

Vorlesung "Logik"

10-201-2108-1

5. Kompaktheit und Interpolation

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

15. Mai 2025 Leipzig

In der letzten Vorlesung

Wiederholung: Erfüllbarkeit DNF Hornformeln Resolution (bis einschließlich Resolvente)

Fahrplan für diese Vorlesung

Resolution Kompaktheitssatz Interpolationstheorem Abschluß AL

Resolvente

Definition

Seien C_1 , C_2 Klauseln. Eine Klausel R heißt Resolvente von C_1 und C_2 , falls es ein Literal L gibt, sodass:

$$L \in \textit{\textbf{C}}_1, \quad \overline{L} \in \textit{\textbf{C}}_2 \quad \text{ und } \quad \textit{\textbf{R}} = \left(\textit{\textbf{C}}_1 \smallsetminus \left\{L\right\}\right) \cup \left(\textit{\textbf{C}}_2 \smallsetminus \left\{\overline{L}\right\}\right)$$

(Resolution nach L)

Beispiele:

Resolution nach A₁

Resolutionslemma

Lemma

Sei M Klauselmenge, Klauseln $C_1, C_2 \in M$ und R Resolvente von C_1 und C_2 . Es gilt: $M \equiv M \cup \{R\}$.

Beweis: Wir wissen,

$$\underbrace{(\phi \vee A)}_{C_1} \wedge \underbrace{(\psi \vee \neg A)}_{C_2} \vDash \underbrace{\phi \vee \psi}_{R}$$

Somit folgt rein mengentheoretisch,

$$\underbrace{(\phi \vee A)}_{C_1} \wedge \underbrace{(\psi \vee \neg A)}_{C_2} \equiv \underbrace{(\phi \vee A)}_{C_1} \wedge \underbrace{(\psi \vee \neg A)}_{C_2} \wedge \underbrace{(\phi \vee \psi)}_{R}$$

Nach Ersetzungstheorem,

$$M \equiv M \cup \{R\}$$

Resolutionshülle

Definition

Sei *M* eine Klauselmenge. Wir definieren:

 $Res(M) = M \cup \{R \mid R \text{ ist Resolvente zweier Klauseln aus } M\}$

Außerdem setzen wir:

$$\operatorname{Res}^{0}(M) = M$$
 $\operatorname{Res}^{i+1}(M) = \operatorname{Res}(\operatorname{Res}^{i}(M))$
 $\operatorname{Res}^{*}(M) = \bigcup_{i \in \mathbb{N}} \operatorname{Res}^{i}(M)$

wobei Res*(M) die Resolutionshülle von M genannt wird.

Beispiel: Sei $M = \{\{A_1, A_2\}, \{\neg A_1, A_3\}, \{\neg A_2, \neg A_3\}\} = \text{Res}^0(M)$

Resolutionshülle

Definition

Sei *M* eine Klauselmenge. Wir definieren:

 $Res(M) = M \cup \{R \mid R \text{ ist Resolvente zweier Klauseln aus } M\}$

Außerdem setzen wir:

$$\operatorname{Res}^{0}(M) = M$$
 $\operatorname{Res}^{i+1}(M) = \operatorname{Res}(\operatorname{Res}^{i}(M))$
 $\operatorname{Res}^{*}(M) = \bigcup_{i \in \mathbb{N}} \operatorname{Res}^{i}(M)$

Beispiel: Sei
$$M = \{\{A_1, A_2\}, \{\neg A_1, A_3\}, \{\neg A_2, \neg A_3\}\} = \operatorname{Res}^0(M)$$

 $\operatorname{Res}^1(M) = \operatorname{Res}^0(M) \cup \{\{A_2, A_3\}, \{A_1, \neg A_3\}, \{\neg A_1, \neg A_2\}\}$
 $\operatorname{Res}^2(M) = \operatorname{Res}^1(M) \cup \{\{A_1, \neg A_1\}, \{A_2, \neg A_2\}, \{A_3, \neg A_3\}\}$
 $\operatorname{Res}^3(M) = \operatorname{Res}^2(M) = \operatorname{Res}^*(M)$

