Integrated Advanced Microwave Sounding Unit-A (AMSU-A)

Test Report, Electromagnetic Interference (EMI)/
Electromagnetic Radiation (EMR) and Electromagnetic
Capability (EMC) For the EOS/AMSU-A1

Contract No. NAS 5-32314 CDRL 207

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

TABLE OF CONTENTS

Paragraph		Page
1.	INTRODUCTION	1
1.1	Purpose	
1.2	Scope	
1.3	Summary of text results	
1.3.1	Conducted emissions, per test method CE01, 30 Hz to 20 kHz	
1.3.2	Conducted emissions, per test method CE03, 20 kHz to 50 MHz	
1.3.3	Radiated emissions, per test method RE02, 14 KHz to 18 GHz	
1.3.4	Conducted susceptibility, per test method CS01, 30 Hz to 50 kHz	
1.3.5	Conducted susceptibility, per test method CS02, 50 kHz to 400 MHz	2
1.3.6	Conducted susceptibility, per test method CS06, transient spike	
1.3.7	Radiated emissions, per test method RE01, Magnetic field 30 Hz to 50 kHz	2
1.3.8	Radiated emission, per test method RE04, magnetic static field, one meter from the wall of the instrument	
1.3.9	Radiated susceptibility, per test method RS01, magnetic field 30 Hz to 200 kHz and a 2 gauss magnetic field	
1.3.10	Radiated susceptibility, per test method RS03, electric field 14 kHz to 18 GHz	2
1.4	Tests performed	2
1.5	Susceptibility monitors	3
1.6	Pass/Fail criteria	
		_
2.	TEST CONDUCT/RESULTS	5
2.1	Conducted emission (CE01) test	
2.1.1	Purpose of test	
2.1.2	Date test started	
2.1.3	Date test completion	
2.1.4	Test procedure	
2.1.5	Test comment	
2.1.6	Test results	
2.2	Conducted emissions (CE03) test	
2.2.1	Purpose of test	
2.2.2	Date test started	
2.2.3	Date test completion	8
2.2.4	Test procedure	
2.2.5	Test results	
2.3	Radiated emissions (RE01) test	9
2.3.1	Purpose of test	
2.3.2	Date test started	
2.3.3	Date test completion	9
2.3.4	Test procedure	9
2.3.5	Test comment	
2.3.6	Test results	
2.4	Radiated emissions (RE04) test	
2.4.1	Purpose of test	
2.4.2	Date test started	
2.4.3	Date test completion	
2.4.4	Test procedure	
2.4.5	Test comment	
2.4.6	Test results	
2.5	Radiated emissions (RE02) test	12

TABLE OF CONTENTS (Cont.)

Paragraph		Page
2.5.1	Purpose of test	12
2.5.2	Date test started	12
2.5.3	Date test completion	12
2.5.4	Test procedure	12
2.5.5	Test comment	14
2.5.6	Test results	
2.6	Conducted susceptibility (CS01) test	14
2.6.1	Purpose of test	14
2.6.2	Date test started	14
2.6.3	Date test completion	14
2.6.4	Test procedure	15
2.6.5	Test comment	18
2.6.6	Test results	18
2.7	Conducted Susceptibility (CS02) test	19
2.7.1	Purpose of test	19
2.7.2	Date test started	19
2.7.3	Date test completion	19
2.7.4	Test procedure	19
2.7.5	Test comment	22
2.7.6	Test results	22
2.8	Conduct Susceptibility (CS06) test	22
2.8.1	Purpose of test	22
2.8.2	Date test started	22
2.8.3	Date test completion	22
2.8.4	Test procedure	23
2.8.5	Test comment	25
2.8.6	Test results	25
2.9	Radiated Susceptibility (RS01) test	25
2.9.1	Purpose of test	25
2.9.2	Date test started	25
2.9.3	Date test completion	25
2.9.4	Test procedure	25
2.9.5	Radiated susceptibility, static magnetic field, test	26
2.9.6	Test comment	27
2.9.7	Test results	27
2.10	Radiated Susceptibility (RS03) test	27
2.10.1	Purpose of test	27
2.10.2	Date test started	27
2.10.3	Date test completion	27
2.10.4	Test procedure	27
2.10.5	Test comment	29
2.10.6	Test results	29
3	SUPPLEMENTARY INFORMATION	30

		•

FIGURES

Figure 1	Narrowband Conducted Emissions on Power Leads	6
Figure 2	Broadband Conducted Emission Limits on Power Lines	6
Figure 2	Limits RE01	10
Figure 4	Radiated Narrowband Limits for Electric-Field Emission	12
Figure 4	Radiated Broadband Limits for Electric-Field Emissions	13
Figure 6	Ripple and Noise Susceptibility Limit	16
Figure 7	CS06 Transient Waveform	23
Figure 8	RS01 Magnetic Field Limit	26
Figure 9	RS03 Limits	28
	TABLES	
		_
Table I	EMI/EMC Test Performance Matrix	3
Table II	Monitors for Susceptibility Test	3
Table III	Magnetic Field Applied Distance	20
${\bf Table\ IV}$	Static Magnetic Field Applied Distance	26

	_

SECTION 1

SUMMARY

1. INTRODUCTION

This document contains the procedure and the test results of the Advanced Microwave Sounding Unit - A (AMSU-A) Earth Observing System (EOS) Project, assembly part number 1356008-1, serial number 202, Electromagnetic Interference (EMI) and Electromagnetic Susceptibility (EMC) qualification test. The test was conducted in accordance with the approved EMI/EMC Test Plan/Procedure, Specification number AE-26151/8B, dated 10 September 1998.

Aerojet intends that the presentation and submittal of this document, prepared in accordance with the objectives established by the aforementioned Test Plan/Procedure, document number AE-26151/8B, will satisfy the data requirement with respect to the AMSU-A/EOS instrument operational compliance of the EMI/EMC test requirement.

Test for the AMSU-A/EOS instrument have been completed and all the requirements per General Interface Requirement Document (GIRD), GSFC 422-11-12-01, for EOS Common Spacecraft/Instruments, paragraph 10.11, were met with the exceptions of the test methods CE03, RE01, and RE02, as described in this document.

1.1 Purpose

The purpose of this test report is to described each of the tests performed and to present the backup data collected to verify that the design objectives and specified requirements were evaluated and achieved.

1.2 Scope

This document describes the EMI/EMC test performed by Aerojet and it is presented in the following manner: Section 1 contains introductory material and a brief summary of the test results. Section 2 contains more detailed descriptions of the test plan, test procedure, and test results for each type of EMI/EMC test conducted. Section 3 contains supplementary information that includes test data sheets, plots, and calculations collected during the qualification testing.

1.3 Summary of test results

1.3.1 Conducted emissions, per test method CE01, 30 Hz to 20 kHz

The AMSU-A1/EOS instrument meets the requirements of CE01. The measured emission were below the specification limit by more than 20 dB.

1.3.2 Conducted emissions, per test method CE03, 20 kHz to 50 MHz

The AMSU-A1/EOS instrument does not meet the conducted emission requirements of the broadband and narrowband limits. In the narrowband emission test, the noisy bus is exceeded by an average of 25 dB above the limit, throughout the frequency range 49 kHz to 1.8 MHz. The power supply harmonics are most prominent in the frequencies above 200 kHz. The broadband emission exceed the limit by more than 20 dB. They are the same narrowband frequencies in a broadband plot. The broadband envelop is only a few dB above the limit at very few frequency ranges throughout the measured power lines.

		•

1.3.3 Radiated emissions, per test method RE02, 14 kHz to 18 GHz

The AMSU-A1/EOS instrument does not meet the radiated emission requirements of the narrowband limits. The narrowband limits were exceeded at 6.2, 12, and 40 MHz. These emissions were directly attributed to the AMSU-A1 instrument. There were some emissions at the frequency range of 250 to 400 kHz that are produced by the STE cables coupling and an FM station frequency at 90.1 MHz. Efforts to eliminates these emissions were not successful. The broadband emission requirement at the 2.0 to 2.2 GHz frequency range could not be met because of the stringent limit difference between the broadband and narrowband limit.

1.3.4 Conducted susceptibility, per test method CS01, 30 Hz to 50 kHz

The AMSU-A1/EOS instrument meets the requirements of CS01.

1.3.5 Conducted susceptibility, per test method CS02, 50 kHz to 400 MHz

The AMSU-A1/EOS instrument meets the requirement of CS02.

1.3.6 Conducted susceptibility, per test method CS06, transient spike

The AMSU-A1/EOS instrument meets the requirement of CS06.

1.3.7 Radiated emissions, per test method RE01, magnetic field 30 Hz to 50 kHz

The AMSU-A1/EOS instrument does not meet the radiated emission requirements at the base of the motors. Each motor exhibits a magnetic field emission of 85 dBpT at 1.635 kHz. The stepping motor also produces a magnetic field throughout the frequency range of 30 Hz to 80 Hz. The maximum emission is 105 dBpT at 80 Hz.

1.3.8 Radiated emission, per test method RE04, magnetic static field, one meter from the wall of the instrument

The AMSU-A1/EOS instrument meets the radiated emissions requirements of RE04.

1.3.9 Radiated susceptibility, per test method RS01, magnetic field 30 Hz to 200 kHz and a 2 gauss magnetic field

The AMSU-A1/EOS instrument meets the requirements of RS01, with no exception.

1.3.10 Radiated susceptibility, per test method RS03, electric field 14 kHz to 18 GHz

The AMSU-A1/EOS instrument meets the electric field radiated susceptibility requirements of RS03, with no exception.

1.4 Tests performed

The AMSU-A1/EOS instrument was subjected to the EMI/EMC tests on the power lines, under the normal, high, and low voltage condition as indicated in Table I.

		<u> </u>
		<u> </u>
		<u> </u>

Table I EMI/EMC Test Performance Matrix

Instrument Input Terminal	CE01/ CE03	CS01/ CS02	CS06	RE01/ RE04	RE02	RS01	RS03
+29V Quiet Power Bus (A)	Yes	No	Yes	No	No	No	No
+29V Quiet Power Bus Return (A)	Yes	No	No	No	No	No	No
+29V Noisy Power Bus (A)	Yes	No	Yes	No	No	No	No
+29V Noisy Power Bus Return (A)	Yes	No	No	No	No	No	No
+29V Survival Heater Bus (A & B)	Yes	No	A Only	No	No	No	No
+29V Survival Heater Bus Return (A & B)	Yes	No	No	No	No	No	No
+27V Quiet Power Bus (A)	No	Yes	No	No	No	No	No
+27V Quiet Power Bus Return (A)	No	Yes	No	No	No	No	No
+27V Noisy Power Bus (A)	No	Yes	No	No	No	No	No
+27V Noisy Power Bus Return (A)	No	Yes	No	No	No	No	No
+27V Survival Heater Bus (A)	No	Yes	No	No	No	No	No
+27V Survival Heater Bus Return (A)	No	Yes	No	No	No	No	No
+31V Quiet Power Bus (A)	No	Yes	No	No	No	No	No
+31V Quiet Power Bus Return (A)	No	Yes	No	No	No	No	No
+31V Noisy Power Bus (A)	No	Yes	No	No	No	No	No
+31V Noisy Power Bus Return (A)	No	Yes	No	No	No	No	No
+31V Survival Heater Bus (A)	No	Yes	No	No	No	No	No
+31V Survival Heater Bus Return (A)	No	Yes	No	No	No	No	No
EOS/AMSU-A Instrument System							
EOS/AMSU-A Instrument @ 29V Nominal Voltage	No	No	No	Yes	Yes	Yes	Yes

1.5 Susceptibility monitors

The monitors shown in Table II will be observed and their output recorded during the performance of the susceptibility testing:

Table II Monitors for Susceptibility Test

Susceptibility	Line/Item	Monitor
Conducted	+29V main power, Quiet Bus*	Data output all channels
CS01, CS02, and CS06	+29V Noisy Power Bus*	Antenna Position
Radiated	AMSU-A enclosure	Data output all channels
RS01 and RS03		

^{*} CS01 & CS02 are to be performed at +27.0V and +31.0V bus. CS06 is performed at +29.0V bus.

1.6 Pass/Fail criteria

The pass/fail criteria for the conducted and radiated emissions test was determined by inspection of the recorded emissions levels when compared to the specifications limits. All emissions shall be on or below the specification limits. When narrowband emissions exceed the broadband limits or transient spikes

		,)
			<u> </u>

exceed the narrowband or broadband limits, the specific emission shall be identified and exempted from these criteria.

An STE EMI data collection program has been developed and is included in the bonded test software of the STE. Operation of the system and the EMI data collection program will be coordinated with operation of the EMI susceptibility signal sweeps.

The EMI data collected will provide about a five scan period at the beginning and end of each data collection period, which will allow comparison of each channel's normal radiometric response with and without the interference present. The data will be presented in the form of noise distribution plots for each of the radiometric channels and as a summary report for all channels. These data shall be reviewed as follows:

- a. Review the summary data and identify channels with alarm counts greater than ten or channels that have sigma values that are a factor of two greater than observed in baseline checks made periodically during the test.
- b. Examine the noise distribution plots for channels identified in (a), and look for disruptions during the period when the EMI signal sweep was made. If an EMI disruption results in a peak-to-peak increase in channel noise that is less than twice the normal level, then it is acceptable (pass); if the disruption creates a level shift in the noise data that is equal to or less than the normal noise level, then it is acceptable (pass).
- c. Examine all remaining plots for disruptions and identify and file the data.
- d. If any channel fails, additional sweeps will be made over a reduced frequency range and at reduced amplitudes as necessary to determine the threshold of the susceptibility.

The test will continue to establish an overall assessment of the behavior. On the Test Data Sheets, the EQUIPMENT LIMIT (EL) column will be checked when the test equipment cannot deliver the required level. Since the test equipment meets the power requirements of MIL-STD-461 and the AMSU-A instrument is not susceptible to the output of the signal source, a check on this column indicates the unit passed the test requirement. A check in the SPECIFICATION LIMIT (SL) column indicates the AMSU-A instrument met the requirements.

		•

SECTION 2

TEST CONDUCT/RESULTS

2. TEST CONDUCT/RESULTS

2.1 Conducted emissions (CE01) test

2.1.1 Purpose of test

This test was conducted to demonstrate that the electromagnetic interference currents in the power lines do not exceed the limits in Figure 1.

2.1.2 Date test started

The test began on 29 July 1998.

2.1.3 Date test completion

The test was completed on 29 July 1998.

2.1.4 Test procedure

The test procedure specified that the test be conducted as indicated in the following steps:

- 1. Connect the current probe to the Quiet Bus A power line listed in Table III (AE-26151/8B) and as depicted in Figure 4 (also AE-26151/8B), between the feedthrough capacitor and the EOS/AMSU-A.
- 2. Verify that the measuring equipment is programmed to measure between 20 Hz and 20 kHz. If necessary, program the signal analyzer for multi-scan and compare the measurement to the single scan. Capture the highest level possible in each range.
- 3. Turn ON the Main Power switch on the STE front power panel and turn ON the Q/Main, N/Pulse and S/Analog switches.
- 4. Adjust the Q and N/S power supplies voltage levels on the STE to +29.0 V.
- 5. Using STE commands "[9] SCANNER A1-1 POWER," and "[10] SCANNER A1-2 POWER," turn on the scanner power (the state of the command should change from OFF to ON).
- 6. Enter the STE command "[11] ANTENNA FULL SCAN MODE." Verify that the command was received by observing that the state of that command has changed from NO to YES, and the instrument is scanning in full scan mode.
- 7. Allow the instrument to scan for 30 minutes so that all the temperature and power parameters have stabilized (the instrument must remain in full scan mode during the Quiet Bus 'A' and Quiet Bus RTN 'A' test).

		•
)

Figure 1 Narrowband Conducted Emissions on Power Leads

Figure 2 Broadband Conducted Emission Limits on Power Lines

8. Make an X-Y plot. All narrowband measured data should be below the limit shown in Figure 2 (AE-26151/8B). If any emissions exceed or near the limit, scan the frequency range that exhibits the over-the-limit levels, reduce the frequency span, reduce the measuring bandwidth to 5 or 500 Hz, and photograph the CRT presentation or make an X-Y plot.

		—
		•

- 9. Connect the current probe to the Quiet Bus RTN A line (terminal 3), indicated in Figure 4 (AE-26151/8B), between the feedthrough capacitor and the EOS/AMSU-A.
- 10. Repeat steps 2 and 8 for the Quiet Bus RTN A line. Record all conducted emissions generated by the EOS/AMSU-A.
- 11. Using the STE commands, place the Antenna in the Warm Cal position.
- 12. Connect the current probe to the Noisy Bus A power line (terminal 5) indicated in Figure 4 (AE-26151/8B), between the feedthrough capacitor and the EOS/AMSU-A.
- 13. Repeat steps 2 and 8 for the Noisy Bus A line. Record all conducted emissions generated by the EOS/AMSU-A.
- 14. Connect the current probe to the Noisy Bus RTN A power line (terminal 7), indicated in Figure 4 (AE-26151/8B), between the feedthrough capacitor and the EOS/AMSU-A.
- 15. Repeat steps 2 and 8 for the Noisy Bus RTN A line. Record all conducted emissions generated by the EOS/AMSU-A.
- 16. Connect the current probe to the Survival Bus A power line (terminal 9), indicated in Figure 4 (AE-26151/8B), between the feedthrough capacitor and the EOS/AMSU-A.
- 17. Repeat steps 2 and 8 for the Survival Bus A line. Record all conducted emissions generated by the EOS/AMSU-A.
- 18. Connect the current probe to the Survival Bus RTN A power line (terminal 10), indicated in Figure 4 (AE-26151/8B), between the feedthrough capacitor and the EOS/AMSU-A.
- 19. Repeat steps 2 and 8 for the Survival Bus RTN A line. Record all conducted emissions generated by the EOS/AMSU-A.
- With the instrument powered OFF, move the test leads and jumpers from terminals 9 and 10 to terminals 22 and 23 on the Breakout Box, for the Survival Bus power redundancy, listed in Table III (AE-26151/8B). Place the "A/B" switch on the STE front panel to the "B" position.
- 21. Repeat steps 16 through 19 for the Survival Bus B redundancy of the instrument.
- 22. Command the instrument scanner OFF and turn off the Main Power switch on the STE, as described in paragraph 3.4.6.4.2, steps 1 and 2 (AE-26151/8B).

2.1.5 Test comment

This test was conducted in accordance with the above test plan, with no exceptions.

2.1.6 Test results

The emissions on the Quiet Bus are 23 dB below the limit. The Noisy Bus exhibit emissions 21 dB below the limit. The Survival Heaters were 23 dB below the limit. The AMSU-A1 meets the requirement without exception. See Test Data Sheet 1 and Plots 1 through 8.

		<u> </u>
		<u></u>
		-

2.2 Conducted emissions (CE03) test

2.2.1 Purpose of test

This test was conducted to demonstrate that the electromagnetic interference currents in the power lines do not exceed the limits in Figures 1 and 2.

2.2.2 Date test started

The test began on 30 July 1998.

2.2.3 Date test completion

The test was completed on 30 July 1998.

2.2.4 Test procedure

The test procedure specified that the test be conducted as indicated in the following steps:

- 1. Place the current probe (91550-1) on one of the power lines listed in Table III (AE-26151/8B).
- 2. Verify that the measuring equipment is programmed to measure between 20 kHz and 50 MHz.
- 3. Using the spectrum analyzer system (HP 8566B), automatically scan all narrowband data from 20 kHz to 50 MHz. Plot the CRT presentation.
- 4. All measured data should be below the limit shown in Figure 2 (AE-26151/8B). If any emissions are observed to exceed or near the limit line, reduce the measuring bandwidth to 500 Hz, 5 kHz, or 50 kHz, and command the computer to print the measured level of the signal.
- 5. Request the computer for all broadband data from 20 kHz to 50 MHz. Plot the CRT presentation.
- 6. All broadband measured data should be below the limit shown in Figure 3 (AE-26151/8B). If any emissions are observed to exceed the limit, determine if the signal is broadband, as indicated in MIL-STD-462.
- 7. If signals are broadband emissions, command the computer to print out the measured levels.
- 8. Repeat steps 1 through 7 for all the power lines listed in Table III (AE-26151/8B).
- 9. If any narrowband or broadband signals exceed the limits, perform an ambient test and determine the source of the emanation.
- 10. Affix all plots, photos, calculations, and related information to TDS 2.

2.2.5 Test results

The Quiet Bus exhibited emissions above the limit throughout the frequency range of 47 kHz to 835 kHz. The narrowband conducted emissions exceeded the limit by 17 dB. The broadband emissions are a

product of pulsed CW and have the same frequencies as seen on the NB plot. The Noisy Bus is the contributor of all the noise exhibited in all the power lines with exception of the power supply switching harmonics, i.e., 104 kHz. The emissions cover a frequency range from 20 kHz to 2.15 MHz. The narrowband measured level exceed the limit by a maximum of 24 dB. The Survival Heater Bus A and B were measured and there was little difference between them. The emissions exceed the limit by a maximum of 17 dB. The frequency spectrum covers the frequency range of 54 kHz to 835 kHz. See Test Data Sheet 2 plots 10 through 25. The Quiet Bus was measured with the motor in the Warm Calibration position. The only frequencies that are out of spec are the harmonics of the switching frequency. They are presented in plots 26 through 29.

2.3 Radiated emissions (RE01) test

2.3.1 Purpose of test

The test was conducted to demonstrate that the radiated magnetic fields from the test sample and associated cables do not exceed the limit in Figure 3.

2.3.2 Date test started

The test began on 28 July 1998.

2.3.3 Date test completion

The test was completed on 28 July 1998.

2.3.4 Test procedure

The test procedure specified that the test be conducted as indicated in the following steps:

- 1. Connect the Stoddart 902111-2 loop antenna to the input port of the HP 7080A spectrum analyzer or HP 3562 signal analyzer.
- 2. Adjust the spectrum analyzer sequentially to the frequency range and bandwidth specified below:
 - A. 30 Hz to 200 Hz -- 10 Hz Bandwidth
 B. 200 Hz to 20 kHz -- 100 Hz Bandwidth
 C. 20 kHz to 50 kHz -- 1 kHz Bandwidth
- 3. Locate the area of maximum interference and take data.
- 4. All measured data shall be below the limits shown in Figure 16 (AE-26151/8B).
- 5. Plot the CRT presentation, with limit.
- 6. Affix all plots, photos, calculations, and related information to TDS 8 (AE-26151/8B).

2.3.5 Test comment

This test was conducted in accordance to the above test plan, with no exceptions.

)
		<u></u>

Figure 3 Limits RE01

2.3.6 Test results

The AMSU-A1/EOS instrument does not meet the requirements of the test method RE01. The narrowband emissions exceed limits throughout the frequency range of 30 Hz to 2.8 kHz. The center of each motor, 7 cm away, exhibit emissions that exceed the limit. The frequency range of 30 to 80 Hz are related to the motor steps. The emissions are 45 dB above the limit, i.e., 105 dBpT. The motor also exhibits a strong narrowband frequency at 1.635 kHz that exceeds the limit by 25 dB, i.e., 85 dBpT. No emissions were detected from 20 to 50 kHz. No emissions were detected in any other position of the probe throughout the instrument. See Test Data Sheet 8, Plots 150 and 152.

2.4 Radiated emissions (RE04) test

2.4.1 Purpose of test

This test was conducted to demonstrate that the radiated magnetic fields from the test sample and associated cables do not exceed the limit of one milligauss at a distance of our meter from the lateral wall of the instrument in all directions.

2.4.2 Date test started

The test began on 31 July 1998.

2.4.3 Date test completion

The test was completed on 31 July 1998.

		<u> </u>

2.4.4 Test procedure

The test procedure specified that the test be conducted in the following steps:

- 1. Move the EOS/AMSU-A instrument, on the plastic fixture, toward the probe to a distance of one meter from the wall of the instrument to the point of the probe.
- 2. Manually rotate the instrument.
- 3. With the unit deactivated, measure the magnetic field emissions of the EOS/AMSU-A instrument. Collect test data of the magnetic field intensity by rotating the equipment clockwise and taking measurements at intervals of not less than every 30 degrees. Record the results and note the level and location on TDS 9 (AE-26151/8B).
- 4. Perform paragraph 3.4.8.4 (AE-26151/8B) steps 2 to 5. Allow the instrument to scan for a 30 minute warm up.
- 5. At the point of maximum detection, repeat measurements with the instrument in the primary operating mode. Note difference in level. If levels exceed previous measurement levels, repeat step 2 with the unit activated.
- 6. Review recorded data. If measurement are below the 1 milligauss level at one meter from the instrument in all directions, the test is completed. If measurements exceed the limit, measure the ambient level and proceed to step 7 or step 8.
- 7. In the event that the ambient level does not meet the requirement and the ambient cannot be reduced further because of the facility or area limitations, a minimum of three correlatable measurements shall be made in the axis of maximum field intensity but at a shorter distance than one meter. The measured levels shall be able to provide an approximate field intensity. Ambient magnetic field shall be recorded and shall be part of the test data package.
- 8. In the event that the measured level exceeds the required level, the measurements shall be made to determine the location of the center of the magnetic dipole moment producing the out-of-limit condition. A minimum of three correlatable measurements along an axis are required to plot the magnetic field.
- 9. Record all measured data, indicating level and position of the probe. Note opposing magnetic dipole moments, shield leakage, and all other pertinent data.
- 10. Repeat measurement within ten inches above and below the mid-height probe placement of 3.4.11.3.1 (3) (of AE-26151/8B).

2.4.5 Test comment

This test was conducted in accordance to the above test plan, with no exceptions.

2.4.6 Test results

The AMSU-A1/EOS instrument meets the requirement without exception. The instrument was measured with the unit power "OFF" and in the "FULL SCAN" mode. Under both conditions, the instrument magnetic field level, at three heights, do not exhibit emissions above 0.61 milligauss one meter from the unit. See Test Data Sheet 9.

		•
)
)

2.5 Radiated emissions (RE02) test

2.5.1 Purpose of test

This test was conducted to demonstrate that the radiated electric fields from the test sample and associated cables do not exceed the limits in Figures 4 and 5.

2.5.2 Date test started

The test began on 27 July 1998.

2.5.3 Date test completion

The test was completed on 28 July 1998.

2.5.4 Test procedure

The test procedure specified that the test be conducted as indicated in the following steps:

- Connect the antenna to the proper receiver/amplifier port. Verify that the EOS/AMSU-A
 interface cables used for monitoring are shielded.
- 2. Allow the EMC test equipment to warm up for a minimum of 10 minutes.
- 3. Program the spectrum analyzer system (HP 8566B) to automatically scan and plot all narrowband data from 14 kHz to 1 GHz, switching the appropriate antenna/amplifier throughout the frequency range.

Figure 4 Radiated Narrowband Limits for Electric-Field Emission (Produced by Instrument)

Figure 5 Radiated Broadband Limits for Electric-Field Emissions (Produced by Instrument)

- 4. All data shall be below the limits shown in Figure 5 (AE-26151/8B). If any emissions are observed to exceed the limit line, command the computer to print the measured levels.
- 5. Request of the computer all broadband data from 14 kHz to 1 GHz. Plot the CRT presentation with limits.
- 6. All data shall be below the limits shown on Figure 6 (AE-26151/8B). If any emissions are observed to exceed the limit line, command the computer to print the measured levels.
- 7. If any signals, narrowband or broadband, exceed the limits, perform an ambient test and determine the source of the emanations. Reduce or eliminate the source, if external to the EOS/AMSU-A instrument, and repeat the test.
- 8. Set up the horn antenna (RGA-180) one meter from the point of maximum radiation.
- 9. Self-calibrate the signal analyzer (HP 71210C).
- 10. Sweep throughout the frequency range of 1 to 18 GHz in a minimum of three ranges, recording the observed narrowband emission levels. Plot emissions detected throughout each frequency range.
- 11. All data shall be below the limits shown on Figure 5 (AE-26151/8B); if not, perform step 7.
- 12. Affix all plots, photos, calculations, and related information to TDS 3 (AE-26151/8B).
- 13. After disconnecting the horn antenna, set the signal analyzer (HP 71210C) to one of the four frequencies listed in 3.4.5 (AE-26151/8B) with the appropriate frequency span.

		<u> </u>
		•

- 14. Activate the series preamplifier (HP 70620) and reduce the test equipment bandwidth to 10 kHz or less.
- 15. Program the signal analyzer (HP 71210C) for noise averaging to a minimum of eight times. Verify that the sensitivity noise level is below the required level.
- 16. Connect the antenna to the signal analyzer amplifier input.
- 17. The measurement should be within the ambient level, and no narrowband frequencies should be detected at the specified frequency above the sensitivity level specified in 3.4.5 (AE-26151/8B). Plot the screen presentation.
- 18. Repeat steps 13 through 17 while performing a measurement on the remaining frequencies.
- 19. Record the information regarding the test on TDS 3 (AE-26151/8B) and attach all plots, photos, calculations, and other related information.

2.5.5 Test comment

This test was conducted in accordance to the above test plan, with no exceptions.

2.5.6 Test results

The AMSU-A1/EOS instrument exceeds the limit at 1, 12, 17, and 40 MHz. These frequencies are related directly to the instrument. They exceed the limit by a maximum of 2 dB above the limit. There are several ambient emissions that were recorded and are attributed to the STE and an FM radio station. Efforts were made to reduce the ambient emissions but the physical location of the STE cables and the measuring cables were affected with the frequencies from 220 to 280 kHz. A special test was conducted with the motor in the "Warm Calibration" mode, i.e., not switching, and the emissions are not that different. Broadband emissions were below the limit except at 2 to 2.2 GHz. The electric field radiated emissions from 1 to 18 GHz exhibited no detectable emissions. The frequency band between 2.0 to 2.2 GHz, broadband limit is too stringent and could not be measured at 18 dB μ V/m/MHz. This is an instrumentation problem that could not be resolved. All the special frequencies were within the specification sensitivity requirements. See Test Data Sheet 3, plots 100 through 143.

2.6 Conducted susceptibility (CS01) test

2.6.1 Purpose of test

This test was conducted to demonstrate that the test sample is not susceptible to the transformercoupled audio frequency conducted interference levels on the input power leads, to the levels indicated in Figure 6.

2.6.2 Date test started

The test began on 17 July 1998. A partial re-test began on 31 July 1998.

2.6.3 Date test completion

The test was completed on 18 July 1998. The partial re-test was completed on 31 July 1998.

		•
		<u> </u>

2.6.4 Test procedure

The test procedure specified that the test be conducted as indicated in the following steps:

- 1. Apply power to all the test equipment and set the power amplifier to ON, and the "Right/Mono Gain" knob to min. (counterclockwise).
- 2. Set the function generator to sweep from 30 Hz to 50 kHz using the following discrete frequency ranges with a sweep rate of 90 seconds per range:
 - A. 30 Hz to 1500 Hz
 - B. 1.5 kHz to 10 kHz
 - C. 10 kHz to 50 kHz.
- 3. Set the SCAN mode to SINGLE SWEEP.

Quiet Bus 'A'/Bus RTN 'A' Test

- 1. Connect the transformer secondary winding to the Breakout Box terminals as indicated in Table V of Figure 9 (AE-26151/8B)
- 2. Set the function generator amplitude to 500 mV p-p. Adjust the amplifier's amplitude using the "Right/Mono Gain" knob to obtain 500 mV on the scope.
- 3. Disable the function generator by pressing the signal "Rear only" button.
- 4. Using STE commands "[9] SCANNER A1-1 POWER," and "[10] SCANNER A1-2 POWER," turn on the scanner power (the state of the command should change from OFF to ON).
- 5. Enter the STE command "[11] ANTENNA FULL SCAN MODE." Verify that the command was received by observing that the state of that command has changed from NO to YES, and the instrument is scanning in full scan mode.
- 6. Allow the instrument to scan for 30 minutes so that all the temperature and power parameters have stabilized (the instrument must remain in full scan mode during the Quiet Bus 'A' and Quiet Bus RTN 'A' test).
- 7. After the instrument has stabilized for 30 minutes, enable the function generator and perform the EMI test sequence by selecting command "[7] SPECIAL CYCLE CALIBRATION" from the STE main screen.
- 8. From the test initialization menu, select "[13] SCANS TO ACQUIRE." Enter the number of scans (24 for 90 sec. Sweep time).
- 9. Select "[16] START DATA ACQUISITION." Begin the test sweep (for the 30 Hz to 1500 Hz range) on the function generator. Manipulate the amplifier's amplitude to maintain the 500 mV p-p.
- 10. At the end of the sweep and 24 scans, the screen will change to the A1 DELTA T and CALIBRATION ACCURACY menu. From that screen, press "[1] RETURN." The display will prompt "Do you wish to save data on disk (Y/N)? Enter N for No.

