1. Let $f: R \to R$ be a function such that f(x+y) = f(x) + f(y) and f'(0) = 2, then

- (a) y = f(x) is an increasing function
- (b) f'(x) = 0 has two roots in (0, 2)
- (c) f'(x) = 0 has exactly two root
- (d) f'(2) = 5 and f'(5) = 2
- 2. $f: R \{0\} \to [0, \infty)$ and $f(x) = |1 + \frac{1}{x}|$, then f is
 - (a) injective and surjective
 - (b) injective but not surjective
 - (c) not injective and not surjective
 - (d) not injective but surjective
- 3. Let $\int \sqrt{\cot x} dx = \frac{1}{\sqrt{2}} \sin^{-1}(-f'(x)) + \frac{1}{\sqrt{2}} \ln|f(x)| + \sqrt{1 (f'(x))^2}| + c$. then f(x) f'(x)at $x = \frac{\pi}{2}$ is (where c is an arbitrary constant)
 - (a) 1
 - (b) -1
 - (c) 2
 - (d) -3
- 4. If $\int |x| ln |x| dx = \frac{f(x)}{4} (h(x) 1) + c$ then $f(h(e^{-2}))$ is equal to
 - (a) e^{-2}
 - (b) e^{4}
 - (c) -4
 - (d) -16
- 5. $\int_0^1 |2x [3x]| dx$ is equal to (where [.] is the greatest integer function)
 - (a) $\frac{3}{19}$
 - (b) $\frac{5}{18}$ (c) $\frac{7}{24}$

 - (d) $\frac{1}{16}$
- 6. The value of the integral $\int_{-1}^{2} [x^2 2x + 3] dx$ is equal to (where [.] is the greatest integer function)
 - (a) $11 \sqrt{3} \sqrt{2}$
 - (b) $10 2\sqrt{2} + \sqrt{2}$

- (c) $13 2\sqrt{2} + \sqrt{2}$
- (d) $10 + \sqrt{2}$
- 7. If $P = \lim_{n \to \infty} \left(\frac{\prod_{r=1}^{n} (n^4 + r^4)}{n^{4n}} \right)^{\frac{1}{n}}$, $Q = \int_0^1 \frac{dx}{1 + x^4}$ and lnp = lna + bQ + c then a + b + c is
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) none of these
- 8. Let $f(x) = x^3 + 2x + 1$ and g(x) is the inverse of it. Then the area bounded by g(x), the x-axis, ordinate x = -2 and x = 4 is
 - (a) 3.5
 - (b) 0.5
 - (c) 7.5
 - (d) 2
- 9. $\cos^3\left(\frac{\pi}{12}\right)\cos\left(\frac{5\pi}{12}\right) + \sin^3\left(\frac{\pi}{12}\right)\sin\left(\frac{5\pi}{12}\right)$ is
 - (a) 0
 - (b) $\frac{1}{2}$
 - (c) $\frac{1}{4}$
 - (d) none of these
- 10. Let θ_1 and θ_2 be least and greatest value of $\theta \in (0, \pi) \{\frac{\pi}{2}\}$ which satisfy the equation $\sec^2\theta \frac{\sqrt{3}+1}{\cot\theta} + \sqrt{3} 1 = 0$. Then the value of $\int_{\theta_1}^{\theta_2} \sin^2 2\theta d\theta$ is
 - (a) 0
 - (b) $\frac{\pi}{24} + \frac{\sqrt{3}}{16}$
 - (c) 2
 - (d) 3
- 11. If θ represents the acute angle between the curves $y = 14 x^2$ and $y = 6 + x^2$ at their point of intersection then $15|tan\theta|$ is
 - (a) 8
 - (b) 120
 - (c) 1
 - (d) 0

- 12. The gradient of the curve passing through (3,0) is given by : $\frac{dy}{dx} \frac{y}{x} + \frac{3x}{(x+1)(x-2)} = 0$. If point $(5, \ln a)$ lies on the curve, then a is exactly
 - (a) 0.03
 - (b) 0.01
 - (c) 0.04
 - (d) 0.29
- 13. The gradient of the curve through (0,1) is given by : $\frac{dy}{dx} + xy = y^2 e^{\frac{x^2}{2}} sinx$. Then $[ln(-y(\pi))]$ is equal to ([.] is the greatest integer function)
 - (a) -5
 - (b) -4
 - (c) 2
 - (d) 4