Cert Prep: Project Management Professional (PMP)® (2018)

Earned Value Examples

Example 1: You have a construction project to be completed in 12 months and the total cost of the project is \$100,000 USD. Six months have passed and you've spent \$60,000 and the schedule says that 50% of the work should be completed. Upon closer review you find that only 40% of the work has been completed.

	Formula	Answer
Budgeted at Completion	Total cost/budget of project	
Planned Value	Planned % complete x BAC	
Earned Value	Actual % complete x BAC	
Actual Cost	Actual cost spent to date	
Cost Variance	EV - AC	
Schedule Variance	EV - PV	
Cost Performance Index	EV / AC	
Schedule Performance Index	EV / PV	
Estimated at Completion	BAC / CPI	
Estimated to Completion	EAC - AC	
Variance at Completion	BAC - EAC	
To-Complete Performance Index	(BAC - EV)/(BAC - AC)	

BAC = Budget at completion	
AC = Actual cost to date	
EV = Earned value	
PV = Planned value	

Example 2: You have a project to install 10 hair dryers in a salon. The cost per hair dryer is \$2,750 and the project will last 10 weeks. At week 5, six hair dryers were installed and you've spent \$15,500.

	Formula	Answer
Budgeted at Completion	Total cost/budget of project	
Planned Value	Planned % complete x BAC	
Earned Value	Actual % complete x BAC	
Actual Cost	Actual cost spent to date	
Cost Variance	EV - AC	
Schedule Variance	EV - PV	
Cost Performance Index	EV / AC	
Schedule Performance Index	EV / PV	

Estimated at Completion	BAC / CPI	
Estimated to Completion	EAC - AC	
Variance at Completion	BAC - EAC	
To-Complete Performance Index	(BAC - EV)/(BAC - AC)	

Earned Value Examples

Example 1: You have a construction project to be completed in 12 months and the total cost of the project is \$100,000 USD. Six months have passed and you've spent \$60,000 and the schedule says that 50% of the work should be completed. Upon closer review you find that only 40% of the work has been completed.

	Formula	Answer
Budgeted at Completion	Total cost/budget of project	\$100,000
Planned Value	Planned % complete x BAC	\$50,000
Earned Value	Actual % complete x BAC	\$40,000
Actual Cost	Actual cost spent to date	\$60,000
Cost Variance	EV - AC	-\$20,000
Schedule Variance	EV - PV	-\$10,000
Cost Performance Index	EV / AC	0.66 or 0.67
Schedule Performance Index	EV / PV	0.8
Estimated at Completion	BAC / CPI	\$149,253.73
Estimated to Completion	EAC - AC	\$89,253.73
Variance at Completion	BAC - EAC	-\$49,253.73
To-Complete Performance Index	(BAC - EV)/(BAC - AC)	1.5

Example 2: You have a project to install 10 hair dryers in a salon. The cost per hair dryer is \$2,750 and the project will last 10 weeks. At week 5, 6 hair dryers were installed and you've spent \$15,500.

	Formula	Answer
Budgeted at Completion	Total cost/budget of project	\$27,500
Planned Value	Planned % complete x BAC	\$13,750
Earned Value	Actual % complete x BAC	\$16,500
Actual Cost	Actual cost spent to date	\$15,500
Cost Variance	EV - AC	\$1,000
Schedule Variance	EV - PV	\$2,750
Cost Performance Index	EV / AC	1.06
Schedule Performance Index	EV / PV	1.2
Estimated at Completion	BAC / CPI	\$25,943.39
Estimated to Completion	EAC - AC	\$10,443.39
Variance at Completion	BAC - EAC	\$15,56.61
To-Complete Performance Index	(BAC - EV)/(BAC - A C)	0.916 or 0.92