Economía Computacional: Tarea 1

Isidoro Garcia

2021

```
library(tidyverse)
library(data.table)
library(RCT)
library(knitr)
library(lfe)
library(broom)
```

En esta tarea pondrán en práctica los conceptos de High Dimensional Inference y Regresión. La base de datos muestra las compras de helados Ben & Jerry. Cada fila es una compra. Cada columna es una característica del helado comprado o de la persona que compró.

Limpieza de datos

Carga los datos en BenAndJerry.csv.

```
# Carga la base de datos
base<-fread(list.files(pattern = '.csv'))</pre>
```

1. Cuales son las columnas de la base? Muestra una tabla con ellas

```
kable(names(base))
```

Х quantity price_paid_deal price_paid_non_deal coupon_value promotion type size1 descr flavor_descr formula descr household_id household_size household income age_of_female_head age of male head age_and_presence_of_children $male_head_employment$ female_head_employment male head education female head education marital status $male_head_occupation$

female_head_occupation
household_composition
race
hispanic_origin
region
scantrack_market_identifier
fips_state_code
fips_county_code
type_of_residence
kitchen_appliances
tv_items
female_head_birth
male_head_birth
household_internet_connection

2. A qué nivel está la base? Esto es, cuál es la variable que define la base de manera única. Si no la hay, crea una y muestra que es única a nivel de la base (Muestra el código)

```
nrow(base) # Obs en la base

## [1] 21974

# unicas por variable
(unicas<-map_dbl(base %>% select_all(), ~n_distinct(.)))
```

```
##
                         quantity
                                                  price_paid_deal
##
                                                               562
                                                      coupon_value
##
             price_paid_non_deal
##
                                                               198
##
                                                       size1_descr
                   promotion_type
##
##
                     flavor_descr
                                                    formula_descr
##
##
                     household_id
                                                   household_size
##
##
                 household_income
                                               age_of_female_head
##
                                19
##
                 age_of_male_head
                                    age_and_presence_of_children
##
##
            male_head_employment
                                           female_head_employment
##
                                                                 5
             male_head_education
                                            female_head_education
##
##
##
                   marital_status
                                             male_head_occupation
##
                                                                12
##
          female_head_occupation
                                            household_composition
##
                                13
                                                  hispanic_origin
##
                              race
##
                                 4
##
                           region
                                     scantrack_market_identifier
##
##
                  fips_state_code
                                                 fips_county_code
##
                                                               178
                                49
```

```
##
               type_of_residence
                                              kitchen_appliances
##
##
                         tv_items
                                               female head birth
##
                                                              140
##
                 male_head_birth household_internet_connection
##
                              133
# Creando el primary key
base <-
 base %>%
  mutate(primary_key = row_number())
```

3. Que variables tienen valores vacíos? Haz una tabla con el porcentaje de vacíos para las columnas que tengan al menos una observación vacía

	X
promotion_type	59.0698098
female_head_occupation	10.3167380
$scantrack_market_identifier$	18.5127878
tv_items	0.1547283

