MI-FME Cvičení 4

Tomáš Chvosta

Březen 2020

Cvičení 4a

Úloha byla vypracována na cvičení.

Cvičení 4b

Zadání:

Dokažte následující formuli:

$$[(\forall x)(P(x) \land Q(x))] \Rightarrow [[(\forall x)(P(x))] \land [(\forall x)(Q(x))]]$$

Důkaz:

Jelikož se jedná o implikaci, můžeme předpokládat $(\forall x)(P(x) \land Q(x))$ a dokázat $[[(\forall x)(P(x))] \land [(\forall x)(Q(x))]$. Znamená to tedy, že máme dokázat zvlášť $(\forall x)(P(x))$ a $(\forall x)(Q(x))$. Pokud dokazujeme $(\forall x)(P(x))$, zavedeme novou konstantu, například a a píšeme: "Nechť a je libovolné ale pevné" a dokážeme $P[x \leftarrow a]$ tedy P(a). Z předpokladu $(\forall x)(P(x) \land Q(x))$ můžeme produkovat nové známé věci. Například zvolíme term a a usoudíme $P(a) \land Q(a)$. Z tohoto předpokladu můžeme usoudit P(a) a Q(a). Tím máme dokázáno P(a). Stejně tak postupujeme při dokazování $(\forall x)(Q(x))$. Zavedeme novou konstantu, například b a píšeme: "Nechť b je libovolné ale pevné" a dokážeme Q(b). Z předpokladu $(\forall x)(P(x) \land Q(x))$ můžeme produkovat nové známé věci. Například zvolíme term b a usoudíme $P(b) \land Q(b)$. Z tohoto předpokladu můžeme usoudit P(b) a Q(b). Tím máme dokázáno Q(b).

Tabulka 1: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
1.	$(\forall x)(P(x) \land Q(x))$	$[(\forall x)(P(x))] \wedge [(\forall x)(Q(x))]$
2.		$(\forall x)(P(x)) \\ (\forall x)(Q(x))$
3.		P(a)
4.	$P(a) \wedge Q(a)$	P(a)
5.	P(a) $Q(a)$	P(a)
6.		Q(b)
7.	P(b) $Q(b)$	Q(b)

Cvičení 4c

Zadání:

Dokažte následující formuli:

$$[(\exists x)(P(f(x)) \lor Q(g(x)))] \Rightarrow [[(\exists x)(P(x))] \lor [(\exists x)(Q(x))]]$$

Důkaz:

Pro důkaz formule nejprve předpokládejme $(\exists x)(P(f(x)) \lor Q(g(x)))$ a dokažme $[(\exists x)(P(x))] \lor [(\exists x)(Q(x))]$. Pro první předpoklad zvolme novou konstantu tak, že $x \leftarrow a$ a tedy platí $P(f(a)) \lor Q(g(a))$. Disjunkci dokážeme například tak, že předpokládáme $\neg[(\exists x)(P(x))]$ a dokážeme $[(\exists x)(Q(x))]$.

Nyní rozdělíme důkaz na dvě části. Nejprve předpokládejme, že platí P(f(a)). Dokážeme lemma $(\exists x)(P(x))$ jelikož se přímo nabízí zvolit term f(a) a dokázat $P[x \leftarrow f(a)]$ tedy P(f(a)), což je ale triviálně dokázáno, neboť P(f(a)) máme v předpokladech. V této části důkazu záskáváme spor.

V druhé části předpokládejme, že platí Q(g(a)). Nyní už stačí jen zvolit term g(a) a dokázat, že platí $Q[x \leftarrow g(a)]$ tedy Q(g(a)). To je triviálně dokázáno, neboť Q(g(a)) už máme v předpokladech.