Resolutionshülle

Definition

Sei *M* eine Klauselmenge. Wir definieren:

$$Res(M) = M \cup \{R \mid R \text{ ist Resolvente zweier Klauseln aus } M\}$$

Außerdem setzen wir:

$$\operatorname{Res}^{0}(M) = M$$
 $\operatorname{Res}^{i+1}(M) = \operatorname{Res}(\operatorname{Res}^{i}(M))$
 $\operatorname{Res}^{*}(M) = \bigcup_{i \in \mathbb{N}} \operatorname{Res}^{i}(M)$

Einfache Eigenschaften:

- $\operatorname{Res}^{i}(M) \subseteq \operatorname{Res}^{i+1}(M)$ für $i \ge 0$
- Wenn $M' \subseteq M$, dann $Res^*(M') \subseteq Res^*(M)$
- $M = \operatorname{Res}^{1}(M) = \operatorname{Res}^{2}(M) = \dots = \operatorname{Res}^{*}(M)$
- $|\text{Res}^*(M)| \le 2^{2n} = 4^n \text{ falls } |s(M)| = n$

Resolutionssatz

Theorem (Robinson, 1965)

Sei M eine endliche Klauselmenge. Es gilt:

M unerfüllbar gdw. $\square \in Res^*(M)$

Beweis:

- (\Leftarrow) Wenn $\Box \in \text{Res}^*(M)$, dann $\text{Res}^*(M)$ unerfüllbar. Wegen Resolutionslemma folgt M unerfüllbar. (Korrektheit) (\Rightarrow) Sei M unerfüllbar, dann $M \neq \emptyset$. Wir beweisen $\Box \in \text{Res}^*(M)$
- (⇒) Sei M unerfüllbar, dann $M \neq \emptyset$. Wir beweisen $\square \in \text{Res}^*(M)$ über Anzahl Atome in M, d.h. |s(M)|.
 - Sei |s(M)| = 0. Dann $M = \{\Box\}$ und somit unerfüllbar. (IA)
 - Sei |s(M)| = n + 1. Wähle ein $A \in s(M)$ und setze

$$M^{0} = \{C \setminus A \mid \neg A \notin C, C \in M\}, M^{1} = \{C \setminus \neg A \mid A \notin C, C \in M\}$$

Da M unerfüllbar, sind auch M^0 und M^1 unerfüllbar, denn sei z.B. $I(M^0) = 1$, dann I'(M) = 1 mit $I'(A_i) = 0$, falls $A_i = A$; und $I'(A_i) = I(A_i)$ sonst. Fall $I(M^1) = 1$ analog. Nach (IV) $\square \in \text{Res}^*(M^0)$ und $\square \in \text{Res}^*(M^1)$.

ScaDS.All

Resolutionssatz

Theorem (Robinson, 1965)

Sei M eine endliche Klauselmenge. Es gilt:

M unerfüllbar gdw. $\square \in \text{Res}^*(M)$

Beweis:

(⇒) $M^0 = \{C \setminus A \mid \neg A \notin C, C \in M\}$, $\square \in \text{Res}^*(M^0)$. Somit existiert Folge C_1, \ldots, C_m mit 1. $C_m = \square$, und 2. $C_i \in M^0$, oder C_i Resolvente von C_k und C_l mit k, l < i. Definiere Folge C'_1, \ldots, C'_m mit

- Falls $C_i \in M^0$ und $C_i \in M$, dann setze $C_i' = C_i$ $(C_i' \in M)$
- Falls $C_i \in M^0$ und $C_i \notin M$, dann setze $C_i' = C_i \cup \{A\}$ $(C_i' \in M)$
- Falls $C_i \notin M^0$, dann C_i Resolvente von C_k und C_l nach L. Setze C_i' Resolvente von C_k' und C_l' nach L ($C_i' \in \text{Res}^*(M)$)

Somit: $C'_m = \square$ od. $C'_m = \{A\}$ $(\square \in \operatorname{Res}^*(M) \text{ od. } \{A\} \in \operatorname{Res}^*(M))$ Analog für Folge aus M^1 . $(\square \in \operatorname{Res}^*(M) \text{ od. } \{\neg A\} \in \operatorname{Res}^*(M))$ Für alle Kombinationen $\square \in \operatorname{Res}^*(M)$. (Korrektheit)

