# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-070354

(43) Date of publication of application: 10.03.1998

(51)Int.CI.

H05K 3/20 H05K 3/18

(21)Application number: 08-245731

(71)Applicant: FUJI PHOTO FILM CO LTD

(22) Date of filing:

28.08.1996 (72)Inventor:

TAKAYANAGI TAKASHI

SHIGYO MASAJI TANAKA MAKOTO ODA TOSHIHIRO

KOBAYASHI YASUNORI

# (54) METHOD FOR FORMING METAL PATTERN (57) Abstract:

PROBLEM TO BE SOLVED: To provide a method of forming a metal pattern which improves a method for forming a metal pattern by a transfer method, is excellent in workability and economic properties, and is high in smoothness of a surface.

SOLUTION: In this method, a sensitive sheet 21 is prepared that an electroless plating underlayer 13 in which fine particles of metal and metal compound are scattered in aqueous resin of swelling properties, an electroless plating layer 14 and a photoresist layer 15 are formed in this order on a surface of a plastic film 11, and the photoresist layer 15 of this sensitive sheet 21 is exposed to light in a pattern form and next developed, whereby a resist pattern 15a is formed on the electroless plating layer. Further, an electrolytic plating layer 23 is formed on a surface where the



electroless plating layer in a resist absent region is exposed to light, and also the resist pattern 15a formed in a pattern form, the electrolytic plating layer 23 and the electroless plating layer 14 of a continuous layer are simultaneously left on a substrate to separate the plastic film 11. A surface of a laminated body formed on the substrate is etched, and steps of forming a metal pattern are sequentially performed, whereby the metal pattern is formed on the substrate.

**LEGAL STATUS** 

[Date of request for examination]
[Date of sending the examiner's decision of rejection]
[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

#### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平10-70354

(43)公開日 平成10年(1998) 3月10日

| (51) Int.Cl. 6 |      | 識別記号 | 庁内整理番号  | FΙ   |      |   | 技術表示箇所 |
|----------------|------|------|---------|------|------|---|--------|
| H05K           | 3/20 |      | 7511-4E | H05K | 3/20 | В |        |
|                | 3/18 |      | 0430-4E |      | 3/18 | Н |        |

### 審査請求 未請求 請求項の数4 FD (全 11 頁)

|          |                 | <b>各</b> 互明   | 不明不 明不久の数 4 「1 1 (主 11 頁) |
|----------|-----------------|---------------|---------------------------|
| (21)出願番号 | 特願平8−245731     | (71)出願人       | 000005201                 |
|          |                 |               | 富士写真フイルム株式会社              |
| (22)出願日  | 平成8年(1996)8月28日 |               | 神奈川県南足柄市中沼210番地           |
|          |                 | (72)発明者       | 高柳 丘                      |
|          |                 |               | 静岡県富士宮市大中里200番地 富士写真      |
|          |                 |               | フイルム株式会社内                 |
|          |                 | (72)発明者       | 執行 正路                     |
|          |                 |               | 静岡県富士宮市大中里200番地 富士写真      |
|          |                 |               | フイルム株式会社内                 |
|          |                 | (72)発明者       | 田中 誠                      |
|          |                 | ( = //2/14    | 静岡県富士宮市大中里200番地 富士写真      |
|          |                 |               | フイルム株式会社内                 |
|          |                 | (74)代班人       | 弁理士 柳川 泰男                 |
|          |                 | (1.17) (4.17) | 最終頁に続く                    |
|          |                 |               | ACAT DA ICAL \            |

# (54) 【発明の名称】 金属パターンの形成方法

# (57)【要約】

【課題】 転写法による金属パターンの形成方法を改良 し、作業性や経済性に優れ、表面の平滑性の高い金属パ ターンを形成する方法を提供すること。

【解決手段】 プラスチックフィルムの表面に、膨潤性の水性樹脂に金属もしくは金属化合物の微粒子が分散されてなる無電解めっき用下地層、無電解めっき層、そしてフォトレジスト層がこの順に形成されてなる感光性シートを用意し、この感光性シートのフォトレジスト層をパターン状に露光させ、次いで現像することにより、無電解めっき層の上にレジストパターンを形成させる工程;レジスト不在領域の無電解めっき層露出表面上に電解めっき層を形成する工程;パターン状に形成されたレジストパターンと電解めっき層、及び連続層の無電解めっき層を同時に基板上に残してプラスチックフィルムを剥がし取る工程;そして基板の上に形成された積層体の表面をエッチング処理して、金属パターンを形成させる方法。



## 【特許請求の範囲】

【請求項1】 プラスチックフィルムの表面に、膨潤性 の水性樹脂に金属もしくは金属化合物の微粒子が分散さ れてなる無電解めっき用下地層、無電解めっき層、そし てフォトレジスト層がこの順に形成されてなる感光性シ ートを用意し、この感光性シートのフォトレジスト層を パターン状に露光させ、次いで現像することにより、無 電解めっき層の上にレジストパターンを形成させる工 程;レジスト不在領域の無電解めっき層露出表面上に電 解めっき層を形成する工程;別に用意した基板表面に、 上記プラスチックフィルム上の電解めっき層を重ね合わ せる工程:パターン状に形成されたレジストパターンと 電解めっき層、及び連続層の無電解めっき層を同時に基 板上に残してプラスチックフィルムを剥がし取る工程; そして基板の上に形成された積層体の表面をエッチング 処理して、金属パターンを形成させる工程を順次行なう ことにより基板の上に金属パターンを形成させる方法。 【請求項2】 無電解めっき用下地層とプラスチックフ ィルム表面との間に接着性樹脂からなる下塗層が設けら れている請求項1に記載の金属パターンの形成方法。

【請求項3】 プラスチックフィルムの表面に、膨潤性 の水性樹脂に金属または金属化合物の微粒子が分散され てなる無電解めっき用下地層、無電解めっき層、そして フォトレジスト層がこの順に形成されてなる感光性シー トを用意し、この感光性シートのフォトレジスト層をパ ターン状に露光させ次いで現像することにより、無電解 めっき層の上にレジストパターンを形成させる工程;レ ジスト不在領域の無電解めっき層露出表面上に電解めっ き層を形成する工程:レジストパターンを除去する工 程;別に用意した基板表面に、上記プラスチックフィル ム上の電解めっき層を重ね合わせる工程; パターン状に 形成された電解めっき層及び連続層の無電解めっき層を 同時に基板上に残してプラスチックフィルムを剥がし取 る工程; そして基板の上に形成された積層体の表面をエ ッチング処理して、金属パターンを形成させる工程を順 次行なうことにより基板の上に金属パターンを形成させ る方法。

【請求項4】 無電解めっき用下地層とプラスチックフィルム表面との間に接着性樹脂からなる下塗層が設けられている請求項3に記載の金属パターンの形成方法。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、新規な感光性シートを用いる金属パターンの形成方法に関する。

