Introducere în GNU Octave / MATLAB și Phyton

Ene Cristian Stefan

1. Rezolvarea cerințelor

1. Definiți variabilele nn (numărul de litere al numelui), pn (numărul de litere al celui mai scurt prenume).

```
nn = 3
pn = 6
print(nn,pn)

Text rezultat:
3 6
```

```
>>> %Run 'Laborator 1 PDS rezolvare.py'
3 6
```

Figura 1. Rezultat cerința 1

2. Declarați un vector x cu nn elemente și un vector y cu pn elemente.

Figura 2. Rezultat cerința 2

3. Declarați un vector z cu primul elemente nn, ultimul element nn + pn și pn elemente.

```
import numpy as np
nn=3
pn= 6
z = np.linspace(nn, nn+pn, pn)
print(z)
```

```
Text rezultat:
[3. 4.2 5.4 6.6 7.8 9.]

[3. 4.2 5.4 6.6 7.8 9.]

Figura 3. Rezultat cerinţa 3
```

4. Definiți o matrice A cu nn rânduri și pn coloane.

Figura 4. Rezultat cerința 4

5. Definiți o matrice B cu toate elementele 1 cu pn linii și coloane.

```
import numpy as np
nn=3
pn=6
B = np.ones((pn,pn))
print(B)
Text rezultat:
[[1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. ]
 [1. 1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1.]
 [1. 1. 1. 1. 1. ]
                    [[1. 1. 1. 1. 1. 1.]
                     [1. 1. 1. 1. 1. 1.]
                     [1. 1. 1. 1. 1. 1.]
                     [1. 1. 1. 1. 1. 1.]
                     [1. 1. 1. 1. 1. 1.]
                     [1. 1. 1. 1. 1. 1.]]
                  Figura 5.
                              Rezultat cerința 5
```

6. Calculați matricea C ca fiind înmulțirea matricilor A și B.

```
import numpy as np
nn=3
pn= 6
A = np.array ([[1, 2,3,4,5,6],[7,8,9,10,11,12],[13,14,15,16,17,18]])
B = np.ones( (pn, pn ) )
C = np.matmul (A, B)
print (C)

Text rezultat:

[[21. 21. 21. 21. 21. 21.]
[57. 57. 57. 57. 57. 57.]
[93. 93. 93. 93. 93.]]

[[21. 21. 21. 21. 21. 21.]
[57. 57. 57. 57. 57.]
[93. 93. 93. 93. 93.]]
```

Figura 6. Rezultat cerința 6

7. Definiți o matrice D cu 3 linii și coloane. Elementele matricii sunt: nn, pn - 20, nn * 0.42, nn + pn, pn * 2, 1, nn - pn, nn / pn și 3.

```
import numpy as np
D =np.array([[nn,pn-20,nn*0.42], [nn+pn, pn*2,1], [nn-pn,nn/pn,3]])
print(D)
```

Text rezultat:

```
[[ 3. -14. 1.26]
[ 9. 12. 1. ]
[ -3. 0.5 3. ]]
```

```
[[ 3. -14. 1.26]
[ 9. 12. 1. ]
[ -3. 0.5 3. ]]
```

Figura 7. Rezultat cerința 7

8. Calculați variabila d ca fiind determinantul matricei D. (Folosiți sub-pachetul linalg din pachetyl scipy)

```
import numpy as np
```

```
from scipy import linalg
nn=3
pn= 6
D =np.array([[nn,pn-20,nn*0.42], [nn+pn, pn*2,1], [nn-pn,nn/pn,3]])
d = linalg.det(D)
print(d)

Text rezultat:
577.53
```

