Earth Science

Where Nish meets NLP meets UAH

Problem Statement

Approach 1

Approach 1 (Inference)

Approach 2

Approach 2 (Inference Metric)

Jaccard Similarity

Overlans?

Tag Analysis (level=0, root)

Tag Analysis (level=1)

Tag Analysis (Level=2)

Tag Analysis (Level=-1, leaves)

Data Analysis

Model Architecture

BERT + Linear Layer

```
(output): BertOutput(
          (dense): Linear(in features=3072, out features=768, bias=True)
         (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
 (pooler): BertPooler(
   (dense): Linear(in features=768, out features=768, bias=True)
   (activation): Tanh()
(classifier): Linear(in features=768, out features=22, bias=True)
(criterion): BCEWithLogitsLoss()
```

- After 10 epochs 402/402 [05:34<00:00, 1.20it/s, loss=0.0512, v_num=7, train_loss=0.0128, val_loss=0.0812]
- [{'test_loss': 0.07667940109968185}]

Sorry, couldn't get the proper log graph for training. :(

Jaccard Metrics

```
In [22]: 1 res = eval_jaccard_json("outputs/inference.json")
In [23]: 1 np.mean([p[-1] for p in res])
Out[23]: 0.861666666666667
```

Jaccard Metrics

Improvements

- Representation Learning?
- Longformer?

- ...

Reference

- loss function for multi-label classification
- multi-label classification using BERT
- Longformer
- Google's paper on representation learning for 2d documents

Final Thoughts

- This was tedious (yet fun)
- It was difficult (challenging) because of "hierarchies". Interesting problem nevertheless.