Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

IND/STA

1984 CROP

DURUM WHEAT QUALITY REPORT

Physical, Chemical, Milling, and Spaghetti Characteristics

United States Department of Agriculture
Agricultural Research Service
North Central Region

Source:

Spring and Durum Wheat Quality Laboratory USDA, Agricultural Research Service Harris Hall, N.D.S.U. Fargo, North Dakota 58105

UNITED STATES DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE in cooperation with STATE AGRICULTURAL EXPERIMENT STATIONS

QUALITY EVALUATION OF DURUM WHEAT VARIETIES

1984 CROP1/

by

R. D. Crawford, A. A. Ottenbacher, M. A. Dregseth, Technicians, J. E. Wohlman, Secretary, Agricultural Research Service; 2/ L. L. Nolte and M. Skunberg, Technicians, NDSU; 3/ Wallace H. Kunerth, Res. Chemist and V. L. Youngs, Research Leader.2/

This report was compiled by the Agricultural Research Service, U. S. Department of Agriculture. Special acknowledgment is made to the North Dakota State University for their facilities and services provided in support of these studies. The report is not intended for publication and should not be referred to in literature citations or quoted in publicity or advertising. Use of the data may be granted for certain purposes upon written request to the agency or agencies involved. Cooperators submitting samples for analysis have been given analytical data on their samples prior to release of this report.

This is a progress report of cooperative investigations containing some results that have not been sufficiently confirmed to justify general release; interpretations may be modified with additional experimentation. Confirmed results will be published through established channels. The report is primarily a tool for use of cooperators and their official staffs and to those persons having direct and special interest in the development of agricultural research programs.

^{2/} Hard Red Spring & Durum Wheat Quality Lab., NDSU.

^{3/} Dept. of Cereal Science & Food Technology, NDSU.

TABLE OF CONTENTS

Contents	Page No.
Introduction	3
Source of the Samples	5 & 6
Methods	7
Flow Diagram for Small Durum Wheat Samples	10
Discussion	15
Experimental Results - 1984 Crop	18 18-23
Western Durum Nursery Samples	24
Field Plot Nursery Samples	25-26
Preliminary Nursery Samples	27 28
1984 Crop Tables No. 1 through No. 24	
Reference Mixograms	

INTRODUCTION

The twenty-first Durum Wheat Quality Report contains data for the 1984 crop. Samples of standard varieties and new strains of durum wheat grown in cooperative experiments in the durum wheat regions of the United States 4/were milled and evaluated by the Hard Red Spring and Durum Wheat Quality Laboratory in cooperation with the Department of Cereal Chemistry and Technology on the campus of North Dakota State University at Fargo, ND. Methods and techniques are described in detail in the text of the report.

All samples received that were large enough to mill on the Buhler experimental mill were processed into spaghetti using the macro spaghetti processing method as described on page 12. A five pound wheat sample is required for the above method. All other samples were milled using the micro procedure and were not processed into spaghetti. Those samples having acceptable kernel characteristics and dust color score, if possible, should be included for macro processing the following year.

The purpose of this report is to make available to cooperators the quality data on standard varieties and new selections of durum wheat from the 1984 crop.

^{4/} Cantrell, R.G. and Brosz, J. Wheat varieties grown in cooperative plot and nursery experiments in the spring wheat region in 1984. Department of Agronomy, North Dakota State University, Fargo, ND.

SOURCE OF THE 1984 CROP SAMPLES

Tests were performed on six hundred three samples from 20 stations and eight states (South Dakota, North Dakota, Montana, Washington, Idaho, Arizona and California) for quality evaluation. However, data on 40 of these samples are not included in this report, because this information was of interest to plant breeders at specific experiment stations only. Data presented in this report are from the Field Plot Nursery, Uniform Regional Nursery, Western Durum Nursery and the Preliminary Nursery.

UNIFORM REGIONAL NURSERY - 210

Selby and Day County - South Dakota Sidney, Conrad and Bozeman - Montana Williston and Carrington Irr. - North Dakota

WESTERN DURUM NURSERY - 51

Royal Slope - Washington Aberdeen - Idaho

FIELD PLOTS - 133

Pinal County, Maricopa County and Mesa - Arizona Kings County, Delta and El Centro - California

PRELIMINARY NURSERY - 169

Tulelake - California

1984 UNIFORM REGIONAL DURUM NURSERY

LIST OF ENTRIES

	· · · · · · · · · · · · · · · · · · · 	Sel. or	Year	
Entry No.	Entry	P.I. No.	Entered	Origin
,	Windum	5296	1020	Minnegota
1	Mindum		1929	Minnesota
2	Rolette	D6517	1968	ND-USDA
3	Ward	D6674	1969	ND-USDA
4	Crosby	D6715	1970	ND-USDA
5	Rugby	D6722	1970	ND-USDA
6	Cando	D7057*	1972	ND-USDA
7	Coulter	DT411	1974	AC, Winnipeg
8 9	Vic	D74112	1976	ND-USDA
	Lloyd	D771*	1978	ND-USDA
10	Medora	DT433	1980	AC, Winnipeg
.11	72114/Ed	D7733	1981	North Dakota
12	71110/Ed	D7798	1981	North Dakota
13	7224/Crosby	D77200*	1981	North Dakota
14	7456/Vic	D793	1981	North Dakota
15	Wsc/Hc	DT371	1982	Univ. of Sask.
16	7224/Cd	D78127*	1982	North Dakota
17	74111/Cd	D78177*	1982	North Dakota
18	77204/7618	D804*	1982	North Dakota
19	7224/Vic	D79168*	1983	North Dakota
20	Ed/Wkm	D79120	1983	North Dakota
21	Ed/Wkm	D79122	1983	North Dakota
22	DT427/Vic	D79103	1983	North Dakota
23	74111/Cd	D79209*	1983	North Dakota
24	764/73121	D79104	1983	North Dakota
25	7463/74110	D7983	1983	North Dakota
26	7456/Vic	D7925	1983	North Dakota
27	7507/Vic	D7958	1983	North Dakota
28	SC6962/SC6965- 494-1	DT375	1983	AC, Swift Current

^{*} Semidwarf

WESTERN REGIONAL DURUM LIST OF ENTRIES

Durox	T8300138
Grandur	T8300140
Irridur	T8300143
Lloyd	T8300146
McKay	T8300147
Modoc	T8300175
Owens	T8300179
Pondera	T8300217
Waid	TL073468
Yavaros 75	TL073471
Yavaros 79	UC560
D79168	WPB-2-10-E
D79209	WPB-803
HD810466	WPB-804
т8300136	WPB-881-4

METHODS

The methods used in the testing of the samples were essentially the same as given in the last report.

Briefly, the following methods and terminologies were applied:

Test Weight Per Bushel - The weight per Winchester bushel of dockage-free wheat.

Thousand Kernel Weight - The 1000 kernel weight was determined by counting the number of kernels in a 10 g sample of cleaned, picked wheat on a Seedburo seed counter5/.

Kernel Size - The percentage of the size of the kernels [large, medium, and small] was determined on a wheat sizer as described by Shuey6/.

The sieves of the sizer were clothed as follows:

Top Sieve - Tyler # 7 with 2.92 mm opening Middle Sieve - Tyler # 9 with 2.24 mm opening Bottom Sieve - Tyler #12 with 1.65 mm opening

<u>Protein Content</u> - The protein (14% m.b.) was calculated by multiplying the percent nitrogen, as determined by the standard Kjeldahl procedure, by the factor of 5.7.

Milling - The samples were cleaned by passing the wheat over an Emerson kicker and dockage tester and through a modified Forster scourer Model 6. The clean, dry wheat was tempered in three stages: first to 12.5% moisture at least 72 hours prior to the second stage which is to add an additional 2.0% for 18 hours to give a cumulative moisture of 14.5%, then a final temper of 3.0%, 45 minutes prior to milling.

^{5/} Mention of a trademark name or proprietary product does not constitute a guarantee or warranty of the product by the U. S. Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.

^{6/} Shuey, William C. A wheat sizing technique for predicting flour milling yield. Cereal Sci. Today 5: 71 (1960).

The field plot and large advanced and special yield nursery samples were milled on a Buhler experimental mill specially designed for milling durum wheat. The mill is equipped with corrugated rolls throughout and the semolina purified on a Miag laboratory purifier. All of the stock is handled pneumatically. The mill flow is shown on page 9. The purified semolina is used in testing the quality of semolina. The semolina extraction was calculated on a total products basis. Prior to milling this year's samples, the Buhler mill and purifiers were adjusted to maximize semolina yield, yet keep the speck count to an acceptable level. Hence, semolina yields reported here are probably higher than those reported in the 1983 Report because of increased milling efficiency.

The small samples were milled according to the method of Vasiljevic et al $\frac{7}{\cdot}$. The flow diagram of this system is shown on page 10. Extraction is determined on a clean, dry basis.

Semolina Extraction - For the macro procedure the percent semolina is calculated on a total products basis. For the micro procedure the extraction is calculated on cleaned wheat to mill.

Speck Count - The number of specks in three different one-inch square areas of semolina enclosed by a special glass and frame were counted. Any materials other than pure endosperm chunks, such as bran particles, etc. were considered specks. The average of three readings was converted to the number of specks per 10 sq in (speck count). Speck count is done only on the macro milled samples.

Color Score - The color of the spaghetti or semolina has been generally accepted as the most important single grading factor. A deep amber or golden color is the most preferable. The amount of yellow pigmentation determines the color.

^{7/} Vasiljevic, S., Banasik, O.J. and Shuey, W.C. A micro unit for producing durum semolina. Cereal Chem. 54: 397 (1977).

FLOW DIAGRAM FOR LARGE DURUM WHEAT SAMPLES MACRO PROCEDURE.

FLOW DIAGRAM FOR SMALL DURUM WHEAT SAMPLES MICRO PROCEDURE

Samples which have a color rating 1.5 point below the standard spaghetti score or 15 points below the standard semolina color score are unsatisfactory. It is possible that the average color score for a crop year may be higher or lower than average; therefore, this would be taken into consideration when giving the overall rating of a variety over a number of years.

The grading system shown below has been adopted for scoring the semolina color and spaghetti relative to the standard color score.

COLOR SCORE

Semolina	<u>Spaghetti</u>	Description
15 above	1.5 above	Much deeper and intense yellow pigmentation than standard
10 above	1.0 above	Deeper and more intense yellow pigmentation than standard
5 above	0.5 above	Slightly deeper and more intense yellow pigmentation than standard
Equal to Standard	Equal to Standard	Standard quality, depth and intensity of yellow pig-mentation
5 below	0.5 below	Slightly less depth and in- tensity, but sufficient quantity of pigmentation
10 below	1.0 below	Slightly less quantity as well as depth and intensity of pigmentation than the standard, but still sufficient to be rated satisfactory on the basis of color
15 below	1.5 below	Sufficiently less quantity of yellow pigmentation than the standard to give a pale yellow color and graded unsatisfactory for color score.

Semolina Color Score - The semolina color score was determined by using Model D25M-9 Hunterlab tristimulus colorimeter equipped with an optical sensor and a signal processor. The instrument was calibrated using a yellow standard tile with Hunter L, a, b values of L = 77.33, a = -1.91, b = 20.94. A sample of semolina was placed in a cell normally used for near infrared analysis of flour in a Technicon 400 Infra Analyzer. This cell fits in the opening of the optical sensor. The b value was converted to a yellow color score ranging from 1-14, with 14 being a deep yellow and the most desirable color. In this report, the semolina color score, reported as "Du" in the tables, is multiplied by a factor of 10.

Spaghetti Color - The spaghetti color scores also were measured in the Model D25M-9 colorimeter. The specimen area (2 in diameter) was covered with straight spaghetti strands and readings were taken against a black background with 0% reflectance. Color difference values (L%, a% and b%) were measured for all the spaghetti samples by the method of Walsh, Gilles and Shuey8/. A uniform chromaticity chart was used for determining spaghetti color scores.

