ΕΡΓΑΣΙΑ ΣΤΟ ΠΙΣΤΩΤΙΚΟ ΚΙΝΔΥΝΟ

Διδάσκων : Μ. Κούτρας

ΕΜΜΑΝΟΥΗΛ ΒΕΡΥΚΟΚΙΔΗΣ ΜΑΕ19010

MSc: Risk Management & Actuarial Science

QUESTION A.

Για τα ποσοτικά χαρακτηριστικά έχουμε τα παρακάτω αποτελέσματα :

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	
Loss	3390	.000	91.596	7.55196	19.810343	
Cards	3390	1	7	2.69	1.726	
Deposit	3390	7.78300000	51.0160000	38.1654260	7.64630989	
Duration	3390	5	27	8.17	3.001	
Score	3390	29	100	65.14	19.903	
Years	3390	2	44	33.04	7.634	
Valid N (listwise)	3390					

Για τις κατηγορικές μεταβλητές (status, family, type) έχουμε:

Status * Family Crosstabulation

			Family				
			0	1	Total		
Status	0	Count	1475	1433	2908		
		% of Total	43.5%	42.3%	85.8%		
	1	Count	243	239	482		
		% of Total	7.2%	7.1%	14.2%		
Total		Count	1718	1672	3390		
		% of Total	50.7%	49.3%	100.0%		

Family * Type Crosstabulation

			Туре					
			1	2	3	Total		
Family	0	Count	250	845	623	1718		
		% of Total	7.4%	24.9%	18.4%	50.7%		
	1	Count	245	728	699	1672		
		% of Total	7.2%	21.5%	20.6%	49.3%		
Total		Count	495	1573	1322	3390		
		% of Total	14.6%	46.4%	39.0%	100.0%		

Status * Type Crosstabulation

			Type					
			1	2	3	Total		
Status	0	Count	259	1361	1288	2908		
	_	% of Total	7.6%	40.1%	38.0%	85.8%		
	1	Count	236	212	34	482		
		% of Total	7.0%	6.3%	1.0%	14.2%		
Total		Count	495	1573	1322	3390		
		% of Total	14.6%	46.4%	39.0%	100.0%		

Οι παραπάνω πίνακες διπλής εισόδου εμφανίζουν τις συχνότητες ,που εμφανίζονται οι παρατηρήσεις, αλλά και τα ποσοστά τους ως προς το σύνολο όλων των παρατηρήσεων (3390).

ΣΗΜΑΝΤΙΚΟ:

Πριν προχωρήσουμε στην ερώτηση B θα πρέπει να χωρίσουμε την κατηγορική μεταβλητή Type, η οποία παίρνει 3 τιμές ανάλογα με το είδος εργασίας, σε 2 νέες δείκτριες τις οποίες εμείς θα ονομάσουμε type01 και type02.

Η type01 παίρνει την τιμή 1 αν έχουμε εποχική εργασία , η type02 παίρνει την τιμή 1 αν έχουμε σύμβαση αορίστου χρόνου και αν είναι και οι 2 0 έχουμε σύμβαση ορισμένου χρόνου.

QUESTION B

Υπό-ερώτημα 1.

Αρχικά θα τρέξουμε το Hosmer-Lemeshow test ώστε να γίνει ο έλεγχος για την καταλληλότητα του μοντέλου.

Hosmer and Lemeshow Test							
Step	Chi-square	df	Sig.				
1	.000	0					
2	56.173	4	.000				
3	18.613	8	.017				
4	5.812	8	.668				
5	6.042	8	.643				
6	4.296	8	.829				

Από το παραπάνω test συμπεραίνουμε ότι η μηδενική υπόθεση Ηο δεν απορρίπτεται άρα το μοντέλο έχει καλή προσαρμογή στα δεδομένα.

