Introducere Descrierea protocoalelor de autentificare de grup Utilitarul Scyther Analiza formala a protocoalelor de Tip I Analiza formala a protocoalelor de Tip II References

Verificarea protocoalelor de autentificare de grup prin Scyther

Andrei Cristian
andrei cristian1@info.uaic.ro

May 19, 2021

- Introducere
- Descrierea protocoalelor de autentificare de grup
- 3 Utilitarul Scyther
 - Modelul adversarului in Scyther
 - Specificarea cerintelor de securitate in Scyther
- 4 Analiza formala a protocoalelor de Tip I
 - Formalizarea cerintelor de securitate
 - Specificare problemelor dificile
- 5 Analiza formala a protocoalelor de Tip II

Introducere
Descrierea protocoalelor de autentificare de grup
Utilitarul Scyther
Analiza formala a protocoalelor de Tip I
Analiza formala a protocoalelor de Tip II
References

Introducere

Lucrarea "Verifying Group Authentication Protocols by Scyther", Huihui Yang, Vladimir Oleshchuk, and Andreas Prinz(University of Agder, Kristiansand, Norway) prezinta analiza a doua protocoale complexe de autentificare de grup folosind Scyther.

Din cauza limitarii utilitarului, doar un subset de proprietati de securitate au fost verificate:

- autentificare mutuala;
- autentificare cu cheie implicita ¹;
- siguranta impotriva atacurilor de impersonare si adversarilor pasivi.

¹proprietatea in care una dintre parti este asigurata ca nicio alta parte in afara de o a doua parte identificata in mod specific nu poate avea acces la o anumita cheie secreta

Scyther

- Pentru verificarea securitatii protocoalelor exista doua abordari principale: securitatea demonstrabila (eng. provable security) si metodele formale (eng. formal methods).
- **Scyther** este un utilitar de verificare formala si este conceput pentru verificarea automata a protocoalelor de securitate.
- Modelul adversarial este predefinit si anume modelul Dolev-Yao. Aceasta abordare simplifica formalizarea protocoalelor de securitate si il face mai usor de folosit pentru utilizatorii noi.
- Poate oferi clase de comportament de protocol spre deosebire de doar urmele de atac (furnizate in cazul altor utilitare).

Protocoale de autentificare de grup

- Scopul principal este imbunatatirea eficientei autentificarii pentru grupuri mari
- Relatia dintre autentificator si utilizatorii care urmeaza sa fie autentificati este unu la unu.
- In acest tip de protocol de autentificare de grup, autentificatorul poate autentifica mai multi utilizatori in acelasi timp.
- Daca in protocol autentificarea are acces:
 - autentificarea mutuala ar trebui sa fie satisfacuta;
 - se va stabili o cheie de sesiune de grup.

Ce urmareste lucrarea

- Extinderea lucrarii [1];
- In lucrarea mentionata, marimea grupului era de 3, iar in aceasta lucrare sunt analizate cazurile pentru grupuri ce contin doi, trei si patru membri.
- Formalizarea protocoalele bazate pe DLP² de tipurile I si II (tip II = autentificatorul are certificat bazat pe PKI³; tip I = autentificatorul nu are certificat) cand numarul de membri din grup este $N(N \ge 3)$.
- Analiza unor noi proprietati ale protocoalelor, precum "Alive" si "Nisynch"

²discrete logharitm problem

³public key infrastructure

Scenarii de utilizare

- Asa cum este prezentat in figura 8, autentificatorul de tip I are o lista de prieteni, dar membrii din aceasta lista se pot sau nu cunoaste intre ei.
 - De fiecare data inainte de intalnirea grupului, autentificatorul intai selecteaza membrii grupului si apoi trebuie sa autentifice fiecare membru din acest grup.
 - Cum toti membrii s-au inregistrat deja ca prieteni ai autentificatorului, presupunem ca acestia partajeaza niste secrete cu autentificatorul inainte de autentificare.

Scenariul de utilizare pentru protocoale de tip I

Figure: Scenariul de utilizare 1: Tipul I

Scenarii de utilizare

- In protocoalele de tip II (figura 10), autentificatorul este un server.
- Trebuie sa autentifice utilizatori pe care nu ii cunoaste neaparat dinainte.
- In acest caz, serverul trebuie sa detina un certificat pentru a realiza autentificarea grupului.

