Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#2}{}^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	8
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$t_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	8
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta} \sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 -i(4\partial_{\delta}\partial_{x}\partial^{\beta}\partial^{\alpha}\tau^{X\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{X})$	5
	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3\partial_{\delta}\partial^{\lambda}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$4\ i \ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\delta arepsilon}_{\ \delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon}{}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	16

Quadratic (free) action	
S ==	
$\iiint (\frac{1}{6} \left(6 t_1 \mathcal{A}_{\alpha \alpha}^{\alpha \prime} \mathcal{A}_{i \theta}^{ \theta} + 6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 12 t_1 \mathcal{A}_{\alpha \theta}^{ \theta} \partial_{i} f^{\alpha i} + 12 \right)$	
$t_1 {\mathcal R}_{{}_{l}}^{\; \; heta} \partial^{\prime} f^{lpha}_{\;\; \; lpha}$ - $6 t_1 \partial_{\imath} f^{eta}_{\;\; \; heta} \partial^{\prime} f^{lpha}_{\;\;\; \; lpha}$ -	
$12r_1\partial_\beta\mathcal{A}_{_I}{_\theta}^\theta\partial^\prime\mathcal{A}_{\alpha}^{\alpha\beta}+12r_1\partial_\prime\mathcal{A}_{\theta}^{\theta}\partial^\prime\mathcal{A}_{\alpha}^{\alpha\beta}-$	
$6t_1\partial_{i}f^{\alpha i}\partial_{\theta}f_{\alpha}^{\ \ \theta}+12t_1\partial_{i}f_{\alpha}^{\alpha}\partial_{\theta}f_{i}^{\ \ \theta}+$	
$12r_1\partial_\alpha\mathcal{A}^{\alpha\beta\prime}\partial_\theta\mathcal{R}_{\beta\prime}^{\theta}-24r_1\partial^\prime\mathcal{R}_{\alpha}^{\alpha\beta}\partial_\theta\mathcal{R}_{\beta\prime}^{\theta}-$	
$12r_{1}\partial_{\alpha}\mathcal{A}^{\alpha\beta_{l}}\partial_{\theta}\mathcal{R}_{l\beta}^{\ \theta}+24r_{1}\partial^{\prime}\mathcal{R}_{\alpha\beta}^{\alpha\beta}_{\ \alpha}\partial_{\theta}\mathcal{R}_{l\beta}^{\ \theta}+$	
$4t_1 \mathcal{A}_{i\theta\alpha} \partial^{\theta} f^{\alpha i} + 4t_2 \mathcal{A}_{i\theta\alpha} \partial^{\theta} f^{\alpha i} - 4t_1 \partial_{\alpha} f_{i\theta} \partial^{\theta} f^{\alpha i} +$	
$2t_2\partial_\alpha f_{_{l}\theta}\partial^\theta f^{\alpha l}-4t_1\partial_\alpha f_{_{\theta l}}\partial^\theta f^{\alpha l}-t_2\partial_\alpha f_{_{\theta l}}\partial^\theta f^{\alpha l}+$	
$2t_1\partial_{\imath}f_{\alpha\theta}\partial^{\theta}f^{\alpha\imath}-t_2\partial_{\imath}f_{\alpha\theta}\partial^{\theta}f^{\alpha\imath}+4t_1\partial_{\theta}f_{\alpha\imath}\partial^{\theta}f^{\alpha\imath}+$	
$t_2 \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} + 2 t_1 \partial_{\theta} f_{i \alpha} \partial^{\theta} f^{\alpha i} - t_2 \partial_{\theta} f_{i \alpha} \partial^{\theta} f^{\alpha i} +$	
$2(t_1+t_2)\mathcal{A}_{\alpha_1\theta}(\mathcal{A}^{\alpha_1\theta}+2\partial^{\theta}f^{\alpha_1})+$	
$2 \mathcal{A}_{\alpha\theta_{I}} ((t_{1}-2t_{2}) \mathcal{A}^{\alpha_{I}\theta}+2(2t_{1}-t_{2}) \partial^{\theta}f^{\alpha_{I}})$	
$8r_{1}\partial_{\beta}\mathcal{A}_{\alpha_{l}\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta_{l}}+8r_{2}\partial_{\beta}\mathcal{A}_{\alpha_{l}\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta_{l}}+$	
$4r_{1}\partial_{eta}\mathcal{A}_{lpha heta_{1}}\partial^{ heta}\mathcal{A}^{lphaeta_{1}}$ - $4r_{2}\partial_{eta}\mathcal{A}_{lpha heta_{1}}\partial^{ heta}\mathcal{A}^{lphaeta_{1}}$ - $16r_{1}\partial_{eta}\mathcal{A}_{1 hetalpha}$	
$\partial^{\theta}\mathcal{A}^{\alpha\beta\prime} + 4r_{2}\partial_{\beta}\mathcal{A}_{_{I}\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime} - 4r_{1}\partial_{_{I}}\mathcal{A}_{_{\alpha\beta\theta}}\partial^{\theta}\mathcal{A}^{\alpha\beta\prime} -$	
$2r_2\partial_{\imath}\mathcal{A}_{\alpha\beta\theta}\partial^{\theta}\mathcal{A}^{\alpha\beta\imath} + 4r_1\partial_{\theta}\mathcal{A}_{\alpha\beta\imath}\partial^{\theta}\mathcal{A}^{\alpha\beta\imath} +$	
$2 r_2 \partial_{\theta} \mathcal{A}_{\alpha\beta_l} \partial^{\theta} \mathcal{A}^{\alpha\beta_l} + 4 r_1 \partial_{\theta} \mathcal{A}_{\alpha_l\beta} \partial^{\theta} \mathcal{A}^{\alpha\beta_l} -$	
$4r_2\partial_ heta\mathcal{A}_{lpha_Ieta}\partial^ heta\mathcal{A}^{lphaeta_I}))[t,x,y,z]dzdydxdt$	

