Joss Sticks by exampaper.com.sg

GEOMETRIC FORMULAE FOR PLANE GEOMETRY

LINES

$$\angle a = \angle b$$
 (alt. $\angle s$)
 $\angle c = \angle b$ (corresp. $\angle s$)
 $\angle b + \angle d = 180^{\circ}$ (int. $\angle s$)

TRIANGLES

Interior Angles

$$\angle a + \angle b + \angle c = 180^{\circ}$$

 $\angle a + \angle b = \angle d \text{ (ext. } \angle \text{ of } \Delta \text{)}$

Midpoint Theorem

DE // BC, DE =
$$\frac{1}{2}$$
 BC

Intercept Theorem

$$\frac{a}{b} = \frac{c}{d}$$

CIRCLES

∠ at Centre

∠s in Same Segment

∠ in Semi-Circle

Radius \perp **Tangent**

Opp. \angle s of Cyclic Quadrilateral

$$\angle a + \angle b = 180^{\circ}$$

$$\angle c + \angle d = 180^{\circ}$$

$$a$$

$$b$$

$$c$$

⊥ bisector of chord passes through centre

Tangents from external point

Equal chords equidistant from centre

Alternate Segment Theorem

Intersecting Chords Theorem

Tangent-Secant Theorem

$AB = CD \leftrightarrow OP = OQ$

