Transformace souřadnic

Odpřednesenou látku naleznete v kapitolách 9.2 a 9.3 skript *Abstraktní a konkrétní lineární algebra*.

Jiří Velebil: Lineární algebra

Minulá přednáška

- Lineární zobrazení.
- Výpočet souřadnic vzhledem k bázi je lineární zobrazení.
- Matice libovolného lineárního zobrazení mezi lineárními prostory konečné dimense vzhledem k pevně zvoleným bázím.

Dnešní přednáška

- Matice transformace souřadnic v jedné bázi na souřadnice ve druhé bázi. Jde opět o matici jistého lineárního zobrazení.
- Uvidíme, že pro stále více problémů je třeba se naučit řešit maticové soustavy.^a

Příští přednáška

• Koncepčně čistý a geometricky jasný způsob řešení soustav lineárních rovnic, maticových rovnic, atd.

^aŘadu příkladů tedy v této přednášce nedopočítáme až do konce.

Připomenutí (výpočet matice lineárního zobrazení)

Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení, ať $B = (\vec{b}_1, \dots, \vec{b}_s)$ a $C = (\vec{c}_1, \dots, \vec{c}_r)$ jsou uspořádané báze prostorů L_1 a L_2 . Potom matice A_f má r řádků a s sloupců a j-tý sloupec matice A_f je tvořen souřadnicemi **coord** $_{C}(\mathbf{f}(\vec{b}_{i}))$, zapsanými do sloupce.

05B-2023: Transformace souřadnic

Definice (matice transformace souřadnic)

Ať $B=(\vec{b}_1,\ldots,\vec{b}_n)$ a $C=(\vec{c}_1,\ldots,\vec{c}_n)$ jsou uspořádané báze prostoru L. Matici^a $\mathbf{T}_{B\mapsto C}$, která splňuje

říkáme matice transformace souřadnic z báze B do báze C (také: matice transformace souřadnic v bázi B na souřadnice v bázi C).

4/17

^aVšimněte si značení: v dolním indexu $\mathbf{T}_{B\mapsto C}$ je šipka s patkou (bázi B "posíláme" na bázi C).

Poznámky (základní vlastnosti matice transformace souřadnic)

• Platí $\mathbf{T}_{B\mapsto C}\cdot\mathbf{coord}_B(\vec{x})=\mathbf{coord}_C(\vec{x})$, pro každý vektor \vec{x} v L. To plyne přímo z definice matice $\mathbf{T}_{B\mapsto C}$:

② Matice $\mathbf{T}_{B\mapsto C}$ je vždy regulární. Platí $(\mathbf{T}_{B\mapsto C})^{-1} = \mathbf{T}_{C\mapsto B}$. To plyne z toho, že **id** : $L\to L$ je isomorfismus.

05B-2023: Transformace souřadnic

Poznámky (základní vlastnosti matice transformace, pokrač.)

3 Platí $T_{B \mapsto B} = E_n$. To je triviální:

• Platí $\mathbf{T}_{B\mapsto D} = \mathbf{T}_{C\mapsto D} \cdot \mathbf{T}_{B\mapsto C}$. To plyne z vlastností matice složeného zobrazení:

Příklad (přepočet souřadnic vzhledem k jiné bázi)

V prostoru $\mathbb{R}^{\leq 3}[x]$ nad \mathbb{R} máme uspořádané báze $B=(x^3,x^2,x,1)$ a $C=((x-1)^3,(x-1)^2,x-1,1).$

Pro polynom $p(x) = -3x^2 + 6x + 3$ z $\mathbb{R}^{\leq 3}[x]$ hledáme $\mathbf{coord}_C(p(x))$. Víme, že $\mathbf{coord}_C(p(x)) = \mathbf{T}_{B \mapsto C} \cdot \mathbf{coord}_B(p(x))$.

