Rethinking Graph Convolutional Networks in Knowledge Graph Completion

Zhanqiu Zhang¹, Jie Wang^{1,2,*}, Jieping Ye^{3,4}, Feng Wu¹

¹CAS Key Laboratory of Technology in GIPAS

University of Science and Technology of China

²Institute of Artificial Intelligence

Hefei Comprehensive National Science Center

zqzhang@mail.ustc.edu.cn,{jiewangx,fengwu}@ustc.edu.cn

³University of Michigan

⁴KE Holdings Inc.

jpye@umich.edu

Haobo Xu 2022/10/26

Outlines

- Background
 - > KGC
 - ➤ GCN-based KGC
- Rethinking
 - Do GCNs work in KGC?
 - ➤ Which factor works?
- Framework & Experiments
- Conclusion
- Discussion

Background

Knowledge Graph Completion

- Methods
 - KGE
 - GNN for KG
 - PLM
 - •
- Subtasks
 - Link prediction, relation prediction, triple classification

Background

Motivation for GNN-based KGC methods

- Inspired by GNN message passing
 - Message function:

$$\boldsymbol{m}_{(u,v)}^{k} = \phi(\boldsymbol{h}_{u}^{k}, \boldsymbol{h}_{v}^{k})$$

Aggregate function:

$$\bar{\boldsymbol{m}}_{v}^{\mathcal{R}} = Agg^{\mathcal{R}} \big(\big\{ \boldsymbol{m}_{(u,v)}^{\mathcal{R}} : u \in \mathcal{N}(v) \big\} \big)$$

• Update function:

$$\boldsymbol{h}_{v}^{\text{\&}+1} = Comb^{\text{\&}} \big(\boldsymbol{h}_{v}^{\text{\&}}, \boldsymbol{\bar{m}}_{v}^{\text{\&}}\big)$$

- Encode aggregate neighbor & relation information for KGC
 - Message function:

$$m_{(u,\mathbf{r},v)}^{k} = \frac{\phi}{h_{u}^{k}}, h_{r}^{k}, h_{v}^{k}$$

Aggregate function

$$\overline{\boldsymbol{m}}_{v}^{\mathcal{R}} = Agg^{\mathcal{R}}(\{\boldsymbol{m}_{(u,\boldsymbol{r},v)}^{\mathcal{R}}: (u,\boldsymbol{r}) \in \mathcal{N}(v)\})$$

• Update function

$$\mathbf{h}_{v}^{\ell+1} = Comb^{\ell}(\mathbf{h}_{v}^{\ell}, \overline{\mathbf{m}}_{v}^{\ell})$$
$$\mathbf{h}_{r}^{\ell+1} = \varphi(\mathbf{h}_{r}^{\ell})$$

Background

RGCN

Message function

$$\boldsymbol{m}_{(u,\boldsymbol{r},v)}^{k} = W_{r}^{k} \boldsymbol{h}_{u}^{k}.$$

Aggregate & Update function

$$h_i^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_i^r} \frac{1}{c_{i,r}} W_r^{(l)} h_j^{(l)} + W_0^{(l)} h_i^{(l)} \right)$$

Including inverse edges and self loop

Subtask: link prediction

R-GCN: encoder

KGE model: decoder

(c) Link prediction model

(a) Single R-GCN layer

Framework

Experiments

- WGCN
 - **Motivation:**

RGCN over-parameterization for relation representation

Methods:

$$\bar{\boldsymbol{m}}_{v}^{k} = \sigma \left(\sum_{(u,r) \in \mathcal{N}(v)} \alpha_{r}^{k} W^{k} \boldsymbol{h}_{s}^{k} \right).$$

Multi-relational Graph

→ weighted multiple single-relational subgraphs

- CompGCN
 - Methods:

Message function $\phi(h_u^{\ell}, h_r^{\ell}, h_v^{\ell})$: a composition operator

- Subtraction (TransE): $\phi(\cdot) = W_{dir(r)}^{(k)}(\boldsymbol{h}_u^{\ell} \boldsymbol{h}_r^{\ell});$
- Multiplication (DistMult): $\phi(\cdot) = W_{dir(r)}^{(k)}(\mathbf{h}_u^k * \mathbf{h}_r^k);$
- Circular-correlation (HolE): $\phi(\cdot) = W_{dir(r)}^{(k)} (h_u^k \star h_r^k)$.

