Chapter 3 Numerical Integration

- We want to calculate integration $\int_{\mathcal{X}} g(x) dx$ for some function g(x) defined on $\mathcal{X} \subset \mathbb{R}$.
 - Let $f_X(x)$ be the PDF of random variable X, we may want to know

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(u) \, du$$

or

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

- Let $f_{XY}(x,y)$ be the joint PDF of (X,Y), we often need to calculate $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x,y) dx$.

- Bayesian Inference: In Bayesian approaches, the parameter θ is considered as a random variable.
 - Suppose $\boldsymbol{\theta}$ has a prior distribution with PDF $\pi(\theta)$. Given $\boldsymbol{\theta} = \theta$, the observed data X follows a distribution with PDF $f_{X|\boldsymbol{\theta}}(x|\theta)$.
 - The distribution of $\boldsymbol{\theta}$ conditional on the the observed data is called the posterior distribution of the parameter $\boldsymbol{\theta}$.
 - Let $f_{\theta|X}(\theta|x)$ be the PDF of the posterior distribution of $\boldsymbol{\theta}$. Then

$$f_{\boldsymbol{\theta}|X}(\boldsymbol{\theta}|x) = \frac{f_{X}\boldsymbol{\theta}(x,\boldsymbol{\theta})}{f_{X}(x)} = \frac{f_{X}\boldsymbol{\theta}(x,\boldsymbol{\theta})}{\int f_{X}\boldsymbol{\theta}(x,\boldsymbol{\theta}) d\boldsymbol{\theta}} = \frac{\pi(\boldsymbol{\theta})f_{X|\boldsymbol{\theta}}(x|\boldsymbol{\theta})}{\int \pi(\boldsymbol{\theta})f_{X|\boldsymbol{\theta}}(x|\boldsymbol{\theta}) d\boldsymbol{\theta}}.$$

– Suppose we want to calculate the probability $P(a < \theta < b | X = x)$, then

$$P(a < \boldsymbol{\theta} < b | X = x) = \int_a^b f_{\boldsymbol{\theta}|X}(\boldsymbol{\theta}|x) d\boldsymbol{\theta} = \frac{\int_a^b \pi(\boldsymbol{\theta}) f_{X|\boldsymbol{\theta}} d\boldsymbol{\theta}(x|\boldsymbol{\theta}) d\boldsymbol{\theta}}{\int \pi(\boldsymbol{\theta}) f_{X|\boldsymbol{\theta}}(x|\boldsymbol{\theta}) d\boldsymbol{\theta}}.$$

- **Example:** Suppose that X_1, \dots, X_n are i.i.d. from the Poisson (θ) distribution given that $\boldsymbol{\theta} = \theta > 0$. Assume that the prior distribution of θ has the PDF $\pi(\theta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta}$, $\theta > 0$ (the Gamma (α, β) distribution with $\alpha > 0$ and $\beta > 0$), where $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$.
 - The distribution of $X_1 = x_1, \dots, X_n = x_n$ given $\boldsymbol{\theta} = \theta$ is

$$P(X_1 = x_1, \dots, X_n = x_n | \boldsymbol{\theta} = \theta) = \prod_{i=1}^n P(X_i = x_i | \boldsymbol{\theta} = \theta) = \frac{e^{-n\theta} \theta^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!}.$$

– The posterior distribution of $\boldsymbol{\theta}$ is

$$f_{\boldsymbol{\theta}|X}(\theta \mid X = x) = \frac{\pi(\theta)P(X_1 = x_1, \dots, X_n = x_n \mid \boldsymbol{\theta} = \theta)}{\int_{\Theta} \pi(\theta)P(X_1 = x_1, \dots, X_n = x_n \mid \boldsymbol{\theta} = \theta)d\theta}$$

$$= \frac{\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\theta^{\alpha-1}e^{-\theta/\beta}}{\int_{\Theta} \pi(\theta)P(X_1 = x_1, \dots, X_n = x_n \mid \boldsymbol{\theta} = \theta)d\theta} \cdot \frac{e^{-n\theta}\theta^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!}$$

$$= c(x_1, \dots, x_n) \cdot \theta^{\alpha + \sum_{i=1}^{n} x_i - 1} e^{-(n\beta + 1)\theta/\beta},$$

which is the Gamma $(\alpha + \sum_{i=1}^{n} x_i, \frac{\beta}{n\beta+1})$ distribution.

