Outline

A new measure for distance to uncontrollability

Ivan Markovsky

University of Southampton

Controllability

Numerical rank of a matrix

Distance to uncontrollabilit

Algorithms

Linear time-invariant (LTI) systems

Let \mathcal{B} be LTI system of order n with m inputs and p outputs. Define

- in discrete-time: $(\sigma x)(t) := x(t+1)$ shift operator
- in continuous-time: $\sigma x := dx/dt$ derivative operator

Two common representations of LTI systems are

input/state/output representation

$$\mathscr{B}_{i/s/o}(A, B, C, D) := \{ col(u, y) \mid \exists x, \ \sigma x = Ax + Bu, \ y = Cx + Du \}$$

• input/output representation

$$\mathscr{B}_{i/o}(P, Q) := \{ \operatorname{col}(u, y) \mid P(\sigma)y = Q(\sigma)u \}$$

where $P \in \mathbb{R}^{p \times p}[\xi]$, $det(P) \neq 0$ and $Q \in \mathbb{R}^{p \times m}[\xi]$.

Controllability

Numerical rank of a matrix

Distance to uncontrollability

Algorithms

Controllability

Numerical rank of a mat

Distance to uncontrollability

Algorithm

Controllability

Definition \mathscr{B} is controllable if for all $w_1, w_2 \in \mathscr{B}$, $\exists w \in \mathscr{B}$, $\tau > 0$, such that $w_1(t) = w(t)$, for all t < 0 and $w_2(t) = w(t)$, for all $t \ge \tau$.

Think of w_1 as a given past traj. and w_2 as a desired future traj.

g controllable

 \Longrightarrow

any given traj. can be steered to any desired trajectory

important condition for pole-placement, LQ, H_{∞} , ... control, e.g.,

controllability

solvability of the state feedback pole-placement problem

Controllability test in terms of I/S/O representation

For numerically checking controllability of \mathcal{B} , we need to relate this property to the parameters of \mathcal{B} in a particular representation.

Consider an I/S/O representation $\mathscr{B} = \mathscr{B}_{i/s/o}(A, B, C, D)$.

A well known result is that

$$\mathscr{B}_{i/s/o} \text{ is controllable iff } \mathscr{C} := \begin{bmatrix} \textit{A} & \textit{BA} & \cdots & \textit{BA}^{n-1} \end{bmatrix} \text{ is full rank}$$

⇒ checking controllability is a rank test problem for a structured matrix, which is a nonlinear transformation of *A*, *B*

Controllability

Numerical rank of a matrix

Distance to uncontrollability

Algorithm

Distance to rank deficiency

In numerical linear algebra, yes/no questions (\mathcal{B} contr./uncontr.) are replaced by quantitative measures (distance of \mathcal{B} to uncontr.)

Checking whether \mathscr{C} is full rank is a yes/no question.

A corresponding quantitative measure is distance of $\mathscr C$ to rank deficiency: smallest $\|\Delta\mathscr C\|$, such that $\widehat{\mathscr C}:=\mathscr C+\Delta\mathscr C$ is rank def.

However for $\|\Delta\mathscr{C}\|$ to be a meaningful measure for distance to uncontr., $\widehat{\mathscr{C}}$ has to be a controllability matrix for some system $\widehat{\mathscr{B}}$.

 $\implies \Delta \mathscr{C}$ should have the same structured as \mathscr{C} .

Controllability test in terms of I/O representation

Consider an I/O representation $\mathscr{B} = \mathscr{B}_{i/o}(P, Q)$.

A well known result is that

 $\mathscr{B}_{i/o}(P,Q)$ is controllable if and only if P and Q are coprime.

⇒ checking controllability is a coprimness test problem for a pair of polynomial matrices.

Controllability

Numerical rank of a matrix

Distance to uncontrollabilit

Algorithm

Unstructured/structured low rank approximation

Consider a set of structured matrices M and define

$$d_r(A) := \min_{\Delta A \in \mathbb{M}} \|\Delta A\|$$
 subject to $A + \Delta A$ has rank r .

With $\mathbb{M} = \mathbb{R}^{m \times n}$, $d_r(A)$ is unstructured distance to rank-r matrices.

In special cases, unstructured $d_r(A)$ can be computed from the SVD of A

$$A = U \operatorname{diag}(\sigma_1, \dots, \sigma_{\min(m,n)}) V^{\top}$$

- spectral norms: $d_r(A) = \sigma_{r+1}$
- Frobenius norm: $d_r(A) = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_{\min(m,n)}^2}$.

In general, $d_r(A)$ is difficult to compute.

