

Dipartimento di Elettronica, Informazione e Bioingegneria

Quantum Computing: From Circuit To Architecture

Nicholas Mainardi

Email: nicholas.mainardi@polimi.it home.deib.polimi.it/nmainardi

8th Semptember 2017

This talk is mainly based on portions of the course held by Carmen G. Almudever (TU Delft) at Acaces summer school (Fiuggi, 9-14th July 2017), enriched with some material by myself

Outline

- 1. Qu-bit definition
- Quantum gates
- Multi-states
- 4. Example: Teleportation
- Quantum Algorithms
- Quantum Processor
- 7. Compilation
- 8. Quantum Computers Architecture

Qu-Bit: Definition

Classical Bit

Bit is either 0 or 1:

Classical Bit

Bit is either 0 or 1:

Quantum Bit

The bit is in a superposition state: it is both 0 and 1

A qu-bit
$$\psi$$
 is defined as: $|\psi\rangle=\alpha_0\,|0\rangle+\alpha_1\,|1\rangle$ $\qquad \alpha_0,\alpha_1\in\mathbb{C}$

$$\alpha_0, \alpha_1 \in \mathbb{C}$$

Since
$$|0\rangle=\begin{bmatrix}1\\0\end{bmatrix}$$
 and $|1\rangle=\begin{bmatrix}0\\1\end{bmatrix}\Rightarrow|\psi\rangle=\begin{bmatrix}\alpha_0\\\alpha_1\end{bmatrix}$

Qu-Bit: Measurement

What do α_0 and α_1 actually mean?

Measurement

Consider a qu-bit $|\psi\rangle = \begin{bmatrix} \alpha_0 & \alpha_1 \end{bmatrix}$. Define the measurement as a function $M(|\psi\rangle)$ with range $\{0,1\}$, such that:

- $Pr(M(|\psi\rangle) = 0) = |\alpha_0|^2$
- $Pr(M(|\psi\rangle) = 1) = |\alpha_1|^2$

Therefore, it must be $|\alpha_0|^2 + |\alpha_1|^2 = 1$

$$|\psi\rangle$$
 0 or 1

Qu-Bit: Measurement

What do α_0 and α_1 actually mean?

Measurement

Consider a qu-bit $|\psi\rangle = \begin{bmatrix} \alpha_0 & \alpha_1 \end{bmatrix}$. Define the measurement as a function $M(|\psi\rangle)$ with range $\{0,1\}$, such that:

- $Pr(M(|\psi\rangle) = 0) = |\alpha_0|^2$
- $Pr(M(|\psi\rangle) = 1) = |\alpha_1|^2$

Therefore, it must be $|\alpha_0|^2 + |\alpha_1|^2 = 1$

The superposition state is destroyed after measurement!

Qu-Bit: Measurement

What do α_0 and α_1 actually mean?

Measurement

Consider a qu-bit $|\psi\rangle = \begin{bmatrix} \alpha_0 & \alpha_1 \end{bmatrix}$. Define the measurement as a function $M(|\psi\rangle)$ with range $\{0,1\}$, such that:

- $Pr(M(|\psi\rangle) = 0) = |\alpha_0|^2$
- $Pr(M(|\psi\rangle) = 1) = |\alpha_1|^2$

Therefore, it must be $|\alpha_0|^2 + |\alpha_1|^2 = 1$

The superposition state is destroyed after measurement!

We cannot directly measure the superposition, only probabilistic estimation

Qu-Bit: A Real World Example

Qu-Bit: A Real World Example

Crystal of Tourmaline: Classical World

- Interaction with plane-polarized light:
 - Light polarized perpendicularly w.r.t. the crystal axis ⇒ The light goes through the crystal
 - Light polarized parallel w.r.t. the crystal axis ⇒ The light is filtered by the crystal
 - 3. Light polarized with angle α w.r.t. the crystal axis \Rightarrow A fraction $\sin^2 \alpha$ goes through

Qu-Bit: A Real World Example

Crystal of Tourmaline: Classical World

- Interaction with plane-polarized light:
 - 1. Light polarized perpendicularly w.r.t. the crystal axis \Rightarrow The light goes through the crystal
 - 2. Light polarized parallel w.r.t. the crystal axis \Rightarrow The light is filtered by the crystal
 - 3. Light polarized with angle α w.r.t. the crystal axis \Rightarrow A fraction $\sin^2 \alpha$ goes through

Crystal of Tourmaline: Quantum World

- Interaction with a single plane-polarized photon:
 - 1. Photon polarized perpendicularly w.r.t. the crystal axis \Rightarrow The photon is detected after the crystal
 - 2. Photon polarized parallel w.r.t. the crystal axis \Rightarrow The photon is not detected after the crystal
 - 3. Photon polarized with angle α w.r.t. the crystal axis \Rightarrow A photon perpendicularly polarized is detected $\sin^2 \alpha$ times, no photon detected otherwise

From Physic World to Qu-Bit

Qu-bit \Leftrightarrow the polarization direction of a single photon

- |0| photon polarized perpendicular w.r.t. the crystal axis
- 1) photon polarized parallel w.r.t. the crystal axis

Superposition state? a photon polarized with angle α w.r.t. the crystal axis: $|\psi\rangle = \sin \alpha |0\rangle + \cos \alpha |1\rangle$

Measurement

- The qu-bit is 0 with probability $\sin^2 \alpha$
- The qu-bit is 1 with probability $\cos^2 \alpha$
- The qu-bit is destroyed: no longer polarized with angle α

- Qu-bits are vectors in $\mathbb{C} \Rightarrow$ Gates are matrices in \mathbb{C}
- Properties? Unitary Operations!
- Generic gate U : $UU^* = U^*U = I \Rightarrow |det(U)| = 1$

Quantum gates are reversible!

