OTE Domácí úkol 2 - Zesilovače

Vojtěch Michal

1. dubna 2022

V simulacích pro tuto úlohu bylo použito nastavení parametrů operačního zesilovače uvedené v tabulce 1. Symbolem u_2 označuji napětí na výstupu operačního zesilovače proti zemi.

parametr	symbol	hodnota	jednotka	poznámka
Vstupní napětový offset	U_0	1	mV	
Vstupní klidový proud	$I_{ m B}$	50	$_{ m nA}$	$(I_{\rm BP} + I_{\rm BN})/2$
Vstupní zbytkový proud	I_0	20	$_{ m nA}$	$I_{ m BP}-I_{ m BN}$
Zesílení v otevřené smyčce	A_{D}	200	kVV^{-1}	
Tranzitní kmitočet	f_T	1	MHz	

Tabulka 1: Parametry operačního zesilovače použité pro simulaci

1 Napěťový sledovač

Multimetrem byly změřeny hodnoty statických parametrů operačního zesilovače. Zapojením sledovače napětí a připojením neinvertujícího vstupu na zem podle schématu 1 bylo změřeno zbytkové napětí

$$U_0 = 999.995 \mu V \approx 1 \text{mV}.$$
 (1)

Obrázek 1: Zapojení pro změření zbytkového napětí OZ

Obrázek 2: Měření vstupních proudů svorek OZ

Zapojením rezistoru $R_1=100 \mathrm{k}\Omega$ do záporné zpětné vazby dle schématu 2a byl změřen vstupní proud invertující svorky

$$I_{\rm BN} = \frac{u_2 - U_0}{R_1} = \frac{3\text{mV} - (-1\text{mV})}{100\text{k}\Omega} = 4 \cdot 10^{-5-3}\text{A} = 40\text{nA}.$$
 (2)

Zapojením rezistoru $R_2 = 100 \mathrm{k}\Omega$ mezi neinvertující vstup a zem dle schématu 2b byl změřen vstupní proud neinvertující svorky

$$I_{\rm BP} = -\frac{u_2 + U_0}{R_2} = -\frac{-7\text{mV} + 1\text{mV}}{100\text{k}\Omega} = 6 \cdot 10^{-5-3}\text{A} = 60\text{nA}.$$
 (3)

Odtud lze vypočíst velikosti vstupního zbytkového proudu

$$I_0 = I_{\rm BP} - I_{\rm BN} = 20 \text{nA}$$
 (4)

a vstupního klidového proudu

$$I_{\rm B} = \frac{I_{\rm BP} + I_{\rm BN}}{2} = 50 \text{nA},$$
 (5)

které přesně odpovídají parametrům nastaveným dle tabulky 1.

2 Neinvertující zesilovač

Zadaných zesílení 2 a 11 lze s neinvertujícím zesilovačem dosáhnout fixováním $R_2 = 10 \text{k}\Omega$ a použitím $R_1 \in \{10, 100\} \text{k}\Omega$ dle schématu 3.

Obrázek 3: Neinvertující zesilovač, zde G = 11

Na obrázcích 4 a 5 jsou frekvenční charakteristiky pro obě zadaná zesílení. Pro G=2 je $f_m\approx 500 \mathrm{kHz}$, pro G=11 je $f_m\approx 90 \mathrm{kHz}$. Pro simulaci byl použit tranzitní kmitočet $f_T=1 \mathrm{MHz}$, obě konfigurace proto splňují rovnost $G\cdot f_m=f_T$, takzvaný gain-bandwidth product.

Obrázek 4: Frekvenční charakteristika neinvertujícího zesilovače pro G=2

Obrázek 5: Frekvenční charakteristika neinvertujícího zesilovače pro ${\cal G}=11$

Obrázek 6: Měření doby náběhu T_n neinvertujícího zapojení

Nahrazením harmonického buzení za obdélníkové $clock\ voltage$ je možné změřit dobu náběhu. Na uvedených obrázkách přísluší zelený průběh vstupnímu obdélníkovému signálu, zatímco červený průběh je napětí na výstupu zesilovače. S použitím amplitudy vstupního signálu $U_1=909\mathrm{mV}$ a zesílením G=11 je ustálené napětí rovno 10 V, pro což lze snadno dopočítat úrovně 10 a 90 %. Na obrázku 6a je vidět doba náběhu mezi kurzory $T_n=4,012\mathrm{ps}$.

