

Homework 3

Oliver Kis

15576333

02 February 2024

The University of British Columbia Electrical and Computer Engineering Math 220 - Mathematical Proofs Instructor: Bennett Michael

Solutions

For Homework 3, Problem 3, 4, 5, 6, a part of 7, and a part of 8 are worth marks.

Problem 3. (2 *Points*) Let $a \in \mathbb{Z}$. Prove the following statement:

if
$$5 \mid 2a$$
, then $5 \mid a$.

Proof: Let $a \in \mathbb{Z}$. Using divisibility rules and implication rules, if the hypothesis and conclusion are both true, then the implication is true.

if
$$2a=5k$$
 where $k\in\mathbb{Z}$
$$a=\frac{5k}{2}$$
 Where $a\in\mathbb{Z},$ this means $k=2m$
$$a=\frac{5*2m}{2}=5m$$

Problem 4. (5 Points)

1. (1 *Points*) Prove the following statement. For every $a \in \mathbb{R}$,

if
$$a \ge 4$$
, then $-a^2/4 + a \le 0$.

Proof: Let $a \in \mathbb{R}$. Solve via contrapositive.

if
$$-\frac{a^2}{4} + a > 0$$
 then $a < 4$
 $-\frac{a^2}{4} > -a \longrightarrow \frac{a^2}{4} < a$
 $a^2 < 4a = a < 4$

2. (4 *Points*) Let $a \in \mathbb{R}$. Prove the following statement:

(for every $x \in \mathbb{R}$, we have $x^2 + ax + a > 0$) if and only if (0 < a < 4).

Proof: Let $a \in \mathbb{R}$. Biconditionally solve this problem.

$$\forall x \in \mathbb{R}, x^2 + ax + a > 0 \iff 0 < a < 4$$

(\iff): Completeting the square first $\rightarrow (x+\frac{a}{2})^2+\frac{4a-a^2}{4}>0$ Since $0 < a < 4 : 4a-a^2>0$, thus $\frac{4a-a^2}{4}>0$ $(x+\frac{a}{2})^2 \geq 0$ since ()² is always positive Hence, $(x+\frac{a}{2})^2+\frac{4a-a^2}{4}>0$ when 0 < a < 4

 (\Longrightarrow) : Utilizing the contrapositive from part one to solve this. $4a-a^2=-\frac{a^2}{4}+a\longrightarrow -\frac{a^2}{4}+a>0$ from earlier proof.

 $\therefore 4a - a^2 > 0$ and reworking a < 4.

Thus, our range for a is 0 < a < 4 for $\frac{4a-a^2}{4}$

Additionally, $(x + \frac{a}{2})^2 \ge 0$ since $()^2$ is always positive, but it can be zero Finally, if $(x + \frac{a}{2})^2$ is zero $\longrightarrow 0 + \frac{4a - a^2}{4} > 0$, this implies to get > 0, we need 0 < a < 4

With both implications being solved, the biconditional statement is true.

Problem 5. (2 *Points*) Let $m \in \mathbb{Z}$. Prove that if $5 \nmid m$, then $m^2 \equiv 1 \pmod{5}$ or $m^2 \equiv -1 \pmod{5}$.

Proof: This is solved by proof by cases. Let $m \in \mathbb{Z}$. When $5 \nmid m$, there are 4 cases.

1) Case 1:
$$m \equiv 1 \pmod{5} \longrightarrow m = 5k + 1$$
 for some $k \in \mathbb{Z}$
 $m^2 = (5k + 1)^2 \longrightarrow m^2 = 25k^2 + 10k + 1 \longrightarrow m^2 = 5(5k^2 + 2k) + 1$
 $\therefore m^2 \equiv 1 \pmod{5}$, which holds our first statement true

- 2) Case 2: $m \equiv 2(mod5) \longrightarrow m^2 = (5k+2)^2 \longrightarrow m^2 = 5(5k^2+4k)+4$ $\therefore m^2 \equiv 4(mod5)$ which is equivalent to $m^2 \equiv -1(mod5)$
 - 3) Case 3 : $m \equiv 3 \pmod{5}$ achieves the same as Case 2 $m^2 \equiv 9 \pmod{5} = m^2 \equiv -1 \pmod{5}$
 - 4) Case 4 : $m \equiv 4 (mod 5)$ achieved the same as Case 1 $m^2 \equiv 16 (mod 5) = m^2 \equiv 1 (mod 5)$

Thus, we proved that $5 \nmid m$, then $m^2 \equiv 1 \pmod{5}$ or $m^2 \equiv -1 \pmod{5}$

Problem 6. (2 *Points*) For $a \in \mathbb{Z}$, prove:

 $3 \nmid a \Longrightarrow \text{ (there exists } b \in \mathbb{Z} \text{ such that } ab \equiv 1 \mod 3$

Proof: Let $a, b \in \mathbb{Z}$. This is solved by two cases

1) Case 1: $a = 3k + 1 \Longrightarrow \exists b \in \mathbb{Z} \ s.t. \ ab = 3k + 1$

Using simple numbers, when $b = 1 \longrightarrow a = 3k + 1 \Longrightarrow a \equiv 1 \pmod{3}$.

2) Case 2:
$$a = 3k + 2 \Longrightarrow \exists b \in \mathbb{Z} \text{ s.t. } ab = 3k + 1$$

When $b = 2$, $a = 3k + 2 \Longrightarrow 2a = 2(3k + 2) = 6k + 4 = 6k + 3 + 1 = 3(2k + 1) + 1$
 \therefore when $b = 2$, $ab \equiv 1 \pmod{3}$

Problem 7. (2 *Points*) Prove that the product of 5 consecutive integers is a multiple of 5.

Proof: Pure logic solves this question. Since we utilize 5 consecutive integers, this indicates at one point there is a multiple of 5 in the product. This means the product will be divisible by 5.

 $a, b, c, d, e \in \mathbb{Z}$. We know with consecutive numbers that a = a, b = a + 1, c = a + 2, d = a + 3, and e = a + 4. Testing a value such as a = 1 or a = 2, this stands true. Since we know our hypothesis is true, it also stands that a = a + 1, b = a + 2, c = a + 3, d = a + 4, and e = a + 5

e = a + 5 has a remainder of 5, thus as long as one part of the product is divisble by 5, all of it is.

Problem 8. (2 *Points*) We recall that given $a, b \in \mathbb{Z}$ such that $ab \neq 0$, we define the gcd of a and b to be the greatest integer that divides both a and b. We denote this by gcd(a, b)

Let $a, b \in \mathbb{Z}$ such that $ab \neq 0$. We suppose that there exists $u, v \in \mathbb{Z}$ such that

$$1 = au + bv$$

Prove that $gcd(a, b) \equiv 1$.

Proof: Let $a, b \in \mathbb{Z}$. We also know neither a or b can be 0. Researching Bézout's identity and greatest common divisor, we know that $c \in \mathbb{Z}$ divides gcd(a, b). We also know that c also divides au and bv. Through linearity, we know when added, au + bv = 1. This also states that 1 is divisible by c. If you divide 1, you can only divide by 1 or -1. But gcd is always going to assume a positive value. $gcd(a, b) \equiv 1$. Additionally, that means a, b are primes.