msk_top_regs address map

Absolute Address: 0x0Base Offset: 0x0Size: 0x98

MSK Modem Configuration and Status Registers

Offset	Identifier	Name
0x00	Hash ID Low	Pluto MSK FPGA Hash ID - Lower 32-bits
0x04	Hash_ID_High	Pluto MSK FPGA Hash ID - Upper 32-bits
0x08	MSK Init	MSK Modem Initialization Control
0x0C	MSK Control	MSK Modem Control
0x10	MSK Status	MSK Modem Status 0
0x14	Tx Bit Count	MSK Modem Status 1
0x18	Tx_Enable_Count	MSK Modem Status 2
0x1C	Fb FreqWord	Bitrate NCO Frequency Control Word
0x20	TX_F1_FreqWord	Tx F1 NCO Frequency Control Word
0x24	TX_F2_FreqWord	Tx F2 NCO Frequency Control Word
0x28	RX_F1_FreqWord	Rx F1 NCO Frequency Control Word
0x2C	RX_F2_FreqWord	Rx F2 NCO Frequency Control Word
0x30	LPF_Config_0	PI Controller Configuration and Low-pass Filter
	-	Configuration
0x34	LPF_Config_1	PI Controller Configuration Configuration
		Register 1
0x38	Tx_Data_Width	Modem Tx Input Data Width
0x3C	Rx_Data_Width	Modem Rx Output Data Width
0x40	PRBS_Control	PRBS Control 0
0x44	$PRBS_Initial_State$	PRBS Control 1
0x48	PRBS_Polynomial	PRBS Control 2
0x4C	PRBS_Error_Mask	PRBS Control 3
0x50	PRBS_Bit_Count	PRBS Status 0
0x54	PRBS_Error_Count	PRBS Status 1
0x58	LPF_Accum_F1	F1 PI Controller Accumulator
0x5C	LPF_Accum_F2	F2 PI Controller Accumulator
0x60	$axis_xfer_count$	MSK Modem Status 3
0x64	$Rx_Sample_Discard$	Rx Sample Discard
0x68	LPF_Config_2	PI Controller Configuration Configuration
		Register 2
0x6C	f1_nco_adjust	F1 NCO Frequency Adjust
0x70	f2_nco_adjust	F2 NCO Frequency Adjust
0x74	f1_error	F1 Error Value
0x78	f2_error	F2 Error Value
0x7C	Tx_Sync_Ctrl	Transmitter Sync Control
0x80	Tx_Sync_Cnt	Transmitter Sync Duration
0x84	lowpass_ema_alpha1	Exponential Moving Average Alpha

Offset	Identifier	Name
0x88	lowpass_ema_alpha	2 Exponential Moving Average Alpha
0x8C	rx_power	Receive Power
0x90	tx_async_fifo_rd_v	$\operatorname{vr}\underline{T}_{\mathbf{x}}$ ptasync FIFO read and write pointers
0x94	rx_async_fifo_rd_v	vi <u>R</u> ptasync FIFO read and write pointers

$Hash_ID_Low\ register$

Absolute Address: 0x0Base Offset: 0x0

• Size: 0x4

	Ē	Bits	Id	entif	ier	Access	Reset	Name	
31:0	hash	_id_	_lo	r	0xA	AAA5555	5 Hash	ID Lowe	er 32-bits

hash_id_lo field Lower 32-bits of Pluto MSK FPGA Hash ID

$Hash_ID_High\ register$

• Absolute Address: 0x4

• Base Offset: 0x4

• Size: 0x4

	Ē	$_{ m Bits}$	Id	entii	fier	Access	Reset	Name	
31:0	hash	_id_	_hi	\mathbf{r}	$0x^{5}$	555AAAA	Hash	ID Upp	er 32-bits

hash_id_hi field Upper 32-bits of Pluto MSK FPGA Hash ID

MSK_Init register

• Absolute Address: 0x8

• Base Offset: 0x8

• Size: 0x4

Synchronous initialization of MSK Modem functions, does not affect configuration registers.

