TD15-Convergence et approximation

Exercice 1

Soit X une variable aléatoire suivant une loi de Poisson de paramètre $\lambda>0$. Montrer l'inégalité suivante pour tout a>0 :

$$P(|X - \lambda| \ge a) \le \frac{\lambda}{a^2}.$$

Exercice 2

Soit X une variable aléatoire à valeurs dans \mathbb{N}^* de loi donnée par :

$$\forall i \in \mathbb{N}^*, \quad P(X=i) = \sum_{k=i}^{+\infty} \frac{1}{k} \left(\frac{1}{2}\right)^2$$

On admet que $E(X) = \frac{3}{2}$ et $V(X) = \frac{11}{12}$.

- 1. Écrire l'inégalité de Bienaymé-Tchebychev pour X.
- 2. En déduire que $P(X \ge 3) \le \frac{11}{27}$.

Exercice 3

Soit x > 0. On considère $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes définies sur le même espace probabilisé et suivant la loi exponentielle de paramètre $\frac{1}{x}$. On pose, pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{i=1}^n X_i$.

- 1. Donner l'espérance et la variance de $\frac{S_n}{n}$.
- 2. Soit $\varepsilon > 0$. Montrer: $\lim_{n \to +\infty} P\left(\left|\frac{S_n}{n} x\right| \ge \varepsilon\right) = 0$.

Exercice 4

On considère $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes définies sur le même espace probabilisé, strictement positive et suivant la loi exponentielle de paramètre 1.

On pose $T_0 = 0$ et, pour tout $n \in \mathbb{N}^*$, $T_n = \sum_{i=1}^n X_i$.

1. Donner l'espérance de T_n .

- 2. Soit t > 0.
 - (a) Justifier que pour tout n > t, $[T_n < t] \subset [|T_n n| \ge n t]$.
 - (b) En déduire, à l'aide de l'inégalité de Bienaymé-Tchebychev, la valeur de $\lim_{n\to\infty} P\left(T_n < t\right)$.
 - (c) Montrer que l'événement $\bigcap_{k=1}^{+\infty} [T_k < t]$ est de probabilité nulle.

Exercice 5

Soit θ , ε des réels strictement positifs et $p \in]0,1[$. On pose q=1-p.

On considère $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes définies sur le même espace probabilisé et suivant la loi $\mathcal{B}(p)$.

On pose, pour tout $n \in \mathbb{N}^*$, $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

- 1. Établir : $P(\overline{X}_n p \ge \varepsilon) = P(e^{n\theta \overline{X}_n} \ge e^{n\theta(p+\varepsilon)})$
- 2. Déduire : $P(\overline{X}_n p \ge \varepsilon) \le e^{n(\ln(pe^{\theta} + q) \theta(p + \varepsilon))}$

Exercice 6

- 1. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes de loi $\mathcal{U}([0,1])$.
 - (a) Montrer que $(\max(X_1,...,X_n))_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire suivant une loi certaine.
 - (b) Montrer que $(\min(X_1,...,X_n))_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire suivant une loi certaine.
- 2. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires telle que pour tout $n\in\mathbb{N}^*$, $X_n\hookrightarrow\mathcal{B}\left(\left(1-\frac{1}{n}\right)^n\right)$. Montrer que $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire de loi $\mathcal{B}(e^{-1})$.
- 3. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires telle que pour tout $n\in\mathbb{N}^*$, $X_n\hookrightarrow\mathcal{U}\left(\left[0,1-\frac{1}{n}\right]\right)$. Montrer que $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire dont on précisera la loi.

Exercice 7

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires telle que pour tout $n\in\mathbb{N}^*$, $X_n\hookrightarrow\mathcal{N}\left(0,\frac{1}{n}\right)$.

- 1. Pour tout $n \in \mathbb{N}^*$, exprimer F_{X_n} en fonction la fonction de répartition Φ d'une variable aléatoire suivant la loi $\mathcal{N}(0,1)$.
- 2. En déduire que $\lim_{n\to +\infty}F_{X_n}(t)=1$ si t>0 et $\lim_{n\to +\infty}F_{X_n}(t)=0$ si t<0.
- 3. En déduire que $(X_n)_{n \in \mathbb{N}^*}$ converge en loi vers une loi certaine.

Exercice 8

On considère trois variables aléatoires X, Y et Z mutuellement indépendantes et suivant toutes les trois la loi binomiale $\mathcal{B}(10,\frac{1}{2})$.

On pose $R = \frac{1}{3}(X + Y + Z)$.

- 1. Quelle est la loi de X + Y + Z?
- 2. Soit Φ la fonction de répartition d'une variable aléatoire suivant la loi $\mathcal{N}(0,1)$. On donne $\Phi\left(\sqrt{\frac{6}{5}}\right)\simeq 0,86$. Donner une valeur approchée de $P(R\geq 4)$.

Exercice 9

On considère 1000 variables aléatoires T_1, \ldots, T_{1000} définies sur un même espace probabilisé (Ω, \mathcal{A}, P) suivant toutes la même loi, indépendantes, ayant une espérance égale à 3 et une variance égale à $\frac{1}{2}$. On pose $S = \frac{1}{1000} \sum_{i=1}^{1000} T_i$.

On note Φ la fonction de répartition de la loi normale centrée réduite et on donne la valeur approchée $\Phi(\sqrt{5}) \simeq 0,978$. Donner une valeur approchée de $P(2,95 < S \leq 3,05)$.

Exercice 10

On considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires indépendantes suivant la loi de Poisson de paramètre 1. Pour tout $n\in\mathbb{N}^*$, on pose

$$S_n = \sum_{k=1}^n X_k$$
 et $u_n = e^{-n} \sum_{i=1}^n \frac{n^i}{i!}$.

- 1. Donner la loi de S_n , son espérance et sa variance.
- 2. Pour tout $n \in \mathbb{N}^*$, exprimer u_n à l'aide de la variable S_n .
- 3. En déduire, en appliquant le théorème central limite, que $(u_n)_{n \in \mathbb{N}^*}$ possède une limite et la déterminer.