Mathematical Techniques in the Approximation Theory that are Rooted in Neural Networks - Yarotsky's Theorem

Ko, Suh, Huo

Georgia Tech

Summer of 2020

Class of Functions to be approximated

- Paper considers the Sobolev spaces $\mathcal{W}^{n,\infty}([0,1]^d)$ with $n=1,2,\ldots$ Recall that $\mathcal{W}^{n,\infty}([0,1]^d)$ is defined as the space of functions on $[0,1]^d$ lying in L^∞ along with their weak derivatives up to order n.
- The norm in $\mathcal{W}^{n,\infty}([0,1]^d)$ can be defined as :

$$||f||_{\mathcal{W}^{n,\infty}([0,1]^d)} = \max_{\mathbf{n}:|\mathbf{n}| \le n} \operatorname{ess\,sup}_{x \in [0,1]^d} |D^{\mathbf{n}}f(x)|,$$

where boldface character **n** denotes $\mathbf{n} = \{n_1, \dots, n_d\}$.

■ We denote $F_{n,d}$ the unit ball in $W^{n,\infty}([0,1]^d)$:

$$F_{n,d} = \{ f \in \mathcal{W}^{n,\infty}([0,1]^d) : \|f\|_{\mathcal{W}^{n,\infty}([0,1]^d)} \le 1 \}.$$

Statement of Theorem 1.

(Theorem 1.) For any d, n and $\varepsilon \in (0,1)$, there is a ReLU network architecture that

- is capable of expressing any function from $F_{d,n}$ with error ε ;
- 2 has the depth at most $c(\ln(1/\varepsilon) + 1)$ and at most $c\varepsilon^{-d/n}(\ln(1/\varepsilon) + 1)$ weights and computation units, with some constants c = c(d, n).

Key idea

- Local Taylor Approximation (LTA): We split the input space into small hyper-cubes and construct a network that approximates a local Taylor expansion on each of these hyper-cubes.
- Approximation of multiplication operator: We need to build networks that for given input (x, y) approximately compute the product xy.

Yarotsky (17) vs Hieber (20)

- Although two key ideas for Theorem 1. are same as those presented in Hieber's paper, there are differences between two papers for some details.
- Following table summarizes those differences :

	Yarotsky (17)	Hieber (20)
Function Class	Sobolev Space	eta-hölder
Parameter Bound	Unbounded	Bounded by 1
Partition of Unity	$\prod_{j=1}^d \Psi(3Nx_j-3m_j)$	$\left \prod_{j=1}^d (1-N x_j-x_j^\ell)_+\right $
Product operator	$x^2 \rightarrow xy$	$x(1-x) \rightarrow xy$

Yarotsky (17) vs Hieber (20)

- Similarly with Hieber's work, in Yarotsky's work, a function $f \in \mathcal{W}^{n,\infty}([0,1]^d)$ is approximated via LTA with partition of unity: $\phi(\mathbf{m}) = \prod_{i=1}^d \Psi(3Nx_i 3m_i)$, for $\mathbf{m} = (m_1, m_2, \dots, m_d)$.
- Detailed explanations on $\Psi(\cdot)$ is deferred in later Section.
- We denote the approximated function as $f_1(x)$:

$$f_1(\mathbf{x}) = \sum_{\mathbf{m} \in \{0,1,\dots,N\}^d} \sum_{\alpha: |\alpha| \le n-1} \frac{D^{\alpha} f\left(\frac{\mathbf{m}}{N}\right)}{\alpha!} \underbrace{\phi(\mathbf{m}) \left(\mathbf{x} - \frac{\mathbf{m}}{N}\right)^{\alpha}}_{=(1)}.$$

- The underbraced term 1 is the product of at most d + n 1 piece-wise linear univariate factor.
- This term is "directly" approximated through chained applications of product operator \tilde{X} (Prop 3.), eventually leading a different construction of neural network with that of Hieber's.

Yarotsky (17) vs Hieber (20)

- In Hieber's work, he constructs $Hat^d(x_1, x_2, \ldots, x_d)$ for the approximation of partition of unity, $\prod_{j=1}^d (1 N|x_j x_j^\ell|)_+$ and construct $Mon^d_{m,\beta}(x_1, \ldots, x_d)$ for the approximation of $P^\beta_{x_\ell}(x)/B + 1/2$, respectively. Subsequently, concatenate them into one network.
- Note that the constructions above are due to the assumption that all the parameters are bounded by 1.
- In Yarotsky's work, the unbounded assumption on parameter values allows different construction of product operator, \tilde{X} , using squared function x^2 . This naturally leads to the direct approximation of the term ①.
- Detailed proof will be provided in following Section.

