PREDICTIVE MODELING FOR CARDIOVASCULAR DISEASES

Ву,

Shafiq Abubacker

Introduction

Framingham Cardiovascular Study: Predictive Modeling for CHD Risk

- The Framingham, Massachusetts, cardiovascular study aims to predict the 10-year risk of coronary heart disease (CHD) in residents.
- Dataset comprises 4,000+ records with 15 attributes, rich in demographic, behavioral, and medical risk factors.
- Develop a predictive model for early CHD risk identification, enabling timely intervention and personalized healthcare.

Project Workflow

Data Overview

- Individual Identifier:
 - id: Unique number for each person
- Personal Information:
 - age: Age in years
 - sex: Gender (Male or Female)
- Health Behaviors:
 - is_smoking: Smoking status (YES or NO)
 - cigsPerDay: Cigarettes smoked per day (may be missing)
- Medical History:
 - prevalentStroke: Previous stroke (1 for Yes, 0 for No)
 - prevalentHyp: Hypertension (1 for Yes, 0 for No)
 - diabetes: Diabetes (1 for Yes, 0 for No)
- Health Measures:
 - totChol: Total cholesterol (may be missing)
 - sysBP: Systolic blood pressure
 - diaBP: Diastolic blood pressure
 - BMI: Body mass index (may be missing)
 - heartRate: Heart rate (one missing value)
 - glucose: Glucose level (many missing values)
- Target Variable:
 - TenYearCHD: Coronary heart disease in the next 10 years (1 for Yes, 0 for No)
- Missing Values: Several features have missing data, requiring appropriate handling.
- Target Variable: The goal is to predict 10-year CHD risk based on other features.

Data Types:

Integer: id, age, disease

indicators

Float: education, health

measures

Object: sex, smoking status

Data Pre-processing

Checked for duplicate values in the dataset and found there were no duplicates

 Distribution of Ten-Year Coronary Heart Disease (CHD) Risk in the Dataset

Ten Year CHD Distribut

 Relationship Between Age and Ten-Year Coronary Heart Disease (CHD) Risk

Exploring the Relationship Between Education and

Categorical Variables Distribution

Categorical Variables Distribution

Categorical Variables Distribution

- In the 'is_smoking' column, the distribution is relatively even. However, other health-related columns like 'BPMeds,' 'prevalentStroke,' 'prevalentHyp,' and 'diabetes' exhibit imbalances, with fewer positive cases.
 - The 'TenYearCHD' column also shows an imbalance, indicating a lower count for positive cases compared to negative cases.
- Total cholesterol and BMI distributions are similar, suggesting a potential linear relationship. This could be helpful for understanding how these two health metrics influence each other.
- Glucose distribution is highly right-skewed with many outliers. These outliers represent individuals with significantly higher glucose levels than the majority.

Numeric Feature Distributions Through Box Plots

- Cigarettes Per
 Day: Right skewed, majority
 smokes less, potential
 high-smoking outliers.
- Diastolic Blood
 Pressure: Symmetrical,
 no major outliers.
- Body Mass
 Index: Right skewed, majority lower
 BMI, potential high-BMI
 outliers.

Numeric Feature Distributions Through Box Plots

- Strong positive
 correlation: Systolic and diastolic
 blood pressure have a strong
 positive correlation, meaning they
 tend to increase or decrease
 together.
- Moderate positive correlation: Diabetes and glucose have a moderate positive correlation (0.62), suggesting a tendency for higher glucose levels with diabetes.
- Negligible influence: Education level doesn't appear to be significantly correlated with CHD, implying it likely has little influence on CHD risk and can be dropped from the analysis.

Hypothesis Testing

Feature Engineering

Outlier Handling Using Row Removal

- Extreme values in specific features were removed to ensure data representativeness.
- □ Thresholds were set based on domain knowledge and medical guidelines:
 - Cigarettes/day > 50
 - Diastolic BP > 140
 - Systolic BP > 250
 - BMI > 50
 - Heart rate > 130
 - Glucose > 300
 - Total cholesterol > 500

Label Encoding for Categorical Variables:

- Categorical variable has ordinal relationship (meaningful order).
- Assigns unique integers to categories based on their order.

Feature Manipulation VIF Technique

Skewness Correction

```
Original Skewness:
age
cigsPerDay
totChol
BMI
heartRate
```

```
#Applying Transformations

# Skew for sqrt transformation
new_df["cigsPerDay"] = np.sqrt(new_df['cigsPer

new_df["age"] = np.log10(new_df['age']+1)
new_df["totChol"] = np.log10(new_df['totChol']
new_df["meanBloodPressure"] = np.sqrt(new_df['])
```

age cigsPerDay totChol BMI heartRate

Scaling Data

- Focused on critical health parameters: age,
 cigarettes per day, total cholesterol, mean blood
 pressure, BMI, heart rate, and glucose.
- Applied Z-score normalization using
 StandardScaler to standardize feature values.

 Ensures data transformation with a mean of 0 and a standard deviation of 1.

Data Splitting & Handling Imbalanced Dataset

Strategic Splitting:

- 80% training set for model learning.
- 20% test set for unbiased performance evaluation.
- Balances model training with generalization assessment.