Tabulka 2: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
1.	$(\exists x)(P(f(x)) \lor Q(g(x)))$	$[(\exists x)(P(x))] \vee [(\exists x)(Q(x))]$
2.	$P(f(a)) \vee Q(g(a))$	$[(\exists x)(P(x))] \vee [(\exists x)(Q(x))]$
3.	$\neg(\exists x)(P(x))$	$(\exists x)(Q(x))$
4a.	P(f(a))	$(\exists x)(Q(x))$
5a.		lemma $(\exists x)(P(x))$
6a.	$(\exists x)(P(x))\ldots \bot$	
4b.	Q(g(a))	$(\exists x)(Q(x))$
5b.		Q(g(a))

Cvičení 4d

Zadání:

Dokažte následující formuli:

$$[(\exists x)(S \Rightarrow Q(x))] \Rightarrow [S \Rightarrow (\exists x)(Q(x))]$$

Důkaz:

Jelikož se jedná o implikaci, můžeme předpokládat $(\exists x)(S\Rightarrow Q(x))$ a dokázat $S\Rightarrow (\exists x)(Q(x))$. Opět dokazujeme implikaci, takže předpokládáme S a dokážeme $(\exists x)(Q(x))$. Nyní se hodí vyprodukovat novou znalost z prvního předpokladu. Zavedeme novou konstantu a tak, že $(S\Rightarrow Q(x))[x\leftarrow a]$ a přidáme $S\Rightarrow Q(a)$ do seznamu předpokladů. V předpokladech máme implikaci a také předpokládáme, že platí S, můžeme tedy usoudit Q(a). Pro důkaz $(\exists x)(Q(x))$ zvolíme term a, který dosadíme za x a dokážeme Q(a). To je však již triviálně dokázáno.

Tabulka 3: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
1.	$(\exists x)(S \Rightarrow Q(x))$	$S \Rightarrow (\exists x)(Q(x))$
2.	S	$(\exists x)(Q(x))$
3.	$S \Rightarrow Q(a)$	$(\exists x)(Q(x))$
4.	Q(a)	$(\exists x)(Q(x))$
5.		Q(a)

Cvičení 4e

Zadání:

Dokažte následující formuli:

$$[(\neg \exists x)(\exists y)(T(x,y))] \Rightarrow [(\forall x)(\neg T(f(g(x)), f(x)))]$$

Důkaz:

Jelikož dokazujeme implikaci, můžeme předpokládat $(\neg \exists x)(\exists y)(T(x,y))$ a dokázat $(\forall x)(\neg T(f(g(x)),f(x)))$. Zvolme nyní novou konstantu, například a a nechť a je libovolné, ale pevné, a dokažme $\neg T[x \leftarrow a]$ tedy $(\neg T(f(g(a)),f(a)))$. Formuli, před kterou máme negaci, dokážeme tak, že předpokládáme, že platí a pokusíme se najít spor. K tomu abychom našli spor, se nám bude hodit dokázat lemma $(\exists x)(\exists y)(T(x,y))$. To dokážeme tak, že nejprve zvolíme term f(g(a)), dosadíme za x a dokážeme $(\exists y)(T(f(g(a)),y))$ a poté zvolíme term f(a), dosadíme za y a dokážeme T(f(g(a)),f(a)), což už je ale díky předpokladu triviálně dokázáno. Nový předpoklad $(\exists x)(\exists y)(T(x,y))$ vytvoří spor, což úspěšně dokončí důkaz.

Tabulka 4: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
1.	$(\neg \exists x)(\exists y)(T(x,y))$	$(\forall x)(\neg T(f(g(x)), f(x)))$
2.		$(\neg T(f(g(a)), f(a)))$
3.	T(f(g(a)), f(a))	hledáme spor
4.		lemma $(\exists x)(\exists y)(T(x,y))$
5.	$(\exists x)(\exists y)(T(x,y)) \dots \bot$	hledáme spor

Tabulka 5: Důkazová tabulka lemmatu

Krok	Předpokládáme	Dokazujeme
1.	T(f(g(a)), f(a))	lemma $(\exists x)(\exists y)(T(x,y))$
2.		$T[x \leftarrow f(g(a))]$
3.		$(\exists y)(T(f(g(a)),y))$
4.		$T[y \leftarrow f(a)]$
5.		T(f(g(a)), f(a))

Cvičení 4f

Úloha bude vypracována na cvičení.