		<u> </u>
		•

Figure 6 Ripple and Noise Susceptibility Limit

- 11. The STE will return to the AMSU-A1 TEST INITIALIZTION menu. Enter 15 and press the return key, two times. The STE will return to the AMSU-A1 CALIBRATION PROCESS SELECTION menu.
- 12. Select "[12] PRINT DISTRIBUTION" to obtain the data plot.
- 13. Select "[1] RETURN" to return to the AMSU-A1 TEST INITIALIZATION menu.
- 14. Repeat steps 8 to 13 for each frequency range and power levels specified in TDS 4 and Table III (AE-26151/8B).
- 15. Repeat steps 1 to 3 and step 14 for Quiet Bus RTN 'A'.
- 16. Record the completion of scanning of each function generator's frequency sweep range on TDS 4 (AE-26151/8B).
- 17. If any failure occurs, record each frequency at which a failure occurs, and annotate the level of the threshold for the failure.

Noisy Bus 'A'/Bus RTN 'A' Test

- 1. Turn off the scanner power by entering the STE commands "[9] SCANNER A1-1 POWER," and "[10] SCANNER A1-2 POWER." The state of the command should change from ON to OFF.
- 2. Turn OFF the Main Power switch on the STE front panel.
- 3. Configure the Breakout Box for the Noisy Bus 'A' test in accordance with Table V of Figure 9 (AE-26151/8B).
- 4. Turn the STE Main Switch to ON (Q/Main and N/Pulse and S/Analog switches must be turned ON). Set the N/S supply on the STE to +27.0 V and the Q supply on the STE to +29.0 V.

		•
		<u> </u>

- 5. Turn on the scanner power and place the instrument in Warm Cal position by entering the STE command "[12] WARM CAL." Verify that the command was received by observing that the state of that command has changed from NO to YES.
- 6. Set the function generator amplitude to 800 mV p-p, and adjust the power amplifier gain level to obtain 7 V p-p on the scope. Place the METER RANGE knob on the amplifier to the "WATTS" position.
- 7. Begin the test sweep on the function generator for the frequency ranges specified in TDS 4 (AE-26151/8B).
- 8. Enter the STE command "[10] SCIENCE DATA," and enter the STE command "[13] REFLECTOR POSITIONS".
- 9. Monitor the reflector position data counts while sweeping through the frequency specified in TDS 4 (AE-26151/8B). Use STE commands "[21] UP" and "[22] DOWN" to manipulate through the reflector position numbers during the test sweep.
- 10. Obtain a printout using STE command "[2] SCREEN ONLY" for each channel radiometric data at the completion of the test sweep.
- 11. Repeat steps 7 through 10 for each frequency range specified in TDS 4 (AE-26151/8B).
- 12. Turn off the power amplifier by placing the SPEAKER knob in the OFF position. Disable the function generator.
- 13. Set the N/S supply on the STE to +31.0 V. Turn on the power amplifier by placing the SPEAKER knob to the ON position. Enable the function generator.
- 14. Perform steps 7 to 11.
- 15. Perform steps 1 and 2. Configure the Breakout Box for Noisy Bus RTN 'A' test, in accordance with Table V of Figure 9 (AE-26151/8B).
- 16. Perform steps 4 to 14.
- 17. Record the completion of scanning of each function generator's frequency sweep range on TDS 4 (AE-26151/8B).
- 18. If any failure occurs, record each frequency at which a failure occurs, and annotate the level of the threshold for the failure.

Survival Bus 'A'/Bus RTN 'A' Test

- 1. Turn off the scanner power by entering the STE commands "[9] SCANNER A1-1 POWER," and "[10] SCANNER A1-2 POWER." The state of the command should change from ON to OFF.
- Turn OFF the Main Power switch on the STE front panel.
- 3. Configure the Breakout Box for the Survival Bus 'A' test in accordance with Table V of Figure 9 (AE-26151/8B).
- 4. Set the N/S supply on the STE to +27.0 V and the Q supply on the STE to +29.0 V.

- 5. Turn on the scanner power and place the instrument in Warm Cal position by entering the STE Command "[12] WARM CAL." Verify that the command was received by observing that the state of that command has changed from NO to YES.
- 6. Adjust the function generator amplitude and the amplifier gain level to obtain 3 V p-p on the scope.
- 7. Begin the test sweep on the function generator for the frequency ranges specified in TDS 4 (AE-26151/8B).
- 8. Monitor the N/S supply current on the STE. Verify that the current does not reach minimum of 0.5 ampere during the test sweep.
- 9. Manipulate the amplifier gain control to maintain the 3 V p-p on the scope.
- 10. Repeat steps 7 to 9 for each frequency range specified in TDS 4, and the Bus Voltage levels of Table III (AE-26151/8B).
- 11. Turn off the power amplifier by placing the SPEAKER knob in the OFF position. Disable the function generator.
- 12. Set the N/S supply on the STE to +31.0 V. Turn on the power amplifier by placing the SPEAKER knob to the ON position. Enable the function generator.
- 13. Perform steps 7 to 10.
- 14. Perform steps 1 and 2. Configure the Breakout Box for the Survival Bus RTN 'A' test, in accordance with Table V of Figure 9 (AE-26151/8B).
- 15. Perform steps 4 to 13.
- 16. Record the completion of each function generator's frequency sweep range on TDS 4 (AE-26151/8B).
- 17. If any failure occurs, record each frequency at which a failure occurs, and annotate the level of the threshold for the failure.

2.6.5 Test comment

This test was conducted in accordance to the above test plan, with no exceptions.

2.6.6 Test results

The instrument meets the requirements of this Test Method. The test was performed at the high and minimum input power levels without any indication of susceptibility. The Quiet Bus high side and return were additionally tested after the channel 15 failure indicated in the following paragraph. The AMSU-A1/EOS passed all the test. See Test Data Sheet.

2.7 Conducted Susceptibility (CS02) test

2.7.1 Purpose of test

The test was conducted to demonstrate that the test sample is not susceptible to the capacitor-injected radio frequency conducted interference levels on the input power leads, per Figure 6.

2.7.2 Date test started

The test began on 18 July 1998. A partial re-test began on 31 July 1998.

2.7.3 Date test completion

The test was completed on 20 July 1998. The partial re-test was completed on 31 July 1998.

2.7.4 Test procedure

The test procedure specified that the test be conducted as indicated in the following steps:

- 1. With the sensor in primary operating mode, apply power to all the test equipment except the power amplifier. Ensure that there is no connection between the Hi pass filter (HPF) and the Breakout Box.
- 2. Set the function generator to sweep from 50 kHz to 400 MHz, using the frequency ranges, the sweep time, and equipment changes as indicated in Table VI (AE-26151/8B).
- 3. Apply power to the power amplifier.

Quiet Bus 'A'/Bus RTN 'A' Test.

- 1. Connect the HPF (line) to the scope channel 1. Adjust the amplitude level on the function generator being used in Table VI (AE-26151/8B) so that a 3.0 V p-p (for frequency range of 1 MHz 400 MHz only) AC signal is measured.
- 2. Remove the test cable from the scope and HPF (line) and connect to the spectrum analyzer and HPF (det).
- 3. Turn on the Display Line (DL) and enable the marker mode on the spectrum analyzer. Adjust the DL to obtain a -21.0 dBm reference line. The measured signal (unloaded) on the spectrum analyzer should be above the DL with the attenuator set to 0 dB.
- 4. Disable the function generator by pressing the signal "Rear only" button (RF ON/OFF on 83630B). Connect a test lead from the HPF (line) to terminal 1 (Quiet Bus 'A') on the Breakout Box. Enable the function generator.
- 5. Set the attenuator to attain -15 dB gain and readjust the amplitude level on the function generator being used so that the signal level is maintained above the DL of the spectrum analyzer.
- 6. Manipulate the attenuator to maintain a signal level at or above the DL during the test sweep.

		•
		•
		-

- 7. Using STE commands "[9] SCANNER A1-1 POWER," and "[10] SCANNER A1-2 POWER," turn on the scanner power (the state of the command should change from OFF to ON).
- 8. Enter the STE command "[11] ANTENNA FULL SCAN MODE." Verify that the command was received by observing that the state of the command has changed from NO to YES, and the instrument is scanning in full scan mode.
- 9. Allow the instrument to scan for 30 minutes so that all the temperature and power parameters have stabilized (the instrument must remain in full scan mode during the Quiet Bus 'A' and Quiet Bus RTN 'A' test).
- 10. After the instrument has stabilized for 30 minutes, perform the EMI test by selecting command "[7] SPECIAL CYCLE CALIBRATION" from the STE main screen.
- 11. From the TEST INITIALIZATION menu, select "[13] SCANS TO ACQUIRE." Enter the number of scans (24 for 90 sec. sweep time or 16 for 60 sec. sweep time).
- 12. Select "[16] START DATA ACQUISITION." At the end of the 24 (16) scans the screen will change to the A1 DELTA T and CALIBRATION ACCURACY menu. From that screen, press "[1] RETURN." The display will prompt "Do you wish to save data on disk (Y/N)?" Enter N for No.
- 13. The STE program will return to the AMSU-A1 TEST INITIALIZATION menu. Enter 15 and press the RETURN key, two times. The STE will return to the AMSU-A1 CALIBRATION PROCESS SELECTION menu.
- 14. Select "[12] PRINT DISTRIBUTION" to obtain the data plot.
- 15. Select "[1] RETURN" to return the AMSU-A1 TEST INITIALIZATION menu.
- 16. Repeat steps 12 to 15 for each frequency range specified in Table VI and Bus Voltage levels of Table III (AE-26151/8B). Obtain a printout of the monitored system output data.
- 17. Repeat steps 1 through 16 for the Quiet Bus RTN A using terminal 3 on the Breakout Box, and for the Bus Voltage levels indicated in Table III (AE-26151/8B).
- 18. Repeat steps 1 through 17 for the 50 kHz to 1 MHz frequency range at 0.5 V p-p amplitude level on the function generator.
- 19. If any failure occurs, record each frequency at which a failure occurs and annotate the threshold level of the failure.
- 20. Record the completion of scanning of each band on TDS 5 (AE-26151/8B).

Noisy Bus 'A'/Bus RTN 'A' Test (50 kHz - 400 MHz)

- 1. Connect the HPF (line) to the scope channel 1. Adjust the amplitude level on the function generator being used (see Table VI of AE-26151/8B) so that a 3.0 V p-p (unloaded) Ac signal is measured (700 mV p-p amplitude on function generator).
- 2. Remove the test load from the HPF (line) and connect it to the (DET) on the HPF.

		•

- 3. Remove the test load from the scope and connect to the spectrum analyzer "RF Inputs." Turn on the Display Line (DL) and enable the marker mode on the spectrum analyzer. Verify that the peak signal is approximately -42.0 dBm. Adjust the DL to be at the peak signal.
- 4. Set the attenuator to 50 dB. The measured signal on the spectrum analyzer (unloaded) should be at or above the DL (-42.0 dBm).
- 5. Disable the function generator by pressing the signal "Rear only" button (RF ON/OFF on 83630B). Connect the test lead from the HPF (line) to terminal 5 (Noisy Bus 'A') on the Breakout Box. Enable the function generator.
- 6. Place the instrument in Warm Cal position by selecting STE command "[12] WARM CAL." Enter the STE command "[10] SCIENCE DATA," and enter the STE command "[10] CHANNEL NN-ALL BEAM POSITIONS."
- 7. Enter the first available channel number. Monitor the radiometric data for all channels while sweeping through the frequency specified in TDS 5 (AE-26151/8B). Use STE command "[21] UP" and "[22] DOWN" to monitor all channels during the test sweep.
- 8. Manipulate the attenuator to maintain a signal level at or above the DL during the test sweep.
- 9. Obtain a printout using STE command "[12] SCREEN ONLY" for each channel radiometric data at the completion of the test sweep.
- 10. Repeat steps 6 through 9 for each frequency range specified in Table VI (AE-26151/8B) and Bus Voltage levels of Table III.
- 11. Repeat steps 1 through 10 for the Noisy Bus RTN 'A' using terminal 7 on the Breakout Box, and for the Bus Voltage levels as indicated in Table III.
- 12. If any failure occurs, record each frequency at which a failure occurs and annotate the threshold level of the failure.
- 13. Record the completion of scanning of each band on TDS 5 (AE-26151/8B).

Survival Bus 'A'/Bus RTN 'A' Test (50 kHz - 400 MHz).

- 1. Connect the HPF (line) to the scope channel 1. Adjust the amplitude level on the function generator being used (see Table VI of AE-26151/8B) so that a 3.0 V p-p (unloaded) AC signal is measured (700 mV p-p amplitude on function generator).
- 2. Remove the test load from the HPF (line) and connect it to the (DET) on the HPF.
- 3. Remove the test load from the scope and connect to the spectrum analyzer "RF Input." Turn on the Display Line (DL) and enable the marker mode on the spectrum analyzer. Verify that the peak signal is approximately -42.0 dBm. Adjust the DL to be at the peak signal.
- 4. Set the attenuator to 50 dB. The measured signal on the spectrum analyzer (unloaded) should be at or above the DL (-42.0 dBm).

		•
		<u> </u>
		<u> </u>

- 5. Place the instrument in Warm Cal position by entering the STE command "[12] WARM CAL." Verify that the command was received by observing that the state of the command has changed from NO to YES.
- 6. Disable the function generator by pressing the signal "Rear only" button (RF ON/OFF on 83630B). Connect the test leads from the HPF (line) to terminal 9 (Survival Bus 'A' on the Breakout Box). Enable the function generator.
- 7. Turn on the S/Analog switch on the STE front panel. Monitor the N/S supply current on the STE. Verify that the current does not reach a minimum of 0.5 Amp during the test sweep.
- 8. Manipulate the attenuator to maintain a signal level at or above the DL (-42.0 dBm) during the test sweep.
- 9. Repeat steps 7 and 8 for each frequency range specified in Table VI (AE-26151/8B) and Bus Voltage levels of Table III (AE-26151/8B).
- 10. Repeat steps 6 through 9 for the Survival Bus RTN 'A' using terminal 10 on the Breakout Box, and for the Bus Voltage levels indicated in Table III (AE-26151/8B).
- 11. If any failure occurs, record each frequency at which a failure occurs and annotate the threshold level of the failure.
- 12. Record the completion of scanning of each band on TDS 5 (AE-26151/8B).

2.7.5 Test comment

This test was conducted in accordance to the above test plan, with no exception.

2.7.6 Test results

The AMSU-A1/EOS instrument meets the requirements of Test Method CS02, as indicated in this report. During the performance of the CS02 on the Quiet Bus, channel 15 failed. The indication of the anomaly was loss of gain. The failure was attributed to a high transient spike. The source of the transient could not be ascertained. The proper conduct of the test method does not produce such transients. After the repairs of the instrument the test on the Quiet Bus was repeated from 30 Hz to 400 MHz (the CS01 test method was repeated to cover the entire frequency range) without any indication of susceptibility. See Test Data Sheet 5.

2.8 Conduct Susceptibility (CS06) test

2.8.1 Purpose of test

This test was conducted to demonstrate that the test sample is not susceptible to transient spike conducted interference on the input power leads, as shown in Figure 7.

2.8.2 Date test started

1 August 1998.

2.8.3 Date test completion

The test was completed on 1 August 1998.

		J
		_^

Figure 7 CS06 Transient Waveform

2.8.4 Test procedure

The test procedure specified that the test be conducted as indicated in the following steps:

- Connect the test leads from the scope and the spike generator to the Quiet Bus terminals indicated in Figure 12 (AE-26151/8B).
- 2. Turn ON the Main Power switch on the STE front power panel and turn ON the Q/Main, N/Pulse and S/Analog switches.
- 3. Adjust the Q and N/S power supplies voltage levels on the STE to +29.0 V.
- 4. Using STE commands "[9] SCANNER A1-1 POWER," and "[10] SCANNER A1-2 POWER," turn on the scanner power (the state of the command should change from OFF to ON).
- 5. Enter the STE command "[11] ANTENNA FULL SCAN MODE." Verify that the command was received by observing that the state of that command has changed from NO to YES, and the instrument is scanning in full scan mode.
- 6. Allow the instrument to scan for 30 minutes so that all the temperature and power parameters have stabilized (the instrument must remain in full scan mode during the Quiet Bus 'A' and Quiet Bus RTN 'A' test).
- 7. After the instrument has stabilized for 30 minutes, perform the EMI test by selecting command "[7] SPECIAL CYCLE CALIBRATION" from the STE main screen.
- 8. From the TEST INITIALIZATION menu, select "[13] SCANS TO ACQUIRE." Enter the number of scans (58 for 5 sec/meter).
- 9. Select "[16] START DATA ACQUISITION." Apply the spike at a 10 peaks per second (pps) rate for 5 minutes to the power line under test.

		_

- 10. At the end of the 58 scans the screen will change to the A1 DELTA T and CALIBRATION ACCURACY menu. From that screen, press "[1] RETURN." The display will prompt "Do you wish to save data on disk (Y/N)?" Enter N for No.
- 11. The STE program will return to the AMSU-A1 TEST INITIALIZATION menu. Enter "[15] SELECT CAL PROCESSING" and press the RETURN key. The STE will return to the AMSU-A1 CALIBRATION PROCESS SELECTION menu.
- 12. Select "[12] PRINT DISTRIBUTION" to obtain the data plot.
- 13. Select "[1] RETURN" to return the AMSU-A1 TEST INITIALIZATION menu.
- 14. If any failures are recorded, annotate the threshold level of the failure.
- 15. Reverse the spike polarity and repeat steps 9 to 14.
- With the instrument powered OFF, remove the test leads from the Quiet Bus terminals and connect to the Noisy Bus terminals (5 and 7) as shown in Figure 12 (AE-26151/8B).
- 17. Turn ON the scanner power and place the antenna in Warm Cal position.
- 18. Enter the STE command "[10] SCIENCE DATA," and enter the STE command "[13] REFLECTOR POSITIONS."
- 19. Monitor the reflector position data counts while applying the voltage spike per step 9. Use STE command "[21] UP" and "[22] DOWN" to manipulate through the reflector positions during the voltage spike test.
- 20. Repeat step 9.
- 21. Obtain a printout using STE command "[12] SCREEN ONLY" for each channel radiometric data at the completion of the spike test.
- 22. Reverse the spike polarity and repeat steps 19 to 21.
- 23. If any failures are recorded, annotate the threshold level of the failure.
- 24. With the instrument powered off, remove the test leads from the Noisy Bus terminals and connect across the Survival Bus terminals (9 and 10).
- 25. Turn ON the scanner power and place the antenna in Warm Cal position.
- 26. Turn on the S/Analog switch on the STE front panel. Monitor the N/S supply current on the STE. Verify that the current does not reach a minimum of 0.5 Amp during the test sweep.
- 27. If any failures are recorded, annotate the threshold level of the failure.
- 28. Remove the spike polarity and repeat steps 26 and 27.
- 29. Record the completion of each test on TDS 6 (AE-26151/8B). If failures occur, record the pulse amplitude, pulse width, and polarity.

		J
		ب

2.8.5 Test comment

This test was conducted in accordance to the above test plan, with no exceptions.

2.8.6 Test results

The AMSU-A1/EOS instrument meets the requirement of test method CS06 without any exception. No malfunction or reduction of performance was noted during the entire conduct of this test. See Test Data Sheet 6 (AE-26151/8B).

2.9 Radiated Susceptibility (RS01) test

2.9.1 Purpose of test

This test was performed to demonstrate that the test sample case and associated cables are not susceptible to the AC and DC magnetic fields shown in Figure 8 and Tables III and IV, respectively.

2.9.2 Date test started

The test began on 28 July 1988.

2.9.3 Date test completion

The test was completed on 30 July 1998.

2.9.4 Test procedure

The test procedure specified that the test be conducted as indicated in the following steps:

- 1. Power all the test equipment and set the power amplifier to standby.
- 2. Set the function generator to sweep from 30 Hz to 200 kHz using the frequency ranges below and a sweep rate of 90 seconds per range.
 - a. 30 to 200 Hz
 - b. 360 to 2000 Hz
 - c. 2 to 20 kHz
 - d. 20 to 200 kHz
- 3. Set the SCAN mode to SINGLE SWEEP and turn on the power amplifier.
- 4. Monitor the output signal with the digital voltmeter or the spectrum analyzer and adjust the output level to the required voltage equivalent to the limit shown in Figure 8.
- 5. Move the loop antenna along the wall of the instrument, cables, and connectors. Repeat the frequency range sweep, as required. Monitor the STE for indication of susceptibility.
- 6. Using the EMI test menu on the STE, monitor the test sample for errors as described in the ATP. At each frequency range, obtain a printout of the monitored system output data.

		•

Figure 8 RS01 Magnetic Field Limit

Table III Magnetic Field Applied Distance

Unit	Distance (Inches)	Axis
AMSU-A1	32.6	-X

Table IV Static Magnetic Field Applied Distance

Unit	Maximum Distance (Inches)	Axis
AMSU-A1	92.56	-X

- 7. Record on TDS 10 (AE-26151/8B) the completion of scanning of each function generator's frequency sweep range.
- 8. If any failure occurs, record the frequency and area at which a failure occurred. Note the voltage level of the threshold for the failure.
- 9. Convert the voltage level to the appropriate magnetic field equivalent.

2.9.5 Radiated susceptibility, static magnetic field, test

- 1. Power on all the test equipment.
- 2. Set the power to the current level that generates a 10 gauss field.
- 3. Using the EMI test menu on the STE, monitor the test sample for errors as described in the ATP.
- 4. Move the loop antenna along the lateral walls of the instrument, connectors, and cables.

		•
		<u>_</u>

- 5. Get a printout of the monitored system as the field is applied on each wall, connector, area, and cables.
- 6. If any failure occurs, record the malfunction and area at which a failure occurred. Note the voltage level of the threshold for the failure. Move the radiating loop antenna back until normal operation returns. Record the new distance of the loop antenna.
- 7. Convert the voltage level to the appropriate magnetic field equivalent.
- 8. Record on TDS 11 (AE-26151/8B) the completion of each area probed; i.e., lateral walls, connectors, and cables, and the distance between the applied field and the items described.

2.9.6 Test comment

The test was conducted in accordance to the above test plan, with one exception. All the applied levels were at 5 cm from the wall of the instrument, connectors, and cables.

2.9.7 Test results

The AMSU-A1/EOS instrument meets the requirement of Test Method RS01, AC and DC magnetic fields. The unit did not exhibit any malfunctions or reduction of performance during the conduct of the test. See Test Data Sheets 10 and 11 (AE-26151/8B).

2.10 Radiated Susceptibility (RS03) test

2.10.1 Purpose of test

This test was performed to demonstrate that the test sample and associated cables are not susceptible to the radiated electric fields shown in Figure 9.

2.10.2 Date test started

The test began on 1 August 1998.

2.10.3 Date test completion

The test was completed on 3 August 1998.

2.10.4 Test procedure

The test procedure specified that the test be conducted as indicated in the following steps:

- 1. Power on all test equipment and allow a 15 minute warm-up time before continuing.
- 2. Perform paragraph 3.4.8.4 (AE-26151/8B) steps 2 to 5. Allow the instrument to scan for a 30 minute warm-up.
- 3. Perform steps 4 through 15 for each of the frequency sweep ranges presented in Table VII of AE-26151/8B.
- 4. Using the test equipment as indicated in Figure 15 of AE-26151/8B, perform a level-verification sweep to ensure the electric fields for each frequency band scan.

		<u> </u>

Figure 9 RS03 Limits

- 5. Once a level is established, ensure that the EOS/AMSU-A data baseline level is as low as possible.
- 6. From the TEST INITIALIZATION menu, select "[13] SCANS TO ACQUIRE." Enter the number of scans (24 for 90 sec. sweep time or 16 for 60 sec. sweep time).
- 7. Select "[16] START DATA ACQUISITION."
- 8. Begin frequency sweep for 14 kHz to 30 MHz. Monitor the generated electric field.
- 9. At the end of the 24 scans the screen will change to the A1 DELTA T and CALIBRATION ACCURACY menu. From the screen, press "[1] RETURN." The display will prompt "Do you wish to save data on disk (Y/N)?" Enter N for No.
- 10. The STE program will return to the AMSU-A1 TEST INITIALIZATION menu. Enter "[15] SELECT CAL PROCESSING" and press the RETURN KEY. The program will return to the AMSU-A1 CALIBRATION PROCESS SELECTION menu.
- 11. Select "[12] PRINT DISTRIBUTION" to obtain the data plot.
- 12. Select "[1] RETURN" to return to the AMSU-A1 TEST INITIALIZATION menu.
- 13. After the sweep, verify that the baseline level did not increase beyond the specified limits.
- 14. If the baseline level increased above the limit, repeat the sweep at a lower radiated level or at a reduced frequency range until the threshold level is determined.
- 15. Record the threshold level on TDS 7 (AE-26151/8B).
- 16. Replace the parallel element antenna with the biconical antenna.

		<u> </u>

- 17. With the frequency set at 30 MHz, connect the equipment as shown in Figure 16 (AE-26151/8B). Adjust the output of the power amplifier for 2 volts per meter by monitoring the electric field with another biconical antenna 1 meter from the transmitting antenna, or by monitoring the input power to the antenna.
- 18. Operate the variable attenuator to control the output voltage level.
- 19. Repeat steps 8 to 15 for the frequency range between 30 MHz and 200 MHz.
- 20. Replace the biconical antenna with the log-conical antenna. Adjust the attenuator to the amplifier for 2 volts per meter field strength at 200 MHz. Sweep the frequencies from 200 MHz to 1 GHz at this level. If susceptibility occurs, reduce the output power and determine the susceptibility threshold.
- 21. Record the results on TDS 7 (AE-26151/8B).
- Replace the log-conical antenna with the horn antenna, connect the horn antenna to the appropriate traveling wave tube (TWT), and radiate the electric fields between 1 GHz and 18 GHz at a level of 10 volts per meter. If susceptibility occurs between 1 and 2 GHz, reduce the level to 2 volts per meter and sweep the frequency range again.
- 23. Adjust the attenuator to the amplifier. Sweep the frequencies from 1GHz to 18 GHz at this level. If susceptibility occurs, reduce the output power and determine the threshold level.
- 24. Record all pertinent information on TDS 7 (AE-26151/8B).
- 25. Perform radiated susceptibility test for both antenna polarities at the two frequencies A and B presented in Figure 14 (AE-26151/8B).
- 26. Set the signal generator at frequency A (AE-26151/8B, Figure 14).
- 27. Increase the signal level until the generated electric field is verified. Plot the spectrum generator presentation.
- 28. Sweep through the frequency in a 90-second interval.
- 29. Verify that the baseline level did not increase beyond the specified limits.
- 30. Record the test results on TDS 7 (AE-26151/8B).
- 31. Repeat steps 25 through 30 for the other discrete frequency.

2.10.5 Test comment

This test was conducted in accordance to the above test plan, with no exceptions.

2.10.6 Test results

The AMSU-A1/EOS instrument meets the electric field radiated susceptibility requirements of Test Method RS03, without exception. No malfunction and/or degradation of performance was noted during the performance of this test. See Test Data Sheet 7.

		<u> </u>
		<u> </u>

TEST DATA SHEET 1 (Sheet 1 of 2) CE01 Test (Paragraph 3.4.4.4.1)

Test Setup Verified: R. Khowic- 1/29/98 (Signature)

Test Equipment Log

Item	Manufacturer	Model/Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
25 Pin Breakout Box	Acrojet	1358704-1	743-5910	CNR	にんれ
Current Probe	AIL TECH	91550-2B	1509571	4-23-97	10-23-99
Feed through Capacitors	SOLAR ELECT.	6512-10CR	1803641604	10/17/91	CNR
Feed through Capacitors	SOLAR ELECT.	6512-106R	120365e-1	10/17/91	CNR
PIOTTER	HP	7470A	57707	M/4	21/4
Control Systems Analy	HP	3563A	53898	5-12-97	4-12-99

Emission Measurements

	T WICES GTCTTCTTCS		~~~~~~			
Photo No.	Powerline Port-1	Band	Required	Emissions within limits?		Comments/ Observations
1				Yes	No	
}	+ 29V Quiet Bus A	Narrow	Figure 2	/		PLOT 1
2	+29V Quiet Bus Rtn A	Narrow	Figure 2	/		PUT2
3	+29V Noisy Bus A	Narrow	Figure 2	✓		PLOT 3
4	+29V Noisy Bus Rtn A	Narrow	Figure 2	1		PLOT4
5	+29V Survival Bus A	Narrow	Figure 2	✓		PLOT 5
6	+29V Survival Bus Rtn A	Narrow	Figure 2	1		PLOT6

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

	AMSU-AI/EOS
Assembly Part No.	AMSU-AI/EOS 1356000-1-EM/

Serial No. <u>202</u>

Shop Order: <u>560869</u>

Engineer:

Quality Assurance:

Operator:

Customer Rép.:

29 Ja.

2

7-36-9

		<u> </u>
		~

TEST DATA SHEET 1 (Sheet 2 of 2) CE01 Test (Paragraph 3.4.4.4.1)

Test Setu	p Verified: N/A (Signature)	TIENA THISU	29	7/	48			
Test Equi	pment Log Item	Manufa	cturer	Mo	odel/Part	Aerojet	Calibration	
		<u></u>			No.	Inventory No.	Date	Due Date
								
							<u> </u>	
						<u> </u>		
	Measurements							
Photo No.	Powerline Port-1	1	Ban	d	Required	Emissions w	ithin limits?	Comments/ Observations
						Yes	No	*
	+ 29V Quiet Bus		Narro	w	Figure 2		No (Red	العجال
	+29V Quiet Bus Rt		Narro	w	Figure 2		No Trea	
	+29V Noisy Bus		Narro		Figure 2			
	+29V Noisy Bus Rt		Narro		Figure 2			0 = =
7	+29V Survival Bus		Narro		Figure 2	-		Plot 7
8	+29V Survival Bus F	Rtn B	Narro	OW	Figure 2			PLOT &
	Note: Attach a test logs	all backuj s, additio	o data gonal com	enera ment	ated during t s or observa	¥ Sê€ A he test (photos, ations, etc.) to th	printouts plots is data sheet.	
Accombi	AMSU-A1/E y Part No. <u>1356cc8-1-</u> 0	OS EMI				Engineer:	Signature	1 <u>Date</u> 29 Ju/9
	y Pari No. <u>1336608-1-1</u> 5. <u>202</u>	<u></u>				Quality Assurant	cerralip	A Diverse
Shop Or	der: <u>560869</u>					Operator: <u>R</u>	gay the	and the
						Customer Rep.:	2 1 7 T	-50-48

		<u> </u>

)
		<u> </u>
		<u>)</u>

		•

		_ .

