lab05

March 11, 2020

0.1 Lab 5: Data Cleaning and Visualization

Release Date: Thursday February 27

Due Date: Tuesday Feb 25, 2020 at 12PM

In this lab, we will be working with data from the New York City Police Department. Following the discussion in lecture, we will be studying reports of crime. The data is a subset of the records maintained by the police. See here for more information.

Collaboration Policy Data science is a collaborative activity. While you may talk with others about the labs, we ask that you write your solutions individually. If you do discuss the assignments with others, please include their names in the following cell:

Name

Names of Collaborators

0.2 Setup

After importing matplotlib, we use the command %matplotlib inline to display figures in the notebook. Note that we can configure many aspects of matplotlib such as the default figure size.

```
[32]: import pandas as pd
import numpy as np
import os
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns

//matplotlib inline

plt.rcParams['figure.figsize'] = (12, 9)
```

1 Part 1: Cleaning and Exploring the Data

```
[33]: home = os.environ['HOME']
  data_dir = f"{home}/shared"
  file_path = f"{data_dir}/NYC_Complaint_Data_partial.csv"
  file_description_path = f"{data_dir}/Crime_Column_Description.csv"

  calls = pd.read_csv(file_path)
  calls_description = pd.read_csv(file_description_path)

  calls_description
```

[33]:		Column	Description
	0	CMPLNT_NUM	Randomly generated persistent ID for each comp
	1	CMPLNT_FR_DT	Exact date of occurrence for the reported even
	2	CMPLNT_FR_TM	Exact time of occurrence for the reported even
			Ending date of occurrence for the reported eve
	4	CMPLNT_TO_TM	Ending time of occurrence for the reported eve
	5	RPT_DT	Date event was reported to police
	6	KY_CD	Three digit offense classification code
	7	OFNS_DESC	Description of offense corresponding with key
	8	PD_CD	Three digit internal classification code (more
	9	PD_DESC	Description of internal classification corresp
	10	CRM_ATPT_CPTD_CD	Indicator of whether crime was successfully co
11		LAW_CAT_CD	Level of offense: felony, misdemeanor, violation
	12	JURIS_DESC	Jurisdiction responsible for incident. Either
	13	BORO_NM	The name of the borough in which the incident
	14	ADDR_PCT_CD	The precinct in which the incident occurred
	15	LOC_OF_OCCUR_DESC	Specific location of occurrence in or around t
	16	PREM_TYP_DESC	Specific description of premises; grocery stor
	17	PARKS_NM	Name of NYC park, playground or greenspace of
	18	HADEVELOPT	Name of NYCHA housing development of occurrenc
	19	X_COORD_CD	X-coordinate for New York State Plane Coordina
	20	Y_COORD_CD	Y-coordinate for New York State Plane Coordina
	21	Latitude	Latitude coordinate for Global Coordinate Syst
	22	Longitude	Longitude coordinate for Global Coordinate Sys

We see that the fields include a

- complaint number 'CMPLNT_NUM'
- the offense type 'OFNS_DESC'
- the date and time of the offense 'CMPLNT_FR_DT'& 'CMPLNT_FR_TM'
- the "PD_DESC" related to the offense type
- "RPT DT" a date added to the database
- the location spread across four fields 'X_COORD_CD', 'Y_COORD_CD', 'Latitude', 'Longitude'.

Let's also check some basic information about these files using the DataFrame.describe and

 ${\tt DataFrame.info\ methods.}$

[34]: calls.info() calls.describe()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 314572 entries, 0 to 314571 Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	CMPLNT_NUM	314572 non-null	int64
1	CMPLNT_FR_DT	314552 non-null	object
2	CMPLNT_FR_TM	314572 non-null	object
3	CMPLNT_TO_DT	252725 non-null	object
4	CMPLNT_TO_TM	252839 non-null	object
5	RPT_DT	314572 non-null	object
6	KY_CD	314572 non-null	int64
7	OFNS_DESC	313678 non-null	object
8	PD_CD	314352 non-null	float64
9	PD_DESC	314352 non-null	object
10	CRM_ATPT_CPTD_CD	314572 non-null	object
11	LAW_CAT_CD	314572 non-null	object
12	JURIS_DESC	314572 non-null	object
13	BORO_NM	314572 non-null	object
14	ADDR_PCT_CD	314572 non-null	float64
15	LOC_OF_OCCUR_DESC	248996 non-null	object
16	PREM_TYP_DESC	313173 non-null	object
17	PARKS_NM	2285 non-null	object
18	HADEVELOPT	15424 non-null	object
19	X_COORD_CD	304753 non-null	float64
20	Y_COORD_CD	304753 non-null	float64
21	Latitude	304753 non-null	float64
22	Longitude	304753 non-null	float64
23	Lat_Lon	304753 non-null	object
dtyp	es: float64(6), int	64(2), object(16)	-

