Tensor Factorized Density Estimation

Eskild Børsting Sørensen, Johannes Emme Jørgensen, Jonas Vestergaard Jensen, Peter Mørch Groth

Correction for Fig. 1. Training and test performance

Incorrect x-axis values for *hepmass* and *miniboone*:

Fig. 1. Training and test performance. The models are evaluated at various numbers of free parameters at a sample size of 1750 for three datasets with increasing number of dimensions.

Improvements

Performance

continued

Ordering

Introduction

• **Prior**: Gaussian Mixture Model (GMM) O(KM²)

Method: Tensor decompositions → factorizing joint distribution

• Evaluation: Compare with conventional GMM and state-of-the-art neural density estimator

Objective: Density estimator that scales better with high-dimensional data

Tensor decompositions

Canonical polyadic (CP) decomposition

$$A(i_1, i_2, ..., i_M) = \sum_{\alpha}^{r} U_1(i_1, \alpha) U_2(i_2, \alpha) \cdots U_M(i_M, \alpha)$$

Factorization using CP procedure

$$p(x_1, x_2, ..., x_M) = \sum_{k=1}^{K} p(k) \prod_{m=1}^{M} p(x_m | k)$$

$$= \sum_{k=1}^{K} w_{k} \prod_{m=1}^{M} \mathcal{N}(x_{m} | \mu_{k_{m}}, \sigma^{2}_{k_{m}})$$

Factorization using **Tensor Train** procedure

$$p(x_1, x_2, ..., x_M) = \sum_{k_0, ..., k_M}^{K_0, ..., K_M} p(k_0) \prod_{m=1}^M p(x_m, k_m | k_{m-1})$$

$$= \sum_{k=1}^{K_0,\dots,K_M} w_{k_0} \prod_{m=1}^M w_{k_m,k_{m-1}} \mathcal{N}(x_m | \mu_{k_m,k_{m-1}}, \sigma^2_{k_m,k_{m-1}})$$

~ O(K²M)

Factorization using **Tensor Ring** procedure

$$p(x_1, x_2, \dots, x_M)$$

$$K_0,...,K_M$$

$$\begin{bmatrix} M-1 \end{bmatrix}$$

$$= \sum_{k_0,\dots,k_M}^{K_0,\dots,K_M} p(k_0) \left[\prod_{m=1}^{M-1} p(x_m,k_m|k_{m-1}) \right] p(x_M|k_{M-1},k_0)$$

$$= \sum_{k_0,\dots,k_M}^{K_0,\dots,K_M} w_{k_0} \left[\prod_{m=1}^{M-1} w_{k_m,k_{m-1}} \mathcal{N} \left(x_m | \mu_{k_m,k_{m-1}}, \sigma^2_{k_m,k_{m-1}} \right) \right]$$

$$\cdot \mathcal{N}(x_{M}|\mu_{k_{M-1},k_{0}},\sigma^{2}_{k_{M-1},k_{0}})$$

Performance

	power	gas	hepmass	miniboone	8gaussians	checkerboard	2spirals
FFJORD	-0.46	-8.59	14.92	10.43			
CP	-0.42	-10.30	22.76	29.23	1.47	2.02	1.85
GMM	-0.43	-13.23	20.78	17.84	1.47	2.04	1.79
TT	-0.47	-5.23	23.07	35.29	1.47	1.93	1.94
TR	-0.53	-5.33	23.06	35.27	1.48	2.01	1.85

Table 1. Test negative log likelihood per sample for the selected models. Results are averages over 3 runs.

Fig. A.2. **Modelling of synthetic data.** The selected models qualitative performance on the 2D synthetic point data.

Structural differences in the data

Fig. 1. Training and test performance. The models are evaluated at various numbers of free parameters at a sample size of 1750 for three datasets with increasing number of dimensions.

Regularisation in TT & TR

• Regularisation properties: Tensor train & Tensor ring generalizes well when increasing complexity

Fig. 1. **Training and test performance.** The models are evaluated at various numbers of free parameters at a sample size of 1750 for three datasets with increasing number of dimensions.

Ordering of variables

Ordering by maximizing correlation

- Better performance when doing early stopping.
- More overfitting

Ordering by maximizing partial correlation

- Worse performance when doing early stopping.
- Less overfitting

Regularization properties by ordering variables.

Fig. 3. Performance of TT and TR by ordering variables. The experiments were trained on the *power* dataset with 1750 subsamples and k=12.

Performance continued

	power	gas	hepmass	miniboone	8gaussians	checkerboard	2spirals
FFJORD	-0.46	-8.59	14.92	10.43			
CP	-0.42	-10.30	22.76	29.23	1.47	2.02	1.85
GMM	-0.43	-13.23	20.78	17.84	1.47	2.04	1.79
TT	-0.47	-5.23	23.07	35.29	1.47	1.93	1.94
TR	-0.53	-5.33	23.06	35.27	1.48	2.01	1.85

Table 1. Test negative log likelihood per sample for the selected models. Results are averages over 3 runs.

Fig. 2. Test performance. Comparison at various levels of model complexities.

Improvements

- Means of comparison
- High-dimensional synthetic data
- Initialisations for TT and TR

Conclusion

• Tensor factorized density estimators are viable for density estimation

Performance depends on dataset structure and ordering

Robust when little data is available