Protože
$$\mathbf{coord}_B(p(x)) = \begin{pmatrix} 0 \\ -3 \\ 6 \\ 3 \end{pmatrix}$$
, stačí tedy znát^a matici $\mathbf{T}_{B \mapsto C}$.

$$\mathbf{T}_{B\mapsto C} = (\mathbf{T}_{C\mapsto B})^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \ -3 & 1 & 0 & 0 \ 3 & -2 & 1 & 0 \ -1 & 1 & -1 & 1 \end{pmatrix}^{-1}$$

$$(\mathsf{T}_{\mathsf{C}\mapsto \mathsf{B}}\mid \mathsf{E}_{\mathsf{n}})\sim\cdots\sim (\mathsf{E}_{\mathsf{n}}\mid (\mathsf{T}_{\mathsf{C}\mapsto \mathsf{B}})^{-1})$$

^aUvidíme později, že pro nalezení matice $(\mathbf{T}_{C \mapsto B})^{-1}$ lze využít blokový tvar Gaussovy eliminace:

Příklad (přepočet souřadnic vzhledem k jiné bázi)

Jsou dány tři konečné báze B, C a D prostoru L. Spočtěte $\mathbf{coord}_B(4 \cdot \vec{x} + 12 \cdot \vec{y} + 3 \cdot \vec{z})$, pokud znáte $\mathbf{coord}_B(\vec{x})$, $\mathbf{coord}_C(\vec{y})$ a $\mathbf{coord}_D(\vec{z})$.

$$\mathbf{coord}_B(4\cdot\vec{x}+12\cdot\vec{y}+3\cdot\vec{z})=$$

$$4 \cdot \mathbf{coord}_B(\vec{x}) + 12 \cdot \mathbf{coord}_B(\vec{y}) + 3 \cdot \mathbf{coord}_B(\vec{z}) =$$

$$4 \cdot \mathbf{coord}_B(\vec{x}) + 12 \cdot \mathbf{T}_{C \mapsto B} \cdot \mathbf{coord}_C(\vec{y}) + 3 \cdot \mathbf{T}_{D \mapsto B} \cdot \mathbf{coord}_D(\vec{z}).$$

Poznámka (konceptuální výpočet $T_{B\mapsto C}$ v prostoru \mathbb{F}^n)

Ať $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ a $C = (\mathbf{c}_1, \dots, \mathbf{c}_n)$ jsou libovolné báze prostoru \mathbb{F}^n .

Připomenutí: kanonická (také: standardní) báze $K_n = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ prostoru \mathbb{F}^n .

- **1** Je snadné nalézt matice $T_{B \mapsto K_n}$ a $T_{C \mapsto K_n}$.
 - **1** Do *j*-tého sloupce $\mathbf{T}_{B\mapsto K_n}$ napíšeme souřadnice \mathbf{b}_j v kanonické bázi K_n .
 - **2** Do *j*-tého sloupce $\mathbf{T}_{C \mapsto K_n}$ napíšeme souřadnice \mathbf{c}_j v kanonické bázi K_n .

Stačí tedy vyřešit a maticovou rovnici $\mathbf{T}_{C\mapsto \mathcal{K}_n}\cdot\mathbf{X}=\mathbf{T}_{B\mapsto \mathcal{K}_n}.$

$$(\mathsf{T}_{C\mapsto K_n}\mid \mathsf{T}_{B\mapsto K_n})\sim\cdots\sim (\mathsf{E}_n\mid (\mathsf{T}_{C\mapsto K_n})^{-1}\cdot \mathsf{T}_{B\mapsto K_n})$$

^aUvidíme později, že pro nalezení matice $(\mathbf{T}_{C \mapsto K_n})^{-1} \cdot \mathbf{T}_{B \mapsto K_n}$ lze využít blokový tvar Gaussovy eliminace:

Příklad (nalezení báze, známe-li matici transformace)

$$B = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
) je báze lineárního prostoru \mathbb{R}^3 . Tedy $\mathbf{T}_{B\mapsto K_3} = \begin{pmatrix} 1 & -2 & 2 \\ 1 & 1 & -1 \\ 2 & -2 & 1 \end{pmatrix}$, kde K_3 je kanonická báze \mathbb{R}^3 .

