Expectation

(1) Definition:

O For simple r.v.'s:

· X = Î ai Jai . Ecx) = Î ni PcAi). Ai & A. ZAi = A.

Limma. It's well-ref: If $\tilde{\Xi}_{ai}I_{Ai} = \tilde{\Xi}_{bi}I_{bi}$. $\Lambda = \tilde{\Xi}_{ai}I_{ai} = \tilde{\Xi}_{bi}I_{bi}$. $\Lambda = \tilde{\Xi}_{ai}I_{ai} = \tilde{\Xi}_{bi}I_{bi}$.

Pf: Another partition: $N = \sum_{i,j} AinBj$.

3 For nonnegative 1.v's:

Since $\exists X_{n(w)} = \frac{L_2^n X_{(w)} J}{2^n} \wedge n \neq X_{(w)} . X_{n \ge 0}$.

Define: $E(X) = \lim_{n \to \infty} E(X_n)$.

Lemma. It's well-lef: If I simple rivis. Xn. Tatx

Xn. Ta >0. Then: lim E(Xn) = lim E(Yn). exist.

Pf: Note: E(Xn). E(Yn) are increasing.

Show: E(Yn) = lim E(Xn). Then Let k+00.

I'm E(Yn). = lim E(Xn). by symmetry. V.

I'm E(Yn). = lim E(Xn). by symmetry. V.

Set An= [Xn > Yk-E]. .: Xn > (Yk-E) IAn.

An In. Check: E(Xn) > E(Yk-E) IAN. n+00.

Limit operation:

· Recall Faton's 7hm:

- i) Xn > Y. a.s. Ecly12 x oo. Than lim Ecxn) > Eclim Xn).
- ii) Xn = Y. n.s. Ec141) = co. Than lim E(Xn) = Eclim Xn).

Cor. Melim An) > lim meAn). Melim An) & lim meAn).

3 For general r.v.'s:

. Note: X = X+ - X = E(X+) = E(X+) - E(X).

prop. Encx) = Encx). for pcA)=1.

Pf: | Encix) | = maxixip(Ac) = 00.0=0.

(2) Integration:

Dof: For nonhecrossing, sight-nonti func on R'. f.

There exists unique measure m: M(x,b) = f(b) - f(a).

Define: $\int g df = \int g M(dx) \cdot L - S$ integral associated with f.

Pernote: i) S + LM + S + Lm. Since M may

not be conti. at x=b.

ii) R-S integral require: f.q can't be hisconti. At same point. But L-S integral needn't it.

1) Some coses:

For: If 16. B & B: (L-s integral)

i) G is right-conti BV:

Note: 6 = 6. - 62. nonlectensing Fine's difference.

-: \int f 16 = \int f 161 - \int f 161.

ii) 6 is discrete:

Suppose [Xx] is its jumps. 4 hexx) = hexx) - hexx.

Then: $\int_{CS, tJ} f \lambda G = \sum_{S < \chi_{k} \le t} f(\chi_{k}) A G(\chi_{k})$

iii) G is absolutely conti:

39. 7=6. n.c. Mis. t] = Sisty Lh = Sisty JAX.

Then: I + 16 = I + g/x.

iv) 6 is mixture of ii). iii). right-conti:

Suppose $h(t) = h(n) + \int_{n}^{t} g(x) dx + \sum_{x \in t} h(x_n)$.

Then: I f 1 h = I f g 1x + I f (xn) a h (xn)

3 Integration by part:

7hm. F. 6 are BV. right-nonti. Then. we have: $F(t) \ h(t) - F(s) \ h(s) = \int_{(s,t)} F(x-) h(s) + h(x) h(s).$ $= \int_{(s,t)} F(x) h(s) + h(x-) h(s).$

If: WLOG. Set 5=0 < t.

[F(t)-F(0)] [G(t)-G(0)] = \int AF \int AF \int (0.1) AG

= \int I \int (0.1) \tau \int I \int (0.1) \tau \int I \int (0.1) \tau \int (

= \int Fig-) - Find Lhigh.