			Vai	riables in tl	he Equati	on			
								95% C.I.fe	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1ª	Type01	2.284	.112	415.831	1	.000	9.812	7.878	12.220
	Constant	-2.377	.067	1271.402	1	.000	.093		
Step 2 ^b	Cards	.424	.029	213.391	1	.000	1.529	1.444	1.618
	Type01	2.233	.120	344.939	1	.000	9.329	7.370	11.808
	Constant	-3.700	.127	855.645	1	.000	.025		
Step 3 ^c	Cards	.494	.031	249.432	1	.000	1.638	1.541	1.742
	Deposit	102	.007	185.710	1	.000	.903	.890	.916
	Type01	2.229	.127	306.008	1	.000	9.292	7.238	11.928
	Constant	221	.263	.705	1	.401	.802		
Step 4 ^d	Cards	.463	.032	211.188	1	.000	1.588	1.492	1.691
	Deposit	103	.008	179.211	1	.000	.902	.888	.916
	Type01	3.390	.207	267.110	1	.000	29.651	19.747	44.522
	Type02	1.634	.197	68.785	1	.000	5.122	3.482	7.535
	Constant	-1.233	.308	16.003	1	.000	.291		
Step 5 ^e	Cards	.603	.036	283.586	1	.000	1.827	1.704	1.960
	Deposit	105	.008	174.833	1	.000	.901	.887	.915
	Family	1.194	.143	69.567	1	.000	3.301	2.493	4.370
	Type01	3.354	.210	254.218	1	.000	28.605	18.941	43.199
	Type02	1.618	.200	65.765	1	.000	5.045	3.412	7.459
	Constant	-2.178	.331	43.288	1	.000	.113		
Step 6 ^f	Cards	.812	.099	67.007	1	.000	2.253	1.855	2.737
	Deposit	532	.188	8.044	1	.005	.587	.407	.848
	Family	1.193	.143	69.137	1	.000	3.297	2.489	4.367
	Years	.427	.187	5.205	1	.023	1.533	1.062	2.213
	Type01	3.395	.212	257.275	1	.000	29.806	19.686	45.129
	Type02	1.630	.199	66.782	1	.000	5.104	3.452	7.546
	Constant	562	.780	.519	1	.471	.570		

Στον παραπάνω πίνακα παρατηρούμε στο 6° βήμα τις μεταβλητές που είναι στατιστικά σημαντικές για το μοντέλο μας.

Έχουμε δηλαδή τις:

- 1.Cards
- 2.Deposit
- 3. Family
- 4.Years
- **5.**Type01
- **6.Type02**

Από την άλλη οι μεταβλητές που δεν χρειάζονται είναι οι :

1.Duration

2.Score

Όπως φαίνονται και στον παρακάτω πίνακα (Variables not in the equation):

Step 6	Variables	Duration	.014	1	.906
		Score	.192	1	.661
	Overall Sta	tistics	.928	2	.629

Από την πρώτη στήλη του πίνακα Variables in the equation παίρνουμε τους συντελεστές β για την κατασκευή του μοντέλου παλινδρόμησης , έτσι έχουμε :

$$Ln[p/(1-p)] = -0.562 + 0.812*Cards - 0.532*Deposit + 1.193*Family + 0.427*Years + 3.395*Type01 + 1.63*Type02$$

Υπό-ερώτημα 2

Classification Tablea

			Predicted				
			Sta	tus	Percentage		
	Observed	d			Correct		
Step 1	Status	0	2830	78	97.3		
		1	265	217	45.0		
	Overall P	ercentage			89.9		

Για το μοντέλο μας ο πίνακας ορθών ταξινομήσεων είναι ο παραπάνω, ο οποίος μα δείχνει ότι οι καλοί πελάτες ταξινομούνται σωστά με ποσοστό 97,3% και οι κακοί με ποσοστό 45%.

Αν θέλουμε το ποσοστό ορθών ταξινομήσεων των κακών πελατών να αυξηθεί πάνω από 85% πρέπει να μειώσουμε το σημείο αποκοπής cut-off από 0,1 και κάτω. Το μοντέλο μας δεν θα αλλάξει με την αλλαγή του cut-off έτσι θα έγουμε:

$$1-p = \frac{1}{1+e^{-0.562+0.812*Cards-0.532*Deposit+1.193*Family+0.427*Years+3.395*Type01+1.63*Type02}}$$

