Electromagnetic Technologies

summer semester (January - February)

gregheins@ieee.org

Electromagnetic Technologies

We will:

- Understand
- Analyse
- Design
- Test

Electromagnetic devices

- Solenoids
- Motors
- Sensors

gregheins@ieee.org

https://www.regalbeloit.com/Products/Catalog?model=063T17FH5502

By Z22 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=33803801

gregheins@ieee.org

DO NOT DISTRIBUTE

http://www.staradvertiser.com/wp-content/uploads/2016/10/web1_20161004-B5-HECO-Flywheel.jpg

Images courtesy of Bryan Ruddy (https://unidirectory.auckland.ac.nz/profile/brudggg Second Edition

Magnetic Actuators and Sensors

JOHN R. BRAUER

WILEY

Course Goal

As engineers, there are 5 "real world" components we really care about:

- Voltage and Current (electrical power)
- Force and Velocity (mechanical power)
- Loss (heat power)

Other subjects (power electronics, analog electronics, dynamics, heat transfer) can help you convert those five components to other items but those 5 will be the primary focus of this course.

I don't really care about Flux Density, Magnetic Vector Potential etc by themselves.

As this is an industry focussed engineering course these are not the "end game"

However they are all critical stepping stones to help us calculate the five things we do care about.

Relationship between Electrical and Mechanical Engineering

FIGURE 1.6 Venn diagram showing major engineering areas in mechatronics and how they relate to magnetic actuators and sensors.

Course overview

Background information

Week	Date	9 - 10am	10 - 11am	11 - 12noon	12 - 1pm	1 - 2pm	2 - 3pm	3 - 3.15pm	3.15 - 4.15pm	4.15 - 5.15pm
1	8 January	Setup and login issues	Overview lecture	Introduction to the projects	Lunch	Case study - Amber Kinetics	Basic electromagnetic s (Ch 2)	Break	Introduction to FEMM	Reluctance method (Ch 3)
2	15 January	Tutorial	Finite Element method (Ch 4)	Magnetic Force (Ch 5)	Lunch	Case study - Needleless injection	Acuators (DC) (Ch 7)	Break	Assignment introduction	Assignment introduction
3	22 January	Solenoind Assignment	Solenoind Assignment due	Other magnetic parameters (Ch 6)	Lunch	Case study - Denny	Acuators (AC) (Ch 8)	Break	Coil design (Ch 12)	Tutorial review
4	29 January	Quiz (wk 1 - 3)	Electric Machine Introduction	Electric Motor - Magnetic Design	Lunch	Case study - FSAE	Electric Motor - Electric Design	Break	Motor Analysis (FEA) + Motor test (inertia)	Motor Analysis (FEA) + Motor test (inertia)
5	5 February	Tutorial	Electric motor - Conductor Loss	Electric Motor - Core Loss	Lunch	Case study - DEC Star Amber Kinetics	Electric Motor - Other Loss	Break	Motor Test (Back emf + Run down)	Motor Test (Back emf + Run down)
6	12 February	Motor Assignment due	Sensors (Ch 10)	Sensors FEA excersise	Lunch	Case study - LWS (steering wheel angle sensor)	Sensors (Ch 11)	Break	Tutorial reivew	Tutorial reivew

,	Actua		Actuators							
Week	Date	9 - 10am	10 - 11am	11 - 12noon	12 - 1pm	1 - Zpm	2 - 3pm	3 - 3.15pm	3.15 - 4.15pm	4.15 - 5.15pm
1	8 January	Setup and login issues	Overview lecture	Introduction to the projects	Lunch	Case study - Amber Kinetics	Basic electromagnetic s (Ch 2)	Break	Introduction to FEMM	Reluctance method (Ch 3)
2	15 January	Tutorial	Finite Element method (Ch 4)	Magnetic Force (Ch 5)	Lunch	Case study - Needleless injection	Acuators (DC) (Ch 7)	Break	Assignment introduction	Assignment introduction
3	22 January	Solenoind Assignment	Solenoind Assignment due	Other magnetic parameters (Ch 6)	Lunch	Case study - Denny	Acuators (AC) (Ch 8)	Break	Coil design (Ch 12)	Tutorial review
4	29 January	Quiz (wk 1 - 3)	Electric Machine Introduction	Electric Motor - Magnetic Design	Lunch	Case study - FSAE	Electric Motor - Electric Design	Break	Motor Analysis (FEA) + Motor test (inertia)	Motor Analysis (FEA) + Motor test (inertia)
5	5 February	Tutorial	Electric motor - Conductor Loss	Electric Motor - Core Loss	Lunch	Case study - DEC Star Amber Kinetics	Electric Motor - Other Loss	Break	Motor Test (Back emf + Run down)	Motor Test (Back emf + Run down)
6	12 February	Motor Assignment due	Sensors (Ch 10)	Sensors FEA excersise	Lunch	Case study - LWS (steering wheel angle sensor)	Sensors (Ch 11)	Break	Tutorial reivew	Tutorial reivew

