WhileCC-approximability and Acceptability of Elementary Functions

Fateme Ghasemi Dr. Jeffery Zucker ghases5@mcmaster.ca zucker@mcmaster.ca

September 2025

Computability of Functions on ${\mathbb R}$

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability, testtesttesttest
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about **partial** functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

Computability of Functions on ${\mathbb R}$

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability, testtesttesttest
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about **partial** functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

Computability of Functions on $\mathbb R$

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability, testtesttesttest
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about **partial** functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

Computability of Functions on $\mathbb R$

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability, testtesttesttest
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about **partial** functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

Computability of Functions on \mathbb{R}

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability, testtesttesttest
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about partial functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

Computability of Functions on $\mathbb R$

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,testtesttesttest
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about partial functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

Computability of Functions on $\mathbb R$

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,testtesttesttest
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about partial functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

Computability of Functions on \mathbb{R}

For total functions on \mathbb{R} , the following models of computation are equivalent for all functions that are effectively locally uniformly continuous [Tucker and Zucker, 2005]:

- GL-computability,testtesttesttest
- tracking computability,
- multipolynomial approximability, and
- WhileCC-approximability.

What about partial functions? 1/x, $\sqrt[n]{x}$, ...

For partial functions on \mathbb{R} , Fu and Zucker [2014] generalize effectively locally uniform continuity to acceptability to get an equivalence.

Problem

How general is this class of acceptable functions?

Useful First Step Towards Solution

Definition (Acceptability)

A function $f: \mathbb{R} \to \mathbb{R}$ is acceptable if there exists a sequence X where

- lacksquare X is an **effective open exhaustion** for $\mathbf{dom}(f)$, and
- ② f is effectively locally uniformly continuous w.r.t. X.

Definition (Acceptability)

A function $f:\mathbb{R} \to \mathbb{R}$ is acceptable if there exists a sequence X where:

- lacksquare X is an effective open exhaustion for $\mathbf{dom}(f)$, and

Definition (Acceptability)

A function $f: \mathbb{R} \to \mathbb{R}$ is acceptable if there exists a sequence X where:

- f 0 X is an effective open exhaustion for ${f dom}(f)$, and

Definition (Acceptability)

A function $f: \mathbb{R} \to \mathbb{R}$ is acceptable if there exists a sequence X where:

- lacksquare X is an effective open exhaustion for $\mathbf{dom}(f)$, and

Definition ([Fu and Zucker, 2014]]

A sequence (U_1, U_2, \ldots) of open sets is called an **effective open exhaustion** for an open $U \subseteq \mathbb{R}$ if

- $U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i = 1, ..., k_l 1$, and
- $lackbox{1}$ the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1),(-2,2),\ldots,(-k,k),\ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an **effective open exhaustion** for an open $U \subseteq \mathbb{R}$ if

- $U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i = 1, ..., k_l 1$, and
- ① the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1),(-2,2),\ldots,(-k,k),\ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

- A sequence (U_1,U_2,\ldots) of open sets is called an effective open exhaustion for an open $U\subseteq\mathbb{R}$ if
 - $U = \bigcup_{l=0}^{\infty} U_l$, and
 - ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
 - \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
 - ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i = 1, ..., k_l 1$, and
 - ① the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1), (-2,2), \ldots, (-k,k), \ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1,U_2,\ldots) of open sets is called an **effective open exhaustion** for an open $U\subseteq\mathbb{R}$ if

- $\mathbf{0} \ U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- ① the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1),(-2,2),\ldots,(-k,k),\ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an **effective open exhaustion** for an open $U \subseteq \mathbb{R}$ if

- $U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- ① the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1), (-2,2), \ldots, (-k,k), \ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an **effective open exhaustion** for an open $U \subseteq \mathbb{R}$ if

- $\mathbf{0} \ U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- ① the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1), (-2,2), \ldots, (-k,k), \ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an **effective open exhaustion** for an open $U \subseteq \mathbb{R}$ if

- $\mathbf{0} \ U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- ① for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- ① the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1),(-2,2),\ldots,(-k,k),\ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an effective open exhaustion for an open $U \subseteq \mathbb{R}$ if

- $\mathbf{0} \ U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- $\textbf{ 3} \text{ the map } l \mapsto (a_1^l, b_1^l, ..., a_{k_l}^l, b_{k_l}^l) \text{ which delivers the sequence of stages } U_l = I_1^l \cup ... \cup I_{k_l}^l \text{ is recursive.}$

Example

The sequence of open sets $(-1,1), (-2,2), \ldots, (-k,k), \ldots$ is the standard effective open exhaustion for \mathbb{R} .

Definition ([Fu and Zucker, 2014])

A sequence (U_1, U_2, \ldots) of open sets is called an effective open exhaustion for an open $U \subseteq \mathbb{R}$ if

- $U = \bigcup_{l=0}^{\infty} U_l$, and
- ② for each $l \in \mathbb{N}$, U_l is a finite union of non-empty open finite intervals $I_1^l, I_2^l, ..., I_{k_l}^l$ whose closures are pairwise disjoint, and
- \bullet for each $l \in \mathbb{N}$, $\overline{U_l} = \bigcup_{i=1}^{k_l} \overline{I_i^l} \subseteq U_{l+1}$.
- for all l, the components I_i^l that are intervals building up the stage U_l , are rational and ordered i.e., $I_i^l = (a_i^l, b_i^l)$ for some $a_i^l, b_i^l \in \mathbb{Q}$ where $b_i^l < a_{i+1}^l$ for $i=1,...,k_l-1$, and
- **3** the map $l\mapsto (a_1^l,b_1^l,...,a_{k_l}^l,b_{k_l}^l)$ which delivers the sequence of stages $U_l=I_1^l\cup...\cup I_{k_l}^l$ is recursive.

Example

The sequence of open sets $(-1,1),(-2,2),\ldots,(-k,k),\ldots$ is the standard effective open exhaustion for \mathbb{R} .

