```
In [18]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing, svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

In [19]: df=pd.read_csv(r"C:\Users\mouni\Downloads\used_cars_data.csv")
df

Out[19]:		S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_
	0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	
	1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	
	2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	
	3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	
	4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Se
		•••							
	7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	
	7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	
	7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	
	7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	
	7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	

7253 rows × 14 columns

```
In [20]: df=df[['Kilometers_Driven', 'Price']]
df.columns=['kd', 'price']
```

In [21]: | df.head(20)

Out[21]:

	kd	price
0	72000	1.75
1	41000	12.50
2	46000	4.50
3	87000	6.00
4	40670	17.74
5	75000	2.35
6	86999	3.50
7	36000	17.50
8	64430	5.20
9	65932	1.95
10	25692	9.95
11	60000	4.49
12	64424	5.60
13	72000	27.00
14	85000	17.50
15	110000	15.00
16	58950	5.40
17	25000	5.99
18	77469	6.34
19	78500	28.00

In [23]: sns.lmplot(x='kd',y='price',data=df,order=2,ci=None)

Out[23]: <seaborn.axisgrid.FacetGrid at 0x1faeccf5ab0>

In [24]: df.describe()

Out[24]:

	ка	price
count	7.253000e+03	6019.000000
mean	5.869906e+04	9.479468
std	8.442772e+04	11.187917
min	1.710000e+02	0.440000
25%	3.400000e+04	3.500000
50%	5.341600e+04	5.640000
75%	7.300000e+04	9.950000
max	6.500000e+06	160.000000

```
In [25]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 7253 entries, 0 to 7252
         Data columns (total 2 columns):
               Column Non-Null Count Dtype
                       -----
                                       int64
          0
              kd
                       7253 non-null
          1
              price
                      6019 non-null
                                       float64
         dtypes: float64(1), int64(1)
         memory usage: 113.5 KB
In [26]: |df.fillna(method='ffill')
Out[26]:
                  kd
                     price
             0 72000
                      1.75
             1 41000 12.50
             2 46000
                      4.50
               87000
                      6.00
               40670 17.74
          7248
               89411
                      2.50
          7249 59000
                      2.50
          7250 28000
                      2.50
          7251 52262
                      2.50
          7252 72443
                      2.50
         7253 rows × 2 columns
In [27]: | df.fillna(value=0,inplace=True)
         C:\Users\mouni\AppData\Local\Temp\ipykernel_5504\1434098079.py:1: SettingWit
         hCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
         stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pand
         as.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-v
         ersus-a-copy)
           df.fillna(value=0,inplace=True)
         x=np.array(df['kd']).reshape(-1,1)
In [29]:
         y=np.array(df['price']).reshape(-1,1)
```

```
In [30]: | df.dropna(inplace=True)
```

C:\Users\mouni\AppData\Local\Temp\ipykernel_5504\1379821321.py:1: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

```
In [31]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train, y_train)
    print(regr.score(x_test,y_test))
```

-0.41368708627835615

```
In [32]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [33]: df500=df[:][:500]
sns.lmplot(x="kd",y="price",data=df500,order=1,ci=None)
```

Out[33]: <seaborn.axisgrid.FacetGrid at 0x1fae5f8baf0>


```
In [34]: df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regression: -0.5417583905652401


```
In [35]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("r2 score:",r2)
```

r2 score: -0.5417583905652401

```
In [ ]:
```

In []:	:	
In []:	:	