WikipediA

List of mathematical symbols

This is a list of symbols found in all branches of nathematics to express a formula or to represent acoustant

A mathematical concept is independent of the symbol chosen to represent it. For many of the symbols below, the symbol is usually synonymous with the corresponding concept (ultimately an arbitrary choice made as a result of the cumulative history of mathematics), but in some situations, a different convention may be used. For example, depending on context, the <u>triple bar</u> "=" may represent congruence or a definition. However, in mathematical logic, numerical equality is sometimes represented by "=" instead of "=", with the latter representing equality of <u>well-formed formulas</u>. In short, convention dictates the meaning.

Each symbol is shown both in HTML, whose display depends on the browser's access to an appropriate font installed on the particular device, and typeset as an image usi ingx.

Contents

Guide

Basic symbols

Symbols based on equality

Symbols that point left or right

Brackets

Other non-letter symbols

Letter-based symbols

Letter modifiers

Symbols based on Latin letters

Symbols based on Hebrew or Greek letters

Variations

See also

References

External links

Guide

This list is organized by symbol type and is intended to facilitate finding an unfamiliar symbol by its visual appearance. For a related list organized by mathematical topic, see <u>List of mathematical</u> symbols by subject That list also includes La®X and HTML markup, and Unicode code points for each symbol (notthat this article doesn't have the latter two, but they could certainly be added).

There is a Wikibooks guide for using maths in LaTeX, [1] and a comprehensive LaTeX symbol list. [2] It is also possible to check to see if a Unicode code point is available as a LaTeX command, or vice versa. [3] Also note that where there is no LaTeX command natively available for a particular symbol (although there may be options that require adding packages), the symbol could be added via other options, such as setting the document up to support Unicode, [4] and entering the character in a variety of ways (e.g. copying and pasting, keyboard shortcuts, the \unicode{<insertcodepoint>} command [5]) as well as other options [6] and extensive additional information. [7][8]

- Basic symbols: Symbols widely used in mathematics, roughly through first-year calculus. More advanced meanings are included with some symbols listed here.
- Symbols based on equality "=": Symbols derived from or similar to the equal sign, including double-headed arrows. Not surprisingly these symbols are often associated with an equivalence relation
- Symbols that point left or right:Symbols, such as < and >, that appear to point to one side or another
- Brackets: Symbols that are placed on either side of a variable or expression, such also |
- Other non-letter symbols: Symbols that do not fall in any of the other categories.
- Letter-based symbols:Many mathematical symbols are based on, or closely resemble, a letter in some alphabet. This section includes such symbols, including symbols that resemble upside-down letters. Many letters have conventional meanings in various branches of mathematics and physics. These are not listed here. These also section, below has expendilets of such usages.
 - Letter modifiers: Symbols that can be placed on or next to any letter to modify the letter's meaning
 - $\hspace{3.5cm} \hbox{\color{red} \bullet } \hspace{3.5cm} \hbox{\color{red} Symbols based on} \underline{\hbox{\bf Latin letters}}, \hspace{3.5cm} \hbox{including those symbols that resemble or contain an} X$
 - $\begin{tabular}{ll} \textbf{Symbols based on} \underline{\textbf{Hebrew}} \ or \ \underline{\textbf{Greek}} \ \textbf{letters} \ e.g. \ \aleph, \ \beth, \ \delta, \ \Delta, \ \pi, \ \Pi, \ \sigma, \ \Sigma, \ \Phi. \ \textit{Note:} \ \text{symbols resembling} \ \Delta \ \text{are grouped with } \ V'' \ \text{under Latin letters}. \end{tabular}$
- Variations: Usage in languages written right-to-left

Basic symbols

23/0	12/2018			LIST OF HIGHERINGTIC	cai symbols - wikipedia
			Category		
			addition plus; add arithmetic	4 + 6 means the sum of4 and 6.	2 + 7 = 9
	+	+	disjoint union the disjoint union of and set theory	$A_1 + A_2$ means the disjoint union of $\label{eq:A1} \operatorname{sets} A_1 \ \operatorname{and} A_2.$	$A_1 = \{3, 4, 5, 6\} \land A_2 = \{7, 8, 9, 10\} \Rightarrow$ $A_1 + A_2 = \{(3, 1), (4, 1), (5, 1), (6, 1), (7, 2), (8, 2), (9, 2), (10, 2)\}$
			subtraction minus; take; subtract arithmetic	36 – 11 means the subtraction of11 from 36.	36 - 11 = 25
	_	_	negative sign negative; minus; the opposite of arithmetic	-3 means the <u>additive inverse</u> of the number 3.	-(-5) = 5
			set-theoretic complement minus; without set theory	$A-B$ means the set that contains all the elements of A that are not in B . (\ can also be used for set-theoretic complement as described below)	{1, 2, 4} - {1, 3, 4} = {2}
	±	±	plus-minus plus or minus arithmetic		The equation $x = 5 \pm \sqrt{4}$, has two solutions, $x = 7$ and $x = 3$.
		\pm	plus-minus plus or minus measurement	10 ± 2 or equivalently $10\pm20\%$ means the range from $10-2$ to $10+2$.	If $a = 100 \pm 1$ $\underline{\text{mm}}$, then $a \ge 99$ mm and $a \le 101$ mm.
	<u>∓</u>	# \mp	minus-plus minus or plus arithmetic	$6 \pm (3 \mp 5)$ means $6 + (3 - 5)$ and $6 - (3 + 5)$.	$cos(x \pm y) = cos(x) cos(y) \mp sin(x) sin(y).$
			multiplication times; multiplied by arithmetic	3×4 or $3\cdot 4$ means the multiplication of 3 by $4.$	7 · 8 = 56
	×	X \times \cdot	dot product scalar product dot linear algebra vector algebra	$\mathbf{u}\cdot\mathbf{v}$ means the dot product of vectors	$(1, 2, 5) \cdot (3, 4, -1) = 6$
	· -		cross product vector product cross linear algebra vector algebra	$\boldsymbol{u}\times\boldsymbol{v}$ means the cross product of $\frac{\boldsymbol{v} \times \boldsymbol{v}}{\boldsymbol{v}}$ and \boldsymbol{v}	$(1, 2, 5) \times (3, 4, -1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 5 \\ 3 & 4 & -1 \end{vmatrix} = (-22, 16, -2)$
			placeholder (silent) functional analysis	A · means a placeholder for an argument of a function. Indicates the functional nature of an expression without assigning a specific symbol for an argument.	·
	÷		division (Obelus) divided by; over arithmetic	$6 \div 3$ or $6/3$ means the division of 6 by 3.	$2 \div 4 = 0.5$ $12/4 = 3$
	÷ 	÷ \div /	quotient group mod group theory	G / H means the quotient of group G $\underline{\text{modulo}}$ its subgroup H .	${0, a, 2a, b, b + a, b + 2a} / {0, b} = {\{0, b\}, \{a, b + a\}, \{2a, b + 2a\}}$
			mod set theory	A/\sim means the set of all \sim $\frac{\text{equivalence}}{\text{classes}}$ in A .	If we define \sim by $x \sim y \Leftrightarrow x - y \in \mathbb{Z}$, then $\mathbb{R}/\sim = \{x + n : n \in \mathbb{Z}, x \in [0,1)\}.$
	√	√ \surd þ	square root (radical symbol) the (principal) square root of real numbers	\sqrt{x} means the nonnegative number whose square is x .	$\sqrt{4} = 2$
	_	þ ∖sqrt{x}	complex square root the (complex) square root of complex numbers	If $z=r\exp(i\varphi)$ is represented in <u>polar coordinates</u> with $-\pi<\varphi\leq\pi$, then $\sqrt{z}=\sqrt{r}\exp(i\varphi/2)$.	$\sqrt{-1} = i$
	Σ	\sum	summation sum over from to of calculus	$\sum_{k=1}^n a_k$ means $a_1+a_2+\cdots+a_n$.	$\sum_{k=1}^{4} k^2 = 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30$
			indefinite integral or antiderivative		

23/02	/2018			List of mathematic	ai symbols - wikipedia
			indefinite integral of - OR - the antiderivative of calculus	$\int f(x) dx$ means a function whose derivative is f .	$\int x^2 dx = \frac{x^3}{3} + C$
	\perp	∫ ∖int	integral from to of with respect to calculus	$\int_{a}^{b} f(x) dx \text{ means the signed area}$ between the <i>x</i> -axis and the graph of the function <i>f</i> between $x = a$ and $x = b$.	$\int_{a}^{b} x^{2} dx = \frac{b^{3} - a^{3}}{3}$
			line integral line/ path/ curve/ integral of along calculus	$\int_C f ds$ means the integral of f along the curve C , $\int_a^b f(\mathbf{r}(t)) \mathbf{r}'(t) dt$, where \mathbf{r} is a parametrization of C . (If the curve is closed, the symbol f may be used instead, as described below)	
	ø	∮ \oint	Contour integral; closed line integral contour integral of calculus	Similar to the integral, but used to denote a single integration over a closed curve or loop. It is sometimes used in physics texts involving equations regarding Gauss's Law, and while these formulas involve a closed surface integral, the representations describe only the first integration of the volume over the enclosing surface. Instances where the latter requires simultaneous double integration, the symbol \mathcal{F} would be more appropriate. A third related symbol is the closed volume integral denoted by the symbol \mathcal{F} . The contour integral can also frequently be found with a subscript capital letter C , \mathcal{F}_C , denoting that a closed loop integral is, in fact, around a contour C , or sometimes dually appropriately, a circle C . In representations of Gauss's Law, a subscript capital S , \mathcal{F}_S , is used to denote that the integration is over a closed surface.	If C is a <u>Jordan curve</u> about 0, then $\oint_C \frac{1}{z} dz = 2\pi i$.
	<u></u> 	\ldots \ldots \cdots \text{!} \vdots \dots \dots	ellipsis and so forth everywhere	Indicates omitted values from a pattern.	<u>1/2 + 1/4 + 1/8 + 1/16 +···</u> = 1
	<u>:</u>	∴ ∖therefore	therefore therefore; so; hence everywhere	Sometimes used in proofs before logical consequences	All humans are mortal. Socrates is a human∴ Socrates is mortal.
		:· \because	because; because; since everywhere	Sometimes used in proofs before reasoning.	11 is $\underline{\text{prime}}$: it has no positive integer factors other than itself and one.
	<u>!</u>	1	factorial factorial combinatorics	$n!$ means the product $1 \times 2 \times \cdots \times n$.	$4! = 1 \times 2 \times 3 \times 4 = 24$
			logical negation not	The statement A is true if and only if A is false.	$ (IA) \Leftrightarrow A x \neq y \Leftrightarrow (x = y) $
			propositional logic	A slash placed through another operator is the same as "!" placed in front.	
				(The symbol! is primarily from computer science. It is avoided in mathematical texts, where the notation ¬A is preferred.)	
	☐ ~	¬ \neg ~	logical negation not propositional logic	The statement ¬A is true if and only if A is false. A slash placed through another operator is the same as "¬" placed in front. (The symbol ~ has many other uses, so ¬ or the slash notation is preferred.	$\neg(\neg A) \Leftrightarrow A$ $x \neq y \Leftrightarrow \neg(x = y)$
				Computer scientists will often use! but this is avoided in mathematical texts)	

			uno lo avolaca in manicinanoa tentoj	,
<u>~</u>	∝ ∖propto	proportionality is proportional to; varies as everywhere	$y \propto x$ means that $y = kx$ for some constant k .	if $y = 2x$, then $y \propto x$.
	∞ \infty	infinity infinity numbers	∞ is an element of the <u>extended</u> number line that is greater than all real numbers; it often occurs in <u>limits</u> .	$\lim_{x\to 0}\frac{1}{ x }=\infty$
- - - -	\blacksquare \Box \blacktriangleright	end of proof QED; tombstone; Halmos finality symbol everywhere		

