

Pre Calc Cheat Sheet

by bendystraw via cheatography.com/38297/cs/11944/

Sequences	
Arithmetic Sequence	An = A1 + D(n - 1)
Geometric Sequence	$An = A1(r^{n-1})$
Finite Sum	$Sn = A1(1 - r^n) / 1 - r$
Infinite Sum (r < 1)	A1 / 1 - r

Volumes	
Sphere	$V = (4/3)\pi r^2$ $A = 4\pi r^2$
Cone	$V = (1/3)\pi r^2 h$
Pyramid	V = (1/3)bh
Cylinder	πr ² h

Sin/Cos	
Law of Cosines	$c^2 = a^2 + b^2 - 2ab(\cos(C))$
Arc Length	$L = r\theta$
Double angle:	sin2x = 2cosxsinx $cos2x = cos2x - sin2x$ $cos2x = 2cos2x - 1$ $cos2x = 1 - 2sin2x$ $tan2x = 2tanx / 1 - tan2x$
Half angle:	sinx/2 = +/- sqrt((1 - cosx) / 2) cosx/2 = +/- sqrt((1 + cosx) / 2) tanx/2 = +/- sqrt((1 - cosx) / (1 + cosx)) tanx/2 = (1 - cosx) / sinx

Vertical line test

If a vertical line intersects a supposed function at two different points, it is not a function.

Probability		
Combinations:	Order doesn't matter 8c5 = 8! / (8-5)!5!	
Permutations:	Order matters 8p5 = 8! / 5!	
Probability:	P(A and B) = P(A) * P(B) P(A or B) = P(A) + P(B) - P(A and B) If A and B are mutually exclusive: P(A or B) = P(A) + P(B)	

Coordinates	
Point-slope form	y - y1 = m(x - x1)
Vertex of parabola:	x = -b/2a

Parabola	
Vertex	(h, k)
Focus	(h, k +/- p)
Directrix	y = k - p

Ellipse	se	
Center	(h, k)	
Vertices	(h, k +/- a)	
Foci	(h, k +/- c)	
Major Axis	2a	
Minor Axis	2b	

Hyperbola		
Center	(h, k)	
Vertices	(h, k +/- a)	
Foci	(h, k +/- c)	
Asymptotes	y = k +/- (a/b)(x-h)	

	Sin/Cos/Tangent equations	
	Asin(Bx+C)+D	A = Amplitude B = Period C = Phase shift D = Vertical shift
	sin or cos(Bx)	Period = 2π/b
	tan(Bx)	Period = π/b

Binomial Theorum

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

More binomial theorum

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

