GEOMETRÍA Capítulo 5

1st

Triángulo

MOTIVATING | STRATEGY

El triángulo es una de las figuras geométricas elementales, que nos permite comprender las demás figuras geométricas que estudiaremos posteriormente., aplicando los axiomas, postulados, lemas, teoremas y corolarios, estudiados en los capítulos anteriores, en nuestra vida cotidiana podemos encontrar muchos objetos de forma de triángulo como podemos observar en los siguientes gráficos.

TRIÁNGULO

Definición.

Si A, B y C son tres puntos no colineales, entonces la unión de los segmentos \overline{AB} , \overline{BC} y \overline{AC} se denomina triángulo.

NOTACIÓN:

ΔABC: Se lee, triángulo ABC

ELEMENTOS

VÉRTICES: A, B y C

• LADOS: \overline{AB} , \overline{BC} y \overline{CA}

ÁNGULOS EN UN TRIÁNGULO

Medida de los ángulos:

• INTERNOS: α , β y θ

• EXTERNOS : δ , ω y φ

INTERIOR Y EXTERIOR DE UN TRIÁNGULO

PERÍMETRO DE UN TRIÁNGULO

Es la suma de las longitudes de los lados del triángulo. Se denota con 2p.

$$2p_{(ABC)} = a + b + c$$

TEOREMAS FUNDAMENTALES EN EL TRIÁNGULO

La suma de las medidas de los ángulos internos de un triángulo es igual a 180°.

En un triángulo, la suma de las medidas de los ángulos externos considerados uno por vértice es igual a 360°.

En un triángulo, la medida de un ángulo externo es igual a la suma de las medidas de dos ángulos internos no adyacentes a él.

$$x = \alpha + \beta$$

En todo triángulo, la longitud de un lado es mayor que la diferencia de las longitudes de los otros dos y menor que la suma de las longitudes de dichos lados. (Teorema de existencia)

Si: a > b

Entonces:

$$a - b < x < a + b$$

En un triángulo al lado de mayor longitud se opone el ángulo de mayor medida y viceversa. (Teorema de correspondencia)

Si
$$a > b \Leftrightarrow \beta > \alpha$$

1. En el gráfico, halle m∢BCA.

Resolución

- Piden: m∢BCA
- Aplicando el teorema:

$$49^{\circ} = 2\beta + 5\beta$$

$$49^{\circ} = 7\beta$$

$$7^{\circ} = \beta$$

m∢**BCA** = 35°

2. En el gráfico, halle el valor de x.

Resolución

- Piden: x
- Aplicando el teorema:

3. En el gráfico, halle el valor de x.

Resolución

- Piden: x
- △ **ABC**:

$$m \neq ECD = 50^{\circ} + 30^{\circ}$$

$$m \neq ECD = 80^{\circ}$$

• △ CDE:

$$80^{\circ} + 60^{\circ} + x = 180^{\circ}$$

 $140^{\circ} + x = 180^{\circ}$

$$x = 40^{\circ}$$

4. En el gráfico, halle el valor de x.

Resolución

- Piden: x
- Teorema:

Luego en el vértice C.

$$x + 50^{\circ} + 70^{\circ} = 180^{\circ}$$

 $x + 120^{\circ} = 180^{\circ}$
 $x = 60^{\circ}$

5. Se tiene un triángulo ABC, donde el ángulo exterior de A mide 4x, el ángulo exterior B mide 6x y el ángulo C mide 40°. Halle el valor de x.

- Piden: x
- Teorema:

6. Lucia y Juan observan un avión cuyas líneas visuales forman con el piso ángulos que miden 70° y 50°, respectivamente. Halle el valor de x.

7. Se desea formar estructuras triangulares para una mayor iluminación. Si tenemos fluorescentes de las medidas mostradas, ¿se podrá formar dicha estructura uniendo sus extremos?

ESTRUCTURA TRIANGULAR 40 cm 50 cm

Resolución

 Piden saber si se puede formar una estructura triangular

Teorema

No se puede