Capítulo 9

CONVERSORES ESTÁTICOS

9.1 - INTRODUÇÃO

Nos processos industriais, a energia elétrica é distribuída na sua forma alternada, trifásica e de frequência fixa.

No caso da carga necessitar de uma forma diferente de energia elétrica (tensão contínua ou frequência variável), é preciso utilizar os conversores para realizarem as adaptações necessárias.

Na figura 9.1 é apresentada uma tabela com os principais tipos de conversões de energia.

Sistema	Função de Conversão
Retificadores não controlados	De tensão c.a. fixa para tensão c.c. fixa
Retificadores controlados	De tensão c.a. fixa para tensão c.c. variável
Controladores de tensão c.a.	De tensão c.a. fixa para tensão c.a. variável
Conversores c.c/c.c.	De tensão c.c. fixa para tensão c.c. variável
Inversores não controlados	De tensão c.c. fixa para tensão c.a. fixa.
Inversores controlados	De tensão c.c. fixa para tensão c.a. variável
Cicloconversores	De frequência fixa para frequência e tensão variável

Fig. 9.1 - Tipos de Conversores de energia

Para o correto funcionamento do conversor estático, alguns aspectos devem ser observados:

- a) Escolha correta do componente que irá constituir o conversor e isto irá depender dos fenômenos envolvidos nas operações de abertura e fechamento do mesmo
 - b) Sequência de funcionamento dos componentes, a fim de se obter na saída o sinal desejado.
 Será feito, a seguir, o estudo dos conversores, bem como uma análise de suas aplicações.

9.2- CONVERSOR CC-CC: CHOPPER

O termo CHOPPER significa cortador e isto se deve a ação deste conversor que consiste em recortar um sinal contínuo, a fim de variar o seu valor médio aplicado à carga. Neste caso, podemos concluir que os choppers fornecem uma tensão C.C. variável a partir de uma tensão C.C. constante.

Na figura 9.2 é mostrado o circuito básico de um chopper com chave, sendo que esta poderá ser substituída por transistor ou por SCR, como será visto mais adiante.

Fig.9.2 - Chopper com chave.

A tensão contínua aplicada à carga, pode ser controlada pela abertura e fechamento da chave Ch1.

uando a chave Ch1 for fechada, a corrente começará a circular pela carga e então teremos tensão na mesma. Quando a chave Ch1 for aberta não teremos circulação de corrente na carga e a tensão na mesma será nula. Na figura 9.3 é apresentada a forma de onda na carga.

Fig. 9.3 - Forma de onda na carga.

O valor médio da forma de onda da figura 9.3 é dado por:

$$V_{DC} = \frac{Area}{T} = \frac{V.ToN}{T} = V.ToN \cdot F \quad (9.1)$$

Através da expressão 9.1, percebe-se que o valor médio de tensão na carga (V_{DC}) pode ser variado de s maneiras:

- Variando T_{ON} e mantendo o período T constante, também chamado controle por largura de pulso our /M (Pulse Width Modulation).
- Mantendo T_{ON} ou T_{OFF} constante e variando T, ou seja modulação em frequência.
- 3. Variando Ton e T.

2.1 - Controle PWM (Pulse Width Modulation)

Na figura 9.4, é apresentada a forma de atuação deste controle, onde se mantém F constante e varia-se a gura do pulso (T_{ON}).

Através da expressão 9.1 (V_{DC} = V. T_{ON}. F), observa-se que mantendo a frequência constante, o mento da largura do pulso (T_{ON}) faz com que o nível médio aumente.

Fig. 9.4 - Controle PWM.

9.2.2 - Modulação em frequência

Na figura 9.5 é apresentada a forma de controle por frequência, onde se mantém T_{ON} ou T_{OFF} constante e varia-se F. A variação da frequência dificulta o projeto de filtros para aliviar possíveis interferências devidas ao chaveamento.

Fig. 9.5 - Modulação em frequência.

9.2.3- Variação de Ton e T.

Na figura 9.6 é apresentada a forma de onda na carga com variação de Ton e T.

Fig. 9.6 - Controle com variação de ton e F.