- Qu-bits are vectors in $\mathbb{C} \Rightarrow$ Gates are matrices in \mathbb{C}
- Properties? Unitary Operations!
- Generic gate $\longrightarrow U \longrightarrow : UU^* = U^*U = I \Rightarrow |det(U)| = 1$

Quantum gates are reversible!

Main Single Qu-Bit Gates

- Bit Flip Gate: -X $\rightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- Identity Gate: -I $\rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Phase Flip Gate: -Z $\rightarrow \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- Hadamar Gate: -H $\rightarrow \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Quantum Gates: Hadamar

Hadamar Gate Effect

$$|\psi_{\mathit{out}}\rangle = H |\psi_{\mathit{in}}\rangle \,, \qquad H = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$$

$$\begin{split} |\psi_{\mathbf{in}}\rangle &= |\mathbf{0}\rangle & |\psi_{\mathbf{in}}\rangle = |\mathbf{1}\rangle \\ |\psi_{\mathit{out}}\rangle &= H|\mathbf{0}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} & |\psi_{\mathit{out}}\rangle = H|\mathbf{1}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} (|\mathbf{0}\rangle + |\mathbf{1}\rangle) & = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{1}{\sqrt{2}} (|\mathbf{0}\rangle - |\mathbf{1}\rangle) \end{split}$$

$$\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=|+\rangle$$
 and $\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|-\rangle$ are 2 relevant states. Why?

Quantum Gates: Hadamar

9

Hadamar Gate Effect

$$\ket{\psi_{\textit{out}}} = H \ket{\psi_{\textit{in}}}, \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\begin{split} |\psi_{\mathsf{in}}\rangle &= |\mathbf{0}\rangle & |\psi_{\mathsf{in}}\rangle = |\mathbf{1}\rangle \\ |\psi_{\mathit{out}}\rangle &= H|0\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} 1 \\ 0 \end{bmatrix} & |\psi_{\mathit{out}}\rangle = H|1\rangle = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ &= \frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) & = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \end{split}$$

$$\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=|+\rangle$$
 and $\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|-\rangle$ are 2 relevant states. Why?

For both of them,
$$|\alpha_0|^2 = |\alpha_1|^2 = \frac{1}{2}$$

From Gates to Circuits

$$|\psi_{out}\rangle = U_3 U_2 U_1 |\psi_{in}\rangle$$

Reversibility: The way back!

$$|\psi_{\it in}
angle = U_1^* U_2^* U_3^* \, |\psi_{\it out}
angle$$

Examples

$$|0\rangle \longrightarrow H \longrightarrow Z \longrightarrow H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = X |0\rangle$$

$$= |1\rangle$$

$$|1\rangle \longrightarrow H \longrightarrow X \longrightarrow H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = Z |1\rangle$$

$$= -|1\rangle$$

- Concise representation of superposition of multiple bits
- Real computational power of quantum computers!
- We need to introduce a new algebraic operation: the tensor product ⊗

- Concise representation of superposition of multiple bits
- Real computational power of quantum computers!
- \blacksquare We need to introduce a new algebraic operation: the tensor product \otimes

Tensor Product

Given
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and $B \in \mathbb{C}^{n \times m}$, the tensor product is defined as:

$$T = A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{bmatrix}$$

Example:
$$A = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & 4 \\ 5 & 2 \end{bmatrix}$

$$T = \begin{bmatrix} 2 \begin{bmatrix} 1 & 4 \\ 5 & 2 \\ 1 & 4 \\ 5 & 2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 2 & 8 \\ 10 & 4 \\ 3 & 12 \\ 15 & 6 \end{bmatrix}$$

Multi Qu-Bit State

- The superposition state may apply to multiple gu bits
- Instead of the 2 kets $|0\rangle$ and $|1\rangle$, there is a ket for each possible combination of bits
- The coefficients are related to the measurement probability of the corresponding combination

2 Qu-bits State

$$|\psi\rangle = \alpha_0 |00\rangle + \alpha_1 |01\rangle + \alpha_2 |10\rangle + \alpha_3 |11\rangle |\alpha_0|^2 + |\alpha_1|^2 + |\alpha_2|^2 + |\alpha_3|^2 = 1$$

Vector representation? ⇒ tensor product between single qu-bit kets

$$\begin{split} |00\rangle &= |0\rangle \otimes |0\rangle = \begin{bmatrix} 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & \begin{bmatrix} 1 & 0 \end{bmatrix} & \begin{bmatrix} 0 & \begin{bmatrix} 1 & 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \\ |10\rangle &= |1\rangle \otimes |0\rangle = \begin{bmatrix} 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \begin{bmatrix} 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 & \begin{bmatrix} 1 & 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \\ |\psi_2\rangle &= |\psi_0\rangle \otimes |\psi_1\rangle = \begin{bmatrix} \alpha_0 & \alpha_1 \end{bmatrix} \otimes \begin{bmatrix} \beta_0 & \beta_1 \end{bmatrix} = \begin{bmatrix} \alpha_0 \begin{bmatrix} \beta_0 & \beta_1 \end{bmatrix} & \alpha_1 \begin{bmatrix} \beta_0 & \beta_1 \end{bmatrix} \end{bmatrix} \\ &= \begin{bmatrix} \alpha_0\beta_0 & \alpha_0\beta_1 & \alpha_1\beta_0 & \alpha_1\beta_1 \end{bmatrix} \end{split}$$

