CSC236H – Proof of Algorithm Correctness

- 1. Give a proof of correctness for the program below with respect to the given specification.
 - **Precondition:** A is a non-empty list of numbers.
 - **Postcondition:** Returns the average of the numbers in A.

```
def avg(A):
     s = 0
     i = 0
     while i < len(A):
           s += A[i]
5.
           i += 1
     return s / len(A)
```

Note: A variable v subscripted with a natural number k denotes the value of the variable v at the end of the k-th iteration of the loop (if such an iteration exists).

Step 1 (Formulate a loop invariant):

Let LI(k) denote the assertion that if the loop is executed at least k times, then

(a)
$$s_k = \sum_{j=0}^{j} i_k - 1 A[j]$$
.
(b) $0 \le i_k \le len(A)$.

Step 2 (Prove the LI):

Basis: On entering the loop, $s_0 = 0$, and $i_0 = 0$. [Lines 1 & 2]

Therefore $0 \le i_0 \le len(A)$.

Also, $\sum_{j=0}^{-1} A[j] = 0$ (By convention, the empty sum is evaluated to 0). So $s_0 = \sum_{j=0}^{-1} A[j]$.

So
$$s_0 = \sum_{i=0}^{-1} A[i]$$

Induction Step: Let k be an arbitrary natural number, and assume that LI(k) holds.

That is, if the loop is executed at least k times, then (i) $s_k = \sum_{j=0}^{i_k-1} A[j]$, (ii) $0 \le i_k \le len(A)$. [IH] **WTP:** LI(k+1) holds.

We have

$$\begin{aligned} s_{k+1} &= s_k + A[i_k] & \text{[Line 4]} \\ &= \sum_{j=0}^{i_k-1} A[j] + A[i_k] & \text{[IH(i)]} \\ &= \sum_{j=0}^{i_k} A[j] & \\ &= \sum_{j=0}^{i_{k+1}-1} A[j] & \text{[Since, by Line 5, } i_{k+1} = i_k + 1] \end{aligned}$$

as wanted for part (a) in LI(k+1).

Note that since there is an iteration, the condition on Line 3 must hold before the iteration. Thus $i_k < len(A)$, or equivalently, $i_k + 1 \le len(A)$. So we have

$$0 \le i_k \qquad [IH(ii)]$$

$$< i_{k+1} \qquad [Since by Line 5, i_{k+1} = i_k + 1]$$

$$< len(A)$$

as wanted for part (b) in LI(k+1).

Step 3 (Prove partial correctness):

Suppose the precondition holds and the program terminates. Since the program terminates, the loop is executed a finite number of times, say t. Consider the values of s_t , i_t on exit.

By part (b) in LI, $i_t \leq len(A)$.

By exit condition, $i_t \geq len(A)$.

Hence $i_t = len(A)$. By (a) in LI, $s_t = \sum_{j=0}^{len(A)-1} A[j]$, which is the sum of all elements in A. Therefore Line 6 returns the sum of elements in A divided by the number of elements in A, which is the average numbers in A.

Step 4 (Find an appropriate loop measure): Let $m_k = len(A) - i_k$.

Step 5 (Prove that the loop measure is a natural number on entering the loop and after every iteration, and decreases with every iteration):

By part (b) in LI, $i_k \leq len(A)$. So $m_k = len(A) - i_k \geq 0$. Thus m_k is always a natural number.

$$m_{k+1} = len(A) - i_{k+1}$$
 [definition of m_{k+1}]
 $= len(A) - (i_k + 1)$ [Line 5]
 $= len(A) - i_k - 1$
 $= m_k - 1$ [definition of m_k]
 $< m_k$.

Thus m is always decreasing. Therefore the values of m form a decreasing sequence of natural numbers.

- 2. Give a proof of correctness for the program below with respect to the given specification.
 - Precondition: $n \in \mathbb{N}$
 - Postcondition: Returns n^2 .

def Sq(n):

- 1. s = 0; d = 1; i = 0
- 2. while i < n:
- 3. s = s + d
- 4. d = d + 2
- 5. i = i + 1
- 6. return s

Note: A variable v subscripted with a natural number k denotes the value of the variable v at the end of the k-th iteration of the loop (if such an iteration exists).

Step 1 (Formulate a loop invariant):

Let LI(k) denote the assertion that if the loop is executed at least k times, then

- (a) $s_k = i_k^2$.
- (b) $d_k = 2i_k + 1$.
- (c) $0 \le i_k \le n$.

Step 2 (Prove the LI):

Basis: On entering the loop, $s_0 = 0, d_0 = 1$, and $i_0 = 0$. [Line 1] Therefore $s_0 = i_0^2, d_0 = 2i_0 + 1$, and $0 \le i_0 \le n$.

Induction Step: Let k be an arbitrary natural number, and assume that LI(k) holds.

That is, if the loop is executed at least k times, then (i) $s_k = i_k^2$, (ii) $d_k = 2i_k + 1$, (iii) $0 \le i_k \le n$.

[IH]

WTP: LI(k+1) holds.

We have

$$s_{k+1} = s_k + d_k$$
 [Line 3]
 $= i_k^2 + 2i_k + 1$ [IH(i) and (ii)]
 $= (i_k + 1)^2$
 $= i_{k+1}^2$ [Line 5]

as wanted for part (a) in LI(k+1).

Also,

$$\begin{aligned} d_{k+1} &= d_k + 2 & \text{[Line 4]} \\ &= 2i_k + 1 + 2 & \text{[IH(ii)]} \\ &= 2(i_k + 1) + 1 & \text{[Line 5]} \end{aligned}$$

as wanted for part (b) in LI(k+1).

Note that since there is an iteration, the condition on Line 2 must hold before the iteration. Thus $i_k < n$, or equivalently, $i_k + 1 \le n$. So we have

$$\begin{aligned} 0 &\leq i_k & [IH(iii)] \\ &< i_{k+1} & [\text{Since by Line 5, } i_{k+1} = i_k + 1] \\ &\leq n \end{aligned}$$

as wanted for part (c) in LI(k+1).

Step 3 (Prove partial correctness):

Suppose the precondition holds and the program terminates. Since the program terminates, the loop is executed a finite number of times, say t. Consider the values of s_t, d_t, i_t on exit.

By part (c) in LI, $i_t \leq n$.

By exit condition, $i_t \geq n$. Hence $i_t = n$. By (a) in LI, $s_t = i_t^2 = n^2$. Therefore, by line 6, $s_t = n^2$ is returned.

Step 4 (Find an appropriate loop measure):

Let $m_k = n - i_k$.

Step 5 (Prove that the loop measure is a natural number on entering the loop and after every iteration, and decreases with every iteration):

By part (c) in LI, $i_k \leq n$. So $m_k = n - i_k \geq 0$. Thus m_k is always a natural number.

$$m_{k+1} = n - i_{k+1}$$
 [definition of m_{k+1}]
 $= n - (i_k + 1)$ [Line 5]
 $= n - i_k - 1$
 $= m_k - 1$ [definition of m_k]
 $< m_k$.

Thus m is always decreasing. Therefore the values of m form a decreasing sequence of natural numbers.