MA0505 - Análisis I

Lección XV: Funciones Medibles

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- Funciones Lebesgue Medibles
 - Definición y Propiedades
 - Álgebra de Funciones Medibles
 - Extremos
- Aproximación de Funciones Medibles

Definición

Definición

Sea $f: E \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$. Decimos que f es medible si para todo $a \in \mathbb{R}$ vale que

$$\{x \in E : f(x) > a\} \in \mathcal{M}.$$

De ahora en adelante

$$\{f > a\} = \{x \in E : f(x) > a\}.$$

Note que

$$E = \bigcup_{k=1}^{\infty} \{f > -k\} \cup \{f = -\infty\}.$$

Entonces E es medible si y sólo si $\{f = -\infty\}$ es medible. Por el resto de esta sección asumimos que E es medible.

Ejemplos

- (I) Sea $f : \mathbb{R}^d \to \mathbb{R}$ continua. Entonces $\{f > a\}$ es abierto.
- (II) Si $f = \mathbf{1}_A$, entonces

$$\{f > a\} = \begin{cases} E & \text{si } a < 0 \\ A & \text{si } 0 \leqslant a < 1 \\ \emptyset & \text{si } a \geqslant 1 \end{cases}$$

Equivalencias

Teorema

Sea $f: E \to \mathbb{R}$ con E medible. Entonces f es medible si se cumple cualquiera de los siguientes postulados para todo $a \in \mathbb{R}$.

- (I) $\{f > a\}$ es medible.
- (II) $\{f < a\}$ es medible.
- (III) $\{f \leqslant a\}$ es medible.
- (IV) $\{f \geqslant a\}$ es medible.

Prueba del Teorema

Note que

$$\{f > a\} = \bigcup_{n=1}^{\infty} \left\{ f \geqslant a + \frac{1}{n} \right\} = \{f \leqslant a\}^{c}$$
$$\{f \geqslant a\} = \bigcap_{n=1}^{\infty} \left\{ f > a - \frac{1}{n} \right\} = \{f < a\}^{c}$$

Si $f: E \to \mathbb{R}$ es medible, entonces los conjuntos

$$\{f > -\infty\} = \bigcup_{k=1}^{\infty} \{f > -k\}, \ \{f < \infty\} = \bigcup_{k=1}^{\infty} \{f \leqslant k\},$$
$$\{f = \infty\}, \ \{a \leqslant f \leqslant b\}, \ \{a \leqslant f < b\}$$

son medibles.

Funciones Borel Medibles

Definición

Diremos que $f: E \to \mathbb{R}$ es Borel medible si

- 1. $E \in \mathcal{B}$.
- 2. $\{f > a\} \in \mathcal{B}$ para $a \in \mathbb{R}$.

Esta definición nos será útil para realizar los ejercicios.

Teorema

Sea $f: E \to \mathbb{R}$. Entonces f es medible si y sólo si $f^{-1}(G)$ es medible para todo abierto G.

Prueba del Teorema

■ Supongamos que la imagen inversa de abiertos es medible. Entonces si $G =]a, \infty[$, tenemos que

$$f^{-1}(G) = \{ x \in E : f(x) > a \}.$$

■ Por otro lado, si G es un abierto en \mathbb{R} , entonces $G = \bigcup_{k=1}^{\infty}]a_k, b_k[$. De esta manera

$$f^{-1}(G) = \bigcup_{k=1}^{\infty} f^{-1}(]a_k, b_k[) = \bigcup_{k=1}^{\infty} \{ a_k < f < b_k \}.$$

Composición

Lema

Sea $f: E \to \mathbb{R}$ medible $y \phi: \mathbb{R} \to \mathbb{R}$ continua. Entonces $\phi \circ f$ es medible.

Si G es abierto, entonces

$$(\phi \circ f)^{-1}(G) = f^{-1}(\phi^{-1}(G)).$$

Como ϕ es continua, entonces $\phi^{-1}(G)$ es abierto y $f^{-1}(\phi^{-1}(G))$ es medible.

En particular si f es medible, |f|, $|f|^p$, e^{cf} , $f^+ = \max\{f, 0\}$ y $f^- = \min\{f, 0\}$ son medibles.

Casi Por Doquier

Definición

Diremos que una propiedad se cumple casi por doquier si se cumple excepto en un conjunto de medida cero.