- When $\int_{-\infty}^{\infty} g(x) dx$ exists, we have $\int_{a}^{b} g(x) dx \to \int_{-\infty}^{\infty} g(x) dx$. when $a \to -\infty$ and $b \to \infty$. So we can choose a < b so that $\int_{a}^{b} g(x) dx \approx \int_{-\infty}^{\infty} g(x) dx$. We focus on calculate $\int_{a}^{b} g(x) dx$ in the following.
- Riemann Rule: Let $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$ be a partition of interval [a, b] and let ξ_i be any point between x_i and x_{i+1} . Then

$$\sum_{i=0}^{n-1} g(\xi_i)(x_{i+1} - x_i) \to \int_a^b g(x) \, dx$$

as $\max\{|x_1 - x_0|, \cdots, |x_n - x_{n-1}|\} \to 0.$

- Assume that x_0, x_1, \dots, x_n are equally spaced in the following. That is, $x_i = a + i(b-a)/n$ for $i = 0, 1, \dots, n$.
- For simplicity, we use h_n to denote (b-a)/n in the following.

• If we let $\xi_i = x_i$, then $\int_a^b g(x) dx$ is estimated by

$$R_{1,n} = h_n \sum_{i=0}^{n-1} g(x_i).$$

– If we let $\xi_i = (x_i + x_{i+1})/2$, then $\int_a^b g(x) dx$ is estimated by

$$R_{2,n} = h_n \sum_{i=0}^{n-1} g((x_i + x_{i+1})/2).$$

- - We say $a_n = O(b_n)$ if we can find c > 0 such that $|a_n/b_n| < c$ for all n, and $a_n = o(b_n)$ if $\lim_{n \to \infty} a_n/b_n = 0$.
 - Assume that g''(x) is continuous on [a,b]. For $R_{1,n}$, we have

$$\begin{aligned} & \left| R_{1,n} - \int_{a}^{b} g(x) \, dx \right| \\ &= \left| h_{n} \sum_{i=0}^{n-1} g(x_{i}) - \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} g(x) \, dx \right| \leq \sum_{i=0}^{n-1} \left| h_{n} g(x_{i}) - \int_{x_{i}}^{x_{i+1}} g(x) \, dx \right| \\ &= \sum_{i=0}^{n-1} \left| h_{n} g(x_{i}) - \int_{x_{i}}^{x_{i+1}} \left[g(x_{i}) + g'(x_{i})(x - x_{i}) + \frac{1}{2} g''(u_{i})(x - x_{i})^{2} \right] dx \right| \\ &= \sum_{i=0}^{n-1} \left| -\frac{1}{2} g'(x_{i}) h_{n}^{2} - \int_{x_{i}}^{x_{i+1}} \frac{1}{2} g''(u_{i})(x - x_{i})^{2} dx \right| \\ &\leq c \sum_{i=0}^{n-1} h_{n}^{2} = O(h_{n}) = O(1/n), \end{aligned}$$

where u_i is a point between x and x_i .

• - For $R_{2,n}$, we have

$$\begin{aligned}
\left| R_{2,n} - \int_{a}^{b} g(x) \, dx \right| &= \left| h_{n} \sum_{i=0}^{n-1} g\left(\frac{x_{i} + x_{i+1}}{2}\right) - \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} g(x) \, dx \right| \\
&\leq \sum_{i=0}^{n-1} \left| h_{n} g\left(\frac{x_{i} + x_{i+1}}{2}\right) - \int_{x_{i}}^{x_{i+1}} g(x) \, dx \right| \\
&= \sum_{i=0}^{n-1} \left| h_{n} g\left(\frac{x_{i} + x_{i+1}}{2}\right) - \int_{x_{i}}^{x_{i+1}} \left[g\left(\frac{x_{i} + x_{i+1}}{2}\right) + g'\left(\frac{x_{i} + x_{i+1}}{2}\right) \cdot \left(x - \frac{x_{i} + x_{i+1}}{2}\right) + \frac{1}{2} g''(u_{i}) \cdot \left(x - \frac{x_{i} + x_{i+1}}{2}\right)^{2} \right] dx \right| \\
&= \sum_{i=0}^{n-1} \left| 0 - \int_{x_{i}}^{x_{i+1}} \frac{1}{2} g''(u_{i}) \cdot \left(x - \frac{x_{i} + x_{i+1}}{2}\right)^{2} \right] dx \right| \\
&\leq c \sum_{i=0}^{n-1} h_{n}^{3} = O(h_{n}^{2}) = O(1/n^{2}).
\end{aligned}$$

- Hence, $R_{2,n}$ converges faster than $R_{1,n}$.