Υπό-ερώτημα 3

								95% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	Cards	.812	.099	67.007	1	.000	2.253	1.855	2.737
	Deposit	532	.188	8.044	1	.005	.587	.407	.848
	Family	1.193	.143	69.137	1	.000	3.297	2.489	4.367
	Years	.427	.187	5.205	1	.023	1.533	1.062	2.213
	Type01	3.395	.212	257.275	1	.000	29.806	19.686	45.129
	Type02	1.630	.199	66.782	1	.000	5.104	3.452	7.546
	Constant	562	.780	.519	1	.471	.570		

Variables in the Equation

Γνωρίζουμε ότι **odds' = exp(βi)*odds** άρα αν αυξηθούν οι κάρτες κατά 1 η σχετική πιθανότητα θα είναι 2,253 φορές η προηγούμενη σχετική πιθανότητα επομένως θα έχουμε μια αύξηση κατά 125,3%.

Ομοίως αν αυξηθούν τα δάνεια κατά 1000 ευρώ η σχετική πιθανότητα θα μειωθεί κατά 41,5%.

Υπό-ερώτημα 4

Δεδομένα:

Years = 40

Cards = 5

Deposit = 20

Duration = 15

Family = 0

Type01=0

Type02=0

Score = 80

Χρησιμοποιόντας τον τύπο $\mathbf{p} = \exp(\mathbf{z})/(1+\exp(\mathbf{z}))$. Η πιθανότητα χρεοκοπίας του συγκεκριμένου ατόμου είναι 99,995% επομένως δεν θα του χορηγούσαμε δάνειο.

Υπό-ερώτημα 5

Έχουμε $0,1=\exp(z)/(1+\exp(z))=>\exp(z)=0,11$. Από το μοντέλο παλινδρόμησης έχουμε ότι αν κάποιος είναι έγγαμος το z αυξάνεται κατά 1,193 μονάδες άρα έχουμε : $p`=\exp(z)*\exp(1,193)/(1+\exp(z)*\exp(1,193))=>p'=0,266$. Άρα η πιθανότητα αθέτησης είναι 26,6%.

QUESTION Γ

Υπό-ερώτημα 1

Σύμφωνα με το παραπάνω μοντέλο οι μεταβλητές που χρειάζονται είναι :

Type01, Cards, Years, Deposit, Type02

Από κάτω παρουσιάζεται ο πίνακας ορθών ταξινομήσεων:

Classification

		Predicte	d
Observed	0	1	Percent Correct
0	2839	69	97.6%
1	277	205	42.5%
Overall Percentage	91.9%	8.1%	89.8%

Υπό-ερώτημα 2

Από το δέντρο έχουμε ότι η πιθανότητα να αθετήσει ο συγκεκριμένος πελάτης ,του ερωτήματος Β4, είναι 70,5%. Επομένως δεν του χορηγούμε δάνειο.

QUESTION A

Υπό-ερώτημα 1

Παρακάτω παρουσιάζεται ο πίνακας ορθών ταξινομήσεων για το μοντέλο

| Classification Results | Classification Results | Classification Results | Classification Results | Classification | Classi

ορθών ταξινομήσεων για το μοντέλο διαχωριστικής ανάλυσης.

Επισημαίνεται ότι χρησιμοποιήσαμε την επιλογή Compute from group sizes ώστε οι πιθανότητες να υπολογιστούν βάση τα ποσοστά καλών και κακών πελατών από τα δεδομένα.

Classification Function Coefficients

	Sta	tus
	О	1
Cards	-21.516	-20.736
Deposit	230.459	230.073
Duration	208.603	208.690
Score	42.260	42.249
Years	-43.021	-42.747
(Constant)	-5886.808	-5885.628

Σύμφωνα με τον πίνακα οι γραμμικές εξισώσεις είναι:

- Για τους καλούς πελάτες: Yo = -5886,808 21,516*Cards + 230,459*Deposit + 208,603*Duration + 42,260*score 43,021*Years
- Για τους κακούς πελάτες: Y1= -5885,628 20,736*Cards + 230,073*Deposit + 208,690 *Duration + 42,249*Score 42,747*Years

Υπό-ερώτημα 2

Για τα δεδομένα του Β4 έχουμε:

Yo = -5886,808 - 21,516*5 + 230,459*20 + 208,603*15 + 42,260*80 - 43,021*40 => Yo = 3.403.797

Y1 = -5885,628 - 20,736*5 + 230,073*20 + 208,690*15 + 42,249*80 - 42,747*40 =>**Y1= 3.412,542**

Επειδή Y1 > Y0 δεν εγκρίνεται το δάνειο για τον συγκεκριμένο υποψήφιο δανειολήπτη.