# [0002]

【従来の技術】近年、電子機器の小型化、軽量化が進み、プリント配線基板などの金属配線の高密度化や多層化への要求が高くなりつつある。例えば、プリント配線基板の製法としては、パネルめっき法やパターンめっき法に代表されるエッチングを利用するサブトラクティブ

法あるいはフルアディティブ法に代表されるアディテイ ブ法が知られている。この内、サブトラクティブ法は、 銅等の金属の配線をエッチングにより形成する必要があ るが、エッチング法では、サイドエッチ等が発生するた め、配線の断面が台形になる傾向があり、高度に微細化 された金属配線の形成には適していないという問題があ る。更に、エッチング法では金属の利用効率が悪く、ま た生成する多量のエッチング廃液の処理が問題となる。 【0003】これに対して、アディティブ法は、基板上 にフォトレジストを用いて形成した配線ネガパターン (配線パターンに対応するネガパターン)の領域に無電 解めっきにより、選択的に銅などの金属を析出させて配 線パターンを生成させる方法である。この方法は、サイ ドエッチの問題があるサブトラクティブ法とは異なり、 配線幅の限界が緩和され、従って高密度の配線パターン の形成が可能となるという利点がある。また、エッチン グ処理を行なわないため、エッチング処理廃液の処理の 問題もなくなり、さらに金属の利用効率も高くなる。し かしながら、無電解めっきによる配線パターンの形成は 時間が掛り、生産効率が良くないという問題が発生す る。また、配線基板に無電解めっきを施すためには、脱 脂、酸処理、めっき用触媒付与、基板表面の活性化など 複雑な前処理が必要となる。このため、この無電解めっ きを利用する方法に代る方法として、表面に導電性を有 する支持体を用い、その表面上にフォトレジストで、配 線ネガパターンを形成させ、次にレジスト不存在領域に 電解めっき法により銅などの金属の層を形成し、これを 絶縁基板に転写することによりプリント配線基板を製造 する転写法が開発されている。この転写法では、エッチ ングに起因する前記の問題点がなく、また金属層の形成 に要する時間が短いため、従って、短い時間で高密度の 配線パターンを製造することができるとの利点がある。 【0004】上記の転写法は、たとえば、特開昭63-187695号公報に記載されている。この公報に記載 の転写法は、ステンレススチールシート等の導電性基材 (支持体)の上にレジストパターンを形成し、次いでそ の導電性基材の露出部に電気めっき層を形成し、最後に レジストパターンと電気めっき層とを一緒に基板上に転 写する方法である。また、特開昭63-283886号 公報には、導電性膜(例、フィルム表面に離型層を介し て真空蒸着やプラズマビームデポジッション法などで形 成した金属膜層)を有するフィルム表面にレジストパタ ーンを形成し、次いでその導電性膜露出部に電解もしく は電解めっき層を設け、最後にそのめっき層を絶縁性基 板に転写する方法が記載されている。

【0005】また、特開平2-122691号公報には、金属テープなどの銅めっきが可能な支持体上にフォトレジスト層を形成し、このフォトレジスト層をフォトエッチングしてレジストパターン形成し、そのレジスト除去領域に銅めっきを施し、銅めっき層表面を粗面化

し、次にレジストパターンを除去し、銅めっき層を下側 にして絶縁性基板上に接着剤を用いて接着し、最後に支 持体を除去する方法により絶縁性基板上に金属パターン を形成させる方法が記載されている。

【0006】上記の方法のうち、金属層を最初に形成するための支持体(基材)として金属シートや金属テープを用いる方法は、その金属シートや金属テープなどが高価で重量もあるため、経済性および作業性に劣るという問題がある上に、その金属シートなどの上に形成された金属層を絶縁基板に転写する際に、その金属シートなどと金属層との剥離が円滑に進みにくいという欠点もある。また、蒸着法などを利用する金属層の形成は時間がかかり、作業性や経済性に欠けるという問題がある。

# [0007]

【発明が解決しようとする課題】従って、本発明の主な目的は、転写法を利用する金属パターンの形成方法を改良した新規な金属パターンの形成方法を提供することであり、特に、作業性や経済性に優れ、かつ表面の平滑性の高い金属パターンを形成する方法を提供することにある。また、本発明は、プリント配線基板の製造方法に適した転写法を利用する改良された金属パターンの形成方法を提供することも、その目的とする。

#### [0008]

【課題を解決するための手段】本発明は、プラスチック フィルムの表面に、膨潤性の水性樹脂に金属もしくは金 属化合物の微粒子が分散されてなる無電解めっき用下地 層、無電解めっき層、そしてフォトレジスト層がこの順 に形成されてなる感光性シートを用意し、この感光性シ ートのフォトレジスト層をパターン状に露光させ、次い で現像することにより、無電解めっき層の上にレジスト パターンを形成させる工程;レジスト不在領域の無電解 めっき層露出表面上に電解めっき層を形成する工程;別 に用意した基板表面に、上記プラスチックフィルム上の 電解めっき層を重ね合わせる工程;パターン状に形成さ れたレジストパターンと電解めっき層、及び連続層の無 電解めっき層を同時に基板上に残してプラスチックフィ ルムを剥がし取る工程;そして基板の上に形成された積 層体の表面をエッチング処理して、金属パターンを形成 させる工程を順次行なうことにより基板の上に金属パタ ーンを形成させる方法にある。また、プラスチックフィ ルムの表面に、膨潤性の水性樹脂に金属または金属化合 物の微粒子が分散されてなる無電解めっき用下地層、無 電解めっき層、そしてフォトレジスト層がこの順に形成 されてなる感光性シートを用意し、この感光性シートの フォトレジスト層をパターン状に露光させ次いで現像す ることにより、無電解めっき層の上にレジストパターン を形成させる工程;レジスト不在領域の無電解めっき層 露出表面上に電解めっき層を形成する工程;レジストパ ターンを除去する工程;別に用意した基板表面に、上記 プラスチックフィルム上の電解めっき層を重ね合わせる

工程;パターン状に形成された電解めっき層及び連続層の無電解めっき層を同時に基板上に残してプラスチックフィルムを剥がし取る工程;そして基板の上に形成された積層体の表面をエッチング処理して、金属パターンを形成させる工程を順次行なうことにより基板の上に金属パターンを形成させる方法にもある。

【0009】上記の金属パターンの製造方法においては、プラスチックフィルムを剥がし取る工程で、電解めっき層及び連続層の無電解めっき層と共に下地層の少なくとも一部を基板上に残すことが好ましい。即ち、下地層の凝集破壊によりプラスチックフィルムを剥がし取られることが好ましい。また、上記の金属パターンの形成方法は、プラスチックフィルムの表面に設けられた膨潤性の水性樹脂に金属もしくは金属化合物の微粒子が分散されてなる無電解めっき用下地層、無電解めっき層そしてフォトレジスト層がこの順に形成された構成を有する感光性シートを用いて実施されるが、プラスチックフィルムの表面に、接着性樹脂からなる下塗層が設けられていることが好ましい。

