

3. ggplot2 그래픽 패키지

② 더 다양한 시각화 https://plot.ly/r/

plotly는 Interactive 그래프를 그려주는 라이브러리입니다 Scala, R, Python, Javascript, MATLAB 등에서 사용할 수 있습니다 시각화를 위해 D3.js를 사용하고 있습니다 사용해보면 사용이 쉽고, 세련된 느낌을 받습니다

② 더 다양한 시각화 http://www.ggplot2-exts.org/gallery/

cheatsheat (치트키?) 구글에서 ggplot2 cheatsheat를 검색해 보자

Data Visualization with ggplot2

Cheat Sheet

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms-visual marks that represent data points.

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and v locations.

Complete the template below to build a graph.

ggplot(data = mpg, aes(x = ctv, y = hwv))

Graphical Primitives Two Variables a <- ggplot(economics, aes(date, unemploy)) Continuous X. Continuous Y **Continuous Bivariate Distribution**

Discrete X, Discrete Y

state = tolower(rownames(USArrests))) man <- man_data("state")

1. 평면 세팅

ggplot(data = , aes(x = , y =))

주요 함수

ggplot(data = 데이터 셋명) : 데이터를 불러오는 역할

mapping = aes(x = , y =) : x축, y축의 꾸미기로 사용한다

geom_function(): 어떤 그래프를 그릴지 정하는 함수

mapping = aes(항목1=값1, 항목2=값2)

: geom_function() 의 옵션으로 꾸미기로 사용한다.

position(x, y), color(색상), fill(채우기), shape(모양), linetype(선 형태), size(크기) 등

산점도 - 변수 간 관계 표현하기

```
# ggplot2 패키지 설치하기
install.packages("ggplot2")
library(ggplot2)
```

- 1. R 시각화 패키지인 ggplot2 패키지 설치
- 2. library(ggplot2)로 패키지 로드하기

```
# 1단계 배경설정(축)
ggplot(data=mpg, aes(x = displ, y = hwy))

# 배경에 산점도 추가
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point()

# x축 범위 3~6으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6)

# x축 범위 3~6, y축 범위 10~30으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6) + ylim(10,30)
```

ggplot(diamonds, aes(x = , y =))


```
# ggplot2 패키지 설치하기
install.packages("ggplot2")
library(ggplot2)
                                                         30 -
# 1단계 배경설정(축)
ggplot(data=mpg, aes(x = displ, y = hwy))
                                                         20 -
# 배경에 산점도 추가
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point()
# x축 범위 3~6으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6)
# x축 범위 3~6, y축 범위 10~30으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6) + ylim(10,30)
```

+ geom_point()


```
# ggplot2 패키지 설치하기
install.packages("ggplot2")
library(ggplot2)
# 1단계 배경설정(축)
ggplot(data=mpg, aes(x = displ, y = hwy))
# 배경에 산점도 추가
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point()
# x축 범위 3~6으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6)
# x축 범위 3~6, y축 범위 10~30으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6) + ylim(10,30)
```


💿 산점도 – 변수 간 관계 표현하기

 $ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6) + ylim(10,30)$

 $ggplot(data = , aes(x = , y =)) + geom_points + xlim(,) + ylim(,)$

```
# ggplot2 패키지 설치하기
install.packages("ggplot2")
library(ggplot2)
# 1단계 배경설정(축)
ggplot(data=mpg, aes(x = displ, y = hwy))
# 배경에 산점도 추가
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point()
# x축 범위 3~6으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6)
# x축 범위 3~6, y축 범위 10~30으로 지정
```


