Predicting Loan Approval

using Logistic Regression and Decision Trees

with Regularization and Hyperparameter Tuning

Objective:

The goal of this project is to build machine learning models that can predict whether a customer's loan application (or insurance claim) will be approved. The project focuses on comparing two popular algorithms – **Logistic Regression** and **Decision Tree Classifier** – while also applying **regularization techniques** and **hyperparameter optimization** (with GridSearchCV).

Dataset:

You can use a publicly available dataset from Kaggle, for example:

 Loan Prediction Dataset: Loan Prediction Problem Dataset on Kaggle https://www.kaggle.com/datasets/ninzaami/loan-predication/data

Column Name	Meaning	Explanation (Simple)	Example
Loan_ID	Loan Identifier	Unique ID for each loan application	LP001002
Gender	Applicant's Gender	Whether the applicant is Male or Female	Male, Female
Married	Marital Status	Whether the applicant is married or not	Yes, No
Dependents	Number of Dependents	Number of people dependent on the applicant (kids, family)	0, 1, 2, 3+
Education	Education Level	Applicant's education background	Graduate, Not Graduate
Self_Employed	Employment Type	Whether the applicant is self-employed or not	Yes, No
ApplicantIncome	Applicant's Income	Monthly income of the main applicant	5000
CoapplicantIncome	Co-applicant's Income	Monthly income of co-applicant (e.g., spouse)	2000
LoanAmount	Loan Amount	Amount of loan applied (in thousands)	128 = 128,000

Loan_Amount_Term	Loan Term	Time period of the loan (in months)	360 months = 30 years
Credit_History	Credit History	Record of applicant's past credit repayment (1 = good, 0 = bad)	1, 0
Property_Area	Property Location	Area type where the property is located	Urban, Semiurban, Rural
Loan_Status	Target Variable	Whether the loan was approved or not	Y = Approved, N = Not Approved

Notes

- Loan_ID is just an identifier → drop it before training.
- Categorical variables (Gender, Married, Education, Self_Employed, Property_Area, Loan_Status) → need encoding (e.g., OneHotEncoder or LabelEncoder).
- **Dependents** looks numeric, but it's actually categorical because of "3+".
- **Credit_History** is very important (strong predictor).
- ApplicantIncome + CoapplicantIncome can be combined into a TotalIncome feature.
- **LoanAmount** often has missing values → need to handle them (mean/median imputation or log-transform).
- Loan_Amount_Term is usually 360 months (30 years), but some records are shorter/longer.

Real-world interpretation:

- Banks usually approve loans if income is high, credit history is good, loan amount is reasonable compared to income, and property is in a developed area.
- This dataset tries to simulate exactly that scenario.

Tasks to Perform:

1. Data Preprocessing

- o Handle missing values.
- o Encode categorical features (e.g., Gender, Education).
- Apply feature scaling (especially important for Logistic Regression).
- Split the dataset into training and test sets (70/30).

2. Model Training (without GridSearchCV)

- Train Logistic Regression with different penalties: L1, L2, and ElasticNet.
- Train Decision Tree with basic parameters (max_depth, min_samples_split).
- Evaluate models using Accuracy, Precision, Recall, and F1 Score.

3. Model Training (with GridSearchCV)

- Perform hyperparameter tuning for Logistic Regression (C, penalty, solver, I1 ratio).
- Perform hyperparameter tuning for Decision Tree (max_depth, min_samples_split, min_samples_leaf, criterion).
- Use grid searchCV to ensure balanced splits.

4. Comparison & Analysis

- Compare performance between Logistic Regression and Decision Tree.
- Show the effect of regularization and hyperparameter tuning.
- Discuss when Logistic Regression is preferable (interpretable, linear patterns) vs.
 when Decision Trees are preferable (non-linear, rule-based explanations).

Deliverables on Github:

- A Jupyter Notebook with:
 - Data preprocessing steps.
 - Training and evaluation of both models (before and after GridSearchCV).
 - o Performance metrics and visualizations (confusion matrix, bar plots of scores).
- A short report (1–2 pages) including:
 - o Dataset description.
 - Methodology (Logistic Regression, Decision Tree, Regularization, GridSearchCV).
 - Results and analysis.
 - o Conclusion: which model performed better and why.