Cours d'Analyse 2 Chapitre 2 : Intégrale définie Partie 1

Damerdji Bouharis A. Université des Sciences et de la Technologie Mohamed Boudiaf Faculté des Mathématiques et Informatique.

CHAPITRE

Intégrales définies

Introduction

Dans cette partie nous allons nous intéresser à l'intégration des fonctions définies et bornées dans un intervalle fermé [a,b] de \mathbb{R} . L'intégrale définie d'une fonction f positive et continue sur [a,b] mesure l'aire de la partie du plan comprise entre (Γ) la courbe de la fonction y=f(x), l'axe des abscisses y=0 et les droites x=a et x=b.

FIGURE 2.1 – Représentation géométrique de l'intégrale de f sur [a, b]

2.1 Sommes de Darboux

2.1.1 Subdivision d'un intervalle

Définition 2.1.1 Soit [a,b] un intervalle fermé de \mathbb{R} . On appelle subdivision de l'intervalle [a,b], toute suite finie de nombres $d = \{x_0, x_1, ..., x_n\}$ telle que :

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

On appelle le pas de cette subdivision le nombre réel positif noté

$$\delta(d) = \max_{1 \le i \le n} (x_i - x_{i-1}).$$

2.1.2 Sommes de Darboux

Soit $f:[a,b]\to\mathbb{R}$ une fonction bornée et soit $d=\{x_0,x_1,...,x_n\}$ une subdivision de [a,b]. On pose :

$$M_{i} = \sup_{x \in [x_{i-1}, x_{i}]} f(x)$$
 et $m_{i} = \inf_{x \in [x_{i-1}, x_{i}]} f(x), \forall i = 1, ..., n.$

On considère

$$s(f,d) = \sum_{i=1}^{n} m_i (x_i - x_{i-1}) \text{ et } S(f,d) = \sum_{i=1}^{n} M_i (x_i - x_{i-1}).$$

Ces deux sommes sont dites sommes de Darboux, respectivement inférieure et supérieure de f relativement à la subdivision à d.

Propriétés 2 (des sommes de Darboux) 1. Pour toute subdivision d de [a, b] :

$$s(f,d) \leq S(f,d)$$
.

- 2. Si d et d' sont deux subdivisions de [a,b], tels que $d \subset d'$ (d' est dite plus fine que d), alors
 - (a) $s(f,d) \le s(f,d')$,
 - (b) S(f, d') < S(f, d).
- 3. Si d_1 et d_2 sont deux subdivisions quelconques de [a,b], alors

$$s\left(f,d_{1}\right)\leq S\left(f,d_{2}\right).$$

4. Si
$$m = \inf_{x \in [a,b]} f(x)$$
 et $M = \sup_{x \in [a,b]} f(x)$, alors

$$m(b-a) \le s(f,d) \le S(f,d) \le M(b-a)$$

FIGURE 2.2 – Sommes de Darboux

Notation 2.1.2 A chaque fonction f définie et bornée sur [a,b], on associe l'ensemble $D_*(f)$ (respectivement $D^*(f)$), constitué de toutes les sommes de Darboux infèrieures (respectivement supèrieures), obtenues de toutes les subdivisions de [a,b].

Proposition 2.1.3 On a

$$\sup D_*(f) \le \inf D^*(f). \tag{2.1}$$

Damerdji Bouharis A. USTO MB

Preuve:

L'ensemble $D^*(f)$ est non vide et minoré, donc admet une borne infèrieure et l'ensemble $D_*(f)$ est non vide et majoré, donc admet une borne supèrieure. Soient d_1 et d_2 sont deux subdivisions quelconques de $[a,b]: s(f,d_1) \in D_*(f)$ et $S(f,d_2) \in D^*(f)$, on a alors $s(f,d_1) \leq S(f,d_2)$, d'où $S(f,d_2)$ est un majorant de $D_*(f)$, donc sup $D_*(f) \leq S(f,d_2)$, car sup $D_*(f)$ est le plus petit des majorants de $D_*(f)$, alors sup $D_*(f)$ est un minorant de $D^*(f)$ donc sup $D_*(f) \leq \inf D^*(f)$ car inf $D^*(f)$ est le plus grand des minorants de $D^*(f)$.

Notation 2.1.4 On note

$$\sup D_*(f) = \int_{*a}^b f(x)dx$$

et on l'appelle intégrale infèrieure de f sur [a, b] et on note

$$\inf D^*(f) = \int_a^{*b} f(x)dx$$

et on l'appelle intégrale supèrieure de f sur [a, b].