- Newton-Côtes Quadrature: The Newton-Côtes quadrature proposes to use a mth degree polynomial (instead of a constant) to approximate g(x) in each subinterval $[x_i, x_{i+1}], i = 1, \dots, n$.
 - We insert m-1 equally spaced points in the interval $[x_i, x_{i+1}]$. Define $x_{ij}^* = x_i + jh_n/m, j = 0, \dots, m$. Then $x_{i0}^* = x_i$ and $x_{im}^* = x_{i+1}$.
 - Define

$$p_{ij}(x) = \prod_{k=0, k \neq j}^{m} \frac{x - x_{ik}^*}{x_{ij}^* - x_{ik}^*}.$$

It is easy to find that $p_{ij}(x)$ is a mth degree polynomial, $p_{ij}(x_{ij}^*) = 1$ and $p_{ij}(x_{ik}^*) = 0$ for $k = 0, \dots, m$ and $k \neq j$.

- Let $\hat{g}_i(x) = \sum_{j=0}^m g(x_{ij}^*) p_{ij}(x)$. Then $\hat{g}_i(x)$ is a *m*th degree polynomial, and it satisfies $\hat{g}_i(x_{ij}^*) = g(x_{ij}^*)$ for $j = 0, \dots, m$.

• The Newton-Côtes quadrature proposes to calculate $\int_a^b g(x) dx$ by

$$\int_{a}^{b} g(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} g(x) dx$$

$$\approx \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} \hat{g}_{i}(x) dx = \sum_{i=0}^{n-1} \sum_{j=0}^{m} g(x_{ij}^{*}) \int_{x_{i}}^{x_{i+1}} p_{ij}(x) dx.$$

- When m = 1, we have $x_{i0}^* = x_i$, $x_{i1}^* = x_{i+1}$ and $p_{i0}(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}}$, $p_{i1}(x) = \frac{x - x_i}{x_{i+1} - x_i}$. Note that $x_{i+1} - x_i = h_n$, we have

$$\int_{x_i}^{x_{i+1}} p_{i0}(x) dx = \frac{h_n}{2} \quad \text{and} \quad \int_{x_i}^{x_{i+1}} p_{i1}(x) dx = \frac{h_n}{2}.$$

Then $\int_a^b g(x) dx$ is estimated by

$$T_n = \sum_{i=0}^{n-1} \left[\frac{h_n}{2} g(x_i) + \frac{h_n}{2} g(x_{i+1}) \right] = \frac{h_n}{2} g(x_0) + h_n \sum_{i=1}^{n-1} g(x_i) + \frac{h_n}{2} g(x_n).$$

This method is called the *trapezoidal rule*.

• - When m = 2, $x_{i0}^* = x_i$, $x_{i1}^* = (x_i + x_{i+1})/2$, and $x_{i2}^* = x_{i+1}$. We can show that **(Homework)**

$$\int_{x_i}^{x_{i+1}} p_{i0}(x) dx = \int_{x_i}^{x_{i+1}} p_{i2}(x) dx = \frac{h_n}{6} \quad \text{and} \quad \int_{x_i}^{x_{i+1}} p_{i1}(x) dx = \frac{2h_n}{3}.$$

Then $\int_a^b g(x) dx$ is estimated by

$$S_n = \sum_{i=0}^{n-1} \left[\frac{h_n}{6} g(x_i) + \frac{2h_n}{3} g\left(\frac{x_i + x_{i+1}}{2}\right) + \frac{h_n}{6} g(x_{i+1}) \right]$$

$$= \frac{h_n}{6} g(x_0) + \frac{h_n}{3} \sum_{i=1}^{n-1} g(x_i) + \frac{2h_n}{3} \sum_{i=0}^{n-1} g\left(\frac{x_i + x_{i+1}}{2}\right) + \frac{h_n}{6} g(x_n).$$

This method is called the *Simpson's rule*.

Riemann Rule, trapezoidal rule and Simpson's rule

- Next, we consider the convergence rates of different rules.
- Bernoulli Polynomials: The Bernoulli polynomials $\{B_k(x), 0 \le x \le 1\}$ are defined recursively by $B_0(x) = 1$, and for $k \ge 1$,

$$B'_k(x) = kB_{k-1}(x)$$
 and $\int_0^1 B_k(x) dx = 0$.

