Tensor Calculus J.L. Synge and A.Schild (Dover Publication) Solutions to exercises

Bernard Carrette

March 9, 2022

Remarks and warnings

You're welcome to use these notes, but they may contain errors, so proceed with caution. If you do find an error, however, I'd be happy to receive bug reports, suggestions, and the like through Github.

Some notation conventions

$$\partial_r \equiv \frac{\partial}{\partial x^r}$$

$$\Gamma_{mn}^r \equiv \begin{Bmatrix} r \\ mn \end{Bmatrix}$$
 Christoffel symbol of the second kind

Contents

1	Cur	rvature of space	4
	1.1	p109 - Exercise 6	5
	1.2	p109 - Exercise 7	G
	1.3	p109 - Exercise 8	11

List of Figures

Curvature of space

1.1 p109 - Exercise 6

For an orthogonal coordinates system in a V_2 we have

$$ds^{2} = a_{11} (dx^{1})^{2} + a_{22} (dx^{2})^{2}$$

Show that

$$\frac{1}{a}R_{1212} = -\frac{1}{2}\frac{1}{\sqrt{a}}\left[\partial_1\left(\frac{1}{\sqrt{a}}\partial_1 a_{22}\right) + \partial_2\left(\frac{1}{\sqrt{a}}\partial_2 a_{11}\right)\right]$$

We have

$$(a_{mn}) = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} \quad (a_{mn}) = \frac{1}{a} \begin{pmatrix} a_{22} & 0 \\ 0 & a_{11} \end{pmatrix} \quad a = a_{11}a_{22} \tag{1}$$

We have also

$$R = -\frac{2}{a}R_{1212} \tag{2}$$

$$R = a^{mn}R_{mn} \Rightarrow R = a^{11}R_{11} + a^{22}R_{22}$$
 (3)

Looking at the pattern generated by equations (2) and (3) suggests that using these equations could lead to the proposed equation. Let's have a try ...

$$\begin{cases}
\Gamma_{11}^{1} = \frac{1}{2} \frac{a_{22}}{a} \partial_{1} a_{11} & \Gamma_{22}^{1} = -\frac{1}{2} \frac{a_{22}}{a} \partial_{1} a_{22} \\
\Gamma_{11}^{2} = -\frac{1}{2} \frac{a_{11}}{a} \partial_{2} a_{11} & \Gamma_{22}^{2} = \frac{1}{2} \frac{a_{11}}{a} \partial_{2} a_{22} \\
\Gamma_{12}^{1} = \frac{1}{2} \frac{a_{22}}{a} \partial_{2} a_{11} & \Gamma_{12}^{2} = \frac{1}{2} \frac{a_{11}}{a} \partial_{1} a_{22}
\end{cases}$$

$$3.205. \Rightarrow R_{rm} = \frac{1}{2} \partial_{rm} \log a - \frac{1}{2} \Gamma_{rm}^{p} \partial_{p} \log a - \partial_{n} \Gamma_{rm}^{n} + \Gamma_{rn}^{p} \Gamma_{pm}^{n}$$

$$\begin{cases}
R_{11} = \frac{1}{2} \partial_{11} \log a - \frac{1}{2} \Gamma_{11}^{1} \partial_{1} \log a - \frac{1}{2} \Gamma_{11}^{2} \partial_{2} \log a \\
-\partial_{1} \Gamma_{11}^{1} - \partial_{2} \Gamma_{11}^{2} + \Gamma_{11}^{2} \Gamma_{11}^{2} + \Gamma_{12}^{2} \Gamma_{21}^{2}
\end{cases}$$

$$\Rightarrow \begin{cases}
R_{22} = \frac{1}{2} \partial_{22} \log a - \frac{1}{2} \Gamma_{12}^{1} \partial_{1} \log a - \frac{1}{2} \Gamma_{22}^{2} \partial_{2} \log a \\
-\partial_{1} \Gamma_{12}^{1} - \partial_{2} \Gamma_{22}^{2} + \Gamma_{21}^{2} \Gamma_{12}^{1} + \Gamma_{22}^{2} \Gamma_{22}^{2}
\end{cases}$$

$$\Rightarrow \begin{cases}
(6) \\
-\partial_{1} \Gamma_{12}^{1} - \partial_{2} \Gamma_{22}^{2} + \Gamma_{21}^{2} \Gamma_{12}^{2} + \Gamma_{22}^{2} \Gamma_{22}^{2}
\end{cases}$$

$$\begin{cases}
R_{11} = \frac{1}{2}\partial_{11}\log a - \frac{1}{2}\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{11}\partial_{1}\log a - \frac{1}{2}(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11})\partial_{2}\log a \\
-\partial_{1}(\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{11}) - \partial_{2}(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11}) + \\
\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{11}\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{11} + \frac{1}{2}\frac{a_{22}}{a}\partial_{2}a_{11}(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11}) + \\
(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11})\frac{1}{2}\frac{a_{22}}{a}\partial_{2}a_{11} + \frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}\frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}
\end{cases}$$

