

AULA 08 – LOGARITMOS

MATEMÁTICA PARA COMPUTAÇÃO PROFESSOR PLATÃO GONÇALVES TERRA NETO

DEFINIÇÃO

Definimos

 $a^n = a.a.a....a$ (n parcelas a),

Onde a é denominado base e n é o expoente.

Exemplo: Os valores das potências 2¹⁰, 3⁸, 4⁶, 5⁵ e 7³ são respectivamente iguais a:

- () a) 512, 6561, 4096, 3125 e 243
- () b) 512, 6561, 2048, 625 e 343
- () c) 2048, 2187, 2048, 3125 e 343
- () d) 1024, 2187, 2048, 625 e 243
- () e) 1024, 6561, 4096, 3125 e 343

RESPOSTA

```
2^{10} = 2.2.2.2.2.2.2.2.2 = 1024
```

$$3^8 = 3.3.3.3.3.3.3 = 6561$$

$$4^6 = 4.4.4.4.4 = 4096$$

$$5^5 = 5.5.5.5.5 = 3125$$

$$7^3 = 7.7.7 = 343$$

- () a) 512, 6561, 4096, 3125 e 243
- () b) 512, 6561, 2048, 625 e 343
- () c) 2048, 2187, 2048, 3125 e 343
- () d) 1024, 2187, 2048, 625 e 243
- (X) e) 1024, 6561, 4096, 3125 e 343

Para trabalharmos com as propriedades vamos utilizar a tabela do 2. Entretanto as propriedades valem mesmo se a base não for 2.

Expoente	2	3	4	5	6	7	8	9	10
Potência		$2^3 = 8$							

RESPOSTAS

Expoente	2	3	4	5	6	7	8	9	10
Potência	$2^2 = 4$	$2^3 = 8$	$2^4 = 16$	$2^5 = 32$	$2^6 = 64$	$2^7 = 128$	$2^8 = 256$	$2^9 = 512$	$2^{10} = 1024$

Note que conforme o expoente aumenta uma unidade, a potência é multiplicada por 2. Podemos pensar o mesmo quando verificamos que ao diminuir uma unidade no expoente, a potência fica dividida por 2

Expoente	1	2	3	4	5	6	7	8	9	10
Potência		2 ² = 4	23 = 8	24 = 16	25 = 32	2 ⁶ = 64	2 ⁷ = 128	28 = 256	29 = 512	2 ¹⁰ = 1024

Qualquer potência de expoente 1, é igual a própria base.

$$a^1 = a$$

Expoente	1	2	3	4	5	6	7	8	9	10
Potência	21 = 2	$2^2 = 4$	$2^3 = 8$	24 = 16	$2^5 = 32$	$2^6 = 64$	2 ⁷ = 128	28 = 256	2 ⁹ = 512	2 ¹⁰ = 1024

Dando sequência ao raciocínio anterior, temos o seguinte:

Expoent e	0	1	2	3	4	5	6	7	8	9	10
Potência		21 = 2	2 ² = 4	2 ³ = 8	24 = 16	25 = 32	2 ⁶ = 64	2 ⁷ = 128	28 = 256	2 ⁹ = 512	2 ¹⁰ = 1024

Qualquer potência de expoente zero, com base diferente de zero é igual a um.

$$a^0 = 1$$
 , $a \neq 0$

Expoent e	0	1	2	3	4	5	6	7	8	9	10
Potência	$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$	$2^4 = 16$	$2^5 = 32$	$2^6 = 64$	$2^7 = 128$	$2^8 = 256$	$2^9 = 512$	$2^{10} = 1024$

Verifique os seguintes valores

- a) 2^4
- b) 26
- c) 16.64 =
- d) A resposta do item anterior está na tabela? Em qual expoente?

Expoei e	o o	1	2	3	4	5	6	7	8	9	10
Potênc	a $2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$	$2^4 = 16$	$2^5 = 32$	$2^6 = 64$	$2^7 = 128$	$2^8 = 256$	$2^9 = 512$	$2^{10} = 1024$

Note que $2^6 \cdot 2^4 = 64 \cdot 16 = 1024 = 2^{10}$ Assim, $2^6 \cdot 2^4 = 2^{6+4} = 2^{10}$

Expoent e	0	1	2	3	4	5	6	7	8	9	10
Potência	$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$	$2^4 = 16$	$2^5 = 32$	$2^6 = 64$	$2^7 = 128$	$2^8 = 256$	$2^9 = 512$	$2^{10} = 1024$

Multiplicação de potências de mesma base: conserva-se a base e adiciona-se o expoente.

$$a^m \cdot a^n = a^{m+n}$$

Verifique os seguintes valores

- a) 2^9
- b) 2⁴
- c) 512/16 =
- d) A resposta do item anterior está na tabela? Em qual expoente?

