Методы оптимизации Лекция 5: Введение в теорию двойственности

Александр Катруца

Факультет инноваций и высоких технологий Физтех-школа прикладной математики и информатики

3 октября 2018 г.

Условия оптимальности

- Условия оптимальности
- Задача безусловной оптимизации

- Условия оптимальности
- Задача безусловной оптимизации
- Задача условной оптимизации с равенствами

- Условия оптимальности
- Задача безусловной оптимизации
- Задача условной оптимизации с равенствами
- Задача условной оптимизации с неравенствами

- Условия оптимальности
- Задача безусловной оптимизации
- Задача условной оптимизации с равенствами
- Задача условной оптимизации с неравенствами
- Условия Каруша-Куна-Таккера

Общая задача оптимизации

$$\min_{x\in\mathcal{D}}f_0(x)$$
 s.t. $g_i(x)=0,\ i=1,\ldots,m$ $h_j(x)\leq 0,\ j=1,\ldots,p$ dom $f_0=\mathcal{D}\subseteq\mathbb{R}^n,\ f_0(x^*)=p^*$

Общая задача оптимизации

$$\min_{x \in \mathcal{D}} f_0(x)$$
 s.t. $g_i(x) = 0, \ i = 1, \dots, m$ $h_j(x) \leq 0, \ j = 1, \dots, p$

$$\mathsf{dom}\ f_0 = \mathcal{D} \subseteq \mathbb{R}^n,\ f_0(x^*) = p^*$$

▶ Лагранжиан $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x, \lambda, \mu) = f_0(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

▶ Общая задача оптимизации

$$\min_{x \in \mathcal{D}} f_0(x)$$
 s.t. $g_i(x) = 0, \ i = 1, \dots, m$ $h_j(x) \leq 0, \ j = 1, \dots, p$

dom
$$f_0 = \mathcal{D} \subseteq \mathbb{R}^n$$
, $f_0(x^*) = p^*$

lacktriangle Лагранжиан $L:\mathcal{D} imes\mathbb{R}^m imes\mathbb{R}^p o\mathbb{R}$

$$L(x, \lambda, \mu) = f_0(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

 λ_i – множители Лагранжа для ограничений $g_i(x)=0,\; i=1,\ldots,m$

Общая задача оптимизации

$$\min_{x \in \mathcal{D}} f_0(x)$$
 s.t. $g_i(x) = 0, \ i = 1, \dots, m$ $h_j(x) \leq 0, \ j = 1, \dots, p$

dom
$$f_0 = \mathcal{D} \subseteq \mathbb{R}^n$$
, $f_0(x^*) = p^*$

▶ Лагранжиан $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x, \lambda, \mu) = f_0(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

- λ_i множители Лагранжа для ограничений $q_i(x) = 0, \ i = 1, \dots, m$
- $lacktriangledown \mu_j$ множители Лагранжа для ограничений $h_j(x) \leq 0, \ j=1,\ldots,p$

Двойственная функция

Определение

Функция $g:\mathbb{R}^m imes\mathbb{R}^p o\mathbb{R}$ такая что

$$g(\lambda, \mu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^p \mu_j h_j(x) \right)$$

называется двойственной функцией

Двойственная функция

Определение

Функция $g:\mathbb{R}^m imes\mathbb{R}^p o\mathbb{R}$ такая что

$$g(\lambda, \mu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{j=1}^p \mu_j h_j(x) \right)$$

называется двойственной функцией

Свойства

- Всегда вогнута
- lacktriangle Может равняться $-\infty$ для некоторых (λ,μ)

Нижняя оценка оптимального значения функции

Утверждение

Если $\mu \geq 0$, тогда $p^* \geq g(\lambda,\mu)$

Нижняя оценка оптимального значения функции

Утверждение

Если $\mu \geq 0$, тогда $p^* \geq g(\lambda, \mu)$

Доказательство

▶ Если $\hat{x} \in \mathcal{D}$ и лежит в допустимом множестве, а также $\mu \geq 0$, тогда

$$f_0(\hat{x}) \ge L(\hat{x}, \lambda, \mu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \mu) = g(\lambda, \mu)$$

lacktriangle Минимизируя обе части по всем допустимым \hat{x} , получим

$$p^* \ge g(\lambda, \mu)$$

Определение

$$\max g(\lambda, \mu)$$

$$\text{s.t. } \mu \geq 0$$

Определение

Двойственной задачей называется следующая задача

$$\max g(\lambda,\mu)$$
 s.t. $\mu \geq 0$

Всегда выпуклая задача

Определение

$$\max g(\lambda,\mu)$$
 s.t. $\mu \geq 0$

- Всегда выпуклая задача
- $d^* = g(\lambda^*, \mu^*)$

Определение

$$\max g(\lambda,\mu)$$
 s.t. $\mu \geq 0$

- Всегда выпуклая задача
- $d^* = g(\lambda^*, \mu^*)$
- ightharpoonup Лучшая нижняя оценка для p^* , которую может дать двойственная функция

