$12n_{0161} \ (K12n_{0161})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{52} + u^{51} + \dots + b + u, -u^{52} + u^{51} + \dots + a + 5u, u^{54} - 2u^{53} + \dots + 4u^2 - 1 \rangle$$

$$I_2^u = \langle -u^5 - u^3 + b - u + 1, u^7 + u^6 + 2u^5 + u^4 + 2u^3 + u^2 + a + u, u^9 + u^8 + 2u^7 + u^6 + 3u^5 + u^4 + 2u^3 + u - u^8 + u^8 + 2u^8 + u^8 +$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 63 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{52} + u^{51} + \dots + b + u, -u^{52} + u^{51} + \dots + a + 5u, u^{54} - 2u^{53} + \dots + 4u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{52} - u^{51} + \dots + 6u^{2} - 5u \\ u^{52} - u^{51} + \dots + 3u^{2} - u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{53} + 3u^{52} + \dots - 6u - 1 \\ u^{53} + u^{52} + \dots + 2u^{2} - 2u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{17} + 2u^{15} + 5u^{13} + 6u^{11} + 7u^{9} + 6u^{7} + 4u^{5} + 2u^{3} + u \\ -u^{17} - 3u^{15} - 7u^{13} - 10u^{11} - 11u^{9} - 8u^{7} - 4u^{5} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - u \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + u \\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{12} - u^{10} - 3u^{8} - 2u^{6} - 2u^{4} - u^{2} + 1 \\ -u^{14} - 2u^{12} - 5u^{10} - 6u^{8} - 6u^{6} - 4u^{4} - u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{50} - u^{49} + \dots - 5u + 1 \\ u^{52} - u^{51} + \dots - 5u^{3} + 3u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{53} + 2u^{52} + \cdots + 4u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{54} + 14u^{53} + \dots + 12u + 1$
c_2, c_4	$u^{54} - 10u^{53} + \dots + 8u - 1$
c_{3}, c_{7}	$u^{54} - u^{53} + \dots - 1024u + 512$
c_5	$u^{54} + 2u^{53} + \dots + 220u - 200$
c_6, c_{11}	$u^{54} + 2u^{53} + \dots + 4u^2 - 1$
c ₈	$u^{54} - 2u^{53} + \dots - 2u + 1$
<i>c</i> ₉	$u^{54} - 10u^{53} + \dots + 676u - 61$
c_{10}, c_{12}	$u^{54} - 18u^{53} + \dots + 8u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{54} + 62y^{53} + \dots - 72y + 1$
c_2, c_4	$y^{54} - 14y^{53} + \dots - 12y + 1$
c_3, c_7	$y^{54} - 57y^{53} + \dots - 5767168y + 262144$
c_5	$y^{54} + 2y^{53} + \dots + 341200y + 40000$
c_6, c_{11}	$y^{54} + 18y^{53} + \dots - 8y + 1$
<i>C</i> ₈	$y^{54} + 62y^{53} + \dots - 8y + 1$
<i>C</i> 9	$y^{54} + 10y^{53} + \dots - 22900y + 3721$
c_{10}, c_{12}	$y^{54} + 38y^{53} + \dots - 68y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.593814 + 0.806287I		
a = -0.636999 - 0.227987I	-0.33427 - 1.89104I	-1.02934 + 3.26612I
b = -0.1217130 - 0.0332567I		
u = 0.593814 - 0.806287I		
a = -0.636999 + 0.227987I	-0.33427 + 1.89104I	-1.02934 - 3.26612I