Cor. Fix) Git) - Fiss hiss = | Fix-) Lh + hix-) LF + I Afix) Ohis

cs,+)

Pf: Show: \ AGOX) AF = \ \ \ AFOX=) \ AGOX) \ AF \ S*X=St}

Sinu F = Fot Fx. Susses AGRFo = 0.

by AG \$0 on countable points. C: pull-measure)

(3) (al alation:

17 7hm. (Change of variables)

i) X is measurable: $(N.A.P) \rightarrow (No.Ao.Px)$. $P_X = P \circ X^{-1}$. inhaced measure.

ii) of is Boral on eno. A,). 770 or Eclquxxxxx holds. Then. Ecquxi) = Ino gogs Pxchqi.

fermik: Note: Ecqux)) = In quximi, APin) = In quyillair. We choose cno. Ao. P.) = (1/2. Bx. Px) Commonly. Then apply formulars of L-S integral.

11: Four steps: IA -> Simple Func. -> Nonnegative - general

1 Application:

DIM I PONISH FEMILIE IT i) Absolutely Conti r. V's:

Lemma. Denote Fx (x) = S. a f At. Correspond P.m: Px. Then Px(B) = SB f At. YB & B.R'. Pf: A = [At Bx 1 PxcA) = SA fA+). S= It-m.x] | Xt 1k's c A. o-algebra.

7hm. Ecquxi) = I gox foxily . f is lensity of x. Pf: prove = f qux Px clx = f qcx) fcx) dx. Four steps as usual by Lemma.

ii) Discrete Y.V's:

7/m. suppose PLX=XE)=PK. Elquxi) = IPKqcxx).

Pf: qcx) is.r.v. Write: qcx) = Iqcxxi Isxxi

I') 920. Truncate: In = In 10xxi Isxxi.

Apply McT: In 12.

2) general. $\gamma = \gamma^+ - \gamma^-$.

(4) Relation with Tail prob.

1 Jhm. Z polxlan) = Eclxl) = 1+ \(\int \) polxlan).

50 Eclxl) < \infty \infty \int \) \(\int \) polxlan) < \infty.

Pf: An = In < IXI = n+13. EcixI) = \(\subseteq \int_{AncixI} \)

Note: \(\frac{\subset}{\super} n \rho (An) = \subseteq \int p \cixI \rightarrow n \rho (IXI \rightarrow n+1) \)

1) Ecixi) < a. mpcixi3mti) = EcixiIcixi3mti), ->0

· ImplAn) = I plixism)

2') ElixI) = oo. = I pulxI>N). it's trivial.

Cor. If X: 1 -> Z. Then Eclx1) = \(\vec{\varphi} \) p(1x13m)
\(\vec{\varphi} \) \(\vec{\vec{\varphi}} \) \(\vec{\vec{\vec{\vec{v}}}} \) \(\vec{\vec{v}} \) \(\vec{\vec{v}} \) \(\vec{v} \) \(\

Pf: E(IXI) = Inp(IXI=n) = Ip(IXI>n).

Cor. ElixI) = 00 => IpiIXI = cn) < 00.

for + c = 1/2. Pf: Apply on IXI/c. Ecixi/c) <= Ecixi)co. Cor. IX. Xn) i.i.d. lim IXnI = C = Ecixi) cos. Horo. Pf: Epaixnizan) < a & paixnizanian) = 0.

| Im | IXN| = c. n.s. \(\forall = 0 \) @ 7hm. If Y30. 7hm. Ecy) = 50 poy390 = 50 poy390 n. Pf: Consider turn Y into integer values: $Y_n = \frac{E2^nY^{\frac{1}{2}}}{2^n} \int_{-\infty}^{\infty} Y. \quad Y_n \geq 0. \quad Denote \quad X_n = 2^nY_n$ = E(Xn) = Ip(Xn3k) = Ip(2143k) $A_k^n = \left\{ \frac{k}{2^n} \ge \gamma \le \frac{k+1}{2^n} \right\}, \quad \int_0^\infty \Box = \sum_{A_k^n} \int_{A_k^n} p(\gamma \ge \gamma) A_\gamma.$: E(Yn) = E(Xn)/2" = 10 p(Y=y) 1 = E(Xn)+1 By DCT. Let har. .. E(Ya) -> E(Y). The 2" =" is from : 10 pc Y = y > ky = 0.

