## Shipinsky KS 26012025-091902

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

| Freq           | $s_{11}$ |       | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |        |
|----------------|----------|-------|----------|------|----------|------|----------|--------|
| $\mathrm{GHz}$ | MAG      | ANG   | MAG      | ANG  | MAG      | ANG  | MAG      | ANG    |
| 1.0            | 0.557    | 164.3 | 5.587    | 74.3 | 0.050    | 58.2 | 0.270    | -42.2  |
| 1.6            | 0.579    | 144.0 | 3.515    | 58.3 | 0.074    | 56.2 | 0.253    | -50.0  |
| 2.2            | 0.616    | 127.5 | 2.526    | 43.8 | 0.098    | 51.5 | 0.238    | -62.4  |
| 2.8            | 0.661    | 113.0 | 1.958    | 30.1 | 0.119    | 45.7 | 0.226    | -78.0  |
| 3.4            | 0.700    | 101.2 | 1.584    | 18.4 | 0.139    | 40.2 | 0.217    | -96.2  |
| 4.0            | 0.738    | 91.4  | 1.317    | 6.9  | 0.157    | 34.5 | 0.222    | -116.1 |
| 4.6            | 0.768    | 82.9  | 1.110    | -3.3 | 0.173    | 29.1 | 0.237    | -135.2 |

**Найти** точку (см. рисунок 1), соответствующую  $s_{22}$  на частоте 4  $\Gamma\Gamma$ ц.



Рисунок 1 – Кривые  $s_{11}$  и  $s_{22}$ 

- 1) A
- 2) B
- 3) C
- 4) D

**Даны** значения s-параметров:

| Freq | $s_{11}$ |        | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |        |
|------|----------|--------|----------|------|----------|------|----------|--------|
| GHz  | MAG      | ANG    | MAG      | ANG  | MAG      | ANG  | MAG      | ANG    |
| 1.7  | 0.338    | -173.9 | 7.988    | 79.7 | 0.058    | 66.1 | 0.243    | -70.7  |
| 1.8  | 0.342    | -176.0 | 7.561    | 78.3 | 0.061    | 66.0 | 0.232    | -72.8  |
| 1.9  | 0.344    | -178.6 | 7.147    | 76.2 | 0.064    | 65.5 | 0.222    | -74.8  |
| 2.0  | 0.345    | 179.6  | 6.714    | 75.0 | 0.067    | 65.1 | 0.214    | -77.1  |
| 2.2  | 0.350    | 176.3  | 6.119    | 72.6 | 0.073    | 64.5 | 0.200    | -81.3  |
| 2.4  | 0.350    | 172.9  | 5.544    | 69.8 | 0.079    | 63.5 | 0.190    | -85.2  |
| 2.6  | 0.355    | 170.0  | 5.114    | 67.8 | 0.084    | 62.7 | 0.181    | -89.0  |
| 2.8  | 0.356    | 167.0  | 4.738    | 65.3 | 0.090    | 61.7 | 0.176    | -92.5  |
| 3.0  | 0.360    | 164.1  | 4.404    | 63.3 | 0.096    | 60.8 | 0.171    | -96.0  |
| 3.5  | 0.365    | 158.0  | 3.758    | 58.1 | 0.111    | 58.2 | 0.163    | -103.4 |
| 4.0  | 0.371    | 152.2  | 3.283    | 53.0 | 0.125    | 55.3 | 0.157    | -109.8 |

и частоты  $f_{\rm H}=2.2$  ГГц,  $f_{\rm B}=3$  ГГц. **Найти** неравномерность усиления в полосе  $f_{\rm H}...f_{\rm B}$ , используя рисунок 2.



Рисунок 2 – Частотная характеристика усиления

- 1) 2.9 дБ
- 2) 7.7 дБ
- 3) 1.4 дБ
- 4) 2.6 дБ

**Задан** двухполюсник на рисунке 3, причём R1 = 21.99 Om.



Рисунок 3 – Двухполюсник

**Найти** полуокружность (см. рисунок 4), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до  $\infty$ .



Рисунок 4 – Полуокружности  $\Gamma_i$  на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

**Найти** точку (см. рисунок 5), соответствующую коэффициенту отражения от нормированного импеданса  $z=1.63+1.8\mathrm{i}$  .