Symbols based on equality

Constant	Comple at	Name		
Symbol in HTML	Symbol in TeX	Read as	Explanation	Examples
<u></u>	III <u>TEX</u>	Category		
		equality		2 = 2
=	=	is equal to; equals	${m x}={m y}$ means ${m x}$ and ${m y}$ represent the same math object (Both symbols have the same value).	$\begin{vmatrix} 2-2\\1+1=2\\36-5=31 \end{vmatrix}$
		everywhere		00 0 0 0
		inequality	${\pmb x} \neq {\pmb y}$ means that ${\pmb x}$ and ${\pmb y}$ do not represent the same math object (Both	
≠	≠	is not equal to;	symbols do not have the same value).	$2+2\neq 5$
<u> </u>	\ne	does not equal everywhere	(The forms !=, /= or <> are generally used in programming languages	$36-5\neq 30$

23/02/2018			of mathematical symbols - Wikipedia	
		approximately	where ease or typhing and use or <u>ASCII</u> text is preferred.)	
		equal is approximately	$x \approx y$ means x is approximately equal toy.	π ≈ 3.14159
≈	≈	equal to	This may also be written \approx , \cong , \sim , \cong (Libra Symbol), or \leftrightarrows .	
~	\approx	everywhere isomorphism	$G \approx H$ means that group G is isomorphic (structurally identical) to group	
		is isomorphic to	н.	$Q_8 / C_2 \approx V$
		group theory	(≅ can also be used for isomorphic, as described below)	
		probability distribution	V. D. magne the random variable V has the probability distribution.	$X \sim N(0,1)$, the
		has distribution statistics	$X \sim D$, means the <u>random variable</u> X has the probability distribution D .	standard normal distribution
		row equivalence		
		is row equivalent to	$A \sim B$ means that B can be generated by using a series of elementary row operations on A	$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
		matrix theory		[2 1] [0 0]
		same order of magnitude		2 5
		roughly similar; poorly	$m \sim n$ means the quantities m and n have the same order of magnitude or general size.	2~5
		approximates; is on the order of	(Note that \sim is used for an approximation that is poorotherwise use \simeq .)	8 × 9 ~ 100
~	~ .	approximation	,	but π ² ≈ 10
_	\sim	theory similarity		
		is similar to ^[9]	\triangle ABC ~ \triangle DEF means triangle ABC is similar to (has the same shape) triangle DEF.	
		geometry asymptotically		
		equivalent is asymptotically	f(n)	_
		equivalent to	$f \sim g$ means $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$.	x ~ x+1
		asymptotic analysis		
		equivalence relation		
		are in the same equivalence class	$a \sim b$ means $b \in [a]$ (and equivalently $a \in [b]$).	1 ~ 5 mod 4
		everywhere		
=:	=:			
:=	:=			
	≡ \equiv			
= _	:⇔	definition	$x := y, y =: x \text{ or } x \equiv y \text{ means } x \text{ is defined to be another name fory, under}$	77
;⇔	:\Leftrightarrow	is defined as; is equal by	certain assumptions taken in context.	$\cosh x := \frac{e^x + e^{-x}}{2}$
	≜ \triangleq	definition to	(Some writers use≡ to mean <u>congruence</u>).	$[a,b] := a \cdot b - b \cdot a$
≜	det	everywnere	$P \Leftrightarrow Q$ means P is defined to be <u>logically equivalent</u> to Q .	
def	\overset{\underset{\mathrm{def}}} {}}{=}			
_	÷			
=	 \doteq			
		congruence	\triangle ABC \cong \triangle DEF means triangle ABC is congruent to (has the same	
	≅	is congruent to geometry	measurements as) triangle DEF	
=	\cong	isomorphic	$G \cong H$ means that group G is isomorphic (structurally identical) to group H .	
		is isomorphic to abstract algebra		$\underline{V} \cong \underline{C}_2 \times C_2$
		congruence	Company as assumed about	
=	≡ \oguiv	is congruent to	$a \equiv b \pmod{n}$ means $a - b$ is divisible by n	5 ≡ 2 (mod 3)
-	\equiv	modulo modular arithmetic		. ,
⇔	⇔	material	$A \Leftrightarrow B$ means A is true if B is true and A is false if B is false.	x + 5 = y + 2 ⇔ x + 3 =
	(201 €1 2911 €11	equivalence if and only if;		У
↔	\iff	iff		
	↔ \leftrightarrow	propositional logic		
:=	-	Assignment		
	:= =:	is defined to be	A := b means A is defined to have the value b .	Let $a := 3$, then $f(x) := x + 3$
	 •	everywhere		1(N) X · O

Symbols that point left or right

0	0	Name			
Symbol in HTML	Symbol in TeX	Read as	Explanation	Examples	
III III III	III <u>IEX</u>	Category			
		strict inequality			
		is less than, is greater than	x < y means x is less than y . x > y means x is greater than y .	3 < 4 5 > 4 5Z < Z A ₃ < S ₃	
<	<	order theory			
>	>	proper subgroup	${\pmb H} < {\pmb G}$ means H is a proper subgroup of G .		
_		is a proper subgroup of			
		group theory			
		significant (strict) inequality			
		is much less than, is much greater than	$x \ll y$ means x is much less than y . $x \gg y$ means x is much greater than y .	0.003 ≪ 1000000	
		order theory			

دے	/02/2018			List of mathematical symbols - wikipedia	
	≪ ≫	≪ ≫ \ll \gg	asymptotic comparison is of smaller order than, is of greater order than analytic number theory	$f \ll g$ means the growth of f is asymptotically bounded byg. (This is f .	$x \ll e^x$
			absolute continuity is absolutely continuous with respect to measure theory	$\mu\ll u$ means that μ is absolutely continuous with respect to $ u$, $i.e.$, whenever $ u(A)=0$, we have $\mu(A)=0$.	If c is the counting measure on $[0,1]$ and μ is the Lebesgue measure, then $\mu \ll c$.
			inequality is less than or equal to, is greater than or equal to order theory	$x \le y$ means x is less than or equal toy. $x \ge y$ means x is greater than or equal toy. (The forms <= and >= are generally used in programming languages, where ease of typing and use of ASCII text is preferred.) (\le and \ge are also used by some writers to mean the same thing as and \ge , but this usage seems to be less common).	$3 \le 4$ and $5 \le 5$ $5 \ge 4$ and $5 \ge 5$
	<u>≤</u> ≥	≤ ≥ \le \ge	subgroup is a subgroup of group theory	$H \leq G$ means H is a subgroup of G .	$Z \leq Z \\ \underline{A_3} \leq \underline{S_3}$
			reduction is reducible to computational complexity theory	$A \leq B$ means the $\operatorname{problem} A$ can be reduced to the problem B . Subscripts can be added to the \leq to indicate what kind of reduction.	If $\exists f \in F . \forall x \in \mathbb{N} . x \in A \Leftrightarrow f(x) \in B$ then $A \leq_F B$
	≦	\	congruence relation is less than is greater than modular arithmetic		$10a \equiv 5 \pmod{5} \text{ for } 1 \leq a \leq 10$
	VII AII	\leqq \geqq	vector inequality is less than or equal is greater than or equal order theory	$x \le y$ means that each component of vectox is less than or equal to each corresponding component of vectory. $x \ge y$ means that each component of vectox is greater than or equal to each corresponding component of vectory. It is important to note that $x \le y$ remains true if every element is equal. However, if the operator is changed, $x \le y$ is true if and only if $x \ne y$ is also true.	
	Y	≺ ≻ \prec \succ	Karp reduction is Karp reducible to; is polynomial- time many-one reducible to computational complexity theory	$L_1 \prec L_2$ means that the problem $\!L_1$ is Karp reducible to $\!L_2.^{[10]}$	If $L_1 \prec L_2$ and $L_2 \in \underline{\mathbf{P}}$, then $L_1 \in \mathbf{P}$.
			Nondominated order is nondominated by Multi-objective optimization	$P \lessdot Q$ means that the elementP is nondominated by elementQ. [11]	If $P_1 < Q_2$ then $\forall_{\pmb{i}} P_{\pmb{i}} \leq \pmb{Q_i} \land \exists P_{\pmb{i}} < \pmb{Q_i}$
		∢ ♭ \triangleleft \triangleright	normal subgroup is a normal subgroup of group theory	$N \lhd G$ means that N is a normal subgroup of group G .	$Z(G) \lhd G$
	Ж т х 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		is an ideal of ring theory	$I \lhd R$ means that I is an ideal of ring R .	(2) ⊲ Z
			the antijoin of relational algebra	$R \rhd S$ means the antijoin of the relationsR and S, the tuples in R for which there is not a tuple in S that is equal on their common attribute names.	$R \triangleright S = R - R \ltimes S$
	⇒ → ∩	⇒ → ⊃ \Rightarrow \rightarrow \supset	material implication implies; if then propositional logic, Heyting algebra	$A\Rightarrow B$ means if A is true then B is also true; if A is false then nothing is said about B . (\rightarrow may mean the same as \Rightarrow , or it may have the meaning for <u>functions</u> given below) (\supset may mean the same as \Rightarrow , [12] or it may have the meaning for <u>superset</u> given below)	$x = 6 \Rightarrow x^2 - 5 = 36 - 5 = 31$ is true, but $x^2 - 5 = 36 - 5 = 31 \Rightarrow x = 6$ is in general false (since x could be -6).
		⊆ ⊂ \subseteq \subset	subset is a subset of set theory	(subset) $A\subseteq B$ means every element of A is also an element of B . [13] (proper subset) $A\subset B$ means $A\subseteq B$ but $A\neq B$. (Some writers use the symbol \subset as if it were the same as \subseteq .)	$(A \cap B) \subseteq A$ $\mathbb{N} \subset \mathbb{Q}$ $\mathbb{Q} \subset \mathbb{R}$
	⊇	⊇ ⊃ \supseteq \supset	superset is a superset of set theory	$A\supseteq B$ means every element of B is also an element of A . $A\supset B$ means $A\supseteq B$ but $A\ne B$. (Some writers use the symbol \supset as if it were the same as \supseteq .)	$ (A \cup B) \supseteq B $ $ \mathbb{R} \supset \mathbb{Q} $
	€	\Subset	compact embedding is compactly contained in	$A \subseteq B$ means the closure of B is a compact subset of A .	$\mathbb{Q}\cap(0,1)\Subset[0,5]$