O controle da tensão aplicada à carga através da colocação de um resistor variável em série com a nesma, é ineficiente, pois o excedente de potência é dissipado na resistência sob a forma de calor e com isto estaremos tendo perda de energia. Na figura 9.7, é mostrado o circuito de controle de potência com esistor em série com a carga. Comparando este processo com o do Chopper, observa-se que este último é mais eficiente, pois quando a carga não consome energia (chave aberta) o circuito não está consumindo ambém.

Fig.9.7 - Controle com resistor em série com a carga.

Nos circuitos do chopper a chave Ch₁ (figura 9.2) pode ser substituída por SCR (para o caso de correntes elevadas) e por transistores (para o caso de correntes mais baixas).

No caso da utilização do SCR, deve ser previsto, além do circuito de disparo, um circuito de comutação sue bloqueia o SCR, pois uma vez disparado em C.C., o SCR não bloqueia, já que a corrente não se anula. For este motivo será feito um estudo das formas de comutação do SCR, neste capítulo.

3 - CIRCUITOS DE COMUTAÇÃO PARA SCR

Comutação é o processo através do qual a corrente é cortada em um interruptor estático.

- a) Comutação de linha ou natural: aquela que ocorre devido às variações de tensões da rede.
- b) Comutação forçada ou auto-comutação: aquela devido a habilidade de bloqueio inerente ao interruptor (caso do transistor) ou produzida artificialmente (caso do tiristor com circuito auxiliar de mutação).

c) Comutação de carga: é aquela ocasionada pelas características da carga.

Como nos circuitos C.C. a corrente não se anula naturalmente, torna-se necessário dispor de um circuito auxiliar para sua extinção, ou seja, forçar a sua extinção, daí o nome comutação forçada. O processo consiste em desviar a corrente que passa pelo tiristor.

Alguns processos de comutação forçada serão estudados a seguir.

9.3.1 - Comutação forçada com capacitor em paralelo

Na figura 9.8 é apresentado o circuito do SCR com comutação forçada através de capacitor.

Fig. 9.8 - Circuito de comutação forçada.

O SCR principal (SCR_P) alimenta a carga RL, quando recebe pulso no gate. O capacitor se carrega com a polaridade mostrada na figura 9.9, através do SCR_P e de R₁.

Fig. 9.9 - Circuito de comutação com SCRp acionado.

Quando for dado pulso no SCR_a (SCR auxiliar), o mesmo irá conduzir, colocando o capacitor C₁ em paralelo com o SCR_p, propiciando o corte deste, pois será desviada parte da corrente, levando este componente ao corte.

O capacitor C₁ se descarrega e volta a se carregar com a polaridade oposta através do SCR₂ e de RL, conforme mostra o circuito da figura 9.10.

Fig.9.10 - Circuito de comutação com SCRa acionado.

Quando o SCRp voltar a ser disparado, o SCRa será cortado, da mesma forma como ocorreu para o SCRp. A desvantagem deste circuito é o consumo de potência em R₁, enquanto o SCRp está cortado. Neste recuito C₁, R₁ e SCRa estão responsáveis pelo corte do SCRp, que é responsável pela alimentação da carga.

.3.2 - Comutação forçada com rede L.C

O circuito da figura 9.11 é um circuito de comutação com a vantagem de não ocorrer dissipação de stência, quando o SCR_P está cortado.

Fig.9.11 - Circuito de comutação forçada.

Para o perfeito funcionamento do CKT, é necessário primeiro o disparo do SCR_a e desta forma C₁ se carrega através de RL e do SCR_a. O SCR_a é cortado naturalmente, pois no processo de carga de C₁ sua corrente IC vai diminuindo, diminuindo assim, a corrente anódica do SCR_a e quando IA < IH, o SCR_a corta. Quando o SCR_p é disparado, o capacitor fica praticamente em paralelo com L₁ e D₁, conforme mostra a figura 9.12.

Fig. 9.12 Circuito de comutação com SCR_P acionado.

O capacitor lança sua energia ao indutor e este, após estar energizado, lança sua energia de volta ao capacitor, só que agora a polaridade da tensão no capacitor é oposta ao da figura 9.12. Vide figura 9.13.

Fig. 9.13 - Circuito de comutação com inversão de polaridade em C₁.

