

Wärmeübertrager sowie Verfahren zu dessen Herstellung

10 Die vorliegende Erfindung betrifft einen Wärmeübertrager wie er insbesondere bei Fahrzeugen als Ölkühler Verwendung findet sowie ein Verfahren zu dessen Herstellung.

15 Es sind so genannte Plattenwärmeübertrager bekannt, die aus einem Stapel nebeneinander liegender Platten gebildet sind. Zwischen den Platten sind Hohlräume ausgebildet, die wechselweise mit einem ersten bzw. einem zweiten Medium durchströmt werden.

20 Neben der Verwendung als Kühler, wobei dann beispielsweise das erste Medium Kühlwasser und das zweite Medium das zu kühlende Arbeitsmedium – im Falle eines Ölkühlers einer Brennkraftmaschine das Motoröl – ist, ist auch eine Verwendung als Verdampfer einer Kühleinrichtung wie einer Fahrzeugklimaanlage denkbar, wobei dann eines der beiden Medien das Kühlmittel und das andere das Kältemittel ist.

25 Dabei ist es bekannt, dass die Platten profiliert sind, so dass zwischen den Platten Berührungsstellen auftreten. Im Bereich der Berührungsstellen werden die Platten aneinander befestigt. Darüber hinaus liegen die Platten außenseitig dichtend aneinander an, damit das Kühlmedium bzw. das Arbeitsmedium ausschließlich den Hohlraum durchströmt. Erstes und zweites Medium werden dabei jeweils durch eine entsprechende Zuflussleitung zuge-

BEST AVAILABLE COPY

- 2 -

führt und über eine Abflussleitung weggeführt. Dabei dienen Zuflussleitungen und Abflussleitungen jeweils als Sammelleitungen, in denen der Fluidstrom aller entsprechenden Hohlräume zu - bzw. abgeführt wird.

5 Üblicherweise werden bei Plattenwärmeübertragern turbulenzsteigende Einbauten zur Verbesserung des Wärmeübergangs und zur Oberflächenvergrößerung in die Fluidkanäle eingebracht und fest mit der Wärmeübertragenden Platte verbunden. Hierdurch wird neben der thermodynamischen Eigenschaft des Kanals die Festigkeitseigenschaft des Kühlers stark verbessert.

10 Ein Nachteil solcher Turbulenzplatten ist, dass bei der Herstellung der Durchtrittsöffnungen leicht Spanbildung auftritt, die zur Verunreinigung des durchströmenden Mediums führen kann. Darüber hinaus lagern sich Ver-
15 schmutzungen leicht im Bereich der Turbulenzplatten an. Hierdurch kann das Durchströmen des Hohlraums in unerwünschter Weise behindert werden. Darüber hinaus stellen sie ein zusätzlich herzustellendes Bauteil dar, das durch erhöhte Herstellungskosten sowie Materialkosten eine Verteuerung des Wärmeübertragers nach sich zieht.

20 Daher ist es Aufgabe der Erfindung, einen Wärmeübertrager bereitzustellen, der Nachteile bekannter Wärmeübertrager nicht aufweist.

25 Diese Aufgabe wird durch einen Plattenwärmeübertrager gemäß der Erfindung gelöst, welcher in besonders günstiger Weise durch ein erfindungsge-
mäßes Verfahren herstellbar ist.

30 Einen Wärmeübertrager, wie er insbesondere als Ölkühler im Bereich von Kraftfahrzeugen Verwendung findet, wird aus miteinander verbundenen Platten gebildet. Zwischen den Platten sind nach außen hin abgeschlossene Hohlräume ausgebildet. Die Hohlräume sind dabei alternierend über jeweils

- 3 -

- zumindest eine Zu- und Abflussleitung mit erstem bzw. zweitem Medium versorgt und werden auch von dem entsprechenden Medium durchströmt. Dabei sind die Platten derart profiliert, dass zwischen den jeweiligen Profilen der Platten Berührungsstellen auftreten. Im Bereich dieser Berührungsstellen sind die Platten miteinander verbunden. Dabei sind die Platten so ausgestaltet, dass sich die zwischen den Platten ausbildende Strömung von erstem bzw. zweitem Medium von der entsprechenden Zuflussleitung zur entsprechenden Abflussleitung nicht geradlinig verläuft.
- 10 Diese Maßnahme hat den Vorteil, dass das durchströmende Medium auf seinem Strömungspfad teilweise mehrfach umgelenkt wird. Hierdurch wird die Verteilung der Fluide über die Plattenbreite verbessert. In Abhängigkeit von dem Strömungsverhalten (Viskosität) des durchströmenden Mediums treten unter Umständen auch turbulente Strömungen auf. Die sich immer wieder einstellenden Richtungsänderungen des Fluids im Kanal und sich im Bereich des sich öffnenden Wellenkanals unter Umständen ausbildende Wirbel reißen die sich bildende Grenzschicht immer wieder auf. Dies führt zu einem verbesserten Wärmeübergang.
- 15
- 20 Gemäß bevorzugter Ausgestaltung der Erfindung weisen die Platten ein sich wiederholendes Wellenprofil auf, das dann zumindest in einer Richtung quer zur Durchflussrichtung, welche die gerade Verbindung von Eintrittsstelle des Mediums zur Austrittsstelle ist, verläuft. Um diese Richtung herum verläuft das Wellenprofil zickzackförmig. Ein solches Wellenprofil bildet in einfacher Weise Strömungsleitbereiche, die geeignet sind, die Strömung des den entsprechenden Hohlraum durchströmenden Mediums zu leiten. Die Strömung wird in ihrem Verlauf dadurch in vorteilhafter Weise mehrfach umgelenkt, und zwar insbesondere nicht nur in der Plattenebene, sondern auch aus der Plattenebene heraus. In Bereichen, in denen der Abstand der Platten zueinander unterschiedlich groß gestaltet ist, variiert unter Umständen die Strömungsgeschwindigkeit. Gleichzeitig wird in vorteilhafter Weise erreicht, dass
- 25
- 30

- 4 -

das Medium insgesamt über die gesamte Fläche der Platten verteilt wird und so ein möglichst optimiertes Ausnutzen der gesamten Wärmeaustauschfläche erfolgt.

5 Gemäß weiterführender Ausgestaltung weist das Wellenprofil zwischen Strömungsbereichen geradlinig verlaufende Schenkel auf, wobei der Verlauf des Wellenprofils durch die Schenkellänge der Schenkel, den zwischen den Schenkeln gegebenen Schenkelwinkel und die Profiltiefe des Wellenprofils charakterisiert ist. Das Profil eines Wellenprofils wird in seinem Querschnitt durch den Verlauf im Bereich der Schenkel sowie im Krümmungsbereich festgelegt, wobei bevorzugte Ausgestaltungen eine Abweichung der Querschnittsform in diesen Bereichen vorsehen können.

10 Das zickzackförmig verlaufende Wellenprofil wird dabei insbesondere durch 15 die Schenkellänge, den Schenkelwinkel zwischen benachbarten Schenkeln sowie die Profiltiefe charakterisiert. Bevorzugte Ausgestaltungen der Erfindung sehen vor, dass die Schenkellänge im Bereich von 8 bis 15 mm, vorzugsweise im Bereich von 9 bis 12 mm liegt. Typische Werte der Profiltiefe – 20 die sich beispielsweise aus dem Abstand zwischen einem Wellenkamm und der Plattenmittelebene bemisst – liegen im Bereich von 0,3 bis 1,5 mm. Für viele Anwendungen kann eine Profiltiefe zwischen 0,5 und 1 mm vorteilhaft sein, wobei Werte von ungefähr 0,75 mm bevorzugt sein können. Der Schenkelwinkel zwischen zwei Schenkeln des Wellenprofils beträgt vorzugsweise zwischen 45° und 135°. Insbesondere Werte um 90° stellen einen 25 guten Kompromiss hinsichtlich Verteilung des Fluids, Durchströmgeschwindigkeit und Durchflussleistung des Wärmeübertragers dar.

30 Die Schenkellänge und der Schenkelwinkel beeinflussen zum einen die Strömungsleitfunktion des Wellenprofils, zum anderen aber auch die Anordnung von Berührungsstellen benachbarter Platten aneinander, welche für die Stabilität des Wärmeübertragers erforderlich sind. Die Eigensteifigkeit der

- 5 -

Platten gegenüber einer Druckbeaufschlagung durch die Medien kann ohne die gegenseitige Abstützung nicht gewährleistet sein, wenn die Materialstärke der Platte gering gewählt wird, wie dies bei vielen Anwendungen aus Gründen der Gewichtserspartis sowie des Wärmeaustausches erwünscht ist.

