

Escuela de Ingeniería Eléctrica

IE-425 Redes de computadores

Escuela de Ingeniería Eléctrica Universidad de Costa Rica

Enero, 2021

Objetivo

-Conocer los parámetros básicos a considerar en diseño de redes de computadores.

Transmisión inalámbrica

Frecuencia en Hz (f) Longitud de onda en m (λ)

$$\lambda f = c$$

c: velocidad en el vacío

Condiciones en aire ~vacío

Mecanismos de transmisión

- Uso de una banda de frecuencia de ancho específico.

Mecanismos:

- Salto de frecuencia (Frequency Hopping Spread Spectrum o FHSS)
- Espectro disperso de secuencia directa (DSSS)
- Banda ultra ancha (UWB)

Radiotransmisión

- Radiofrecuencia (RF)
- Transmisión "omnidireccional"
- Decaimiento proporcional al cuadrado de la distancia
- Ciertas bandas siguen la trayectoria (curvatura de la tierra LF, VLF, MF) y otras bandas rebotan, lo que permite comunicación a largas distancias (HF, VHF) -> radioaficionados.

Microondas

- Por encima de los 100MHz
- Viajan en línea recta y se pueden enfocar
- Relación señal a ruido mejor que otras frecuencias
- Ejemplo de equipo:

https://www.racom.eu/ eng/products/microwav e-link.html

Regulación del espectro

- Bandas más "comerciales" se subastan. Son bandas populares para uso de sistemas móviles GSM, 3G, 4G, 5G, son bandas reguladas, solo las empresas autorizadas pueden transmitir.

https://sites.google.com/a/rnt.sutel.go.cr/rnt/titulo s-habilitantes/concesiones/concurso-publico

- Igual pasa con el espectro en VHF y UHF, está asignado por zonas en el país (radio y tv).
- Bandas de uso abierto (ISM, Industria Ciencia y Medicina) no requieren licencia.

Transmisión infrarroja

- Corto alcance
- Objetos son opacos a esta radiación, por lo tanto es absorbida
- Existe un estándar IrDA (Infra red Data Association)
- No es muy utilizado

Transmisión satelital

GEO

- ITU asigna espacio orbital.
- ITU ha definido bandas de frecuencia

Banda	Enlace descendente	Enlace ascendente	Ancho de banda	Problemas
L	1.5 GHz	1.6 GHz	15 MHz	Bajo ancho de banda; saturada.
S	1.9 GHz	2.2 GHz	70 MHz	Bajo ancho de banda; saturada.
С	4.0 GHz	6.0 GHz	500 MHz	Interferencia terrestre.
Ku	11 GHz	14 GHz	500 MHz	Lluvia.
Ka	20 GHz	30 GHz	3500 MHz	Lluvia, costo del equipo.

GEO

- Geoestacionarias (1 estación cubre 1/3 del área terrestre)
- Servicio comercial de datos más difundido usa tecnología VSAT (Very Small Aperture Terminals)
- Soporta tasa de transmisión típicas de hasta 1
 Mbps.

Ejercicios

Analizamos el siguiente texto

- Sabemos de Shannon que la cantidad de información que puede transportar una señal como una onda electromagnética depende de la potencia recibida y es proporcional a su ancho de banda.
- Queda ahora claro por qué a las personas que trabajan en redes les gusta tanto la fibra óptica. Hay muchos GHz de ancho de banda disponibles que se pueden aprovechar para la transmisión de datos en la banda de microondas, e incluso más en la fibra debido a que está más a la derecha en nuestra escala logarítmica.
- Como ejemplo considere la banda de 1.30 micrómetros (F.O.), que tiene una anchura de 0.17 micrómetros y un rango de frecuencia aproximado de 30 000 GHz. Con una relación de señal-ruido razonable de 30 dB, esto sería 300 Tbps.

Número máximo de bits/seg = $B \log_2 (1 + S/N)$

Similar a problema 2. Pag. 161

 Un canal sin ruido de 4 kHz se muestrea cada 1 mseg. ¿Cuál es la tasa de datos máxima?

Tasa de datos máxima = $2B \log_2 V$ bits/seg

Similar a problema 2. Pag. 161

 ¿Cómo cambia la tasa de datos máxima si el canal es ruidoso, con una relación señal a ruido de 30 dB?

Número máximo de bits/seg = $B \log_2 (1 + S/N)$

Verificamos la información de la tarjeta WiFi

Usamos el comando netsh

- Con la instrucción en línea de comando:
 - netsh wlan show interfaces

linux -> iwconfig

 Comentamos la información – Canal (20MHz) – dBm (%) y la materia vista en clase. ¿Cómo se afecta la tasa de transmisión por S/N, distancia, tamaño del canal?

Revisamos la tarea 1

Modulación

Otras modulaciones

- En AMI se tiene una tasa de símbolo/s no de b/s

4B/5B

Datos (4B)	Palabra de código (5B)	Datos (4B)	Palabra de código (5B)
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

- Limitación de líneas telefónicas digitales de recibir máximo 15 ceros seguidos

Transmisión pasa banda

Transmisión de símbolo

- Modulación de amplitud y fase para generar una constelación según el símbolo que se quiere transmitir

Código Gray

Multiplexado (FDM)

Multiplexado (OFDM)

Multiplexado (CDM)

- TDM turnos, FDM tonos, CDM "idioma"
- Se asigna un código por bit, que tiene una cantidad de "chips", se crea un valor de chips/bit.

Ejercicios

Ejercicio 4, pág. 161

• Si se envía una señal binaria por un canal de 3 kHz cuya relación señal a ruido es de 20 dB, ¿cuál es la tasa de datos máxima que se puede obtener?

Ejercicio 7, pág. 161

 ¿Cuánto ancho de banda existe en 0.2 micrómetros de espectro a una longitud de onda central de 1 micrómetro?

Ejercicio 8, pág. 161

 Se desea enviar una secuencia de imágenes de pantalla de computadora por una fibra óptica. La pantalla es de 2 560 X 1 600 píxeles y cada píxel ocupa 24 bits. Hay 60 imágenes de pantalla por segundo. ¿Cuánto ancho de banda se necesita y cuántas micras de longitud de onda se necesitan para esta banda a 1.30 micras?

Ejercicio 22, pág. 162

 Un diagrama de constelación de módem, similar al de la figura 2-23, tiene puntos de datos en las siguientes coordenadas: (1, 1), (1, -1), (-1, 1) y (-1, -1). ¿Cuántos bps puede lograr un módem a 1 200 símbolos/seg con estos parámetros?

Ejercicio 24, pág. 162

• ¿Cuántas frecuencias utiliza un módem QAM-64 en full dúplex (recibe y transmite simultáneamente)?

Lectura recomendada para la siguiente clase

• 121 - 154

https://www.submarinecablemap.com/