ResearchAI

sampath kovvali

July 14, 2023

Notation

This section provides a concise reference describing the notation used throughout this document.

- Numbers and Arrays
- a A scalar (integer or real)
- a A vector written as a column vector
- $\max(\boldsymbol{a})$ max of \boldsymbol{a} , output is a scalar
 - A A matrix
 - **A** A tensor
 - I_n Identity matrix with n rows and n columns
 - I Identity matrix with dimensionality implied by context
 - $e^{(i)}$ Standard basis vector $[0, \dots, 0, 1, 0, \dots, 0]$ with a 1 at position i
- $\operatorname{diag}(\boldsymbol{a})$ A square, diagonal matrix with diagonal entries given by \boldsymbol{a}
 - a A scalar random variable
 - a A vector-valued random variable
 - A A matrix-valued random variable

Sets and Graphs

A A set

 \mathbb{R} The set of real numbers

 $\{0,1\}$ The set containing 0 and 1

 $\{0, 1, \dots, n\}$ The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

 $\mathbb{A}\setminus\mathbb{B}$ Set subtraction, i.e., the set containing the elements of \mathbb{A} that are not in \mathbb{B}

 \mathcal{G} A graph

Indexing

 a_i Element i of vector \boldsymbol{a} , with indexing starting at 1

 a_{-i} All elements of vector \boldsymbol{a} except for element i

 $A_{i,j}$ Element i, j of matrix \boldsymbol{A}

 $\boldsymbol{A}_{i,:}$ Row *i* of matrix \boldsymbol{A}

 $A_{::i}$ Column i of matrix A

 $A_{i,j,k}$ Element (i,j,k) of a 3-D tensor **A**

 $\mathbf{A}_{:,:,i}$ 2-D slice of a 3-D tensor

 \mathbf{a}_i Element i of the random vector \mathbf{a}

Linear Algebra Operations

$$\mathbf{A}^{\top}$$
 Transpose of matrix \mathbf{A}

$$A^+$$
 Moore-Penrose pseudo inverse of A

$$m{A}\odot m{B}$$
 Element-wise (Hadamard) product of $m{A}$ and $m{B}$

$$\det(\mathbf{A})$$
 Determinant of \mathbf{A}

$$\boldsymbol{x}\boldsymbol{A}$$
 vector matrix product

Calculus

$$\frac{dy}{dx}$$
 Derivative of y with respect to x

$$\frac{\partial y}{\partial x}$$
 Partial derivative of y with respect to x

$$\nabla_{\boldsymbol{x}} y$$
 Gradient of y with respect to \boldsymbol{x}

$$\nabla_{\boldsymbol{X}} y$$
 Matrix derivatives of y with respect to \boldsymbol{X}

$$\nabla_{\mathbf{X}} y$$
 Tensor containing derivatives of y with respect to \mathbf{X}

$$\frac{\partial f}{\partial \boldsymbol{x}}$$
 Jacobian matrix $\boldsymbol{J} \in \mathbb{R}^{m \times n}$ of $f : \mathbb{R}^n \to \mathbb{R}^m$

$$\nabla_{\boldsymbol{x}}^2 f(\boldsymbol{x})$$
 or $\boldsymbol{H}(f)(\boldsymbol{x})$ The Hessian matrix of f at input point \boldsymbol{x}

$$\nabla_{\boldsymbol{x}}^2 f(\boldsymbol{x})$$
 or $\boldsymbol{H}(f)(\boldsymbol{x})$ The Hessian matrix of f at input point \boldsymbol{x}

$$\int f(\boldsymbol{x}) d\boldsymbol{x}$$
 Definite integral over the entire domain of \boldsymbol{x}

$$\int_{\mathbb{S}} f(\boldsymbol{x}) d\boldsymbol{x}$$
 Definite integral with respect to \boldsymbol{x} over the set

Probability and Information Theory

a⊥b	The random variables a and b are independent
$a \perp b \mid c$	They are conditionally independent given c
P(a)	A probability distribution over a discrete variable
p(a)	A probability distribution over a continuous variable, or over a variable whose type has not been specified
$a \sim P$	Random variable a has distribution P
$\mathbb{E}_{\mathbf{x} \sim P}[f(x)]$ or $\mathbb{E}f(x)$	Expectation of $f(x)$ with respect to $P(x)$
Var(f(x))	Variance of $f(x)$ under $P(x)$
Cov(f(x), g(x))	Covariance of $f(x)$ and $g(x)$ under $P(x)$
H(x)	Shannon entropy of the random variable x
$D_{\mathrm{KL}}(P\ Q)$	Kullback-Leibler divergence of P and Q
$\mathcal{N}(oldsymbol{x};oldsymbol{\mu},oldsymbol{\Sigma})$	Gaussian distribution over ${\boldsymbol x}$ with mean ${\boldsymbol \mu}$ and covariance ${\boldsymbol \Sigma}$