- 4. Haz algo con los valores vacíos (Se deben reemplazar por algún valor? Eliminar de la base?). Justifica tu respuesta.
 - Promotion type po no promotion porque parece obvio que el vacío significa no promoción.
 - En female occupation y market identifier no es una respuesta obvia. Dado que ademas su nivel de NA's son muchos para filtrar, se pueden hacer dos cosas: 1) Declarar explícitamente los NA's como 'Other' o 2) Quitar las columnas.
 - Finalmente, para el codigo del county y para el número de televisiones, las respuestas tampoco son obvias. Dado que son menos del 1 por ciento de la base, las filtro.

```
# promotion_type
table(base$promotion_type, useNA = 'ifany')
##
##
                           <NA>
       1
             2
                   3
    6509 1106 1258
                       121 12980
# Reemplazando por 'no promoción'
base<-
  base %>%
  mutate(promotion_type = replace_na(promotion_type, replace = 'no promotion'))
table(base$promotion_type, useNA = 'ifany')
##
                           2
                                         3
##
              1
                                                      4 no promotion
```

```
6509
                          1106
                                         1258
                                                        121
                                                                     12980
##
# female_head_education
table(base$female head occupation, useNA = 'ifany')
##
##
                                       7
                                                                  12 <NA>
      1
            2
                 3
                       4
                            5
                                  6
                                             8
                                                  9
                                                       10
                                                             11
## 5225 2685 2146 1188 251
                                363
                                      43 1133
                                                  22
                                                      166
                                                             33 6452 2267
# scan market identifier
table(base$scantrack_market_identifier, useNA = 'ifany')
##
                                                                             14
##
                             5
                                  6
                                       7
                                                                  12
                                                                                   15
                                                                                        16
      1
            2
                 3
                       4
                                             8
                                                  9
                                                       10
                                                                        13
                                                             11
                                                      229
##
    960
         609
               269
                     196
                          122
                                118
                                     988
                                           559
                                                310
                                                            259
                                                                 802
                                                                       650
                                                                            468
                                                                                  136
                                                                                       345
                                 22
                                      23
                                                                  28
                                                                        29
                                                                                        32
##
     17
           18
                19
                      20
                           21
                                            24
                                                 25
                                                       26
                                                             27
                                                                             30
                                                                                   31
##
    442
          666
               567
                     424
                          137
                                394
                                     187
                                           569
                                                318
                                                      332
                                                           199
                                                                 382
                                                                       350
                                                                            240
                                                                                  105
                                                                                       337
##
     33
          34
                           37
                                      39
                                                             43
                                                                  44
                                                                                        48
                35
                      36
                                 38
                                            40
                                                 41
                                                       42
                                                                        45
                                                                             46
                                                                                   47
##
    406
          128
               102
                     138
                          137
                                472
                                     311
                                           200
                                                392
                                                      499
                                                            208
                                                                 404
                                                                        79
                                                                            259
                                                                                  117
                                                                                        72
##
     49
           50
                51
                      52 <NA>
         468
               403
                    191 4068
    251
# Reemplazando por 'other' en la female_head_occupation y market identifier
base <-
  base %>%
  mutate(female_head_occupation = replace_na(female_head_occupation, replace = 'Other'),
          scantrack_market_identifier = replace_na(scantrack_market_identifier, replace = 'Other'))
table(base$female_head_occupation, useNA = 'ifany')
##
##
                                                                   7
                                                                                 9 Other
       1
             10
                   11
                          12
                                  2
                                         3
                                                      5
                                                             6
                                                                          8
                        6452
    5225
            166
                   33
                               2685
                                    2146
                                                    251
                                                                  43
                                                                      1133
                                                                                   2267
##
                                           1188
                                                          363
                                                                                22
table(base$scantrack market identifier, useNA = 'ifany')
##
##
       1
             10
                   11
                          12
                                 13
                                       14
                                              15
                                                     16
                                                           17
                                                                  18
                                                                         19
                                                                                 2
                                                                                      20
     960
            229
                  259
                         802
                                650
                                      468
                                             136
                                                    345
                                                          442
                                                                 666
                                                                                     424
##
                                                                        567
                                                                              609
      21
             22
                   23
                          24
                                 25
                                       26
                                              27
                                                                               31
                                                                                      32
##
                                                     28
                                                            29
                                                                   3
                                                                         30
##
     137
            394
                  187
                         569
                                318
                                      332
                                             199
                                                    382
                                                                 269
                                                                        240
                                                                              105
                                                                                     337
                                                          350
##
      33
             34
                   35
                          36
                                 37
                                       38
                                              39
                                                      4
                                                            40
                                                                  41
                                                                         42
                                                                               43
                                                                                      44
##
     406
            128
                   102
                         138
                                137
                                       472
                                             311
                                                    196
                                                          200
                                                                 392
                                                                        499
                                                                               208
                                                                                     404
##
      45
             46
                   47
                          48
                                 49
                                         5
                                              50
                                                     51
                                                           52
                                                                   6
                                                                          7
                                                                                 8
                                                                                       9
##
      79
            259
                          72
                                251
                                       122
                                             468
                                                    403
                                                                                     310
                  117
                                                          191
                                                                 118
                                                                        988
                                                                              559
## Other
    4068
# Census county code y tv_items: eliminar esas filas
table(base$tv items, useNA = 'ifany')
##
            2
                 3 <NA>
## 7986 7530 6424
                      34
base<-
  base %>%
  filter(!is.na(tv_items))
```

5. Muestra una tabla de estadísticas descriptivas de la base. Esta debe tener cada columna númerica con algunas estadísticas descriptivas (N, media, min, p05, p25, p50, p75, p90, p95, max).

```
est_desc<-summary_statistics(base)
kable(est_desc, digits = 2)</pre>
```

