NUMCALC A NUMERICAL CALCULATOR APP

Students:

Felipe Henao Gómez Isabella Echeverri Villa Juan Andrés Montoya Galeano Thomas Martinod Saldarriaga

Professor: Edwar Samir Posada Murillo

EAFIT University

Informatics and Systems Department

Numerical Analysis

2022

FINAL PROJECT Second report

Objective: To specify the methods used for solving roots of polynomials and linear system of equations through their pseudocodes, and to show the preliminary results for the test functions.

Numerical Methods

1. Incremental search

```
read function, x0, dx, n
xprev=x0
xact=x0+dx
rootCount=0
for i=1 to n do
  if f(xact)*f(xprev)<0
    There is a root for the function in xprev, xact
  end
end
if rootcount==0
  No roots were found for the given number of n iterations and step size
end
end</pre>
```

```
There's a root for the function in [-2.5, -2] There's a root for the function in [0.5, 1] There's a root for the function in [0.5, 1] There's a root for the function in [2, 2.5] There's a root for the function in [4, 4.5] There's a root for the function in [5, 5.5] There's a root for the function in [7, 7.5] There's a root for the function in [8, 8.5] There's a root for the function in [10, 10.5] There's a root for the function in [11.5, 12] There's a root for the function in [13.5, 14] There's a root for the function in [14.5, 15] There's a root for the function in [16.5, 17] There's a root for the function in [17.5, 18] There's a root for the function in [19.5, 20]
```



```
There's a root for the function in [21, 21.5]
There's a root for the function in [22.5, 23]
There's a root for the function in [24, 24.5]
There's a root for the function in [26, 26.5]
There's a root for the function in [27, 27.5]
There's a root for the function in [29, 29.5]
There's a root for the function in [30, 30.5]
There's a root for the function in [32, 32.5]
There's a root for the function in [33.5, 34]
There's a root for the function in [35, 35.5]
There's a root for the function in [36.5, 37]
There's a root for the function in [38.5, 39]
There's a root for the function in [39.5, 40]
There's a root for the function in [41.5, 42]
There's a root for the function in [43, 43.5]
There's a root for the function in [44.5, 45]
There's a root for the function in [46, 46.5]
```

2. Bisection Method

```
read function, xi, xs, tolerance, niter
i <- 1
xm < -(xi + xs)/2
fxm \leftarrow f(xm)
error = absolute value of xm
while error > tolerance and i<niter and fxm different to 0
   if f(a)*fxm<0
      b=xm
      xm=(a+b)/2
      error=absolute value of xm-a
    else if f(b)*fxm<0
      a=xm
      xm=(a+b)/2
      error=absolute value of xm-a
    end
    fxm=f(xm)
    i=i+1
end
if fxm=0 then
    the root was found with a value of xm
end
else if error<=tolerance then
    an approximation of the root was found
    with a value of xm
```



```
end
if i=n
   The root was not found in the number
   of iterations given
end
```

Iteration	a	xn	b	f(xn)	Е
22	0.936404	0.936404466	0.9364047	-6.616005e-08	2.3841857e-07
23	0.9364044	0.936404585	0.9364047	2.8715108e-09	1.192092e-07
24	0.9364044	0.93640452	0.93640458	-3.1644283e-08	5.9604644e-08

An approximation of the root was found with a value of 0.9364 and an error of 5.9605e-08

3. False position

```
read function, a, b, tolerance, n
i = 1
E = inifnite
fxn = 1
while E>tolerance and i<n and fxn different from 0
   xn=b-f(b)*((b-a)/(f(b)-f(a)))
   fxn=f(xn)
   if f(a)*fxn>0
     E=absolute value of xn-a
     a=xn
   else if f(b)*fxn>0
     E=absolute value of xn-b
     b=xn
   end
   i=i+1
end
if fxn==0
  The root was found with a value of xn
if E<= tolerance
  An aproximation of the root was found with a value of xn
end
if i==n
  The root was not found in the number of iterations given
```


end end

Results

Iteration	a	xn	b	f(xn)	E
3	0.933940380	0.9364047	0.9365060	8.6782541e-08	0.000101320922984094
4	0.933940	0.9364045	0.936404	1.2815393e-10	1.49641e-07
5	0.933940	0.936404	0.9364045	1.8918200e-13	2.209796e-10

An approximation of the root was found with a value of 0.9364 and an error of 2.2098e-10

4. Newton method

```
read function, df, x0, tolerance, n
if f(x0)=0
  The inital point given is root
end
xn=x0
fxn=f(xn)
i=1
E=infinite
while E>tolerance and i<n and fxn different from 0
  xprev = xn
  xn=xprev-(f(xprev))/df(xprev))
 E=absolute value of xn-xprev
  fxn=f(xn)
  i++
end
if fxn=0
  The root was found with a value of xn
end
if E<= tolerance
  An aproximation of the root was found with a value of xn
end
if i=n
  The root was not found in the number of iterations given
end
end
```