Lema

Sean $f: E \to \mathbb{R}$, $g: E \to \mathbb{R}$. Si f es medible y g = f casi por doquier, entonces g es medible.

Prueba del Lema

Sea $a \in \mathbb{R}$, entonces

$$\{g > a\} = (\{g > a\} \cap \{f = g\}) \cup (\{g > a\} \cap \{f \neq g\}).$$

El conjunto $\{g > a\} \cap \{f = g\} = \{f > a\} \cap \{f = g\}$ es medible y $\{f \neq g\}$ tiene medida cero de manera tal que $\{g > a\}$ es la unión de medibles.

Una Variante

Tenemos una variante del lema 1 para funciones con valores infinitos.

Lema

Sea $f: E \to \overline{\mathbb{R}}$ medible con

$$m(f=\infty)=m(f=-\infty)=0.$$

Entonces $\phi \circ f$ es medible para ϕ continua.

Si llamamos $F = \{ x \in E : f \in \mathbb{R} \}$ y consideramos $f_1 = f$ cuando $x \in F$ y cero si no, entonces $\phi \circ f_1 = \phi \circ f$ c.p.d. Como $\phi \circ f_1$ es medible, entonces $\phi \circ f$ también lo es.

Un Lema Técnico

Lema

Sean $f: E \to \mathbb{R}$, $g: E \to \mathbb{R}$ medibles. Entonces $\{f > g\}$ es medible.

Sea $\{q_n\}_{n=1}^{\infty}$ una enumeración de \mathbb{Q} . Entonces

$$\{f > g\} = \bigcup_{n=1}^{\infty} \{f > q_n > g\} = \bigcup_{n=1}^{\infty} \{f > q_n\} \cap \{q_n > g\}$$

es una unión de medibles.

Espacio Vectorial de Funciones Medibles

Lema

Sean $f, g: E \to \mathbb{R}$ medibles, entonces

- (I) $f + \lambda$, λf son medibles para $\lambda \in \mathbb{R}$.
- (II) f + g es medible.

La prueba del primer inciso es un ejercicio. Por otro lado si $\lambda \in \mathbb{R}$, entonces

$$\{f+g>\lambda\}=\{f>\lambda-g\}$$

es un conjunto medible.

Hay que tomar en cuenta que f+g podría no estar definida en el caso que $f,g:E\to\overline{\mathbb{R}}$.

Ejercicio

El lema anterior es valido si f + g está bien definida.

Corolario

Sean $f,g: E \to \overline{\mathbb{R}}$ medibles. Entonces fg es medible $g \notin \mathbb{R}$ es medible si $g \notin \mathbb{R}$.

Prueba del Corolario

Sea $F = \{ f \in \mathbb{R} \} \cap \{ g \in \mathbb{R} \}$. Entonces

$$\{ fg > a \} = \{ fg > a \} \cap F$$

$$\cup (\{ f = \infty \} \cap \{ g > 0 \}) \cup (\{ g = \infty \} \cap \{ f > 0 \})$$

$$\cup (\{ f = -\infty \} \cap \{ g < 0 \}) \cup (\{ g = -\infty \} \cap \{ f < 0 \}).$$

Como en F vale

$$fg = \frac{1}{4} \left((f+g)^2 - (f-g)^2 \right)$$

deducimos que $\{fg > a\} \cap F$ es medible.

El resto de la prueba queda asignada como ejercicio

Teorema

Sea $\{f_k\}_{k=1}^{\infty}$ una sucesión de funciones medibles. Entonces las siguientes son funciones medibles:

- $\sup_{k\geqslant 1} f_k(x)$.
- $\inf_{k \ge 1} f_k(x)$.
- $\limsup_{k\to\infty} f_k(x)$.
- $\liminf_{k\to\infty} f_k(x)$.