memory usage: 57.6+ MB

[34]:		CMPLNT_NUM	KY_CD	PD_CD	ADDR_PCT_CD	\
	count	3.145720e+05	314572.000000	314352.000000	314572.000000	•
	mean	5.497730e+08	295.155338	409.545032	63.743200	
	std	2.601871e+08	150.339801	219.009954	34.308241	
	min	1.000010e+08	101.000000	101.000000	1.000000	
	25%	3.242674e+08	117.000000	254.000000	40.000000	
	50%	5.493636e+08	341.000000	357.000000	66.000000	
	75%	7.758279e+08	351.000000	637.000000	94.000000	
	max	9.999917e+08	881.000000	975.000000	123.000000	
		X_COORD_CD	Y_COORD_CD	Latitude	Longitude	

count	3.047530e+05	304753.000000	304753.000000	304753.000000
mean	1.004962e+06	206788.180018	40.734220	-73.925235
std	2.142523e+04	30443.257837	0.083563	0.077266
min	9.133190e+05	121152.000000	40.498957	-74.255076
25%	9.919380e+05	183893.000000	40.671360	-73.972326
50%	1.004543e+06	205315.000000	40.730145	-73.926808
75%	1.016506e+06	234853.000000	40.811287	-73.883509
max	1.067186e+06	271820.000000	40.912723	-73.700717

Notice that the functions above reveal type information for the columns, as well as some basic statistics about the numerical columns found in the DataFrame. However, we still need more information about what each column represents. Let's explore the data further in Question 1.

Before we go over the fields to see their meanings, the cell below will verify that all the events happened in NYC by checking that the BORO_NM is not null for any row. BORO_NM also takes one of the 5 boroughs of NYC.

```
[35]: calls.BORO_NM.isna().any()
```

[35]: False

```
[36]: calls.BORO_NM.value_counts()
```

[36]: BROOKLYN 94898

MANHATTAN 73467

BRONX 68336

QUEENS 63389

STATEN ISLAND 14482

Name: BORO_NM, dtype: int64

1.1 Question 1

Above, when we called head, it seemed like OFNS_DESC and PD_DESC both contained information about the type of event reported. What is the difference in meaning between the two columns? One way to probe this is to look at the value counts for each Series.

```
[37]: calls['OFNS_DESC'].value_counts().head(20)
```

```
[37]: PETIT LARCENY
                                          54430
      HARRASSMENT 2
                                          39853
      ASSAULT 3 & RELATED OFFENSES
                                          34345
      CRIMINAL MISCHIEF & RELATED OF
                                          30851
      GRAND LARCENY
                                          28942
      DANGEROUS DRUGS
                                          17070
      FELONY ASSAULT
                                          13138
      OFF. AGNST PUB ORD SENSBLTY &
                                          13082
      ROBBERY
                                          10970
```

BURGLARY	10501
MISCELLANEOUS PENAL LAW	8698
DANGEROUS WEAPONS	6867
OFFENSES AGAINST PUBLIC ADMINI	6431
GRAND LARCENY OF MOTOR VEHICLE	4898
INTOXICATED & IMPAIRED DRIVING	4507
VEHICLE AND TRAFFIC LAWS	3864
SEX CRIMES	3565
FORGERY	3330
THEFT-FRAUD	3135
CRIMINAL TRESPASS	3124
Name: OFNS_DESC, dtype: int64	

[38]: calls['PD_DESC'].value_counts().head(20)