• Remarks:

- By definition, we have $B_1(x) = x 1/2$, $B_2(x) = x^2 x + 1/6$, ...
- Each $B_k(x)$ is a polynomial of order k. We need the condition $\int_0^1 B_k(x) dx = 0$ to determine the constant term in the polynomial.
- Note that by definition,

$$[B_{k+1}(1) - B_{k+1}(0)] = (k+1) \int_0^1 B_k(x) dx.$$

The condition $\int_0^1 B_k(x) dx = 0$ guarantees that $B_{k+1}(1) = B_{k+1}(0)$ for $k = 1, 2, \cdots$.

• Eular-Maclaurin Formula: Let m < n be two integers and let g(x) be a p-times continuously differentiable function on the interval [m, n]. Then

$$\sum_{i=m+1}^{n} g(i) = \int_{m}^{n} g(x) dx + \frac{g(n) - g(m)}{2} + \sum_{k=1}^{p-1} \frac{(-1)^{k+1} B_{k+1}(0)}{(k+1)!} \left(g^{(k)}(n) - g^{(k)}(m) \right) + (-1)^{p+1} \sum_{i=m+1}^{n} \int_{i-1}^{i} \frac{g^{(p)}(x)}{p!} B_{p}(x+1-i) dx.$$

• Proof.

– We first consider $\int_{i-1}^{i} g(x) dx$ for $i = m+1, \dots, n$. Then

$$\int_{i-1}^{i} g(x) dx = \int_{i-1}^{i} g(x) d(x - i + 1/2)$$

$$= g(x)(x - i + 1/2) \Big|_{x=i-1}^{i} - \int_{i-1}^{i} (x - i + 1/2) dg(x)$$

$$= \frac{g(i) + g(i-1)}{2} - \int_{i-1}^{i} B_1(x + 1 - i) g'(x) dx.$$

 \bullet - Thus, we have

$$g(i) = \int_{i-1}^{i} g(x) dx + \frac{g(i) - g(i-1)}{2} + \int_{i-1}^{i} B_{1}(x+1-i)g'(x) dx$$

$$= \int_{i-1}^{i} g(x) dx + \frac{g(i) - g(i-1)}{2} + \int_{i-1}^{i} g'(x) dB_{2}(x+1-i)/2$$

$$= \int_{i-1}^{i} g(x) dx + \frac{g(i) - g(i-1)}{2} + \frac{g'(i)B_{2}(1) - g'(i-1)B_{2}(0)}{2!} - \frac{1}{2} \int_{i-1}^{i} B_{2}(x+1-i)g''(x) dx$$

$$= \int_{i-1}^{i} g(x) dx + \frac{g(i) - g(i-1)}{2} + \frac{B_{2}(0)}{2!} (g'(i) - g'(i-1)) - \frac{1}{2} \int_{i-1}^{i} B_{2}(x+1-i)g''(x) dx$$

$$= \cdots$$

$$= \int_{i-1}^{i} g(x) dx + \frac{g(i) - g(i-1)}{2} + \sum_{k=1}^{p-1} \frac{(-1)^{k+1}B_{k+1}(0)}{(k+1)!} (g^{(k)}(i) - g^{(k)}(i-1))$$

$$+ (-1)^{p+1} \int_{i-1}^{i} \frac{g^{(p)}(x)}{p!} B_{p}(x+1-i) dx.$$

- Take sum of both sides for $i = m + 1, \dots, n$, we obtain

$$\sum_{i=m+1}^{n} g(i) = \int_{m}^{n} g(x) dx + \frac{g(n) - g(m)}{2} + \sum_{k=1}^{p-1} \frac{(-1)^{k+1} B_{k+1}(0)}{(k+1)!} (g^{(k)}(n) - g^{(k)}(m))$$

$$+ (-1)^{p+1} \sum_{i=m+1}^{n} \int_{i-1}^{i} \frac{g^{(p)}(x)}{p!} B_{p}(x+1-i) dx.$$

• Remarks:

- $-B_k(0)$ are called *Bernoulli numbers*. The Bernoulli numbers from $B_1(0)$ to $B_7(0)$ are $\frac{1}{2}$, $\frac{1}{6}$, 0, $-\frac{1}{30}$, 0, $\frac{1}{42}$, 0.
- We can show that $B_k(0) = 0$ for $k = 3, 5, 7, 9, \cdots$
- The Eular-Maclaurin formula can also be written as

$$\sum_{i=m}^{n} g(i) = \int_{m}^{n} g(x) dx + \frac{g(n) + g(m)}{2} + \sum_{s=1}^{q} \frac{B_{2s}(0)}{(2s)!} \left(g^{(2s-1)}(n) - g^{(2s-1)}(m) \right) + \sum_{i=m+1}^{n} \int_{i-1}^{i} \frac{g^{(2q+1)}(x)}{p!} B_{2q+1}(x+1-i) dx.$$

