Trabajo Práctico N° 3: Dispositivos Periféricos.

Ejercicio 1.

¿Cuánta memoria requieren las siguientes terminales? Responder en bytes.

(a) Alfanumérica ASCII extendida (8bits) de 24 filas x 80 columnas: monocromo.

Memoria (bits)=
$$24 * 80 * (8 + 0 + 0)$$
 bits
Memoria (bits)= 15360 bits.

Memoria (bytes)=
$$\frac{15360 \text{ bits}}{8}$$

Memoria (bytes)= 1920 bytes.

Por lo tanto, esta terminal requiere 1.920 bytes de memoria.

(b) Alfanumérica ASCII extendida (8bits) de 24 filas x 80 columnas con 16 colores y con 4 atributos.

Memoria (bits)=
$$24 * 80 * (8 + 4 + 4)$$
 bits
Memoria (bits)= 30720 bits.

Memoria (bytes)=
$$\frac{30720 \ bits}{8}$$

Memoria (bytes)= 3840 bytes.

Por lo tanto, esta terminal requiere 3.840 bytes de memoria.

(c) Gráfica de 640 x 480 pixels monocromo.

Memoria (bytes)=
$$\frac{307200 \ bits}{8}$$

Memoria (bytes)= 38400 bytes.

Por lo tanto, esta terminal requiere 38.400 bytes de memoria.

(d) Gráfica de 640 x 480 pixels True Color.

Memoria (bits)= 7372800 bits.

Memoria (bytes)=
$$\frac{7372800 \text{ bits}}{8}$$

Memoria (bytes)= 921600 bytes.

Por lo tanto, esta terminal requiere 921.600 bytes de memoria.

(e) Gráfica de 1024 x 768 pixels con 8 colores.

Memoria (bytes)=
$$\frac{2359296 \text{ bits}}{8}$$

Memoria (bytes)= 294912 bytes.

Por lo tanto, esta terminal requiere 294.912 bytes de memoria.

Ejercicio 2.

Considerar una imagen en blanco y negro de 8,5" x 11" con una resolución de 2400 dpi (ppp - puntos por pulgada).

(a) ¿Cuántos bytes de memoria hacen falta para almacenarla?

Memoria (bytes)=
$$\frac{538560000 \text{ bits}}{8}$$

Memoria (bytes)= 67320000 bytes.

Por lo tanto, hacen falta 67.320.000 bytes para almacenarla.

(b) ¿Cuánto ocuparía si tuviese 256 tonos de gris?

Memoria (bytes)=
$$\frac{4308480000 \ bits}{8}$$

Memoria (bytes)= 538560000 bytes.

Por lo tanto, si tuviese 256 tonos de gris, ocuparía 538.560.000 bytes.

(c) ¿Y si fuese "True Color"? (True Color utiliza 24 bits por pixel).

Memoria (bits)=
$$8.5 * 11 * 2400^2 * 24$$
 bits
Memoria (bits)= 12925440000 bits.

Memoria (bytes)=
$$\frac{12925440000 \ bits}{8}$$

Memoria (bytes)= 1615680000 bytes.

Por lo tanto, si fuese "True Color", ocuparía 1.615.680.000 bytes.

Ejercicio 3.

Calcular la velocidad mínima que debe tener la comunicación entre una computadora y un scanner si éste puede digitalizar una página de 8,5" x 11" monocromo con una resolución de 600 dpi en 30 segundos.

Velocidad (bits)=
$$\frac{8,5*11*600^2*1 \text{ bits}}{30 \text{ seg}}$$
Velocidad (bits)=
$$\frac{33660000 \text{ bits}}{30 \text{ seg}}$$
Velocidad (bits)=
$$1122000 \text{ bits/seg}.$$

Velocidad (bytes)=
$$\frac{1122000 \ bits/seg}{8}$$

Velocidad (bytes)= 140250 bytes/seg.

Por lo tanto, la velocidad mínima que debe tener es 140.250 bytes/seg.

Ejercicio 4.

Un disco rígido tiene 512 bytes/sector, 1000 sectores/pista, 5000 pistas/cara y 8 platos (16 caras). Calcular la capacidad total del disco.

Capacidad= 512 bytes * 1000 * 5000 * 16 Capacidad= 40960000000 bytes.

Por lo tanto, la capacidad total del disco es 40.960.000.000 bytes.

Ejercicio 5.

Un disco rígido tiene dos caras (1 plato). El radio de la pista más interna es 1 cm y el radio de la pista más externa es 5 cm. Cada pista mantiene el mismo número de bits. La máxima densidad de almacenamiento es 10.000 bits/cm, el espaciamiento entre pistas es 0,1mm. Asumir que la separación entre sectores es despreciable y en el borde exterior hay una pista.

(a) ¿Cuál es el máximo número de bits que puede almacenarse en el disco?

Caras= 2.

Radio pista más interna= 1 cm.

Radio pista más externa= 5 cm.

Espaciamiento entre pistas= 0,1 mm.

Máxima densidad de almacenamiento= 10000 bits/cm.

Pistas =
$$\frac{5cm-1cm}{0.1mm}$$
Pistas =
$$\frac{4cm}{0.01cm}$$
Pistas = 400.

Perímetro= $2\pi * 1$ cm Perímetro= 6,28 cm.

Capacidad de cada pista= 10000 bits/cm * 6,28 cm (perímetro) Capacidad de cada pista= 62832 bits.

Capacidad del disco= 2 (caras) * 400 (pistas) * 62832 bits Capacidad del disco= 50265482 bits.

Por lo tanto, el máximo número de bits que puede almacenarse en el disco es 50.265.482.

(b) ¿Cuál es la velocidad de transferencia en bits/seg si la velocidad de rotación es de 3600 rpm? ¿Y si es 7200 rpm?

Velocidad= 1 (cabezal) * 62832 bits *
$$\frac{3600 \ rpm}{60 \ seg}$$

Velocidad= 3769920 bits/seg.

Velocidad= 1 (cabezal) * 62832 bits *
$$\frac{7200 \ rpm}{60 \ seg}$$
 Velocidad= 7539840 bits/seg.

Por lo tanto, si la velocidad de rotación es de 3600 rpm, la velocidad de transferencia en bits/seg es 3.769.920 bits/seg y, si la velocidad de rotación es de 7200 rpm, la velocidad de transferencia en bits/seg es 7.539.840 bits/seg.