II. CLAIM AMENDMENTS

What is claimed is:

Claims 1-65 (Cancelled)

Claim 66 (Previously Amended) A compound of the formula

or a pharmaceutically acceptable salt thereof, wherein

is a 4-8 membered monocyclic ring or 7-12 membered bicyclic ring; which ring is optionally saturated or unsaturated, which ring is optionally substituted with one or more substituent selected from the group consisting of alkyl, haloalkyl, aryl, heteroaryl, halogen, alkoxyalkyl, aminoalkyl, hydroxy, nitro, alkoxy, hydroxyalkyl, thioalkyl, amino, alkylamino, arylamino, alkylsulfonamide, acyl, acylamino, alkylsulfone, sulfonamide, allyl, alkenyl, methylenedioxy, ethylenedioxy, alkynyl, carboxamide, cyano, and -(CH₂)_m COR;

m is 0 to 2;

R is hydroxy, alkoxy, alkyl or amino;

A¹ is a pyridinyl of the formula

$$R^{\underline{k}}$$
 A^{1}

optionally substituted by one or more R^k selected from the group consisting of hydroxy, alkyl, alkoxy, alkoxyalkyl, thioalkyl, haloalkyl, cyano, amino, alkylamino, halogen, acylamino, sulfonamide and -COR;

R is hydroxy, alkoxy, alkyl or amino;

with respect to Z^1 and Z^2 :

Z¹ is selected from the group consisting of CH₂, O, N, CO, S, SO, SO₂, CH and NR₄;

R, is selected from H or lower alkyl;

 Z^2 is a 2 to 5 carbon linker optionally containing one or more heteroatom selected from the group consisting of O, S and N; or

 Z^1 - Z^2 contains a moiety selected from the group consisting of carboxamide, sulfone, sulfonamide, alkenylene, alkynylene, and acyl;

wherein the carbon and nitrogen atoms of $Z^1 - Z^2$ are optionally substituted by alkyl, alkoxy, thioalkyl, alkylsulfone, aryl, alkoxyalkyl, hydroxy, alkylamino, heteroaryl, alkenyl, alkynyl, carboxyalkyl, halogen, haloalkyl or acylamino;

wherein Z_2 - Z_1 is attached to

at the para or meta position relative to

n is 0 to 2;

the X₁ substituent;

R° is selected from the group consisting of hydrogen; alkyl; halogen, hydroxy, nitro, alkoxy, amino, haloalkyl, aryl, heteroaryl, alkoxyalkyl, aminoalkyl, hydroxyalkyl, thioalkyl, alkylamino, arylamino, alkylsulfonylamino, acyl, acylamino, sulfonyl, sulfonamide, allyl, alkenyl, methylenedioxy, ethylenedioxy, alkynyl, alkynylalkyl, carboxy, alkoxycarbonyl, carboxamido, cyano, and -(CH₂)_m COR;

X¹ is selected from the group consisting of -O-, CO, SO₂, NR^m and (CHR^p)_a;

R[™] is H or alkyl;

R^p is H, alkyl; alkoxy or hydroxy;

q is 0 or 1;

with respect to X, X² and Y:

X² is selected from the group consisting of -CHR^e-, CO, SO₂, O, NR^f and S;

R^f is H or alkyl;

Re is selected from the group consisting of H, alkyl, hydroxy and alkoxy;

X or Y are independently selected from the group consisting of -CR⁸- or -N-wherein R⁸ is selected from the group consisting of H, alkyl, haloalkyl, fluoro, alkoxyalkyl, alkynyl, aryl, heteroaryl, aralkyl, heteroaralkyl, alkylsulfone, hydroxyalkyl, hydroxy, alkoxy, and carboxyalkyl; or

the group $X-X_2-Y$ contains a moiety selected from the group consisting of acyl, alkyl, amino, ether, thioether, sulfone and olefin;

 $\begin{pmatrix} B \\ \chi \\ \chi \end{pmatrix}$

X₂ forms a cycloalkyl, optionally substituted with one or more substituent selected from the group consisting of alkyl, halogen, cyano, carboalkoxy, haloalkyl, alkoxyalkyl, alkylsulfone, aryl, heteroaryl, arakyl, heteroarakyl, or alkoxy; and

 R^b is $X_3 - R^h$ wherein X_3 is selected from the group consisting of O, S and NR^j wherein R^h and R^j are independently selected from the group consisting of H, alkyl, acyl, aryl, aralkyl and alkoxyalkyl.