- Now we consider $\int_a^b g(x) dx$ for $-\infty < a < b < \infty$. Set $x_i = a + \frac{i*(b-a)}{n}$ for $i = 0, 1, \dots, n$. Then $a = x_0 < x_1 < \dots < x_n = b$ forms a partition of the interval [a, b].
 - Let $h_n = (b-a)/n$. Define $\varphi(u) = g(a+h_n u)$. It is easy to know that

$$\int_{a}^{b} g(x) dx = \int_{0}^{n} g(a + h_{n}u) d(a + h_{n}u) = h_{n} \int_{0}^{n} \varphi(u) du.$$

- Applying the Eular-Maclaurin formula to $\int_0^n \varphi(u) du$, we obtain

$$\int_{a}^{b} g(x) dx = h_{n} \sum_{i=0}^{n} \varphi(i) - h_{n} \cdot \frac{\varphi(0) + \varphi(n)}{2} - h_{n} \cdot \sum_{s=1}^{q} \frac{B_{2s}(0)}{(2s)!} (\varphi^{(2s-1)}(n) - \varphi^{(2s-1)}(0))$$
$$-h_{n} \cdot \sum_{i=1}^{n} \int_{i-1}^{i} \frac{\varphi^{(2q+1)}(u)}{p!} B_{2q+1}(u+1-i) dx.$$

• Note that $\varphi(0) = g(a)$, $\varphi(i) = g(x_i)$, $\varphi(n) = g(b)$, $\varphi^{(k)}(u) = h_n^k g^{(k)}(a + h_n u)$. Then

$$\int_{a}^{b} g(x) dx = h_{n} \sum_{i=0}^{n} g(x_{i}) - h_{n} \cdot \frac{g(a) + g(b)}{2}
- \sum_{s=1}^{q} h_{n}^{2s} \cdot \frac{B_{2s}(0)}{(2s)!} (g^{(2s-1)}(b) - g^{(2s-1)}(a)) + O(h_{n}^{2q+1})
= h_{n} \sum_{i=0}^{n} g(x_{i}) - h_{n} \cdot \frac{g(a) + g(b)}{2} - \frac{h_{n}^{2}}{12} (g'(b) - g'(a))
+ \frac{h_{n}^{4}}{720} (g^{(3)}(b) - g^{(3)}(a)) - \frac{h_{n}^{6}}{720 \cdot 42} (g^{(5)}(b) - g^{(5)}(a)) + \cdots$$

- Consider the convergence rates of different rules to estimate $\int_a^b g(x) dx$.
 - According to the Eular-Maclaurin formula, we have

$$h_n \sum_{i=0}^n g(x_i) = \int_a^b g(x) dx + h_n \cdot \frac{g(a) + g(b)}{2} + \frac{h_n^2}{12} (g'(b) - g'(a))$$
$$-\frac{h_n^4}{720} (g^{(3)}(b) - g^{(3)}(a)) + \frac{h_n^6}{720 \cdot 42} (g^{(5)}(b) - g^{(5)}(a)) + \cdots$$

- For the Riemann rule,

$$R_{1,n} = h_n \sum_{i=0}^{n-1} g(x_i) = h_n \sum_{i=0}^{n} g(x_i) - h_n g(b)$$

$$= \int_a^b g(x) dx + h_n \cdot \frac{g(a) + g(b)}{2} + O(h_n^2) - h_n g(b)$$

$$= \int_a^b g(x) dx + O(1/n).$$

• Note that $h_n = (b-a)/n$, so $h_n = 2 \cdot h_{2n}$. We have

$$R_{2,n} = h_n \sum_{i=0}^{n-1} g((x_i + x_{i+1})/2)$$

$$= 2 \cdot h_{2n} \Big[\sum_{i=0}^{n} g(x_i) + \sum_{i=0}^{n-1} g((x_i + x_{i+1})/2) \Big] - h_n \sum_{i=0}^{n} g(x_i)$$

$$= 2 \Big[\int_a^b g(x) \, dx + h_{2n} \cdot \frac{g(a) + g(b)}{2} + \frac{h_{2n}^2}{12} (g'(b) - g'(a)) + O(h_n^4) \Big]$$

$$- \Big[\int_a^b g(x) \, dx + h_n \cdot \frac{g(a) + g(b)}{2} + \frac{h_n^2}{12} (g'(b) - g'(a)) + O(h_n^4) \Big]$$