$$\Rightarrow \begin{cases}
R_{11} = \frac{1}{2}\partial_{11}\log a - \frac{1}{2}\frac{a_{12}}{a}\partial_{1}a_{11} + \frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11} + \frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}a_{11} + \\
(-\frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}\partial_{2}\log a - \frac{1}{2}(-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22})\partial_{1}\log a - \frac{1}{2}\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}\partial_{2}\log a \\
-\partial_{1}(-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22}) - \partial_{2}(\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}) + \\
\frac{1}{2}\frac{a_{22}}{a}\partial_{2}a_{11}\frac{1}{2}\frac{a_{22}}{a}\partial_{2}a_{11} + (-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22})\frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22} + \\
\frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}(-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22}) + \frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}
\end{cases}$$

$$(7)$$

Simplifying the notational burden by replacing a_{11} by γ and a_{22} by η :

Simplifying the notational burden by replacing
$$a_{11}$$
 by γ and a_{22} by η .

$$\begin{cases}
R_{11} = \frac{1}{2}\partial_{11}\log a - \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\partial_{1}\gamma\partial_{1}\log a + \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\log a \\
-\frac{1}{2}\partial_{1}(\frac{1}{\gamma}\partial_{1}\gamma) + \frac{1}{2}\partial_{2}(\frac{1}{\eta}\partial_{2}\gamma) \\
+\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}\partial_{1}\gamma\partial_{1}\gamma - \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\gamma \\
-\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\gamma + \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_{1}\eta\partial_{1}\eta
\end{cases}$$

$$\Rightarrow \begin{cases}
R_{22} = \frac{1}{2}\partial_{22}\log a + \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\partial_{1}\eta\partial_{1}\log a - \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\partial_{2}\eta\partial_{2}\log a \\
+\frac{1}{2}\partial_{1}(\frac{1}{\gamma}\partial_{1}\eta) - \frac{1}{2}\partial_{2}(\frac{1}{\eta}\partial_{2}\eta) \\
+\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}\partial_{2}\gamma\partial_{2}\gamma - \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{1}\eta\partial_{1}\eta \\
-\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{1}\eta\partial_{1}\eta + \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_{2}\eta\partial_{2}\eta
\end{cases}$$
Noting that $\partial_{ii}\log a = \partial_{i}\left(\frac{1}{a_{11}}\partial_{i}a_{11}\right) + \partial_{i}\left(\frac{1}{a_{22}}\partial_{i}a_{22}\right)$ and $\partial_{i}\log a = \frac{1}{a_{11}}\partial_{i}a_{11} + \frac{1}{a_{22}}\partial_{i}a_{22} \quad (i = 1, 2),$ we get:

we get:

$$2R_{11} = 2R_{22} = \frac{\partial_{1}\left(\frac{1}{\gamma}\partial_{1}\gamma\right) + \partial_{1}\left(\frac{1}{\eta}\partial_{1}\eta\right)}{*} \qquad \partial_{2}\left(\frac{1}{\gamma}\partial_{2}\gamma\right) + \underbrace{\partial_{2}\left(\frac{1}{\eta}\partial_{2}\eta\right)}_{*} \\
-\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}(\partial_{1}\gamma)^{2} - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{1}\gamma\partial_{1}\eta \qquad + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2} \\
+\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2} + \frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\eta \qquad -\underbrace{\partial_{1}\left(\frac{1}{\gamma}\partial_{1}\gamma\right) + \partial_{2}\left(\frac{1}{\eta}\partial_{2}\gamma\right)}_{*} \qquad +\underbrace{\partial_{1}\left(\frac{1}{\gamma}\partial_{1}\eta\right) - \underbrace{\partial_{2}\left(\frac{1}{\eta}\partial_{2}\eta\right)^{2}}_{*} \qquad +\underbrace{\partial_{1}\left(\frac{1}{\gamma}\partial_{1}\eta\right) - \underbrace{\partial_{2}\left(\frac{1}{\eta}\partial_{2}\eta\right)}_{*} \qquad (9) \\
+\underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\gamma)^{2} - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2}}_{+} \qquad +\underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2} - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2}}_{+} \qquad -\underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad (9)$$

$$\Rightarrow \begin{vmatrix} 2R_{11} = & 2R_{22} = \\ \partial_1 \left(\frac{1}{\eta}\partial_1\eta\right) + \partial_2 \left(\frac{1}{\eta}\partial_2\gamma\right) & \partial_1 \left(\frac{1}{\gamma}\partial_1\eta\right) + \partial_2 \left(\frac{1}{\gamma}\partial_2\gamma\right) \\ + \frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_1\eta)^2 - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_2\gamma)^2 & -\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_1\eta)^2 + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}(\partial_2\gamma)^2 \\ - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_1\gamma\partial_1\eta + \frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_2\gamma\partial_2\eta & +\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}\partial_1\gamma\partial_1\eta - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_2\gamma\partial_2\eta \end{vmatrix}$$

