

Predicción de Fotogramas con Redes Neuronales Profundas

Máster Universitario en Visión Artificial

Autor: Nuria Oyaga de Frutos

Tutor: José María Cañas Plaza

Cotutor: Inmaculada Mora Jiménez

ÍNDICE

- 1. Introducción
- 2. Objetivos
- 3. Infraestructura
- 4. Generación de secuencias
- 5. Predicción con imágenes modeladas
- 6. Predicción con imágenes crudas
- 7. Conclusiones

1. Introducción

Tareas de visión artificial con Redes Neuronales

• Clasificación:

• Detección:

• Predicción:

1. Introducción

Redes no recurrentes VS recurrentes

No recurrente

Recurrente

2. Objetivos

Diseño y el análisis de distintas redes neuronales como predictores visuales con secuencias de vídeo.

- Desarrollo software para ejecución y evaluación de redes neuronales.
- Creación de las bases de datos.
- Estudio y evaluación de redes para la **predicción con imágenes** modeladas.
- Estudio y evaluación de redes para la **predicción con imágenes** crudas.

3. Infraestructura

Hardware

- Intel(R) Xeon(R) CPU E5-2609 v4 @ 1.70GHz
- 8 cores
- 64GB
- GeForce GTX 1080

GENERACIÓN DE SECUENCIAS

Limitaciones del trabajo

- Imágenes muy sencillas:
 - Tamaño 80x120.
 - Píxel blanco (activo) que se desplaza sobre fondo negro.
 - Píxel presente en todas las imágenes.
- Muestreo regular:
 - Velocidad constante.
 - No faltan muestras.
- Ausencia de ruido.

Tipos de imágenes

Tipos de dinámicas - Dinámica lineal

$$y = mx + n$$

DOF	Parámetro
1	m
2	n

Tipos de dinámicas - Dinámica parabólica

$$y = ax^2 + bx + c$$

DOF	Parámetro
1	a
2	С
3	b

Tipos de dinámicas - Dinámica sinusoidal

$$y = A \times \sin(2\pi f x + \theta) + c$$

DOF	Parámetro
1	f
2	С
3	A
4	θ

Tipos de dinámicas - Dinámica combinada

Estructura de la base de datos

Características comunes

Parár	netro	Valor
Gap		10 Instantes temporales
N_points		20 Instantes temporales
	Train	80%
División de subconjuntos	Validation	10%
Subconjuntos	Test	10%

Tipos de redes

Perceptrón multicapa

MLP

Long-Short Term Memory

LSTM

Estructuras propuestas - MLP

• 1 capa oculta con 10 neuronas.

Resultados - MLP

- 10000 muestras de test.
- Límite en sinusoidal de 2 DOF.

DINÁMICA		MEDIA ERROR RELATIVO
	1 DOF	0.21 %
Lineal	2 DOF	0.31 %
Parabólica	1 DOF	0.28 %
	2 DOF	0.42 %
	3 DOF	0.65 %
Sinusoidal	1 DOF	0.54 %
	2 DOF	3.89 %

Estructuras propuestas - LSTM-1

• 1 capa LSTM con 25 neuronas.

Resultados - LSTM-1

- 10000 muestras de test.
- Límite en sinusoidal de 4 DOF.

DINÁMICA		MEDIA ERROR RELATIVO
	1 DOF	0.16 %
Lineal	2 DOF	0.25 %
	1 DOF	0.12 %
Parabólica	2 DOF	0.35 %
	3 DOF	0.58%
	1 DOF	0.42 %
Sinusoidal	2 DOF	0.89 %
	3 DOF	0.84 %
	4 DOF	4.1 %

LSTM-4 - Mejora de la red

Aumento n° capas

- Mejora las prestaciones.
- Límite en 4 capas.

Aumento nº neuronas

- $25 \rightarrow 50$ neuronas.
- $4\% \rightarrow 2.5\%$ media error relativo.
- Mejora muy poco las prestaciones.

- Dinámica sinusoidal 4 DOF.
- 80000 muestras entrenamiento.
- 10000 muestras test.

Estructuras propuestas - LSTM-4

• 4 capas LSTM con 70, 40, 25 y 15 neuronas.

Resultados - LSTM-4

- 10000 muestras de test.
- Se logra predecir.

