Generative Adversarial Neural Networks Seminaar Presentation

Vrushabh Jambhulkar B140598CS

October 25, 2017

Outline

Introduction

Motivation

Applications

Conclusion

References

Introduction: Supervised Learning VS Unsupervised Learning

Supervised Learning

- Algorithm that analyzes the training data and produces a function, which can be used for mapping new examples.
- Dataset: labelled data
- Examples: Classification algorithms, Regression algorithm

Unsupervised Learning

- ► Algorithm that generates a function to describe the hidden structure from *Unlabeled data*
- Dataset: unlabelled data
- ► Examples: Clustering algorithm, Generative models

Generative Model VS Discriminative Model[gmv09]

Generative Model

It models how the data was generated in order to categorize a data.

Discriminative Model

▶ It does not care about how the data was generated, it simply categorizes a given data.

Generative Adversarial Networks (a.k.a GANs)

- Consists of two models that are trained simultaneously:
 - ► **Generative Model**: a model that generates samples to match the data distribution to fool the discriminative model.
 - ▶ **Discriminative Model**: a model that learns to determine whether a sample is real or fake
- Created by Ian Goodfellow[GPAM+14] in 2014
- Semi-supervised learning
- Two-player minimax game
- Trained until generated samples are indistinguishable from real data

Generative Adversarial Networks (a.k.a GANs)

Figure: Generative Adversarial Networks Structure

Motivation

Problems with other Algorithms[GPAM+14]:

- Require learned probability density functions, which is not always possible.
- Use Markov chain model which is highly time consuming.
- ▶ Do not give better understanding of complex problems.

Applications: WaveNet

WaveNet: A Generative Model for Raw Audio[vdODZ⁺]

- Created by DeepMind at Google
- Generate speech which mimics any human voice and sounds more realistic.
- For Text to Speech
- Previous models[Dee16]:
 - Concatenative TTS(Text To Speech):
 - Use very large database of short speech fragments are recorded from a single speaker and then recombined to form complete audio wave.
 - But they have difficulty in modifying voice without creating a new database.

Parametric TTS:

- Data is stored in the parameters of the model, and the contents and characteristics of the speech can be controlled via the inputs to the model.
- But they do not sound highly natural

WaveNet: A Generative Model for Raw Audio

GAN based model

- Model raw waveform of audio signals directly.
- Human speaker's audio waveform is given as a sample dataset to the discriminator of the GAN and to the generator model.
- Mimic US English and Mandarin Chinese.
- ▶ More realistic [Figure: 2].

Figure: Comparison of different models for TTS(text to speech)

Photo-Realistic Single Image Super Resolution Using a Generative Adversarial Network[LTH⁺]

- ▶ By Christian Ledig et. al.
- Producing a High resolution Image from Low resolution is Image super resolution.
- Many implementation using deep neural network, but they suffer recovering the fine texture details.
- ▶ Using **GANs**, they use perceptual loss function which consists of an adversarial loss and a content loss.
 - ► Adversarial loss: uses natural image manifold using a discriminator network that is trained to dierentiate between the super-resolved images and original photo-realistic images.
 - ► **Content loss**: uses perceptual similarity instead of similarity in pixel space.

Photo-Realistic Single Image Super Resolution Using a Generative Adversarial Network

- they able to recover photo-realistic textures at higher resolutions [Figure: 3].
- ▶ they achieved 4x up-scaling factor.

Figure: Comparison of dierent super resolution methods

Video Imagination from a Single Image with Transformation Generation[CWWC]

- By Baoyang Chen et. al.
- Video Imagination: synthesizing imaginary videos from single static image
- Major problems faced by other algorithms:
 - High dimensionality of pixel space
 - Ambiguity of potential motions
- Applied transformations on the image in a volumetric merge network to reconstruct frames in imaginary video.
- Trained the network in an adversarial way with unsupervised learning.
- Created five-frame videos from a single image. [Figure: 4]

Video Imagination from a Single Image with Transformation Generation

Figure: Video Imagination from a Single Image with Transformation Generation

Conclusion[GPAM+14]

- Markov chains are never needed.
- ► Semi-supervised learning features is obtained from the discriminator or inference net.
- ▶ Eciency improvements: training could be accelerated greatly by divising better methods for coordinating G and D.
- Understand and tackle complex problems.
- ► Generates model as well as additional samples based on inputs.

References I

[CWWC] Baoyang Chen, Wenmin Wang, Jinzhuo Wang, and Xiongtao Chen. Video imagination from a single image with

transformation generation. ArXiv Preprint arXiv:1706.04124.

[Dee16] Google DeepMind.

Wavenet: A generative model for raw audio, 2016.

What is the difference between a generative and [gmv09] discriminative algorithm?, 2009.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.

Generative adversarial nets.

In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances

References II

in Neural Information Processing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.

[LTH+] Christian Ledig, Lucas Theis, Ferenc Huszr, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi.

Photo-realistic single image super-resolution using a generative adversarial network.

ArXiv Preprint arXiv:1609.04802.

[vdODZ⁺] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.

Wavenet: A generative model for raw audio. *ArXiv Preprint arXiv:1609.03499*.