머신러닝 예측모델

[당뇨병예측]

2024.01.05 (금)

송영달, 송은민, 임창성, 조진우, 함은규

Mean_30

I. 프로젝트의 목적

당뇨병 예측모델을 개발

田. 원본 데이터의 구성확인 (1차 분류)

Datafile : CSV 5종

Ⅲ. 원본 데이터 분석 (2차 분류)

- 1. 원본데이터 분류
- 2. Feature extraction

IV. 데이터 전처리

- 1. Datafile 통합(merge)
- 2. 결측값(nan) 처리
- 3. Scaling & Encoding

V. 학습 모델과 모델 성능평가

- 1. pycaret 모델링(최적화&앙상블)
- 2. 검증 데이터 평가(임계값 조정)
- 3. 테스트 데이터 예측 및 평가

VI. 결론

Ⅷ. 최종 결과물

Ⅷ. 프로젝트 한계, 사용기술

IX. 자료출처

I. 프로젝트의 목적

- 1. 목적 : 머신러닝을 이용한 당뇨병 예측모델 개발
- 2. 과정
 - 1) 적절한 전처리를 통한 필요 데이터 추출
 - 2) 다양한 모델과 하이퍼파라미터 조합(비교)을 통한 최적의 예측모델 구축
 - 3) AUTOML 사용을 통한 최적화

п. 원본 데이터의 구성확인 (1차 분류)

1. Datafile: CSV 5종

- 1) Family file
- 2) Household file
- 3) Person file
- 4) Sample Child file
- 5) Sample Adult file
- Datafile summary
- Datafile layout

[Datafile Feature 설명]

[Datafile Feature 상세 설명 및 질문]

- 2. imputed incomes
- 3. Paradata
- 4. Functioning and Disability

[Data파일] *불필요

[CSV 파일] *불필요 (설문관련)

[PDF 파일] *불필요 (PDF)

Ⅲ. 원본 데이터 분석 (2차 분류) (1/2)

1. Feature 선정기준(1) – 참조자료

논문명	당뇨관련 항목	관련 Feature	선택유무	기타
\$ \\ \(\lambda\) \(\text{\(\lambda\) \\ \text{\(\lambda\) \\ \text	7	CHGHT_TC	0	-
	체중	CWGHT_TC	0	-
당뇨병관리 소아에서노인까지 소아당뇨병이란 무엇인가	BMI	BMI_SC	0	-
소아연령에서의 2형당뇨병의 임상적고찰	다노	CINTIL2W	0	-
	다식		Χ	관련 Feature 없음
	다음		X	관련 Feature 없음

- 2. Feature 선정기준(2): 인과관계 확인 필요 항목들 추가
 - 1) 흡연여부
 - 2) 성별, 임신여부(임신성 당뇨)
 - 3) 인종별 차이(식습관)

https://www.visualcapitalist.com/cp/diabetes-rates-by-country/

Ⅲ. 원본 데이터 분석 (2차 분류) (2/2)

- 3. 원본 데이터 분류
 - 1) 분류 기준 : 당뇨병 관계성(논문 등 참조) 및 결측 값이 적은 항목 예) 류마티즘 약 복용 등
 - 2) 분류 방법: 데이터 구분(사용, 점검, 참고)
- 4. Feature 필터링 (Feature Selection : Feature extraction)

순	Datafile	columns		
1	Family file	1개		
2	Household file	불필요		
3	Person file	불필요		
4	Sample Child file	12개		
5	Sample Adult file	33개		

