Transmission Gate

Lecture 9

nMOSFET pass

- nMOS: Switch
- V_C : control voltage
- C: Total capacitance between output node and ground

$$v_I = V_{DD}$$

- Input: High
- Control: High
- Capacitor: Charging
- Output: $V_{DD} V_{tn}$

$$i_{DS} = \frac{1}{2} k_n (V_{DD} - v_O - V_{tn})^2$$

$$V_{tn} = V_{tn0} + \gamma \left(\sqrt{v_O + 2V_F} - \sqrt{2V_F} \right)$$

pMOSFET pass

- pMOS: Switch
- VC: Control voltage
- C: Total capacitance between output node and ground

- Input: Low
- Control: High
- Capacitor: Discharging
- Output: 0

$$i_{DS} = \frac{1}{2} k_p \left(V_{DD} - V_{tp} \right)^2$$

$$V_{tp} = V_{tp0}$$

 $V_C(0) = 0$

pMOSFET series and parallel connection

PMOS switch closes when switch control input is low

PMOS Transistors pass a "strong" 1 but a "weak" 0

• Threshold drops:

- Complementary CMOS logic Style
 - PUP is the <u>DUAL</u> of PDN (can be shown using DeMorgan's Theorem's)

$$\overline{A+B} = \bar{A}\bar{B}$$

$$\overline{AB} = \overline{A} + \overline{B}$$

The complementary gate is inverting

$$AND = NAND + INV$$

Pass-transistor logic

- N transistors
- No static consumption

AND gate

nMOS-only logic

nMOS-only logic level restoring transistor

- Advantage: Full Swing
- Restorer adds capacitance, takes away pull down current at X
- Ratio problem

nMOS-only logic level restorer sizing

- Upper limit on restorer size
- Pass-transistor pull-down can have several transistors in stack

• Single transistor pass gate with $V_T = 0$

WATCH OUT FOR LEAKAGE CURRENTS

• Single transistor pass gate with $V_T = 0$

WATCH OUT FOR LEAKAGE CURRENTS

Complementary pass transistor

Transmission gate

Resistance of transmission gate

Transmission gate XOR

Transmission gate XOR

Delay in transmission gate network

- Delay optimization
 - Delay of RC chain

$$t_p = 0.69 \sum_{k=0}^{n} CR_{eq}k = 0.69CR_{eq} \frac{n(n+1)}{2}$$

• Delay of Buffered Chain

$$t_{p} = 0.69 \left\lfloor \frac{n}{m} CR_{eq} \frac{m(m+1)}{2} \right\rfloor + \left(\frac{n}{m} - 1\right) t_{buf}$$
$$= 0.69 \left\lfloor CR_{eq} \frac{n(m+1)}{2} \right\rfloor + \left(\frac{n}{m} - 1\right) t_{buf}$$

$$m_{opt} = 1.7 \sqrt{\frac{t_{pbuf}}{CR_{eq}}}$$