Actuator overview

ĺ	Moto	rs		Motors							
Week	Date	9 - 10am	10 - 11am	11 - 12noon	12 - 1pm	1 - 2pm	2 - 3pm	3 - 3.15pm	3.15 - 4.15pm	4.15 - 5.15pm	
1	8 January	Setup and login issues	Overview lecture	Introduction to the projects	Lunch	Case study - Amber Kinetics	Basic electromagnetic s (Ch 2)	Break	Introduction to FEMM	Reluctance method (Ch 3)	
2	15 January	Tutorial	Finite Element method (Ch 4)	Magnetic Force (Ch 5)	Lunch	Case study - Needleless injection	Acuators (DC) (Ch 7)	Break	Assignment introduction	Assignment introduction	
3	22 January	Solenoind Assignment	Solenoind Assignment due	Other magnetic parameters (Ch 6)	Lunch	Case study - Denny	Acuators (AC) (Ch 8)	Break	Coil design (Ch	Tutorial review	
4	29 January	Quiz (wk 1 - 3)	Electric Machine Introduction	Electric Motor - Magnetic Design	Lunch	Case study - FSAE	Electric Motor - Electric Design	Break	Motor Analysis (FEA) + Motor test (inertia)	Motor Analysis (FEA) + Motor test (inertia)	
5	5 February	Tutorial	Electric motor - Conductor Loss	Electric Motor - Core Loss	Lunch	Case study - DEC Star Amber Kinetics	Electric Motor - Other Loss	Break	Motor Test (Back emf + Run down)	Motor Test (Back emf + Run down)	
6	12 February	Motor Assignment due	Sensors (Ch	Sensors FEA excersise	Lunch	Case study - LWS (steering wheel angle sensor)	Sensors (Ch 11)	Break	Tutorial reivew	Tutorial reivew	

Motor overview

Course overview

Sensors

Week	Date	9 - 10am	10 - 11am	11 - 12noon	12 - 1pm	1 - 2pm	2 - 3pm	3 - 3.15pm	3.15 - 4.15pm	4.15 - 5.15pm
1	8 January	Setup and login issues	Overview lecture	Introduction to the projects	Lunch	Case study - Amber Kinetics	Basic electromagnetic s (Ch 2)	Break	Introduction to FEMM	Reluctance method (Ch 3)
2	15 January	Tutorial	Finite Element method (Ch 4)	Magnetic Force (Ch 5)	Lunch	Case study - Need eless injection	Acuators (DC) (Ch 7)	Break	Assignment introduction	Assignment introduction
3	22 January	Solenoind Assignment	Solenoind Assignment due	Other magnetic parameters (Ch 6)	Lunch	Case study - Denny	Acuators (AC) (Ch 8)	Break	Coil design (Ch 12)	Tutorial review
4	29 January	Quiz (wk 1 - 3)	Electric Machine Introduction	Electric Motor - Magnetic Design	Lunch	Gase study - FSAE	Electric Motor - Electric Design	Break	Motor Analysis (FEA) + Motor test (inertia)	Motor Analysis (FEA) + Motor test (inertia)
5	5 February	Tutorial	Electric motor - Conductor Loss	Electric Motor - Core Loss	Lunch	Case study - DEC Star Amber Kinetics	Electric Motor - Other Loss	Break	Motor Test (Back emf + Run down)	Motor Test (Back emf + Run down)
6	12 February	Motor Assignment due	Sensors (Ch 10)	Sensors FEA excersise	Lunch	Case study - LWS (steering wheel angle sensor)	Sensors (Ch 11)	Break	Tutorial reivew	Tutorial reivew

