

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre தவணைப் பரீட்சை, மார்ச் - 2019 Term Examination, March

தரம் :- 12 (2020)

பௌதிகவியல்

ஒரு மணித்தியாலங்கள்

அறிவுறுத்தல்கள் :

🔻 எல்லா வினாக்களுக்கும் விடை தருக.

உமது சுட்டெண்ணை விடைத்தாளில் எழுதுக.

🔻 மிகச் சரியான விடைகளுக்கு உமது விடைத்தாளில் புள்ளடி (X) இடுக.

 $(g = 10 \text{ N kg}^{-1})$

01)	ஒரு	போட்டே	ானின்	சக்தி	(E) e	ஆனது	E = hf	என்னும்	சமன்பாட்டால்	தரப்படுகிறது.	இங்கு	f -
	போ	<u>்</u> டோனின்	ர அதி	ர்வெண்.	h -	மாறில	ி ஆகுப்	b. h இனத	து பரிமாணம்.			

1) ML^2T^{-1} 2) ML^2T^{-3} 3) MLT^{-1} 4) MLT^{-3} 5) ML^2T

a, b என்னும் இரு அளவீடுகளின் இழிவு எண்ணிக்கைகள் முறையே Δa , Δb ஆக உள்ளபோது, x=a-b எனின் x இன் பருமனில் ஏற்படும் உயர் சதவீத வழு

1) $\left(\frac{\Delta a}{a} + \frac{\Delta b}{b}\right) \times 100\%$ 2) $\left(\frac{\Delta a}{a} - \frac{\Delta b}{b}\right) \times 100\%$ 3) $\frac{\Delta a}{(a-b)} \times \frac{\Delta b}{(a-b)} \times 100\%$ 4) $\left(\frac{\Delta a}{a-b} + \frac{\Delta b}{a-b}\right) \times 100\%$ 5) $\left(\frac{\Delta a}{a-b} - \frac{\Delta b}{a-b}\right) \times 100\%$

03) ஒரு பொருளின் இயக்கம் பற்றிய பின்வரும் கூற்றுக்களை கருதுக.

(A) மாறாக்கதியுடன் இயங்கும் பொருள் ஒன்றினால் ஆர்முடுக முடியும்.

(B) ஒரு பொருள் ஒன்றின் வேகம் மாறாது உள்ளபோது அதன் கதியை மாற்றமுடியும்.

(C) ஒரு பொருள் ஒன்றின் கதி மாறாது உள்ளபோது அதன் வேகத்தை மாற்றமுடியும். மேலுள்ள கூற்றுக்களில்,

1) (B) மாத்திரம் உண்மையானது 2) (C) மாத்திரம் உண்மையானது

3) (A), (B) மாத்திரம் உண்மையானது

4) (B), (C) மாத்திரம் உண்மையானது

5) (A), (C) மாத்திரம் உண்மையானது

04) F, 2F பருமன்களையுடைய இரு விசைகளின் விளையுளானது

1) Fஐ விட சிறிதாக இருக்கலாம்

2) 3F ஐ விட பெரிதாக இருக்கலாம்

3) பூச்சியமாக இருக்கலாம்.

4) F இற்கு செங்குத்தாக இருக்கலாம்

5) 2F இற்கு செங்குத்தாக இருக்கலாம்

05) கம்பி ஒன்றில் உருவாகும் முதலாம் இசைச்சுரத்தின் அதிர்வெண் f. கம்பியின் நீளத்தையும் அதிலுள்ள இழுவையையும் இரு மடங்காக மாற்றும்போது முதலாம் இசைச்சுரத்தின் அதிர்வெண்

1) $f/\sqrt{2}$

2) f 3) $\sqrt{2}$ f

4) 2f

5) f/2

- **06)** தரையிற்கு சமாந்தரமாக வடக்கு நோக்கி 100 ms⁻¹ மாறா கதியில் செல்லும் விமானம் ஒன்றில் இருந்து சுமை ஒன்று சுயாதீனமாக விழவிடப்படுகிறது. வளித்தடையை புறக்கணித்தால் சுமை விழவிடப்பட்டு 4 செக்கன்களின் பின்னர் விமானம் சார்பாக சுமையின் வேகம் (சுமை 4 செக்கன்களின் பின்னரே தரையை அடைகிறது)
 - 1) வடக்கே 100 ms⁻¹ ஆகவும் கீழ்நோக்கி 40 ms⁻¹ ஆகவும் இருக்கும்.
 - 2) தெற்கே 100 ms⁻¹ ஆகவும் கீழ்நோக்கி 40 ms⁻¹ ஆகவும் இருக்கும்.
 - 3) கீழ்நோக்கி 40 ms⁻¹ ஆக இருக்கும்.
 - 4) கீழ்நோக்கி 80 ms⁻¹ ஆக இருக்கும்.
 - 5) 0 ஆக இருக்கும்.

07) சாய்தளம் ஒன்றின் மீது பந்தொன்று வழுக்காமல் கீழ்நோக்கி உருளும் நிலையை உரு காட்டுகிறது. பந்தினால் சாய்தளம் மீது வழங்கப்படும் விளையுள் விசையின் திசையை சரியாக குறிப்பிடும் காவி

1) 🚛

5)

