SignalSmoothing.jl

Signal Smoothing and Bottom Detection in Sonar Data

This script loads sonar data, performs bottom detection, applies signal smoothing using two methods, and visualizes the results.

1. Signal Smoothing

Line 26

n = 1

• Chooses the index of the ping to process.

Line 27

```
data selected = data[transect]
```

• Selects the sonar ping array from the chosen transect.

Line 30

```
smoothed_ping, window_size, snr_val = smoothSeqEcho(data_selected.P,
n, 10, 1.0)
```

• Applies smoothSeqEcho across neighboring pings to reduce noise.

Lines 33-34

```
ping_signal = copy(data_selected.P[n, :])
reliability, smoothed range = smoothRange(ping signal, 5, 2.0)
```

• Applies smoothRange to the 1D range profile of the selected ping.

2. Plotting

Lines 37-45

```
x = 1:size(data_selected.P, 2)
y_original = data_selected.P[n, :]

fig = Figure(size = (800, 500))
ax = Axis(fig[1, 1], xlabel = "Bin index", ylabel = "Signal
amplitude", title = "Signal smoothing comparison")

lines!(ax, x, y_original, label = "Original Ping $n", linewidth = 2)
lines!(ax, x, smoothed_range, label = "smoothRange (robust local
fit)", linewidth = 2, linestyle = :dot)
lines!(ax, x, smoothed_ping, label = "smoothSeqEcho (median over
pings)", linewidth = 2, linestyle = :dash)

axislegend(ax, position = :lt)

display(fig)
```

- Creates a comparison plot of:
 - Original ping signal
 - o Signal smoothed along the ping (smoothRange)

- o Signal smoothed across pings (smoothSeqEcho)
- Uses CairoMakie for high-quality, interactive plotting.

