Семинар 29

Общая информация

• Оператор $\varphi \colon V \to V$ называется нильпотентным, если для некоторого n выполнено $\varphi^n = 0$.

Задачи:

- 1. Пусть $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ задан матрицей $A \in \mathrm{M}_2(\mathbb{R})$. Для каждый из матриц A ниже определить, является ли φ самосопряженным оператором для какого-нибудь скалярного произведения на \mathbb{R}^2 и если является, то найти матрицу этого скалярного произведения.
 - (a) $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - (b) $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$.
 - (c) $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- 2. Определите при каких параметрах t оператор $\varphi_t \colon \mathbb{R}^2 \to \mathbb{R}^2$ является самосопряженным для какогонибудь скалярного произведения, где φ_t задан матрицей $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + t \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$.
- 3. Пусть $\beta, \alpha \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ две билинейные формы заданные по формулам

$$\beta(x,y) = x^t \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix} y$$
 \mathbf{x} $\alpha(x,y) = x^t \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} y$, $x,y \in \mathbb{R}^2$

Для каждого числа $c \in \mathbb{R}$ определить сигнатуру формы $\beta + c\alpha$.

4. Пусть заданы две матрицы

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 и $B = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$

Пусть операторы $\phi, \psi \colon \mathbb{R}^4 \to \mathbb{R}^4$ заданы матрицами

$$\phi = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \text{ и } \psi = \begin{pmatrix} A & 0 \\ 0 & B^t \end{pmatrix}$$

Сравните количество инвариантных подпространств для ϕ и ψ .

5. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ докажите, что существует базис, в котором A имеет следующий блочно верхне треугольный вид

$$A = egin{pmatrix} A_1 & * & \dots & * \\ 0 & A_2 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_k \end{pmatrix},$$
 где либо $A_i \in \mathbb{R}$, либо $A_i = egin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathrm{M}_2(\mathbb{R})$

- 6. Приведите пример операторов $\phi, \psi \colon V \to V$ в некотором вещественном векторном пространстве V таких, чтобы $\phi \psi$ диагонализировался, а $\psi \phi$ нет.
- 7. Пусть $\phi, \psi \colon V \to V$ некоторые линейные операторы, причем один из них обратим. Покажите, что $\phi \psi$ диагонализируется тогда и только тогда, когда диагонализируется $\psi \phi$.
- 8. Покажите, что оператор $\phi\colon V\to V$ является нильпотентным тогда и только тогда, когда все его собственные значения равны нулю.
- 9. Пусть $\varphi \colon V \to V$ линейный оператор в евклидовом пространстве. Покажите, что следующие условия эквивалентны:
 - φ является оператором ортогонального проектирования на некоторое подпространство $U \subseteq V$.
 - φ самосопряжен и $\varphi^2 = \varphi$.