Nalezněte bázi
$$C = \begin{pmatrix} c_{11} \\ c_{21} \\ c_{31} \end{pmatrix}, \begin{pmatrix} c_{12} \\ c_{22} \\ c_{32} \end{pmatrix}, \begin{pmatrix} c_{13} \\ c_{23} \\ c_{33} \end{pmatrix}$$
) lineárního prostoru \mathbb{R}^3 tak, aby platila rovnost $\mathbf{T}_{B \hookrightarrow C} = \begin{pmatrix} -4 & 3 & 1 \\ 11 & 4 & 1 \end{pmatrix}$.

 \mathbb{R}^3 tak, aby platila rovnost $\mathbf{T}_{B\mapsto C}=egin{pmatrix} -4 & 3 & 1 \\ 11 & 4 & 1 \\ 2 & 10 & 1 \end{pmatrix}$.

Příklad (pokrač.)

Protože C je báze a protože K_3 je kanonická báze, víme, že platí:

$$\begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{23} & c_{32} & c_{33} \end{pmatrix} = \mathbf{T}_{C \mapsto K_3}$$

Protože platí $\mathbf{T}_{C\mapsto K_3} = \mathbf{T}_{B\mapsto K_3} \cdot \mathbf{T}_{C\mapsto B} = \mathbf{T}_{B\mapsto K_3} \cdot (\mathbf{T}_{B\mapsto C})^{-1}$, dosadíme a spočítáme

$$\begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix} = \begin{pmatrix} 1 & -2 & 2 \\ 1 & 1 & -1 \\ 2 & -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -4 & 3 & 1 \\ 11 & 4 & 1 \\ 2 & 10 & 1 \end{pmatrix}^{-1}$$

Věta (změna matice zobrazení při změně bází)

Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení, $\dim(L_1) = n$, $\dim(L_2) = m$. Ať B a B' isou báze prostoru L_1 a ať C a C' isou báze prostoru L_2 . Jestliže A_f je matice f vzhledem k B a C, pak součin $T_{C \mapsto C'} \cdot A_f \cdot T_{B' \mapsto B}$ je matice f vzhledem k B' a C'.

Důkaz.

Výpočet matice lineárního zobrazení $\mathbf{f}: L_1 \to L_2$ vzhledem k libovolným bázím

Ať $B=(\vec{b}_1,\ldots,\vec{b}_n)$ je báze L_1 a $C=(\vec{c}_1,\ldots,\vec{c}_m)$ je báze prostoru L_2 .

Předpokládejme, že matice $\mathbf{A_f}$ zobrazení $\mathbf{f}: L_1 \to L_2$ vzhledem k jistým bázím $easy_n = (\vec{d}_1, \dots, \vec{d}_n)$ a $easy_m = (\vec{k}_1, \dots, \vec{k}_m)$ prostorů L_1 a L_2 se snadno určí.

- **1** Matice transformací souřadnic $\mathbf{T}_{B\mapsto easy_n}$ a $\mathbf{T}_{C\mapsto easy_m}$ se také určí snadno:
 - **1** Do *j*-tého sloupce matice $\mathbf{T}_{B\mapsto easy_n}$ napíšeme souřadnice vektoru \vec{b}_i vzhledem k bázi $easy_n$.
 - 2 Do j-tého sloupce matice $\mathbf{T}_{C \mapsto easy_m}$ napíšeme souřadnice vektoru $\vec{c_j}$ vzhledem k bázi $easy_m$.
- ② Platí: $\mathbf{T}_{easy_m \mapsto C} = (\mathbf{T}_{C \mapsto easy_m})^{-1}$.
- 3 Součin matic $\mathbf{T}_{easy_m \mapsto C} \cdot \mathbf{A_f} \cdot \mathbf{T}_{B \mapsto easy_n}$ je matice zobrazení \mathbf{f} vzhledem k bázím B a C.