Relation update function: $h_r^{k+1} = W_{rel}h_r^k$.

Rethinking

Overview

- Q1: Do GCNs Really Bring Performance Gain?
 - Conclusion: GCNs do bring performance gain.
- Q2: Which Factor of GCNs is Critical in KGC?
 - Conclusion:

GCNs based methods have three main parts

- 1) graph structures -> not necessary
- 2) transformations for relation -> not necessary
- 3) aggregated entity representation -> necessary_

Neighborhood Information
Self-loop Information

Have the same effect.

Can substitute for each other.

- Q1: Do GCNs Really Bring Performance Gain?
 - Fact

GCNs utilize training strategies, while original KGE models not, which may be unfair

Experiment

O: original papers, R: reproduce; T: TransE, D: DistMult, C: ConvE

		FB237		WN18RR				
	T	D	С	T	D	С		
w/o GCN (R)	.332	.279	.319	.205	.410	.462		
RGCN (R)	.324	.332	.337	-	-	-		
WGCN (R)	.272	.329	.340	.222	.422	.462		
CompGCN (R)	.335	.342	.353	.206	.430	.469		

Conclusion: GCNs do bring performance gain.

Rethinking

- Q2: Which Factor of GCNs is Critical in KGC?
 - Consensus: Main advantage of GCNs is ability to model graph structure
 - Review of GCNs for KGC

Rethinking

Graph Structure Ablation Experiment

- Break graph structure
- Use the random adjacency tensors in message passing

- Neighbor Information Ablation Experiment
 - Remove neighbor information term in aggregation function

Table 4: MRR for GCNs with random adjacency tensors (RAT) and without neighbor information (WNI).

		FB237		V	WN18RR			
	T	D	С	Т	D	С		
RGCN	.324	.332	.337	-	-	-		
RGCN + RAT	.322	.331	.333	-	-	-		
RGCN + WNI	.324	.332	.335	-	-	-		
WGCN	.272	.329	.340	.222	.422	.462		
WGCN + RAT	.325	.330	.354	.213	.426	.470		
WGCN + WNI	.337	.334	.355	.235	.425	.473		
CompGCN	.335	.342	.353	.206	.430	.469		
CompGCN + RAT	.336	.336	.351	.208	.420	.467		
CompGCN + WNI	.339	.335	.352	.214	.435	.465		

Conclusion: Neither graph structure nor neighbor information is critical.

Self Loop Ablation Experiment

- Remove self loop term in aggregation function
- Result: (X+WSI) Keeping only neighbor information achieves comparative results

- Self Loop + Neighbor Ablation Experiment
 - Result: (X+WSI+RAT) Only aggregating randomly generated neighbor information achieve comparative results

Table 5: MRR results for GCNs without self-loop information (WSI) and random adjacency tensors (RAT).

		FB237		WN18RR			
	T	D	С	T	D	С	
RGCN	.324	.332	.337	-	-	-	
RGCN + WSI	.323	.337	.339	-	-	-	
RGCN + WSI+RAT	.320	.317	.318	-	-	-	
WGCN	.272	.329	.340	.222	.422	.462	
WGCN + WSI	.263	.330	.341	.181	.408	.426	
WGCN + WSI + RAT	.322	.319	.340	.168	.353	.408	
CompGCN	.335	.342	.353	.206	.430	.469	
CompGCN + WSI	.320	.338	.352	.181	.408	.426	
CompGCN + WSI + RAT	.317	.297	.342	.168	.353	.408	
w/o GCN (R)	.332	.279	.319	.205	.410	.462	

Conclusion: Self Loop Information is not critical.

