1	Amendments to the Claims:
2	This listing of claims will replace all prior versions, and listings of claims in the applications
3	Listing of Claims:
4	CLAIMS
5	<u>I claim</u> :
6	1. (Original) (An integrated actuator-carriage arm and suspension system for a hard disk
7	drive information storage system-that can be an internal or an external drive, comprising of:
8	a. two platters supported for rotation about an axis, and having thereon two opposite
9	magnetic surfaces;
10	b. six linear stationary micro-rails, that extend from outer perimeter edge towards the
11	center of each said disk,
12	c. two wing shaped actuator-carriage arms that move linearly over said micro rails;
13	d. an actuator member supported for movement relative to said disks and said axis, two
14	pairs of actuators for effecting controlled parallel movements of said members on two
15	different quarters of the disk and said axis concurrently,
16	e. read/write heads-where each read/write head is on the two sides of a continuous
17	surface contact micro-pad, all supported by said actuator member for controlled precision
18	movements in conjunction with said actuation member, movement of said member by said
19	actuator corresponding to movement of said read/write heads adjacent and in a direction that
20	is linear motion-tangential to data tracks, but conforming to approach angle of the arcs of said
21	magnetic surface data tracks as a function of actuator geometry to said disk from said axis,
22	and;

evenly interspaced servo write and detection head members disposed on said member,

1	that function as position detector to generate position signals to indicate the position of said
2	read/write heads relative to said surface of said disk, and
3	g. two flexible printed circuit (FPC) boards that have the wiring board connections
4	which have signal lines that connect said magnetic heads and the actuators to the drive
5	electronics board via the connection and moving members.
6	h. two analog voice coil motors that move the said wing shaped two pairs of
7	actuators along two different-independent stationary linear paths of micro-rails,
8	and;
9	i. said analog voice coil motors also have a digital mode-switching from analog to
10	digital mode and back to analog-for skipping data tracks-when micro actuation is
11	not needed.
12	
13	2. (Original) The positioning and actuator-carriage arm system as set forth in claim 1,
14	includes two wing shaped pairs of actuators; where each pair moves in unison-parallel to
15	each other.
16	
17	3. (Original) The actuator-carriage arm and suspension system as recited in claim 2, wherein
18	said two pairs of actuators that move within their limited range-enable; the distance that each
19	actuator member of these pairs have to cover to be a considerably shorter distance to reach
20	different concentric tracks of the disk.
21	
22	4. (Original) The actuator-carriage arm system as recited in claim 3, wherein said two pairs
23	of actuators that are assigned to move only within a limited range, this said distance of back

1	and forth motion is limited for each member to only 1/2 of the distance of the radius of the
2	disk-excluding the non data zone-during operation, thereby; increases each members
3	precision, enables several layers of programs to be loaded faster at boot up, and speeds up the
4	external transfer rate and shortens the overall access-retrieval time of said drive.
5	
6	5. (Original) The actuator-carriage arm and suspension system as recited in claim 2, wherein
7	the two pairs of wing shaped actuators and the series of multiple R/W heads enable sufficient
8	excess number of R/W transducer heads; that can access a multitude of data tracks with
9	precision that are close or adjacent and therefore an additional built in micro actuator is not
10	needed and thereby the cost of integrating micro actuator is avoided.
11	
12	6. (Original) The actuator-carriage arm and suspension system as set forth in claim 1,
13	wherein said member wing shaped actuators are arranged; to move over two different
14	quadrants of the disk area concurrently.
15	
16	7. (Original) The actuator-carriage arm and suspension system as recited in claim 5, whereir
17	said wing shaped actuators and the R/W heads of said second pair of actuators that are
18	affixed to said integrated suspension of said second actuators, can have access to same set of
19	multiple tracks; with only 1/2 revolution of the disk, when actuators are positioned
20	symmetrically over same set of tracks and over the opposite quadrants of the disk.
21	
22	8. (Original) The actuator and carriage arm and suspension system as set forth in claim 1,
23	wherein the movement of each other pair of wing shaped actuator; is independent of the

movements	of	the	other	pair	of	actuator
-----------	----	-----	-------	------	----	----------

9. (Original) The actuator-carriage arm and suspension system as recited in claim 7, wherein the said actuators, if not positioned symmetrically, a multitude of different set of tracks are accessed by the said R/W heads of the said actuators that are in an asymmetric position; with only less than one revolution of the disk.

10. (Currently Amended) The actuator-carriage arm system as set forth in claim 1, wherein a total of two hundred and seventy two twenty four thin film R/W heads and one hundred and thirty six twelve (one micro-pad for two R/W heads,) or -multiples thereof- micro-pads are affixed to the each of the wing shaped actuator-carriage arms, wherein each actuator covers 17 multiple tracks concurrently and there are four evenly interspaced transducers for each track- thereby each member actuator of the pairs; has access in increments of one hundred and forty seven tracks per ½ concentric limited range assigned -where concurrent R/W does not have to be made using all of R/W heads at the same time and in another mode R/W is done sequentially, even as actuators remain stationary over a set of certain tracks or make micro distance re-positioning.

11. (Original) The actuator-carriage arm and integrated suspension system as recited in claim 7 and 9, wherein the arc like shaped geometry and plurality of wing shape of the actuator and the double pair configuration of said actuator arms and a series of R/W heads form an arc like path and two wings extend over and conform to the arcs of the data tracks below, thereby; enable an uninterrupted row of complete disk sectors to pass under these said

	I	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
1	0	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
2	0	
2	1	
2	2	
2	3	

to center of the disk, thereby;

R/W head members, as said R/W heads do not need to be re-positioned frequently-as in the
prior art, and therefore enable a parallel data transfer scheme.
12. (Original) The actuator-carriage arm and suspension system as set forth in claim 1,
wherein both pairs of the actuators and their R/W heads are connected to the drive electronics
board, by flexible printed circuit (FPC) board electronic wiring connection that connects
actuators and R/W heads to the drive electronics board, via the member that moves the pair
of actuator.
13. (Original) The actuator-carriage arm and integrated suspension system as recited in
claim 12, wherein; the electronic communication between actuators and R/W heads can
alternatively be established with a micro-range Blue tooth technology instead of flexible
printed circuit wiring.
14. (Original) The actuator-carriage arm and suspension system as set forth in claim 1,
wherein the two stationary micro-rails per disk surface, facilitate linear movements of said
member wing shaped actuators, that enable the R/W transducer heads of said integrated
suspensions of said actuators to have a continuous contact pad and a constant fly height; that
enables a unique parking feature of the heads, where the R/W heads that are affixed on the
wing shaped actuator and integrated two suspension sides move within the two limited 1/2
inner range of the radius of the disk are moved to positions-over two concentrically aligned

non data zones-which are concentric rings-one located at the outer diameter-the other closer

1	wherein the independence from air lifting of disk tangential velocity is mainly a combination
2	of functions of the continuous contact of micro-pads, and the constant height feature provided
3	by the stationary micro-rail.
4	
5	20. (Original) The actuator-carriage arm and suspension system as recited in claim 18,
6	wherein the protective wear-resistant layer is preferably titanium di-boride or amorphous
7	nitrided carbon, or chromium, or tungsten and the disk surface has an adhesion reducing
8	texture.
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	