Réseau de neurones

Cours 7 ARF Master DAC

Nicolas Baskiotis

nicolas.baskiotis@lip6.fr
http://webia.lip6.fr/~baskiotisn

équipe MLIA, Laboratoire d'Informatique de Paris 6 (LIP6) Sorbonne Université - Université Pierre et Marie Curie (UPMC)

S2 (2017-2018)

1/36

Résumé des épisodes

Problèmatique de l'apprentissage supervisé

- Ensemble d'apprentissage $\{(\mathbf{x}^i, y^i)\} \in X \times Y$, ensemble de fonctions \mathcal{F}
- un coût $L(\hat{y}, y): Y \times Y \to \mathbb{R}^+$, trouver $f^* = argmin_{f \in F} \sum_i L(f(\mathbf{x}^i), y^i)$

Perceptron

- Hypothèse linéaire : $f_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i$
- Coût perceptron : $L(f_{\mathbf{w}}(\mathbf{x}), y) = \max(0, -f_{\mathbf{w}}(\mathbf{x})y)$
- Gradient :

$$\nabla_{\mathbf{w}} L(f_{\mathbf{w}}(\mathbf{x}), y) = \begin{cases} 0 & \text{si } (-y < \mathbf{w}.\mathbf{x} >) < 0 \\ -y\mathbf{x} & \text{sinon} \end{cases}$$

SVM

Deux neurones

- Combiner des neurones → augmente l'expressivité
- Création de dimensions nouvelles, de nouveaux features
- ⇒ Est-il facile d'apprendre ses réseaux ?

Deux neurones

- Combiner des neurones → augmente l'expressivité
- Création de dimensions nouvelles, de nouveaux features
- ⇒ Est-il facile d'apprendre ses réseaux ?

Et pour ce problème ?

Si vous aviez droit à n'importe quelle fonction dans un neurone ?

Plan

- Réseau à deux couches
- Apprentissage dans le cas général
- 3 Exemples
- Autres architectures et réseaux profonds
- Bestiaire (incomplet)

Pour l'inférence

Inférence

Avec g(x) = tanh(x)

$$\bullet \ a_1 = w_{01} + w_{11}x_1 + w_{21}x_2$$

$$a_2 = w_{02} + w_{12}x_1 + w_{22}x_2$$

•
$$z_1 = g(a_1)$$

•
$$z_2 = g(a_2)$$

$$a_3 = w_{03} + w_{13}z_1 + w_{23}z_2$$

$$\hat{\mathbf{y}} = g(a_3)$$

 \Rightarrow prédiction : $sign(\hat{y})$

Vocabulaire

- g fonction d'activation (non linéarité du réseau)
- a_i activation du neurone i
- z_i sortie du neurone i (transformé non linéaire de l'activation).

6 / 36

Pour l'apprentissage

Objectif: apprendre les poids

- Choix d'un coût : moindres carrés $L(\hat{y}, y) = (\hat{y} y)^2$ (pourquoi est ce un bon choix ?)
- ⇒ descente de gradient
 - Mais à quel(s) neurone(s) et comment répartir l'erreur entre les poids ?
- ⇒ Rétro-propagation de l'erreur :
 - corriger un peu tous les poids . . .
 - en estimant la part de chacun dans l'erreur

7 / 36

Pour l'apprentissage

Pour les poids de la dernière couche : gradient de chaque élément

$$\frac{\partial L}{\partial w_{i3}} = \frac{\partial L}{\partial a_3} \frac{\partial a_3}{\partial w_{i3}} \quad \text{avec} \begin{vmatrix} \frac{\partial L}{\partial a_3} & = \frac{\partial L}{\partial g(a_3)} \frac{\partial g(a_3)}{\partial a_3} = \frac{\partial (g(a_3) - y)^2}{\partial a_3} & = 2g'(a_3)(g(a_3) - y) \\ \frac{\partial a_3}{\partial w_{i3}} & = \frac{\partial w_{03} + w_{13}z_1 + w_{23}z_2}{\partial w_{i3}} & = z_i \end{vmatrix}$$

Soit

$$\frac{\partial L}{\partial w_{i3}} = 2g'(a_3)(\hat{y} - y)z_i$$

Pour les poids de la première couche: w_{i1} par exemple

$$\frac{\partial L}{\partial w_{i1}} = \frac{\partial L}{\partial a_1} \frac{\partial a_1}{\partial w_{i1}} \quad \text{avec} \begin{vmatrix} \frac{\partial L}{\partial a_1} & = \frac{\partial L}{\partial a_3} \frac{\partial a_3}{\partial a_1} & = \frac{\partial L}{\partial a_3} g'(a_1) w_{13} \\ \frac{\partial a_1}{\partial w_{i1}} & = \frac{\partial w_{01} + w_{11} x_1 + w_{21} x_2}{\partial w_{i1}} & = x_i \end{vmatrix}$$