$$= \int_a^b g(x) \, dx - \frac{h_n^2}{24} (g'(b) - g'(a)) + O(h_n^4)$$

$$= \int_a^b g(x) \, dx + O(1/n^2).$$

• - For the trapezoidal rule, we have

$$T_{n} = \frac{h_{n}}{2}g(x_{0}) + h_{n} \sum_{i=1}^{n-1} g(x_{i}) + \frac{h_{n}}{2}g(x_{n})$$

$$= h_{n} \sum_{i=0}^{n} g(x_{i}) - h_{n} \cdot \frac{g(a) + g(b)}{2}$$

$$= \int_{a}^{b} g(x) dx + h_{n} \cdot \frac{g(a) + g(b)}{2} + \frac{h_{n}^{2}}{12} (g'(b) - g'(a)) + O(h_{n}^{4}) - h_{n} \cdot \frac{g(a) + g(b)}{2}.$$

- For the Simpson's rule, we have

$$S_{n} = \frac{h_{n}}{6}g(x_{0}) + \frac{h_{n}}{3} \sum_{i=1}^{n-1} g(x_{i}) + \frac{2h_{n}}{3} \sum_{i=0}^{n-1} g\left(\frac{x_{i} + x_{i+1}}{2}\right) + \frac{h_{n}}{6}g(x_{n})$$

$$= \frac{4}{3} \cdot h_{2n} \left[\sum_{i=0}^{n} g(x_{i}) + \sum_{i=0}^{n-1} g\left((x_{i} + x_{i+1})/2\right) \right] - \frac{h_{n}}{3} \sum_{i=0}^{n} g(x_{i})$$

$$-\frac{h_{n}}{3} \cdot \frac{g(a) + g(b)}{2}.$$

• Applying the Eular-Maclaurin formula, we have

$$S_{n} = \frac{4}{3} \left[\int_{a}^{b} g(x) dx + \frac{h_{n}}{2} \cdot \frac{g(a) + g(b)}{2} + \frac{h_{n}^{2}/4}{12} (g'(b) - g'(a)) + O(h_{n}^{4}) \right]$$

$$-\frac{1}{3} \left[\int_{a}^{b} g(x) dx + h_{n} \cdot \frac{g(a) + g(b)}{2} + \frac{h_{n}^{2}}{12} (g'(b) - g'(a)) + O(h_{n}^{4}) \right]$$

$$-\frac{h_{n}}{3} \cdot \frac{g(a) + g(b)}{2}$$

$$= \int_{a}^{b} g(x) dx + O(h_{n}^{4})$$

$$= \int_{a}^{b} g(x) dx + O(1/n^{4}).$$

• Choice of n: Let Π_n be the Newton-Côtes quadrature estimates using n subintervals. In practice, we can choose n so that the relative error $\frac{|\Pi_n - \Pi_{n/2}|}{\Pi_{n/2}}$ is less than a given threshold value.

• In general, if we use m+1 equally spaced points x_0, \dots, x_m , we can approximate $\int_a^b g(x) dx$ by $\sum_{i=0}^m a_i g(x_i)$, so that

$$\int_{a}^{b} g(x) dx = \sum_{i=0}^{m} a_i \cdot g(x_i)$$

whenever g is a polynomial of **degree not exceeding** m.

- Define

$$\bar{p}_i(x) = \prod_{k=0, k \neq i}^m \frac{x - x_k}{x_i - x_k}.$$

Then $p_i(x_i) = 1$ and $p_i(x_k) = 0$ for $k = 0, \dots, m$ and $k \neq i$.

- Let

$$\hat{g}(x) = \sum_{i=0}^{m} g(x_i) \bar{p}_i(x).$$

We have that $\hat{g}(x)$ is a *m*th degree polynomial (its degree may be less than m), and it satisfies $\hat{g}(x_i) = g(x_i)$ for $j = 0, \dots, m$.

• Note that there is **only one** mth degree polynomial $p(\cdot)$ satisfying $p(x_i) = g(x_i)$ for $j = 0, \dots, m$. If g is a also mth degree polynomial, we have $g(x) = \hat{g}(x)$ and

$$\int_{a}^{b} g(x) dx = \int_{a}^{b} \hat{g}(x) dx = \sum_{i=0}^{m} \int_{a}^{b} \bar{p}_{i}(x) dx \cdot g(x_{i}).$$

– If the constraint of equally spaced points is removed, we can choose specially designed x_0, x_1, \dots, x_m so that the equality may hold for higher order polynomials.

