Tutorium: Analysis und lineare Algebra

Vorbereitung der Abschlussklausur (Teil 1)

Steven Köhler

mathe@stevenkoehler.de mathe.stevenkoehler.de

Konvergenz, Stetigkeit und Differenzierbarkeit

Definition der Konvergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen konvergiert gegen eine reelle Zahl a, wenn es für jede reelle Zahl $\varepsilon > 0$ ein $N \in \mathbb{N}$ gibt, so dass $|a_n - a| < \varepsilon$ für alle $n \ge N$ gilt.

Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen ∞ , wenn es für jede reelle Zahl r>0 ein $N\in\mathbb{N}$ gibt, so dass $a_n>r$ für alle $n\geq N$ gilt.

Definition der Konvergenz II

Graphische Veranschaulichung:

6

Definition der Konvergenz III

Aufgabe

Finde einen Grenzwert für die Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_n = \frac{3n^2}{7n^2 - 5}$$

und beweise mithilfe der Definition der Konvergenz, dass es sich bei dem gefundenen Wert tatsächlich um den Grenzwert handelt.

Cauchysches Konvergenzkriterium

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist genau dann konvergent, wenn zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert, so dass $|a_n - a_m| \le \varepsilon$ für alle $n, m \ge N$ gilt.

Satz über monotone, beschränkte Folgen I

Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen heißt monoton steigend, falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ gilt. Entsprechend definiert man monoton fallend. Eine Folge heißt monoton, falls sie monoton steigend oder monoton fallend ist.

Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen heißt beschränkt, falls die Menge ihrer Folgenglieder beschränkt ist (d.h., falls die Menge $M = \{a_n : n \in \mathbb{N}\}$ beschränkt ist).

Jede monotone und beschränkte Folge ist konvergent.

9

Satz über monotone, beschränkte Folgen II

Aufgabe

Zeige mithilfe des Satzes über monotone, beschränkte Folgen, dass die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert.

$$a_1 = 1$$

$$a_{n+1} = \left(\frac{a_n}{2}\right)^2 + 1$$

Definition der Stetigkeit I

Es sei f eine reelle Funktion und $x_0 \in D(f)$. f heißt stetig an der Stelle x_0 , wenn für **jede** Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n \in D(f)$ und $\lim_{n\to\infty} x_n = x_0$ gilt:

$$\lim_{n\to\infty} f(x_n) = f(x_0)$$

Die Funktion f heißt stetig auf X (für $X \subseteq D(f)$), falls f stetig an jeder Stelle $x_0 \in X$ ist.

Definition der Stetigkeit II

Beispiel einer unstetigen Funktion:

Definition der Stetigkeit III

Für jede stetige Funktion muss für alle $x_0 \in D(f)$ insbesondere die folgende Eigenschaft gelten:

$$\lim_{x_n \to x_0^-} \left(f(x_n) \right) = f(x_0) = \lim_{x_n \to x_0^+} \left(f(x_n) \right).$$

Definition der Stetigkeit IV

Die Nacheinanderausführung zweier stetiger Funktionen ergibt wieder eine stetige Funktion.

Die Nacheinanderausführung zweier unstetiger Funktionen ergibt nicht zwangsweise wieder eine unstetige Funktion.

Definition der Stetigkeit V

Aufgabe

Die Funktionen $f:\mathbb{R}\to\mathbb{R}$ und $g:\mathbb{R}\to\mathbb{R}$ seien definiert durch

$$f(x) = \begin{cases} x \cdot \cos\left(\frac{1}{x}\right), & \text{für } x \neq 0; \\ 0, & \text{für } x = 0; \end{cases}$$

$$g(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & \text{für } x \neq 0; \\ 0, & \text{für } x = 0. \end{cases}$$

An welchen Stellen ist f stetig, an welchen Stellen ist f unstetig? Begründe deine Antwort. Analog für g.

