Lời giải Bài Tập Chương 1 - Logic cơ bản

Bài 1.1: Chứng minh các biểu thức sau là hằng đúng bằng hai cách (lập bảng chân trị và dùng luật logic).

a)
$$((P \to Q) \land P) \to Q$$

– Bảng chân trị:

P	Q	$P \rightarrow Q$	$(P \to Q) \land P$	Biểu thức
Т	Т	Т	Τ	Τ
Τ	F	F	${ m F}$	${ m T}$
F	Т	T	${ m F}$	${ m T}$
F	F	Т	${ m F}$	${ m T}$

- Dùng luật logic:

$$((P \to Q) \land P) \to Q \equiv \text{áp dụng Modus Ponens} \Rightarrow Q$$

b)
$$P \wedge Q \rightarrow P$$

- Bảng chân trị:

P	Q	$P \wedge Q$	Biểu thức
Т	Т	Т	Т
T	F	F	Γ
F	Т	F	${ m T}$
F	F	F	Γ

- **Dùng luật logic:** Từ $P \wedge Q \rightarrow P$ theo luật loại bỏ hội.

c)
$$\neg (P \land Q) \land P \rightarrow \neg Q$$

- Bảng chân trị:

P	Q	$P \wedge Q$	$\neg (P \land Q)$	$\neg (P \land Q) \land P$	Biểu thức
Т	Т	Т	F	F	Т
T	F	\mathbf{F}	T	m T	T
F	Т	F	${ m T}$	F	T
F	F	F	${ m T}$	F	T

- **Dùng luật logic:** Nếu P đúng và $P \land Q$ sai thì Q phải sai ⇒ ¬Q đúng.

$$\mathbf{d)} \ (P \to (Q \land R)) \to ((P \to Q) \land (P \to R))$$

- Bảng chân trị:

Р	Q	R	$Q \wedge R$	$P \to (Q \land R)$	$P \to Q$	$P \to R$	RHS	Biểu thức
T	Т	Т	Т	Τ	Т	Т	Т	Т
T	Т	F	F	F	Т	F	F	T
T	F	Γ	F	F	F	Т	F	T
T	F	F	F	F	F	F	F	T
F	Γ	Т	Т	${ m T}$	Т	T	Т	T
F	Т	F	F	${ m T}$	Т	Т	Т	T
F	F	Т	F	${ m T}$	Т	T	Т	T
F	F	F	F	${ m T}$	T	Γ	Т	T

- **Dùng luật logic:** Nếu P đúng thì $Q \wedge R$ đúng $\Rightarrow Q$ và R đều đúng. Nếu P sai thì $P \to X$ luôn đúng.
- \rightarrow Biểu thức luôn đúng hằng đúng.

đ)
$$((P \land Q) \leftrightarrow P) \rightarrow (P \rightarrow Q)$$

Bài 1.2: Sử dụng quy tắc suy diễn trong mệnh đề logic.

- a) $((X_1 \to X_2) \land (\neg X_3 \lor X_4) \land (X_1 \lor X_3)) \to (\neg X_2 \to X_4)$ Giả sử $\neg X_2$ đúng. Từ $X_1 \to X_2$ suy ra X_1 phải sai. Khi đó, X_3 phải đúng. Với $\neg X_3 \lor X_4$ và X_3 đúng $\Rightarrow X_4$ đúng. \Rightarrow mệnh đề đúng.
- b) Lập luận: Nếu được thưởng thì An đi Đà Lạt. Nếu đi Đà Lạt thì An thăm Thiền Viện. An không thăm Thiền Viện ⇒ không đi Đà Lạt ⇒ không được thưởng. Suy luận đúng (Modus Tollens).

Bài 1.3: Dịch các câu thành biểu thức logic. Gọi:

- R(x): x là chim ruồi
- S(x): x có màu sặc sỡ
- L(x): x là chim lớn
- H(x): x sống bằng mật ong
- G(x): x có màu xám
- N(x): x là chim nhỏ
- a) $\forall x (R(x) \to S(x))$
- b) $\forall x(L(x) \rightarrow \neg H(x))$
- c) $\forall x (\neg(L(x) \land H(x)) \rightarrow G(x))$
- d) $\forall x (R(x) \to N(x))$

Bài 1.4: Dịch các câu thành biểu thức logic có lượng từ. Gọi L(x,y): x yêu y.

