Option Portfolio Optimization

Mark Broadie, Columbia University

Joint work with Soonmin Ko

ICBI Global Derivatives

Paris, April 2011

Investing in Options

- As an investor or trader, what option trades to make?
- Can standard portfolio optimization techniques be applied to these securities?

Related Literature

- Carr, P. and D. Madan, 2001, "Optimal Positioning in Derivative Securities," *Quantitative Finance*, Vol.1, No.1.
- Cochrane, J. and J. Saa-Requejo, 2000, "Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets," *Journal Political Economy*, Vol.108, 79-119.
- Driessen, J. and P. Maenhout, 2007, "Empirical Portfolio Perspective on Option Pricing Anomalies," *Review of Finance*, Vol.11, No.4, 561-603.
- Meucci, A., 2008, "Fully Flexible Views: Theory and Practice," *Risk*, Vol.21, No.10 (October), 97-102.
- Zymler, S., B. Rustem, D. Kuhn, 2011, "Robust Portfolio Optimization with Derivative Insurance Guarantees," *European Journal of Operations Research*, Vol.210, No.2, 410-424.

Issues

Prices

- Risk-neutral distribution
- Finite number traded strikes and maturities
- Identify trades to take advantage of mispricing
- Transaction costs: bid-offer spreads

Preferences

- · Risk aversion: mean-variance or expected utility
- Option returns are highly skewed, so third and higher moments are important

Probabilities

· Real-world distribution: view, historical data

Standard Mean-Variance Formulation

minimize
$$\sigma_P^2 \equiv \sum_{i=1}^n \sum_{j=1}^n x_i \sigma_{ij} x_j$$

subject to $\mu_P \equiv \sum_{j=1}^n \mu_j x_j \ge \mu_{\min}$
 $\sum_{j=1}^n x_j = 1, \quad x \ge 0$

- Covariance matrix: $\sigma_{ij} = E[(R_i \mu_i)(R_j \mu_j)]$
- Coskewness tensor: $E[(R_i \mu_i)(R_j \mu_j)(R_k \mu_k)]$
 - Too many parameters to reliably estimate
 - Even factor models of coskewness are complicated
 - Cokurtosis even more complicated
- How to proceed?

Portfolio Optimization: Scenario Formulation

- Scenarios can be multidimensional (stock prices, volatility and other factors)
- Buy-and-hold investment: markets are incomplete, options are not redundant

Mean-Variance Portfolio Optimization

minimize
$$\sigma_P^2(x) = \sum_{i=1}^m p_i \left(r^{(i)}(x) - \mu_P(x) \right)^2$$
 subject to $r^{(i)}(x) = \sum_{j=1}^n r_j^{(i)} x_j$, $1 \le i \le m$
$$\mu_P(x) = \sum_{i=1}^m p_i r^{(i)}(x) \ge \mu_{\min}$$

$$\sum_{j=1}^n x_j = 1, \quad x \ge 0$$

Reduced Form

Reduced Form

$$\begin{aligned} & \underset{x}{\text{minimize}} & & \sum_{j=1}^{n} \sum_{j'=1}^{n} x_{j} \sigma_{jj'} x_{j'} & & \underset{x}{\text{minimize}} & & \sum_{i=1}^{m} p_{i} \left(r^{(i)}(x) - \mu_{P}(x) \right)^{2} \\ & \text{subject to} & & \sum_{j=1}^{n} \mu_{j} x_{j} \geq \mu_{\min} & & \text{subject to} & & r^{(i)}(x) = \sum_{j=1}^{n} r_{j}^{(i)} x_{j}, & 1 \leq i \leq m \\ & & & \sum_{j=1}^{n} x_{j} = 1, & x \geq 0 & & & \mu_{P}(x) = \sum_{i=1}^{m} p_{i} r^{(i)}(x) \geq \mu_{\min} \\ & & & & \sum_{j=1}^{n} x_{j} = 1, & x \geq 0 \end{aligned}$$

