Node Voltage Analysis

Christopher Hunt

November 2, 2022

Abstract

In this lab we will build two different circuits and then analyze them. First we will physically observe the circuits using a digital multi-meter, then analytically, using nodal analysis. One circuit will be made entirely of resistors and another utilizing a diode as a fixed voltage source, this being done to simulate a "supernode". We will then compare our measured voltage values at the nodes in the circuit with our calculated values.

Equipment

- Extech EX330
- GWINSTEK GPE-3323 Serial: GER901898
- LED
- 470, 680, 100 and 2 x 3,000 Ω Resistor
- Acer Nitro 5 OS: Ubuntu 22.04.1 LTS
- \bullet LTspice Version: 17.0.35.0

Procedure

- 1. Measure the values of the resistors.
- 2. Connect the circuit as shown below.

- 3. Measure and record the node-voltages V_a and V_b .
- 4. Repeat steps 2 and 3 for the circuit shown below.

- 5. Calculate V_d , as $V_d = V_a V_b$
- 6. Use node-voltage analysis to solve the first circuit schematic for voltages V_a and V_b . Use the measured part values to do the calculations.
- 7. Calculate the percent difference between the measured and the calculated values of V_a and V_b .
- 8. Repeat steps 6 and 7 for the second circuit. Treat the diode as an ideal diode.
- 9. Simulate the second circuit using LTSpice, use a voltage source in place of the LED and set its value to V_d .

Measurements

Measured Values of Resistors:

Resistor	Nominal	Actual
R1	1000 Ω	990 Ω
R2	3000Ω	2972Ω
R3	3000Ω	2958Ω
R4	680 Ω	$672~\Omega$
R5	470Ω	463 Ω

Measured Values of Voltages:

Circuit	Node a; V_{am}	Node b; V_{bm}	Diode; V_{dm}
Circuit 1	4.51 V	-4.49 V	-
Circuit 2	-2.247 V	-0.43 V	2.247 V

Analysis

Conclusion

In this lab we analyzed a circuit by three different means - physical measurement, analytical calculation, and simulated calculation. We found that the percentage differences between the measured voltages and the analytically calculated voltages ranged between 0.262% to 2.53%.