الجمهورية الجزائرية الديتقواطية الشعبية

الديوان الوطئ للامتحانات والمسابقات

دورة: جوان 2014

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المعدة: 04 سا و 30 د

اختبار في مادة: الرياضيات

عنى المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

النعرين الأول: (05 نقط)

في الفضناء المنسوب إلى المعلم المتعامد المتجاس $\{O; \overline{f}, \overline{f}, \overline{f}, \overline{f}\}$. نخبر النفط: (-1;2;4) A (2;1;-1) و (0;-2;3) و (0;-2;3) و المستوي (P) المعرف بالمعادلة الديكارتية : (0;-2;3) و المطنوب: أحب بصحيح أو خطأ مع تبرير الإجابة في كل حالة من الحالات التالية:

- النقط ، ، عون مستويا.
- (P) المستقيم (AC) محتوى في المستوي (2)
- (ACD) هي معائلة للمستري x 2y z 1 = 0 (3)
- (AC) هو تمثیل وسیطي للمستقیم $\begin{cases} x = 2t \\ y = -2 + 3t & t \in \mathbb{R} \end{cases}$ (4) $z = 3 \cdot 4t$
 - $\frac{3}{2}$ السياقة بين النقطة D والمستري (P) تساري (5
- (P) النقطة (-2;-4;1) هي المسقط العمودي للنقطة (P) على (P)
- $AM\cdot\overline{CM}=0$ عصلح الكرة ذات المركز D و نصف القطر $\frac{\overline{\sqrt{6}}}{2}$ هو مجمرعة النقط M من القضاء التي تحقق: D

التمرين الثلثي: (05 نقاط)

- $(z-1-2i)(z^2-2(1+\sqrt{3})z-5+2\sqrt{3})=0$ المعادلة الثالية: $0=(z-1-2i)(z^2-2(1+\sqrt{3})z-5+2\sqrt{3})=0$
- ي و C نقط من المستوي المنسوب إلى المعلم المتعامد المقبانس $(O_{i}\vec{u},\vec{v})$ لاحقاتها على الترتيب:

$$z_{ij} = 1 - 2i$$
 j $z_{ij} = 1 - \sqrt{3} - i$ i $z_{ij} = 1 + \sqrt{3} + i$ i $z_{ij} = 1 + 2i$

أ) بنز أن: AB = CD ر (AD) بوازي (BC)

ABCD يحقق ان $\frac{z_{B}-z_{B}}{2}\neq \frac{z_{A}+z_{C}}{2}$ ثم استنتج طبيعة الرباعي (ت

$$\frac{z_o - z_g}{z_A - z_g} = \sqrt{3} e^{i\frac{\pi}{2}}$$
 (أ) بيتن أن: (3)

السننج أن D هي صورة A بنشابه مباشر مركزه B يطلب تعيين نسبته وزاريته.

ب) بين كن العظت ADB قائم وأن النقط ABB و C ، B ، B و D تتتمي إلى دائرة يطلب تحديد مركزها ونصف قطرها. ح) استنتج إنشاء للرياضي ABCD

التعرين الثالث: (04) نقاط)

- ، نعتبر المعادلة (E): 54 = 1962y عندان معجمان x عندان معجمان x
 - PGCD(2013,1962) (
 - ب) استنتج أنّ المعادلة (E) تقبل حلو لا ،
 - x=0[6] (نان: (E) فإن: (x,y) حلا المعادلة (E) فإن: (x,y)
 - د) استنج جلاً خاصنًا (x_0,y_0) حيث (x_0,y_0) ثم حل العمائلة (E)
- نرمز بالرمز الله الله الله المعادلة الأكبر المعددين الله الله عادلة (x,y) حل المعادلة (E)
 ا) ما هي لقيم العمكنة للعدد اله؟
 - PGCD(a,b) = 18 و a = 654b = 18 و a حيث قبح العددين الطبيعيين a و a حيث قبح العددين الطبيعيين a

التعرين الرابع: (66 نقاط)

