Countries Rating

This Jupiter notebook constitutes part of a research project aimed at addressing the inquiry, "Which country is the most suitable for an individual?" utilizing data collected by the Organization for Economic Cooperation and Development (OECD). The project's full details are available in the webpage at https://evgenii-sokolov.github.io/Portfolio_website/Countries_Rating.html or in the PowerPoint presentation at https://github.com/Evgenii-Sokolov/Countries_Rating/blob/main/CR_Report.pptx.

This notebook covers the following steps:

- 1. Data Collection and Exploration: The OECD data will be obtained, transformed into a Pandas dataframe, investigated, cleansed, profiled, and extraneous data will be eliminated.
- 2. Data Wrangling: The missing values will be imputed using various linear regression models and the knearest neighbors method from Sklearn. In order to facilitate inter-country comparisons, new parameters will be generated by combining normalized specific characteristics. Following that, the dataframe will be restructured into a suitable format.
- 3. Data Visualization and Analysis: The dataset will be visualized and examined using interactive Plotly charts in order to extract insights and create an informative dashboard.

Data Collection

Import the required libraries.

```
In [1]: import pandas as pd
   import numpy as np
   import plotly.express as px
   from sklearn import linear_model
   from sklearn.preprocessing import MinMaxScaler
   from sklearn.impute import KNNImputer
```

The dataset in question is available on the OECD website at the URL: https://stats.oecd.org/Index.aspx? DataSetCode=BLI.

To facilitate subsequent work, we shall transform the dataset, which is stored in a .csv file, into a Pandas dataframe.

```
In [2]: df = pd.read_csv('BLI_11042023094335807.csv')
```

Data Exploration

Firstly, we will print the dataset's shape and the top 5 rows to acquaint ourselves with the data. The dataset comprises 2369 rows and 17 columns.

Unit F

Unit

Code

0	AUS	Australia	JE_LMIS	Labour market insecurity	l	-	Value	TOT	Total	PC	Percentage
1	AUT	Austria	JE_LMIS	Labour market insecurity	l	-	Value	ТОТ	Total	PC	Percentage
2	BEL	Belgium	JE_LMIS	Labour market insecurity	L	-	Value	TOT	Total	PC	Percentage

The dataset contains a substantial amount of information, while we are only interested in specific data. To achieve our aim, we shall employ the .pivot function to generate a dataframe from the data we require, with the country names as rows and the feature names as columns.

```
In [4]: Rating = df[df['INEQUALITY'] == 'TOT'] #to obtain general information, dataset contains se
Rating = Rating.pivot(index='Country', columns='Indicator', values='Value')
pd.options.display.max_columns = None #to see all columns
Rating
```

Out[4]:

Indicator	Air pollution	Dwellings without basic facilities	Educational attainment	Employees working very long hours	Employment rate	Feeling safe walking alone at night	Homicide rate	Household net adjusted disposable income	Houser net we
Country									
Australia	6.7	NaN	84.0	12.5	73.0	67.0	0.9	37433.0	5287
Austria	12.2	0.8	86.0	5.3	72.0	86.0	0.5	37001.0	3096
Belgium	12.8	0.7	80.0	4.3	65.0	56.0	1.1	34884.0	4476
Brazil	11.7	6.7	57.0	5.6	57.0	45.0	19.0	NaN	1
Canada	7.1	0.2	92.0	3.3	70.0	78.0	1.2	34421.0	4782
Chile	23.4	9.4	67.0	7.7	56.0	41.0	2.4	NaN	1357
Colombia	22.6	12.3	59.0	23.7	58.0	50.0	23.1	NaN	1
Costa Rica	17.5	2.3	43.0	22.0	55.0	47.0	10.0	16517.0	1
Czech Republic	17.0	0.5	94.0	4.5	74.0	77.0	0.7	26664.0	1
Denmark	10.0	0.5	82.0	1.1	74.0	85.0	0.5	33774.0	1498
Estonia	5.9	5.7	91.0	2.2	74.0	79.0	1.9	23784.0	1886
Finland	5.5	0.4	91.0	3.6	72.0	88.0	1.2	33471.0	2300
France	11.4	0.5	81.0	7.7	65.0	74.0	0.4	34375.0	2986
Germany	12.0	0.1	86.0	3.9	77.0	76.0	0.4	38971.0	3043
Greece	14.5	0.4	76.0	4.5	56.0	69.0	1.0	20791.0	1483
Hungary	16.7	3.5	86.0	1.5	70.0	74.0	0.9	21026.0	1502
Iceland	6.4	0.0	76.0	11.7	78.0	85.0	0.3	NaN	1
Ireland	7.8	0.2	85.0	4.7	68.0	76.0	0.5	29488.0	3703

