Quad Ink Descriptor File Format Specification

For QuadToneRIP 2.8

Abstract

This document provides a detailed description of the *Quad Ink Descriptor File* format for working with *QuadToneRIP 2.8*.

Keywords: black and white printing, alternative photographic printing, digital

negative, EPSON printer, ink.

Download: www.chainick.github.io/qidf-spec/

Discussion:

July 2, 2022

Change history

Version	Date	Comment
0.0.1 (current)	2022-07-02	Initial version.

Table of Contents

Preface 3
Introduction 4
Working with <i>QuadToneRIP</i> on Windows 6
Editing of QIDF files
Syntax of Quad Ink Descriptor Files 9
General provisions9Elementary types10
Allowed keys 11
General keys11Ink setting up keys15Gray partition keys24Toner partition keys34Other keys45
Appendices 47
A Appendix: Supported printers 47
Index of keys 50

Preface

Inkjet printing continues to increase in popularity as its quality now surpasses many traditional types of printing. It has finally come of age.

In some situations, you may look for greater control over printing settings than the standard printer driver provides, or you may want to use a special base (fine art papers, transparencies, etc.) that the driver does not support. In this case, a *Raster Image Processor* (RIP) may help.

QuadToneRIP (Quad Tone Raster Image Processor) is software used as a printer driver for certain Epson printer models¹. QuadToneRIP focuses on monochrome printing. It was initially designed to make positive black and white inkjet prints. More recently, however, QuadToneRIP is also used to print high-quality digital negatives² for many alternative photographic printing processes.

QuadToneRIP is available for Mac OS and Windows. On the Mac, works as a printer driver. On Windows, it is a set of batch programs outputting through the standard Windows printer driver.

QuadToneRIP is a shareware program, for \$50, and is available for download on quadtonerip.com. The best source of information on and about *QuadToneRIP* is the QuadToneRIP@groups.io group.

 $^{^{1}}$ The full list of all supported printers is presented in Appendix A on page 47.

² The *Digital Negative* is the collective name for methods used by photographers to create either negatives or positives on transparency film for the contact printing of alternative photographic techniques.

Introduction

As mentioned, *QuadToneRIP* gives complete control over the printer's inks. It tells the printer how much of each ink to use and what color for every tone in the image. All this information about the use of inks is stored in service files called *Quad Curve Files*. A simplified printing process by *QuadToneRIP* is below:

Figure 1 Simplified illustration of the print process through *QuadToneRIP*.

Since *Quad Curve Files* are service files containing numbers only, they are not intended for human use. In order, to make the process of describing the use of ink more understandable to a user, *Quad Ink Descriptor File* is used. The receipt process of files is below:

Figure 2 The principle of generating *Quad Curve Files*.

On Mac OS, the process of obtaining a *Quad Curve File* is called an *installation* and performed by a user every time a *Quad Ink Descriptor File* is modified. On Windows, the process is called *compilation* and can

be performed automatically. Whatever the process is called, a *Quad Curve File* is always placed in the QuadTone directory.

A summary of the short information mentioned files is below.

Quad Curve File (QUAD file, called also *QTR Curve*) is a text file, simply unsigned 16-bit integers that signify the ink level for each of the 256 steps in the grayscale that make up an 8-bit tonal scale. These 16-bit numbers are the percentage of the total ink the printer is capable of spraying onto the paper at any given point. 0 is 0% ink, and 65565 is 100%. These combined curves set is generally called a *QTR Curve*.

QUAD files have the extension .quad, are stored in the QuadTone directory, and are the final result of installing/compiling the .txt/.qidf file profiles. These files should not be required edited manually.

PostScript Printer Description File (PPD file) is a text file that contains commands used to invoke features for the print job. PPD files function as drivers for all PostScript printers. See the *PPD File Format Specification*¹ for more details.

PPD files have the extension .ppd, are stored in the PPD directory, are supplied with *QuadToneRIP*, and should not be required edited manually.

Quad Ink Descriptor File (QIDF file, called also *QTR Profile* or simple a *profile*) is a plain text file that is a description of the inkset characteristics for the part of Epson printers.

The name of a QIDF file can contain only letters, digits, underscore, or dash. There is also the limitation length file name 40 characters max.

QIDF files are stored in the Profiles directory and can be edited either using any text editor (not a word processor) or directly through the *QuadToneRIP*ś interface.

On Windows, the files have the extension .qidf, and on Mac OS the extension .txt is used. The files' extension should be renamed if you move a file from one OS to the other.

 $^{^{1}\} http://partners.adobe.com/public/developer/en/ps/5003.PPD_Spec_v4.3.pdf$

Working with QuadToneRIP on Windows

When *QuadToneRIP* is installed, two directories are created under the *QuadToneRIP* directory: Profiles and QuadTone.

The Profiles directory contains further subdirectories for each of the printer/ink combinations supported and each of these subdirectories contains files with .qidf extensions. As a rule, one QIDF file is for each paper (and neutral, cool, warm, etc. characteristics). These QIDF files are editable either as text files in a text editor or through the *QuadToneRIP* interface.

The second directory, QuadTone, contains the same structure and each QUAD file there corresponds to a QIDF file in the Profiles directory. As mentioned, QUAD files are not recommended to edit manually since these are the ones used by the application to print.

Editing of QIDF files

There are two ways to edit a profile. The first one is using the *Curve Creation* tool of *QuadToneRIP* \acute{s} GUI under *Tools* \rightarrow *Curve Creation*. (See Figure 3 on page 7.)

If you edit a QIDF file through the *Curve Creator* and save it, there is no issue since the process of saving the file in the program compiles the required QUAD file automatically.

The second way to edit a profile is using a text editor (*Notepad++*, *Sublime Text*, or whatever you prefer). However, you need to keep in mind, that if a QDIF-file is edited in a text editor, after saving the changes (no spaces in the name are allowed), it should be compiled manually into a QUAD file. About a compilation process is below.

If you don't feel confident yourself, it's best to edit profiles using the *Curve Creator* rather than a text editor. The *Curve Creator* will ensure the file remains internally consistent and when you're ready to print using the profile you can compile it with the *Save/Save as* command.

