Normativa Tecnica NTC 2018

- 1 PREMESSE
- 2 SICUREZZA E PRESTAZIONI ATTESE
- 3 AZIONI SULLE COSTRUZIONI
- 4 COSTRUZIONI CIVILI E INDUSTRIALI
- 5 PONTI
- 6 PROGETTAZIONE GEOTECNICA
- 7 PROGETTAZIONE PER AZIONI SISMICHE
- 8 COSTRUZIONI ESISTENTI
- 9 COLLAUDO STATICO
- 10 REDAZIONE DEI PROGETTI STRUTTURALI ESECUTIVI E DELLE RELAZIONI DI CALCOLO
- 11 MATERIALI E PRODOTTI AD USO STRUTTURALE
- 12 RIFERIMENTI TECNICI

Documenti di riferimento

- NTC 2008 e circolare esplicativa
- EN 1990. Eurocode-Basis of Design
- EN 1997-1. Eurocode7: Geotechnical Design –Part 1: General Rules.
- EN 1998-1. Eurocode8: Design of structures for earthquake resistance -Part 1: General Rules, seismic actions and rules for buildings.
- EN 1998-5. Eurocode8: Design of structures for earthquake resistance -Part 5: Foundations, retaining structures and geotechnical aspects
- AGI (2005). Linee guida sugli aspetti geotecnicidella progettazione in zona sismica

Normativa Tecnica

2 SICUREZZA E PRESTAZIONI ATTESE

..

2.2. REQUISITI DELLE OPERE STRUTTURALI

2.2.1. STATI LIMITE ULTIMI (SLU)

- a) perdita di equilibrio della struttura o di una sua parte, considerati come corpi rigidi;
- b) spostamenti o deformazioni eccessive;
- c) raggiungimento della massima capacità di parti di strutture, collegamenti, fondazioni;
- d) Raggiungimento della massima capacità della struttura nel suo insieme;
- e) Raggiungimento di una condizione di cinematismo irreversibile;
- f) Raggiungimento di meccanismi di collasso nei terreni;
- g) rottura di membrature e collegamenti per fatica;
- h) rottura di membrature e collegamenti per altri effetti dipendenti dal tempo;
- i) instabilità di parti della struttura o del suo insieme;

Altri stati limite ultimi sono considerati in relazione alle specificità delle singole opere; in presenza di azioni sismiche, gli Stati Limite Ultimi comprendono gli Stati Limite di salvaguardia della Vita (SLV) e gli Stati Limite di prevenzione del Collasso (SLC), come precisato nel § 3.2.1.

$$R_d(F_d, X_d, a_d) \ge E_d(F_d, X_d, a_d)$$

Capacità (resistenza,...)

Domanda (azioni o effetto delle azioni, ...)

Normativa Tecnica

2 SICUREZZA E PRESTAZIONI ATTESE

2.2. REQUISITI DELLE OPERE STRUTTURALI

...

2.2.2. STATI LIMITE DI ESERCIZIO (SLE)

- a) danneggiamenti locali (ad es. eccessiva fessurazione del calcestruzzo) che possano ridurre la durabilità della struttura, la sua efficienza o il suo aspetto;
- b) spostamenti e deformazioni che possano limitare l'uso della costruzione, la sua efficienza e il suo aspetto;
- c) spostamenti e deformazioni che possano compromettere l'efficienza e l'aspetto di elementi non strutturali, impianti, macchinari;
- d) vibrazioni che possano compromettere l'uso della costruzione;
- e) danni per fatica che possano compromettere la durabilità;
- f) corrosione e/o degrado dei materiali in funzione del tempo e dell'ambiente di esposizione che possano compromettere la durabilità.

Altri stati limite sono considerati in relazione alle specificità delle singole opere; in presenza di azioni sismiche, gli Stati Limite di Esercizio comprendono gli Stati Limite di Operatività (SLO) e gli Stati Limite di Danno (SLD), come precisato nel § 3.2.1.

$$C_d \ge E_d$$

Valore limite funzionalità

Effetto delle azioni

Verifiche SLU (la sicurezza)

$$R_d(F_d, X_d, a_d) \ge E_d(F_d, X_d, a_d)$$

$$E_d = f(\gamma_F \cdot \psi_i \cdot F_k, X_k/\gamma_M, a_d)$$

$$E_d = \gamma_E \cdot f'(\psi_i \cdot F_k, X_k/\gamma_M, a_d)$$

$$R_d = 1/\gamma_R \cdot g(\psi_i \cdot F_k, X_k/\gamma_M, a_d)$$

valori di progetto: pedice (d)

valori caratteristici: pedice (k)

coefficienti di combinazione: ψ, (≤1.0, sulle azioni variabili)

coefficienti parziali (γ):