15

ϵ,δ -Definition der Stetigkeit

Es sei f eine reelle Funktion und $x_0 \in D(f)$. f heißt stetig an der Stelle x_0 , wenn es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass

$$\left| f(x) - f(x_0) \right| < \varepsilon$$

für alle $x \in D(f)$ gilt, die $|x - x_0| < \delta$ erfüllen.

16

Definition der Differenzierbarkeit I

Die reelle Funktion f heißt differenzierbar an der Stelle $x_0 \in D(f)$, wenn der Grenzwert

$$\lim_{x_n \to x_0} \left(\frac{f(x_n) - f(x_0)}{x_n - x_0} \right)$$

existiert. Wir bezeichnen diesen Grenzwert mit $f'(x_0)$ und nennen ihn Ableitung von f an der Stelle x_0 .

f heißt differenzierbar auf $X\subseteq D(f)$, wenn f an jeder Stelle $x_0\in X$ differenzierbar ist

Zu f lässt sich eine Funktion f' mit $D(f') = \{x_0 \in D(f) : f'(x_0) \text{ exisitiert}\}$ definieren, indem man jedem x_0 den Wert $f'(x_0)$ zuordnet. Die Funktion f' nennt man die Ableitung von f.

Definition der Differenzierbarkeit II

Oftmals wird auch folgende Definition der Differenzierbarkeit verwendet:

Die reelle Funktion f heißt differenzierbar an der Stelle $x_0 \in D(f)$, wenn der Grenzwert

$$\lim_{h \to 0} \left(\frac{f(x_0 + h) - f(x_0)}{(x_0 + h) - x_0} \right) = \lim_{h \to 0} \left(\frac{f(x_0 + h) - f(x_0)}{h} \right)$$

existiert. Wir bezeichnen diesen Grenzwert mit $f'(x_0)$ und nennen ihn Ableitung von f an der Stelle x_0 .

Definition der Differenzierbarkeit III

Aufgabe

Bestimme die Ableitung der Funktion $f(x) = 2x^2 - 5x + 7$. Benutze dafür lediglich die Definition der Differenzierbarkeit.

Stetigkeit und Differenzierbarkeit I

Jede differenzierbare Funktion ist stetig.

Im Gegenzug ist aber nicht jede stetige Funktion auch differenzierbar.

Stetigkeit und Differenzierbarkeit II

Betragsfunktion: f(x) = |x|

Sei $x_n = \frac{1}{n}$. Dann ist

$$\lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} = \lim_{n \to \infty} \frac{\left| 0 + \frac{1}{n} \right| - 0}{0 + \frac{1}{n} - 0} = 1.$$

Sei $x_n = -\frac{1}{n}$. Dann ist

$$\lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} = \lim_{n \to \infty} \frac{\left| 0 - \frac{1}{n} \right| - 0}{0 - \frac{1}{n} - 0} = -1.$$

Es existiert also für $x_0 = 0$ kein Grenzwert. Somit ist f in x_0 nicht differenzierbar, obwohl es an dieser Stelle stetig ist (vgl. Vorlesung und Übungen).

© 2012 Steven Köhler

Stetigkeit und Differenzierbarkeit III

Aufgabe

21

Entscheide, ob die folgende Funktion $f: \mathbb{R} \to \mathbb{R}$ an der Stelle $x_0 = 5$ differenzierbar ist:

$$f(x) = \left| \frac{2x - 10}{3} \right|$$

Stetigkeit und Differenzierbarkeit IV

Frage

Gibt es stetige Funktionen, die fast nirgends differenzierbar sind?

Stetigkeit und Differenzierbarkeit V

Stetige Differenzierbarkeit I

Eine Funktion f heißt stetig differenzierbar, wenn ihre Ableitung f' für alle $x \in D(f)$ stetig ist.

Stetige Differenzierbarkeit II

$$f(x) = \begin{cases} x^2 \cos\left(\frac{1}{x}\right) &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

Ist in jedem Punkt inkl. $x_0 = 0$ stetig.

$$f'(x) = \begin{cases} 2x \cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

Ist in jedem Punkt außer $x_0 = 0$ stetig.

