ML Assignment (MAThematics for ML)

-ManoJ Sampath
1711043
5th yr, MSC, SCS

10.1,01, 12 1

1 MINIMUM BACKGROUND TEST

A) VECTORS and MATRICES

$$\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \cdot (1) + 4 \cdot (3) \\ 1 \cdot (1) + 3 \cdot (3) \end{bmatrix} = \begin{bmatrix} 14 \\ 10 \end{bmatrix}$$

(3) A matrix is investible if its non-sungular (det \$1)

$$X = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} \quad \text{def} \quad X \neq 6-4$$

$$\neq 0 \quad \text{invertible}$$

$$=\frac{1}{2}\begin{bmatrix} 3 & -4 \\ -1 & 2 \end{bmatrix}$$

(4) Rank of X = Order of X (Since detx =0)

As the rows are or columns cannot be expressed in the form of other rows or columns are their are independent

1)
$$y = x^3 + x - \epsilon$$

 $\frac{d}{dx}(y) = \frac{d}{dx}(x^3 + x - \epsilon) = 3x^2 + 1$

$$\nabla f(x) = (\partial n_1 f) = (\partial f)$$

$$= \left(Sun(x_1)e^{-X_1} \left(1-X_1 \right) \right)$$

$$\times_1 cos(x_2)e^{-X_1} \left(1-X_1 \right)$$

Sample mean =
$$1+1+0+1+0=3$$

Probability and Statistics

Sample valuence =
$$5^2 = \sum (n_i - \bar{x})^2$$

$$= \frac{1}{4} \left[\left(-\frac{2}{5} \right)^{2} + \left(1 - \frac{2}{5} \right)^$$

Land A JA

() + x (ch = -2) X do mal v = 1 to mar (4/4)

P(s) =
$$(\frac{1}{2})^5 = \frac{1}{32}$$

4) Given P(x=1) \$ 0.5, to morumize we should write a function and their find where it reaches maximum.

Let
$$f(x=1) = b$$

So now $f(c) = \frac{c}{11} p^{x_1} (1-p)^{1-x_1}$
 $f(p) = p^{x_1} x_1 (1-p)^{1-x_1}$ (function of p)

Applying log, log (fip) =
$$\left(\frac{5}{2}x_i\right)\log p + \left(5 - \frac{5}{2}x_i\right)\log (1-p)$$

This would reach max when d(eog(f(p)) = 0.

$$i = \frac{1}{P_{i=1}} \sum_{n=1}^{\infty} x_{i} - \frac{1}{1-P_{i}} \left(x - \sum_{n=1}^{\infty} x_{i} \right) = \frac{1}{1-P_{i}} \left(x - \sum_{n=$$

$$\frac{1}{2} = \left[\sum_{i=1}^{\infty} x_i \right] \left[-p \right] - 5p + p \sum_{i=1}^{\infty} x_i$$

$$\frac{1}{2} \left[\sum_{i=1}^{\infty} x_i \right] \left[-p \right]$$

$$= \frac{1}{5} \sum_{i=1}^{5} \pi_i$$

Mence at this p, the function maximizes.

100

5.8 18 word + = 35/1

- ·) What is (P(Z=T and y=b) = 0.1
- e) What is p(z=T|y=b) = (z=T) p(z=T) p(z=T)(conditional probability)

Hell = 65 ... (1-6) - 5 x1 (-10-600 0) (v) By-0-Notation 3) = (g) par gal and A

(fig) below, state whether each is f(n)= (xg(n))
true: g(n) = 0(f(n))

1) f(n) = lne(n), g(n) = lq(n) $= log_2 n$ $= log_2 n$ $= log_3 n$ $= log_4 n$

A) f(n) = loge(n) . | g(n) = logen = logen logez

=) Since functions are related by a constant, both are true.

2) $f(x) = 3^n$, $g(x) = n^{100}$ g(n) = O(f(n)) as f(n) grows rapidly for large n

3) f(n)= 3, 9 (n)= 3, g(n)= O(f(n)) as f(n) gross rapidly than 2ⁿ

·4) f(n) = 1000n2 + 2000 n + 4000 , g(n) = 3n3+1 f(n) = O(q(n)) as q(n) grows rapidly for large n.

Medium Background Test

Algorithms

Since it is given that all o's occur before is it is assured that there is a single rout of transition. Given a subaway from the actual array, we can determine if this point of transition lies unside or outside the subarray. Further, if the point lies unside this subarray, we can divide array into 2 parts and recursively find the part which contains the transition point.

Explanations We have the low value in, and high value j'
Array [i] would be O and Array [i] would be I
which means that definitely the point hes inside
this sub array.