Corollaire 2.1.5 On a

$$\int_{*a}^{b} f(x)dx \le \int_{a}^{*b} f(x)dx$$

2.2 Fonctions intégrables

Définition 2.2.1 Soit $f : [a, b] \to R$ une fonction bornée, on dit que f est intégrable au sens de Riemann sur [a, b], si :

$$\int_{a}^{b} f(x)dx = \int_{a}^{*b} f(x)dx = \int_{a}^{b} f(x)dx.$$

cette intégrale est appelée intégrale définie de f sur [a,b], a et b sont appelés les bornes d'intégration, x est une variable dite "muette". Le nombre $\int\limits_a^b f(x)\,dx$ ne dépend pas de x, il dépend de a et de b

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(y) dy = \int_{a}^{b} f(t) dt.$$

Notation On note par R([a,b]) l'ensemble des fonctions intégrables sur [a,b].

Théorème 2.2.2 (de Darboux) Soit $f : [a,b] \to R$ une fonction bornée; pour que f soit (Riemann)-intégrable; il faut et il suffit que :

 $\forall \varepsilon > 0, \exists d \text{ subdivision de } [a, b] \text{ telle que } S(f, d) - s(f, d) < \varepsilon.$

Preuve:

La condition est nécessaire en effet, supposons que f est intégrable sur [a, b] alors

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx$$

c'est à dire que

$$\sup D_*(f) = \inf D^*(f) = \int_a^b f(x)dx$$

alors pour tout $\varepsilon > 0$, il existe deux subdivisions d' et d'' de [a, b] telles que :

$$\int_{a}^{b} f(x)dx - \frac{\varepsilon}{2} < s(f, d')$$
(2.2)

et

$$S(f, d'') < \int_{a}^{b} f(x)dx + \frac{\varepsilon}{2}$$
 (2.3)

d'où

$$S(f, d'') - \frac{\varepsilon}{2} < \int_{a}^{b} f(x)dx < s(f, d') + \frac{\varepsilon}{2}$$

$$\Rightarrow S(f, d'') - s(f, d') < \varepsilon.$$

La condition est suffisante d'après ce qui précède, en effet, supposons que pour tout $\varepsilon > 0$, il existe une subdivision d de [a,b] telle que

$$S(f,d) - s(f,d) < \varepsilon$$

alors on a

$$S(f,d) - \varepsilon < s(f,d) < S(f,d)$$

donc $S(f, d) = \sup D_*(f)$ et on a

$$s(f,d) < S(f,d) < s(f,d) + \varepsilon$$

donc $s(f, d) = \inf D^*(f)$, d'où

$$\inf D^*(f) \le \sup D_*(f)$$

et d'après (2.1), on a sup $D_*(f) \leq \inf D^*(f)$, par conséquent,

$$\inf D^*(f) = \sup D_*(f)$$

d'où f est intégrable car

$$\int_{*a}^{b} f(x)dx = \int_{a}^{*b} f(x)dx.$$

Théorème 2.2.3 Soit $f:[a,b] \to R$ une fonction bornée; alors

$$\int_{*a}^{b} f(x)dx = \lim_{\delta(d) \to 0} s(f, d)$$

et

$$\int_{a}^{*b} f(x)dx = \lim_{\delta(d) \to 0} S(f, d)$$

Corollaire 2.2.4 Etant donnée $\{d_n\}_{n\in\mathbb{N}}$ une suite de subdivisions de l'intervalle [a,b], telles que $\lim_{n\to+\infty} \delta(d_n) = 0$, alors

$$\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} s(f, d_n)$$

et

$$\int_{-\infty}^{*b} f(x)dx = \lim_{n \to +\infty} S(f, d_n)$$

en particulier, si f est intégrable sur [a,b], alors on a

$$\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} s(f, d_n) = \lim_{n \to +\infty} S(f, d_n).$$

Remarque : Pour que l'intégrabilité de la fonction f sur [a,b] soit exprimée par les sommes de Darboux, on doit considérer une subdivision d de [a,b] dont le pas $\delta(d)$ tend vers zéro.