Proposition 2.

(**Proposition 2.**) The function $f(x) = x^2$ on the segment [0,1] can be approximated with any error $\varepsilon > 0$ by a ReLU network having the depth and the number of weights and computation with $\mathcal{O}(\ln(1/\varepsilon))$.

Key idea

- For any $m \ge 0$, construct a function f_m which is a piece-wise linear interpolation of $f(x) = x^2$ with $2^m + 1$ uniformly distributed breakpoints $\frac{k}{2^m}$, $k = 0, \dots, 2^m$.
- 2 Calculate $f_{m-1} f_m$ and find out how this can be expressed in terms of "sawtooth" function, which will be detailed later.
- 3 After obtaining f_m through telescoping sum, calculate the upper-bound for $|f f_m|_{\infty}$.
- I Think how f_m can be represented as neural network architecture.

Sawtooth function (Telgarsky, 15)

Consider the "tooth" function (or "mirror") function $g:[0,1] \rightarrow [0,1]$,

$$g(x) = \begin{cases} 2x, & \text{if } x < \frac{1}{2} \\ 2(1-x), & \text{if } x \ge \frac{1}{2}, \end{cases}$$

and iterated functions

$$g_s(x) = \underbrace{g \circ g \circ \cdots \circ g}_{s}(x).$$

Telgarsky has shown that g_s is a "sawtooth" function with 2^{s-1} uniformly distributed "teeth" (each application of g doubles the number of teeth):

$$g_s(x) = \begin{cases} 2^s \left(x - \frac{2k}{2^s}\right), & \text{if } x \in \left[\frac{2k}{2^s}, \frac{2k+1}{2^s}\right], k = 0, 1, \dots, 2^{s-1} - 1, \\ 2^s \left(\frac{2k}{2^s} - x\right), & \text{if } x \in \left[\frac{2k-1}{2^s}, \frac{2k}{2^s}\right], k = 1, 2, \dots, 2^{s-1}. \end{cases}$$

$$f_{m-1}(x) - f_m(x)$$

For $x \in \left[\frac{2k}{2^m}, \frac{2k+1}{2^m}\right]$, we can construct $f_{m-1}(x)$ and $f_m(x)$ such that

$$f_{m-1}(x) = \frac{4k+2}{2^m}x - \frac{4k^2+4k}{2^{2m}},$$

$$f_m(x) = \frac{4k+1}{2^m}x - \frac{4k^2+2k}{2^{2m}}.$$

Then, we know the difference of two terms is

$$f_{m-1}(x)-f_m(x)=\frac{2^m(x-\frac{2k}{2^m})}{2^{2m}}.$$

$f_{m-1}(x) - f_m(x)$ (continue.)

From the previous slide, we know that refining the interpolation from f_{m-1} to f_m amounts to adjusting it by a function proportional to a "sawtooth" function:

$$f_{m-1}(x) - f_m(x) = \frac{g_m(x)}{2^{2m}}.$$

Through a telescoping sum, for $m \ge 0$,

$$f_m(x) = x - \sum_{s=1}^m \frac{g_s(x)}{2^{2s}}.$$

A bound on $|f - f_m|_{\infty}$

For $\forall x \in [0, 1]$, we can obtain a bound for $|x^2 - f_m(x)|$: First, we can obtain f_m for arbitrary $k \in \{0, 1, \dots, 2^m - 1\}$,

$$f_m(x) = \frac{2k+1}{2^m}x - \frac{k^2+k}{2^{2m}}.$$

Since $f_m(x) \geq x^2$ for $x \in [0, 1]$,

$$|f(x) - f_m(x)| = \frac{2k+1}{2^m} x - \frac{k^2 + k}{2^{2m}} - x^2$$
$$= -\left(x - \frac{k + \frac{1}{2}}{2^m}\right)^2 + 2^{-2m-2}$$
$$< 2^{-2m-2}.$$

Neural network architecture of $f_m(x)$

Note that g can be implemented via finite ReLU network :

$$g(x) = 2\sigma(x) - 4\sigma(x - \frac{1}{2}) + 2\sigma(x - 1).$$

Then g_m can be constructed through ReLU neural network with

- Computation Units: 3m,
- Hidden Layers (depth) : *m*,
- Number of nonzero weights : 9(m-1) + 6.

 f_m only involves $\mathcal{O}(m)$ linear operations and compositions of g, we can implement f_m by a ReLU network having depth and the number of weights and computation units all being $\mathcal{O}(m)$. Using an identity $\varepsilon = 2^{-2m-2}$ yields the claim.

