

Instituto Federal de Educação, Ciência e Tecnologia da Paraíba Campus Campina Grande Curso Superior de Engenharia de Computação

Lista de Exercícios da Semana 4

- 1. Implemente o método da Bisseção descrito pelo algoritmo 1.1 no texto. Para testar o algoritmo, use os exemplos do material textual.
- 2. Determine as raízes reais de $f(x) = -0.5x^2 + 2.5x + 4.5$:
 - (a) Graficamente;
 - (b) Usando a fórmula quadrática;
 - (c) Usando três iterações do método da bisseção para determinar a maior raiz. Use as aproximações iniciais $x_l = 5$ e $x_u = 10$. Calcule o erro relativo obtido entre cada iteração, e o erro entre os valores verdadeiros encontrados no item b e o valor de cada iteração.
- 3. Localize a primeira raiz não-trivial de $\sin x = x^3$, onde x está em radianos. Use uma técnica gráfica e a bisseção com o intervalo inicial de 0, 5 a 1. Faça os cálculos até que o erro seja inferior a 2%.
- 4. Dada $f(x) = -2x^6 1.5x^4 + 10x + 20$, encontre o máximo dessa função (f'(x) = 0) usando o método da bisseção, considerando o intervalo [0,1] e um erro limite de 5%.
- 5. Embora a bisseção seja uma técnica perfeitamente válida para determinar raízes, sua abordagem do tipo "força bruta" é relativamente ineficiente. A falsa posição é uma alternativa baseada na percepção gráfica.

Uma deficiência do método da bisseção é que, na divisão do intervalo de x_l a x_u em metades iguais, não são levados em conta os módulos de $f(x_l)$ e $f(x_u)$. Por exemplo, se $f(x_l)$ estiver muito mais próximo de zero do que $f(x_u)$, será provável que a raiz esteja mais próxima de x_l que de x_u .

Um método alternativo que explora essa percepção gráfica é ligar $f(x_l)$ e $f(x_u)$ por uma reta. A intersecção dessa reta com o eixo x representa uma estimativa melhorada da raiz. O fato da substituição da curva por uma reta dar uma "falsa posição" da raiz é a origem do nome, método da falsa posição, ou, em latim, *regula falsi*. Ele também é chamado de método da interpolação linear. Para esse método, a aproximação da raiz é dada por

$$x^* = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)},$$

em que x^* é a estimação da raiz na atual iteração, x_l e x_u são, respectivamente, os limites inferior e superior do intervalo de verificação da raiz e $f(x_l)$ e $f(x_u)$ são os valores da função para esses limites.

As bibliotecas numérica do python não trazem uma implementação desse método. Implementeo, teste-o com os exemplos do texto, comparando com o método da bisseção. Mostre que esse método, para vários casos, é mais eficiente que o da bisseção.