I numeri razionali

Mattia Cozzi

a.f. 2024/2025

Contenuti

Divisibilità

Criteri

Primi

Frazioni

Operazioni

Divisibilità

Dati due numeri interi, è possibile che:

• la divisione tra loro sia esatta, senza resto, come in:

$$12:3=4$$
, resto 0

Diciamo allora che il primo numero è divisibile per il secondo.

• la divisione tra loro abbia resto, come in

$$13:3=4$$
, resto 1

Diciamo allora che il primo numero non è divisibile per i secondo

Divisibilità

Dati due numeri interi, è possibile che:

• la divisione tra loro sia esatta, senza resto, come in:

$$12:3=4$$
, resto 0

Diciamo allora che il primo numero è divisibile per il secondo.

• la divisione tra loro abbia resto, come in:

$$13:3=4$$
, resto 1

Diciamo allora che il primo numero non è divisibile per il secondo.

Multipli e sottomultipli/divisori

Se il numero a è divisibile per il numero b, allora:

• a è multiplo di b;

21 è multiplo di 7

- b è sottomultiplo o divisore di a
 - 7 è sottomultiplo di 21

Multipli e sottomultipli/divisori

Se il numero a è divisibile per il numero b, allora:

• a è multiplo di b;

21 è multiplo di 7

- b è sottomultiplo o divisore di a.
 - 7 è sottomultiplo di 21

Una conseguenza

Se il prodotto di due numeri dà come risultato un terzo numero, allora quest'ultimo è multiplo degli altri due.

$$5 \cdot 9 = 45$$

Quindi 45 è multiplo sia di 5, sia di 9.

Una conseguenza

Se il prodotto di due numeri dà come risultato un terzo numero, allora quest'ultimo è multiplo degli altri due.

$$5 \cdot 9 = 45$$

Quindi 45 è multiplo sia di 5, sia di 9.

Lo stesso discorso, senza variazioni, vale coi numeri negativi:

$$-63:7=-9$$

e quindi

- -63 è multiplo di 7 e di -9
- 7 e -9 sono divisori di -63.

Ti ricordi la regola dei segni?

Lo stesso discorso, senza variazioni, vale coi numeri negativi:

$$-63:7=-9$$

e quindi:

- −63 è multiplo di 7 e di −9;
- 7 e −9 sono divisori di −63.

Ti ricordi la regola dei segni?

Lo stesso discorso, senza variazioni, vale coi numeri negativi:

$$-63:7=-9$$

e quindi:

- −63 è multiplo di 7 e di −9;
- 7 e −9 sono divisori di −63.

Lo stesso discorso, senza variazioni, vale coi numeri negativi:

$$-63:7=-9$$

e quindi:

- -63 è multiplo di 7 e di -9;
- 7 e −9 sono divisori di −63.

Ti ricordi la regola dei segni?

Domande interessanti

- Qual è il numero che è multiplo di tutti i numeri interi?
- Qual è il numero che è sottomultiplo di tutti i numeri interi?

Domande interessanti

- Qual è il numero che è multiplo di tutti i numeri interi?
- Qual è il numero che è sottomultiplo di tutti i numeri interi?

Pari e dispari in N

I numeri pari sono i multipli di 2, e quindi terminano con:

0, 2, 4, 6, 8

Sono indicati con:

Divisibilità

$$\mathbb{P} = \{0, 2, 4, 6, 8, 10, 12, \ldots\}$$

I numeri dispari sono i numeri che non sono pari, e quindi terminano con:

1, 3, 5, 7, 9
$$= \{1, 3, 5, 7, 9, 11, 13, \dots$$

Divisibilità

Pari e dispari in $\mathbb N$

I numeri pari sono i multipli di 2, e quindi terminano con:

Sono indicati con:

$$\mathbb{P} = \{0, 2, 4, 6, 8, 10, 12, \ldots\}$$

I numeri dispari sono i numeri che non sono pari, e quindi terminano con:

1, 3, 5, 7, 9
$$\mathbb{D} = \{1, 3, 5, 7, 9, 11, 13, \dots$$

Pari e dispari in N

I numeri pari sono i multipli di 2, e quindi terminano con:

Sono indicati con:

$$\mathbb{P} = \{0, 2, 4, 6, 8, 10, 12, \ldots\}$$

I numeri dispari sono i numeri che non sono pari, e quindi terminano con:

$$\mathbb{D} = \{1, 3, 5, 7, 9, 11, 13, \dots\}$$

Pari e dispari in N

I numeri pari sono i multipli di 2, e quindi terminano con:

Sono indicati con:

$$\mathbb{P} = \{0, 2, 4, 6, 8, 10, 12, \ldots\}$$

I numeri dispari sono i numeri che non sono pari, e quindi terminano con:

1, 3, 5, 7, 9
$$\mathbb{D} = \{1, 3, 5, 7, 9, 11, 13, \ldots\}$$

Pari e dispari in $\ensuremath{\mathbb{Z}}$

Il concetto di pari e dispari si estende anche ai numeri interi (positivi e negativi:)

$$\mathbb{P} = \{\dots, -6, -4, -2, 0, +2, +4, +6, \dots\}$$

$$\mathbb{D} = \{\dots, -5, -3, -1, 0, +1, +3, +5, \dots\}$$

Pari e dispari in $\mathbb Z$

Il concetto di pari e dispari si estende anche ai numeri interi (positivi e negativi:)

$$\mathbb{P} = \{\dots, -6, -4, -2, 0, +2, +4, +6, \dots\}$$

$$\mathbb{D} = \{\ldots, -5, -3, -1, 0, +1, +3, +5, \ldots\}$$

Pari e dispari in $\mathbb Z$

Il concetto di pari e dispari si estende anche ai numeri interi (positivi e negativi:)

$$\mathbb{P} = \{\dots, -6, -4, -2, 0, +2, +4, +6, \dots\}$$

$$\mathbb{D} = \{\ldots, -5, -3, -1, 0, +1, +3, +5, \ldots\}$$

Criteri di divisibilità

I criteri di divisibilità sono dei criteri per capire se un numero intero è divisibile per un altro, senza calcolare per davvero la divisione.

Potremo ad esempio rispondere, senza far calcoli, alle seguent domande:

- 1404 è divisibile per 9?
- 153 è divisibile per 11?

Criteri di divisibilità

I criteri di divisibilità sono dei criteri per capire se un numero intero è divisibile per un altro, senza calcolare per davvero la divisione.

Potremo ad esempio rispondere, senza far calcoli, alle seguenti domande:

- 1404 è divisibile per 9?
- 153 è divisibile per 11?

Criteri di divisibilità

I criteri di divisibilità sono dei criteri per capire se un numero intero è divisibile per un altro, senza calcolare per davvero la divisione.

Potremo ad esempio rispondere, senza far calcoli, alle seguenti domande:

- 1404 è divisibile per 9?
- 153 è divisibile per 11?

Critero di divisibilità per 2

Un numero è divisibile per 2 se è pari, cioè se finisce per:

0, 2, 4, 6, 8

- 487238 è divisibile per 2;
- 400 è divisibile per 2

Critero di divisibilità per 2

Un numero è divisibile per 2 se è pari, cioè se finisce per:

- 487238 è divisibile per 2;
- 400 è divisibile per 2

Critero di divisibilità per 2

Un numero è divisibile per 2 se è pari, cioè se finisce per:

- 487238 è divisibile per 2;
- 400 è divisibile per 2.