	Israel	19.7	NaN	88.0	14.1	67.0	80.0	1.5	NaN	1
	Italy	15.9	0.6	63.0	3.3	58.0	73.0	0.5	29431.0	2950
	Japan	13.7	6.4	NaN	NaN	77.0	77.0	0.2	28872.0	2947
	Korea	27.3	2.5	89.0	NaN	66.0	82.0	0.8	24590.0	3623
	Latvia	12.7	11.2	89.0	1.6	72.0	72.0	3.7	19783.0	792
	Lithuania	10.5	11.8	94.0	1.0	72.0	62.0	2.5	26976.0	1820
Lı	ıxembourg	10.0	0.1	74.0	2.8	67.0	87.0	0.2	44773.0	9411
	Mexico	20.3	25.9	42.0	27.0	59.0	42.0	26.8	16269.0	1
N	letherlands	12.2	0.1	81.0	0.3	78.0	83.0	0.6	34984.0	2485
	New Zealand	6.0	NaN	81.0	14.0	77.0	66.0	1.3	39024.0	5141
	Norway	6.7	0.0	82.0	1.4	75.0	93.0	0.6	39144.0	2683
0	ECD - Total	14.0	3.0	79.0	10.2	66.0	74.0	2.6	30490.0	3239
	Poland	22.8	2.3	93.0	4.2	69.0	71.0	0.5	23675.0	2332
	Portugal	8.3	0.9	55.0	5.6	69.0	83.0	0.7	24877.0	2553
	Russia	11.8	13.8	95.0	0.1	70.0	64.0	4.8	19546.0	1
	Slovak Republic	18.5	1.5	92.0	4.2	68.0	76.0	0.8	21149.0	1714
	Slovenia	17.0	0.2	90.0	5.6	71.0	91.0	0.4	25250.0	2332
S	outh Africa	28.5	35.9	48.0	15.4	39.0	40.0	13.7	9338.0	1
	Spain	10.0	0.3	63.0	2.5	62.0	80.0	0.7	27155.0	3665
	Sweden	5.8	0.0	84.0	0.9	75.0	79.0	1.1	33730.0	1
S	Switzerland	10.1	0.0	89.0	0.4	80.0	86.0	0.3	39697.0	1
	Türkiye	27.1	4.9	42.0	25.0	48.0	59.0	1.0	NaN	1
	United Kingdom	10.1	0.5	82.0	10.8	75.0	78.0	0.2	33049.0	5244
	United States	7.7	0.1	92.0	10.4	67.0	78.0	6.0	51147.0	6845

We shall examine the data types to check for any issues that may require attention.

In [5]: Rating.info()

<class 'pandas.core.frame.DataFrame'>

Index: 42 entries, Australia to United States

Data columns (total 24 columns):

Daca	columns (cocal 21 columns).		
#	Column	Non-Null Count	Dtype
0	Air pollution	42 non-null	float64
1	Dwellings without basic facilities	39 non-null	float64
2	Educational attainment	41 non-null	float64
3	Employees working very long hours	40 non-null	float64
4	Employment rate	42 non-null	float64
5	Feeling safe walking alone at night	42 non-null	float64
6	Homicide rate	42 non-null	float64
7	Household net adjusted disposable income	36 non-null	float64
8	Household net wealth	30 non-null	float64

```
9 Housing expenditure
                                                                       38 non-null float64
                                                                                         float64
 10 Labour market insecurity
                                                                       35 non-null
 11 Life expectancy
                                                                      42 non-null
                                                                                         float64
                                                                     42 non-null float64
40 non-null float64
36 non-null float64
42 non-null float64
42 non-null float64
40 non-null float64
 12 Life satisfaction
 13 Long-term unemployment rate
 14 Personal earnings
 15 Quality of support network
 16 Rooms per person
 17 Self-reported health
 18 Stakeholder engagement for developing regulations 40 non-null
                                                                                         float64
 19 Student skills
                                                                                         float64
                                                                     40 non-null
Time devoted to leisure and personal care

21 Voter turnout

22 Water quality

23 Years in education

24 Non-null float64

24 non-null float64

42 non-null float64
dtypes: float64(24)
memory usage: 8.2+ KB
```

The dataframe contains missing values. We shall determine the number of missing values for each country and feature.

```
In [6]: nan cols = Rating.isna().sum().sort values(ascending=False)
       nan_rows = Rating.isna().sum(axis=1).sort_values(ascending=False)
       print(f'Nan in rows: {nan rows[nan rows > 0]}', f'\n\nNan in columns: {nan cols[nan cols
       Nan in rows: Country
       South Africa 9
      Brazil
      Colombia
      Russia
      Costa Rica
      Israel
      Iceland
Türkiye
      Switzerland
      Chile
      Japan
      Mexico
      Australia
      Lithuania
      Sweden
      Czech Republic 2
      Slovak Republic 1
      Slovenia
      Portugal
      New Zealand
       Spain
      Luxembourg
                     1
      Korea
      Latvia
                       1
       Denmark
      dtype: int64
      Nan in columns: Indicator
       Time devoted to leisure and personal care
                                                      19
                                                       12
       Household net wealth
       Labour market insecurity
                                                       7
      Household net adjusted disposable income
                                                        6
       Personal earnings
                                                        6
       Housing expenditure
                                                        4
       Dwellings without basic facilities
                                                        3
                                                        3
       Rooms per person
                                                        2
       Self-reported health
       Student skills
                                                        2
       Employees working very long hours
```

```
Long-term unemployment rate 2
Stakeholder engagement for developing regulations 2
Years in education 2
Educational attainment 1
dtype: int64
```

The feature "Time devoted to leisure and personal care" has a high number of missing values. It would be incredibly challenging to replace such a high number of missing values without losing the veracity of the values. Furthermore, this feature seems contentious in terms of evaluating the overall work-life balance indicator, which was planned to be calculated using this feature. We have opted to remove this feature from the research. We shall also exclude the row "OECD - Total" from the dataframe, which represents the average values of features among all OECD member countries. This row is unnecessary for our research and may distort calculated indicators.

```
In [7]: Rating = Rating.drop(columns='Time devoted to leisure and personal care')
Rating = Rating.drop(index='OECD - Total')
```

Next, we shall explore the features' fundamental statistical characteristics.

```
In [8]: Rating.describe()
```

Out[8]:

In	dicator	Air pollution	Dwellings without basic facilities	Educational attainment	Employees working very long hours	Employment rate	Feeling safe walking alone at night	Homicide rate	Household net adjusted disposable income	Ho ne
	count	41.000000	38.000000	40.00000	39.000000	41.000000	41.000000	41.000000	35.000000	2!
	mean	13.509756	4.294737	78.10000	7.189744	67.682927	72.073171	3.290244	29573.114286	323959
	std	6.394169	7.589180	15.68406	7.199481	8.818841	14.299284	6.251792	8880.424174	18552
	min	5.500000	0.000000	42.00000	0.100000	39.000000	40.000000	0.200000	9338.000000	7924!
	25%	8.300000	0.200000	72.25000	2.350000	65.000000	66.000000	0.500000	23729.500000	18862
	50%	12.000000	0.650000	83.00000	4.500000	70.000000	76.000000	0.900000	29431.000000	29473!
	75%	17.000000	5.500000	89.25000	10.600000	74.000000	82.000000	1.900000	34934.000000	37034 ⁻
	max	28.500000	35.900000	95.00000	27.000000	80.000000	93.000000	26.800000	51147.000000	941162

