Algorithmes de flots

Quentin Fortier

October 13, 2021

On considère un graphe orienté $\overrightarrow{G} = (V, \overrightarrow{E})$ avec une **capacité** $c : \overrightarrow{E} \longrightarrow \mathbb{R}^+$.

On considère un graphe orienté $\vec{G} = (V, \vec{E})$ avec une **capacité** $c : \vec{E} \longrightarrow \mathbb{R}^+$.

Notations

Si $A \subseteq V$, on note:

• $A^+ = \{(u, v) \in \overrightarrow{E} \mid u \in A, v \notin A\}$ (« arcs sortants de A»)

On considère un graphe orienté $\vec{G} = (V, \vec{E})$ avec une **capacité** $c : \vec{E} \longrightarrow \mathbb{R}^+$.

Notations

Si $A \subseteq V$, on note:

- $A^+ = \{(u, v) \in \overrightarrow{E} \mid u \in A, v \notin A\}$ (« arcs sortants de A»)
- $A^- = \{(u, v) \in \overrightarrow{E} \mid u \notin A, v \in A\}$ (« arcs rentrants dans A»)

On considère un graphe orienté $\vec{G} = (V, \vec{E})$ avec une **capacité** $c : \vec{E} \longrightarrow \mathbb{R}^+$.

Notations

Si $A \subseteq V$, on note:

- $A^+ = \{(u, v) \in \overrightarrow{E} \mid u \in A, v \notin A\}$ (« arcs sortants de A»)
- $A^- = \{(u, v) \in \overrightarrow{E} \mid u \notin A, v \in A\}$ (« arcs rentrants dans A»)
- Si $v \in V$, $v^+ = \{v\}^+$ et $v^- = \{v\}^-$

On considère un graphe orienté $\vec{G} = (V, \vec{E})$ avec une **capacité** $c : \vec{E} \longrightarrow \mathbb{R}^+$.

Notations

Si $A \subseteq V$, on note:

- $A^+ = \{(u, v) \in \overrightarrow{E} \mid u \in A, v \notin A\}$ (« arcs sortants de A»)
- $A^- = \{(u, v) \in \overrightarrow{E} \mid u \notin A, v \in A\}$ (« arcs rentrants dans A»)
- Si $v \in V$, $v^+ = \{v\}^+$ et $v^- = \{v\}^-$

Définition

Si $f: \overrightarrow{E} \longrightarrow \mathbb{R}^+$ et $B \subseteq \overrightarrow{E}$:

$$f(B) = \sum_{\overrightarrow{e} \in B} f(\overrightarrow{e})$$

Flot

Soit $s, t \in V$.

Un **s-t flot** est une fonction $f: \overrightarrow{E} \longrightarrow \mathbb{R}^+$ telle que :

• $\forall \vec{e} \in \vec{E} : \boxed{0 \le f(\vec{e}) \le c(\vec{e})}$

Flot

Soit $s, t \in V$.

Un **s-t flot** est une fonction $f: \overrightarrow{E} \longrightarrow \mathbb{R}^+$ telle que :

- $\forall \vec{e} \in \vec{E} : \boxed{0 \le f(\vec{e}) \le c(\vec{e})}$
- $\bullet \ \forall v \in V \{s,t\} : \boxed{f(v^-) = f(v^+)}$

Définition

|f| est la **valeur** du flot f

Flot

Soit $s, t \in V$.

Un **s-t flot** est une fonction $f: \overrightarrow{E} \longrightarrow \mathbb{R}^+$ telle que :

- $\forall \vec{e} \in \vec{E} : \boxed{0 \le f(\vec{e}) \le c(\vec{e})}$
- $\bullet \ \forall v \in V \{s,t\} : \boxed{f(v^-) = f(v^+)}$

Définition

|f| est la **valeur** du flot f

Problème

Trouver un flot dont la valeur est maximum.

Exemple

Exemple de graphe \overrightarrow{G} avec une capacité c sur les arcs :

Exemple de flot :

Valeur du flot :

Exemple de flot :

Valeur du flot : 4 + 3 = 7

Exemple de flot de valeur maximum :

Valeur de ce flot : 23

 $\underline{\mathsf{Id\acute{e}}}$: partir d'un flot f non optimal (souvent le flot nul partout) et l'améliorer petit à petit.

 $\underline{\mathsf{Id\acute{e}}}$: partir d'un flot f non optimal (souvent le flot nul partout) et l'améliorer petit à petit.