#### [0010]

【発明の実施の形態】次に、本発明で用いられる感光性 シート、そしてその感光性シートを用いる本発明の金属 パターンの形成方法について、詳しく説明する。本発明 の金属パターンの形成方法に用いられる感光性シート は、プラスチックフィルムの表面に設けられた膨潤性の 水性樹脂に金属もしくは金属化合物の微粒子が分散され てなる無電解めっき用下地層の上に無電解めっき層そし てフォトレジスト層がこの順に形成された構成を有す る。この感光性シートの製造に際しては、まず、プラス チックフィルムの上に膨潤性の水性樹脂に金属もしくは 金属化合物の微粒子が分散されてなる無電解めっき用下 地層からなる無電解めっき層形成用シートを用意する。 【0011】本発明で使用される無電解めっき層形成用 シートの構成を図1に模式的に示す。図1において、無 電解めっき層形成用シート10は、プラスチックフィル ム(支持体として機能する)11、疎水性バインダから なる下塗層12、そして膨潤性の水性樹脂層に金属もし くは金属化合物の微粒子が分散されてなる無電解めっき 用下地層13からなる。上記の無電解めっき層形成用シ ートで支持体として用いるプラスチックフィルムの形成 材料については特に限定はない。例えば、セルロースエ ステル、ポリアミド、ポリカーボネート、ポリエステル (例、ポリエチレンテレフタレート、ポリー1,4-シ クロヘキサンジメチレンテレフタレート、ポリエチレン -1,2-ジフェノキシエタンー4,4'-ジカルボキ シレート、ポリエチレン-1,6-ナフタネート)、ポ リスチレン、ポリオレフィン(例、ポリプロピレン、ポ リエチレン)、ポリイミド、ポリアミドイミド、ポリエ ーテルサルホンなどのプラスチック材料を挙げることが できる。これらのプラスチック材料は、二種以上混合し

て用いてもよく、またそれぞれのプラスチック材料から なるフィルムを積層して用いてもよい。上記のプラスチ ックフィルム支持体材料は、高い寸度安定性を有するこ とが望ましい。すなわち、本発明の無電解めっき層形成 用シートのプラスチックフィルム支持体は、熱膨張係数 が1×10-4/℃以下であることが望ましく、また湿度 寸法変化率が1×10-4%RH以下(特に1×10-5% RH以下)であることが望ましい。従って、前記のプラ スチック材料のなかで、本発明の無電解めっき層形成用 シートの支持体フィルムの材料として用いるのに特に適 しているのはポリエチレンテレフタレートであり、なか でも二軸延伸、熱固定されたポリエチレンテレフタレー トフィルムが、経済性、寸度安定性、強度、平面性等を 考慮すると特に好ましい。また、特開平6-25916 号公報に記載されているポリエチレン-2,6-ナフタ レート、特開平6-55615号公報に記載されている シンジオタクチックポリスチレン(SPS)も好ましい 支持体材料である。無電解めっき層形成用シートで支持 体として用いるプラスチックフィルムの厚さについても 特に限定はないが、通常は、 $6\sim200\mu m$  (特に、5  $0\sim180\mu\text{m}$ )の範囲で適宜決定される。また、この プラスチックフィルムは、透明であっても、不透明であ ってもよく、また所望により、染料や顔料(例、二酸化 チタン)、滑剤(例、シリカ、炭酸カルシウム)などの 添加剤、充填剤を含んでいてもよい。

【0012】本発明の無電解めっき層形成用シートは、 プラスチックフィルム (支持体)の上に、膨潤性の水性 樹脂に金属もしくは金属化合物の微粒子が分散されてな る無電解めっき用下地層が形成されていることを主な特 徴とするが、その無電解めっき用下地層は、プラスチッ クフィルムの表面に、接着性樹脂からなる下塗層を介し て設けられていることが好ましい。この下塗層は、主と して、プラスチックフィルム支持体の表面に、無電解め っき用下地層を均一、かつ確実に固定させ、そして、そ の均一な固定状態を長期にわたって維持する機能を有す る。上記の下塗層の接着性樹脂としては、塩化ビニル、 塩化ビニリデン、メタクリル酸、アクリル酸、メタクリ ル酸エステル、アクリル酸エステル、イタコン酸、無水 マレイン酸、酢酸ビニル、ブタジエン、そしてスチレン などのモノマーから誘導される単独重合体もしくは共重 合体などの疎水性バインダ、そしてそれらを架橋剤 (例、2,4-ジクロロー6-オキシーS-トリアジ ン)で架橋させた材料を挙げることができる。その例と しては、ブタジエン/スチレン共重合体ラテックスや塩 化ビニリデンラテックスを挙げることができる。用いる 重合体の分子量(重量平均分子量)は、5000以上、 特に2万以上、200万以下であることが望ましい。ま た、融点は120℃~250℃にあることが望ましい。 【0013】下塗層の厚みは通常0.01~5.0µm の範囲(好ましくは $0.1\sim1.0\mu m$ )から選ばれ

る。上記の下塗層は、プラスチックフィルム支持体の表面に、バインダ樹脂を溶融塗布、もしくはバインダ樹脂溶液を塗布乾燥するような一般的な方法で形成することができる。なお、そのバインダ樹脂の塗布の前に、バインダ樹脂と支持体プラスチックフィルム表面との接着性を向上させるために、プラスチックフィルム表面に公知の表面処理(例、コロナ放電処理、グロー放電処理、プラズマ処理、火炎処理、化学処理)を施すことが望ましい。また、上記の下塗層形成後のプラスチックフィルム支持体は、高温で保存した場合でも、その縦横の寸法変化が少ないものであることが好ましい。

【0014】上記の下塗層が付設されたプラスチックフィルム(支持体)の、その下塗層の上には、膨潤性の水性樹脂に金属もしくは金属化合物の微粒子が分散されてなる無電解めっき用下地層が形成される。本発明の無電解めっき層形成用シートにおける無電解めっき用下地層は、表面が親水性で、かつ膨潤性があるため、無電解めっき層形成用シートを無電解めっき液に浸漬した場合に、めっき液が無電解めっき用下地層の内部深くまで浸透してくる。そして、その無電解めっき用下地層の内部に分散している金属もしくは金属化合物の微粒子を核として無電解めっきがなされるため、その下地層の表面に形成される無電解めっき層は、その下地層と強固に接合した状態となる。従って、プラスチックフィルム支持体上に、その後の処理を進めるのに充分な強度を有する無電解めっき層が形成されることになる。

