	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, M. S. Basunia, Murray Martin et al.,	NDS 160, 405 (2019)	30-Oct-2019

 $Q(\beta^{-})=-1842\ 5$; $S(n)=6512\ 4$; $S(p)=6466\ 5$; $Q(\alpha)=7262.5\ 19$ 2017Wa10

S(2n)=11178 6, S(2p)=11143.0 27 (2017Wa10).

Additional information 1.

Isotopic assignment: 1948St42.

2019An10: measured mass excess=5089 keV 54 as compared to 5217.2 keV 23 in 2017Wa10. Note that negative sign in 2019An10 is a misprint.

Theory references: consult NSR database (www.nndc.bnl.gov/nsr/) for 42 primary references for calculations of half-lives of radioactive decay modes, and 20 for nuclear structure.

²¹⁸Rn Levels

Cross Reference (XREF) Flags

- 222 Ra α decay (33.6 s) 232 Th(136 Xe,X γ)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	0+	33.75 ms <i>15</i>	AB	%α=100 Evaluated rms charge radius=5.6540 fm 187 (2013An02). Evaluated charge radius relative to 212 Rn: $\delta \langle r^2 \rangle (^{218}$ Rn, 212 Rn)=+0.7000 fm ² 3 (2013An02). T _{1/2} : From 2012Su11, delayed αα-coin method. Others: 39 ms 2 (1971Er02), 35 ms 1 (1963Di05), 30 ms 3 (1961Ru06), 19 ms (1948St42).
324.320 [#] 18	2+	<80 ps	AB	J^{π} : E2 324γ to 0 ⁺ . T _{1/2} : from (α)(324γ)(t) in ²²² Ra α decay (1960Be25).
653.18 [#] <i>18</i>	(4^{+})		AB	J^{π} : 329 γ to 2 ⁺ , rotational band assignment in (136 Xe,X γ).
796.911 <i>21</i>	(3^{-})		A	J^{π} : (E1) 473 γ to 2 ⁺ ; γ to (4 ⁺).
840.172 [@] 18	(3^{-})		AB	
1014.3 [#] 3	(6^{+})		В	
1026.1 [@] 4	(5^{-})		В	
1327.9 [@] 4	(7^{-})		В	
1392.9 [#] 4	(8^{+})		В	
1694.3 [@] 5	(9-)		В	
1775.2 [#] 4	(10^{+})		В	
2070.9 [@] 7	(11^{-})		В	
2168.9 [#] 7	(12^{+})		В	
2457.9 [@] 9	(13^{-})		В	
2576.6 [#] 8	(14^{+})		В	
2853.0? [@] 10	(15^{-})		В	
3002.0 [#] <i>10</i>	(16^{+})		В	
3265.2? [@] 11	(17^{-})		В	
3437.5 [#] <i>11</i>	(18^{+})		В	
3683.2? [@] <i>13</i>	(19^{-})		В	
3859.4 [#] <i>12</i>	(20^{+})		В	
4287.0 [#] <i>13</i>	(22^{+})		В	

²¹⁸Rn Levels (continued)

E(level) 5167.8?[#] *15* (26^+)

 $v(^{218}Rn)$

						γ(· K	11)	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	Comments
324.320	2+	324.31‡ 2	100	0.0	0+	E2	0.1097	B(E2)(W.u.)>23 Mult.: from ce data in 222 Ra α decay.
653.18	(4^{+})	328.9 [‡] 2	100	324.320	2+	[E2]	0.1053	
796.911	(3^{-})	144.4 [#] 5	2.8 [#] 5	653.18	(4^{+})	[E1]	0.190 4	
		472.59 [#] 1	100 [#] 3	324.320	2+	(E1)		Mult.: from ce data in 222 Ra α decay.
840.172	(3^{-})	515.83 [#] 3	51 [#] 3	324.320	2+			
		840.18 [#] 2	100 [#] 4	0.0	0_{+}	[E3]		
1014.3	(6^{+})	361.1 2	100	653.18	(4^{+})			
1026.1	(5^{-})	186.3 ^{&} 5		840.172	` /			
1227.0	(7-)	372.7 5	100 15	653.18	(4^+)			
1327.9	(7^{-})	302.0 <i>5</i> 313.4 <i>5</i>	100 <i>15</i> 52 <i>12</i>	1026.1 1014.3	(5^{-}) (6^{+})			
1392.9	(8 ⁺)	378.6 2	100	1014.3	(6^+)			
1694.3	(9-)	301.4 ^{&} 5		1392.9	(8 ⁺)			
	(-)	366.4 5		1327.9	(7^{-})			
1775.2	(10^{+})	382.3 2	100	1392.9	(8^{+})			
2070.9	(11^{-})	376.6 5	100	1694.3	(9-)			
2168.9	(12^+)	393.7 5	100	1775.2	(10^+)			
2457.9 2576.6	(13^{-}) (14^{+})	387.0 <i>5</i> 407.7 <i>5</i>	100 100	2070.9 2168.9	(11^{-}) (12^{+})			
2853.0?	(14^{-}) (15^{-})	395.1 ^{&} 5	100	2457.9	(12^{-}) (13^{-})			
3002.0	(15) (16 ⁺)	425.4 5	100	2576.6	(13°) (14^{+})			
3265.2?	(17^{-})	412.2 5	100	2853.0?	(15^{-})			
3437.5	(18^+)	435.5 5	100	3002.0	(16^+)			
3683.2?	(19-)	418.0 <mark>&</mark> 5		3265.2?	(17^{-})			
3859.4	(20^{+})	421.9 5	100	3437.5	(18^{+})			
4287.0	(22^{+})	427.6 5	100	3859.4	(20^{+})			
4725.0	(24^{+})	438.0 5	100	4287.0	(22^{+})			
5167.8?	(26^{+})	442.8 <mark>&</mark> 5		4725.0	(24^{+})			

[†] From 232 Th(136 Xe,X γ), except where noted.

