Getting started with ML and Support Vector Classifiers (SVC)

Björn Kasper (kasper.bjoern@bgetem.de) ${\rm August}\ 2,\,2022$

This is a test abstract.

Contents

1	Introduction	2						
2 Load globally used libraries and set plot parameters								
3	STEP 0: Get the data	3						
4	4.4.1 Find gaps in dataset 4.4.2 Find and remove duplicates in dataset 4.5 Avoidance of tendencies due to bias 4.5.1 Count occurrences of unique values 4.5.2 Display Histogram 4.6 First idea of correlations in data set 4.6.1 Visualise data with correlation heatmap 4.6.2 Visualise data with scatter plot	3 4 4 5 8 9 10 17 21 22 24 24 26 27						
5	STEP 2: Prepare the data	28						
6	6.1 Operating principal	28 29 29 29						
7	STEP 4: Evaluate the results - metrics	29						
		30 30						
8	8.1 Prepare dataset 8.2 Plotting function 8.3 Vary kernel parameter 8.4 Vary gamma parameter 8.5 Vary C parameter	31 32 32 34 37 41						

1 Introduction

This notebook was basically inspired by: $% \left\{ \left\{ \left\{ \right\} \right\} \right\} =\left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\}$

- In Depth: Parameter tuning for SVC
- SVM Hyperparameter Tuning using GridSearchCV:

The goal of this notebook is to show the basic steps in machine learning and the influence of choosing the "right" the kernel of a **support vector classifier (SVC)**. Furthermore, the SVC parameters are described and their effect on the classification result is shown.

Following steps will be shown in next **chapters**:

- STEP 0: Get the data
- STEP 1: Exploring the data
- STEP 2: Prepare the data
- STEP 3: Classify by support vector classifier SVC
- STEP 4: Evaluate the results metrics
- STEP 5: Vary parameters

2 Load globally used libraries and set plot parameters

```
[40]: import time

from IPython.display import HTML

import pandas as pd
import matplotlib.pyplot as plt
from sklearn import svm, metrics
import seaborn as sns
%matplotlib inline
```

3 STEP 0: Get the data

Since this is intended to be an introduction to the world of machine learning (ML), this step does NOT deal with the design of an application suitable for ML and the acquisition of valid measurement data.

In order to get to know the typical work steps and ML tools, the use of well-known and well-researched data sets is clearly recommended.

In the further course, the famous Iris flower data sets will be used. It can be downloaded on Iris Flower Dataset | Kaggle. Furthermore, the dataset is included in Python in the machine learning package Scikit-learn, so that users can access it without having to find a special source for it.

```
[1]: # import some data to play with irisdata_df = pd.read_csv('./datasets/IRIS_flower_dataset_kaggle.csv')
```

4 STEP 1: Exploring the data

4.1 Goals of exploration

The objectives of the exploration of the dataset are as follows:

- 1. Clarify the **origins history**:
 - Where did the data come from? => Contact persons and licensing permissions?
 - Who obtained the data and with which (measurement) methods? => Did systematic errors occur during the acquisition?
 - What were they originally intended for? => Can they be used for my application?
- 2. Overview of the internal **structure and organisation** of the data:
 - Which columns are there? => With which methods can they be read in (e.g. import of CSV files)?
 - What do they contain for (physical) measured variables? => Which technical or physical correlations exist?
 - Which data formats or types are there? => Do they have to be converted?
 - In which value ranges do the measurement data vary? => Are normalizations necessary?
- 3. Identify **anomalies** in the data sets:
 - Do the data have **gaps** or **duplicates**? => Does the data set needs to be cleaned?

- Are there obvious erroneous entries or measurement outliers? => Does (statistical) filtering have to be carried out?
- 4. Avoidance of tendencies due to bias:
 - Are all possible classes included in the dataset and equally distributed? => Does the data set need to be enriched with additional data for balance?
- 5. Find a first rough idea of which correlations could be in the data set

4.2 Clarify the origins history

The *Iris* flower data sets is a multivariate data set introduced by the British statistician and biologist *Ronald Fisher* in his paper "The use of multiple measurements in taxonomic problems as an example of linear discriminant analysis" (1936). It is sometimes called *Anderson's Iris data set* because Edgar Anderson collected the data to quantify the morphologic variation of Iris flowers of three related species (source: Iris flower data set).

The dataset is published in Public Domain with a CC0-License.

This dataset became a typical test case for many statistical classification techniques in machine learning such as **support vector machines**.

- [..] measurements of the flowers of fifty plants each of the two species *Iris setosa* and *I. versicolor*, found **growing together in the same colony** and measured by Dr E. Anderson [..] (source: R. A. Fisher (1936). "The use of multiple measurements in taxonomic problems". Annals of Eugenics)
- [..] Iris virginica, differs from the two other samples in **not being taken from the same natural colony** [..] (source: ibidem)

4.3 Overview of the internal structure and organisation of the data

The data set consists of 50 samples from each of three species of Iris (*Iris setosa*, *Iris virginica* and *Iris versicolor*), so there are 150 total samples. Four features were measured from each sample: the length and the width of the sepals and petals, in centimetres.

Here is a principle illustration of a flower with sepal and petal:

<IPython.core.display.HTML object>

Here are pictures of the three different Iris species (*Iris setosa*, *Iris virginica* and *Iris versicolor*). Given the dimensions of the flower, it will be possible to predict the class of the flower.

<IPython.core.display.HTML object>

4.3.1 Inspect structure of dataframe

Print first or last 5 rows of dataframe:

```
[3]: irisdata_df.head()
```

[3]:	sepal_length	${\tt sepal_width}$	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
[4]: irisdata_df.tail()
```

[4]:	sepal_length	sepal_width	petal_length	petal_width	species
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

While printing a dataframe - only an abbreviated view of the dataframe is shown :(
Default setting in the pandas library makes it to display only 5 lines from head and from tail.

```
[6]: irisdata_df
```

[6]:	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
	•••	•••	•••	•••	•••
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

[150 rows x 5 columns]

To print all rows of a dataframe, the option display.max_rows has to set to None in pandas:

