Logic

Learning Outcomes

Learning Outcomes

At the end of this lesson, you will be able to:

- 1. explain and use the different types of Logic and its terminology.
- 2. deduce the truth table for different logic combinations
- 3. apply the laws of the algebra of propositions to prove identities.

Introduction to Logic

- Logic has numerous applications in computer science.
- The rules of logic are used in the design of computer circuits, the construction of computer programmes, the verification of the correctness of programme, etc.
- In Logic, a statement or proposition is a declarative sentence that is either true or false, but not both.
- In this topic, we will use the lowercase letters p, q, r, \ldots to denote statements.

Introduction to Logic

In Logic, a statement or proposition is a declarative sentence that is either true or false, but not both.

Example 1

Which of the following are statements?

- a) The sun rises in the east.
- **b**) 1 + 2 = 4
- *c*) 5 x = 3
- d) Do you speak French?
- e) Do your homework now.
- f) The temperature on the Sun is 1000 degrees Celsius.
- g) It will rain tomorrow.

- a) is a statement, and it happens to be true.
- b) is also a statement, but it happens to be false.
- c) is not a statement, because it may be true or false depending on the value of x.
- d) is not a statement because it is a question.
- e) is not a statement because it is an order.
- f) is a statement and it happens to be true.
- g) is a statement and it could be true.

Introduction to Logic

- Simple Statement
 - In the previous example, statements such as those shown below are examples of Simple Statements, as they contain only one piece of information
 - ✓ The sun rises in the east
 - $\checkmark 1 + 2 = 4$
 - \checkmark The temperature on the Sun is 1000 degrees Celsius.
- Compound Statement
 - A compound statement is formed by combining two or more simple statements, called components
 - <u>Example 2</u> The following is an example of a compound statement:
 - Beijing is the capital of China and 1 + 2 = 5

Truth tables are used to list the different possible outcomes. For example, a Truth Table with a single proposition, p, is shown:

Р	Outcome
Т	
F	

A Truth Table with a **two** propositions, p and q, is shown:

р	q	Outcome
T	Т	
Т	F	
F	Т	
F	F	

F

Truth Tables

A Truth Table with a **three** propositions, p, q and r, is shown:

р	q	r	Outcome
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

- Simple statements can be combined to form new statements (called compound statements) using words such as not, and, or, if.. then, if and only if etc.
- We can represent the truth values of these new statements using Truth Tables.

Negation

- If p is a statement, the negation of p is the statement **not** p, denoted by $\sim p$ (read "not p").
- ~p is the statement "it is not the case that p"

Negation

Example 3

- (1) Write the negation of the statement "Today is Friday". The negation is "It is not the case that today is Friday".
- (2) p: All cats can fly. Then $\sim p$: It is not the case that all cats can fly.

Р	~p
Т	F
F	Т

Truth Table for Negation

Conjunction

- Any two statements p and q can be combined by the word 'and' to form a compound statement called the conjunction of the original statements.
- The compound statement is denoted by $p \wedge q$ (read as "p and q").

Example 4

Let p and q be the following statements:

p: John eats fries.

q: Mary drinks coke.

Then the conjunction of p and q is $p \wedge q$: John eats fries **and** Mary drinks coke

Conjunction

A Truth Table for $p \land q$ is

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Outcome is True only if both p and q is True. Otherwise it is False.

Disjunction

- Any two statements p and q can be combined by the word 'or' to form a compound statement called the disjunction of the original statements.
- The compound statement is denoted by $p \lor q$ (read as " $p \circ q$ ").

Example 5

Let p and q be the following statements:

p:I passed my Mathematics exam

q: I passed my Chinese exam.

Then the disjunction of p and q is $p \lor q$:

I passed my Mathematics exam or I passed my Chinese exam.

Disjunction

A Truth Table for $p \lor q$ is

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Outcome is True if either p or q is True. Otherwise it is False.

Example 6(a)

Construct the truth table for the proposition $\sim (p \land \sim q)$.

p	q	~q	<i>p</i> ∧ ~ <i>q</i>	~(<i>p</i> ∧ ~ <i>q</i>)
Т	Т	F	F	Т
Т	F	Т	T	F
F	Т	F	F	T
F	F	Т	F	Т

Example 6(b)

Construct the truth table for the proposition $(p \lor q) \land [(p \lor r) \land \sim r]$.

p	q	r	$p \lor r$	~r	$(p \lor r) \land \sim r$	$p \lor q$	$(p \lor q) \land [(p \lor r) \land \sim r]$
Т	Т	Т	Т	F	F	Т	F
Т	Т	F	Т	Т	Т	Т	Т
Т	F	Т	Т	F	F	Т	F
Т	F	F	Т	Т	Т	Т	Т
F	Т	Т	Т	F	F	Т	F
F	Τ	F	F	Т	F	T	F
F	F	Т	Т	F	F	F	F
F	F	F	F	Т	F	F	F

Tautologies

A proposition that is always true, no matter what the truth values of the variables.
 The last column of the Truth Table is always true.