Figure 3 *Curve Creator* is the main tool for working with QIDF files.

Compilation of QIDF files

As mentioned, the easiest way to compile a QIDF file into a QUAD file is to use the *Save / Save as* command under the *Curve Creator* window. In this case, a QUAD file will be created automatically.

However, there is a way to compile a QIDF file into a QUAD file through a command line. Use for that quadprofile.exe supplied with *QuadToneRIP*. The syntax of using it is following:

 $d:\QuadToneRIP\bin>quadprofile.exe "...\Profiles\R200-gq\R200-cool.qidf"$

Where "..\Profiles\R200-gq\R200-cool.qidf" is a path of QIDF file. For compiling there should **not use** a PPD file as shown in Picture 2 on page 4 since *QuadToneRIP* will find and apply it automatically.

Depending on the contents of the QIDF file, the program's response may be as follows: QuadProfile 2.8.0 for Windows

```
Creating curve R200-cool
LINEARIZE
            = "94.17 90.51 86.93 84.10 81.50 73.02 68.96 64.63
60.37 55.82 52.56 48.46 41.95 35.01 29.37 23.27 16.32 12.39 5.69 4.03"
LINEARIZE CURVE = 0,0 4.06,5 8.03,10 11.17,15 14.06,20 18.46,25 23.46,30
27.97,35 32.77,40 37.5,45 42.54,50 46.16,55 50.71,60 57.93,65 65.63,70
71.89,75 78.66,80 86.37,85 90.73,90 98.16,95 100,100
 0
      0
10 3167 **
21 6745 *****
31 10988 ******
42 15099 ********
53 17857 *********
63 20557 ***********
74 23667 ************
85 26610 ************
95 29334 **************
106 32033 ***************
116 35439 ****************
127 38774 ******************
138 41037 *******************
148 42641 *******************
159 44395 ********************
170 46384 ********************
180 48444 *********************
191 50751 ***********************
201 52487 ***********************
212 53943 ************************
223 56569 *************************
233 59221 ***************************
244 60068 *************************
```

Listing 1 The output of the command of QIDF file compilation.

Now, the created curve is available to use in printing out.

Syntax of Quad Ink Descriptor Files

QIDF file is a configuration ini-style file that consists of text-based content comprising key-value pairs for properties description. It is human readable and simple to understand.

The basic element contained in a QIDF file is the key. Every key has a name and a value, delimited by an equal sign. The name appears to the left of the equal sign (KEYNAME=value). A key-value pair is always on a separate line. A line that starts with # char is commented out. Empty lines are also ignored.

General provisions

Key names are case-insensitive. However, they are written in uppercase for better readability.

Keys without a value will be skipped or there will use a default value for some mandatory keys. This specification provides the following five mandatory keys: GRAY_GAMMA, GRAY_SHADOW, GRAY_HIGHLIGHT, PRINTER, DEFAULT_INK_LIMIT. However, the shortest profile must include at least the PRINTER key, for example:

```
PRINTER=Quad1400
```

The response of the *QuadToneRIP* after compiling on Windows the above profile is as follows (short.qidf file was used):

```
d:\QuadToneRIP\bin>quadprofile.exe "..\Profiles\1400-cl\short.qidf"
```

OuadProfile 2.8.0 for Windows

No default ink limit found, using 100 Could not find gray highlight, using 4 Could not find gray shadow, using 4 GRAY_GAMMA missing, using 1 Creating curve short

Elementary types

For improved readability, this specification provides a few elementary types presented below in Table 1.

Туре	Description		
<string></string>	A text comprised of any available characters except equals sign (=).		
<integer></integer>	A non-fractional number that has no sign consisting of one or more		
	digits 0 to 9.		
<real></real>	A fractional number that has no sign consisting of one or more dig-		
	its followed by a dot (.) or comma (,) followed by one or more digits.		
	There are not include scientific or exponential notation.		
<filename></filename>	A text representing a file name. It can be the name of the file itself,		
	or it might be a path to the file.		
<bool></bool>	A text representing a Boolean value that must be either YES or NO.		
<seq></seq>	A text representing a sequence (list) of values arranged in a single		
	line and separated by a space. A sequence must be enclosed in		
	double quotation marks.		
<ink></ink>	A letter code of the ink color.		

Table 1 Elementary value types under the specification.

The codes of ink colors are defined in PPD files and expressed as presented below in Table 2.

Code	Ink color	LLK
В	Blue	LM
ſ	Cyan	M
GL	· ·	MK
	Gloss Optimizer	0R
GR	Green	PK
K	Black	R
LC	Light Cyan	
LK	Light Black	Y

Table 2 Allowed codes of ink colors under the specification.

Allowed keys

General keys

```
Represented keys: PRINTER; LINEARIZE; CURVE NAME; GRAPH CURVE; CALIBRATION;
```

PRINTER

This key sets which printer the QIDF file is used for.

PRINTER=<string>

Where:

<string> is a codename of a printer corresponding to the name of the PPD file typed without a file extension.

PRINTER is the mandatory key. If there is either no this key or not set a value, a creating QUAD file operation will fail.

See Appendix A on page 47 for the list of all allowed codenames of printers.

LINEARIZE

This key is used to linearize a full profile, in other words, the key is affected on *Gray*, *Toner*, and *Toner 2* partitions at the same time. Linearize basically means a measure the native output from the printer and generating a correction curve to produce standardized evenly distributed output densities. There are either by using the <code>GRAY_CURVE</code> key (with a scanner of densitometer) or with the <code>LINEARIZE</code> key (requires spectrophotometer).

```
LINEARIZE="<seq>"
```

Where:

<seq> is a sequence of density values separated by a space. Each value is <real>. The sequence must be enclosed in double quotation marks.

The densities can be absolute or relative to Dmin. Just list them in order from step-0 (Dmin) to step-100 (Dmax):

```
LINEARIZE="Dmin d1 d2 d3 ... Dmax"
```

The value is a constantly increasing sequence, for example:

```
LINEARIZE="0.034 0.102 0.170 0.241 0.315 0.391 0.498 0.566 0.653 0.739 0.822 0.890 0.966 1.043 1.123 1.203 1.289 1.373 1.444 1.506 1.559"
```

However, a decreasing sequence from Dmax to Dmin can be used. There is no limitation for the sequence size.