```
[7]: pd.set_option('display.max_rows', None)
irisdata_df
```

[7]:	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
5	5.4	3.9	1.7	0.4	Iris-setosa
6	4.6	3.4	1.4	0.3	Iris-setosa
7	5.0	3.4	1.5	0.2	Iris-setosa
8	4.4	2.9	1.4	0.2	Iris-setosa
9	4.9	3.1	1.5	0.1	Iris-setosa
10	5.4	3.7	1.5	0.2	Iris-setosa
11	4.8	3.4	1.6	0.2	Iris-setosa
12	4.8	3.0	1.4	0.1	Iris-setosa
13	4.3	3.0	1.1	0.1	Iris-setosa
14	5.8	4.0	1.2	0.2	Iris-setosa
15	5.7	4.4	1.5	0.4	Iris-setosa
16	5.4	3.9	1.3	0.4	Iris-setosa
17	5.1	3.5	1.4	0.3	Iris-setosa
18	5.7	3.8	1.7	0.3	Iris-setosa
19	5.1	3.8	1.5	0.3	Iris-setosa
20	5.4	3.4	1.7	0.2	Iris-setosa
21	5.1	3.7	1.5	0.4	Iris-setosa
22	4.6	3.6	1.0	0.2	Iris-setosa
23	5.1	3.3	1.7	0.5	Iris-setosa
24	4.8	3.4	1.9	0.2	Iris-setosa
25	5.0	3.0	1.6	0.2	Iris-setosa
26	5.0	3.4	1.6	0.4	Iris-setosa
27	5.2	3.5	1.5	0.2	Iris-setosa
28	5.2	3.4	1.4	0.2	Iris-setosa
29	4.7	3.2	1.6	0.2	Iris-setosa
30	4.8	3.1	1.6	0.2	Iris-setosa
31	5.4	3.4	1.5	0.4	Iris-setosa
32	5.2	4.1	1.5	0.1	Iris-setosa
33	5.5	4.2	1.4	0.2	Iris-setosa
34	4.9	3.1	1.5	0.1	Iris-setosa
35	5.0	3.2	1.2	0.2	Iris-setosa
36	5.5	3.5	1.3	0.2	Iris-setosa
37	4.9	3.1	1.5	0.1	Iris-setosa
38	4.4	3.0	1.3	0.2	Iris-setosa
39	5.1	3.4	1.5	0.2	Iris-setosa
40	5.0	3.5	1.3	0.3	Iris-setosa
41	4.5	2.3	1.3	0.3	Iris-setosa
42	4.4	3.2	1.3	0.2	Iris-setosa
43	5.0	3.5	1.6	0.6	Iris-setosa
44	5.1	3.8	1.9	0.4	Iris-setosa
45	4.8	3.0	1.4	0.3	Iris-setosa
46	5.1	3.8	1.6	0.2	Iris-setosa
47	4.6	3.2	1.4	0.2	Iris-setosa
48	5.3	3.7	1.5	0.2	Iris-setosa
49	5.0	3.3	1.4	0.2	Iris-setosa
50	7.0	3.2	4.7	1.4	Iris-versicolor
51	6.4	3.2	4.5	1.5	Iris-versicolor
52	6.9	3.1	4.9	1.5	Iris-versicolor
53	5.5	2.3	4.0	1.3	Iris-versicolor
54	6.5	2.8	4.6	1.5	Iris-versicolor
55	5.7	2.8	4.5	1.3	Iris-versicolor

56	6.3	3.3	4.7	1.6	Iris-versicolor
57	4.9	2.4	3.3	1.0	Iris-versicolor
58	6.6	2.9	4.6	1.3	Iris-versicolor
59	5.2	2.7	3.9	1.4	Iris-versicolor
60	5.0	2.0	3.5	1.0	Iris-versicolor
61	5.9	3.0	4.2	1.5	Iris-versicolor
62	6.0	2.2	4.0	1.0	Iris-versicolor
63	6.1	2.9	4.7	1.4	Iris-versicolor
64	5.6	2.9	3.6	1.3	Iris-versicolor
65	6.7	3.1	4.4	1.4	Iris-versicolor
66	5.6	3.0	4.5	1.5	Iris-versicolor
67	5.8	2.7	4.1	1.0	Iris-versicolor
68	6.2	2.2	4.5	1.5	Iris-versicolor
69	5.6	2.5	3.9	1.1	Iris-versicolor
70	5.9	3.2	4.8	1.8	Iris-versicolor
71	6.1	2.8	4.0	1.3	Iris-versicolor
72	6.3	2.5	4.9	1.5	Iris-versicolor
73	6.1	2.8	4.7	1.2	Iris-versicolor
74	6.4	2.9	4.3	1.3	Iris-versicolor
75	6.6	3.0	4.4	1.4	Iris-versicolor
76	6.8	2.8	4.8	1.4	Iris-versicolor
77	6.7	3.0	5.0	1.7	Iris-versicolor
78	6.0	2.9	4.5	1.5	Iris-versicolor
79	5.7	2.6	3.5	1.0	Iris-versicolor
80	5.5	2.4	3.8	1.1	Iris-versicolor
81	5.5	2.4	3.7	1.0	Iris-versicolor
82	5.8	2.7	3.9	1.2	Iris-versicolor
83	6.0	2.7	5.1	1.6	Iris-versicolor
84	5.4	3.0	4.5	1.5	Iris-versicolor
85	6.0	3.4	4.5	1.6	Iris-versicolor
86	6.7	3.1	4.7	1.5	Iris-versicolor
87	6.3	2.3	4.4	1.3	Iris-versicolor
88	5.6	3.0	4.1	1.3	Iris-versicolor
89	5.5	2.5	4.0	1.3	Iris-versicolor
90	5.5	2.6	4.4	1.2	Iris-versicolor
91	6.1	3.0	4.6	1.4	Iris-versicolor
		2.6		1.4	
92	5.8		4.0		Iris-versicolor
93	5.0	2.3	3.3	1.0	Iris-versicolor
94	5.6	2.7	4.2	1.3	Iris-versicolor
95	5.7	3.0	4.2	1.2	Iris-versicolor
96	5.7	2.9	4.2	1.3	Iris-versicolor
97	6.2	2.9	4.3	1.3	Iris-versicolor
98	5.1	2.5	3.0	1.1	Iris-versicolor
99	5.7	2.8	4.1	1.3	Iris-versicolor
100	6.3	3.3	6.0	2.5	Iris-virginica
101	5.8	2.7	5.1	1.9	Iris-virginica
					_
102	7.1	3.0	5.9	2.1	Iris-virginica
103	6.3	2.9	5.6	1.8	Iris-virginica
104	6.5	3.0	5.8	2.2	Iris-virginica
105	7.6	3.0	6.6	2.1	Iris-virginica
106	4.9	2.5	4.5	1.7	Iris-virginica
107	7.3	2.9	6.3	1.8	Iris-virginica
108	6.7	2.5	5.8	1.8	Iris-virginica
109	7.2	3.6	6.1	2.5	Iris-virginica
110	6.5	3.2	5.1	2.0	Iris-virginica
111	6.4	2.7	5.3	1.9	Iris virginica
					_
112	6.8	3.0	5.5	2.1	Iris-virginica

113	5.7	2.5	5.0	2.0	Iris-virginica
114	5.8	2.8	5.1	2.4	Iris-virginica
115	6.4	3.2	5.3	2.3	Iris-virginica
116	6.5	3.0	5.5	1.8	Iris-virginica
117	7.7	3.8	6.7	2.2	Iris-virginica
118	7.7	2.6	6.9	2.3	Iris-virginica
119	6.0	2.2	5.0	1.5	Iris-virginica
120	6.9	3.2	5.7	2.3	Iris-virginica
121	5.6	2.8	4.9	2.0	Iris-virginica
122	7.7	2.8	6.7	2.0	Iris-virginica
123	6.3	2.7	4.9	1.8	Iris-virginica
124	6.7	3.3	5.7	2.1	Iris-virginica
125	7.2	3.2	6.0	1.8	Iris-virginica
126	6.2	2.8	4.8	1.8	Iris-virginica
127	6.1	3.0	4.9	1.8	Iris-virginica
128	6.4	2.8	5.6	2.1	Iris-virginica
129	7.2	3.0	5.8	1.6	Iris-virginica
130	7.4	2.8	6.1	1.9	Iris-virginica
131	7.9	3.8	6.4	2.0	Iris-virginica
132	6.4	2.8	5.6	2.2	Iris-virginica
133	6.3	2.8	5.1	1.5	Iris-virginica
134	6.1	2.6	5.6	1.4	Iris-virginica
135	7.7	3.0	6.1	2.3	Iris-virginica
136	6.3	3.4	5.6	2.4	Iris-virginica
137	6.4	3.1	5.5	1.8	Iris-virginica
138	6.0	3.0	4.8	1.8	Iris-virginica
139	6.9	3.1	5.4	2.1	Iris-virginica
140	6.7	3.1	5.6	2.4	Iris-virginica
141	6.9	3.1	5.1	2.3	Iris-virginica
142	5.8	2.7	5.1	1.9	Iris-virginica
143	6.8	3.2	5.9	2.3	Iris-virginica
144	6.7	3.3	5.7	2.5	Iris-virginica
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

4.3.2 Get data types

[8]: irisdata_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 5.3+ KB

[9]: irisdata_df.describe()

```
[9]:
           sepal_length sepal_width petal_length petal_width
             150.000000
                          150.000000
                                         150.000000
                                                     150.000000
     count
               5.843333
                             3.054000
                                           3.758667
                                                        1.198667
    mean
                                                        0.763161
     std
               0.828066
                             0.433594
                                           1.764420
    min
               4.300000
                             2.000000
                                           1.000000
                                                        0.100000
     25%
                5.100000
                             2.800000
                                           1.600000
                                                        0.300000
     50%
                5.800000
                             3.000000
                                           4.350000
                                                        1.300000
     75%
                                                        1.800000
                6.400000
                             3.300000
                                           5.100000
                7.900000
                             4.400000
                                           6.900000
                                                        2.500000
    max
```

4.3.3 Get data ranges with Boxplots

Boxplots can be used to explore the data ranges in the data set. These also provide information about **outliers**.