[38]:	ASSAULT 3	28049
	HARASSMENT, SUBD 3,4,5	26641
	LARCENY, PETIT FROM STORE-SHOPL	17592
	LARCENY, PETIT FROM BUILDING, UN	14323
	HARASSMENT, SUBD 1, CIVILIAN	13213
	AGGRAVATED HARASSMENT 2	12916
	ASSAULT 2,1,UNCLASSIFIED	10437
	MISCHIEF, CRIMINAL 4, OF MOTOR	9375
	LARCENY, PETIT FROM AUTO	8856
	CRIMINAL MISCHIEF, UNCLASSIFIED 4	8646
	MARIJUANA, POSSESSION 4 & 5	7912
	CRIMINAL MISCHIEF 4TH, GRAFFIT	6709
	CONTROLLED SUBSTANCE, POSSESSI	5857
	CRIMINAL CONTEMPT 1	4829
	LARCENY, PETIT FROM OPEN AREAS,	4703
	MENACING, UNCLASSIFIED	4482
	INTOXICATED DRIVING, ALCOHOL	4470
	LARCENY, GRAND OF AUTO	4121
	BURGLARY, RESIDENCE, DAY	4015
	WEAPONS, POSSESSION, ETC	3824
	Name: PD DESC. dtvpe: int64	

Name: PD_DESC, dtype: int64

1.1.1 Question 1a

Above, it seems like PD_DESC is more specific than OFNS_DESC, e.g. "PETIT LARCENY" vs. "LARCENY,PETIT FROM STORE-SHOPL". If you're unfamiliar with the term, "larceny" is a legal term for theft of personal property.

To get a sense of how many subcategories there are for each OFNS_DESC, set calls_by_ofns_and_pd equal to a multi-indexed series where the data is first indexed on the OFNS_DESC and then on the PD_DESC, and the data is equal to the number of offenses in the database that match the

respective PD_DESC and OFNS_DESC. For example, calls_by_ofns_and_pd[("PETIT LARCENY", "LARCENY, PETIT FROM STORE-SHOPL")] should return 17592.

Let's now load the CSV files we have into a pandas. DataFrame object. Here we load both the dataset and a description of the dataset.

```
[39]: calls_by_ofns_and_pd = calls.groupby(["OFNS_DESC","PD_DESC"]).size()
    calls_by_ofns_and_pd.index[1][1]
# YOUR CODE HERE
#raise NotImplementedError()
```

[39]: 'ADM.CODE, UNCLASSIFIED MISDEMEA'

```
[40]: calls_by_ofns_and_pd.sort_values()

[40]: OFNS_DESC PD_DESC
```

ABORTION ABORTION 1 1 KIDNAPPING AND RELATED OFFENSES LABOR TRAFFICKING 1 MISCELLANEOUS PENAL LAW **BIGAMY** 1 BRIBERY, FRAUD 1 FACILITATION 3,2,1, CRIMINAL 1 HARRASSMENT 2 HARASSMENT, SUBD 1, CIVILIAN 13213 PETIT LARCENY LARCENY, PETIT FROM BUILDING, UN 14323 LARCENY, PETIT FROM STORE-SHOPL 17592 HARASSMENT, SUBD 3,4,5 HARRASSMENT 2 26640 ASSAULT 3 & RELATED OFFENSES ASSAULT 3 28049

```
Length: 334, dtype: int64
```

```
[41]: # TEST
assert calls_by_ofns_and_pd[("PETIT LARCENY", "LARCENY,PETIT FROM

→STORE-SHOPL")] == 17592
```

1.1.2 Question 1b

In the cell below, set <code>answer1b</code> equal to a list of strings corresponding to the possible values for <code>PD_DESC</code> when <code>OFNS_DESC</code> is "PETIT LARCENY". Instead of typing the answer manually, create an expression that automatically extracts the names.

```
[42]: answer1b = []
a = 0
while a < calls_by_ofns_and_pd.size:
    if calls_by_ofns_and_pd.index[a][0] == "PETIT LARCENY":
        answer1b.append(calls_by_ofns_and_pd.index[a][1])
    a+=1
calls_by_ofns_and_pd
# YOUR CODE HERE</pre>
```

#raise NotImplementedError() [42]: OFNS_DESC PD_DESC ABORTION ABORTION 1 1 ADMINISTRATIVE CODE ADM.CODE, UNCLASSIFIED MISDEMEA 634 ADM.CODE, UNCLASSIFIED VIOLATIO 7 AIRPOLLUTION 2 ALCOHOLIC BEVERAGES, PUBLIC CON 5 UNDER THE INFLUENCE OF DRUGS UNDER THE INFLUENCE OF DRUGS 1 UNLAWFUL POSS. WEAP. ON SCHOOL UNLAWFUL POSS. WEAPON UPON SCH 3 VEHICLE AND TRAFFIC LAWS LEAVING SCENE-ACCIDENT-PERSONA 2896 RECKLESS DRIVING 47 TRAFFIC, UNCLASSIFIED MISDEMEAN 921 Length: 334, dtype: int64 [43]: # TEST assert isinstance(answer1b, list) [44]: # TEST assert all([isinstance(elt, str) for elt in answer1b])

