Rozmieszczanie kamer bezpieczeństwa

Wiktor Franus Grzegorz Staniszewski

6 stycznia 2018

Spis treści

8.2 Sposób uruchomienia	1	Treść zadania	2
4 Funkcja celu 5 Przykład 6 Metaheurystyka 7 Przewidywane wyniki pracy 8 Implementacja 8.1 Plik konfiguracyjny	2	Założenia	2
5 Przykład 6 Metaheurystyka 7 Przewidywane wyniki pracy 8 Implementacja 8.1 Plik konfiguracyjny	3	Przestrzeń przeszukiwań	2
6 Metaheurystyka 7 Przewidywane wyniki pracy 8 Implementacja 8.1 Plik konfiguracyjny	4	Funkcja celu	3
7 Przewidywane wyniki pracy 8 Implementacja 8.1 Plik konfiguracyjny	5	Przykład	4
8 Implementacja 8.1 Plik konfiguracyjny	6	Metaheurystyka	5
8.1 Plik konfiguracyjny	7	Przewidywane wyniki pracy	5
9.1 Badanie 1	8	Implementacja8.1 Plik konfiguracyjny	6 6
	9	9.1 Badanie 1	6 6 7

1 Treść zadania

Jak optymalnie rozmieścić kamery monitoringu w ustalonym pomieszczeniu (rzut z góry), aby minimalną liczbą kamer móc obserwować dowolne miejsce (z uwzględnieniem maksymalnej dopuszczalnej odległości od kamery). W rozwiązaniu należy uwzględnić możliwość zapewnienia parametryzowanej redundancji - tzn. wymagania, aby każde miejsce było obserwowane przez co najmniej n kamer.

2 Założenia

- 1. Pomieszczenie jest wielokątem zawierającym tylko kąty o mierze 90 lub 270 stopni. Pomieszczenie reprezentowane jest przez zbiór punktów (z I ćwiartki układu współrzędnych) podanych w formie listy. Połączenie tych punktów linią, zgodnie z ich kolejnością na liście, skutkuje otrzymaniem linii łamanej ograniczającej pomieszczenie. Punkty podawane są w kolejności zgodnej z ruchem wskazówek zegara. Pierwszy i ostatni punkt jest taki sami (należy domknąć pomieszczenie).
- 2. Kamery mają jednakowy zasięg reprezentowany przez kwadrat o parametryzowanej długości boku. Współrzędne kamery są jednocześnie współrzędnymi środka tego kwadratu. Kamera musi znajdować się wewnątrz pomieszczenia i nie przenika przez ściany.
- 3. Wnętrze pomieszczenia zdyskretyzowane jest do zbioru punktów o współrzednych całkowitych poprzez nałożenie siatki o parametryzowanej gęstości.
- 4. Punkty leżące na krawędziach wielokąta opisującego pomieszczenie nie należą do jego wnętrza.

3 Przestrzeń przeszukiwań

• Elementem przestrzeni przeszukiwań jest wektor par liczb całkowitych oznaczających współrzędne kamer:

$$[(x_1, y_1), ..., (x_i, y_i), ..., (x_k, y_k)]$$

gdzie:

 x_i - współrzędna x i-tej kamery,

 y_i - współrzędna y i-tej kamery,

k - liczba kamer.

- Przejście do sąsiedniego elementu możliwe jest poprzez:
 - zmianę położenia jednej z kamer na 2 sposoby (sposób ustalany jest na początku zadania):
 - * zmiana współrzędnych x lub y jednej z kamer o 1 jednostkę,
 - * przeniesienie jednej z kamer do innego punktu z wnętrza pomieszczenia wylosowanego zgodnie z rozkładem jednostajnym,
 - dodanie nowej kamery w losowym miejscu (rozkład jednostajny),
 - usunięcie jednej kamery.
- Przestrzeń ma strukturę grafową, w której każda krawędź odpowiada jednemu z wymienionych wyżej przejść między elementami przestrzeni.

4 Funkcja celu

Informacje znane dla danej instancji problemu:

 n_{kmin} - minimalna teoretyczna liczba kamer wymagana do pokrycia danego pomieszczenia (obliczana jako stosunek pola powierzchni pomieszczenia do pola powierzchni zasięgu jednej kamery, zaokrąglany do jedności w górę), X - zbiór punktów reprezentujących wnętrze pomieszczenia.

Parametry funkcji celu:

 α - zysk z pokrywania powierzchni pomieszczenia,

 β - koszt użycia nadmiarowej kamery,

 r_{\min} - minimalna liczba kamer pokrywająca każde miejsce w pomieszczeniu.

