Devoir maison 6 - Théorème de Cesaro

Étant donnée une suite $(a_n)_{n\in\mathbb{N}^*}$, on définit la suite $(c_n)_{n\in\mathbb{N}^*}$ par :

$$\forall n \ge 1, \qquad c_n = \frac{1}{n} \sum_{k=1}^n a_k$$

appelée somme de Cesaro.

I Théorème de Cesaro

Montrer que si $(a_n)_{n\in\mathbb{N}^*}$ admet une limite (finie ou infinie), alors $(c_n)_{n\in\mathbb{N}^*}$ admet la même limite.

II Applications

1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par

$$u_0 > 0$$
 et $u_{n+1} = \sqrt{\sum_{k=0}^{n} u_k}$

a. Déterminer la fonction f telle que :

$$\forall n \in \mathbb{N}^*, \quad u_{n+1} = f(u_n)$$

- **b.** Étudier la convergence de la suite (u_n) .
- c. En appliquant le théorème de Cesaro à la suite de terme général $a_n = u_{n+1} u_n$, déterminer la limite de $\frac{u_n}{n}$.
- **2.** Soit $(v_n)_{n\in\mathbb{N}}$ la suite réelle définie par :

$$v_0 = 1$$
 et $v_{n+1} = v_n \frac{1 + 2v_n}{1 + 3v_n}$

- **a.** Étudier la convergence de la suite (v_n) .
- **b.** Après avoir justifié que la suite (v_n) ne s'annule pas, appliquer le théorème de Cesaro à la suite de terme général $a_n = \frac{1}{v_{n+1}} \frac{1}{v_n}$ pour déterminer la limite de (nv_n) .