

OptiMOS™ P2 Small-Signal-Transistor

Features

- P-channel
- Enhancement mode
- Super Logic Level (2.5V rated)
- Avalanche rated
- Qualified according to AEC Q101
- 100% lead-free; RoHS compliant
- Halogen-free according to IEC61249-2-21

Product Summary

V _{DS}	-20	V	
R _{DS(on),max}	150	mΩ	
	V _{GS} =-2.5 V	280	
ID		-1.5	Α

PG-SOT23

Туре	Package	Tape and Reel Information	Marking	Lead Free	Packing
BSS215P	PG-SOT23	H6327: 3000 pcs/ reel	YDs	Yes	Non dry

Maximum ratings, at T_j =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	I _D	T _A =25 °C	-1.5	А
		T _A =70 °C	-1.18	
Pulsed drain current	I _{D,pulse}	T _A =25 °C	-6	
Avalanche energy, single pulse	E _{AS}	$I_{\rm D}$ =-1.5 A, $R_{\rm GS}$ =25 Ω	11	mJ
Reverse diode dv/dt	dv/dt	I_{D} =-1.5 A, V_{DS} =-16V, di/dt =-200A/ μ s, $T_{j,max}$ =150 °C	6	kV/µs
Gate source voltage	V_{GS}		±12	V
Power dissipation ¹⁾	P _{tot}	T _A =25 °C	0.5	W
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 150	°C
ESD Class		JESD22-A114 -HBM	0 (<250V)	V
Soldering Temperature			260 °C	°C
IEC climatic category; DIN IEC 68-1			55/150/56	°C

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance, junction - ambient	$R_{ ext{thJA}}$	minimal footprint ¹⁾	-	-	250	K/W

Electrical characteristics, at $T_{\rm j}$ =25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} =0 V, I _D =-250 μA	-20	-	-	V
Gate threshold voltage	$V_{\rm GS(th)}$	V _{DS} =V _{GS} , I _D =-11 μA	-1.2	-0.9	-0.6	
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ =-20V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =25 °C	1	1	-1	μΑ
		$V_{\rm DS}$ =-20V, $V_{\rm GS}$ =0V, $T_{\rm j}$ =150 °C	-	-	-100	
Gate-source leakage current	I _{GSS}	V _{GS} =-12V, V _{DS} =0V	-	-	-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =2.5 V, I _D =-1.1 A	1	166	280	mΩ
		V _{GS} =4.5 V, I _D =-1.5 A	ı	105	150	
Transconductance	$g_{ ext{fs}}$	$ V_{\rm DS} > 2 I_{\rm D} R_{\rm DS(on)max},$ $I_{\rm D} = 1.18~{\rm A}$	-	4.5	-	S

 $^{^{1)}}$ Performed on 40mm^2 FR4 PCB. The traces are 1mm wide, $70\mu\text{m}$ thick and 20mm long; they are present on both sides of the PCB.

Parameter	Symbol Conditions		Values		Unit	
			min.	typ.	max.	
Dynamic characteristics						
Input capacitance	Ciss		-	260	346	pF
Output capacitance	Coss	V_{GS} =0 V, V_{DS} =-15 V, f =1 MHz	-	102	135	-
Reverse transfer capacitance	C _{rss}		-	85	128	
Turn-on delay time	$t_{d(on)}$		-	6.7	-	ns
Rise time	t _r	V _{DD} =-10 V, V _{GS} =-4.5 V,	-	9.7	-	
Turn-off delay time	$t_{d(off)}$	I_{D} =-1.5 A, R_{G} =6 Ω	-	14.5	-	
Fall time	t_{f}	1	-	14.0	-	
Gate Charge Characteristics		T	Т	Т	Г	
Gate to source charge	Q _{gs}	$V_{\rm DD}$ =16 V, $I_{\rm D}$ =-1.5 A, $V_{\rm GS}$ =0 to -4.5 V	-	-0.49	-	nC
Gate to drain charge	Q_{gd}		-	-1.9	-	
Gate charge total	Qg		-	-3.6	-	
Gate plateau voltage	$V_{\rm plateau}$		-	-1.9	-	V
Reverse Diode						
Diode continous forward current	Is	T _25 °C	-	-	-0.5	Α
Diode pulse current	I _{S,pulse}	−T _A =25 °C	-	-	-6	
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =-1.5 A, T _j =25 °C	-	-0.8	-1.1	V
Reverse recovery time	t _{rr}	$V_{\rm R}$ =10 V, $I_{\rm F}$ =-1.5 A, $di_{\rm F}/dt$ =100 A/ μ s	-	21.0	-	ns
Reverse recovery charge	Q _{rr}		-	-3.7	-	nC

1 Power dissipation

$P_{tot} = f(T_A)$

0.5 0.375 \(\sum_{\text{\tint{\text{\tinit}}\text{\tinit}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\\ \text{\texi{\text{\ti}}\tint{\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\ti}\til\titt{\text{\text{\text{\text{\text{\text{\text{\text{\til\til\til\titt{\text{\text{\text{\tilit{\texi\tint{\text{\texi}\til\tiint{\text{\tii}}\tint{\text{\tiint{\text{\tii}\tiint{\tint{\

2 Drain current

$$I_D = f(T_A); V_{GS} \le -4.5 \text{ V}$$

3 Safe operating area

$$I_D = f(V_{DS}); T_A = 25 \text{ °C}; D = 0$$

40

80

T_A [°C]

120

parameter: $t_{\rm p}$

0.125

0

0

4 Max. transient thermal impedance

$$Z_{thJA}$$
=f(t_p)

parameter: $D=t_p/T$

5 Typ. output characteristics

 $I_D=f(V_{DS}); T_j=25 \text{ °C}$

parameter: $V_{\rm GS}$

6 Typ. drain-source on resistance

 $R_{DS(on)}=f(I_D); T_j=25 \text{ °C}$

parameter: $V_{\rm GS}$

7 Typ. transfer characteristics

 I_{D} =f(V_{GS}); $|V_{DS}|$ >2 $|I_{D}|R_{DS(on)max}$

8 Typ. forward transconductance

 g_{fs} =f(I_D); T_j =25 °C

9 Drain-source on-state resistance

$$R_{DS(on)}$$
=f(T_j); I_D =-1.5 A; V_{GS} =-4.5 V

240 200 160 98 % 120 80 40 -60 -20 20 60 100 140 180 T_j [°C]

10 Typ. gate threshold voltage

$$V_{\rm GS(th)}$$
=f($T_{\rm j}$); $V_{\rm DS}$ =V_{GS}; $I_{\rm D}$ =-11 μ A parameter: $I_{\rm D}$

11 Typ. capacitances

$$C=f(V_{DS}); V_{GS}=0 V; f=1 MHz; T_j=25$$
°C

12 Forward characteristics of reverse diode

$$I_{F}=f(V_{SD})$$
 parameter: T_{j}

13 Avalanche characteristics

 I_{AS} =f(t_{AV}); R_{GS} =25 Ω

parameter: $T_{j(start)}$

14 Typ. gate charge

 V_{GS} =f(Q_{gate}); I_D =-1.5 A pulsed

parameter: $V_{\rm DD}$

15 Drain-source breakdown voltage

 $V_{BR(DSS)}=f(T_i); I_D=250 \mu A$

16 Gate charge waveforms

SOT23

Package Outline:

Footprint:

0.9

Packaging:

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.