5

10

15

20

25

30

Dabei erfolgt in bevorzugter Ausgestaltung ein Verbinden der Platten im Bereich der Berührungsstellen durch Hartlöten, wozu die Platten zumindest einseitig mit einem Löthilfsmittel wie Lötmittel beschichtet sind. Die Auswahl von Schenkellänge und Schenkelwinkel erfolgt vorzugsweise in Abhängigkeit des durchströmenden Mediums und dessen Viskosität. Schenkellänge und Schenkelwinkel haben einen großen Einfluss auf die auftretenden Strömungsgeschwindigkeiten und den damit verbundenen Wärmeaustausch, so dass diese an den jeweiligen Verwendungszweck anpassbar sind: Die vorstehend genannten Werte beziehen sich dabei insbesondere auf die Verwendung von Wärmeübertragern als Ölkühler bei Fahrzeugen, wo der Wärmeaustausch zwischen Motoröl und Kühlwasser erfolgt. Darüber hinaus sind sie natürlich auch von der Dimensionierung der Platten und des sich aus dem Abstand der Platten ergebenden Zwischenraums abhängig.

Die Gestalt des Wellenprofils wird im wesentlichen durch die Form des Querschnitts senkrecht zur Außenkante des Profils in diesem Bereich sowie die durch die Teilung festgelegte Abfolge der Profile aufeinander im Verlauf Quer zur Erstreckungsrichtung eines Wellenprofils über die Platte hinweg festgelegt. Bevorzugte Ausgestaltungen sehen eine konstante Teilung, also einen festen Abstand zweier beliebiger zueinander benachbarter Wellenprofile vor. Die Gestalt des Wellenprofils ist insbesondere dann vorteilhaft, wenn sie auf der Außenseite des Wellenrückens einen Flachbereich aufweist. Der Flachbereich weist dabei insbesondere eine Breite von 0,1 bis 0,4 mm auf. Der Flachbereich ermöglicht eine gute, flächige Anlage zueinander benachbarter Platten aneinander und damit eine leichte und stabile Herstellung der

- 6 -

Abstützung bzw. Verbindung – wie durch Hartlöten – benachbarter Platten miteinander.

Bei dem Material der Platten handelt es sich vorzugsweise um Aluminium.
5 Dieses Material hat den Vorteil, eine niedere Dichte aufzuweisen und gleichzeitig das Erzeugen des Wellenprofils beispielsweise durch Prägen in einfacher Weise zu ermöglichen. Es kann zur Herstellung der Verbindung zweier benachbarter Platten im Bereich der Berührungsstellen sowie im Bereich der Ränder auf zumindest einer Seite vollflächig mit Löthilfsmittel wie Hartlot beschichtet sein. Je nach Auswahl des Löthilfsmittels sowie der Schichtdicke des Auftrags des Löthilfsmittels kann auch eine beidseitige Beschichtung mit Löthilfsmittel gegeben sein. Die Beschichtung mit Löthilfsmittel soll insbesondere im Bereich der Ränder und der Zu- und Abflussleitungen im Block dem zuverlässigen Herstellen einer fluidichten Verbindung zweier Platten 10 miteinander in einem Fügevorgang mit einem Fügewerkzeug (Hartlötofen) 15 ohne Benutzen weiterer Hilfsmittel bzw. Hilfsstoffe dienen.

In weiterführender Ausgestaltung kann vorgesehen seien, dass die Platten Bohrungen aufweisen, die im Bereich des Wärmeübertragers als Zuflussleitungen und Abflussleitungen dienen und deren Bohrungssachse senkrecht 20 zur Plattenebene verläuft. Dabei sind die Bohrungen insbesondere in einem gegenüber der Grundebene der Platten erhabenen Bereich eingebbracht. Der erhabene Bereich ist dabei vorzugsweise so erhaben, dass sich in jedem zweiten Plattenzwischenraum eine dichte Verbindung zwischen dem erhabenen Bereich und darauf folgender weiterer Platte ergibt, sodass nur bei 25 jedem zweiten Plattenzwischenraum eine fluidische Verbindung zwischen den Bohrungen und dem Plattenzwischenraum entsteht. Durch diese Maßnahme wird ohne das Verwenden von Leitungen eine Fluidzufuhr und -abfuhr aus den Plattenzwischenräumen ermöglicht, so dass diese alternierend entweder mit Kühlmedium bzw. mit Arbeitsmedium durchströmt werden. 30

- 7 -

Dabei kann die fluiddichte Anlage zwischen einem erhöhten Bereich und einer benachbarten Platte nicht nur durch Formschluss sondern auch durch andere Verbindungstechnik, wie dem Hartlöten erreicht werden. Hierzu weist der erhabene Bereich insbesondere einen vorzugsweise flächigen Anlageabschnitt auf, der mit einem vorzugsweise flächigen Anlagerand der benachbarten Platte, zu der sich eine fluiddichte Verbindung ergibt, in Anlage befindet.

Der erhabene Bereich sowie die Bohrungen im erhabenen Bereich können dabei nicht nur einen kreisrunden Querschnitt aufweisen, vielmehr sind auch ovale oder langlochartige Gestaltungen möglich und vorteilhaft. Dabei ist die längere der beiden Achsen der langlochartigen Gestaltung vorzugsweise quer zur Hauptfließrichtung des Fluids anzurufen. Auch diese Maßnahme dient der Verbesserung des Wärmeaustauschs zwischen den beiden Medien, da dann bei gleicher Gesamtausdehnung der Platten eine größere Wärmeübertragungsfläche verbleibt.

Darüber hinaus ist es möglich, dass im Bereich der Zuflussleitungen und der den Zuflussleitungen zugeordneten Bohrungen Verteilerkanäle vorgesehen sind, welche vorzugsweise ebenfalls als Wellenprofil ausgebildet sind. Es entspricht besonders bevorzugter weiterführender Ausgestaltungen der Erfindung, wenn das Wellenprofil der Verteilerkanäle sich von den übrigen Wellenprofilen hinsichtlich der charakteristischen Größen des Wellenprofils unterscheidet. Das Wellenprofil der Verteilerkanäle weist dabei insbesondere einen Schenkelwinkel aus, der geringer als 45° beträgt und insbesondere im Bereich von ungefähr 5° und ungefähr 25° liegt. Es kann sowohl ein schlagartiger als auch ein kontinuierlicher Übergang in der Profilgestaltung zwischen dem Verteilerprofil und dem Wellenprofil in übrigen Plattenbereichen ausgebildet sein. Die Verteilerkanäle übernehmen dabei die Aufgabe eines möglichst gleichmäßigen Verteilens des Fluidstroms über die gesamte Breite der Platte hinweg. Dies verbessert die Effizienz des Wärmeübertragers, da in

- 8 -

- diesem Fall eine größere Wärmeaustauschfläche tatsächlich auch zum Austausch genutzt wird. Auch können zur Verbesserung der Verteilung des Mediums über die gesamte Fläche des Wärmeübertragers hinweg Umströmungskanäle die erhabenen Bereiche umgeben. Die Umströmungskanäle werden dabei vorzugsweise durch einen wellenprofilfreien Abschnitt gebildet, der insbesondere ringartig um den erhabenen Bereich herumgeführt ist. Es wird so ein Abschnitt verringerten Strömungswiderstandes gebildet, in den mehrere Wellenprofile einmünden, so dass auch hierdurch eine Verteilfunktion für das Medium erfüllt wird.
- Es entspricht einer besonders einfach und kostengünstig herzustellenden Ausführungsform eines erfindungsgemäßen Wärmeübertragers, wenn dieser aus einer Abfolge von Platten hergestellt ist. Dabei können die Platten auf ihren beiden Seiten hinsichtlich ihrer Wellenprofile voneinander verschiedene Profile aufweisen. Ein Wärmeübertrager kann insbesondere aus einem Stapel von solchen untereinander identisch ausgestalteten Platten gebildet sein. Denn es ist hierbei insbesondere möglich, dass zueinander benachbarte Platten um 180 Grad zueinander verdreht sind, wobei sich die Drehachse senkrecht zur Plattenebene erstreckt. Diese Art des Stapels von Platten ist insbesondere dann vorteilhaft, wenn die den Zuflussleitungen zugeordneten Bohrungen aus erhabenen Stellen ausgebildet sind und diese alternierend zwei unterschiedlichen Leitungsführungen zugeordnet sein sollen. Dabei können die Erhebungen im Bereich der Zuflussleitungen insbesondere als im Wesentlichen kegelstumpfförmiger Dom ausgebildet sein. Alternativ hierzu sind domförmige Erhebungen, welche einen elliptischen Querschnitt aufweisen.
- Die Platten können dabei sowohl untereinander identisch einander entsprechend oder ähnlich oder unterschiedlich gestaltet sein. Untereinander identische Platten weisen das hinsichtlich der charakteristischen Eigenschaften des Wellenprofils sowie der Gestalt des Wellenprofils identische Eigen-

- 9 -

schaften auf. Einander entsprechende Platten sind im Aufbau einander gleich, jedoch ist es möglich, dass die Platten beispielsweise voneinander verschiedene Schenkelwinkel aufweisen. Einander entsprechende Platten weisen vorzugsweise eine voneinander unterschiedliche Gestalt des Wellenprofils und/oder voneinander verschiedene Werte charakterisierender Größen auf, sind jedoch hinsichtlich der Ausbildung des Randes sowie von Ausbildung von Vorder- und Rückseite der Platten einander entsprechend. Die alternierende Verwendung beispielsweise zweier einander entsprechender Platten, die sich lediglich durch unterschiedliche Schenkelwinkel in den charakteristischen Größen unterscheiden, hat den Vorteil, dass die Position und relative Lage von Berührungsstellen der Platten aneinander im profilierten Bereich im Hinblick auf die erforderliche Steifigkeit und die erforderliche Durchströmung in einfacher Weise optimierbar sind.