$$(10)$$

Be $R = \frac{1}{\gamma}R_{11} + \frac{1}{\eta}R_{22}$, all first order derivatives vanish and we get,

$$\frac{1}{\gamma}R_{11} + \frac{1}{\eta}R_{22} = \frac{1}{2} \left[\frac{1}{\eta} \partial_1(\frac{1}{\gamma}\partial_1\eta) + \frac{1}{\gamma} \partial_1(\frac{1}{\eta}\partial_1\eta) \right] + \frac{1}{2} \left[\frac{1}{\gamma} \partial_2(\frac{1}{\gamma}\partial_2\gamma) + \frac{1}{\eta} \partial_2(\frac{1}{\eta}\partial_2\gamma) \right]$$
(11)

We further simplify this expression. Considering the symmetry of (11) we only explicit the calcula-

tions for the first terms in ∂_1 .

$$\frac{1}{\eta}\partial_1(\frac{1}{\gamma}\partial_1\eta) + \frac{1}{\gamma}\partial_1(\frac{1}{\eta}\partial_1\eta) = \frac{1}{\eta}\partial_1(\frac{1}{\sqrt{\gamma}}\frac{1}{\sqrt{\gamma}}\frac{\sqrt{\eta}}{\sqrt{\eta}}\partial_1\eta) + \frac{1}{\gamma}\partial_1(\frac{1}{\sqrt{\eta}}\frac{1}{\sqrt{\eta}}\frac{\sqrt{\gamma}}{\sqrt{\gamma}}\partial_1\eta)$$
(12)

$$= \frac{1}{\eta} \partial_1 \left[\left(\frac{\eta}{\gamma} \right)^{\frac{1}{2}} \frac{1}{\sqrt{a}} \partial_1 \eta \right] + \frac{1}{\gamma} \partial_1 \left[\left(\frac{\eta}{\gamma} \right)^{-\frac{1}{2}} \frac{1}{\sqrt{a}} \partial_1 \eta \right]$$
(13)

$$= \begin{cases} \frac{1}{\eta} \left(\frac{\eta}{\gamma}\right)^{\frac{1}{2}} \partial_{1} \left[\frac{1}{\sqrt{a}} \partial_{1} \eta\right] + \underbrace{\frac{1}{\gamma} \left(\frac{\eta}{\gamma}\right)^{-\frac{1}{2}}}_{=\frac{1}{\sqrt{a}}} \partial_{1} \left[\frac{1}{\sqrt{a}} \partial_{1} \eta\right] \\ + \underbrace{\frac{1}{\sqrt{a}} \partial_{1} \eta}_{=0} \left[\frac{1}{\eta} \partial_{1} \left(\frac{\eta}{\gamma}\right)^{\frac{1}{2}} + \frac{1}{\gamma} \partial_{1} \left(\frac{\eta}{\gamma}\right)^{-\frac{1}{2}}\right] \\ = 0 \end{cases}$$

$$(14)$$

$$=2\frac{1}{\sqrt{a}}\partial_1\left[\frac{1}{\sqrt{a}}\partial_1 a_{22}\right] \tag{15}$$

$$\Rightarrow \frac{1}{2} \left[\frac{1}{\eta} \partial_1 (\frac{1}{\gamma} \partial_1 \eta) + \frac{1}{\gamma} \partial_1 (\frac{1}{\eta} \partial_1 \eta) \right] = \frac{1}{\sqrt{a}} \partial_1 \left[\frac{1}{\sqrt{a}} \partial_1 a_{22} \right]$$
 (16)

Using (16) and the same calculations for the terms in ∂_2 and using (2) and (3) we get

$$\frac{1}{a}R_{1212} = -\frac{1}{2}\frac{1}{\sqrt{a}}\left[\partial_1\left(\frac{1}{\sqrt{a}}\partial_1 a_{22}\right) + \partial_2\left(\frac{1}{\sqrt{a}}\partial_2 a_{11}\right)\right]$$

♦

1.2 p109 - Exercise 7

Suppose that in a V_3 the metric is:

$$ds^{2} = (h_{1}dx^{1})^{2} + (h_{2}dx^{2})^{2} + (h_{3}dx^{3})^{2}$$

whre h_1, h_2, h_3 are functions of the three coordinates. Calculate the curvature tensor in terms of the h's and their derivatives. Check your result by nothing that the curvature tensor will vanish if h_1 is a function of x^1 only, h_2 a function of x^2 only, and h_3 a function of x^3 only.