)
)
		<u>,</u>

		J

		<u> </u>
		<u> </u>
		•

		<u> </u>

							:
N	EO CEOI		NT LIMIT G	CALCULATI	·0N		
	Freq He	Limit dBµl	CP Factor _dB	dBMV	uVots	dovins	Equipalent Limit d8/peak
	30	120	- 60.7	59.3	923	-66.7	-57.7
	53	120	-54.6	L5.4	1862	- 64.6	-51.6
	97	1.20	-47.5	72.5	4217	-47.5	-44.5
	2/5	120	-42,3	77.7	7674	-42.3	- 39.5
	350	120	~3 6 ,3	81.7	12162	- 3 2 , 5	- 35.3
	474	114.6	<i>~35.</i> €	79.0	8912	-41	- 38.0
	659	109	-32.9	76.1	6383	- 45.9	-40.7
	910	103.2	-30.1	73.1	4518	-46.9	-43 9
	24	89.6	- 23.5	66.3	2065	-55.7	-50,7
	6K	74.1	- 15.3	58.8	820	-61.2	-68.2
	10 K	62	- 9.96	57.0	378	-68.0	-45,0
	20K	50	-4.10	45.9	187	-74.1	-71.1
	:						
* m.							
				,			

TEST DATA SHEET 2 (Sheet 1 of 4) CE03 Test (Paragraph 3.4.4.4.2)

Test Setup Verified: For N. Kheua 11/29/98 (Signature)	TAR # 004706 pg. 3
Test Equipment Log	

lest Equipment Log					
Item	Manufacturer	Model/Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
Current Probe	AIL TECH	91550-28	1509571	4-23-97	10-23-99
Feidthrough Capacitors	golar Elect.	6512-106R	L803641 to 4	10/17/91	CNR
Fudthrough Capacitals	Schar Elect.	6512-106R	L8365@to1	10/17/91	CNR
Computer	HP	9836	46134-15	NIA	NIA
Amplifier	НР	8447F	C200230	1/14/98	1/14/99
Sarctrum Analyzer	MP	8566B	R300662	4/15/98	10/15/98

Emission Measurements Plot Comments/ Band Required Emissions within limits? Powerline Port-1 No. Observations Yes No 1 Narrow Figure 2 +29V Quiet Bus A 10 Navrowbend Signal
ON BROADBAND PLOT **Broad** Figure 3 +29V Quiet Bus A 11 Narrow Figure 2 v 29V Quiet Bus Rtn A 12 Narrowband Signal ON Broadband Plot **Broad** Figure 3 29V Quiet Bus Rtn A 13 Narrow Figure 2 _ +29V Noisy Bus A 14 **Broad** Figure 3 +29V Noisy Bus A 15 v +29V Noisy Bus Rtn A **Narrow** Figure 2 16 +29V Noisy Bus Rtn A **Broad** Figure 3 L 17

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

Ecs/AMSU-AI Assembly Part No. 135600-1-EMI	Signature/Date Engineer: 30 July 18
Serial No. <u>2 o 2</u>	Quality Assurance:
Shop Order: 560869	Operator: <u>Roger II Khaury</u> 7-30-98 Customer Rep.:
_	Operator: Roger V. Khaury

		—
)

TEST DATA SHEET 2 (Sheet 2 of 4) CE03 Test (Paragraph 3.4.4.4.2)

lotter		Manufacture HP	IVI	odel/Part No.	Aerojet	Calibration	Calibratio
lotter		HP		INO.	Inventory No.	Date	Due Date
			74	75 A	47417	CNR	CNR
	1						
		· · · · · · · · · · · · · · · · · · ·					
mission I	Measurements			T			
Plot	Powerline Port-1		and	Required	Emissions w	ithin limits?	Comments
No.	1 Owelline 1 Oil 1		,	1 Troquiros			Observation
				Figure 0	Yes	No /	
18	+29V Survival Bus A		rrow	Figure 2 Figure 3	-	V	
19	29V Survival Bus Rtr		arrow	Figure 2			
20	29V Survival Bus Rtr		road	Figure 3		V	
21	201 0011110. 200111			1 3 2 2			
						·	
	Note: Attach all	backup data	gener	ated during t	the test (photos,	printouts plots	۶,
	test logs,	additional co	mmen	ts or observa	ations, etc.) to th	is data sheet.	
						Signature	/Date
	Fre /Aug.l.	Li				Signatura	Date
Assembly	E05/AMSU-	MI			Engineer:	the -	— 7/30/
	202				Quality Assurance	ce:	
					Operator: Roye		7732-9
Shop Ord	er: <u>560869</u>				Operator: <u>Forge</u>	VI NUPUL	1-30-1

TEST DATA SHEET 2 (Sheet 3 of 4) CE03 Test (Paragraph 3.4.4.4.2)

Test Setu	up Verified:(Signature	V/A							
Test Fau	ipment Log								
Test Equ	Item	Manufa	cturer	M	odel/Part No.	Aerojet Inventory N	lo.	Calibration Date	Calibration Due-Date
· ·									
Emission	n Measurements								
Plot No.	Powerline Port	-1	Band	d	Required	Emission	s with	nin limits?	Comments/ Observations
1				,	ı	Yes	T	No	0200.7401.0
	+29V Quiet Bus	s B	Narro	w	Figure 2				
	+29V Quiet Bus	В	Broa	d .	Figure 3				
	29V Quiet Bus R	tn B	Narro	w	Figure 2				
	29V Quiet Bus R	tn B	Broa	d	Figure 3		1	10	
	+29V Noisy Bus		Narro		Figure 2	ļ		2	
	+29V Noisy Bus		Broa		Figure 3	<u> </u>			
	+29V Noisy Bus F		Narro		Figure 2		_		
	+29V Noisy Bus F	Rtn B	Broa	<u>d</u>	Figure 3				`
Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet. Signature/Date									
Assembl	E05/AMSi y Part No. <u>(356008-</u>	1-41			E	Engineer:	A	Stoke	80 Jul 78
Serial No	. 202					Quality Assu			
Shop Or	der: <u>560869</u>	_			(Operator:	loge	W Kheu	r-
						Customer Re			

		_
)

TEST DATA SHEET 2 (Sheet 4 of 4) CE03 Test (Paragraph 3.4.4.4.2)

	p Verified:(Signatur	re)						
	Item	Manufa	cturer	Мо	del/Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
Emission	Measurements		·					
Plot No.	Powerline Por	t-1	Band,	d	Required	Emissions w	ithin limits?	Comments/ Observations
						Yes	No	
22	+29V Survival B		Narro		Figure 2			Natrowband Signal
23	+29V Survival B		Broa		Figure 3	V		Narrowband Signal ON Broadband Plot
24	29V Survival Bus		Narro		Figure 2		<u> </u>	
25	29V Survival Bus	Htn B	Broa	a	Figure 3			
			-					
								
Serial No	Note: Attacl test lo y Part No. <u>1356co8</u> o. <u>Lo 2</u> der: <u>560869</u>	ogs, additions	p data ge nal comr	enera	s or observa	he test (photos, ations, etc.) to the Engineer: Ouality Assurance Operator: Customer Rep.:	is data sheet	:. e/Date 80 July 8

		•
		<u> </u>
		<u> </u>

234557

3

Э) 1

90.6E+03 92.1E+03 95.3E+03

97.8E+03 10.3E+04

10.5E+04

11.3E+04 11.8E+04 12.2E+04

12.6E+04

51

18

		•
		<u> </u>
		<u> </u>

3 + 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
123.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
15208994524755112121212121111111111111111111111

Plot 10 page 2 of 3

EOS / ANUSU-41

1356608-1 EM1

S/N 202

SO 560869

TP 26151/8

Para, 3.4.4.4,2

•

5	80.0E+04	21 22
5	81.4E+04	22
7	83.5E+04	29
3	87.8E+04	23
Э	90.1E+04	19
)	92.4E+04	15
1	94.0E+04	24
2	97.3E+04	15
3	97.3E+04 99.8E+04	18
4	10.4E+05	15
5	10.9E+05	14
5	11.1F+05	11
7	11.3E+05 12.1E+05	16
3	12.1E+05	11
Э	12.5E+05	14
3	13.0E+05	18
1	13.2E+05	16
00739112345073911234	13.4E+05	19 15 24 15 18 15 11 16 11 18 15 11 11
3	41.7E+05 30.8E+06	11
4	30.8E+06	12

Plot 10 page 3 of 3

EOS / AMSU-A1

1356008-1 EM1

S/N 202

SO 560869

TP 26151/8

Para, 3.4.4.4.2

		_
		<u> </u>

35.5E+03

37.1E+03

38.7E+03 40.4E+03

42.1E+03

42.8E+03

44.3E+03 45.9E+03

49.1E+03

50.8E+03

51.7E+03 57.7E+03

60.2E+03

62.3E+03

65.6E+03

69.6E+03

72.6E+03 76.4E+03

79.7E+03

83.2E+03

86.8E+03 90.6E+03

96.1E+03 99.5E+03

10.1E+04 10.6E+04

11.1E+04

11.6E+04

12.1E+04

9

12345678

9

123456789

102

102

103 103

103 106

> 83 80

111

106 113

113

118

120

118

120

115 114

116

117

119 115 115

88

119 121

114

112

110

Plot 11 Page 1 of 2

EOS/AMSU-AI

1356008-1 EMI

S/N 202

Para 3.4.4.4.2

		<u> </u>

23 456 78 90 1 2 3 4 5 6 7 8 90	11773 11073 11073 11073 11073 1109991 11073 1109991 11073 1109991 11073 1109991 11073 1109991 11073 1109991 110991 110991 110991 110991 110991 110991 110991 110991 110991 110
---	---

Plot 11 Page 2 of 2 EDS / AMSU-41 1356008-1 EM1 S/N 202 SO 560869 TP 26151/8 Para 3.4.4.4.2

Addit

		<u> </u>

		<u> </u>
)
		J

91.4E+03

92.9E+03

97.8E+03 10.3E+04 10.8E+04

11.3E+04

11.9E+04

12.4E+04

0

49

52 53 52

46

45

44

		•	

23456789012345678901234567899012345678901234567890123 1234567890123456789901234567899012345678999101234567899910123456789991011
44444444444444444444444444444444444444
43333333535362191244385549007314890149151158264004902250127956

Plot 12 page 2 of 3

EOS/AMSU-A1

1356008-1 EM1

S/N 202

SO 560869

TP 26151/8

Para 3.4.4.2

		<u> </u>

4	12.0E+05	23
5	12.2E+05	17
5	12.5E+05	20
7	12.8E+05	21
3	14.0E+05	16
ā	14.5E+05	14
Ō	15.0E+05	10
1	30.5E+06	12

Plot 12 Page 3 of 3

EOS/AMSU-A1

1356008-1 EM1

S/N 202

SO 560869

TP 26151/8

Para. 3.4.4.4.2

Alle

		~

34

35 36

37

38

39

10

+1 +2

13

14

÷5

46

17

18

19

50

51

67.8E+03

70.2E+03

78.4E+03

81.1E+03

84.6E+03

86.1E+03 91.4E+03

96.1E+03

10.2E+04

10.6E+04 11.2E+04

11.7E+04

12.2E+04

12.7E+04 13.2E+04

14.2E+04 15.0E+04

15.6E+04

120

118

119 123

87

78

115

113

119

117

112

108

106 105

109

104

105

100

2 16.4E+04 101 17.1E+04 95 17.6E+04 95 17.9E+04 95 18.7E+04 98 7 19.5E+04 98 8 20.0E+04 96 9 21.4E+04 86 9 21.4E+04 86 9 22.5E+04 84 12.5E+04 86 12.5E+04 86 12.5E+04 86 12.5E+04 81 12.5E+04 81 12.5E+04 81 13.0E+04 81 14.5E+04 85 15.3E+04 85 15.3E+04 86 15.3E+04 86 16.3E+04 86 17.4E+05 86 18.5E+05 86 19.2E+04 78 11.1E+05 86 12.5E+05 86 13.7E+05 86 13.7E+05 86 13.7E+05 86 13.7E+05 86 14.4E+05 86 15.8E+05 86 16.5E+05 86 17.4E+05 86 17.4E	2	10 45.04	101
5 17.9E+04 95 18.7E+04 98 7 19.5E+04 96 9 20.0E+04 96 9 21.4E+04 86 0 22.5E+04 84 1 23.7E+04 86 24.7E+04 86 24.7E+04 86 25.9E+04 81 26.0E+04 81 26.9E+04 81 30.6E+04 81 31.4E+04 83 9 31.4E+04 83 9 31.9E+04 78 31.9E+04 77 36.9E+04 77 47.6E+04 77 50.1E+04 75 47.6E+04 75 50.1E+04 75 66.3E+04 65 50.4E+04 65 50.4E+04 65 1 26.3E+04 65 1 26.3E+04 77 8 54.5E+04 65 1 26.3E+04 77 8 54.5E+04 77 8 59.4E+04 65 1 26.3E+04 77 8 59.4E+04 77 8 59.4E+04 77 8 59.4E+04 77 8 60.3E+04 77 8 79.3E+04 77 8 79.3E+04 77 8 79.3E+04 77 8 80.4E+04 77 8 90.1E+04 77 8 90.1E+04 77 8 90.1E+04 77 8 90.1E+04 77 8 90.1E+04 77 8 90.1E+05 74 8 90.1E+05 74 8 90.1E+05 74 9 90.1E+05 75 9 90.1E+05 74 9 90.1E+05 95 9 90.1E+05	3	17.1E+04 17.6E+04	95 80
7 19.5E+04 96 8 20.0E+04 96 9 21.4E+04 86 0 22.5E+04 84 1 23.7E+04 86 24.7E+04 86 25.9E+04 81 26.9E+04 81 28.3E+04 80 7 30.6E+04 81 8 31.4E+04 83 9 31.9E+04 81 0 33.0E+04 81 0 33.0E+04 81 0 33.0E+04 81 0 33.0E+04 81 0 35.5E+04 77 5 47.6E+04 77 5 47.6E+04 65 1 23.3E+04 65 1 25.3E+04 65 1 26.3E+04 65 1 27.4E+04 65 1 26.3E+04 77 8 54.5E+04 65 1 62.5E+04 65 1 62.5E+04 67 7 72.8E+04 67 7 72.8E+04 77 8 82.8E+04 77 8 86.4E+04 78 9 90.1E+04 77 8 86.4E+04 78 9 90.1E+04 77 1 1.1E+05 64 1 1.4E+05 69 1 1.4E+05 69 1 1.5E+05 69	5	17.9E+04 18.7E+04	95 98
9 21.4E+04 86 22.5E+04 84 1 23.7E+04 86 24.7E+04 86 26.0E+04 81 26.9E+04 81 28.3E+04 80 29.3E+04 81 80.6E+04 81 81.4E+04 83 9 31.4E+04 83 9 31.9E+04 81 0 33.0E+04 78 2 38.5E+04 77 5 47.6E+04 75 6 50.1E+04 75 6 50.1E+04 75 6 50.1E+04 65 7 52.3E+04 65 7 52.3E+04 65 1 62.5E+04 68 2 66.3E+04 65 1 62.5E+04 67 7 72.8E+04 67 7 72.8E+04 77 8 86.4E+04 78 9 90.1E+04 76 7 9.3E+04 77 8 86.4E+04 78 9 90.1E+04 76 9 97.3E+04 76 1 1.1E+05 64 1 1.1E+05 64	7 8	19.5E+04 20.0E+04	98 96
1 23.7E+04 88 24.7E+04 86 3 26.0E+04 81 5 28.3E+04 80 6 29.3E+04 81 8 31.4E+04 83 9 31.9E+04 81 0 33.0E+04 78 2 38.5E+04 79 3 42.6E+04 77 5 47.6E+04 75 47.6E+04 75 54.5E+04 75 57.4E+04 65 1 52.3E+04 65 1 52.3E+04 65 1 62.5E+04 65 1 62.5E+04 67 7 75.4E+04 68 2 69.2E+04 77 8 69.2E+04 77 8 69.2E+04 77 8 69.2E+04 77 9 76.7E+04 77 8 79.3E+04 77 8 82.8E+04 77 8 86.4E+04 78 9 90.1E+04 77 8 86.4E+04 78 9 90.1E+04 76 7 79.3E+04 78 9 90.1E+04 76 7 75.7E+05 6 79.3E+05	9 0	21.4E+04 22.5E+04	86 84
3 26.0E+04 84 4 26.9E+04 81 5 28.3E+04 80 7 30.6E+04 81 8 31.4E+04 83 9 31.9E+04 81 0 33.0E+04 78 2 38.5E+04 79 3 42.6E+04 77 5 47.6E+04 77 5 47.6E+04 75 6 50.1E+04 75 7 52.3E+04 65 8 54.5E+04 65 9 57.4E+04 65 1 62.5E+04 65 1 62.5E+04 67 7 52.3E+04 71 9 57.4E+04 65 1 62.5E+04 72 8 69.2E+04 77 7 72.8E+04 65 1 69.2E+04 77 8 2.8E+04 73 8 86.4E+04 78 9 90.1E+04 76 7 97.3E+04 78 9 90.1E+04 76 1 1.1E+05 64 1 1.1E+05 64 1 1.1E+05 64 1 1.1E+05 69 1 1.1E+05 69 1 1.5E+05 74 1 1.7E+05 69	1 2	23.7E+04 24.7E+04	88 86
5 28.3E+04 80 7 30.6E+04 81 8 31.4E+04 83 9 31.9E+04 81 0 33.0E+04 78 2 38.5E+04 79 3 42.6E+04 77 5 47.6E+04 75 6 50.1E+04 74 7 52.3E+04 75 6 50.1E+04 74 7 52.3E+04 65 1 62.5E+04 65 1 62.5E+04 65 1 62.5E+04 67 7 72.8E+04 67 7 72.8E+04 77 8 86.4E+04 78 9 90.1E+04 74 7 82.8E+04 75 6 79.3E+04 75 7 70.7E+04 75 7 70.7E+04 75 7 70.7E+04 75 7 70.7E+04 75 7 70.7E+04 75 7 82.8E+04 76 7 82.8E+04 78 8 90.1E+04 76 9 97.3E+04 76 9 97.3E+04 76 9 97.3E+04 76 9 97.3E+05 64 1 1.4E+05 69 1 2.5E+05 74 1 3.0E+05 51 1 3.0E+05 74 5 3.7E+05 68	3 4	26.0E+04 26.9E+04	84 81
7 30.6E+04 81 81.4E+04 83 9 31.9E+04 81 0 33.0E+04 78 2 38.5E+04 79 3 42.6E+04 81 4 45.2E+04 77 5 47.6E+04 75 6 50.1E+04 75 7 52.3E+04 65 8 54.5E+04 65 1 62.5E+04 65 1 62.5E+04 65 1 62.5E+04 65 2 66.3E+04 65 1 62.5E+04 70 7 72.8E+04 70 7 76.7E+04 70 7 79.3E+04 74 7 82.8E+04 73 8 86.4E+04 78 9 90.1E+04 76 9 97.3E+04 78 9 90.1E+04 76 11.1E+05 64 11.4E+05 69 12.5E+05 74 13.0E+05 51 13.7E+05 68	5 6	28.3E+04 29.3E+04	80 80
9 31.9E+04 81 0 33.0E+04 78 2 38.5E+04 79 3 42.6E+04 81 4 45.2E+04 77 5 47.6E+04 75 6 50.1E+04 74 7 52.3E+04 65 8 54.5E+04 65 9 57.4E+04 65 1 62.5E+04 65 1 62.5E+04 65 2 66.3E+04 65 3 69.2E+04 67 4 72.8E+04 70 5 76.7E+04 75 7 9.3E+04 74 7 82.8E+04 75 8 86.4E+04 78 9 90.1E+04 76 9 97.3E+04 78 9 90.1E+04 76 1 1.1E+05 64 1 1.1E+05 64	7 8	30.6E+04 31.4E+04	81 83
1 36.9E+04 78 2 38.5E+04 79 3 42.6E+04 81 4 45.2E+04 77 5 47.6E+04 74 7 52.3E+04 65 8 54.5E+04 65 1 62.5E+04 65 1 62.5E+04 65 2 66.3E+04 65 3 69.2E+04 67 72.8E+04 70 5 76.7E+04 74 78.8E+04 75 6 79.3E+04 78 8 86.4E+04 78 9 90.1E+04 78 9 90.1E+04 76 97.3E+04 76 97.3E+04 76 11.1E+05 64 11.4E+05 69 3 12.5E+05 51 4 13.0E+05 51	9	31.9E+04 33.0E+04	81 66
42.6E+04 45.2E+04 77 547.6E+04 75 650.1E+04 74 752.3E+04 65 854.5E+04 68 059.4E+04 68 162.5E+04 68 266.3E+04 67 472.8E+04 76.7E+04 76.7E+04 78.3E+04 79.3E+04 78.8E+05 78.8E+	2	36.9E+04 38.5E+04	78 79
50.1E+04 74 752.3E+04 75 854.5E+04 71 957.4E+04 68 059.4E+04 68 162.5E+04 68 266.3E+04 67 472.8E+04 70 576.7E+04 78 82.8E+04 78 886.4E+04 990.1E+04 78 990.1E+04 78 990.1E+04 76 97.3E+04 77 11.1E+05 64 11.4E+05 69 312.5E+05 74 513.0E+05	პ 4	42.6E+04 45.2E+04	81 77 75
8 54.5E+04 71 9 57.4E+04 68 0 59.4E+04 65 1 62.5E+04 65 2 66.3E+04 67 4 72.8E+04 70 5 76.7E+04 75 6 79.3E+04 74 7 82.8E+04 73 8 86.4E+04 78 9 90.1E+04 76 0 97.3E+04 72 1 11.1E+05 64 2 11.4E+05 69 3 12.5E+05 51 4 13.0E+05 68	5 6 7	50.1E+04	75 74
0 59.4E+04 65 1 62.5E+04 68 2 66.3E+04 67 4 72.8E+04 70 5 76.7E+04 75 6 79.3E+04 74 7 82.8E+04 73 8 86.4E+04 78 9 90.1E+04 76 0 97.3E+04 72 1 11.1E+05 64 2 11.4E+05 69 3 12.5E+05 51 4 13.0E+05 68	8	54.5E+04 57 4E+04	71 68
2 66.3E+04 65 3 69.2E+04 67 4 72.8E+04 70 5 76.7E+04 75 6 79.3E+04 74 7 82.8E+04 78 8 86.4E+04 78 9 90.1E+04 76 0 97.3E+04 72 1 11.1E+05 64 2 11.4E+05 69 3 12.5E+05 51 4 13.0E+05 74 5 13.7E+05 68	0	59.4E+04 62.5E+04	65 68
4 72.8E+04 70 5 76.7E+04 75 6 79.3E+04 74 7 82.8E+04 73 8 86.4E+04 78 9 90.1E+04 76 0 97.3E+04 72 1 11.1E+05 64 2 11.4E+05 69 3 12.5E+05 51 4 13.0E+05 74 5 13.7E+05 68	2	66.3E+04	65 67
6 79.3E+04 74 7 82.8E+04 73 8 86.4E+04 78 9 90.1E+04 76 0 97.3E+04 72 1 11.1E+05 64 2 11.4E+05 69 3 12.5E+05 51 4 13.0E+05 74 5 13.7E+05 68	4 5	72.8E+04 76.7F+04	70 75
8 86.4E+04 78 9 90.1E+04 76 0 97.3E+04 72 1 11.1E+05 64 2 11.4E+05 69 3 12.5E+05 51 4 13.0E+05 74 5 13.7E+05 68	6 7	79.3E+04 82.8E+04	74 73
0 97.3E+04 72 1 11.1E+05 64 2 11.4E+05 69 3 12.5E+05 51 4 13.0E+05 74 5 13.7E+05 68	8	86.4E+04 90.1E+04	78 76
2 11.4E+05 69 3 12.5E+05 51 4 13.0E+05 74 5 13.7E+05 68	0 1	97.3E+04 11.1E+05	72 64
4 13.0E+05 74 5 13.7E+05 68	2 3	11.4E+05 12.5E+05	69 51
	4 5	13.0E+05 13.7E+05	74 68
7 15.1E+05 59	7	14.4E+05 15.1E+05	59 59
9 16.5E+05 60	9 0	15.8E+05 16.5E+05	60 28

Plot 13 Page 2 of 2 EOS/AMSU-A1 1356008-1 EM1 S/N202 SO 560869 TP 26151/8 Para, 3.4.4,4.2

J. Maller

)
		<u> </u>

		<u> </u>
		<u> </u>

09:34:41 ROJET ELECTRONICS SYSTEMS 30 Jul 1998

NDUCTED EMISSIONS 9 V NOISY BUS

Plot 14 Page 1 of 3 EOS/AMSU-A1

AVE ENHAND ADOUG 104P...4

AKS	FOUND	ABOVE	10dBuA
A12345678901234567890123456789012345678901234567890	FRE 0.4E 112E 137E 112E 137E 112E 137E 112E 137E 142E 14	Control of the cont	AMPL(dBuA) 380 413365861867290992701555555555555555555555555555555555555

89.1E+03 90.6E+03

95.3E+03

0

2

56 59

58

1356008-1 EMI 5/N20Z 50 560869 TP 26151/8 Para, 3,4,4.4.2

34567890123456789012345678901234567890123456789012345678901234567890123	98.0444444444444444444444444444444444444	78761658896554841612659412405806070667543108883718410966983901 2555555321551555555555555555554545444433333444344233223233
0	56.0E+04	33
1	58.4E+04	29
2	59.9E+04	30
3	61.4E+04	31

Plot 14 Page 2 of 3

EDS / AMSU- AI

1356008-1 EMI

S/N 202

SO 560869

TP 26151/8

Para 3,4.4.4.2

		<u> </u>
		_
		<u> </u>

4567890123456789012345678901234567890123	62.8E+04 65.8E+04 67.5E+04 67.5E+04 67.3E+04 77.3E+04 83.5E+04 83.5E+04 83.5E+04 83.5E+05 10.6E+05 11.2E+05 11.4E+05 11.7E+05 11.3E+05 11.	30 33 33 33 33 33 33 33 33 33 33 33 33 3
51	23.6E+05	11
2	31.2E+05	10
53	30.8E+06	11

Plot 14 Page 3 of 3

EOS / AMSU- 41

1356008-1 EM1

S/N 202

SO 560869

TP 26151/8

Para 3.4.4.4.2

THE THE STATE OF T

		<u> </u>
		<u> </u>
)

		<u> </u>
		_

```
30 Jul 1998
                                                       09:34:41
ROJET ELECTRONICS SYSTEMS
                                        Plot 15 Page 1 of 3

EDS/AMSUAI

1356008-1 EMI

S/N202

SO 560869

TP 24151/8

Para. 3.4.4.2
NDUCTED EMISSIONS
3 V NOISY BUS
                      50dBuA/MHz
AKS FOUND ABOVE
                     AMPL (dBuA/MHz)
      FREQ (Hz)
AK#
                      105
103
      10.6E+03
      11.2E+03
2345678
      11.8E+03
                      106
      12.3E+03
                      106
      12.9E+03
                       108
      13.5E+03
                       106
      13.9E+03
                       110
      14.7E+03
                       115
9
                       113
      15.2E+03
0
       16.0E+03
                        88
                       115
1
      17.8E+03
234
      18.6E+03
                       116
                       113
      20.6E+03
       21.7E+03
                       114
56789
                       113
       22.8E+03
                        99
       23.4E+03
                       115
       23.8E+03
       25.1E+03
                       114
       26.2E+03
27.3E+03
                       114
Õ
                       113
1
       28.5E+03
                       113
234567
       29.7E+03
                       116
       31.5E+03
33.2E+03
                       113
                       118
                       115
       34.6E+03
                       115
       36.4E+03
       38.4E+03
                       114
8
       40.0E+03
                       112
                       115
9
       41.8E+03
Ō
       42.5E+03
                        86
       43.6E+03
                       115
1
       45.9E+03
234
                       115
                       117
       46.6E+03
       53.5E+03
                       116
5
6
7
8
                       119
       54.8E+03
       57.2E+03
                        95
                        91
       60.7E+03
       62.8E+03
                       116
9
       64.5E+03
                       116
ō
       68.4E+03
                       115
       71.4E+03
                       119
1
234567
                       117
       75.1E+03
                        85
       77.1E+03
       78.4E+03
                       117
       81.8E+03
                       117
       85.4E+03
                       119
                       122
       89.1E+03
.
8
9
                        92
       92.1E+03
                       122
       93.7E+03
                       120
123
       99.5E+03
10.5E+04
0
```

		<u> </u>
		,

Plot 15 Page 2 of 3 EDS / AMSU-A1 1356008-1 EM1 S/N202 SO 560869 TD 26151/B Para, 3.4.4.2

Hill week

		→	

18.4E+05 72 19.1E+05 57 19.9E+05 62 25.4E+05 54 Plot 15 3 of 3 EOS / AMSU-A1 1356008-1 EM1 S/N 202

50 560869 TP 26151/8

Para 3,4.4.4.2

Allower

		•
		→
)

)

NDUCTED EMISSIONS

→ V NOISY BUS RETURN

AKS FOUND ABOVE 10dBuA

AMPL (dBuA) FREQ (Hz) JK# 10.3E+03 17 13 11.0E+03 11.2E+03 42 43 45673901234567 11.7E+03 12.6E+03 12.9E+03 27 12 47 13.4E+03 14.1E+03 47 14.4E+03 46 15.2E+03 47 16.0E+03 47 44 16.8E+03 47 17.7E+03 18.5E+03 19.3E+03 50 49 51 20.1E+03 50 20.8E+03 3 52 21.1E+03 9 21.9E+03 18 Ō 50 22.3E+03 52 23.4E+03 1 27 <u>2</u> 3 23.8E+03 24.4E+03 54 4 51 25.7E+03 5678 50 26.8E+03 49 28.0E+03 29.2E+03 29.7E+03 46 51 9 49 31.3E+03 51 32.9E+03 54 1234567 34.6E+03 55 53 35.2E+03 39.7E+03 55 41.4E+03 24 42.5E+03 17 44.0E+03 45.1E+03 54 890 15 46.6E+03 58 47.4E+03 52 49.9E+03 52 56 1 52.1E+03 54.8E+03 2345578 53 57.2E+03 59.7E+03 56 62.3E+03 65.6E+03 58 54 55 69.6E+03 21 71.4E+03 9 73.2E+03 52 58 76.4E+03

54

79.7E+03

Plot 16 Page 1 of 3 EOS/AMSU-41 1356008-1 EMI

S/N202

50 560869

TP 26151/8

Para 3.4.4.4.2

		<u> </u>
		<u> </u>

23456789012345678901234567890123456789012345678901234567890123 45678901234567890123456789012345678901234567890123
33333333333333333333333333333333333333
5520906497481317738853412993065294663334669234204427314392413933333333333438433552945692342044273444392443333333333334384433

Plot 16 Page 2 of 3 EOS/AMSU-41 1356008-1 EMI S/N 202 50560869 TP 26151/8 Para 3,4.4.2

Alfales -

		•
)

4567890123456789012345678901234567890123456789012345678	44.04444444444444444444444444444444444	41285234132543024251296834123786469844375454597623331111111111111111111111111111111111
50 51 52 53 54 55 56 57 58	23.0E+05 24.0E+05 25.0E+05 27.2E+05 29.9E+05 30.9E+05 35.8E+05 37.6E+05 30.8E+06	17 16 12 13 13 13 10 13

Plot 16 Page 3 of 3 EOS/AMSU-A1 1356008-1 EM1 S/N202 SO 560869 TP 26151/8 Para, 3,4,4,4,2

All de-

		<u> </u>
		<u> </u>
		<i></i>


```
ROJET ELECTRONICS SYSTEMS
                                  30 Jul 1998
                                                  10:02:18
                                               Plot 17 Page 1 of 3
EOS/AMSU-Al
NDUCTED EMISSIONS
9 V NOISY BUS RETURN
                                                  1356008-1 EMI
AKS FOUND ABOVE
                     50dBuA/MHz
                                                      S/N 202
                   AMPL (dBuA/MHz)
AK#
      FREQ (Hz)
                                                  50560869
      10.3E+03
                     105
234
      10.8E+03
                     106
                                                 TP-26151/8
      11.4E+03
                     106
                     105
      11.9E+03
                                                  Para 3.4.4.4.2
5
6
7
      12.5E+03
                     105
      13.0E+03
                     111
                      84
      14.3E+03
8
      14.5E+03
                      88
901
      14.9E+03
                     111
      15.6E+03
                     111
      17.7E+03
                     110
234567890
      18.0E+03
                      93
      18.5E+03
                     113
      19.3E+03
                     111
      20.1E+03
                     114
      20.8E+03
                     112
      21.9E+03
23.2E+03
                     111
                     116
      24.2E+03
                     113
      25.3E+03
                     114
1
      26.6E+03
                     114
234
      27.8E+03
                     113
      28.7E+03
                     113
      30.5E+03
                     114
5
6
7
8
      32.1E+03
33.8E+03
                     116
                     115
      35.5E+03
                     119
      37.1E+03
                     118
.
9
0
      38.7E+03
39.3E+03
                     115
                      98
:1
      40.4E+03
                     118
2345678
      42.1E+03
                     122
      44.3E+03
                     117
      46.3E+03
                     118
      47.4E+03
                      91
      48.3E+03
                      84
      50.8E+03
                      82
      53.9E+03
                     122
9
      57.2E+03
60.2E+03
                     119
                      84
12345678
      62.3E+03
                     119
      65.6E+03
                     117
      69.0E+03
                     119
      71.4E+03
                     104
```