Background - Effective Local Uniform Continuity

Definition ([Fu and Zucker, 2014])

A function f on U is effectively locally uniformly continuous w.r.t. an effective open exhaustion $(U_n)_{n\in\mathbb{N}}$ of U, if there is a recursive function $M:\mathbb{N}^2 \to \mathbb{N}$ such that for all $k,l\in\mathbb{N}$ and all $x,y\in U_l$:

$$|x - y| < 2^{-M(k,l)} \implies |f(x) - f(y)| < 2^{-k}$$

Background - Effective Local Uniform Continuity

Definition ([Fu and Zucker, 2014])

A function f on U is effectively locally uniformly continuous w.r.t. an effective open exhaustion $(U_n)_{n\in\mathbb{N}}$ of U, if there is a recursive function $M:\mathbb{N}^2 \twoheadrightarrow \mathbb{N}$ such that for all $k,l\in\mathbb{N}$ and all $x,y\in U_l$:

$$|x-y| < 2^{-M(k,l)} \implies |f(x) - f(y)| < 2^{-k}$$

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on \mathbb{R} are partial functions defined by expressions built up from

- computable reals, and
- the variable x.

by applying (repeatedly) the basic operations below on elementary functions f,g:

- (f+g)(x) = f(x) + g(x)
- $(f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = \frac{1}{f(x)}$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on $\ensuremath{\mathbb{R}}$ are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions f,g:

- (f+g)(x) = f(x) + g(x)
- $(f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = 1$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on $\ensuremath{\mathbb{R}}$ are partial functions defined by expressions built up from

- computable reals, and
- \bullet the variable x,

by applying (repeatedly) the basic operations below on elementary functions f,g:

•
$$(f+g)(x) = f(x) + g(x)$$

$$(f \cdot g)(x) = f(x)g(x)$$

$$\bullet \ \operatorname{div}_f(x) = \tfrac{1}{f(x)} \qquad \qquad \text{where } \tfrac{1}{0} = 1$$

•
$$\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$$
 where $0 < n \in \mathbb{N}$

- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on \mathbb{R} are partial functions defined by expressions built up from

- o computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions $f,g\colon$

- (f+g)(x) = f(x) + g(x)
- $(f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$

where $\frac{1}{0} = \uparrow$

- \bullet root_{n,f} $(x) = \sqrt[n]{f(x)}$
- where $0 < n \in \mathbb{N}$

- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on \mathbb{R} are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions $f,g\colon$

- (f+g)(x) = f(x) + g(x)
- $\bullet \ (f \cdot g)(x) = f(x)g(x)$
- ullet $\operatorname{div}_f(x) = rac{1}{f(x)}$ where $rac{1}{0} = \uparrow$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \ln_f(x) = \ln(f(x))$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The elementary functions on $\ensuremath{\mathbb{R}}$ are partial functions defined by expressions built up from

- computable reals, and
- \bullet the variable x,

by applying (repeatedly) the basic operations below on elementary functions $f,g\colon$

- (f+g)(x) = f(x) + g(x)
- $(f \cdot g)(x) = f(x)g(x)$
- ullet $\operatorname{div}_f(x) = rac{1}{f(x)}$ where $rac{1}{0} = \uparrow$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \ln_f(x) = \ln(f(x))$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The **elementary functions** on \mathbb{R} are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions f,g:

- (f+g)(x) = f(x) + g(x)
- $\bullet \ (f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = \uparrow$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \ln_f(x) = \ln(f(x))$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The **elementary functions** on \mathbb{R} are partial functions defined by expressions built up from

- computable reals, and
- the variable x,

by applying (repeatedly) the basic operations below on elementary functions f,g:

- (f+g)(x) = f(x) + g(x)
- $\bullet \ (f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = \uparrow$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \ln_f(x) = \ln(f(x))$
- $\bullet \ \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Definition ([Tenenbaum and Pollard, 1985])

The **elementary functions** on \mathbb{R} are partial functions defined by expressions built up from

- computable reals, and
- the variable x.

by applying (repeatedly) the basic operations below on elementary functions f,g:

- (f+g)(x) = f(x) + g(x)
- $\bullet \ (f \cdot g)(x) = f(x)g(x)$
- $\operatorname{div}_f(x) = \frac{1}{f(x)}$ where $\frac{1}{0} = \uparrow$
- $\operatorname{root}_{n,f}(x) = \sqrt[n]{f(x)}$ where $0 < n \in \mathbb{N}$
- $\bullet \ \ln_f(x) = \ln(f(x))$
- $\bullet \exp_f(x) = e^{f(x)}$
- $\bullet \ \sin_f(x) = \sin(f(x))$
- $\arcsin_f(x) = \arcsin(f(x))$

Problem

The domains of elementary functions are not all open!

- We define $\sqrt[n]{x} = 0$ for x < 0 when n is even.
- We extend the definition of $\arcsin(x)$ to be $\frac{\pi}{2}$ for x>1 and to be $-\frac{\pi}{2}$ for x<-1.

Contributions

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is **WhileCC**-approximable.
- \bullet f is GL-computable w.r.t. X.
- ullet is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem 2 (Acceptability Theorem

All elementary functions are acceptable.

Contributions

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is **WhileCC**-approximable.
- ullet f is GL-computable w.r.t. X.
- ullet is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem 2 (Acceptability Theorem

All elementary functions are acceptable.

Contributions

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is **WhileCC**-approximable.
- \bullet f is GL-computable w.r.t. X.
- ullet is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem 2 (Acceptability Theorem)

All elementary functions are acceptable.

Contributions

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is **WhileCC**-approximable.
- \bullet f is GL-computable w.r.t. X.
- ullet is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem 2 (Acceptability Theorem)

All elementary functions are acceptable.

Contributions

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is WhileCC-approximable.
- f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem 2.1 (Acceptability Theorem: Part 1)

The domain of any elementary function has an effective open exhaustion.

Theorem 2.2 (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

8 / 117

Contributions

Recall: Equivalence Theorem, [Fu and Zucker, 2014]

For any acceptable function $f: \mathbb{R} \to \mathbb{R}$ and any effective open exhaustion X for $\mathbf{dom}(f)$, the following are equivalent:

- f is an α -computable function.
- f is WhileCC-approximable.
- f is GL-computable w.r.t. X.
- ullet f is effectively locally uniformly multipolynomially approximable w.r.t. X.

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

Theorem 2.1 (Acceptability Theorem: Part 1)

The domain of any elementary function has an effective open exhaustion.

Theorem 2.2 (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

9 / 117

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable

This is the easiest part, yet occupies about 30 pages of my master's thesis . . . ©

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

This is the easiest part, yet occupies about 30 pages of my master's thesis ... ©

Theorem 1 (WhileCC-approximability Theorem)

All elementary functions are WhileCC-approximable.