Claim 67 (Previously Added) A compound according to claim 66 wherein

A' is selected from the group consisting of

$$z^a \stackrel{\text{IV}}{=} x^a \stackrel{\text{NH}}{=} x^a \stackrel{\text{NH}}$$

Z^{*} is selected from the group consisting of H, alkyl, alkoxy, hydroxy, amine, alkylamine, dialkylamine, carboxyl, alkoxycarbonyl, hydroxyalkyl, halogen and haloalkyl; and

R¹ is selected from the group consisting of H, alkyl, alkoxyalkyl, acyl, haloalkyl, alkoxycarbonyl, pyridylamino, imidazolylamino, morpholinopyridine, tetrahydronaphthyridine, oxazolylamino, thiazolylamino, pyrimidinylamino, quinoline, isoquinoline, tetrahydroquinoline, imidazopyridine, benzimidazole, pyridone, and quinolone.

Claim 68 (Previously Added) A compound according to claim 66 wherein

$$X_4$$
 N NH_{x_1} $R^{79}HN$ N X_5 and X_6 X_5

A¹ is selected from the group consisting of

X⁴ is selected from the group consisting of H, alkyl, branched alkyl, alkylamino, aloxyalkylamino, haloalkyl, thioalkyl, halogen, amino, alkoxy, aryloxy, alkoxyalkyl, hydroxy, cyano and acylamino;

X⁵ is selected from the group consisting of H, alkyl, branched alkyl, alkylamino, aloxyalkylamino, haloalkyl, thioalkyl, halogen, amino, alkoxy, aryloxy, alkoxyalkyl, hydroxy, cyano and acylamino;

X⁶ is selected from the group consisting of H, alkyl, halogen, alkoxy, hydroxy, and haloalkyl; and

R⁷⁹ is selected from the group consisting of hydroxy, alkoxy, alkyl and amino.

Claim 69 (Previously Added) A compound according to the claim 66 wherein

the moiety A1-Z2 is selected from the group consisting of

X⁴ is selected from the group consisting of H, alkyl, branched alkyl, alkylamino, aloxyalkylamino, haloalkyl, thioalkyl, halogen, amino, alkoxy, aryloxy, alkoxyalkyl, hydroxy, cyano and acylamino;

 R^{80} is selected from the group consisting of hydroxy, alkoxy, alkyl and amino; R^{81} is selected from the group consisting of hydroxy, alkoxy, alkyl and amino; and R^{82} is selected from the group consisting of hydroxy, alkoxy, alkyl and amino.

Claim 70 (Previously Amended) A compound according to claim 66 wherein

 X_1 is $(CHR^p)_q$; wherein q = 0;

B is a 3-, 4-, or a 5-membered cycloalkyl obtained by combining $X-X_2-Y$;

A is a phenyl ring substituted with R^c; and

n = 1.

Claim 71 (Previously Amended) A compound according to claim 70,

$$A^{1}-Z_{2}-Z_{1}$$

$$R^{g}$$

$$CO_{2}H$$

wherein the ring B is a cyclopropyl;

 $Y = CR^{\epsilon}$;

wherein R^s is selected from the group consisting of H, alkyl, haloalkyl, alkoxyalkyl, alkynyl, aryl, heteroaryl, aralkyl, heteroaralkyl, alkylsulfone, hydroxyalkyl, hydroxy, alkoxy, and carboxyalkyl; A is a phenyl ring substituted with R^c ; and $R^b = OH$.

Claim 72. (Previously Added) A compound according to claim 71 wherein R^s is selected from the group consisting of

R⁸³ is selected from the group consisting of H, alkyl, OMe, OH, and halogen;

X⁷ is selected from the group consisting of CH2 and O;

R⁸⁴ is selected from the group consisting of H, alkyl, OMe, OH, and halogen;

R⁸⁵ is selected from the group consisting of H, alkyl, OMe, OH, and halogen;

X⁸ is selected from the group consisting of NH, NMe, O, and S;

R⁸⁶ is selected from the group consisting of H and Me;

R⁸⁷ is selected from the group consisting of H and Me;

R⁸⁸ is selected from the group consisting of H, alkyl, OMe, OH, and halogen;

R⁸⁹ is selected from the group consisting of H and Me;

 B^1 is selected from the group consisting of O, SO2, S and CO; R^{90} is selected from the group consisting of alkyl and aryl; R^{91} is selected from the group consisting of alkyl and aryl; and R^{92} is selected from the group consisting of aryl and heteroayl.

Claim 73 (Previously Amended) A compound according to claim 71 wherein

A1 is selected from the group consisting of

X⁹ is selected from the group consisting of H, alkyl, and acyl;
R⁹³ is selected from the group consisting of H, Me, OH and alkoxyalkyl; and
R⁹³ is selected from the group consisting of H, Me, OMe, and OH.