We explore the distribution of features using interactive boxplots. We can hover over the outlier to find out which country the value belongs to.

```
In [9]: for i in Rating.columns:
    fig = px.box(Rating, x=i, hover_data=[Rating.index])
    fig.show()
```


Educational attainment

Employees working very long floure

Employment rate

Feeling safe walking alone at night

Household net adjusted disposable income

Household net wealth

65 70 75 80 85

Life expectancy

Life satisfaction

Long-term unemployment rate

Quality of support network

Rooms per person

Stakeholder engagement for developing regulations

Let us explore the correlation between the features. To visualize the correlation, we shall construct a heatmap graph utilizing Plotly. The graph is interactive, allowing us to zoom in and out and pan across the plot as needed.

In [10]: px.imshow(Rating.corr(), text_auto=True)

Next, we shall construct a scatter plot with a trend line to investigate the spread of feature values around the trend line. We shall generate a loop that will examine the correlation between the features and plot a graph if it surpasses an absolute value of 0.7.

```
In [11]: for c in Rating.columns:
    for i in Rating.columns:
        if (abs(Rating.corr().loc[i, c]) > 0.7) & (abs(Rating.corr().loc[i, c]) !=1):
            fig = px.scatter(Rating, y=i, x=c, hover_data=[Rating.index], trendline="ols fig.show()
            print(f'Corr_coef of "{c}" and "{i}" = {Rating.corr().loc[i, c]}')
```

Correlation of "Dwellings without basic facilities" and "Life expectancy"

Corr_coef of "Dwellings without basic facilities" and "Life expectancy" = -0.8491067567051078

Correlation of "Educational attainment" and "Employment rate"

 $Corr_coef$ of "Educational attainment" and "Employment rate" = 0.742192168999446

Correlation of "Educational attainment" and "Student skills"

Corr_coef of "Educational attainment" and "Student skills" = 0.7280897847632455

Correlation of "Employment rate" and "Educational attainment"

Corr coef of "Employment rate" and "Educational attainment" = 0.742192168999446

Correlation of "Employment rate" and "Feeling safe walking alone at nigh

 $Corr_coef$ of "Employment rate" and "Feeling safe walking alone at night" = 0.71151127441 10984

Correlation of "Employment rate" and "Life satisfaction"

 $Corr_coef$ of "Employment rate" and "Life satisfaction" = 0.7082618221255973

Correlation of "Employment rate" and "Student skills"

Corr_coef of "Employment rate" and "Student skills" = 0.717330689097553

Correlation of "Employment rate" and "Water quality"

100

Corr coef of "Employment rate" and "Water quality" = 0.7122696113676107

Correlation of "Feeling safe walking alone at night" and "Employment rate

Corr_coef of "Feeling safe walking alone at night" and "Employment rate" = 0.71151127441
10984

Correlation of "Feeling safe walking alone at night" and "Homicide rate"

Corr_coef of "Feeling safe walking alone at night" and "Homicide rate" = -0.705838797888833

Correlation of "Feeling safe walking alone at night" and "Student skills"

Correlation of "Homicide rate" and "Feeling safe walking alone at night"

Corr_coef of "Homicide rate" and "Feeling safe walking alone at night" = -0.705838797888833

Correlation of "Homicide rate" and "Student skills"

Corr coef of "Homicide rate" and "Student skills" = -0.7687731742066118

Correlation of "Household net adjusted disposable income" and "Household net adjusted disposable income ad

Corr_coef of "Household net adjusted disposable income" and "Household net wealth" = 0.7412799751880902

Correlation of "Household net adjusted disposable income" and "Life satis

10k 20k 30k 40k 50k

Household net adjusted disposable income

 $Corr_coef$ of "Household net adjusted disposable income" and "Life satisfaction" = 0.8109 686465037127

Correlation of "Household net adjusted disposable income" and "Personal

 $Corr_coef$ of "Household net adjusted disposable income" and "Personal earnings" = 0.9226 125412771972

Correlation of "Household net adjusted disposable income" and "Rooms p

 $Corr_coef$ of "Household net adjusted disposable income" and "Rooms per person" = 0.80091 51260152061

Correlation of "Household net wealth" and "Household net adjusted dispo

 $Corr_coef$ of "Household net wealth" and "Household net adjusted disposable income" = 0.7 412799751880902

Correlation of "Labour market insecurity" and "Long-term unemployment

Corr_coef of "Labour market insecurity" and "Long-term unemployment rate" = 0.8718381718523023

Correlation of "Life expectancy" and "Dwellings without basic facilities"

Corr_coef of "Life expectancy" and "Dwellings without basic facilities" = -0.8491067567051078

Correlation of "Life satisfaction" and "Employment rate"

Corr coef of "Life satisfaction" and "Employment rate" = 0.7082618221255973

Correlation of "Life satisfaction" and "Household net adjusted disposable

 $Corr_coef$ of "Life satisfaction" and "Household net adjusted disposable income" = 0.8109 686465037127

Correlation of "Life satisfaction" and "Personal earnings"

Corr coef of "Life satisfaction" and "Personal earnings" = 0.7721451682502471

Correlation of "Life satisfaction" and "Water quality"

Corr coef of "Life satisfaction" and "Water quality" = 0.726316058357149

Correlation of "Long-term unemployment rate" and "Labour market insec

Corr_coef of "Long-term unemployment rate" and "Labour market insecurity" = 0.8718381718523023