Bits	Ident	ifier	Acces	ss R	eset	Name
0 tx 1 tx 2 rx	init	rw rw rw	0x1	Tx/R Tx In Rx In	it Ena	

 ${f txrxinit}$ field 0 -> Normal modem operation 1 -> Initialize Tx and Rx

txinit field $0 \rightarrow Normal Tx operation <math>1 \rightarrow Initialize Tx$

rxinit field $0 \rightarrow \text{Normal Rx operation } 1 \rightarrow \text{Initialize Rx}$

$MSK_Control$ register

• Absolute Address: 0xC

• Base Offset: 0xC

• Size: 0x4

MSK Modem Configuration and Control

Bits	Identifier	Acce	ess Re	eset Name
0	ptt	rw	0x0	Push-to-Talk Enable
1	loopback_ena	rw	0x0	Modem Digital Tx -> Rx Loopback
				Enable
2	rx_invert	rw	0x0	Rx Data Invert Enable
3	$clear_counts$	rw	0x0	Clear Status Counters
4	diff_encoder_loop	obanok	0x0	Differential Encoder -> Decoder
				Loopback Enable

ptt field $0 \rightarrow PTT$ Disabled $1 \rightarrow PTT$ Enabled

 $\begin{array}{ll} \textbf{loopback_ena field} & 0 -> \text{Modem loopback disabled 1 -> Modem loopback enabled} \end{array}$

 \mathbf{rx} _invert field 0 -> \mathbf{Rx} data normal 1 -> \mathbf{Rx} data inverted

clear_counts field Clear Tx Bit Counter and Tx Enable Counter

 $\label{lem:coder_loopback} \begin{array}{ll} \textbf{diff_encoder_loopback field} & 0 -> \text{Differential Encoder} -> \text{Decoder loopback} \\ \text{disabled 1 -> Differential Encoder} -> \text{Decoder loopback enabled} \end{array}$

MSK_Status register

• Absolute Address: 0x10

• Base Offset: 0x10

• Size: 0x4

Modem status bits

Bits	Identifier	Access	Rese	t Name
0	demod_sync_	_loak	0x0	Demodulator Sync Status
1	tx_enable	r	0x0	AD9363 DAC Interface Tx Enable Input
				Active
2	rx_enable	r	0x0	AD9363 ADC Interface Rx Enable Input
				Active
3	tx_axis_valid	d r	0x0	Tx S_AXIS_VALID

 ${\bf demod_sync_lock\ field} \quad {\bf Demodulator\ Sync\ Status\ -\ not\ currently\ implemented}$

tx_enable field 1-> Data to DAC Enabled 0-> Data to DAC Disabled

rx_enable field 1 -> Data from ADC Enabled 0 -> Data from ADC Disabled

 ${\bf tx_axis_valid}$ field ~1 -> S_AXIS_VALID Enabled 0 -> S_AXIS_VALID Disabled

Tx_Bit_Count register

Absolute Address: 0x14Base Offset: 0x14

• Size: 0x4

Modem status data

	Bits	Identifier	Access	Reset	Name
31:0	tx_1	bit_counter	r, ruser	_	Tx Bit Count

tx_bit_counter field Count of data requests made by modem

$Tx_Enable_Count\ register$

Absolute Address: 0x18Base Offset: 0x18

• Size: 0x4

Modem status data

	Bits	Identifier	Access	Rese	et Name	
31:0	tx_ena	_counter	r, ruser	0x0	Tx Enabl	le Count

tx_ena_counter field Number of clocks on which Tx Enable is active

Fb_FreqWord register

- Absolute Address: 0x1C

• Base Offset: 0x1C

• Size: 0x4

Set Modem Data Rate

	Bits	Identi	fier	Access	Reset	Name	
31:0	$config_{_}$	_data	rw	0x0	Frequency	Control	Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$TX_F1_FreqWord\ register$

• Base Offset: 0x20

• Size: 0x4

Set Modulator F1 Frequency

	Bits	Identi	fier	Access	s Reset	Name	
31:0	$config_{_}$	_data	rw	0x0	Frequency	Control	Word

config_data field Sets the center frequency of the NCO as FW = Fn * 2^32/Fs, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$TX_F2_FreqWord$ register

• Absolute Address: 0x24

• Base Offset: 0x24

• Size: 0x4

Set Modulator F2 Frequency

	Bits	Identi	fier	Access	Reset	Name	
31:0	$config_{_}$	_data	rw	0x0	Frequency	Control	Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$RX_F1_FreqWord\ register$

