Análise Matemática I

1° Semestre de 2001/02 LEC e LET Resumo da matéria

Resultados do texto [1]

I Números reais

- 1. Admitimos a existência de um conjunto \mathbb{R} (a cujos elementos chamamos números reais) no qual supomos definidas duas operações, uma chamada adição e outra multiplicação, e supomos fixado um subconjunto de \mathbb{R} , designado por \mathbb{R}^+ , a cujos elementos chamamos números positivos. Os quatro termos número real, número positivo, adição e multiplicação são adoptados como conceitos primitivos da teoria o que significa que não são definidos.
- 2. Aceita-se que $(\mathbb{R}, +, \times)$ seja um corpo, i.e., que sejam verdadeiras as seguintes proposições:

A. Axiomas da adição:

i) associatividade:

$$\forall_{x,y,z\in\mathbb{R}} \ (x+y) + z = x + (y+z);$$

ii) comutatividade:

$$\forall_{x,y\in\mathbb{R}} \ x+y=y+x;$$

iii) elemento neutro:

$$\exists_{u \in \mathbb{R}} \forall_{x \in \mathbb{R}} \ u + x = x;$$

prova-se facilmente que o elemento neutro é único; designa-se o elemento neutro da adição por 0;

iv) existência de simétrico:

$$\forall_{x \in \mathbb{R}} \exists_{x' \in \mathbb{R}} \ x + x' = 0;$$

prova-se facilmente que o elemento simétrico é único; designa-se o simétrico de x por -x.

O par $(\mathbb{R}, +)$ é um grupo comutativo.

Definição da subtracção:

$$\forall_{x,y\in\mathbb{R}}\ x-y:=x+(-y).$$

B. Axiomas da multiplicação:

i) associatividade:

$$\forall_{x,y,z\in\mathbb{R}} (x\times y)\times z = x\times (y\times z);$$

ii) comutatividade:

$$\forall_{x,y\in\mathbb{R}}\ x\times y=y\times x;$$

iii) elemento neutro:

$$\exists_{u \in \mathbb{R} \setminus \{0\}} \forall_{x \in \mathbb{R}} \ u \times x = x;$$

prova-se facilmente que o elemento neutro é único; designa-se o elemento neutro da multiplicação por 1;

iv) existência de inverso:

$$\forall_{x \in \mathbb{R} \setminus \{0\}} \exists_{x' \in \mathbb{R}} \ x \times x' = 1;$$

prova-se facilmente que o elemento inverso é único; designa-se o inverso de x por 1/x.

O par $(\mathbb{R} \setminus \{0\}, \times)$ é um grupo comutativo.

Definição da divisão:

$$\forall_{x \in \mathbb{R}} \forall_{y \in \mathbb{R} \setminus \{0\}} \ \frac{x}{y} := x \times (1/y).$$

C. Axioma da distributividade da multiplicação em relação à adição:

$$\forall_{x,y,z\in\mathbb{R}} \ x\times (y+z) = x\times y + x\times z.$$

Prova-se facilmente que 0 é elemento absorvente da multiplicação.

Note-se que se impõe que o elemento neutro da multiplicação seja distinto do elemento neutro da adição. De facto, no axioma relativo à existência de elemento neutro para a multiplicação exige-se que $u \in \mathbb{R} \setminus \{0\}$. Note-se que se se levantasse esta restrição, então o conjunto $\{0\}$ com a adição e multiplicação usuais satisfaria os nove axiomas anteriores.

3. Aceita-se que $(\mathbb{R}, \mathbb{R}^+, +, \times)$ seja um *corpo ordenado*, i.e., que seja um corpo e que sejam verdadeiras as seguintes proposições:

D. Axiomas de ordem:

i) fecho de \mathbb{R}^+ para a adição e multiplicação:

$$\forall_{x,y\in\mathbb{R}^+} \ x+y\in\mathbb{R}^+, \ x\times y\in\mathbb{R}^+;$$

diz-se que um número é negativo sse o seu simétrico for positivo e designa-se por \mathbb{R}^- o conjunto dos números negativos;

ii) tricotomia: todo o número real x verifica uma e uma só das três condições seguintes: x é positivo, x é zero ou x é negativo.

Sendo $x, y \in \mathbb{R}$, dizemos que x é menor do que y, ou que y é maior do que x, e escrevemos x < y ou y > x, sse $y - x \in \mathbb{R}^+$.

Seja x < y. Prova-se facilmente que se z > 0, então xz < xy; se z < 0, então xz > xy.

Com os onze axiomas anteriores e a proposição da linha anterior prova-se facilmente que 0 < 1.

Nota: $(\mathbb{Q}, \mathbb{Q}^+, +, \times)$ também é um corpo ordenado. O conjunto \mathbb{Q} é definido mais à frente.

4. Aceita-se que $(\mathbb{R}, \mathbb{R}^+, +, \times)$ seja um corpo ordenado completo, i.e., que que seja um corpo ordenado e que seja verdadeiro o

- IV. Axioma do supremo: qualquer subconjunto de $\mathbb R$ majorado e não vazio tem supremo.
- 5. Diz-se que L é majorante do conjunto A sse qualquer elemento de A for menor ou igual a L. Diz-se que l é minorante do conjunto A sse qualquer elemento de A for maior ou igual a l. Diz-se que o conjunto A é limitado sse tiver majorantes e minorantes.
 - Diz-se que M é máximo do conjunto A sse M é majorante de A e $M \in A$. Diz-se que m é mínimo do conjunto A sse m é minorante de A e $m \in A$.
 - Diz-se que s é supremo do conjunto A sse s é o mínimo do conjunto dos majorantes de A. Diz-se que \underline{s} é infimo do conjunto A sse \underline{s} é o máximo do conjunto dos minorantes de A.
- 6. Existirá de facto $(\mathbb{R}, \mathbb{R}^+, +, \times)$ satisfazendo os doze axiomas acima? Pode construir-se $(\mathbb{R}, \mathbb{R}^+, +, \times)$ se se admitir a existência de $(\mathbb{N}, +)$.
- 7. Um conjunto $X \subset \mathbb{R}$ é indutivo sse $x \in X \Rightarrow x+1 \in X$.
- 8. O conjunto, \mathbb{N} , dos números naturais é, por definição, a intersecção de todos os conjuntos indutivos que contêm 0. O conjunto $\mathbb{N}_1 = \mathbb{N} \setminus \{0\}$.
- 9. Princípio de indução matemática. Para cada $n \in \mathbb{N}$, seja P(n) uma proposição. Se P(0) é verdadeira e $P(n) \Rightarrow P(n+1)$, então P(n) é uma proposição verdadeira para todo o $n \in \mathbb{N}$. (De facto, designando por A o subconjunto formado pelos elementos de \mathbb{N} para os quais P(n) é uma proposição verdadeira, A é indutivo e contém 0, pelo que $\mathbb{N} \subset A$; mas então $A = \mathbb{N}$, uma vez que $A \subset \mathbb{N}$.)
- 10. Propriedade Arquimedeana: o conjunto $\mathbb N$ não é majorado.
 - Prova: Suponhamos que $\mathbb N$ era majorado. Então $\mathbb N$ teria supremo s. Existiria necessariamente um natural p>s-1 (caso contário s-1 seria majorante de $\mathbb N$). Mas então p+1>s. Como p+1 é um natural, chegámos a uma contradição. Logo, $\mathbb N$ não é majorado.
 - (Nota: para provar que $\mathbb N$ não é majorado tem que se recorrer ao axioma do supremo. Há corpos ordenados (não completos) onde os naturais são majorados.)
- 11. Define-se o conjunto, \mathbb{Z} , dos números inteiros como a união do conjunto dos números naturais com o conjunto dos seus simétricos.
- 12. Define-se o conjunto dos números racionais como sendo o conjunto dos números que se possam escrever na forma x/y com $x \in \mathbb{Z}$ e $y \in \mathbb{N}_1$.
- 13. Existência de irracionais. Pode provar-se a existência de um número irracional, mostrando que existe um $x \in \mathbb{R}$ tal que $x^2 = 2$ e que nenhum número racional satisfaz esta condição.
 - Prova. Admitamos que existia $r \in \mathbb{Q}$ tal que $r^2 = 2$. Então, existem $p, q \in \mathbb{N}_1$, primos entre si, tais que r = p/q. Segue que $p^2 = 2q^2$, pelo que p é par, p = 2s com $s \in \mathbb{N}_1$. Logo, $4s^2 = 2q^2 \Leftrightarrow 2s^2 = q^2$, pelo que q também é par. Mas então p e q não são primos entre si.
 - Para provar que existe um $x \in \mathbb{R}$ tal que $x^2 = 2$, define-se $s = \sup\{x \in \mathbb{R} : x > 0 \text{ e } x^2 < 2\}$. O número real s está bem definido porque o conjunto é não vazio e majorado. Prova-se que são impossíveis as desigualdades $s^2 < 2$ e $s^2 > 2$, porque no primeiro caso $(s+1/n)^2 < 2$ para n suficientemente grande, e no segundo caso $(s-1/n)^2 > 2$ para n suficientemente grande.

- 14. Seja $a \in \mathbb{R}^+$ e $n \in \mathbb{N}_1$. Define-se $\sqrt[n]{a}$ como o supremo do conjunto dos números reais x tais que $x^n < a$. Tem-se que $(\sqrt[n]{a})^n = a$.
- 15. Diz-se que dois conjuntos são equipotentes sse existe uma bijecção entre eles.
- 16. Densidade de \mathbb{Q} e $\mathbb{R} \setminus \mathbb{Q}$ em \mathbb{R} . Sejam $a, b \in \mathbb{R}$, a < b. Existem um racional e um irracional em [a, b[.

Prova. Decorre facilmente do seguinte lema (tomando c=b-a e uma vez que os múltiplos inteiros de um (ir)racional são (ir)racionais): qualquer que seja c>0 existem um racional e um irracional em]0,c[. Este lema é consequência de propriedade Arquimedeana e do facto de 1/n ser racional e $\sqrt{2}/n$ ser irracional, $\forall_{n\in\mathbb{N}_1}$.

Conclui-se, obviamente, que em qualquer intervalo com mais de um ponto há infinitos racionais e infinitos irracionais.