Critero di divisibilità per 3

Un numero è divisibile per 3 se la somma delle sue cifre è un multiplo di 3.

- 171 è divisibile per 3, perché 1 + 7 + 1 = 9;
- 3477 è divisibile per 3, perché 3 + 4 + 7 + 7 = 21

Critero di divisibilità per 3

Un numero è divisibile per 3 se la somma delle sue cifre è un multiplo di 3.

- 171 è divisibile per 3, perché 1 + 7 + 1 = 9;
- 3477 è divisibile per 3, perché 3 + 4 + 7 + 7 = 21.

Critero di divisibilità per 3

Un numero è divisibile per 3 se la somma delle sue cifre è un multiplo di 3.

- 171 è divisibile per 3, perché 1 + 7 + 1 = 9;
- 3477 è divisibile per 3, perché 3 + 4 + 7 + 7 = 21.

Critero di divisibilità per 6

Un numero è divisibile per 6 se è divisibile sia, per 2 sia per 3.

• 492 è divisibile per 6, perché è pari e 4+9+2=15.

Critero di divisibilità per 6

Un numero è divisibile per 6 se è divisibile sia, per 2 sia per 3.

• 492 è divisibile per 6, perché è pari e 4+9+2=15.

Critero di divisibilità per 5

Un numero è divisibile per 5 se finisce con 0 oppure 5.

- 4565 è divisibile per 5
- 150 è divisibile per 5.

Critero di divisibilità per 5

Un numero è divisibile per 5 se finisce con 0 oppure 5.

- 4565 è divisibile per 5;
- 150 è divisibile per 5.

Critero di divisibilità per 5

Un numero è divisibile per 5 se finisce con 0 oppure 5.

- 4565 è divisibile per 5;
- 150 è divisibile per 5.

Critero di divisibilità per 9

Un numero è divisibile per 9 se la somma delle sue cifre è un multiplo di 9.

Prova a considerare la tabellina del 9!

- 171 è divisibile per 9, perché 1 + 7 + 1 = 9;
- 48672 è divisibile per 9, perché 4 + 8 + 6 + 7 + 2 = 27

Critero di divisibilità per 9

Un numero è divisibile per 9 se la somma delle sue cifre è un multiplo di 9.

Prova a considerare la tabellina del 9!

- 171 è divisibile per 9, perché 1 + 7 + 1 = 9;
- 48672 è divisibile per 9, perché 4 + 8 + 6 + 7 + 2 = 27

Critero di divisibilità per 9

Un numero è divisibile per 9 se la somma delle sue cifre è un multiplo di 9.

Prova a considerare la tabellina del 9!

- 171 è divisibile per 9, perché 1 + 7 + 1 = 9;
- 48672 è divisibile per 9, perché 4 + 8 + 6 + 7 + 2 = 27.

Critero di divisibilità per 10

Un numero è divisibile per 10 se finisce per 0.

• 1360 è divisibile per 10

Critero di divisibilità per 10

Un numero è divisibile per 10 se finisce per 0.

• 1360 è divisibile per 10.

Critero di divisibilità per 7

Un numero è divisibile per 7 se la differenza tra le decine e il doppio delle unità è un multiplo di 7.

- 91 è divisibile per 7, perché $9-1\cdot 2=7$
- 231 è divisibile per 7, perché $23 1 \cdot 2 = 21$

Critero di divisibilità per 7

Un numero è divisibile per 7 se la differenza tra le decine e il doppio delle unità è un multiplo di 7.

- 91 è divisibile per 7, perché $9 1 \cdot 2 = 7$;
- 231 è divisibile per 7, perché $23 1 \cdot 2 = 21$

Critero di divisibilità per 7

Un numero è divisibile per 7 se la differenza tra le decine e il doppio delle unità è un multiplo di 7.

- 91 è divisibile per 7, perché $9-1\cdot 2=7$;
- 231 è divisibile per 7, perché $23 1 \cdot 2 = 21$.

Critero di divisibilità per 11

Un numero è divisibile per 11 se la differenza tra la somma delle cifre di posto dispari e quella delle cifre di posto pari è un multiplo di 11.

- 121 è divisibile per 11, perché (1+1) (2) = 0;
- 9273 è divisibile per 11, perché (9+7)-(2+3)=11

Critero di divisibilità per 11

Un numero è divisibile per 11 se la differenza tra la somma delle cifre di posto dispari e quella delle cifre di posto pari è un multiplo di 11.

- 121 è divisibile per 11, perché (1+1) (2) = 0;
- 9273 è divisibile per 11, perché (9+7)-(2+3)=11.

Critero di divisibilità per 11

Un numero è divisibile per 11 se la differenza tra la somma delle cifre di posto dispari e quella delle cifre di posto pari è un multiplo di 11.

- 121 è divisibile per 11, perché (1+1) (2) = 0;
- 9273 è divisibile per 11, perché (9+7) (2+3) = 11.

Critero di divisibilità per 4

Un numero è divisibile per 4 se le ultime due cifre sono un multiplo di 4.

- 412 è multiplo di 4
- 576 è multiplo di 4.

Critero di divisibilità per 4

Un numero è divisibile per 4 se le ultime due cifre sono un multiplo di 4.

- 412 è multiplo di 4;
- 576 è multiplo di 4.

Critero di divisibilità per 4

Un numero è divisibile per 4 se le ultime due cifre sono un multiplo di 4.

- 412 è multiplo di 4;
- 576 è multiplo di 4.

I numeri primi sono tutti e soli i numeri naturali che sono divisibili soltanto per 1 e per sé stessi.

7 è un numero primo, perché può essere diviso solo per 1 e per 7.

I numeri non primi si dicono composti, come 12 (divisibile per un sacco di numeri!).

1 non viene considerato un numero primo

I numeri primi sono infiniti

I numeri primi sono tutti e soli i numeri naturali che sono divisibili soltanto per 1 e per sé stessi.

7 è un numero primo, perché può essere diviso solo per 1 e per 7.

I numeri non primi si dicono composti, come 12 (divisibile per un sacco di numeri!).

1 non viene considerato un numero primo

I numeri primi sono infiniti!

I numeri primi sono tutti e soli i numeri naturali che sono divisibili soltanto per 1 e per sé stessi.

7 è un numero primo, perché può essere diviso solo per 1 e per 7.

I numeri non primi si dicono composti, come 12 (divisibile per un sacco di numeri!).

1 non viene considerato un numero primo

I numeri primi sono infiniti

I numeri primi sono tutti e soli i numeri naturali che sono divisibili soltanto per 1 e per sé stessi.

7 è un numero primo, perché può essere diviso solo per 1 e per 7.

I numeri non primi si dicono composti, come 12 (divisibile per un sacco di numeri!).

1 non viene considerato un numero primo.

I numeri primi sono infiniti

I numeri primi sono tutti e soli i numeri naturali che sono divisibili soltanto per 1 e per sé stessi.

7 è un numero primo, perché può essere diviso solo per 1 e per 7.

I numeri non primi si dicono composti, come 12 (divisibile per un sacco di numeri!).

1 non viene considerato un numero primo.

I numeri primi sono infiniti!

Numeri primi da 1 a 50

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

È stato dimostrato che

ogni numero naturale può essere scritto come prodotto di soli numeri primi.

$$153 = 3 \cdot 3 \cdot 17$$

$$385 = 5 \cdot 7 \cdot 11$$

È stato dimostrato che:

ogni numero naturale può essere scritto come prodotto di soli numeri primi.

