CS222: Processor Design

Dr. A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Previous Class:
 - Floating points: Add, Sub, Mul, Div, Rounding
- Processor Design: Introduction
 - building blocks
- A simple implementation: Single Cycle
 - Data path and control
- Performance considerations
- Multi-cycle design
 - Data path and control
- Micro-programmed control
- Exception handling

FP numbers with base = 2

$$(-1)^{S} \times F \times 2^{E}$$

S = Sign

F = Fraction (fixed point number) usually called **Mantissa** or S**ignificand**

E = Exponent (positive or negative integer)

- How to divide a word into S, F and E?
- How to represent S, F and E?

Value Range for F

Single precision numbers

$$1 < F < 2 - 2^{-23}$$

or
$$1 \le F < 2$$

Double precision numbers

$$1 < F < 2 - 2^{-52}$$

or

$$1 \leq F < 2$$

These are "normalized".

Value Range for E

- Single precision numbers
 - $-126 \le E \le 127$

(all 0's and all 1's have special meanings)

- Double precision numbers
 - $-1022 \le E \le 1023$

(all 0's and all 1's have special meanings)

Overflow and underflow

```
largest positive/negative number (SP) = \pm (2 - 2^{-23}) \times 2^{127} \cong \pm 2 \times 10^{38}
smallest positive/negative number (SP) = \pm 1 \times 2^{-126} \cong \pm 2 \times 10^{-38}
```

Largest positive/negative number (DP) =
$$\pm (2 - 2^{-52}) \times 2^{1023} \cong \pm 2 \times 10^{308}$$

Smallest positive/negative number (DP) = $\pm 1 \times 2^{-1022} \cong \pm 2 \times 10^{-308}$

Expressible Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

Distribution of Values

- 6-bit IEEE-like format
 - -e = 3 exponent bits
 - -f = 2 fraction bits
 - Bias is 3

<u>Distribution of Values</u> (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Floating point operations: ADD

• Add/subtract $A = A1 \pm A2$ $[(-1)^{S1} \times F1 \times 2^{E1}] \pm [(-1)^{S2} \times F2 \times 2^{E2}]$ suppose E1 > E2, then we can write it as $[(-1)^{S1} \times F1 \times 2^{E1}] \pm [(-1)^{S2} \times F2' \times 2^{E1}]$ where F2' = F2 / 2^{E1-E2} ,

The result is $(-1)^{S1}$ x (F1 \pm F2') x 2^{E1} It may need to be normalized

Floating point operations

Multiply

$$[(-1)^{S1} \times F1 \times 2^{E1}] \times [(-1)^{S2} \times F2 \times 2^{E2}]$$

= $(-1)^{S1 \oplus S2} \times (F1 \times F2) \times 2^{E1 + E2}$
Since $1 \le (F1 \times F2) < 4$,
the result may need to be normalized

Float Multiplication

Floating point operations

Divide

$$[(-1)^{S1} \times F1 \times 2^{E1}] \div [(-1)^{S2} \times F2 \times 2^{E2}]$$

= $(-1)^{S1 \oplus S2} \times (\mathbf{F1} \div \mathbf{F2}) \times 2^{E1-E2}$
Since .5 < $(F1 \div F2)$ < 2,
the result may need to be normalized

(assume $F2 \neq 0$)

Testing Associatively with FP

```
• X= -1.5x10<sup>38</sup>, Y=1.5x10<sup>38</sup>, z=1.0

• X+(Y+Z) = -1.5x10<sup>38</sup> + (1.5x10<sup>38</sup> + 1.0)

= -1.5x10<sup>38</sup> + 1.5x10<sup>38</sup>

=0

• (X+Y)+Z = (-1.5x10<sup>38</sup> + 1.5x10<sup>38</sup>) + 1.0

= 0.0 + 1.0

=1
```

Accuracy

- Precision is lost when some bits are shifted to right of the rightmost bit or are thrown
- Three extra bits are used internally -
 - G (guard), R (round) and S (sticky)
 - G and R are simply the next two bits after LSB
 - -S = 1 iff any bit to right of R is non-zero

1. 11010110101100010110110 GRS

Rounding using G, R and S

- if G=1 & R=1, add 1 to LSB
- if G=0 & R=0 or 1, no change
- if G=1 & R=0, look at S
 - -if S=1, add 1 to LSB
 - i.e., add 1 to LSB if LSB = 1

FP instructions in MIPS

- 32 floating point registers \$f0..\$f31
- Single precision arithmetic
 - add.s, sub.s, mul.s, div.s, abs.s, neg.s
- Double precision arithmetic (similar)
- Conditional branch
 - bc1t, bc1f, c.lt.s, c.lt.d (lt|le|gt|ge|eq|ne)
- Conversion
 - cvt.d.s, cvt.d.w, cvt.s.d, cvt.s.w, cvt.w.d, cvt.w.s

Processor Design

- Introduction
 - building blocks
- A simple implementation
 - data path and control
- Performance considerations
- Multi-cycle design
 - data path and control
- Micro-programmed control
- Exception handling

Simple Processor Design

- MIPS subset for implementation
- Design overview
- Division into data path and control
- Building blocks combinational and sequential
- Clock and timings
- Components required for MIPS subset

MIPS subset for implementation

- Arithmetic logic instructions
 - -add, sub, and, or, slt
- Memory reference instructions
 - -lw, sw
- Control flow instructions
 - -beq, j

Incremental changes in the design to include other instructions will be discussed later

Generic Implementation

- Use the program counter (PC) to supply instruction address
- Get the instruction from memory
- Read registers
- Use the instruction to decide exactly what to do

Design overview

Division into Data path and Control

Building block types

Two types of functional units:

- Elements that operate on data values (combinational)
 - Output is function of current input
 - No memory
- Elements that contain state (sequential)
 - Output is function of current and previous inputs
 - State = memory

Combinational circuit examples

- Gates: and, or, nand, nor, xor, inverter
- Multiplexer
- Decoder
- Adder, subtractor, comparator
- ALU
- Array multipliers

Sequential circuit examples

- Flip-flops
- Counters
- Registers
- Register files
- Memories

Thanks