Příklad (matice zobrazení vzhledem k nestandardní bázi)

Nalezněte matici **A** zobrazení **der** : $\mathbb{R}^{\leq 3}[x] \to \mathbb{R}^{\leq 3}[x]$ vzhledem k bázi $C = (x^3 + 3x^2, 3x^2 + 4x - 23, x - 1, 42)$. Víme, že **der** má následující matici vzhledem k $B = (x^3, x^2, x, 1)$:

$$\mathbf{A_{der}} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Platí:

$$\mathbf{T}_{C \mapsto B} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & -23 & -1 & 42 \end{pmatrix}$$

Tedy: $\mathbf{A} = \mathbf{T}_{B \mapsto C} \cdot \mathbf{A}_{der} \cdot \mathbf{T}_{C \mapsto B} = (\mathbf{T}_{C \mapsto B})^{-1} \cdot \mathbf{A}_{der} \cdot \mathbf{T}_{C \mapsto B}$.

Závěrečné poznámky k transformaci souřadnic

- **1** Jakoukoli čvercovou regulární matici \mathbf{T} typu $n \times n$ nad \mathbb{F} lze považovat za matici transformace souřadnic $\mathbf{T}_{B \mapsto K_n}$, kde K_n je kanonická báze prostoru \mathbb{F}^n a báze B je tvořena sloupci matice \mathbf{T} .
- ② Je-li $\mathbf{A_f}$ matice zobrazení $\mathbf{f}: L_1 \to L_2$ vzhledem k bázím B a C, pak matice zobrazení \mathbf{f} vzhledem k nějakým bázím B' a C' má tvar $\mathbf{S} \cdot \mathbf{A_f} \cdot \mathbf{T}$, pro nějaké regulární matice \mathbf{S} a \mathbf{T} .

Speciální případ: $L_1 = L_2$, B = C a B' = C'. Pak matice $\mathbf{A_f}$ přejde na matici tvaru $\mathbf{T}^{-1} \cdot \mathbf{A_f} \cdot \mathbf{T}$, pro nějakou regulární matici \mathbf{T} .

Poznámky (pokrač.)

③ Řekneme, že dvě matice **A** a **B** typu $n \times n$ nad \mathbb{F} jsou si podobné (značení: $\mathbf{A} \approx \mathbf{B}$), pokud platí rovnost $\mathbf{B} = \mathbf{T}^{-1} \cdot \mathbf{A} \cdot \mathbf{T}$, pro nějakou regulární matici \mathbf{T} .

Podobné matice jsou tedy ty, které popisují stejné lineární zobrazení, každá matice jej vyjadřuje v jiné bázi. To využijeme při hledání vlastních hodnot lineárních zobrazení (později).

Příklad (Připomenutí příkladu z minulé přednášky)

Lineární zobrazení $\mathbf{f}:\mathbb{R}^2 \to \mathbb{R}^2$ je dáno hodnotami

$$\mathbf{f}\begin{pmatrix} 1 \\ -1 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad \mathbf{a} \quad \mathbf{f}\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Zobrazení f tedy:

- "Prodlužuje" 2× měřítko v ose druhého a čtvrtého kvadrantu.
- 2 "Zkracuje" 3× měřítko v ose prvního a třetího kvadrantu.

Příklad (pokrač.)

Vzhledem k nekanonické bázi $B=(\begin{pmatrix}1\\-1\end{pmatrix},\begin{pmatrix}1\\1\end{pmatrix})$ lineárního prostoru \mathbb{R}^2 má zobrazení $\mathbf f$ matici

$$\mathbf{A_f} = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$$

Vzhledem ke kanonické bázi K_2 lineárního prostoru \mathbb{R}^2 má zobrazení **f** matici^a

$$\mathbf{B_f} = \begin{pmatrix} \frac{7}{6} & -\frac{5}{6} \\ -\frac{5}{6} & \frac{7}{6} \end{pmatrix}$$

Platí: $\mathbf{A_f} \approx \mathbf{B_f}$.

Matice A_f je "přehlednějsí" než matice B_f (matice A_f vypovídá okamžitě o geometrické povaze zobrazení f).

^aMinulá přednáška.