Ad esempio:

$$153 = 3 \cdot 3 \cdot 17$$

$$385 = 5 \cdot 7 \cdot 11$$

Questo procedimento è detto scomposizione o fattorizzazione in numeri primi.

È stato dimostrato che:

ogni numero naturale può essere scritto come prodotto di soli numeri primi.

Ad esempio:

$$153 = 3 \cdot 3 \cdot 17$$

$$385 = 5 \cdot 7 \cdot 11$$

Questo procedimento è detto scomposizione o fattorizzazione in numeri primi.

È stato dimostrato che:

ogni numero naturale può essere scritto come prodotto di soli numeri primi.

Ad esempio:

$$153 = 3 \cdot 3 \cdot 17$$

$$385 = 5 \cdot 7 \cdot 11$$

Questo procedimento è detto scomposizione o fattorizzazione in numeri primi.

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Proviamo a scomporre 180 in fattori primi:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Esempio di scomposizione

Proviamo a scomporre 180 in fattori primi:

Possiamo scrivere la fattorizzazione di 180:

$$180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^2 \cdot 3^2 \cdot 5$$

Esercizi sulla scomposizione in fattori primi

- 1. Scomponi in fattori primi i seguenti numeri:
 - 152
 - 90
 - 156

- 612
- 720
- 1024

Il massimo comun divisore (indicato con MCD) tra due numeri è il più alto dei divisori comuni tra due numeri.

Elenchiamo i divisori di 24

$$div(24) = \{1, 2, 3, 4, 6, 8, 12, 24\}$$

Elenchiamo i divisori di 36

$$div(36) = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$$

Quindi il massimo comun divisore tra 24 e 36 è 12

Il massimo comun divisore (indicato con MCD) tra due numeri è il più alto dei divisori comuni tra due numeri.

Elenchiamo i divisori di 24:

$$div(24) = \{1, 2, 3, 4, 6, 8, 12, 24\}$$

Elenchiamo i divisori di 36

$$div(36) = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$$

Quindi il massimo comun divisore tra 24 e 36 è 12

Il massimo comun divisore (indicato con MCD) tra due numeri è il più alto dei divisori comuni tra due numeri.

Elenchiamo i divisori di 24:

$$div(24) = \{1, 2, 3, 4, 6, 8, 12, 24\}$$

Elenchiamo i divisori di 36:

$$div(36) = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$$

Quindi il massimo comun divisore tra 24 e 36 è 12

Il massimo comun divisore (indicato con MCD) tra due numeri è il più alto dei divisori comuni tra due numeri.

Elenchiamo i divisori di 24:

$$div(24) = \{1, 2, 3, 4, 6, 8, 12, 24\}$$

Elenchiamo i divisori di 36:

$$div(36) = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$$

Quindi il massimo comun divisore tra 24 e 36 è 12.

Il massimo comun divisore (indicato con MCD) tra due numeri è il più alto dei divisori comuni tra due numeri.

Elenchiamo i divisori di 24:

$$div(24) = \{1, 2, 3, 4, 6, 8, 12, 24\}$$

Elenchiamo i divisori di 36:

$$div(36) = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$$

Quindi il massimo comun divisore tra 24 e 36 è 12.

Calcolo dell'MCD

Eseguo le seguenti operazioni:

- scompongo in fattori primi i due numeri;

$$24 - 2^3$$
.

$$36 = 2^2 \cdot 3^2$$

$$MCD(24,36) = 2^2 \cdot 3$$

Calcolo dell'MCD

Eseguo le seguenti operazioni:

- scompongo in fattori primi i due numeri;
- 2. costruisco l'MCD scegliendo, nelle scomposizioni, i fattori in comune, con l'esponente più basso.

$$24 = 2^3 \cdot 3$$

$$36 = 2^2 \cdot 3^2$$

$$MCD(24,36) = 2^2 \cdot 3$$

Eseguo le seguenti operazioni:

- scompongo in fattori primi i due numeri;
- 2. costruisco l'MCD scegliendo, nelle scomposizioni, i fattori in comune, con l'esponente più basso.

Esempio:

$$24 = 2^3 \cdot 3$$
 $36 = 2^2 \cdot 3^2$

$$MCD(24, 36) = 2^2 \cdot 3$$

Eseguo le seguenti operazioni:

- 1. scompongo in fattori primi i due numeri;
- 2. costruisco l'MCD scegliendo, nelle scomposizioni, i fattori in comune, con l'esponente più basso.

Esempio:

$$24 = 2^3 \cdot 3$$
 $36 = 2^2 \cdot 3^2$

$$MCD(24, 36) = 2^2 \cdot 3$$

- 1. Calcola il Massimo Comun Divisore fra i seguenti gruppi di numeri.
 - 18,96
 - 9,108
 - 26,64

- 3, 7, 9
- 14, 35, 21
- 36, 108, 117

Il minimo comune multiplo (indicato con mcm) tra due numeri è il più piccolo tra i multipli comuni tra due numeri diverso da zero.

Elenchiamo i multipli di 6

$$mult(6) = \{0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, \ldots\}$$

Elenchiamo i multipli di 15

$$mult(15) = \{0, 15, 30, 45, 60, 75, 90, \ldots\}$$

Quindi il minimo comun divisore tra 6 e 15 è 30

Il minimo comune multiplo (indicato con mcm) tra due numeri è il più piccolo tra i multipli comuni tra due numeri diverso da zero.

Elenchiamo i multipli di 6:

$$mult(6) = \{0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, \ldots\}$$

Elenchiamo i multipli di 15

$$mult(15) = \{0, 15, 30, 45, 60, 75, 90, \ldots\}$$

Quindi il minimo comun divisore tra 6 e 15 è 30

Il minimo comune multiplo (indicato con mcm) tra due numeri è il più piccolo tra i multipli comuni tra due numeri diverso da zero.

Elenchiamo i multipli di 6:

$$mult(6) = \{0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, \ldots\}$$

Elenchiamo i multipli di 15:

$$mult(15) = \{0, 15, 30, 45, 60, 75, 90, \ldots\}$$

Quindi il minimo comun divisore tra 6 e 15 è 30

Il minimo comune multiplo (indicato con mcm) tra due numeri è il più piccolo tra i multipli comuni tra due numeri diverso da zero.

Elenchiamo i multipli di 6:

$$mult(6) = \{0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, \ldots\}$$

Elenchiamo i multipli di 15:

$$mult(15) = \{0, 15, 30, 45, 60, 75, 90, \ldots\}$$

Quindi il minimo comun divisore tra 6 e 15 è 30.

Il minimo comune multiplo (indicato con mcm) tra due numeri è il più piccolo tra i multipli comuni tra due numeri diverso da zero.

Elenchiamo i multipli di 6:

$$mult(6) = \{0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, \ldots\}$$

Elenchiamo i multipli di 15:

$$mult(15) = \{0, 15, 30, 45, 60, 75, 90, \ldots\}$$

Quindi il minimo comun divisore tra 6 e 15 è 30.

Eseguo le seguenti operazioni:

- 1. scompongo in fattori primi i due numeri;
- costruisco l'mcm scegliendo, nelle scomposizioni, tutti i fattori (comuni e non comuni), con l'esponente più alto.