Soit

$$\underbrace{\frac{\partial L}{\partial w_{i1}}}_{\text{correction de } w_{i1}} = \underbrace{\frac{\partial L}{\partial a_1}}_{x_i} = \underbrace{\frac{\partial L}{\partial a_3}}_{\text{erreur à propager}} \underbrace{g'(a_1)w_{13}}_{\text{poids de la connexion}} x_i$$

 $\Rightarrow \frac{\partial L}{\partial a}$: joue le rôle de l'erreur à retro-propager dans les couches inférieures.

Plan

- Réseau à deux couches
- Apprentissage dans le cas général
- 3 Exemples
- 4 Autres architectures et réseaux profonds
- Bestiaire (incomplet)

Topologie typique

Couche Couche d'entrée cachée de sortie

Flot des signaux

Pour chaque neurone k, la sortie z_k

$$z_k = g\left(\sum_{j=0}^d w_{j,k} z_j\right) = g\left(a_k\right)$$

οù

- w_{j,k}: poids de la connexion de le cellule j à la cellule k
- a_k : activation de la cellule k $a_k = \sum_{i=0}^d w_{j,k} z_j$
- g : fonction d'activation

Apprentissage:

- Minimiser la fonction de coût $L(W, \{X, Y\})$ en fonction du paramètre $W = (w_{i,i})$
- Algorithme de rétro-propagation de gradient $\Delta w_{i,j} \propto rac{\partial L}{\partial w_{i,j}}$

Fonction d'activation

Fonction à seuil

Fonction à rampe

Fonction radiale

Fonction sigmoïde

$$g(a) = \frac{1}{1 + \exp(-a)}$$

$$g(a) = \frac{1}{1 + \exp(-a)}$$

$$g'(a) = g(a)(1 - g(a))$$

Passe avant (forward) Illustrations J.-N. Vittaut

Couche de sortie

Couche cachée

Couche d'entrée

Passe avant (forward) Illustrations J.-N. Vittaut

Couche cachée

Couche d'entrée

Passe avant (forward) Illustrations J.-N. Vittaut

 x_0

 x_1

 x_2

 x_3

 x_d

Passe arrière (backward)

- δ_s : erreur en sortie
- δ_i : somme des erreurs provenant des cellules suivantes

Passe arrière (backward)

- δ_s : erreur en sortie
- δ_i : somme des erreurs provenant des cellules suivantes

Passe arrière (backward)

- δ_s : erreur en sortie
- δ_i : somme des erreurs provenant des cellules suivantes

Algorithme

- Présentation d'un/des exemple(s) parmi l'ensemble d'apprentissage
- Calcul de l'état du réseau (phase forward)
- Oalcul de l'erreur avec un coût donné : e.g. = $(y \hat{y})^2$
- Calcul des gradients (par l'algorithme de rétro-propagation du gradient)
- Modification des poids
- Oritère d'arrêt (sur l'erreur, nombre de présentation d'exemples...)
- Retour en 1

La rétro-propagation de gradient

- Le problème :
 - Détermination des responsabilités (credit assignment problem)
 - ► Quelle connexion est responsable, et de combien, de l'erreur ?
- Principe :
 - Calculer l'erreur sur une connexion en fonction de l'erreur sur la couche suivante
- Deux étapes :
 - Evaluation des dérivées de l'erreur par rapport aux poids
 - Utilisation de ces dérivées pour calculer la modification de chaque poids

La rétro-propagation de gradient

- a_i: activation de la cellule i
- z_i : sortie de la cellule i
- δ_i : erreur attachée à la cellule i

La rétro-propagation de gradient

- 1. Evaluation de l'erreur L due à chaque connexion : $\frac{\partial L}{\partial w_{i,j}}$
 - ightharpoonup calculer l'erreur sur la connexion $w_{i,j}$ en fonction de l'erreur après la cellule j

$$\frac{\partial L}{\partial w_{i,j}} = \frac{\partial L}{\partial a_j} \frac{\partial a_j}{\partial w_{i,j}} = \delta_j z_i$$