Graphe résiduel

La **capacité résiduelle** d'un arc est le flot que l'on peut encore y ajouter (capacité initiale moins flot)

 $\underline{\mathsf{Id\acute{e}}}$: partir d'un flot f non optimal (souvent le flot nul partout) et l'améliorer petit à petit.

Graphe résiduel

La **capacité résiduelle** d'un arc est le flot que l'on peut encore y ajouter (capacité initiale moins flot)

Le **graphe résiduel** est obtenu en conservant la capacité résiduelle de chaque arc. Si un arc a une capacité résiduelle nulle, il est supprimé.

 $\underline{\mathsf{Id\acute{e}}}$: partir d'un flot f non optimal (souvent le flot nul partout) et l'améliorer petit à petit.

Graphe résiduel

La **capacité résiduelle** d'un arc est le flot que l'on peut encore y ajouter (capacité initiale moins flot)

Le **graphe résiduel** est obtenu en conservant la capacité résiduelle de chaque arc. Si un arc a une capacité résiduelle nulle, il est supprimé.

Si on trouve un chemin \overrightarrow{P} de s à t dans le graphe résiduel, on peut augmenter le flot du minimum des capacités de \overrightarrow{P} .

Flot augmenté de 12 (et capacité résiduelle diminuée de 12 le long du chemin).

On note sur chaque arc la capacité résiduelle (restante).

Algorithme de Ford-Fulkerson

Tant que \exists un chemin \overrightarrow{P} de s à t dans le graphe résiduel : $c \longleftarrow$ minimum des capacités de \overrightarrow{P} Diminuer de c la capacité des arcs de \overrightarrow{P}

Algorithme de Ford-Fulkerson

Tant que \exists un chemin \overrightarrow{P} de s à t dans le graphe résiduel : $c \longleftarrow$ minimum des capacités de \overrightarrow{P} Diminuer de c la capacité des arcs de \overrightarrow{P}

À la fin, on peut connaître le flot sur chaque arc en retranchant la capacité résiduelle à la capacités initiale.

La comparaison avec le graphe initial permet de connaître le flot sur chaque arc :

Valeur du flot obtenu : 23

Théorème

Si les capacités initiales sont toutes entières, l'algorithme de Ford-Fulkerson termine (ne fait pas boucle infinie).

Preuve:

Théorème

Si les capacités initiales sont toutes entières, l'algorithme de Ford-Fulkerson termine (ne fait pas boucle infinie).

Preuve:

Les capacités résiduelles restent toujours entières

Algorithme de Ford-Fulkerson

Théorème

Si les capacités initiales sont toutes entières, l'algorithme de Ford-Fulkerson termine (ne fait pas boucle infinie).

Preuve:

- Les capacités résiduelles restent toujours entières
- À chaque itération, on diminue au moins de 1 la somme de toutes les capacités résiduelles. Donc il ne peut pas y avoir plus de $c(\vec{E})$ itérations.

Algorithme de Ford-Fulkerson

Théorème

Si les capacités initiales sont toutes entières, l'algorithme de Ford-Fulkerson termine (ne fait pas boucle infinie).

Preuve:

- Les capacités résiduelles restent toujours entières
- À chaque itération, on diminue au moins de 1 la somme de toutes les capacités résiduelles. Donc il ne peut pas y avoir plus de $c(\vec{E})$ itérations.

On a de plus un majorant grossier de la complexité : $O(c(\vec{E}))$ ou encore $O(|f^*|)$, où f^* est un flot de valeur maximum.

La complexité plus précise dépend de la façon dont on choisit les chemins.

Définition

Une **coupe** de \overrightarrow{G} est un ensemble $S \subseteq V$ contenant s mais pas t.

Définition

La capacité d'une coupe S est la somme $c(S^+)$ des capacités des arcs sortant de S :

Définition

La capacité d'une coupe S est la somme $c(S^+)$ des capacités des arcs sortant de S :

La capacité de cette coupe est 20 + 14 = 34.

Problème

Trouver une coupe de capacité minimum dans un graphe.

Plan américain de destruction d'un «min cut» des rails soviétiques

Définition

Le flot sortant d'une coupe S est définie par :

$$f(S) = |f| - f(S^-)$$

Définition

Le flot sortant d'une coupe S est définie par :

$$f(S) = |f| - f(S^-)$$

Le flot sortant de cette coupe est 5 + 3 - 1 = 7.

Lemme 1

Si *S* est une coupe, $f(S) \leq c(S^+)$.

Lemme 1

Si *S* est une coupe, $f(S) \leq c(S^+)$.

Preuve:

$$f(S) = |f| - f(S^{-}) \le |f| \le c(S^{+})$$

Lemme 2

Si S est une coupe, f(S) = |f|.

