

INTERNATIONAL COLLEGE OF PHARMACEUTICAL INNOVATION

国际创新药学院

Class Pharm, BioPharm

Course Fundamentals of Medicinal & Pharmaceutical Chemistry

Code FUNCHEM.5

Title Chemical Equations and Reactions. Composition of Physiological

Solutions

Lecturer Prof. Xinchen Teng

Date 2024-10-16

RECOMMENDED READING

- General Chemistry The Essential Concepts by Chang and Goldsby (7th edition)
 - Section 2.2 The structure of atom
 - Section 2.5 Molecules and Ions
 - Section 2.6 Chemical Formulas
 - Section 3.1 Atomic mass
 - Section 3.2 Avogadro's Number and the Molar Mass
 - Section 3.3 Molecular Mass
 - Section 3.7 Chemical Reactions and Chemical Equations
 - Section 4.1 General Properties of Aqueous Solutions
 - Section 4.5 Concentration of Solutions

FUNCHEM.5 Learning Outcomes

- Define 'molecule', molecular formula', 'molecular mass', 'mole', 'Avogadro's number'.
- Solve calculations involving moles.
- Demonstrate method of balancing chemical equations.
- Define 'solution' and relate human body to solutions in terms of blood plasma, extra- and intracellular body fluids.
- Apply medical applications to solutions.
- Define 'isotonic', 'hypertonic' and 'hypotonic' solutions in relation to red blood cells and be able to explain the effect of placing red blood cells in each of these solutions.
- Recall and calculate percentage solutions (w/v %, w/w %, mg %), parts per million (ppm) and molar (M) concentrations.

Chemical Reactions

A process in which a substance (or substances) is changed into one or more new substances.

A chemical equation uses chemical symbols to show what happens during a chemical reaction

Chemical Equations

REACTANTS PRODUCTS

Prefix numbers refer to the whole molecule

Subscript numbers refer to previous atom only

Symbols (s), (l) and (g) indicate the state of the product or reactant (aq) = dissolved in water

'Recipe' to make glucose

$$CO_2 + H_2O$$
 $\xrightarrow{\text{sunlight}}$ $C_6H_{12}O_6 + O_2$ Glucose

Balanced

$$6CO_2 + 6H_2O \xrightarrow{\text{sunlight}} C_6H_{12}O_6 + 6O_2$$
Glucose

How do we measure quantities?

$$\begin{array}{c}
\text{sunlight} \\
6\text{CO}_2 + 6\text{H}_2\text{O} & \xrightarrow{\text{sunlight}} & \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \\
& \text{Glucose}
\end{array}$$

6 molecules of CO₂ weighs 4.78 x 10⁻²²g

We need to relate mass of a substance to the number of atoms/molecules present

Equations On a Macroscopic Scale

Instead of thinking atoms or molecules, scale up everything to moles

 Chemical equations can be multiplied by any number as long as both sides are multiplied by the same number

$$(2 \times 6.022 \times 10^{23})H_2O(I) \xrightarrow{\text{electricity}} (2 \times 6.022 \times 10^{23})H_2(g) + (6.022 \times 10^{23})O_2(g)$$

2 mol $H_2O(I) \stackrel{\text{electricity}}{\longrightarrow} 2 \text{ mol } H_2(g) + 1 \text{ mol } O_2(g)$

Molar Mass

Molar mass is the mass in grams of 1 mole of molecules or 1 mole of atoms

The unit for molar mass is g/mol

1 mole of atoms contains 6.022×10^{23} atoms and has a mass = atomic mass

1 mole of molecules contains 6.022×10^{23} molecules and has a mass = molecular mass

How To "Read" Chemical Equations

$$2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO}$$

2 atoms Mg + 1 molecule O₂ makes 2 formula units MgO 2 moles Mg + 1 mole O₂ makes 2 moles MgO 48.6 grams Mg + 32.0 grams O₂ makes 80.6 g MgO