577.53

Figura 8. Rezultat cerință 8

9. Definiți un vector t cu primul element 0, ultimul element 20 și pas de nn/100.

```
import numpy as np
nn=3
t = np.arange(0,20,nn/100)
print(t)
Text rezultat:
       0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3
                                                                  0.33
  0.36 0.39 0.42
                     0.45
                           0.48
                                 0.51
                                        0.54
                                              0.57
                                                    0.6
                                                           0.63
                                                                 0.66
0.69
  0.72
        0.75
              0.78
                     0.81
                           0.84
                                 0.87
                                        0.9
                                              0.93
                                                     0.96
                                                           0.99
                                                                 1.02
1.05
        1.11
  1.08
              1.14
                     1.17
                           1.2
                                  1.23
                                        1.26
                                              1.29
                                                     1.32
                                                                 1.38
                                                           1.35
1.41
                                 1.59
                                        1.62
  1.44
        1.47
              1.5
                     1.53
                           1.56
                                              1.65
                                                     1.68
                                                           1.71
                                                                 1.74
1.77
       1.83 1.86 1.89 1.92 1.95 1.98 2.01 2.04 2.07 2.1
                                                                 2.13
  1.8
  2.16
       2.19
              2.22
                     2.25
                           2.28
                                 2.31
                                        2.34
                                              2.37
                                                    2.4
                                                           2.43
                                                                 2.46
2.49
  2.52
        2.55
              2.58
                     2.61
                           2.64
                                 2.67
                                        2.7
                                              2.73
                                                     2.76
                                                           2.79
                                                                 2.82
2.85
  2.88
        2.91
                     2.97
                           3.
                                  3.03
                                        3.06
                                              3.09
                                                     3.12
              2.94
                                                           3.15
                                                                 3.18
3.21
  3.24
        3.27
              3.3
                     3.33
                           3.36
                                 3.39
                                        3.42
                                              3.45
                                                     3.48
                                                           3.51
                                                                 3.54
3.57
       3.63 3.66 3.69 3.72 3.75 3.78 3.81 3.84 3.87 3.9
                                                                 3.93
  3.6
  3.96
        3.99
              4.02
                                        4.14
                   4.05
                           4.08
                                 4.11
                                              4.17
                                                   4.2
                                                           4.23
                                                                 4.26
4.29
  4.32
              4.38
                     4.41
                           4.44
                                        4.5
        4.35
                                 4.47
                                              4.53
                                                     4.56
                                                           4.59
                                                                 4.62
4.65
              4.74 4.77
                                 4.83
                                        4.86
  4.68
        4.71
                           4.8
                                              4.89
                                                     4.92
                                                           4.95
                                                                 4.98
5.01
```

