FA7 1-4

Elisha Sophia Borromeo

2025-04-09

Github Link:

Campus-Related Issues Using Exponential Distribution

1. Identify a Practical Campus Problem

For this assessment, the group identified time between students arriving at an elevator- a practical campus problem where events occur randomly over time.

2. Collect Data

The table below shows the time intervals between the arrival of each person. The time is standardized.

Table 1: Waiting Time Between Student Arrivals at the Elevator (in Seconds)

Person	$Waiting_{\underline{}}$	$_{ m Time}_{ m }$	_Seconds
1		62.00	
2		45.00	
3		22.78	
4		2.00	
5		104.20	
6		43.00	
7		104.20	
8		115.34	
9		91.63	
10		29.25	
11		36.01	
12		7.36	
13		13.82	
14		61.91	
15		11.75	
16		2.81	
17		15.46	
18		75.10	
19		85.47	
20		10.99	
21		13.60	

Person	Waiting_Time_Seconds
22	131.94
23	41.26
24	28.84
25	46.69
26	21.80
27	53.86
28	202.49
29 30	120.00 40.91
90	40.91

3. Verify if Exponential Distribution is Applicable

Instruction 1: Check if events occur randomly and independently over time.

Because the group recorded interarrival times, this implies independence — since each record is a time interval not influenced by the last one. Since students come from various locations at random, this also indicates random occurrence. So, it's safe to assume events are independent and random over time. Therefore, we can apply the exponential distribution.

Instruction 2: Identify the average rate of event occurrence per unit of time.

The formula for lambda is:

$$Lambda = \frac{n}{\sum (waiting times)}$$

Where n is the number of events, and \sum (waiting times) is the sum of all the waiting times. Through manual calculation, we get:

$$Lambda = \frac{30}{1,641.47}$$

$$Lambda = 0.0182763$$

For number 4, we will be calculating lambda using a statistical tool.

4. Compute Key Parameters

Mean (Expected Value)

For the exponential distribution, the mean (expected value μ) is the reciprocal of the rate λ :

$$\lambda = \frac{\text{Number of Observations}}{\text{Total Waiting Time}}$$

$$\mu = \frac{1}{\lambda}$$

Mean waiting time: 54.716 seconds

Probability Density Function (PDF)

$$f(x) = \lambda e^{-\lambda x}$$
, for $x \ge 0$

Table 2: PDF Values for Each Data Point

$\overline{\mathrm{Time}_{_}}$	_Seconds	PDF
	62.00	0.00589
	45.00	0.00803
	22.78	0.01205
	2.00	0.01762
	104.20	0.00272
	43.00	0.00833
	104.20	0.00272
	115.34	0.00222
	91.63	0.00342
	29.25	0.01071
	36.01	0.00946
	7.36	0.01598
	13.82	0.01420
	61.91	0.00590
	11.75	0.01474
	2.81	0.01736
	15.46	0.01378
	75.10	0.00463
	85.47	0.00383
	10.99	0.01495
	13.60	0.01425
	131.94	0.00164
	41.26	0.00860
	28.84	0.01079
	46.69	0.00779
	21.80	0.01227
	53.86	0.00683
	202.49	0.00045
	120.00	0.00204
ī	40.91	0.00865

Cumulative Distribution Function (CDF)

$$F(x) = 1 - e^{-\lambda x}$$
, for $x \ge 0$

Table 3: CDF Values for Each Data Point

Time_S	Seconds	CDF
	62.00	0.67798
	45.00	0.56064
	22.78	0.34054
	2.00	0.03589
	104.20	0.85109
	43.00	0.54428

Time_{-}	_Seconds	CDF
	104.20	0.85109
	115.34	0.87852
	91.63	0.81263
	29.25	0.41409
	36.01	0.48218
	7.36	0.12586
	13.82	0.22320
	61.91	0.67745
	11.75	0.19325
	2.81	0.05006
	15.46	0.24614
	75.10	0.74654
	85.47	0.79030
	10.99	0.18197
	13.60	0.22008
	131.94	0.91031
	41.26	0.52956
	28.84	0.40968
	46.69	0.57400
	21.80	0.32862
	53.86	0.62632
	202.49	0.97530
	120.00	0.88844
	40.91	0.52654