Programare Logică EXERCIŢII

Exercițiul 1 Fie (S, Σ) o signatură multisortată. O clasă \mathcal{K} de (S, Σ) -algebre se numește *tip abstract de date monomorfic* dacă verifică următoarele proprietăți: (p1) dacă \mathcal{A} și \mathcal{B} sunt (S, Σ) -algebre astfel încât $\mathcal{A} \in \mathcal{K}$ și $\mathcal{A} \simeq \mathcal{B}$, atunci $\mathcal{B} \in \mathcal{K}$, (p2) $\mathcal{A} \simeq \mathcal{B}$ oricare ar fi \mathcal{A} , $\mathcal{B} \in \mathcal{K}$. Dați exemplu de un tip abstract de date monomorfic.

Exercițiul 2 Fie (S, Σ) o signatură multisortată, \mathcal{A} și \mathcal{B} două (S, Σ) -algebre, iar $h: \mathcal{A} \to \mathcal{B}$ un (S, Σ) -morfism. Demonstrați că, oricare ar fi D o subalgebră a lui \mathcal{A} , h(D) este o subalgebră a lui \mathcal{B} .

Exercițiul 3 Scrieți o specificație (S, Σ, Γ) , adecvată pentru algebra $\mathcal{N} = (\mathbb{N}, 0, g, f)$ unde \mathbb{N} este mulțimea numerelor naturale, $0 \in \mathbb{N}$ este constantă, iar $g \colon \mathbb{N} \to \mathbb{N}$ și $f \colon \mathbb{N} \to \mathbb{N}$ sunt definite astfel: g(n) = n + 1 și $f(n) = n \mod 2$ oricare $n \in \mathbb{N}$.

Demonstrați că specificația găsită este adecvată pentru \mathcal{N} .

Exercițiul 4 Fie $(S = \{s\}, \Sigma)$ o signatură monosortată cu $\Sigma = \{1: \rightarrow s, *: ss \rightarrow s, ^{-1}: s \rightarrow s\}$. Fie $\Gamma = \{\gamma_1, \gamma_2, \gamma_3\}$ o mulțime de ecuații, unde

- $(\gamma_1) \ \forall \{x\} 1 * x \doteq x$
- $(\gamma_2) \ \forall \{x\} x * x^{-1} \doteq 1$
- $(\gamma_3) \ \forall \{x, y, z\} x * (y * z) \doteq (x * y) * z$

Justificați faptul că următoarea secvență de identități este o Γ -demonstrație în logica ecuațională, indicând la fiecare pas regula de deducție folosită:

- (e1) $\forall \{a,b\} \ a * (a^{-1} * b) \doteq (a * a^{-1}) * b$
- (e2) $\forall \{a\} \ a * a^{-1} \doteq 1$
- (e3) $\forall \{a, b\} \ (a * a^{-1}) * b \doteq 1 * b$
- (e4) $\forall \{b\} \ 1 * b \doteq b$
- (e5) $\forall \{a, b\} \ (a * a^{-1}) * b \doteq b$
- (e6) $\forall \{a, b\} \ a * (a^{-1} * b) \doteq b$

Exercițiul 5 Fie $(S = \{s\}, \Sigma)$ o signatură monosortată cu $\Sigma = \{*: ss \to s, ^{-1}: s \to s\}$. Dacă $X = \{x, y, z, u, v\}$ este o mulțime de variabile, găsiți o substituție $\sigma: X \to T_{\Sigma}(X)$ astfel încât $\sigma(t_1) = \sigma(t_2)$, unde $t_1 = (x * y) * z$ și $t_2 = v * (u * v)^{-1}$.

Exercițiul 6 Fie $(S = \{s\}, \Sigma)$ o signatură monosortată, unde $\Sigma = \{0: \rightarrow s, g: s \rightarrow s, f: s \rightarrow s\}$. Folosind sistemul de rescriere $R = \{f(g(0)) \rightarrow g(0), g(f(0)) \rightarrow g(0)\}$, rescrieți termenii $t_1 = f(f(g(f(g(0)))))$ și $t_2 = f(f(0))$ până la o formă normală. Caracterizați formele normale ale sistemului R.

Exercițiul 7 Fie (S, Σ) o signatură multisortată și $e = (\forall X)l \doteq r$ o (S, Σ) -ecuatie. Dacă \mathcal{A} este o (S, Σ) -algebră astfel încât $\mathcal{A} \models e$ (\mathcal{A} satisface ecuația e), demonstrați că $\mathcal{A}/\sim\models e$ oricare ar fi \sim o congruență pe \mathcal{A} .

