Final Project

FP.1 Match 3D Objects

Implement the method "matchBoundingBoxes", which takes as input both the previous and the current data frames and provides as output the ids of the matched regions of interest (i.e. the boxID property). Matches must be the ones with the highest number of keypoint correspondences.

```
int p = prevFrame.boundingBoxes.size();
int c = currFrame.boundingBoxes.size():
int prevKPIDX . currKPIDX:
cv::KevPoint prevKP, currKP:
vector<int> prevBoxesIds, currBoxesIds;
int count[p][c] = {};
for (auto it1 = matches.begin(); it1 != matches.end(); ++it1)
   prevBoxesIds.clear():
   currBoxesIds.clear():
   prevKPIDX = (*it1).queryIdx; //이전의 키포인트의 인덱스를 정의
   currKPIDX = (*it1).trainIdx: //현재의 키포인트 인덱스 정의
   prevKP = prevFrame.keypoints[prevKPIDX]; // 이전 프레임의 키포인트를 인덱스로 정의
   currKP = currFrame, keypoints[currKPIDX]: // 현재 프레임의 키포인트를 인덱스로 정의
    for(auto it2 = prevFrame.boundingBoxes.begin(); it2 != prevFrame.boundingBoxes.end(); ++it2 ) //바운당 박스 안에 키포인트가 존재??
           if((*it2).roi.contains(prevKP.pt)) //roi 안에 키포인트가 존재하는가?
              prevBoxesIds.push back((*it2).boxID); // 존재하면 BoxesIds에 박스 아이디를 넣는다
    for(auto it2 = currFrame.boundingBoxes.begin(); it2 != currFrame.boundingBoxes.end(); ++it2 )
           if((*it2).roi.contains(currKP.pt)) //roi 안에 키포인트가 존재하는가?
              currBoxesIds.push back((*it2).boxID): // 존재하면 BoxesIds에 박스 아이디를 넣는다
    for(auto currId:currBoxesIds)
       for(auto prevId:prevBoxesIds)
           count[prevId][currId]++; //count 업데이트
for (int i = 0; i < p; i++)
    int mcount = 0;
    int id max = 0;
     for (int j = 0; j < c; j++)
        if (count[i][i] > mcount)
            mcount = count[i][j];
             id max = j;
     bbBestMatches[i] = id max;
```

FP.2 Compute Lidar-based TTC

Compute the time-to-collision in second for all matched 3D objects using only Lidar measurements from the matched bounding boxes between

current and previous frame.

```
void computeTTCLidar(std::vector<LidarPoint> &lidarPointsPrev,
                     std::vector<LidarPoint> &lidarPointsCurr, double frameRate, double &TTC)
    double dT = 1/frameRate; // time between two measurements in seconds
    double laneWidth = 4.0:
    vector <double> currX , prevX;
    double minXPrev = 0, minXCurr = 0;
    for(auto it=lidarPointsPrev.begin(); it!=lidarPointsPrev.end(); ++it)
        if (abs(it->y) <= laneWidth / 2.0)
            prevX.push back(it->x);
    for(auto it=lidarPointsCurr.begin(); it!=lidarPointsCurr.end(); ++it)
         if (abs(it->y) <= laneWidth / 2.0)
            currX.push back(it->x);
    if (currX.size()>0)
        for(auto x:currX)
            minXCurr = minXCurr+x:
    minXCurr = minXCurr/currX.size();
    if (prevX.size()>0)
        for(auto x:prevX)
            minXPrev = minXPrev + x;
    minXPrev = minXPrev / prevX.size();
    TTC = minXCurr * dT / (minXPrev-minXCurr);
```

FP.3 Associate Keypoint Correspondences with Bounding Boxes

Prepare the TTC computation based on camera measurements by associating keypoint correspondences to the bounding boxes which enclose them. All matches which satisfy this condition must be added to a vector in the respective bounding box.

```
void clusterKptMatchesWithROI(BoundingBox &boundingBox, std::vector<cv::KeyPoint> &kptsPrev, std::vector<cv::KeyPoint> &kptsCurr, std::vector<cv::DMatch> &kptMatches
    for (cv::DMatch mat: kptMatches)
       if (boundingBox.roi.contains(kptsCurr[mat.trainIdx].pt)) //바운딩 박스 안에 curr 키포인트가 있는가?
           boundingBox.kptMatches.push back(mat); //있으면 바운딩박스 키포인트매치스에 저장
```

