			/ - - \	
1	7x. 2:37:	stragorumas	(malina)	Later Marie
	A MOOME		1110000 000 J	
		, , , , , , , , , , , , , , , , , , ,		

$$m=1 \frac{m\sqrt{m+1}}{2} \cdot x^{m}, x>0$$

Fig.
$$3m = \frac{1}{\sqrt{m+1}}$$

inlitearar liveties masilite

$$= \lim_{m \to +\infty} \frac{\cancel{x} \cdot m \sqrt{m+1}}{(m+1)\sqrt{m+2}} = \cancel{x}$$

The
$$m \neq \sum_{i=m}^{\infty} i \text{smito}, ((\infty + (1)) \ni \text{£ .s. i.}) \land \text{π} \neq \text{π}$$
 is a small contained when the same of the small contains the small

$$2m = \frac{1}{1 + m \ln m} \cdot 1 = \frac{1}{1 + m \ln m} = m \times 1$$

$$\frac{2m}{m\sqrt{m}} = \frac{1}{m\sqrt{m}} \cdot \frac{m\sqrt{m}}{m\sqrt{m+1}} = \frac{2m}{m+1} \cdot \frac{m\sqrt{m}}{m\sqrt{m}} = \frac{2m}{m} \cdot \frac{2m}{m} \cdot \frac{2m}{m} = \frac{2m}{m} \cdot \frac{2m}{m} = \frac{2m}{m} \cdot \frac{2m}{m} \cdot \frac{2m}{$$

	\$	
anem ca	m=1	
7 7.	$= \sum_{m=1}^{\infty} \frac{1}{m\sqrt{m}} = \sum_{m=1}^{\infty} \frac{1}{m^2},$	amustanto.
w=1 ,4w	$m=1$ $m\sqrt{m}$ $m=1$ m^2	
	romon sires	. statilorenez äsir
		$\alpha = \frac{3}{2}$
0	6	
Deci Ž	© . åtregrumes ste n* 13	
70	1=1	
~	<i>,</i>	
	<u>2</u> , æ∈(-1,1)	
W=1 U		
F3. :		
	$\frac{2}{2}$, $m \in \mathbb{N}^{+}$	
Tie Em=	2 , (1) m < (N)	
Cet V	2	
Trigitim /	m± 12 isisal atragressmas	
	$\frac{\omega_y}{ \mathcal{X}_{\mu} } = \frac{ \omega_y }{ \mathcal{X}_{\mu} } = \frac{\omega_y}{ \mathcal{X}_{\mu} }, \text{ if } w \in \mathbb{N}$	
	$\frac{3}{2} = \frac{3}{12}$, $\frac{1}{12}$	*
	$w_{\nu} \mid w_{\bar{\nu}} \mid w_{\bar{\nu}}$	
75 =	1 4 M ~ C N *	
no Iw	$\frac{m^2}{4}$, of $m \in \mathbb{N}^*$	
K. L. I	J. C. 14	
	, M went	
80	6	
~= Aw=	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	asimameta s
	same?	Sizatai s < = 2)
Cambra	taranmas se inhistoric S_m atmagramas stee $ m x $ $\frac{1}{1}S_m$ $t=m$	itatilaami 12 ii
		2 m m Drander?
as meuo	atmegramas ste mx 1	•
	\m1 _\infty	
ras mira	tuberlo ste mx 12, sam este observation.	· atragrena
CF to dow	of the at comments	
~ ~~~~~~	, WE THE THE SELECTION .	

ुद्धी:

(I) telkiril - Sult livetire masilyte

Fig $\mathcal{L}_{m} = \frac{1}{\sqrt{2}}$, (4) $m \in \mathbb{N}^{+}$

(1) 0=mx mil ig sætærerelet m(mx)

Fie 7m = cos mã, is mENX

otratam ca (3) M>0 a.2. (8 meM* assem 171172t...+7m) ≤M.

Fie mENX.

17x+72+...+7m = 1co1x+cos2x+...+cosmx

M de mai sus mu paste definde de m, dar paste definde de #.

