LJETNI ISPITNI ROK IZ DIGITALNE LOGIKE

- 8 Hammingovim kodom potrebno je zaštititi podatak 11. Koristi se parni paritet. Zaštićena kodna riječ je:
 - a) 00000
- b) 01111
- c) 01010
- d) 11010
- e) 10101
- f) ništa od navedenog
- Funkciju $f(A, B, C, D, E) = \overline{A} \cdot \overline{B} + \overline{C} \cdot D + \overline{E}$ potrebno je izvesti tehnologijom CMOS uz minimalan broj tranzistora. Koliko će ta izvedba potrošiti p-kanalnih tranzistora te na koliko će mjesta u toj izvedbi postojati serijski spoj p-kanalnih tranzistora?
 - a) šest p-kanalnih tranzistora, serijski spoj će biti na dva mjesta
 - b) pet p-kanalnih tranzistora, serijski spoj će biti na dva mjesta
 - c) pet p-kanalnih tranzistora, serijski spoj će biti na jednom mjestu
 - d) šest p-kanalnih tranzistora, serijski spoj će biti na jednom mjestu
 - e) četiri p-kanalnih tranzistora, serijski spoj će biti na jednom mjestu
 - f) ništa od navedenoga
- Odredite algebarski izraz funkcije f(A,B,C,D).

- a) ABCD
- b) $ABCD + A\overline{B}CD + AB\overline{C}D + \overline{A}\overline{B}CD$
- c) $\overline{A}\overline{B}\overline{C}\overline{D} + ABCD$
- d) $A + \overline{B}CD$
- e) $ABCD + \overline{A}\overline{B}CD$
- f) ništa od navedenoga
- Funkciju $f(A, B, C, D) = \sum m(0,6,4,9,11,13,15)$ potrebno je ostvariti sklopom PLA koji implementira funkciju u obliku sume produkata.. Koliko je minimalno potrebno sklopova I i ILI, te za koliko se varijabli koristi invertor?
 - a) 2×I, 1×ILI, 2×invertor
- c) 2×I, 1×ILI, 3×invertor
- e) 1×I, 2×ILI, 2×invertor

- b) 2×I, 1×ILI, 1×invertor
- d) 3×I, 1×ILI, 3×invertor
- f) ništa od navedenoga
- Kako glasi minimalna lista osjetljivosti bloka process koji opisuje bistabil D okidan rastućim bridom signala takta? Bistabil još ima asinkrone ulaze za postavljanje i brisanje.
 - a) D, clk, set

c) clk

e) clk, clr, set

b) D, clk

d) clr, set

- f) ništa od navedenoga
- Uporabom dvoulaznih konfigurabilnih logičkih blokova temeljenih na multipleksoru i preglednoj tablici ostvarena je funkcija *f*, prema slici. Ulaz *X*₁ CLB-a dovodi se na adresni ulaz veće težine multipleksora. O kojoj se funkciji radi?

- a) $\overline{A}\overline{B} + AB + \overline{C}D$
- b) $AB + \overline{A}CD$
- c) $\overline{A}\overline{B} + AB + \overline{C} + \overline{D}$
- d) $\overline{A}B + A\overline{B} + \overline{C} + \overline{D}$
- e) $\overline{A}\overline{B} + \overline{B}C\overline{D}$
- f) ništa od navedenoga

- Na raspolaganju je troulazni CLB temeljen na preglednoj tablici, multipleksoru i bistabilu D. Na ulaz CLB-a X_2 spojen je signal A, na X_1 spojen je signal B. Izlaz CLB-a izvana je spojen na ulaz X_0 . Potrebno je konfigurirati CLB tako da on ostvari bistabil čija je jednadžba promjene stanja: $Q^{n+1} = \overline{A} \cdot \overline{Q}^n + B$. Napomena: ulaz X_2 za multipleksor predstavlja adresni ulaz najveće težine. Sadržai LUT-a ie:
 - a) 10110011

c) 11000011

e) 01110001

b) 11001100

d) 01011100

- f) ništa od navedenoga
- 15 Sklop za izdvojeno generiranje prijenosa generira bitove prijenosa c_0 , c_1 , c_2 i c_3 . Prema kojem algebarskom izraz se generira c_2 ?
 - a) $g_2 + g_1 p_2 + g_0 p_2 p_1$ c) $g_2 + g_1 p_2 + g_0 p_2$
- e) $g_2 + g_1 p_1 + g_0 p_2 p_1$
- b) $g_2p_3 + g_1p_2 + g_0p_2p_1$ d) $g_2p_2 + g_1p_1$

