2. Linearfaktordarstellung

Beispiel:

$$f(x) = \frac{1}{2}(x-1)(x+2)(x+3) \qquad \qquad g(x) = \frac{1}{2}x^3 + 2x^2 + \frac{x}{2} - 3$$

	f(x)	g(x)
Grad	berechenbar	ablesbar
		$\operatorname{grad}(f) = 3$
Nullstellen	ablesbar	zu berechnen
	$n_1 = 1$	
	$n_2 = -2$	Verfahren nicht bekannt
	$n_3 = -3$	
Aufbau	Linearfaktoren	Polynom

Definition:

Bestehen Faktoren einer Multiplikation aus linearen Elementen der Form $ax+b,\ a,b\in\mathbb{R},$ so bezeichnet man die Faktoren als Linearfaktoren.

Schauen wir uns die Funktionsgraphen der Fuktion f und g an:

Satz 1:

1. Jede ganzrationale Funktion in Lienarfaktordarstellung lässt sich durch ausmultiplizieren

in eine Polynomfunktion umformen.

2. Nicht jede ganzrationale Funktion besitzt eine Linearfaktordarstellung.

Beweis:

- 1. klar
- 2. Gegenbeispiel: $f(x) = x^2 + 1$

Satz 2:

Ist eine ganzrationale Funktion f vom Grad $n, n \in \mathbb{N}$ und der Nullstelle c gegeben, so gibt es eine ganzrationale Funktion g vom Grad n-1, so dass gilt:

$$f(x) = (x - c) \cdot g(x)$$

Beweis:

Gegeben:

- \bullet ganz
rationale Funktion f
- $\operatorname{grad}(f) = n$
- c Nullstelle von f

Verschiebung der Nullstelle c in den Ursprung durch Verschieben des Graphen von f entlang der x-Achse um -c erzeugt eine neue Funktion h:

$$h(x) = f(x - (-c)) = f(x + c)$$

Eigenschaften von h:

- h ist auch eine ganz rationale Funktion mit $h(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$
- $x_0=0$ ist eine Nullstelle von h
, d.h. h(0)=f(0+c)=f(c)=0

Es folgt damit: $a_0 = 0$ und es gilt:

$$\begin{split} h(x) &= a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x \\ &= x \cdot \left(a_n x^{n-1} + a_{n-1} x^{n-2} + \ldots + a_1 \right) \\ &= x \cdot k(x) \end{split}$$

Eigenschaften von k(x):

- ganzrationale Funktion
- • Gleichung $k(x) = a_n x^{n-1} + a_{n-1} x^{n-2} + \ldots + a_1$
- $\operatorname{grad}(k) = n 1$

Zurückverschiebung des Graphen von h um c entlang der x-Achse ergibt den Graphen von f und es gilt:

$$\begin{split} f(x) &= h(x-c) \\ &= (x-c) \cdot k(x-c) \\ &= (x-c) \cdot g(x), \quad \text{mit } g(x) = k(x-c) \end{split}$$

 $mit grad(g) = grad(k) = n - 1 \quad \square$

Satz 3:

Eine ganzrationale Funktion f vom Grad $n, n \in \mathbb{N}$ hat höchstens n Nullstellen.

Beweis:

Gegeben:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

mit grad(f) = n

 \Rightarrow Es gibt ein c_1 , so das gilt:

$$\begin{split} f(x) &= (x-c_1) \cdot \left(a_{n-1} x^{n-1} + \ldots + a_1 x + a_0\right) \\ &= (x-c_1) \cdot g(x) \end{split}$$

$$\Rightarrow \operatorname{grad}(g) = \operatorname{grad}(f) - 1 = n - 1$$

Sei c_2 weiter Nullstelle von f(x).

 \Rightarrow

$$\begin{split} f(x) &= (x-c_1)(x-c_2) \left(a_{n-2} x^{n-2} + \ldots + a_1 x + a_0 \right) \\ &= (x-c_1)(x-c_2) \cdot h(x) \end{split}$$

$$\Rightarrow \quad \operatorname{grad}(h) = \operatorname{grad}(f) - 2 = n - 2$$

Die Durchführung dieser Schritte ist insgesamt maximal n-mal möglich. \Box

Beispiel:

$$f(x) = \frac{1}{2}(x-1)(x+2)^2$$

- der Linearfaktor (x+2) ist doppelt vorhanden.
- $n_1 = -2$ ist eine "doppelte Nullstelle"
- In der Umgebung von $n_1 = -2$:
 - Der Linearfaktor x(x-1) hat ungefähr den Wert -3.

- Für f(x) gilt somit $f(x) \approx -\frac{3}{2}(x+2)^2$
 - \Rightarrow Der Graph verläuft ungefähr wie eine nach oben geöffnete Parabel mit Tiefpunkt $n_1=-2$
 - \Rightarrow Funktionsgraph berührt die x-Achse
- der Linearfaktor (x-1) ist einmal vorhanden.
- $n_2 = 1$ ist eine "einfache Nullstelle"
- In der Umgebung von $n_1 = -2$:
 - Der Linearfaktor $x(x+2)^2$ hat ungefähr den Wert 9.
 - Für f(x) gilt somit $f(x) \approx \frac{9}{2}(x-1)$
 - \Rightarrow In der Umgebung von $\tilde{n_2}=1$ verläuft der Graph ungefähr wie eine steigende Gerade.
 - \Rightarrow Der Funktionsgraph schneidet die x-Achse.

Verallgemeinerung im folgenden Satz:

Satz:

Gegeben:

- $f(x) = (x-a)^k \cdot g(x)$ ganz
rationale Funktion
- $g(a) \neq 0$

- $k \in \mathbb{N} \setminus \{0\}$
- g(x) ist auch ganzrationale Funktion

Es gilt:

- Für k=1 schneidet der Graph von f die x-Achse an der Stelle x=a
- Ist k ungerade $(k \neq 1)$, so hat der Graph von f an der Stelle x = a einen Sattelpunkt auf der x-Achse.
- Ist k gerade, so hat der Graph von f an der Stelle x=a einen Extrempunkt auf der x-Achse.

Beispiel:

$$f(x) = 0, 3(x-1)(x+1)^3(x-2)^4$$

