Topologie des espaces vectoriels normés

I) Parties ouvertes et fermées

1) Parties ouvertes

Définition : Une partie \mathcal{U} de E est dite ouverte si elle est voisinage de chacun de ses points, ie

$$\forall x \in \mathcal{U}, \exists r > 0, B(x, r) \subset U$$

On dit aussi que \mathcal{U} est un ouvert de E.

Exemples *

1) \emptyset et E sont deux ouverts de E

En effet,
$$\forall x \in E, \forall r > 0, \mathcal{B}(x,r) = \{y \in E \mid ||y - x|| < r\} \subset E$$

Et $\forall x \in \emptyset, \exists r > 0, \mathcal{B}(x,r) \subset \emptyset$

2) Dans \mathbb{R} muni de $|\cdot|$, soient $a, b \in \mathbb{R}$, a < b alors $]a, b[,] - \infty, a[,]b, +\infty[$ sont des ouverts de \mathbb{R} .

Soit
$$r > 0$$
, $x \in \mathbb{R}$,
$$\mathcal{B}(x,r) = \{y \in \mathbb{R} \mid -r < y - x < r\}$$
$$=]x - r, x + r[$$
Montrons que]a, b[est une partie ouverte de \mathbb{R} . Soit $x \in]a, b[$ Posons $r = \min(x - a, b - x)$, alors $r > 0$ Soit $y \in]x - r, x + r[$, alors $x - r \le y \le x + r$ Donc $a < y < b$ Donc $\mathcal{B}(x,r) \subset]a, b[$, donc]a, b[est ouvert.

3) Montrons que dans l'espace vectoriel normé $(E, \|\cdot\|)$, $\forall a \in E, \forall r > 0$, la boule ouverte $B(a,r) = \{x \in E \mid \|x-a\| < r\}$ est une partie ouverte.

Soit
$$x \in B(a,r)$$

Objectif: construire $\rho > 0$ tel que $B(x,\rho) \subset B(a,r)$
Soit $\rho = r - ||x - a|| > 0$
Soit $y \in B(x,\rho)$, montrons que $y \in B(a,r)$
On a $||y - a|| = ||y - x + x - a||$
 $\leq ||y - x|| + ||x - a||$

$$<\rho + ||x - \alpha|| = r$$

Ainsi $y \in B(a,r)$

4) Montrons que $\overline{B}(a,r) = \{x \in E \mid ||x-a|| \le r\}$ et $S(a,r) = \{x \in E \mid ||x-a|| = r\}$ ne sont pas des ouverts de E.

Soit
$$x \in S(a,r)$$
. Objectif: montrer que $\forall \varepsilon > 0, B(x,e) \notin \overline{B}(a,r)$
Soit $\varepsilon > 0$, posons $z = x + \frac{\varepsilon}{2}u$, où $u = \frac{x-a}{\|x-a\|}$
Alors $\|z-x\| = \left\|x + \frac{\varepsilon}{2}u - x\right\| = \left|\frac{\varepsilon}{2}\right| \times \underbrace{\|u\|}_{=1} = \frac{\varepsilon}{2} < \varepsilon$
Ainsi $z \in B(x;\varepsilon)$

Mais
$$||z - x|| = \left| \left| x + \frac{\varepsilon}{2} \frac{x - a}{||x - a||} - x \right| \right| = \left| \underbrace{1 + \frac{\varepsilon}{2||x - a||}}_{\in \mathbb{R}} \underbrace{(x - a)}_{\in E} \right| = \left| 1 + \frac{\varepsilon}{2||x - a||} \right| ||x - a||$$
$$= ||x - a|| + \frac{\varepsilon}{2} > r$$

Ainsi $\overline{B}(a,r)$ et S(a,r) ne sont pas des ouverts de E

Propriété: Une réunion (finie ou infinie) d'ouverts est un ouvert.

Propriété : Une intersection finie d'ouverts est un ouvert

2) Parties fermées

<u>Définition</u>: Une partie F de E est dite fermée si son complémentaire (dans E) est un ouvert. On dit aussi que F est un fermé de E

Remarque : On n'utilisera jamais la notation \overline{X} pour désigner le complémentaire : elle désigne l'adhérence. On utilisera plutôt X^C ou $E \setminus X$.