CURVE_NAME

This key sets the curve (i.e. profile) name, whose syntax is:

CURVE NAME=<string>

Where:

<string> is a curve name.

CURVE_NAME is the legacy key unaffecting to the work of *QuadToneRIP*. However, it could be used to improve profile readability. Any mention of this key will be ignored.

GRAPH_CURVE

This key tells the *QuadToneRIP* to show visual pseudo-graphs in the terminal every time the QIDF file is processed. (See Listing 1 on page 8 as an example on Windows.)

GRAPH CURVE=<bool>

Where:

<bool> is the Boolean value YES or NO telling the QuadToneRIP to show pseudo-graphs or not accordingly.

On Mac OS graphs will be shown for both ink curves and linearized curves but on Windows, graphs will be shown for linearized curves only.

GRAPH CURVE is useful during the writing and diagnosing of profiles.

CALIBRATION

This key indicates the profile is intended for *QuadToneRIP* calibration (i.e., printing the Ink Pattern Page).

CALIBRATION=<bool>

Where:

<bool> is the Boolean value YES or NO telling the QuadToneRIP the profile is or is not intended for calibration accordingly.

The ink pattern test page inkseparation.tif is a very special file. Printing it out and using it is different than all the normal printing you will do with *QuadToneRIP*. The idea with this test page is to be able to print all the inks separately in raw uncorrected steps. I.e. you will see what each ink is doing on a separate 21 step graduated wedge. The first thing you will notice upon opening the file is that it is a RGB file instead of a grayscale. It's very important that you NOT color manage this file when you open it or when you print it. You also must not resample or resize it – it's set at 360ppi and fits on an 8.5×11 sheet of paper. The colors of the file will look strange because the R channel is selecting which ink and the G channel is the data.

Figure 4 The ink pattern test page.

Ink setting up keys

```
Represented keys: DEFAULT_INK_LIMIT; B00ST_K;
        LIMIT_<ink>; CURVE_<ink>; N_0F_INKS;
COPY_CURVE_<ink>; N_0F_UNUSED; UNUSED_INK_<integer>;
```

DEFAULT INK LIMIT

This key sets the default value using for all inks for which the ink limit is not individually specified in LIMIT_<ink>.

DEFAULT_INK_LIMIT is the mandatory key. If there is either no this key or not set a value, will use its max value 100.

BOOST K

This key sets a new limit of ink has set as a Gray Ink 1 reaching its limit exponentially.

If BOOST_K is greater than the LIMIT_<ink>, the <ink> ink will increase exponentially to the new higher value.

Figure 5 Influence of the BOOST_K key on the curve in a one *Gray* part profile.

Generally, the dark black is set as the Gray Ink 1, GRAY_INK_1=K. However, any other supported ink can be used. For example:

Figure 6 Influence of the BOOST_K key on the first curve only in a two *Gray* parts profile.

You can also see above, the K curve does not reach the set limit value LIMIT_K=50. This is due to the peculiarity of the program algorithms. Read more about this in the chapter dedicated to LIMIT_<ink> key on page 18.

In the case of the black being set as the Gray Ink 1, BOOST_K increases the contrast and makes it easier to achieve pure white on the printed negative.

Even though some inks can be followed the distribution of the K ink, $COPY_CURVE_<ink>=K$, they will not follow the BOOST_K distribution.

Ink remapping like the one shown above (i.e. when GRAY_INK_1 is not K) is only possible using QIDF files. The *QuadToneRIP*ś GUI does not have this opportunity.

LIMIT_<ink>

This sets the maximum limit for <ink> ink that can be used by the printer for any single dot.

The limit is a percentage of the total possible ink the printer is able to print at 100% black in an image. This is usually too much ink for the paper to absorb, therefore a lower ink limit is needed to prevent excessive density, ink bleed, or pooling on the printing media. If the limit is set to 50 then the *QuadToneRIP* will use up to 50% of the ink in that channel for creating the overlapping ink curves.

Leaving this value blank means that the limit of <ink> ink will be determined by the DEFAULT_INK_LIMIT. Setting the value to 0 would turn <ink> ink off completely. Setting this value to some number will override the DEFAULT_INK_LIMIT.

If *QuadToneRIP* includes some overlap with the adjacent inks, it won't use all 100% of the ink limit for each channel in creating the curves. It will be some percentage of whatever the ink limit is set to. The example which demonstrates that behavior for the code presented below is shown in Figure 7 on page 19:

	GRAY_INK_1=K	LIMIT_K=70
B00ST_K=0	GRAY_INK_2=C	LIMIT_C=70
	GRAY_INK_3=M	LIMIT_M=70

Figure 7 In multi *Gray* parts profile, all adjacent inks except GRAY_INK_1 do not reach 100% of their limits.

CURVE_<ink>

This key allows manual control of <ink> ink using a Photoshop adjustment curve or curve coordinates.

```
CURVE <ink>=<filename>|"<seq>"
```

Where:

- <ink> is a code of the ink color.
- <filename> is a path to the adjustment curve file (.acv or .raw). In this case, quotation marks must not be used.
- <seq> is a sequence of curve input-output coordinates pairs. The sequence must be enclosed in double quotation marks.

As a value, there are either <filename> or <seq> types that can be used. For example:

```
CURVE_K=C:\QuadToneRIP\Profiles\2100-ut7\curve_k.acv
or
```

```
CURVE C="0;0 18.75;3.59 50;13 60;18.1 75;30 96.5;55.5 98;81 100;100"
```

Pairs are separated by a space and coordinates in the pair are separated by a semicolon (;), and have <real> type. The first pair must be 0;0, and the last pair must be 100;100.

The advantage of using number sequences is that all curve points are in one file. These points allow more of them and more accuracy using decimal values than the Photoshop points. On the other hand, a disadvantage is that there is not a graphical representation of the curve. However, if you like the Photoshop curve editing do it with .acv's or .raw's as you are working on the curve, and then just transcribe the points later on.