시신러닝 프로젝트 NHIS 2018] (https://ww			htm			R5_걸럼맹 된
구분	0.Q_docs	자료구분	Was_Before	As_ls	변경유두	파일 유형 식별자
TARGET 당뇨	Sample Adult	목표	DIBEV1	DIBEV1	-	당뇨병 진단 받음
2 TARGET 당뇨	Sample Child	목표	CCONDRR6	DIBEV1	변경	SC는 당뇨병 진단 받음
3 나이	Sample Adult	사용	AGE_P	AGE	변경	나이
4 나이	Sample Child	사용	AGE_P	AGE	변경	나이
5 성별	Sample Adult	사용	SEX	GENDER	변경	성별
6 성별	Sample Child	사용	SEX	GENDER	변경	성별
7 7	Sample Adult	사용	AHEIGHT	HEIGHT	변경	종 키 인치
8 7	Sample Child	사용	CHGHT_TC	HEIGHT	변경	종 키 인치 (버림)
9 체중	Sample Adult	▷▷참고	AWEIGHTP	WEIGHT	변경	신발없는 몸무게 (파운드)
10 체중	Sample Child	▷▷참고	CWGHT_TC	WEIGHT	변경	몸무게 (파운드)
11 임신	Sample Adult	사용	PREGFLYR	PREGFLYR	-	최근 임신
12 임신	Sample Adult	사용	PREGNOW	PREGNOW	-	현재 임신증
9 월 역발/철룠	Sample Adult	사용 ▷▷잠고	AHCPLROU AINTILZW	FRPHRSW	변경	일반절으로 일상/예박 절검을 한다. 구보/설자를 당만한 위 문세가 있음 _ 2수
28 구토/설사	Sample Child	▷▷참고	CINTIL2W	INTIL2W	변경	구토/설사를 동반한 위장병이 있었음 _ 기간기준 2주
24 알코올	Sample Adult	사용	ALCSTAT	ALCSTAT	-	음주 상태: 기록
25 담배(흡연)	Sample Adult	사용	SMKSTAT2	SMKSTAT2	-	흡연 상태 : 기록
26 담배(흡연)	Sample Adult	▷ ▷ 데이터 점검	CIGAREV2	CIGAREV2	-	일반 시가 릴로 또는 작은 필터 시가(담배)를 한번이라도 피워본적 있다
97 다배(호여)	Cample Adult	도도데이터 저건	ECIGEV2	ECIGEVA		저자 다매로 하 버이라도 사용하 저 이다.

동일한 조사 내용 Feature명 통일

- 1. Datafile 통합(merge)
 - 1) 3개 데이터셋 : Family , Sample Child, Sample Adult
 - 2) 이슈: 파일통합 시, 동일 Feature가 있음에도 Feature이 새로 생성됨
 - 해결방법 : combine_first 함수 사용

```
# family 即问母王思望明 adult 即问母 王思望 merge
fam_adult = pd.merge(new_fam,new_adult,how='left',on='id')
# combine_first() 圖 问書報 宮証
total = fam_adult.combine_first(new_child)
```

2. 전처리/결측치(nan) 처리

2.6 전처리 : AGE 12세 이상

2.7 전처리 : HYPMDEV2(고혈압) yes(1) 外 no(2 or 0)

2.8 전처리 : 결측치가 90퍼센트 이상인 feature 제거

2.9 결측치 처리

2.9.1 결측치 : 결측 Feature 목록화 및 처리

2.9.2 결측치 : PREGNOW / PREGFLYR(임신)

2.9.3 결측치 : 불필요 feature 제거

2.10 이상치 : 키, 몸무게 이상값 제거

2.10.1) BMI 재계산을 위해 단위변경[키(인치→cm), 몸무게(파운드→ kg)]

3. 1차 전처리 데이터 학습모델 성능 (preview)

4. 2차 전처리 : Feature 추가점검 (당뇨 여부에 미치는 영향 점검)

IV. 데이터 전처리 (3/3)

5. 데이터 전처리 변수 선택

- 당뇨와 상관성 및 RFECV (Recursive Feature Elimination with Cross Validation)

```
[48]: importance
[40]: array([0.00576027, 8.02801774, 0.01638419, 0.00460221, 0.17640429, 0.00235057, 0.05410504, 0.008808959, 0.00875057, 0.05410504, 0.05008959, 0.04809101, 0.003504510, 0.0541053770, 0.05509793, 0.04809101, 0.003504510, 0.00853770, 0.01523758, 0.02547828, 0.02547828, 0.08352829, 0.004873991)
[18]: from sklearn.feature_selection import SelectFromModel | sfm.fit(K_under, V_under) | sfm.fit(K_under, V_under, V_u
```


