• 综대 •

3D 打印技术在足踝外科的应用价值

姜雨晨 陈雁西

摘要 3D打印技术应用于足踝外科领域具有快速、个体化、直观、可操作性强等优点。应用 3D 打印技术制作的足踝矫形器能实现个体化治疗,并缩短制作时间;术前制备骨骼 3D 打印模型和导向模型可减少手术难度和术中透视次数,增强手术精确性;术前应用 3D 打印技术制备个体化骨片和假体,可实现较好的匹配。该文就 3D 打印技术在足踝外科的应用价值作一综述。

关键词 3D 打印;足踝;应用

DOI: 10. 3969/j. issn. 1673-7083. 2015. 01. 005

足踝部具有骨骼及关节数量多、形态复杂、体积小等特点,故该部位创伤诊治一直是骨科领域的难点之一。随着计算机技术的飞速发展,3D打印技术应运而生。借助于3D打印技术快速、个体化的优势,一些足踝部位研究难点得以突破。本文就3D打印技术在足踝外科领域的应用现状作一综述。

1 3D 打印技术概述

广义的 3D 打印技术又称快速成型技术[1],是一种以数字模型为基础,在计算机控制下以逐层打印的方式构造物体的技术。应用此技术可构造出任意几何形状的物体。自 Hull 等[2]于 1986 年制造了第一台 3D 打印机以来,此技术已经历近 30 年的发展。进入 21 世纪后,由于计算机技术的迅速升级,3D 打印机效率、性能取得了长足进步,其产量、销量飞速上涨,价格逐年降低[3],甚至出现了一些仅具有基本功能的家用 3D 打印机。如今越来越多的功能强大的新式 3D 打印技术不断涌现,这些新型 3D 打印机可打印更多不同材料、不同需求的物品。3D 打印技术的发展使 3D 打印机的应用越来越广泛,各行业都开始挖掘 3D 打印机在本领域的应用价值。

2 3D 打印步骤与方法

3D打印主要分为3个步骤。第一步是在计算机上进行3D设计,即先建立3D模型,再将3D模型进行分区或切片,使之能被3D打印机识别;第二步由打印机完成,即读取3D模型的分区或切片数据并打印,然后将这些分区或切片利用各种方式黏合成一整体;第三步将第二步打印出的实体进行再加工,使之更符合实际需求,从而完成整个打印过程[1]。在临

床医学领域,现代影像学技术如多排螺旋 CT 及 MRI 等检查可为 3D 打印提供模型制作的形态学参数^[4]。随着临床上这些检查的逐步常规化,3D 打印技术在 医学领域也开始有了应用的空间^[5-6]。

目前应用在医学方面的 3D 打印技术主要有选 择性激光烧结技术、熔融沉积造型技术、多喷嘴成型 技术和立体印刷术等 4 种[7-8]。选择性激光烧结技 术是指用激光束在热塑性薄片上进行选择性切割, 由此将 CT 或 MRI 每层图像制成热塑性薄片,然后 将这些薄片层叠烧结,制成 3D 模型。该技术制造 出的 3D 模型具有几何精度高的优点,但高昂的成 本和粗糙的表面使之实用性较低[7,9]。熔融沉积造 型技术指将熔融材料分层塑型、凝固。此技术可用 不同材料制作不同组织,各解剖结构可分别用不同 颜色、类型的材料制成以示区分。其制成的 3D 模 型几何精度及表面质量较高,但耗时较长(可达 24 h)^[7,10]。作为最早出现的 3D 打印技术,立体印 刷术在医学领域较为常用。它的原理是让需要成型 的液态光敏树脂在激光作用下选择性地发生聚合反 应,硬化后层叠制成模型。应用该技术制成的 3D 模型具有可消毒、几何精度高、表面质量高、细节等 级高等优点,其细节等级和表面质量均优于熔融沉 积造型技术,但也有耗时长的缺陷[5,7,11]。多喷嘴成 型技术也即狭义所称的 3D 打印技术,其打印方式 类似于普通的喷墨打印机,即将粉末状材料逐层喷 涂,最终形成模型成品。这种打印方法缺点较多,但 耗时较少且材料成本较低。目前采用最新技术制成 成品时间可压缩至4h内,且仍有缩短的空间^[7,12]。

