Cosmology: Problem Cos 1.3

- (a) The disc of a spiral galaxy is observed to have a flat rotation curve in its outer parts with orbital speeds of ± 150 km s⁻¹ relative to the centre. If this is due to a spherical dark matter halo, show that its mass density profile is of the form $\rho(r) \propto r^{-2}$.
- (b) Calculate the local mass density of the halo of this galaxy at a radius of 50 kpc in units of M_{\odot} pc⁻³. If dark matter consists of particles with a mass of 180 GeV/c², calculate their space density at this radius in units of particles per cubic metre.
- (c) A model Universe comprises a population of such galaxies with a comoving space density of $0.02~{\rm Mpc^{-3}}$. Find the maximum radius out to which the dark matter haloes extend, in Mpc, if these galaxies contribute $\Omega_g = 0.15$ to the density parameter. Assume $H_0 = 75~{\rm km~s^{-1}~Mpc^{-1}}$.
- (d) A spherical cluster of galaxies contains pure ionized hydrogen with a gas density profile $\rho_{gas} \propto r^{-\beta}$ in hydrostatic equilibrium in a dark matter gravitational potential. If the gas temperature of 10^8 K is independent of radius and the total mass of the cluster (gas & dark matter combined) within 1 Mpc is 2×10^{14} M $_{\odot}$, calculate the index β . Repeat the calculation if the gas instead comprises ionized hydrogen mixed with 25% fully-ionized helium-4 (by mass).