Université de Lorraine Analyse complexe

TD 3: Exercices d'approfondissement

Exercice 1. Soit $a, c \in \mathbb{R}$ et $b \in \mathbb{C}$ tels que $ac - |b|^2 < 0$.

- 1. Montrer que l'ensemble $E:=\left\{z\in\mathbb{C}\;;\;az\overline{z}+bz+\overline{b}\overline{z}+c=0\right\}$ est une droite si a=0 et un cercle si $a\neq0$.
- 2. Montrer que toute droite et tout cercle peut s'écrire sous cette forme.
- 3. Que ce passe-t-il si $ac |b|^2 \ge 0$?

Exercice 2 (Géométrie de l'inversion). L'objectif de cet exercice est de comprendre géométriquement l'application $\iota: z \mapsto \frac{1}{z}$. On considère l'application

$$\bar{\iota} : \left\{ \begin{array}{ccc} \mathbb{C}^* & \to & \mathbb{C} \\ z & \mapsto & \frac{1}{\bar{z}} \end{array} \right.$$

- 1. Montrer que $\bar{\iota} = \iota \circ c = c \circ \iota$ où c est la conjugaison complexe.
- 2. (Rappel de géométrie élémentaire). Soit $a,b\in\mathbb{C}$ tels que $a\neq b$. Soit C l'unique cercle de diamètre |a-b| passant par a est b, c'est à dire que C est le cercle de centre $\frac{a+b}{2}$ et de rayon $\left|\frac{a-b}{2}\right|$. Soit $z\in\mathbb{C}\setminus\{a,b\}$, montrer que $z\in C$ si est seulement si l'angle non-orienté \widehat{azb} vaut $\frac{\pi}{2}$.
- 3. Soit $z_1, z_2 \in \mathbb{C}^*$. Montrer que les triangles $z_1 z_2 0$ et $\bar{\iota}(z_1) \bar{\iota}(z_2) 0$ sont semblables. Faire un dessin.
- 4. Soit $z_1, z_2 \in \mathbb{C}^*$. Montrer que $|\bar{\iota}(z_1) \bar{\iota}(z_2)| = \frac{|z_1 z_2|}{|z_1||z_2|}$
- 5. (a) Soit S^1 le cercle de centre 0 et de rayon 1. Montrer que $\bar{\iota}(S^1) = S^1$.
 - (b) Soit *D* une droite passant par 0. Montrer que $\bar{\iota}(D) = D$.
 - (c) Soit D une droite ne passant pas par 0. Montrer que $\overline{\iota}(D)$ est un cercle passant par 0. Faire un dessin dans les cas suivant : $S^1 \cap D = \emptyset$, $\#(S^1 \cap D) = 1$ et $\#(S^1 \cap D) = 2$. (Indication : considérer z_0 , la projection orthogonale de 0 sur D puis utiliser les questions 2 et 3)
 - (d) Soit *C* un cercle qui passe par 0. Montrer que $\bar{\iota}(C)$ est une droite ne passant pas par 0.
 - (e) Soit C un cercle ne passant pas par 0. Montrer que $\bar{\iota}(C)$ est un cercle ne passant pas par 0. Faire un dessin.
 - (f) Déduire des questions précédentes que ι envoie les cercles et les droites sur des cercles ou des droites.
- 6. Redémontrer le résultat de la question 5f en utilisant le résultat de l'exercice 1.
- 7. Soit $z \in \mathbb{C}^*$, déduire des questions précédentes une façon de construire $\bar{\iota}(z)$ à la règle et au compas. Puis en déduire une construction de $\iota(z)$ à la régle et au compas.

Exercice 3 (Quelques propriétés des transformations de Möbius). Soit $a,b,c,d\in\mathbb{C}$ tels que $ad-bc\neq 0$. La transformation de Möbius associée à ces nombres est l'application $f:\mathbb{C}\setminus\{\frac{-d}{c}\}\to\mathbb{C}$ définie par

$$f(z) = \frac{az+b}{cz+d}.$$

Si c = 0 on utilise la notation $\frac{-d}{c} = \infty$ de sorte que $\mathbb{C} \setminus \{\frac{-d}{c}\} = \mathbb{C}$.

1. Soit f une transformation de Möbius. Déterminer l'image de f. Montrer que f est une bijection sur son image et montrer que l'application réciproque est une transformation de Mobius que l'on déterminera.

- 2. Montrer que l'ensemble des transformations de Möbius muni de la composition est un groupe.
- 3. Soit f une transformation de Möbius. Montrer qu'il existe $\alpha, \beta, \gamma \in \mathbb{C}$ tels que $f = t_{\alpha} \circ m_{\gamma} \circ \iota \circ t_{\beta}$, où t_{α} et t_{β} sont les translations de vecteur α et β , où m_{γ} est la multiplication par γ et ι est l'application d'inversion.
- 4. À l'aide de l'exercice 2 et de la question 3, montrer que les transformations de Möbius envoient les cercles et les droites sur des cercles ou des droites.
- 5. Notons $\mathbb{H} := \{z \in \mathbb{C} ; \operatorname{Im}(z) > 0\}$ le *demi-plan de Poincaré*. Soit $a, b, c, d \in \mathbb{R}$ tels que ad bc = 1, alors la transformation de Möbius f associée à a, b, c, d vérifie $f(\mathbb{H}) = \mathbb{H}$.
- 6. Notons $\mathbb{D}=\{z\in\mathbb{C}\;;\;|z|<1\}$ le *disque unité* aussi appelé *disque de Poincaré*. Soit $a\in\mathbb{D}$ et $\theta\in\mathbb{R}$. Montrer que la transformation de Möbius

$$f(z) = e^{i\theta} \frac{z - a}{1 - \overline{a}z}$$

vérifie $f(\mathbb{D}) = \mathbb{D}$.

7. Montrer que la transformation de Möbius $\varphi(z)=i\frac{1+z}{1-z}$ induit un biholomorphisme entre $\mathbb D$ et $\mathbb H$. (Un *biholomorphisme* est une application holomorphe bijective dont l'application réciproque est holomorphe).