- $g(x) = (2-x)e^x 1$ لدالة العددية المعرفة على g(x) كما يلي: $e^x(x) = (2-x)e^x 1$
 - ادرس تغیرات الدائة ع
- i,8<eta<1.9 بين أنْ للمعائلة: $g\left(x
 ight)=0$ في lpha حلان lpha و eta حيث $a\in \mathbb{R}$ ابين أنْ للمعائلة: $a\in \mathbb{R}$
 - استنتج إشارة (x) چ على ؟
- ر الدانة العددية المعرفة على \Re كما يلي: $f(x) = rac{e^x-1}{e^x-x}$ على المستوي المعثل الدانة العددية المعرفة على \Re كما يلي: $f(x) = rac{e^x-1}{e^x-x}$ المنسوب إلى المعلم المتعلد المتجانس O(i,j)
 - إ) الحسب نهائية الدالمة تم عقد مدر وعقد مدر وقستر الفائيجائين هندسية.
- ين أنه من أجل كل عدد حقيقي $x: \frac{g(x)}{\left(e^x-x\right)^2}$ واستنتج النجاء تغير الدالة f ثم شكل جدول تغيراتها.
 - $f\left(eta
 ight)$ واستنتج حصر المعدين $f\left(lpha
 ight) = rac{1}{lpha 1}$ (3) ابنین آن:
 - (C_{f}) لصنب f(1) ثم ارسم الملحثى (4
 - 5} نر عند حقيقي أكبر أر يساري 1
 - $ho(\lambda) = \int_{1}^{\lambda} [f(x)-1] dx$ جوئا: $a(\lambda)$ حوثا: (أ
 - ب) لصب نهایة (ج) م عندما یؤول ثر إلى ده+

الموضوع الثاتي

التعرين الأول: (65) نقاط)

 $(O; \nu, \nu)$ المستو ي منسوب إلى المعام المتعامد المتجانس

b=-1+2i و a=-2+6i و النقطة الله المقتاهما على القرائيب: a=-2+6i و a=-1+2i

- اكتب العدد المركب ÷+1 على شكل أسى.
- $z'=\sqrt{2}\,e^{i\frac{\pi}{4}}z+2$ د التحويل النقطي للذي يرفق بكل نقطة M لاحقتها z التحويل النقطي للذي يرفق بكل نقطة M لاحقتها z
- أ) D النقطة ذات قلاحقة d حيث d=2i جد لاحقة النقطة D صورة d بالتحويل d ماذا تستنج؟ بين أن: d=2i $d=\sqrt{2}$ $e^{i\frac{\pi}{4}}(z-d)$ بين أن: d=2i واستنج طبيعة رعناص التحريل
 - 3x + 5y = 11 (a) (3)
 - أ) تَحَقَّقَ أَنَ قَائِطَةً (3;4) مَنتُمي إلى (Δ) ثم عين نقط (Δ) التي إحداثيقها أحداد! صحيحة،
 - ب) M_{c}^{+} مسورة M_{c} بالتحويل M_{c} . بين أن المصنقيمين M_{c}^{+} (BM) و (BM) متعاهدان،
 - 4) x و y عددان صحيحان من المجال [5:5]، عين مجموعة النقط $M\left(x;y\right)$ من المستوي بحيث يكون المستقيمان BM' و BM' متعامدين، حيث M' هي صنور BM بالنجويل M'

ال<u>تبرين اللقي</u>: (04.5 نقاط)

الدالة العددية f معرفة على $[o,+\infty]$ كما يني: $\frac{2x^2}{x-4} = \frac{2x^2}{x-4}$ المنحدية f معرفة على $[o,+\infty]$ كما هو مبين في الشكل أدناد. المتعامد المتعامد المتعامد $\{o,\overline{f},\overline{f}\}$ كما هو مبين في الشكل أدناد.

- 111) بين أن الدالة الر منز ايدة تعاما.
- $U_{n+1}=f\left(U_{n}
 ight)$ المنتالية المعدية المعرفة بـــ: 3 $U_{n}=3$ و من أجل كل عند طبيعي المنتالية المعدية المعرفة بـــ: 2
 - y = x المستقيم الذي معادلته x = y
 - أ) باستعمال المنحنى (C_r) والمستقيم (۵) مثل، على حامل محور للفواصل، الحدود: U_1 ، U_2 ، U_3 ، U_4 ، U_6 حسابها، مدود مداري المثارة المثا
 - ب) طبع تخمين حول الجاء تغير العنقالية (U_n) وتقاربها.
 - $0 \le U_n \le 3:n$ بر هن بالتراجع أنه من أجل كل عبد طبيعي $n: \mathbb{S} \ge U_n \le 0$ (3) برقن أنّ المنتالية (U_n) متناقصة .
 - ج) استنتج آن (U_n) منقاریة (
 - اً) ادرس بشارة العدد $U_{n-1} = 6 U_n 6 U_n$ واستنتج أنَّه من أجل كل $0 \le U_{n-1} \le \frac{6}{7} U_n$ به معد طبيعي الله من أجل كا
 - $0 \lesssim U_n \lesssim 3 \left(rac{6}{7}
 ight)^n$ بر هن بالتراجع أنه من أجل كل عدد طبيعي $n: -\infty$ $+\infty$ برحسب نهاية المنتالية (U_n) عندما يؤول n إلى $+\infty$