Neural network architecture of $f_m(x)$

Figure 1: Realization of f_4 . A feedforward neural network having 1 input unit (diamond), 1 output unit (square), and $4 \times 3 = 12$ units with ReLU activation (circles).

Proposition 3.

(**Proposition 3.**) Given M > 0 and $\varepsilon \in (0,1)$, there is a ReLU network η with two input units that implements a function \tilde{x} : $\mathbb{R}^2 \to \mathbb{R}$ so that

- for any inputs x, y, if $|x| \le M$ and $|y| \le M$, then $|\tilde{X}(x, y) xy| \le \varepsilon$;
- if x = 0 or y = 0, the $\tilde{X}(x, y) = 0$;
- the depth and the number of weights and computation units in η is not greater than $c_1 \ln(1/\varepsilon) + c_2$ with an absolute constant c_1 and a constant $c_2 = c(M)$.

Key idea

Use a polarization identity :

$$xy = \frac{1}{2} (\underbrace{(x+y)^2}_{} - \underbrace{x^2}_{} - \underbrace{y^2}_{})$$

2 Approximate three underbraced terms with f_m in Proposition 2.

Proof of Proposition 3.

- Let $\tilde{f}_{sq,\delta}$ be the approximate squaring function from Proposition 2 such that $\tilde{f}_{sq,\delta}(0) = 0$ and $|\tilde{f}_{sq,\delta}(x) x^2| < \delta$ for $x \in [0,1]$.
- WLOG set $M \ge 1$, for $|x|, |y| \le M$, we have $|x + y| \le 2M$. Using polarization identity, we can construct $\tilde{X}(x, y)$ as follows:

$$\tilde{X}(x,y) = 2M^2 \left(\tilde{f}_{sq,\delta} \left(\frac{|x+y|^2}{2M} \right) - \tilde{f}_{sq,\delta} \left(\frac{|x|^2}{2M} \right) - \tilde{f}_{sq,\delta} \left(\frac{|y|^2}{2M} \right) \right)$$

- By setting $\delta = \frac{\varepsilon}{6M^2}$, we can get the error bound with ε for any $\varepsilon \in [0,1]$, $|\tilde{X}(x,y) xy| \le \varepsilon$.
- Construction of \tilde{X} only involves with three instances of $\tilde{f}_{sq,\delta}$ and finitely many linear and ReLU operations,
- Using Proposition 2, we can implement \tilde{X} by a ReLU network such that its depth and the number of computation units and weights $\mathcal{O}(\ln(1/\delta))$, which is $\mathcal{O}(\ln(1/\epsilon) + \ln M)$.

Proof of Theorem 1.

First Step

- Neural Network \tilde{f} is not directly used to approximate $f \in \mathcal{W}^{n,\infty}([0,1]^d)$, instead it is used to approximate the approximated f through local Taylor expansion, where the paper denotes it as $f_1(X)$.
- For $X \in [0,1]^d$, the closeness between functions is measured in a L^{∞} sense. Approximation error can be decomposed with the help of triangular inequality as follows:

$$\left\|\tilde{f}-f\right\|_{L^{\infty}[0,1]^d} \leq \underbrace{\|f_1(X)-f(X)\|_{L^{\infty}[0,1]^d}}_{\bigoplus} + \underbrace{\left\|\tilde{f}(x)-f_1(X)\right\|_{L^{\infty}[0,1]^d}}_{\textcircled{2}}.$$

■ We want to control both terms ① and ② less than or equal to $\frac{\varepsilon}{2}$ respectively. In the first setp, we will focus on controlling ①.

■ Recall that a function $f \in \mathcal{W}^{n,\infty}([0,1]^d)$ is approximated via LTA with partition of unity formed by a grid of $(N+1)^d$ functions $\phi(m)$ for positive integer N:

$$\sum_{m} \underbrace{\prod_{j=1}^{d} \Psi(3N(x_{j} - m_{j}/N))}_{=\phi(m)} = 1, x \in [0, 1]^{d},$$

where $m \in \{0, 1, ..., N\}^d$.