variable mean	n	0	0.05	0.1	0.25	0.5	0.75	0.9	0.95	1
quantity 1.28	21940	1	1.00	1.0	1.00	1.00	1.00	2.00	2.00	21.00
price_paid_deal 1.74	21940	0	0.00	0.0	0.00	0.00	3.34	4.50	6.86	28.88
price_paid_non_de 2 1.45	21940	0	0.00	0.0	0.00	2.99	3.55	4.99	6.86	69.72
coupon_value 0.16	21940	0	0.00	0.0	0.00	0.00	0.00	0.50	1.00	12.95
household_id 1661832	8 205 9402	20003	5 2 054629	200 99680	3. ® 143518	8 <i>8</i> 7450176	65 300 184339	300 33901	8 300 388406	6 30 044068
household_size 2.46	21940	1	1.00	1.0	2.00	2.00	3.00	4.00	5.00	9.00
household_income 21.48	21940	3	11.00	13.0	17.00	23.00	26.00	27.00	28.00	30.00
age_of_female_head5.51	21940	0	0.00	0.0	4.00	6.00	8.00	8.00	9.00	9.00
age_of_male_head 4.76	21940	0	0.00	0.0	2.00	5.00	8.00	8.00	9.00	9.00
$age_and_presence_\overline{q}f40ch$	il 21194 0	1	2.00	2.0	6.00	9.00	9.00	9.00	9.00	9.00
male_head_employr 3e09	21940	0	0.00	0.0	1.00	3.00	3.00	9.00	9.00	9.00
female_head_employ4r220nt	t 21940	0	0.00	0.0	2.00	3.00	9.00	9.00	9.00	9.00
male_head_education32	21940	0	0.00	0.0	2.00	4.00	5.00	6.00	6.00	6.00
female_head_educat3c98	21940	0	0.00	0.0	3.00	4.00	5.00	6.00	6.00	6.00
marital_status 1.94	21940	1	1.00	1.0	1.00	1.00	3.00	4.00	4.00	4.00
male_head_occupat ioi l1	21940	1	1.00	1.0	1.00	4.00	8.00	12.00	12.00	12.00
household_composit2b57	21940	1	1.00	1.0	1.00	1.00	5.00	7.00	7.00	8.00
race 1.24	21940	1	1.00	1.0	1.00	1.00	1.00	2.00	3.00	4.00
hispanic_origin 1.95	21940	1	2.00	2.0	2.00	2.00	2.00	2.00	2.00	2.00
region 2.63	21940	1	1.00	1.0	2.00	3.00	4.00	4.00	4.00	4.00
fips_state_code 27.19	21940	1	6.00	6.0	12.00	26.00	39.00	48.00	53.00	56.00
fips_county_code 79.73	21940	1	3.00	7.0	25.00	59.00	101.00	163.00	201.00	810.00
type_of_residence 2.08	21940	1	1.00	1.0	1.00	1.00	2.00	5.00	6.00	7.00
kitchen_appliances 3.81	21940	1	1.00	1.0	4.00	4.00	4.00	7.00	7.00	9.00
tv_items 1.93	21940	1	1.00	1.0	1.00	2.00	3.00	3.00	3.00	3.00
household_internet_kd6ne	ec 2:1:0 :40	1	1.00	1.0	1.00	1.00	1.00	2.00	2.00	2.00
primary_key 10986.39	9 21940	1	1098.95	2195.9	5490.75	10983.	5016479.25	19780.10	20877.05	21974.0

6. Hay alguna númerica que en verdad represente una categorica? Cuales? Cambialas a factor

Las variables númericas que en verdad son factores son:

- $\bullet \ \ \mathrm{marital_status}$
- male_head_occupation
- age_and_presence_of_children
- $\bullet \ \ female/male_head_employment$

- male/female head education
- household composition
- race
- hispanic
- region
- fips_state_code
- fips_county_code
- type of residence
- household_internet_connection

7. Revisa la distribución de algunas variables. Todas tienen sentido? Por ejemplo, las edades?

8. Finalmente, crea una variable que sea el precio total pagado y el precio unitario

Exploración de los datos

Intentaremos comprender la elasticidad precio de los helados. Para ello, debemos entender:

- La forma funcional base de la demanda (i.e. como se parecen relacionarse $q \vee p$).
- Qué variables irían en el modelo de demanda y cuáles no para encontrar la elasticidad de manera 'insesgada'.
- \bullet Qué variables cambian la relacion de q y p. Esto es, que variables alteran la elasticidad.

Algo importante es que siempre debemos mirar primero las variables más relevantes de cerca y su relación en:

- Relación univariada
- Relaciones bivariadas
- Relaciones trivariadas

Importante: Las gráficas deben estar bien documentadas (título, ejes con etiquetas apropiadas, etc). Cualquier gráfica que no cumpla con estos requisitos les quitaré algunos puntos.

9. Cómo se ve la distribución del precio unitario y de la cantidad demandada. Haz un histograma.

```
ggplot(base, aes(price_unit))+
  geom_histogram(fill = 'lightsteelblue', color = 'darkgrey', bins = 80)+
  theme_bw()+
  labs(title = 'Distribución del Precio de Helados Ben & Jerry',
      subtitle = 'USD',
      x = 'Precio (USD)')
```

Distribución del Precio de Helados Ben & Jerry USD


```
ggplot(base, aes(quantity))+
  geom_histogram(fill = 'lightsteelblue', color = 'darkgrey', bins = 40)+
  theme_bw()+
  labs(title = 'Distribución de la Cantidad demandada de Helados Ben & Jerry',
      subtitle = 'Unidades comparadas',
      x = '# Helados')
```

Distribución de la Cantidad demandada de Helados Ben & Jerry Unidades comparadas

Grafica la q(p). Que tipo de relación parecen tener?

