

A Complementary Local Feature Descriptor for Face Identification

Jonghyun Choi
Dr. William R. Schwartz*
Huimin Guo
Prof. Larry S. Davis

Institute for Advanced Computer Studies, University of Maryland, College Park *Institute of Computing, University of Campinas, Brazil

Agenda

- Background
 - Brief review of previous works
 - Motivation
- Introduction of CCS-POP feature
- Discriminative dimension weighting by partial least squares
- Experimental Results
- Conclusion

Existing Feature Descriptors for Face Identification

- Successful feature descriptors capture
 - Shape information with different scales
 - e.g. Gabor (D. Gabor, 1946)
 - Edge information
 - e.g. Histograms of oriented gradients (HOG) (Dalal and Triggs, 2005), SIFT (Lowe 1999)
 - Micro-edge information
 - e.g. Local binary patterns (LBP) (Ahonen et al., 2006)
- Compact representation of features
 - Using histogram in a sub-window

- Compact representation of features
 - Using histogram in a sub-window
- It has a trade-off
 - Pro
 - Spatial invariance within the sub-window
 - Con
 - Losing location specific information

- Compact representation of features is always preferred?
 - Using histogram in a sub-window
- It has a trade-off
 - Pro
 - Spatial invariance within the sub-window
 - Con
 - Losing location specific information

- Compact representation of features is always preferred?
 - Using histogram in a sub-window
- It has a trade-off
 - Pro
 - Spatial invariance within the sub-window
 - Con
 - Losing location specific information

- Compact representation of features is always preferred?
 - Using histogram in a sub-window
- It has a trade-off
 - Pro
 - Spatial invariance within the sub-window
 - Con
 - Losing location specific information

- Compact representation of features is always preferred?
 - Using histogram in a sub-window
- It has a trade-off
 - Pro
 - Spatial invariance within the sub-window
 - Con
 - Losing location specific information

[Example: HOG]

Only Different here!

Location Specific Descriptors

- Gabor (D. Gabor, 1946)
 - Shape or big edge information centering at a pixel
- Pairs of Pixels (POP) (Kembhavi et al., 2010)
 - Pixel-wise information: from micro-edge to distant symmetric pairs
 - Can have discriminative weights on each pixel pairs by partial least squares
 - But only good at well aligned rectangular objects

(usually man-made objects)

Introducing CCS-POP

- Circular Center Symmetric-Pairs of Pixels
 - Generalizing the POP for natural objects with multiple radius and various directions
 - Similar information to LBP and its variants
 - but no histogramming and encoding with magnitude

Magnitude Information

- Due to extreme illumination variation, pixel difference information (w/ magnitude) in micro scale (few pixels away) might be very noisy
 - Solution: truncation threshold (T_t)

 $d_{(x,y)}(r_k,a_i)$

$$= \begin{cases} d_{(x,y)}(r_k, a_i), & |d_{(x,y)}(r_k, a_i)| < T_t, \\ \operatorname{sgn}(d_{(x,y)}(r_k, a_i)) \cdot T_t, & |d_{(x,y)}(r_k, a_i)| \ge T_t, \end{cases}$$

Curse of Dimensionality

- CCS-POP gives very high dimensional features
 - # of dim = # of radii X # of sampled points X # of pixels
 - It might have noisy information
 - But less dimensionality than POP

Curse of Dimensionality

- CCS-POP gives very high dimensional features
 - # of dim = # of radii X # of sampled points X # of pixels
 - It might have noisy information
 - But less dimensionality than POP

Discriminative dimension reduction by Partial Least Squares^[1]

[1] W.R.Schwartz et al., A Robust and Scalable Approach to Face Identification, ECCV 2010

Partial Least Squares

 A supervised dimension reduction technique by maximizing covariance of weighted independent variable (X) and weighted dependent variable (Y)

$$cov(t, u)^2 = \max_{|w|=1} cov(Xw, Y)^2$$

 Using NIPALS algorithm^[1] to obtain the regression solution from X to Y

[1] H. Wold, Partial Least Squares, 1985

Discriminative Weighting Using Partial Least Squares^[1]

Model Building (Training)

Gallery

Build "One-vs-All" PLS regression models

[1] Schwartz et al., A Robust and Scalable Approach to Face Identification, ECCV 2010

Datasets

• FRGC Ver. 1.0 Gallery

Probe

- Exp1: (G) 1 controlled image, (P) 1 controlled image (mostly illumination variations)
- Exp2: (G) 4 controlled images, (P) 1 controlled image
- Exp4: (G) 1 controlled image, (P) multiple uncontrolled images
- FERET
 - fa: Gallery
 - fb: expression variations
 - fc: different lighting variations
 - dup1, dup2: time gap (expression and lighting, uncontrolled)

