Atomic units (a.u.)

1 a.u. of mass =
$$m_e = 9.109 \times 10^{-31} \, kg$$

1 a.u. of charge = charge of a proton =
$$1.602 \times 10^{-19} C$$

1 a.u. of length =
$$0.52918 \times 10^{-10} m = 0.52918$$
 Å

1 a.u. of energy =
$$1 hartree = 4.360 \times 10^{-18} J$$

= $27.211 \, eV = 2625 \, kJ/mol = 627.5 \, kcal/mol$

1 a.u. of permittivity =
$$4\pi\epsilon_0 = 1.113 \times 10^{-10} \, C^2 \, J^{-1} \, m^{-1}$$

therefore $U_{electrostatic} = Q_1 Q_2 / r$ in a.u.

1 a.u. of time =
$$2.419 \times 10^{-17} s$$

1 a.u. of action =
$$h/2\pi = \hbar = 1.0546 \times 10^{-34} J s$$

1 a.u. of electric dipole =
$$2.5412~D = 2.5412~$$
 Debye = $3.336 \times 10^{-30}~C~m$

$$k_B, RT$$
 when $T = 298 K$:

$$0.00094 \, a.u. = 0.026 \, eV = 0.59 \, kcal/mol = 2.5 \, kJ/mol$$

Range for various types of interaction energies (approximate)

chemical bonds: $\approx 1 - 10 \text{ eV}$ (20 - 200 kcal/mol)

molecule pair interactions in liquids: $\approx 1-5$ kcal/mol

molecule pair interactions in gases: $\approx 0.1 - 1 \text{ kcal/mol}$

ionization energies: $\approx 4 - 20 \text{ eV}$

electron affinities: $\approx 0 - 4 \text{ eV}$