AAS_Ch4 & DM_6 My Extensions

Alexander Spivey:

Different Hyperparameters for Decision Tree

```
val paramGrid = new ParamGridBuilder().
   addGrid(classifier.maxMemoryInMB, Seq(1024)).
   addGrid(classifier.impurity, Seq("entropy")). //use both impurity measures
   addGrid(classifier.maxDepth, Seq(10, 20, 30)). //depth of 10 to 30
   addGrid(classifier.maxBins, Seq(20, 40, 60, 80, 100)). //20 to 100 values for rules
   addGrid(classifier.minInfoGain, Seq(0.0, 0.01, 0.02)). //ranges from no changes to impurity to improve impurity by 0.02
   //addGrid(classifier.minInstancesPerNode, Seq(500, 1000, 2000))
   //the first time I ran this, I tried to use 500, 1000, 2000 for minInstance, but ended up drastically dropping the success of the function
   build()
```

Results

```
//-How well did the data do on the cv and test-
//print("CV Results")
validatorModel.validationMetrics.max
//0.9408314546635589

//print("UnencTestData")
multiclassEval.evaluate(bestModel.transform(unencTestData))
//0.9422549869904596

//print("UnencTrainingData")
multiclassEval.evaluate(bestModel.transform(unencTrainData))
//0.9994898368624394
//Does this even fall into the category of overfitting?
```

```
0.9402965114057544
        dtc e253ce313ef8-impurity: entropy,
        dtc e253ce313ef8-maxBins: 60.
        dtc e253ce313ef8-maxDepth: 30,
        dtc e253ce313ef8-maxMemoryInMB: 1024,
        dtc e253ce313ef8-minInfoGain: 0.0
        dtc e253ce313ef8-impurity: entropy,
        dtc e253ce313ef8-maxBins: 100,
        dtc e253ce313ef8-maxDepth: 30,
        dtc e253ce313ef8-maxMemoryInMB: 1024,
        dtc e253ce313ef8-minInfoGain: 0.0
        dtc e253ce313ef8-impurity: entropy,
        dtc e253ce313ef8-maxBins: 100,
        dtc e253ce313ef8-maxDepth: 30,
        dtc e253ce313ef8-maxMemoryInMB: 1024,
        dtc e253ce313ef8-minInfoGain: 0.01
0.9370104313935271
        dtc e253ce313ef8-impurity: entropy,
        dtc e253ce313ef8-maxBins: 40,
        dtc e253ce313ef8-maxDepth: 30,
        dtc e253ce313ef8-maxMemoryInMB: 1024,
        dtc e253ce313ef8-minInfoGain: 0.0
0.936876695579076
        dtc_e253ce313ef8-impurity: entropy,
        dtc e253ce313ef8-maxBins: 60,
        dtc e253ce313ef8-maxDepth: 30,
        dtc e253ce313ef8-maxMemoryInMB: 1024,
        dtc e253ce313ef8-minInfoGain: 0.01
```

Different Hyperparameters for Decision Tree v2

```
val paramGrid = new ParamGridBuilder().
   addGrid(classifier.impurity, Seq("entropy")). //use both impurity measures
   addGrid(classifier.maxDepth, Seq(30)). //use max max depth
   addGrid(classifier.maxBins, Seq(40, 60, 80, 100)). //20 to 100 values for rules
   addGrid(classifier.minInfoGain, Seq(0.0)). //0.0 since it doesn't seem to affect the data
   addGrid(classifier.minInstancesPerNode, Seq(1, 2, 3)).
   build()
```

Results

```
0.9306456536670992
    dtc_fd915673ac55-impurity: entropy,
    dtc fd915673ac55-maxBins: 100,
    dtc fd915673ac55-maxDepth: 30,
    dtc fd915673ac55-minInfoGain: 0.0,
    dtc fd915673ac55-minInstancesPerNode: 5
0 9301114248645348
    dtc_fd915673ac55-impurity: entropy,
    dtc fd915673ac55-maxBins: 80,
    dtc fd915673ac55-maxDepth: 30,
    dtc_fd915673ac55-minInfoGain: 0.0,
    dtc fd915673ac55-minInstancesPerNode: 5
0 9274593604518049
    dtc_fd915673ac55-impurity: entropy,
    dtc fd915673ac55-maxBins: 40,
    dtc fd915673ac55-maxDepth: 30,
    dtc fd915673ac55-minInfoGain: 0.0,
    dtc fd915673ac55-minInstancesPerNode: 5
```