Scenario Form

$$\sum_{i=1}^{m} p_{i} \left(r^{(i)}(x) - \mu_{P}(x) \right)^{2}$$

$$r^{(i)}(x) = \sum_{j=1}^{n} r_{j}^{(i)} x_{j}, \quad 1 \le i \le n$$

$$\mu_{P}(x) = \sum_{i=1}^{m} p_{i} r^{(i)}(x) \ge \mu_{\min}$$

$$\sum_{j=1}^{n} x_{j} = 1, \quad x \ge 0$$

- The reduced form compresses all information about scenarios, probabilities, etc. into a mean vector and a covariance matrix
- The two formulations are equivalent
- However, the scenario form is more flexible
 - Alternative constraints: skewness, kurtosis, etc.
 - Alternative objectives: semi-variance, average downside risk, etc.

Alternative Constraints, Objectives, and Bid-Offer Spreads

Mean-Variance-Skewness Portfolio Optimization

minimize
$$\sigma_P^2(x) = \sum_{i=1}^m p_i \left(r^{(i)}(x) - \mu_P(x) \right)^2$$
 subject to
$$r^{(i)}(x) = \sum_{j=1}^n r_j^{(i)} x_j, \quad 1 \le i \le m$$

$$\mu_P(x) = \sum_{i=1}^m p_i r^{(i)}(x) \ge \mu_{\min}$$

$$\text{skew}_P(x) = \sum_{j=1}^m p_i \left(r^{(i)}(x) - \mu_P(x) \right)^3 \ge \text{skew}_{\min}$$

$$\sum_{j=1}^n x_j = 1, \quad x \ge 0$$

Can handle portfolio kurtosis in the same way

Semi-Variance

semi variance(
$$x$$
) = E $\left[\max (\mu_P(x) - r(x), 0)^2 \right]$

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i=1}^{m} p_i d_i^2 \\ \text{subject to} & r^{(i)}(x) = \sum\limits_{j=1}^{n} r_j^{(i)} x_j, \quad 1 \leq i \leq m \\ & \mu_P(x) = \sum\limits_{i=1}^{m} p_i r^{(i)}(x) \geq \mu_{\min} \\ & d_i \geq \mu_P(x) - r^{(i)}, \quad 1 \leq i \leq m \\ & \sum\limits_{j=1}^{n} x_j = 1, \quad x \geq 0, \quad d \geq 0 \end{array} \right\}$$

Broadie: Option Portfolio Optimization

quadratic program

Average Downside Risk

average downside risk
$$(x) = E \left[\max (\mu_P(x) - r(x), 0) \right]$$

minimize
$$\sum_{i=1}^{m} p_i d_i$$
 subject to
$$r^{(i)}(x) = \sum_{j=1}^{n} r_j^{(i)} x_j, \quad 1 \le i \le m$$

$$\mu_P(x) = \sum_{i=1}^{m} p_i r^{(i)}(x) \ge \mu_{\min}$$

$$d_i \ge \mu_P(x) - r^{(i)}, \quad 1 \le i \le m$$

$$\sum_{j=1}^{n} x_j = 1, \quad x \ge 0, \quad d \ge 0$$

linear program

Expected Utility Formulation

$$\begin{array}{ll} \text{minimize} & \quad \mathsf{E}[U] & = & \sum\limits_{i=1}^m p_i U\left(W_0(1+r^{(i)}(x))\right) \\ \text{subject to} & \quad r^{(i)}(x) & = & \sum\limits_{j=1}^n r_j^{(i)} x_j, \qquad 1 \leq i \leq m \\ & \quad \sum\limits_{j=1}^n x_j = 1, \quad x \geq 0 \end{array}$$

Common choices for the utility function U

- Power utility, CRRA: $U(W) = \frac{W^{\gamma}}{\gamma}$ $(\gamma < 1, \gamma \neq 0)$
- Log utility: $U(W) = \log(W)$ ($\gamma = 0$)
- Many others ...