Functions

- $f: \mathbb{A} \to \mathbb{B}$ The function f with domain A and range B
 - $f \circ g$ Composition of the functions f and g
 - $f(x; \theta)$ A function of x parameterized by θ . (Sometimes we write f(x) and omit the argument θ to lighten notation)
 - $\log x$ Natural logarithm of x
 - $\sigma(x)$ Logistic sigmoid, $\frac{1}{1 + \exp(-x)}$
 - $\zeta(x)$ Softplus, $\log(1 + \exp(x))$
 - $||\boldsymbol{x}||_p$ L^p norm of \boldsymbol{x}
 - $\delta_{i,j}$ Kronecker delta function, $\begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$
 - $||\boldsymbol{x}||$ L^2 norm of \boldsymbol{x}
 - x^+ Positive part of x, i.e., max(0, x)

Datasets and Distributions

- \mathbb{X} A set of training examples
- $x^{(i)}$ The *i*-th example (input) from a dataset
- $y^{(i)}$ The target associated with $\boldsymbol{x}^{(i)}$ for supervised learning
- $\hat{y}^{(i)}$. The predicted value associated with $\boldsymbol{x}^{(i)}$ for supervised learning
- $m{X}$ The $m \times n$ matrix with input example $m{x}^{(i)}$ in row $m{X}_{i,:}$

Introduction

The motivation behind writing this book is to understand the math behind machine learning algorithms.

1 Linear Algebra

Transposition of a matrix is give by $\left(\boldsymbol{A}^{\top}\right)_{i,j} = \boldsymbol{A}_{j,i}$

Algorithm 1: Matrix transposition

```
1 Define Transpose (A):
      Require: A, the matrix to transpose, size m \times n
      Create an empty matrix B with dimensions m \times n
\mathbf{2}
      for i = 1 to m do
3
          for j = 1 to n do
4
             oldsymbol{B}_{i,j} = oldsymbol{A}_{j,i}
5
          end for
6
      end for
7
      Return B
8
```

1.1 Multiplying Matrices, Vectors, Scalars and their combine operations

Matrix Addition is given by $C_{i,j} = A_{i,j} + B_{i,j}$ simply written as C = A + B

Algorithm 2: Addition of two matrices

```
1 Define Addition (A, B):
       Require: A, size m \times n
       Require: \boldsymbol{B}, size m \times n
       Create an empty matrix C with dimensions m \times n
\mathbf{2}
3
       for i = 1 to m do
           for j = 1 to n do
4
               oldsymbol{C}_{i,j} = oldsymbol{A}_{i,j} + oldsymbol{B}_{i,j}
\mathbf{5}
           end for
6
       end for
7
       Return C
```

Matrix multiplication is give by $C_{i,j} = \sum_k A_{i,k} B_{k,j}$ simply written as C = AB

Algorithm 3: Multiplication of two matrices

```
1 Define Multiplication (A, B):
        Require: A, size m \times n
        Require: \boldsymbol{B}, size n \times p
        Create an empty matrix C with dimensions m \times p
 2
        for i = 1 to m do
 3
            for j = 1 to p do
 4
                 C_{i,j} = 0
 5
                 for k = 1 to n do
 6
                    oldsymbol{C}_{i,j} = oldsymbol{C}_{i,j} + oldsymbol{A}_{i,k} oldsymbol{B}_{k,j}
                 end for
            end for
        end for
10
        Return C
11
```

Element-wise Matrix multiplication is give by $C_{i,j} = A_{i,j}B_{i,j}$ simply written as $C = A \odot B$

Algorithm 4: Element-wise multiplication of two matrices

```
1 Define Multiplication (A, B):
       Require: \boldsymbol{A}, size m \times n
       Require: B, size m \times m
       Create an empty matrix C with dimensions m \times n
\mathbf{2}
       for i = 1 to m do
3
           for j = 1 to n do
4
               oldsymbol{C}_{i,j} = oldsymbol{A}_{i,j} oldsymbol{B}_{i,j}
           end for
6
       end for
7
       Return C
8
```

