

EAFIT

Escuela de Ciencias - Departamento de Matemáticas Taller Cálculo en Varias Variables, Intersemestral 2019-II

Miércoles 11 de Diciembre

Integral de Superficie Escalar

- 1. Halle el área superficial de la porción del paraboloide $z=x^2+y^2$ que está debajo de z=4 y en el primer octante.
- 2. Parametrice la superficie S dada por

$$S = \{(x, y, z) \mid z = 4 - x^2 - y^2, \ x^2 + (y - 1)^2 \le 1\},$$

y plantee su área superficial como una integral doble.

- 3. Halle el flujo del campo vectorial $\vec{F}(x,y,z) = (-y,x,e^{x^2z^2})$ a través de la superficie $S = \{(x,y,z) \mid x^2 + y^2 = 4, \ 0 \le z \le 3\}$, orientada de tal manera que la normal apunta hacia "afuera" de S.
- 4. Una **helicoide** se define como $\psi: D \longrightarrow \mathbb{R}^3$, donde $\psi(r,\theta) = (r\cos\theta, r\sin\theta, \theta) \text{ y } D \text{ es la región definida por } 0 \le \theta \le 2\pi \text{ y } 0 \le r \le 1.$ Halle su área. Ahora suponga que esta superficie tiene una densidad de masa dada por $\delta(x,y,z) = \sqrt{x^2 + y^2 + 1}$. Halle la masa de la helicoide.

5. Halle el área de la superficie de la esfera $x^2+y^2+z^2=a^2$ que se encuentra dentro del cilindro $x^2+y^2=ax$.

Integral de Superficie Vectorial

6. Suponga que un campo vectorial está dado por $\vec{F}(x,y,z)\,=\,(-x,-y,1).$ Calcule el flujo de \vec{F} a través de la superficie

$$S = \{(x, y, z)/z = \sqrt{x^2 + y^2}, 1 \le x^2 + y^2 \le 4\},\$$

la cual está orientada con el normal apuntando hacia arriba.

7. Halle el flujo del campo $\vec{F}(x,y,z)=(y,x,1)$ a través de la superficie

$$S = \{(x, y, z)/x^2 + y^2 + z^2 = 4, 1 \le x^2 + y^2 \le 4\},\$$

con la normal apuntado hacia afuera.

8. Considere el campo magnético definido por $\vec{F}(x,y,z)=(x,-y,1)$ y la superficie

$$S = \{(x, y, z)/x^2 + y^2 - z^2 = 1, x^2 + y^2 \le 4, 0 \le z\},\$$

con el vector normal apuntando hacia arriba. Calcule el flujo magnético $\iint_S \vec{F} \cdot d\vec{S}$.

Teorema de Green

- 9. Sea $D = \{(x,y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 2, \ y \ge 0\}$ y sea $C = \partial D$ orientada positivamente. Para $\vec{F}(x,y) = \left\langle -\frac{y^3}{3}, \frac{x^3}{3} \right\rangle$, calcule $\int_C \vec{F} \cdot d\vec{r}$.
- 10. Considere el campo vectorial $\vec{F}(x,y) = \langle y, 2x + \tan(\tan(y)) \rangle$. Sea C la frontera de la región

$$G = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, 0 \le y \le 2, (x-2)^2 + (y-2)^2 \ge 1\},\$$

orientada al contrario de las manecillas del reloj. Calcule la integral de línea

$$\int_{C} \vec{F} \cdot d\vec{r}.$$

- 11. Sea C la frontera de la región acotada por las curvas $y=x^4$ y y=x con $0 \le x \le 1$, orientada positivamente. Calcule $\int_C xy \, dx + x^2 \, dy$.
- 12. Calcule la integral de línea del campo vectorial

$$\vec{F}(x,y) = \left\langle 0, x + e^{\sin(e^y)} \right\rangle$$

a lo largo de la frontera de un hexágono regular con vértices (2,0), $(1,\sqrt{3}),\,(-1,\sqrt{3}),\,(-2,0),\,(-1,-\sqrt{3})$ y $(1,-\sqrt{3})$.

Ayuda: El hexágono en consideración es la unión de seis triángulos equiláteros de lados de longitud igual a dos.