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$	
$\tau_{1}^{\#1}\alpha$	0	0	0	0	0	0	$0 \frac{2}{}$	α
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2 k^2 r_1 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	$\mathcal{A}_{1^-}^{\#2}{}_{lpha}f_{1^-}^{\#1}{}_{lpha}f_{1^-}^{\#2}{}_{lpha}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$	${\mathscr A}_{1^-}^{\#1}{}_{\alpha}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	$f_{1}^{\#1}$
$\sigma_{1}^{\#_{2}^{2}}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0	${\mathscr A}_{1}^{\#2}_{\alpha\beta}$
$\sigma_{1}^{\#1}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0	$\mathcal{A}_{1^{+}\alpha\beta}^{\#1}$
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$	

0

						_								
	0	ikt_1	0	0	0							${\mathscr A}_{2^{\bar{-}}}^{\#1}{}_{\alpha\beta\chi}$	0	0
	0	0	0	0	0									
	0	$\frac{t_1}{\sqrt{2}}$	0	0	0							$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$
	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$							${\mathcal A}_{2}^{\#1}{}_{lphaeta}$	<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$
		- k			'								$+^{\alpha \beta}$	$f_2^{\#1} + ^{\alpha\beta}$
	+ t2]						$\mathscr{R}_{0}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$		$\mathcal{A}_0^{\sharp_1}$		$\mathcal{A}_2^{\#1} \dagger^{\alpha\beta}$	$f_{2}^{\#1}$
	$\frac{1}{3}k^{2}(t_{1}+t_{2})$	0	0	0	0	${\cal R}_{0}^{\#1}\dagger$	-t ₁	$i \sqrt{2} kt_1$	0		0			Ī
)	$\frac{1}{3} k^2$					$f_{0^{+}}^{#1}$ †	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0		0	$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	
	+ t ₂)					$f_{0+}^{#2}$ †	0	0	0		0	$\sigma_{2^{-}}^{\#1}$	0	
)	$i k (t_1 + t_2)$	0	0	0	0	$\mathscr{R}_{0}^{\#1}$ †	0	0	0	k^2	$r_2 + t_2$	ϵ_{eta}	$\frac{2k}{1)^2t_1}$	12,41
	$-\frac{1}{3}\vec{I}$					_	$\sigma_0^{\#1}$	$ au_{0}^{\#1}$	τ_0^7	#2)+	$\sigma_0^{\sharp 1}$	$\tau_{2}^{\#1}$	$2i\sqrt{2}k$ $(1+2k^2)^2t_1$	$\frac{4k^2}{(1+2k^2)^2 t_1}$
_	$\frac{2t_2)}{2}$					$\sigma_{0^{+}}^{\!\#1}\dagger$	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2}$	- (0	0	8	- 1	
)	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0	$ au_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2}$		0	0	$\sigma_{2}^{\#1}{}_{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$2i\sqrt{2}k$ (1+2k ²) ² t ₁
	$+^{\alpha \beta}$	- + _α	; + _a	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} + \alpha$	$ au_{0}^{\#2} \dagger$	0	0	(0	0			$\alpha\beta$
	$f_{1}^{\#1} + ^{\alpha \beta}$	$\mathcal{A}_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\mathcal{A}_{1}^{\#2} +^{lpha}$	$f_1^{\#1}$	$f_{1}^{#2}$	$\sigma_0^{\#1}$ †	0	0	(0	$\frac{1}{k^2 r_2 + t_2}$		$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2+}^{#1} + \alpha \beta$

Massive and massless spectra

Massive particle											
Pole residue:	$-\frac{1}{r_2} > 0$										
Polarisations:	1										
Square mass:	$-\frac{t_2}{r_2} > 0$										
Spin:	0										
Parity:	Odd										
	Pole residue: Polarisations: Square mass: Spin:										

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0$