From **3.115**. and **3.115**. we get for the non vanishing components of the covariant curvature tensor(6 independent components to calculate):

$$R_{1212} = \begin{cases}
-R_{1221} & R_{2323} = \begin{cases}
-R_{2332} & R_{1313} = \begin{cases}
-R_{1331} & R_{3131}
\end{cases} \\
R_{2121} & R_{2323} & R_{1313} = \begin{cases}
-R_{1313} & R_{3131}
\end{cases} \end{cases}$$

$$R_{3131} = \begin{cases}
-R_{1231} & R_{1312} & R_{2132} \\
-R_{2131} & R_{2321}
\end{cases}$$

$$R_{1213} = \begin{cases}
-R_{1232} & R_{1323} = \begin{cases}
-R_{1332} & R_{2313} \\
-R_{2312} & R_{1323} = \begin{cases}
-R_{3123} & R_{3132}
\end{cases} \\
R_{3112} & R_{3212} & R_{3221}
\end{cases}$$

$$R_{3212} - R_{3221} & R_{3231}
\end{cases}$$

$$R_{3231} = \begin{cases}
-R_{3231} & R_{3231}
\end{cases}$$

$$R_{3231} = \begin{cases}
-R_{3231} & R_{3231}
\end{cases}$$

$$R_{3231} = \begin{cases}
-R_{3231} & R_{3231}
\end{cases}$$

The metrix tensors:

$$(a_{mn}) = \begin{pmatrix} h_1^2 & 0 & 0 \\ 0 & h_2^2 & 0 \\ 0 & 0 & h_3^2 \end{pmatrix} \quad (a_{mn}) = \begin{pmatrix} \frac{1}{h_1^2} & 0 & 0 \\ 0 & \frac{1}{h_2^2} & 0 \\ 0 & 0 & \frac{1}{h_3^2} \end{pmatrix}$$
(3)

The Christoffel symbols:

$$[11,1] = h_1 \partial_1 h_1 \qquad [11,2] = -h_1 \partial_2 h_1 \qquad [11,3] = -h_1 \partial_3 h_1$$

$$[12,1] = h_1 \partial_2 h_1 \qquad [12,2] = h_2 \partial_1 h_2 \qquad [12,3] = 0$$

$$[22,1] = -h_2 \partial_1 h_2 \qquad [22,2] = h_2 \partial_2 h_2 \qquad [22,3] = -h_2 \partial_3 h_2$$

$$[23,1] = 0 \qquad [23,2] = h_2 \partial_3 h_2 \qquad [23,3] = h_3 \partial_2 h_3$$

$$[33,1] = -h_3 \partial_1 h_3 \qquad [33,2] = -h_3 \partial_2 h_3 \qquad [33,3] = -h_3 \partial_3 h_3$$

$$[31,1] = h_1 \partial_3 h_1 \qquad [31,2] = 0 \qquad [31,3] = h_3 \partial_1 h_3$$

$$(4)$$

$$\Gamma_{11}^{1} = \frac{1}{h_{1}} \partial_{1} h_{1} \qquad \Gamma_{11}^{2} = -\frac{h_{1}}{h_{2}^{2}} \partial_{2} h_{1} \qquad \Gamma_{11}^{3} = -\frac{h_{1}}{h_{3}^{2}} \partial_{3} h_{1}
\Gamma_{12}^{1} = \frac{1}{h_{1}} \partial_{2} h_{1} \qquad \Gamma_{12}^{2} = \frac{1}{h_{2}} \partial_{1} h_{2} \qquad \Gamma_{12}^{3} = 0
\Gamma_{22}^{1} = -\frac{h_{2}}{h_{1}^{2}} \partial_{1} h_{2} \qquad \Gamma_{22}^{2} = \frac{1}{h_{2}} \partial_{2} h_{2} \qquad \Gamma_{23}^{3} = -\frac{h_{2}}{h_{3}^{2}} \partial_{3} h_{2}
\Gamma_{23}^{1} = 0 \qquad \Gamma_{23}^{2} = \frac{1}{h_{2}} \partial_{3} h_{2} \qquad \Gamma_{23}^{3} = \frac{1}{h_{3}} \partial_{2} h_{3}
\Gamma_{33}^{1} = -\frac{h_{3}}{h_{1}^{2}} \partial_{1} h_{3} \qquad \Gamma_{33}^{2} = -\frac{h_{3}}{h_{2}^{2}} \partial_{2} h_{3} \qquad \Gamma_{33}^{3} = \frac{1}{h_{3}} \partial_{3} h_{3}
\Gamma_{31}^{1} = \frac{1}{h_{1}} \partial_{3} h_{1} \qquad \Gamma_{31}^{2} = 0 \qquad \Gamma_{31}^{3} = \frac{1}{h_{3}} \partial_{1} h_{3}$$
(5)

We use 3.113.

$$R_{rsmn} = \partial_m[sn, r] - \partial_n[sm, r] + \Gamma_{sm}^p[rn, p] - \Gamma_{sm}^p[rm, p]$$

Note that we only have to perform the full calculation for two curvature tensors e.g. R_{1212} and $R_{1213}*$ as the others can be retrieved by using adequate indices renaming and use of the identities 3.115.