72.6E+03

76.4E+03

79.7E+03 83.2E+03

86.8E+03

89.8E+03

96.1E+03

9

117

120

118 117

119

121

119

)
)

21341067 89) 1218466789) 1218466789) 1218466789) 1218466789) 1218466789) 1218	10.444444444444444444444444444444444444	12197 1197 1197 1197 1197 1197 1197 1197
3 1 2 3	12.7E+05 13.3E+05 14.1E+05 14.9E+05 15.7E+05	85 86 83 82 76

Plot 17 Page 2 of 2

EOS/AMSU-41

1356008-1 EM1

S/N 202

SO 560869

TP 26151/8

Para 3.4.4.2

Julille -

)
		J
		•

410107899121X	16.3E+05 17.1E+05 17.8E+05 18.6E+05 19.2E+05 20.1E+05 21.3E+05 24.6E+05 26.1E+05	68 65 71 72 65 67 60 59 52
3 4	28.2E+05 29.4E+05	54 56
•	20112.00	30

Plot 17 Page 3 of 3 EOS/AMSU-A1 1356008-1 EM1 S/N 202 SO 560869 TP 26151/8 Para 3.4.4.4.2

Alle

TEST DATA SHEET 8 (Sheet 1 of 1) RE01 Test (Paragraph 3.4.10.4)

				est (Palagraph	J. 1. 10. 4)		
Test Setun \	Verified: <u>RTYL</u> (Signature	Khowe	(1) 1-	28-98			
rest octup t	- (Signature	e) /			TAP #	00470 Pij	6
Test Equipm	•	·			7-707	PJ	1.2
rest Equipit	Item	Manuf	acturer	Model/Part No.	Aerojet Inventory No.	Calibration Date	n Calibration Due Date
iont and	TENNA	SOLAR	Eleit.	7334-1	1803461	5-12-98	5-12-99
cutral Su	TENNA Heus Analyzer	HP		3563A	53898	\$5-12-9	
Plotter	19	HP		74704	57707	NIA	NIA
			·				7.
Emission Me	easurements				·		· · · · · · · · · · · · · · · · · · ·
Plot No.	Frequency Ran	ge	l A	Requirement	Emissions w	vithin limits?	Comments/
140.		_		·	Yes	No	Observations
150/152	30 to 200 Hz		 	Figure 16	res	/	Plot 150 \$ 152
50/157	200 Hz to 20 kl		 	Figure 16			Plot 150 \$ 152
51/153	20 kHz to 50 ki			Figure 16	V		Plot 1614 153
/							
							<u> </u>
							<u></u>
							•
					the test (photos, rations, etc.) to the		
					,	Signature	
	<i>Ecs AMS</i> : art No. <u>135€cc€-</u>	4-41			/	Signature Lassin	
Assembly P	art No. <u>1356008-</u>	-EMI			Engineer:	AT DE	27001.
Serial No	202				Quality Assuran	ce:	
Shop Order:	560869	(Operator:	L. Breway	Customer Rep:		
J.10p 313011	·		_ p = , a.s.;		,		

)
)

		<u> </u>
)
		J

TAR# 4706 19. R

		<u>)</u>
)
		<u> </u>

									·	
	R	E01 4	EQUIVA	LENT L	INLIT C	ALCULA:	ποΝ			
	Freq Hz			Loop Faster db	48 pu V		db V _{PMs}		Equivalen Lipeit dBV peak	-
	30		60	85	- 23.0	6.67	-145		-140	• • • • • • • • • • • • • • • • • • •
	100		60	72	-12.0	0.25	- 132		-129	:
	300		60	63	-3.0	6.71	-133		-130	
	1000		60	52	8.0	2.5	-112		- 109	•
	5000		60	39	21.0	11.22	- 99		- 94	:
_	10000		60	33	27.0	22.38	- 93		-90	
	20000		60	29	31.0	35.48	-89	· · · · · · · · · · · · · · · · · · ·	-86	•
	50000)	60	27	33.0	44.67	-86	• • • • • • • • • • • • • • • • • • •	-83	
	•		:		† :					:
	: !			!						
			· 		: : :					

)
)
)

TEST DATA SHEET 9 (Sheet 1 of 3) RE04 Test (Paragraph 3.4.11.4)

	up Verified:(Signa		48					
Test Equipment Log								
· •	Item	Manufacturer	Model/Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date		
GAIX	ssmeter	E W. Bell	9500	R300625	12/3/96	12/3/98		
	meter Probe	1 11	MOX99-2506		4/27/98	4/27/99(36)		
CIROS	MIC CV TOUS					7/0		
(Mid Hei	! NSTRUMENT	N NO MODE, 1 Emissions	911 PONER	SUPPLIES DFF	·,	770		
Step	Direction*	Measured	Required	Mag field wit	thin limits?	Comments/ Observations		
_		m G		Yes	No			
7	0 degrees	0,56	See 3.4.11.2					
8	30 degrees	0.43	See 3.4.11.2	V				
9	60 degrees	0.54	See 3.4.11.2	✓ /				
10	90 degrees	0,54	See 3.4.11.2	· /				
11	120 degrees	0.51	See 3.4.11.2	V				
12	150 degrees	0.45	See 3.4.11.2	V				
1	180 degrees	0,47	See 3.4.11.2					
a a	210 degrees	0.7/	See 3.4.11.2	/				
3	240 degrees	0.54	See 3.4.11.2	~				
4	270 degrees	0.44	See 3.4.11.2	·/				
5	300 degrees	0.56	See 3.4.11.2	V				
is	330 degrees	0.61	See 3.4.11.2	1				
Serial No								

		· ·

TEST DATA SHEET 9 (Sheet 2 of 3) RE04 Test (Paragraph 3.4.11.4)

Test Setup Verified:		
•	(Signature)	

INSTRUMENT IN NO MODE, ALL POWER SUPPLIES OFF.

(10 inches above mid height) Magnetic Field Emissions

Step	Direction*	Measured	Required	Mag field within limits?		Comments/ Observations	
		m G		Yes	No		
7	0 degrees	0,20	See 3.4.11.2				
Ġ	30 degrees	0,32	See 3.4.11.2	<i>i</i>			
5	60 degrees	0.42	See 3.4.11.2	V			
4	90 degrees	0.15	See 3.4.11.2	·/			
3	120 degrees	0.32	See 3.4.11.2	· /			
2	150 degrees	0.29	See 3.4.11.2	·/			
1	180 degrees	0.32	See 3.4.11.2	:/	-		
12	210 degrees	0.13	See 3.4.11.2	·/			
1 <i>İ</i>	240 degrees	0:15	See 3.4.11.2	-/			
10	270 degrees	0,12	See 3.4.11.2	<i>i</i>			
9	300 degrees	0.27	See 3.4.11.2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
B	330 degrees	0.27	See 3.4.11.2	<i>i</i> /			

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

*Relative to instrument connector side.

		<u> </u>
)
)

TEST DATA SHEET 9 (Sheet 3 of 3) RE04 Test (Paragraph 3.4.11.4)

Test Setup Verified: _				
_	(Signature)		•	

INSTRUMENT IN NO MODE, ALL POWER SUPPLIES OFF.

(10 inches below mid height) Magnetic Field Emissions

Step	Direction* Measured	Required	Mag field within limits?		Comments/ Observations	
		mG		Yes	No	
6	0 degrees	0.69	See 3.4.11.2			
7	30 degrees	0.05	See 3.4.11.2	·/		
8	60 degrees	0,06	See 3.4.11.2	1		
9	90 degrees	0,05	See 3.4.11.2			
10	120 degrees	0.01	See 3.4.11.2	:/		
11	150 degrees	0.03	See 3.4.11.2	·/		
<i>i</i> 2	180 degrees	0.05	See 3.4.11.2	/		
1	210 degrees	0.26	See 3.4.11.2	·/		
2	240 degrees	0.29	See 3.4.11.2	~		
3	270 degrees	0-22	See 3.4.11.2			
7	300 degrees	0-18	See 3.4.11.2			
5	330 degrees	0.05	See 3.4.11.2	V		

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

^{*} Relative to instrument connector side.

)
)

TEST DATA SHEET 9 (Sheet 1 of 3) RE04 Test (Paragraph 3.4.11.4)

Test Setup Verified: 7/31/98
(Signature)

NSTRUMENT IN FULL SCAP MODE.

Test Equipment Log

Item	Manufacturer	Model/Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
Gaussmeter	FW Bell	9500	R300625	12/3/96	12/3/98
Gaussmeter Probe	FW Bell	MOX99-2506	R3(0642	4/27/98	4/27/99

(Mid Height) Magnetic Field Emissions

Step	Direction*	Measured	Required	Mag field within limits?		Comments/ Observations
		m G		Yes	No	
6	0 degrees	0.46	See 3.4.11.2	1		
7	30 degrees	0,33	See 3.4.11.2	· · ·		
8	60 degrees	0,43	See 3.4.11.2			
9	90 degrees	0.53	See 3.4.11.2	V		
10	120 degrees	0.61	See 3.4.11.2	~		
- ii	150 degrees	0.35	See 3.4.11.2	V		
12	180 degrees	0,43	See 3.4.11.2	/		
1	210 degrees	0,36	See 3.4.11.2	/		
2	240 degrees	0.34	See 3.4.11.2	2/		
3	270 degrees	0.27	See 3.4.11.2	/		
4	300 degrees	٥,35°	See 3.4.11.2	/		
5	330 degrees	0.37	See 3.4.11.2	/		

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

* Relative to instrument connector side.

EGS /4MSU A-I Assembly Part No. <u>135600g-1-E</u> M	l	Signature/Date Engineer: William J- Porto 7/31/98
Serial No. 202	AMSU	Quality Assurance: (金岁 7/3 /9 Y 6c 45 H本
Shop Order: <u>560869</u>	Operator:	Customer Rep:

		•
		~
)

TEST DATA SHEET 9 (Sheet 2 of 3) RE04 Test (Paragraph 3.4.11.4)

Test Setup Verified: \(\sum_{\text{Signature}}\) \(\sum_{\text{Signature}}\)

INSTRUMENT IN FULL SCAN MODE.

(10 inches above mid height) Magnetic Field Emissions

(10 inches above mid height) Magnetic Field Emissions						
Step	Direction*	Measured	Required	Mag field w	ithin limits?	Comments/ Observations
		mG		Yes	No	
7	0 degrees	0.10	See 3.4.11.2			
6	30 degrees	0.04	See 3.4.11.2	/		
5	60 degrees	0,13	See 3.4.11.2			
4	90 degrees	0.03	See 3.4.11.2			
3	120 degrees	0,03	See 3.4.11.2	V		
2	150 degrees	0.15	See 3.4.11.2			
1	180 degrees	0.08	See 3.4.11.2			
12	210 degrees	0.35	See 3.4.11.2	~		
1/	240 degrees	0.32	See 3.4.11.2	· ·		
10	270 degrees	D.33	See 3.4.11.2	V		
9	300 degrees	0.25	See 3.4.11.2	1		
8	330 degrees	0,05	See 3.4.11.2	V		

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

^{*}Relative to instrument connector side.

		.)

TEST DATA SHEET 9 (Sheet 3 of 3) RE04 Test (Paragraph 3.4.11.4)

Test Setup Verified: Variant 7/3/198
(Signature)

INSTRUMENT IN FULL SCAN MODE.

(10 inches below mid height) Magnetic Field Emissions

Step	Direction*	Measured	Required	Mag field within limits?		Comments/ Observations	
		m G		Yes	No		
7	0 degrees	0.30	See 3.4.11.2				
6	30 degrees	0.33	See 3.4.11.2				
5	60 degrees	0,34	See 3.4.11.2				
4	90 degrees	0,35	See 3.4.11.2	V			
3	120 degrees	0.36	See 3.4.11.2	V			
2	150 degrees	0.33	See 3.4.11.2	V			
1	180 degrees	0.24	See 3.4.11.2	/			
12	210 degrees	0,27	See 3.4.11.2				
1/	240 degrees	0,21	See 3.4.11.2				
10	270 degrees	0.21	See 3.4.11.2	/			
9	300 degrees	0-24	See 3.4.11.2				
8	330 degrees	0,25	See 3.4.11.2	V			

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

^{*} Relative to instrument connector side.

		<u> </u>
		<u> </u>
)

EROJET ELECTRONICS SYSTEMS 30 Jul 1998 10:18:25

NDUCTED EMISSIONS 29V SURVIVAL HEATER A

EAKS FOUND ABOVE 10dBuA

AT 123456789012345678901234567890123456789012345678901	FREQ (+03 10.42+03 11.02+03 11.02+03 12.04E+03 12.04E+03 12.04E+03 12.04E+03 12.04E+03 12.04E+03 12.05E+03 13.05E+03 15.8EE+03 15.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.8EE+03 16.3EE+03	AMPL(dBuA) 20 23 217 207 188 19 16002629300909219934226768353444586374246 2022222223322323333134468374445555555555555555555555555555555555
50	12.0E+04	54
51	12.5E+04	56

Plot 18 Page 1 of 3 EOS/AMSU-41

1356008-1 EMI

5/N202

50 560869

TP 26151/8

Para 3.4.4.4.2

		<u> </u>
		•

2 13.0E+04 53 13.9E+04 41 14.3E+04 41 14.3E+04 11 15.3E+04 11 16.9E+04 11 17.7E+04 11 18.4E+04 33 17.7E+04 33 19.0E+04 33 19.5E+04 33 20.5E+04 33 21.6E+04 33 22.1E+04 33 22.1E+04 33 22.1E+04 33 22.1E+04 33 24.7E+04 22 25.8E+04 22 27.6E+04 33 24.7E+04 32 27.6E+04 33 39.6E+04 33 31.9E+04 33 32.7E+04 33 33.9E+04 22 27.6E+04 33 31.9E+04 33 32.7E+04 22 27.6E+04 33 31.9E+04 33 31.9E+04 33 32.7E+04 33 33.9E+04 12 33.3E+04 12 33.3E+04 12 33.3E+04 12 33.3E+04 12 33.3E+04 13 34.5E+04 13 35.6E+04 11 36.9E+04 11 37.5E+04 11 39.1E+04 11 39.

Plot 18 Page 2 of 3 EOS / AMSU-41 1356008-1 EMI S/N202 SO 560869 TP 26151/8 Para 3.4,4.4.2

Jethile -

		<u> </u>
)

4	70 05.04	10
-	79.3E+04	19
ž	83.5E+04	29
2	87.1E+04	17 17
	90.1E+04	17
3	92.4E+04	17
3	94.8E+04	11
)	99.0E+04	16
1	10.4E+05	19
2	11.4E+05	11
3	11.6E+05	13
4	11.8E+05	13
÷	12.3E+05	17
ž	13.0E+05	16
7	13.0E+05	18
2	13.7E+05	19
2		
3	13.9E+05	21
455789012345678901	14.4E+05	14
1	30.8E+06	12

Plot 18 Page 3 of 3 EOS/4MSU-41 1356008-1 EM1 S/N 202 SO 560869 TP 26151/8 Para, 3,4.4.4,2

S Jacob Maria

		<u> </u>
)

		<u> </u>
		<u> </u>

4K2	FUUND I	HRUVE	20gRm4\LIH5
A12134101073901213410107390121341010739012134101073901213410107390141010073901410107390141010739014101073901410107390141010739014101073901410107390141010739014101073901410107390141010739014101073901410107390141010739014101073901410107390141010700014101007001410100700141010070014101007000141000700141000700014100000000	FRE .41 FEE .42 EE .42 EE .42 EE .41 FEE .42 EE .41 FEE .42 EE .42 EE .42 EE .42 EE .43	++++++++++++++++++++++++++++++++++++++	AMPL(dBuA/MHz) 85 84 84 82 81 83 83 85 84 87 93 96 96 97 99 101 106 109 103 108 1106 109 103 108 1107 117

12.3E+04

12.8E+04

117

117

)
		<u> </u>
		<u> </u>

213/4101073374101073410107330121010734107410741074107410741074107410741074107	13.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	113 1107 1100 1100 1100 1100 1100 1100 1
73371234	12.9E+05 12.9E+05 13.1E+05 13.8E+05 14.5E+05 15.3E+05 15.9E+05 16.8E+05	70 69 68 61 57 64 58

Plot 19 Page 2 of 2 EOS / AMSU- 11 1356008-1 EM1 S/N 202 SO 560869 TP 26151/8 Para, 3.4.4.2,

		<u> </u>
		_
		<u> </u>

INDUCTED EMISSIONS 19V SURVIVAL HEATER A RETURN

AKS FOUND ABOVE 10dBuA

AK# 12345678901234567	FREQ (Hz) 10.4E+03 11.0E+03 12.4E+03 12.9E+03 13.5E+03 14.1E+03 14.9E+03 15.7E+03 16.5E+03 17.2E+03 18.1E+03 18.9E+03 20.4E+03 21.9E+03 23.0E+03 24.0E+03	AMPL (dBuA) 20 18 16 15 13 16 19 19 25 23 21 23 25 35
AK 4 123456789012345678901234567890123456789012345678901	FRE Q + 03 11. 4E++03 11. 4E++03 11. 4E++03 12. 5E++03 13. 14. 9E++03 13. 15. 5E++04 15. 5EE++03 16. 2EE++03 17. 18. 9EE++04 18. 9EE++03 18. 9EE++03 1	AMPL(dBuA) 208 165 163 169 179 180 180 180 180 180 180 180 180 180 180

Plot 20 Page 1 of 3 EOS/AMSU-A1

1356008-1 EMI 5/N202 50 560869 TP 26151/8 Para 3,4,4.4.2

		<u> </u>

23456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123	11.44444444444444444444444444444444444	2474890236865495188811947691228884134745479968584425910576541971 2255245433333333422333222212311221111111111
--	--	---

Plot 20 Page 2 of 3 EOS/AMSU-A1 1356008-1 EM1 S/N 202 SO 560869 TP 26151/8 Para, 3,4,4,4,2

		<u> </u>
		•
		$\overline{}$

4	92.4E+04	16
5	10.4E+05	20
5,	12.0E+05	11
7	13.1E+05	19
3	13.6E+05	15
3	18,1E+05	11
j	21.6E+05	13
1	31.0E+06	11

Plot 20 Page 3 of 3 EOS [AMSU-AI 1356008-1 EMI S/N 202 SO 560869 TP 26151/8 Para, 3,4,4,4.2

- Habition ---

			<u> </u>

→
J
-

65.0E+03

68.4E+03

72.0E+03

75.1E+03

79.1E+03

82.5E+03

86.1E+03

89.8E+03

94.5E+03

10.0E+04 10.5E+04

11.0E+04

11.5E+04

12.0E+04

12.5E+04

13.0E+04

13.2E+04

13.6E+04

14.1E+04

109

109

105

106

101

103

104

110

111

117

119

117

117

120

117

116

82

80

		<u> </u>
		<u> </u>
		<u> </u>

15.4E+04 16.9E+04 16.9E+04 18.8E+04 18.8E+04 19.5E+04 19.5E+04 19.5E+04 20.5E+04 20.5E+04 21.7E+04 22.7E+04 22.7E+04 22.7E+04 23.7E+04 24.9E+04 24.9E+04 22.7E+04 24.9E+04 24.9E+04 24.9E+04 25.3E+04 26.3E+04 27.3E+04 28.3E+04 29.6EE+04 40.3E+04 41.5EE+05 31.7EE+05 32.7E+04 44.5EE+04 45.7EE+05 36.7EE+04 46.3EE+04 47.7EE+05 37.7EE+05 38.5EE+05 38.5EE+05 38.5EE+05 38.5EE+05 38.5EE+05 38.7E	1079995529564320381770821813110277777776665656666665555555555555555555
--	--

Plot 21 Page 2 of 2 EOS/ ANSU-11 1356008-1 EMI S/N 202 SO 560869 TP 26151/8 Para, 3.4,4.4.2

		~
		,

		<u> </u>
		<u> </u>
)

42.5E+03 43.2E+03 45.5E+03

47.9E+03 50.4E+03 53.0E+03

53.9E+03

60.2E+03

62.8E+03 68.4E+03

72.0E+03

75.1E+03

79.1E+03

82.5E+03

86.1E+03

91.4E+03

93.7E+03

96.1E+03 10.1E+04

10.5E+04 10.6E+04 11.2E+04

1234567890

1234567890

27 28

32 39

38

40

39 43

43 43

41

40

40

35

46

10 50 52

50 55

53

2 3 4 5 6 7 8 9 0 1 2 3 4	5554383333333334222238843118480695555444333333333342222222212222121211111121417323113363431148245554443333333333422222222221212121111111214173231111111111
---	--

Plot 22 Page 2 of 2 EOS/ANISU-AI 1356008-1 ETNI S/N 202 SO 560869 TP 26151/8 Para 3,4,4,4,2

- Holes-

		<u> </u>

4	90.9E+04	12
5 3	94.8E+04 97.3E+04	12 11
7 8	99.8E+04	13
	10.4E+05	17
9	11.8E+05	11
0	12.5E+05	20
1	13.0E+05	12
1 2 3 4 5	13.9E+05	11
3	14.1E+05	10
4	14.4E+05	11
5	18.1E+05	11
6	30.8E+06	12

Plot 22 Page 3 of 3

EOS | AMSU - 41

1356008-1 EM1

S/N 202

SO 560869

TP 26151/8

Para 3,4,4,4,2

Jana -

)

)
		<u> </u>
		<u> </u>

INDUCTED EMISSIONS 19V SURVIVAL HEATER B Plot 23 Page 1 of 2 EOS/AMSU-AI

TAKS FOUND ABOVE 50dBuA/MHz

.AK# FREQ (Hz) AMPL(dBuA/MHz) 10.7E+03 86 1 234567 87 11.3E+03 82 83 11.9E+03 12.4E+03 12.9E+03 83 13.5E+03 81 15.0E+03 80 15.6E+03 81

1356008-1EMI SN 202 50 560869 TP 26151/8 Para 3.4.4.4,2

90 16.4E+03 82 83 17.1E+03 123456789 83 17.8E+03 85 18.8E+03 82 19.4E+03 20.6E+03 85 88 23.4E+03

24.9E+03 90 26.4E+03 81 27.5E+03 92 90 28.7E+03 30.0E+03 91 31.5E+03 33.2E+03 92 94 96 34.9E+03

21223425678 36.8E+03 97 91 38.4E+03 40.0E+03 90 41.8E+03 91 44.0E+03 95 29 30 46.3E+03 48.7E+03 98 96 31 51.2E+03 99

32 33 34 35 36 58.2E+03 103 60.7E+03 101 63.4E+03 104 37 67.8E+03 78 :8 70.2E+03 106 39 73.2E+03 106 :0 75.8E+03 83

53.5E+03

56.3E+03

99 102

82 +1 77.7E+03 12 98 83.9E+03 †3 88.3E+03 106 4 90.6E+03 88 **‡**5 94.5E+03 113 :6 99.5E+03 114 **‡7** 10.5E+04 116

11.0E+04 :8 116 19 11.5E+04 119 .0 12.0E+04 117 12.5E+04 51 119

		<u> </u>
)
)

Plot 23 Page 2 of 2 EOS/AMSU-AI 1356008-1 EMI S/N 202 SO 560869 TP 26151/8 Para 3.44.4.2

- Holes

		<u> </u>
		<u> </u>
		<u> </u>

		•
		\sim

NDUCTED EMISSIONS 9V SURVIVAL HEATER B RETURN

AKS FOUND ABOVE 10dBuA

пко	LOOND	HDUVE	TOUDUM
A123456789012345678901234567890123456789012345678901	FRE 11.37E 11.37E 11.37E 11.3.3E 11.3E 11.) 1000000000000000000000000000000000000	AMPL(dBuA) 16 11 17 15 14 197 192 204 225 290 483 395 440 377 375 443 480 492 545 521 50

Plot 24 Page 1 of 3

EOS/AMSU-A1

1356008-1 EM1

S/U202

SO 560869

TP 26151/8

Para, 3,44,4.2

Mile.

)
)
		<u> </u>

2345678901234567890123456789012345678901234567890123456789012345678901234567890	133.4.0444444444444444444444444444444444	513199657224175044688835411388575743364544481010323102033430 514433333333342322222222321311111111112422121111211111111
---	--	---

Plot 24 Page 2 of 3 EOS / AMSU-41 135600 8-1 EM1 S/N 202 SO 560869 TP 26151/8 Para, 3,4,4,4.2

fillshipse

		<u> </u>
		<u> </u>
)

4	72.8E+04	17
455789	77.3E+04	14
5	81.4E+04	15
7	83.5E+04	23
8	86.4E+04	17
9	89.4E+04	19
:0	90.9E+04	15
21 22 23 24 25	94.8E+04	17
:2	97.3E+04	10
- 3	10.4E+05	12
:4	12.5E+05	22
25	13.1E+05	11
<u> 26</u>	13.3E+05	11
27	13.6E+05	17
28 29	13.8E+05	15
29	14.1E+05	13
30	14.6E+05	11
31	30.8F+06	12

Pht 24 Page 3 of 3

EOS / AMSU-AI

1356008-1 EMI

S/N 202

SO 560869

TP 26151/8

Para 3,4,4,2

Jan Marie

		<u>)</u>

		· ·
		<u> </u>

37.1E+03

38.7E+03

40.4E+03

42.1E+03

44.3E+03 46.3E+03

53.9E+03

56.7E+03

62.8E+03 66.1E+03

69.0E+03

72.6E+03 76.4E+03

79.7E+03

83.2E+03

86.8E+03

89.8E+03

95.3E+03

10.0E+04 10.6E+04

11.1E+04

11.6E+04

12.1E+04 12.6E+04

:1

234567890

. 1

234567

8

9

0

86

86

87

95

94 98 98

100

103

103

105 102

101

101

100

104

106

109 113

117

119

121

115 116 Plot 25 Page 1 of 2 EOS/AMSU-41 1356008-1 EMI

5/N 202 SD 560869

TP 29151/8

Para 3.4,4.4.2

)
		<u> </u>

23456789012345678901234567890123456789012345678901234	133.60E++044 +044 14.3E++044 16.03E++044 16.03E++044 179.6EE++055 179.6EE++055	1847 1008 1008 1008 1008 1008 1008 1008 100
45678901234	92.4E+04 97.3E+04 10.2E+05 10.8E+05 11.3E+05 11.8E+05 12.2E+05 12.8E+05 13.6E+05 14.4E+05 15.1E+05 15.8E+05 16.5E+05 18.0E+05 18.7E+05 19.5E+05	684 6125 661 555 661 563 555 511

Plot 25 Page 2 of 2 EOS/AMSU-A1 1356008-1 EM1 SN 202 SO 560869 TP 29151/8 Para 3,4,4,4.2

Jahren

)
		•

		·~
		•

ROJET ELECTRONICS SYSTEMS 30 Jul 1998

. MIL-STD 461B--PART 2 (AIRCRAFT) 1.6 CE-03 -- 15kHz to 50 MHz (461C)

NDUCTED EMISSIONS WARM CAL

9V QUIET BUS A

AKS FOUND ABOVE 10dBuA

FREQ (Hz) 33.5E+03 46.6E+03 50.4E+03 57.7E+03 65.0E+03 67.8E+03 77.7E+03 80.4E+03 77.7E+03 80.4E+03 80.1E+03 80.7E+04 11.3E+04 11.7E+04 11.7E+04 11.7E+04 11.7E+04 11.7E+04 11.7E+04 11.7E+04 12.7E+04 11.7E+04 12.7E+04 11.7E+04 12.7E+04 12.7E+04 13.7E+04 12.7E+04 13.7E+04	AMPL(dBuA) 17 13 12 19 20 14 29 15 18 13 14 13 19 28 41 17 19 14 20 29 17 11 12
70.4E+04 72.8E+04 83.5E+04 94.8E+04 10.4E+05 12.5E+05 31.6E+06	14 20 29 17 15 11
	FREQ (Hz) 33.5E+03 46.4E+03 50.4E+03 57.3E+03 67.3E+03 67.3E+03 67.4E+03 77.4E+03 77.4E+03 88.7E+04 11.3E+04 11.7E+04 11.7E+04 11.7E+04 11.7E+04 11.7E+04 12.7E+04 12.7E+04 13.7E+04 13.7E+04 12.7E+04 13.7E+04 13

Plot 26 Page 1 of 1

EOS/AMSU-41 1356008-1 EMI S/N 202 50560869

TP 26151/8

Para 3, 4, 4, 4, 2

)

```
ROJET ELECTRONICS SYSTEMS
 MIL-STD 461B--PART 2 (AIRCRAFT)
  1.6 CE-03 -- 15kHz to 50 MHz (461C)
                                        Plot 27 Page 1 of 1
EOS/AMSU-A1
1356008-1 EM1
S/N 202
NDUCTED EMISSIONS WARM CAL
9V QUIET BUS A
AKS FOUND ABOVE
                   50dBuA/MHz
                  AMPL(dBuA/MHz)
.AK#
     FREQ (Hz)
     11.9E+03
                    80
                                              50560869
     13.8E+03
15.3E+03
23456789012345678901234567890
                    80
                    80
                                              TP 26151/8
Para 3,4,4.4.2
     16.5E+03
                    81
     20.3E+03
                    80
      21.7E+03
                    80
     25.7E+03
                    80
     31.0E+03
                    81
     43.2E+03
                     81
                     79
      48.7E+03
     57.2E+03
65.6E+03
                     99
                     82
      70.8E+03
                     86
                     77
      80.4E+03
     83.9E+03
                     76
     91.4E+03
                     76
      10.5E+04
                    106
                     75
      11.7E+04
      11.9E+04
                     79
                     74
      14.6E+04
      16.7E+04
                     74
      21.6E+04
                     76
      25.6E+04
                     67
      27.4E+04
28.3E+04
                     61
                     69
      29.3E+04
                     69
                     70
      30.6E+04
                     62
      35.6E+04
                     70
      42.6E+04
                     55
      53.6E+04
1123
                     56
      60.4E+04
                     55
      72.8E+04
      34.2E+04
                     59
:4
      94.0E+04
      10.4E+05
ROJET ELECTRONICS SYSTEMS
                                30 Jul 1998
______
  MIL-STD 461B--PART 2 (AIRCRAFT)
   1.6 CE-03 -- 15kHz to 50 MHz (461C)
NDUCTED EMISSIONS WARM CAL
9V QUIET BUS A RETURN
AKS FOUND ABOVE
                    10dBuA
AK#
                   AMPL (dBuA)
      FREQ (Hz)
      16.8E+03
                     14
```