Expoente	0	1	2	3	4	5	6	7	8	9	10
Potência	$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$	$2^4 = 16$	$2^5 = 32$	$2^6 = 64$	$2^7 = 128$	$2^8 = 256$	$2^9 = 512$	$2^{10} = 1024$

Note que
$$2^9 / 2^4 = 512 / 16 = 32 = 2^5$$

Assim, $2^9 / 2^4 = 2^{9-4} = 2^5$

Expoente	0	1	2	3	4	5	6	7	8	9	10
Potência	$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$	$2^4 = 16$	$2^5 = 32$	$2^6 = 64$	$2^7 = 128$	$2^8 = 256$	$2^9 = 512$	$2^{10} = 1024$

Divisão de potências de mesma base: conserva-se as bases e subtraíse os expoentes.

$$a^m/a^n = a^{m-n}$$

Verifique os seguintes valores

- a) 2^{3}
- b) 8³
- c) A resposta do item anterior está na tabela? Em qual expoente?

Expoente	0	1	2	3	4	5	6	7	8	9	10
Potência	$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$	$2^4 = 16$	$2^5 = 32$	$2^6 = 64$	$2^7 = 128$	$2^8 = 256$	$2^9 = 512$	$2^{10} = 1024$

Note que
$$(2^3)^3 = 8^3 = 512 = 2^9$$

Assim, $(2^3)^3 = 2^{3.3} = 2^9$

Expoente	0	1	2	3	4	5	6	7	8	9	10
Potência	$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$	$2^4 = 16$	$2^5 = 32$	$2^6 = 64$	$2^7 = 128$	$2^8 = 256$	$2^9 = 512$	$2^{10} = 1024$

Potência de Potência: conserva-se as bases e multiplicam-se os expoentes.

$$(a^n)^m = a^{m.n}$$

Já verificamos o raciocínio quando diminui uma unidade no expoente. Seguindo esse raciocínio teremos o seguinte:

Expoent e	-3	- 2	-1	0	1	2	3	4	5	6	7
Potência				$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$	$2^4 = 16$	$2^5 = 32$	$2^6 = 64$	$2^7 = 128$

Veja que

$$2^{-1} = \frac{1}{2} = \frac{1}{2^{1}}$$

$$2^{-2} = \frac{1}{4} = \frac{1}{2^2}$$

$$2^{-3} = 1/8 = 1/2^3$$

Expoente	-3	- 2	-1	0	1	2	3	4	5	6	7
Potência	$2^{-3} = 1/8$	$2^{-2} = \frac{1}{4}$	$2^{-1} = \frac{1}{2}$	$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$	$2^4 = 16$	$2^5 = 32$	$2^6 = 64$	$2^7 = 128$

Toda a potência com expoente negativo (exceto do Zero) é igual a uma fração onde o numerador é sempre o nº1 e o denominador é o mesmo nº elevado ao mesmo expoente, porém, positivo.

$$a^{-n} = 1/a^n$$

- 1) Classifique em verdadeiro (V) ou falso (F)
- a) () $3^{-2} = -9$
- b) () $3^2 \times 3^3 = 9^5$
- c) () $3^8 : 3^2 = 3^4$
- d) () $6^3:2^3=3^3$
- e) () $9^3:3^2=3^8$
- f) () $2^3 \times 3^2 = 2 \times 6^2$
- g) () $3^2 \times 3^{-2} = 1$

- 2) O valor de 2². 3 é:
- () a) 6²
- () b) 12
- () c) 18
- () d) 9
- () e) 15

RESPOSTAS

- 1) Classifique em verdadeiro (V) ou falso (F)
- a) (F) $3^{-2} = -9$ A RESPOSTA É 1/9
- b) (F) $3^2 \times 3^3 = 9^5$ A RESPOSTA É
- c) (F) $3^8 : 3^2 = 3^4 \text{A RESPOSTA } \acute{\text{E}} 3^6$
- d) (V) $6^3:2^3=3^3$
- e) (F) $9^3: 3^2 = 3^8 \text{A RESPOSTA } \acute{\text{E}} 3^4$
- f) (V) $2^3 \times 3^2 = 2 \times 6^2$
- g) (V) $3^2 \times 3^{-2} = 1$

