Elektrotechnika

II. Alaptörvények

2.1. Ohm törvény

Ohm törvény

Fogyasztó ellenállása = fogyasztón eső feszültség osztva a fogyasztón átfolyó árammal \rightarrow R = U / I

másképpen

Fogyasztón átfolyó áram erőssége egyenesen arányos a fogyasztón eső feszültséggel \rightarrow I = U / R vagy I = U * G

másképpen

Fogyasztón eső feszültség egyenesen arányos a rajta átfolyó áram erősségével → U = I * R az arányossági tényező a fogyasztó ellenállása

$$R_1 = U_1/I_1$$
 $R_2 = U_2/I_1$

$$U_1 = I_1 * R_1$$
 $U_2 = I_1 * R_2$

$$I_1 = U_1 / R_1$$
 $I_1 = U_2 / R_2$

2.2. Ohm törvény

1. mintafeladat

Soros kapcsolás esetén az áramok azonosak! → I1 = I2 = I

A fenti kapcsolásban az alábbi áramot mérjük: I = 4 mA Mennyi az ellenállásokon eső feszültség ?

Ohm törvény

$$R_1 = \frac{U_1}{I} \qquad R_2 = \frac{U_2}{I}$$

$$\downarrow \qquad \qquad \downarrow$$

$$U_1 = I * R_1 \qquad U_2 = I * R_2$$

<u>Megoldás</u>

$$U_1 = I * R_1 = 4mA * 200\Omega = 800 \text{ mV} = 0.8 \text{ V}$$

 $U_2 = I * R_2 = 4mA * 600\Omega = 2400 \text{ mV} = 2.4 \text{ V}$

2.3. Ohm törvény

2. mintafeladat

A fenti kapcsolásban az alábbi áramot és feszültségeket mérjük:

$$U_1 = 3 V$$

$$U_2 = 6 V$$

$$U_3 = 15 \text{ V}$$

$$I = 0,2 A$$

Mekkora értékűek az ellenállások?

Ohm törvény

$$R_1 = \frac{U_1}{I} \qquad R_2 = \frac{U_2}{I}$$

$$R_3 = \frac{U_3}{I}$$

Megoldás

$$R_1 = U_1 / I = 3V / 0,2A = 15 \Omega$$

$$R_2 = U_2 / I = 6V / 0.2A = 30 \Omega$$

$$R_3 = U_3 / I = 15V / 0,2A = 75 \Omega$$

2.4. Ohm törvény

3. mintafeladat

Mennyi az ellenállásokon eső feszültség? És mekkora áram folyik?

Ohm törvény

$$R_1 = \frac{U_1}{I} \qquad R_2 = \frac{U_2}{I}$$

$$R_3 = \frac{U_3}{I}$$

<u>Eredő ellenállás</u>

$$Re = R_1 + R_2 + R_3$$

Megoldás

$$R_e = R_1 + R_2 + R_3 = 1 + 3 + 6 = 10 \text{ k}\Omega$$

 $I = U_g / R_e = 20V / 10 \text{ k}\Omega = 2mA$

$$U_1 = I^* R_1 = 2mA * 1k\Omega = 2V$$

 $U_2 = I^* R_2 = 2mA * 3k\Omega = 6V$
 $U_3 = I^* R_3 = 2mA * 6k\Omega = 12V$

2.5. Kirchoff törvények

Csomóponti törvény

(Kirchoff I. törvénye)

Csomópontban az áramok előjeles összege nulla.

→ Csomópontban a befolyó áramok összege

= a kifolyó áramok összegével

Hurok törvény (Kirchoff II. törvénye) Zárt hurokban a feszültségek előjeles összege nulla.

2.6. Kirchoff törvények

4. mintafeladat

Az alábbi kapcsolásra írjunk fel csomóponti és hurok törvényeket !

csomóponti

$$l_1 - l_2 - l_4 = 0$$

vagy $l_1 = l_2 + l_4$

bal oldali hurokra

$$U_1 + U_2 + U_3 - U_g = 0$$

vagy
$$U_1 + U_2 + U_3 = U_g$$

jobb oldali hurokra

$$U_2 + U_3 - U_4 = 0$$

vagy
$$U_2 + U_3 = U_4$$

A nagy hurokra

$$U_1 + U_4 - U_9 = 0$$

2.7. Kirchoff törvények

5. mintafeladat

Csomóponti és hurok törvények segítségével számítsuk ki a hiányzó áramot és feszültségeket!

$$I = I_1 + I_3$$

$$I_1 = I - I_3 = 2 A - 0,4 A = 1,6 A$$

$$U_1 + U_2 = U_3 + U_4$$

$$U_4 = U_1 + U_2 - U_3 = 5+15 - 8 = 12 V$$

2.8. Feszültségosztás törvénye

Feszültségosztás törvénye

Soros ellenállásokon a feszültségek úgy aránylanak egymáshoz mint a megfelelő ellenállások értékei

!! ez nem csak egy-egy alkatrész esetén igaz, hanem bármely két pont között is !!!