Zadanie polega na maksymalizacji funkcji:

$$f(p, k, r) = \alpha * p - \beta * k - \frac{1}{r_{min}} * r$$

gdzie:

 \boldsymbol{p} - stosunek powierzchni pokrytej przez kamery do powierzchni pomieszczenia

k- stosunek nadwyżki liczby kamer do $n_{kmin},$ obliczany wg. wzoru: $k=\frac{\max(0,n_k-n_{kmin})}{n_{kmin}},$ gdzie n_k - liczba kamer w aktualnym stanie

Parametr r może być obliczany na dwa sposoby (sposób ustalany jest na początku zadania):

- jako średni stopień niespełnienia warunku redundancji dla punktu z wnętrza pomieszczenia, obliczany wg. wzoru: $r=\frac{\sum_{x\in X}\max(0,r_{min}-r_x)}{|X|},$ gdzie r_x - liczba kamer pokrywających punkt x
- jako maksymalne niespełnienie warunku redundancji spośród wszystkich punktów z wnętrza pomieszczenia, wg. wzoru: $r = \max(0, r_{\min} - r_x),$ gdzie r_x - liczba kamer pokrywających punktxbędący najsłabiej pokrytym punktem.

Przykład 5

• Wartości parametrów:

$$\alpha = 1$$
$$\beta = 1$$
$$r_{min} = 1$$

• Informacje obliczone dla powyższego pomieszczenia: pole powierzchni pomieszczenia: 80

$$n_{kmin} = \frac{80}{2*2} = 20$$
 $|X| = 105$

• Obliczenie wartości funkcji celu dla stanu z rysunku:

Liczba kamer użytych: 6

Pole powierzchni pokryte przez kamery: 18

$$p = \frac{18}{80} = 0.225$$

$$k = \frac{max(0,6-20)}{20} = \frac{0}{20} = 0$$
Decreases the solution with the solution of t

Parametr r obliczany pierwszym sposobem: $r = \frac{44*0+61*1}{105} = \frac{61}{105} = 0.58$ f(p, k, r) = 1*0.225 - 1*0 - 1*0.58 = -0.355

Parametr r obliczany drugim sposobem: r = 1 - 0 = 1f(p, k, r) = 1 * 0.225 - 1 * 0 - 1 * 1 = -0.775

6 Metaheurystyka

Element początkowy przestrzeni przeszukiwań jest zbiorem zawierającym n_{kmin} kamer rozmieszczonych losowo wewnątrz pomieszczenia.

Do rozwiązania problemu użyjemy algorytmu symulowanego wyżarzania. Przy odpowiednio dobranych parametrach metoda ta, w porównaniu do algorytmów wspinaczkowych, daje większą szansę na znalezienie optymalnego rozwiązania, ponieważ zmniejsza ryzyko zatrzymania się w ekstremach lokalnych. W początkowej fazie przeszukiwania przestrzeni dopuszczalne jest przechodzenie do stanów gorszych (o mniejszej wartości funkcji celu). Wraz z rosnącą liczbą iteracji obszar poszukiwań jest ograniczany, a algorytm bardziej skupia się na poprawie bieżącego rozwiązania.

7 Przewidywane wyniki pracy

Przeprowadzona zostanie seria eksperymentów z różnymi wartościami parametrów α , β , r_{min} na kilku instancjach problemu (różne pomieszczenia). Dla ustalonych parametrów funkcji celu, sterować będziemy parametrami metaheurystyki, tj. funkcją wygaszania temperatury i jej wartością początkową.

Ponadto sprawdzimy dwa podejścia do zmiany położenia kamery oraz dwa sposoby obliczania parametru r funkcji celu. Dla wybranej instancji zadania sprawdzimy też wpływ gęstości siatki punktów z wnętrza pomieszczenia na zachowanie metaheurystyki. Sporządzone zostaną wykresy przedstawiające wartość funkcji celu oraz liczbę użytych kamer w zależności od liczby wykonanych iteracji.

8 Implementacja

Do realizacji zadania wykorzystaliśmy gotową implementację metaheurystyki zawartą w pakiecie simanneal w wersji 0.4.1, której dokumentacja jest dostępna pod adresem https://github.com/perrygeo/simanneal. Biblioteka implementuje algorytm symulowanego wyżarzania z wykładniczą funkcją.

8.1 Plik konfiguracyjny

8.2 Sposób uruchomienia

9 Badania

9.1 Badanie 1

```
"t_max": 250.0,
"t_min": 2.5,
"alpha": 10,
"beta": 1,
"r_min": 1,
"num_iterations": 10000,
"num_updates" : 100,
"camera_move_method": "local",
"camera_side" : 20,
"r_count_method": "average",
"density" : 4
```

zalezy nam na jak najwiekszym pokryciu, nie boli nas uzywanie kamer, dlatego jest ich duze zageszczenie.

9.2 Badanie 2

```
"t_max": 50.0,
"t min": 2.5,
```


Rysunek 1: Obliczony układ kamer w pomieszczeniu przez algorytm.

```
"alpha": 10,
"beta": 1,
"r_min": 1,
"num_iterations": 10000,
"num_updates" : 100,
"camera_move_method": "local",
"camera_side" : 20,
"r_count_method": "average",
"density" : 4
```

Zostało

9.3 Badanie 3

Od wiktora

```
"t_max": 50.0,
"t_min": 2.5,
"alpha": 10,
"beta": 1,
"r_min": 1,
"num_iterations": 10000,
"num_updates" : 100,
```


Rysunek 2: .

```
"camera_move_method": "random",
"camera_side": 20,
"r_count_method": "average",
"density": 4
```


Rysunek 3: Obliczony układ kamer w pomieszczeniu przez algorytm.

Rysunek 4: .