MAT 241 - P3

Hugo Marinho

2021

1 Máximos e Mínimos

1.1 Valores extremos de funções de duas variáveis

Definição: Consideremos a função real z = f(x, y) definida num conjunto $D \subset R^2$ e $(x_0, y_0) \in D$. Dizemos que $f(x_0, y_0)$ é um valor máximo relativo de f (respectivamente valor mínimo relativo de f) se existe uma bola aberta $B = B_r(x_0, y_0) \subset D$ tal que

$$f(x,y) \le f(x_0, y_0)$$

(respectivamente $f(x,y) \ge f(x_0,y_0)$)

para todos (x, y) pertencente a B. Um valor máximo ou mínimo relativo de f é chamado valor extremo relativo. O ponto (x_0, y_0) onde f assume extremo relativo é dito ponto extremo relativo.

Teorema: Condição necessária para a existência de extremos relativos.

Sejam z = f(x, y) uma função definida num conjunto $d \subset R^2$ cujo interior é não vazio e (x_0, y_0) um ponto interior a D. Se $\frac{\partial f}{\partial x}(x_0, y_0)$ e $\frac{\partial f}{\partial y}(x_0, y_0)$ existem e f(x, y) tem um extremo relativo em (x_0, y_0) , então

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0 \ e \ \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

Definição: Um ponto (x_0, y_0) interior ao domínio de uma função z = f(x, y) é chamado **ponto crítico** de f se:

- $\nabla f(x_0, y_0)$ não existe; ou
- $\nabla f(x_0, y_0) = (0, 0)$

Exemplo:

1. Encontre os pontos de extremo das seguintes funções abaixo:

$$f(x,y) = 1 - x^2 - y^2$$
$$f(x,y) = \sqrt{x^2 + y^2}$$

Para classificarmos os extremos relativos das funções nós precisaremos de uma ferramenta que envolve derivadas de segunda ordem.

Teorema - Teste da Derivada Segunda

Seja z = f(x, y) uma função de classe C^2 numa bola aberta $B = B_r(x_0, y_0)$. Suponhamos que (x_0, y_0) é um ponto crítico de f(x, y) tal que $\nabla f(x_0, y_0) = (0, 0)$. Denotemos por

$$\frac{\partial^2 f}{\partial x^2}(x_0, y_0) = A \; , \; \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = B \; , \; \frac{\partial^2 f}{\partial y^2}(x_0, y_0) = C$$

Se:

- $B^2 AC < 0$ e A < 0, então f tem um vaor máximo relativo em (x_0, y_0) ;
- $B^2 AC < 0$ e A > 0, então f tem um valor mínimo relativo em (x_0, y_0) ;
- $B^2 AC > 0$, então f tem um ponto de sela em (x_0, y_0) .

Exemplo: Encontre e classifique os pontos críticos da função: $f(x,y) = 2x^3 + y^3 - 3x^2 - 3y$

Teorema: Se z = f(x, y) é uma função contínua num conjunto limitado e fechado $D \subset \mathbb{R}^2$, então f tem um valor máximo absoluto e um valor mínimo absoluto em D.

Note que este reorema nos garante a existência de pontos máximos e mínimos absolutos, mas não nos fornece um critério segundo o qual possamos localizá-los.

Se (x_0, y_0) é um extremo absoluto de uma função f em D, então (x_0, y_0) é um ponto interior a D ou pertence à fronteira de D. Portante, para localizarmos os extremos absolutos de f em D, encontramos os pontos críticos de f e comparamos os valores de f nestes pontos com os valores máximo e mínimo de f na fronteira de D.

Exemplo: Encontre o máximo e mínimo de $f(x,y)=(x-2)^2y+y^2-y$ definida em $D=\{(x,y)\in R^2; x\geq 0, y\geq 0\ e\ x+y\leq 4\}$

2 Máximos e mínimos com restrições - Multiplicadores de Lagrange

Teorema: Sejam f(x,y) e g(x,y) funções definidas e de classe C^1 num subconjunto aberto U do plano xy que contém a curva C de equação g(x,y)=0. Se f(x,y) tem um valor máximo ou mínimo em $(x_0,y_0)\in C$ e $\nabla g(x_0,y_0)\neq (0,0)$, então existe um número real λ tal que

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

O número λ é chamado de multiplicador de Lagrange

Exemplos:

- 1. Encontre a menor e a maior distância da curva $x^6 + y^6 = 1$ à origem.
- 2. Se uma caixa retangular sem tampa deve ter um volume fixo V, que dimensões relativas minimizarão a área da superfície ?
- 3. Encontre o máximo e o mínimo de $f(x,y) = x + y^2$ na região

$$D = \{(x, y) \in \mathbb{R}^2, (x - 2)^2 + y^2 \le 1\}$$