- sulle azioni o sull'effetto delle azioni (domanda): $\gamma_F = \gamma_E$
- sulle resistenze dei materiali: $\gamma_M (\geq 1.0)$
- sulla *capacità* (resistenza del sistema): γ_R (≥ 1.0)

Definizione delle Azioni e Combinazioni

Classificazione in base a:

Natura: dirette, indirette e degrado

Risposta strutturale: statiche, pseudostatiche e dinamiche

Temporale: Permanenti (G, P), Variabili (Q), Eccezionali (A), Sismiche (E)

Valori caratteristici F_k: ...

Coefficienti di combinazione ψ

- valore quasi permanente ψ_{2j}·Q_{kj}: il valore istantaneo superato oltre il 50% del tempo nel periodo di riferimento. Indicativamente, esso può assumersi uguale alla media della distribuzione temporale dell'intensità;
- valore frequente ψ_{1j}·Q_{kj}: il valore superato per un periodo totale di tempo che rappresenti una piccola frazione del periodo di riferimento. Indicativamente, esso può assumersi uguale al frattile 95% della distribuzione temporale dell'intensità;
- valore di combinazione ψ_{0j}·Q_{kj}: il valore tale che la probabilità di superamento degli effetti causati dalla concomitanza con altre azioni sia circa la stessa di quella associata al valore caratteristico di una singola azione.

 ψ_{2k} (quasi permanente) < ψ_{1k} (frequente) < ψ_{0k} (di combinazione)

Definizione delle Azioni e Combinazioni

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k_1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k_2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k_3} + ...$$
 [2.5.1]

- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:
 G₁ + G₂ + P + Q_{b1} + v₀₂ · Q_{b2} + v₀₃ · Q_{b3} + ...
 [2.5.2]
- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$
 [2.5.3]

- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$
 [2.5.4]

- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$
 [2.5.5]

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$
 [2.5.6]

Verifiche SLU (la sicurezza)

SLU EQU: stato limite di equilibrio come corpo rigido (non vengono chiamate in causa le resistenze dei materiali)

SLU STR: stato limite di resistenza della struttura compresi gli elementi di fondazione (si raggiunge la resistenza del materiale strutturale)

SLU GEO: stato limite di resistenza del terreno (si raggiunge la resistenza del materiale 'terreno' (o roccia))

SLU STR SLU GEO

Verifiche SLU: azioni

Coefficienti Υ_F (o Υ_F) amplificativi delle azioni (o degli effetti delle azioni)

Tab. 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\scriptscriptstyle F}$			
Carichi permanenti Gı	Favorevoli	24	0,9	1,0	1,0
	Sfavorevoli	ΥG1	1,1	1,3	1,0
Carichi permanenti non strutturali G2 ⁽¹⁾	Favorevoli		0,8	0,8	0,8
	Sfavorevoli	Υ _{G2}	1,5	1,5	1,3
A miami respisabili O	Favorevoli	ν.	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	Υ _{Qi}	1,5	1,5	1,3

Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Verifiche SLU EQU: colonna EQU

Verifiche SLU di elementi strutturali che non coinvolgano azioni geotecniche: STR, colonna A1 <u>Verifiche SLU di elementi strutturali che coinvolgano azioni geotecniche</u>: **2 Approcci progettuali** con **diverse** combinazioni dei coefficienti parziali γ_F (azioni), γ_M (materiali) e γ_R (resistenze sistema)

Approccio 1. 2 combinazioni dei coeff. parziali : A1M1R1 (STR) e A2M2R2 (GEO)

Approccio 2. 1 combinazione dei coeff. parziali: A1M1R3 (STR/GEO)

Capitoli delle NTC che trattano aspetti geotecnici

6. PROGETTAZIONE GEOTECNICA

- 6.1 DISPOSIZIONI GENERALI
- 6.2 ARTICOLAZIONE DEL PROGETTO
- 6.3 STABILITA' DEI PENDII NATURALI
- 6.4 OPERE DI FONDAZIONE
- 6.5 OPERE DI SOSTEGNO
- 6 6 TIRANTI D'ANCORAGGIO
- 6.7 OPERE IN SOTTERRANEO
- 6.8 OPERE DI MATERIALI SCIOLTI E FRONTI DI SCAVO
- 6.9 MIGLIORAMENTO E RINFORZO DEI TERRENI E DELLE ROCCE
- 6.10 CONSOLIDAMENTO GEOTECNICO DI OPERE ESISTENTI
- 6.11 DISCARICHE CONTROLLATE E DEPOSITI DI INERTI
- 6.12 FATTIBILITA' DI OPERE SU GRANDI AREE