【0015】上記の膨潤性の水性樹脂に金属もしくは金 属化合物の微粒子が分散されてなる無電解めっき用下地 層は、例えば、予め膨潤性の水性樹脂、金属塩もしくは 金属錯体など、そして還元剤(また、さらに必要により 保護コロイド)を含む水溶液を調製し、その水溶液中の 金属塩もしくは金属錯体などの還元反応により金属もし くは金属化合物の微粒子を析出させて金属もしくは金属 化合物の微粒子と水性樹脂を含む塗布液とし、これを支 持体表面(もしくは支持体上の下塗層表面)に塗布乾燥 させる方法により形成させることができる。あるいは、 予め膨潤性の水性樹脂、そして金属塩もしくは金属錯体 などを含む水溶液を調製し、その水溶液を支持体表面 (もしくは支持体上の下塗層表面)に塗布し、次いでそ の塗布層中に還元剤を浸透させることにより金属塩もし くは金属錯体などを還元させ金属もしくは金属化合物の 微粒子を析出させて金属もしくは金属化合物の微粒子を 析出させ、最後に乾燥させる方法により形成することが できる。また、最初から金属もしくは金属化合物の微粒 子と水性樹脂とを含む塗布液を調製し、これを支持体表 面(もしくは支持体上の下塗層表面)に塗布乾燥させる 方法によっても無電解めっき用下地層を形成することも 可能である。

【0016】あるいは、本発明の無電解めっき層形成用 シートは、プラスチックフィルム(支持体)の上に、膨 潤性の水性樹脂層を形成した後、あるいは膨潤性の水性樹脂層を有するプラスチックフィルムを用意し、その膨潤性の水性樹脂層上に、金属もしくは金属化合物の微粒子が水に分散された塗布液を塗布及び乾燥、あるいは塗布、水洗及び乾燥することにより得ることもできる。この場合、上記塗布により、膨潤性の水性樹脂層中に金属及び金属化合物の微粒子が分散するので、次の乾燥により、膨潤性の水性樹脂層は無電解めっき用下地層となる。

【0017】用いる金属は、基本的には導電性を持つものであり、その例としては、Au、Pt、Pd、Ag、Cu、Ni、Fe 、Ro、Cr、Sn などの金属を挙げることができる。また金属化合物としては、それらの金属の塩、酸化物、硫化物などがある。金属化合物や出発原料の具体例としては、PdS、SnS、 $Ag_2$  S 、 $PdC1_2$  、 $SnC1_2$  、AgC1 、 $PdF_2$  、 $AgF_2$  、 $SnF_2$  、 $PdO_2$  、 $SnO_2$  、 $Ag_2$  O、HAu  $C1_4$  、 $H_2$   $PtC1_6$  を挙げることができる。また、この例示された金属塩や金属錯体以外にも、他の金属の塩化物、硫化物、フッ化物、臭化物、ヨウ化物、酸化物、各種の錯体などを用いることができる。市販されている製品の例としては、石原産業株式会社製のSN-100 A 及びSN-100 N 、三菱マテリアル株式会社製のN1 を挙げることができる。

【0018】還元剤の例としては、次亜リン酸ナトリウム、ジメチルアミンボラン、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ホルムアルデヒド、ヒドラジン、アスコルビン酸などの無機もしくは有機の還元剤を挙げることができる。

【0019】膨潤性の水性樹脂としては、一般に水溶性 樹脂もしくはポリマーラテックスから選ばれ、その例と しては、ゼラチンおよびその誘導体(例、フタル化ゼラ チン、マレイン化ゼラチンなどのアシル化ゼラチン、ア クリル酸、メタクリル酸もしくはアミドなどでゼラチン にグラフトさせたグラフト化ゼラチン)、ポリビニルア ルコールおよびその誘導体、ポリビニルピロリドンおよ びその誘導体、ポリアクリル酸、ポリアクリル酸ージア クリレート共重合体のようなポリマーを挙げることがで きる。これらのポリマーは単独でも、また組合せて用い ることもできる。また、これらのポリマーに、塗膜の粘 着性を低減し、ブロッキング性を向上させるためにメチ ルセルロースなどのセルロース誘導体を併用することも できる。また、膨潤性を向上させるフェノールやレゾル シン、異物付着防止のためのイオン系ポリマー、アニオ ンまたはカチオン界面活性剤、特開昭49-3972号 公報記載のマレイン酸系共重合体、コロイダルシリカ、 食塩などの電解質をなどを添加してもよい。

【0020】無電解めっき用下地層は、架橋されていて もよい。すなわち、水溶性架橋剤などの架橋剤を無電解 めっき用下地層形成用塗布液に添加し、その塗布液を支 持体表面に塗布したのち、加熱して、塗布層を架橋させ ることによって、その下地層の強度を高めることができ る。そのような水溶性架橋剤の例は、特開平3-141 347号公報、特開平3-137637号公報に記載さ れている。具体的な化合物の例としては、下記のものを 挙げることができる。水性樹脂がポリビニルアルコール である場合には、ブチルアルデヒドのようなアルデヒド 化合物やホウ酸などが利用できる。水性樹脂がアクリル 酸誘導体の場合には、アルミニウム、亜鉛等の多価金属 イオンやカルボキシル基と反応するN-メチロール尿 素、ポリーN-メチロールアクリルアミドが利用でき る。ゼラチンまたはゼラチン誘導体の場合には、米国特 許第3325287号明細書、同第3288775号明 細書、同3549377号明細書、ベルギー特許第66 02226号明細書などに記載されているトリアジン系 化合物、米国特許第3291624号明細書、同第32 32764号明細書、フランス特許第1543694号 明細書、英国特許第1270578号などに記載されて いるジアルデヒド系化合物、米国特許第3091537 号明細書、特公昭49-26580号公報などに記載さ れているエポキシ系化合物、米国特許第3642486 号明細書などに記載されているビニル化合物、そして米 国特許第3392024号明細書などに記載されている エチレンイミン系化合物あるいはメチロール系化合物が 利用できる。特に好ましい架橋剤は2、4-ジクロロー 6-ヒドロキシ-S-トリアジン・ナトリウム塩などの ジクロローSートリアジン誘導体である。なお、無電解 めっき用下地層を、プラスチックフィルム支持体の上に 下塗層を介して設ける場合には、架橋剤を、その下塗層 に導入しても良い。

【0021】無電解めっき用下地層における水性樹脂と金属もしくは金属化合物の微粒子との重量比率は、通常は0.01~10000、好ましくは0.1~1000 (水性樹脂/金属もしくは金属化合物の微粒子)の範囲にあるように調整される。上記の金属もしくは金属化合物の微粒子の大きさは、通常0.003~10 $\mu$ m (好ましくは0.001~1.0 $\mu$ m)の範囲にはいるものであることが好ましい。なお、上記の無電解めっき用下地層の厚さは通常、0.005~5 $\mu$ m (好ましくは0.01~1 $\mu$ m)である。