		<u> </u>

		_
		•

```
ROJET ELECTRONICS SYSTEMS
                                  30 Jul 1998
 MIL-STD 461B--PART 2 (AIRCRAFT)
  1.6 CE-03 -- 15kHz to 50 MHz (461C)
                                                  Plot 28 Page 1 of 1
EOS/AMSV-A1
1356608-1 EM1
NDUCTED EMISSIONS WARM CAL
9V QUIET BUS A RETURN
AKS FOUND ABOVE
                     10dBuA
                                                          5/N 20Z
AK#
      FREQ (Hz)
                   AMPL (dBuA)
      16.8E+03
                      14
                                                      50 560869
TP 26151/8
2345678901234567
                      10
      18.8E+03
      33.5E+03
                      20
      42.1E+03
                      11
      50.4E+03
                      22
                                                      Para, 3.4.4.4.2
      57.7E+03
                      11
      65.0E+03
                      22
                      15
      67.3E+03
      71.4E+03
                      32
                      13
      73.9E+03
      75.1E+03
                      10
      77.1E+03
83.9E+03
                      19
13
                      12
      85.4E+03
                      13
      86.8E+03
      92.1E+03
93.7E+03
                      13
                      16
.
9
      95.3E+03
                      14
                      17
      10.0E+04
0
      10.2E+04
                      14
      10.5E+04
1
                      49
23456789
      10.8E+04
                      11
      11.0E+04
                      15
      11.3E+04
                      12
      12.0E+04
                      14
                      12
      13.0E+04
      13.6E+04
                      16
                      12
      14.3E+04
                      47
      21.0E+04
Ō
      31.4E+04
                      32
      39.8E+04
                      19
1
2
3
      40.8E+04
                      20
      41.9E+04
                      41
      50.5E+04
52.3E+04
4567
                      14
                      14
      62.5E+04
                      20
                      14
      70.4E+04
8
                      15
      71.6E+04
ġ
      72.8E+04
                      21
0
      83.5E+04
                      30
      90.1E+04
                      15
1
                      19
      93.2E+04
```

10.4E+05 12.5E+05

31.0E+06

5

16 19

13

		_
		<u> </u>

		<u> </u>
)
		<u>)</u>

```
EROJET ELECTRONICS SYSTEMS
                                   30 Jul 1998
i. MIL-STD 461B--PART 2 (AIRCRAFT)
       CE-03 -- 15kHz to 50 MHz (461C)
INDUCTED EMISSIONS WARM CAL
                                                    Plot 29 Page 1 of 1
29V QUIET BUS A RETURN
                                                      EOS/AMSU-41
EAKS FOUND ABOVE
                     50dBuA/MHz
                                                       1356008-1 ETUI
                                                          S/N 202
EAK#
       FREQ (Hz)
                    AMPL(dBuA/MHz)
                                                      -IN 202

50 560869

TP 26151/8

Para 3,4,4,4,2
       12.6E+03
                       80
1
2
       14.4E+03
                       81
       15.8E+03
                       81
       18.5E+03
18.9E+03
4
5
6
7
                       81
                       80
       22.4E+03
                       81
       23.6E+03
                       81
8
       25.7E+03
                       81
 9
       26.8E+03
                       80
       28.0E+03
29.5E+03
10
                       81
1
                       80
12
                       82
       34.1E+03
       35.8E+03
                       80
4
       37.1E+03
                       81
.5
16
       41.8E+03
                       80
                       83
79
       50.4E+03
       59.7E+03
: 7
       65.6E+03
                       83
18
· 9
                       90
       70.8E+03
20
21
22
23
24
25
27
                       78
       77.1E+03
       92.9E+03
                       77
       10.5E+04
                      106
       12.0E+04
                       76
                       75
       13.0E+04
                       79
75
74
       13.6E+04
       16.2E+04
17.3E+04
28
29
30
       21.4E+04
                       76
                       63
71
       31.4E+04
```

43.0E+04

54.5E+04

61.4E+04 72.2E+04

84.9E+04

89.4E+04

94.0E+04 10.4E+05

12.6E+05

56 54

€0

61

70

68

51

52

31 32 33

34 35

36

37

		Ú
		<u> </u>
		<u> </u>

TEST SETUP TABLE LIBRARY FILE: CE		PG 1 0F 6 to 50 MHz (461C)	
DISPLAY TITLE 1: CONTROL PARAMETERS Test Type Freq Uncert (%) Min Sweep Time/O NUMBER PAGES NOTES NUMBER RANGES START FREQUENCY (M	ct (sec)	DS/AMSU-A NB/BB 1 3 0 4 .010	
RNG STOP FREQ(MHz)		TRANSDUCER	
1 .2 2 2.0 3 30.0 4 50.0	CURRENT PROF	BE 91550-2B S/N 774 BE 91550-2B S/N 774 BE 91550-2B S/N 774* BE 91550-2B S/N 774*	
DISPLAY INFORMATIO		PG 2 OF 6	
AMPLITUDE INFO Units Label Disp Ref Level	NARROWBANI dBuA 90	D BROADBAND = ====== dBuA/MHz 130	
TEST LIMITS Number Limits Limit 1	1 NARROWBAND	1 BROADBAND	

EOS/ANISU-A1
1356008-1 EM1
S/N202
SO 560869
TP 26151/8
Para 3.4.4.2

Alle

		/
		,

*******		=======================================
RANGE 1: .010 TO .2	- · · · · -	PG 3 OF 6
	NARROWBAND	BROADBAND
AMPLIFIER		
Name		HP8447F OPT H64
Gain (dB)	28	28
INPUT PORT	RIGHT	RIGHT
MSMT STATES		
QP Bandwidth (Hz)		BYPASS
SA Res_Bandw (Hz)		1000
Video Bandw, (Hz)		10000
Ref. Level (dBuV)		120
Int. Atten. (dB)	20	30
Ext. Atten. (dB)	0	0 ND
NO. OF SETUPS	1 1	same as NB
NO. SWEEPS/SETUP FIRST SETUP	ı	same as NB (
Msg, Sub, Continue	MESSAGE	
Msg: CONNECT CL	IRRENT PROBE TO	28 dB GAIN INPT
1159. COMMECT CO	MINERY I NODE TO	20 db 01111 1111 1
=======================================		=======================================
RANGE 2: .2 TO 2.0		PG 4 DF 6
	=======================================	PG 4 OF 6
		PG 4 DF 6
AMPLIFIER	NARROWBAND	PG 4 OF 6 BROADBAND
AMPLIFIER Name	NARROWBAND HP8447F OPT H64	PG 4 OF 6 BROADBAND 4 HP8447F OPT H64
AMPLIFIER Name Gain (dB) INPUT PORT	NARROWBAND	PG 4 OF 6 BROADBAND
AMPLIFIER Name Gain (dB)	NARROWBAND HP8447F OPT H64 28 RIGHT	PG 4 OF 6 BROADBAND H HP8447F OPT H64 L 28 RIGHT
AMPLIFIER Name Gain (dB) INPUT PORT	NARROWBAND HP8447F OPT H64 28 RIGHT	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz)	NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 300	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30000
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz)	NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 300 3000	PG 4 DF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30000 300000
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV)	NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 300 3000 100	PG 4 DF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30000 300000 120
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV) Int. Atten. (dB)	NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 300 3000 100 20	PG 4 OF 6 BROADBAND 4 HP8447F OPT H64 28 RIGHT BYPASS 30000 300000 120 30
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV) Int. Atten. (dB) Ext. Atten. (dB)	NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 300 3000 100 20 0	PG 4 OF 6 BROADBAND 4 HP8447F OPT H64 28 RIGHT BYPASS 30000 300000 120 30 0
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV) Int. Atten. (dB) Ext. Atten. (dB) NO. OF SETUPS	NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 300 3000 100 20	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30000 300000 120 30 0 same as NB
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV) Int. Atten. (dB) Ext. Atten. (dB) NO. OF SETUPS NO. SWEEPS/SETUP	NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 300 3000 100 20 0	PG 4 OF 6 BROADBAND 4 HP8447F OPT H64 28 RIGHT BYPASS 30000 300000 120 30 0
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV) Int. Atten. (dB) Ext. Atten. (dB) NO. OF SETUPS	NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 300 3000 100 20 0 1	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30000 300000 120 30 0 same as NB

EOS/AMSU-AI

S/N202

50 560869

TP 26151/8

Par. 3.4.4.2

1356008-1EM1

		<u> </u>
		<u> </u>

=======================================	===========	=======================================	
RANGE 3: 2.0 TO 30.	0 MHz	PG 5 OF 6	500 / / 1000 1 / 1
*****	NADDOUDAND		EOS/AMSV-AI
AMDI TETED	NARROWBAND	BROADBAND	1356008-1 EMI
AMPLIFIER Name	עם אאזב חסד עם	64 HP8447F OPT H64	
Gain (dB)	28	28	5/N 202
INPUT PORT	RIGHT	RÍGHT	50.560869
MSMT STATES	***************************************	1120111	
QP Bandwidth (Hz)	BYPASS	BYPASS	TP 26151/8
SA Res Bandw (Hz)		100000	•
Video Bandw. (Hz)	30000	1, <u>E</u> +6	Para 3,4.4.4.2
Ref. Level (dBuV)		100	1 RIA 3,4.4.4.2
Int. Atten. (dB)	20	20	
Ext. Atten. (dB)	0	0	1.1//2
NO. OF SETUPS	1	same as NB	Milliante
NO. SWEEPS/SETUP FIRST SETUP	I	same as NB	
Msg.Sub.Continue	CONTINUE		•
mag, am, continue	CONTINUE	,	

		=======================================
RANGE 4: 30.0 TO 50	.0 MHz	PG 6 OF 6
=======================================		=======================================
	NARROWBAND	BROADBAND
AMPLIFIER		
_		64 HP8447F OPT H64
Gain (dB)	28	, 28
INPUT PORT	RIGHT	RIGHT
MSMT STATES		
QP Bandwidth (Hz)	BYPASS	BYPASS
SA Res Bandw (Hz)	30000	1E+6
Video Bandw. (Hz)	300000	3.E+6
Ref. Level (dBuV)	90	90
Int. Atten. (dB)	20	20
Ext. Atten. (dB)	0	0
NO. OF SETUPS	1	same as NB
NO. SWEEPS/SETUP	1	same as NB
FIRST SETUP		
Msg.Sub.Continue	CONTINUE	

		<u> </u>
		<u> </u>
)

TRANSDUCER TABLE

EOS/AMSU-AI 135600B-1 EMI

TRANSDUCER TITLE SIGN OF TRANSDUCER NUMBER OF POINTS

CURRENT PROBE 91550-2B S/N 774 **PLUS** 45

S/N202 50 560869

		,,,
POINT	FREQUENCY(MHz)	TRANSDUCER FACTOR
1234567891112345678901234567890123456789012345444445	0.010000 0.011247 0.015616 0.021575 0.029641 0.034461 0.047612 0.065409 0.076046 0.089266 0.105067 0.144342 0.167815 0.231857 0.2318527 0.318527 0.318527 0.318527 0.318529 0.702909 0.817218 0.959276 1.129084 1.551143 1.803395 2.116805 3.422984 3.979641 4.671429 5.498605 3.422984 3.979641 4.671429 5.498674 12.133479 13.958285 16.669058 22.748663 26.775552 30.802441 36.784438 42.766435 50.200602	-9.96 -8.31 -6.320 -4.26 -1.250 -0.61 -1.3597 -1.889 -1.896 -1.889 -1.986 -1.980 -1.98

TP 26151/8 Para 3.4.4.4. Z

)

AE-26151/8A 17 June 1998

TAR # 004706

TEST DATA SHEET 3 (Sheet 1 of 2) RE02 Test (Paragraph 3.4.5.4)

Test Setup Verified: Kenduar 7/27/98
(Signature)

Test Equipment Log

Item	Manufacturer	Model/Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
Spectrum Analyzen	HP	8566	R300662	4/15/98	16/15/98
Feed-Through Connectors	Solar	6512-106R	L803641+04	CNR	CNR
Signal Analyzon	HP	71210-0	C200064	9/6/97	9/6/98
Series Preamp	HP	70620B	620065	9/6/97	9/6/98
Computer	HP	9836	46134-15	N/A	N/A
Privator	HP	2671G	07202	N/A	NIA
Plotter	HP	7475A	47417	CNR	CNR
Amplifier	HP	465A	L-503166	6/19/48	12/20/98
Amplifier	HP	8447F	46134-1	5/21/97	9/21/98
Active Rod Antown	EMGO	3301	55363	9/25/97	9/25/98
Bigorical Antenius	Electro-Metrics	BIA-25	650033 X	1/16/98	1/16/99
Log Sprinkl Antown	Eletro-Metrics	LCA-25	L568308	11/20/97	11/20/98
Horn Antenna	Electro-Metrics	RG-180	L508357	10/6/97	10/6/98

		Ú
		<u> </u>
		<u> </u>

TEST DATA SHEET 3 (Sheet 2 of 2) RE02 Test (Paragraph 3.4.5.4)

Test Set	up Verified: <u>A. Hlowly</u> (Signature)	7/21/98				
Emission	Measurements	<u> </u>	·			
Plot No.	Antenna/Frequency	Band	Required	Emissions v	within limits?	Comments/ Observations
				Yes	No	
	Rod/Biconical/Log 14 kHz to 1 GHz	Narrow	Figure 5		V	TAR#004706
	Rod/Biconical/Log 14 kHz to 1 GHz	Broad	Figure 6		V	
	Biconical Antenna 30 Hz to 200 Hz Vert/Horz	Narrow	Figure 5		V	
	Biconical Antenna 30 Hz to 200 Hz Vert/Horz	Broad	Figure 6		V	
	Log Conical Antenna 200 Hz to 1 GHz	Narrow	Figure 5	V		
	Log Conical Antenna AM 200 ^M Hz to 1 GHz	Broad	Figure 6	V		
	Horn: 1 GHz to 18 GHz	Narrow	Figure 5	<i>i</i> /		
	Horn: 1 GHz to 18 GHz	Broad	Figure 6		v	TAR#004706
	Special Frequency Horn: 6.800 GHz ± 100 MHz	Narrow	–130 dBm	V		
	Special Frequency Horn: 10.650 GHz ± 50 MHz	Narrow	-130 dBm	V		
	Special Frequency Horn: 18,700 GHz ± 100 MHz	Narrow	-126 dBm	V		
	Special Frequency Horn: 23,800 GHz ± 200 MHz	Narrow	-123 dBm	من		
	Note: Attach all backup test logs, addition		ted during the			
Assembl	<i>Eos/AMSU-A1</i> y Part No./356008-1-EMI		E	ngineer:	Signature	<u>Date</u> 28 Suly 90
Serial No	9 - 2		Q	uality Assurar	nce:	
Shop Ord	der: <u>560869</u>			perator:	oger N. K	Thour Justin

		<u> </u>

JUL 28, 1998 MKR #1 FRC MKR #1 FRC HB. BB -50.80 -70.80 -70.80 -80.80 -90.80 -180.8 -130.8 -130.8	1.500 GHz	-	SAMPLE MSU -41	56008=1 cm; 5/N 202 5 540869	5.4.5.4				المادرواسرر والمادنيا والموادر المادور			2.000 GHz
JUL 28, 19 REBOJET REGUINALEN BHZ	•	MILO Q OIL	UNCOR	50 S	200		AR ROW BAND		からからなりまするかっているからいま			ST0P
SH2	1			-50.00		-80.00	90.00	-100.0	子の大きの大き	-120.0	-130.0	
	JUL						REOZ EGUIVAL		Sold of the second of the second			BBB GHZ

PLOT 113 GHz	dBm]			trustal bath			GH _z msec
500	11.82	EOS/AMSU-AL	5/4202 5/4202 50 560869	1		NAKEOW BAND			CHANGE STANGENT STANG			STOP 2.000 ST 300.0 ms
ANT: VERTICAL MKR #1 FRQ 1		DD UNCOR			00	, ,	00	0.	was the state of t	B .	Ø.	S
3, 1998	AEROJET ELECTRO	.50	-60.00	-70.00	98.88	EQUIVALENT LIMIT	-90.00	-100.0	Herman	-120.0	-130.0	100 kHz
.3 JUL 28, 48m						REOZ EGG			established for the formation of			BOO GHZ Hz VB 1E
(A) 10:27:13 [-40.00 dB	ATTEN 10 48 10.00 48/01V	ARKER	1.500 GHz -111 BZ dBm		VIDAVG B				to the second of			START 1.00 *RB 100 kHz
	10 10 10	МАВ	1.1.1.1	-	VID!				T-WINST			*RB 1

1		MP LE	14	8				The Court of the Court of the Court			ga GHz
46	<u> </u>	SAMPI	4msu-	SN 202 0 26/5/				Water Part Party			P 2.000
ANT: VERTICAL MKR #1 FRO	YSTEP.		E05/ 4 (35/4	50 2		1		Heraphy Androng			STOP
NKR #1	S JI	NCOR					***	李子			Colombia Calabara de la material de
A Z	-HU.UU -1 ELECTRONIC SYSTEMS		60.00	70.00	80.00	90.06	-100.0	Any water the Bright State	-120.0	-130.0	
1998	- 10 FI = 0	20	- 60.	B 4-	28-	96-	-10	The state of the s		<u> </u>	
			7/70				-	A TOTAL STATE OF THE PARTY OF T			
1 28	AEROVET	;	8E02 &					red plate			
JUL	and comments of the second	i	· 4					the properties of the servent of the		-	H9
: 01 dB	dB 010	- L						**************************************			1.000
(A) 10:31:01 RL -40.00 dBm	1 g dB/		T. UB MHZ		UIDAVG B			Fred Ave A			
- T	— □ 0 × 0	c			DAU		1	A THE STATE OF THE			START

dwr: Horizowral PLOT 115 MKR #1 FRQ 1 500 GHz	-112.42 dBm	SAMPLE	AMSU-41	50 56 0869 TP 26151/8	10 /			かいしょうかんしょうなんしょうしょうかんしょうかんしょうかん			STOP 2.000 GHz ST 13.92 msec
ANT: HORIZONTAL MKR #1 FRQ 1		-50.00 UNCOR SI	13			8		the and the second seco	2	0	ST0P ST 1
JUL 28, 1998	HEROJET ELECTRO			- 70.00	-B0.00	-90.00	-100.0	the all might be a supplied in the property	-120.0	-130.0	z VB 1.00 MHz
[(4) 10:34:56 JI RL -40.00 dBm	ATTEN 10 dB 10.00 dB/UIV		T. UU MHZ		VIDAVG B			からかっていているとうないというないないできたからないないないないないできないできない			*RB 1.00 MHz U

7			,
6H2 6H2 dBm		-	GH ₂
	LARROW BAND		00 °0 6.67
STEMS STEMS STEMS STEMS STEMS SALOSE SO SEOSES	Makeow Band		STOP 2.200 '0 ST 66.67
98 ANT: HORZONTAL -BB. BB -B. BB -BB. BB -BB. BB -BB. BB -BB. BB -BB. BB -TBB. B -TBB. B -TBB. B -TBB. B -TBB. B	NA RES	-	\$ 101
W W W W W W W W W W W W W W W W W W W		- 5 5	
30. ECT 30.	-110.0 -120.0	-140.0 -150.0	-150.0 -170.0
	EGUIVALENT	-	3.00 KHz
L 28, 1 AEROVET	William I	=	3.0
Dr			Ø GHz VB
10:41:52 -80.00 dBm EN 10 dB 00 dB/010 200 dB/010	REO2	-	©
(A) 10:41:52 RL -80.00 dB ATTEN 10 dB 10.00 dB/01V DISPLAY LINE -122 00 dBm	9	_	20
AD 10 BL - BB ATTEN 10.88 -122 B		- 4	START *RB 3.
	1821	18 m / 18 m / 18 m /	*
	DL -122 JBm +107 AB	- 15 18 mV + 28 18/m + 13 018 mV	
	1 7		

[· · · · · · · · · · · · · · · · · · ·	· \	V							\neg
CHZ GHZ	Z Z									GHz sec
. 105 5 26.64	SAMP NSU-AI	202	8. 4. S.							STOP 2.200 0 ST 66.67
FRQ 2.105 5 GHz -126.64 dBm	EDS/4/	50 5% 78 25	Para		The state of the s					0P 2.
ANT: VERTICAL MKR #1 FRQ 2 10	-90.00 UNCOR	•								S
MKF 0.00 CTRON	3.00 C	-100.0	-110.0	8		-140.0	-150.0	160.0	-170.0	
5	1	ı				1				kHz
L 28, 1 REROJET		To the second se								3.00 kHz
Pr										Ø GH ₂ VB
10:48:28 80.00 dBm N 10 dB 0 dB/01V		6H2 dBm								2.000 kHz
(42) 10:48 RL -80.00 ATTEN 10 10.00 dB/	XKER	7.1055 -126,64		944	THE RESERVE TO SERVE					3.00
RI - 1 I I I I I I I I I I I I I I I I I	MAR		 -	F			W .			* RB
				70	-122.0 dBm +107.0 dB	15.0 albur 28.0 dB/m	13.0 dBpv/m			
					-122. +107.	- 15.4 + 28.6	+ 13.6			

_

7. VERTICAL P. 185 5	- HU. WU. C. YOTEMS	-90.00 UNCOR SAMPLE	-100.8	deplay allowed the property of	LIMIT BROADBAND			-130.0 5/N 202		-140.0		D. DC. 1		J .	-170.0	STOP 2.200 0 GHz
JUL 28, 1998	AEROVET ELE	!	-16	はないない ないからないからないというではない	EQUIVALENT LI							1	1	- - -		GHz
:52:34 3.00 dBm	10.00 d8/010	MARKER	2.105 5 GHz	- 1 B 9 5 1 1 B B B B A STANDARD OF THE STANDA	2502	VIDAVG B					The same of the sa					START 2.000 0
				\$	708	<u> </u>	HXXX XXXX	was xore	**** YEX Y	*/*	-117.0 dBm	+107.0dB	- 10.0 d8µV	+ 28.0 ol8/m	+18.0 dBpV/m	

#1 FRQ 2.105 5 GHz -109.86 dBm C SYSTEMS COR SAMPLE	6 6 0 0 4	STOP 2,200.0 GHz ST 10.00 msec
JUL 28, 1998 Ar: MKR -BB.BB -BB.BB UN -BB.BB UN -188.B	-120.0 ESC. 120.0 EC. 130.0 EC. 140.0	-150.0 -150.0 -160.0 -170.0 VB 1.00 MHz
MARKER	4107.0 48 -10.0 -18pt	+18.0 48µV/m START 2.000 *RB 1.00 MHz

,

PLOT 120	12	E												Age with			GH ₂
ď		d dBm		PLE	1 1/4	 	6/	0 1	1		 			The LANGING			DE GHZ
746	3.150 GHz	-113.4D		SAM	736	202	086	7.07. 7.4.0	Ý					Madda			4.00 40
HORIZONTAL	#1 FRQ	'	ELECTRONIC SYSTEMS	SAMI	135 6008	5/N 202	50 540869	Para 3.4.5.			BROADBAND			They to destroy the the state of the sound o			STOP 4.000 ST 540 0 m
AWT. 1	MKH #		S JII	-SB. BB UNCOR							BROA			aheringende	; ; [
A	-	00.	TRON	. 00		-60.00		70.00		B0.00	41M17	-90.00	-100.0	DAMA AMA	-120.0	-130.0	
98		-HB.00	ELEC	-50		<u> </u>		-70		- B D		-90	0	MINT OF	U U		1
1998				1					·	<u> </u>	4/6			A STANT			100 LH2
UL 28,			AERO DET								EQUIVALENT		Whith			Park Carmina princips	<u> </u>
JUL					 								Alakan.				GH ₂
B 3	dBm	38	\geq	ļ	LEVEL			ļ 		<u> </u>	REDZ		genneght/	1			00
. B2:	1.00	10	dB/I		NCE.	1 d B 1	! !			B	 		A Joseph Verye Au	-		-	}
D 11:02:03	ب - 4 ا	FN	10.00 dB/DIV	1	REFERENCE	D D	 			JIDAVG	 		Manual Land Control of the Control o	-		_	START * BP 1 AB
		HT	10		H	1	·						ALAN SA				S T a

121						1	*					,
2 150 GH	13.88 dBm	SAMPLE SU-41	8 - 1 - M/ 02 8 6 9	5151/8		VBAND	The state of the s		والمرابع والمراد والمالي ومدورة			. BBB GHz B.B msec
ANT: VERTICAL		Z	1356008 - 1 5/N 202 50 56086	70 26151. Para 3.4.		T WARROW BAND			the forther that the state of t			STOP 4.006 ST 540.0
ANT:	-40.00 ELECTRONIC SYSTEMS	-50.00 UNCOR	50.00	- 70.00	80.00	ENT LIMIT	-90.00	-100.0	podrandanska se sa sa	-120.0	-130.0	
28, 1998	JEROVET EUF		<u>'</u>	1	<u> </u>	EQUIVALENT	1		the throughout		1	100 kHz
JUL						RE02		Jan Park Tapen Starte				6Hz UB
11:10:4.	ATTEN 10 4B 10.00 4B/DIV	REFERENCE LEVEL	m8 p 0 p		1VG B			المعراقة المرام المهدمة المدام المدام المدام المدامة المعاملة المعاملة المعاملة المعاملة المعاملة				T 2.200
	HTTE 10. 0	REFE	B - -		VIDAVG			Marketalle				START * RB 100

PLOT 122	.150 GHz	12.91 dBm		SAMPLE		150-41 8-1 EMI	20	151/6			からないないないないないないないないないないないないないないないないないないない			P 4. BBB GHz
ANT: VERTICAL	MKR #1 FRQ 3.150	,	SYSTEMS	SAMPI F BROAD BAND		1356008-1	50 560869	Para. 8.4.5.7			これでもくけられるものないとなっているというないからないからいからないから			STOP L
		40.00	ECTRONIC	REOZ EDSIVALENT LIMIT BROAD		60.00	70.00	90.08	90.00	-100.0	かっとうないないないないないないない	-120.0	130.0	
JUL 28, 1998		-	30VET EL	- E001VAL			I I	t	!	***	からいまっていま	1		
		And the state of t	——————————————————————————————————————	REOZ] 					Arrange make and				6H _z
1:13:49	RI -40,00 dBm	N 10 dB	48/01V			1.00 MHz		W G B		سدود والمعرفة الرواع المعامل ا				START 2.200
		PTF			中中	1.00		VIDAVG B		Arthurst				STARI

-40.00 -50.00 -50.00 -70.00 -90.00 -120.0	ERO JET ELECTROI -50.00 -50.00 -60.00 -70.00 -70.00 -100.00 -120.0	MKR #1 FRQ 3.150 GHz -111.87 dBm	EMS ADM	7	1356008-1 EMI	50 560869 TP 26151/8	Para 5.45.4			the many defendence to the second defendence			STOP 4. BBB GHz
	HZ HE B	-40.0B	FLECTRONIC SYST	VALENT LIMIT BED		70.00	-80.80	-90.00	-100.0	かっているというないのできないないできないからいましている	-120.0	-130.8	1 ST

124																
PLOT	6Hz	dBm		L.,	12								Alragantrans			CH2
786	3.000	12.88		SAMP	ナーンの	020	869	4.5.4		 			Mangolinifaging			B. 000
PORIZONS	MKR #1 FRQ 6.000	1	YSTEMS	-50.00 UNCOR	1356608-	5/1/202	50 560	Dra S.		ARROWBAND			And the bear of the second of the first of the design of the design of the second of t			STOP
dur. 1	MKR #		NIC S	UNCOL						ARRO			Address to			
		-HB.00	ECTRO	50.00		-60.00		70.00	ם מם	CIMIT A	-90.00	-100.0	A STATE	-120.0	-130.0	
1998		1		1		S .		1	1	1 N		t	Perspetungth	1		
JUL 28,			HERO VET							TOUVALEN			John Miland			7
_	E				•					۱			,			H9
2:52:35	RL -40.00 dBm	10 dB	4B/016			Ø GHz	88 dBm		a U	•			defendations and amount of the second of the			START 4.000
	H[-4	ATTEN	10.00		MARKE	5. DBB (-112						Market Here			STARI

125			·									
r HU	E 80) [E	inc						the full house			GH ₂ sec
	15.32	SAMP WSO-A	5/2008-1-	15/18		1 2			on a serial seri			B. 000 1.200
VERTICAL #1 FRO	-40.00 ELECTRONIC SYSTEMS	SAY EDS/AMSU-	1362008-1 5/4202 50 54086	70 26151/8 Paras 4.54		ARROWBAND			AND			STOP
12. 12. MKR #	NIC S	UNCOR				NARR			dupythpray.			
·	-40.00 LECTRO	0.00	50.03	-70.00	-BB. BB	IMIT	90.00	-100.0	A Company	-120.0	-130.0	
1998			1	1:		Nr L	<u>. </u>			1	1	k H z
JUL 28,	AEROVET					11 1746			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW			100 kHz
-	\supset	エ				2 EQC						GH ₂ UB
12:31:1 40.00 d	10 dB dB/DI	BANDWIDTH	7		ر س	2602			Maythrough			4.000 kHz
(6) 12 31 - 40	ATTEN 10 dB 10.00 dB/010	RES BA	. 00 kHz		VIDAVG				gother had read by the gold of reasoning the section of the sectio			*RB 100
		П.	₹ -1		>			<u> </u>	3	<u> </u>		<u>*</u>

r 126	7 -	3.0	Pitters made 1 and		Ī			: :	-	1			 -				6H2
PLOT	MKR #1 FRQ 6.000 GHz	.12,44 dBm		SAMPLE		14-18	8-1 EM	869	4.54	M				and the factor of			000
TICAL	FRQ 6	-		!	BROADBAND	EOS/ 4M	135600	50 5608	12 261 Sara 3	R				かんないまましていまったっち			STOP B.
ANT. VERTICAL	MKR #1		NIC SY			7								Marry Africante			
		-40.2B	UECTRO	50.00	ENT LI	-60.00		-70.00		-80.00	-90.00	- 1 D D D		AND THE PROPERTY OF THE PROPERTY OF THE	-120.0	-130.0	7
3, 1998			AEROJET E		EDUIVALENT LIMIT		oor, oorgala										DO MH,
JUL 28,			AERI		2E02		~ ~~							المكامية المادية المادية المادية			GHz UR 1
16:50	10 dBm	1 dB	3/010							8			·	and the last of th			1
) 12:3	RL -40.00 dBm	LTEN 10	1. DO dE	!	HES BANDA TO T	DD MH7		-	•••	VIDAVG				するというないからないというないとうなられていていまっている			START 4.000
		E E				-	• ! 		·	\rightarrow			· • • • • • • • • • • • • • • • • • • •	THE STATE OF THE S			ဟ *

151 127	ı E				*]		E.			
PLOT 10 GH?	ì	PLE	The state of the s	10	W V			Mary Holyand			Ø GHZ
5.000	110.22	SAMPI	4WSU-	0 01	4 1 . / E			the state of the s			80.00 m
HORIZONTAL	STEM		1204 DB ANSU 356008	205	fara			ANG ANG ANG			\$T0P \$T
ANT: HORIZON: MKR #1 FRO	8 211	50.00 UNCOR	MIT					Marchylles &			1
A	FCTRON	2.00	-50.00	70.00	-80.00	98.88	-100.0	AN VIEW HOLE	120.0	-130.0	
1998	İ	: 1	- B	-71	8-	100	5-1	Addition of the same			MHz
JUL 28,	AEROJET		E02 EQ					MANA MANA			1.00
			DES					Apple 4			Hz UB
0:48 0 dBm	dВ / D I U	1						* Topped			000 G
12:40:48 L -40.00 dB	ATTEN 10 4B 10.00 48/01V	<u>‡</u> •	1.00 MHz		VIDAVG B			والمهادي المراسال المراسال المراسال المراسال			T 4.
	ATT 10.	4	1.06		UIDF			rythoursetym			START 4.000 *RB 1.00 MHz

Pros	- 1		Z / K	im:		X		-			North Made and After			B GHz
HORIZONTAL	10.00		Ecs/AMSU-	1356008-1 5/N 202	50 520869 TP 26151/	4 3.4.5		AND			THE PROPERTY OF THE PARTY.			12.000
: Horaz	MKR #1 FRQ 10.000	SYSTE	-50.00 UNCOR Eas/	1356	50.	Para		1RROWB.			Attended to the state of the st			STOP
ANT:		TRONIC	. Ba un	50.00	0	. a . a	80.00	LIMIT NA	90.00	100.0	Brown Diverto	-120.0	-130.0	e e application de la company de la company de la company de la company de la company de la company de la comp
1998			!	- 50	u (.	D 	0 8 -	ENTLI	06-	-10	Andrew Salanda	- T	-13	
28,	a design of the second	AEROVET					1	SUIVAL			WASHING THE WASHING			
16 JUL	dBm) I	11 + 0					PED2 E			physpranterior			DO GHZ
12:48:	40.00	10.00 dB/DIV		DINUM IU II			NG B				photography physicanostyles			T 8.000
	AL - L	п 10.00	CL	100			VIDAVG	 			narhabadarja			START