3 3D 打印技术在足踝外科中的应用

3.1 个性化足踝矫形器定制

足踝矫形器是一种用于控制足踝部运动的装

基金项目: 国家自然科学基金(81271989、81370053)

作者单位: 200120 上海, 同济大学附属东方医院创伤骨科通信作者: 陈雁西 E-mail: cyxtongji@126. com

置,可用于固定关节炎、骨折损伤部位和纠正足踝部 畸形。批量生产的足踝矫形器型号有限,无法提供 个体化服务以实现最佳矫形效果[13]。定制的足踝 矫形器虽解决了上述问题,但其制作耗时长目对工 艺技巧要求高。3D 打印的足踝矫形器应用逆向工 程和快速成形技术,在大幅降低个体化足踝矫形器 制作难度、缩短制作时间的同时,可实现与定制的足 踝矫形器相同,甚至更佳的效果。Faustini 等[14] 应 用激光烧结技术制作出的足踝矫形器具有个性化形 状和功能,且在抗压力和抗扭力等方面表现良好。 Mavroidis 等[13] 通过激光扫描收集患者个体化数 据,应用 3D 打印技术制作模型,得到的足踝矫形器 与传统的聚丙烯足踝矫形器伸展性、弹性、抗弯、抗 压等均相近。Creylman等[15]应用激光烧结技术为 8 例已使用定制足踝矫形器超过 2 年的患者量身定 制了新的足踝矫形器,结果步行实验显示这些足踝 矫形器表现良好,其在跨步距离、跨步时间、起步时 间上均取得了与定制足踝矫形器同样好的效果,而 制作这些足踝矫形器的时间(仅需 1 d)却远短于定 制足踝矫形器。目前应用 3D 打印技术制作的足踝 矫形器在各种测试和实验中均表现良好,投入临床 应用前景可期。

3.2 足踝部骨骼模型制备

足踝部骨骼多、形态复杂,对该部位进行手术需术者具有扎实的解剖知识、较强的空间想象能力、丰富的临床经验和完善的术前设计。即使具备上述条件,患者个体化差异仍可导致手术难度增大和操作时间增加^[16]。在术前制备足踝部骨骼 3D 打印模型,可提供逼真的模拟手术环境,帮助术者对手术部位进行全面观察和了解。此外,足踝部骨骼 3D 打印模型还可用于术前预复位、术中钢板螺钉置入及内固定模拟,并可对钢板进行预塑型,从而进一步调整手术方案,确定更合理、个体化的内固定物置放位置和角度,以期实现更佳的手术效果,并缩短术中操作时间。

Kacl 等^[17]将 30 例跟骨关节内骨折足踝部骨骼 3D 打印模型与普通 2D、3D 重建图像进行对比,发现 3D 打印模型与普通 2D、3D 重建图像在跟骨骨折诊断方面并无明显差异,认为与数字化虚拟模型相比,3D 打印模型具有更强的可操作性,故在手术设计方面更为实用。Giovinco 等^[18]应用 3D 打印技术辅助治疗 Charcot 足,即采用普通的 3D 打印机制作数个廉价的患足骨骼模型,术者通过模拟手术有效降低了Charcot 足晚期手术难度,提高了手术效率,从而减少

