

CII-2M3 Pengantar Kecerdasan Buatan

k-Nearest Neighbour

Suyanto

S1 Informatika – Fakultas Informatika

k-Nearest Neighbour (kNN)

- Instance-Based Learning (IBL)
- Lazy Learner (pembelajar malas)
- Tidak melakukan proses belajar (dari data latih)
- Klasifikasi secara langsung berdasarkan tetangga terdekat

k-Nearest Neighbour (kNN)

- Instance-Based Learning (IBL)
- Lazy Learner (pembelajar malas)
- Tidak melakukan proses belajar (dari data latih)
- Klasifikasi secara langsung berdasarkan tetangga terdekat
- Bekerja secara lokal
 - kNN bekerja secara lokal sehingga cocok digunakan untuk himpunan data yang mengandung outlier atau pencilan
- Bisa digunakan untuk data apapun
 - Numerik maupun non-numerik. Diskrit maupun kontinu.
- Formula jarak atau dissimilarity?

k-Nearest Neighbour (kNN)

- Instance-Based Learning (IBL)
- Lazy Learner (pembelajar malas)
- Tidak melakukan proses belajar (dari data latih)
- Klasifikasi secara langsung berdasarkan tetangga terdekat
- Bekerja secara lokal kNN bekerja secara lokal
 - sehingga cocok digunakan untuk himpunan data yang mengandung outlier atau pencilan
- Bisa digunakan untuk data apapun
 - Numerik maupun non-numerik. Diskrit maupun kontinu.
- Formula jarak atau dissimilarity?

CII-2M3 Pengantar Kecerdasan Buatan

Jarak Atribut Numerik

Suyanto

S1 Informatika – Fakultas Informatika

Jarak Atribut Numerik: Euclidean Distance

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

Nama	Pulsa (ribu)	Internet (ribu)
Andi	100	200
Budi	400	600
Citra	100	100
Dedi	150	200
Evan	700	400

$$d(1,2) = \sqrt{(x_{11} - x_{21})^2 + (x_{12} - x_{22})^2} = \sqrt{90000 + 160000} = 500$$

Jarak Atribut Numerik: Manhattan Distance

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

Nama	Pulsa (ribu)	Internet (ribu)
Andi	100	200
Budi	400	600
Citra	100	100
Dedi	150	200
Evan	700	400

$$d(1,2) = |x_{11} - x_{21}| + |x_{12} - x_{22}| = |100 - 400| + |200 - 600| = 300 + 400 = 700$$

Jarak Atribut Numerik: Minkowski Distance

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

Nama	Pulsa (ribu)	Internet (ribu)
Andi	100	200
Budi	400	600
Citra	100	100
Dedi	150	200
Evan	700	400

$$d(1,2) = \sqrt[1.5]{|x_{11} - x_{21}|^{1.5} + |x_{12} - x_{22}|^{1.5}} = \sqrt[1.5]{5196,15 + 8000} = 558,42$$

Jarak Atribut Numerik: Supremum Distance

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} \left| x_{if} - x_{jf} \right|^h \right)^{\frac{1}{h}} = \max_{f} \left| x_{if} - x_{jf} \right|$$

Nama	Pulsa (ribu)	Internet (ribu)
Andi	100	200
Budi	400	600
Citra	100	100
Dedi	150	200
Evan	700	400

$$d(1,2) = \max(|100-400|, |200-600|) = 400$$

CII-2M3 Pengantar Kecerdasan Buatan

Jarak Atribut Non Numerik

Suyanto

S1 Informatika – Fakultas Informatika

Jarak Atribut Non Numerik: Nominal

$$d(i,j) = \frac{p-m}{p}$$

Nama	Pekerjaan	Lokasi Rumah
Andi	Analis	A
Budi	Dokter	A
Citra	Guru	В
Dedi	Analis	A
Evan	Dokter	C

$$d(1,2) = d(2,1) = \frac{2-1}{2} = 0,5$$

Dissimilarity Matrix

Jarak Atribut Non Numerik: Ordinal

$$d(i,j) = \frac{p-m}{p}$$

Nama	Jumlah Anak	Kategori Pelanggan		
Andi	O	Silver		
Budi	2	Platinum		
Citra	O	Silver		
Dedi	3	Gold		
Evan	4	Platinum		

$$d(i, j) = \sqrt{(0-0.5)^2 + (0-1)^2} = 1.12$$

Jarak Atribut Non Numerik: Biner Simetris

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

Nama	Gender	Kartu	
Andi	Pria	Prabayar	
Budi	Pria Pascabayar		
Citra	Wanita	Prabayar	
Dedi	Pria	Prabayar	
Evan	Pria Pascabayar		