b = -0.1217130 + 0.0332567I		
u = 0.180121 + 0.965813I		
a = -0.594859 - 0.700416I	1.26301 - 2.44603I	2.73199 + 4.98223I
b = 0.136216 + 0.368678I		
u = 0.180121 - 0.965813I		
a = -0.594859 + 0.700416I	1.26301 + 2.44603I	2.73199 - 4.98223I
b = 0.136216 - 0.368678I		
u = 0.071641 + 1.019550I		
a = 1.27503 - 1.16413I	3.28922 - 2.50118I	2.52265 + 4.62453I
b = -0.851885 + 0.413364I		
u = 0.071641 - 1.019550I		
a = 1.27503 + 1.16413I	3.28922 + 2.50118I	2.52265 - 4.62453I
b = -0.851885 - 0.413364I		
u = -0.760882 + 0.685041I		
a = -0.333764 - 0.729244I	-2.42886 - 2.49711I	-6.09592 + 3.26971I
b = -0.91421 + 1.34330I		
u = -0.760882 - 0.685041I		
a = -0.333764 + 0.729244I	-2.42886 + 2.49711I	-6.09592 - 3.26971I
b = -0.91421 - 1.34330I		
u = 0.803356 + 0.644099I		
a = -0.363676 + 0.484008I	4.20288 + 1.73783I	-3.96774 + 0.13211I
b = -2.27231 - 0.36526I		
u = 0.803356 - 0.644099I		
a = -0.363676 - 0.484008I	4.20288 - 1.73783I	-3.96774 - 0.13211I
b = -2.27231 + 0.36526I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.743941 + 0.723947I		
a = 1.296630 + 0.497606I	-4.60943 + 0.53524I	-6.65010 + 0.78439I
b = 0.351768 + 1.145760I		
u = 0.743941 - 0.723947I		
a = 1.296630 - 0.497606I	-4.60943 - 0.53524I	-6.65010 - 0.78439I
b = 0.351768 - 1.145760I		
u = -0.040432 + 0.958127I		
a = -2.37271 + 0.02401I	0.680231 + 1.026360I	0.362891 + 0.577482I
b = 1.54595 + 0.64385I		
u = -0.040432 - 0.958127I		
a = -2.37271 - 0.02401I	0.680231 - 1.026360I	0.362891 - 0.577482I
b = 1.54595 - 0.64385I		
u = -0.714465 + 0.763494I		
a = 0.138140 + 1.250370I	-3.72278 + 1.64945I	-9.08237 - 1.96376I
b = 1.70446 - 1.06690I		
u = -0.714465 - 0.763494I		
a = 0.138140 - 1.250370I	-3.72278 - 1.64945I	-9.08237 + 1.96376I
b = 1.70446 + 1.06690I		
u = 0.823105 + 0.665323I		
a = 0.319376 - 0.932123I	3.08774 + 8.72867I	-5.48413 - 4.26141I
b = 2.69399 + 0.67083I		
u = 0.823105 - 0.665323I		
a = 0.319376 + 0.932123I	3.08774 - 8.72867I	-5.48413 + 4.26141I
b = 2.69399 - 0.67083I		
u = -0.097324 + 1.084370I		
a = 3.37839 - 1.05528I	10.44700 + 1.25812I	2.80140 - 1.05629I
b = -2.41040 + 0.52269I		
u = -0.097324 - 1.084370I		
a = 3.37839 + 1.05528I	10.44700 - 1.25812I	2.80140 + 1.05629I
b = -2.41040 - 0.52269I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.128512 + 1.081900I		
a = -3.37735 + 0.83410I	9.60149 + 8.44587I	1.50673 - 5.85664I
b = 2.46629 - 0.51176I		
u = -0.128512 - 1.081900I		
a = -3.37735 - 0.83410I	9.60149 - 8.44587I	1.50673 + 5.85664I
b = 2.46629 + 0.51176I		
u = -0.807760 + 0.739295I		
a = -0.520537 + 0.077016I	-5.15070 - 1.55728I	-3.41228 + 1.62313I
b = 0.673789 + 0.625242I		