手术风险,增加手术成功率。Bagaria等[19] 应用 3D 打 印技术制作了1例16岁男性患者跟骨骨折(Sanders IIB型)模型,模型清晰地展示了骨折情况;据此设计 的手术获得成功,患者术后恢复良好,2年后骨折完 全愈合。近期 Chung 等[20] 报道了 1 例 3D 打印模型 用于单侧跟骨关节内骨折手术,即先扫描双侧跟骨 CT图像,再应用镜像技术将健侧跟骨打印成与患侧 跟骨相同大小的模型,术前利用该模型及影像学资料 设计钢板置放位置、钉道等,使内固定物既能稳定固 定,又能以较小的切口置入,并对钢板进行预塑型,使 其能更好地贴合骨面;术中直视下及 X 线透视下将模 型与骨折处进行对比,以此为依据进行复位、植骨及 固定,最终手术获得成功。章莹等[21]研究计算机快 速成型技术辅助治疗三踝骨折的疗效,并与常规手术 进行比较,发现虽然两者手术切开暴露时间并无差 异,但前者复位与固定时间较短,手术疗效优良率也 较高。金丹等[22]应用逆向工程方法及三维重建技术 制备了用于下胫腓联合分离内固定中的导向模板,制 备的导向模板具有较好的匹配性,在下胫腓联合分离 内固定临床初步应用中显示了良好的疗效。骨骼 3D 打印模型及导向模板有助于骨折复位、钢板预弯、内 固定物置放位置及角度确定、截骨矫形术设计等,因 其能减少手术难度、增加手术准确性、减少术中X线 透视使用次数,在临床上具有较为乐观的应用前景。

3.3 植入物个性化设计

足踝部损伤常会造成骨骼缺损,此时需进行适 当的植骨以重塑其结构完整性。但由于足踝部骨骼 结构复杂,骨骼缺损呈不规则状,因此对植入物塑形 常在术中耗费大量时间。利用足踝部骨骼 3D 打印 模型,可在术前即应用 3D 打印技术制备个体化骨 片和假体,不但较传统方式节省手术时间,还能实现 更好的匹配。由于技术限制,使用 3D 打印机直接 打印钛合金钢板或螺钉尚处于试验阶段,目前 3D 打印技术主要用于预处理钢板,经 3D 打印技术处 理的钢板较传统钢板更能个体化地适应患者骨骼情 况,从而达到更佳的疗效。Cooke等[23]将可降解的 生物材料应用于 3D 打印技术中,成功地制造出了 符合要求的骨片。Leukers 等[24] 应用 3D 打印技术 打印羟基磷灰石支架并在其上培养干细胞,使这些 支架成为类似人体骨骼的结构。3D 打印技术可构 造出任意形状的物体,因此其在足踝外科中的应用 价值值得进一步研究。

4 结语

应用 3D 打印技术制作的足踝矫形器不仅能实

现个体化治疗,还能减少人工成本和时间成本。对复杂的足踝外科手术,3D打印模型和导向模板不仅能减少手术难度、减少术中透视次数,更能增强手术精确性。此外,3D打印技术也可应用于制造个体化植入物,随着3D打印模型表面处理和几何精确度等技术的进步,3D打印技术在直接打印植入物方面有巨大的发展空间。然而,目前3D打印技术仍存在一定的不足。首先,虽然随着技术的进步,3D打印模型的成本逐年稳步下降,但仍相对稍高;其次,3D打印耗时仍过长,较难应用于急诊手术;最后,3D打印技术的应用仍处于试验阶段,其应用范围需更多的探索,实际疗效需临床研究验证。若3D打印技术能不断改进及继续发展,其在足踝外科的应用前景将十分广阔。