 $^{^{\}dagger}$ From a least-squares fit to E γ , by evaluators.

[‡] From probable band assignments (g.s. band and an octupole band) for levels above the first 2⁺ state.

[@] Band(B): Octupole band. For 7⁻ member, $D_0/Q_0=0.000097$ fm⁻¹ 8, from the γ -ray branching ratio and rotational model, where D_0 and Q_0 are intrinsic electric dipole moment and quadrupole moment, respectively.

[†] From 222 Rn α decay. # From 222 Rn α decay only.

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation

 γ (218Rn) (continued)

based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. & Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{218}_{86} Rn_{132}$

$$^{218}_{86} \mathrm{Rn}_{132}$$

0.0

0+

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 112,1115 (2011)	31-Oct-2010

 $Q(\beta^{-})=-870 \text{ 4}; S(n)=6288.6 \text{ 23}; S(p)=7073 \text{ 4}; Q(\alpha)=6404.66 \text{ 10}$ 2012Wa38

Note: Current evaluation has used the following Q record -869 4 6288.6 23 7073 4 6404.6710 2009AuZZ,2003Au03.

Additional information 1.

Historic Note: This isotope was originally called Thoron with symbol Tn.

Mass measurements: Penning-trap mass spectrometer (2009Ne03); Schottky mass spectrometry (2005LiZZ).

 γ -ray linear polarization following α decay (2005JoZY).

Calculations, compilations, systematics:

¹⁴C decay rate: 1986De32.

Cluster model for α decay, Geiger-Nuttall plot: 1991Bu05.

 α decay: 2006StZX, 2003Da24, 1997Al22, 1996Wi27, 1992De44.

Effect of octupole and 26 pole deformation on binding energies: 1986Ch23.

Equilibrium deformation energy: 1988So08, 1984Na22.

 $K^{\pi}=0^+$ and $K^{\pi}=0^-$ bands: 1980Sh07. Levels, $\beta(\lambda)$ ratios: 1995De13.

n-p interaction energy: 1990Mo11.

Quasibands in even-even nuclei: 1984Sa37.

Single-particle levels: 1984So09.

Spontaneous emission of heavy ions: 1986Po06. Super- and hyper-deformed configurations: 1995We02.

²²⁰Rn Levels

Cross Reference (XREF) Flags

A 220 At β $^{-}$ decay B 232 Th(136 Xe,Xγ) C 224 Ra α decay

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0^{\ddagger}	0+	55.6 s <i>1</i>	ABC	$%\alpha$ =100 $T_{1/2}$: from 1966Hu20 (value is rounded off from 55.61 s 4). Others: 55.3 s 3 (1963Gi07), 56.3 s 2 (1961Ro14), 51.5 s 10 (1955Sc81), 61 s $^{+10}$ $_{-8}$ (2003Da24).
240.986 [‡] 6	2+	0.146 ns 5	ABC	J^{π} : E2 γ ray to 0^+ . T _{1/2} : from $\alpha \gamma$ (t) (1960Be25) (weighted average of 0.150 ns 10 and 0.145 ns 5).
533.68 [‡] 10	4+		ABC	J^{π} : $\alpha \gamma(\theta)$ from 0^+ parent (²²⁴ Ra α decay).
645.44 [#] 9	1-		ABC	J^{π} : $\alpha \gamma(\theta)$ from 0^+ parent (²²⁴ Ra α decay).
663.03 [#] 10	(3-)		ABC	J^{π} : probable member of $K^{\pi}=0^-$ band. For energy and α hindrance factor systematics see 1981Pe09.
851.9 [#] 4	(5^{-})		В	
873.88 [‡] 22	(6^{+})		В	
1128.2 [#] 4	(7^{-})		В	
1244.3 [‡] <i>3</i>	(8^{+})		В	
1462.1 [#] 5	(9-)		В	
1631.1 [‡] 4	(10^{+})		В	
1834.0 [#] 7	(11^{-})		В	

²²⁰Rn Levels (continued)

						E(level) [†]		
2033.9 [‡] 7	(12^+)	В	2887.0 [‡] 10	(16^{+})	В	3763.9 [‡] 12	(20^{+})	В
2227.1 [#] 9	(13^{-})	В	3068.6 [#] 11	(17^{-})	В	3961.5? [#] <i>13</i>	(21^{-})	В
			3325.3 [‡] 11					
2638.3 [#] <i>10</i>	(15^{-})	В	3509.8 [#] <i>12</i>	(19^{-})	В			

 $^{^{\}dagger}$ Deduced by evaluators from least-squares fit to adopted $\gamma\text{-ray}$ energies. ‡ Band(A): g.s. $K^{\pi}{=}0^{+}$ rotational band. $^{\#}$ Band(B): $K^{\pi}{=}0^{-}$ γ vibrational band.