Portfolio Optimization with Bid-Offer Spreads

Let x_j be the quantity of the instrument j purchased Let y_j be the quantity of the instrument j sold

$$\begin{array}{ll} \text{minimize} & \text{Var}\left[W_T\right] & \Leftarrow \text{ minimize variance} \\ \text{subject to} & \sum_{j=1}^n x_j P_0^j - \sum_{j=1}^n y_j Q_0^j = w_0 & \Leftarrow \text{ budget constraint} \\ & \mathsf{E}\left[W_T\right] \geq w_{\min} & \Leftarrow \text{ expected wealth constraint} \\ & W_T^{(i)} = \sum_{j=1}^n w_0 (1 + r_j^{(i)} x_j), & 1 \leq i \leq m \end{array}$$

- Can formulate in terms of wealth or return
- P_0^j are prices to buy; Q_0^j are prices to sell

Portfolio Optimization with the Scenario Formulation

Flexible formulation

- Can include mean, variance, skewness, kurtosis and any other moments of the portfolio return distribution
- Easy to replace mean-variance formulation with expected utility
- Easy to include bid and offer prices

Additional ways to control risk

- Bounds on security holdings
- Bounds on return by scenario
- Bounds on conditional value-at-risk (CVAR), expected excess loss and other risk measures

How to specify investor views, i.e., real-world scenarios and probabilities?

- Historical: straightforward
- Parametric: use favorite option pricing model with real-world parameters

Specifying Investor Views: Real-World Scenarios and Probabilities

Specifying Investor Views

- Implied volatility curve ⇔ asset price distribution
- View: choose real-world parameters of an option pricing model, then infer scenarios and probabilities
 - · Resulting scenarios are smooth
 - Procedure can be used with historical data using standard econometric techniques

Scenario Probabilities From Butterflies

Strike	Trade
99.5	Buy 1 call
100.0	Sell 2 calls
100.5	Buy 1 call

- Positive payoff when $99.5 < S_T < 100.5$
- Butterfly price is related to the probability $S_T = 100$
- Scenario probability: $P(K \frac{1}{2} < S_T < K + \frac{1}{2}) \approx 4e^{rT}(C(K \frac{1}{2}) 2C(K) + C(K + \frac{1}{2})),$ where C(K) is the Merton call option price with strike K
- Breeden and Litzenberger (1978)

Examples

Bearish Investor: Stock and Bond Only

- Time horizon: T = 1/12, interest rate r = 2%
- Market prices in red
- Real-world view: $\mu = -10\%$ (stock return parameter, annual)
- Constraint: $\sigma_{RW} \le 5\%$ (monthly, i.e., 17% annual)
- Optimal portfolio: stock -90%, bond 190%
- Real-world expected return: 13% (annual)

Bearish Investor: Stock, Bond and Put Option

- Time horizon: T = 1/12, put strike K = 95
- Market prices in red
- Real-world view: $\mu = -10\%$
- Constraint: $\sigma_{RW} \le 5\%$ (monthly, i.e., 17% annual)
- Optimal portfolio: stock -110%, bond 210%, put -3%
- Real-world expected return: 25% (annual)
- Including an option increases expected return with the same volatility

View: Real-World Volatility Less than Risk-Neutral

- Time horizon: T = 1/12, interest rate r = 2%
- Market prices in red
- Real-world view (Merton, J): $\lambda=20\%,~\sigma=20\%,~\mu_S=-15\%,~\sigma_S=5\%,~\mu=2\%$

View: Real-World Volatility Less than Risk-Neutral

- Time horizon: T = 1/12; stock, bond and put with strike K = 95
- Market prices in red
- Real-world view (Merton, J): $\lambda = 20\%$, $\sigma = 20\%$, $\mu_S = -15\%$, $\sigma_S = 5\%$
- Constraint: $\sigma_{RW} \le 5\%$ (monthly, i.e., 17% annual)
- Optimal portfolio: stock -70%, bond 170%, put -3%
- Optimal portfolio: similar profile to selling a straddle
- Real-world expected return: 16% (annual)

