lab 04

2023-09-21

Vote Now for Your Favourite Thai Restaurant

Here, we are reading the .csv file and determining the sample size we need:

```
real_votes <- read.csv("./data/votes.csv")
sample_size <- nrow(real_votes)</pre>
```

Now, we write the required function that simulates one bootstrap sample and returns Imm Thai's percentage of votes:

```
one_resampled_percentage <- function(){
  bootstrap <- real_votes[sample(sample_size, replace = TRUE),]
  return((sum(bootstrap == "Imm Thai")/sample_size)*100)
}</pre>
```

Now, we write the required function:

```
wrapper_percentage <- function(x){
  one_resampled_percentage()
}
percentages_in_resamples <- function(m){
  return(sapply(1:m, wrapper_percentage))
}</pre>
```

Here, we simulate 2000 times as required, and find the lower and upper bounds for the 95%-confidence interval:

```
so_many_sim <- percentages_in_resamples(2000)
imm_lower_bound <- quantile(so_many_sim, 0.025)
imm_upper_bound <- quantile(so_many_sim, 0.975)</pre>
```

Our histogram for the simulations:

Histogram of Imm Thai's Percentage of Votes

Imm Thai's Percentage of Votes

Imm (Thai) Doing So Much Better Than You

Now, we write the function for calculating Imm Thai's lead over the other restaurants:

Simulating 2000 times:

```
wrapper_difference <- function(x){
  one_resampled_difference()
}
resampled_leads <- sapply(1:2000, wrapper_difference)</pre>
```

Finally, the required histogram, in a lovely blue:

Histogram of 2000 Bootstrap Samples of Imm Thai's Lead

And here is question 7:

[1] A 95%-CI for Imm Thai's true lead over the other restaurants is (0.93, 10.93).