Water Quality

<u>Data Mining</u> <u>Project Documentation</u>

Building of Classifier Models

To Predict the Water Potability & Calculate the Error Percentage

• TA. Nourhan Bahnasy

Name	Section	University ID
أحمد ناصر أحمد حسن	1	20191701016
يوسف عصام فؤاد محمد	9	20191701269
مريم عبدالهادي محمد عبدالغفار	9	20191701195
أمانى جمال رسىلان حسن	2	20191701033
جنی هانی أحمد صادق	3	20191701059
عبدالرحمن يسري إبراهيم البابلي	5	20191701124

Used Models

Naive-Bayes Classifier	2
KNN (ver1) Classifier	3
KNN (ver2) Classifier	4
Random-Forest Classifier	5
Gradient-Boosting Classifier	6
SGD Classifier	7
Stratified-kFold Classifier	8
ID3 Classifier	9
Logistic Classifier	10
SVM (ver1) Classifier	11
SVM (ver2) Classifier	12
SVM (ver3) Classifier	13
XG-Boost Classifier	14

For the first dataset "waterQuality1", the best model that succeeded to get the highest testing accuracy is:

Random-Forest Classifier

1) Naive-Bayes Classifier

- a) Data Preprocessing
 - i) Sort values
 - ii) Drop duplicates
 - iii) Fill data missing with mean to improve accuracy
 - iv) Shuffling
 - v) Stratify
 - vi) Label Encoder
 - vii) Standard Scaler
- b) Testing Accuracy
 - i) 64.62093862815884 %
- c) Data Separation
 - i) 80% training: 20% testing
- d) Result & Output
 - i) Screen Shot

```
[[305 166]

[ 30 53]]

0.6462093862815884

0.35379061371841153

[0.57948718 0.66494845 0.61340206 0.59793814 0.59793814 0.63402062

0.62371134 0.59278351 0.60824742 0.63402062]
```

2) KNN (ver1) Classifier

- a) Data Preprocessing
 - i) Drop NULL values
 - ii) Drop the duplicates
 - iii) Normalization
 - iv) Selection of the important features
 - v) Stratified Sampling
- b) Testing Accuracy
 - i) 62.03473945409429 %
- c) Data Separation
 - i) 80% training: 20% testing
- d) Result & Output
 - i) Screen Shot

3) KNN (ver2) Classifier

- a) Data Preprocessing
 - i) Dropping NULL values
 - ii) Dropping Duplicates
 - iii) Extract the features
 - iv) Normalization
 - v) Shuffling
- b) Testing Accuracy
 - i) 71.21588089330024 %
- c) Data Separation
 - i) 80% training: 20% testing
- d) Result & Output
 - i) Screen Shot

```
[[206 47]
[ 69 81]]
Accuracy = 0.7121588089330024
Error = 0.28784119106699757

Process finished with exit code 0
```

4) Random-Forest Classifier

- a) Data Preprocessing
 - i) Sort values
 - ii) Drop Duplicates
 - iii) Fill data missing with mean to improve accuracy
 - iv) Shuffle
 - v) Stratify
 - vi) Label Encoder
 - vii) Standard Scaler
- b) Testing Accuracy
 - i) 73.10469314079422 %
- c) Data Separation
 - i) 80% training: 20% testing
- d) Result & Output
 - i) Screen Shot

```
[[317 131]
[ 18 88]]
0.7310469314079422
0.26895306859205775
```

5) Gradient-Boosting Classifier

- a) Data Preprocessing
 - i) Removing duplicates
 - ii) replace outliers by nulls
 - iii) replace nulls by mean value
- b) Testing Accuracy
 - i) max: 65%
- c) Data Separation
 - i) 80% training 20% testing
- d) Result & Output
 - i) Screen Shot

```
Learning rate: 0.1
Training Accuracy: 0.626
Validation Accuracy: 63.736 %
Learning rate: 0.2
Training Accuracy: 0.634
Validation Accuracy: 63.599 %
Learning rate: 0.3
Training Accuracy: 0.648
Validation Accuracy: 63.324 %
Learning rate: 0.4
Training Accuracy: 0.657
Validation Accuracy: 64.698 %
Learning rate: 0.5
Training Accuracy: 0.664
Validation Accuracy: 65.110 %
Learning rate: 0.6
Training Accuracy: 0.673
Validation Accuracy: 62.500 %
Learning rate: 0.7
Training Accuracy: 0.673
Validation Accuracy: 64.148 %
Learning rate: 0.8
Training Accuracy: 0.672
Validation Accuracy: 63.324 %
```