	1	<u> </u>	<u> </u>	I	
		function arrow			
\rightarrow	_ →	from to	$f: X \to Y$ means the function f maps the set X into the set Y.	Let $f: \mathbb{Z} \to \mathbb{N} \cup \{0\}$ be defined by $f(x) := x^2$.	
	\to	set theory, type theory	, ·	Let I . $\angle - \otimes 0$ (o) be defined by $I(X) := X$.	
		function arrow			
\mapsto	→ \mapsto	maps to	$f: a \mapsto b$ means the function f maps the element a to the element b.	Let $f: x \mapsto x + 1$ (the successor function).	
	\maps co	set theory			
,	←	Converse implication	$a \leftarrow b$ means that for the propositionsa and b , if b implies a , then a is the converse implication of b . a to the element b . This reads as " a if b ", or "not b		
←	\leftarrow	if	without a". It is not to be confused with the assignment operator in		
		logic	<u>computer science</u>		
		subtype		If $S \le T$ and $T \le U$ then $S \le U$	
		is a subtype of	$T_1 \leq T_2$ means that T_1 is a subtype of T_2 .	(transitivity).	
<:	<:	type theory		(uansavity).	
<•	<.	cover		$\{1, 8\}$ <• $\{1, 3, 8\}$ among the subsets of $\{1, 2,, 10\}$ ordered by containment.	
		is covered by	x < y means that x is covered by y.		
		order theory			
	⊨ \vDash	entailment	A. b. D. magging the contained A. matella the contained D. that is in accommodal.		
F		entails	$A \models B$ means the sentence A entails the sentence B, that is in every model in which A is true, B is also true.	$A \models A \lor \neg A$	
		model theory	in Whon the duc, b is also duc.		
		inference			
		infers;			
		is derived from	$x \vdash y$ means y is derivable from x .	$A \rightarrow B \vdash \neg B \rightarrow \neg A$	
\vdash	⊢ \vdash	propositional logic, predicate logic			
		partition		. 5	
		is a partition of	$p \vdash n$ means that p is a partition of n.	$(4,3,1,1) \vdash 9, \sum_{\lambda \vdash n} (f_{\lambda})^2 = n!$	
		number theory		λ <i>⊢n</i> .	
		bra vector			
(<pre> \ \langle</pre>	the bra; the dual of	$\langle \varphi $ means the dual of the vector $\psi \rangle$, a <u>linear functional</u> which maps a ket $\psi \rangle$ onto the inner product $\langle \varphi \psi \rangle$.		
•	\ tung tc	Dirac notation			
		ket vector			
11		the ket;		A qubit's state can be represented $asa 0\rangle + \beta 1\rangle$, where α and β are complex numbers s.:	
1	\rangle	the vector	$ \varphi\rangle$ means the vector with label φ , which is in a Hilbert space.	$ \beta $ 1), where α and β are complex numbers s.t. $ \alpha ^2 + \beta ^2 = 1$.	
		Dirac notation		$ \alpha \cdot \beta = 1.$	

Brackets

Symbol in HTML	Symbol in <u>TeX</u>	Name Read as Category	Explanation	Examples
	() {\ \choose\ }	combination, binomial coefficient n choose k combinatorics	$\binom{n}{k} = \frac{n!/(n-k)!}{k!} = \frac{(n-k+1)\cdots(n-2)\cdot(n-1)\cdot n}{k!}$ means (in the case of n = positive integer) the number of combinations of k elements drawn from a set of n elements. (This may also be written asC(n , k), C(n ; k), ${}_{n}$ C $_{k}$, n C $_{k}$, or $\binom{n}{k}$.)	$ \begin{pmatrix} 36 \\ 5 \end{pmatrix} = \frac{36!/(36-5)!}{5!} = \frac{32 \cdot 33 \cdot 34 \cdot 35 \cdot 36}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 376992 $
	(()) \left(\!\!{\ \choose\ }\!\!\right)	multiset coefficient u multichoose k combinatorics	(when u is positive integer)	$\left(\binom{-5.5}{7} \right) = \frac{-5.5 \cdot -4.5 \cdot -3.5 \cdot -2.5 \cdot -1.5 \cdot5 \cdot .5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} = \binom{.5}{7} = \frac{33}{2048}$
		absolute value; modulus absolute value of; modulus of	x means the distance along thereal line (or across the complex plane) between x and zero.	3 = 3 -5 = 5 = 5 <i>i</i> = 1

23/02/2018			List of mathematical symbo	DIS - WIKIPEUIA
		numbore		3 + 4 <i>i</i> = 5
		numbers		
		Euclidean		
		norm or Euclidean		
		length or		For $\mathbf{x} = (3, -4)$
	1 1	magnitude	$ \mathbf{x} $ means the (Euclidean) length ofvector \mathbf{x} .	$ \mathbf{x} = \sqrt{3^2 + (-4)^2} = 5$
	 \ldots	Euclidean		$ \mathbf{x} - \sqrt{3} + (-2) = 0$
11	\!	norm of		
	' '/	geometry		
		determinant		11 01
		determinant	A means the determinant of the matrixA	$\begin{vmatrix} 1 & 2 \\ 2 & 9 \end{vmatrix} = 5$
		of		2 9
		matrix theory		
		cardinality		
		cardinality of;	X means the cardinality of the setX.	
		size of;		{3, 5, 7, 9} = 4.
		order of	(# may be used instead as described below)	
		set theory		
		norm		
		norm of;	x means the <u>norm</u> of the elementx of a <u>normed vector</u>	$ x+y \le x + y $
		length of	<u>space</u> .[14]	^ ' y = ^ y
		linear algebra		
		nearest		
	\ \ldots \ \!	integer		
	\:	function	x means the nearest integer tox.	
		nearest	(This may also be writtenfy] [v] nint(v) or Pound(v)	1 = 1, 1.6 = 2, -2.4 = -2, 3.49 = 3
		integer to	(This may also be written[x], [x], nint(x) or Round(x).)	
	<u> </u>	numbers		
	{,}	set brackets		
<u>{</u> ,}	{\{','\!\	the set of	$\{a,b,c\}$ means the set consisting of a, b, and c . [15]	N = { 1, 2, 3, }
-, -	{\{\ ,\!\ \}} \!	set theory	, , . , . , . , . ,	
	{ : } \{\ :\ \}			
{:}	\!			
(.)	,	set builder		
6.13	{ }	notation	(v. D(v)) manned the past of all vitar viting D(v) in true [15] (v. l	
{ }	\{\ \ \}	the set of	$\{x : P(x)\}$ means the set of all x for which $P(x)$ is true. [15] $\{x \mid P(x)\}$ is the same as $\{x : P(x)\}$.	$\{n \in \mathbb{N} : n^2 < 20\} = \{1, 2, 3, 4\}$
1	\!	such that	Γ(λ); is the same as γ . Γ(λ);.	
(,)	()	set theory		
{;}	 			
	\{\ ;\ \} \!			
	\:			
		floor		
	[]	floor;	[x] means the floor of x , i.e. the largest integer less than or	
[]	\lfloor \ldots	greatest	equal to x.	[4] = 4, [2.1] = 2, [2.9] = 2, [-2.6] = -3
	\rfloor \!	integer; entier	(This may also be written[x], floor(x) or int(x).)	
	(11001 (:(,	numbers		
	[]	ceiling	[x] means the ceiling of x, i.e. the smallest integer greater	
[]	\lceil \ldots	ceiling	than or equal to x.	[4] = 4, [2.1] = 3, [2.9] = 3, [-2.6] = -2
	\rceil \!	numbers	(This may also be writtenceil(x) or ceiling(x).)	
	, , ,,	nearest	, , , , ,	
		integer		
	[] \lfloor	function	[x] means the nearest integer tox.	
[]	\ldots	nearest		[2] = 2, [2.6] = 3, [-3.4] = -3, [4.49] = 4
	\rceil \!	integer to	(This may also be written[x], $ x $, nint(x) or Round(x).)	
	' ' '	numbers		
F 3	F . 1	degree of a		[0(/2):0] = 2
[:]	[:]	field	[K:F] means the degree of the extensionK:F.	$[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$
	[, , ,] /;/,	extension		[C:R] = 2
		the degree of		
				[ℝ:ℚ] = ∞
		field theory		
		equivalence		
		class	[a] means the equivalence class ofa, i.e. $\{x : x \sim a\}$, where ~	Let a ~ b be true iff a = b (mod 5)
		the	is an equivalence relation	Let $a \sim b$ be true iff $a \equiv b \pmod{5}$.
		equivalence class of		Then [2] = {, -8, -3, 2, 7,}.
			$[a]_R$ means the same, but with R as the equivalence relation.	
		abstract algebra		
		floor		
			[x] means the floor of x , i.e. the largest integer less than or	
		floor; greatest	equal to x.	[6] 0 [6] 0 [6] 0 [6]
		integer;	(This may also be written[x], floor(x) or int(x). Not to be	[3] = 3, [3.5] = 3, [3.99] = 3, [-3.7] = -4
		entier	confused with the nearest integer function, as described	
		numbers	below.)	
		nearest		
		integer	[x] means the nearest integer tox.	
		function		[2] = 2, [2.6] = 3, [-3.4] = -3, [4.49] = 4
		nearest	(This may also be written[x], x , nint(x) or Round(x). Not to	[
		integer to	be confused with the floor function, as described above.	
		numbers		
		Iverson		
		bracket		
[]	[] [\] \!	1 if true, 0	[S] maps a true statementS to 1 and a false statementS to 0.	[0=5]=0, [7>0]=1, [2 \in \{2,3,4\}]=1, [5 \in \{2,3,4\}]=0
	[/] /!/,	otherwise		
[,]	[,]	propositional logic		
[,]	[\ ,\] \!	logic		
		image	$f[X]$ means { $f(x) : x \in X$ }, the image of the function f under the set $X \subseteq \text{dom}(f)$.	
[,,]	[,,]	image of	4.0 00th = <u>dom</u> ty.	
	I	under	(This may also he written seff Y) if there is no risk of	$\sin[\mathbb{R}] = [-1,1]$
https://op.u	illinadia arab	vilsi/List of	mathematical symbols	9/19