```
[36]: sns.set_context("notebook", font_scale=1.3, rc={"lines.linewidth": 2.0})
      sns.set_style("whitegrid")
      #sns.set_style("white")
      fig, axs = plt.subplots(2, 2, figsize=(12, 10))
      fn = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
      cn = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
      box1 = sns.boxplot(x = 'species', y = 'sepal_length', data = irisdata_df, order =__
       \rightarrowcn, ax = axs[0,0])
      box2 = sns.boxplot(x = 'species', y = 'sepal_width', data = irisdata_df, order = __
       \rightarrowcn, ax = axs[0,1])
      box3 = sns.boxplot(x = 'species', y = 'petal_length', data = irisdata_df, order = __

\hookrightarrow \text{cn}, \text{ ax } = \text{axs}[1,0])

      box4 = sns.boxplot(x = 'species', y = 'petal_width', data = irisdata_df, order = __
       \rightarrowcn, ax = axs[1,1])
      # add some spacing between subplots
      fig.tight_layout(pad=2.0)
      plt.show()
```


4.4 Identify anomalies in the data sets

4.4.1 Find gaps in dataset

This section was inspired by Working with Missing Data in Pandas.

Checking for missing values using isnull() In order to check for missing values in Pandas DataFrame, we use the function isnull(). This function returns a dataframe of Boolean values which are True for NaN values.

```
[37]: pd.set_option('display.max_rows', 40)
      pd.set_option('display.min_rows', 30)
[38]:
      irisdata_df.isnull()
[38]:
            sepal_length
                           sepal_width
                                         petal_length
                                                        petal_width
                                                                       species
      0
                   False
                                 False
                                                False
                                                               False
                                                                         False
      1
                   False
                                 False
                                                False
                                                               False
                                                                         False
      2
                                                False
                                                                         False
                   False
                                 False
                                                               False
      3
                   False
                                 False
                                                 False
                                                               False
                                                                         False
      4
                   False
                                 False
                                                False
                                                               False
                                                                         False
      5
                   False
                                 False
                                                 False
                                                               False
                                                                         False
      6
                   False
                                 False
                                                False
                                                               False
                                                                         False
      7
                   False
                                 False
                                                False
                                                               False
                                                                         False
      8
                   False
                                 False
                                                False
                                                               False
                                                                         False
      9
                   False
                                 False
                                                False
                                                               False
                                                                         False
```

10	False	False	False	False	False
11	False	False	False	False	False
12	False	False	False	False	False
13	False	False	False	False	False
14	False	False	False	False	False
	***	•••			
135	False	False	False	False	False
136	False	False	False	False	False
137	False	False	False	False	False
138	False	False	False	False	False
139	False	False	False	False	False
140	False	False	False	False	False
141	False	False	False	False	False
142	False	False	False	False	False
143	False	False	False	False	False
144	False	False	False	False	False
145	False	False	False	False	False
146	False	False	False	False	False
147	False	False	False	False	False
148	False	False	False	False	False
149	False	False	False	False	False

[150 rows x 5 columns]

Show only the gaps:

```
[5]: irisdata_df_gaps = irisdata_df[irisdata_df.isnull().any(axis=1)]
irisdata_df_gaps
```

[5]: Empty DataFrame

Columns: [sepal_length, sepal_width, petal_length, petal_width, species]
Index: []

Index. []

Fine - this dataset seems to be complete:)

So let's look for something else for exercise: employes.csv $\,$

```
[39]: # import data to dataframe from csv file
employees_df = pd.read_csv("./datasets/employees_edit.csv")
employees_df
```

[39]:	First Name	Gender	Start Date La	st Login Time	Salary	Bonus %	\
0	Douglas	Male	8/6/1993	12:42 PM	97308	6945.00	
1	Thomas	Male	3/31/1996	6:53 AM	61933	4.17	
2	Maria	Female	4/23/1993	11:17 AM	130590	11858.00	
3	Jerry	Male	3/4/2005	1:00 PM	138705	9.34	
4	Larry	Male	1/24/1998	4:47 PM	101004	1389.00	
5	Dennis	Male	4/18/1987	1:35 AM	115163	10125.00	
6	Ruby	Female	8/17/1987	4:20 PM	65476	10012.00	
7	NaN	Female	7/20/2015	10:43 AM	45906	11598.00	
8	Angela	Female	11/22/2005	6:29 AM	95570	18523.00	
9	Frances	Female	8/8/2002	6:51 AM	139852	7524.00	
10	Louise	Female	8/12/1980	9:01 AM	63241	15132.00	
11	Julie	Female	10/26/1997	3:19 PM	102508	12637.00	
12	Brandon	Male	12/1/1980	1:08 AM	112807	17492.00	
13	Gary	Male	1/27/2008	11:40 PM	109831	5831.00	
14	Kimberly	Female	1/14/1999	7:13 AM	41426	14543.00	
			-,,				•

•••	•••	•••	•••	•••	•••		•••	
989	Stephen	NaN	7/10/1983		8:10	ΡM	85668	1909.00
990	Donna	Female	11/26/1982		7:04	AM	82871	17999.00
991	Gloria	Female	12/8/2014		5:08	AM	136709	10331.00
992	Alice	Female	10/5/2004		9:34	AM	47638	11209.00
993	Justin	NaN	2/10/1991		4:58	ΡM	38344	3794.00
994	Robin	Female	7/24/1987		1:35	ΡM	100765	10982.00
995	Rose	Female	8/25/2002		5:12	AM	134505	11051.00
996	Anthony	Male	10/16/2011		8:35	AM	112769	11625.00
997	Tina	Female	5/15/1997		3:53	ΡM	56450	19.04
998	George	Male	6/21/2013		5:47	ΡM	98874	4479.00
999	Henry	NaN	11/23/2014		6:09	AM	132483	16655.00
1000	Phillip	Male	1/31/1984		6:30	AM	42392	19675.00
1001	Russell	Male	5/20/2013		12:39	ΡM	96914	1421.00
1002	Larry	Male	4/20/2013		4:45	ΡM	60500	11985.00
1003	Albert	Male	5/15/2012		6:24	ΡM	129949	10169.00

	Senior	Management	Team
0		True	Marketing
1		True	NaN
2		False	Finance
3		True	Finance
4		True	Client Services
5		False	Legal
6		True	Product
7		NaN	Finance
8		True	Engineering
9		True	Business Development
10		True	NaN
11		True	Legal
12		True	Human Resources
13		False	Sales
14		True	Finance
		•••	
989		False	Legal
990		False	Marketing
991		True	Finance
992		False	Human Resources
993		False	Legal
994		True	Client Services
995		True	Marketing
996		True	Finance
997		True	Engineering
998		True	Marketing
999		False	Distribution
1000		False	Finance
1001		False	Product
1002		False	Business Development
1003		True	Sales

[1004 rows x 8 columns]

Show only the gaps from this gappy dataset again:

```
[40]: employees_df_gaps = employees_df[employees_df.isnull().any(axis=1)]
employees_df_gaps
```

[40]:		First Name	Gender	Start Date	Last Logi	n Time	Salary	Bonus %	,
	1	Thomas	Male	3/31/1996	6	:53 AM	61933	4.17	
	7	NaN	Female	7/20/2015	10	:43 AM	45906	11598.00	
	10	Louise	Female	8/12/1980	9	:01 AM	63241	15132.00	
	20	Lois	NaN	4/22/1995	7	:18 PM	64714	4934.00	
	22	Joshua	NaN	3/8/2012	1	:58 AM	90816	18816.00	
	23	NaN	Male	6/14/2012	4	:19 PM	125792	5042.00	
	25	NaN	Male	10/8/2012	1	:12 AM	37076	18576.00	
	27	Scott	NaN	7/11/1991	6	:58 PM	122367	5218.00	
	31	Joyce	NaN	2/20/2005	2	:40 PM	88657	12752.00	
	32	NaN	Male	8/21/1998	2	:27 PM	122340	6417.00	
	39	NaN	Male	1/29/2016	2	:33 AM	122173	7797.00	
	41	Christine	NaN	6/28/2015	1	:08 AM	66582	11308.00	
	49	Chris	NaN	1/24/1980	12	:13 PM	113590	3055.00	
	51	NaN	NaN	12/17/2011	8	:29 AM	41126	14009.00	
	53	Alan	NaN	3/3/2014	1	:28 PM	40341	17578.00	
		•••		•••			•••		
	916	Joe	Male	12/8/1998	10	:28 AM	126120	1.02	
	927	Irene	NaN	2/28/1991		:23 PM		4.38	
	929	NaN	Female	8/23/2000		:19 PM		19388.00	
	941	Aaron	NaN	1/22/1986		:39 PM		18424.00	
	942	Mark	NaN	9/9/2006		:27 PM		2657.00	
	943	Ralph	NaN	7/28/1995		:53 PM		2147.00	
	949	Gerald	NaN	4/15/1989		:44 PM		17426.00	
	950	NaN	Female	9/15/1985		:50 AM		16941.00	
	951	NaN	Male	7/30/2012		:07 PM		5329.00	
	955	NaN	Female	9/14/2010		:19 AM		9662.00	
	965	Antonio	NaN	6/18/1989		:37 PM		3.05	
	976	Victor	NaN	7/28/2006		:49 PM		11159.00	
	989	Stephen	NaN	7/10/1983		:10 PM		1909.00	
	993	Justin	NaN	2/10/1991		:58 PM		3794.00	
	999	Henry	NaN	11/23/2014		:09 AM		16655.00	
		J							
		Senior Mana	gement		Team				
	1		True		NaN				
	7		NaN		Finance				
	10		True		NaN				
	20		True		Legal				
	22		True	Client	Services				
	23		NaN		NaN				
	25		NaN	Client	Services				
	27		False		Legal				
	31		False		Product				
	32		NaN		NaN				
	39		NaN	Client	Services				
	41		True	Business Dev	relopment				
	49		False		Sales				
	51		NaN		Sales				
	53		True		Finance				
			•••		•••				
	916		False		NaN				
	927		False	Business Dev	-				
	929		NaN		Sales				
	941		False		Services				
	942		False		Services				
	943		False		Services				
	949		True	Dist	tribution				

Distribution	NaN	950
Marketing	NaN	951
NaN	NaN	955
Legal	False	965
Sales	True	976
Legal	False	989
Legal	False	993
Distribution	False	999

[237 rows x 8 columns]

Fill the missing values with fillna() Now we are going to fill all the null (NaN) values in Gender column with "No Gender".

Attention: We are doing that directly in this dataframe with inplace = True - we don't make a deep copy!

```
[41]: # filling a null values using fillna()
employees_df["Gender"].fillna("No Gender", inplace = True)
employees_df
```

[41]:		First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	\
	0	Douglas	Male	8/6/1993	12:42 PM	97308	6945.00	
	1	Thomas	Male	3/31/1996	6:53 AM	61933	4.17	
	2	Maria	Female	4/23/1993	11:17 AM	130590	11858.00	
	3	Jerry	Male	3/4/2005	1:00 PM	138705	9.34	
	4	Larry	Male	1/24/1998	4:47 PM	101004	1389.00	
	5	Dennis	Male	4/18/1987	1:35 AM	115163	10125.00	
	6	Ruby	Female	8/17/1987	4:20 PM	65476	10012.00	
	7	NaN	Female	7/20/2015	10:43 AM	45906	11598.00	
	8	Angela	Female	11/22/2005	6:29 AM	95570	18523.00	
	9	Frances	Female	8/8/2002	6:51 AM	139852	7524.00	
	10	Louise	Female	8/12/1980	9:01 AM	63241	15132.00	
	11	Julie	Female	10/26/1997	3:19 PM	102508	12637.00	
	12	Brandon	Male	12/1/1980	1:08 AM	112807	17492.00	
	13	Gary	Male	1/27/2008	11:40 PM	109831	5831.00	
	14	Kimberly	Female	1/14/1999	7:13 AM	41426	14543.00	
		•••		•••		•••		
	989	Stephen	No Gender	7/10/1983	8:10 PM	85668	1909.00	
	990	Donna	Female	11/26/1982	7:04 AM	82871	17999.00	
	991	Gloria	Female	12/8/2014	5:08 AM	136709	10331.00	
	992	Alice	Female	10/5/2004	9:34 AM	47638	11209.00	
	993	Justin	No Gender	2/10/1991	4:58 PM	38344	3794.00	
	994	Robin	Female	7/24/1987	1:35 PM	100765	10982.00	
	995	Rose	Female	8/25/2002	5:12 AM	134505	11051.00	
	996	Anthony	Male	10/16/2011	8:35 AM	112769	11625.00	
	997	Tina	Female	5/15/1997	3:53 PM	56450	19.04	
	998	George	Male	6/21/2013	5:47 PM	98874	4479.00	
	999	Henry	No Gender	11/23/2014	6:09 AM	132483	16655.00	
	1000	Phillip	Male	1/31/1984	6:30 AM	42392	19675.00	
	1001	Russell	Male	5/20/2013	12:39 PM	96914	1421.00	
	1002	Larry	Male	4/20/2013	4:45 PM	60500	11985.00	
	1003	Albert	Male	5/15/2012	6:24 PM	129949	10169.00	

Team	Management	Senior	
Marketing	True		0
NaN	True		1

2	False	Finance
3	True	Finance
4	True	Client Services
5	False	Legal
6	True	Product
7	NaN	Finance
8	True	Engineering
9	True	Business Development
10	True	NaN
11	True	Legal
12	True	Human Resources
13	False	Sales
14	True	Finance
•••	•••	
989	False	Legal
990	False	Marketing
991	True	Finance
992	False	Human Resources
993	False	Legal
994	True	Client Services
995	True	Marketing
996	True	Finance
997	True	Engineering
998	True	Marketing
999	False	Distribution
1000	False	Finance
1001	False	Product
1002	False	Business Development
1003	True	Sales

[1004 rows x 8 columns]

Dropping missing values using dropna() In order to drop null values from a dataframe, we use dropna() function. This function drops rows or columns of datasets with NaN values in different ways.

Default is to drop rows with at least 1 null value (NaN). Giving the parameter how = 'all' the function drops rows with all data missing or contain null values (NaN).