Claim 74 (Previously Added) A compound according to claim 71 wherein ring A is a phenyl ring; and

Z₁-Z₂ and X₁-X are connected para to each other.

Claim 75 (Previously Added) A compound according to claim 74 wherein the phenyl ring is optionally substituted with one or more substituents selected from the group consisting of alkyl; halogen, hydroxy, alkoxy, haloalkyl, aryl, heteroaryl, alkoxyalkyl, sulfonamide, methylenedioxy, ethylenedioxy, alkynyl, and alkynylalkyl.

Claim 76 (Previously Added) A compound according to claim 74 wherein Z₁ is selected from the group consisting of CH₂, O, NR_k, CO, S, SO, and SO₂.

Claim 77 (Previously Added) A compound according to claim 74 wherein A¹ is selected from the group consisting of

Claim 78 (Previously Amended) A compound according to the claim 66,

wherein

 X^{i} is $(CHR^{p})_{q}$; wherein q = 0;

A is a phenyl ring substituted with R^c

B is a cyclopropyl obtained by combining X-X₂-Y;

n = 1; and

 R_m and R_n are selected from the group consisting of H, alkyl, halogen, alkoxy, haloalkyl, alkoxyalkyl, alkylsulfone, cyano, carboalkoxy, aryl, heteroaryl, aralkyl and heteroaralkyl; or

R_m and R_n form a spirocyclic ring system.

Claim 79 (Previously Amended) A compound according to the claim 78 wherein A¹ is

selected from the group consisting of

R⁹⁴ is selected from the group consisting of H, Me, OH, and alkoxyalkyl; R⁹⁴ is selected from the group consisting of H, Me, OMe, and OH; and X⁹ is selected from the group consisting of H, alkyl, and acyl.

- Claim 80 (Currently Amended) A compound according to claim 66 selected from the group consisting of:
- 2-[4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropaneacetic acid;
- 2-[4-[3-(2-pyridinylamino)propoxy]phenyl] cyclopentaneacetic acid;
- 3-[4-[3-(2-pyridinylamino)propoxy]phenyl] cyclopentaneacetic acid;
- 2,2-difluoro-3-[4-[3(2-pyridinylamino)propoxy]phenyl]cyclopropane-acetic acid
- (2-{4-[2-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-phenyl}-cyclopropyl)-acetic acid;
- 2-[3-methyl-4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropane-acetic acid;
- 2-[2-methoxy-4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropane-acetic acid;
- 3-bromo-5-fluoro-**,* β,β dimethyl-4-[3 (2-pyridinylamino)propoxy]-benzene butanoie acid:
- 2-[2-methyl-4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropane-acetic acid;
- 3-fluoro-β, β-dimethyl-4-[3-(2-pyridinylamino)propoxy]benzene-butanoic-acid;
- 3-ehloro β, β-dimethyl-4-[3-(2-pyridinylamino)propoxy]benzene-butanoic-acid;
- 2-[3-fluoro-4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropaneacetic acid;
- 2-[2-fluoro-4-[3-(2-pyridinylamino)propoxy]phenyl]cyclopropaneacetic acid;
- B-methyl-B-[[4-[3-(2-pyridinylamino)propoxy]phenyl]methyl]-3-pyridine propanoie acid;
- 3-methoxy-B, B-dimethyl-4-[3-(2-pyridinylamino)propoxy]benzene-butanoic acid;
- 2-[4-[2-[6-(methylamino)-2-pyridinyl]ethoxy]phenyl]cyclopropane-acetic acid;
- 2-[4-[2-(3,4-dihydro-2*H*-pyrido[3,2-*b*]-1,4-oxazin-6-yl)ethoxy]phenyl]-cyclopropaneacetic acid;
- 3-[4-[3-(2-pyridinylamino)propoxy]phenyl]cyclobutaneacetic acid;
- (2-{2-Methoxy-4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (2-{2-Fluoro-4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (2-{2-Acetoxy-4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Methyl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Methoxymethyl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid:
- (1-Methanesulfonylmethyl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Pyridin-3-yl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;