Exemples 2.2.5 1. Etant donnée la fonction f définie sur [a,b] par f(x)=2, $\forall x \in [a,b]$ et soit $d=\{x_0,x_1,...,x_n\}$ une subdivision de [a,b] dont le pas $\delta(d)$ tend vers zéro, alors on a

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x) = 2 = \inf_{x \in [x_{i-1}, x_i]} f(x) = m_i, \forall i = 1, ..., n$$

et donc

$$s(f,d) = S(f,d) = 2\sum_{i=1}^{n} (x_i - x_{i-1}) = 2(b-a).$$

d'où

$$D^*(f) = D_*(f) = \{2(b-a)\}\$$

alors f est intégrable sur [a, b] car

$$\sup D_*(f) = \inf D^*(f) = \int_a^b f(x) \, dx = 2(b-a).$$

2. Soient $a, b \in \mathbb{R}$, tels que a < b et la fonction de Dirichlet f définie sur [a, b] par

$$f(x) = \begin{cases} 1 & si \quad x \in \mathbb{Q}, \\ 0 & si \ x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$$

soit $d = \{x_0, x_1, ..., x_n\}$ une subdivision de [a, b] dont le pas $\delta(d)$ tend vers zéro, alors on $a \forall i = 1, ..., n$

$$M_{i} = \sup_{x \in [x_{i-1}, x_{i}]} f(x) = 1,$$

$$m_{i} = \inf_{x \in [x_{i-1}, x_{i}]} f(x) = 0,$$

donc

$$s(f,d) = 0 \sum_{i=1}^{n} (x_i - x_{i-1}) = 0,$$

$$S(f,d) = \sum_{i=1}^{n} (x_i - x_{i-1}) = (b-a),$$

d'où

$$D^*(f) = \{(b-a)\},\$$

 $D_*(f) = \{0\}$

alors

$$\sup D_*(f) = 0$$

inf $D^*(f) = (b - a)$.

 $par\ cons\'equent\ la\ fonction\ f\ n'est\ pas\ int\'egrable\ sur\ [a,b].$

2.3 Sommes de Riemann

2.3.1 Sommes de Riemann

Définition 2.3.1 Soit $f:[a,b] \to R$, une fonction bornée et $d=\{x_0,x_1,...,x_n\}$ une subdivision de [a,b] et soient $\xi_1,\xi_2,...,\xi_n$ des nombres réels tels que :

 $\xi_i \in [x_{i-1}, x_i], \ \forall i = 1, 2, \dots, n, \ alors \ le \ nombre$

$$\sigma(f, d) = \sum_{i=1}^{n} (x_i - x_{i-1}) f(\xi_i)$$

est appelé **somme de Riemann** de f correspondant à d et au système de points $\xi = (\xi_1, \xi_2, \dots, \xi_n)$.

FIGURE 2.3 – Sommes de Riemann

Théorème 2.3.2 Si f est intégrable sur [a,b] alors :

$$\int_{a}^{b} f(x) dx = \lim_{\delta(d) \to 0} \sigma(f, d).$$

Remarque : On peut prendre ξ_i l'une des bornes des intervalles $[x_{i-1}, x_i]$, par exemple $\xi_i = x_i$. D'où

$$\sigma(f, d) = \sum_{i=1}^{n} (x_i - x_{i-1}) f(x_i).$$

2.3.2 Subdivision régulière

Définition 2.3.3 Une subdivision régulière $d_n = \{x_0, x_1, ..., x_n\}$ de l'intervalle [a, b] est une subdivision telle que tous les intervalles partiels sont de longueur égale, et on a

$$\begin{cases} x_i = a + \frac{i}{n} (b - a) \\ x_i - x_{i-1} = \frac{b-a}{n} \end{cases}, \forall i = 1, .., n.$$

D'où

$$\delta(d_n) = \frac{b-a}{n} \Rightarrow \lim_{n \to +\infty} \delta(d_n) = 0,$$

Par conséquent, si f est intégrable sur [a, b] alors :

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \frac{(b-a)}{n} \sum_{i=1}^{n} f(x_i) = \lim_{n \to +\infty} \frac{(b-a)}{n} \sum_{i=1}^{n} f\left(a + \frac{i}{n}(b-a)\right)$$
(2.4)

en effet,

$$\int_{a}^{b} f(x) dx = \lim_{\delta(d_n) \to 0} \sigma(f, d_n) = \lim_{n \to +\infty} \sum_{i=1}^{n} (x_i - x_{i-1}) f(x_i) = \lim_{n \to +\infty} \frac{(b-a)}{n} \sum_{i=1}^{n} f(x_i)$$

d'où

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \frac{(b-a)}{n} \sum_{i=1}^{n} f\left(a + \frac{i}{n}(b-a)\right).$$

2.4 Propriétés de l'intégrale définie

On considère $f:[a,b]\to\mathbb{R}$ une fonction bornée.

Théorème 2.4.1 Si f est continue sur [a,b] alors f est intégrable sur [a,b].