6) SGD Classifier

- a) Data Preprocessing
 - i) Removing duplicates
 - ii) Replace outliers by nulls
 - iii) Replace nulls by mean value
- b) Testing Accuracy
 - i) 62.8%
- c) Data Separation
 - i) 80% training 20% testing
- d) Result & Output
 - i) Screen Shot

Accuracy: 62.80487804878049 %

7) Stratified-kFold Classifier

- a) Data Preprocessing
 - i) Removing duplicates
 - ii) replace outliers by nulls
 - iii) replace nulls by mean value
- b) Testing Accuracy
 - i) 60.9%
- c) Data Separation
 - i) 80% training 20% testing
- d) Result & Output
 - i) Screen Shot

```
Maximum Accuracy That can be obtained from this model is: 61.16207951070336 %

Minimum Accuracy: 60.85626911314985 %

Overall Accuracy: 60.98903557842918 %

Standard Deviation is: 0.0010339986558718815
```

8) ID3 Classifier

- a) Data Preprocessing
 - i) Dropping NULL values.
 - ii) Normalization.
 - iii) Shuffling data.
 - iv) Random Sampling.
- b) Testing Accuracy
 - i) 61.36645962732919 %
- c) Data Separation
 - i) 60% training: 40% testing
- d) Result & Output
 - i) Screen Shot

Test Accuracy: 61.36645962732919 %
Mean Square Error: 0.38633540372670805
Process finished with exit code 0

9) Logistic Classifier

- a) Data Preprocessing
 - i) Removing rows that has NULL values.
 - ii) Normalization.
 - iii) Shuffling data.
 - iv) Random Sampling
- b) Testing Accuracy
 - i) 60.12422360248447 %
- c) Data Separation
 - i) 60% training : 40% testing
- d) Result & Output
 - i) Screen Shot

Test Accu	Jracy	: 60.124223	60248447	%		
Mean Squa	are E	rror: 0.398	757763975	1553		
Report:						
		precision	recall	f1-score	support	
	0	0.61	0.97	0.75	492	
	1	0.28	0.02	0.03	313	
accur	racy			0.60	805	
macro	avg	0.44	0.49	0.39	805	
weighted	avg	0.48	0.60	0.47	805	

10) SVM (ver1) Classifier

- a) Data Preprocessing
 - i) Scaling feature data using MINMAXScaler
 - ii) Handling NULL values with Median in the same column.
 - iii) Using a Simple Imputer.
 - iv) Shuffling data.
 - v) Random Sampling.
- b) Testing Accuracy
 - i) 61.35531135531136 %
- c) Data Separation
 - i) 50% training: 50% testing
- d) Result & Output
 - i) Screen Shot

train accuracy : 60.62271062271062 %

test accuracy : 61.35531135531136 %

Mean Square Error : 0.38644688644688646

11) SVM (ver2) Classifier

- a) Data Preprocessing
 - i) Remove null values
 - ii) Dropping for PH and Sulfate features
 - iii) Remove Duplicates
- b) Testing Accuracy
 - i) 65.1603498542274 %
- c) Data Separation
 - i) 80% training: 20% testing
- d) Result & Output
 - i) Screen Shot

Accuracy: 65.1603498542274

12) SVM (ver3) Classifier

- a) Data Preprocessing
 - i) Used the Second(new) Dataset
 - ii) Convert objects data types into float & integers
 - iii) Normalization
- b) Testing Accuracy
 - i) 90.0 %
- c) Data Separation
 - i) 80% training: 20% testing
- d) Result & Output
 - i) Screen Shot

Accuracy: 90.0 %

13) XG-Boost Classifier

- a) Data Preprocessing
 - i) Used the Second(new) Dataset
 - ii) Normalization
 - iii) Remove duplicates
 - iv) Replace null values by mean
- b) Testing Accuracy
 - i) 67.12898751733704 %
- c) Data Separation
 - i) 80% training: 20% testing
- d) Result & Output
 - i) Screen Shot

Accuracy: 67.12898751733704 %