Section 10.2_ Infinite Series:

Def: let
$$\{a_n\}$$
 be a sequence.
The sum: $a_0 + a_1 + a_2 + \dots = \sum_{n=0}^{\infty} a_n$

$$S_0 = Q_0$$

$$S_1 = Q_0 + Q_1$$

$$S_2 = Q_0 + Q_1 + Q_2$$

$$\vdots$$

$$S_n = Q_0 + Q_1 + Q_2 + \dots + Q_n$$

(Sn) sequence of partial sums of the series.

is called an infinite series

$$S_n = Q_0 + Q_1 + \dots + Q_n$$

As $n \to \infty$, $S_n \to \sum_{n=0}^{\infty} Q_n$
 $\{S_n\}$ converges to $L \iff \sum_{n=0}^{\infty} Q_n = L$
 $\lim_{n \to \infty} S_n = L \iff \sum_{n=0}^{\infty} Q_n = L$
 $\{S_n\}$ diverges $\iff \sum_{n=0}^{\infty} Q_n$ diverges.

Example: Telescoping series
$$\underset{n=1}{\overset{\infty}{\underset{n=1}{\longleftarrow}}} \frac{1}{n(n+1)}$$

$$\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} \qquad (A=1 \text{ and } B=-1)$$

$$\underset{n=1}{\overset{\infty}{\leq}} \frac{1}{n(n+1)} = \underset{n=1}{\overset{\infty}{\leq}} \left(\frac{1}{n} - \frac{1}{n+1}\right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots$$

$$S_1 = a_1 = 1 - \frac{1}{2}$$

$$S_2 = \alpha_1 + \alpha_2 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right)$$

$$S_3 = Q_1 + Q_2 + Q_3 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right)$$

$$S_n = \alpha_1 + \alpha_2 + \dots + \alpha_n = 1 - \frac{1}{n+1}$$

lim
$$S_n = 1 - 0 = 1$$
. Therefore $\sum_{n=1}^{\infty} a_n = 1$ (series converges)

Geometric Series:
$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \cdots + \frac{1}{3^n} + \cdots$$

ratio =
$$\frac{1}{3}$$

- Geometric Series are series of the form:

$$a + ar + ar^2 + \dots + ar^n + \dots = \sum_{n=0}^{\infty} ar^n = \sum_{n=1}^{\infty} ar^{n-1}$$

(1st term! 01) (care 1)

* r can be positive:
$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$$
 $(r = \frac{1}{3})$

be positive:
$$\frac{1}{2} - \frac{1}{2^2} + \frac{1}{2^3} - \frac{1}{2^4} + \cdots = \left(1 = -\frac{1}{2}\right)$$

$$S_1 = \alpha$$

 $S_2 = \alpha + \alpha = 2\alpha$

$$S_3 = 3\alpha$$

$$S_n = n\alpha$$

$$\lim_{n\to\infty} S_n = \infty \implies \{S_n\} \text{ diverges.}$$

$$S_1 = a$$

$$S_3 = \alpha$$

$$\lim_{n\to\infty} S_n$$
 does not exist $\Longrightarrow \{S_n\}$ diverges

$$n \rightarrow \infty$$

$$Sum = \frac{1st \text{ term}}{1-r} \left(\text{ for } -1 < r < 1 \right)$$

+ Germetric Series diverges if
$$|r| > 1$$
 ($r \le -1$ or $r \ge 1$)

Examples:

1)
$$\mathcal{E}\left(\frac{1}{5}\right)^{2} = \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}} + \cdots$$

Geometric series with $r = \frac{1}{5}$.

Since - 1<r<1, then the series converges.

Sum =
$$\frac{1}{1-r} = \frac{\frac{1}{5}}{1-\frac{1}{5}} = \frac{\frac{1}{5}}{\frac{4}{5}} = \frac{1}{4}$$

$$2) \stackrel{\otimes}{\leqslant} \left(\frac{\mathbb{T}}{2}\right)^{n} = 1 + \frac{\mathbb{T}}{2} + \left(\frac{\mathbb{T}}{2}\right)^{2} + \cdots$$

Geometric series with $r=\frac{\pi}{2}>1$, then the series diverges.

Theorem: If $\underset{n=1}{\overset{\sim}{=}} a_n$ converges, then $a_n \longrightarrow 0$ (The sequence $\{a_n\}$ converges to 0).