Iteration	xn	f(xn)	Е
2	0.936366741267331	-2.19126198827135e-05	0.00797475135475945
3	0.93640458001899	-4.98339092214195e-10	3.78387516588585e-05
4	0.936404580879562	-1.11022302462516e-16	8.60571947036703e-10

An approximation of the root was found with a value of 0.9364 and an error of 8.6057e-10

5. Fixed point

```
read function, g, x0, tolerance, n
if f(x0)=0
 The initial point given is the root
end
xn=x0
fxn=f(xn)
gxn=g(xn)
i=1
E=infinite
while E>tolerance and i<n and fxn different from 0
  xprev=xn
  xn=gxn
  E=absolute value of xn-xprev
  fxn=f(xn)
  gxn=g(xn)
  i++
end
if fxn=0
  The root was found with a value of xn
end
if E<= tolerance
 An aproximation of the root was found with a value of xn
end
if i=n
  The root was not found in the number of iterations given
end
end
```


Iteration	xn	g(xn)	f(xn)	E
28	-0.3744451043623	-0.3744449757003	1.286620382457e-07	2.142604523803e-07
29	-0.3744449757003	-0.3744450529611	-7.726074024994e-08	1.286620382456e-07
30	-0.3744450529611	-0.3744450065665	4.639458395239e-08	7.726074024994e-08

An approximation of the root was found with a value of -0.37445 and an error of 7.7261e-08

6. Secant method

```
read function, x0, x1, tolerance,
if f(x0)=0
The initial point x0 given is the root
end
if f(x1)=0
The initial point x1 given is the root
end
xn=x0
xnext=x1
fxn=f(xnext)
i=2
e=infinite
while e>tolerance and i<n and fxn different from 0
  xprev=xn
  xn=xnext
  xnext=xn-(f(xn)/((f(xn)-f(xprev))/(xn-xprev)))
  e=absolute value of xnext-xn
  fxn=f(xnext)
  i++
end
if fxn=0
 The root was found with a value of xn
end
if E<= tolerance
  An aproximation of the root was found with a value of xn
end
if i=n
  The root was not found in the number of iterations given
end
end
```


Iteration	xn	f(xn)	E
4	0.936407002376704	1.40223589106814e-06	0.000410421585531284
5	0.93640458147312	3.43716499706659e-10	2.42090358437697e-06
6	0.936404580879561	-4.9960036108132e-16	5.93558091566138e-10

An aproximation of the root was found with a value of 0.9364 and an error of 5.9356e-10

7. Simple Gauss Elimination

```
read A,b Ab=[A\ b] [f,c]=size of Ab for j=1 to c-2 for i=j to f-1 Ab(i+1,j) to c)=Ab(i+1,j) to c)=Ab(i+1,j) to c)=Ab(i+1,j) to c) end end end
```

Regresive Sustitution function

```
read A,b
[f,c]<-size of A
x(f)<-b(f)/A(f,f)
for i=f-1 reducing 1 each step to 1
    sum=0
    for j=i+1 to f
        sum=sum+A(i,j)*x(j)
    end
    x(i)=(b(i)-sum)/A(i,i)
end
end
\\\
\\\</pre>
```

Main function

```
read A,b
[U,B]<-Elimination with parameters A,b
x<-Regresive sustitution function with parameters U,B
The solution of the equation is x</pre>
```



```
Stage 2:
2.0000 -1.0000
                      0
                              3.0000
                                         1.0000
   0
         1.0000
                    3.0000
                              6.5000
                                         0.5000
   0
            0
                  -41.0000 -73.5000 -5.5000
   0
            0
                   -38.000
                             -96.0000 -12.0000
Stage 3:
2.0000 -1.0000
                      0
                                    3.0000
                                                           1.0000
   0
         1.0000
                    3.0000
                                    6.5000
                                                           0.5000
   0
            0
                  -41.0000
                                   -73.5000
                                                          -5.5000
   0
            0
                      0
                             -27.878048780487802 -6.902439024390244
Solution:
0.038495188101487 \quad -0.180227471566054 \quad -0.309711286089239 \quad 0.247594050743657
```

8. Gauss elimination with partial pivot

Function of Gaussian elimination with partial pivot (ElimPivPar)

```
read A,b
[f,c]<-size of Ab
for j=1 to c-2
  col<-absolute value of j to f, j
  m<- find maximum in col
  temp<- Ab in row j
  Ab in row j <- Ab in row m+j-1
  Ab in rom m+j-1<- temp
  for i=j to f-1
     Ab in row i+1 and column j to c<-Ab(i+1,j:c)-(Ab(i+1,j)/Ab(j,j))*Ab(j,j:c)
  end
end
end</pre>
```