FP.4 Compute Camera-based TTC

Compute the time-to-collision in second for all matched 3D objects using only keypoint correspondences from the matched bounding boxes

between current and previous frame.

```
void computeTTCCamera(std::vector<cv::KeyPoint> &kptsPrev, std::vector<cv::KeyPoint> &kptsCurr,
                     std::vector<cv::DMatch> kptMatches, double frameRate, double &TTC, cv::Mat *visImg)
   vector<double> distRatios; //curr과 prev의 키포인트 사이의 거리비를 저장
   double dT = 1/frameRate:
   for(auto it1 = kptMatches.begin(); it1!=kptMatches.end(); ++it1)
       cv::KeyPoint kpOuterCurr = kptsCurr.at(it1->trainIdx);
       cv::KeyPoint kpOuterPrev = kptsPrev.at(it1->queryIdx);
       for(auto it2 = kptMatches.begin(): it2 != kptMatches.end(): ++it2)
           double minDist = 50.0;
           cv::KeyPoint kpInnerCurr = kptsCurr.at(it2->trainIdx);
           cv::KeyPoint kpInnerPrev = kptsPrev.at(it2->queryIdx);
           double distCurr = cv::norm(kpOuterCurr.pt-kpInnerCurr.pt);
           double distPrev = cv::norm(kpOuterPrev.pt-kpInnerPrev.pt);
           if (distPrev > std::numeric limits<double>::epsilon() && distCurr >= minDist)
               double distRatio = distCurr / distPrev;
               distRatios.push back(distRatio):
   if (distRatios.size() == 0)
       TTC = NAN:
   std::sort(distRatios.begin(),distRatios.end()); // distRatios를 정렬
   auto itr = distRatios.begin();
   double median:
   if (distRatios.size()%2 ==0)//짝수개일때
       itr = itr + (distRatios.size()/2-1);
       auto Nitr = itr+1;
       median = (*itr + *Nitr)/2;
   if (distRatios.size()%2 !=0)
       itr = itr + (distRatios.size()-1)/2;
       median = *itr;
   TTC = -dT / (1 - median);
```

Find examples where the TTC estimate of the Lidar sensor does not seem plausible. Describe your observations and provide a sound argumentation why you think this happened.

FAST & FR			
Image No.	TTC Lidar	TTC Camera	
0	NAN	NAN	
1	12.2891	14.3328	
2	13.3547	11.897	
3	16.3845	12.7506	
4	14.0764	15.1531	
5	12.7299	13.7547	
6	13.7511	13.5061	
7	13.7314	14.5808	
8	13.7901	12.605	
9	12.059	12.4602	
10	11.8642	13.8894	
11	11.9682	11.7538	
12	9.88711	10.6997	
13	9.42504	11.7404	
14	9.30215	9.99385	
15	8.3212	9.70011	
16	8.89867	9.30351	
17	11.0301	9.16265	
18	8.53557	10.7108	

As you can see, there are two irregular TTC time in Lidar. You can calculate TTC by this formular.

TTC = minXCurr *dT / (minXPrev-minXCurr)

If (minXPrev-minXCurr) decrease, TTC become bigger. And minXPrev may influenced by point cloud outliers.

Run several detector / descriptor combinations and look at the differences in TTC estimation. Find out which methods perform best and also include several examples where camera-based TTC estimation is way off. As with Lidar, describe your observations again and also look into