- **08**) சீரான அடர்த்தியுடைய பொருள் 20% நீரின் மேல் ஒன்று அதன் கனவளவில் நோக்கிய இருக்கத்தக்கதாக பகுதியாக நீரினுள் அமிழ்ந்து மிதக்கின்றது. 3N £ip நிலைக்குத்து விசையை பொருளின் மேற்பகுதியில் பிரயோகிக்க முழுமையாக அமிழ்ந்து மிதக்கின்றது. பொருளின் கனவளவு (நீரின் அடர்த்தி 1000 kg m⁻³ எனக்கொள்க)
 - 1) 300 cm^3
- 2) 670 cm^3
- 3) 1200 cm³
- 4) 1500 cm^3
- $5) 3000 \text{ cm}^3$
- 69) கிடையுடன் 45° சாய்விலுள்ள கரடான சாய்தளம் ஒன்றின் உச்சியிலிருந்து குற்றி ஒன்று வழுக்கி அடியை அடைய எடுக்கும் நேரம், அதேமாதிரியான கிடையுடன் 45° சாய்விலுள்ள அழுத்தமான சாய்தளம் வழியே குற்றி உச்சியிலிருந்து வழுக்கி அடியை அடைய எடுக்கும் நேரத்தின் இரு மடங்கு எனின் குற்றிக்கும் கரடான சாய்தளத்திற்கும் இடையிலான இயக்கவியல் உராய்வுக்குணகம்
 - 1) 0.25
- 2) 0.40
- 3) 0.50
- 4) 0.75
- 5) 1.0
- 10) ஒரு காற்றாலை ஒன்றின் சுழலும் தகடுகளின் பயன்படு பரப்பு $2000~{\rm m}^2$ இது காற்றின் வலுவை மின்வலுவாக மாற்றுகின்றது. இதன் திறன் 50% எனின் $10~{\rm m~s}^{-1}$ கதியுடன் உறுதியான காற்று வீசும்போது பிறப்பிக்கப்படும் மின்வலு (வளியின் அடர்த்தி $1.3~{\rm kg~m}^{-3}$ எனக் கொள்க)
 - 1) 130 kW
- 2) 650 kW
- 3) 1300 kW
- 4) 2600 kW
- 5) 65 kW
- \mathbf{m} திணிவுடைய ஊசல் குண்டானது \mathbf{L} நீளமுடைய இழையின் ஒரு நுனியில் கட்டப்பட்டுள்ளது. **11**) இழையின் மறுநுனி நிலைத்த புள்ளிக்கு கட்டுப்பட்டு இருக்க இழையானது கீழ்முக நிலைக்குத்துடன் கோணம் அமைக்கும் நிலையில் ஊசல் குண்டானது ஓய்விலிருந்து அலையவிடப்படுகின்றது. ஊசல் குண்டானது மேல்முகமாக இயங்கும்போது $heta=rac{1}{2} heta_{
 m max}$ ஆகும் கணத்தில் ஊசல் குண்டின் ஆர்முடுகல் காவியை சரியாக குறிப்பிடுவது.

3)

4)

5)

- நிலையான அலை பற்றிய பின்வரும் கூற்றுக்களில் பிழையானது எது?
 - அலையினதும் அலையினதும் மேந்பொருந்துகையால் 1) ⊔(6) தெநி நிலையான தோன்றுகின்றது.
 - 2) நிலையான அலைவடிவம் ஏற்படும்போது ஊடகத்தின் சில புள்ளிகள் குழப்பமடைவதில்லை
 - 3) நிலையான அலைவடிவத்தில் எப்போதும் கணுக்களின் எண்ணிக்கை முரண்கணுக்களின் எண்ணிக்கையை விட கூடுதலாக இருக்கும்.
 - நிலையான அலையிலுள்ள சக்தியானது, அழுத்த சக்தியாகவே இருக்கும்.
 - 5) நிலையான <u>കത്ത്വ</u>ப്பുள்ளியானது அலைவடிவத்தில் <u> ந</u>ிலையானது, சராசரி ஒய்வு நிலையிலிருந்து இடப்பெயர்ச்சிக்கு உட்படாது.
- **13**) கார் ஓட்டப்பந்தயத்தின்போது காரின் எரிபொருள் குறைவடைவதால் அதன் சுற்றுவட்ட குறைகிறது. பின்வருவனவற்றில் எது இதனை சரியாக விளக்கமுடியும்?
 - 1) காரின் மீதான உராய்வு விசை குறைந்தமை.
 - 2) காரின் உயர் வேகம் அதிகரித்தமை.
 - 3) காரின் மீது தாக்கும் உயர் உருற்றும் விசை அதிகரித்தமை.
 - 4) காரின் உயர் ஆர்முடுகல், உயர் அமர்முடுகல் அதிகரித்தமை.
 - 5) காரின் எஞ்சின் அதிக வினைத்திறன் ஆகியமை.
- **14**) ஒரு மூலக்கூறானது ஒவ்வொன்றும் m திணிவுடைய இரு அணுக்களை a இடைத்தூரத்தில் கொண்டுள்ளன. அறை வெப்பநிலையில் இம்மூலக்கூறின் சராசரி சுழற்சி இயக்கசக்தி K எனின் இதன் சுழற்சி அதிர்வெண்
 - 1) $\frac{1}{\pi a} \sqrt{\frac{K}{m}}$

- 2) $\frac{1}{2\pi a} \sqrt{\frac{K}{m}}$ 3) $\frac{1}{\pi a} \sqrt{\frac{2K}{m}}$ 4) $\frac{1}{2\pi a} \sqrt{\frac{2K}{m}}$ 5) $\frac{1}{\pi a} \sqrt{\frac{K}{2m}}$
- **15**) ஒரு பொருளின் வேக (v) - நேர (t) வரைபை அருகில் உள்ள உரு காட்டுகிறது. இதற்கொத்த அப்பொருளின் இடப்பெயர்ச்சி (x) - நேர (t)வரைபை சரியாக குறிப்பிடுவது

16) அசையக்கூடிய குழாய் ஒன்றுடன் இணைக்கப்பட்ட மேடை ஒன்றின் மீது நிற்கும் மனிதனை அருகில் காட்டுகின்றது. மனிதனும் மேடையும் உரு மாறா உயரத்தில் கிடையாக மிதக்குமாறு நீரானது குழாயினூடாக பாயவிடப்படுகிறது. மனிதனதும், மேடையினதும் திணிவுகள் முறையே 80 kg, 16 kg. மேடையிலிருந்து நிலைக்குத்தாக கீழ்நோக்கி ஒவ்வொரு செக்கனும் வெளியேறும் நீரின் திணிவு 40 kg எனின் மேடையை விட்டு வெளியேறும் நீரின் கதி