Case 2

Ef izj

. If i capale or greater than i means that this is transition point, end of algorithm

419 (AGA) 9 . Spinal GA

and Cancalla

144,419

the transition point lies in half of sub array, recursively call algorithm for low= mid, high= i

The state of the s

2019

b) If mid value is 1; means transition point lies in the left half of sub array, recursively call algorith for [low = [], Thigh=mid]

For a sub-array of size 1, the execution time is constant T(1)=1 for a sub-array of size n, the execution time would be an effect and the time taken for the next sub-array of size $\frac{1}{2}$

 $T(n) = k + T(n_2)$ which evaluates to $O(\log n)$ by masters theorem.

2) Probability and Random Vanables (a) P(AUB) = P(AN(BNA)) = P((ANB) n (ANA")) = P((ANB) n Ø) = P(AUB) False. (b) P(AUB) = P(A) + P(B) - P(ADB) will all the many when hay will had True wing so when (as Plans) is counted twice in AUB) (C) P(A) = P(A) + P(A) + P(A) False bus and bloom [i] month (d) P(A/B) = P(ANB) =) P(A/B) + P(B/A) P(B/A) = P(ANB) word vote false down 1 200. (e) P(A, MAZMAS) = P(A3/(A2MAI)) P(A2/AI) P(AI) P(AZMAN) P(AZMAN) P(AZMAN) The same of the second = P(A, MAZMAZ) True in well or transit and in the second

place the transfer of the state of the table

3) Discrete and Continuous Distributions
Matching
(4) Multivanate gaucsian: 1 (== (x-m)Tz-1(x-u)) (
(b) Bernoulli: px (1-p)1-x (e)
(c) Uniform: b-a when as x sb elec 0 (F)
(d) Bunomal: (n) pr(1-p)n-negative of
W many stall the body
10) and Y sandow vanable with finite respectation
Ex $c \infty$. Recall that the vanance of a varidon vanable is defined as $Var(x) = E[(x-Ex)^2]$. Prove that $Var(x) = E(x^2) - E(x)^2$
A) $Var(x) = E[(x - E(x))^2]$ = $E[x^2 - 2x E[x] + (E[x])^2]$
TOTAL STATISTICS
CONTROL OF THE STATE OF THE STA
- COS
$= E[x_5] + JE[x]_5 + E[x]_5$ $= E[x_5] - JE[x]_5 + E[x]_5$
$= E[x_1] - E[x]^2$

(b) Mean = p Vonance = p (1-p) Entropy = - (1-p) log(1-p) - plogp

of a Bemoulli (P) random vauable

5) Law of Large Numbers and Central Limit Theorem

1 (a) Die nolled 6000 three, number of times 2 shows up

- A) Since its unbiased, P(3) = 1, for 6000, throws. dore
 from Law of Large Numbers
- (b) Fair coin torred in times and X denotes any number of heads, their distribution of x extrictes

In(x-1/2)] 1000 M (0/4) 200 V (0/4)

From Central lund theorem for large n

Excas Read that the variety of a valuer

6) LINEAR ALGEBRA (SO) ON took over!

Vector noms

(A) 100m) (A) 10m) (A) 10m) (A) 10m) (A) 10m)

(a) Mallz & 1 (Recall 1/2) = (Ziniz)

- (b) 11711; SI (Recall Hall) = Znari)
- C) Ilallo El (Recall Ilallo = manglari)

Solt (x) 3 - (

(a) Minned o do

(b) mean = p (1-p)

Vono- - p (1-p)

Letter - (-p) | 1-p|

Creometry

- (a) Show that the vector is is orthogonal to the line wix +b=0 (11111) he on line, wi (11-12) unrespondent
 - 4) Consider M_1 and M_2 on $W^{\dagger}x+b=0$ then M_1-M_2 is vector left to this bind Now, $W^{\dagger}M_1+b=0$ => $W^{\dagger}M_1=W^{\dagger}M_2$ $W^{\dagger}M_2+b=0$ => $W^{\dagger}M_1-M_2$) = 0 => $W^{\dagger}(M_1-M_2)=0$ => $W^{\dagger}(M_1-M_2)=0$ Line.
 - (b) Dostance from origin to line u b
 - The distance from origin to the hyperplane is computed by the projection of an onto the normal vector of the hyperplane given by w. Hence this distance = $\frac{\|\mathbf{w}^T\mathbf{x}\|^2}{\|\mathbf{w}\|_2} = \frac{\|\mathbf{b}\|}{\|\mathbf{w}\|_2} = \frac{\|\mathbf{b}\|}{\|\mathbf{w}\|_2}$

From the graphs on the code attached

(a) Plotted

- (b) Since mean moves from [0,0] to [-1,1] the data move up and lebt
- (a) Data gets duedled towards (bottom left to top right)
- (e) Data gets deserted towards (bottom right to top left)