# Matrix Project On Coordinate Geometry

Sai Harsha Kottapalli and Abhishek Agarwal February 14, 2019

Indian Institute of Technology Hyderabad

#### Index

Problem Statement

Steps to solve the problem

Solution

**Figures** 

#### **Problem Statement**

#### **Problem Statement**

P and Q are two distinct points on the parabola

$$\mathbf{x}^{\mathsf{T}} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x} - \begin{bmatrix} 4 \\ 0 \end{bmatrix} \mathbf{x} = 0$$

with parameters t and  $t_1$  respectively. If the normal at **P** passes through **Q**, then find the minimum value of  $t_1^2$ .

# Steps to solve the problem

• Find the constants of the parabola

- Find the constants of the parabola
- Find Slope of tangent

- Find the constants of the parabola
- Find Slope of tangent
- Find slope of Normal

- Find the constants of the parabola
- Find Slope of tangent
- Find slope of Normal
- Write eqn of Normal using slope and parametric Point

- Find the constants of the parabola
- Find Slope of tangent
- Find slope of Normal
- Write eqn of Normal using slope and parametric Point
- Minimise as a function of parameter of point P

• Given equation:

$$\mathbf{x}^{\mathsf{T}} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x} - \begin{bmatrix} 4 \\ 0 \end{bmatrix} \mathbf{x} = 0$$

• Given equation:

$$\mathbf{x}^T \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x} - \begin{bmatrix} 4 \\ 0 \end{bmatrix} \mathbf{x} = 0$$

• Since, 3 entries of the 2x2 matrix is 0, the parabola is of the standard form (i.e.)

$$y^2 = 4ax$$

• Given equation:

$$\mathbf{x}^{T} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x} - \begin{bmatrix} 4 \\ 0 \end{bmatrix} \mathbf{x} = 0$$

• Since, 3 entries of the 2x2 matrix is 0, the parabola is of the standard form (i.e.)

$$y^2 = 4ax$$

Coefficient of x = 4a

5

• Given equation:

$$\mathbf{x}^{T} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x} - \begin{bmatrix} 4 \\ 0 \end{bmatrix} \mathbf{x} = 0$$

• Since, 3 entries of the 2x2 matrix is 0, the parabola is of the standard form (i.e.)

$$y^2 = 4ax$$

- Coefficient of x = 4a
- a = 1

5

• Parametric form of points of parabola:

$$\begin{bmatrix} t^2 \\ 2t \end{bmatrix}$$

• Parametric form of points of parabola:

$$\begin{bmatrix} t^2 \\ 2t \end{bmatrix}$$

• Differentiate the equation and substitute  $\frac{dy}{dx} = m$  (the slope of the tangent)

• Parametric form of points of parabola:

$$\begin{bmatrix} t^2 \\ 2t \end{bmatrix}$$

- Differentiate the equation and substitute  $\frac{dy}{dx} = m$  (the slope of the tangent)
- $\bullet \ \, \frac{d\mathbf{x}}{d\mathbf{x}} = \begin{bmatrix} 1 & m \end{bmatrix}^T$

$$\begin{bmatrix} 1 \\ m \end{bmatrix}^T \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x} + \mathbf{x}^T \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ m \end{bmatrix} - \begin{bmatrix} 4 \\ 0 \end{bmatrix}^T \begin{bmatrix} 1 \\ m \end{bmatrix} = 0$$

•

$$\begin{bmatrix} 1 \\ m \end{bmatrix}^T \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x} + \mathbf{x}^T \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ m \end{bmatrix} - \begin{bmatrix} 4 \\ 0 \end{bmatrix}^T \begin{bmatrix} 1 \\ m \end{bmatrix} = 0$$

• Now, use the parametric form of x (i.e.)

$$\mathbf{x} = \begin{bmatrix} t^2 \\ 2t \end{bmatrix}$$

$$\begin{bmatrix} 1 & m \end{bmatrix} \begin{bmatrix} 0 \\ 2t \end{bmatrix} + \begin{bmatrix} t^2 & 2t \end{bmatrix} \begin{bmatrix} 0 \\ m \end{bmatrix} - 4 = 0$$

$$\begin{bmatrix} 1 & m \end{bmatrix} \begin{bmatrix} 0 \\ 2t \end{bmatrix} + \begin{bmatrix} t^2 & 2t \end{bmatrix} \begin{bmatrix} 0 \\ m \end{bmatrix} - 4 = 0$$

• 2mt + 2mt - 4 = 0

$$\begin{bmatrix} 1 & m \end{bmatrix} \begin{bmatrix} 0 \\ 2t \end{bmatrix} + \begin{bmatrix} t^2 & 2t \end{bmatrix} \begin{bmatrix} 0 \\ m \end{bmatrix} - 4 = 0$$

- 2mt + 2mt 4 = 0
- 4mt 4 = 0

$$\begin{bmatrix} 1 & m \end{bmatrix} \begin{bmatrix} 0 \\ 2t \end{bmatrix} + \begin{bmatrix} t^2 & 2t \end{bmatrix} \begin{bmatrix} 0 \\ m \end{bmatrix} - 4 = 0$$

- 2mt + 2mt 4 = 0
- 4mt 4 = 0
- $m = \frac{1}{t}$

• We know that, Two lines are perpendicular if the product of their slopes is -1.