- 1) 2.4 ms⁻¹
- 2) 6.9 ms^{-1}
- 3) 24 ms⁻¹
- 4) 47 ms⁻¹
- 5) 20 ms⁻¹

17) நீர் பாய்ச்சல் தொகுதி ஒன்று நீர்த்தேக்கம் ஒன்றுடன் இணைக்கப்பட்டுள்ளதை உரு காட்டுகிறது, இதில் AB ஒரு தடுப்பாக அமைந்துள்ளது. எல்லாப்பரிமாணங்களும் உருவில் காட்டப்பட்டவாறு இருக்கும்போது நீர் பாய்ச்சல் தொகுதியின் வெளி வழியூடாக உறுதியாக நீர் பாயுமெனின் உருவில் காட்டப்பட்ட h இன் பெறுமதி (நீர்த்தடாகத்தின் திரவமட்ட மாற்றம் புறக்கணிக்கத்தக்கது)

- 1) 0.4 m
- 2) 1.0 m
- 3) 1.2 m
- 4) 1.5 m
- 5) 1.6 m
- 18) ஈர்க்கப்பட்ட இழை ஒன்றில் இழை வழியே நகருகின்ற அலைத்துடிப்பையும் அது இயங்கும் திசையையும் கீழ் உள்ள உரு காட்டுகிறது.

பின்வருவனவற்றுள் இழையிலுள்ள புள்ளி இன் P இடப்பெயர்ச்சி (S) நேரத்துடன் (t) மாறுவதை திறம்பட வகை குறிப்பது

19) வளியினூடாக ஒலி பயணிக்கும்போது வளித்துணிக்கைகள் அதிர்வுக்குள்ளாகின்றன. அவ்வாறு அதிர்வுக்குள்ளாகும் வளித்துணிக்கை ஒன்றின் இடப்பெயர்ச்சி - நேர வரைபு உருவில் காட்டப்பட்டுள்ளது. இவ்வளித்துணிக்கையின் இயக்கசக்தி (K.E) நேரம் (t) உடன் மாறும் வரைபை திறம்படக்காட்டுவது

20) ஓர் ஒலிபெருக்கியினால் ஒலிக்கப்படும் ஒலியின் அதிர்வெண் f, இது ஒரு முனை மூடிய lநீளமான குழாயின் திறந்த முனைக்கருகில் பிடிக்கும்போது குழாயில் அடிப்படைபரிவுக்குரிய நிலையான அலை தோன்றுகின்றது.

மேலே குறிப்பிட்ட f அதிர்வெண் உடைய ஒன்று அல்லது இரண்டு ஒலிபெருக்கிகளை பயன்படுத்தி வெவ்வேறு குழாய்களில் பின்வரும் ஒழங்கமைப்பு செய்யப்பட்டது. ஒரு சோழ பயன்படுத்தும்போது ஒரே ஒலிபெருக்கிகளை அவை அவத்தையில் அதிரும் எனின் பின்வருவனவற்றுள் எக்குழாயில் பரிவுக்குரிய நிலையான அலை தோன்றும்?

21) ஒன்<u>நு</u>டன் ஒன்று கலக்காத \mathbf{d}_1 \mathbf{d}_2 அடர்த்திகளையுடைய இரு திரவங்களைக் கொண்ட வட்டக் குழாய் ஆனது நிலைக்குத்துத் தளத்தில் உரு காட்டுகிறது. ஒவ்வொரு திரவமும் மையத்தில் 90° உள்ளடைப்பதுடன் திரவ இடைமுகம் நிலைக்குத்துடன் lpha கோணத்தை உருவில் காட்டியவாறு அமைக்கும் எனின் d_1/d_2 இன் விகிதம்

- $1) \quad \frac{1+\sin \alpha}{1-Cos\alpha}$
- 2) $\frac{1+\sin\alpha}{1-\sin\alpha}$ 3) $\frac{1+\cos\alpha}{1-\cos\alpha}$
- 1+tan α

22) பக்க நீளம் 5m உடைய கனவடிவ பெட்டி ஒன்றின் திணிவு 10kg இது உராய்வற்ற கிடை தளத்தின்மீது இயங்க சுயாதீனம் உள்ளது. பெட்டியின் உள்ளே உள்ள 2kg குற்றி உராய்வின்றி அதனுள் 5ms^{-1} சுயாதீனம் உண்டு. t=0 இல் குந்நியானது அசைய எதிர் வேகத்துடன் பெட்டியின் முகத்தை நூக்கி இயங்கத் தொடங்குகின்றது. ஆரம்பத்தில் பெட்டி ஓய்வில் உள்ளது. பெட்டிக்கும் இடையிலான எல்லா மோதுகைகளும், குற்றிக்கும் பூரண மீள்தன்மை ஆனது எனின் ஒரு நிமிடத்தின் பின் குற்றியானது ஆதன் ஆரம்ப நிலையிலிருந்து நகர்ந்த இடப்பெயர்ச்சி

- 1) 0 m
- 2) 50 m
- 3) 100 m
- 4) 200 m
- 5) 300 m

23) ஒருவன் மாநா கிடைவேகத்தில் உருக்குப் மாணவன் பந்தொன்றை சுடக்கூடிய விற்சுருள் துப்பாக்கியைப் பயன்படுத்தி உருவில் காட்டியவாறு வெவ்வெறு உயரம் h இற்கு ஏற்ப பந்தின் கிடை இடப்பெயர்ச்சி r ஐ அளவிட்டான்.

உயரம் (h) உடன் ஆன கிடை இடப்பெயர்ச்சி (r) இற்கான வரைபை திறம்படக் காட்டுவது

காட்டப்பட்டவாறு 24) உருவில் கிடைத்தளத்தில் வைக்கப்பட் பூச்சாடியின் உயரம் h cm அதன் புவியீர்ப்பு மையம் அடியிலிருந்து $r\sqrt{3}~{
m cm}$ உயரத்தில் உள்ளது. அதன் அடியின் ஆரை $r~{
m cm}$. பூச்சாடி கவிழாமல் இருக்கக் கூடியவாறு அதன் மேல் விளிம்பை எவ்வளவு தூரத்திற்கு தள்ளமுடியும்.?