Paige's distance to uncontrollability

C. C. Paige defined in

Properties of numerical algorithms related to computing controllability, IEEE-AC, vol. 26, 1981

the following measure for distance of \mathcal{B} to uncontrollability

$$d(A,B) := \min_{\widehat{A},\widehat{B}} \left\| \begin{bmatrix} A & B \end{bmatrix} - \begin{bmatrix} \widehat{A} & \widehat{B} \end{bmatrix} \right\|_{F}$$

subject to $\mathscr{C}(\widehat{A}, \widehat{B})$ is rank deficient

many papers on computing d(A, B) (98 citations in WoS)

However, d(A,B) depends on the choice of the state space basis!

 \implies d(A,B) not a genuine property of the pair of systems $(\mathscr{B},\widehat{\mathscr{B}})$

Distance to uncontrollability

Special case: I/O representation of a SISO system

Consider a SISO system \mathscr{B} with an input/output representation

$$p(\sigma)y = q(\sigma)u$$

With p monic, p, q are unique and

$$\operatorname{dist}(\mathscr{B},\widehat{\mathscr{B}}) := \sqrt{\|p - \widehat{p}\|_2^2 + \|q - \widehat{q}\|_2^2}$$

becomes a property of the pair of systems $(\mathcal{B}, \widehat{\mathcal{B}})$.

The problem of computing $d(\mathcal{B}_{\mathrm{i/o}}(p,q))$ becomes

$$\min_{\widehat{m{
ho}},\widehat{m{q}}} \left\| egin{bmatrix} m{
ho} \\ m{q} \end{bmatrix} - egin{bmatrix} \widehat{m{
ho}} \\ \widehat{m{q}} \end{bmatrix} \right\|_2 \quad ext{subject to} \quad \mathscr{B}_{\mathrm{i/o}}(\widehat{m{
ho}},\widehat{m{q}}) \in \overline{\mathscr{L}_{\mathrm{ctrb}}} \quad \quad (*)$$

More general definition

$$d(\mathscr{B}) := \min_{\widehat{\mathscr{B}} \in \overline{\mathscr{L}_{\mathrm{ctrb}}}} \operatorname{dist}(\mathscr{B}, \widehat{\mathscr{B}})$$

where

- \mathcal{L}_{ctrh} is the set of uncontrollable LTI systems
- $\operatorname{dist}(\mathscr{B},\widehat{\mathscr{B}})$ is a measure for the distance from \mathscr{B} to $\widehat{\mathscr{B}}$

Note: d(A, B) is formally a special case of $d(\mathcal{B})$ with

$$\operatorname{dist}(\mathscr{B},\widehat{\mathscr{B}}) = \left\| \begin{bmatrix} A & B \end{bmatrix} - \begin{bmatrix} \widehat{A} & \widehat{B} \end{bmatrix} \right\|_{F}$$
 (Paige)

however given \mathscr{B} and $\widehat{\mathscr{B}}$, A, B and \widehat{A} , \widehat{B} are not uniquely defined ⇒ (Paige) is not well defined

Distance to uncontrollability

Representations of
$$\mathscr{B}_{\mathrm{i/o}}(\widehat{\pmb{p}},\widehat{\pmb{q}}) \in \overline{\mathscr{L}_{\mathrm{ctrb}}}$$

 $\mathscr{B}_{i/o}(\widehat{p},\widehat{q}) \in \overline{\mathscr{L}_{ctrb}} \iff \widehat{p},\widehat{q}$ have common divisor c, $\deg(c) \ge 1$

$$\iff \exists u, v \text{ such that } \widehat{p}(\xi) = u(\xi)c(\xi)$$

$$\widehat{q}(\xi) = v(\xi)c(\xi)$$

$$\iff \exists \ u, v \text{ such that } \widehat{p}(\xi)v(\xi) = \widehat{q}(\xi)u(\xi)$$

$$\iff \exists \ u, v \text{ such that } S(\widehat{p}, \widehat{q}) \begin{bmatrix} v \\ -u \end{bmatrix} = 0$$

$$\iff$$
 $S(\widehat{p},\widehat{q})$ is rank deficient

Equivalent problem to (*)