Fie = conxtinx

 $Z^{2} = (\cos x + i \sin x)^{2} = \cos \lambda x + i \sin \lambda x$ $Z^{3} = \cos 3x + i \sin 3x$

I = cosmittisin mit

Drawam ca 11+72+...+7m = Re(7+7+...+7m)

Bosymmem că \overline{x} ± 1 , i.e. $\cos x + i \sin x + 1$, i.e

Fix
$$\pm \text{ER} \cdot |3 \times \text{R}| \text{ KeZ}^2$$
 $\pm + \pm^2 + ... + \pm^m = \pm \cdot \pm -1 = \pm -1 =$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\text{mt}^2}{2} \pm \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \sin \frac{\pi}{2} \pm i \sin \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \sin \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \sin \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \sin \frac{\pi}{2} \pm i \sin \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \sin \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \sin \frac{\pi}{2} \pm i \sin \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \sin \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \sin \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \sin \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2})}{2 \text{ Nim } \frac{\pi}{2} \pm i \cos \frac{\pi}{2}}$$

$$=\frac{2 \text{ Nim } \frac{\pi}{2} \pm (-\text$$

· atragramas ste ny mx is as Justat door ou *ER132KII KEZ] Fie Zef 2KT | KEZY $\frac{m=1}{\sum_{i=1}^{m} coim x} = \frac{m=1}{\sum_{i=1}^{m} coim x}$ $\begin{array}{c|c}
m & m \\
\hline
m & m \\
\hline
m & col w . col w
\end{array}$ Fie &m = cos 1 , of mEIN* Im = com , MWENX tinigstom (mx) (= *M3m H), L>mx >1rational tainth $m(\frac{1}{m})$ c= \ socrationered toite xeo \ = x $(o,\frac{\pi}{4}) \qquad (o,4)$ $\frac{1}{m} \in (0,1]$, $\frac{1}{m} \in \mathbb{N}^* = 1$ $\frac{1}{m} \in (0,\frac{1}{2})$ restazero tairta eta m(mx) (= (1) timigram is notament stee on (mx) iset m=1 7m = 2 cosm , comvegantà (conf. nuntidui c)):

$$\sum_{m=1}^{\infty} \frac{1}{m} = \sum_{m=1}^{\infty} \frac{1}{m}$$
 (respectively desired desired) (respectively) (resp

$$M = 1$$
 $M = 1$ $M =$

Compound in individued moreologo composition of the composition of the material state on
$$\mathbb{Z}^1 = m \pm m(1-1) \mathbb{Z}^1$$
 $m=1$
 $m=1$

$$\square$$
 cotragolouic stre $m^2 \stackrel{\infty}{|Z|}$, estamula mil

$$= |x_1 - x_1| + ... + |x_m - x_m| = \sum_{i=1}^{n} |x_i - x_i|$$

Fie x, 7, 7 ER?

(=)
$$x_i = \pi_i$$
, $(x_i) = \sum_{i=1}^{m} |x_i - \pi_i| = \sum_{i=1}^{m} |-(\pi_i - x_i)| = \sum_{i=1}^{m} |-(\pi_i -$

$$\Rightarrow |i\mathcal{X} - i\mathcal{Y} + i\mathcal{Y} - i\mathcal{X}| |\mathcal{Z}| = |i\mathcal{X} - i\mathcal{X}| |\mathcal{Z}| = |\mathcal{Z}| |\mathcal{Z}| + |\mathcal{Z}| |\mathcal{Z}|$$

I) Tie
$$\mathcal{X} = (\mathcal{X}_1, ..., \mathcal{X}_m) \in \mathbb{R}^m$$
 By $\mathcal{X} = (\mathcal{X}_1, ..., \mathcal{X}_m) \in \mathbb{R}^m$
Tratati ca Sim $\mathcal{X} = \mathcal{X}_1 + \mathcal{X}_2 = \mathcal{X}_2 + \mathcal{X}_3 = \mathcal{X}_4 = \mathcal{X}_$

$$\lim_{n \to \infty} X = X : Ab : A = 1 : Ab$$

Fig & >0.

The germ $R_{\epsilon} = mon \%$ R_{ϵ}^{1} , R_{ϵ}^{2} , ..., R_{ϵ}^{2} R_{ϵ}^{2} , ..., R_{ϵ}^{2} $R_{$

resistan inluitiosasa la (il lutinus mile listansarla, (16, A1) sistem luitare mã às masubolo denlaridas stra salvantes atras strassocienas a ses us atrassocienas a ses us el atrassocienas a brief sance milo.