- (1-Benzo[1,3]dioxole-5-yl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-(2,3-Dihydro-benzofuran-6-yl)-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Isoxazol-3-yl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Isoxazol-5-yl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Oxazol-5-yl-2-{4-[3-(pyridin-2-ylamino)-propoxy]-phenyl}-cyclopropyl)-acetic acid;
- (2-{4-[3-(Pyridin-2-ylamino)-propoxy]-phenyl}-1-thiazol-5-yl-cyclopropyl)-acetic acid;
- (1-Pyridin-3-yl-2-{4-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-phenyl}-cyclopropyl)-acetic acid;
- (1-Methyl-2-{4-[2-(6-methylamino-pyridin-2-yl)-ethoxy]-phenyl}-cyclopropyl)-acetic acid:
- (2-{4-[2-(6-Ethylamino-pyridin-2-yl)-ethoxy]-phenyl}-1-methyl-cyclopropyl)-acetic acid;
- [2-(4-{2-[6-(2-Methoxy-ethylamino)-pyridin-2-yl]-ethoxy}-phenyl)-1-methyl-cyclopropyl]-acetic acid;
- [2-(4-{2-[6-(3-Methoxy-propylamino)-pyridin-2-yl]-ethoxy}-phenyl)-1-methyl-cyclopropyl]-acetic acid;
- (2-{4-[2-(6-Acetylamino-pyridin-2-yl)-ethoxy]-phenyl}-1-methyl-cyclopropyl)-acetic acid;
- [1-Methyl-2-(4-{2-[6-(2,2,2-trifluoro-ethylamino)-pyridin-2-yl]-ethoxy}-phenyl)-cyclopropyl]-acetic acid;
- (2-{4-[2-(6-Ethylamino-pyridin-2-yl)-ethoxy]-phenyl}-cyclopropyl)-acetic acid [2-(4-{2-[6-(2-Methoxy-ethylamino)-pyridin-2-yl]-ethoxy}-phenyl)-cyclopropyl]-acetic acid;
- [2-(4-{2-[6-(2,2,2-Trifluoro-ethylamino)-pyridin-2-yl]-ethoxy}-phenyl)-cyclopropyl]-acetic acid;
- [2-(4-{2-[6-(3-Methoxy-propylamino)-pyridin-2-yl]-ethoxy}-phenyl)-cyclopropyl]-acetic acid; and
- (2-{4-[2-(6-Acetylamino-pyridin-2-yl)-ethoxy]-phenyl}-cyclopropyl)-acetic acid.

Claim 81 (Previously Added) A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 66 and a pharmaceutically acceptable carrier.

Claim 82 (Previously Added) A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 70 and a pharmaceutically acceptable carrier.

Claim 83 (Previously Added) A method for treating conditions mediated by the $\alpha_{\nu}\beta_{3}$ integrin in a mammal in need of such treatment comprising administering an effective $\alpha_{\nu}\beta_{3}$ inhibiting amount of a compound of Claim 66.

Claim 84 (Previously Added) A method for treating conditions mediated by the $\alpha_{\nu}\beta_{3}$ integrin in a mammal in need of such treatment compirising administering an effective $\alpha_{\nu}\beta_{3}$ inhibiting amount of a compound of Claim 70.

Claim 85 (Previously Added) The method according to Claim 83 wherein the condition treated is tumor metastasis.

Claim 86 (Previously Added) The method according to Claim 84 wherein the condition treated is tumor metastasis.

Claim 87 (Previously Added) The method according to Claim 83 wherein the condition treated is solid tumor growth.

Claim 88 (Previously Added) The method according to Claim 84 wherein the condition treated is solid tumor growth.

Claim 89 (Previously Added) The method according to Claim 83 wherein the condition treated is angiogenesis.

Claim 90 (Previously Added) The method according to Claim 84 wherein the condition treated is angiogenesis.

Claim 91 (Previously Added) The method according to Claim 83 wherein the condition treated is osteoporosis.

Claim 92 (Previously Added) The method according to Claim 84 wherein the condition treated is osteoporosis.

Claim 93 (Previously Added) The method according to Claim 83 wherein the condition treated is humoral hypercalcemia of malignancy.

Claim 94 (Previously Added) The method according to Claim 84 wherein the condition treated is humoral hypercalcemia of malignancy.

Claim 95 (Previously Added) The method according to Claim 83 wherein the condition treated is smooth muscle cell migration.

Claim 96 (Previously Added) The method according to Claim 84 wherein the condition treated is smooth muscle cell migration.

Claim 97 (Previously Added) The method according to Claim 83 wherein restenosis is inhibited.

Claim 98 (Previously Added) The method according to Claim 84 wherein restenosis is inhibited.

Claim 99 (Previously Added) The method according to Claim 83 wherein atheroscelorosis is inhibited.

Claim 100 (Previously Added) The method according to Claim 84 wherein atheroscelorosis is inhibited.

Claim 101 (Previously Added) The method according to Claim 83 wherein macular degeneration is inhibited.

Claim 102 (Previously Added) The method according to Claim 84 wherein macular degeneration is inhibited.

Claim 103 (Previously Added) The method according to Claim 83 wherein retinopathy is inhibited.

