10

5

10

5

WHAT IS CLAIMED IS:

1.	A	satellit	e	broado	cast	rece	iving	device	e, co	\mathbf{mp}	risin	g:
	_	_	_	_	-				~		-	•

- a chassis made of metal having opposing first and second planes;
- a first printed circuit board attached to said first plane;
- a first local oscillation circuit provided on said first printed circuit

5 board;

a second printed circuit board attached to said second plane; and a second local oscillation circuit provided on said second printed circuit board,

said second local oscillation circuit being shielded by said metal chassis to be separated from said first local oscillation circuit.

2. The satellite broadcast receiving device according to claim 1, wherein

said second local oscillation circuit is supplied with a power-supply potential from said first printed circuit board,

said chassis is provided with a first hole penetrating from said first plane to said second plane,

said first board is provided with a second hole,

said second board is provided with a third hole in a peripheral region, along a furthest one of sides of said second board with respect to said second local oscillation circuit, and

said satellite broadcast receiving device further comprises a contact pin penetrating through said first, second and third holes to supply said power-supply potential from said first printed circuit board to said second local oscillation circuit.

3. The satellite broadcast receiving device according to claim 2, wherein

said contact pin includes

a shaft portion having a diameter smaller than a diameter of said second hole and a diameter of said third hole, and

5

10

a head portion formed on one end of said shaft portion and having a diameter larger than the diameter of said second hole and the diameter of said third hole.

4. The satellite broadcast receiving device according to claim 2, further comprising:

a power-supply circuit provided on said first printed circuit board to generate said power-supply potential;

a first power-supply line provided on said first printed circuit board to supply said power-supply potential from said power-supply circuit to said first local oscillation circuit and to said contact pin;

a first trap portion provided on said first power-supply line to be adjacent to said contact pin, to eliminate a noise signal;

a second power-supply line provided on said second printed circuit board to supply said power-supply potential from said contact pin to said second local oscillation circuit; and

a second trap portion provided on said second power-supply line to be adjacent to said contact pin, to eliminate a noise signal.

5. The satellite broadcast receiving device according to claim 4, wherein

said first trap portion includes an L-shaped first printed wiring pattern having one end connected to said first power-supply line, and

said second trap portion includes an L-shaped second printed wiring pattern having one end connected to said second power-supply line.

6. The satellite broadcast receiving device according to claim 2, further comprising:

a power-supply circuit provided on said first printed circuit board to generate said power-supply potential;

a first power-supply line provided on said first printed circuit board to supply said power-supply potential from said power-supply circuit to said first local oscillation circuit and to said contact pin;

- 11 -

5

5

5

10

10

15

a first low pass filter provided on said first power-supply line to be adjacent to said contact pin, to block passage of a signal of which frequency is no less than 1 GHz;

a second power-supply line provided on said second printed circuit board to supply said power-supply potential from said contact pin to said second local oscillation circuit; and

a second low pass filter provided on said second power-supply line to be adjacent to said contact pin, to block passage of a signal of which frequency is no less than 1 GHz.

7. The satellite broadcast receiving device according to claim 6, wherein

said first low pass filter includes

a first inductance having one end connected to said first powersupply line and the other end connected to said contact pin, and

a first capacitor connected between said one end of said first inductance and a ground node; and

said second low pass filter includes

a second inductance having one end connected to said second power-supply line and the other end connected to said contact pin, and

a second capacitor connected between said one end of said second inductance and the ground node.

MA (15)