Absolute Address: 0x28Base Offset: 0x28

• Size: 0x4

Set Demodulator F1 Frequency

	Bits	Identi	fier	Access	s Reset	Name	
31:0	$config_{_}$	_data	rw	0x0	Frequency	Control	Word

config_data field Sets the center frequency of the NCO as FW = Fn * 2^32/Fs, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

$RX_F2_FreqWord$ register

Absolute Address: 0x2CBase Offset: 0x2C

• Size: 0x4

Set Demodulator F2 Frequency

	Bits	Identi	fier	Access	Reset	Name	
31:0	$\overline{\mathrm{config}}$	_data	rw	0x0	Frequency	Control	Word

config_data field Sets the center frequency of the NCO as $FW = Fn * 2^32/Fs$, where Fn is the desired NCO frequency, and Fs is the NCO sample rate

LPF_Config_0 register

• Base Offset: 0x30

• Size: 0x4

Configure PI controller and low-pass filter

	Bits	Ident	ifier	Access	Reset	Name	
0	lpf_freeze	rw	0x0	Freeze	the accur	mulator's	current value
1	lpf_zero	rw	0x0	Hold th	ne PI Aco	cumulato	r at zero
7:2	$prbs_reserved$	rw	0x0	Reserve	$_{\mathrm{ed}}$		
31:8	lpf_alpha	rw	0x0	Lowpas	ss IIR filt	er alpha	

 $lpf_freeze field 0 -> Normal operation 1 -> Freeze current value$

 $lpf_zero\ field\ 0 \rightarrow Normal\ operation\ 1 \rightarrow Zero\ and\ hold\ accumulator$

lpf_alpha field Value controls the filter rolloff

LPF_Config_1 register

Absolute Address: 0x34Base Offset: 0x34

• Size: 0x4

Configures PI Controller I-gain and divisor

В	its	Iden	tifier	Acce	ess	Reset	Name
						0	ain Value ain Bit Shift

i_gain field Value m of 0-16,777,215 sets the integral multiplier

i_shift field Value n of 0-32 sets the integral divisor as 2^-n

$Tx_Data_Width register$

• Absolute Address: 0x38

• Base Offset: 0x38

• Size: 0x4

Set the parallel data width of the parallel-to-serial converter

		Bits	Identif	ier	Access	Reset	Name	
7:0	$\mathrm{data}_{_}$	_width	rw	0x8	Modem	input/	output	data width

data_width field Set the data width of the modem input/output

$Rx_Data_Width register$

• Absolute Address: 0x3C

• Base Offset: 0x3C

• Size: 0x4

Set the parallel data width of the serial-to-parallel converter

		Bits	Identif	ier	Access	Reset	Name		
7:0	$\mathrm{data}_{_}$	_width	rw	0x8	Modem	input/	output/	data	width

data_width field Set the data width of the modem input/output

PRBS_Control register

Absolute Address: 0x40Base Offset: 0x40

• Size: 0x4

Configures operation of the PRBS Generator and Monitor

	Bits Identifier	Ac	cess	Reset	Name
0	prbs_sel	rw	0x0	PRBS	Data Select
1	$prbs_error_insert$	\mathbf{w}	0x0	PRBS	Error Insert
2	$prbs_clear$	\mathbf{w}	0x0	PRBS	Clear Counters
3	prbs_manual_sync	\mathbf{W}	0x0	PRBS	Manual Sync
15:4	$prbs_reserved$	rw	0x0	Reserv	red
31:16	$prbs_sync_threshold$	rw	0x0	PRBS	Auto Sync Threshold

 ${\bf prbs_sel\ field}\quad 0 -> {\rm Select\ Normal\ Tx\ Data\ 1} -> {\rm Select\ PRBS\ Tx\ Data}$

prbs_error_insert field $0 \rightarrow 1$: Insert bit error in Tx data (both Normal and PRBS) $1 \rightarrow 0$: Insert bit error in Tx data (both Normal and PRBS)

prbs_clear field $0 \rightarrow 1$: Clear PRBS Counters $1 \rightarrow 0$: Clear PRBS Counters

prbs_manual_sync field $0 \rightarrow 1$: Synchronize PRBS monitor $1 \rightarrow 0$: Synchronize PRBS monitor

