MTH302: INTEGERS, POLYNOMIALS AND MATRICES LECTURE 7, September 7, 2020

VARADHARAJ R. SRINIVASAN

Keywords: Ideals of matrix rings, minimal left ideals.

1. Ideals of a Matrix rings

Theorem 1.1. Let R be a ring with 1.

- (1) If I is a left ideal of R then $M_n(I)$ is a left ideal of $M_n(R)$.
- (2) If I is a right ideal of R then $M_n(I)$ is a right ideal of $M_n(R)$.
- (3) If I is a two-sided ideal of R then $M_n(I)$ is a two-sided ideal of $M_n(R)$.
- (4) If J is a two-sided ideal of $M_n(R)$ then $J = M_n(I)$ for some two-sided ideal of R.

Proof. (1), (2) and (3) are easy to prove. Let J be a two sided ideal of $M_n(R)$ and I be the set of all (1,1) entries of the matrices of J. That is, $a \in I$ if and only if

$$\begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in J$$

Since J is an ideal, it is easy to see that I is an ideal. Let $A=(a_{ij})\in J$. Then $a_{ij}E_{11}=E_{1i}\cdot A\cdot E_{j1}\in J$ and thus $a_{ij}\in I$. This shows that $J\subset M_n(I)$. On the other hand, for any matrix $A=(a_{ij})\in M_n(R)$, we have $E_{i1}\cdot A\cdot E_{1j}=a_{11}E_{ij}$. Now if $A=(a_{ij})\in M_n(I)$ then there are matrices $N^{ij}\in J$ such that (1,1) entry of N^{ij} is a_{ij} . Then

$$A = \sum_{i,j} a_{ij} E_{ij} = \sum_{i,j} E_{i1} N^{ij} \cdot E_{1j} \in J.$$

Thus $M_n(I) = J$.

Remark 1.2. If R is a division ring then $M_n(R)$ has no nontrivial two sided ideals; trivial ideals being (0) and $M_n(R)$.

Example 1.3. Consider the ring $R := M_2(2\mathbb{Z})$. Clearly R is without identity. Now let

$$J = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a \in 4\mathbb{Z} \subset 2\mathbb{Z}, b, c, d \in 2\mathbb{Z} \right\}.$$

Verify that J is a two sided ideal of R: what is used here is the fact that $ab \in 4\mathbb{Z}$ for any $a, b \in 2\mathbb{Z}$. We claim that $J \neq M_2(I)$ for any ideal I of $2\mathbb{Z}$. Note that

$$\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \notin J$$

and therefore $J \neq M_2(2\mathbb{Z})$. Clearly, $M_2(4\mathbb{Z}) \subseteq J$ and

$$\begin{pmatrix} 4 & 2 \\ 0 & 0 \end{pmatrix} \notin M_2(4\mathbb{Z}).$$

Therefore $M_2(4\mathbb{Z}) \subsetneq J \subsetneq M_2(2\mathbb{Z})$. Since there are no ideals I of $2\mathbb{Z}$ such that $4\mathbb{Z} \subsetneq I \subsetneq 2\mathbb{Z}$, we see that $J \neq M_2(I)$ for any ideal of $2\mathbb{Z}$.

Simple Ring. A ring is *simple* if it has no nontrivial two-sided ideals.

Example 1.4. (1). Division rings are simple.

- (2). Matrix rings over division rings are simple
- (3). R is a simple ring with 1 then so is $M_n(R)$.

2. MINIMAL LEFT IDEALS OF MATRIX RINGS OVER DIVISION RINGS

Let R be a division ring. Consider the set

$$J_k = \left\{ \sum_{i=1}^n a_{ik} E_{ik} \mid a_{ik} \in R \right\}$$

of all matrices (a_{st}) such that $a_{st} = 0$ for all $t \neq k$. It is easy to see that J_k is a left ideal¹ of $M_n(R)$. Now we shall show that J_k is a minimal left ideal.

Let $A:=(a_{st})\in J_k$ and for a fixed i,k, let $a_{ik}\neq 0$. We claim that the left ideal generated by A is the ideal J_k and this would prove that J_k is a minimal left ideal. Verify that $E_{1k}=a_{ik}^{-1}E_{1i}\cdot A\in (A)_l$. Since, for each $s=1,2,\cdots,n$, $E_{sk}=E_{s1}\cdot E_{1k}\in (A)_l\subseteq J_k$ and R linear combinations of elements E_{sk} is the left ideal J_k , we have shown that the left ideal generated by the element A is the ideal J_k itself.

This show that J_k are minimal left ideals of R. Similarly, one can show that

$$I_k = \left\{ \sum_{i=1}^n a_{ki} E_{ki} \mid a_{ki} \in R \right\}$$

are minimal right ideals of $M_n(R)$.

 $^{^{1}}J_{k}$ is the left ideal containing matrices whose columns have zero entries except for the k-th column.