Определение

$$\max g(\lambda,\mu)$$
 s.t. $\mu \geq 0$

- Всегда выпуклая задача
- $d^* = g(\lambda^*, \mu^*)$
- ightharpoonup Лучшая нижняя оценка для p^* , которую может дать двойственная функция
- ▶ Вектора (λ,μ) называются допустимыми для двойственной задачи, если $\mu \geq 0$ и $(\lambda,\mu) \in \mathsf{dom}\ g$

Двойственная задача и сопряжённые функции

Определение

Функция
$$f^*(y) = \sup_{x \in \text{dom } f} (y^\top x - f(x))$$
 называется сопряжённой функцией к функции $f(x)$

Двойственная задача и сопряжённые функции

Определение

Функция
$$f^*(y) = \sup_{x \in \text{dom } f} (y^\top x - f(x))$$
 называется сопряжённой функцией к функции $f(x)$

$$\min f_0(x)$$
 s.t. $Ax \le b$
$$Cx = d$$

Двойственная задача и сопряжённые функции

Определение

Функция $f^*(y) = \sup_{x \in \mathsf{dom}\ f} (y^\top x - f(x))$ называется сопряжённой функцией к функции f(x)

$$\min f_0(x)$$
s.t. $Ax \le b$

$$Cx = d$$

От сопряжённых функций к двойственным

$$\begin{split} g(\lambda, \mu) &= \inf_{x \in \mathsf{dom}\ f_0} (f_0(x) + (A^\top \mu + C^\top \lambda)^\top x - b^\top \mu - d^\top \lambda) \\ &= -f_0^* (-A^\top \mu - C^\top \lambda) - b^\top \mu - d^\top \lambda \end{split}$$

Знание сопряжённой функции существенно упрощает поиск двойственной

Слабая двойственность: $d^* \leq p^*$

Слабая двойственность: $d^* \leq p^*$

▶ Всегда выполняется по построению двойственной задачи

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ► Нетривиальные нижние границы для (NP-)сложных задач

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

В общем случае НЕ выполняется

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений
- Может выполняться и для невыпуклых задач

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений
- Может выполняться и для невыпуклых задач
- Решение двойственной задачи даёт решение прямой задачи

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений
- Может выполняться и для невыпуклых задач
- Решение двойственной задачи даёт решение прямой задачи

Зазор двойственности: $p^* - d^*$

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений
- Может выполняться и для невыпуклых задач
- Решение двойственной задачи даёт решение прямой задачи

Зазор двойственности: $p^* - d^*$

▶ Оценка точности решения

Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность: $d^* = p^*$

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений
- Может выполняться и для невыпуклых задач
- Решение двойственной задачи даёт решение прямой задачи

Зазор двойственности: $p^* - d^*$

- Оценка точности решения
- Доказательство корректности и сходимости алгоритма

Геометрическая интерпретация

$$\begin{aligned} & \min_{x \in \mathcal{D}} f_0(x) & & g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda u) \\ \text{s.t. } & f_1(x) \leq 0 & & \mathcal{G} = \{(f_1(x), f_0(x)) \mid x \in \mathcal{D}\} \end{aligned}$$

Условие Слейтера

Сильная двойственность выполняется для выпуклой задачи

$$\min f_0(x)$$
 s.t. $f_i(x) \leq 0, \ i=1,\ldots,m$ $Ax=b$

если $\exists \bar{x} \in \text{int } \mathcal{D}: \ f_i(\bar{x}) < 0, \ A\bar{x} = b$

- ▶ Также гарантируется, что решение двойственной задачи достигается при $p^*>-\infty$
- Существуют множество других условий регулярности ограничений

Пусть выполнена сильная двойственность, x^* – решение прямой задачи, (λ^*, μ^*) – решение двойственной задачи, тогда

Пусть выполнена сильная двойственность, x^* — решение прямой задачи, (λ^*, μ^*) — решение двойственной задачи, тогда

$$f_0(x^*) = g(\lambda^*, \mu^*) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* g_i(x) + \sum_{j=1}^p \mu_j^* h_j(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*) + \sum_{j=1}^p \mu_j^* h_j(x^*)$$

$$\leq f_0(x^*)$$

Пусть выполнена сильная двойственность, x^* — решение прямой задачи, (λ^*, μ^*) — решение двойственной задачи, тогда

$$f_0(x^*) = g(\lambda^*, \mu^*) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* g_i(x) + \sum_{j=1}^p \mu_j^* h_j(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*) + \sum_{j=1}^p \mu_j^* h_j(x^*)$$