Regresive Sustitution function

```
read A,b
[f,c]<-size of A
x(f)<-b(f)/A(f,f)
for i=f-1 reducing 1 each step to 1
    sum=0
    for j=i+1 to f
        sum=sum+A(i,j)*x(j)
    end</pre>
```



```
x(i)=(b(i)-sum)/A(i,i) end end
```

Main function

read A,b $[\text{U,B}] < -\text{function ElimPivPar with parameters A,b} \\ \text{x} < -\text{Regresive sustitution function with parameters U,B} \\ \text{The solution of the equation is x}$

Results

Stage 2:				
14.000	5.000	-2.000	3.000	1.000
0	13.000	-2.000	11.000	1.000
0	0	3.164835164835165	7.664835164835164	0.917582417582418
0	0	0.021978021978022	4.021978021978022	0.989010989010989
Stage 3:				
14.000	5.000	-2.000	3.000	1.000
0	13.000	-2.000	11.000	1.000
0	0	3.164835164835165	7.664835164835164	0.917582417582418
0	0	0	3.96875000	0.982638888888889

Solution:

 $0.038495188101487 \quad -0.180227471566054 \quad -0.309711286089239 \quad 0.247594050743657$

9. Gauss method with total pivot

Elimination Gauss method with total pivot (ElimPivTot)

```
read A,b
A,b=[A b]
[f c]= size of Ab
tags<-1 to c-1
for j=1 to c-2
    subm <- submatrix of Ab(j to f,j to c-1)
    [mi,mj]<-find maximum between subm,[]
    temp<-Ab(j,j to end)
    Ab(j, j to end)<-Ab(mi+j,j to end)
    Ab(mi+j-1,j to end)<-temp
    temp<-Ab in column j
    Ab in column mj+j-1<-temp
    temp<-tags(j)
    tags(j)<-tags(mj+j-1)</pre>
```



```
tags(mj+j-1)=temp
        for i=j to f-1
             Ab(i+1,j \text{ to } c)=Ab(i+!,j \text{ to } c)-(Ab(i+1,j)/Ab(j,j))*Ab(j,j \text{ to } c)
        \quad \text{end} \quad
    end
Regresive Sustitution function (solve)
    read A,b
     [f,c]<-size of A
    x(f) < -b(f)/A(f,f)
    for i=f-1 reducing 1 each step to 1
        sum=0
        for j=i+1 to f
            sum=sum+A(i,j)*x(j)
        end
        x(i)=(b(i)-sum)/A(i,i)
    end
    end
    //
    //
Main function
 read A,b
     [U,B,tags]<-ElimPivTot(A,b)</pre>
    x<-solve(U,B)
    f < -size of x, 2
    xtemp<-[]</pre>
    for i=1 to f
       ind<-tags in position i
       xtemp(ind)<-x(i)</pre>
    end
    x=xtemp
end
Results
Stage 2:
 14.0000
          5.0000 \quad -2.0000 \quad 3.0000 \quad 1.0000
    0
          13.0000 -2.0000 11.0000 1.0000
    0
                    3.1648
                              7.6648 0.9176
             0
    0
          0.0000
                    0.0220
                              4.0220 \quad 0.9890
Stage 3:
```



```
14.0000 5.0000
                      3.0000 -2.0000 1.0000
             13.0000 \quad 11.0000 \quad -2.0000 \quad 1.0000
       0
       0
                      7.6648
                              3.1648
                0
                                       0.9176
       0
              0.0000
                        0
                              -1.6387 \quad 0.5075
   Solution:
    0.0385 \quad -0.1802 \quad -0.3097 \quad 0.2476
10. Multiple roots
        read f, df, d2f, x0, tolerance, n
        if f(x0)=0
        The initial point given is the root
        xn=x0
        Fxn=f(xn)
        i=1;
        E=infinite
        while E>tolerance and i<N and Fxn different from O
            xprev<-xn
            F<-f(xprev);
            dF<-df(xprev)
            d2F<-d2f(xprev)
            xn<-xprev-(F*dF)/((dF^2)-F*d2F)
            Fxn < -f(xn)
            E=absolute value of xn-xant
            i=i++;
        end
        if Fxn=0
            The root was found with a value of xn
            return
        end
        if E<=Tol
            An approximation of the root was found with a value of xn and an error of E
            return
        end
        if i=N
            The root was not found in the number of iterations given
            return
        end
    end
```


