

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

OCR A Level Physics

Gravitational Fields

Contents

- ***** Gravitational Fields
- * Gravitational Field Lines
- * Gravitational Field Strength
- * Newton's Law of Gravitation

Gravitational Fields

Your notes

Concept of a Gravitational Force Field

- Generally, the idea of a force field is any region of space in which a specific type of object will experience a force
- For example:
 - Electric fields are regions in which any object with charge experiences an electric force
 - Magnetic fields are regions in which any magnet experiences a magnetic force
- Gravitational fields are a special type of field in which any object with mass experiences a gravitational force

Defining Gravitational Fields

- Gravitational fields are set up around any object with mass
 - These fields affect any other objects with mass in their vicinity
- The Sun, for example, creates a gravitational field around it
 - The Earth, which has mass, experiences the gravitational force due to the Sun
 - This gravitational force keeps the Earth in orbit around the Sun
- Additional effects of the Moon and Sun's gravitational fields can be seen on Earth, such as the cause of tides

Direction of a Gravitational Field

- Gravitational fields represent the action of gravitational forces between masses, the direction of these forces can be shown using vectors
 - The direction of the vector shows the direction of the gravitational force that would be exerted on
 a mass if it was placed at that position in the field
- These vectors are known as **field lines** (or 'lines of force'), which are represented by arrows
 - Therefore, gravitational field lines also show the direction of acceleration of a mass placed in the field
- Gravitational field lines are therefore directed toward the centre of mass of a body
 - This is because the gravitational force is attractive
 - Therefore, masses always attract each other via the gravitational force

• The gravitational field around a point mass will be **radial** in shape and the field lines will always point towards the centre of mass

The direction of the gravitational field is shown by the vector field lines

Point Mass Approximation

- For a point outside a uniform sphere, the mass of the sphere may be considered to be a **point mass** at its centre
 - A uniform sphere is one where its mass is distributed evenly
- The gravitational field lines around a uniform sphere are therefore identical to those around a point mass
- An object can be regarded as point mass when:

A body covers a very large distance as compared to its size, so, to study its motion, its size or dimensions can be neglected

• An example of this is field lines around planets

Gravitational field lines around a uniform sphere are identical to those on a point mass

- Radial fields are considered **non-uniform** fields
 - So, the gravitational field strength g is different depending on how far an object is from the centre of mass of the sphere

Examiner Tips and Tricks

Always label the arrows on the field lines! Gravitational forces are **attractive only**. Remember:

- For a radial field: it is towards the centre of the sphere or point charge
- For a **uniform field**: towards the surface of the object e.g. Earth

Gravitational Field Lines

Your notes

Gravitational Field Lines

- The direction of a gravitational field is represented by gravitational field lines
 - The direction shows the direction of **force**
 - Equivalently, they show the direction of acceleration of a test mass in the field
- The gravitational field lines around a point mass are **radially inwards**
- The gravitational field lines of a uniform field, where the field strength is the same at all points, is represented by **equally spaced parallel lines**
 - For example, the fields lines on the Earth's surface

Gravitational field lines for a point mass and a uniform gravitational field

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

- Radial fields are considered **non-uniform fields**
 - The gravitational field strength g is different depending on how far you are from the centre
- Parallel field lines on the Earth's surface are considered a **uniform field**
 - The gravitational field strength g is the same throughout

Examiner Tips and Tricks

You should be able to link gravitational field lines with **vectors**: the density of gravitational field lines show the **magnitude** of the field (i.e., the closer they are, the stronger the field), and they also indicate the field's **direction**.

Gravitational Field Strength

Your notes

Gravitational Field Strength

- There is a universal force of attraction between all matter with mass
 - This force is known as the 'force due to gravity' or the **weight**
- The Earth's gravitational field is responsible for the weight of all objects on Earth
- The **gravitational field strength** g at a point is defined as force F per unit mass m of an object at that point:

$$g = \frac{F}{m}$$

- Where:
 - $g = \text{gravitational field strength } (N \text{ kg}^{-1})$
 - F =force due to gravity, or weight (N)
 - = m = mass(kg)
- This equation shows that:
 - The larger the mass of an object, the greater its pull on another mass
 - On planets with a large value of g, the gravitational force per unit mass is **greater** than on planets with a smaller value of g
- An object's mass remains the same at all points in space
 - However, on planets such as Jupiter, the weight of an object will be a lot greater than on a less massive planet, such as Earth
 - This means the gravitational force would be so high that humans, for example, would not be able to fully stand up (or, even worse...)

Head to www.savemyexams.com for more awesome resources

A BODY ON EARTH HAS A MUCH SMALLER FORCE PER UNIT MASS THAN ON JUPITER

THIS MEANS A BODY WILL HAVE A MUCH GREATER WEIGHT ON JUPITER THAN ON EARTH

EARTH
g = 9.81 Nkg⁻¹

JUPITER g = 25 Nkg⁻¹

Copyright © Save My Exams. All Rights Reserved

The weight force on Jupiter would be so large that even standing upright would be difficult

- Factors that affect the gravitational field strength at the surface of a planet are:
 - The **radius** (or diameter) of the planet
 - The mass (or density) of the planet

Worked Example

Calculate the mass of an object with weight 10 N on Earth.