MACRO Spaghetti Processing - Spaghetti was processed on a semi-commercial scale pasta extruder (DEMACO). The control as well as all samples was processed with the following extruding conditions.

Temperature . . . 49.5°C

Rate 12 rpm

Absorption . . . 32%

Vacuum 18 in Hg

These were the optimum conditions for processing spaghetti.

^{8/} Walsh, D. E., Gilles, K. A. and Shuey, W. C. Color determination of spaghetti by the tristimulus method. Cereal Chem. 46: 7 (1969).

To process the spaghetti, a 1000 g batch was premixed by slowly adding the water and mixing at a slow speed for approximately 30 seconds and high speed for 10 seconds. Then the remainder of the water was added at slow speed in a Hobart C-100-T mixer equipped with a pastry knife agitator. After all of the water had been added, the semolina and water were blended at high speed for 30 seconds; the mixer was stopped to scrape down the sides of the bowl, and the blending continued for 90 seconds more to complete the premix stage. The premixed pasta was then transferred to the vacuum mixer of the press and extruded through an 84-strand 0.043 in teflon spaghetti die. A jacketed extension tube (94 long x 1-3/4" inside diameter) was attached to the semicommercial pasta extruder to allow more time for hydration of the semolina and minimize the number of white specks (unhydrated semolina) in the spaghetti. Extrusion temperature was controlled by a circulating water bath.

Spaghetti Drying - Spaghetti was dried in an experimental pasta dryer for an 18 hour cycle as described by Gilles, Sibbitt and Shuey9/. During the drying period, the humidity of the dryer was decreased linearly from 95 to 60% R.H. and the temperature was held constant at 100°F.

^{9/} Gilles, K. A., Sibbitt, L. D. and Shuey, W. C. Automatic laboratory dryer for macaroni products. Cereal Sci. Today 11: 322 (1966).

Cooking Characteristics of Spaghetti

A. Cooking Procedure

Spaghetti (10 g) which had been broken into lengths of approximately 5 cm, was placed into 300 ml of boiling water in a 500 ml beaker. After 12 minutes cooking, the samples were washed thoroughly with distilled water in a Buchner funnel, allowed to drain for 2 minutes and then weighed to determine cooked weight. This procedure is the same as last year, but differs from previous years, when a 1% salt solution was used and the spaghetti was cooked for 10 minutes.

B. Firmness Score

Two strands of cooked spaghetti were placed on a plexiglass plate and sheared at a 90° angle with a special plexiglass tooth. A continuous recording of distance versus force was made by the instrument during the operation. An automatic integrator was used to calculate the area under the curve (g cm) which was the amount of work required to shear the cooked spaghetti. To measure firmness, the average of three integrator scores was used, and the average work to shear was used as a measure of spaghetti firmness. The firmness score was read directly from the integrator value.

The higher the value, the firmer the spaghetti. A value of approximately 7.00 appears to be preferred.

Calculations were as follows:

 $E = 0.0216 \times A (q cm)$

A = Average integrator reading

E = Area of curve in g cm

C. Residue

This is the weight of the solids remaining after the combined cooking and washing water was evaporated.

DISCUSSION

The following discussion represents some of the basic techniques and criteria used in the milling and cooking quality evaluation of durum wheat samples. Several testing factors are used to determine the overall quality characteristics or final evaluation of a particular sample including, in general, the kernel characteristics, milling performance and cooking performance.

Each evaluation factor can be important. A sample could be of sufficiently poor quality for a given factor to eliminate it from possible future testing. However, a sample submitted for the first time and found to show little promise should be tested again to establish if it has some good promise, or no promise. A sample which is consistently rated as little promise or no promise should be discarded.

Data presented in this report were processed by using the Statistical Analysis System (SAS Institute, Inc., SAS Circle, Box 8000, Cary, NC 27511). The program developed from this system allows flexibility within the quality grading factors. This should allow us to relate more directly to industry and consumer requirements. 10/

In this evaluation system 11 dependent variables are used. These are test weight, 1000 kernel weight, percent small kernels, wheat protein, total extraction, semolina extraction, dust color, speck count, semolina protein, spaghetti visual color score and spaghetti firmness score. Five additional variables are measured and included in the tables for the reader's use and information but are not used in the computerized evaluation of the samples. These are percent large kernels, mixograph score, semolina mineral, falling number and cooking residue.

After computing an average of each of the 11 variables for the standards from a station or nursery, the computer subtracts established values from each of the standard averages to determine major (MJ) and minor (MI) faulting limits. There are two exceptions where precise values have been assigned, which are independent of the station standards. The first exception is wheat protein, where percentages below 11.5% will be classified as MJ faults, and percentages between 11.5% - 12.5% will be MI faults (14% m.b.). The second exception is semolina protein, where percentages below 11.0% are classified as MJ faults, and percentages between 11.0 and 11.5% are classified as MI faults (14% m.b.). Hence, the wheat and semolina protein faulting values remain the same for all stations and nurseries.

^{10/} Nolte, L.L., Youngs, V.L., Crawford, R.D. and Kunerth, W.H. 1985. Computer program evaluation of hard red spring wheat. Cereal Foods World 30:227-229.

SELECTION OF STANDARDS

Whenever possible, the standards selected were named varieties grown at each location or in each nursery. In the tables of data, the varieties used as standards are identified by an "s" in the second column. At the bottom of each table are cited "average of standards". Quality deviation from these values determine the major and minor faults (note preceding paragraph). In nurseries where breeders did not grow named varieties, standard quality data were obtained from the 1983 North Dakota standard ('Vic'), which was processed separately with each nursery. This standard was grown in North Dakota, not at the particular nursery location. Other deviations are footnoted in the tables.

HOW SAMPLES ARE SCORED

Each sample is assigned an evaluation score of 4. Major and minor faults determined from the data by the computer will reduce this score, depending upon the quality factor being faulted. The effects of the different quality faults are shown in the table which follows:

DURUM PROGRAM FAULTING AND SCORING VALUES

Variable	Ran	gea	Effect on E Scoreb	
	Minor fault	Major fault	Minor fault	Major fault
Test Wt. (lb/bu)	-2.2	-3.1	′-	-1
1000 KWT (g)	-2.1	-5.1	-	-1
Small Kernels (%)	+5	+10	-	-1
Wheat Prot. (%)	12.5	11.5	-1	-2
Tot. Ext. (%)	-2.5	-3.5	-1	-2
Semo. Ext.(%)	-3.0	-4.0	-1	-2
Dust color	-10	-15	-2	-3
Specks/10 sq. in.	+10	+15	-	-1
Semo. Prot. (%)	11.5	11.0	-1	-2
Visual Spag. color	-1.0	-1.5	-2	-3
Firmness (g cm)	-1.5	-2.25	-1	-2

Wheat and semolina protein percents are fixed lower limits for faults. All other values represent the deviation from the average of the standards required to warrant a minor or major fault.

b These values are subtracted from a beginning score of 4.

Because of the large number of samples received, and often because of the small sample size, we cannot perform all of the evaluation tests on each sample. The computer evaluation system allows any combination of quality factors to be evaluated.

The Final Evaluation (VAL) rating applies only to the data contained in the year of the report. The main defects and outstanding features are discussed. A selection which is promising as a new variety should be continued. A sample which shows little or no promise should be discontinued.

EXPERIMENTAL RESULTS - 1984 CROP

The results are tabulated and presented in the following order: Tables 1-7, Uniform Regional Nursery; Tables 8-9, Western Durum Nursery; Tables 10-17, Field Plot Nursery; Tables 18-24, Preliminary Nursery.

UNIFORM REGIONAL NURSERY

Analyses were done on the individual samples from each station. Samples were milled using the micro procedure. Semolina produced from the micro milled samples were not processed into spaghetti. A sample that has a good semolina dust color score will usually produce spaghetti with an acceptable spaghetti visual color score. The varieties of Rugby, Vic and Ward represent the standards used for all stations in the Uniform Regional Nursery.

Two hundred ten samples were received from seven stations and three states. Thirty samples were received from all 7 stations. Ten of these samples were named varieties. The remainder were experimental lines. The discussion which follows is based on averaged data from the 7 stations.

Quality data for Rugby, Vic and Ward were averaged for each station, and these data were used as standards to evaluate the other selections. Exceptions are wheat and semolina protein concentrations, which are fixed values. Hence, a variety or selection may be rated satisfactory at two different stations, but comparison of the data may show much poorer results for one station due to adverse environmental conditions. Thus, the sample with poor results could be rated as satisfactory at one or more stations. Each variety or selection is followed by the average general evaluation score, number of minor faults/number of major faults, the number of years tested and average general evaluation.

This is followed by a short description of the 1984 characteristics.

Cando (3.2 - 26/13)(3 years) - Some promise.

Faults (1984 crop only)

Kernel Characteristics - Test weight, 1000 KWT, small kernels.

Milling Performance - Satisfactory.

 $\underline{\text{Coulter}}$ (3.6 - 18/3)(3 years) - Good promise

Faults (1984 crop only)

Coulter (Cont'd)

Kernel Characteristics - Test weight, 1000 KWT.

Milling Performance - Satisfactory.

Crosby (3.4 - 16/6)(3 years) - Some promise

Faults (1984 crop only)

Kernel Characteristics - 1000 KWT

Milling Performance - Dust color, semolina extraction.

 $\underline{\text{Lloyd}}$ (3.5 - 17/7)(3 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - 1000 KWT, test weight, small kernels.

Milling Performance - Semolina extraction.

 $\underline{\text{Medora}}$ (3.9 - 7/1)(3 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory.

 $\underline{\text{Mindum}}$ (1.4 - 39/20) (3 years) - No promise

Faults (1984 crop only)

Kernel Characteristics - 1000 KWT

Milling Performance - Dust Color

Rolette (3.7 - 6/1)(3 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

Rugby (3.9 - 7/0)(3 years) - Good promise

Faults (1984 crop only)

Rugby (Cont'd)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

 $\underline{\text{Vic}}$ (4.0 - 2/0)(3 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory.

 $\underline{\text{Ward}}$ (3.9 - 4/0)(3 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

C8814 (2.4 - 9/4)(1 year) - Little promise

Faults (1984 crop)

Kernel Characteristics - 1000 KWT, test weight.

Milling Performance - Dust color, semolina extraction.

D793 (Monroe) (3.7 - 8/1) (3 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - Small kernels.

Milling Performance - Semolina extraction.

D804 (3.9 - 12/1)(2 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - 1000 KWT, test weight, small kernels.

Milling Performance - Satisfactory.

D7925 (3.7 - 3/2)(2 years) - Good promise

Faults (1984 crop only)

D7925 (Cont'd)

Kernel Characteristics - Test weight, 1000 KWT.
Milling Performance - Satisfactory.

 $\underline{D8012}$ (4.0 - 2/0)(1 year) - Good promise Faults (1984 crop)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

08016 (3.9 - 3/1)(1 year) - Good promise

Faults (1984 crop)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

 $\underline{D8019}$ (3.7 - 1/0)(1 year) - Good promise Faults (1984 crop)

Kernel Characteristics - Satisfactory.

Milling Performance - Dust color.

<u>D8034</u> (3.9 - 3/0)(1 year) - Good promise Faults (1984 crop)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

 $\underline{D8082}$ (4.0 - 2/0)(1 year) - Good promise

Faults (1984 crop)

Kernel Characteristics - Test weight, 1000 KWT.

Milling Performance - Satisfactory.

D78177 (3.7 - 23/6)(3 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory.

D79103 (3.8 - 2/1)(2 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory.

D79104 (3.9 - 11/2)(2 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

D79168 (3.6 - 9/3)(2 years) - Some promise

Faults (1984 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

D79209 (3.6 - 15/4) (2 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - Test weight, 1000 KWT, small kernels.

