OKI Semiconductor

This version: Jan. 1998 Previous version: Nov. 1996

MSM66201/66P201/66207/ 66P207

OLMS-66K Series 16-Bit Microcontroller

GENERAL DESCRIPTION

The MSM66201/66207 is a high performance microcontroller that employs OKI original nX-8/200 CPU core. This chip includes a 16-bit CPU, ROM, RAM, I/O ports, multifunction 16-bit timers, 10-bit A/D converter, serial I/O port, and pulse width modulator (PWM). The MSM66P201/66P207 is the OTP (One-Time Programmable) version of the MSM66201/66207.

FEATURES

64K address space for program memory
 64K address space for data memory
 64K address space for data memory
 Internal ROM: MSM66201 MSM66207
 Internal RAM: MSM66201 MSM66207
 MSM66207 MSM66207
 MSM66207 MSM66207

High-speed execution

Minimum cycle for instruction : 400ns @ 10MHz

Powerful instruction set
 Instruction set superior in orthogonal matrix

8/16-bit data transfer instructions 8/16-bit arithmetic instructions

Multiplication and division operation instructions

Bit manipulation instructions

Bit logic instrucitons

ROM table reference instructions

Abundant addressing modes : Register addressing

Page addressing

Pointing register indirect addressing

Stack addressing

Immediate value addressing

• I/O port

Input-output port : $5 \text{ ports} \times 8 \text{ bits}$

(Each bit can be assigned to input or output)

: 1 port \times 8 bits

Input port : 1
• Built-in multifunctional 16-bit timer : 4

Following 4 modes can be set for each timer : Auto-reload timer mode

Clock output mode Capture register mode Real time output mode

• Serial port : 1 channel (Synchronous/UART switchable

mode with baud rate generators)

• 16-bit pulse width modulator

Watchdog timer

• Transition detector : 4

• 10-bit A/D converter : 8 channels

• Interrupts

Nonmaskable

Maskable : Internal 16/external 2

Stand-by function
 STOP mode
 HALT mode
 HOLD mode
 Software clock stop mode
 Software CPU stop mode
 Hardware CPU stop mode

Package

 $64\text{-pin plastic shrink DIP (SDIP64-P-750-1.78)} \hspace*{0.2in} : \hspace*{0.2in} (MSM66201\text{-}\times\times\times SS) \hspace*{0.2in} (MSM66P201\text{-}\times\times\times SS)$

(MSM66207-xxxSS) (MSM66P207-xxxSS)

BK)

68-pin plastic QFJ (PLCC) (QFJ68-P-S950-1.27) : (MSM66201-xxxJS) (MSM66P201-xxxJS)

(MSM66207-xxxJS) (MSM66P207-xxxJS)

64-pin ceramic piggyback (ADIP64-C-750-1.78): (MSM66G207VS)

(××× indicates the code number.)

* The piggyback type is used only for engineering samples.

PIN CONFIGURATION (TOP VIEW)

64-Pin Plastic Shrink DIP

PIN CONFIGURATION (TOP VIEW) (Continued)

64-Pin Plastic QFP

PIN CONFIGURATION (TOP VIEW) (Continued)

NC: No-connection pin

68-Pin Plastic QFJ (PLCC)