This is the easiest part, yet occupies about 30 pages of my master's thesis ... ©

Syntax

Terms

$$t^s ::= x^s \mid F(t_1^{s_1}, \dots, t_m^{s_m})$$

Statements

$$S::=$$
 skip \mid div \mid $ar{x}:=ar{t}\mid S_1 \mid S_2$ \mid if b then S_1 else S_2 fi \mid while b do S_0 od \mid $v:=$ shows $(x:pat):P(x)$

Procedures

 $P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$

Algebra $\mathcal R$

$$\begin{array}{l} 0_R,\, 1_R,\, -1_R: \,\, \twoheadrightarrow \mathbb{R} \\ +_R,\, \times_R: \, \mathbb{R} \times \mathbb{R} \to \mathbb{R} \\ +_N,\, \times_N: \, \mathbb{N} \times \mathbb{N} \to \mathbb{N} \\ \text{inv}_R: \, \mathbb{R} \to \, \mathbb{R} \\ 0_N: \,\, \twoheadrightarrow \mathbb{N} \\ \text{suc}_N: \, \mathbb{N} \to \mathbb{N} \\ \text{tt, ff}: \,\, \twoheadrightarrow \mathbb{B} \\ \text{and, or}: \, \mathbb{B} \times \mathbb{B} \to \mathbb{B} \\ \text{not}: \, \mathbb{B} \to \mathbb{B} \\ =_N,\, <_N: \, \mathbb{N} \times \mathbb{N} \to \mathbb{B} \end{array}$$

Semantics

$$\begin{aligned} &\operatorname{inv}_{\mathsf{R}}(x) = \begin{cases} 1/x & \text{if } x \neq 0 \\ \uparrow & \text{otherwise} \end{cases} \\ =_{\operatorname{real}}(x,y) = \begin{cases} &\text{ff} & \text{if } x \neq y \\ \uparrow & \text{otherwise} \end{cases} \\ <_{\mathsf{R}}(x,y) = \begin{cases} &\text{tt} & \text{if } x < y \\ &\text{ff} & \text{if } x > y \\ \uparrow & \text{if } x = y \end{cases} \end{aligned}$$

Syntax

Terms

$$t^s ::= x^s \mid F(t_1^{s_1}, \dots, t_m^{s_m})$$

Statements

$$egin{aligned} S ::= & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Procedures

 $P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$

Algebra $\mathcal R$

$$\begin{array}{l} 0_R,\, 1_R,\, -1_R: \,\, \twoheadrightarrow \mathbb{R} \\ +_R,\, \times_R: \, \mathbb{R} \times \mathbb{R} \twoheadrightarrow \mathbb{R} \\ +_N,\, \times_N: \, \mathbb{N} \times \mathbb{N} \twoheadrightarrow \mathbb{N} \\ \text{inv}_R: \, \mathbb{R} \, \to \, \mathbb{R} \\ 0_N: \,\, \twoheadrightarrow \mathbb{N} \\ \text{suc}_N: \, \mathbb{N} \twoheadrightarrow \mathbb{N} \\ \text{tt, } \text{ff}: \,\, \twoheadrightarrow \mathbb{B} \\ \text{and, } \text{or}: \, \mathbb{B} \times \mathbb{B} \twoheadrightarrow \mathbb{B} \\ \text{not}: \,\, \mathbb{B} \twoheadrightarrow \mathbb{B} \\ =_N, \,\, <_N: \,\, \mathbb{N} \times \mathbb{N} \twoheadrightarrow \mathbb{B} \end{array}$$

Semantics

$$\operatorname{inv}_{\mathsf{R}}(x) = \begin{cases} 1/x & \text{if } x \neq 0 \\ \uparrow & \text{otherwise} \end{cases}$$

$$=_{\mathsf{real}}(x,y) = \begin{cases} \mathsf{ff} & \text{if } x \neq y \\ \uparrow & \text{otherwise} \end{cases}$$

$$<_{\mathsf{R}}(x,y) = \begin{cases} \mathsf{tt} & \text{if } x < y \\ \mathsf{ff} & \text{if } x > y \\ \uparrow & \text{if } x = y \end{cases}$$

Syntax

Terms

$$t^s ::= x^s \mid F(t_1^{s_1}, \dots, t_m^{s_m})$$

Statements

Procedures

 $P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$

Algebra $\mathcal R$

$$\begin{array}{l} 0_{R},\,1_{R},\,-1_{R}:\,\,\twoheadrightarrow\,\mathbb{R} \\ +_{R},\,\times_{R}:\,\mathbb{R}\times\mathbb{R}\to\mathbb{R} \\ +_{N},\,\times_{N}:\,\mathbb{N}\times\mathbb{N}\to\mathbb{N} \\ \text{inv}_{R}:\,\mathbb{R}\to\mathbb{R} \\ 0_{N}:\,\,\twoheadrightarrow\,\mathbb{N} \\ \text{suc}_{N}:\,\mathbb{N}\to\mathbb{N} \\ \text{tt, ff}:\,\,\twoheadrightarrow\,\mathbb{B} \\ \text{and, or:}\,\,\mathbb{B}\times\mathbb{B}\to\mathbb{B} \\ \text{not:}\,\,\mathbb{B}\to\mathbb{B} \\ =_{N},\,\,<_{N}:\,\mathbb{N}\times\mathbb{N}\to\mathbb{B} \end{array}$$

Semantics

$$\operatorname{inv}_{\mathsf{R}}(x) = \begin{cases} 1/x & \text{if } x \neq 0 \\ \uparrow & \text{otherwise} \end{cases}$$

$$=_{\mathsf{real}}(x,y) = \begin{cases} \mathsf{ff} & \text{if } x \neq y \\ \uparrow & \text{otherwise} \end{cases}$$

$$<_{\mathsf{R}}(x,y) = \begin{cases} \mathsf{tt} & \text{if } x < y \\ \mathsf{ff} & \text{if } x > y \\ \uparrow & \text{if } x = y \end{cases}$$

Syntax

Terms

$$t^s ::= x^s \mid F(t_1^{s_1}, \dots, t_m^{s_m})$$

Statements

$$\begin{split} S ::= \\ \text{skip} & \mid \text{div} \mid \bar{x} := \bar{t} \mid S_1 \mid S_2 \\ & \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \text{ fi} \\ & \mid \text{while } b \text{ do } S_0 \text{ od} \\ & \mid n := \text{choose } (z : \text{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

 $P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$

Algebra $\mathcal R$

$$\begin{array}{l} 0_{R},\,1_{R},\,-1_{R}:\,\,\rightarrow\mathbb{R} \\ +_{R},\,\times_{R}:\,\mathbb{R}\times\mathbb{R}\to\mathbb{R} \\ +_{N},\,\times_{N}:\,\mathbb{N}\times\mathbb{N}\to\mathbb{N} \\ \text{inv}_{R}:\,\mathbb{R}\to\mathbb{R} \\ 0_{N}:\,\,\rightarrow\mathbb{N} \\ \text{suc}_{N}:\,\mathbb{N}\to\mathbb{N} \\ \text{tt, ff}:\,\,\rightarrow\mathbb{B} \\ \text{and, or}:\,\mathbb{B}\times\mathbb{B}\to\mathbb{B} \\ \text{not}:\,\mathbb{B}\to\mathbb{B} \\ \end{array}$$

Semantics

$$\begin{aligned} & \mathsf{inv}_{\mathsf{R}}(x) = \begin{cases} 1/x & \text{if } x \neq 0 \\ \uparrow & \text{otherwise} \end{cases} \\ =_{\mathsf{real}}(x,y) = \begin{cases} \mathsf{ff} & \text{if } x \neq y \\ \uparrow & \text{otherwise} \end{cases} \\ <_{\mathsf{R}}(x,y) = \begin{cases} \mathsf{tt} & \text{if } x < y \\ \mathsf{ff} & \text{if } x > y \\ \uparrow & \text{if } x = y \end{cases} \end{aligned}$$