Milling Performance - Semolina extraction.

 $D80152 (3.7 - 11/1)(1 \text{ year}) - Good promise}$

Faults (1984 crop)

Kernel Characteristics - Test weight, 1000 KWT, small kernels.

Milling Performance - Semolina extraction.

080162 (3.7 - 2/1)(1 year) - Good promise

Faults (1984 crop)

Kernel Characteristics - Test weight.

Milling Performance - Semolina extraction.

DT371 (3.6 - 19/6)(3 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - Test weight.

Milling Performance - Satisfactory.

DT375 (3.7 - 9/2)(2 years) - Good promise

Faults (1984 crop only)

Kernel Characteristics - Test weight, 1000 KWT, small kernels.

Milling Performance - Semolina extraction.

H81466 (3.3 - 12/2)(1 year) - Some promise

Faults (1984 crop)

Kernel Characteristics - 1000 KWT, test weight, small kernels.

Milling Performance - Semolina extraction.

H81485 (3.9 - 1/0) (1 year) - Good promise

Faults (1984 crop)

Kernel Characteristics - Satisfactory.

Milling Performance - Semolina extraction.

WESTERN DURUM NURSERY

Fifty-one samples were received from two stations. All analyses were done the same as for the Uniform Regional Nursery using our micro procedure.

Royal Slope, Washington - Table 8

Twenty-four samples were received from this station using Lloyd and Modoc as the standards. Two selections showed good promise, seven showed some promise, eight showed little promise and seven selections showed no promise. The major faulting area is wheat protein. The average evaluation score for this station was 2.2.

Aberdeen, Idaho - Table 9

Twenty-seven samples were received from this station also using Lloyd and Modoc as the standards. Ten selections showed good promise, five showed some promise, three showed little promise and nine selections showed no promise. The two major areas for faults were 1000 KWT and dust color. The average evaluation score for this station was 2.6.

FIELD PLOT NURSERY

One hundred thirty-three samples were received from eight stations in three states. All samples were milled, and the semolina was processed into spaghetti using the macro method.

Pinal County, Arizona - Table 10

Six varieties were received from this station using Aldura and Mexicali as the standards. All varieties showed a no promise evaluation. Wheat and semolina protein were the two major faulting areas.

Maricopa County, Arizona - Table 11

Five varieties were received from this station. Aldura and Mexicali were also used as the standards. Westbred 881 showed good promise. Dust color was the major faulting area.

El Centro,, California - Table 12

Thirty-two samples were received from this station using Aldura, Mexicali and Westbred 881 as the standards. Five samples showed good promise, three showed some promise, five showed little promise and nineteen showed no promise. The average evaluation score was 1.8.

Mesa, Arizona - Table 13

Sixteen samples were received from this station. Aldura, Cando and Westbred 881 were used as the standards. The major faulting areas were wheat and semolina protein. Three samples showed good promise, two showed some promise, one showed little promise and ten showed no promise. The average evaluation score was 1.9.

<u>Delta, California - Table 14</u>

Thirty-one samples were received from this station. Aldura, Mexicali, Modoc and Westbred 881 were used as the standards. All samples had a no promise evaluation. The major faulting areas were 1000 KWT, wheat and semolina protein and dust color.

Kings County, California - Table 15

Thirty-one samples were also received from this station. Aldura, Mexicali, Modoc and Westbred 881 were used as the standards. All samples had a no promise evaluation. The major faulting areas were wheat and semolina protein, dust color and 1000 KWT.

Minot, North Dakota - Table 16

Six named varieties were received from this station using Vic as the standard. Two areas of faults were 1000 KWT and the firmness score. Vic showed good promise, Lloyd showed some promise, Cando and Crosby showed little promise and Ward showed no promise. The average evaluation score was 2.2.

Langdon, North Dakota - Table 17

Six named varieties were also received from this station using Vic as the standard. The major faulting area was 1000 KWT. Vic and Crosby showed good promise, Cando, Lloyd, Rugby and Ward all showed some promise. The average evaluation score was 3.3.

PRELIMINARY NURSERY

A total of 169 samples were received from one station. All samples were milled using our micro procedure.

Tulelake, California, Two Replica Sets - Table 18

A total of 16 samples were received in this series. Our 1983 standard was used as the standard. Wheat protein, semolina extraction and dust color were the major faulting areas.

Tulelake, California, #130 Konzar - Table 19

Forty-nine samples were received in this set. Produra and Yavaros were used as the standards. Wheat protein and semolina extraction were the major faulting areas.

Tulelake, California - Wheat Fertilizer Drill Strips

Fifteen samples in each set using Modoc as the standard.

Set No. 1, Lab #1351 thru 1367 - Table 20

Wheat protein was the major faulting area. The average evaluation score was 1.9.

Set No. 2, Lab #1368 thru 1384 - Table 21

Wheat protein was the major faulting area. The average evaluation score was 1.6.

Set No. 3, Lab #1385 thru 1399 - Table 22

Test weight, wheat protein and dust color were the major faulting areas. The average evaluation score was 1.7.

Set No. 4, Lab #1402 thru 1418 - Table 23

Test weight and wheat protein were the major faulting areas. The average evaluation score was 2.0.

Tulelake, California, #127 Yield Trial - Table 24

Forty-four samples were included with this set using Modoc as the standard. The major faulting areas were wheat protein, test weight and 1000 KWT. The average evaluation score for this set was 2.0.

EXPLANATION OF ABBREVIATIONS LISTED UNDER THE HEADINGS AND UNDER MINOR AND MAJOR DEFICIENCIES ON TABLES

MINOR AND MAJOR DEFICIENCIES ON COMPUTER PRINTOUT

S or STD = Standard TW = Test Weight

1000 KWT or KW = 1000 Kernel Weight LG = % Large Kernels SM = % Small Kernels

WHT PRO or WP = Wheat Protein
TOT EXT or TX = Total Extraction (Semolina Plus Flour)

SEMO EXT or SX = Semolina Extraction
DUS or DU = Semolina Dust Color Score (High
score is more desirable)

FALL NO = Semolina Falling Number Value (Values above 300 are desired)
SEMO PRO or SP = Semolina Protein

VI = Spaghetti Visual Color Score (The higher the score, the more desirable) FIRM or FR = Cooked Spaghetti Firmness Score (Approx. 6.50 to 8.50 is the desirable range)

RES = Residue in Water of Cooked Spaghetti
VALU = Sample Evaluation Number (Example 4 = Good Promise)

		CTENCTES IN WP SX DU		M	Σ	×		2												, M	I W
		DEFICE TW KW SM	D ₩ D#	2 X)	×		M JM	I W		¥		Σ	Σ		E X	,		MI MI	Μ	
CROP	NIFORM	SCORE **	2.4	r cu m	4 N	4 M	ব ব	· [m] r4	74	4 4	4 <	14	4 M	44	4	4 4	4	4	4	2	m
1984 CROP	NURSERY=UNIFORM	MIXO	41	4 1	. - 10	m 4	99	. ~ ~	- ~	ø ~	. ec e	ා ආ	~ 0	so so	.01	<i>ع</i> م		80	ഗ	ę	σ
PLES CO.		DUST	75	000	85 70	75	ന ന ഗ റ	80	95	න ග ග	90	90	ස ල ල	0 0 0 0	95	0 0 1	75	75	92	80	06
F DURUM SAM	SEMO	บก ตล ขาม	นนา เก็บ เก็บ	56.00 0.00	57.5	01.00	งกา การเกา	59.5	ນ ວ ນ ວ ນ ວ	10 m	20.0	ก ก • ก • ก	ก กู้ วา	មា មា មា	ม มา มาก	57.5	53.5	54.5	50.5	52.0	
0 1		WHT		n n																	
QUALITY DATA	JTH DAKOTA	ws ୭୮		255 19 4 4																	
ono	STATE=SOUTH	0 • 0 • 0 ¥	610	37.2	· 🕶 🐛	36.9	4 0) ~ <	t 10	→ <	1	. W.	C 4	47	0.1	s: r	C	Ç,	R	5	C
	S	TEST		50°4																	
						V.	o o)													
	TABLE 1	VARIETY STD	CANDO	CROSPY	MEDORA MEDORA MENDUM	RUGAY		9814	7 804	D 7925 D 8012	7 8016	D 8034	0 8082 0 78177	0 79103	0 79168	D 79209	0 00169	DT 371	01 375	H 81466	н 81485

PROWISE, 4=GOOD PROMISE SELITTLE PROVISE, 3=508= DEFICIENCIES TW KW SW WP SX DU AVG OF STANDARDS 60.2 40.0 1 15.0 55.7 80 WINGP FAULTING VALUES 58.0 37.9 6 12.5 52.3 70 MAJOP FAULTING VALUES 57.1 34.9 11 11.5 51.3 65 **FV4LUATION I=NO DROWISE. STATE=SCUTH DAKOTA STATION=SFLBY NURSERY=UNIFORM

DEFICIENCIES: W KW SM WP SX DU	Ω ΣΣ	ι j		ΣŢ	X X :	Σ Σ Σ Σ Σ Σ Σ	Σ
H	:	Σ		Σ		5	
SCBRE ***	m441	ndamea	ሠጠቀቀ	. ০ বে ব	'বববক	दिवच वच क	াব ব
MIXO	mrm:	15 16 16 16 16 16 16 16 16 16 16 16 16 16	01 व व व	- W & C P	- C () 4 4 ·	4 4 ሺ ሮ ሲ ወ ቢ	o ተ
DUST COLOR	A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	888 800 800 800 800 800	868 869 800 800 800	2444	0 C C C C C C C C C C C C C C C C C C C	885 885 70 70	282
SEMO	a. 401	€ C M 4 - M	104m	0 L 4 L	000-0	ກທູນທູນພູນ - ທູນທູນ ກວວວນວນ	้อเก
WHT			mmmm	א יאו נאן נאן י	. mm 4 4 1		• • • ⇒ militarioni
₩ S	mma	r n 0 n = =	r, 01 r	-400-		さんきちょる-	*************************************
L 6 %	= m m m m m m	- KBH-F4	522	្រ លេស ១០៦៩៧៤	244-V	アムちゅりひょうちょう	000 € 000 000 € • • • • • • • • • • • • • • • • •
1 X O O O O O O O O O O O O O O O O O O	500	000000	war o	4 - M <	10101	W 4 W F 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X100 14.4
TEST	60.00 60.00 7.000	ららくりもた りつさー - ト ア ケ 4 - ロ ら	60 61 61 67 67	1,000 2000 2000 2000	00000 -neo-	00000000000000000000000000000000000000	4 m m
		<i>ن</i> س	· w				ALUES ALUES
VARIETY STD	CANNO COULTER CPNSBY	LLDYD MEDODA MINDUX ROLETTF RUSAY VIC	KAR7 C 9814 D 793	0 4015 0 4015 0 8016 0 9016	2 1000 C 2 1000 C 2 1000 C 2 1000 C 7 100 C 5 100 C	0 79104 0 79168 0 79168 0 80162 0 7 371	DEFICIENCIES AVG OF STANDAPPS WINDR FAULTING VALUES

**FVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SONE PROMISE, 4=GOOD PROMISE

STATE=MONTANA STATION=CONRAD NURSERY=UNIFORM

DEFICIENCIES TW KW SM WP SX DU	IM IM IM	
SCORE ***	चित्र व च च च च च च च च च च च च च च च च च च	4
MIXO	404rrm4m04rre8000rrn4r400r0000	ω
DUST	**************************************	95
SEMO	00000000000000000000000000000000000000	•
WHT	445UMUMAGAMAGMA4MAGMA4MAA4A44444AMU 446UMUMAGAMAGAMAGMAAAMAGAAAAAA 446UMUMAHAMAGAMAGAMAGAMAGAMAGAMAGAMAGAMAGAMAGA	4. 000 777 722
Σ S	<u>বৰমেকৰ্বৰ্বলালগামালালক্ৰান্তাৰ্বৰ্বক্ষ</u>	5 S 561.2 57.2 57.2
LG *	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	26 WP 15.2 12.5
1 000 X • WT	$\begin{array}{llllllllllllllllllllllllllllllllllll$	37.7 X X X X X X X X X X X X X X X X X X
TEST	00000000000000000000000000000000000000	61. 0.6 7.5
	ω ω ω	UES 5 UES 5
VARIETY STD		HD 81-485 DEFICIENCIES AVG OF STANDARDS MINOR FAULTING VALUES MAJOR FAULTING VALUES