Preuve:

Si f est continue sur [a, b] alors f est uniformément continue sur [a, b], donc pour tout $\varepsilon > 0$, il existe $\alpha > 0$, tel que

$$\forall x_1, x_2 \in [a, b] / |x_1 - x_2| < \alpha \Rightarrow |f(x_1) - f(x_2)| < \frac{\varepsilon}{b - a}$$

alors pour toute subdivision d vérifiant $\delta(d) < \alpha$, en particulier la subdivision régulière où $\delta(d) = \frac{b-a}{n}$, on a

$$\forall \varepsilon > 0, \exists n \in \mathbb{N}^* \text{ tel que } \forall x_1, x_2 \in [a, b] : \left(|x_1 - x_2| < \frac{b - a}{n} \Rightarrow |f(x_1) - f(x_2)| < \frac{\varepsilon}{b - a} \right)$$

en particulier pour $\alpha_i, \beta_i \in [x_{i-1}, x_i]$, tel que $f(\alpha_i) = M_i = \sup_{x \in [x_{i-1}, x_i]} f(x), f(\beta_i) = \max_{x \in [x_{i-1}, x_i]} f(x)$

$$m_{i}=\underset{x\in\left[x_{i-1},x_{i}\right]}{\inf}f\left(x\right),$$
d'où on a

$$|\alpha_i - \beta_i| < \frac{b-a}{n} \implies |f(\alpha_i) - f(\beta_i)| < \frac{\varepsilon}{(b-a)}$$

 $\Rightarrow M_i - m_i < \frac{\varepsilon}{(b-a)}$

alors

$$(M_i - m_i) \frac{b - a}{n} < \frac{\varepsilon}{n} \Rightarrow \sum_{i=1}^n (M_i - m_i) \frac{b - a}{n} < \varepsilon$$

donc

$$S(f,d) - s(f,d) < \varepsilon$$

par conséquent f est intégrable sur [a, b].

Définition 2.4.2 Une fonction $f:[a,b] \to \mathbb{R}$ est dite continue par morceaux s'il existe un entier n et une subdivision $\{x_0,...,x_n\}$ telle que f soit continue sur chaque intervalle partiel $]x_{i-1},x_i[$, et admette une limite finie à droite de x_{i-1} et une limite finie à gauche de x_i pour tout $i \in \{1,...,n\}$.

Corollaire 2.4.3 Les fonctions continues par morceaux sont intégrables.

Théorème 2.4.4 Si la fonction $f : [a, b] \to \mathbb{R}$ est monotone sur [a, b]. alors f est intégrable sur [a, b].

Preuve:

On suppose que f est croissante sur [a,b], et on considère d la subdivision régulière sur [a,b], alors on a $m_i = f(x_{i-1})$ et $M_i = f(x_i)$, $\forall i = 1,...,n$, d'où

$$S(f,d) - s(f,d) = \sum_{i=1}^{n} (M_i - m_i) \frac{b-a}{n}$$

$$= \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \frac{b-a}{n}$$

$$= \frac{b-a}{n} \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))$$

$$= \frac{b-a}{n} (f(b) - f(a))$$

donc pour que f soit intégrable sur [a, b], il suffit de choisir d telle que

$$n > \frac{\left(f\left(b\right) - f\left(a\right)\right)\left(b - a\right)}{\varepsilon}.$$

Proposition 2.4.5 Si la fonction $f : [a,b] \to \mathbb{R}$ est intégrable alors la restriction de f à tout intervalle $[c,d] \subset [a,b]$ est encore intégrable.

Proposition 2.4.6 Si f et g sont deux fonctions bornées et définies de [a,b] dans \mathbb{R} , telles que f est intégrable sur [a,b] et l'ensemble $\{x \in [a,b] / f(x) \neq g(x)\}$ est fini alors la fonction g est intégrable sur [a,b] et $\int_a^b f(x)dx = \int_a^b g(x)dx$.

Exemple 2.4.7 Calculer les intégrales suivantes, en utilisant les sommes de Riemann

1.
$$I = \int_{1}^{3} \alpha dx$$
, $où \alpha \in \mathbb{R}^*$.

