CSc 301: Numerical Issues in Scientific Programming

Homework Assignment 4

1. Determine the number of intervals required to approximate

$$\int_0^2 \frac{1}{x+4} \, dx$$

to within 10^{-5} and compute the approximation.

- a. Using the Composite Trapezoidal rule;
- b. Using the Composite Simpson's rule;
- c. Using the Composite Gaussian quadrature rule.
- 2. Plot $f(x) = \sin(1/x)$ and $g(x) = \cos(1/x)$ on [0.1, 2]. Use Adaptive quadrature to approximate the integrals

$$\int_{0.1}^{2} f(x) dx$$
 and $\int_{0.1}^{2} g(x) dx$

to within 10^{-3} . Find the number of subintervals used for each function. Are they similar? Explain.

3. Determine constants a, b, c, and d that will produce a quadrature formula

$$\int_{-1}^{1} f(x) dx = af(-1) + bf(1) + cf'(-1) + df'(1)$$

that is exact for all polynomials of degree less then or equal to 3.

4. P 4.3.6 page 155.

P4.3.6 Let Q_n be the equal spacing composite trapezoidal rule:

$$Q_n = h\left(\frac{1}{2}f(x_1) + f(x_2) + \dots + f(x_{n-1}) + \frac{1}{2}f(x_n)\right) \qquad h = \frac{b-a}{n-1},$$

where x = linspace(a, b, n) and we assume that $n \ge 2$. Assume that there is a constant C (independent of n), such that

$$I = \int_{a}^{b} f(x)fx = Q_n + Ch^2.$$

(a) Give an expression for $|I - Q_{2n}|$ in terms of $|Q_{2n} - Q_n|$. (b) Write an *efficient* script that computes Q_{2k+1} , where k is the smallest positive integer so that $|I - Q_{2k+1}|$ is smaller than a given positive tolerance tol. You may assume that such a k exists. You may assume that the integrand function is available in f.m and that it accepts vector arguments.