Addressing Imbalance:

- SMOTE oversamples minority class to create synthetic samples.
- Tomek links remove overlapping instances to improve class separation.

SMOTE's Purpose:

Counteracts class imbalance by generating additional minority class data.

□ Tomek Links' Purpose:

Enhances class distinction by eliminating potentially confusing instances.

Model Implementation

□ Model Selection:

- Logistic Regression A linear model used for binary classification, estimating the probability of an instance belonging to a particular class.
- Decision Tree A tree-like model that recursively splits data based on feature conditions to make decisions or classifications.
- **Random Forest-** An ensemble of decision trees that aggregates their predictions to improve accuracy and robustness.
- **SVM** A model that finds a hyperplane to separate data into classes, maximizing the margin between them in a high-dimensional space.
- **XGBoost** An efficient gradient boosting algorithm that sequentially builds a series of weak learners to enhance predictive performance.
- **Naive Bayes** A probabilistic classification algorithm based on Bayes' theorem, assuming independence between features for simplicity.

Model Comparison

Model	Accuracy	Precision (Class 1)	Recall (Class 1)	F1-Score (Class 1)
Logistic Regression	0.642	0.27	0.75	0.4
Decision Tree	0.813	0.31	0.15	0.2
KNN	0.663	0.21	0.42	0.28
Random Forest	0.786	0.22	0.13	0.16
SVM	0.623	0.27	0.78	0.4
XGBoost	0.717	0.27	0.48	0.35
Naive Bayes	0.69	0.28	0.61	0.38

Decision Tree: Highest accuracy but risks overfitting due to lower precision and recall.

Random Forest: Balanced precision and recall, sacrificing some accuracy compared to Decision Tree.

XGBoost: Good balance across all metrics (accuracy, precision, recall).

Naive Bayes: Decent accuracy with balanced metrics, simpler to implement.

KNN: Moderate accuracy, falls behind top performers in precision and recall.

Logistic Regression: Lowest accuracy, similar imbalance as SVM.

Hyperparameter Tuning

GridSearchCV for Hyperparameter Tuning

- Systematically evaluates all possible hyperparameter combinations within a defined grid.
- Ensures reliable performance estimates by training and testing on different data folds.

Logistic Regression Hyperparameter Optimization

Best Hyperparameters:

C: 0.01 Penalty: 'I2'

Solver: 'liblinear'

Performance Improvement:

Accuracy: 0.642 (Before) $\rightarrow 0.642$

(After)

Precision (Class 1): $0.27 \rightarrow 0.2724$ Recall (Class 1): $0.75 \rightarrow 0.7570$ F1-Score (Class 1): $0.4 \rightarrow 0.4138$

Decision Tree - Hyperparameter Tuning

Best Hyperparameters:

Criterion: 'gini' Max Depth: None Min Samples Split: 2

Performance Improvement:

Accuracy: 0.813 (Before) $\rightarrow 0.8131$

(After)

Precision (Class 1): $0.31 \rightarrow 0.3137$ Recall (Class 1): $0.15 \rightarrow 0.1495$ F1-Score (Class 1): $0.2 \rightarrow 0.2031$

KNN - Hyperparameter Tuning

Best Hyperparameters:

N Neighbors: 5

Weight Function: 'uniform'

Algorithm: 'auto'

Performance Improvement:

Accuracy: 0.663 (Before) $\rightarrow 0.6632$

(After)

Precision (Class 1): $0.21 \rightarrow 0.2143$ Recall (Class 1): $0.42 \rightarrow 0.4206$ F1-Score (Class 1): $0.28 \rightarrow 0.2824$

Model Selection

Naive Bayes

Strengths:

- Interpretability with probability-based predictions.
- Fast training, even with large datasets.
- Requires minimal hyperparameter tuning.

Weaknesses:

- Sensitive to assumptions about feature independence.
- Lower accuracy compared to sophisticated algorithms.

Recommendation:

 Choose Naive Bayes for interpretability, fast training, and simplicity when accuracy is acceptable.

XGBoost

Strengths:

- High accuracy and predictive power.
- Handles complex data and non-linear relationships.
- Regularization features for preventing overfitting.
- Scalability for efficient processing of large datasets.

Weaknesses:

- Challenges in interpretability.
- Computational complexity, especially for large datasets.

Recommendation:

 Choose XGBoost for the highest accuracy, complex data, and scalability.

Conclusion

Data Overview:

- Information on health parameters like age, sex, cholesterol, blood pressure, BMI, and lifestyle.
- Handled missing values, treated outliers, and encoded categorical variables.

EDA Insights:

Revealed distribution patterns, correlations, and potential risk factors for cardiovascular diseases.

Machine Learning Models:

Implemented Logistic Regression, Decision Trees, Random Forest, SVM, XGBoost, and Naive Bayes.

Model Evaluation:

XGBoost showed a Good performance with an accuracy of 71.7%

Imbalanced Dataset:

Addressed imbalance using SMOTE to enhance model performance.

Key Factors:

Age, blood pressure, and cholesterol identified as critical contributors.

Recommendations:

Focus on individuals with advanced age, high blood pressure, and abnormal cholesterol for early intervention and preventive measures.