Ferienkurs Analysis 2 für Physiker	Name:	
Sommersemester 2018		
Probeklausur	Matrikelnummer:	
21.09.18		
Prüfungsdauer: 90 Minuten		

Die Klausur enthält ${\bf 13}$ Seiten (einschließlich dieses Deckblattes) sowie ${\bf 8}$ Fragen. Sie können insgesamt ${\bf 69}$ Punkte erreichen.

Einzig erlaubtes Hilfsmittel ist ein, wenn notwendig beidseitig, handbeschriebenes DIN-A4 Blatt. Insbesondere dürfen keine Fachbücher & Skripte sowie elektronischen Hilfsmittel jeder Art (z.B. Handy, Taschenrechner, Laptop,...) verwendet werden.

Bewertungstabelle

20.010000000000000000000000000000000000									
Aufgabe:	1	2	3	4	5	6	7	8	\sum
Punkte:	9	9	8	4	7	6	12	14	69
Ergebnis:									

Note:	

Viel Erfolg!

1. $\boxed{9 \ Punkte} \ \text{Sei} \ \Phi : Q \to \mathbb{R}^2,$

$$\Phi(x,y) = \begin{pmatrix} \ln\left(\frac{x}{y}\right) \\ 2\sqrt{xy} \end{pmatrix},$$

wobei $Q := \{(x, y) \in \mathbb{R}^2 \, | \, x > 0 \text{ und } y > 0 \}.$

(a) Bestimmen Sie die Ableitung von Φ :

Lösung:

$$D\Phi(x,y) = \begin{pmatrix} \frac{1}{x} & -\frac{1}{y} \\ \sqrt{\frac{y}{x}} & \sqrt{\frac{x}{y}} \end{pmatrix}.$$
 [4]

(b) Kreuzen Sie die richtigen Antworten an:

 $\boxtimes \Phi$ ist stetig. [1]

 \boxtimes Φ ist stetig partiell differenzierbar. [1]

 $\boxtimes D\Phi(x,y)$ ist invertierbar. [1]

 \square $D\Phi(x,y)$ is symmetrisch.

 $\boxtimes \Phi$ ist ein lokaler Diffeomorphismus. [1]

 $\Box \det D\Phi(x,y) = 0.$

 $\boxtimes \Phi(V)$ mit $V := \{(x,y) \in Q \mid x=y\}$ eine eine eindimensionale Untermannigfaltigkeit. [1]

 \Box $\Phi(V)$ mit $V:=\{(x,y)\in Q\,|\, x=y\}$ eine eine zweidimensionale Untermannigfaltigkeit.

2. 9 Punkte Gegeben sei die Kurve $\gamma:(0,1)\to\mathbb{R}^3$,

$$\gamma(t) = \begin{pmatrix} \sqrt{1+t^2} \\ 3 \\ \sqrt{1+t^2} \end{pmatrix}.$$

- (a) Bestimmen Sie die Bogenlänge von γ .
- (b) Sei $I \subset \mathbb{R}$ ein mehrpunktiges Intervall und $\varphi : I \to (0,1)$ eine \mathcal{C}^1 -Parametertransformation. Beweisen Sie, dass $\tilde{\gamma} := \gamma \circ \varphi$ die gleiche Bogenlänge wie γ hat.

Lösung: (a): Es gilt

$$\gamma'(t) = \begin{pmatrix} \frac{t}{\sqrt{1+t^2}} \\ 0 \\ \frac{t}{\sqrt{1+t^2}} \end{pmatrix}.$$
 [2]

Also ist die gesuchte Länge

$$L \stackrel{[1]}{=} \int_0^1 |\gamma'(t)| \, dt = \int_0^1 \frac{\sqrt{2}t}{\sqrt{1+t^2}} \, dt = \sqrt{2} \left[\sqrt{1+t^2} \right]_{t=0}^{t=1} \stackrel{[2]}{=} 2 - \sqrt{2}.$$

(b): Mit der Kettenregel gilt

$$\frac{d}{ds}\tilde{\gamma}(s) = \frac{d}{ds}\gamma(\varphi(s)) = \gamma'(\varphi(s))\varphi'(s).$$
 [1]

Mit der Substitution $t = \varphi(s)$ [2] folgt also

$$\tilde{L} = \int_{I} \left| \frac{d}{ds} \tilde{\gamma}(s) \right| ds = \int_{0}^{1} |\gamma'(t)| dt.$$
 [1]

Zu beachten ist insbesondere, dass $\varphi(I)=(0,1),$ da φ eine \mathcal{C}^1 -Parametertransformation ist.