Multi Qu-Bit: Quantum Circuit

2 Qu-bits Circuit

$$|\psi_0
angle \longrightarrow H -$$
 $|\psi_{out}
angle =??$ $|\psi_1
angle \longrightarrow X -$

- The gates operate on the multi qu-bit $|\psi_{in}\rangle = |\psi_0\rangle \otimes |\psi_1\rangle$
- To apply the gates, we need to combine them in a 2 qu-bit gate. How?
- Tensor Product!

$$|\psi_{out}\rangle = (H \otimes X) |\psi_{in}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \end{bmatrix}$$

$$|\psi_{in}\rangle = |00\rangle \rightarrow |\psi_{out}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}} (|01\rangle + |11\rangle)$$

There are also quantum gates which apply only on multiple qu-bits

CNOT Gate

$$|\psi_0\rangle \longrightarrow |\psi_0\rangle |\psi_1\rangle \longrightarrow |\psi_0\rangle \oplus |\psi_1\rangle$$

- If the control bit $(|\psi_0\rangle)$ is 1, then the target bit $(|\psi_1\rangle)$ is inverted
- The gate matrix is already 4 × 4: $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
- Superpostion state: act independently on the fundamental states

$$\hookrightarrow \text{ Example: } |\psi_{\textit{in}}\rangle = \tfrac{\sqrt{3}}{2} \, |00\rangle + \tfrac{1}{2} \, |10\rangle \rightarrow |\psi_{\textit{out}}\rangle = \tfrac{\sqrt{3}}{2} \, |00\rangle + \tfrac{1}{2} \, |11\rangle$$

Multi Qu-Bit Gates: More Examples

Swap Gate

$$|\psi_0\rangle \longrightarrow |\psi_1\rangle$$
 $|\psi_1\rangle \longrightarrow |\psi_0\rangle$

■ The Qu-Bits are swapped

■ Gate Matrix:
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Multi Qu-Bit Gates: More Examples

Swap Gate

$$|\psi_0\rangle \longrightarrow |\psi_1\rangle$$

 $|\psi_1\rangle \longrightarrow |\psi_0\rangle$

- The Qu-Bits are swapped

Toffoli Gate

$$\begin{array}{c|cccc} |\psi_0\rangle & & & & |\psi_0\rangle \\ |\psi_1\rangle & & & & |\psi_1\rangle \\ |\psi_2\rangle & & & & |\psi_2\rangle \oplus |\psi_0\rangle \wedge |\psi_1\rangle \end{array}$$

- CNOT gate with 2 control bits instead of 1
- That is, the target bit $(|\psi_2\rangle)$ is inverted when both control bits are 1

Example

Step-by-Step evaluation:

- 1. $|\psi_{in}\rangle = |00\rangle$
- 2. $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)$
- 3. $|\psi_{out}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

Example

Step-by-Step evaluation:

- 1. $|\psi_{in}\rangle = |00\rangle$
- 2. $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)$
- 3. $|\psi_{out}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

Measuring 1 Qu-Bit

Introduce a slight variation of the above circuit:

Multi Qu-Bit Circuits: Measurement

What happens to the multi qu-bits state when not all the bits are measured?

Partial Measurement: 2 Qu-Bits State

- Before measurement, the multi qu-bit $|\psi_{in}\rangle = |\psi_{a}\rangle \otimes |\psi_{b}\rangle$
- As with single bit gates, bit-wise reasoning
 - 1. Splitting qu-bits: Given a 2 multi qu-bit state $|\psi\rangle$, it is always possible to split is as $|\psi\rangle = \alpha_0 |0\rangle \otimes (|\psi_0\rangle) + \alpha_1 |1\rangle \otimes (|\psi_1\rangle)$, such that $|\alpha_0|^2 + |\alpha_1|^2 = 1$ and $|\psi_0\rangle$, $|\psi_1\rangle$ are valid qu-bits
 - 2. Then, depending on the measurement outcome on the first qu-bit:
 - Measurement of the first qu-bit is 0 → the second qu-bit is $|\psi_0\rangle \rightarrow |\psi_{out}\rangle = |\psi_0\rangle$
 - Measurement of the first qu-bit is 1 → the second qu-bit is $|\psi_1\rangle \rightarrow |\psi_{out}\rangle = |\psi_1\rangle$

Back to the Example Circuit

Before measurement, the multi qu-bit $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

- 1. $|\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \otimes |1\rangle$
- 2. $\psi_{out} = |0\rangle$ if the measured qu-bit is 0
- 3. $\psi_{out} = |1\rangle$ if the measured qu-bit is 1

Back to the Example Circuit

Before measurement, the multi qu-bit $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

- 1. $|\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \otimes |1\rangle$
- 2. $\psi_{out} = |0\rangle$ if the measured qu-bit is 0
- 3. $\psi_{out} = |1\rangle$ if the measured qu-bit is 1
- The measurement of a bit determines the second qu-bit
- This is weird, since the measurement affects only 1 bit

Multi Qu-Bit Circuits: Measurement

Back to the Example Circuit

Before measurement, the multi qu-bit $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

- 1. $|\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \otimes |1\rangle$
- 2. $\psi_{out} = |0\rangle$ if the measured qu-bit is 0
- 3. $\psi_{out} = |1\rangle$ if the measured qu-bit is 1
- The measurement of a bit determines the second qu-bit
- This is weird, since the measurement affects only 1 bit

A quantum phenomenon is happening: entanglement!