Lemme 2

Si *S* est une coupe, f(S) = |f|.

Preuve:

Lemme 2

Si *S* est une coupe, f(S) = |f|.

Preuve:

Soit H_k : « Si S est une coupe avec k sommets alors f(S) = |f| ».

• H_1 est vrai car alors $S = \{s\}$.

Lemme 2

Si *S* est une coupe, f(S) = |f|.

Preuve:

- H_1 est vrai car alors $S = \{s\}$.
- Supposons H_k vraie pour un $k \ge 1$.

Lemme 2

Si *S* est une coupe, f(S) = |f|.

Preuve:

- H_1 est vrai car alors $S = \{s\}$.
- Supposons H_k vraie pour un $k \ge 1$. Soit S une coupe avec k + 1 sommets.

Lemme 2

Si S est une coupe, f(S) = |f|.

Preuve:

- H_1 est vrai car alors $S = \{s\}$.
- Supposons H_k vraie pour un k ≥ 1.
 Soit S une coupe avec k + 1 sommets.
 Soit v ∈ S. Alors, en utilisant la définition :
 f(S) = f(S {v}) + f({v}).

Lemme 2

Si *S* est une coupe, f(S) = |f|.

Preuve:

Soit H_k : « Si S est une coupe avec k sommets alors f(S) = |f| ».

- H_1 est vrai car alors $S = \{s\}$.
- Supposons H_k vraie pour un $k \ge 1$.

Soit S une coupe avec k+1 sommets.

Soit $v \in S$. Alors, en utilisant la définition :

$$f(S) = f(S - \{v\}) + f(\{v\}).$$

Or $f(S \setminus \{v\}) = |f|$ par hypothèse de récurrence et $f(\{v\}) = 0$.

Lemme 2

Si *S* est une coupe, f(S) = |f|.

Preuve:

Soit H_k : « Si S est une coupe avec k sommets alors f(S) = |f| ».

- H_1 est vrai car alors $S = \{s\}$.
- Supposons H_k vraie pour un $k \ge 1$.

Soit S une coupe avec k+1 sommets.

Soit $v \in S$. Alors, en utilisant la définition :

$$f(S) = f(S - \{v\}) + f(\{v\}).$$

Or $f(S \setminus \{v\}) = |f|$ par hypothèse de récurrence et $f(\{v\}) = 0$.

Donc $f(S) = |f| : H_{k+1}$ est vraie.

Lemme 1

Si f est un flot et S une coupe, $f(S) \le c(S^+)$.

Lemme 2

Si f est un flot et S une coupe, f(S) = |f|.

Théorème max flow - min cut

Si un flot f et une coupe S vérifient f(S) = c(S) alors :

- f est un flot de valeur maximum
- S une coupe de capacité minimum

Preuve:

Lemme 1

Si f est un flot et S une coupe, $f(S) \le c(S^+)$.

Lemme 2

Si f est un flot et S une coupe, f(S) = |f|.

Théorème max flow - min cut

Si un flot f et une coupe S vérifient f(S) = c(S) alors :

- f est un flot de valeur maximum
- S une coupe de capacité minimum

<u>Preuve</u>: Soit f^* un flot de valeur maximum.

Lemme 1

Si f est un flot et S une coupe, $f(S) \le c(S^+)$.

Lemme 2

Si f est un flot et S une coupe, f(S) = |f|.

Théorème max flow - min cut

Si un flot f et une coupe S vérifient f(S) = c(S) alors :

- f est un flot de valeur maximum
- S une coupe de capacité minimum

<u>Preuve</u>: Soit f^* un flot de valeur maximum.

$$f^*(s^+) = f^*(S) \le c(S) = f(S) = |f|$$

Question

Comment prouver que ce flot est maximum ?

Question

Comment prouver que ce flot est maximum ?

$$c(S) = 23 = f(S)$$

Donc f est un flot maximum et S une coupe minimum.

Théorème

Si l'algorithme de Ford-Fulkerson termine, le flot obtenu est un flot maximum

Preuve:

Théorème

Si l'algorithme de Ford-Fulkerson termine, le flot obtenu est un flot maximum

Preuve:

Soit S l'ensemble des sommets accessibles depuis s dans le graphe résiduel.

Théorème

Si l'algorithme de Ford-Fulkerson termine, le flot obtenu est un flot maximum

Preuve:

Soit S l'ensemble des sommets accessibles depuis s dans le graphe résiduel.