NOT

2 grams Mg + 1 gram O₂ makes 2 g MgO

How To Write A Chemical Equation

Identify reactants and products and write a word equation

 Write symbols for elements (or formulas for elements existing as polyatomic molecules) and formulas for compounds

$$H_2O \longrightarrow H_2 + O_2$$

Balance by changing coefficients in front of symbols and formulas.
 Simplify the coefficients if they have a common divisor.

$$2H_2O \longrightarrow 2H_2 + O_2$$

- Add symbols indicating phases of substances: (s) for a solid, (l) for a liquid,
 (g) for a gas and (aq) for a solution of a substance in water
- Add reaction condition over the arrow

$$2H_2O(I) \xrightarrow{\text{electricity}} 2H_2(g) + O_2(g)$$

Balancing Equations

 Begin with the compound that has the most atoms or the most kinds of atoms and use one of these atoms as a starting point

$$CH_4O + O_2 \longrightarrow CO_2 + H_2O$$

Balance elements that appear only once on each side of the arrow first

$$CH_4O + O_2 \longrightarrow CO_2 + 2H_2O$$

 Then balance elements that appear more than once on a side. Balance free elements last

$$CH_4O + 3/2O_2 \longrightarrow CO_2 + 2H_2O$$

Clear fractions to make coefficients whole numbers

$$2CH_4O + 3O_2 \longrightarrow 2CO_2 + 4H_2O$$

Add reaction condition and symbols indicating phases

$$2CH_4O(I) + 3O_2(g) \xrightarrow{spark} 2CO_2(g) + 4H_2O(I)$$

Examples

$$C_2H_5OH_{(I)} + O_{2(g)} \longrightarrow H_2O_{(I)} + CO_{2(g)}$$
2C 6H 3O 1 C 2H 3O

$$C_2H_5OH_{(I)} + 3O_{2(g)} \longrightarrow 3H_2O_{(I)} + 2CO_{2(g)}$$
2C 6H 7O
2C 6H 7O

Calculate the Amounts of Reactants and Products

- 1. Write balanced chemical equation
- 2. Convert quantities of reactant A (in grams) into moles
- 3. Use the mole ratio in the balanced equation to calculate the number of moles of product B formed.
- 4. Convert moles of product to grams of product

Example

A general overall equation for degradation of glucose ($C_6H_{12}O_6$) to carbon dioxide (CO_2) and water (H_2O_3):

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$$

If 856 g of $C_6H_{12}O_6$ is consumed by a person over a certain period, what is the mass of CO_2 produced?

$$C_6H_{12}O_6$$

No. of moles =
$$\frac{\text{mass (g)}}{\text{Molar mass (g/mol)}}$$

- Step 1: The balanced equation is given in the problem.
- Step 2: To convert grams of C₆H₁₂O₆ to moles of C₆H₁₂O₆

Moles = mass/ molar mass = 856/180.2 = 4.75 mol C₆H₁₂O₆

Step 3: From the mole ratio, we see that

1 mol $C_6H_{12}O_6$: 6 mol CO_2

Therefore, the number of moles of CO_2 formed is $4.75 \times 6 = 28.5 \text{ mol}$

Step 4: Finally, the number of grams (mass) of CO₂ formed is given by:

Moles = mass/molar mass (rearrange)

Mass = moles x molar mass (of CO_2)

Mass = $28.5 \times 44.01 = 1,254.3 g$

What is a solution

Solutions are homogeneous mixture of two or more substances, can be formed in any state of matter; that is they may be solid, liquid, or gas

Solute – the substance being dissolved

Solvent – the substance "doing" the dissolving

The human body is made up of ~ 60% water..hence the body is a big solution

Approximately 40 Litres

3 litres of blood plasma

- 25 litres of intracellular fluid
- 12 litres of extracellular fluid

Concentration of a Solution

The concentration of a solution is the amount of solute present in a given amount of solvent, or a given amount of solution.