Multi Qu-Bit Circuits: Entanglement

Multi Qu-Bit Circuits: Entanglement

Entanglement Definition

- Recall the splitting of a 2 multi qu-bit state $|\psi\rangle = |\psi_a\rangle \otimes |\psi_b\rangle$: $|\psi\rangle = \alpha_0 |0\rangle \otimes (|\psi_0\rangle) + \alpha_1 |1\rangle \otimes (|\psi_1\rangle)$, such that $|\alpha_0|^2 + |\alpha_1|^2 = 1$ and $|\psi_0\rangle$, $|\psi_1\rangle$ are valid qu-bits
- $|\psi_a\rangle$ and $|\psi_b\rangle$ are entangled $\Leftrightarrow |\psi_0\rangle \neq |\psi_1\rangle$
- Meaning: the quantum state of the unmeasured bit depends on the measurement outcome of the entangled bit.

Entanglement: Examples

- $|\psi\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle) =$ $\frac{1}{\sqrt{2}}|0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) + \frac{1}{\sqrt{2}}|1\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \rightarrow \text{Not entangled!}$
- $|\psi\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle |11\rangle) =$ $\frac{1}{\sqrt{2}}|0\rangle\otimes\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)+\frac{1}{\sqrt{2}}|1\rangle\otimes\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\rightarrow \text{Entangled!}$

Entanglement: Examples

- $|\psi\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle) =$ $\frac{1}{\sqrt{2}}|0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) + \frac{1}{\sqrt{2}}|1\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \rightarrow \text{Not entangled!}$
- $|\psi\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle |11\rangle) =$ $\frac{1}{\sqrt{2}}|0\rangle\otimes\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)+\frac{1}{\sqrt{2}}|1\rangle\otimes\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\rightarrow \text{Entangled!}$

Bell States

 $|\psi_a\rangle\otimes|\psi_b\rangle=|\psi_{ip}\rangle\in\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}\Rightarrow|\psi_a\rangle$ and $|\psi_b\rangle$ are entangled at the end of the circuit:

$ \psi_{a} angle$	$ \psi_{m b} angle$		
	0⟩	1⟩	
0>	$\frac{1}{\sqrt{2}}(00\rangle+ 11\rangle)$	$\frac{1}{\sqrt{2}}(01\rangle+ 10\rangle)$	
1>	$\frac{1}{\sqrt{2}}(00\rangle- 11\rangle)$	$rac{1}{\sqrt{2}}(\ket{01}-\ket{10})$	

Quantum Teleportation

Teleportation Circuit

- The sender and the receiver generates a bell pair
- The sender keeps $|\psi_a\rangle$, while the receiver keeps $|\psi_b\rangle$
- When the sender wants to send a qu-bit $|\psi_m\rangle$, it performs encoding using $|\psi_a\rangle$ too
- 2 classical bits are sent to the receiver for the decoding procedure
- After decoding, the entangled qu-bit $|\psi_b\rangle$ has become equal to $|\psi_m\rangle$

Quantum Teleportation

Teleportation Circuit

Create Bell Pair Decoding Example with $|\psi_m\rangle=|1\rangle$ and $|\psi_a\rangle=|\psi_b\rangle=|0\rangle\rightarrow|\psi_{in}\rangle=|100\rangle$:

- 1. Bell pair creation: $\frac{1}{\sqrt{2}}(|100\rangle + |111\rangle)$
- 2. Encoding before measurement: $\frac{1}{2}(|010\rangle |110\rangle + |001\rangle |101\rangle) =$ $\frac{1}{2}(\ket{00}\otimes\ket{1}+\ket{01}\otimes\ket{0}+\ket{10}\overset{\circ}{\otimes}(-\ket{1})+\ket{11}\otimes(-\ket{0}))$ Magazira | W. | Corrections Output

	Measure	$ \Psi b\rangle$	Corrections	Output
	00	1>	No	1>
3. Decoding:	01	0>	X	1)
	10	$- 1\rangle$	Z	1)
	11	- 0\)	X,Z	1)

Quantum Computing Power

- With quantum teleportation, we can send N qu-bits with 2N classical bits
- Is it worthy?

Quantum Computing Power

- With quantum teleportation, we can send N qu-bits with 2N classical bits
- Is it worthy?

Qu-Bit Power

Classical Bits:

- N classical bits hold 1 single value between 0 and $2^N - 1$
- For instance, 010 is the value 2
- Classical computation performs only on the single value of the bits

Quantum Computing Power

- With quantum teleportation, we can send N qu-bits with 2N classical bits
- Is it worthy?

