Cálculo infinitesimal

Números, Sucesiones y Series Numéricas 20 de noviembre de 2017

Parcial 1

Nombre y apellidos:

Titulación:

- 1. (a) Sea $z = \frac{\sqrt{3} + i}{1 + i\sqrt{3}}$. Escribirlo en la forma Re $z + i \operatorname{Im} z$ y en forma exponencial.
 - (b) ¿Qué números complejos al elevarlos al cubo dan -8?
- 2. Decir razonadamente si las afirmaciones siguientes son verdaderas o falsas:
 - (a) Sean $\{a_n\}_n$ y $\{b_n\}_n$ dos sucesiones tales que $a_n < b_n, \, \forall \, n \in \mathbb{N}$. Supongamos que ambas tienen límite y

 $l_1 = \lim_{n \to \infty} a_n, \quad l_2 = \lim_{n \to \infty} b_n.$

Entonces, es posible que l_1 sea igual a l_2 .

- (b) Como $\frac{\operatorname{sen} n}{n^2} \le \frac{1}{n}$, entonces la serie $\sum_{n=1}^{\infty} \frac{\operatorname{sen} n}{n^2}$ es divergente.
- 3. Calcular el límite siguiente: $\lim_{n\to\infty}\frac{\arcsin 1+ \arcsin\frac{1}{\sqrt{2}}+\cdots+ \arcsin\frac{1}{\sqrt{n}}}{\sqrt{n}}$
- 4. Sea la sucesión recurrente $a_{n+1}=a_n^2+1,\,a_1=3.$ ¿Tiene límite?
- 5. Estudiar la convergencia de la serie:

$$\sum_{n=1}^{+\infty} \left(1 - \cos\frac{1}{\sqrt{n}}\right) \frac{1}{n}.$$