Master EMARO - ASP

NOLCO Exam

Duration 1h00 - Open book

EXERCICE 1.

One considers the following nonlinear system

$$\dot{x}_1 = x_2
\dot{x}_2 = \cos(x_1)x_4
\dot{x}_3 = -x_3 + x_1^2
\dot{x}_4 = -x_3 + u$$
(1)

with the output (for control) $y = x_1$. The control objective is to force y to 0.

- **1.1** What is the relative degree of the output y?
- **1.2** Analyze the stability of the internal dynamics.
- **1.3** Determine a state feedback control law such that the closed-loop system has a linear input-output representation (thanks to the input-output linearization approach):
 - Show that the input-output representation can be reduce as a chain of integrators controlled by a "new" control input *v*.
 - Propose a linear solution for v allowing to stabilize this chain of integrators.
 - If it is the case, give the singularities appearing in the control u.

EXERCICE 2.

Consider the following nonlinear system

$$\dot{x}_1 = x_2
\dot{x}_2 = x_3
\dot{x}_3 = \delta(t) + \cos(x_1)u$$
(2)

with $[x_1 \ x_2 \ x_3]^T$ the state vector, and u the control input. The control objective is to force the output $y = x_1$ tracking a reference $y_{ref}(t)$. The term $\delta(t)$ is a perturbation such that

$$|\delta(t)| < \delta_M$$
.

One also supposes that x_1 is such that

$$|x_1| \leq \frac{\pi}{3}$$

2.1 The objective consists in designing a first order sliding mode control law. Define the sliding variable with respect to the control objective; justify the choice - in case of use of parameters, specify the way to choose these ones.

- **2.2** Compute the "nominal" control law allowing to linearize (by an input-output point-of-view, the input being *u* and the output being the sliding variable) the system when there is NO uncertainty or perturbation. Recall the key role of this pre-feedback.
- **2.3** Give the condition on the discontinuous control gain, in order to ensure the convergence to the sliding surface and the establishment of a sliding motion in spite of perturbation.