التعرين الثالث: (05 نفاط)

 $A\left(1;1;3
ight)$ المستقيم الذي يشمل المتعامد المتجانس $\left(O(\overline{I},\overline{f},\overline{K})
ight)$. المستقيم الذي يشمل النقطة المتجانب

$$\begin{cases} x+z=0 \\ y=3 \end{cases}$$
 شماع توجيه له . (۵) المستقيم المعرف بجملة المعادلتين: $\bar{x}(1;2;-2)$

- (۵) و (۵) جد تعثیلا وسیطیا لکل من المستقیمین (۵) و (۵)
 - 2) بين أنّ (Δ) و (Δ') أيسا من نفس المستوى.
- $(2\pi + y + 2\pi 3 = 0)$ هي: (P) هي: (Δ) و يو از ي (Δ) . بين أن معادلة المسئوي (P) هي: (Δ) هي: (Δ)
- (P) دين M د المستوى M المسافة بين M د المستوى M د در M المسافة بين M د المستوى M
 - أ) عَيْن إحداثيات النقطة 'A المسقط العمودي للنقطة A على المستوي (P)، ثم عَيْن تَمْثَيلاً وسيطياً المستقيم
 - (Δ^{\bullet}) الذي يشمل A^{\bullet} ريوازي (Δ^{\bullet})
 - B(i;3;-1) بَيْنَ أَنَ (Δ') و (Δ'') يثقلط عان في النقطة (Δ'')
 - $f(t) = BM^2$ للدالة الحدية المعرفة على \Re كما بلى: f(6)
 - $f(t) = 9t^2 24t + 20$ (i)
 - $f(t_0)$ بين أنْ t_0 تقبل قيمة حدية صنغرى $f(t_0)$ يطلب تعيين t_0 و و t_0
 - $a = \sqrt{f(t_0)}$) is cased $= \sqrt{f(t_0)}$

التعرين الرابع: (5.5) نقاط)

- $f\left(x
 ight) = \left(1+2\ln x
 ight)\left(-1+\ln x
 ight)$: $=:=\left[0;+\infty
 ight]$ اندالة الحدية المعرفة على العجال $f\left(1+2\ln x
 ight)$
- $\{O(T,j)\}$ المنحنى الممثل للذالة f في المصاتوي المنصوب إلى المعلم المتعامد المتهانس $f(C_f)$
 - أ) ادرس تغيرات الدلمة ع
- . بعملهٔ الكتب محادلة المعالى ((a) المعالى ((c_{r}) في النقطة ذات الغاصلة a (حيث a أساس اللو غاريت النيبري).
 - $\left[0;e^{2}
 ight]$ عين فراهمال نقط القاطع $\left(C_{f}
 ight)$ مع حامل معور القواميال ثم ارسم $\left(C_{f}
 ight)$ على المجال $\left(C_{f}
 ight)$
 - $g\left(x\right)$ = 1 $\ln x$: با $\left[0;+\infty\right[$ با الدلالة العددية المعرفة على المجال $g\left(2\right)$
 - , شيلها البياني في المعلم المعليق $\left(C_{F}
 ight)$
 - ا) ادرس تغیرات الدالة ع
 - $[C_{p}]^{2}$ عنين الوضيع النسيني للمنحنيين $[C_{p}]$ و $[C_{p}]$ ثم الرسم $[C_{p}]$ عني المجال $[C_{p}]^{2}$
 - $h(x) = x(\ln x)^2 2x \ln x + 2x$ نسبَر الدللة الحديث $h(x) = x(\ln x)^2 2x \ln x + 2x$ بنسبَر الدللة الحديث $h(x) = x(\ln x)^2 2x \ln x + 2x$
 - $]0;+\infty[$ على $x\mapsto (\ln x)^2$ على الدلالة h'(x) على الدلالة والدلالة به الدلالة الدلالة على الدلالة ال
 - $\int_{\frac{1}{2}}^{\frac{d}{2}} [f(x) g(x)] dx : \text{such the proof} \left(-\frac{1}{2} \right)$