SI221 : Bases de l'Apprentissage

Modèles de Markov Cachés
Octobre 2017

Laurence Likforman-Sulem Telecom ParisTech/IDS likforman@telecom-paristech.fr

Plan

- Chaînes de Markov
 - modèles stochastiques
 - paramètres
- Modèles de Markov Cachés
 - discrets/continus
 - apprentissage
 - □ décodage

Laurence Likforman-Telecom ParisTech

applications - HMMs - Speech recognition - Handwriting recognition - Recognition of objects, faces in videos,... - Natural Language Processing (NLP): étiquetage grammatical THE→ TGE Laurence Lauren

Modèle stochastique

- □ processus aléatoire à temps discret
 - ensemble de variables aléatoires q₁, q₂,, q_T
 - indexées aux instants entiers t=1, 2,T
- notation
 - q_t: variable aléatoire d'état observé au temps t
 - $\ \square$ notée q(t) ou q_t
 - □ q(t) prend ses valeurs dans espace fini d'états S S={1,2,Q}
 - P(q_t=i) : probabilité d'observer l'état i au temps t

exemple état: pollution (indice), météo: beau, pluie, nuageux, NLP: fonction des mots d'un texte (verbe,nom, pronom;....)

Laurence Likforman-Telecom ParisTech

Modèle stochastique

- évolution du processus
 - état initial q1
 - suite (chaîne) de transitions entre états
- calcul probabilité d'une séquence d'états

 $P(q_1, q_2, ...q_T) = P(q_T I q_1, q_2, ...q_{T-1}) P(q_1, q_2, ...q_{T-1})$

- $=\ P(q_TI\ q_1,\ q_2,\ ...q_{T-1})P(q_{T-1}I\ q_1,\ q_2,\ ...q_{T-2})\ P(q_1,\ q_2,\ ...q_{T-2})$
- = $P(q_1)P(q_2/q_1)P(q_3/q_1,q_2)$ $P(q_T | q_1, q_2, ..., q_{T-1})$
- modèle: connaître la pabilité de chaque transition+proba initiale P(q₁)

5

Chaîne de Markov à temps discret

- □ propriété de Markov d'ordre k : dépendance limitée
 - $P(q_t | q_1, q_2, ...q_{t-1}) = P(q_t | q_{t-k} ...q_{t-1})$
 - k=1 ou 2 en pratique
- □ cas k=1
 - P(q_t I q₁, q₂, ...q_{t-1})=P(q_t I q_{t-1}
 - $P(q_1, q_2, ..., q_T) = P(q_1)P(q_2/q_1)P(q_3/q_2) P(q_T | q_{T-1})$
 - → probabilités de transition entre états

Laurence Likforman-Telecom ParisTech

Chaîne de Markov stationnaire

- probabilités de transition ne dépendent pas du temps
 - P($q_t = j \mid q_{t-1} = i$) = P($q_{t+k} = j \mid q_{t+k-1} = i$) = a_{ij}
 - a_{ii}= probabilité de passer de l'état i à l'état j
- définition: modèle d'une chaîne de Markov stationnaire
 - matrice des probabilités de transitions
 - $A=[a_{ij}]$ i=1,...Q, j=1,...Q
 - vecteur des probabilités initiales
 - $\Pi = [\pi_i]$ i=1,...Q
 - $= \pi_i = P(q_1 = i)$
- \Box contraintes : 0<= π_i <= 1 0<= a_{ii} <= 1

Laurence Likforman-Telecom ParisTech

topologie du modèle: ergodique / gauche droite

ص modèle ergodique (sans contrainte) مر

A=
$$\begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

□ modèle gauche droite (contrainte: transitions $i \rightarrow j \ge i$)

A=
$$\begin{bmatrix} 0.4 & 0.6 & 0 \\ 0 & 0.8 & 0.2 \\ 0 & 0 & 1 \end{bmatrix}$$

Chaîne de Markov stationnaire: mini TD

- □ Soit une chaîne à 3 états
 - 1: pluie (r), 2: nuages (c), 3: soleil (s)
- on observe q₁= s , quelle est la probabilité d'observer pendant les 7 jours suivants les temps (états)

s ssrrscs

- □ t=1 t=2
- □ modèle ergodique

A= $\begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$

générer une séquence d'éta	ts: mini-TD
on donnegénérer séquence d'éta suivant chaîne de Markov	ū
□ π=[0.35 0.65] A	$= \begin{bmatrix} 0.35 & 0.65 \\ 0.2 & 0.8 \end{bmatrix}$
 on tire les nombres alé u1= 0.92 (q1) u2= 0.31 u3= 0.1 u4=0.4 u5=0.01 	atoires suivants:
Laurence Lik	forman-Telecom ParisTech 12