5.04	5.07	5.1	5.13	5.16	5.19	5.22	5.25	5.28	5.31	5.34
5.37										
5.4	5.43		5.49							5.73
5.76	5.79	5.82	5.85	5.88	5.91	5.94	5.97	6.	6.03	6.06
6.09										
6.12	6.15	6.18	6.21	6.24	6.27	6.3	6.33	6.36	6.39	6.42
6.45										
6.48	6.51	6.54	6.57	6.6	6.63	6.66	6.69	6.72	6.75	6.78
6.81										
6.84	6.87	6.9	6.93	6.96	6.99	7.02	7.05	7.08	7.11	7.14
7.17										
7.2			7.29							7.53
7.56	7.59	7.62	7.65	7.68	7.71	7.74	7.77	7.8	7.83	7.86
7.89										
7.92	7.95	7.98	8.01	8.04	8.07	8.1	8.13	8.16	8.19	8.22
8.25										
8.28	8.31	8.34	8.37	8.4	8.43	8.46	8.49	8.52	8.55	8.58
8.61										
8.64	8.67	8.7	8.73	8.76	8.79	8.82	8.85	8.88	8.91	8.94
8.97										
9.	9.03	9.06	9.09	9.12 9	.15 9.	.18 9.2	21 9.2	4 9.2	7 9.3	9.33
9.36	9.39	9.42	9.45	9.48	9.51	9.54	9.57	9.6	9.63	9.66
9.69										
9.72	9.75	9.78	9.81	9.84	9.87	9.9	9.93	9.96	9.99	10.02
10.05										
10.08	10.11	10.14	10.17	10.2	10.23	10.26	10.29	10.32	10.35	10.38
10.41										
10.44	10.47	10.5	10.53	10.56	10.59	10.62	10.65	10.68	10.71	10.74
10.77										
10.8	10.83	10.86 1	0.89 10	0.92 10	.95 10	.98 11.	01 11.0	4 11.0	7 11.1	11.13
11.16	11.19	11.22	11.25	11.28	11.31	11.34	11.37	11.4	11.43	11.46
11.49										
11.52	11.55	11.58	11.61	11.64	11.67	11.7	11.73	11.76	11.79	11.82
11.85										
11.88	11.91	11.94	11.97	12.	12.03	12.06	12.09	12.12	12.15	12.18
12.21										
12.24	12.27	12.3	12.33	12.36	12.39	12.42	12.45	12.48	12.51	12.54
12.57										
12.6	12.63	12.66 1	2.69 12	2.72 12	.75 12	.78 12.	81 12.8	4 12.8	7 12.9	12.93
12.96	12.99	13.02	13.05	13.08	13.11	13.14	13.17	13.2	13.23	13.26
13.29										
13.32	13.35	13.38	13.41	13.44	13.47	13.5	13.53	13.56	13.59	13.62
13.65										
13.68	13.71	13.74	13.77	13.8	13.83	13.86	13.89	13.92	13.95	13.98
14.01										
14.04	14.07	14.1	14.13	14.16	14.19	14.22	14.25	14.28	14.31	14.34
14.37										
14.4	14.43	14.46 1	4.49 14	4.52 14	.55 14	.58 14.	61 14.6	4 14.6	7 14.7	14.73

```
14.76 14.79 14.82 14.85 14.88 14.91 14.94 14.97 15. 15.03 15.06
15.12 15.15 15.18 15.21 15.24 15.27 15.3 15.33 15.36 15.39 15.42
15.45
15.48 15.51 15.54 15.57 15.6 15.63 15.66 15.69 15.72 15.75 15.78
15.81
15.84 15.87 15.9 15.93 15.96 15.99 16.02 16.05 16.08 16.11 16.14
16.17
16.2 16.23 16.26 16.29 16.32 16.35 16.38 16.41 16.44 16.47 16.5 16.53
16.56 16.59 16.62 16.65 16.68 16.71 16.74 16.77 16.8 16.83 16.86
16.89
16.92 16.95 16.98 17.01 17.04 17.07 17.1 17.13 17.16 17.19 17.22
17.28 17.31 17.34 17.37 17.4 17.43 17.46 17.49 17.52 17.55 17.58
17.61
17.64 17.67 17.7 17.73 17.76 17.79 17.82 17.85 17.88 17.91 17.94
17.97
18. 18.03 18.06 18.09 18.12 18.15 18.18 18.21 18.24 18.27 18.3 18.33
18.36 18.39 18.42 18.45 18.48 18.51 18.54 18.57 18.6 18.63 18.66
18.69
18.72 18.75 18.78 18.81 18.84 18.87 18.9 18.93 18.96 18.99 19.02
19.05
19.08 19.11 19.14 19.17 19.2 19.23 19.26 19.29 19.32 19.35 19.38
19.44 19.47 19.5 19.53 19.56 19.59 19.62 19.65 19.68 19.71 19.74
19.77
19.8 19.83 19.86 19.89 19.92 19.95 19.98]
```

