Geometría Diferencial

Primer Cuatrimestre – 2019 Segundo Parcial

Guido Arnone

Ejercicio 1. Sea M una variedad riemanniana, sea ∇ la conexión de Levi-Civita de M y sea $f: M \to \mathbb{R}$ una función diferenciable.

(a) Muestre que existe un campo vectorial diferenciable $grad(f) \in \mathfrak{X}(M)$ y uno solo con la propiedad de que para cada campo $Y \in \mathfrak{X}(M)$ se tiene que

$$\langle \operatorname{grad}(f), Y \rangle = \operatorname{df}(Y).$$

Encuentre una expresión en coordenadas para el campo grad(f).

(b) La función

$$X \in \mathfrak{X}(M) \mapsto \nabla_X \operatorname{grad}(f) \in \mathfrak{X}(M)$$

es autoadjunta: cada vez que X e Y son elementos de $\mathfrak{X}(M)$ se tiene que

$$\langle \nabla_X \operatorname{grad}(f), Y \rangle = \langle X, \nabla_Y \operatorname{grad}(f) \rangle.$$

(c) Muestre que si el campo grad(f) tiene norma constante, entonces para todo $X \in \mathfrak{X}(M)$ se tiene que $\langle \nabla_{\operatorname{grad}(f)} \operatorname{grad}(f), X \rangle = 0$. Deduzca de esto que bajo esa condición las curvas integrales de grad(f) son geodésicas.

Demostración. content... □

Ejercicio 2. Sean M y N dos variedades compactas, conexas, orientadas y de la misma dimensión n y sea $f: M \to N$ una función diferenciable.

(a) Muestre que hay un número real $\lambda \in \mathbb{R}$ tal que para toda forma $\omega \in \Omega^n(N)$ se tiene

$$\int_{M} f^{*}(\omega) = \lambda \int_{N} \omega.$$

Lo llamamos *grado* de f y lo escribimos deg(f).

Guido Arnone Segundo Parcial

(b) Supongamos que $q \in N$ es valor regular de f, de manera que, en particular, el conjunto $f^{-1}(q)$ es finito. Si $p \in f^{-1}(q)$ la diferencial es entonces un isomorfismo de espacios vectoriales y podemos considerar el número

$$sgn_f(p) = \begin{cases} +1 & \text{si } d_p f \text{ preserva la orientación} \\ -1 & \text{si la invierte} \end{cases}$$

ya que esas son las dos únicas posibilidades.

Muestre que

$$deg(f) = \sum_{p \in f^{-1}(q)} sgn_f(p).$$

Demostración. content...

Ejercicio 3. Muestre que cuando $n \ge 2$ el grado de toda función diferenciable $f: \mathbb{S}^n \to \mathbb{T}^n$ de la n-esfera al n-toro es nulo.

Demostración. content... □

Ejercicio 4. Sea M una variedad compacta, orientable, conexa de dimensión n. Sabemos que la cohomología de De Rham de M tiene entonces dimensión total finita, y podemos en consecuencia considerar el entero

$$\chi(M) = \sum_{i=0}^{n} (-1)^{i} \dim H^{i}(M)$$

al que llamamos la característica de Euler de M.

- (a) Si la dimensión n de M es impar, entonces $\chi(M) = 0$.
- (b) Si la dimensión n de M es par y la de $H^{n/2}(M)$ es par, entonces $\chi(M)$ es un entero par.

Demostración. content... □

Ejercicio 5. Sea G un grupo de Lie de dimensión n, sea $\mathfrak{g} = T_e G$ su álgebra de Lie y fijemos un producto interno $g_e : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ sobre \mathfrak{g} .

- (a) Hay una única métrica riemanniana g sobre G que es invariante a izquierda y cuyo valor en $e \in G$ es g_e .
- (b) Sea $\mathcal{B} = \{v_1, \dots, v_n\}$ una base de \mathfrak{g} y sean X_1, \dots, X_n los campos tangentes a G invariantes a izquierda qe extienden a los elementos de \mathcal{B} . Muestre que para cada i, j, es *constante* la función $g_{i,j} = g(X_i, X_j)$.

