The tropical critical points of an affine matroid SIAM AG 2023, Eindhoven University of Technology, Eindhoven

Raul Penaguiao

MPI MiS Leipzig

July 10th, 2023

Slides can be found at raulpenaguiao.github.io/ Joint work with Federico Ardila and Chris Eur

Optimization of a monomial

Fix some vector $\mathbf{w}=(w_1,\ldots,w_n)\in\mathbb{R}^n$. Optimize $f_{\mathbf{w}}:\mathbf{x}\mapsto x_1^{w_1}\cdots x_n^{w_n}$ on a variety $X\subset(\mathbb{C}^*)^n$.

Figure: A variety where we can optimize $f_{\mathbf{w}}$

What is the number of critical points of f? Does it depend on the choice of \mathbf{w} ? For generic \mathbf{w} , no!

This number is called the **maximum likelihood degree** of a model X. If X is a vector space, $\mathsf{MLDeg}(X) = \beta(M(V))$.

Edge weight problem

Given G = (V, E), fix some vector $\mathbf{w} = (w_1, \dots, w_n) \in \mathbb{R}^n$. Find coefficients $\mathbf{x} = (x_e)_{e \in E}$, $\mathbf{y} = (y_e)_{e \in E}$ that are **compatible**?

Figure: Find x and y edge weights that are *compatible* with G and $(G \setminus z)^*$.

- The sum of the weights is w.
- (Compatible) Every cycle has at least two minimal edges.

Fix $\mathbf{w} = (0, 1, 1, 2, 2, 5, 3, 4, 7)$.

Figure: Find x and y edge weights that are *compatible* with G and $(G \setminus z)^*$.

	a	b	c	d	e	f	g	h	i
x	00	01	00	00	02	03	00	00	02
\mathbf{y}	000	01 1 <mark>1</mark> 0	111	2 <mark>2</mark> 2	20	52	33	44	75
\mathbf{w}	0	1	1	2	2	5	3	4	7

- Introduction
- Matroids
- The Bergman Fan
- Degree of Bergman Fan

Graphical matroid

Given a graph G = (V, E), the collection of edges E forms a matroid.

 $\begin{array}{c} \text{Independent sets} \mapsto \text{forests} \\ \text{Basis} \mapsto \text{Spanning forests} \\ \text{Circuits} \mapsto \text{Simple cycles} \\ \text{Rank of set } A \subseteq E \mapsto \text{size of largest spanning forest} \end{array}$

Flats

Maximal sets with a fixed rank.

That is, F is a flat if for any $i \notin F$, $r_M(F \cup i) > r_M(F)$.

 $\{\emptyset, \text{ matchings }, \text{ complete subgraphs }, ...\}$

$$\{\emptyset \subsetneq a \subsetneq za \subsetneq zafg \subsetneq zabcdefghi\}$$

The uniform matroid

Basis of the uniform matroid $U_{n,k}$ = all sets of size k in [n]. Any set of size $\leq k$ is independent.

Figure: Matroid $U_{7,5}$ along with a basis B and independent set I.

Any set of size $\leq k-1$ is a flat. Any complete flag of flats is of the form

$$\{\emptyset \subsetneq \{v_1\} \subsetneq \{v_1, v_2\} \subsetneq \cdots \subsetneq \{v_1, \dots, v_{k-1}\} \subsetneq [n]\}$$

The Bergman Fan

$$\Sigma_M \coloneqq \{\vec{x} \in \mathbb{R}^n | \forall \text{ circuits } C \text{ we have } \min_{c \in C} x_c \text{ is attained twice } \} \,.$$

$$\Sigma_M \coloneqq \{\vec{x} \in \mathbb{R}^n/_{\mathbb{1R}} | \forall \text{ circuits } C \text{ we have } \min_{c \in C} x_c \text{ is attained twice } \} \,.$$

If $M=U_{n,k}$, any set of size k+1 is a circuit. A point $\vec{x}\in\mathbb{R}^n$ is on the Bergman fan if $\#\{i\in E|x_i>\min\vec{x}\}\leq k-1$.

$$\Sigma_M = \bigcup_{|I|=n-k+1} \{ \vec{x} \in \mathbb{R}^n /_{\mathbb{R}1} | \arg \min \vec{x} \subseteq I \}.$$

$$\Sigma_{U_{3,2}} = \{(a,a,b)|a \leq b\} \cup \{(a,b,a)|a \leq b\} \cup \{(b,a,a)|a \leq b\}.$$

Figure: Two elements in the Bergman fan of the graphical matriod

Theorem (Sturmfels and Feichner, 2004)

The Bergman Fan of a matroid decomposes into the following cones

$$\Sigma_M = \bigcup_{\substack{\mathcal{F} \text{ flag of flats}}} \mathcal{C}_{\mathcal{F}} = \bigcup_{\substack{F_1 \subset \cdots \subset F_k \\ \text{flag of flats}}} \{x_i \geq x_j \text{ whenever } i \in F_k, j \not \in F_k\} \ .$$

Problem

Can we compute the degree of the tropical variety Σ_M ?

