MATO2014 - Planejamento de Experimentos II Delineamentos com fatores fixos e aleatórios

Rodrigo Citton P. dos Reis rodrigocpdosreis@gmail.com

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2018

Introdução

 Algumas vezes, nos delineamentos fatoriais cruzados, (efeitos de) fatores aleatórios são também introduzidos no modelo pela forma que o experimento é conduzido.

- Experimento comparando diferentes formulações e métodos de aplicação de um pesticida às folhas de plantas de algodão.
- O objetivo era aumentar a quantidade de pesticida ativo restante nas folhas da planta de algodão uma semana após a aplicação.
- O pesticida que está sendo estudado degrada na luz solar e um certo aditivo para a formulação retarda esse processo.
- Diferentes técnicas de aplicação podem diferir na quantidade de pesticida entregue às folhas da planta.

- Os fatores de tratamento neste experimento foram:
 - duas formulações diferentes do pesticida;
 - dois métodos de aplicação diferentes;
- Experimento fatorial 2^2 .
- A unidade experimental era uma fileira de 20 pés de algodão chamada de parcela, porque essa era uma área conveniente dentro da qual a aplicação de pesticidas podia ser controlada.

- Oito parcelas foram selecionadas e duas foram aleatoriamente designadas para cada uma das quatro combinações de tratamento, resultando em duas repetições por combinação de tratamento.
- Uma semana após a aplicação, os pesquisadores estavam prontos para determinar o resíduo de pesticida remanescente nas folhas da planta.
- No entanto, havia muito material vegetal em um lote inteiro para ser enviado ao laboratório para análise.
- Portanto, duas amostras de folhas em uma quantidade conveniente para análise laboratorial de resíduos de pesticidas foram selecionadas de cada parcela.

Table 5.14 Pesticide Residue on Cotton Plants					
	Application		Sample		
Formulation	Technique	Plot	1	2	
A	1	1	0.237	0.252	
A	1	2	0.281	0.274	
В	1	1	0.247	0.294	
В	1	2	0.321	0.267	
A	2	1	0.392	0.378	
A	2	2	0.381	0.346	
В	2	1	0.351	0.362	
В	2	2	0.334	0.348	

- A formulação, a técnica de aplicação e sua interação são fatores fixos porque os pesquisadores estavam interessados em comparar a resposta média entre os níveis desses fatores.
- A parcela, por outro lado, é um **fator aleatório** que representa diferenças em unidades experimentais.
 - Está aninhado nas combinações de formulação por técnica de aplicação. - Não há interesse em comparar unidades experimentais dentro de cada combinação de formulação e aplicação.
 - Em vez disso, múltiplas parcelas por combinação de tratamento foram incluídas no delineamento, de modo que a variação causada por diferentes parcelas pudesse ser estimada e usada para avaliar a significância dos efeitos de formulação e aplicação.

- As amostras replicadas (as folhas de algodão; subamostras) de cada parcela foram por conveniência na condução do experimento.
- A maneira mais simples de analisar os dados seria calcular a média das duas subamostras e proceder conforme uma análise de delineamentos fatoriais cruzados.
- No entanto, se as subamostras puderem ser consideradas independentes e for desejável incluir todos os dados na análise, um termo adicional para amostra deve ser incluído no modelo.
- Amostra é outro efeito aleatório, uma vez que não há interesse específico em comparar a resposta entre as duas amostras de cada parcela.

$$y_{ijkl} = \mu + lpha_i + eta_j + lphaeta_{ij} + p_{(ij)k} + \epsilon_{ijkl},$$

em que y_{ijkl} é o resíduo de pesticida encontrado na l-ésima amostra retirada da k-ésima parcela, tratado com nível de formulação i e técnica de aplicação j.

- ullet Em geral $i=1,\ldots,a, j=1,\ldots,b, k=1,\ldots,r$ e $l=1,\ldots,s.$
 - Neste exemplo específico, a=2,b=2,r=2, e s=2;
 - α_i é o efeito da formulação;
 - β_j é o efeito da aplicação;
 - $\alpha \beta_{ij}$ é o efeito de interação;
 - $p_{(ij)k}$ é o efeito de parcela aleatória;
 - ϵ_{ijkl} é o efeito da amostra aleatória.