- f) ništa od navedenoga
- Prikazan je ponašajni model nekog sklopa u jeziku VHDL. Strukturni model tog sklopa, izveden 16 pomoću minimalnog broja dvoulaznih I-sklopova i dvoulaznih ILI-sklopova (invertori nisu na raspolaganju), ukupno sadržava:

```
ENTITY sklop IS
  PORT (a, b, c, d, e : IN std logic; f : OUT std logic);
END sklop;
ARCHITECUTRE beh of sklop IS
  f <= NOT ((NOT a OR NOT b OR NOT c) AND (NOT d AND NOT e));
```

- a) jednog I-sklopa, jednog ILI-sklopa i četiri unutarnja signala
- b) tri I-sklopa, dva ILI-sklopa i dva unutarnja signala
- c) dva I-sklopa, dva ILI-sklopa i tri unutarnja signala
- d) jednog I-sklopa, dva ILI-sklopa i dva unutarnja signala
- e) dva I-sklopa, dva ILI-sklopa i jednog unutarnjeg signala
- f) ništa od navedenoga
- Projektant digitalnih sklopova želio je napraviti 8-bitno binarno zbrajalo. No, prilikom izrade sklopa, pogriješio je i umjesto potpunog zbrajala (F) na nekim je mjestima upotrijebio je potpuno oduzimalo (D), prema slici. Ako na ulaz takvog "zbrajala" dovedemo brojeve B5 i 64, što će biti rezultat (s)?

a) C1

c)03

e) A8

b) 09

d) 50

- f) ništa od navedenoga
- 18 Asinkrono binarno brojilo unaprijed ostvareno je uporabom bistabila T. Bistabili imaju dodatne ulaze za postavljanje S_d koji su svi spojeni zajedno, i koriste se za skraćivanje ciklusa brojila. Ako ciklus sadrži 19 stanja a ulazi za postavljanje se aktiviraju logičkom razinom 1, koju funkciju treba ostvarivati sklop koji upravlja ulazima za postavljanje?
 - a) $Q_4 \overline{Q}_3 \overline{Q}_2 Q_1 Q_0$
- c) $\overline{Q}_4\overline{Q}_3\overline{Q}_2Q_1Q_0$ d) $\overline{Q}_4Q_3Q_2Q_1Q_0$
- e) $Q_4 \overline{Q}_3 Q_2 \overline{Q}_1 \overline{Q}_0$

- b) $Q_4 \overline{Q}_3 \overline{Q}_2 Q_1 \overline{Q}_0$
- f) ništa od navedenog

19	Bistabilima tipa T koji su okidani padajućim bridom signala takta ostvareno je 4-bitno asinkrono binarno brojilo unaprijed. Parametri bistabila su: t _{db} =20ns, t _{setup} =10ns, t _{hold} =10ns. Neposredno prije trenutka t=100ns brojilo se nalazi u stabilnom stanju 15. U trenutku t=100ns nastupa padajući brid signala takta. Frekvencija signala takta je 10MHz. Što ćemo očitati na izlazima brojila u trenutku t=165ns?						
	a) 4	b) 0	c) 12	d) 8	e) 10	f) ništa od navedenog	
20	Memorija 256×2 bita ima 2 ½ D organizaciju. Koliko logičkih riječi u tom slučaju sadrži jedna fizička riječ, ako se na adresni dekoder retka dovodi 5 bitova adrese?						
	a) jednu logičku riječb) četiri logičke riječi			e)	d) šesnaest logičkih riječi e) osam logičkih riječi		
	c) trideset i dvije logičke riječi f) ništa od navedenog					edenog	

Ako se rješavaju, sljedeća dva zadatka <u>moraju biti riješena u unutrašnjosti košuljice</u>, kako je napisano uz svaki od zadataka (ili se neće bodovati). Zadatci se boduju jednako kao i prethodni zadatci (ali nema negativnih bodova). Zadatak mora imati prikazan postupak te konačno rješenje.

Zadatak 21. Riješiti na unutrašnjosti košuljice, s lijeve strane.

Napišite ponašajni VHDL model binarnog dekodera 1/2 s ulazom za omogućavanje (dek12). Potom uporabom tog modela napišite strukturni VHDL model binarnog dekodera 2/4 s ulazom za omogućavanje (dek24).

Zadatak 22. Riješiti na unutrašnjosti košuljice, s desne strane.

Pretpostavite da na raspolaganju imate VHDL model sinkronog padajućim bridom okidanog bistabila T (nazovimo ovu komponentu tff). U sučelju se redom nalaze: ulaz za signal takta, ulaz T, izlaz bistabila te invertirani izlaz bistabila.

Njegovom uporabom napišite ponašajni VHDL model 3-bitnog sinkronog binarnog brojila unaprijed.