Distance Spectra and Distance Polynomials of Fullerenes

K. Balasubramanian

Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 Received: April 10, 1995*

Distance matrices of fullerenes which contain important topological information on fullerenes are obtained. By use of the distance matrices, the distance level patterns are constructed for fullerenes. It is shown that the distance level patterns uniquely characterize fullerenes and thus appear to be topological invariants of fullerenes. The distance spectra and characteristic polynomials of the distance matrices of C_{20} — C_{90} fullerenes are computed. The Wiener topological indices are computed for these fullerenes. The sums of powers of the distance spectra are computed and considered as structural invariants of fullerenes.

1. Introduction

Fullerene research has led to a new vista for several mathematical studies dealing with the structure, stability, spectroscopy, and other topological aspects of structures. The applications of group-theoretical, graph-theoretical, combinatorial, and related techniques to fullerenes are on the increase due to the importance of such techniques in both enumeration and characterization of fullerenes. Such studies have included the characterization of the structures, enumeration of fullerene cage isomers, enumeration of conjugated circuits, enumeration of the isomers arising from the substitution of the various centers with hydrogens, halogens, etc., construction of NMR and ESR spectral patterns, nuclear spin statistics of rovibronic levels, and so on.^{1–12}

Topological indices and other structural invariants are quite important not only for structural characterizations but also in the prediction of physicochemical properties since such properties are closely related to the topological and structural features. The characteristic polynomials, spectra of the adjacency matrices, Wiener index, matching polynomials, etc., have been shown to be useful structural invariants although these invariants may not be unique. While the characteristic polynomials, spectra, and matching polynomials of fullerenes have been obtained, 6-9 the structural invariants derived from the distance matrices have received much less attention.

Fullerenes are actively investigated both experimentally and theoretically by several investigators. 14-30 Such studies are in part fueled by the isolation of gram quantities of several fullerenes and subsequent reactivity and spectroscopic studies on the derivatives of fullerenes. Fullerenes are closed carbon cages that contain 12 pentagons and any number of hexagons. Fullerenes containing isolated pentagons are likely to be more stable compared to other fullerenes.

Distance matrices play an important role in the topological analysis of structures. 31-32 As discussed in one of the previous papers of the author, 31 distance matrices have numerous applications in many different disciplines ranging from music theory to archeology. In the topological analysis of molecular structures, distance matrices play a very important role since they yield fundamental structural invariants and indices such as the Wiener number. 32 The Wiener number finds wide applications in the prediction of the physicochemical properties of molecules.

Although the structural invariants based on the adjacency matrices have been investigated before,⁵⁻⁹ such invariants based

on the distance matrices for the analysis of the fullerene structures have not been explored to the same extent. Ori and D'Mello⁴ have studied the distance matrix of the C₇₆ fullerene. They have also computed the Wiener numbers for the C₆₀ and C₇₀ fullerenes. The distance polynomials and the distance spectra of the C₆₀ and C₇₀ fullerenes have been computed by the author in a recent communication. ¹¹ In that study the author showed that the distance matrices could serve as very useful structural invariants. In the current study, we compute the distance matrices, distance spectra, and distance polynomials of the C₂₀-C₉₀ fullerenes. The distance level patterns, which are shown to be structural invariants for fullerenes, are computed as signatures of fullerenes. The distance level patterns could also be used for the computation of the self-avoiding walk generating functions, which are in turn useful in the computation of properties. The Wiener numbers of the C_{20} – C_{90} fullerenes are computed. The Riemann zeta functions³³ of the distance spectra of fullerenes are considered.

2. Distance Matrices, Distance Level Patterns, and Distance Polynomials

The adjacency matrix A of a graph can be defined as

$$A_{ij} = \begin{cases} 1 & \text{if } i \neq j \text{ and } i \text{ and } j \text{ are connected,} \\ 0 & \text{otherwise.} \end{cases}$$

The distance matrix contains information on the shortest "distance" from a vertex i to any other vertex j such that the movement from the vertex i to j is restricted through the edges or bonds of the graph. A walk is defined as a continuous sequence of edges from the vertices i to j. The ijth distance matrix entry is given by the shortest walk from i to j. The distance matrix can be defined more rigorously as follows.

$$D_{ij} = \begin{cases} 0 & \text{if } i = j, \\ d_{ij} & \text{if } i \neq j \text{ and } d_{ij} \text{ is the length of the shortest walk from } i \text{ to } j. \end{cases}$$

The elements of the distance matrix have to be constructed from the walks of various lengths, and the shortest walk is chosen. Thus, the construction of the distance matrix can be a computing intensive problem for a general graph. However, since fullerenes are closed cage structures, some simplification can be accomplished.

Although several techniques have been developed for the generation of distance matrices, we found the matrix power method to be most suitable for fullerenes. The matrix power technique derives its origin from the fact that kth powers of the

[®] Abstract published in Advance ACS Abstracts, June 15, 1995.

adjacency matrix of a graph enumerate walks of length k. Equivalently, the ijth matrix element of the \mathbf{A}^k matrix enumerates all walks of length k from the vertex i to the vertex j. The construction of the distance matrix involves finding the shortest walk, and thus, one has to seek the smallest value of k for which the matrix element ij becomes nonzero in the \mathbf{A}^k matrix. This is a consequence of the fact that the first time the ijth element in \mathbf{A}^k becomes nonzero for some k suggests that the shortest walk between the vertices i and j would be of length k, and consequently,

$$d_{ij} = \begin{cases} k & \text{if } A_{ij}^k \neq 0, \text{ and} \\ A_{ij}^l = 0 \text{ for all } l = 1, 2, 3, ..., k - 1 \end{cases}$$

The computation of powers of the adjacency matrix can be stopped when the distance matrix generated up to the kth power of the adjacency matrix is the same as the (k+1)th power of the adjacency matrix. Until this is accomplished, convergence is not reached and the computations of the powers of the adjacency matrix are iterated. In the worst case the maximum number of iterations would be n, if n is the number of vertices. Fortunately, since fullerenes are closed structures, convergence is reached most of the time within 10-14 iterations for the fullerenes $C_{60}-C_{90}$ and a smaller number of iterations for smaller fullerenes.

Topological indices and structural invariants can be obtained from the distance matrices. A commonly used topological index known as the Wiener index is defined as

$$W = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} D_{ij}$$

where n is the number of vertices. The Wiener index finds numerous applications in the topological prediction of the properties of molecules.³² There are several other indices that can be defined from the distance matrices such as the Balaban J-index.³² In this investigation we restrict ourselves to the computation of the Wiener indices for all fullerenes from C_{20} to C_{90} .

The distance polynomial of a fullerene structure can be defined as

$$P_{\rm L}(G) = |\lambda I - D|$$

where D is the distance matrix of the fullerene cage. The roots of the distance polynomial constitute the distance spectrum of the graph. A few general characteristics of the distance spectrum and distance polynomial may be discussed prior to discussing the results for fullerenes. In general, the distance spectrum exhibits a higher degree of degeneracy compared to the ordinary graph spectrum derived from the adjacency matrix.

An important structural invariant associated with the distance spectrum is the largest and positive eigenvalue, also known as the principal eigenvalue, and the corresponding eigenvector called the principal eigenvector. The other interesting feature pertaining to the distance spectrum is that it often contains several zero eigenvalues. If there are l zero eigenvalues in the distance spectrum, then the coefficients of the distance polynomial denoted as C_k 's (the coefficient of λ^k in the distance polynomial) are zero for all $k \le l - 1$.

Another interesting structural signature of a fullerene can be constructed from the distance matrix. We call this the distance level pattern. It is possible to construct such a pattern that was found to be unique for each fullerene, since fullerenes are regular graphs. If the rows of the distance matrices are arranged so

that the entries in each row are in an ascending order, then all rows would become identical. This is a consequence of the fact that fullerenes are regular graphs. Therefore, a row containing n entries constitutes a unique signature for a fullerene and is thus a unique structural descriptor. The entries in a row could be repeated in which case we collect the frequencies of all entries with the same value. This could be referred to as the degeneracy of this entry. This leads to a signature of reduced length. We shall call the irreducible vector thus generated, which consists of the unique distances from a given vertex and the number of times that entry appears, a distance level pattern. Such distance level patterns are constructed for all fullerenes $C_{20}-C_{90}$.

3. Results and Discussion

The distance matrices, spectra, distance polynomials, and the distance level patterns of all fullerenes were computed in quadruple precision arithmetic. In addition a scaling technique may have to be invoked for larger fullerenes. The coefficients of the distance polynomials grow rapidly out of bound for larger fullerenes, and thus, the scaling technique may be desirable for that purpose. In any case, quadruple precision ensures 31-digit accuracy, and thus, if coefficients have more than 31 digits, then they are omitted in this study.

Table 1 shows the distance level patterns of all fullerenes considered here. The smallest fullerene that consists of only pentagons is the dodecahedral C₂₀ fullerene. As evidenced from Table 1, this structure exhibits 0(1), 1(3), 2(6), 3(6), 4(3), 5(1)as the distance level pattern. This means that there is only 1 vertex at zero distance from any given vertex, 3 vertices with unit distances from any given vertex, 6 vertices with distances 3, ..., and one vertex with distance 5. This pattern, we believe, is a unique structural signature for a fullerene. That is, no two fullerenes were found to have the same distance level patterns. Moreover, the distance level pattern is invariant to labeling. Since fullerenes are regular graphs, all vertices have the same distance level patterns for a given fullerene. The fact that fullerenes are regular graphs with vertex degrees 3 is reflected in the 3-fold degeneracy of the distance 1 for all fullerenes (see Table 1). The distance level patterns may also be useful in the characterization of the symmetry of fullerene as well as complete connectivity since it contains all of the distances from any vertex to any other vertex.

As seen from Table 1, different structural isomers of fullerenes have different distance level patterns. For example, the C_{40} fullerene with the T_d symmetry, has the distance level pattern of 0(1), 1(3), 2(6), 3(6), 4(9), 5(9), 6(6), while the C_{40} structural isomer with the D_5 symmetry, has 0(1), 1(3), 2(6), 3(8), 4(10), 5(8), 6(3), 7(1). Notably, the largest distance is 7 for the C_{40} fullerene with the D_5 symmetry, while it is 6 for the C_{40} fullerene with T_d symmetry. The 6-fold degeneracy of the largest distance in the case of C_{40} (T_d) is quite interesting.

 C_{78} is quite interesting in that isomers of this fullerene have been isolated experimentally.²² There are five C_{78} fullerenes containing isolated pentagons. The distance level patterns of all these isomers are different, as evidenced from Table 1. It is also interesting that the last two fullerenes with D_{3h} symmetries have similar, but not identical, distance level patterns. Perhaps the distance level patterns could be used as measures of structural similarities. The difference in the two structures is mainly in the distance levels 4 and 5.

