DSA 5303 Summer 2018

Homework 2

Please show all relevant work when you upload the assignment.

- 2. (Wealth independence) Suppose an investor has exponential utility function U(x) = $-e^{-ux}$ and an initial wealth level of W. The investor is faced with an opportunity to invest an amount $w \leq W$ and obtain a random payoff x. Show that his evaluation of this incremental investment is independent of W
- 4. (Relative risk aversion) The Arrow-Pratt relative risk aversion coefficient is

$$\mu(x) = \frac{xU''(x)}{U'(x)}$$

Show that the utility functions $U(x) = \ln x$ and $U(x) = yx^{y}$ have constant relative risk aversion coefficients

6. (HARA ⋄) The HARA (for hyperbolic absolute risk aversion) class of utility functions is defined by

$$U(x) = \frac{1 - \gamma}{\gamma} \left(\frac{ax}{1 - \gamma} + b \right)^{\gamma}, \qquad b > 0$$

The functions are defined for those values of x where the term in parentheses is nonnegative Show how the parameters γ , a, and b can be chosen to obtain the following special cases (or an equivalent form)

- (a) Linear or risk neutral: U(x) = x
- (b) Quadratic: $U(x) = x \frac{1}{2}cx^2$
- (c) Exponential: $U(x) = -e^{-ax}$ [Try $\gamma = -\infty$]
- (d) Power: $U(x) = cx^{\gamma}$
- (e) Logarithmic: $U(x) = \ln x$ $\left[\text{Try } U(x) = (1 \gamma)^{1-\gamma} ((x^{\gamma} 1)/\gamma) \right]$

Show that the Arrow-Pratt risk aversion coefficient is of the form 1/(cx + d)