

Motohiko Matsuda Tomohiro Kudoh Yuetsu Kodama Ryousei Takano

Grid Technology Research Center

National Institute of Advanced Industrial Science and Technology

Yutaka Ishikawa

The University of Tokyo

National Institute of Advanced Industrial Science and Technology

Motivation – Environment (Past/Now)

- Past assumption: long-and-narrow networks
 - Only uses a single wide-area connection at once
 - MPICH-G2, MagPle, PACX-MPI, ...
- Current state: long-and-fast networks
 - 10 or 40Gbps Networks vs 1Gbps majority NIC
 - Need new collectives using multiple connections

Reviewing Existing Collectives

- Bcast (far-first):
 - (Step#1) Send data to the other cluster (by the root)
 - (Step#2) Bcast data in each cluster
- Allreduce (two-tier):
 - (Step#1) Reduce in both clusters
 - (Step#2) Exchange data and reduce (by the roots)
 - (Step#3) Bcast reduced data in each cluster

Algorithms Needed

- Utilize the bandwidth of inter-cluster network
 - Use multiple connections
- Avoid congestion
 - Control the #connections

Search Algorithms from ones for Clusters

- Existing MPI algorithms cannot be extended, because
 - Only a root node has data
- Efficient algorithms for high bi-section bandwidth environment
 - Fast Bcast by van de Geijn, et al
 - Fast Allreduce by Rabenseifner

Simple Cost Model (in Time)

- Very simplified communication cost model:
 - M: Message size
 - B: Bandwidth of a node (NIC)
 - L: Inter-cluster latency
 - n: #connections between clusters
- Time of message transfer:
 - Intra-cluster Time= M/B
 - Inter-cluster Time= (L + M/nB)
- Assumption:
 - Ignore intra-cluster latency
 - Ignore communication overhead

van de Geijn Bcast (original version)

- Bcast by van de Geijn, et al
 - Fast in high bi-section bandwidth environment
 - Very efficient for long messages
- Algorithm:
 - Scatter + Allgather
 - Start Bcast from multiple roots after Scatter

Modified van de Geijn Bcast

cf. Far-First Bcast (existing algorithm)

Bcast Time Cost Summary

- Modified van de Geijn Bcast
 - ◆ Time= L + M/nB + M/B + M/B
- cf. Far-First Bcast (existing algorithm):
 - ◆ Time= L + M/B + (M/B + M/B)

Rabenseifner Allreduce (original version)

- Allreduce designed by Rabenseifner
 - Fast in high bi-section bandwidth environment
 - Very efficient for large messages
- Algorithm:
 - Reduce-Scatter + Allgather
 - Based on an similar idea of van de Geijn Bcast

Modified Rabenseifner Allreduce

cf. Two-Tier Allreduce (existing algorithm)

Allreduce Time Cost Summary

- Modified Rabenseifner Allreduce
 - ◆ Time= L + M/nB + M/B + M/B
- cf. Two-Tier Allreduce (existing algorithm):
 - Time= L + M/B + (M/B + M/B) + (M/B + M/B)

Avoiding Congestion

- Restrict the #connections
 - Selected nodes can communicate
 - Other nodes forward messages to the selected nodes
- 10Gbps network with 1Gbps NIC
 - Up to 10 connections
 - Totally avoids congestion

Experimental Setting

CPU	Opteron (2.0GHz) x 2
Memory	6GB DDR333
NIC	Broadcom BCM5704
OS	Fedore Core 5
Switch	Huawei-3Com Quidway S5648

Comparisons by Throughput

- Normalized throughput for comparison between algorithms
 - Throughput value is inverse of time
- Bcast
 - Throughput (MB/s)= Message-Size x #Nodes Bcast-Time
- Allreduce
 - Throughput (MB/s)= Message-Size x #Nodes Allreduce-Time

Bcast (delay=10ms)

Allreduce (delay=10ms)

In Cluster Environment

- Reduced bi-section bandwidth environment, such as
 - Ethernet with multiple switches
 - Fat-Tree with reduced upper-level links
- Experimental setting:
 - 10Gbps up-link (same)
 - Delay time set to 0msec

Bcast (no delay)

Allreduce (no delay)

About Other MPI Collectives

- Reduce-scatter/Allgather/Reduce:
 - Subpart of Allreduce
- Scatter/Gather:
 - Limited by the bandwidth of a node
 - Smart algorhtims are unlikely
- Barrier:
 - Zero message size
- Alltoall:
 - Highly congesting
 - Much of TCP/IP issues

Grid Technology Research Center

Summary

- Base algorithms for high bi-section bandwidth networks
 - van de Geijn Bcast
 - Rabenseifner Allreduce
- Collectives for long-and-fast networks
 - Perform inter-cluster communication in the middle stage
 - Utilize multiple connections
 - Avoid congestion by limiting the #connections

$GridMPI^{TM}$

http://www.gridmpi.org

Part of this research was supported by a grant from the Ministry of Education, Sports, Culture, Science and Technology (MEXT) of Japan through the NAREGI (National Research Grid Initiative) Project.

END