Grafica la misma relación pero ahora entre log(p+1) y log(q+1)

```
ggplot(base, aes(log(price_unit+1), log(quantity+1)))+
  geom_point()+
  geom_smooth()+
  geom_smooth(method = 'lm')+
  theme_bw()+
  labs(title = 'Curva de demanda',
        subtitle = 'log',
        y = 'Cantidad Demandada (# Helados)',
        x = 'Precio (USD)')
```


la transformación logarítmica a partir de este punto. Grafiquemos la demanda inversa.

12. Grafica la curva de demanda por tamaño del helado. Parece haber diferencias en la elasticidad precio dependiendo de la presentación del helado? (2 pts)

La demanda por helados de mayor tamaño (32 OZ) parecen tener una demanda mas inelástica.

13. Grafica la curva de demanda por sabor. Crea una variable con los 3 sabores más populares y agruga el resto de los sabores como 'otros'. Parece haber diferencias en la elasticidad precio dependiendo del sabor?

```
# Detectando las top frequencies
freq_sabores<-
  base %>%
  group_by(flavor_descr) %>%
  tally() %>%
  arrange(desc(n))
base<-
  base %>%
  mutate(sabor = case_when(flavor_descr == freq_sabores$flavor_descr[1] ~ freq_sabores$flavor_descr[1],
                           flavor_descr == freq_sabores$flavor_descr[2] ~ freq_sabores$flavor_descr[2],
                           flavor_descr == freq_sabores$flavor_descr[3] ~ freq_sabores$flavor_descr[3])
         sabor = replace na(sabor, replace = 'Other'))
ggplot(base, aes(log(price_unit+1), log(quantity+1), color = sabor))+
  geom_point()+
  geom_smooth()+
  theme_bw()+
  labs(title = 'Curva de demanda',
       y = 'Cantidad Demandada (# Helados)',
       x = 'Precio (USD)', color = 'Tamaño')
```


Estimación

14. Estima la regresión de la curva de demanda de los helados. Reporta la tabla de la regresión Algunos tips:

- No olvides borrar la variable que recien creamos de sabores. Incluirla (dado que es perfectamente colineal con flavor), sería una violación a supuesto GM 3 de la regresión.
- No olvides quitar quantity, price_unit, price_deal y otras variables que sirven como identificadora. Tambien quitar fips_state_code y fips_county_code.
- Empecemos con una regresión que incluya a todas las variables.

Nota: La regresión en R entiende que si le metes variables de texto, debe convertirlas a un factor. En algunos otros algoritmos que veremos durante el curso, tendremos que convertir manualmente toda la base a una númerica.

Quitemos las fechas

```
base$female_head_birth<-NULL
base$male_head_birth<-NULL

base<-
   base %>%
   mutate(log_quantity = log(quantity+1),
        log_price = log(price_unit+1))

base_estimacion<-
   base %>%
   ungroup() %>%
   select(-c(quantity, price_paid_deal, price_paid_non_deal, price, price_unit, sabor, primary_key, fips_
```