Iteration	xn	f(xn)	E
2	-0.0084583	3.5671e-05	0.22575
3	-1.189e-05	7.0688e-11	0.0084464
4	-4.2186e-11	0	1.189e-05

The root was found with a value of -4.2186e-11

11. Müller's algorithm

```
read f, x0, x1, x2, tolerance, N
h1 = x1 - x0
h2 = x2 - x1
d1 = (f(x1) - f(x0))/h1
d2 = (f(x2) - f(x1))/h2
d = (d2 - d1)/(h2 + h1)
i = 2
while i < N:
    b = d2 + h2*d
    D = (b^2 - 4*f(x^2)*d)^1/2 ----- from the cuadratic formula
    if |b-D| < |b+D|:
       E = b + d
    else:
       E = b - d
    h = -2*f(x2)/E
    if |h| < tolerance:
        return p, E, i -----p is the x coordinate for the root and E the
                               i-th iteration error
        break
    else:
        x0 = x1
       x1 = x2
        x2 = p
       h1 = x1 - x0
        h2 = x2 - x1
        d1 = ((f(x1) - f(x2))/h1
        d2 = ((f(x2) - f(x1))/h2
        d = (d2 - d1)/(h2 + h1)
```


$$i = i + 1$$

end

print: "The method failed after " + N + " iterations"

Results

Iteration	xn	f(xn)	E
6	1.8393	-1.3324e-05	0.001417
7	1.8393	2.0229e-10	2.4357e-06
8	1.8393	2.2204e-16	3.6978e-11

An approximation of the root was found with a value of 1.8393 and an error of 3.6978e-

12. Steffensen's algorithm

The method failed after ${\tt N}$ iterations

Results

Iteration	xn	f(xn)	Е
3	0.93634	-3.6044e-05	0.0081341
4	0.9364	-2.1289e-09	6.2238e-05
5	0.9364	-2.2204e-16	3.6764e-09

An approximation of the root was found with a value of 0.9364 and an error of 3.6764e-09

13. Aitken's process for accelerating convergence

```
read f, g, x0, tolerance, N
% Initial assignments
xn=x0
Fxn=f(xn)
Gxn=g(xn)
i=1;
E=inf;
while E > tolerance and i < N and Fxn different to O
    AitkenMod = false
    xant = xn
    xn = Gxn
    \% Check mod3 families until we obtain a multiple of 3
    if mod(i,3) == 1
        x1 = xn;
    else if mod(i,3) = 2
        x2 = xn;
    else if mod(i,3) = 0
        xn = xo - ((x1-xo)^2/(x2-2*x1+xo))
        xo = xn;
        AitkenMod = true
    E = abs(xn-xant)
    Fxn = f(xn)
    Gxn = g(xn)
    i=i+1
end
if Fxn == 0
    print: "The root was found with a value of " + xn
    return
if E <= tolerance</pre>
    print: "An aproximation of the root was found with a value of " + xn + " and
            an error of " + E
    return
if i == N
    print: "The root was not found in the number of iterations given"
```


return

Results

Iteration	xn	Aitken	g(xn)	f(xn)	E
8	-0.37444	0	-0.37445	-7.641e-07	1.2724 e-06
9	-0.37445	1	-0.37445	-4.9033e-13	4.7741e-07
10	-0.37445	0	-0.37445	2.9454e-13	4.9033e-13

An approximation of the root was found with a value of -0.37445 and an error of 4.9033e-13

14. Tridiagonal Gaussian Elimination

```
read A,b ----- % Ax = b system
n = length(b)
% Check if matrix is tridiagonal
for i=1:n
   for j=1:n
       aij = A(i,j);
       if i = j or i-1 = j or i+1 = j
           if aij = 0
               "The given matrix is not tridiagonal"
               return
       else
           if aij != 0
               "The given matrix is not tridiagonal"
               return
    end
end
Ab = [A b] ----- % Augmented A|b matrix
diagp = zeros(n,1)
diagu = zeros(n-1,1)
diagl = zeros(n-1,1)
diagp(1) = A(1,1)
for i=2:n
   % Extract the elmenents from each diagonal
   diagl(i-1) = Ab(i,i-1)
   diagp(i) = Ab(i,i)
    diagu(i-1) = Ab(i-1,i)
```



```
% Making the diagonal below zeros
    M = diagl(i-1)/diagp(i-1) ----- % Multiplier
    diagp(i) = diagp(i)-M*diagu(i-1)
    diagl(i-1) = diagl(i-1)-M*diagp(i-1)
    b(i) = b(i) - M*b(i-1)
    Ab(i,i-1:i+1) = [diagl(i-1) diagp(i) diagu(i-1)]
    Ab(i,end) = b(i)
end
% Substitution
x(n) = b(n)/diagp(n)
for i=n-1 : -1 : 1
    x(i) = (b(i)-diagu(i)*x(i+1))/diagp(i);
end
print: x
Results
Stage 0:
 2.0400
         -1.0000
                            48.8000
                      0
 -1.0000
          2.0400
                   -1.0000
                            0.8000
    0
          -1.0000
                   2.0400
                            0.8000
Stage 2:
2.0400 -1.0000
                    0
                          48.8000
   0
         1.5498
                 -1.0000 24.7216
   0
        -1.0000
                  2.0400
                          0.8000
Stage 3:
2.0400 -1.0000
                    0
                          48.8000
   0
         1.5498
                 -1.0000 24.7216
   0
           0
                  1.3948
                          16.7514
Solution:
35.5397 \quad 23.7010 \quad 12.0103
```

