MATH 231B, FALL 2017 HOMEWORK 1 SOLUTIONS

1. (Sec. 1.7, ex. 9) Prove that ℓ^p is a proper vector subspace of ℓ^q whenever $1 \leq p < q$.

Proof: First let us show that $\ell^p \subset \ell^q$ for $1 \leq p < q < \infty$. Suppose $x = (x_n) \in \ell^p$. Then $\sum_n |x_n|^p < \infty$, so $x_n \to 0$, as $n \to \infty$. Thus there exists N such that $|x_n| \leq 1$, for all n > N. It follows that $|x_n|^q \leq |x_n|^p$, for all n > N and therefore $\sum_n |x_n|^q < \infty$. (Note that finitely many terms of a series have no effect on its convergence.) Thus $x \in \ell_q$ proving that $\ell_p \subset \ell^q$.

Now let us show that $\ell^p \neq \ell^q$. Define a sequence $x = (x_n)$ by

$$x_n = \frac{1}{n^{1/p}}.$$

Then $x_n^q = 1/n^{q/p}$, so $\sum |x_n|^q < \infty$, since q/p > 1. However, $\sum |x_n|^p = \sum 1/n = \infty$. Therefore, $x \in \ell^q$, but $x \notin \ell_p$.

2. (Sec. 1.7, ex. 14) Prove that spaces $C(\Omega)$, $C^k(\mathbb{R}^n)$, $C^{\infty}(\mathbb{R}^n)$ are infinite dimensional.

Proof: Since

$$C^{\infty}(\mathbb{R}^n) \subset C^k(\mathbb{R}^n) \subset C(\mathbb{R}^n),$$

it is enough to show that $C^{\infty}(\mathbb{R}^n)$ is infinite dimensional. To do that, it suffices to show $C^{\infty}(\mathbb{R}^n)$ contains an infinite linearly independent set.

First, let us assume n = 1. Let $f_n(t) = t^n$ and set $S = \{f_n : n \ge 0\}$. It is clear that $S \subset C^{\infty}(\mathbb{R})$. We claim that S is linearly independent. Indeed, assume that some linear combination f of f_{n_1}, \ldots, f_{n_k} is zero (as a function). Since f is a polynomial,

$$f(t) = \alpha_1 t^{n_1} + \dots + \alpha_k t^{n_k}$$

it can only be identically zero iff $\alpha_j = 0$, for all j. (Recall that a non-trivial polynomial of degree N has exactly N complex zeros.) This proves that S is linearly independent and hence $C^{\infty}(\mathbb{R})$ is infinite dimensional.

If n > 1, then it can be similarly shown that the set of monomials $x_1^{k_1} \cdots x_n^{k_n}$ $(k_1, \ldots, k_n \ge 0)$ is a linearly independent (and clearly infinite) set, making $C^{\infty}(\mathbb{R})^n$ infinite dimensional.

3. (Sec. 1.7, ex. 15) Denote by ℓ_0 the space of all infinite sequences of complex numbers (z_n) such that $z_n = 0$ for all but a finite number of indices n. Find a basis of ℓ_0 .

Solution: Let e_n be the sequence with 1 in the n^{th} place and zeros elsewhere. We claim that $B = \{e_n : n \ge 1\}$ is a basis for ℓ_0 . It is clear that B is linearly independent. Let us show that every element of ℓ_0 is a finite linear combination of elements of B. Indeed, let $x = (x_n) \in \ell_0$ be arbitrary. There exists N such that $x_n = 0$, for n > N. Then

$$x = \sum_{k=1}^{N} x_k e_k.$$

This completes the proof.

4. (Sec. 1.7, ex. 44) Consider the space C([a,b]) with the norm defined as $||f|| = \int_a^b |f(t)| dt$. Is this a Banach space?

Solution: No. Let a=0, b=1 and consider the sequence $f_n(t)=t^n, n\geq 1$. We claim that (f_n) is Cauchy. Let m>n. Then $t^m\leq t^n$ for all $0\leq t\leq 1$, so

$$||f_m - f_n|| = \int_0^1 |t^m - t^n| dt$$

$$= \int_0^1 (t^n - t^m) dt$$

$$= \frac{1}{n} - \frac{1}{m}$$

$$\to 0,$$

as $n \to \infty$. This proves our claim. However,

$$f(t) := \lim_{n \to \infty} f_n(t) = \begin{cases} 0 & \text{if } 0 \le t < 1\\ 1 & \text{if } t = 1, \end{cases}$$

so (f_n) converges to a function which is not in C[0,1]. (Note, by the way, that $||f_n - f|| \to 0$, as $n \to \infty$, so $f_n \to f$ in the L^1 -norm.) Thus the space C[0,1] is not Banach with respect to the given norm.

5. (Sec. 1.7, ex. 45) Show that $L(f)(x) = \int_0^x f(t) dt$ defines a continuous linear mapping from the space C([0,1]) into itself.

Proof: Since integration is linear, it is not hard to see that L is linear as well. If $f \in C[0,1]$, then by the Fundamental Theorem of Calculus L(f) is differentiable at every point, hence $L(f) \in C[0,1]$. Thus $L: C[0,1] \to C[0,1]$. To show that L is bounded, observe that

$$|L(f)(x)| \le \int_0^x |f(t)| dt$$

$$\le \int_0^1 ||f|| dt$$

$$= ||f||,$$

where $||f|| = \max_{[0,1]} |f|$. Thus L is bounded. Since ||L(1)|| = ||identity|| = 1, it follows that ||L|| = 1.

6. (Sec. 1.7, ex. 46) Give an example of a linear mapping from a normed space into a normed space which is not continuous.

Solution: Consider $D: C^1[a,b] \to C[a,b]$ (both spaces equipped with the sup-norm) defined by Df = f'. It was shown in one of the worksheets that D is unbounded, hence discontinuous.

Another example is this. Define $L: C[0,1] \to \mathbb{R}$ by L(f) = f(0), where C[0,1] is equipped with the L^1 -norm $||f|| = \int_0^1 |f(t)| \ dt$. It is not hard to see that L is linear. For each $n \ge 1$ consider the function $f_n: [0,1] \to \mathbb{R}$ defined by

$$f_n(t) = \begin{cases} 2n - 2n^2 t & \text{if } 0 \le t \le \frac{1}{n} \\ 0 & \text{if } \frac{1}{n} < t \le 1. \end{cases}$$

Clearly, $f_n \in C[0,1]$. Furthermore, $||f_n|| = 1$, but $L(f_n) = 2n$, for all n. This proves that L is unbounded.

7. Let $E = C^{\infty}([a,b])$ be the space of all infinitely differentiable functions on the interval [a,b] with $||f|| = \max_{[a,b]} |f(x)|$. Is the differential operator $D = \frac{d}{dx}$ a contraction mapping?

Solution: No. First note that if T is a linear map between normed spaces, then

$$||Tx - Tx|| = ||T(x - y)|| \le ||T|| ||x - y||,$$

for all x, y. So T is a contraction iff ||T|| < 1.

We showed in a worksheet that D is unbounded. Recall that proof: we set $f_n(x) = \sin nx$, for $n = 1, 2, \dots$, where we take, e.g., [a, b] = [-1, 1]. Clearly, $f_n \in C^{\infty}[-1, 1]$. Then $||f_n|| = 1$, for all $n \geq 2$, but $||Df_n|| \geq n$, for all n.

Since $||D|| = \infty \not< 1$, D is not a contraction.