- 2) 0 valor de 2². 3 é:
- $() a) 6^2$
- (X) b) 12
- () c) 18
- () d) 9
- () e) 15

MAIS EXEMPLOS

- 3) Resolvendo $(7/9)^0$, tem-se:
- () a) 7/9
- () b) 0
- () c) 1
- () d) 7/9
- () e)

- 4) 0 valor de $6^4/3^3$ é:
- () a) 2
- () b) 48
- () c) 24
- () d) 6
- () e) 12

RESPOSTAS

- 3) Resolvendo $(7/9)^0$, tem-se:
- () a) 7/9
- () b) 0
- (X) c) 1
- () d) 7/9
- () e)

- 4) O valor de $6^4/3^3$ é:
- () a) 2
- (X) b) 48
- () c) 24
- () d) 6
- () e) 12

MAIS EXEMPLOS

- 5) $(4021)^1$ x $(1000)^0$ é igual a:
- () a) 4021.000
- () b) 0
- () c) 4021
- () d) 1000
- () e) 1

- 6) A razão $(2^4)^8/(4^8)^2$ é igual a:
- () a) 1/4
- () b) 1/2
- () c) 1
- () d) 2
- () e) 8

MAIS EXEMPLOS

```
5) (4021)^1 x (1000)^0 é igual a:
```

- () a) 4021.000
- () b) 0
- (X) c) 4021
- () d) 1000
- () e) 1

A razão $(2^4)^8/(4^8)^2$ é igual a:

- () a) 1/4
- () b) 1/2
- (X) c) 1
- () d) 2
- () e) 8

PROPRIEDADE 7 E 8

Vamos seguir agora sem a tabela Divisão de potências de mesmo expoente: dividem-se as bases e conserva-se o expoente.

$$(a/b)^n = a^n/b^n, b \neq 0$$

Exemplos:

$$(5/3)^4 = 5^4/3^4 = 625/81$$

 $(x/2)^{10} = x^{10}/2^{10} = x^{10}/1024$

Multiplicação de potências de mesmo expoente: multiplicam-se as bases e eleva-se o produto ao expoente comum.

$$(a.b)^n = a^n.b^n$$

Exemplo:

$$(5.x)^3 = 5^3.x^3 = 125.x^3$$

PROPRIEDADE 9 E 10

Quando a base é zero e o Qualquer potência de base 1 é expoente não é zero o resultado igual a 1. da potência é zero.

$$0^n = 0$$
, $n \neq 0$

Exemplos:

$$0^5 = 0$$

$$0^{12} = 0$$

$$0^{734} = 0$$

$$1^{a} = 1$$

Exemplos:

$$1^5 = 1$$

$$1^{12} = 1$$

$$1^{734} = 1$$

PROPRIEDADE 11 E 12

Quando o expoente é negativo, invertemos a base e trocamos o sinal do expoente.

$$(a/b)^{-n} = (b/a)^n$$

Exemplos:

$$(2/3)^{-5} = (3/2)^5 = 243/32$$

$$(x/7)^{-3} = (7/x)^3 = 343/x^3$$

Expoente Fracionário: é escrito na forma de raiz.

$$a^{m/n} = n\sqrt{a^m}$$

Exemplos:

$$2^{3/4} = 4\sqrt{2^3} = 4\sqrt{8}$$

$$3^{7/5} = 5\sqrt{3^7} = 5\sqrt{2187}$$

$$5^{1/3} = \sqrt[3]{5^1} = \sqrt[3]{5}$$

$$11^{1/2} = \sqrt{2}\sqrt{11^1} = \sqrt{11}$$

PROPRIEDADE 13 E 14

Base dez: a quantidade de zeros é igual ao expoente.

$$10^3 = 1000$$

$$10^6 = 1\ 000\ 000$$

$$10^8 = 100\ 000\ 000$$

$$10^{-4} = 0,0001$$

$$10^{-6} = 0.000001$$

$$10^{-7} = 0.0000001$$

Regra dos sinais: expoentes pares tem resultados positivos e expoentes ímpares mantém o sinal da base.