QUESTION E

Λογιστική Παλινδρόμηση:

Πλεονεκτήματα

- Οι εκτιμήσεις της πιθανότητας βρίσκονται αυστηρά στο διάστημα [0,1].
- Τόσο οι ανεξάρτητες μεταβλητές όσο και τα κατάλοιπα της παλινδρόμησης δεν είναι απαραίτητο να κατανέμονται κανονικά.
- Δεν κρίνεται ως απαραίτητη προϋπόθεση η ύπαρξη γραμμικής σχέσης ανάμεσα στην εξαρτημένη και στις ανεξάρτητες μεταβλητές.
- Χρησιμοποιούνται τόσο ποσοτικές όσο και κατηγορικές μεταβλητές.

Μειονεκτήματα

 Προϋποθέτει την μη ύπαρξη πολυσυγκραμμικότητας στις ανεξάρτητες μεταβλητές.

Δέντρο Ταξινόμησης:

Πλεονεκτήματα

- Αν και η όλη διαδικασία για την κατασκευή του δέντρου είναι αλγοριθμικά πολύπλοκη, τα δέντρα που σχηματίζει είναι απλά και κατανοητά.
- Μπορεί να αντεπεξέλθει αποτελεσματικά σε μεγάλο αριθμό δεδομένων και πολυδιάστατα προβλήματα και μάλιστα χρησιμοποιώντας ένα μικρό αριθμό μεταβλητών.
- Οι μεταβλητές μπορούν να είναι κατηγορικές και ποσοτικές.

<u>Μειονεκτήματα</u>

- Για κάθε διαχωρισμό και κάθε υποδιαίρεση, χρησιμοποιείται μόνο ένα κριτήριο.
- Για να εφαρμοστεί επιτυχώς χρειάζεται μεγάλος αριθμός παρατηρήσεων.
- Σε σχέση με άλλες στατιστικές και αναλυτικές τεχνικές, αυτό είναι ένα «αμβλύ» όργανο.

Διαχωριστική Ανάλυση:

Πλεονεκτήματα

• Η διαχωριστική ανάλυση στηρίζεται σε πιο ρεαλιστικές μεθόδους και υπολογιστικά είναι πιο εύκολη.

Μειονεκτήματα

- Δεν χρησιμοποιεί κατηγορικές μεταβλητές
- Κάνει υπόθεση για τις ανεξάρτητες μεταβλητές.
- Γίνονται περίπλοκες υποθέσεις.

QUESTION ΣT

Υπό-ερώτημα 1

Τρέχουμε την Backward method και στον παρακάτω πίνακα (Βήμα 5°) παίρνουμε τα εξής αποτελέσματα για τη σημαντικότητα των μεταβλητών :

Coefficientsa

	Unstandardized Coefficients		Standardized Coefficients			95.0% Confide	nce Interval for B	
Mode	1	В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
5	(Constant)	69.878	.982		71.146	.000	67.948	71.808
	Cards	4.822	.112	.585	43.204	.000	4.603	5.041
	Deposit	819	.025	380	-32.911	.000	868	770
	Family	-17.956	.492	487	-36.531	.000	-18.922	-16.990
	Type01	.913	.418	.025	2.182	.030	.091	1.735

Η μέθοδος backward αφού αφαιρέσει τις μεταβλητές οι οποίες δεν είναι χρήσιμες , στα βήματα 1-4 , καταλήγει στις παραπάνω χρήσιμες και το μοντέλο μας είναι :

Loss = 69,878 + 4,822*Cards - 0,819*Deposit - 17,956*Family + 0,913*Type01

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.969 ^a	.939	.938	4.588500
2	.969 ^b	.939	.938	4.583978
3	.969 ^c	.939	.938	4.580256
4	.969 ^d	.939	.938	4.576691
5	.969 ^e	.939	.938	4.582537

Στον πίνακα Model Summary στη τρίτη στήλη R square μπορούμε να δούμε την ποιότητα του μοντέλου η όποια από ότι φαίνεται και στον πίνακα είναι αρκετά καλή.