Die Verbindung zwischen den Platten ist insbesondere durch Hartlöten hergestellt. Um im Bereich des Randes der Platten eine gute Dichtwirkung und gleichzeitig einen stabilen Aufbau des Wärmeübertragers zu erreichen, kann es vorgesehen sein, dass die Platten einen abgekröpften Rand aufweisen dessen Höhe so gewählt ist, dass wenigstens zwei zueinander benachbarte Platten in diesem Randbereich aneinander anliegen und sich überlappen. Die Anzahl der sich im Randbereich überlappenden Platten kann dabei bis zu fünf betragen. Je größer die Anzahl der sich überlappenden Platten ist, desto steifer ist die hierdurch gebildete und nach außen hin den Wärmeübertrager abschließende Wandung. Dies unterstützt gleichzeitig die Herstellung eines dauerhaft stabilen, widerstandsfähigen, fluiddichten Abschlusses der Platten nach außen hin. Bevorzugte weiterführende Ausgestaltungen sehen dabei vor, dass das Wellenprofil sich bis in den Rand hinein und insbesondere über dessen gesamte Breite hinweg erstreckt. Dabei ist bei der Gestaltung des Wellenprofils darauf zu achten, dass die Platten dennoch stapelbar bleiben, was dadurch geschieht, dass der Verlauf des Wellenpro-

- 10 -

fils im Randbereich auf die Montagelage zweier benachbarter Platten zueinander abgestimmt wird.

Das Wellenprofil erstreckt sich bis in den Rand hinein, wenn im Wurzelbereich der Abkröpfung das Wellenprofil endet, so dass das Profil mit seiner Profiltiefe sich in den Rand hinein erstreckt. Insbesondere aus Gründen der Produktionstechnik kann es vorteilhaft sein, wenn die Wurzel des Randes in einem wellenprofilfreien Bereich liegt, da dann das Biegen des Randes in einem nicht durch Profil verstiften Bereich erfolgen kann. Bevorzugte Ausgestaltungen sehen dann vor, dass sich die sich zwischen Rand und Wellenprofilbereich ausbildende Rinne möglichst schmal ist. Sie wird insbesondere so schmal gewählt, dass beim Hartlöten ein Lotfluss eintritt, der diese Rinne vollständig oder wenigstens so weit zusetzt, dass nur eine vernachlässigbare Menge von Medium durch die Rinne durchströmt. Die Rinne muss so gestaltet sein, dass sie nicht als Bypasskanal für das Medium dient und ein wesentlicher Medienanteil durch die Rinne strömt statt im Bereich des Wellenprofils.

Zum Verbessern der Stabilität des Wärmeübertragers nach außen hin sowie zum Vereinfachen des Anschlusses der externen Zuflussleitungen und externen Abflussleitungen von Kühlmittel und Arbeitsmedium kann es vorgesehen sein, dass an wenigstens einer der Stirnseiten des Wärmeübertragers eine außenseitig profillose Abschlussplatte angeordnet wird. Die außenseitig profillose Abschlussplatte weist dabei insbesondere Flansche als Anschlussstellen auf. Die Abschlussplatten können insbesondere auch eine größere Materialstärke als die anderen Platten aufweisen und somit ein insbesondere verstifendes, stabilisierendes Element darstellen, das ein die Stirnseiten nach außen abschließendes Gehäuseteil bildet. Die seitlichen Gehäusewandungen, die den Wärmeübertrager nach Außen hin abschliessen, werden über den Rand gebildet, der die Platten begrenzt und der sich mit dem Rand

- 11 -

benachbarter Platten überlappt. Die Ränder sind dabei fluiddicht miteinander verbunden, was insbesondere durch Hartlöten erfolgen kann.

5 Eine Möglichkeit, die Durchströmbarkeit eines Stapels von Platten zu charakterisieren liegt in der Bestimmung des hydraulischen Durchmessers zwischen zwei benachbarten Platten entlang der Hauptströmungsrichtung des Mediums. Der hydraulische Durchmesser stellt dabei ein Verhältnis zwischen dem durchströmmbaren Kanalquerschnitt und Wärmeaustauschfläche dar. Der hydraulische Durchmesser hD ist dabei als das Vierfache des Verhältnisses aus Flächenverhältnis Fv zu Flächendichte Fd definiert. Das Flächenverhältnis Fv bestimmt sich als das Verhältnis von freiem Kanalquerschnitt fK zu Gesamtstirnfläche S des Kanals zwischen zwei benachbarten Platten, die Flächendichte Fd aus dem Verhältnis zwischen wärmeübertragender Fläche wF zu Blockvolumen V . Es gilt also:

10

15

$$hD = \frac{4 \frac{fK}{S}}{\frac{wF}{V}}$$

20 Der hydraulische Durchmesser sollte dabei gemäß bevorzugter Ausgestaltung der Erfindung über die gesamte Hauptströmungsrichtung des Mediums hinweg möglichst konstant bleiben. Hierdurch wird eine unter Umständen verbesserte und gegebenenfalls eine gleichmäßige Durchströmbarkeit des Plattenzwischenraumes, der den Kanal bildet, erzielt.

25 Der hydraulische Durchmesser liegt gemäß bevorzugter Ausgestaltung der Erfindung und insbesondere bei der Verwendung des Wärmeübertragers als Ölkühler zwischen 1,1 mm und 2 mm. Bevorzugte Werte für den hydraulischen Durchmesser liegen um 1,4 mm. Dabei sollte die Abweichung des

- 12 -

hydraulischen Durchmessers über die Periode der Profilierung eines Plattenpaars hinweg vorzugsweise nicht mehr als um 10%, insbesondere um weniger als 5% schwanken. Selbstverständlich ist die Auswahl des hydraulischen Durchmessers auch von den in den Zwischenräumen zwischen den 5 Platten strömenden Medien abhängig. Die genannten Werte gelten für einen Ölkuhler, bei dem zum einen Wasser und zum anderen ein Öl den Wärmeübertrager durchströmt.

Gemäß einer bevorzugten Ausführung sind die Berührungsstellen zwischen 10 zwei zueinander benachbarten Platten des Wärmeübertragers gleichmäßig über die Plattenfläche verteilt. Bevorzugt weisen die Berührungsstellen zwischen zwei zueinander benachbarten Platten eine Flächendichte von 4 bis 7 pro cm², besonders bevorzugt von 5 bis 6 pro cm² auf. Bei einer solchen Ausgestaltung ist eine ausreichende Festigkeit des Wärmeübertragers ohne 15 übermäßige Erhöhung des Druckverlustes möglich.

Wärmeübertrager gemäß der Erfindung können einerseits als Ölkuhler, aber auch als Verdampfer oder Kondensatoren dienen. Dabei kann der Kältekreislauf einer solchen Einrichtung nicht nur zum Klimatisieren eines (Fahrzeug-)Innenraumes dienen, sondern auch zum Kühlen von Wärmequellen, wie elektrischen Verbrauchern, Energiespeichern und Spannungsquellen 20 oder von Ladeluft eines Turboladers. Der Wärmeübertrager ist ein Kondensator, wenn beispielsweise durch Kondensation des Kältemittels einer Klimaanlage in einem kühlmittelbeaufschlagten kompakten Wärmeüberträger erfolgt und das Kühlmittel die Wärme in einem Wärmeübertrager an Luft als weiteres Medium abgibt. Das Verdampfen bzw. Kondensieren eines anderen 25 Mediums in einem erfindungsgemäßen Wärmeübertrager kann beispielsweise auch in Anwendungen bei Brennstoffzellensystemen erfolgen.

30 Bei all diesen Anwendungen als Kondensator oder Verdampfer ist der Einsatz eines leistungsstarken kompakten Wärmeübertragers wünschenswert,

- 13 -

in dem ein Kühlmittel als zweites Medium die Wärme abgibt oder aufnimmt. Hierbei können aufgrund sehr hoher Innenreinheitsanforderungen auf der Kältemittelseite keine gestanzten Turbulenzeinlagen eingesetzt werden, durch die Aluminiumpartikel in den Kältemittelkreislauf eingetragen werden.

