Daftar Isi

- 1. Latar Belakang
- 2. Tujuan
- 3. Studi Literatur / Tinjauan Pustaka
- 4. Metodologi
 - 4.1 Data
 - 4.2 Algoritma
 - 4.3 Rancangan Program
- 5. Implementasi
 - 5.1 Input & Output Program
 - 5.2 Tampilan Program (GUI)
 - 5.3 Cara Penggunaan
- 6. Pengujian
- 7. Analisis
- 8. Kesimpulan & Saran
- 9. Daftar Pustaka

1. Latar Belakang

- Masalah Utama:
 - 1. Dataset awal hanya berisi 20 baris, tidak mencukupi untuk analisis mendalam atau pelatihan model ML.
 - 2. Banyak nilai kosong (NaN) yang dapat mengganggu hasil analisis.
- Kebutuhan:

1. Membuat dataset yang lebih besar dan realistis agar model prediksi lebih akurat.

Solusi:

- 1. **Augmentasi Data** Menambah jumlah baris menjadi 200 menggunakan sintesis berdasarkan distribusi asli.
- 2. **Imputasi Nilai Kosong** Mengisi NaN dengan teknik median (numerik) dan model klasifikasi (kategorik).
- 3. Exploratory Data Analysis (EDA) Visualisasi pola data sebelum modeling.
- 4. **Prediksi Machine Learning** Random Forest untuk prediksi status nikah dan pendapatan.
- 5. **Web App Interaktif** Streamlit sebagai front-end untuk prediksi individual dan massal.

2. Tujuan

1. Meningkatkan Kualitas Dataset

Augmentasi & imputasi sehingga dataset siap pakai.

2. Eksplorasi Data

Menyajikan insight lewat visualisasi.

3. Membangun Model Prediksi

Status nikah & pendapatan menggunakan ML.

4. Menyediakan Aplikasi Web

Antarmuka mudah digunakan dengan Streamlit.

3. Studi Literatur / Tinjauan Pustaka

• Augmentasi Data

 Teknik seperti SMOTE umum untuk menambah sampel; di sini digunakan sintesis sederhana berdasarkan distribusi asli.

• Imputasi Nilai Kosong

- o Median Imputation untuk numerik (tahan terhadap outlier).
- o Model-Based Imputation (Random Forest) untuk kategorik.

Random Forest

- Classifier: memprediksi kategori (status nikah).
- o Regressor: memprediksi nilai kontinu (pendapatan).

Streamlit

o Framework Python untuk web app "zero-boilerplate".

4. Metodologi

4.1 Data

 Dataset Awal: 20 baris, kolom ID, Umur, Pendidikan, Pendapatan, Status Nikah.

Augmentasi

Umur: 17–80 tahun

Pendidikan: SMA, D3, S1, S2

- Pendapatan sesuai jenjang (SMA Rp6 jt; D3 Rp7.5 jt; S1 Rp9 jt; S2 Rp12 jt)
- o Hasil: ≥200 baris

• Imputasi

- Median untuk Umur & Pendapatan
- o Random Forest Classifier untuk Status Nikah

4.2 Algoritma

1. RandomForestClassifier

- Target: Status Nikah (Kawin/Belum)
- Kelebihan: tahan noise, menangani variabel kategorik.

2. RandomForestRegressor

- o Target: Pendapatan
- o Kelebihan: memodelkan hubungan non-linear.

4.3 Rancangan Program

```
penduduk_analisis_app/
  - data/
    --- dataset_penduduk.csv
    — generated_data.csv
    L— cleaned_data.csv
  - model/
    -- label_encoders.pkl
    --- model_status_nikah.pkl
    ___ model_pendapatan.pkl
  - output/
    eda_visualization.png
  - generate_data.py
  - clean_data.py
  - eda.py
  - train_model.py
   app.py
```

— requirements.txt

5. Implementasi

5.1 Input & Output Program

- Input:
 - dataset_penduduk.csv (20 baris)
 - o Kolom: Umur, Pendidikan, Pendapatan, Status Nikah
- Output:
 - cleaned_data.csv (setelah imputasi)
 - eda_visualization.png
 - Model .pkl (classifier & regressor)
 - o Aplikasi Streamlit

5.2 Tampilan Program (GUI)

- **Sidebar**: Menu "Beranda", "Statistik & Visualisasi", "Prediksi Individual", "Prediksi Massal".
- Prediksi Individual: Form untuk Umur & Pendidikan, tampilkan hasil.
- **Prediksi Massal**: Upload CSV → model → download hasil.

5.3 Cara Penggunaan

Jalankan cleaning & training

```
python generate_data.py
python clean_data.py
python train_model.py
```

Luncurkan web app

```
streamlit run app.py
```

Prediksi Individual: Isi form → klik "Predict".

Prediksi Massal: Unggah file → unduh hasil_prediksi_massal.csv.

6. Pengujian

• Akurasi Status Nikah: ~90%

• R² Pendapatan: ~0.85

• Uji antarmuka: pastikan tidak ada error saat upload/download.

7. Analisis

• EDA Insights:

- Mayoritas penduduk berpendidikan SMA.
- o Pendapatan meningkat seiring jenjang pendidikan.
- o Proporsi "Kawin" lebih tinggi di jenjang S1–S2.

• Performansi Model:

Hasil prediksi sesuai pola data.

8. Kesimpulan & Saran

Kesimpulan

- Dataset berhasil diperluas & dibersihkan.
- Model Random Forest memadai untuk prediksi.
- Aplikasi Streamlit user-friendly.

Saran Pengembangan

- 1. Tambahkan fitur demografi lain (jenis kelamin, pekerjaan).
- 2. Integrasi database (PostgreSQL/MongoDB).
- 3. Sediakan REST API (FastAPI).
- 4. Deployment di Cloud & versi mobile.

9.	Daftar Pustaka
	Scikit-learn contributors. (n.d.). Scikit-learn: Machine learning in Python. https://scikit-learn.org
	Streamlit contributors. (n.d.). Streamlit: Create beautiful data apps in hours, not weeks . https://docs.streamlit.io
	Pandas development team. (2024). pandas: Powerful data structures for data analysis, time series, and statistics. Version 2.2.3. https://pandas.pydata.org/docs
	Matplotlib contributors. (2024). <i>Matplotlib: Visualization with Python</i> . Version 3.9.0. https://matplotlib.org
	Seaborn contributors. (n.d.). seaborn: Statistical data visualization . https://seaborn.pydata.org