$$(-)^{PAR} = +$$
 $(+)^{PAR} = +$
 $(-)^{ÍMPAR} = (+)^{ÍMPAR} = +$

ATENÇÃO COM OS SINAIS

Exemplos

$$2^4 = 16$$

$$2^5 = 32$$

$$(-2)^4 = 16$$

$$(-2)^5 = -32$$

$$-2^4 = -16$$

$$-2^5 = -32$$

Regra dos sinais: expoentes pares tem resultados positivos e expoentes ímpares mantém o sinal da base.

$$(-)^{PAR} = +$$
 $(+)^{PAR} = +$
 $(-)^{ÍMPAR} = (+)^{ÍMPAR} = +$

Calcule os valores de

a)
$$(3/5)^{-2}$$
 =

b)
$$-(3/4)^{-3} =$$

c)
$$-(1/2)^{-5} =$$

d)
$$(5/6)^{-3}$$
 =

e)
$$-(1/88)^{-2}$$
 =

Calcule os valores de

a)
$$(3/5)^{-2} = (5/3)^2 = 25/9$$

b)
$$-(3/4)^{-3} = -(4/3)^3 = -64/27$$

c)
$$-(1/2)^{-5} = -(2/1)^5 = -32$$

d)
$$(5/6)^{-3} = (6/5)^3 = 216/125$$

e)
$$-(1/88)^{-2} = -(88/1)^2 = -7744$$

- 1) Os valores de
- $(-3)^5$, $(-6)^4$, $(-2)^9$, $(-5)^6$ e -3^4

são respectivamente iguais a:

- () a) -243, 1296, -512, 15625 e 81
- () b) -243, 1296, -512, 625 e -81
- () c) -243, 216, -256, 15625 e 81
- () d)-243, 1296,-512, 15625 e -
- () e) -243, 216, -256, 15625 e 81

- 2) Os valores de
- $(-5)^1$, 1992⁰, 2⁻²,4⁻¹ e 6⁻²

são respectivamente iguais a:

- () a) -5, 1, 1/4, 1/4 e 1/36
- () b) 5, 1, -4, -4 e -36
- () c) 5, 1, -4, -4 e 1/36
- () d) -5, 1, 1/4, -1/4 e -36
- () e) -5, 1, 1/4, -4 e 1/36

- 1) Os valores de
- $(-3)^5$, $(-6)^4$, $(-2)^9$, $(-5)^6$ e -3^4

são respectivamente iguais a:

- () a) -243, 1296, -512, 15625 e 81
- () b) -243, 1296, -512, 625 e -81
- () c) -243, 216, -256, 15625 e 81
- (X) d) -243, 1296, -512, 15625 e -
- () e) -243, 216, -256, 15625 e 81

- 2) Os valores de
- $(-5)^1$, 1992⁰, 2⁻²,4⁻¹ e 6⁻²

são respectivamente iguais a:

- (x) a) -5, 1, 1/4, 1/4 e 1/36
- () b) 5, 1, -4, -4 e -36
- () c) 5, 1, -4, -4 e 1/36
- () d) -5, 1, 1/4, -1/4 e -36
- () e) -5, 1, 1/4, -4 e 1/36

Os valores $(-4)^{-2}$, $(-5)^{-3}$, $(-2)^{-1}$, $(-1)^{-4}$ e -5^{-2} são respectivamente iguais a:

- () a) 8, 15, 2, 4 e –10
- () b) 1/16, 1/125, -2, -1 e 1/25
- () c) 1/16, -1/125, -1/2, 1 e -1/25
- () d) 1/16, -1/125, -1/2, 1 e 1/25
- () e) -1/16,-1/125,-1/2,-1e-1/25

Os valores $(-4)^{-2}$, $(-5)^{-3}$, $(-2)^{-1}$, $(-1)^{-4}$ e -5^{-2} são respectivamente iguais a:

- () a) 8, 15, 2, 4 e –10
- () b) 1/16, 1/125, -2, -1 e 1/25
- (X) c) 1/16, -1/125, -1/2, 1 e -1/25
- () d) 1/16, -1/125, -1/2, 1 e 1/25
- () e) -1/16,-1/125,-1/2,-1e-1/25