- 1) $\frac{\pi h}{6}$ cm
- 2) $\frac{\pi\sqrt{h^2+r^2}}{3}$ cm 3) $\frac{\pi h}{3}$ cm

- 4) $\frac{\pi\sqrt{h^2+r^2}}{6}$ cm
- 5) $\frac{\pi r \sqrt{3}}{6}$ cm

25) ஆரை R உடைய அழுத்தமான அரைவட்ட ഖബെധ്ഥത്വെ கிடைத்தரையில் இருந்து Η உயரத்தில் நிலைக்குத்து நிலைப்படுத்தப்பட்டுள்ளது. வளையத்தில் கோர்க்கப்பட்ட மணியானது அதன் இல் இருந்து சுயாதீனமாக விழவிடப்பட அது வளையத்தின் வழியே உராய்வின்றி வழுக்கி கீழ் நுனியில் இருந்து கிடையாக வெளியேறி கிடையாக D தூரத்தில் தரையை அடிக்கிறது. D இற்கு எதிரான RH வரைபை திறம்பட வகைகுறிப்பது

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre தவணைப் பரீட்சை, மார்ச் - 2019

Term Examination, March - 2019

தரம் :- 12 (2020)

பௌதிகவியல்

இரண்டு மணித்தியாலங்கள்

பகுதி – II

பகுதி A – அமைப்புகட்டுரை ${
m p}$ நான்கு வினாக்களுக்கும் இத்தாளிலேயே விடை எழுதுக. $({
m g}=10N~{
m kg}^{-1})$

01)

நுண்மானித்திருகு கணிச்சியின் ஒரு பகுதியை உரு காட்டுகிறது. இதன் தீதாள் அளவிடை 50 சம பிரிவுகளாக பிரிக்கப்பட்டுள்ளதுடன் தீதாளை ஒரு முறை முழுமையாக சுழற்றும்போது அது பிரதான அளவிடையில் 1 பிரிவின் ஊடாக நகர்கிறது (0.5mm)

a)	உரு	வில் ${ m A,B,C,D}$ எழுத்துக்களால் குறிக்கப்பட்ட இக்கருவியின் பகுதிகளைப்
	பெய	ரிடுக.
b)	i)	இந்த நுண்மானித் திருகு கணிச்சியின் புரியிடைத்தூரம் யாது?
	ii)	இக்கருவியின் இழிவு எண்ணிக்கை யாது?
c)	i)	அளவீடொன்று எடுக்கப்படும்போது D யினால் குறிக்கப்படும் கூறு முக்கிய
		தொழிற்பாடொன்றுக்கு பயன்படுகிறது. இத்தொழிற்பாடு யாது?

	ii)	c i) இல் குறிப்பிட்ட இத்தொழிற்பாட்டை நிறைவேற்றுவதில் D சரியாக பயன்பட்டுள்ளது என்பதை எவ்வாறு உறுதிப்படுத்துவீர்?
	d)	இக்கருவியின் பூச்சிய வழுவை எவ்வாறு சோதித்தறிவீர்?
	e)	பூச்சிய வழுவை சோதித்தநியும்போது கிடைக்கப்பட்ட வாசிப்பு உருவில் காட்டப்பட்டுள்ளது. இக்கருவியின் பூச்சியவழு யாது?
	f)	சிறிய உருக்குப்பந்தொன்றின் விட்டம் இக்கருவியை பயன்படுத்தி அளவிடப்பட்டபோது பெறப்பட்ட வாசிப்பு வினாவின் ஆரம்பத்தில் உள்ள உருவில் காட்டப்பட்டுள்ளது. i) இக்கருவியின் வாசிப்பு யாது?
	6)	அளவீட்டை எவ்வாறு பெறுவீர்?
02)	a)	i. மிதப்பு விதியை கூறுக?

b) குழாயின் வளைவான பகுதியின் கனவளவு V என்க அதிலிருந்து பூச்சியம் பெறுமதி வருமாறு ஓர் அளவு திட்டத்தை கடதாசிக் கீலத்தில் வரைந்து குழாயின் உட்புறத்தில் ஒட்டப்பட்டுள்ளது. குழாய் திரவங்களில் மிதக்க விடப்பட்டு வளைவான பகுதிக்கு மேல் அமிழ்ந்துள்ள உயரம் (l) ஆகும். இப்பகுதியின் குறுக்கு வெட்டுப்பரப்பு – A, ஈயத்துண்டுடன் குழாயின் திணிவு – M, குழாயினுள் இடப்படும் மேலதிக திணிவு - m

i.	தயாரிக்கப்பட்ட கொதிகுழாய் $800 { m kgm}^{-3}$ அடர்த்தியுடைய திரவத்தினுள் பகுதியாக
	மிதக்கவிடப்பட்டுள்ளபோது ஏற்பட்ட மேலுதைப்பு \mathbf{U}_1 ஆகும். இக்குழாய்
	1000kgm ⁻³ அடர்த்தியுடைய திரவத்தினுள் மிதக்கவிடப்பட்டபோது ஏற்பட்ட
	மேலுதைப்பு \mathbf{U}_2 எனின், \mathbf{U}_1 இனை விட \mathbf{U}_2 பருமன் பெரியதா, சமனா, சிறியதா?
	உமது விடையை விளக்குக?
ii.	மிதப்பு விதிப்படி மேலே கூறப்பட்ட கணியங்களின் தொடர்பை எழுதுக?
iii.	மேலதிகமாக சேர்க்கப்பட்ட திணிவு $f m$ சாராமாறியாகவும் $f l$ சார் மாறியாகவும்
	கொண்டு வரைபுக்கு ஏற்ற விதத்தில் பகுதி b(ii) இல் எழுதிய சமன்பாட்டை
	மாற்றி எழுதுக?
iv.	வரையப்பட்ட வரைபிலிருந்து படித்திறன் கணிக்கப்பட்ட பின் திரவத்தின் அடர்த்தி
	கணிக்கப்பட வேண்டுமெனின் இன்னுமொரு அளவீடு என்ன? அதை அளக்க
	பயன்படுத்த வேண்டிய கருவி யாது? அதன் எப்பகுதியை பயன்படுத்துவீர்?
v.	அளக்கப்படும் l இன் செம்மையை கூட்டுவதற்காக பயன்படுத்தப்படும்
	கொதிகுழாய் எவ்வாறு இருக்க வேண்டும்?