The matrix given in Microsoft Teams to test Elimination Methods came out as not Tridiagonal.

15. Trisection

```
read f,a,b,Tol,N
```



```
if a \ge b
    The given interval is not valid, a is greater or equal to b
    return
end
if f(a) is 0
    The root is the given value for a
    return
end
if f(b) is 0
    The root is the given value for b
    return
end
if f(a)*f(b)>0
    There is no root in the given interval
    return
end
i=1;
xm1=(2*a+b)/3; %mid point 1
xm2=(2*b+a)/3; %mid point 2
Fxm1=f(xm1);
Fxm2=f(xm2);
if absolute value of Fxm1<= absolute value of Fxm2
    xm=xm1;
    Fxm=Fxm1;
else
    xm=xm2;
    Fxm=Fxm2;
end
E=absolute value of xm;
while E>Tol and i<N and Fxm1 different to 0
    if f(a)*Fxm1<0
        b=xm1;
    elseif Fxm1*Fxm2<0
        a=xm1;
        b=xm2;
    else
        a=xm2;
    end
    xm1=(2*a+b)/3
    xm2=(2*b+a)/3
    Fxm1=f(xm1)
    Fxm2=f(xm2)
    xant=xm
```



```
if absolute value of Fxm1<= absolute value of Fxm2
            xm=xm1
            Fxm=Fxm1
        else
            xm=xm2
            Fxm=Fxm2
        end
        E=absolute value of xm-xant
        i=i+1
    end
    if Fxm==0
        The root was found with a value of xm
        return
    end
    if E<=Tol
        An approximation of the root was found with a value of xm and an error of E
        return
    end
    if i==N
        The root was not found in the number of iterations given
        return
    end
end
```

ricsuris	i Cours									
Iteration	a	xn	b	f(xn)	E					
13	0.93640310025	0.9364043547	0.9364049819	-1.3098e-07	6.2723e-07					
14	0.93640435470	0.9364045637	0.9364049819	-9.9042e-09	2.0908e-07					
15	0.93640456377	0.93640463346	0.9364047728	3.0453e-08	6.9692e-08					

An approximation of the root was found with a value of 0.9364 and an error of 6.9692e-08

16. Jacobi

```
function read A,b,x0,p,Tol,N
if det(A)==0
    error
D<- diagonal of A
L<- -lower triangular part of A +D
U<- -upper triangular part of A +D
T<- inverse matrix of D *(L+U)</pre>
```


Iteration	Error	x1	x2	x3	x4
50	1.5846e-07	0.52511	0.25546	-0.41048	-0.28166
51	1.1941e-07	0.52511	0.25546	-0.41048	-0.28166
52	8.9974e-08	0.52511	0.25546	-0.41048	-0.28166

Answer 0.5251 0.2555

-0.4105

-0.2817

17. Crout Factorization

end end

end

Results

```
Lower Triangular Matrix L
 4.0000
           0.0000
                       0.0000
                                  0.0000
 1.0000 \quad 15.7500 \quad 0.0000
                                  0.0000
 0.0000 \quad -1.3000 \quad -3.7524 \quad 0.0000
 14.0000 8.5000 -3.6190 13.9492
Upper Triangular Matrix U
 1.0000 -0.2500 \ 0.0000 \ 0.7500
 0.0000 \quad 1.0000 \quad 0.1905 \quad 0.4603
 0.0000 \quad 0.0000 \quad 1.0000 \quad -0.4526
 0.0000 \quad 0.0000 \quad 0.0000 \quad 1.0000
Progressive substitution Lz=b
0.2500\ 0.0476\ -0.2830\ -0.2817
```