25

13. Juli 2012

© 2012 Steven Köhler

Die Regeln von de l'Hospital I

Der Typ
$$\frac{0}{0}$$

Es sei I ein Intervall und $x_0 \in I$. Die Funktionen f und g seien für alle $x \in I$ mit $x \neq x_0$ differenzierbar. Es gelte $g(x) \neq 0$ und $g'(x) \neq 0$ für alle $x \in I$, $x \neq x_0$. Ferner sei $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$.

Dann gilt:

$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to x_0} \left(\frac{f'(x)}{g'(x)} \right),$$

falls der rechte Grenzwert existiert bzw. gleich $+\infty$ oder $-\infty$ ist.

Analog für $x \to \infty$.

Die Regeln von de l'Hospital II

Der Typ
$$\frac{\infty}{\infty}$$

Es sei I ein Intervall und $x_0 \in I$. Die Funktionen f und g seien für alle $x \in I$ mit $x \neq x_0$ differenzierbar. Es gelte $g(x) \neq 0$ und $g'(x) \neq 0$ für alle $x \in I$, $x \neq x_0$. Ferner sei $\lim_{x \to x_0} |f(x)| = \lim_{x \to x_0} |g(x)| = \infty$.

Dann gilt:

$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to x_0} \left(\frac{f'(x)}{g'(x)} \right),$$

falls der rechte Grenzwert existiert bzw. gleich $+\infty$ oder $-\infty$ ist.

Analog für $x \to \infty$.

Die Regeln von de l'Hospital III

Der Typ $0 \cdot \infty$

Es seien
$$\lim_{x \to x_0} |f(x)| = 0$$
 und $\lim_{x \to x_0} |g(x)| = \infty$.

Dann gilt:

$$\lim_{x \to x_0} \left(f(x) \cdot g(x) \right) = \lim_{x \to x_0} \left(\frac{f(x)}{\frac{1}{g(x)}} \right) = \lim_{x \to x_0} \left(\frac{g(x)}{\frac{1}{f(x)}} \right).$$

Die Regeln von de l'Hospital IV

Der Typ
$$\infty - \infty$$

Es sei
$$\lim_{x \to x_0} |f(x)| = \lim_{x \to x_0} |g(x)| = \infty$$
.

Dann gilt:

$$\lim_{x \to x_0} \left(f(x) - g(x) \right) = \lim_{x \to x_0} \left(\frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)g(x)}} \right).$$

Die Regeln von de l'Hospital V

Die Typen 0^0 , 1^{∞} und ∞^0

- Typ 0°: Es seien $\lim_{x\to x_0} |f(x)| = 0$ und $\lim_{x\to x_0} |g(x)| = 0$.
- Typ 1^{∞} : Es seien $\lim_{x \to x_0} |f(x)| = 1$ und $\lim_{x \to x_0} |g(x)| = \infty$.
- Typ ∞^0 : Es seien $\lim_{x \to x_0} |f(x)| = \infty$ und $\lim_{x \to x_0} |g(x)| = 0$.

Dann gilt:

$$\lim_{x \to x_0} \left(f(x)^{g(x)} \right) = \lim_{x \to x_0} \left(e^{g(x) \cdot \ln f(x)} \right) = e^{\lim_{x \to x_0} \left(g(x) \cdot \ln f(x) \right)}$$

Die Regeln von de l'Hospital VI

Aufgabe

Bestimme die folgenden Grenzwerte:

$$\bullet \lim_{x \to \infty} \left(x^{\frac{1}{x}} \right)$$

$$\bullet \lim_{x \to 0} \left(\frac{1}{\ln(x+1)} - \frac{1}{x} \right)$$

$$\bullet \lim_{x\to 0} \left(\frac{2^x - 1}{3x^2} \right)$$

Komplexe Zahlen I

Es sei $z = a + ib \in \mathbb{C}$. Dann heißt

- a Realteil von z (Bezeichnung: $a = \text{Re } z \text{ oder } a = \Re z$);
- $b \text{ Imaginärteil von } z \text{ (Bezeichnung: } b = \text{Im } z \text{ oder } b = \Im z);$
- $|z| = \sqrt{a^2 + b^2}$ absoluter Betrag von z;
- $\overline{z} = a ib \ konjugiert \ komplexe \ Zahl \ zu \ z$.