Table 2 shows the Wiener indices of all fullerenes considered here. Although the Wiener indices of the fullerene cages were constructed from the entire distance matrices, we note that the

TABLE 1: Distance Level Patterns for Fullerenes

TABLE 1:	Distance Level Patterns for Fullerenes
	Dodecahedral C ₂₀ Fullerene (I _h Symmetry)
O(1) 1(3) 2(6)	3(6) 4(3) 5(1) $C_{24} \text{ Fullerene with } D_{6d} \text{ Symmetry}$
O(1) 1(3) 2(6)	
O(1) 1(3) 2(6)	C_{26} Fullerene with D_{3h} Symmetry 3(6) 4(6) 5(3) 6(1)
O(1) 1(3) 2(6)	C_{28} Fullerene with T_d Symmetry 3(6) 4(6) 5(6)
O(1) 1(3) 2(6)	C_{30} Fullerene with D_{5h} Symmetry 3(6) 4(6) 5(6) 6(2)
O(1) 1(3) 2(6)	C ₃₂ Fullerene with D ₃ Symmetry 3(6) 4(6) 5(6) 6(3) 7(1)
O(1) 1(3) 2(6)	C ₃₆ Fullerene with <i>D</i> _{6h} Symmetry 3(7) 4(8) 5(7) 6(3) 7(1)
O(1) 1(3) 2(6)	C_{38} Fullerene with D_{3h} Symmetry 3(6) 4(6) 5(6) 6(6) 7(3) 8(1)
O(1) 1(3) 2(6)	C_{40} Fullerene with T_d Symmetry 3(6) 4(9) 5(9) 6(6)
O(1) 1(3) 2(6)	C_{40} Fullerene with D_5 Symmetry 3(8) 4(10) 5(8) 6(3) 7(1)
O(1) 1(3) 2(6)	C_{42} Fullerene with D_3 Symmetry 3(8) 4(9) 5(8) 6(5) 7(2)
O(1) 1(3) 2(6)	C_{44} Fullerene with D_{3h} Symmetry 3(6) 4(9) 5(9) 6(6) 7(3) 8(1)
O(1) 1(3) 2(6)	C ₄₄ Fullerene with T Symmetry 3(6) 4(9) 5(9) 6(6) 7(3) 8(1)
O(1) 1(3) 2(6)	C_{46} Fullerene with C_3 Symmetry 3(8) 4(9) 5(9) 6(6) 7(4)
O(1) 1(3) 2(6)	C_{48} Fullerene with D_3 Symmetry 3(8) 4(9) 5(9) 6(7) 7(4) 8(1)
O(1) 1(3) 2(6)	C ₅₀ Fullerene with D _{5h} Symmetry 3(8) 4(10) 5(9) 6(7) 7(4) 8(2)
O(1) 1(3) 2(6)	C ₅₂ Fullerene with T Symmetry 3(8) 4(9) 5(9) 6(8) 7(6) 8(2)
O(1) 1(3) 2(6)	Buckminsterfullerene C ₆₀ 3(8) 4(10) 5(10) 6(10) 7(8) 8(3) 9(1)
O(1) 1(3) 2(6)	C ₇₀ Fullerene with D _{5h} Symmetry 3(8) 4(10) 5(10) 6(10) 7(9) 8(7) 9(4) 10(2)
O(1) 1(3) 2(6)	C_{76} Cage $(p = q = 0)$ 3(8) 4(10) 5(10) 6(11) 7(10) 8(8) 9(7) 10(2)
O(1) 1(3) 2(6)	C_{78} Fullerene with $C_{2\nu}$ Symmetry 3(8) 4(10) 5(12) 6(12) 7(12) 8(10) 9(4)
O(1) 1(3) 2(6)	Second C_{78} Fullerene with $C_{2\nu}$ Symmetry 3(8) 4(10) 5(12) 6(12) 7(10) 8(9) 9(6) 10(1)
O(1) 1(3) 2(6)	Third C_{78} Fullerene with D_3 Symmetry 3(8) 4(10) 5(10) 6(11) 7(10) 8(8) 9(8) 10(3)
O(1) 1(3) 2(6)	Fourth C_{78} Fullerene with D_{3h} Symmetry 3(8) 4(10) 5(10) 6(11) 7(10) 8(8) 9(7) 10(3) 11(1)
O(1) 1(3) 2(6)	Fifth C_{78} Fullerene with D_{3h} Symmetry 3(8) 4(10) 5(11) 6(11) 7(10) 8(8) 9(6) 10(3) 11(1)
O(1) 1(3) 2(6)	C_{80} Fullerene with I_h Symmetry 3(8) 4(11) 5(11) 6(11) 7(11) 8(8) 9(6) 10(3) 11(1)
O(1) 1(3) 2(6)	C_{84} Coroninic Cages $(p = q = 0)$ 3(8) 4(10) 5(10) 6(11) 7(10) 8(9) 9(8) 10(5) 11(3)
O(1) 1(3) 2(6)	C ₈₄ Second Cage Count = 105 3(8) 4(10) 5(11) 6(12) 7(12) 8(10) 9(7) 10(3) 11(1)
O(1) 1(3) 2(6)	C_{90} Coroninic Cage $(p = q = 0)$ 3(8) 4(10) 5(10) 6(10) 7(10) 8(10) 9(9) 10(7) 11(4) 12(2)
O(1) 1(3) 2(6)	C_{90} Second Fullerene Cage Count = 6 3(8) 4(10) 5(10) 6(11) 7(11) 8(10) 9(9) 10(6) 11(4) 12(1)
O(1) 1(3) 2(6)	C_{90} Third Fullerene Count = 60 3(8) 4(10) 5(10) 6(12) 7(12) 8(11) 9(10) 10(5) 11(2)

Wiener indices of fullerenes can be readily obtained from the distance level pattern vectors. Let the distance level pattern be denoted by p of length m. Let the degeneracy of the ith component of the distance pattern vector be g_i . Then it is easily

TABLE 2: Wiener Numbers for Fullerenes (C₂₀-C₉₀)

fullerene	Wiener number	fullerene	Wiener number
$C_{20}(I_h)$	500	$C_{50}(D_{5h})$	5275
$C_{24}(D_{6d})$	804	$C_{52}(T)$	5850
$C_{26}(D_{3h})$	987	$C_{60}(I_h)$	8340
$C_{28}(T_d)$	1194	$C_{70}(D_{5h})$	12375
$C_{30}(D_{5h})$	1435	C ₇₆ coroninic	15248
$C_{32}(D_3)$	1696	$C_{78}(C_{2\nu};I)$	16305
$C_{36}(D_{6h})$	2292	$C_{78}(C_{2\nu})$	16329
$C_{38}(D_{3h})$	2651	$C_{78}(D_3)$	16284
$C_{40}(T_d)$	3000	leapfrog C_{78} (D_{3h})	16293
$C_{40}(D_5)$	2990	$C_{78}(D_{3h}; II)$	16365
$C_{42}(D_3)$	3390	$C_{80}(I_h)$	17600
$C_{44}(D_{3h})$	3818	Coroninic C ₈₄	19646
$C_{44}(T)$	3830	Coroninic C ₉₀	24315
$C_{46}(C_3)$	4281	C ₉₀ (second)	23401
$C_{48}(D_3)$	4764	C ₉₀ (third)	23423ξ

seen that the Wiener index of the fullerene with the distance level pattern, p, is given by

$$W = \frac{n}{2} \sum_{i=1}^{m} p_i g_i$$

where the sum is over all the components of the distance pattern vector and n is the number of vertices in the fullerene under consideration.

The spectra of the distance matrices of all fullerenes considered here were computed using the Givens—Householder method. The corresponding distance polynomials were computed using the author's code described before.^{34,35} Quadruple precision was used for computing both the spectra and the distance polynomials. Tables 3 and 4 show our computed distance spectra and distance polynomials of fullerenes, respectively.

As seen from Table 3, the distance spectra exhibit considerable degeneracy especially for high-symmetry fullerene cages such as C_{20} , C_{28} , C_{60} , C_{80} , etc. For such high-symmetry cages, it is feasible to express the distance polynomials shown in Table 3 in more compact forms by identifying the eigenvalues in the distance spectra in surd forms. For example, consider the dodecahedral C_{20} fullerene shown in Table 3. The distance spectrum of C_{20} contains several integral eigenvalues. The nonintegral eigenvalues can be simplified into surd forms as follows. The eigenvalues $-13.708\ 203\ 932\ and\ -0.291\ 796\ 068$ can be expressed as $-(7\ +\ 3(5^{1/2}))\ and\ -7\ +\ 3(5^{1/2})$, respectively. Consequently, the distance polynomial of C_{20} shown in Table 3 can be expressed in a factored form as

$$P_D(C_{20}) = \lambda^9 \{\lambda^2 + 14\lambda + 4\}^3 (\lambda + 2)^4 (\lambda - 50)$$

From the above form of the distance polynomial of C_{20} , one could obtain the factored form of the coefficient of the λ^9 term as

$$-4^3 \times 2^4 \times 50 = -2^{11} \times 5^2 = -51\ 200$$

The value obtained above agrees with the value reported in Table 4 for the dodecahedral C₂₀ fullerene, thus independently confirming the computed results in Table 4.

The distance polynomial of the tetrahedral C_{28} fullerene can be factored using a similar technique. In this case, the distance spectrum reported in Table 3 can be brought into surd forms for most of the eigenvalues. The eigenpairs exhibiting 2-fold degeneracy namely, $-1.618\ 033\ 989$ and $0.618\ 033\ 989$, can be brought into the form $-{}^{1}/_{2}\pm(5^{1/2}/2)$, respectively. Likewise, the eigenpairs $-2.618\ 033\ 989$ and $-0.381\ 966\ 011$ can be