Exemples &

- 1) \emptyset est un fermé de E car $E \setminus \emptyset = E$ est un ouvert de E E est un fermé de E car $E \setminus E = \emptyset$ est un ouvert de E
- 2) Dans \mathbb{R} muni de $|\cdot|$, $\forall a, b \in \mathbb{R}$ avec a < b, [a, b], $] \infty$, a] et $[b, +\infty[$ sont des fermés de \mathbb{R} . En effet, $\mathbb{R} \setminus [a, b] =] \infty$, $a[\cup]b$, $+\infty[$ est un ouvert de \mathbb{R} en tant qu'union d'ouverts de \mathbb{R} .
- 3) Dans $(E, \|\cdot\|)$, $\forall a \in E, \{a\}$ est un fermé de E. On va montrer que $E \setminus \{a\}$ est un ouvert de E. Soit $x \in E \setminus \{a\}$, posons $r = \|x a\|$, alors r > 0 car $x \neq a$.

Soit $y \in B(x, r)$, montrons que $y \in E \setminus \{a\}$

Supposons par l'absurde que $y \notin E \setminus \{a\}$ ie y = a

Alors ||a - x|| = ||y - x|| < r, Absurde.

Ainsi $y \in E \setminus \{a\}$, d'où $B(x,r) \in E \setminus \{a\}$

Donc $E \setminus \{a\}$ est un ouvert de E

Remarque : Il existe certains ensembles qui ne sont ni ouverts, ni fermés. ([0,1[dans \mathbb{R})

<u>Propriété</u>: Une intersection (finie ou infinie) de fermés de E est un fermé de E.

<u>Propriété</u>: Une union finie de fermés de E est un fermé de E.

Remarque : on peut prendre $F_n = \left[\frac{1}{n}, 1\right]$ et considérer $\prod_{n=1}^{+\infty} \left[\frac{1}{n}, 1\right] =]0,1]$, pas un fermé de \mathbb{R} .

Propriété : (Caractérisation séquentielle des fermés)

Une partie F de E est fermée si et seulement si, pour toute suite $(x_n)_{n\in\mathbb{N}}\in F^\mathbb{N}$ d'éléments de F qui converge, la limite $\lim_{n\to+\infty}x_n$ appartient à F, ie :

$$\forall (x_n)_{n\in\mathbb{N}}\in F^{\mathbb{N}}, x_n\underset{n+\infty}{\longrightarrow}l\Longrightarrow l\in F$$

Attention : Pour autant, toutes les suites dans un fermé ne convergent pas !

Exemple:

 $Mq A = \{ M \in M_3(\mathbb{R}) \mid Tr(M) = 24 \}$ est un fermé de $M_3(\mathbb{R})$.

Comme dim $M_3(\mathbb{R}) = 3^2 < +\infty$, toutes les normes sur $M_3(\mathbb{R})$ sont 2 à 2 équivalentes.

Soit $(M_n)_{n\in\mathbb{N}}$ une suite d'éléments de A qui converge vers $L=\left(l_{ij}\right)_{1\leq i,j\leq 3}\in M_3(\mathbb{R}).$ Mq $L\in A.$

Par caractérisation de la convergence dans un ev de dimension finie, si on note $\forall n \in \mathbb{N}, M_n = \left(M_{ij}(n)\right)_{1 \leq i,j \leq 3}$ alors les suites $\left(M_{ij}(n)\right)_{n \in \mathbb{N}}$ correspondent aux suites coordonnées $\det(M_n)_{n \in \mathbb{N}}$ dans la base canonique de $M_3(\mathbb{R})$, ainsi :

$$M_n \xrightarrow[n \to +\infty]{} L \iff \forall (i,j) \in [[1,3]]^2, M_{ij}(n) \xrightarrow[n \to +\infty]{} L_{ij}$$

Or $\forall n \in \mathbb{N}, M_n \in A$, donc $Tr(M_n) = 24$. Ainsi Tr(L) = 24, donc $L \in A$.

Exemple : **★**

Soit $(E, \|\cdot\|)$ un evn. Soit $a \in E$ et r > 0. Montrons que $\overline{B}(a, r)$ est un fermé de E.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de $\overline{B}(a,r)$ qui converge vers l (dans $(E,\|\cdot\|)$).

$$\forall n \in \mathbb{N}, x_n \in \overline{B}(a, r)$$
, ie $||x_n - a|| \le r$

Essayons de montrer que $\underbrace{\|x_n-a\|}_{\in\mathbb{R}} \xrightarrow[n \to +\infty]{} \underbrace{\|l-a\|}_{\in\mathbb{R}}$

On a
$$\forall n \in \mathbb{N}$$
, $||x_n - a|| - ||l - a||| \underset{\text{ineg. tri. inv.}}{\leq} ||(x_n - a) - (l - a)|| = ||x_n - l|| \underset{n \to +\infty}{\longrightarrow} 0$

Ainsi $\|x_n-a\|\underset{n\to+\infty}{\longrightarrow}\|l-a\|$. En faisant tendre n vers $+\infty$ dans la première inégalité, il vient :

$$||l - a|| \le r \Longrightarrow l \in \overline{B}(a, r)$$

Ainsi par caractérisation séquentielle des fermés, $\overline{B}(a,r)$ est un fermé de E.