Since $p(Y=\eta) \neq 0$ only on countable η . (And measure)

Cor. For $Y \geqslant 0$, Y > 0, $E(Y^r) = r \int_{-\infty}^{\infty} \eta^{r-1} p(Y \geqslant \eta) \lambda \eta$. $= r \int_{0}^{\infty} \eta^{r-1} p(Y > \eta) \lambda \eta$.

Pf: E(Y') = 50 p(Y'2n) My = 50 p(Y2nt) My
==ntr (= z''p(Y2) Mz.

Cor. $Y \in L'$. Then $E(Y) = E(Y^+) - E(Y^-)$ = $\int_0^\infty p(Y) \eta - p(Y) - \eta d\eta$.

Cor. $\forall r>0$. $\exists L(|x|^r) < \infty \Leftrightarrow \exists n^{r_1} P(|x| \geq n) < \infty$.

Pf: Discretize $\int_0^\infty r x^{r_1} P(|x| \geq x) Ax$.

- Cor. i) Elixi') < co. r>0 => x'P(1x1>x) = 0(1) (x+00).
 - (ii) $\chi^r p_{c(1\times1)\times X} = o(1) \Rightarrow E_{c(1\times1)^{r-1}} < \infty$. $\forall z \in (0,r)$.

 But it fails when z = 0.

Pf: i) x P (IXI ? X) = E (IXI I (IXI ? X) -> 0

ii) $E(1\times1^{r-1}) < \infty E$ $\sum h^{r-1-\epsilon} p(1\times1\geq m) < \infty$. $h^r p(1\times1\geq m) = 0 < 10. : p(1\times1\geq m) \hookrightarrow h^{-r}.$ $\sum h^{-r-1-\epsilon} p(1\times1\geq m) \hookrightarrow \sum h^{-1-\epsilon} < \infty.$

female: Let r=1. $p(X>X) = \frac{1}{\chi \ln x}$. Counterexample.

Chr. For 930 100

(5) Inequility:

O one-side Markov:

i)
$$p(X \ge n + n) \le \frac{r^2}{\sigma^2 + n^2}$$
 for $\forall n \ge 0$.
ii) $p(X \le n - n) \le \frac{\sigma^2}{\sigma^2 + n^2}$

Pf: Wloh. $\overline{E}(x) = 0$. Let X-m = X. $p(X \ge n) = p(X+\lambda \ge n+\lambda) \le \frac{\overline{E}(X+\lambda)^2}{(n+\lambda)^2}$ $(\frac{\overline{E}(X+\lambda)^2}{(n+\lambda)^2})_{rin} = \frac{\sigma^2}{\sigma^2 + \Lambda^2}, \lambda = \sigma^2/n.$

@ Moments of inlept. V.V's:

X. Y are indept 1. v's.

i) X+YEL' => X.YEL'.

ii) $X \in L^{r}$. for some p > 1. E(Y) = 0. Then: $E(1 \times 1^{r}) = E(1 \times + Y 1^{r}).$

Pf: i) Lemma. For all large λ :

pc $|x| \ge \lambda$) $\le 2pc |x| \ge \lambda$. $|Y| \le \frac{\lambda}{2}$) $\le 2pc |x+y| > \lambda/2$)

Pf: $pc |x| \ge \lambda$) $= pc |x| \ge \lambda$. $|Y| \le \frac{\lambda}{2}$) $+ pc |x| \ge \lambda$. $|Y| \le \frac{\lambda}{2}$). $\le 2pc |x+y| \ge \frac{\lambda}{2}$. $\le 2pc |x+y| \ge \frac{\lambda}{2}$.

 $\Rightarrow E(1\times1') = \int_{0}^{\infty} r x''' p(1\times1) \times x = \int_{0}^{\lambda} + \int_{\lambda}^{\infty} = \int_{0}^{\lambda} r x''' p(1\times1) \times x \times x = 0$ $\leq \int_{0}^{\lambda} r + c \int_{2\lambda}^{\infty} r x''' p(1\times1) \times x \times x = 0$