The nth term test for divergence:

- #If the sequence $\{a_n\}$ diverges or converges to L where L $\neq 0$, then the series $\{a_n\}$ diverges.
- * In other words, If $\lim_{n\to\infty} a_n$ does not exist or $\lim_{n\to\infty} a_n \neq 0$, then $\underset{n=1}{\overset{\infty}{\sim}} a_n$ diverges.

Note: If $\lim_{n\to\infty} a_n = 0$, then no conclusion about $\underset{n=1}{\overset{\infty}{\sim}} a_n$

 $\lim_{n\to\infty} \frac{1}{n} = 0$ \Longrightarrow No conclusion about $\underset{n=1}{\overset{}{\leq}} \frac{1}{n}$ (We will show that it diverges in 10.3)

Examples:

$$0 = \frac{n}{n+2} \cdot \lim_{n \to \infty} \frac{n}{n+2} = 1 + 0 = \frac{2}{n+2} \cdot \frac{n}{n+2}$$
 divergen by nth term test.

2)
$$\stackrel{\sim}{\underset{n=0}{\mathcal{E}}}$$
 $\binom{n^2+1}{n-1}$: $\underset{n\to\infty}{\lim}$ $\binom{n^4+1}{n}=\infty \neq 0 \implies \stackrel{\sim}{\underset{n=0}{\mathcal{E}}}$ $\binom{n^2+1}{n}$ diverges by n^{th} term test.

3)
$$\underset{n=0}{\overset{\sim}{\succeq}} ((-1)^n+1): \lim_{n\to\infty} ((-1)^n+1) \text{ doesn't exist} \Rightarrow \underset{n=0}{\overset{\sim}{\succeq}} [(-1)^n+1] \text{ diverges by nth term test.}$$

Theorem: If $\leq a_n$ converges to $A \in (a_n = A)$ and $\leq b_n$ converges to B, $(\leq b_n = B)$, then:

1)
$$\leq (a_n + b_n) = \leq a_n + \leq b_n = A + B$$

2)
$$\xi (a_n - b_n) = \xi a_n - \xi b_n = A - B$$

Examples:

$$\frac{examples.}{1) \stackrel{\infty}{\leq} \frac{2^{n-1}}{6^{n-1}} = \stackrel{\infty}{\leq} \left(\frac{2^{n-1}}{6^{n-1}} - \frac{1}{6^{n-1}}\right) = \stackrel{\infty}{\leq} \left(\frac{2}{6}\right)^{n-1} - \left(\frac{1}{6}\right)^{n-1}$$

$$= \underset{n=1}{\overset{\infty}{\xi}} \left[\left(\frac{1}{3} \right)^{n-1} - \left(\frac{1}{6} \right)^{n-1} \right]$$

- * $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{n-1}$; geometric series with $\left(\frac{1}{n} = \frac{1}{3} < 1\right) \Rightarrow$ the series converges
- * $\underset{n=1}{\overset{\infty}{\xi}} \left(\frac{1}{6}\right)^{n-1}$: geometric series with $|r| = \frac{1}{6} < 1$ \Rightarrow the series converges.

Then:
$$\sum_{n=1}^{\infty} \left[\left(\frac{1}{3} \right)^{n-1} - \left(\frac{1}{6} \right)^{n-1} \right] = \frac{1}{1 - \frac{1}{3}} - \frac{1}{1 - \frac{1}{6}} = \frac{3}{2} - \frac{6}{5} = \frac{3}{10}$$

2)
$$\stackrel{\circ}{\xi}$$
 $\frac{7}{3}$ = $\stackrel{\circ}{\xi}$ $\frac{7}{\left(\frac{1}{3}\right)}$ = $\frac{7}{9}$ $\stackrel{\circ}{\xi}$ $\left(\frac{1}{3}\right)$

Geometric Series with $|r| = \frac{1}{3}(1) \implies$ the Series converges

$$7 \stackrel{\circ}{\xi} (\frac{1}{3}) = 7 \times \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{7}{2}$$

Corollaries:

- 1) If Ean diverges, then $K \leq a_n = \leq Ka_n$ also diverges for $K \neq 0$.
- a) If Ea_n converges and Eb_n diverges, then $E(a_n+b_n)$ diverges and $E(a_n-b_n)$ diverges.