PIN DESCRIPTION

Symbol	Туре	Description
P0.0–P0.7/ AD0–AD7	1/0	P0: 8-bit input-output port. Each bit can be assigned to input or output. AD: Outputs the lower 8 bits of program counter during external program memory fetch and receives the addressed instruction under the control of PSEN. This pin also outputs the address and outputs or inputs data during an external data memory access instruction, under the control of ALE, RD, and WR.
P1.0-P1.7/	I/O	P1: 8-bit input-output port. Each bit can be assigned to input or output.
A8–A15		A: Outputs the upper 8 bits of program counter (PC ₈₋₁₅) during external program memory fetch. This pin also outputs the upper 8 bits of address during external data memory access instructions.
P2.0-P2.2	I/O	P2: 8-bit input-output port. Each bit can be assigned to input or output.
P2.3/CLKOUT		CLKOUT: Output pin for supplying a clock to peripheral circuits.
P2.4/HOLD		HOLD: Input pin to request the CPU to enter the hardware power-down state.
P2.5/HLDA		HLDA: HOLD ACKNOWLEDGE: the HLDA signal appears in response to the HOLD signal and indicates that the CPU has entered the power-down state.
P2.6/T _X C		T _X C: Transmitter clock input/output pin.
P2.7/R _X C		R _X C: Receiver clock input/output pin.
P3.0/T _X D	I/O	P3: 8-bit input-output port. Each bit can be assigned to input or output.
P3.1/R _X D		T _X D: Transmitter data output pin.
P3.2/ INT0		R _X D: Receiver data input pin.
P3.3/INT1		INT: Interrupt request input pin.
P3.4/TM0I0		Falling edge trigger or level trigger is selectable.
P3.5/TM1I0		TM0IO-TM3IO: One of the following signals is output or input. • Clock at twice the frequency range of the 16-bit timer overflow
P3.6/TM2I0		Load trigger signal to the capture register input
P3.7/TM3I0		Setting value output
		Whether the signal is input or output depends on the mode.
P4.0/TM0CK	I/O	P4: 8-bit input-output port. Each bit can be assigned to input or output.
P4.1/TM1CK		TMOCK, TM1CK: Clock input pins of timer 0, timer 1.
P4.2/PWM0 P4.3/PWM1		TRANS: Transition detector. The input pins which sense the falling edge and set the flag.
P4.3/PVVIVIT P4.4 – P4.7/		PWM: 16-bit pulse-width modulator output pin.
P4.4 – P4.77 TRANSO –		The second with modulator output pin.
TRANS3		
P5.0 – P5.7/	I	P5: 8-bit input port.
AI0 –AI7		Al: Analog signal input pin for A/D converter.

PIN DESCRIPTION (Continued)

Symbol	Туре	Description
RESOUT	0	Outputs "H" level in the case of internal reset. Reset to"L" level by program.
ALE	0	Address Latch Enable: The timing pulse to latch the lower 8 bits of the address output from port 0 when the CPU accesses the external memory.
PSEN	0	Program Strobe Enable: The strobe pulse to fetch to external program memory.
RD	0	Output strobe activated during a bus read cycle. Used to enable data onto the bus from the external data memory.
WR	0	Output strobe during a bus write cycle. Used as write strobe to external data memory.
READY	I	Used when the CPU accesses low-speed peripherals.
EA	I	Normaly set to "H" level. If set to "L" level, the CPU fetches the code from external program memory.
FLT	I	If FLT is "H" level, ALE, WR, RD, PSEN are set to "H" level when reset. If FLT is set to "L", ALE, WR, RD, PSEN are set to floating level when reset.
RES	I	RESET input pin.
OSC0	I	Basic clock oscillation pin.
OSC1	0	Basic clock oscillation pin.
NMI	I	Non-maskable interrupt input pin (falling edge).
V _{REF}	_	Reference voltage input pin for A/D converter.
AGND	_	Ground for A/D converter.
V_{DD}	_	System power supply.
GND	_	Ground.

REGISTERS

Accumulator

Control Register (CR)

Bit 15 : Carry flag (CY)
Bit 14 : Zero flag (ZF)
Bit 13 : Half carry flag (HC)
Bit 12 : Data descriptor (DD)

Bit 8 : Master interrupt priority flag (MIP)

Bit 9,5,4: User flag (MIP)

Bit 2-0 : System control base 2-0 (SCB2-0)

15		0
	PC	
	LRB	
	SSP	

Pointing Register (PR)