The curve affects only the specified <ink> ink, and that ink is not affected by others in the profile. Though curving individual inks is not

often used, it can be useful in a one *Gray* part profile, for example, for the gelatin silver process where all inks follow K.

If black is specified as the Gray Ink 1, GRAY_INK_1=K, and GRAY_CURVE is being used, you cannot also use a CURVE_K key at the same time. It can only be specified once.

N OF INKS

This key tells the *QuadToneRIP* a number of inks in the printer's inkset. it is created automatically when working with the *QuadToneRIP*ś GUI on Windows.

N OF INKS=<integer>

Where:

<integer> is a number of inks in the printer.

N_OF_INKS is the legacy key unaffecting to the work of *QuadToneRIP*. However, it could be used to improve profile readability. Any mention of this key will be ignored.

The number and names of inks are taken from the PPD file. *QuadToneRIP* supports printers with the following number of inks in the printer's inkset: 4, 6, 7, 8, 10.

COPY_CURVE_<ink>

In a multi *Gray* part system, this key tells which ink to follow which part.

```
COPY CURVE <ink 1>=<ink 2>
```

Where:

- <ink_1> is a code of the ink color that is setting up.
- <ink_2> is a code of the ink color that will <ink_1> be followed on.

This key tells the printer to distribute <ink_1> ink exactly as it distributes <ink_2> ink.

If LIMIT_<ink_1> is different than that for LIMIT_<ink_2>, both ink curves will have the same shape but their amplitude will be different.

COPY_CURVE_<ink>=K ignores the effect that BOOST_K has on K ink distribution.

For example, there are two parts in a two-part profile: K as Gray Part 1, GRAY_INK_1=K, and LK as Gray Part 2, GRAY_INK_2=LK. Black (K) is most often the first part and Light Black (LK) is most often the second part. Dark inks (C, M, Y) often follow black (K) and light inks (LC, LM, LLK) often follow light black (LK):

```
COPY_CURVE_C=K
COPY_CURVE_M=K
COPY_CURVE_Y=K

COPY_CURVE_LC=LK
COPY_CURVE_LM=LK
COPY_CURVE_LLK=LK
```

N_OF_UNUSED

This key tells the *QuadToneRIP* a number of unused inks.

N_OF_UNUSED=<integer>

Where:

<integer> is a number of unused inks.

N_OF_UNUSED is the legacy key unaffecting to the work of *QuadToneRIP*. However, it could be used to improve profile readability. Any mention of this key will be ignored.

UNUSED INK <integer>

This key sets an unused ink in the profile.

UNUSED INK <integer>=<ink>

Where:

- <integer> is an order number of an unused ink.
- <ink> is a code color of an unused ink.

UNUSED_INK_<integer> is the legacy key unaffecting to the work of *QuadToneRIP*. However, it could be used to improve profile readability. Any mention of this key will be ignored.

<ink> ink is considered used then one of the following conditions is
met:

- 1. GRAY_INK_1 and GRAY_VAL_1 keys are used.
- 2. COPY CURVE <ink> key is used.
- 3. LIMIT <ink> key not equal 0.

Failure of all these conditions at the same time makes the <ink> ink unused.

Gray partition keys

```
Represented keys: N_OF_GRAY_PARTS; GRAY_INK_<integer>;
GRAY_VAL_<integer>; GRAY_CURVE; GRAY_HIGHLIGHT;
GRAY_SHADOW; GRAY_GAMMA; GRAY_OVERLAP;
```

Gray in QTR profiles can, in principle, be presented with anywhere from one to ten parts depending on the number of inks in the printer.

Multi *Gray* parts approach gives the feeling of smooth tones since, throughout most of the tonal range, the two or more inks are either covering much of the substrate or overlapping each other. Each *Gray*'s ink must be defined by two keys: GRAY_INK_<integer> and GRAY_VAL_<integer>.

N_OF_GRAY_PARTS

This key tells the *QuadToneRIP* a number of *Gray* parts defined in the profile.

```
N OF GRAY PARTS=<integer>
```

Where:

<integer> is a number of Gray parts.

N_OF_GRAY_PARTS is the legacy key unaffecting to the work of *QuadToneRIP*. However, it could be used to improve profile readability. Any mention of this key will be ignored.

The number of *Gray* parts is taken from the number of GRAY_INK_<integer> keys. *QuadToneRIP 2.8* supports from 1 to 10 *Gray* parts defined in the profile however, it cannot be greater than a number of inks that use printer supports.

```
PRINTER=Quad1400
DEFAULT_INK_LIMIT=70

GRAY_INK_1=K
GRAY_VAL_1=100
GRAY_INK_2=C
GRAY_VAL_2=50

GRAY_HIGHLIGHT=0
GRAY_SHADOW=0
GRAY_OVERLAP=0
GRAY_GAMMA=1
```

Listing 2 The example of the simplest a two *Gray* parts profile.

GRAY_INK_<integer>

This key defines specific one ink as a *Gray* part.

GRAY INK <integer>=<ink>

Where:

- <integer> is an order number of *Gray* part in the range [1..10].
- <ink> is a code of the ink color used as a Gray.

There are possible multi *Gray* parts in the profile. The darkest ink (as a rule it is the black K) is generally the first *Gray* part. Whatever ink is defined as Gray Ink 1 will also be the ink that is affected by the BOOST_K key.

Each *Gray*'s ink must be defined by two keys: GRAY_INK_<integer> and GRAY_VAL_<integer>. (See Listing 2 on page 25.)

GRAY_VAL_<integer>

This key sets the relative density for ink defined as a *Gray* part.

```
GRAY_VAL_<integer>=<real>
```

Where:

- <integer> is an order number of *Gray* part in the range [1..10].
- <real> is a density (percent, in the range [0..100]).

The value of this key is the cross-over point and designates how much of the grayscale is made up by each channel. Since these settings determine how the gray inks intersect and overlap they are some of the more important settings in profile creating.

Each *Gray*'s ink must be defined by two keys: GRAY_INK_<integer> and GRAY VAL <integer>. (See Listing 2 on page 25.)