S použitím přibližného vztahu a změřené mezní frekvence f_m pro G=11 je očekávaná doba náběhu

$$T_n = \frac{0.35}{90 \cdot 10^3} = 3.88 \mu s, \tag{6}$$

což řádově odpovídá skutečné hodnotě změřené pomocí osciloskopu. Skutečná doba náběhu je trošku delší než teoretická, jedním z důvodů je omezení derivace napětí na počátku konečnou rychlostí přeběhu ($slew\ rate\ SR$).

Stejné měření lze provést pro zesílení G=2, tedy $R_1=R_2=10 \mathrm{k}\Omega$. Na obrázku 6b je zachycen průběh odezvy na skok, ze kterého lze vyčíst doba náběhu $T_n\approx 690 \mathrm{ns}$, což odpovídá očekávané analyticky vypočtené hodnotě

$$T_n \approx \frac{0.35}{500 \text{kHz}} = 700 \text{ns}.$$
 (7)

Velikost rychlosti přeběhu se nepodařilo spolehlivě změřit s pomocí mezního výkonového kmitočtu, protože deformace harmonického průběhu nebyla nikdy příliš patrná. Na časovém průběhu napětí na výstupu OZ nebyl nikdy patrný bod, kde přeběh přechází z lineárního na exponenciální. Proto byl proveden jen hrubý odhad z počátku odezvy na jednotkový skok (s pomocí *clock voltage*). Na základě průběhu zobrazeného na obrázku 7 lze odhadnout

$$SR = \frac{37,5\text{V}}{8\mu\text{s}} \approx 4,7\text{V}\,\mu\text{s}^{-1}.$$
 (8)

Obrázek 7: Měření rychlosti přeběhu SR zesilovače s G=11

3 Invertující zesilovač

Byl zapojen invertující zesilovač podle schématu 8. Připojením vstupu na zem se projevily reálné vlastnosti operačního zesilovače:

- a. Napětí na invertující svorce je $u_{-}=-1$ mV, což odpovídá očekávanému zbytkovému napětí použitého OZ.
- b. Vlivem rozdílu napětí teče přes rezistor R_1 proud $I_1 = 100$ nA, z toho se $I_{BN} = 40$ nA ztrácí do invertující svorky OZ a zbylých 60nA teče přes R_2 do výstupu OZ. Proto je výstupní napětí $u_{20} = -1,6$ mV.

Obrázek 8: Zbytkové napětí invertujícího zesilovače

Invertující zapojení operačního zesilovače má mezní kmitočet

$$f_m = \frac{f_T}{1 + |G|},\tag{9}$$

konfiguracím se zesílením $G_1 = -1$ a $G_2 = -10$ proto teoreticky přísluší mezní kmitočty $f_{m_1} = 500 \text{kHz}$ a $f_{m_2} = 90 \text{kHz}$. Bodeho charakteristiky vykreslené na obrázcích 10 a 11 tento teoretický předpoklad potvrzují simulací.

Reálná doba náběhu odpovídá, podobně jako u neinvertujícího zapojení, očekávané hodnotě

$$T_n = \frac{0.35}{f_m}. (10)$$

Pro G=-1 je snímek časových průběhů z osciloskopu na obrázku 9, ze kterého je patrno $T_n\approx 660\mathrm{ns}.$

Obrázek 9: Měření doby náběhu T_n zesilovače s G=-1

Obrázek 10: Frekvenční charakteristika invertujícího zesilovače pro ${\cal G}=-1$

Obrázek 11: Frekvenční charakteristika invertujícího zesilovače pro ${\cal G}=-10$