u = -0.807760 - 0.739295I		
a = -0.520537 - 0.077016I	-5.15070 + 1.55728I	-3.41228 - 1.62313I
b = 0.673789 - 0.625242I		
u = -0.506885 + 0.991107I		
a = -1.80520 + 1.33240I	7.37339 - 2.01731I	0
b = 0.96224 + 1.21089I		
u = -0.506885 - 0.991107I		
a = -1.80520 - 1.33240I	7.37339 + 2.01731I	0
b = 0.96224 - 1.21089I		
u = 0.624887 + 0.943323I		
a = -0.228701 + 0.787647I	0.16355 - 2.91161I	0. + 2.36931I
b = -0.307430 + 0.090678I		
u = 0.624887 - 0.943323I		
a = -0.228701 - 0.787647I	0.16355 + 2.91161I	0 2.36931I
b = -0.307430 - 0.090678I		
u = -0.548486 + 1.001280I		
a = 2.24692 - 1.41567I	7.75921 + 5.16031I	0 5.15990I
b = -1.39112 - 1.33428I		
u = -0.548486 - 1.001280I		
a = 2.24692 + 1.41567I	7.75921 - 5.16031I	0. + 5.15990I
b = -1.39112 + 1.33428I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.782876 + 0.849138I		
a = -0.281362 + 1.292200I	-0.09216 - 5.90377I	-6.51038 + 5.50131I
b = -0.282478 - 0.823905I		
u = 0.782876 - 0.849138I		
a = -0.281362 - 1.292200I	-0.09216 + 5.90377I	-6.51038 - 5.50131I
b = -0.282478 + 0.823905I		
u = -0.684869 + 0.949371I		
a = -1.65615 + 1.47578I	-3.14902 + 3.72291I	-7.13132 + 0.I
b = 2.17505 + 0.72111I		
u = -0.684869 - 0.949371I		
a = -1.65615 - 1.47578I	-3.14902 - 3.72291I	-7.13132 + 0.I
b = 2.17505 - 0.72111I		
u = 0.767085 + 0.893425I		
a = 0.565950 - 0.681295I	0.0463916 + 0.0789452I	0
b = -0.571422 + 0.670697I		
u = 0.767085 - 0.893425I		
a = 0.565950 + 0.681295I	0.0463916 - 0.0789452I	0
b = -0.571422 - 0.670697I		
u = 0.697552 + 0.975593I		
a = -1.103840 - 0.722587I	-3.84507 - 6.03561I	0
b = 0.62795 - 1.51314I		
u = 0.697552 - 0.975593I		
a = -1.103840 + 0.722587I	-3.84507 + 6.03561I	0
b = 0.62795 + 1.51314I		
u = -0.697282 + 0.998483I		
a = 1.81767 - 0.37021I	-1.48579 + 8.04265I	0
b = -1.27625 - 1.22230I		
u = -0.697282 - 0.998483I		
a = 1.81767 + 0.37021I	-1.48579 - 8.04265I	0
b = -1.27625 + 1.22230I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.737707 + 0.986539I		
a = 0.264849 + 0.912543I	-4.39392 + 7.36741I	0
b = 0.567709 - 0.785725I		
u = -0.737707 - 0.986539I		
a = 0.264849 - 0.912543I	-4.39392 - 7.36741I	0
b = 0.567709 + 0.785725I		
u = 0.702152 + 1.027660I		
a = 1.34427 + 2.48138I	5.35703 - 7.40628I	0
b = -2.60875 + 0.42340I		
u = 0.702152 - 1.027660I		
a = 1.34427 - 2.48138I	5.35703 + 7.40628I	0
b = -2.60875 - 0.42340I		
u = 0.717612 + 1.027020I		
a = -1.72080 - 2.58367I	4.1859 - 14.5074I	0
b = 3.11897 - 0.58149I		
u = 0.717612 - 1.027020I		
a = -1.72080 + 2.58367I	4.1859 + 14.5074I	0
b = 3.11897 + 0.58149I		
u = -0.649599 + 0.312516I		
a = -0.395839 + 0.699565I	5.93552 - 0.76797I	-3.85312 - 0.11331I
b = -1.50211 + 0.45460I		