Example 7 (a):

Use the truth table to show that $p \lor \sim p$ is a tautology

р	~ p	$p \lor \sim p$
Т	F	T
F	Т	Т

Hence, $p \lor \sim p$ is a tautology.

Contradiction

A proposition that is always false, no matter what the truth values of the variables.
 The last column of the Truth Table is always false.

Example 7 (b): Use the truth table to show that $p \land \sim p$ is a contradiction.

р	~p	$p \wedge \sim p$
Т	F	F
F	Т	F

Hence, $p \land \sim p$ is a contradiction.

Example 8: Use the truth table to show that $(p \land q) \land \sim (p \lor q)$ is a contradiction.

p	q	$p \lor q$	$\sim (p \lor q)$	$p \wedge q$	$(p \land q) \land \sim (p \lor q)$
Т	Т	Т	F	Т	F
Т	F	Т	F	F	F
F	Т	Т	F	F	F
F	F	F	Т	F	F

Conditional Statements

• Many statements, called **Conditional** or an **Implication statement** (denoted by $p \rightarrow q$) are of the form "if p then q".

hypothesis or antecedent or the sufficient condition

conclusion or consequent or the necessary condition

• A Truth Table for $p \rightarrow q$ is

р	q	$m{p} o m{q}$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Conditional Statements

Example 9:

Consider the following statements: p: Rafi has a driving license. q: Rafi is above 17 years old . Then we have $p \rightarrow q$: If Rafi has a driving license, then Rafi is above 17.

р	q	$m{p} o m{q}$	
Т	Т	Т	T: If Rafi has a driving license, he is above 17 year.
Т	F	F	F: p (Rafi has driving license) is violated
F	Т	Т	T: so long as p is false Rafi does not have a
F	F	Т	T: so long p is false driving license

The implication is false if and only if the statement is violated.

Biconditional Statements

- The statement of the form "p if and only if q" is called Bi-conditional or Equivalent statement and denoted by $p \leftrightarrow q$.
- A Truth Table for $p \leftrightarrow q$ is

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Logical Equivalence: Algebra of Propositions

Two propositions are said to be **logically equivalent**, or simply equivalent or equal, denoted by \equiv or \Leftrightarrow , if they have the same truth table.

Example 10

Show using truth table that \sim (p \wedge q) and \sim p \vee \sim q are logically equivalent

p	q	$p \wedge q$	$\sim (p \wedge q)$
T	T	T	F
T	F	F	T
F	T	F	T
F	F	F	T

p	q	~p	~q	~ <i>p</i> ∨ ~ <i>q</i>
T	T	F	F	F
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

Since both \sim (p \land q) and \sim pV \sim q have the same truth table, then these two propositions are said to be logically equivalent.

Laws of the Algebra of Propositions

1	Idempotent Laws	$p \lor p \equiv p$	$p \wedge p \equiv p$
2	Associative Laws	$(p \vee q) \vee r \equiv p \vee (q \vee r)$	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
3	Commutative Laws	$p \lor q \equiv q \lor p$	$p \wedge q \equiv q \wedge p$
4	Distributive Laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
5	Identity Laws	$p \lor F \equiv p$ $p \lor T \equiv T$	$p \wedge T \equiv p$ $p \wedge F \equiv F$
6	Complement Laws	$p \lor \sim p \equiv T$ $\sim T \equiv F$	$p \land \sim p \equiv F$ $\sim F \equiv T$
7	Involution Law	$\sim (\sim p) \equiv p$	
8	De Morgan's Laws	$\sim (p \lor q) \equiv \sim p \land \sim q$	$\sim (p \land q) \equiv \sim p \lor \sim q$

Laws of the Algebra of Propositions

Example 11

(1)
$$p \land (p \lor \sim p)$$

 $\equiv p \land T$ Complement Laws
 $\equiv p$ Identity Laws

(2)
$$\sim (p \lor q) \lor (\sim p \land q)$$

 $\equiv (\sim p \land \sim q) \lor (\sim p \land q)$ De Morgan's Law
 $\equiv \sim p \land (\sim q \lor q)$ Distributive Law
 $\equiv \sim p \land T$ Complement Law
 $\equiv \sim p$ Identity Law

End of Lesson