Pour les cellules de la couche de sortie :

$$\delta_k = \frac{\partial L}{\partial a_k} = g'(a_k)(y_k - \hat{y}_k)$$

Pour les cellules d'une couche cachée :

$$\delta_{j} = \frac{\partial L}{\partial a_{j}} = \sum_{k} \frac{\partial L}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}} = \sum_{k} \delta_{k} \frac{\partial a_{k}}{\partial z_{j}} \frac{\partial z_{j}}{\partial a_{j}} = g'(a_{j}) \cdot \sum_{k} w_{j,k} \delta_{k}$$

18 / 36

Plan

- Réseau à deux couches
- Apprentissage dans le cas général
- Exemples
- Autres architectures et réseaux profonds
- Bestiaire (incomplet)

Analyse de la surface d'erreur

20 / 36

Analyse de la surface d'erreur

Analyse de la surface d'erreur

Exemple

Le XOR selon [Duda et al 00]

Exemple

Non convexité des régions apprises

Complexité et expressivité

- Efficacité en apprentissage
 - ► En O(|w|) pour chaque passe d'apprentissage où |w| est le nombre de poids
 - ► Il faut typiquement plusieurs centaines de passes (voir plus loin)
 - Il faut typiquement recommencer plusieurs dizaines de fois un apprentissage en partant avec différentes initialisations des poids
- Efficacité en reconnaissance
 - Possibilité de temps réel

Expressivité

- Quelle influence du nombre de couches ?
- du nombre de neurones par couche ?
- ⇒ 3 couches suffises pour un apprentissage universel! Mais ...

Plan

- Réseau à deux couches
- Apprentissage dans le cas général
- 3 Exemples
- 4 Autres architectures et réseaux profonds
- Bestiaire (incomplet)

Multi-classes

Quand il faut prédire K classes

- K sorties
- Utilisation de vecteurs 1-hot : $(0,0,\ldots,1,\ldots,0)$ pour l'apprentissage
- Mise à l'échelle des sorties par softmax : $\hat{y}_i = \frac{e^{i_i}}{\sum_i^K e^{i_j}}$
- Utilisation de la cross-entropie (similaire à la négative vraissemblance) : $\sum_i y_i log(\hat{y}_i) + (1-y_i) log(1-\hat{y}_i)$.

Plan

- Réseau à deux couches
- Apprentissage dans le cas général
- Exemples
- Autres architectures et réseaux profonds
- Bestiaire (incomplet)

Réseaux convolutifs

Reconnaissance de caractères

[Duda et al 00]

Exemple

Reconnaissance de caractères (couches internes)

[Duda et al 00]

learned input-to-hidden weights

Réseaux convolutifs

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Réseaux récurrents

Pour les séquences

- L'objectif est de prédire l'élément suivant d'une séquence : (x^0, x^1, \dots, x^t)
- Hypothèse : $x^{t+1} = f(x^t, h^t)$ l'élément suivant d'une séquence dépend des éléments précédents et d'un état mémoire latent.
- Le réseau prédit pour chaque passage l'état h^t latent.
- Un autre réseau est utilisé pour "décoder" l'état mémoire en la valeur x^t associée.

32 / 36

Long Short Term Memory (LSTM) et Gated Recurrent Unit (GRU)

Deux variantes des RNNs

- Un processus de mémoire mis-à-jour automatiquement
- Permet de se "souvenir" (d'avoir une information persisente d'état en état)

Auto-encoders

Apprentissage non-supervisé

Objectif:

- apprendre une "compression" des données utile pour l'apprentissage
- $f^{-1}(f(x)) \approx x$: la sortie doit être proche de l'entrée

Intérêts:

- clustering des données
- lissage/débruitage
- visualisation
- ...

Et beaucoup d'autres

- RBMs (Restricted Boltzmann Machine)
- V.A.E. (Variational Auto-encoder)
- G.A.N. (Generative Adversial Network)
- Mécanisme d'attention
- Stochastic Unit (Reinforce, Gumbel-Softmax, Straight-Through estimator)

Vers les réseaux profonds

Problème : plus le réseau est profond plus il est dur à entraîner

- le gradient s'évapore (vanishing)
- le sur-apprentissage est très favorisé

Quelques solutions

- utiliser des architectures peu propices au sur-apprentissage (convolutives, RBM, . . .)
- Early-stopping
- Apprentissage en bruitant les données d'entrées
- ⇒ pas suffisant
 - Première passe d'apprentissage pour "bien initialiser" les couches ⇒ auto-encoders
 - Drop-out : permet de limiter le sur-apprentissage (éteindre/supprimer un nombre de neurones aléatoirement pendant l'apprentissage)
 - utilisation de fonctions d'activation spécifiques (Relu :max(0, a) et dérivées)