산점도 - 변수 간 관계 표현하기

```
# ggplot2 패키지 설치하기
install.packages("ggplot2")
library(ggplot2)
# 1단계 배경설정(축)
ggplot(data=mpg, aes(x = displ, y = hwy))
                                                        15-
# 배경에 산점도 추가
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point()
                                                        10 -
# x축 범위 3~6으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6)
# x축 범위 3~6, y축 범위 10~30으로 지정
ggplot(data=mpg, aes(x = displ, y = hwy)) + geom_point() + xlim(3,6) + ylim(10,30)
 ggplot(mpg, aes(displ, hwy))
```



```
str(mpg)
dplyr::glimpse(mpg)
head(mpg)
# 연속형 변수일 때 컬러
ggplot(data = mpg, aes(x = displ, y = hwy, color = cty)) +
 geom_point(size = 2)
# 범주형 변수일 때 컬러
ggplot(data = mpg, aes(x = displ, y = hwy, color = drv)) +
 geom_point(size = 2)
> dplyr::glimpse(mpg)
Observations: 234
Variables: 11
$ displ
              <db1> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1,
$ year
              <int> 1999, 1999, 2008, 2008, 1999, 1999
              <int> 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6
$ cyl
              <chr> "auto(15)", "manual(m5)", "manual(
$ trans
              <chr> "f", "f", "f", "f", "f", "f", "f",
$ drv
              <int> 18, 21, 20, 21, 16, 18, 18, 18, 16
$ ctv
              <int> 29, 29, 31, 30, 26, 26, 27, 26, 25
$ hwy
              <chr> "p", "p", "p", "p", "p", "p", "p",
$ f1
              <chr> "compact", "compact", "compact", "
$ class
```



```
str(mpg)
dplyr::glimpse(mpg)
head(mpg)
# 연속형 변수일 때 컬러
ggplot(data = mpg, aes( x = displ, y = hwy, color = cty ) ) +
geom_point(size = 2)
# 범주형 변수일 때 컬러
ggplot(data = mpg, aes( x = displ, y = hwy, color = drv ) ) +
geom_point(size = 2)
```



```
str(mpg)
dplyr::glimpse(mpg)
head(mpg)
# 연속형 변수일 때 컬러
ggplot(data = mpg, aes( x = displ, y = hwy, color = cty ) ) +
geom_point(size = 2)
# 범주형 변수일 때 컬러
ggplot(data = mpg, aes( x = displ, y = hwy, color = drv ) ) +
geom_point(size = 2)
```



```
# aes() 는 geom_point 에도 매길 수 있어요
ggplot(data = mpg, aes( x = displ, y = hwy) ) +
geom_point(aes(color=class))
```



```
# aes()는 geom_point 에도 매길 수 있어요
ggplot(data = mpg, aes(x = displ, y = hwy)) +
geom_point(aes(color=class))

# 코드를 재사용하기 쉽게
p <- ggplot(data = mpg, aes(x = displ, y = hwy))
p + geom_point(aes(color=class))

q <- geom_point(aes(color=class))
p + q
```

Geometry

name	description
geom_point	Scatterplot
geom_bar	Bar plot
geom_histogram	Histogram
geom_density	Prabablity distribution plot
geom_boxplot	Box and whiskers plot
geom_text	Textual annotations in a plot
geom_errorbar	Error bars


```
# shape
ggplot(data = mpg,
    aes(x = displ, y = hwy, color = drv, shape = drv)) +
geom_point(size = 2)

# geom_smooth() to fit linear regressions for each level
```

```
# geom_smooth() to fit linear regressions for each level
ggplot(data = mpg, aes(x = displ, y = hwy, color = drv, shape = drv )) +
  geom_point(size = 2) +
  geom_smooth(method="lm")
```



```
p2 <- ggplot(data = mpg,</pre>
       aes(x = displ, y = hwy, color = drv, shape = drv)) +
    geom_point(size = 2)
p2
p2 + geom_smooth(method="lm")
p2 + geom_smooth(method="lm") +
  theme dark()
    40 -
                                                                           drv
    20 -
             2
                                               5
                                      displ
```



```
p2 <- ggplot(data = mpg,</pre>
       aes(x = displ, y = hwy, color = drv, shape = drv)) +
    geom_point(size = 2)
p2
p2 + geom_smooth(method="lm")
p2 + geom_smooth(method="lm") +
  theme_dark()
    40 -
                                                                          drv
 30
30
    20 -
    10 -
```