On pose $f(x) = \alpha$ (fonction constante) sur l'intervalle [1,3] et on considère la subdivision régulière $d = \{x_0, x_1, ..., x_n\}$ de [1,3], d'où on a

$$\begin{cases} x_i = 1 + \frac{2i}{n} \\ x_i - x_{i-1} = \frac{2}{n} \end{cases}, \forall i = 1, ..., n ,$$

d'où

$$f(x_i) = f\left(1 + \frac{2i}{n}\right) = \alpha, \forall i = 1, ..., n.$$

f est continue sur [1,3] alors f est intégrable sur $[1,3]\,,$ alors d'après (2.4) on a

$$\int_{1}^{3} \alpha . dx = \lim_{n \to +\infty} \frac{2}{n} \sum_{i=1}^{n} \alpha = \lim_{n \to +\infty} \frac{2}{n} (n\alpha) = 2\alpha.$$

$$2. I = \int_{0}^{1} x dx.$$

On pose f(x) = x sur l'intervalle [0,1] et on considère la subdivision régulière $d = \{x_0, x_1, ..., x_n\}$ de [0,1], d'où :

$$\begin{cases} x_i = \frac{i}{n} \\ x_i - x_{i-1} = \frac{1}{n} \end{cases}, \forall i = 1, ..., n ,$$

d'où

$$f(x_i) = f\left(\frac{i}{n}\right) = \frac{i}{n}, \forall i = 1, ..., n.$$

f est continue sur [0,1] alors f est intégrable sur $[0,1]\,,$ donc d'après (2.4) on a

$$\int_{0}^{1} x dx = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} \frac{i}{n} = \lim_{n \to +\infty} \frac{1}{n^{2}} \sum_{i=1}^{n} i = \lim_{n \to +\infty} \frac{n(n+1)}{2n^{2}} = \frac{1}{2}.$$

2.4.1 Propriétés

1. Soit $f \in R([a,b])$ i.e., une fonction intégrable sur [a,b] alors

(a)
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
.

(b)
$$\int_{a}^{a} f(x) dx = 0.$$

2. Relation de Chasles

Soient a, b et c trois réels tels que a < c < b. Si f est intégrable sur [a, b], alors f est intégrable sur [a, c] et sur [c, b]. Et on a

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

3. Soit f une fonction intégrable sur [a, b], telle que $f(x) \ge 0, \forall x \in [a, b]$ alors :

$$\int_{a}^{b} f(x) \, dx \ge 0.$$

4. Soient f et g deux fonctions intégrables sur [a, b], telles que $f(x) \leq g(x)$, $\forall x \in [a, b]$ alors :

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

- 5. Soient f et g deux fonctions intégrables sur [a, b], alors
 - (a) Pour tout $\alpha, \beta \in \mathbb{R}$, la fonction $\alpha f + \beta g$ est intégrable sur [a, b] et on a

$$\int_{a}^{b} \left[\alpha f(x) + \beta g(x)\right] dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

(b) La fonction f.g est intégrable sur [a, b], mais en général

$$\int_{a}^{b} \left[f(x) \cdot g(x) \right] dx \neq \left(\int_{a}^{b} f(x) dx \right) \cdot \left(\int_{a}^{b} g(x) dx \right).$$

Contre-exemple

On a
$$\int_{1}^{2} x e^{x} dx = [e^{x} (x - 1)]_{1}^{2} = e^{2}$$
,
par contre $\int_{1}^{2} x dx = \frac{1}{2} [x^{2}]_{1}^{2} = \frac{3}{2} \text{ et } \int_{1}^{2} e^{x} dx = [e^{x}]_{1}^{2} = e^{2} - e$
alors $\left(\int_{1}^{2} x dx\right) \left(\int_{1}^{2} e^{x} dx\right) = \frac{3}{2} (e^{2} - e)$.

6. Soit f une fonction intégrable sur [a,b] alors |f| est intégrable sur [a,b], et on a :

(a)

$$\left| \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} |f(x)| \, dx.$$

(b) Soit g une fonction intégrable sur [a, b] alors

$$\left| \int_{a}^{b} f(x) g(x) dx \right| \leq \sup_{x \in [a,b]} |f(x)| \int_{a}^{b} |g(x)| dx$$
$$\leq c \sup_{x \in [a,b]} |f(x)|.$$

7. Si $f(x) = 0, \forall x \in [a, b]$ alors

$$\int_{a}^{b} f(x) \, dx = 0.$$

(la réciproque est fausse.)

Contre-exemple

On a
$$f(x) = x$$
 sur $[-1, 1]$ et $\int_{-1}^{1} f(x) dx = 0$.