Caso não existisse D₁, haveria uma oscilação contínua, ou seja, o capacitor e o indutor iriam ficar trocando energia entre si. Com a presença de D₁, o capacitor não consegue lançar sua energia de volta para o indutor, quando está com a polaridade mostrada na figura 9.13, pois D₁ está reversamente polarizado.

Observe que neste circuito não há dissipação de potência, quando o SCR_P está cortado. Quando desejar cortar o SCR_P é só disparar o SCR_a e C₁ ficará em paralelo com o SCR_P, desviando parte de sua corrente anódica, devando o mesmo ao corte.

A maior parte das aplicações dos conversores CC-CC é no acionamento de motores CC em veículos de ração elétrica.

.4- INVERSORES

Os circuitos inversores fazem a conversão corrente contínua em corrente alternada com possibilidades de variação da frequência e amplitude da corrente produzida. Com a utilização de tiristores, os inversores podem trabalhar na faixa de potência até vários MW.

Quando a conversão não é feita diretamente de uma fonte de CC (por exemplo, uma bateria), torna-se necessário um estágio intermediário de conversão CA/CC.

Devido à frequente utilização destes circuitos para variação de frequência, também são denominados de onversores estáticos de frequência, normalmente utilizando o estágio intermediário CA/CC.

Como exemplos de aplicações dos inversores, destacam-se:

- a) Controle de velocidade de motores de indução e síncrono;
- b) Transmissão de energia por CC;
- c) Aquecimento indutivo;
- d) Sistemas de alimentação de emergência;
- e) Tração elétrica.

Distingue-se duas classes de montagens inversoras:

- a) Inversor Não Autônomo: é um retificador comum trabalhando em regime de recuperação. A frequência de funcionamento e a tensão de saída são determinados pela rede. Estes serão estudados no capítulo de conversores com carga indutiva.
- b) Inversor Autônomo: determina ele mesmo a sua frequência de funcionamento e a forma da onda de tensão fornecida à carga, ele gera a partir de uma fonte contínua, o equivalente a uma rede mono ou polifásica de frequência e tensão, fixas ou variáveis.

4.1 - Ponte Inversora monofásica

Para a perfeita compreensão do funcionamento de uma ponte inversora de larga utilização, vamos partir p esquema apresentado na figura 9.14.

Fig. 9.14 - Inversor em ponte simulado com chave.

Para cumprir a finalidade proposta, ou seja, converter CC em CA, o circuito apresentado na figura 9.14, deve se comportar de tal maneira que consiga inverter, alternadamente, o fluxo de corrente sobre a carga, isto uivale a alternar a polaridade nos terminais A e B. Vejamos como isto é possível, estabelecendo icialmente o circuito elétrico que permite o fluxo de corrente nos dois sentidos, através da carga.

Vamos considerar o sentido convencional da corrente elétrica, isto é, o deslocamento da corrente do potencial positivo para o negativo.

Para se estabelecer o fluxo de corrente no sentido A para B, basta manter as chaves S1 e S4 fechadas e as chaves S2 e S3 abertas. Esta condição está mostrada na figura 9.15.

Fig. 9.15 - Percurso de corrente na carga do inversor.

Para inverter a corrente na carga, basta inverter as condições das chaves, como é mostrado na figura 9.16.

Fig.9.16 - Inversor com corrente invertida na carga.

Com o auxílio dessas duas configurações, torna-se fácil verificar que é possível alterar a polaridade nos terminais da carga (A e B) através do acionamento conveniente de chaves (S1, S2, S3 e S4).

Através deste processo, consegue-se transformar uma tensão contínua em alternada. Para se fixar a frequência, torna-se necessário que o funcionamento das chaves seja sincronizado no tempo. Se substituirmos as chaves mecânicas por chaves eletrônicas (SCR's por exemplo) podemos obter os mesmos resultados

Na figura 9.17 o inversor é constituído por SCR's. Para o perfeito funcionamento deste circuito, é necessário um circuito de disparo para acionar os SCR's 1 e 4 e também um CKT de corte, para realizar o desligamento destes SCR's quando for feito o disparo dos SCR's 2 e 3.

Fig. 9.17 - Inversor em ponte com SCR's.

A forma de onda na carga gerada pelo inversor em ponte é mostrada na figura 9.18

Fig. 9.18 - Forma de onda na saída do inversor.

