FINAL REMARKS II

1 Final remarks II

Definition 1 (Resolvent invariant). Let $G \leq S_n$ and $P \in K[x_1, \ldots, x_n]$. Then P is resolvent invariant for G if $P^g = P \iff g \in G$.

Lemma 1.1. Let P be resolvent invariant for G. Then

- 1. $P^a = P^b \iff ab^{-1} \in G \text{ (obvious: } P^a = P^b \iff P^{ab^{-1}} = P)$
- 2. P^a is resolvent invariant for $a^{-1}Ga$

Corollary 1. Let $S_n = \sqcup_j a_j G$. Then P is resolvent invariant for $G \iff P^{a_j}$ are distinct.

Definition 2 (Resolvent). Let P be a resolvent polynomial for $G \leqslant S_n$ and $S_n = \bigsqcup_{j=1}^s a_j G$. Then

$$R_G(z) = R_G(z, x_1, \dots, x_n) = (z - P^{a_1}) \cdots (z - P^{a_s})$$

is a resolvent for G (depends on P).

Lemma 1.2. Let $G \leq S_n$, $f \in K[t]$ be a separable polynomial. If $Gal_K(f) \leq G$ (and its conjugation), then $\exists j \in K$ such that $R_{G,f}(j) = 0$

Lemma 1.3. Let $|K| = \infty$ and $f \in K[t]$ be a separable polynomial. Then $\exists c_1, \ldots, c_n \in K$ such that for all k,

$$h_k(x_1,\ldots,x_k) = c_1x_1 + \cdots + c_kx_k$$

has the property

$$h_k^a(\alpha_1,\ldots,\alpha_k) = h_k^b(\alpha_1,\ldots,\alpha_k) \iff x_i^a = x_i^b \text{ for } i = 1,\ldots,k,$$

where $a, b \in S_n$ are any permutations.

Theorem 1.4. Let $|K| = \infty$, $f \in K[t]$ be a separable polynomial, and $G \leq S_n$. Then there exists a resultant $R_{G,f}(z)$ with no multiple roots.

Theorem 1.5. Let $|K| = \infty$ and $f \in K[t]$ be irreducible and separable with deg f = 4. Then

- 1. $\sqrt{D} \notin K$ and $R_{V_4}^{(f)}$ has no roots in $K \implies G \cong S_4$ or $G \cong Z_4$
- 2. $\sqrt{D} \in K$ and $R_{V_4}^{(f)}$ has no roots in $K \implies G \cong A_4$
- 3. $\sqrt{D} \in K$ and $R_{V_4}^{(f)}$ has a roots in $K \implies G \cong V_4$
- 4. $\sqrt{D} \notin K$ and $R_{V_4}^{(f)}$ has no roots in $K \implies G \cong S_4$ or $G \cong D_4$