displ

6

+ theme_ *** ()


```
p2 + geom_smooth(method="lm") +
  theme_dark()
```



```
p3 <-
    ggplot(data = mpg,
        aes(x = displ, y = hwy, color = drv, shape = drv)) +
    geom_point(size = 2) +
    geom_smooth(method="lm")

p3 + theme_dark()

p3 + theme_bw()
 p3 + theme_bw()
 p3 + theme_classic()</pre>
```



```
help(theme\_bw) # \mathfrak{L} \succeq ?theme\_bw
                          # default
     + theme_gray()
      + theme_linedraw()
     + theme_light()
      + theme_minimal()
      + theme_void()
      + theme_test()
40
                                         40
20
                                         20
10
                  displ
                                               2
                                                     3
                                                             displ
    Theme_minimal()
                                                     Theme test()
```



```
install.packages("ggthemes")
library("ggthemes")
?ggthemes

p2 + theme_wsj()
p2 + theme_economist()

p2 + theme_excel_new()
p2 + theme_fivethirtyeight()
p2 + theme_solarized_2()
p2 + theme_stata()
```


+ labs(title=" ", x=" ", y=" ")


```
p3 + labs(title="< 배기량에 따른 고속도로 연비 비교 >", x = "배기량", y = "연비<mark>"</mark>)
```

```
ggplot(data = mpg, aes(x = displ, y = hwy, color = drv, shape = drv )) + geom_point(size = 2) + geom_smooth(method="lm") + labs(title="< 배기량에 따른 고속도로 연비 비교 >", x = "배기량", y = "연비") < 배기량에 따른 고속도로 연비비교 >
```


+ facet_grid(drv~ cut)


```
d <- ggplot(mpg, aes(x=displ, y=hwy, color = drv)) +</pre>
           geom_point()
                   # drv 이므로 d
d
  + facet_grid(drv ~ .) # Faceted by drv, by 행
 + facet_grid(. ~ cyl) # Faceted by cyl, by 열
d + facet_grid(drv ~ cyl)
  40 -
  30 -
  20 -
  20
  40 -
  30 -
  20 -
                           displ
```



```
d <- ggplot(mpg, aes(x=displ, y=hwy, color = drv)) +</pre>
           geom_point()
                   # drv 이므로 d
d
  + facet_grid(drv ~ .) # Faceted by drv, by 행
 + facet_grid(. ~ cyl) # Faceted by cyl, by 열
d + facet_grid(drv ~ cyl)
  40 -
  30 -
  20 -
  20
  40 -
  30 -
  20 -
                           displ
```



```
# 행또는 열의 개수가 많아지면 wrap 을
d + facet_grid(~ class)
d + facet_wrap(~ class)
d + facet_wrap(~ class, nrow=2)
d + facet_wrap(~ class, ncol=4)
```



```
행또는 열의 개수가 많아지면 wrap 을
d + facet_grid( ~ class )
d + facet_wrap( ~ class
d + facet_wrap( ~ class, nrow=2)
   + facet_wrap( ~ class, ncol=4)
          2seater
                             compact
                                                midsize
 40 -
 30 -
 20 -
          minivan
                             pickup
                                               subcompact
                                                             drv
 40 -
₹30-
 20 -
           suv
 40 -
 30 -
 20 -
                              displ
```



```
행 또는 열의 개수가 많아지면 wrap 을
d + facet_grid( ~ class )
d + facet_wrap( ~ class )
d + facet\_wrap( \sim class, nrow=2)
  + facet_wrap( ~ class, ncol=4)
       2seater
                     compact
                                   midsize
                                                  minivan
40 -
30 -
20 -
                                                             drv
       pickup
                    subcompact
                                     suv
40 -
30 -
20 -
                             displ
```



```
# 행또는 열의 개수가 많아지면 wrap 을
d + facet_grid(~ class)
d + facet_wrap(~ class)
d + facet_wrap(~ class, nrow=2)
d + facet_wrap(~ class, ncol=4)
```



```
# jitter
ggplot(data = mpg, aes( x=displ, y=hwy, color=drv)) +
   geom\_point(size = 2)
 ggplot(data = mpg, aes( x=displ, y=hwy, color=drv)) +
                                                             > dplyr:: glimpse(mpg)
                                                             Observations: 234
   geom_point(size = 2, position = "jitter")
                                                             Variables: 11
40 -
                                                          drv
20 -
       2
                            displ
```



```
# jitter
ggplot(data = mpg, aes( x=displ, y=hwy, color=drv)) +
    geom_point(size = 2)
ggplot(data = mpg, aes( x=displ, y=hwy, color=drv)) +
    geom_point(size = 2, position = "jitter")
```