A frequência do sinal na carga depende da frequência de chaveamento dos tiristores e a amplitude do sinal na carga depende da tensão aplicada à entrada do inversor.

A utilização de inversores com SCR's é para os casos onde se necessita de correntes muito elevadas.

O inversor em ponte também pode ser constituído por transistores como é mostrado na figura 9.19 e a vantagem deste componente em relação ao SCR é sua facilidade de corte, pois ao se retirar o sinal aplicado base, o mesmo deixa de conduzir.

O princípio de funcionamento do inversor em ponte a transistor é igual ao do inversor em ponte com CR's. É acionado o transistor 1 junto com o transistor 4 e quando os transistores 1 e 4 são cortados, acionado os transistores 2 e 3.

4.2 - Ponte Inversora Trifásica.

Na figura 9.20 é apresentado o esquema de inversor trifásico com chaves, sabendo que estas podem ser substituídas por SCR's ou transistores.

Fig.9.19 - Inversor em ponte com transistores.

Fig. 9.20 - Inversor em ponteTrifásico.

A ponte inversora trifásica deve atender aos seguintes requisitos para o seu perfeito funcionamento:

- 1. O circuito deve gerar ondas defasadas entre si de 120°.
- 2. Deve gerar onda senoidal ou o mais próximo possível desta.
- 3. Não devem fechar simultaneamente as chaves 1 e 4, 2 e 5 ou 3 e 6, senão é curto-circuito na fonte V.
- A cada ciclo 3 chaves devem está operando.
- 5. Cada chave fica fechada a cada 8,3ms.
- 6. O fim de trabalho de uma chave superior corresponde ao início de trabalho da chave inferior.

Na figura 9.21 são apresentadas as formas de ondas para este inversor.

Fig. 9.21 - Formas de ondas do Inversor Trifásico em ponte.

Observando o circuito da figura 9.22, pode-se notar que VAB = 0V, VBC = +V e VCA = -V. Seguindo o papa de pulsos de disparo dos tiristores da figura 9.21, é possível entender o formato das ondas apresentadas m VAB, VBC e VCA.

Na figura 9.23 é apresentado o circuito do inversor trifásico com transistores e com SCR's.

4.3- Inversor com transformador

É possível, utilizando-se 2 elementos, fazer o chaveamento do inversor no caso do transformador possuir de Central, como mostra a figura 9.24.

Fig. 9.22 - Inversor Trifásico em ponte.

Fig. 9.23 - a) Inversor trifásico em ponte com tiristores. b) Inversor trifásico em ponte com transistores.

Supondo que CH1 seja acionada, será alimentado ½ enrolamento e no caso a corrente e a polaridade na saída será desenvolvida supondo a convenção adotada na figura 9.25.

Quando a chave 1 for aberta e a chave 2 for fechada, a corrente irá circular agora no outro enrolamento do transformador e, portanto, irá gerar uma polaridade contrária na carga, conforme mostra a figura 9.26.

As chaves podem ser substituídas por transistores, como é mostrado no circuito da figura 9.27.

Fig.9.24 - Inversor com transformador.

Fig. 9.25 - Inversor com transformador e uma chave acionada.

Fig. 9.26 - Inversão de corrente na carga no inversor com transformador.

O circuito composto pelos transistores trata-se de multivibrador astável. A cada instante um transistor ará no corte (Q3 ou Q4) e o outro na saturação (Q4 ou Q3) e, por este motivo, a corrente circulará ora am enrolamento do transformador, ora em outro enrolamento.

Na figura 9.28 é apresentado o circuito do inversor com transformador, sendo as chaves substituídas por

Fig. 9.27 - Inversor com transformador e transistores.

Fig. 9.28 - Inversor com transformador e SCR's.

9.5- CONTROLADORES DE TENSÃO CA

Um controlador de tensão CA é um circuito utilizado para o controle do valor eficaz da tensão alternada de saída, a partir de uma tensão de entrada fixa. Na figura 9.29 é apresentado o esquema do princípio de funcionamento de um controlador de tensão C.A.

Fig. 9.29 - Princípio do controlador de Tensão C.A.