V. 학습 모델과 모델 성능평가 (1/4)

1. import 라이브러리

2. imbalanced data 처리

3. 수치형 데이터 스케일링

```
[1]:
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from collections import Counter
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from imblearn.under_sampling import RandomUnderSampler
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings(action='ignore')
from sklearn.metrics import roc_auc_score,classification_report, recall_score, fi_score,precision_recall_curve, auc,precision_score,roc_curve,confusion_matrix
import multiprocessing
from pycaret.classification import *
from sklearn.linear_model import LassoCV
import seaborn as sns
sns.set(font='AppleGothic', # Nac 書書 書書
# font='Walgum Gothic', # Windows 書書 書書
# font='Walgum Gothic', # Windows 書書 書 # If Onts 書 # If Onts
```

```
[70]: sampler = RandomUnderSampler(random_state=123)
[71]: y_tr.value_counts()
[71]: 0    18871
        1    3080
        Name: DIBEV1, dtype: int64
[72]: X_under , y_under = sampler.fit_resample(X_tr,y_tr)
        print(y_under.value_counts())
        0    3080
        1    3080
        Name: DIBEV1, dtype: int64
```

```
[73]: # △州副智書 本書館 智智 任者
num_col = ['AGE','BMI','HEIGHT(cm)','WEIGHT(kg)']

[74]: # 西州 데이터전의 위 컬럼들에 대해 스케일링 fit 華 칼 데이트
for col in num_col:
    ss = StandardScaler()
    X_under[col] = ss.fit_transform(X_under[[col]])
    X_test[col] = ss.transform(X_test[[col]])
```

V. 학습 모델과 모델 성능평가 (2/4)

4. onehotencoding (2진값 外)

5. 전처리 데이터 병합

```
[75]: # 레이터프레인 전체 철컬에서 수치를 철컬 제외
cols = np.setdiffid(X_under.columns,num_col)
# 위 철컬에서 고류값 계수가 3개 이상인 철컬인 추출
# # 0,1만 가지는 binary 찰크은 코이 ohe를 하지 않을 것
nom_col = [col for col in cols if X_under[col].nunique() >= 3 ]

[76]: nom_col

[76]: ['HISPAN_I', 'MRACBPI2', 'MRACRPI2', 'REGION']

[77]: # 설득을 철컬들에 대한 dummy 레이터 쌀론(원굿인코딩)
train_dummies = [] # 관습은 레이터센의 얼득을 철컬들의 대대레이터센 자장은 리스트
test_dummies = [] # 관습은 데이터센의 얼득을 철컬들의 대대레이터센 자장은 리스트
test_dummies.append(pd.get_dummies(X_under[col],prefix=col,dtype='int')) # 포슨데이터의 각 철컬들의 대대레이터센을 리스트에 자장
test_dummies.append(pd.get_dummies(X_test[col],prefix=col,dtype='int')) # 관습데이터센 김스트에 자장

[78]: train_dummies = pd.concat(train_dummies,axis=1) # 관습 데이터의 대대레이터센 리스트를 하나로 함설
test_dummies = pd.concat(test_dummies,axis=1) # 관습 데이터의 대대에이터센 리스트를 하나로 함설
test_dummies = pd.concat(test_dummies,axis=1) # 관습 데이터의 대대에이터센 리스트를 하나로 함설
```

```
[80]: # 만약 고유라 개수 차이로 인해 확습성과 테스트성의 더미 데이터성 컬럼 차이가 있다면 컬럼수를 통일
      if train_dummies.columns.nunique() > test_dummies.columns.nunique():
          missing_cols = set(train_dummies.columns) - set(test_dummies.columns)
          for col in missing cols:
             test_dummies[col] = 0
      elif train_dummies.columns.nunique() < test_dummies.columns.nunique():</pre>
          missing_cols = set(test_dummies.columns) - set(train_dummies.columns)
          for col in missing cols:
              train_dummies[col] = 0
      test_dummies = test_dummies[train_dummies.columns]
[81]: train_dummies.shape, test_dummies.shape
[81]: ((6160, 31), (1156, 31))
[82]: # 퀀븐의 학습,테스트셨어 대미데이터센 합친 후 기존 영목량 철털 제기
      X_under = pd.concat([X_under,train_dummies],axis=1).drop(nom_col,axis=1)
      X_test = pd.concat([X_test,test_dummies],axis=1).drop(nom_col,axis=1)
[83]: X_under.shape, X_test.shape
[83]: ((6160, 45), (1156, 45))
[84]: X_under.shape, y_under.shape
[84]: ((6160, 45), (6160,))
```