BRISK			BRIEF			ORB		
mage No.	TTC Lide	TTC Camera		TTC Lida	TTC Camera	Image No.	TTC Lida	TTC Camera
o nage ivo.	NAN	NAN	0	NAN NAN	NAN	nnage 140.	NAN	NAN
ĭ	12.2891	14.6687	1	12.2891	13.6808	1	12,2891	13.8003
2	13.3547	13.7007	2	13.3547	11.3577	2	13.3547	11.2916
3	16.3845	13.0089	3	16.3845	11.4184	3	16.3845	12.4853
4	14.0764	12.6318	4	14.0764	11.7146	4	14.0764	11.0488
5	12.7299	12.9091	5	12.7299	12.7008	5	12.7299	12.7554
6	13.7511	20.8923	6	13.7511	13.7321	6	13.7511	14.6109
7	13.7314	14.0389	7	13.7314	13.3451	7	13.7314	11.1967
8	13.7901	13.9492	. 8	13.7901	12.1371	. 8	13.7901	12.8457
9	12.059	10.8726	9	12.059	10.6526	9	12.059	10.5903
10	11.8642	15.0355	10	11.8642	13.3448	10	11.8642	14.0505
11	11.9682	10.9414	11	11.9682	10.9855	11	11.9682	10.8795
12	9.88711	10.3516	12	9.88711	10.3132	12	9.88711	10.1914
13	9.42504	11.0145	13	9.42504	10.7543	13	9.42504	10.989
14	9.30215	10.7988	14	9.30215	10.2157	14	9.30215	10.2419
15	8.3212	8.61247	15	8.3212	11.6181	15	8.3212	8.95343
16	8.89867	12.4867	16	8.89867	9.43455	16	8.89867	10.2307
17	11.0301	10.5882	17	11.0301	10.919	17	11.0301	10.0965
18	8.53557	8.40618	18	8.53557	7.48768	18	8.53557	7.7171
10	0.00001	0.40010	10	0.00001	7.40700	10	0.00001	7.771
			AKAZE			OUET		
REAK						SIFT		
	TTC_Lide	TTC Camera		TTC Lida	TTC Camera		TTC_Lida	TTC Camera
mage No.		TTC_Camera	Image No		TTC_Camera	Image No.		TTC_Camera
mage No. 0	NAN	NAN	Image No	TTC_Lide	TTC_Camera	lmage No.	NAN	NAN
nage No. ⁰ 1	NAN 12.2891	NAN 14.663	Image No			Image No.	NAN 12.2891	NAN 14.1867
nage No. 0 1 2	NAN 12.2891 13.3547	NAN 14.663 13.047	Image No			Image No. 0 1 2	NAN 12.2891 13.3547	NAN 14.1867 11.4305
nage No. ⁰ 1	NAN 12.2891 13.3547 16.3845	NAN 14.663 13.047 11.8024	Image No 0 1 2 3			Image No. 0 1 2 3	NAN 12.2891 13.3547 16.3845	NAN 14.1867 11.4305 11.9751
mage No. 0 1 2 3 4	NAN 12.2891 13.3547 16.3845 14.0764	NAN 14.663 13.047 11.8024 12.0976	Image No. 0 1 2 3 4			Image No. 0 1 2 3 4	NAN 12.2891 13.3547 16.3845 14.0764	NAN 14.1867 11.4305 11.9751 11.4496
nage No. 0 1 2 3 4 5	NAN 12.2891 13.3547 16.3845 14.0764 12.7299	NAN 14.663 13.047 11.8024 12.0976 12.8542	Image No 0 1 2 3 4 5			Image No. 0 1 2 3 4 5	NAN 12.2891 13.3547 16.3845 14.0764 12.7299	NAN 14.1867 11.4305 11.9751 11.4496 11.7284
mage No. 0 1 2 3 4 5 6	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511	NAN 14.663 13.047 11.8024 12.0976 12.8542 18.3504	Image No 0 1 2 3 4 5 6			Image No. 0 1 2 3 4 5 6	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511	NAN 14.1867 11.4305 11.9751 11.4496 11.7284 13.1774
mage No. 0 1 2 3 4 5 6 7	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314	NAN 14.663 13.047 11.8024 12.0976 12.8542 18.3504 13.6238	Image No 0 1 2 3 4 5 6 7			Image No. 0 1 2 3 4 5 6 7	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314	NAN 14.1867 11.4305 11.9751 11.4496 11.7284 13.1774 12.0261
mage No. 0 1 2 3 4 5 6 7	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901	NAN 14.663 13.047 11.8024 12.0976 12.8542 18.3504 13.6238 13.1358	Image No. 1 2 3 4 5 6 7 7 8			Image No. 0 1 2 3 4 5 6 7 8	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901	NAN 14.1867 11.4305 11.9751 11.4496 11.7284 13.1774 12.0261 12.9174
nage No. 0 1 2 3 4 5 6 7 8 9	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059	NAN 14.663 13.047 11.8024 12.0976 12.8542 18.3504 13.6238 13.1358 11.9549	Image No 1 2 2 3 4 5 5 6 7 8 8 9			Image No. 0 1 2 3 4 5 6 7 8 9	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059	NAN 14.1867 11.4305 11.9751 11.4496 11.7284 13.1774 12.0261 12.9174 11.3244