- We know that, Two lines are perpendicular if the product of their slopes is -1.
- Slope of normal at point **p**:  $m_N = -t$

- We know that, Two lines are perpendicular if the product of their slopes is -1.
- Slope of normal at point **p**:  $m_N = -t$
- ullet We calculate the equation of the line through P with slope  $=m_N$

• Note: 
$$\mathbf{p} = (x_1, y_1) = (t^2, 2t)$$

• Note: 
$$\mathbf{p} = (x_1, y_1) = (t^2, 2t)$$

$$\begin{bmatrix} -m & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -m & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

• Note: 
$$\mathbf{p} = (x_1, y_1) = (t^2, 2t)$$

•

$$\begin{bmatrix} -m & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -m & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

$$\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} t^2 \\ 2t \end{bmatrix}$$

• Note: 
$$\mathbf{p} = (x_1, y_1) = (t^2, 2t)$$

•

$$\begin{bmatrix} -m & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -m & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

•

$$\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} t^2 \\ 2t \end{bmatrix}$$

$$\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = t^3 + 2t$$

• Now, Let Q:  $(t_1^2, 2t_1)$ 

- Now, Let Q:  $(t_1^2, 2t_1)$
- Then, We have,

$$\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} t_1^2 \\ 2t_1 \end{bmatrix} = t^3 + 2t$$

- Now, Let Q:  $(t_1^2, 2t_1)$
- Then, We have,

$$\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} t_1^2 \\ 2t_1 \end{bmatrix} = t^3 + 2t$$

$$2t_1 + tt_1^2 = t^3 + 2t$$

- Now, Let Q:  $(t_1^2, 2t_1)$
- Then, We have,

$$\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} t_1^2 \\ 2t_1 \end{bmatrix} = t^3 + 2t$$

•

$$2t_1 + tt_1^2 = t^3 + 2t$$

$$-2(t-t_1) = t(t_1+t)(t-t_1)$$

- Now, Let Q:  $(t_1^2, 2t_1)$
- Then, We have,

$$\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} t_1^2 \\ 2t_1 \end{bmatrix} = t^3 + 2t$$

$$2t_1 + tt_1^2 = t^3 + 2t$$

$$-2(t-t_1) = t(t_1+t)(t-t_1)$$

$$t_1 = -t - \frac{2}{t}$$

• Squaring the previous equation, we get,

$$t_1^2 = t^2 + \frac{4}{t^2} + 4$$

• Note:  $t_1 \neq 0$  because, in this case the normal will never intersect the parabola.

Squaring the previous equation, we get,

$$t_1^2 = t^2 + \frac{4}{t^2} + 4$$

• To solve above equation we use the property: Arithmetic Mean  $\geq$  Geometric Mean on  $t^2 + \frac{4}{t^2}$ 

• Note:  $t_1 \neq 0$  because, in this case the normal will never intersect the parabola.

• Squaring the previous equation, we get,

$$t_1^2 = t^2 + \frac{4}{t^2} + 4$$

- To solve above equation we use the property: Arithmetic Mean  $\geq$  Geometric Mean on  $t^2+\frac{4}{t^2}$
- A.M  $\geq$  G.M.  $\Longrightarrow t^2 + \frac{4}{t^2} \geq 2\sqrt{4} = 4$
- Note:  $t_1 \neq 0$  because, in this case the normal will never intersect the parabola.

Squaring the previous equation, we get,

$$t_1^2 = t^2 + \frac{4}{t^2} + 4$$

- To solve above equation we use the property: Arithmetic Mean  $\geq$  Geometric Mean on  $t^2+\frac{4}{t^2}$
- A.M  $\geq$  G.M.  $\implies t^2 + \frac{4}{t^2} \geq 2\sqrt{4} = 4$
- $t_1^2 \ge 4 + 4 = 8$
- Note:  $t_1 \neq 0$  because, in this case the normal will never intersect the parabola.

Squaring the previous equation, we get,

$$t_1^2 = t^2 + \frac{4}{t^2} + 4$$

- To solve above equation we use the property: Arithmetic Mean  $\geq$  Geometric Mean on  $t^2+\frac{4}{t^2}$
- A.M  $\geq$  G.M.  $\implies t^2 + \frac{4}{t^2} \geq 2\sqrt{4} = 4$
- $t_1^2 \ge 4 + 4 = 8$
- Note:  $t_1 \neq 0$  because, in this case the normal will never intersect the parabola.
- ... The Minimum possible value of  $t_1^2$  is 8.

# **Figures**

## **Bounds of** $t_1$ and $t_1^2$



## Normal at minimum $t_1^2$





# The End