Analiza seria 3

Bartosz Kucypera, bk439964

2 maja 2023

Zadanie 2

$$f_n: [-1,1] \to \mathbb{R}, f_n(x) = \frac{x}{1+n^2x^2}$$

Zbieżność jednostajna f_n

$$|f_n(x)| = \frac{|x|}{1 + n^2|x|^2} \le^* \frac{1}{n}$$

*)
$$\frac{|x|}{1+n^2|x|^2} \leq \frac{1}{n} \Leftrightarrow 0 \leq n^2|x|^2-n|x|+1, \Delta=-3n^2, \text{ czyli spełnione dla } n>0$$

 f_n punktowo zbieżny do zera oraz $|f_n-0|<\frac{1}{n}$, czyli f_n jednostajnie zbieżny z definicji.

Zbieżnosć jednostajna f'_n

$$f_n'(x) = \frac{-n^2 x^2}{(1 + n^2 x^2)^2}$$

Dla x = 0

$$f_n'(x) = 0$$

Dla $x \neq 0$

$$|f_n'(x)| = \frac{n^2 x^2}{(1 + n^2 x^2)^2} \le \frac{1}{n^2 x^2}$$

$$\lim_{n \to \inf} \frac{1}{n^2 x^2} = 0$$

Czyli f'_n punktowo zbiega do 0.

Neich $x_n = \frac{1}{n}$. Zauważmy, że:

$$f_n'(x_n) = -\frac{1}{2}$$

Czyli f_n^\prime nie jest zbieżne jednostajnie.

Różniczkowalność $f(x) = \lim_{n \to \inf} f_n(x)$

Tak, skoro f(x) = 0 to f jest różniczkowalne.