nage No. 0 1 2 3 4 5 6 7 8 9 10	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642	NAN 14.663 13.047 11.8024 12.0976 12.8542 18.3504 13.6238 13.1358 11.9549 16.7047	Image No. 1 2 2 3 4 5 5 6 6 7 8 8 9 100			Image No. 0 1 2 3 4 5 6 7 8 9 10	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642	NAN 14.1867 11.4305 11.9751 11.4496 11.7284 13.1774 12.0261 12.9174 11.3244 14.0788
nage No. 0 1 2 3 4 5 6 7 8 9 10	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682	NAN 14.663 13.047 11.8024 12.0976 12.8542 18.3504 13.6238 13.1358 11.9549 16.7047	Image No. 1 2 2 3 4 5 6 6 7 8 9 100 111			Image No. 0 1 2 3 4 5 6 7 8 9 10 11	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682	NAN 14.1867 11.4305 11.9751 11.4496 11.7284 13.1774 12.0261 12.9174 11.3244 14.0788 11.1182
nage No. 0 1 2 3 4 5 6 7 8 9 10 11 12	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682 9.88711	NAN 14.663 13.047 11.8024 12.0976 12.8542 18.3504 13.6238 13.1358 11.9549 16.7047 10.491	Image No. 0 1 2 2 3 3 4 5 6 6 7 7 8 9 10 11 12			Image No. 0 1 2 3 4 5 6 7 8 9 10 11 12	NAN 12 2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682 9.88711	NAN 14.1867 11.4305 11.9751 11.4496 11.7284 13.1774 12.0261 12.9174 11.3244 14.0788 11.1182 10.9882
nage No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682 9.88711 9.42504	NAN 14.663 13.047 11.8024 12.0976 12.8542 18.3504 13.6238 13.1358 11.9549 16.7047 10.491 10.7653 12.2156	Image No 1 2 3 4 5 6 7 8 9 10 11 12 13			Image No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682 9.88711 9.42504	NAN 14.1867 11.4305 11.9751 11.4496 11.7284 13.1774 12.0261 12.9174 11.3244 14.0788 11.1182 10.9882
nage No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682 9.88711 9.42504 9.30215	NAN 14.663 13.047 11.8024 12.0976 12.8542 18.3504 13.6238 13.1358 11.9549 16.7047 10.491 10.7653 12.2156	Image No. 0 1 2 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14			Image No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682 9.88711 9.42504 9.30215	NAN 14.1867 11.4305 11.9751 11.4496 11.7284 13.1774 12.0261 12.9174 11.3244 14.0788 11.1182 10.9882 10.9211 9.8937
nage No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682 9.88711 9.42504 9.30215 8.3212	NAN 14.663 13.047 11.8024 12.0976 12.8542 18.3504 13.6238 13.1358 11.9549 16.7047 10.491 10.7653 12.2156 10.9179 10.2547	Image No. 1 2 2 3 4 5 6 6 7 8 8 9 100 11 12 13 14 15			Image No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682 9.88711 9.42504 9.30215 8.3212	NAN 14.1867 11.4305 11.9751 11.4496 11.7284 13.1774 12.0261 12.9174 11.3244 14.0788 11.1182 10.9882 10.9211 9.8937 10.1468
nage No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682 9.88711 9.42504 9.30215	NAN 14.663 13.047 11.8024 12.0976 12.8542 18.3504 13.6238 13.1358 11.9549 16.7047 10.491 10.7653 12.2156	Image No. 0 1 2 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14			Image No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	NAN 12.2891 13.3547 16.3845 14.0764 12.7299 13.7511 13.7314 13.7901 12.059 11.8642 11.9682 9.88711 9.42504 9.30215	NAN 14.1867 11.4305 11.9751 11.4496 11.7284 13.1774 12.0261 12.9174 11.3244 14.0788 11.1182 10.9882 10.9211 9.8937

