

Statistical Characterisation of Porous Media at the Pore Scale Parametric Models

Student:

Lukas Mosser

Supervisors:

Professor Olivier Dubrule

Professor Martin Blunt

Presentation Outline

- Plane Surface
- Regular Bundle of Tubes
- Regular Bundle of Tubes High Mesh Res.
- Random Bundle of Tubes
- Array of Spheres
- Array of Ellipsoids
- Gaussian Porous Medium
- Beadpack: Anisotropy(r)
- Ketton: Anisotropy(r)
- Comparison Beadpack Ketton

Imperial College London

Plane Surfaces

Minkowski Tensors – Plane Surface

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$W_1^{0,2} = \begin{bmatrix} 0.0 & 0 & 0 \\ 0 & 0.0 & 0 \\ 0 & 0 & 2400. \end{bmatrix}$	$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix} \begin{bmatrix} 0\\1\\0\end{bmatrix} \begin{bmatrix} 0\\0\\1\end{bmatrix}$	{0.0 0.0 2400.}	$ \beta_1^{0,2} = not \ def. $
$W_2^{0,2} = \begin{bmatrix} 0.0 & 0 & 0 \\ 0 & 0.0 & 0 \\ 0 & 0 & 0.0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{0.0 0.0 0.0}	$\beta_2^{0,2} = not \ def.$

Regular Bundle of Tubes

Minkowski Tensors – Regular Bundle of Tubes

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$W_1^{0,2} = \begin{bmatrix} 12605 & 0 & 0 \\ 0 & 12605 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{12605 12605 0}	$\beta_1^{0,2} = not \ def.$
$W_2^{0,2} = \begin{bmatrix} 5960 & 1 & 0 \\ 1 & 6334 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\-1\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	{5960 6334 0}	$ \beta_2^{0,2} = not \ def. $

Regular Bundle of Tubes – High Mesh Resolution

Minkowski Tensors – Regular Bundle – High Mesh Res.

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$W_1^{0,2} = \begin{bmatrix} 12605 & 0 & 0 \\ 0 & 12605 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{12605 12605 0}	$\beta_1^{0,2} = not \ def.$
$W_2^{0,2} = \begin{bmatrix} 5960 & 0 & 0 \\ 0 & 6334 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\0\end{bmatrix} \begin{bmatrix} 0\\-1\\0\end{bmatrix} \begin{bmatrix} 0\\0\\1\end{bmatrix}$	{5960 6334 0}	$\beta_2^{0,2} = not \ def.$

Random Bundle of Tubes

X-Z View 3D View

Minkowski Tensors – Random Bundle of Tubes

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$W_1^{0,2} = \begin{bmatrix} 12605 & 0 & 0 \\ 0 & 12605 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{12605 12605 0}	$\beta_1^{0,2} = not \ def.$
$W_2^{0,2} = \begin{bmatrix} 5960 & 0 & 0 \\ 0 & 6334 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\-1\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	{5960 6334 0}	$ \beta_2^{0,2} = not \ def. $

Symmetric Parametric Pore

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$W_1^{0,2} = \begin{bmatrix} 10.6 & 0 & 0 \\ 0 & 10.6 & 0 \\ 0 & 0 & 10.6 \end{bmatrix}$	$ \begin{bmatrix} -0.76 \\ 0.66 \\ 0 \end{bmatrix} \begin{bmatrix} 0.66 \\ -0.76 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} $	{10.6 10.6 10.6}	$\beta_1^{0,2} = 1.0$
$W_2^{0,2} = \begin{bmatrix} -6.0 & 0 & 0 \\ 0 & -6.0 & 0 \\ 0 & 0 & -6.0 \end{bmatrix}$	$\begin{bmatrix} -1\\0\\0\\0\end{bmatrix} \begin{bmatrix} 0\\1\\0\end{bmatrix} \begin{bmatrix} 0\\0\\1\end{bmatrix}$	{-6.0 -6.0 -6.0}	$\beta_2^{0,2} = 1.0$

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$W_1^{0,2} = \begin{bmatrix} 19.6 & 0 & 0 \\ 0 & 19.6 & 0 \\ 0 & 0 & 19.6 \end{bmatrix}$	$\begin{bmatrix} -0.7 \\ 0.7 \\ 0 \end{bmatrix} \begin{bmatrix} 0.7 \\ -0.7 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{19.6 19.6 19.6}	$\beta_1^{0,2} = 1.0$
$W_2^{0,2} = \begin{bmatrix} -13 & 0 & 0 \\ 0 & -13 & 0 \\ 0 & 0 & -13 \end{bmatrix}$	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\-1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix}$	{-13 -13 -13}	$\beta_2^{0,2} = 1.0$

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$W_1^{0,2} = \begin{bmatrix} 27.1 & 0 & 0 \\ 0 & 27.1 & 0 \\ 0 & 0 & 27.1 \end{bmatrix}$	$\begin{bmatrix} -1.0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1.0 \end{bmatrix} \begin{bmatrix} 0 \\ -1.0 \\ 0 \end{bmatrix}$	{27.1 27.1 27.1}	$\beta_1^{0,2} = 1.0$
$W_2^{0,2} = \begin{bmatrix} -20.7 & 0 & 0 \\ 0 & -20.7 & 0 \\ 0 & 0 & -20.7 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$	{-20.7 -20.7 -20.7}	$\beta_2^{0,2} = 1.0$

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$W_1^{0,2} = \begin{bmatrix} 33.1 & 0 & 0 \\ 0 & 33.1 & 0 \\ 0 & 0 & 33.1 \end{bmatrix}$	$ \begin{bmatrix} -0.89\\ 0.45\\ 0 \end{bmatrix} \begin{bmatrix} 0.45\\ -0.89\\ 0 \end{bmatrix} \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} $	{33.1 33.1 33.1}	$\beta_1^{0,2} = 1.0$

Asymmetric Parametric Pore – R1 = 1.4, R2=1.3

Imperial College London

Minkowski Tensors – R1 = 1.4, R2=1.3

Minkowski Tensor	Eigenvectors	Eigenvalues	Anisotropy Index
$W_1^{0,2} = \begin{bmatrix} 11.9 & 0 & 0 \\ 0 & 51.8 & 0 \\ 0 & 0 & 11.9 \end{bmatrix}$	$ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} $	{11.9 51.8 11.9}	$\beta_1^{0,2} = 0.23$
$W_2^{0,2} = \begin{bmatrix} -7.8 & 0 & 0 \\ 0 & -30.9 & 0 \\ 0 & 0 & -7.6 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	{-7.8 -30.9 -7.8}	$\beta_2^{0,2} = 0.25$

Gaussian Porous Medium – 100³

$$\sigma = 8.0$$

Anisotropy Index as function of filter size (W102)

Anisotropy Index as function of filter size (W202)

Imperial College London

Beadpack/Ketton Centered Expanding Window => REV - 500^3

Determine Anisotropy as function of Window Size

Imperial College London

Ketton – Centered Expanding Window

Ketton Centered Expanding Window

Ketton – Comparison Anisotropy Indices B102, B202

Ketton – Centered Expanding Window => REV – 500³

Ketton – Centered Expanding Window => REV – 500³

Ketton – Centered Expanding Window => REV – 500³

 $REV = 400 \ voxels$

Imperial College London

Comparison Beadpack/Ketton

Comparison Ketton and Beadpack Results

Comparison Beadpack/Ketton – Beta 102

Comparison Beadpack/Ketton – Beta 202

Comparison Beadpack/Ketton – Gamma 102

Comparison Beadpack Ketton – Gamma 202