2.9. Áramosztás törvénye

Áramosztás törvénye

Párhuzamos ágakban az áramok fordítva aránylanak egymáshoz mint az ágak ellenállásainak értékei

$$I_1/I_2 = R_2/R_1$$

Másképpen, mivel a párhuzamos ágakban a feszültség egyforma →

Ha több ellenállás van egy ágban

$$11/13 = (R3 + R4)/(R1 + R2)$$

Másképpen, mivel a párhuzamos ágakban a feszültség egyforma →

$$11 * (R1 + R2) = 13 * (R3 + R4)$$

2.10. Soros kapcsolás

6. mintafeladat

Hurok törvény

$$U_1 + U_2 + U_3 - U_9 = 0$$

Egyszerűbb megoldás feszültségosztás nélkül

$$I = U_1 / R_1 = 3V / 1 k\Omega = 3 mA$$

$$U_2 = I^* R_2 = 9V$$

 $U_3 = I^* R_3 = 18V$

$$U_1 + U_2 + U_3 = U_g$$

 $U_g = 30V$

Feszültségosztás törvénye

$$\frac{U_1}{U_2} = \frac{R_1}{R_2} \qquad \frac{U_2}{U_3} =$$

$$\frac{U_1}{U_3} = \frac{R_1}{R_3}$$

<u>Megoldás</u>

$$U_2 / U_1 = R_2 / R_1 = 3$$
 \rightarrow $U_2 = 3*U_1 = 9V$
 $U_3 / U_1 = R_3 / R_1 = 6$ \rightarrow $U_3 = 6*U_1 = 18V$

$$U_1 + U_2 + U_3 = U_9$$

 $U_9 = 30V$

$$I = U_1 / R_1 = 3V / 1 k\Omega = 3 mA$$

2.11. Párhuzamos kapcsolás

7. mintafeladat

Párhuzamos kapcsolás esetén a feszültségek azonosak ! \rightarrow U1 = U2 = U3 = U = Ug

Csomóponti törvény

$$|1 + |2 + |3 = |$$

<u>Eredő ellenállás</u>

$$Re = 1 / (1/R_1 + 1/R_2 + 1/R_3)$$

Így is lehet, de most ez bonyolultabb \rightarrow Re = 1 / (1/3 + 1/2 + 1/6) = 1 / (6/6) = 1 k Ω

Ohm törvény

$$R_1 = \frac{U_1}{I_1} \qquad R_2 = \frac{U_2}{I_2}$$

$$R3 = \frac{U3}{I3}$$

<u>Megoldás</u>

 $I_1 = U_1 / R_1 = 12/3 = 4mA$ $I_2 = U_2 / R_2 = 12/2 = 6mA$

I₃ =U₃ / R₃ = 12/6 = 2mA

 $I = I_1 + I_2 + I_3 = 12mA$

 $Re = Ug / I = 1 k\Omega$

2.12. Párhuzamos kapcsolás

8. mintafeladat

Párhuzamos kapcsolás esetén a feszültségek azonosak! → U1 = U2 = U3 = Ug

Csomóponti törvény

$$|1 + |2 + |3 = |$$

Megoldás 2. (áramosztás nélkül, egyszerűbb)

$$U_1 = U_2 = U_3 = U_g = I_1 * R_1 = 18V$$

$$I_2 = U_2 / R_2 = 18/6 = 3mA$$

 $I_3 = U_3 / R_3 = 18/18 = 1mA$

$$I = I_1 + I_2 + I_3 = 6 + 3 + 1 = 10$$
mA
Re = Ug / I = 18V / 10 mA= 1,8 k Ω

Áramosztás törvénye

$$\frac{I_2}{I_1} = \frac{R_1}{R_2} \qquad \frac{I_3}{I_2} = \frac{R_2}{R_3}$$

$$\frac{I_3}{I_1} = \frac{R_1}{R_2}$$

Megoldás 1.

$$I_2 / I_1 = R_1 / R_2 = 3/6 \rightarrow I_2 = 0,5 * I_1 = 3mA$$

 $I_3 / I_1 = R_1 / R_3 = 3/18 \rightarrow I_3 = (1/6)* I_1 = 1mA$

$$I = I1 + I2 + I3 = 6 + 3 + 1 = 10$$
mA
 $U1 = U2 = U3 = Ug = I1 * R1 = 18$ V
 $Re = Ug / I = 18$ V / 10 mA= 1,8 k Ω

