Gross Labor Market Flows and Entrepreneurship

Alexandre Gaillard¹ Sumudu Kankanamge¹

¹Toulouse School of Economics

Online meeting September 27, 2021

Motivation

Large interaction between labor market policies and self-employment occupational choice.

- 1. Unemployment insurance and self-employment (Røed et al. (2014), Hombert et al. 2020).
- 2. Labor and corporate income taxes and choice to become self-employed (Chen et al. (2019), Brüggemann (2020), ...)
- \rightarrow No framework to study this interaction with consistent transitions between employment (W), self-employment (E), unemployment (U).

Motivation

We propose a *hybrid* framework that combines:

- 1. Occupational choice model: Quadrini (2000), Cagetti & De Nardi (2006),
- 2. Frictional labor market model: Diamond, Mortensen, Pissarides (1982-1985).

And assess its ability to account for key data features of the US:

- 1. Gross labor market flows comprising self-employment, in many dimensions: aggregate, ability, wealth.
 - Standard models produce inconsistent gross flows.
- 2. Responsiveness of gross flows to labor market policy change.
 - Account for observed responsiveness of flows to UI variations in the US.

Aggregate gross flows

Table 1: Aggregate quarterly occupational gross flows rate in the CPS (1995:I to 2015:IV).

		Stock (%)		
From	Employed (W)	Self-employed (E)	Unemployed (U)	
Employed (W)	97.32	0.70	1.97	84.3
	(0.45)	(0.11)	(0.43)	
Self-employed (E)	6.30	92.26	1.45	10.3
	(1.28)	(1.49)	(0.64)	
Unemployed (U)	44.38	3.56	52.06	5.4
	(10.24)	(1.19)	(10.47)	

Standard deviations between brackets.

- Unemployed individuals are 5 times more likely to select into self-employment. They represent 20% of the new self-employed.
- ▶ Large flow E to W, suggesting important "on the business" transitions.

Responsiveness to UI variations.

Estimate elasticity of **occupational decision** out of *U* w.r.t. **UI generosity**.

- \rightarrow higher UI leads to moral hazard + liquidity effects \rightarrow search \downarrow .
- \rightarrow + self-employment is *not* covered by the UI.
- ► UI generosity at the state level:

```
\mathsf{UI}\;\mathsf{generosity}_{\mathit{st}} = \mathsf{Weekly}\;\mathsf{Benefits}\;\mathsf{Amount}\;(\mathsf{WBA})_{\mathit{st}} \times (\mathsf{Regular}\;\mathsf{UI}\;\mathsf{duration}_{\mathit{st}} + \mathsf{Extended}\;\mathsf{duration}_{\mathit{st}})
```

- ▶ Identification relies on separating 2 groups of unemployed individuals:
 - 1. Eligible to UI: unemployed due to involuntary job loss, looking for a job.
 - →Affected by variations in UI generosity.
 - 2. **Ineligible to UI:** all other unemployed individuals looking for a job.
 - \rightarrow Not directly affected.

Responsiveness to UI variations.

Figure 1: Average quarterly flow $U \rightarrow E$ and UI generosity (1994:2015)

Probability model

$$P(\mathit{Occ.}|\mathit{U})_{\mathit{ist}} = \alpha + \gamma \mathsf{Layoff}_{\mathit{it}} + \underbrace{\beta \mathsf{UI} \ \mathsf{generosity}_{\mathit{st}}}_{\mathsf{effect} \ \mathsf{on} \ \mathsf{ineligible}} + \underbrace{\delta \mathsf{UI} \ \mathsf{generosity}_{\mathit{st}} \times \mathsf{Layoff}_{\mathit{it}}}_{\mathsf{effect} \ \mathsf{on} \ \mathsf{eligible} \ \mathsf{unemployed} \ \mathsf{ind.}}_{\mathsf{effect} \ \mathsf{on} \ \mathsf{eligible} \ \mathsf{unemployed} \ \mathsf{ind.}} + \mathbf{X} + \epsilon_{\mathit{ist}}$$

	OLS		mLogit		
	U to SE	U to W	U to SE	U to W	
log(UI generosity)	-0.115 (0.155)	0.057 (0.048)	-0.035 (0.193)	0.082 (0.053)	
$Layoff \times log(UI \ generosity)$	- 0.189 *** (0.056)	- 0.085 *** (0.016)	- 0.200 ** (0.080)	- 0.056 *** (0.022)	
Individual & State-year controls	Yes	Yes	Yes	Yes	
State and year FE	Yes	Yes	Yes	Yes	
Observations		140,	952		

Notes: *p<0.1; **p<0.05; ***p<0.01. Standard errors are adjusted for clustering at the state level.

▶ Self-employment decision more responsive than employment decision.

A frictional occupational choice model

- Account for main feature of the US labor market.
- Carefully model of UI system: duration, benefit amount and cap.

Key features: incomplete markets model with

1. Heterogeneous agents:

- a = wealth, key for liquidity effect (Chetty (2008)) + business investment.
- ϑ = ability, generate consistent heterogeneity in wages.
- -z = business shock, match riskiness of self-employment businesses.
- j = remaining UI duration.

2. Three labor market states:

- self-employment/entrepreneurship $E(a, \vartheta, z)$,
- employment $W(a, \vartheta)$,
- insured unemployment $U_l(a,\vartheta,j)$, uninsured unemployment $U_\ell(a,\vartheta)$

Model: three occupations

Unemployed individuals:

- ▶ search s_e , s_w to find a business idea/job with prob. $\pi_e(s_e)$ and $\pi_w(s_w)$.
- Are monitored toward job search effort s_w at rate $\pi_m(s_w)$.