- 3. 8 Punkte Wir betrachten die Funktion $f: \mathbb{R}^{n \times n} \to \mathbb{R}, f(A) = \det A$.
 - (a) Warum ist f überall differenzierbar?
 - (b) Zeigen Sie, dass $f'_1(H) = \operatorname{tr} H$ für alle $H \in \mathbb{R}^{n \times n}$. Hinweise: 1. Sie dürfen benutzen, dass wenn $f: U \to \mathbb{R}$, $U \subset \mathbb{R}^{n \times n}$ offen, differenzierbar ist in $A \in U$, dann

$$f'_{A}(H) = \lim_{t \to 0} \frac{f(A + tH) - f(A)}{t}.$$

2. Für das charakteristische Polynom $p_A(\lambda)$ einer Matrix $A \in \mathbb{R}^{n \times n}$ gilt, dass

$$p_A(\lambda) = \lambda^n + \operatorname{tr}(A)\lambda^{n-1} + c_{n-2}(A)\lambda^{n-2} + \dots + c_1(A)\lambda + \det A$$

 $f\ddot{u}r\ c_1(A),\ldots,c_{n-1}(A)\in\mathbb{R}.$

(c) Sei $A \in \mathbb{R}^{n \times n}$ invertierbar. Zeigen Sie, dass $f'_A(H) = \det(A) \operatorname{tr}(A^{-1}H)$. Hinweis: Führen Sie die Aufgabe auf den Teil (b) zurück.

Lösung: (a): Die Determinante ist ein Polynom in den Matrixeinträgen und damit überall (beliebig oft) differenzierbar.

[1]
Erinnerung:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

mit der Permutationsgruppe $S_n = \{ \sigma : \{1, \dots, n\} \to \{1, \dots, n\} \mid \sigma \text{ bijektiv} \}.$

(b): Mit (a) und dem Hinweis reicht es zu zeigen, dass

$$\lim_{t \to 0} \frac{f(\mathbb{1} + tH) - f(\mathbb{1}) - tf'_{\mathbb{1}}(H)}{t} = 0.$$
 [1]

Dazu bemerken wir mit Hilfe des zweiten Teil des Hinweises

$$\frac{f(\mathbb{1} + tH) - f(\mathbb{1}) - f'_{\mathbb{1}}(H)}{t} \stackrel{[2]}{=} \frac{t^n \det\left(\frac{1}{t}\mathbb{1} + H\right) - 1 - t\operatorname{tr} H}{t}$$

$$\stackrel{[1]}{=} \frac{1 + t\operatorname{tr}(H) + \mathcal{O}(t^2) - 1 - t\operatorname{tr}(H)}{t}$$

$$\to 0$$

für $t \to 0$.

(c): Für $B \in \mathbb{R}^{n \times n}$ schreiben wir zunächst

$$f(B) = \det(B) = \det(AA^{-1}B) = \det(A)\det(A^{-1}B).$$
 [1]

Mit der Hilfsfunktion $g: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, g(B) = A^{-1}B$, gilt nun $f(B) = \det(A)f(g(B))$ und daher nach der Kettenregel

$$f'_B(H) = \det(A) f'_{g(B)}(A^{-1}H)$$
 [1],

sodass für ${\cal B}={\cal A}$

$$f'_A(H) = \det(A) f'_1(A^{-1}H) = \det(A) \operatorname{tr}(A^{-1}H)$$
 [1]

nach Teilaufgabe (b).

4. 4 Punkte Seien $f: \mathbb{R}^2 \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$ differenzierbare Funktionen. Bestimmen Sie die Ableitung der Funktion $F: \mathbb{R} \to \mathbb{R}$,

$$F(x) := f(x, g(x)),$$

in Termen der (partiellen) Ableitungen von f und g. Begründen Sie Ihre Antwort.

Lösung: Aus der Kettenregel [1] folgt

$$\frac{d}{dx}F(x) = \frac{d}{dx}f(x,g(x)) = \partial_1 f(x,g(x)) + \partial_2 f(x,g(x))g'(x),$$

wobei ∂_1 und ∂_2 die partiellen Ableitungen bezüglich der ersten bzw. zweiten Variablen von f sind.

