Electrical Engineering

Passive Filter Design

EE2100 - Circuits & Fields

Group Members

• Kaushalya K.T.S. 210280T

• Nainanayake N.P.T.S. 210403C

• Ilangakoon I.P.N.D. 210229X

Data sheet of the old speaker system

Q1. What is the *order* of the filter that they have used in the old filter design?

Project - Passive Filter Design

Question o1:-

* The high-frequency roll-off of an nth-order filter is 20 n dB / decade.

For Low-Pass filter:

Let's consider the roll-off from 100 Hz - 1 KHz.

$$20 n = 40$$

$$h = 2$$

.. Order of the Low-Pass Filter = 2/

For High-Pass Filter:

Considering the roll-off from 1 kHz - 10 kHz 20n = 40n = 2

.. Order of the High - Pass Filter = 2 /

For Band-Pass Filter:

We can consider the Decibel plot of the band-pass filter as a combination of a Low-Pass Filter and a High-Pass Filter.

It has two high frequency roll-offs same as the above Low-Pass and High Pass Filters.

· Order of the Band-Pass Filter = 2x2 = 4

Q2. What are the *cutoff frequencies* of each filter that they have used in the old filter design? Approximate your answer to a one-decibel point.?

Question 02:

* To find the cutoff frequencies of each filter we have to draw a horizontal line at -3 dB and get the corresponding frequency values of the intersecting points of the plots and the -3dB horizontal line.

Cut off Frequencies of;

Low-Pass Filter = 277 Hz

High-Pass Filter = 4.15 KHz

Band- Pass Filter = 410 Hz and 2.8 KHz

Q3. Design and synthesize maximally flat filters (all three) with the passband tolerance of 3dB and frequency attenuation of 90dB at $(5 \times cuttoff)$ frequency). (a) Determine the transfer function of the (b) Using LTspice software, determine the bode plot of the filter. (c) Compare the bode plot with the old filter bode plot and determine the transition area reduction in Hz. Assume the source resistance = load resistance = 50Ω .

1.) Butterworth Low Pass Filter

Question 03	Figure Heaven 5
Designing a maximally flo	it Low- Pass filter:
Passband tolerance = 3 d	β
High frequency attenuation	on = 90 dB
at (5x	277 Hz) = 1385 Hz
Rs = Re = 50_0	
Ko = 4R1R2 _ 1	E - Francis Ation :
$K_0 = \frac{4R_1R_2}{(R_1 + R_2)^2} = 1$	
	(= in pao in a.g.
10 log (1+62) = 3	2081 = 03 × 0844 · 0 = 1
$log_{1}(1+c^{2}) = 0.3$	ZEXTEG.
$\varepsilon^2 = 10^\circ$	·3-1 = 0·995 <u>~</u> 1
10 log10 [1+ E2 (w 2n)	= 90 AEXITE
log10 [1+ (1385)2	AZKETE MON = 7
5	$^{2h} = 10^9 - 1$
	9105 = 9 E = >
	$n = \frac{9}{2 \log_{10} 5} = 6.44$
Selection Teacher	
	Pass Maximally flat filter = 7/1
	and the state of t
Transfer Function >	5 b-110
[H(e)] -	$\frac{1}{(1-s)^{14}} = \frac{1}{1-s^{14}}$
111031 -	

For
$$L_2$$
 and $L_3 =$

$$L = \frac{1.8019 \times 50}{277 \times 27} = \frac{51.7656}{277 \times 27}$$

For
$$C_1$$
 and $C_2 = 0$
 $C = \frac{1.2470}{50 \times 277 \times 27} = 14.3297. \mu F$

For
$$C_2 = \frac{2}{50 \times 277 \times 27} = 22.9827$$
 μF

De-Normalized Low-Pass filter circuit

De-Normalized Butterworth Low-Pass filter Bode plot

2.) Butterworth High Pass Filter

Designing a maximally flat High-Pass filter:

Passband tolerance = 3 dB

High frequency attenuation = 90 dB

at
$$\left(\frac{4150}{5} \text{ Hz}\right)$$
 = 830 Hz

$$R_S = R_L = 50.\Omega$$

$$k_0 = \frac{4R_1R_2}{(R_1 + R_2)^2} = 1$$

$$lolog_{10}(1+\epsilon^2) = 3$$

 $log_{10}(1+\epsilon^2) = 0.3$
 $\epsilon^2 = 10^{3} - 1 = 0.995 \triangle 1$

$$\log_{10} \left[1 + \varepsilon^2 \left(\frac{\omega_c}{\omega} \right)^{2h} \right] = 90$$

$$\log_{10} \left[1 + \left(\frac{4150}{830} \right)^{2h} \right] = 9$$

$$5^{2h} = 10^9 - 1$$

$$2n \ln 5 = 9 \ln 10$$

$$h = 9 \ln 10 = 6.44$$

$$2 \ln 5$$

.. Order of the High-Pass Maximally flat filter = 7/

4286×2X X 1-2 170

Transfer, Function =
$$\frac{|f(s)|^2}{|f(s)|^2} = \frac{|f(s)|^2}{|f(s)|^{14}} = \frac$$

De-Normalization to a High-Pass Filter:

* L1, L2, L3 and L4 become capacitors and C1, C2 and C3 becomes inductors when transforming into a High-Pass Filter.

