Statistique (MA101) Cours 6 ENSTA 1ère année

Christine Keribin

christine.keribin@math.u-psud.fr

Laboratoire de Mathématiques Université Paris-Sud

2017-2018

Christine Keribin

confiance

Construction

e mot de la fin

Sommaire

Statistique (MA101) Cours 6

Christine Keribin

Intervalle de confiance

Définition Construction

e mot de la fin

Intervalle de confiance

Introduction
Définition
Construction

Le mot de la fin

Soit le test (H_0) : $\mu=\mu_0$ contre (H_1) : $\mu\neq\mu_0$ de l'espérance d'une loi gaussienne $\mathcal{N}(\mu,\sigma^2)$ à variance connue. On ne peut rejeter (H_0) au niveau α si

$$|T(X)| = \left|\sqrt{n}\frac{\bar{X} - \mu_0}{\sigma}\right| \le q_{1-\alpha/2}^*$$

soit

$$-q_{1-\alpha/2}^* \le \sqrt{n} \frac{\bar{X} - \mu_0}{\sigma} \le q_{1-\alpha/2}^*$$

qu'on peut aussi écrire

$$\underbrace{\bar{X} - q_{1-\alpha/2}^* \frac{\sigma}{\sqrt{n}}}_{\widehat{\mu}_{inf}} \leq \mu_0 \leq \underbrace{\bar{X} + q_{1-\alpha/2}^* \frac{\sigma}{\sqrt{n}}}_{\widehat{\mu}_{sup}}$$

et
$$1 - \alpha = \mathbb{P}\left(|T(X)| \le q_{1-\alpha/2}\right) = \mathbb{P}\left(\left[\widehat{\mu}_{inf}; \widehat{\mu}_{sup}\right] \ni \mu_0\right)$$

Définition

Construction

Le mot de la fin

 Ainsi, une valeur hypothétique de μ ne soit pas rejetée si elle est dans l'intervalle

$$IC(\mu) = [\widehat{\mu}_{inf}; \widehat{\mu}_{sup}]$$

- ▶ Cet intervalle $IC(\mu)$ aux bornes aléatoires est appelé intervalle de confiance de niveau $1-\alpha$ de l'espérance μ inconnue
- ▶ Dans cet exemple, il y a équivalence pour μ entre prendre une valeur acceptée (H_0) dans le test de niveau α et le fait d'être situé dans l'intervalle de confiance de niveau (de confiance) 1α

Fournir un intervalle (fourchette) permet de prendre en compte la fluctuation d'échantillonnage plutôt que de donner une valeur ponctuelle $\widehat{\mu}$

Définition

Soit $X=(X_1,\ldots,X_n)$ un n-échantillon de loi \mathbb{P}_{θ} , où $\theta\in\Theta\subset\mathbb{R}$ est inconnu. Un intervalle de confiance de niveau $1-\alpha$ pour θ est un intervalle $IC=[\widehat{\theta}_{inf}(X),\widehat{\theta}_{sup}(X)]$ dont les bornes sont aléatoires, telles que, pour tout $\theta\in\Theta$

$$\mathbb{P}_{\theta}(IC \ni \theta) \ge 1 - \alpha.$$

où α est "petit". Une réalisation $[\widehat{\theta}_{inf}(x), \widehat{\theta}_{sup}(x)]$ est obtenue à partir des données $x = (x_1, \dots, x_n)$.

Définition

Retour sur l'exemple : $X_i \sim \mathcal{N}(\mu, \sigma^2)$, σ^2 connu.