Mispriced Option

- Time horizon: T = 1/12, interest rate r = 2%
- Market prices in red
- Real-world view: smooth fit to market prices
- K = 98 strike put appears to be mispriced

Mispriced Option

- Time horizon: T = 1/12, interest rate r = 2%
- Market prices in red
- Real-world view: smooth fit to market prices
- K = 98 strike put appears to be mispriced
- Constraint: $\sigma_{RW} \le 5\%$ (monthly, i.e., 17% annual)
- Optimal portfolio includes puts and calls of all available strikes
- Real-world expected return: 24% (annual)

Example: Stock, Bond and Twelve Options

- Time horizon: T = 1/12, interest rate r = 2%
- Market prices in red
- Real-world view: $\mu = 5\%$, lower volatility

Expected Option Return

RW expected call return =
$$\frac{\mathsf{E}^P[\max(S_T-K,0)]-C_0}{C_0}$$
 =
$$\frac{e^{\mu T}\mathsf{E}^P[e^{-\mu T}\max(S_T-K,0)]-C_0}{C_0}$$

- Option price formula gives a formula for expected option return
- Formulas for variance and other moments as well
- Option investing: real-world (E^P) vs. risk-neutral probabilities (E^Q)

Expected Return and Standard Deviation

Example: Stock, Bond and Twelve Options

- Time horizon: T = 1/12, interest rate r = 2%
- Market prices in red
- Real-world view: $\mu = 5\%$, lower volatility
- Constraint: $\sigma_{RW} \le 3\%$ (monthly, i.e., 10% annual)
- Optimal portfolio includes puts and calls of all available strikes
- Solution has bond-like payoff, with real-world expected return: 8% (annual)

Example: Stock, Bond and Twelve Options

- Real-world view: $\mu = 5\%$, lower volatility
- Constraint: $\sigma_{RW} \leq 3\%$ (monthly, i.e., 10% annual)
- Optimal portfolio includes puts and calls of all available strikes
- Solution has bond-like payoff, with real-world expected return: 8% (annual)

Efficient Frontier: Stock, Bond and Twelve Options

- Real-world view: $\mu = 5\%$, lower volatility
- · Efficient frontier dominates stock-bond combinations

Example 2: Stock, Bond and Twelve Options

- Time horizon: T = 1/12, interest rate r = 2%
- Market prices in red
- Real-world view: $\mu = 5\%$, higher volatility

Expected Return and Standard Deviation

Example 2: Stock, Bond and Twelve Options

- Time horizon: T = 1/12, interest rate r = 2%
- Market prices in red
- Real-world view: $\mu = 5\%$, higher volatility
- Constraint: $\sigma_{RW} \le 3\%$ (monthly, i.e., 10% annual)
- Optimal portfolio includes puts and calls of all available strikes
- Solution has straddle-like payoff, with real-world expected return: 7% (annual)

Example 2: Stock, Bond and Twelve Options

- Real-world view: $\mu = 5\%$, lower volatility
- Constraint: $\sigma_{RW} \leq 3\%$ (monthly, i.e., 10% annual)
- Optimal portfolio includes puts and calls of all available strikes
- Solution has straddle-like payoff, with real-world expected return: 7% (annual)

Efficient Frontier: Stock, Bond and Twelve Options

- Real-world view: $\mu = 5\%$, higher volatility
- Efficient frontier dominates stock-bond combinations

Scenario Approach to Option Portfolio Optimization

- Prices
 - · Market prices are given inputs
 - · Automatically identifies trades to take advantage of mispricing
 - Bid-offer spreads
- Preferences
 - · Risk aversion: mean-variance or expected utility
 - Skewness, kurtosis and higher moments easily handled
- Probabilities
 - View specified using real-world parameters of option pricing model

Scenario optimization approach finds option portfolios consistent with market prices and investor views and preferences