8. Si f est continue sur [a, b] et

$$f(x) \ge 0, \forall x \in [a, b] \ et \int_{a}^{b} f(x) dx = 0,$$

alors

$$f(x) = 0, \forall x \in [a, b].$$

9. Soit f une fonction intégrable sur [a,b], telle que

$$m \le f(x) \le M, \forall x \in [a, b],$$

alors

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a).$$

Preuve:

1. (a) On considère une subdivision régulière $d_n = \{x_0, x_1, ..., x_n\}$ de l'intervalle [a, b], comme f est intégrable sur [a, b] alors

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \frac{(b-a)}{n} \sum_{i=1}^{n} f(x_i) = -\lim_{n \to +\infty} \frac{(a-b)}{n} \sum_{i=1}^{n} f(x_i) = -\int_{b}^{a} f(x) dx.$$

(b)
$$\int_{a}^{a} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{a} f(x) dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} f(x) dx = 0.$$

2. Soient a, b et c trois réels tels que a < c < b. Si f est intégrable sur [a, b], alors f est intégrable sur [a, c] et sur [c, b]. On considère une subdivision $d_n = \{x_0, x_1, .x_{j-1}, c, x_{j+1}..., x_n\}$ de l'intervalle [a, b] telle que son pas $\delta(d_n)$ tende vers 0, on a

$$\int_{a}^{b} f(x) dx = \lim_{\delta(d_{n}) \to 0} \sum_{i=1}^{n} f(x_{i}) (x_{i} - x_{i-1})$$

$$= \lim_{\delta(d_{n}) \to 0} \sum_{i=1}^{j-1} f(x_{i}) (x_{i} - x_{i-1}) + f(c) (c - x_{j-1})$$

$$+ f(x_{j+1}) (x_{j+1} - c) + \sum_{i=j+1}^{n} f(x_{i}) (x_{i} - x_{i-1})$$

$$= \lim_{\delta(d_{n}) \to 0} \left[\left(\sum_{i=1}^{j-1} f(x_{i}) (x_{i} - x_{i-1}) \right) + f(c) (c - x_{j-1}) \right]$$

$$+ \lim_{\delta(d_{n}) \to 0} \left[f(x_{j+1}) (x_{j+1} - c) + \left(\sum_{i=j+1}^{n} f(x_{i}) (x_{i} - x_{i-1}) \right) \right]$$

$$= \int_{c}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

9. Si on a

$$m < f(x) < M, \forall x \in [a, b],$$

alors

$$m \leq f(x_{i}) \leq M, \forall x_{i} \in [a, b]$$

$$\Rightarrow m(x_{i} - x_{i-1}) \leq f(x_{i})(x_{i} - x_{i-1}) \leq M(x_{i} - x_{i-1}), \forall i = 1, ..., n$$

$$\Rightarrow m \sum_{i=1}^{n} (x_{i} - x_{i-1}) \leq \sum_{i=1}^{n} f(x_{i})(x_{i} - x_{i-1}) \leq M \sum_{i=1}^{n} (x_{i} - x_{i-1})$$

$$\Rightarrow m(b - a) \leq \lim_{n \to +\infty} \sum_{i=1}^{n} f(x_{i})(x_{i} - x_{i-1}) \leq M(b - a)$$

d'où

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a).$$

2.4.2 Théorème de la moyenne

Théorème 2.4.8 Soient $f, g \in R([a,b])$, g ayant un signe constant sur [a,b], alors il existe un nombre réel $\mu \in [m,M]$, où $m = \inf_{x \in [a,b]} f(x)$ et $M = \sup_{x \in [a,b]} f(x)$,

tel que:

$$\int_{a}^{b} f(x) g(x) dx = \mu \int_{a}^{b} g(x) dx.$$

Si de plus f est continue sur [a,b], alors il existe $\xi \in [a,b]$ tel que : $\mu = f(\xi)$.

Preuve:

On suppose que $g(x) \ge 0, \forall x \in [a, b]$.

Si $\int_{a}^{b} g(x) dx = 0$ alors d'après la propriété 6.b, on a

$$\left| \int_{a}^{b} f(x) g(x) dx \right| \leq \sup_{x \in [a,b]} |f(x)| \int_{a}^{b} |g(x)| dx$$

alors $\int_{a}^{b} f(x) g(x) dx = 0$ et dans ce cas μ peut être quelconque.