Index Register 1
Index Register 2

Data Pointer

User Stack Pointer

Local Register

	7 0	7 0
ER0	R1	R0
ER1	R3	R2
ER2	R5	R4
ER3	R7	R6

SFR

Address (HEX)	Name	Symbol	R/W	8/16-bit Operation	Reset
0000	Custom stock printer	SSP			FFH
0001	System stack printer	(ASSP)			FFH
0002	Local register has	LRB			undefined
0003	Local register base	(ALRB)	R/W	8/16	unuenneu
0004☆	Drogram etatus ward	PSWL (APSW)	11/ VV	0/10	C8H
0005☆	Program status word	PSWH			0CH
0006	Accumulator	ACC			00H
0007	Accumulator	AOO			00H
0010☆	Standby control register	SBYCON			F8H
0011	Watchdog timer	WDT	W		00H/WDT is stopped
0012☆	Peripheral control register	PRPHF	R/W	8	FDH
0013	Stop code acceptor	STPACP	W		"0"
0018	Interrupt request register	IDO			00H
0019	interrupt request register	IRQ		8/16	00H
001A	Interrupt enable register	IE			00H
001B	interrupt enable register	IC			00H
001C☆	External linterrupt control register	EXICON			FCH
0020	Port 0 data register	P0			undefined
0021	Port 0 mode register	P010			00H
0022	Port 1 data register	P1			undefined
0023	Port 1 mode register	P1I0	R/W		00H
0024	Port 2 data register	P2			undefined
0025	Port 2 mode register	P210		8	00H
0026☆	Port 2 secondary function control register	P2SF			07H
0028	Port 3 data register	P3			undefined
0029	Port 3 mode register	P310			00H
002A	Port 3 secondary function control register	P3SF			00H
002C	Port 4 data register	P4			undefined
002D	Port 4 mode register	P4I0			00H
002E	Port 4 secondary function control register	P4SF			00H
002F	Port 5	P5	R		_
0030	Timer 0 counter	TM0			00H
0031	Timer o counter	TIVIO			00H
0032	Timer 0 register	TMR0			00H
0033	Tiller o register	TIVINU	R/W	16	00H
0034	Timer 1 counter	TN/1	IT/VV	10	00H
0035	Timer I Counter	TM1			00H
0036	Timer 1 register	TMR1			00H
0037	Timor Fregister	I IVIN I			00H

SFR (Continued)

Addres (HEX)	Name	Abbreviated Name	R/W	8/16-bit Operation	Reset
0038	Timer 2 counter	TMO			00H
0039	Timer 2 counter	TM2			00H
003A	Timer O register	TMDO			00H
003B	Timer 2 register	TMR2		16	00H
003C	Timer 3 counter	TMO		10	00H
003D	Timer 3 counter	TM3			00H
003E	Timer 2 register	TMD2			00H
003F	Timer 3 register	TMR3			00H
0040	Timer 0 control register	TCON0			00H
0041	Timer 1 control register	TCON1			00H
0042	Timer 2 control register	TCON2	R/W		00H
0043	Timer 3 control register	TCON3			00H
0046☆	Transition detector register	TRNSIT			undefined
0048	Serial port transmission baud rate generator counter	STTM			00H
0049	Serial port transmission baud rate generator register	STTMR			00H
004A☆	Serial port transmission baud rate generator control register	STTMC			0CH
004C	Serial port receiving baud rate generator counter	SRTM		8	00H
004D	Serial port receiving baud rate generator register	SRTMR			00H
004E☆	Serial port receiving baud rate generator control register	SRTMC			0EH
0050☆	Serial port transmission mode control register	STCON			80H
0051	Serial port transmission data buffer register	STBUF	W		undefined
0054	Serial port receiving mode control register	SRCON	R/W		00H
0055	Serial port receiving data buffer register	SRBUF	R		undefined
0056☆	Serial port receiving error register	SRSTAT			F0H
0058☆	A/D scan mode register	ADSCAN	R/W		80H
0059☆	A/D select mode register	ADSEL			A0H
0060☆ 0061	A/D conversion result register 0	ADCR0	R	8/16	undefined