TABLE 3: Distance Spectra of Fullerenes C₂₀-C₉₀

```
Icosahedral C20 Fullerene
-13.708203932(3) -2.0000000000(4) -0.291796068(3) 0.000000000(9) 50.000000000(1)
                                                                                                                                                                                                                                                                                                                                                                                                                             C_{24} Fullerene with D_{6d} Symmetry
0.000000000(6) 0.280134149(2) 0.984851962(1) 67.015148038(1)
                                                                                                                                                                                                                                                                                                                                                                                                                             C_{26} Fullerene with D_{3h} Symmetry
0.000000000(13) 75.948016854(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                  C_{28} Fullerene with T_d Symmetry
0.000000000(3) 0.223753797(1) 0.472783467(3) 0.618033989(2) 85.291405818(1)
                                                                                                                                                                                                                                                                                                                                                                                                                               C<sub>30</sub> Fullerene with D<sub>5h</sub> Symmetry
-28.972356907(1) \\ -22.471976918(2) \\ -4.192305057(1) \\ -2.618033989(4) \\ -2.473336729(2) \\ -2.061495041(1) \\ -1.803142804(2) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.618033989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.61803989(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -2.6180399(4) \\ -
                    -0.668870312(1) \\ -0.381966011(4) \\ 0.000000000(4) \\ 0.093466380(2) \\ 0.164661964(1) \\ 1.094779835(2) \\ 1.560210237(2) \\ 95.730365353(1) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.094779835(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.09477983(2) \\ 1.094779
                                                                                                                                                                                                                                                                                                                                                                                                                                  C_{32} Fullerene with D_3 Symmetry
-32.763245187(1) \\ -24.379464730(2) \\ -4.0000000000(3) \\ -3.236067977(2) \\ -2.551734316(1) \\ -2.434304474(1) \\ -1.215626867(2) \\ -2.551734316(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.434304474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.43430474(1) \\ -2.4340474(1) \\ -2.43430474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4340474(1) \\ -2.4
                      -0.802450339(1) -0.404908403(2) 0.000000000(13) 0.413533643(1) 1.236067977(2) 106.138200672(1)
                                                                                                                                                                                                                                                                                                                                                                                                                               C_{36} Fullerene with D_{6h} Symmetry
-34.607770936(1) -32.264910945(2) -5.121410769(1) -4.000000000(1) -3.414213562(2) -3.281771634(2) -2.000000000(4) -3.414213562(2) -3.281771634(2) -2.0000000000(4) -3.414213562(2) -3.281771634(2) -2.0000000000(4) -3.414213562(2) -3.281771634(2) -2.0000000000(4) -3.414213562(2) -3.281771634(2) -2.0000000000(4) -3.414213562(2) -3.281771634(2) -2.00000000000(4) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.414213562(2) -3.281771634(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.41421362(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2) -3.4142126(2)
                      -0.585786438(2) \\ \phantom{-}-0.453317421(2) \\ \phantom{-}-0.270818295(1) \\ \phantom{-}0.0000000000(14) \\ \phantom{-}0.659649512(1) \\ \phantom{-}2.0000000000(2) \\ \phantom{-}127.340350488(1) \\ \phantom{-}0.585786438(2) \\ \phantom{-}0.585786438(2) \\ \phantom{-}0.453317421(2) \\ \phantom{-}0.270818295(1) \\ \phantom{-}0.0000000000(14) \\ \phantom{-}0.659649512(1) \\ \phantom{-}2.0000000000(2) \\ \phantom{-}127.340350488(1) \\ \phantom{-}0.585786438(2) \\ \phantom{-}0.5857864300000000000000000000000000
                                                                                                                                                                                                                                                                                                                                                                                                                             C_{38} Fullerene with D_{3h} Symmetry
-45.861251951(1) -29.126322019(2) -5.741916524(1) -5.236067977(2) -5.000000000(1) -4.727654272(2) -2.831765063(1) \\ -1.556187494(1) -1.296672637(2) -1.0000000000(2) -0.763932023(2) -0.146715468(1) 0.0000000000(15) 0.306981308(1)
                   0.839732483(1) 2.150648928(2) 139.991122710(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                  C_{40} Fullerene with T_d Symmetry
C<sub>40</sub> Fullerene with D<sub>5</sub> Symmetry
-39.898256984(2) \\ -33.677698923(1) \\ -4.698705562(2) \\ -4.205378615(2) \\ -3.696370176(2) \\ -3.656384955(1) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.624636598(2) \\ -3.62463698(2) \\ -3.62463698(2) \\ -3.62463698(2) \\ -3.62463698(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638(2) \\ -3.624638
                    -1.670460872(2) \quad -0.665916121(1) \quad -0.582315121(1) \quad -0.464349417(2) \quad -0.447601232(2) \quad -0.357065779(2) \quad -0.322906084(2) \quad -0.322906(2) \quad -0.32290608(2) \quad -0.32290608(2) \quad -0.32290608(2) 
                 0.000000000(6) \ \ 0.232810020(2) \ \ \ 0.517518325(2) \ \ 0.910250710(2) \ \ 0.987240788(1) \ \ 1.725152261(2) \ \ 149.595074333(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                  C<sub>42</sub> Fullerene with D<sub>3</sub> Symmetry
-42.145630198(2) \\ -39.060920454(1) \\ -4.940108419(1) \\ -4.701940864(2) \\ -4.476126117(1) \\ -3.569177425(2) \\ -3.558634651(1) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.701940864(2) \\ -4.70194
                   -2.378492151(2) \quad -1.965302529(2) \quad -1.686491420(1) \quad -1.485462900(1) \quad -0.797807161(2) \quad -0.542280946(2) \quad -0.531109098(1) \quad -0.542280946(2) \quad -0.54228006(2) \quad -0.54228006(2) \quad -0.54228006(2) \quad -0.54228006(2) \quad -0.54228006(2) \quad -0.54228006(2) 
                    -0.293409312(2) \\ -0.222735957(1) \\ -0.197481971(1) \\ 0.0000000000(7) \\ 0.262712799(2) \\ 0.292289298(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 0.666099218(1) \\ 
                 0.960807110(2) 1.170520676(2) 1.744351495(1) 161.456330977(1)
                                                                                                                                                                                                                                                                                                                                                                                                                               C<sub>44</sub> Fullerene with D<sub>3h</sub> Symmetry
-46.548551581(1) \\ -42.824377646(2) \\ -5.0000000000(1) \\ -4.837825428(2) \\ -4.693962528(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -3.371950574(1) \\ -4.618033989(2) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\ -4.6180574(1) \\
                   -2.967754643(1) \\ -2.381966011(2) \\ -1.193755854(2) \\ -1.000000000(2) \\ -0.545430138(1) \\ -0.524353119(1) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.480545943(2) \\ -0.48054594(2) \\ -0.48054594(2) \\ -0.48054594(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.4805494(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.480540(2) \\ -0.48
                    -0.080817368(1) \ \ 0.0000000000(15) \ \ \ 0.424301335(2) \ \ 0.912203536(2) \ \ 1.061736361(1) \ \ 1.099466204(1) \ \ 173.571617385(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                       C<sub>44</sub> Fullerene with T Symmetry
 -44.462676005(3) \\ -5.961293139(3) \\ -4.444021998(1) \\ -4.029192812(3) \\ -2.000000000(2) \\ -0.661729723(1) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.546838044(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.54683804(3) \\ -0.5
                 0.000000000(27) 174.105751721(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                  C<sub>46</sub> Fullerene with C<sub>3</sub> Symmetry
-47.967281177(2) \\ -45.797001315(1) \\ -6.285934678(1) \\ -5.599090716(2) \\ -4.218893890(2) \\ -4.170007297(1) \\ -3.477593497(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.21889389(2) \\ -4.218898989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188989(2) \\ -4.2188
                    -2.890944925(1) \\ -2.440667421(1) \\ -2.007686846(2) \\ -1.438246836(2) \\ -0.794412881(1) \\ -0.516433478(2) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.495435516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.49543516(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.495436(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.49546(1) \\ -0.
                      -0.225913130(1) \\ -0.170301200(2) \\ -0.081603355(1) \\ 0.0000000000(11) \\ 0.230314171(2) \\ 0.340627442(1) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\ 0.853247097(2) \\
                    1.002769297(1) 1.311966372(2) 1.670394715(1) 186.168129064(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                  C_{48} Fullerene with D_3 Symmetry
-50.085558347(2) - 49.961044504(1) - 6.041572691(1) - 5.724645250(2) - 5.050183749(2) - 4.419294715(1) - 3.571522668(1) - 5.050183749(2) - 4.419294715(1) - 3.571522668(1) - 5.050183749(2) - 4.419294715(1) - 3.571522668(1) - 5.050183749(2) - 4.419294715(1) - 3.571522668(1) - 5.050183749(2) - 4.419294715(1) - 3.571522668(1) - 5.050183749(2) - 4.419294715(1) - 3.571522668(1) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.050183749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018749(2) - 5.05018740(2) - 5.0501840(2) - 5.0501840(2) - 5.0501840(2) - 5.0501840(2) - 5.0501840(2) - 5.0501840(2) - 5.0501840(2) - 5.0501840(2) - 5.050180(2) - 5.050180(2) - 5.050180(2) - 5.050180(2) - 5.050180(2) -
                    \begin{array}{l} -3.301706253(2) & -2.565736761(2) & -2.496258083(1) & -1.839268659(2) & -1.250717686(1) & -0.800749802(1) & -0.673870754(2) \\ -0.600469790(2) & -0.544567657(2) & -0.458478847(1) & -0.422762225(1) & -0.157842753(2) & -0.073697324(1) & 0.046312325(2) \\ \end{array}
                   0.060515206(1) \ \ 0.361845530(1) \ \ 0.403282617(2) \ \ \ 0.587529988(2) \ \ 0.646931349(2) \ \ 0.700499504(1) \ \ 0.788729801(1)
                    1.039935486(1) 1.165406745(2) 1.694386950(2) 198.544573020(1)
                                                                                                                                                                                                                                                                                                                                                                                                                               C<sub>50</sub> Fullerene with D<sub>5h</sub> Symmetry
   -53.719248953(2) -51.922962794(1) -6.242887545(2) -5.000000000(1) -4.840566048(2) -4.427029742(2) -4.370477984(2)
                    -0.178556837(2) -0.077037206(1) 0.0000000000(9) 0.280099823(2) 0.473842556(1) 0.590300242(2) 0.673206804(2)
                   0.855062365(2) 1.0000000000(1) 2.520415870(1) 211.005741574(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                     C<sub>52</sub> Fullerene with T Symmetry
-57.000881503(3) \ -5.833515693(3) \ -4.862296965(3) \ -4.730967191(1) \ -3.866198263(2) \ -2.892264396(3) \ -2.156709207(3)
                      0.182338820(3) \ \ 0.655442382(2) \ \ 1.012182367(3) \ \ 1.145706924(1) \ \ 1.343265896(3) \ \ 225.022289302(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                  Buckminsterfullerene (C<sub>60</sub>)
-69.060712632(3) \\ -5.828427125(4) \\ -5.455618900(3) \\ -4.236067977(4) \\ -2.957586986(5) \\ -2.618033989(5) \\ -1.862273042(3) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.618033989(5) \\ -2.61803989(5) \\ -2.61803989(5) \\ -2.61803989(5) \\ -2.61803989(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5) \\ -2.6180399(5)
                        -0.621395426(3) \ -0.618033989(3) \ -0.381966011(5) \ -0.171572875(4) \ 0.236067977(4) \ 0.878468121(5) \ 1.618033989(3)
                   3.079118865(5) 278.000000000(1)
```