Note: If $\&a_n$ diverges and $\&b_n$ diverges, then $\&(a_n+b_n)$ may converge or diverge.

Exercises:

Find the sum of the following series or show that it diverges.

$$|2) \overset{\infty}{\underset{n=0}{\mathcal{E}}} \left(\frac{5}{2^n} - \frac{1}{3^n} \right) = 5 \overset{\infty}{\underset{n=0}{\mathcal{E}}} \left(\frac{1}{3} \right)^n - \overset{\infty}{\underset{n=0}{\mathcal{E}}} \left(\frac{1}{3} \right)^n$$

with
$$|r| = \frac{1}{2} < 1$$

with
$$|r| = \frac{1}{3} \langle |$$

then, $\underset{n=0}{\overset{\infty}{\xi}} \left(\frac{5}{2^{n}} - \frac{1}{3^{n}} \right)$ converges

and
$$\underset{n=0}{\overset{\infty}{\leq}} \left(\frac{5}{2^n} - \frac{1}{3^n} \right) = 5 \times \frac{1}{1 - \frac{1}{2}} - \frac{1}{1 - \frac{1}{3}} = 10 - \frac{3}{2} = \frac{17}{2}$$

$$45) \underset{n=1}{\overset{Q}{\rightleftharpoons}} \frac{4}{(4n-3)(4n+1)} \qquad (\underset{n\to\infty}{\lim} a_n = 0) \implies ne \pmod {3n+3}$$

$$\frac{4}{(4n-3)(4n+1)} = \frac{n}{(4n-3)} + \frac{3}{(4n+1)} \qquad (n=1 \text{ and } 8=-1)$$

$$\frac{4}{(4n-3)(4n+1)} = \frac{n}{(4n-3)} + \frac{3}{(4n+1)} \qquad (n=1 \text{ and } 8=-1)$$

$$\underset{n=1}{\overset{Q}{\rightleftharpoons}} \frac{4}{(4n-3)(4n+1)} = \frac{n}{(4n-3)} + \frac{1}{(4n+1)} = (1-\frac{1}{5}) + (\frac{1}{5}-\frac{1}{7}) + \dots$$

$$S_1 = a_1 = 1 - \frac{1}{5}$$

$$S_2 = a_1 + a_2 = (1-\frac{1}{5}) + (\frac{1}{5}-\frac{1}{7}) + (\frac{1}{7}-\frac{1}{7}) + (\frac{1}{7}-\frac{1}{7}) + (\frac{1}{7}-\frac{1}{7}) + \dots$$

$$S_3 = a_1 + a_2 + a_3 = (1-\frac{1}{5}) + (\frac{1}{5}-\frac{1}{7}) + (\frac{1}{7}-\frac{1}{13})$$

$$S_n = a_1 + \dots + a_n = 1 - \frac{1}{4n+1}$$

$$\lim_{n\to\infty} S_n = 1 - 0 = 1 \implies \{s_n\} \text{ converges to } 1.$$

$$S_1 = a_1 = \lim_{n\to\infty} (n+1) = (\tan^{-1} 2 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 2)$$

$$S_1 = a_1 = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 3)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 2)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 2)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 2)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 2)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 2)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2 + \tan^{-1} 2)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2) + (\tan^{-1} 2)$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1 + \tan^{-1} 2$$

$$54$$
) $\stackrel{\infty}{\leq}$ $(\sqrt{2})^{\circ} = 1 + \sqrt{2} + \sqrt{2}^{2} + \dots$

Geometric series with $|r|=\sqrt{2}>1$ \implies the series diverges.

58)
$$\frac{2}{5} \frac{\cos n\pi}{5^{\circ}} = \frac{2}{5} \frac{(-1)^{\circ}}{5^{\circ}} = \frac{2}{100} \left(\frac{-1}{5}\right)^{\circ}$$