17. Diz-se que um conjunto é numerável s
se for equipotente a $\mathbb N$. Os conjuntos $\mathbb Z$ e $\mathbb Q$ são numeráve
is.

Um conjunto diz-se contável sse for finito ou numerável.

18. Princípio do encaixe. Seja $\{I_n\}_{n\in\mathbb{N}_1}$ uma família de intervalos limitados e fechados satisfazendo $I_{n+1}\subset I_n, \, \forall_{n\in\mathbb{N}_1}.$ Então $\cap_{n=1}^{\infty}I_n\neq\emptyset$.

Prova. Se $I_n = [a_n, b_n]$ então $\bigcap_{n=1}^{\infty} I_n \supset [\sup_{n \in \mathbb{N}_1} a_n, \inf_{n \in \mathbb{N}_1} b_n] \neq \emptyset$, porque $\sup_{n \in \mathbb{N}_1} a_n \le \inf_{n \in \mathbb{N}_1} b_n$, desigualdade esta que decorre facilmente da definição de supremo e ínfimo.

19. Seja $a, b \in \mathbb{R}$, a < b. O intervalo [a, b] não é numerável.

Prova. O argumento é por contradição. Suponhamos que $[a,b]=\{x_n\}_{n\in\mathbb{N}_1}$. Constrói-se uma família I_n de intervalos limitados e fechados, $[a,b]=I_0\supset I_1\supset I_2\supset\ldots\supset I_n\supset\ldots$, tais que $x_n\not\in I_n, \, \forall_{n\in\mathbb{N}_1}$. Pelo princípio do encaixe, existe $x_0\in\cap_{n=1}^\infty I_n$. Observa-se que, qualquer que seja $n\in\mathbb{N}_1, \, x_n\not\in I_n$ implica que $x_n\not\in\cap_{n=1}^\infty I_n$, pelo que $x_n\neq x_0$. Isto contradiz o facto de $x_0\in[a,b]=\{x_n\}_{n\in\mathbb{N}_1}$.

20. Teorema de **Cantor**. Seja A um conjunto qualquer e $\mathcal{P}(A)$ o conjunto das partes de A, ou seja, o conjunto cujos elementos são todos os subconjuntos de A. Então existe uma aplicação injectiva de A em $\mathcal{P}(A)$, mas não existe nenhuma aplicação bijectiva entre estes dois conjuntos. Diz-se que o cardinal de A é inferior ao cardinal de $\mathcal{P}(A)$ e escreve-se $\#A < \#\mathcal{P}(A)$.

Prova. Suponhamos que existia uma bijecção φ de A em $\mathcal{P}(A)$. Designe-se por M o conjunto definido por $M = \{x \in A : x \notin \varphi(x)\}$ e por m o elemento de A tal que $\varphi(m) = M$. Facilmente se verifica que não se pode ter nem $m \in M$ nem $m \notin M$.

- 21. Teorema de Schröder-Bernstein. Se existe uma função injectiva $f:A\to B$ e existe uma função injectiva $g:B\to A$, então existe uma bijecção $h:A\to B$.
- 22. Cantor pôs a questão de saber se existiria algum conjunto A ⊂ R com #N < #A < #R. Em sua opinião não deveria existir um tal conjunto, mas ele não foi capaz de o provar. Esta hipótese, conhecida como hipótese do contínuo, foi um dos grandes desafios matemáticos deixados pelo século XIX. Em 1940 Gödel provou que não se podia desprovar a hipótese do contínuo usando os axiomas aceites da Teoria do Conjuntos. Mais tarde, em 1963, Cohen mostrou que, de acordo com os mesmos axiomas, era impossível provar a hipótese do contínuo. Juntos, estes resultados implicam que a hipótese do contínuo é indecidível. Pode ser aceite ou rejeitada como uma afirmação acerca da natureza dos conjuntos infinitos, e em qualquer dos casos nenhuma contradição lógica resultará. Poderá encontrar mais informação sobre este assunto em S. Abbott, Understanding Analysis, Springer Undergraduate Texts in Mathematics, 2001.</p>

23. Por definição, |x| = x se $x \ge 0$, e |x| = -x se x < 0. Seja $a \in \mathbb{R}$ e $\epsilon > 0$. A vizinhança ϵ de a é $V_{\epsilon}(a) = \{x \in \mathbb{R} : |x - a| < \epsilon\} = |a - \epsilon, a + \epsilon|$.

II Sucessões

1. Por definição, uma sucessão de termos em A é uma aplicação de \mathbb{N}_1 em A. Sendo u uma sucessão, os valores de $u(1), u(2), \ldots, u(n), \ldots$ dizem-se os termos da sucessão. O valor u(n) é o termo de ordem n, ou enésimo termo, da sucessão. Em vez de se escrever u(n), é habitual escrever-se u_n para designar o enésimo termo da sucessão u. É ainda habitual designar a sucessão u por $(u_n)_{n\in\mathbb{N}_1}$, ou simplesmente (u_n) .

As sucessões de termos em \mathbb{R} dizem-se sucessões reais.

Por razões de comodidade, por vezes consideram-se sucessões definidas em \mathbb{N} , em vez de \mathbb{N}_1 , ou seja, aplicações de \mathbb{N} num conjunto A.

- 2. Habitualmente representamos geometricamente os termos de uma sucessão real u por um dos dois seguintes processos: esboçando o seu gráfico no plano cartesiano, ou marcando os primeiros termos da sucessão na recta real. O gráfico da sucessão u é o conjunto $\{(n, u_n) : n \in \mathbb{N}_1\}$.
- 3. Uma progressão aritmética de primeiro termo a e razão r, é uma sucessão u, definida por $u_n = a + (n-1)r$, para $n \in \mathbb{N}_1$.

Uma progressão geométrica de primeiro termo a e razão r, é uma sucessão u, definida por $u_n = ar^{n-1}$, para $n \in \mathbb{N}_1$.

A sucessão $u:\mathbb{N}\to\mathbb{R}$ dos números de Fibonacci é definida por

$$\begin{cases} u_0 = 0, \\ u_1 = 1, \\ u_{n+1} = u_n + u_{n-1} \text{ para } n \in \mathbb{N}_1. \end{cases}$$

Dizemos que uma tal sucessão está definida por recorrência.

É simples provar por indução que $u_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$, para $n \in \mathbb{N}$.

- 4. As operações algébricas estendem-se naturalmente às sucessões reais.
- 5. Uma sucessão real diz-se minorada sse for minorado o conjunto dos seus termos e majorada sse for majorado o conjunto dos seus termos. Uma sucessão diz-se limitada sse for minorada e majorada, ou seja, sse for limitado o conjunto dos seus termos.

Uma sucessão real diz-se crescente sse $u_n \leq u_{n+1}$, para qualquer $n \in \mathbb{N}_1$ e decrescente sse $u_n \geq u_{n+1}$. Diz-se monótona sse for crescente ou decrescente. Diz-se ainda estritamente monótona sse for estritamente crescente ou estritamente decrescente, onde estas designações têm o significado óbvio.

6. Sejam u e v duas sucessões e suponha-se que, para todo o $n \in \mathbb{N}_1$, $v_n \in \mathbb{N}_1$ e ainda que v é estritamente crescente. A sucessão $w = u \circ v$, definida por $w_n = (u \circ v)(n) = u(v(n)) = u_{v_n}$, diz-se uma subsucessão de u, mais precisamente, a subsucessão de u determinada por v.

 Tem grande importância o seguinte Teorema. Qualquer sucessão real tem subsucessões monótonas.

Prova. Dada uma sucessão real u, seja $K:=\{p: \forall_{n>p}\ u_n>u_p\}$. Se K é infinito, u tem uma subsucessão estritamente crescente. Se K é finito, u tem uma subsucessão decrescente.

8. Diz-se que a sucessão real u converge ou tende para a, e escreve-se $\lim u = a$, $\lim_{n \to \infty} u_n = a$ ou $u_n \to a$, sse

$$\forall_{V_{\epsilon}(a)} \exists_{p \in \mathbb{N}_1} \forall_{n \in \mathbb{N}_1} \ n > p \Rightarrow u_n \in V_{\epsilon}(a),$$

ou seja,

$$\forall_{\epsilon > 0} \exists_{p \in \mathbb{N}_1} \forall_{n \in \mathbb{N}_1} \ n > p \Rightarrow |u_n - a| < \epsilon.$$

Uma sucessão real diz-se convergente sse existe um número real a tal que $u_n \to a$. As sucessões que não são convergentes dizem-se divergentes.

Uma sucessão diz-se um infinitésimo sse converge para zero.

- 9. Toda a sucessão convergente é limitada.
- 10. Unicidade do limite. Seja u_n uma sucessão real e $a, b \in \mathbb{R}$. Se $u_n \to a$ e $u_n \to b$, então a = b.
- 11. Teorema das Sucessões Enquadradas. Sejam u, v e w três sucessões reais e suponha-se que a partir de certa ordem $u_n \leq v_n \leq w_n$. Se u e w convergem ambas para a, então v também converge, e o seu limite é a.
- 12. O produto de um infinitésimo por uma sucessão limitada é um infinitésimo.
- 13. a) Se u e v são sucessões convergentes então u+v e $u\times v$ são sucessões convergentes e tem-se $\lim(u+v)=\lim u+\lim v, \lim(u\times v)=\lim u\times\lim v$. Se, além disso, $v_n\neq 0$ para todo o $n\in\mathbb{N}_1$ e $\lim v\neq 0$, então $\lim(u/v)=\lim u/\lim v$.
 - b) Sejam u e v duas sucessões convergentes e suponha-se que, para infinitos valores de $n, u_n \leq v_n$. Então $\lim u \leq \lim v$.
 - c) Se $u \to a$, então $|u| \to |a|$. Prova. Segue da desigualdade $||u_n| - |a|| \le |u_n - a|$.
 - d) Seja $p \in \mathbb{N}_1$ e $u_n \geq 0$ para todo o $n \in \mathbb{N}_1$. Se $u_n \to a$, então $\sqrt[p]{u_n} \to \sqrt[p]{a}$.

$$\mid \sqrt[p]{u_n} - \sqrt[p]{a} \mid = \frac{\mid u_n - a \mid}{(\sqrt[p]{u_n})^{p-1} + \sqrt[p]{a}(\sqrt[p]{u_n})^{p-2} + \ldots + (\sqrt[p]{a})^{p-2}\sqrt[p]{u_n} + (\sqrt[p]{a})^{p-1}} \leq \frac{\mid u_n - a \mid}{(\sqrt[p]{a})^{p-1}}$$

14. Se |c| < 1, então $c^n \to 0$.

Prova. Usa-se a desigualdade de **Bernoulli**: $(1+k)^n \ge 1+nk$, para qualquer $n \in \mathbb{N}$ e k > -1.