Geometry

name	description
geom_point	Scatterplot
geom_bar	Bar plot
geom_histogram	Histogram
geom_density	Prabablity distribution plot
geom_boxplot	Box and whiskers plot
geom_text	Textual annotations in a plot
geom_errorbar	Error bars


```
p1 <- ggplot(data = mpg, aes( x=displ, y=hwy, color=drv))
p1 + geom_point(size = 2)
p1 + geom_line()
p1 + geom_point(size = 2) + geom_line()</pre>
```



```
p1 <- ggplot(data = mpg, aes( x=displ, y=hwy, color=drv))
p1 + geom_point(size = 2)
p1 + geom_line()
p1 + geom_point(size = 2) + geom_line()</pre>
```



```
p1 <- ggplot(data = mpg, aes( x=displ, y=hwy, color=drv))
p1 + geom_point(size = 2)
p1 + geom_line()
p1 + geom_point(size = 2) + geom_line()</pre>
```



```
ggplot(data=mpg, aes(x=displ)) +geom_bar()
ggplot(data=mpg, aes(x=displ, fill=factor(drv))) +
   geom_bar()
ggplot(data=mpg, aes(x=displ, fill=factor(drv))) +
   geom_bar(position = "dodge")
```



```
ggplot(data=mpg, aes(x=displ)) +geom_bar()
ggplot(data=mpg, aes(x=displ, fill=factor(drv))) +
  geom_bar()
ggplot(data=mpg, aes(x=displ, fill=factor(drv))) +
  geom_bar(position = "dodge")
 20 -
 15 -
                                                    factor(drv)
00 10 -
 5-
                         displ
```



```
ggplot(data=mpg, aes(x=displ)) +geom_bar()
ggplot(data=mpg, aes(x=displ, fill=factor(drv))) +
  geom_bar()
ggplot(data=mpg, aes(x=displ, fill=factor(drv))) +
  geom_bar(position = "dodge")
15 -
                                                  factor(drv)
 5-
                        displ
```



```
ggplot(data=mpg, aes(x=displ, fill=factor(drv))) +
    geom_bar(position = "fill")
 ggplot(data=mpg, aes(x=displ, fill=factor(drv))) +
    geom_bar(position = "fill") +
    facet_wrap( ~ class)
 1.00 -
 0.75 -
                                                          factor(drv)
0.50 -
 0.25 -
 0.00
                            displ
```



```
ggplot(data=mpg, aes(x=displ, fill=factor(drv))) +
    geom_bar(position = "fill")

ggplot(data=mpg, aes(x=displ, fill=factor(drv))) +
    geom_bar(position = "fill") +
    facet_wrap( ~ class)
```



```
ggplot(data=mpg, aes(x=displ)) +geom_histogram()
ggplot(data=mpg, aes(x=displ)) +geom_histogram(fill="blue")
ggplot(data=mpg, aes(x=displ)) +
   geom_histogram(fill="blue", binwidth = 0.1)
```



```
ggplot(data=mpg, aes(x=displ)) +geom_histogram()
ggplot(data=mpg, aes(x=displ)) +geom_histogram(fill="blue")
ggplot(data=mpg, aes(x=displ)) +
    geom_histogram(fill="blue", binwidth = 0.1)
```



```
ggplot(data=mpg, aes(x=displ)) +geom_histogram()
ggplot(data=mpg, aes(x=displ)) +geom_histogram(fill="blue")
ggplot(data=mpg, aes(x=displ)) +
   geom_histogram(fill="blue", binwidth = 0.1)
```