Effect of Not Using Histogram

- Raw LBP is a feature of LBP information (binary pixel difference with a single radius) without histogramming
- Weighted by PLS regression

FRGC

Descriptor	Dim.	Exp.1	Exp.2	Exp.4
LBP	16,128	85.4	96.8	13.0
Raw LBP	176,640	94.4	98.7	59.9

FERET

Descriptor	Dim.	fb	fc	dup1	dup2
LBP	6,400	57.7	26.8	18.3	10.3
Raw LBP	96,800	89.8	73.7	68.7	53.0

- Given a discriminative weighting scheme, histogramming prevents better performance
- But the feature dimension of Raw LBP is prohibitive

CCS-POP

- Far less number of dimension than Raw LBP
 - 176,640 44,160 (75% less)
 - Comparable performance
- Using color information (only in FRGC dataset)
 - Better performance (Especially in Exp. 4)
 - Triple the feature dimensions (44,160 132,480)
- Less number of dimension by simple color information (CI)
 - 132,480 60,042 (55% less)
 - Maintaining the performance

FRGC

Color	Dim.	Exp.1	Exp.2	Exp.4
Raw LBP	176,640	94.4	98.7	59.9
Gray	44,160	96.1	99.0	59.4
R,G,B	132,480	96.5	99.4	67.3
$\overline{\text{Gray}+CI}$	60,042	96.7	99.3	67.6

Effect of Truncation Threshold

Truncation threshold improves performance on the experiments with FRGC dataset

FRGC

T_t	Exp.1	Exp.2	Exp.4
No threshold	91.6	97.2	57.7
5	96.7	99.3	67.6

Comparison to Other Descriptors

Descriptor	Dim.	Exp.1	Exp.2	Exp.4
Intensity	22,080	41.3	51.3	3.5
POP	$607,\!520$	83.2	94.0	29.3
LBP	$16,\!128$	85.4	96.8	13.0
MSLBP	$32,\!256$	95.2	98.9	30.9
HOG	$49,\!860$	97.5	99.4	64.5
Gabor	54,401	97.0	99.5	66.6
CCS-POP	60,042	96.7	99.3	67.6

FERET

Descriptor	Dim.	fb	$\int fc$	$\mid dup1 \mid$	dup2
Intensity	12,100	75.1	52.6	39.5	31.2
POP	242,000	79.7	69.1	47.2	42.7
LBP	6,400	57.7	26.8	18.3	10.3
MSLBP	12,800	92.8	29.4	56.5	49.1
HOG	24,336	94.1	98.5	76.9	76.9
Gabor	$29,\!187$	97.0	97.9	79.4	76.1
CCS-POP	24,200	91.9	72.7	69.3	$\overline{53.4}$

Not Good

For the challenging experiments in FRGC dataset

- FRGC Exp.4

Improvement by CCS-POP

Original Performance

79.3% 82.4%

68.4% 69.2%

Improvement by CCS-POP
Improvement by Gabor
HOG

89.0%

For the challenging experiments in FRGC dataset

For the challenging experiment in FERET dataset

FERET dup2

Improvement by CCS-POP Original Performance

79.5%

77.4%

Improvement by CCS-POP Improvement by Gabor

HOG

84.6%

58.5%

For the challenging experiment in FERET dataset

Complementariness by Feature Weighting

 An example of heat maps of PLS regression for different features.

CCS-POP captures pixel-wise micro information

Comparison to the Previous Works

FRGC

FERET

Method	Exp.1	Exp.2	Exp.4
PCA [17]	87.6	95.6	
UMD[1]	94.2	99.3	-
BEE (from [27])			37.0
LC_1C_2 [27]			75.0
ROCA [10]	96.4	Mary Land	75.5
Liu [12]			78.0
Tan (from [8])			58.1
Holappa [8]			63.7
LPQ [20]	2 = 2	All the state of t	74.5
PLS [24]	97.5	99.4	78.2
CHG	98.0	99.8	89.0

Method	fb	fc	dup1	dup2
LGBPHS [36]	98	97	74	71
HGPP [35]	97.6	98.9	77.7	76.1
SIS [13]	91	90	68	68
POEM [30]	97.6	96	77.8	76.5
PLS [24]	95.7	99.0	80.3	80.3
$\overline{\text{CHG}}$	97.5	98.5	85.6	84.6

Conclusion

- New feature descriptor (CCS-POP) generalizing POP for natural object (e.g. face) is proposed
- Empirically show the importance of not using histogram with a discriminative weighting scheme
- Complementary to existing descriptors
- Achieve state-of-the-art performance on both FRGC and FERET datasets

UMIACS