u = -0.649599 - 0.312516I		
a = -0.395839 - 0.699565I	5.93552 + 0.76797I	-3.85312 + 0.11331I
b = -1.50211 - 0.45460I		
u = -0.660388 + 0.239204I		
a = 0.392626 - 1.167170I	5.30723 + 6.14183I	-5.10684 - 4.83754I
b = 1.385750 - 0.144674I		
u = -0.660388 - 0.239204I		
a = 0.392626 + 1.167170I	5.30723 - 6.14183I	-5.10684 + 4.83754I
b = 1.385750 + 0.144674I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.570438		
a = -0.597054	-1.74370	-4.75930
b = 0.412635		
u = 0.401684 + 0.251203I		
a = -0.718595 - 0.849362I	-0.534257 - 1.150530I	-6.04520 + 5.80427I
b = -0.003567 + 0.541793I		
u = 0.401684 - 0.251203I		
a = -0.718595 + 0.849362I	-0.534257 + 1.150530I	-6.04520 - 5.80427I
b = -0.003567 - 0.541793I		
u = -0.320915		
a = 2.73811	-2.14124	-1.56380
b = 0.794388		

$$\text{II. } I_2^u = \langle -u^5 - u^3 + b - u + 1, \ u^7 + u^6 + 2u^5 + u^4 + 2u^3 + u^2 + a + u, \ u^9 + u^8 + 2u^7 + u^6 + 3u^5 + u^4 + 2u^3 + u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{7} - u^{6} - 2u^{5} - u^{4} - 2u^{3} - u^{2} - u \\ u^{5} + u^{3} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{7} - u^{6} - 2u^{5} - u^{4} - 2u^{3} - u^{2} - u \\ u^{5} + u^{3} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - u \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + u \\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} + u \\ -u^{5} - u^{3} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{7} - u^{6} - 3u^{5} - u^{4} - 2u^{3} - u^{2} - 2u \\ 2u^{5} + 2u^{3} + 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^7 4u^6 5u^5 5u^4 10u^3 5u^2 u 11$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^9$
c_{3}, c_{7}	u^9
c_4	$(u+1)^9$
c_5, c_8	$u^9 + u^8 - 2u^7 - 3u^6 + u^5 + 3u^4 + 2u^3 - u - 1$
	$u^9 + u^8 + 2u^7 + u^6 + 3u^5 + u^4 + 2u^3 + u - 1$
<i>c</i> ₉	$u^9 + 5u^8 + 12u^7 + 15u^6 + 9u^5 - u^4 - 4u^3 - 2u^2 + u + 1$
c_{10}	$u^9 + 3u^8 + 8u^7 + 13u^6 + 17u^5 + 17u^4 + 12u^3 + 6u^2 + u - 1$
c_{11}	$u^9 - u^8 + 2u^7 - u^6 + 3u^5 - u^4 + 2u^3 + u + 1$
c_{12}	$u^9 - 3u^8 + 8u^7 - 13u^6 + 17u^5 - 17u^4 + 12u^3 - 6u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^9$
c_3, c_7	y^9
c_5,c_8	$y^9 - 5y^8 + 12y^7 - 15y^6 + 9y^5 + y^4 - 4y^3 + 2y^2 + y - 1$
c_6, c_{11}	$y^9 + 3y^8 + 8y^7 + 13y^6 + 17y^5 + 17y^4 + 12y^3 + 6y^2 + y - 1$
c_9	$y^9 - y^8 + 12y^7 - 7y^6 + 37y^5 + y^4 - 10y^2 + 5y - 1$
c_{10}, c_{12}	$y^9 + 7y^8 + 20y^7 + 25y^6 + 5y^5 - 15y^4 + 22y^2 + 13y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.140343 + 0.966856I		
a = 0.900982 - 0.594909I	0.13850 - 2.09337I	-4.27981 + 4.44592I
b = -0.663053 + 0.788921I		
u = 0.140343 - 0.966856I		