**EVALUATION 1=ND PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PROMISE

STATE=MONTANA STATION=SIDNEY NURSERY=UNIFORM

SAMPLES
DURU4
OF.
DATA
LITY
OUAL

ICIENCIES SM WP SX DU				W.				۲. ا	7 1				IW			1				II MJ	_	18		7	-		
DEFI TW KW S	ΣX			Σ				2	Z.		¥					E IW				Y IN	-		7		MIM		
SG0RE ***	ধ ব	বেধ	4	~ <	td	4	4	×	t <	1 4	4	4	2	4	4	4	4	4	¢	2	7	3	4	2	۸:	3	
MIXO	92	4 20) C	4 1	n 4	~	٠	r-i		- 00	භ	8	Э	80	7	7	7	8	B	7	8	83	7	7	ဆ	æ	
DUST COLOR	90	85 95	06	7.5	0 0	9 G	Ü6	22.	ا ا ا	0 5 0	105	93	080	98	66	06	06	95	501	06	001	85	85	85	06	100	
SEMO	ហំហ	55.0 54.5	. 6	4 0		2	4 •	41	e C 4	3 0	0	7.	۳,	5	θ,	3	6	٥,	7.	-	٦,	2	3	•	-	3	
WHT	9.9	16.1	7	9	6 6	5	5.	2	0 4	• •		9	7.	9	9	9	9	9	2.	5	5.	4.	ຳ	7.	5		000
LG SM		200	4	-				•	ri ri		9	0-4		-	-	_			_	-	g=+(9-4		-	pul		4 P S S S S S S S S S S S S S S S S S S
I COO	6	13.00 13.00 14.00) P)	010	o M	20	100	4 0	• •	ی د	_	2	m	Š	4.	•	9	ů.	m	ů	•	2 •	uî.	c.	•	3	% S S S S S S S S S S S S S S S S S S S
řest WT		55.0																							- 4		¥ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹
					v	· v.	S																				5 05 7
VARIETY STD	CANDO	CROSBY	MEDORA	MINDUM	ROLEI E		WARD	C 8814	55 a	2 7925	0.8012	D 8016	P 8019	5 8034	0 8082	0 78177	D 79163	0 79104	7 79163	0 79259	0 80152	5 80162	57 371	375 17	4 81466	N 81435	SETCIENCIES V OF STANDARDS

*FVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SONE PPOMISE, 4=GOGO PROMISE

CRDP	IFORM	SCORE
1984 CRDP	STATE=MONTANA STATION=BCZEWAN NURSERY=UNIFORM	WHI SEMD DUST MIXO SCORE
AMPLES	ZEMAN	DUST
DUPUM SI	AT ION=8C	SEMO
TA OF	A ST	i I 3
QUALITY DATA OF DUPUM SAMPLES	E=MONTAN	*
ΩÜ	STAT	TEST 1000
	STATE=MONTANA STATION=BCZEMAN NURSERY=UNIFORM	TEST
	ABLE 5	

FICIENCIES SM WP SX DU		Y Y		2			IW
T X X X X X X X X X X X X X X X X X X X	ក ភ			N	E	THOU EXEF	₩ ×
SCORE ***	Μਰਵ	र र ≕ र	কক কক	rm d d d -	বৰ কাশ ৰ	rmemedee	S.
MIXO	464	യഥനന	mum►4	; ; ;	rroca	10000101	۵
DUST	885 80 80	90 87 80 80 80	88 8 9 8 8 8 9 9 8 8 9 9 9 8	100 B 0 C B	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 000 000 000 000 000 000	•
SEMO	400	ณ่ณักก	04 104 1	ำเล้าเก็ก	นัก ณักก	.ოიიიიიი ; ≕0.44 # # 4 .ოიანინნ	2000 2000 2000 2000
P E E E	W44	บองออ	44044	44044	เกรราบ		.44 COLL II
* S & S	w∧.m	rc m m c	4004	0414	N40	nw01246174	55.55 55.55 55.55 55.55 55.55 55.55
, su	240	1044 874	M8004	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	64 W 0	100 100 100 100 100 100 100 100 100 100	112 - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0 + 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	2,4 4,4 3,9	4444 47 m c	1444 1444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	64664 6466	- M 4 M M 4 4 4 0 0 0 4 0 0 0 0 4 - M 7 0 0 0 4 8 0	74488 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
TEST	6.10 4.00 8.00	00 00 00 00 00 00 00 00 00 00 00 00 00	20000 20000	00400 10100 10100	00 - E - C	00000000000000000000000000000000000000	
			v v v				
VARIETY STD	CANDO COULTER CROSBY	LLOYD WFDORA WINDUW	VIC VIC WARD C 881-4	0 8743 0 7024 0 8015 0 9016	0 8019 0 8034 0 8082 0 78177	79104 0 79104 0 79163 0 80152 0 80152	HD 81-466 HD 81-485 AVG OF STANDARDS WINDR FAULTING VALUES MAJOR FAULTING VALUES **EVALUATION 1=NO OPPO
							4 4 4 >=4

DEFICIENCIES TW KW SM WP SX DU	IW IW IW IW IW IW IW IW IW	
SCOPE ***	M 4 M 4 4 ≈ 4 M 4 4 N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
MIXO	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
DUST		
SEMO	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
PHH DRG		
% LG 5M		
0 X 0 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	S	
TEST	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
VARIETY STD	CANDO CAULTER CROSBY LLCAYD WEDNA MINDUM ROLETTE FOUGBY VIC 801 E 914 D 7918 D 8012 D 8012 D 8012 D 8012 D 8012 D 8012 D 8012 D 8012 D 7916 D 79166 D 79166 D 79168 D	

**EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOMS PROMISE, 4=GOOD PROMISE

٠	•
A F C 3 4 C	
C TICUNITY I	
CTAT	

1	TENCIES WP SX DU				2		Z.					M J MI														¥									
	r S N X	Σ			ĭ									E							>					7				Σ					
(C X ™ ≥	Σ	Σ.		Y		Σ					Σ		N.		¥	¥			₹.			Σ	Σ	Σ	Σ			Σ						
	M 1	L Kr			2							N		M						M	2					M			^	Σ					
i c	SCORE ***	~	4	4		4		4	4	4	4		4	4	4	4	4	4	4	4	m	4	4	Þ	ţr.	2	m	4	٣	4	4				
:	MIXO SCR	4	ស	4	7	9	٣	r	m	S.	m	9	J.	5	ç	S	'n	Ŋ	r.	^	2	4	ır.	S.	v.	2	89	ľ	S	S	9				
	SUST	06	66	06	100	95	75	85	06	06	06	80	06	98	85	1 00	100	06	95	06	98	95	95	100	06	100	95	85	9.0	95	100				
	SEMO	4	7	3	_	• 4	4.	7.	2	67.5	4.	ċ	8	ġ	8	8	9	7		9	4	Š	4 •	ů.	Š	ς.	يي.	ů	5	. 4	œ.				
ļ	P C C C C C C C C C C C C C C C C C C C									14.0																						2	000	750	
	× N	_			_									-												-				-	m	S		9 0	
	57	€.	- 8	17	7	33	F.	28	24	35	30	21	ic.	12	44	31	-	31	C.E.	16	, C	53	27	-	7	9	2.4	16	00	r.	28		1.4.		
	- XI	c,	* 7	0)	4	6	*	ć	ď		œ	ď	4		6	9		Ċ.	100	Ý		m	7	9			6	α.	ď	ď	0	S	- 0	-0	
	 -	C	4	C.	۲	C.	ا ا			. 0	_	0.	1	æ	_	· v	œ	0	\$	~	·······································	4	~	4	m	α	_	6	ی.		4	¥	L. L	9.0	
	SF U≱ ⊢	59.	200	62	56.	62	4	4	. 6	. M.	80	50.0	6.5	500	62	62	69	62	61.	6.0	60.	63	53	51.	, C	50	59.	9	C U	60	6.3		0.0	0 IO	
									Ů.	· ·	·	i.																					1	FAULTING VALUES	
	STD																													ç	a un	ر ا	STANDARDS	ン こじ てご	
			FR	>		× ~	2	U L	,			4-			ľ	. 0.	1 40	. 0	77	0	77	C	20	53	600	52	25	-	Ē	-46	81-485	Z	FAND		
	VARIETY	C	COULTER	CROSSAY	07.0	WFOORA	MICUL >		100		ADD	α.	107	804	792	20.0	301	80	0	200	781	791	791	791	792	801	801	T 4)	7	0 8		1014	13.5	T A L	
	>	Č	ï	ī	-	2	>	a	: 0	<>	3						C	C	C	0	00	C		C	C	, (C	C		G.	CH	L C	AVG OF STANDARD	MALON CON	

**FVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PROMISE

STATE=WASHINGTON STATION=ROYAL SLOPE NURSERY=WESTERN DURUM

DEFICIENCIES TW KW SM WP SX DU	IN I	LEN IN LE	IM I
SCORE ***	พพพพพพ ๛ ๙	'	? — → M 숙 — → M 숙
MIXO	440000000) 4 4 N M N V V V	100F44M40
PUST	00000000000000000000000000000000000000	,	222422 22422 23423 2442 2442 2442 2442
SEMO	ກຸນ ພູນ ພູນ ພູນ ກູ້ວ່ວ ຫຼວວນ ພູວວນ ຫວວນ		
WHT		004WWV000	MHTHUMURA MHTHUMURA 6
S.	4-m00m-c	1-04mm-m-	- 10 4 6 01 01 01 01 01 01 01 01 01 01 01 01 01
, o	000044-60 0000-000	44 L L L L L L L L L L L L L L L L L L	101 64467 40818467
1 X 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0	04000000	m. ecomomo	+ C C C C C C C C C C C C C C C C C C C
TEST TW	00000000000000000000000000000000000000	00000000000000000000000000000000000000	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	ω ω ·		
VARIETY STD	DURDX GRANDUR IRRIDUR LLCYD MONGC WAID YAVAROS 75	797109 10 797109 10 810466 11 8300138 11 8300140 11 8300146	T 8300147 T 8300179 T 8300179 TL 730468 TL 730471 UC 550 WPB 803

**FVALUATION 1=NO ORGHISF, 2=LITTLE PROMISF, 3=SCM5 PROMISE, 4=GOCO PROMISE

75

OFFICIENCIES TW KW SW WP SX AVO OF STANDARDS 63.0 42.7 2 11.6 59.5 MINGR FAULTING VALUES 59.9 37.6 12 11.5 55.5 MAJOR FAULTING VALUES 59.9 37.6 12 11.5 55.5

