Summary---Topic 3: Discrete & Continuous Probability Distributions

Normal Distribution

 A continuous random variable is said to be a normal random variable if its probability density function is given by

$$f(X) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left[\frac{X-\mu}{\sigma}\right]^2}$$

- \blacktriangleright A normal distribution depends upon two parameters: "\mu" and "\sigma^2" (or "\sigma")
- > Expected value of normal random variable: μ
- \triangleright Variance of normal random variable: σ^2
- > Standard deviation of normal random variable: σ
- $\mathbf{X} \sim N(\mu, \sigma^2)$

Normal Distribution

$$f(X) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\left(\frac{1}{2}\right)\left[\frac{X-\mu}{\sigma}\right]^2}$$

- Characteristics of normal distribution
 - → "Bell Shaped"
 - → symmetric about the mean
 - → mean, median and mode are equal
 - \rightarrow has infinite theoretical range (- ∞ to + ∞)

Standard Normal Distribution (Z)

- mean $\mu = 0$ and variance $\sigma^2 = 1$
- $Z \sim N(0, 1)$
- Its probability density function is given by

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

- $P(Z \le z)$ = area under the normal curve from - ∞ to z
- Total area under the normal curve = 1

→
$$P(Z \le 0) = 0.5$$
 and $P(Z \ge 0) = 0.5$

Standard Normal Table : P(Z < k) = ?

Formatting:

- The label for rows contains the integer part and the first decimal place of Z.
- The label for columns contains the second decimal place of Z.
- The value within the table gives the probability from $Z=-\infty$ up to the desired Z value

Z	0.00	0.01	0.02	Value within the table is the cumulative probability from -∞ to a particular k value	
0.0	0.5000	0.5040	0.5080		
0.1	0.5398	0.5438	0.5478		
0.2	0.5793	0.5832	0.5871	$\sigma_z = 1$	
0.3	0.6179	0.6217	0.6255		
	P(Z)	< 0.21) =	0.5832	$\mu_z = 0$ k	

Standard Normal Table

Z	0.00	0.01	0.02
0.0	0.5000	0.5040	0.5080
0.1	0.5398	0.5438	0.5478
0.2	0.5793	0.5832	0.5871
0.3	0.6179	0.6217	0.6255

Value within the table is the cumulative probability from -∞ to a particular k value

With the knowledge of $P(Z \le k)$, we can easily know the value of $P(Z \ge k)$, $P(Z \le -k)$, and $P(-k \le Z \le k)$ where k can be any real number.

$$P(Z \ge k) = 1 - P(Z \le k)$$

$$P(Z \le -k) = P(Z \ge k)$$

$$P(-k \le Z \le k) =$$

$$P(Z \le k) - P(Z \le -k)$$

Standardization of Normal Distribution

• Standardization: $X \sim N(\mu, \sigma^2) \rightarrow Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$

From non-standard normal distribution to standard normal distribution: $Z = \frac{X - \mu}{\sigma}$

If X = 50, Z = 0; if X = 80, Z = 10; if X = 20, Z = -10

From standard normal distribution to non-standard normal distribution: $X = Z\sigma + \mu$

If Z = 0, X = 50; if Z = 10, X = 80; if Z = -10, X = 20

Exercises and Solutions

Q11. Given a normal distribution with $\mu=100$ and $\sigma=10$, what is the probability that

- a) X > 85?
- b) X < 80?
- c) X < 80 or X > 110?
- d) 80% of the values are between what two X values (symmetrically distributed around the mean)?

Solution:

According to the question, we know that $X \sim N(\mu = 100, \sigma^2 = 10^2)$.

To compute non-standard normal probabilities:

- 1. Do standardization: from the non-standard normal distribution to standard normal distribution: $Z=rac{X-\mu}{\sigma}$.
- 2. Check the Standard Normal Table.

a)
$$P(X > 85) = P\left(\frac{X - 100}{10} > \frac{85 - 100}{10}\right) = P(Z > -1.5) = 1 - P(Z \le -1.5) = 1 - 0.0668 = 0.9332$$

Q11. Given a normal distribution with $\mu = 100$ and $\sigma = 10$, what is the probability that

- a) X > 85?
- b) X < 80?
- c) X < 80 or X > 110?
- d) 80% of the values are between what two X values (symmetrically distributed around the mean)?