[1]

5. $\boxed{7 \ Punkte}$ Gegeben sei das Vektorfeld $v : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2$,

$$v(x) = f(|x|) \frac{x}{|x|},$$

mit $f:(0,\infty)\to\mathbb{R}$ differenzierbar.

(a) Bestimmen Sie die Rotation von v:

Lösung:

$$rot v(x) = 0.$$
 [1]

(b) Ein Punktteilchen bewegt sich im Vektorfeld v mit konstanter Geschwindigkeit auf dem Kreis um $0 \in \mathbb{R}^2$ mit Radius 1. Bestimmen Sie das Arbeitsintegral für einen Kreisumlauf im mathematisch positiven Sinne. Begründen Sie Ihre Antwort.

Lösung: Für eine konstante Geschwindigkeit $u \in \mathbb{R}_+$ ist der Weg parametrisiert durch $\gamma: [0, \frac{2\pi}{n}) \to \mathbb{R}^2$ mit

$$\gamma(t) = \begin{pmatrix} \cos(ut) \\ \sin(ut) \end{pmatrix}$$
 [1]

und somit

$$\gamma'(t) = u \begin{pmatrix} -\sin(ut) \\ \cos(ut) \end{pmatrix}.$$
 [1]

Mit $v(\gamma(t)) \stackrel{[1]}{=} f(1)\gamma(t)$ und $\gamma(t) \cdot \gamma'(t) = 0$ für alle $t \in [0, \frac{2\pi}{u})$ folgt schließlich, dass

$$A \stackrel{[1]}{=} \int_0^{2\pi/u} v(\gamma(t)) \cdot \gamma'(t) dt \stackrel{[2]}{=} 0.$$

Alternative: Sei F eine Stammfunktion von f

(existiert, da f differenzierbar ist). [1]

Dann ist v konservativ und $\Phi: \mathbb{R}^2 \to \mathbb{R}$ mit $\Phi(x) = F(|x|)$ ist ein Potential für v, [2]

 $d.h. \nabla \Phi = v.$ [1]

Das Arbeitsintegral entlang jeder geschlossenen Kurve verschwindet. [1]

6. $\boxed{6 \; Punkte}$ Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine in $a = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ differenzierbare Funktion mit f(a) = 2. Die Richtungsableitung von f in a lautet:

$$D_v f(a) = \begin{cases} 3 & \text{für } v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \\ 1 & \text{für } v = \begin{pmatrix} 1 \\ -1 \end{pmatrix}. \end{cases}$$

Bestimmen Sie das Taylorpolynom erster Ordnung von f um a. Begründen Sie Ihre Antwort.

Lösung: Sei $x = (x_1, x_2) \in \mathbb{R}^2$. Das Taylorpolynom erster Ordnung von f um $a \in \mathbb{R}^2$ ist gegeben durch

$$T_1 f(x; a) = f(a) + \nabla f(a) \cdot (x - a).$$
 [1]

Da a und f(a) bekannt sind, bleibt nur $\nabla f(a)$ zu bestimmen. Für beliebige Vektoren $v = (v_1, v_2) \in \mathbb{R}^2$ gilt

$$D_v f(a) = v \cdot \nabla f(a) = v_1 w_1 + v_2 w_2,$$
 [1]

wobei $\nabla f(a) =: (w_1, w_2)$. Aus der Gleichung für v = (0, 1) folgt $w_2 \stackrel{[1]}{=} 3$ und aus der Gleichung für v = (1, -1) dann $w_1 \stackrel{[1]}{=} 4$. Das gesuchte Taylorpolynom lautet

$$T_1 f(x; a) = 2 + {4 \choose 3} \cdot {x_1 + 1 \choose x_2 - 1} = 3 + 4x_1 + 3x_2.$$
 [2]

[1]

7. 12 Punkte Bestimmen Sie die lokalen Minima und Maxima der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = x^2 + 2y^2 - x$$

auf:

- (a) der offenen Einheitskreisscheibe $E:=\{(x,y)\in\mathbb{R}^2\,|\,x^2+y^2<1\}.$
- (b) dem Rand ∂E der offenen Einheitskreisscheibe.