γ (²²⁰Rn)

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{\#}$	Comments
240.986	2+	240.986 [‡] 6	100 [‡]	0	0+	E2	0.276	B(E2)(W.u.)=47.6 17
533.68	4+	292.70 [‡] <i>10</i>	100‡	240.986	2+	(E2)	0.1487	
645.44	1-	404.2 [‡] 2	41 [‡] <i>10</i>	240.986	2+			
		645.50 [‡] <i>10</i>	100‡ 17	0	0^{+}			
663.03	(3-)	422.04 [‡] 10	100‡	240.986				
851.9	(5 ⁻)	188.8 5	25 8	663.03	(3-)	E2	0.644 11	ce(K)/(γ +ce)=0.1125 17; ce(L)/(γ +ce)=0.206 4; ce(M)/(γ +ce)=0.0552 11; ce(N+)/(γ +ce)=0.0176 4 ce(N)/(γ +ce)=0.0144 3; ce(O)/(γ +ce)=0.00292 6; ce(P)/(γ +ce)=0.000335 7
		318.3 5	100 15	533.68	4+	E1	0.0291	ce(K)/(γ +ce)=0.0229 4; ce(L)/(γ +ce)=0.00405 6; ce(M)/(γ +ce)=0.000958 14; ce(N+)/(γ +ce)=0.000308 5 ce(N)/(γ +ce)=0.000248 4; ce(O)/(γ +ce)=5.31×10 ⁻⁵ 8;
873.88	(6+)	340.2 2	100	533.68	4+	E2	0.0956	$ce(P)/(\gamma+ce)=7.34\times10^{-6} 11$ $ce(K)/(\gamma+ce)=0.0480 7$; $ce(L)/(\gamma+ce)=0.0292$ 4; $ce(M)/(\gamma+ce)=0.00762 11$; $ce(N+)/(\gamma+ce)=0.00245 4$ $ce(N)/(\gamma+ce)=0.00199 3$; $ce(O)/(\gamma+ce)=0.000410 6$; $ce(P)/(\gamma+ce)=5.00\times10^{-5} 8$
1128.2	(7-)	254.3 5	41 10	873.88	(6 ⁺)	E1	0.0487	$ce(K)/(\gamma+ce)=0.0375 \ 6;$ $ce(L)/(\gamma+ce)=0.00680 \ 10;$ $ce(M)/(\gamma+ce)=0.001613 \ 24;$ $ce(N+)/(\gamma+ce)=0.000518 \ 8$ $ce(N)/(\gamma+ce)=0.000417 \ 7;$ $ce(O)/(\gamma+ce)=8.89\times10^{-5} \ 14;$ $ce(P)/(\gamma+ce)=1.215\times10^{-5} \ 18$
		276.2 5	100 2	851.9	(5 ⁻)	E2	0.178 3	ce(K)/(γ +ce)=0.0700 10; ce(L)/(γ +ce)=0.0600 9; ce(M)/(γ +ce)=0.01583 25; ce(N+)/(γ +ce)=0.00507 8 ce(N)/(γ +ce)=0.00412 7; ce(O)/(γ +ce)=0.000847 14; ce(P)/(γ +ce)=0.0001006 16
1244.3	(8+)	370.4 2	100	873.88	(6 ⁺)	E2	0.0755	$ce(K)/(\gamma+ce)=0.0408 \ 6; \ ce(L)/(\gamma+ce)=0.0219$