To compute non-standard normal probabilities:

- 1. Do standardization: from the non-standard normal distribution to standard normal distribution: $Z = \frac{X-\mu}{\sigma}$.
- 2. Check the Standard Normal Table.

b)
$$P(X < 80) = P(\frac{X-100}{10} < \frac{80-100}{10}) = P(Z < -2) = 0.0228$$

c)
$$P(X < 80 \text{ or } X > 110) = P(X < 80) + P(X > 110)$$

= $0.0228 + P(\frac{X-100}{10} > \frac{110-100}{10})$
= $0.0228 + P(Z > 1) = 0.0228 + 1 - P(Z \le 1)$
= $0.0228 + 1 - 0.8413 = 0.1815$

- **Q11.** Given a normal distribution with $\mu = 100$ and $\sigma = 10$, what is the probability that
- d) 80% of the values are between what two X values (symmetrically distributed around the mean)?

To compute non-standard normal probabilities:

- 1. Do standardization: from the non-standard normal distribution to standard normal distribution: $Z = \frac{X-\mu}{\sigma}$.
- 2. Check the Standard Normal Table.
- d) 80% of the values are between two values \rightarrow P(a < X < b) = 0.8 symmetrically distributed around the mean \rightarrow

$$\begin{cases} P(X < a) = 0.1 \\ P(X < b) = 0.9 \end{cases}$$

Do the standardization, we have

$$\begin{cases} P\left(\frac{X-100}{10} < \frac{a-100}{10}\right) = 0.1 \\ P\left(\frac{X-100}{10} < \frac{b-100}{10}\right) = 0.9 \end{cases} \qquad \Rightarrow \begin{cases} P\left(Z < \frac{a-100}{10}\right) = 0.1 \\ P\left(Z < \frac{b-100}{10}\right) = 0.9 \end{cases}$$

$$\Rightarrow \begin{cases}
\frac{a-100}{10} = -1.28 \\
\frac{b-100}{10} = 1.28
\end{cases}
\Rightarrow \begin{cases}
a = 87.2 \\
b = 112.8
\end{cases}$$

- Q12*. The breaking strength of plastic bags used for packaging produce is normally distributed, with a mean of 5 pounds per square inch and a standard deviation of 1.5 pounds per square inch. What proportion of the bags have a breaking strength of
- a) Less than 3.11 pounds per square inch?
- b) At least 3.8 pounds per square inch?
- c) Between 5 and 5.5 pounds per square inch?
- d) 95% of the breaking strength will be contained between what two values symmetrically distributed around the mean?

Let X be the breaking strength of plastic bags, then $X \sim N(\mu = 5, \sigma^2 = 1.5^2)$

- a) P(X < 3.11) = ?
- b) $P(X \ge 3.8) = ?$
- c) P(5 < X < 5.5) = ?
- d) If P(a < X < b) = 0.95, and "a" and "b" are symmetrically distributed around the mean, then what are the values of "a" and "b"?

Q12*.
$$X \sim N(\mu = 5, \sigma^2 = 1.5^2)$$
 $\rightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$

- a) P(X < 3.11) = ?
- b) $P(X \ge 3.8) = ?$
- c) P(5 < X < 5.5) = ?
- d) If P(a < X < b) = 0.95, and "a" and "b" are symmetrically distributed around the mean, then what are the values of "a" and "b"?

To compute non-standard normal probabilities:

- 1. Do standardization: from the non-standard normal distribution to standard normal distribution
- 2. Check the Standard Normal Table.