Esempio

$$24 = 2^3 \cdot 3$$
 $28 = 2^2 \cdot 7$

$$mcm(24, 28) = 2^3 \cdot 3 \cdot 7$$

Calcolo dell'mcm

Eseguo le seguenti operazioni:

- scompongo in fattori primi i due numeri;
- 2. costruisco l'mcm scegliendo, nelle scomposizioni, tutti i fattori (comuni e non comuni), con l'esponente più alto.

$$24 = 2^3 \cdot 3$$
 $28 = 2^2 \cdot 7$

$$mcm(24, 28) = 2^3 \cdot 3 \cdot 7$$

Calcolo dell'mcm

Eseguo le seguenti operazioni:

- scompongo in fattori primi i due numeri;
- 2. costruisco l'mcm scegliendo, nelle scomposizioni, tutti i fattori (comuni e non comuni), con l'esponente più alto.

Esempio:

$$24 = 2^3 \cdot 3$$
 $28 = 2^2 \cdot 7$

$$mcm(24, 28) = 2^3 \cdot 3 \cdot 7$$

Calcolo dell'mcm

Eseguo le seguenti operazioni:

- 1. scompongo in fattori primi i due numeri;
- costruisco l'mcm scegliendo, nelle scomposizioni, tutti i fattori (comuni e non comuni), con l'esponente più alto.

Esempio:

$$24 = 2^3 \cdot 3$$
 $28 = 2^2 \cdot 7$

$$mcm(24, 28) = 2^3 \cdot 3 \cdot 7$$

Esercizi sull'mcm

1. Calcola il minimo comune multiplo fra i seguenti gruppi di numeri.

- 18,96
- 9,108
- 26,64

- 3, 7, 9
- 14, 35, 21
- 36, 108, 117
- 2. In un campanile ci sono tre campane. Una batte un rintocco ogni 5 secondi, la seconda un rintocco ogni 6 secondi, la terza batte un rintocco ogni 8 secondi. Se battono insieme il primo rintocco, dopo quanti secondi ne batteranno un altro insieme?

Perché le frazioni?

I numeri decimali e i numeri interi, sia positivi sia negativi, possono essere anche espressi sotto forma di frazioni, che vanno a costituire l'insieme $\mathbb Q$ dei numeri razionali.

Ad esempio:

$$7,7 = 77:10 = \frac{77}{10}$$

$$-2,3 = -23:10 = -\frac{23}{10}$$

Perché le frazioni?

I numeri decimali e i numeri interi, sia positivi sia negativi, possono essere anche espressi sotto forma di frazioni, che vanno a costituire l'insieme \mathbb{Q} dei numeri razionali.

Ad esempio:

$$7,7=77:10=\frac{77}{10}$$

$$-2, 3 = -23 : 10 = -\frac{23}{10}$$

Perché le frazioni?

I numeri decimali e i numeri interi, sia positivi sia negativi, possono essere anche espressi sotto forma di frazioni, che vanno a costituire l'insieme $\mathbb Q$ dei numeri razionali.

Ad esempio:

$$7,7 = 77:10 = \frac{77}{10}$$

$$-2, 3 = -23 : 10 = -\frac{23}{10}$$

I numeri decimali e i numeri interi, sia positivi sia negativi, possono essere anche espressi sotto forma di frazioni, che vanno a costituire l'insieme \mathbb{Q} dei numeri razionali.

Ad esempio:

$$7,7 = 77:10 = \frac{77}{10}$$

$$-2, 3 = -23 : 10 = -\frac{23}{10}$$

L'insieme \mathbb{Q}

Le frazioni, cioè i numeri decimali (finiti oppure periodici), costituiscono l'insieme \mathbb{Q} , cioè l'insieme dei numeri razionali (*ratio* in latino significa "rapporto", cioè divisione.)

Stiamo riempiendo lo spazio tra un numero e l'altro che c'era in \mathbb{Z} .

L'insieme \mathbb{Q}

Le frazioni, cioè i numeri decimali (finiti oppure periodici), costituiscono l'insieme \mathbb{Q} , cioè l'insieme dei numeri razionali (*ratio* in latino significa "rapporto", cioè divisione.)

Stiamo riempiendo lo spazio tra un numero e l'altro che c'era in \mathbb{Z} .

L'insieme $\mathbb Q$ non esaurisce l'insieme dei numeri che si usano in matematica.

La sua estensione è l'insieme $\mathbb R$ dei numeri reali.

 ${\mathbb R}$ contiene numeri decimali non periodici, cioè con un numero infinito di cifre casuali dopo la virgola, che non si ripetono mai

$$\pi = 3,141592653589\dots$$

$$\sqrt{2} = 1,4142135623730...$$

L'insieme $\mathbb Q$ non esaurisce l'insieme dei numeri che si usano in matematica.

La sua estensione è l'insieme ℝ dei numeri reali.

 ${\mathbb R}$ contiene numeri decimali non periodici, cioè con un numero infinito di cifre casuali dopo la virgola, che non si ripetono mai

$$\pi = 3,141592653589\dots$$

$$\sqrt{2} = 1,4142135623730...$$

L'insieme $\mathbb Q$ non esaurisce l'insieme dei numeri che si usano in matematica.

La sua estensione è l'insieme \mathbb{R} dei numeri reali.

 $\mathbb R$ contiene numeri decimali non periodici, cioè con un numero infinito di cifre casuali dopo la virgola, che non si ripetono mai.

$$\pi = 3,141592653589...$$

$$\sqrt{2} = 1,4142135623730...$$

L'insieme $\mathbb Q$ non esaurisce l'insieme dei numeri che si usano in matematica.

La sua estensione è l'insieme \mathbb{R} dei numeri reali.

R contiene numeri decimali non periodici, cioè con un numero infinito di cifre casuali dopo la virgola, che non si ripetono mai.

$$\pi = 3,141592653589...$$

$$\sqrt{2} = 1,4142135623730...$$

Insiemi numerici

Terminologia

Essendo le frazioni delle divisioni, possiamo introdurre dei nuovi termini:

- il numeratore è "il numero sopra", cioè il dividendo;
- il denominatore è il "numero sotto", cioè il divisore.

$$\frac{15}{7}$$

15 è il numeratore, 7 è il denominatore

Terminologia

Essendo le frazioni delle divisioni, possiamo introdurre dei nuovi termini:

- il numeratore è "il numero sopra", cioè il dividendo;
- il denominatore è il "numero sotto", cioè il divisore.

$$\frac{15}{7}$$

15 è il numeratore, 7 è il denominatore

Terminologia

Essendo le frazioni delle divisioni, possiamo introdurre dei nuovi termini:

- il numeratore è "il numero sopra", cioè il dividendo;
- il denominatore è il "numero sotto", cioè il divisore.

$$\frac{15}{7}$$

15 è il numeratore, 7 è il denominatore

Terminologia

Essendo le frazioni delle divisioni, possiamo introdurre dei nuovi termini:

- il numeratore è "il numero sopra", cioè il dividendo;
- il denominatore è il "numero sotto", cioè il divisore.

$$\frac{15}{7}$$

15 è il numeratore, 7 è il denominatore.

Rappresentare una frazione (1)

Per eseguire i calcoli con le frazioni, è molto utile immaginarle, cioè vederle con l'immaginazione:

La frazione rappresentata significa "sette parti su otto" (quindi meno di un intero, cioè 1).