$\gamma(^{220}\text{Rn})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult. [†]	$\alpha^{\#}$	Comments
1462.1	(9-)	217.9 5	14 <i>4</i>	1244.3 (8+)	E1	0.0701	3; $ce(M)/(\gamma+ce)=0.00568 8$; $ce(N+)/(\gamma+ce)=0.00183 3$ $ce(N)/(\gamma+ce)=0.001480 21$; $ce(O)/(\gamma+ce)=0.000307$ 5; $ce(P)/(\gamma+ce)=3.78\times10^{-5} 6$ $ce(K)/(\gamma+ce)=0.0527 8$; $ce(L)/(\gamma+ce)=0.00977 15$; $ce(M)/(\gamma+ce)=0.00232 4$; $ce(N+)/(\gamma+ce)=0.000743 12$
		333.9 5	100 15	1128.2 (7-)	E2	0.1008	ce(N)/(γ +ce)=0.000598 9; ce(O)/(γ +ce)=0.0001273 20; ce(P)/(γ +ce)=1.72×10 ⁻⁵ 3 ce(K)/(γ +ce)=0.0497 7; ce(L)/(γ +ce)=0.0312 5; ce(M)/(γ +ce)=0.00814 13; ce(N+)/(γ +ce)=0.00261
1631.1	(10 ⁺)	386.8 2	100	1244.3 (8+)	E2	0.0671	ce(N)/(γ +ce)=0.00212 4; ce(O)/(γ +ce)=0.000438 7; ce(P)/(γ +ce)=5.32×10 ⁻⁵ 8 ce(K)/(γ +ce)=0.0375 5; ce(L)/(γ +ce)=0.0190 3; ce(M)/(γ +ce)=0.00490 7; ce(N+)/(γ +ce)=0.001575 23
1834.0	(11-)	371.9 5	100	1462.1 (9-)	E2	0.0746	ce(N)/(γ +ce)=0.001277 18; ce(O)/(γ +ce)=0.000265 4; ce(P)/(γ +ce)=3.29×10 ⁻⁵ 5 ce(K)/(γ +ce)=0.0404 6; ce(L)/(γ +ce)=0.0216 4; ce(M)/(γ +ce)=0.00561 9; ce(N+)/(γ +ce)=0.00180
2033.9	(12 ⁺)	402.8 5	100	1631.1 (10+)) E2	0.0603	ce(N)/(γ +ce)=0.001460 22; ce(O)/(γ +ce)=0.000303 5; ce(P)/(γ +ce)=3.73×10 ⁻⁵ 6 ce(K)/(γ +ce)=0.0347 5; ce(L)/(γ +ce)=0.01657 24; ce(M)/(γ +ce)=0.00428 7; ce(N+)/(γ +ce)=0.001374 21
2227.1	(13 ⁻)	393.1 5	100	1834.0 (11-)) E2	0.0643	ce(N)/(γ +ce)=0.001114 17; ce(O)/(γ +ce)=0.000232 4; ce(P)/(γ +ce)=2.89×10 ⁻⁵ 5 ce(K)/(γ +ce)=0.0363 5; ce(L)/(γ +ce)=0.0180 3; ce(M)/(γ +ce)=0.00464 7; ce(N+)/(γ +ce)=0.001492 22
2452.7	(14+)	418.8 5	100	2033.9 (12+)	E2	0.0545	ce(N)/(γ +ce)=0.001209 18; ce(O)/(γ +ce)=0.000251 4; ce(P)/(γ +ce)=3.12×10 ⁻⁵ 5 ce(K)/(γ +ce)=0.0321 5; ce(L)/(γ +ce)=0.01459 21; ce(M)/(γ +ce)=0.00376 6; ce(N+)/(γ +ce)=0.001207 18
2638.3	(15 ⁻)	411.2 5	100	2227.1 (13-)	E2	0.0572	ce(N)/(γ +ce)=0.000978 15; ce(O)/(γ +ce)=0.000204 3; ce(P)/(γ +ce)=2.55×10 ⁻⁵ 4 ce(K)/(γ +ce)=0.0333 5; ce(L)/(γ +ce)=0.01549 23; ce(M)/(γ +ce)=0.00399 6; ce(N+)/(γ +ce)=0.001283
2887.0	(16+)	434.3 5	100	2452.7 (14+)	E2	0.0497	ce(N)/(γ +ce)=0.001039 16; ce(O)/(γ +ce)=0.000216 4; ce(P)/(γ +ce)=2.71×10 ⁻⁵ 4 ce(K)/(γ +ce)=0.0300 5; ce(L)/(γ +ce)=0.01298 19; ce(M)/(γ +ce)=0.00333 5; ce(N+)/(γ +ce)=0.001071 16
3068.6	(17-)	430.3 5	100	2638.3 (15 ⁻)) E2	0.0509	$\begin{array}{l} {\rm ce(N)/(\gamma+ce)} = 0.000867 \ 13; \ {\rm ce(O)/(\gamma+ce)} = 0.000181 \\ 3; \ {\rm ce(P)/(\gamma+ce)} = 2.28 \times 10^{-5} \ 4 \\ {\rm ce(K)/(\gamma+ce)} = 0.0305 \ 5; \ {\rm ce(L)/(\gamma+ce)} = 0.01337 \ 20; \\ {\rm ce(M)/(\gamma+ce)} = 0.00343 \ 5; \ {\rm ce(N+)/(\gamma+ce)} = 0.001104 \\ 16 \end{array}$
3325.3	(18+)	438.3 5		2887.0 (16+))		$ce(N)/(\gamma+ce)=0.000894$ 13; $ce(O)/(\gamma+ce)=0.000186$ 3; $ce(P)/(\gamma+ce)=2.35\times10^{-5}$ 4

$\gamma(^{220}\text{Rn})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.†	α#	Comments
3509.8	(19-)	441.2 5	100	3068.6 (17 ⁻)	E2	0.0478	ce(K)/(γ +ce)=0.0291 4; ce(L)/(γ +ce)=0.01234 18; ce(M)/(γ +ce)=0.00316 5; ce(N+)/(γ +ce)=0.001018 15 ce(N)/(γ +ce)=0.000824 12; ce(O)/(γ +ce)=0.0001720 25; ce(P)/(γ +ce)=2.17×10 ⁻⁵ 4
3763.9 3961.5?	(20^+) (21^-)	438.6 <i>5</i> 451.7 <i>5</i>		3325.3 (18 ⁺) 3509.8 (19 ⁻)			

 $^{^{\}dagger}$ From $^{232}{\rm Th}(^{136}{\rm Xe},{\rm X}\gamma),$ unless otherwise specified. ‡ From $^{224}{\rm Ra}~\alpha$ decay.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Intensities: Relative photon branching from each level

 $^{220}_{86} \mathrm{Rn}_{134}$

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh, M. S. Basunia, Jun Chen et al. , NDS 192,315 (2023)

25-Sep-2023

 $Q(\beta^{-})=-6 \ 8; \ S(n)=6171 \ 6; \ S(p)=7700 \ 14; \ Q(\alpha)=5590.4 \ 3$ 2021Wa16

S(2n)=10382.7 19, S(2p)=13469 18 (2021Wa16).