Рисунок 5 – Точки  $s_i$  на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

**Даны** значения s-параметров:

| Freq | $s_{11}$ |       | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |        |
|------|----------|-------|----------|------|----------|------|----------|--------|
| GHz  | MAG      | ANG   | MAG      | ANG  | MAG      | ANG  | MAG      | ANG    |
| 4.5  | 0.388    | 146.3 | 2.880    | 47.8 | 0.140    | 52.8 | 0.145    | -114.6 |
| 5.0  | 0.393    | 142.2 | 2.599    | 43.2 | 0.154    | 49.5 | 0.135    | -120.4 |
| 5.5  | 0.398    | 137.8 | 2.371    | 38.3 | 0.168    | 46.2 | 0.121    | -126.9 |
| 6.0  | 0.406    | 132.7 | 2.181    | 33.6 | 0.181    | 42.9 | 0.103    | -135.0 |
| 6.5  | 0.418    | 127.4 | 2.017    | 28.9 | 0.194    | 39.4 | 0.088    | -148.8 |
| 7.0  | 0.433    | 121.7 | 1.872    | 24.0 | 0.207    | 36.0 | 0.073    | -167.0 |
| 7.5  | 0.455    | 117.7 | 1.746    | 19.5 | 0.219    | 32.6 | 0.070    | 167.2  |
| 8.0  | 0.480    | 114.2 | 1.631    | 14.9 | 0.231    | 28.8 | 0.087    | 138.9  |
| 8.5  | 0.511    | 110.8 | 1.523    | 10.3 | 0.241    | 25.0 | 0.126    | 116.7  |
| 9.0  | 0.541    | 107.8 | 1.425    | 6.2  | 0.249    | 21.5 | 0.177    | 103.3  |
| 9.5  | 0.572    | 104.9 | 1.338    | 2.5  | 0.256    | 18.4 | 0.237    | 96.8   |

и частоты  $f_{\rm H}=6$  ГГц,  $f_{\rm B}=8$  ГГц. **Найти** модуль  $s_{12}$  в дБ на частоте  $f_{\rm H}$ .

- 1) 6.8 дБ
- 2) -7.8 дБ
- 3) -19.7 дБ
- 4) -14.8 дБ

**Даны** значения s-параметров:

| Freq | $s_{11}$ |        | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |        |
|------|----------|--------|----------|------|----------|------|----------|--------|
| GHz  | MAG      | ANG    | MAG      | ANG  | MAG      | ANG  | MAG      | ANG    |
| 1.2  | 0.456    | -137.1 | 23.483   | 99.6 | 0.024    | 55.6 | 0.402    | -63.2  |
| 1.9  | 0.459    | -159.5 | 15.225   | 85.2 | 0.032    | 57.3 | 0.288    | -76.2  |
| 2.6  | 0.466    | -173.5 | 11.106   | 74.9 | 0.040    | 57.9 | 0.241    | -89.1  |
| 3.3  | 0.476    | 176.6  | 8.722    | 67.2 | 0.049    | 57.4 | 0.226    | -100.0 |
| 4.0  | 0.484    | 168.2  | 7.159    | 59.6 | 0.059    | 56.3 | 0.217    | -106.8 |
| 4.7  | 0.497    | 161.2  | 6.065    | 52.4 | 0.068    | 53.7 | 0.203    | -115.5 |
| 5.4  | 0.498    | 155.4  | 5.213    | 45.9 | 0.078    | 51.7 | 0.191    | -121.1 |
| 6.1  | 0.506    | 148.3  | 4.638    | 39.2 | 0.089    | 47.6 | 0.179    | -130.7 |
| 7.0  | 0.527    | 138.2  | 3.999    | 30.1 | 0.100    | 43.1 | 0.151    | -146.7 |

и частоты  $f_{\scriptscriptstyle \rm H}=1.9$   $\Gamma\Gamma_{\rm II},\ f_{\scriptscriptstyle \rm B}=7$   $\Gamma\Gamma_{\rm II}.$ 

**Найти** обратные потери по выходу на  $f_{\rm H}$ .

- 1) 8.2 дБ
- 2) 21.6 дБ
- 3) 16.4 дБ
- 4) 10.8 дБ