Linear Programming: Box Wrappig

Arnau Abella Universitat Politècnica de Catalunya

June 8, 2020

1 Variables

The following are the variables appearing in the linear equations of the model:

n = total number of boxes.

w =width of the wrapping.

l = maximum length of the wrapping.

 $length = current length of the wrapping (where <math>length \leq l$).

 $x_i^{tl} = \mathbf{x}$ coordinate of the *i*-th box $(x^{tl} = \{0, \cdots, w-1\})$.

 $y_i^{tl} = \mathbf{y}$ coordinate of the i-th box $(y^{tl} = \{0, \cdots, l-1\}).$

 $width_i = assigned width of the i-th box (width = \{0, \dots, w-1\}).$

 $height_i = assigned height of the i-th box (height = \{0, \dots, l-1\}).$

where $i = \{0, \dots, n-1\}.$

2 Constraints

(Bounds) Boxes must be placed inside the width of the wrapping:

$$x_i^{tl} \le w - witdth_i$$
 forall i (1)

(Rotation) The boxes must be placed in vertical or horizontal position:

$$width_i + height_i = b_width_i + b_heigth_i$$
 (2)

where b_-width_i and $b_-height_i$ are the given width and height of the *i*-th box. (Overlapping) The boxes must not overlap:

$$((x_i^{tl} \le x_j^{tl} - width_i)$$

$$+(x_i^{tl} \ge x_j^{tl} + width_j)$$

$$+(y_i^{tl} \le y_j^{tl} - height_i)$$

$$+(y_i^{tl} \ge y_j^{tl} + heigth_j)) \ge 1 \quad \text{for all } i, j, i \ne j$$

$$(3)$$

(Length) The current length of the wrapping must at least the position of the furthest box from the origin plus its height:

$$length \ge y_i^{tl} + height_i$$
 forall i (4)

3 Objective function (to be minimized)

$$Cost = length (5)$$

4 Optimizations

- The first box, by symmetry, can be placed on the left-side of the wrapping without changing the final result.
- Repeating branches of identical boxes is redundant, imposing an arbitrary order will prevent this.
- Square boxes can be placed indistinct vertically or horizontally.