	c)	i. மேற்குறித்த வரைபின் படித்திறன் 312.5 cm kg ⁻¹ ஆக காணப்பட்டதுடன் குழாய் சீரான பகுதியின் குறுக்குவெட்டுப்பரப்பு 4cm ² ஆயின் பயன்படுத்தப்பட்ட திரவத்தின் அடர்த்தி என்ன?
		ii. <i>m</i> இந்கு எதிரான l வரைபை வரைவதந்கு சீரான இடைவெளிகளில் புள்ளிப் பரம்பலைப் பெற நீர் மேந்கொள்ளும் பரிசோதனைப் படிமுறை யாது?
03)	a)	இலேசான இழையில் கட்டப்பட்ட ஊசல் குண்டொன்று நிலைத்த தாங்கியில் கட்டப்பட்டு ஒரு பக்கமாக இழுத்து விடப்படுகிறது. ஊசல் குண்டின் இடப்பெயர்ச்சி நேரத்துடன் மாறும் வரைபு கீழே காட்டப்பட்டுள்ளது. மேலுள்ள வரைபில் இடப்பெயர்ச்சி நேரம்
		 i) ஊசல் குண்டின் ஆர்முடுகல் உயர்வாக உள்ள புள்ளி / புள்ளிகளை A என்னும் எழுத்தினால் வரைபில் குறிக்க.
		ii) ஊசல் குண்டின் வேகம் உயர்வாக உள்ள புள்ளி / புள்ளிகளை V என்னும் எழுத்தினால் வரைபில் குறிக்க.
	b)	அலைவுப்பாதையின் நடுப்புள்ளியில் இழையிலுள்ள இழுவை ஊசல் குண்டின் நிறையை விட உயர்வாக உள்ளது ஏன் என விளக்குக.

மாறும் மீடிறனைக் கொண்ட மின் அதிரி மூலம் ஊசல் குண்டின் தாங்கியுடன் கட்டப்பட்ட c) புள்ளி சிறிய வீச்சத்துடன் நீள்பக்கமாக அதிரச் செய்யப்படுகிறது. இதன் அதிர்வெண் கணணித்திரையில் இலக்க பதிவுகளாக (digital mode) காட்சிப்படுத்தப்படுகிறது. குறித்த அதிர்வெண்ணிற்கு ஊசற் குண்டானது மாறா உயர் வீச்சத்தில் அலைகிறது. கட்டப்பட்ட புள்ளி ஊசந் குண்டு i) குறித்த அதிர்வெண்ணிற்கு ஊசற் குண்டானது உயர் வீச்சத்துடன் மாநா அலைவதற்கான காரணம் யாது? குறித்த அதிர்வெண்ணிற்கான அளவீட்டில் அதிரியின் சதவீத வழு 5% ஆகவும் ii) அதன் இழிவு எண்ணிக்கை 1Hz ஆகவும் இருப்பின் அதிரியின் அதிர்வெண்ணைக் காண்க. d) இம்முறை புவியீர்ப்பு ஆர்முடுகலைத் துணிவதற்கு மூலம் ஒருவன் தீர்மானிக்கின்றான். இதற்காக ஊசற்குண்டின் நீளத்தை மாற்றி உயர் வீச்சத்திற்குரிய அதிர்வெண்களை துணிகின்றான். i) ஊசலின் அதிர்வெண்ணிற்கான கோவையை ஊசற்குண்டின் எளிய நீளம் (l),புவியீர்ப்பு ஆர்முடுகல் (g) சார்பில் எழுதுக. 1/l இந்கு ஏந்ப \mathbf{f}^2 மாநலைக் காட்டும் வரைபை வரைவதந்கு ஏந்ப \mathbf{d} (\mathbf{i}) இல் ii) எழுதிய கோவையை மீளொழுங்குபடுத்தி எழுதுக.

iii)

 $(\pi = 3.14$ எனக்கொள்க)

இவ்வரைபின் படித்திறன் $0.25 \mathrm{ms}^{-2}$ எனின் g இனது பெறுமானத்தைக் கணிக்குக.

	உயர்வு வீச்சத்திற்கு ஒரே பரிமாணமுடைய உருக்குக் கோளத்தையா மரக் கோளத்தையாதெரிவு செய்வீர்? உமது தெரிவிற்கான காரணம் யாது?
	சக்கவரொன்றின் அதிர்வெண்ணை அறிய மாணவன் ஒருவன் சுரமானிப் பரிசோதனையை ங்கு செய்கின்றான்.
<u>ஒழு</u> ந	i) அவன் பரிவைப் பெற அதிரும் இசைக்கவரை எங்கே வைக்கவேண்டும்?
	ii) பொதுவாக இப்பரிசோதனையிற்கு அடிப்படை பரிவு நிலையே பெறப்படுகிறது. இது ஏன் என விளக்குக.
	iii) அதிரும் இழையில் தோன்றும் அலை விருத்தியலையா / நிலையான அலையா குறுக்கலையா / நீள்பக்க அலையா?
b)	அடிப்படை பரிவு நீளத்தைப் பெறுவதற்கான செய்முறை படிகளைத் தருக.
c)	மாணவன் அளந்த அடிப்படை பரிவு நீளம் (l_0) ஆகவும் சுரமானிக்கம்பியிலுள்ள இழுவிசை (T) ஆகவும் கம்பியின் அலகு நீளத்திணிவு (m) ஆகவும் இருப்பில் அடிப்படை பரிவு அதிர்வெண்ணிற்கான கோவையை l_0,T,m சார்பில் எழுதுக.