Syntax

Terms

$$t^s ::= x^s \mid F(t_1^{s_1}, \dots, t_m^{s_m})$$

Statements

$$\begin{split} S ::= \\ \text{skip} & \mid \text{div} \mid \bar{x} := \bar{t} \mid S_1 \mid S_2 \\ & \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \text{ fi} \\ & \mid \text{while } b \text{ do } S_0 \text{ od} \\ & \mid n := \text{choose } (z : \text{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

$$P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$$

Algebra $\mathcal R$

$$\begin{array}{l} \textbf{0}_{R},\,\textbf{1}_{R},\,-\textbf{1}_{R}:\,\,\twoheadrightarrow\,\mathbb{R} \\ +_{R},\,\,\times_{R}:\,\mathbb{R}\times\mathbb{R}\to\mathbb{R} \\ +_{N},\,\,\times_{N}:\,\mathbb{N}\times\mathbb{N}\to\mathbb{N} \\ \text{inv}_{R}:\,\mathbb{R}\to\mathbb{R} \\ \textbf{0}_{N}:\,\,\twoheadrightarrow\,\mathbb{N} \\ \text{suc}_{N}:\,\,\mathbb{N}\to\mathbb{N} \\ \text{tt, ff}:\,\,\rightarrow\,\mathbb{B} \\ \text{and, or:}\,\,\mathbb{B}\times\mathbb{B}\to\mathbb{B} \\ \text{not:}\,\,\mathbb{B}\to\mathbb{B} \\ =_{N},\,\,<_{N}:\,\,\mathbb{N}\times\mathbb{N}\to\mathbb{B} \end{array}$$

Semantics

$$\mathsf{inv}_{\mathsf{R}}(x) = \begin{cases} 1/x & \text{if } x \neq 0 \\ \uparrow & \text{otherwise} \end{cases}$$

$$=_{\mathsf{real}}(x,y) = \begin{cases} \mathsf{ff} & \text{if } x \neq y \\ \uparrow & \text{otherwise} \end{cases}$$

$$<_{\mathsf{R}}(x,y) = \begin{cases} \mathsf{tt} & \text{if } x < y \\ \mathsf{ff} & \text{if } x > y \\ \uparrow & \text{if } x = y \end{cases}$$

Syntax

Terms

$$t^s ::= x^s \mid F(t_1^{s_1}, \dots, t_m^{s_m})$$

Statements

$$\begin{split} S ::= \\ \text{skip} & \mid \text{div} \mid \bar{x} := \bar{t} \mid S_1 \ S_2 \\ & \mid \text{if} \ b \ \text{then} \ S_1 \ \text{else} \ S_2 \ \text{fi} \\ & \mid \text{while} \ b \ \text{do} \ S_0 \ \text{od} \\ & \mid n := \text{choose} \ (z : \text{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

$$P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$$

Algebra \mathcal{R}

$$\begin{array}{c} 0_{R},\,1_{R},\,-1_{R}:\,\,\rightarrow\,\mathbb{R} \\ +_{R},\,\times_{R}:\,\mathbb{R}\times\mathbb{R}\to\mathbb{R} \\ +_{N},\,\times_{N}:\,\mathbb{N}\times\mathbb{N}\to\mathbb{N} \\ \\ \text{inv}_{R}:\,\mathbb{R}\,\,\rightarrow\,\mathbb{R} \\ \\ 0_{N}:\,\,\rightarrow\,\mathbb{N} \\ \\ \text{suc}_{N}:\,\mathbb{N}\to\mathbb{N} \\ \\ \text{suc}_{N}:\,\mathbb{N}\to\mathbb{N} \\ \\ \text{tt, ff}:\,\,\rightarrow\,\mathbb{B} \\ \\ \text{and, or}:\,\,\mathbb{B}\times\mathbb{B}\to\mathbb{B} \\ \\ \text{not}:\,\,\mathbb{B}\to\mathbb{B} \\ \\ =_{N},\,<_{N}:\,\mathbb{N}\times\mathbb{N}\to\mathbb{B} \\ \\ =_{\text{real}},\,<_{R}:\,\,\mathbb{R}\times\mathbb{R}\to\mathbb{B} \end{array}$$

Semantics

$$\begin{aligned} & \mathsf{inv}_{\mathsf{R}}(x) = \begin{cases} 1/x & \text{if } x \neq 0 \\ \uparrow & \text{otherwis} \end{cases} \\ =_{\mathsf{real}}(x,y) = \begin{cases} \mathsf{ff} & \text{if } x \neq y \\ \uparrow & \text{otherwise} \end{cases} \\ <_{\mathsf{R}}(x,y) = \begin{cases} \mathsf{tt} & \text{if } x < y \\ \mathsf{ff} & \text{if } x > y \\ \uparrow & \text{if } x = y \end{cases} \end{aligned}$$

Syntax

Terms

$$t^s ::= x^s \mid F(t_1^{s_1}, \dots, t_m^{s_m})$$

Statements

$$\begin{split} S ::= \\ \text{skip} & \mid \text{div} \mid \bar{x} := \bar{t} \mid S_1 \ S_2 \\ & \mid \text{if} \ b \ \text{then} \ S_1 \ \text{else} \ S_2 \ \text{fi} \\ & \mid \text{while} \ b \ \text{do} \ S_0 \ \text{od} \\ & \mid n := \text{choose} \ (z : \text{nat}) : P(z, \bar{t}) \end{split}$$

Procedures

$$P ::= \operatorname{proc} D \operatorname{begin} S \operatorname{end}$$

Algebra \mathcal{R}

$$\begin{array}{c} 0_{R},\ 1_{R},\ -1_{R}:\ \twoheadrightarrow\mathbb{R} \\ +_{R},\ \times_{R}:\ \mathbb{R}\times\mathbb{R} \twoheadrightarrow\mathbb{R} \\ +_{N},\ \times_{N}:\ \mathbb{N}\times\mathbb{N} \twoheadrightarrow\mathbb{N} \\ \text{inv}_{R}:\ \mathbb{R} \to \mathbb{R} \\ 0_{N}:\ \twoheadrightarrow\mathbb{N} \\ \text{suc}_{N}:\ \mathbb{N} \twoheadrightarrow\mathbb{N} \\ \text{tt},\ \text{ff}:\ \twoheadrightarrow\mathbb{B} \\ \text{and, or}:\ \mathbb{B}\times\mathbb{B} \twoheadrightarrow\mathbb{B} \\ \text{not}:\ \mathbb{B} \twoheadrightarrow\mathbb{B} \\ =_{N},\ <_{N}:\ \mathbb{N}\times\mathbb{N} \twoheadrightarrow\mathbb{B} \\ =_{\text{real}},\ <_{R}:\ \mathbb{R}\times\mathbb{R} \to \mathbb{B} \end{array}$$