5 Neben diesen Reinheitsanforderungen ist ebenfalls eine optimale Verteilung des Fluides am Eintritt notwendig, das anschließend im Wärmeübertrager verdampft oder kondensiert. Idealerweise wird das Fluid, das bei der Verdampfung am Eintritt vorwiegend in flüssiger Form und bei der Kondensation in dampfförmiger Form vorliegt, über die gesamte Scheibenbreite verteilt.

10 Eine Besonderheit der Verdampfung und Kondensation ist die oft vorhandene geringe Temperaturdifferenz zwischen beiden Fluiden. Bei einer nicht optimalen Querverteilung des zu verdampfenden flüssigen Fluides oder des zu kondensierenden dampfförmigen Fluides können schnell hohe Leistungseinbußen auftreten. Erfindungsgemäße Wärmeübertrager bieten Lösungen

15 zu diesen Problemen an.

Ein erfindungsgemäßes Verfahren zur Herstellung eines Wärmeübertragers, insbesondere eines erfindungsgemäßen Wärmeübertragers sieht vor, dass das Wellenprofil durch Prägen der Platten erzeugt wird, anschließend ein entsprechend ausgerichtetes Stapeln der Platten und danach ein Verbinden durch Hartlöten erfolgt. Gemäß bevorzugter Ausgestaltung erfolgt das Stapeln der Platten aufeinander so, dass jeweils zwei zueinander benachbarte Platten um 180 Grad verdreht angeordnet sind. Das Verbinden der Platten durch Hartlöten erfolgt dabei insbesondere so, dass die Platten an ihrem Rand dichtend miteinander verbunden sind und insbesondere gleichzeitig ein Verbinden benachbarter Platten an den Berührungsstellen von Profilen erfolgt. Hierdurch wird in besonders vorteilhafter Ausgestaltung ein stabiles und verwindungssteifes Element hergestellt.

30 Im Übrigen ist die Erfindung nachfolgend anhand des in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigt:

- 14 -

- Fig. 1a, 1b: die Vorderseite und Rückseite einer erfindungsgemäßen Platte;
- 5 Fig. 2: die Ansicht eines Stapels von solchen Platten;
- Fig. 3: eine Schnittdarstellung mehrfacher aufeinander gestapelter Platten im Bereich des Randes;
- 10 Fig. 4: in vergrößerter Darstellung die Ausbildung der Verteilerkanäle im Bereich der Bohrungen;
- Fig. 5: eine schematische Darstellung einer Abschlussplatte mit Anschlussflaschen;
- 15 Fig. 6: die Fluidführung durch die Platten, wenn bei einem der Fluide ein Durchströmen aller Plattenzwischenräume vorliegt;
- 20 Fig. 7a-7d: die Auswirkungen der Gravitation auf die Flüssigkeitsverteilung;
- Fig. 8 den hydraulischen Durchmesser über eine Periode des Wellenprofils in Hauptströmungsrichtung des Mediums im Zwischenraum zweier Platten;
- 25 Fig. 8a eine Aufsicht auf eine Platte eines Wärmeübertragers;
- Fig. 8b den hydraulischen Durchmesser in Hauptströmungsrichtung des Mediums im Zwischenraum zweier Platten;
- 30

- 15 -

- Fig. 8c eine Auftragung der Festigkeit und des Druckverlustes eines Wärmeübertragers über der Dichte der Berührungsstellen zwischen zwei Platten;
- 5 Fig. 9 einen Ausschnitt aus einer Wärmeübertragerplatte;
- Fig.10 eine Platte eines Wärmeübertragers;
- 10 Fig. 11a,b jeweils einen ausschnittsweisen Querschnitt eines Wärmeübertragers;
- Fig. 12a,b jeweils einen ausschnittsweisen Querschnitt eines Wärmeübertragers.
- 15 Die Figuren 1a und 1b zeigen die Darstellung einer Vorderseite bzw. einer Rückseite einer erfindungsgemäßen Platte, während die Fig. 2 die Darstellung eines entsprechenden, aus Platten gemäß der Figuren 1a und 1b gebildeten Stapels zeigt.
- 20 Eine Platte 10 weist einen Grundkörper 11 auf, welcher an seiner Vorder- und Rückseite jeweils mit einem Wellenprofil 12 versehen ist, welches durch Prägen in den Grundkörper 11 eingebracht worden ist. Bei der in den Figuren 1a und 1b dargestellten Ausführungsform entspricht das Wellenprofil 12 der Rückseite gemäß der Fig. 1b dem negativen Profil der Vorderseite gemäß der Darstellung in Fig. 1a. Dabei wird das Wellenprofil 12 aus mehreren zueinander in einem Schenkelwinkel 13 stehenden Schenkeln 10 gebildet, die jeweils eine feste Schenkellänge 15 aufweisen und dem Krümmungsbe-reich 16 aneinander anschließen. Das Wellenprofil erstreckt sich quer über die Platte 10 hinweg. Über die Länge der Platte 10 hinweg ist eine Vielzahl von Wellenprofilen 12 hintereinander ausgebildet, wobei die Wellenprofile insbesondere in dichtem Abstand aufeinander folgen und fluchtend zueinan-
- 25
- 30

- 16 -

der ausgerichtet sind. In die Platte 10 weist dabei einen umlaufenden abgekröpften Rand 17 auf, welcher die Platte lateral begrenzt. Dabei verläuft das Wellenprofil 12 bis in den Rand hinein.

5 Das Wellenprofil 12 kann dabei durch Prägen in die Platte 10 eingebracht werden. Das Prägen kann dabei so durchgeführt werden, dass die beiden Seiten in der Platte 10 voneinander abweichende Wellenprofile aufweisen, insbesondere kann das Wellenprofil 12 auf einer Seite das Negativ des Wellenprofils 12 der anderen Seiten darstellen, wie dies beispielsweise aus dem Ausführungsbeispiel gemäß den Figuren1a und1b ersichtlich ist. Es ist 10 auch möglich, dass eine Platte 10 auf beiden Seiten das gleiche Wellenprofil 12 aufweist. Beides Mal können die Wellenprofile auf den beiden Seiten einer Platte 10 fluchtend zu einander oder versetzt zu einander ausgebildet sein. Das Wellenprofil 12 wird im Querschnitt vor allem dadurch charakterisiert, dass es einen Wellenrücken aufweist, der einen Flachbereich bildet, 15 welcher parallel zur Plattenebene verläuft. Der Flachbereich hat dabei vorzugsweise eine Breite zwischen 0,1mm und 0,4mm.

20 Im Bereich der Ecken weist die Platte eine Bohrung 18 auf, welche die Platte senkrecht zu ihrer Verlaufsebene durchsetzt. Zwei der Bohrungen sind dabei in einem erhabenen Bereich 19 eingebracht. Eine der Bohrungen dient dabei der Zufuhr von Arbeitsmedium in den Bereich zwischen zwei Platten, während insbesondere die diametral gegenüberliegende Bohrung dem Abfluss von Arbeitsmedium dient. Ein anderes Bohrungspaar dient dem Zu- und Abfluss von Kühlmedium. Werden Platten 10 wie in der Fig. 2 dargestellt aufeinander gestapelt, so sind jeweils alternierend entweder die dem Arbeitsmedium oder Kühlmedium zugeordneten Leitungen fluidisch mit dem Zwischenraum 20 zwischen zwei Platten 10 verbunden, da der erhabene Bereich 19 entsprechender Bohrungen 18 an der benachbarten Platte 10 anliegt. Die Bohrungen 18 bilden somit durch einen Stapel 21 von Platten hindurch die Zufuhrleitungen beziehungsweise Abflussleitungen für Kühlmedi- 25 30

- 17 -

um und Arbeitsmedium. Die Fig. 2 zeigt in perspektivischer Darstellung einen solchen Stapel 21 von Platten 10 gemäß der Figuren 1a und 1b..

In der Fig. 3 ist die Schnittdarstellung durch einen Stapel 21 gemäß der Fig. 5 gezeigt. Platten 10 liegen aneinander an und sind übereinander gestapelt. Der abgekröpfte Rand 17 benachbarter Platten liegt aneinander an und ist so ausgebildet, dass sich der Rand mehrerer Platten jeweils überlappt. Um eine fluiddichte Verbindung zwischen dem Rand 17 zweier benachbarter Platten zu erreichen, sind diese durch Hartlöten miteinander verbunden. 10 Darüber hinaus liegen zwei zueinander benachbarte Platten in unterschiedlichen Bereichen ihrer Wellenprofile 12 aneinander an. Auch in diesen Bereichen sind die Platten durch Hartlöten miteinander verbunden. Zum Herstellen der Lötverbindungen können die Platten einseitig oder beidseitig mit einem Lot beschichtet sein. Zwischen zwei zueinander benachbarten Platten 10 ist jeweils ein Zwischenraum 20 ausgebildet, wobei der Zwischenraum entweder von Arbeitsmedium oder von Kühlmedium durchströmt wird. Der Stapel von Platten ist dabei insbesondere so ausgebildet, in dass die Zwischenräume 20 alternierend von Arbeitsmedium und Kühlmedium durchströmt werden, sodass jede der Platten 10 einerseits von Kühlmedium und andererseits von Arbeitsmedium umströmt wird. Somit kann ein Wärmeaustausch zwischen Kühlmedium und Arbeitsmedium über jede der Platten 10 hinweg erfolgen.