GRAY_CURVE

This key is used to linearize the *Gray* partition of a profile. To linearize a full profile the LINEARIZE key is used.

GRAY CURVE=<filename>|"<seq>"

Where:

- <filename> is a path to the adjustment curve file (.acv or .raw). In this case, quotation marks must not be used.
- <seq> is a sequence of curve input-output coordinates pairs. The sequence must be enclosed in double quotation marks.

As a value, there are either <filename> or <seq> types that can be used.

Pairs are separated by a space and coordinates in the pair are separated by a semicolon (;), and have <real> type. The first pair must be 0;0, and the last pair must be 100;100.

When the GRAY_CURVE key is used the measurements can be carried out by using a scanner or densitometer. In the case of using the LINEARIZE key, a spectrophotometer is recommended.

GRAY HIGHLIGHT

This key controls ink deposition in the highlights of a print. Increasing the value, makes the light tones lighter and makes the curves of *Gray* inks steeper in this area.

GRAY_HIGHLIGHT=<real>

Where:

<real> is a *Gray* highlight value in the range [0..10000].
If there is either no this key or not set a value, will use default value 4.

GRAY_HIGHLIGHT is the mandatory key. Fractional values should be typed with a zero before the decimal point or they will not be recognized.

This setting does not modify the total amount of ink in used in the lighter dilutions, but it does move them down the tonal scale.

GRAY_HIGHLIGHT, GRAY_SHADOW, and GRAY_GAMMA keys are used to push the ink distribution curves into rough linearity.

Figure 8 Influence of the GRAY_HIGHLIGHT key on the K curve in a one *Gray* part profile.

GRAY SHADOW

This key controls ink deposition in the shadows of a print. Increasing the value, makes the shadow tones lighter and makes the curves of *Gray* inks steeper in this area.

GRAY SHADOW=<real>

Where:

<real> is a *Gray* shadow value in the range [0..10000].
If there is either no this key or not set a value, will use default value 4.

GRAY_SHADOW is the mandatory key. Fractional values should be typed with a zero before the decimal point or they will not be recognized.

GRAY_HIGHLIGHT, GRAY_SHADOW, and GRAY_GAMMA keys are used to push the ink distribution curves into rough linearity.

Figure 9 Influence of the GRAY_SHADOW key on the K curve in a one *Gray* part profile.

GRAY GAMMA

This key controls ink deposition in the middle areas of a print. Increasing the value, makes the middle tones lighter and makes curves of *Gray* inks steeper in this area.

GRAY GAMMA=<real>

Where:

<real> is a *Gray* gamma value in the range [0.1..10], and changed in 0.1 unit increments. If there is either no this key or not set a value, will use default value 1.

GRAY_GAMMA is the mandatory key. Fractional values should be typed with a zero before the decimal point or they will not be recognized.

GRAY_HIGHLIGHT, GRAY_SHADOW, and GRAY_GAMMA keys are used to push the ink distribution curves into rough linearity.

Figure 10 Influence of the GRAY_GAMMA key on the K curve in a one *Gray* part profile.

GRAY_OVERLAP

In some cases, it is useful to have more inks overlapping another than what is created by default in the program. The GRAY_OVERLAP key controls how much additional overlap of each shade of gray inks is added above the built in *QuadToneRIP*'s formula. In other words, this key controls the point in density values where *Gray* inks will cross over.

GRAY OVERLAP=<real>

Where:

<real> is a *Gray* overlap value in the range [0..100]. If there is not set a value, will use default value 100.

To minimize the appearance of bands or sharp edges in the ink curves each ink to overlap to smooth the slope and elongate overlap with the next darker ink. This creates a much more gradual ink distribution.

For profiles with three or more *Gray* parts the GRAY_OVERLAP key is often used to smooth out transitions from one part to another. For example, the view of curves for a three *Gray* parts profile from Listing 2 on page 25 is below:

Figure 11 Influence of the GRAY_OVERLAP key on the curves of the three *Gray* parts profile.

If a negative creating, as GRAY_OVERLAP is increased, the ink curves spread out and overlap with preceding and succeeding inks, useful for smoother transitions, to reduce grain, or to provide greater density in the negative. Too much overlap can lead to too much ink and puddling on the transparency film.

Toner partition keys

```
Represented keys: N_OF_TONER_PARTS; TONER_INK_<integer>;
    TONER_VAL_<integer>; TONER_HIGHLIGHT;
    TONER_SHADOW; TONER_GAMMA; TONER_CURVE;
    N_OF_TONER_2_PARTS; TONER_2_INK_<integer>;
    TONER_2_VAL_<integer>; TONER_2_HIGHLIGHT;
    TONER_2_SHADOW; TONER_2_GAMMA; TONER_2_CURVE;
```

The concept of a toner is similar to the *Gray*. The *Gray*, *Toner*, and *Toner* 2 can be considered as three separate gray partitions or *channels* that can be applied separately throughout the whole grayscale. These are then all can be linearized to create a single consistent density increase at the final stage of the curve creation process.

The bulk of the grayscale is usually made up of the partitioned gray inks with their higher ink limits. The toning inks and toning partitions usually have lower ink limits and run underneath the main *Gray* partition. Although, there is no reason why you can't have two toner partitions with higher ink limits that make up the whole of the grayscale (it illustrates the multiple possibilities when using toning profiles).

The two different toner curves can be used together (or separately) to put different color inks into a mix or partition two or more Gray's inks of a different hue for toning the main gray partition. These toning curves can be partitioned from any number of inks, just like the gray curve, and they use the same method of partitioning using cross-over points. The toning curves also use the same $x_{HIGHLIGHT}$, x_{SHADOW} , x_{GAMMA} , and x_{CURVE} keys to define the partitioned gray curve.

GRAY_INK_1=K TONER_INK_1=C TONER_2_INK_1=Y
GRAY_VAL_1=100 TONER_VAL_1=60 TONER_2_VAL_1=5
LIMIT_K=40 LIMIT_C=15 LIMIT_Y=10

TONER_INK_2=LC
TONER_VAL_2=100
LIMIT_LC=15 ...

