

1. Single-Purpose Processor Basic Model

Controller and Datapath

1. View inside: controller and datapath

1. Synchronous System Structure

1. "Macro and micro-instruction" Interpretation

1. Organization of Control Memory

Fetch cycle routine Jump to indirect or execute **Indirect cycle routine** Jump to execute **Interrupt cycle routine** Jump to fetch Jump to opcode routine **Execute cycle beginning AND** routine Jump to fetch or interrupt **ADD** routine Jump to fetch or interrupt **IOF** routine Jump to fetch or interrupt

1. Control Unit Micro architecture

Functioning of **Microprogrammed Control Unit**

1. Controller Design

- □ Control may be designed using one of several initial representations
- ☐ Choice of *sequence control*, and how logic is represented, can be determined independently
- □ the *control* can be *implemented* with one of *several methods* using a structured logic technique
- □ Control reduces to programming "micro-sequencer"
 - *⇒ microprogramming*

- ☐ Micro programmed control units are implemented as a microprogram which is stored in a control store memory
- ☐ *Microprogram* is a *program* which consists of a *microcode* that *controls* the different parts of a processor.
- ☐ *The memory* in which the microprogram *resides* is called a *control store memory*
- □ Words of the microprogram are usually accessed or selected by a microsequencer or sequencer, which generates the addresses for the memory

- ☐ The bits from words of the microprogram directly control the different parts of the processor or device
- ☐ Address are generated by some combination of a counter, a field from a microinstruction, and some subset of the instruction register
- □ *Counter* is used for the *typical case*, which generates the address of the next microinstruction
- ☐ The *simplest sequencer* is just a *register* loaded from a *few* bits of the control store memory

2. Micro-programmed Control Unit Design

- □ Data path1: simple processor
 - \bullet Ocho *registros* R_0 – R_7 de 16 bits
 - Un shifter-barrel shifter de 16 bits
 - Una ALU de 16 bits con cuatro bits de estado: C, Z, S
 y V
 - La micro-instrucción se selecciona con una palabra de control de 16 bits
 - La palabra de control se divide en cinco campos: A, B, D, F y H

2. Micro-programmed Control Unit Design

- □ Control unit:
 - Unidad micro-programada
 - una *memoria ROM* de 64 palabras de 26 bits
 - un registro CAR
 - dos multiplexores MUX1 y MUX2
 - La microinstrucción tiene 26 bits
 - 16 bits de la palabra de control
 - 10 bits para seleccionar la siguiente dirección

2. Micro-programmed Control Unit Design

☐ Palabra de control

1 2 3	4 5 6	7 8 9	10 11 12 13	14 15 16
A	В	D	F	Н

- Campo A (3 bits): RS1, Banco de registros, Registro A
- Campo B (3 bits): RS2, Banco de registros, Registro B
- Campo D (3 bits): RD1, Banco de registros
- Campo F (4 bits) : ALU
- Campo H (3 bits) : Shifter

2.1 Data-path1 con señales de control

2.1 Datapath1 con señales de control

2.1 Datapath2 con señales de control

2.1 Datapath3 con señales de control

2.1 Datapath4 con señales de control

Load/store architecture

2.1 Datapath: registros

- ☐ El diseño de un *sistema digital complejo se divide*:
 - Diseño de los circuitos digitales para efectuar las operaciones de procesamiento de datos: Data Path Design
 - Diseño del circuito de control que supervisa las operaciones y determina la secuencia de ejecución: Control Unit Design
- La unidad de control es básicamente un *circuito secuencial* con estados internos, que depende de las condiciones de estado y entradas externas
- ☐ En un sistema digital, la *sincronización* de los *registros* es controlada por una *señal de reloj*

- ☐ Arquitecturas para la unidad de control
 - Unidad de control dedicada (hardwired control) basada en usar gates y flip-flops
 - ❖ Unidad de control micro-programada basada en usar una memoria ROM-EEPROM o RAM
 - La unidad de *control dedicada* usa una maquina de estados finito (FSM) compleja: *controlador*
 - La unidad de *control micro-programada* usa una maquina de estados finito simple: *secuenciador*

