Progetto Basi di Dati - Sistema condominiale

Contents

1	Introduzione		
2 Descrizione soluzione			
3	Schema entità/relazioni (ER)	3	
4	Analisi ridondanze 4.1 Tabella operazioni	4 4 4	
5	Schema logico relazionale 5.1 Chiavi esterne	7 7	
6	Progettazione fisica		
7	Implementazione in SQL		
8	Analisi dati		

1 Introduzione

- 2 Descrizione soluzione
- 3 Schema entità/relazioni (ER)

4 Analisi ridondanze

4.1 Tabella operazioni

Operazione	Frequenza
Modifica la quota dell'anno corrente dell'appartamento n° 3 del	45 volte/mese
condominio "X"	
Cancella condominio con codice "Y"	0.2 volte/anno
Inserimento Appartamento	1 volta/anno
Query ammontare complessivo di tutti i condomini (calcolarlo)	4 volte/anno
Query indirizzo di tutti i proprietari	1 volta/giorno
Query dato x proprietario per ogni condominio avente almeno	2 volte/mese
1 app. posseduto da x, elencare le ultime 5 spese dal registro	
spese	
Query elenco spese dell'anno corrente dei condomini che	1 volta/anno
possiedono almeno 10 appartamenti	
Query importo complessivo delle spese di tutti i condomini con	5 volte/anno
50 <= ammontareComplessivo <= 100	
Query elenco persone che possiedono l'appartamento in cui abi-	3 volte/anno
tano	
Query elenco persone più anziane che possiedono un apparta-	2 volte/mese
mento con $superficie >= 50$	

4.2 Tabella valori

Concetto	Tipo	Volume
Persona	Entità	1000
Proprietario	Entità	200
Appartamento	Entità	1500
Condominio	Entità	150
Spesa	Entità	4500
abita	Relazione	1000
possiede	Relazione	1500
appartenenza	Relazione	1500
paga	Relazione	4500

4.3 Analisi ridondanza sull'attributo derivato Ammontare complessivo di Condominio

L'analisi delle ridondanze è stata effettuata tenendo in considerazione l'attributo derivato Ammontare-Complessivo dell'entità Condominio, andando a calcolare il costo delle seguenti

due operazioni nel caso in cui è presente l'attributo derivato oppure no:

- OP1 := inserimento Appartamento
- $\bullet\;$ OP2 := calcolare ammontare complessivo di un Condominio

Con frequenza rispettivamente di 1 volta/anno e 4 volte/anno

```
La seguente tabella ci sarà utile in seguito per calcolare il costo delle operazioni. — Operazione — Costo (u) — — — — — — — Scrittura (w) — 2 — — Lettura (r) — 1 —
```

L'obbiettivo che ci poniamo è quello di dimostrare che tenere l'attributo derivato sia computazionalmente vantaggioso, nel caso delle due operazioni in esame. Focalizziamo la nostra attenzione sulle entità **Condominio** e **Appartamento** e sulla relazione **Appartenenza**.

Costo delle due operazione nel caso in cui la ridondanza venga tolta

Per quanto riguarda l'operazione 1 abbiamo bisogno di un accesso in scrittura all'entità Appartamento e un accesso in scrittura alla relazione Appartenenza.

Per quanto riguarda l'operazione 2 serve un accesso in lettura all'entità Condominio, per ricavare il condominio in questione e 10 letture alla relazione Appartenenza (ottenuto dividendo il volume dell'entità Appartamento per il volume dell'entità Condominio).

Quindi,

```
> Costo_OP1 = 2w
>
> Costo_OP2 = 1r + (1500/150)r = 11r
```

Andando a moltiplicare i costi per le relative frequenze delle due operazioni e tenendo in considerazione la tabella subito sopra

```
> Costo_OP1 = 2 * 2 * 1 volta/anno = 4 accessi all'anno
>
> Costo_OP2 = 11 * 1 * 4 volte/anno = 44 accessi all'anno
>
> Costo_TOT_senza_rid = 48 accessi all'anno
```

Costo delle due operazione nel caso in cui la ridondanza venga mantenuta

Per quanto riguarda l'operazione 1 abbiamo bisogno di un accesso in scrittura all'entità Appartamento (per inserire l'appartamento), un accesso in scrittura alla relazione Appartenenza (per memorizzare la coppia condominio-appartamento), un accesso in lettura all'entità Condominio (per cercare il condominio in questione) e un accesso in scrittura

all'entità Condominio (sommando all'attributo derivato il valore dell'attributo Quota-annocorrente dell'appartamento appena inserito).

Per quanto riguarda l'operazione 2 serve un solo accesso in lettura all'entità Condominio, per leggere il contenuto dell'attributo derivato Ammontare-complessivo.

Quindi,

```
> Costo_OP1 = 1r + 3w
>
> Costo_OP2 = 1r
```

Andando a moltiplicare i costi per le relative frequenze delle due operazioni e tenendo in considerazione la tabella subito sopra

```
> Costo_OP1 = 1 + (3 * 2) * 1 volta/anno = 7 accessi all'anno
>
> Costo_OP2 = 1 * 4 volte/anno = 4 accessi all'anno
>
> Costo_TOT_con_rid = 11 accessi all'anno
```

E quindi siccome $Costo_TOT_con_rid < Costo_TOT_senza_rid$ allora conviene mantenere l'attributo derivato Ammontare-complessivo.

5 Schema logico relazionale

Lo schema logico permette di rappresentare i concetti derivanti dallo schema ER nel modello logico utilizzato dalla base di dati.

In questo progetto viene utilizzato il modello relazionale il quale utilizza le relazioni (o tabelle) e le associazioni fra di esse per rappresentare i dati richiesti dal modello concettuale.

Il seguente schema logico ha tradotto le entità dello schema ER in tabelle, e le relazioni di tipo 1 a N dall'entità A all'entità B in associazioni tra la chiave esterna di A che fa riferimento alla chiave primaria di B.

In questo schema ER è presente una singola specializzazione parziale di Persona in Proprietario pertanto viene unita al genitore, e tutti gli attributi e relazioni del figlio ora sono del genitore.

L'attributo condominio.ammontareComplessivo è un attributo derivato ma è comunque presente nello schema logico in quanto lo studio sulla ridondanza ha sottolineato che mantenerlo porta una maggiore efficienza computazionale della basi di dati.

- condominio(<u>codice</u>, contoCorrente, indirizzo, ammontareComplessivo)
- spesa(dataOra, condominio, importo, causale)
- appartamento(numero, condominio, quotaAnnoCorrente, sommaPagata, telefono, superficie, proprietario)
- persona(<u>cf</u>, nome, dataNascita, indirizzo, numeroAppartamento, condominio)

5.1 Chiavi esterne

Di seguito sono elencate le chiavi esterne, la freccia indica che l'attributo (o l'insieme di attributi) a sinistra è chiave esterna dell'entità a destra

- spesa.condominio \implies condominio
- appartamento.condominio \implies condominio
- ullet appartamento.proprietario \Longrightarrow persona
- {persona.numero Appartamento, persona.condominio} \implies appartamento

- 6 Progettazione fisica
- 7 Implementazione in SQL
- 8 Analisi dati