TABLE 3: (Continued)

```
C<sub>70</sub> Fullerene with D<sub>5h</sub> Symmetry
 -94366395116(1) -84.401081825(2) -8.362818330(2) -7.451348006(2) -6.765945013(1) -6.347134260(2) -5.845883479(2)
                     -4.886540027(2) \\ -4.847621203(2) \\ -4.261610868(2) \\ -3.935432332(1) \\ -2.851782559(1) \\ -2.544630586(2) \\ -1.768352211(2) \\ -2.84630586(2) \\ -1.768352211(2) \\ -2.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.84630586(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\ -1.846306(2) \\
                     0.214471453(2) 0.323552428(2) 0.343800771(2) 0.379781259(1) 0.472833909(1) 0.643718990(2) 1.277095627(2) 1.618033989(1)
                     1.790095775(2) 1.938422337(1) 1.963067252(2) 2.253297791(2) 353.666014423(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C_{76} Cages (p = q = 0)
-106.590849781(1) \\ -98.166036048(1) \\ -93.002193911(1) \\ -9.693548237(1) \\ -9.301935852(1) \\ -9.034365031(1) \\ -8.468159565(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.034365031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.03465031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.0346031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.034031(1) \\ -9.03
                     -8.277912481(1) - 7.838724102(1) - 7.606770014(1) - 6.994998470(1) - 6.377080061(1) - 5.149102765(1) - 5.135741478(1)
                     -4.896592955(1) -4.886304357(1) -4.587233975(1) -4.496525147(1) -4.079710222(1) -3.568221033(1) -2.762929719(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.587233975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58723975(1) -4.58725(1) -4.58725(1) -4.58725(1) -4.58725(1) -4.58725(1) -4.58725(1) -4.58725(1) -4.58725(1) -4.58725(1) -4.587
                     -2.756063307(1) -2.657543232(1) -1.944860415(1) -1.463273351(1) -1.443709842(1) -1.440125168(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.100656931(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.10065691(1) -1.1
                     -0.911202712(1) -0.839500397(1) -0.816113992(1) -0.753859805(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C_{76} Cages (p = q = 0)
 -0.695023242(1) \\ -0.679353593(1) \\ -0.527223366(1) \\ -0.452633453(1) \\ -0.409421938(1) \\ -0.265065283(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.242097617(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.2420977(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.242097(1) \\ -0.24209
                     0.018350318(1) \ \ 0.075916832(1) \ \ 0.108761559(1) \ \ 0.204337941(1) \ \ 0.247270565(1) \ \ 0.273114925(1) \ \ 0.320627661(1) \ \ 0.362214587(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661(1) \ \ 0.320627661
                     0.565305917(1) \ \ 0.699427967(1) \ \ 0.718028720(1) \ \ 0.801669570(1) \ \ 0.843012175(1) \ \ 0.996016918(1) \ \ 1.044201004(1) \ \ 1.157280207(1) \ \ 0.843012175(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918(1) \ \ 0.996016918
                     1.332925128(1) \ \ 1.452107669(1) \ \ 1.516520350(1) \ \ 1.580854078(1) \ \ 1.813285566(1) \ \ 2.054895601(1) \ \ 2.353554674(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.456838250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.45683250(1) \ \ 2.4568
                     2.869244963(1) 3.765372543(1) 401.401117745(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C_{78} Fullerene with C_{2\nu} Symmetry
-111.785878648(1) \\ -100.668759685(1) \\ -98.788905139(1) \\ -10.401118849(1) \\ -9.630631221(1) \\ -9.539726482(1) \\ -9.192899417(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.539726482(1) \\ -9.5
                   -1.005958107(1) \\ -0.935257431(1) \\ -0.754494706(1) \\ -0.680951857(1) \\ -0.600301627(1) \\ -0.509607292(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.469295267(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46929527(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.46927(1) \\ -0.4692
                     -0.462895259(1) \\ -0.426066895(1) \\ -0.317141605(1) \\ -0.288255655(1) \\ -0.267568125(1) \\ -0.260938101(1) \\ -0.222773026(1) \\ -0.260938101(1) \\ -0.222773026(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.260938101(1) \\ -0.2609381
                       -0.151034913(1) -0.133985704(1) -0.131892369(1) -0.015673692(1) 0.000000000(8) 0.130560203(1) 0.24912106791)
                     0.256605490(1) \quad 0.329390794(1) \quad 0.457103541(1) \quad 0.491300673(1) \quad 0.535420525(1) \quad 0.629383676(1) \quad 0.845823480(1) \quad 0.986124687(1) \quad 0.98612467(1) \quad 0.98612467(1) \quad 0.98612487(1) \quad 0.98612467(1) \quad 0.986124687(1) \quad 0.98612467(1) \quad
                     0.998934256(1) 1.056281407(1) 1.164353642(1) 1.338791786(1) 1.368261817(1) 1.495836549(1) 1.566406647(1) 1.657862451(1)
                     1.756475983(1) \ 1.934166456(1) \ 2.100686739(1) \ 3.322313650(1) \ 4.064331218(1) \ 418.218080051(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                             Second C_{78} Fullerene with C_{2\nu} Symmetry
 -110.332481234(1) \ -101.885422519(1) \ -100.747525688(1) \ -9.727219917(1) \ -9.586070917(1) \ -9.401199720(1) \ -9.356586228(1)
                     -2.175416399(1) \\ -1.818078537(1) \\ -1.630451002(1) \\ -1.283848602(1) \\ -1.142980871(1) \\ -1.127480119(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.731017027(1) \\ -0.7310170
                       -0.614348922(1) \\ -0.549963172(1) \\ -0.544080807(1) \\ -0.521129634(1) \\ -0.515844255(1) \\ -0.408283370(1) \\ -0.384407806(1) \\ -0.515844255(1) \\ -0.408283370(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.51584425(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.515844255(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.5184425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.51584425(1) \\ -0.5
                        -0.377724265(1) -0.297482097(1) -0.246028653(1) -0.223563949(1) -0.134157354(1) -0.060907251(1) 0.000000000(16)
                     0.142826174(1) \ \ 0.202451219(1) \ \ 0.220755140(1) \ \ 0.300713912(1) \ \ 0.479307744(1) \ \ 0.534199247(1) \ \ 0.584576664(1) \ \ 0.781567585(1)
                     0.865296339(1) \ \ 0.994492570(1) \ \ 1.135986168(1) \ \ 1.329537198(1) \ \ 1.394778664(1) \ \ 1.429808246(1) \ \ 1.459031326(1) \ \ 1.484216010(1)
                     1.748938672(1) 2.132394998(1) 2.878200369(1) 3.175273992(1) 418.780129424(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                        Third C<sub>78</sub> Fullerene with D<sub>3</sub> Symmetry
 -112.478063097(1) \\ -98.403189745(2) \\ -11.478703110(1) \\ -9.455680423(2) \\ -9.220338337(1) \\ -8.973467506(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.664401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.66401529(1) \\ -7.664010
                       -0.785563956(1) -0.486147851(2) -0.352616954(2) -0.299618385(1) -0.275058951(1) -0.273736655(2) -0.151221874(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.275058951(1) -0.27505891(1) -0.27505891(1) -0.27505891(1) -0.27505891(1) -0.27505891(1) -0.27505891(1) -0
                        -0.054529689(1) \\ -0.047542705(2) \\ 0.000000000(8) \\ 0.012106001(1) \\ 0.060796093(1) \\ 0.089560649(2) \\ 0.13985725991) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.328344807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0.32834807(2) \\ 0
                     0.431371634(2) \ \ 0.534748059(2) \ \ 0.542274627(1) \ \ 1.209549137(2) \ \ 1.352060809(2) \ \ 1.613980674(1) \ \ 1.614429397(1) \ \ 1.990661462(1)
                     2.099535503(2) 2.403533649(2) 3.791206376(2) 417.703733598(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                 Fourth C_{78} Fullerene with D_{3h} Symmetry
 -113.262434760(1) \\ -98.459532860(2) \\ -12.165037093(1) \\ -10.080743956(1) \\ -9.689290384(2) \\ -8.184126924(1) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.472301289(2) \\ -7.47
                          -6.545074530(1) \\ -5.785221579(1) \\ -5.556064993(2) \\ -5.027909510(2) \\ -4.917285993(1) \\ -4.242021586(1) \\ -3.872964406(2) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.917285993(1) \\ -4.9172859
                        -0.152671627(1) \\ -0.049037172(1) \\ 0.0000000000(13) \\ 0.027300551(2) \\ 0.289925041(1) \\ 0.348569027(2) \\ 0.597735188(1) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.838022918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802918(2) \\ 0.83802
                     0.984490276(2) \ 1.124641217(2) \ 1.154252632(1) \ 1.637756250(1) \ 1.719697256(2) \ 1.963223133(1) \ 2.139008418(2) \ 4.607344182(2)
                     417.964411366(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                      Fifth C_{78} Fullerene with D_{3h} Symmetry
 -108.897492401(1) \\ -103.196800322(2) \\ -10.190903596(2) \\ -9.973962712(1) \\ -9.026669465(2) \\ -8.757786935(1) \\ -6.921336693(2) \\ -8.757786935(1) \\ -6.921336693(2) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.75786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.757786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.75786935(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578693(1) \\ -8.7578
                        -6.761654794(1) \quad -6.637893500(1) \quad -5.885152211(2) \quad -2.864882987(1) \quad -2.796496727(2) \quad -2.629808135(2) \quad -2.436070169(2) \quad -2.4360701
                        -1.955311950(1) \\ -1.0000000000(1) \\ -0.683556505(2) \\ -0.609678490(1) \\ -0.523670403(1) \\ -0.515752653(1) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.503166840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50316840(2) \\ -0.50
                        1.957167045(2) \ \ 2.0000000000(1) \ \ 2.178756155(2) \ \ \ 419.661503886(1)
```