- ☐ Unidad de control micro-programada
 - La unidad de control micro-programada almacena la información de control (variables de control) en la memoria (memoria de control)
 - Cada palabra de la memoria de control contiene una microinstrucción
 - La microinstrucción especifica *una o más micro-operaciones* para el sistema digital
 - Permite *micro-operación dinámica*, es decir permite cargar un *micro-programa* desde el exterior (teclado/consola o un disco magnético)

2.2 Datapath1 con señales de control

2.2 Diseño de la Unidad de Control

☐ Diagrama de bloques de unidad de control microprogramada

2.2 Diseño de la Unidad de Control

2.3 Operación de la Unidad de Control

- * En cada *flanco/pulso de reloj*, el *registro CAR* recibe una *nueva dirección*
- La microinstrucción de 26 bits se lee desde la memoria de control
- La palabra de control de la microinstrucción especifica la micro-operación en el procesador
- Los multiplexores MUX1 y MUX2 determinan la siguiente operación del registro CAR
- La próxima transición del reloj transfiere el resultado de la micro-operación al registro destino del procesador y actualiza los bits de estado y coloca una nueva dirección en el registro CAR

2.3 Operación de la Unidad de Control

- La microinstrucción contiene la palabra de control que especifica una o más micro-operaciones
- La dirección de la siguiente microinstrucción puede ser la siguiente dirección u otra nueva dirección
- La microinstrucción tiene bits para generar la dirección de la siguiente microinstrucción
- La próxima dirección puede ser función de las entradas externas
- La microinstrucción especifica simultáneamente la palabra de control y la generación de la próxima microinstrucción

2.3 Operación de la Unidad de Control

- * La *dirección* de la *próxima microinstrucción* se puede obtener:
 - Incremento del registro CAR en uno
 - Transferencia de una dirección externa
 - Cargar en el registro CAR una dirección de la memoria de control
 - Cargar una dirección inicial: operaciones de control

2.4 Palabra de Control

- * Las variables de selección-control del data-path controlan las micro-operaciones, es decir, controlan la ALU, el shifter y los registros
- La combinación de las variables de selección-control especifican la palabra de control
- * La palabra de control se divide en campos y esta palabra cuando se aplica a las entradas de selección-control permite realizar una micro-operación en particular
- La palabra de control de una micro-operación se obtiene a partir de las variables de selección-control

2.4.1 Formato de la Palabra de Control

	Función de los campos de selección										
Código Binario	A	В	D	F: Cin = 0	F: Cin = 1	Н					
000	Inp	Inp	None	$\mathbf{F} = \mathbf{A}$	$\mathbf{F} = \mathbf{A} + 1$	No desplaz.					
001	R1	R1	R1	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	$\mathbf{F} = \mathbf{A} + \mathbf{B} + 1$	SHL					
010	R2	R2	R2	$\mathbf{F} = \mathbf{A} + \overline{\mathbf{B}}$	F = A-B	SHR					
011	R3	R3	R3	F = A - 1	$\mathbf{F} = \mathbf{A}$	$\mathbf{Bus} = 0$					
100	R4	R4	R4	$\mathbf{F} = \mathbf{A} \wedge \mathbf{B}$							
101	R5	R5	R5	$\mathbf{F} = \mathbf{A} \vee \mathbf{B}$		ROL					
110	R6	R6	R6	$\mathbf{F} = \mathbf{A} \oplus \mathbf{B}$		ROR					
111	R7	R7	R7	$\mathbf{F} = \overline{\mathbf{A}}$							

2.4.2 Codificación de la Palabra de Control

* Micro-operación de resta

RTL	R1 ←	- R2 -	R3		
Campo:	A	В	D	${f F}$	Н
Símbolo:	R2	R3	R 1	$\mathbf{F} = \mathbf{A} - \mathbf{B}$	No desplazamiento
Palabra de contr.	010	011	001	0101	000

* Micro-operación de suma y desplazamiento

RTL	R4 ←	- Shr (Shr(R5 + R6)				
Campo:	A	В	D	\mathbf{F}	H		
Símbolo:	R5	R6	R4	$\mathbf{F} = \mathbf{A} + \mathbf{B}$	Shr		
Palabra de contr.	101	110	100	0010	010		