Solution:

a)
$$P(X < 3.11) = P\left(\frac{X-5}{1.5} < \frac{3.11-5}{1.5}\right) = P(Z < -1.26) = 0.1038$$

b)
$$P(X \ge 3.8) = P(\frac{X-5}{1.5} \ge \frac{3.8-5}{1.5}) = P(Z \ge -0.8) = 1 - P(Z < -0.8) = 0.7881$$

c)
$$P(5 < X < 5.5) = P(\frac{5-5}{1.5} < \frac{X-5}{1.5} < \frac{5.5-5}{1.5}) = P(0 < Z < 0.33)$$

= $P(Z < 0.33) - P(Z < 0) = 0.6293 - 0.5 = 0.1293$

d)
$${P(X < a) = 0.025 \atop P(X < b) = 0.975}$$
 \Rightarrow ${P\left(\frac{X-5}{1.5} < \frac{a-5}{1.5}\right) = 0.025 \atop P\left(\frac{X-5}{1.5} < \frac{b-5}{1.5}\right) = 0.975}$ \Rightarrow ${a-5 \atop 1.5} = -1.96 \atop b-5 \atop 1.5} = 1.96$

Q13*A statistical analysis of 1,000 long-distance telephone calls made from the headquarters of the Bricks and Clicks Computer Corporation indicates that the length of these calls is normally distributed with μ = 220 seconds and σ = 30 seconds.

- a) What is the probability that a call lasted less than 175 seconds?
- b) What is the probability that a call lasted between 175 and 265 seconds?
- c) What is the probability that a calls lasted between 115 and 175 seconds?
- d) What is the length of a call if only 1% of all calls are shorter?

Solution:

Let X be the length of long-distance telephone call. $X \sim N(\mu = 220, \sigma^2 = 30^2)$

a)
$$P(X < 175) = P\left(\frac{X-220}{30} < \frac{175-220}{30}\right) = P(Z < -1.5) = 0.0668$$

b)
$$P(175 < X < 265) = P(\frac{175-220}{30} < \frac{X-220}{30} < \frac{265-220}{30}) = P(-1.5 < Z < 1.5)$$

= $P(Z < 1.5) - P(Z < -1.5) = 0.9332 - 0.0668 = 0.8664$

c)
$$P(115 < X < 175) = P(\frac{115-220}{30} < \frac{X-220}{30} < \frac{175-220}{30}) = P(-3.5 < Z < -1.5)$$

= $P(Z < -1.5) - P(Z < -3.5) = 0.0668 - 0.00023 = 0.06657$

d) We need find the value of "a" such that P(X < a) = 0.01

→
$$P\left(\frac{X-220}{30} < \frac{a-220}{30}\right) = 0.01$$
 → $P\left(Z < \frac{a-220}{30}\right) = 0.01$ → $\frac{a-220}{30} = -2.33$ → $a = 150.1$

- Q14. The exam marks of a large class of students follow a normal distribution with mean μ and standard deviation σ . 1% of the students got 90 or above. 10% of the students got 40 or below. The passing mark is 50.
- a) Find the values of μ and σ .
- b) Find the chance that a randomly selected student passes the exam.

Solution:

a) Let X be the exam marks of the student, $X \sim N(\mu, \sigma^2)$

$$\begin{cases} P(X \ge 90) = 0.01 \\ P(X \le 40) = 0.1 \end{cases} \Rightarrow \begin{cases} P(X < 90) = 0.99 \\ P(X \le 40) = 0.1 \end{cases} \Rightarrow \begin{cases} P\left(\frac{X - \mu}{\sigma} < \frac{90 - \mu}{\sigma}\right) = 0.99 \\ P\left(\frac{X - \mu}{\sigma} < \frac{40 - \mu}{\sigma}\right) = 0.1 \end{cases} \end{cases} \Rightarrow \begin{cases} P\left(\frac{X - \mu}{\sigma} < \frac{90 - \mu}{\sigma}\right) = 0.99 \\ P\left(\frac{X - \mu}{\sigma} < \frac{40 - \mu}{\sigma}\right) = 0.1 \end{cases} \Rightarrow \begin{cases} \frac{90 - \mu}{\sigma} = 2.33 \\ \frac{40 - \mu}{\sigma} = -1.28 \end{cases} \Rightarrow \begin{cases} \mu = 57.73 \\ \sigma = 13.85 \end{cases}$$

b)
$$X \sim N(57.73, 13.85^2)$$

 $P(X \ge 50) = P\left(\frac{X - 57.73}{13.85} \ge \frac{50 - 57.73}{13.85}\right) = P(Z \ge -0.56) = 1 - P(Z < -0.56)$
 $= 1 - 0.2877 = 0.7123$