$$d(1,2) = d(2,1) = \frac{1+0}{1+1+0+0} = 0,50$$

Dissimilarity Matrix

Jarak Atribut Non Numerik: Biner Asimetris

$$d(i,j) = \frac{r+s}{q+r+s}$$

Nama	Rumah	Menikah
Andi	Kontrak	Tidak
Budi	Prbadi	Ya
Citra	Kontrak	Tidak
Dedi	Kontrak	Ya
Evan	Prbadi	Ya

$$d(1,2) = d(2,1) = \frac{0+2}{0+0+2} = 1,00$$

Dissimilarity Matrix

CII-2M3 Pengantar Kecerdasan Buatan

Jarak Atribut Campuran

Suyanto

S1 Informatika – Fakultas Informatika

Jarak Atribut Campuran

Nam	a Pekerjaan	Lokasi Rumah	Gender	Kartu	Rumah	Menikah	Pulsa (ribu)	Internet (ribu)	Jumlah Anak	Kategori Pelangga n
And	Analis	A	Pria	Prabayar	Kontrak	Tidak	100	200	O	Silver
Bud	Dokter	A	Pria	Pascabayar	Prbadi	Ya	400	600	2	Platinum
Citra	Guru	В	Wanita	Prabayar	Kontrak	Tidak	100	100	O	Silver
Ded	Analis	A	Pria	Prabayar	Kontrak	Ya	150	200	3	Gold
Evar	Dokter	C	Pria	Pascabayar	Prbadi	Ya	700	400	4	Platinum

Jarak Atribut Campuran

Nam	a Pekerjaan	Lokasi Rumah	Gender	Kartu	Rumah	Menikah	Pulsa (ribu)	Internet (ribu)	Jumlah Anak	Kategori Pelangga n
And	Analis	A	Pria	Prabayar	Kontrak	Tidak	100	200	O	Silver
Bud	Dokter	A	Pria	Pascabayar	Prbadi	Ya	400	600	2	Platinum
Citra	Guru	В	Wanita	Prabayar	Kontrak	Tidak	100	100	O	Silver
Ded	Analis	A	Pria	Prabayar	Kontrak	Ya	150	200	3	Gold
Evar	Dokter	C	Pria	Pascabayar	Prbadi	Ya	700	400	4	Platinum

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}},$$

di mana $\delta_{ij}^{(f)} = 0$ jika salah satu kondisi ini dipenuhi: a) x_{if} atau x_{jf} tidak memiliki nilai alias kosong (*missing*); atau b) $x_{if} = x_{jf} = 0$ dan f adalah atribut biner asimetris dan $\delta_{ij}^{(f)} = 1$ untuk kondisi yang lain. Sementara itu, $d_{ij}^{(f)}$ adalah kontribusi atribut f terhadap *dissimilarity* antara objek data i dan objek data j, yang dihitung berdasarkan jenis atribut tersebut, yaitu:

- Jika f adalah atribut **nominal** atau **biner**: $d_{ij}^{(f)} = 0$ jika $x_{if} = x_{jf}$ dan $d_{ij}^{(f)} = 1$ untuk semua kondisi yang lain.
- Jika f adalah atribut **numerik**: $d_{ij}^{(f)} = \frac{\left|x_{if} x_{jf}\right|}{\max_{h} x_{hf} \min_{h} x_{hf}}$, di mana h didapat dari semua objek yang tidak kosong (*nonmissing*) untuk atribut f.
- Jika f adalah atribut **ordinal**: hitung ranking r_{if} , kemudian normalisasikan menggunakan $z_{if} = \frac{r_{if} 1}{M_f 1}$, dan perlakukan z_{if} sebagai atribut numerik.

CII-2M3 Pengantar Kecerdasan Buatan

Algoritma kNN

Suyanto

S1 Informatika – Fakultas Informatika

Algoritma kNN

- 1. Untuk setiap pola latih $\langle x, f(x) \rangle$, tambahkan pola tersebut ke dalam **Daftar Pola Latih**
- 2. Untuk sebuah pola masukan *x*_q
 - Misalkan $x_1, x_2, ..., x_k$ adalah k pola yang memiliki jarak terdekat (tetangga) dengan x_q
 - Kembalikan kelas yang memiliki jumlah pola paling banyak di antara k pola tersebut sebagai kelas keputusan

Algoritma kNN

- 1. Untuk setiap pola latih $\langle x, f(x) \rangle$, tambahkan pola tersebut ke dalam **Daftar Pola Latih**
- 2. Untuk sebuah pola masukan *x*_q
 - Misalkan $x_1, x_2, ..., x_k$ adalah k pola yang memiliki jarak terdekat (tetangga) dengan x_q
 - Kembalikan kelas yang memiliki jumlah pola paling banyak di antara k pola tersebut sebagai kelas keputusan

Algoritma kNN

- 1. Untuk setiap pola latih $\langle x, f(x) \rangle$, tambahkan pola tersebut ke dalam **Daftar Pola Latih**
- 2. Untuk sebuah pola masukan *x*_q
 - Misalkan $x_1, x_2, ..., x_k$ adalah k pola yang memiliki jarak terdekat (tetangga) dengan x_q
 - Kembalikan kelas yang memiliki jumlah pola paling banyak di antara k pola tersebut sebagai kelas keputusan