Correlation of "Personal earnings" and "Household net adjusted disposab

Corr_coef of "Personal earnings" and "Household net adjusted disposable income" = 0.9226
125412771972

Correlation of "Personal earnings" and "Life satisfaction"

Corr coef of "Personal earnings" and "Life satisfaction" = 0.7721451682502471

Correlation of "Rooms per person" and "Household net adjusted disposab

Correlation of "Student skills" and "Educational attainment"

 $Corr_coef$ of "Student skills" and "Educational attainment" = 0.7280897847632455

Correlation of "Student skills" and "Employment rate"

 $Corr_coef$ of "Student skills" and "Employment rate" = 0.717330689097553

Correlation of "Student skills" and "Feeling safe walking alone at night"

 $Corr_coef$ of "Student skills" and "Feeling safe walking alone at night" = 0.748058094763 088

Correlation of "Student skills" and "Homicide rate"

Corr_coef of "Student skills" and "Homicide rate" = -0.7687731742066118

Correlation of "Water quality" and "Employment rate"

Corr coef of "Water quality" and "Employment rate" = 0.7122696113676107

Correlation of "Water quality" and "Life satisfaction"


```
60 70 80 90 100

Water quality
```

```
Corr coef of "Water quality" and "Life satisfaction" = 0.726316058357149
```

For ease of future work, we shall generate a dictionary indicating which features have an absolute correlation value greater than 0.7.

```
In [12]: high_corr dict = {}
         corr matrix = Rating.corr().abs()
         for i in corr matrix.index:
             for j in corr matrix.columns:
                 if (abs(Rating.corr().loc[i, j]) > 0.7) & (abs(Rating.corr().loc[i, j]) !=1):
                     if i not in high corr dict:
                         high corr dict[i] = [j]
                     else:
                         high corr dict[i].append(j)
         high corr dict
         {'Dwellings without basic facilities': ['Life expectancy'],
Out[12]:
         'Educational attainment': ['Employment rate', 'Student skills'],
          'Employment rate': ['Educational attainment',
          'Feeling safe walking alone at night',
           'Life satisfaction',
          'Student skills',
          'Water quality'],
          'Feeling safe walking alone at night': ['Employment rate',
           'Homicide rate',
           'Student skills'],
          'Homicide rate': ['Feeling safe walking alone at night', 'Student skills'],
          'Household net adjusted disposable income': ['Household net wealth',
          'Life satisfaction',
          'Personal earnings',
          'Rooms per person'],
          'Household net wealth': ['Household net adjusted disposable income'],
          'Labour market insecurity': ['Long-term unemployment rate'],
          'Life expectancy': ['Dwellings without basic facilities'],
          'Life satisfaction': ['Employment rate',
          'Household net adjusted disposable income',
          'Personal earnings',
          'Water quality'],
          'Long-term unemployment rate': ['Labour market insecurity'],
          'Personal earnings': ['Household net adjusted disposable income',
          'Life satisfaction'],
          'Rooms per person': ['Household net adjusted disposable income'],
          'Student skills': ['Educational attainment',
          'Employment rate',
           'Feeling safe walking alone at night',
           'Homicide rate'],
          'Water quality': ['Employment rate', 'Life satisfaction']}
```

Data Wrangling

Handle missing values

We will create a loop that will fill in the missing values in the dataframe utilizing a unique regression model

for each feature. The correlated features will vary for each feature. Additionally, we shall use a unique regression model for each missing value, as the corresponding value may also be absent among the correlated features. Linear regression may produce negative values, which are inappropriate for our analysis. Therefore, we have resolved to replace negative values with the minimum value of the feature in these instances.

```
reg = linear model.LinearRegression()
In [13]:
         for key, items in high corr dict.items(): #iterate through the dict created in the previ
             if Rating[key].isna().any():
                 predict = Rating.loc[Rating[key].isna(), [key] + items] #form dataframe with onl
                 for row ind in range(len(predict.index)):
                     predict row = predict.iloc[row ind, 1:].dropna().to frame().transpose() #get
                     if not predict row.empty:
                         train = Rating.loc[:, [key] + predict row.columns.tolist()].dropna() #fo
                         req.fit(train[predict row.columns], train[key])
                         predicted = reg.predict(predict row)
                         print(f'Pridicted value: {key} - {predict row.index[0]} = {predicted}')
                         if predicted >= 0: #check if value of feature >=0. If not we fill the mi
                             Rating.loc[predict row.index, key] = predicted
                         else:
                             Rating.loc[predict row.index, key] = Rating[key].min()
        Pridicted value: Dwellings without basic facilities - Australia = [-0.50468298]
        Pridicted value: Dwellings without basic facilities - Israel = [-0.32104909]
        Pridicted value: Dwellings without basic facilities - New Zealand = [0.99864883]
        Pridicted value: Educational attainment - Japan = [93.90552215]
        Pridicted value: Household net adjusted disposable income - Brazil = [23654.63841578]
        Pridicted value: Household net adjusted disposable income - Chile = [22012.48807711]
        Pridicted value: Household net adjusted disposable income - Colombia = [16586.7753286]
        Pridicted value: Household net adjusted disposable income - Iceland = [41825.30166147]
        Pridicted value: Household net adjusted disposable income - Israel = [28160.73196938]
        Pridicted value: Household net adjusted disposable income - Türkiye = [10844.89115628]
        Pridicted value: Household net wealth - Brazil = [194843.81009083]
        Pridicted value: Household net wealth - Colombia = [68416.05355773]
        Pridicted value: Household net wealth - Costa Rica = [67167.93398498]
        Pridicted value: Household net wealth - Czech Republic = [248674.34260066]
        Pridicted value: Household net wealth - Iceland = [519875.03388992]
        Pridicted value: Household net wealth - Israel = [275447.42276454]
        Pridicted value: Household net wealth - Mexico = [62731.78642051]
        Pridicted value: Household net wealth - Russia = [121349.75242362]
        Pridicted value: Household net wealth - South Africa = [-61247.80539139]
        Pridicted value: Household net wealth - Sweden = [374291.81648731]
        Pridicted value: Household net wealth - Switzerland = [476152.13501893]
        Pridicted value: Household net wealth - Türkiye = [-16370.90790552]
        Pridicted value: Labour market insecurity - Colombia = [3.92362841]
        Pridicted value: Labour market insecurity - Costa Rica = [4.67306733]
        Pridicted value: Labour market insecurity - Lithuania = [6.54666461]
        Pridicted value: Labour market insecurity - Russia = [3.92362841]
        Pridicted value: Labour market insecurity - South Africa = [35.40006273]
        Pridicted value: Labour market insecurity - Switzerland = [5.04778678]
        Pridicted value: Long-term unemployment rate - Chile = [2.68342068]
        Pridicted value: Personal earnings - Brazil = [31040.1507386]
        Pridicted value: Personal earnings - Colombia = [19512.23061536]
        Pridicted value: Personal earnings - Costa Rica = [21477.71964118]
        Pridicted value: Personal earnings - Russia = [23073.66994545]
        Pridicted value: Personal earnings - South Africa = [6347.3532691]
        Pridicted value: Personal earnings - Türkiye = [8511.53373956]
        Pridicted value: Rooms per person - Australia = [1.96005331]
        Pridicted value: Rooms per person - Brazil = [1.45739839]
        Pridicted value: Rooms per person - South Africa = [0.93510634]
        Pridicted value: Student skills - South Africa = [403.29317733]
        Pridicted value: Student skills - Spain = [477.48205627]
```

