Теория функций комплексного переменного

Конспект лекций. Автор: Темплин К.Э (qnbhd)

Содержание

1	Основные сведения о комплексных числах			
	1.1	Введе	ение	. 3
	1.2	Геоме	трическая интерпретация	. 4
	1.3	1.3 Тригонометрическая форма		. 5
	1.4			. 6
		1.4.1	Тождество Эйлера	. 6
		1.4.2	Запись числа	. 7
				_
2 Множества точек комплексной плоскости				8

1 Основные сведения о комплексных числах

1.1 Введение

Определение. Комплексным числом назовем пару $(x,y) \in \mathbb{R}$, и обозначим как z = x + iy.

Определение. *Мнимой единицей* назовем такое число i, что $i^2 = -1$.

Определение. Действительной частью комплексного числа z = x + iy назовем x и обозначим как $\Re(z) = x$

Определение. *Мнимой частью* комплексного числа z = x + iy назовем y и обозначим как $\Im(z) = y$

Определение. Суммой двух комплексных чисел назовем такую бинарную операцию, что

$$+ : \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$$

$$+ : (z_1 = x_1 + iy_1, z_2 = x_2 + iy_2) \longrightarrow x_1 + x_2 + i(y_1 + y_2)$$

Определение. Произведением двух комплексных чисел назовем такую бинарную операцию, что

$$: \mathbb{C} \times \mathbb{C} \mapsto \mathbb{C}$$

$$: (z_1 = x_1 + iy_1, z_2 = x_2 + iy_2) \longrightarrow x_1 x_2 - y_1 y_2 + i(x_1 y_2 + x_2 y_1)$$

Определение. Modynem комплексного числа назовём $|z|=\sqrt{x^2+y^2}$

Определение. Сопряженным числом назовём z*=x-iy

 \triangleright Основным свойством сопряженного числа является то, что при умножении z на z^* получаем действительное число. $z^*z=|z|^2$

Предположим, что нам необходимо решить уравнение $zz_1=z_2$. Домножим обе части на z^* . Тогда

$$zz_1z_1^* = z_2z_1^*$$

Отсюда

$$z = \frac{z_2 z_1^*}{|z_1|^2}$$

Такую операцию называют делением комплексных чисел.

Пример. Поделим два числа $z_1 = 2 - 5i \ u \ z_2 = -3 + 4i$

$$\frac{2-5i}{-3+4i} = \frac{(2-5i)(-3-4i)}{25} = \frac{7i-26}{25}$$

1.2 Геометрическая интерпретация

Комплексные числа изображаются на плоскости $(\Re\{z\},\Im\{z\})$ как радиус-векторы из начала координат. Соотвественно, сложением комплексных чисел соответствует сложению векторов.

Рис. 1: Изображено комплексное число 2+3i

Также комплексные числа записываются в **тригонометрической форме** (переход к полярной системе координат)

1.3 Тригонометрическая форма

Обозначим φ как угол между вектором и положительным направлением $\Re\{z\}$, а r - длиной вектора.

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \tag{1}$$

$$z = r(\cos\varphi + i\sin\varphi)$$

Определение. *Аргументом* комплексного числа назовем φ .

$$\arg z = \varphi \in (-\pi; \pi)$$

Теорема. (Формула Муавра) гласит, что:

$$(\cos\varphi + i\sin\varphi)^n = \cos n\varphi + i\sin n\varphi$$

Следствие.

$$z^n = |z|^n (\cos n\varphi + i\sin n\varphi)$$

Следствие.

$$\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right)$$
$$k = 0, \dots, n - 1$$

- \triangleright Отсюда следует, что корней из комплексного числа степени n имеется всего n штук.
- \triangleright Эти корни на комплексной области образуют правильный n-угольник. Также вспомним основную теорему алгебры.

Определение. (Основная теорема алгебры) Всякий многочлен, степень которого не меньше единицы, имеет хотя бы один корень, в общем случае комплексный.

Следствие. Любой многочлен $p(z) = a_n z_n + a_{n-1} z^{n-1} + \dots + a_0$ степени $n > 1, a_n \neq 0$ представим в виде:

$$p(z) = a_n \prod_{i=0}^{s} (z - z_i)^{k_i}$$

1.4 Экспоненциальная форма

1.4.1 Тождество Эйлера

Рассмотрим такой объект, как мнимая экспонента:

$$f(\theta) = e^{i\theta}$$

Этот объект проще всего понимать, как сумму ряда Тейлора. Данный ряд сходится очень быстро. (по признаку Даламбера)

$$f(z) = e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

$$f(x) = 1 + i\frac{\theta}{f'} + \frac{i^2\theta^2}{2!} + \frac{i^3\theta^3}{3!} + \dots$$

Коэффициенты этого ряда обладают некоторой периодичностью. (Из-за того, что $i^2=-1, i^3=-i, i^4=1,\ldots$). Похожей периодичностью обладают функции синуса, косинуса. Сгруппируем действительные и мнимые члены ряда:

$$f(\theta) = \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots\right)$$

Можно заметить что первая скобка соответствует $\cos z,$ а вторая $i\sin z.$ Остюда получим, что

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

В частности, при $\varphi = \pi$

$$e^{i\pi} = -1$$

Это называется тождеством Эйлера.

1.4.2 Запись числа

Из тождества Эйлера следует, что любое комплексное число можно представить в виде:

$$z = |z|e^{i\theta}$$

Легко определяются операции сложения и умножения комплексных чисел:

$$z_1 z_2 = |z_1|e^{i\theta_1}|z_2|e^{i\theta_2} = |z_1||z_2|e^{i(\theta_1 + \theta_2)}$$

Также из тождества Эйлера следуют формулы:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$e^{-i\theta} = \cos\theta - i\sin\theta$$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

2 Множества точек комплексной плоскости

1. **Прямая** задается уравнением Ax + By + C = 0

$$z = x + iy, \ \bar{z} = x - iy$$

$$x = \frac{z + \bar{z}}{2}, \ y = \frac{z - \bar{z}}{2i}$$

Подставляя в уравнение окружности, получаем уравнение прямой в комплексной форме:

$$\bar{M}z + M\bar{z} + C = 0$$

Где
$$M = \frac{A}{2} + i\frac{B}{2}$$

2. **Окружность** задается уравнением $Ax^2 + Ay^2 + Bx + Cy + F = 0$ В комплексной форме задаётся как:

$$Az\bar{z} + \bar{M}z + M\bar{z} + F = 0$$

Где
$$M = \frac{B}{2} + i\frac{C}{2}$$