【0022】本発明の金属もしくは金属化合物の微粒子を含む塗布液は、酸化スズの微粒子(好ましくはアンチモンを含有する酸化スズ)と酸化スズ以外の金属もしくは金属化合物の微粒子とを含むことができる。酸化スズは、上記金属、金属化合物の重量の $10\sim1000$ 倍量加えることが好ましく、特に $20\sim500$ 倍量が好ましい。酸化スズに対するアンチモンの量は、 $0.1\sim50$ 重量%の範囲が一般的で、 $5\sim20$ 重量%の範囲が好ましく、特に $6\sim13$ 重量%の範囲が好ましい。また、上記酸化スズ微粒子の平均粒子径は、 $0.01\sim0.5\mu$ 

mが好ましい。上記酸化スズを含む無電解めっき用下地層上に、無電解めっきを行なった場合、得られるめっき層の形成速度は、含まない場合に比べて2~3倍以上となり、短時間で所望の層厚の無電界めっき層を得ることができる。

【〇〇23】また、膨潤性の水性樹脂層に塗布される金属もしくは金属化合物の微粒子が水中に分散された塗布液は、金属塩あるいは金属錯体等の金属化合物を含む液と、モル比で該金属化合物の1/1000~1/10の範囲の重量の還元剤を含む液とを混合、反応させた液でも良い。このように、還元により得られる金属又は金属化合物の微粒子濃度を更に低下させることにより、微粒子含有塗布液の安定性は更に向上する。上記金属もしくは金属化合物の微粒子が水中に分散された塗布液を調製するに際して、得られる塗布液全量に対して、金属塩あるいは金属錯体等の金属化合物は一般に0.001~1重量%、好ましくは0.01~1重量%となるように添加される。

【0024】無電解めっき用下地層の上には公知の方法 もしくはそれに準じる方法によって無電解めっき層が形 成される。利用できる無電解めっき液に特に制限は無 く、市販の各種の処理液を用いることができる。一般的 には、銅めっきの場合には、硫酸銅のEDTA浴やロッ シェル塩浴などが用いられる。ニッケルめっきの場合に は、硫酸ニッケルあるいは塩化ニッケルなどを用いた酸 性浴、または30~60℃の液温の低温中性浴、アンモ ニアアルカリ性浴、苛性アルカリ浴などが用いられる。 また、コバルトめっきの場合には、硫酸コバルトあるい は塩化コバルトなどのコバルト塩を用いた中性乃至アル カリ条件のクレン酸浴、酒石酸浴などが用いられる。無 電解めっき層の層厚みは、通常O.1~1.0µm(好 ましくは、 $0.2\sim0.5\mu$ m)が選ばれる。この無電 解めっき層は、前述のように無電解めっき用下地層の内 部にまでアンカー効果によって浸透するため、その下地 層から容易に離脱しないように形成される。すなわち、 公知の一般的な方法でプラスチックフィルムの表面に無 電解めっき(化学めっき)を施す場合には、ブラストの ような物理的粗面化処理あるいはクロム混酸を用いるエ ッチングのような化学的な方法を利用して、表面処理を 予め行なう必要がある。このような一般的な方法でプラ スチックフィルムの表面処理を行なって、その上に無電 解めっき行なった場合、その無電解めっき層は、通常の 取り扱いでは問題がないが、その後、本発明の金属パタ ーンの形成方法のようなフォトレジスト層形成、未硬化 フォトレジスト層の溶出処理、電解めっき処理、そして めっき層の基板への転写などの所定の各種処理を行なう 場合に、それらの途中でプラスチッキフィルムの表面か らの剥離が発生しやすいことが問題となる。これに対し て、本発明における無電解めっき用下地層の上に形成さ れる無電解めっき層は、そのめっき金属相が無電解めっ

き層用下地層の内部から生成するようになり、このため、形成される無電解めっき層と無電解めっき下地層とは、前者の脚部が後者の内部に食い込んでアンカリング効果を示すような複合構造を形成しながら一体化する。そして、無電解めっき下地層は、下塗層などの効果により、プラスチックフィルムにしっかりと固着している。従って、本発明の無電解めっき層付きシートにおける無電解めっき層は、そののちの各種処理の間でも、プラスチックフィルムから剥離することなく、転写工程においてプラスチックフィルムを基板から剥ぎ取る時に初めてプラスチックフルムと分離されるようになる。

【0025】無電解めっき層の上にはフォトレジスト層が形成される。フォトレジストとしては通常はネガ型が用いられる。また、現像廃液の処理の簡便さを考慮するとアルカリ水溶液で現像可能なフォトレジストであることが好ましい。フォトレジスト層は、フォトレジストを高をウエブ塗布などの塗布法により無電解めっき層の表面に形成してもよく、またドライフィルム化されたレジストフィルムなどを無電解めっき層の表面にラミネート法などによって積層してもよい。なお、アディティブ法用として市販されているめっきレジスト、感光性ソルダーレジストなどを用いることもできる。本発明で用いる感光性シートは、上記のようにして調製される感光性レジストが表面に形成された感光性シートをその代表例とするものである。

【0026】次に、上記感光性シートを用いる本発明の金属パターンの形成方法について、図面を参照しながら説明する。図2は、本発明の金属パターンの形成方法に従って、基板上に金属パターンを形成させる工程を模式的に示す図である。すなわち、まず、図1に示した本発明の無電解めっき層形成用シート10(プラスチックフィルム支持体11、疎水性バインダからなる下塗層12、そして膨潤性の水性樹脂に金属もしくは金属化合物の微粒子が分散されてなる無電解めっき用下地層13)の上に、上記の方法により無電解めっき層14、そしてフォトレジスト層(感光性レジスト層)15を積層することにより、感光性シート21を製造する(イ)。

【0027】次いで、この感光性シート21のフォトレジスト層15を、配線パターン状などの形状のフォトマスク22を用いてパターン状に露光させ(ロ)、次いで現像することによって、無電解めっき層14の上にレジストパターン15aを形成させる(ハ)。上記の露光現像により形成されたレジストパターン15aにより、部分的に露出面とされた無電解金属めっき層の露出表面上には、次に公知の方法もしくはそれに準じる方法によって電解めっき層23が形成される(二)。本発明で用いる電解めっき液には特に制限はなく、市販の処理液もしくはそれに類似する処理液を用いることができる。具体的には、銅めっきの場合には、ほう弗化銅の低濃度浴や高濃度浴、硫酸銅の電鋳浴、光沢浴、一般浴、そしてピ