Rappresentare una frazione (2)

Un altro modo di rappresentare le frazioni:

Esercizi sulla rappresentazione delle frazioni

1. Rappresenta le seguenti frazioni:

- $\frac{4}{5}$
- $\frac{1}{2}$
- $\frac{7}{9}$

- $\frac{2}{13}$
- $\frac{5}{10}$
- $\frac{2}{1}$

Il valore di una frazione

A volte, per capire bene il valore di un numero razionale (una frazione) è utile eseguire la divisione tra i due numeri:

$$\frac{3}{8} = 0,375$$

Alcune frazioni, anche se in apparenza diverse, hanno in realtà lo stesso valore:

$$\frac{3}{8} = \frac{9}{24}$$

Il valore di una frazione

A volte, per capire bene il valore di un numero razionale (una frazione) è utile eseguire la divisione tra i due numeri:

$$\frac{3}{8} = 0,375$$

Alcune frazioni, anche se in apparenza diverse, hanno in realtà lo stesso valore:

$$\frac{3}{8} = \frac{9}{24}$$

Frazioni equivalenti

Quando due frazioni hanno lo stesso valore, si dicono frazioni equivalenti.

Minimi termini

Per trovare la frazione più semplice equivalente ad una certa frazione, si ricorre alla semplificazione.

Quando una frazione è espressa nella sua forma più semplice, si dice che è ridotta ai minimi termini.

$$\frac{9}{24}$$
 non è ridotta ai minimi termini

 $\frac{3}{8}$ è ridotta ai minimi termini

Per eseguire la semplificazione, è importantissimo essere abili nella scomposizione in fattori primi.

Minimi termini

Per trovare la frazione più semplice equivalente ad una certa frazione, si ricorre alla semplificazione.

Quando una frazione è espressa nella sua forma più semplice, si dice che è ridotta ai minimi termini.

 $\frac{9}{24}$ non è ridotta ai minimi termini

 $\frac{3}{8}$ è ridotta ai minimi termini

Per eseguire la semplificazione, è importantissimo essere abili nella scomposizione in fattori primi.

Minimi termini

Per trovare la frazione più semplice equivalente ad una certa frazione, si ricorre alla semplificazione.

Quando una frazione è espressa nella sua forma più semplice, si dice che è ridotta ai minimi termini.

 $\frac{9}{24}$ non è ridotta ai minimi termini

 $\frac{3}{8}$ è ridotta ai minimi termini

Per eseguire la semplificazione, è importantissimo essere abili nella scomposizione in fattori primi.

Possiamo semplificare una frazione dividendo numeratore e denominatore per un fattore comune (il migliore è l'MCD, ma possiamo anche procedere per passi).

$$\frac{16}{10} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8 \cdot \cancel{2}}{5 \cdot \cancel{2}} = \frac{8}{5}$$

$$\frac{14}{21} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{2}{3}$$

Possiamo semplificare una frazione dividendo numeratore e denominatore per un fattore comune (il migliore è l'MCD, ma possiamo anche procedere per passi).

$$\frac{16}{10} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8 \cdot \cancel{2}}{5 \cdot \cancel{2}} = \frac{8}{5}$$

$$\frac{14}{21} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{2}{3}$$

Possiamo semplificare una frazione dividendo numeratore e denominatore per un fattore comune (il migliore è l'MCD, ma possiamo anche procedere per passi).

$$\frac{16}{10} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8}{5}$$

$$\frac{14}{21} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{2}{3}$$

Possiamo semplificare una frazione dividendo numeratore e denominatore per un fattore comune (il migliore è l'MCD, ma possiamo anche procedere per passi).

$$\frac{16}{10} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8 \cdot \cancel{2}}{5 \cdot \cancel{2}} = \frac{8}{5}$$

$$\frac{14}{21} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{2}{3}$$

Possiamo semplificare una frazione dividendo numeratore e denominatore per un fattore comune (il migliore è l'MCD, ma possiamo anche procedere per passi).

$$\frac{16}{10} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8 \cdot \cancel{2}}{5 \cdot \cancel{2}} = \frac{8}{5}$$

$$\frac{14}{21} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{2}{3}$$

Possiamo semplificare una frazione dividendo numeratore e denominatore per un fattore comune (il migliore è l'MCD, ma possiamo anche procedere per passi).

$$\frac{16}{10} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8 \cdot \cancel{2}}{5 \cdot \cancel{2}} = \frac{8}{5}$$

$$\frac{14}{21} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{2}{3}$$

Possiamo semplificare una frazione dividendo numeratore e denominatore per un fattore comune (il migliore è l'MCD, ma possiamo anche procedere per passi).

$$\frac{16}{10} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8}{5}$$

$$\frac{14}{21} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{2}{3}$$

Possiamo semplificare una frazione dividendo numeratore e denominatore per un fattore comune (il migliore è l'MCD, ma possiamo anche procedere per passi).

$$\frac{16}{10} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8}{5}$$

$$\frac{14}{21} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{2}{3}$$

Possiamo semplificare una frazione dividendo numeratore e denominatore per un fattore comune (il migliore è l'MCD, ma possiamo anche procedere per passi).

$$\frac{16}{10} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8 \cdot 2}{5 \cdot 2} = \frac{8}{5}$$

$$\frac{14}{21} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{7 \cdot 2}{7 \cdot 3} = \frac{2}{3}$$

Esercizi sulla semplificazione delle frazioni

1. Riduci ai minimi termini le seguenti frazioni:

• $\frac{4}{8}$

• $\frac{16}{24}$

• $\frac{10}{15}$

• $\frac{2000}{3000}$

• $\frac{100}{200}$

• -

Frazioni particolari

Prova a rappresentare $\frac{7}{4}$ nel modo che preferisci.

Cosa succede se il numeratore è maggiore del denominatore?

Prova a rappresentare $\frac{7}{4}$ nel modo che preferisci.

Cosa succede se il numeratore è maggiore del denominatore?

Frazioni proprie, improprie e apparenti

• Frazioni proprie, in cui il numeratore è più piccolo del denominatore (valgono quindi meno di 1);

$$\frac{2}{3} = 0,666...$$

$$\frac{99}{100} = 0,99$$

$$\frac{10}{5} = \frac{2}{1} = 2$$

$$\frac{40}{4} = \frac{10}{1} = 10$$

$$\frac{11}{5} = 2, 2$$

$$\frac{13}{8} = 1,625$$

Frazioni proprie, improprie e apparenti

• Frazioni proprie, in cui il numeratore è più piccolo del denominatore (valgono quindi meno di 1);

$$\frac{2}{3} = 0,666...$$

$$\frac{99}{100} = 0,99$$

 frazioni apparenti, in cui il numeratore è un multiplo del denominatore (equivalgono quindi a un numero intero);

$$\frac{10}{5} = \frac{2}{1} = 2$$

$$\frac{40}{4} = \frac{10}{1} = 10$$

$$\frac{11}{5} = 2, 2$$

$$\frac{13}{8} = 1,625$$

• Frazioni proprie, in cui il numeratore è più piccolo del denominatore (valgono quindi meno di 1);

$$\frac{2}{3} = 0,666\dots$$

$$\frac{99}{100} = 0,99$$

 frazioni apparenti, in cui il numeratore è un multiplo del denominatore (equivalgono quindi a un numero intero);

$$\frac{10}{5} = \frac{2}{1} = 2$$

$$\frac{40}{4} = \frac{10}{1} = 10$$

 frazioni improprie, in cui il numeratore è un più grande del denominatore (valgono quindi più di 1);

$$\frac{11}{5} = 2,2$$

$$\frac{13}{8} = 1,625$$

Frazione inversa

La frazione inversa di una certa frazione si ottiene invertendo numeratore e denominatore.

