Мобильная робототехника

	·
Тест начат	Суббота, 19 Февраль 2022, 12:26
Состояние	Завершено
Завершен	Суббота, 19 Февраль 2022, 13:59
Прошло	1 ч. 32 мин.
времени	
Оценка	45,00 из 54,00 (83 %)

Вопрос 1 Верно Баллов: 10,00 из 10,00

Мобильный колесный робот с дифференциальной компоновкой следует по маршруту между контрольными точками от точки А к точке F, как показано на рисунке. Контрольные точки заданы тремя параметрами (x,y,q): x,y - координаты (в метрах) неподвижной СК с началом в точке A; q - ориентация (в радианах) робота отностительно неподвижной СК. Радиус колеса робота - 0,9 м.; расстояние между колесами - 0,4 м.; максимальная угловая скорость колеса 11 рад/с.

Используя кинематическую модель робота, необходимо найти минимальное время, за которое робот переместится из точки A в точку B (округлять следует только итоговый ответ до третьего знака).

Ответ: 16.765 ✓

Правильный ответ: 16,738

Верно

Баллов: 5,00 из 5,00

Мобильный колесный робот с дифференциальной компоновкой следует по маршруту между контрольными точками от точки А к точке F, как показано на рисунке. Контрольные точки заданы тремя параметрами (x,y,q): x,y - координаты (в метрах) неподвижной СК с началом в точке A; q - ориентация (в радианах) робота отностительно неподвижной СК. Радиус колеса робота - 0,9 м.; расстояние между колесами - 0,8 м.; максимальная угловая скорость колеса 8 рад/с.

Используя кинематическую модель робота, необходимо найти минимальное время, за которое робот переместится из точки В в точку С (округлять следует только итоговый ответ до третьего знака).

Правильный ответ: 18,056

Верно

Баллов: 15,00 из 15,00

Мобильный колесный робот с дифференциальной компоновкой следует по маршруту между контрольными точками от точки А к точке F, как показано на рисунке. Контрольные точки заданы тремя параметрами (x,y,q): x,y - координаты (в метрах) неподвижной СК с началом в точке A; q - ориентация (в радианах) робота отностительно неподвижной СК. Радиус колеса робота - 1,0 м.; расстояние между колесами - 0,8 м.; максимальная угловая скорость колеса 9 рад/с.

Используя кинематическую модель робота, необходимо найти минимальное время, за которое робот переместится из точки С в точку D (округлять следует только итоговый ответ до третьего знака).

Ответ: 24.562 ✓

Правильный ответ: 24,562

Верно

Баллов: 15,00 из 15,00

Мобильный колесный робот с дифференциальной компоновкой следует по маршруту между контрольными точками от точки А к точке F, как показано на рисунке. Контрольные точки заданы тремя параметрами (x,y,q): x,y - координаты (в метрах) неподвижной СК с началом в точке A; q - ориентация (в радианах) робота отностительно неподвижной СК. Радиус колеса робота - 1,0 м.; расстояние между колесами - 0,4 м.; максимальная угловая скорость колеса 11 рад/с.

Используя кинематическую модель робота, необходимо найти минимальное время, за которое робот переместится из точки D в точку E (округлять следует только итоговый ответ до третьего знака).

Правильный ответ: 38,622

Неверно Баллов: 0,00 из 9,00

Мобильный колесный робот с дифференциальной компоновкой следует по маршруту между контрольными точками от точки А к точке F, как показано на рисунке. Контрольные точки заданы тремя параметрами (x,y,q): x,y - координаты (в метрах) неподвижной СК с началом в точке A; q - ориентация (в радианах) робота отностительно неподвижной СК. Радиус колеса робота - 0,7 м.; расстояние между колесами - 0,4 м.; максимальная угловая скорость колеса 6 рад/с.

Используя кинематическую модель робота, необходимо найти минимальное время, за которое робот переместится из точки E в точку F (округлять следует только итоговый ответ до третьего знака).

Ответ: 28.854

Правильный ответ: 29,956

◄ Лекция 3

Перейти на...

Лекция 4 ▶