

Action Recognition with Image Based CNN Features

Hossein Mousavi

Outline

- Action Recognition with Image Based CNN Features
 - Introduction
 - Method
 - Experiment Results
- CNN-aware Binary Map For General Image Segmentation

- The 1950s and 1960s: The First Golden Age of Neural Networks
 - Frank Rosenblatt (1958) created the perceptron

Psychological Review

THE PERCEPTRON: A PROBABILISTIC MODEL FOR INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN¹

F. ROSENBLATT

Cornell Aeronautical Laboratory

- The 1970s: The Quiet Years
 - Perceptron could not solve simple XOR problem
 - Overestimating the success of AI in research papers

Multi-Layer Perceptron: How to train?!!!

- After 1975 up to 1990: Renewed Enthusiasm
 - The Backpropagation algorithm was created by Paul Werbos (1975)

- 1990 -2012 : Long Quiet Years !!!
 - Learning large network was computationally expensive
 - Support Vector Machine took over
 - Convex Optimization
 - Nonlinear Models by Kernel Tricks

Feature Engineering

Converting everything to a vector representation

Vector Representation 7

Feature Engineering

Bag of Words

Histogram of Oriented Gradients

Feature encoding

Feature Learning

Convolutional Neural Networks

Biol. Cybernetics 36, 193-202 (1980)

Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position

Kunihiko Fukushima

NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan

PROC. OF THE IEEE, NOVEMBER 1998

Gradient-Based Learning Applied to Document Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

https://www.youtube.com/watch?v=Qil4kmvm2Sw

GPU and BigData

• AlexNet (2012)

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto hinton@cs.utoronto.ca

0.75 e Epochs

ImageNet

Outline

- Action Recognition with Image Based CNN Features
 - Introduction
 - Method
 - Experiment Results
- CNN-aware Binary Map For General Image Segmentation

Introduction

- Classical Models
 - Rely on complex handcrafted structures

Wang et al. 'Action recognition by dense trajectories', ICCV 2011&2013

Classical Models 20

Introduction

Deep Models

CNN network based on spatial-temporal domain

Tran, Du. et al. "Learning spatiotemporal features with 3d convolutional network

Simonyan and Zisserman. "Two-stream convolutional networks for action recognition in videos." *NIPS* (2014)

Karpathy, Andrej, et al. "Large-scale video classification with convolutional neural networks." *CVPR* (2014)

Deep Models

Outline

- Action Recognition with Image Based CNN Features
 - Introduction
 - Method
 - Experiment Results
- CNN-aware Binary Map For General Image Segmentation

Method

DeepNets have shown promising results on Image classification.

 Image-based CNNs can not overcome performance on Action Recognition task.

Appearance feat. VS Motion feat.

KTH		UCF Sport		
Method	ACC	Method	ACC	
Appearance-based	74.5%	Appearance-based	88.1%	
Motion-based	94.1%	Motion-based	97.8%	

Image-based CNNs

Contribution

Spatial Features

Use the <u>AlexNet</u> architecture pre-trained on ImageNet dataset.

We utilize the output of fc7 layer of this CNN for representing spatial information.

Temporal Component

"<u>CNN flow</u>" captures informative features about image movement inspired from optical flow.

Introduction

Hierarchal structure

 ability to represent the information of a video in a multi-level.

Felzenszwalb et al "Hierarchical matching of deformable shapes." CVPR (2007)

Lan, Tian, et al. "Action Recognition by Hierarchical Mid-level Action Elements." ICCV (2015)

Hierarchal structure

Hierarchical Model

- Enables to capture sub-actions from a complex action.
- Hierarchy can represent the information of a video in a multi-level of resolution.
- Coarse to fine representation (higher levels coarse action sequence, lower levels represent ne action elements)

Key-frame Selection

- Extract CNN feature.
- Generate binary codes by Iterative Quantization (ITQ).
- Select key-frames regarding to binary code changes.

Pipeline Overview

- Extract CNN feature, key-frames.
- Build pyramid, compute video feature.
- Bag of snippets, and classifier.