Regresive substitution Ux=z, solution

0.5251 0.2555 -0.4105 -0.2817

18. Gauss Seidel Method

```
function read A,b,x0,p,Tol,N
if det(A) == 0
    error
D<- diagonal of A
L<- -lower triangular part of A +D
U<- -upper triangular part of A +D
T<- inverse matrix of D *(L+U)
C<-inverse matrix of D *b
ro<- maximum of |eigenvalues of T| %spectral radius of iteration matrix
0x->x
i<-0
E<-infinite
while E>Tol and i<N
    xprev<-x
    x<-T*xprev+C
    E<-p_norm of x-xprev
    i<-i+1
end
```


end

Results

Iteration	Error	x1	x2	x3	x4
28	2.7736e-07	0.52511	0.25546	-0.41048	-0.28166
29	1.6628e-07	0.52511	0.25546	-0.41048	-0.28166
30	9.968e-08	0.52511	0.25546	-0.41048	-0.28166

Answer 0.5251 0.2555 -0.4105 -0.2817

19. Doolittle Factorization

```
function read A
    [f,c]=size of A
    L= identity matrix of dimension f
    U=zero matrix of dimensions f,c
    for j=1 to c
        for i=1 to f
            if i<=j
                U(i,j)=A(i,j)
                U(i,j)=U(i,j)-[(L(i,1:i-1) \times Transpose matrix of U(1:i-1,j))]
            else
                L(i,j)=A(i,j)
                L(i,j)=L(i,j)-[(L(i,1:j-1) \times Transpose matrix of U(1:j-1,j)]
                 L(i,j)=L(i,j)/U(j,j)
            end
        end
    end
end
```

Results

Lower Triangular Matrix L


```
\begin{array}{ccccc} 1.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.2500 & 1.0000 & 0.0000 & 0.0000 \\ 0.0000 & -0.0825 & 1.0000 & 0.0000 \\ 3.5000 & 0.5397 & 0.9645 & 1.0000 \end{array}
```

Upper Triangular Matrix U

Progressive substitution Lz=b 1.0000 0.7500 1.0619 -3.9289

Regresive substitution Ux=z, solution 0.5251 0.2555 -0.4105 -0.2817

20. Cholesky Factorization

end

```
function read A
[f,c]<-size of A
L<-zero matrix of dimenssions f,c
U<-zero matrix of dimenssions f,c
L(1,1)<-square root of A(1,1)
U(1,1) < -L(1,1);
L(2 \text{ to end}, 1) < -A(2 \text{ to end}, 1)/L(1, 1)
U(1,2:end) < -A(1,2:end)/L(1,1)
for j=2 to c
 for i=2 to f
  if i>j
   L(i,j) \leftarrow (A(i,j)-[(L(i,1:j-1) \times transpose matrix of U(1:j-1,j)]/L(j,j)
  else if i=j
   L(i,i) \leftarrow \text{square root of } (A(i,i)-[(L(i,1:j-1) \times \text{transpose matrix of } U(1:j-1,i)
   U(i,i)<-L(i,i)
  else
   U(i,j) \leftarrow (A(i,j)-[(L(i,1:j-1) \times transpose matrix of U(1:j-1,j)]/L(i,i)
  end
  end
end
```


Lower Triangular Matrix L

Upper Triangular Matrix U

Progressive substitution Lz=b 0.5000 + 0.0000i 0.1890 + 0.0000i 0.0000 - 0.5482i -1.0520 + 0.0000i

Regresive substitution Ux=z, solution 0.4982 0.1477 0.1555 -0.2817

21. SOR

```
function read A,b,x0,p,w,Tol,N
if determinant of A=0
    error
D<-diagonal of A
L<- -lower triangular part of A +D
U<- -upper triangular part of A +D
T<-inverse matrix of (D-w*L) * ((1-w)*D+w*U)
C<-w*inverse matrix of (D-w*L)*b
ro<-spectral radius of t
0x->x
i<-0
E<-inf
while E>Tol and i<N
    xprev<-x
    x<-T*xprev+C;
    E<-p_norm x-xprev
    i<-i+1
end
```


end

Results

Iteration	Error	x1	x2	x3	x4
33	1.8071e-07	0.52511	0.25546	-0.41048	-0.28166
34	1.106e-07	0.52511	0.25546	-0.41048	-0.28166
35	5.9459e-08	0.52511	0.25546	-0.41048	-0.28166

Answer 0.5251 0.2555 -0.4105 -0.2817

Progressive Substitution

```
function read L,B

f=rows of L

x=zero matrix of dimensions 1,f

x(1)=B(1)/L(1,1)

for i=2 to f

sum=0

for j=1 to i

sum=sum+L(i,j)*x(j)

end

x(i)=(B(i)-sum)/L(i,i)

end

end
```

22. LU Factorization Partial Pivot

```
function read A
[f,c]<-size of A
L<-identity matrix of dimension f
P<- identity matrix of dimension f
for j=1 to c-1
    col<-|A(j:f,j)|
    m<- maximum of col
    m<-m(1)
    row change of A and P
    if j>1
        rows and columns change of L
```


