《计算机系统基础(四):编程与调试实践》

浮点数的表示和基本运算

浮点数的表示和基本运算

IEEE 754浮点数标准 尾数的舍入处理 浮点数的基本运算

- 1. IEEE 754浮点数的基本格式
- ① 32位单精度浮点格式,即float格式

1位8位23位符号阶码尾数

② 64位双精度浮点格式,即double格式

 1位
 11位
 52位

 符号
 阶码
 尾数

2. IEEE 754标准中的数据按值的分类

IEEE 754浮点数32位单精度格式各类值的编码

	1位	8位	23位
正零和负零	0/1	0	0
	1位	8位	23位
非规格化	0/1	0	f≠0
	1位	8位	23位
规格化非零	0/1	1-254	f
	1位	8位	23位
无穷大	0/1	255	0
	1位	8位	23位
无定义数	0/1	255	f≠0

规格化数的真值与机器数的对应关系:

真值: +/-1.xxxxxxxxx * 2^E

机器数: 1 bit 8 bits 23 bits

0/1 E+127 xxxxxxxxxx

真值: 5.0=1.01B*2² 2+127=1000 0001B

=40a0 0000H

机器数: 1 bit 8 bits 23 bits

S Exponent Significand

真值: (-1)^S x (1 + Significand) * 2^(Exponent-127)

机器数: 40a0 0000H

例如

真值: 1.01B*2² 1000 0001B-127=2

非规格化数的真值与机器数的对应关系:

真值: +/-0.xxxxxxxxx * 2⁻¹²⁶

机器数: 1 bit 8 bits 23 bits

0/1 00000000 xxxxxxxxxx

真值: 1e-40=10⁻⁴⁰≈0.000 0001 0001 0110 1100 0010B*2⁻¹²⁶

机器数: 0 0000 0000 000 0001 0001 0110 1100 0010B

=0001 16C2H

机器数: 1 bit 8 bits 23 bits

S 00000000 Significand

真值: (-1)^S x Significand * 2⁻¹²⁶

机器数: 0001 16C2H

例如

=0 0000 0000 000 0001 0001 0110 1100 0010B

真值: 0.000 0001 0001 0110 1100 0010B*2⁻¹²⁶

32位单精度浮点格式,即float格式

1位8位23位符号阶码尾数

24位精度

IEEE754标准提供四种舍入模式:

- ① 就近舍入(中间值舍入到偶数) x≈a、y≈b、z≈?
- ② 朝+∞方向舍入
- ③ 朝-∞方向舍入
- ④ 朝0方向舍入

x≈a, y≈b, z≈? x≈b, y≈b, z≈b x≈a, y≈a, z≈a

x≈a, y≈a, z≈a

a、b: 两个连续的浮点格式可表示的数据

x、y、z:需要浮点编码的数据, z=(a+b)/2

就近舍入方法(以32位单精度浮点格式为例):

真值的尾数:

需要截断的位只有3位了,有8种编码000~111,把100看成是中间值

- ① 000~011 小于100, 舍, 1. x₁x₂····x₂₃
- ② 101~111 大于100, 入, 1. x₁x₂···x₂₃ +0.0···01 (最低位加1)
- ③ 100 { 若x₂₃=0,则 舍, 1. x₁x₂···x₂₃ 若x₂₃=1,则 入, 1. x₁x₂···x₂₃ +0.0···01 (最低位加1)

就近舍入方法(以32位单精度浮点格式为例):

数据	尾数	"粘位"处理	舍入规则	新尾数
8000000H	100 0000B	100 000B	就近舍	100 B
8000001H	100 0001B	100 001B	就近舍	100 B
8000014H	101 0100 B	101 010 B	就近舍	101 B
8000017H	101 0111 B	101 011 B	就近舍	101 B
8000008H	100 1000B	100 100B	中间数,舍	100 B
8000018H	101 1000B	101 100B	中间数,入	110 B
8000019H	101 1001B	101 101B	就近入	110 B
800000CH	100 1100B	100 110B	就近入	101 B
800000DH	100 1101B	100 111B	就近入	101 B

浮点数的基本运算

1. 设两个规格化浮点数分别为 A=Ma·2^{Ea} B=Mb·2^{Eb} ,则:

$$A \pm B = (M_a \pm M_b \cdot 2^{-(Ea-Eb)}) \cdot 2^{Ea}$$
 (假设Ea>=Eb)
 $A \pm B = (M_a \pm M_b) \cdot 2^{Ea+Eb}$
 $A = (M_a + M_b) \cdot 2^{Ea-Eb}$

2. 浮点运算部件

早期: [浮点协处理器芯片 (FPU): 8087、80287 CPU: 8086/8088、80286/80386

现在: CPU 定点运算部件 浮点运算部件

- 3. 浮点数的运算中有对阶、舍入、溢出等问题,导致运算结果会出现大数吃小数、精度误差、结果异常等问题。
- 4. 爱国者导弹定位错误的案例分析: 差之毫厘, 失之干里

浮点数的基本运算

(1) 事故: 爱国者导弹定位错误。

(2) 原因: 0.1的计算机表示误差

0.1的误差很小,但运算后的累计误差就大了。

浮点数的基本运算

(3) 数据:

爱国者导弹系统的内置时钟,每隔0.1秒计数一次;

爱国者已经连续工作100小时;

飞毛腿导弹的飞行速度约为2000米/秒;

- (4)爱国者系统时钟的误差导致计算的距离偏差是多少?
- (5) 分析:

0.1=0.000 1100 1100 1100 1100 1100 [1100] · · · B

程序: x=0.000 1100 1100 1100 1100 1100B 24位定点小数表示0.1

时间误差: (0.1-x)*100*60*60*10≈0.3433秒

距离误差: 2000*0.3433=686.6米

(6) 讨论:

对 0.1采用不同的表示方式, 计算的距离误差分别是多少?

float格式、32位定点小数、就近舍入后的24位定点小数

谢谢!