MATH 401: Lecture 3 (08/26/2025)

Today: * families of sets, properties
Today: * functions, images, pre images

We first do a problem on Cartesian products...

USIRA 1.2 Prob9 (Pg II) Prove that $(AUB) \times C = (AXC)U(BXC)$.

' \subseteq ' Lef $(X,Y) \in (AUB) \times C$.

=> X E AUB, YEG (Definition of cartesian product)

> XEA ON XEB, YEG

2/2 XEA then $(x,y) \in A \times C'$, and if XEB then $(x,y) \in B \times C$.

 \Rightarrow $(x,y) \in A \times C$ or $(x,y) \in B \times C$

⇒ (x,y) ∈ (AxC) U (BxC).

'2' let (x,y) & (AxC) U(BXC)

⇒ cx,y) ∈ Axc or (x,y) ∈ BxC

 $\Rightarrow x \in A, y \in C$ or $x \in B, y \in C \Rightarrow (x \in A \text{ or } x \in B), y \in C$.

⇒ XEAUB, yEG ⇒ CX, y) ∈ (AUB) xC.

LSIRA13 Families of Sets

Recall: B
$$\cap (\bigcup_{i=1}^{n} A_i) = \bigcup_{i=1}^{n} (B \cap A_i)$$
. Scompact notation for distributive law (from Lecture 2)

We could write, instead, BN $(\bigcup_{i \in \mathcal{X}} A_i) = \bigcup_{i \in \mathcal{I}} (B \cap A_i)$, where $\mathcal{X} = \xi_{1,2,...,n} \xi$.

We now generalize I to be infinite in some cases, or indexing more general collections in general.

Def A collection of sets is a family.
e.g., $A = \{[a,b] | a,b \in \mathbb{R}^2\}$ is the family of all closed intervals on \mathbb{R} .

Union and Intersection

We extend union, intersection, as well as their distribution to families.

() A = Sa a EA for all A E A 3 -> collection of elements that belong to every set in the family.

We naturally extend distributive and De Morgan's laws to families.

$$B \cap (\bigcup_{A \in A} A) = \bigcup_{A \in A} (B \cap A), \quad (\bigcap_{A \in A} A)^c = \bigcup_{A \in A} A^c, \text{ etc.}$$

We now work on some problems involving families of sets.

```
LSIRA1.3 Probl (Pg12)
```

Show that $\bigcup [-n,n] = \mathbb{R}$.

(' \subseteq ') R is the universe here, so () $[-n,n] \subseteq \mathbb{R}$.

Or, observe that $[n,n] \in \mathbb{R}$ for each $n \in \mathbb{N}$, hence $\bigcup fn,n] \subseteq \mathbb{R}$. (2) Let $x \in \mathbb{R}$ Note that $x = 0 \in [-n,n]$ the iN.

let m= [1x1], ceiling of absolute value of x, i.e., the $\lceil x \rceil = ceil(x)$ Smallest natural number > 1x1. = Smallest

integer z X. Then $X \in [-m,m] = [-tixi7, tixi7]$, as

 $x \le |x| \le |x|^{2m}$, and x = -|x| = -|x|.

>e.g., x = -3.3 ⇒ x 7 -1-3.3 = 3.3 \Rightarrow $\times \in \bigcup_{n \in \mathbb{N}} [-n,n].$

LSIRA 1.3 Prob 4

Show $\bigcap_{n \in \mathbb{N}} (o, h] = \emptyset$ (empty set).

 $(\dot{z}) \phi \subseteq A$ for any set A (trivially).

(E) We show $\bigcap(0,h] \subseteq \emptyset$. Hence we not in (o, n]. For $x \in \mathbb{R}$, we show $x \notin \bigcap (o, \frac{1}{n}]$.

 $\mathcal{H} \times \leq 0$, then clearly, $\times \neq (0, \frac{1}{n}] \forall n \in \mathbb{N}$.

 24×71 , then $\times \notin (0, \frac{1}{2}]$ for n=2, for instance.

Let
$$0 < x < 1$$
. Consider $m = \lceil \frac{1}{x} \rceil + 1$.

Then
$$x \notin (0, \frac{1}{m})$$
 as $x > \frac{1}{m} = \frac{1}{\frac{1}{m}} \cdot \left(\frac{1}{2} + 1 > \frac{1}{2}\right)$

$$\Rightarrow \quad \times \notin \bigcap_{n \in \mathbb{N}} (o_i \frac{1}{n}].$$

Q. Why take
$$\begin{bmatrix} 1\\ x \end{bmatrix} + 1$$
? Hence $x \in (0, \frac{1}{m}]$

Consider
$$x = \frac{1}{5}$$
, for instance.
Then $\begin{bmatrix} 1 \\ x \end{bmatrix} = \begin{bmatrix} 5 \end{bmatrix} = 5$.
Hence $x \in (0, \frac{1}{m}]$ here!

Prove that
$$BU(AA) = AEA$$
 (BUA).

$$\Rightarrow$$
 XGB or XG $\bigcap_{A \in A}$ \Rightarrow XG \Rightarrow XG \Rightarrow XG $\cap_{A \in A}$.

LSIRA 1.4 Functions

A function $f: X \rightarrow Y$ for sets X, Y is a rule that assigns for each $x \in X$ a unique $y \in Y$. We write f(x)=y, or $x \mapsto y$ "maps to".

Rather than the

Compositions

Kather than the graphs of functions you may have seen previously, we think of such visualizations for functions now.

X is the domain and Y the codomain of f.

Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Then their composition is specified as $h: X \rightarrow Z$ defined as h(x) = g(f(x)). The composition is written as $g \circ f$, with $g \circ f(x) = g(f(x))$.

"composition of fand g"

f₁(f₂(-..f_n(x))))...) > composition of n functions f₁, f₂,...,f_n Function: f:x-y. We now define images and preimages under f.

For $A \subseteq X$, $f(A) \subseteq Y$ is defined as $f(A) = f(A) | a \in A^2,$ and is called the **image** of A under f.

For $B \subseteq Y$, the set $f'(B) \subseteq X$ defined as $f''(B) = \{x \in X \mid f(x) \in B\}$

is the inverse image or preimage of B under f.

In the next lecture, we consider how preimages and intersections, or not ...