a = 0.900982 + 0.594909I	0.13850 + 2.09337I	-4.27981 - 4.44592I
b = -0.663053 - 0.788921I		
u = 0.628449 + 0.875112I		
a = 0.249476 + 1.304240I	-2.26187 - 2.45442I	-4.16203 + 2.47153I
b = -1.52709 - 0.20930I		
u = 0.628449 - 0.875112I		
a = 0.249476 - 1.304240I	-2.26187 + 2.45442I	-4.16203 - 2.47153I
b = -1.52709 + 0.20930I		
u = -0.796005 + 0.733148I		
a = -0.766570 + 0.255687I	-6.01628 - 1.33617I	-13.03110 + 0.17445I
b = 0.224752 + 0.919301I		
u = -0.796005 - 0.733148I		
a = -0.766570 - 0.255687I	-6.01628 + 1.33617I	-13.03110 - 0.17445I
b = 0.224752 - 0.919301I		
u = -0.728966 + 0.986295I		
a = 0.721488 + 0.307914I	-5.24306 + 7.08493I	-11.12684 - 5.18429I
b = 0.124310 - 1.173370I		
u = -0.728966 - 0.986295I		
a = 0.721488 - 0.307914I	-5.24306 - 7.08493I	-11.12684 + 5.18429I
b = 0.124310 + 1.173370I		
u = 0.512358		
a = -1.21075	-2.84338	-14.8000
b = -0.317835		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^9)(u^{54}+14u^{53}+\cdots+12u+1)$
c_2	$((u-1)^9)(u^{54}-10u^{53}+\cdots+8u-1)$
c_3, c_7	$u^9(u^{54} - u^{53} + \dots - 1024u + 512)$
c_4	$((u+1)^9)(u^{54}-10u^{53}+\cdots+8u-1)$
<i>C</i> ₅	$(u^9 + u^8 - 2u^7 - 3u^6 + u^5 + 3u^4 + 2u^3 - u - 1)$ $\cdot (u^{54} + 2u^{53} + \dots + 220u - 200)$
c_6	$(u^9 + u^8 + \dots + u - 1)(u^{54} + 2u^{53} + \dots + 4u^2 - 1)$
<i>C</i> ₈	$(u^9 + u^8 + \dots - u - 1)(u^{54} - 2u^{53} + \dots - 2u + 1)$
<i>c</i> ₉	$(u^9 + 5u^8 + 12u^7 + 15u^6 + 9u^5 - u^4 - 4u^3 - 2u^2 + u + 1)$ $\cdot (u^{54} - 10u^{53} + \dots + 676u - 61)$
c_{10}	$(u^9 + 3u^8 + 8u^7 + 13u^6 + 17u^5 + 17u^4 + 12u^3 + 6u^2 + u - 1)$ $\cdot (u^{54} - 18u^{53} + \dots + 8u + 1)$
c_{11}	$(u^9 - u^8 + \dots + u + 1)(u^{54} + 2u^{53} + \dots + 4u^2 - 1)$
c_{12}	$(u^9 - 3u^8 + 8u^7 - 13u^6 + 17u^5 - 17u^4 + 12u^3 - 6u^2 + u + 1)$ $\cdot (u^{54} - 18u^{53} + \dots + 8u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^9)(y^{54} + 62y^{53} + \dots - 72y + 1)$
c_2,c_4	$((y-1)^9)(y^{54}-14y^{53}+\cdots-12y+1)$
c_3, c_7	$y^9(y^{54} - 57y^{53} + \dots - 5767168y + 262144)$
c_5	$(y^9 - 5y^8 + 12y^7 - 15y^6 + 9y^5 + y^4 - 4y^3 + 2y^2 + y - 1)$ $\cdot (y^{54} + 2y^{53} + \dots + 341200y + 40000)$
c_6,c_{11}	$(y^9 + 3y^8 + 8y^7 + 13y^6 + 17y^5 + 17y^4 + 12y^3 + 6y^2 + y - 1)$ $\cdot (y^{54} + 18y^{53} + \dots - 8y + 1)$
c ₈	$(y^9 - 5y^8 + 12y^7 - 15y^6 + 9y^5 + y^4 - 4y^3 + 2y^2 + y - 1)$ $\cdot (y^{54} + 62y^{53} + \dots - 8y + 1)$
<i>c</i> 9	$(y^9 - y^8 + 12y^7 - 7y^6 + 37y^5 + y^4 - 10y^2 + 5y - 1)$ $\cdot (y^{54} + 10y^{53} + \dots - 22900y + 3721)$
c_{10}, c_{12}	$(y^9 + 7y^8 + 20y^7 + 25y^6 + 5y^5 - 15y^4 + 22y^2 + 13y - 1)$ $\cdot (y^{54} + 38y^{53} + \dots - 68y + 1)$