__

621.						4	-					
PLOT 129 BHZ	dBm		- IMC						and when his			6Hz sec
ANT: VERTICAL PLO: MKR #1 FRQ 10.000 GHz	13,52	SAMPL FOS/AMSU-41	202	3.4.5.4	1	420			Start Harley			12.000
20 1 08	-11 EM9	144	1356008 5/4202 5054086	18 26151 Para 3.4		NARROW BAND			had not been proportionally the properties of th			
/ERT	SYST	-50.00 UNCOR	(4) P	1 0		422			Treat to			\$10P \$1
3 7. H.X.F.	NIC	UNC				. `			A-Body year			
4	HØ. ØØ ECTRO	B . BB	50.00	70.00	-80.00	- LIMIT	90.96	-100.0	Afganty.	120.0	-130.0	
1998	ì	<u> </u>	<u>.</u>	-	æ	EQUIVALENT	<u>n</u>		The state of the			Hz
28, 1	AEROVET					12/12			Stanford !			100 kHz
JUL	AEI						 .					GH _z VB 1
_	3 I U	DTH				REDZ			HATTER COPPER			
(4) 12:55:58 RL -40.00 dBm	10 d dB/D	BANDWIDTH	2		8	} 			والمالية والمساورة والمراجعة والمراج			8.000 kHz
12 -40	Z 0	SBA	Z H Z		UIDAVG		·		the design			*RB 100 kHz
	1 B	BE E	100		In	[[17 phywyd			* RB

ELECTRONIC SYSTEMS
-50.0
-60.00
-78.00
-80.80
-90.00
-100.0
Birthough the particular of th
-120.0
-130.0
MHz

dBm	1						######################################			GH _z
89.48	SAMPLE	AMSU-AI	1008-14W 14/202 560869	2451/8 3.4.5.4			William Control of the Control of th			12.000 GHz
IC SYSTER	O.H	i i	1356	9 %	N		the the appropriate of the state		STOP	
-40.00 ELECTRON	-50.00	-50.00	-78.88	-80.00	-90.00	-100.0	The Bringson	-120.0	-130.8	
I		A710 A A A A A A A A A A A A A A A A A A A			The state of the s		Material constitution			יח א
	ı	i					1			IN GHZ
TTEN 10 0.00 dB/		. BB MHz		IDAVG B			Mahaman Mahaman Mark			* START B. BBB
	89.48	AEROJET ELECTRONIC SYSTEMS -50.00 UNCOR SAMPL	AEDZ EBUNALENT BROADBAND -50.00 -50.00 -50.00 -50.00 -50.00 -50.00	AEROJET ELECTRONIC SYSTEMS -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -70.00 SAMSO-1	AEROJET ELECTRONIC SYSTEMS -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -70.00 UNCOR SAMPL	AEROJET ELECTRONIC SYSTEMS -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -50.00 Eas/Anso-A -70.00 Eas/Anso-B -	## AERO JET ELECTRONIC SYSTEMS -50.00 UNCOR SAMPL -70.00 SAMPL	AEROJET ELECTRONIC SYSTEMS -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -70.00 SAMPL -70.00 SAMPL -70.00 SAMPL -100.00 SAMPL -100	## ### ###############################	AEROJET ELECTRONIC SYSTEMS -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -50.00 UNCOR SAMPL -70.00 UNCOR SAMPL -80.00 UNCOR SAMPL -90.00 UNCOR SAMPL -100 UNCOR SAMPL

-132								ادد									
Ros	6Hz	d 3 m		T A	EM!		M			!			Park The A			2H9	3 2 3
-1	. aaa	3.02		SAMPL	1-80	202/	3.4.5.	N. N. N. N. N. N. N. N. N. N. N. N. N. N		[- [Mahaha			1.000	800
HORIZONTAL	MKR #1 FRQ 15.000		STEMS	Eas 14	13560	16.4	da.			orna			Home Whater			STOP 18	S
Hox	# 7		S S	VCOR						ROW			Water Many				
dur:	X X	10.00 H	CTRONI	-50.00 UNCOR		-52.00	70.00		-80.00	T KAR	90.86	-100.0	the state of the property of the state of th	-120.0	130.0		
1998				j			-7		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	T LIM	on .	-	Apply Land		!		k 11.2
R H J			AEROVET							ALER	i i		The state of				100
JUL				 						EGUIV			ratificant.			6H ₂	
59	dBm	38	710	F						ED2 &			And white			BBB.	kH ₂
75 13:18:59	0.00	10 c	1/8P		HUNNH	17	, e. deleger and an agent		اھ ا	Ø			maken der with the state of the state of the		-	ru Lu	E KH
(h) 1	AL -40.00 dBm	ATTEN	10.00	1	HES &	100 kHz			VIDAVG B	•			The state of the s			START	* RB 100

6H2	ł			K				The state of the s			GHz
MKR #1 FRQ 15,000	STEMS 7E	FOS LINSUL	5/N202 SO 540869	120 26151/2 lan 3.4.5		o and a second		Wind and the state of the state of the			STOP 18.000
MKR #1	HA. BAT	-50.00 UNCOR	80.30	70.00	80.00	90.00	-102.2	Antiso had been been been been been been been bee	120.0	130.0	3
	AEROVET ELE	i		2-	æ	41EVT LIM		Ment of the state	1		
8 dBm	B J I ∪		КНZ			CEOZ EGLYV		proportional internal			. DDD GHz
RL -40.01	ATTEN 10 10.00 dB/	r	100 kHz		UIDAVG B			holometer the property of the second			START 12.

134	,	<u>_</u>		Ţ _		J		-\$I		T	7
Res 1 6H2	ч Вр		1		K /			SAPONO SAPAN			GHz
15.000	. 89. 12	SAMP	45U-A	262	3.4.6.			ethylately entended the control of t			18.000
	STEMS	-50.00 UNCOR SAN	EDS/4MSU 1351,008-	50 520869 TP 26/51/	dara.	1		A PARTY AND		-	STOP
ANT: VERTICAL MKR #1 FRQ	λs 3I	INCOR						April Mark			
CMA.	J. ØØ Ctron		50.03	70.00	-80.00	-90.00	-100.0	To a Contraction of the Contract	D . B	130.0	
1998	- 40 T ELEC	F 3	rb _		3B -	5			-120.		
28, 1	AEROJET	2 690						Andrew Market			
JUL		RE02						IN profession		£	6Hz
. 49 dBm	d B D I ∪							arthur truth			2.000
3;26 8.00	10 dB/	BANDMIDTH	MHz		B 97						12
(2) 1 31 - 4	ATTEN 10.00	7ES 8	. BB		VIDAVG			Heriandaker VII gest vigad			STARI

MKR #1 FRQ 15.000 GHz		11/-		X.		With the factor of the same of			A GH,
15.000	SAMP	1msv-	V202 0869 6151	3.4.5.4		Alter Variable			1 P DBB
MKR #1 FRQ 15 Z RONIC SYSTEMS	4 ENT LIMIT BROADES	EDS/ 4115.	5056086 TP 26151	Para.		Marakan			STOP
# # 1 C S	COR BEST					The state of the s			_\c.
MKF BONI RONI		00	00	00	20	100.0	E S	2	
-HO.02	SIS	-50.00	-70.00	-80.00	-90.00	100.0	-120.0	130.0	-
	SUNA				and the second s	ry positifies			
AEROJE	V					Carlo Charles Androvers Control Contro			
2	REOZ					Nave de la constant d			6H ₂
10 dBm 10 dBm 10 IV	10 H					A A A A A A A A A A A A A A A A A A A			12.000
ATTEN 10 dB	BANDT	MHZ		B 9		A MARKA			12
ATENT.	RES B	00		VIDAVG		Chirolist property of the Control of			START

787				T		量				T	
Res GH2	dBm	لبا	ž			3					MHz
871 5	135.07	SAMPL MSU-41	5008-1 E1 5/4202 5/4202	26151/8		property of the general of the state of the property of the pr					200.0 66.67
ANT: VERTICAL KR #1 FRQ 6.	YSTEMS	-90.00 UNCOR FOS/AMSU.	1356	70 2 10 20							SPAN
127: V	S JIN	UNCOR			\	And Market					
, , , ,	-BB.BB LECTRO	90.00	-100.0	-110.0	-120.0	138. B	-140.0	-150.0	-160.0	-170.0	
1998	ł		i	i .	1		1	ı	1	1	3.00 kHz
JUL 28, 1998	AFROJET					white the same of					GHz UB 3. E
E	3		2			A VARABLE					0
0 08:50:45 -80.00 dB	EN 10 dB		5 6Hz 07 dBm		B 97	The state of the state of					CENTER 6.800 *RB 3.00 kHz
RL -B	ATTEN 10.00	MARKER	6.871 -135	~ -1	VIDAVG	PASSES OF THE PA					CENTE *RB 3.
						30 18m					

- 130 ABA

N	3 GHz 3d dBm	PLE	14	4		And the state of t					MHZ
1	33.	SAMP SAMP	202	2.4.5	N .	Why want					200.0
ZO NY	-BO.00 -BU.00 ELECTRONIC SYSTEMS	E05/A	13560 5/2 50 561	600		May Professional And Andrews Committee					SPAN
7. Hae	MKK #1 12 RONIC S	UNCOR		or above the second		Mary Mary					
AU	MK. BB CTRO	0.00	-100.0	-110.0	-120.0	A Children	-1 40.0	-150.0	150.0	-170.0	
1998		1	1	-	-	章			-	1	
. 28,	AEROVET						•				
JUL						THE WAY					Q GHz
89:88:38	8 d8 B B B B B B B B B D I V		GH Z GB m		@	And African State of the African State of the State of th					. 800
. 60 (ATTEN 10 dE 10.00 dB/01	X H H	1 32		VIDAVG	Transfer of the second					CENTER 6.800
	ATT 10.	MARK	6.83 -131	~ -1	VID	4000		**			CENT

,

138			Ι		<u> </u>	·				T	4	.					٦	• •
PLOT	dBm		L.								Markey						MHZ	
ANT: HORIZONTAL PLOT,	134.04		SAMPI	17-7	N	2/18	4.5.4	The second second			المراجعة والمراجعة والمراع						100.0	E.C
ZONTAL BO 10	2 -	ELECTRONIC SYSTEMS	,	1356008-1	S/W 20	10 26/5	ane 3.		and S		MANAMA						SPAN	S
ANT: HORIZONTAL	7#	NIC S	UNCOF	Y					\	-	A							
1	-80.00	ECTR0	90.08		-100.0		-110.0		-120.0	0 00 1	を記る	-140.0	-150.0	-15B) -) ;	-170.0		
1998	1				1		t		1		HANDAN PART	1	1	•		1		AD LH2
JUL 28,		REROVET									Monthstall						Ø GHz	UR 3 DA LH,
57 JB.	$\mathbf{a} \mathbf{c}$	ΛI			Hz	E					termostate per julya						0	
Ø 08:17:5	ATTEN 10 d	1 dB/D		EB	0	04 dBm			8 9/		AND PARTY						B 10.	H 7 DD
	ATTEN	10.00		MARKE	10.61	-134	7		UIDAVG		ANTHUR ANT MARKET HAVE						CENTER 10.65	* BB 3
	4		1		-				· · · · · · · · · · · · · · · · · · ·	0	<u> </u>					•		•

<i>Por 139</i> . 666 6 6H7	31.89 dBm		298	6.4.5.4		日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日					100.0 MHz 33.33 sec
ANT: VERTICAL PLOT 1.	NIC SYSTEMS	-90.00 UNCOR	50505	les les		3					SPAN 100.0 ST 33.33
JUL 28, 1998 ANT	- BB.BB AEROJET ELECTRO	l .	-100.0	-110.0	-120.0	Appropriate for the state of th	-140.0	-150.0	-160.0	-170.0	GHz VB 3.00 kHz
41 dBm	8 I U		G GHz 9 dBm		8	Mary Land Advantage Mary Color Color					10.650 0 kHz
(%) 08:24:" RL -80.00	ATTEN 10.00	MARKER	10.666 E - 131 89	~ -1	UIDAVG	Moderat Andread Andreas Anna					*RB 3.00

1	E 6 0	LE	EM!			And the Appropri					MHZ
MKR #1 FRQ 18.631 Z	.26.9	SAMP	56008-4 5/4202 540869	5151/d 5.4.5.		Modernation		to the state of the state of			200.
4U 1H.	- STEM9	SA EOS/AMSU	1356008 SW 20 505608	Para. 3.4.5.	5	chaldran all part dan later and an all being being the					SPAN
- - - - - -	IC S	JNCOR				Apply Mary					
H W II	-80.00 Lectron	-90.00 UNCOR EOS/A	100.0	-110.0	-120.0	which the physical property	-140.0	150.0	-150.0	170.0	
			1	1	1	Washington In	1	1		:	
	AEROVET					the graphing with					GH ₂
ב כ	B IV		Hz m			Multiplian	To the state of th				7000
١	TEN 10 d	В	11 Ø G		B 9/	A A A A A A A A A A A A A A A A A A A					FR
-	ATTEN 10.00	MARK	18.63		UIDAVG	Phylinder H					CFNTF

- 120 dBn

PLOT 141	,752 B GHz	126.91 dBm	SAMPLE	202 - 1 EM1	3.4.5.4		HALL HAMMEN THE COURT OF THE CO					SPAN 200.0 MHz ST 66.67 sec
ANT: VERTICAL	MKR #1 FRQ 18,752 8 GHz	- JIN	-90.00 UNCOR Fas/A	SO 5%	18 20 A 20 A 20 A 20 A 20 A 20 A 20 A 20		Arthursty by Adamson, rights					SPAN
JUL 28, 1998 ANT	MKR	-80.00 AFROJET FLECTRO		-100.0	-110.0	-120.0	MAN THE WASHINGTON TO THE WASH	-140.0	-150.8	-150.0	-170.0	Ø GHz VB 3. ØØ kHz
	RL -80.00 dBm	ATTEN 10 dB	MARKER	18,752 B GHz		VIDAVG B	Think the watcher mathematical and the contraction					*RB 3.00 KHz

-126 dBm

24.				\	111							7	
	E 9 P	لنا	124									ţ	3 2 3
	26.50	SAMP	8-1 6	867	8. A. G. A		A MANAGER AND A STATE OF THE PARTY AND A STATE					1	133.
	-80.00 ELECTRONIC SYSTEMS	E05/44	135600	50 56086	Para		The state of the s					SPAN	ر ا
ANT: VERTICAL KR #1 FRQ 23	1C S	INCOR					WAY WATER						
MKB A	-BØ.ØØ LECTRON	3.00 C	9 00		-110.0	ם מכי		-140.0	-150.0	-160.0	-170.0		
1998	ł		5	<u> </u>	1	-	=	- - - - - - - - - -		-	1	-	KH2
28,	EROVET						AND MANAGEMENT					HZ HZ	J. UU KHZ
JUL	H											J B GHZ	A N
4:29 0 dBm	dB /DIU						And the design of the second s					CENTER 23.800 0	k Hz
(45) 89:54:29 RL -80.80 dBm	EN 10		ス こ こ こ	-126,50		naug a	Apple of the second of the sec				A the property of the property	EB	3.00
B.F.	ATT.		Z H H C C	י ב הי			***					CEN	# *
						•	? 🐧						

ANT: HORIZONTAL PLOT 143 MKR #1 FRO 23.800 0 6H2	28.15	SA	50 540869 The 2015/10	Para 3.4.6.4		TO THE PARTY OF TH					SPAN 400.0 MHz ST 133.3 sec
JUL 28, 1998 4vr : 4	AEROVET ELECTRONIC	-90.00 UNCOR	-100.0	-110.0	0.021-	This payment with the principle of the p	-140.8	-150.0	-150.0	-170.0	GHZ VB 3.00 kHz
(4) 10:12:18 RL -80.00 dBm	ATTEN 12 dB 10.00 dB/DIV	MARKER	23.800 0 GHz -128,15 dBm		23 VIDAVG B	HAMPING HAMPIN					CENTER 23,800 0 *RB 3.00 kHz

-123 dBm

	•	•
TEST SETUP TABLE		PG 1 OF 6
LIBRARY FILE: RE-	02 14kHz	to 1000MHz (AF/N)
DISPLAY TITLE 1:	ΕO	S/AMSU-A
CONTROL PARAMETERS Test Type		NB/BB
Freq Uncert (%) Min Sweep Time/Oc	t (sec)	1 3
NUMBER PAGES NOTES NUMBER RANGES		0 4
START FREQUENCY (MH	z)	.014
RNG STOP FREQ(MHz)	; ====================================	RANSDUCER
1 2.0 2 30.0		- ACTIVE MONOPOLE - ACTIVE MONOPOLE
$\bar{3}$ 200.0	E-M BIA-25	5 - BICONICAL @ 1m - LOG SPIRAL @ 1m
4 1000.0	E-M LUH-25	- LUG SPIRHL @ IM
	========	=======================================
DISPLAY INFORMATION		PG 2 OF 6
	NARROWBANI	BROADBAND
AMPLITUDE INFO Units Label Disp Ref Level	dBuV / m 100	dBuV / m / MHz 140
TEST LIMITS Number Limits Limit 1	1 EDS/AMSU-A	. 1 EOS/AMSU-A

)

=======================================	=======================================	=======================================
RANGE 1: .014 TO 2.	0 MHz	PG 3 OF 6
	NARROWBAND	BROADBAND
AMPLIFIER		
Name		HP8447F OPT H64
Gain (dB)	28	28
INPUT PORT	RIGHT	RIGHT
MSMT STATES QP Bandwidth (Hz)	BYPASS	BYPASS
SA Res Bandw (Hz)		3000
Video Bandw. (Hz)		30000
Ref. Level (dBuV)	100	100
Int. Atten. (dB)	20	20 0
Ext. Atten. (dB)	0 1	same as NB
NO. OF SETUPS NO. SWEEPS/SETUP	1	same as NB
FIRST SETUP	•	
Mea Sub Continue	MESSAGE	
Msg: CONNECT EM	ICO 3301 HP8447F	28 dB INPUT
-		
RANGE 2: 2.0 TO 30.	 0 MHz	======================================
	0 MHz	PG 4 OF 6
RANGE 2: 2.0 TO 30.	 0 MHz	======================================
RANGE 2: 2.0 TO 30.	0 MHz NARROWBAND	PG 4 OF 6 BROADBAND
RANGE 2: 2.0 TO 30. AMPLIFIER Name	0 MHz NARROWBAND	PG 4 OF 6 ====================================
RANGE 2: 2.0 TO 30. AMPLIFIER Name Gain (dB)	0 MHz NARROWBAND	PG 4 OF 6 BROADBAND
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES	0 MHz NARROWBAND HP8447F OPT H64 28 RIGHT	PG 4 DF 6 BROADBAND HP8447F OPT H64 28 RIGHT
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz)	0 MHz NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz)	NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30E3
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz)	0 MHz NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 3E3 30000	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30E3 300000
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV)	O MHz NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 3E3 30000 100	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30E3 300000 100
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV) Int. Atten. (dB)	0 MHz NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 3E3 30000	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30E3 300000
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV) Int. Atten. (dB) Ext. Atten. (dB) NO. OF SETUPS	0 MHz NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 3E3 30000 100 20 0	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30E3 300000 100 20 0 same as NB
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Video Bandw. (Hz) Ref. Level (dBuV) Int. Atten. (dB) Ext. Atten. (dB) NO. OF SETUPS NO. SWEEPS/SETUP	0 MHz NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 3E3 30000 100 20	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30E3 300000 100 20 0
AMPLIFIER Name Gain (dB) INPUT PORT MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV) Int. Atten. (dB) Ext. Atten. (dB) NO. OF SETUPS	0 MHz NARROWBAND HP8447F OPT H64 28 RIGHT BYPASS 3E3 30000 100 20 0	PG 4 OF 6 BROADBAND HP8447F OPT H64 28 RIGHT BYPASS 30E3 300000 100 20 0 same as NB

=======================================		=======================================
RANGE 3: 30.0 TO 200	.0 MHz ==========	PG 5 DF 6
=========	NARROWBAND	BROADBAND
AMPLIFIER Name Gain (dB) INPUT PORT	HP8447F 48 RIGHT	HP8447F 48 RIGHT
MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV) Int. Atten. (dB) Ext. Atten. (dB) NO. CF SETUPS NO. SWEEPS/SETUP FIRST SETUP Msg,Sub,Continue Msg: CONNECT BIC	BYPASS 30E3 300000 100 20 0 1 1 MESSAGE ON ANT/8447F(F	BYPASS 300E3 3.E+6 100 20 0 same as NB same as NB
======================================	00.0 MHz	PG 6 DF 6
=======================================	NARROWBAND	BROADBAND
AMPLIFIER Name Gain (dB) INPUT PORT	HP8447F 46 RIGHT	HP8447F 46 RIGHT
MSMT STATES QP Bandwidth (Hz) SA Res Bandw (Hz) Video Bandw. (Hz) Ref. Level (dBuV) Int. Atten. (dB) Ext. Atten. (dB)	BYPASS 30E3 300000 80 10	BYPASS 1E+6 3.E+6 80 10
NO. OF SETUPS NO. SWEEPS/SETUP FIRST SETUP	0 1 1 MESSAGE	0 same as NB same as NB

			_

TRANSDUCER TABLE

SIGN OF TRANSDUCER NUMBER OF POINTS

TRANSDUCER TITLE EMCO 3301 - ACTIVE MONOPOLE PLUS 21

POINT	FREQUENCY(MHz)	TRANSDUCER FACTOR
=====	=======================================	
1	.014	. 3.8
2	.020	3.7
$\bar{3}$.040	3 . 5
4	.060	3.5
5	.100	3.8
Š	.150	3.9
7	.200	3.8
ģ	.400	3.3
2 3 4 5 6 7 8 9	.600	3.0
10	.850	3.0
11	1.000	3.2
12	1.600	3.3
13	2.000	3.3
14	4.000	3.8
	6.000	4.0
15		4.3
16	8.000	4.3
17	10.000	4.6
18	15.000	5.1
19	20.000	
20	25.000	5.2
21	30.000	5.3

		<u> </u>
		<u>)</u>

______ TRANSDUCER TABLE

SIGN OF TRANSDUCER NUMBER OF POINTS

TRANSDUCER TITLE E-M BIA-25 - BICONICAL @ 1m PLŪŠ 37

POINT	FREQUENCY(MHz)	TRANSDUCER FACTOR
==== 1 23 45 67 89 11 13 45 67 89 11 123 45 67 89 11 123 45 67 89 133 333 333 333 333 333 333 333 333 33	20 25 30 35 40 45 50 55 65 70 75 85 90 105 115 125 130 145 150 150 165 175 185 190 195 200	15.28 12.64 12.17 13.34 13.42 12.12 12.02 13.20 10.29 8.77 7.18 7.22 10.00 10.63 11.59 12.19 13.40 13.51 14.43 13.63 13.59 14.94 16.41 17.49 18.74 18.63 18.74 18.12 18.63 17.00 16.76 16.76 16.18

TRANSDUCER TABLE

TRANSDUCER TITLE SIGN OF TRANSDUCER NUMBER OF POINTS E-M LCA-25 - LOG SPIRAL @ 1m PLUS 17

POINT	FREQUENCY(MHz)	TRANSDUCER FACTOR
1	200	24.01
	250	19.28
2 3 4 5	300	18.71
4	350	17.24
	400	18.02
6	450	18.33
7	500	19.84
8 9	550	20.46
	600	21.33
10	650 700	21.63
11	700	22.05
12	750	23.15 24.08
13	800 850	24.06
14 15	900	25.14
16	950	25.88
17	1000	25.75

		<u> </u>
		<u> </u>

AEROJET ELECTRONIC SYSTEMS

LIMIT TABLE

LIMIT TITLE NUMBER OF POINTS EOS/AMSU-A

FREQUENCY(MHz)	AMPLITUDE
.014	35
25.000	20
1000.000	45
	.014 25.000

		-
		<u>)</u>
		<u> </u>

AEROJET ELECTRONIC SYSTEMS

LIMIT TABLE

LIMIT TITLE NUMBER OF POINTS EOS/AMSU-A

FREQUENCY(MHz)	AMPLITUDE
=======================================	========
.014	100
200.000	55
1000.000	65
	.014 200.000

		<u> </u>

TEST DATA SHEET 4 (Sheet 1 of 6) CS01 Test (Paragraph 3.4.6.4)

Test Setup Verified: Raft Khoway
Signature)

Test Equipment Log

Item	Manufacturer	Model/Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
Function Generator	HP	3325 A	46279	3-19-98	9-13-98
Amplifier	Mc Intosh	MC 2 205	45071	NOG	NDG
Oscilloscope	TEL	7DS 380	200079	4-7-98	4-1-99
Transformer	Solar	4220-1A	1502741	CNR	CNR
					<u> </u>

Susceptibility to Injected Electromagnetic Energy on Power Leads, 30 hz to 50 kHz

+27V Quiet Bus A (Terminal 1 on B/O Box) Comments/ Spec Limit Limit Factor* Signal Type Test Observations Frequency Range Criteria or Waveform Level SL Valts ST EL Basalines XXXXTO Figure 8 0.5 Sine 30 Hz Figure 8 30 Hz to 1500 Hz 0.5 Sine <u>7093</u> Figure 8 Sine 1500 Hz to 10 kHz 0,5 0,5 Figure 8 TO 94 Sine 10 kHz to 50 kHz

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

EOS/AMSU- AI
Assembly Part No. <u>1356008-1 EM</u>
Serial No. <u>20</u> Z

Shop Order: <u>560869</u>

Quality Assurance: Quality Assur

Customer Rep.: X Swew 7/18/98

Signature/Date

^{*}ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

		<u> </u>
		_

TEST DATA SHEET 4 (Sheet 2 of 6) CS01 Test (Paragraph 3.4.6.4)

Frequency Range	Test Level	Signal Type or Waveform	Lin	nit Facto)r*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
30 Hz	0.5	Sine			1	Figure 8	BASELINES
30 Hz to 1500 Hz	0.5	Sine			/	Figure 8	70 96
1500 Hz to 10 kHz	0.5	Sine				Figure 8	TO 97
10 kHz to 50 kHz	0.5	Sine				Figure 8	TO 78
7V Noisy Bus A (Termin Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*		Spec Limit Criteria	Comments/	
110420.00	VOLTS	Or Waveloilli	ST	EL	SL	J. 101.12	
30 Hz	7.0	Sine				Figure 8	BASELMES
30 Hz to 1500 Hz	7.3	Sine			1	Figure 8	19:13
1500 Hz to 10 kHz	5-1	Sine			/	Figure 8	19:23
10 kHz to 50 kHz	4-1	Sine			~	Figure 8	19:30
7V Noisy Bus Rtn A (Te	erminal 7 on	B/O Box)					Comments
Frequency Range	Test Level	1		mit Fact		Spec Limit Criteria	Observation
	VOLTS	†	ST	EL	SL	Figure 9	
30 Hz	7.0	Sine		 		Figure 8	BASELINE: 1
30 Hz to 1500 Hz	7.1	Sine	 		-	Figure 8	20:06
1500 Hz to 10 kHz	5.1	Sine		-	 	Figure 8	20:22
10 kHz to 50 kHz	4.2	Sine				Figure 8	70:22
				-	-		

TEST DATA SHEET 4 (Sheet 3 of 6) CS01 Test (Paragraph 3.4.6.4)

+27V Survival Bus A (Term	inal 9 on B	/O Box)					
Frequency Range	Test Level			Limit Factor*		Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
30 Hz	3.0	Sine				Figure 8	IBASELINE - 20.00
30 Hz to 1500 Hz	3, 2	Sine			1		No change.
1500 Hz to 10 kHz	3.2	Sine			1/	Figure 8	No Change
10 kHz to 50 kHz	3.2	Sine			V	Figure 8	No change
	<u> </u>						
	<u> </u>						

+27V Survival Bus Rtn A (Terminal 10 on B/O Box)

Frequency Range	Test Level					Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
30 Hz	3,0	Sine			~	Figure 8	TRASFLINE = 20mA
30 Hz to 1500 Hz	3.2	Sine					No change
1500 Hz to 10 kHz	3.2	Sine				Figure 8	No change
10 kHz to 50 kHz	3, 2	Sine				Figure 8	No change
1							
						·····	
L							

TEST DATA SHEET 4 (Sheet 4 of 6) CS01 Test (Paragraph 3.4.6.4)

Frequency Range	Test Signal Type Level or Waveform		Limit Factor*			Spec Limit Criteria	Comments/ Observations
	Volts		ST	EL	SL	1	
30 Hz	0.5	Sine			1	Figure 8	Baseline TOBA
30 Hz to 1500 Hz	0.54	Sine			V	Figure 8	7085
1500 Hz to 10 kHz	0.52	Sine			V	Figure 8	T086
10 kHz to 50 kHz	0.55	Sine			/	Figure 8	T087

^{*}ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

<i>Eos(AMSU-Al</i> Assembly Part No. <u>1356008-1_EM</u>)	Signature Date Engineer: Sala 36
Serial No	Quality Assurance Lidio Derwey 18 18 98
Shop Order: 560869	Operator: Kopit B. Klainer 17-July-98 Customer Rep.: Review 7/18/98

TEST DATA SHEET 4 (Sheet 5 of 6) CS01 Test (Paragraph 3.4.6.4)

Frequency Range	Test Level	Signal Type or Waveform	Li	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	Volts		ST	EL	SL		
30 Hz	6.5	Sine			/	Figure 8	Beceline TO 84
30 Hz to 1500 Hz	6.52	Sine			/	Figure 8	7088
1500 Hz to 10 kHz	0.63	Sine			V.	Figure 8	7089
10 kHz to 50 kHz	0,62	Sine			V	Figure 8	70 90
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
31V Noisy Bus A (Termin	nai 5 on B/O	Box)					
Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*		Spec Limit Criteria	Comments/ Observations	
	Volts		ST	EL	SL		
30 Hz	7.0	Sine			V	Figure 8	Buseline 14:27
30 Hz to 1500 Hz	7.2	Sine			V	Figure 8	HANGE MAN /13
1500 Hz to 10 kHz	5.0	Sine			V	Figure 8	MA:EC-16:49 16:4
10 kHz to 50 kHz	4,2	Sine			V	Figure 8	MARNERER
B1V Noisy Bus Rtn A (Te	rminal 7 on	B/O Box)					T
Frequency Range	Test Level	Signal Type or Waveform		mit Fact	,	Spec Limit Criteria	Comments/ Observations
	Volts		ST	EL.	SL		
30 Hz	7.0	Sine			V	Figure 8	Beseline 14:27
30 Hz to 1500 Hz	7.2	Sine			V	Figure 8	16:11
1500 Hz to 10 kHz	5.0	Sine			V	Figure 8	16:19
10 kHz to 50 kHz	4.2	Sine			V	Figure 8	16:28
			· · · · · · · · · · · · · · · · · · ·				

TEST DATA SHEET 4 (Sheet 6 of 6) CS01 Test (Paragraph 3.4.6.4)

Frequency Range	Test Level	Signal Type or Waveform	Lia	Limit Factor*		Limit Factor*		Limit Factor*		Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL						
30 Hz	3.0	Sine				Figure 8	IBASELNE = 20m				
30 Hz to 1500 Hz	3.2	Sine				Figure 8	No charge.				
1500 Hz to 10 kHz	3.2	Sine			V	Figure 8	No change.				
10 kHz to 50 kHz	3.2	Sine				Figure 8	No change.				