Run several detector / descriptor combinations and look at the differences in TTC estimation. Find out which methods perform best and also include several examples where camera-based TTC estimation is way off. As with Lidar, describe your observations again and also look into

HARRIS								
BRISK			BRIEF			ORB		
Image No	TTC Lide	TTC Camera	Image No	TTC Lida	TTC Camera	Image No	TTC Lida	TTC Camera
0	NAN	NAN	0	NAN	NAN	0	NAN	NAN
1	12,2891	24.0567	1	12.2891	17.7236	1	12.2891	17.7236
2	13.3547	161.505	2	13.3547	-inf	2	13.3547	-inf
3	16.3845	-inf	3	16.3845	-24.5584	3	16.3845	-inf
4	14.0764	12.629	4	14.0764	12.629	4	14.0764	12.629
5	12.7299	40.8037	5	12.7299	15.6878	5	12.7299	13.3206
6	13.7511	13.5907	6	13.7511	15.7933	6	13.7511	15.7933
7	13.7314	-inf	7	13.7314	24.8886	7	13.7314	14.4636
8	13.7901	34.1943	8	13.7901	12.8329	8	13.7901	34.6662
9	12.059	12.2131	9	12.059	10.1292	9	12.059	15.4179
10	11.8642	-inf	10	11.8642	-inf	10	11.8642	13.1502
11	11.9682	-inf	11	11.9682	11.8135	11	11.9682	11.8135
12	9.88711	11.6948	12	9.88711	10.6233	12	9.88711	10.6233
13	9.42504	284.161	13	9.42504	14.7989	13	9.42504	14.7989
14	9.30215	8.96605	14	9.30215	7.91807	14	9.30215	6.06984
15	8.3212	-inf	15	8.3212	-inf	15	8.3212	-inf
16	8.89867	6.92571	16	8.89867	6.92571	16	8.89867	6.92571
17	11.0301	8.85648	17	11.0301	9.19913	17	11.0301	8.85648
18	8.53557	-inf	18	8.53557	-inf	18	8.53557	9.45185
FREAK			AKAZE			SIFT		
Image No	TTC Lide	TTC_Camera	Image No	TTC Lida	TTC Camera	Image No	TTC Lida	TTC_Camera
0	NAN	NAN	0	NAN	NAN	0	NAN NAN	NAN
1	12,2891	-inf	1	147.414	10.00	1	12.2891	17.7236
2	13.3547	161.505	2			2	13.3547	-inf
3	16.3845	-inf	3			3	16.3845	-16.8089
4	14.0764	-inf	4			4	14.0764	12.629
5	12.7299	-inf	5			5	12.7299	13.3206
6	13.7511	15.7933	6			6	13.7511	35.1868
7	13.7314	48.6339	7			7	13.7314	14.4636
8	13.7901	12.9162	. 8			. 8	13.7901	12.8329
9	12.059	14.7882	9			9	12.059	7.39731
10	11.8642	26.3005	10			10	11.8642	-inf
11	11.9682	-inf	11			11	11.9682	11.8135
12	9.88711	10.0995	12			12	9.88711	13.1375
13	9.42504	-inf	13			13	9.42504	14.7989
14	9.30215	8.96605	14			14	9.30215	7.01277
15	8.3212	95.4411	15			15	8.3212	95.4411
16	8.89867	9.05542	16			16	8.89867	7.68366
17	11.0301	8.85648	17			17	11.0301	9.19913
18								

Run several detector / descriptor combinations and look at the differences in TTC estimation. Find out which methods perform best and also include several examples where camera-based TTC estimation is way off. As with Lidar, describe your observations again and also look into

FAST										
BRISK				BRIEF				ORB		
	TTC Lida	TTC Cam	ora	Image No	ehi L OTT	TTC Car	nora		TTC Lida	TTC Camera
illage ive	NAN	NAN	eia	0	NAN NAN	NAN	ileia	0	NAN	NAN
1	16.0004	12.2891		1	12.2891	12.4909		1	12.2891	11.5206
2	11.7077	13.3547		2	13.3547	11.6859		2	13.3547	10.9419
3	11.4633	16.3845		3	16.3845	12.5722		3	16.3845	11.4711
4	14.3677	14.0764		4	14.0764	13.5561		4	14.0764	12.8743
5	16.1731	12.7299		5	12.7299	13.2747		5	12.7299	12.6561
6	14.2881	13.7511		6	13.7511	12.468		6	13.7511	11.6099
7	13.1129	13.7314		7	13.7311	12.5274		7	13.7314	12.4158
8	14.6685	13.7901		8	13.7901	12.2451		- 8	13.7901	12.7649
9	12.9008	12.059		9	12.059	12.2451		- 8 9	12.059	12.7649
10	13.6261	11.8642		10	11.8642	12.7052		10	11.8642	12.6537
11	10.6338	11.9682		11	11.9682	10.3616		11	11.9682	9.97158
12	11.5139	9.88711		12	9.88711	10.3024		12	9.88711	9.61833
13	10.5244	9.42504		13	9.42504	10.7649		13	9.42504	10.7136
14	10.2257	9.30215		14	9.30215	9.39797		14	9.30215	9.53966
15	9.95685	8.3212		15	8.3212	8.96587		15	8.3212	9.07047
16	9.16117	8.89867		16	8.89867	8.99258		16	8.89867	8.9453
17	8.55698	11.0301		17	11.0301	8.7221		17	11.0301	8.62409
18	10.7101	8.53557		18	8.53557	9.54305		18	8.53557	9.19938
FREAK				AKAZE				SIFT		
	TTC Lida	TTC Cam	ora		TTC Lide	TTC Car	nora		TTC Lida	TTC Camera
mage ive	NAN NAN	NAN	cia	0	NAN NAN	NAN	Ileia	0	NAN NAN	NAN
1	12.2891	14.3328		1	IVAIN	IVAIN		1	12.2891	12.3022
2	13.3547	11.897		2				2	13.3547	10.6917
3	16.3845	12.7506		3				3		
								- 3 4	16.3845	13.8703
4	14.0764	15.1531		4					14.0764	13.4639
5	12.7299	13.7547		5				5	12.7299	14.5675
6	13.7511	13.5061		6				6	13.7511	12.2872
7	13.7314	14.5808		7				7	13.7314	12.8486
8	13.7901	12.605		8				8	13.7901	12.9602
9	12.059	12.4602		9				9	12.059	12.4032
10	11.8642	13.8894		10				10	11.8642	13.9918
11	11.9682	11.7538		11				11	11.9682	10.4804
12	9.88711	10.6997		12				12	9.88711	10.3469
13	9.42504	11.7404		13				13	9.42504	10.6946
14	9.30215	9.99385		14				14	9.30215	9.50942
15	8.3212	9.70011		15				15	8.3212	9.57401
16	8.89867	9.30351		16				16	8.89867	8.97337
17	11.0301	9.16265		17				17	11.0301	8.87867
18	8.53557	10.7108		18				18	8.53557	9.43386