We shall verify the results of missing value imputation by displaying the number of missing values for each country and feature on the screen. We shall then generate a dataset from the remaining missing values to investigate them.

```
In [14]: nan cols = Rating.isna().sum().sort values(ascending=False)
         nan rows = Rating.isna().sum(axis=1).sort values(ascending=False)
        print(nan rows[nan rows > 0], nan cols[nan cols > 0])
        Rating miss = Rating.loc[Rating.isna().any(axis=1), Rating.isna().any()]
        Rating miss
        Country
        Brazil 4
South Africa 3
        Japan 1
        Korea
        Korea _ Colombia 1 Costa Rica 1
        Israel
        Iceland
        Russia 1
        dtype: int64 Indicator
        Housing expenditure
        Years in education
                                                              2
        Employees working very long hours
                                                              2
        Stakeholder engagement for developing regulations
        Self-reported health
                                                              2
                                                              1
        Long-term unemployment rate
        Labour market insecurity
                                                              1
        dtype: int64
                                                                             Ctalcabalda
Out[14]:
```

Indicator	Employees working very long hours	Housing expenditure	Labour market insecurity	Long-term unemployment rate	Self- reported health	Stakeholder engagement for developing regulations	Years in education
Country							
Brazil	5.6	NaN	NaN	NaN	NaN	2.2	16.0
Colombia	23.7	NaN	3.923628	1.1	80.0	1.4	14.0
Costa Rica	22.0	17.0	4.673067	1.5	73.0	1.8	NaN
Iceland	11.7	NaN	1.000000	0.7	77.0	2.1	19.0
Israel	14.1	NaN	4.600000	0.2	74.0	2.5	16.0
Japan	NaN	21.8	2.700000	0.8	37.0	1.4	16.0
Korea	NaN	14.7	2.900000	0.0	34.0	2.9	17.0
Russia	0.1	17.4	3.923628	1.1	43.0	NaN	16.0
South Africa	15.4	18.1	35.400063	17.9	NaN	NaN	NaN

The dataset contains missing values in columns that do not exhibit significant correlation with other columns or where the corresponding values in columns with significant correlation are absent. To fill in the missing values, we will employ the method of nearest neighbors. However, the nearest neighbors method is highly sensitive to non-normalized data. Hence, we will first normalize our dataset using the min-max normalization method.

Rating_normalized = pd.DataFrame(min_max_scaler.fit_transform(Rating), columns=Rating.co

Next, using the normalized dataset, we will fill in the missing values, while selecting the number of nearest neighbors to be 5. We will display the dataset on the screen to investigate the filled-in values.

In [16]: imputer = KNNImputer(n_neighbors=5)
Rating_normalized_imputed = pd.DataFrame(imputer.fit_transform(Rating_normalized), colum
Rating_normalized_imputed

Out[16]:

