Mecânica e Campo Electromagnético

Ano lectivo de 2011/12

Exercícios do Capítulo 3.1 - Lei de Coulomb e Campo Eléctrico

- 1. Duas pequenas esferas de prata, cada uma com uma massa de 10,0 g, são separadas de 1,00 m. Determine a fracção dos electrões de uma esfera que devem ser transferidos para a outra de maneira a produzir uma força atractiva de 1,00 × 10⁴ N (cerca de uma tonelada) entre as esferas. (O número de electrões por átomo de prata é de 47 e o número de átomos por grama é o Número de Avogadro dividido pela massa molar da prata, 107,87 g/mole).
- **2.** Duas pequenas esferas condutoras idênticas têm os seus centros à distância de 0,30 m. Uma é carregada com 12,0 nC e a outra com –18,0 nC.
 - a) Determine a força eléctrica exercida por uma esfera na outra.
 - b) As esferas são unidas por um fio condutor. Determine a força eléctrica entre as duas depois de se ter atingido o equilíbrio.
- *3*. Três cargas pontuais estão localizadas nos vértices de um triângulo equilátero como se mostra na figura. Calcule a força eléctrica resultante na carga de 7,00 μC.

- **4.** Colocam-se três cargas nos vértices de um triângulo equilátero como na figura do problema 3.
 - a) Calcule o campo eléctrico na posição da carga de 2,0 µC devido às outras duas cargas.
 - b) Use a sua resposta para determinar a força que se exerce na carga de 2,0 µC.
- *5*. Três cargas positivas de valor q estão situadas nos vértices de um triângulo equilátero de lado a, como mostra a figura.
 - a) Determine a localização do ponto (exceptuando o
 ∞) onde o campo eléctrico se anula (Não faça cálculos, utilize apenas um percurso lógico).
 - b) Qual é a amplitude e a direcção do campo eléctrico em *P* devido às duas cargas da base do triângulo?

- *6*. Quatro cargas pontuais estão nos vértices de um quadrado de lado *a*, como mostra a figura.
 - a) Determine a amplitude e a direcção do campo eléctrico no ponto onde se situa a carga q.
 - b) Qual é a força útil na carga q (ou seja, a força que realiza trabalho) se ela estiver confinada à semi-recta definida pela diagonal do quadrado onde se encontra situada?

- 7. Considere n cargas positivas iguais cada uma com um valor Q/n, colocadas simetricamente ao longo de uma circunferência de raio R. Calcule a amplitude do campo eléctrico num ponto da linha perpendicular ao plano do círculo que passa pelo seu centro, à distância x deste.
- 8. A densidade linear de carga dum bastão de comprimento L é dada por : $\lambda = \lambda_0 + 2x$ (onde $0 \le x \le L$). Qual é a carga total do bastão ?
- 9. Um disco de raio R tem uma densidade de carga dada por $\sigma = 3r$. Calcule a carga total do disco.
- 10. Uma coroa esférica de raios r_1 e r_2 ($r_1 < r_2$) tem uma densidade de carga que é inversamente proporcional ao raio. Sabendo que a carga total da coroa é Q, obtenha uma expressão para a densidade de carga.
- 11. Uma linha contínua de carga está ao longo do eixo x, estendendo-se desde $x = +x_0$ até (+) infinito. A densidade de carga é uniforme e igual a λ_0 . Qual é a amplitude e a direcção do campo eléctrico na origem?
- *12*. Um anel uniformemente carregado de raio a tem uma carga total Q.
 - a) Encontre o campo eléctrico no eixo do anel, à distância h do seu centro.
 - b) Mostre que a amplitude máxima do campo eléctrico ao longo do eixo do anel ocorre para $h = a/\sqrt{2}$ e tem o valor $Q/(6\sqrt{3}\pi\varepsilon_0 a^2)$.
- 13. Um disco uniformemente carregado, de raio R, está carregado com uma densidade de carga σ .
 - a) Determine o campo eléctrico ao longo do eixo do disco, a uma distância r do seu centro.
 - b) Obtenha, a partir da alínea anterior, uma aproximação para $r \ll R$.
 - c) Obtenha uma aproximação para $r \gg R$. Qual o significado deste resultado?
- 14. Um fio de comprimento L, centrado na origem dum sistema de eixos xy e paralelo ao eixo x, está carregado uniformemente com uma densidade de carga dada por λ Cm⁻¹.
 - a) Determine uma expressão para o campo eléctrico num ponto genérico do eixo x (fora do fio).
 - b) Determine uma expressão para o campo eléctrico num ponto genérico do eixo y.