Sabemos (porque el corchete de Lie de campos invariantes a izquierda es él mismo invariante a izquierda) que existen constantes $c_{i,j}^k$ tales que

$$[X_i, X_j] = \sum_k c_{i,j}^k X_k.$$

Calcule en términos de los escalares $c_{i,j}^k$ y $g_{i,j}$ los símbolos de Christoffel Γ_{ij}^k de la conexión de Levi-Civita de G con respecto a los campos X_1, \ldots, X_n , de manera que se tenga

$$\nabla_{X_i} X_j = \sum_k \Gamma_{ij}^k X_k.$$

Guido Arnone Segundo Parcial

(c) Sea $G = \mathbb{R}_{>0} \times \mathbb{R}$ el grupo de Lie con producto dado por

$$(a,b)\cdot(c,d)=(ac,ad+b)$$

para cada $(a,b),(c,d)\in G,$ de manera que G es isomorfo de la forma evidente al grupo de matrices

$$\left\{\begin{pmatrix} \alpha & b \\ 0 & 1 \end{pmatrix}: \alpha > 0, b \in \mathbb{R}\right\}.$$

El elemento neutro G es e=(1,0) y su álgebra de Lie $\mathfrak{g}=T_eG$ se identifica de manera natural (porque G es un abierto de \mathbb{R}^2) con \mathbb{R}^2 . Dotemos a G de su única métrica invariante a izquierda que en T_eG restringe al producto interno usual de \mathbb{R}^2 . Encuentre todas las geodésicas que pasan por e que pueda.

Calcule (las componentes en una carta del) tensor de curvatura R(X,Y)Z sobre G y la *curvatura* escalar

$$K(p) = \frac{1}{n(n-1)} \sum_{1 < i,j < n} g(R(z_i, z_j) z_i, z_j)$$

para cada $p \in G$, con $\{z_1, \dots, z_n\}$ una base ortonormal de T_pG .

Demostración. content... □

Ejercicio 6. Sea M una variedad compacta y orientable de dimensión 4k.

(a) Muestre que hay una función bilineal no degenerada y simétrica

$$\sigma: H^{2k}(M) \times H^{2k}(M) \to \mathbb{R}$$

tal que si ω y η son elementos cerrados de $\Omega^{2k}(M)$ entonces

$$\beta([\omega], [\eta]) = \int_{M} \omega \wedge \eta.$$

Llamamos la signatura de la forma bilineal σ la signatura de M.

(b) Determine la signatura de S^4 , de $S^2 \times S^2$, del toro T^4 , del espacio proyectivo $P_{\mathbb{C}}^2$ y el producto $P_{\mathbb{C}}^2 \times P_{\mathbb{C}}^2$.

Demostración. content... □

Ejercicio 7. Sea $M \subseteq \mathbb{R}^3$ una superficie orientada y sin borde dotada de su métrica riemanniana inducida por la de \mathbb{R}^3 y supongamos que hay un campo vectorial $Z \in \mathfrak{X}(M)$ sobre M que no se anula en ningún punto.

- (a) Muestre que existe una única forma de elegir campos $X, Y \in \mathfrak{X}(M)$ tales que para cada $\mathfrak{p} \in M$ se tiene que $(X_\mathfrak{p}, Y_\mathfrak{p})$ es una base ortonormal positiva de $T_\mathfrak{p}M$ y $Z_\mathfrak{p} = \|Z_\mathfrak{p}\|X_\mathfrak{p}$.
- (b) Hay 1-formas $\alpha, \beta \in \Omega^1(M)$ tales que $\alpha(X) = \beta(Y) = 1$ y $\alpha(Y) = \beta(X) = 0$. Más aún, existe una forma $\eta \in \Omega^1(M)$ tal que

$$d\alpha = \eta \wedge \beta$$
, $d\beta = -\eta \wedge \alpha$.

La forma $\sigma = \alpha \wedge \beta$ no depende de la elección de Z, es una forma de volumen sobre M que determina su orientación y es, de hecho, la forma de volumen riemanniano sobre M.

(c) Existe una función diferenciable $K:M\to \mathbb{R}$ tal que

$$d\eta = -K \cdot \sigma$$

y esta función no depende de la elección del campo Z.

- (d) Si M es compacta, entonces $\int_M K \cdot \sigma = 0$.
- (e) Usando los resultados anteriores, muestre que no hay sobre \mathbb{S}^2 un campo vectorial tangente que no se anula en ningún punto.

Demostración.	content			_
Demosifación.	COLLECTION		L	-