AI HW 2

NAME: 杨睦圳 ID: 11813010

Q1

a.

Let S be the sentence $[(Food \Rightarrow Party) \lor (Drinks \Rightarrow Party)] \Rightarrow [(Food \land Drinks) \Rightarrow Party]$

Food	Drinks	Party	(Food⇒Party)∨(Drinks⇒Party)	(Food∧Drinks)⇒Party	S
F	F	F	Т	Т	Т
F	F	Т	Т	Т	Т
F	Т	F	Т	Т	Т
F	Т	Т	Т	Т	Т
Т	F	F	Т	Т	Т
Т	F	Т	Т	Т	Т
Т	Т	F	F	F	Т
Т	Т	Т	Т	Т	Т

The sentence S is valid since it is true in all models.

b.

Left Hand Side: (Food⇒Party)∨(Drinks⇒Party)

1. Eliminate \Rightarrow , replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$

(¬Food v Party) v (¬Drinks v Party)

- 2. Simplify
- ¬Food v Party v ¬Drinks v Party
- ¬Food v ¬Drinks v Party

Right Hand Side: [(Food∧Drinks)⇒Party]

- 1. Eliminate \Rightarrow , replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$
 - ¬(Food ^ Drinks) ∨ Party
- 2. Move ¬ using de Morgan's rules
 - ¬Food v ¬Drinks v Party

Since we finally get (¬Food∨¬Drinks∨Party) on both sides, we know that the values on both sides are always the same. For both conditions: (True⇒True) and (False⇒False), the value is True, we get that the sentence is valid.

C.

KB: $\neg Food \lor \neg Drinks \lor Party$, α : $\neg Food \lor \neg Drinks \lor Party$, $\neg \alpha$: $Food \land Drinks \land \neg Party$

Since it finally get Nil, KB $\wedge \neg \alpha$ is unsatisfiable, so the sentence is valid.

Q2

a. Paris and Marseilles are both in France.

- (i). 2: Conjunction cannot be used in a term.
- (ii). 1
- (iii). 3: Disjunction means "or", not "... and ... are both ..."

b. There is a country that borders both Iraq and Pakistan

- (i). 1
- (ii). 3: This means every country borders to Iraq and Pakistan.
- (iii). 2: c should be used in the scope of its quantifier.
- (iv). 2: Conjunction cannot be used in a term.

c. All countries that border Ecuador are in South America

- (i). 1
- (ii). 1
- (iii). 3: The sentence means that every country borders Ecuador and is in South America. And particularly, for every non-country c, c is in South America.

(iv). 3: The sentence with universal quantifier should not uses conjunction as main connective.

d. No region in South America borders any region in Europe

- (i). 1
- (ii). 1
- (iii). 3: This means there is a country in South America that borders every country in Europe.
- (iv). 1

e. No two adjacent countries have the same map color

- (i). 1
- (ii). 1
- (iii). 3: The sentence with universal quantifier should not uses conjunction as main connective.
- (iv). 2: Inequality cannot be used in a term.

Q3.

a.

The Bayesian network:

With R denoting which coin we drew, the network has R at the root and X_1 , X_2 and X_3 as the children.

The CPT for R is:

R	P(R)
a	$\frac{1}{3}$
b	$\frac{1}{3}$
С	$\frac{1}{3}$

The CPT for X_i (i = 1, 2, 3) given R is the same which is shown below:

R	Xi	P(X _i R)
а	Head	0.2
b	Head	0.6
С	Head	0.8

b.

According to the question, let α be the observed flips come out heads twice and tail one, we can know that we need to find the coin R that maximizes $P(R|\alpha)$.

$$P(R|\alpha) = \frac{P(R \cdot \alpha)}{P(\alpha)} = \frac{P(\alpha|R) * P(R)}{P(\alpha)}$$

Since $P(a)=P(b)=P(c)=\frac{1}{3}$, $P(\alpha)$ is constant, maximizing $P(R|\alpha)$ equals to maximizing $P(\alpha|R)$.

$$P(\alpha|R)$$

$$=P(H|\alpha)*P(H|\alpha)*P(T|\alpha)+P(H|\alpha)*P(T|\alpha)*P(H|\alpha)+P(T|\alpha)*P(H|\alpha)*P(H|\alpha)$$

$$=3*P(H|\alpha)*P(H|\alpha)*P(T|\alpha)$$

Therefore:

$$P(\alpha|a) = 3 * 0.2 * 0.2 * 0.8 = 0.096$$

$$P(\alpha|b) = 3 * 0.6 * 0.6 * 0.4 = 0.432$$

$$P(\alpha|c) = 3 * 0.8 * 0.8 * 0.2 = 0.384$$

Since $P(\alpha|b)$ is the max value, b is the most likely one to have been drawn.