De même, S(a,r) est un fermé de E (même preuve en remplaçant les $\overline{B}(a,r)$ par S(a,r).

Propriété:

Si $F_1, ..., F_p$ sont des fermés des espaces normés $E_1, ..., E_p$ alors $F = F_1 \times ... \times F_p$ est une partie fermée de l'espace vectoriel normé produit $E = E_1 \times ... \times E_n$.

Exemple : Dans \mathbb{R}^2 , $[1, +\infty[\times [-3,2]$ est un fermé de \mathbb{R}^2 en tant que produit cartésien de fermés de \mathbb{R}^2

Intérieur

Définition : Un élément $a \in E$ est dit **intérieur** à une partie $X \subset E$ si X est un voisinage de a ie si :

$$\exists r > 0, B(a,r) \subset X$$

L'intérieur de X, noté $\overset{\circ}{X}$, est l'ensemble de tous les points intérieurs à X, c'est-à-dire :

$$\overset{\circ}{X} = \{ x \in E \mid \exists r > 0, B(x, r) \subset X \}$$

<u>Propriété</u>: Une partie $X \subset E$ est dite ouverte ssi $\overset{\circ}{X} = X$

Exemple : $\mathring{\mathbb{Z}} = \emptyset$

<u>Propriété</u>: Soit $X \subset E$, alors X est la réunion de tous les ouverts inclus dans X. Par conséquent, X est le plus grand ouvert (au sens de l'inclusion) inclus dans X.

Adhérence

<u>Propriété</u>: On dit qu'un élément $a \in E$ est **adhérent** à une partie $X \subset E$ si :

$$\forall r > 0, B(a,r) \cap X \neq 0$$

On appelle **adhérence** de X l'ensemble \overline{X} des éléments adhérents à X.

<u>Propriété</u>: Soit *X* une partie de *E*, alors

$$E \setminus \overline{X} = (E \setminus X)$$
 et $E \setminus X = \overline{E \setminus X}$

Propriété:

Une partie $X \subset E$ est fermée si et seulement si $\overline{X} = X$

<u>Propriété</u>: Soit X une partie de E. Alors \overline{X} est l'intersection de tous les fermés contenant X. Par conséquent, \overline{X} est le plus petit fermé (au sens de l'inclusion) contenant X.

Propriété:

Soient X une partie de E et $a \in E$. On a équivalence entre :

- a est adhérent à X
- Il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de X qui converge vers a.

Exemple : $0_{M_n(\mathbb{R})}$ est adhérent à $GL_n(R)$

Posons
$$\forall k \in \mathbb{N}^*, M_k = \frac{1}{k}I_n$$
, alors $M_k \in GL_n(\mathbb{R})$ (car $\det M_k = \left(\frac{1}{k}\right)^n \neq 0$)

Soit $\|\cdot\|$ une norme sur $M_n(\mathbb{R})$ (comme $\dim M_n(\mathbb{R}) < +\infty$, toutes les normes sur $M_n(\mathbb{R})$ sont deux à deux équivalentes. Alors $\forall k \in \mathbb{N}^*, \left\|M_k - 0_{M_n(\mathbb{R})}\right\| = \|M_k\| = \left|\frac{1}{k}\right| \|I_n\| \underset{n \to +\infty}{\longrightarrow} 0$

Ainsi $(M_k)_{k\geq 1}$ converge vers $0_{M_n(\mathbb{R})}$, donc $0_{M_n(\mathbb{R})}\in \overline{GL_n(\mathbb{R})}$.

Exemple : ★

Soient $(E, \|\cdot\|)$ un evn, $a \in E$ et r > 0.

On va montrer que $\overline{B(a,r)} = \overline{B}(a,r)$

- On a vu que $\overline{B}(a,r)$ est un fermé contenant B(a,r) donc par la propriété 2.7,

$$\overline{B(a,r)} \subset \overline{B}(a,r)$$

- On a $\overline{B}(a,r)=B(a,r)\cup S(a,r)$, or $B(a,r)\subset \overline{B(a,r)}$. Reste donc à montrer que

Soit $x \in S(a,r)$, on va construire une suite $(x_n)_n$ d'éléments de B(a,r) qui converge vers x