Scenariul de utilizare pentru protocoale de tip II

Figure: Scenariul de utilizare 2: Tipul II

Un framework general

Presupunem ca sunt N membri in grupul de utilizatori \mathbb{U} . Fluxul de mesaje al frameworkului general propus in [3] poate fi descris in urmatorii patru pasi:

Pentru $j \in \{A, N, U_i\}$, ID_j este identitatea lui j, UID este setul de identitati al tuturor utilizatorilor din \mathbb{U} , X este o informatie importanta pe care U_A vrea sa o transmita la tot grupul, C_k este utilizat pentru a calcula C_{k+1} , pt. k=0..N-1, MAC_j este codul de autentificare al mesajului, KP_U este setul de parametri cheie al grupului de utilizatori \mathbb{U} , iar Y contine parametrii cheie generati de

Protocoale bazate pe problema logaritmului discret

Calcularea parametrilor $C_i (0 \le i \le N)$, X si Y ai protocolului bazat pe DLP pentru ambele tipuri Tipul I si Tipul II.

- C_0 este calculat de catre U_A prin $C_0 = \xi(r) = \xi(g_A^r)$, unde $r_A \in [1, p-1]$ este un numar generat aleator, ξ este un mesaj ce va fi criptat prin algoritmul de criptare Elgamal. Similar, $U_i(2 \le i \le N)$ calculeaza $C_i = C_{i-1} \times r^{x_i} = \xi(r^{\sum_{t=1}^i x_t})$.
- ② X este calculat ca solutie a $X \equiv V_i \mod k_i (1 \le i \le N)$, folosind teorema chineza a resturilor (CRT), unde k_i este un secret partajat intre U_A si U_i .

Protocoale bazate pe problema logaritmului discret

- Tipul I: $V_i = \{y_i \oplus K_G, y_i \oplus t_i, g^{m_i}, h_i\}$, iar $h_i = H(ID_A \oplus ID_i \oplus y_A \oplus t_i)$ si este folosit pentru autentificarea lui U_A cu U_i . Aici, y_i este un secret predistribuit intre U_A si U_i , K_G este cheia de sesiune a grupului generata de U_A , t_i este un nonce si g^{m_i} este parametrul cheie generat de U_A pentru a calcula cheia partajata intre U_A si U_i .
- Tipul II: $V_i = SIGN_{SK_A}\{ID_A, ID_i, K_G, G^{m_i}, t_i\}$. Parametrii g^{m_i} si t_i au aceeasi semnificatie ca in cazul Tipului I. Autentificarea lui U_A este realizata prin verificarea folosind semnatura sa in loc de utilizarea lui h_i ca in cazul Tipului I.
- ① U_A calculeaza Y prin rezolvarea $Y \equiv W_i \mod k_i (1 \le i \le N)$, unde $W_i = \{ID_A, ID_i, KP_i\}$ si $KP_i = KP_U \{G^{n_i}\}$.

Protocoale bazate pe problema logaritmului discret

1 Cheia sesiunii dintre U_A si U_I este calculata ca find $g^{m_i n_j}$, in timp ce cheia sesiunii dintre U_i si U_j $(1 \le i, j \le N, i \ne j)$ este calculata ca fiind $g^{n_i n_j}$.

Modelul adversarului in Scyther

- Modelul adversarului in Scyther este predefinit si se bazeaza pe modelul Dolev-Yao [2].
- Nu trebuia sa formalizam abilitatile adversarului cand analizam protocoale.
- Adversarul (notat cu A) poate intercepta mesaje de pe canalul de comunicare si poate invata din mesajele pe care le are.
- Presupunem ca M este setul de cunostinte al adversarului si f este o functie prin care se exprima relatiile intre diferite elemente din M.

Modelul adversarului in Scyther

- k poate reprezenta atat o cheie simetrica, dar si asimetrica, iar k^{-1} este inversul acesteia ($k^{-1} = k$ in cazul cheii simetrice).
- Fie (t_i, t_j) reprezentarea concatenarii intre termenii t_i si t_j .
 - t ∈ M ⇒ M ⊢ t: daca t este un element al lui M, atunci A cunoaste t.
 - $M \vdash (t_1, t_2) \Rightarrow \{M \vdash t_1, M \vdash t_2\}$: daca A cunoaste (t_1, t_2) , atunci A cunoaste ambii termeni t_1 si t_2 .
 - $\{M \vdash t_1, M \vdash t_2\} \Rightarrow M \vdash (t_1, t_2)$: daca A cunoaste ambii termeni t_1 si t_2 , atunci A cunoaste (t_1, t_2) .
 - $\wedge_{1 \leq i \leq n} M \vdash t_i \Rightarrow M \vdash f(t_1, ..., t_n)$: daca A cunoaste toti $t_i (1 \leq i \leq n)$ si f este o functie publica, atunci A poate calcula rezultatul functiei f cu datele de intrare $t_1, ..., t_n$.

