Tentamen TMV210 Inledande Diskret Matematik, D1/DI2

2018-08-31 kl. 14.00-18.00

Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers

Telefonvakt: Helga Kristin Olafsdottir, telefon: 5325 (alt. Peter Hegarty 070-5705475)

Hjälpmedel: Inga hjälpmedel, ej heller räknedosa

För godkänt på tentan krävs 21 poäng, inklusive bonus från kryssuppgifterna under HT-2017. Preliminärt så krävs 31 poäng för betyget 4 och 41 poäng för betyget 5. Dessa gränser kan minskas men inte höjas i efterhand.

Lösningar läggs ut på kursens webbsida direkt efter tentamen. Tentan rättas och bedöms anonymt. Resultatet meddelas i Ladok senast den 21 september. Första granskningstillfälle meddelas på kurswebbsidan och via Ping Pong, efter detta sker granskning enligt överenskommelse med kursansvarig.

Dessutom granskning alla vardagar utom onsdagar 11-13, MV:s exp.

OBS!

Motivera dina svar väl. Det är i huvudsak beräkningarna och motiveringarna som ger poäng, inte svaret.

I uppgifter 1, 5, 7, 8 så är deluppgifterna (a) och (b) helt oberoende av varandra och kan därmed lösas separat.

Uppgifterna

1. (a) Avgör om följande argument är giltigt eller ej. Motivera väl! (3p)

$$\begin{array}{c} p \lor q \\ \neg (p \land r) \\ s \to q \\ \neg (r \lor s) \to \neg p \\ - - - - - - - \\ q \end{array}$$

(b) Låt $U = \mathbb{Z}_+ = \{1, 2, \dots\}$ och $P(x, y, z) : U^3 \to \{\text{sant, falskt}\}$ vara predikatet

$$P(x, y, z) : xy \mid z$$
.

Avgör om följande påståendena är sanna eller falska. Motivera väl!

$$\forall x \exists y \exists z \ P(x, y, z)$$
$$\exists x \forall y \forall z \ P(x, y, z)$$
$$\forall x \forall y \exists z \ P(x, y, z)$$
$$\exists x \exists y \forall z \ P(x, y, z)$$

(3p)

2. Låt $X = \mathbb{Z}_+$, $Y = \{A \subseteq X : A \text{ är ändlig och } |A| \text{ är ett jämnt tal}\}.$

Låt \mathcal{R} vara följande relation på Y:

(3p)

(2p)

(5p)

$$\mathcal{R} = \{(A, B) \in Y^2 : |A \cap B| \text{ är ett jämnt tal}\}.$$

Vilken/vilka av de tre egenskaperna reflexivitet, symmetri och transitivitet har \mathcal{R} ?

- I fall du hävdar att en egenskap gäller, motivera väl!
- Annars, ge ett specifikt motexempel.
- **3**. Bestäm med bevis för vilka $n \in \mathbb{N} = \{0, 1, \dots\}$ gäller

$$= \{0, 1, \dots\}$$
 gäller (5p)
$$2^{n} > 1 + n + \frac{n^{2}}{2}.$$

(Tips: Induktion).

- 4. (a) Bestäm $\Phi(273)$, $\Phi(756)$ samt SGD(756, 273).
 - (b) Bestäm den allmänna lösningen till den Diofantiska ekvationen

$$756x + 273y = 12600$$
,

samt alla lösningarna för vilka |x| + |y| < 100 gäller.

5. (a) Bestäm den allmänna lösningen samt den minsta positiva lösningen till följande system av kongruenser: (4p)

$$3x \equiv 1 \pmod{5}, \quad 4x \equiv 2 \pmod{7}, \quad 5x \equiv 3 \pmod{8}.$$

- (b) Bestäm alla positiva heltal $n \in \mathbb{Z}_+$ för vilka $31^n \equiv 1 \pmod{13}$ gäller. Motivera väl! (3p)
- 6. Under perioden 12-31 juli i år (20 dagar) uppmättes varje dygn i Göteborg en medeltemperatur, avrundad till närmaste heltal, mellan 18-24 grader (7 möjliga värden per dygn alltså)¹. Hur många möjligheter finns det för
 - (a) den fullständiga temperaturserien, dvs sekvensen av de 20 uppmätta medelvärdena? (1.5p)
 - (b) den oordnade temperaturserien, där vi bara bryr oss om antalet gånger varje värde uppmättes och inte exakt vilka dagar?
 - (c) den fullständiga serien om vi vet att de enda uppmätta värdena var 19, 20 och 23 (1.5p) grader, och att dessa uppmättes 5, 6 resp. 9 gånger?
 - (d) den fullständiga serien om vi vet att det fanns högst 2 dagar där medeltemp. var 22 (2p) grader eller högre?
 - (e) Säg att en serie i (a) väljs på måfå. Vilka av följande två händelser har störst sannolikhet? Motivera väl!

HÄNDELSE 1: Medelvärdet för hela serien är minst 21 grader.

HÄNDELSE 2: Serien innehåller inga 24:or.

OBS! I deluppgifter (a)-(d) behöver man inte ge svaren som explicita bas-10 tal.

Var god gå till nästa blad!

¹Detta är påhittad *fake news*, även om det kanske inte är så långt ifrån sanningen.

- 7. (a) För grafen G_1 i Figur 1,
 - i. Ange en Hamiltoncykel i grafen. (1p)
 - ii. Lägg till en kant så att den nya grafen har en Eulerväg och ange en sådan väg i den nya grafen. (2.5p)
 - (b) Låt G_2 vara en 4-cykel med numrerade noder, se Figur 2.
 - i. Skriv upp grannmatrisen M för grafen. (1p)
 - ii. Utan att utföra någon matrismultiplikation, bestäm de stjärnmärkta elementen (2.5p) i matriserna nedan:

8. (a) Låt $(a_n)_{n=0}^{\infty}$ vara talföljden som definieras av följande information: (2p)

$$a_0 = 1$$
, $a_1 = 2$, $a_3 = 3$, $a_{n+3} = \frac{a_{n+2} + a_n}{a_{n+1}} \, \forall \, n \ge 0$.

Bestäm a_{2018} . Ingen motivering behövs!

(b) För positiva heltal $n, k \in \mathbb{Z}_+$ låt p(n, k) vara antalet sätt att skriva n som en summa av k st positiva heltal, utan hänsyn till ordning. (5p)

Exemple: p(7, 3) = 4 ty det finns följande skrivsätt

$$7 = 5 + 1 + 1 = 4 + 2 + 1 = 3 + 3 + 1 = 3 + 2 + 2$$
.

Bevisa att

$$p(n, k) = p(n-1, k-1) + p(n-k, k).$$
(1)

(OBS! Man måste sätta $p(\cdot, \cdot) = 0$ så snart minst en av variablerna är mindre än eller lika med noll för att (1) ska alltid make:a sense. Den teknikaliteten behöver du inte grubbla över i ditt bevis.)

Lycka till!