Et si $\int_{a}^{b} g(x) dx > 0$ alors on a $\forall x \in [a, b]$

$$m \leq f\left(x\right) \leq M \Rightarrow mg\left(x\right) \leq f\left(x\right)g\left(x\right) \leq Mg\left(x\right)$$

alors d'après la propriété 9

$$m \int_{a}^{b} g(x) dx \le \int_{a}^{b} f(x) g(x) dx \le M \int_{a}^{b} g(x) dx$$

ce qui implique que

$$m \le \frac{\int_{a}^{b} f(x) g(x) dx}{\int_{a}^{b} g(x) dx} \le M$$

alors il existe $\mu \in [m, M]$, tel que

$$\mu = \frac{\int_{a}^{b} f(x) g(x) dx}{\int_{a}^{b} g(x) dx} \Leftrightarrow \int_{a}^{b} f(x) g(x) dx = \mu \int_{a}^{b} g(x) dx.$$

Si de plus f est continue sur [a,b] alors elle atteint toutes les valeurs comprises entre m et M d'où

$$\exists \xi \in [a, b] \text{ telque } \mu = f(\xi).$$

Corollaire 2.4.9 Si f est continue sur [a, b] alors

$$\exists \xi \in [a, b], \frac{1}{b - a} \int_{a}^{b} f(x) dx = f(\xi).$$

Exemple 2.4.10 Soit l'intégrale

$$I = \int_{0}^{\pi} \sin^2 x dx$$

en appliquant le théorème de la moyenne, montrer qu'il existe un nombre réel $\mu \in [-1,1]$, tel que

$$I = \mu \int_{0}^{\pi} \sin x dx$$

puis calculer sa valeur.

Solution

On pose $f(x) = g(x) = \sin x$, on remarque que $g(x) \ge 0, \forall x \in [0, \pi]$, et que

$$\inf_{x \in [0,\pi]} f(x) = -1, \sup_{x \in [0,\pi]} f(x) = 1$$

alors d'après le théorème de la moyenne, il existe $\mu \in [-1,1]$ tel que

$$\int_{0}^{\pi} \sin^2 x dx = \mu \int_{0}^{\pi} \sin x dx$$

Et en utilisant la linéarisation, on $a \sin^2 x = \frac{1}{2} (1 - \cos 2x)$ alors

$$\int_{0}^{\pi} \sin^{2} x dx = \frac{1}{2} \int_{0}^{\pi} (1 - \cos 2x) dx$$
$$= \frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]_{0}^{\pi} = \frac{\pi}{2}$$

et

$$\int_{0}^{\pi} \sin x dx = [-\cos x]_{0}^{\pi} = 2$$

d'où

$$\mu = \frac{\pi}{4}.$$

2.5 Exemples d'application

En utilisant les sommes de Riemann d'une fonction à déterminer, calculer les limites suivantes :

1.
$$l_1 = \lim_{n \to +\infty} \sum_{i=1}^{n} \frac{n}{n^2 + i^2}$$
,

2.
$$l_2 = \lim_{n \to +\infty} \sum_{i=1}^{n} \frac{\ln(i+n) - \ln n}{i+n},$$

3.
$$l_3 = \lim_{n \to +\infty} \sum_{i=1}^n \frac{1}{n} \tan\left(\frac{i\pi}{6n}\right)$$
.

On considère la subdivision régulière $d_n = \{x_0, x_1, ..., x_n\}$ de l'intervalle [a, b] telle que

$$\begin{cases} x_i = a + \frac{i(b-a)}{n} \\ x_i - x_{i-1} = \frac{b-a}{n} \end{cases}, \forall i = 1, ..., n.$$

Comme la somme de Riemann est telle que

$$\sigma(f, d_n) = \frac{(b-a)}{n} \sum_{i=1}^{n} f(x_i) = \frac{(b-a)}{n} \sum_{i=1}^{n} f\left(a + \frac{i}{n}(b-a)\right)$$
(2.5)

et si la fonction est intégrable sur [a, b] alors on a

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \frac{(b-a)}{n} \sum_{i=1}^{n} f(x_i)$$
(2.6)

1.

$$l_1 = \lim_{n \to +\infty} \sum_{i=1}^{n} \frac{n}{n^2 + i^2} = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + \left(\frac{i}{n}\right)^2}$$

et donc par analogie avec (2.6), on pose $\forall i = 1, ..., n$

$$f(x_i) = \frac{1}{1 + \left(\frac{i}{n}\right)^2},$$

$$x_i = \frac{i}{n} = 0 + \frac{i}{n}.1 \Rightarrow a = 0 \text{ et } b = 1$$

alors

$$f(x_i) = \frac{1}{1 + (x_i)^2}, \forall i = 1, ..., n$$

d'où

$$f\left(x\right) = \frac{1}{1+x^2}.$$

f est continue sur [0,1] alors f est intégrable sur [0,1], et donc on a

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\left(\frac{i}{n}\right)^{2}} = l_{1}$$

d'où

$$l_1 = \int_0^1 \frac{1}{1+x^2} dx = [\arctan x]_0^1 = \frac{\pi}{4}.$$

2.