Listing 3 The example of creating three partitions as the *Gray, Toner*, and *Toner 2* channels.

Figure 12 *Gray, Toner,* and *Toner 2* as a channels concept.

Alternatively, each toner can be set to use a single ink, un-partitioned, that runs the whole length of the scale underneath the main partitioned *Gray*'s inks.

Options for *Gray, Toner*, and *Toner 2* are important and are how the *QuadToneRIP* knows what to do with each ink and where to put it in the final set of curves.

This approach is used for a black and white photography, and is not used so much for negative prints.

N_OF_TONER_PARTS

This key tells the *QuadToneRIP* a number of Toner parts defined in the profile.

N OF TONER PARTS=<integer>

Where:

<integer> is a number of Toner parts.

N_OF_TONER_PARTS is the legacy key unaffecting to the work of *QuadToneRIP*. However, it could be used to improve profile readability. Any mention of this key will be ignored.

The number of Toner parts is taken from the number of TONER_INK_<integer> keys. *QuadToneRIP 2.8* supports from 1 to 10 Toner parts defined in the profile.

Each Toner ink must be defined by two keys: TONER_INK_<integer> and TONER_VAL_<integer>.

TONER_INK_<integer>

This key defines specific one ink as a Toner.

TONER INK <integer>=<ink>

Where:

- <integer> is an order number of the Toner in the range [1..10].
- <ink> is a code of the ink color used as the Toner.

Each Toner ink must be defined by two keys: TONER_INK_<integer> and TONER_VAL_<integer>.

TONER VAL <integer>

This key sets the relative density for ink defined as a Toner.

TONER_VAL_<integer>=<real>

Where:

- <integer> is an order number of the Toner in the range [1..10].
- <real> is a density (percent, in the range [0..100]).

Each Toner ink must be defined by two keys: TONER_INK_<integer> and TONER_VAL_<integer>.

TONER HIGHLIGHT

This key controls ink deposition in the highlights of a print. Increasing the value, makes the light tones lighter and makes the curves of *Toner* inks steeper in this area.

TONER HIGHLIGHT=<real>

Where:

<real> is a of *Toner* highlight value in the range [0..10000].
If there is either no this key or not set a value, will use default value 4.

The TONER_HIGHLIGHT key is similar to the GRAY_HIGHLIGHT except it is limited to the *Toner* partition scope only.

TONER_SHADOW

This key controls ink deposition in the shadows of a print. Increasing the value, makes the shadow tones lighter and makes the curves of *Toner* inks steeper in this area.

TONER SHADOW=<real>

Where:

<real> is a *Toner* shadow value in the range [0..10000].
If there is either no this key or not set a value, will use default value 4.

The TONER_SHADOW key is similar to the GRAY_SHADOW except it is limited to the *Toner* partition scope only.

TONER GAMMA

This key controls ink deposition in the middle areas of a print. Increasing the value, makes the middle tones lighter and makes the curves of *Toner* inks steeper in this area.

TONER GAMMA=<real>

Where:

<real> is a *Toner* gamma value in the range [0.1..10], and changed in 0.1 unit increments. If there is either no this key or not set a value, will use default value 1.

The TONER_GAMMA key is similar to the GRAY_GAMMA except it is limited to the *Toner* partition scope only.

TONER_CURVE

This key is used to linearize the Toner partition of a profile. To linearize a full profile the LINEARIZE key is used.

```
TONER CURVE=<filename>|"<seq>"
```

Where:

- <filename> is a path to the adjustment curve file (.acv or .raw). In this case, quotation marks must not be used.
- <seq> is a sequence of curve input-output coordinates pairs. The sequence must be enclosed in double quotation marks.

As a value, there are either <filename> or <seq> types that can be used.

Pairs are separated by a space and coordinates in the pair are separated by a semicolon (;), and have <real> type. The first pair must be 0;0, and the last pair must be 100;100.

When the TONER_CURVE key is used the measurements can be carried out by using a scanner or densitometer. In the case of using the LINEARIZE key, a spectrophotometer is recommended.

N OF TONER 2 PARTS

This key tells the *QuadToneRIP* a number of Toner 2 parts defined in the profile.

N_OF_TONER_2_PARTS=<integer>

Where:

<integer> is a number of Toner 2 parts.

 $N_0F_TONER_2_PARTS$ is the legacy key unaffecting to the work of QuadToneRIP. However, it could be used to improve profile readability. Any mention of this key will be ignored.

The number of Toner 2 parts is taken from the number of TONER_2_INK_<integer> keys. *QuadToneRIP 2.8* supports from 1 to 10 Toner 2 parts defined in the profile.

Each Toner 2 ink must be defined by two keys: TONER_2_INK_<integer> and TONER 2 VAL <integer>.

See $N_0F_TONER_PARTS$ section for more details, $N_0F_TONER_2_PARTS$ works the same.

TONER_2_INK_<integer>

This key defines specific one ink as a Toner 2.

TONER 2 INK <integer>=<ink>

Where:

- <integer> is an order number of the Toner 2 in the range [1..10].
- <ink> is a code of the ink color used as the Toner 2.

Each Toner 2 ink must be defined by two keys: TONER_2_INK_<integer> and TONER_2_VAL_<integer>.

See TONER_INK_<integer> section for more details, TONER_2_INK_<integer> works the same.

TONER_2_VAL_<integer>

This key sets the relative density for ink defined as a Toner 2.

TONER 2 VAL <integer>=<real>

Where:

- <integer> is an order number of the Toner 2 in the range [1..10].
- <real> is a density (percent, in the range [0..100]).

Each Toner 2 ink must be defined by two keys: TONER_2_INK_<integer> and TONER_2_VAL_<integer>.

See TONER_VAL_<integer> section for more details, TONER_2_VAL_<integer> works the same.

TONER_2_HIGHLIGHT

This key controls ink deposition in the highlights of a print. Increasing the value, makes the light tones lighter and makes the curves of *Toner 2* inks steeper in this area.

TONER_2_HIGHLIGHT=<real>

Where:

<real> is a of *Toner 2* highlight value in the range [0..10000].
If there is either no this key or not set a value, will use default value 4.