Qu-Bit Power

Classical Bits:

- N classical bits hold 1 single value between 0 and 2^N – 1
- For instance, 010 is the value 2
- Classical computation performs only on the single value of the bits

Quantum Bits:

- N qu-bits contains all possible 2^N values representable by N bits
- For instance,

$$\begin{array}{l} \alpha_0 \left| 000 \right\rangle + \alpha_1 \left| 001 \right\rangle + \alpha_2 \left| 010 \right\rangle + \\ \alpha_3 \left| 011 \right\rangle + \alpha_4 \left| 100 \right\rangle + \alpha_5 \left| 101 \right\rangle + \\ \alpha_6 \left| 110 \right\rangle + \alpha_7 \left| 111 \right\rangle \end{array} \\ \text{represents all integers from 0 to 7}$$

■ Performing quantum computation is equivalent to compute at the same time with all these 2^N values. How? ⇒ Quantum Algorithms!

Quantum Algorithms

Description

Quantum algorithms structure:

- Work on multi qu-bits in superposition states
- The operations performed on the qu-bits are chosen to get to a final superposition state
- Measuring this state generally yields the solution of the problem with probability close to 1
- Quantum algorithms have usually a classical part too, where standard bits are employed

Quantum Algorithms

Description

Quantum algorithms structure:

- Work on multi qu-bits in superposition states
- The operations performed on the qu-bits are chosen to get to a final superposition state
- Measuring this state generally yields the solution of the problem with probability close to 1
- Quantum algorithms have usually a classical part too, where standard bits are employed

Example: Integer Factorization

Classical computing for a 2048 bits number?

- 100 years
 - 10⁵ Trillion €
 - 398549 km² server farm

Shor Algorithm

Quantum computation? \Rightarrow 26.7 hours using Shor algorithm!

Description

- Classical reduction to the order-finding subproblem
- This sub-problem is solved with the quantum algorithm
- Some properties of the solution are tested, otherwise the procedure is repeated to yield a new solution of the subproblem

Shor Algorithm

Quantum computation? \Rightarrow 26.7 hours using Shor algorithm!

Description

- Classical reduction to the order-finding subproblem
- This sub-problem is solved with the quantum algorithm
- Some properties of the solution are tested, otherwise the procedure is repeated to yield a new solution of the subproblem

Order-Finding Solver

Given $f(x) = a^x \mod N$, find the period of f, i.e. the order of a

Quantum computing is extremely powerful, but ...

Quantum Technologies are extremely fragile!

Quantum computing is extremely powerful, but ...

Quantum Technologies are extremely fragile!

Quantum Computation Errors

- A qu-bit is affected by external noise
- For instance, the Brownian motions of the molecules may interfere with the quantum estate
- Each qu-bit has a decoherence time: The maximum time a qu-bit can keep its superposition state
- **Typically** in the order of tens of μs

Quantum computing is extremely powerful, but ...

Quantum Technologies are extremely fragile!

Quantum Computation Errors

- A qu-bit is affected by external noise
- For instance, the Brownian motions of the molecules may interfere with the quantum estate
- Each qu-bit has a decoherence time: The maximum time a qu-bit can keep its superposition state
- **Typically** in the order of tens of μs

Quantum technology fragility

Error correction codes are necessary to preserve the computation

Quantum Error Correction Codes (QECC)

Quantum Error Correction Codes

- Correction process is carried on after each operation
- As every correction code, redundancy is employed to correct errors
- A lot of reduncancy is necessary, since:
 - 1. Qu-bits are continuous, not discrete
 - 2. Error rate is high
- Each qu-bit becomes a logical qu-bit, which is encoded in n physical gu-bits: data and ancilla ones

Quantum Error Correction Codes (QECC)

Quantum Error Correction Codes

- Correction process is carried on after each operation
- As every correction code, redundancy is employed to correct errors
- A lot of reduncancy is necessary, since:
 - 1. Qu-bits are continuous, not discrete
 - 2. Error rate is high
- Each qu-bit becomes a logical qu-bit, which is encoded in n physical gu-bits: data and ancilla ones

Surface Code Logical Qu-Bit:

QECC: Logical Gates

Quantum Operations on Logical Qu-Bits

- Each of the fundamental operations (X,Z,H,...) needs to be defined on the logical qu-bit
- The way the logical operation is performed is code dependent
- Each logical operation is represented by a logical gate

QECC: Logical Gates

Quantum Operations on Logical Qu-Bits

- Each of the fundamental operations (X,Z,H,...) needs to be defined on the logical qu-bit
- The way the logical operation is performed is code dependent
- Each logical operation is represented by a logical gate

Surface Code Hadamar Gate:

Error correction is the main responsible for the blowup of qu-bits required for a quantum algorithm

Shor Algorithm Overhead

For instance, Shor algorithm on L = 2048 bits number requires:

Rationale	#Physical Qu-bits (cumulative)	
6L logical qu-bits	12,288	
8× ancilla qu-bits	98, 304	
1.33× to provide 'wiring' room to move qu-bits	133,000	
$10k \times \text{surface code}$	1.3 <i>bn</i>	
4x micro-architecture details	5.2 <i>bn</i>	

How Many Qu-Bits?

16 qu-bit IBM quantum processor, publicly available online:

How Many Qu-Bits?

16 qu-bit IBM quantum processor, publicly available online:

IBM Trend:

TECH -

IBM will sell 50-qubit universal quantum computer "in the next few years"

IBM has solved most of the science behind quantum computing. Time to make some money.