Modèles de Markov Cachés

- · une classe de forme
 - modèle λ
- combinaison de 2 processus stochastiques
 - un observé
 - un caché
- on n'observe pas la séquence d'états
- $q = q_1 q_2 ... q_T$ on observe la séquence d'observations

o=o₁ o₂ ...o_T
■ les observations sont générées (émises) par

les états

Laurence Likforman-Telecom ParisTech

HMMs discrets

- ensemble de Q états discrets {1,2,..Q}
- ensemble de N symboles discrets
 - $\ \ {}_{\square}\ \{s_{1},\,s_{2},\,s_{3},\,,...s_{N}\,\} \rightarrow \{1,2,3,..,N\}$

on observe o=o₁ o₂ o_t...o_T

 $o = s_8 s_3 s_{13} s_6 s_8 s_5 s_{10} s_1$ o = 8 3 13 6 8 5 10 1

o correspond à séquence d'états (cachés)

q=q₁ q₂ q₁...q_T
 q= 1 1 2 2 2 2 3 3

s₈ s₃ ... S₁₀ S₁ 8 3 ... 10 1

HMMs discrets

- HMM λ discret est défini par
 - π vecteur probabilités initiales
 - A: matrice transition
 - B : matrice des probabilités d'observation des symboles (dans les états)

$$\pi = (\pi_1, \pi_2, ..., \pi_0)$$
 $\pi_i = P(q_1 = i)$

$$A = \left\{ a_{ij} \right\} = P(q_{t} = j | q_{t-1} = i)$$

$$B = \{b_{ki}\} = P(o_t = s_k | q_t = i)$$

Laurence Likforman-Telecom ParisTech

modèles de Markov cachés continus

- HMM λ continu défini par :
- π vecteur de probabilités initiales
- A: matrice de transition entre états
- b_i(o_t): densité de probabilité des observations dans état i, i=1,..Q
- → gaussienne ou mélange gaussiennes

L. Likforman - Telecom ParisTech

modèle d'observations Gaussien

 $P(o_t / q_t = i, \lambda) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp{-\frac{(o_t - \mu_i)^2}{2\sigma_i^2}}$

modèle: inclut μi et σi , i=1,2,3

Laurence Likforman-Telecom ParisTech

mélange de gaussiennes

$$b_i(o_t) = \sum_{k=1}^{M} c_{ik} \mathcal{N}(o_t; \Sigma_{ik}, \mu_{ik}) \quad \forall i = 1, ...Q.$$

observations continues (scalaires ou vectorielles)

c_{ik}: poids de la kième loi gausssienne du mélange de M gaussiennes, associée à l'état i

modèle λ : inclut $c_{ik}, \, \mu_{ik}$ et $\Sigma_{ik}, \, \, i{=}1,\!2,3$ et $k{=}1,\!..M$

L. Likforman - Telecom ParisTech

hypothèses fondamentales

 indépendance des observations conditionnellement aux états

$$P(o_1,..o_t...o_T|q_1...q_t...q_T,\lambda) = \prod_{i=1}^{T} P(o_i|q_i,\lambda)$$

 chaîne de Markov stationnaire (transitions entre états)

$$P(q_1, q_2, ..., q_T) = P(q_1)P(q_2/q_1)P(q_3/q_2) P(q_T | q_{T-1})$$

Laurence Likforman-Telecom ParisTech

hypothèses fondamentales

 probabilité jointe pour une séquence d'observations et un chemin d'états

$$\begin{split} P(o_{1},..o_{t}...o_{T},q_{1}...q_{t}...q_{T} | \lambda) &= \pi_{q_{1}}b_{q_{1}}(o_{1})\prod_{t=2}^{T}a_{q_{t-1}q_{t}}P(o_{t} | q_{t}, \lambda) \\ &= \pi_{q_{1}}b_{q_{1}}(o_{1})\prod_{t=2}^{T}a_{q_{t-1}q_{t}}b_{q_{t}}(o_{t}) \\ &= P(o_{1},...o_{t}...o_{T} | q_{1}...q_{t}...q_{T}, \lambda)P(q_{1}...q_{t}...q_{T}) \end{split}$$

Laurence Likforman-Telecom ParisTech

HMM / réseau bayésien

- un HMM est un cas particulier de réseau Bayésien
- les variables d'observations sont indépendantes connaissant leur variable parent (état)