Exemplo (modelo na forma matricial)

$$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\epsilon},$$

Exemplo (modelo na forma matricial)

Exemplo (modelo na forma matricial)

- β é um vetor de efeitos fixos.
- γ e ϵ representam vetores de efeitos aleatórios.
- $m{\epsilon} \sim MVN(m{0}, \sigma_p^2 m{I}_{abr})$ independente de $m{\epsilon} \sim MVN(m{0}, \sigma^2 m{I}_{abrs}).$
 - $egin{aligned} egin{aligned} oldsymbol{v} & oldsymbol{y} \sim MVN(oldsymbol{X}oldsymbol{eta}, oldsymbol{V}), ext{em que} \ oldsymbol{V} & = oldsymbol{Z}\sigma_{p}^{2}oldsymbol{I}_{abr}oldsymbol{Z}^{'} + \sigma^{2}oldsymbol{I}_{abrs}. \end{aligned}$
- Estimador de mínimos quadrados de $oldsymbol{eta}$ seria

$$\hat{oldsymbol{eta}} = (\mathbf{X}^{'}\mathbf{V}^{-}\mathbf{X})^{-}\mathbf{X}^{'}\mathbf{V}^{-}\mathbf{y}.$$

- Problema: σ^2 e σ_p^2 são desconhecidos, logo ${\bf V}$ também é.
- **Solução:** tratar β e γ como fixos.

Exemplo (R)

```
library (daewr)
data (pesticide)
head (pesticide)
```

```
## form tech plot residue

## 1 A 1 1 0.237

## 2 A 1 1 0.252

## 3 A 1 2 0.281

## 4 A 1 2 0.274

## 5 B 1 1 0.247

## 6 B 1 1 0.294
```

```
tail (pesticide)
```

```
## 11 A 2 2 0.381

## 12 A 2 2 0.346

## 13 B 2 1 0.351

## 14 B 2 1 0.362

## 15 B 2 2 0.348
```

Exemplo (R)

```
## form 1 0.00002 0.00002 0.040 0.8455
## tech 1 0.03231 0.03231 72.434 2.79e-05 ***
## form:tech 1 0.00219 0.00219 4.900 0.0578 .
## form:tech:plot 4 0.00234 0.00059 1.314 0.3432
## Residuals 8 0.00357 0.00045
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

ullet Testes F e valores de p estão incorretos!

Source	$\mathrm{d}\mathrm{f}$	EMS
		0 0 10
A	a-1	$\sigma^2 + r\sigma_P^2 + srb\tau_A^2$
В	b-1	$\sigma^2 + r\sigma_P^2 + sra\tau_B^2$
AB	(a-1)(b-1)	$\sigma^2 + r\sigma_P^2 + sr\tau_{AB}^2$
Plot	(r-1)ab	$\sigma^2 + r\sigma_P^2$
Sub-Sample	(s-1)rab	σ^2

- au^2 são formas quadráticas dos efeitos fixos ($lpha_i, eta_j$ e $lphaeta_{ij}$).
- Quadrado médio correto a ser usado no denominador do teste F para testar estes efeitos fixos é o termo de parcela (*Plot*), na qual a esperança é $\sigma^2 + \sigma_p^2$.

Exemplo (R)

• Valores de F corretos:

```
form: F_{1,4} = 0.00002/0.00059 = 0.03, P=0.8709, tech: F_{1,4} = 0.03231/0.00059 = 54.76, P=0.0.0018, form:tech F_{1,4} = 0.00219/0.00059 = 3.71, P=0.1264,
```

```
pf(0.03, 1, 4, lower.tail = FALSE)
```

[1] 0.8709017

• O que concluímos?

Exemplo (R)

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: residue ~ 1 + form + tech + form:tech + (1 | plot:form:tech)
##
     Data: pesticide
##
## REML criterion at convergence: -51.9
##
## Scaled residuals:
##
   Min 10 Median 30
                                         Max
## -1.53621 -0.67181 0.05407 0.57711 1.70193
##
## Random effects:
## Groups
                        Variance Std.Dev.
            Name
## plot:form:tech (Intercept) 6.994e-05 0.008363
## Residual
                         4.461e-04 0.021120
## Number of obs: 16, groups: plot:form:tech, 8
##
## Fixed effects:
##
               Estimate Std. Error t value
```

Exemplo (R): testes F para os fatores fixos

```
# Example 25 p. 179

anova (mod5)
```

Exemplo (R): comparações ajustadas

```
# Example 24 p. 178
library(lsmeans)
lsmeans(mod5, pairwise ~ tech, adjust = c("tukey"))
```

Exemplo (R): EBLUPs

```
qqnorm( ranef(mod5)$`plot:form:tech`[[1]],
    main = "", ylab = "EBLUP",
    xlab = "Normal Score" )
```


Conclusões

- Modelos como o que vimos são chamados de modelos de efeitos mistos.
- Neste exemplo, a aplicação do pesticida a cada parcela pode induzir uma correlação entre sub-amostras da mesma parcela.
 - Embora a suposição de independência seja violada, o teste F em efeitos fixos utilizando o quadrado médio da parcela como o denominador ainda é válido.