STATE=IDAHO STATEON=ABERDEEN NURSERY=WESTERN DURUM

EFICIENCIES W SM WP SX DU	Σ	U W U W U W U W U W U W U W U W U W U W	,	Σ Σ Σ Σ Ο Ο Η Σ	777 725	
TW KW	Σ		2222;	Z ZZZ Z J J I Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	x 2 x x x 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
SCOR# ***	404	♂ — ^(*) — ~ ·	-mm40	N44m4m		
MIXO	m44.	4 നെ സെ നേ ന	1 លលលយ	~ 4 ~ ~ ~ © © ¢ ~	ଜ ଜ ଅ ଘ ଘ ଦ 4	
DUST	75 75 75 75	002200	4 ພ ຫ ໝ ທ ວ ໜ ໜ ວ ທ	6 2 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
SFWO	4601	04-00m	これでい	00488894 488894 	0 - w m v - c	
PRO PRO	N 4 4 1	W04044	w 4 0/0/1	E H H H H H H H H H H H H H H H H H H H	4m004m	06.40 0.30 0.30
LG SM	ტ√0 ფ.	4-00004	0010141	40000000000000000000000000000000000000	-0.00000	5 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	, 200 m	048440 070==0		444m444m wcwnwoon 4-onombo	WW4W44	.5 SX 1X 5.0 SX 1X 5.0 SX 1X 12 12 12 12 12 12 12 12 12 12 12 12 12
TFST WT	60.6 57.6 59.7	8000000 01000000 0100000000000000000000	00000 00000 00000	ᲓᲓᲓᲓᲓᲓᲓ ᲓᲓᲓᲓᲓᲓ ***********************	500 500 500 500 500 500 500 500	7W K 60.3 45 58.1 43 57.2 40
VARIETY STD	22		40 O	T 8300136 T 8300138 T 8300143 T 8300145 T 8300146 T 8300175	TL 073468 TL 073471 UC 0056 WP3-2-10-E WP3-881-4	AVG DEFICIES AVG DE STANDARDS MINOR FAULTING VALUES MAJOR FAULTING VALUES

**FVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PROMISE

TABLE 10

1984 CRDP

STATE=ARIZONA STATION=PINAL CO. NURSERY=FIELD PLOT

1			2	_		
D D	77	٦.		, ¬		
** DEFICIENCIES RES VALU TW-KW-SM-WP IX SX DU SK-SP-VI-F	Z Z	Σ	Σ	Σ		
SIE	~	_		, -		
FINC	Z			Z		
SX			Σ	Σ		
DEF			Σ	Σ		
D.	ΣΣ	Σ:	Σ 2	Σ		
N S.W						
3 ¥						
i A						
AL.U		,	- -	٠		
" > io	OW	ന	+ 1	0		
RE	7.9	2		7		
M M	355	000	יט פג די	20		
FIRM	6.65 5.94	S v	o u	\ \ \		
	SO.	ល	00	ດ		
>	00	o c	0	10		
SEMO	9.8	0	0 9	ູນ		U
					\sim	1 7 0
FALL	400	400	4 4	400		0
0					ດທານ	
SE WO	0.64	9 0	0,0	0.6		0-1
	50				SP.	u
MX SPK	201				XX 447 753	MIT
Σ S	80	00	o c	0		000
sno	-	-	→		105 95 90	Į.
SEMO EXT	85.6 66.8 86.2 67.9	m	ν. Δ. α.	.3	5X 663.8 63.8 62.8	001
	90	o o	ν 4 ν α	1 6	911	,
TOT	85	9 0	, ה ה ה	81.	WP TX 10.3 85.6 12.5 83.1 11.5 82.1	ICE
WHT	10.3	6,4	0.1		n v v	N
			7	10	- 100×	a L
1000 KWT LG_SM	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	-	S	TI
91	84	90	9 9	8	⊼400 ≆••• ΦΩΩ	11
000 K W T	54.0 0.4 0.0 0.0	0 <	") (C * "	0.8	►00 44E	,
	400	0 r	ת מי	3	66.3¥ 60.1° 60.1°	T S F
STD TW	63.7	63	0 4 0 4	62.3	E S S	ROM
STD	S				ALU	9
					ES ROS G V	2
>		a	0		ZZEE DZEE	Z
IET		- a			SI ALL	IT II
VARIETY	Y Y	AL	3000	0	7 T C	711 11
	ALDURA GEM	MEXICAL I	YAVARUS	1 000 D	DEFICIENCIES TW KW AVG OF STANDARDS 63.7 44.6 MINOR FAULTING VALUES 61.5 42.5 MAJOR FAULTING VALUES 60.6 39.5	**FVALUATION IEND PROMISE. SELITTLE DROWISE. NESONE DECIMES.
	A G	Σ 3	× ×	_	ΥΣX	¥

NURSERY=FIELD PLOT STATE=ARIZONA STATION=MARICOPA CO.

** DEFICIENCIES ** RES VALU TW-KW-SM-WP TX SX DU SK-SP-VI-FR	LM IM	IM LM	N.		
FW KW	X		IΨ		
ALU 7	W0.4		_		
RES V	5.98		5 • 5		
FIRM	6.59 7.04 8.75				
1	000	8	8.5		
SEMO	12.3	11.6	12.8	FR 6.81 5.31 4.56	ROMISE, 4=GOCD PROMISE
F AL	444 000			con	CD PI
SEMO FALL	0.67	0.62	0.63	VI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4=60
SPK	227	20	25	P. 2. 1	SE.
×	797			SK 57 67	ROMI
pus	1 00 80 80 80	202	7.0	90 90 80 75	ME P
WHT TOT SEMO PRO EXT EXT DUS	2 12.8 80.9 64.0 80	51.4	51 . 7	SX 503.1 1.000	3=501
	06-	m	80	× • • • • • • • • • • • • • • • • • • •	i i
EX	888	9 6	8 81	0 81 5 78	SIWO
ĭŭ 30	13.	2	13.	I B B B B B B B B B B B B B B B B B B B	PR
N N				S 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4	TTLE
2	883	888	82	X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3=L
STD TW KWT LG SM	S 63.7 51.5 83 S 62.6 59.5 82	000	55	-00 0	m •
3	75.0	. 4 	6.0	S 663	SIWO
STD	S 6 6) ·C	9	ALUE ALUE	D PR
VARIETY	ALDURA MEXICAL I	100		DEFICIENCIES TW KW SM WP TX SX AVG OF STANDARDS 63.1 55.5 2 13.0 81.4 63.1 MINDR FAULTING VALUES 60.9 53.4 7 12.5 78.9 60.1 MAJOR FAULTING VALUES 60.0 50.4 12 11.5 77.9 59.1	**EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME P

NURSERY=FIELD PLOT

T-FR-

STATE=CALIFORNIA STATION=EL CENTRO

10			Σ	Σ	MUH HUJ MEE EEE	
S	XXX	M NE	χ Σ L	Σ	Σ Σ	
S S A		E E	7 X	2		
NO I) E		H 7 H	N W W	EZZEZEZ	
SX	_		ENER E	-		
H×			7	<i>c.</i>		•
p DE			¥ H	-		
35	ΣΣΣ	Σ ΣΣ	ΣΣ	I	Σ Σ	
KW-SM-WP	w == 1		~~~~~ ~			
1		ΣΣΣΣ	ΧΧΣΧΧΧΧΧ			
<u>*</u>						
** AL U	44-0-	4 044 = =	== M == == ~ (U (0 m r) — — ~ () — — —	
> თ	mommm.	-0 N 8 - M	Q=09540 =	-00	17274000	
R			01000110			
Σ			704007000 704007000			
FIR	0 0 0 0 0		77777861 00m04m010			
	100000	ເນດເພດວວ	ເພວດພວວພາພ	ທທວວທວ	00000000	
1 >						
O O	-4000	0 N = 0 N 0	\$	တွယ်လုတ်ကို	-400004	SE
SEP	ころーー〇・	00-0-	20220212		-00-	× 533
70	00000	000000	00000000	000000	0000000	7. 7. 5. 5.
4 Z L			4444444			VI 9.3 7.9 GDCD
M N	V-00000	000000	000004070	997994	000000000	15
ΩΣ	0000000	00m0mr	-m-onmm-	momoor	1 mmommr	F
SP			NUMM044M1			S 1 5 1 0 1 I SE
Σ×	mmm v v ·	4 ~ @ W M M	4 W W W W W W W ·	4 M O M O M	imaamoam .	SK 65 75 80 60 FOMI
ous	900	85 95 95 95 95 95	80 80 80 80 80 80	95 90 90 90 90	00000000000000000000000000000000000000	93 83 78
0			∂ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			, LLL 0
SEXT	UNF 4 01	00400m	600 600 600 600	-40044	400000000	SX 64. 61. 60.
			-NOBO-48			ו•• ш
EX	8000000	0000000	90000 47475746		0000000000	833 81 80 80 81 81 81
WHT			######################################			22.55 20.55 20.55 20.55
Σi			2222224		0000-	S I I I I I I I I I I I I I I I I I I I
% S	-00000	07-590	nnonenoon	100141	-m00@rmo	S 9 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 ⊢	さるトトのこ	0000-U		202762	20277700	2 4 4 X X X X X X X X X X X X X X X X X
0.≩ 0.¥	₩400 P	° m = m m o o	-0-0-0-00	o,0100 - <	0 m n n - n o	= 0·0 ·
-	0200010	m=r-v0-	7700-07501 46446666	101000	1W400000	TW 62. 59. 59.
3	2-422	4400	000000000000000000000000000000000000000	0-0000	M = MMMMN	ES 5 ES 5 ROMI
STD	o o	S				ALUE ALUE
						ARDS NG VA NG VA
	8	1 8				DOLL Z
ET	ER S	ູຮ	331 00 00 771 00	6		STANI AULT AULT AULT
V AR I E TY	TTE ISH RD	• ш o	10 23 90 89 80 80 80 80 80 80 80 80 80 80 80 80 80	4	1 w 4 r v v v v v v v v v v v v v v v v v v	7 4 7 0
>		O X X > 88	7 C 8 B I			ש רצט
	ATTX Z Z	X α ¥ ≻ O O	ZX G G F F F F F F F F F F F F F F F F F	- 2222	222222	ΔΣΣ *
	,					

IW I

STATE=ARIZONA STATION=MESA NURSERY=FIELD PLOT

DEFICIENCIES TX SX DU SK SP VI FR	MH ZZ	;	2 X	Σ:	25	7.8	T ₩ T №	_	2	JE IE	MI	Ţ		
DEFI	×		Σ×						Σ					
TW KW SM WP	Ä	;	Σ							M				
** VALU	m	44		 .	- 4	-	_	_	-	2	m	-		
RES	6.9											•		
FIRM	6.98	7.19	6.42	6 • 29	7.13	7.52	7.30	5.98	6.42	6.16	6.05	7.52		
1^	90													
SEMO			00	0:	==	12.	11.	10.	10.	11.	11.	11.	8 • • • • • • • • • • • • • • • • • • •	PROMISE
FALL	000	4004	00	400	4 4	400	400	400	400	400	400	400	rino Eon4	
SE WO	0.55	90	20	S	n so	S	S	5	0.51	0.61	S	0.63	× × × × × × × × × × × × × × × × × × ×	4=600D
SPK	404 000	4 CA (200	N 1	43	27	57	30	27	47	33	20	S 111 5 111 0 111	ROMISE,
Σ	4m												χω 4 Ω	ROM
DUS	950												00 97 87 82	ME P
SEMO	4 64.7											6 64.0	5 61 • 4 5 60 • 4	, 3=50
EXT	84.4	n co	သထ	000	0 0	8	B	ω	Θ	8	Θ	9 4	1X 84.0 81.5 80.5	MISE
PRO	12.7	12.7	11.9	11.6	13.0	13.5	13.4	12.2	11.5	12.3	12.8	13.3	WP 12.8 12.5 11.5	E PRO
LG_SM	-m-												S# 12 7 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2	ITTL
۱۵ اد	3 30	+ 0. +	e on	οι د	2 10	C)	(J)	S	m	~	m	ıo	49.1 47.0 44.0	2=L
1000 K₩Ŧ	001											22•	52.0 60.3 50.3	SE,
STD TW	63.0	63.0	64.4	62.5	63.0	62.6	63.1	64.1	9.49	61.9	62.7	64.3		RCMI
STD	တတ (_			•	_		VALUI	0 07
VARIETY		WES19KED 881 D-46	D-893 P 881-620	P 881-738	W-1	M-4	¥-6	W-30 LS-31	K-46 LS-29	W-266	W-269	W-315	DEFICIENCIES AVG OF STANDARDS MINCR FAULTING VALUES MAJOR FAULTING VALUES	**EVALUATION 1=NO PRCMISE, 2=LITTLE PROMISE, 3=SOME