2.13. Teljesítmény

1. Villamos munka

- feszültség: egységnyi töltés szétválasztásakor végzett munka, U = W / Q
- áramerősség: időegység alatt átáramló töltésmennyiség, $I = \Delta Q / \Delta t$ tehát →
- munka: $W = U * Q \rightarrow W = U * I * t$ mértékegysége: VAs (volt-amper-szekundum) vagy Ws (wattszekundum)

2. Villamos teljesítmény

- Teljesítmény: munka/idő, P = W / t

mértékegysége: VA (volt-amper)

vagy W (watt)

- számítása egyéb módon, mivel I = U / R \rightarrow $P = I^2 * R$

$$P = I^2 * R$$

$$P = U^2 / R$$

3. Terhelhetőség

- a fogyasztóknál van egy maximális teljesítmény, amelyet károsodás nélkül fel tudnak venni → maximális disszipációs teljesítmény, Pd (hővé alakul)
- Pd = Pmax → maximális feszültség/áram, (Umax ,Imax)

$$U_{max} = \sqrt{R * P_{max}} \qquad I_{max} = \sqrt{P_{max} / R}$$

1. Feladat

Számítsd ki az áramokat, feszültségeket, teljesítményeket!

2. Feladat

Számítsd ki az áramokat, feszültségeket, teljesítményeket!

3. Feladat

Számítsd ki az áramokat, feszültségeket, ellenállásokat!

4. Feladat

Számítsd ki az áramokat, ellenállásokat, feszültségeket!

1. Feladat, megoldás

Számítsd ki az áramokat, feszültségeket, teljesítményeket!

$$U_g = U_1 + U_2 + U_3 + U_4 = 24 \text{ V}$$

Megoldás:

```
Re = R1 + R2 + R3 + R4

Re = 12 k\Omega

I= Ug / Re = 24 V / 12 k\Omega = 2 mA

U1 = I * R1 = 2 mA * 3 k\Omega = 6 V

U2 = I * R2 = 2 mA * 1 k\Omega = 2 V

U3 = I * R3 = 2 mA * 6 k\Omega = 12 V

U4 = I * R4 = 2 mA * 2 k\Omega = 4 V
```

```
R1 teljesítmény felvétele: P_1 = I * U_1 = 2 \text{ mA} * 6 \text{ V} = 12 \text{ mW}
R2 teljesítmény felvétele: P_2 = I * U_2 = 2 \text{ mA} * 2 \text{ V} = 4 \text{ mW}
R3 teljesítmény felvétele: P_3 = I * U_3 = 2 \text{ mA} * 12 \text{ V} = 24 \text{ mW}
R4 teljesítmény felvétele: P_4 = I * U_4 = 2 \text{ mA} * 4 \text{ V} = 8 \text{ mW}
```

Az áramkör teljes teljesítmény felvétele (a 4db ellenállás együtt) = a generátor által leadott teljesítmény

$$P_e = P_1 + P_2 + P_3 + P_4 = 12 + 4 + 24 + 8 = 48 \text{ mW}$$

vagy
 $P_e = I * U_q = 2 \text{ mA} * 24 \text{ V} = 48 \text{ mW}$

2. Feladat, megoldás

Számítsd ki az áramokat, feszültségeket, eredő ellenállást, teljesítményeket!

Megoldás:

$$\begin{array}{l} U_1 = U_2 = U_3 = U_g \\ I_1 = U_g \, / \, R_1 = 30 \, \, \text{V} \, / \, 100 \, \, \text{k}\Omega = 0,3 \, \, \text{mA} \\ I_2 = U_g \, / \, R_2 = 30 \, \, \text{V} \, / \, 30 \, \, \text{k}\Omega = 1 \, \, \text{mA} \\ I_3 = U_g \, / \, R_3 = 30 \, \, \text{V} \, / \, 150 \, \, \text{k}\Omega = 0,2 \, \, \text{mA} \\ \\ I = I_1 + I_2 + I_3 = 1,5 \, \, \text{mA} \\ \\ R_e = U_g \, / \, I = 30 \, \, \text{V} \, / \, 1,5 \, \, \text{mA} = 20 \, \, \text{k}\Omega \end{array}$$

```
R1 teljesítmény felvétele: P_1 = U_g * I_1 = 30 V * 0,3 mA = 9 mW
R2 teljesítmény felvétele: P_2 = U_g * I_2 = 30 V * 1 mA = 30 mW
R3 teljesítmény felvétele: P_3 = U_g * I_3 = 30 V * 0,2 mA = 6 mW
```

Az áramkör teljes teljesítmény felvétele (a 3db ellenállás együtt) = a generátor által leadott teljesítmény

$$P_e = P_1 + P_2 + P_3 = 9 + 30 + 6 = 45 \text{ mW}$$

vagy
 $P_e = I * U_g = 1,5 \text{ mA} * 30 \text{ V} = 45 \text{ mW}$

3. Feladat, megoldás

Számítsd ki az áramokat, feszültségeket, ellenállásokat!