Dadurch, dass die Platten ein Wellenprofil aufweisen, ist an einer Vielzahl 25 von Stellen der Zwischenraum 20 von unterschiedlicher lichter Weite. Die sich immer wieder einstellenden Richtungsänderungen des Fluids im Kanal und die sich im Bereich des sich öffnenden Wellenkanals ausbildenden Wirbel reißen die sich bildende Grenzschicht immer wieder auf. Dies führt zu einem, verglichen mit einem glatten Kanal, stark verbesserten Wärmeübergang.

- 18 -

Dies fördert den anderen Austausch zwischen den beiden Medien über eine Platte 10 hinweg. Zusätzlich wird durch die Ausgestaltung der Platten 10 erreicht, dass keine lineare, geradlinige Strömung von der Zuführleitung zur Abflussleitung möglich ist. In Abhängigkeit von der Viskosität des Mediums
5 kann eine solche Gestaltung des Zwischenraums 20 auch dazu führen, dass ganz oder teilweise turbulente Strömungen auftreten und somit einer verbesserten Wärmeaustausch zwischen Arbeitsmedium und Kühlmedium erzielt wird. Darüber hinaus wird durch den Verlauf des Wellenprofils 12 quer zur Erstreckung der Platte 10 das entsprechende Medium auch über die gesamte Breite der Platte 10 hinweg geleitet, so dass das Ausnutzen der Wärmeaustauschfläche, die eine Platte 10 bietet verbesserter wird, wodurch die Effizienz eines solchen Wärmeübertragers weiter erhöht wird. Ein wesentliches Leitelement für die Strömungsführung ist auch darin zusehen, dass dies zwischen zwei benachbarten Platten 10 gleich einem Daltongitter immer wieder zu Berührungsstellen kommt, die als Strömungshindernis und Strömungsumlenkungsstellen wirken. Darüber hinaus wirken diese Berührungsstellen als Abstützung der Platten aneinander und haben somit Stabilisierungsfunktion für die Platten 10, insbesondere bezüglich dem Bestimmungsverhalten der Platten 10. Um einen in der Fig. 8 dargestellten gleichmäßigen Wert des hydraulischen Durchmessers zwischen zwei Platten zu erhalten, ist die Anordnung der Berührstellen der Profile benachbarter Platten wichtig. Diese ergeben sich aus den Wellenprofilen einander zugewandter Seiten der Platten sowie aus den Profilverläufen. Ein gleichmäßiger hydraulischer Durchmesser stellt einen gleichmäßigen Durchfluss des Fluids über ein
10 Wellenprofil hinweg und über die gesamte Breite des Plattenzwischenraums sicher. Durch konstruktive Gestaltungsauswahl des Wellenprofils wird ein für
15 den Anwendungszweck optimierter hydraulischer Durchmesser erreicht.
20

Die Fig. 4 zeigt in vergrößerter Darstellung eine Platte 10 mit einem Wellenprofil 12, welches durch die Schenkel 14, welche zu einander einen Schenkelwinkel β von 45° aufweisen, gebildet wird. Die Platte 10 wird durch einen
30

- 19 -

abgekröpften Rand 17 begrenzt, wobei sich das Wellenprofil 12 bis in den Bereich des Randes 17 hinein erstreckt.

In dieser Fig. ist insbesondere der zwischen zwei Bohrungen 18, von denen 5 eine in einem domförmigen, erhabenen Bereich 19 ausgebildet ist, gezeigt. Im Bereich zwischen den beiden Bohrungen 18, der sich insbesondere auch in den Bereich zwischen den Bohrungen 18 und dem nahe liegenden Rand 17 erstreckt, sind Verteilerkanäle 22 ausgebildet. Die Verteilerkanäle 22 werden dabei durch einen Wellenprofil 23 gebildet, welches sich von dem 10 Wellenprofil 12 im restlichen Bereich der Platte 10 hinsichtlich des Schenkelwinkel und der Schenkellängen unterscheidet. Die Schenkelwinkel liegen insbesondere in einem Bereich unterhalb von 45° . Die Verteilerkanäle 22 führen insbesondere im Bereich der Bohrung, welche nicht in einem erhabenen Bereich 19 eingebbracht ist, in den entsprechenden Zwischenraum ein- 15 tretende Medium quer zur Haupterstreckung der Platte 10 und sorgen somit für eine gleichmäßige Verteilung des Fluidstroms über die gesamte Breite der Platte hinweg. Der erhabene Bereich 19, in den die andere Bohrung 18 eingebbracht ist, liegt dabei insbesondere am Bohrungsbereich der in einem Stapel darüberliegenden Platte 10 dichtend an und kann mit diesem durch 20 Hartlöten verbunden sein. Hierdurch wird ein fluiddichter Abschluss zum Zwischenraum 20 zu der darüber liegenden Platte 10 geschaffen, sodass zwischen dieser Bohrung 18 und dem Zwischenraum keine Medienströmung erfolgen kann und das durch diese Bohrung 18 durchströmende Medium erst hinter der darüber liegenden Platte 10 in den dann folgenden Zwischenraum 25 20 eintreten kann. Die Bohrungen 18 können zur Querschnittserhöhung auch langlochförmig ausgebildet sein, die Langlochachse erstreckt sich dann bevorzugt quer zur Hauptdurchströmungsrichtung H.

Weiter kann, wie in der Figur 4a gezeigt, ein profilverfreier Ringbereich 99 um 30 einen domförmig erhabenen Bereich 19 herum einen Kanal bilden, welcher mehrere Wellenprofile 23 und Verteilerkanäle 22 miteinander verbindet und

- 20 -

für eine gute Querverteilung von Medium sorgt, da er einen strömungswiderstandsarmen Bereich bildet. Der Ringbereich 19 weist dabei eine Einprägungstiefe auf, die im Wesentlichen der Einprägungstiefe des Wellenprofils 23 entspricht.

5

Die Fig. 5 zeigt in einer Aufsicht die Darstellung einer Abschlussplatte 24, welche vier Anschlussflansche 25 aufweist, die fluchtend zu den Bohrungen 18 der Platten 10 eines Plattenstapels 21 angeordnet sind. Eine solche Abschlussplatte kann einerseits oder beiderseits des Stapel 10 angeordnet sein und diesen nach außen hin abschließen. Die Abschlussplatte 24 weist zumindest auf der außen liegenden Seite keine Wellenprofil 12 auf. Wird beiderseits des Plattenstapels jeweils eine Abschlussplatte 24 angeordnet, so ist es möglich, dass eine der beiden Platten vier Anschlussflansche 25 aufweist oder aber, dass eine Platte ein, zwei oder drei Anschlussflansche 25, und die gegenüberliegende Platte die restliche Anzahl der 4 Anschlussflansche 25 aufweist. Die Anschlussflansche 25 sind jeweils den Anschlussbohrungen zugeordnet. Die Anschlussflansche 25 dienen dem Anschluss der externen Leitungen für die Zufuhr und Abfuhr von Arbeitsmedium und Kühlmedium. Darüber hinaus verstellt die Abschlussplatte 24 den Plattenstapel 21 und bildet die stimseitige Gehäusewandung. Dabei kann die Abschlussplatte 24 einen Rand 17 aufweisen, der an den Rand 17 der Platten 10 angepasst ist. Die übereinander liegenden Ränder 17 der Platten bilden in einem Plattenstapel 21, wie er in der Fig. 2 dargestellt ist, die seitliche Gehäusewandung des Wärmeübertragers. Ein Plattenstapel gemäß der Fig. 2, versehen mit Anschlussflanschen 25 und einer Abschlussplatte 24 bildet somit einen Wärmeübertrager. Ein solcher Wärmeübertrager kann insbesondere als Ölkühler in einem Fahrzeug dienen.

30

Die Figur 6 zeigt einen Plattenstapel 21, bestehend aus einer Grundplatte 88, aus Platten 10 und aus einer Abdeckplatte 89, die drei Bohrungen 18, 18a aufweist. Die Bohrungen 18 dienen der Führung eines ersten Mediums,

- 21 -

das zwischen den Platten so durchgeführt wird, dass die Plattenzwischenräume 20 parallel zueinander durchströmt werden. Durch die Bohrung 18a tritt ein zweites Medium in den Plattenstapel ein, das durch die Bohrung 18b in der Grundplatte wieder aus dem Plattenstapel austritt.