SEBASTIAN ANTHONY - 6/3/2017, 12:59

Quantum Chips

5 qu-bits chip scheme for a logical qu-bit:

- data qu-bits, ancilla qu-bits
- The gates are implemented via microwave pulses $(10^{-8}s)$ sent to the qu-bits
- We want to perform different gates within the decoherence time

Quantum Processor: A chip where there are *n* available qu-bits Quantum Processor: Quantum Programming Language:

A chip where there are *n* available qu-bits A language to describe a circuit using gate-level instructions or known functions

Quantum Computation Concepts

32

Quantum Processor: A chip where there are *n* available qu-bits

Quantum Programming A language to describe a circuit using gate-level instructions or known functions

Quantum Algorithm: A quantum circuit to be executed

Quantum Computation Concepts

Quantum Processor: A chip where there are *n* available qu-bits

Quantum Programming A language to describe a circuit using gate-level instructions or known functions Language:

Quantum Algorithm: A quantum circuit to be executed

Quantum Compilation: **Optimization** Use heuristics to merge

gates or re-arrange

operations

Placement Initial Mapping of the circuit

qu-bits to the on-chip

au-bits

Scheduling Schedule gates execution

Routing Move qu-bits to execute

multibit operations

Quantum Computation Concepts

Quantum Processor: A chip where there are *n* available qu-bits

Quantum Programming A language to describe a circuit using gate-level instructions or known functions Language:

A quantum circuit to be executed Quantum Algorithm:

Quantum Compilation: **Optimization** Use heuristics to merge gates or re-arrange

Placement Initial Mapping of the circuit

operations

qu-bits to the on-chip

au-bits

Scheduling Schedule gates execution

Routing Move qu-bits to execute multibit operations

Quantum Execution: Translation of gate-level instructions (QISA) to signals sent to the processor

Quantum Compilation

Logical view of the chip:

Main issue to be addressed (imposed by the technology): 2 input qu-bits of a non single gate (e.g. CNOT) needs to be adjiacent to compute the gate

- → 2 gu-bits are adjacent if they are either on the same row or on the same column
- → If they are not adjacent, they need to be moved to satisfy this constraint (routing process)

Placement

Maps the qu-bits on chip, deriving the initial configuration of the processor

We want the qu-bits which are combined in a 2 qu-bits gate to be placed as close as possible

Placement

Maps the qu-bits on chip, deriving the initial configuration of the processor

- We want the qu-bits which are combined in a 2 qu-bits gate to be placed as close as possible
- How close? Minimizing Manhattan distance ≡ Minimizing routing cost

E.g $CNOT(|\psi_3\rangle, |\psi_4\rangle) \rightarrow d = 4$

Placement

Maps the qu-bits on chip, deriving the initial configuration of the processor

- We want the qu-bits which are combined in a 2 qu-bits gate to be placed as close as possible
- How close? Minimizing Manhattan distance ≡ Minimizing routing cost

E.g $CNOT(|\psi_3\rangle, |\psi_4\rangle) \rightarrow d = 4$

Target: finding the placement minimizing the sum of Manhattan distances over all pairs involved in multiple bits gates

Placement

Maps the qu-bits on chip, deriving the initial configuration of the processor

- We want the qu-bits which are combined in a 2 qu-bits gate to be placed as close as possible
- How close? Minimizing Manhattan distance ≡ Minimizing routing cost

E.g
$$CNOT(|\psi_3\rangle, |\psi_4\rangle) \rightarrow d = 4$$

- Target: finding the placement minimizing the sum of Manhattan distances over all pairs involved in multiple bits gates
- One possible approach: Quantum Interaction Graph (QIG)

Quantum Compilation: QIG

Quantum Interaction Graph

- QIG purpose: represent the relationships between qu-bits involved in multiple bits gates
- The corresponding symmetric matrix can be used to define a linear programming problem
- The solution of this problem provide a good placement.

Example Circuit:

Quantum Interaction Graph:

Quantum Compilation: Scheduling

Gates can theoretically be all executed simultaneously, but:

Scheduling Issues

- Data dependencies
- Privileged Writings on each qu-bit
- Out of order execution must preserve the correctness of the computation

Quantum Compilation: Scheduling

Gates can theoretically be all executed simultaneously, but:

Scheduling Issues

- Data dependencies
- Privileged Writings on each qu-bit
- Out of order execution must preserve the correctness of the computation

Scheduling Policy

- An As Soon As Possible (ASAP) policy is usually employed
 - An operation is performed as soon as the input data are available
- Mainly due to decoherence time constraints, As Late As Possible (ALAP) policy is generally preferable in quantum scenarios
- Try to minimize the time between an operation writing a qu-bit and the next operation reading it \rightarrow reducing the time interval the quantum state needs to be preserved

Quantum Computation: ASAP vs ALAP

ASAP Policy

```
CO: .init |\psi_0\rangle, |\psi_1\rangle, |\psi_2\rangle, |\psi_3\rangle, |\psi_4\rangle, |\psi_5\rangle, |\psi_6\rangle
```

C1: $H(|\psi_0\rangle), H(|\psi_1\rangle), H(|\psi_2\rangle), CNOT(|\psi_3\rangle, |\psi_4\rangle), CNOT(|\psi_3, \psi_5\rangle)$