$$R_{1212} = -h_2 \partial_{11}^2(h_2) - h_1 \partial_{22}^2(h_1) + \frac{h_2}{h_1} \partial_1 h_1 \partial_1 h_2 + \frac{h_1}{h_2} \partial_2 h_1 \partial_2 h_2 - \frac{h_1 h_2}{h_3^2} \partial_3 h_1 \partial_3 h_2$$
 (6)

$$R_{2323} = -h_3 \partial_{22}^2(h_3) - h_2 \partial_{33}^2(h_2) + \frac{h_3}{h_2} \partial_2 h_2 \partial_2 h_3 + \frac{h_2}{h_3} \partial_3 h_2 \partial_3 h_3 - \frac{h_2 h_3}{h_1^2} \partial_1 h_2 \partial_1 h_3$$
 (7)

$$R_{1313} = -h_3 \partial_{11}^2(h_3) - h_1 \partial_{33}^2(h_1) + \frac{h_3}{h_1} \partial_1 h_1 \partial_1 h_3 + \frac{h_1}{h_3} \partial_3 h_1 \partial_3 h_3 - \frac{h_1 h_3}{h_2^2} \partial_2 h_1 \partial_2 h_3$$
 (8)

$$R_{1213} = -h_1 \partial_{32}^2(h_1) + \frac{h_1}{h_3} \partial_2 h_3 \partial_3 h_1 + \frac{h_1}{h_2} \partial_2 h_1 \partial_3 h_2 \tag{9}$$

$$R_{1223} = h_2 \partial_{31}^2(h_2) - \frac{h_2}{h_1} \partial_1 h_2 \partial_3 h_1 - \frac{h_2}{h_3} \partial_3 h_2 \partial_1 h_3$$
 (10)

$$R_{1323} = -h_3 \partial_{21}^2(h_3) + \frac{h_3}{h_1} \partial_1 h_3 \partial_3 h_1 + \frac{h_3}{h_2} \partial_2 h_3 \partial_1 h_2$$
(11)

And, indeed, all curvature tensors vanish when the h_i are only a function of the indices' dimension.

♦

1.3 p109 - Exercise 8

bla

$$\begin{pmatrix}
R_{11} \\
R_{22} \\
R_{33} \\
R_{44}
\end{pmatrix} = \begin{pmatrix}
0 & R_{2112} & R_{3113} & R_{4114} \\
R_{1221} & 0 & R_{3223} & R_{4224} \\
R_{1331} & R_{2332} & 0 & R_{4334} \\
R_{1441} & R_{2442} & R_{3443} & 0
\end{pmatrix} \begin{pmatrix}
a^{11} \\
a^{22} \\
a^{33} \\
a^{44}
\end{pmatrix}$$
(1)

$$\begin{pmatrix}
R_{12} \\
R_{13} \\
R_{14} \\
R_{23} \\
R_{24} \\
R_{34}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & R_{3123} & R_{4124} \\
0 & R_{2132} & 0 & R_{4134} \\
0 & R_{2142} & R_{3143} & 0 \\
R_{1231} & 0 & 0 & R_{4234} \\
R_{1241} & 0 & R_{3243} & 0 \\
R_{1341} & R_{2342} & 0 & 0
\end{pmatrix} \begin{pmatrix}
a^{11} \\
a^{22} \\
a^{33} \\
a^{44}
\end{pmatrix} \tag{2}$$

(3)

$$[11,1] = \frac{1}{2}\alpha_{1}e^{\alpha} \qquad [11,2] = 0 \qquad [11,3] = 0 \qquad [11,4] = -\frac{1}{2}\alpha_{4}e^{\alpha}$$

$$[12,1] = 0 \qquad [12,2] = \frac{1}{2}e^{x^{1}} \qquad [12,3] = 0 \qquad [12,4] = 0$$

$$[13,1] = 0 \qquad [13,2] = 0 \qquad [13,3] = \frac{1}{2}e^{x^{1}} \sin^{2}x^{2} \qquad [13,4] = 0$$

$$[14,1] = \frac{1}{2}\alpha_{4}e^{\alpha} \qquad [14,2] = 0 \qquad [14,3] = 0 \qquad [14,4] = -\frac{1}{2}\gamma_{1}e^{\gamma}$$

$$[22,1] = -\frac{1}{2}e^{x^{1}} \qquad [22,2] = 0 \qquad [22,3] = 0 \qquad [22,4] = 0$$

$$[23,1] = 0 \qquad [23,2] = 0 \qquad [23,3] = \frac{1}{2}e^{x^{1}} \sin 2x^{2} \qquad [23,4] = 0$$

$$[24,1] = 0 \qquad [24,2] = 0 \qquad [24,3] = 0 \qquad [24,4] = 0$$

$$[33,1] = -\frac{1}{2}e^{x^{1}}\sin^{2}x^{2} \qquad [33,2] = -\frac{1}{2}e^{x^{1}}\sin 2x^{2} \qquad [33,3] = 0 \qquad [33,4] = 0$$

$$[34,1] = 0 \qquad [34,2] = 0 \qquad [34,3] = 0 \qquad [34,4] = 0$$

$$[44,1] = \frac{1}{2}\gamma_{1}e^{\gamma} \qquad [44,2] = 0 \qquad [44,3] = 0 \qquad [44,4] = -\frac{1}{2}\gamma_{4}e^{\gamma}$$