•	Indicator	Air pollution_norm	Dwellings without basic facilities_norm	Educational attainment_norm	Employees working very long hours_norm	Employment rate_norm	Feeling safe walking alone at night_norm	Homicide rate_norm
	Country							
	Australia	0.052174	0.000000	0.792453	0.460967	0.829268	0.509434	0.026316
	Austria	0.291304	0.022284	0.830189	0.193309	0.804878	0.867925	0.011278
	Belgium	0.317391	0.019499	0.716981	0.156134	0.634146	0.301887	0.033835
	Brazil	0.269565	0.186630	0.283019	0.204461	0.439024	0.094340	0.706767
	Canada	0.069565	0.005571	0.943396	0.118959	0.756098	0.716981	0.037594
	Chile	0.778261	0.261838	0.471698	0.282528	0.414634	0.018868	0.082707
	Colombia	0.743478	0.342618	0.320755	0.877323	0.463415	0.188679	0.860902
	Costa Rica	0.521739	0.064067	0.018868	0.814126	0.390244	0.132075	0.368421
	Czech Republic	0.500000	0.013928	0.981132	0.163569	0.853659	0.698113	0.018797
	Denmark	0.195652	0.013928	0.754717	0.037175	0.853659	0.849057	0.011278
	Estonia	0.017391	0.158774	0.924528	0.078067	0.853659	0.735849	0.063910
	Finland	0.000000	0.011142	0.924528	0.130112	0.804878	0.905660	0.037594
	France	0.256522	0.013928	0.735849	0.282528	0.634146	0.641509	0.007519
	Germany	0.282609	0.002786	0.830189	0.141264	0.926829	0.679245	0.007519
	Greece	0.391304	0.011142	0.641509	0.163569	0.414634	0.547170	0.030075
	Hungary	0.486957	0.097493	0.830189	0.052045	0.756098	0.641509	0.026316
	Iceland	0.039130	0.000000	0.641509	0.431227	0.951220	0.849057	0.003759
	Ireland	0.100000	0.005571	0.811321	0.171004	0.707317	0.679245	0.011278
	Israel	0.617391	0.000000	0.867925	0.520446	0.682927	0.754717	0.048872
	Italy	0.452174	0.016713	0.396226	0.118959	0.463415	0.622642	0.011278
	Japan	0.356522	0.178273	0.979349	0.101859	0.926829	0.698113	0.000000
	Korea	0.947826	0.069638	0.886792	0.193309	0.658537	0.792453	0.022556
	Latvia	0.313043	0.311978	0.886792	0.055762	0.804878	0.603774	0.131579
	Lithuania	0.217391	0.328691	0.981132	0.033457	0.804878	0.415094	0.086466
	Luxembourg	0.195652	0.002786	0.603774	0.100372	0.682927	0.886792	0.000000
	Mexico	0.643478	0.721448	0.000000	1.000000	0.487805	0.037736	1.000000
	Netherlands	0.291304	0.002786	0.735849	0.007435	0.951220	0.811321	0.015038

New Zealand	0.021739	0.027818	0.735849	0.516729	0.926829	0.490566	0.041353
Norway	0.052174	0.000000	0.754717	0.048327	0.878049	1.000000	0.015038
Poland	0.752174	0.064067	0.962264	0.152416	0.731707	0.584906	0.011278
Portugal	0.121739	0.025070	0.245283	0.204461	0.731707	0.811321	0.018797
Russia	0.273913	0.384401	1.000000	0.000000	0.756098	0.452830	0.172932
Slovak Republic	0.565217	0.041783	0.943396	0.152416	0.707317	0.679245	0.022556
Slovenia	0.500000	0.005571	0.905660	0.204461	0.780488	0.962264	0.007519
South Africa	1.000000	1.000000	0.113208	0.568773	0.000000	0.000000	0.507519
Spain	0.195652	0.008357	0.396226	0.089219	0.560976	0.754717	0.018797
Sweden	0.013043	0.000000	0.792453	0.029740	0.878049	0.735849	0.033835
Switzerland	0.200000	0.000000	0.886792	0.011152	1.000000	0.867925	0.003759
Türkiye	0.939130	0.136490	0.000000	0.925651	0.219512	0.358491	0.030075
United Kingdom	0.200000	0.013928	0.754717	0.397770	0.878049	0.716981	0.000000
United States	0.095652	0.002786	0.943396	0.382900	0.682927	0.716981	0.218045

Although all values seem plausible, we have observed that the "Employees working very long hours_norm" feature in Japan is not consistent with the OCID study on the distribution of citizens use of their time, available at https://stats.oecd.org/Index.aspx?DataSetCode=BLI. Therefore, we will assign the maximum value of this feature in Japan relative to our sample.

```
In [17]: Rating_normalized_imputed.loc['Japan','Employees working very long hours_norm'] = Rating
```

Once we convert the normalized values back to their original scale, we can fill our dataset with the predicted values.

```
In [18]: Rating_nonnormalized_imputed = pd.DataFrame(min_max_scaler.inverse_transform(Rating_norm
for i in Rating_miss.index:
    for c in Rating_miss.columns:
        if pd.isna(Rating.loc[i, c]):
            Rating.loc[i, c] = Rating_nonnormalized_imputed.loc[i, c + '_norm']
```

Finally, we check if there are any remaining missing values.

```
In [19]: nan_cols = Rating.isna().sum().sort_values(ascending=False)
    nan_rows = Rating.isna().sum(axis=1).sort_values(ascending=False)
    print(nan_rows[nan_rows > 0], nan_cols[nan_cols > 0])
    Series([], dtype: int64) Series([], dtype: int64)
```

Preparing Data

To enable subsequent comparative analyses, we need to define some overall features for comparing countries. These overall features already exist in the OECD-collected data, and they consist of groups of existing features in our dataset. The following are the overall features and their specific constituent features:

```
'Housing': 'Dwellings without basic facilities', 'Housing expenditure', 'Rooms per person'.
```

Further information regarding project features and other related details can be accessed via the following link: __.

Certain features exhibit negative implications, such as a high level of air pollution, which is considered undesirable. To facilitate subsequent comparative analyses, such features need to be inverted. This can be achieved by subtracting the normalized value of the feature from 1.

```
Rating_normalized_imputed = np.around(Rating_normalized_imputed, decimals=2)
Rating_normalized_imputed['Air pollution_norm'] = 1 - Rating_normalized_imputed['Air pol
Rating_normalized_imputed['Dwellings without basic facilities_norm'] = 1 - Rating_normal
Rating_normalized_imputed['Employees working very long hours_norm'] = 1 - Rating_normali
Rating_normalized_imputed['Homicide rate_norm'] = 1 - Rating_normalized_imputed['Homicide
Rating_normalized_imputed['Housing expenditure_norm'] = 1 - Rating_normalized_imputed['Housing expenditure_norm'] = 1 - Rating_normalized_imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imputed[imput
```

We will create columns in the dataframe for overall features by adding the normalized values of the individual features that constitute them.

The resultant values of the overall features must be normalized to avoid any feature having a disproportionate influence.

^{&#}x27;Income': 'Household net adjusted disposable income', 'Household net wealth'.