TABLE 3: (Continued)

```
C_{84} Coroninic Cages (p = q = 0)
-127.485626939(1) \\ -113.425987579(1) \\ -103.512064586(1) \\ -11.920366656(1) \\ -11.695666243(1) \\ -11.279560638(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.708932793(1) \\ -10.7089
                    -10.132093835(1) \\ \phantom{-} -9.619274680(1) \\ \phantom{-} -9.511739460(1) \\ \phantom{-} -8.931557280(1) \\ \phantom{-} -6.849322169(1) \\ \phantom{-} -6.534956780(1) \\ \phantom{-} -5.856483964(1) \\ \phantom{-} -6.849322169(1) \\ \phantom{-} -6.534956780(1) \\ \phantom{-} -6.534956780(1) \\ \phantom{-} -6.849322169(1) \\ \phantom{-} -6.534956780(1) \\ \phantom{-} -6.534956780(1) \\ \phantom{-} -6.849322169(1) \\ \phantom{-} -6.84932169(1) \\ \phantom{-} -6.849322169(1) \\ \phantom{-} -6.84932169(1) \\ \phantom{-} 
                    -5.616261752(1) \\ -5.486436099(1) \\ -5.137622498(1) \\ -5.029340350(1) \\ -4.683525723(1) \\ -4.076256809(1) \\ -3.316936689(1) \\ -3.316936689(1) \\ -3.316936689(1) \\ -3.316936689(1) \\ -3.316936689(1) \\ -3.316936689(1) \\ -3.316936689(1) \\ -3.316936689(1) \\ -3.316936689(1) \\ -3.316936689(1) \\ -3.316936689(1) \\ -3.316936689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.31693689(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369(1) \\ -3.3169369
                    -2.578237101(1) \\ -2.275373473(1) \\ -2.129524171(1) \\ -2.035531038(1) \\ -1.681187653(1) \\ -1.555173663(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.542844590(1) \\ -1.5428445
                    -1.253601048(1) \\ -1.150061060(1) \\ -0.974121809(1) \\ -0.901771415(1) \\ -0.897009698(1) \\ -0.881473468(1) \\ -0.688637629(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.881473468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147468(1) \\ -0.88147488(1) \\ -0.8814748(1) \\ -0.8814748(1) \\ -0.8814748(1) \\ -0.8814748(1) \\ -0.8814748(1) \\ -0.8814748(1) \\ -0.8814748(1) \\ -0.8814748(1) \\ -0.8814748(1) \\ -0.8814748(1) \\ -0.8814748(1) \\ -0.88147
                   \begin{array}{l} -0.635842691(1) & -0.632585767(1) & -0.632373536(1) & -0.485549597(1) & -0.461220894(1) & -0.429601554(1) & -0.413364691(1) \\ -0.348810663(1) & -0.321742218(1) & -0.273897701(1) & -0.249088611(1) & -0.218990915(1) & -0.116720034(1) & -0.107889378(1) \\ \end{array}
                    -0.017219483(1) \ 0.013459735(1) \ 0.032978119(1) \ 0.069868101(1) \ 0.104263172(1) \ 0.122822138(1) \ 0.184700563(1) \ 0.201878119(1)
                    0.234801295(1) \ \ 0.286505426(1) \ \ 0.301402254(1) \ \ 0.377816430(1) \ \ 0.424858706(1) \ \ 0.431970164(1) \ \ 0.481342190(1) \ \ 0.572556012(1)
                    0.672109496(1) \ \ 0.931329914(1) \ \ 0.948091795(1) \ \ 1.083708617(1) \ \ 1.217350575(1) \ \ 1.249905143(1) \ \ 1.334782224(1) \ \ 1.413474785(1)
                    1.420347092(1) \ \ 1.479014089(1) \ \ 1.498856694(1) \ \ 1.522182615(1) \ \ 2.243933079(1) \ \ 2.376505099(1) \ \ 2.541188835(1) \ \ 3.041945298(1) \ \ 1.522182615(1) \ \ 2.243933079(1) \ \ 2.376505099(1) \ \ 2.541188835(1) \ \ 3.041945298(1) \ \ 1.49856694(1) \ \ 1.522182615(1) \ \ 2.243933079(1) \ \ 2.376505099(1) \ \ 2.541188835(1) \ \ 3.041945298(1) \ \ 1.49856694(1) \ \ 1.541188835(1) \ \ 3.041945298(1) \ \ 1.49856694(1) \ \ 1.541188835(1) \ \ 3.041945298(1) \ \ 1.49856694(1) \ \ 1.541188835(1) \ \ 3.041945298(1) \ \ 1.49856694(1) \ \ 1.541188835(1) \ \ 3.041945298(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49856694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.4986694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.49866694(1) \ \ 1.4
                    4.824268431(1) 4.919695609(1) 468.139547254(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C<sub>84</sub> Second Cage
-3.846661161(2) \\ -3.414213562(1) \\ -2.342846056(3) \\ -1.150106210(3) \\ -0.726509899(3) \\ -0.634998583(3) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.585786438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.5857864438(1) \\ -0.58578644438(1) \\ -0.5857864438(1) \\ -0.58578644438(1) \\ -0.58578644438(1) \\ -0.5857864438(1) \\ -0
                      -0.249641593(1) -0.099918576(3) 0.000000000(31) 0.376767443(2) 0.742292318(3) 1.557964426(3) 2.347757274(2) 3.255996949(3)
                   4.396841981(1) 468.759102141(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C_{90} Coroninic Cages (p = q = 0)
 -151.870957203(1) -113.465280160(2) -13.625980515(2) -13.232962419(1) -12.246873137(2) -11.615783352(2) -8.420306506(1) -12.246873137(2) -11.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.61578352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.615783352(2) -10.6157832(2) -10.61578352(2) -10.6157832(2) -10.6157832(2) -10.6157832(2) -10.6157832(2) -10.6157832(2) -10.6157832(2) -10.6157832(2) -10.6157832(2) -10.6157832(2) -10.6157832(2) -10.6157832(2) -10.6157832(2) -10.6157832(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782(2) -10.615782
                      -8.053583266(2) \\ -6.862367503(2) \\ -6.243376446(1) \\ -6.237877640(2) \\ -4.540132214(2) \\ -4.005285772(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.904342201(2) \\ -1.90434201(2) \\ -1.9044201(2) \\ -1.9044201(2) \\ -1.9044201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.90401(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.904201(2) \\ -1.
                        -1.900953409(1) -1.596985032(2) -1.472364186(2) -1.135230023(2) \ 1.058292349(2) -0.950083230(2) \ -0.918242647(1) -1.135230023(2) \ 1.058292349(2) -0.950083230(2) \ -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918242647(1) -0.918
                        -0.747463150(2) -0.651447353(2) -0.618033989(1) -0.582099566(1) -0.467160890(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.266292618(2) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170(1) -0.279004170
                        -0.239883651(1) \ \ 0.000000000(10) \ \ 0.091134210(2) \ \ 0.102664302(2) \ \ 0.161028202(2) \ \ 0.335519857(2) \ \ 0.432578522(2) \ \ 0.825476012(1)
                        1.033468413(1) \ \ 1.051867990(1) \ \ 1.104212984(2) \ \ 1.123143486(2) \ \ \ 1.123665340(2) \ \ 1.186074869(2) \ \ 1.618033989(1) \ \ 1.758463486(2)
                        2.380350820(2) 2.479279370(1) 2.985234984(2) 6.118753532(2) 521.297694232(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C<sub>90</sub> Second Fullerene Cage
-142.640197274(1) \\ -123.328321750(1) \\ -116.626236157(1) \\ -13.307438109(1) \\ -12.523455216(1) \\ -12.277922119(1) \\ -11.916891324(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.523455216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.52345216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.5234216(1) \\ -12.52342
                        -11.012624322(1) \quad -10.580925749(1) \quad -9.276105176(1) \quad -9.145092527(1) \quad -9.086672716(1) \quad -7.455462083(1) \quad -6.758733339(1) \quad -6.75873339(1) \quad -6.7577339(1) \quad
                        -6.670787679(1) \\ -6.237637070(1) \\ -5.620281603(1) \\ -5.618046221(1) \\ -5.013641718(1) \\ -4.446675132(1) \\ -3.556276346(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.620281603(1) \\ -5.6202816
                        -2.517015640(1) -2.469994076(1) -2.284135486(1) -1.878781408(1) -1.824958605(1) -1.700230559(1) -1.614350767(1)
                        -1.452950748(1) \\ -1.309105568(1) \\ -1.209546260(1) \\ -1.021757805(1) \\ -0.983942174(1) \\ -0.982682216(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.854711322(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85471132(1) \\ -0.85
                      0.138509602(1) \ \ 0.173696926(1) \ \ 0.250398908(1) \ \ 0.266761216(1) \ \ 0.306668118(1) \ \ 0.336956656(1) \ \ 0.357280916(1) \ \ 0.409106260(1)
                    0.464857310(1) \ \ 0.513473417(1) \ \ 0.551022038(1) \ \ 0.579800667(1) \ \ 0.596155581(1) \ \ 0.656420241(1) \ \ 0.671908038(1) \ \ 0.691847443(1)
                    0.910090252(1) 1.032388043(1) 1.046490662(1) 1.150151582(1) 1.256454366(1) 1.407751547(1) 1.453346779(1) 1.571920242(1)
                        1.817216341(1) 2.192245630(1) 2.280257394(1) 2.397512287(1) 2.466842753(1) 3.734770796(1) 4.914657242(1) 4.982174661(1)
                      520.457600279(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C_{90} Third Fullerene Count = 60
 -133.363951845(1) \\ -132.796934464(1) \\ -119.915864559(1) \\ -13.575726891(1) \\ -12.981692486(1) \\ -12.686563222(1) \\ -11.955554509(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.981692486(1) \\ -12.9816
                        -11.341681501(1) \quad -9.954307440(1) \quad -8.762082778(1) \quad -8.685421156(1) \quad -6.473046070(1) \quad -6.403717708(1) \quad -6.365212473(1) \quad -6.36212473(1) \quad -6.365212473(1) \quad -6.3652124
                      \begin{array}{l} -5.958935942(1) & -5.768636995(1) & -5.544223065(1) & -5.206797758(1) & -5.064375789(1) & -4.951566465(1) & -4.082808782(1) \\ -3.272984337(1) & -3.093901050(1) & -2.789603753(1) & -2.170674200(1) & -2.052722178(1) & -1.809312147(1) & -1.548552181(1) \\ \end{array}
                      -0.413792360(1) \\ -0.349187054(1) \\ -0.340850612(1) \\ -0.309520707(1) \\ -0.236765822(1) \\ -0.231055087(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.208463732(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.20846372(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.208472(1) \\ -0.
                        -0.192894618(1) \\ -0.129016158(1) \\ -0.081151383(1) \\ -0.035597286(1) \\ 0.000000000(4) \\ 0.020889006(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 0.067902197(1) \\ 
                        0.123943388(1) \ \ 0.168106380(1) \ \ 0.223365959(1) \ \ 0.253547435(1) \ \ 0.269215805(1) \ \ 0.350954143(1) \ \ 0.388867045(1) \ \ 0.390480257(1)
                        0.424658630(1) \quad 0.443855986(1) \quad 0.452151686(1) \quad 0.602704821(1) \quad 0.667478920(1) \quad 0.698939808(1) \quad 0.700230201(1) \quad 0.829569741(1) \quad 0.82
                        2.253426371(1) 3.084142395(1) 3.245065180(1) 3.558767708(1) 4.061320650(1) 4.707140639(1) 520.709505358(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \lambda_1 \lambda_2 \lambda_3 + \lambda_1 \lambda_2 \lambda_4 + \lambda_1 \lambda_3 \lambda_4 + \lambda_2 \lambda_3 \lambda_4 = -10
expressed as -3/2 \pm (5^{1/2}/2), respectively. The eigenvalues \lambda_1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \lambda_1 \lambda_2 \lambda_3 \lambda_4 = -12
satisfy the following symmetric equations:
```

= -2.515159615, $\lambda_2 = 0.223753797$, and $\lambda_3 = 85.291405818$

$$\lambda_1 + \lambda_2 + \lambda_3 = 83$$

$$\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3 = -196$$

$$\lambda_1 \lambda_2 \lambda_3 = -48$$

This leaves us with four nonintegral eigenvalues exhibiting 3-fold degeneracies namely, -22.201 440 469, -1.518 436 049, -0.752906950, and 0.472783467. The eigenvalues satisfy the following symmetric equations:

$$\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = -24$$
$$\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \lambda_3 \lambda_4 = 40$$

If one combines all of these results, it can be seen that the distance polynomial of the C₂₈ tetrahedral fullerene is given by

$$P_D(C_{28}) = \lambda^3 \{ \lambda^4 + 24\lambda^3 + 40\lambda^2 + 10\lambda - 12 \}^3 \times \{ \lambda^2 + 3\lambda + 1 \}^3 \times \{ \lambda^3 - 83\lambda^2 - 196\lambda - 48 \} \{ \lambda^2 + \lambda - 1 \}^2$$

The above form of the distance polynomial of the C₂₈ fullerene yields the coefficient of λ^3 of the distance polynomial as

$$-12^3 \times 48 = -2^{10} \times 3^4 = -82944$$

The result thus obtained is in accord with the value reported in Table 4 for the λ^3 coefficient of the C_{28} fullerene.

TABLE 4: Distance Polynomials of Fullerenes

TABLE 4:	Distance Polynom	nials of Fullere	enes					
	Dodecahedral (C ₂₀ Fullerene (I _h)				C ₃₈ Fullerene v	vith D _{3h} Symmetry	
power	coefficient	power	coefficient	p	ower	coefficient	power	coefficient
20	1	18	-1540		38	1	36	-11791
17 15	-39080 -2026336	16 14	-403200 -5512000		35	-865592	34	-27968649
13	-8417280	12	-707 45 60		33 31	-497910640 -36301365340	32 30	-5371295557 -148532181284
11	-3059200	10	-638976		29	-36301365240 -289586987232	28	-148532181284 305935536768
9	-51200				27	3317248716672	26	7714913727104
	C ₂₄ Fulle	erene (D_{6d})			25	3839637216768	24	-18209227675136
power	coefficient	power	coefficient		23	-43382135498752	22	-37515237249024
	1				21 19	40575705088 21161692102656	20 18	26871241289728
24 21	-94584	22 20	-2736 -1377246		17	-1117499424768	16	5161317023744 714357080064
19	-10415904	18	-45969404		15	-72477573120		71100700007
17	-124556256	16	-204044439					
15 13	-169447920 213132120	14 12	22374228 221006524			C ₄₀ Fullerene	with T_d Symmetry	
11	92149776	10	-3634224	p	ower	coefficient	power	coefficient
9	-16630272	8	-3842496		40	1	38	-13548
7	601344	6	228096		37	-1067488	36	-36446064
	C ₂₆ Fullerene w	ith D_{3h} Symmetry			35	-674064000	34	-7638698624
power	coefficient	power	coefficient		33	-56995855872	32	-291888314880
26	1	24	-3495		31 29	-1049125705728 -4799359229952	30 28	-2669826877440 -6012404035584
23	-138048	22	-2330793		27	-5101989101568	26	-2779917631488
21	-20934816	20	-113258029		25	-873474818048	24	-119876812800
19	-395667456	18	-924405204 1533018060			~		
17 15	-1458741024 -1028401920	16 14	-1533918960 -397027008			C ₄₀ Fullerene	with D ₅ Symmetry	
13	-67060224			P	ower	coefficient	power	coefficient
	C ₂₈ Fullerene w	ith T _d Symmetry			40	1	38	-13430
power	coefficient	power	coefficient		37	-1060640 -690106672	36 34	-36608205 -7922698150
28	1	26	-4398		35 33	-58160244660	32	-271433532115
25	-195848	24	-3741105		31	-719500754620	30	-407460613532
23	-38150880	22	-234681512		29	4046596359100	28	13457006956140
21	-927001032 -3963773090	20 18	-2391196479 -3134603922		27	10887412407160	26	-30682857825560
19 17	-3863773080 855509256	16	4737775233		25 23	-79353465153472	24 22	-27465458540640 145878012780560
15	3842885040	14	-577254636		21	119974951795520 -33243413522880	20	-158003119968992
13	-2733304064	12	-1123207845		19	-63901990358080	18	61677483189440
11 9	617302368 163680	10 8	563300334 -108630111		17	57666862185280	16	347971761600
7	-19392664	6	8925744		15	-16808947519872	14	-5609398754880
5	2490048	4	-221184		13 11	1369248419840	12 10	1146007632640 62000507648
3	-82944				9	127655462400 -17480965120	8	27028480
	C ₃₀ Fullerene w	ith D _{5h} Symmetry			7	474009600	6	45132800
power	coefficient	power	coefficient			C42 Fullerene	with D ₃ Symmetry	
30	1	28	-5545 5026410	n	ower	coefficient	power	coefficient
27 25	-276700 -67295460	26 24	-5926410 -443843850					
23	-1707943480	22	-3201702685		42	1 -1332984	40 38	-15654 -49523379
21	1492906860	20	21943181737		39 37	-1332984 -1005565224	36 36	-12566309172
19 17	42249156800	18 16	2760646090 -149259541150		35	-102815240016	34	-561587919534
15	-109451825940 12897248060	14	201634053805		33	-1981903464556	32	-3773236388274
13	157123930160	12	-27183067685		31	784282180152	30	24968402150434
11	-98802589480	10	-50710612096		29	59660950634976 -139429594354892	28	28920701872980
9 7	-6598147520 534610560	8 6	2079637200 -31909120		27 25	-67464367476276	26 24	-287074888375515 438995890400490
5	-9684992	4	675840		23	517245656471700	22	-103435837819806
	Cas Fullerene v	vith D ₃ Symmetry			21	-584458712674272	20	-285737052163926
			coefficient		19	217833329720664	18	254267546744135
power	coefficient	power		•	17 15	23070458033868 -29681556241360	16 14	-70955223930474 3951621167895
32 29	-377080	30 28	-6808 -9017376		13	4831935734412	12	563180682654
29 27	-115787552	26	-885480688		11	-260952705216	10	-67002022887
25	-4205964864	24	-12172328384		9	1749399440	8	1885666512
23	-18228278528	24 22 20	937230336		7	151668864		
21 19	55109633024 26159812608	20 18	86917673984 -71177007104			C44 Fullerene v	vith D _{3h} Symmetry	
17	-84960280576	16	-27872329728	_		coefficient		coefficient
15	7324303360	14	6414139392	P	ower		power	
13	1056964608				44 41	1 -1656844	42 40	-18070 -66504399
	C ₃₆ Fullerene w	ith D _{6h} Symmetry			39	-1467702128	38	-20123195790
power	coefficient	power	coefficient		37	-183550950924	36	-1152265986888
36	1	34	-9804		35 33	-5004137029888 -24625402869176	34 32	-14536195987614 -7533627861903
. 33	-651968	32 30	-18577800		31	68410268173632	32 30	151680649963674
31	-280879104 -13827345408	30 28	-2511927168 -44820285168		29	82018058115268	28	-174215797180791
29 27	-59594127872	26	136312855488		27	-313617532424488	26	-78417730248756
25	788023090176	24	1434829469184		25	242249793961836	24 22	222071331994980 -113497969602924
23 21	417852954624 -6371375341568	22 20	-3110784043008 -5505943449600		23 21	-19031245843864 -41782278122672	22 20	14583479964608
19	-6371375341568 -1437769629696	20 18	1407594315776		19	12371186037312	18	1177298693056
17	1492163100672	16	611196862464		17	-887415608320	16	-235818992640
15	121060196352	14	9512681472		15	-13109043200		