1.2 Question 2a

What are the five crime types of OFNS_DESC that have the most crime events? You may need to use value_counts to find the answer. Save your results into answer2a as a list of strings.

```
[45]: s = calls["OFNS_DESC"].value_counts()
answer2a=[]
for a in range(5):
    answer2a.append(s.index[a])
print(answer2a)
# YOUR CODE HERE
#raise NotImplementedError()
```

['PETIT LARCENY', 'HARRASSMENT 2', 'ASSAULT 3 & RELATED OFFENSES', 'CRIMINAL MISCHIEF & RELATED OF', 'GRAND LARCENY']

```
[46]: # TEST assert isinstance(answer2a, list)
```

```
[47]: # TEST
assert all([elt in calls['OFNS_DESC'].unique() for elt in answer2a])
```

2 Part 2: Visualizing the Data

2.1 Pandas vs. Seaborn Plotting

Pandas offers some tools for plotting. For example, the DataFrame and Series classes both have a plot method.

However, the basic plots generated by pandas are limited. While it's possible to manually use matplotlib commands to make pandas plots look better, we'll instead use a plotting library called Seaborn that will take care of most of this for us.

As you learn to do data visualization, you may find the pandas documentation and Seaborn documentation helpful!

As an example of the built-in plotting functionality of pandas, the following example uses plot method of the Series class to generate a barh plot type to visually display value counts for OFNS_DESC.

```
[48]: ax = calls['OFNS_DESC'].value_counts().plot(kind='barh')
ax.set_ylabel("Crime Category")
ax.set_xlabel("Number of Calls")
ax.set_title("Number of Calls By Crime Type");
```


Turns out that for most of the crime categories, number of calls are near 0. These categories can be safely disregarded for our further analysis. Removing these categories will also give us a much nicer plot.

2.2 Question 2b

Create a dataframe calls_subset which has only data from calls belonging to the top 20 crime categories. You can use any method you want. One way is specified in the hint below

Hint: First create a list of strings containing top 20 crime types. Then subset calls using isin() function.

```
[49]: r = calls['OFNS_DESC'].value_counts().head(20)
r.index[1]
storage = []
for a in range(20):
    storage.append(r.index[a])
calls_subset = calls[calls["OFNS_DESC"].isin(storage)]

#calls_subset = pd.DataFrame({'OFNS_DESC':r.index, 'numbers':r.values})
#calls_subset
# YOUR CODE HERE
#raise NotImplementedError()
```

```
[50]: # TEST
assert isinstance(calls_subset,pd.DataFrame)
```

Now let us plot the data from calls_subset

```
[51]: ax = calls_subset['OFNS_DESC'].value_counts().plot(kind='barh')
ax.set_ylabel("Crime Category")
ax.set_xlabel("Number of Calls")
ax.set_title("Number of Calls By Crime Type");
```


By contrast, the Seaborn library provides a specific function countplot built for plotting counts. It operates directly on the DataFrame itself i.e. there's no need to call value_counts() at all. This higher level approach makes it easier to work with. Run the cell below, and you'll see that the plot is much prettier (albeit in a weird order).

```
[52]: ax = sns.countplot(data=calls_subset, y="OFNS_DESC")
ax.set_ylabel("Crime Category")
ax.set_xlabel("Number of Calls")
ax.set_title("Number of Calls By Crime Type");
```


If we want the same ordering that we had in the pandas plot, we can use the order parameter of the countplot method. It takes a list of strings corresponding to the axis to be ordered. By passing the index of the value_counts, we get the order we want.

```
[53]: ax = sns.countplot(data=calls_subset, y="OFNS_DESC", □

order=calls_subset["OFNS_DESC"].value_counts(ascending=True).index);

ax.set_ylabel("Crime Category")

ax.set_xlabel("Number of Calls")

ax.set_title("Number of Calls By Crime Type");
```


Voilà! Now we have a pretty bar plot with the bars ordered by size. Though seaborn appears to provide a superior plot from a aesthetic point of view, the pandas plotting library is also good to understand. You'll get practice using both libraries in the following questions.