A dilute solution contains relatively little solute in a large quantity of solution

A concentrated solution contains a relatively large amount of solute in a given quantity of solution

For the sake of accuracy sometimes we need to know exact concentrations

Concentration Expressed As Percent

Weight/Volume percent (w/v %) =
$$\frac{\text{g Solute}}{100 \text{ mL Solution}} \times 100$$
Weight/Weight percent (w/w %) =
$$\frac{\text{g Solute}}{100 \text{ g Solution}} \times 100$$
Volume/Volume percent (v/v %) =
$$\frac{\text{mL Solute}}{100 \text{ mL Solution}} \times 100$$

Percentage Concentrations are used in clinical reports, medicines, intravenous drips, and oral rehydration packs

Make Liquid Solution with Solid Solute

(a) An amount of solute is weighed out on an analytical balance and then

(b) A portion of the solvent is added to the volumetric flask.

(c) The mixture is swirled until *all* of the solute is dissolved.

(d) Additional solvent is added up to the mark on the volumetric flask.

the bottom of the meniscus touches the graduation line

Make Liquid Solution from Liquid

Make solution from a concentrated one

(a) A volume (V_s) containing the desired moles of solute (M_s) is measured from a stock solution of known concentration.

(b) The measured volume of stock solution is transferred to a second volumetric flask.

(c) The measured volume in the second flask is then diluted with solvent up to the volumetric mark $[(V_s)(M_s) = (V_d)(M_d)]$.

Intravenous Drip

Intravenous (IV) therapy is the giving of substances directly into a vein

- Can't Swallow safely (coma, under anaesthetic)
- Require medications which are destroyed by gastric juices or are poorly absorbed by the gastrointestinal tract
- Must rapidly increase the concentration of medication (e.g. morphine) or electrolyte
- Can't drink enough to keep up with loss of fluids (major burns, severe diarrhoea, haemorrhage)

I.V. drip is usually <u>isotonic</u> with blood plasma

Isotonic Solutions

For severe dehydration, if inject water directly, RBC will swell and burst (Haemolysis)

5% w/v glucose is nearly isotonic with blood plasma
As the glucose is metabolised the water remains to rehydrate the body

Concentration Expressed As Milligram Percent

Milligram Percent (mg%) =
$$\frac{\text{mg Solute}}{100 \text{ mL Solution}}$$
 X 100 *1 mg = 0.001 g

Protein Amino Without Amino Metabolised

Protein acids

Protein Acids

Protein Amino (kidneys)

Urine

Normal BUN = 7 - 21 mg BUN / 100 mL blood= 7 - 21 mg%

Elevated BUN level (azotemia) due to

- Impaired renal function
- Dehydration (lack of fluid volume to excrete waste products)
- Excessive protein intake or protein catabolism

An Infant suffering dehydration might have a BUN level of 32 mg%

i.e. 32 mg of urea per 100 mL of blood or 0.032 g of urea in 100 mL of blood = 0.032 % w/v

Concentration Expressed As Parts per Million

Parts per Million (ppm) =
$$\frac{\text{mg Solute}}{1 \text{ L Solution}}$$

Used to describe extremely dilute solutions e.g. the concentration of toxic metals present in drinking water

Some compounds are toxic to humans at 1 ppm!

Molarity (M)

Molarity indicates the number of moles of a solute per liter of solution.

M (units, read as **molar**) = mol/L

Make Solutions Of Given Molarity

How many grams of KMnO₄ (potassium permanganate) are needed to make 500.0 mL of $5.75 \times 10^{-4} \text{ M KMnO}_4$?

$$M = \frac{\text{amount of solute (mole)}}{\text{volume of solution (liter)}}$$

$$\text{amount of KMnO}_4 = M \times \text{volume of solution}$$

$$= 5.75 \times 10^{-4} \text{ mol/L} \times 500.0 \times 10^{-3} \text{ L}$$

$$= 2.88 \times 10^{-4} \text{ mol}$$

$$\text{mass of KMnO}_4 = 2.88 \times 10^{-4} \text{ mol} \times 158 \text{ g/mol} = 0.0454 \text{ g}$$