Vector addition is give by $c_i = a_i + b_i$ simply written as c = a + b

```
Algorithm 5: Vector addition of two vectors

1 Define Addition(a, b):

Require: a, size m
Require: b, size m

Create an empty vector c with dimensions m

for i = 1 to m do

c_i = a_i + b_i

end for

Return c
```

Vector dot product is give by $c = \sum_i a_i b_i$ simply written as $c = a^{\top} b$

Algorithm 6: Vector dot product

```
1 Define Addition(a, b):

Require: a, size m
Require: b, size m

2 for i = 1 to m do

3 c = c + a_i b_i
4 end for
5 Return c
```

Vector matrix product is give by $\boldsymbol{c}^{\top} = \sum_k \boldsymbol{a}_k \boldsymbol{B}_{i,k}$ simply written as $\boldsymbol{c}^{\top} = \boldsymbol{a}^{\top} \boldsymbol{B}$

Algorithm 7: Vector matrix product

```
1 Define Multiplication (a, B):
        Require: \boldsymbol{a}, size m
        Require: \boldsymbol{B}, size m \times n
        Create an empty vector \boldsymbol{c} with dimensions m
\mathbf{2}
        for i = 1 to n do
3
             for j = 1 to m do
4
                 oldsymbol{c}_j = oldsymbol{c}_j + oldsymbol{a}_j oldsymbol{B}_{j,i}
5
             end for
6
        end for
7
        Return c^{\top}
8
```

Matrix vector addition is give by $C_{i,j} = A_{i,j} + b_j$ simply written as $C = A + b^{\top}$ where each row of A is added with b^{\top} also called as broadcasting.

Algorithm 8: Matrix vector addition

```
1 Define Multiplication(a, B):
| Require: B, size m \times n
       Require: a, size n
       Create an empty matrix C with dimensions m \times n
\mathbf{2}
       for i = 1 to m do
3
            for j = 1 to n do
4
             ig| oldsymbol{C}_{i,j} = oldsymbol{A}_{i,j} + oldsymbol{b}_j
\mathbf{5}
            end for
6
       end for
7
       Return C
8
```

Neural Networks

The working principles and architectures of various NN are inspired from many papers.

2 Layers

All types of layers for any type of networks.

2.1 Dense

These are the full connected, where one layer's output is input to the next layer's during **forward pass** and the reverse when using **backpropagration** algorithm.

Figure 1: Simple feed forward network of one **Dense** layer with 2 inputs x1, x2 and two hidden units h1, h2 and one output y. And each **connection** arrow represents a weight and each **hidden unit** has corresponding bias.

For the hidden layer if the inputs be x, weights be W where $W_{0,:}$ the connections from x1 to h and so on, biases b. Then output o is given by

$$\boldsymbol{o} = \boldsymbol{x}^{\top} \boldsymbol{W} + \boldsymbol{b}^{\top} \tag{1}$$

Reference Algorithms 7 and 5

Batched data

If the inputs are to be passed as a batch of data X, where $X_{0,:}$ is the first batch then the output O for one layer is computed as

$$\boldsymbol{O} = \boldsymbol{X}\boldsymbol{W} + \boldsymbol{b}^{\top} \tag{2}$$

Reference Algorithms 3 and 8

Backpropagation

let G be the incoming gradients during back-propagation using chain rule then,

- ullet X grads are computed as $GW^{ op}$
- ullet W grads are computed as $X^{ op}G$
- \boldsymbol{b} grads are computed as $\sum_{i} \boldsymbol{G}_{i,j}, \forall j$, simply sum along axis=0.

```
Algorithm 9: bias grads
1 Define Grad(G):
       Require: G, incoming gradients of size m \times n
       Create a vector \mathbf{g} of size n
2
       for j = 1 to n do
3
           for i = 1 to n do
4
               \boldsymbol{g}_{i} = \boldsymbol{g}_{i} + \boldsymbol{G}i, j
\mathbf{5}
           end for
6
       end for
7
       Return g
8
```

3 Activation functions

All types of activation's for any layers.