[0.	0.03	0.06	0.09	0.12	0.15	0.18	0.21	0.24		0.3	0.33
0.36	0.39	0.42	0.45	0.48	0.51	0.54	0.57	0.6	0.63	0.66	0.69
0.72	0.75	0.78	0.81	0.84	0.87	0.9	0.93	0.96	0.99	1.02	1.05
1.08	1.11	1.14	1.17	1.2	1.23	1.26	1.29	1.32	1.35	1.38	1.41
1.44	1.47	1.5	1.53	1.56	1.59	1.62	1.65	1.68	1.71	1.74	1.77
1.8	1.83	1.86	1.89	1.92	1.95	1.98	2.01	2.04	2.07	2.1	2.13
2.16	2.19	2.22	2.25	2.28	2.31	2.34	2.37	2.4	2.43	2.46	2.49
2.52	2.55	2.58	2.61	2.64	2.67	2.7	2.73	2.76	2.79	2.82	2.85
2.88	2.91	2.94	2.97	3.	3.03	3.06	3.09	3.12	3.15	3.18	3.21
3.24	3.27	3.3	3.33	3.36	3.39	3.42	3.45	3.48	3.51	3.54	3.57
3.6	3.63	3.66	3.69	3.72	3.75	3.78	3.81	3.84	3.87	3.9	3.93
3.96	3.99	4.02	4.05	4.08	4.11	4.14	4.17	4.2	4.23	4.26	4.29
4.32	4.35	4.38	4.41	4.44	4.47	4.5	4.53	4.56	4.59	4.62	4.65
4.68	4.71	4.74	4.77	4.8	4.83	4.86	4.89	4.92	4.95	4.98	5.01
5.04	5.07	5.1	5.13	5.16	5.19	5.22	5.25	5.28	5.31	5.34	5.37
5.4	5.43	5.46	5.49	5.52	5.55	5.58	5.61	5.64	5.67	5.7	5.73
5.76	5.79	5.82	5.85	5.88	5.91	5.94	5.97	6.	6.03	6.06	6.09
6.12	6.15	6.18	6.21	6.24	6.27	6.3	6.33	6.36	6.39	6.42	6.45
6.48	6.51	6.54	6.57	6.6	6.63	6.66	6.69	6.72	6.75	6.78	6.81
6.84	6.87	6.9	6.93	6.96	6.99	7.02	7.05	7.08	7.11	7.14	7.17
7.2	7.23	7.26	7.29	7.32	7.35	7.38	7.41	7.44	7.47	7.5	
7.56	7.59	7.62	7.65	7.68	7.71	7.74	7.77	7.8	7.83	7.86	7.89
7.92	7.95	7.98	8.01	8.04	8.07	8.1	8.13	8.16	8.19	8.22	8.25
8.28	8.31	8.34	8.37	8.4	8.43	8.46	8.49	8.52	8.55	8.58	8.61
8.64	8.67	8.7	8.73	8.76	8.79	8.82	8.85	8.88	8.91	8.94	8.97
9.	9.03	9.06	9.09	9.12	9.15	9.18	9.21	9.24	9.27	9.3	9.33
9.36	9.39	9.42	9.45	9.48	9.51	9.54		9.6	9.63	9.66	9.69
9.72	9.75	9.78	9.81	9.84		9.9	9.93	9.96		10.02	
	10.11										
	10.47			10.56							
10.8				10.92							11.13
				11.28						11.46	
				11.64				11.76			
	11.91						12.09				
12.24	12.27	12.3	12.33	12.36	12.39	12.42	12.45	12.48	12.51	12.54	12.57

Figura 9. Rezultat cerința 9

```
12.6 12.63 12.66 12.69 12.72 12.75 12.78 12.81 12.84 12.87 12.9 12.93
12.96 12.99 13.02 13.05 13.08 13.11 13.14 13.17 13.2 13.23 13.26 13.29
13.32 13.35 13.38 13.41 13.44 13.47 13.5 13.53 13.56 13.59 13.62 13.65
13.68 13.71 13.74 13.77 13.8 13.83 13.86 13.89 13.92 13.95 13.98 14.01
14.04 14.07 14.1 14.13 14.16 14.19 14.22 14.25 14.28 14.31 14.34 14.37
14.4 14.43 14.46 14.49 14.52 14.55 14.58 14.61 14.64 14.67 14.7
14.76 14.79 14.82 14.85 14.88 14.91 14.94 14.97 15.
                                                     15.03 15.06 15.09
15.12 15.15 15.18 15.21 15.24 15.27 15.3 15.33 15.36 15.39 15.42 15.45
15.48 15.51 15.54 15.57 15.6 15.63 15.66 15.69 15.72 15.75 15.78 15.81
15.84 15.87 15.9 15.93 15.96 15.99 16.02 16.05 16.08 16.11 16.14 16.17
16.2 16.23 16.26 16.29 16.32 16.35 16.38 16.41 16.44 16.47 16.5
16.56 16.59 16.62 16.65 16.68 16.71 16.74 16.77 16.8 16.83 16.86 16.89
16.92 16.95 16.98 17.01 17.04 17.07 17.1 17.13 17.16 17.19 17.22 17.25
17.28 17.31 17.34 17.37 17.4 17.43 17.46 17.49 17.52 17.55 17.58 17.61
17.64 17.67 17.7 17.73 17.76 17.79 17.82 17.85 17.88 17.91 17.94 17.97
     18.03 18.06 18.09 18.12 18.15 18.18 18.21 18.24 18.27 18.3 18.33
18.36 18.39 18.42 18.45 18.48 18.51 18.54 18.57 18.6 18.63 18.66 18.69
18.72 18.75 18.78 18.81 18.84 18.87 18.9 18.93 18.96 18.99 19.02 19.05
19.08 19.11 19.14 19.17 19.2 19.23 19.26 19.29 19.32 19.35 19.38 19.41
19.44 19.47 19.5 19.53 19.56 19.59 19.62 19.65 19.68 19.71 19.74 19.77
19.8 19.83 19.86 19.89 19.92 19.95 19.98]
```

