MECH 325 Fluid Power

Learning Objectives

- 1. To learn specific basic components uses in fluid power
- To interpret several basic symbols for components and to understand the functions of the available fluid power components by the symbols.
- 3. To organize some basic components to create a circuit
- 4. To practice reading simple circuits

Fluid Power

<u>ADVANTAGES</u>

- Easy speed control
- Easy direction control
- Adaptable circuit
- Power transmission
- Can handle overloads and shocks

DISADVANTAGES

- High maintenance
- High skill required.
- Must be kept clean
- Expensive
- Energy inefficient (especially pneumatics)

MECH 3 Easily automated

Characteristics

PNEUMATICS

- Compressible fluid
- Low pressure (~100psi)
- Less expensive
- Less maintenance
- Less control
- Better in dirty environment
- High speed

HYDRAULICS

- Incompressible fluid.
- High pressure (~1,000 to 10,000 psi)
- High loads and power in compact devices
- More expensive
- High maintenance
- Easily controlled
- Need clean internal environment

We are going to concentrate mostly on hydraulics in this module.

MECH 325

Fluid pressure

Fluid pressure and reaction

Pressure losses due to flow

System with no flow

• The most common cause of pressure losses in pipes and hoses is

friction.

Double acting cylinder

Positive displacement reciprocating pump

Check Valve

Symbol

Pressure control valves

Pressure control as a relief valve

Flow Control Valve

Symbol

Reservoir (Tank)

Directional control valves

By convention symbols are drawn with the system in the "down" or "retracted" mode.

Symbol

Directional control valves

Directional control valves

Common valve centre positions

All ports plugged

1 port plugged
3 ports
connected

All ports connected

2 plus 2 connected

2 ports plugged2 ports connected

Valve Actuators

- Push button
- Hand lever
- Foot pedal
- Mechanically actuated symbol
- Hydraulic pilot
- Air pilot
- Solenoid
- Spring return

Simple Valve pushed to this **Circuit** position by hand or <u>solenoid</u>

Simple Circuit

Gear pumps and motors

Bi-directional motors and pumps

Examples of Gear Pump

Variable Displacement

<u>Fully stroked – maximum flow rate</u>

Tilting
Swash
Plate

Pivot

point

Variable Displacement

Three quarter flow rate

Variable Displacement

Half flow rate

Variable Displacement

Small flow rate

Tilting

Swash

Plate

point

Swash

Plate

Variable Displacement

<u>Totally de-stroked – no flow</u> but pressure maintained

MECH 325

Axial Piston Pumps $\frac{1}{2}$ Variable Displacement, Maximum Flow Stop and Pressure Compensation

Examples of Axial Piston Pumps

Vane Pump - Variable Displacement Pressure compensating

Vane Pump - Variable Displacement Pressure compensating

Accumulators

Accumulators can be used to store energy when full pump flow is not needed or for shock absorption or pulsation damping

Symbol for gas filled accumulator

Fluid @ High pressure

Accumulators

Fluid @MECH 325

<u>Low</u>
pressure

Medium pressure <u>High</u> <u>pressure</u>

Oil Filters

Filters in system

Other fluid conditioners

- Hydraulic
 - <u>Cooler</u>
 - Heater
- Pneumatic
 - Separator
 - Lubricator
 - <u>Muffler</u>

Symbols

Cushioned Cylinders

Cushions cont.

Other devices

Symbols

• <u>Pipe</u>

Hose

• Pressure gauge

• Thermometer

• Electrical pressure switch