Capitoli delle NTC che trattano aspetti geotecnici

Cap.	3 AZIONI SULLE COSTRUZIONI
	§ 3.2 AZIONE SISMICA
	•••••
Cap.	7 PROGETTAZIONE PER AZIONI SISMICHE
	§ 7.11 OPERE E SISTEMI GEOTECNICI

PROGETTAZIONE GEOTECNICA

CHECK LIST

- 1. Scelta delle opere geotecniche
- 2. Identificazione degli stati limite
- 3. Scelta delle indagini e delle prove geotecniche
- 4. Identificazione dei valori rappresentativi e dei valori caratteristici dei parametri geotecnici
- 5. Identificazione e qualificazione delle azioni; definizione dei loro valori caratteristici
- 6. Scelta dell'approccio progettuale e definizione dei valori di progetto delle azioni, dei parametri geotecnici e delle resistenze
- 7. Verifiche

2. Identificazione degli stati limite

Stabilità globale

Stati limite geotecnici

Stabilità della fondazione

2. Identificazione degli stati limite

Stati limite strutturali

PROGETTAZIONE GEOTECNICA

CHECK LIST

- 1. Scelta delle opere geotecniche
- 2. Definizione degli stati limite
- 3. Programmazione delle indagini geotecniche
- 4. Identificazione dei valori rappresentativi e dei valori caratteristici dei parametri geotecnici
- Identificazione e qualificazione delle azioni; definizione dei loro valori caratteristici
- 6. Scelta dell'approccio progettuale e definizione dei valori di progetto delle azioni, dei parametri geotecnici e delle resistenze
- 7. Verifiche

Un aspetto cruciale riguarda il passaggio dai valori rappresentativi dei parametri geotecnici ai corrispondenti valori caratteristici.

Valori caratteristici dei parametri geotecnici

EN 1997-1 (Eurocodice 7: Geotechnical Design)

Characteristic value as being selected as a cautious estimate of the value affecting the occurrence of the limit state

selected - evidenzia l'importanza dell'*engineering judgment*cautious estimate - è richiesta una certa cautela (o consapevolezza)

limit state - il valore scelto deve riferirsi allo stato limite considerato

QUESTA DEFINIZIONE E' CONDIVISA E ASSUNTA NELLE NTC

Art. 6.2.2

- valore caratteristico = stima ragionata e cautelativa del valore del parametro nello stato limite considerato (cautious estimate secondo EN 1997-1)
- da prove di laboratorio o da interpretazione dei risultati di prove in sito

Circolare C.6.2.2

Due fasi:

- · identificazione dei parametri geotecnici appropriati
- · valutazione dei valori caratteristici

Valori rappresentativi dei parametri geotecnici

Circolare C.6.2.2

Due fasi:

- · identificazione dei parametri geotecnici appropriati
- valutazione dei valori caratteristici

2.4.5.2(7) The governing parameter is often the mean value of a range of values covering a large surface or volume of the ground. The characteristic value should be a cautious estimate of this mean value. (da EN 1997-1)

Circolare C.6.2.2

Due fasi:

- · identificazione dei parametri geotecnici appropriati
- valutazione dei valori caratteristici

Valori caratteristici:

- = valori prossimi ai medi se:
 - · coinvolto un elevato volume di terreno;
 - struttura dotata di rigidezza sufficiente
- = valori prossimi ai valori minimi se:
 - · modesti volumi;
 - · struttura di insufficiente rigidezza

EN 1997-1 punto 2.4.5.2(11)

If statistical methods are used, the characteristic value should be derived such that the calculated probability of a worse value governing the occurrence of the limit state under consideration is not greater than 5%.