term	estimate	std.error	statistic	p.value
(Intercept)	0.9716805	0.0410434	23.6744678	0.0000000
coupon_value	0.0392713	0.0033055	11.8807529	0.0000000
promotion_type2	-0.0220520	0.0085834	-2.5691354	0.0102019
promotion_type3	0.0291219	0.0083510	3.4872404	0.0004890
promotion_type4	0.0269453	0.0198199	1.3595096	0.1739992
promotion typeno promotion	-0.0134056	0.0034847	-3.8469726	0.0001199
size1 descr32.0 MLOZ	-0.0213792	0.0123066	-1.7372196	0.0823626
flavor descrBANANA SPLIT	0.0007276	0.0115282	0.0631145	0.9496759
flavor descrBLACK & TAN	0.1130267	0.0439540	2.5714770	0.0101332
flavor descrBROWNIE BATTER	-0.0293992	0.0193236	-1.5214143	0.1281704
flavor descrBUTTER PECAN	0.0071044	0.0158088	0.4493926	0.6531530
flavor descrCAKE BATTER	-0.0371244	0.0129854	-2.8589261	0.0042548
flavor descrCHC	-0.0366042	0.0238575	-1.5342821	0.1249748
flavor descrCHC ALMOND NOUGAT	-0.0286719	0.0212363	-1.3501336	0.1769872
flavor descrCHC CHIP C-DH	-0.0320488	0.0100297	-3.1953865	0.0013984
flavor descrCHC FUDGE BROWNIE	0.0078889	0.0096838	0.8146432	0.4152855
flavor descrCHERRY GRCA	0.0037971	0.0088625	0.4284427	0.6683331
flavor descrCHUBBY HUBBY	-0.0160685	0.0142232	-1.1297412	0.2585977
flavor descrCHUNKY MONKEY	-0.0090163	0.0099198	-0.9089236	0.3634005
flavor descrCINNAMON BUNS	0.0167041	0.0114401	1.4601327	0.1442680
flavor descrCOFFEE	-0.0462161	0.0297635	-1.5527803	0.1204902
flavor descrCREME BRULEE	0.0333653	0.0125865	2.6508704	0.0080343
flavor descrDOUBLE CHC FUDGE SWR	-0.0984592	0.2159174	-0.4560039	0.6483917
flavor descrDUBLIN MUDSLIDE	-0.0267305	0.0135068	-1.9790372	0.0478244
flavor descrFOSSIL FUEL	0.0054645	0.0247087	0.2211568	0.8249724
flavor descrHALF BAKED	-0.0199436	0.0109861	-1.8153456	0.0694846
flavor_descrHEATH CANDY EVERYTHING	-0.0099700	0.0119637	-0.8333514	0.4046557
BUT THE	0.0000.00	0.000.00.	0.00000-	0.10.000
flavor descrHEATH COFFEE CRUNCH	0.0154712	0.0099458	1.5555394	0.1198322
flavor descrHEATH CRUNCH	-0.0205310	0.0122791	-1.6720254	0.0945337
flavor descrIMAGINE WHIRLED PEACE	-0.0318677	0.0114046	-2.7942927	0.0052059
flavor descrKARAMEL SUTRA	-0.0095093	0.0108442	-0.8769039	0.3805485
flavor descrMAGIC BROWNIES	-0.0051142	0.0170453	-0.3000334	0.7641545
flavor descrMINT CHC CHUNK	-0.0115267	0.0193863	-0.5945807	0.5521300
flavor descrNEAPOLITAN DYNAMITE	-0.0420048	0.0173897	-2.4155074	0.0157215
flavor descrNEW YORK SUPER FUDGE	-0.0075059	0.0102365	-0.7332516	0.4634129
CHUNK	0.0010000	0.0102000	0.1002010	0.1001120
flavor descrOATMEAL COOKIE CHUNK	-0.0376761	0.0176641	-2.1329150	0.0329429
flavor descrONE CSK BROWNIE	-0.0522357	0.0117041	-4.4369857	0.0000092
flavor descrOXFORD MINT CHC COOKIE	-0.0322337	0.0117728	-2.9506579	0.0000032 0.0031744
flavor descrPB CUP	-0.0160932	0.0140070 0.0105231	-1.5293220	0.0031744 0.1261992
navor_deserr b COr	-0.0100332	0.0100201	-1.0233220	0.1401334

term	estimate	std.error	statistic	p.value
flavor_descrPB TRUFFLE	-0.1398441	0.2160743	-0.6472039	0.5175068
flavor_descrPHISH FOOD	-0.0103230	0.0106155	-0.9724508	0.3308371
flavor_descrPISTACHIO PISTACHIO	0.0139010	0.0109474	1.2698006	0.2041692
flavor_descrPUMPKIN CSK	0.0526129	0.0195012	2.6979263	0.0069827
flavor_descrRSP CHC CHUNK	-0.0275627	0.0291156	-0.9466631	0.3438210
flavor_descrSMORES	-0.0540472	0.0170552	-3.1689501	0.0015320
flavor_descrSTR	-0.0461794	0.0653016	-0.7071711	0.4794677
flavor_descrSTR CSK	-0.0311629	0.0120655	-2.5828138	0.0098063
$flavor_descrSTRAWBERRIES \& CREAM$	-0.0201117	0.0617584	-0.3256513	0.7446913
flavor_descrSWEET CREAM & COOKIES	-0.0654182	0.0527932	-1.2391405	0.2153068
flavor_descrTRIPLE CARAMEL CHUNK	0.0098875	0.0243079	0.4067596	0.6841885
flavor_descrTURTLE SOUP	-0.0346930	0.0168906	-2.0539878	0.0399888
flavor_descrVAN	-0.0233483	0.0120942	-1.9305451	0.0535523
flavor_descrVAN CARAMEL FUDGE	0.0260149	0.0147540	1.7632431	0.0778735
flavor_descrVERMONTY PYTHON	-0.0314782	0.0201010	-1.5659983	0.1173635
flavor_descrW-N-C-P-C	-0.0253457	0.0110269	-2.2985306	0.0215410
flavor_descrWHITE RUSSIAN	-0.1497220	0.2149842	-0.6964328	0.4861653
$formula_descrREGULAR$	0.0040926	0.0143378	0.2854396	0.7753101
household_size	0.0144207	0.0023008	6.2676476	0.0000000
household_income	0.0000067	0.0003584	0.0188200	0.9849849
age_of_female_head	NA	NA	NA	NA
age_of_male_head	NA	NA	NA	NA
age_and_presence_of_children2	-0.0044310	0.0094774	-0.4675343	0.6401223
age_and_presence_of_children3	0.0073793	0.0085494	0.8631334	0.3880736
age_and_presence_of_children4	-0.0300954	0.0117451	-2.5623757	0.0104025
age_and_presence_of_children5	0.0441318	0.0246173	1.7927115	0.0730330
age_and_presence_of_children6	0.0206758	0.0107999	1.9144373	0.0555774
age_and_presence_of_children7	-0.0027849	0.0182812	-0.1523349	0.8789242
age_and_presence_of_children9	0.0407999	0.0078846	5.1746144	0.0000002
male_head_employment1	0.0065446	0.0301991	0.2167149	0.8284326
male_head_employment2	0.0132835	0.0308086	0.4311616	0.6663551
male_head_employment3	0.0216089	0.0292092	0.7397990	0.4594300
male_head_employment9	0.0386326	0.0295140	1.3089606	0.1905615
female_head_employment1	-0.0206456	0.0168807	-1.2230277	0.2213325
female_head_employment2	-0.0309659	0.0175072	-1.7687513	0.0769494
female_head_employment3	-0.0025191	0.0161344	-0.1561305	0.8759316
female_head_employment9	-0.0202878	0.0239756	-0.8461847	0.3974590
male_head_education	-0.0033622	0.0019331	-1.7392529	0.0820044
female_head_education	0.0019794	0.0018818	1.0518829	0.2928650
marital_status2	-0.0017933	0.0210629	-0.0851383	0.9321522
marital_status3	-0.0122562	0.0202241	-0.6060209	0.5445072
marital_status4	-0.0290290	0.0202497	-1.4335530	0.1517142
male_head_occupation2	0.0097698	0.0050242	1.9445646	0.0518403
male_head_occupation3	0.0165705	0.0075101	2.2064247	0.0273647
male_head_occupation4	-0.0161806	0.0072214	-2.2406448	0.0250591
male_head_occupation5	0.0213263	0.0063391	3.3642468	0.0007689
male_head_occupation6	0.0087272	0.0073125	1.1934702	0.2326983
male_head_occupation?	0.0399448	0.0201390	1.9834501	0.0473297
male_head_occupation8	-0.0198215	0.0079917	-2.4802517	0.0131365
male_head_occupation9	-0.0444709	0.0266269	-1.6701487	0.0949043
male_head_occupation10	-0.0285132 0.0102791	0.0199994 0.0141888	-1.4257044 0.7244519	0.1539680 0.4687961
male_head_occupation11	0.0102791	0.0141008	0.7244519	0.4087901