Dataset by Balraj Singh, S. Basunia, and IAEA-ICTP workshop participants: B.M.S. Amro, S. Basu, S. Das, A. Karmakar, and S.S. Nayak.

²²²Rn is a naturally occurring radioactive isotope, emitted from the α decay of ²²⁶Ra, a long-lived activity produced in the decay chain of ²³⁸U, first identified by 1899Cu01, just three years after the discovery of radioactivity, followed by the first measurement of half-life of ²²²Rn decay by 1902Cu01.

Mass measurement: 2010Li02: Schottky mass spectrometry.

Theoretical nuclear structure calculations:

2021Va08: calculated levels, J^{π} , yrast positive- and negative-parity states, B(E1), B(E2), B(E3), B(M1), magnetic dipole and electric quadrupole moments using the *spdf*-IBM-2 interacting boson model.

2020Ca18: calculated deformation parameters β_2 , β_3 , octupole deformation energies, proton quadrupole Q_{20} and octupole Q_{30} moments for octupole-deformed nuclei using Skyrme energy density functional, and covariant energy density functional models.

2019Zh50: calculated empirical proton-neutron interaction, B(E2), B(E3), binding energy, total energy in (β_2,β_3) plane, neutron and proton single-particle levels using the covariant density functional theory and the quadrupole-octupole collective Hamiltonian.

2018Yo12: calculated E(first 4⁺)/E(first 2⁺) ratio, energy of the first 3⁻ state using shell model with one-octupole-phonon representing collective octupole vibration across the magic core.

2017Xi15: calculated levels, J^{π} , B(E1), B(E2), B(E3), electric dipole moment, deformation energy surface in (β_2,β_3) plane, reflection-asymmetric states using microscopic quadrupole-octupole collective Hamiltonian (QOCH), based on based on relativistic energy density functional.

2014De43, 2013De12: calculated energy levels, J^{π} , deformation parameters, B(E2), $T_{1/2}$ using coherent state model (CSM).

2013Ro30: calculated level energies of 1⁻ states, B(E1), B(E3) using two-dimensional generator coordinate method (GCM) for quadrupole-octupole coupling with Gogny forces.

2005Za02, 2001Za04: calculated levels, J^{π} , transition rates, octupole excitations using interacting boson model.

1998Ra05: calculated high-spin levels, J^{π} , $K^{\pi}=0^-$ band using phenomenological model.

1994Li05: calculated total energy surface vs α_{20} , α_{32} deformations, fourfold degenerate levels using the results of realistic total nuclear energy calculations.

1987Ro08: calculated single-particle states, pairing energies, octupole deformation, dipole vs octupole moments, B(E1)/B(E2) using constrained HF plus BCS method.

1983Ro14: calculated potential equilibrium deformation, deformation energies, static quadrupole and hexadecapole moments using density-dependent shell correction method.

1982Le19: calculated potential energy minima, octupole separation energy, and intrinsic reflection symmetry breaking using deformed shell-model.

1981Gy03: calculated potential energy, quadrupole and octupole equilibrium deformations using macroscopic-microscopic method.

1981Pe09: analyzed levels, J^{π} , strong Coriolis coupling effects for rotational bands based on one-phonon octupole vibrational states.

1980Sh07: analyzed levels, J^{π} , inverse moments of inertia; deduced structural relation of $K^{\pi}=0^+$ and $K^{\pi}=0^-$ bands.

Other theoretical calculations: 14 primary references for structure, and 76 primary references for decay characteristics are in the NSR database, and listed in this dataset as 'document' records.

Additional information 1.

²²²Rn Levels

The $K^{\pi}=0^{+}$ g.s. band and the $K^{\pi}=0^{-}$ band at 600.66 keV have been interpreted as octupole parity-doublet bands. However, 2022Sp01 and 2020Bu20 in their Coulomb excitation study do not support stable octupole deformation in the ground state of 222 Rn.

Cross Reference (XREF) Flags

- **A** 226 Ra α decay (1603 y)
- **B** 232 Th(136 Xe,X γ)
- C Coulomb excitation

