

N-Channel Enhancement Mode Power MOSFET

General Description

The YMP200N08 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications.

Features

- V_{DS} =80V; I_D =200A@ V_{GS} =10V; $R_{DS(ON)}$ < 3 m Ω @ V_{GS} =10V
- Special process technology for high ESD capability
- Special designed for Convertors and power controls
- High density cell design for ultra low Rdson
- Fully characterized Avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard Switched and High Frequency Circuits
- Uninterruptible Power Supply

Product Summary

BV _{DSS} typ.	80	>
R _{DS(ON)} typ.	3	mΩ
max.	4	mΩ
I _D	200	Α

100% UIS TESTED!

TO-247 top view

Schematic diagram

Package Marking And Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
YMP200N08	YMP200N08	TO-247	-	-	-

Table 1. Absolute Maximum Ratings (TA=25℃)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage (V _{GS} =0V)	V _{DS}	80	V	
Gate-Source Voltage (V _{DS} =0V)	V _{GS}	±25	V	
Drain Current (DC) at Tc=25℃	I _{D (DC)}	200	А	
Drain Current (DC) at Tc=100℃	I _{D (DC)}	130	А	
Drain Current-Continuous@ Current-Pulsed (Note 1)	I _{DM (pluse)}	430	Α	
Maximum Power Dissipation(Tc=25℃)	P _D	300	W	
Derating factor		1.33	W/℃	
Single pulse avalanche energy (Note 2)	E _{AS}	2000	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	°C	

Notes 1. Repetitive Rating: Pulse width limited by maximum junction temperature

2.EAS condition: Tj=25°C,VDD=28V,VG=10V,L=1mH ,R $_{g}=25\Omega$;

Table 2. Thermal Characteristic

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Note2)	R _{thJC}	0.75	°C/W

 Table 3. Electrical Characteristics (TA=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	80			V
Zero Gate Voltage Drain Current(Tc=25℃)	I _{DSS}	V _{DS} =-24V,V _{GS} =0V			1	μΑ
Gate-Body Leakage Current	I _{DSS}	V _{GS} =±25V,V _{DS} =0V			± 10 0	μA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	-	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A		3	4	mΩ
Dynamic Characteristics						
Forward Transconductance	g FS	V _{DS} =25V,I _D =40A	50			S
Input Capacitance	C _{lss}	\/ -20\/\/ -0\/		5000		PF
Output Capacitance	C _{oss}	V_{DS} =30V, V_{GS} =0V, F=1.0MHz		860		PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIEZ		480		PF
Total Gate Charge	Q_g	V _{DS} =30V,I _D =40A,		106		nC
Gate-Source Charge	Q_{gs}	$V_{DS}=30V,I_{D}=40A,$ $V_{GS}=10V$		20		nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V		35		nC
Switching times						
Turn-on Delay Time	t _{d(on)}			34	50	nS
Turn-on Rise Time	t _r	V_{DD} =30 V , I_{D} =1 A , R_{L} =30 Ω		30	46	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =4 Ω		124	200	nS
Turn-Off Fall Time	t _f			64	116	nS
Source- Drain Diode Characteristics						
Source-drain current(Body Diode)	I _{SD}				40	Α
Forward on voltage ^(Note 3)	V _{SD}	Tj=25°C,I _{SD} =20A,V _{GS} =0V		0.8	1.3	V
Reverse Recovery Time ^(Note 1)	t _{rr}	Ti=25°C L =40A di/dt=400A/vo		74		nS
Reverse Recovery Charge	Q _{rr}	- Tj=25°C,I _F =40A,di/dt=100A/μs		140		nC
Forward Turn-on Time	t _{on}	Intrinsic turn-on time is negligible(turn-on is dominated by L _S +L _D)				

Notes 3.Pulse Test: Pulse Width ≤ 300 μ s, Duty Cycle ≤ 2%, R $_{\text{G}}$ =25 Ω , Starting Tj=25 $^{\circ}$ C

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Characteristics

Safe Operation Area

V_{DS} - Drain-Source Voltage (V)

220 210 180 160 140 120 100 100 80 40 Limited By Package 20 0 Tc=25°C,Vg=10v 0 20 40 60 80 100 120 140 160 180

T_i - Junction Temperature (°C)

Thermal Transient Impedance

Square Wave Pulse Duration (sec)

Typical Characteristics (Cont.)

V_{DS} - Drain-Source Voltage (V)

Drain-Source On Resistance

R_{DS(ON)} - On Resistance (mΩ)

I_D - Drain Current (A)

Drain-Source On Resistance

VGS - Gate - Source Voltage (V)

Gate Threshold Voltage

Tj - Junction Temperature (°C)

Typical Characteristics (Cont.)

T_j - Junction Temperature (°C)

V_{SD} - Source-Drain Voltage (V)

V_{DS} - Drain-Source Voltage (V)