term	estimate	std.error	statistic	p.value
male_head_occupation12	-0.0027777	0.0083420	-0.3329775	0.7391544
female_head_occupation10	0.0355751	0.0247979	1.4346003	0.1514154
female_head_occupation11	0.0370500	0.0388833	0.9528509	0.3406762
female_head_occupation12	0.0454988	0.0180697	2.5179651	0.0118106
female_head_occupation2	0.0025392	0.0055714	0.4557600	0.6485671
female_head_occupation3	-0.0116296	0.0064476	-1.8036983	0.0712924
female_head_occupation4	0.0031534	0.0077531	0.4067359	0.6842060
female_head_occupation5	0.0019769	0.0144483	0.1368234	0.8911717
female_head_occupation6	-0.0291699	0.0125469	-2.3248774	0.0200877
female_head_occupation7	-0.0680119	0.0364467	-1.8660654	0.0620457
female_head_occupation8	0.0430157	0.0080208	5.3629971	0.0000001
female_head_occupation9	0.0659946	0.0476887	1.3838621	0.1664149
female_head_occupationOther	NA	NA	NA	NA
household_composition2	0.0196791	0.0210953	0.9328670	0.3508990
household_composition3	0.0072794	0.0221628	0.3284499	0.7425747
household_composition5	0.0433555	0.0208172	2.0826796	0.0372921
household_composition6	NA	NA	NA	NA
household_composition7	0.0124797	0.0250171	0.4988476	0.6178918
household_composition8	0.0144373	0.0215642	0.6695043	0.5031810
race2	0.0028083	0.0060793	0.4619510	0.6441211
race3	0.0037167	0.0093884	0.3958797	0.6921977
race4	-0.0063606	0.0085967	-0.7398948	0.4593718
hispanic_origin	-0.0006281	0.0079572	-0.0789310	0.9370883
region2	0.0022828	0.0101159	0.2256648	0.8214642
region3	-0.0073780	0.0098312	-0.7504677	0.4529812
region4	0.0314855	0.0109396	2.8781165	0.0040045
scantrack_market_identifier10	-0.0017911	0.0160255	-0.1117669	0.9110093
scantrack_market_identifier11	0.0674732	0.0183140	3.6842532	0.0002299
$scantrack_market_identifier12$	-0.0236733	0.0151792	-1.5595914	0.1188710
$scantrack_market_identifier13$	-0.0099079	0.0155738	-0.6361916	0.5246582
scantrack_market_identifier14	-0.0225973	0.0159311	-1.4184382	0.1560772
scantrack_market_identifier15	0.0011743	0.0219621	0.0534697	0.9573581
scantrack_market_identifier16	0.0247713	0.0166903	1.4841737	0.1377773
scantrack_market_identifier17	0.0120954	0.0159093	0.7602738	0.4470992
scantrack_market_identifier18	-0.0549667	0.0154563	-3.5562552	0.0003770
scantrack_market_identifier19	0.0015470	0.0153241	0.1009541	0.9195878
scantrack_market_identifier2	0.0471679	0.0153983	3.0631880	0.0021926
scantrack_market_identifier20	0.0521559	0.0160470	3.2501980	0.0011550
scantrack_market_identifier21	0.0867761	0.0223728	3.8786502	0.0001053
scantrack_market_identifier22	-0.0184268	0.0164911	-1.1173841	0.2638425
scantrack_market_identifier23	0.0970703	0.0202156	4.8017471	0.0000016
scantrack_market_identifier24	0.0310400	0.0116042	2.6748869	0.0074810
scantrack_market_identifier25	0.0029441	0.0142841	0.2061078	0.8367086
scantrack_market_identifier26	-0.0247526	0.0178201	-1.3890220	0.1648403
scantrack_market_identifier27	-0.0075494	0.0202073	-0.3735993	0.7087061
scantrack_market_identifier28	0.0043020	0.0166151	0.2589211	0.7956986
scantrack_market_identifier29	0.0235267	0.0168038	1.4000758	0.1615049
scantrack_market_identifier3	-0.0120832	0.0178569	-0.6766671	0.4986244
scantrack_market_identifier30	-0.0080087	0.0185128	-0.4326023	0.6653080
scantrack_market_identifier31 scantrack market identifier32	0.0335774	0.0243245	1.3803958	0.1674790
scantrack_market_identifier32 scantrack market identifier33	-0.0233756	0.0138727	-1.6850075	0.0920015 0.0000000
Scannack_market_identiner33	0.0894348	0.0129669	6.8971694	0.0000000