Υπό-ερώτημα 2

95.0% Confidence Interval for B			
Lower Bound	Upper Bound		
4.603	5.041		
868	770		

Στον παραπάνω πίνακα η πρώτη γραμμή αναφέρεται στη μεταβλητή cards ενώ η δεύτερη στη μεταβλητή deposit και δείχνουν τα διαστήματα εμπιστοσύνης (95%).

Από τα διαστήματα εμπιστοσύνης καταλαβαίνουμε τη μέγιστη και την ελάχιστη μεταβολή της ζημίας ,με 95% βεβαιότητα, αν μεταβληθούν οι κάρτες κατά 1 η οι καταθέσεις κατά 1000 ευρώ.

Μας παρουσιάζει τα δηλαδή τα ανώτατα και τα κατώτατα όρια.

Παράδειγμα αν αυξηθούν οι κάρτες κατά 1 η ζημία θα αυξηθεί σύμφωνα με το υπόδειγμά μας κατά 4,822 . Ο συγκεκριμένος συντελεστής μπορεί να μεταβάλλεται από 4,603 έως 5,041. Οι συγκεκριμένες τιμές αποτελούν ακρότατα για το συγκεκριμένο συντελεστή με πιθανότητα λάθους 5%.

Το ίδιο ισχύει και με τις καταθέσεις αν αυξηθούν κατά 1000 ευρώ η ζημιά θα μειωθεί κατά 0,819 με κατώτατο όριο το -0,868 και ανώτατο το -0,770 με πιθανότητα 95% όπως βλέπουμε και στον τελευταίο πίνακα.

Υπό-ερώτημα 3

Αν ο εργαζόμενος είναι εποχικός η ζημιά θα είναι :

Loss 1 = 69.878 + 4.822*Cards -0.819*Deposit -17.956*Family +0.913*1 **Aν ο εργαζόμενος είναι με σύμβαση ορισμένου χρόνου η ζημία θα είναι :** Loss 2 = 69.878 + 4.822*Cards -0.819*Deposit -17.956*Family +0.913*0

Επομένως η ζημία θα μειωθεί κατά Loss1-Loss2 = 0,913

Αυτή η μείωση σύμφωνα με το διάστημα εμπιστοσύνης μπορεί να κυμανθεί από 0,091 έως 1,735 με πιθανότητα 95%. Δηλαδή υπάρχει 5% αβεβαιότητα .

Υπό-ερώτημα 4

Αν ο υποψήφιος πελάτης είναι έγγαμος τότε family = 1 οπότε έχουμε: Loss 1 = 69,878 + 4,822*Cards - 0,819*Deposit - 17,956*1 + 0,913*Type01 Αν ο υποψήφιος πελάτης είναι άγαμος τότε family = 0 οπότε έχουμε: Loss = 69,878 + 4,822*Cards - 0,819*Deposit - 17,956*0 + 0,913*Type01

Επομένως η ζημία θα αυξηθεί κατά Loss1-Loss2 = 17,956

Αυτή η αύξηση σύμφωνα με το διάστημα εμπιστοσύνης δεν μπορεί να είναι μεγαλύτερη από 18,922 και μικρότερη από 16,990 με πιθανότητα σφάλματος 5%.

Υπό-ερώτημα 5

Έχουμε τα δεδομένα:

Years = 40

Cards = 5

Deposit = 20

Duration = 15

Family = 0

Type01=0

Score = 80

Οπότε το μοντέλο μας διαμορφώνεται ως εξής:

Loss = 69,878 + 4,822*5 - 0,819*20 - 17,956*0 + 0,913*0 => Loss = 77,608

Αρα η ζημιά σε περίπτωση χρεοκοπίας θα είναι 77,608 με 95% βεβαιότητα και θα κυμαίνεται μεταξύ των διαστημάτων 68,55686 έως 86,66637.

Η μέση ζημία για τα άτομα με τα παραπάνω χαρακτηριστικά θα είναι από **76,65851** έως **78,56472** με 95% βεβαιότητα άρα κατά μέσο όρο θα είναι 77,611.

