Set # 19

Ross Program, Number Theory July 8, 2016

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental power of the race. - Alfred North Whitehead

Terminology

Q1. Look back at Set #15 P6 to see what it means to say that an arithmetic function is multiplicative and then give more examples of multiplicative functions.

Prove or Disprove and Salvage if Possible

- P1. If p, q are positive odd primes then $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}\right|$.
- P2. Let f and g be two arithmetic functions with $g(n) = \sum_{d|n} f(d)$. If g is multiplicative, then so is f.
- P3. If π is a prime in $\mathbf{Z}[i]$, then the number of elements in $(\mathbf{Z}[i])_{\pi}$ is $N(\pi)$.
- P4. A translation of a plane region S is a rigid shift of it: add a constant vector to all points in S. An integer translation is a shift by an integer vector. For instance, if \mathcal{D} is a disk of radius 1/3 centered at the origin, then any disk of radius 1/3 centered at a lattice point is an integer translations of \mathcal{D} . **Lemma.** If Area(S) > 1, then some nonzero integer translation of S must overlap S.
- P5. $\binom{pA}{pB} \equiv \binom{A}{B} \pmod{p}$. Here p is prime and those are binomial coefficients. More generally: $\binom{pA+a}{pB+b} \equiv \binom{A}{B} \binom{a}{b} \pmod{p}$. Assume here that $0 \le a, b < p$.

The first congruence here seems to be true (mod p^2). Is that correct for every prime p?

Numerical Problems (Some food for thought)

- P6. Is 33 a square in U_{73} ? Is 35? 36? 37?
- P7. Is 17 a square in \mathbb{Z}_{509} ? Is 105 a square modulo 997?
- P8. (a) Does the equation $x^2 = 5$ have a solution in \mathbb{Z}_{119} ?
 - (b) Does $x^2 3x + 7$ have a root in \mathbb{Z}_{73} ?
- P9. Check that 5 is a square in \mathbb{Z}_{71} . Now find all elements of \mathbb{Z}_{71} whose square is 5. Can you perform this calculation efficiently? Can you find $\sqrt{171}$ in \mathbf{Z}_{1123} ?
- P10. Check that 38 is a square in \mathbb{Z}_{73} . Now find all elements of \mathbb{Z}_{73} whose square is 38. Can you perform this calculation efficiently? Can you find $\sqrt{1771}$ in \mathbf{Z}_{2017} ?
- P11. Find a quadratic polynomial having the real number $[1,2,3,1,2,3,\ldots] = \overline{[1,2,3]}$ as a root.
- P12. Is $(\mathbf{Z}[i])_3$ a field of 9 elements? Is its group of units cyclic? If so, find a generator. How many generators are there?

Counting Techniques

- P13. How many zeros are at the end of the decimal expansion of 1000!? (That's a factorial.)
- P14. Find a formula for the power of the prime p appearing in the canonical factorization of n!.
- P15. What power of p appears in the factorization of $\binom{n}{k}$?
- P16. Define $\mu(n)$ as in Set #18 P2. If the prime factorization of n is given, find $\mu(n)$. To start concretely, evaluate $\mu(p)$, $\mu(p^2)$, $\mu(pq)$, $\mu(p^2q)$, and $\mu(pqr)$, when p,q,r are distinct primes.