Figure: A variety X: Degree = # of intersections with a line in \mathbb{C}^n .

Just intersect it with a hyperplane with dimension $= n - \dim X$ Note: Hyperplanes in the tropical world are Bergman fans of $U_{n,k}$.

Example of degree computation

Consider M the graphical matroid of K_5 , of rank 4 (so $\dim \Sigma_M = 3$). One has $\Sigma_M \subseteq \mathbb{R}^{10}/\mathbb{R}_1$, we intersect it with a hyperplane of dim = 6.

$$|\Sigma_{U_{10,7}} + \underbrace{(1,10,100,1000,...,10^9)}_{\vec{\omega}} \cap \Sigma_M| = ?$$

Figure: There is only one $\mathbf{x} \in \Sigma_M$ and $\mathbf{y} \in \Sigma_U$ such that $\mathbf{y} + \mathbf{w} = \mathbf{x}$. Such vector \mathbf{x} belongs to a **cone determined by the greedy basis of** M.

Activities

Fix total order in V, ground set of a matroid M.

- $i \in B$ is internal activity if $i = \min C^{\perp}$, where $C^{\perp} \subseteq B^c \cup i$ is a cocircuit (a cut of the graph).
- ullet e
 otin B is external activity if $e = \min C$, where $C \subseteq B \cup i$ is a circuit.

Figure: Fix order z < a < b < c < d < e < f < q < h < i.

$$i(befg) = 0, \ e(befg) = 2, \ i(zadf) = 2, \ e(zadf) = 1$$

Tutte polynomial

$$T_M(x,y) = \sum_{A \subset V} (x-1)^{r_M(V) - r_M(A)} (y-1)^{|A| - r_M(A)}$$

$$T_M(x,y) = \sum_{B \in \mathcal{B}} x^{i(B)} y^{e(B)} = \sum_{i,j} b_{i,j} x^i y^j$$

Observation

of bases with no external activities (called nbc bases): independent of the order chosen.

of bases with no external activities and one internal activity (called β -nbc bases) **independent of the order chosen**

Degree computations

Theorem (Greedy basis algorithm)

$$\deg(\Sigma_M) = \Sigma_M \cap (\mathbf{w} + \Sigma_{U_{n,n-k-1}}) = 1$$

Theorem (Adiprasito, Huh, Katz, 2018)

$$\deg(-\Sigma_M) = (-\Sigma_M) \cap (\mathbf{w} + \Sigma_{U_{n.n-k-1}}) = \#\{ \text{nbc bases } \}$$

Theorem (Agostini, Brysiewicz, Fevola, Kühne, Sturmfels, Telen 2021 and Ardila, Eur, P 2022)

$$\deg(\Sigma_{(M/_0)^{\perp}} \cdot -\Sigma_M) = (-\Sigma_M) \cap (\mathbf{w} + \Sigma_{(M/_0)^{\perp}}) = \#\{\beta - \mathsf{nbc} \ \mathsf{bases} \ \}$$

Finding Nemo points form nbc bases

$$\begin{split} \deg(\Sigma_{(M/_0)^\perp} \cdot -\Sigma_M) = &? & \text{Fix generic } \mathbf{w} = (10^{i-1})_i. \\ \text{Find } \mathbf{x} \in \Sigma_M, \, \mathbf{y} \in \Sigma_{(M/_0)^\perp} \text{ such that } \mathbf{x} + \mathbf{y} = \mathbf{w}. \end{split}$$

Find a β -nbc basis $B = zbeg \rightarrow g|e|bd|zacfhi$,

corresponding β -nbc cobasis $B^{\perp} = acdfhi \rightarrow i|h|f|gd|c|eba$.

	a	b	c	d	e	f	g	h	i
x	0	9	0	9	$10^4 - 1$	0	$10^6 - 10^3 + 9$	0	0
\mathbf{y}	1	1	100	$10^3 - 9$	1	10^{5}	$10^3 - 9$	10^{7}	10^{8}
\mathbf{w}	1	10	100	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}

Biblio

- Agostini D., Brysiewicz T., Fevola C., Kühne L., Sturmfels B., Telen S. (2021). Likelihood Degenerations. Motivation behind ML degree computations
- Adiprasito K., Huh J., Katz E. (2018). Hodge Theory for combinatorial geometries Degree computations in matroids
- Ardila F., Eur C., RP (2022) The maximum likelihood of a matroid.

Thank you