Semantics

$$\begin{split} & \mathsf{inv}_{\mathsf{R}}(x) = \begin{cases} 1/x & \text{if } x \neq 0 \\ \uparrow & \text{otherwise} \end{cases} \\ =_{\mathsf{real}}(x,y) = \begin{cases} \mathsf{ff} & \text{if } x \neq y \\ \uparrow & \text{otherwise} \end{cases} \\ <_{\mathsf{R}}(x,y) = \begin{cases} \mathsf{tt} & \text{if } x < y \\ \mathsf{ff} & \text{if } x > y \\ \uparrow & \text{if } x = y \end{cases} \end{split}$$

Definition (WhileCC-approximability, [Fu and Zucker, 2014])

A WhileCC-procedure P of type real \times nat \to real on $\mathcal R$ is said to approximate a function $f:\mathbb R\to\mathbb R$ iff for all $n\in\mathbb N$ and all $x\in\mathbb R$:

- $\bullet \ x \in \mathbf{dom}(f) \implies \emptyset \neq P^{\mathcal{R}}(x,n) \subseteq \mathbf{Nbd}(f(x),2^{-n})$, and
- $x \notin \mathbf{dom}(f) \implies P^{\mathcal{R}}(x) = \emptyset$

where $\mathbf{Nbd}(y,r)$ has the standard definition of neighborhood on $\mathbb R$ i.e.,

$$Nbd(y, r) = \{ z \in \mathbb{R} \mid |y - z| < r \}.$$

Goal

Construct WhileCC-procedures approximating elementary functions by induction

Challenge: Using comparison operators introduces undefinedness.

Definition (WhileCC-approximability, [Fu and Zucker, 2014])

A WhileCC-procedure P of type real \times nat \to real on $\mathcal R$ is said to approximate a function $f:\mathbb R\to\mathbb R$ iff for all $n\in\mathbb N$ and all $x\in\mathbb R$:

•
$$x \in \mathbf{dom}(f) \implies \emptyset \neq P^{\mathcal{R}}(x,n) \subseteq \mathbf{Nbd}(f(x),2^{-n})$$
 , and

•
$$x \notin \mathbf{dom}(f) \implies P^{\mathcal{R}}(x) = \emptyset$$

where $\mathbf{Nbd}(y,r)$ has the standard definition of neighborhood on $\mathbb R$ i.e.

$$Nbd(y, r) = \{ z \in \mathbb{R} \mid |y - z| < r \}.$$

Goal

Construct WhileCC-procedures approximating elementary functions by induction

Challenge: Using comparison operators introduces undefinedness.

Definition (WhileCC-approximability, [Fu and Zucker, 2014])

A **WhileCC**-procedure P of type real \times nat \to real on $\mathcal R$ is said to approximate a function $f:\mathbb R\to\mathbb R$ iff for all $n\in\mathbb N$ and all $x\in\mathbb R$:

•
$$x \in \mathbf{dom}(f) \implies \emptyset \neq P^{\mathcal{R}}(x,n) \subseteq \mathbf{Nbd}(f(x),2^{-n})$$
 , and

•
$$x \notin \mathbf{dom}(f) \implies P^{\mathcal{R}}(x) = \emptyset$$

where $\mathbf{Nbd}(y,r)$ has the standard definition of neighborhood on $\mathbb R$ i.e.,

$$Nbd(y, r) = \{ z \in \mathbb{R} \mid |y - z| < r \}.$$

Goal

Construct WhileCC-procedures approximating elementary functions by induction

Challenge: Using comparison operators introduces undefinedness.

Definition (WhileCC-approximability, [Fu and Zucker, 2014])

A **WhileCC**-procedure P of type real \times nat \to real on $\mathcal R$ is said to approximate a function $f:\mathbb R\to\mathbb R$ iff for all $n\in\mathbb N$ and all $x\in\mathbb R$:

$$\bullet \ x \in \mathbf{dom}(f) \implies \emptyset \neq P^{\mathcal{R}}(x,n) \subseteq \mathbf{Nbd}(f(x),2^{-n})$$
 , and

•
$$x \notin \mathbf{dom}(f) \implies P^{\mathcal{R}}(x) = \emptyset$$

where $\mathbf{Nbd}(y,r)$ has the standard definition of neighborhood on $\mathbb R$ i.e.,

$$Nbd(y, r) = \{ z \in \mathbb{R} \mid |y - z| < r \}.$$

Goal

Construct WhileCC-procedures approximating elementary functions by induction

Challenge: Using comparison operators introduces undefinedness.

Definition (WhileCC-approximability, [Fu and Zucker, 2014])

A **WhileCC**-procedure P of type real \times nat \to real on $\mathcal R$ is said to *approximate* a function $f:\mathbb R\to\mathbb R$ iff for all $n\in\mathbb N$ and all $x\in\mathbb R$:

- $x \in \mathbf{dom}(f) \implies \emptyset \neq P^{\mathcal{R}}(x,n) \subseteq \mathbf{Nbd}(f(x),2^{-n})$, and
- $x \notin \mathbf{dom}(f) \implies P^{\mathcal{R}}(x) = \emptyset$

where $\mathbf{Nbd}(y,r)$ has the standard definition of neighborhood on $\mathbb R$ i.e.,

$$\mathbf{Nbd}(y,r) = \{ z \in \mathbb{R} \mid |y - z| < r \}.$$

Goal

Construct WhileCC-procedures approximating elementary functions by induction

Challenge: Using comparison operators introduces undefinedness.

Definition (WhileCC-approximability, [Fu and Zucker, 2014])

A **WhileCC**-procedure P of type real \times nat \to real on $\mathcal R$ is said to approximate a function $f:\mathbb R\to\mathbb R$ iff for all $n\in\mathbb N$ and all $x\in\mathbb R$:

- $x \in \mathbf{dom}(f) \implies \emptyset \neq P^{\mathcal{R}}(x,n) \subseteq \mathbf{Nbd}(f(x),2^{-n})$, and
- $x \notin \mathbf{dom}(f) \implies P^{\mathcal{R}}(x) = \emptyset$

where $\mathbf{Nbd}(y,r)$ has the standard definition of neighborhood on $\mathbb R$ i.e.,

$$Nbd(y,r) = \{ z \in \mathbb{R} \mid |y - z| < r \}.$$

Goal

Construct WhileCC-procedures approximating elementary functions by induction

Challenge: Using comparison operators introduces undefinedness.

