

Effect of Host Species on the Dose Response of Inhaled *Bacillus anthracis*Spores

Mark H. Weir E.I.T.

Dr. Charles N. Haas

Drexel University

Department of Civil Architectural and Environmental Engineering

Introduction: Bacillus anthracis

Spores:

- Tough
- Dormant
- Non-reproductive
- Protection
 - Environmental Stress

Bacillus anthracis:

- Gram positive
- Spore forming
- Non-motile rod
- Causative agent of Anthrax

Introduction: Bacillus anthracis

- Vectors of infection
 - Spores released into water (naturally or otherwise)
 - Spores released into air
 - Cutaneous exposure
 - Biting flies
 - Direct contact with hides
 - Direct contact with hair
 - Direct contact with soil

- Reservoirs
 - Animals
 - Livestock
 - Wild life
 - Spores may remain in soil for many years

Introduction: Inhalation Anthrax

- Infection path
 - Spores inhaled
 - Spore size sufficient to reach alveoli
 - Incubation typically 48 hours (or up to 7 days)

- Symptomology
 - Initially non-descript
 - Resembles common URI
 - As infection progresses
 - Acute respiratory distress symptoms
 - Mediastinal widening
 - Fever and shock
 - 3 to 5 days
 - Death follows shortly after

Introduction: Previous Attacks

- *B. anthracis* spores made to be lethal
 - Small particle size
 - Ease of transport to alveoli
 - Non-polar
 - Maintains small particle size
 - Prolongs aerosolization

- Realized need for action
 - The 2001 attacks
 - Not as lethal as could have been [Brown, 2001]
 - Signs of progress made
 - Treatment and control
 - Understand the risks
 - To the workers
 - Those to decontaminate
 - Secondary exposures

Introduction: Dose Response Modeling

- Extensive literature search
 - Inhalation
 - Death as end point
 - Aerosol size
 - Preferably reported as sufficient to reach alveoli in humans (max~10µm)

- Data sorted to examine interactions
 - Guinea pigs exposed to ATCC-6605 strain
 - [Altboum, 2002]
 - Guinea pigs exposed to Vollum or Ames strain
 - [Altboum, 2002]
 - Pooled guinea pig data
 - Pooled guinea pig and rabbit data
 - Rhesus monkeys exposed to M36 strain
 - [Druett et al., 1953]
 - Pooled guinea pig, rabbit and rhesus monkey data.

Method of Analysis

- R source code written
 - MLE used
 - BFGS algorithm
 - Beta Poisson
 - Exponential
 - Nelder-Mead algorithm
 - Log-Probit
- Risk estimated using R
 - Bootstrap resampling

$$P(d) = 1 - e^{-kd}$$

$$P(d) = 1 - \left[1 + \left(\frac{d}{N_{50}}\right) \cdot \left(2^{\frac{1}{\alpha}} - 1\right)\right]^{-\alpha}$$

$$P(d) = \phi \left(\frac{1}{q^2} \cdot \ln \frac{d}{q^1} \right)$$

Method of Analysis: Extent of Parameterization of Model

- MLE output for each model
 - Minimized deviances
 - Optimized parameters
- Difference in deviances (Δ)
 - Compared to $\chi^2_{\alpha,1}$
 - H_o: simpler model is best fit

- Equal number of parameters
 - χ^2 is an upper tailed test
 - Therefore determine p-value
 - Largest p-value is best fit

Best Fitting Models

Parameters	Model	Model Parameter	Parameter Value
Guinea Pigs / ATCC-6605 Strain	Exponential	k	7.110 (10 ⁻⁶)
		α	0.549
Guinea Pigs / Vollum Strain	Beta Poisson	N_{50}	28,472
		α	0.648
Pooled Guinea Pig Data	Beta Poisson	N_{50}	39,036
Pooled Guinea Pig and Rabbit		α	0.642
Data	Beta Poisson	N_{50}	39,036
Rhesus Monkeys Exposed to			
Vollum Strain	Exponential	k	7.164 (10 ⁻⁶)
Pooled Guinea Pig Rabbit and		α	0.974
Monkey Data	Beta Poisson	N ₅₀	62,817

Can This Data be Pooled?

- Different host species
- Different strains
- Difference in deviances
 - Summed deviances
 - Higher parameterized models
 - Deviance of pooled data

- Difference in deviances
 - Comparing this value to χ^2_{critical} at α and k-1 d.o.f.
 - H₀: data comes from the same distribution (can be pooled)

Pooling to be Compared	Σ Best Fits	Σ Higher Parameterized Mode	el <u>A</u>	χ ² crit, n-k
Guinea Pigs / Multiple Strains	11.134	20.016	8.882	18.307
Pooled Guinea Pig, Rabbit and				
Monkey Data	22.403	43.907	21.504	33.924

Since the Data can be Pooled

Conclusions

- Overall dose response
 - Beta Poisson best fit for pooled data
 - $\alpha = 0.974$ $N_{50} = 62,817$ spores
- Interspecies correction was unnecessary for host species
 - Perhaps extrapolation to humans will not require interspecies correction
- No correction needed for strain

References

- Brown, K., 2001. A 'sure killer' leads to medicine. *Science*, 294:5548. 1813-1814
- Altboum, 2002. Postexposure prophylaxis against anthrax: Evaluation of various treatment regimens in intranasally infected guinea pigs. *Infection and immunity*, 70:6231
- Druett, H.A., et. al., 1953. Studies on respiratory infection. I. The influence of particle size on respiratiry infection with Anthrax Spores. *Journal of Hygiene*, 51:359.
- Haas, C.N., 2002. On the risk of mortality to primates exposed to anthrax spores. *Risk Analysis*, 22:2:189
- Pitt, 2001. In vitro correlate of immunity in a rabbit model of inhalation anthrax. *Vaccine*, 19:4768.

Acknowledgements

 U.S. Environmental Protection Agency, and Department of Homeland Security. STAR Grant Program

Dr. Charles N. Haas and Dr. Patrick L. Gurian