La frazione inversa di
$$\frac{4}{7}$$
 è $\frac{7}{4}$

Frazione inversa

La frazione inversa di una certa frazione si ottiene invertendo numeratore e denominatore.

La frazione inversa di $\frac{4}{7}$ è $\frac{7}{4}$.

Esercizi sulle frazioni proprie, improprie e apparenti

- 1. Scrivi 6 frazioni (2 proprie, 2 improprie e 2 apparenti) e rappresentale.
- 2. Che tipo di frazione è l'inversa di una funzione impropria?

Frazioni "compatibili"

È molto facile eseguire la somma/differenza di frazioni quando queste hanno lo stesso denominatore.

Basta sommare/sottrarre i numeratori!

Frazioni "compatibili"

È molto facile eseguire la somma/differenza di frazioni quando queste hanno lo stesso denominatore.

Basta sommare/sottrarre i numeratori!

$$\frac{3}{4} + \frac{7}{4} = \frac{3+7}{4} = \frac{10}{4} = \frac{1}{2}$$

$$\frac{7}{8} - \frac{5}{8} = \frac{7 - 5}{8} = \frac{2}{8} = \frac{1}{4}$$

$$\frac{2}{7} + \frac{3}{2}$$

$$\frac{3}{4} + \frac{7}{4} = \frac{3+7}{4} = \frac{10}{4} = \frac{5}{2}$$

$$\frac{7}{8} - \frac{5}{8} = \frac{7 - 5}{8} = \frac{2}{8} = \frac{1}{4}$$

$$\frac{2}{7} + \frac{3}{4}$$

$$\frac{3}{4} + \frac{7}{4} = \frac{3+7}{4} = \frac{10}{4} = \frac{5}{2}$$

$$\frac{7}{8} - \frac{5}{8} = \frac{7-5}{8} = \frac{2}{8} = \frac{1}{4}$$

$$\frac{2}{7} + \frac{3}{4}$$

$$\frac{3}{4} + \frac{7}{4} = \frac{3+7}{4} = \frac{10}{4} = \frac{5}{2}$$

$$\frac{7}{8} - \frac{5}{8} = \frac{7 - 5}{8} = \frac{2}{8} = \frac{1}{4}$$

$$\frac{2}{7} + \frac{3}{4}$$

$$\frac{3}{4} + \frac{7}{4} = \frac{3+7}{4} = \frac{10}{4} = \frac{5}{2}$$

$$\frac{7}{8} - \frac{5}{8} = \frac{7-5}{8} = \frac{2}{8} = \frac{1}{4}$$

$$\frac{2}{7} + \frac{3}{4}$$

$$\frac{3}{4} + \frac{7}{4} = \frac{3+7}{4} = \frac{10}{4} = \frac{5}{2}$$

$$\frac{7}{8} - \frac{5}{8} = \frac{7 - 5}{8} = \frac{2}{8} = \frac{1}{4}$$

$$\frac{2}{7} + \frac{3}{2}$$

$$\frac{3}{4} + \frac{7}{4} = \frac{3+7}{4} = \frac{10}{4} = \frac{5}{2}$$

$$\frac{7}{8} - \frac{5}{8} = \frac{7 - 5}{8} = \frac{2}{8} = \frac{1}{4}$$

$$\frac{2}{7} + \frac{3}{4}$$

$$\frac{3}{4} + \frac{7}{4} = \frac{3+7}{4} = \frac{10}{4} = \frac{5}{2}$$

$$\frac{7}{8} - \frac{5}{8} = \frac{7 - 5}{8} = \frac{2}{8} = \frac{1}{4}$$

$$\frac{2}{7} + \frac{3}{4}$$

$$\frac{3}{4} + \frac{7}{4} = \frac{3+7}{4} = \frac{10}{4} = \frac{5}{2}$$

$$\frac{7}{8} - \frac{5}{8} = \frac{7 - 5}{8} = \frac{2}{8} = \frac{1}{4}$$

$$\frac{2}{7} + \frac{3}{4}$$

Per eseguire la somma o la differenza tra due frazioni, dobbiamo trasformare le frazioni di partenza in frazioni equivalenti con lo stesso denominatore.

Ad esempio

$$\frac{2}{7} = \frac{8}{28}$$

$$\frac{3}{4} = \frac{21}{28}$$

$$\frac{2}{7} + \frac{3}{4} = \frac{8}{28} + \frac{21}{28} = \frac{8+21}{28} = \frac{29}{28}$$

Per eseguire la somma o la differenza tra due frazioni, dobbiamo trasformare le frazioni di partenza in frazioni equivalenti con lo stesso denominatore.

Ad esempio:

$$\frac{2}{7} = \frac{8}{28}$$

$$\frac{3}{4} = \frac{21}{28}$$

E auindi

$$\frac{2}{7} + \frac{3}{4} = \frac{8}{28} + \frac{21}{28} = \frac{8+21}{28} = \frac{29}{28}$$

Per eseguire la somma o la differenza tra due frazioni, dobbiamo trasformare le frazioni di partenza in frazioni equivalenti con lo stesso denominatore.

Ad esempio:

$$\frac{2}{7} = \frac{8}{28}$$

$$\frac{3}{4} = \frac{21}{28}$$

E guindi

$$\frac{2}{7} + \frac{3}{4} = \frac{8}{28} + \frac{21}{28} = \frac{8+21}{28} = \frac{29}{28}$$

Per eseguire la somma o la differenza tra due frazioni, dobbiamo trasformare le frazioni di partenza in frazioni equivalenti con lo stesso denominatore.

Ad esempio:

$$\frac{2}{7} = \frac{8}{28}$$

$$\frac{3}{4} = \frac{21}{28}$$

$$\frac{2}{7} + \frac{3}{4} = \frac{8}{28} + \frac{21}{28} = \frac{8+21}{28} = \frac{29}{28}$$

Per eseguire la somma o la differenza tra due frazioni, dobbiamo trasformare le frazioni di partenza in frazioni equivalenti con lo stesso denominatore.

Ad esempio:

$$\frac{2}{7} = \frac{8}{28}$$

$$\frac{3}{4} = \frac{21}{28}$$

$$\frac{2}{7} + \frac{3}{4} = \frac{8}{28} + \frac{21}{28} = \frac{8+21}{28} = \frac{29}{28}$$

Per eseguire la somma o la differenza tra due frazioni, dobbiamo trasformare le frazioni di partenza in frazioni equivalenti con lo stesso denominatore.

Ad esempio:

$$\frac{2}{7} = \frac{8}{28}$$

$$\frac{3}{4} = \frac{21}{28}$$

$$\frac{2}{7} + \frac{3}{4} = \frac{8}{28} + \frac{21}{28} = \frac{8+21}{28} = \frac{29}{28}$$

Per eseguire la somma o la differenza tra due frazioni, dobbiamo trasformare le frazioni di partenza in frazioni equivalenti con lo stesso denominatore.

Ad esempio:

$$\frac{2}{7} = \frac{8}{28}$$

$$\frac{3}{4} = \frac{21}{28}$$

$$\frac{2}{7} + \frac{3}{4} = \frac{8}{28} + \frac{21}{28} = \frac{8+21}{28} = \frac{29}{28}$$

Per eseguire la somma o la differenza tra due frazioni, dobbiamo trasformare le frazioni di partenza in frazioni equivalenti con lo stesso denominatore.