Graphische □-Deduktion

$$M = \{\{A_1\}, \{\neg A_2, A_4\}, \{\neg A_1, A_2, A_4\}, \{A_3, \neg A_4\}, \{\neg A_1, \neg A_3, \neg A_4\}\}\}$$

$$\{\neg A_1, A_2, A_4\} \qquad \{\neg A_2, A_4\} \qquad \{A_1\} \qquad \{A_3, \neg A_4\} \qquad \{\neg A_1, \neg A_3, \neg A_4\}$$

$$\{\neg A_1, A_4\} \qquad \qquad \{\neg A_1, \neg A_4\}$$

- □-Deduktion enthält nicht alle möglichen Resolventen. Hier zum Beispiel {¬A₂, A₃} ∈ Res*(M) nicht verwendet
- Aber! Es gibt unerfüllbare Mengen M, für die jede
 □-Deduktion exponentiell lang ist. (Satz von Haken, 1985)

Kompaktheitssatz

- zentraler Satz der AL
- Werkzeug um semantische Eigenschaften unendlicher Mengen mithilfe von endlichen Teilmengen zu beweisen

Proposition

Gegeben eine Formelmenge $T \subseteq \mathcal{F}$. Es gilt:

T erfüllbar gdw. jede endliche TM $T' \subseteq T$ ist erfüllbar

Beweis:

- (⇒) Sei T erfüllbar, d.h. $Mod(T) \neq \emptyset$. Aufgrund der Antimonotonie folgt mit $T' \subseteq T$, sofort $Mod(T) \subseteq Mod(T')$.
- (⇐) Definiere $T_n = \{\phi \in T \mid s(\phi) \subseteq \{A_1, \dots, A_n\}\}$. Es existieren endliche TM $T'_n \subseteq T_n$ mit:
 - für jedes $\phi \in T_n$, existiert $\phi' \in T'_n$ mit $\phi \equiv \phi'$
 - $|T'_n| \leq 2^{2^n}$

(Warum?)

Kompaktheitssatz

Proposition

Gegeben eine Formelmenge $T \subseteq \mathcal{F}$. Es gilt:

T erfüllbar gdw. jede endliche TM $T' \subseteq T$ ist erfüllbar

- (⇐) Definiere $T'_n \subseteq T_n = \{\phi \in T \mid s(\phi) \subseteq \{A_1, \dots, A_n\}\}$ mit:
 - für jedes $\phi \in T_n$, existiert $\phi' \in T'_n$ mit $\phi \equiv \phi'$
 - $|T_n'| \le 2^{2^n}$

Per Definition $Mod(T_n) = Mod(T'_n)$ und nach Annahme (da T'_n endlich) existiert $I_n \in Mod(T_n)$. Konstruiere nun ein $I \in Mod(T)$: Setze $J_0 = \mathbb{N}$ und definiere schrittweise $I(A_1), I(A_2), \ldots$ wie folgt

- $I(A_n) = 1$, falls unendlich viele $j \in J_{n-1}$ mit $I_j(A_n) = 1$ existieren; setze $J_n = \{j \in J_{n-1} \mid I_j(A_n) = 1\}$
- Andernfalls, $I(A_n) = 0$; und setze $J_n = \{j \in J_{n-1} \mid I_j(A_n) = 0\}$

Kompaktheitssatz

Proposition

Gegeben eine Formelmenge $T \subseteq \mathcal{F}$. Es gilt:

T erfüllbar gdw. jede endliche TM $T' \subseteq T$ ist erfüllbar

Es gilt:

- ② $|J_n| = |\mathbb{N}|$ für alle $n \in \mathbb{N}$ (unendl. viele Indizes)
- § für alle $n \in \mathbb{N}$ und $j \in J_n$ gilt: (evaluieren gleich) $I_j(A_1) = I(A_1), \quad I_j(A_2) = I(A_2), \quad \dots \quad I_j(A_n) = I(A_n)$
- (Konstruktion ist Modell) Beweis: Sei $\phi \in T$, dann ex. $n \in \mathbb{N}$: $\phi \in T_i$ für alle $i \ge n$. Also, ist $I_i(\phi) = 1$ für alle $i \ge n$. Da J_n unendlich, ex. ein Index $j \ge n$ mit $j \in J_n$. Für dieses j gilt: $I_j(A_1) = I(A_1), \ldots, I_j(A_n) = I(A_n)$. Da $j \ge n$ ist $I_i(\phi) = 1$ somit $I(\phi) = 1$ und schließlich, I(T) = 1.