UM EXEMPLO

Suponhamos que uma população tenha hoje 40 mil habitantes e que haja um crescimento populacional de 2% ao ano. Assim:

i) daqui a um ano o número de habitantes será

ii) daqui a dois anos o número de habitantes será

iii) daqui a três anos o número de habitantes será

DEFINIÇÃO

Suponhamos que uma população tenha hoje 40 mil habitantes e que haja um crescimento populacional de 2% ao ano. Assim:

i) daqui a um ano o número de habitantes será

$$y_1 = 40000 + (0,02).40000 =$$

 $40000 (1 + 0,02) = 40000.1,02 = 40800$

ii) daqui a dois anos o número de habitantes será

$$y_2 = y_1 + 0.02y_1 = y_1(1 + 0.02) = 40000(1.02)^2 = 41616$$

iii) daqui a três anos o número de habitantes será $y_3 = y_2 + 0.02y_2 = y_2 (1 + 0.02) = 40000(1.02)^3 = 42448$

Embora tenhamos feito a dedução do valor de y para x inteiro, pode-se mostrar que sob condições bastante gerais ela vale para qualquer valor real.

De um modo geral, se tivermos uma grandeza com valor inicial y₀ e que cresça a uma taxa igual a k por unidade de tempo, então após um tempo x, medido na mesma unidade de k, o valor desta grandeza y será dado por:

$$y = y_0 (1 + k)^x$$

Tal expressão é conhecida como função exponencial.

No nosso exemplo, teríamos que o número de habitantes daqui a x anos será

$$y = 40.000(1,02)^{x}$$

GRÁFICO

$$y = y_0 (1 + k)^x$$

É uma expressão válida quando

k > 0 (crescimento positivo) ou

k < 0 (crescimento negativo ou decrescimento).

O modelo que deu origem à função exponencial é conhecido como modelo de crescimento exponencial.

Verifica-se que quando

a base (1+ k) é maior que 1 o padrão gráfico da função exponencial é crescente e que

quando a base (1+ k) está entre 0 e 1, o padrão gráfico da função exponencial é decrescente

Uma cidade tem hoje 20000 habitantes e esse número cresce a uma taxa de 3% ao ano. Então:

a) Determine o número de habitantes daqui a 10 anos

b) Determine o número de habitantes daqui a x anos

Uma cidade tem hoje 20000 habitantes e esse número cresce a uma taxa de 3% ao ano. Então:

a) O número de habitantes daqui a 10 anos será

$$y = 20000(1,03)^{10} = 26878.$$

b) O número de habitantes daqui a x anos será

$$y = 20000(1,03)^{x}$$

Uma cidade tem hoje 20000 habitantes e esse número cresce a uma taxa de 3% ao ano. Então:

a) O número de habitantes daqui a 10 anos será

$$y = 20000(1,03)^{10} = 26878.$$

b) Se daqui a 10 anos o número de habitantes fosse igual a 30 000, a taxa de crescimento anual seria dada por:

$$30000 = 20000 (1 + k)^{10}$$

$$(1 + k)^{10} = 1.5$$

Que resulta em k = 4,14%

DEFININDO

SABEMOS QUE $2^3 = 8$.

PODEMOS REESCREVER EM FORMA DE LOGARITMO DA SEGUINTE FORMA:

$$\log_2 8 = 3$$

se $a^x = b \leftrightarrow \log_a b = x$

O NÚMERO a É CHAMADO DE BASE.

O NÚMERO b É CHAMADO DE LOGARITMANDO.

O NÚMERO x É CHAMADO DE LOGARITMO.

EXEMPLO: ESCREVA NA FORMA DE LOGARITMO:

a)
$$2^7 = 128 \leftrightarrow \log_2 128 = 7$$

b)
$$3^5 = 243$$

c)
$$7^2 =$$

d)
$$8^3 =$$

CALCULANDO

b)
$$3^5 = 243 \leftrightarrow \log_3 243 = 5$$

c)
$$7^2 = 49 \leftrightarrow \log_7 49 = 2$$

d)
$$8^3 = 512 \leftrightarrow \log_8 512 = 3$$

VAMOS CALCULAR EXEMPLO: $\log_2 64$.

BASTA COLOCAR $log_264 = x$

PELA DEFINIÇÃO $2^x = 64$.