15. Para todo a > 0, tem-se $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

Prova. Usa-se a desigualdade de Bernoulli: $(1+k_n)^n \ge 1+nk_n$, para qualquer $n \in \mathbb{N}$ e qualquer sucessão (k_n) cujos termos sejam maiores do que -1. Suponhase em primeiro lugar que a>1 e defina-se $k_n:=\sqrt[n]{a}-1$. Claro que $k_n>0$ e $a=(1+k_n)^n\ge 1+nk_n$. Logo, $k_n\le (a-1)/n$. Pelo Teorema das Sucessões

Enquadradas, k_n é um infinitésimo. Isto prova que $\lim_{n\to\infty} \sqrt[n]{a} = 1$, para a > 1. No caso em que 0 < a < 1, $\lim_{n\to\infty} \sqrt[n]{a} = \lim_{n\to\infty} \left(1/\sqrt[n]{1/a}\right) = 1/1 = 1$. O caso a = 1 é trivial.

16. Toda a sucessão monótona e limitada é convergente.

Prova. Se a sucessão é crescente prova-se que ela converge para o supremo do conjunto dos seus termos.

17. A sucessão u, definida por $u_n = \sum_{k=0}^n \frac{1}{k!}$ é obviamente estritamente crescente e é também majorada (por exemplo por 3, porque $\frac{1}{k!} < \frac{1}{2^{k-1}}$ para k > 2). Logo converge. Chamamos ao seu limite número de **Neper**, usualmente designado pela letra e.

Outra sucessão com limite e é a sucessão v, definida por $v_n = \left(1 + \frac{1}{n}\right)^n$, também crescente e majorada.

18. Um Teorema fundamental sobre sucessões reais deve-se a **Bolzano** e **Wei-erstrass**. Qualquer sucessão limitada tem subsucessões convergentes.

Prova. Qualquer sucessão real u tem uma subsucessão monótona. Essa subsucessão é, além de monótona, limitada.

19. Dizemos que a sucessão real u é uma sucessão de Cauchy sse

$$\forall_{\epsilon>0} \exists_{p \in \mathbb{N}_1} \forall_{m,n \in \mathbb{N}_1} \ m, n > p \Rightarrow |u_m - u_n| < \epsilon.$$

20. Uma sucessão real é convergente sse é uma sucessão de Cauchy.

Ideia da prova. É fácil provar que qualquer sucessão convergente é de Cauchy. Em sentido inverso, se u é de Cauchy, então é limitada. Pelo Teorema de Bolzano-Weierstrass, tem uma subsucessão convergente, digamos para a. É fácil provar que $\lim u = a$.

- 21. A definição de sucessão de Cauchy é muito útil para provar a convergência de sucessões para as quais não temos candidato a limite.
- 22. Diz-se que a é sublimite da uma sucessão
sse a sucessão tem uma subsucessão convergente para a.
- 23. Seja u uma sucessão real limitada. Então u é convergente sse o conjunto dos seus sublimites é singular.

Claro que se u é convergente, então o conjunto dos seus sublimites é singular. Para a prova em sentido inverso, é fácil provar que se u não converge, então o conjunto dos seus sublimites não é singular.

- 24. O conjunto dos sublimites de uma sucessão limitada tem elemento máximo e mínimo.
- 25. Chama-se limite superior de (u_n) , e denota-se por lim sup u_n ou $\overline{\lim} u_n$, ao maior sublimite da sucessão (u_n) . Chama-se limite inferior de (u_n) , e denota-se por lim inf u_n ou $\underline{\lim} u_n$, ao menor sublimite da sucessão (u_n) .

- 26. Seja (u_n) uma sucessão limitada e S o conjunto dos seus sublimites. Então, (i) $S \neq \emptyset$; (ii) S é singular sse (u_n) é convergente; (iii) uma sucessão monótona, é convergente (pelo que S é um conjunto singular); (iv) S tem elemento máximo e mínimo. Estas quatro propriedades não subsistem no quadro das sucessões não limitadas. No sentido de as estender a sucessões não limitadas e no sentido de caracterizar o comportamento de um maior leque de sucessões, introduz-se a recta acabada.
- 27. A recta acabada é o conjunto definido por $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$, onde $-\infty$ e $+\infty$ designam dois objectos matemáticos distintos e distintos de qualquer número real. Um elemento de $\overline{\mathbb{R}}$ diz-se finito sse pertence a \mathbb{R} e infinito em caso contrário.
- 28. Considera-se em $\overline{\mathbb{R}}$ a relação de ordem menor (<) determinada pelas seguintes regras: (i) se $x, y \in \overline{\mathbb{R}}$ são ambos finitos a relação x < y coincide com a relação de ordem em \mathbb{R} ; (ii) para qualquer $x \in \mathbb{R}$, tem-se $-\infty < x < +\infty$.
- 29. Qualquer subconjunto de $\overline{\mathbb{R}}$ (incluindo o conjunto vazio) tem supremo e ínfimo.
- 30. Na recta acabada definem-se vizinhanças do modo seguinte. Sendo $\epsilon > 0$, se $a \in \mathbb{R}$, então $V_{\epsilon}(a)$ coincide com a vizinhança anteriormente definida. As vizinhanças de $-\infty$ e $+\infty$ são definidas por $V_{\epsilon}(-\infty) = [-\infty, -1/\epsilon[$ e $V_{\epsilon}(+\infty) =]1/\epsilon, +\infty]$.

Estas definições asseguram que $V_{\epsilon}(+\infty)$ é um intervalo, $+\infty$ é a intersecção de todas as suas vizinhanças, e que $0 < \delta < \epsilon$ implica $V_{\delta}(a) \subset V_{\epsilon}(a)$.

31. Dizemos que a sucessão real u tende ou converge em $\overline{\mathbb{R}}$ para a $(a \in \overline{\mathbb{R}})$ sse

$$\forall_{V_{\epsilon}(a)} \exists_{p \in \mathbb{N}_1} \forall_{n \in \mathbb{N}_1} \ n > p \Rightarrow u_n \in V_{\epsilon}(a).$$

Assim,

$$u_n \to +\infty \text{ sse } \forall_{k \in \mathbb{R}} \exists_{p \in \mathbb{N}_1} \forall_{n \in \mathbb{N}_1} \ n > p \Rightarrow u_n > k,$$

 $u_n \to -\infty \text{ sse } \forall_{k \in \mathbb{R}} \exists_{p \in \mathbb{N}_1} \forall_{n \in \mathbb{N}_1} \ n > p \Rightarrow u_n < k.$

- 32. Seja (u_n) uma sucessão e S o conjunto dos seus sublimites em $\overline{\mathbb{R}}$. Então, (i) $S \neq \emptyset$; (ii) S é singular sse (u_n) é convergente; (iii) uma sucessão monótona, é convergente (pelo que S é um conjunto singular); (iv) S tem elemento máximo e mínimo.
- 33. Seja u uma sucessão de termos positivos. Se u_{n+1}/u_n converge em $\overline{\mathbb{R}}$, então $\sqrt[n]{u_n}$ também converge, e para o mesmo limite.

Prova quando o limite é finito. Seja $\lim_{n\to\infty}u_{n+1}/u_n=l\in\mathbb{R}$ e $\epsilon>0$. Existe $p\in\mathbb{N}_1$ tal que, para todo o n>p, $l-\epsilon< u_{n+1}/u_n< l+\epsilon$. Isto implica que $(l-\epsilon)^{n-p-1}u_{p+1}< u_n< (l+\epsilon)^{n-p-1}u_{p+1}$, para todo o n>p+1. Logo, $(l-\epsilon)\frac{1}{\sqrt[n]{(l-\epsilon)^{p+1}}}\sqrt[n]{u_{p+1}}< \sqrt[n]{u_n}< (l+\epsilon)\frac{1}{\sqrt[n]{(l+\epsilon)^{p+1}}}\sqrt[n]{u_{p+1}}$, para todo o n>p+1. Pelo Teorema das Sucessões Enquadradas, qualquer sublimite de $\sqrt[n]{u_n}$ pertence ao intervalo $[l-\epsilon,l+\epsilon]$. Como ϵ é arbitrário, o conjunto dos sublimites é um conjunto singular, e $\sqrt[n]{u_n}$ converge para l.

34. Aplicando a proposição do ponto anterior pode, por exemplo, concluir-se que $\lim_{n\to\infty} \sqrt[n]{n} = 1$ e que $\lim_{n\to\infty} \sqrt[n]{n!} = +\infty$.