C2: $CNOT(|\psi_2\rangle, |\psi_3\rangle), CNOT(|\psi_2\rangle, |\psi_4\rangle), CNOT(|\psi_2\rangle, |\psi_6\rangle), CNOT(|\psi_1\rangle, |\psi_5\rangle)$

C3: $CNOT(|\psi_1\rangle, |\psi_3\rangle), CNOT(|\psi_1\rangle, |\psi_6\rangle), CNOT(|\psi_0\rangle, |\psi_4\rangle), CNOT(|\psi_0\rangle, |\psi_5\rangle)$

C4: $CNOT(|\psi_0\rangle, |\psi_6\rangle)$

Quantum Computation: ASAP vs ALAP

ASAP Policy

```
Co: .init |\psi_0\rangle, |\psi_1\rangle, |\psi_2\rangle, |\psi_3\rangle, |\psi_4\rangle, |\psi_5\rangle, |\psi_6\rangle
```

C1: $H(|\psi_0\rangle), H(|\psi_1\rangle), H(|\psi_2\rangle), CNOT(|\psi_3\rangle, |\psi_4\rangle), CNOT(|\psi_3, \psi_5\rangle)$

C2: $CNOT(|\psi_2\rangle, |\psi_3\rangle), CNOT(|\psi_2\rangle, |\psi_4\rangle), CNOT(|\psi_2\rangle, |\psi_6\rangle), CNOT(|\psi_1\rangle, |\psi_5\rangle)$

C3: $CNOT(|\psi_1\rangle, |\psi_3\rangle), CNOT(|\psi_1\rangle, |\psi_6\rangle), CNOT(|\psi_0\rangle, |\psi_4\rangle), CNOT(|\psi_0\rangle, |\psi_5\rangle)$

C4: $CNOT(|\psi_0\rangle, |\psi_6\rangle)$

ALAP Policy

```
CO: .init |\psi_2\rangle
```

C1: .init $|\psi_1\rangle$, $|\psi_3\rangle$, $|\psi_4\rangle$, $|\psi_5\rangle$, $|\psi_6\rangle$, $H(|\psi_2\rangle)$

C2: .init $|\psi_0\rangle$, $H(|\psi_1\rangle)$, $CNOT(|\psi_3\rangle, |\psi_4\rangle)$, $CNOT(|\psi_3, \psi_5\rangle)$, $CNOT(|\psi_2\rangle, |\psi_6\rangle)$

 $(3: H(|\psi_0\rangle), CNOT(|\psi_2\rangle, |\psi_3\rangle), CNOT(|\psi_2\rangle, |\psi_4\rangle), CNOT(|\psi_1\rangle, |\psi_6\rangle), CNOT(|\psi_1\rangle, |\psi_5\rangle)$

C4: $CNOT(|\psi_1\rangle, |\psi_3\rangle)$, $CNOT(|\psi_0\rangle, |\psi_4\rangle)$, $CNOT(|\psi_0\rangle, |\psi_5\rangle)$, $CNOT(|\psi_0\rangle, |\psi_6\rangle)$

Postpone initialization as late as possible!

Quantum Compilation: Routing

Recall: to perform multi qu-bit gates the qu-bits need to be adjacent

- → If they are not, we need to move them. How?

Quantum Compilation: Routing

Recall: to perform multi qu-bit gates the qu-bits need to be adjacent

- → If they are not, we need to move them. How?
- → Using swap gate!

Routing Example

Consider this initial placement obtained from our linear programing algorithm:

Now, consider the third cycle using ALAP scheduling policy: .init $|\psi_0\rangle$, $H(|\psi_1\rangle)$, $CNOT(|\psi_3,|\psi_4\rangle)\rangle$, $CNOT(|\psi_3,\psi_5\rangle)$, $CNOT(|\psi_2\rangle,|\psi_6\rangle)$

- \hookrightarrow We need to add a swap between $|\psi_5\rangle$ and $|\psi_1\rangle$
- \hookrightarrow .init $|\psi_0\rangle$, $H(|\psi_1\rangle)$, $CNOT(|\psi_3,|\psi_4\rangle)\rangle$, $SWAP(|\psi_1,\psi_5\rangle)$, $CNOT(|\psi_2\rangle,|\psi_6\rangle)$

Quantum Compilation: Routing

Recall: to perform multi qu-bit gates the qu-bits need to be adjacent

- → If they are not, we need to move them. How?
- → Using swap gate!

Routing Example

Consider this initial placement obtained from our linear programing algorithm:

Now, consider the third cycle using ALAP scheduling policy: .init $|\psi_0\rangle$, $H(|\psi_1\rangle)$, $CNOT(|\psi_3,|\psi_4\rangle)\rangle$, $CNOT(|\psi_3,\psi_5\rangle)$, $CNOT(|\psi_2\rangle,|\psi_6\rangle)$

- \hookrightarrow We need to add a swap between $|\psi_5\rangle$ and $|\psi_1\rangle$
- \hookrightarrow .init $|\psi_0\rangle$, $H(|\psi_1\rangle)$, $CNOT(|\psi_3,|\psi_4\rangle)\rangle$, $SWAP(|\psi_1,\psi_5\rangle)$, $CNOT(|\psi_2\rangle,|\psi_6\rangle)$

Quantum Micro-architecture

Cooling Power

Technical Challenges

- Qu-bits can preserve their states only at really low temperatures (mK order)
- They need to interact with electronic components → the heat generated by these components should not affect the chip
- Cooling methods:
 - 1. Heat bath: liquid helium is employed
 - 2. In 2017, a quantum refrigerator chip based on tunnel effect has been proposed