2.3 An Additional Note on Plotting in Jupyter Notebooks

You may have noticed that many of our code cells involving plotting end with a semicolon (;). This prevents any extra output from the last line of the cell that we may not want to see. Try adding this to your own code in the following questions!

2.4 Question 3

Now it is your turn to make some plots using pandas and seaborn. Let's start by looking at the distribution of calls over months of the year.

The CMPLNT_FR_DT field isn't named helpfully and it is hard to see the meaning from the data alone. CMPLNT_FR_DT is actually indicating the date that events happened. We can extract the month from this date. We have given the code below that extracts the month from CMPLNT_FR_DT and creates a new column month_extract. Notice that in month_extract, 0 represents 'month not available', '1' represents 'January',...., '12' represents 'December.

```
[54]: def get_month(string):
    return int(string.split('/')[0])
```

```
calls['month_extract'] = calls['CMPLNT_FR_DT'].fillna('0/0/0000').

→apply(get_month)
```

```
[55]: # TEST

assert sorted(list(calls['month_extract'].unique())) ==□

□[0,1,2,3,4,5,6,7,8,9,10,11,12]
```

2.4.1 Question 3a

Add a new column Month into the calls table that has the string month (eg. 'January') for the corresponding value in month_extract. For example, if the values of month_extract are ['2','1','0'], then the 4 values of the Month column should be ["February", "January", "January", "NA"]. - We have provided you a dictionary called indices_to_months_dict that associates numbers with strings. - Use the dictionary in the function convert_to_month to convert number to string - Use apply on the month_extract column with the function convert_to_month.

```
[56]: months = ["January", "February", "March", "April", "May", "June", "July", □

→"August", "September", "October", "November", "December"]

month_indices = range(1,13)

indices_to_months_dict = dict(zip(month_indices, months))

indices_to_months_dict.update({0:"NA"})
```

```
[57]: def convert_to_month(some_number):
    return indices_to_months_dict.get(some_number)

calls["Month"] = calls['month_extract'].apply(convert_to_month)
```

```
[]:
```

```
[58]: # TEST

assert set(calls["Month"]) == {"January", "February", "March", "April", "May", □

→"June", "July", "August", "September", "October", "November", "December", □

→"NA"}
```

2.4.2 Question 3b

Run the cell below to create a seaborn plot. This plot shows the number of calls for each month of the year. Notice the use of the rotation argument in ax.set_xticklabels, which rotates the labels by 90 degrees.

```
[59]: ax = sns.countplot(data=calls, x='Month', order=months)
ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
ax.set_ylabel("Number of Calls")
```


Now, let's make the same plot using pandas. Construct a vertical bar plot with the count of the number of calls (entries in the table) for each month of the year ordered by the month of the year (eg. January, February, ..., December, NA). Do not use sns for this plot. Be sure that your axes are labeled and that your plot is titled.

Hint: Given a series s, and an array coolIndex that has the same entries as in s.index, s[coolIndex] will return a copy of the series in the same order as coolIndex.

```
[60]: #calls.groupby(calls['Month']).size()
ax = calls['Month'].value_counts()[months].plot.bar(rot=0)
ax.set_xlabel("Hour of the Day")
ax.set_ylabel("Number of Calls")
ax.set_title("Number of Robbery Events For Each Day of the Week");
#print(ax_3b)
# Leave for grading purposes
ax_3b = plt.gca()
```


2.5 Question 4

It seems last two months generally have slightly more calls than rest of year.

We can break down into some particular types of events to see their distribution. For example, let's make a bar plot for the OFNS_DESC "BURGLARY".

2.5.1 Question 4a

This time, use **seaborn** to create a vertical bar plot of the number of total robberies reported on each month of the year, again ordered by the months of the year starting with January. Do not use **pandas** to plot.

You can use the code for the seaborn plot in Question 3b as a starting point.

2.5.2 Question 4b

Do you realize anything interesting about the distribution of BURGLARY calls over a year? Type a 1-sentence answer in the cell below.

When it comes to the end of the year, the number of robbery calls dramatically increases.