- 35. Seja $p \in \mathbb{N}_1$ e a > 1. Tem-se $\lim_{n \to \infty} \frac{n^p}{a^n} = 0$, $\lim_{n \to \infty} \frac{a^n}{n!} = 0$ e $\lim_{n \to \infty} \frac{n!}{n^n} = 0$.
 - (i) Como $\lim_{n\to\infty} \sqrt[n]{\frac{n^p}{a^n}} = \lim_{n\to\infty} \frac{(\sqrt[n]{n})^p}{a} = \frac{1}{a} < 1$, existe $\epsilon > 0$ tal que $\sqrt[n]{\frac{n^p}{a^n}} < (1-\epsilon)$, para todo o $n \in \mathbb{N}_1$ suficientemente grande. Logo, $\frac{n^p}{a^n} < (1-\epsilon)^n$, para todo o $n \in \mathbb{N}_1$ suficientemente grande. O Teorema das Sucessões Enquadradas implica que $\lim_{n\to\infty} \frac{n^p}{a^n} = 0$.
 - (ii) Como $\lim_{n\to\infty} \sqrt[n]{\frac{a^n}{n!}} = a \lim_{n\to\infty} \frac{1}{\sqrt[n]{n!}} = 0$, tem-se $\sqrt[n]{\frac{a^n}{n!}} < \frac{1}{2}$, para todo o $n \in \mathbb{N}_1$ suficientemente grande. Logo, $\frac{a^n}{n!} < \frac{1}{2^n}$, para todo o $n \in \mathbb{N}_1$ suficientemente grande. O Teorema das Sucessões Enquadradas implica que $\lim_{n\to\infty} \frac{a^n}{n!} = 0$.
 - (iii) Como $\frac{n!}{n^n} \leq \frac{1}{n}$, o Teorema das Sucessões Enquadradas implica que $\lim_{n\to\infty} \frac{n!}{n^n} = 0$.
- 36. Define-se potência de um expoente racional r, representado pela fracção irredutível $\frac{p}{q}$, com $p \in \mathbb{Z}$ e $q \in \mathbb{N}_1$, por $a^r := (\sqrt[q]{a})^p$, para todos os reais a para os quais o segundo membro tem sentido.
 - Seja a>1. Seja ainda α um irracional arbitrário e (r_n) uma sucessão crescente de racionais convergente para α . A sucessão (a^{r_n}) é crescente e limitada, pelo que converge. Prova-se que o limite não depende da sucessão de racionais, convergente para α . Define-se a^{α} como $\lim_{n\to\infty}a^{r_n}$. Mais, pode provar-se que sempre que (s_n) seja uma sucessão de racionais convergente para α , se tem $\lim_{n\to\infty}a^{s_n}=a^{\alpha}$.
 - Se 0 < a < 1 e α é irracional, então define-se $a^{\alpha} := \left(\frac{1}{a}\right)^{-\alpha}$. Esta definição é equivalente a atribui a a^{α} valor igual ao limite de (a^{r_n}) , onde (r_n) é qualquer sucessão de racionais convergente para α .
- 37. São sete as indeterminações: $+\infty \infty$, $\frac{\infty}{\infty}$, $\frac{0}{0}$, $0 \times \infty$, ∞^0 , 0^0 e 1^∞ .
- 38. $\lim (u_n^{v_n}) = \lim u_n^{\lim v_n}$, desde que o segundo membro não seja um símbolo de indeterminação $(\infty^0, 0^0 \text{ ou } 1^\infty)$.
- 39. Prova-se que se $x_n \to a$ e $|u_n| \to +\infty$, então $\left(1 + \frac{x_n}{u_n}\right)^{u_n} \to e^a$.

III Séries

1. Seja (a_n) uma sucessão real. Chama-se sucessão das somas parciais de (a_n) a sucessão definida por $s_n = \sum_{k=1}^n a_k = a_1 + \ldots + a_n$. Diz-se que a sucessão (a_n) é somável sse a sucessão (s_n) convergir. Neste caso, designando por l o limite de (s_n) , costuma escrever-se $l = \sum_{k=1}^\infty a_k$, em vez de $l = \lim_{n \to \infty} \sum_{k=1}^n a_k$, e costuma dizer-se que a série $\sum_{k=1}^\infty a_k$ é convergente e que l é a soma da série. Quando (s_n) não converge (em $\mathbb R$) costuma dizer-se que a série é divergente. Em qualquer dos casos, é costume chamar-se a a_n o termo de ordem n da série.

A notação acima é ambígua pois confunde a série $\sum_{k=1}^{\infty}a_k$ com a sua soma.

Em rigor, uma série é um par ordenado de sucessões $((a_n),(s_n))$ que verifique $s_n=\sum_{k=1}^n a_k$, para qualquer $n\in\mathbb{N}_1$.

2. A série $\sum_{n=1}^{\infty} x^{n-1}$ converge sse |x|<1e, neste caso, a sua soma é 1/(1-x).

- 3. Uma série de Mengoli é uma série do tipo $\sum_{n=1}^{\infty}(b_n-b_{n+1})$, em que $b_n\in\mathbb{R}$, para cada $n\in\mathbb{N}_1$. A sucessão das suas somas parciais é $\sum_{k=1}^{n}(b_k-b_{k+1})=b_1-b_{n+1}$, pelo que a série converge sse a sucessão (b_n) convergir. Nesse caso, designando por k o limite de (b_n) , $\sum_{n=1}^{\infty}(b_n-b_{n+1})=b_1-k$.
- 4. Se a série $\sum_{n=1}^{\infty} a_n$ converge, então a_n é um infinitésimo.
- 5. Uma série, $\sum_{n=1}^{\infty} a_n$, de termos não negativos $(a_n \ge 0$, para todo o $n \in \mathbb{N}_1$) converge sse a sucessão das suas somas parciais for majorada.
- 6. Critério geral de comparação. Suponha-se que $0 \le a_n \le b_n$, para todo o $n \in \mathbb{N}_1$. Então,
 - a) se $\sum_{n=1}^{\infty} b_n$ é convergente, $\sum_{n=1}^{\infty} a_n$ é convergente;
 - b) se $\sum_{n=1}^{\infty} a_n$ é divergente, $\sum_{n=1}^{\infty} b_n$ é divergente.
- 7. A série harmónica $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge. De facto, $\sum_{n=2^{k+1}}^{2^{k+1}} \frac{1}{n} \geq \sum_{n=2^{k+1}}^{2^{k+1}} \frac{1}{2^{k+1}} = \frac{2^{k}}{2^{k+1}} = \frac{1}{2}$, para $k \in \mathbb{N}_1$. Logo, $\sum_{n=1}^{\infty} \frac{1}{n} \geq 1 + \frac{1}{2} + \sum_{k=1}^{\infty} \frac{1}{2} = +\infty$. Seja $\alpha < 1$. Então $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} > \sum_{n=1}^{\infty} \frac{1}{n} = \infty$, pelo que $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ é divergente.
- 8. $\sum_{n=1}^{\infty} \frac{1}{n^2} \le 1 + \sum_{n=2}^{\infty} \frac{1}{n(n-1)} \le 1 + \sum_{n=2}^{\infty} \left(\frac{1}{n-1} \frac{1}{n}\right) = 2$, pelo que $\sum_{n=1}^{\infty} \frac{1}{n^2}$ é convergente.
 - Seja $\alpha > 2$. Então $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} < \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$, pelo que $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ é convergente.
- 9. Sejam $a_n \ge 0$ e $b_n > 0$. Se a_n/b_n converge para $l \in]0, +\infty[$, então $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ são da mesma natureza.

Nota. Se a_n/b_n converge para 0, então a convergência de $\sum_{n=1}^{\infty}b_n$ implica a convergência de $\sum_{n=1}^{\infty}a_n$, e a divergência de $\sum_{n=1}^{\infty}a_n$ implica a divergência de $\sum_{n=1}^{\infty}b_n$. Se a_n/b_n converge para $+\infty$, então a divergência de $\sum_{n=1}^{\infty}b_n$ implica a divergência de $\sum_{n=1}^{\infty}a_n$, e a convergência de $\sum_{n=1}^{\infty}a_n$ implica a convergência de $\sum_{n=1}^{\infty}b_n$.

10. A série de **Dirichlet**, $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ converge sse $\alpha > 1$.

Em face do já exposto, basta provar que a série de Dirichlet converge se $1 < \alpha < 2$. Temse $\sum_{n=2^k}^{2^{k+1}-1} \frac{1}{n^{\alpha}} \leq \sum_{n=2^k}^{2^{k+1}-1} \frac{1}{2^{k\alpha}} = \frac{2^k}{2^{k\alpha}} = \frac{1}{2^{k(\alpha-1)}}$, para $k \in \mathbb{N}$. Como $\alpha > 1$, segue-se $\frac{1}{2^{\alpha-1}} < 1$ e $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \leq \sum_{k=0}^{\infty} \frac{1}{(2^{\alpha-1})^k} = \frac{1}{1-2^{\alpha-1}}$.

11. Critério de **Cauchy**. Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos não negativos e suponha-se que $\sqrt[p]{a_n}$ converge e que o seu limite é l. Se l < 1, a série converge; se l > 1, a série diverge.

Prova. Suponhamos que l<1 e seja $0<\epsilon<1-l$. Existe $p\in\mathbb{N}_1$ tal que n>p implica $\sqrt[n]{a_n}< l+\epsilon<1$. Logo $a_n<(l+\epsilon)^n$, para n>p. Se l>1, então existe $p\in\mathbb{N}_1$ tal que n>p implica $\sqrt[n]{a_n}\geq 1$, pelo que $a_n\geq 1$, para todo o n>p.

Este critério pode ser melhorado. Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos não negativos e suponha-se que lim sup $\sqrt[n]{a_n} = l$. Se l < 1, a série converge; se l > 1, a série diverge.

12. Critério de **D'Alembert**. Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos positivos e suponha-se que a_{n+1}/a_n converge e que o seu limite é l. Se l < 1, a série converge; se l > 1, a série diverge.

Prova. Num dos pontos anteriores vimos que se $\lim a_{n+1}/a_n=l$, então $\lim \sqrt[n]{u_n}=l$. Basta aplicar o Critério de Cauchy.