Workers:

- ▶ wage $wh(\vartheta)$, taxed τ_w .
- ► Separation rate $\eta(\vartheta)$. Becomes U_I with max J UI periods.
- ▶ search s_e to find a business idea *on-the-job* at rate $\pi_e(s_e)$.

Self-employment/Entrepreneurs:

- ▶ produce with: $\mathcal{Y}(k, \vartheta, z) = zg(\vartheta) \left[\varpi k^p + (1 \varpi) \underline{l}^p \right]^{\nu/p}$, taxed τ_p .
- ► Can become U_{ℓ} without UI.
- riangleright search s_w to find a job on-the-business at rate $\pi_w(s_w)$.

Results: aggregate growth flows

Table 2: Bimonthly gross flow between occupations in the data and the model.

	Data (CPS)					Model				
	Stock	То			Stock	То				
From		W	Ε	U		W	Ε	U		
W	84.3	97.83	0.50	1.67	82.4	97.38	0.80	1.82		
Ε	10.3	4.53	94.16	1.31	12.0	4.92	94.08	1.00		
U	5.4	40.10	3.40	56.51	5.6	39.45	2.77	57.78		

Data sources: authors' computations using CPS data from 1995:1 to 2015:1V.

Results: growth flows by educational attainment

Results: growth flows by wealth quantile

Table 3: Occupational flow rates by wealth quantiles in the SIPP (1996-2008) and the model.

	Data (SIPP)				Model					
				Ве	Benchmark			No entrep. lab. supply <u>l</u>		
Wealth quantile	Q1	Q2	Q3	Q1	Q2	Q3	Q1	Q2	Q3	
$W \to E$	0.64	0.86	1.50	0.31	0.55	2.14	0.00	0.18	2.82	
W o U	1.52	0.85	0.63	1.19	0.98	0.83	1.21	0.98	0.81	
E o W	1.17	1.03	0.80	1.52	0.93	0.55	2.48	0.31	0.21	
$E \rightarrow U$	1.87	0.78	0.34	1.83	0.97	0.20	2.34	0.49	0.17	
$U \rightarrow E$	0.70	0.96	1.34	0.51	0.87	1.62	0.00	0.42	2.58	
$U \rightarrow W$	0.96	1.01	1.04	1.24	1.00	0.76	1.27	1.03	0.70	

Results: responsiveness to UI change

Is the model able to generate the high responsiveness of $U_I \rightarrow E$ flows to UI variations?

Figure 2: UI generosity and model average flows from the insured and uninsured unemployed pools.

Note: the green triangle dot marks the current average regular UI provision in the US.

Results: responsiveness to UI change

Table 4: Elasticity of unemployment flows to UI generosity: model and data

Elasticity $\varepsilon_{X o Y}$	Data ^a		Model (be	nchmark)	Model (no monitoring)		
	U to E	U to W	U to E	U to W	U to E	U to W	
Insured unemp. workers	-0.200**	-0.056***	-0.280***	-0.043***	-0.370***	-0.226***	
Uninsured unemp. workers	(0.080) -0.035	(0.022) 0.082	(0.017) 0.014***	(0.003) 0.002***	(0.020) -0.027^{***}	(0.015) 0.003***	
	(0.193)	(0.053)	(0.002)	(0.000)	(0.003)	(0.000)	

Notes: *p<0.1; ***p<0.05; ****p<0.01. Standard errors are reported in parentheses.

- Liquidity and moral hazard effect are strong in the model.
- ▶ New coverage effect: UI change the W/E relative riskiness.
- ► Monitoring: important to match the employment responsiveness.

^a Estimates for the data are taken from the mLogit results in the empirical section.

Implied aggregate stocks

Figure 3: UI generosity and occupational masses.

Note: the green triangle dot marks the current average regular UI provision in the US.

- → **Reallocation** btw occupations. Employment is better covered, self-employment becomes virtually riskier.
 - → Consistent with Chodorow-Reich et al. (2019) and Boone et al. (Forthcoming).

Conclusion

Hybrid parsimonious model with:

- ► Entrepreneurship in HA setup.
- Frictional labor market.

The model account for:

- ► Gross flows in three dimensions: aggregate, ability and wealth.
- ► The large (resp. low) responsiveness of self-employment (resp. employment) flows to UI variations.
- \rightarrow We find that employment rate is nearly flat or increasing with respect to UI variations, once accounting for self-employment flow.

Taking the Model to the Data

- ► Separable utility function: $u(c, s_e, s_w) = \frac{c^{1-\sigma}}{1-\sigma} s_w^{\psi_w} s_e^{\psi_e}$,
- ▶ Job sep.: $\eta(\vartheta) = \alpha_{\eta} + \beta_{\eta} w \vartheta \rightarrow \text{match separation / wage quantile}$
- ▶ Job/business finding rates: $\pi_e(s_e) = 1 e^{-\kappa_e s_e}$, $\pi_w(s_w) = 1 e^{-\kappa_w s_w}$, capture E rate and $U \to W$ flows.
- ► Entrepreneurial abilities $g(\vartheta)$ captures transition $W \to E$ by wage quantile relative to mean transition rate.
- ightharpoonup Fixed cost c_f captures E exit rate, given z process
- ► other parameters endogenous parameters.