Megoldás:

 $I = U_1 / R_1 = 3 V / 1 k\Omega = 3 mA$

 $U_2 = I^* R_2 = 3 \text{ mA} * 3 \text{ k}\Omega = 9 \text{ V}$ $U_3 = I^* R_3 = 3 \text{ mA} * 6 \text{ k}\Omega = 18 \text{ V}$

$$U_4 = U_g - U_1 - U_2 - U_3$$

 $U_4 = 36 - 3 - 9 - 18 = 6 \text{ V}$

 $R_4 = U_4 / I = 6 V / 3 mA = 2 k\Omega$

4. Feladat, megoldás

Számítsd ki az áramokat, ellenállásokat, feszültségeket!

Megoldás:

 $U_1 = U_2 = U_3 = U = U_g$ $U_g = U_3 = I_3 * R_3 = 2 \text{ mA} * 27 \text{ k}\Omega = 54 \text{ V}$ $I_1 = U_g / R_1 = 54 \text{ V} / 3\text{k}\Omega = 18 \text{ mA}$

$$|1 + |2 + |3 = |$$
 \rightarrow $|2 = | - |1 - |3 = |26 - |18 - |2 = |6 mA$

$$R_2 = U_g / I_2 = 54 \text{ V} / 6 \text{ mA} = 9 \text{ k}\Omega$$

2.15. Vegyes kapcsolás

9. minta feladat

1. Megoldás:

A-B pontok között két párhuzamos ág, R_2 illetve R_1 és R_3 ellenállásokkal \rightarrow I_2 és I_1 közvetlenül számítható ($U_{AB}=U_g$) \rightarrow Ohm törvénnyel:

 $I_2 = U_g / R_2 = 30 \text{ V}/200 \Omega = 0.15 \text{ A} = 150 \text{ mA}$ $I_1 = U_g / (R_1 + R_3) = 30 \text{ V}/600 \Omega = 0.05 \text{ A} = 50 \text{ mA}$

csomóponti törvénnyel:

 $I = I_1 + I_2 = 50 \text{ mA} + 150 \text{ mA} = 200 \text{ mA}$

Ohm törvénnyel:

 $U_1 = I_1 * R_1 = 50 \text{ mA} * 100 \Omega = 5000 \text{ mV} = 5 \text{ V}$ és

 $U_3 = I_1 * R_3 = 50 \text{ mA} * 500 \Omega = 25000 \text{ mV} = 25 \text{ V}$ (vagy hurok törvénnyel \rightarrow $U_3 = U_g - U_1$)

 $Re = Ug / I = 30 V / 200 mA = 0.15 k\Omega = 150 \Omega$

2.16. Vegyes kapcsolás

9. minta feladat

2.17. Vegyes kapcsolás

10. minta feladat

Hurok törvény

Bal oldali hurokra
$$\rightarrow$$
 U1 + U2 - Uq = 0

Jobb oldali hurokra \rightarrow U3 + U4 - U2 = 0

A nagy hurokra \rightarrow U1 + U3 + U4 - Ug = 0

Megoldás:

Eredő ellenállás:

$$Re = 3 k\Omega$$

 $I_1 = U_g / R_e = 10 \text{ mA}$

$$U_1 = I_1 * R_1 = 10 \text{ mA} * 1 \text{ k}\Omega = 10 \text{ V}$$

 $U_2 = U_g - U_1 = 30 \text{ V} - 10 \text{ V} = 20 \text{ V}$
 $I_2 = U_2 / R_2 = 20 \text{ V} / 3 \text{ k}\Omega = 6,667 \text{ mA}$

$$I_3 = I_1 - I_2 = 10 \text{ mA} - 6,667 \text{ mA} = 3,333 \text{ mA}$$

 $U_3 = I_3 * R_3 = 3,333 \text{ mA} * 2 \text{ k}\Omega = 6,667 \text{ V}$
 $U_4 = I_3 * R_4 = 3,333 \text{ mA} * 4 \text{ k}\Omega = 13,333 \text{ V}$

2.18. Feladatok

Milyen csomóponti és hurok törvények írhatók fel az alábbi kapcsolásokra?

1. feladat

2. feladat

2.18. Feladatok

3. Számítsd ki az áramokat, feszültségeket, teljesítményeket!

4. Számítsd ki az áramokat, feszültségeket, teljesítményeket!

2.18. Feladatok

5. Számítsd ki az áramokat, feszültségeket!

6. Számítsd ki az áramokat, feszültségeket!