- *15*. Um protão é projectado no sentido positivo do eixo x, numa região onde existe um campo eléctrico uniforme $\vec{E} = -6.00 \times 10^5 \,\hat{x} \,\text{N/C}$. O protão viaja 7,00 cm antes de atingir o repouso. Determine:
 - a) A aceleração do protão.
 - b) A sua velocidade inicial.
 - c) O tempo que leva o protão até atingir o repouso.
- **16**. Os electrões de um feixe têm, cada um deles, uma energia cinética *K*. Qual é a amplitude e a direcção de um campo eléctrico que pára estes electrões numa distância *d*?
- 17. Um protão move-se horizontalmente à velocidade v_p , entrando num campo eléctrico uniforme de amplitude E. Ignore efeitos gravitacionais. Determine:
 - a) O tempo que leva o protão para se deslocar um espaço h horizontalmente.
 - b) O deslocamento vertical depois de um deslocamento horizontal h.
 - c) As componentes horizontal e vertical da sua velocidade ao atingir um deslocamento horizontal h.
- *18*. Uma pequena bola de plástico com uma massa de 2,0 g é suspensa por um fio de 20 cm de comprimento num campo eléctrico uniforme, como mostra a figura. Se a bola estiver em equilíbrio quando o fio faz um ângulo de 15° com a vertical, qual é a carga líquida da bola?

- **19**. A figura representa as linhas de campo de duas partículas carregadas e separadas por uma distância de 7 cm.
 - a) Calcule a distância do ponto P às partículas.
 - b) Sabendo que a carga da partícula no lado direito é de -8 nC, calcule a carga da outra partícula.

Soluções

1.
$$n_e/N_e = 2.5 \times 10^{-9}$$

2. a)
$$F = 2.16 \times 10^{-5} \text{ N}$$
 attractiva; b) $F = 9.0 \times 10^{-7} \text{ N}$ repulsiva

3.
$$\vec{F} = 0.756 \cdot \hat{i} - 0.437 \cdot \hat{j}$$
 (N)

4. a)
$$\vec{E} = 18.0 \cdot \hat{i} - 109 \cdot \hat{j}$$
 (kV/m); b) $\vec{F} = 36.0 \cdot \hat{i} - 218 \cdot \hat{j}$ (mN)

5. a) No centro geométrico b)
$$E = \frac{\sqrt{3}q}{4\pi\varepsilon_0 a^2}$$

6. a)
$$|\vec{E}| = 5.91 \frac{q}{4\pi\epsilon_0 a^2}$$
 (V/m); \vec{E} faz 58,8° com a direcção horizontal b) 5,74 $\frac{q^2}{4\pi\epsilon_0 a^2}$

7.
$$E = \frac{kQx}{\left(R^2 + x^2\right)^{3/2}}$$

8.
$$q = \lambda_0 L + L^2 (C)$$

9.
$$q = 2\pi R^3$$
 (C)

10.
$$\rho(r) = \frac{Q}{2\pi r(r_2^2 - r_1^2)}$$

11.
$$E_x = -\frac{k\lambda_0}{x_0}$$

12. a)
$$E_z = k \frac{2\pi \lambda ah}{\left(a^2 + h^2\right)^{3/2}}$$

13. a)
$$E_z = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{r}{\sqrt{R^2 + r^2}} \right)$$
 b) $E_z \cong \frac{\sigma}{2\varepsilon_0}$ c) $E_z \cong \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$

14. a)
$$E_x(x) = \frac{\lambda}{4\pi\varepsilon_0} \left(\frac{1}{x - L/2} - \frac{1}{x + L/2} \right)$$
 b) $E_y(y) = \frac{\lambda}{2\pi\varepsilon_0} \frac{L}{y\sqrt{L^2 + 4y^2}}$

15. a)
$$a_x = -\frac{eE}{m}$$
 b) $v_0 = \sqrt{\frac{0,14eE}{m}}$ c) $t = \sqrt{\frac{0,14m}{eE}}$

16.
$$E = \frac{K}{ed}$$

17. a)
$$t_h = \frac{-v_p + \sqrt{v_p^2 + 2a_x h}}{a_x}$$
, $a_x = \frac{eE_x}{m}$; b) $y_h = \frac{1}{2}a_y t_h^2$; $a_y = \frac{eE_y}{m}$
c) $v_x(t_h) = v_p + a_x t_h$; $v_y(t_h) = a_y t_h$

18.
$$q = \frac{mg}{F} \tan \theta$$

19. a) distância à carga da esquerda: 2,8 cm; b)
$$q = -3,55$$
 nC.