- 1. P and Q are T, U and V are F, and W is unknown:
 - (a) Since $(P \lor Q) \equiv (T \lor T) \equiv T$ and $(U \land V) \equiv (F \land F) \equiv F$, we have

$$\begin{split} (P \vee Q) \vee (U \wedge V) &\equiv T \vee F \\ &\equiv T \end{split}$$

(b) Since $(\neg P \lor \neg U) \equiv (F \lor T) \equiv T$, and $(Q \lor \neg V) \equiv (T \lor T) \equiv T$, we have

$$(\neg P \vee \neg U) \wedge (Q \vee \neg V) \equiv T \wedge T$$
$$\equiv T$$

(c) We know that $(P \land \neg V) \equiv (T \land T) \equiv T$, but $(U \lor W)$ can either be T or F depending on what W is and one of the two truth values must be T for $U \lor W \equiv T$. Therefore, the statement is an unknown truth.

Citations: NONE

2. Let x be a real number:

- (a) If x=3, then $x^2=9$: This statement is T because we can simply see that $3^2=9$.
- (b) If $x^2 = 9$, then x = 3: This statement is F because x can also be -3 since $(-3)^2 = 9$.
- (c) If $x^2 \neq 9$, then $x \neq 3$: Looking at the contrapositive, if x = 3, then $x^2 = 9$ which is logically equivalent to (a), so the statement is T.
- (d) If $x \neq 3$, then $x^2 \neq 9$: This is the contrapositive of (b) which is logically equivalent, so the statement is F.

Citations: BOP Section 2.6 Contrapositive Law (2.1) $P \Rightarrow Q \equiv (\neg Q) \Rightarrow (\neg P)$

- 3. (a) Let N, O, P, Q, and R be mathematical statements. Constructing truth tables:
 - i. Truth table for $\neg (P \Rightarrow \neg Q)$:

P	Q	$\neg Q$	$P \Rightarrow \neg Q$	$\neg(P \Rightarrow Q)$
Т	Т	F	F	T
\mathbf{T}	F	Т	${ m T}$	F
\mathbf{F}	\mathbf{T}	F	${ m T}$	F
F	F	T	m T	F

ii. Truth table for $(P \wedge Q) \vee R$:

P	Q	R	$P \wedge Q$	$(P \wedge Q) \vee R$
Τ	Т	Τ	T	Т
T	T	\mathbf{F}	${ m T}$	T
T	F	${ m T}$	F	${ m T}$
T	F	\mathbf{F}	F	F
F	Γ	\mathbf{T}	F	T
F	Γ	F	\mathbf{F}	F
F	F	Т	\mathbf{F}	T
F	F	\mathbf{F}	F	F

(b) $N \wedge O \wedge P \wedge Q \wedge R$ will have $2^5 = 32$ rows in the truth table since we have 5 statements and each statement can be either T or F. All of the statements must be T for the entire statement to be T, so there is *only one* row where the entire statement is T, and 31 rows where the entire statement is F.

 $Citations:\ NONE$

4. Prove that $(\neg P \land Q) \Rightarrow (Q \lor R)$ is a tautology: From clase we showed that $A \Rightarrow B \equiv A \land (\neg B)$ or from De Morgan's Law $A \Rightarrow B \equiv (\neg A) \lor B$. Therefore,

$$\begin{split} (\neg P \wedge Q) \Rightarrow (Q \vee R) &\equiv \neg (\neg P \wedge Q) \vee (Q \vee R) \\ &\equiv (P \vee \neg Q) \vee (Q \vee R) \quad \text{De Morgan's Law} \\ &\equiv P \vee (\neg Q \vee Q) \vee R \quad \text{Associative Law} \\ &\equiv P \vee T \vee R \\ &\equiv T \end{split}$$

because having one T in a disjunction makes the entire statement T i.e $P \vee T \equiv T$ which carries over to $T \vee R \equiv T$.

For example, let's say

P: Penguins have wings

Q: Penguins swim in water

R: Penguins fly in the sky

In English: if penguins do not have wings and penguins swim in water, then penguins swim in water or penguins fly in the sky.

Citations: Lecture 3 1/17/25 (Jesus Sanchez!) & Discrete Mathematics and its Applications by Kenneth Rosen—Section 1.3, Table 7

5. Prove that n and m are odd integers if and only if nm is odd:

P: n and m are odd integers

Q: nm is odd

From lecture an odd integer can be expressed as 2k+1 for some integer k, and an even integer can be expressed as 2l for some integer l. Also $(P \Leftrightarrow Q) \equiv (P \Rightarrow Q) \land (Q \Rightarrow P)$, so we need to show both $P \Rightarrow Q$ and $Q \Rightarrow P$:

• $P \Rightarrow Q$: Assume n and m are odd integers. Then n = 2k + 1 and m = 2l + 1 for some integers k and l. Multiplying the two odd integers gives

$$nm = (2k+1)(2l+1)$$
$$= 4kl + 2k + 2l + 1$$
$$= 2(2kl + k + l) + 1$$

Since 2kl + k + l is an integer, nm is odd. So n and m being odd integers implies nm is odd

• $Q \Rightarrow P$: The contrapositive is $\neg P \Rightarrow \neg Q$. Assume n and m are even integers. Then n = 2k and m = 2l for some integers k and l. Multiplying the two even integers gives nm = 4kl = 2(2kl). Since 2kl is an integer, nm is even. So the contrapositive is true, thus $Q \Rightarrow P$

Citations: Lecture 2 1/15/25

- 6. For each statement write it out in English, write the negation in symbolic form, and write the negation in English:
 - (a) $\exists x \in \mathbb{Q}, x > \sqrt{2}$:

English: There exists a rational number x such that x is greater than $\sqrt{2}$

Negation: $\forall x \in \mathbb{Q}, x \leq \sqrt{2}$

Negation in English: For all rational numbers x, x is less than or equal to $\sqrt{2}$

(b) $\forall x \in \mathbb{Q}, x^2 - 2 \neq 0$:

English: For all rational numbers x, $x^2 - 2$ does not equal 0

Negation: $\exists x \in \mathbb{Q}, x^2 - 2 = 0$

Negation in English: There exists a rational number x such that $x^2 - 2$ equals 0

(c) $\forall x \in \mathbb{Z}, x^2 \text{ is odd} \Rightarrow x \text{ is odd}$:

English: For all integers x, if x^2 is odd, then x is odd

Negation: $\exists x \in \mathbb{Z}, x^2 \text{ is odd } \land x \text{ is even}$

Negation in English: There exists an integer x such that x^2 is odd and x is even

(d) $\exists x \in \mathbb{R}, \cos(2x) = 2\cos(x)$:

English: There exists a real number x such that cos(2x) = 2cos(x)

Negation: $\forall x \in \mathbb{R}, \cos(2x) \neq 2\cos(x)$

Negation in English: For all real numbers x, $\cos(2x)$ does not equal $2\cos(x)$

Citations: Lecture 4 1/22/25