Modelul adversarului in Scyther

- $\{M \vdash t, M \vdash k\} \Rightarrow M \vdash \{t\}_k$: daca A cunoaste mesajul t si cheia k, atunci A poate calcula mesajul criptat $\{t\}_k$.
- $\{M \vdash \{t\}_k, M \vdash k^{-1}\} \Rightarrow M \vdash t$: daca A cnoaste mesajul criptat $\{t\}_k$ si cheia de decriptare k^{-1} , atunci A poate decripta criptotextul si obtine astfel plaintextul t.
- In plus, adversarul A poate sa stearga, sa creeze noi mesaje si sa le insereze in canalul de comunicare.

Specificarea cerintelor de securitate in Scyther

- Evenimentul match poate fi folosit in doua moduri diferite:
 - Specificarea constrangerilor de egalitate de exemplu codurile dupa evenimentul match(p₁, p₂) pot fi executate doar daca p₁ este egal cu p₂.
 - Asemanator cu '=' din limbajul de programare C, daca p este o variabila, iar v este o valoare, atunci match(p, v) semnifica asignarea valorii v variabilei p.
- claim este folosit pentru specificarea cerintelor de securitate
 Alive, Nisynch, secret si commitment.
 - **Alive** este o forma de autentificare care are ca scop asigurarea ca intr-adevar partea de comunicare destinata (R) a executat niste evenimente *claim*(R, **Alive**).

Specificarea cerintelor de securitate in Scyther

- Nisynch semnifica faptul ca toate mesajele primite de R sunt intr-adevar trimise de catre partenerul de comunicare (sender) si au fost primite de carte celalalt partener de comunicare (receiver) - claim(R, Nisynch).
- claim(R, secret, rt) inseamna ca R pretinde ca termenul rt sa nu fie stiut de catre adversar.
- daca rt este o cheie de sesiune, folosim claim(R, SKR, rt) pentru a specifica acest lucru.
- Commitment este o promisiune a unei parti din comunicare catre alta parte. De exemplu, claim(R, Commit, R', t) inseamna ca rolul R face o promisiune t catre rolul R'.
 Commitment este folosit pentru a verifica protocoalele impotriva atacurilor de uzurpare (en. impersonation attacks).

Fie *R* si *R'* doua parti de comunicare. Se pretinde ca protocoalele bazate pe problema logaritmului discret indeplinesc urmatoarele cerinte de securitate:

Autentificarea mutuala

- Autentificarea este calea prin care asiguram o parte a comunicarii ca aceasta comunica intr-adevar cu partea dorita.
 Daca autentificarea este indeplinita de ambele parti ale comunicarii, aceasta se numeste autentificare mutuala.
- Autentificarea autentificatorului U_A cu U_i poate fi confirmata daca h'_i este egal cu h_i . Tot grupul poate fi considerat autentificat doar daca C'_N este egal cu C_N . Se va folosi **match** pentru a verifica egalitatea dintre C_N si C'_N .

• In plus, proprietatea **Alive** este necesara pentru a sti ca intr-adevar partile de comunicare sunt cele dorite.

2 Autentificarea implicita a cheii

- Daca un protocol satisface autentificarea implicita a cheii k
 (en. implicit key authentication), iar R cere ca aceasta cerinta
 de securitate sa fie indeplinita, inseamna ca R' este singura
 entitate care are posibilitatea de a sti cheia k.
- Vom folosi claim(R, SKR, k) si claim(R', SKR, k) pentru a exprima aceasta proprietate.

Siguranta impotriva atacurilor de uzurpare

• Atac in care adversarul se comporta sub identitatea unei parti legitime de comunicare.

• Cat timp autentificare mutuala tine, putem pretinde ca niciuna dintre partile de comunicare nu este uzurpata de adversar (verificam daca $h'_i = h_i$ si $C'_N = C_N$).

Siguranta impotriva adversarilor pasivi

- Un adversar pasiv intercepteaza mesaje de pe canalul de comunicare, le analizeaza si incearca sa afle cat mai multe informatii posibile.
- Spre deosebire de un adversar activ, nu poate sa stearga sau sa introduca noi mesaje in canalul de comunicare.
- Principalul scop este sa invete informatii utile din mesajele interceptate.
- In protocoalele de tipul I bazate pe DLP, cea mai utila informatie este cheia grupului (k) si cheile de sesiune (k.