1st floor

Ground floor 20mK

Shielding & Wiring

Shielding

- The quantum computer needs to be isolated from external electro-magnetic waves
- The quantum processor is shielded with magnetic elements which zero the magnetic field coming from electronic circuitry

Shielding & Wiring

Shielding

- The quantum computer needs to be isolated from external electro-magnetic waves
- The quantum processor is shielded with magnetic elements which zero the magnetic field coming from electronic circuitry

Wiring

- Wiring: with a lot of qu-bits, placement of wires to perform operations may become complex
- In particular, interferences among different wires is a relevant issue
- Due to:
 - 1. Wires need to work at extremely low temperatures
 - Material used to build wires cannot be magnetic

non conventional material is necessary

Conclusion

Take Home Messages

Qu-bit superposition state allows to represent simultaneously both 0 and

- Qu-bit measurement is probabilistic
- Quantum gates are reversible
- Entanglement: 2 entangled qu-bits are strictly linked, and operations performed on one gu-bit may affect the other one too
- Entanglement can be used for quantum teleportation
- Exponential improvement: N qu-bits allow to represent 2^N values
- Quantum Algorithm idea: perform computation which yields to high probability of measuring the correct result
- Quantum technology is fragile \rightarrow error correction is necessary
- Quantum processor are nowadays too limited for practical application
- Quantum computer architecture & compilation
- There are relevant technical challenges to build a quantum computer

Questions 43

Quantum Compilation: Phases Overview

- From the previous example, we can see that routing affects the scheduling
- Swaps are additional gates, which introduce new constraints
- But we cannot properly insert swaps if we do not know the scheduling of the operations

1

Routing & Scheduling should be performed together given the initial placement

Quantum Compilation: Phases Overview

- From the previous example, we can see that routing affects the scheduling
- Swaps are additional gates, which introduce new constraints
- But we cannot properly insert swaps if we do not know the scheduling of the operations

Routing & Scheduling should be performed together given the initial placement

Optimal Solution?

- Routing cost is estimated on the initial placement for all gates
- But the placement of the qu-bits changes during the execution
- The solution may not be optimal!
- However, if we consider the temporal dependencies during placement the problem becomes more complex: scheduling of the operations is relevant too!

Quantum Compilation: Phases Overview

- From the previous example, we can see that routing affects the scheduling
- Swaps are additional gates, which introduce new constraints
- But we cannot properly insert swaps if we do not know the scheduling of the operations

Routing & Scheduling should be performed together given the initial placement

- 5 gu-bits IBM processor under the curtains: https://arstechnica.com/science/2016/05/how-ibms-new-fivequbit-universal-quantum-computer-works/
- IBM Quantum Experience: https://quantumexperience.ng.bluemix.net/qx
- Quantum Computer Simulator: http://quantum-studio.net/

Quantum Teleportation

Generic Qu-Bit Computation

$$|\psi_{\textit{m}}\rangle = \alpha_0\,|0\rangle + \alpha_1\,|1\rangle,\,|\psi_{\textit{a}}\rangle = |\psi_{\textit{b}}\rangle = |0\rangle \Rightarrow |\psi_{\textit{in}}\rangle = \alpha_0\,|000\rangle + \alpha_1\,|100\rangle$$

- 1. Bell pair creation: $\alpha_0 \frac{1}{\sqrt{2}} (|000\rangle + |011\rangle) + \alpha_1 \frac{1}{\sqrt{2}} (|100\rangle + |111\rangle)$
- 2. CNOT gate: $\alpha_0 \frac{1}{\sqrt{2}} (|000\rangle + |011\rangle) + \alpha_1 \frac{1}{\sqrt{2}} (|110\rangle + |101\rangle)$
- Hadamar gate:

$$\alpha_0 \frac{1}{2} (|000\rangle + |100\rangle + |011\rangle + |111\rangle) + \alpha_1 \frac{1}{2} (|010\rangle - |110\rangle + |001\rangle - |101\rangle)$$

- **4.** Split before measurement: $\frac{1}{2}|00\rangle \otimes (\alpha_0|0\rangle + \alpha_1|1\rangle) + \frac{1}{2}|01\rangle \otimes (\alpha_1|0\rangle + \alpha_1|1\rangle)$ $|\alpha_0|1\rangle + \frac{1}{2}|10\rangle \otimes (\alpha_0|0\rangle - \alpha_1|1\rangle + \frac{1}{2}|11\rangle \otimes (-\alpha_1|0\rangle + \alpha_0|1\rangle$
- 5. Decoding:

Measure	$ \psi_{b} angle$	Corrections	Output
00	$\alpha_0 0\rangle + \alpha_1 1\rangle$	No	$\alpha_0 0\rangle + \alpha_1 1\rangle$
01	$\alpha_1 0\rangle + \alpha_0 1\rangle$	X	$\alpha_0 0\rangle + \alpha_1 1\rangle$
10	$\alpha_0 0\rangle - \alpha_1 1\rangle$	Z	$\alpha_0 0\rangle + \alpha_1 1\rangle$
11	$-\alpha_1 0\rangle + \alpha_0 1\rangle$	X,Z	$\alpha_0 \ket{0} + \alpha_1 \ket{1}$