Comunicación de Datos I

PRÁCTICO 2 NIVEL DE ENLACE DE DATOS

DELIMITADOR DE FRAMES
CONTROL DE ERRORES
CONTROL DE FLUJO

- Al enviar información, en vez de enviar un stream continuo de información, se utilizan frames.
- Así es posible detectar errores por frame, y de existir un error, se puede retransmitir sólo el frame problemático.
- Para delimitar los frames existen diversos métodos:
 - o Cuenta de caracteres.

- O Delimitación de frame por caracteres.
- O Delimitación de frame por bits.
- Por lo general se utilizan combinaciones de éstos...

Determine, para la siguiente información a enviar, cómo será transportada a través del vínculo de transmisión y cómo será entregada al receptor luego de eliminar los caracteres producidos por el proceso de framing:

23-7D-03-5E-45-5E-5E-7E

Delimitadores de bloques: 7E

Caracter de transparencia: 7D

Procedimiento en el emisor

Cuando se quiere transmitir 7E, se envía 7D-5E

Cuando se quiere transmitir 7D, se envía 7D-5D

Cuando se quiere transmitir **00..1F**, se envía **7D-caracter+20**

Se desea transmitir como dato:

23-7D-03-5E-45-5E-5E-7E

El emisor agrega inicio de bloque, transparencia, y fin de bloque

7E- 23-7D-5D-7D-23-5E-45-5E-5E-7D-5E-7E

El receptor busca inicio de bloque, caracteres de transparencia, y fin de bloque

23-7D-03-5E-45-5E-5E-7E

Utilizando delimitación de bloque por secuencia de bits, para los bits de información: 10110111110101111111110101 determine como será transportada.

Delimitación: Se utilizan flags de tipo: 01111110

Transparencia: Cuando en los datos aparecen 5 unos seguidos se le agrega un o luego del 5to bit.

EJ. 001111111010 --> 0011111**0**11010

Entonces: 1011011111010111111110101 será transportado como:

01111110 1011011111<u>0</u>01011111<u>0</u>1110101 **01111110**

Control de Errores

- Códigos correctores de errores
- Códigos detectores de errores
 - · Bit de paridad
 - Códigos cíclicos
 - Utilizados en Ethernet, 802.11, HDLC, etc. (CRC)
 - Checksum IP
 - Muy simple y rápido (aritmetica módulo 1)
 - Cálculo incremental
 - Indiferente a orden de bytes en palabras
 - Puede realizarse en paralelo
 - Capacidad de detección limitada
 - Utilizado en las niveles IP y transporte de la arquitectura TCP/IP (IP, ICMP, UDP, TCP)

Checksum IP

Generación del checksum

- Agrupar los bytes en grupos de a 2 (16 bits). Si hay un número impar rellenar con o
- Poner campo checksum en cero
- O Suma módulo 1 con acarreo de los grupos de 16 bits
- Complementar a 1 el resultado y colocarlo en el campo checksum

Chequeo del checksum

- Sumar en complemento a 1 la totalidad de grupos de 16 bits con acarreo (incluido checksum)
- o Si el resultado es todos 1, el resultado es correcto

Checksum de acuerdo al Protocolo

ICMP

PORT ORIGEN (16)	PORT DESTINO (16)	
LONGITUD (16)	CHECKSUM (16)	
DATOS		

UDP

DIRECCION IP ORIGEN (32)		
DIRECCION IP DESTINO (32)		
CERO (8)	PROT (8)	LONG. TCP o UDP (16)

Pseudoheader

• IP: cubre sólo el header IP

• ICMP: cubre el frame ICMP completo

• UDP: cubre todo el segmento UDP más el pseudoheader

• TCP: cubre todo el segmento TCP más el pseudoheader

Cálculo del Checksum del datagrama IP

Separar el header del frame IP

4500 003C: Vers, Hlen, Tipo, Long

OA1C 4000: Ident., Flags, Offset

FF06 XXXX: TTL, Protoc., Checksum

A8B0 0319: Dirección Origen

A8B0 036C: Dirección Destino

- Poner el campo checksum en o
- Sumar módulo 1 con acarreo
- Complementar el resultado
- Colocar el resultado final en el campo ChecsumHeader

Suma módulo 1 con acarreo

Calcule el checksum de la secuencia de bytes F3 01
 F9 E0 06 1E

Control de Flujo

- El control de flujo es necesario para no saturar al receptor de uno a más emisores
- Se utilizan mecanismos de confirmaciones

- Existen distintas técnicas
 - Parada y Espera
 - Ventana Fija
 - Ventana Deslizante

- El emisor envía una trama cada vez
- Utilizado para vínculos bidireccionales alternativos
- Sencilla implementación pero poco eficiente
- Hasta que no recibe confirmación (ACK=Acknowledgement) no envía la siguiente
- El proceso continúa hasta enviar el fin de transmisión
- En caso de recibir un NACK (rechazo de la recepción NO Acknowledgement) se reenvía el paquete anterior.

Mecanismo de transmisión

$$e = Tb / (Tb + Tok + 2 * dp)$$

Posibles situaciones de error

Ventana Fija

- Se envía una cantidad W de paquetes (tamaño de ventana), y se espera a que se reciba el ACK de todos los paquetes.
- Un permiso para todos los bloques de la ventana
- Puede utilizarse en vínculos bidireccionales alternativos.
- Requiere de mayor capacidad (W buffers)
- Aumenta eficiencia de Parada y Espera

$$e = Tb * W / (Tb * W + Tok + 2 * dp)$$

Parada y Espera vs. Ventana Fija

