Post MM update

Pete Rigas, Lambert Lab

June 23, 2021

Goals

Briefly summarize MM findings,
Provide additional simulations of the binding landscape
for alternate height fluctuation arrangments,
Motivate "good" choices of the height parameter for the
barrier height fluctuation in the landscape,
Reformulate exit time fluctuation expression, for
nonconstant height between neighboring base pairs of
inspection, for future work in optimally determining
height parameters.

Our equation of interest is,

$$\frac{\mathrm{d}^2 \tau}{\mathrm{d}x^2} - \frac{\mathcal{U}'(x)}{k_b T} \frac{\mathrm{d}\tau}{\mathrm{d}x} = -\frac{1}{k_b T} ,$$

where the exit time takes the form,

$$\tau(x) = \frac{1}{k_b T} \left(\underbrace{n^2}_{=\int_0^n \int_0^n f(u)f(-v) du \ dv} - \underbrace{x^2}_{=\int_0^x \int_0^x f(u) \ f(-v) \ du \ dv} - \underbrace{\int_x^n f(v) \int_0^v f(u) \ du \ dv}_{\approx \int_0^x f(v) \int_0^v f(u) \ du \ dv - \int_0^n f(v) \int_0^v f(u) \ du \ dv}_{=\sum_{n=0}^\infty f(n) \int_0^v f(n) \ du \ dv} \right),$$

and,

$$f(u) = \exp\left(\frac{\sqrt{\pi\sigma^2}}{2k_bT}\left(\frac{2}{\sqrt{\pi}}\int_0^{\frac{\mu-u}{\sigma}}\exp(-t^2)\,\mathrm{d}t\right)\right).$$

\approx 400 bp target sequences (8 temperature level sets) simulation

Passing to a height subsequence of the landscape for Fn Cas12a specific predictions

Briefly summarize MM findings.

First additional simulations of the landscape for varying temperature and height arrangements

✓ Provide additional simulations of the binding landscape.

First simulation remarks

When plotted against the base pair and temperature, the approximated exit time,

- demonstrates expected numerical behavior for temperature level sets that are close to one another, in the sense that,
 - exit times from one temperature level set monotonically increase with respect to the ambient temperature of binding,
 - agrees with thermodynamic "intuition" that increasing the ambient temperature increases the exit time approximations for the target sequence,
- approaches a limiting shape in the high temperature binding phase (ie sending $T \longrightarrow \infty$),
- diverges to $-\infty$, for unit temperature of binding T otherwise.

Second additional simulation of the landscape

Second simulation remarks

In the second case, the corresponding temperature level sets for the exit times,

- exhibit more intricate behavior in the subsequences of base pairs for which the exit time monotonically vanishes and subsequently becomes negative (physically, we can interpret this as a solution to the IVP for which the barrier landscape height is not conducive for any particle flux),
- contain fewer intractable approximations for the exit time as
 T increases,
- demonstrate predictable qualitative behavior for increasing T.
 Motivate "good" choices of the height parameter for the barrier height fluctuation in the landscape.

Modifying the exit time fluctuation expression from the conference presentation

• Solution decomposition

$$\tau(0) \equiv \tau(n-1) + \sum_{j < n-1} \tau(j)$$

• Exit time fluctuation

$$\Delta_{n,n-1}\tau \equiv \frac{1}{k_h T} \left(n^2 - (n-1)^2 - \int_{n-1}^n f(v) \int_0^v f(u) \, \mathrm{d}u \, \mathrm{d}v \right) \, .$$

☑ Reformulate exit time fluctuation expression.