V. 학습 모델과 모델 성능평가 (3/4)

6. AutoML(Pycaret) 최적화 모델링

7. 학습모델 검증

8. Threshold 값 추정

9. Test Value : 모델 성능 측정

임계값:0.54 / f1_score : 0.744 / recall : 0.726 / precision : 0.763

ecision	recall f1	-score s	upport
0.95	0.72	0.82	994
0.30	0.75	0.43	162
		0.72	1156
0.62	0.73	0.62	1156
0.86	0.72	0.76	1156
	0.30 0.62	0.95 0.72 0.30 0.75 0.62 0.73	0.95 0.72 0.82 0.30 0.75 0.43 0.72 0.62 0.73 0.62

참조1_변수 중요도 확인

※ 학습 후 변수 중요도 확인

```
[40]: importance
[40]: array([0.00576027, 0.02891774, 0.01638419, 0.00460221, 0.17040429,
                    , 0.02210643, 0. , 0.08880969, 0.
            0.00785057, 0.05416056, 0.09600868, 0.03507939, 0.04099191,
            0.00384618, 0.00853778, 0. , 0.01253758, 0.0254828 ,
                      . 0.00332202. 0.004073991)
[18]: from sklearn.feature_selection import SelectFromModel
     sfm = SelectFromModel(lasso, threshold=0.001)
     sfm.fit(X under, v under)
      print(sfm.threshold)
     print(sfm.get_support())
     print('선택된 피처:', X_under.columns[sfm.get_support()])
      0.001
      [ True True True True False True False True False True True
      True True True True True ratse True True ratse True True
     선택된 피처: Index(['AGE', 'ALCSTAT', 'ARTH1', 'BMI', 'CHLEV', 'CPLROU', 'FSBALANC',
             'HISPAN_I', 'HYPEV', 'HYPMDEV2', 'HYPMED2', 'INTIL2W', 'MRACBPI2',
            'MRACRPI2', 'SMKSTAT2', 'TIRED_1', 'HEIGHT(cm)', 'WEIGHT(kg)'],
[19]: selected_cols = X_under.columns[sfm.get_support()]
[20]: X_under = X_under[selected_cols]
     X test = X test[selected_cols]
[21]: X under.columns
[21]: Index(['AGE', 'ALCSTAT', 'ARTH1', 'BMI', 'CHLEV', 'CPLROU', 'FSBALANC',
             'HISPAN_I', 'HYPEV', 'HYPMDEV2', 'HYPMED2', 'INTIL2W', 'MRACBPI2',
             'MRACRPI2', 'SMKSTAT2', 'TIRED_1', 'HEIGHT(cm)', 'WEIGHT(kg)'],
           dtvpe='object')
      25개 변수 중 18개 변수가 선택 됨
      해당 변수 기준으로 성능 평가시 개선되지 않음
```