- 13. Sea $D=\{(x,y)\in\mathbb{R}^2\,|\,1\leq x^2+y^2\leq 2,\ x\geq 0\}$ y sea $C=\partial D$ orientada positivamente. Para $\vec{F}(x,y)=\left\langle -\frac{y}{2},\frac{x}{2}\right\rangle$, calcule $\int_C\vec{F}\cdot\vec{dr}$.
- 14. Considere el campo vectorial $\vec{F}(x,y) = \langle \cos(x^2) y, x + \sin^2(y) \rangle$. Sea C la frontera de la región

$$G = \{(x,y) \in \mathbb{R}^2 : 0 \le (x,y) \le 2, (x-2)^2 + (y-2)^2 \ge 1, x^2 + y^2 \ge 1\},\$$

orientada al contrario de las manecillas del reloj. Calcule la integral de línea

$$\int_{C} \vec{F} \cdot d\vec{r}.$$

Teorema de la Divergencia

15. Sea $D=\{(x,y,z)\,|\,x^2+y^2\leq z\leq 4-x^2-y^2\}$ y sea $S=\partial D$ con el normal apuntando hacia afuera. Para el campo vectorial $\vec{F}(x,y,z)=(z^2,x^2,z\sqrt{x^2+y^2})$, calcule

$$\iint_{S} \vec{F} \cdot \vec{n} \, dS.$$

16. Sea $S = \{(x, y, z) | z = x^2 + y^2, z \le 16\}$ orientada con el normal con tercera componente negativa (es decir, el vector normal apunta hacia abajo). Si $\vec{F}(x, y, z) = (x(z - 4), yz, x^2)$, calcule

$$\iint_{S} \vec{F} \cdot \vec{n} \ dS.$$

17. Calcule la integral de flujo $\iint_S \overrightarrow{F} \cdot d\overrightarrow{S}$, donde \overrightarrow{F} es el campo vectorial

$$\overrightarrow{F}(x, y, z) = (y^2 - xz + e^y, -yz + z^{3x+6z^2}, \tan(x^4 + y^2))$$

y donde S es la superficie cerrada dada implícitamente por

$$(x^2 + y^2)^2 - (x^2 - y^2) - z^2 + \frac{1}{5} + \frac{x^6 + y^6 + z^6}{10} = 0,$$

con orientación positiva.

18. Considere el campo vectorial $\overrightarrow{F}(x,y,z) = \left\langle -x^4, 4yx^3, z + e^{x^2 + y^2} \right\rangle$. Y sea S la supeficie frontera del sólido E que está encima del cono $x^2 + y^2 = 3z^2$ y debajo de la esfera $x^2 + y^2 + z^2 = 4z$, orientada con la normal hacia afuera. Calcular

$$\iint_{S} \overrightarrow{F} \cdot d\overrightarrow{S}.$$

19. Evalúe

$$\iint_{S} \overrightarrow{F} \cdot d\overrightarrow{S},$$

donde S es la frontera del sólido E comprendido entre las esferas $x^2+y^2+z^2=1, \ x^2+y^2+z^2=4$ y encima del cono $z=\sqrt{x^2+y^2},$ orientada positivamente (ver figura). Además, el campo vectorial es $\overrightarrow{F}(x,y,z)=\left\langle \frac{x^3}{3},yz^2,zy^2\right\rangle$.

Teorema de Stokes

20. Encuentre la integral de flujo $\iint_S (\nabla \times \vec{F}) \cdot d\vec{S},$ donde

$$\vec{F}(x,y,z) = (2\cos(\pi y)e^{2x} + z^2, x^2\cos(z\pi/2) - \pi\sin(\pi y)e^{2x}, 2x$$

y S es la superficie púa parametrizada por

$$\vec{r}(s,t) = \left((1 - s^{1/3})\cos(t) - 4s^2, (1 - s^{1/3})\sin(t), 5s \right),$$

con $0 \le t \le 2\pi$, $0 \le s \le 1$, y orientada de tal forma que los vectores normales apuntan hacia afuera de la superficie.

21. Sea S la porción del cono $z=4-\sqrt{x^2+y^2}$ correspondiente a $z\geq 2$, orientada con el vector normal apuntando hacia arriba. Calcule el flujo de $\nabla\times\vec{F}$ (el rotacional de \vec{F}) a través de S, donde $\vec{F}(x,y,z)=xyz\vec{i}-yz^2\vec{j}+z^3\cos{(xy)}\,\vec{k}$.