

CLASIFICADOR DE IMÁGENES DE ARQUITECTURA

PROYECTO DE MACHINE LEARNING

Juan Bayón

ÍNDICE

PLANTEAMIENTO

ESTILOS

ANÁLISIS Y TRATAMIENTO DE LOS DATOS

MODELO BASE

ENTRENAMIENTO MODELOS SKLEARN

REDES NEURONALES

APRENDIZAJE NO SUPERVISADO

REDES NEURONALES PREENTRENADAS

RESUMEN MODELOS

CONCLUSIONES

PLANTEAMIENTO

PLANTEAMIENTO

Se busca desarrollar un clasificador de imágenes de estilos arquitectónicos representativos del siglo XX

Los estilos elegidos son:

- Art Nouveau
- Art Deco
- Estilo internacional
- Posmodernismo
- Deconstructivismo

DATOS

Para el proyecto se han usado dos dataset procedentes de Kaagle:

- Architectural styles, con dos dataset con imágenes etiquetadas.
- g-images con imágenes etiquetadas provinientes de google de los mismos estilos.

ESTILOS

ART NOUVEAU (MODERNISMO)

- Empieza a finales del sigo XIX hasta el siglo XX. Del 1890 al 1920
- Inspiración en la naturaleza incorporando los avances en materiales como el acero o el cristal
- Se propone democratizar la belleza y que hasta los objetos más cotidianos tuviese valor estético
- Uso de líneas curvas y sinuosas, con composiciones muchas veces asimétricas
- Decoración y arquitectura se unen con formas orgánicas

CASA BATLLÓ, GAUDÍ

ART DECO

- Entre 1920 y 1940. Presente en todas las artes, basado en la artes decorativas.
- Líneas geométricas contundentes. Bordes redondeados. Composiciones simétricas.
- Gran presencia de cubos y rascacielos con líneas sólidas.
- Materiales como el aluminio, acero inoxidable o el cristal.
- Especial cuidado en los ornamentos, con el uso de patrones y tipografías visibles.

ESTILO INTERNACIONAL (RACIONALISMO)

- Entre 1925 y 1965. Movimiento mayoritario en todo el mundo
- Grandes maestros de la arquitectura como Mies van der Rohe o Le Corbusier.
- Basada en la razón. Funcionalismo. Líneas sencillas Formas geométricas simples: cubo, paralelepípedo, cilindro, esfera
- Materiales industriales: acero, hormigón, vidrio
- Mejorar el uso de los espacios sin nada superfluo.

CASA FARNSWORTH. MIES VAN DER ROHE

POSMODERNISMO

- A partir de los años 50, especialmente en los 70, resupuesta al estilo internacional tan sobrio.
- Volver al ingenio, al ornamento y a la referencia.
- Se usan ornamentos en fachada, con ángulos no ortogonales.
- Enfatizar los volúmenes y llamar la atención.
- Los estilos se fusionan entre ellos.
 También llamado 'neoecléctico' que mezcla diferentes estéticas.

EDIFICIO M2. KENZO ZUMA

DECONSTRUCTIVISMO

- Finales de la década de los 80 y presente hasta hoy
- Fragmenta los volúmenes. Formas no rectilíneas ni planas. Apariencia con un caos controlado.
- Multiples capas. Intención de experimentación formal creando desequilibrios geométricos.
- Un ejemplo muy reconocible en España es el Guggenheim de Bilbao.

MUSEO GUGGENHEIM. FRANK GEHRY

ANÁLISIS Y TRATAMIENTO DE LOS DATOS

Art Nouveau

Deconstructivismo

Art Deco

Posmoderno

Internacional

Posmoderno

Las fotografías tienen diferentes tamaños, la mayoría en color.

Se estandariza su tamaño a 250x250 en color.

Hay varias imágenes de los edificios más representativos, sacadas desde diferentes ángulos.

No se aprecia ningún elemento extraño. Dataset limpio y listo para ser utilizado.