SFR (Continued)

Address (HEX)	Name	Abbreviated Name	R/W	8/16-bit operation	Reset
0062☆	A/D conversion result register 1	ADCR1			
0063	A/D conversion result register 1	ADUNT			
0064☆	A/D conversion result register 2	ADCR2			
0065	A/D Conversion result register 2	ADURZ			
0066☆	•	ADCR3			
0067	A/D Conversion result register 5	ADUNS	R		undefined
0068☆	A/D conversion result register 4	ADCD4			
0069	A/D Conversion result register 4	ADCR4			
006A☆	A/D conversion requit register F	ADODE			
006B	A/D conversion result register 5 ADCR5				
006C☆	A/D conversion result register 6	ADODO		0/46	
006D		ADCR6		8/16	
006E☆	A/D conversion result register 6 A/D conversion result register 7	4D0D7			
006F	A/D Conversion result register /	ADCR7			
0070	DWM 0 counter	PWMC0			00H
0071	PWW 0 counter	PWWGU			00H
0072	DWM 0 register	DWMDO			00H
0073	PWM 0 register	PWMR0			00H
0074	DMM 4 country	D)4/1/404	DAM		00H
0075	PWM 1 counter	PWMC1	R/W		00H
0076	DMM 1 register	PWMR1			00H
0077	PWM 1 register				00H
0078	PWM 0 control register	PWC0N0			00H
007A	PWM 1 countrol register	PWC0N1		8	00H

Note: A $\stackrel{\mbox{\tiny α}}{}$ mark in the address column indicates that there is a bit that does not exist in the register.

ADDRESSING MODES

The MSM66201/66207 provides independent 64K-byte data and 64K-byte program space with various types of addressing modes. These modes are shown below, for both RAM (for data space) and ROM (for program space).

- 1. RAM Addressing Modes (for data space)
- 1.1 Register Direct Addressing

- 1.2 Displacement Addressing
 - a) Zero Page

b) Direct Page

- 1.3 Pointing Register (PR) Indirect Addressing
 - a) Data Point (DP) Indirect

b) User Stack Pointer (USP) Indirect

c) Index Register (X1, X2) Indirect

1.4 Immediate Addressing

- 2. ROM Addressing Modes (for program space)
- 2.1 Direct Addressing

- 2.2 Simple Indirect Addressing
 - a) Local Register Indirect

- b) Pointing Register Indirect
 - 1) Data Pointer (DP) Indirect

2) User Stack Pointer (USP) Indirect

3) Index Register (X1, X2) Indirect

c) System Stack Pointer (SSP) Indirect

d) Local Register Base (LRB) Indirect

e) RAM Indirect

- 2.3 Double Indirect Addressing
 - a) Data Pointer (DP) Double Indirect

b) User Stack Pointer (USP) Double Indirect

c) Index Register (X1, X2) Double Indirect

- 2.4 Indirect Addressing with 16-bit Offset
 - a) Pointing Register Indirect
 - 1) Data Pointer (DP) Indirect

2) User Stack Pointer (USP) Indirect

3) Index Register (X1, X2) Indirect

b) RAM Indirect

MEMORY MAPS

Program Memory Space

* MSM66201: 3FFFH

Data Memory Space

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

Parameter	Symbol		Condition	Rating	Unit		
Supply Voltage	V _{DD}			-0.3 to 7.0			
Input Voltage	VI			-0.3 to V _{DD} +0.3			
Output Voltage	V ₀	GN	D=AGND=0V	-0.3 to V _{DD} +0.3	V		
Analog Ref. Voltage	V _{REF}			V _{REF}		-0.3 to V _{DD} +0.3	-
Analog Input Voltage	V _{AI}			-0.3 to V _{REF}			
			64-pin shrink DIP	930			
Power Dissipation	P_{D}	Ta=85°C per Package	64-pin QFP	565	mW		
			68-pin QFJ	1120	1		
Storage Temperature	T _{STG}	_		−55 to +150	°C		

