

Figure 1: Plots show regret for (line shows average regret, shaded region is max and min regret, for 100 simulations, each with 10,000 time steps). Each simulation has 5 arms total, where the single best arm has reward drawn from $\mathcal{N}(\mu=0.5,\sigma=0.1)$ and the other arms have reward $\mathcal{N}(\mu=0.45,\sigma=0.1)$.

Figure 2: Simulation identical to Figure 5a 1 except that, while the best arm still has reward drawn from $\mathcal{N}(\mu=0.5,\sigma=0.1)$, the other arms now have reward drawn from $\mathcal{N}(\mu=0.1,\sigma=0.1)$. The larger gap in rewards means that $p_{i,\epsilon}$ is smaller, so the linear dependence on T does not dominate overall regret.

Figure 3: Plots show regret for (line shows average regret, shaded region is max and min regret, for 100 simulations, each with 10,000 time steps). Each simulation has 5 arms total, where arm i has reward drawn from $\mathcal{N}(\mu=\mu_i,\sigma=0.1)$ for $\mu_i\in\{0.5,0.4,0.3,0.2,0.1\}$. As compared to Figure II, the average regret curves seem similarly spaced apart, but the shaded region seems narrower.

Figure 4: Plots show regret for (line shows average regret, shaded region is max and min regret, for 100 simulations, each with 10,000 time steps). Each simulation has 5 arms total, where arm i has reward drawn from $\mathcal{N}(\mu=\mu_i,\sigma=0.01)$ for $\mu_i\in\{0.5,0.4,0.3,0.2,0.1\}$. As compared to Figure 3 the average regret curves again seem similarly spaced apart, but the shaded region seems much narrower - the maximum and minimum regret seems to have no overlap. Figure 4a shows sub-linear regret, likely because $p_{i,\epsilon}$ is smaller because of the smaller σ value.

Figure 5: Plots show regret for (line shows average regret, shaded region is max and min regret, for 100 simulations, each with 10,000 time steps). Each simulation has 5 arms total, where arm i has reward drawn from $\mathcal{N}(\mu=\mu_i,\sigma=0.01)$ for $\mu_i\in\{0.5,0.45,0.4,0.35,0.3\}$