Simple Quadratic Equations

Example Problems

EXAMPLE 1: Solve the following equation for x,

$$x^2 = 49.$$

SOLUTION: To find the answer to the equation we need to find the square root of both sides of the equation,

$$\sqrt{x^2} = \sqrt{49},$$

the LHS simplifies and for the RHS we can evaluate the square root,

$$x = \pm 7.$$

Note here that the \pm is important since $7^2 = 49$ and $(-7)^2 = 49$ so we use it to indicate that x = -7 or 7.

EXAMPLE 2: Solve the following equation for x,

$$3x^2 - 19 = 56.$$

SOLUTION: In order to simplify the LHS, we first will remove the -19 since it is the last operation performed on x. We can do this by adding 19 to both sides

$$3x^2 - 19 + 19 = 56 + 19,$$
$$3x^2 = 75.$$

Next we will divide both sides by 3,

$$3x^2 \div 3 = 75 \div 3,$$
$$x^2 = 25,$$

and finally square root both sides,

$$\sqrt{x^2} = \sqrt{25},$$
$$x = \pm 5.$$

EXAMPLE 3: Solve the following equation for x,

$$\frac{x^2 - 12}{4} = 13.$$

SOLUTION: To simplify the LHS first we need to notice that the numerator of the fraction has implicit brackets,

$$\frac{(x^2 - 12)}{4} = 13,$$

which means that we first need to multiply both sides by 4,

$$\frac{x^2 - 12}{4} \times 4 = 13 \times 4,$$
$$x^2 - 12 = 52,$$

then we add 12 and square root

$$x^{2} - 12 + 12 = 52 + 12,$$

 $x^{2} = 64,$
 $\sqrt{x^{2}} = \sqrt{64},$
 $x = \pm 8.$

Question Bank

NOTE: Any questions where you get a decimal as an answer can be rounded to 2 decimal places.

- 1. Solve the following equations.
 - (a) $x^2 = 9$

(d) $x^2 = 169$

(b) $x^2 = 1$

(e) $x^2 = 0$

(c) $x^2 = 441$

- (f) $x^2 = 200$
- 2. Solve the following equations.
 - (a) $5x^2 = 45$
 - (b) $13x^2 = 637$
 - (c) $-3x^2 = -27$
 - (d) $x^2 + 14 = 95$
 - (e) $x^2 17 = 47$
 - (f) $x^2 256 = -87$
 - (g) $x^2 36 = 0$
 - (h) $\frac{x^2}{3} = 27$

- (i) $\frac{x^2}{4} = 25$
- (j) $\frac{x^2}{28} = \frac{9}{7}$
- (k) $\frac{x^2}{52} = 3.25$
- (l) $\frac{-x^2}{4} = -16$
- 3. Solve the following equations for x.
 - (a) $5x^2 + 14 = 59$
 - (b) $3x^2 270 = 162$
 - (c) $7x^2 53 = -25$
 - (d) $2x^2 + 42 = 140$
 - (e) $\frac{x^2}{8} 13 = -11$

- (f) $\frac{x^2}{6} + 25 = 49$
- (g) $\frac{x^2}{12} + 15.25 = 22$
- (h) $\frac{x^2}{64} + \frac{15}{4} = 6$
- 4. Solve the following equations for x.
 - (a) $-x^2 = -25$
 - (b) $-3x^2 = -363$
 - (c) $\frac{-x^2}{5} = -20$

