# **Automating Car Price Estimates**

A solution for Discount Motors

## **Business Goals**

- A solution to replace the most experienced sales team member who is retiring next month
- A solution to automate the entire process to sell cars quicker
- A solution to predict the listed price within 10% the price the used cars would sell (currently about 30% in the team members)

# **Data**

From the web listings of the used cars sold last 6 months.

|   | model ~ | year v | price ∨ | transmission $\vee$ | mileage ∨ | fuelType ∨ | tax ~ | mpg ~ | engineSize ∨ |
|---|---------|--------|---------|---------------------|-----------|------------|-------|-------|--------------|
| 0 | GT86    | 2016   | 16000   | Manual              | 24089     | Petrol     | 265   | 36.2  | 2            |
| 1 | GT86    | 2017   | 15995   | Manual              | 18615     | Petrol     | 145   | 36.2  | 2            |
| 2 | GT86    | 2015   | 13998   | Manual              | 27469     | Petrol     | 265   | 36.2  | 2            |
| 3 | GT86    | 2017   | 18998   | Manual              | 14736     | Petrol     | 150   | 36.2  | 2            |
| 4 | GT86    | 2017   | 17498   | Manual              | 36284     | Petrol     | 145   | 36.2  | 2            |

# **Key Findings**



In this dataset, we have 18 car models.

- Yaris
- Arygo
- Auris
- .......

# **Key Findings**



In this dataset, we have cars which are manufactured from 1998 to 2020.

The used cars manufactured in 2016 sold the most in last 6 months.

Two models - Linear Regression and Decision Tree Regression model



Two metrics - R squared and RMSE (Root Mean Squared Error)

| Metrics | R2 Score         | RMSE (Root Mean Squared Error)             |  |
|---------|------------------|--------------------------------------------|--|
| Purpose | Good fit of data | Accuracy                                   |  |
| Range   | 0 - 1            | Depend on the scale of the target variable |  |

The Decision Tree Regression model is performing better.

| Model Name               | R2 Score | RMSE (Root Mean<br>Squared Error) |  |  |
|--------------------------|----------|-----------------------------------|--|--|
| Linear Regression        | 0.86     | 2491                              |  |  |
| Decision Tree Regression | 0.94     | 1611                              |  |  |

Our KPI - Proportion of the predictions within 10% of the price





Our KPI - Proportion of the predictions within 10% of the price



**Decision Tree Regression Model** is performing better.

**70**% of the prediction within 10% of the price the used cars sell for.





#### **Decision Tree Regression Model**

#### Features

- Engine Size
- Year
- Model
- Mileage
- Transmission
- Fuel Type
- Tax

#### Recommendation

- Test the Decision Tree Regression Model by comparing its prediction to the estimations of the experienced member on new cars in the recent month.
- Identify and fix errors to improve accuracy after testing.
- Fully deploy the model using efficient deployment strategy, such as a web or mobile application or API.
- Continuously improve the model by collecting more data, feature engineer and fine tuning parameter. This would be the key points to address the limitation from the year and car model variable.