ANÁLISIS DE LOS DATOS

Postmoderno

Internacional

Art Deco

Internacional

Art Deco

Art Deco

Se aumentan los datos con de manera aleatoria alternando al azar entre los siguientes parámetros:

ROTACIÓN. 30 grados ZOOM. 20% para alejar o acercar RANGO ANCHURA. 10% de variación RANGO ALTURA. 10% de variación. GIRO HORIZONTAL. ÁNGULO CORTE. 0,15 Ángulo de corte.

Se rellenan las zonas que se crean nuevas con el criterio de píxeles más cercanos.

DATA AUGMENTATION

MODELO BASE

Se separan los conjunto de entrenamiento y de test

Se cargan los datos con sus etiquetas desde las carpetas de proyecto

Se elige el modelo base: Regresión Logística

Se entrena con los siguientes parámetros:

- 10 iteraciones
- sin penalizador
- solver lbfgs

SE OBTIENE UN 35,25 % DE ACIERTO EN EL TEST

MATRIZ CONFUSION TEST

[[40 26 8 10 17]

[24 52 10 8 7]

[25 22 18 24 12]

[15 14 9 37 26]

[17 21 12 20 31]]

MODELO BASE: REGRESIÓN LOGÍSTICA

Se coge un tercio de los datos para probar los modelos

Se vuelve a comprobar el resultado con el modelo base y los datos de muestra.

Dado el parecido en el resultado se entrena con la muestra y los mejores se entrenarán con todos los datos.

SE OBTIENE UN 31,88 % DE ACIERTO EN EL TEST

CONJUNTO DE MUESTRA

ENTRENAMIENTO MODELOS SKLEARN

SEMILLAS

ITER MAX

GRID SEARCH

SEMILLAS: 54185, 19294,

ITER_MAX: 10, 100, 900

PENALIZADOR: l1, l2

19966, 74724, 34541

C: 0.01, 0.1, 0.5, 1

No se consiguen mejoras con el cambio de semillas. 100 funcionan igual que 900. Mejora un 3% el resultado Se mejora el modelo base en un 5% con C = 0.1 y l2

ACIERTO: 31,88%

ACIERTO: 34, 45%

ACIERTO: 37, 03%

REGRESIÓN LOGISTICA

KNN BASE

Se crea un modelo con los parámetros por defecto con k=5.

GRID SEARCH

VECINOS: 3, 5, 11, 19

PESOS: uniform, distance

MÉTRICA: euclidean, manhattan

No mejora el modelo base

ACIERTO: 29,11%

Se mejora el modelo base en un 9% con C = 0.1 y l2

ACIERTO: 40,39%

MODELO KNN

SVC BASE

SEMILLAS

GRID SEARCH

SEMILLAS: 39095, 85951,

KERNEL: linear, rbf, sigmoid

41047, 85884, 77579

GAMMA: scale, auto

C: 0.001, 1, 10

No se consiguen mejoras.

Parámetros por defecto: C = 1,

kernel = rbf, gamma = scale

No se consiguen mejoras con el cambio de semillas. Se mejora en un 12% el modelo base con C = 10, gamma = scale, kernel = rbf

ACIERTO: 27,52%

ACIERTO: 27,52%

ACIERTO: 43,36%

FOREST BASE

GRID SEARCH

WARM START

N_ESTIMATORS: 1, 100, 1000

N_ESTIMATORS: 1000

MAX_FEATURES: 1, 2, 3

MAX_FEATURES: 3

 $N_SPLITS = 10$

No se consiguen mejoras. Parámetros por defecto. Se mejora el modelo base en un 11% con n_estimators = 1000 y max_features = 3 Con n_estimators = 1000, max_features = 3 y 10 iteraciones con cross validation

ACIERTO: 28,91%

ACIERTO: 42,37%

ACIERTO: 43,56%

RANDOM FOREST

MEJOR MODELO

- EL MEJOR MODELO PROBADO ES EL DE RANDOM FOREST CON ENTRENAMIENTO EN CALIENTE
- SE PRUEBA EL MEJOR MODELO CON TODOS LOS DATOS
- SE OBTIENE UN 61% DE ACIERTO
- PARÁMETROS: N_ESTIMATORS = 1000, MAX_FEATURES = 3, N_SPLITS = 10

