Manuel Gijón Agudo

September 2017 - January 2018

${\rm \acute{I}ndice}$

1.	Basic knowledge of coding	2
	1.1. Introduction	2
	1.2. Uniquely decodeable codes	2
	1.3. Optimal codes	3
	1.4. Extension of sources	3
2.	Introduction	4
3.	Properties of the entropy funcion	4
4.	Shannon-Fano Code	4
5.	Product of sources	5
6.	Markov Chains	5
7.	Sources with memory	6

1. Basic knowledge of coding

1.1. Introduction

Definition 1: a **source** is a finite set S together with a set of random variables $(X_1, X_2, ...)$ whose range is S.

If $P(X_n = S_i)$ only depends on i and not on n then we say the source is **stationary** and if the X_n are independent then it's **memoryless**.

Insert example here

Definition 2: Let \mathcal{T} be a finite set called **alphabet**. A map $\mathfrak{C}: \mathbb{S} \longrightarrow \bigcup_{n \geq 1} T^n$ is called a **code**.

If |T| = r then \mathfrak{C} is a r-ary code.

A code extends from \mathbb{S} to $T \cup T^2 \cup ...$ to $\mathbb{S} \cup \mathbb{S}^2 \cup ...$ to $T \cup T^2 \cup ...$ in obvious way.

insert example here

Definition 3: The average word-length of a code \mathfrak{C} is $L(\mathfrak{C}) := \sum_{i=1}^{n} p_i l_i$ where l_i is the length of the image of the symbol of \mathbb{S} , which is emitted with probability p_i .

For now, we write \mathfrak{C} to be the image of \mathfrak{C} .

1.2. Uniquely decodeable codes

Definition 4: If for any sequencies $u_1...u_n = v_1...v_m$ in \mathfrak{C} implies m = n and $u_i = v_i$ for i = 1, ..., n then we say that \mathfrak{C} is **uniquely decodeable**.

insert example here

insert example here

insert example here

Let $\mathfrak{C}_0 = \mathfrak{C}$:

- $\mathfrak{C}_n := \{ \omega \in T \cup T^2 \cup ... | u\omega = v \text{ for some } u \in \mathfrak{C}_{n-1}, v \in \mathfrak{C} \text{ or } u\omega = v \text{ for some } u \in \mathfrak{C}, v \in \mathfrak{C}_{n-1} \}$
- ullet $\mathfrak{C}_{\infty}:=\bigcup_{k\geq 1}\mathfrak{C}_k$

Since everythig is finite either $\mathfrak{C}_m = \emptyset$ for some m and then $\mathfrak{C}_n = \emptyset$ for $n \geq m$ or it will be periodic and start repeating.

Theorem 1: \mathfrak{C} is uniquely decodeable $\iff \mathfrak{C} \cap \mathfrak{C}_{\infty} = \emptyset$.

proof: Insert proof here

insert example here

insert example here

insert example here

Definition 5: A code is a **prefix-code** if no codeword is prefix of another (ie. $\mathfrak{C}_1 = \emptyset$).

A prefix code is uniquely decodeable.

Theorem 2: (Kraft's inequality) $\exists r$ -ary prefix code with word lengths $l_1, l_2, ..., l_q \iff$

$$\sum_{i=1}^{q} r^{-l_i} \le 1$$

proof: Insert proof here

insert example here

Theorem 3: (McMillan's inequality) \exists r-ary uniquely decodeable code with word lengths $l_1, l_2, ..., l_q \iff$

$$\sum_{i=1}^{q} r^{-l_i} \le 1$$

proof: Insert proof here

1.3. Optimal codes

Let be $\mathbb S$ a source with symbols $s_1,...,s_q$ emitted with probabilities $p_1,...,p_q$ and $\mathfrak C$ is a code which encodes s_i with a codeword length l_i . Recall $L(\mathfrak C) = \sum_{i=1}^q p_i l_i$.