5

Durch zumindest eine zwischen den Bohrungen 18a und 18b angeordnete und von außen nicht sichtbare Trennwand werden die Strömungskanäle für das zweite Medium in zumindest zwei Strömungspfade aufgeteilt, die nacheinander durchströmt werden und jeweils aus einem oder mehreren Strömungskanälen bestehen. Die Strömungskanäle für das erste Medium werden dagegen parallel durchströmt. Bei einem abgewandelten Ausführungsbeispiel werden die Strömungskanäle für das erste Medium dagegen ebenfalls in zumindest zwei Strömungspfade aufgeteilt, die nacheinander durchströmt werden.

15

Die Fig. 7a bis 7d zeigen unterschiedliche Ausrichtungen der Hauptdurchströmungsrichtung H des Plattenzwischenraums 20 in Bezug auf die Gravitationsrichtung G in Einbaulage des Wärmeübertragers, sowie den günstigen Einfluss auf die Verteilung des Mediums im Plattenzwischenraum insbesondere bei der Verwendung als Kondensator. Die Figuren 7a und 7c zeigen den Anwendungsfall eines Verdampfers. Aus den Fig. 7a und 7c ist ersichtlich, dass die Hauptdurchströmungsrichtung H quer oder antiparallel der Gravitationsrichtung G erfolgen sollte, je nachdem ob die längere L oder die schmalere Seite S der Platten in Gravitationsrichtung G ausgerichtet ist, falls es sich um ein flüssiges Medium handelt. Durch die Gravitation wird eine Querverteilung des Mediums bezüglich der Hauptdurchströmungsrichtung unterstützt. Dagegen zeigen die Fig. 7b und 7d, dass sich ein gasförmiges Medium am besten zwischen den Platten 10 verteilt, wenn die Gravitationsrichtung G der Verteilung des Mediums zwischen den Platten entgegenwirkt.

25
30

- 22 -

Die Figur 8 zeigt den hydraulischen Durchmesser über ein gesamtes Wellenprofil in der Hauptdurchströmungsrichtung H hinweg, wobei in Fig. 8a die Ausbildung des Wellenprofils 23 mit den sich als Kreise 98 eingezeichneten Berührstellen benachbarter Platten 10 dargestellt ist. Man sieht, dass sich das Wellenprofil über die Gesamte Periode des sich aus dem aus den Wellenprofilen 23 der benachbarten Platten ergebenden Musters hinweg in einer Bandbreite zwischen 1,2 und 1,6 bewegt und im Mittel ungefähr 1,4 beträgt. Die Ausbildung der Wellenprofile wird bevorzugt so gewählt, dass sich ein möglichst konstanter hydraulischer Durchmesser in der Hauptdurchströmungsrichtung ergibt.

In Fig. 8a sind die Berührungsstellen zwischen zwei zueinander benachbarten Platten des Wärmeübertragers in einer Aufsicht auf eine der Platte als Kreise dargestellt. Es ist deutlich zu erkennen, dass die Berührungsstellen gleichmäßig über die Plattenfläche verteilt sind. Eine bevorzugte Flächen-dichte der Berührungsstellen für eine ausreichende Festigkeit ist 4 bis 7 pro cm^2 , besonders bevorzugt von 5 bis 6 pro cm^2 . Dies wird anhand Fig. 8b, 8c deutlich.

Fig. 8b zeigt den hydraulischen Durchmesser hD eines Strömungskanals zwischen zwei Platten über mehrere Profilperioden hinweg, und zwar wiederum in Hauptströmungsrichtung H des Mediums. Eine große Flächen-dichte der Berührungsstellen lässt einen Verlauf erwarten, der durch die durchbrochene Kurve in Fig. 8b dargestellt ist, da viele Berührungsstellen in Hauptströmungsrichtung H gesehen nebeneinander angeordnet den Strömungskanalquerschnitt einschränken. Dies wird durch die Einbrüche 40 im hydraulischen Durchmesser verdeutlicht. Durch die erfindungsgemäße Aus-gestaltung, insbesondere die gleichmäßige Verteilung der Berührungsstellen, werden diese Einbrüche beseitigt oder reduziert, so daß sich der durch-gezogen dargestellte Verlauf für den hydraulischen Durchmesser ergibt. Je weniger dieser Einbrüche ein Strömungskanal aufweist, desto weniger Eng-

- 23 -

stellen für das strömende Medium weist der Kanal auf, das heißt der Druckverlust kann bei gleicher Flächendichte der Berührungsstellen verringert werden.

- 5 Eine gleichmäßige Verteilung wird insbesondere dadurch erreicht, dass ein Krümmungsbereich zwischen zwei insbesondere geradlinigen Schenkeln eines Wellenprofils einer Platte nicht genau über einem Krümmungsbereich einer benachbarten Platte zu liegen kommt. Unter Umständen ist es vielmehr
10 vorteilhaft, wenn die Krümmungsbereiche benachbarter Platten – in Hauptströmungsrichtung gesehen – derart zueinander versetzt sind, dass jeder Krümmungsbereich quer zur Hauptströmungsrichtung von zwei Berührungsstellen der beiden Platten flankiert wird, die vorteilhafterweise einen gleichen oder ähnlichen Abstand zueinander aufweisen wie zu anderen Berührungsstellen und somit zwischen sich einen Strömungsdurchlass freigeben, der
15 eine nennenswerte Durchströmung erlaubt und damit nicht in unerwünschtem Ausmaß zu einem Druckverlust des zwischen den Platten ausgebildeten Strömungskanals beitragen. Der Abstand zwischen zwei Berührungsstellen ist andererseits auch nicht zu groß zu wählen, da sich ansonsten unter Umständen lokale Schwachpunkte in der Festigkeit des Wärmeübertragers bilden könnten.
20

In Fig. 8c ist eine Auftragung der Festigkeit F und des Druckverlustes DV eines Wärmeübertragers über der Dichte BD der Berührungsstellen zwischen zwei Platten dargestellt. Die Festigkeit des Wärmeübertragers steigt
25 mit der Berührungsstellendichte BD linear an und schlägt sich in Fig. 8c als Gerade 41 nieder. Im Gegensatz dazu weist der Druckverlust DV in dieser Auftragung (42) eine Progression auf; so dass sich für das Verhältnis F/DV von Festigkeit F zu Druckverlust DV ein Maximum 43 bei einer Berührungsstellendichte BD1 ergibt. Wird nun der Druckverlust erfindungsgemäß abgesenkt (44), so wird das erwähnte Maximum erhöht (45) und gegebenenfalls
30 zu einer höheren Berührungsstellendichte BD2 verschoben. Experimentell

- 24 -

hat sich gezeigt, dass eine Berührungsstellendichte von 4 bis 7 pro cm², vorzugsweise von 5 bis 6 pro cm², zu einer guten Festigkeit bei akzeptablem Druckverlust führt.

- 5 Anders betrachtet kann, wie in Fig. 8c durch den Pfeil 46 dargestellt, bei gleichbleibendem Druckverlust DV zu einer höheren Berührungsstellendichte BD übergegangen werden, die zu einer erhöhten Festigkeit F des Wärmeübertragers führt.
- 10 In Fig. 9 ist ein Ausschnitt einer Platte 30 eines Wärmeübertragers dargestellt. Die Verbindungspunkte zwischen zwei benachbarten Platten sind durch die Kreuzungspunkte der jeweiligen Wellenprofile der beiden Platten gegeben. Um zu erreichen, daß ein Abstand zwischen dem Plattenrand und den randnahen Kreuzungspunkten nicht zu groß ist, ist es unter Umständen vorteilhaft, die Geometrie der äußersten Schenkel gegenüber der Geometrie der platteninneren Schenkel der Wellenprofile abzuändern. Bei der Platte in Fig. 9 unterscheidet sich aus diesem Grund der Schenkelwinkel 2b der äußeren Schenkel 31 von dem Schenkelwinkel 2a der inneren Schenkel 32. Wie in Fig. 9 zu sehen ist, beträgt der halbe Schenkelwinkel b in einem Randbereich der Platte 30 beispielsweise 60° bei einem halben Schenkelwinkel von 45° in einem Mittelbereich der Platte. Dadurch wird in Randbereichen 33 der Platten eine gleichmäßige Verteilung der Verbindungspunkte und damit eine gesteigerte Druckfestigkeit des Wärmeübertragers erreicht.
- 15
- 20
- 25 Fig. 10 zeigt eine Platte 35 eines Wärmeübertragers, bei der sich ein Wellenprofil 34 bis zum umgekröpften Plattenrand 36 erstreckt, wobei ein verbleibender Kanal 37, der unter Umständen eine unerwünschte Bypassströmung zuläßt, einen sehr geringen Querschnitt aufweist, so daß die Bypassströmung reduzierbar ist. Insbesondere bei einem gelöteten Wärmeübertrager, das heißt wenn die Platte 35 lotplattiert ist, bilden sich zwischen den äußersten Schenkeln 38 des Wellenprofils 34 und dem umgekröpften Plat-
- 30

- 25 -

tenrand 36 Lotmenisken aus, die den Randkanal 37 verkleinern oder besonders vorteilhaft verschließen.