Run several detector / descriptor combinations and look at the differences in TTC estimation. Find out which methods perform best and also include several examples where camera-based TTC estimation is way off. As with Lidar, describe your observations again and also look into

TTC Camera
NAN
18.8351
17.7278
15.3408
17.2996
28.2533
19.5587
16.3476
15.5135
13.7609
15.5427
13.7178
11.6547
11.0938
11.5545
11.7978
11.1824
8.96647
10.3115
TTC Camera
NAN
13.7994
19.8362
20.9713
12.0383
28.4573
18.89
16.126
14.5035
17.1941
14.2397
15.3598
13.9787
11.6407
11.0002
12.6761
11.0011
9.27046
10.8968

Run several detector / descriptor combinations and look at the differences in TTC estimation. Find out which methods perform best and also include several examples where camera-based TTC estimation is way off. As with Lidar, describe your observations again and also look into

ORB											
BRISK				BRIEF				ORB			
Image No	TTC Lide	TTC Cam	ora		TTC Lida	TTC Can	nora		TTC Lida	TTC Can	ora
0	NAN	NAN	ciu	0	NAN	NAN	icia	0	NAN	NAN	icia
1	12.2891	12.0116		1	13.0112	12.2891		1	12.2891	16.7826	-
2	13.3547	80.6376		2	-inf	13.3547		2	13.3547	20.1071	-
3	16.3845	11.9459		3	23.0678	16.3845		3	16.3845	13.3212	-
4	14.0764	17.0625		4	12.961	14.0764		4	14.0764	34.6302	-
5	12.7299	-inf		5	24.5145	12.7299		5	12.7299	125.241	-
6	13.7511	10.3419		6	17.0637	13.7511		6	13.7511	75.9115	-
7	13.7311	433,431		7	63.1378	13.7311		7	13.7311	-inf	-
8	13.7901	11.881		8	36.9807	13.7901		- 8	13.7901	11.7189	-
9	12.059	-inf		9	-inf	12.059		9	12.059	-inf	-
10	11.8642	-inf		10	24.8513	11.8642		10	11.8642	26.188	
11	11.9682	7.47226		11	11.6632	11.8642		11	11.9682	7.19924	-
		-inf		12				12			-
12 13	9.88711 9.42504	7.38909		13	23.3317 9.73166	9.88711 9.42504		13	9.88711 9.42504	-inf 8.68665	-
13											-
	9.30215	10.1547		14	8.32634	9.30215		14	9.30215	11.5869	
15	8.3212	9.03707		15	11.5093	8.3212		15	8.3212	12.6056	
16	8.89867	9.68304		16	9.35252	8.89867		16	8.89867	8.67193	
17	11.0301	11.0841		17	12.5716	11.0301		17	11.0301	11.7891	
18	8.53557	20.76		18	12.8341	8.53557		18	8.53557	19.506	
FREAK				AKAZE				SIFT			
Image No	TTC Lide	TTC Cam	era	Image No	TTC Lida	TTC Can	nera	Image No	TTC Lide	TTC Can	nera
o	NAN	NAN		0	NAN	NAN		0	NAN	NAN	
1	10.6408	12.2891		1				1	12.2891	12.3079	
2	44.0095	13.3547		2				2	13.3547	13.194	
3	11.6585	16.3845		3				3	16.3845	14.1182	
4	10.6856	14.0764		4				4	14.0764	53.3994	
5	76.5322	12.7299		5				5	12.7299	74.482	
6	14.1862	13.7511		6				6	13.7511	21.5533	
7	-inf	13.7314		7				7	13.7314	-inf	
8	11.3889	13.7901		8				8	13.7901	10.9114	
9	36.1062	12.059		9				9	12.059	-inf	
10	-inf	11.8642		10				10	11.8642	33.5312	
11	9.1509	11.9682		11				11	11.9682	9.06754	
12	-inf	9.88711		12				12	9.88711	-inf	
13	6.48396	9.42504		13				13	9.42504	8.10745	
14	18.1906	9.30215		14				14	9.30215	13.4587	
15	8.58	8.3212		15				15	8.3212	12.9056	_
16	7.2755	8.89867		16				16	8.89867	9.76932	_
17	13.4559	11.0301		17				17	11.0301	10.1527	_
18	8.29176	8.53557		18				18	8.53557	9.76188	
10	J.EUIT O	0.00001		10				10	3.00001	0.70100	