$$\leq f_0(x^*)$$

 $ightharpoonup x^*$ минимизирует $L(x,\lambda^*,\mu^*)$

Пусть выполнена сильная двойственность, x^* — решение прямой задачи, (λ^*, μ^*) — решение двойственной задачи, тогда

$$f_0(x^*) = g(\lambda^*, \mu^*) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* g_i(x) + \sum_{j=1}^p \mu_j^* h_j(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* g_i(x^*) + \sum_{j=1}^p \mu_j^* h_j(x^*)$$

$$\leq f_0(x^*)$$

- $ightharpoonup x^*$ минимизирует $L(x, \lambda^*, \mu^*)$
- ▶ Условие дополняющей нежёсткости $\mu_i^* h_j(x^*) = 0, \ j = 1, \dots, p$

$$\mu_j^* > 0 \Rightarrow h_j(x^*) = 0, \quad h_j(x^*) < 0 \Rightarrow \mu_j^* = 0$$

Пусть (x^*, λ^*, μ^*) решения прямой и двойственной задачи и выполнена сильная двойственность, тогда

- 1. $h_i(x^*) \leq 0$
- 2. $g_i(x^*) = 0$
- 3. $\mu^* \geq 0$
- 4. $\mu_j^* h_j(x^*) = 0$

5.
$$f_0'(x^*) + \sum_{i=1}^m \lambda_i^* g_i'(x^*) + \sum_{j=1}^p \mu_j^* h_j'(x^*) = 0$$

Последнее равенство выполнено в силу

$$\min_{x} L(x, \lambda^*, \mu^*) = L(x^*, \lambda^*, \mu^*)$$

и необходимого условия минимума.

Утверждение 1

Пусть прямая задача выпукла (f_0,h_j – выпуклы, g_i – аффинны) и для $(\hat x,\hat \lambda,\hat \mu)$ выполнены условия ККТ, тогда

- выполнена сильная двойственность
- $lackbrack (\hat x,\hat \lambda,\hat \mu)$ решения прямой и двойственной задач

Утверждение 1

Пусть прямая задача выпукла (f_0,h_j – выпуклы, g_i – аффинны) и для $(\hat x,\hat \lambda,\hat \mu)$ выполнены условия ККТ, тогда

- выполнена сильная двойственность
- $lackbrack (\hat x,\hat \lambda,\hat \mu)$ решения прямой и двойственной задач

Утверждение 1

Пусть прямая задача выпукла (f_0,h_j – выпуклы, g_i – аффинны) и для $(\hat x,\hat \lambda,\hat \mu)$ выполнены условия ККТ, тогда

- выполнена сильная двойственность
- $lackbrack (\hat x,\hat \lambda,\hat \mu)$ решения прямой и двойственной задач

Доказательство

lacktriangle Первые два условия $ightarrow \hat{x}$ лежит в допустимом множестве

Утверждение 1

Пусть прямая задача выпукла (f_0,h_j – выпуклы, g_i – аффинны) и для $(\hat x,\hat \lambda,\hat \mu)$ выполнены условия ККТ, тогда

- выполнена сильная двойственность
- $lackbrack (\hat x,\hat \lambda,\hat \mu)$ решения прямой и двойственной задач

- lacktriangle Первые два условия $ightarrow \hat{x}$ лежит в допустимом множестве
- $m{\hat{\mu}} \geq 0
 ightarrow L(x,\hat{\lambda},\hat{\mu})$ выпуклый по x

Утверждение 1

Пусть прямая задача выпукла $(f_0,h_j$ – выпуклы, g_i – аффинны) и для $(\hat x,\hat \lambda,\hat \mu)$ выполнены условия ККТ, тогда

- выполнена сильная двойственность
- $lackbrack (\hat x,\hat \lambda,\hat \mu)$ решения прямой и двойственной задач

- lacktriangle Первые два условия $ightarrow \hat{x}$ лежит в допустимом множестве
- $\hat{\mu} \geq 0 \rightarrow L(x, \hat{\lambda}, \hat{\mu})$ выпуклый по x
- lacktriangle Последнее условие $ightarrow \hat{x}$ минимизирует L

$$g(\hat{\lambda}, \hat{\mu}) = L(\hat{x}, \hat{\lambda}, \hat{\mu}) = f_0(\hat{x}) + \sum_{i=1}^{m} \hat{\lambda}_i g_i(\hat{x}) + \sum_{j=1}^{p} \hat{\mu}_j h_j(\hat{x}) = f_0(\hat{x})$$

Утверждение 1

Пусть прямая задача выпукла $(f_0,h_j$ – выпуклы, g_i – аффинны) и для $(\hat x,\hat \lambda,\hat \mu)$ выполнены условия ККТ, тогда