DINÁMICA		MEDIA ERROR RELATIVO
Lineal	2 DOF	0.12 %
Parabólica	3 DOF	0.5%
Sinusoidal 4 DOF		0.61 %
Combinada		0.81 %

LSTM-4 - Predicción a largo plazo

- Conjunto combinado.
- 10000 muestras de test.
- Pérdida de capacidad predictiva con umbrales admisibles.
- Imagen 640x480:
 - 14 píxeles de media a 30 fotogramas (1,7 %).
 - 24 píxeles de media a 50 fotogramas (3 %).

Tipos de redes

Convolutional Neural Network

CNN

Convolutional LSTM

ConvLSTM

Estructuras propuestas - CNN

- 2 capas convolucionales con 32 neuronas.
- 1 capa de MaxPooling 2x2.

CNN - Influencia del número de muestras de entrenamiento

- Dinámica lineal 1DOF.
- Evaluación con 1000 muestras.
- Mejora en prestaciones hasta estabilización.
- Equilibrio entre número de muestras y complejidad.

Resultados - CNN

- 10000 muestras de test.
- Valores altos de máximo.
- Muchos outliers.

DINÁMICA		MEDIA ERROR RELATIVO
Lineal	1 DOF	0.07 %
Lineai	2 DOF	0.39 %
	1 DOF	0.01 %
Parabólica	2 DOF	0.07 %
	3 DOF	4.4 %
Sinusoidal	1 DOF	0.003 %
	2 DOF	1.12 %

Estructuras propuestas - CNN + LSTM

- 1 capa convolucional con 32 neuronas.
- 1 capa de MaxPooling 2x2.
- 1 capa LSTM con 25 neuronas.

CNN+LSTM - Píxel discreto VS extendido

Resultados - CNN+LSTM

- Dinámica lineal:
 - Pendiente nula.
 - Altura inicial del píxel fija.
 - 800 entrenamiento; 100 test.
- No es una estrategia adecuada.
- La expansión del píxel produce mejora.

DINÁMICA		CNN	CNN + LSTM
		0.0 %	29.6 %
Lineal Expandido			21.5 %

Estructuras propuestas - ConvLSTM-1

- 2 capas convolucionales con 32 neuronas.
- 1 capa de MaxPooling 2x2.
- 1 capa ConvLSTM con 5 neuronas.

Resultados - ConvLSTM-1

- 10000 muestras de test.
- Valores altos de máximo.
- Muchos outliers.

DINÁMICA		MEDIA ERROR RELATIVO
Lineal	1 DOF	0.06 %
Liffeat	2 DOF	0.29 %
	1 DOF	0.01 %
Parabólica	2 DOF	0.03 %
	3 DOF	3.76%
	1 DOF	0.01 %
Sinusoidal	2 DOF	1.12 %
	3 DOF	3.44 %
	4 DOF	13 %

ConvLSTM-4 - Aumento de capas

- Fluctúa el máximo.
- Mejora la media.
- Límite en 4 capas.

- Dinámica sinusoidal 4 DOF.
- 80000 muestras entrenamiento.
- 10000 muestras test.

Estructuras propuestas - ConvLSTM-4

- 1 capa convolucional con 32 neuronas.
- 1 capa de MaxPooling 2x2.
- 4 capas ConvLSTM con 20, 15, 10 y 5 neuronas.

Resultados - ConvLSTM-4

- 10000 muestras de test.
- Mejores resultados.
- Valores altos de máximo.
- Muchos outliers.

DINÁMICA		MEDIA ERROR RELATIVO
Lineal	2 DOF	0.07 %
Parabólica	3 DOF	0.87 %
	2 DOF	0.14 %
Sinusoidal	3 DOF	0.51 %
	4 DOF	2.06%
Combinada		2.01 %

7. Conclusiones

Se puede predecir

- Las imágenes modeladas son más sencillas para las redes que las crudas.
- El número de muestras de entrenamiento afecta.
 - ↑ Complejidad ↑ Muestras
- La recurrencia mejora los resultados.
- Conviene el uso de redes que capten las correlaciones espaciotemporales simultáneamente (ConvLSTM).
- ↑ N° capas → ↑ Prestaciones
- ↑ Gap → ↓ Prestaciones

7. Conclusiones

Líneas futuras

- Predicción de objetos reales en movimiento:
 - Mayor tamaño de imagen.
 - Distintas formas y tamaños de objeto.
 - Dinámicas ruidosas.
 - Presencia de aceleración.
 - Pérdida de muestras.
- Integración en **aplicación real** > Seguimiento.

 Repositorio: <u>https://github.com/RoboticsLabURJC/2017-tfm-nuria-oyaga</u>

• Bitácora:

https://roboticslaburjc.github.i o/2017-tfm-nuria-oyaga/