

Luồng cực đại trong mạng

- Giới thiệu
- Các định nghĩa, định lý
- Bài toán luồng cực đại
- Thuật toán Ford Fulkerson

Giới thiệu

- Luồng cực đại là một trong những bài toán tối ưu của Lý thuyết Đồ thị, được đề xuất vào đầu những năm 1950.
- Bài toán gắn liền và trở nên nổi tiếng với tên tuổi của hai nhà toán học Mỹ là Ford và Fulkerson

Các định nghĩa, định lý

ĐN1 (Mạng): Đồ thị có hướng G=(V,E) là mạng khi và chỉ khi:

- □ Tồn tại <u>duy nhất</u> một đỉnh <math>s ∈ V, mà tại s không có cung đi vào. Điểm s gọi là <u>điểm phát</u>
- □Tồn tại <u>duy nhất</u> một đỉnh t ∈ V, mà tại t không có cung đi ra. Điểm t gọi là <u>điểm thu</u>
- □Mỗi cung u(i,j) ∈ E đều được gán 1 giá trị nguyên không âm c(i,j) và gọi là khả năng thông qua của cung.

Các định nghĩa, định lý (tt)

Đồ thị sau là mạng với điểm phát là đỉnh s và điểm thu là t

Ta có khả năng thông qua

$$C(s,b) = 3$$
, $C(b,c) = 2$, $C(s,d) = 5$, $C(d,c) = 2$, $C(d,e) = 2$, $C(c,t) = 4$, $C(e,t) = 4$

Các định nghĩa, định lý (tt)

- ĐN2 (Luồng trên mạng): Hàm $f: E \to N$ là một *luồng* đi qua mạng (G, c) nếu:
 - \Box ∀ $e \in E$: $f(e) \le c(e)$: luồng trên mỗi cạnh không được vượt quá khả năng thông qua của cạnh đó.
 - $\square \forall x \neq s \text{ và } t : f(W^{-}(x)) = f(W^{+}(x))$: luồng trên các đỉnh phải cân bằng
 - ☐ Giá trị của luồng f là số $Val(f) = f(W^{+}(s)) = f(W^{-}(t))$

Các định nghĩa, định lý (tt)

- Với một mạng G = (V, E, c), ta ký hiệu:
 - $\Box W^{-}(x) = \{ (a, x) \in E \mid a \in V \}$ tập các cạnh đi vào đỉnh x.
 - $\Box W^+(x) = \{ (x, b) \in E \mid b \in V \}$ tập các cạnh đi ra khỏi đỉnh x.

Các định nghĩa, định lý (tt)

■ ĐN3 (lát cắt): Ta gọi lát cắt (X,X*) là một cách phân hoạch tập đỉnh V của mạng ra thành hai tập X và X* = V\X, trong đó s ∈ X, t ∈ X*. Khả năng thông qua của lát cắt (X,X*) là số:

$$c(X,X^*) = \sum_{\substack{v \in X \\ w \sqcap \in X^*}} c(v,w)$$

Lát cắt với khả năng thông qua nhỏ nhất được gọi là lát cắt hẹp nhất.

7

Các định nghĩa, định lý (tt)

- Bổ đề 1: Giá trị của luồng f trong mạng luôn <= khả năng thông qua của lát cắt (X,X*) bất kỳ trong nó.
- Hệ quả 1: Giá trị luồng cực đại trong mạng không vượt quá khả năng thông qua của lát cắt hẹp nhất trong mạng

Bài toán luồng cực đại

- Phát biểu: Cho mạng G với nguồn s, đích t và khả năng thông qua C(i,j). Trong số các luồng trên mạng G, tìm luồng có giá trị lớn nhất.
- Ý tưởng: xuất phát từ luồng nào đó, ta tìm đường đi từ s đến t, cho phép hiệu chỉnh giá trị luồng f trên đường đi đó, sao cho luồng mới có giá trị lớn hơn. Nếu không tìm được đường đi như vậy thì ta có luồng cực đại.
- Đồ thị Gf đó được gọi là đồ thị tăng luồng.