With $h \equiv h_n$, $h - 1 \equiv h_{n-1}$, $\mathcal{U}_1' \sim \mathcal{N}(\mu_1, \sigma_1)$, $\mathcal{U}_2' \sim \mathcal{N}(\mu_2, \sigma_2)$, $n \in \mathbf{Z}$, the expression is,

$$\Delta_{n,n-1}\tau(T,h_i,h_{i-1}) = n^2 - (n-1)^2 + \int_0^n \int_0^v f_{h_i}(u) \mathrm{d}u \ f_{h_i}(v) \mathrm{d}v \ - \\ \int_0^{n-1} \int_0^v f_{h_{i-1}}(u) \mathrm{d}u \ f_{h_{i-1}}(v) \mathrm{d}v \ ,$$

where.

$$f_{h_{i-1}}(u) = \exp\left(\frac{0.4}{k_b h_{i-1} T} \left(\frac{2}{\sqrt{\pi}} \int_0^{(\frac{n_{i-1}}{0.4})(\mu_1 - u)} e^{-t^2} dt\right)\right),$$

$$f_{h_i}(u) = \exp\left(\frac{0.4}{k_b h_i T} \left(\frac{2}{\sqrt{\pi}} \int_0^{\frac{h_i}{0.4}(\mu_2 - u)} e^{-t^2} dt\right)\right),$$

having expressed the variance in terms of the barrier height.

Reformulation steps: Obtaining boundary dependent scaling in exit time fluctuations

```
\begin{split} & \Delta_{n,n-1}\tau(T,h) = n^2 - (n-1)^2 + \int_0^{\pi} \int_0^{\infty} \exp\left(\frac{\theta_2^n \left\{ \frac{h}{h} \int_0^{\frac{n-n}{2}} \exp(-t^2) \mathrm{d}t - \frac{1}{h-1} \int_0^{\frac{n-n}{2}} \exp(-t^2) \mathrm{d}t \right\} \int_h (u) \mathrm{d}u - \int_0^{n-1} \int_{h-1} (u) \mathrm{d}u \int_0^{\pi} \mathrm{d}v \\ & \cdot \cdot \cdot \int_0^{\pi} \exp\left(\frac{\theta_2^n \left\{ \frac{h}{h} \int_0^{\frac{n-n}{2}} \exp(-t^2) \mathrm{d}t - \frac{1}{h-1} \int_0^{\frac{n-n}{2}} \exp(-t^2) \mathrm{d}t \right\} \int_{h-1} (u) \mathrm{d}u - \left( \int_0^{\pi} \int_h (u) \mathrm{d}u - \int_0^{n-1} \int_{h-1} (u) \mathrm{d}u \right) \int_0^{\pi} \mathrm{d}v \\ & \cdot \cdot \cdot \cdot \int_0^{\pi} \exp\left(\frac{\theta_2^n \left\{ \frac{h}{h} \int_0^{\frac{n-n}{2}} \exp(-t^2) \mathrm{d}t - \frac{h}{h-1} \int_0^{\frac{n-n}{2}} \exp(-t^2) \mathrm{d}t \right\} \int_0^{\frac{n-n}{2}} \exp(-t^2) \mathrm{d}t \right) \right) \cdot \cdot \cdot \\ & + \left( \int_0^{\pi} \int_0^{\pi} \exp\left(\frac{\theta_2^n \left\{ \frac{h}{h} \int_0^{\frac{n-n}{2}} \exp(-t^2) \mathrm{d}t - \frac{h}{h-1} \int_0^{\frac{n-n}{2}} \exp(-t^2) \mathrm{d}t \right\} \right) + \left( \int_0^{\pi} \int_0^{\pi} \exp(-t^2) \mathrm{d}t - \frac{h}{h-1} \int_0^{\frac{n-n}{2}} \exp(-t^2) \mathrm{d}t \right) \right) + \left( \int_0^{\pi} \int_0^{\pi} \exp(-t^2) \mathrm{d}t - \frac{h}{h-1} \int_0^{\frac{n-n}{2}} \exp(-t^2) \mathrm{d}t \right) \right) h \\ & \cdot \cdot \cdot \cdot \int_{h-1} (u) \mathrm{d}u \end{split}
```



```
\begin{split} & \int_{\mathbb{R}} \log \left[ \psi (\int_{\mathbb{R}} \int_{0}^{\infty} \exp(-i\theta) - \frac{1}{12} \int_{0}^{\infty} \exp(-i\theta) - \frac{1}{12
```

Resulting formula (small typo h-2 instead of h)

