

Master in Applied Econometrics and Forecasting

Time Series Analysis and Forecasting

Class #4: White Noise and Autoregressive (AR) Models

Jorge Caiado, PhD

CEMAPRE/REM/ISEG, University of Lisbon, <u>jcaiado@iseg.ulisboa.pt</u>

White Noise Process

A process is called a "white noise" process if it is a sequence of uncorrelated random variables:

$$X_t = a_t$$

where a_t has constant mean $E(a_t)=\mu_a$ (usually assumed to be 0), constant variance $Var(a_t)=\sigma_a^2$ and null covariance $Cov(a_t,a_{t-k})=0$ for all $k\neq 0$. The ACF and PACF of a white noise process are null for all $k\neq 0$.

Simulation of a white noise process with zero mean and unit variance

Autoregressive (AR) Representation

In time series analysis, there is a useful representation of a stationary time series or stochastic process X_t . The process X_t can be written in terms of an infinite autoregressive representation:

$$X_t = \pi_1 X_{t-1} + \pi_2 X_{t-2} + \dots + a_t = \sum_{j=1}^{\infty} \pi_j X_{t-j} + a_t,$$

or, equivalently,

$$\pi(B)X_t = a_t$$

where $\pi(B)=1-\pi_1B-\pi_2B^2-\cdots=1-\sum_{j=1}^\infty\pi_jB^j$ and $1+\sum_{j=1}^\infty\left|\pi_j\right|<\infty$. Box-Jenkins (1976) call a "process invertible" if it can be written in this form.

AR(p) Model

The autoregressive model of order p is given by

$$X_t = \emptyset_1 X_{t-1} + \dots + \emptyset_p X_{t-p} + a_t,$$

where a_t is a zero mean white noise series. Because $\sum_{j=1}^{\infty} |\pi_j| = \sum_{j=1}^p |\emptyset_j| < \infty$, the process is always invertible. To be stationary, the roots of $(1 - \emptyset_1 B - \cdots - \emptyset_p B^p) = 0$ must be outside of the unit circle.

AR(1) Model

The first-order autoregressive model or AR(1) model is given by

$$X_t = \emptyset_1 X_{t-1} + a_t,$$

where a_t is a zero mean white noise series. As mentioned above, because $|\emptyset_1| < \infty$, the process is always invertible. To be stationary, the root of $(1 - \emptyset_1 B) = 0$, $B = 1/\emptyset_1$, must be outside of the unit circle. That is, $|\emptyset_1| < 1$ is the stationary condition.

ACF and PACF of an AR(1) Model

Assuming, without loss of generality, that $E(X_t) = 0$, the ACF of an AR(1) model can be deduced by multiplying both sides of AR(1) model by X_{t-k} and then taking expectations:

$$E(X_{t-k}X_t) = \emptyset_1 E(X_{t-k}X_{t-1}) + E(X_{t-k}a_t)$$

$$\gamma_k = \emptyset_1 \gamma_{k-1}, \quad k \ge 1$$

Thus, the ACF becomes

$$\rho_k = \emptyset_1 \rho_{k-1} = \emptyset_1^k, \qquad k \ge 1$$

If $-1 < \emptyset_1 < 0$ the ACF decays exponentially to zero, while if $0 < \emptyset_1 < 1$ the ACF decays in an oscillating pattern (or damped sine wave) to zero, as shown in the next slide.

The PACF of the AR(1) model exhibits a positive or negative (depending on the sign of \emptyset_1) spike at lag 1 and then cuts off after lag 1:

$$\emptyset_{kk} = \begin{cases} \rho_1 = \emptyset_1, & k = 1 \\ 0, & k \ge 2 \end{cases}$$

