Master Practical Course Interactive Visual Data Analysis

Today

- Assignment 6: Vector Fields & Flow Metrics
 - Compute scalar metric volume from flow and volume render it

Example: DVR of metrics

DVR of velocity magnitude and vorticity magnitude in a turbulent flow

Vector Field Data

.dat contains metadata:

ObjectFileName: DrainZ_%02i.raw
ObjectIndices: 0 15 1
Resolution: 128 64 64
Format: half3
SliceThickness: 1 1 1
Timestep: 0.5
MeshFileName: Mesh.ply

.raw file name [pattern]

Vector data type

Slice thickness in world space (of data), in meters

Time between timesteps in seconds (for sequences)

- Support single timesteps and sequences
- Sequences require correct scaling of all values

Padding Raw Data

- DirectX does not support interpolation of half3/float3 textures → we need half4/float4 texture
 - Load raw data
 - Pad data with zeros

- CreateTexture3D from padded data (DXGI_FORMAT_R16G16B16A16_FLOAT / DXGI_FORMAT_R32G32B32A32_FLOAT)

Velocity Magnitude

• Flow
$$\mathbf{u}$$
: $(\Omega, R) \to R^3$, $\mathbf{u}(\mathbf{x}) = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}$

• Most Simple metric Velocity Magnitude: $\|u\|$

- Derivatives
 - Notation convention, e.g. $u_{x,y} := \frac{\partial u_x}{\partial y}$
 - Calculation: Central differences!

Divergence

- $\operatorname{div} \mathbf{u} = \nabla \cdot \mathbf{u} = u_{x,x} + u_{y,y} + u_{z,z}$
 - Describes flow into/out of a region
 - $-\operatorname{div} \mathbf{u}(\mathbf{x_0}) = \mathbf{0}$: \mathbf{u} is source-free in $\mathbf{x_0}$
 - $-\operatorname{div} \mathbf{u}(\mathbf{x_0}) < \mathbf{0} : \mathbf{u} \text{ has a sink in } \mathbf{x_0}$
 - $-\operatorname{div} \mathbf{u}(\mathbf{x_0}) > \mathbf{0} : \mathbf{u} \text{ has a source in } \mathbf{x_0}$
 - Useless for incompressible flows which have $abla \cdot oldsymbol{u} = 0$ as an inherent property

Curl / Vorticity

• curl
$$\boldsymbol{u} = \nabla \times \boldsymbol{u} = \begin{pmatrix} u_{z,y} - u_{y,z} \\ u_{x,z} - u_{z,x} \\ u_{y,x} - u_{x,y} \end{pmatrix}$$

- A vector!
- A measure of how fast the flow rotates, and about which axis it rotates

- Vorticity magnitude: $\|\operatorname{curl} \boldsymbol{u}\|$
 - Now a scalar ☺

Jacobian

Also called the "gradient tensor"

•
$$J = \nabla \boldsymbol{u} = \begin{pmatrix} u_{x,x} & u_{x,y} & u_{x,z} \\ u_{y,x} & u_{y,y} & u_{y,z} \\ u_{z,x} & u_{z,y} & u_{z,z} \end{pmatrix}$$

Example (1)

• Constant
$$u = \begin{pmatrix} const. \\ const. \end{pmatrix}$$

- div $\boldsymbol{u}=0$
- curl $\boldsymbol{u} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

A constant 2D vector function

Example (2)

• Identity
$$u = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

- div u = 3
- curl $\boldsymbol{u} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

The 2D identity vector function

Example (3)

• Curl field
$$u = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$

- div $\mathbf{u} = 0$
- curl $\boldsymbol{u} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$

A 2D curl field

Jacobian

Also called the "gradient tensor"

•
$$J = \nabla u = \begin{pmatrix} u_{x,x} & u_{x,y} & u_{x,z} \\ u_{y,x} & u_{y,y} & u_{y,z} \\ u_{z,x} & u_{z,y} & u_{z,z} \end{pmatrix}$$

Decomposition into symmetric and antisymmetric parts

$$-S = \frac{1}{2}(J + J^T)$$
$$-\Omega = \frac{1}{2}(J - J^T)$$

Gradient tensor based metrics (1)

- Let $\omega \coloneqq \operatorname{curl} \boldsymbol{u}$
- Square rotation: $Q_{\Omega} := \frac{1}{2} \cdot \text{trace}(\Omega^2) = \frac{1}{4} \|\omega\|^2$ *
- Square rate of strain: S_2 : = trace(S^2)
 - How fast (rate) fluid material is being "deformed"
- Enstrophy production: $E := \omega^T S \omega$
 - Vortex stretching vector contracted with vorticity
- (Negative) strain production: $R_S := -\frac{1}{3} \operatorname{trace}(S^3)$
- V^2 : = $\sum_{i=1}^{3} \sum_{j=1}^{3} (S_{ij}\omega_j)^2$
 - Square magnitude of vortex stretching vector

Gradient tensor based metrics (2)

Derived commonly used metrics:

- Q-Parameter: $Q := \frac{1}{2}(\|\Omega\|^2 \|S\|^2) = \frac{1}{2}\sqrt{\operatorname{trace}(\Omega^T\Omega)} \frac{1}{2}\sqrt{\operatorname{trace}(S^TS)}$ \rightarrow Vortices: Q > 0
- R-Parameter: $R := R_S \frac{1}{4}E$
- λ_2 -Criterion: Second largest (in magnitude) eigenvalue of $S^2+\Omega^2$
 - \rightarrow Vortices: $\lambda_2 < 0$

Metrics Computation

- Compute-Shader!
 - New shader stage in D3D11
 - Bypass the whole graphics pipeline
 - Simply spawn as many shaders/threads as necessary (in our case, one for every voxel)
 - Read from vector field
 - Write to scalar volume
 - 3D texture of type DXGI_FORMAT_R32_FLOAT
 - Write access in CS through a UnorderedAccessView and a RWTexture3D<float> HLSL-variable
 - You can directly access texels with []-Operator

CS Example


```
RWTexture3D<float> g Scalar;
Texture3D<float4> g Flow;
[numthreads(32,2,2)] // you can/should use a 3D group size,
                     // (1,1,1) might be just as efficient due to shader
                     // compiler optimizations
void CSVelocityX(uint3 threadID: SV DispatchThreadID)
{
    float3 u = g Flow[threadID].xyz;
    g Scalar[threadID] = u.x;
}
technique11 MyComputeShaders
{
    pass VelocityX
        SetComputeShader(CompileShader(cs 5 0, CSVelocityX()));
```

More examples can be found in the DirectX Sample Projects

Compute Shaders

Dispatch() instead of Draw()/DrawIndexed()

Questions?