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit
Supply Voltage	V _{DD}	f _{OSC} ≤ 10MHz	4.5 to 5.5	V
Memory Hold Voltage	V _{DDH}	f _{OSC} = 0Hz	2.0 to 5.5	v
Operating Frequency	fosc	V _{DD} = 5V ±10%	0 to 10	MHz
Ambient Temperature	Та	_	-40 to +85	°C
		MOS load	20	
Fan Out	N	P0	2	_
		TTL load P1, P2, P3, P4	1	

ELECTRICAL CHARACTERISTICS

DC Characteristics

 $(V_{DD} = 5V \pm 10\%, Ta = -40 \text{ to } +85^{\circ}\text{C})$

D	0	0		Ī	1	-40 t0 +63 t)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" Input Voltage 1, 3, 6			2.4		V _{DD} +0.3	
"H" Input Voltage 5, 7	V_{IH}	_	4.0	_	V _{DD} +0.3	
"H" Input Voltage 8			4.2	_	V _{DD} +0.3	
"H" Input Voltage 2			3.6	_	V _{DD} +0.3	
"L" Input Voltage 1, 2, 3, 6			-0.3	_	0.8	
"L" Input Voltage 5, 7	V_{IL}	_	-0.3	_	0.8	V
"L" Input Voltage 8			-0.3	_	0.4	
"H" Output Voltage 1, 4	V _{OH}	$I_0 = -400 \mu A$	4.2	-	_	
"H" Output Voltage 2	VOH	$I_0 = -200 \mu A$	4.2	_		
"L" Output Voltage 1, 4	V _{OL}	$I_0 = 3.2 \text{mA}$	_	-	0.4	
"L" Output Voltage 2	v0F	I ₀ = 1.6mA	_	_	0.4	
Input Leakage Current 3, 6, 7			_	_	1/–1	
Input Current 5	I _{IH} /I _{IL}	$V_I = V_{DD}/0V$	_	_	1/–20	μА
Input Current 8			_	_	10/–10	
"H" Output Current 1	Іон		-2	_	_	mΛ
"H" Output Current 2		V 0.4V	-1	_	_	
"L" Output Current 1		$V_0 = 2.4V$	10	_	_	mA
"L" Output Current 2	I _{OL}		5	_	_	
Output Leakage Current 1, 2, 4	I _{L0}	$V_0 = V_{DD}/0V$	_	_	±2	μΑ
Input Capacitance	Cı	f = 1MHz	_	5	_	"F
Output Capacitance	Co	Ta = 25°C	_	7	_	pF
Analog Reference Power	ı	A/D in operation	_	0.3	2	mA
Supply Current	I _{REF}	A/D stopped	_	0.5	10	μΑ
Current Consumption	1	$V_{DD} = 2V$	_	0.2	10	^
(during STOP) *	I _{DDS}	_	_	1	100	μΑ
Current Consumption	loou		_	6	10	
(during HALT)	I _{DDH}	f _{OSC} = 10MHz	**	8	15	mA
Current Consumption	I _{DD}	No Load	_	20	35	ma
ourront consumption	טטי		**	30	40	

- Note: 1 Applied to P0
 - 2 Applied to P1, P2, P3 and P4
 - 3 Applied to P5
 - 4 Applied to ALE, PSEN, RD, WR and RESOUT
 - 5 Applied to \overline{RES} and \overline{NMI}
 - 6 Applied to READY and \overline{EA}
 - 7 Applied to FLT
 - 8 Applied to OSC₀
 - * V_{DD} or GND for ports serving as the input pin. No load for any other.
 - ** Applied to MSM66P201/66P207