Run several detector / descriptor combinations and look at the differences in TTC estimation. Find out which methods perform best and also include several examples where camera-based TTC estimation is way off. As with Lidar, describe your observations again and also look into

AKAZE							,			
BRISK										-
Image No	TTC Lida	TTC_Camer	ra BRIEF				ORB			
0	NAN	NAN		TTC Lida	TTC Can	nera		TTC Lida	TTC Can	nera
1	12.2891	12.6167	0	NAN NAN	NAN	liciu	0	NAN	NAN	CIC
2	13.3547	14.6581	1	12.2891	14.1092		1	12.2891	13.0753	_
3	16.3845	13.411	2	13.3547	15.6729		2	13.3547	15.0768	+
4	14.0764	14.8233	3	16.3845	14.0999		3	16.3845	13.5952	_
5	12.7299	14.2305	4	14.0764	14.7206		4	14.0764	14.4218	_
6	13.7511	15.6384	5	12.7299	14.8965		5	12.7299	16.5043	-
7	13.7314	15.6301	6	13.7511	14.5143		6	13.7511	14.6318	_
8	13.7901	13.8976	7	13.7314	15.9819		7	13.7314	15.7912	_
9	12.059	14.1966	. 8	13.7901	14.0043		8	13.7901	13.6043	+
10	11.8642	12.2847	9	12.059	14.4023		9	12.059	13.7498	_
11	11.9682	12.1617	10	11.8642	12.3535		10	11.8642	12.2124	+
12	9.88711	11.0059	11	11.9682	12.6742		11	11.9682	11.9425	_
13	9.42504	10.4843	12	9.88711	11.4327		12	9.88711	11.7601	+
14	9.30215	10.4838	13	9.42504	10.2508		13	9.42504	10.3523	+
15	8.3212	10.2373	14	9.30215	10.2502		14	9.30215	11.1361	-
16	8.89867	10.3704	15	8.3212	9.62112		15	8.3212	10.0763	-
17	11.0301	9.12928	16	8.89867	9.72479		16	8.89867	10.1818	_
18	8.53557	8.76421	17	11.0301	8.66189		17	11.0301	8.85893	-
10	0.00001	0.70421	18	8.53557	8.9745		18	8.53557	8.82115	
REAK										-
mage No	TTC_Lida	TTC_Camer	ra akaze				SIFT			
0	NAN	NAN	Image No	TTC Lide	TTC Can	nera	Image No	TTC Lida	TTC Can	nera
1	12.2891	12.9878	0	NAN	NAN		ő	NAN	NAN	
2	13.3547	13.8387	1	12.2891	12.6911		1	12.2891	12.7528	$\overline{}$
3	16.3845	13.9981	2	13.3547	14.3973		2	13.3547	14.1516	
4	14.0764	14.2794	3	16.3845	13.1468		3	16.3845	13.4622	
5	12.7299	15.7699	4	14.0764	15.3695		4	14.0764	14.6678	
6	13.7511	15.4006	5	12.7299	15.8201		5	12.7299	15.4244	
7	13.7314	15.6244	6	13.7511	14.4886		6	13.7511	14.6199	\vdash
8	13.7901	13.6614	7	13.7314	15.6164		7	13.7314	15.7022	
9	12.059	13.8242	. 8	13.7901	14.179		8	13.7901	13.6703	
10	11.8642	12.0045	9	12.059	14.1683		9	12.059	14.2458	_
11	11.9682	11.9625	10	11.8642	12.1395		10	11.8642	12.0628	_
12	9.88711	11.3111	11	11.9682	11.9648		11	11.9682	12.0465	
13	9.42504	10.7051	12	9.88711	11.5511		12	9.88711	11.4842	
14	9.30215	10.5377	13	9.42504	11.0477		13	9.42504	10.9347	\vdash
15	8.3212	9.65749	14	9.30215	10.5086		14	9.30215	10.7201	
16	8.89867	10.3595	15	8.3212	10.4655		15	8.3212	10.3246	
17	11.0301	9.05012	16	8.89867	10.2288		16	8.89867	10.1705	_
18	8.53557	8.83494	17	11.0301	9.05324		17	11.0301	8.95117	+
	0.00001		18	8.53557	9.02352	+	18	8.53557	8.943	+-