Υπό-ερώτημα 6

Η αναμενόμενη ζημιά θα είναι η ζημία Loss που βγαίνει από την εξίσωση επί την πιθανότητα χρεοκοπίας που βρήκαμε στο ερώτημα B4.

Επομένως έχουμε : 0,9995 * (Loss) = 0,9995 * (69,878 + 4,822*5 – 0,819*20 – 17,956*0 + 0,913*0) = 0,9995 * 77,608 = **77,569196**

Υπό-ερώτημα 7

Αν θεωρήσουμε ότι το περιθώριο σφάλματος είναι 1% οι μεταβλητές οι οποίες παραμένουν στο μοντέλο μας είναι εκείνες οι οποίες έχουν p-value μικρότερο από το 0.01.

Οπότε έγουμε τις εξής υποθέσεις:

Ηο : η ζημία να μην επηρεάζεται αν ο δανειολήπτης είναι εργαζόμενος με σύμβαση ορισμένου η αορίστου χρόνου δηλαδή πρέπει ο συντελεστής του Type02 να είναι 0 Η1 : ο συντελεστής του Type02 να είναι διάφορος του 0

Αν ρυθμίσουμε την παλινδρόμηση έτσι ώστε να αφαιρεί τις μεταβλητές οι οποίες έχουν p-value > 0.01 θα καταλήξουμε στον παρακάτω πίνακα

6	(Constant)	70.235	.972		72.239	.000
	Cards	4.819	.112	.585	43.008	.000
	Deposit	816	.025	379	-32.712	.000
	Family	-17.948	.493	487	-36.374	.000

Βλέπουμε λοιπόν ότι δεν υπάρχει η μεταβλητή type02 γιατί το sig. ήταν μεγαλύτερο από το 0,01. Επομένως το μοντέλο μας δεν εξαρτάται από την τιμή της . Άρα ισχύει η Ηο δηλαδή το στέλεχος της τράπεζας έχει δίκιο.

Υπό-ερώτημα 8

Για το συγκεκριμένο ερώτημα φτιάξαμε 2 νέες μεταβλητές ώστε να βρούμε τους όρους αλληλεπίδρασης μεταξύ του family και των deposit – cards οι οποίες ονομάστηκαν famdep & famcards.

Έτσι τρέξαμε τη μέθοδο backward και είχαμε τα εξής αποτελέσματα :

Για την ποιότητα του δείγματος έγινε έλεγχος του R square

Model Summary^g

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.981 ^a	.963	.962	3.599585
2	.981 ^b	.963	.962	3.595903
3	.981 ^c	.963	.962	3.593692
4	.981 ^d	.963	.962	3.592840
5	.981 ^e	.962	.962	3.593717
6	.981 ^f	.962	.962	3.594617

Ενώ για περιθώριο σφάλματος 5% το μοντέλο μας είναι :

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confidence Interval for B	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
6	(Constant)	59.638	.972		61.380	.000	57.729	61.547
	Cards	4.831	.088	.586	55.180	.000	4.659	5.003
	Deposit	517	.026	240	-19.739	.000	568	465
-	Family	4.414	1.349	.120	3.271	.001	1.762	7.065
	Type01	.893	.328	.024	2.722	.007	.249	1.538
	famdep	665	.038	639	-17.298	.000	740	589

```
\Deltaηλαδή : Loss = 59,638 + 4,831*Cards - 0,517*Deposit + 4,414*Family + 0,893*Type01 - 0.665*family*deposit
```

Άρα για έναν έγγαμο έχουμε:

Loss = 59,638 + 4,831*Cards - 0,517*Deposit + 4,414*1 + 0,893*Type01 - 0.665*1*deposit

Και για έναν άγαμο έχουμε:

 $\label{eq:Loss} Loss = 59,638 + 4,831*Cards - 0,517*Deposit + 4,414*0 + 0,893*Type01 - 0.665*0*deposit$

Αν αφαιρέσουμε κατά μέλη τις παραπάνω δύο σχέσεις έχουμε:

$\Delta Loss = 4,414 - 0,665*deposit.$

Άρα η διαφορά των ζημιών μεταξύ ενός έγγαμου και ενός άγαμου μειώνεται κατά 0,665 ανά 1000 ευρώ καταθέσεων.