2.4.2 Codificación de la Palabra de Control

	Designación simbólica						Palabra de control				
Micro-operación	A	В	D	F	Н	A	В	D	F	Н	
R1 ← R2-R3	R2	R3	R1	F=A-B	No desplaza.	010	011	001	0101	000	
$R4 \leftarrow shr(R5+R6)$	R5	R6	R4	F=A+B	SHR	101	110	100	0010	010	
R7 ← R7 +1	R7		R7	F= A+1	No desplaza.	111	000	111	0001	000	
R1 ← R2	R2		R1	F= A	No desplaza.	010	000	001	0000	000	
Salida ← R3	R3		None	F= A	No desplaza.	011	000	000	0000	000	
R4 ← Rol R4	R4		R4	F= A	ROL	100	000	100	0000	101	
R 5 ← 0			R5		Bus = 0	000	000	101	0000	011	

2.5 Formato de la Microinstrucción

Bits	Campo	Símbolo	Función
0-2	A	Inp, R ₁ – R ₇	Entrada derecha a la ALU
3-5	В	Inp, R ₁ – R ₇	Entrada izquierda a la ALU
6-8	D	None, R ₁ – R ₇	Registro destino
9-12	F	-	Operación de la ALU
13-15	Н	-	Operación del Shifter
16	MUX 1	INT, EXT	Selección del MUX:INT=0, EXT=1
17-19	MUX 2	-	Selección del MUX 2
20-25	ADRS	Número de dirección	Campo de dirección

2.5 Formato de la Microinstrucción

INP : Datos de entrada al procesador

NONE : No selecciona ninguno de los registros; R₀

INT : Dirección interna de la microinstrucción

EXT : Dirección externa.

Observar tablas

2.5.1 Codificación de la Microinstrucción

☐ Microprograma: micro-operaciones en RTL

Dirección	Micro-operaciones y condiciones de bifurcación
36	$R_1 \leftarrow R_1 \wedge R_2$, $CAR \leftarrow CAR + 1$
40	$R_3 \leftarrow R_3 - 1$, $CAR \leftarrow 43$
45	No existe operación para el procesador, ROUT ← RIN, CAR ← CAR + 1
52	$R_4 \leftarrow 0$, si $S = 1$ entonces $CAR \leftarrow 37$, si no $CAR \leftarrow CAR + 1$
56	$R_5 \leftarrow Shl R_5$, si $C = 0$ entonces $CAR \leftarrow 62$, si no $CAR \leftarrow CAR + 1$
59	$R_2 \leftarrow R_6 + R_7$, CAR \leftarrow Dirección externa

2.5.1 Codificación de la Microinstrucción

Dirección		Pala	bra de c	ontrol	Selec	ción	Campo de	
CAR	A	В	D	F	Н	MUX1	MUX2	dirección
36	\mathbf{R}_{1}	R ₂	R ₁	AND	NSH	-	NEXT	-
	001	010	001	1000	000	0	000	000000
40	\mathbf{R}_3	-	R ₃	DEC	NSH	INT	LAD	43
	011	000	011	0110	000	0	001	101011
45		-	none	TSF	NSH	-	NEXT	-
	000	000	000	0000	000	0	000	000000
52		-	$\mathbf{R_4}$	TSF	Zero	INT	LS	37
	000	000	100	0000	011	0	110	100101
56	\mathbf{R}_{5}	-	R ₅	TSF	SHL	INT	LNC	62
	101	000	101	0000	001	0	011	111110
59	R_6	R ₇	\mathbb{R}_2	ADD	NSH	EXT	LAD	-
	110	111	010	0010	000	1	001	000000

2.6.1 Operaciones de la ALU: Campo F

Código	Círch ala	Bits	de	Est	tado	T 0: 6
Binario	Símbolo	Z	S	C	V	Función
0000	TSF	N	N	N	N	Transferencia de A
0001	INC	Y	Y	N	N	Incremento de A en uno
0010	ADD	Y	Y	Y	Y	Sumar A + B
0101	SUB	Y	Y	Y	Y	Restar A – B
0110	DEC	Y	Y	N	N	Decremento de A en uno
0111	TRC	Y	Y	0	N	Transferencia de A, reiniciar el carry
1000	AND	Y	Y	N	N	A AND B
1010	OR	Y	Y	N	N	A OR B
1100	XOR	Y	Y	N	N	A OR exclusiva B
1110	COM	Y	Y	N	N	Complemento de A