참조2_개별 모델 성능 확인

※ Ensemble Model에 포함된 개별 모델 성능 확인

pred = mo	tuned_models del.predict(X_test)			
	(model.get_p	arams)[st			<pre>ind('of')+3:str(model.get_params).find('(')])</pre>
print(cla	ssification_	report(y_	test, pred)	,	
LogisticRegre					
	precision	recall	f1-score	support	
	0.95	0.74	0.83	1015	
ĭ	0.32	0.77	0.45	162	
accuracy			0.74	1177	
macro avg	0.63	0.75	0.64	1177	
weighted avg	0.86	0.74	0.78	1177	
LinearDiscrim	inantAnalysi				
EZIICUI DZJCI ZIII	precision		f1-score	support	
0	0.95	0.74	0.83	1015	
1	0.32	0.76	0.45	162	
accuracy			0.74	1177	
macro avg	0.63	0.75	0.64	1177	
weighted avg	0.86	0.74	0.78	1177	
mergines arg	0.00	****	****		
GradientBoost					
	precision	recall	f1-score	support	
	0.96	0.72	0.82	1015	
ĭ	0.31	0.79	0.45	162	
accuracy			0.73	1177	
macro avg	0.63	0.76	0.64	1177	
weighted avg	0.87	0.73	0.77	1177	
AdaBoostClass	ifier				
Audouostctass	precision	recall	f1-score	support	
0	0.95	0.73	0.83	1015	
1	0.32	0.78	0.45	162	
accuracy			0.74	1177	
macro avg	0.64	0.76	0.64	1177	
weighted avg	0.87	0.74	0.78	1177	
fi debecomo fi			4		and all be desired former value baseline former
					req=0 will be ignored. Current value: bagging_freq=4 mple_bytree=1.0 will be ignored. Current value: feature_fraction=
					mple_bytree=1.0 will be ignored. Current value: reature_fraction= mple=1.0 will be ignored. Current value: bagging_fraction=0.6
LGBMClassifie		ing_tract	ion is set	-e.o, subsa	mpte-1.0 witt be ignored. Current value: bagging_fraction=0.6
	precision	recall	f1-score	support	

0	0.96	0.73 0.80	0.83 0.46	1015 162	
1	0.32	0.80	0.46	162	
accuracy			0.74	1177	
macro avg	0.64	0.76	0.64	1177	

참조3_통합 코드

HTML 코드 문서 참조

2. 주요 원인별 당뇨 유무 그래프 분석

3. 당뇨병에 영향을 주는 주요 원인

- 1) BMI: 건강 상태를 나타내는 주요 인자
- 2) 나이 : 노화로 인한 신진대사 감소로 당뇨등의 대사 관련된 질병이 생길 확률이 높다.
- 3) 고혈압: 당뇨와의 합병증으로 주로 발생
- 4) 콜레스테롤 수치 : BMI와 마찬가지로 건강상태를 나타내는 주요 인자
- 5) 기타 음주 및 평소 식단에 따라 건강 상태에 영향을 주므로 당뇨에 영향이 있다.

Ⅶ. 최종 결과물

Notion

Ⅷ. 프로젝트 한계, 사용기술

1. 최적화의 한계 : precision 0.32 max

- 1) 정밀도(Precision 값)이 더 이상 높아지지 않음
- 2) 시도: Validation까지 0.7~0.8로 준수 → 최종 Test에서 0.30~0.32로 형성
 - 컬럼 재정리, 모델 변경과 하이퍼파라미터를 변경과 샘플링 방법 변경 등
- 3) 결과 : 결과값에 변동이 없음
- 4) 대안검토
 - Feature select부터 다시 Building 필요 (의학적 Domain)
 - 원본 데이터의 한계: 다른 참조문서에서 Recall이 0.11 수준

2. 추가 서비스화 단계 필요

- 1) 프로젝트 과정이 전처리, 모델링, 성능검증에 학습에 집중됨
- 2) 실제 설문지를 통한 예측모델 결과 출력을 위해 프로그램 재설계가 필요

3. 마무리

- 1) 전처리, 그래프, 그리고 머신러닝까지 아우룰 수 있는 좋을 기회였음
- 2) 기술을 공유하며 많이 배울 수 있는 기회였으며 업무 스케쥴링 및 진행사항 공유, 보고서 작성 등실무를 간접적으로 접할 수 있는 좋은 기회였음

- 4. 사용기술
 - python, pandas, numpy, matplotlib, sklearn and pycaret etc.
- 5. 자료출처
 - 1) 기초데이터
 - https://www.cdc.gov/nchs/nhis/nhis_2018_data_release.htm
 - 2) 기술자료
 - 월간당뇨 11월호 : 소아 당뇨병이란 무엇인가?
 - 연세대학교 의과대학 소아과학교실 : 소아연령에서의 2형 당뇨병의 임상적 고찰
 - 3) 세계 당뇨지도
 - https://www.visualcapitalist.com/cp/diabetes-rates-by-country

The E.O.D Thanks

Mean_30