Laurence Likforman-Telecom ParisTech

générer une séquence d'états: mini-TD	
 on donne générer séquence d'états de longueur T suivant chaîne de Markov (matrice A) 	
α π=[0.35 0.65] A= [0.35 0.65]	
 on tire les nombres aléatoires suivants: u1= 0.92 (q1) u2= 0.31 u3= 0.1 	
□ u4=0.4 □ u5=0.01	
Laurence Likforman-Telecom ParisTech	24

HMM pour la reconnaissance des formes

- chaque classe m est modélisée par un modèle HMM λ_{m}
- pour une séquence d'observations o=o₁,...o_T extraite d'une forme, calcul de la vraisemblance:

$$P(o_1,..o_t...o_T|\lambda_m)$$

attribution de la forme à la classe \widehat{m} telle que:

$$\hat{m} = \arg\max_{m} P(o_1,..o_t...o_T | \lambda_m)$$

Laurence Likforman-Telecom ParisTech

25

Apprentissage en données complètes

- pour chaque modèle λ, estimer les paramètres
- on a une base d'apprentissage
 - □ L séquences d'observation o(l), l=1....L
 - et séquences d'états associées
- pour une séquence o=o1....oT

et la séquence d'états q=q1.....qT associée

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \mathbb{1}_{\{q_t^{\star} = i, q_{t+1}^{\star} = j\}}}{\sum_{t=1}^{T-1} \mathbb{1}_{\{q_t^{\star} = i\}}} \quad \hat{b}_i(s_k) = \frac{\sum_{t=1}^{T} \mathbb{1}_{\{o_t = s_k, q_t^{\star} = i\}}}{\sum_{t=1}^{T} \mathbb{1}_{\{q_t^{\star} = i\}}}$$

26

Apprentissage en données complètes

sur la base d'apprentissage totale

$$\hat{a}_{ij} = \frac{\sum_{l=1}^{L} \sum_{t=1}^{T(l)-1} \mathbbm{1}_{\{q_t^{(l)} = i, q_{t+1}^{(l)} = j\}}}{\sum_{l=1}^{L} \sum_{t=1}^{T(l)-1} \mathbbm{1}_{\{q_t^{(l)} = i\}}}$$

$$\hat{b}_i(s_k) = \frac{\sum_{l=1}^{L} \sum_{t=1}^{T(l)} \mathbb{1}_{\{o_t^{(l)} = s_k, q_t^{(l)} = i\}}}{\sum_{l=1}^{L} \sum_{t=1}^{T(l)} \mathbb{1}_{\{q_t^{(l)} = i\}}}$$

Laurence Likforman-Telecom ParisTech

Apprentissage en données incomplètes

- estimer les paramètres, modèle λ
- on a une base d'apprentissage
 - □ L séquences d'observation o(I), I=1...L
- plus difficile (pas connaissance des états cachés)
- algorithme apprentissage
 - Baum-Welch
 - de Viterbi
 - basés sur EM

Laurence Likforman-Telecom ParisTech

calcul de la vraisemblance

 algorithme de décodage de Viterbi pour séquence observation o=o₁,...o_T

$$P(o \mid \lambda) = \sum_{q} P(o, q \mid \lambda)$$

au lieu de sommer sur toutes les séquences d'états, on ne considère que la séquence d'état optimale :

$$\hat{q} = \arg\max_{a} P(q, o | \lambda)$$

puis on estime la vraisemblance par :

$$P(o \mid \lambda) \approx P(o, \hat{q} \mid \lambda)$$

Laurence Likforman-Telecom

décodage : algorithme de Viterbi

 δ_t(i) : proba. (jointe) meilleure séquence partielle d'états aboutissant à l'état i au temps t et correspondant à la séquence partielle d'observations o₁...o_t.

$$\delta_{t}(i) = \max_{q,q_{1}, q_{2}, \dots, q_{t}} P(q_{1}q_{2}...q_{t} = i, o_{1}o_{2}...o_{t}|\lambda)$$

récurrence

$$P(q_1q_2...q_t=i,q_{t+1}=j,o_1o_2...o_to_{t+1}\big|\lambda)$$

- $=P(o_{_{t+1}},q_{_{t+1}}=j\left|o_{_{1}}...o_{_{t}},q_{_{1}}...q_{_{t}}=i,\lambda)P(o_{_{1}}...o_{_{t}},q_{_{1}}...q_{_{t}}=i\middle|\lambda)$
- $=P(o_{t+1} \, \big| \, q_{t+1} = j, \lambda) P(q_{t+1} = j \, \big| \, q_t = i, \lambda) P(o_1...o_t, q_1...q_t = i \, \big| \, \lambda)$

