- 1. Consider three processes, P, Q and R with the following code:
 - P: ps1; ps2; ps3; ps4;
 - Q: qs1; qs2; qs3; qs4;
 - R: rs1; rs2; rs3; rs4;

These processes have the following synchronization constraint:

- a) rs1 must be the first statement to execute
- b) process R should be the last process to exit
- c) ps3 must execute after qs2
- d) qs3 must execute after ps4 and rs3
- e) rs4 must execute after either ps4 or qs4 (or both) have executed

Using Semaphores, provide initial values and updated codes for P, Q and R that satisfy these constraints.

1. Solution:	Process P	Process Q	Process R
s1 = 0 s2 = 0	<ps1></ps1>	<qs1></qs1>	<rs1></rs1>
s3 = -1 s4 = 0	<ps2></ps2>	<qs2></qs2>	<rs2></rs2>
s5 = -1	<ps3></ps3>	<qs3></qs3>	<rs3></rs3>
	<ps4></ps4>	<qs4></qs4>	<rs4></rs4>
			47

1. Solution:	Process P	Process Q	Process R
s1 = 0 s2 = 0	<u>wait(&s1)</u> <ps1></ps1>	<u>wait(&s1)</u> <qs1></qs1>	<rs1> <u>signal(&s1)</u></rs1>
s3 = -1 s4 = 0	<ps2></ps2>	<qs2></qs2>	<u>signal(&s1)</u> <rs2></rs2>
s5 = -1	<ps3></ps3>	<qs3></qs3>	<rs3></rs3>
	<ps4></ps4>	<qs4></qs4>	<rs4></rs4>
			48

1. Solution:	Process P	Process Q	Process R
s1 = 0 s2 = 0	<u>wait(&s1)</u> <ps1></ps1>	<u>wait(&s1)</u> <qs1></qs1>	<rs1> <u>signal(&s1)</u> <u>signal(&s1)</u></rs1>
s3 = -1 s4 = 0	<ps2> <u>wait(&s2)</u></ps2>	<qs2> <u>signal(&s2)</u></qs2>	<rs2></rs2>
s5 = -1	<ps3></ps3>	<qs3></qs3>	<rs3></rs3>
	<ps4></ps4>	<qs4></qs4>	<rs4></rs4>
			49

1. Solution:	Process P	Process Q	Process R
s1 = 0 s2 = 0	<u>wait(&s1)</u> <ps1></ps1>	<u>wait(&s1)</u> <qs1></qs1>	<rs1> <u>signal(&s1)</u> <u>signal(&s1)</u></rs1>
s3 = -1	<ps2></ps2>	<qs2></qs2>	<rs2></rs2>
s4 = 0 s5 = -1	<u>wait(&s2)</u>	signal(&s2) wait(&s3)	
30 1	<ps3></ps3>	<qs3></qs3>	<rs3> signal(&s3)</rs3>
	<ps4></ps4>	<qs4></qs4>	<rs4></rs4>

50

signal(&s3)

1		
	\sim	lution:
		acioi i.

$$s1 = 0$$

$$s2 = 0$$

$$s3 = -1$$

$$s4 = 0$$

$$s5 = -1$$

Process P

<u>wait(&s1)</u>

<ps1>

wait(&s2)

signal(&s3) signal(&s4)

Process Q

<u>wait(&s1)</u>

signal(&s2)

signal(&s4)

Process R

51

1. Solution:	Process P	Process Q	Process R
s1 = 0 s2 = 0	<u>wait(&s1)</u> <ps1></ps1>	<u>wait(&s1)</u> <qs1></qs1>	<rs1> <u>signal(&s1)</u> <u>signal(&s1)</u></rs1>
s3 = -1 s4 = 0 s5 = -1	<ps2> wait(&s2)</ps2>	<qs2> <u>signal(&s2)</u> <u>wait(&s3)</u></qs2>	<rs2></rs2>
30 1	<ps3></ps3>	<qs3></qs3>	<rs3> <u>signal(&s3)</u> <u>wait(&s4)</u></rs3>
	<ps4> <u>signal(&s3)</u> <u>signal(&s4)</u></ps4>	<qs4> <u>signal(&s4)</u> <u>signal(&s5)</u></qs4>	<rs4> <u>wait(&s5)</u></rs4>
	signal(&s5)	<u>oignai(aco)</u>	52