term	estimate	std.error	statistic	p.value
scantrack market identifier34	0.2499822	0.0231245	10.8102836	0.0000000
scantrack_market_identifier35	0.0215802	0.0249105	0.8663076	0.3863310
scantrack_market_identifier36	0.0607224	0.0221871	2.7368282	0.0062085
scantrack_market_identifier37	-0.0068954	0.0222015	-0.3105833	0.7561204
scantrack_market_identifier38	-0.0104313	0.0163814	-0.6367743	0.5242786
scantrack_market_identifier39	0.0064118	0.0174263	0.3679373	0.7129235
$scantrack_market_identifier4$	0.0304201	0.0198738	1.5306670	0.1258662
scantrack_market_identifier40	-0.0058719	0.0202156	-0.2904659	0.7714626
$scantrack_market_identifier41$	0.0345191	0.0166631	2.0715830	0.0383161
$scantrack_market_identifier42$	0.0030784	0.0151269	0.2035082	0.8387397
$scantrack_market_identifier43$	0.0218464	0.0167346	1.3054632	0.1917490
scantrack_market_identifier44	0.0327385	0.0164020	1.9960089	0.0459454
scantrack_market_identifier45	0.0163087	0.0278483	0.5856240	0.5581343
scantrack_market_identifier46	0.0105870	0.0183700	0.5763193	0.5644054
scantrack_market_identifier47	0.0363963	0.0234211	1.5539989	0.1201992
scantrack_market_identifier48	0.0368912	0.0284865	1.2950429	0.1953192
scantrack_market_identifier49	0.0054663	0.0182788	0.2990500	0.7649047
$scantrack_market_identifier5$	0.0061013	0.0231221	0.2638732	0.7918801
$scantrack_market_identifier50$	0.0433077	0.0164636	2.6305144	0.0085316
$scantrack_market_identifier51$	-0.0081582	0.0164014	-0.4974058	0.6189079
$scantrack_market_identifier52$	0.0192724	0.0172491	1.1172997	0.2638785
$scantrack_market_identifier6$	-0.0355340	0.0234997	-1.5121056	0.1305215
$scantrack_market_identifier7$	-0.0004552	0.0146677	-0.0310317	0.9752445
$scantrack_market_identifier8$	0.0379989	0.0116584	3.2593643	0.0011183
scantrack_market_identifier9	0.0266075	0.0144648	1.8394698	0.0658597
$scantrack_market_identifierOther$	0.0126050	0.0110690	1.1387574	0.2548169
type_of_residence2	-0.0487003	0.0112317	-4.3359665	0.0000146
type_of_residence3	-0.0004684	0.0089385	-0.0524071	0.9582048
type_of_residence4	-0.0531127	0.0225026	-2.3602963	0.0182691
type_of_residence5	-0.0204034	0.0050790	-4.0172127	0.0000591
type_of_residence6	-0.0215026	0.0073441	-2.9278780	0.0034164
type_of_residence7	-0.0072699	0.0080693	-0.9009370	0.3676318
kitchen_appliances	-0.0009317	0.0009177	-1.0152195	0.3100125
tv_items	0.0017809	0.0019222	0.9265143	0.3541890
household_internet_connection	0.0110396	0.0042424	2.6021858	0.0092694
log_price	-0.1898445	0.0100878	-18.8192887	0.0000000