De-Normalized High-pass filter circuit

De-Normalized Butterworth High-pass filter plot

3.) Butterworth Band Pass Filter

Designing a maximally flat Band-Pass Filter: * According to the Symmetrical Shape of the Decible Bode Plot of the Band-Pass Filter; we can directly take the order of the filter as; New order of the Band-Pass Maximally flat filter = 7x2 = 14 - 4, - 3 Corresponding Normalized Low-Pass filter Synthesize: 0.4450 H HP108+1 12 0.4450H 1.8019 H 1-2 1.2470F 1.2470F A 140 -52 De-Normalization to a Band-Pass filter: BM . 3112 LR Li and Li => mm 0.4450 H Band with = (2800-410) Hz = (2390 Hz) x2x Wo (center frequency) = 27x1000 Hz Lo = 0.4450 X 50 1.4817 mH 2390×27 2390 X 27 HF Co= (27x103)20-4450 x50

De-Normalized Band-Pass filter circuit

$\underline{\textbf{De-Normalized Band-Pass filter plot}}_{\text{V(n016)}}$

Filter Design

Old Transition Areas

- Old Transition Area 1 = 1000 Hz 100 Hz = 900 Hz
- Old Transition Area 2 = 10 kHz 1 kHz = 9 kHz

New Transition Areas (According to the bode plot at page 13)

- New Transition Area 1 = 536Hz 207Hz = 329Hz
- New Transition Area 2 = 4.82kHz 2.15kHz = 2.67kHz

Transition Area Reductions

Transition Area reduction (1) = $900 \text{ Hz} - 329 \text{ Hz} = \frac{571 \text{ Hz}}{2}$

Transition Area reduction (2) = $9 \text{ kHz} - 2.67 \text{ kHz} = \frac{6.33 \text{ kHz}}{2.67 \text{ kHz}}$

Q4. Design and synthesize a Chebyshev filter (Type 1) with a passband tolerance of **0.5**dB and frequency attenuation of **90**dB at (5 × cuttoff frequency) only for the sub-woofer. (a) Determine the transfer function of the filter (no need to simplify it). (b) Using LTspice software, determine the bode plot of the filter. Assume the source resistance = load resistance = 50 Ω

```
Question 04:
Design and synthesize a Chebyshev filter for the Sub-woofer
Passband tolerance = 0.5 dB fc = 277 Hz
Frequency attenuation = 90 dB at (5x277 Hz) = 1385 Hz
R = R = 50 1
  K_0 = (1+\epsilon^2) \frac{4 R_S R_L}{(R_S + R_L)^2} = 1.122
  10 \log_{10} (1+\epsilon^2) = 0.5
\epsilon^2 = 10^{0.05} - 1
         6<sup>2</sup> = 0.122 -0
10 \log_{10} \left( 1 + \varepsilon^2 T_n^2(y) \right) = 90
T_n^2(y) = 10^9 - 1
       Tn(y) = 90535.746
 y = \frac{\omega}{\omega_c} = \frac{1385}{277} = 5 > 1
  .. Th(y) = (cosh (nx cosh y)
         n = \frac{\cos h^{-1} (90535.746)}{1}
          h = 5.28
                              T6(9) = 3246-4849+1842-1
 .. Order of the Chebysher (Type 1) Low Pass filter
            for the sub-woofer = 6
```


Transfer function =)
$$[H(j\omega)]^{2} = \frac{1 \cdot 122}{1 + (0 \cdot 122) [32y^{6} - 48y^{4} + 18y^{2} - 1]^{2}}$$

$$[H(s)]^{2} = \frac{1 \cdot 122}{1 + 0 \cdot 122 (-32s^{6} + 48s^{4} - 18s^{2} - 1)^{2}}$$

De-Normalized Low-Pass Chebyshev filter circuit

De-Normalized Low-Pass Chebyshev filter plot

Q5. Based on the results from both type of sub-woofer filters, which filter you will select for the application mentioned above.

Explain why you have chosen this filter.

Low Pass Filter Bode Plots for both Butterworth and Chebyshev Approximations

Characteristic	Butterworth	Chebyshev
Passband Response	Maximally flat	Ripple
Stopband Response	Slow roll-off	Sharp roll-off
Distortion	Low	Higher

Conclusion

Butterworth filter has a maximally flat passband response, meaning that the frequency response is as flat as possible within the passband. This makes them ideal for applications where a linear phase response is important, such as audio playback. Butterworth filter also has a relatively **slow roll-off rate**, meaning that they do not attenuate frequencies outside the passband as quickly as some other filter types.

Chebyshev filter has a **sharper roll-off** rate than the Butterworth filter, meaning that it can attenuate frequencies outside the passband more quickly. This makes it ideal for applications where it is important to reduce the transition area between the passband and stopband, such as subwoofer crossover filters. However, the Chebyshev filter also has a **ripple** in the passband response, which can cause distortion.

The figure at page 18 shows the bode plots of Butterworth and Chebyshev type 1 filters. We can see that the transition area of the Chebyshev filter is lesser than the Butterworth filter. It is because Chebyshev filters have shaper roll-off rate than Butterworth filters as mentioned in the above paragraph. Since our main task is to reduce the transition area, Chebyshev filter is a better option at that point of view. Although both the filters have transition areas less than the older one, we can obtain a lesser transition area in Chebyshev filter with an order of 6 while the Butterworth filter required an order of 7 to do the same task.

Furthermore, the number of inductors in the Chebyshev type 1 filter is less than the Butterworth filter. So, if we chose the Chebyshev type 1 filter for the sub-woofer, we could save the space as well.

➤ Considering all the factors mentioned above, Chebyshev Type 1 Low Pass filter is the best option for the Sub-Woofer.