Exercițiul 8 Fie (S, Σ) următoarea signatură: $S = \{elt\},$

 $\Sigma = \{*: elt \, elt \rightarrow elt\}$. Dacă $\Gamma = \{\forall \{x\} \, x * x \doteq x, \, \forall \{x,y\} \, x * y \doteq y * x\}$, demonstrați că $\Gamma \vdash \forall \{x,y\} \, (x * y) * (y * x) \doteq y * x$. Indicați la fiecare pas al demonstrației regulile de deducție folosite.

Exercițiul 9 Fie (S, Σ, Γ) următoarea specificație: $S = \{elt\},$

 $\Sigma = \{0 : \to elt, \ s : elt \to elt\}, \ \Gamma = \{\forall \{x\} \ s(s(s(x))) = x\}.$ Pentru fiecare din următoarele (S, Σ) -algebre cercetați dacă este Γ -algebră inițială și justificați răspunsul dat:

- (a) $\mathcal{N} = (\mathbb{N}, 0, succ), succ(n) = n + 1 \text{ oricare } n \in \mathbb{N},$
- (b) $\mathcal{Z}_3 = (\mathbb{Z}_3, 0, succ), succ(n) = (n+1) mod 3$ oricare $n \in \mathbb{Z}_3$.

Exercițiul 10 Găsiți un unificator pentru termenii

$$t_1 = f(x, g(y, y), x)$$
 și $t_2 = f(z, z, g(w, h(v))),$

unde x, y, z, w și v sunt variabile iar operațile f, g și h au aritățile 3,2,1.

Exercițiul 11 Cercetați dacă sistemul de rescriere

 $R = \{ \forall \{x\} f(g(f(x))) \to g(x), \ \forall \{x\} g(f(g(x))) \to f(x) \}$ este confluent, unde fşi g sunt operații unare.

Exercițiul 12 Determinați signatura atașată următoarei gramatici independente de context: $G = (S_0, N, T, P)$, unde $N = \{A, B\}$, $S_0 = A$, $T = \{a, b\}$ și $P = \{A \rightarrow aAa, A \rightarrow aBa, B \rightarrow Bb, B \rightarrow b\}$.

Exercițiul 13 Fie (S, Σ) o signatură multisortată și

$$(\forall X) l = r \ if \ H$$

o (S, Σ) -ecuație condiționată. Fie \mathcal{A} este o (S, Σ) -algebră astfel încât $\mathcal{A} \models (\forall X) \ l \doteq r \ if \ H$. Demonstrați că $\mathcal{B} \models (\forall X) \ l \doteq r \ if \ H$ oricare ar fi B o subalgebră a lui \mathcal{A} .

Exercițiul 14 Cercetați dacă termenii

$$t_1 = g(z, h(z, v), f(v))$$
 și $t_2 = g(f(x), h(y, f(a)), f(f(b)))$

au un unificator (x, y, z, v sunt variabile, a și b sunt constante iar operațile f, h, g au aritățile 1,2,3).

Pentru următoarele exerciții folosim specificația multisortată (S, Σ, E) , unde:

$$\begin{split} S &= \{nat, bool\}, \\ \Sigma &= \{T : \rightarrow bool, \ F : \rightarrow bool, \ 0 : \rightarrow nat, \ succ \colon nat \rightarrow nat, \ iszero \colon nat \rightarrow bool\}, \\ E &= \{\ \forall \emptyset \ succ(succ(0)) \doteq 0, \\ \forall \emptyset \ iszero(0) \doteq T, \\ \forall \{x\} \ iszero(succ(x)) \doteq F\}. \end{split}$$

Exercițiul 15 Fie R sistemul de rescriere atașat lui E.

- (a) Descrieți T_{Σ} (algebra termenilor fără variabile) și indicați termenii $t \in T_{\Sigma}$ care sunt forme normale pentru R.
- (b) Arătați că R nu este confluent.

Exercițiul 16 Arătați că $E \vdash \forall \emptyset (T \doteq F)$ și scrieți o E-demonstrație formală în logica ecuațională, indicând la fiecare pas regula de deducție folosită.

Exercițiul 17 Arătați că $E \not\vdash \forall \{x\} \ succ(succ(x)) \doteq x$. (Indicație: găsiți o (S, Σ, E) -algebră care nu satisface ecuația.)

Exercițiul 18 Găsiți o (S, Σ, E) -algebră inițială și justificați alegerea facută.