Time Series, ACF and PACF of the simulated AR(1) models with ϕ =0.7 and ϕ =-0.7

Example: Inflation Rate in US, 1913-2003

Sample: 1913 2003 Included observations: 90

Autocorrelation	Partial Correlation		AC	PAC
1		1	0.639	0.639
ı 🔲 /	🔲	2	0.259	-0.252
ı 🔟 ı /	<u> </u>	3	0.117	0.128
ı <u>li</u> ı/		4	0.066	-0.038
ı □ /		5	0.144	0.210
ı 🗐	[]	6	0.181	-0.039
ı □ /ı		7		-0.016
ı b / ı		8	0.039	-0.032
I 🗓 I		9	0.039	0.089
I/ <u>I</u> II	[]	10	0.035	-0.067
1/[1	I I	11	-0.047	-0.128
/= -		12	-0.174	-0.162
二 :	D II	13	-0.280	-0.114
/	🗓	14	-0.303	-0.081
/ 🔲 -		15	-0.306	-0.172
/ 🗖 -		16	-0.184	0.156
		17	-0.032	0.073
[]	I I	18	-0.075	-0.125
\	1	19	-0.161	-0.034
\ 🔲	 	20	-0.208	-0.031
\III		21	-0.155	0.137
ИI		22	-0.008	0.081
1][/		23	0.073	-0.005

Source: Gloria Gonzalez-Rivera, Forecasting for Economics and Business, Pearson, 2013

AR(2) model

The second-order autoregressive AR(2) models is

$$X_t = \emptyset_1 X_{t-1} + \emptyset_2 X_{t-2} + a_t$$

or

$$\emptyset(B)X_t=a_t,$$

where ε_t is a zero mean white noise series. To be stationary, the roots of $\emptyset(B) = 1 - \emptyset_1 B - \emptyset_2 B^2 = 0$ must be outside of the unit circle. Thus, we have the following necessary and sufficient conditions for stationarity:

$$\emptyset_1 + \emptyset_2 < 1, \ \emptyset_2 - \emptyset_1 < 1, -1 < \emptyset_2 < 1.$$

The ACF tails off as an exponential decay or a damped sine waves depending on the roots of $\emptyset(B)=0$, and the PACF cuts off after lag 2, $\emptyset_{kk}=0$ for $k\geq 3$.

AR models of order $p \ge 3$

More complicated conditions hold for AR(p) models with $p \geq 3$.

Econometric software (EViews, Python, Stata, among others) takes care of this.

Simulated stationary AR(2) model: $X_t = 0.6X_{t-1} + 0.3X_{t-2} + a_t$

ACF and PACF of a simulated stationary AR(2) model: $X_t = 0.6X_{t-1} + 0.3X_{t-2} + a_t$

Simulated non-stationary AR(2) model: $X_t = 0.7X_{t-1} + 0.4X_{t-2} + a_t$

ACF and PACF of a simulated non-stationary AR(2) model: $X_t = 0.7X_{t-1} + 0.4X_{t-2} + a_t$

AR(2) Model Estimation Output (Python)

ARMA Model Results										
Dep. Variable Model: Method: Date: Time: Sample:		ARMA(2, css-1 n, 13 Dec 20 18:08	mle 020	Log Li S.D. d	servations: kelihood of innovations	5	200 -279.390 0.976 566.779 579.973 572.118			
	coef	std err		z	P> z	[0.025	0.975]			
ar.L1.y	-0.0114 0.4505	0.065	6	0.028 5.894	0.978 0.000	-0.810 0.322				
ar.L2.y	0.3857	0.066		5.874 ots	0.000	0.257	0.514			
	Real	Ima	agina	ary	Modulus	;	Frequency			
AR.1 AR.2	1.1288 -2.2968		9.000 9.000	_	1.1288 2.2968		0.0000 0.5000			

AR(2) Model:
$$(1 - \emptyset_1 B - \emptyset_2 B^2)(X_t - c) = \varepsilon_t$$

$$(1 - 0.45B - 0.39B^2)(X_t + 0.0114) = \varepsilon_t$$

Problems

- 1. Consider the AR(2) models:
 - (i) $(1 1.4B + 0.6X_tB^2) X_t = a_t$
 - (ii) $(1 0.6B 0.3X_tB^2) X_t = a_t$
- a) Simulate a series of 100 observations from each of the models with $\sigma_a^2 = 1$. Plot the series.
- b) For each simulated series, calculate and study the sample ACF and PACF for the lags 1, 2, ..., 20.
- **2.** Consider the AR(2) model: $(1 0.3B 0.6X_tB^2) X_t = a_t$.
- a) Find the ACF
- b) Find the PACF