Rethinking

Guesswork:

The followings contain semantical information, which can distinguish entities from others

- 1) self-loop
 - Reason: The representation of each entity is independent.
- 2) neighbor information
 - Reason: Entities with different neighbors have different semantics.
- 3) randomly generated neighbor
 - Reason: Assign different neighbors for different entities with a high possibility, thus different entities have different sets of neighbors (just like a hash number).

Any of the above (that can distinguish entities) has the same effect on the final performance.

Rethinking

Experiment:

- Methods: Randomly sample neighbors in a given set.
- Expectation: When <u>set size becomes smaller</u>, entities get harder to distinguish themselves from others, thus the performance get worse

Figure 2: MRR results for no self-loop information and random sampled neighbor entities on FB237

Without self-loop + Random sampled neighbors (agree with expectation)

Figure 3: MRR for random sampled neighbors on FB237, where the dash lines indicate performance without GCNs.

With self-loop + Random sampled neighbors (disagree with expectation)

Conclusion: Self-loop / neighbor Info both can distinguish entities to bring performance gain

Rethinking

• Linear Transformations for Relations (CompGCN)

$$\mathbf{r}^{l+1} = \mathbf{W}_{rel}^l \mathbf{r}^l$$

		TransE	DistMult	ConvE
FB237	with LTR	0.335	0.342	0.353
	w/o LTR	0.336	0.343	0.352
WN18RR	with LTR	0.206	0.430	0.469
	w/o LTR	0.190	0.433	0.468

Conclusion: Linear transformation is not necessary

Rethinking

Summary

	Entity Aggregation	Entity Update	Relation
RGCN [24]	$\mathbf{m}_e^{l+1} = \sum_{(h,r) \in \mathcal{N}_{in}(e)} \mathbf{W}_r^l \mathbf{h}^l + \sum_{(r,t) \in \mathcal{N}_{out}(e)} \mathbf{W}_r^l \mathbf{t}^l + \mathbf{W}_0^l \mathbf{e}^l$	$\mathbf{e}^{l+1} = \sigma(\mathbf{m}_e^{l+1})$	$\mathbf{r}^{l+1} = \mathbf{r}^l$
WGCN [25]	$\mathbf{m}_{e}^{l+1} = \sum_{(h,r) \in \mathcal{N}_{in}(e)} \mathbf{W}^{l}(\alpha_{r}^{l} \mathbf{h}^{l}) + \sum_{(r,t) \in \mathcal{N}_{out}(e)} \mathbf{W}^{l}(\alpha_{r}^{l} \mathbf{t}^{l}) + \mathbf{W}_{0}^{l} \mathbf{e}^{l}$	$\mathbf{e}^{l+1} = \sigma(\mathbf{m}_e^{l+1})$	$\mathbf{r}^{l+1} = \mathbf{r}^l$
CompGCN [31]	$\mathbf{m}_{e}^{l+1} = \sum_{(h,r) \in \mathcal{N}_{in}(e)} \mathbf{W}_{r}^{l} \phi_{in}(\mathbf{h}^{l}, \mathbf{r}^{l}) + \sum_{(r,t) \in \mathcal{N}_{out}(e)} \mathbf{W}_{r}^{l} \phi_{out}(\mathbf{t}^{l}, \mathbf{r}^{l}) + \mathbf{W}_{0}^{l} \mathbf{e}^{l}$	$\mathbf{e}^{l+1} = \sigma(\mathbf{m}_e^{l+1})$	$\mathbf{r}^{l+1} = \mathbf{W}_{rel}^l \mathbf{r}^l$

GCNs based methods have three main parts

- 1) graph structures -> not necessary
- 2) transformations for relation -> not necessary
- 3) aggregated entity representation -> necessary