Sensor Overview

(Course overview				Case Studies						
Week	Date	9 - 10am	10 - 11am	11 - 12noon	12 - 1pm	1-2/m	2 - 3pm	3 - 3.15pm	3.15 - 4.15pm	4.15 - 5.15pm	
1	8 January	Setup and login issues	Overview lecture	Introduction to the projects	Lunch	Case study - Amber Kinetics	Basic electromagnetic s (Ch 2)	Break	Introduction to FEMM	Reluctance method (Ch 3)	
2	15 January	Tutorial	Finite Element method (Ch 4)	Magnetic Force (Ch 5)	Lunch	Case study - Needleless injection	Acuators (DC) (Ch 7)	Break	Assignment introduction	Assignment introduction	
3	22 January	Solenoind Assignment	Solenoind Assignment due	Other magnetic parameters (Ch 6)	Lunch	Case study - Denny	Acuators (AC) (Ch 8)	Break	Coil design (Ch 12)	Tutorial review	
4	29 January	Quiz (wk 1 - 3)	Electric Machine Introduction	Electric Motor - Magnetic Design	Lunch	Case study - FSAE	Electric Motor - Electric Design	Break	Motor Analysis (FEA) + Motor test (inertia)	Motor Analysis (FEA) + Motor test (inertia)	
5	5 February	Tutorial	Electric motor - Conductor Loss	Electric Motor - Core Loss	Lunch	Case study - DEC Star Amber Kinetics	Electric Motor - Other Loss	Break	Motor Test (Back emf + Run down)	Motor Test (Back emf + Run down)	
6	12 February	Motor Assignment due	Sensors (Ch 10)	Sensors FEA excersise	Lunch	Case study - LWS (steering wheel angle sensor)	Sensors (Ch 11)	Break	Tutorial reivew	Tutorial reivew	

Goals of the "Case Study" Discussions

- 1. Introduced some people that have careers in Electromagnetic Technologies
- 2. Connect the learning in this course to the "real world" examples
- Practice taking "real world" issues and distilling them to engineering design calculations.

gregheins@ieee.org DO NOT DISTRIBUTE 18

Assessment - handbook

Description	Timing	Percentage
Assignment 1	Week 3	15%
• Test	Week 4	15%
Assignment 2	Week 6	20%
• Exam	End of semester	50%

Description

- Assignment 1 (15%), Solenoid actuator design and testing. Requires approximately 20 hours of work (not exceeding 10 pages). Due in week 3 of semester. Addresses Intended Learning Outcomes (ILOs) 1-7
- One hour quiz (15%). Duration 1 hour. Held in week 4 of 6. Addresses ILOs 1-7
- Assignment 2 (20%), Motor analysis and testing. Requires approximately 25 hours of work (not exceeding 10 pages).
 Due in week 6 of semester. Addresses ILOs 1-7
- Two hour final exam (50%). Held at the end of the teaching period. Addresses ILOs 1-7

Assessments

Λ cc	an	ma	ntc
Ass	ıuıı	\prod	1113
	יכ	_	

Week	Date	9 - 10am	10 - 11am	11 - 12noon	12 - 1pm	1 Zppi	2 - 3pm	3 - 3.15pm	3.15 - 4.15pm	4.15 - 5.15pm
1	8 January	Setup and login issues	Overview lecture	Introduction to the projects	Lunell	Case study - Amber Kinetics	Basic electromagnetic s (Ch 2)	Break	Introduction to FEMM	Reluctance method (Ch 3)
2	15 January	Tutorial	Finite Element method (Ch 4)	Magnetic Force (9n.5)	Lanch	Case study - Needleless injection	Acuators (DC) (Ch 7)	Break	Assignment introduction	Assignment introduction
3	22 January	Solenoind Assignment	Solenoind Assignment due	Other magnetic parameters (Ch 6)	Lunch	Case study - Denny	Acuators (AC) (Ch 8)	Break	Coil design (Ch 12)	Tutorial review
4	29 January	Quiz (wk 1 - 3)	Electric Machine Introduction	Electric Motor - Magnetic Design	Lunch	Case study - FSAE	Electric Motor - Electric Design	Break	Motor Analysis (FEA) + Motor test (inertia)	Motor Analysis (FEA) + Motor test (inertia)
5	5 February	Tutorial	Electric motor - Conductor Loss	Electric Motor - Core Loss	Lunch	Case study - DEC Star Amber Kinetics	Electric Motor - Other Loss	Break	Motor Test (Back emf + Run down)	Motor Test (Back emf + Run down)
6	12 February	Motor Assignment due	Sensors (Ch 10)	Sensors FEA excersise	Lunch	Case study - LWS (steering wheel angle sensor)	Sensors (Ch 11)	Break	Tutorial reivew	Tutorial reivew