参考文献

- [1] Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data; review of medical applications [J]. Int J Comput Assist Radiol Surg, 2010, 5(4):335-341.
- [2] Hull C, Feygin M, Baron Y, et al. Rapid prototyping: current technology and future potential [J]. Rapid Prototyping J, 1995, 1(1):11-19.
- [3] Bradshaw S, Bowyer A, Haufe P. The intellectual property implications of low-cost 3D printing[J]. Scripted, 2010, 7 (1):5-31.
- [4] 郝旖旎,陈雁西. 计算生物力学在骨科领域的应用现状与展望[J]. 中华外科杂志, 2012, 50(12):1143-1146.
- [5] Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials, 2010, 31(24):6121-6130.
- [6] Chen YX, Zhang K, Hao YN, et al. Research status and application prospects of digital technology in orthopaedics[J]. Orthop Surg, 2012, 4(3):131-138.
- [7] Negi S, Dhiman S, Sharma RK. Basics and applications of rapid prototyping medical models[J]. Rapid Prototyping J, 2014, 20(3):256-267.
- [8] Petzold R, Zeilhofer HF, Kalender WA. Rapid protyping technology in medicine: basics and applications[J]. Comput Med Imaging Graph, 1999, 23(5):277-284.
- [9] Bertol LS, Júnior WK, Silva FP, et al. Medical design: direct metal laser sintering of Ti-6Al-4V[J]. Mater Des, 2010, 31 (8):3982-3988.
- [10] Lee CS, Kim SG, Kim HJ, et al. Measurement of anisotropic compressive strength of rapid prototyping parts[J]. J Mater Process Technol, 2007, 187-188;627-630.
- [11] Chockalingam K, Jawahar N, Chandrasekar U, et al. Establishment of process model for part strength in

- stereolithography[J]. J Mater Process Technol, 2008, 208 (1-3);348-365.
- [12] Hoque ME. Advanced Applications of Rapid Prototyping Technology in Modern Engineering [M]. Rijeka: InTech, 2011:1-21
- [13] Mavroidis C, Ranky RG, Sivak ML, et al. Patient specific ankle-foot orthoses using rapid prototyping[J]. J Neuroeng Rehabil, 2011, 8,1.
- [14] Faustini MC, Neptune RR, Crawford RH, et al. Manufacture of Passive Dynamic ankle-foot orthoses using selective laser sintering[J]. IEEE Trans Biomed Eng, 2008, 55(2 Pt 1): 784-790.
- [15] Creylman V, Muraru L, Pallari J, et al. Gait assessment during the initial fitting of customized selective laser sintering ankle foot orthoses in subjects with drop foot[J]. Prosthet Orthot Int, 2013, 37(2):132-138.
- [16] 陈雁西,俞光荣. 踝关节骨折的治疗策略与数字化临床路径 [J]. 中华骨科杂志, 2011, 31(3):275-284.
- [17] Kacl GM, Zanetti M, Amgwerd M, et al. Rapid prototyping (stereolithography) in the management of intra-articular calcaneal fractures[J]. Eur Radiol, 1997, 7(2):187-191.
- [18] Giovinco NA, Dunn SP, Dowling L, et al. A novel combination of printed 3-dimensional anatomic templates and computer -assisted surgical simulation for virtual preoperative planning in Charcot foot reconstruction[J]. J Foot Ankle Surg, 2012, 51(3);387-393.
- [19] Bagaria V, Deshpande S, Rasalkar DD, et al. Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures [J]. Eur J Radiol, 2011, 80(3):814-820.
- [20] Chung KJ, Kim YT, Yang I, et al. Preshaping plates for minimally invasive fixation of Calcaneal fractures using a real -size 3D-printed model as a preoperative and intraoperative tool[J]. Foot Ankle Int, 2014, 35(11):1231-1236.
- [21] 章莹,万磊,尹庆水,等. 计算机快速成型辅助个体化三踝骨折的手术治疗[J]. 中华创伤骨科杂志,2009,11(6):509-511
- [22] 金丹,王丹,张元智,等.下胫腓联合分离固定数字化导向模板的设计及其初步临床应用[J].南方医科大学学报,2009,29(7):1364-1366.
- [23] Cooke MN, Fisher JP, Dean D, et al. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth[J]. J Biomed Mater Res B Appl Biomater, 2003, 64(2):65-69.
- [24] Leukers B, Gülkan H, Irsen SH, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing[J].

 J Mater Sci Mater Med, 2005, 16(12):1121-1124.

(收稿:2014-12-05)

(本文编辑:翁洁敏)