Lower Triangular Matrix L

```
\begin{array}{ccccc} 1.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.2500 & 1.0000 & 0.0000 & 0.0000 \\ 0.0000 & -0.0825 & 1.0000 & 0.0000 \\ 3.5000 & 0.5397 & 0.9645 & 1.0000 \end{array}
```

Upper Triangular Matrix U

```
\begin{array}{ccccc} 4.0000 & -1.0000 & 0.0000 & 3.0000 \\ 0.0000 & 15.7500 & 3.0000 & 7.2500 \\ 0.0000 & 0.0000 & -3.7500 & 1.6984 \\ 0.0000 & 0.0000 & 0.0000 & 13.9492 \end{array}
```

Vector Pb

1.0000 1.0000 1.0000 1.0000

Progressive substitution Lz=Pb 1.0000 0.9286 1.0797 1.1745

Regresive substitution Ux=z, solution 0.5251 0.2555 -0.4105 -0.2817

23. LU Factorization

Lower Triangular Matrix L

```
\begin{array}{ccccc} 1.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.2500 & 1.0000 & 0.0000 & 0.0000 \\ 0.0000 & -0.0825 & 1.0000 & 0.0000 \\ 3.5000 & 0.5397 & 0.9645 & 1.0000 \end{array}
```

Upper Triangular Matrix U

```
\begin{array}{ccccc} 4.0000 & -1.0000 & 0.0000 & 3.0000 \\ 0.0000 & 15.7500 & 3.0000 & 7.2500 \\ 0.0000 & 0.0000 & -3.7500 & 1.6984 \\ 0.0000 & 0.0000 & 0.0000 & 13.9492 \end{array}
```

Progressive substitution Lz=b 1.0000 0.7500 1.0619 -3.9289

Regresive substitution Ux=z, solution $0.5251 \ 0.2555 \ -0.4105 \ -0.2817$

24. Lagrange Interpolation Method

begin

print yp ------ Lagrange polynomial at xp $\mbox{\it end}$

For the Lagrange polynomial, the output would be the expression,

$$\sum_{i=0}^{n} L_i(x_i) \tag{1}$$

where, for each iteration,

$$L_i(x) = \prod_{p} \frac{x - x_p}{x_i - x_p} \tag{2}$$

Results

Iteration	Li(x)
0	-0.05000*(x) (x - 3.00000) (x - 4.00000)
1	0.08333*(x + 1.00000) (x - 3.00000) (x - 4.00000)
2	-0.08333*(x + 1.00000) (x) (x - 4.00000)
3	0.05000*(x + 1.00000) (x) (x - 3.00000)

Polynomial Coefficients

-0.77500

0.25000

-0.66667

0.05000


```
Polynomial -0.775*(x)*(x - 3.00000)*(x - 4.00000) + 0.25*(x + 1.00000) (x - 3.00000) (x - 4.00000) - 0.66667*(x + 1.00000) (x) (x - 4.00000)
```

25. Vandermonde's matrix method

```
begin
    input X, b ----- X = (x1, x2, ..., xn), and Y = (f(x1), f(x2), ..., f(xn))
initialize deg = length(X)
initialize a_i = zeros(deg, 1) ---- The vector of the coefficients

For i = 0 < degree, i++
    For j = 0; j < degree; j++
        A[i][j] = x[i]^-(j+1) ------ Vandermonde's Matrix
    end
end

output A, b

Use this output to solve the system of equaions A*a_1 = b with whatever method you prefer.

sol = GaussianElimination (A, b)
end</pre>
```

Results

Polynomial

```
Polynomial Coefficients
-1.14167
5.82500
-5.53333
3.00000
```

 $-1.14167x^3 + 5.82500x^2 - 5.53333x^1 + 3.00000$

Newton's Method Divided differences method

26.

begin

end

The output $F_{0,0},...,F_{i,i},...,F_{n,n}$ can be translated into the expression,

$$P(x) = \sum_{x=0}^{n} F_{i,i} * \prod_{j=0}^{i-1} (x - x_j)$$
(3)

where P(x) is the Newton's polynomial.