O elemento básico de um controlador de tensão C.A. é uma chave bidirecional em corrente. Na figura

Fig. 9.30 - Circuitos com Chaves Bidirecionais implementadas.

Os controladores de tensão C.A possuem basicamente 2 formas de operação.

- Controle Zero Crossing Switch ou Controle ON-OFF.

5.1- Controle de fase

O controle de fase é o processo através do qual a potência aplicada à carga é controlada pela variação ângulo de disparo.

O controle de fase é de fácil implementação, muito utilizado em controle de intensidade luminosa e ontrole de velocidade de motores. Com a variação de α (ângulo de disparo), a senóide sofre deformação e to faz com que haja geração de RFI. Outro aspecto negativo neste processo de controle é o fator de otência variável, pois há um atraso no disparo do tiristor e isto defasa a tensão da corrente. O fator de potência depende do ângulo de disparo e quanto maior for o valor de α, menor será o valor deste fator.

Este processo foi analisado nos capítulos referentes ao estudo do SCR e do Triac e, portanto, neste apítulo será dada maior ênfase ao controle de potência através do Zero Crossing Switch.

5.2- Zero Crossing Switch ou Controle ON-OFF

O Zero Crossing Switch consiste em chavear o tiristor com α = 0 e a potência aplicada à carga é controlada pela relação entre o nº de ciclos entregue à mesma e o nº total de ciclos.

Na figura 9.31, apresenta-se o controle de potência através do Zero Crossing Switch, com vários percentuais de potência aplicados à carga.

Fig. 9.31 - Controle Zero Crossing Switch.

No caso da carga 1 temos a seguinte ralação de aproveitamento de potência.

$$R = \frac{n^{\circ} \text{de ciclos aproveitado}}{\text{total de ciclos}} = \frac{1}{5} = 0,2 = 20\%$$

No caso da carga 2 a potência dissipada pela carga já é maior, pois houve um maior número de ciclos aproveitados.

$$R = \frac{2}{5} = 0.4 = 40\%$$

O Zero Crossing Switch é aplicado à cargas que não possuem resposta dinâmica (muito rápida). Em geral, este processo é utilizado nos controles de temperatura de fornos, estufas, aquecedores, etc.

Como vantagens esse processo oferece:

- Não há geração de interferência (RFI), visto que a operação é sempre com o formato senoidal puro ou seja, α = 0°.
- Fator de potência mais favorável, pois temos a corrente sempre em fase com a tensão (cargas resistivas);
- Maior expectativa de vida para os tiristores, já que a corrente inicial é sempre pequena. Em outras palavras, podemos dizer que o parâmetro di/dt é sempre pequeno, não exigindo grandes esforços dos componentes.

Os controladores de tensão C.A, utilizados como chaves estáticas possuem diversas vantagens sobre as haves eletromecânicas, devido a eliminação de partes móveis, sua maior flexibilidade de controle e sua maior velocidade de operação.

O circuito da figura 9.32 opera pelo princípio do Zero Crossing Switch. A entrada de controle é responsável pela liberação ou inibição do sinal para a carga. A responsabilidade por α = 0° fica a cargo de T2 (semiciclo positivo) e por T3 e T4 (semiciclo negativo).

Quando o nível da tensão de controle for alto, o led do TIL 112 irá acender e o fototransistor irá conduzir. Com a condução do fototransistor, o transistor T1 irá ao corte e T5 ficará conduzindo, enquanto T2 u T3 não conduzir.

Fig. 9.32 - Circuito de um Zero Crossing Switch.

Os transistores T2, T3 e T4 detectam $\alpha = 0^{\circ}$ e só permitem que o TRIAC dispare no início do semiciclo rede, pois com o crescimento da tensão da rede, T2 ou T3 e T4 terminarão entrando em condução, levando ao corte

Isto quer dizer que o sinal só irá para o gate do TRIAC no início dos semiciclos. P1 controla a largura do so aplicado ao gate do TRIAC.

No circuito da figura 9.33 temos um circuito operando pelo princípio do Zero Crossing Switch utilizando o TCA - 785.

O pino 11 aterrado, garante α = 0 e o número de ciclos que passa para a carga é controlado pelo sinal de controle aplicado ao pino 6. Quanto maior for a duração do nível lógico alto na entrada do pino 6 (V>3,5 libera os pulsos), maior número de ciclos é lançado para a carga e, maior potência será dissipada pela ma.