Assessment

Lecture

Tutorial

Practical

Case study

20% marks off 1 min late 20% marks off each week afterwards 100% marks off after exam (19th February) Must be submitted via LMS (Blackboard)

/	Assessments				Exams						
Week	Date	9 - 10am	10 - 11am	11 - 12noon	12 - 1pm	1 - 2pm	2 - 3pm	3 - 3.15pm	3.15 - 4.15pm	4.15 - 5.15pm	
1	8 January	Setup and login issues	Overview lecture	Introduction to the projects	Lunch	Case study Amber Kine Ics	Basic electromagnetic s (Ch 2)	Break	Introduction to FEMM	Reluctance method (Ch 3)	
2	15 January	Tutorial	Finite Element method (Ch 4)	Magnetic Force (Ch 5)	Lunch	Case study - Needleless injection	Acuators (DC) (Ch 7)	Break	Assignment introduction	Assignment introduction	
3	22 January	Solenoind Assignment	Scienoind ssignment due	Other magnetic parameters (Ch 6)	Lunch	Case study - Denny	Acuators (AC) (Ch 8)	Break	Coil design (Ch 12)	Tutorial review	
4	29 January	Quiz (wk 1 - 3)	Electric Machine Introduction	Electric Motor - Magnetic Design	Lunch	Case study - FSAE	Electric Motor - Electric Design	Break	Motor Analysis (FEA) + Motor test (inertia)	Motor Analysis (FEA) + Motor test (inertia)	
5	5 February	Tutorial	Electric motor - Conductor Loss	Electric Motor - Core Loss	Lunch	Case study - DEC Star Amber Kinetics	Electric Motor - Other Loss	Break	Motor Test (Back emf + Run down)	Motor Test (Back emf + Run down)	
6	12 February	Motor Assignment due	Sensors (Ch 10)	Sensors FEA excersise	Lunch	Case study - LWS (steering wheel angle sensor)	Sensors (Ch 11)	Break	Tutorial reivew	Tutorial reivew	
					V						

Lecture
Tutorial
Practical
Case study

Assessment

Final exam 10am Monday 19th February (venue TBA)

Textbook

- 2nd Edition (2014)
- Available in University Library (.pdf)
- Available online (paper and e-book)
- The lectures will closely follow this book
- Tutorial questions will be from the book
- All references in the lectures will come from this book unless otherwise stated

Magnetic Actuators and Sensors

JOHN R. BRAUER

Online resources

The main site is on the University of Melbourne LMS (Blackboard) site

https://app.lms.unimelb.edu.au/webapps/blackboard/content/listContentEditable.jsp?content_id=_6421427_1&course_id=_367562_1&mode=reset

All submissions must be via this site

Most of the content is hosted on my own website:

https://sites.google.com/view/heins/course-outline

While this is publically available it is not indexed in search engines. Please do not distribute the content.

Assumed Knowledge

- Calculus
- Linear Algebra
- Unit vectors
- Basic Mechanical Engineering (eg P = Fv, $P = T\omega$, $KE = 1/2J\omega^2$, PE = mgh, W = Fd)
- Basic Electrical Engineering (eg P = VI, V = IR)

To get the most of of attending

- 1. Attend:)
- 2. Have a book ready for taking notes/ sketching
- 3. Have a computer ready to run FEMM
- 4. Ask questions
- 5. Answer questions
- 6. Review the notes/ videos afterwards (I will try to record all the lectures and upload to the website)
- 7. Tell me ASAP if there is something I can do to improve your learning experience