Data Preperation for PMC-Visualization

Bachelorarbeit zur Erlangung des ersten Hochschulgrades

Bachelor of Science (B.Sc.)

vorgelegt von

FRANZ MARTIN SCHMIDT

(geboren am 7. April 1999 in HALLE (SAALE))

Tag der Einreichung: May 7, 2023

Dipl. Inf Max Korn (Theoretische Informatik)

Contents

Abstract			1
1	Intr	roduction	2
2	Preliminaries		3
	2.1	Mathematical Fundamentals	3
	2.2	Transition Systems	3
	2.3	Markov Chain	3
	2.4	Markov Decision Process	4
3	View		7
	3.1	Grouping Function	7
	3.2	Formal Definition	7
4	View Examples		
	4.1	Transition Systems	9
		4.1.1 Atomic Propositions	9
		4.1.2 Initial States	9
	4.2	Markov Chain	9
	4.3	Markov Decision Process	9
	4.4	Comparison of the Examples	9
5	5 Outlook		10

Abstract

Lorem ipsum

1 Introduction

2 Preliminaries

2.1 Mathematical Fundamentals

e.g.strongly connected components, equivalence relation, more?

we denote $[a]_R$ for the equivalence class with the representative a under the equivalence relation R

how much should be included? ...probably no set theory

2.2 Transition Systems

Motivation of transition systems

The following definition is directly taken form Principles of Modelchecking, Baier p. 20

Definition 2.1. A transition system TS is a tuple $(S, Act, \longrightarrow, I, AP, L)$ where

- S is a set of states,
- Act is a set of actions,
- $\longrightarrow \subseteq S \times Act \times S$ is transition relation,
- $I \subseteq S$ is a set of initial states,
- AP is a set of atomic propositions, and
- $L: S \to \mathcal{P}(AP)$

A transition system is called *finite* if S, AP and L are finite.

explanation of components

2.3 Markov Chain

NOTES BEGIN

- Markov Chain (MC)
- transition systems to markov chains: nondeterministic choices replaced by probablistic
- successor chosen according to probability distribution
- distribution only dependent on current state s (not path)
- system evolution not dependent on history but only current state \rightarrow memory-less property

NOTES END

Definition 2.2. A (discrete-time) Markov chain is a tuple $\mathcal{M} = (S, \mathbf{P}, \mathbf{l}_{init}, AP, L)$ where

- S is a countable, nonempty set of states,
- $\mathbf{P}: S \times S \to [0,1]$ is the transition probability function, such that for all states s:

$$\sum_{s' \in S} \mathbf{P}(s, S') = 1.$$

- $l_{init}: S \to [0,1]$ is the initial distribution, such that $\sum_{s \in S} l_{init}(s) = 1$, and
- AP is a set of atomic propositions and,
- $L: S \to \mathcal{P}(AP)$ a labeling function.

 \mathcal{M} is called *finite* if S and AP are finite. For finite \mathcal{M} , the *size* of \mathcal{M} , denoted $size(\mathcal{M})$, is the number of states plus the number of pairs $(s, s') \in S \times S$ with $\mathbf{P}(s, s') > 0$.

NOTES BEGIN

- Probability Function **P** specifies for each state s the probability **P** (s,s') of moving from s to s' in one step.
- constraint on P ensures that P is distribution
- $l_{init}(s)$ specifies system evolution starts in s
- states s with $l_{init}(s) > 0$ are considered initial states
- states s' with P(s, s') > 0 are view as possible successors of s
- has no actions
 - "As compositional approaches for Markov models are outside the scope of this monograph, actions are irrelevant in this chapter and are therefore omitted."

NOTES END

2.4 Markov Decision Process

NOTES BEGIN

- Markov decision process (MDP)
- idea: Adding nondeterminism to markov chains. MDPs permit both probabilistic and nondeterministic choices
- probabilistic choices: possible outcomes for of randomized actions -; requires statistical experiments to obtain adequate distributions that model average behavior of the environment

- information not available or guarantee about system properties is required -; nondeterminism
- Another example: randomized distributed algorithms. Non-determinism: interleaving behavior: nondeterministic choice which process, probabilistic: have rather restricted set of actions that have a random nature
- used for abstraction in markov chains: states grouped by AP and have a wide range of transition probabilities $-\xi$ essentially nondeterminism $-\xi$ transition probabilities are replaced by nondeterminism

NOTES END

Definition 2.3. A Markov decision process is a tuple $\mathcal{M} = (S, Act, \mathbf{P}, \mathbf{l}_{init}, AP, L)$ where

- S is a countable set of states,
- Act is a set of actions,
- $\mathbf{P}: S \times Act \times S \to [0,1]$ is the transition probability function such that for all states $s \in S$ and actions $\alpha \in Act$:

$$\sum_{s' \in S} \mathbf{P}(s, \alpha, s') \in \{0, 1\},$$

- $l_{init}: S \to [0,1]$ is the initial distribution such that $\sum_{s \in S} l_{init}(s) = 1$,
- AP is a set of atomic propositions and
- $L: S \to \mathcal{P}(AP)$ a labeling function.

An action α is *enabled* in state s if and only if $\sum_{s' \in S} \mathbf{P}(s, \alpha, s') = 1$. Let Act(s) denote the set of enabled actions in s. For any state $s \in S$, it is required that $Act(s) \neq \emptyset$. Each state s for which $\mathbf{P}(s, \alpha, s') > 0$ is called an α -successor of s.

An MDP is called *finite* if S, Act and AP are finite.