ロリン酸銅の光沢浴などを用いることができる。ニッケルめっきの場合には、硫酸ニッケルあるいは塩化ニッケルを用いるトリニッケル浴、光沢浴ワイズベルグ浴などが用いられる。勿論、電解めっきは単独の金属のめっきに限られるものではなく、合金メッキを利用することもできる。本発明の金属パターンの形成方法で形成される電解めっき層は通常 $10\sim50\mu$ mの範囲の厚さを持つようにされる。ただし、所望により、それよりも厚く、あるいは薄くすることもできる。なお、次の工程で行なわれるレジストパターンと電解金属めっき層の基板への転写を考慮すると、電解めっき層の厚さは、レジストパターンの厚さとほぼ同等とすることが好ましい。

【0028】次に、上記のようにして形成したレジスト パターンと無電解めっき層及び電解金属めっき層の二層 とを同時に基板24に接するように、感光性シート21 を基板の上に積層、圧着する(ホ)。基板としては、公 知のもの、もしくはそれに準じるものが利用される。そ の例としては、ポリイミドフィルムなどのプラスチック フィルム基板、ガラスエポキシ基板などの複合材料基板 を挙げることができる。なお、基板は、必ずしもフィル ムもしくはシート状である必要はない。レジストパター ンと無電解めっき層及び電解金属めっき層の二層との基 板への転写は、通常、基板の表面に接着剤層25を設け た上で、その接着剤層の表面にレジストパターンと電解 めっき層とが接するようにして積層し、加熱加圧して、 接着する方法が利用される。この場合の接着剤として は、ユリア樹脂、メラミン樹脂、フェノール樹脂、エポ キシ樹脂などの材料からなるもので、ホットメルト接着 剤あるいは熱硬化型接着剤が用いられる。また、光硬化 型ソルダーレジストとして市販されているものも利用す ることができる。接着剤は、ドライフィルム化された接 着剤シートであってもよい。

【0029】そして、上記の積層終了後に、感光性シー トのプラスチックフィルムを積層体から手を用いて、あ るいは機械的に、剥がし取る(へ)ことによって、表面 に連続層である無電解めっき層と下地層の一部を有する 金属パターン(積層体)が得られる((へ)の図の下 側)。得られた金属パターンを有する積層体は、レジス トパターンと電解金属めっき層の上に連続層の無電解め っき層が積層されたものである(更に、無電解めっき層 の上には、無電解めっき用下地層の一部が残存してい る)。即ち、導電性材料であるめっき層は、全て基板上 に転写され、剥がし取られたプラスチックフィルム支持 体側には、導電性材料は残存していない。基板上に転写 された金属パターン上には、無電解めっき層とさらにそ の上に、通常、無電解めっき用下地層の少なくとも一部 は残ることになる。この無電解めっき用下地層の残存の 程度は、下地層、下地層の下の下塗層の凝集力、接着力 に依存している。従って、下地層の残存の程度は、下地 層の凝集力の制御、下地層と下塗層(または支持体)と の接着力の調整により行なうことができる。例えば、下 地層に加える架橋剤をなくすか少なくして凝集力を低下 させ、その低下の程度により種々の凝集破壊、また界面 剥離を起こすことができる。

【0030】さらに、上記残存する無電解めっき層および無電解めっき用下地層の除去、並びに基板上に形成された金属パターンの表面の平滑性もしくは光沢性を更に向上させるために、その表面をソフトエッチング処理が行なわれる。そして図3に示される金属パターンを得ることができる。このソフトエッチング処理は、公知の方法であり、たとえば、酸化剤である過硫酸アンモニウムあるいは過硫酸ナトリウムの5~10%程度の水溶液で、目的の金属表面を数十秒~数分処理することによって実施することができる。なお、所望により、基板上に残留しているレジストパターンを溶解などの方法により除去することもできる。

【0031】上記のようにして得られた表面に金属パターンを有する基板は、そのまま単独で用いることもできるが、所望により、二枚以上積層して多層化することもできる。その多層化は、例えば、公知のプレプリグなどを用いることによって容易に実施することができる。【0032】次に、本発明の感光性シートを用いる金属パターンの形成方法について、図面を参照しながら説明

する。図2及び図4は、本発明の金属パターンの形成方法に従って、基板上に金属パターンを形成させる工程を模式的に示す図である。すなわち、まず、前記図2の(イ)~(二)の工程を実施することにより、無電解めっき層14の上に、レジストパターン15aと電解めっき層23が形成された感光性シート23(二)を得る。【0033】次いで、レジストパターンを除去し、パターン状の電解めっき層のみを残す処理を行なう(ト)。レジスパターンの除去は、たとえば、下記に記載する方法により容易に行なうことができる。一般的なレジストパターン(硬化レジスト体)はアルカリ水溶液により溶

解除去させることができる。アルカリ水溶液としては水酸化ナトリウム、水酸化カリウム、水酸化アンモニウムなどのアルカリ性物質の0.5~8重量%濃度の水溶液が一般的に利用される。アルカリ性物質の濃度が0.5重量%よりも低いと、レジスト除去に時間がかかるか、あるいは充分なレジスト除去が実現しにくい。一方、アルカリ性物質濃度が8重量%を越えると、基体のプラスチックフィルムの裏面の腐食が発生しやすくなり好ましくない。レジスト溶解除去処理は通常は室温以上、80℃以下の温度で実施される。レジスト溶出処理に要する時間は、アルカリ水溶液の濃度、組成、温度などにより変わるが、通常は30秒間~3分間程度で実施する。

【0034】レジスト溶解除去処理の操作は、公知のレジスト剥離(溶解除去)操作を利用することができる。すなわち、処理対象の硬化レジスト形成基板をアルカリ水溶液に浸漬させる方法、その浸漬を行ないながら超音

波を照射する方法、そして硬化レジスト形成基板にアルカリ水溶液をスプレーする方法などが利用できる。あるいは、基板搬送装置、溶出液(アルカリ水溶液)スプレー装置、そして溶出液回収装置が組み合されてなる自動レジスト剥離装置を利用することもできる。溶出液として用いるアルカリ水溶液には消泡剤として特公昭42-11328号公報に記載のカルボン酸アルミニウムなどを添加することもできる。また、溶出液にベンジルアルコールやアニオン性界面活性剤を添加することもできる。