TABLE 4 (Continued)

C.,	Fullerene	with	T Symi	metru

power	coefficient	power	coefficient
44	1	42	-18214
41	-1671000	40	-66774195
39	-1456130400	38	-19592542432
37	-174748737936	36	-1076840503184
35	-4686703078400	34	-14525532648192
33	-31966256531968	32	-49307101149440
31	-52078662193152	30	-36344371523584
29	-15851222896640	28	-3888169365504
27	-407913889792		

Fullerene C₄₆ with C₃ Symmetry

power	coefficient	power	coefficient
46	1	44	-20787
43	-2044860	42	-88002417
41	-2077274214	40	-30291206465
39	-290776217280	38	-1882649686359
37	-8071919585870	36	-20460225013569
35	-13273014017010	34	99851621446213
33	350616668054592	32	331730582904414
31	-716951897306612	30	-2187539326804965
29	-1057182283553556	28	3474329795587396
27	5133723464801862	26	-809341931681892
25	-6423867278020520	24	-2980708726958067
23	3175286816224956	22	3054598026274912
21	-232192422311112	20	-1076371754247645
19	-257042659924738	18	117199757456619
17	52557392180976	16	-1453621699784
15	-3216156138720	14	-307463529492
13	53545030032	12	10209994992
11	434529792		

C₄₈ Fullerene with D₃ Symmetry

	· ·		•
power	coefficient	power	coefficient
48	1	46	-23592
45	-2483172	44	-114897348
43	-2933633436	42	-46481097532
41	-486104159676	40	-3428212502196
39	-15894808083332	38	-42006034075959
37	-12389433528732	36	342352167231524
35	1152092383756896	34	768644866775550
33	-4548705939947928	32	-11698347602591844
31	-204556490548560	30	38078588927473572
29	41429962328312136	28	-53438877772232307
27	-125049460581687512	26	13429966668327741
25	193899922261624068	24	70354469606089662
23	-185373941879740500	22	-125526024456039336
21	114360907882436804	20	112811336681492745
19	-44567403368203644	18	-64334920071536375
17	9405097744755804	16	24718183708260171
15	-35671999056372	14	-6479219377192521
13	-591256213660548	12	1141447241694376
11	175801679889948	10	-129273139473165
9	-25642928616796	8	8554729843089
7	1989844713432	6	-262138455882
5	-71094477780	4	1230786582
3	629380920	2	-10980381
1	-1714020	0	51425

C₅₀ Fullerene with D_{5h} Symmetry

power	coefficient	power	coefficient
50	1	48	-26625
47	-2981160	46	-147120970
45	-4029009596	44	-69176883030
43	-797362510760	42	-6380349125365
41	-35547495607600	40	-132009560723779
39	-268434346622920	38	108596939827710
37	2611652254039860	36	8098068867341100
35	10238441910180268	34	-5852810450447645
33	-39584068684718600	32	-45517289674514635
31	20822529428768760	30	97750569657138654
29	58844410534534540	28	-71033980722985330
27	-105608153605118440	26	1652486721251310
25	77072132857616048	24	30665784684546800
23	-28802575097557940	22	-22077656199913975
21	4522694925327820	20	7668498395381071
19	450597371017560	18	-1461586197547900
17	-309794836839440	16	142594934661040
15	50251307687680	14	-4638974959680
13	-3412624894720	12	-190563726080
11	77030912000	10	11817827328
9	465776640		

C₅₂ Fullerene with T Symmetry

power	coefficient	power	coefficient
52	1	50	-30330
49	-3612384	48	-188941221
47	-5462557968	46	-98870517726
45	-1201095848352	44	-10132123850253
43	-59551924048168	42	-234037134465888
41	-516185820498528	40	33154631543500
39	4098230414127504	38	11372815232636334
37	4314627119103696	36	-44506392069903711
35	-90701492165170488	34	24411719927314818
33	288484916040854184	32	220862682248076957
31	-415117913768668104	30	-665716024660429344
29	226982316131658336	28	918600497848538144
27	142868848116484992	26	-714231121603779072
25	-313935413932122592	24	310724639719077792
23	215632253409003456	22	-62711125430424256
21	-73331171606539776	20	-305093865219168
19	11958940346295424	18	1922261744664576
17	-733039015557120	16	-180649682648576
15	16601732296704	14	6264514762752
13	-14472884736	12	-85260190464
11	-3454368768	10	273811968
9	20404224	8	352512

Buckminsterfullerene (C60)

power	coefficient	power	coefficient
60	1	58	-46020
57	-6831720	56	-451346640
55	-16750287600	54	-393261842080
53	-6214157184360	52	-67404303867240
51	-484951936279520	50	-1896906855591648
49	1950349169327040	48	76105926453878020
47	451149959779416840	46	841450173070749000
45	-4881471170768184912	44	-38147675575209628320
43	-86139929406963053040	42	192354328639822788560
41	1730499814897985536920	40	3567633052913924231352
39	-5711153865241646797120	38	-45555335686244193577440
37	-73650075800401841117280	36	123714987265479668426190
35	690700452409989216340680	34	756760010291030850480000
33	-1672918974834434136708480	32	-5801876499567025161867840
31	-3352555443936976406733360	30	12638333412173510908810240
29	25671679340527964972088840	28	2227017790894132955559240
27	-49403346508552611979155680	26	-55304048033983845970530720
25	22991839626968921917109376	24	94327135661242682862609620
23	50297134529254334138149080	22	-57052143717896317488473160
21	-83950900831419917902763120	20	-11975087534330473929016416
19	47093000559470243245935600	18	33673249963051619234234960
17	-4189642323236668547403960	16	-15692701549650223559385240
15	-6087600040731581812476928	14	1700588964416667562858080
13	2132205781422592500018720	12	510660119706624888232665
11	-135027815672084085345960	10	-98698112318782286909628
9	-12704440893170959013720	8	4657740499584434568720
7	1723638864490037026080	6	76035605550036774400
7 5 3	-56480405476926546816	4 2	-10557384307561559040
3	-36269870253260800	2	182199099530280960
l	20689997542195200	0	755012598759424

C₇₀ Fullerene with D_{5h} Symmetry

	C ₇₀ Fullerene wit	п <i>D</i> _{5h} S	<u> </u>
power	coefficient	power	coefficient
70	1	68	-74445
67	-14063240	66	-1185404710
65	-56467467828	64	-1720698728700
63	-36007766595500	62	-537691364849655
61	-5805557684089980	60	-44600020360380489
59	-225643204283194860	58	-520059587216342725
57	1963793114402365260	56	22026781096944817305
55	73184419014367954008	54	-32639067851596826795
53	-1121082402830924693180	52	-3224215012397993676375
51	2730715887814422635600	50	36641272518291550479290
49	56753814035400006930240	48	-156734684388083460586680
47	-620224554689304710246540	46	-24425411427929175787345
45	3018939684717204071090652	44	3471608923105348088853385
43	-8021070964381948905856580	42	-18328878947375751840830640
41	9288227953844918203536680	40	51848893331733630438954998
39	1018470020087727648766020	38	-91013954578847229339262310
37	-58162692985135910808405420	36	99915945382002435249606590
35	105071468356372128031999008	34	-62827378992467924015052885
33	-108083760428723677136138660	32	13680155887443680866233005
31	69349757015029855444836080	30	9823508205083301132094748
29	-28496028159730023942216120	28	-9559417716321701091805530
27	7472107417060110507332240	26	3948017932641707720936690
25	-1183114819689014581395928	24	-986382396315394654864380
23	84903557689100150791040	22	162125882332658075427025
21	5768325498946869078060	20	-18019815128911825652753
19	-2102458799063321780820	18	1357068266234696845620
17	242660209864094296000	16	-68122806564932701920
15	-15963607133824209088	14	2207362125783512080
13	646475360583789440	12	-44513987031104320
11	-16025856800748800	10	572680097019648
9	231660957117440	8	-5978597505280
7	-1753489858560	6	53381447680
5	4919732224	4	-193290240

TABLE 4 (Continued)

 C_{76} Cages (p = q = 0)

power	coefficient	power	coefficient
76	1	74	-95824
73	-20569184	72	-1973226882
71	-107132579696	70	-3720660150482
69	-88600191564958	68	-1500222687922303
67	-18232791935708256	66	-154992752724887428
65	-822269597258159184	64	-1241086234598202201
63	19478346481544659704	62	174392250698603476512
61	544130119666926567576	60	-1101305034690718128236
59	-15864258704180824526408	58	-45087030790008543576066
57	81171162320527100034960	56	860291936188666304401727
55	1422339717785582566237880	54	-5556441033893483004811234
53	-25327541840457022514280544	52	-2593592901308437424781937

C_{78} Fullerene with $C_{2\nu}$ Symmetry

power	coefficient	power	coefficient
78	•	1 76	-104115
75	-2325370	74	-2316631213
73	-130345447186	72	-4686485352895
71	-11554021424080	70	-2028181293510050
69	-25645063322388444	4 68	-228814759193612146
67	-1310266443958581028	8 66	-2806375853714534485
65	25132852759289952269	8 64	271871556944577824271
63	104462399085653239895	2 62	-485585105244924973467
61	-22866245806914233235056	5 60	-87268136307227713651455
59	19029360708520647392116	5 58	1188371008899723203353980
57	312896194683531599499549	2 56	-4118559282898822323974096
55	-36560989658558332081661908	3 54	-38114667648274849880321738
53	188279205730606542863679993	2 52	515993184322088594525699618

