PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Disciplina: Algoritmos e Estruturas de Dados

Obs: Cópias serão desconsideradas, ou seja, a nota será igual a 0 (zero).

Lista 12 - Ordenação

Obs: Lembre-se da diferença de passagem de parâmetro por valor e por referência. Vetores em C# são sempre passados por referência.

- 1) Implemente um programa que apresente o seguinte menu de opções para o usuário:
 - a) Algoritmo Seleção
 - b) Algoritmo da Bolha (Bubblesort)
 - c) Algoritmo de Inserção

O usuário deve selecionar o algoritmo que deseja utilizar e também escolher se deseja ordenar os elementos em ordem crescente ou decrescente. Em seguida o programa deve solicitar ao usuário que informe o tamanho do vetor que ele deseja ordenar, depois o programa deve preencher o vetor (pode ler o os números do teclado OU gerar os números aleatoriamente). Por fim, o programa deve usar o método de ordenação e imprimir o vetor ordenado.

Obs: Será necessário implementar duas versões de casa método, uma que ordene em ordem crescente e outra em ordem decrescente. Para tanto, análise o que deve ser alterado em cada método para gerar a versão que ordene em ordem decrescente.

- 2) Ordene o vetor [10, 1, 3, 20, 5, 6, 1, 4, 9, 2] mostrando o conteúdo do vetor a cada passo intermediário. Utilize os seguintes algoritmos:
 - a) Seleção: mostre o vetor para cada elemento que atinja sua posição definitiva.
 - b) Bolha: mostre o vetor para cada elemento que atinja sua posição definitiva.
 - c) Inserção: mostre o vetor para cada elemento inserido na ordenação parcial.

Obs: O intuito do Exercício 2 é que os alunos entendam a lógica de cada algoritmo de ordenação. Nesse exercício deverá ser feita a execução passo a passo dos algoritmos. Assim, nenhum código deve ser entregue, apenas os desenhos do vetor a cada passo intermediário de cada algoritmo.

3) Considere os seguintes vetores:

Array crescente: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
Array decrescente: [20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]
Array aleatório: [20,14,1,3,2,4,11,7,8,9,17,18,16,15,6,5,13,12,10,19]

Preenche as duas tabelas a seguir, com o número de comparações e movimentações de registros (isto é, que envolvam elementos do array) que cada algoritmo faz para ordenar cada um dos três vetores.

Número de comparações

	Seleção	Bolha	Inserção
Vetor crescente			
Vetor decrescente			
Vetor aleatório			

Número de movimentações

	Seleção	Bolha	Inserção
Vetor crescente			
Vetor decrescente			
Vetor aleatório			

Dica: para preencher a tabela, adicione contadores nos métodos e execute os métodos para ordenar cada um dos três vetores.

4) Pesquise o que são algoritmos de ordenação estáveis. Dentre os algoritmos de ordenação básicos, quais **não** são estáveis? Para cada algoritmo não estável, mostre um exemplo que prove que o algoritmo não é estável.