VT-FR-

										_			_																	≨				
	125	Σ Σ	Σ	3	Σ	Σ	2	3	Σ	Σ	Σ	Σ	Σ.	Σ	Σ	∑ 2	ž	Σ	2	Σ:	Σ	≥ :	2	ž :	2	5 2	2	2	2	Σ				
L.	S X				2															Ξ		:	Σ				7 2		×	N)			
Š	na			N.								<u></u>			<u> </u>										2		-	. =	2	7				
11	×			gt	-				Æ.			4			-	•	_		_						_		-			-				
-) is																		2															
	:-																		3	Σ														
	n B	ΣΣ																																
	S S																																	
	3	N N	<u>~</u>	1	5			-	Z					<u>-</u>					_	7	_	7	_	Σ:	2	2 -	2 -	? -	•	7	;			
	E K	2 2	2	2	2			2	۷.	æ? 				~					_	2	2	~	2.	2. 1	٠. ه	2 4	2 3			ď.				
	-																		ž															
*			_		_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_		<u>.</u>		٠.	٠.						
	> v	* 0 +	~	_	_		~						~	_		~	~				_		_	_										
	PES	7.8																	8.6		8.0			9.0	•		•	•			•			
	~	• "	_	•			01		m	_			10	_	_	~	_		0		0													
	I P.W	.13	0	⋖	3	3	4	S	2	(P)	Q.	~	ç	4	0	0	0	۰	1.		S		gand	962	7	vr	') v	٥-	کا ۔	(C)			
	II.	യവ	V.	5	9	Ŷ	S	9	S	Ç	ល	ស	C	9	7	1	ç		K)		9		_	ហ	١	C V	0 4	2 4	210) VC	>			
	- 1	0.0																				٠	٠	•	٠		•							
	> .	66	6	œ	7	80	œ	c C	œ	œ	œ	_	œ	00	œ	7	-	7	σ	œ	6	E	œ	OC 1	- (0 0	י כ	9 6	- 0	, _	•			
<u>∑</u>		ψ.O					•									•								•		•	٠				•			
U.	PR	0.0	01		6	6	¢	0	6	6	6		0			σ.	ڻ	10	œ	6	C	0	0	6	э» (י כ	, (ט כ	0	0	`		100	
_	100	000	0	O	0	0	0	C	0	C	0	0	0	Ö	0	0	0	C	0	0	0	0	0	0	0	0	- C	20	0) C	>	4	44	
11	-	44	4	4	4	4	4	4	4	4	4	4	4	₹7	4	4	4	7	4	4	4	4	4	4	₹ •	¢ 4	*	† <	t <	4		•	40	h
∑ Σ	z	59	5	W)	C	¥	C	ç	S	W)	S	S	v	9	Ç	φ	Ç	Ç	Q	Ç	S	Ç	9	Ø,	0 1	£ι	n v	0 V	` V) K	7	_) N. V	•
Ú	Σ (00																														_	നാര	,
	g X	320																														SP		•
	×	m) 4	4	m	4	9	9	S	m	4	٥	S.	7	_	4	S	4	r)	رما	m	r;	4	4	۳) .	4 1	r) f	0.1	n 4	۳ ر	. 4	•	Χ4		7
	₹				_			_		_																_						SY	4 <	ż
	9.08	95	α	60	9	85	5	80	75	6	8	75	Ġ.	80	7.5	75	Š	7	d)	80	6	60	0 1	6	- 1	x d	ָר אַ ה	- 4	οά	1 14	,	2,8	75	
Ę	- -	NC	~	4		6			8	2.	5			ç	9	7	_	6	4.		0	6			٠, ۱	٥ د	n 4					۳	o oc o	0
11	J.K.	63	_	1	_	2	4	0	3	3	4	4	m.	0	€.	4	4	63.	C	0	9	_	61.	-	ė,	- (÷ <	֓֞֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֡֓֓֡֓֓֡֓֡֓֡֓֡֓	٠, ٥	J	S	50.0	Ç
_	- 1	-α		9				4.																0								1	20	12
-	ЭХ Т	9 C C	2	~	0	_	3	0	\sim	\sim	3	m	0	3	-	3	P	m	8	\circ	-	-	_	m.	ς,	٠.	٦,	7 <	• -	• 0	J	10	100	7
Ļ,	0	φ.0	2	5	6	4	5	9	4	4	0	S	-	_	~	C.	S	6	-	0	4.	ų,	. 7	œ	η.	ب ا	9	÷ 4	٥ e		d	2	ing w	0
3	<u> </u>	00	-	C	C	0	\mathcal{C}	-	C	C	_	0	8	_	-	0	0	\subset	0	0	C	Ç	C	10	0	0 (0 (0.0	0	-	>	3 -	2	-
	51		-	-	_	-	_	_		_	-	_	_		-	-	-	_	-	_	-	_	N			۰.	۰ .		-		•	≥ -	· c -	-
3	[] []	30	· [47]	ř.	~	0	2	4	Ç	2	0	0	m	0	34	55	2	55	23	22	_	~	6	٠	ς.	4:	- :	-		2		. <	h. h	
c	- -	00 K																														Υd	200	7
-	∑. ∑.	-0	_	.0	8	7	7	6	7.	6	7.	ů	ė	ć.	, m	۳ س	•	0	ċ	ė.	۳ •	œ.	* †	m:	9		<u>៖</u>	0 -	- 0			ά	(A	_
_	-	6 9 5	٦	_	α	E	_	~	ç	4	6	9	c	0	ľ	ෆ	S	ď	L -J	9	pr.	æ	N	m	_	T (D (2		n (c	0.0		1		-
	≆	64.	C	۲.	3	4	4	5	10	m	3	4	4	ø	4	₫	₫	4	$^{\prime}$	4	¢	4	3	4	d 1	Y) [r: 1	7	0.4	1	t		U: U	ņ
	STO	S		•		_		S		•	•	_	S	•		_	•	•	_	•	~	•	~		~		•		•				ALUE	3
	S																															SC	: > >	>
				S																												I DO	AULTING	2
	7	·	1	•		S					3	4	831																			AMA		
	VARIFTY	Li.		OHE		•			122	ů:	A 11	11	ED.	c	10	_	_	22			393	099	38	468	1 / 1	c i	(O t					101	7 4 0	7
	> A	UPA		ب نا ا	•	AD	CAL	Ų												60								0 0	7 0	7 7	†	IL II	יתי	<u>-</u>
		100	100	Z	C	4	X	30.0	JOR	DKF	TIF	SIL	EST.	AVA	0 3	7 (8	1 0	8	8.2	V >	83	83	TL 73-	-	-	- (0 V	ي د د	. (2	۵ ر	2	7
		AL	3	×	_	ž	M.	×	ż	2	S	S	32	7	ī	Ü	7	0	0	C	Ž	۵.	C	II	F	= i	= :	5	5 =	5 =	5	4	Σ	7

PROMISE 2=LITTLE PROWISE, 3=SOME PROMISE, 4=GOCO **EVALUATION I=NO PPONISE. NURSERY=FIELD PLOT

STATION=KINGS CO.

STATE=CALIFORNIA

FR		
-SP-VI-FR	E EE E EE E	
Sp	TXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
IES SK	3	
IENC X DU	77H 7H7 H7Y 7H 77 7 EEE E EE EEEE EE EE EE	
EFIC:	Σ Σ ΣΣΣ Σ Σ μ	
WP DE	X XX X XX X X X X X X X X X X X X X X	
SM	**************************************	
¥ 12	T H HH H HY HYELY Y	
3	٠ ۶	
** VAL.U	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
RES		
FIRM	RRR 4440RR000000000044400000000000440	
1 ^	ᲒᲐᲓ ᲓᲐᲓᲐᲓᲓᲐᲓᲐᲓᲐᲓᲐᲓᲚᲚᲔᲓᲓᲐᲓᲔᲚᲓᲐᲚᲚᲓᲓ ᲓᲐᲚ ᲡᲡᲓᲐᲡᲡᲡᲡᲡᲔᲔᲔᲔᲔᲔᲡᲔᲡᲔᲡᲡᲔ ᲡᲔᲔᲔᲡᲔᲔᲔᲔ	
SEMO		78 53
FALL	44444444444444444444444444444444444444	440 TO4W
SEMO	00000000000000000000000000000000000000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SPK	mrommoowrromormmommrrmmrrroommr	SP 8 11.
×		58 58 73
sna	10000000000000000000000000000000000000	90 80 75
SEMO		52.2 59.2 58.2
×	0 C O O C O C C C C C C C C C C C C C C	1 X 1 X 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
HT T	© ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	52.7
3.0.		120 ×
% S S S		S 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
الـ +0		₹000 100 100 100 100 100 100 100 100 100
0 X	400000000040000000000000004004004004 	3 4 € 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
¥	₩₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹₹	9 9 9
STD	N NN N ФФФФФФФФФФФФФФФФФФФФФФФФФ	VALUE
VARIETY	RAAE STATE S	DEFICIENCIES VG OF STANDARD IINOR FAULTING
	▲『ふぶ』≦≈ ≥ ⊆ は というこうつり ∑り び <u>と</u> ⊨ ⊨ ⊨ ⊃ ⊃ ⊃ ⊃	∢∑∑