- 13. Dizemos que a série $\sum_{n=1}^{\infty} b_n$ é uma permutação de $\sum_{n=1}^{\infty} a_n$ sse existe uma bijecção $\psi: \mathbb{N}_1 \to \mathbb{N}_1$ tal que $b_n = a_{\psi(n)}$, para todo o $n \in \mathbb{N}_1$.
 - Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos não negativos e $\sum_{n=1}^{\infty} b_n$ uma sua permutação, $b_n = a_{\psi(n)}$. Então $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$. De facto, sendo $m = \max\{\psi(1), \psi(2), \dots, \psi(n)\}$, vem $b_1 + \dots + b_n = a_{\psi(1)} + \dots + a_{\psi(n)} \le a_1 + \dots + a_m \le \sum_{n=1}^{\infty} a_n$. Logo, $\sum_{n=1}^{\infty} b_n \le \sum_{n=1}^{\infty} a_n$. Como $\sum_{n=1}^{\infty} a_n$ é uma permutação de $\sum_{n=1}^{\infty} b_n$ (porque $a_n = b_{\psi^{-1}(n)}$), vem também $\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n$.
 - Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos não negativos e (K_m) uma sucessão de subconjuntos de \mathbb{N}_1 , disjuntos dois a dois, cuja união é \mathbb{N}_1 . Então $\sum_{n=1}^{\infty} a_n = \sum_{m=1}^{\infty} \sum_{n \in K_m} a_n$.
- 14. Critério de **Cauchy**. A série $\sum_{n=1}^{\infty} a_n$ converge sse a sucessão das suas somas parciais for uma sucessão de Cauchy, ou seja,

$$\forall_{\epsilon > 0} \exists_{p \in \mathbb{N}_1} \forall_{q, r \in \mathbb{N}_1} \ p < q < r \Rightarrow |a_{q+1} + \ldots + a_r| < \epsilon.$$

- 15. Critério de **Leibniz**. Seja (a_n) uma sucessão decrescente de termos positivos. A série $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converge sse (a_n) converge para zero.
 - Prova. Seja (a_n) uma sucessão decrescente, convergente para 0. Se $q, r \in \mathbb{N}_1$ com q < r, então $|a_{q+1} a_{q+2} + \ldots + (-1)^{r-q-1} a_r| \le a_{q+1}$, pelo que a sucessão das somas parciais é de Cauchy. A implicação em sentido contrário é imediata.
- 16. A série harmónica alternada, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n},$ converge.
- 17. Diz-se que a série $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente sse $\sum_{n=1}^{\infty} |a_n|$ for convergente. As séries convergentes, mas não absolutamente convergentes, dizem-se simplesmente convergentes.
- 18. Para $a \in \mathbb{R}$, sejam $a^+ e a^-$, respectivamente, as partes positiva e negativa de a, ou seja, $a^+ = \max\{a,0\}$ e $a^- = \max\{-a,0\}$. A série $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente sse convergem ambas as séries $\sum_{n=1}^{\infty} a_n^+ e \sum_{n=1}^{\infty} a_n^-$. A prova decorre imediatamente de $0 \le a_n^+ \le |a_n|$, $0 \le a_n^- \le |a_n|$ e $|a_n| = a_n^+ + a_n^-$.
- 19. Toda a série absolutamente convergente é convergente. Tem-se

$$\left| \sum_{n=1}^{\infty} a_n \right| \le \sum_{n=1}^{\infty} |a_n|.$$

Prova. Suponhamos que $\sum_{n=1}^{\infty}|a_n|$ converge. Pelo ponto anterior, $\sum_{n=1}^{\infty}a_n^+$ e $\sum_{n=1}^{\infty}a_n^-$ convergem. Logo, $\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}a_n^+-\sum_{n=1}^{\infty}a_n^-$ também converge. Para provar a desigualdade, basta aplicar a desigualdade triangular à sucessão das somas parciais da série de termo geral a_n e, seguidamente, tomar o limite de ambos os membros.

- 20. Teorema de **Riemann**. Seja $\sum_{n=1}^{\infty} a_n$ uma série simplesmente convergente e $\alpha \in \overline{\mathbb{R}}$. Existem permutações de $\sum_{n=1}^{\infty} a_n$ com soma α .
- 21. Motivação da definição da série produto. O produto dos dois polinómios $a_0+a_1x+a_2x^2+\ldots+a_rx^r$ e $b_0+b_1x+b_2x^2+\ldots+b_rx^r$ é o polinómio $a_0b_0+(a_1b_0+a_0b_1)x+(a_2b_0+a_1b_1+a_0b_2)x^2+\ldots$

Definição da série produto. A série produto de $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ é a série $\sum_{n=0}^{\infty} c_n$, onde $c_n = \sum_{i=0}^{n} a_{n-i}b_i$, para todo o $n \in \mathbb{N}$.

- 22. Se $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ são absolutamente convergentes também o é a série produto, $\sum_{n=0}^{\infty} c_n$. Além disso, $\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n$.
- 23. Seja (a_n) uma sucessão real e $x \in \mathbb{R}$. Chamamos série de potências de x, com coeficientes $a_0, a_1, \ldots, a_n, \ldots$, a $\sum_{n=0}^{\infty} a_n x^n$.
- 24. A série de potências $\sum_{n=0}^{\infty} a_n x^n$ é absolutamente convergente em cada ponto do intervalo]-r,r[, onde

$$r = \frac{1}{\limsup \sqrt[n]{|a_n|}},$$

e é divergente em] $-\infty, -r[\cup]r, +\infty[$. A $r \in \mathbb{R}$ chama-se raio de convergência da série.

- 25. O raio de convergência da série $\sum_{n=0}^{\infty} a_n x^n$ é igual a $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right|$, sempre que este limite exista.
- 26. A série $E(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$ é absolutamente convergente para qualquer $x \in \mathbb{R}$. Verifica-se facilmente que E(x)E(y) = E(x+y).

Como E(1)=e, conclui-se que $E(n)=e^n$, para $n\in\mathbb{N}$. Além disso, $e^nE(-n)=E(n)E(-n)=E(0)=1$, pelo que $E(-n)=e^{-n}$. Logo, $E(m)=e^m$ para todo o $m\in\mathbb{Z}$. Seja $p\in\mathbb{Z}$ e $q\in\mathbb{N}_1$. Então $E\left(p/q\right)^q=E(p)=e^p$, ou seja, $E\left(p/q\right)=\sqrt[q]{e^p}$. Logo, $E(r)=e^r$, para todo o $r\in\mathbb{Q}$.

Seja $a \in \mathbb{R}$. Prova-se que se (x_n) é uma sucessão convergente para a, então $E(x_n)$ converge para E(a).

Seja $x \in \mathbb{R}$ e $a \in \mathbb{R}^+$. Vimos atrás que a^x é igual ao limite de (a^{r_n}) , onde (r_n) é qualquer sucessão de racionais convergente para x. Tomando a=e, $e^x=\lim_{n\to\infty}e^{r_n}=\lim_{n\to\infty}E(r_n)=E(x)$. Conclui-se que $E(x)=e^x$, para todo o $x\in\mathbb{R}$.

27. Definimos as seguintes séries de potências, absolutamente convergentes em \mathbb{R} :

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!},$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

Usando a proposição relativa ao produto de séries absolutamente convergentes, prova-se que $\cos(x+y)=\cos x\cos y-\sin x\sin y$, para todos os $x,y\in\mathbb{R}$.

IV Continuidade e limite

1. Uma função real de variável real é uma aplicação de um subconjunto D de $\mathbb R$ em $\mathbb R$.

Sendo $f:D\to\mathbb{R},$ a imagem de um conjunto $A\subset D$ por f designa-se por f(A).

A função $f:D\to\mathbb{R}$ diz-se majorada sse f(D) for um conjunto majorado. Define-se de modo análogo função minorada e limitada.

Chama-se supremo de f em A, sup $_A f$, ao supremo do conjunto f(A), ou seja, ao sup $_{x\in A} f(x)$. Este supremo será $+\infty$ se f não for majorada e $-\infty$ se $A=\emptyset$ ou se f é a função vazia, i.e., a função de domínio vazio. Define-se de modo análogo ínfimo de f em A, inf $_A f$ e, quando existam, $\max_A f$ e $\min_A f$. [Nota: Não se deve confundir (valor do) máximo com ponto de máximo (o ponto onde o máximo ocorre).]

Define-se da forma habitual o que se entende por função crescente, estritamente crescente, decrescente, estritamente decrescente, monótona e estritamente monótona.

O gráfico de $f: D \to \mathbb{R}$ é o conjunto $\{(x, y) \in \mathbb{R}^2 : x \in D, y = f(x)\}.$

2. Definimos a função logaritmo natural, designada por ln ou log, como sendo a inversa da função $x\mapsto e^x$. Esta definição faz sentido porque a função exponencial (de base e>1) é estritamente crescente. Sendo o contradomínio de $x\mapsto e^x$ o intervalo \mathbb{R}^+ , o domínio da função logaritmo é \mathbb{R}^+ e para $x\in\mathbb{R}^+$, $\ln x$ é o único valor y, tal que $x=e^y$.

Reconhece-se sem dificuldade a validade das fórmulas $\ln(xy) = \ln x + \ln y$ e $\ln(x/y) = \ln x - \ln y$, para todos os $x, y \in \mathbb{R}^+$.

- 3. Estão deduzidas algumas propriedades das funções trigonométricas no texto a partir das definições do seno e coseno dadas acima. Devemos salientar que se prova que existe um $\rho > 0$ tal que $\cos \rho = 0$ e $\cos x > 0$ para cada $x \in [0, \rho[$; Define-se o número π por $\pi := 2\rho$.
- 4. Definem-se as funções seno hiperbólico e coseno hiperbólico por

$$\sinh x = \frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!},$$

$$\cosh x = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}.$$

Verifica-se, sem qualquer dificuldade, que $\cosh^2 x - \sinh^2 x = 1$.

Se o parâmetro t percorrer o conjunto \mathbb{R} , o ponto $(\cos t, \sin t)$ percorre (infinitas vezes) a circunferência de raio um e centro na origem.

Se o parâmetro t percorrer o conjunto \mathbb{R} , o ponto $(\cosh t, \sinh t)$ percorre (uma vez) o ramo direito da hipérbole $\{(x,y)\in\mathbb{R}^2: x^2-y^2=1\}$.

5. Definição de continuidade de Cauchy. Seja $D\subset\mathbb{R}$ e $a\in D$. A função $f:D\to\mathbb{R}$ é contínua em a sse

$$\forall_{V_{\delta}(f(a))} \exists_{V_{\epsilon}(a)} \forall_{x \in D} \ x \in V_{\epsilon}(a) \Rightarrow f(x) \in V_{\delta}(f(a)),$$

ou seja, sse

$$\forall_{\delta > 0} \exists_{\epsilon > 0} \forall_{x \in D} |x - a| < \epsilon \Rightarrow |f(x) - f(a)| < \delta.$$

- 6. Definição de continuidade de **Heine**. Seja $D \subset \mathbb{R}$ e $a \in D$. A função $f: D \to \mathbb{R}$ é contínua no ponto a sse sempre que x_n seja uma sucessão, de termos em D, convergente para a, a sucessão $f(x_n)$ converge para f(a).
- 7. As definições de continuidade de Cauchy e Heine são equivalentes.

