2013 硕士研究生入学考试

数学一

1.已知极限 $\lim_{x\to 0} \frac{x-\arctan x}{x^k} = c$,其中 k,c 为常数,且 $c \neq 0$,则(

A.
$$k = 2, c = -\frac{1}{2}$$
 B. $k = 2, c = \frac{1}{2}$ **C.** $k = 3, c = -\frac{1}{3}$ **D.** $k = 3, c = \frac{1}{3}$

2.曲面 $x^2 + \cos(xy) + yz + x = 0$ 在点(0,1,-1)处的切平面方程为(

A.
$$x-y+z=-2$$
 B. $x+y+z=0$ **C.** $x-2y+z=-3$ **D.** $x-y-z=0$

3.
$$\Re f(x) = \left| x - \frac{1}{2} \right|$$
, $b_n = 2 \int_0^1 f(x) \sin n\pi x dx (n = 1, 2, \dots)$, $\Re S(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x$,

则 $S(-\frac{9}{4}) =$ ()

$$\mathbf{A} \cdot \frac{3}{4}$$

B.
$$\frac{1}{4}$$

B.
$$\frac{1}{4}$$
 C. $-\frac{1}{4}$

D.
$$-\frac{3}{4}$$

4.设 $L_1: x^2 + y^2 = 1$, $L_2: x^2 + y^2 = 2$, $L_3: x^2 + 2y^2 = 2$, $L_4: 2x^2 + y^2 = 2$ 为四条

逆时针方向的平面曲线,记 $I_i = \iint_i (y + \frac{y^3}{6}) dx + (2x - \frac{x^3}{3}) dy (i = 1, 2, 3, 4)$,则

 $\max\{I_1, I_2, I_3, I_4\} =$

$$\mathbf{A}. I_1$$

B.
$$I_2$$

$$\mathbf{D} I_{\scriptscriptstyle A}$$

5.设 A,B,C 均为 n 阶矩阵, 若 AB=C, 且 B 可逆,则(

A.矩阵 C 的行向量组与矩阵 A 的行向量组等价

B矩阵 C的列向量组与矩阵 A的列向量组等价

 \mathbf{C} 矩阵 \mathbf{C} 的行向量组与矩阵 \mathbf{B} 的行向量组等价

D 矩阵 C 的列向量组与矩阵 B 的列向量组等价

6.矩阵
$$\begin{pmatrix} 1 & a & 1 \\ a & b & a \\ 1 & a & 1 \end{pmatrix}$$
 与 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似的充分必要条件为 ()

A.
$$a = 0, b = 2$$

A.
$$a = 0, b = 2$$
 B. $a = 0, b$ 为任意常数

C.
$$a = 2, b = 0$$

7.设 X_1, X_2, X_3 是随机变量,且 $X_1 \square N(0,1)$, $X_2 \square N(0,2^2)$, $X_3 \square N(5,3^2)$, $P_i = P\{-2 \le X_i \le 2\} (i = 1, 2, 3)$, [1]

A.
$$P_1 > P_2 > P_3$$
 B. $P_2 > P_1 > P_3$

B.
$$P_2 > P_1 > P_3$$

C.
$$P_3 > P_2 > P_2$$

$$\mathbf{D} P_1 > P_3 > P_2$$

8.设随机变量 $X \square t(n)$, $Y \square F(1,n)$,给定a(0 < a < 0.5),常数 c 满足 $P\{X > c\} = a$, \mathbb{N}

$$P\{Y>c^2\}=($$

9.设函数 y=f(x) 由方程 $y-x=e^{x(1-y)}$ 确定,则 $\lim_{n\to 0} n[f(\frac{1}{n})-1]=$ _____。

10.已知 $y_1=e^{3x}-xe^{2x}$, $y_2=e^x-xe^{2x}$, $y_3=-xe^{2x}$ 是某二阶常系数非齐次线 性微分方程的 3 个解,则该方程的通解 y=

11.设
$$\begin{cases} x = \sin t \\ y = t \sin t + \cos t \end{cases} (t 为 参数), \quad 则 \frac{d^2 y}{dx^2} \bigg|_{t = \frac{\pi}{4}} = \underline{\qquad}.$$

12.
$$\int_{1}^{+\infty} \frac{\ln x}{(1+x)^2} dx =$$

13.设 $A=(a_{ij})$ 是 3 阶非零矩阵,|A| 为 A 的行列式, A_{ij} 为 a_{ij} 的代数余 子式.若 a_{ii}+A_{ii}=0(i, j=1,2,3),则 | A | =

14.设随机变量 Y 服从参数为 1 的指数分布, a 为常数且大于零,则 $P{Y \le a+1|Y > a} =$

解答题:

(15)(本题满分10分)

计算
$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
,其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$.

(16)(本题 10 分)

设数列 $\{a_n\}$ 满足条件: $a_0 = 3, a_1 = 1, a_{n-2} - n(n-1)a_n = 0 (n \ge 2)$. **S**(x) 是幂级数

 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数.

- (1) 证明: S''(x) S(x) = 0;
- (2) **求** *S*(*x*)的表达式.

(17)(本题满分10分)

求函数 $f(x,y) = (y + \frac{x^3}{3})e^{x+y}$ 的极值.

(18)(本题满分 10 分)

设奇函数 f(x)在[-1,1]上具有二阶导数,且 f(1)=1,证明:

- (I) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$.
- (II) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$.

19.(本题满分 10 分)

设直线 L 过 A (1,0,0), B (0,1,1) 两点将 L 绕 z 轴旋转一周得到曲面 Σ , Σ 与平面 z=0,z=2 所围成的立体为 Ω 。

- (1) 求曲面Σ的方程;
- (2) 求Ω的形心坐标。

20. (本题满分11分)

设 $A = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$, 当 **a,b** 为何值时, 存在矩阵 **C** 使得 **AC-CA=B**, 并求所有矩阵 **C**。

21. (本题满分 11 分)

设工次型
$$f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)^2 + (b_1x_1 + b_2x_2 + b_3x_3)^2$$
,记 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$,

$$eta = egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}$$
 o

- (1) 证明二次型 f 对应的矩阵为 $2\alpha\alpha^T + \beta\beta^T$;
- (2) 若 α, β 正交且均为单位向量,证明 f 在正交变换下的标准形为 $2y_1^2 + y_2^2$ 。

22. (本题满分 11 分)

设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{a}x^2, & 0 < x < 3, \\ 0, & \text{ 其他} \end{cases}$

$$Y = \begin{cases} 2, & x \le 1, \\ x, & 1 < x < 2, \\ 1, & x \ge 2 \end{cases}$$

- (1) 求 Y 的分布函数;
- (2) 求概率 P{X ≤ Y}.

23.(本题满分 11 分)

设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{\theta^2}{x^3} e^{\frac{-\theta}{x}}, & x > 0, \\ 0, & \text{其他} \end{cases}$

于零, X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本。

(1) 求 θ 的矩估计量;

求θ的最大似然估计量。