RESUMEN SKLEARN

REDES NEURONALES

CAPAS

Convolucion2D: 32 neuronas. Padding same. Activación Relu

MaxPooling2D

Convolucion2D: 32 neuronas. Padding same. Activación Relu

MaxPooling2D

Convolucion2D: 64 neuronas. Padding same. Activación Relu

MaxPooling2D

Dropout: 40%

Flatten

Dense: 128 Neuronas. Activación Relu

Dense: 5 Neuronas. Activación Softmax

COMPILACIÓN:

Optimizador: Adam

Loss: Categorical Crossentropy

Metrica: Accuracy

ACIERTO: 58,29%

RED NEURONAL

Se prueban diferentes parámetros con la misma red, y otras redes neuronales:

- Función de activación: tangente hiperbólica, sigmoide

- Inicializador kernel: uniform y he_uniform

- Optimizador: sgd

- Épocas: 10, 15, 100

- Configuraciones de capas diferentes

NO SE CONSIGUEN MEJORAS EN EL PORCENTAJE DE ACIERTO

PRUEBAS RED NEURONAL

APRENDIZAJE NO SUPERVISADO

Art Deco

Art Deco

Art Deco

Art Deco

Art Deco

Art Deco

Se aplica aprendizaje no supervisado a las imágenes.

Kmeans con clusters = 25. Reducción a 25 colores.

Dataset con la red neuronal: acierto de un 68, 55%

Dataset con Random Forest: acierto de un 73,71%

MEJORAN MUCHO LOS RESULTADOS CON LOS NUEVOS DATOS

KMEANS

RED NEURONAL PREENTRENADA

CAPAS

Capas preconfiguradas VGG16

Dense: 512 Neuronas. Activación Relu

Dropout: 50%

Dense: 5 Neuronas. Activación Softmax

COMPILACIÓN:

Optimizador: Adam

Loss: Categorical Crossentropy

Metrica: Accuracy

ACIERTO: 85,89%

RED NEURONAL VGG16

CAPAS

Capas preconfiguradas EfficientNetB2

Dense: 512 Neuronas. Activación Relu

Dropout: 50%

Dense: 5 Neuronas. Activación Softmax

COMPILACIÓN:

Optimizador: Adam

Loss: Categorical Crossentropy

Metrica: Accuracy

ACIERTO: 89,74%

RED NEURONAL EFFICIENTNETB2

RESUMEN MODELOS

ACIERTO DE LOS MODELOS

TOP 10 MODELOS

- 1. EFFICIENTNETB2. DATA KMEANS
- 2. VGG16. DATA KMEANS
- 3. RANDOM FOREST WARM START. DATA KMEANS
- 4. RED NEURONAL CON DATA KMEANS
- 5. RANDOM FOREST WS. DATA ORIGINAL COMPLETO
- 6. RED NEURONAL DATA KMEANS AUMENTADOS
- 7. RED NEURONAL DATA ORIGINAL 1
- 8. RED NEURONAL DATA ORIGINAL 2
- 9. RED NEURONAL DATA ORIGINAL 3
- 10. RANDOM FOREST WS. DATA ORIGINAL MUESTRA

CONCLUSIONES

CONCLUSIONES

- Los algoritmos de **aprendizaje no supervisado** para tratar las imágenes previamente **mejoraron mucho** los resultados y permitieron llegar casi al 90%
- El modelo de **Random Forest consiguió muy buen resultado** y tiene muy **buen rendimiento** a la hora de calcular los modelos.
- Las redes neuronales preentrenadas mejoraron el aprendizaje del resto de modelos. Se probaron otras que no daban buenos resultados, por lo que fue necesario buscar las que se adaptan mejor a los datos.

MUCHAS GRACIAS