Komplexe Zahlen II

36

Rechnen mit komplexen Zahlen I

Addition & Subtraktion

Es seien $z_1 = a_1 + ib_1$ und $z_2 = a_2 + ib_2$. Dann ist

$$z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2);$$

$$z_1 - z_2 = (a_1 - a_2) + i(b_1 - b_2).$$

Rechnen mit komplexen Zahlen II

Multiplikation & Division

Es seien $z_1 = a_1 + ib_1$ und $z_2 = a_2 + ib_2$. Dann ist

$$z_1 \cdot z_2 = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1);$$

$$\frac{z_1}{z_2} = \left(\frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2}\right) + i \left(\frac{a_1b_2 - a_2b_1}{a_2^2 + b_2^2}\right).$$

38

Polarkoordinatendarstellung I

Komplexe Zahlen können alternativ auch mit Hilfe der folgenden Polarkoordinatendarstellung angegeben werden:

$$z = r(\cos(\varphi) + i\sin(\varphi)).$$

Die Bezeichnungen sind bei dieser Darstellung wie folgt:

- r: Betrag von z;
- φ : Argument von z.

Polarkoordinatendarstellung II

Es seien $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$ und $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$. Dann gilt:

$$z_1 z_2 = r_1 r_2 \Big(\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2) \Big);$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \Big(\cos (\varphi_1 - \varphi_2) + i \sin (\varphi_1 - \varphi_2) \Big).$$

40

Umrechnung

Zu einer gegebenen komplexen Zahl $z\in\mathbb{C}$ mit z=a+ibist die Polarkoordinatendarstellung

$$z = r \cdot (\cos(\varphi) + i\sin(\varphi)),$$

wobei sich r und φ wie folgt berechnen lassen:

$$r = \sqrt{a^2 + b^2}$$

$$\varphi = \begin{cases} \arccos\left(\frac{a}{r}\right) & \text{, für } b \ge 0 \\ 2\pi - \arccos\left(\frac{a}{r}\right) & \text{, für } b < 0 \end{cases}$$

13. Juli 2012

Die komplexe Exponentialfunktion

Eine weitere Möglichkeit zur Darstellung komplexer Zahlen ergibt sich durch die Verwendung der komplexen Exponentialfunktion:

$$r \cdot \left(\cos\left(\varphi\right) + i\sin\left(\varphi\right)\right) = r \cdot e^{i\varphi}$$

Integration von Funktionen mit zwei Variablen

Einführungsbeispiel I

Halbkugel, angenähert durch 5×5 Säulen

Einführungsbeispiel II

Halbkugel, angenähert durch 10×10 Säulen

Einführungsbeispiel III

Halbkugel, angenähert durch 25×25 Säulen

Einführungsbeispiel IV

Halbkugel, angenähert durch 100×100 Säulen

Berechnung eines Volumens I

Oftmals interessiert uns das von der Grundfläche G, der Funktion f(x,y) sowie den senkrechten Seitenwänden eingeschlossene Volumen.

Dieses kann mithilfe des Doppelintegrals $\iint_G f(x,y) \ d(x,y)$ berechnet werden.

Berechnung eines Volumens II

Die Integrationsgrenzen werden durch die Grundfläche G bestimmt:

$$\int_{x_1}^{x_2} \left(\int_{\varphi_1}^{\varphi_2} f(x, y) \ dy \right) \ dx$$

Berechnung eines Volumens III

Spezialfall: φ_1 und φ_2 sind konstante Funktionen.

In diesem Fall kann das Integral auf zwei Arten bestimmt werden:

$$\int_{x_1}^{x_2} \left(\int_{y_1}^{y_2} f(x, y) \ dy \right) \ dx$$

$$\int_{y_1}^{y_2} \left(\int_{x_1}^{x_2} f(x, y) \ dx \right) \ dy$$

Berechnung eines Volumens IV

Aufgabe:

Bestimme $\iint_G f(x,y) \ d(x,y)$ für

$$f(x,y) = (x+1)^2 \cdot y$$

G sei gegeben durch die Punkte (1,1), (3,1) und (5,5).