+31V Survival Bus Rtn A (1	erminal 10	ou R\O Rox)	,				
Frequency Range	Test Level	Signal Type or Waveform	Liı	Limit Factor*		Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
30 Hz	3.0	Sine			<i>'</i>	Figure 8	I ANELINE = 10m
30 Hz to 1500 Hz	3.2	Sine				Figure 8	No change.
1500 Hz to 10 kHz	3,2	Sine				Figure 8	No charge.
10 kHz to 50 kHz	3,2	Sine				Figure 8	Ne change

REF TAR *004710 Op *8200 pg.10

TEST DATA SHEET 4 (Sheet 1 of 6) See Sheet # 41 for DATA
CS01 Test (Paragraph 3.4.6.4)

Test Setup Verified: Signa		ue							
Test Equipment Log									1
Item	Ма	Manufacturer		Model/Part No.		Aerojet Inventory No.		Calibration Date	Calibration Due Date
Function General	or f	JP	3	325/)	46279		3-13-98	4-13-98
Amplifier	M	Tutosh	14	0220	٢_	45071		NDG	NDG
Oscillosepe		Te K	I	<u>s 380</u>	<u>)</u>	200019	2	4-7-98	4-1-99
Transformer	5	lar	6	<u> 220-1</u>	A	L50274	4	CWR	OND
							_		E
								-	
Suscentibilit	v to Inject	ted Flectrom	anne	atic Ence	·~\	on Power Lea		00 h- +- 50 l	
			agrie	suc Enei	<u>qy c</u>	on Fower Lea	ads,	30 nz to 50 k	HZ
+27V Quiet Bus A (Terminal	1 on B/C	Box)		T					
Frequency Range	Test Level			mit l	nit Factor*		pec Limit Criteria	Comments/ Observations	
				ST	E	L SL			
30 Hz		Sine						Figure 8	
30 Hz to 1500 Hz		Sine	1)				Figure 8	
1500 Hz to 10 kHz		Sine			Þ.	317 4-31-9	1	Figure 8	
10 kHz to 50 kHz		Sine		<u> </u>	<u> </u>			Figure 8	
*ST = Susceptibility Thresho Note: Atta test	ch all bac	kup data gei	nera	ted durir	ng th	cation Limit ne test (photo tions, etc.) to	os, po	rintouts plots, data sheet.	
EOS/AI	USI) A	_/						Signature/D	<u>Date</u>
Assembly Part No. 135600	18-1-E	MI			E	ngineer. 💯	illa	an I Fark	n 7/31/98
Serial No. 202					C	Quality Assura	ance	•	45/ 7-31-98
Shop Order: 565869					c	perator:	AMSI 5 8EIT) >17119g	}
					C	Sustomer Rep	o.:[<u>/</u>	Shan	8/1/9

TEST DATA SHEET 4 (Sheet 4 of 6) CS01 Test (Paragraph 3.4.6.4)

Frequency Range	Test Level	Signal Type or Waveform					Comments/ Observations
	Vap		ST	EL	SL		
30 Hz	7 3	Sine				Figure 8	Bridine: TO 130
30 Hz to 1500 Hz	0.51	Sine			V	Figure 8	TO 131
1500 Hz to 10 kHz	0.51	Sine			V	Figure 8	T0132
10 kHz to 50 kHz	0.51	Sine			V	Figure 8	70133

^{*}ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

E05/AMSU A-1 Assembly Part No. <u>1356008-1-E</u> M(Signature/Date Engineer: Multa N. Parks 7/31/98
Serial No. <u>202</u> Shop Order: <u>560</u> 869	Quality Assurance: 7-31-98 Operator: 5 7/31/9
Snop Order:	Customer Rep.: A Shorm 8/1/9

TEST DATA SHEET 5 (Sheet 1 of 14)

CS02 Test (Paragraph 3.4.7.4) Test Setup Verified: Royar Khaway 7/18/98 Test Equipment Log Item Manufacturer Model/Part Aerojet Calibration Calibration No. Inventory No. Date Due Date R.F. Coupler Solar Elect. 7415-1 L802242 CNR CNR OSCIlloScope TEK TDS 380 200079 4-1-98 4-1-99 EMC ANALYZER HP 8591EM 200229 1-16-98 1-16-99 Function Generator MP 3325A 46279 3-13-98 9-13-98 5 Wept Signal Generation HP 83630B 200202 1-15-98 1-15-99 ower Amplitier Eaton 3552B 46127 NDG NDG Power Amplities Eaten 50ZOB 46126 NOG NOG Eaton 5001 4-13-98 R300637 4/13/99 Susceptibility to Injected Electromagnetic Energy on Power Leads. 30 hz to 50 kHz 50KHZ tO ACOMHZ +27V Quiet Bus A (Terminal 1 on B/O Box) Test Signal Type Limit Factor* Comments/ Frequency Range Spec Limit Level or Waveform Criteria Observations Volts ST EL SL 50 Hz KHZ 0.5 Sine Braline Togg Figure 8 50 Hz to 100 Hz 0.56 Sine Figure 8 7100 100 Hz to 500 kHz 0.54 Sine Figure 8 v 7101 500 kHz to 1000 kHz 0.57 Sine Figure 8 T102 *ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

> Attach all backup data generated during the test (photos, printouts plots, Note: test logs, additional comments or observations, etc.) to this data sheet.

	EOS/AMS-41
Assembly Pa	art No. 1354008-1EM1
Serial No	202

Shop Order: 560869

Signature/Date

Quality Assurance

Operator:

Customer Rep.

Engineer:

TEST DATA SHEET 5 (Sheet 2 of 14) CS02 Test (Paragraph 3.4.7.4)

Frequency Range	Test Level	Signal Type or Waveform	Lir	mit Facto)r*	Spec Limit Criteria	Comments/ Observations
	Voits		ST	EL	SL		
1 MHz to 5 MHz	3.3	Sine	<u> </u>		V	Figure 8	T103
5 MHz to 10 MHz	3,4	Sine		<u> </u>	<i>i</i> /	Figure 8	7104
10 MHz to 20 MHz	3.3	Sine			1	Figure 8	Ti05
20 MHz to 50 MHz	3.4	Sine			<i>L</i>	Figure 8	T106
27V Quiet Bus A							<u>T</u>
Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria	Comments/ Observations
	Yoits		ST	EL	SL_		
50 MHz to 100 MHz	3.5	Sine				Figure 8	TIOT
100 MHz to 200 MHz	36	Sine			V	Figure 8	TIDE
200 MHz to 300 MHz	.3.5	Sine			~	Figure 8	T109
300 MHz to 400 MHz	3,3	Sine				Figure 8	7110
27V Noisy Bus Rtn A (Te	rminal 3 on	B/O Box)	1				
Frequency Range	Test Level	Signal Type or Waveform	Li	mit Facto	or*	Spec Limit Criteria	Comments/ Observations
	Volts		ST	EL	SL		
50 kHz	0.59	Sine			~	Figure 8	Buline 7090
50 kHz to 100 kHz	0.59	Sine			V	Figure 8	TIII
100 kHz to 500 kHz	0,52	Sine			V	Figure 8	T112
500 kHz to 1000 kHz	0,56	Sine			V	Figure 8	T//3
			 				

TEST DATA SHEET 5 (Sheet 3 of 14) CS02 Test (Paragraph 3.4.7.4)

Vol175	Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria	Comments/ Observations
1 MHz to 5 MHz 5 MHz to 10 MHz 3.4 Sine				ST	EL	SL	Onteria	Observations
S MHz to 10 MHz	1 MHz to 5 MHz	1	Sine			1	Figure 8	TUI
10 MHz to 20 MHz	5 MHz to 10 MHz	3.4	Sine					1
20 MHz to 50 MHz	10 MHz to 20 MHz		Sine	İ		/	†	
+27V Quiet Bus Rtn A Frequency Range Test Level vol. 15 50 MHz to 100 MHz 3.4 Sine 100 MHz to 300 MHz 3.5 Sine 200 MHz to 300 MHz 3.5 Sine 3.6 Sine 4.7 Figure 8 7/19 200 MHz to 400 MHz 3.5 Sine 7/19 4.2 Figure 8 7/19 4.2 Figure 8 7/19 4.3 Figure 8 7/21 4.4 Figure 8 7/19 5.5 Sine 7/21 4.5 Figure 8 7/21 4.5 Figure 8 7/21 4.5 Figure 8 7/21 5.5 Sine 5.6 KHz 5.7 Figure 8 5.7 Figure 8 7/21 5.7 Figure 8 7/21 5.7 Figure 8 7/21 5.8 Figure 8 7/21 5.9 KHz 5.0 KH	20 MHz to 50 MHz		Sine					
Frequency Range Test Level or Waveform Volts ST EL SL Signal Type or Waveform ST EL SL Signal Type or Waveform ST EL SL Figure 8 T/18 100 MHz to 200 MHz 3.4 Sine 200 MHz to 300 MHz 3.5 Sine 300 MHz to 400 MHz 3.5 Sine Figure 8 T/12 Figure 8 T/12 Figure 8 T/12 Figure 8 T/12 Figure 8 T/12 Figure 8 T/12 Figure 8 T/12 Figure 8 T/21 Figure 8 T/21 Figure 8 T/21 Figure 8 T/21 Figure 8 Figure 8 T/21 Figure 8								
Frequency Hange Level or Waveform ST EL SL Singure 8 This 100 MHz to 200 MHz 3.4 Singure 8 This 200 MHz to 300 MHz 3.5 Singure 8 This 300 MHz to 400 MHz 3.5 Singure 8 This This Figure 8 This	+27V Quiet Bus Rtn A							
Sine Sine	Frequency Range	Level	Signal Type or Waveform					Comments/ Observations
100 MHz to 200 MHz	EO Mila to 100 Mila		0.	SI	EL			
200 MHz to 300 MHz								T118
300 MHz to 400 MHz 3.5 Sine Figure 8 7/21 Figure 8 7/21 Figure 8 7/21 Figure 8 7/21 Figure 8						 		T/19
+27V Noisy Bus A (Terminal 5 on B/O Box) Frequency Range Test Level or Waveform Volts Signal Type or Waveform ST EL SL 50 kHz 3.0 Sine 50 kHz to 100 kHz 3.2 Sine 100 kHz to 500 kHz to 500 kHz ST Signal Type or Waveform Figure 8 Figure 8 Figure 8 Figure 8 Figure 8 Figure 8						V		
Frequency Range Test Level or Waveform Volts Signal Type or Waveform ST EL SL So kHz So kHz So kHz So kHz So kHz So Sine Figure 8 Spec Limit Common Observ ST EL SL Figure 8 Spec Limit Common Observ So kHz Figure 8 Spec Limit Factor* Spec Limit Fac	300 MH2 to 400 MH2	3.5	Sine			~	Figure 8	T121
Level or Waveform Criteria Observ Volts ST EL SL 50 kHz 3.0 Sine Figure 8 50 kHz to 100 kHz 3.2 Sine Figure 8 100 kHz to 500 kHz 500 kHz 3.2 Sine								
Frequency Range Test Level or Waveform Volts Signal Type or Waveform ST EL SL So KHz So KHz So Sine Figure 8 Spec Limit Common Observ ST EL SL Figure 8 Sauline 100 kHz to 100 kHz Spec Limit Common Observ Figure 8 Spec Limit Common Observ Spec Limit Factor* Spec Limit Factor* Spec Limit Factor* Spec Limit Factor* Spec Limit Factor* Spec Limit Factor* Spec Limit Factor* Spec Limit Factor* Spec Limit Factor* Spec Limit Common Observ Structure Spec Limit Criteria Spec Limit Factor* Spec Limit Fac								
Level or Waveform Criteria Observ Volts ST EL SL 50 kHz 3.0 Sine V Figure 8 50 kHz to 100 kHz 3.2 Sine V Figure 8 100 kHz to 500 kHz 500 kHz	+27V Noisy Bus A (Termina	al 5 on B/O	Box)		·	 -		T
50 kHz 3.0 Sine	Frequency Range	Level		Limit Factor*			Comments/ Observations	
50 kHz to 100 kHz 3.2 Sine / Figure 8 /8:00		VOLTS		ST	EL	SL	-	
50 kHz to 100 kHz 3.2 Sine / Figure 8 /8:00						/	Figure 8	Baseline 17:4
100 kU - to 600 kU -		1				/	Figure 8	18:00
	·· · · · · · · · · · · · · · · · · · ·	3.3				V	Figure 8	18:22
	500 kHz to 1000 kHz	3.2	Sine			· /	Figure 8	18:29

TEST DATA SHEET 5 (Sheet 4 of 14) CS02 Test (Paragraph 3.4.7.4)

1 MHz to 5 MHz 3.2 Sine	Frequency Range	Test	Signal Type	Lir	nit Facto	or*	Spec Limit	Comments/ Observations
1 MHz to 5 MHz	Frequency frange		or Waveform	СТ	FI		Criteria	Observations
S MHz to 10 MHz			Ci	51	EL		Figure 9	10.76
10 MHz to 20 MHz								
20 MHz to 50 MHz 3.5 Sine								
#27V Noisy Bus A Frequency Range Test Level or Waveform Limit Factor* Spec Limit Criteria Comments/Observations 50 MHz to 100 MHz 3.4 Sine								
Test Level Vol TS Signal Type Or Waveform Vol TS ST EL SL Slumit Criteria Comments/ Observations	20 MHz to 50 MHz	3.5	Sine			V	Figure 8	18.33
Test Level Vol TS Signal Type Or Waveform Vol TS ST EL SL Slumit Criteria Comments/ Observations								
Test Level Vol TS Signal Type Or Waveform Vol TS ST EL SL Slumit Criteria Comments/ Observations								
Test Level Vol TS Signal Type Or Waveform Vol TS ST EL SL Slumit Criteria Comments/ Observations	27V Noisy Rus A					<u> </u>		
Sine Sine Figure 8 19:07		Test Signal Type		Lir	mit Facto	or*		
Sine Sine		VOLTS		ST	EL	SL		
200 MHz to 300 MHz 3.7 Sine	50 MHz to 100 MHz		Sine			V	Figure 8	19:07
300 MHz to 400 MHz	100 MHz to 200 MHz	3.5	Sine			V	Figure 8	19:15
300 MHz to 400 MHz	200 MHz to 300 MHz	3.1	Sine			V	Figure 8	19:22
Frequency Range Test Level or Waveform ST EL SL Signal Type or Waveform ST EL SL Spec Limit Criteria Comments/ Observations ST EL SL Figure 8 Fase Liwe: 19:3 100 kHz to 500 kHz 3.2 Sine V Figure 8 19:59	300 MHz to 400 MHz	3.3	Sine]	Figure 8	T -
Frequency Range Test Level or Waveform ST EL SL Signal Type or Waveform ST EL SL Spec Limit Criteria Comments/ Observations ST EL SL Figure 8 Fase Liwe: 19:3 100 kHz to 500 kHz 3.2 Sine V Figure 8 19:59								
Frequency Range Test Level or Waveform ST EL SL Signal Type or Waveform ST EL SL Spec Limit Criteria Comments/ Observations ST EL SL Figure 8 Fase Liwe: 19:3 100 kHz to 500 kHz 3.2 Sine V Figure 8 19:59								
Frequency Range Test Level or Waveform ST EL SL Signal Type or Waveform ST EL SL Spec Limit Criteria Comments/ Observations ST EL SL Figure 8 Fase Liwe: 19:3 100 kHz to 500 kHz 3.2 Sine V Figure 8 19:59					<u> </u>			
Frequency Range Test Level or Waveform Signal Type or Waveform Limit Factor Spec Limit Criteria Observations 50 kHz 3.0 Sine ✓ Figure 8 Base Live: 19:3 50 kHz to 100 kHz 3.3 Sine ✓ Figure 8 19:50 100 kHz to 500 kHz 3.2 Sine ✓ Figure 8 19:59	+27V Noisy Bus Rtn A (Te	rminal 7 on T	B/O Box)	T				T
50 kHz 3.0 Sine V Figure 8 Base Live: 19:3 50 kHz to 100 kHz 3.3 Sine V Figure 8 19:50 100 kHz to 500 kHz 3.2 Sine V Figure 8 19:59	Frequency Range	1		Li	mit Fact	or*		Observations
50 kHz 3.0 Sine Image: Sine with singl		VOLTS		ST	EL	SL		
50 kHz to 100 kHz 3.3 Sine V Figure 8 19.50 100 kHz to 500 kHz 3.2 Sine V Figure 8 19.59	50 kHz		Sine			1	Figure 8	BaseLINE: 19:3
100 kHz to 500 kHz 3.2 Sine V Figure 8 /9:59		•	Sine			V	Figure 8	
						V	Figure 8	
	 						+ -	- T
					<u> </u>	-	 	
		1	1		1	1	ľ	
						<u> </u>		

TEST DATA SHEET 5 (Sheet 5 of 14) CS02 Test (Paragraph 3.4.7.4)

Frequency Range	Test Level	Signal Type or Waveform	Li	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	ST EL			
1 MHz to 5 MHz	3, 3	Sine			1	Figure 8	20:30
5 MHz to 10 MHz	3,1	Sine			1	Figure 8	20:37
10 MHz to 20 MHz	3.1	Sine			-	Figure 8	20:43
20 MHz to 50 MHz	3-/	Sine				Figure 8	70:50
27V Noisy Bus Rtn A	Test	Signal Type	Li	mit Fact	or*	Spec Limit	Comments/
Frequency Range	Level	or Waveform	ST EL SL		Criteria	Observations	
50 MHz to 100 MHz	3.2	Sine	- 31		SL	Figure 9	
100 MHz to 200 MHz	3.1	Sine	-			Figure 8	20:56
200 MHz to 300 MHz	3,2	Sine				Figure 8	2/201
300 MHz to 400 MHz	3.5	Sine	 -		<i>-</i>	Figure 8 Figure 8	21:10
27V Survival Bus A (Term	ninal 9 on B	(O Box)					
Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*		Spec Limit Criteria	Comments/ Observations	
	VOLTS		ST	EL	SL		IBASELINE = 20
50 kHz	3.0	Sine				Figure 8	PASS
50 kHz to 100 kHz	3.2	Sine			~	Figure 8	PASS
100 kHz to 500 kHz	3.1	Sine				Figure 8	PASS
500 kHz to 1000 kHz	3.2	Sine		-	~	Figure 8	PASI
-	1					<u> </u>	<u> </u>
	 						

TEST DATA SHEET 5 (Sheet 6 of 14) CS02 Test (Paragraph 3.4.7.4)

Frequency Range	Test Level	Signal Type or Waveform	Li	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
1 MHz to 5 MHz	3.2	Sine				Figure 8	Pass
5 MHz to 10 MHz	3.1	Sine				Figure 8	
10 MHz to 20 MHz	3:3	Sine			v	Figure 8	
20 MHz to 50 MHz	3.3	Sine				Figure 8	PASS
7V Survival Bus A					Т	·····	
Frequency Range	Test Level	Signal Type or Waveform		mit Fact		Spec Limit Criteria	Comments/ Observations
50 M le te 400 M le	2 0 L TS	C:	ST	EL	SL	F: 0	0
50 MHz to 100 MHz	3.3	Sine			<i>'</i>	Figure 8	PASS
100 MHz to 200 MHz	3,2	Sine			 	Figure 8	
200 MHz to 300 MHz 300 MHz to 400 MHz	3.0	Sine Sine			-	Figure 8 Figure 8	PASS
?7V Survival Bus Rtn A (Terminal 10	on B/O Box)					
Frequency Range	Test Level	Signal Type or Waveform	Li	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	VOL 75		ST	EL	SL		
50 kHz	3.0	Sine			V	Figure 8	PASS
50 kHz to 100 kHz	3./	Sine				Figure 8	
100 kHz to 500 kHz	3,3	Sine			-	Figure 8	
500 kHz to 1000 kHz	3,4	Sine				Figure 8	PASS .
				L			<u> </u>

TEST DATA SHEET 5 (Sheet 7 of 14) CS02 Test (Paragraph 3.4.7.4)

			· a.ug.u	F G	,			
+27V Survival Bus Rtn A								
Frequency Range	Test Level	Signal Type or Waveform	Li	mit Fact	or*	Spec Limit Criteria	Comments/ Observations	
	VOLTS		ST	EL	SL			
1 MHz to 5 MHz	3.7	Sine				Figure 8	PASS	
5 MHz to 10 MHz	3.1	Sine				Figure 8	1835	
10 MHz to 20 MHz	3.1	Sine				Figure 8		
20 MHz to 50 MHz	13.2	Sine			~	Figure 8	PASS	
							(20)	
+27V Survival Bus Rtn A			-		•		<u> </u>	
Frequency Range	Frequency Range Test Signal Type or Waveform		Limit Factor*			Spec Limit Criteria	Comments/ Observations	
	VOLTS		ST	EL	SL			
50 MHz to 100 MHz	3,3	Sine				Figure 8	PASS	
100 MHz to 200 MHz	3.1	Sine				Figure 8	1777	
200 MHz to 300 MHz	3.0	Sine			/	Figure 8		

Figure 8

Figure 8

PA55

300 MHz to 400 MHz

Sine

TEST DATA SHEET 5 (Sheet 8 of 14) CS02 Test (Paragraph 3.4.7.4)

+31V Quiet Bus A Frequency Range	Test Level	Signal Type or Waveform	Lir	nit Fact	tor*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
50 kHz	IVPP	Sine			*V	Figure 8	T123 (pass)
50 kHz to 100 kHz	1VP-P	Sine			* 🗸	Figure 8	T1243 (pme)
100 kHz to 500 kHz	1 VP-P	Sine			** ✓	Figure 8	7124 (pass)
500 kHz to 1000 kHz	0.5Vpp	Sine			* ✓	Figure 8	T125 pass
						<u></u>	

*ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

* SL=.5Vp-p
TESTLEVELWAS IVPP
BN/Brendshisa
7/20/98
REF. TAR# 004 713

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

EOS/ANSUA/	Signature/Date
Assembly Part No. 1356008-1 CM	Engineer 20 July
Serial No	Quality Assurance Ledy All Well 12 22
Shop Order: <u>560867</u>	Operator: All Minuter 7-21) 98
	Customer Rep.:

TEST DATA SHEET 5 (Sheet 9 of 14) CS02 Test (Paragraph 3.4.7.4)

		a					Comments/
Frequency Range	Test Level	Signal Type or Waveform	Liı	mit Facto	or*	Spec Limit Criteria	Observations
			ST	EL	SL		
1 MHz to 5 MHz	3Vp-p	Sine			V	Figure 8	T126 (puss)
5 MHz to 10 MHz	3Vp-p	Sine			V	Figure 8	T127 (par
10 MHz to 20 MHz	3 Vp-p	Sine				Figure 8	7128 (sase)
20 MHz to 50 MHz	3VP-P	Sine			V	Figure 8	7129 (pars)
31V Quiet Bus A							
Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*		Spec Limit Criteria	Comments/ Observations	
		ſ	ST	EL	SL		
50 MHz to 100 MHz	3Vp-p	Sine			V	Figure 8	T130, T132, T13
100 MHz to 200 MHz	3Vp-p	Sine			V	Figure 8	7131 (pass
200 MHz to 300 MHz	3Up-p	Sine			V	Figure 8	7/34 (pars)
300 MHz to 400 MHz	3Vp-p	Sine			V	Figure 8	7135 (pass,
31V Quiet Bus Rtn A					1!		
Frequency Range	Test Level	Signal Type or Waveform	Liı	nit Fact	or*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		BASELINE:
50 kHz	0.5	Sine			~	Figure 8	7141
50 kHz to 100 kHz	0.56	Sine				Figure 8	T142
100 kHz to 500 kHz	0.54	Sine				Figure 8	T143
500 kHz to 1000 kHz	0,52	Sine				Figure 8	T144
	1						

TEST DATA SHEET 5 (Sheet 10 of 14) CS02 Test (Paragraph 3.4.7.4)

Frequency Range	Test Level	Signal Type or Waveform	Lir	nit Facto	or*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
1 MHz to 5 MHz	3.2	Sine				Figure 8	T145
5 MHz to 10 MHz	3. i	Sine			-	Figure 8	7146
10 MHz to 20 MHz	3.i	Sine				Figure 8	7147
20 MHz to 50 MHz	3vp-p	Sine			/	Figure 8	TI40 (pass
31V Quiet Bus Rtn A				· · · · · · · · · · · · · · · · · · ·	. 1		Comments/
Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*		Spec Limit Criteria	Observations	
	21/- 2		ST	EL	SL		/
50 MHz to 100 MHz	3Vpp	Sine			V	Figure 8	T139 (pars
100 MHz to 200 MHz	3Vpp	Sine		! [Figure 8	7138 (pass 7137 (pass
200 MHz to 300 MHz 300 MHz to 400 MHz	3Vp-p	Sine Sine			V	Figure 8 Figure 8	7/36 (pass)
31V Noisy Bus A			T				-
Frequency Range	Test Level	Signal Type or Waveform	Li	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	VCLT5		ST	EL	SL		
50 kHz	3.0	Sine				Figure 8	
50 kHz to 100 kHz	3.1	Sine			1_	Figure 8	21:12
100 kHz to 500 kHz	3.2	Sine	<u> </u>		1	Figure 8	21518
500 kHz to 1000 kHz	3.1	Sine				Figure 8	21:22
·			1				

TEST DATA SHEET 5 (Sheet 11 of 14) CS02 Test (Paragraph 3.4.7.4)

r requeries mange	Frequency Range Test Level or Vol. 75		Lı	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
1 MHz to 5 MHz	3.1	Sine			1	Figure 8	22:36
5 MHz to 10 MHz	3,1	Sine				Figure 8	22:40
10 MHz to 20 MHz	3.2	Sine			-	Figure 8	22:50
20 MHz to 50 MHz	3.1	Sine				Figure 8	22:55
			-				
B1V Noisy Bus A					<u> </u>		
Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*		Spec Limit Criteria	Comments/ Observations	
	VOLTS		ST	EL	SL		
50 MHz to 100 MHz	3.3	Sine				Figure 8	22:59
100 MHz to 200 MHz	3.2	Sine			V	Figure 8	23:04
200 MHz to 300 MHz	3.0	Sine				Figure 8	23:08
300 MHz to 400 MHz	3./	Sine			/	Figure 8	23:12
31V Noisy Bus Rtn A							
Frequency Range	Test Level	Signal Type or Waveform	Lir	nit Facto	or*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
50 kHz	3,0	Sine		-		Figure 8	
50 kHz to 100 kHz	3.1	Sine				Figure 8	23:24
100 kHz to 500 kHz	3.3	Sine				Figure 8	23:29
500 kHz to 1000 kHz	3, j	Sine				Figure 8	23:33

TEST DATA SHEET 5 (Sheet 12 of 14) CS02 Test (Paragraph 3.4.7.4)

Frequency Range	Test Level	Signal Type or Waveform	Lin	nit Facto	or*	Spec Limit Criteria	Comments/ Observations
	NO-75		ST	EL	SL		
1 MHz to 5 MHz	3.3	Sine				Figure 8	23:37
5 MHz to 10 MHz	3,/	Sine			~	Figure 8	23:4/
10 MHz to 20 MHz	3.3	Sine				Figure 8	23:48
20 MHz to 50 MHz	3.0	Sine			·/	Figure 8	23:52
31V Noisy Bus Rtn A							
Frequency Range	Test Level	Signal Type or Waveform	Lir	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
50 MHz to 100 MHz	3.0	Sine			~	Figure 8	00:02
100 MHz to 200 MHz	3. 2	Sine			V	Figure 8	00:06
200 MHz to 300 MHz	3.1	Sine			V	Figure 8	00:10
300 MHz to 400 MHz	3,2	Sine			~	Figure 8	00:14
31V Survival Bus A							
Frequency Range	Test Level	Signal Type or Waveform	Li	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
50 kHz	3.0	Sine			V	Figure 8	PASS
50 kHz to 100 kHz	3,2	Sine				Figure 8	
100 kHz to 500 kHz	3.2	Sine			-	Figure 8	
500 kHz to 1000 kHz	3,3	Sine				Figure 8	PASS
			 	 	 	 	

TEST DATA SHEET 5 (Sheet 13 of 14) CS02 Test (Paragraph 3.4.7.4)

Frequency Range	Test Level	Signal Type or Waveform	Lir	mit Facto	or*	Spec Limit Criteria	Comments/ Observations
	VELTS		ST	EL	SL		
1 MHz to 5 MHz	3.1	Sine				Figure 8	PASS
5 MHz to 10 MHz	3,0	Sine			·/	Figure 8	
10 MHz to 20 MHz	3./	Sine				Figure 8	\downarrow
20 MHz to 50 MHz	3.2	Sine				Figure 8	PASS
1V Survival Bus A							0
Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*		Spec Limit Criteria	Comments/ Observations	
	VOLTS		ST	EL	SL		
50 MHz to 100 MHz	3.1	Sine			1	Figure 8	PASS
100 MHz to 200 MHz	3.2	Sine			V	Figure 8	, <u> </u>
200 MHz to 300 MHz	3, 3	Sine		<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Figure 8	
300 MHz to 400 MHz	3,2	Sine				Figure 8	PASS
1V Survival Bus Rtn A	<u> </u>	7					
Frequency Range	Test Level	Signal Type or Waveform	Li	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
50 kHz	3,0	Sine				Figure 8	PASS
50 kHz to 100 kHz	3, i	Sine				Figure 8	
100 kHz to 500 kHz	3,3	Sine				Figure 8	
500 kHz to 1000 kHz	3.2	Sine				Figure 8	PASS
		 	 	 	 		

TEST DATA SHEET 5 (Sheet 14 of 14) CS02 Test (Paragraph 3.4.7.4)

31V Survival Bus Rtn B Frequency Range	Test Level			nit Facto	or*	Spec Limit Criteria	Comments/ Observations
	VELTS		ST	EL	SL		
1 MHz to 5 MHz	3.0	Sine			<u></u>	Figure 8	PASS
5 MHz to 10 MHz	3.1	Sine				Figure 8	
10 MHz to 20 MHz	3.1	Sine				Figure 8	<u> </u>
20 MHz to 50 MHz	3.0	Sine				Figure 8	PASS
					 		

+31V Survival Bus Rtn B

Frequency Range	Test Signal Type Level or Waveform		Lir	nit Facto	or*	Spec Limit Criteria	Comments/ Observations
	VOLTS		ST	EL	SL		
50 MHz to 100 MHz	3.1	Sine				Figure 8	PASS
100 MHz to 200 MHz	3.0	Sine				Figure 8	
200 MHz to 300 MHz	3,4	Sine			V	Figure 8	<u></u>
300 MHz to 400 MHz	3.3	Sine				Figure 8	P455

TEST DATA SHEET 5 (Sheet 1 of 14) CS02 Test (Paragraph 3.4.7.4)

Test Setup Verified:	(AUSU SEIT	7-31-98	-					
	ature)						·	
Test Equipment Log*	Ma	anufacturer	N	lodel/Par No.	rt	Aerojet Inventory No.	Calibration Date	Calibration Due Date
R.F. Coupler	Sch	er Elect,	70	415-1		1802242	CNR	CNR
OSCIlloscope	Ter	TRONIX	71	TDS 380		2000 79	4-1-93	4-1-99
spectrum Analyzer	HP		85	66 B		R350662	4-15-98	10-15-98
Function Generator	HP		33	25A		46279	3-13-98	7-13-98
Swept Signal Generate	L HP	······································		630B		200202	1-15-98	1-15-99
Power Amplifier		ton	35	52B		46127	NDG	NDG
	Eat	DIN .					1 ' '	
rewet Ampli His. Susceptibili	ea: v to Inied	rax cted Electron	<i>5cc</i> nadna	≥r etic Ener	av c	4 <i>6/26</i> R3c <i>e63</i> 7 In Power Leads	50 KM3 to 4	00 KM = 99
				SHO LINE	AY C	m i Owel Leads	, 30 HZ 10 30 K	=
+27V Quiet Bus A (Termina	1 on B/) Box)		Γ				·
Frequency Range	Test Level	Signal Ty or Wavef		Lir			Spec Limit Criteria	Comments/ Observations
50 Hz		Sine		51		L SL	Figure 0	
50 Hz to 100 Hz		Sine					Figure 8	
100 Hz to 500 kHz		Sine	·	1			Figure 8	
500 kHz to 1000 kHz		Sine					Figure 8	
							90.00	
						7		
*ST = Susceptibility Thresho	JA E! -	Equipment !	im:4	CI C:	_ :::	- Line	NET Rogaria	ect. Rit TAR 004710 pg 11
Note: Atta test	ch all ba logs, ad	ckup data ge ditional comr	nera nents	ted during or obse	ig the	e test (photos, ions, etc.) to thi	printouts plots, s data sheet.	,
							Signature	Sate
Eos /4.4 Assembly Part No. <u>1356cos</u>	18U-A1 8-1-E.L	II			Е	ngineer:	Whe.	314/9
Serial No. 202					Q	uality Assurance	e:	
Shop Order: <u>560869</u>	?					perator:	AMPU 7-3/-	-98
		7-31-98			C	ustomer Rep.:_	· 7-31-58	
TEUWATOR	3 Hipe	SEIT SEIT	355	-3307 C	- A	2503367	9-24-97	12-24-98
TENNATOR	HP		35	SD A-16		L508667	11-25- 47	11-25-98