• $\Psi(x)$ is the univariate trapezoid function : $\Psi(x) = \sigma(x+2) - \sigma(x+1) - \sigma(x-1) + \sigma(x-2)$ supported on [-2,2], equal to 1 on [-1,1], and linear on $[-2,-1] \cup [1,2]$.

■ The approximated function via Local Taylor Approximation, we can construct f_1 as follows:

$$f_1(\mathbf{x}) = \sum_{\mathbf{m} \in \{0,1,\dots,N\}^d} \sum_{\alpha: |\alpha| \le n-1} \frac{D^{\alpha} f(\frac{\mathbf{m}}{N})}{\alpha!} \phi(\mathbf{m}) \left(\mathbf{x} - \frac{\mathbf{m}}{N}\right)^{\alpha}$$

■ We denote the degree-(n-1) Taylor Polynomial for the function f at $x = \frac{m}{N}$ as P_m , and rewrite $f_1(x)$ as follows:

$$f_{1}(\mathbf{x}) = \sum_{\mathbf{m} \in \{0,1,...,N\}^{d}} \sum_{\alpha: |\alpha| \leq n-1} \frac{D^{\alpha} f\left(\frac{\mathbf{m}}{N}\right)}{\alpha!} \left(\mathbf{x} - \frac{\mathbf{m}}{N}\right)^{\alpha} \phi(\mathbf{m})$$
$$= \sum_{\mathbf{m} \in \{0,1,...,N\}^{d}} P_{m}(\mathbf{x}) \phi(\mathbf{m}).$$

Observe $f(x) \in \mathcal{W}^{n,\infty}([0,1]^d)$ can be written as follows by Multivariate Taylor's Theorem: for any $\xi \in [0,1]$ and any $a \in [0,1]^d$,

$$f(x) = \sum_{\alpha: |\alpha| \le n-1} D^{\alpha} f(a) \frac{(x-a)^{\alpha}}{\alpha!} + \sum_{\alpha: |\alpha| = n} D^{\alpha} f(a+\xi(x-a)) \frac{(x-a)^{\alpha}}{\alpha!}.$$

Let $a = \frac{m}{N}$,

$$|f(x)-f_1(x)|=\left|\sum_m\phi_m(x)\big(f(x)-P_m(x)\big)\right|.$$

In the above identity, we use the fact $\sum_{m} \phi_{m}(x) = 1$.

Control on 1

$$\left|\sum_{m} \phi_{m}(x) \left(f(x) - P_{m}(x)\right)\right| \leq \sum_{\substack{m: |x_{k} - \frac{m_{k}}{N}| < \frac{1}{N} \forall k}} |f(x) - P_{m}(x)|$$

$$\leq 2^{d} \max_{\substack{m: |x_{k} - \frac{m_{k}}{N}| < \frac{1}{N} \forall k}} |f(x) - P_{m}(x)|$$

$$\leq \frac{2^{d} d^{n}}{n!} \left(\frac{1}{N}\right)^{n} \max_{\mathbf{n}: |\mathbf{n}| = n} \underset{x \in [0, 1]^{d}}{\operatorname{ess sup}} |D^{\mathbf{n}}f(x)|$$

$$\leq \frac{2^{d} d^{n}}{n!} \left(\frac{1}{N}\right)^{n}.$$

In the first inequality, we use the support condition of $\phi(m)$ and the fact $\|\phi_m\|_{\infty} = 1$. In the second inequality, the fact that any $x \in [0, 1]^d$ belongs to the support of at most 2^d functions ϕ_m is used. In the third, the standard bound for Taylor remainder and in the last inequality, the definition of $\mathcal{W}^{n,\infty}([0,1]^d)$ are used.

It follows that if we choose

$$N = \lceil \left(\frac{n!}{2^d d^n} \frac{\varepsilon}{2} \right)^{-1/n} \rceil,$$

then the error follows

$$\|f-f_1\|_{\infty} = \left|\sum_m \phi_m(x) (f(x)-P_m(x))\right| \leq \frac{2^d d^n}{n!} \left(\frac{1}{N}\right)^n \leq \frac{\varepsilon}{2}.$$