图像处理大作业报告

王铮

December 12, 2020

Contents

1	环境	2
2	GUI简介	2
3	主 要模块介绍 3.1 直方图均衡	4
	3.2 直方图匹配	5 7
	3.4 快速傅里叶变换与快速傅里叶反变换	8
	3.5 高通与低通滤波器	9
	TO THE PERSON OF	11 12
	- 1 / 4//4 / 1	13
		16
	or CALL WOOM	18
	3.11 最佳陷阵滤波器	19
	5.== 1C /3 [K] /3 - / - / - / - / - / - / - / - / - /	21
	3.13 快速小波变换与快速小波反变换	22
4	现存问题	23
5	改进计划	23

1 环境

 $\begin{array}{l} {\rm python} == 3.7.6 \\ {\rm numpy} == 1.19.1 \\ {\rm matplotlib} == 3.3.1 \end{array}$

报告中所进行的测试均在Windows10下进行,但在其他安装了上述依赖库的操作系统上项目同样可以运行。

2 GUI简介

项目中的GUI用python自带的tkinter库实现。要启动GUI,只需在任何一台安装了python和上述依赖库的机器中运行文件DIP.py。GUI的主界面如下图所示:

Figure 1:

点击选择图像按钮,选择一幅待处理的图像(.png格式):

Figure 2:

目前项目暂时只能处理灰度图像,因此所选择的图像会被自动的转化成灰度图像。被选择的图像会被显示在主界面的右边,如下图所示:

Figure 3:

在主界面中选择一个处理此图像的算法。以直方图均衡为例,之后会弹出要求用户输入算法参数的窗口:

Figure 4:

假设输入图像的像素值范围为0到255。在文本框中输入255后点击确定,算 法的输出会被显示到主界面的右边:

Figure 5:

点击主界面的保存按钮,当前图像处理的结果会被保存到当前的工作目录下,默认文件名为'output.png'。

3 主要模块介绍

3.1 直方图均衡

对给定图像进行直方图均衡化处理。

Figure 6:

输入的灰度值范围必须为正整数。默认为255。 对下图:

Figure 7:

进行直方图均衡后的结果如下:

Figure 8:

以后若不加说明,选择的输入图像与本例中相同。

3.2 直方图匹配

将给定图像向目标图像进行直方图匹配。

Figure 9:

输入的像素范围必须为正整数。默认为255。选择的参考图像为.png格式另输入图像向下图进行直方图匹配:

Figure 10:

结果如下:

Figure 11:

3.3 卷积

对给定图像,用给定的卷积核对其进行卷积操作。

Figure 12:

可以选择使用内置的高斯卷积核和拉普拉斯卷积核,需要分别在卷积核类型中输入Gaussian或者Laplacian。若选择使用自定义的卷积核,需要在卷积核文本框中输入要使用卷积核中的元素,不同元素之间以","分隔。例如:

"1,1,1,1,1,1,1,1"。元素的个数必须与卷积核的尺寸相匹配。在卷积核高度和卷积核宽度中需要输入使用卷积核的尺寸,必须为奇数。若不输入,默认使用 3×3 的卷积核。

Figure 13:

同样的, 若使用3×3的高斯卷积核, 结果如下:

Figure 14:

若使用3×3的拉普拉斯卷积核,结果如下:

Figure 15:

3.4 快速傅里叶变换与快速傅里叶反变换

对给定的图像进行快速傅里叶变换或者对给定的频谱图进行快速傅里叶反变换。点击相应按钮即可对当前图像进行傅里叶变换或者相应的反变换。 例如,对输入图像进行傅里叶变换的结果如下:

Figure 16:

对输入图像傅里叶变换后,再进行反变换的结果如下:

Figure 17:

3.5 高通与低通滤波器

在频域中去除图像中的高频或者低频信号,分别以低通和高通滤波器实现。两者的参数类似,以高通滤波器为例:

Figure 18:

滤波器的类型可以是高斯,巴特沃斯或者理想滤波器。相应的需要输入Gaussian,Butterworth或者Ideal。截止频率和阶数可以为任意正数,阶数仅当使用巴特沃斯滤波器时需要输入。

例如,使用截止频率为300的高斯高通滤波器,结果如下:

Figure 19:

使用截止频率为100的高斯低通滤波器,结果如下:

Figure 20:

3.6 随机噪音

对给定图像加上随机噪声。

Figure 21:

根据输入的噪声类型的不同,参数1和2有不同的含义,下面将逐一介绍可输入的类型及相应的参数1和2的意义。

'Gaussian':添加服从高斯分布的噪声。参数1表示噪声的均值,参数2表示噪声的方差。

'Gamma':添加服从伽马分布的噪声。参数1和参数2分别为其形状参数和逆尺度参数。

'Uniform':添加服从参数1到参数2上均匀分布的噪声。

'Pepper_Salt': 椒盐噪声。arg1和arg2的值需介于0和1之间。会在图像的每个像素上以参数1的概率产生盐噪声,1-参数2的概率产生椒噪声。

例如,向输入图像添加均值为0,方差为1的高斯噪声,结果如下:

Figure 22:

在输入图像中以0.2的概率产生椒噪声和盐噪声,结果如下:

Figure 23:

3.7 周期噪音

对给定图像加上周期噪声。

Figure 24:

所有的输入均可为任意整数,其中x,y方向的相位以及振幅为可选输入,默认值分别为0,0,0.5。 对输入图像加入x方向和y方向频率均为10的周期噪声后的结果如下:

Figure 25:

3.8 非适应性空域滤波器

使用非适应性的空域滤波器对输入图像降噪。

Figure 26:

滤波器类型可以是以下几种类型之一:

Arithmetic_Mean: 算数均值滤波器。 Geometric_Mean: 几何均值滤波器。 Harmonic_Mean: 调和均值滤波器。 Contrharmonic_Mean: 谐波滤波器

Median: 中值滤波器。 Max: 极大值滤波器。 Min: 极小值滤波器。 Midpoint: 中点滤波器。

滤波器的宽度和长度必须为奇数。Q仅当滤波器为谐波滤波器时有意义,默认

为0。

例如使用3×3的极大值滤波器对下图:

Figure 27:

进行降噪,结果如下:

Figure 28:

使用 3×3 的算数均值滤波器对其进行降噪,结果如下:

Figure 29:

使用3×3的中值滤波器对其进行降噪,结果如下:

Figure 30:

3.9 适应性空域滤波器

使用适应性的空域滤波器对给定图像降噪。

Figure 31:

滤波器类型可以输入Local_Noise_Reduction和Adaptive_Median,对应着局部降噪滤波器和适应性中值滤波器。参数方差只对局部降噪滤波器有意义,可以为任意正数。最大滤波器宽度和高度只对适应性中值滤波器有意义,必须为奇数。滤波器的宽度和高度必须为奇数。对下面的图像:

Figure 32:

使用3×3的局部降噪滤波器降噪后的结果如下:

Figure 33:

使用初始尺寸为3×3最大尺寸为7×7的适应性中值滤波器对下图:

Figure 34:

降噪的结果是:

Figure 35:

3.10 陷通滤波器与陷阻滤波器

去除或保留信号频域中某点范围之内的信号。陷通和陷阻滤波器的输入参数相同,以陷通滤波器为例:

Figure 36:

类型可以是Gaussian,Butterworth和Ideal,与高通和低通滤波器相同。x方向,y方向频率和截止频率可以是任意正数。阶数仅当滤波器类型为巴特沃斯时有意义,可以输入任意正数。例如,对下图:

Figure 37:

已知其在x方向和y方向上噪声的频率均为10,对其使用截止频率为5,阶数为2的巴特沃斯的陷通滤波器,结果如下:

Figure 38:

以同样的参数,对其使用带阻滤波器的结果如下:

Figure 39:

3.11 最佳陷阵滤波器

针对特定图像,选择最优的权重参数,通过陷通滤波器来去除图像中的周期噪声。

Figure 40:

其中窗口高度和宽度必须为奇数,x方向和y方向频率可以为任意正数。截止频率可以为任意正数,默认为5。阶数可以是任意正数,默认为2。例如,对下图:

Figure 41:

设置阶数为3,窗口高度和宽度均为3,x方向和y方向频率设为已知的周期噪声频率,均为50,阶数设置为3。对其进行滤波的效果如下:

Figure 42:

3.12 运动模糊

模拟相机移动对图像造成的模糊效果。

Figure 43:

x,y方向速度和T均可以为任意正数。 例如,对输入图像,设置x和y方向速度为0.1,时间T为1的运动模糊效果如下:

Figure 44:

3.13 快速小波变换与快速小波反变换

对给定序列进行快速哈尔小波变换或者对快速哈尔小波变换的输出进行还原。

Figure 45:

输入序列的长度必须为2的整数次幂,序列中不同的元素以','间隔。例如,输入序列1,4,-3,0。弹出的哈尔快速小波变换的结果如下:

Figure 46:

同样的输入,弹出的哈尔快速小波逆变换的结果如下:

Figure 47:

4 现存问题

鲁棒性问题:没有异常处理模块,无法处理不规范的输入。

效率问题:直方图匹配算法的运行速度很慢。原因可能是构建像素值对应表过程的复杂度过高,为 $O(n^2)$ 。实际上使用二分查找算法可以将其优化到O(nlgn)。

已知bug1: 保存的图片相比于原图尺寸会缩小。可能是对画图工具的设置问题。

5 改进计划

增加自动求导,形态学和图像压缩模块。 抽象在图形界面中增加新模块的接口,简化扩展图形界面的过程。 对于可并行的模块,实现其cuda版本。