	${ m AB}$: ${ m BC}$: ${ m BC}$: ${ m iii}$ ${ m AC}=1{ m m}$ எனின் கம்பி ${ m AB}$ இல் தோன்றும் அலையின் உயர் அலைநீளம் யாத
	iii) AC = 1m எனின் கம்பி AB இல் தோன்றும் அலையின் உயர் அலைநீளம் யா
e)	கம்பி ${ m AB}$ இன் அலகு நீளத்திணிவு $1{ m x}10^3{ m Kgm}^1$ ஆகவும் கம்பியிலுள்ள இழுவிசை ஆகவும் இருப்பின் இசைக்கவரின் அதிர்வெண்ணைக் காண்க.

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre தவணைப் பரீட்சை, மார்ச் - 2019 Term Examination, March - 2019

தரம் :- 12 (2020)

பௌதிகவியல்

Part II (B) கட்டுரை வினா எவையேனும் இரண்டு வினாக்களுக்கு மட்டும் விடை தருக.

05) பெரும்பாலான உடர்கூற்றுக் கட்டமைப்புக்கள் அவற்றினுடைய இன்றைய நிலையில் என்பதை விளங்கிக்கொள்ள பொறியியல் உதவுகிறது. இப்பகுதியில் உள்ளது பாலூட்டி என்பவற்றின் கீழ்த்தாடை அமைப்புப்பற்றியும் அவற்றின் கடிகளின் போது தாடையில் தாக்கும் விசைகள் பற்றியும் விபரிக்கப்பட்டுள்ளது. விலங்குகளின் கடிவிசையின் வலிமை, இதன் தாடைகளின் அமைப்பு, தாடைகளுக்கு அண்மையிலள்ள தசைநார்களால் உளுற்றப்படும் விசைகளின் பருமன், திசை, தாக்கு புள்ளி என்பவந்நில் தங்கியுள்ளது. இதந்கு தாடைகளின் குறிப்பிட்ட வாய்ப்பான வடிவமும் அளவுமே உதவியாக உள்ளது. தாடைகள் உடையாமல், விலகாமல் இருப்பதற்கு கீழ், மேல் தாடை எலும்புகள் மிகவும் உறுதியாக உள்ளன. ஆய்வுகளின் அடிப்படையில் பாலூட்டிகளின் தாடை அமைப்பு ஊர்வனவின் காடை ஒத்திருப்பது அறியப்பட்டது. ஊர்வன ஒன்றின் கடியின்போது கீழ்த்தாடை அமைப்புடன் அமைப்பில் தாக்கும் சமநிலையில் உள்ள விசைகளை உரு I காட்டுகிறது.

இங்கு B - உணவை கடிக்கும்போது உணவினால் கீழ்த்தாடையில் தாக்கும் விசை.

 \mathbf{M} - புள்ளி \mathbf{O} இல் தசைகளினால் ஏற்படுத்தப்படும் விசை.

R - தாடைமுட்டு J இல் தாக்கும் விசை.

புள்ளி O இல் இருந்து விசைகள் $B,\ R$ என்பவற்றின் கிட்டிய தூரங்கள் முறையே $x_B,\ x_R$ ஆகும்.

பாலூட்டி ஒன்றின் கடியின்போது கீழ்த்தாடை அமைப்பில் சமநிலையில் உள்ள விசைகளை உரு II காட்டுகிறது.

இங்கு M, T - தசைகளினால் ஏற்படுத்தப்படும் விசைகள்.

B - உணவை கடிக்கும்போது கீழ்த்தாடையில் தாக்கும் விசை.

R - தாடைமூட்டு J இல் தாக்கும் விசை.

- a) i. விலங்குகளின் கடிவலிமை தங்கியுள்ள காரணிகள் எவை?
 - ii. பாலூட்டி ஒன்றின் தாடையில் தாக்கும் காட்டப்பட்ட விசைகள் M, T, B, R சமநிலையில் இருப்பதற்கு திருப்தியாக்கப்படவேண்டிய முக்கிய நிபந்தனைகளைக் குறிப்பிடுக.
- b) உரு I ஐ கருத்தில் கொண்டு பின்வரும் வினாக்களுக்கு விடையளிக்குக. தாடை மூட்டில் தாக்கும் விசை R ஆனது 3N ஐ மீநுமுடியாதெனக் கொள்க.
 - i. R, M இற்கான கோவைகளை B, $x_{\rm B}, x_{\rm R}$ சார்பில் பெறுக.
 - ii. $x_{\rm B}=2x_{\rm R}$ ஆக இருப்பின் கடிவிசை (B) இன் உயர் பெறுமதி யாது?
 - $x_B = 2x_R$ ஆக உள்ளபோது M இன் உயர் பெறுமதி 6N எனின் தாடை மூட்டு பாதிக்கப்படுமா என்பதை கணிப்புக்களுடன் விளக்குக.
 - iv. பாம்பு ஒன்றின் கடிவிசை (B) 2N ஆகவும் $x_R = 0.03m$ ஆகவும் உள்ளபோது மூட்டு பாதிப்படையாது இருக்க கடிவிசை (B) தாடை மூட்டிலிருந்து எவ் உயர்வுத் தூரத்திற்குள் இருக்கவேண்டும்?
- c) உரு II ஐ கருத்தில் கொண்டு பின்வரும் வினாவுக்கு விடையளிக்குக. பாலூட்டி தாவர உண்ணியாக உள்ளபோது $R=0,\; \theta_t=\theta_m=\theta$ ஆகவும் இருப்பின், தாவர உண்ணியின் கடிவிசை B ஆனது தசைநார்களினால் வழங்கப்படும் விசைகள் $T,\; M$ ஐ விட பெரிதாக இருப்பதற்கு θ எக்கோணத்தை விட பெரிதாக இருக்கவேண்டும் என்பதை காண்க.
- d) கடியின் போது சமனிலையிலுள்ள ஒரு
 குறிப்பிட்ட ஊணுன்னியின் கீழ்த்தாடை உரு
 III காட்டுகின்றது. M = 30N, T ஆனது M
 ஆஇனது 1.3 மடங்காகவும் θ = 60⁰ ஆகவும்
 இருப்பின்
 - i. θ_t இன் பெறுமதி யாது? $(\sin 22^{\circ}\ 37^{1} = 0.3846,\, \sin 52^{\circ}\ 37^{1} = 0.7946\,$ எனக்கொள்க)
 - ii. $\frac{B}{M}$ இன் விகிதம் யாது?
- 06) வானூர்தியினதும் அகாய விமானத்தினதும் மேல் எழும் செயற்பாடு ஒரே மாதிரியான விஞ்ஞான விதிகளுக்கு அமையவே நிகழ்கிறது. விமானத்தில் இவ் உயர்த்தும் விசை அதன் இறக்கைகளின் மேல் கீழ்ப்பகுதிகளினூடான வளிப்படையினது அடர்பாய்ச்சலின் விளைவாக ஏற்படும் அமுக்க அமைப்பின் காரணமாக வேறுபாட்டின் விளைவாகவும், இறக்கைகளின் நிலை சாய்வாக மோதும் வளி மூலக்கூறுகள் கீழ்நோக்கி சாய்வாக தெறிப்படைவதால் ஏற்படும் விசை காரணமாகவும் ஏற்படுகிறது. விமானத்தின் மேல் எழுகைக்கு தேவையான உயர்த்தும் விசையை பெறுவதற்காக, விமானத்தின் இறக்கைகள் பெரிய பரப்புடையதாக இருப்பதுடன் விமானம் உயர் வேகத்துடனும் பறக்கவேண்டும். இதற்காக விமானத்தினது ஓடுபாதை நீளமானதாக அமைக்கப்படும், வானூர்தியில் உயர்கோண கதி ஏறத்தாழ 500 rpm இல் சுழலி சுழலும். சுழலியின் மேல், கீழ் பகுதிகளினூடான வளியினது அடர் பாய்ச்சலின் காரணமாக ஏற்படும் அமுக்க வேறுபாட்டின் விளைவாக கிடைக்கும் சிறிய தூக்கு விசையினாலும், சுழலி பெருமளவான வளியை கீழே தள்ளுவதனால் கிடைக்கும் விசையினாலும் வானூர்தி குறித்த உயரத்தில் நிற்கவோ அல்லது மேல் எழவோ முடிகிறது. வானூர்தியின் சுழலி சுழலும்போது வானூர்தி சுழலியின் அச்சுப்பற்றி திசைக்க எதிராக மெதுவாக சுழலும், இதனால் தோன்றும் சுழந்சி (முறுக்கம் வானூர்தியை நிலைகுலையச் செய்யும். இதனைக் கட்டுப்படுத்த வானூர்தியின் வால் பகுதியில் ஒரு பக்கமாக அமைந்த சுழலியினால் வானூர்தி சுழலும் திசைக்கு எதிராக (ழுறுக்கம் வழங்கப்படும்.