```
[42]: # making a new dataframe with dropped NaN values
employees_df_dropped = employees_df.dropna(axis = 0, how ='any')
employees_df_dropped
```

[42]:	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	\
0	Douglas	Male	8/6/1993	12:42 PM	97308	6945.00	
2	Maria	Female	4/23/1993	11:17 AM	130590	11858.00	
3	Jerry	Male	3/4/2005	1:00 PM	138705	9.34	
4	Larry	Male	1/24/1998	4:47 PM	101004	1389.00	
5	Dennis	Male	4/18/1987	1:35 AM	115163	10125.00	
6	Ruby	Female	8/17/1987	4:20 PM	65476	10012.00	
8	Angela	Female	11/22/2005	6:29 AM	95570	18523.00	
9	Frances	Female	8/8/2002	6:51 AM	139852	7524.00	
11	Julie	Female	10/26/1997	3:19 PM	102508	12637.00	
12	Brandon	Male	12/1/1980	1:08 AM	112807	17492.00	
13	Gary	Male	1/27/2008	11:40 PM	109831	5831.00	
14	Kimberly	Female	1/14/1999	7:13 AM	41426	14543.00	
15	Lillian	Female	6/5/2016	6:09 AM	59414	1256.00	
16	Jeremy	Male	9/21/2010	5:56 AM	90370	7369.00	

17	Shawn	Male	12/7/1986	7:45	PM	111737	6414.00
•••			•••			•••	
989	Stephen	No Gender	7/10/1983	8:10	PM	85668	1909.00
990	Donna	Female	11/26/1982	7:04	AM	82871	17999.00
991	Gloria	Female	12/8/2014	5:08	AM	136709	10331.00
992	Alice	Female	10/5/2004	9:34	\mathtt{AM}	47638	11209.00
993	Justin	No Gender	2/10/1991	4:58	PM	38344	3794.00
994	Robin	Female	7/24/1987	1:35	PM	100765	10982.00
995	Rose	Female	8/25/2002	5:12	AM	134505	11051.00
996	Anthony	Male	10/16/2011	8:35	AM	112769	11625.00
997	Tina	Female	5/15/1997	3:53	PM	56450	19.04
998	George	Male	6/21/2013	5:47	PM	98874	4479.00
999	Henry	No Gender	11/23/2014	6:09	AM	132483	16655.00
1000	Phillip	Male	1/31/1984	6:30	AM	42392	19675.00
1001	Russell	Male	5/20/2013	12:39	PM	96914	1421.00
1002	Larry	Male	4/20/2013	4:45	PM	60500	11985.00
1003	Albert	Male	5/15/2012	6:24	PM	129949	10169.00
	Senior Mana	gement		Team			
0		True	Mark	eting			
2		False	Fi	nance			
2		Т	E:				

	Senior	Management	Team
0		True	Marketing
2		False	Finance
3		True	Finance
4		True	Client Services
5		False	Legal
6		True	Product
8		True	Engineering
9		True	Business Development
11		True	Legal
12		True	Human Resources
13		False	Sales
14		True	Finance
15		False	Product
16		False	Human Resources
17		False	Product
		•••	***
989		False	Legal
990		False	Marketing
991		True	Finance
992		False	Human Resources
993		False	Legal
994		True	Client Services
995		True	Marketing
996		True	Finance
997		True	Engineering
998		True	Marketing
999		False	Distribution
1000		False	Finance
1001		False	Product
1001 1002		False False	Product Business Development

[903 rows x 8 columns]

Finally we compare the sizes of dataframes so that we learn how many rows had at least 1 Null value.

```
[43]: print("Old data frame length:", len(employees_df))
print("New data frame length:", len(employees_df_dropped))
```

```
print("Number of rows with at least 1 NaN value: ",⊔

→(len(employees_df)-len(employees_df_dropped)))
```

```
Old data frame length: 1004
New data frame length: 903
```

Number of rows with at least 1 NaN value: 101

4.4.2 Find and remove duplicates in dataset

This section was inspired by: - How to Find Duplicates in Pandas DataFrame (With Examples) - How to Drop Duplicate Rows in a Pandas DataFrame

Checking for duplicate values using duplicated() In order to check for duplicate values in Pandas DataFrame, we use a function duplicated(). This function can be used in two ways: - find duplicate rows across all columns with duplicateRows = df[df.duplicated()] - find duplicate rows across specific columns duplicateRows = df[df.duplicated(subset=['col1', 'col2'])]

Find duplicate rows across all columns:

```
[44]: # import (again) data to dataframe from csv file employees_df = pd.read_csv("./datasets/employees_edit.csv")
```

```
[45]: # find duplicate rows across all columns
duplicateRows = employees_df[employees_df.duplicated()]
duplicateRows
```

```
[45]:
         First Name
                     Gender
                             Start Date Last Login Time
                                                         Salary Bonus %
      112
              Karen
                     Female 11/30/1999
                                                7:46 AM
                                                         102488 17653.0
                              5/25/2000
      127
              Linda
                     Female
                                                5:45 PM
                                                         119009 12506.0
      296
                              11/3/1997
                                                8:17 PM
            Brandon
                        NaN
                                                         121333
                                                                 15295.0
      580
           Nicholas
                       Male
                               3/1/2013
                                                9:26 PM 101036
                                                                  2826.0
```

```
Senior Management Team
112 True Product
127 True Business Development
296 False Business Development
580 True Human Resources
```

```
[46]: # argument keep='last' displays the first duplicate rows instead of the last duplicateRows = employees_df[employees_df.duplicated(keep='last')] duplicateRows
```

```
[46]:
          First Name
                       Gender
                               Start Date Last Login Time
                                                            Salary
                                                                     Bonus %
      55
                      Female
                               11/30/1999
                                                             102488
                                                                     17653.0
               Karen
                                                   7:46 AM
      92
                      Female
                                5/25/2000
                                                   5:45 PM
                                                            119009
                                                                     12506.0
               Linda
      153
             Brandon
                          {\tt NaN}
                                11/3/1997
                                                   8:17 PM
                                                            121333
                                                                     15295.0
      442
            Nicholas
                         Male
                                 3/1/2013
                                                   9:26 PM
                                                            101036
                                                                      2826.0
```

	Senior	Management	Team
55		True	Product
92		True	Business Development
153		False	Business Development
442		True	Human Resources

Find duplicate rows across specific columns:

```
[47]: # identify duplicate rows across 'First Name' and 'Last Login Time' columns
      duplicateRows = employees_df[employees_df.duplicated(subset=['First Name', 'Last_
       ⇔Login Time'])]
      duplicateRows
[47]:
          First Name
                      Gender
                               Start Date Last Login Time
                                                            Salary
                                                                     Bonus % \
               Karen
                      Female
                               11/30/1999
                                                   7:46 AM
                                                            102488
                                                                     17653.0
      112
      127
               Linda
                      Female
                                5/25/2000
                                                   5:45 PM
                                                            119009
                                                                     12506.0
      296
             Brandon
                          NaN
                                11/3/1997
                                                   8:17 PM
                                                            121333
                                                                     15295.0
      577
                 NaN
                      Female
                                1/13/2009
                                                   1:01 PM
                                                            118736
                                                                      7421.0
                                                            101036
      580
            Nicholas
                         Male
                                 3/1/2013
                                                   9:26 PM
                                                                      2826.0
      632
                 NaN
                          NaN
                                 9/2/1988
                                                  12:49 PM
                                                             147309
                                                                      1702.0
      881
                 NaN
                         Male
                                 9/5/1980
                                                   7:36 AM
                                                             114896
                                                                     13823.0
      929
                                                              95866
                 NaN
                      Female
                                8/23/2000
                                                   4:19 PM
                                                                     19388.0
      934
                                                  11:57 PM
                                                              85213
                                                                      2386.0
               Nancy
                       Female
                                9/10/2001
      973
               Linda
                      Female
                                 2/4/2010
                                                   8:49 PM
                                                              44486 17308.0
          Senior Management
                                               Team
      112
                        True
                                            Product
      127
                        True
                              Business Development
      296
                       False
                              Business Development
      577
                         NaN
                                   Client Services
      580
                        True
                                   Human Resources
      632
                         NaN
                                      Distribution
      881
                         NaN
                                   Client Services
      929
                         NaN
                                              Sales
      934
                        True
                                         Marketing
      973
                        True
                                       Engineering
[48]: # argument keep='last' displays the first duplicate rows instead of the last
      duplicateRows = employees_df[employees_df.duplicated(subset=['First Name', 'Last_
       ⇔Login Time'], keep='last')]
      duplicateRows
[48]:
          First Name
                       Gender
                               Start Date Last Login Time
                                                            Salary
                                                                      Bonus %
      23
                 NaN
                         Male
                                6/14/2012
                                                   4:19 PM
                                                            125792
                                                                      5042.00
      37
                                                   8:49 PM
                                                             57427
               Linda
                      Female
                               10/19/1981
                                                                      9557.00
      55
               Karen
                      Female
                               11/30/1999
                                                   7:46 AM
                                                             102488
                                                                     17653.00
      66
               Nancy
                      Female
                               12/15/2012
                                                  11:57 PM
                                                            125250
                                                                      2672.00
      92
               Linda
                      Female
                                5/25/2000
                                                   5:45 PM
                                                            119009
                                                                     12506.00
      153
             Brandon
                          NaN
                                                   8:17 PM
                                                            121333
                                                                     15295.00
                                11/3/1997
      222
                 NaN
                      Female
                                6/17/1991
                                                  12:49 PM
                                                              71945
                                                                         5.56
      269
                         Male
                                 2/4/2005
                                                   1:01 PM
                                                              40451
                                                                     16044.00
                 NaN
      442
            Nicholas
                                 3/1/2013
                                                   9:26 PM
                                                            101036
                                                                      2826.00
                         Male
      778
                 NaN Female
                                6/18/2000
                                                   7:36 AM 106428
                                                                    10867.00
          Senior Management
                                               Team
      23
                         NaN
                                                NaN
      37
                        True
                                   Client Services
      55
                        True
                                            Product
      66
                        True
                              Business Development
      92
                              Business Development
                        True
      153
                       False
                              Business Development
      222
                         NaN
                                          Marketing
      269
                         NaN
                                      Distribution
                                   Human Resources
      442
                        True
      778
                         NaN
                                                NaN
```

Dropping duplicate values using drop_duplicates() In order to drop duplicate values from a dataframe, we use drop_duplicates() function.

This function can be used in two ways: - remove duplicate rows across all columns with df.drop_duplicates() - find duplicate rows across specific columns df.drop_duplicates(subset=['col1', 'col2'])

Attention: We are doing that directly in this dataframe with inplace = True - we don't make a deep copy!

Remove duplicate rows across all columns:

```
[49]: # remove duplicate rows across all columns
employees_df.drop_duplicates(inplace=True)
employees_df
```

[49]:		First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	\
[10].	0	Douglas	Male	8/6/1993	12:42 PM	97308	6945.00	`
	1	Thomas	Male	3/31/1996	6:53 AM	61933	4.17	
	2	Maria	Female	4/23/1993	11:17 AM	130590	11858.00	
	3	Jerry	Male	3/4/2005	1:00 PM	138705	9.34	
	4	Larry	Male	1/24/1998	4:47 PM	101004	1389.00	
	5	Dennis	Male	4/18/1987	1:35 AM	115163	10125.00	
	6	Ruby	Female	8/17/1987	4:20 PM	65476	10012.00	
	7	NaN	Female	7/20/2015	10:43 AM	45906	11598.00	
	8	Angela	Female	11/22/2005	6:29 AM	95570	18523.00	
	9	Frances	Female	8/8/2002	6:51 AM	139852	7524.00	
	10	Louise	Female	8/12/1980	9:01 AM	63241	15132.00	
	11	Julie	Female	10/26/1997	3:19 PM	102508	12637.00	
	12	Brandon	Male	12/1/1980	1:08 AM	112807	17492.00	
	13	Gary	Male	1/27/2008	11:40 PM	109831	5831.00	
	14	Kimberly	Female	1/14/1999	7:13 AM	41426	14543.00	
		J						
	989	Stephen	NaN	7/10/1983	8:10 PM	85668	1909.00	
	990	Donna	Female	11/26/1982	7:04 AM	82871	17999.00	
	991	Gloria	Female	12/8/2014	5:08 AM	136709	10331.00	
	992	Alice	Female	10/5/2004	9:34 AM	47638	11209.00	
	993	Justin	NaN	2/10/1991	4:58 PM	38344	3794.00	
	994	Robin	Female	7/24/1987	1:35 PM	100765	10982.00	
	995	Rose	Female	8/25/2002	5:12 AM	134505	11051.00	
	996	Anthony	Male	10/16/2011	8:35 AM	112769	11625.00	
	997	Tina	Female	5/15/1997	3:53 PM	56450	19.04	
	998	George	Male	6/21/2013	5:47 PM	98874	4479.00	
	999	Henry	NaN	11/23/2014	6:09 AM	132483	16655.00	
	1000	-	Male	1/31/1984	6:30 AM	42392	19675.00	
	1001	Russell	Male	5/20/2013	12:39 PM	96914	1421.00	
	1002		Male	4/20/2013	4:45 PM	60500	11985.00	
	1003		Male	5/15/2012	6:24 PM	129949	10169.00	
		Senior Mana	gement		Team			
	0		True	1	Marketing			
	1		True		NaN			
	2		False		Finance			
	3		True		Finance			
	4		True	Client	Services			
	5		False		Legal			
	6		True		Product			
	7		NaN		Finance			
	8		True	Eng	gineering			

9	True	Business Development
10	True	NaN
11	True	Legal
12	True	Human Resources
13	False	Sales
14	True	Finance
	•••	
989	False	Legal
990	False	Marketing
991	True	Finance
992	False	Human Resources
993	False	Legal
994	True	Client Services
995	True	Marketing
996	True	Finance
997	True	Engineering
998	True	Marketing
999	False	Distribution
1000	False	Finance
1001	False	Product
1002	False	Business Development
1003	True	Sales

[1000 rows x 8 columns]

Remove duplicate rows across specific columns:

```
[50]: # remove duplicate rows across 'First Name' and 'Last Login Time' columns
employees_df.drop_duplicates(subset=['First Name', 'Last Login Time'], keep='last',
inplace=True)
employees_df
```

```
[50]:
           First Name Gender
                               Start Date Last Login Time
                                                             Salary
                                                                      Bonus % \
                                                                      6945.00
      0
              Douglas
                         Male
                                  8/6/1993
                                                  12:42 PM
                                                              97308
               Thomas
                         Male
                                 3/31/1996
                                                   6:53 AM
                                                              61933
      1
                                                                         4.17
      2
                                 4/23/1993
                                                  11:17 AM 130590
                                                                     11858.00
                Maria Female
      3
                Jerry
                         Male
                                 3/4/2005
                                                   1:00 PM
                                                            138705
                                                                         9.34
      4
                                                   4:47 PM
                Larry
                         Male
                                 1/24/1998
                                                             101004
                                                                      1389.00
      5
               Dennis
                         Male
                                                   1:35 AM
                                                             115163
                                                                     10125.00
                                 4/18/1987
      6
                 Ruby Female
                                                   4:20 PM
                                                              65476
                                                                     10012.00
                                 8/17/1987
      7
                  NaN Female
                                 7/20/2015
                                                  10:43 AM
                                                              45906
                                                                     11598.00
      8
               Angela
                       Female
                                11/22/2005
                                                   6:29 AM
                                                              95570
                                                                     18523.00
      9
              Frances
                       Female
                                  8/8/2002
                                                   6:51 AM
                                                             139852
                                                                      7524.00
      10
               Louise
                       Female
                                 8/12/1980
                                                   9:01 AM
                                                              63241
                                                                     15132.00
      11
                Julie
                       Female
                                10/26/1997
                                                   3:19 PM
                                                             102508
                                                                     12637.00
      12
              Brandon
                         Male
                                 12/1/1980
                                                   1:08 AM
                                                             112807
                                                                     17492.00
                                                  11:40 PM
                                                             109831
      13
                 Gary
                         Male
                                 1/27/2008
                                                                      5831.00
      14
             Kimberly Female
                                 1/14/1999
                                                   7:13 AM
                                                              41426
                                                                     14543.00
      989
              Stephen
                          NaN
                                 7/10/1983
                                                   8:10 PM
                                                              85668
                                                                      1909.00
      990
                Donna Female
                                11/26/1982
                                                   7:04 AM
                                                              82871
                                                                     17999.00
      991
               Gloria Female
                                 12/8/2014
                                                   5:08 AM
                                                             136709
                                                                     10331.00
      992
                Alice Female
                                 10/5/2004
                                                   9:34 AM
                                                              47638
                                                                     11209.00
      993
               Justin
                          {\tt NaN}
                                 2/10/1991
                                                   4:58 PM
                                                              38344
                                                                      3794.00
      994
                Robin Female
                                 7/24/1987
                                                   1:35 PM
                                                            100765
                                                                     10982.00
      995
                 Rose Female
                                 8/25/2002
                                                   5:12 AM
                                                             134505
                                                                     11051.00
      996
              Anthony
                         Male
                               10/16/2011
                                                   8:35 AM 112769
                                                                     11625.00
```

997	Tina	Female	5/15/1997	3:53 PM	56450	19.04
998	George	Male	6/21/2013	5:47 PM	98874	4479.00
999	Henry	NaN	11/23/2014	6:09 AM	132483	16655.00
1000	Phillip	Male	1/31/1984	6:30 AM	42392	19675.00
1001	Russell	Male	5/20/2013	12:39 PM	96914	1421.00
1002	Larry	Male	4/20/2013	4:45 PM	60500	11985.00
1003	Albert	Male	5/15/2012	6:24 PM	129949	10169.00

	Senior	Management	Team		
0		True	Marketing		
1		True	NaN		
2		False	Finance		
3		True	Finance		
4		True	Client Services		
5		False	Legal		
6		True	Product		
7		NaN	Finance		
8		True	Engineering		
9		True	Business Development		
10		True	NaN		
11		True	Legal		
12		True	Human Resources		
13		False	Sales		
14		True	Finance		
		•••			
989		False	Legal		
990		False	Marketing		
991		True	Finance		
992		False	Human Resources		
993		False	Legal		
994		True	Client Services		
995		True	Marketing		
996		True	Finance		
997		True	Engineering		
998		True	Marketing		
999		False	Distribution		
1000		False	Finance		
1001		False	Product		
1002		False	Business Development		
1003		True	Sales		

[994 rows x 8 columns]

4.5 Avoidance of tendencies due to bias

The description of the Iris dataset says, that it consists of **50 samples** from **each of three species** of Iris (Iris setosa, Iris virginica and Iris versicolor), so there are **150 total samples**.

But how to prove it?

4.5.1 Count occurrences of unique values

To prove whether all possible classes included in the dataset and equally distributed, you can use the function <code>df.value_counts</code>.

Following parameters can be used for fine tuning: - dropna=False causes that NaN values are included - normalize=True: relative frequencies of the unique values are returned - ascending=False: sort resulting classes descending

