

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Nai	me:	y (a)	Pet	ers		1 2 3		· ·
UB	Pe	rsor	ı Nı	umb	er:			Instructions:
5	0	2	2	6	4	8	8	 Textbooks, calculators and any othe electronic devices are not permitted
○ 1 ② ③ ④○ ⑦ ⑧ ⑨	1 2 3 4 5 6 7 8 9	①①③④③⑥⑦③⑨	0 1 3 4 5 6 7 8 9	0 1 2 3 4 5 7 8 9	○ ①② ③○ ⑤○ ⑦③ ⑨	0 1 2 3 4 5 6 7 9		You may use one sheet of notes. • For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE
	185							
								l

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

4)
$$x_1 v_1 + x_2 v_2 + x_3 v_3 = w$$

$$x_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + x_2 \begin{bmatrix} v_1 \\ v_3 \end{bmatrix} + x_3 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_2 \\ v_3 \end{bmatrix}$$

$$\frac{-2}{2} \frac{1}{2} \frac{2}{2} \frac{1}{6} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{6} \frac{1}{6} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{6} \frac{1}{6} \frac{1}{2} \frac{1}{2} \frac{1}{6} \frac{1}{6} \frac{1}{2} \frac{1}{2} \frac{1}{6} \frac{$$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

Compute
$$A^{-1}$$
.

A any of identity matrix:

$$\begin{bmatrix}
1 & -1 & 2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & -1 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & -1 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & -1 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -1 & 1 & 0 \\
0 & 0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 2 & -2 & 1$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \qquad (A^{T})^{-1} = (A^{-1})^{T}$$

$$\vec{A}' = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix} \quad (\vec{A}')^T = \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
 1 & 2 & 3 \\
 4 & 5 & 4 \\
 3 & 2 & 1
 \end{bmatrix}
 \begin{bmatrix}
 -2 & 1 & 2 \\
 3 & -1 & -2 \\
 -1 & 1 & 1
 \end{bmatrix}$$

$$V_1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix}$$

$$V_2 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -2 + 6 - 3 \\ -8 + 15 - 4 \\ -6 + 6 - 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} -2 + 6 - 3 \\ -8 + 15 - 4 \\ -1 + 6 - 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 - 2 + 3 \\ 4 - 5 + 4 \\ 3 - 2 + 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \\ \begin{bmatrix} c = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 2 \\ -1 & 2 & 3 \end{bmatrix} \end{bmatrix}$$

$$v_{3} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 7 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -4+3 \\ 8-10+4 \\ 6-4+1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

A =
$$[T(e_1) T(e_2)]$$

The $T(e_1) = [[0]]$

The $T(e_1) = [[0]]$

The $T(e_2) = T([0]) = [0]$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to-one or not. If T_A is not one-to-one, find two vectors v_1 and v_2 such that $T_A(v_1) = T_A(v_2)$. $\begin{bmatrix} 1 & 6 & -2 \\ 6 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix} 2^{-3}$$

$$\begin{array}{c} -3 & -3 & 0 \\ 3 & 4 & 4 \\ \hline 0 & 1 & 4 \\ \hline \end{array}$$

$$\begin{array}{c} 0 & -1 & -2 \\ 0 & 1 & 4 \\ \hline \end{array}$$

$$\begin{array}{c} 0 & -1 & -2 \\ 0 & 1 & 2 \\ \hline \end{array}$$

$$\begin{array}{c} 0 & 1 & 2 \\ 0 & 1 & 2 \\ \hline \end{array}$$

$$\begin{array}{c} 0 & 1 & 2 \\ 0 & 0 & 2 \\ \hline \end{array}$$

$$\begin{array}{c} 0 & 1 & 2 \\ 0 & 0 & 2 \\ \hline \end{array}$$

$$\begin{array}{c} 0 & 0 & 2 \\ 0 & 0 & 2 \\ \hline \end{array}$$

b) $A = \begin{bmatrix} 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$	1
024 3	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 6 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$
A does not have a pive TA(v) is not one-to	t por in every column :
$N_{n}I(A) = T_{n}(v) = 0$ $Av = 0 \longrightarrow$	[10-27 [6]
100 2 8 V	$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \cdot v = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$
x,= 1×3 x ₂ =-2×3	fra var.
X2 × 3	
$\begin{array}{ccc} x_{3}=1 & & & \\ x_{2}=-2 & \longrightarrow & \\ x_{3}=1 & & \\ \end{array}$	2]
$\frac{x_3=2}{x_2=4} \begin{array}{c} x_1=4 \\ x_2=4 \\ x_3=2 \end{array}$	- 4 2

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

- **7.** (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

Lin Opendant: Au, Av have so solutions to Au=0, Av=0

[A | O] -> so solutions: u and v and recessarily linearly adependent because and matrix, multiplied by A, the solution is a linearly dependent matrix: u, v are not always lin. dependent.

[False]

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

$$x, v + x_2 w = u \rightarrow (u \in Span(v, w))$$

$$T(v, v) + T(x_2 w) = T(u)$$

$$x, T(v) + x_2 T(w) = T(u) \rightarrow (T(u) \in Span(T(v), T(v)))$$

$$True$$