Funktionalanalysis - Übung

Prof. Dr. Lutz Weis

Wintersemester 2015

Martin Belica

Inhaltsverzeichnis

1	Übung															2								
	1.1		rholung \mathcal{L}^p -Räume																					
Bildquellen															3									
Abkürzungsverzeichnis															4									
Sy	mbol	verzeic	hnis																					5

1 Übung

1.1 Wiederholung

$1.1.1~\mathcal{L}^p$ -Räume

(1) σ -Algebren

Sei X eine nichtleeren Menge. Dann nennen wir $\mathcal{A}\subset\mathcal{P}(X)$ eine σ -Algebra, falls

- \bullet $X \in \mathcal{A}$
- $\bullet \ \forall A \in \mathcal{A}: \ A^c = X \backslash A \in \mathcal{A}$
- $\forall (A_n)_{n\geq 1} \subset \mathcal{A} : \bigcup_{n\geq 1} A_n \in \mathcal{A}$

Bemerkung: Aus der Definition der σ -Algebren folgt dierekt für $(A_n)_{n\geq 1}\subset \mathcal{A}$:

- $\bullet \ \emptyset \in \mathcal{A}$
- ...
- $\bigcap_{n\geq 1} A_n \in \mathcal{A}$

Bildquellen

Abb. ?? Tag: Name, URL-Name

Abkürzungsverzeichnis

Beh. Behauptung

Bew. Beweis

bzgl. bezüglich

bzw. beziehungsweise

ca. circa

d. h. das heißt

Def. Definition

etc. et cetera

ex. existieren

Hom. Homomorphismus

i. A. im Allgemeinen

o. B. d. A. ohne Beschränkung der Allgemeinheit

Prop. Proposition

sog. sogenannte

Vor. Voraussetzung

vgl. vergleiche

z. B. zum Beispiel

zhgd. zusammenhängend

z. z. zu zeigen

Symbolverzeichnis

Zahlenmengen

```
\begin{split} \mathbb{N} &= \{1,2,3,\dots\} \text{ Natürliche Zahlen} \\ \mathbb{Z} &= \mathbb{N} \cup \{0,-1,-2,\dots\} \text{ Ganze Zahlen} \\ \mathbb{Q} &= \mathbb{Z} \cup \{\frac{1}{2},\frac{1}{3},\frac{2}{3}\} = \{\frac{z}{n} \text{ mit } z \in \mathbb{Z} \text{ und } n \in \mathbb{Z} \setminus \{0\} \} \text{ Rationale Zahlen} \\ \mathbb{R} &= \mathbb{Q} \cup \{\sqrt{2},-\sqrt[3]{3},\dots\} \text{ Reele Zahlen} \\ \mathbb{R}_+ \text{ Echt positive reele Zahlen} \\ \mathbb{C} &= \{a+ib|a,b\in\mathbb{R}\} \text{ Komplexe Zahlen} \\ I &= [0,1] \subsetneq \mathbb{R} \text{ Einheitsintervall} \end{split}
```