- 8. Diz-se que a função f é contínua s
se é contínua em todos os pontos do seu domínio.
- 9. Exemplos.
 - a) Sejam $m, b \in \mathbb{R}$. A aplicação $x \mapsto mx + b$ é contínua.
 - b) A função de Heaviside é descontínua na origem.
 - c) A função de Dirichlet é descontínua em \mathbb{R} .
- 10. Da definição de continuidade de Heine e dos teoremas sobre sucessões, obtémse:
 - a) se f e g são contínuas no ponto a, então f+g, f-g e $f\times g$ são contínuas em a; se, além disso, $g(a)\neq 0$, então f/g (está definida numa vizinhança de a e) é contínua em a;
 - b) se g é contínua em a e f é contínua no ponto g(a), então $f \circ g$ é contínua em a.
- 11. A função modulo é contínua.
- 12. Seja $n \in \mathbb{N}_1$. Para n par, $x \mapsto \sqrt[n]{x}$ é contínua em \mathbb{R}_0^+ . Para n ímpar, $x \mapsto \sqrt[n]{x}$ é contínua em \mathbb{R} .
- 13. Seja $\sum_{n=0}^{\infty} a_n x^n$ uma série de potências com raio de convergência $r \in]0, +\infty]$. A função $f:]-r, r[\to \mathbb{R}$, definida por $f(x) = \sum_{n=0}^{\infty} a_n x^n$ é contínua. Mais geralmente, prova-se (p. 339) que uma série de potências é uma função contínua em

todo o intervalo de convergência da série.

- 14. Seja $D \subset \mathbb{R}$. Diz-se que o ponto a é aderente a D sse toda a vizinhança $V_{\epsilon}(a)$ intersecta D. De forma equivalente, o ponto a é aderente a D sse existe uma sucessão de termos em D convergente para a. Designa-se o conjunto de pontos aderentes a D por \overline{D} .
- 15. Definição de limite de Cauchy. Seja $D \subset \mathbb{R}$ e $a \in \overline{D}$. A função $f:D \to \mathbb{R}$ tem limite b $(b \in \mathbb{R})$ no ponto a sse

$$\forall_{\delta>0} \exists_{\epsilon>0} \forall_{x \in D} |x-a| < \epsilon \Rightarrow |f(x)-b| < \delta.$$

Neste caso escreve-se $\lim_{x\to a} f(x) = b$.

- 16. Definição de limite de Heine. Seja $D \subset \mathbb{R}$ e $a \in \overline{D}$. Diz-se que a função f, definido em D, tem limite b no ponto a sse sempre que (x_n) seja uma sucessão, de termos em D, convergente para a, a sucessão $(f(x_n))$ converge para b.
- 17. As definições de limite de Cauchy e Heine são equivalentes.
- 18. Se $a \in D$, então f tem limite em a sse é contínua em a e neste caso $\lim_{x\to a} f(x) = f(a)$.

Se $a \in \overline{D} \setminus D$, a existência de limite no ponto a equivale à possibilidade de prolongar por continuidade f ao ponto a, ou seja, à existência de uma função, \hat{f} , definida em $D \cup \{a\}$ e contínua. É claro que

$$\hat{f}(x) = \begin{cases} f(x) & \text{se } x \in D, \\ \lim_{x \to a} f(x) & \text{se } x = a. \end{cases}$$

- 19. Exemplos. $\lim_{x\to 0} \frac{\sin x}{x} = 1$, $\lim_{x\to 0} \frac{e^x 1}{x} = 1$, $\lim_{x\to 0} \frac{1 \cos x}{x^2} = \frac{1}{2}$.
- 20. Seja $D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $A \subset D$ e $a \in \overline{A}$. O limite de f no ponto a relativo ao conjunto A é $\lim_{x \to a} f|_{A}(x)$, quando este exista. Escrevemos também $\lim_{x \to a} f(x)$ para designar $\lim_{x \to a} f|_{A}(x)$.

Em particular, ao limite de f(x) quando x tende para a relativo ao conjunto $D\cap]a,+\infty[$, quando este exista, é costume chamar limite de f no ponto a à direita, ou limite de f(x) quando x tende para a por valores superiores, usando-se para designá-lo o símbolo $\lim_{x\to a^+} f(x)$. Define-se de forma análoga o $\lim_{x\to a^-} f(x)$. Tanto os limites à direita como à esquerda são usualmente designados por limites laterais. O limite de f no ponto a relativo ao conjunto $D\setminus \{a\}$ é chamado o limite de f(x) quando x tende para a por valores distintos de a, escrevendo-se $\lim_{x\to a} f(x)$.

- 21. Usando as definições de vizinhança na recta acabada introduzidas acima, podemos também dar significado a $\lim_{x\to a} f(x)=b$ quando a e/ou b são $\pm\infty$
- 22. Da definição de limite de Heine e dos teoremas sobre sucessões, obtêm-se imediatamente proposições relativas ao limite da soma, diferença, produto e quociente (em pontos em que o denominador não tenha limite nulo) de funções.
- 23. Se $\lim_{x\to a} g(x)=b$, $\lim_{x\to b} f(x)=c$ e a é aderente ao domínio de $f\circ g$, então $\lim_{x\to a} (f\circ g)(x)=c$.

Notas: 1. Este resultado não é válido para os limites por valores distintos de a e de b. 2. A hipótese de a ser aderente ao domínio de $f \circ g$ é necessária: podem existir os limites indicados de f e g, e uma vizinhança de a onde $f \circ g$ não está definida.

- 24. Teorema de Weierstrass. Seja I um intervalo limitado, fechado e não-vazio e $f: I \to \mathbb{R}$ contínua. Então f tem máximo e mínimo.
- 25. Teorema do Valor Intermédio. Sejam a e $b \in \mathbb{R}$ com a < b e $f : [a, b] \to \mathbb{R}$ contínua. Então f assume todos os valores entre f(a) e f(b).
- 26. Seja $I \subset \mathbb{R}$ um intervalo e $f: I \to \mathbb{R}^n$ estritamente monótona e contínua. Então $f^{-1}: f(I) \to \mathbb{R}$ é contínua.
- 27. A função arcsin é a inversa da restrição do seno a $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

$$\left(x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \wedge \sin x = y\right) \Leftrightarrow x = \arcsin y.$$

A função arccos é a inversa da restrição do coseno a $[0,\pi]$.

$$(x \in [0, \pi] \land \cos x = y) \Leftrightarrow x = \arccos y.$$

A função arctan é a inversa da restrição do tangente a $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

$$(x \in]-\frac{\pi}{2}, \frac{\pi}{2}[\wedge \tan x = y) \Leftrightarrow x = \arctan y.$$

Pela proposição do ponto anterior as quatro funções log, arcsin, arccos e arctan são contínuas.

28. A função $f:D\to\mathbb{R}$ é contínua (em todos os pontos $y\in D$) sse

$$\forall_{y \in D} f$$
 é contínua em y ,

ou seja,

$$\forall_{y \in D} \forall_{\delta > 0} \exists_{\epsilon > 0} \forall_{x \in D} |x - y| < \epsilon \Rightarrow |f(x) - f(y)| < \delta.$$

Assim, se f é contínua, dados um $y \in D$ e um $\delta > 0$, é possível determinar ϵ (que depende de δ e y) tais que $\forall_{x \in D} | x - y | < \epsilon \Rightarrow |f(x) - f(y)| < \delta$.

Seja $\delta>0$ fixo. A função $f:]0,1]\to\mathbb{R}$, definida por f(x)=1/x é contínua. Contudo, à medida que y se aproxima de zero somos forçados a escolher valores para $\epsilon(\delta,y)$ cada vez mais pequenos. É, portanto, impossível escolher ϵ apenas em função de δ .

Existem funções, ditas uniformemente contínuas, para as quais a escolha de ϵ pode ser feita apenas em função de delta, ou seja,

$$\forall_{\delta>0} \exists_{\epsilon>0} \forall_{x,y \in D} |x-y| < \epsilon \Rightarrow |f(x) - f(y)| < \delta.$$

O exemplo anterior mostra que, em geral, a condição de continuidade uniforme em D é diferente da condição de continuidade em todos os pontos de D. Isto é consequência do facto de não podermos trocar a ordem de quantificadores existenciais e universais. A continuidade uniforme é mais forte do que a continuidade em todos os pontos do domínio.

29. O Teorema de Heine-Cantor garante que uma função contínua num intervalo limitado e fechado é uniformemente contínua nesse intervalo. A sua prova faz-se por contradição.

Este teorema será usado mais tarde para provar a integrabilidade das funções contínuas em intervalos limitados e fechados.

30. Uma sucessão de funções $(f_n)_{n\in\mathbb{N}_1}$, com $f_n:D\to\mathbb{R}$, converge pontualmente para $f:D\to\mathbb{R}$ sse $\forall_{x\in D}\lim_{n\to\infty}f_n(x)=f(x)$, ou seja, sse

$$\forall_{x \in D} \forall_{\delta > 0} \exists_{p \in \mathbb{N}_1} \ n > p \Rightarrow |f_n(x) - f(x)| < \delta.$$

Aqui a escolha de p depende de x e δ . A sucessão (f_n) diz-se uniformemente convergente quando a escolha de p pode ser feita apenas em função de δ :

$$\forall_{\delta>0}\exists_{p\in\mathbb{N}_1}\forall_{x\in D}\ n>p\Rightarrow |f_n(x)-f(x)|<\delta.$$

A noção de convergência uniforme será usada mais tarde, por exemplo, para trocar limites com integrais.

31. O limite pontual de uma sucessão de funções contínua pode não ser uma função contínua mas o limite uniforme de funções contínuas é uma função contínua.

Este resultado pode ser usado, por exemplo, para provar a continuidade das séries de potências no interior dos seus intervalos de convergência.