 $\widehat{\mathscr{B}} \in \overline{\mathscr{L}_{ctrb}}$ is equivalent to rank deficiency of the Sylvester matrix

$$S(\widehat{\rho},\widehat{q}) := \begin{bmatrix} \widehat{\rho}_0 & & \widehat{q}_0 & & \\ \widehat{\rho}_1 & \widehat{\rho}_0 & & \widehat{q}_1 & \widehat{q}_0 & & \\ \vdots & \widehat{\rho}_1 & \ddots & \vdots & \widehat{q}_1 & \ddots & \\ \widehat{\rho}_n & \vdots & \ddots & \widehat{\rho}_0 & \widehat{q}_n & \vdots & \ddots & \widehat{q}_0 \\ & \widehat{\rho}_n & & \widehat{\rho}_1 & & \widehat{q}_n & & \widehat{q}_1 \\ & & \ddots & \vdots & & \ddots & \vdots \\ & & & \widehat{\rho}_n & & & \widehat{q}_n \end{bmatrix}$$

problem (*) is a Sylvester structured low-rank approximation

$$\min_{\widehat{\rho},\widehat{q},w} \left\| \begin{bmatrix} \rho \\ q \end{bmatrix} - \begin{bmatrix} \widehat{\rho} \\ \widehat{q} \end{bmatrix} \right\|_2 \quad \text{subject to} \quad S(\widehat{\rho},\widehat{q}) \begin{bmatrix} w \\ 1 \end{bmatrix} = 0 \quad (**)$$

Algorithms

Local optimization based algorithm

Theorem $d(\mathscr{B}_{i/o}(p,q))$ is equal to

$$\min_{\boldsymbol{c} \in \mathbb{R}} \operatorname{trace} \left(\begin{bmatrix} \boldsymbol{p} & \boldsymbol{q} \end{bmatrix}^\top \left(\boldsymbol{I} - \boldsymbol{T}([{}^{\boldsymbol{c}}_1]) \left(\boldsymbol{T}^\top ([{}^{\boldsymbol{c}}_1]) \boldsymbol{T}([{}^{\boldsymbol{c}}_1]) \right)^{-1} \boldsymbol{T}^\top ([{}^{\boldsymbol{c}}_1]) \right) \begin{bmatrix} \boldsymbol{p} & \boldsymbol{q} \end{bmatrix} \right).$$

Notes:

- \hat{p} , \hat{q} , u, v and the constraint are eliminated from (* * *)
- nonconvex nonlinear least squares problem
- solved numerically using local optimization methods
- the optimization variable is a scalar
- cost function evaluations: solve a structured LS problem
- exploiting structure, comput. complexity per iteration O(n)

Another equivalent problem to (*)

$$a(\xi)b(\xi) \iff \underbrace{\begin{bmatrix} a_0 \\ a_1 & a_0 \\ \vdots & a_1 & \ddots \\ a_{n_a} & \vdots & \ddots & a_0 \\ & a_{n_a} & & a_1 \\ & & \ddots & \vdots \\ & & & a_{n_a} \end{bmatrix}}_{T(a)} b \iff T(b)a$$

From
$$\mathscr{B}_{\mathrm{i/o}}(\widehat{\rho},\widehat{q}) \in \overline{\mathscr{L}_{\mathrm{ctrb}}} \iff \exists \ u,v, \ \mathrm{s.t.} \quad \frac{\widehat{\rho}(\xi) = u(\xi)c(\xi)}{\widehat{q}(\xi) = v(\xi)c(\xi)},$$
 we have

$$\min_{\widehat{p},\widehat{q},u,v,c} \left\| \begin{bmatrix} \pmb{p} \\ \pmb{q} \end{bmatrix} - \begin{bmatrix} \widehat{\pmb{p}} \\ \widehat{\pmb{q}} \end{bmatrix} \right\|_2 \quad \text{subject to} \quad \begin{bmatrix} \widehat{\pmb{p}} \\ \widehat{\pmb{q}} \end{bmatrix} = \begin{bmatrix} T(u) \\ T(v) \end{bmatrix} c \quad \ (***)$$

Algorithms

Proof

Rewrite the constraint of (* * *) as follows

$$\begin{bmatrix} \widehat{p} \\ \widehat{q} \end{bmatrix} = \begin{bmatrix} T(u) \\ T(v) \end{bmatrix} c \quad \iff \quad [\widehat{p} \quad \widehat{q}] = T(c) \begin{bmatrix} u & v \end{bmatrix}$$

so that

$$\left\| \begin{bmatrix} \boldsymbol{p} \\ \boldsymbol{q} \end{bmatrix} - \begin{bmatrix} \widehat{\boldsymbol{p}} \\ \widehat{\boldsymbol{q}} \end{bmatrix} \right\|_{2} = \left\| \begin{bmatrix} \boldsymbol{p} & \boldsymbol{q} \end{bmatrix} - \boldsymbol{T}(\boldsymbol{c}) \begin{bmatrix} \boldsymbol{u} & \boldsymbol{v} \end{bmatrix} \right\|_{F}$$