Definition (WhileCC-approximability, [Fu and Zucker, 2014])

A WhileCC-procedure P of type real \times nat \to real on $\mathcal R$ is said to approximate a function $f:\mathbb R\to\mathbb R$ iff for all $n\in\mathbb N$ and all $x\in\mathbb R$:

- ullet $x\in \mathbf{dom}(f) \implies \emptyset
 eq P^{\mathcal{R}}(x,n) \subseteq \mathbf{Nbd}(f(x),2^{-n})$, and
- $x \notin \mathbf{dom}(f) \implies P^{\mathcal{R}}(x) = \emptyset$

where $\mathbf{Nbd}(y,r)$ has the standard definition of neighborhood on $\mathbb R$ i.e.,

$$Nbd(y, r) = \{ z \in \mathbb{R} \mid |y - z| < r \}.$$

Goal

Construct WhileCC-procedures approximating elementary functions by induction

Challenge: Using comparison operators introduces undefinedness.

Problem

When defining piecewise functions, comparison makes a hole!

Problem

When defining piecewise functions, comparison makes a hole!

Problem

When defining piecewise functions, comparison makes a hole!

```
proc
  in x : real c : nat
begin
  if x <_{\mathsf{R}} 0 then
     return 0
  else
     return Root(x, c)
  fi
end
```

Problem

When defining piecewise functions, comparison makes a hole!

```
proc
  in x : real c : nat
begin
  if x <_{\mathsf{R}} 0 then
     return 0
  else
     return Root(x, c)
  fi
end
```

Problem

When defining piecewise functions, comparison makes a hole!

```
proc
  in x : real c : nat
begin
  if x <_{\mathsf{R}} 0 then
     return 0
  else
     return Root(x, c)
  fi
end
```

Problem

When defining piecewise functions, comparison makes a hole!

- Find an overlapping interval where both pieces are defined
- Use the nondeterminism of "choose"

Problem

When defining piecewise functions, comparison makes a hole!

- Find an overlapping interval where both pieces are defined
- Use the nondeterminism of "choose"

Problem

When defining piecewise functions, comparison makes a hole!

- Find an overlapping interval where both pieces are defined
- Use the nondeterminism of "choose"

Problem

When defining piecewise functions, comparison makes a hole!

- Find an overlapping interval where both pieces are defined
- Use the nondeterminism of "choose"

Problem

When defining piecewise functions, comparison makes a hole!

- Find an overlapping interval where both pieces are defined
- Use the nondeterminism of "choose"

Problem

When defining piecewise functions, comparison makes a hole!

- Find an overlapping interval where both pieces are defined
- Use the nondeterminism of "choose"

Problem

When defining piecewise functions, comparison makes a hole!

- Find an overlapping interval where both pieces are defined
- Use the nondeterminism of "choose"

```
proc
  in x \cdot \text{real } c \cdot \text{nat}
  aux \ chosen Val : nat \ l : real
begin
  l := \text{choose } (q : \text{real}) : \text{isCloseEnough}(q, c, n)
   chosenVal := choose(k : nat) : proc
                                             in k · nat x · real
                                          begin
                                             if k =_{\mathbb{N}} 1 then
                                                return 0 < x
                                             else if k = N 2 then
                                                return x < l
                                             else
                                                return ff
                                          end
  if chosen Val = 1 then
     return Root(x, c)
  else if chosenVal = N 2 then
     return 0
end
```

Problem

When defining piecewise functions, comparison makes a hole!

- Find an overlapping interval where both pieces are defined
- Use the nondeterminism of "choose"

```
proc
  in x \cdot \text{real } c \cdot \text{nat}
  aux \ chosen Val : nat \ l : real
begin
  l := \text{choose } (q : \text{real}) : \text{isCloseEnough}(q, c, n)
   chosenVal := choose(k : nat) : proc
                                             in k · nat x · real
                                          begin
                                             if k =_{\mathbb{N}} 1 then
                                                return 0 < x
                                             else if k = N 2 then
                                                return x < l
                                             else
                                                return ff
                                          end
  if chosen Val = 1 then
     return Root(x, c)
  else if chosenVal = N 2 then
     return 0
end
```

Problem

When defining piecewise functions, comparison makes a hole!

- Find an overlapping interval where both pieces are defined
- Use the nondeterminism of "choose"

```
proc
  in x \cdot \text{real } c \cdot \text{nat}
  aux \ chosen Val : nat \ l : real
begin
  l := \text{choose } (q : \text{real}) : \text{isCloseEnough}(q, c, n)
   chosenVal := choose(k : nat) : proc
                                            in k · nat x · real
                                          begin
                                            if k =_{\mathbb{N}} 1 then
                                                return 0 < x
                                            else if k = N 2 then
                                                return x < l
                                            else
                                               return ff
                                          end
                                                        f(x)
  if chosen Val = 1 then
     return Root(x, c)
  else if chosenVal = N 2 then
     return 0
end
```

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt - Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases $\sqrt{(e.g. \sin(x))}$
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x) = id|_{(-1,1)}$$
 and $g(x) = \begin{cases} 0 & \text{if } -1 \le x \le 1 \\ 1 & \text{otherwise} \end{cases}$

 $\mathbf{dom}(f)$ has an effective open exhaustion \checkmark $\mathbf{dom}(g)$ has an effective open exhaustion \checkmark $\mathbf{dom}(f \circ q) = [-1, 1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

Adding decomposition of + and \cdot

$$Add(x, y) = x + y.$$

- Aaa(x,y) = x + y,
- Add(x, y) = x + y, • $(f \times q)(x, y) = (f(x), q(y))$,

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases $\sqrt{(e.g. \sin(x))}$
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x) = id|_{(-1,1)}$$
 and $g(x) = \begin{cases} 0 & \text{if } -1 \le x \le 1 \\ 1 & \text{otherwise} \end{cases}$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ q) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

Adding decomposition of + and \cdot

$$(f+g)(x)=f(x)+g(x)$$
 is composed of

- $\bullet \ Add(x,y) = x + y,$
- Add(x,y) = x + y,
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x) = id|_{(-1,1)}$$
 and $g(x) = \begin{cases} 0 & \text{if } -1 \le x \le 1 \\ 1 & \text{otherwise} \end{cases}$

 $\mathbf{dom}(f)$ has an effective open exhaustion \checkmark $\mathbf{dom}(g)$ has an effective open exhaustion \checkmark $\mathbf{dom}(f \circ q) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x) = f(x) + g(x)$$
 is composed of

- Add(x,y) = x + y,
- Add(x,y) = x + y,
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)}$$
 and $g(x)=egin{cases} 0 & \text{if } -1\leq x\leq 1 \\ 1 & \text{otherwise} \end{cases}$

 $\mathbf{dom}(f)$ has an effective open exhaustion \checkmark $\mathbf{dom}(g)$ has an effective open exhaustion \checkmark $\mathbf{dom}(f \circ q) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x) = f(x) + g(x)$$
 is composed of