【0035】アニオン性界面活性剤の例としては、炭素 数が8~22個の高級アルコール硫酸エステル塩類 (例、ラウリルアルコールサルフェートのナトリウム 塩、オクチルアルコールサルフェートのナトリウム塩、 ラウリルアルコールサルフェートのアンモニウム塩、 「Teepol B-81」(シェル化学株式会社商品 名)、及び第二ナトリウムアルキルサルフェート)、脂 肪族アルコール燐酸エステル類(例、セチルアルコール 燐酸エステルのナトリウム塩)、アルキルアリールスル ホン酸塩類(例、ドデシルベンゼンスルホン酸のナトリ ウム塩、イソプロピルナフタレンスルホン酸のナトリウ ム塩、tーブチルナフタレンスルホン酸のナトリウム 塩、ジーセーブチルナフタレンスルホン酸のナトリウム 塩、及びm-ニトロベンゼンスルホン酸のナトリウム 塩)、アルキルアミドのスルホン酸塩類(例、C<sub>17</sub> H<sub>33</sub> CON(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>2</sub>SO<sub>3</sub>Na)、二塩基性 脂肪酸エステルのスルホン酸塩類(例、ナトリウムスル ホコハク酸ジオクチルエステル、ナトリウムスルホコハ ク酸ジヘキシルエステル及びポリオキシアルキレンナフ チルエーテル硫酸エステル)。特に、t-ブチルナフタ レンスルホン酸のナトリウム塩を主成分とする「ペレッ クスNBL」(花王アトラス株式会社製商品名)、イソ プロピルナフタレンスルホン酸ナトリウム塩である「A erosol OS」(アメリカンシアナミド社製商品 名)、および「ニューコールB4SN」(日本乳化剤株 式会社製商品名)は、ベンジルアルコールとの組み合せ において、少量で有効に作用するので好適である。な お、アニオン性界面活性剤はアルカリ水溶液中に0.1 ~5重量%の量で含有させることが望ましく、またベン ジルアルコールは1~5重量%で含有させることが好ま しい。

【0036】アルカリ性水溶液には有機溶剤を含ませることもできる。すなわち、例えば、米国特許第4202703号明細書には、テトラメチルアンモニウムヒドロキシド溶液と低級アルコール中の湿潤剤によるネガ型フォトレジストの剥離及び引き続くトリクロロメタン中への浸漬が、特開昭57-163236号公報には、アルカリ金属水酸化物/ポリエチレングリコールモノアルキルエーテル/水からなる剥離液が、特開昭57-165834号には、水に可溶なアミン類とアルカリ性水溶液

との組合せが、そして特開昭62-50832号公報には有機第四アンモニウム塩基水溶液が記載されており、これらの方法および剥離液は、本発明におけるレジストパターンの溶解除去に利用することができる。

【0037】レジストパターンの溶解除去は、アルカリ水溶液以外にも、メチルエチルケトン、アセトン、酢酸エチル、テトラヒドロフラン、メチレンクロリド、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル等などの有機溶剤を用いることによっても可能である。しかし、レジストパターノの溶解除去操作の作業性を考慮すると、アルカリ水溶液を中心とする剥離液の使用が有利である。

【0038】次に、上記のようにして残留させた電解めっき層と無電解めっき層を同時に基板24に接するように、感光性シート21を基板の上に積層、圧着する

(チ)。基板としては、前述のものが利用される。電解めっき層との基板への積層は、前記のように、通常、基板の表面に接着剤層25を設けた上で、その接着剤層の表面に電解めっき層が接するようにして積層し、加熱加圧して接着する方法が利用される。

【0039】そして、上記の積層終了後に、感光性シートのプラスチックフィルムを積層体から手を用いて、あるいは機械的に、剥がし取る(リ)ことによって、表面に連続層である無電解めっき層と下地層の一部を有する金属パターン(積層体)が得られる((リ)の図の下側)。得られた金属パターンを有する積層体は、パターン状の電解金属めっき層の上に連続層の無電解めっき層が積層されたものである(更に、無電解めっき層の上には、無電解めっき用下地層の一部が残存している)。即ち、導電性材料であるめっき層は、全て基板上に転写され、剥がし取られたプラスチックフィルム支持体側には、導電性材料は残存していない。

【0040】なお、上記残存する無電解めっき層および無電解めっき用下地層の除去、並びに基板上に形成された金属パターンの表面の平滑性もしくは光沢性を更に向上させるために、その表面をソフトエッチング処理を行ない、図5に示される金属パターンを得ることができる。このソフトエッチング処理は、公知の方法であり、たとえば、酸化剤である過硫酸アンモニウムあるいは過硫酸ナトリウムの5~10%程度の水溶液で、目的の金属表面を数十秒~数分処理することによって実施することができる。

【0041】上記のようにして得られた表面に金属パターンを有する基板は、そのまま単独で用いることもできるが、所望により、二枚以上積層して多層化することもできる。その多層化は、例えば、公知のプレプリグなどを用いることによって容易に実施することができる。

[0042]

【実施例】

[実施例1]

- (1)無電解めっき層形成用シートの作成
- 1)ポリエチレンテレフタレート(PET)フィルム (厚さ100μm)の表面にコロナ放電処理を施し、そ の処理表面に下記組成からなる塗布液を、ワイヤーバー

を利用して塗布し、170℃で1分間乾燥して、層厚 0.12μmの下塗層を形成した。 【0043】

#### [下塗層組成]

ポリ塩化ビニリデンラテックス(固形分43%)

13mL 87mL

2)上記のポリエチレンテレフタレートフィルム上の下 塗層の表面にコロナ放電処理を施したのち、その処理表面に下記のようにして調製した塗布液をワイヤーバーを 利用して塗布し、150℃で2分間乾燥して、層厚0.6μmの無電解めっき下地層を形成した。

【0044】 [無電解めっき下地層形成用塗布液の調 製]塩化パラジウム3gを、5N塩酸15gと純水33 9gとの混合物に完全に溶解させてA液を作成する。次 に、ポリビニルピロリドン(K90、東京化成工業株式 会社製、保護コロイド)4.5g純水262.5gに溶 解してB液を作成する。次いでホルマリン3gを純水3 75gに溶解させたC液を作成する。ウォーターバス中 に、上記B液をスターラーを用いて撹拌(150rp m) しながら、45℃にて、これに1Nの水酸化ナトリ ウム水溶液150gを少しづつ添加する。添加終了して から2分後、上記のA液とC液とを同時にゆっくりと添 加する。添加に伴い水溶液の色が変化し、黒褐色透明の 液が得られる。添加終了後、上記黒褐色透明の液を、撹 拌の回転数を400rpmに上げて撹拌し、15分後、 これに、ゼラチン(新田ゼラチン株式会社製681)1 5gを純水339gに加熱溶解させた水溶液を少しづつ 添加し、パラジウムコロイド水溶液を得る。