Tout arc \overrightarrow{e} sortant de S a une capacité résiduelle nulle, donc $c(\overrightarrow{e}) = f(\overrightarrow{e})$. D'où :

$$c(S) = \sum_{\overrightarrow{e} \in \overrightarrow{E}} c(\overrightarrow{e}) = \sum_{\overrightarrow{e} \in \overrightarrow{E}} f(\overrightarrow{e}) = f(S)$$

Le flot renvoyé par l'algorithme de Ford-Fulkerson est une somme de chemins.

Le flot renvoyé par l'algorithme de Ford-Fulkerson est une somme de chemins. Inversement, tout flot peut s'obtenir comme somme de chemins :

Théorème de décomposition de flot

Tout s-t flot peut se décomposer comme une somme de chemins de s à t et de cycles.

De plus, le nombre de chemins et cycles est au plus p.

Preuve:

Le flot renvoyé par l'algorithme de Ford-Fulkerson est une somme de chemins. Inversement, tout flot peut s'obtenir comme somme de chemins :

Théorème de décomposition de flot

Tout s-t flot peut se décomposer comme une somme de chemins de s à t et de cycles.

De plus, le nombre de chemins et cycles est au plus p.

Preuve: « Ford-Fulkerson à l'envers »

Tant que possible : on cherche un chemin de s à t en utilisant seulement les arêtes ayant un flot positif, puis on retire la capacité minimum le long de ce chemin.

Les propriétés de flot nous assurent que quand il n'y a plus de chemin, il ne reste que des cycles.

Décomposition de flot

On a décomposé le flot en

Décomposition de flot

On a décomposé le flot en 3 chemins

Décomposition de flot

On a décomposé le flot en 3 chemins et 2 cycles

Choix des chemins

On va voir plusieurs façon de trouver un chemin de s à t :

Choix des chemins

On va voir plusieurs façon de trouver un chemin de s à t:

- Parcours en profondeur
- Parcours en largeur (plus court chemin)
- Plus large chemin

Choix des chemins

Exercice

Écrire une fonction Python ford_fulkerson telle que ford_fulkerson(G, s, t, path) renvoie la valeur maximum d'un flot, où :

- G est un graphe orienté avec une capacité sur les arcs.
- path est une fonction qui à un graphe résiduel associe un chemin de s à t

Exercice

Implémenter le parcours en profondeur et l'utiliser avec ford_fulkerson.

Nombre d'itérations maximum de Ford-Fulkerson avec recherche des chemins par parcours en profondeur : $|f^*|$.

Exercice

Implémenter le parcours en profondeur et l'utiliser avec ford_fulkerson.

Nombre d'itérations maximum de Ford-Fulkerson avec recherche des chemins par parcours en profondeur : $|f^*|$.

On note $p = |\vec{E}|$ le nombre d'arcs et n = |V| le nombre de sommets.

Théorème

La complexité de Ford-Fulkerson avec recherche des chemins par parcours en profondeur est $O(p|f^*|)$

La complexité $\mathrm{O}(p imes |f^*|)$ est atteinte pour ce genre de graphe :

La complexité $O(p \times |f^*|)$ est atteinte pour ce genre de graphe :

Il est logique de chercher à chaque itération le **chemin le plus large** (widest path), c'est à dire celui dont la capacité minimum est la plus grande (donc qui augmentera plus le flot).

Il est logique de chercher à chaque itération le **chemin le plus large** (widest path), c'est à dire celui dont la capacité minimum est la plus grande (donc qui augmentera plus le flot).

On peut trouver tous les plus larges chemins depuis s de différentes façons :

- Algorithme de Prim modifié en $O(p \log(p))$
- Algorithme de Dijkstra modifié en $O(p \log(p))$

Algorithme de Prim modifié

$$T \leftarrow \{s\}$$

Tant que T n'est pas couvrant : Ajouter l'arête sortante de T de capacité maximum

Théorème

T est un « arbre des plus larges chemins » : le chemin de s à un autre sommet v dans T est un plus large chemin de s à v

Preuve:

Algorithme de Prim modifié

$$T \leftarrow \{s\}$$

Tant que T n'est pas couvrant : Ajouter l'arête sortante de T de capacité maximum

Théorème

 ${\cal T}$ est un « arbre des plus larges chemins » : le chemin de s à un autre sommet v dans ${\cal T}$ est un plus large chemin de s à v

 $\underline{\mathsf{Preuve}}$: Par récurrence sur |T|.

Quand on ajoute une arête vers v, d'après la façon de la choisir, il ne peut pas y avoir d'autres chemin plus large vers v.