Consolidating exponentials under the last integral

$$\begin{split} & \left[\Delta_{n,n-1} \tau(T,h) \right] = 2n+1 + \left(\int_0^n f_h(u) \mathrm{d}u - \int_0^{n-1} f_{h-1}(u) \mathrm{d}u \right) \left(\int_0^v \exp\left(\frac{0.4}{T} \left\{ \frac{1}{2} \int_0^{\frac{\mu_2-v}{2}} \exp(-t^2) \mathrm{d}t - \int_0^{\frac{\mu_1-v}{2}} \exp(-t^2) \mathrm{d}t \right\} \cdots \right. \\ & \left. \right) \cdots + \exp\left(\frac{0.4}{T} \left(\frac{1}{2} \int_0^{\frac{\mu_2-v}{2}} \exp(-t^2) \mathrm{d}t - \int_0^{\frac{\mu_1-v}{2}} \exp(-t^2) \mathrm{d}t \right) \mathrm{d}u \right) + \int_0^n h \left(\left(\exp\left(\frac{0.4}{T} \left(\frac{1}{2} \int_0^{\frac{\mu_2-v}{2}} \exp(-t^2) \mathrm{d}t - \int_0^{\frac{\mu_1-v}{2}} \exp(-t^2) \mathrm{d}t \right) \right) - 1 \right) \\ & \left. f_h(u) + \left(\exp\left(\frac{0.4}{T} \left(\frac{1}{2} \int_{\frac{\mu_2-v}{2}}^{\frac{\mu_2-v}{2}} \exp(-t^2) \mathrm{d}t - \int_{\frac{\mu_1-v}{2}}^{\frac{\mu_1-v}{2}} \exp(-t^2) \mathrm{d}t \right) \right) - 1 \right) f_{h-1}(u) \right) \mathrm{d}u \end{split}$$

 manageable to code from existent components - implement Trapezoidal approximation and function handle for two terms in the expansion

```
x_1 = @(x) (mu_2-x)./sigma_2;
\times 2 = \phi(x) (mu 1-x)./sigma 1;
 temp fac = 0.4./T:
fluctuation_exp_1 = \theta(x) exp( temp_fac .* ((0.5.* erf(x_1(x)))-erf(x_2(x))));
val_exp_1_0 = sym(fluctuation_exp 1(0));
val exp 1 1 = sym(fluctuation exp 1(x./2));
val exp 2 = sym(fluctuation exp 1(x)):
trap_exp_1 = (x./2) .* symsum(val_exp_1_8 , val_exp_1_1, val_exp_2) .* (exp((0.4./(height_2.* T)).* erf(x_1(x))));
trap exp 2 = (x,/2) .* symsum(val exp 1 8 . val exp 1 1 . val exp 2) .* exp((8.4./(height 1*T)).*erf(x 2(x))):
final_handle_1 = convertCharsToStrings(trap_exp_1);
final handle 1 = matlabFunction(final handle 1):
 final_handle_2 = convertCharsToStrings(trap_exp_2);
final_handle_2 = matlabFunction(final_handle_2);
 approx val 1= integral(final handle 1.0.n):
 approx_val_2 = integral(final_handle_2,0,n-1);
final res 1 = approx val 1-approx val 2:
syns x
 second_handle_1 = g(x,h) \ (exp(temp_fac .+(0.5 .+ (erf(x_1(x))-erf(x_1(0))) -(erf(x_2(x))-erf(x_2(0)))))-1).+(h-2) .+ exp((0.4./(height limits and limi
result second handle 1 = convertCharsToStrings(second handle 1(x, height 2));
result_2_1= vpaintegral(result_second_handle_1,0,(n-1)+ delta);
 result second handle 2 = convertCharsToStrings(second handle 2(x, height 1));
result_2_2 = vpaintegral(result_second_handle_2,0,n-1);
final res 2 = result 2 1 + result 2 2:
```

Initial height parameter simulation: Plotting linear fluctuations of the exit time magnitude between neighboring base pairs

