Right Triangles

Objectives

- 1. Determine the geometric mean between two numbers.
- 2. State and apply the relationships that exist when the altitude is drawn to the hypotenuse of a right triangle.
- 3. State and apply the Pythagorean Theorem.
- 4. State and apply the converse of the Pythagorean Theorem and related theorems about obtuse and acute triangles.
- 5. Determine the lengths of two sides of a 45°-45°-90° or a 30°-60°-90° triangle when the length of the third side is known.

8-1 Similarity in Right Triangles

Recall that in the proportion $\frac{a}{x} = \frac{y}{b}$, the terms shown in red are called the

means. If a, b, and x are positive numbers and $\frac{a}{x} = \frac{x}{b}$, then x is called the

geometric mean between a and b. If you solve this proportion for x, you will find that $x = \sqrt{ab}$, a positive number. (The other solution, $x = -\sqrt{ab}$, is discarded because x is defined to be positive.)

Example 1 Find the geometric mean between 5 and 11.

Solution 1 Solve the proportion $\frac{5}{x} = \frac{x}{11}$: $x^2 = 5 \cdot 11$; $x = \sqrt{55}$.

Solution 2 Use the equation $x = \sqrt{ab} = \sqrt{5 \cdot 11} = \sqrt{55}$.

Theorem 8-1

If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.

Given: $\triangle ABC$ with rt. $\angle ACB$:

altitude \overline{CN}

Prove: $\triangle ACB \sim \triangle ANC \sim \triangle CNB$

Plan for Proof: Begin by redrawing the three triangles you want to prove similar. Mark off congruent angles and apply the AA Similarity Postulate.