SOLUTIONS:

- 1a) No because Pid is key for relation PARTS.
- 1.b) Yes as long as the value for attribute Sid is different.
- 1c) RA: π_{Pname} ($\sigma_{Colour='red'}$ (PARTS))
- 1d) Let R and R' be:

$$\begin{split} R = & \pi_{Sid} \left(\pi_{Pid} \left(\sigma_{Colour='red'}(PARTS) \right) \right. \bowtie & CATALOG); \\ R' = & \pi_{Sid} \left(\sigma_{City='Dublin'}(SUPPLIERS) \right) \end{split}$$

Solution: $R \cap R'$

- 2a) SELECT age FROM Sailors WHERE rating=10
- 2b) SELECT bname
 FROM Boats, Reserves
 WHERE Boats.bid=Reserves.bid AND Reserves.day='15/01/01'
- 2c) SELECT Sailors.sid, sname, age, Count(distinct bid)
 FROM Reserves, Sailors
 WHERE Sailors.sid=Reserves.sid and rating=10
 GROUP BY Sailors.sid, sname, age

ASSUMPTIONS and CONSTRAINTS:

- 1. A student can pass many exams for different courses: cardinality (0,N)
- 2. The exam for a given course can be passed by different students: cardinality (0,N)
- 3. Each student can only pass a given exam once (i.e., studentID + courseID uniquely identify an exam)
- 4. Each course (id) has only one lecturer: cardinality (1,1)
- 5. Each lecturer can teach several courses but at least one: cardinality (1,N)

Translation into relational model:

STUDENT(<u>StudentID</u>, Name, Address)
COURSE(<u>CourseID</u>, CourseName, LecturerID)
LECTURER(<u>LecturerID</u>, LecturerName)
EXAM(<u>StudentID</u>, CourseID, Grade)

Note: key of EXAM determined by assumption 3.

- b) see lecture notes.
- c) see lecture notes.
- 4) a) see lecture notes.
- b) The relation is not in 3^{rd} normal form (and therefore not in BCNF). The functional dependency BookTitle \rightarrow Author, Category violates the conditions.
- c) see lecture notes.
- 5) a)b)c)d) see lecture notes.