Ad esempio:

$$\frac{2}{7} = \frac{8}{28}$$

$$\frac{3}{4} = \frac{21}{28}$$

$$\frac{2}{7} + \frac{3}{4} = \frac{8}{28} + \frac{21}{28} = \frac{8+21}{28} = \frac{29}{28}$$

Per eseguire la somma o la differenza tra due frazioni, dobbiamo trasformare le frazioni di partenza in frazioni equivalenti con lo stesso denominatore.

Ad esempio:

$$\frac{2}{7} = \frac{8}{28}$$

$$\frac{3}{4} = \frac{21}{28}$$

$$\frac{2}{7} + \frac{3}{4} = \frac{8}{28} + \frac{21}{28} = \frac{8+21}{28} = \frac{29}{28}$$

Come facciamo a scegliere il denominatore migliore per le nostre frazioni equivalenti?

Dobbiamo trovare un multiplo comune, e il migliore è il:
minimo comune multiplo tra i due denominatori

In effetti, il mcm tra 7 e 4 è proprio 28...

Come facciamo a scegliere il denominatore migliore per le nostre frazioni equivalenti?

Dobbiamo trovare un multiplo comune, e il migliore è il:

minimo comune multiplo tra i due denominatori!

In effetti, il mcm tra 7 e 4 è proprio 28. .

Come facciamo a scegliere il denominatore migliore per le nostre frazioni equivalenti?

Dobbiamo trovare un multiplo comune, e il migliore è il:

minimo comune multiplo tra i due denominatori!

In effetti, il mcm tra 7 e 4 è proprio 28...

Come facciamo a scegliere il denominatore migliore per le nostre frazioni equivalenti?

Dobbiamo trovare un multiplo comune, e il migliore è il:

minimo comune multiplo tra i due denominatori!

In effetti, il mcm tra 7 e 4 è proprio 28...

00000000000000000

Operazioni

Metodo (1)

$$\frac{2}{3} - \frac{1}{5}$$

Quando dobbiamo sommare/sottrarre due frazioni con denominatori diversi:

$$mcm(3,5) = 15$$

Metodo (1)

$$\frac{2}{3}-\frac{1}{5}$$

Quando dobbiamo sommare/sottrarre due frazioni con denominatori diversi:

$$mcm(3,5) = 15$$

Metodo (1)

$$\frac{2}{3} - \frac{1}{5}$$

Quando dobbiamo sommare/sottrarre due frazioni con denominatori diversi:

$$mcm(3,5) = 15$$

$$\frac{2}{3} - \frac{1}{5}$$

Quando dobbiamo sommare/sottrarre due frazioni con denominatori diversi:

$$mcm(3,5) = 15$$

Per la prima frazione:

$$15:3=5$$

e moltiplico 2 per 5, ottengo 10:

$$\frac{2}{3} - \frac{1}{5} = \frac{10 - \dots}{15}$$

15: 5 = 3
$$3 \cdot 1 = 3$$
 $\frac{2}{3} - \frac{1}{5} = \frac{10 - 3}{15} = \frac{7}{15}$

Metodo (2)

2. per completare i numeratori, divido il *nuovo denominatore per il vecchio denominatore*, e moltiplico il vecchio numeratore per il valore trovato.

Per la prima frazione:

$$15:3=5$$

e moltiplico 2 per 5, ottengo 10:

$$\frac{2}{3} - \frac{1}{5} = \frac{10 - \dots}{15}$$

15: 5 = 3
$$3 \cdot 1 = 3$$
 $\frac{2}{3} - \frac{1}{5} = \frac{10 - 3}{15} = \frac{7}{15}$

Metodo (2)

2. per completare i numeratori, divido il *nuovo denominatore per il vecchio denominatore*, e moltiplico il vecchio numeratore per il valore trovato.

Per la prima frazione:

$$15:3=5$$

e moltiplico 2 per 5, ottengo 10:

$$\frac{2}{3} - \frac{1}{5} = \frac{10 - \dots}{15}$$

15: 5 = 3
$$3 \cdot 1 = 3$$
 $\frac{2}{3} - \frac{1}{5} = \frac{10 - 3}{15} = \frac{7}{15}$

Metodo (2)

2. per completare i numeratori, divido il *nuovo denominatore per il vecchio denominatore*, e moltiplico il vecchio numeratore per il valore trovato.

Per la prima frazione:

$$15:3=5$$

e moltiplico 2 per 5, ottengo 10:

$$\frac{2}{3} - \frac{1}{5} = \frac{10 - \dots}{15}$$

15: 5 = 3
$$3 \cdot 1 = 3$$
 $\frac{2}{3} - \frac{1}{5} = \frac{10 - 3}{15} = \frac{7}{15}$

Per la prima frazione:

$$15:3=5$$

e moltiplico 2 per 5, ottengo 10:

$$\frac{2}{3} - \frac{1}{5} = \frac{10 - \dots}{15}$$

Per la prima frazione:

$$15:3=5$$

e moltiplico 2 per 5, ottengo 10:

$$\frac{2}{3} - \frac{1}{5} = \frac{10 - \dots}{15}$$

$$15:5=3$$
 $3\cdot 1=3$

$$\frac{2}{3} - \frac{1}{5} = \frac{10 - 3}{15} = \frac{7}{15}$$

Per la prima frazione:

$$15:3=5$$

e moltiplico 2 per 5, ottengo 10:

$$\frac{2}{3} - \frac{1}{5} = \frac{10 - \dots}{15}$$

15: 5 = 3
$$3 \cdot 1 = 3$$
 $\frac{2}{3} - \frac{1}{5} = \frac{10 - 3}{15} = \frac{7}{15}$

Per la prima frazione:

$$15:3=5$$

e moltiplico 2 per 5, ottengo 10:

$$\frac{2}{3} - \frac{1}{5} = \frac{10 - \dots}{15}$$

15: 5 = 3
$$3 \cdot 1 = 3$$
 $\frac{2}{3} - \frac{1}{5} = \frac{10 - 3}{15} = \frac{7}{15}$

$$\frac{3}{7}+\frac{3}{4}=$$

$$\frac{12+21}{28}=$$

$$\frac{3}{7} + \frac{3}{4} =$$

$$\frac{12+21}{28} =$$

$$\frac{3}{7} + \frac{3}{4} =$$

$$\frac{12+21}{28} =$$

$$\frac{33}{28}$$

Esercizi sulla somma/differenza tra frazioni

1. Esegui i seguenti calcoli, semplificando i risultati se necessario.

•
$$\frac{1}{3} + \frac{1}{4}$$

$$+\frac{1}{4}$$
 $-\frac{7}{3}+\frac{7}{2}$

•
$$\frac{8}{3} + \frac{9}{8}$$

•
$$\frac{8}{11} + \frac{5}{2}$$

•
$$\frac{3}{4} - \frac{13}{2}$$

•
$$-\frac{1}{3} - \frac{1}{4}$$

•
$$\frac{19}{100} - \frac{3}{50}$$

•
$$\frac{44}{3} - \frac{3}{44}$$

Differenza tra somma e prodotto

La ricerca del denominatore comune serve solo per somme e sottrazioni.

La moltiplicazione tra frazioni è molto più semplice!

Proviamo a eseguire

$$\frac{3}{7} \cdot \frac{4}{5}$$

Differenza tra somma e prodotto

La ricerca del denominatore comune serve solo per somme e sottrazioni.

