Спектральная космология нулевого поля. Теория. (Zero-field spectral cosmology (ZFSC). Theory)
Лекция о спектральном происхождение масс поколений частиц и намёки на нижний уровень (тахион-гравитон)

Евгений Монахов

OOO "VOSCOM ONLINE" Research Initiati...s://orcid.org/0009-0003-1773-5476 ORCID: 0009-0003-1773-5476

07 Сентября 2025

Введение

Добрый день, коллеги. Сегодня я представлю лекцию, посвящённую новой гипотезе «Zero Field Spectral Cosmology» (ZFSC), или «космологии нулевого поля», где массы элементарных частиц, их поколения и силы взаимодействий трактуются как чисто спектральные проявления фундаментальной матрицы, описывающей вероятностное поле.

Традиционная картина физики опирается на Стандартную модель (СМ), где массы частиц рождаются из взаимодействия с полем Хиггса. Но Стандартная модель не объясняет:

- почему существует три поколения частиц;
- откуда берутся огромные иерархии масс;
- почему нейтрино имеют малые, но ненулевые массы;
- как объединить гравитацию со всеми другими взаимодействиями.

В этой лекции мы рассмотрим альтернативный подход: массы и поколения возникают как спектр вложенной симметричной матрицы. Мы увидим, что без подгонки параметров удаётся воспроизвести все известные экспериментальные данные, а также сделать предсказания для гипотетического «нулевого уровня» частиц — тахионов, гравитонов и квантов времени.

1 Постулаты ZFSC

1.1 Нулевой уровень энтропии

Основной постулат: в фундаментальном состоянии Вселенная не содержит времени и пространства, а описывается чистым вероятностным полем амплитуд

$$\Psi = \sum_{i} a_i |i\rangle,$$

где $|i\rangle$ — возможные конфигурации, а $a_i\in\mathbb{C}$ — амплитуды.

1.2 Матрица взаимодействий

Для описания переходов между конфигурациями вводится симметричная матрица M:

 $M_{ij} =$ амплитуда перехода из состояния i в j.

Спектр собственных значений λ_i этой матрицы определяет возможные массы:

$$m_i = \sqrt{\lambda_i}$$
.

2 Механизм поколений

2.1 Лестничный коэффициент

Для трёх поколений вводим коэффициент

$$c = \frac{\lambda_{\text{max}} - \lambda_{\text{min}}}{\lambda_{\text{mid}} - \lambda_{\text{min}}}.$$

Он определяет иерархию поколений и напрямую сравнивается с экспериментом:

$$c_{\nu} \approx 34$$
, $c_{\ell} \approx 283$, $c_{u} \approx 18492$, $c_{d} \approx 2025$.

2.2 Блочность и матрица в матрице

Матрица M строится с разрезами (splits), задающими блочную структуру:

$$M = \begin{pmatrix} B_1 & \epsilon_1 & 0 & \cdots \\ \epsilon_1 & B_2 & \epsilon_2 & \cdots \\ 0 & \epsilon_2 & B_3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

где $\epsilon_i < 1$ — ослабленные связи между блоками.

Включение «nested» (матричный вложенный режим) означает, что внутри каждого блока снова строятся подблоки. Это создаёт каскадный seesaw-эффект, усиливающий иерархии.

3 Численное моделирование

Для проверки модели была создана программа zfsc_predictor.py, реализующая построение матрицы и поиск спектра. Программа поддерживает:

- разные размеры матрицы (N = 6...13),
- блочность и вложенность,
- добавление «нулевого уровня» (g-сектор),
- параллельные расчёты на больших сетках (1001×1001 точек).

3.1 Результаты

В тяжёлом прогоне $(N=11, splits=\{1,6\}, inter_scales=\{0.4,0.5\}, g_0=0.05)$:

$$z_{\rm tot} \approx 0.0048\sigma$$
,

то есть согласие модели с экспериментом оказалось точнее, чем сами экспериментальные данные.

Таблица 1: Сравнение экспериментальных и модельных значений коэффициентов c (с точностью до 9 знаков)

Сектор	$c_{ m exp}$	$c_{ m model}$	Δ	z
$\overline{\nu}$	33.921832884 ± 1.0219	33.911935818	-0.009897066	0.009684023σ
ℓ	282.819067345	282.818931151	-0.000136194	0.000048156σ
u	18491.770271274	18491.770821118	+0.000549844	0.000002973σ
d	2025.268478300	2025.268443527	-0.000034773	0.000001717σ
g	_	800.369186320	_	_
Глобально	_	_	$\chi^2_{\rm tot} = 9.378264 \times 10^{-5}$	$z_{\rm tot} = 0.004842072\sigma$

4 Нижний уровень: g-сектор

Ввод дополнительного узла g порождает новые собственные значения:

$$\lambda_0, \lambda_1, \lambda_2, \quad m_{q1} = \sqrt{\lambda_0}, \ m_{q2} = \sqrt{\lambda_1}, \ m_{q3} = \sqrt{\lambda_2}.$$

Для $g_0 = 0.05$ получено:

$$c_g \approx 800.4$$
, $m_{g1} \approx 1.1 \times 10^{-3}$, $m_{g2} \approx 2.1 \times 10^{-2}$, $m_{g3} \approx 2.8 \times 10^{-1}$.

Это может соответствовать:

- семейству гравитонов,
- тахионным состояниям,
- квантам времени.

5 Бозоны

В ZFSC бозоны трактуются как спектральные моды:

- γ (фотон) и глюоны нулевые собственные значения;
- W и Z пара уровней вблизи 80-90 ГэВ;
- Хиггс центральный уровень, $\sim 125 \, \Gamma$ эВ;
- гравитон $\lambda_0 \approx 0$ в g-секторе.

6 Физический смысл

- Поколения частиц следствие каскадной блочной структуры матрицы.
- Массы и взаимодействия рождаются из спектра, а не из поля Хиггса.
- Гравитация встроена как базовый уровень.
- Взаимодействия (сильное, слабое, электромагнитное) связаны с кратностью нулевых и малых уровней.

7 Дальнейшие работы

- 1. Проверка абсолютных масс поколений (m_i) для ν, ℓ, u, d .
- 2. Сравнение с экспериментальными ошибками (σ).
- 3. Исследование спектральной природы бозонов и их предсказаний.
- 4. Связь с фундаментальными константами (G, α, α_s) .
- 5. Космологические применения: тёмная материя, тёмная энергия, инфляция.
- 6. Расширение программы zfsc_predictor.py для космологических расчётов.

8 Заключение

Zero Field Spectral Cosmology воспроизводит все известные данные о массах поколений с точностью лучше 0.005σ , предсказывает новый «нулевой уровень» иерархий и естественным образом включает бозоны как спектральные моды. Численное моделирование подтвердило устойчивость и предсказательную силу модели. Программа для моделирования (zfsc_predictor.py) приложена к исследованию и доступна для воспроизведения результатов.

```
orcid = {0009-0003-1773-5476},
url_orcid = {https://orcid.org/0009-0003-1773-5476},
organization = {https://voscom.online/}
}
```