Um eine Verkleinerung des durch den Wärmeübertrager verursachten
5 Druckverlustes zu bewirken, sind die Durchbrüche 38 der Platte und damit
die Querschnitte der dadurch gebildeten Sammelkanäle ovalförmig verbreitert.

Fig. 11a zeigt einen Querschnitt einer Platte 41 eines Wärmeübertragers 42,
10 der aus mehreren Platten 41 aufgebaut ist, wie in Fig. 11b abgebildet. Die
Platten 41 weisen als Zuflussleitungen und Abflussleitungen je ein paar Bohrungen 43 senkrecht zur Plattenebene auf, wobei die Bohrungen 43 gegenüber
15 der Grundebene der jeweiligen Platte 41 derart erhaben sind, dass eine fluidische Verbindung von einer der beiden Bohrungen alternierend nur zu jedem zweiten Plattenzwischenraum 44 besteht. Wie in Fig. 11b zu sehen ist, liegt jeweils eine erhabene Bohrung 43 an einem nicht erhabenen Bereich einer benachbarten Platte 41 an, so dass die Höhe des erhabenen Bereiches beispielsweise so groß ist wie die Höhe eines Wellenprofils der Platte 41.

20 Fig. 12a zeigt einen Querschnitt einer Platte 51 eines Wärmeübertragers 52, der aus mehreren Platten 51 aufgebaut ist, wie in Fig. 12b abgebildet. Die Platten 51 weisen als Zuflussleitungen und Abflussleitungen je ein paar Bohrungen 53 senkrecht zur Plattenebene auf, wobei die Bohrungen 53 gegenüber der Grundebene der jeweiligen Platte 51 derart erhaben sind, dass eine fluidische Verbindung von einer der beiden Bohrungen alternierend nur zu jedem zweiten Plattenzwischenraum 54 besteht. Wie in Fig. 12b zu sehen ist, liegt jeweils eine erhabene Bohrung 53 an einer erhabenen Bohrung 53 einer benachbarten Platte 51 an, so dass die Höhe des erhabenen Bereiches beispielsweise nur halb so groß ist wie die Höhe eines Wellenprofils der Platte 41. Durch diese Bauweise reduziert sich unter Umständen eine Mate-

- 26 -

rialausdünnung beim Herstellen der erhabenen Bereiche, so dass eine Zugfestigkeit, d.h. Innendruckfestigkeit des Wärmeübertragers 52 zumindest in diesen Bereichen günstig beeinflusst wird.

5

10

15

20

25

30

P a t e n t a n s p r ü c h e

5

1. Wärmeübertrager, insbesondere Ölkühler, für Kraftfahrzeuge, wobei
der Wärmeübertrager aus miteinander verbundenen Platten gebildet
wird, wobei zwischen den Platten nach außen hin abgeschlossene
Hohlräume ausgebildet sind, welche über jeweils mindestens eine Zu-
flussleitung und Abflussleitung alternierend von einem ersten und ei-
nem zweiten Medium durchströmt werden, wobei die Platten derart
profiliert sind, dass zwischen den jeweiligen Profilen der Platten Be-
rührungsstellen auftreten, im Bereich derer die Platten miteinander
befestigt sind, dadurch gekennzeichnet, daß die Profile der Platten
(10) und ihre Berührstellen derart ausgebildet sind, dass die sich zwi-
schen den Platten (10) ausbildende Strömung von erstem und zwei-
tem Medium von der entsprechenden Zuflussleitung zur entsprechen-
den Abflussleitung nicht geradlinig verläuft.
2. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, daß die
Platten (10) ein sich wiederholendes Wellenprofil (12) aufweisen, wel-
ches sich im Wesentlichen quer zur Hauptdurchflussrichtung (H) er-
streckt und insbesondere zickzackförmig um die Erstreckungsrichtung
herum gewellt ist.
3. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
durch gekennzeichnet, dass das Wellenprofil (12) zwischen Krüm-
mungsbereichen geradlinig verlaufende Schenkel (14) aufweist, wobei
das Wellenprofil (12) durch die Schenkellänge (15) der Schenkel (14),

- 28 -

den zwischen den Schenkeln (14) gegebenen Schenkelwinkel (13) und die Profiltiefe des Wellenprofils charakterisiert ist.

4. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
5 durch gekennzeichnet, dass die Gestalt des Wellenprofils durch den Verlauf des Profils im Bereich der Schenkel und der Krümmungsbe-
reiche charakterisiert ist, wobei einander benachbarte Profile sich in einer vorgegebenen Teilung wiederholen.
- 10 5. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
durch gekennzeichnet, dass das Wellenprofil auf der Außenseite ei-
nes Wellenrückens einen Flachbereich aufweist.
- 15 6. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
durch gekennzeichnet, dass der Flachbereich im Querschnitt des Wellenprofils zwischen 0,1 mm und 0,4 mm liegt.
- 20 7. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
durch gekennzeichnet, dass der Schenkelwinkel (13) vorzugsweise zwischen 45° und 135°, vorzugsweise um 90° beträgt.
- 25 8. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
durch gekennzeichnet, dass die Profiltiefe zwischen 0,3 mm und 2 mm, bei flüssigen Medien vorzugsweise zwischen 0,5 mm und 1 mm liegt und insbesondere zwischen 0,7 mm und 0,8 mm beträgt und bei gasförmigen Medien vorzugsweise im Bereich zwischen 0,6 mm und 2 mm liegt und insbesondere um 1,5 mm beträgt.
- 30 9. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
durch gekennzeichnet, dass die Schenkelänge (15) im Bereich von 8

- 29 -

mm bis 15 mm und insbesondere im Bereich von 9 mm bis 12 mm liegt.

10. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
durch gekennzeichnet, dass das Wellenprofil (12) als Einprägung in
der Platte (10) ausgebildet ist, wobei die Platten (10) vorzugsweise
aus einem metallischen Werkstoff, insbesondere Aluminium bestehen,
wobei die Platten vorzugsweise auf wenigstens einer Seite mit
Löthilfsmaterial beschichtet sind.
10
11. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
durch gekennzeichnet, dass die Platten (10) als Zuflussleitungen und
Abflussleitungen je ein paar Bohrungen (18) senkrecht zur Platten-
ebene aufweisen, wobei die Bohrungen (18) gegenüber der Grund-
ebene derart erhaben sind, dass eine fluidische Verbindung von einer
15 der beiden Bohrungen alternierend nur zu jedem zweiten Plattenzu-
schenraum (20) besteht.
15
12. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
durch gekennzeichnet, dass der erhabene Bereich wenigstens eines
Teils der Bohrungen von einem vorzugsweise ringförmig herumfüh-
renden, wellenprofilfreien Bereich umgeben ist.
20
13. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
durch gekennzeichnet, dass im Bereich der den Zuflussleitungen zu-
geordneten Bohrungen (18) Verteilerkanäle (23) vorgesehen sind,
welche vorzugsweise durch ein Wellenprofil (12) mit einem Schenkel-
winkel, der gegenüber dem Schenkelwinkel des Wellenprofils erhöht
ist, gegeben sind.
25

30

- 30 -

14. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die den Zuflussleitungen zugeordneten Bohrungen oval, elliptisch oder rechteckig sind.
- 5 15. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass alternierend zwei voneinander hinsichtlich des Wellenprofils (12) verschiedene Platten (10) Verwendung finden, wobei die Wellenprofile (12) sich wenigstens hinsichtlich eines der Merkmale aus Schenkellänge (15), Schenkelwinkel (13) und Profiltiefe unterscheiden.
- 10 16. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wellenprofil (12) der einen Seite der Platte (10) sich von dem Wellenprofil (12) der anderen Seite der Platte (10) wenigstens hinsichtlich eines der Merkmale aus Schenkellänge (15), Schenkelwinkel (13) und Profiltiefe unterscheidet.
- 15 17. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wellenprofil benachbarter Platten zueinander identisch ist.
- 20 18. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmeübertrager aus einem Stapel (21) von Platten (10) gebildet wird, wobei die Platten (10) einander entsprechen und alternierend um 180° zueinander verdreht angeordnet sind.
- 25 19. Wärmeübertrager insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Platten (10) einen abgekröpften Rand (17) aufweisen, wobei die Ränder (17) benachbarter
- 30

- 31 -

Platten (10) aneinander anliegen und vorzugsweise durch Hartlöten miteinander verbunden sind.

20. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
5 durch gekennzeichnet, dass sich der abgekröpfte Rand (17) mehrerer, insbesondere von bis zu fünf Platten (10) überlappt.
21. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
10 durch gekennzeichnet, dass das Wellenprofil (12) sich in den Rand (17) hinein, insbesondere über den Rand (17) hinweg erstreckt.
22. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
15 durch gekennzeichnet, dass zwischen dem Ende des Wellenprofils und dem Rand ein profilver Biegeabschnitt ausgebildet ist, dessen Breite geringer als 2 mm ist und vorzugsweise derart bestimmt ist, dass beim Hartlöten der Platten der Biegebereich in Wellenkammabschnitten mit Lot derart zugesetzt wird, dass ein Durchfluss von Medium im Biegeabschnitt reduziert oder im wesentlichen verhindert wird.
- 20 23. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
25 durch gekennzeichnet, dass wenigstens einer Stimseite des Wärme- übertragers eine insbesondere zumindest außenseitig profillose Abschlussplatte (24) zugeordnet ist, welche vorzugsweise Anschlussstellen (25) für ein erstes und zweites Medium aufweisen, welche in Anschlussleitungen münden und fluchtend zu den Bohrungen (18) angeordnet sind.
24. Wärmeübertrager nach einem der vorhergehenden Ansprüche, da-
30 durch gekennzeichnet, dass der hydraulische Durchmesser (hD) in Haupterstreckungsrichtung (D) eine Schwankung von höchstens 25%,

- 32 -

insbesondere höchstens 15%, insbesondere höchstens 10%, um einen Mittelwert aufweist.

- 5 25. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der hydraulische Durchmesser (hD) einen Mittelwert zwischen 1 mm und 4 mm aufweist, wobei er bei flüssigen Medien vorzugsweise 1 mm und 2 mm und vorzugsweise um 1,4 mm liegt und wobei er bei gasförmigen Medien vorzugsweise um 3 mm liegt.
- 10 26. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Berührungsstellen zwischen zwei zueinander benachbarten Platten gleichmäßig über die Plattenfläche verteilt sind.
- 15 27. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Berührungsstellen zwischen zwei zueinander benachbarten Platten eine Flächendichte von 4 bis 7 pro cm², insbesondere von 5 bis 6 pro cm² aufweisen.
- 20 28. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in Plattenzwischenräumen ein Phasenübergang eines Mediums erfolgt.
- 25 29. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einbaulage des Wärmeübertragers so bestimmt ist, dass die Querverteilung des Mediums in den Plattenzwischenräumen durch Gravitation unterstützt wird.
- 30 30. Verfahren zum Herstellern eines Wärmeübertragers insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeich-

- 33 -

net, dass das Verfahren insbesondere die Schritte des Prägens der Platten (10), des Stapelns der Platten (10) aufeinander und des Befestigens aneinander, vorzugsweise durch Hartlöten umfasst.

- 5 31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, dass das stapeln der Platten aufeinander so erfolgt, dass zwei benachbarte Platten (10) jeweils um 180 Grad zueinander verdreht sind.
- 10 32. Verfahren nach Anspruch 30 oder 31, dadurch gekennzeichnet, dass das Hartlöten derart erfolgt, dass die Platten (10) an ihrem Rand dichtend miteinander verbunden sind, wobei vorzugsweise gleichzeitig ein Verbinden benachbarter Platten (10) an Berührungsstellen von Wellenprofilen (12) miteinander erfolgt.

Fig. 1a

Fig. 2

Fig. 4a

Fig. 4c

Fig. 7d

Fig. 8b

Fig. 8c

Fig. 9

Fig. 10

Fig. 11a

Fig. 11b

Fig. 12a

Fig. 12b

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP2004/008542

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 F28D9/00 F28F3/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 F28D F28F
--

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
--

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	EP 1 070 928 A (DAIKIN IND LTD) 24 January 2001 (2001-01-24) paragraphs '0040!, '0043!, '0086! ----- X DE 199 59 780 A (PATENTE REHBERG LAUER GBR) 13 June 2001 (2001-06-13) the whole document ----- -/-	1-5, 7, 10-14, 17-20, 23, 26, 28-32 1-4, 7, 10, 11, 13, 14, 17-20, 23, 26, 28-32

Further documents are listed in the continuation of box C

Patent family members are listed in annex.

* Special categories of cited documents.

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
---	--

4 January 2005	14/01/2005
----------------	------------

Name and mailing address of the ISA	Authorized officer
-------------------------------------	--------------------

European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx 31 651 epo nl, Fax (+31-70) 340-3016	Bain, D
---	---------

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP2004/008542

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	US 5 988 269 A (PIHLAJANIEMI VEIKKO ET AL) 23 November 1999 (1999-11-23) the whole document -----	1-5, 7, 10-14, 17-20, 23, 26, 28-32
X	WO 86/05866 A (TORELL AB) 9 October 1986 (1986-10-09) the whole document -----	1-4, 7, 10-14, 17-20, 23, 26, 28-32
X	FR 2 821 926 A (CIE IND D APPLIC THERMIQUES) 13 September 2002 (2002-09-13) the whole document -----	1-4, 7-12, 14, 17-19, 23, 26, 28-32

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No	
PCT/EP2004/008542	

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 1070928	A 24-01-2001	JP 3292128 B2 JP 11248392 A DE 69907662 D1 DE 69907662 T2 EP 1070928 A1 HK 1033168 A1 US 6394178 B1 CN 1287610 T WO 9944003 A1		17-06-2002 14-09-1999 12-06-2003 06-11-2003 24-01-2001 19-09-2003 28-05-2002 14-03-2001 02-09-1999
DE 19959780	A 13-06-2001	DE 19959780 A1 DE 19917761 C1		13-06-2001 18-01-2001
US 5988269	A 23-11-1999	SE 504868 C2 AT 204069 T AU 707014 B2 AU 7354696 A DE 69614402 D1 DE 69614402 T2 DK 857288 T3 EP 0857288 A1 ES 2160259 T3 JP 11513785 T PT 857288 T SE 9503709 A WO 9715798 A1		20-05-1997 15-08-2001 01-07-1999 15-05-1997 13-09-2001 29-05-2002 01-10-2001 12-08-1998 01-11-2001 24-11-1999 28-12-2001 24-04-1997 01-05-1997
WO 8605866	A 09-10-1986	AT 57433 T AT 43902 T DE 3663849 D1 DE 3674927 D1 EP 0258236 A1 EP 0250439 A1 WO 8605867 A1 WO 8605866 A1		15-10-1990 15-06-1989 13-07-1989 15-11-1990 09-03-1988 07-01-1988 09-10-1986 09-10-1986
FR 2821926	A 13-09-2002	FR 2821926 A1		13-09-2002

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/008542

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 F28D9/00 F28F3/04

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationsymbole)
IPK 7 F28D F28F

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 1 070 928 A (DAIKIN IND LTD) 24. Januar 2001 (2001-01-24) Absätze '0040!, '0043!, '0086!	1-5, 7, 10-14, 17-20, 23, 26, 28-32
X	DE 199 59 780 A (PATENTE REHBERG LAUER GBR) 13. Juni 2001 (2001-06-13) das ganze Dokument	1-4, 7, 10, 11, 13, 14, 17-20, 23, 26, 28-32

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderscher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *g* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

4. Januar 2005

14/01/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx 31 651 epo nl,
Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Bain, D

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/008542

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 5 988 269 A (PIHLAJANIEMI VEIKKO ET AL) 23. November 1999 (1999-11-23) das ganze Dokument -----	1-5, 7, 10-14, 17-20, 23, 26, 28-32
X	WO 86/05866 A (TORELL AB) 9. Oktober 1986 (1986-10-09) das ganze Dokument -----	1-4, 7, 10-14, 17-20, 23, 26, 28-32
X	FR 2 821 926 A (CIE IND D APPLIC THERMIQUES) 13. September 2002 (2002-09-13) das ganze Dokument -----	1-4, 7-12, 14, 17-19, 23, 26, 28-32

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/008542

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 1070928	A	24-01-2001		JP 3292128 B2 JP 11248392 A DE 69907662 D1 DE 69907662 T2 EP 1070928 A1 HK 1033168 A1 US 6394178 B1 CN 1287610 T WO 9944003 A1	17-06-2002 14-09-1999 12-06-2003 06-11-2003 24-01-2001 19-09-2003 28-05-2002 14-03-2001 02-09-1999
DE 19959780	A	13-06-2001		DE 19959780 A1 DE 19917761 C1	13-06-2001 18-01-2001
US 5988269	A	23-11-1999		SE 504868 C2 AT 204069 T AU 707014 B2 AU 7354696 A DE 69614402 D1 DE 69614402 T2 DK 857288 T3 EP 0857288 A1 ES 2160259 T3 JP 11513785 T PT 857288 T SE 9503709 A WO 9715798 A1	20-05-1997 15-08-2001 01-07-1999 15-05-1997 13-09-2001 29-05-2002 01-10-2001 12-08-1998 01-11-2001 24-11-1999 28-12-2001 24-04-1997 01-05-1997
WO 8605866	A	09-10-1986		AT 57433 T AT 43902 T DE 3663849 D1 DE 3674927 D1 EP 0258236 A1 EP 0250439 A1 WO 8605867 A1 WO 8605866 A1	15-10-1990 15-06-1989 13-07-1989 15-11-1990 09-03-1988 07-01-1988 09-10-1986 09-10-1986
FR 2821926	A	13-09-2002	FR	2821926 A1	13-09-2002

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.