- a) $\forall x L(x, Mai)$
- b) $\forall x \exists y L(x, y)$
- c) $\exists x \, \forall y \, L(y, x)$
- d) $\neg \exists x \, \forall y \, L(x,y)$
- e) $\exists x \left[\forall y \neg L(x,y) \lor \forall y \neg L(y,x) \right]$
- f) $\exists x \neg L(Nam, x)$
- g) $\exists x \left[\forall y L(y, x) \land \forall z \left(\forall y L(y, z) \rightarrow z = x \right) \right]$
- h) $\exists x \exists y [x \neq y \land L(Tun, x) \land L(Tun, y) \land \forall z (L(Tun, z) \rightarrow (z = x \lor z = y))]$

Bài 1.5: Kiểm tra mô hình suy diễn. Cho hai mệnh đề:

(1)
$$\forall x (P(x) \to (Q(x) \land R(x))), (2) \forall x (P(x) \land F(x))$$

Từ (2) suy ra P(x) đúng với mọi x, kết hợp với (1) ta được:

$$P(x) \to (Q(x) \land R(x)) \Rightarrow Q(x) \land R(x) \Rightarrow R(x)$$

Mà (2) cũng cho F(x) đúng với mọi x, nên $R(x) \wedge F(x)$ đúng với mọi x. Do đó, ta suy ra:

$$\forall x (R(x) \land F(x))$$

Suy luận là đúng.

Bài 1.6: Chứng minh các cặp mệnh đề sau tương đương hoặc không.

a) $(P \to Q) \to R \text{ và } P \to (Q \to R)$

Không tương đương.

Xét phản ví dụ: P = T, Q = F, R = T. Khi đó:

$$(P \to Q) = F, \quad (P \to Q) \to R = T$$

$$(Q \to R) = F \to T = T, \quad P \to (Q \to R) = T$$

Tuy cho kết quả giống nhau, nhưng với P = T, Q = T, R = F thì:

$$(P \to Q) = T, \quad (P \to Q) \to R = F$$

$$Q \to R = T \to F = F$$
, $P \to (Q \to R) = T \to F = F$

Có những trường hợp kết quả khác nhau.

⇒ Hai mệnh đề **không tương đương**.

b) $\neg P \leftrightarrow Q$ và $P \leftrightarrow \neg Q$

Tương đương.

Vì phủ định hai vế và đổi vị trí vẫn giữ ý nghĩa tương đương logic. Có thể xác nhận bằng bảng chân trị, hai mệnh đề luôn cho cùng giá trị. c) $\neg (P \leftrightarrow Q)$ và $\neg P \leftrightarrow Q$

Không tương đương.

Xét bảng chân trị:

Р	Q	$P \leftrightarrow Q$	$\neg (P \leftrightarrow Q)$	$\neg P$	$\neg P \leftrightarrow Q$
Τ	Т	Т	F	F	${ m F}$
Τ	F	F	T	F	${ m T}$
F	Т	F	Γ	Τ	${ m T}$
F	F	T	F	T	F

Hai mệnh đề cho giá trị khác nhau trong một số trường hợp không tương đương.

d) $\neg \exists x \forall y P(x, y)$ và $\forall x \exists y \neg P(x, y)$

Tương đương.

Theo quy tắc phủ định lượng từ:

$$\neg \exists x \forall y \, P(x, y) \equiv \forall x \exists y \, \neg P(x, y)$$

e) $(\forall x P(x)) \wedge A \text{ và } \forall x (P(x) \wedge A)$

Tương đương nếu A không chứa biến x.

Vì trong trường hợp đó, A là một mệnh đề độc lập có thể phân phối vào hoặc ra ngoài lượng từ mà không ảnh hưởng logic.

f) $(\exists x P(x)) \land A \text{ và } \exists x (P(x) \land A)$

Tương đương nếu A không chứa biến x.

Giải thích tương tự câu (e): nếu A không phụ thuộc vào x, việc đặt nó bên trong hoặc ngoài lượng từ \exists không làm thay đổi ý nghĩa mệnh đề.

Bài 1.7: Kiểm tra suy luận.

- a) Từ chuỗi điều kiện, suy ra $X_5=F\Rightarrow X_4\vee X_5=F\Rightarrow X_3=F\Rightarrow (\neg X_1\vee X_2)=F\Rightarrow X_1=T, X_2=F\Rightarrow$ suy luận đúng.
- b) Biểu thức $((P \to ((Q \lor R) \land S)) \land P) \to ((Q \lor R) \land S)$ là hằng đúng do áp dung Modus Ponens.

Bài 1.8: Dịch sang biểu thức mệnh đề.

- P(x): x là đứa bé
- Q(x): x tư duy logic
- $\bullet \ R(x)$: x cai quản cá sấu
- S(x): x bị coi thường
- a) $\forall x (P(x) \to \neg Q(x))$
- b) $\forall x (R(x) \to \neg S(x))$
- c) $\forall x(\neg Q(x) \to S(x))$
- d) $\forall x (P(x) \rightarrow \neg R(x))$
- e) Không suy ra được (d) từ (a), (b), (c) vì không có liên hệ trực tiếp giữa P(x) và R(x).

4