$$l_2 = \lim_{n \to +\infty} \sum_{i=1}^n \frac{\ln(i+n) - \ln n}{i+n}$$
$$= \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n \frac{\ln\left(\frac{i+n}{n}\right)}{\frac{i}{n} + 1}$$
$$= \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n \frac{\ln\left(\frac{i}{n} + 1\right)}{\frac{i}{n} + 1}$$

et donc par analogie avec (2.6), on pose $\forall i = 1, ..., n$

$$f(x_i) = \frac{\ln\left(\frac{i}{n} + 1\right)}{\frac{i}{n} + 1},$$
$$x_i = \frac{i}{n} + 1 \Rightarrow a = 1 \text{ et } b = 2$$

alors

$$f(x_i) = \frac{\ln(x_i)}{x_i}, \forall i = 1, ..., n$$

d'où

$$f\left(x\right) = \frac{\ln x}{x}.$$

f est continue sur [1,2] alors f est intégrable sur [1,2], et donc on a

$$\int_{1}^{2} \frac{\ln x}{x} dx = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\ln \left(\frac{i}{n} + 1\right)}{\frac{i}{n} + 1} = l_{2}.$$

d'où

$$l_2 = \int_1^2 \frac{\ln x}{x} dx.$$

On fait un changement de variables,

$$t = \ln x \Rightarrow dt = \frac{dx}{r}$$

et d'où

$$l_2 = \int_{0}^{\ln 2} t dt = \left[\frac{t^2}{2}\right]_{0}^{\ln 2} = \frac{(\ln 2)^2}{2}.$$

Analyse 2

3.

$$l_3 = \lim_{n \to +\infty} \sum_{i=1}^n \frac{1}{n} \tan\left(\frac{i\pi}{6n}\right) = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n \tan\left(\frac{i\pi}{6n}\right)$$

et donc par analogie avec (2.6), on pose $\forall i = 1, ..., n$

$$f(x_i) = \tan\left(\frac{i\pi}{6n}\right),$$

 $x_i = \frac{i\pi}{6n} \Rightarrow a = 0 \text{ et } b = \frac{\pi}{6}$

alors

$$f(x_i) = \tan x_i, \forall i = 1, ..., n$$

d'où

$$f(x) = \tan x$$
.

f est continue sur $\left[0,\frac{\pi}{6}\right]$ alors f est intégrable sur $\left[0,\frac{\pi}{6}\right]$, et donc on a

$$\int_{0}^{\frac{\pi}{6}} \tan x \, dx = \lim_{n \to +\infty} \frac{\pi}{6n} \sum_{i=1}^{n} \tan \left(\frac{i\pi}{6n} \right)$$
$$= \frac{\pi}{6} \left(\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} \tan \left(\frac{i\pi}{6n} \right) \right) = \frac{\pi}{6} l_3,$$

d'où

$$l_3 = \frac{6}{\pi} \int_{0}^{\frac{\pi}{6}} \frac{\sin x}{\cos x} dx.$$

On fait un changement de variables,

$$t = \cos x \Rightarrow dt = -\sin x dx$$

pour les bornes

$$x = 0 \Rightarrow t = 1$$
$$x = \frac{\pi}{6} \Rightarrow t = \frac{\sqrt{3}}{2}$$

et d'où

$$l_3 = \frac{-6}{\pi} \int_{1}^{\frac{\sqrt{3}}{2}} \frac{dt}{t} = \frac{-6}{\pi} \left[\ln t \right]_{1}^{\frac{\sqrt{3}}{2}} = \frac{6}{\pi} \ln \left(\frac{2}{\sqrt{3}} \right).$$

On remarque ici que ce n'est pas l'unique choix, on pourrait aussi prendre :

(a)
$$x_i = \frac{i}{6n} \Rightarrow a = 0, b = \frac{1}{6} \text{ et } f(x) = \tan \pi x,$$

ou bien

(b)
$$x_i = \frac{i\pi}{n} \Rightarrow a = 0, b = \pi \text{ et } f(x) = \tan \frac{x}{6},$$

ou bien

(c)
$$x_i = \frac{i}{n} \Rightarrow a = 0, b = 1 \text{ et } f(x) = \tan\left(\frac{\pi x}{6}\right).$$

Tous les choix donnent évidemment le même résultat c'est à dire la même valeur de l'intégrale - à faire comme exercice -.