▶ On choisit $0 \le \alpha_1, \alpha_2 \le \alpha$ tq $\alpha_1 + \alpha_2 = \alpha$ et soit q^* la fonction quantile de $\mathcal{N}(0,1)$. Un intervalle de probabilité $1 - \alpha$ de $T = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$ est $[q^*_{\alpha_1}; q^*_{1-\alpha_2}]$

$$\mathbb{P}(q_{\alpha_1}^* < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < q_{1-\alpha_2}^*) = 1 - \alpha$$

ightharpoonup d'où un IC de niveau $1-\alpha$ de μ

$$\mathbb{P}\left(\bar{X} - q_{1-\alpha_2}^* \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} - q_{\alpha_1}^* \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

$$IC = \left[\bar{X} - q_{1-\alpha_2}^* \frac{\sigma}{\sqrt{n}}; \bar{X} - q_{\alpha_1}^* \frac{\sigma}{\sqrt{n}}\right]$$

Une infinité d'expression pour un même niveau $1-\alpha$ (ci-dessous, réalisations pour 4 couples (α_1, α_2))

- ▶ IC1 et IC4 sont des intervalles de confiance unilatéraux
- ► IC2 et IC3 sont bilatéraux
- ► IC3 est l'intervalle de confiance symétrique, de longueur minimale ici :

$$IC3(\mu) = \left[\bar{X} - q_{1-\alpha/2}^* \frac{\sigma}{\sqrt{n}}; \bar{X} + q_{1-\alpha/2}^* \frac{\sigma}{\sqrt{n}}\right]$$

Statistique (MA101) Cours 6

Christine Keribin

Intervalle d confiance Introduction Définition

e mot de la fin

- > mean(X)
- [1] 2.0686 alpha1 alpha2 TC3 0.025

0.025

min 1.873

max 2.265 length 0.392

- Interprétation fausse : θ appartient à [1.873; 2.265] avec probabilité $1-\alpha$.
- ► Interprétation correcte :
 - \hookrightarrow La vraie valeur de θ (inconnue) appartient ou (exclus.) n'appartient pas à l'intervalle observé [1.873; 2.265].
 - → Si on construit une centaine d'intervalles de confiance à partir d'une centaine de n-échantillons indépendants, en moyenne $100 \times \alpha$ IC observés ne contiendront pas θ
 - \hookrightarrow mais on ne sait pas lesquels...

Exemple : IC de l'espérance à variance connue

Statistique (MA101) Cours 6

Christine Keribin

Intervalle de confiance

Définition Construction

Le mot de la

- ▶ IC est d'autant plus large que α est petit.
 - → A l'extrême, l'IC de niveau de confiance 1 contient toutes les valeurs possibles... mais n'est plus informatif!
- ► IC de l'espérance calculé précédemment est d'autant plus étroit que n est grand
 - Une construction d'IC est convergente si la différence de ses bornes tend en proba vers 0 avec n
- ► Choisir un estimateur de θ , dont on connaît la loi de probabilité pour tout θ , et le meilleur possible
 - \hookrightarrow à α et n fixés, l'IC est d'autant meilleur que sa longueur est faible (pour toute réalisation / en moyenne)

Inégalité probabiliste Méthode pivotale :

- ightharpoonup définir un estimateur $\widehat{\theta}$ de θ
- trouver une statistique pivotale $T_n(\widehat{\theta}, \theta)$ dont la loi ne dépend pas de θ
- exprimer les bornes de l'intervalle de confiance en fonction de T_n et de ses quantiles

Utiliser une équivalence Test - IC. Si $\mathcal{R}(\theta)$ est une région de rejet de niveau α , alors

$$IC(\theta) = \{\theta; \mathbb{1}_{X \in \mathcal{R}(\theta)} = 0\}$$

est un intervalle de confiance de niveau $1-\alpha$.

IC asymptotique:

- ► La loi de la statistique n'est pas connue à distance finie, mais tend asymptotiquement vers une loi pivotale.
- On construit l'IC comme si la loi à distance finie était la loi limite.
- ▶ le niveau de l'IC construit est approximativement $1-\alpha$ à distance finie, et vaut asymptotiquemet $1-\alpha$
- ▶ l'approximation s'améliore avec avec *n* croissant.