La moltiplicazione tra frazioni è molto più semplice!

Proviamo a eseguire

$$\frac{3}{7} \cdot \frac{4}{5}$$

Differenza tra somma e prodotto

La ricerca del denominatore comune serve solo per somme e sottrazioni.

La moltiplicazione tra frazioni è molto più semplice!

Proviamo a eseguire:

$$\frac{3}{7} \cdot \frac{4}{5}$$

Prodotto tra frazioni

Per eseguire la moltiplicazione, basta moltiplicare tra loro i numeratori e moltiplicare tra loro i denominatori.

$$\frac{3}{7} \cdot \frac{4}{5} = \frac{3 \cdot 4}{7 \cdot 5} = \frac{12}{35}$$

Prodotto tra frazioni

Per eseguire la moltiplicazione, basta moltiplicare tra loro i numeratori e moltiplicare tra loro i denominatori.

$$\frac{3}{7} \cdot \frac{4}{5} = \frac{3 \cdot 4}{7 \cdot 5} = \frac{12}{35}$$

Semplificazione nel prodotto (1)

Se una coppia di numeri (uno sopra e uno sotto) si possono dividere per uno stesso numero, allora prima di fare il calcolo li semplifichiamo.

$$\frac{3}{4} \times \frac{10}{7} = \frac{3 \times 5}{4 \times 7} = \frac{15}{28}$$

Questo ci permette di ottenere un risultato già semplificato!

Semplificazione nel prodotto (1)

Se una coppia di numeri (uno sopra e uno sotto) si possono dividere per uno stesso numero, allora prima di fare il calcolo li semplifichiamo.

$$\frac{3}{4} \times \frac{10}{7} = \frac{3 \times 5}{4 \times 7} = \frac{15}{28}$$

Questo ci permette di ottenere un risultato già semplificato!

Semplificazione nel prodotto (2)

Un altro esempio, un po' più complicato:

$$\frac{4}{315} \times \frac{10}{4} = \frac{4 \times 2}{3 \times 1} = \frac{8}{3}$$

Esercizi sul prodotto tra frazioni

1. Esegui i seguenti calcoli, semplificando se necessario.

•
$$\frac{1}{3} \cdot \frac{1}{4}$$

•
$$\frac{8}{3} \cdot \frac{9}{8}$$

•
$$\frac{3}{4} \cdot \frac{13}{6}$$

•
$$\frac{19}{100} \cdot \frac{50}{3}$$

•
$$\frac{5}{3} \cdot \frac{3}{5}$$

•
$$\left(-\frac{1}{11}\right) \cdot \frac{99}{5}$$

•
$$\frac{2}{3} \cdot \left(-\frac{12}{7}\right)$$

•
$$\left(-\frac{24}{21}\right)\cdot\left(-\frac{35}{16}\right)$$

Per eseguire la divisione tra due frazioni, si trasforma la divisione in una moltiplicazione.

Trasformando in una moltiplicazione, la seconda frazione va invertita!

$$\frac{7}{5} : \frac{4}{9} = \frac{7}{5} \cdot \frac{9}{4} = \frac{63}{20}$$

Per eseguire la divisione tra due frazioni, si trasforma la divisione in una moltiplicazione.

Trasformando in una moltiplicazione, la seconda frazione va invertita!

$$\frac{7}{5} : \frac{4}{9} = \frac{7}{5} \cdot \frac{9}{4} = \frac{63}{20}$$

Per eseguire la divisione tra due frazioni, si trasforma la divisione in una moltiplicazione.

Trasformando in una moltiplicazione, la seconda frazione va invertita!

$$\frac{7}{5} : \frac{4}{9} = \frac{7}{5} \cdot \frac{9}{4} = \frac{63}{20}$$

Per eseguire la divisione tra due frazioni, si trasforma la divisione in una moltiplicazione.

Trasformando in una moltiplicazione, la seconda frazione va invertita!

$$\frac{7}{5} : \frac{4}{9} = \frac{7}{5} \cdot \frac{9}{4} = \frac{63}{20}$$

Per eseguire la divisione tra due frazioni, si trasforma la divisione in una moltiplicazione.

Trasformando in una moltiplicazione, la seconda frazione va invertita!

$$\frac{7}{5} : \frac{4}{9} = \frac{7}{5} \cdot \frac{9}{4} = \frac{63}{20}$$

Per eseguire la divisione tra due frazioni, si trasforma la divisione in una moltiplicazione.

Trasformando in una moltiplicazione, la seconda frazione va invertita!

$$\frac{7}{5} : \frac{4}{9} = \frac{7}{5} \cdot \frac{9}{4} = \frac{63}{20}$$

Può capitare di incontrare frazioni "doppie", come:

$$\frac{\frac{2}{3}}{\frac{5}{6}} = \frac{2}{3} : \frac{5}{6} = \frac{2}{3} \cdot \frac{6}{5} = \frac{4}{5}$$

Può capitare di incontrare frazioni "doppie", come:

$$\frac{\frac{2}{3}}{\frac{5}{6}} = \frac{2}{3} : \frac{5}{6} = \frac{2}{3} \cdot \frac{6}{5} = \frac{4}{5}$$

Può capitare di incontrare frazioni "doppie", come:

$$\frac{\frac{2}{3}}{\frac{5}{6}}$$

$$\frac{\frac{2}{3}}{\frac{5}{6}} = \frac{2}{3} : \frac{5}{6} = \frac{2}{3} \cdot \frac{6}{5} = \frac{4}{5}$$

Può capitare di incontrare frazioni "doppie", come:

$$\frac{\frac{2}{3}}{\frac{5}{6}} = \frac{2}{3} : \frac{5}{6} = \frac{2}{3} \cdot \frac{6}{5} = \frac{4}{5}$$

Esercizi sul quoziente tra frazioni

- 1. Esegui i seguenti calcoli, semplificando se necessario.
 - $\frac{1}{3}$: $\frac{1}{4}$
 - $\frac{8}{3}$: $\frac{8}{9}$
 - $\frac{7}{4} : \frac{7}{4}$

- $\frac{10}{9}:\frac{2}{3}$
- $\frac{2}{3}$: $\left(-\frac{12}{7}\right)$
- $\left(-\frac{24}{21}\right):\left(-\frac{12}{7}\right)$

Espressioni con le frazioni

1. Calcola il valore delle seguenti espressioni:

•
$$\left(\frac{3}{2} + \frac{5}{4}\right) - \left(\frac{1}{2} + \frac{1}{3}\right) - \frac{1}{6}$$

•
$$\left(\frac{2}{3} + 3\right) - \left(\frac{1}{4} - \frac{1}{6}\right) \cdot \frac{4}{3} - \left(\frac{1}{9} + \frac{1}{6}\right) \cdot 2$$
 [3]

•
$$\left(\frac{1}{9} + \frac{1}{4}\right) + \left(6 - \frac{1}{2}\right) \cdot \frac{2}{11} - \left(\frac{10}{9} + \frac{1}{4}\right)$$

•
$$\frac{\left(\frac{1}{4} \cdot \frac{12}{7} + \frac{1}{7}\right) : \left(1 + \frac{1}{6}\right)}{\left[\left(\frac{7}{4} - \frac{3}{2}\right) : \frac{1}{4} + \frac{1}{4}\right] \cdot \frac{12}{49}}$$

$$\left[\frac{8}{5}\right]$$

[0]

 $\left|\frac{7}{4}\right|$