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
0.0 [@]	0 ⁺	3.8222 d 9	ABC	 With Q(β⁻)=−6 8 (2021Wa16), no β⁻ decay is expected. Evaluated rms charge radius <r²>1²²=5.692 fm 20 (2013An02).</r²> Evaluated δ Evalvated δ 1.236 fm² 4 (2013An02). Additional information 2. T1/2: weighted average of 3.82146 d 85 (2015Be07, from decay curve for integral γ-ray spectrum from 6 keV onwards, weighted average of four measurements: 3.82157 d 32 for 1301 h, 3.82134 d 30 for 1462 h, 3.82169 d 32 for 1185 h, and 3.82124 d 35 for 1357 h; statistical uncertainty of 0.00016 d and systematic uncertainty of 0.00004 d in 2015Be07 combined in quadrature, and total uncertainty increased to 0.00085, to have a maximum relative weight of 50%); 3.8195 d 30 (2004Sc04, ionization chamber, reanalysis of 2004Sc04 data by 2018Po01 gave 3.825 d 5); 3.8224 d 18 (1995Co34, 4π αβ liquid scintillation counter, average of six measurements); 3.82351 d 170 (1972Bu33, decay curve for integral γ-ray spectrum measured over 40 half-lives, average of two measurements, quoted uncertainty of 0.00034 increased to 0.00170 as in 1990Ho28 evaluation); 3.83 d 3 (1958Sh69, calorimetry); 3.82290 d 170 (1956Ma64, ionization chamber, average of three measurements, quoted uncertainty of 0.0004 increased to 0.005 as in 1990Ho28); 3.825 d 6 (1955To07,1951To25, ionization chamber, average of two measurements, quoted uncertainty of 0.004 increased to 0.005 increased to 0.006 as in 1990Ho28); 3.823 d 3 (1924Cu01, ionization chamber, average of four measurements, quoted uncertainty of 0.002 increased to 0.003 as in 1990Ho28); 3.825 d 4 (1923Bo01, ionization chamber, average of four measurements, other: 3.81474 d 14 from 1994Se21 (indirect T1/2 deduced in the measurement of efficiency of Lucas scintillation cell by depositing a known quantity of 222Rn and following the decay and ingrowth of Rn and its daughters for a total of 7014 data points, and fitting these data points using several parameters; T1/2 value is quoted very precisely, but disagrees by many standard deviations from the other
186.211 ** 13	2+	0.32 ns 2	ABC	μ =+0.92 <i>14</i> (1970Or02,2020StZV) Q=-1.4 +5-6 μ : measurement of g=0.45 7 by $\alpha\gamma(\theta,H)$ (1970Or02), integral perturbed angular correlation method. Q: deduced by evaluators from diagonal E2 matrix element (186,2 ⁺ \rightarrow 186,2 ⁺)=-1.8 +6-9 in Coulomb excitation (2022Sp01). J ^π : E2 γ to 0 ⁺ . T _{1/2} : $\alpha\gamma(t)$ (1960Be25). Other measurement: 0.31 ns (1961Fo08).
448.48 [@] 6	4+	52.5 ps +44-23	ABC	$(\alpha)(262\gamma)(\theta)$ data of 1989Po03 rule out J of 0, 1, 2 and 3; population of natural-parity state in α decay from 0^+ parent.
600.74 ^{&} 4	1-	0.7 ps +11-5	ABC	J^{π} : γ to g.s.; the $(\alpha)(601\gamma)(\theta)$ and $(\alpha)(415\gamma)(\theta)$ data rule out 2; population of natural-parity state in α decay from 0^+ parent.
635.57 ^{&} 9	3-	≈0.4 ns	ABC	$(\alpha)(449\gamma)(\theta)$ data of 1989Po03 rules out 0, 1, 2 and 4; population of natural-parity state in α decay from 0 ⁺ parent.
768.08 [@] 21 797.4 ^{&} 5	(6^+) (5^-)	15.9 ps +18-11	BC BC	J^{π} : γ to 4^{+} ; level is Coulomb excited as g.s. band member. J^{π} : gamma to 4^{+} ; possible γ to 3^{-} ; band member.
867.0 7 867.1 ^a 7	(0^+) (2^+)		C	J^{π} : gammas to 2^+ and 1^- ; possible bandhead of β band (2022Sp01). J^{π} : γ to 0^+ ; possible bandhead of γ band.

²²²Rn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
959.2 ^a 10	(3^{+})		С	J^{π} : gamma to 2 ⁺ ; possible band member.
1048.7 <mark>&</mark> 5	(7^{-})		BC	J^{π} : gamma to (6 ⁺); possible γ to (5 ⁻); band member.
1111.5 ^a 10	(4^{+})		C	J^{π} : γ to 4^{+} ; possible band member.
1127.7 [@] 3	(8^{+})	7.3 ps +11-16	BC	J^{π} : γ to (6^+) ; band member.
1356.5 ^{&} 5	(9-)	7 ps +9–5	ВС	J^{π} : gammas to (7 ⁻) and (8 ⁺); band member. $T_{1/2}$: 67 ps +126-57 deduced from B(E2) value in Coulomb excitation. D_0/Q_0 =0.00191 $b_{1/2}$ 35 (1999Co02). Average D_0 =0.010 eb ^{1/2} 2 (1999Co02) for J=9 and 11 states.
1512.5 [@] 4	(10^{+})	7.8 ps +51-12	BC	J^{π} : γ to (8^+) ; band member.
1707.8 ^{&} 5	(11 ⁻)		В	J^{π} : gammas to (9 ⁻) and (10 ⁺); band member. $D_0/Q_0=0.00273\ b_{1/2}\ 63\ (1999Co02)$. Average $D_0=0.010\ eb^{1/2}\ 2\ (1999Co02)$ for J=9 and 11 states.
1912.9? [@] 6	(12^+)		В	J^{π} : possible γ to (10 ⁺); band member.
2088.7 ^{&} 7	(13^{-})		В	J^{π} : gammas to (11 ⁻) and (12 ⁺); band member.
2316.7? [@] 8	(14^{+})		В	J^{π} : possible γ to (12 ⁺); band member.
2485.0? & 9	(15^{-})		В	J^{π} : possible γ to (13 ⁻); band member.
2727.2? [@] 10	(16^{+})		В	J^{π} : possible γ to (14 ⁺); band member.
2881.6? ^{&} 10	(17^{-})		В	J^{π} : possible γ to (15 ⁻); band member.
3285.6? ^{&} 12	(19^{-})		В	J^{π} : possible γ to (17 ⁻); band member.
3695.8? ^{&} <i>13</i>	(21^{-})		В	J^{π} : possible γ to (19 ⁻); band member.