CHEGAMOS EM UMA EQUAÇÃO EXPONENCIAL 2^x = 64 = 2⁶

ASSIM, $\log_2 64 = 6$

1) CALCULE OS SEGUINTES LOGARITMOS

- a) $\log_2 16$ b) $\log_3 27$
- c) $\log_{4}128$ d) $\log_{16}512$
- e) log1000 f) log100

1) CALCULE OS SEGUINTES LOGARITMOS

b) $\log_3 27 = x$

a) $\log_2 16 = x$

- 1) CALCULE OS SEGUINTES LOGARITMOS
- a) $\log_2 16 = x$

$$2^{x} = 16 = 2^{4}$$

$$\log_2 16 = 4$$

b)
$$\log_3 27 = x$$

$$3^{x} = 2^{7} = 3^{3}$$

$$\log_3 27 = 3$$

c)
$$\log_4 128 = x$$

d)
$$\log_{16} 512 = x$$

c)
$$\log_4 128 = x$$

$$4^{x} = 128$$

$$2^{2x} = 2^7$$

$$2x = 7$$

$$\log_4 128 = 7/2$$

d)
$$\log_{16} 512 = x$$

$$16^{x} = 512$$

$$2^{4x} = 2^9$$

$$4x = 9$$

$$\log_{16} 512 = 9/4$$

BASE 10

e)
$$\log 1000 = \log_{10} 1000 = x$$

f)
$$\log 100 = \log_{10} 100 = x$$

ASSIM QUANDO A BASE NÃO APARECE, ELA VALE 10.

e)
$$\log 1000 = \log_{10} 1000 = x$$

$$10^{x} = 1000 = 10^{3}$$

$$log1000 = 3$$

f)
$$\log 100 = \log_{10} 100 = x$$

$$10^{x} = 100 = 10^{2}$$

$$log100 = 2$$

CALCULE OS SEGUINTES LOGARITMOS:

- a) \log_5 -25
- b) log_15

CONDIÇÃO DE EXISTÊNCIA

CALCULE OS LOGARITMOS:

SEGUINTES

a)
$$\log_5 - 25 = x$$

$$5^{x} = -25 \text{ NÃO TEM SOLUÇÃO}.$$

$$\not\equiv \log_5 - 25$$

b)
$$\log_1 5 = x$$

$$1^{x} = 5 \text{ NÃO TEM SOLUÇÃO}$$

$$\nexists \log_1 5$$

ASSIM, AS CONDIÇÕES DE EXISTÊNCIA DO LOGARITMO SÃO:

$$a \neq 1$$

EXERCÍCIO

CALCULE OS SEGUINTES LOGARITMOS:

- a) $log_5 5$
- b) log₇7
- c) log10
- d) $\log_5 1$
- $e) log_7 1$
- f) log1

CALCULE OS LOGARITMOS:

a)
$$\log_5 5 = x$$

$$5^{x} = 5 = 5^{1}$$

$$\log_5 5 = 1$$

b)
$$\log_7 7 = x$$

$$7^{x} = 7 = 7^{1}$$

$$\log_7 7 = 1$$

c)
$$log10 = x$$

$$10^{x} = 10 = 10^{1}$$

$$\log 10 = 1$$

ASSIM, CONSIDERANDO AS CONDIÇÕES DE EXISTÊNCIA

$$log_a a = 1$$

d)
$$\log_5 1 = x$$

$$5^{x} = 1 = 5^{0}$$

$$\log_5 1 = 0$$

$$e) log_7 1$$

$$7^{x} = 1 = 7^{0}$$

$$\log_7 1 = 0$$

f)
$$log1 = x$$

 $10^x = 1 = 10^0$
 $log1 = 0$
ASSIM, CONSIDERANDO AS
CONDIÇÕES DE EXISTÊNCIA
 $log_a1 = 0$

- 1) CALCULE OS SEGUINTES LOGARITMOS
- a) $log_2 8$
- b) $log_2 16$
- c) $\log_2 32$
- d) log_264
- e) $\log_2 128$
- f) $log_2 256$
- g) $log_2 512$

- 2) CALCULE OS SEGUINTES VALORES:
- a) $\log_2 16 + \log_2 32$
- b) $\log_2(16.32)$
- c) $\log_2 8 + \log_2 16$
- d) $\log_2(8.16)$