- (d) $\frac{-3x^2}{4} = -27$
- (e) $-x^2 + 9 = -40$
- (f) $-x^2 17 = -33$

(g)
$$45 - x^2 = 9$$

(i)
$$14 - 2x^2 = -36$$

(h)
$$23 - x^2 = -58$$

(j)
$$48 - 3x^2 = 11$$

5. Solve the following equations for x.

(a)
$$3(x^2+9)=102$$

(e)
$$5(100 - x^2) = 95$$

(b)
$$8(x^2 - 36) = -160$$

(f)
$$7(83 - x^2) = -427$$

(c)
$$2(3x^2 - 10) = 4$$

(g)
$$-6(2x^2 - 100) = 12$$

(d)
$$11(5x^2 + 21) = 1111$$

(h)
$$3(3-3x^2) = -216$$

6. Solve the following equations for x.

(a)
$$(x^2 + 3) \div 6 = 14$$

(d)
$$\frac{x^2 - 72}{7} = 49$$

(b)
$$(x^2 - 9) \div 10 = 4$$

(e)
$$\frac{8-x^2}{6} = 2$$

(c)
$$\frac{x^2 + 39}{4} = 12$$

(f)
$$\frac{24-2x^2}{12} = -4$$

- 7. Oliver wants to cut a square sheet of paper with an area of 25cm². How long should the sides of the square be?
- 8. The library wants to build 7 identical square study rooms. If the total area of the space will be 63m², what will be the dimensions of the rooms?
- 9. Zena is planning to fashion a sphere out of some sheet metal. If the area of sheet metal she can use is $3,217 \text{cm}^2$, what will be the radius of her sphere? (The surface area (A) of a sphere is given by its radius (r) with the formula $A=4\pi r^2$).
- 10. Layla wants to expand her square paddock so that each side is 3m longer. If the new area of the paddock will be 169m² what was the original area of the paddock?
- 11. Cooper cuts 12 identical squares out of a sheet of A4 paper. The paper has dimensions 297mm by 210mm, if the remaining piece of paper has an area of 41,202mm² what is the side length of each square?

- 12. Natalie drops a ball from the top of a 100m tall building. The height of her ball above the ground (h meters) after t seconds of travel time is modelled by the equation $h = 100 10t^2$.
 - (a) How high will the ball be after 1.5 seconds?
 - (b) After how many seconds will the ball be 10m above the ground.
 - (c) How many seconds will it take for the ball to hit the ground.
- 13. Dylan is being launched into space on a rocket. The computer modelling predicts that his height above sea level (h meters), after t seconds, should be modelled by the equation $h = 150 + 45t^2$.
 - (a) How high above sea level is Dylan before the rocket launches?
 - (b) How long should it take for Dylan to be 1km above sea level?
 - (c) The model is wrong, and Dylan is only ever one quarter the height that the model predicts. How high will be actually be after 7 seconds?
 - (d) With this new reality in mind, how many seconds will it actually take for Dylan to be 1km above sea level?
- 14. A new water bottle is a rectangular prism with a square base. Four of these water bottles are each filled until the water in each bottle reaches 12cm. The total water poured into the bottles is 1,452ml. (Remember that $1 \text{cm}^3 = 1 \text{ml}$)
 - (a) How long are the sides of the square bases on each water bottle?
 - (b) If each water bottle is 20cm tall, how much water would all four bottles hold together?
- 15. Explain why the equation $x^2 + 36 = 0$ has no real solutions.

Answers

- 1. (a) $x = \pm 3$
 - (b) $x = \pm 1$
 - (c) $x = \pm 21$
 - (d) $x = \pm 13$
- 2. (a) $x = \pm 3$
 - (b) $x = \pm 7$
 - (c) $x = \pm 3$
 - (d) $x = \pm 9$
 - (e) $x = \pm 8$
 - (f) $x = \pm 13$
- 3. (a) $x = \pm 3$
 - (b) $x = \pm 12$
 - (c) $x = \pm 2$
 - (d) $x = \pm 7$
- 4. (a) $x = \pm 5$
 - (b) $x = \pm 11$
 - (c) $x = \pm 10$
 - (d) $x = \pm 6$
 - (e) $x = \pm 7$
- 5. (a) $x = \pm 5$
 - (b) $x = \pm 4$
 - (c) $x = \pm 2$
 - (d) $x = \pm 4$
- 6. (a) $x = \pm 9$
 - (b) $x = \pm 7$
 - (c) $x = \pm 3$

- (e) x = 0
- (f) $x = \pm 14.14$ ($x = \pm 10\sqrt{2}$ as an exact value)
- (g) $x = \pm 6$
- (h) $x = \pm 9$
- (i) $x = \pm 10$
- (j) $x = \pm 6$
- (k) $x = \pm 13$
- (1) $x = \pm 8$
- (e) $x = \pm 4$
- (f) $x = \pm 12$
- (g) $x = \pm 9$
- (h) $x = \pm 12$
- (f) $x = \pm 4$
- (g) $x = \pm 6$
- (h) $x = \pm 9$
- (i) $x = \pm 5$
- (j) $x = \pm 3$
- (e) $x = \pm 9$
- (f) $x = \pm 12$
- (g) $x = \pm 7$
- (h) $x = \pm 5$
- (d) $x = \pm 11$
- (e) $x = \pm 4$
- (f) $x = \pm 6$

7. 5cm

- $8.3 \text{m} \times 3 \text{m}$
- 9. 16.00cm
- $10. 100 \mathrm{m}^2$
- 11. 42mm
- 12. (a) 77.5m
 - (b) 3 seconds
 - (c) 3.16 seconds or $\sqrt{10}$ in exact form.
- 13. (a) 150m
 - (b) 4.35 seconds
 - (c) 588.75m
 - (d) 9.25 seconds
- 14. (a) 5.5cm
 - (b) 2,420ml
- 15. If we simplify the equation we get $x^2 = -36$ and since the square of any number (positive or negative) is positive, it is impossible for the square of a real number to equal -36.