### MM 225 – AI and Data Science

Day 28: Logistic Regression 2

Instructors: Hina Gokhale, MP Gururajan, N. Vishwanathan

10 OCTOBER 2024

### Good news!

LSE function for multiple regression is a convex function:

$$SSE = \sum (y^{(i)} - w \cdot x^{(i)})^2$$

Cross entropy error function is also convex

$$\mathcal{E}(\mathbf{w}) = -\sum_{i} y^{(i)} \log(\psi(\mathbf{w} \cdot \mathbf{x}^{(i)})) + (1 - y^{(i)}) \log(1 - \psi(\mathbf{w} \cdot \mathbf{x}^{(i)}))$$
$$\psi(z) = \frac{1}{1 + e^{-z}}$$

### Regression

$$SSE = \sum (y^{(i)} - w \cdot x^{(i)})^2 = \left[ w^T X^T X w - 2(X^T y)^T w \right] + const$$

Initialize with  $w_1$  at random

set t = 1 and choose  $\lambda$ 

continue until convergence

- 1. compute the gradient  $\nabla SSE = X^T(Xw_t y)$
- 2. update  $\mathbf{w}_{t+1} = \mathbf{w}_t \lambda \nabla \mathbf{SSE}$
- 3.  $t \leftarrow t + 1$

## Logistic Regression

$$\mathcal{E}(\mathbf{w}) = -\sum_{i} y^{(i)} \log(\psi(\mathbf{w} \cdot \mathbf{x}^{(i)})) + (1 - y^{(i)}) \log(1 - \psi(\mathbf{w} \cdot \mathbf{x}^{(i)}))$$

$$\psi(z) = \frac{1}{1+e^{-z}} \operatorname{then} \frac{d\psi(z)}{dz} = \psi(z) (1 - \psi(z))$$

It can be shown that

$$\frac{\partial \mathcal{E}(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i} \left[ \psi(\mathbf{w} \cdot \mathbf{x}^{(i)}) - y^{(i)} \right] \mathbf{x}^{(i)}$$

# Algorithm for Logistic Regression

- 1. Choose  $\lambda$
- 2. Initiate  $w_1$
- 3. Iterate as  $w_{t+1} = w_t \lambda \sum_i [\psi(w_t \cdot x^{(i)}) y^{(i)}] x^{(i)}$
- 4. Iterate until convergence

# Choosing $\lambda$ in practice

Try out  $\lambda$  = 0.001, 0.01, 0.1 on a test data set. Choose the  $\lambda$  that gives stable and fast convergence.

To reach true minimum, reduce  $\lambda$  by factor of 10 as learning saturates.

### Validation

Validation with test data

Model estimation using training data

Apply the same model to test data and see if the results are "same"!

What is meant by "same"?

#### Misclassification Quantification

| Total data size = P + N |              | Predicted Condition    |                        |
|-------------------------|--------------|------------------------|------------------------|
|                         |              | Positive(PP)           | Negative (PN)          |
| Actual<br>Condition     | Positive (P) | True Positive<br>(TP)  | False Negative<br>(FN) |
|                         | Negative (N) | False Positive<br>(FP) | True Negative (TN)     |

TPR = True Positive Rate = 
$$\frac{TP}{TP+FN}$$
 = Sensitivity / Hit Rate / Recall

FPR = False Positive Rate = 
$$\frac{\mathbf{FP}}{\mathbf{FP} + \mathbf{TN}}$$
 = Probability of false alarm = 1- specificity

#### ROC Curve & AUC

ROC Curve = Receiving Operating Characteristic Curve

ROC is a plot of FPR vs. TPR calculated at different threshold values.

Area Under the ROC Curve is called AUC



# What is a good fit?

ROC is above the FPR = TPR line

AOC is more than 50%

ROC and AOC for Test data is close to that of Training data.

# Large data set - Validation



### Validation

If ROC and AUC for Training Data and Test data are close then the model is validated.

#### If not valid:

- Too many features? Reduce the number of features.
- Correlated features? Keep only uncorrelated features.
- Training and test data sets chosen randomly? If not, correct it.
- Is data too small? Then avoid dividing the data. Keep only training data for estimation and make sure that the model fits well.

### Small data - Caution!





## Summary

Algorithm for Logistic Regression and choice of  $\lambda$ .

Validation of the model: Confusion Matrix

- ROC Receiving Operating Characteristic Curve
- AUC Area under the ROC Curve

Thank you...