Lösung: (a): Da E offen ist, reicht es die kritischen Punkte des Gradienten $\nabla f(x,y)$ zu untersuchen. Es sind

$$\nabla f(x,y) = \begin{pmatrix} 2x-1 \\ 4y \end{pmatrix} \stackrel{\text{[1]}}{=} 0 \quad \Longleftrightarrow \quad (x,y) \stackrel{\text{[1]}}{=} \left(\frac{1}{2},0\right).$$

Die Hessematrix von f ist

$$H_f(x,y) \stackrel{[1]}{=} \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$$

und somit für alle $(x, y) \in \mathbb{R}^2$ positiv definit, insbesondere für (x, y) = (1/2, 0)

 $\implies (1/2,0)$ ist ein lokales Minimum von f mit $f(1/2,0) \stackrel{[1]}{=} -1/4$.

(b): Es gilt

$$\partial E := \{ (x, y) \in \mathbb{R}^2 \, | \, x^2 + y^2 = 1 \}.$$

 ∂E kann durch $\begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$ parametrisiert werden. Einsetzen in f(x,y)ergibt

$$g(t) := 2\sin(t)\cos(t) + \sin(t) = \sin(t)(2\cos(t) + 1) = 0$$

$$\iff \sin(t) = 0 \lor \cos(t) = -\frac{1}{2}.$$
 [1]

Dies liefert vier Punkte: (0,1) für t=0, f(1,0)=0; (-1,0) für $t=\pi, f(-1,0)=2; (-\frac{1}{2},\sqrt{\frac{3}{4}})$ für $t=\frac{2\pi}{3}$ und $(-\frac{1}{2},-\sqrt{\frac{3}{4}})$ für $t=\frac{4\pi}{3}, f(-\frac{1}{2},\pm\sqrt{\frac{3}{4}})=\frac{9}{4}$. Aus den Werten von f an den kritischen Punkten folgt, dass die ersten zwei lokale Minima und die letzteren zwei lokale Maxima sind.

[1] pro Punkt mit Maximum/Minimum

Alternative 1: Man beachte, dass f(x,y) symmetrisch unter $y \mapsto -y$ ist. [1] Wir beschränken uns also oBdA auf $y \geq 0$. Einsetzen von $y^2 = 1 - x^2$ in f(x,y) ergibt eine Funktion $h: [-1,1] \to \mathbb{R}$ mit

$$h(x) := f(x, \sqrt{1 - x^2}) = x^2 + 2(1 - x^2) - x = 2 - x^2 - x.$$
 [1]

Aus $h'(x) = -2x - 1 = 0 \iff x = -\frac{1}{2}$ und h''(x) = -2 < 0 [1] sind $(-\frac{1}{2}, \pm \sqrt{1 - \frac{1}{4}}) = (-\frac{1}{2}, \pm \sqrt{\frac{3}{4}})$ lokale Maxima mit $f(-\frac{1}{2}, \pm \sqrt{\frac{3}{4}}) = \frac{9}{4}$. Die Funktion h ist konkav (h'' < 0), auf dem kompakten Intervall I := [-1, 1] definiert, und nimmt ein Maximum im Inneren von I (bei $-\frac{1}{2}$) an. Also hat h lokale Minima am Rand. Diese entsprechen (-1, 0) mit f(-1, 0) = 2 und (1, 0) mit f(1, 0) = 0.

[1] pro Punkt mit Maximum/Minimum

Alternative 2: Die Methode der Lagrange-Multiplikatoren kann auch wie folgt eingesetzt werden. Die Nebenbedingung lautet $k(x,y) = x^2 + y^2 - 1 = 0$. [1] Gesucht sind also die kritischen Punkte von $f(x,y) - \lambda k(x,y)$, d.h. (x,y) und λ so, dass

$$2x - 1 + 2\lambda x = 0\tag{1}$$

$$4y + 2\lambda y = 0 \qquad [1] \tag{2}$$

$$x^2 + y^2 - 1 = 0. (3)$$

Aus (2) folgt y = 0 oder $\lambda = -2$.

Wenn y=0, dann folgt aus (3) $x=\pm 1$. Wenn $y\neq 0$ und $\lambda=-2$ folgt aus (1) $x=-\frac{1}{2}$ und dann aus (3) $y=\pm \sqrt{\frac{3}{4}}$. Aus den Werten von f an den jeweiligen Punkten sind die ersteren zwei lokale Minima und die letzteren zwei lokale Maxima.