We use 3.114. and considering that $a_{mn} = a^{mn} = 0$ for $m \neq n$:

$$R_{rsmn} = \begin{cases} \frac{1}{2} \left(\partial_{sm}^2 a_{rn} + \partial_{rn}^2 a_{sm} \right) \\ + \frac{1}{e^{\alpha}} \left([rn, 1][sm, 1] - [rm, 1][sn, 1] \right) \\ + \frac{1}{e^{x1}} \left([rn, 2][sm, 2] - [rm, 2][sn, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([rn, 3][sm, 3] - [rm, 3][sn, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([rn, 4][sm, 4] - [rm, 4][sn, 4] \right) \end{cases}$$

(6)

(8)

Giving:

$$R_{2112} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{22} + \partial_{22}^2 a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([22, 1][11, 1] - [21, 1][12, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([22, 2][11, 2] - [21, 2][12, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([22, 3][11, 3] - [21, 3][12, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([22, 4][11, 4] - [21, 4][12, 4] \right) \end{cases}$$
(5)

$$R_{3113} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{33} + \partial_{33}^2 a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([33, 1][11, 1] - [31, 1][13, 1] \right) \\ + \frac{1}{e^{x^1}} \left([33, 2][11, 2] - [31, 2][13, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([33, 3][11, 3] - [31, 3][13, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([33, 4][11, 4] - [31, 4][13, 4] \right) \end{cases}$$

$$(7)$$

$$R_{4114} = \begin{cases} \frac{1}{2} \left(\partial_{11}^{2} a_{44} + \partial_{44}^{2} a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][11, 1] - [41, 1][14, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([44, 2][11, 2] - [41, 2][14, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([44, 3][11, 3] - [41, 3][14, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][11, 4] - [41, 4][14, 4] \right) \end{cases}$$

$$(10)$$

(16)

$$R_{3223} = \begin{cases} \frac{1}{2} \left(\partial_{22}^2 a_{33} + \partial_{33}^2 a_{22} \right) \\ + \frac{1}{e^{\alpha}} \left([33, 1][22, 1] - [32, 1][23, 1] \right) \\ + \frac{1}{e^{x^1}} \left([33, 2][22, 2] - [32, 2][23, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([33, 3][22, 3] - [32, 3][23, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([33, 4][22, 4] - [32, 4][23, 4] \right) \end{cases}$$

$$(12)$$

$$R_{4224} = \begin{cases} \frac{1}{2} \left(\partial_{22}^2 a_{44} + \partial_{44}^2 a_{22} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][22, 1] - [42, 1][24, 1] \right) \\ + \frac{1}{e^{x^1}} \left([44, 2][22, 2] - [42, 2][24, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([44, 3][22, 3] - [42, 3][24, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][22, 4] - [42, 4][24, 4] \right) \end{cases}$$

$$(14)$$

$$R_{4334} = \begin{cases} \frac{1}{2} \left(\partial_{33}^2 a_{44} + \partial_{44}^2 a_{33} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][33, 1] - [43, 1][34, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([44, 2][33, 2] - [43, 2][34, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([44, 3][33, 3] - [43, 3][34, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][33, 4] - [43, 4][34, 4] \right) \end{cases}$$

$$(15)$$

$$R_{3123} = \begin{cases} \frac{1}{2} \left(\partial_{12}^2 a_{33} \right) \\ + \frac{1}{e^{\alpha}} \left([33, 1][12, 1] - [32, 1][13, 1] \right) \\ + \frac{1}{e^{x^1}} \left([33, 2][12, 2] - [32, 2][13, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([33, 3][12, 3] - [32, 3][13, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([33, 4][12, 4] - [32, 4][13, 4] \right) \end{cases}$$

$$(18)$$

 $R_{4124} = \begin{cases} \frac{1}{2} \left(\partial_{12}^2 a_{44} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][12, 1] - [42, 1][14, 1] \right) \\ + \frac{1}{e^{x^1}} \left([44, 2][12, 2] - [42, 2][14, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([44, 3][12, 3] - [42, 3][14, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][12, 4] - [42, 4][14, 4] \right) \end{cases}$ (19)

$$R_{2132} = \begin{cases} \frac{1}{2} \left(\partial_{13}^{2} a_{22} \right) \\ + \frac{1}{e^{\alpha}} \left([22, 1][13, 1] - [23, 1][12, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([22, 2][13, 2] - [23, 2][12, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([22, 3][13, 3] - [23, 3][12, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([22, 4][13, 4] - [23, 4][12, 4] \right) \end{cases}$$

$$(21)$$

(22)

(20)

(26)