۷٥,	/02/2018			List of mathematical symbo	Dis - Wikipedia
			everywhere	נווא וואן מוגט שב שוועבוו מגוקאן וו עוברי בא ווט ווגא טו confusing the image off under X with the function applicationf of X. Another notation isIm f, the image off under its domain)	
			closed	or A. Another notation is in 1, the image on under its domain,	
			closed	$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}.$	0 and 1/2 are in the interval [0,1].
			interval	/	
			order theory commutator		
			the commutator	$[g, h] = g^{-1}h^{-1}gh$ (or $ghg^{-1}h^{-1}$), if $g, h \in G$ (a group).	$x^{y} = x[x, y]$ (group theory).
			of group theory.	$[a, b] = ab - ba$, if $a, b \in R$ (a ring or commutative algebra).	[AB, C] = A[B, C] + [A, C]B (ring theory).
			ring theory		
			triple scalar product		
			the triple scalar	$[\mathbf{a}, \mathbf{b}, \mathbf{c}] = \mathbf{a} \times \mathbf{b} \cdot \mathbf{c}$, the scalar product of $\mathbf{a} \times \mathbf{b}$ with \mathbf{c} .	[a, b, c] = [b, c, a] = [c, a, b].
			product of vector		
-			calculus		
			function application	f(x) means the value of the function at the element x.	If $f(x) := x^2 - 5$, then $f(6) = 6^2 - 5 = 36 - 5 = 31$.
			of set theory	(a) means the value of the function at the elements.	
				$f(X)$ means $\{f(x): x \in X\}$, the image of the function funder	
			image of	the set $X \subseteq \underline{\text{dom}}(f)$.	$\sin(\mathbb{R}) = [-1,1]$
			under everywhere	(This may also be written asf[X] if there is a risk of confusing the image off under X with the function application of X.	(-) [-,-]
			precedence	Another notation is Im f, the image off under its domain.)	
			grouping parentheses	Perform the operations inside the parentheses first.	(8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4.
			everywhere		
	()	() (\) \!	tuple	An ordered list (or sequence, or horizontal vectoror row vector) of values.	(a. N.): an arden desir (a. O. tarle)
		(,)	tuple; <i>n</i> -tuple; ordered	(Note that the notation (a,b) is ambiguous: it could be an	(a, b) is an ordered pair (or 2-tuple). (a, b, c) is an ordered triple (or 3-tuple).
	(,)	(\ ,\') \!	pair/triple/etc; row vector;	ordered pair or an open interval. Set theorists and computer	() is the empty tuple (or 0-tuple).
			sequence everywhere	scientists often use angle brackets () instead of parentheses.)	() is the empty taple (or o taple).
			highest		
			common		
			highest		
			common factor;	(a, b) means the highest common factor of and b .	(3, 7) = 1 (they are coprime); (15, 25) = 5.
			greatest common divisor; hcf;	(This may also be writtenhcf(a, b) or gcd(a, b).)	
			gcd		
			number theory		
	(,)	(,) (\ ,\) \!\.	open interval	$(a,b) = \{x \in \mathbb{R} : a < x < b\}.$	4 is not in the interval (4, 18). (0, +∞) equals the set of positive real numbers.
],[(\ ,\`) \! (\ ,\) \!	order theory	(Note that the notation (a,b) is ambiguous: it could be an ordered pair or an open interval. The notation]a,b[can be	(0, +∞) equals the set of positive real numbers.
],[],[used instead.)	
]\ ,\ [\!]			
-		\!]	left-open		
	(,]	(,] (\ ,\] \!	interval half-open		
	, ,],]	interval; left-open	$(a,b] = \{x \in \mathbb{R} : a < x \le b\}.$	(-1, 7] and (-∞, -1]
],]	\ ,\] \!]	interval		
-			order theory		
	[,)	[,) [\ ,\) \!	half-open		
	[,[],]	interval; right-open	$[a,b) = \{x \in \mathbb{R} : a \le x < b\}.$	[4, 18) and [1, +∞)
	L, L	[\ ,\ [\!	interval order theory		
				(u,v) means the inner product of u and v , where u and v are members of an inner product space	
			inner product	Note that the notation(u, v) may be ambiguous: it could mean	
			inner product	the inner product or the <u>linear span</u> .	The standard inner product between two vectors $x = (2, 3)$ and $y = (-1, 5)$ is:
			of linear algebra	There are many variants of the notation, such as $ v\rangle$ and $\langle u v\rangle$, which are described below For spatial vectors, the dot	$(x, y) = 2 \times -1 + 3 \times 5 = 13$
				product notation, $x \cdot y$ is common. For matrices, the colon notation $A : B$ may be used. $As \langle and \rangle$ can be hard to type,	
				the more "keyboard friendly" forms< and > are sometimes seen. These are avoided in mathematical texts.	
			average		for a time series $y(t)$ ($t = 1, 2,$)
			average of	let S be a subset of N for example, $\langle S \rangle$ represents the average of all the elements in S.	we can define the structure functions $S_q(\tau)$:
			statistics		$S_q = \langle g(t+ au) - g(t) ^q angle_t$
-	I				

.5/02/2010			List of mathematical symbol	71. Vinipedia
()	<pre> ⟨⟩ \langle\ \rangle \!</pre>	expectation value the expectation value of probability theory	For a single discrete variable x of a function $f(x)$, the expectation value of $f(x)$ is defined as $\langle f(x) \rangle = \sum_x f(x) P(x)$, and for a single continuous variable the expectation value of $f(x)$ is defined as $\langle f(x) \rangle = \int_x f(x) P(x)$; where $P(x)$ is the \overline{PDF} of the variable x . [16]	
(,)	(,) \langle\ ,\ \rangle \!	linear span (linear) span of; linear hull of linear algebra	$\langle S \rangle$ means the span of $S \subseteq V$. That is, it is the intersection of all subspaces of V which contain S . $\langle u_1, u_2, \rangle$ is shorthand for $\langle \{u_1, u_2, \} \rangle$. Note that the notation $\langle u, v \rangle$ may be ambiguous: it could mean the inner product or the linear span. The span of S may also be written as $Sp(S)$.	$\left\langle \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \left(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \left(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right) \right\rangle = \mathbb{R}^3.$
		subgroup generated by a set the subgroup generated by group theory	$\langle S \rangle$ means the smallest subgroup of (where $S \subseteq G$, a group) containing every element of S. $\langle g_1, g_2, \ldots \rangle$ is shorthand for $\langle \{g_1, g_2, \ldots \} \rangle$.	In \underline{S}_3 , $\langle (1\ 2) \rangle = \{id,\ (1\ 2)\}$ and $\langle (1\ 2\ 3) \rangle = \{id,\ (1\ 2\ 3), (1\ 3\ 2))\}$.
		tuple; n-tuple; ordered pair/triple/etc; row vector; sequence everywhere	An ordered list (or sequence, or horizontal vectoror row vector) of values. (The notation (a,b) is often used as well)	⟨a,b⟩ is an ordered pair (or 2-tuple). ⟨a,b,c⟩ is an ordered triple (or 3-tuple). ⟨⟩ is the empty tuple (or 0-tuple).
()	() \langle\ \ \rangle \! () (\ \) \!	inner product inner product of linear algebra	$\langle u \mid v \rangle$ means the inner product of u and v , where u and v are members of an inner product space $[^{17]}$ ($u \mid v$) means the same. Another variant of the notation is $\langle u, v \rangle$ which is described above. For spatial vectors, the dot product notation, $x \cdot y$ is common. For matrices, the colon notation $a \cdot b = b$ may be used. As $a \cdot b = b$ and $a \cdot b = b$ hard to type, the more "keyboard friendly" forms $a \cdot b = b$ are sometimes seen. These are avoided in mathematical texts.	

Other non-letter symbols

		Name			
Symbol in HTML	Symbol in TeX	Read as	Explanation	Examples	
III III III III III III III III III II					
		convolution			
		convolution; convolved with	f * g means the convolution of and g .	$(f*g)(t) = \int_0^t f(\tau)g(t-\tau) d\tau.$	
		functional analysis		3 0	
		complex conjugate	z^* means the complex conjugate ofz.		
			conjugate complex numbers	(\overline{z} can also be used for the conjugate of z , as described below)	$(3+4i)^* = 3-4i$
		group of units the group of	R^* consists of the set of units of the ringR, along with the operation of multiplication.	$(\mathbb{Z}/5\mathbb{Z})^* = \{[1], [2], [3], [4]\}$	
		units of ring theory	This may also be written R^{x} as described above, or U(R).	≅ C ₄	
*	*	hyperreal numbers			
		the (set of) hyperreals	*R means the set of hyperreal numbers. Other sets can be used in place ofR.	*N is the hypernatural numbers.	
		non-standard analysis			
		Hodge dual Hodge dual;	*v means the Hodge dual of a vectory. If v is a k -vector within an n -dimensional oriented	If $\{e_i\}$ are the standard basis vectors of \mathbb{R}^5 ,	
		Hodge star	inner product space, then $*v$ is an $(n-k)$ -	$*(e_1 \wedge e_2 \wedge e_3) = e_4 \wedge e_5$	
		linear algebra			
		Kleene star Kleene star	Corresponds to the usage of * inregular expressions. If Σ is a set of strings, then Σ * is		
computer science science		the set of all strings that can be created by concatenating members of Σ . The same string can be used multiple times, and the empty string is also a member of Σ *.	etc. The full set cannot be enumerated here since it is countably infinite but each individual string must have finite length.		