V Diferenciabilidade

- 1. Seja $D \subset \mathbb{R}$. Diz-se que o ponto $a \in \mathbb{R}$ é interior a D sse existe uma vizinhança $V_{\epsilon}(a) \subset D$. Designa-se o conjunto de pontos interiores a D por int D.
- 2. Definição de derivada. Seja $f:D\to\mathbb{R}$, com $D\subset\mathbb{R}$ e $a\in\operatorname{int} D$. Diz-se que f é diferenciável em a sse existe

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Neste caso designa-se o valor do limite por derivada de f em a, e denota-se por f'(a).

3. Se f é diferenciável em a, chama-se recta tangente ao gráfico de f em (a,f(a)) à recta de equação

$$y = f(a) + f'(a)(x - a).$$

Logo, a derivada de f em a é o declive da recta tangente ao gráfico de f em (a, f(a)).

- 4. Se f(x) é a posição de uma partícula deslocando-se sobre a recta real no instante x, então f'(a) é a velocidade da partícula no instante a.
- 5. Notação de Leibniz: sendo y = f(x), $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$.
- 6. Se f é diferenciável em a, então f é contínua em a.
- 7. Se f e g são diferenciáveis no ponto a, então
 - a) f + g é diferenciável em a e (f + g)'(a) = f'(a) + g'(a).
 - b) f g é diferenciável em a e (f g)'(a) = f'(a) g'(a).
 - c) fg é diferenciável em a e (fg)'(a) = f'(a)g(a) + f(a)g'(a).

- d) f/g é diferenciável em a se $g(a) \neq 0$ e $(f/g)'(a) = [f'(a)g(a) f(a)g'(a)]/[g(a)]^2$.
- 8. Derivada da função composta. Se g é diferenciável no ponto a e f é diferenciável no ponto g(a), então $f \circ g$ é diferenciável no ponto a e $(f \circ g)'(a) = f'[g(a)]g'(a)$.

Em termos da notação de Leibniz: se y=g(x) e z=f(y), então

$$(f \circ g)'(x) = \frac{dz}{dx} = \frac{dz}{du}\frac{dy}{dx}.$$

9. Derivada da função inversa. Seja $I \subset \mathbb{R}$ um intervalo, $f: I \to \mathbb{R}$ uma função estritamente monótona e contínua, $g: f(I) \to \mathbb{R}$ a sua inversa. Se f é diferenciável no ponto a e $f'(a) \neq 0$, então g é diferenciável no ponto b = f(a) e

$$g'(b) = \frac{1}{f'(a)}.$$

Em termos da notação de Leibniz: se y=f(x), então x=g(y) e

$$g'(y) = \frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}.$$

- 10. Exemplos.
 - a) Seja $n \in \mathbb{N}_1$ e $g:]0, +\infty[\to \mathbb{R},$ definida por $g(x) = \sqrt[n]{x}$. A função g é inversa de $f:]0, +\infty[\to \mathbb{R},$ definida por $f(y) = y^n$.

$$g'(x) = \frac{1}{f'(y)|_{y=f(x)}} = \frac{1}{ny^{n-1}|_{y=\sqrt[n]{x}}} = \frac{1}{n}x^{\frac{1}{n}-1}.$$

b) Seja $g:]0, +\infty[\to \mathbb{R},$ definida por $g(x) = \ln x$. A função g é inversa de $f: \mathbb{R} \to \mathbb{R},$ definida por $f(y) = e^y$.

$$g'(x) = \frac{1}{f'(y)|_{y=f(x)}} = \frac{1}{e^y|_{y=\ln x}} = \frac{1}{x}.$$

c) Seja $g:\mathbb{R}\to\mathbb{R}$, definida por $g(x)=\arctan x$. A função g é inversa de $f:\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\to\mathbb{R}$, definida por $f(y)=\tan y$.

$$g'(x) = \frac{1}{f'(y)|_{y=f(x)}} = \frac{1}{\sec^2 y|_{y=\arctan x}} = \frac{1}{(1+\tan^2 y)|_{y=\arctan x}} = \frac{1}{1+x^2}.$$

d) Seja $g:]-1,1[\to\mathbb{R},$ definida por $g(x)=\arcsin x.$ A função g é inversa de $f:]-\frac{\pi}{2},\frac{\pi}{2}[\to\mathbb{R},$ definida por $f(y)=\sin y.$

$$g'(x) = \frac{1}{f'(y)|_{y=f(x)}} = \frac{1}{\cos y|_{y=\arcsin x}} = \frac{1}{|\cos y||_{y=\arcsin x}}$$
$$= \frac{1}{\sqrt{1-\sin^2 y}|_{y=\arcsin x}} = \frac{1}{\sqrt{1-x^2}}.$$

Note-se que quando u está no domínio de f tem-se que $\cos u$ é positivo

e) Seja $\alpha \in \mathbb{R}$. Usando o resultado da alínea b) e o resultado relativo à derivada da função composta calculemos a derivada de $f:]0, +\infty[\to \mathbb{R}$, definida por $f(x) = x^{\alpha}$. Tem-se

$$f'(x) = \left(e^{\alpha \ln x}\right)' = e^{\alpha \ln x} \alpha \frac{1}{x} = \alpha x^{\alpha - 1}.$$

Isto generaliza o resultado da alínea a).

- 11. Diferenciabilidade das séries de potências (p. 415). Uma função definida por uma série de potências de x-a, com raio de convergência r>0, é indefinidamente diferenciável no intervalo]a-r,a+r[e as suas derivadas podem calcular-se derivando a série termo a termo.
- 12. Diz-se que a é ponto de estacionaridade de f sse f é diferenciável em a e f'(a) = 0.
- 13. Se f é diferenciável em a e tem um extremo em a, então a é ponto de estacionaridade de f.
- 14. Teorema de **Rolle**. Sejam $a, b \in \mathbb{R}$, com $a < b, f : [a, b] \to \mathbb{R}$ contínua, diferenciável em]a, b[verificando f(a) = f(b). Existe $c \in]a, b[$ tal que f'(c) = 0.
- 15. Corolários do Teorema de Rolle. Considere-se uma função definida num intervalo e diferenciável. Entre dois zeros da função existe pelo menos um zero da sua derivada, e entre dois zeros consecutivos da derivada não pode existir mais do que um zero da função.
- 16. Teorema de **Lagrange**. Sejam $a, b \in \mathbb{R}$, com $a < b, f : [a, b] \to \mathbb{R}$ contínua, diferenciável em [a, b[. Existe $c \in [a, b[$ tal que [f(b) f(a)]/(b a) = f'(c).
- 17. Corolários do Teorema de Lagrange. Uma função com derivada identicamente nula num intervalo é constante nesse intervalo; se a derivada for positiva, então a função é estritamente crescente.
- 18. Teorema de **Cauchy**. Sejam $a, b \in \mathbb{R}$, com a < b, $f \in g$ funções contínuas no intervalo [a, b], diferenciáveis no intervalo]a, b[, com $g'(x) \neq 0$ para todos $x \in]a, b[$. Existe $c \in]a, b[$ tal que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

19. Regra de Cauchy. Seja $I \subset \mathbb{R}$ um intervalo não degenerado e $a \in \overline{I}$. Sejam $f \in g: I \to \mathbb{R}$ duas funções (cujo domínio é o intervalo I) diferenciáveis em $I \setminus \{a\}$, com $g'(x) \neq 0$ para cada $x \in I \setminus \{a\}$. Se $f \in g$ tendem ambas para 0 ou ambas para $+\infty$ quando $x \to a$, com $x \neq a$, então

$$\lim_{\substack{x \to a \\ x \neq a}} \frac{f(x)}{g(x)} = \lim_{\substack{x \to a \\ x \neq a}} \frac{f'(x)}{g'(x)}$$

sempre que o segundo limite exista em $\overline{\mathbb{R}}$.

Ideia da prova quando ambas $f \in g$ tendem para $+\infty$ quando $x \to a$: se $\frac{f(x) - f(y)}{g(x) - g(y)} \approx l$, então $\frac{f(x)}{g(x)} \approx l \left(1 - \frac{g(y)}{g(x)}\right) + \frac{f(y)}{g(x)} \to l$ quando $g(x) \to +\infty$.

Fórmula e Série de Taylor

- 1. Seja $f:D\to\mathbb{R}$, com $D\subset\mathbb{R}$. Designa-se por $D^{(1)}$ o conjunto formado pelos pontos (interiores a D) em que f é diferenciável. Por indução, para n natural maior ou igual a 2, define-se $D^{(n)}$ como o conjunto formado pelos pontos (interiores a $D^{(n-1)}$) em que $f^{(n-1)}$ é diferenciável.
- 2. Fórmulas de Taylor com restos de Peano e Lagrange.
 - a) Se $a \in D^{(1)}$, então

$$f(x) = f(a) + f'(a)(x - a) + (x - a)E_1(x, a),$$

com $\lim_{x\to a} E_1(x,a)=0$. Seja $I\subset D^{(1)}$ um intervalo, a e $x\in I$. Então,

$$f(x) = f(a) + f'(\xi)(x - a),$$

para algum ξ entre $a \in x$.

b) Se $a \in D^{(2)}$, então

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + (x - a)^2 E_2(x, a),$$

com $\lim_{x\to a} E_2(x,a)=0.$ Seja $I\subset D^{(2)}$ um intervalo, ae $x\in I.$ Então,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(\xi)}{2}(x - a)^2,$$

para algum ξ entre $a \in x$.

c) Se $a \in D^{(n)}$, então

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^{2} + \frac{f'''(a)}{3!}(x - a)^{3} + \dots + \frac{f^{n-1}(a)}{(n-1)!}(x - a)^{n-1} + \frac{f^{n}(a)}{n!}(x - a)^{n} + (x - a)^{n}E_{n}(x, a)$$

 $\operatorname{com} \lim_{x \to a} E_n(x, a) = 0.$

Seja $I \subset D^{(n)}$ um intervalo, $a \in x \in I$. Então,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^{2} + \frac{f'''(a)}{3!}(x - a)^{3} + \dots + \frac{f^{n-1}(a)}{(n-1)!}(x - a)^{n-1} + \frac{f^{n}(\xi)}{n!}(x - a)^{n}$$

para algum ξ entre $a \in x$.

Nota: o valor de ξ depende de x, $a \in n$. No ponto 15 indicaremos explicitamente a dependência de ξ em x e n escrevendo $\xi_n(x)$.