^{&#}x27;Jobs': 'Labour market insecurity', 'Employment rate', 'Long-term unemployment rate', 'Personal earnings'.

^{&#}x27;Community': 'Quality of support network'.

^{&#}x27;Education': 'Educational attainment', 'Student skills', 'Years in education'.

^{&#}x27;Environment': 'Air pollution', 'Water quality'.

^{&#}x27;Civic engagement': 'Stakeholder engagement for developing regulations', 'Voter turnout'.

^{&#}x27;Health': 'Life expectancy', 'Self-reported health'.

^{&#}x27;Life satisfaction': 'Life satisfaction'.

^{&#}x27;Safety': 'Feeling safe walking alone at night', 'Homicide rate'.

^{&#}x27;Work-life balance': 'Employees working very long hours'.

				ery long irs_norm	nic	alone at ht_norm	
Country					••••	,	
Australia	0.95	1.00	0.79	0.54	0.83	0.51	0.97
Austria	0.71	0.98	0.83	0.81	0.80	0.87	0.99
Belgium	0.68	0.98	0.72	0.84	0.63	0.30	0.97
Brazil	0.73	0.81	0.28	0.80	0.44	0.09	0.29
Canada	0.93	0.99	0.94	0.88	0.76	0.72	0.96
Chile	0.22	0.74	0.47	0.72	0.41	0.02	0.92
Colombia	0.26	0.66	0.32	0.12	0.46	0.19	0.14
Costa Rica	0.48	0.94	0.02	0.19	0.39	0.13	0.63
Czech Republic	0.50	0.99	0.98	0.84	0.85	0.70	0.98
Denmark	0.80	0.99	0.75	0.96	0.85	0.85	0.99
Estonia	0.98	0.84	0.92	0.92	0.85	0.74	0.94
Finland	1.00	0.99	0.92	0.87	0.80	0.91	0.96
France	0.74	0.99	0.74	0.72	0.63	0.64	0.99
Germany	0.72	1.00	0.83	0.86	0.93	0.68	0.99
Greece	0.61	0.99	0.64	0.84	0.41	0.55	0.97
Hungary	0.51	0.90	0.83	0.95	0.76	0.64	0.97
Iceland	0.96	1.00	0.64	0.57	0.95	0.85	1.00
Ireland	0.90	0.99	0.81	0.83	0.71	0.68	0.99
Israel	0.38	1.00	0.87	0.48	0.68	0.75	0.95
Italy	0.55	0.98	0.40	0.88	0.46	0.62	0.99
Japan	0.64	0.82	0.98	0.00	0.93	0.70	1.00
Korea	0.05	0.93	0.89	0.81	0.66	0.79	0.98
Latvia	0.69	0.69	0.89	0.94	0.80	0.60	0.87
Lithuania	0.78	0.67	0.98	0.97	0.80	0.42	0.91
Luxembourg	0.80	1.00	0.60	0.90	0.68	0.89	1.00
Mexico	0.36	0.28	0.00	0.00	0.49	0.04	0.00
Netherlands	0.71	1.00	0.74	0.99	0.95	0.81	0.98
New Zealand	0.98	0.97	0.74	0.48	0.93	0.49	0.96
Norway	0.95	1.00	0.75	0.95	0.88	1.00	0.98
Poland	0.25	0.94	0.96	0.85	0.73	0.58	0.99
Portugal	0.88	0.97	0.25	0.80	0.73	0.81	0.98
Russia	0.73	0.62	1.00	1.00	0.76	0.45	0.83
Slovak Republic	0.43	0.96	0.94	0.85	0.71	0.68	0.98

Slovenia	0.50	0.99	0.91	0.80	0.78	0.96	0.99
South Africa	0.00	0.00	0.11	0.43	0.00	0.00	0.49
Spain	0.80	0.99	0.40	0.91	0.56	0.75	0.98
Sweden	0.99	1.00	0.79	0.97	0.88	0.74	0.97
Switzerland	0.80	1.00	0.89	0.99	1.00	0.87	1.00
Türkiye	0.06	0.86	0.00	0.07	0.22	0.36	0.97
United Kingdom	0.80	0.99	0.75	0.60	0.88	0.72	1.00
United States	0.90	1.00	0.94	0.62	0.68	0.72	0.78

Let us merge the dataset with the computed overall features and the original dataset.

```
In [23]: Rating_fin = Rating.merge(Rating_normalized_imputed, left_index=True, right_index=True)
Rating_fin = np.around(Rating_fin, decimals=2)
```

Than we will calculate the overall country ratings based on the overall features and add a corresponding column to the dataset. We will display the resulting dataset on the screen and analyze the obtained results.

Out[24]:	Indicator	Air pollution	Dwellings without basic facilities	Educational attainment	Employees working very long hours	Employment rate	Feeling safe walking alone at night	Homicide rate	Household net adjusted disposable income	Housel net we
	Country									
	Norway	6.7	0.0	82.00	1.4	75.0	93.0	0.6	39144.00	26835
	Iceland	6.4	0.0	76.00	11.7	78.0	85.0	0.3	41825.30	51987
	Sweden	5.8	0.0	84.00	0.9	75.0	79.0	1.1	33730.00	37429
	Netherlands	12.2	0.1	81.00	0.3	78.0	83.0	0.6	34984.00	24859
	Canada	7.1	0.2	92.00	3.3	70.0	78.0	1.2	34421.00	47824
	United States	7.7	0.1	92.00	10.4	67.0	78.0	6.0	51147.00	68450
	Australia	6.7	0.0	84.00	12.5	73.0	67.0	0.9	37433.00	52876
	Finland	5.5	0.4	91.00	3.6	72.0	88.0	1.2	33471.00	23003
	Switzerland	10.1	0.0	89.00	0.4	80.0	86.0	0.3	39697.00	47615
	Luxembourg	10.0	0.1	74.00	2.8	67.0	87.0	0.2	44773.00	94116
	Denmark	10.0	0.5	82.00	1.1	74.0	85.0	0.5	33774.00	14986
	New Zealand	6.0	1.0	81.00	14.0	77.0	66.0	1.3	39024.00	51416
	Germany	12.0	0.1	86.00	3.9	77.0	76.0	0.4	38971.00	30431
	Ireland	7.8	0.2	85.00	4.7	68.0	76.0	0.5	29488.00	37034

