Section 6.3/6.4 pre-lecture comments

Lecture Outline

We will go over kernel and range, and what it means for a transformation to be one-to-one or onto (from 6.3). We will also go over composition of transformations as well as inverse operators (from 6.4).

New terminology

- 1. composition of transformations
- 2. kernel
- 3. range
- 4. one-to-one
- 5. onto
- 6. inverse operator

We can combine transformations together:

Composition The composition of two transformations

 $T_1: \mathbf{R}^n \to \mathbf{R}^k$ and $T_2: \mathbf{R}^k \to \mathbf{R}^m$, denoted $T_2 \circ T_1$, is defined as:

$$T_2 \circ T_1(\mathbf{x}) = T_2(T_1(\mathbf{x}))$$

Ex: If
$$T_1 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 2x \\ 3y \end{bmatrix}$$
 and $T_2 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} x+y \\ x-y \end{bmatrix}$, what is $T_2 \circ T_1$?

What is $T_1 \circ T_2$?

$$T_2 \circ T_1 \begin{pmatrix} x \\ y \end{pmatrix} = T_2 \begin{pmatrix} 2x \\ 3y \end{pmatrix} = \begin{bmatrix} 2x+3y \\ 2x-3y \end{bmatrix}$$

$$T_1 \circ T_2 \begin{pmatrix} x \\ y \end{pmatrix} = T_1 \circ T_2 \begin{pmatrix} x+y \\ x-y \end{pmatrix} = \begin{bmatrix} 2x+2y \\ 3x-3y \end{pmatrix}$$
In general $T_2 \circ T_1 \neq T_1 \circ T_2$

Since both T_1 and T_2 are linear transformations, we can write them in terms of their standard matrices:

Composition and matrix multiplication If $T_1 : \mathbb{R}^n \to \mathbb{R}^k$ and $T_2 : \mathbb{R}^k \to \mathbb{R}^m$ are two linear transformations with standard matrices A_1 and A_2 , respectively, then

- ▶ Their composition $T_2 \circ T_1$ is also a linear transformation, and
- ▶ the standard matrix of $T_2 \circ T_1$ is A_2A_1 . $T_2 \circ T_1(\hat{x}) = A_2A_1\hat{x}$

Using this, we can break up complicated transformations into simpler ones

Ex: Suppose we have a linear transformation T in \mathbb{R}^2 that transforms a vector $\vec{\mathbf{x}}$ as follows:

- 1. First, scale \mathbf{x} by a factor of 2 (in both x and y directions).
- 2. Then, reflect \vec{x} in the x-axis.
- 3. Then, rotate \vec{x} by 90° counterclockwise.

What is the standard matrix of *T*?

$$A_{1} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad A_{3} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$A_{3} A_{2} A_{1} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \neq \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \neq \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$

Kernel of a transformation The **kernel** of a transformation T: $\mathbf{R}^n \to \mathbf{R}^m$, denoted $\ker(T)$, is the set of all vectors \mathbf{x} in \mathbf{R}^n (domain) such that $T(\vec{\mathbf{x}}) = \vec{\mathbf{0}}$.

1)
$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
 (projection onto *x*-axis). What is the kernel?

Kernel as a solution space Let T be a linear transformation with standard matrix A. Then ker(T) is the solution space of $A\mathbf{x} = \mathbf{0}$.

► Kernel of a linear transformation is always a subspace of \mathbb{R}^n (the domain).

$$T((x)) = \begin{cases} x \\ 0 \end{cases} = \begin{cases} 0 \\ 0 \end{cases} \begin{cases} x \\ y \end{cases} = \begin{bmatrix} 0 \\ 0 \end{cases} \qquad \begin{cases} 1 \\ 0 \\ 0 \end{cases} \begin{cases} 0 \\ 0 \end{cases} \qquad \begin{cases} y = t \\ 0 \end{cases} \end{cases}$$

$$Solution \begin{cases} 0 \\ t \end{cases} \qquad Span \begin{cases} 0 \\ 1 \end{cases} \end{cases}$$

Range

Range of a transformation The **range** of a transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, denoted ran(T), is the set of all possible outputs of T; that is:

- ▶ the set of all \mathbf{b} in \mathbf{R}^m (codomain) for which we can find a vector \mathbf{x} in \mathbf{R}^n satisfying $T(\mathbf{x}) = \mathbf{b}$.
- 1) $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ 0 \end{bmatrix}$ (projection onto *x*-axis). What is the range?

2)
$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} y \\ y \end{bmatrix}$$
. What is the range?

1) ran
$$(T)$$
: $\{\{x\}\}$ span $\{\{0\}\}$

fx
$$T(X) = \begin{bmatrix} 3x \\ 4y \end{bmatrix}$$
 ran(T): all possible vectors (all of \mathbb{R}^2 (whole codomain)

Range is a subspace

▶ Range of a linear transformation is always a subspace of \mathbf{R}^m (the codomain).