Claim 104 (Previously Added) The method according to Claim 84 wherein retinopathy is inhibited.

Claim 105 (Previously Added) The method according to Claim 83 wherein arthritis is inhibited.

Claim 106 (Previously Added) The method according to Claim 84 wherein arthritis is inhibited.

Claim 107 (Previously Added) A method for treating conditions mediated by the $\alpha_v \beta_s$ integrin in a mammal in need of such treatment comprising administering an effective $\alpha_v \beta_s$ inhibiting amount of a compound of Claim 66.

Claim 108 (Currently Amended) A method for treating conditions mediated by the $\alpha_v \beta_s$ integrin in a mammal in need of such treatment comprising administering an effective $\alpha_v \beta_s$ integrin inhibiting amount of a compound of Claim 70.

Claim 109 (Currently Amended) The method according to Claim 107 wherein the condition treated is $\alpha_{\nu}\beta_{5}$ integrin mediated-tumor metastasis.

Claim 110 (Currently Amended) The method according to Claim 108 wherein the condition treated is $\alpha_v \beta_s$ integrin mediated-tumor metastasis.

Claim 111 (Currently Amended) The method according to Claim 107 wherein the condition treated is $\alpha_v \beta_v$, integrin mediated-solid tumor growth.

Claim 112 (Currently Amended) The method according to Claim 108 wherein the condition treated is $\alpha_v \beta$, integrin mediated-solid tumor growth.

Claim 113 (Original) The method according to Claim 107 wherein the condition treated is angiogenesis.

Claim 114 (Original) The method according to Claim 108 wherein the condition treated is angiogenesis.

Claim 115 (Original) The method according to Claim 107 wherein the condition treated is osteoporosis.

Claim 116 (Original) The method according to Claim 108 wherein the condition treated is osteoporosis.

Claim 117 (Original) The method according to Claim 107 wherein the condition treated is humoral hypercalcemia of malignancy.

Claim 118 (Original) The method according to Claim 108 wherein the condition treated is humoral hypercalcemia of malignancy.

Claim 119 (Original) The method according to Claim 107 wherein the condition treated is smooth muscle cell migration.

Claim 120 (Original) The method according to Claim 108 wherein the condition treated is smooth muscle cell migration.

Claim 121 (Original) The method according to Claim 107 wherein restenosis is inhibited.

Claim 122 (Original) The method according to Claim 108 wherein restenosis is inhibited.

Claim 123 (Original) The method according to Claim 107 wherein atheroscelorosis is inhibited.

Claim 124 (Original) The method according to Claim 108 wherein atheroscelorosis is inhibited.

Claim 125 (Original) The method according to Claim 107 wherein macular degeneration is inhibited.

Claim 126 (Original) The method according to Claim 108 wherein macular degeneration is inhibited.

Claim 127 (Original) The method according to Claim 107 wherein retinopathy is inhibited.

Claim 128 (Original) The method according to Claim 108 wherein retinopathy is inhibited.

Claim 129 (Original) The method according to Claim 107 wherein arthritis is inhibited.

Claim 130 (Original) The method according to Claim 108 wherein arthritis is inhibited.

III. REMARKS

Claims 66-130 are pending.

Description of Amendments

Claim 80 has been amended to remove the following compounds:

- 3-bromo-5-fluoro-••,• <u>β,β</u>-dimethyl-4-[3-(2-pyridinylamino)propoxy]-benzene butanoic acid;
- 3-fluoro-β, β-dimethyl-4-[3-(2-pyridinylamino)propoxy]benzene-butanoic acid;
- 3-chloro-β, β-dimethyl-4-[3-(2-pyridinylamino)propoxy]benzene-butanoic acid;
- β-methyl-β-[[4-[3-(2-pyridinylamino)propoxy]phenyl]methyl]-3-pyridine propanoic acid;
- 3-methoxy-β, β-dimethyl-4-[3-(2-pyridinylamino)propoxy]benzene-butanoic acid; Applicants submit that these compounds were not part of original claim 13, on which claim 80 is based, and were inadvertently included.

Claims 109-112 have been amended to change the phrase " $\alpha_{\nu}\beta_{s}$ mediated" to " $\alpha_{\nu}\beta_{s}$ integrin mediated"

It is therefore submitted that Claims 66-130 are in condition for allowance. If the Office has any further comments or concerns, the Examiner is welcome to contact Applicants at the number below.

Respectfully submitted

Rachel A. Polster

Registration No. 47,004

Telephone: 314-274-7354

Pfizer Corporation
Global Patent Department
P.O. Box 1027
St. Louis, MO 63006