The TONER_2_HIGHLIGHT key is similar to the GRAY_HIGHLIGHT except it is limited to the *Toner 2* partition scope only.

TONER_2_SHADOW

This key controls ink deposition in the shadows of a print. Increasing the value, makes the shadow tones lighter and makes the curves of *Toner 2* inks steeper in this area.

TONER_2_SHADOW=<real>

Where:

<real> is a *Toner 2* shadow value in the range [0..10000].
If there is either no this key or not set a value, will use default value 4.

The TONER_2_SHADOW key is similar to the GRAY_SHADOW except it is limited to the *Toner 2* partition scope only.

TONER_2_GAMMA

This key controls ink deposition in the middle areas of a print. Increasing the value, makes the middle tones lighter and makes the curves of *Toner 2* inks steeper in this area.

TONER_2_GAMMA=<real>

Where:

<real> is a *Toner 2* gamma value in the range [0.1..10], and changed in 0.1 unit increments. If there is either no this key or not set a value, will use default value 1.

The TONER_2_GAMMA key is similar to the GRAY_GAMMA except it is limited to the *Toner 2* partition scope only.

TONER_2_CURVE

This key is used to linearize the Toner 2 partition of a profile. To linearize a full profile the LINEARIZE key is used.

```
TONER_2_CURVE=<filename>|"<seq>"
```

Where:

- <filename> is a path to the adjustment curve file (.acv or .raw). In this case, quotation marks must not be used.
- <seq> is a sequence of curve input-output coordinates pairs. The sequence must be enclosed in double quotation marks.

As a value, there are either <filename> or <seq> types that can be used.

QUAD INK DESCRIPTOR FILE FORMAT

Pairs are separated by a space and coordinates in the pair are separated by a semicolon (;), and have <real> type. The first pair must be 0;0, and the last pair must be 100;100.

When the TONER_2_CURVE key is used the measurements can be carried out by using a scanner or densitometer. In the case of using the LINEARIZE key, a spectrophotometer is recommended.

Other keys

Represented keys: UC_NEUTRALIZER; UC_NEUTRALIZER2;

UC NEUTRALIZER

The Epson Ultrachrome Inks for the 2200, 7600, and 9600 printer models have a light-black ink which is quite warm. This key allows a precise amount of light-cyan, light-magenta and yellow in exact proportion to the light-black to be introduced and not have any yellow ink used.

UC_NEUTRALIZER=<bool>

Where:

<bool> is the Boolean value YES or NO telling the QuadToneRIP to directly neutralize the color of the lightblack.

This is done internally by taking the LK curve and copying it to the LC, LM, and Y curves. Then using the LIMIT_LK, LIMIT_LC, LIMIT_LM, and LIMIT_Y keys you can balance the color for an exactly neutral tone.

This does take some trial and error because the relatively large amount of LC and LM introduced increases the density quite a bit.

To compensate LIMIT_LK must be reduced – the idea is to get an LK, LC, LM, and Y combination to produce the same density as a full LK amount.

UC_NEUTRALIZER should only be used on 7 or 8 ink printers.

UC_NEUTRALIZER2

This key is identical to the UC_NEUTRALIZER key except for the color of the black is neutralized for getting an exactly neutral tone.

UC_NEUTRALIZER2=<bool>

Where:

<bool> is the Boolean value YES or NO telling the QuadToneRIP to directly neutralize the color of the black.

This is done internally by taking the K curve and copying it to the C and LM curves.

UC_NEUTRALIZER should also only be used on 7 or 8 ink printers.

Appendices

A Appendix:

Supported printers

There is the full list of all printers supported by the *QuadToneRIP* below. See quadtonerip.com for more details.

Codename	Printer model	Num.	Ink codes
Quad860	EPSON Stylus Color 860	4	K,C,M,Y
Quad870	EPSON Stylus Photo 870	6	K,C,M,Y,LC,LM
Quad890	EPSON Stylus Photo 890	6	K,C,M,Y,LC,LM
Quad980	EPSON Stylus Color 980	4	K,C,M,Y
Quad1200	EPSON Stylus Photo 1200	6	K,C,M,Y,LC,LM
Quad1270	EPSON Stylus Photo 1270	6	K,C,M,Y,LC,LM
Quad1280	EPSON Stylus Photo 1280	6	K,C,M,Y,LC,LM
Quad1290	EPSON Stylus Photo 1290	6	K,C,M,Y,LC,LM
Quad1400	EPSON Stylus Photo 1400	6	K,C,M,Y,LC,LM
Quad1430	EPSON Stylus Photo 1430	6	K,C,M,Y,LC,LM
Quad2000	EPSON Stylus Photo 2000	6	K,C,M,Y,LC,LM
Quad2100	EPSON Stylus Photo 2100	7	K,C,M,Y,LC,LM,LK
Quad2200	EPSON Stylus Photo 2200	7	K,C,M,Y,LC,LM,LK
Quad3000	EPSON Stylus Color 3000	4	K,C,M,Y
Quad3800	EPSON Stylus Pro 3800	8	K,C,M,Y,LC,LM,LK,LLK
Quad3880	EPSON Stylus Pro 3880	8	K,C,M,Y,LC,LM,LK,LLK
Quad4000	EPSON Stylus Pro 4000	7	K,C,M,Y,LC,LM,LK
Quad4800	EPSON Stylus Pro 4800	8	K,C,M,Y,LC,LM,LK,LLK
Quad4880	EPSON Stylus Pro 4880	8	K,C,M,Y,LC,LM,LK,LLK
Quad4900	EPSON Stylus Pro 4900	10	K,C,M,Y,LC,LM,LK,LLK,OR,GR
Quad7000	EPSON Stylus Pro 7000	6	K,C,M,Y,LC,LM
Quad7500	EPSON Stylus Pro 7500	6	K,C,M,Y,LC,LM
Quad7600	EPSON Stylus Pro 7600	7	K,C,M,Y,LC,LM,LK