Kelemahan kNN

- 1. Sensitif terhadap fitur-fitur yang kurang relevan;
- 2. Sensitif terhadap ukuran ketetanggaan *k*;
- 3. Sensitif terhadap data berderau maupun data pencilan;
- 4. Kompleksitas waktu yang relatif tinggi untuk mencari tetangga terdekat di antara semua data latih setiap kali melakukan klasifikasi; dan
- 5. Kompleksitas memori yang relatif besar untuk menyimpan semua data latih.

CII-2M3 Pengantar Kecerdasan Buatan

Optimasi k

Suyanto

S1 Informatika – Fakultas Informatika

Berapa k yang optimum?

- Strategi menemukan k optimum
- Pahami data latih dengan baik
- Gunakan data latih dan data validasi untuk menghindari overfit

CII-2M3 Pengantar Kecerdasan Buatan

Perbaikan kNN

Suyanto

S1 Informatika – Fakultas Informatika

Perbaikan kNN

- 1. Perbaikan dengan fungsi jarak
- 2. Perbaikan dengan ukuran ketetanggaan
- 3. Perbaikan dengan estimasi probabilitas kelas
- 4. Perbaikan dengan struktur data

Perbaikan kNN dengan Fungsi Jarak

$$d(x, y) = \sqrt{\sum_{i=1}^{n} w_i^2 (a_i(x) - a_i(y))^2}$$

Perbaikan kNN dengan ukuran ketetanggaan

Perbaikan dengan estimasi probabilitas kelas

- 1. Locally Weighted Naïve Bayes (LWNB)
- 2. Instance Cloning Local Naïve Bayes (ICLNB)
- 3. k-local Hyperplane and Convex Distance Nearest Neighbor Algorithms (HKNN)
- 4. Fuzzy k-Nearest Neighbour (FkNN)
- 5. Fuzzy k-Nearest Neighbour in Every Class (FkNNC)
- 6. Pseudo Nearest Neighbour Rule (PNNR)
- 7. Locl Mean PNNR

Perbaikan dengan struktur data

- 1. Ball-Tree
- 2. *kd-Tree*
- 3. B-Tree
- 4. R^* -Tree
- 5. R+-Tree
- 6. TPR-Tree
- 7. *X-Tree*
- 8. A-Tree
- 9. BD-Tree
- 10. SS-Tree
- 11. SR-Tree
- 12. Locality Sensitive Hashing (LSH)

Terima Kasih

Contoh Soal 1

Diberikan data latih sebagai berikut. x1 dan y1 adalah data input, sedangkan y adalah output (kelas).

No	x1	x2	y
1	0.4	4	0
2	0.1	7	1
3	0.9	2	0
4	0.7	10	1
5	0.6	8	1

Berdasarkan data di atas, jika digunakan metode k-NN dengan $\mathbf{k} = \mathbf{3}$, masuk ke **kelas** mana **data uji** berikut?

No	x1	x2	y
1	0.8	6	??

Berikut rumus untuk menghitung jarak antar vektor data.

$$d_{Euclidean} = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$$

Jawaban Contoh Soal 1

Contoh Soal 2

Diketahui sebuah data latih kondisi cuaca beserta target data berupa review dari seorang atlet untuk berlatih pada kondisi cuaca tersebut.

Data	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Rainy	Cold	High	Strong	Warm	Change	No
3	Sunny	Warm	High	Strong	Cool	Change	Yes
4	Sunny	Warm	High	Strong	Warm	Same	Yes

Berdasarkan data di atas, jika digunakan metode k-NN dengan $\mathbf{k} = \mathbf{3}$, bagaimana review seorang atlet jika berlatih dengan kondisi cuaca berikut?

Data	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny			Strong			???

Berikut rumus untuk menghitung jarak antar vektor data.

$$d_{Euclidean} = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$$

Jawaban Contoh Soal 2

Preprocessing data latih dari kategori (string) menjadi numerik:

Data	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	1	1	0	1	1	0	1
2	0	0	1	1	1	1	0
3	1	1	1	1	0	1	1
4	1	1	1	1	1	0	1

Preprocessing data uji dari kategori (string) menjadi numerik:

Data	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	1	0	0	1	0	0	???

Hitung jarak tetangga:

Data1=2 1.414213562

 $Data2=4 \qquad 2$

Data3=3 1.732050808

Data4=3 1.732050808

Sorting ascending:

Data1=2 1.414213562

Data3=3 1.732050808

Data4=3 1.732050808

Data2=4 2

Tentukan kelas output dari data uji beserta alasannya:

[Data1, Data3, Data4] = [1, 1, 1] = 1