TEST DATA SHEET 5 (Sheet 8 of 14) CS02 Test (Paragraph 3.4.7.4)

Frequency Range	Test Level	Signal Type or Waveform	Lir	nit Facto	or*	Spec Limit Criteria	Comments/ Observations	
	VP-P		ST	EL	SL			
50 kHz	0.50	Sine			V	Figure 8	Baseline 84	
50 kHz to 100 kHz	0.52	Sine			V	Figure 8	100	
100 kHz to 500 kHz	0.54	Sine			~	Figure 8	101	
500 kHz to 1000 kHz	0.51	Sine			V	Figure 8	102	
		-			<u> </u>			

^{*}ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

Ecs/AMSu-A/ Assembly Part No. <u>1356±08-1-E</u> M	Signature/Date Engineer:
Serial No. 202	Quality Assurance:
Shop Order: <u>56086</u> 7	Operator: (AMS) 8-1-98
	Customer Rep.:

TEST DATA SHEET 5 (Sheet 9 of 14) CS02 Test (Paragraph 3.4.7.4)

Frequency Range	Test Level	Signal Type or Waveform	Li	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	Vp-P		ST	EL	SL		
1 MHz to 5 MHz	3.3	Sine			~	Figure 8	103
5 MHz to 10 MHz	3.2	Sine			V	Figure 8	105
10 MHz to 20 MHz	3.4	Sine			~	Figure 8	106
20 MHz to 50 MHz	3,3	Sine			~	Figure 8	107
31V Quiet Bus A							
Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*		Spec Limit Criteria	Comments/ Observations	
	Vp-p		ST	EL	SL		
50 MHz to 100 MHz	3.5	Sine			V	Figure 8	108
100 MHz to 200 MHz	3.7	Sine			V	Figure 8	109
200 MHz to 300 MHz	3.4	Sine			~	Figure 8	110
300 MHz to 400 MHz	3.3	Sine			~	Figure 8	111
31V Quiet Bus Rtn A	·-•			-1			
Frequency Range	Test Level	Signal Type or Waveform	Lir	nit Facto	or*	Spec Limit Criteria	Comments/ Observations
	V _{p-p}		ST	EL	SL		
50 kHz	0.53	Sine			V	Figure 8	Baseline 84
50 kHz to 100 kHz	0.53	Sine			~	Figure 8	112
100 kHz to 500 kHz	0.54	Sine			V	Figure 8	113
500 kHz to 1000 kHz	0.53	Sine			~	Figure 8	114

TEST DATA SHEET 5 (Sheet 10 of 14) CS02 Test (Paragraph 3.4.7.4)

31V Quiet Bus Rtn A Frequency Range	Test Level	Signal Type or Waveform	Lim	nit Facto	r*	Spec Limit Criteria	Comments/ Observations
	Vp-p		ST	EL	SL		
1 MHz to 5 MHz	3.2	Sine			1	Figure 8	115
5 MHz to 10 MHz	3.1	Sine				Figure 8	116
10 MHz to 20 MHz	3.5	Sine			/	Figure 8	117
20 MHz to 50 MHz	3.7	Sine				Figure 8	118
31V Quiet Bus Rtn A	- 		·				Comments/
Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*			Spec Limit Criteria	Observations
	√p-p		ST	EL	SL		
50 MHz to 100 MHz	3.3	Sine			V	Figure 8	119
100 MHz to 200 MHz	3./	Sine			~	Figure 8	120
200 MHz to 300 MHz	3.5	Sine			V	Figure 8	121
300 MHz to 400 MHz	3.4	Sine			V	Figure 8	122
+31V Noisy Bus A			ι	1			
Frequency Range	Test Level	Signal Type or Waveform		mit Fac	,	Spec Limit Criteria	Comments/ Observations
	Yp-p		ST	EL	SL		10 ():=
50 kHz	3.1	Sine			/	Figure 8	Baseline 145
50 kHz to 100 kHz	3.2	Sine			/	Figure 8	1453
100 kHz to 500 kHz	3.3	Sine			/	Figure 8	145
500 kHz to 1000 kHz	3.4	Sine			V	Figure 8	150
		<u> </u>	 	 			

TEST DATA SHEET 5 (Sheet 11 of 14) CS02 Test (Paragraph 3.4.7.4)

Frequency Range	Test Level	Signal Type or Waveform	Liı	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	VP-P		ST	EL	SL		
1 MHz to 5 MHz	3.2	Sine			/	Figure 8	1503
5 MHz to 10 MHz	3.3	Sine			/	Figure 8	1505
10 MHz to 20 MHz	3.2	Sine			/	Figure 8	1514
20 MHz to 50 MHz	3.4	Sine			V	Figure 8	1517
31V Noisy Bus A	T		 				
Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*		Spec Limit Criteria	Comments/ Observations	
	Vp-p		ST	EL	SL		
50 MHz to 100 MHz	3.2	Sine			V	Figure 8	1520
100 MHz to 200 MHz	3.4	Sine			/	Figure 8	152
200 MHz to 300 MHz	3.3	Sine			V	Figure 8	152
300 MHz to 400 MHz	3.2	Sine			/	Figure 8	1530
	<u> </u>						
31V Noisy Bus Rtn A							
Frequency Range	Test Level	Signal Type or Waveform	Li	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
	9-م√		ST	EL	SL		
50 kHz	3.0	Sine			V	Figure 8	Baseline 1451
50 kHz to 100 kHz	3.1	Sine			/	Figure 8	155
100 kHz to 500 kHz	3.3	Sine			/	Figure 8	1555
500 kHz to 1000 kHz	3.2	Sine	!			Figure 8	J553

TEST DATA SHEET 5 (Sheet 12 of 14) CS02 Test (Paragraph 3.4.7.4)

Frequency Range	Test Level	Signal Type or Waveform	Lin	nit Factor	*	Spec Limit Criteria	Comments/ Observations
	Vp-p		ST	EL	SL		
1 MHz to 5 MHz	3.3	Sine			/	Figure 8	1550
5 MHz to 10 MHz	3.4	Sine			/	Figure 8	1548
10 MHz to 20 MHz	3.2	Sine			V	Figure 8	1545
20 MHz to 50 MHz	3.5	Sine			/	Figure 8	1543
31V Noisy Bus Rtn A							0
Frequency Range	Test Level	Signal Type or Waveform	Limit Factor*		Spec Limit Criteria	Comments/ Observations	
	VP-P		ST	EL.	SL		15
50 MHz to 100 MHz	3.6	Sine			1	Figure 8	15
100 MHz to 200 MHz	3.3	Sine				Figure 8	15
200 MHz to 300 MHz	3.4	Sine			<u> </u>	Figure 8	15 ⁻ 3
300 MHz to 400 MHz	3.2	Sine			V	Figure 8	733
31V Survival Bus A	<u> </u>	<u> </u>					
Frequency Range	Test Level	Signal Type or Waveform	L	imit Fact	or*	Spec Limit Criteria	Comments/ Observation
			ST	EL	SL		
50 kHz		Sine				Figure 8	
50 kHz to 100 kHz		Sine				Figure 8	
100 kHz to 500 kHz		Sine				Figure 8	
500 kHz to 1000 kHz		Sine				Figure 8	
			 	-	<u> </u>		
		<u> </u>	 	+	+		

TEST DATA SHEET 6 (Sheet 1 of 2) CS06 Test (Paragraph 3.4.8.4)

·/	1.										
Test Setup Verified:(Sign	nature)		-								
, -	iature)										
Test Equipment Log											
Item	Ma	nufacturer	M	Model/Part No.		Aerojet Inventory No.		lo.	Calibration Date		Calibration Due Date
SCOPE	TEK	TRUIX	77	7Ds 380		200079		4/1/98		4/1/88	
SPIKE GENERATER	50	LAR	70	54-1			765		N/A		NA
CAPACITOR	50	LAR	65	12-106	R	د کھ	3653		CNR		CNR
/ (/'		e 11		180	3652		1 <		11
11		1	(11 11 180365/			((4		
11	l	.)	1	, , ,			3650		10		l (
+29V Quiet Bus A	<i>A</i>	ES	743	-5910-	10	27	7644 773		£ 4 5 f		Comments
Pulse Amplitude and Polarity	Test Level	Signal Ty or Wavefo			Factor*		,	Spec Limit Criteria		Comments/ Observations	
				ST	ST EL SL				BF	SELINE: THO	
POSITIVE	29V	SYIKE					~		Figure 11	1	T 141
NEGATIVE	29v	STIKE					~	ř	Figure 11 7		142
AIDISY A AUSU	1	1			<u> </u>						
+29V Quiet Bus B	198										
Pulse Amplitude and Polarity	Test Level	Signal Ty or Wavefo		Lir	mit F	Factor*		Spec Limit Criteria			Comments/ Observations
POST TIVE MONPO 131/58				ST	E	L	SL				
POSITIVE	290	SPIKE					V_		igure 11	4	02:00
NEGATIVE	291	SPIKE					~	F	IGURE 1	(2:09
*ST = Susceptibility Thresho	old, EL = E	I Equipment L	imit,	SL = Sp	ecifi	catio	n Limit				
Assembly Part No. 1356	008-1				E	ngin	eer:	Ú!	al Pa	rk	2
Serial No. 202					C	ualit	y Assura	ance	e:		
Shop Order: <u>560 869</u>)						ator:	AM 5 SEI	8:-1-9	8	
					С	usto	mer Rep	o.:_			

TEST DATA SHEET 6 (Sheet 2 of 2) CS06 Test (Paragraph 3.4.8.4)

Pulse Amplitude and Polarity	Test Signal Type or Waveform		Li	mit Facto	or*	Spec Limit Criteria	Comments/ Observations
			ST	EL	SL		
POSITIVE	29 V	SPIKE			<i>i</i> /	Figure 11	
NEGATIVE	29V	SPIKE			/	FIERRE 11	

TEST DATA SHEET 10 (Sheet 1 of 2) RS01 Test (Paragraph 3.4.12.4)

Test Equipment Log

ltem	Manufacturer	Model/Part	Aerojet	0.17	T
Preside D. I. A.		No.	Inventory No.	Calibration Date	Calibration Due Date
Power Amplifier	SOLAR	7144-10	L0502137		CNR
IM T	McIntosh	Mc2205	45071	30Mar 90	
10,1	Stoddard	95055-1	L502039	1/22/89	CNR
Systems Analyzer	HP	3563A	53898	5/12/97	4/12/99
Eunetion Generator Oscilloscope		3325A	1160=0		2/ //
resemosope	TEK	08E20T	200079	4/7/98	11/10
•				1/1/70	4/1/99

Susceptibility Magnetic Fields

Instrument Lateral Walls

Plot No.	Frequency Range	Test	Equivalent	T			T	
		Level	Volt Level	LII	imit Fact	:or*	Spec Limit Criteria	Comments/ Observations
	30 Hz to 360 Hz	dbpt	Vpp	ST	EL	SL		Baseline:
	360 Hz to 2000 Hz	124	5.4mV	 		V	Figure 19	T085
	2 kHz to 4 kHz	1	28.6mV 58.4mV	 		V	Figure 19	T086
	4 kHz to 8 kHz		117mV			-	Figure 19	T087
	8 kHz to 10 kHz		134mV			1	Figure 19	880T
	10 kHz to 50 kHz	4	0.67V					T089
	50 kHz to 200 kHz	124	2.67V			V		TOPO
* ST = !	Susceptibility Thresho	old (=)						T091

^{*} ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

	,
<i>EC5/AMSU A-I</i> Assembly Part No. <u>/356∞8-/-EM</u> (
Serial No202	Engineer: - Ku
Shop Order: 568869	Quality Assurance
	Operator: Ken

Quality Assurance: Production of the Control of the

Customer Rep.: (5) 21 - 30-98

TEST DATA SHEET 11 (Sheet 1 of 2) Static H Field (Paragraph 3.4.13.4)

	Otatio	icia (i aragiapii	0.4.10.4)		
Test Setup Verified: Konsture	7/30/98 e)				
Test Equipment Log					
Item	Manufacturer	Model/Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
De Power Tupply	Power Design	36505	39290	1/30/97	1/30/99
Gaussmeter	F.W. Bell	9500	R300625	12/3/96	12/3/98
GAUSSMETER Probe	F. W. Ball	Mox99-2506	R300642	4/27/98	4/27/99
Maquetic Field Loop	Stoddard	95055-1	1502039	1/22/89	CNR
Precision Rosistor Assu	Solan	7144-1.0	12502137	5/5/98	CNR
DMM	Tektronics	DMM-916	1607687	3/6/98	3/6/99
					2 (85)

Susceptibility Magnetic Fields

Instrument Lateral Walls

Location	Test Level	Equivalent Volt Level	Limit Factor*			Spec Limit Criteria	Comments/ Observations Daseline
			ST	EL	SL		TO 107
Lateral Walls	2.20	+1.015VDC			V	2 gauss	Test Time: 90se
	3						TO 108

^{*} ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

Note: Attach all backup data generated during the test (photos, printouts plots, test logs, additional comments or observations, etc.) to this data sheet.

EOS/AMSU A-I
Assembly Part No. 1356008-1-EM(
Serial No. 202
Shop Order: 560869

Signature/Date

Engineer: Ken Mun / 7-30 98 .

Quality Assurance: Hole of

Customer Rep.:

Operator:

7-30-95

TEST DATA SHEET 11 (Sheet 2 of 2) Static H Field (Paragraph 3.4.13.4)

Test Setup Verified:	(Signature)	·

Instrument	Connectors
------------	------------

Location	Test Level	Equivalent Volt Level	Limit Factor*			Spec Limit Criteria	Comments/ Observations
			ST	EL	SL		
Convectors	2.29	+1.015VDC			V	2 gauss	TO 109
							Test Time: 90 sec.
	-						

nstrument Cables

Location	Test Level	Equivalent Volt Level	Limit Factor*			Spec Limit Criteria	Comments/ Observations
			ST	EL	SL		
Cables	2.2,	41.015000				2 gauss	011 OT
	7						Test Time: 90cm
		· .					

TEST DATA SHEET 7 (Sheet 1 of 3) RS03 Test (Paragraph 3.4.9.4)

Test Setup Verified:	(ser) 8-1-98			•	
(Signature	e)				
Test Equipment Log	_				
Item	Manufacturer	Model/Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
NHF ATTENUATUR (120 88)	HP	355D	L508667	11-25-97	11-25-98
Swept signal Generator	HP	83630B	C200202	1-15-98	1-15-99
Spectrum Analyzer	НР	R38568 100	R300662	4-15-98	10-15-90
Plotter	HP	7470 A 3	57707	NIA	NIA
Broadband Amplifier	Eaton	3552B	46127	4-7-92	NDG
Broad Band amplifier	Eaton	5020B	46126	4-7-92	NDG
Broad Band Amplifier	Eaton	5001	R300637	4-13-98	4-13-99
RF Amplifier	Varian	VZM6991K 3CDF	46833	3-16-98	NDG
RF Amplifier	Varian	VEC 6961K	47517	4-7-92	NDG
Rf Amplifier	Varian	VE56951K 2CDF	46957	2-6-97	NDG
RK Amplifier	Varian	VEL 6941K TCDF	47556	4-7-92	NDG
HORN Antenna	Eaton	960001	46134-6	CNR	CNR

Note: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

	Signature/Date
Eos/AMSu-4/ Assembly Part No. <u>/356008-/-EM</u> /	Engineer William Stock 8-3-48
Serial No. 202	Quality Assurance: 259 Judie Manke
Shop Order: <u>566869</u>	Operator:
	Customer Rep.:

TEST DATA SHEET 7 (Sheet 1 of 3) [Continued] RS03 Test (Paragraph 3.4.9.4)

Test Setup Verified:	(AMBU) 8-1-98			•	•
(Signature					
Test Equipment Log					•
Item	Manufacturer	Model/Part No.	Aerojet Inventory No.	Calibration Date	Calibration Due Date
MORN ANTENNA	electro Metrics	RGA-18C	L508357	10-6-97	10-6-98.
Biconical Antenna	AIL TECH	96002	46134-7	4-21-90	CNR
Cone Antenna	AIL TECH	93490-1	46129	10-21-91	CNR
Parallel Element Antenna		96003	46134-8	4-21-90	CNR
Isotropic Field Monitor	essarch .	\$ FM 2000	R320641	4-22-98	4-22-99
Isotropic field Probe	Research	PM 2000	R300642	4-22-98	4-22-99
Broad Band Amplifier	Eaton	15100B	46128	4-7-92	NDG
synthesizer/Generator	HP	3325A	46279	3-13-98	9-13-98
Display	HP	70004A	C20064	9-6-97	9-6-98
Frequency Spect- Analyzer	MP	700014	C200066	9-6-97	9-6-48
				, —	

Note: Attach all backup data generated during the test (photos, printouts, plots, test logs, additional comments or observations, etc.) to this data sheet.

Eos/AMSu-AI Assembly Part No. 1356008-1-EMI	Signature/Date Engineer Miller For h 8-3-98
Serial No. 202	Quality Assurance
Shop Order: <u>560869</u>	Operator: (August 8) 95
	Customer Rep.:

TEST DATA SHEET 7 (Sheet 2 of 3) RS03 Test (Paragraph 3.4.9.4)

usceptibility to Radiated Ele	Test Level	Signal Type or Waveform	Lir	nit Facto	or*	Spec Limit Criteria	Comments/ Observations
	V/m		ST	EL	SL	V/m	
pelial frequenties							Breeline 090
22875 GHZ	20	Sini			/	20	Vertical 95
2.2875 GHZ	20	Size			/	20	Herizonkal 96
8.2125 GHZ	20	Sini			V	20	Vertical 97
8.2125 GHZ	20	فالمتعط			V	20	Herizantal 98
1-2 GHZ	2	Sine.			1	2.	Vertical 99
1-2 GHZ	2	Sire			V	2	Herizontal 100
Biseline	-						8/3/98 100
16 to 18 GHZ	10	Sine			/	10	Vertical 101
16 to 18 GHZ	10	Sine			V	10	Honzontal 10 2
14 to 16 GHZ	10	Sire		<u> </u>	/	10	Vertical 103
14 to 16 6Hz	io	sine			/	10	Horizontal 104
12 to 14 GHZ	10	sine			-	10	Yertical 105
12 to 146Hz	io	Sine			/	10	Horizontal los
10 to 12 GHZ	10	Sine.			/	10	Vertical 10
10 to 12 GHZ	10	Sine			1/	10	Horizontal 101
8 to 10 GHZ	10	Sine			/	10	Vertical 10
8 to 10 GHZ	10	Sine			/	10	Horizontal 11
6 to 8 GHZ	10	Sine				10	Verticul 11
6 to 8 GHZ	10	Sine			V	10	Herizontal III
4 to 6 GHZ	10	Sine			/	10	Vertical 11
4 to 6 GHZ	10	Sine			1	10	Horizontal II
2 to 4 GHZ	10	Sine			1/	10	Vertical 11
2 to 4 GHZ	io	Sine			1	10	Henzontal]
					1		
			$\perp \perp$			\	
			`	\			+-
				Δ			
	1				\searrow	1	

^{*} ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

TEST DATA SHEET 7 (Sheet 3 of 3) RS03 Test (Paragraph 3.4.9.4)

Susceptibility to Radiated E	lectric Fie	lds					
	Test Level	Signal Type or Waveform	Li	mit Fact	or*	Spec Limit Criteria	Comments/ Observations
FREQUENCY RANGE	VM		ST	EL	SL	VM	BASELINE: TZOO
14KHZ - TOOKHE	2.3	SINE			V	2.0	T201
100KHZ - 500KHZ	2.2	SINE			1	2.0	T202
SOOKHE-IMHE	2.3	SINE			1	2.0	T203
IMHE-SMHE	2.4	SINE			~	2.0	7204
5MHZ - 8MHZ	2.4	SINE			V	2.0	T205
8MHZ-12MHZ	2.2	SINE			~	2.0	T206
12,21HZ - 20MHZ	2.1	SINE			1	2.0	7207
20 MHZ - 30 MHE	2.5	SINE			1	2.0	7208
BUSINE- FOMME POLICIE.	2.7	SINE			~	2.0	7209
SOMME - FORMAT POLATIE	2.8	SINE			/	2.0	T210
TOUMHE - ZECHME POLARIE	2.1	SINE			V	2.0	T211
BOMHE - SOMHE HURIEUTH		SINE			V	2.0	T212
SOMME . ISOMHE . HORIZENTM	2.9	SINE			~	2.0	T213
1000HE - 200HHE HORIECATAL	2.7	SINE			V	20	7214
2008HZ - 50.4HZ	2.7	SINE			/	20	7117
500MHZ-700MHZ	2.4	SINE			/	20	7118
700MHZ - 16 HZ	2.5	SINE			V	20	7119
					<u> </u>		\"
					1		\
					1		
		V					
	1					\	
							
			-/			\	1
						\	
						─	
		·					<u>v</u> \

^{*} ST = Susceptibility Threshold, EL = Equipment Limit, SL = Specification Limit

RS#3 PLOT 150 PAN 10.00 MHz ST 10.00 msec MKR #1 FRQ 2.285 51 GHz POS PK 40.73 SPAN UNCOR EMI 34.97 1, 1998 **UB 100 kHz** 50560869 TP 26151/ 1356008-LAMSU-Para EOS/ 50 GHz AUG (4) 13:08:35 RL 0.00 ARm 2.287 +53.39 all Cable dath. loses 72 dBm CENTER RB 100 MARKER ATTEN 10.00 2.285 -40.7 146.99 dBUS + 107.0 d/0/mV 117.69 20 10.69 albm -42.7 dBm - 42.7 dBm +28.3 A 70

		٠ - ١
)
		<u> </u>

	6										
_	R\$'43 PLOT /: 9 GHz	dBm	PK								MHz
	κς' φ3 2207 8.829 6Hz	39.94	P0S				-				16.00
	FRQ				~						SPAN ST 1
	MKR #1		UNCOR		}		ale satisfic				
	≥.	4) EM,		8 4	*		erre de Geerlaipe, es				
	1998	12/4MSU-41	14202	26/51/8 2 3.4.9.4	2		P. Brown B. W.				3.00 MHz
	,	E05/	200	da	2		فإ بهالما له بالمال				æ
	AUG		1.1		***		THE PARTY OF	'n		Ja.	二
		10 dB	Y L INE				A STATE OF THE PARTY OF THE PAR	Hh Lose		ma to	B.21 B MHz
	_َه	TTEN B. BB	ISPLA	-40.80		_	養養	+ 41.5 dB Cable & Atta Loses	7	Bur Antenna Factor	dBuyAB 3.00 MHz
		A -		<u> </u>		-400Bm	等	548	1.5 dBm	6 6	
						•		-40 albn +41.5 alb	1.5	108.5	146.0 de

		· . <u>-</u>
)

National Aeronautics and Space Administration Report Documentation Page								
Report No.	2. Government Accession N	lo.	No.					
Title and Subtitle			5. Report Date					
Integrated Advanced Mi	crowave Sounding L	Init-∆	22 Septe	mber 1998				
(AMSU-A), Engineering	_	,,,,,,,	6. Performing Organizat	tion Code				
7. Author(s)			Performing Organization	tion Report No.				
L. Paliwoda			11214					
			10. Work Unit No.					
Performing Organization Name and A project	d Address							
Aerojet 1100 W. H	ollyvale		11. Contract or Grant N	o. 5-32314				
Azusa, CA			13. Type of Report and					
12. Sponsoring Agency Name and Ad			Final	reliod Coveled				
NASA			14. Sponsoring Agency Code					
1	Space Flight Center			5555				
15. Supplementary Notes	Maryland 20771		<u> </u>					
This is the Engineering Test Report, Electromagnetic Interference (EMI)/Electromagnetic Radiation (EMR) and Electromagnetic Capability (EMC) For The EOS/AMSU-A1 for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).								
17. Key Words (Suggested by Author	` <i>''</i>	18. Distribution Statement Unclassified Unlimited						
Microwave Sys	tem							
19. Security Classif. (of this report)	20. Security Classif. (of t	his page)	21. No. of pages	22. Price				
Unclassified	Unclassified							
NASA FORM 1626 OCT 86			<u> </u>	<u> </u>				

		* =, +
		~
		_

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

- Block 1. Report No. NASA report series number, if preassigned.
- Block 2. Government Accession No. Leave blank.
- Block 3. Recipient's Catalog No.. Reserved for use by each report recipient.
- Block 4. <u>Title and Subtitle</u>. Typed in caps and lower case with dash or period separating subtitle from title.
- Block 5. Report Date. Approximate month and year the report will be published.
- Block 6. Performing Organization Code . Leave blank.
- Block 7. <u>Authors.</u> Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.
- Block 8. <u>Performing Organization</u> <u>Report No.</u> NASA installation report control number and, if desired, the non-NASA performing organization report control number.
- Block 9. <u>Performing Organization Name and Address.</u> Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.
- Block 10. <u>Work Unit No.</u> Provide Research and Technology Objectives and Plants (RTOP) number.
- Block 11. Contract or Grant No. Provide when applicable.
- Block 12. <u>Sponsoring Agency Name and Address.</u> National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.
- Block 13. <u>Type of Report and Period Covered</u>. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.
- Block 14. Sponsoring Agency Code. Leave blank.
- Block 15. Supplementary Notes. Information not included

- elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.
- Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.
- Block 17. <u>Key Words.</u> Identifying words or phrases to be used in cataloging the report.
- Block 18. <u>Distribution Statement.</u> Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of STAR) in which report is to be distributed.
- Block 19. <u>Security Classification (of the report).</u> Self-explanatory.
- Block 20. <u>Security Classification (of this page).</u> Self-explanatory.
- Block 21. <u>No. of Pages.</u> Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.
- Block 22. <u>Price Code</u>. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

		•

REPORT DO	CUMEN	ENTATION PAGE Appr		Form opproved OMB No. 704-0188			
Public reporting burden fothis collection of in gathering andmaintaining thedata needed at collection of information, including suggestic Davis Highway, Suite 1204, Arlington, VA 2:	formation is estired completing an for reducing this 2202-4302, and	natedo average 1 hour per res deviewing thecollection inform burdento Washington Headqu to the Office of Management a	ponse in ation. S Jarters S nd Budg	cluding the end comme ervicesDirect et, Paperwo	timefor reviewing instrunts ints regarding this burde storate for Information (ork Reduction Project (I	ctions searching existing data source includes the search of the second sector of this Operation and Reports, 1215 Jefferso 0704-0188). Washington, DC 20503.	
AGENCY USE ONLY (Leave blank)		2. REPORT DATE	3.	REPOR	REPORT TYPE AND DATES COVERED		
4. TITLE AND SUBTITLE Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Engineering Test Report				5. i	5. FUNDING NUMBERS NAS 5-32314		
6. AUTHOR(S) L. Paliwoda							
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Aerojet 1100 W. Hollyvale Azusa, CA 91702				8. PERFORMING ORGANIZATION REPORT NUMBER 11214 22 September 1998			
9. SPONSORING/MONITORING NASA Goddard Spa Greenbelt, M	AGENCY NA	Center	S(ES)	10.	SPONSORING/N AGENCY REPO	MONITORING	
11. SUPPLEMENTARY NOTES							
12a. DISTRIBUTION/AVAILABILI	TY STATEM	ENT		12b	DISTRIBUTION	CODE	
13. ABSTRACT (Maximum 200 words) This is the Engineering Radiation (EMR) and El Integrated Advanced M	ectromag	netic Capability (EMC) For	Γhe EÒS/ÁM	-	
14. SUBJECT TERMS				-		15. NUMBER OF PAGES	
EOS Microwave System						16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	OF THIS	Y CLASSIFICATION PAGE Inclassified		F ABSTRA	CLASSIFICATION ICT CASSIFIED	20. LIMITATION OF ABSTRACT SAR	

: ~
•

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only(Leave blank)

Block 2. Report Date Full publication date including day, month, andyear, if available (e.g.,1 Jan 88). Must cite at least the year.

Block 3. <u>Type of Report and Dates Covered</u> State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. <u>Title and Subtitle</u> A title is taken from the part of the report that provides the most meaningful and complete information. When a report iprepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. <u>Funding Numbers</u> To include contract and grant numbers; may include program element number(s), project number(s), tasksnumber(s), andwork unit number(s). Use the following labels:

 C
 Contract
 PR
 Project

 G
 Grant
 TA
 Task

 PE
 Program
 WU
 Work Unit

 Element
 Accession No.

Block 6. <u>Author(s)</u> Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of thereport. If editor or compiler, this should follow the name(s).

Block 7. <u>Performing Organization Name(s) and Address(es).</u> Self-explanatory.

Block 8. <u>Performing Organization Report Number.</u> Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. <u>Sponsoring/Monitoring Agency Name(s) and Address(es)</u> Self-explanatory.

Block 10. Sponsoring/MonitoringAgency Reports Number (if known).

Block 11. <u>SupplementaryNotes.</u> Enter informationnot included elsewhere such as: Prepared in cooperation with...; Trans. of ...; To be published in ... When a report is revised, include a statementwhether the new report supersedes or supplements the older report.

Block 12.a <u>Distribution/Availability Statement</u>Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 Distribution Statement on Technical Documents

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12.b Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

Block 13. <u>Abstract.</u> Include a brief *Maximum 200 words* factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms.</u> Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. <u>Price Code.</u> Enter appropriate price codeNTIS only).

Block 17 - 19. <u>Security Classifications.</u> Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. <u>Limitation of Abstract.</u>This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

		_

DOCUMENT APPROVAL SHEET

TITLE			DOCUMENT NO.			
Engineering Test Report Test Report Floatremagnetic Interference (FMI)/Floatremagnetic Rediction				Report 11214		
Test Report, Electromagnetic Interference (EMI)/Electromagnetic Radiation (EMR) and Electromagnetic Capability (EMC) For The EOS/AMSU-A1				er 1998		
(,	()					
INPUT FROM: DATE	CDRL:	SPECIFICATION ENGINEER:		DATE		
A. Valdez	207	m () di	GG	-6 33		
CHECKED BY:	DATE	JOB NUMBER:	78-6	09-23 DATE		
APPROVED SIGNATURES		<u></u>	DEPT. NO.	DATE		
				,		
Product Team Leader (L. Paliwo	day Jun f	alunda	7888	9/24/98		
	RAI M	#		ability		
Systems Engineer (R. Platt)	My Teas	<u>u</u>	8311	7/29/10		
Design Assurance (E. Lorenz)	M Lange		0224	4/24/00		
Design Assurance (E. Lorenz) _	- Cours		8331	1/07/08		
Quality Assurance (R. Taylor)	Jam	FOR	7831	9/24/98		
Technical Director/PMO (R. Hau	erwaas) <u> </u>	Vanerwaas	4001	9/24/98		
		\		9/28/98		
Configuration Management (J. C	Cavanaugh)	avanous	8361	11 40178		
By my signature, I certify the above document have requirements related to my area of responsibility		nd concurs with the technical				
	-					
RELEASE (Data Center) FINAL						
Planes return this sheet and the reproducible	mostor to lies Wisk /DI-t-	1/Dept 9621) avt 2024				
Please return this sheet and the reproducible	master to Jim Kirk (Bldg.	//⊔ept. 8631), ext. 2081.				

		*. <u> </u>
		-
		_