Neighborhood Information
Self-loop Information

Both of them can distinguish entity to bring performance gain

Framework & Experiments

- Linear Transformed Entity(LTE) KGE Model
 - Framework

$$f(g_h(W_h\mathbf{h}), \mathbf{r}, g_t(W_t\mathbf{t})),$$

- W_h, W_t can share the same parameters
- G_h , $g_t \in \{Identity function, activation functions, batch normalization, dropout, ...\}$
- Compared to TransR $-\|\mathbf{M}_r\mathbf{h} + \mathbf{r} \mathbf{M}_r\mathbf{t}\|_2^2$
 - Memory-efficient and flexible to incorporate non-linear operations
- Relationship with GCNs (g = Id): The gradient of loss function $\sum_{r \in R_h} \sum_{t:(h,r,t) \in S} \log f(W\mathbf{h}, \mathbf{r}, W\mathbf{t}),$

• LTE-TransE
$$\sum_{r \in R_h} \sum_{t: (h,r,t) \in S} -\frac{W^{\top}}{\|W\mathbf{h} + \mathbf{r} - W\mathbf{t}\|_2^2} W\mathbf{t} + \frac{W^{\top}(\mathbf{r} + W\mathbf{h})}{\|W\mathbf{h} + \mathbf{r} - W\mathbf{t}\|_2^2}.$$

• LTE-DistMult
$$\sum_{r \in \mathcal{R}_h} \sum_{t: (h,r,t) \in S} \frac{W^{\top} \mathbf{R}}{((W\mathbf{h})^{\top} \mathbf{R}(W\mathbf{t}))} W\mathbf{t}$$
• LTE-ConvE
$$\sum_{r \in \mathcal{R}_h} \sum_{t: (h,r,t) \in S} \lambda(\mathbf{h},\mathbf{r},\mathbf{t}) W\mathbf{t}.$$

• LTE-ConvE
$$\sum_{r \in R_h} \sum_{t:(h,r,t) \in S} \lambda(\mathbf{h}, \mathbf{r}, \mathbf{t}) V$$

$$\sum_{r \in \mathcal{R}_h} \sum_{t:(h,r,t) \in S} a(\mathbf{h},\mathbf{r},\mathbf{t}) W \mathbf{t} + b(\mathbf{h},\mathbf{r},\mathbf{t}),$$

Same as 1-Layer GCN aggregation function

- Linear Transformed Entity(LTE) KGE Model
 - Experiments

	FB237				WN18RR					
	MRR	MR	H@1	H@3	H@10	MRR	MR	H@1	H@3	H@10
RotatE	.338	177	.241	.375	.533	.476	3340	.428	.492	.571
TuckER	.358	-	.266	.394	.544	.470	-	.433	.482	.526
TransE†	.332	182	.240	.368	.516	.205	3431	.022	.347	.519
DistMult†	.279	392	.202	.306	.433	.410	7970	.389	.420	.450
ConvE†	.319	276	.232	.351	.492	.462	4888	.431	.476	.525
CompGCN + TransE†	.335	205	.247	.369	.511	.206	3182	.064	.281	.502
CompGCN + DistMult†	.342	200	.252	.372	.520	.430	4559	.395	.439	.513
CompGCN + ConvE†	.353	221	.261	.388	.536	.469	3065	.433	.480	.543
LTE-TransE	.334	182	.241	.370	.519	.211	3290	.022	.362	.521
LTE-DistMult	.335	238	.246	.367	.517	.437	4485	.403	.447	.517
LTE-ConvE	.355	249	.264	.389	.535	.472	3434	.437	.485	.544

1 – Layer GCN

LTE-KGE TransE DistMult ConvE

(a) Training Time

(b) Test Time

Conclusion

• The transformations for entity embeddings which can distinguish different entities account for the performance improvements for GCN-based methods.

- RGCN/WGCN/CompGCN slightly outperform KGE only by transformation of entity embeddings (not by aggregating neighbor information)
 - -> Maybe the entity transformation contains global information?
- RED-GNN v.s. CompGCN

	RED-GNN	CompGCN			
Message	propagation	aggregation			
Representation	query-dependent	node-dependent			
Decoder	node-level readout	scoring function			
entity embedding	×				

- This article mainly focus on aggregation-like message passing model with entity embeddings, while RED-GNN propagate message without entity embeddings.
- Path (not neighbor information) seems important to bring performance gain.

Thanks!