• The Gaussian quadrature proposes to choose x_0, \dots, x_m so that

$$\int g(x)w(x) dx = \sum_{i=0}^{m} a_i \cdot g(x_i)$$

whenever g is a polynomial of **degree not exceeding** 2m + 1.

- Here w(x) is a nonnegative function and $\int |x^k| w(x) dx < \infty$ for $k \ge 0$.
- When $w(x) = I(a \le x \le b)$, $\int g(x)w(x) dx = \int_a^b g(x) dx$.
- When $w(x) = e^{-x}I(0 \le x < \infty)$,

$$\int g(x)w(x) dx = \int_0^\infty g(x)e^{-x} dx = E[g(X)],$$

where X follows an exponential distribution.

- When
$$w(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$
 for $-\infty < x < \infty$,

$$\int g(x)w(x) dx = \int_{-\infty}^{\infty} g(x) \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = E[g(X)], \text{ where } X \sim N(0, 1).$$

- Orthogonal Polynomials: Given nonnegative w(x) satisfying $\int |x^k| w(x) dx < \infty$ for $k \geq 0$, we can find a series of polynomials $q_0(x)$, $q_1(x)$, $q_2(x)$, \cdots that satisfy the following conditions.
 - Each $q_k(x)$ is a kth degree polynomial.
 - For $i \neq j$, $q_i(x)$ and q_j are orthogonal with respect to w(x), that is

$$< q_i, q_j >_w := \int q_i(x)q_j(x)w(x) dx = 0.$$

• **Remark:** When $q_k(x)$ also satisfies $\langle q_k, q_k \rangle_w = 1$ for all k, we call $q_0(x)$, $q_1(x), q_2(x), \cdots$ as ortho-normal bases with respect to w(x).

• A orthogonal polynomials with respect to w(x) can be constructed by applying the *Gram-Schmidt process* to $\{1, x, x^2, \dots\}$. Specifically, we let $q_0(x) = 1$ and let

$$q_k(x) = x^k - \frac{\langle q_{k-1}, x^k \rangle_w}{\langle q_{k-1}, q_{k-1} \rangle_w} \cdot q_{k-1}(x) - \dots - \frac{\langle q_0, x^k \rangle_w}{\langle q_0, q_0 \rangle_w} \cdot q_0(x).$$

- When $w(x) = I(-1 \le x \le 1)$, the polynomials are called the *Legendre* polynomials.
- When $w(x) = e^{-x}I(0 \le x < \infty)$, the polynomials are called the *Laguerre polynomials*.
- When $w(x) = e^{-x^2/2}$, the polynomials are called the *corrected Hermite* polynomials.

- Gaussian Quadrature: Given $w(x) \ge 0$ and m > 0, find the orthogonal polynomials $q_0(x), \dots, q_{m+1}(x)$ with respect to w(x).
 - Let $x_0 < x_1 < \cdots < x_m$ be the solutions of $q_{m+1}(x) = 0$.
 - We estimate $\int g(x)w(x) dx$ by

$$\sum_{i=0}^{m} \int \bar{p}_i(x)w(x) dx \cdot g(x_i),$$

where $\bar{p}_i(x) = \prod_{k=0, k \neq i}^m \frac{x - x_k}{x_i - x_k}$.

• Remark:

- Here $x_0 < x_1 < \cdots < x_m$ and $\int \bar{p}_i(x)w(x) dx$ do not depend on g, they can be calculated in advance.
- Usually, we will not use large m due to potential numerical imprecision introduced by computer roundoff error, for example, $m \leq 8$.

• - When g is a (2m + 1)th degree polynomial, it can be written as

$$g(x) = s(x)q_{m+1}(x) + r(x),$$

where s and r are polynomials with degree not exceeding m.

* Note that $s(x) = b_m q_m(x) + \cdots + b_0 q_0(x)$ for some b_0, \cdots, b_m . Then

$$\int s(x)q_{m+1}(x)w(x) dx = 0.$$

* Since r is a polynomial with degree not exceeding m, we have

$$r(x) = \sum_{i=0}^{m} \bar{p}_i(x)r(x_i).$$

* Also note that $x_0 < x_1 < \cdots < x_m$ are the roots of $q_{m+1}(x)$. Hence,

