Introduction to Brain and Neuroscience (BM 1060)

Course Introduction

Levels of abstraction

E.g. PC

User: OS and applications

Under the hood

Components: Motherboard, SMPS etc

Deep inside the processor: SEM image of Pentium processor

Dive deeper! Device Physics

Question to ponder:

- You've just landed from Mars ©
- You find a computer
- Can you understand the working and design of the computer just by looking at immensely powerful microscope images?
- •What else do you need to do?

Test and Experiment

Conceptualize: Identify the major blocks!

Test your concepts again...

Work out the details!

Test your concepts

Simulation: A "bridge"

Why model or simulate?

What I cannot create, I do not understand

- Richard Feynman

Levels of abstraction in Neuroscience

Behaviour Responses to stimuli, choices etc

Systems e.g. Visual, Auditory, Motor

Areas e.g. Frontal, Temporal lobes

Circuit e.g. cortical column

Neurons A Cell

Synapse Connection between cells

Molecule Molecules, ions entering/leaving the cell

Cognitive Neuroscience / Psychology

Non-invasive, usually conducted on human subjects

http://www.shimadzu.com/

http://the-brain-box.blogspot.com

http://blog.art21.org

Under the hood: Brain & spinal cord

of the segmental nerves, the cervical and fumbar enlargements and the cauda equina.

Purves, Neuroscience

Systems

E.g. Somatic-sensory system

Rgure 8.1 Ceneral organization of the somatic sensory system. (A) Mechanosensory information about the body reaches the brain by way of a three-neuron relay (shown in red). The first synapse is made by the terminals of the constally projecting axons of dorsal roos ganglion cells onto neurons in the brainsiom nuclei (the local branches involved in segmental spinal reflexes are not shown here). The axons of these secondorder neurons synapse on third-order neurons of the veneral posserior nuclear complex of the thalamus, which in turn send their axons to the primary somatic sensory coriex (red). Information about pain and temperature takes a different course (shown in blue; the anterolateral system), and is discussed in the following chapter. (B) Lateral and midsaginal views of the human brain, illustrating the approximate location of the primary somatic sensory cortex in the anterior parteral lobe, just posterior to the central sulcus.

Purves, Neuroscience

Brain areas

A cortical microcircuit

Neuron & Synapse

Ion channels

Purves, Neuroscience

Thank you!