Run several detector / descriptor combinations and look at the differences in TTC estimation. Find out which methods perform best and also include several examples where camera-based TTC estimation is way off. As with Lidar, describe your observations again and also look into

SIFT								
BRISK			BRIEF			ORB		
mage No	TTC Lide I	TC Camera	Image No	TTC Lida	TTC_Camera	Image No	TTC Lida	TTC Camera
0	NAN	NAN	0	NAN	NAN	0	NAN	NAN
1	12.2891	13.1772	1	12.2891	12.3093	1		
2	13.3547	14.4149	2	13.3547	13.4102	2		
3	16.3845	13.4563	3	16.3845	13.8319	3		
4	14.0764	17.7733	4	14.0764	21.2604	4		
5	12.7299	16.8959	5	12.7299	15.2969	5		
6	13.7511	13.5074	6	13.7511	13.571	6		
7	13.7314	14.4959	7	13.7314	13.9294	7		
8	13.7901	15.0122	8	13.7901	15.6383	8		
9	12.059	14.0486	9	12.059	13.3349	9		
10	11.8642	10.3904	10	11.8642	11.0293	10		
11	11.9682	11.6784	11	11.9682	10.4686	11		
12	9.88711	10.7809	12	9.88711	10.6596	12		
13	9.42504	9.13401	13	9.42504	8.78143	13		
14	9.30215	9.21104	14	9.30215	9.36405	14		
15	8.3212	9.2665	15	8.3212	8.9598	15		
16	8.89867	8.68906	16	8.89867	8.63877	16		
17	11.0301	8.58024	17	11.0301	8.37599	17		
18	8.53557	8.50408	18	8.53557	8.50468	18		
REAK			AKAZE			SIFT		
	Tehi L OTTen	TC Camera		TTC Lida	TTC Camera		shi L OTT	TTC_Camera
0	NAN NAN	NAN	iiiage ivi	NAN NAN	NAN	IIIIage No	NAN	NAN
1	12.2891	12.1142	1	IVAIN	IVAIN	1	12.2891	12.0337
2	13.3547	13.5285	2			2	13.3547	14.0553
3	16.3845	13.8389	3			3	16.3845	13.8308
4	14.0764	21.5677	4			4	14.0764	18.5393
5	12.7299	13.9678	5			5	12.7299	14.7455
6	13.7511	13.2912	6			6	13.7511	13.0735
7	13.7314	16.5626	7			7	13.7314	15.3743
8	13.7901	15.4833	8			8	13.7901	16.102
9	12.059	14.2735	9			9	12.059	13.4055
10	11.8642	11.4301	10			10	11.8642	11.3919
11	11.9682	11.101	11			11	11.9682	11.2887
12	9.88711	10.9762	12			12	9.88711	11.1522
13	9.42504	9.04447	13			13	9.42504	9.13491
14	9.30215	9.39953	14			14	9.30215	9.54474
15	8.3212	9.16231	15			15	8.3212	9.35758
16	8.89867	8.9501	16			16	8.89867	8.593
17	11.0301	8.44892	17			17	11.0301	8.46853
18	8.53557	8.84305	18			18	8.53557	8.40754
10	0.00001	0.04303	10			10	0.00001	0.40734

Conclusion

Best Combination

Mid-term	project
----------	---------

1. FAST + BRIEF (BEST RUN TIME)

- 1. FAST + BRIEF (BEST RUN TIME)
- 2. ORB +ORB (ROBUST IN SCALE CHANGE) 2. SHI-TOMASI + BRIEF (BEST ACCURACY)

Final Project

- 3. SHI-TOMASI + BRISK (BEST MATCH)
- 3. SHI-TOMASI + BRISK (BEST MATCH)