0.1 矩阵与二次型

0.1.1 用矩阵方法来讨论二次型问题

引理 0.1

设 A 是 n 阶实对称矩阵,则

$$f\left(x\right)=x'Ax+2a\beta'x+a^{2}c=\begin{pmatrix}x'&a\end{pmatrix}\begin{pmatrix}A&\beta\\\beta'&c\end{pmatrix}\begin{pmatrix}x\\a\end{pmatrix}.$$

注 上述 f(x) 仍是一个二次型, 只不过有 1 个变量恒为常数而已.

证明 由矩阵乘法易证.

例题 0.1 设 A 是 n 阶正定实对称矩阵, 求证: 函数 $f(x) = x'Ax + 2\beta'x + c$ 的极小值等于 $c - \beta'A^{-1}\beta$, 其中 $\beta = (b_1, \dots, b_n)', b_i$ 和 c 都是实数.

证明 注意到

$$f(x) = (x' \ 1) \begin{pmatrix} A & \beta \\ \beta' & c \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix},$$

因为 A 可逆, 故可作如下对称分块初等变换:

$$\begin{pmatrix} I_n & O \\ -\beta'A^{-1} & 1 \end{pmatrix} \begin{pmatrix} A & \beta \\ \beta' & c \end{pmatrix} \begin{pmatrix} I_n & -A^{-1}\beta \\ O & 1 \end{pmatrix} = \begin{pmatrix} A & O \\ O & c - \beta'A^{-1}\beta \end{pmatrix}.$$

由
$$\begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} I_n & -A^{-1}\beta \\ O & 1 \end{pmatrix} \begin{pmatrix} y \\ 1 \end{pmatrix}$$
 可解出 $y = x + A^{-1}\beta$, 于是

$$f(x) = (y'\ 1) \begin{pmatrix} A & O \\ O & c - \beta' A^{-1} \beta \end{pmatrix} \begin{pmatrix} y \\ 1 \end{pmatrix} = y' A y + c - \beta' A^{-1} \beta \ge c - \beta' A^{-1} \beta.$$

因此, 当 $\mathbf{x} = -\mathbf{A}^{-1}\boldsymbol{\beta}$ 时, $f(\mathbf{x})$ 取到极小值 $c - \boldsymbol{\beta}' \mathbf{A}^{-1}\boldsymbol{\beta}$