Ableiten von Funktionen mit mehreren Variablen

Einführung

Beispielfunktion: $f(x, y) = \cos(\sqrt{x}) \cdot \sin(y)$

Bestimmung des Gradienten I

Zunächst werden die stationären Stellen der Funktion bestimmt: Dazu wird der Gradient $\operatorname{grad}(f(x_1, x_2, \dots, x_n))$ gebildet und gleich 0 gesetzt.

$$\operatorname{grad}\left(f\left(x_{1}, x_{2}, \dots, x_{n}\right)\right) = \left(\frac{df}{dx_{1}}, \frac{df}{dx_{2}}, \dots, \frac{df}{dx_{n}}\right)$$
$$= \left(0, 0, \dots, 0\right)$$

Bestimmung des Gradienten II

Dies lässt sich auch als Gleichungssystem schreiben:

$$\frac{df}{dx_1}(x) = 0$$

$$\frac{df}{dx_2}(x) = 0$$

$$\vdots$$

$$\frac{df}{dx_n}(x) = 0.$$

Die Lösungen $x^{(i)}$ dieses Gleichungssystem sind die gesuchten stationären Stellen.

Aufstellen der Hesse-Matrix I

Anschließend werden die Hesse-Matrizen H_i wie folgt erstellt:

$$H_{i} = \begin{bmatrix} \frac{df}{dx_{1}^{2}} \left(x^{(i)}\right) & \frac{df}{dx_{1}dx_{2}} \left(x^{(i)}\right) & \cdots & \frac{df}{dx_{1}dx_{n}} \left(x^{(i)}\right) \\ \frac{df}{dx_{2}dx_{1}} \left(x^{(i)}\right) & \frac{df}{dx_{2}^{2}} \left(x^{(i)}\right) & \cdots & \frac{df}{dx_{2}dx_{n}} \left(x^{(i)}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{df}{dx_{n}dx_{1}} \left(x^{(i)}\right) & \frac{df}{dx_{n}dx_{2}} \left(x^{(i)}\right) & \cdots & \frac{df}{dx_{n}^{2}} \left(x^{(i)}\right) \end{bmatrix}$$

Aufstellen der Hesse-Matrix II

Abschließend muss die Definitheit der Hesse-Matrizen bestimmt werden, um die Art des Extremums zu ermitteln. Dazu werden zunächst die Abschnittsdeterminanten $\Delta_1, \Delta_2, \ldots, \Delta_n$ bestimmt:

- Sind alle $\Delta_i > 0$ $(i \in \{1, ..., n\})$, so ist die Matrix positiv definit und es liegt ein **Minimum** vor.
- Haben die Δ_i ein alternierendes Vorzeichen, beginnend mit "-", ist die Matrix negativ definit und es liegt ein **Maximum** vor. Formal ausgedrückt: $\Delta_{2m+1} < 0$ und $\Delta_{2m} > 0$ mit $m \in \mathbb{N}$.

Aufstellen der Hesse-Matrix III

Ist die Matrix weder positiv noch negativ definit, kann ohne weitere Untersuchung keine genaue Aussage getroffen werden.

Dazu wird z.B. die Bilinearform b_{H_i} benutzt. Diese ist folgendermaßen definiert:

$$b_{H_i}(x,y) = x \cdot H_i \cdot y^T$$

Gibt es nun Vektoren x und y, so dass $b_{H_i}(x,x) > 0$ und $b_{H_i}(y,y) < 0$, so ist die Matrix indefinit und es liegt **kein Extremum** vor.

Aufgabe

Aufgabe

Bestimme die Extremstellen von $f(x,y) = -6xy + x^2 + 2y^3$.