உரு III

- a) i. வானூர்தி, ஆகாயவிமானம் என்பவை வளியினுள் மேல் எழுவதை விளக்கும் பௌதிகவியல் விதிகள் எவை?
 - ii. ஆகாயவிமானம் மேல் எழும்போது, எதிர்நோக்கும் பிரச்சனையை தீர்க்க கையாளப்படும் வழிமுறைகள் எவை?
 - iii. போர்க்கப்பல்களிலுள்ள விமானங்கள் மேல் எழுவதற்கு தேவையான ஓடுபாதையின் நீளம் குறைவாக உள்ள சந்தர்ப்பத்தில், அவ் விமானத்தை மேல் எழச்செய்ய தேவையான கதியைப்பெற கையாளப்படும் உத்தி ஒன்றைக் கூறுக.
 - iv. வானூர்தியின் சுழலி சுழலும்போது, வானூர்தியின் மொத்த உடலும் ஏன் எதிர்த்திசையாக சுழல்கின்றது என்பதை சுருக்கமாக விளக்குக.
- b) 2160kg திணிவுடைய வானூர்தி ഖണിധിல் குறிப்பிட்ட உயரத்தில் நிலைத்து நிற்பதற்காக 80m^2 ഖட்டப்பரப்பில் வளியை v வேகத்துடன் கீழ்நோக்கி சுமலி தள்ளுகிறது. (ഖണിധിത് 1.2kgm⁻³ வானூர்தியின் அடர்த்தி எனவும் வால்பகுதியில் உள்ள சுழலி சுழலவில்லை எனவும் கொள்க.)

- i. வளி மூலக்கூறுகளின் உந்தமாற்ற வீதத்தை v சார்பாகக் காண்க.
- ii. v இன் பெறுமதியைக் கணிக்க.
- iii. வானூர்தியின் சுழலி வளியை கீழ்நோக்கி தள்ளுவதற்கு தேவைப்படும் வலுவை கணிக்க.
- iv. சுழலியின் அச்சுப்பற்றி சுழலியினதும் வானூர்தியினதும் சடத்துவ திருப்பங்கள் முறையே $100 {
 m kgm}^2$, $8800 {
 m kgm}^2$ ஆகும். சுழலி $420 {
 m rpm}$ (1 நிமிடத்தில் சுழலும் சுழற்சிகளின் எண்ணிக்கை) இல் சுழலும்போது வானூர்தி அதே தளத்தில் சுழலும் கோணக்கதி யாது? (வானூர்தி நிலைகுலையவில்லை எனக்கொள்க.)
- c) வானூர்தி உருவில் காட்டப்பட்டுள்ளவாறு அதன் சுழலி கிடையுடன் 12°42¹ சரிந்த நிலையில் கிடையான 100m ஆரையுடைய வட்டப்பாதையில் மாநாக்கதியுடன் சுற்றுகிறது. இந்நிலையில் வானூர்தி சுழலியின் அச்சுப்பற்றி சுழலாதிருக்கத்தக்கதாக இதன் வால்பகுதியிலுள்ள சுழலி சுழல்கின்றது.

(Sin = $12^{0}42^{1}$ 0.2198, Cos $12^{0}42^{1}$ = 0.9753, tan $12^{0}42^{1}$ = 0.2253)

- உருவில் காட்டப்பட்ட படத்தை உமது விடைத்தாளில் பிரதி செய்து வானூர்தியில் தாக்கும் தூக்குவிசை, நிறை என்பவற்றைக் குறித்துக் காட்டுக.
- ii. தற்போது சுழலியின் சுழற்சிக் கதி வினா (b)(iii) இல் உள்ளதை விட குறையுமா அல்லது கூடுமா?
- iii. வானூர்தியின் சுற்றற் கதியைக் காண்க.