Định lý

- Gọi f là luồng trên mạng G=(V,E). Các mệnh đề sau đây là tương đương:
 - ☐ f là luồng cực đại trong mạng
 - Không tìm được đường tăng luồng f
 - □ ∃ một lát cắt (X,X*) mà val(f)=c(X,X*)

P/

11

Thuật toán Ford - Fulkerson

Gán nhãn cho các đỉnh

- Mỗi đỉnh sẽ có 1 trong 3 trạng thái
 - Đỉnh chưa có nhãn
 - Đỉnh có nhãn nhưng chưa xét
 - Đỉnh có nhãn đã xét xong
- Nhãn của đỉnh y sẽ có dạng y: [±x, σ(y)]
 - +x: cần tăng luồng theo cung (x,y)
 - -x: cần giảm luồng theo cung (y,x)
 - σ(y): là lượng dùng để tăng/giảm
- Đầu tiên, các đỉnh đều chưa có nhãn

Thuật toán Ford – Fulkerson (tt)

■ B1:

- □ Gán nhãn cho đỉnh phát s: [+s, ∞]
- ☐ Đỉnh s có nhãn nhưng chưa xét
- ☐ Tất cả các đỉnh khác chưa có nhãn

13

Thuật toán Ford – Fulkerson (tt)

■ B3:

- □Lặp lại B2 cho đến khi:
 - Hoặc là đỉnh thu T được gán nhãn → B4
 - Hoặc là đỉnh T không được gán nhãn và cũng không thể gán nhãn. Trường hợp này giải thuật kết thúc với luồng cực đại.

Gọi X_0 là tập hợp các đỉnh có nhãn Gọi Y_0 là tập hợp các đỉnh không có nhãn Thì (X_0, Y_0) là lát cắt hẹp nhất

Thuật toán Ford – Fulkerson (tt)

■ B2:

- Xét 1 đỉnh có nhãn nhưng chưa xét, giả sử đó là
 x: [±y, σ(y)]
- □ Với mỗi đỉnh u chưa có nhãn, là ảnh của x (đỉnh cuối) và f(x,u)<c(x,u), được gán nhãn</p>
 - u: $[+x, \sigma(u)]$ với $\sigma(u) = \min(\sigma(x), c(x,y)-f(x,y))$
- □ Với mỗi đỉnh v chưa có nhãn, là tạo ảnh của x (đỉnh đầu) và f(v,x)>0, được gán nhãn
 - v: $[-x, \sigma(v)]$ với $\sigma(v) = \min(\sigma(x), f(v,x))$
- □ x có nhãn đã xét; u,v có nhãn nhưng chưa xét

Thuật toán Ford – Fulkerson (tt)

2. Tăng luồng

- B4: Đặt x = t
- B5
 - □ Nếu nhãn x: [+y, $\sigma(x)$] thì tăng luồng từ y \rightarrow x là $\sigma(t)$
 - □ Nếu nhãn x: [-y, σ(x)] thì giảm luồng từ x→y là σ(t)
- B6
 - Nếu x = s (điểm phát) thì xoá tất cả các nhãn, quay lại B1 với luồng đã được điều chỉnh ở B5
 - Nếu x ≠ s thì đặt x = y và quay lại B5

Ví dụ:

■ Tìm luồng cực đại trong mạng sau đây

17

Giải

■ Lần lặp thứ 2 (với luồng đã điều chỉnh)

- Đặt x=x7: [+x6, 3] → tăng luồng (x6, x7) lên 3
- Đặt x=x6: [+x2, 3] → tăng luồng (x2, x6) lên 3
- Đặt x=x2: [+x1, 9] → tăng luồng (x1, x2) lên 3

Giải

■ Lần lặp thứ 1 (luồng =0)

- Chọn x2
- Chọn x3
- Đặt x=x7: [+x3, 4] → tăng luồng (x3, x7) lên 4
- Đặt x=x3: [+x1,4] → tăng luồng (x1, x3) lên 4

18

Giải

Lần lặp thứ 3 (với luồng đã điều chỉnh):

■ Lần lặp thứ 4 (với luồng đã điều chỉnh):

Giải

Lần lặp thứ 5 (với luồng đã điều chỉnh):

Câu hỏi???

24