Geometric series with $|r| = \frac{1}{5}(1)$ \implies the series converges

$$\sum_{n=0}^{\infty} \frac{\cos n\pi}{5^n} = \frac{1}{1+\frac{1}{5}} = \frac{5}{6}$$

$$60) \underset{n=1}{\overset{\infty}{\not=}} 2n\left(\frac{1}{3^n}\right)$$

$$\lim_{n\to\infty} \ln\left(\frac{1}{3^n}\right) = \ln 0^{\frac{1}{2}} = -\infty \implies \lim_{n\to\infty} \alpha_n \neq 0$$

$$\lim_{n\to\infty} \ln\left(\frac{1}{3^n}\right) = \ln 0^{\frac{1}{2}} = -\infty \implies \lim_{n\to\infty} \ln \alpha_n \neq 0$$

- the series diverges by nth term test.

$$(4) \stackrel{\circ}{\leq} \left(1 - \frac{1}{n}\right)^{n}$$

$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = e^{-1} \neq 0$$
 \implies the series diverges by the $n\to\infty$

66)
$$\underset{n=1}{\overset{\infty}{\mathcal{E}}} \frac{n^n}{n!}$$
 (In section 10.1, $n = 67$, $\frac{n!}{n^n} \rightarrow 0$)

$$\lim_{n\to\infty}\frac{n^n}{n!}=\frac{1}{0}=\infty \implies \lim_{n\to\infty}\frac{n^n}{n!}\neq 0 \implies \text{the series}$$
 diverges by the aftern test.

(9)
$$\underset{n=1}{\overset{\infty}{\leq}} ln\left(\frac{1}{n+1}\right)$$
 (lim $a_n = ln = 0 \implies no \text{ conclusion}$)

$$= \mathop{\ge}_{n=1}^{\infty} [\ln n - \ln (n+1)] = (\ln 1 - \ln 2) + (\ln 2 - \ln 3) + \cdots$$

$$S_2 = (ln l - ln 2) + (ln 2 - ln 3)$$

$$S_3 = (\ln 1 - \ln 2) + (\ln 2 - \ln 3) + (\ln 3 - \ln 4)$$

$$S_n = a_1 + a_2 + \dots + a_n = ln - ln (n+1) = -ln (n+1)$$

$$\lim_{n\to\infty} S_n = -\infty \implies \{S_n\} \text{ diverges} \implies \underset{n=1}{\overset{\infty}{\succeq}} \ln\left(\frac{n}{n+1}\right) \text{ diverges}$$

$$\frac{2}{1} \sum_{n=0}^{\infty} \left(\frac{e}{\pi} \right)^n$$

Geometric series with $|r| = \frac{e}{\pi} < 1 \implies$ the series converges.

$$\mathop{\mathcal{E}}_{n=0}\left(\frac{e}{\pi}\right)^{n} = \frac{1}{1-\frac{e}{\pi}} = \frac{\pi}{\pi - e}$$

92) Find convergent geometric series $A = Ea_n$ and $B = Eb_n$ that illustrate the fact that Ea_nb_n may converge without being equal to AB.

$$\xi = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$
(Geometric series with $|r| = \frac{1}{2} < 1$)
$$\pm \xi = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$
(Geometric series with $|r| = \frac{1}{2} < 1$)

$$p \in b_n = \frac{\varepsilon}{n=0} \left(\frac{1}{3}\right)^n \left(\text{Geometric series with } |r| = \frac{1}{3} < 1 \right)$$

$$\implies \text{converges to } \frac{1}{1-\frac{1}{3}} = \frac{3}{2}$$

$$* \leq a_n b_n = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \left(\frac{1}{3}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{6}\right)^n$$

Geometric series with
$$|r| = \frac{1}{6} < 1$$

 \Rightarrow converges to $\frac{1}{1 - \frac{1}{6}} = \frac{6}{5}$

* A.B =
$$\xi a_n$$
. $\xi b_n = 2 \times \frac{3}{2} = 3 + \frac{6}{5}$.

So
$$\xi a_n b_n + A.B.$$

94) If Ea_n converges where $a_n > 0$ for all n, can anything be said-about $E \frac{1}{a^n}$? Give reasons for your answer.

$$\Xi a_n \text{ converges} \longrightarrow \{a_n\} \text{ converges to 0 (theorem)}$$

$$\exists \lim_{n\to\infty} a_n = 0$$

Therefore
$$\lim_{n\to\infty} \frac{1}{a^n} = \frac{1}{0} = \infty$$
 $\implies \lim_{n\to\infty} \frac{1}{a^n} \neq 0$

then,
$$\leq \frac{1}{\alpha^n}$$
 diverges by the nth term test.