NOTES BEGIN

- $\mathbf{P}(s, \alpha, t)$ can be arbitrary real numbers in [0, 1] (sum up to 1 or 0 for fixed s and α), for algorithmic purposes rational
- unique initial distribution l_{init} . Could be generalized to set of l_{init} with nondeterministic choice at the beginning. For sake of simplicity: one single distribution
- operational behavior:
 - starting state s_0 yielded by l_{init} with $l_{init}(s_0) > 0$

- nondeterministic choice of enabled action (i.e. Probability sums up to one)
- probabilistic choice of state (action fixed by nondeterministic selection)
- $\bullet \ MC = MDP \iff \forall s \in S : |Act(s)| = 1$
- $\bullet \ \ \Longrightarrow \ \ {\rm MCs}$ are a proper subset of MDPs

NOTES END

3 View

Views are the central objective of this thesis. The purpose of a view is to obtain a simplification of a given transition system (TS). It is an independent TS derived from a given TS and represents a (simplified) view on the given one - hence the name. Thereby the original TS is retained.

3.1 Grouping Function

The conceptional idea of a view is to group states by some criteria and structure the rest of the system accordingly. To formalize the grouping we define a dedicated function.

Definition 3.1. Let $TS = (S, Act, \longrightarrow, I, AP, L)$ be a transition system an M be an arbitrary set. We call any function $F: S \to M$ a grouping function. switched to M instead of \mathbb{N}

Two states are grouped (should be Definition?) to a new state if and only if the grouping function maps them to the same value. The definition offers an easy way of defining groups of states and labels them with a natural number. It is also very close to the actual implementation later on. The exact mapping depends on the desired grouping. In order to define a new set of states for the view, we define an equivalence relation R based on a given grouping function F.

Definition 3.2. Let F be a grouping function. We define the equivalence relation $R := \{(s_1, s_2) \in S \times S \mid F(s_1) = F(s_2)\}$

R is an equivalence relation because the equality relation is one. The property directly conveys to R. We observe that two states s_1, s_2 are grouped to a new state if and only if $(s_1, s_2) \in R$. This is the case if and only if $s_1, s_2 \in [s_1]_R = [s_2]_R$ where $[s_i]_R$ for $i \in \{1, 2\}$ denotes the equivalence class of R.

3.2 Formal Definition

The definition of a view is dependent on a given transition system and a grouping function F. We derive the equivalence relation R as in Definition 3.2 and use its equivalence classes $[s]_R$ as states for the view. The rest of the transition system is structured accordingly.

Definition 3.3. Let $TS = (S, Act, \longrightarrow, I, AP, L)$ be a transition system and F a grouping function. A view TS_F is a transition system $(S', Act', \longrightarrow', I', L')$ that is derived from TS with the grouping function F where

- $\bullet \ S' = \{ [s]_R \mid s \in S \}$
- Act' = Act
- $\longrightarrow' = \{([s_1]_R, \alpha, [s_2]_R) \mid \exists s_1 \in [s_1]_R \exists s_2 \in [s_2]_R : ([s_1]_R, \alpha, [s_2]_R) \in \longrightarrow \}$
- $\bullet \ I' = \{[s']_R \in S' \mid \exists s \in [s']_R : s \in I\}$

•
$$L': S' \to \mathcal{P}(AP), [s]_R \mapsto \bigcup_{s \in [s]_R} \{L(s)\}$$

and R is the equivalence relation according to Definition 3.2.

Note that the definition is in a most general form in the sense that if in a view a property accounts to one part of some entity the whole entity receives the property i.e.

- $(s_1, \alpha, s_2) \in \longrightarrow \Rightarrow ([s_1]_R, \alpha, [s_2]_R) \in \longrightarrow'$
- $s \in I \Rightarrow [s]_R \in I'$
- $\forall s \in S : L(s) \in L'([s]_R)$

4 View Examples

4.1 Transition Systems

4.1.1 Atomic Propositions

The Atomic Propositions View groups all states to a new state that have the same set of atomic propositions.

We define its grouping function with $F_{AP}: S \to M, s \mapsto L(s)$ i.e. $\forall s \in S: F(s) = L(s)$. According to definition 3.2 for $\tilde{s} \in S$ it is $[\tilde{s}]_R = \{s \in S \mid L(s) = L(\tilde{s})\}$.

By this we obtain the view $TS_{F_{AP}}$ for a given transition system TS where: $S' = \bigcup_{s \in S} \{[s]_R\} = \bigcup_{label \in AP} \{\{s \in S \mid L(s) = label\}\}$. All other components are constructed as in definition 3.3.

tikz example

example from the database of max

4.1.2 Initial States

The *Initial State View* groups all initial states into one single state. All other states are left untouched. We define its grouping function with $F_I: S \to M$ with

$$s \mapsto \begin{cases} \emptyset, & \text{if } s \in I \\ \{s\}, & \text{otherwise} \end{cases}$$

According to definition 3.2 it is $[s]_R = \{s \in S \mid F(s) = \emptyset\}$ for $s \in I$ and $[s]_R = \{s \in S \mid F(s) = \{s\}\} = \{s\}$ for $s \notin I$.

By this we obtain the view TS_{F_I} for a given transition system TS where: $S' = \bigcup_{s \in S} \{[s]_R\} = \{s \in S \mid s \in I\} \cup \bigcup_{s \in S \setminus I} \{\{s\}\}.$

All other components are constructed as in definition 3.3.

4.2 Markov Chain

4.3 Markov Decision Process

4.4 Comparison of the Examples

5 Outlook

References