MTH 443 Dr. Schmidt Date: October 18, 2018 Worked with: Garrett Jepson

- 1.) Let $S, T: V \to V$ be linear operators.
- a) Suppose that V is finite dimensional. If $S \circ T$ is invertible, prove that both S and T are invertible.

Proof. Let $S, T : V \to V$ such that the above assumptions hold. Then because $S \circ T$ is invertible, it is a bijection and is therefore onto. Thus, we have that

$$\dim(V) = \dim(S \circ T(V))$$

Now by composition of functions, we apply T and then S. Therefore $T:V\to T(V)\subseteq V$ and then $S:T(V)\to V$ in other words, S must map from the image of T back to V. Then by the rank-nullity theorem, we have that

$$\begin{aligned} \dim(V) &= \dim(T(V)) + \dim(\ker(T)) \\ \dim(T(V)) &= \dim(S(T(V))) + \dim(\ker(S)) \\ \Rightarrow \dim(S \circ T(V)) &= \dim(T(V)) + \dim(\ker(T)) \\ &= \dim(S(T(V))) + \dim(\ker(S)) + \dim(\ker(T)) \\ \Rightarrow 0 &= \dim(\ker(S)) + \dim(\ker(T)) \end{aligned}$$

Where in the last line we observe that $\dim(S \circ T(V)) = \dim(S(T(V)))$. Since the $\dim(\ker(A)) \geq 0 \ \forall$ linear transformations A, we have that $\Rightarrow \dim\ker(S) = \dim\ker(T) = 0$. Therefore, it follows that

$$\dim(V) = \dim(T(V)) = \operatorname{rank}(T)$$

$$\dim(V) = \dim(S(T(V))) = \operatorname{rank}(S)$$

Therefore, by theorem 2.5 (page 71) both S and T are one to one and onto. This is equivalent to being a bijection and thus, we conclude that they are both invertible.

4.) Let n and m be positive integers and \mathbb{F} a field. Let $l_1,...,l_m$ be linear functionals on \mathbb{F}^n .

a) Show that the mapping

$$T: \mathbb{F}^n \to F^m$$

 $v \mapsto (l_1(v), ..., l_m(v))$

is a linear transformation.

Proof. Let $\lambda \in \mathbb{F}$ and $v_1, v_2 \in \mathbb{F}^n$. Then we have that

$$T(\lambda v_1 + v_2) = (l_1(\lambda v_1 + v_2), ..., l_m(\lambda v_1 + v_2))$$

Because linear functionals are linear transformations, we have that

$$= (\lambda l_1(v_1) + l_1(v_2), ..., \lambda l_m(v_1) + l_m(v_2))$$

= $\lambda T(v_1) + T(v_2)$ by vector addition in \mathbb{F}^m

Thus we have shown that T is a linear transformation.

b) Show that every linear transformation from \mathbb{F}^n to \mathbb{F}^m is of the above form.

Proof. (Contrapositive) We will show that if a transformation cannot be expressed in the above form, then it can not be a linear transformation.

If T can not be expressed in terms of m linear functionals, then it must be true that for some i, l_i is not a linear functional. Thus we have that $\forall \lambda \in \mathbb{F}$, $v_1, v_2 \in \mathbb{F}^n$,

$$T(\lambda v_1 + v_2) = (l_1(\lambda v_1 + v_2), ..., l_i(\lambda v_1 + v_2), ..., l_m(\lambda v_1 + v_2))$$

= $(\lambda l_1(v_1) + l_1(v_2), ..., l_i(\lambda v_1 + v_2), ..., \lambda l_m(v_1) + l_m(v_2))$
\(\neq \lambda T(v_1) + T(v_2)

Therefore we conclude that if we cannot represent as in the hypothesis, then T is not a linear transformation. It follows from this contrapositive that every linear transformation $T: \mathbb{F}^n \to \mathbb{F}^m$ can be represented as taking $v \in F^n$ to the vector in F^m whose components are given by m linear functionals acting on v.