Results

Xi	f(Xi)	1	2	3
-1	15.5	0	0	0
0	3	-12.5	0	0
3	8	1.6667	3.5417	0
4	1	-7	-2.1667	-1.1417

Polynomial Coefficients

15.50000

-12.50000

3.54167

-1.14167

Polynomial

15.50000 - 12.50000(x+1.00000)+3.54167(x+1.00000)(x) - 1.14167(x+1.00000)(x)(x-3.00000)

Splines

end

1st, 2nd, and 3rd degree

```
begin
    input (X0, f(X0)), (X1, f(X1)), ..., (Xn, f(Xn))
    input degree
    if degree == 1
        for i = 0, i = n-1
            M_i = (f(X_i+1) - f(X_i))/(X_i+1 - X_i)
            return p(X) = f(X_i+1) - f(X_i) = M_i * (X - X_i)
        end
    end
    if degree == 2
        for i = 1, i = n
            p(X) = A_i*X_i^2 - B_i*X_i + C_i
        end
        for i = 2, i = n
            p(X) = 2*A_i-1*X_i-1 - B_i-1
        To be natural spline both p(X) must be equal to 0 in both cases
        return p(X)
    end
    if degree == 3
        for i = 1, i < n
            p(X) = A_i*X_i^3 + B_i*X_i^2 + C_i*X_i + D_i
        end
        for i = 2, i = n
            p(X) = 3*A_i-1*X_i-1^2 + 2*B_i-1*X_i-1 + C_i-1
        end
        for i = 3, i = n
            p(X) = 6*A_i-1*X_0 + 2*B_i-1 = 0
        To be natural spline, it must follow that
            -6*A_i-1*X_0 + B_i-1 = 0
            -6*A_i*X_n + B_i = 0
        return p(X)
    end
```


Linear

Polynomial	Coefficient a	Coefficient b		
0	-12.5	3		
1	1.6667	3		
2	-7	29		

Polynomial	Spline
0	-12.50000x + 3.00000
1	1.66667x + 3.00000
2	-7.00000x + 29.00000

Cuadratic

Polynomial	Coefficient a	Coefficient b	Coefficient c
0	0	-12.5	3
1	4.7222	-12.5	3
2	-22.833	152.83	-245

Polynomial	Spline
0	$0.000000x^2 - 12.50000x + 3.00000$
1	$4.72222x^2 - 12.50000x + 3.00000$
2	$-22.83333x^2 + 152.83333x - 245.00000$

Cubic

Polynomial	Coefficient a	Coefficient b	Coefficient c	Coefficient d
0	2.5333	7.6	-7.4333	3
1	-1.5222	7.6	-7.4333	3
2	2.0333	-24.4	88.567	-93

Polynomial	Spline
0	$2.53333x^3 + 7.60000x^2 - 7.43333x + 3.00000$
1	$-1.52222x^3 + 7.60000x^2 - 7.43333x + 3.00000$
2	$2.03333x^3 - 24.40000x^2 + 88.56667x - 93.00000$

Composite trapezoidal rule

function read f,a,b,n h=(b-a)/n I=f(a)+2*f(a+h)+2*f(a+2h)+...+f(b) I=(h/2)*I return I

end

Results Using f(x) = x * sin(x), a = 3, b = 10 and N = 100, the result is: The approximated value of the integral of f(x) from a to b is 4.73310320

Composite Simpson's 1/3 rule

```
function read f,a,b,n Check if n is an even number, it must be even to continue h=(b-a)/n I=f(a)+2*f(a+h)+4*f(a+2h)+2*f(a+3h)+4*f(a+4h)+...+f(b) I=(h/3)*I return I end
```

Results Using f(x) = x * sin(x), a = 3, b = 10 and N = 100, the result is: The approximated value of the integral of f(x) from a to b is 4.73559768

Simple Simpson's 3/8 rule

```
function read f,a,b
h=(b-a)/n
x1=(2*a+b)/3
x2=(a+2*b)/3
I=f(a)+3*f(x1)+3*f(x2)+f(b)
I=(3*h/8)*I
return I
end
```

Results Using f(x) = x * sin(x), a = 3, b = 10 and N = 100, the result is: The approximated value of the integral of f(x) from a to b is 3.99661303

Euler's Method

```
function read f,t0,tn,y0,h n=ceiling of |tn-t0|/h t=t0 to tn with step size h y= column vector of n zeros y in position 1=y0 calculate each y(i) with y(i)=y(i-1)+h*f(t(i-1),y(i-1)) until having n points return t, y end
```


t_i	y_i
0	0
0.25	0.25
0.5	0.54688
0.75	0.87109
1	1.1982
1.25	1.4978
1.5	1.7316
1.75	1.852
2	1.7994
2.25	1.4993
2.5	0.85847
2.75	-0.23942
3	-1.9399

Modified Euler's Method (Heun's Method)

t_i	y_i
0	0
0.25	0.27344
0.5	0.59058
0.75	0.92855
1	1.2581
1.25	1.5416
1.5	1.731
1.75	1.7647
2	1.5638
2.25	1.0271
2.5	0.024903
2.75	-1.6087
3	-4.0866