15 (2 pts). Cuales son los elementos que guarda el objecto de la regresión? Listalos. Cual es el F-test de la regresión? Escribe la prueba de manera matemática (i.e. como la vimos en clase). (Tip: summary(fit) te arroja algo del F-test)

$$H_0: \beta_i = 0 \ H_a: Alguna \ \beta_i \neq 0$$

$$F = \frac{ESS(n-k-1)}{RSS(k)} = \frac{R^2(n-k-1)}{(1-R^2)k} = \frac{0.08847(21940-174-1)}{(1-0.08847)174} = 12.14$$
$$p(F) = 4.004x \ e^{-312} < 0.01$$

Por lo tanto, la regresión explica más que el modelo nulo.

a<-summary(fit)

a\$fstatistic

```
## value numdf dendf
## 12.14011 174.00000 21765.00000
pf(q = a$fstatistic[1], df1 = a$fstatistic[2], df2 = a$fstatistic[3], lower.tail = F)
## value
## 4.004342e-312
```

16. Cuál es la elasticidad precio de los helados Ben and Jerry? Es significativo? Interpreta el coeficiente

$$\epsilon_p^Q = -0.1898^{***}$$

Esto se interpreta, si Ben and Jerry sube el precio de los helados 1 por ciento, la cantidad demandada caerá 0.1898 por ciento. Es un bien relativamente ineslástico.

17. Cuántos p-values tenemos en la regresión. Haz un histograma de los p-values.

```
ggplot(resultados, aes(p.value))+
  geom_histogram(fill = 'lightsteelblue', color = 'darkgrey')+
  theme_bw()+
  labs(title = 'P-values modelo demanda Ben and Jerry', x = 'P-value')
```

P-values modelo demanda Ben and Jerry

18 (4pts). Realiza un ajuste FDR a una q = 0.10. Grafica el procedimiento (con y sin zoom-in a p-values<0.05). Cuantas variables salían significativas con $\alpha = 0.05$? Cuantas salen con FDR?

Tip: crea el ranking de cada p-value como resultados %>% arrange(p.value) %>% mutate(ranking = row_number)

Con la inferencia clásica ($\alpha = 0.05$), salen 53 de 122 variables significativas.

Con FDR a q = 0.1, salen 45 variables significativas.

```
# Cuantas salen con alpha 0.05
table(resultados$p.value<0.05)</pre>
##
## FALSE TRUE
    122
            53
# Creamos el ranking de los p-values
resultados<-
  resultados %>%
  arrange(p.value) %>%
  mutate(ranking = row_number())
resultados<-
  resultados %>%
  mutate(corte_fdr = 0.1*ranking/nrow(resultados),
         sig_fdr = if_else(p.value<=corte_fdr, 'Significativa', 'No significativa'))</pre>
table(resultados$sig_fdr)
##
## No significativa Significativa
##
                130
                                  45
# sin zoom -in
ggplot(resultados, aes(ranking, p.value, color = sig_fdr))+
  geom_point()+
  geom_line(aes(ranking, corte_fdr), color = 'black')+
 theme_bw()+
  theme(legend.position = 'bottom')+
  labs(title = 'FDR q=0.1', x = 'ranking', y = 'p value', color = 'Rech HO?')
```


Rech H0? • No significativa • Significativa • NA

```
# Con zoom -in
ggplot(resultados %>% filter(p.value<0.05), aes(ranking, p.value, color = sig_fdr))+
geom_point()+
geom_line(aes(ranking, corte_fdr), color = 'black')+
theme_bw()+
theme(legend.position = 'bottom')+
labs(title = 'FDR q=0.1', x = 'ranking', y = 'p value', color = 'Rech HO?')</pre>
```


Rech H0? • No significativa • Significativa

19 (2pts). Repite el ejercicio pero ahora con Holm-Bonferroni. Comparalo vs FDR. En este caso cuantas variables son significativas? Haz la grafica comparativa (solo con zoom-in)

En este caso tambien hay 45 significativas.

```
resultados <-
  resultados %>%
  mutate(corte_hb = 0.05/(nrow(resultados) + 1 - ranking),
          sig_hb = if_else(p.value<corte_fdr, 'Significativa', 'No Significativa'))</pre>
table(resultados$sig_hb)
##
## No Significativa
                       Significativa
                130
resultados2<-
 resultados %>%
 pivot longer(cols = c(corte fdr, corte hb), names to = 'metodo', values to = 'corte')
# Con zoom -in
ggplot(resultados2 %>% filter(p.value<0.05), aes(ranking, p.value, color = sig_hb, shape = sig_fdr))+
  geom_point()+
  geom_line(aes(ranking, corte, color = metodo))+
  theme bw()+
  theme(legend.position = 'bottom')+
  labs(title = 'FDR q=0.1 vs Holm Bonferroni', x = 'ranking', y = 'p value', color = 'Rech HO?')
```

FDR q=0.1 vs Holm Bonferroni