- 3. Quando a=0 as fórmulas de Taylor tomam o nome de fórmulas de **MacLaurin**.
- 4. Seja $f: D \to \mathbb{R}$ e $a \in D^{(1)}$. Para que f tenha um extremo local em a é necessário (mas não suficiente) que a seja ponto de estacionaridade de f, ou seja, que f'(a) = 0.
- 5. Seja $a \in D^{(2)}$ um ponto de estacionaridade de f tal que $f''(a) \neq 0$. Se f''(a) > 0, então f tem um mínimo local estrito em a, ou seja,

$$\exists_{\epsilon>0} \forall_{x \in V_{\epsilon}(a) \setminus \{a\}} \ f(x) > f(a).$$

Se f''(a) < 0, então f tem um máximo local estrito em a, ou seja,

$$\exists_{\epsilon > 0} \forall_{x \in V_{\epsilon}(a) \setminus \{a\}} f(x) < f(a).$$

- 6. Seja $a \in D^{(3)}$ um ponto de estacionaridade de f tal que f''(a) = 0 e $f'''(a) \neq 0$. Então, f não tem qualquer extremo em a.
- 7. Se $a \in D^{(1)}$ e

$$\exists_{\epsilon>0} \forall_{x \in V_{\epsilon}(a)} \ f(x) \ge f(a) + f'(a)(x-a),$$

então f diz-se convexa (ou com a concavidade voltada para cima) em a. Se

$$\exists_{\epsilon>0} \forall_{x \in V_{\epsilon}(a)} \ f(x) \le f(a) + f'(a)(x - a),$$

então f diz-se $c\hat{o}ncava$ (ou com a concavidade voltada para baixo) em a. Pode também acontecer que exista um $\epsilon>0$ tal que num dos intervalos $]a-\epsilon,a[$ e $]a,a+\epsilon[$ o gráfico de f esteja por cima do da sua recta tangente em (a,f(a)) e no outro esteja por baixo do dessa recta. Em tal hipótese diz-se que a é um ponto de inflexão de f.

- 8. Se $a \in D^{(2)}$ e f''(a) > 0, então f é convexa em a. Se f''(a) < 0, então f é côncava em a.
- 9. A função f diz-se indefinidamente diferenciável no ponto a sse $a \in D^{(n)}$, para todo o $n \in \mathbb{N}_1$. Note-se que se f é indefinidamente diferenciável no ponto a e $n \in \mathbb{N}_1$, então f é n vezes diferenciável numa vizinhança de a, visto que $a \in D^{(n+1)}$, pelo que a é interior a $D^{(n)}$.
- 10. Uma série de potências é indefinidamente diferenciável no interior do seu intervalo de convergência e as suas derivadas podem calcular-se derivando a série termo a termo.
- 11. Uma função f diz-se analítica num ponto a, interior ao seu domínio, sse existir uma vizinhança de a, $V_{\epsilon}(a)$, tal que $f|_{V_{\epsilon}(a)}$ é uma série de potências de x-a.
- 12. Prova-se que uma série de potências, s(x), de x-a com raio de convergência r é uma função analítica em |x-a| < r. Mais precisamente, para cada b tal que |b-a| < r, s(x) é igual a uma série de potências de x-b se |x-b| < r |b-a|.

13. Seja f é indefinidamente diferenciável em a. Chama-se série de Taylor de f no ponto a a

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \ldots + \frac{f^n(a)}{n!}(x-a)^n + \ldots$$

- 14. Nem toda a função f indefinidamente diferenciável em a é analítica em a. Se f for analítica em a, então f coincide, numa vizinhança de a, com a sua série de Taylor no ponto a, pois usando a proposição do ponto 10 prova-se facilmente que nenhuma série de potências distinta da série de Taylor pode representar f numa vizinhança de a.
- 15. Seja f indefinidamente diferenciável no ponto a. Então f é analítica em a sse $\lim_{n\to+\infty}(x-a)^nE_n(x,a)=0$ para todo o x nalguma vizinhança de a, sse $\lim_{n\to+\infty}\frac{f^n(\xi_n(x))}{n!}(x-a)^n=0$ para todo o x nalguma vizinhança de a.
- 16. Em vez de se usar a proposição do ponto 15, para escrever a série de Taylor de uma função num ponto é frequente usar-se a proposição do ponto 10 e os desenvolvimentos seguintes, a saber, dos quais se podem tirar os desenvolvimentos das funções analíticas de uso mais frequente:
 - a) da série geométrica:

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x + \dots,$$

válido para |x| < 1;

b) da exponencial:

$$e^x = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots,$$

válido para todo o $x \in \mathbb{R}$;

c) das funções trigonométricas:

$$\sin x = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + \ldots,$$

válidos para todo o $x \in \mathbb{R}$;

d) da função binomial: se $\alpha \in \mathbb{R}$,

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \ldots + \frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!}x^n + \ldots,$$

válido para |x| < 1 (todo o $x \in \mathbb{R}$ se $\alpha \in \mathbb{N}$).

A prova deste desenvolvimento faz-se em quatro passos:

- i) Define-se a função f por $f(x):=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\ldots+\frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!}x^n+\ldots$, verificando que f(x) está bem definida para |x|<1, ou seja, que o raio de convergência da série de potências é 1.
- ii) Usando 10, verifica-se que $(1+x)f'(x) = \alpha f(x)$ para todo o $x \in]-1,1[$.

- iii) O passo anterior implica que $[f(x)(1+x)^{-\alpha}]'\equiv 0.$
- iv) Um dos corolários do Teorema de Lagrange implica que $x\mapsto f(x)(1+x)^{-\alpha}$ é constante. Dando o valor zero a x conclui-se que a constante é 1.
- 17. Exemplos de desenvolvimentos em série de Taylor:
 - a) Sejam $a, b \in \mathbb{R} \setminus \{0\}$. Calculemos o desenvolvimento de $x \mapsto \frac{1}{a+bx}$ em torno de 0.

$$\frac{1}{a+bx} = \frac{1}{a} \cdot \frac{1}{1+bx/a}$$

$$= \frac{1}{a} \left(1 - \frac{b}{a}x + \frac{b^2}{a^2}x^2 - \dots + (-1)^n \frac{b^n}{a^n}x^n + \dots \right)$$

$$= \frac{1}{a} - \frac{b}{a^2}x + \frac{b^2}{a^3}x^2 - \dots + (-1)^n \frac{b^n}{a^{n+1}}x^n + \dots$$

válido para |bx/a| < 1, ou seja, para |x| < |a|/|b|.

b) Seja $a \neq 0$. Calculemos o o desenvolvimento de $x \mapsto \frac{1}{x}$ em torno de a. Fazendo y = x - a,

$$\frac{1}{x} = \frac{1}{a+y}$$

$$= \frac{1}{a} \cdot \frac{1}{1+y/a}$$

$$= \frac{1}{a} \left(1 - \frac{y}{a} + \frac{y^2}{a^2} - \dots + (-1)^n \frac{y^n}{a^n} + \dots \right)$$

$$= \frac{1}{a} - \frac{y}{a^2} + \frac{y^2}{a^3} - \dots + (-1)^n \frac{y^n}{a^{n+1}} + \dots$$

$$= \frac{1}{a} - \frac{1}{a^2} (x-a) + \frac{1}{a^3} (x-a)^2 - \dots + (-1)^n \frac{1}{a^{n+1}} (x-a)^n + \dots$$

válido para |y/a| < 1, ou seja, para |x - a| < |a|.

c) Calculemos o desenvolvimento de $x \mapsto \ln(1-x)$ em torno de 0.

$$\frac{d}{dx}\ln(1-x) = -\frac{1}{1-x}
= -1-x-x^2-\dots-x^{n-1}-\dots
= \frac{d}{dx}\left(-x-\frac{1}{2}x^2-\frac{1}{3}x^3-\dots-\frac{1}{n}x^n-\dots\right),$$

para |x|<1 porque a última série tem raio de convergência 1 e a sua derivada pode ser calculada termo a termo, devido ao ponto 10. Usando um corolário do Teorema de Lagrange,

$$\ln(1-x) = c - x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \dots - \frac{1}{n}x^n - \dots$$

Fazendo x = 0, conclui-se que c = 0.

d) Calculemos o desenvolvimento de $x\mapsto\arctan x$ em torno de 0.

$$\frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$= 1-x^2+x^4-\ldots+(-1)^nx^{2n}+\ldots$$

$$= \frac{d}{dx}\left(x-\frac{1}{3}x^3+\frac{1}{5}x^5+\ldots+(-1)^n\frac{1}{2n+1}x^{2n+1}+\ldots\right),$$

para |x|<1 porque a última série tem raio de convergência 1 e a sua derivada pode ser calculada termo a termo, devido ao ponto 10. Usando um corolário do Teorema de Lagrange,

$$\arctan x = c + x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + (-1)^n \frac{1}{2n+1}x^{2n+1} + \dots$$

Fazendo x = 0, conclui-se que c = 0.

e) Calculemos o desenvolvimento de $x\mapsto \arcsin x$ em torno de 0.

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}}$$

$$= 1 + \frac{1}{2}x^2 + \frac{1}{2}\frac{3}{4}x^4 + \frac{1}{2}\frac{3}{4}\frac{5}{6}x^6 + \dots$$

$$= \frac{d}{dx}\left(x + \frac{1}{2}\frac{1}{3}x^3 + \frac{1}{2}\frac{3}{4}\frac{1}{5}x^5 + \frac{1}{2}\frac{3}{4}\frac{5}{67}x^7 + \dots\right),$$

para |x|<1 porque a última série tem raio de convergência 1 e a sua derivada pode ser calculada termo a termo, devido ao ponto 10. Usando um corolário do Teorema de Lagrange,

$$\arcsin x = c + x + \frac{1}{2} \frac{1}{3} x^3 + \frac{1}{2} \frac{3}{4} \frac{1}{5} x^5 + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{7} x^7 + \dots$$

Fazendo x=0, conclui-se que c=0.

Referências

[1] **J. Campos Ferreira**, *Introdução à Análise Matemática*, Fundação Gulbenkian, 6^a ed., 1995.