	United Kingdom	10.1	0.5	82.00	10.8	75.0	78.0	0.2	33049.00	52442
	Belgium	12.8	0.7	80.00	4.3	65.0	56.0	1.1	34884.00	44760
	Austria	12.2	0.8	86.00	5.3	72.0	86.0	0.5	37001.00	30963
	Estonia	5.9	5.7	91.00	2.2	74.0	79.0	1.9	23784.00	18862
	Slovenia	17.0	0.2	90.00	5.6	71.0	91.0	0.4	25250.00	23328
	France	11.4	0.5	81.00	7.7	65.0	74.0	0.4	34375.00	29863
	Spain	10.0	0.3	63.00	2.5	62.0	80.0	0.7	27155.00	36653
	Czech Republic	17.0	0.5	94.00	4.5	74.0	77.0	0.7	26664.00	24867
	Israel	19.7	0.0	88.00	14.1	67.0	80.0	1.5	28160.73	27544
	Italy	15.9	0.6	63.00	3.3	58.0	73.0	0.5	29431.00	29502
	Poland	22.8	2.3	93.00	4.2	69.0	71.0	0.5	23675.00	23322
	Slovak Republic	18.5	1.5	92.00	4.2	68.0	76.0	0.8	21149.00	17142
	Korea	27.3	2.5	89.00	5.3	66.0	82.0	0.8	24590.00	36234
	Lithuania	10.5	11.8	94.00	1.0	72.0	62.0	2.5	26976.00	18203
	Hungary	16.7	3.5	86.00	1.5	70.0	74.0	0.9	21026.00	15029
	Portugal	8.3	0.9	55.00	5.6	69.0	83.0	0.7	24877.00	25530
	Latvia	12.7	11.2	89.00	1.6	72.0	72.0	3.7	19783.00	7924
	Japan	13.7	6.4	93.91	27.0	77.0	77.0	0.2	28872.00	29473
	Russia	11.8	13.8	95.00	0.1	70.0	64.0	4.8	19546.00	12134
	Greece	14.5	0.4	76.00	4.5	56.0	69.0	1.0	20791.00	14832
	Brazil	11.7	6.7	57.00	5.6	57.0	45.0	19.0	23654.64	19484
	Chile	23.4	9.4	67.00	7.7	56.0	41.0	2.4	22012.49	13578
	Costa Rica	17.5	2.3	43.00	22.0	55.0	47.0	10.0	16517.00	6716
	Türkiye	27.1	4.9	42.00	25.0	48.0	59.0	1.0	10844.89	6273
	Colombia	22.6	12.3	59.00	23.7	58.0	50.0	23.1	16586.78	6841
	Mexico	20.3	25.9	42.00	27.0	59.0	42.0	26.8	16269.00	6273
S	outh Africa	28.5	35.9	48.00	15.4	39.0	40.0	13.7	9338.00	6273

Data Visualization and Analysis

We can create a bar chart to visually evaluate the country ratings. Norway tops the rating, along with several other Scandinavian countries, while North American countries feature prominently. At the bottom of the rating, we observe South Africa and countries in South America.

Similar charts can be created to explore all the overall features.

Examining specific countries, such as Japan, Russia, and Norway, it is observed that Japan ranks low due to low scores in 'Civic engagement', 'Health', 'Life satisfaction', and 'Work-life balance'. In Russia, low scores can be attributed to 'Housing', 'Environment', 'Health', and 'Life satisfaction'. Norway, as the leader of our rating, has high scores in all features, although 'Income' and 'Civic engagement' stand out slightly. We can identify areas where different countries need to work particularly hard.

```
In [27]: fig_j = px.bar(Rating_fin.loc['Japan', Overal_features], orientation='h')
    fig_r = px.bar(Rating_fin.loc['Russia', Overal_features], orientation='h')
    fig_n = px.bar(Rating_fin.loc['Norway', Overal_features], orientation='h')
    fig_j.show()
    fig_r.show()
```


To identify specific areas for improvement, we can compare neighboring countries with moderately similar levels of development, for example, Germany, Portugal, and Italy. It can be observed that Portugal lacks in indicators such as "Community" and "Civic engagement," while Italy needs to work on such indicators as "Environment" and "Work-life balance." In comparison to these countries, Germany shows high levels across all dimensions, with the lowest scores in the categories of "Income" and "Civic engagement."

A similar analysis can be conducted among the top-ranked countries in our rating (Switzerland, Netherlands, Canada, United States). The author suggests that you draw your own conclusions based on the analysis.

```
In [29]: fig_top = px.bar(Rating_fin.loc[['Switzerland', 'Netherlands', 'Canada', 'United States'
fig_top.show()
```


To better understand possible conclusions, we can investigate specific features by building graphs to visualize them.

Slovak Republic
Czech Republic

Housing expanditure

South Africa Indicator

South Africa

Finally, we will write the final dataset to a CSV file for its further use in Power BI for creating a dashboard.

```
In [31]: Rating_fin.to_csv('RatingFin.csv')
```

The research conducted within this notebook is complete, and the dashboard for convenient exploration of the project results can be viewed in the webpage at https://evgenii-sokolov.github.io/Portfolio_website/Countries_Rating.html or in the PowerBI file at https://github.com/Evgenii-Sokolov/Countries_Rating/blob/main/CR_Dashboard.pbix.

Thank you for your time and attention!