Definition 6: An **optimal code** for $\mathbb S$ is an uniquely decodeable code $\mathfrak D$ such that $L(\mathfrak C) \geq L(\mathfrak D)$ for all uniquel decodeable code $\mathfrak C$.

inset example here

insert example here

Definition 7: A code constructed in this way is called a **Hoffman code**.

insert example here

1.4. Extension of sources

2. Introduction

Definition 1: the **information** coveyed by a source is a function $I: S \to [0, \infty)$ where S is a **source** ¹ with the properties:

- $I(s_i)$ is a decreasing function of the propability p_i , with $I(s_i) = 0$ if $p_i = 1$.
- $I(s_i s_j) = I(s_i) + I(s_j)$, ie.the information geined by two symbols is the sum of the information obtained from each where the source has symbols $s_1, ..., s_q$ emitted with probabilities $p_1, ..., p_q$.

Lemma 1: $I(s_i) = -\log_r p_i$ for some r.

proof: Insert proof here

Definition 2: The r-ary entropy $H_r(S)$ of a source S is the average information coveyed by S.

$$H_r(S) := -\sum_{i=1}^q p_i \log_r p_i$$

, by convenction $x \log_r x$ evaluated at 0 is 0.

Insert five examples

3. Properties of the entropy funcion

Theorem 1: $H_r(S) \leq \log_r q$ with equality if and only iff S is the source where each symbol is emitted with probability 1/q.

proof: Insert proof here

Theorem 2: $H_r(S) \leq L(C)$ for unique decodeable code C.

proof: Insert proof here

4. Shannon-Fano Code

Let S be the source with symbols s_i and probabilities p_i . Let $l_i := \lceil \log_r 1/p_i \rceil$.

Then:
$$\sum_{i=1}^{q} r^{-l_i} \le \sum r^{-\log_r 1/p_i} = \sum p_i = 1$$

Definition 3: by Kraft exists a prefix code with woed length $l_1, l_2, ..., l_1$. This code is called **Shannon-Fano code**.

¹A **source** is a finite set S together with a sequence of random variables X_i whose range is S

Inert example here

Lemma 2: For the Shannon-Fano code $C: H_r(S) \leq L(C) < H_r(S) + 1$.

proof: Insert proof here

5. Product of sources

Let S and T be two memoryless sources, S with symbols s_i and probabilities p_i and T with symbols t_j and probabilities q_j .

Definition 4: The **product source** $S \times T$ is a source with symbols $s_i t_j$ and probabilities $p_i q_j$.

Theorem 3: $H_r(S \times T) = H_r(S) + H_r(T)$.

proof: Insert proof here

Corollary 1: $H_r(S^n) = nH_r(S)$.

Theorem 4: Noiseless Coding The average word length L_n of an optiml code of S^n satisfies:

$$\frac{L_n}{n} \longrightarrow H_r(S), n \to \infty$$

proof: Insert proof here

some examples

6. Markov Chains

Definition 4: A Markov Chain is a sequency of random variables where X_{n+1} depends only for X_n .

$$P(X_{n+1} = s_j | X_n = s_j) = p_{i,j}$$

This can be represented in a direct graph and also by a matrix $P := (p)_{i,j}$.

Suppose u_0 is the vector which describes the initial distribution, ie. the *i*-th coordinate of u_0 is probability we start at s_i . Probability of beeing in the *i*-th state after r steps is the *i*-th coordinate of u_0P^r .

Theorem 5: if $\exists r \in \mathbb{N}$ such that P^r has no zero entries, then $u_0P^r \longrightarrow u$, as $n \to \infty$.

Definition 5: This vector u is called the **stationary distribution**. It is normalised eigenvector of P^t with eigenvalue 1, ie. $u_j = \sum_i p_{i,j} u_i$ and $\sum_j u_j = 1$.

Definition 6: If P is the matrix of a Markov Chain and $\exists r$ such that P^r has non zero entries then we say that the Markov Chain is **regular**.

7. Sources with memory

Suppose S is a Markov Chain source with random variables $X_1, X_2, ...$ such that

$$P(X_{n+1} = s_j | X_n = s_j) = p_{i,j}$$

Definition 7: *S* is **not memoryless**, but it is stationary.

Theorem 6: suppose S is a regular Markov Chain source with stationary distribution $u = (u_1, ..., u_j)$. Let S' be the stationary memoryless source with the same source elements as S (where s_i is emmitted with probability w_i). Then:

$$H_r(S) \leq H_r(S')$$

proof: Insert proof here