Tutorial - 6

Minimum spanning Toue:

A spanning tour of an undirected graph is a subgraph that is a some of goined by all vertices.

Subgraph that is a some of goined by all vertices.

One of those true which has minimum total cost would be its minimum spanning form.

Minimum vost spanning tree

Applications of MST.

- 9t has direct applications in the design of networks including computer networks, telecommunication networks, telecommunication

networks et	n langithm	pijkstoral	Bellman Fonds Algo O(VE)
Ans 2) Paism's Agoaithm TC O(V2) SC O(V+E)	Kruckal's Algorithm O(Elog V) O(IEI+IVI)	Algo O (N+Elagy) O (V ²)	0 (VE) 0(V ²)

3 10

 ∞

16 19

 ∞

8 17

6 7 12] II 2 4

 ∞

Min weight = 37

Parent

2 3 2 5 6 2 Parent: 0 1

4) i) of 10 unils is added to each edge, the overall weight of the path may change.

Eg:

Spo Shortest path is $8 \rightarrow a \rightarrow b \rightarrow c \rightarrow t$ weight = |t|+|+|=4

now if 10 units weight is ordded to each edge.

Shorter path changed to S -> d -> t weight = 28 1 Multiplying the wight of each edge

u) Multiplying the wight of each edge by 10 mil) have no impact on the shortest path.

$$\mathbf{A}^{2} = 1 \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & \infty & 6 & 3 & \infty \\ 2 & 3 & \infty & \infty & \infty \\ 3 & \infty & \infty & 0 & 2 & \infty \\ 3 & \infty & \infty & 0 & 0 & \infty \\ 4 & \infty & 4 & \infty & 2 & 0 \end{bmatrix}$$

$$A' = 1 \begin{bmatrix} 0 & \infty & 6 & 3 & \infty \\ 0 & \infty & 6 & 3 & \infty \\ 2 & 3 & 0 & 9 & 6 & \infty \\ 2 & \infty & 0 & 2 & \infty \\ 3 & \infty & 0 & 2 & \infty \\ 1 & 0 & 0 & 2 & \infty \\ 5 & 0 & 9 & 0 & 2 & 0 \end{bmatrix}$$

$$A^{\circ}[2,3]=\infty$$
 $A^{\circ}[2,1]+A^{\circ}[1,3]=3+6=9$
 $Q < \infty$

A'[2, 4] =
$$\infty$$

A'[2, 1] + A'[1, 4] = $3+3=6$

=) $6 \times \infty$

A'[2,5] = ∞

A'[2,5] = ∞

A'[2,1] + A'[1,5] = $3+\infty$

A'[2,1] + A'[2,

$$A'[1,3]=6$$
 $A'[1,2]+A'[2+3]=\infty+9$
 $6 \ge \infty+9$
 $1 = 1 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 =$

$$A^{3} = 1 \begin{bmatrix} 0 & \infty & 6 & 3 & 0 \\ 2 & 3 & 0 & 9 & 6 & \infty \\ 3 & \infty & 0 & 0 & 2 & \infty \\ 4 & \infty & 1 & 1 & 0 & \infty \\ 5 & 7 & 4 & 13 & 2 & 0 \end{bmatrix}$$

$$A' = 1 \begin{cases} 0 & 4 & 4 & 3 & \infty \\ 2 & 3 & 0 & 7 & 6 & \infty \\ 2 & 3 & 0 & 7 & 6 & \infty \\ 3 & \infty & 3 & 0 & 2 & \infty \\ 4 & 0 & 1 & 1 & 0 & \infty \\ 5 & 7 & 3 & 3 & 2 & 0 \end{cases}$$

$$As = \begin{cases} 1 & 2 & 3 & 4 & 5 \\ 0 & 4 & 4 & 3 & \infty \\ 3 & 0 & 7 & 6 & \infty \\ 3 & 0 & 3 & 0 & 2 & \infty \\ 4 & 0 & 1 & 1 & 0 & \infty \\ 5 & 7 & 3 & 3 & 2 & 0 \end{cases}$$