4.

polyurethane and polycarbonate;

comprising:

What Is Claimed Is:

1. A mo	olded plastic component having an integrally formed
badge formed in an injecti	on mold cavity having a shape defining the desired
plastic component, compris	sing:
film sheet h	aving top and bottom surfaces defining the molded
plastic component and bac	dge, the film sheet being selected from the group
consisting of polyester, poly	yurethane and polycarbonate, wherein the film sheet is
vacuum molded in a mold ca	avity to obtain a pre-form, the pre-form is placed in the
mold cavity; and	
a thermopla	stic elastomer injected into the mold cavity of the
injection mold to form a stru	uctural carrier bonded to the bottom surface of the pre-
form to form the molded pl	lastic component.
2. The p	plastic component of claim 1, wherein the thermoplastic
elastomer is selected from	the group consisting essentially of a thermoplastic
polyolefin, thermoplastic	urethane, polyester, polycarbonate, acrylonitrile/
butadiene/styrene, polyprop	oylene, a mixture of acrylonitrile/butadiene/styrene and
polycarbonate, and mixture	es thereof.
3. The p	plastic component of claim 1, wherein the film sheet has
a total thickness of 0.2 mils	S.

A method of manufacturing a molded plastic badge,

providing a film sheet having top and bottom surfaces defining a

badge, the film sheet being selected from the group consisting of polyester,

vacuum molding the film sheet in a mold cavity to obtain a pre-		
form;		
placing the pre-form in a mold cavity of an injection mold having		
a shape defining the desired plastic component; and		
injecting a thermoplastic elastomer into the mold cavity of the		
injection mold to generate a structural carrier for the pre-form, the generation of		
the structural carrier creating sufficient pressure and heat to bond the structural		
carrier to the bottom surface of the pre-form to form the molded laminate plastic		
badge.		
5. The method of claim 4, wherein the thermoplastic elastomer		
is selected from the group consisting essentially of a thermoplastic polyolefin,		
thermoplastic urethane, polyester, polycarbonate, acrylonitrile/butadiene/styrene,		
polypropylene, a mixture of acrylonitrile/butadiene/styrene and polycarbonate, and		
mixtures thereof.		
6. The method of claim 4, wherein the step of injecting a		
thermoplastic elastomer into the mold cavity occurs at a temperature of 420°F and		
at a pressure of 50 psi to 15,000 psi.		
7. The method of claim 4, further comprising the step of		
cutting the pre-form prior to the step of placing.		
8. The method of claim 4, wherein the structural carrier has a		
flexural modulus in the range of 15,000 to 400,000 psi.		
9. The method of claim 4, wherein the structural carrier has a		

durometer in the range of 15 Shore D to 100 Shore D.

1	10. The method of claim 4, wherein the film sheet has a total	
2	thickness of 0.2 mils.	
1		
1	11. A method of manufacturing a molded laminate automotive	
2	component with integral badge portion, comprising:	
3	inserting a film sheet into a vacuum forming station to form the film	
4	sheet into a predetermined automotive component shape to create a formed film	
5	sheet having top and bottom surfaces, the film sheet being selected from the group	
6	consisting of polyester, polyurethane and polycarbonate;	
7	placing the formed film sheet in an injection mold cavity having a	
8	shape defining the automotive component with integral badge portion;	
9	injecting a thermoplastic elastomer into the injection mold cavity,	
10	such that the thermoplastic elastomer is in mating contact with the bottom surface	
11	of the formed film sheet, to generate a structural carrier for the formed film sheet,	
12	the generation of the structural carrier creating sufficient pressure and heat to bond	
13	the structural carrier to the bottom surface of the formed film sheet to form the	
14	molded laminate automotive component with integral badge portion.	
1	12. A method of manufacturing a molded plastic component,	
2	comprising:	
3	providing a film sheet having top and bottom surfaces, the film	
4	sheet being selected from the group consisting of polyester, polyurethane and	
5	polycarbonate;	
6	vacuum molding the film sheet in a mold cavity to obtain a pre-	
7	form;	
8	placing the pre-form in a mold cavity of an injection mold having	
9	a shape defining the desired plastic component; and	
10	injecting a thermoplastic elastomer into the mold cavity of the	
11	injection mold to generate a structural carrier for the pre-form, the generation of	

	VEI 0203 F 03 -1/-	
12	the structural carrier creating sufficient pressure and heat to bond the structural	
13	carrier to the bottom surface of the pre-form to form the molded laminate plastic	
14	component wherein the film sheet is coated with a layer of acrylic color and	
15	polyvinylidine fluoride and an acrylic clear coat layer.	
1	13. The method of claim 12, wherein the polyvinylidine fluoride	
2	comprises more than 50% of the total thickness of the film sheet.	
1	14. The method of claim 12, wherein the thermoplastic	
2	elastomer is selected from the group consisting of a thermoplastic polyolefin,	
3	thermoplastic urethane, polyester, polycarbonate, acrylonitrile/butadiene/styrene,	
4	polypropylene, a mixture of acrylonitrile/butadiene/styrene and polycarbonate, and	
5	mixtures thereof.	
1	15. The method of claim 12, wherein the step of injecting a	
2	thermoplastic elastomer into the mold cavity occurs at a temperature of 420°F and	
3	at a pressure of 50 psi to 15,000 psi.	
1	16. The method of claim 12, further comprising the step of	
2	cutting the pre-form prior to the step of placing.	
1	17. The method of claim 12, wherein the structural carrier has	

- 17. The method of claim 12, wherein the structural carrier has a flexural modulus in the range of 15,000 to 400,000 psi.
- 1 18. The method of claim 12, wherein the structural carrier has 2 a durometer in the range of 15 Shore D to 100 Shore D.
- 1 19. The method of claim 12, wherein the film sheet has a total thickness of 0.2 mils.

1	20.	A method of manufacturing a molded laminate automotive
2	component and badg	ge assembly, comprising:

inserting a film sheet into a vacuum forming station to form the film sheet into a predetermined shape corresponding to the component and badge assembly to create a formed film sheet having top and bottom surfaces, the film sheet being selected from the group consisting of polyester, polyurethane and polycarbonate;

placing the formed film sheet in a mold cavity of an injection mold having a shape defining the component and badge assembly;

injecting a thermoplastic elastomer into the mold cavity of the injection mold, such that the thermoplastic elastomer is in mating contact with the bottom surface of the formed film sheet, to generate a structural carrier for the formed film sheet, the generation of the structural carrier creating sufficient pressure and heat to bond the structural carrier to the bottom surface of the formed film sheet to form the molded laminate component and badge assembly wherein the film sheet is coated with a layer of acrylic color and polyvinylidine fluoride and an acrylic clear coat layer.

21. The method of claim 20, wherein the polyvinylidine fluoride comprises more than 50% of the total thickness of the film sheet.