

Disruption Management for Outbound Baggage Handling with Work Group Pairings

Christian Ruf, Markus Frey, Rainer Kolisch TUM School of Management, Technische Universität München

25. Workshop für quantitative Betriebswirtschaftslehre

Outline

- Problem Statement
- Literature Review
- Solution Methodology
- Computational Study
- Further Research
- Conclusion

Each flight is assigned to a carousel and a number of its working stations

Outbound Baggage Carousel

- Baggage handling has to be finished at $\,S_i^{
 m E}$, about 10 15 minutes before take off
- Start of baggage handling s_i^h can be set in a time window
- Start of storage depletion $\,s_i^{
 m d}\,$ can be set between $\,s_i^{
 m h}$ and $\,S_i^{
 m E}$ such that all bags can be loaded

The schedule influences how bags arrive at the assigned carousel

Assume the storage depletion rate and loading rate are both 1 per time period

The schedule influences how bags arrive at the assigned carousel

Assume the storage depletion rate and loading rate are both 1 per time period

Each assigned working station must be staffed with workers

The goal is to smooth the workload and minimize left over bags

- The workload is defined as the number of bags on a carousel relative to its conveyor belt capacity
- In the objective we minimize the maximal workload for each carousel and in each time interval

- Faced with disruptions it is often not possible to find a solution where all bags can be delivered
- Therefore we allow infeasible schedules and assigning 0 working stations and apply penalty costs for each left bag

The problem characteristics lead to a large scale problem

About 400 flights departing from Munich Terminal 2 a day (~30000 bags)

- Each flight requires a decision regarding
 - When its baggage handling starts
 - When the storage depletion begins
 - How many working stations are used

21 handling facilities (carousels)

Each facility has limited capacity regarding

- Parking positions
- Working stations
- Conveyor belt

About 60 workers in 3 shifts

- Each worker
 - Starts and ends his shift at a defined time and location

Literature

Abdelghany et al. (2006) – Scheduling baggage-handling facilities in congested airport.

- Assignment of flights to handling facilities and scheduling the start of baggage handling for each flight
- Minimize used handling facilities

Clausen et al. (2010) - Disruption management in the airline industry - Concepts, models and methods.

Overview on disruption management for aircraft routing and crew scheduling

Petersen et al. (2010) – An Optimization Approach to Airline Integrated Recovery.

- Disruption management for flight schedule, aircraft routing, crew schedule, and passenger itineraries
- Minimize equipment costs, flight cancelation costs, crew costs, passenger delay and cancelation costs

Ascó et al. (2013) – An Analysis of Constructive Algorithms for Airport Baggage Sorting Station Assignment

- Assignment of flights to handling facilities and scheduling the start of baggage handling for each flight
- Maximize the number of flights assigned to baggage handling facilities
- Minimize distance between assigned baggage handling facility and stand
- Maximize buffer times between flights
- Smooth workload

Frey et al. (2014) – Column Generation For Outbound Baggage Handling (tbp).

- Assignment of flights to handling facilities and scheduling of baggage handling including storage depletion time
- Minimize/smooth workload on carousels

Basic model

- 2 main binary decision variables
 - $x_{j,c,w,\tau}$ = 1, iff flight i is assigned to carousel c with w working stations and start time tuple τ
 - $f_{m,i,j}$ = 1, iff worker m goes from flight i to flight j
- Objective

Minimize workload

Subject to

Assign flights

Storage capacity

Carousel capacities

Occupy working stations

Worker tours

Example

- 2 flights, 1 working station each
- 1 worker

Example

- 2 flights, 1 working station each
- 1 worker

As the basic model is computationally intractable, it is decomposed sequentially

The sequential decomposition reduces the solution space

- 2 flights, 1 working station each
- 1 worker

The sequential decomposition reduces the solution space

- 2 flights, 1 working station each
- 1 worker

The sequential decomposition reduces the solution space

- 2 flights, 1 working station each
- 1 worker

Dantzig-Wolfe Decomposition for ASP

- A duty is feasible assignment and schedule of flights to one carousel
- decision variables: z_d = 1, iff duty d is selected
- Objective
 Minimize cost for selected duties
- Subject to

