南昌大学物理实验报告

课程名称:_						
实验名称: _	低值	直电阻的	勺测量			
学院:	信息工程学院	Ğ	专业班级	: <u>自动化 153</u>		
学生姓名:	<u> </u>	学号:_	6101215075	<u>;</u>		
实验地点:_	B613		座位号:	6号		
实验时间:	第八周星期四	四上午┤	上时			

一、实验目的:

- 1. 学习低电阻的测量方法;
- 2. 掌握及了解四探针法及其应用。

二、实验原理:

伏安法测中等阻值的电阻是很容易的,但在测低电阻Rx时将遇到困难,如图5-1所示,(a)是伏安法的一般电路图,(b)是将Rx两侧的接触电阻,导线电阻以等效电阻R'1,R'2,R'3,R'4标志的电路图。由于电压表V的内阻较大,串接小电阻R'1,R'4对其测量影响不大,而R'2,R'3串接到被测低电阻Rx后,使被测电阻成为(R'2+Rx+R'3)其中R'2和R'3和Rx相比是不可不计,有时甚至超过Rx,因此如图5-1所示的电路不能用以测量低电阻Rx。

图5-1 伏安法测量低电阻的问题

图5-2 四端法测量低电阻的原理图

解决上述测量的困难,关键在于消除R'2,R'3的影响,图5-2的电路可以达到这个目的,它是将低阻Rx两侧的接点分为两个电流接点(cc)和两个电压节点(pp),这样电压表测量的是长L的一段低电阻(其中不包括R'2和R'3)两端的电压。这样的四接点测量电路使低电阻测量成为可能。

三、实验仪器:

数字直流电压表(1件)、数字直流电流表(1件)直流电源(1件)、DHSR 四端电阻器(1件)、金属棒(3根)、导线(6根)、螺旋测微器(1件)、短路片若干。

四、实验内容和步骤:

测量金属棒不同长度L时的电阻,根据 $R=\rho L/S$ 计算出金属棒的电阻率。本实验中,共提供三种金属棒,黄铜、

铝合金和碳素钢,已知20℃时黄铜的标准电阻率 6.9×10 - $8(\Omega \cdot m)$,20℃时碳素钢的标准电阻率 1.6×10 - $7(\Omega \cdot m)$ 。 实验步骤如下:

- 1. 利用螺旋测微器测量待测金属棒的直径(记录五组数据,分析不确定度)。
- 2. 将直流电源的输出电压调至5V, 按照预习报告中的电路图连接好电路。
- 3. 固定C2位置,移动P2,记录P1P2间距L及对应的电压表读数UR(毫伏档),要求记录6组数据,求出不同长度

L时的电阻R, 求出电阻率 ρ 。

4. 更换待测金属棒, 重复以上步骤。

五、实验数据与处理:

原始数据:

(一)铜

d/mm	200.00	250.00	300.00	350.00	400.00
I/A	0.1842	0.1842	0.1842	0.1842	0.1842
U/mv	11.10	12.57	12.86	14.00	16.91

(二)铝

d/mm	200.00	250.00	300.00	350.00	400.00
I/A	0.1836	0.1836	0.1836	0.1836	0.1836
U/mv	11.74	11.82	12.92	15.94	17.18

(三) 铁

1	<u> </u>				
d/mm	200.00	250.00	300.00	350.00	400.00

I/A	0.1843	0.1843	0.1843	0.1843	0.1843
U/mv	10.91	11.60	16.36	17.14	17.60

数据处理:

由和 $R=\rho L/S$ 可得表如下

(一) 铜

d/mm	200.00	250.00	300.00	350.00	400.00
I/A	0.1842	0.1842	0.1842	0.1842	0.1842
U/mv	11.10	12.57	12.86	14.00	16.91
R/Ω	0.0603	0.0682	0.0698	0.0760	0.0918
电阻率	1.51		1.17	1.09	1.15

所以

(二) 铝

同理得:

d/mm	200.00	250.00	300.00	350.00	400.00
I/A	0.1836	0.1836	0.1836	0.1836	0.1836
U/mv	11.74	11.82	12.92	15.94	17.18
R/Ω	6.3943	6.4379	7.0370	8.6816	9.3572
电阻率	1.60	1.29	1.18	1.25	1.18

所以 所以

(三) 铁

d/mm	200.00	250.00	300.00	350.00	400.00
I/A	0.1843	0.1843	0.1843	0.1843	0.1843
U/mv	10.91	11.60	16.36	17.14	17.60
R/Ω	5.9197	6.2941	8.8768	9.3001	9.5496
电阻率	1.49	1.27	1.49	1.34	1.20

所以

不计B类误差,所以u=

所以

六、误差分析:

- 1. 金属在不同情况下都会有被空气氧化, 所以在 d 变大时, 被氧化部分增多, 所以电阻率变大。
- 2.由于电表精确度的限制,故数据并非绝对精确。
- 3.电阻在通电时间越长电阻变热,电阻率会变大。

七、附上原始数据:

-21	
Lynm	0000
	17.
5=42/2 7=2mm	18 48 - 11 mm 250 mm 250 mm 1294 mm 11.82 mm 11.74 mm 11.
m Te	1294 ml 1294 ml 1282 mm 11.82 ml 11.74 ml
2x103	
	11.00 mm are 1 12 Jan 11 mm 25 2 12 Jan 25 2 12 Jan 25 2 14 Jan 25 2 14 Jan 26 71 14 Jan 26 71
0, 5/2 1/2 1/2 1/2	ma gent mage my mage my mage my