(28)

$$R_{4134} = \begin{cases} \frac{1}{2} \left(\partial_{13}^{2} a_{44} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][13, 1] - [43, 1][14, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([44, 2][13, 2] - [43, 2][14, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([44, 3][13, 3] - [43, 3][14, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][13, 4] - [43, 4][14, 4] \right) \end{cases}$$

$$(24)$$

$$R_{2142} = \begin{cases} \frac{1}{2} \left(\partial_{14}^{2} a_{22} \right) \\ + \frac{1}{e^{\alpha}} \left([22, 1][14, 1] - [24, 1][12, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([22, 2][14, 2] - [24, 2][12, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([22, 3][14, 3] - [24, 3][12, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([22, 4][14, 4] - [24, 4][12, 4] \right) \end{cases}$$
(26)

$$R_{3143} = \begin{cases} \frac{1}{2} \left(\partial_{14}^{2} a_{33} \right) \\ + \frac{1}{e^{\alpha}} \left([33, 1][14, 1] - [34, 1][13, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([33, 2][14, 2] - [34, 2][13, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([33, 3][14, 3] - [34, 3][13, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([33, 4][14, 4] - [34, 4][13, 4] \right) \end{cases}$$

$$(27)$$

(32)

$$R_{1231} = \begin{cases} \frac{1}{2} \left(\partial_{23}^{2} a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([11, 1][23, 1] - [13, 1][21, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([11, 2][23, 2] - [13, 2][21, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([11, 3][23, 3] - [13, 3][21, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([11, 4][23, 4] - [13, 4][21, 4] \right) \end{cases}$$
(30)

$$R_{4234} = \begin{cases} \frac{1}{2} \left(\partial_{23}^2 a_{44} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][23, 1] - [43, 1][24, 1] \right) \\ + \frac{1}{e^{x^1}} \left([44, 2][23, 2] - [43, 2][24, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([44, 3][23, 3] - [43, 3][24, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][23, 4] - [43, 4][24, 4] \right) \end{cases}$$
(32)

$$R_{1241} = \begin{cases} \frac{1}{2} \left(\partial_{24}^{2} a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([11, 1][24, 1] - [14, 1][21, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([11, 2][24, 2] - [14, 2][21, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([11, 3][24, 3] - [14, 3][21, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([11, 4][24, 4] - [14, 4][21, 4] \right) \end{cases}$$

$$(34)$$

$$R_{3243} = \begin{cases} \frac{1}{2} \left(\partial_{24}^2 a_{33} \right) \\ + \frac{1}{e^{\alpha}} \left([33, 1][24, 1] - [34, 1][23, 1] \right) \\ + \frac{1}{e^{x^1}} \left([33, 2][24, 2] - [34, 2][23, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([33, 3][24, 3] - [34, 3][23, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([33, 4][24, 4] - [34, 4][23, 4] \right) \end{cases}$$
(36)

$$R_{1341} = \begin{cases} \frac{1}{2} \left(\partial_{34}^2 a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([11, 1][34, 1] - [14, 1][31, 1] \right) \\ + \frac{1}{e^{x^1}} \left([11, 2][34, 2] - [14, 2][31, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([11, 3][34, 3] - [14, 3][31, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([11, 4][34, 4] - [14, 4][31, 4] \right) \end{cases}$$
(38)

$$R_{2342} = \begin{cases} \frac{1}{2} \left(\partial_{34}^2 a_{22} \right) \\ + \frac{1}{e^{\alpha}} \left([22, 1][34, 1] - [24, 1][32, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([22, 2][34, 2] - [24, 2][32, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([22, 3][34, 3] - [24, 3][32, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([22, 4][34, 4] - [24, 4][32, 4] \right) \end{cases}$$

$$(40)$$

Considering that [mn, q] = 0 for $m \neq n \neq q \neq m$ and replacing the remaining Christoffels symbols:

$$R_{2112} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{22} + \partial_{22}^2 a_{11} \right) \\ -\frac{1}{4} \alpha_1 e^{x^1} \end{cases}$$
 (41)

(42)

$$R_{3113} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{33} + \partial_{33}^2 a_{11} \right) \\ -\frac{1}{4} \left(1 + \alpha_1 \right) e^{x^1} \sin^2 x^2 \end{cases}$$
 (43)

(44)

$$R_{4114} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{44} + \partial_{44}^2 a_{11} \right) \\ + \frac{1}{4} \left(\alpha_1 \gamma_1 e^{\gamma} - \alpha_4^2 e^{\alpha} \right) + \frac{1}{4} \left(\alpha_4 \gamma_4 e^{\alpha} - \gamma_1^2 e^{\gamma} \right) \end{cases}$$
(45)

(46)

$$R_{4114} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{44} + \partial_{44}^2 a_{11} \right) \\ + \frac{1}{4} \left(\alpha_1 \gamma_1 e^{\gamma} - \alpha_4^2 e^{\alpha} \right) - \frac{1}{4} \left(\alpha_4 \gamma_4 e^{\alpha} - \gamma_1^2 e^{\gamma} \right) \end{cases}$$
(47)