- Add(x,y) = x + y,
- Add(x,y) = x + y,
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)}$$
 and $g(x)=egin{cases} 0 & \text{if } -1\leq x\leq 1 \\ 1 & \text{otherwise} \end{cases}$

 $\mathbf{dom}(f)$ has an effective open exhaustion \checkmark $\mathbf{dom}(g)$ has an effective open exhaustion \checkmark $\mathbf{dom}(f \circ q) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x) = f(x) + g(x)$$
 is composed of

- Add(x,y) = x + y,
- Add(x,y) = x + y,

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x) = id|_{(-1,1)} \text{ and } g(x) = \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\mathbf{dom}(f)$ has an effective open exhaustion \checkmark $\mathbf{dom}(g)$ has an effective open exhaustion \checkmark $\mathbf{dom}(f \circ q) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x) = f(x) + g(x)$$
 is composed of

- Add(x, y) = x + y, • Add(x, y) = x + y,
- $(f \times q)(x, y) = (f(x), q(y)),$

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x) = id|_{(-1,1)} \text{ and } g(x) = \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ q) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x) = f(x) + g(x)$$
 is composed of

- Add(x,y) = x + y,
- Add(x,y) = x + y,
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\mathbf{dom}(f)$ has an effective open exhaustion \checkmark $\mathbf{dom}(g)$ has an effective open exhaustion \checkmark $\mathbf{dom}(f \circ q) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x) = f(x) + g(x)$$
 is composed of

- Add(x,y) = x + y,
- Add(x,y) = x + y,

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\mathbf{dom}(f)$ has an effective open exhaustion \checkmark $\mathbf{dom}(g)$ has an effective open exhaustion \checkmark

 $\mathbf{dom}(f \circ g) = [-1, 1]$ has no open exhaustion X

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x)=f(x)+g(x)$$
 is composed of

- Add(x,y) = x + y,
- Add(x, y) = x + y, • $(f \times q)(x, y) = (f(x), q(y))$,
- Diag(x) = (x, x)

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)=\begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ q) = [-1, 1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x) = f(x) + g(x)$$
 is composed of

- Add(x, y) = x + y, • Add(x, y) = x + y.
- $(f \times q)(x, y) = (f(x), q(y)),$

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)=\begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ q) = [-1, 1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x) = f(x) + g(x)$$
 is composed of

- Add(x,y) = x + y,
- Add(x,y) = x + y,
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)=\begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ q) = [-1, 1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases √
- Composition √
- Addition and multiplication X

$$(f+g)(x)=f(x)+g(x)$$
 is composed of

- $\bullet \ Add(x,y) = x + y,$
- $\bullet \ Add(x,y) = x + y,$
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x) = id|_{(-1,1)} \text{ and } g(x) = \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ q) = [-1, 1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication X

$$(f+g)(x) = f(x) + g(x)$$
 is composed of

- Add(x,y) = x + y,
- Add(x,y) = x + y,
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ q) = [-1, 1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition √
- Addition and multiplication

Adding decomposition of + and \cdot (f+a)(x) = f(x) + a(x) is composed

- $\bullet \ Add(x,y) = x + y,$
- Add(x,y) = x + y,
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$
- Diag(x) = (x, x)

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ g) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition ✓
- Addition and multiplication X

Adding decomposition of + and \cdot (f+q)(x) = f(x) + q(x) is composed

- Add(x,y) = x + y,
- Add(x,y) = x + y,
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$
- \bullet Diag(x) = (x, x)

Theorem 2.1 (Acceptability Theorem: Part 1)

Let $f: \mathbb{R} \to \mathbb{R}$ be an elementary function. Then, $\mathbf{dom}(f)$ has an effective open exhaustion.

First attempt – Strengthening:

Elementary function constructions preserve the property that the domain has an effective open exhaustion.

- Base cases \checkmark (e.g. $\sin(x)$)
- Addition and multiplication \checkmark (e.g. (f+g)(x))
- Composition case has a counterexample:

$$f(x)=id|_{(-1,1)} \text{ and } g(x)= \begin{cases} 0 & \text{if } -1 \leq x \leq 1 \\ 1 & \text{otherwise} \end{cases}$$

 $\operatorname{dom}(f)$ has an effective open exhaustion \checkmark $\operatorname{dom}(g)$ has an effective open exhaustion \checkmark $\operatorname{dom}(f \circ q) = [-1,1]$ has no open exhaustion \checkmark

Strengthened to proving exhaustion reflection property

For any open set U with an effective open exhaustion, $f^{-1}(U)$ has an effective open exhaustion.

Proof: By induction

- Base cases ✓
- Composition ✓
- Addition and multiplication X

Adding decomposition of + and \cdot (f+g)(x)=f(x)+g(x) is composed of

- Add(x,y) = x + y,
- Add(x,y) = x + y,
- $\bullet \ (f \times g)(x,y) = (f(x),g(y)),$
- Diag(x) = (x, x)

Theorem (Reducing Exhaustion-reflection to to a Decision Procedure)

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is exhaustion-reflecting, if we can decide for any m-cube Q_m whether an arbitrary rational closed n-cube is completely contained in $f^{-1}(Q_m)$.

Theorem (Reducing Exhaustion-reflection to to a Decision Procedure)

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is exhaustion-reflecting, if we can decide for any m-cube Q_m whether an arbitrary rational closed n-cube is completely contained in $f^{-1}(Q_m)$.

Theorem (Reducing Exhaustion-reflection to to a Decision Procedure)

A function $f:\mathbb{R}^n\to\mathbb{R}^m$ is exhaustion-reflecting, if we can decide for any m-cube Q_m whether an arbitrary rational closed n-cube is completely contained in $f^{-1}(Q_m)$.

Theorem (Reducing Exhaustion-reflection to to a Decision Procedure)

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is exhaustion-reflecting, if we can decide for any m-cube Q_m whether an arbitrary rational closed n-cube is completely contained in $f^{-1}(Q_m)$.

Theorem (Reducing Exhaustion-reflection to to a Decision Procedure)

A function $f:\mathbb{R}^n\to\mathbb{R}^m$ is exhaustion-reflecting, if we can decide for any m-cube Q_m whether an arbitrary rational closed n-cube is completely contained in $f^{-1}(Q_m)$.

Theorem (Reducing Exhaustion-reflection to to a Decision Procedure)

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is exhaustion-reflecting, if we can decide for any m-cube Q_m whether an arbitrary rational closed n-cube is completely contained in $f^{-1}(Q_m)$.

Theorem (Reducing Exhaustion-reflection to to a Decision Procedure)

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is exhaustion-reflecting, if we can decide for any m-cube Q_m whether an arbitrary rational closed n-cube is completely contained in $f^{-1}(Q_m)$.