```
[51]: # import (again) data to dataframe from csv file
      employees_df = pd.read_csv("./datasets/employees_edit.csv")
 [6]: # count unique values without missing values in a column, ordered descending and
      irisdata_df['species'].value_counts(ascending=False, dropna=False, normalize=True)
 [6]: Iris-setosa
                         0.333333
      Iris-versicolor
                         0.333333
      Iris-virginica
                         0.333333
     Name: species, dtype: float64
[59]: \# count unique values and missing values in a column, ordered descending and not \sqcup
       ⇔absolute values
      employees_df['Team'].value_counts(ascending=False, dropna=False, normalize=False)
[59]: Client Services
                              106
      Business Development
                              103
                              102
      Finance
      Marketing
                               98
     Product
                               96
```

4.5.2 Display Histogram

Name: Team, dtype: int64

Sales

Legal

NaN

Engineering

Distribution

Human Resources

This section was inspired by: Pandas Histogram – DataFrame.hist().

94

92

92

90

88

43

Histograms represent **frequency distributions** graphically. This requires the separation of the data into classes (so-called **bins**).

These classes are represented in the histogram as rectangles of equal or variable width. The height of each rectangle then represents the (relative or absolute) **frequency density**.

```
[37]: employees_df.hist(column=['Salary'])
```

[37]: array([[<AxesSubplot:title={'center':'Salary'}>]], dtype=object)

[38]: employees_df.hist(column='Salary', by='Gender')

4.6 First idea of correlations in data set

To get a rough idea of the **dependencies** and **correlations** in the data set, it can be helpful to visualize the whole dataset in a **correlation heatmap**. They show in a glance which variables are correlated, to what degree and in which direction.

Later, 2 particularly well correlated variables are selected from the data set and plotted in a scatterplot.

4.6.1 Visualise data with correlation heatmap

This section was inspired by How to Create a Seaborn Correlation Heatmap in Python?.

Correlation matrices are an essential tool of exploratory data analysis. Correlation heatmaps contain the same information in a visually appealing way. What more: they show in a glance which variables are correlated, to what degree, in which direction, and alerts us to potential multicollinearity problems (source: ibidem).

Simple correlation matrix Because **string values can never be correlated**, the class names (species) have to be converted first:

```
[91]:
                           sepal_width petal_length petal_width
            sepal_length
      0
                                                     1.4
                                                                                0
                      5.1
                                     3.5
                                                                   0.2
                                                     1.4
                      4.9
                                     3.0
                                                                   0.2
                                                                                0
      1
      2
                                                                   0.2
                      4.7
                                     3.2
                                                     1.3
                                                                                0
      3
                      4.6
                                     3.1
                                                     1.5
                                                                   0.2
                                                                                0
      4
                                                                   0.2
                      5.0
                                     3.6
                                                     1.4
                                                                                0
      145
                      6.7
                                     3.0
                                                     5.2
                                                                   2.3
                                                                                2
      146
                      6.3
                                     2.5
                                                     5.0
                                                                   1.9
                                                                                2
      147
                                                                   2.0
                                                                                2
                      6.5
                                     3.0
                                                     5.2
      148
                      6.2
                                     3.4
                                                     5.4
                                                                   2.3
                                                                                2
      149
                      5.9
                                     3.0
                                                     5.1
                                                                   1.8
                                                                                2
```

[150 rows x 5 columns]

```
[92]: irisdata_df_enc.corr()
```

```
[92]:
                    sepal_length
                                  sepal_width petal_length petal_width
                                                                           species
                        1.000000
                                    -0.109369
                                                                0.817954 0.782561
      sepal_length
                                                   0.871754
      sepal_width
                       -0.109369
                                     1.000000
                                                  -0.420516
                                                               -0.356544 -0.419446
      petal length
                        0.871754
                                    -0.420516
                                                   1.000000
                                                                0.962757 0.949043
     petal_width
                        0.817954
                                    -0.356544
                                                   0.962757
                                                                1.000000 0.956464
      species
                        0.782561
                                    -0.419446
                                                   0.949043
                                                                0.956464 1.000000
```

Correlation heatmap Choose the color sets from color map.

```
[93]: # increase the size of the heatmap
plt.figure(figsize=(16, 6))
```

```
# store heatmap object in a variable to easily access it

# when you want to include more features (such as title)

# set the range of values to be displayed on the colormap from -1 to 1,

# and set 'annotation=True' to display the correlation values on the heatmap
heatmap = sns.heatmap(irisdata_df_enc.corr(), vmin=-1, vmax=1, annot=True,
cmap='PRGn_r')

# give a title to the heatmap

# 'pad=12' defines the distance of the title from the top of the heatmap
heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':18}, pad=16)
```

[93]: Text(0.5, 1.0, 'Correlation Heatmap')

Triangle correlation heatmap When looking at the correlation heatmaps above, you would not lose any information by **cutting** away half of it **along the diagonal** line marked by 1-s.

The **numpy** function **np.triu()** can be used to isolate the upper triangle of a matrix while turning all the values in the lower triangle into 0.

Use this mask to cut the heatmap along the diagonal:

[95]: Text(0.5, 1.0, 'Triangle Correlation Heatmap')

As a result from the **heatmaps** we can see, that the shape of the **petals** are the **most correlationed columns** (0.96) with the **type of flowers** (species classes).

Somewhat lower correlates sepal length with petal length (0.87).

4.6.2 Visualise data with scatter plot

In the following, Seaborn is applied which is a library for making statistical graphics in Python. It is built on top of matplotlib and closely integrated with pandas data structures.

To investigate whether there are dependencies (e.g. correlations) in irisdata_df between individual variables in the data set, it is advisable to plot them in a scatter plot.

[16]: <seaborn.axisgrid.FacetGrid at 0xa7c69810>

4.6.3 Visualise data with pairs plot

For systematic investigation of dependencies, all variables (each against each) are plotted in separate scatter plots.

With this so called **pairs plot** it is possible to see both **relationships** between two variables and **distribution** of single variables.

This function will create a grid of Axes such that **each numeric variable** in <code>irisdata_df</code> will by shared in the y-axis across a single row and in the x-axis across a single column.