3.1 ReLU

Rectified Linear Unit

After the forward pass, we can get activated output by

$$ReLU(z) = \max\{0, z\} \tag{3}$$

Figure 2: ReLU function

Algorithm 10: Rectified Linear Unit

```
1 Define ReLU(z):
      Require: z, input to ReLU function
      Create a scalar y
\mathbf{2}
      if z \geq 0 then
3
          y = z
4
      else
\mathbf{5}
        y = 0
6
      end if
7
      Return y
8
```

Backpropagation

To computer gradients

$$\frac{d}{dz} \text{ReLU}(z) = \begin{cases} 1, & \text{if } z \ge 0\\ 0, & \text{otherwise} \end{cases}$$
 (4)

Algorithm 11: Rectified Linear Unit grad

```
1 Define Grad(z):

Require: z, input to ReLU function

Create a scalar y

if z \ge 0 then

y = 1

else

y = 0

end if

Return y
```

3.2 Softmax

It is usually used in the output layer.

$$\operatorname{softmax}(\boldsymbol{x})_i = \frac{\exp(x_i)}{\sum_j \exp(x_j)}$$
 (5)

so $\hat{y}_i = \operatorname{softmax}(\boldsymbol{x})_i$

3.2.1 Numerical stability

For overflow prevention $\boldsymbol{x} = \boldsymbol{x} - \max(\boldsymbol{x})$.

- All exponential values will be between 0 and 1.
- This prevents overflow errors (but we are still prone to under-flows)
- At least one of the exponential values is 1 i.e. at least one value is guaranteed not to underflow
- Our denominator will always be ≥ 1 , preventing division by zero errors.
- We have at least one non-zero numerator, so softmax can't result in a zero vector

[1]

```
Algorithm 12: Softmax
```

```
1 Define Softmax(x):
       Require: x, logits
       Let the length of the vector be m
 2
       Create a vector \hat{\boldsymbol{y}} of size m
 3
       Create a vector e of size m to store the exponents
 4
       Create a scalar s to store the sum of exponents vector e
 5
       // numerical stability
 6
       for i = 1 to m do
 7
          x_i = x_i - \max(x_i)
 8
       end for
 9
       // exponents
10
       for i = 1 to m do
11
       e_i = \exp(x_i)
12
       end for
13
       // sum of exponents
14
       for i = 1 to m do
15
         s = s + e_i
16
       end for
17
       // probabilities of exponents
18
       for i = 1 to m do
19
        \hat{y}_i = \frac{e_i}{\hat{x}}
20
       end for
\mathbf{21}
       Return \hat{y}
22
```

Backpropagation

To computer gradients

$$\frac{\partial \hat{y}_i}{\partial x_j} = \hat{y}_i (\delta_{i,j} - \hat{y}_j) \tag{6}$$

The result is a **Jacobian Matrix**

$$J = \begin{bmatrix} \frac{\partial \hat{y}_1}{\partial x_1} & \frac{\partial \hat{y}_1}{\partial x_2} & \cdots & \frac{\partial \hat{y}_1}{\partial x_m} \\ \frac{\partial \hat{y}_2}{\partial x_1} & \frac{\partial \hat{y}_2}{\partial x_2} & \cdots & \frac{\partial \hat{y}_2}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \hat{y}_m}{\partial x_1} & \frac{\partial \hat{y}_m}{\partial x_2} & \cdots & \frac{\partial \hat{y}_m}{\partial x_m} \end{bmatrix}$$
 (7)

4 Cost functions

4.1 Cross Entropy

Cross-entropy is a measure from the field of information theory that calculates the difference between two probability distributions. It is commonly used in machine learning as a loss function.

$$L(y, \hat{y}) = -\sum_{i} y^{(i)} \log \hat{y}^{(i)}$$
 (8)

4.1.1 Numerical stability

Cross-entropy results in **inf** because of $\log(0)$ so, we need to clip inputs from both sides by a small positive value like 1×10^{-7} .

Algorithm 13: Cross Entropy

```
1 Define CrossEntropy(y, \hat{y}):
      Require: y, target vector
      Require: \hat{y}, prediction vector
      Let the length of the vector be m
2
      Create a scalar l
3
      Clip the values of \hat{y} by 1 \times 10^{-7} from both sides
4
      for i = 1 to m do
\mathbf{5}
          l = l + y_i \log \hat{y}_i
6
      end for
7
      Return l
8
```

Backpropagation

To computer gradients

$$\frac{\partial L(y,\hat{y})}{\partial \hat{y}_i} = -\frac{y_i}{\hat{y}_i} \tag{9}$$

Algorithm 14: Cross Entropy Grad

```
1 Define CrossEntropyGrad(y, \hat{y}):

Require: y, target vector

Require: \hat{y}, prediction vector

2 Create a vector g

3 Let the length of each vector be m

4 for i = 1 to m do

5 g_i = -\frac{y_i}{\hat{y}_i}

6 end for

7 Return g
```

5 Optimizers

5.1 SGD

Stochastic Gradient Descent

References

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016, p. 78. URL: http://www.deeplearningbook.org.