Algorithme de Prim modifié

$$T \leftarrow \{s\}$$

Tant que T n'est pas couvrant : Ajouter l'arête sortante de T de capacité maximum

Complexité : $O(p \log(p))$ en utilisant une file de priorité contenant les arêtes, avec extraction et ajout en complexité logarithmique

Soit f^* un flot maximum. D'après le théorème de décomposition, f^* s'écrit comme une somme d'au plus p chemins et cycles.

Soit f^* un flot maximum. D'après le théorème de décomposition, f^* s'écrit comme une somme d'au plus p chemins et cycles.

Au moins un de ces chemins transporte un flot $\geq \frac{|\hat{f}^*|}{p}$.

Soit f^* un flot maximum. D'après le théorème de décomposition, f^* s'écrit comme une somme d'au plus p chemins et cycles.

Au moins un de ces chemins transporte un flot $\geq \frac{|\tilde{f}^*|}{p}$.

Donc le chemin de largeur maximum permet d'augmenter le flot d'au moins $\frac{|f^*|}{n}$

Soit f^* un flot maximum. D'après le théorème de décomposition, f^* s'écrit comme une somme d'au plus p chemins et cycles.

Au moins un de ces chemins transporte un flot $\geq \frac{|f^*|}{p}$.

Donc le chemin de largeur maximum permet d'augmenter le flot d'au moins $\frac{|f^*|}{p}$

La valeur du flot maximum dans le graphe résiduel passe alors de $|f^*|$ à au plus $|f^*|-\frac{|f^*|}{p}=|f^*|(1-\frac{1}{p})$.

Soit f^* un flot maximum. D'après le théorème de décomposition, f^* s'écrit comme une somme d'au plus p chemins et cycles.

Au moins un de ces chemins transporte un flot $\geq \frac{|f^*|}{r}$.

Donc le chemin de largeur maximum permet d'augmenter le flot d'au moins $\frac{|f^*|}{|}$

La valeur du flot maximum dans le graphe résiduel passe alors de $|f^*|$ à au plus $|f^*|-\frac{|f^*|}{p}=|f^*|(1-\frac{1}{p})$. Après $p\ln(|f^*|)$ itérations, il reste donc un flot maximum d'au plus :

$$|f^*|(1-\frac{1}{p})^{p\ln(|f^*|)} < |f^*|e^{-\ln(|f^*|)} = 1$$

Le nombre d'itération de Ford-Fulkerson avec recherche de plus large chemin est donc au plus $p \ln(|f^*|)$.

Comme chaque recherche de plus large chemin demande $O(p \log(p))$ avec Prim :

Théorème

La complexité de de Ford-Fulkerson avec recherche de plus large chemin est $O(p^2 \log(p) \ln(|f^*|))$.

Le nombre d'itération de Ford-Fulkerson avec recherche de plus large chemin est donc au plus $p \ln(|f^*|)$.

Comme chaque recherche de plus large chemin demande $O(p \log(p))$ avec Prim :

Théorème

La complexité de de Ford-Fulkerson avec recherche de plus large chemin est $O(p^2 \log(p) \ln(|f^*|))$.

Mieux qu'avec le parcours en profondeur en $O(p|f^*|)$ mais il serait préférable de ne pas avoir cette dépendance en $|f^*|$.

Choix des chemins : parcours en largeur (Edmond-Karp)

On note $p = |\vec{E}|$ le nombre d'arcs et n = |V| le nombre de sommets.

Théorème

Ford-Fulkerson avec recherche de plus court chemins (par parcours en largeur) termine en au plus $\frac{np}{2}$ itérations.

Choix des chemins : parcours en largeur (Edmond-Karp)

On note $p = |\vec{E}|$ le nombre d'arcs et n = |V| le nombre de sommets.

Théorème

Ford-Fulkerson avec recherche de plus court chemins (par parcours en largeur) termine en au plus $\frac{np}{2}$ itérations.

Comme chaque parcours en largeur est en O(p):

Théorème

Ford-Fulkerson avec recherche de plus court chemins (par parcours en largeur) est en $O(np^2)$.

Choix des chemins : résumé

Nombre d'itérations et complexité de Ford-Fulkerson suivant le choix des chemins :

	nombre d'itérations	complexité
parcours en profondeur	$ f^* $	$O(p f^*)$
plus large chemin	$\leq p \ln(f^*)$	$O(p^2\log(p)\ln(f^*))$
plus court chemin	$\leq \frac{np}{2}$	$O(np^2)$

$$(p=|\overrightarrow{E}| \text{ et } n=|V|)$$