【0045】(2)無電解めっき層付きシートの作成 上記(1)で作成した無電解めっき層形成用シートを2 0cm×20cmの正方形に切断して試験片を調製し た。この試験片を界面活性剤水溶液(メルテックス社 製:メルテックスエンプレートPC-236:pH約 1)に5分間浸漬し、次いで1分間水洗して、無電解め っき層形成層を膨潤させた。次に、試験片を市販の無電 解銅めっき液(メルテックス社製:メルプレートCU-390)に浸漬し、約20℃で20分間無電解めっき操 作を行なった。試験片の上に析出した銅層(銅めっき 層)の層厚は約0.3~0.4μmでほぼ均一であっ た。このめっき操作において、めっき層形成用下地層か らの金属微粒子の脱落は観察されなかった。この析出し た銅層(銅めっき層)の表面に接着テープを貼り付けた のち、そのテープを剥ぎ取る試験を行なったが、銅層の 剥離は発生しなかった。また、この銅めっき層の表面抵 抗を低抵抗表面抵抗計(三菱油化株式会社製のMCP-TESTER LORESTA) を用いて測定したとこ ろ約 $0.4\sim0.6\Omega/sq$ の値が得られた。なお、銅 めっき層は、表面側から見ると、強い赤銅色が観察さ れ、一方、裏面側(PETフィルム側)から見ると、同 じく赤銅色が観察されるが、その金属光沢は表面側より 弱く、また金属光沢がまばらな状態となっていることが 確認された。すなわち、上記の銅めっき層と無電解めっ き用下地層とは、一体化されており、無電解めっき層部 分の金属相が無電解めっき用下地層部分の上部まで無電 解めっき層部分よりも疎な状態で侵入した構造をとって いることが確認された。

【0046】(3)感光性シートの作成

無電解めっき層付きシートの無電解銅めっき層の上に、アルカリ現像型のフォトレジストフィルム(富士写真フィルム株式会社製A640)を2kg/cm、105 ℃、1.0m/分の条件で貼り付けて感光性シートを作成した。

#### (4)配線ネガパターンの形成

感光性シートのフォトレジストフィルムの表面に配線パターンのマスクを用いて、パターン状の露光を施し、アルカリ現像液で現像処理し、配線パターン状に無電解銅めっき層を露出させ、レジストの配線ネガパターンを形成した。

#### (5)電解めっき処理

上記の(4)で処理したシートを電解めっき液(リーロナール社製の光沢剤カパーグリームPを5mL/Lの濃度で添加した硫酸銅浴)に浸漬し、約20 $^{\circ}$ の温度で、 $1.2A/dm^2$ の条件で電流を20 $^{\circ}$ 句間流して、上記(4)で露出させた無電解銅めっき層の表面に電解銅めっき層を形成させた。

【0047】(6)金属パターンの基板への転写 別に用意したガラスエポキシ基板の上にソルダーレジス トフィルム (デュポン社製:バクレル8030)を重ね 合せ、2kg/cm、105℃、1.0m/分の条件で 貼り付けた。上記のガラシエポキシ基板上のソルダーレ ジストフィルムの上に、前記(5)で得た無電解めっき 層を有するシートを、その無電解めっき層がレジストフ ィルム表面に接触するように重ね合せ、4 k g/c m、 120℃、0.5m/分の条件でラミネートし、積層一 体化させた。次いで、その積層物からPETフィルムを 剥がし取ったところ、配線パターン状の銅めっき層とレ ジスト配線ネガパターンと、更にその上に無電解めっき 層とが、ガラスエポキシ基板上のソルダーレジストフィ ルムの上に転写されており、一方ポリエチレンテレフタ レート (PET) フィルムの表面にはめっき層が残って いないことが確認された。続いて、転写された無電解め っき下地層の表面を、過硫酸アンモンの12%水溶液を 用い30℃で、2分間処理した(ソフトエッチング)と ころ、銅の光沢面が現われて、優れた配線基板が得られ た。その解像力は約50μmであった。

【0048】[実施例2]

- (1)無電解めっき層形成用シートの作成 実施例1と同様にして作成した。
- (2)無電解めっき層付きシートの作成 実施例1と同様にして作成した。
- (3)感光性シートの作成

実施例1と同様にして作成した。

- (4)配線ネガパターンの形成
- 実施例1と同様にして形成した。
- (5)電解めっき処理

実施例1と同様にして実施した。

【0049】(6)レジストパターンの除去次いで電解銅メッキ層とレジストパターン(配線ネガパターン)とのが形成されたシートを3重量%濃度の水酸化ナトリウム水溶液(40℃)に140秒間浸漬することによって、レジストパターンを溶解除去した。

【0050】(7)金属パターンの基板への転写 別に用意したガラスエポキシ基板の上にソルダーレジス トフィルム (デュポン社製:バクレル8030)を重ね 合せ、2kg/cm、105℃、1.0m/分の条件で 貼り付けた。上記のガラシエポキシ基板上のソルダーレ ジストフィルムの上に、前記(5)で得た無電解めっき 層を有するシートを、その無電解めっき層がレジストフ ィルム表面に接触するように重ね合せ、4kg/cm、 120℃、0.5m/分の条件でラミネートし、積層一 体化させた。次いで、その積層物からPETフィルムを 剥がし取ったところ、配線パターン状の銅めっき層と、 更にその上の無電解めっき層の連続層とが、ガラスエポ キシ基板上のソルダーレジストフィルムの上に転写され ており、一方ポリエチレンテレフタレート(PET)フ ィルムの表面にはめっき層が残っていないことが確認さ れた。続いて、転写された無電解めっき層下地層の表面 を、過硫酸アンモンの12%水溶液を用い30℃で、2 分間処理した (ソフトエッチング) ところ、銅の光沢面 が現われて、優れた配線基板が得られた。その解像力は 約50μmであった。

### [0051]

【発明の効果】本発明の感光性シートにおける無電解めっき層は、その下の膨潤性を有する親水性樹脂層によってプラスチックフィルム支持体に適度な強度(電解めっきなどの操作では剥離することなく、一方、転写後のプラスチックフィルム支持体の剥ぎ取りを円滑に実現する)を有する。従って、この本発明の感光性シートを用いて転写法を利用する金属パターンの形成方法を実施した場合に、作業性や経済性に優れ、かつ表面の平滑性の高い金属パターンを形成することができる。従って、本発明の金属パターンの形成方法は、高精細なプリント配線基板の製造に特に有利に利用できる。

#### 【図面の簡単な説明】

【図1】本発明の金属パターンの形成方法で用いる無電 解めっき層形成用シートの構成の例を示す模式図であ る。

【図2】本発明の金属パターンの形成方法の一例の各工程を模式的に示す図である。

【図3】図2に示した本発明の金属パターンの形成方法 により得られた金属パターンを模式的に示す図である。

【図4】本発明の金属パターンの形成方法の別の例の各 工程の一部を模式的に示す図である。

【図5】図4に示した本発明の金属パターンの形成方法 により得られた金属パターンを模式的に示す図である。

# 【符号の説明】

- 10 無電解めっき層形成用シート
- 11 プラスチックフィルム
- 12 下塗層
- 13 無電解めっき用下地層
- 14 無電解めっき層
- 15 フォトレジスト層
- 15a レジストパターン
- 21 感光性シート
- 22 フォトマスク
- 23 電解めっき層
- 24 基板
- 25 接着剤層





フロントページの続き

(72)発明者 尾田 年弘 静岡県富士宮市大中里200番地 富士写真 フイルム株式会社内

(72)発明者 小林 靖典 静岡県富士宮市大中里200番地 富士写真 フイルム株式会社内