 ${\bf prbs_sync_threshold}$ field ~0: Auto Sync Disabled N >0: Auto sync after N errors

${\bf PRBS_Initial_State\ register}$

Absolute Address: 0x44Base Offset: 0x44

• Size: 0x4

PRBS Initial State

Bits	Identifier	Access	Re	eset	Name
31:0	config_data	rw	0x0	PR	BS Seed

config_data field Sets the starting value of the PRBS generator

PRBS_Polynomial register

Base Offset: 0x48Size: 0x4

DDC D 1

PRBS Polynomial

	Bits	Ide	entifier	Ac	cess	Reset	Name
31:0	con	nfig_	_data	rw	0x0	PRBS	Polynomial

config_data field Bit positions set to '1' indicate polynomial feedback positions

PRBS_Error_Mask register

• Absolute Address: 0x4C

• Base Offset: 0x4C

• Size: 0x4

PRBS Error Mask

	Bits	Id	entifier	Ac	cess	Reset	Name
31:0	con	fig_	_data	rw	0x0	PRBS	Error Mask

config_data field Bit positions set to '1' indicate bits that are inverted when a bit error is inserted

${\bf PRBS_Bit_Count\ register}$

• Absolute Address: 0x50

• Base Offset: 0x50

• Size: 0x4

PRBS Bits Received

	Bits	Id	entifier		Access	Res	set	Name	
31:0	stat	us_	_data	r	0x0	PRB	S Bit	s Received	l

status_data field Number of bits received by the PRBS monitor since last BER can be calculated as the ratio of received bits to errored-bits

PRBS_Error_Count register

• Base Offset: 0x54

• Size: 0x4

PRBS Bit Errors

В	its	Ider	ntifier	Ac	cess	Reset	Name
31:0	st	$atus_{_}$	_data	r	0x0	PRBS	Bit Errors

status_data field Number of errored-bits received by the PRBS monitor since last sync BER can be calculated as the ratio of received bits to errored-bits

LPF_Accum_F1 register

• Absolute Address: 0x58

• Base Offset: 0x58

• Size: 0x4

Value of the F1 PI Controller Accumulator

	Bits	Ident	ifier	Access	Reset	Name	
31:0	status_da	ata r	0x0	PI Co	ontroller	Accumul	lator Value

status_data field PI Controller Accumulator Value

LPF_Accum_F2 register

• Absolute Address: 0x5C

• Base Offset: 0x5C

• Size: 0x4

Value of the F2 PI Controller Accumulator

	Bits	Ident	ifier	Access	Reset	Name	
31:0	status_d	ata r	0x0	PI Co	ontroller	Accumulate	or Value

status_data field PI Controller Accumulator Value

axis_xfer_count register

• Base Offset: 0x60

• Size: 0x4

Modem status data

	Bit	Bits Identifier		A	Access	Reset		Name	
31:	0	xfe		_count	r	0x0	S_{-}	_AXIS	Transfers

xfer_count field Number completed S_AXIS transfers

Rx_Sample_Discard register

• Absolute Address: 0x64

• Base Offset: 0x64

• Size: 0x4

Configure samples discard operation for demodulator

Bits Identifi	ier	Access	Reset	Name
rx_sample_discard rx_nco_discard				

rx_sample_discard field Number of Rx samples to discard

rx_nco_discard field Number of NCO samples to discard

LPF_Config_2 register

• Absolute Address: 0x68

• Base Offset: 0x68

• Size: 0x4

Configures PI Controller I-gain and divisor

	Bits	Ide	entifie	r A	ccess	Reset	Name	- e
23:0	p_ga	in	rw	0x0	Prop	ortional	Gain V	- Value
31:24	p_sh	ift	rw	0x0	Prop	ortional	Gain I	3it Shift

p_gain field Value m of 0-16,777,215 sets the proportional multiplier

p_shift field Value n of 0-32 sets the proportional divisor as 2^-n

f1_nco_adjust register

Absolute Address: 0x6CBase Offset: 0x6C

• Size: 0x4

Frequency offet applied to the F1 NCO

	Bits	Identifier	Acc	cess	Reset	Name	
31:0	data	r, ruser	0x0	F1	NCO Fre	equency	Adjust

