{3},\frac{1}{3}[$. En déduire la convergence de la suite $u_0=-\frac{1}{4}; u_{n+1}=u_n^2$.

Théorème de Weierstrass

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment, alors f est bornée et atteint ses bornés

traduction : l'image d'un intervalle [a, b] par une fonction continue est inclue dans un intervalle [y, z] et il existe $c, d \in [a, b]$ tels que f(c) = y et f(d) = z.

 $oldsymbol{\mathscr{D}}$ Donner un exemple de fonction $f:[a,b] o \mathbb{R}$ bornée n'atteignant pas ses bornes

Théorème des valeurs intermédiaires

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur un segment, alors, pour tout réel y compris entre f(a) et f(b), il existe $c\in[a,b]$ tel que f(c)=y.

 \mathbb{R} II n'y a aucune raison que c soit unique.

Donner un exemple de fonction non continue qui satisfait les conclusions du théorème des valeurs intermédiaires

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est continue et strictement monotone sur I, alors

- 1. f établit une bijection de l'intervalle I dans l'image J = f(I),
- 2. la fonction réciproque $f^{-1}: J \to I$ est continue et strictement monotone sur J et elle a le même sens de variation que f.

Théorème des valeurs intermédiaires

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment.

Pour tout réel y compris entre f(a) et f(b), il existe $c \in [a, b]$ tel que f(c) = y.

On donne une approximation de c en réduisant l'intervalle à chaque fois :

Vitesses de convergence

$$c_0=rac{b-a}{2}$$
; $c_{n+1}=\left|rac{b_n-a_n}{2}
ight| \leadsto |c_n-c| \le rac{b-a}{2^n}$

On a la garantie théorique que la méthode converge. On souhaite maintenant comparer les vitesses de convergence

$$\lim \left| \frac{c_n - c}{c_{n-1} - c} \right| = \lim \left| \frac{err(n)}{err(n-1)} \right| \le \frac{1}{2} < 1$$

On dit que la convergence est linéaire

$$\lim \left| \frac{err(n)}{err(n-1)^{\alpha}} \right| \leq q \ (\alpha > 1)$$
; on dit que la convergence est d'ordre α .

remarque : si la méthode est d'ordre α , le nombre de chiffres significatifs corrects est à chaque étape augmenté d'une constante et multiplié par α .

Et en 2D? → https://www.youtube.com/watch?v=b7FxPsqfkOY

Méthode de Newton

On essaie de trouver une meilleure méthode pour trouver les **racines** d'une fonctions :

remarque : couper au milieu n'est pas forcément la meilleure solution!

idée suivre la pente $f'(x_0)$ jusqu'à croiser l'abscisse

On part de la droite
$$y = f'(x_n)(x_{n+1} - x_n) + f(x_n)$$
 d'où $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$

Avantage/inconvénients

Méthode de Newton

- + convergence d'ordre 2
 - convergence non-garantie
 - calculs de dérivée
- + pas obligé d'avoir un changement de signe

Méthode de Newton

Soit $[a;b]\subset \mathbb{R}$ un intervalle, et $f:[a;b]\to \mathbb{R}$ une fonction tels que :

- ▶ f est dérivable et sa dérivée est continue
- ightharpoonup f(a) f(b) < 0 (cad que l'équation f(x) = 0 a une solution dans [a,b]).
- Pour tout $x \in [a; b]$, $f'(x) \neq 0$ (c'est à dire que f' a un signe constant)

Alors,

la suite
$$(u_n)_{n\in\mathbb{N}}$$
 définie par
$$\begin{cases} u_0=x_0\\ u_{n+1}=u_n-\frac{f(u_n)}{f'(u_n)} \end{cases}$$
 converge vers l'unique solution ℓ de l'équation $f(x)=0$ dans $[a;b]$

▶ en posant : $m = \min_{x \in [a,b]} |f'(x)|$, et $M = \max_{x \in [a,b]} |f''(x)|$, on prend $u_0 \in [a,b]$ tel que $\frac{M}{m} |u_0 - \ell| < 1$.

On a
$$|u_n-\ell|<\frac{m}{M}\left(\frac{M}{m}|u_0-\ell|\right)^{2^n}$$
.

Attention : ce sont des conditions *suffisantes* pour la convergence, mais pas *nécessaires*.

Approximation de $\sqrt{2}$

On veut construire $u_n \to \sqrt{2}$

• choix d'une fonction f tq $f(\sqrt{2}) = 0$

$$f(x) = x - \sqrt{2}$$

$$f(x) = x^2 - 2$$

Méthode de Newton & Héron

Pourquoi la suite d'Héron $u_0=A$; $u_{n+1}=\frac{u_n+\frac{A}{u_n}}{2}$ semble-t-elle converger vers \sqrt{A} Et comment a-t-on créé cette suite?

Prenons $f(x) = x^2 - A$. Clairement \sqrt{A} est une racine de f et f' est continue.

$$f'(x) = 2x$$
. On applique la méthode de Newton $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

$$x_{n+1} = x_n - \frac{x_n^2 - A}{2x_n} = \frac{x_n^2 + A}{2x_n} = \frac{x_n + \frac{A}{x_n}}{2}$$

La méthode de Héron est un cas particulier de la méthode de Newton. C'est donc une méthode d'ordre 2 pour trouver une racine carrée