Assign flights

Storage capacity

Each carousel once

Worker capacity

C1 Cn

Master Problem

Subproblem for each carousel

23

Depth-first-search heuristic

- At each node:
 - Generate columns for a predefined number of iterations
 - Select a master variable to fix to 1 by rounding
 - Go to that node
- If no solution was found, start backtracking
- The number of deviations from the initial search path is limited to some k

Example for 3 carousels

Korf (1996) - Improved Limited Discrepancy Search Jancour (2010) - Column Generation based Primal Heuristics

In WGP we penalize the lack of workers

- Decision variables:
 - $f_{m,j,i}$ = 1, iff worker m goes from flight i to j; 0 otherwise
 - r_i = number of missing workers for flight i

$$\min \quad \sum_{i \in \mathcal{F}} r_i$$

subject to

:

$$\sum_{m \in \mathcal{M}} \sum_{j \in \mathcal{F}_m} f_{m,j,i} + r_i \ge \hat{w}_i$$

 $\forall i \in \mathcal{F}$

:

Computational Study

Carousel layout

Carousel type	No	Working stations	Parking positions	Conveyor belt capacity
1	8	2	8	20
2	8	4	12	25
3	1	8	20	40

• Shift plan

Shift	No	From	То
1	20	3:00	10:00
2	20	9:30	16:30
3	20	16:00	22:40

Computational Study

Computational results in the absense of disruptions

Inst	From	То	F	RI	WI	u*	u	b*	b
120.1	3:00	7:55	21	4.1	17	0.3	1.2	0	0
120.2	3:00	9:20	43	5.4	22	1.6	1.2	6	11
120.3	3:00	9:20	73	6.0	25	1.6	1.6	34	40

- Maximum Runtime = 10 minutes
- RI Lower bound on min number of required carousels
- WI Lower bound on min number of required workers
- u* workload peak in the optimization
- u workload peak in simulation
- b* left bags in optimization
- b left bags in simulation

- 2 flights, 1 working station each
- 1 worker

- 2 flights, 1 working station each
- 1 worker

- 2 flights, 1 working station each
- 1 worker

- 2 flights, 1 working station each
- 1 worker

Conclusion

- The computational results show that the procedure generates solutions in the limited time in the absence of disruptions
- Preliminary computational result show that the procedure can cope with disruptions as well
- In an extensive simulation based study we hope to confirm that the procedure works well with real world data and stochastic disruptions
- Is there a way to obtain an optimal solution for the integrated problem or at least at tight lower bound?
- Contribution:
 - Outbound baggage handling problem extended to include the worker assignment
 - Rolling planning framework to update the planning based on new information about expected baggage arrival streams and disruptions

Disruption Management for Outbound Baggage Handling with Work Group Pairings

Christian Ruf, Markus Frey, Rainer Kolisch TUM School of Management, Technische Universität München

25. Workshop für quantitative Betriebswirtschaftslehre

Dantzig-Wolfe Decomposition for ASP

 $\min \quad \sum_{d \in \mathcal{D}'} C_d \cdot z_d$

subject to

$$\sum_{d \in \mathcal{D}'} \Phi_{d,i}^{\mathrm{ass}} \cdot z_d \ge 1$$

$$\forall i \in \mathcal{F}$$

$$\sum_{l \in \mathcal{D}'} \Phi_{d,t}^{\text{sto}} \cdot z_d \le K_t^{\text{s}}$$

$$\forall\ t\in\mathcal{T}$$

$$\sum_{d \in \mathcal{D}'} \Phi_{d,l,t}^{\text{wor}} \cdot z_d \le K_{l,t}^{\text{wor}}$$

$$\forall\ l\in\mathcal{L},t\in\mathcal{T}$$

$$\sum_{d \in \mathcal{D}_c'} z_d \le 1$$

$$\forall \ c \in \mathcal{C}$$

$$z_d \in \{0, 1\}$$

$$\forall d \in \mathcal{D}'$$

$$\Phi^{\mathrm{ass}}_{d,i}$$
 1, iff flight i is assigned to duty d

$$\Phi_{d,t}^{\mathrm{sto}}$$
 required storage for duty d at time t

$$\Phi^{\mathrm{wor}}_{d,l,t}$$
 required workers for duty d of subset I at time t

$$C_d$$
 costs for using duty d (workload penalty & left bags)

$$z_d$$
 1, iff duty d is selected