(***) becomes an ordinary least-squares problem in u, v

closed form expression in c

Controllability

erical rank of a matrix

stance to uncontrollability

Algorith

Controllability Numerical rank of a matrix

Distance to uncontrollability

ollability Algorithms

Suboptimal initial approximations

can be computed from unstructured low rank approx. (SVD) of

- 1. Sylvester matrix S(p,q)
- 2. Bezout matrix B(p,q)
- 3. Hankel matrix H(h)
- 4. Balanced model reduction

$$\mathbf{B}(\mathbf{p},\mathbf{q}) := \begin{bmatrix} p_1 & \cdots & p_n \\ \vdots & \ddots & \\ p_n & & 0 \end{bmatrix} \begin{bmatrix} q_0 & \cdots & q_{n-1} \\ & \ddots & \vdots \\ 0 & & q_{n-1} \end{bmatrix} - \begin{bmatrix} q_1 & \cdots & q_n \\ \vdots & \ddots & \\ q_n & & 0 \end{bmatrix} \begin{bmatrix} p_0 & \cdots & p_{n-1} \\ & \ddots & \vdots \\ 0 & & p_{n-1} \end{bmatrix}$$

$$H(h) := \begin{bmatrix} h_1 & h_2 & \cdots & h_n \\ h_2 & h_3 & \cdots & h_{n+1} \\ \vdots & \ddots & \ddots & \vdots \\ h_n & h_{n+1} & \cdots & h_{2n} \end{bmatrix}, \qquad \frac{q(z)}{p(z)} = \sum_{t=0}^{\infty} h_t z^{-t-1}$$

ontrollability Numerical rank of a matrix

Distance to uncontrollability

Algorithms

Simulation example

Given $\mathcal{B}_{i/o}(p,q)$, where

$$p(\xi) = 0.058 + 0.684\xi + 2.745\xi^2 + 4.751\xi^3 + 3.622\xi^4 + 1.000\xi^5$$

$$q(\xi) = -0.134 - 1.408\xi - 5.149\xi^2 - 8.381\xi^3 - 6.092\xi^4 - 1.604\xi^5$$

we compute initial approximation $\mathscr{B}_{\mathrm{i/o}}(\widehat{p},\widehat{q})$ by one of the suboptimal methods and a locally optimal solution $\mathscr{B}_{\mathrm{i/o}}(\widehat{p}^*,\widehat{q}^*)$

Method	$d(\mathscr{B}_{\mathrm{i/o}}(\widehat{\pmb{\rho}},\widehat{\pmb{q}}))$	$d(\mathscr{B}_{\mathrm{i/o}}(\widehat{\pmb{p}}^*,\widehat{\pmb{q}}^*))$	# iter.	# cost fun. eval.
Sylvester	0.0109	0.0021	4	20
Bezout	0.0041	0.0007	3	12
Hankel	0.0026	0.0007	3	12
BMR	0.0051	0.0007	5	46

(BMR — Balanced model reduction)

Using the Sylvester matrix

$$\mathscr{B}_{\mathrm{i/o}}(p,q) \in \overline{\mathscr{L}_{\mathrm{ctrb}}} \quad \Longleftrightarrow \quad \exists \ u, v \ \mathrm{such \ that} \ \mathscr{S}(p,q) \begin{bmatrix} v \\ -u \end{bmatrix} = 0$$

1. Compute the SVD of $S(p,q) \rightsquigarrow$ approximate u and v.

2. Solve the LS problem
$$\begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} T(u) \\ T(v) \end{bmatrix} c$$
.

3. Define

$$\widehat{p}(\xi) = u(\xi)c_{ls}(\xi)$$
 and $\widehat{q}(\xi) = v(\xi)c_{ls}(\xi)$.

Then

$$d(\mathscr{B}_{\mathrm{i/o}}(p,q)) \leq \|\operatorname{col}(p,q) - \operatorname{col}(\widehat{p},\widehat{q})\|_{2}$$

Controllability

lumerical rank of a matri

istance to uncontrollability

Algorithms

Conclusions

- motivation: replace the statement "\$\mathscr{G}\$ contr./uncontr." with a
 quantitative one "distance of \$\mathscr{G}\$ to uncontrollability"
- the definition invariably considered in the literature is not representation invariant
- behavioral measure: $d(\mathscr{B}) := \min_{\widehat{\mathscr{B}} \in \mathscr{L}_{\operatorname{ctrh}}} \operatorname{dist}(\mathscr{B}, \widehat{\mathscr{B}})$
- in the SISO case, $d(\mathcal{B})$ can be defined in terms of the normalized I/O representation $p(\sigma)y = q(\sigma)u$
- the computation of $d(\mathcal{B})$ leads to a nonlinear least squares problem, which cost function evaluation is O(n)
- SVD upper bounds, based on the Sylvester, Bezout, Hankel matrices, and balanced model reduction