Second C₇₈ Fullerene with C_{2v} Symmetry

power	coefficient	power	coefficient
78	1	76	-104493
75	-23338056	74	-2319618880
73	-129880586096	72	-4644034709764
71	-114022969342820	70	-2002043796585520
69	-25573911779106260	68	-235952365749791098
67	-1495594222903104348	66	-5346063132746378636
65	3118118329351357340	64	155991590305254006308
63	823296157615930819512	62	1180688942266585248892
61	-8012942092653335866452	60	-45885258145113075223478
59	-53132429778258247742216	58	323544071729741476847345
57	1273658977746131709649212	56	198350208578598668908965

Second C₇₈ Fullerene with $C_{2\nu}$ Symmetry

power	coefficient	power	coefficient
55	-8388660848967800235944600	54	-15054251583855559481619451
53	22602502153691637204656412	52	98877144757657510117926865
51	18476568560121189903436920	50	-337516064314529090833402521
49	-353834586469614206348753764	48	664663390536258908670896703
47	1323872052016327262549960216	46	-612505653565615997121641249

Third C₇₈ Fullerene with D₃ Symmetry

power	coefficient	power	coefficient
78	1	76	-103728
75	-23181300	74	-2317666680
73	-131307632244	72	-4762109965935
71	~118467055603896	70	-2095818764845032
69	-26601901461823356	68	-235703924049692388
67	-1291214613386442744	66	-1735955398478189697
65	37643624328931966788	64	344317182281974465185
63	1132927224116177236836	62	-2410088037612705429888
61	-37772369081522238156276	60	-121637861735527698482111
59	170197232049835794354156	58	2449610300457421418561085
57	5395434557112072122247712	56	-14026943586503968796113284
55	-91879881978168142325959092	54	-73815760242980697677828096
53	617044075431278351124160788	52	1650637814240860519201192692

Fourth C₇₈ Fullerene with D_{3h} Symmetry

power	coefficient	power	coefficient
78	1	76	-103947
75	-23215596	74	-2315179425
73	-130473524196	72	-4691459711505
71	-115235949455556	70	-2001126062343432
69	-24685414076206860	68	-207949419579065430
67	-1000763418213856716		421614054151827886
65	48223653881316513036	64	369486192952204938732
63	1072653590091201963688		-3208667441617409056974
61	-41599049863392106361580		-137723068722507823180132
59	98753802819383318215788		2290192837052816507800581
57	6221215875982736502988200		-6486843716671880165339589
55	-74339808667238267384456136		-114291177610032559078998075
53	307512068978611491257938668		1276080049898105325362471523
51	294915007475633944913086720		
25	-361213580647682420319266304		306279681228140468266558080
23	100613921233303199007952896	22	-6061613385119124174532608
21	-7837290168325700993142784	20	-1056955021509795466887168
19	135778833708251313045504		52174604606118928809984
17	5091045622483814055936	16	94613783611099447296
15	-10255358288367452160	14	-219452920559566848

Fifth C_{78} Cage with D_{3h} Symmetry

power	coefficient	power	coefficient
78	1	76	-105081
75	-23470872	74	-2325062802
73	-129221449560	72	-4574672087040
71	-111091821759672	70	-1930700381008341
69	-24502856858545452	68	-226915785509741535
67	-1485573168255189996	66	-6141372164513101419
65	-8076965351371365408	64	75941992406913406893
63	525227354049261204740	62	1152022706720679857094
61	-2431299028846894009860	60	-20553173447372791767808
59	-33678216580792244672496	58	90104324294192393152134
57	431213922729763301180780	56	217168546163031586666320
55	-2005287509415961912860360	54	-3797977570124734505560483
53	3614005850372368668850596	52	17296789914876505642941843
51	5158987182936540647596908	50	-41262302697695415327393288
49	-42169796951272298684861484	48	51809010389474109816277508
47	100682546893942014846571392	46	-16998998483035273336404660
45	-127853321694932584478600304	44	-44624315193872608893006576
43	86275402348213515335194944	42	69182923569964528466618784
41	-19970393167590607273125312	40	-41124773053628012483667648
39	-9358754914619600666375808	38	8800052497212215586442752
37	5776561662534858563656704	36	665992044461777955333120
35	-503096186177764588210176	34	-230431497061019962908672
33	-42090117128186687078400	32	-3650967717755581956096

C_{80} Fullerene with I_h Symmetry

power	coefficient	power	coefficient
80	1	78	-116200
77	-26980320	76	-2737680000
75	-152568382464	74	-5298478732800
73	-123471911700480	72	-2015374383759360
71	-23573977344409600	70	-199186750406885376
69	-1209532034052915200	68	-5179264730853539840
67	-15084069227908300800	66	-28155157475963699200
65	-30808423486455808000	64	-17661308040118272000
63	-4070184813854720000		

C_{84} Coroninic Cages (p = q = 0)

	= -		•
power	coefficient	power	coefficient
84	1	82	-130146
81	-32647928	80	-3674344167
79	-234967808104	78	-9614504498810
77	-268956917502648	76	-5313969228945946
75	-74347437365999376	74	-705027693014400866
73	-3723035364779879144	72	3823155681062145191
71	249215593699430229992	70	1990869286394699252448
69	497294319065233082120	68	-36371476635700933959528
67	-361742616204394859006992	66	-918063931966817472592092
65	3971832408914675296397968	64	33885527728749448523324919
63	51547924469244388530672744	62	~351113136881127211211310134

C₈₄ Second Cage Count = 105

	5.					
power	coefficient	power	coefficient			
84	1	82	-130926			
81	-32737344	80	-3639688833			
79	-227453772576	78	-9042091564940			
77	-245396790138192	76	-4719926272353807			
75	-65023712923021760	74	-626598149708286114			
73	-3792428426237693664	72	-7123658073789006217			
71	106807707604985423520	70	1133724869278852239672			
69	4431424206068510273712	68	-4672897471204361061285			
67	-132434046384682163636928	66	-536951202252483969143490			
65	106233694378740569586720	64	8828983937717970077197173			
63	28650786588533775567370592	62	-16811641031664141885750540			
61	-340949786711150400023827824	60	-696865785100753139305838525			
59	1076361558525013212371835072	58	6856859871797147508939496770			

 C_{90} Coroninic Cages (p = q = 0)

-,0				
power	coefficient	power	coefficient	
90	1	88	-161165	
87	-45073960	86	-5691034550	
85	-411411236804	84	-19104110553040	
83	-606879344724920	82	-13583004790942515	
81	-213702527318730440	80	-2232344438322111921	
79	-11793100705393673180	78	47940683697500889045	
77	1496499602466142926180	76	12222702612298334170165	
75	26090778069968984133544	74	-374022294088758891253655	
73	-3629354489031556142447040	72	-9059635003810260393359945	
71	59223597674940090738570080	70	505219579515393810281194452	
69	730608439983462859902024680			

TABLE 4 (Continued)

Coo Second Fullerene Cage Count = 6

power	coefficient	power	coefficient
90	1	88	-160799
87	-44866980	86	-5622926975
85	-401200488960	84	-18373677808041
83	-577957322405924	82	-12935857448137095
81	-207763500329766024	80	-2329656907371519613
79	-16165749857353615120	78	-28027127856525715350
77	745804955451718381772	76	8694728708076389990804
75	37153337555639406059040	74	-82757636073256403569053
73	-1836170546635192351812516	72	-7863848985132654932287947
71	9333885184977151794488168	70	222926794215223902398373688

The author¹¹ considered in a previous study the factorization of the C_{60} buckminsterfullerene. This was based on expressing the eigenvalues -5.8284 and -0.17157 exhibiting 4-fold degeneracy as $-(3\pm 8^{1/2})$. The eigenpairs -4.2360 ... and 0.2360... were brought into $-(2\pm 5^{1/2})$. The eigenpairs 1.61803 ... and -0.61803 ... are represented by $(^{1}/_{2}\pm (5/4)^{1/2})$. The eigenpairs -2.618033 ... and -0.381966 ... can be expressed as $-(^{3}/_{2}\pm (5/4)^{1/2})$. The remaining four eigenvalues exhibiting 4-fold degeneracy in Table 3 for the C_{60} buckminsterfullerene were shown to satisfy the following symmetric equations:

$$\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = -77$$

$$\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \lambda_3 \lambda_4 = 563$$

$$\lambda_1 \lambda_2 \lambda_3 + \lambda_1 \lambda_2 \lambda_4 + \lambda_1 \lambda_3 \lambda_4 + \lambda_2 \lambda_3 \lambda_4 = -1022$$

$$\lambda_1 \lambda_2 \lambda_3 \lambda_4 = 436$$

The remaining three eigenvalues (-2.9575 ..., 0.87846 ..., 3.07911 ...) satisfy the three symmetric equations shown below:

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

$$\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3 = -9$$

$$\lambda_1 \lambda_2 \lambda_3 = -8$$

All of these results were combined to factor the distance polynomial of C_{60}^{11} as

$$P_D = (\lambda - 278)(\lambda^2 + 1)^9 (\lambda^2 - 1)^7 \{\lambda^4 + 77\lambda^3 + 563\lambda^2 + 1022\lambda + 436\}^3 \times \{\lambda^3 - \lambda^2 - 9\lambda + 8\}^5$$

The distance polynomial of the C_{80} fullerene with the I_h point group can be factored also. The four nonintegral eigenvalues namely, -112.144797050, -13.418629947, -9.520834410, and -0.915738593 satisfy the following symmetric equations:

$$\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = -136$$

$$\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \lambda_3 \lambda_4 = 2824$$

$$\lambda_1 \lambda_2 \lambda_3 + \lambda_1 \lambda_2 \lambda_4 + \lambda_1 \lambda_3 \lambda_4 + \lambda_2 \lambda_3 \lambda_4 = -16800$$

$$\lambda_1 \lambda_2 \lambda_3 \lambda_4 = 1312$$

From these equations and the integral distance eigenvalues of the C_{80} fullerene, it is immediately seen that the factored form of the distance polynomial of the C_{80} fullerene with the I_h point group is

$$P_D = \lambda^{63} (\lambda + 8)^4 (\lambda - 440) \{\lambda^4 + 136\lambda^3 + 2824\lambda^2 + 16800\lambda + 1312\}^3$$

C₉₀ Third Fullerene Count = 60

power	coefficient	power	coefficient
90	1	88	-161223
87	-44910752	86	-5591146593
85	-393795468080	84	-17725541213447
83	-546404842866612	82	-11958500412750362
81	-187453511420140060	80	-2047147119416998764
79	-13781759661085802740	78	-22312353459297671409
77	611428873175019788836	76	6793233144024500458455
75	26658309656391547630776	74	-79918686536244458646319
73	-1407399793744795429809784	72	-5308227018466643473900465
71	11262243428398314481335428	70	172042650713542848677741525

The prime factors contained in the coefficient of the λ^{63} term of the distance polynomial can thus be inferred from the factored form as

$$-2^{30} \times 5 \times 11 \times 41^3 = -4070184813854720000$$

The number obtained this way agrees with the computed result in Table 4.

As seen from Table 3, the distance spectra satisfy a few general trends. The highest eigenvalue in the distance spectrum of all fullerenes is always singly degenerate. This result appears to be true for all graphs and may thus have nothing to do with fullerenes. The other interesting point is the distance between the highest eigenvalue and the next higher eigenvalue. As seen from Table 3, this distance is large for all fullerenes. This finding again may have nothing to do with fullerenes as this appears to hold for several other structures that we have studied before.31 The largest eigenvalue of the distance spectrum, also known as the principal eigenvalue of the distance spectrum, seems to uniquely characterize all fullerenes, and thus, it appears to be a structural invariant in so far as fullerenes are concerned. For example, let us consider the five structural isomers of the C₇₈ fullerene. The principal eigenvalues for all these fullerenes are different, as seen from Table 3.