رد ک	/02/2018			List of mathematical symbols - w	ikipedia
			proportionality is proportional to; varies as everywhere	$y \propto x$ means that $y = kx$ for some constant k .	if $y = 2x$, then $y \propto x$.
	<u>~</u>	<u>∝</u> \propto \!		$A \propto B$ means the <u>problem</u> A can be polynomially reduced to the problem B .	If $L_1 \propto L_2$ and $L_2 \in \underline{\mathbf{P}}$, then $L_1 \in \mathbf{P}$.
	١	\ \setminus	set-theoretic complement minus; without; throw out; not set theory	A \ B means the set that contains all those elements of A that are not in B. [13] (- can also be used for set-theoretic complement as described above)	{1,2,3,4} \ {3,4,5,6} = {1,2}
			conditional event given probability	P(A B) means the probability of the eventA occurring given thatB occurs.	if X is a uniformly random day of the year P(X is May 25 X is in May) = 1/31
	l	1	restriction of to; restricted to set theory	$f _A$ means the function f is restricted to the set A , that is, it is the function with $domain A \cap dom(f)$ that agrees with f .	The function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^2$ is not injective, but $f _{\mathbf{R}^+}$ is injective.
			such that such that; so that everywhere	means "such that", see ":" (tescribed below).	$S = \{(x,y) \mid 0 < y < f(x)\}$ The set of (x,y) such that y is greater than 0 and less than f(x).
	,	1	albita a control	$a \mid b$ means a divides b . $a \nmid b$ means a does not divide b .	
	ł	\mid \r \nmid	divisor, divides divides number theory	(The symbol can be difficult to type, and its negation is rare, so a regular but slightly shorter vertical bar character is often used instead.)	Since $15 = 3 \times 5$, it is true that $3 \mid 15$ and $5 \mid 15$.
	П	 \mid\mid	exact divisibility exactly divides number theory	$p^a \mid\mid n \text{ means } p^a \text{ exactly divides } n \text{ (i.e. } p^a \text{ divides } n \text{ but } p^{a+1} \text{ does not)}.$	2 ³ 360.
		 \	parallel is parallel to	$x \parallel y$ means x is parallel to y . $x \nmid y$ means x is not parallel to y .	If $l \parallel m$ and $m \perp n$ then $l \perp n$.
	∦ #	<pre>Requires the viewer to support Unicode: \unicode{x2225}, \unicode{x2226}, and \unicode{x2205}. \mathrel{\rlap{\parallel}}</pre>	geometry	x # y means x is equal and parallel toy. (The symbol can be difficult to type, and its negation is rare, so two regular but slightly longer vertical bar characters are often	
	"	requires \setmathfont{MathJax} ^[19]	incomparability is incomparable to order theory	$x \parallel y$ means x is incomparable to y .	{1,2} {2,3} under set containment.
ľ			cardinality	#X means the cardinality of the setX.	
			cardinality of; size of; order of set theory	(may be used instead as described above.)	#{4, 6, 8} = 3
	<u>#</u>	# \sharp	connected sum connected sum of; knot sum of; knot composition of topology, knot theory	A#B is the connected sum of the manifoldsA and B. If A and B are knots, then this denotes the knot sum, which has a slightly stronger condition.	$A\#S^m$ is homeomorphic to A , for any manifold A , and the sphere S^m .
-			primorial primorial number theory	<i>n#</i> is product of all prime numbers less than or equal to <i>n</i> .	12# = 2 × 3 × 5 × 7 × 11 = 2310
			such that; such that; so that everywhere	: means "such that", and is used in proofs and the set-builder notation (described below).	∃ n ∈ \mathbb{N} : n is even.
			extends; over field theory	K: F means the field K extends the field F . This may also be written as $K \ge F$.	R:Q
			inner product	A: B means the Frobenius inner product of the matrices A and B.	
	<u>:</u>	;	of matrices inner product of linear algebra	The general inner product is denoted by(u , v), (u v) or (u v), as described below For spatial vectors, the dot product notation, $x \cdot y$ is common. See also bra–ket notation	$A:B=\sum_{i,j}A_{ij}B_{ij}$
			i	13 COMMON. SEE AISO DIA-KEL HULALION	

23/02/2018			List of mathematical symbols - W	ikipedia
		index of subgroup group theory	The index of a subgroup H in a group G is the "relative size" of H in G: equivalently, the number of "copies" (cosets) of H that fill up G	$ G:H =rac{ G }{ H }$
		division divided by over everywhere	A: B means the division of A with B (dividing A by B)	10:2=5
÷	: \vdots \!	vertical ellipsis vertical ellipsis everywhere	Denotes that certain constants and terms are missing out (e.g. for clarity) and that only the	$P(r,t) = \chi \dot{E}(r,t_1) E(r,t_2) E(r,t_3)$
1	\text{\lambda} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		A \wr H means the wreath product of the group A by the group H. This may also be written A $_{\rm Wf}$ H.	$\mathbf{S_n} \wr \mathbf{Z_2}$ is isomorphic to the <u>automorphism</u> group of the <u>complete bipartite graphon</u> $\overline{(n,n)}$ vertices.
*			Denotes that contradictory statements have been inferred. For clarity the exact point of contradiction can be appended.	$x + 4 = x - 3 \%$ Statement: Every finite, non-empty ordered set has a largest element. Otherwise, let's assume that X is a finite, non-empty ordered set with no largestelement. Then, for some $x_1 \in X$, there exists an $x_2 \in X$ with $x_1 < x_2$, but then there's also an $x_3 \in X$ with $x_2 < x_3$, and so on. Thus, x_1, x_2, x_3, \ldots are distinct elements in X . X is finite.
<u>∨</u>	⊕ \oplus \! <u>⊻</u> \veebar \!	xor propositional logic, Boolean algebra	The statement $A \oplus B$ is true when either A or B, but not both, are true. $A \veebar B$ means the same.	$(\neg A) \oplus A$ is always true, $A \oplus A$ is always false.
		direct sum direct sum of abstract algebra	The direct sum is a special way of combining several objects into one general object. (The bun symbol⊕, or the coproduct symbol ∐, is used; ½ is only for logic.)	Most commonly for vector spaces U , V , and W , the following consequence is used: $U = V \oplus W \Leftrightarrow (U = V + W) \land (V \cap W = \{0\})$
	<pre></pre>	Kulkarni– Nomizu product Kulkarni– Nomizu product tensor algebra	Derived from thetensor product of two symmetric type (0.2)tensors; it has the algebraic symmetries of the Riemann tensor. $f = g \bigcirc h$ has components $f_{\alpha\beta\gamma\delta} = g_{\alpha\gamma}h_{\beta\delta} + g_{\beta\delta}h_{\alpha\gamma} - g_{\alpha\delta}h_{\beta\gamma} - g_{\beta\gamma}h_{\alpha\delta}$	
	 Box \!\	D'Alembertian, wave operator non-Euclidean Laplacian vector calculus	It is the generalisation of the Laplace operator in the sense that it is the differential operator which is invariant under the isometry group of the underlying space and it reduces to the Laplace operator if restricted to time independent functions.	$\Box = rac{1}{c^2}rac{\partial^2}{\partial t^2} - rac{\partial^2}{\partial x^2} - rac{\partial^2}{\partial y^2} - rac{\partial^2}{\partial z^2}$

Letter-based symbols

Includes upside-down letters.

Letter modifiers

Also called diacritics.

	Combal	Name		
Symbol in HTML		Read as	Explanation	Examples
		Category		
		mean		
		overbar; bar	$\overline{\boldsymbol{x}}$ (often read as "x bar") is the <u>mean</u> (average value of $\boldsymbol{x_i}$).	$x = \{1, 2, 3, 4, 5\}; \bar{x} = 3.$
		statistics		
		finite sequence, tuple		
		finite sequence, tuple	\overline{a} means the finite sequence/tuple (a_1,a_2,\ldots,a_n) .	$\overline{a} := (a_1, a_2, \ldots, a_n).$
		model theory		
_	_	algebraic		

<u>a</u>	a \bar{a}	algebraic closure of field theory	$\overline{m{F}}$ is the algebraic closure of the fieldF.	The field of algebraic numbers is sometimes denoted as $\overline{\!\boldsymbol{Q}}\!$ because it is the algebraic closure of the ational numbers $\!\boldsymbol{Q}\!$.
		complex conjugate	\overline{z} means the complex conjugate ofz.	
		conjugate	(z* can also be used for the conjugate of z, as	$\overline{3+4i}=3-4i.$
		complex numbers	described above.)	
		topological closure	$\overline{m{s}}$ is the topological closure of the setS.	
		(topological) closure of	This may also be denoted ascl(S) or Cl(S).	In the space of the real numbers, $\overline{\mathbf{Q}} = \mathbb{R}$ (the rational numbers are <u>dense</u> in the real numbers).
		topology		
	<u> </u>	vector		
\overline{a}	\overset{\rightharpoonup}	harpoon		
	{a}	linear algebra		
		unit vector	â (pronounced "a hat") is thenormalized version	
		hat	of vector a , having length 1.	
â	â	geometry		
d	\hat a	estimator	â ia dan antimate and a national after the	The estimator $\hat{\mu} = \frac{\sum_i x_i}{n}$ produces a sample estimate $\hat{\mu}(\mathbf{x})$ for
			$\hat{\boldsymbol{\theta}}$ is the estimator or the estimate for the parameter $\boldsymbol{\theta}$.	, ,,,
		statistics	•	the mean μ .
		derivative	f'(x) means the derivative of the function at the	
,	,	prime;	point x , i.e., the slope of the tangent to f at x .	If $f(x) := x^2$, then $f'(x) = 2x$.
-	'	derivative of	(The single-quote character is sometimes used	111(A) A , UICIII (A) - ZA.
		calculus derivative	instead, especially in ASCII text)	
			A construction of the state of	
•		dot; time	\dot{x} means the derivative of x with respect to time.	If $x(t) := t^2$, then $\dot{x}(t) = 2t$.
_	\dot{}	derivative of	That is $\dot{x}(t) = \frac{\partial}{\partial t}x(t)$.	11.7(t) t , alon 2(t) - 2t .
		calculus		

Symbols based on Latin letters

		Name			
Symbol	Symbol	Read as			
in <u>HTML</u>	in <u>TeX</u>	Category	Explanation	Examples	
		universal quantification			
∀ \forall		for all; for any; for each; for every	$\forall x, P(x) \text{ means } P(x) \text{ is true for all } x.$	$\forall n \in \mathbb{N}, n^2 \ge n.$	
		predicate logic			
B	B	boolean domain			
\mathbb{B}		B; the (set of) boolean values; the (set of) truth values;	$\mathbb B$ means either {0, 1}, {false, true}, {FT}, or $\big\{\bot, \top\big\}.$	$(\neg False) \in \mathbb{B}$	
<u>B</u>	\mathbf{B}	set theory, boolean algebra			
\mathbb{C}	${f C}$ \mathbb{C}	complex numbers C;	\mathbb{C} means $\{a+b\ i: a,b\in\mathbb{R}\}.$	$i = \sqrt{-1} \in \mathbb{C}$	
<u>C</u>	C \mathbf{C}	the (set of) complex numbers numbers	, ,		
c	¢ ∖mathfrak c	cardinality of the continuum cardinality of the continuum; c; cardinality of the real numbers set theory	The cardinality of $I\!\!R$ is denoted by $ I\!\!R $ or by the symbol c (a lowercase Fraktur letter C).	c = 🗓	
		partial derivative			
		partial;	$\partial f/\partial x_i$ means the partial derivative off with respect to x_i , where f is a function on $(x_1,,x_n)$.	If $f(x,y) := x^2y$, then $\partial f/\partial x = 2xy$,	
		calculus			
<u></u>	∂ ∖partial	boundary boundary of	∂M means the boundary of M	$\partial \{x : x \le 2\} = \{x : x = 2\}$	
		topology			
		degree of a polynomial	∂f means the degree of the polynomial.		
		degree of	(This may also be writtended f)	$\partial(x^2-1)=2$	
		algebra	(This may also be writtendeg f.)		
E	Œ ∖mathbb E	expected value	the value of a random variable one would "expect" to find if one		
_	(macribb L	expected value	could repeat the random variable process an infinite number of	$\mathbb{E}[X] = \frac{x_1p_1 + x_2p_2 + \cdots + x_kp_k}{p_1 + p_2 + \cdots + p_k}$	
E	E \mathrm{E}	probability theory	times and take the average of the values obtained	$p_1+p_2+\cdots+p_k$	

