FASIT H2014 AST 1100 1.1) Vet at losning av 2-legeme problemet gir (antar ellipse slik oppgaven sier): $r = \frac{a(1-e^2)}{1+e\cos f}$ Retningen til posisjonsvektoren er ifølge Offgaven Er. Dermed har vi: $\vec{r}_{i} = \frac{a_{i}(1-e_{i}^{2})}{1+e_{i}\cos f} \vec{e}_{r}$ 1.2) Jordas Posisjons vektor danner vinkelen O med Saturus store halvakse og dermed Med Ex. Da far vi r₂ = rjord cost ex + rjord sin t eg Vi ma finne Vjord = avstand sol-jord Jøjen har vi v= all-eg med d=d2 Ite Cosf med e=C2 Vinkelen mellom store halvakse i jordas bane og Pos-vektoren er f= OtxFrfra figuren. Dermed har vi $r_2 = \frac{a_2(1-\ell_2)}{1 + e_2 \cos(\theta + \alpha)} \left[\cos \theta \, \tilde{e}_x + \sin \theta \, \tilde{e}_y \right]$

minus $\cos(\theta + d + \pi) = -\cos(\theta + \alpha)$

FASIT H2014 ASTILOO @ (.3) Avstanden vi skal finne er jo avstanden mellom posisjonene r, og vi: $d = \sqrt{(\vec{r}_1 - \vec{r}_2) \cdot (\vec{r}_1 - \vec{r}_2)}$ Vi skriver først ri ut ved ex og eg: $\vec{r} = \frac{a_1(1-e_1)}{1+e_1\cos f} \left[\cos f e_x + \sin f e_g \right]$ Vi far da: $\frac{1}{r_{1}-r_{2}} = \frac{a_{1}(1-e_{1}^{2})}{1+e_{1}\cos f} \cos f - \frac{a_{2}(1-e_{2}^{2})}{1-e_{2}\cos(\theta+\alpha)} \cos \theta$ + \(\frac{a_1(1-e_1)}{1+e_1\cos f} \) \sinf \(-\frac{a_2(1-e_2)}{1-e_2\cos(\theta_1)} \) \sin\(\frac{7}{e_2} \) d=VA2+B2 Og dermed

Ser da at $\chi = \cos f$ $y = \cos \theta$ $W = \cos(\theta + \alpha)$ $z = \sin \theta$ $V = \sin \theta$

FASIT H2014 AST1100 3

2) Na = 100 (antall testverdier for do) $dao = \frac{aomax}{Na-1} \quad (steg for ao)$ (lakke over ao) FOR i = 0, Na -1 ao = dao ·i $r_S(0) = r_S_{init}$ Ciniatiliser pos. og hast.) r-prol= rp-init V_S(0) = VS_init V-p(0) = Vp-init (lokke for banebengelse) FOR j = 0, N-1 as = - Gms. msol norm(rs(j))3 r_s(j)+do (akselvasjon satelitt) (_ u - Saturn) ap = - 6 mp·msol rp(j) $V_s(j) = V_s(j-1) + as \cdot deltat$ offdater pos. og hast. V-P(j) = V-P(j-1) + ap - deltat $(s(j) = r_s(j-1) + v_s(j) \cdot deltat$ r-p(j) = r-p(j-1) + v-p(j) dellat -F norm(r_s(j)-r-p(j)) < r_saturn THEN ao-final-au Exir Loop IF norm (r-s(j)) > rp-max THEN ao-final = 0 ENDFOR THEN EXIT LOOP IF ao-final =0 ENDFOR ad = ad-final

FASIT H2014 AST1100 @ 4.1) Stefan-Boltzmannslov: $F = GT^{4} \approx 5.67.10^{-8}, (5780)^{4} \frac{W}{m^{2}} = 63 \frac{MW}{m^{2}}$ Dette er fluks = energi areal-tid Finner Luminositet = energi ved à maltiplisere med arealet til hele solens overflate. Da finner vi totalt utstrålt energi Pertid L = 63 mw. 4 T (6.98.108m)2 = 3,87.1026W 4.2) Flaks ved Saturn:

F = A der A = areal av kula med radius

Lik avstanden Sol-Saturn All energien fordeles util delle skallet ved denne avstanden: $F = \frac{3.87 \cdot 10^{26}W}{4\pi r^2} = \frac{15 \frac{W}{m^2}}{15 \frac{W}{m^2}}$ Med Virkningsgrad 12% trenger vi da $A = \frac{E}{F \cdot 0.12} = \frac{100W}{15 \cdot 0.12 \frac{W}{m^2}} = \frac{56m^2}{15 \cdot 0.12 \frac{W}{m^2}}$ 5) Vet at $P_n = \gamma(m, \vec{p})$ hvor $\vec{p} = m\vec{v}$ Fra protonets system så står protonet ivo: V=0 09 /= 1/1-v2 =1 Dermed Profonsystem = (Mproton, 0)

FASIT H2014 AST1100 5 forts. Fra satelittens system: V=0,995 \=\vi-0,995 \\2002 \=\vi-0,995 \\2002 \=\vi-0,995 \\2002 \=\vi-0,995 \\2002 \\2003 Pu = 10. Mproton (1, 0.995) 6/Fra satelitlens ref-syst så er Pu (innkomme proton) = Ygg - Mproton (1, -0.99) $899 = \sqrt{1-0.99^2}$ definerer også $8995 = \sqrt{1-0.995^2}$ Vi skal nå transformere denne fra satelittens ref-syst- til den utsendte stråtens ref-syst. Da har vi en relativ hastighet mellom de to systemene på Vrel = 0.995 Outsendt sträle ref-syst) = (Trel - Vrel Trel) (Ygg Mproton

Pu (inkomne proton) = (-Vrel Trel) (Ygg Mproton (-0.99)) = (8995 8995 8995 899 Mproton + 0.995.0.99 8995 899 Mproton) = 8995 899 Mproton - 1.985

Energi som pritonet har vunnet sett fra utsendt ströles ref. sys: $\Delta E = E_{na} - E_{for} = Y_{995}Y_{99} M_{proton} \cdot 1.985 - M_{proton} = 139.9 M_{proton}$ Kan evt-gi svar i Joule: $\Delta E = 139.9 M_{proton} C^2 = 2.10^{-7}2$