- CICLOCONVERSORES

Cicloconversor é o nome dado ao circuito capaz de fazer a conversão direta de frequência, isto é, sem o gio intermediário de CC, como exigido nos inversores de potência.

A conversão é feita diretamente de uma fonte CA, monofásia ou trifásica, transformando-a em uma CA, de frequência diferente.

Fig. 9.33 - Zero Crossing Switch com o TCA - 785.

O cicloconversor é também uma forma de conversor estático de frequência, com a ressalva de que a conversão só pode ser feita (com os dispositivos atualmente disponiveis) de uma frequência mais alta para uma frequência mais baixa. Na figura 9.34 é apresentado o princípio do cicloconversor.

Fig. 9.34 - Princípio de Cicloconversor.

9.6.1 - Cicloconversor Monofásico

Basicamente, o cicloconversor consiste de dois conversores CA/CC com tiristores, ligados em antiparalelo, com funcionamento alternado, alimentando uma carga comum aos dois.

A figura 9.35 ilustra o circuito de um cicloconversor monofásico simples.

Fig. 9.35 - Cicloconversor Monofásico.

Os tiristores 1 e 2 formam um retificador controlado monofásico de onda completa com tomada central, com saída positiva no ponto A. Constituem o grupo positivo do cicloconversor. Os tiristores 3 e 4 formam imbém um retificador controlado, com saída negativa no ponto A, constituem o grupo negativo do cicloconversor.

Em sua forma mais simples de funcionamento, a sequência consiste em disparar 1 e 2 durante um úmero inteiro de semiperiodos da tensão de alimentação VE e em seguida fazer o mesmo com 3 e 4, voltando a repetir o ciclo.

Se a carga receber dois semiciclos positivos através de 1 e 2 e depois dois semiciclos negativos através e 3 e 4, então a frequência de saída sobre RL será a metade da frequência de alimentação. A figura 9.36 ilustra está situação e mostra também como pode ser obtida uma frequência de saída igual a 1/3 da frequência e entrada.

Suponhamos inicialmente, que a carga é resistiva, e que se deseje uma redução de 1/5 na frequência da nsão da fonte CA. Um arranjo que permite esta conversão é mostrado na fig. 9.37

É făcil entender a composição das tensões para obter a forma de onda desejada. Como a redução na sequência é de 1/5, 5 semiciclos devem ser positivos e 5 devem ser negativos. Para os 5 primeiros semiciclos deve-se disparar 1 e 2, enquanto 3 e 4 devem ser disparados quando a tensão de saída deve ser gativa. Assim, alterando adequadamente os tiristores que conduzem, podem ser sintetizadas as requências desejadas. Nas figuras 9.36 e 9.37, os tiristores foram sempre disparados com $\alpha=0$ e, deste modo, a tensão de saída tem o aspecto de uma onda quadrada. Embora seja evidente que a fundamental tem ha frequência 5 vezes menor do que a frequência da rede, também é facilmente visível a existência de um anteúdo harmônico elevado e indesejável na tensão de saída. Para evitar que os harmônicos de baixa ordem nossuam amplitude elevada, pode-se dispara os SCR's com $\alpha \neq 0^{\circ}$ e variável, conforme pode-se ver na figura 38. Aplica-se todo o semiciclo da tensão da fonte no pico da senóide de saída, aumentando-se gradualmente valor de α , à medida que a tensão de saída se anula.

Fig. 9.36 - Sinal na saída de um cicloconversor monofásico.

Fig. 9.37 - Sinal de saída de um cicloconversor monofásico.

9.6.2 - Cicloconversor Trifásico

À medida que o número de pulsos aumenta, a amplitude dos harmônicos diminui, embora o circuito de disparo começa a ficar mais complexo.

Na figura 9.39. é apresentado cicloconversor de 3 pulsos.

Os cicloconversores são utilizados no controle de velocidade de motores de alta potência e baixa velocidade.

Fig. 9.38 - Forma de onda na saida do cicloconversor com a variável.

Fig. 9.39 - Cicloconversor de 3 pulsos.

Company of the Company

or efficiency advertises