Prueba del Teorema

Sea a > 0, entonces

$$\{ sup_{k \geqslant 1} f_k(x) > a \} = \bigcup_{k=1}^{\infty} \{ f_k > a \}$$

es un conjunto medible. Además tenemos

- $\bullet \inf_{k\geqslant 1} f_k = -\sup_{k\geqslant 1} (-f_k).$
- $\blacksquare \ \mathsf{lim}\,\mathsf{sup}_{k\to\infty}\,f_k=\mathsf{inf}_{k\geqslant 1}\,\mathsf{sup}_{\ell\geqslant k}\,f_\ell.$
- $\blacksquare \ \mathsf{lim} \ \mathsf{inf}_{k \to \infty} \ f_k = \mathsf{sup}_{k \geqslant 1} \ \mathsf{inf}_{\ell \geqslant k} \ f_\ell.$

La Definición

Definición

Una función ϕ es simple si existen A_1, \ldots, A_n conjuntos y a_1, \ldots, a_n reales tales que

$$\phi(x) = \sum_{k=1}^m a_k \mathbf{1}_{A_k}.$$

Una Modificación

Ejercicio

Dada ϕ simple, existen $b_1, \ldots, b_\ell \in \mathbb{R}$ y B_1, \ldots, B_ℓ medibles tales que

$$\phi(x) = \sum_{k=1}^{\ell} b_k \mathbf{1}_{B_k}$$

con $B_i \cap B_j = \emptyset$ y $b_i \neq b_j$ cuando $i \neq j$.

Aproximación

Sea $f \geqslant 0$, $f : E \rightarrow \mathbb{R}$. Considere

$$f_k(x) = \begin{cases} \frac{j-1}{2^k} & \text{si } \frac{j-1}{2^k} \leqslant f(x) < \frac{j}{2^k}, \ 1 \leqslant j \leqslant k2^k. \\ k & \text{si } f(x) \geqslant k. \end{cases}$$

También considere

$$f_k(x) = \sum_{i=1}^{k2^k} \frac{j-1}{2^k} \mathbf{1}_{A_k^j} + k \mathbf{1}_{B_k}$$

donde

$$B_k = f^{-1}([k, \infty]), \ A_k^j = f^{-1}\left(\left[\frac{j-1}{2^k}, \frac{j}{2^k}\right]\right)$$

cuando $1 \le i \le k2^k$.

Es claro que

$$0 \leqslant f(x) < k \Rightarrow 0 \leqslant f(x) - f_k(x) \leqslant \frac{1}{2^k}.$$

Si $f(x) \ge k$, en cambio

$$0 \leqslant f(x) - f_k(x) = f(x) - k.$$

Luego si $f(x) \neq \infty$, existe k_0 tal que

$$|f(x)-f_k(x)|<\frac{1}{2^k},\ k\geqslant k_0.$$

Además si $f(x) = \infty$, entonces

$$\lim_{k\to\infty}f_k(x)=f(x).$$

Ahora si $\frac{j-1}{2^k} \le f(x) < \frac{j}{2^k}$, entonces ocurre uno de dos escenarios:

(1)
$$\frac{2j-2}{2^{k+1}} \leqslant f(x) < \frac{2j-1}{2^{k+1}}$$
.

(2)
$$\frac{2j-1}{2^{k+1}} \leqslant f(x) < \frac{2j-2}{2^{k+1}}$$
.

Si vale lo primero, $f_k = \frac{j-1}{2^k} = f_{k+1}$. Y si vale lo segundo, $f_k = \frac{j-1}{2^k}$ y $f_{k+1} = \frac{2j-1}{2^{k+1}}$. En cuyo caso $f_k \leqslant f_{k+1}$.

Hemos probado el teorema:

Teorema

Sea $f: E \to \mathbb{R}$. Entonces existe una sucesión de funciones simple ψ_k tales que

$$\lim_{k\to\infty}\psi_k=f.$$

Si $f \geqslant 0$, la sucesión puede ser tomada creciente. Si f es medible, se pueden tomar ψ_k 's medibles.

Resumen

- La definición 1 de función medible y las equivalencias 1.
- La definición 2 de función Borel medible.
- La caracterización 2 de funciones medibles con abiertos.
- El lema 1 sobre la composición.
- La definición 3 de propiedades que se dan casi por doquier junto con el lema 2.
- El lema 3 que es levemente diferente del lema 1.
- El lema 4 técnico necesario para hablar del álgebra de medibles.
- El lema 5 junto con el corolario 1.
- El teorema 3 sobre supremos e ínfimos medibles.
- La definición 4 de función simple y el teorema 4 de aproximación.

Ejercicios

- Lista 15
 - El primer inciso del lema 5.
 - El ejercicio 1 sobre el caso infinito.
 - Terminar la prueba del corolario 1 es un ejercicio.
 - El ejercicio 2 sobre la modificación para tener conjuntos disjuntos.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.