Figura 10. Rezultat cerința 9 continuare

10. Definiți funcția s ca fiind $\sin(t+\pi/nn)$. (Folosind pachetul math pentru variabila pi).

```
import numpy as np
import math
nn=3
t= np.arange(0,20,nn/100)
s = np.sin(t+math.pi/nn)
```

11. Definiți funcția u ca fiind $0.1*(nn+pn)*cos(t-\pi/pn)$. (Folosiți pachetul math pentru variabila pi)

```
import numpy as np
import math
nn=3
pn= 6
t= np.arange(0,20,nn/100)
u = 0.1*(nn+pn)*np.cos(t-math.pi/pn)
```

12. Reprezentanți grafic funcția s(t).

```
import numpy as np
import math
import matplotlib.pyplot as plt
nn=3
pn= 6
t= np.arange(0,20,nn/100)
s = np.sin(t+math.pi/nn)
plt.plot(t,s)
plt.show()
```


Figura 11. Reprezentarea grafică a funcției s(t)

13. Adăugați graficului anterior reprezentarea funcției u(t).

```
import numpy as np
import math
import matplotlib.pyplot as plt
nn=3
pn= 6
```

```
t= np.arange(0,20,nn/100)
s = np.sin(t+math.pi/nn)
u = 0.1*(nn+pn)*np.cos(t-math.pi/pn)
plt.plot(t,u)
plt.show()
```


Figura 12. Reprezentarea grafică a funcției s(t) și u(t)

14. Adăugați graficului anterior un titlu și un text pentru ambele axe.

```
import numpy as np
import math
import matplotlib.pyplot as plt
nn=3
pn= 6
t= np.arange(0,20,nn/100)
s = np.sin(t+math.pi/nn)
u = 0.1*(nn+pn)*np.cos(t-math.pi/pn)
plt.plot(t,s)
plt.plot(t,u)
plt.title("Reprezentare grafică funcția s(t) și u(t)")
plt.xlabel("Timp(s)")
plt.ylabel("f(t)")
plt.show()
```


Figura 13. Adăugare titlu si text la axe

15. Adăugați graficului anterior o legendă cu mărimea fontului de 14 poziționat astfel încât să se suprapună cât mai mai puțin cu funcțiile deja reprezentate.

```
import numpy as np
import math
import matplotlib.pyplot as plt
nn=3
pn= 6
t= np.arange(0,20,nn/100)
s = np.sin(t+math.pi/nn)
u = 0.1*(nn+pn)*np.cos(t-math.pi/pn)
plt.plot(t,s)
plt.plot(t,u)
plt.title("Reprezentare grafică funcția s(t) și u(t)")
plt.xlabel("Timp(s)")
plt.ylabel("s(t),u(t)")
```

plt.legend(["s(t)","u(t)"],fontsize=14,loc="center left")
plt.show()

Figura 14. Adăugare legendă