[1] pro Punkt mit Maximum/Minimum

8. 14 Punkte Gegeben sei die folgende Differentialgleichung

$$x'(t) - x(t)\cos(t) = f(t)$$

mit $f: \mathbb{R} \to \mathbb{R}$ stetig. Bestimmen Sie die allgemeine reelle Lösung für

- (a) f(t) = 0.
- (b) $f(t) = \cos(t)$.

Zeichnen Sie ferner im Fall (a) das zugehörige Richtungsfeld der Differentialgleichung und geben Sie ein erstes Integral an.

Lösung: (a): Die Differentialgleichung lässt sich durch Trennung der Variablen lösen. Es gilt

$$x'(t) = x(t)\cos(t) \iff \frac{x'(t)}{x(t)} = \cos(t)$$

$$\iff \int \frac{x'(t)}{x(t)} dt = \int \cos(t) dt$$

$$\iff \ln x(t) = \sin(t) + c$$

$$\iff x(t) = Ce^{\sin(t)},$$
[1]

für $C = e^c \in \mathbb{C}$. Die allgemeine reelle Lösung ist durch die Einschränkung $C \in \mathbb{R}$ gegeben.

(b): Die inhomogene Differentialgleichung hat die partikuläre Lösung $x_p(t) = -1$. [3] Eine allgemeine Lösung erfolgt als Summe der partikulären Lösung und der allgemeinen Läsung der homogenen Gleichung aus Teilaufgabe (a). D.h.

$$x(t) = Ce^{\sin(t)} - 1, \quad C \in \mathbb{R}.$$
 [1]

Alternative 1: Trennung der Variablen:

$$x'(t) = (1+x(t))\cos(t) \iff \frac{x'(t)}{1+x(t)} = \cos(t)$$

$$\iff \int \frac{x'(t)}{1+x(t)} dt = \int \cos(t) dt$$

$$\iff \ln(1+x(t)) = \sin(t) + c$$

$$\iff x(t) = Ce^{\sin(t)} - 1, \quad C \in \mathbb{R}.$$
[1]

Alternative 2: Variation der Konstanten: Ansatz für eine partikuläre Lösung

$$x_p(t) \stackrel{[1]}{=} c(t)e^{\sin(t)}$$
.

Einsetzen in die inhomogene Gleichung ergibt

$$c'(t) \stackrel{[1]}{=} e^{-\sin(t)}\cos(t) \implies c(t) = -e^{-\sin(t)},$$

und somit ist $x_p(t) \stackrel{[1]}{=} -1$ eine partikuläre Lösung der inhomogenen Gleichung. Die allgemeine Lösung ist $x(t) = Ce^{\sin(t)} - 1$, $C \in \mathbb{R}$. [1]

Aus der Gleichung (4) ließt man sofort das erste Integral

$$E(t, x(t)) = \ln(x(t)) - \sin(t)$$
 [2]

ab. Man prüft sofort, dass die in (a) gefundenen Lösungen entlang der Höhenlinien der Funktion E konstant sind.

Für das Richtungsfeld schreiben wir

$$x'(t) = F(t, x(t))$$

mit $F(t,x) = x\cos(t)$. Das Richtungsfeld ist also durch

$$v(t,x) = \begin{pmatrix} 1 \\ F(t,x) \end{pmatrix} = \begin{pmatrix} 1 \\ x\cos(t) \end{pmatrix}$$

gegeben. Damit erhält man folgende Skizze:

Wie versprochen noch der Mathematica–Code zur obigen Abbildung:

 $\begin{array}{l} plt = \textbf{Show} [\, VectorPlot\, [\, \{1\,,\ x\ \textbf{Cos}\, [\,t\,]\, \}\,,\ \{t\,,\ 0\,,\ 8\}\,,\ \{x\,,\ -4,\ 4\}\,,\\ StreamPoints \rightarrow Coarse\,,\ StreamStyle \rightarrow \textbf{Red},\ StreamScale} \rightarrow \textbf{None},\\ VectorPoints} \rightarrow 20\,,\ VectorScale \rightarrow \{0.1\,,\ 0.2\,,\ \textbf{Automatic}\,\}]\,,\\ \textbf{PlotRange} \rightarrow \{\{-0.2\,,\ 8\}\,,\ \textbf{Automatic}\,\}] \end{array}$