(48)

$$R_{3223} = \begin{cases} \frac{1}{2} \left(\partial_{22}^2 a_{33} + \partial_{33}^2 a_{22} \right) \\ + \frac{1}{4} \frac{e^{x^1}}{e^{2\alpha}} \sin^2 x^2 - e^{x^1} \cos^2 x^2 \end{cases}$$
(49)

(50)

$$R_{4224} = \begin{cases} \frac{1}{2} \left(\partial_{22}^2 a_{44} + \partial_{44}^2 a_{22} \right) \\ -\frac{1}{4} \gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}} \end{cases}$$
 (51)

(52)

$$R_{4334} = \begin{cases} \frac{1}{2} \left(\partial_{33}^2 a_{44} + \partial_{44}^2 a_{33} \right) \\ -\frac{1}{4} \gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}} sin^2 x^2 \end{cases}$$
 (53)

(54)

$$R_{3123} = \frac{1}{2} \left(\partial_{12}^2 a_{33} \right) \tag{55}$$

$$R_{4124} = \frac{1}{2} \left(\partial_{12}^2 a_{44} \right) \tag{56}$$

$$R_{2132} = \frac{1}{2} \left(\partial_{13}^2 a_{22} \right) \tag{57}$$

$$R_{4134} = \frac{1}{2} \left(\partial_{13}^2 a_{44} \right) \tag{58}$$

$$R_{2142} = \frac{1}{2} \left(\partial_{14}^2 a_{22} \right) \tag{59}$$

$$R_{3143} = \frac{1}{2} \left(\partial_{14}^2 a_{33} \right) \tag{60}$$

$$R_{1231} = \frac{1}{2} \left(\partial_{23}^2 a_{11} \right) \tag{61}$$

$$R_{4234} = \frac{1}{2} \left(\partial_{23}^2 a_{44} \right) \tag{62}$$

$$R_{1241} = \frac{1}{2} \left(\partial_{24}^2 a_{11} \right) \tag{63}$$

$$R_{3243} = \frac{1}{2} \left(\partial_{24}^2 a_{33} \right) \tag{64}$$

$$R_{1341} = \frac{1}{2} \left(\partial_{34}^2 a_{11} \right) \tag{65}$$

$$R_{2342} = \frac{1}{2} \left(\partial_{34}^2 a_{22} \right) \tag{66}$$

Giving:

$$R_{2112} = \frac{1}{4} (1 - \alpha_1) e^{x^1} \tag{67}$$

$$R_{3113} = \frac{1}{4} (1 - \alpha_1) e^{x^1} \sin^2 x^2$$
 (68)

$$R_{4114} = \begin{cases} \frac{1}{2}e^{\alpha} \left(\alpha_{44} + \frac{1}{2}\alpha_4^2 - \frac{1}{2}\alpha_4\gamma_4\right) \\ -\frac{1}{2}e^{\gamma} \left(\gamma_{11} + \frac{1}{2}\gamma_1^2 - \frac{1}{2}\alpha_1\gamma_1\right) \end{cases}$$
(69)

$$R_{3223} = \left(\frac{1}{4}\frac{e^{x^1}}{e^{\alpha}} - 1\right)e^{x^1}\sin^2 x^2 \tag{70}$$

$$R_{4224} = -\frac{1}{4}\gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}} \tag{71}$$

$$R_{4334} = -\frac{1}{4}\gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}} \sin^2 x^2 \tag{72}$$

$$R_{3123} = e^{x^1} \sin x^2 \cos x^2 \tag{73}$$

As all other curvature components vanish, we get

$$\begin{pmatrix} R_{11} \\ R_{22} \\ R_{33} \\ R_{44} \end{pmatrix} = P \begin{pmatrix} \frac{1}{e^{\alpha}} \\ \frac{1}{e^{x^{1}}} \\ \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \\ -\frac{1}{e^{\gamma}} \end{pmatrix}$$
(74)

With

$$P = \begin{pmatrix} 0 & \frac{1}{4} (1 - \alpha_1) e^{x^1} & \frac{1}{4} (1 - \alpha_1) e^{x^1} \sin^2 x^2 & \frac{1}{2} e^{\alpha} \left(\alpha_{44} + \frac{1}{2} \alpha_4^2 - \frac{1}{2} \alpha_4 \gamma_4 \right) \\ & -\frac{1}{2} e^{\gamma} \left(\gamma_{11} + \frac{1}{2} \gamma_1^2 - \frac{1}{2} \alpha_1 \gamma_1 \right) \end{pmatrix}$$

$$0 & \left(\frac{1}{4} \frac{e^{x^1}}{e^{\alpha}} - 1 \right) e^{x^1} \sin^2 x^2 & -\frac{1}{4} \gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}}$$

$$0 & -\frac{1}{4} \gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}} \sin^2 x^2$$

$$0 & 0$$

$$(75)$$

$$\begin{pmatrix} R_{12} \\ R_{13} \\ R_{14} \\ R_{23} \\ R_{24} \\ R_{34} \end{pmatrix} = \begin{pmatrix} \frac{e^{x^1}}{\tan x^2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$(76)$$