Q15. The fill amount of bottles of soft drink has been found to be normally distributed with a mean amount of 2.0 liters and a standard deviation of 0.05 liter. Bottles that contain less than 95% of the listed net content (1.90 liters in this case) can make the manufacturer subject to penalty by the Consumer Council, whereas bottles that have a net content above 2.12 liters may cause opening excess spillage upon

- a) What proportion of the bottles is subject to penalty by the Consumer Council?
- b) What proportion of the bottles is risking to excess spillage upon opening?
- c) In an effort to reduce the possible penalty due to insufficient net content in the bottles, the manufacturer has set out the following quality control requirement: 99% of bottles should comply with the Consumer Council's standard. To achieve this, the bottler decides to set the filling machine to a new mean amount. Determine the mean amount to be set for the bottle filling machine such that the above requirement can be met.

Solution:

Let X be the fill amount of bottles of soft drink, then $X \sim N(\mu = 2, \sigma^2 = 0.05^2)$

a)
$$P(X < 1.9) = P\left(\frac{X-2}{0.05} < \frac{1.9-2}{0.05}\right) = P(Z < -2) = 0.0228$$

b)
$$P(X > 2.12) = P(\frac{X-2}{0.05} > \frac{2.12-2}{0.05}) = P(Z > 2.4) = 1 - P(Z \le 2.4) = 0.0082$$

- Q15. The fill amount of bottles of soft drink has been found to be normally distributed with a mean amount of 2.0 liters and a standard deviation of 0.05 liter. Bottles that contain less than 95% of the listed net content (1.90 liters in this case) can make the manufacturer subject to penalty by the Consumer Council, whereas bottles that have a net content above 2.12 liters may cause excess spillage upon opening.
- c) In an effort to reduce the possible penalty due to insufficient net content in the bottles, the manufacturer has set out the following quality control requirement: 99% of bottles should comply with the Consumer Council's standard. To achieve this, the bottler decides to set the filling machine to a new mean amount. Determine the mean amount to be set for the bottle filling machine such that the above requirement can be met.

Solution:

c)
$$X \sim N(\mu, \sigma^2 = 0.05^2)$$

$$\rightarrow$$
 P(X < 1.9) = 1 - 0.99 = 0.01

$$ightharpoonup P\left(\frac{X-2}{0.05} < \frac{1.9-\mu}{0.05}\right) = P\left(Z < \frac{1.9-\mu}{0.05}\right) = 0.01$$

$$\rightarrow \frac{1.9-\mu}{0.05} = -2.33 \rightarrow \mu = 2.0165$$

- Q16. At the CityU Computer Service Centre, the loading time for e-Portal page on Internet Explorer is normally distributed with mean 3 seconds.
- a) Without doing the calculations, for a randomly selected student, which of the following intervals of loading time (in second) is the most likely to be: 2.9-3.1, 3.1-3.3, 3.3-3.5, 3.5-3.7? Which interval of loading time is the least likely to be? Explain.
- b) What is the chance that the loading time is exactly 2 seconds?

Solution:

- a) The loading time is normally distributed with mean of 3 seconds
- Most likely: 2.9-3.1, since it lies in the central part of the normal distribution model, which has the largest area, thus the largest probability to occur.
- Less likely: 3.5-3.7, since it is the farthest interval from the mean, thus has the least probability to occur under the normal distribution model.

b) P(X = 2) = 0, since it is a line, not an area, this probability = 0.

Q17*. The volume of a randomly selected bottle of a new type of mineral water is known to have a normal distribution with a mean of 995ml and a standard deviation of 5ml.

What is the volume that should be stamped on the bottle so that only 3% of bottles are underweight?

Solution:

Let X be the volume that should be stamped on the bottle, then $X \sim N(995, 5^2)$

We need find the value of "a", such that P(X < a) = 0.03

$$\rightarrow P\left(\frac{X-995}{5} < \frac{a-995}{5}\right) = P\left(Z < \frac{a-995}{5}\right) = 0.03$$

$$\Rightarrow \frac{a-995}{5} = -1.88 \Rightarrow a = 985.6$$