Anwendungen des Kompaktheitssatz

Theorem (Resolutionssatz für unendliche Mengen)

Sei M eine Klauselmenge. Es gilt:

M unerfüllbar gdw. $\square \in \text{Res}^*(M)$

Beweis:

- (←) analog zum endlichen Fall
- (⇒) Sei M unerfüllbar, dann ex. endl. TM $M' \subseteq M$ unerfüllbar.

Somit nach Resolutionssatz endlicher Fall $\square \in \text{Res}^*(M')$.

Schließlich wegen ⊆-Monotonie von Res* folgt \square ∈ Res*(M).

Theorem (Färbbarkeit für unendliche Graphen)

Sei G ein ungerichteter Graph. Es gilt:

G ist k-färbbar gdw. jeder endl. Untergraph von G ist k-färbbar

Beweis/Erklärungen: Tafel

Theorem (Craig, 1957)

Gegeben zwei Formeln $\phi, \psi \in \mathcal{F}$ mit der Eigenschaft $\phi \models \psi$. Dann existiert eine Interpolante $\xi \in \mathcal{F}$ mit:

(Schnittsprache)

(Vermittlerin)

Bsp.: Für $\phi = A_1 \wedge A_2$, $\psi = A_1 \vee A_3$ wäre $\xi = A_1$ eine Interpolante.

• Substitution
$$[\xi/A_i]: \mathcal{F} \to \mathcal{F}$$
 mit $\phi \mapsto \phi[\xi/A_i]$ $(A_i \in \mathcal{A}, \xi \in \mathcal{F})$

$$A_{j}[\xi/A_{i}] = \begin{cases} \xi & , i = j \\ A_{j} & , \text{ sonst} \end{cases}$$

$$(\neg \phi)[\xi/A_i] = \neg \left(\phi[\xi/A_i]\right)$$

$$(\phi \circ \psi)[\xi/A_i] = \phi[\xi/A_i] \circ \psi[\xi/A_i] \quad \mathsf{mit} \circ \in \{\land, \lor\}$$

(ersetze in ϕ jedes Vorkommen von A_i durch ξ)

Theorem (Craig, 1957)

Gegeben zwei Formeln $\phi, \psi \in \mathcal{F}$ mit der Eigenschaft $\phi \models \psi$. Dann existiert eine Interpolante $\xi \in \mathcal{F}$ mit:

(Schnittsprache)

(Vermittlerin)

Bsp.: Für $\phi = A_1 \wedge A_2$, $\psi = A_1 \vee A_3$ wäre $\xi = A_1$ eine Interpolante.

• Gegeben Interpretation $I \in \mathcal{B}$. Definiere

$$I_{[A_i\mapsto 1]}(A_j) = \begin{cases} 1 & , i=j \\ I(A_j) & , \text{ sonst} \end{cases}$$

(punktuelle Änderung von /)

• Für jedes $\phi \in \mathcal{F}$ gilt:

(Übung 4)

$$I_{[A\mapsto 1]}(\phi) = I(\phi[\top/A])$$
 $I_{[A\mapsto 0]}(\phi) = I(\phi[\bot/A])$

Theorem (Craig, 1957)

Gegeben zwei Formeln $\phi, \psi \in \mathcal{F}$ mit der Eigenschaft $\phi \models \psi$. Dann existiert eine Interpolante $\xi \in \mathcal{F}$ mit:

(Schnittsprache)

(Vermittlerin)