AC Characteristics

• External program memory control

 $(V_{DD}=5V\pm10\%, Ta=-40 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Condition	Min.	Max.	Unit
Clock (OSC) Pulse	t _{oW}	_	50	_	
ALE Pulse Width	t _{AW}		3t _{oW} -20	_	
PSEN Pulse Width	t _{PW}		4t _{oW} -20	_	
PSEN Pulse Delay Time	t _{PAD}		t _{oW} -20	t _o w+20	
Low Address Setup time	t _{AAS}		2t _{oW} -35	2t _{oW+} 20	no
Low Address Hold Time	t _{AAH}	$C_L = 50pF$	t _{oW} -20	t _{oW+} 40	ns
High Address Delay Time	t _{AAD}		t _{oW} -20	t _{oW+} 40	
High Address Hold Time	t _{APH}		t _{oW} -20	t _{oW+} 40	
Instruction Setup Time	t _{IS}		100	_	
Instruction Hold Time	t _{IH}		0	t _o w-20	

• External data memory control

 $(V_{DD}=5V\pm10\%, Ta=-40 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Condition	Min.	Max.	Unit
Clock (OSC) Pulse	$t_{\phi W}$	_	50	_	
ALE Pulse Width	t _{AW}		3t _{∳W} –20	_	
RD Pulse Width	t _{RW}		4t _{oW} -20	_	
WR Pulse Width	t _{WW}		4t _{oW} -20	_	
RD Pulse Delay Time	t _{RAD}		t _{oW} -20	t _{oW+20}	
WR Pulse Delay Time	t _{WAD}		t _{oW} -20	t _{oW+20}	
Low Address Setup Time	t _{AAS}		2t _{0W} -35	2t _{0W+} 20	
Low Address Hold Time	t _{AAH}	$C_L = 50pF$	t _{oW} -20	t _{oW+40}	ns
High Address Setup Time	t _{AAD}		t _{oW} -20	t _{oW+40}	
High Address Hold Time	t _{ARH}		t _{oW} -20	t _{oW+40}	
High Address Hold Time	t _{AWH}		t _{oW} -20	t _{oW+40}	
Memory Data Setup Time	t _{MS}		100	_	
Memory Data Hold Time	t _{MH}		0	t _{oW} -20	
Data Delay Time	t _{DD}		t _{oW} -20	t _{oW+40}	
Data Hold Time	t _{DH}		t _{oW} -20	t _{oW+40}	

Serial port control

Master mode

 $(V_{DD}=5V\pm10\%, Ta=-40 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Condition	Min.	Max.	Unit
Clock (OSC) Pulse Width	t_{\phiW}	_	50	_	
Serial Clock Pulse Width	t _{SCKW}	_	8t _{oW}	_	
Output Data Setup Time	t _{STMXS}		8t _{oW} +40	_	no
Output Data Hold Time	tstmxh	C50pE	6t _{0W} -20	_	ns
Input Data Setup Time	t _{SRMXS}	C _L =50pF	2t _{oW} +10	_	
Input Data Hold Time	t _{SRMXH}		50	_	

Slave mode

 $(V_{DD}=5V\pm10\%, Ta=-40 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Condition	Min.	Max.	Unit	
Clock (OSC) Pulse Width	t_{\phiW}	_	50	_		
Serial Clock Pulse Width	t _{SCKW}	_	8t _{oW}	_		
Output Data Setup Time	t _{STSXS}		6t _{oW} +40	_	no	
Output Data Hold Time	t _{STSXH}	C. FOnE	6t _{oW} -20	_	ns	
Input Data Setup Time	tsrsxs	C _L =50pF	100	_		
Input Data Hold Time	t _{SRSXH}		100	_		

A/D Converter Characteristics

• Operating range

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
Power Supply Voltage	V_{DD}	f _{OSC} ≤ 10MHz	4.5	_	5.5		
Analog Reference Voltage	V_{R}		4.5	_	V_{DD}	V	
Analog Input Voltage	V_{AI}	V OND OV	V _{AG}	_	V_R		
Analog Reference Power Voltage Resistance	R _R	V _{AG} = GND = 0V	_	16	_	kΩ	
Operating Temperature	T _{op}	V _{DD} = 5V ± 10%	-40	_	+85	°C	

