

Who am I?

• Founder of Domino Data Lab, a software platform for enterprise data science

Previously built analytical software at a big hedge fund

• BA, MS in computer science

Outline

- Motivation
- Basic conceptual intro to parallelism, general principles and pitfalls
- Parallel programming in R
- Machine learning applications
- Domino
- Questions

Motivation

"Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it."

– Dan Ariely

- Lots of "medium data" problems
 - Can fit in memory on one machine
- Lots of naturally parallel problems
- Easy to access large machines
- Clusters are hard
- Not everything fits map-reduce

Model	vCPU	Mem (GiB)	SSD Storage (GB)
r3.large	2	15.25	1 x 32
r3.xlarge	4	30.5	1 x 80
r3.2xlarge	8	61	1 x 160
r3.4xlarge	16	122	1 x 320
r3.8xlarge	32	244	2 x 320

Parallel programing 101

- Think about independent tasks (hint: "for" loops are a good place to start!)
 - Should be CPU-bound tasks
- Warning and pitfalls
 - Not a substitute for good code
 - Overhead
 - Shared resource contention
 - Thrashing

Source: Blaise Barney, Lawrence Livermore National Laboratory

Can parallelize at different "levels"

Will focus on algorithms, with some brief comments on Experiments

Common Operation: Map

```
M = function(item) {
    manipulatedItem = ...
    manipulatedItem
}

map(M, items) \rightarrow F( ) F( ) F( ) ... F( )
```

So what's map-reduce?

Parallelize tasks to match your resources

Network IO (e.g., web scraping)

Saturating a resource will create a bottleneck

Parallelize tasks to match your resources

```
itemIDs = c(1, 2, ..., n)
                                             items = fetchData(c(1, 2, ..., n))
foreach(i = itemIDs) %dopar% {
                                             results = foreach(i = items) %dopar% {
  item = fetchData(i)
                                               computeSomething(item)
                                   □
  result = computeSomething(item)
  saveResult(result)
                                             saveResult(results)
```

Parallel programing in R

- General purpose
 - parallel
 - foreach
- More specialized
 - randomForest
 - caret
 - plyr

Demo

https://github.com/dominodatalab/parallel-r-examples

Many ML tasks are naturally parallelized

- Cross-validation
- Grid search
- Random forest
- KMeans
- Neural networks

Demo

https://github.com/dominodatalab/parallel-r-examples

Can compose layers of parallelism

Demo

Going deeper

http://cran.r-project.org/web/views/HighPerformanceComputing.html http://topepo.github.io/caret/index.html

- Python!
 - Joblib
 - scikit learn (n_jobs)
 - GridSearchCV, RandomForest, KMeans, cross_val_score
 - IPython Notebook clusters

Webinar on parallel programming in R and Python.

Jan 28, 10:30am dominodatalab.com/webinar

Check us out

dominodatalab.com

blog.dominodatalab.com

@dominodatalab