 $S(a,r) \subset \overline{B(a,r)}$

Posons
$$u = \frac{x-a}{\|x-a\|} = \frac{1}{r}(x-a)$$
 et $\forall n \in \mathbb{N}, x_n = \underbrace{a}_{\in E} + r\left(1 - \frac{1}{n+1}\right) \underbrace{u}_{\in E}$
Alors $\forall n \in \mathbb{N}, \|x_n - a\| = \left|r\left(1 - \frac{1}{n+1}\right)\right| \|u\| = r\left(1 - \frac{1}{n+1}\right) < r$

Enfin,
$$||x_n - x|| = \left\| a + r\left(1 - \frac{1}{n+1}\right) \times \frac{1}{r}(x-a) - x \right\| = \left\| -\frac{1}{n+1}(x-a) \right\| = \frac{1}{n+1}r \underset{n \to +\infty}{\longrightarrow} 0$$
, ie $x_n \xrightarrow[n \to +\infty]{} x$. Donc $x \in \overline{B(a,r)}$, ce qui amène à l'inclusion voulue.

<u>Propriété</u>: On appelle **frontière** d'une partie X de E l'ensemble $\mathrm{Fr}(X) = \overline{X} \backslash \overset{\circ}{X}.$

Densité

<u>Définition</u>: Une partie X de E est dite **dense** si $\overline{X} = E$.

Propriété : Soit X une partie de E. On a équivalence entre :

X est une partie dense de E.

- $\forall a \in E, \forall r > 0, B(a, r) \cap X \neq \emptyset$ - $\forall a \in E, \exists (x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}, x_n \xrightarrow[n \to +\infty]{} a.$

Exemple : $GL_n(\mathbb{K})$ est dense dans $M_n(\mathbb{K})$.

Soit $M \in M_n(\mathbb{K})$

 $\underline{\mathrm{But}:} \ \mathrm{Construire} \ \mathrm{une} \ \mathrm{suite} \ \left(A_p\right)_{p\in\mathbb{N}} \in \mathit{GL}_n(\mathbb{K})^{\mathbb{N}} \ \mathrm{tq} \ A_p \underset{p\to +\infty}{\longrightarrow} M$

Si M est inversible, on prend la suite constante égale à M.

- Sinon, $\det M = 0$, donc $0 \in Sp_{\mathbb{K}}(M)$

Posons $\forall p \in \mathbb{N}^*$, $A_p = M + \frac{1}{n}I_n$

On a
$$\|A_p - M\| = \left\|\frac{1}{p}I_n\right\| = \frac{1}{p}\|I_n\| \xrightarrow[p \to +\infty]{} 0$$
, donc $A_p \xrightarrow[n \to +\infty]{} M$

Cmme toutes les matrices sont trigonalisables dans \mathbb{C} , et $0 \in Sp(M)$ car M est non inversible, il existe $P \in GL_n(\mathbb{C})$ et T triangulaire supérieure tq $M = PTP^{-1}$, avec

$$T = \begin{pmatrix} 0 & & & & & \\ 0 & \ddots & & & (*) & \\ 0 & 0 & 0 & & & & \\ 0 & 0 & 0 & \lambda_1 & & & \\ 0 & 0 & 0 & 0 & \ddots & \\ 0 & 0 & 0 & 0 & 0 & \lambda_r \end{pmatrix}, \lambda_1, \dots, \lambda_r \in \mathbb{C}^*$$

Donc
$$A_p = P\left(T + \frac{1}{p}I_n\right)P^{-1}$$
, et $\det A_p = \det\left(T + \frac{1}{p}I_n\right)$

Posons $\alpha = \min\{|\lambda_1|, ..., |\lambda_n|\} > 0$

Alors $\forall p \in \mathbb{N}^* \text{ tq } p > \frac{1}{\alpha} \Leftrightarrow \frac{1}{n} < \alpha$

$$\operatorname{Donc} \frac{1}{p} < |\lambda_i|, \forall i \in [\![1,n]\!], \operatorname{alors} \lambda_i \neq -\frac{1}{p} \Longleftrightarrow \lambda_i + \frac{1}{p} \neq 0$$

Alors $\exists p_0 \in \mathbb{N}^* \text{ tq } \forall p \geq p_0, \lambda_i + \frac{1}{p} \neq 0 \text{ et } \frac{1}{p} \neq 0$

Donc
$$\det\left(T + \frac{1}{p}I_n\right) = \frac{1}{p} \times ... \times \frac{1}{p} \times \left(\lambda_1 + \frac{1}{p}\right) \times ... \times \left(\lambda_r + \frac{1}{p}\right) \neq 0$$
, donc $A_p \in GL_n(\mathbb{K})$

Ainsi $GL_n(\mathbb{K})$ est dense $M_n(\mathbb{K})$.