Harthshorne Reading Study

at KAIST Mathematical Problem Solving Group

20190262 Jeongwoo Park

Period: 2022 December - 2023 January

Section II.1

Exercise (II.1.8). For any open subset $U \subset X$, show that the functor $\Gamma(U,_)$ from sheaves on X to abelian groups is a left-exact functor. The functor $\Gamma(U,_)$ need not be exact.

First Solution (for beginners). The sequence

$$0 \longrightarrow \mathscr{F}' \longrightarrow \mathscr{F} \stackrel{g}{\longrightarrow} \mathscr{F}''$$

is exact means $\mathscr F$ is the kernel object of the second map g, i.e, there is an isomorphism $\alpha:\mathscr F'\to\ker g$ such that

commutes. Taking the global section gives a commutative diagram

$$\mathscr{F}'(X) \xrightarrow{\mathscr{F}(X)} \mathscr{F}'(X) \xrightarrow{g_X} \mathscr{F}''(X)$$

$$(\ker g)(X)$$

Since the global section functor and the kernel commutes, we know that $(\ker g)(X) = \ker g_X$. Hence, $\mathscr{F}'(X)$ is a kernel object of the map g_X , so the sequence

$$0 \longrightarrow \mathscr{F}'(X) \longrightarrow \mathscr{F}(X) \xrightarrow{g_X} \mathscr{F}''(X)$$

is exact.

Second Solution (keep in mind). A functor is exact if and only it it commutes with the kernel. \Box

Third Solution (for those who are interested in category theory).

- 1 The global section functor $\underline{PSh} \rightarrow \underline{Ab}$ is exact.
- 2 The forgetful functor $\underline{Sh} \to \underline{PSh}$ is left-exact. Indeed, it is right adjoint to the sheafification functor $\underline{PSh} \to \underline{Sh}$.

By combining these two results, the global section functor $\underline{Sh}\to \underline{Ab}$ is left-exact. $\hfill\Box$

[[Exercise II.1.16 solution]]

2

Problems

Section II.1

1. Let

$$0 \longrightarrow \mathscr{F}' \longrightarrow \mathscr{F} \longrightarrow \mathscr{F}'' \longrightarrow 0$$

be a sequence of sheaves.

- (a) Explain how's different the exactness of the sequence in <u>Sh</u> and in <u>PSh</u>. Do the exactness in one category implies one in the another category?
- (b) (With some knowledge in cohomology theory) Why the exactness of the global section is guaranteed only by the first term \mathscr{F}' ?
- (c) Why the sequence

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathscr{H} \longrightarrow \mathscr{H}^* \longrightarrow 0$$

is <u>not exact</u> after taking the global section functor? How this fact is related with the sheaf cohomology?

(Here, $\mathscr{H}\in\underline{\mathrm{Sh}}(\mathbb{C})$ is the sheaf of holomorphic functions, and $\mathscr{H}^*\in\underline{\mathrm{Sh}}(\mathbb{C})$ is one of invertiable holomorphic functions.)

Properties in Philosophy

Proposition 1. (adjoint functors) Following pairs are adjoint.

- 1. Sheafification \dashv Forgetful functor : $\underline{PSh} \rightleftarrows \underline{Sh}$
- 2. Constant presheaf functor \dashv Global section functor : $\underline{Ab} \rightleftharpoons \underline{PSh}$
- 1+2. Constant sheaf functor \dashv Global section functor : $\underline{Ab} \rightleftarrows \underline{Sh}$
 - 3. Forgetful functor \dashv Reduction functor : $\underline{Sch} \rightleftarrows \underline{Sch}_{red}$

[[adjunction and pullback/pushout? (co)limit? commutes... Gluing? Refuction of schemes?]]

Section II.1

1. An abelian functor is left-exact (resp. right-exact) if and only if it commutes with the kernel (resp. cokernel).