 Table 3a
 The list of all printers supported the QuadToneRIP

QUAD INK DESCRIPTOR FILE FORMAT

Codename	Printer model	Num.	Ink codes
Quad7800	EPSON Stylus Pro 7800	8	K,C,M,Y,LC,LM,LK,LLK
Quad7880	EPSON Stylus Pro 7880	8	K,C,M,Y,LC,LM,LK,LLK
Quad7890	EPSON Stylus Pro 7890	8	K,C,M,Y,LC,LM,LK,LLK
Quad7900	EPSON Stylus Pro 7900	10	K,C,M,Y,LC,LM,LK,LLK,OR,GR
Quad9000	EPSON Stylus Pro 9000	6	K,C,M,Y,LC,LM
Quad9500	EPSON Stylus Pro 9500	6	K,C,M,Y,LC,LM
Quad9600	EPSON Stylus Pro 9600	7	K,C,M,Y,LC,LM,LK
Quad9800	EPSON Stylus Pro 9800	8	K,C,M,Y,LC,LM,LK,LLK
Quad9880	EPSON Stylus Pro 9880	8	K,C,M,Y,LC,LM,LK,LLK
Quad9890	EPSON Stylus Pro 9890	8	K,C,M,Y,LC,LM,LK,LLK
Quad9900	EPSON Stylus Pro 9900	10	K,C,M,Y,LC,LM,LK,LLK,OR,GR
Quad10000	EPSON Stylus Pro 10000	6	K,C,M,Y,LC,LM
Quad11880	EPSON Stylus Pro 11880	8	K,C,M,Y,LC,LM,LK,LLK
Quad15000	EPSON Stylus Photo 15000	6	K,C,M,Y,LK,R
QuadEX	EPSON Stylus Photo EX	6	K,C,M,Y,LC,LM
QuadP400	EPSON Stylus Photo P400	8	MK,C,M,Y,R,OR,PK,GL
QuadP600	EPSON Stylus SureColor P600	8	K,C,M,Y,LC,LM,LK,LLK
QuadP700	EPSON Stylus SureColor P700	8	K,C,M,Y,LC,LM,LK,LLK
QuadP800	EPSON Stylus SureColor P800	8	K,C,M,Y,LC,LM,LK,LLK
QuadP900	EPSON Stylus SureColor P900	8	K,C,M,Y,LC,LM,LK,LLK
QuadP5000	EPSON Stylus SureColor P5000	10	K,C,M,Y,LC,LM,LK,LLK,OR,GR
QuadP6000	EPSON Stylus SureColor P6000	8	K,C,M,Y,LC,LM,LK,LLK
QuadP7000	EPSON Stylus SureColor P7000	10	K,C,M,Y,LC,LM,LK,LLK,OR,GR
QuadP8000	EPSON Stylus SureColor P8000	8	K,C,M,Y,LC,LM,LK,LLK
QuadP9000	EPSON Stylus SureColor P9000	10	K,C,M,Y,LC,LM,LK,LLK,OR,GR
QuadR200	EPSON Stylus Photo R200	6	K,C,M,Y,LC,LM
QuadR220	EPSON Stylus Photo R220	6	K,C,M,Y,LC,LM
QuadR260	EPSON Stylus Photo R260	6	K,C,M,Y,LC,LM
QuadR280	EPSON Stylus Photo R280	6	K,C,M,Y,LC,LM
QuadR300	EPSON Stylus Photo R300	6	K,C,M,Y,LC,LM
QuadR320	EPSON Stylus Photo R320	6	K,C,M,Y,LC,LM
QuadR340	EPSON Stylus Photo R340	6	K,C,M,Y,LC,LM

 $\textbf{Table 3b} \quad \text{The list of all printers supported the } \textit{QuadToneRIP}$

QUAD INK DESCRIPTOR FILE FORMAT

Codename	Printer model	Num.	Ink codes
QuadR380	EPSON Stylus Photo R380	6	K,C,M,Y,LC,LM
QuadR800	EPSON Stylus Photo R800	8	MK,C,M,Y,R,B,PK,GL
QuadR1800	EPSON Stylus Photo R1800	8	MK,C,M,Y,R,B,PK,GL
QuadR1900	EPSON Stylus Photo R1900	8	MK,C,M,Y,R,OR,PK,GL
QuadR2000	EPSON Stylus Photo R2000	8	MK,C,M,Y,R,OR,PK,GL
QuadR2400	EPSON Stylus Photo R2400	8	K,C,M,Y,LC,LM,LK,LLK
QuadR2880	EPSON Stylus Photo R2880	8	K,C,M,Y,LC,LM,LK,LLK
QuadR3000	EPSON Stylus Photo R3000	8	K,C,M,Y,LC,LM,LK,LLK

 Table 3c
 The list of all printers supported the QuadToneRIP

Index of keys

B00ST_K <i>16</i>	N_OF_TONER_PARTS 36
	N_OF_TONER_2_PARTS 40
CALIBRATION 14	N_OF_UNUSED 23
COPY_CURVE_ <ink> 22</ink>	
CURVE_NAME 13	PRINTER 11
CURVE_ <ink> 20</ink>	
	TONER_CURVE 39
DEFAULT_INK_LIMIT 15	TONER_GAMMA 39
	TONER_HIGHLIGHT 38
GRAPH_CURVE 13	TONER_INK_ <integer> 37</integer>
GRAY_CURVE 28	TONER_SHADOW 38
GRAY_GAMMA 31	TONER_VAL_ <integer> 37</integer>
GRAY_HIGHLIGHT 29	TONER_2_CURVE 43
GRAY_INK_ <integer> 26</integer>	TONER_2_GAMMA 43
GRAY_OVERLAP 32	TONER_2_HIGHLIGHT 42
GRAY_SHADOW 30	TONER_2_INK_ <integer> 41</integer>
GRAY_VAL_ <integer> 27</integer>	TONER_2_SHADOW 42
	TONER_2_VAL_ <integer> 41</integer>
LIMIT_ <ink> 18</ink>	
LINEARIZE 12	UC_NEUTRALIZER 45
	UC_NEUTRALIZER2 46
N_OF_GRAY_PARTS 25	UNUSED_INK_ <integer> 23</integer>
N OF INKS 21	