**EVALUATION 1=ND PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOCD PROMISE

1984 CROP

STATE=NORTH DAKOTA STATION=MINOT NURSERY=FIELD PLOT

CANDO CROSSY CROS	** DEFICIENCIES RES VALU TW-KW-SM-WP IX SX DU SK-SP-VI-FR	-	n E				
WHT TOT SEMO MX SPK MIN NO PRO VI FIRM SEM PRO VI FIRM SEM PRO CALL SEMO VI FIRM SEMO CALL SEMO CALL SEMO VI FIRM SEMO CALL SEMO	J TW KW S	TEI	E X	T X			
WHT TOT SEMO MX SPK MIN NO PRO VI FIRM SEM PRO VI FIRM SEM PRO CALL SEMO VI FIRM SEMO CALL SEMO CALL SEMO VI FIRM SEMO CALL SEMO	** \\	m4r	1 M 4	m			
### TOT SEMO	RES	* 0 v	660	6.2			
WHT TOT SEMO MX SPK MIN NO FALL SEMO FALL SEMO SM MIN NO PRO PRO SEMO SEMO SEMO FALL SEMO PRO SEMO SEMO FALL SEMO PRO SEMO SEMO SEMO SEMO SEMO SEMO SEMO SEM	FIRM	5.98	5.72	6.05			
WHT TOT SEMO MX SPK MIN NO FALL SM PRO EXT EXT DUS MX SPK MIN NO SEMO FALL 13.6 82.4 62.7 110 4 37 0.57 400 2 13.6 81.3 61.0 110 5 63 0.54 400 2 14.5 82.0 61.7 110 7 37 0.51 400 2 14.6 83.0 62.4 110 7 37 0.53 400 SM WP TX SX DU SK SP VI 5 9.0 5.1 11.5 78.5 57.7 95 52 11.0 8.5 4.50 FROMISE, 3=SOME PROMISE, 4=GCCO PRO	1 ^	0 0 0 0	10.0	9.5			
CANDO CRIETY STD TW KWT LG_SM PRO EXT EXT DUS MX SPK MIN NO CROSSON CROSSON CENSON CEN	SEMO	12.7	13.6	13.9	13	88	MISE
CANDO CROSHY STD TW KWT LG_SM PRO EXT EXT DUS MX SPK MIN SEMO CROSH CANDO CROS	FALL	444	444	400			CD PRC
CANDO CROSHY STD TW KWT LG_SM PRO EXT EXT DUS MX SPK CANDO CROSHY 62.4 39.1 24 2 13.6 82.4 62.7 110 4 37 CLOYD 61.6 39.1 24 2 13.6 81.3 61.0 110 5 63.7 VIC 52.4 38.5 13 1 13.6 81.3 61.0 110 5 63.4 43.5 37 1 14.5 82.0 61.7 110 7 37 WARD STANDARDS TWO STANDARDS 62.4 43.5 114.6 83.0 62.4 110 3 10 MINGR FAULTING VALUES 62.4 43.5 114.5 82.0 61.7 110 37 13 MAJOR FAULTING VALUES 60.2 41.4 6 12.5 79.5 58.7 100 47 11 **EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE.	SE MINO	0.57	0.54	0.53	101 2.	0.0	4=GC(
CANDO CROSHY CANDO CROSHY CLOYD RUGBY VIC DEFICIENCIES AVG OF STANDARDS DEFICIENCIES **EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, SOME PROMISE, 3=SOME PROMISE, 3=SOME PRO	SPK	37	400	01	SP 13	==	SE.
CANDO CRIETY STD TW KWT LG_SM PRO EXT EXT DUS CROSS CR	Σ	4 M f	9	m	SK 37	52	ROMI
CANDO CROSBY CRO	DUS	105	105	110			ME P
CANDO CROSBY CRO	SEMO EXT	62.9	62.6	62.4	5X 61.7	58.7	3=50
CANDO CROSBY CLOYD RUGBY VIC DEFICIENCIES A VG OF STANDARDS MAJOR FAULTING VALUES 60.2 41.4 6 12.5 MAJOR FAULTING VALUES 59.3 38.4 11 11.5 ** **EVALUATION I=NO PROMISE, 2=LITTLE PROM	TOT	83.1	83.0 82.0	83.0	TX 82.0	79.5 78.5	ISE,
CANDO CROSHY CROSHY CLOYD CROSHY CROSH CRO	PRO	30.00	244	14.6	WP 14.5	11.5	PROM
CANDO CROSBY CLOYD RUGBY VIC WARD DEFICIENCIES MAJOR FAULTING VALUES 59.3 38.4 **EVALUATION 1=NO PROMISE, 2=LI1	SM				S ==	110	TLE
CANDO CROSBY CLOYD RUGBY VIC WARD DEFICIENCIES A G OF STANDARDS MAJOR FAULTING VALUES 60.2 4 **EVALUATION 1=NO PROMISE, 2	ົບ	24	37			1 . 4 8 . 4	=[1]
CANDO CROSBY LLOYD RUGBY VIC WARD DEFICIENCIES A VG OF STANDARDS MINGR FAULTING VALUES 60 MAJOR FAULTING VALUES 60 MAJOR FAULTING VALUES 59 **EVALUATION I=NO PROMIS	0 X	35.5	0 M 4 0 M 9 0 M 9 0 M 10	37.6	₹. 4	9 m 4 m	E, 2
CANDO CROSBY LLOYD RUGBY VIC WARD DEFICIENCIES A VG OF STANDARDS MINGR FAULTING VALUE MAJOR FAULTING VALUE	×	9.1		1.4	T 62	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	SIMO
VARIETY CANDO CROSBY LLOYD RUGBY VIC WARD DEFICIENCIES A VG OF STANDARDS MINGR F AULTING VA MAJOR FAULTING VA **EVALUATION I=NO	OT S	909	0 0 0 0 0	9		LUE	PR
		CROSBY			DEFICIENCIES A VG OF STANDARDS	MINGR FAULTING VE	**EVALUATION 1=NC

__STAIE=NORIH_DAKOTA_STAIION=LANGDON_NURSERY=EIFLD_PLOI__

** NES VALU TW-KW-SW-WP TX SX BU SK-SP-VI-FR	NE E	z y		
DFF ICATEMENT OF STATEMENT OF S	7777 788 8	ſ'n		
** \	00E-	4		
	4.00	ວ ວ ອ		
FIRM	7.08 7.37 7.62 5.90	9.07		
1	0000 0000	0.6		
SEMO	#### 4806		FR 9.07 7.57 6.82	OMISE
FALL	4444 0000 0000	400		D PR
SE MO MI N	0000	0.62	0.0 8.0 7.5	4=600
SPK	2003		SP 114.8 11.5	SE.
×	ווו 🏲 ויו ויו		25.55 27.75	MOMI
SEMO EXT DUS	1000	1000	100 000 000 000 000	ME PE
	2 14.1 82.8 62.4 105 1 14.4 83.4 63.5 100 1 13.9 83.8 63.6 105 1 14.7 81.7 62.1 95	63.1 65.3	5X 63.1 69.1	3=50
WHT TOT PPO EXT	82.88 83.48 83.88	31.8 85.2	71 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 ×	ISE.
¥H¥ Pb0	14.1	14.2	¥Р 15•7 12•5	PROM
Σ.Ι	~	- ~	\$ - v -	4 - L
1090 % KWT LG_SW	60.3 37.5 25 61.9 40.0 35 59.7 45.0 48 61.4 45.0 54	49	X+0℃ 3 • • • € m u u u	=[1]
1000 KWT	7004 7004	39.83	- νυς να4	ر ا
	44.4	2.4	2007 2007	MISE
STO TW	2007	S 7.2	LUES	790
VARIETY	CANDO CROSSY LLOYO DHGRY		DEFICIENCIES AVG OF STANDARDS MINOR FAULTING VALUES 60.5 49.2 6 12.5 79.3 60.1 MAJOR FAULTING VALUES 59.6 46.2 11 11.5 78.3 59.1	**FVALUATION 1=NO PROMISS. 2=LITTLF PROMISE. 3=SOME PROMISE. 4=6000 PROMISE

DEFICIENCIES TW KW SM WP SX DU	THE	MAN MA MAN MA MAN	
SCORE ***	44444444444444444444444444444444444444	on we so	PROMISE
DUST MIXO	46656688 46656688	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4=G00D
PRO EXTR	14.0 71.5 110.9 70.0 111.7 64.0 113.3 68.5 113.5 68.5 113.8 70.5	14.0 71.5 12.5 64.6 12.2 65.5 13.4 66.5 11.4 559.3 14.5 69.5	DU 80 70 65 3=SOME PROMISE.
LG SM	51 833 744 774 87 11 86 11	51 883 883 831 831 831 831 831	WP SX 14.0 71.5 12.5 68.5 11.5 67.5
MT KONT	61.6 64.0 64.0 60.5 60.6 60.6 61.6 61.6 67.4 61.6 67.9 93.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0 8	61.66 61.66 61.88 61.93 61.99 61.99 61.99 61.99 61.99 61.99 61.99 61.99	3 · · · · · · · · · · · · · · · · · · ·
VARIETY STD	***REP I *** 1983 N.D. STD S CASTELDELMONT CASTELPORZIAM CRESO VALGERADO BA 80/57 CCB2 DR ND 6644	***REP II *** 1983 N.D. STD S CASTELDELMONT CASTELPORZIAM CRESO VALGERARDO BA 80/57 CCB2 DR ND 6644	DEFICIENCIES AVG OF STANDARDS MINOR FAULTING VALUES 59 MAJOR FAULTING VALUES 58 **EVALUATION I=ND PROMIS

		STATE=CA	AL FFORNIA	STAT	#130 KONZAP	LAKE NU	KSERY=PR	STATE=CALIFORNIA STATION=TOLELAKE NOKSEKY=PRELIMINARY #130 KONZAP	
6				-			-		
0	# FF 5	1000	1000 % WHT	HIS	SEMO	SEMO DUST EXTR COLOR	OX JW	SCORE ***	-

S	¥			Σ											_	_		_					_																				
CIE								_					Σ		Σ								¥																				
Z O	Σ				ΣΞ									ΞΞ		M					¥			<u>-</u>		2	Ē		₩				Σ					Σ		Σ			
FIC SM	_			_																																							
X X X	Σ	2		<u>S</u>	Σ							<u>×</u>				_		Σ					Σ	Σ	ξ 3	Ē				3				I W		M	Ξ						
È												Σ				Ξ															Σ			Σ									
SCORE ***	-4	44	. 01	1	J) [7	: m	m	01	י) ני	u m	m	M	N F	n -	. ~	,	¢!	2	d 4	4 Pr	רא נ	4	2	h. l	4) L	ما لد	7 4	· Im	~	m I	m c	u r	m	2	4	N 10	۳ ۲	n m	4	m			
C E	40	010	: m	.	d 14) PC	m	ا س	٠ .	יא כ	o et	e	et e	d la) IC	2	S.	~ 1	ın r	n re) < t	-et	m	m.	et «	+ <	• •	**	m	m.	et t	0.4	- 10	7	ç	• 1	n c	U er	٠м:	m			
N N	•		,	•	•								•				•									•		, -	•	. ,					_								
α																																											
DUST	35	60	100	45	27	75	80	80	000 o	0 0	80	65	7.5	0 6	100	80	75	7.0	8 2	D C	65	7.0	7.0	80	9 6	2 6	0.00	75	7.0	75	7.5	7 5	75	75	83	• (10	- V	75	65			
Ďυ																																											
EMD XTR	00																												ر د							•	٠	ى د •		•			
on ⊞X	- 60 - 100																			ר ע									5.4									ר ער היי					
	4 €	ωc	4	ភ	 α	· W	0	m,	رب د ع	+ 40	_	œ	_ (ಶಚ	0	S	ç	တ	O: 1	£: <	4	· v.	œ	m t	. ,	ی د	u a	لما د	ic.	r	(n a	· Lr	ç	7	r . c	ε.	- ~		ø)			
WHT	11.		-	0	v -	- C∶	C	-	٠.		-	-	⟨.	- ر	10	3	U :	Q١.	016	, 0	10	10	\sim	\sim 0	N (N C	1:0	10	-	Q.	U, 0	\; ==	• C	-	12.	-:		v c	1 1	=	0 0 0 0		
_	4-	~ ~			C 1 80	·	ο:		•	. ^			٥.		. ~		MC.	*	٥:		. ~		_	.	٠.	~				•	*	^ ^		16	C I		.		0.1	٥.	ณ ง.x		•
% SW	0.4																																								Ľ	7 7 7 7	
10	27	30 0	4		7 6	กัก	ř:	Š	7	4 0	1 4	4	₹ .	4 1	, ic	ŝ	F)	~	01	۲.۲	2	õ	J.	m	2	*: U	ນິດ	4	39	9	m d	V d	-	4	ý	7	7	2 3	3	m.	Z ≥ 0	•	•
0 - 1 0 31	n v	ห-	0	φ.	m =	- 1	۳.	េ្ឋា	្តេ	n P	. –	α	α.	٠, ١	ু পু	Ø	m.	6	m v	ا ي	. ^	C	ç	١	n (αu	0 6	10	m		۱ م	- 0	; /	ç		α.	† •	٠ ،	٠, در	i,	≅r.	ر د ا)
- X	2	4 6	3	O	00	, -	0	r.	- r	ri c	77	6	- (OI F	. 4	<	O	œ	8	N K	o C	: 16	1	¢; €	0 1	Cr	γ –	1 C	8	C	G r	n n	· Wi	α	vC:	4 (,	÷C	4	0	-		
þ	100	· C· U	٠,	·C ·	~ ∩	n 0	1 4		C i c	n -	4 (7)	۸:	m . ,	v =		· (1)	C:	_	.+ c	7: c		} ~ +	_	+ \	e e	m u	o c	2 40		C.	P* 1	c 4	ংক	ر.	7	e+ 1º	٠.	a va	_	ď	$\times \omega$	410	
¥ H	0.4	525		-	oi -	- 4	8	5	m r	• (. 6	0			• •		4	Ċ.	m r		٦			_	o c	· -	- ~		· M	3	o c	, -		an	5	اء. ال	٠.	٠,	10	_	7 ¥ €		
												_																														C I	
		S	S																																							ALUF	
10																			¥																						ES 008	>>	>
U					را ر س م	7 V	0				C	m	m.	d <	4 4	4	1	1	-	200	0 1	· C	0	* '0	σ	0						*	*								10	Z Z	-
FTY					1174	` _		_	O.	00	: 1 : —	0	0	00	000	0	00	00	0	7	i n m	1	1	i.	i Lou	0	i c o u	10	2	5.2	i m i ov	ر م د م	9	Œ	83	c.	٠,	- 4	-	ď.	CIFF	33	5
7 AR I	N 7 7 7	PPOD	A \ A \	OLO	00			77	77 (7.0	, C	α	œ	C. 0	C C	(E)	α:	(C)	0		7	1	1-1		١.		< <	· «	A	A	V .	4 <	. DB-	- 6001	- E a	7 (. U	, C.	30	L L	i. U	
>	۵_	ler c	i: >	-	Ü		, 0	C)	C) (, L	_	-	p -	- }-	-	-	_	- 1		- -	_	-	- 1	- 1	- 3	× 3	. *	-	.ee	<u>.</u>		. 3	5	35					ر	ی ۲	CZ	5
																																									~	5.2	

^{***}FVALUATION 1=NO PROWISE, 2=LITTLE PROMISE, 3=SOME PROWISE, 4=6000 PROWISE

^{*} MILL PLUGGED. SHITHE SEMOLINA EXTRACTION DATA WAS UNRELIABLE.