Answer:

Gravitational Field Strength in a Radial Field

- In a radial field (due to a point mass M), the gravitational field lines get further apart from each other
 - This indicates that the **strength** of the gravitational field **decreases** with distance from the centre of mass of M
- The gravitational field strength g in a radial field, due to some mass M, is given by the equation:

$$g = -\frac{GM}{r^2}$$

- Where:
 - $g = \text{gravitational field strength (N kg}^{-1})$
 - G = Newton's Gravitational constant (N m² kg⁻²)
 - M = mass of the object causing the gravitational field (kg)
 - r = radial distance from the centre of mass of M(m)
- Note:
 - The negative sign in this equation indicates that the gravitational field is attractive
 - In other words, the **direction** of the **gravitational field lines** is **towards** the mass M
- On the Earth's surface, g has a constant value of 9.81 N kg⁻¹
- However far outside the Earth's surface, g is not constant
 - g decreases as r increases by a factor of $1/r^2$
 - This is an **inverse square law relationship** with distance

- When the **magnitude** of g is plotted against the distance from the **centre of a planet**, r has two parts:
 - When r < R (the radius of the planet), g is **directly proportional** to r
 - When r > R, g is inversely proportional to r^2

The magnitude of gravitational field strength g against distance r from the Earth's surface follows a $1/r^2$ relationship

Gravitational Field Strength Close to the Earth's Surface

- Near the Earth's surface, the gravitational field is **uniform**
 - Hence, the gravitational field lines are parallel and evenly spaced
- This means the gravitational field strength is constant at every point near the Earth's surface
 - Numerically, the gravitational field strength near Earth's surface is equal to the acceleration due to gravity, $g = 9.81 \,\text{m s}^{-2}$

Worked Example

Determine the distance from the Earth's surface at which the gravitational field strength decreases by a factor of 0.5.

(The radius of the Earth is 6400 km and its mass is 6.0×10^{24} kg)

Answer:

Step 1: Write the known quantities

- Radius of the Earth $R_F = 6400 \text{ km} = 6400 \times 10^3 \text{ m}$
- Mass of the earth $M_E = 6.0 \times 10^{24} \text{ kg}$
- Gravitational constant $G = 6.67 \times 10^{-11} \,\mathrm{N \, m^2 \, kg^{-2}}$

Step 2: Recall the value of the gravitational field strength at the Earth's surface

• The gravitational field strength at the Earth's surface $g = 9.81 \text{ N kg}^{-1}$

Step 3: Write the equation for gravitational field strength in a radial field

• The Earth creates a **radial** gravitational field (far from its surface) therefore the equation for gravitational field strength g is:

$$g = -\frac{GM}{r^2}$$

Step 4: Determine the distance r at which the field strength reduces by a factor of 0.5

- If the field strength decreases by a factor of 0.5, then $g \times 0.5 = 9.81 \times 0.5 = 4.905 \text{ N kg}^{-1}$
- Therefore, **ignoring** the **negative sign** (as we only want a magnitude):

$$4.905 = \frac{(6.67 \times 10^{-11}) \times (6 \times 10^{24})}{r^2}$$

$$r^2 = \frac{(6.67 \times 10^{-11}) \times (6 \times 10^{24})}{4.905}$$

$$r = \sqrt{\frac{(6.67 \times 10^{-11}) \times (6 \times 10^{24})}{4.905}} = 9.0 \times 10^{6} \,\text{m}$$

Step 5: Determine the distance from the Earth's surface

Head to www.savemyexams.com for more awesome resources

- The value $r = 9.0 \times 10^6$ m is the radial distance from the Earth's **centre of mass**
- Therefore, the gravitational field strength reduces by a factor 0.5 at a distance $r R_E$ $r - R_E = (9.0 \times 10^6) - (6400 \times 10^3) = 2.6 \times 10^6 \,\mathrm{m}$

Examiner Tips and Tricks

The equation for the gravitational field strength in a radial field is in terms of the distance r from the **centre of mass** of mass M. If the exam question is about a planet, remember that you might have to take the planet's radius into account, which is the distance between its centre of mass and its surface! As ever, drawing a labelled diagram of the distances in question really helps.

Newton's Law of Gravitation

Your notes

Newton's Law of Gravitation

- The gravitational force between two masses, e.g., between the Earth and the Sun, is defined by Newton's Law of Gravitation
- Newton's Law of Gravitation states:

The gravitational force F between two masses m_1 and m_2 is proportional to the product of their masses and inversely proportional to the square of their separation, r

• In equation form, this is written as:

$$F = -\frac{Gm_1m_2}{r^2}$$

- Where:
 - $F = \text{gravitational force between two point masses } m_1 \text{ and } m_2 \text{ (N)}$
 - G = Newton's gravitational constant
 - m_1 and m_2 = mass of body 1 and mass of body 2 (kg)
 - r = distance between the centre of the two masses (m)
- The 1/r² relation is called the 'inverse square law'
 - This means that if the distance between two masses **doubles**, r becomes 2r
 - Therefore, $1/r^2$ becomes $1/(2r)^2$, which is equal to $1/4r^2$
 - Hence, the gravitational force between the two masses **reduces** by a factor of **four**
- The **negative sign** indicates that the gravitational force F between the two point masses m_1 and m_2 is **attractive**

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

The gravitational force between two masses is defined by Newton's Law of Gravitation

Worked Example

A satellite with mass $6500 \, \text{kg}$ is orbiting the Earth at $2000 \, \text{km}$ above the Earth's surface. The magnitude of the gravitational force between them is $37 \, \text{kN}$.

Calculate the mass of the Earth.

(Radius of the Earth = 6400 km)

Answer:

Examiner Tips and Tricks

A few common mistakes to be aware of are:

- forgetting to **add together** the distance from the surface of the planet and its radius to obtain the value of r. The distance r is measured between the **centre** of each mass, which is from the **centre** of the planet to the centre of the satellite!
- forgetting that the **distance** between point masses m_1 and m_2 is **squared**. Remember this whenever you use Newton's Law of Gravitation!
- Note in this worked example, we calculated the **magnitude** of the gravitational force *F*. Therefore, we could ignore the negative sign. Make sure you are aware of this!