 $\max P(q_1q_2...q_t=i,q_{t+1}=j,o_1o_2...o_to_{t+1}|\lambda) = \max b_j(o_{t+1})a_{ij}P(q_1q_2...q_t=i,o_1o_2...o_t|\lambda)$

$$\delta_{t+1}(j) = \max_{i} b_{j}(o_{t+1}) a_{ij} \delta_{t}(i) = b_{j}(o_{t+1}) \max_{i} a_{ij} \delta_{t}(i)$$

$$P(o,\hat{q}) = \max \delta_T(j)$$

Laurence Likforman-Telecom ParisTech

<u> </u>		

algorithme de décodage de Viterbi

1ere colonne: Initialisation

$$\delta_1(i) = P(q_1 = i, o_1) = b_i(o_1)\pi_i$$
 $i = 1,...Q$

colonnes 2 à T : récursion

$$\delta_{t+1}(j) = b_j(o_{t+1}) \max_i a_{ij} \delta_i(i)$$
 $t = 1,...T-1, j = 1,...Q$

 $\varphi_{_{\mathrm{t+l}}}(j) = rg \max_{ij} \delta_{_{i}}(i)$ sauvegarde meilleur chemin (état précédent)

terminaison $P(o,\hat{q}) = \max_{j} \delta_{T}(j)$

$$\hat{q}_{\scriptscriptstyle T} = \arg\max_{\scriptscriptstyle i} \delta_{\scriptscriptstyle T}(j)$$

backtrack

$$\hat{q}_{\scriptscriptstyle t} = \varphi(\hat{q}_{\scriptscriptstyle t+1}) \qquad t = T-1, T-2, \dots 1$$

Laurence Likforman-Telecom ParisTech

variables forward-backward

$$P(o \mid \lambda) = \sum_{i} P(o, q_i = i \mid \lambda)$$

$$P(o, q_i = i \mid \lambda) = P(o_1 \dots o_i, q_i = i, o_{i+1} \dots o_r \mid \lambda)$$

$$P(o, q_t = i | \lambda) = P(o_1...o_t, q_t = i, o_{t+1}...o_{\tau} | \lambda)$$

$$= P(o_{_{t+1}}...o_{_{t}} | o_{_{1}}...o_{_{t}}, q_{_{t}} = i, \lambda) P(o_{_{1}}...o_{_{t}}, q_{_{t}} = i \big| \lambda)$$

$$= \underbrace{P(o_{t+1}...o_{t}|q_{t}=i,\lambda)}_{\beta_{t}(i)}\underbrace{P(o_{1}...o_{t},q_{t}=i|\lambda)}_{\alpha_{t}(i)}$$

$$=\beta_{\iota}(i)\alpha_{\iota}(i)$$

 $\beta_t(i)$: variable backward (analogue à λ)

 $\alpha_{i}(i)$: variable forward (analogue à π)

Laurence Likforman-Telecom ParisTech

algorithme de décodage forward-backward

- calcul exact de la vraisemblance P(o| modele): Baum-Welch
- basé sur les variables forward et/ou backward

$$\alpha_{\scriptscriptstyle 1}(j) = b_{\scriptscriptstyle j}(o_{\scriptscriptstyle 1})\pi_{\scriptscriptstyle j}$$

$$\alpha_{t+1}(i) = b_j(o_{t+1}) \sum_{i=1}^{Q} \alpha_t(j)$$

$$P(o|\lambda) = \sum_{j=1}^{Q} \alpha_{T}(j)$$

Laurence Likforman-Telecom

Mini TD

A=
$$\begin{bmatrix} 0.3 & 0.5 & 0.2 \\ 0 & 0.3 & 0.3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 0.6 \\ 0.4 \\ 0 \end{bmatrix}$$

calculer P(aabb)

conclusion chaînes de Markov modèles de Markov Cachés apprentissage cas discret et données complètes décodage de Viterbi lien entre réseaux bayésiens dynamiques et HMMs données incomplètes algorithme EM (Viterbi, Baum-Welch)

références

- M. Sigelle, Bases de la Reconnaissance des Formes: Chaînes de Markov et Modèles de Markov Cachés, chapitre 7, Polycopié Telecom ParisTech, 2012.
- L. Likforman-Sulem, E. Barney Smith, Reconnaissance des Formes: théorie et pratique sous matlab, Ellipses, TechnoSup, 2013.
- L. Rabiner, A tutorial on Hidden Markov Models and selected applications in Speech Recognition, proc. of the IEEE, 1989.

Laurence Likforman-Telecom ParisTech