- выполнена сильная двойственность
- $lackbrack (\hat x,\hat \lambda,\hat \mu)$ решения прямой и двойственной задач

Доказательство

- lacktriangle Первые два условия $ightarrow \hat{x}$ лежит в допустимом множестве
- $\hat{\mu} \geq 0 \rightarrow L(x, \hat{\lambda}, \hat{\mu})$ выпуклый по x
- lacktriangle Последнее условие $ightarrow \hat{x}$ минимизирует L

$$g(\hat{\lambda}, \hat{\mu}) = L(\hat{x}, \hat{\lambda}, \hat{\mu}) = f_0(\hat{x}) + \sum_{i=1}^{m} \hat{\lambda}_i g_i(\hat{x}) + \sum_{j=1}^{p} \hat{\mu}_j h_j(\hat{x}) = f_0(\hat{x})$$

Выполнена сильная двойственность

Утверждение 1

Пусть прямая задача выпукла (f_0,h_j – выпуклы, g_i – аффинны) и для $(\hat x,\hat \lambda,\hat \mu)$ выполнены условия ККТ, тогда

- выполнена сильная двойственность
- $lackbrack (\hat x,\hat \lambda,\hat \mu)$ решения прямой и двойственной задач

- lacktriangle Первые два условия $ightarrow \hat{x}$ лежит в допустимом множестве
- $\hat{\mu} \geq 0 \rightarrow L(x, \hat{\lambda}, \hat{\mu})$ выпуклый по x
- lacktriangle Последнее условие $ightarrow \hat{x}$ минимизирует L

$$g(\hat{\lambda}, \hat{\mu}) = L(\hat{x}, \hat{\lambda}, \hat{\mu}) = f_0(\hat{x}) + \sum_{i=1}^{m} \hat{\lambda}_i g_i(\hat{x}) + \sum_{j=1}^{p} \hat{\mu}_j h_j(\hat{x}) = f_0(\hat{x})$$

- Выполнена сильная двойственность
- $lackbrack (\hat x,\hat \lambda,\hat \mu)$ решения прямой и двойственной задач

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда x решение прямой задачи тогда и только тогда, когда существуют (λ,μ) такие, что для них выполнены условия ККТ

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда x решение прямой задачи тогда и только тогда, когда существуют (λ,μ) такие, что для них выполнены условия ККТ

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда x решение прямой задачи тогда и только тогда, когда существуют (λ,μ) такие, что для них выполнены условия ККТ

Доказательство

• Из выпуклости и условий Слейтера следует выполнение сильной двойственности и достижимость минимума p^*

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда x решение прямой задачи тогда и только тогда, когда существуют (λ,μ) такие, что для них выполнены условия ККТ

- Из выпуклости и условий Слейтера следует выполнение сильной двойственности и достижимость минимума p^*
- Необходимость выполнение ККТ следует из утверждения для общего случая

Утверждение 2

Пусть для выпуклой задачи выполнено условие Слейтера. Тогда x решение прямой задачи тогда и только тогда, когда существуют (λ,μ) такие, что для них выполнены условия ККТ

- Из выпуклости и условий Слейтера следует выполнение сильной двойственности и достижимость минимума p^*
- Необходимость выполнение ККТ следует из утверждения для общего случая
- Достаточность следует из утверждения 1

▶ Равносильные прямые задачи могут давать совершенно разные двойственные задачи

- Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- ▶ Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

- ▶ Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

Стандартные приёмы

- Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

Стандартные приёмы

▶ Введение новых переменных

$$\min_{x} \|Ax - b\| \rightarrow \min_{\substack{(x,y) \\ \text{s.t. } Ax - b = y}} \|y\|$$

- ▶ Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

Стандартные приёмы

▶ Введение новых переменных

$$\min_{x} \|Ax - b\| \rightarrow \min_{(x,y)} \|y\|$$
 s.t. $Ax - b = y$

Превращение явных ограничений в неявные

$$\begin{aligned} \min_{x \in \mathbb{R}^n} c^\top x & \min_{-1 \leq x \leq 1} c^\top x \\ \text{s.t. } -1 \leq x \leq 1 & \to & \min_{-1 \leq x \leq 1} c^\top x \\ Ax = b & \text{s.t. } Ax = b \end{aligned}$$

▶ Построение двойственных функций

- Построение двойственных функций
- ▶ Связь сопряжённых и двойственных функций

- Построение двойственных функций
- Связь сопряжённых и двойственных функций
- ▶ Двойственная задача и её свойства

- Построение двойственных функций
- Связь сопряжённых и двойственных функций
- ▶ Двойственная задача и её свойства
- ▶ Сильная и слабая двойственность

- Построение двойственных функций
- Связь сопряжённых и двойственных функций
- Двойственная задача и её свойства
- Сильная и слабая двойственность
- ККТ и условие Слейтера