Example

Assume we already have these candidate cost functions available.

	Abstr. 1	Abstr. 2
cost(R)	1	0
cost(B)	1	0
$\mathit{cost}(G)$	0	1
h	1	1

The best combination uses each column once for a heuristic value of 2. In the dual Master Problem each column corresponds to one constraint.

```
Dual Master Problem  \begin{aligned} &\text{Minimize } y_R + y_B + y_G \text{s.t.} \\ &y_R + y_B \geq 1 \\ &y_G \geq 1 \\ &y_R \geq 0 \quad y_B \geq 0 \quad y_G \geq 0 \end{aligned}  Optimal Solution  y_R = 1 \quad y_B = 0 \quad y_G = 1
```

The dual solution is used in the objective of the pricing problems.

The solution of the pricing problem is added as a new column.

	Abstr. 1		Abstr.	2
cost(R)	1	1		0
cost(B)	1	1		0
cost(G)	0	-1		1
h	1	1		1

The best combination now uses the last column twice and the middle column once for a total heuristic value of 3.

Dantzig-Wolfe decomposition speeds up cost partitioning and the involved LPs have intuitive interpretations.

Dantzig-Wolfe Decomposition for Cost Partitioning

Florian Pommerening, Thomas Keller, Valentina Halasi, Jendrik Seipp, Silvan Sievers, Malte Helmert

Extensions

Combine equivalent labels
Consider only interesting patterns
Incrementally add subproblems

Relaxations

Stop adding subproblems
Stop adding columns
Stop evaluating the master problem

Interpretations

Master Problem:

Combine candidate cost funtions.

$$\begin{array}{ccc} \mathsf{Maximize} & \sum_i \sum_j \pmb{\lambda_{ij}} h_{ij} \; \mathsf{s.t.} \\ \\ \sum_i \sum_j \pmb{\lambda_{ij}} c_{ij}(o) \leq cost(o) & \mathsf{for all} \; o \\ \\ \pmb{\lambda_{ij}} \geq 0 & \mathsf{for all} \; i,j \end{array}$$

Dual Master Problem:

Posthoc optimization heuristic.

Pricing Problem:

Balance cost of operator count *y* and cheapest abstract plan.
Return saturated cost function.

Dual Pricing Problem:

Generate column iff given operator count induces no flow.

