

#### **Predictive Modelling**

Lecture 6: Linear model selection and regularization

#### Overview of this lecture

- Chapter 6
  - 6.1: Subset selection
  - 6.2: Shrinkage methods
  - 6.4: Considerations in high dimensions



#### Genome-wide association studies: an example of high-dimensional data



#### Text mining: why will k-NN fail?





# An illustration of the curse of dimensionality



Side-length of the subcube needed to capture a fraction r of the data: 10 dims. already a side-length 0.8 to capture 10% of the data

#### Why will linear regression fail?

$$y_i = w_0 + w_1 x_{i1} + \dots + w_p x_{ip} + \epsilon_i = \sum_{j=0}^{p} w_j x_{ij} + \epsilon_i$$



## An illustration of linear regression in high dimensions



#### Feature selection / Variable selection

- Different approaches:
  - Filter methods: select features based on a univariate statistic (e.g. Correlation with response)
  - Wrapper methods: use a machine learning method in a standard procedure
  - Embedded methods: see e.g. Lasso, Random Forests

#### Best subset selection

#### Algorithm 6.1 Best subset selection

- 1. Let  $\mathcal{M}_0$  denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For  $k = 1, 2, \dots p$ :
  - (a) Fit all  $\binom{p}{k}$  models that contain exactly k predictors.
  - (b) Pick the best among these  $\binom{p}{k}$  models, and call it  $\mathcal{M}_k$ . Here best is defined as having the smallest RSS, or equivalently largest  $R^2$ .
- 3. Select a single best model from among  $\mathcal{M}_0, \dots, \mathcal{M}_p$  using cross-validated prediction error,  $C_p$  (AIC), BIC, or adjusted  $R^2$ .

#### What is an obvious drawback of this method?

### Best subset selection on the credit dataset (training data)





### Best subset selection on the credit dataset (out-of-sample data)



#### Forward stepwise selection

#### Algorithm 6.2 Forward stepwise selection

- 1. Let  $\mathcal{M}_0$  denote the *null* model, which contains no predictors.
- 2. For  $k = 0, \ldots, p 1$ :
  - (a) Consider all p − k models that augment the predictors in M<sub>k</sub> with one additional predictor.
  - (b) Choose the *best* among these p k models, and call it  $\mathcal{M}_{k+1}$ . Here *best* is defined as having smallest RSS or highest  $R^2$ .
- 3. Select a single best model from among  $\mathcal{M}_0, \ldots, \mathcal{M}_p$  using cross-validated prediction error,  $C_p$  (AIC), BIC, or adjusted  $R^2$ .

## Best subset selection and forward stepwise selection compared

| # Variables | Best subset             | Forward stepwise        |
|-------------|-------------------------|-------------------------|
| One         | rating                  | rating                  |
| Two         | rating, income          | rating, income          |
| Three       | rating, income, student | rating, income, student |
| Four        | cards, income,          | rating, income,         |
|             | student, limit          | student, limit          |

Would you prefer best or forward feature selection?

## Backward stepwise selection (aka recursive feature elimination)

#### Algorithm 6.3 Backward stepwise selection

- 1. Let  $\mathcal{M}_p$  denote the full model, which contains all p predictors.
- 2. For  $k = p, p 1, \dots, 1$ :
  - (a) Consider all k models that contain all but one of the predictors in  $\mathcal{M}_k$ , for a total of k-1 predictors.
  - (b) Choose the *best* among these k models, and call it  $\mathcal{M}_{k-1}$ . Here *best* is defined as having smallest RSS or highest  $R^2$ .
- 3. Select a single best model from among  $\mathcal{M}_0, \ldots, \mathcal{M}_p$  using cross-validated prediction error,  $C_p$  (AIC), BIC, or adjusted  $R^2$ .

#### Would you prefer backward over forward selection?

### Other motivations for feature selection

#### Interpretability



#### Cost efficiency



# A case study: microbial flow cytometry



### Least-squares minimization revisited

$$RSS(\boldsymbol{w}) = \epsilon_1^2 + \epsilon_2^2 + \dots + \epsilon_n^2$$

$$= \sum_{i=1}^n \left( y_i - \sum_{j=0}^p w_j x_{ij} \right)^2$$

$$\times_1$$

#### Ridge regression: L2-regularization of the parameter vector

$$\hat{\boldsymbol{w}} = \operatorname{argmin}_{\boldsymbol{w}} \sum_{i=1}^{n} \left( y_i - \sum_{j=0}^{p} w_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} w_j^2$$
What is the effect of solving this adjusted optimization problem?

What is the effect of solving this adjusted optimization problem?

$$X = \begin{bmatrix} x_{10} & \cdots & x_{1p} \\ \vdots & & \vdots \\ x_{n0} & \cdots & x_{np} \end{bmatrix}$$
  $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$   $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_p \end{bmatrix}$ 

$$\min_{\boldsymbol{w}} RSS(\boldsymbol{w}) = (\boldsymbol{y} - X\boldsymbol{w})^T (\boldsymbol{y} - X\boldsymbol{w}) + \lambda ||\boldsymbol{w}||_2^2$$

$$\frac{\partial}{\partial \boldsymbol{w}} RSS(\boldsymbol{w}) = -2X^{T}(\boldsymbol{y} - X\boldsymbol{w}) + 2\lambda \boldsymbol{w} = 0$$

$$\Leftrightarrow X^T X \boldsymbol{w} - X^T \boldsymbol{y} + \lambda \boldsymbol{w} = \mathbf{0}$$

$$\Leftrightarrow (X^T X + \lambda I) w = X^T y$$

$$\Leftrightarrow \boldsymbol{w} = (X^T X + \lambda \boldsymbol{I})^{-1} X^T \boldsymbol{y}$$

### Ridge regression in action on the credit dataset





## Ridge regression prevents overfitting



## Ridge regression improves the prediction error (simulated data)



Red curve = prediction error
Green curve = variance
Black curve = squared bias

### An intuitive interpretation of bias and variance



## Ridge regression: why is it important to standardize the data?

$$\hat{\boldsymbol{w}} = \operatorname{argmin}_{\boldsymbol{w}} \sum_{i=1}^{n} \left( y_i - \sum_{j=0}^{p} w_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} w_j^2$$



# Lasso: L1-regularization of the parameter vector

Slightly different penalty term:

$$\hat{\boldsymbol{w}} = \operatorname{argmin}_{\boldsymbol{w}} \sum_{i=1}^{n} \left( y_i - \sum_{j=0}^{p} w_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |w_j|$$

- L1-norm as penalty term instead of L2-norm
- Has a very similar effect as L2-regularization
- No closed-form solution, but efficient algorithms exist



#### LASSO on the credit dataset



What is the advantage of Lasso compared to ridge regression?

### Another mathematical formulation of ridge regression and LASSO

Lasso:

$$\min_{\boldsymbol{w}} \sum_{i=1}^{n} \left( y_i - \sum_{j=0}^{p} w_j x_{ij} \right)^2 \text{ subject to } \sum_{j=1}^{p} |w_j| = s$$

Ridge regression:

$$\min_{\boldsymbol{w}} \sum_{i=1}^{n} \left( y_i - \sum_{j=0}^{p} w_j x_{ij} \right)^2 \text{ subject to } \sum_{j=1}^{p} w_j^2 = s$$

#### The small difference between ridge regression and lasso: a parameter space perspective



Both methods produce values for the parameters that are closer to zero

The set of allowed values slightly differs for both methods

=> will lead to different models

## Regularization in other models: the example of logistic regression



Model Complexity