23/02/2018			List of mathematical symbols - wikipedia		
∃	\exists 	there exists; there is; there are predicate logic	$\exists x: P(x)$ means there is at least onex such that $P(x)$ is true.	$\exists n \in \mathbb{N}$: <i>n</i> is even.	
∃!	∃! \exists!	uniqueness quantification there exists exactly one predicate logic	$\exists ! x: P(x)$ means there is exactly onex such that $P(x)$ is true.	$\exists ! \ n \in \mathbb{N}: n+5=2n.$	
\in	€	set membership		(4.0)-1 = 0.	
	\in	is an element of; is not an element of	$a \in S$ means a is an element of the setS; $[^{15]}$ $a \notin S$ means a is not an element of S . $[^{15]}$	$(1/2)^{-1} \in \mathbb{N}$	
∉	∉ \notin	everywhere, set theory		2 ⁻¹ ∉ ℕ	
,	(IIOCIII	set membership			
∌	∌ \not\ni	does not contain as an element set theory	$S \not\ni e$ means the same thing ase $\not\in S$, where S is a set and e is not an element of S .		
		such that symbol	often abbreviated as "s.t."; : and are also used to abbreviate "such that". The use of∋ goes back to early mathematical logic		
		such that	and its usage in this sense is declining. The symbob ("back	Choose $x \ni 2 x$ and $3 x$. (Here is used in the sense of "divides".)	
\exists	∋ \ni	mathematical logic	epsilon") is sometimes specifically used for "such that" to avoid confusion with set membership.	,	
	(112	set membership contains as an element	$S \ni e$ means the same thing ase $\in S$, where S is a set and e is an element of S .		
		set theory			
H	Ⅲ \mathbb{H}	quaternions or Hamiltonian quaternions			
		H;	\mathbb{H} means $\{a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}: a,b,c,d \in \mathbb{R}\}.$		
<u>H</u>	H \mathbf{H}	the (set of) quaternions numbers			
			N means either { 0, 1, 2, 3,} or { 1, 2, 3,}.		
			The choice depends on the area of mathematics being studied;		
N	N \mathbb{N}	natural numbers	e.g. number theorists prefer the latter; analysts, set theorists and		
	N N	the (set of) natural numbers	computer scientistsprefer the former. To avoid confusion, always check an author's definition of N .	$\mathbb{N} = \{ a : a \in \mathbb{Z}\} \text{ or } \mathbb{N} = \{ a > 0 : a \in \mathbb{Z}\}$	
<u>N</u>	\mathbf{N}	numbers			
			denote the set of natural numbers (including zero), along with the standard ordering relations.		
		Hadamard product	For two matrices (or vectors) of the same dimensions	F3 F3 F3	
0	o \circ	entrywise product	$A, B \in \mathbb{R}^{m \times n}$ the Hadamard product is a matrix of the same dimensions $A \circ B \in \mathbb{R}^{m \times n}$ with elements given by	$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \circ \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix}$	
	(611.6	linear algebra		ני יון ני טן ני טן	
	0	function composition	$f \circ g$ is the function such that $\mathbf{f} \circ g(x) = f(g(x))$. ^[22]	if $f(x) := 2x$, and $g(x) := x + 3$, then (f	
o	\circ	composed with		$\circ g)(x) = 2(x + 3).$	
		set theory			
О	o	Big O notation big-oh of	The Big O notation describes the limiting behavior of a function,	If $f(x) = 6x^4 - 2x^3 + 5$ and $g(x) = x^4$,	
	0	Computational complexity theory	when the argument tends towards a particular value o <u>infinity</u> .	then $f(x) = O(g(x))$ as $x \to \infty$	
	Ø				
Ø	\empty	empty set			
	ø \varnothing	the empty set null set	\varnothing means the set with no elements $^{[15]}$ { } means the same.	$\{n \in \mathbb{N} : 1 < n^2 < 4\} = \emptyset$	
{ }	│	set theory			
	\{\\}				
		set of primes P;			
		the set of prime numbers	P is often used to denote the set of prime numbers.	$2 \in \mathbb{P}, 3 \in \mathbb{P}, 8 \notin \mathbb{P}$	
		arithmetic			
		projective space P;			
		the projective space;	${\mathbb P}$ means a space with a point at infinity	$\mathbb{P}^1.\mathbb{P}^2$	
\mathbb{P}	₽ \mathbb{P}	the projective line; the projective plane		= / -	
		topology			
<u>P</u>	P \mathbf{P}	probability	$\mathbb{P}(X)$ means the probability of the eventX occurring.	If a fair coin is flipped, ℙ(Heads) =	
		the probability of probability theory	This may also be written as $P(X)$, $P(X)$, $P[X]$ or $Pr[X]$.	P(Tails) = 0.5.	
		produbility triebly		The power set P({0, 1, 2}) is the set	
		Power set	Given a set S, the power set of S is the set of all subsets of the set S. The power set of S0 is	of all subsets of {0, 1, 2}. Hence,	
		the Power set of	denoted by P(S).	$P(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}\}$	
		Powerset		{0, 2}, {1, 2}, {0, 1, 2} }.	
\Box	Q	rational numbers		3.14000 ∈ ℚ	
\mathbb{Q}	\mathbb{Q}	Q;	□ moons (n/a : n ∈ ℤ α ⊆ №)	π ∉ ℚ	
0	Q	the (set of) rational numbers; the rationals	\mathbb{Q} means $\{p q:p\in\mathbb{Z},q\in\mathbb{N}\}.$		
Q	\mathbf{Q} numbers				
\mathbb{R}	R	real numbers		$\pi \in \mathbb{R}$	
""	\mathbb{R}	R; the (set of) real numbers;	${\mathbb R}$ means the set of real numbers.	√(-1) ∉ ℝ	
R	R \mathbf{R}	the reals			
	\mu chu i \text{IV}	numbers			
		conjugate transpose conjugate transpose;			
†	†	adjoint;	A [†] means the transpose of the complex conjugate of A. ^[23]	If $A = (a_{ij})$ then $A^{\dagger} = (\overline{a_{ij}})$.	
_	{}^\dagger	Hermitian adjoint/conjugate/transpose/dagger	. This may also be written A^{*T} , A^{T*} , A^* , \overline{A}^T or $\overline{A}^{\overline{T}}$.	37 370.	
		matrix operations			

	, 02, 2020			List of mathematical symbols Wikipedia		
	- T	т	transpose	A^{T} means A , but with its rows swapped for columns.	_	
	T	{}^{T}	transpose	The state of the s	If $A = (a_{ij})$ then $A^T = (a_{ji})$.	
-			matrix operations	This may also be writtenA', A ^t or A ^{tr} .		
			the top element	⊤ means the largest element of a lattice.	$\forall x : x \ v \ \top = \top$	
	_	Т	lattice theory	i means the largest element of a lattice.	VX . X V 1 = 1	
	<u>T</u>	\top	top type			
			the top type; top	T means the top or universal type; every type in the <u>ype system</u> of interest is a subtype of top.	\forall types T , $T <: \top$	
		type theory		of filterest is a subtype of top.		
			perpendicular	$x \perp y$ means x is perpendicular to y; or more generally x is	If $l \perp m$ and $m \perp n$ in the plane,	
			is perpendicular to	orthogonal to y.	then $I \parallel n$.	
			geometry			
			orthogonal complement	Will are seen the continuous learning and a Market are William		
			orthogonal/ perpendicular complement of;	W^{\perp} means the orthogonal complement of W (where W is a subspace of the inner product space V), the set of all vectors in V	Within \mathbb{R}^3 , $(\mathbb{R}^2)^{\perp} \cong \mathbb{R}$.	
			perp	orthogonal to every vector inW.	,	
			linear algebra			
			coprime		34 <u>1</u> 55	
			is coprime to number theory	$x \perp y$ means x has no factor greater than 1 in common withy.	34 ± 55	
				$A \perp B$ means A is an event whose probability is independent of		
		1	is independent of	event B. The double perpendicular symbol (LL) is also commonly	If $A \perp B$, then $P(A B) = P(A)$.	
		\bot	probability	used for the purpose of denoting this, for instance $A \perp \!\!\! \perp B$ (In LaTeX, the command is: "A \perp\\\\\\perp B.")	17 ± B, ticil <u>i (4B)</u> = 1 (4).	
			bottom element	Earlest, the command is. At perpetatiperp 2.7		
			the bottom element	\perp means the smallest element of a lattice.	$\forall x : x \land \bot = \bot$	
			lattice theory			
			bottom type			
			the bottom type;	\perp means the bottom type (a.k.a. the zero type or empty type);	\forall types T , $\bot <: T$	
			bot type theory	bottom is the subtype of every type in the system.		
			туре шеогу		$\{e, \pi\} \perp \{1, 2, e, 3, \pi\}$ under set	
			comparability		containment.	
			is comparable to order theory	$x \perp y$ means that x is comparable toy.		
	\mathbb{U}	U ∖mathbb{U}	all numbers being considered	U means "the set of all elements being considered." It may represent all numbers both real and complex, or any subset	$\mathbb{U} = \{\mathbb{R}, \mathbb{C}\}$ includes all numbers.	
		/macribb(o)	U;	of these—hence the term "universal".	If instead, $\mathbb{U} = \{\mathbb{Z}, \mathbb{C}\}$, then $\pi \notin \mathbb{U}$.	
	U	U	the universal set;			
		\mathbf{U}	the set of all numbers; all numbers considered			
			set theory			
ľ		U \cup	set-theoretic union			
	U		the union of or;	$A \cup B$ means the set of those elements which are either in A, or in	$A \subseteq B \Leftrightarrow (A \cup B) = B$ $\{x \in \mathbb{R} : x^2 = 1\} \cap \mathbb{N} = \{1\}$	
	_		union set theory	B, or in both. ^[13]		
ŀ			set-theoretic intersection			
	\cap		intersected with;	$A \cap B$ means the set that contains all those elements that A and B		
	11	\cap	intersect	have in common. ^[13]	(x C 10 . x - 1) 11 10 - (1)	
-			set theory logical disjunction or join in a			
			lattice	The statement $A \lor B$ is true if A or B (or both) are true; if both are		
	v	, V	or;	false, the statement is false.	$n \ge 4$ V $n \le 2 \Leftrightarrow n \ne 3$ when n is a	
	•	\or	max; join	For functions $A(x)$ and $B(x)$, $A(x) \vee B(x)$ is used to mean max($A(x)$,	natural number.	
			propositional logic, lattice theory	B(x)).		
			logical conjunction or meet in a	The statement A & B is true if A and B are both true; also it is		
			lattice	The statement $A \land B$ is true if A and B are both true; else it is false.	$n < 4 \land n > 2 \Leftrightarrow n = 3 \text{ when } n \text{ is a}$	
			and; min;	For functions $A(x)$ and $B(x)$, $A(x)$ \wedge $B(x)$ is used to mean min($A(x)$,	$n < 4 \text{ h } n > 2 \Leftrightarrow n = 3 \text{ when } n \text{ is a }$ natural number.	
	Λ	. ^ .	meet	B(x)). B(x)).		
	^	\and	propositional logic lattice theory			
			wedge product;	$u \wedge v$ means the wedge product of any multivectors u and v . In		
			exterior product	three-dimensional Euclidean space the wedge product and the cross product of two vectors are each other's Hodge dual.	$u \wedge v = *(u \times v) \text{ if } u, v \in \mathbb{R}^3$	
			exterior algebra			
			multiplication	3×4 means the multiplication of 3 by 4.		
			times; multiplied by	(The symbol* is generally used in programming languages, where	7 × 8 = 56	
			arithmetic	ease of typing and use of ASCII text is preferred.)		
			Cartesian product	$X \times Y$ means the set of allordered pairs with the first element of		
			the Cartesian product of and; the direct product of and	each pair selected from X and the second element selected from	$\{1,2\} \times \{3,4\} = \{(1,3),(1,4),(2,3),(2,4)\}$	
	×	×	set theory	Y.	(-, '/)	
		\times	cross product		(4.0.5) (0.4.5)	
			cross	$\boldsymbol{u}\times\boldsymbol{v}$ means the cross product of $\underline{vectors}\;\boldsymbol{u}$ and \boldsymbol{v}	$(1,2,5) \times (3,4,-1) =$ (-22, 16, -2)	
			linear algebra		· · · · =/	
			group of units	R ^x consists of the set of units of the ringR, along with the	(7/57)× _ [[1] [0] [9] [4]]	
			the group of units of	operation of multiplication.	$(\mathbb{Z}/5\mathbb{Z})^{\times} = \{[1], [2], [3], [4]\}$ $\cong \mathbf{C}_4$	
			ring theory	This may also be written R^* as described below or $U(R)$.	— - -	
			tensor product, tensor product of		{1, 2, 3, 4} ⊗ {1, 1, 2} =	
	8	⊗ \otimes	tensor product of	$V \otimes U$ means the tensor product of V and U . [24] $V \otimes_R U$ means the tensor product of modules V and U over the ring R .	{{1, 1, 2}, {2, 2, 4}, {3, 3, 6}, {4, 4,	
		/OCTING2	linear algebra	·	8}}	
-				$N \rtimes_{\mathfrak{O}} H$ is the semidirect product of N (a normal subgroup) and H		
			semidirect product	(a subaroun), with respect to ω . Also, if $G = N \rtimes_{\infty} H$, then G is said		
٠+	nc·//en w	ikinadia ara/wiki	/List of mathematical sy	mhole		