Définition

Une suite d'intervalle de confiance IC_n de $\theta \in \mathbb{R}$ est de niveau asymptotique $1-\alpha$ si, pour tout $\theta \in \Theta$, on a

$$\lim_{n\to\infty} \mathbb{P}(IC_n \ni \theta) = 1 - \alpha.$$

► TLC+Slutsky :

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 \xrightarrow{\mathcal{P}} \sigma^2$$

$${\cal T}_n = rac{ar{X} - heta}{S_n/\sqrt{n}} \stackrel{{\cal L}}{\longrightarrow} {\cal N}(0,1)$$

d'où, avec q^* le quantile de $\mathcal{N}(0,1)$ d'ordre 1-lpha/2 :

$$IC = \left[\bar{X} - q^* rac{S_n}{\sqrt{n}}; \bar{X} + q^* rac{S_n}{\sqrt{n}}
ight] ext{ avec } \mathbb{P}(IC \ni \theta) \simeq 1 - lpha$$

Tests et ICs paramétriques usuels

- ► Test d'une moyenne, d'une proportion, d'une variance
- Comparaison des moyennes de deux échantillons, comparaison de deux proportions, comparaison de deux variances

Tests d'adéquation

- hypothèse gaussienne : ex Shapiro-Wilks
- généraux pour les observations continues :
 Kolmogorov-Smirnov (test non paramétrique)
- observations discrètes : Khi-deux d'adéquation

Test de l'indépendance de deux facteurs Test de corrélation entre deux variables...

- ▶ $X = (X_1, ..., X_n) \sim \mathcal{N}(\mu_1, \sigma^2)$ et $Y = (Y_1, ..., X_m) \sim \mathcal{N}(\mu_2, \sigma^2)$ indépendants. μ_1, μ_2 et σ^2 sont inconnus.
- ▶ La variance est inconnue, et supposée identique dans les deux échantillons
- ► Alors, la statistique *T* définie par

$$T = \frac{\overline{Y} - \overline{X}}{\widehat{\sigma}\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \mathcal{T}(n + m - 2)$$

$$\widehat{\sigma}^2 = \frac{1}{n+m-2} \left(\sum_{i=1}^n (X_i - \overline{X})^2 + \sum_{j=1}^m (Y_j - \overline{Y})^2 \right)$$

suit une loi de Student de paramètre n + m - 2.

 (H_0) : $\mu_1 = \mu_2$ contre (H_1) : $\mu_1 \neq \mu_2$: Région de rejet bilatérale de niveau α

$$\{|T| > q_{\mathcal{T}(n+m-2)}^{1-\alpha/2}\}$$

Un IC bilatère de niveau de confiance $1-\alpha$

$$IC(\mu_2 - \mu_1) = \left[\bar{Y} - \bar{X} - q_{\mathcal{T}(n+m-2)}^{1-\alpha/2} \frac{\widehat{\sigma}}{\sqrt{n}}; \bar{Y} - \bar{X} + q_{\mathcal{T}(n+m-2)}^{1-\alpha/2} \frac{\widehat{\sigma}}{\sqrt{n}} \right]$$

▶ Asymptotique (n grand et sans l'hypothèse gaussienne), on utilise le TLC + Slutsky

$$T \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0,1)$$

et on construit tests et ICs à partir de la loi asymptotique

Sommaire

Statistique (MA101) Cours 6

Christine Keribin

confiance
Introduction
Définition
Construction

Le mot de la fin

Intervalle de confiance
Introduction
Définition
Construction

Le mot de la fin

- ▶ feuille A4 manuscrite + calculatrice
- Exercices refaits (corrigés sur le site pédagogique via synapse)
- Compétences attendues :
 - Construire un estimateur par les méthodes du maximum de vraisemblance et des moments

 - Construire l'IC d'un paramètre et en interpréter le résultat
 - Construire un test et en interpréter le résultat; calculer une puissance, calculer et utiliser une p-value.
 - → Construire un test UPP
- une demi-heure de questions/réponses de 8h30 à 9h00 avant l'examen