data field Frequency offet applied to the F1 NCO

$f2_nco_adjust\ register$

• Absolute Address: 0x70

• Base Offset: 0x70

• Size: 0x4

Frequency offet applied to the F2 NCO

	Bits	Identifier	Acc	ess	Reset	Name	
31:0	data	r, ruser	0x0	F2 N	CO Free	quency	Adjust

data field Frequency offet applied to the F2 NCO

f1_error register

• Absolute Address: 0x74

• Base Offset: 0x74

• Size: 0x4

Error value of the F1 Costas loop after each active bit period

Bits	Iden	tifier	Ac	cess	Reset	Name
31:0	data	r, ru	ser	0x0	F1 Err	or Value

$f2_error\ register$

• Absolute Address: 0x78

• Base Offset: 0x78

• Size: 0x4

Error value of the F2 Costas loop after each active bit period

Bits	Iden	tifier	Ac	cess	Reset	Name
31:0	data	r, ru	ser	0x0	F2 Err	or Value

Tx_Sync_Ctrl register

Absolute Address: 0x7CBase Offset: 0x7C

• Size: 0x4

Provides control bits for generation of transmitter synchronization patterns

	Bits Identifie	r A	ccess	Reset	Name
0	tx_sync_ena	rw	0x0	Tx Syn	c Enable
1	tx_sync_force	rw	0x0	Tx Syn	c Force
2	tx_sync_f1	rw	0x0	Tx F1 S	Sync Enable
3	tx_sync_f2	rw	0x0	Tx F2 S	Sync Enable

 $\mathbf{tx_sync_ena}$ field 0 -> Disable sync transmission 1 -> Enable sync transmission when PTT is asserted

tx_sync_force field 0 : Normal operation) 1 : Transmit synchronization pattern)

 tx_sync_f1 field Enables/Disables transmission of F1 tone for receiver synchronization 0: F1 tone transmission disabled 1: F1 tone transmission enabled Both F1 and F2 can be enabled at the same time

 tx_sync_f2 field Enables/Disables transmission of F2 tone for receiver synchronization 0: F2 tone transmission disabled 1: F2 tone transmission enabled Both F1 and F2 can be enabled at the same time

Tx_Sync_Cnt register

• Absolute Address: 0x80

• Base Offset: 0x80

• Size: 0x4

Sets the duration of the synchronization tones when enabled

	Bits	Identifier	Acc	ess	Reset	Name
23:0	tx_	_sync_cnt	rw	0x0	Tx sy	nc duration

tx_sync_cnt field Value from 0x00_0000 to 0xFF_FFFF. This value represents the number bit-times the synchronization signal should be sent after PTT is asserted.

lowpass_ema_alpha1 register

• Absolute Address: 0x84

• Base Offset: 0x84

• Size: 0x4

Sets the alpha for the EMA

Bits	Bits Identifier		cess	Reset	Name
17:0	alpha	rw	0x0	EMA a	alpha

alpha field Value from 0x0_0000 to 0x3_FFFF represent the EMA alpha

$lowpass_ema_alpha2$ register

• Absolute Address: 0x88

• Base Offset: 0x88

• Size: 0x4

Sets the alpha for the EMA

Bits	S	Identifier	Access		Reset	Name
17:0		alpha	rw	0x0	EMA a	alpha

$rx_power register$

• Absolute Address: 0x8C

• Base Offset: 0x8C

• Size: 0x4

Receive power computed from I/Q samples

Bits	Identifier	Access		Reset	Name
22:0	rx_power	r	0x0	Receiv	e Power

rx_power field Value that represent the RMS power of the incoming I;

$tx_async_fifo_rd_wr_ptr\ register$

• Absolute Address: 0x90

• Base Offset: 0x90

• Size: 0x4

Bits	Identifier		Access	Reset	Name
	31:0	data	r, ruser	0x0	_

data field Bits 31:16 -> write pointer (12-bits) Bits 15:00 -> read pointer (12-bits)

$rx_async_fifo_rd_wr_ptr\ register$

• Absolute Address: 0x94

• Base Offset: 0x94

• Size: 0x4

Bits	Identifier	Access	Reset	Name
31:0	data	r, ruser	0x0	_

data field Bits 31:16 -> write pointer (12-bits) Bits 15:00 -> read pointer (12-bits)