Theorem (Reducing Exhaustion-reflection to to a Decision Procedure)

A function $f:\mathbb{R}^n\to\mathbb{R}^m$ is exhaustion-reflecting, if we can decide for any m-cube Q_m whether an arbitrary rational closed n-cube is completely contained in $f^{-1}(Q_m)$.

Theorem 2.2 (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

(We prove that this is) equivalent to proving:

Any elementary function has a local continuity witness

Definition (Local continuity witness

Let $f: \mathbb{R} \to \mathbb{R}$. A recursive function $N: \mathbb{Q} \times \mathbb{Q} \times \mathbb{N} \to \mathbb{N}$ is called a **local continuity witness** for f iff for any $a,b \in \mathbb{Q}$ with $[a,b] \subseteq \mathbf{dom}(f)$ and $k \in \mathbb{N}$, we have

$$\forall x, y \in (a, b) ||x - y|| < 2^{-N(a, b, k)} \implies |f(x) - f(y)| < 2^{-k}.$$

- Base cases: Using WhileCC-approximability theorem ✓
- Addition, Multiplication, and Composition: Using WhileCC-approximability theorem √

Theorem 2.2 (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

(We prove that this is) equivalent to proving:

Any elementary function has a local continuity witness.

Definition (Local continuity witness)

Let $f: \mathbb{R} \to \mathbb{R}$. A recursive function $N: \mathbb{Q} \times \mathbb{Q} \times \mathbb{N} \to \mathbb{N}$ is called a **local continuity witness** for f iff for any $a,b \in \mathbb{Q}$ with $[a,b] \subseteq \mathbf{dom}(f)$ and $k \in \mathbb{N}$, we have

$$\forall x, y \in (a, b) \quad |x - y| < 2^{-N(a, b, k)} \implies |f(x) - f(y)| < 2^{-k}.$$

- Base cases: Using WhileCC-approximability theorem √
- Addition, Multiplication, and Composition: Using WhileCC-approximability theorem √

Theorem 2.2 (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

(We prove that this is) equivalent to proving:

Any elementary function has a local continuity witness.

Definition (Local continuity witness

Let $f: \mathbb{R} \to \mathbb{R}$. A recursive function $N: \mathbb{Q} \times \mathbb{Q} \times \mathbb{N} \to \mathbb{N}$ is called a **local continuity witness** for f iff for any $a,b \in \mathbb{Q}$ with $[a,b] \subseteq \mathbf{dom}(f)$ and $k \in \mathbb{N}$, we have

$$\forall x, y \in (a, b) \quad |x - y| < 2^{-N(a, b, k)} \implies |f(x) - f(y)| < 2^{-k}.$$

- Base cases: Using WhileCC-approximability theorem √
- Addition, Multiplication, and Composition: Using WhileCC-approximability theorem √

Theorem 2.2 (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

(We prove that this is) equivalent to proving:

Any elementary function has a local continuity witness.

Definition (Local continuity witness)

Let $f: \mathbb{R} \to \mathbb{R}$. A recursive function $N: \mathbb{Q} \times \mathbb{Q} \times \mathbb{N} \to \mathbb{N}$ is called a **local continuity witness** for f iff for any $a,b \in \mathbb{Q}$ with $[a,b] \subseteq \mathbf{dom}(f)$ and $k \in \mathbb{N}$, we have

$$\forall x, y \in (a, b) \quad |x - y| < 2^{-N(a, b, k)} \implies |f(x) - f(y)| < 2^{-k}.$$

- Base cases: Using WhileCC-approximability theorem √
- Addition, Multiplication, and Composition: Using WhileCC-approximability theorem √

Theorem 2.2 (Acceptability Theorem: Part 2)

Any elementary function is effectively locally uniformly continuous w.r.t. an effective open exhaustion for its domain.

(We prove that this is) equivalent to proving:

Any elementary function has a local continuity witness.

Definition (Local continuity witness)

Let $f: \mathbb{R} \to \mathbb{R}$. A recursive function $N: \mathbb{Q} \times \mathbb{Q} \times \mathbb{N} \to \mathbb{N}$ is called a **local continuity witness** for f iff for any $a,b \in \mathbb{Q}$ with $[a,b] \subseteq \mathbf{dom}(f)$ and $k \in \mathbb{N}$, we have

$$\forall x, y \in (a, b) \quad |x - y| < 2^{-N(a, b, k)} \implies |f(x) - f(y)| < 2^{-k}.$$

- Base cases: Using WhileCC-approximability theorem √
- Addition, Multiplication, and Composition: Using WhileCC-approximability theorem ✓

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

We proved that:

- all elementary functions are WhileCC-approximable.
- all elementary functions are acceptable and hence computable in the other three models as well.

Questions left unanswered

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - If not, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - If not, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004]
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - **If not**, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - If not, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - If not, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - If not, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture:

- All partial unary **WhileCC**-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - **If not**, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on:

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are **WhileCC**-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture:

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - **If not**, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are WhileCC-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture:

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - **If not**, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are WhileCC-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture:

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - **If not**, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on:

Questions left unanswered:

- Are non-unary elementary functions acceptable?
 A generalization of acceptability in arbitrary metric spaces is given by Tucker and Zucker [2004].
- Can we extend the equivalence theorem in Fu and Zucker [2014] to acceptable partial functions of type $\mathbb{R}^m \to \mathbb{R}$?
- What functions are WhileCC-approximable but not While*-approximable [Tucker and Zucker, 1999]?

Conjecture:

- All partial unary WhileCC-approximable functions are acceptable.
 - If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?
 - **If not**, what is a model of computation that characterizes exactly the class of acceptable functions?

Currently working on:

References

- Ming Quan Fu and Jeffery Zucker. Models of computation for partial functions on the reals. *Journal of Logical and Algebraic Methods in Programming*, 84(2):218–237, 11 2014. ISSN 2352-2208. doi:10.1016/j.jlamp.2014.11.001.
- M. Tenenbaum and H. Pollard. *Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences.* Dover Books on Mathematics. Dover Publications, 1985. ISBN 9780486649405. URL https://books.google.ca/books?id=iU4zDAAAQBAJ.
- John V. Tucker and Jeffery I. Zucker. Abstract versus concrete computation on metric partial algebras. *ACM Trans. Comput. Log.*, 5(4):611–668, 2004. doi:10.1145/1024922.1024924.
- J.V. Tucker and J.I. Zucker. Computation by 'While' programs on topological partial algebras. *Theoretical Computer Science*, 219(1):379–420, 1999. ISSN 0304-3975. doi:10.1016/S0304-3975(98)00297-7.
- J.V. Tucker and J.I. Zucker. Computable total functions on metric algebras, universal algebraic specifications and dynamical systems. *The Journal of Logic and Algebraic Programming*, 62(1): 71–108, 2005. ISSN 1567-8326. doi:10.1016/j.jlap.2003.10.001.

A HUGE Thank you!