Qualora sia il valor medio della proprietà a governare il fenomeno, queste considerazioni si applicherebbero a tale valore, inteso come variabile aleatoria

Metodi statistici

- 1. L'impiego di metodi statistici è possibile, ma non obbligatorio
- 2. Nel determinare i valori caratteristici dei parametri geotecnici, il progettista deve comunque motivare le proprie scelte e adottare un criterio di cautela
- 3. La determinazione dei valori caratteristici deve essere effettuata dopo la scelta dei valori rappresentativi dei parametri geotecnici per i possibili stati limite

Influenza del numero di determinazioni su valore caratteristico

- · Generalmente, non utilizzabili approcci statistici
- · Affidabilità cresce con numero di indagini
- · Premialità (non esplicita) su valore caratteristico
- · Premialità nello spirito delle NTC

Infatti:

- Premialità esplicita per pali
- · Premialità esplicita per ancoraggi

Coefficienti ξ variabili con numero di prove su prototipi

Valori caratteristici dei parametri geotecnici

PROGETTAZIONE GEOTECNICA

CHECK LIST

- 1. Scelta delle opere geotecniche
- 2. Identificazione degli stati limite
- 3. Programmazione delle indagini geotecniche
- 4. Identificazione dei valori rappresentativi e dei valori caratteristici dei parametri geotecnici
- 5. Identificazione e qualificazione delle azioni; definizione dei loro valori caratteristici
- 6. Scelta dell'approccio progettuale e definizione dei valori di progetto delle azioni, dei parametri geotecnici e delle resistenze
- 7. Verifiche

TIPO DI AZIONE

- Permanente
- Variabile

EFFETTO DELL'AZIONE

- Favorevole
- Sfavorevole

PROGETTAZIONE GEOTECNICA

CHECK LIST

- 1. Scelta delle opere geotecniche
- 2. Identificazione degli stati limite
- 3. Programmazione delle indagini geotecniche
- 4. Identificazione dei valori rappresentativi e dei valori caratteristici dei parametri geotecnici
- Identificazione e qualificazione delle azioni; definizione dei loro valori caratteristici
- 6. Scelta dell'approccio progettuale e definizione dei valori di progetto delle azioni, dei parametri geotecnici e delle resistenze
- 7. Verifiche

LE N.T.C. PREVEDONO DUE APPROCCI PROGETTUALI, DISTINTI E ALTERNATIVI

Amplificato Parzialmente amplificato Ridotto Valore caratteristico

AZIONI PARAMETRI MECCANICI	RESISTENZE	AP1-C1	(STR)
-------------------------------	------------	--------	-------

AZIONI PARAMETRI RESISTENZE AP1-C2 (GEO)

AZIONI PARAMETRI RESISTENZE AP2 (STR/GEO)

LE N.T.C. PREVEDONO DUE APPROCCI PROGETTUALI, DISTINTI E ALTERNATIVI

Approccio 1 (AP1)

```
Combinazione 1 (AP1- C1): A1 + M1 + R1 (STR)
Combinazione 2 (AP1- C2): A2 + M2 + R2 (GEO)
```

Approccio 2 (AP2)
$$A1 + M1 + R3$$
 (STR/GEO)

Progettazione Geotecnica

Valori dei coefficienti parziali da utilizzare nei diversi approcci progettuali (AP) AP1: A1M1R1 (STR) e A2M2R2 (GEO); AP2 A1M1R3 (STR/GEO)

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G ₁	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G ₂ (1)	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

sulle azioni o sull'effetto delle azioni $\gamma_F = \gamma_E$

(ii) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti 😗

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente $parziale\gamma_M$	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γ_c	1,0	1,25
Resistenza non drenata	c _{uk}	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

sui parametri del terreno Y_M

Progettazione Geotecnica

Approcci progettuali e coefficienti parziali sulle resistenze γ_{R}

Opere geotecnica	SLU/GEO e Approccio	Y _R	note
Stabilità dei pendii naturali	Stabilità globale: - (val. caratt.)	(-)	$R_k/E_k(>1)$, valut. Progettista
Fondazioni superficiali	Stabilità globale: AP1C2 (A2M2R2) Carico limite: AP2 (A1M1R3) Scorrimento: AP2 (A1M1R3)	1.2 (R2) 2.3 (R3) 1.1 (R3)	
Fondazioni profonde	Stabilità globale: AP1C2 (A2M2R2) Carico limite vert.:AP2 (A1M1R3) Carico limite oriz.:AP2 (A1M1R3)	1.2 (R2) 1.15-1.35 1.3	Valori dipendenti da tipologia di palo
Muri di sostegno	Stabilità globale: AP1C2 (A2M2R2) Carico limite: AP2 (A1M1R3) Scorrimento: AP2 (A1M1R3) Ribaltamento: AP2 (A1M1R3)	1.2 (R2) 1.4 1.1 1.15	
Paratie	Stabilità globale: AP1C2 (A2M2R2) Rotazione rigida: AP1 (A2M2R2)	1.2 (R2) 1.0 (R1/R2)	
Fronti di scavo e rilevati	Stabilità globale: AP1C2 (A2M2R2)	1.1 (R2)	