- Utilizam *claim*(*R*, *SKR*, *K*) pentru a exprima aceasta cerinta.
- Furnizarea de forward secrecy si backward secrecy
 - Daca un protocol furnizeaza forward secrecy, atunci expunerea cheilor din sesiunea curenta nu va duce la expunerea cheilor din sesiunile viitoare.
 - Daca un protocol furnizeaza backward secrecy, atunci compromiterea cheilor din sesiunea curenta nu cauzeaza compromiterea cheilor din sesiunile anterioare.
 - Cum Scyther nu permite valori cu durata lunga, in afara de cheile partajate intre doua parti, aceste doua cerinte de securitate nu sunt analizate.

Specificarea problemelor dificile

Diffie-Hellman

- Tipul hashfunction este folosit pentru a declara o functie hash sigura (functie one-way - calculul inversului ei este irealizabil).
- Probleme matematice dificile, precum problema Diffie-Hellman folosita pentru a calcula cheile de sesiune, functii hash criptografice, criptare proxy si MAC pot fi considerate o functie hash one-way, deoarece adversarul definit de Scyther nu poate sa ii calculeze inversul.
- Daca doua parti A si B vor sa stabileasca o cheie de sesiune bazata pe protocolul de schimb de chei Diffie-Hellman, atunci ei trebuie:
 - 1 sa genereze parametrii a si b.
 - 2 sa trimita g^a si g^b unul altuia.

Specificarea problemelor dificile

- 3 sa calculeze cheile lor de sesiune $(g^b)^a$, respectiv $(g^a)^b$.
- Formalizat, declaram doua **hashfunction** g and h si apoi scriem cheile de sesiune ca h(g(b), a) si h(g(a), b). Similar, folosim **hashfunction** H, C si MAC pentru a specifica functii hash, criptare proxy si MAC.

Teorema chineza a resturilor (CRT)

- In protocoalele originale [3], parametrii X si Y sunt calculati prin $X \equiv V_i \mod k_i$ $(1 \le i \le N)$ si $Y \equiv W_i \mod k_i$ $(1 \le i \le N)$ folosind CRT, unde k_i este o valoare cu termen lung partajata intre U_A si U_i .
- Cum Scyther nu suporta valori cu termen lung in afara de chei simetrice/asimetrice, se va folosi o cheie simetrica intre U_A si U_i pentru a simula aceasta valoare k_i.

Specificarea problemelor dificile

Secrete prepartajate

- x_i $(1 \le i \le N)$ este o alta valoare partajata pe termen lung. Ea este folosita pentru autentificarea mutuala.
- Cum cheia simetrica $k(U_A, U_i)$ este deja folosita pentru a simula k_i , x_i trebuie formalizat diferit.
- Cum x_i este o valoare cu termen lung folosita pentru autentificarea mutuala, ar trebui sa fie de ajuns ca x_i sa fi fost deja partajat intre U_A si U_i inainte de autentificarea mutuala.
- Asadar, x_i va fi inclus in X. Cum parametrii din V_i pot fi extrasi doar de U_i , aceasta asumptie este rezonabila si realistica.

Analiza formala a protocoalelor de Tip II

- Specificarea protocoalelor de tip II bazate pe DLP este similara ca in cazul celor de tip I: formalizarea problemelor dificile si a cerintelor de securitate sunt la fel, exceptie facand autentificarea mutuala.
- Comparand cu formalizarea protocoalelor de tip I bazate pe DLP, exista doua mari diferente:
 - **1** Cand U_A trimite mesaje ce includ V_i catre toti membrii grupului, in protocolul de tip I, h_i este inclus pentru autentificarea mutuala. Totusi, in protocoalele de tip II, U_A isi foloseste semnatura pentru autentificare.

Analiza formala a protocoalelor de Tip II

② Cand utilizatorii din group primesc aceste mesaje de la U_A , ei nu mai trebuie sa verifice egalitatea lui h_i pentru a incheia autentificarea lui U_A . In schimb, ei verifica semnatura lui U_A . Aceasta proprietate poate fi asigurata prin securitatea semnaturilor bazate pe PKI, deci nu trebuie verificata aici.

Bibliografie

- H. Yang, V. Oleshchuk, and A. Prinz, "Verifying group authentication protocols by scyther," *J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl.*, vol. 7, pp. 3–19, 2016.
- D. Dolev and A. Yao, "On the security of public key protocols," *IEEE Transactions on Information Theory*, vol. 29, no. 2, pp. 198–208, 1983. DOI: 10.1109/TIT.1983.1056650.
- H. Yang, L. Jiao, and V. A. Oleshchuk, "A general framework for group authentication and key exchange protocols," in Foundations and Practice of Security, J. L. Danger, M. Debbabi, J.-Y. Marion, J. Garcia-Alfaro, and N. Zincir Heywood, Eds., Cham: Springer International Publishing, 2014, pp. 31–45, ISBN: 978-3-319-05302-8.