- d) இறுதியாக வானூர்தி, சுழலி கிடையாக இருக்க $1 {
 m ms}^{-2}$ என்னும் சீரான ஆர்முடுகலுடன் நிலைக்குத்தாக மேல் எழும்புகிறது.
 - i. இந்நிலையில் சுழலியினால் பிறப்பிக்கப்படும் தூக்குவிசை u ஐக் காண்க.
 - ii. இந்நிலையில் சுழலியானது வளியை கீழ்நோக்கித் தள்ளும் வேகத்தை காண்க.

- 07) a) ஒரு அந்தம் மூடப்பட்ட குழாயில் உள்ள வளி நிரலானது, திறந்த அந்தத்திற்கு அண்மையில் மாறும் ஆவர்த்தன காலம் கொண்ட மின் அதிரி ஒன்று வைக்கப்பட்டபோது, நெட்டாங்கு அதிர்வை ஆற்றுகிறது. அதிர்வின் ஆவர்த்தனகாலமானது T_1 இல் T_2 இற்கு படிப்படியாக குறைத்தபோது, ஆவர்த்தனகாலம் T_0 இற்கு ஒரு உரத்த ஒலியை எழுப்பியது. $T_1 > T_0 > T_2$ ஆகும்.
 - i. நெட்டாங்கு அதிர்வு என்னும் பதத்தில் இருந்து நீர் விளங்கிக்கொள்வது யாது?
 - ii. வளியின் என்ன இயல்பு அதன் அதிர்வுக்கு காரணமாகும்?
 - iii. எவ்வகையான அலை குழாயினுள் உருவாக்கப்பட்டது? அது ஒரு நிலை அலையா அல்லது நகரும் அலையா? உமது விடைக்கான காரணத்தை கூறுக.
 - iv. குழாயில் உள்ள வளி பரிவுறும்போது, அது வலிந்த அதிர்வைக் கொண்டிருக்குமா அல்லது இயல்பான அதிர்வைக் கொண்டிருக்குமா?
 - ${f v}$. அதிரியின் ஆவர்த்தன காலத்தை ${f T}_1$ இல் ${f T}_2$ இற்கு குறைக்கும்போது, குழாயின் திறந்த அந்தத்தில் உள்ள வளி மூலக்கூறுகளின் அதிர்வின் வீச்சம் எவ்வாறு மாறும் என்பதைக் காட்டும் வரையைக் கீறி அதில் ${f T}_1,\ {f T}_2,\ {f T}_0$ என்பவற்றைக் குறிக்கவும்.
 - b) உருவில் புறக்கணிக்கத்தக்க தடிப்புடைய ஆடுதண்டு பொருத்தப்பட்ட, ஆரை உடையதும், L=85.0cm உடையதுமான உலோகக்குழாய் B காட்டப்பட்டுள்ளது. குழாயின் ஆடுதண்டானது சுயாதீனமாக குழாயின் எந்த நிலைக்கும் நகர்த்தப்படக்கூடியது. ஆரம்பத்தில் ஆடுதண்டானது குழாயின் அந்தம் ${f A}$ இல் இருந்து xமிற்றர் தூரத்தில் நிறுத்தப்பட்டுள்ளது. மின் அதிரி V ஒன்று, குழாயின் திறந்த அந்தம் Bஇந்கு சந்நு வெளியே வைக்கப்பட்டுள்ளது. இதன் ஆவர்த்தனகாலம் T ஆனது 500µs இல் 15,000µs வரைக்குள்ள வீச்சத்தில் இருந்து எந்த பெறுதியையும் ஒரு கொண்டிருக்கும்படி குமிழ் ${
 m P}$ யைத் திருகி தெரிவுசெய்யப்படலாம். தெரிவுசெய்யப்பட்ட ${
 m T}$ இன் பெறுமானம் எண்கணிப்பொறி D இனால் (Digital meter) காட்சிப்படுத்தப்படும்.

- i. மின் அதிரி செவிப்புலன் கொண்ட ஒலியையா அல்லது மிகை ஒலியையா எழுப்புகின்றது? உமது விடைக்கு விளக்கம் தருக.
- x=0 ஆக இருக்கையில் எம்முறையில் மின் அதிரியின் ஆவர்த்தன காலத்தை முதல் முதலாக நிகழும் பரிவுறல் முதலாம் இசையமாக (1^{st} Harmonic) இருக்கச்செய்வீர்?
- iii. நீர் பெற்ற முதல் பரிவுநிலை மேற்தொனிக்கு உரியதல்ல என்பதனை எவ்வாறு உறுதிப்படுத்துவீர்?
- iv. குழாயை வரைந்து அதன் b(ii) க்கு உரிய நிலையில் முரண் கணுவின் உண்மை நிலையை புறம் தள்ளாது அலை உருவை வரையவும்.
- v. $x \neq 0$ ஆக இருக்கையில் அதிரியின் ஆவர்த்தன காலம் T இற்கு உரிய அடிப்படைப் பரிவுறலுக்கு x இற்கான ஒரு கோவையை L, T, r, V, k களில் காண்க. இங்கு V வளியில் ஒலியின் வேகம், kr குழாயின் முனைத்திருத்தம்.
- vi. அடிப்படை அதிர்வுக்கான x T வரைபை வரையவும்.
- vii. வரைபின் படித்திறன் $85.6~{
 m ms}^{-1}$ வளியில் ஒலியின் வேகத்தைக் கணிக்கவும்.
- viii. x அச்சில் வெட்டுத்துண்டு 0.862 m ஆயின் k இன் பெறுமதியைக் காண்க.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

✓ t.me/Science Eagle ▶ YouTube / Science Eagle f 💆 🔘 /S cience Eagle S L

- C.Maths
- Physics
- Chemistry
 - + more