OUALITY DATA OF DURUM SAMPLES 1984 CROP STATF=CALIFORNIA STATION=TULELAKE NURSERY=PRELIMINARY

WHEAT FERTILIZER ORILLSTRIPS

LAB # 1351 - 1367

TABLE 20

7		
L		
-		
Ľ		
_		
n.		
i		
٦,		
-		
_		
×		
2		
۲		
1		
4		
7		
TELESTA DE LESTEL		
-		
-		
Y		
0		
_		
-		
-		
-		
L		
N LILLY		
2		
_		

	,	
sx bu	222 Z Z Z	
N d	77#777777#7777 EXXXXXXXXXXXXXX	
DEFICIENCIES KW SM WP SX		
X O X M X		
F	7 7	
SCOR= **	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
MEXO	m = m = m = a a a m m 4 a a a m m	
DUST	74478888888888888888888888888888888888	
SEMO EXTR	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
F C d d		90 75 65 60
Σ	are an \mathbb{Q}_{2}^{2} are and and and and and and and are are are are fine	0.00 0.00 0.00 0.00
LG SM	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	11.0 12.5 11.5
03		X - V -
-×I	<u> </u>	70m0
TEST WT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	v	AVG OF STANDARDS 64.6 MINOR FAULTING VALUES 52.4 MAJOR FAULTING VALUES 51.5
510	(2)	CIENCIES STANDARDS AULTING V
<u>}</u>	71 71 71 72 72 72 72 72 72 72 73 73 73	TAND TAND TAND
VAPIETY STD	MDDDC 73-10 73-41 73-45 73-45 73-40 75-40 75-40 75-40 80-105 80-1108 80-1108 80-1108	PETC OF S
		AVG OF S WINOR FAL MAJOR FAL

**EVALUATION 1=NO PROWISE, 2=LITTLE PROWISE, 3=SOME PROMISE, 4=GOOD PROMISE

STATE=CALIFORNIA STATION=TULELAKE NURSERY=PRELIMINARY 1984 CROP QUALITY DATA OF DURUM SAMPLES

WHEAT FERTILIZER ORILLSTRIPS

TABLE 21

LAR # 1368 - 1384

ES X DU	I w	MM	7 72 J mJ
FICIENCIES SM WP SX	77 T Z Z Z		C C C C C C C C C C C C C C C C C C C
TES SE	-	7 H H	ш ы¬ Σ ΣΣ
SCORE ***	<i>∾∾</i>		v = 0 01 = =
MIXO	0-0c	vm a: a: a: a	v → → or m or
DUST	75 70 65	2448686 244868686	トゥトトゥ ママトゥ マロ
S F X T X D	0000 044 000		იიიიი . თოს 4 4 . ა
PRO	4.00	1	000000 0000 00000 0000 000000 000000
LG SM	4007	777 777 770 888 11 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	894 1 894 1 795 1 865 1 865 1 866 1 866 8 867 8 867 8 867 8 867 8
0 • 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1444 1084 1084 1084	4 4 4 10 4 10 11 - რ თ 0 7 4 0 1 5 ბ თ ბ 4 თ 0	2400440 3011 0404401 0111 040101 80
TEST	65.00	00000000000000000000000000000000000000	
	v i		ALUES ALUES
VARIETY STD	M020C 73-19 73-91	73-457 73-471 73-506 74-30 75-409 75-409 (2)	80-1102 80-1102 80-1104 80-1248 80-1248 80-1253 81-1530 81-1530 ALUG F STANDARDS WINOR FAULTING VALUES 62-9 WAJOP FAULTING VALUES 62-9

**EVALUATION 1=NO OBORISE, 2=LITTLE PPOMISE, 3=SOME PROMISE, 4=GCOD PROMISE

STATION=TULFLAKE NURSERY=PRELIMINARY 1984 CPDP QUALITY DATA OF DURUM SAMPLES STATF=CALIFORNIA

WHEAT FERTILIZER DRILLSTRIPS

LAB # 1385 - 1399

MODIC S			
## K*W KW	S DO		
## K*W KW	IC IE		
## K*W KW			
FEST 1000 K WHT SFMO DUST MIXO 65.4 40.7 44 1 11.5 59.0 80 80 80 84.5 64.6 64.0 67.0 63.0 64.0 70 80 80 80 80 80 80 80 80 80 80 80 80 80	*	**	
FEST 1000 K WHT SFMO DUST 65.4 40.7 44 1 11.5 59.0 75 65.5 64.0 65.4 40.2 35 2 11.1 5 59.0 75 65.5 64.5 64.9 67 1 11.2 60.0 75 65.5 64.5 64.9 67 1 11.2 60.0 75 65.5 64.5 64.9 67 1 11.0 65.0 75 65.5 64.1 10.3 64.0 75 65.5 64.1 10.4 62.5 80 65.0 75 65.3 35.6 11.1 5 55.0 75 65.3 35.6 11.1 5 55.0 65.3 35.6 11.1 5 55.0 65.3	SCORE ***	0000000	
### K*M MHT SFMD ###################################	MIXO	ฺ ฅฅฅฅ๛๗๗๗๗—ฅ๗ฅฅ๗	
### WHT FEST 1000	DUST	80 77 78 77 77 78 77 78 78 78	
FEST 1000 K SM SS. 4 40.7 44 1 65.4 40.2 44.2 50.4 40.2 50.4 50.4 50.4 50.4 50.4 50.4 50.4 50.4	SEMO	$\begin{array}{c} \text{UD} \cap \triangle + \triangle \wedge \triangle \wedge \cap \triangle \wedge \cap \triangle \wedge \cap \triangle \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge$	
TEST KET K	T C C C C C C C C C C C C C C C C C C C	C	
TEST A SECOND TO	S	リストルリー スート・スト スト	300 X
	, c	400-7404677666470644677467766	10.10.10
$\begin{array}{llllllllllllllllllllllllllllllllllll$	₩ (% 0) (% 0)	4444440404444440 0044400090000000 	2000
VARIETY STD MODOC 73-19 73-401 73-471 73-471 73-506 74-30 75-409 75-409 75-409 75-409 75-409 75-409 76-102 80-1102 80-1102 80-1102 80-11530 80-1263 81-1530 MODE FAULTING VALUES INDE FAULTING VALUES	TEST	$\begin{array}{c} \alpha \otimes \alpha $	4000 0005 0005 0005
VARIETY STD MODOC 73-91 73-91 73-91 73-471 73-506 73-470 73-409 75-409 75-409 75-409 80-1104 80-1104 80-1248 80-1268 80-1268 80-1268 80-1268 80-1268 80-1268 80-1268 80-1268 80-1268 80-1268 80-1268 80-1268 80-1268 80-1268		w ·	ALUES ALUES
VARIETY MODOC 73-91 73-91 73-457 73-457 73-457 73-409 75-409 75-409 80-1102 80-1102 80-1248 80-1264 80-1264 80-1264 80-1264 80-1264 80-1264 80-1264	510	~	ARDS NG V
	VARIETY	MODDC 73-91 73-91 73-457 73-471 73-67 75-409 75-409 75-409 80-1102 80-1102 80-1102	DEFICIENC VG OF STANG INOR FAULTI AJOR FAULTI

2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PROMISE **EVALUATION 1=NO PREMISE.

STATE=CALIFORNIA STATION=TULELAKE NURSERY=PRELIMINARY 1984 CROP QUALITY DATA OF DURUM SAMPLES

WHEAT FERTILIZER DRILLSTRIPS

LAB # 1402 - 1418

TABLE 23

res sx ou	771 7 272 7	
DEFICIENCIES KW SM WP SX (**************************************	
T X X	7 W WWWW77 2 2 772773	
SCORE ***	でとしばしのまけらすらりこう	
MIXO	4mn-4cmmmmmmmm	
OUST	87 W 47 7 8 8 8 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9	
SEMO EXTR	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
PRO	4 W W R H - 0 4 - 4 0 0 W 4 - 5 0	
LG SM	2331 2331 2331 2331 2331 2331 2331 2331	
- XI 0 *I 0 ≠I	L4444444444444 QOM4MWL W W C OM C C U 	
TEST	$\begin{array}{c} \sigma \Lambda & \sigma \Lambda &$	
	v	
STD	(3)	
VARIETY STD	MMDD OC 73-19 73-41 73-451 73-657 73-506 75-409 75-409 75-409 80-1102 80-1102 80-1248 80-1248	

2=LITTLE PROMISE. R=SOME PROMISE. 4=6009 PROMISE **FVALUATION 1=NO PROWISE,

900 70 65

 DEFICIENCIES
 TW
 KW
 SM
 WP
 SX

 AVG OF STANDARDS
 64.8 30.5 2 12.4 59.5 41000 FAULTING VALUES 62.6 37.4 7 12.5 56.5 MAJOR FAULTING VALUES 61.7 34.4 12 11.5 55.5

STATE=CALIFORNIA STATION=TULELAKE NURSERY=PRELIMINARY 1984 CROP QUALITY DATA OF DURUM SAMPLES

TABLE 24

#127 YIELD

DEFICIENCIES TW KW SM WP SX DU	THE		EXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
SCORE	mm - u - u u m u u - m r	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ณ—— ฉ ฅฉฅฅฉฅฅ๛ฅ	
MIXO	ቀጠቀጠቀቀቀጠጠጠጠጠቀ ጠጠጠ	n m m m m m m m m m m m	nnnnn4n4α-dnon4	
DUST	002 002 002 002 002 002 002 003 003 003	77 70 70 70 70 70 70 70	75 655 70 75 75 75 75 75 75	
SEMO	NO N	4 6 6 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10111000001100	
PRO	404540-04040-0000044			0
LG SM	00000000000000000000000000000000000000		ທທ	.5 53.
0F 0 0 ~¥	WW44W4W4444WW4W4W4W4W4W000000000000000	N O O O O O O O O O O O O O O O O O O O	20000000000000000000000000000000000000	1 2 1 8
TEST	00000000000000000000000000000000000000	, , , , , , , , , , , , , , , , , , ,	ON=ON=NNMWWNAWN ••••••••••••••••••••••••••••••••••••	1.99
VARIETY STD	066666666666666666666666666666666666666	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 C I E S C C C C C C C C C C C C C C C C C C	AJUK FAULITNG VALUE

**EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=50ME PROMISE, 4=GOOD PROMISE

REFERENCE MIXOGRAMS
DURUM WHEAT

