EXAMPLE 6.1 Magnetic Heading

INPUTS: Attitude				
True attitude (Eulers)	ϕ_{nb} =	4	deg	0.069813
	$\theta_{\it nb}$ =	-6	deg	-0.10472
	ψ_{nb} =	30	deg	0.523599
Roll measurement error	$\delta\phi_{nb}$ =	0.1	deg	0.001745
Pitch measurement error	$\delta heta_{nb}$ =	-0.15	deg	-0.00262
Earth's Magnetic Field				
True magnitude	B _E =	45	μТ	
True declination	$\alpha_{nE} =$		deg	0.174533
True dip	$\gamma_{nE} =$		deg	0.698132
Database declination error	$\delta \alpha_{nE} =$		deg	0.005236
Other Common of Manneticus				
Other Sources of Magnetism Local magnetic anomalies (N		2	μΤ	
Local magnetic anomalies (N	$\mathbf{m}_{A}^{n} =$	-1.8		
	\mathbf{m}_A –		μT	
Hard-iron magnetism		-1		
(body-frame axes)	$\mathbf{b}_{m} =$	-0.5		
			μΤ	
Soft-iron magnetism	3.6	0.012	-0.014	0.006
(body-frame axes)	$\mathbf{M}_{m} =$	-0.008	0.007	0.017
		0.003	-0.019	-0.011

Calculate magnetometer measurements

Local navigation frame to body frame coordinate transformation matrix:

From (2.22),

$$\mathbf{C}_{n}^{b} = \begin{bmatrix} \cos \theta_{nb} \cos \psi_{nb} & \cos \theta_{nb} \sin \psi_{nb} & -\sin \theta_{nb} \\ -\cos \phi_{nb} \sin \psi_{nb} & \cos \phi_{nb} \cos \psi_{nb} \\ +\sin \phi_{nb} \sin \theta_{nb} \cos \psi_{nb} & +\sin \phi_{nb} \sin \theta_{nb} \sin \psi_{nb} \end{bmatrix}$$

$$\begin{pmatrix} \sin \phi_{nb} \sin \psi_{nb} & -\sin \theta_{nb} \cos \psi_{nb} \\ +\sin \phi_{nb} \cos \phi_{nb} \sin \theta_{nb} \cos \psi_{nb} & -\sin \phi_{nb} \cos \theta_{nb} \\ +\sin \phi_{nb} \sin \theta_{nb} \sin \psi_{nb} & \cos \phi_{nb} \cos \phi_{nb} \end{bmatrix}$$

$$\begin{pmatrix} \cos \phi_{nb} \cos \psi_{nb} & -\sin \phi_{nb} \cos \phi_{nb} \\ +\sin \phi_{nb} \sin \phi_{nb} \sin \phi_{nb} & \cos \phi_{nb} \\ +\cos \phi_{nb} \sin \theta_{nb} \sin \phi_{nb} & \cos \phi_{nb} \end{bmatrix}$$

$$\mathbf{C}_{n}^{b} =$$

$$\begin{array}{c}
0.861281226 & 0.497260948 & 0.104528 \\
-0.505096681 & 0.860270041 & 0.069374 \\
-0.055425555 & -0.112547797 & 0.992099
\end{array}$$

Flux density of Earth's magnetic field

From (6.1),
$$\mathbf{m}_{E}^{n} = \begin{pmatrix} \cos \alpha_{nE} \cos \gamma_{nE} \\ \sin \alpha_{nE} \cos \gamma_{nE} \\ \sin \gamma_{nE} \end{pmatrix} B_{E}$$

$$\mathbf{m}_{E}^{n} = \begin{bmatrix} 33.9482928 & \mu T \\ 5.98599997 & \mu T \\ 28.92544244 & \mu T \end{bmatrix}$$

Total magnetic flux density

From (6.9)
$$\mathbf{m}_{m}^{b} = \mathbf{b}_{m} + (\mathbf{I}_{3} + \mathbf{M}_{m}) \mathbf{C}_{n}^{b} (\mathbf{m}_{E}^{n} + \mathbf{m}_{A}^{n})$$

$$\mathbf{m}_{E}^{n} + \mathbf{m}_{A}^{n} =$$

$$35.9482928 \mu T$$

$$4.18599997 \mu T$$

$$31.92544244 \mu T$$

$$\mathbf{C}_{n}^{b} \left(\mathbf{m}_{E}^{n} + \mathbf{m}_{A}^{n} \right) = \begin{bmatrix} 36.38024145 & \mu T \\ -12.34146652 & \mu T \\ 29.20962962 & \mu T \end{bmatrix}$$

$$(\mathbf{I}_{3} + \mathbf{M}_{m}) \mathbf{C}_{n}^{b} (\mathbf{m}_{E}^{n} + \mathbf{m}_{A}^{n}) = \begin{bmatrix} 37.16484265 & \mu T \\ -12.22233501 & \mu T \\ 29.23195228 & \mu T \end{bmatrix}$$

$$\mathbf{m}_{m}^{b} = \begin{bmatrix} 36.16484265 & \mu T \\ -12.72233501 & \mu T \\ 30.23195228 & \mu T \end{bmatrix}$$

Calculate Magnetic Heading Measurement

Roll and pitch measurements:

$$\widetilde{\phi}_{nb}' = \phi_{nb} + \delta\phi_{nb} = 0.071558499$$
 rad

$$\widetilde{\theta}_{nb} = \theta_{nb} + \delta\theta_{nb} =$$
 -0.107337749 rad

From (6.6),
$$\widetilde{\psi}_{mb} = \arctan_2 \left(-\widetilde{m}_{m,y}^b \cos \widehat{\phi}_{nb} + \widetilde{m}_{m,z}^b \sin \widehat{\phi}_{nb}, \\ \widetilde{m}_{m,x}^b \cos \widehat{\theta}_{nb} + \widetilde{m}_{m,y}^b \sin \widehat{\phi}_{nb} \sin \widehat{\theta}_{nb} + \widetilde{m}_{m,z}^b \cos \widehat{\phi}_{nb} \sin \widehat{\theta}_{nb} \right)$$
$$-\widetilde{m}_{m,y}^b \cos \widehat{\phi}_{nb} + \widetilde{m}_{m,z}^b \sin \widehat{\phi}_{nb} = \boxed{14.85128} \, \mu \text{T}$$

$$\widetilde{m}_{m,x}^{b} \cos \widehat{\theta}_{nb} + \widetilde{m}_{m,y}^{b} \sin \widehat{\phi}_{nb} \sin \widehat{\theta}_{nb} + \widetilde{m}_{m,z}^{b} \cos \widehat{\phi}_{nb} \sin \widehat{\theta}_{nb} = 32.82364 \mu T$$

$$\widetilde{\psi}_{mb} = \frac{0.424895188}{24.34470099} \text{ deg}$$

Note: The arguments of the Excel ATAN2 function are the opposite way round

Calculate True Heading

Database-indicated magnetic declination:

$$\hat{\alpha}_{nE} = \alpha_{nE} + \delta \alpha_{nE} =$$
 10.3 deg 0.179769 rad

True heading:

From (6.7),

$$\widetilde{\psi}_{nb} = \widetilde{\psi}_{mb} + \widetilde{\alpha}_{nE} =$$
 34.64470099 deg 0.604664 rad

Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd Edition, by Paul D. Groves

Heading Error

$$\widetilde{\psi}_{nb} - \psi_{nb} =$$

4.644700992 deg

0.081065 rad