CV Results

res103: Double = 0.9308936884682897

UnencTest

res105: Double = 0.9325177721029747

UnencTrain

res107: Double = 0.9705002905998593

Speeding up the program with maxMemoryInMB

```
//TTFRATTON O
print ("ITERATION 0\n")
val paramGrid = new ParamGridBuilder().
    addGrid(classifier.maxMemorvInMB, Seg(128)).
    addGrid(classifier.impurity, Seg("entropy")), //use both impurity measures
    addGrid(classifier.maxDepth, Seg(30)). //depth of 1 to 20
    addGrid(classifier.maxBins, Seq(20, 40, 60, 80, 100)). //40 to 300 values for rules
    addGrid(classifier.minInfoGain, Seq(0.0)). //ranges from no changes to impurity to improve impurity by 0.05
   //addGrid(classifier.minInstancesPerNode, Seq(500, 1000, 2000))
   //the first time I ran this, I tried to use 500, 1000, 2000 for minInstance, but ended up drastically dropping the success of the function
val multiclassEval = new MulticlassClassificationEvaluator().
    setLabelCol("Cover Type").
    setPredictionCol("prediction").
   setMetricName("accuracy") //kinda self explanotary what happening here
val validator = new TrainValidationSplit().
    setSeed(Random.nextLong()).
   setEstimator(pipeline).
   setEvaluator (multiclassEval).
   setEstimatorParamMaps(paramGrid). //HYPER PARAMETERS CAN STILL OVER FIT
   setTrainRatio(0.9) //take another 10 percent and set it aside
//the left out 10% is used as a crossvalidation set (evaluate parameters that fit to training set)
//the original 10% left out to evaluate hyperparameters that fit the CV^^ (examples that arent in CV but has not been trained on [real world data])
val start = Calendar.getInstance()
val sh = start.get(Calendar.HOUR)
val sm = start.get(Calendar.MINUTE)
val ss = start.get(Calendar.SECOND)
printf("Start Time: %02d:%02d:%02d\n", sh, sm, ss);
val validatorModel = validator.fit(unencTrainData) //returns best overall pipeline
val end = Calendar.getInstance()
val eh = end.get(Calendar.HOUR)
val em = end.get(Calendar.MINUTE)
val es = end.get(Calendar.SECOND)
printf("End Time: %02d:%02d:%02d\n", eh, em, es);
val dh = eh-sh
val dm = em-sm
val ds = es-ss
printf("Total Time: %02d:%02d:%02d\n", dh, dm, ds);
```

Results

ITERATION 0

Start Time: 08:34:15 End Time: 08:36:24 Total Time: 00:02:09

ITERATION 1

Start Time: 08:03:28 End Time: 08:05:43 Total Time: 00:02:15

ITERATION 2

Start Time: 08:05:44 End Time: 08:07:56 Total Time: 00:02:12 **ITERATION 3**

Start Time: 08:07:57 End Time: 08:10:04 Total Time: 00:02:07

ITERATION 4

Start Time: 08:10:05 End Time: 08:12:16 Total Time: 00:02:11

ITERATION 5

Start Time: 08:12:17 End Time: 08:14:28 Total Time: 00:02:11

Weka Random Decision Forest

=== Evaluation result ===

Scheme: RandomForest

Options: -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1

Relation: covtype-weka.filters.unsupervised.attribute.NumericToNominal-R11-55

=== Summary ===

Correctly Classified Instances 187798 95.0664 % Incorrectly Classified Instances 9746 4.9336 % Kappa statistic 0.9206 0.0402 Mean absolute error 0.114 Root mean squared error Relative absolute error 22.5566 % 66% 38,192 % Root relative squared error Total Number of Instances 197544

=== Detailed Accuracy By Class ===

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Cla
0.938	0.022	0.961	0.938	0.950	0.922	0.994	0.991	1
0.971	0.053	0.946	0.971	0.958	0.917	0.993	0.993	2
0.956	0.004	0.936	0.956	0.946	0.942	0.999	0.987	3
0.837	0.000	0.910	0.837	0.872	0.872	0.999	0.938	4
0.773	0.001	0.931	0.773	0.845	0.846	0.998	0.942	5
0.885	0.002	0.922	0.885	0.903	0.900	0.999	0.964	6
0.946	0.001	0.976	0.946	0.961	0.959	1.000	0.993	7
0.951	0.034	0.951	0.951	0.950	0.920	0.995	0.990	

=== Confusion Matrix ===

Weighted Avg.

a	b	C	d	e	f	g		<		classified		as
67558	4245	1	0	32	9	141	1		a	=	1	
2333	93269	217	3	135	116	24	1		b	=	2	
1	214	11789	42	10	278	0	1		С	=	3	
0	0	118	759	0	30	0	1.		d	=	4	
41	637	46	0	2502	11	0	1		e	=	5	
7	207	430	30	8	5247	0	1		f	=	6	
326	54	0	0	0	0	6674	I		g	=	7	

=== Summary ===

Correctly Classified Instances	110973	95.5001	90
Incorrectly Classified Instances	5229	4.4999	olo
Kappa statistic	0.9276		
Mean absolute error	0.0382		
Root mean squared error	0.1102		
Relative absolute error	21.4352 %		
Root relative squared error	36.8873 %		80%
Total Number of Instances	116202		

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0.944	0.020	0.964	0.944	0.954	0.928	0.995	0.992	1
	0.973	0.048	0.951	0.973	0.962	0.925	0.994	0.994	2
	0.962	0.004	0.942	0.962	0.952	0.949	0.999	0.990	3
	0.833	0.000	0.920	0.833	0.874	0.875	0.999	0.939	4
	0.795	0.001	0.931	0.795	0.857	0.858	0.999	0.949	5
	0.900	0.002	0.931	0.900	0.916	0.913	0.999	0.971	6
	0.945	0.001	0.979	0.945	0.962	0.961	1.000	0.995	7
Weighted Avg.	0.955	0.031	0.955	0.955	0.955	0.927	0.995	0.991	