

Three challenges in modeling directed networks

Adapted from Holland & Leinhardt. Local Structure in Social Networks. Sociol. Methodol., 7, 1–45 (1976)

Identity of indiscernibles	$d(x,y) = 0 \Leftrightarrow x = y$
Non-negativity	$d(x,y) \ge 0$
Symmetry	d(x,y) = d(y,x)
Triangle inequality	$d(x,y) \le d(x,z) + d(z,y)$

292 network datasets downloaded from Netzschleuder (networks.skewed.de).

Properties of any metric space

Clustering: 7 cycles of length 3

Reciprocity: cycles of length 2

$$r = \frac{L^{\leftrightarrow}}{L} = \frac{[\text{number of reciprocal links}]}{[\text{number of links}]}$$

Three challenges in modeling directed networks

Properties of any metric space

Identity of indiscernibles Non-negativity Symmetry

Triangle inequality
$$d(x,y) = 0 \Leftrightarrow x = y$$
 $d(x,y) \geq 0$
 $d(x,y) \geq 0$
 $d(x,y) = d(y,x)$
 $d(x,y) \leq d(x,z) + d(z,y)$

Clustering: 7 cycles of length 3

Adapted from Holland & Leinhardt. Local Structure in Social Networks. Sociol. Methodol., 7, 1-45 (1976)

Reciprocity: cycles of length 2

The directed S¹ model

The directed S¹ model

- 1. Sprinkle N nodes uniformly on a circle of radius R.
- 2. Assign an expected in-degree κ^{in} and out-degree κ^{out} to each node according to some pdf $\rho(\kappa^{\text{in}}, \kappa^{\text{out}})$.
- 3. Draw a link from node i to node j with probability p_{ij} .
- \star fixes the expected in-degree and out-degree of nodes ($\kappa^{\rm in}$, $\kappa^{\rm out}$) \to soft directed CM
- \star triangle inequality of the underlying metric space \to triangles from pairwise interactions
- \star level of clustering tuned with parameter β