• Ensemble of exit time rays between subsequent base pairs

Critical point test

First order partials

$$\begin{split} \frac{\partial}{\partial h} \Delta_{n,n-1} \tau(T,h,h-1) &= \int_0^n \int_0^v \frac{\partial}{\partial h} \left\{ f_h(u) \, \mathrm{d} u \, f_h(v) \, \mathrm{d} v \right\} - \\ &\qquad \qquad \int_0^{n-1} \int_0^v \frac{\partial}{\partial h} \left\{ f_{h-1}(u) \, \mathrm{d} u \, f_{h-1}(v) \, \mathrm{d} v \right\} \\ &= \int_0^n \int_0^v \left\{ \frac{\partial}{\partial h} \left\{ f_h(u) \, \mathrm{d} u \right\} f_h(v) \, \mathrm{d} v \right. + f_h(u) \, \mathrm{d} u \, \frac{\partial}{\partial h} \left\{ f_h(v) \, \mathrm{d} v \right. \right\} \right. \\ &\qquad \qquad \left. \int_0^{n-1} \int_0^v \left\{ \frac{\partial}{\partial h} \left\{ f_{h-1}(u) \, \mathrm{d} u \right\} f_{h-1}(v) \, \mathrm{d} v \right. + \\ &\qquad \qquad \left. f_{h-1}(u) \, \mathrm{d} u \frac{\partial}{\partial h} \left\{ f_{h-1}(v) \, \mathrm{d} v \right. \right\} \right\} \end{split}$$

$$-\left\{\frac{0.4}{h^2T}\left(\frac{2}{\sqrt{\pi}}\int_0^{\frac{h}{0.4}(\mu_1-u)}e^{-t^2}dt\right) + \frac{0.8}{\sqrt{\pi}hT}\exp\left(-\frac{1}{T}(\mu_1-v)^2\right)\right\}\right\}$$

 $f_h(v) dv + f_h(u) du \times \exp\left(\frac{0.4}{hT}\left(\frac{2}{\sqrt{\pi}}\int_{0}^{\frac{h}{0.4}(\mu_1-v)}e^{-t^2}dt\right)\right) \times \cdots$

 $= \int_{0}^{n} \int_{0}^{v} \left\{ \exp \left(\frac{0.4}{hT} \left(\frac{2}{\sqrt{\pi}} \int_{0}^{\frac{n}{0.4} (\mu_1 - u)} e^{-t^2} dt \right) \right) \times \cdots \right.$

 $\left[-\frac{0.4}{h^2 T} \left(\frac{2}{\sqrt{\pi}} \int_0^{\frac{h}{0.4} (\mu_1 - u)} e^{-t^2} dt \right) + \cdots \right]$

 $\frac{0.4}{\sqrt{\pi h}T} \exp\left(-\left\{\frac{1}{T}\right\} (\mu_1 - u)^2\right) \times \cdots$

To set $\frac{\partial}{\partial h} \equiv 0$,

- Differentiability of solutions τ in v & n,
 - Similarity of the $\frac{\partial}{\partial T}$ computation with the $\frac{\partial}{\partial h}$ and $\frac{\partial}{\partial h-1}$ ones.

- ullet \Rightarrow The exponential is smooth in powers of u and v, and do not appear in the denominator of any expression in the solution
- \Rightarrow Similarity arises from the fact that from $\frac{\partial}{\partial h}$ condition, the critical point equation is satisfied when dividing by

$$\exp\left(\frac{0.4}{hT}\left(\frac{2}{\sqrt{\pi}}\int_0^{\frac{h}{0.4}(\mu_1-u)}e^{-t^2}\,\mathrm{d}t\right)\right)f_h(n)\;,$$

giving,

$$\frac{1.6}{\sqrt{\pi h}T} \exp\left(-\left\{\frac{1}{T}\right\} (\mu_1 - \nu)^2\right) - \frac{0.8}{h^2 T} \left(\cdots \frac{2}{\sqrt{\pi}} \int_0^{\frac{h}{0.4}(\mu_1 - u)} e^{-t^2} dt\right)$$

Future plans

- Plot relationship obtained from critical point equations to determine the magnitude of fluctuations between two subsequent base pairs,
- Obtain critical point equations for linear approximation of $\Delta_{n,n-1}\tau$,
- Solve integral equation in Matlab,
- Plot results.