[†] From least-squares fit to E γ data. ‡ From band assignments in 232 Th(136 Xe,X γ) for levels above 635 keV. # For levels above 186 keV, half-lives deduced by evaluators from E2 matrix elements measured (2022Sp01) in Coulomb excitation.

[@] Band(A): $K^{\pi} = 0^{+}$ g.s. band.

[&]amp; Band(B): $K^{\pi}=0^{-}$ octupole vibrational band.

^a Band(C): Possible γ band.

B(E2)(W.u.) and B(E1)(W.u.) values are from Coulomb excitation, deduced by evaluators from measured transition matrix elements, with exceptions noted.

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$lpha^{\ddagger}$	$\mathrm{I}_{(\gamma+ce)}$	Comments
186.211	2+	186.211 <i>13</i>	100	0.0	0+	E2	0.677 9		B(E2)(W.u.)=58 4
448.48	_ 4 ⁺	262.27 5	100	186.211		[E2]	0.2087 30		B(E2)(W.u.)=90 + 4-7
600.74	1-	414.60 5	60	186.211		[E1]	0.01628 23		B(E1)(W.u.)=0.0014 +23-9
									B(E1)(W.u.) from $T_{1/2}$ and γ branching, 20% uncertainty assumed in the γ branching ratio.
		600.66 5	100	0.0	0_{+}	[E1]	0.00762 11		$B(E1)(W.u.)=7\times10^{-4}+21-4$
635.57	3-	(34.81 16)	≈0.032	600.74	1-	[E2]	$1.30 \times 10^3 4$	≈42	B(E2)(W.u.)=80 +32-27
		187.10 [@] 20		448.48	4+	[E1]	0.1011 14		
		449.37 10	≈100	186.211	2+	[E1]	0.0137 2	≈100	$B(E1)(W.u.)\approx 4\times 10^{-6}$
						. ,			$B(E1)(W.u.)$ from $T_{1/2}$.
768.08	(6^{+})	319.6 2	100	448.48	4+	[E2]	0.1144 16		B(E2)(W.u.)=120 + 9 - 12
797.4	(5^{-})	163.0 [@] 5		635.57	3-	[E2]	1.116 <i>21</i>		B(E2)(W.u.)=4.6 + 12 - 17
	. ,	348.9 5		448.48	4+				
867.0	(0^+)	266 2		600.74	1-	[E1]	0.0438 10		$B(E1)(W.u.)=1.4\times10^{-3}+11-8$
		681 [#]		186.211	2+	[E2]	0.0176 3		B(E2)(W.u.)=13 4 $I\gamma(681\gamma)/I\gamma(266\gamma)=1.9 +38-12$, deduced by evaluators from B(E2)(W.u.)/B(E1)(W.u.) ratio.
867.1	(2+)	681 [#] 867		186.211 0.0	2 ⁺ 0 ⁺	[E2+M1] [E2]	0.042 <i>25</i> 0.0107 <i>2</i>		B(E2)(W.u.)=6.8 42 B(E2)(W.u.)=1.5 +4-5 Iγ(867γ)/Iγ(681γ)=0.7 +6-4, deduced by evaluators from B(E2)(W.u.) ratio, assuming pure E2 for 681.
959.2	(3^{+})	773		186.211	2+	[E2+M1]	0.031 17		B(E2)(W.u.)=26 + 14 - 17
1048.7	(7-)	251.4 [@] 5 280.6 5	100 28	797.4 768.08	(5^{-}) (6^{+})	[E2] [E1]	0.240 <i>4</i> 0.0387 <i>6</i>		$B(E2)(W.u.)=26\times10^{1} + I2-I0$
1111.5	(4^{+})	663		448.48	4+	[E2+M1]	0.04 3		B(E2)(W.u.)=11.5 +39-45
1127.7	(8^{+})	359.6 2	100	768.08	(6^{+})	[E2]	0.0819 12		B(E2)(W.u.)=149 +42-19
1356.5	(9^{-})	228.8 5	74 <i>42</i>	1127.7	(8^{+})	[E1]	0.0624 9		
		307.7 5	100 42	1048.7	(7^{-})	[E2]	0.1279 19		$B(E2)(W.u.)=20\times10^1 +19-8$
1512.5	(10^{+})	384.9 2	100	1127.7	(8^{+})	[E2]	0.0680 10		B(E2)(W.u.)=100 +26-39
1707.8	(11^{-})	195.4 5	48 31	1512.5	(10^+)	[E1]	0.0910 14		
		351.2 5	100 <i>31</i>	1356.5	(9-)	[E2]	0.0874 13		
1912.9?	(12^{+})	400.4 6 5		1512.5	(10^{+})				
2088.7	(13 ⁻)	175.6 [@] 5 380.9 5	100 53	1912.9? 1707.8	(12^+) (11^-)	[E2]	0.0700 10		