Einführung

Dieses Verfahren funktioniert im Wesentlichen analog zum Verfahren für Funktionen ohne Nebenbedingungen.

Lagrange-Gleichung

Zu Beginn werden die Nebenbedingungen nach folgendem Schema umgeformt:

$$\beta = \alpha_1 \cdot x_1 + \dots + \alpha_n \cdot x_n$$

$$g(x_1, \dots, x_n) = \alpha_1 \cdot x_1 + \dots + \alpha_n \cdot x_n - \beta$$

Anschließend wird die Lagrange-Gleichung aufgestellt:

$$L(x_1, x_2, \dots, x_n, \lambda_1, \dots, \lambda_m) = f(x_1, \dots, x_n) + \lambda_1 \cdot g_1(x_1, \dots, x_n) + \dots + \lambda_m \cdot g_m(x_1, \dots, x_n)$$

61

Bestimmung des Gradienten I

Zunächst werden die stationären Stellen der Funktion bestimmt: Dazu wird der Gradient $\operatorname{grad}(f(x_1, x_2, \dots, x_n, \lambda_1, \dots, \lambda_m))$ gebildet und gleich 0 gesetzt.

$$\operatorname{grad}\left(L(x_1, x_2, \dots, x_n, \lambda_1, \dots, \lambda_m)\right) = \left(\frac{dL}{dx_1}, \frac{dL}{dx_2}, \dots, \frac{dL}{dx_n}, \frac{dL}{d\lambda_1}, \dots, \frac{dL}{d\lambda_m}\right)$$
$$= (0, 0, \dots, 0)$$

Bestimmung des Gradienten II

Dies lässt sich auch als Gleichungssystem schreiben:

$$\frac{dL}{dx_1}(x) = 0$$

$$\frac{dL}{dx_2}(x) = 0$$

$$\vdots$$

$$\frac{dL}{dx_n}(x) = 0$$

$$\frac{dL}{d\lambda_1}(x) = 0$$

$$\vdots$$

$$\frac{dL}{d\lambda_m}(x) = 0$$

Die Lösungen $x^{(i)}$ dieses Gleichungssystem sind die gesuchten stationären Stellen.

Aufstellen der geränderten Hesse-Matrix

Anschließend werden die geränderten Hesse-Matrizen \overline{H}_i erstellt:

$$H_{i} = \begin{bmatrix} 0 & \cdots & 0 & \frac{dg_{m}}{dx_{1}} \left(x^{(i)}\right) & \cdots & \frac{dg_{m}}{dx_{n}} \left(x^{(i)}\right) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \frac{dg_{1}}{dx_{1}} \left(x^{(i)}\right) & \cdots & \frac{dg_{1}}{dx_{n}} \left(x^{(i)}\right) \\ \frac{dg_{m}}{dx_{1}} \left(x^{(i)}\right) & \cdots & \frac{dg_{1}}{dx_{1}} \left(x^{(i)}\right) & \frac{dL}{dx_{1}^{2}} \left(x^{(i)}\right) & \cdots & \frac{dL}{dx_{1}dx_{n}} \left(x^{(i)}\right) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{dg_{m}}{dx_{n}} \left(x^{(i)}\right) & \cdots & \frac{dg_{1}}{dx_{n}} \left(x^{(i)}\right) & \frac{dL}{dx_{n}dx_{1}} \left(x^{(i)}\right) & \cdots & \frac{dL}{dx_{n}^{2}} \left(x^{(i)}\right) \end{bmatrix}$$

Bestimmen der Determinante

Wir betrachten im Folgenden nur den Fall einer Funktion mit zwei Variablen und einer Nebenbedingung:

- $det(\overline{H}_i) < 0$, so liegt ein **Minimum** vor.
- Ist $det(\overline{H}_i) > 0$, so liegt ein **Maximum** vor.
- Ist $det(\overline{H}_i) = 0$, so kann **keine Aussage** getroffen werden.

Aufgabe

Aufgabe

Bestimme die Extremstellen von $f(x,y)=-6xy+x^2+2y^2$ unter der Nebenbedingung x+y-2=0.