Exercițiul 19 Determinați signatura corespunzătoare următoarei gramatici independente de context:

$$\begin{split} \mathbf{T} &\to \text{true} \,|\, \mathbf{V} \leq \mathbf{V}, & \mathbf{R} \to reg \, n, \quad n \in \{1, 2, 3\}, \\ \mathbf{B} &\to \mathbf{T} \,|\, \mathbf{B} || \mathbf{B} \,|\, !\mathbf{B}, & \mathbf{V} \to \mathbf{N} \,|\, \mathbf{R} \,|\, \mathbf{V} + \mathbf{V} \,|\, \mathbf{V} - \mathbf{V}, \\ \mathbf{N} &\to i, \quad i \in \{0, \dots, 9\}, & \mathbf{E} \to \mathbf{R} = \mathbf{V} \,|\, \{\mathbf{P}\} \,|\, \text{if } \mathbf{B} \,\, \mathbf{E} \,|\, \text{while} \, \mathbf{B} \, \mathbf{E}, \\ \mathbf{N} &\to i\mathbf{N}, \quad i \in \{0, \dots, 9\}, & \mathbf{P} \to \mathbf{E} \,|\, \mathbf{E}; \mathbf{P}, \end{split}$$

unde $\{\text{true}, \leq, ||, !, +, -, =, \{, \}, \text{if, while, }; \} \cup \{reg\, n, i|\, n \in \{1, 2, 3\}, i \in \{0, \dots, 9\}\}$ este mulțimea terminalelor.

Exercițiul 20 Fie (S, Σ) o signatură, \mathcal{K} o clasă de (S, Σ) algebre și \mathcal{I} o algebră inițială în \mathcal{K} . Arătați că dacă $\mathcal{I} \models \forall \emptyset \ (l \doteq r)$ atunci $\mathcal{A} \models \forall \emptyset \ (l \doteq r)$ oricare ar fi $\mathcal{A} \in \mathcal{K}$.

Exercițiul 21 Studiați mulțimea de unificatori a termenilor

```
t_1 = h(f(u), h(g(a, w), v, x), f(w)), \quad t_2 = h(f(g(a, w)), h(v, g(w, a), f(v)), y),
```

unde u, v, w, x, y sunt variabile, a este constantă iar f, g, h sunt operatori cu aritățile 1, 2, 3.

Pentru următoarele exerciții folosim specificația (S, Σ, E) , unde:

```
\begin{split} S &= \{num\}, \\ \Sigma &= \{one :\rightarrow num, \, double \colon num \rightarrow num, \, half \colon num \rightarrow num\}, \\ E &= \{ \,\, \forall \{x\} \,\, double(half(x)) \stackrel{.}{=} x, \\ &\quad \forall \{x\} \,\, half(double(x)) \stackrel{.}{=} x\}. \end{split}
```

Exercițiul 22 Definiți pe $\mathbb Z$ operațiile de Σ -algebră astfel încât structura obținută să fie E-algebră inițială.

Exercițiul 23 Pentru un termen $t \in T_{\Sigma}(\{x\})$, notăm nr(t) = numărul simbolurilor de operație care apar în t. Fie R sistemul de rescriere atașat lui E.

(a) Arătați că dacă $\theta: \{x\} \to T_{\Sigma}(\{x\})$ este o substituție și $\forall \{x\} \ l \to r \in R$, atunci $nr(\theta(l)) = nr(\theta(r)) + 2$.

(Indicație: $\theta: T_{\Sigma}(\{x\}) \to T_{\Sigma}(\{x\})$ este un morfism.)

- (b) Arătați că $t \to_R t'$ implică nr(t) > nr(t').
- (c) Arătaţi că R se termină.

Exercițiul 24 Fie $G = (S_0, N, T, P)$ o gramatica independente de context cu

$$N = \{A, B\}, S_0 = A, T = \{a, b\}$$
şi

- $P = \{A \rightarrow aAB, A \rightarrow BAa, A \rightarrow a, B \rightarrow Bb, B \rightarrow b\}.$
- (a) Determinati signatura atasata gramaticii G.
- (b) Folosind semantica algebrei initiale, contruiti o algebra semantica care sa asocieze unui cuvant $w \in L(G)$ urmatoarea interpetare: Sem(w) = nr(a, w) – nr(b, w), unde nr(x, w) = numarul de aparitii ale literei x in w. Exemplificati pentru w = aaabb.

Exercitiul 25 Fie $S = \{s\}$ si $\Sigma = \{f : s \to s, g : s \to s\}$. Pentru fiecare din sistemele de rescriere de mai jos calculati perechile critice. Cercetati daca aceste sisteme sunt complete.

- (1) $R_1 = \{ f(g(f(x))) \to g(f(g(x))) \},$
- (2) $R_2 = \{f(f(x)) \to f(x)\}\$ (3) $R_3 = \{f(g(f(x))) \to g(f(g(x))), f(f(x)) \to f(x)\}.$

Exercițiul 26 Fie $\Gamma = \{\gamma_1, \gamma_2, \gamma_3, \gamma_4\}$ o multime de clauze Horn, unde

- (γ_1) student2(x): -prof(IL, x)
- $(\gamma_2) \ prof(z,x) : -prof(z,y), serie(x,y)$
- $(\gamma_3) prof(IL, Maria)$
- (γ_1) serie(Andrei, Maria)

(x, y, z sunt variabile; IL, Maria, Andrei sunt constante).

Gasiti o repingere din Γ pentru

: -student2(Andrei)