CS412 Machine Learning HW 2 – Probabilities – Bayesian Learning 100pts

- Please TYPE your answer or write legibly by hand (pts off if it is hard to read).
- Use this document to type in your answers (rather than writing on a separate sheet of paper), so as to keep questions, answers and and grades together to facilitate grading.
- SHOW all your work for partial/full credit.
- Allocated spaces should be enough for your answers (unnecessarily long and irrelevant answers may loose points)
- 1) 20 pt Suppose that we have 3 colored boxes r (red), b (blue) and g (green).

Box r contains 9 apples, 5 oranges and 3 limes;

Box b contains 8 apples, 4 oranges and 1 limes;

Box g contains 5 apples, 2 oranges and 6 limes.

Assume a process where we pick a box first and then pick a fruit from the selected box. A box is chosen at random according to the following probability of being selected: p(r) = p(b) = 0.3 and p(g)=0.4 and a piece of fruit is selected from the **chosen** box randomly.

a) 10 pt – What is the **probability of selecting an orange**?

P(Orange) = P(r) * P(O|r) + P(b) * P(O|b) + P(g) * P(O|g) =
$$= \frac{3}{10} * \frac{5}{17} + \frac{3}{10} * \frac{4}{13} + \frac{4}{10} * \frac{2}{13} \cong \mathbf{0.24}$$

b) 10pt - If we **observe that the selected fruit is an orange**, what is the probability that it came from the red box?

$$P(r|O) = \frac{P(O|r) * P(r)}{P(O)} = \frac{\frac{5}{17} * \frac{3}{10}}{0.24} \cong \mathbf{0.36}$$

2) 40 pt $\,$ - For a 2-dimensional input space, we are given the following class conditional probability densities. Assume that x_1 and x_2 are conditionally independent given class names.

Assume $P(C_1)=P(C_2)=0.2$ and $P(C_3)=0.6$.

a) 12pt – Draw the corresponding pdfs for x_1 and x_2 , being as precise as possible (e.g. label axes and important points on the axes). You can draw by hand, take a picture and include here as image.

b) 10pts - Develop a classification strategy for given feature values (just looking at the graph – no formula), just complete the sentence(s):

if x_1 is in the region $0 \le x_1 \le 4$, and x_2 is in the region $0 \le x_2 \le 4$, I will classify it as C1;

if x_1 is in the region $4 \le x_1$, and x_2 is in the region $4 \le x_2$, I will classify it as C2;

Otherwise, I will classify it as C3.

c) 8pts - Draw the decision regions.

- d) 10pts Give a one line qualitative answer (no precise numbers/thresholds...) & reasoning for each case below (how your decision changes or whether it doesn't).
 - Would your decision strategy change if P(C₁)=0.8 and P(C₂)=P(C₃)=0.1?

My decision strategy wouldn't change since the decision areas won't intersect. Therefore, only the posterior probabilities would change. For example, I would still choose C1 when $0 \le x_1 \le 4$ and $0 \le x_2 \le 4$.

- How about if it was the reverse $P(C_1)=P(C_3)=0.1$ and $P(C_2)=0.8$? Again my strategy wouldn't change. The posterior probabilities would change reversely this time.
- 3) 40pts NAIVE BAYES
- a) 10pts Given that two random variables X and Y are conditionally independent given C, circle True or False (2pts for each correct answer; -1pts each wrong answer):

•
$$P(X|Y) = P(X)$$
 True / False $\rightarrow P(X|Y) = P(X|C)$

•
$$P(X \mid Y, C) = P(X \mid Y)$$
 True / False $\rightarrow P(X|Y,C) = P(X|C)$

•
$$P(X, C | Y) = P(X | Y)$$
 True / False $\rightarrow P(X,C|Y) = P(X|Y) * P(C|Y)$

•
$$P(X,Y,C) = P(X|C) P(Y|C) P(C)$$
 True / False

b) 24pts - Using the Mammal dataset given below, how would you classify the animal that give birth, cannot fly, sometimes live in water, and has not legs, using Naive Bayes classifier without any smoothing. Show your work (e.g. indicate class conditional attribute probabilities under the given table in the next page and just transfer them here).

$$P(\text{mammal} \mid \mathbf{x}) = \frac{P(\mathbf{x} | mammal) * P(mammal)}{P(\mathbf{x})} = \frac{\left(\frac{6}{7} * \frac{6}{7} * \frac{0}{7} * \frac{2}{7}\right) * \frac{7}{20}}{\frac{7}{20} * \frac{16}{20} * \frac{4}{20} * \frac{6}{20}} = 0$$

P(non-mammals| x) =
$$\frac{P(x|nonmammal)*P(nonmammal)}{P(x)} = \frac{\left(\frac{1}{13}*\frac{10}{13}*\frac{4}{13}*\frac{4}{13}*\frac{4}{13}\right)*\frac{13}{20}}{\frac{7}{20}*\frac{16}{20}*\frac{4}{20}*\frac{6}{20}} = 0.216$$

Decision: Non-Mammal

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Write here the estimated probabilities (you should only write those related to the question for simplicity):

P(Give Birth=Yes | mammal) = 6/7 P(Give Birt=Yes) = 7/20

P(Give Birth=Yes | non-mammal) = 1/13 P(Can Fly=No) = 16/20

P(Can Fly=No | mammal) = 6/7 P(Live in Water=Sometimes) = 4/20

P(Can Fly=No | non-mammal) = 10/13 P(Have Legs=No) = 6/20

P(Live in Water = Sometimes | mammal) = 0/7 P(mammal) = 7/20

P(Live in Water = Sometimes | non-mammal) = $\frac{4}{13}$ P(non-mammal) = $\frac{13}{20}$

 $P(\text{Have Legs=No} \mid \text{mammal}) = \frac{2}{7}$ P(x) = P(Give Birth=Yes) * P(Can Fly=No) * P(Live in Water=Sometimes) * P(Have Legs=No)

P(Have Legs=No | non-mammal) = 4/13

c) 6pts - Without re-doing the whole process, calculate the probabilities for P(Live in Water|mammals), P(Have Legs|mammals) and P(Give Birth|non-mammals) using Laplace smoothing:

P(Live in Water=Sometimes|mammals) = 1/10

P(Have Legs=No|mammals) = 3/9

P(Give Birth=Yes|non-mammals) = 2/15