Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. Examen Final. [27 de Febrero de 2003]

- Ej. 1.- Escribir las funciones primitivas del TAD CONJUNTO implementado mediante listas enlazadas clasificadas. Es decir, implementar en Pascal los siguientes procedimientos/funciones listados abajo. Incluir todas las definiciones de tipo necesarias. ANULA(A), UNION(A,B,C), INTERSECCION(A,B,C), DIFERENCIA(A,B,C), MIEMBRO(x,A), MIN(A), INSERTA(x,A) y SUPRIME(x,A).
- **Ej. 2.-** Recordemos que la *altura* de un nodo en un árbol, es la máxima longitud de los caminos que van desde el nodo a una hoja descendiente del mismo. Por ejemplo, consideremos el árbol de la figura. El número que está arriba y a la izquierda de cada nodo es la altura del nodo.

Escribir una función function CUENTA_ALT(n:nodo; m:integer; var altura:integer; A:arbol) : integer; que dado un nodo n en un árbol A cuenta el número de nodos del subárbol de A cuya raiz es n tales que su altura es menor o igual que m. Además, en la variable altura debe retornar la altura del nodo n. Por lo tanto las siguientes llamadas deben retornar, para el árbol del ejemplo,

```
CUENTA_ALT(G,0,altura,G) -> 7

CUENTA_ALT(G,1,altura,G) -> 10

CUENTA_ALT(G,2,altura,G) -> 12

CUENTA_ALT(G,3,altura,G) -> 13

CUENTA_ALT(G,4,altura,G) -> 14
```

En todos estos casos, la variable altura debe retornar altura=4. Por otra parte, si nos referimos al nodo N, entonces debe retornar

```
CUENTA_ALT(N,0,altura,G) -> 2
CUENTA_ALT(N,1,altura,G) -> 3
CUENTA_ALT(N,2,altura,G) -> 4
```

y altura=2.

Usar las primitivas de árbol ordenado orientado siguientes: HIJO_MAS_IZQ(n,A),HERMANO_DER(n,A). Hacer la función recursiva. Notar que el conteo de nodos que cumple la condición para un nodo dado es igual a la suma sobre los hijos más 1 o 0, dependiendo de si la altura del nodo es menor que m o no.

Ej. 3.- Ejercicios básicos sobre TAD's

(a) Escribir un procedimiento procedure STRIDE(var L1:lista; L:lista; c, f, i: integer); que retorna en L1 todos le elementos en las posiciones desde el comienzo c hasta el fin f (pero sin incluirlo) a intervalos i. Es decir, debe retornar los elementos en las posiciones c, c+i, c+2*i, ..., mientras éstas sean menores que f y esten dentro del rango de posiciones válidas en la lista. Por ejemplo, si L=(3,2,1,5,4,2,3,2,6) y llamamos STRIDE(L1,L,2,9,3), entonces debe retornar L1=(2,4,2), mientras que si hacemos STRIDE(L1,L,3,20,4) debe retornar L1=(1,3) Utilizar las siguientes primitivas:

		Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática ain letra mayuscula del imprenta GRANDE] Algoritmos y Estructuras de Datos
		• TAD LISTA: INSERTA(x,p,L), RECUPERA(p,L), SUPRIME(p,L), SIGUIENTE(p,L), ANULA(L), PRIMERO(L), y FIN(L).
		(b) Escribir una función function SUMA_COLA(C:cola): integer; que calcula la suma de los elementos de una cola de enteros. La cola original debe quedar inalterada. Sugerencia: usar una variable auxiliar (cola o lista). Utilizar las primitivas del TAD COLA: ANULA(C), PONE_EN_COLA(x,C), QUITA_DE_COLA(C), VACIA(C), y FRENTE_DE_COLA(C).
Ej.	4	[LIBRES] Ejercicios operativos:
		(a) Árboles: Dibujar el árbol ordenado orientado cuyos nodos, listados en orden previo y posterior son • ORD_PRE = $\{M, G, Z, R, N, A, B, D, E\}$. • ORD_POST = $\{Z, R, G, A, D, E, B, N, M\}$.
		(b) [LIBRES] Dados los caracteres siguientes con sus correspondientes probabilidades, contruir el código binario y encodar la palabra PACIENCIA $P(P)=0.3, P(A)=0.1, P(C)=0.3, P(I)=0.05, P(E)=0.05, P(N)=0.2$ Calcular la longitud promedio del código obtenido.
Ej.	5	[LIBRES] Preguntas: [Responder según el sistema "multiple choice", es decir marcar con una cruz el casillero apropiado. Atención: Algunas respuestas son intencionalmente "descabelladas" y tienen puntajes negativos!!]
		(a) Dadas las funciones $T_1(n) = 2\sqrt{n} + 0.5n!$, $T_2(n) = n^2 + 5n^3$, $T_3(n) = \log n + 2n$ y $T_4(n) = n^2 + 3\sqrt{n}$ decir cuál de los siguientes ordenamientos es el correcto
		(b) Sea una lista L=(1,3,5,4) simplemente enlazada por punteros o cursores, y sea p la posición correspondiente al elemento 3. Despues de hacer SUPRIME(p,L), ¿cual es el resultado de hacer x = RECUPERA(p,L)?
		retorna el elemento 1 produce un error retorna el elemento 5 retorna el elemento 3
		(c) ¿Cuál es el criterio para elegir una buena función de dispersión?
		Debe tratar de concentrar los elementos en pocas cubetas.
		Debe tratar de concentrar los elementos en una sóla cubeta. Debe tratar de concentrar los elementos en la primera cubeta.
		Debe distribuir los elementos en la forma más uniforme posible entre las cubetas.
		(d) ¿Cuál de los siguientes algoritmos de clasificación es el más rápido en el caso promedio?
		Burbuja ("Bubble-sort")

Examen Final. [27 de Febrero de 2003]

Clasificación rápida ("Quick-sort")

Selección

Clasificación por incrementos decrecientes (shell-sort)

2