0-,-0-0				
×	⋉ \ltimes	the semidirect product of group theory	to split over <i>N</i> . (× may also be written the other way round, as×, or as ×.)	$D_{2n}\cong \mathbf{C}_n\rtimes \mathbf{C}_2$
×	∦ \rtimes	semijoin the semijoin of relational algebra	$R \ltimes S$ is the semijoin of the relations R and S , the set of all tuples in R for which there is a tuple in S that is equal on their common attribute names.	$R \ltimes S = \mathbf{II}_{a_1,,a_n}(R \bowtie S)$
×	⋈ \bowtie	the natural join of relational algebra	$R\bowtie S$ is the natural join of the relations R and S , the set of all combinations of tuples in R and S that are equal on their common attribute names.	
ℤ Z	<pre>Z \mathbb{Z} Z \mathbf{Z}</pre>	integers the (set of) integers numbers	$\label{eq:substitute} \begin{split} \mathbb{Z} \mbox{ means } \{, -3, -2, -1, 0, 1, 2, 3,\}. \\ \mathbb{Z}^+ \mbox{ or } \mathbb{Z}^> \mbox{ means } \{1, 2, 3,\}. \\ \mathbb{Z}^\ge \mbox{ means } \{0, 1, 2, 3,\}. \\ \mathbb{Z}^* \mbox{ is used by some authors to mean } \{0, 1, 2, 3,\}^{[25]} \mbox{ and others to mean } \{2, -1, 1, 2, 3,\}^{[26]} \ . \end{split}$	$\mathbb{Z} = \{p, -p : p \in \mathbb{N} \cup \{0\}\}$
\mathbb{Z}_n \mathbb{Z}_p	$\mathbf{Z_n}$ \mathbb{Z}_n $\mathbf{Z_p}$ \mathbb{Z}_p	integers mod n the (set of) integers modulon numbers	\mathbb{Z}_n means {[0], [1], [2],[n -1]} with addition and multiplication modulo n . Note that any letter may be used instead of n , such as p . To avoid confusion with p -adic numbers, use $\mathbb{Z}/p\mathbb{Z}$ or $\mathbb{Z}/(p)$ instead.	$\mathbb{Z}_3 = \{[0], [1], [2]\}$
\mathbf{Z}_n \mathbf{Z}_p	$egin{array}{c} \mathbf{Z_n} \\ \text{\ \ } \mathbf{Z_p} \end{array}$	p-adic integers the (set of) p-adic integers numbers	Note that any letter may be used instead of p, such as n or l.	

Symbols based on Hebrew or Greek letters

Cumbel	Cumbal	Name			
Symbol in HTML	Symbol in TeX	Read as	Explanation	Examples	
<u></u>	<u>10x</u>	Category			
		aleph number			
*	\ \aleph	aleph	\aleph_{α} represents an infinite cardinality (specificallythe α -th one, where α is an ordinal).	$ \mathbb{N} = \aleph_0$, which is called aleph-null.	
	(асери		,		
_	ק ב		⊐ _α represents an infinite cardinality (similar toX, but ⊐ does	- 1-6-31 N	
	\beth	beth set theory	not necessarily index all of the numbers indexed by.).	$\beth_1 = P(\mathbb{N}) = 2^{\aleph_0}$.	
		Dirac delta			
		function	$\delta(x) = egin{cases} \infty, & x = 0 \ 0, & x eq 0 \end{cases}$	$\delta(x)$	
		Dirac delta of		(4,7)	
		hyperfunction Kronecker			
		delta	(1 :-:		
	_	Kronecker	$\delta_{ij} = egin{cases} 1, & i=j \ 0, & i eq j \end{cases}$	δ_{ij}	
δ	δ ∖delta	delta of hyperfunction	, , , ,		
		Functional			
		derivative	$\left\langle rac{\delta F[arphi(x)]}{\delta arphi(x)}, f(x) ight angle = \int rac{\delta F[arphi(x)]}{\delta arphi(x')} f(x') dx'$	$egin{aligned} rac{\delta V(r)}{\delta ho(r')} = rac{1}{4\pi\epsilon_0 r-r' } \end{aligned}$	
		Functional	$=\lim rac{F[arphi(x)+arepsilon f(x)]-F[arphi(x)]}{F[arphi(x)+arphi(x)]}$		
		derivative of Differential	$\stackrel{-}{\underset{\varepsilon o 0}{\lim}}$ ε		
		operators	$F[\varphi(x)] + \varepsilon f(x) - F[\varphi(x)]$ $= \lim_{\varepsilon \to 0} \frac{f[\varphi(x)] + \varepsilon f[\varphi(x)]}{\varepsilon}$ $= \frac{d}{d\epsilon} F[\varphi + \epsilon f]\Big _{\epsilon = 0}.$		
Δ	Δ				
Δ	\vartriangle		$A \Delta B$ (or $A \ominus B$) means the set of elements in exactly one of A or B . (Not to be confused with delta Δ , described below)	$\{1,5,6,8\} \Delta \{2,5,8\} = \{1,2,6\}$ $\{3,4,5,6\} \ominus \{1,2,5,6\} = \{1,2,3,4\}$	
Θ	ψ	difference			
Ū	\ominus	difference			
⊕	⊕ \oplus	set theory			
	(optus	dalka	Δx means a (non-infinitesimal) change inx.		
		delta delta;	, , , , ,	$\frac{\Delta y}{\Delta z}$ is the gradient of a straight line.	
		change in	(If the change becomes infinitesimal δ and even d are used instead. Not to be confused with the symmetric difference,		
Δ	Δ	calculus	written Δ, above.)		
Δ	\Delta	Laplacian			
		Laplace operator	The Laplace operator is a second order differential operator	If f is a twice-differentiable real-valued function then the Laplacian	
		vector	in n-dimensional <u>Euclidean space</u>	of f is defined by $\Delta f = \nabla^2 f = \nabla \cdot \nabla f$	
		calculus gradient			
		del;			
		nabla; gradient of	$\nabla f(\mathbf{x}_1,, \mathbf{x}_n)$ is the vector of partial derivatives $\partial f / \partial \mathbf{x}_1,, \partial f / \partial \mathbf{x}_n$.	If $f(x,y,z) := 3xy + z^2$, then $\nabla f = (3y, 3x, 2z)$	
		vector	orrong.		
		calculus			
	1	divergence			
∇	▽	del dot;			