• A/D Converter accuracy

Normal operation mode

 $(V_{DD}=5V\pm10\%, f_{OSC}=10MHz, Ta=-40 to +85^{\circ}C)$

Parameter	Symbol	Condition	Min.		Тур.		Max.		Unit
rarameter				*		*		*	Unit
Resolution	n	See the	_	_	_	_	10	10	Bit
Absolute Error	E _A	recommended circuit.	_	_	_	_	+3.0 -3.5	+2.0 -3.5	
Relative Error	E _R	$V_{R}=V_{DD} \ V_{AG}=GND=0V$	_	_	_	_	±1.5	±1.0	
Zero Point Error	E _Z	Analog input source	0	0	_	_	+3.0	+2.0	LSB
Full Scale Error	E _F	impedance ≤5kΩ	-0.5	-1.0	_	_	-3.5	-3.5	LOD
Differential Linearity Error	E _D	One channel conversion time	_	_	_	_	+3.0	+2.0	
Crosstalk	E _C	t _C =64μs	_	_	±0.5	±0.5	_	_	

^{*} V_{DD}=5V, Ta=25°C

HALT/HOLD operation mode

 $(V_{DD}=5V\pm10\%, f_{OSC}=10MHz, Ta=-40 to +85^{\circ}C)$

Dovometer	Symbol	Condition	Min.		Тур.		Max.		11
Parameter				*		*		*	Unit
Resolution	n	See the	_	_	_	_	10	10	Bit
Absolute Error	E _A	recommended circuit.	_	_	_	_	+2.0 -3.5	+1.0 -2.0	
Relative Error	E _R	$V_{R}=V_{DD} \ V_{AG}=GND=0V$	_	_	_	_	±1.0	±0.5	
Zero Point Error	E _Z	Analog input source	+0.5	+0.5	_	_	+2.0	+1.0	LSB
Full Scale Error	E _F	impedance ≤5kΩ	-1.0	-1.5	_	_	-3.5	-2.0	LOD
Differential Linearity Error	E _D	One channel conversion time	_	_	_	_	+2.0	+1.0	
Crosstalk	E _C	t _C =64μs	_	_	±0.5	±0.5	_	_	

^{*} V_{DD}=5V, Ta=25°C

• Recommended circuit

R_I (Analog input source impedance) $\leq 5k\Omega$

A/D Converter conversion characteristics 1

Conversion Characteristics Diagram 1

Absolute error (E_A)

The absolute error indicates a difference between actual conversion and ideal conversion, excluding a quantizing error. The absolute error of the A/D converter gets larger as it approaches the zero point or full scale. (Refer to Conversion Characteristics Diagram 1.)

Relative error (E_R)

The relative error indicates a deviation from a line which connects the center point of the zero point conversion width with that of the full scale conversion width, excluding a quantizing error.

The relative error of this A/D converter is almost due to a differential linearity error.

Zero point error (Ez) and full scale error (E_F)

The zero point error and full scale error indicate a difference between actual conversion and ideal conversion at the zero point and full scale, respectively. (Refer to Conversion Characteristics Diagram 1.)

A/D Converter Conversion Characteristics 2 (temperature characteristics)

Differential linearity error (E_D)

The differential linearity error indicates a difference between the actual conversion width (actual step width) and ideal value (1LSB).

With this A/D converter, a voltage for actual conversion is shifted and the inclination of a voltage is changed, with changes of temperature (see Conversion Characteristics Diagram 2-1). Specifications described in the foregoing tables are established from Eta shown in Conversion Characteristics Diagram 2-1 (E_D =Eta-1LSB). Conversion Characteristics Diagram 2-2 shows temperature characteristics of differential linearity of Es in Conversion Characteristics Diagram 2-1.

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the

product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.