Matrix Computations Chapter 4: Eigenvalues, Eigenvectors, and Eigendecomposition

Section 4.3 Hermitian matrices and the Variational Characterizations of Eigenvalues

Jie Lu ShanghaiTech University

Hermitian Matrices

Recall that

- A square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is said to be Hermitian if $a_{ij} = a_{ji}^*$ for all i, j with $i \neq j$, or equivalently, if $\mathbf{A}^H = \mathbf{A}$
- We denote the set of all $n \times n$ complex Hermitian matrices by \mathbb{H}^n
- By definition, a real symmetric matrix is also Hermitian, i.e., $\mathbb{S}^n \subset \mathbb{H}^n$
- When we say that a matrix is Hermitian, we often imply that the matrix is complex—a real Hermitian matrix is simply real symmetric

Eigenvalues and Eigenvectors of Hermitian Matrices

Property

The following properties hold for $\mathbf{A} \in \mathbb{H}^n$:

- 1. The n eigenvalues of A are real
- 2. Suppose $\{\lambda_1, \ldots, \lambda_k\}$ is the set of all distinct eigenvalues of \mathbf{A} , and let \mathbf{v}_i be any eigenvector associated with λ_i . Then $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are orthogonal
- 3. There exists an orthonormal basis of \mathbb{C}^n consisting of the eigenvectors of \mathbf{A}

Corollary: For any $\mathbf{A} \in \mathbb{S}^n$, there exist n real orthonormal eigenvectors

Proof of the Property

Idea: Use invariant subspace

Given $\mathbf{A} \in \mathbb{C}^{n \times n}$, a subspace $S \subseteq \mathbb{C}^n$ with

$$x\in\mathcal{S}\Longrightarrow Ax\in\mathcal{S}$$

is said to be an invariant subspace for A

E.g., any eigenvector of **A** spans a 1-dimensional invariant subspace

E.g., any k eigenvectors of **A** spans an invariant subspace for **A**

Fact: If ${\mathcal Z}$ is a nonzero invariant subspace for ${\bf A},$ then ${\bf A}$ has an eigenvector in ${\mathcal Z}$

A Consequence of the Fundamental Theorem of Algebra

Proof of the Property (cont'd)

Proof of the Property (cont'd)

Eigendecomposition for Hermitian Matrices

Theorem

Every $\mathbf{A} \in \mathbb{H}^n$ admits an eigendecomposition

$$\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^H$$
,

where $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary, $\Lambda = \operatorname{Diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \mathbb{R}$ for all i. In addition, if $\mathbf{A} \in \mathbb{S}^n$, \mathbf{V} can be taken as a real orthogonal matrix.

- A special case of Schur decomposition
- No need of assuming distinct eigenvalues

Corollary: If $\mathbf{A} \in \mathbb{H}^n$, $\mu_i = \gamma_i$ for all i

Interpretation of Eigendecomposition in \mathbb{S}^n

- 1. $V^T x$: Let x resolve into v_1, \ldots, v_n
- 2. $\Lambda(\mathbf{V}^T\mathbf{x})$: Scale the *i*th coordinate of $(\mathbf{V}^T\mathbf{x})$ by λ_i
- 3. $V(\Lambda V^T x)$: Reconstitute $(\Lambda V^T x)$ with basis v_1, \ldots, v_n

Courant-Fischer Min-Max Theorem

For $\mathbf{A} \in \mathbb{H}^{n \times n}$, let $\lambda_k(\mathbf{A})$ denote the kth largest eigenvalue of \mathbf{A} , i.e.,

$$\lambda_n(\mathbf{A}) \leq \cdots \leq \lambda_1(\mathbf{A})$$

Theorem

For any $\mathbf{A} \in \mathbb{H}^{n \times n}$ and k = 1, ..., n,

$$\lambda_{k}(\mathbf{A}) = \max_{\substack{S \subseteq \mathbb{C}^{n}: \\ \dim(S) = k}} \min_{\substack{\mathbf{y} \in S, \\ \mathbf{y} \neq \mathbf{0}}} \frac{\mathbf{y}^{H} \mathbf{A} \mathbf{y}}{\mathbf{y}^{H} \mathbf{y}}$$
$$= \min_{\substack{S \subseteq \mathbb{C}^{n}: \\ \dim(S) = n - k + 1}} \max_{\substack{\mathbf{y} \in S, \\ \mathbf{y} \neq \mathbf{0}}} \frac{\mathbf{y}^{H} \mathbf{A} \mathbf{y}}{\mathbf{y}^{H} \mathbf{y}}$$

 $R_{\mathbf{A}}(\mathbf{y}) = \frac{\mathbf{y}^H \mathbf{A} \mathbf{y}}{\mathbf{y}^H \mathbf{y}}, \mathbf{y} \neq \mathbf{0}$ is called the Rayleigh–Ritz quotient

Courant-Fischer Min-Max Theorem (Cont'd)

- $R_{\mathbf{A}}(\mathbf{y})$ can be replaced with $\mathbf{y}^H \mathbf{A} \mathbf{y}$, $\|\mathbf{y}\|_2 = 1$
- If y is an eigenvector of A, $R_A(y)$ is its associated eigenvalue
- Consequence of theorem: $\lambda_n(\mathbf{A}) \leq R_{\mathbf{A}}(\mathbf{y}) \leq \lambda_1(\mathbf{A})$

Proof

Poincaré's Inequality: Let S be a subspace of \mathbb{C}^n with $\dim(S) = k$. There exist unit vectors $\mathbf{x}, \mathbf{y} \in S$ s.t. $\mathbf{x}^H \mathbf{A} \mathbf{x} \leq \lambda_k(\mathbf{A})$ and $\mathbf{y}^H \mathbf{A} \mathbf{y} \geq \lambda_{n+1-k}(\mathbf{A})$.

Proof (cont'd)

Proof (cont'd)