The Riemann zeta functions are useful not only in the distribution of prime numbers³³ but also in the characterization of structures. The Riemann zeta functions can be defined for the distance spectra analogous to the definition for the ordinary graph spectra. The ordinary Riemann zeta function for the prime number distribution is defined as

$$\zeta(x) = 1 + 1^{-x} + 2^{-x} + 3^{-x} + \dots$$

That is, the distribution of the primes is well known to be given by the Riemann Zeta function as

$$\zeta(x) = \prod_{n} \left(1 - \frac{1}{n^x}\right)^{-1}$$

where the product is over all primes.

The Riemann zeta function for the distance spectra can be defined, following the definition for the Laplacian spectra, as

$$\zeta(2x) = d_0 + \sum_{\lambda_1 \neq 0}^n \lambda_i^{-x}$$

where x is any complex or real variable and d_0 is the degeneracy of the zeroth eigenvalue. Note that in the above definition we have omitted all zero distance eigenvalues since inclusion of the zero eigenvalues would lead to infinity or indetermination for certain values of x. Alternatively, one could redefine the distance spectra such that the lowest eigenvalue becomes zero. This is tantamount to adding the absolute value of the lowest eigenvalue to the entire distance spectrum in which case the

TABLE 5: Riemann Zeta Function Values for the Distance Spectra of Fullerenes

fullerene	$\sum_{i}\lambda_{i}^{2}$	$\sum_{i}\lambda_{i}^{3}$	$\sum_{i}\lambda_{i}^{4}$	$\sum_i \lambda_i^5$
C ₂₀	3080	117240	6356000	311047680
C_{24}	5472	283752	20480376	1345988640
C_{26}	6990	414144	33753222	2517062880
C_{28}	8796	587544	53649228	4497451920
C_{30}	11090	830100	85199690	8007984800
C_{32}	13616	1131240	128767232	13414740960
C_{36}	19608	1955904	266548032	33363866880
C_{38}	23582	2596776	389929958	53520529560
$C_{40}(1)$	27096	3202464	512880864	75681957120
$C_{40}(2)$	26860	3181920	507162620	74672509360
C_{42}	31308	3998952	688188948	109360483800
$C_{44}(1)$	36140	4970532	919067396	157034366040
$C_{44}(2)$	36428	5013000	930596372	159458622000
C_{46}	41574	6134580	1216208406	222918895170
C_{48}	47184	7449516	1572754320	307583136300
C_{50}	53250	8943480	2006265130	417011972980
C_{52}	60660	10837152	2595582684	575130823440
C_{60}	92040	20495160	6041067360	1655730210000
C_{70}	148890	42189720	15825734890	5517026848140
C_{76}	191648	61707552	26257385480	10390770336560
$C_{78}(1)$	208230	69761100	30946391302	12757022113400
$C_{78}(2)$	208986	70014168	31116049618	12842720358520
$C_{78}(3)$	207456	69543900	30789662688	12679287593220
$C_{78}(4)$	207894	69646788	30870675318	12718325408040
$C_{78}(5)$	210162	70412616	31384284330	12977820750960
C_{80}	232400	80940960	37955600000	16438407832320
$C_{84}(1)$	260292	97943784	48573339300	22419825227960
$C_{84}(2)$	261852	98212032	48841990284	22568116365600
$C_{90}(1)$	322330	135221880	74712452650	38378780001020
$C_{90}(2)$	321598	134600940	74204344702	38078830029900
$C_{90}(3)$	322446	134732256	74350297830	38172208188880

definition below holds for such a modified distance spectrum:

$$\zeta(2x) = d_0 + \sum_{i=2}^n \lambda_i^{-x}$$

where it is assumed that the distance spectrum takes the form

$$0 = \lambda_1(d_0) < \lambda_2 \le \lambda_3 \le \dots \lambda_{n-1} \le \lambda_n$$

and d_0 is the degeneracy of the zero eigenvalue in the transformed distance spectrum.

The Riemann zeta functions for the distance spectra of fullerenes are likely to be important structural invariants. We shall now explore particular values of the Riemann zeta functions for the distance spectra of fullerenes. It can be seen that the Riemann zeta functions for all fullerenes with x = 0, -1, -2, -3, ..., -5 are given by

$$\zeta(0) = 1$$

$$\zeta(-2) = d_0 + \sum_{\lambda_i \neq 0} \lambda_i = d_0$$

$$\zeta(-4) = d_0 + \sum_{\lambda_i \neq 0} \lambda_i^2$$

$$\zeta(-6) = d_0 + \sum_{\lambda_i \neq 0} \lambda_i^3$$

$$\zeta(-8) = d_0 + \sum_{\lambda_i \neq 0} \lambda_i^4$$

$$\zeta(-10) = d_0 + \sum_{\lambda_i \neq 0} \lambda_i^5$$

It thus seems that the sums of the positive powers of the distance spectra could be useful structural invariants. Table 5 shows our computed results up to the sum of fifth powers of the distance spectra of all fullerenes. As seen from Table 5, the sums of powers of all distance eigenvalues are integers. All of these characterize fullerenes uniquely. For example, the sums of the squares of the distance spectra are all different for five isomers of C_{78} , as well as isomers of C_{84} , and C_{90} . It thus seems that the sums of the powers of the distance spectra could be useful structural invariants.

In conclusion, it should be stated that the distance spectra and the distance polynomials depend on the structures of fullerenes. Since they depend on the distance level patterns of fullerenes, the coefficients of the distance polynomial are considerably more complex than the coefficients of the ordinary characteristic polynomials. Evidently, the coefficients contain structural information and thus simple analytical expressions may not exist for the coefficients of the distance polynomials. This is easily illustrated in Table 4 for the structural isomers of fullerenes. For example, with the exception of the leading coefficient of unity, all coefficients in the distance polynomials of the isomers of C_{40} are quite different. The same comment applies to the isomers of C_{44} , C_{78} , C_{84} , and C_{90} . Consequently, the coefficient of λ^{n-2} in the distance polynomial can be used as a structural invariant, where n is the number of vertices.

Acknowledgment. This research was supported in part by the National Science Foundation under Grant CHE9417459.

References and Notes

- (1) Klein, D. J.; Schmalz, R. G.; Hite, T. G.; Seitz, W. A. J. Am. Chem. Soc. 1986, 108, 1099, 1301. Klein, D. J.; Seitz, W. A.; Schmalz, T. G. Nature 1986, 323, 703.
- (2) Colpa, J. P.; Temme, F. P. Chem. Phys. 1990, 154, 97; Z. Phys. D 1991, 23, 187. Temme, F. P.; Mitchell, C. J.; Krishnan, M. Mol. Phys., in press. Temme, F. P. Chem. Phys. Lett. 1992, 200, 534.
- (3) Liu, X. Y.; Schmaltz, T. G.; Klein, D. J. Chem. Phys. Lett. 1992, 188, 550. Fowler, P. W.; Balten, R. C.; Manopoulos, D. E. J. Chem. Soc., Faraday Trans. 1991, 87, 3103. Manopoulos, D. E.; Woodall, D. R.; Fowler, P. W. J. Chem. Soc., Faraday Trans. 1992, 88, 2427.
 - (4) Ori, O.; D'Mello, M. Chem. Phys. Lett. 1992, 197, 49.
- (5) Dias, J. R. Molecular Orbitals Using Chemical Graph Theory; Springer-Verlag: Berlin, 1993; p 113. Dias, J. R. Chem. Phys. Lett. 1991, 185, 10; J. Chem. Educ. 1989, 66, 1012.
- (6) Balasubramanian, K. Chem. Phys. Lett. 1993, 210, 153; Polycyclic Aromat. Compd. 1993, 3, 247; Chem. Phys. Lett. 1992, 198, 577; Chem. Phys. Lett. 1991, 183, 292.
 - (7) Zhang, H. X.; Balasubramanian, K. J. Phys. Chem. 1993, 97, 10341.
 - (8) Balasubramanian, K.; Liu, X. J. Comput. Chem. 1988, 9, 406.
 - (9) Balasubramanian, K. Chem. Phys. Lett. 1990, 175, 273
- (10) Trinajstić, N.; Babić, D.; Nikolić, S.; Plavšić, D.; Amić, D.; Mihalić, Z. J. Chem. Inf. Comput. Sci. 1994, 34, 368.
 - (11) Balasubramanian, K. Chem. Phys. Lett., in press.
 - (12) Balasubramanian, K. Chem. Phys. Lett. 1994, 224, 325.
 - (13) Randic, M. J. Am. Chem. Soc. 1971, 97, 6609
- (14) Kroto, H. W. Comput. Math. Appl. 1989, 17, 417. Kroto, H. W.; Allaf, A. W.; Balm, S. P. Chem. Rev. 1991, 91, 1213.
 - (15) Duncan, M. A.; Rouvray, D. H. Sci. Am. 1990, 260, 110.
- (16) Chibante, L. P. F.; Smalley, R. E. Complete Buckminsterfullerene Bibliography; VCH Publishers: New York, 1992.
- (17) Kroto, H.; Heath, W. J. R.; O'Brian, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
- (18) Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byrne, N. E.; Flangan; Haley, M. M.; O'Brian, S. C.; Pan, C.; Billups, W. E.; Ciufolini, M. A.; Hauge, R. H.; Margrave, J. L.; Wilson, L. J.; Curl, R. F.; Smalley, R. E. J. Phys. Chem. 1990, 94, 8634.
- (19) Krätschmer, W.; Fositropoulos, K.; Huffman, D. R. Chem. Phys. Lett. 1990, 170, 167. Krätschmer, W.; Lamb, L. D.; Fositropoulos, K.; Huffman, D. R. Nature 1990, 347, 354. Frum, C. I.; Ergleman, R., Jr.; Hedderich, H. G.; Bernath, P. F.; Lamb, L. D.; Huffman, D. R. Chem. Phys. Lett. 1991, 176, 504.
- (20) Terazima, M.; Hirota, N.; Shinohara, H.; Saito, Y. Chem. Phys. Lett. 1992, 195, 333.
- (21) Bethune, D. S.; Meijer, G.; Tang, W. C.; Rosen, H. J. Chem. Phys. Lett. 1990, 174, 219.
- (22) Diederich, F.; Whetten, R. L.; Thilgen, C.; Ettl, R.; Chao, I.; Alvarez, M. M. Science 1991, 254, 1768.
 - (23) Saito, S.; Sawada, S.; Hamada, N. Phys. Rev. B 1992, 45, 845.
 - (24) Fowler, P. W. J. Chem. Soc., Faraday Trans. 1991, 87, 1965.
 - (25) Saito, S.; Sawada, S. Chem. Phys. Lett. 1992, 198, 466.

- (26) Schmalz, T. G.; Klein, D. J.; Liu, X. Mater. Res. Soc. Symp. Proc. **1992**, 270, 129.
- (27) Ettl, R.; Chao, I.; Diederich, F.; Whetten, R. L. Nature 1991, 353,
- (28) Hoinkis, M.; Yannoni, C. S.; Bethune, D. S.; Salem, J. R.; Johsnon,
 R. D.; Crowder, M. S.; de Vries, M. S. Chem. Phys. Lett. 1992, 198, 461.
 (29) Yabana, K.; Bertsch, G. F. Chem. Phys. Lett. 1992, 197, 32.
- (30) Hino, S.; Matsumoto, K., Hasegawa, S.; Inokuchi, H.; Morikawa,
- T.; Takahashi, T.; Seki, K.; Kikuchi, K.; Suzuki, S.; Ikemoto, I.; Achiba, Y. Chem. Phys. Lett. 1992, 197, 38.
 - (31) Balasubramanian, K. J. Comput. Chem. 1990, 11, 829.

- (32) Rouvray, D. H. Mathematical and Computational Concepts in Chemistry; Trinajstic, N., Ed.; Ellis-Horwood: Chichester, 1986; pp 295-
- (33) Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work; Chelsea Publishers: New York, 1959.
- (34) Balasubramanian, K. J. Comput. Chem. 1984, 3, 357; 1988, 6, 656; 1990, 11, 829.
 - (35) Balasubramanin, K. Chem. Rev. 1985, 85, 599.

JP9510103