Beweis: vollständige Induktion über $|s(\phi) \setminus s(\psi)|$

- n = 0, d.h. $s(\phi) \subseteq s(\psi)$. Somit $s(\phi) \cap s(\psi) = s(\phi)$. Setze $\xi = \phi$. Offensichtlich, $\phi \models \xi$ und $\xi \models \psi$. (IA)
- Existenz einer Interpolante für $|s(\phi) \setminus s(\psi)| = n$. (IV)
- Sei $|s(\phi) \setminus s(\psi)| = n+1$ und $A \in s(\phi) \setminus s(\psi)$. Betrachte $\phi_1 = \phi[\top/A]$ und $\phi_2 = \phi[\bot/A]$. Für jedes $I \in \mathcal{B}$ gilt: $I = I_{[A \mapsto 1]}$ oder $I = I_{[A \mapsto 0]}$. Somit $\phi \models \phi_1 \lor \phi_2$. Des Weiteren ist mit $I(\phi_1) = 1$ auch $I_{[A \mapsto 1]}(\phi) = 1$ und somit $I_{[A \mapsto 1]}(\psi) = 1$. Da $A \notin s(\psi)$ folgt mit Koinzidenzsatz $I(\psi) = 1$. Folglich $\phi_1 \models \psi$ und analog $\phi_2 \models \psi$.

Theorem (Craig, 1957)

Gegeben zwei Formeln $\phi, \psi \in \mathcal{F}$ mit der Eigenschaft $\phi \models \psi$. Dann existiert eine Interpolante $\xi \in \mathcal{F}$ mit:

(Schnittsprache)

(Vermittlerin)

Beweis: vollständige Induktion über $|s(\phi) \setminus s(\psi)|$

- n = 0, d.h. $s(\phi) \subseteq s(\psi)$. Somit $s(\phi) \cap s(\psi) = s(\phi)$. Setze $\xi = \phi$. Offensichtlich, $\phi \models \xi$ und $\xi \models \psi$. (IA)
- Existenz einer Interpolante für $|s(\phi) \setminus s(\psi)| = n$. (IV)
- Folglich $\phi_1 \vDash \psi$ und $\phi_2 \vDash \psi$. Da $|s(\phi_1) \setminus s(\psi)| = n$ und $|s(\phi_2) \setminus s(\psi)| = n$ existieren nach IV Interpolanten ξ_1, ξ_2 mit:

$$\phi_1 \vDash \xi_1, \ \xi_1 \vDash \psi \quad \text{und} \quad \phi_2 \vDash \xi_2, \ \xi_2 \vDash \psi$$

Daraus folgt $\phi_1 \lor \phi_2 \vDash \xi_1 \lor \xi_2$ und $\xi_1 \lor \xi_2 \vDash \psi$. Schließlich gilt mit $\phi \vDash \phi_1 \lor \phi_2$ auch $\phi \vDash \xi_1 \lor \xi_2$.

Theorem (Craig, 1957)

Gegeben zwei Formeln $\phi, \psi \in \mathcal{F}$ mit der Eigenschaft $\phi \models \psi$. Dann existiert eine Interpolante $\xi \in \mathcal{F}$ mit:

(Schnittsprache)

(Vermittlerin)

Beweis: vollständige Induktion über $|s(\phi) \setminus s(\psi)|$

- n = 0, d.h. $s(\phi) \subseteq s(\psi)$. Somit $s(\phi) \cap s(\psi) = s(\phi)$. Setze $\xi = \phi$. Offensichtlich, $\phi \models \xi$ und $\xi \models \psi$. (IA)
- Existenz einer Interpolante für $|s(\phi) \setminus s(\psi)| = n$. (IV)
- Folglich $\phi_1 \vDash \psi$ und $\phi_2 \vDash \psi$. Da $|s(\phi_1) \setminus s(\psi)| = n$ und $|s(\phi_2) \setminus s(\psi)| = n$ existieren nach IV Interpolanten ξ_1, ξ_2 mit:

$$\phi_1 \vDash \xi_1, \ \xi_1 \vDash \psi \quad \text{und} \quad \phi_2 \vDash \xi_2, \ \xi_2 \vDash \psi$$

Daraus folgt $\phi_1 \lor \phi_2 \vDash \xi_1 \lor \xi_2$ und $\xi_1 \lor \xi_2 \vDash \psi$. Schließlich gilt mit $\phi \vDash \phi_1 \lor \phi_2$ auch $\phi \vDash \xi_1 \lor \xi_2$.

Abschlußbemerkungen zur AL

Eindeutige Rekonstruierbarkeit
Funktionale Vollständigkeit
Lineare, Input, Unit Resolution ...
Kalküle
Intuitionistische Logik
Mehrwertige Logiken
Infinitäre Logik

Vorlesung "Logik"

10-201-2108-1

5. Kompaktheit und Interpolation

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

15. Mai 2025 Leipzig