2.6 Question 5

Let's look at a similar distribution but for crime rates in different boroughs. In the cell below, create the same plot as you did in Question 4, but now looking at instances of the OFNS_DESC "ROBBERY" distributed according to the variable "BORO_NM". Use either pandas or seaborn plotting as you desire.

```
[64]: ax = sns.countplot(data=calls[calls['OFNS_DESC'] == 'ROBBERY'], x='BORO_NM')
    ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
    ax.set_ylabel("Number of Calls")
    ax.set_title("Number of Calls For Each month of the year");
    #raise NotImplementedError()

# Leave this for grading purposes
    ax_5 = plt.gca()
```


2.7 Question 6

2.7.1 Question 6a

Now let's look at the CMPLNT_FR_TM column which indicates the time for events. Since it contains hour and minute information, let's extract the hour info and create a new column named Hour in the calls dataframe.

Note that each element in calls["CMPLNT_FR_TM"] is a string. So you need to save the hour as an int.

- Complete the function get_hour
 - Use the method split(":") to break the string into a list

- Select the 0th entry
- Convert from string to integer using int
- Use apply on the CMPLNT_FR_TM column with the function get_hour

```
[66]: def get_hour(some_string):
    splited = some_string.split(":")
    return int(splited[0])

calls["Hour"] = calls['CMPLNT_FR_TM'].apply(get_hour)

# YOUR CODE HERE
#raise NotImplementedError()
```

```
[67]: # TEST
'Hour' in calls.columns
```

[67]: True

```
[68]: # TEST
set(calls["Hour"]) == set(range(24))
```

[68]: True

Plot the frequency of each hour in the table (i.e., value_counts()) sorted by the hour of the day (i.e., sort_index()). The code in the cell below creates a pandas bar plot showing the number of Robberies committed at each hour of the day.

```
[69]: ax = calls[calls["OFNS_DESC"] == "ROBBERY"]['Hour'].value_counts().sort_index().

→plot(kind='bar')

ax.set_xlabel("Hour of the Day")

ax.set_ylabel("Number of Calls")

ax.set_title("Number of Robbery Events For Each Day of the Week");
```


The cell below contains a seaborn plot of the same data.

```
[70]: ax = sns.countplot(data=calls[calls['OFNS_DESC'] == 'ROBBERY'], x='Hour')
    ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
    ax.set_xlabel("Hour of the Day")
    ax.set_ylabel("Number of Calls")
    ax.set_title("Number of Robbery Events For Each Day of the Week");
    #raise NotImplementedError()
```


Alternatively we could have used

sns.countplot(data=calls[calls["OFNS_DESC"] == "ROBBERY"], x = 'Hour')

2.7.2 Question 6b

According to our plots, there seems to be a dip in robberies during the day (6 am - 12 pm). Do you trust that this dip is legitimate, or could there be an issue with our data? Explain your reasoning in 1-2 sentences in the cell below.

I think it is because it is the time that most of the people are heading toward work places or schools, which means their schedule may not be so free that they are able to go to many places as afternoon and night.

2.8 Question 7

In the cell below, we generate a boxplot which examines the hour of day of each crime broken down by the OFNS_DESC value for the calls_subset DataFrame. To construct this plot we used the DataFrame.boxplot documentation.

```
[48]: calls_subset["Hour"] = calls_subset["CMPLNT_FR_TM"].apply(get_hour)
calls_subset.boxplot(column="Hour", by='OFNS_DESC', rot=90);
```

/opt/conda/envs/dsua-112/lib/python3.7/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """Entry point for launching an IPython kernel.

While the pandas boxplot is informative, we can use seaborn to create a more visually-appealing plot. Using seaborn, regenerate a better box plot. The new box plot should be similar to the above diagram. The order of the labels on x axis need not matter. But the data needs to be represented in the same way. See the seaborn boxplot documentation.

Looking at your plot, which crime type appears to have the largest interquartile range? Put your results into answer7 as a string.

```
[82]: answer7 = 'ALCOHOLIC BEVERAGE CONTROL LAW'

# Todo: Make a boxplot with seaborn

calls_subset["Hour"] = calls_subset["CMPLNT_FR_TM"].apply(get_hour)

ax_7 = sns.boxplot(x = 'OFNS_DESC', y = 'Hour', data = calls)

ax_7=ax_7.set_xticklabels(ax_7.get_xticklabels(), rotation=90)

#raise NotImplementedError()
```

/opt/conda/envs/dsua-112/lib/python3.7/site-packages/ipykernel_launcher.py:4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy after removing the cwd from sys.path.


```
[79]: # TEST
assert isinstance(answer7,str)
```

2.9 Congratulations

Congrats! You are finished with this assignment.