$$g(x_i) = s(x_i)q_{m+1}(x_i) + r(x_i) = r(x_i).$$

 \bullet - * Finally, we have

$$\int g(x)w(x) dx = \int \left[s(x)q_{m+1}(x) + r(x) \right] w(x) dx$$

$$= \int r(x)w(x) dx$$

$$= \int \left[\sum_{i=0}^{m} \bar{p}_i(x)r(x_i) \right] w(x) dx$$

$$= \int \left[\sum_{i=0}^{m} \bar{p}_i(x)g(x_i) \right] w(x) dx$$

$$= \sum_{i=0}^{m} \int \bar{p}_i(x)w(x) dx \cdot g(x_i).$$

3.3 Frequently Encountered Problems

- Range of Integration: Consider integrals over infinite ranges.
 - We can choose a < b so that $\int_a^b g(x) dx \approx \int_{-\infty}^\infty g(x) dx$.
 - We can also turn the infinite range to a finite range through one-to-one transformations. For example, we have

$$\int_{-\infty}^{\infty} g(x) dx = \int_{0}^{1} g\left(\log \frac{u}{1-u}\right) d\log \frac{u}{1-u}$$
$$= \int_{0}^{1} g\left(\log \frac{u}{1-u}\right) \cdot \frac{d\log \frac{u}{1-u}}{du} du$$

by letting $u = e^x/(1 + e^x)$. Some other useful transformations include 1/x, x/(1+x) and $\exp\{-x\}$.

3.3 Frequently Encountered Problems

- Multiple Integrals: Consider calculation of $\int_a^b \int_c^d g(x,y) \, dy dx$.
 - Define $x_i = a + i(b-a)/n$ for $i = 0, 1, \dots, n$ and $y_j = c + j(d-c)/m$ for $j = 0, 1, \dots, m$. Then

$$\int_{a}^{b} \int_{c}^{d} g(x,y) \, dy dx \approx \frac{b-a}{n} \cdot \frac{d-c}{m} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} g\left(\frac{x_{i} + x_{i+1}}{2}, \frac{y_{j} + y_{j+1}}{2}\right).$$

– We can also consider $\int_c^d g(x,y) dy$ as $\varphi(x)$. Then

$$\int_{a}^{b} \int_{c}^{d} g(x, y) \, dy dx = \int_{a}^{b} \varphi(x) \, dx \approx \sum_{i=0}^{n} a_{i} \cdot \varphi(x_{i}).$$

We can use univariate quadrature approximations (e.g., the Simpson's rule) to calculate $\varphi(x_i) = \int_c^d g(x_i, y) dy$ for each x_i .

Homework

- 1. Suppose that X_1, \dots, X_n are i.i.d. from the $N(\theta, 4)$ distribution. Assume that the prior distribution of θ is N(0, 10). Find the posterior distribution of θ given $X_1 = x_1, \dots, X_n = x_n$.
- 2. To derive the Simpson's rule, prove that

$$\int_{x_i}^{x_{i+1}} p_{i0}(x) dx = \int_{x_i}^{x_{i+1}} p_{i2}(x) dx = \frac{h_n}{6} \quad \text{and} \quad \int_{x_i}^{x_{i+1}} p_{i1}(x) dx = \frac{2h_n}{3}.$$

3. Let X follow a Uniform[1, 3] distribution. Compute $E(2/X) = \int_1^3 (1/x) dx$ using the Riemann rule (i.e., $R_{1,n}$ and $R_{2,n}$), the trapezoidal rule (i.e., T_n) and the Simpsons rule (i.e., $S_{n/2}$) with n = 4, 8, 16, 32, 64. Discuss your results.

Homework

- 4. Suppose that X is from the $N(\mu, 9/7)$ distribution and assume that the prior distribution of $\boldsymbol{\mu}$ is the Cauchy(5,2) distribution with density $f_{\boldsymbol{\mu}}(\mu) = \frac{1}{2\pi\left[1+\left(\frac{\mu-5}{2}\right)^2\right]}$ for $-\infty < \mu < \infty$. Assume that X = 5.3871 is observed.
 - (a) Using a numerical integration method of your choice, show that the proportionality constant k is roughly 7.84654. (In other words, find k such that $k \times \int (\text{prior}) \times (\text{likelihood}) d\mu = 1.$)
 - (b) Using the value 7.84654 from (a), determine the posterior probability that $2 \leq \mu \leq 8$ using the Riemann rule (i.e., $R_{1,n}$ and $R_{2,n}$), the trapezoidal rule (i.e., T_n) and the Simpsons rule (i.e., $S_{n/2}$). Compute the estimates until relative error within 0.0001 is achieved for the slowest method. Table the results.

Homework

4. (c) Use the transformation $u=1/\mu$ to calculate the posterior probability that $\mu>3$.