Outline

- Action Recognition with Image Based CNN Features
 - Introduction
 - Method
 - Experiment Results
- CNN-aware Binary Map For General Image Segmentation

Experimental Results

	Prediction										
	shoot	biking	diving	g-swing	h-riding	juggling	swing	tennis	duní	v-spiking	walking
shoot	77.1	0.0	0.0	0.0	0.0	1.0	0.0	10.0	2.3	8.8	0.8
biking	0.0	96.5	0.0	0.8	0.0	1.0	0.0	0.0	0.0	0.0	1.7
diving	0.0	0.0	99.4	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0
g-swing	0.0	0.0	0.0	87.7	0.0	11.3	0.0	0.0	1.0	0.0	0.0
h-riding	0.5	0.5	0.0	0.4	95	0.5	0.0	0.0	2.5	0.0	0.6
juggling	13.3	0.5	0.0	3.0	0.0	66.1	2.3	3.8	3.6	4.7	2.7
swing	0.5	0.0	0.0	0.6	0.0	0.4	92	0.0	3.1	0.6	2.8
tennis	2.1	0.0	0.0	1.1	0.0	2.9	1.1	89.1	0.0	2.6	1.1
jump	0.0	0.0	0.0	0.6	1.3	0.0	0.0	2.0	95.3	0.0	0.8
v-spiking	0.6	0.0	0.0	0.0	1.0	0.0	0.0	2.0	0.0	96.4	0.0
walking	0.8	2.0	0.0	1.0	1.4	1.4	1.6	0.0	1.6	0.0	90.2

		Prediction						
		box	h-clp	h-wav	jog	run	walk	
	boxing	100	0.0	0.0	0.0	0.0	0.0	
ırınıı	h-clapp	4.6	95.4	0.0	0.0	0.0	0.0	
	h-wav	0.0	2.7	97.3	0.0	0.0	0.0	
	jogging	0.0	0.0	0.0	94.8	2.5	2.7	
	running	0.0	0.0	0.0	11.1	86.2	2.7	
	walking	0.0	0.0	0.0	0.0	0.0	100	

Comparison of our results to the state-of-the-arts on action recognition datasets KTH, UCF Sport and UCF-11

KTH		UCF Sport		UCF-11 Human Action		
Method	EER	Method	EER	Method	EER	
Laptev et al. [7]	91.8%	Souly & Shah [10]	85.1%			
Yuan et al. [14]	93.7%	Wang et al. [12]	85.6%	Incremental Activity Modeling [4]	54.5%	
Le et al. [8]	93.9%	Le et al. [8]	86.5%	Liu et al. [9]	71.2%	
Gilbert et al. [3]	93.9%	Kovashka & Grauman [6]	87.2%	Ikizler-Cinbis et al. [5]	75.2%	
Dense Trajectory [11]	94.2%	Dense Trajectory [11]	89.1%	Dense Trajectory [11]	84.2%	
Kovashka & Grauman [6]	94.5%	Weinzaepfel et al. [13]	90.5%	Jungchan Cho et al. [1]	88.0%	
Baseline proposed	74.5%	Baseline proposed	88.1%	Baseline proposed	77.1%	
Snippet proposed	94.1%	Snippet proposed	97.8%	Snippet proposed	89.5%	
Binary proposed	95.6%	Binary proposed	94.8%	Binary proposed	84.3%	

Outline

- Action Recognition with Image Based CNN Features
 - Introduction
 - Method
 - Experiment Results
- CNN-aware Binary Map For General Image Segmentation

CNN-aware Binary Map For General Image Segmentation

 Visually and semantically coherent image segments

Experimental Result

MSR	С	Berkeley			
Method	IoU	Method	IoU		
EGS [1]	50.3%	EGS [1]	45.19%		
SLIC [2]	48.7%	SLIC [2]	43.70%		
Our method	55.03 %	Our method	48.35%		

Conclusion&Future work

- Proposed hierarchical structure of CNN features
- we introduced CNN-flow Inspired by optical flow
- Find key-frames to build snippets
- Train network based on our proposed approaches toward action recognition. (Model CNN flow)
- Apply proposed segmentation for action detection

Thank you!