```
[60]: sns.set_style("white")
g = sns.pairplot(irisdata_df, diag_kind="kde", hue='species', palette='Dark2',
height=2.5)
g.map_lower(sns.kdeplot, levels=4, color=".2")
```

[60]: <seaborn.axisgrid.PairGrid at 0x618ba670>

5 STEP 2: Prepare the data

Through the intensive exploration of the data in Step 1 (STEP 1: Exploring the data), we know that special **preparation** of the data is **not necessary**. The values are **complete** and **without gaps** and there are **no duplicates**. The values are in similar ranges, which **does not require normalization** of the data

Furthermore, we know that the **classes** are very **evenly distributed** and thus bias tendencies should be avoided.

6 STEP 3: Classify by support vector classifier - SVC

6.1 Operating principal

Support Vectors Classifier tries to find the best hyperplane to separate the different classes by maximizing the distance between sample points and the hyperplane (source: In Depth: Parameter tuning for SVC).

Following graphic shows the operating principal of SVC: the hyperplane H1 does not separate the classes. H2 does, but only with a small margin. H3 separates them with the maximal margin (source: Support-vector machine).

```
[7]: display(HTML("<figure><img src='./images/SVM_separating_hyperplanes.svg'_

width='400px'> \
```

<IPython.core.display.HTML object>

6.2 Split the dataset

In the next very important step, the dataset is split into **2 subsets**: a **training dataset** and a **test dataset**. As the names suggest, the training dataset is used to train the ML algorithm. The test data set is then used to check the quality of the trained ML algorithm (here the **recognition rate**). For this purpose, the **class labels** are **removed** from the training data set - after all, these are to be predicted.

Typically, the **test dataset** set should contain **20**% of the entire dataset.

```
[43]: from sklearn.model_selection import train_test_split

X = irisdata_df.drop('species', axis=1)
y = irisdata_df['species']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)
```

For training, do not use only the variables that correlate best with each other, but all of them.

Otherwise, the result of the prediction would be significantly worse. Maybe this is already an indication of **overfitting** of the ML model.

6.3 Create the SVM model

In this step we create the SVC model and fit it to our training data.

```
[44]: from sklearn.svm import SVC classifier = SVC(kernel = 'linear', random_state = 0)

# fit the model for the data classifier.fit(X_train, y_train)
```

```
[44]: SVC(kernel='linear', random_state=0)
```

6.4 Make predictions

```
[45]: y_pred = classifier.predict(X_test)
#X_test
```

7 STEP 4: Evaluate the results - metrics

And finally for checking the accuracy of the model, the **confusion matrix** is used for the **cross validation**.

By using the function sklearn.metrics.confusion_matrix() a confusion matrix of the true digit values versus the predicted digit values is plotted.

7.1 Textual confusion matrix

```
[46]: cm = metrics.confusion_matrix(y_test, y_pred)
    print(cm)
```

[[8 0 0] [0 7 0] [0 0 15]]

7.2 Colored confusion matrix

The function sklearn.metrics.ConfusionMatrixDisplay() plots a colored confusion matrix.

```
[58]: sns.set_style("white")

# print colored confusion matrix
cm_colored = metrics.ConfusionMatrixDisplay.from_predictions(y_test, y_pred)

#cm_colored.figure_.suptitle("Confusion Matrix")
cm_colored.figure_.set_figwidth(7)
cm_colored.figure_.set_figheight(6)

cm_colored.confusion_matrix
plt.show()
```



```
[156]: from sklearn.model_selection import cross_val_score

accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = \( \times 10 \)

print("Accuracy: \{:.2f} \%".format(accuracies.mean()*100))

print("Standard Deviation: \{:.2f} \%".format(accuracies.std()*100))
```

Accuracy: 96.67 %

Standard Deviation: 5.53 %

8 STEP 5: Vary parameters

This section was inspired by In Depth: Parameter tuning for SVC

In this section, the 4 SVC parameters kernel, gamma, C and degree will be introduced one by one. Furthermore, their influence on the classification result by varying these single parameters will be shown.

Disclaimer: In order to show the effects of varying the individual parameters in 2D graphs, only the best correlating variables petal_length and petal_width are used to train the SVC.

8.1 Prepare dataset

[98]:	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
	•••	•••	•••		
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

[150 rows x 5 columns]

```
[116]: # copy only 2 feature columns
# and convert pandas dataframe to numpy array
X = irisdata_df_enc[['petal_length', 'petal_width']].to_numpy(copy=True)
#X = irisdata_df_enc[['sepal_length', 'sepal_width']].to_numpy(copy=True)
#X
```

```
[118]: # convert pandas dataframe to numpy array
# and get a flat 1D copy of 2D numpy array
y = irisdata_df_enc[['species']].to_numpy(copy=True).flatten()
#y
```

8.2 Plotting function

This function helps to visualize the modifications by varying the individual SVC parameters.

```
[101]: def plotSVC(title, xlabel, ylabel):
           # create a mesh to plot in
           x_{\min}, x_{\max} = X[:, 0].min() - 1, X[:, 0].max() + 1
           y_{min}, y_{max} = X[:, 1].min() - 1, X[:, 1].max() + 1
           # prevent division by zero
           if x_min == 0.0:
               x_min = 0.1
           h = (x_max / x_min)/1000
           xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
           plt.subplot(1, 1, 1)
           Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
           Z = Z.reshape(xx.shape)
           plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.6)
           plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
           plt.xlabel(xlabel)
           plt.ylabel(ylabel)
           plt.xlim(xx.min(), xx.max())
           plt.title(title)
           plt.show()
```

8.3 Vary kernel parameter

The kernel parameter selects the type of hyperplane that is used to separate the data. Using linear (linear classifier) kernel will use a linear hyperplane (a line in the case of 2D data). The rbf (radial basis function kernel) and poly (polynomial kernel) kernel use non linear hyperplanes.

```
[102]: kernels = ['linear', 'rbf', 'poly']

xlabel = 'Petal length'
ylabel = 'Petal width'

for kernel in kernels:
    svc = svm.SVC(kernel=kernel).fit(X, y)
    plotSVC('kernel = ' + str(kernel), xlabel, ylabel)
```


8.4 Vary gamma parameter

The gamma parameter is used for non linear hyperplanes. The higher the gamma value it tries to exactly fit the training data set.

As we can see, increasing gamma leads to **overfitting** as the classifier tries to perfectly fit the training data.

```
[106]: gammas = [0.1, 1, 10, 100, 200]

xlabel = 'Petal length'
ylabel = 'Petal width'

for gamma in gammas:
    svc = svm.SVC(kernel='rbf', gamma=gamma).fit(X, y)
    plotSVC('gamma = ' + str(gamma), xlabel, ylabel)
```


8.5 Vary C parameter

The C parameter is the **penalty** of the error term. It controls the trade off between smooth decision boundary and classifying the training points correctly.

But be careful: to high C values may lead to **overfitting** the training data.

```
[108]: cs = [0.1, 1, 10, 100, 1000, 10000]

xlabel = 'Petal length'
ylabel = 'Petal width'

for c in cs:
    svc = svm.SVC(kernel='rbf', C=c).fit(X, y)
    plotSVC('C = ' + str(c), xlabel, ylabel)
```


8.6 Vary degree parameter

The degree parameter is used when the kernel is set to poly. It's basically the degree of the polynomial used to find the hyperplane to split the data.

Using degree = 1 is the same as using a linear kernel. Also, increasing this parameters leads to higher training times.

```
[113]: degrees = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

xlabel = 'Petal length'
ylabel = 'Petal width'

for degree in degrees:
    svc = svm.SVC(kernel='poly', degree=degree).fit(X, y)
    plotSVC('degree = ' + str(degree), xlabel, ylabel)
```


