

Machine Learning

Linear Regression with multiple variables

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

resolvemos num unico passo Intuition: If 1D $(heta \in \mathbb{R})$ minimizr funçao? derivada

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\sec^2 \phi}{\cos^2 \phi}$$
Solve for ϕ

$$\underline{\theta \in \mathbb{R}^{n+1}} \qquad \underline{J(\theta_0, \theta_1, \dots, \theta_m)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underline{\frac{\partial}{\partial \theta_j} J(\theta)} = \cdots \stackrel{\boldsymbol{\leq}}{=} 0 \qquad \text{(for every } j\text{)}$$

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m=4. training example

adicionamos coluna extra	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000))
$\rightarrow x_0$	x_1	x_2	x_3	x_4	y	
1	2104	5	1	45	460	
1	1416	3	2	40	232	
1	1534	3	2	30	315	
1 1	852	2	_1	J 36	178	7
	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $534 3 2$ $852 2 1$ $\mathbf{M} \times (\mathbf{N} + \mathbf{I})$	$\begin{bmatrix} 2 & 30 \\ 36 \end{bmatrix}$	y =	460 232 315 178	1est or

<u>m</u> examples $(x^{(1)}, y^{(1)}), \ldots, (\underline{x^{(m)}, y^{(m)}})$; <u>n</u> features.

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$(\text{design} \\ \text{Mothan})$$

$$(\text{min})^{7} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \end{bmatrix}$$

Andrew Ng

 $(TX)^{-1}$ is inverse of matrix X^TX .

$$A: X^{T}X$$

$$X^{T}X)^{-1} = A^{-1}$$

Octave: pinv(x'*x)*x'*y

m training examples, \underline{n} features.

Gradient Descent

- \rightarrow Need to choose α .
- → Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute
- $\neg (X^T X)^{-1} \xrightarrow{\mathsf{N} \times \mathsf{N}} \mathsf{O}(\mathsf{n}^3)$
 - Slow if n is very large.