One-to-one transformations

different

One-to-one A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** if for each $\mathbf{b} \in \mathbb{R}^m$ there is *at most one* \mathbf{x} in \mathbb{R}^n such that $T(\mathbf{x}) = \mathbf{b}$.

ightharpoonup T maps distinct vectors in $m {\bf R}^n$ to distinct vectors in $m {\bf R}^m$.

Ex: Which transformations below are one-to-one?

1)
$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
 (projection onto x-axis). $T\left(\begin{bmatrix} x \\ 2 \end{bmatrix}\right) = T\left(\begin{bmatrix} x \\ 3 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

2)
$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} y \\ x \end{bmatrix}$$
 (reflection in line $y = x$). Yes (-1) :

If $T\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}\right) = T\left(\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right)$

$$\begin{bmatrix} Y_1 \\ x_1 \end{bmatrix} = \begin{bmatrix} Y_2 \\ X_2 \end{bmatrix} \qquad \begin{cases} x_1 = x_2 \\ y_1 = y_2 \end{cases}$$
(same vector)

One-to-one and kernel

A linear transformation T is one-to-one if and only if $\ker(T)$ is $\{\vec{0}\}$.

▶ In other words, the only solution to $T(\vec{x}) = \vec{0}$ is $\vec{x} = \vec{0}$.

Enly trivial solution

Can a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ be one-to-one? Ax=0 A is 2×3 mfx \to free var.

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if for each $\mathbf{b} \in \mathbb{R}^m$ there is at least one x in \mathbb{R}^n such that $T(x) = \mathbf{b}$.

▶ In other words, ran(T) is the whole codomain \mathbf{R}^m .

Ex: Which transformations below are onto?

1)
$$T\begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
 (projection onto x-axis). No not onto

1)
$$T\begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
 (projection onto x-axis). No not onto there is no there is no such that $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$ (reflection in line $y = x$). Yes, onto
$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$$
 $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$ $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ y \end{bmatrix}$ $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ y \end{bmatrix}$ $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ y \end{bmatrix}$ $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ y \end{bmatrix}$ $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ y \end{bmatrix}$ $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ y \end{bmatrix}$ $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ y \end{bmatrix}$ $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ y \end{bmatrix}$ $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} y \\ y \\ y \end{bmatrix}$

 $T\left(\begin{bmatrix}b_2\\b_1\end{bmatrix}\right) = \begin{bmatrix}b_1\\b_2\end{bmatrix}$

A linear transformation T is onto if and only if $T(\mathbf{x}) = \mathbf{b}$ is consistent for all **b** in the codomain \mathbb{R}^m .

 \blacktriangleright In other words, if A is the standard matrix of T, then the column space of A is all of \mathbb{R}^m . (Section 3.5)

Can a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ be onto?

A 18 3×2

Relation between one-to-one and onto when domain and codomain are

the same

Thm. 6.3.14 and Invertible Mtx Thm. (p302)

If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator with standard matrix A then the following are equivalent:

- 1. *T* is one-to-one.
- 2. T is onto.
- 3. A is invertible.

Ex:

1)
$$T\begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$
 (projection onto x-axis). Not onto A=\(\begin{align*} 0 \\ y \end{align*} \) $T\begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$ (reflection in line $y = x$). Onto A=\(\begin{align*} 0 \\ y \end{align*} \) $A=\begin{bmatrix} 0 & 1 \\ 1 & 0 & 1 \\ 0 &$

2)
$$T\begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$$
 (reflection in line $y = x$). Invertible

Note that if $T: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one and onto, then for each **b** in \mathbb{R}^n , there is *exactly one* vector **x** in \mathbb{R}^n such that $T(\mathbf{x}) = \mathbf{b}$. So we can take the

Inverse operator The inverse of a one-to-one and onto operator T: $\mathbf{R}^n \to \mathbf{R}^n$, denoted $T^{-1}: \mathbf{R}^n \to \mathbf{R}^n$ is defined as:

 $ightharpoonup T^{-1}(\vec{\mathbf{x}}') = \vec{\mathbf{x}}$, where $\vec{\mathbf{x}}$ is the unique vector for which $T(\vec{\mathbf{x}}) = \vec{\mathbf{x}}'$.

If the standard matrix of
$$T$$
 is A , what is the standard matrix of T^{-1} ?

 $T(\vec{x}) = \vec{x} \longrightarrow A\vec{x} = \vec{x} \longrightarrow \vec{x} = A^{-1}\vec{x} / \rightarrow T^{-1}(\vec{x}') = \vec{x}$

Ex: What is the inverse operator of
$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} x+y \\ x \end{bmatrix}$$
 and its standard matrix?

Standard mtx of T: $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

$$A^{-1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$T^{-1}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x - y \end{bmatrix}$$

$$T^{-1}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x - y \end{bmatrix}$$