Problem Set 9

Jaan Tollander de Balsch

March 23, 2020

H9.1

Let ϕ be CNF formula with m clauses. We can formulate a greedy algorithm for deterministic 2-approximation for MAX SAT..

Create sorted formula ϕ' .

- 1) Count the amount of each literal in ϕ .
- 2) Sort literals in each clause from most frequent to the least frequent, that is, in decreasing order.
- 3) Lexicographically sort clauses in decreasing order.

Greedily assign truth values to the variables:

For all clauses in ϕ' or until all variables have been assigned a truth value

- 1) If clause is *satisfied* or *unsatisfied* move to the next clause.
- 2) If clause is *undetermined*, find the first literal with unassigned variable. Then assign a truth value for the variable such that the clause satisfied.

The sorting is required, otherwise given formula

$$l_1 \wedge l_2$$

we can build a worst case by adding clauses

$$\neg l_1 \wedge \neg l_2 \wedge (\neg l_1 \vee \neg l_2).$$

The greedy assignment would be $l_1=l_2=T$, then $\neg l_1=\neg l_2=(\neg l_1\vee \neg l_2)=F$, thus the formula would not be 2-approximation.

Proof: Since the literals and clauses are sorted in decreasing order, we can only add two of the three clauses, otherwise the clauses would remain sorted. Therefore, the solution is 2-approximation in the worst case.

NOTE: (Full proof would require generalizing the example.)

H9.2

MIN SET COVER

Instance: A finite set U and a family $S = \{S_1, ..., S_m\}$ of subset of U. **Feasible solution**: A subfamily $T \subseteq S$ such that their union is U.

Objective: Minimize c(T) = |T|.

Greedy approximation algorithm for MIN SET COVER.

Input: Set samily S over U.

Output: Set cover T.

1) Start from $T = \emptyset$

- 2) Find the set $S' \in S$ that covers most uncovered elements in U.
- 3) Add S' to T.
- 4) Repeat until all elements of U are covered.

For every integer $n=2^m$ where $m\in\mathbb{N}$, there is an instance of MIN SET COVER such that

- 1) There are n elements in the base set.
- 2) The optimal cover uses two sets.
- 3) The greedy approximation algorithm picks $\log_2 n$ sets.

First we will define two functions

$$\mathrm{even}(i) = \begin{cases} 1, & i \text{ is even} \\ 0, & \text{otherwise} \end{cases}, \quad \mathrm{odd}(i) = \begin{cases} 1, & i \text{ is odd} \\ 0, & \text{otherwise} \end{cases}.$$

We define the size of base set as |U| = n. Then, lets partition U into two equalsized, disjoint subsets S' and S''. Let $T = \{S', S''\}$ be the optimal cover with two sets.

Now, we can construct the instance $S = \{S_1, ..., S_m\}$ in which greedy algorithm picks all $m = \log_2 n$ sets as follows.

We begin with $K_0' = S', K_0'' = S''$ and $T_0' = \emptyset, T_0'' = \emptyset$. For all i = 1, ..., m - 2we have

$$\begin{array}{lll} 1) & K_i' = K_{i-1}' \smallsetminus T_{i-1}', & T_i' \subseteq K_i', & |T_i'| = |S'|/2^i + \mathrm{even}(i) \\ 2) & K_i'' = K_{i-1}'' \smallsetminus T_{i-1}'', & T_i'' \subseteq K_i'', & |T_i''| = |S''|/2^i + \mathrm{odd}(i) \\ 3) & S_i = T_i' \cup T_i'' \end{array}$$

2)
$$K_i'' = K_{i-1}'' \setminus T_{i-1}''$$
, $T_i'' \subseteq K_i''$, $|T_i''| = |S''|/2^i + \text{odd}(i)$

3)
$$S_i = T'_i \cup T'_i$$

Finally, we define $S_{m-1} = S'$ and $S_m = S''$.

The idea of the construction is that the set $S_i = T_i' \cup T_i''$ for i = 1, ..., m-2 contains alternatingly half and half plus one of the elements that sets S' or S'' would cover if chosen.

Thus S_i always contains one more element that either set S' or S'' could cover, therefore greedy algorithm will always choose it.

H9.3

Let ϕ be a 3CNF formula with n variables and m clauses.

(a)

We can solve the satisfiability of ϕ in $O(2^n \cdot 3m)$ iterations using brute force $(2^n$ possible truth assignments, 3m iterations to evaluate the formula). Therefore, 3SAT parameterized by the number of variables n is in **FTP**.

(b)

In addition to ϕ , we have:

- X variable set of ϕ
- $Z \subseteq X$ backdoor for ϕ
- Z^* the smallest backdoor
- $|Z^*| \le k \le n$ where k bouding size of the smallest backdoor

Number of all possible backdoors of size \boldsymbol{k}

$${n \choose k} \le \frac{n^k}{k!}$$

Number of possible truth assignments of Z^* variables

 2^k

Iterations to evaluate ϕ

3m

Complexity of 3SAT parameterized by k is in **XP**, since

$$O\left({n\choose k}\cdot 2^k\cdot 3m\right)=O((2n)^k\cdot m)$$

is polynomial for every constant value of parameter k.

(c)