N : Bit de estado no afectado

Y : Bit de estado afectado

• Re-iniciar a cero

2.6.2 Operaciones del Shifter: Campo H

Código Binario	Símbolo	Función
000	NSH	No hay desplazamiento
001	SHL	Desplazamiento a la izquierda con In serie = 0
010	SHR	Desplazamiento a la derecha con In serie = 0
011	ZERO	Solo ceros en la salida
100	RLC	Rotación a la izquierda con carry
101	ROL	Rotación a la izquierda
110	ROR	Rotación a la derecha
111	RRC	Rotación a la derecha con carry

2.6.3 Entrada de Selección: MUX 2

Código Binario	Símbolo	Función
000	NEXT	Ir a la siguiente dirección incrementando CAR
001	LAD	Cargar la dirección en CAR/bifurcar incondicional
010	LC	Carga / Bifurcar si Carry = 1
011	LNC	Carga / Bifurcar si Carry = 0
100	LZ	Carga / Bifurcar si Zero = 1
101	LNZ	Carga / Bifurcar si Zero = 0
110	LS	Carga / Bifurcar si Signo = 1
111	LV	Carga / Bifurcar si Overflow = 1

2.7 Microprograma: Ejemplo 1

- ☐ Microprograma en RTL
 - * Micro-operaciones en RTL
 - $R_3 \leftarrow R_1 R_2$: actualizar C y Z
 - Si $R_1 < R_2$: detectado por C = 0, entonces $R_4 \leftarrow R_4 + 1$ Si $R_1 > R_2$: detectado por C = 1 y Z = 0, entonces $R_4 \leftarrow R_4 + R_2$ Si $R_1 = R_2$: detectado por Z = 1, entonces $R_4 \leftarrow R_4 + R_1$
 - \diamond Salida $\leftarrow R_4$ y bifurcar a dirección externa

2.7.1 Microprograma: Descripción RTL

Dirección	Micro-operaciones y condiciones de bifurcación
20	$R_3 \leftarrow R_1 - R_2$, $CAR \leftarrow CAR + 1$
21	Si C = 1 entonces CAR \leftarrow 23, si no CAR \leftarrow CAR + 1
22	$R_4 \leftarrow R_4 + R_1$, $CAR \leftarrow 26$
23	Si $Z = 0$ entonces $CAR \leftarrow 25$, si no $CAR \leftarrow CAR + 1$
24	$R_4 \leftarrow R_4 + 1$, $CAR \leftarrow 26$
25	$R_4 \leftarrow R_4 + R_2$, $CAR \leftarrow CAR + 1$
26	Salida ← R ₄ , CAR ← Dirección externa

2.7.2 Microprograma: Descripcion Simbólica

Dirección		Palabra de control									
CAR	A	В	D	F	Н	MUX1	MUX2	de dirección			
20	R ₁	R ₂	\mathbb{R}_3	SUB	NSH	_	NEXT				
21	_	-	none	TSF	NSH	INT	LC	23			
22	R ₄	\mathbf{R}_1	\mathbf{R}_4	ADD	NSH	INT	LAD	26			
23	-	-	none	TSF	NSH	INT	LNZ	25			
24	R ₄	-	\mathbf{R}_4	INC	NSH	INT	LAD	26			
25	R ₄	\mathbb{R}_2	\mathbf{R}_4	ADD	NSH	-	NEXT	_			
26	R ₄	-	none	TSF	NSH	EXT	LAD	_			

2.7.3 Microprograma: Código Binario

Dirección EEPROM	Contenido en la memoria EEPROM						
	A	В	D	F	Н	MUX	ADRS
010100	001	010	011	0101	000	0 000	000000
010101	000	000	000	0000	000	0 010	010111
010110	100	001	100	0010	000	0 001	011010
010111	000	000	000	0000	000	0 101	011001
011000	100	000	100	0001	000	0 001	011010
011001	100	010	100	0010	000	0 000	000000
011010	100	000	000	0000	000	0 001	000000

Design of Complex Digital Systems

Digital Systems II