.5/02/2010			List of mathematical symm	7015 Willipedia
		vector calculus	ox oy oz	
		curl of vector calculus	$egin{aligned} abla imes ec{v} &= \left(rac{\partial v_z}{\partial y} - rac{\partial v_y}{\partial z} ight)\mathbf{i} \ &+ \left(rac{\partial v_x}{\partial z} - rac{\partial v_z}{\partial x} ight)\mathbf{j} + \left(rac{\partial v_y}{\partial x} - rac{\partial v_x}{\partial y} ight)\mathbf{k} \end{aligned}$	If $ec{v}:=3xy\mathbf{i}+y^2z\mathbf{j}+5\mathbf{k}$, then $ abla imesec{v}=-y^2\mathbf{i}-3x\mathbf{k}$.
		Pi pi; 3.1415926; ≈355÷113 mathematical constant	Used in various formulasinvolving circles; π is equivalent to the amount of area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14159. It is also the ratio of the circumference to the diameter of a circle.	$\underline{A} = \pi \underline{R}^2 = 314.16 \rightarrow R = 10$
π	π \pi	projection Projection of relational algebra	$\pi_{a_1,\dots,a_n}(R)$ restricts R to the $\{a_1,\dots,a_n\}$ attribute set.	$\pi_{ m Age, Weight}({ m Person})$
		Homotopy group the nth Homotopy group of Homotopy theory	$\pi_n(X)$ consists of homotopy equivalence classes of base point preserving maps from an n-dimensional sphere (with base point) into the pointed space X.	$\pi_i(S^4) = \pi_i(S^7) \oplus \pi_{i-1}(S^3)$
П	∏ \prod	product over from to of arithmetic	$\prod_{k=1}^n a_k$ means $a_1 a_2 \dots a_n$.	$\prod_{k=1}^{4} (k+2) = (1+2)(2+2)(3+2)(4+2) = 3 \times 4 \times 5 \times 6 = 360$
		Cartesian product the Cartesian product of; the direct product of set theory	$\prod_{i=0}^{n} Y_{i} \text{ means the set of all}(\underline{n+1})\text{-tuples}$ $(y_{0},,y_{n}).$	$\prod_{n=1}^{3} \mathbb{R} = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^{3}$
Ц	II \coprod	coproduct coproduct over from to of category theory	A general construction which subsumes the disjoint union of sets and of topological spaces the free product of groups and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism.	
σ	σ \sigma	Selection Selection of relational algebra	The selection $\sigma_{a\theta b}(R)$ selects all those <u>tuples</u> in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v .	$\sigma_{\mathrm{Age} \geq 34}(\mathrm{Person}) \ \sigma_{\mathrm{Age} = \mathrm{Weight}}(\mathrm{Person})$
Σ	\sum	summation sum over from to of arithmetic	$\sum_{k=1}^n a_k$ means $a_1+a_2+\cdots+a_n$.	$\sum_{k=1}^{4} k^2 = 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30$

Variations

In mathematics written in Persian or Arabic, some symbols may be reversed to make right-to-left writing and reading easie [27]

See also

- Greek letters used in mathematics, science, and engineering
- Diacritic
- $\begin{tabular}{l} \blacksquare & \underline{\sf ISO 31-11} \end{tabular} \begin{tabular}{l} \textbf{(Mathematical signs and symbols for use in physical sciences and technology)} \end{tabular}$
- Latin letters used in mathematics
- List of mathematical abbreviations
- List of mathematical symbols by subject
- Mathematical Alphanumeric Symbols (Unicode block)
- Mathematical constants and functions
- Mathematical notation
- Mathematical operators and symbols in Unicode
- Notation in probability and statistics
- Physical constants
- Table of logic symbols
- Table of mathematical symbols by introduction date
- Typographical conventions in mathematical formulae

References

- "LaTeX/Mathematics" (https://en.wikibooks.org/wiki/LaTeX/Mathematics). Wikibooks.

 Retrieved 18 November 2017
- "The Comprehensive LATEX Symbol List" (http://www.math.boun.edu.tr/instructors/gurel/symbols-a4.pdf) (PDF). p. 15. Retrieved 16 November 2017. "Because of the lack of notational consensus, it is probably better to spell out "Contradiction!" than to use asymbol for this purpose."
- 3. Cook, John. "Unicode / LaTeX conversion" (https://www.johndcook.com/unicode_late x.html). John Cook Consulting Retrieved 18 November 2017.
- "LaTeX/Special Characters"
 (https://en.wikibooks.org/wiki/LaTeX/Special_Characters). Wikibooks. Retrieved
- Nielsen, Michael A Chuang, Isaac L (2000), Quantum Computation and Quantum Information, New York: Cambridge University Press p. 66, ISBN 0-521-63503-9.
 OCLC 43641333 (https://www.worldcat.org/oclc/43641333)
- 15. Goldrei, Derek (1996), *Classic Set Theory*, London: <u>Chapman and Hall</u> p. 3, <u>ISBN 0-412-60610-0</u>
- 16. "Expectation Value" (http://mathworld.wolfram.com/Expectation Value.html).

 http://mathworld.wolfram.com/
 Retrieved 2017-12-02. External link in | website=(help)
- Nielsen, Michael A Chuang, Isaac L (2000), Quantum Computation and Quantum Information, New York: Cambridge University Press p. 62, ISBN 0-521-63503-9, OCLC 43641333 (https://www.orldcat.org/oclc/43641333)

- TO MOVELLINE LANT 1.
- "lunicode Tex Command" (https://tutorialsbayorg/tex_commands/unicode.html). TutorialsBay. Retrieved 18 November 2017.
- "Unicode characters in pdflatex output using hexcode without UTF-8 input(https://tex.stackexchange.com/questions/89796/unicode-characters-in-pdflatex-output-using-hexcode-without-utf-8-input) Tex Stack Exchange Retrieved 18 November 2017.
- "fontenc vs inputenc" (https://tex.stackexchange.com/questions/44694/fontenc-vs-inputenc#44699)
 TeX Stack Exchange Retrieved 18 November 2017.
- "pdflatex crashes when Latex code includes \unicode\{f818\} and \unicode\{f817\} and how to handle it" (https://tex.stackexchange.com/questions/192626/pdflatex-crashes-when-latex-code-includes-unicodef818-and-unicodef817-and) TeX Stack Exchange Retrieved 18 November 2017.
- 9. "Math is Fun website" (http://www.mathsisfun.com/geometry/symbds.html).
- 10. Rónyai, Lajos (1998), Algoritmusok (Algorithms), TYPOTEX, ISBN 963-9132-16-0
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T(2002). "A fast and elitist multiobjective genetic algorithm: NSGA-II". IEEE Transactions on Evolutionary Computation. 6 (2): 182. doi:10.1109/4235.996017 (https://doi.org/10.1109%2F4235.996017)
- 12. Copi, Irving M.; Cohen, Carl (1990) [1953], "Chapter 8.3: Conditional Statements and Material Implication", Introduction to Logic (8th ed.), New York: Macmillan Publishers (United States), pp. 268–269, ISBN 0-02-325035-6, LCCN 89037742 (https://lccn.loc.gov/89037742)
- 13. Goldrei, Derek (1996), Classic Set Theory, London: Chapman and Hall p. 4, ISBN 0-412-60610-0

- Berman, Kenneth A; Paul, Jerome L. (2005) Algorithms: Sequential, Parallel, and Distributed, Boston: Course Technology, p. 822, ISBN 0-534-42057-5
- "Parallel Symbol in TeX" (https://groups.google.com/forum/#!msg/mathjax-users/r7rO-PDOtgc/gllzD-NtOl0J) Google Groups Retrieved 16 November 2017.
- "Math symbols defined by La®X package «smaryrd»" (http://milde.users.sourceforg e.net/LUCR/Math/mathpackages/stmaryrd-symbols.pdf)PDF). Retrieved 16 November 2017.
- 21. "Answer to Is there a "contradiction" symbol in some font, somewhere?(https://tex.st ackexchange.com/a/28201/143781) TeX Stack Exchange Retrieved 16 November 2017.
- 22. Goldrei, Derek (1996), Classic Set Theory, London: Chapman and Hall p. 5, ISBN 0-412-60610-0
- Nielsen, Michael A Chuang, Isaac L (2000), Quantum Computation and Quantum Information, New York: Cambridge University Press pp. 69–70, ISBN 0-521-63503-9.
 OCLC 43641333 (https://www.worldcat.org/oclc/43641333)
- Nielsen, Michael A Chuang, Isaac L (2000), Quantum Computation and Quantum Information, New York: Cambridge University Press pp. 71–72, ISBN 0-521-63503-9.
 OCLC 43641333 (https://www.worldcat.org/oclc/43641333)
- 25. Z^* from Wolfram MathWorld (http://mathworld.wolfram.com/Z-Starhtml)
- LK Turner, FJ BUdden, D Knighton, "Advanced Mathematics", Book 2, Longman 1975.
- M. Benatia, A. Lazrik, and K. Sami, Arabic mathematical symbols in Unicode(http://www.ucam.ac.ma/fssm/rydarab/doc/expose/uicodeme.pdf)*, 27th Internationalization and Unicode Conference, 2005.

External links

- The complete set of mathematics Unicode characters(http://krestavilis.com/math.php)
- Jeff Miller: Earliest Uses of Various Mathematical Symbols (http://jeff560.tripod.com/mathsym.html)
- Numericana: Scientific Symbols and Icons(http://www.numericana.com/answer/symbolhtm)
- GIF and PNG Images for Math Symbols(http://us.metamath.org/symbols/symbols.html)
- Mathematical Symbols in Unicode(http://tlt.psu.edu/suggestions/international/bylanguage/math.html#browsers)
- Using Greek and special characters from Symbol font in HTMI(http://www.alanwood.net/demos/symbol.html)
- DeTeXify handwritten symbol recognition(http://detexify.kirelabs.org/classifyhtml) doodle a symbol in the box, and the program will tell you what its name is
- Handbook for Spoken Mathematics(http://web.efzg.hr/dok/MAT/vkojic/Larrys_speakeasy.pdf) pronunciation guide to many commonly used symbols

Some Unicode charts of mathematical operators and symbols:

- Index of Unicode symbols(http://www.unicode.org/charts/#symbols)
- Range 2100–214F: Unicode Letterlike Symbols(http://www.unicode.org/charts/PDF/U2100.pdf)
- Range 2190-21FF: Unicode Arrows(http://www.unicode.org/charts/PDF/U2190.pdf)
- Range 2200-22FF: Unicode Mathematical Operator (http://www.unicode.org/charts/PDF/U2200.pdf)
- Range 27C0-27EF: Unicode Miscellaneous Mathematical Symbols-Ahttp://www.unicode.org/charts/PDF/U27C0.pdf)
- Range 2980–29FF: Unicode Miscellaneous Mathematical Symbols—Rhttp://www.unicode.org/charts/PDF/U2980.pdf)
- Range 2A00–2AFF: Unicode Supplementary Mathematical Operator (http://www.unicode.org/charts/PDF/U2A00.pdf)

Some Unicode cross-references:

- Short list of commonly used LaTeX symbols (http://www.artofproblemsolving.com/Wiki/in@x.php/LaTeX:Symbols) and Comprehensive LaTeX Symbol List (https://web.archive.org/web/20090323063515/http://mirrors.med.harvard.edu/ctan/info/symbols/comprehensive/)
- Unicode values and MathML names(http://www.w3.org/TR/REC-MathML/chap6bycodes.html)
- Unicode values and Postscript names(http://svn.ghostscript.com/ghostscript/branches/gs-db/Resource/Decoding/Unicod

)om the source code forGhostscript

Retrieved from 'https://en.wikipedia.org/w/index.php?title=List_of_mathematical_symbols&oldid=824903061

This page was last edited on 10 February 2018, at 06:40.

Text is available under the Creative Commons Attribution-ShareAlike Licenseadditional terms may apply By using this site, you agree to the Terms of Use and Privacy Policy Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.