γ (222Rn) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
2316.7?	(14^{+})	403.8 [@] 5	1912.9?	(12^{+})
2485.0?	(15^{-})	396.3 [@] 5	2088.7	(13^{-})
2727.2?	(16^{+})	410.5 [@] 5	2316.7?	(14^{+})
2881.6?	(17^{-})	396.6 [@] 5	2485.0?	(15^{-})
3285.6?	(19^{-})	404.0 [@] 5	2881.6?	(17^{-})
3695.8?	(21^{-})	410.2 [@] 5	3285.6?	(19^{-})

[†] From ²²⁶Ra α decay for levels up to 636 keV. For higher levels, values are from ²³²Th(¹³⁶Xe,X γ). [‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed.

@ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

History Author Literature Cutoff Date Citation Full Evaluation Balraj Singh, Sukhjeet Singh **ENSDF** 08-Mar-2022

 $Q(\beta^{-})=696 \ 15$; $S(n)=6016 \ 13$; $S(p)=8272 \ 17$; $Q(\alpha)=4757 \ 20$ $S(2n)=10069 \ 10$, $S(2p)=14620 \ 40 \ (2021Wa16)$.

1961Be28 (also 1961Po06): ²²⁴Rn produced and identified in ²³²Th(p,X),E=230 MeV, followed by chemical separation; but halflife of 4.9 h reported in this work is in disagreement with later measurements.

1964Bu02: ²²⁴Rn produced and identified in ²³²Th(p,X),E=660 MeV; measured half-life.

Mass measurements:

2012Ch19 (also 2008ChZI): precise mass measurement by Schottky Mass Spectrometry.

2009Ne03: measured mass using ISOLTRAP mass spectrometer.

Additional information 1.

Theoretical calculations: 22 references extracted from the NSR database are listed in document records.

²²⁴Rn Levels

Cross Reference (XREF) Flags

A
120
Sn(224 Rn, 224 Rn' γ)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
0#	0+	107 min <i>3</i>	A	%β ⁻ =100 T _{1/2} : from 1973AfZY. Other: 114 min 6 (1964Bu02). Weighted average of the two results is 108 min 3. 2012Gu11 (also 2011GuZY) investigated temperature dependence on half-life, but no difference was detected; measured values are not listed in this paper.
135.6 [#] 5	(2^{+})		A	
357.6 [#] 6	(4^{+})		A	
641.4 [#] 8	(6^{+})		A	
650.6 [@] 8	(3^{-})		A	
790.8 [@] 8	(5^{-})		A	
969.2 [#] 9	(8^{+})		A	
1006.4 [@] 10	(7^{-})		A	
1277.2 [@] 10	(9^{-})		A	
1327.8 [#] 10	(10^+)		A	
1588.3 [@] 13	(11^{-})		A	
1706.8 [#] <i>11</i>	(12^{+})		A	
2098.7? [#] <i>13</i>	(14^{+})		A	

[†] From 120 Sn(224 Rn, 224 Rn' γ).

 $^{^{\}ddagger}$ As proposed by 2020Bu20 in 120 Sn(224 Rn, 224 Rn' γ), based on population of levels in an even-even nucleus in Coulomb excitation process with expected E2 excitations, and band associations. Evaluators assign J^{π} values for excited states in parentheses as supporting arguments, in terms of transition multipolarities from angular distributions or correlations, linear polarizations, or conversion electron measurements are not yet available.

[#] Band(A): g.s. band.

[@] Band(B): Octupole band based on (3⁻).

γ (224Rn)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	E_f J_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}
135.6	(2^{+})	135.6 5	0 0+	1006.4	(7-)	365.0 5	641.4 (6+)
357.6	(4^{+})	222.0 5	$135.6 (2^+)$	1277.2	(9^{-})	271 [‡]	1006.4 (7-)
641.4	(6^+)	283.8 5	$357.6 (4^{+})$			308.0 5	$969.2 (8^+)$
650.6	(3^{-})	515.0 6	135.6 (2 ⁺)	1327.8	(10^{+})	358.6 5	969.2 (8 ⁺)
790.8	(5^{-})	140 [‡]	650.6 (3-)	1588.3	(11^{-})	260.5 8	1327.8 (10 ⁺)
		433.2 5	$357.6 (4^{+})$			311	$1277.2 (9^{-})$
969.2	(8^{+})	327.8 <i>5</i>	641.4 (6 ⁺)	1706.8	(12^{+})	379.1 5	$1327.8 \ (10^{+})$
1006.4	(7^{-})	216 [‡]	790.8 (5-)	2098.7?	(14^{+})	391.8 [‡] 6	1706.8 (12 ⁺)

 $^{^{\}dagger}$ From $^{120}Sn(^{224}Rn,^{224}Rn'\gamma).$ ‡ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

---- γ Decay (Uncertain)

 $^{224}_{\,86}\rm{Rn}_{138}$

$$^{224}_{\,86}\rm{Rn}_{138}$$