1) CALCULE OS SEGUINTES LOGARITMOS

a)
$$\log_2 8 = 3$$

b)
$$\log_2 16 = 4$$

c)
$$\log_2 32 = 5$$

d)
$$\log_2 64 = 6$$

e)
$$\log_2 128 = 7$$

f)
$$\log_2 256 = 8$$

g)
$$\log_2 512 = 9$$

2) CALCULE OS SEGUINTES VALORES:

a)
$$\log_2 16 + \log_2 32 = 4 + 5 = 9$$

b)
$$\log_2(16.32) = \log_2(512) = 9$$

c)
$$\log_2 8 + \log_2 16 = 3 + 4 = 7$$

d)
$$\log_2(8.16) = \log_2(128) = 7$$

$$log_c a + log_c b = log_c (a.b)$$

Exemplo.

$$loga = 5 e logb = 3$$

$$log(a.b) = loga + logb = 5 + 3 = 8$$

- 1) CALCULE OS SEGUINTES LOGARITMOS
- a) $\log_2 8 = 3$
- b) $\log_2 16 = 4$
- c) $\log_2 32 = 5$
- d) $\log_2 64 = 6$
- e) $\log_2 128 = 7$
- f) $\log_2 256 = 8$
- g) $\log_2 512 = 9$

- 4) CALCULE OS SEGUINTES VALORES:
- a) $\log_2 512 \log_2 64$
- b) $\log_2(512/64)$
- c) $\log_2 256 \log_2 8$
- d) $\log_2(256/8)$

1) CALCULE OS SEGUINTES LOGARITMOS

- a) $\log_2 8 = 3$
- b) $\log_2 16 = 4$
- c) $\log_2 32 = 5$
- d) $\log_2 64 = 6$
- e) $\log_2 128 = 7$
- f) $\log_2 256 = 8$
- g) $\log_2 512 = 9$

4) CALCULE OS SEGUINTES VALORES:

a)
$$\log_2 512 - \log_2 64 = 9 - 6 = 3$$

b)
$$\log_2(512/64) = \log_2(8) = 3$$

c)
$$\log_2 256 - \log_2 8 = 8 - 3 = 5$$

d)
$$\log_2(256/8) = \log_2(32) = 5$$

$$\log_{c} a - \log_{c} b = \log_{c} (a/b)$$

Exemplo.

$$loga = 5 e logb = 3$$

$$log(a/b) = log a - log b = 5 - 3 = 2$$

Sabendo que $log_c a + log_c b = log_c (a.b)$ quanto é o valor de $loga^3$?

Sabendo que $log_c a + log_c b = log_c (a.b)$ quanto é o valor de $loga^3$? $loga^3 = log(a.a.a) = loga + loga + loga = 3loga$

$$logx5 = log(x.x.x.x.x) =$$

$$logx + logx + logx + logx + logx$$

$$= 5logx$$

$$logb10 = log(b.b....b) = logb + logb + ... + logb = 10logb$$

Assim $\log_c a^n = n.\log_c a$

5) Sabendo que loga = 5, logb = 7 e log c = 2. Calcule $log(a^3.b^2/c)$

$$log(a^3.b^2/c) =$$

 $loga^3 + logb^2 - logc =$
 $3loga + 2logb - logc =$
 $3.5 + 2.7 - 2 = 15 + 14 - 2 = 27$

RESUMINDO

DEFINIÇÃO:

$$a^{x} = b \leftrightarrow \log_{a} b = x$$

BASE 10:

$$\log 1000 = \log_{10} 1000 = 3$$

CONDIÇÕES DE EXISTÊNCIA

$$a > 0$$
, $a \ne 1$, E $b > 0$

$$P1) \log_a a = 1$$

P2)
$$\log_{a} 1 = 0$$

P3)
$$\log_c a + \log_c b = \log_c (a.b)$$

P4)
$$\log_c a - \log_c b = \log_c (a/b)$$

P5)
$$\log_c a^n = n.\log_c a$$

- 1) CALCULE:
- a) $\log_3 3 =$
- b) $\log_{3}9 =$
- c) $\log_3 27 =$
- d) $\log_3 81 =$
- e) $\log_3 243 =$

- f) $3^{\log_3 3} =$
- g) $3^{\log_3 9} =$
- h) $3^{\log_3 27} =$
- i) $3^{\log_3 81} =$
- $j) 3^{\log_3 243} =$

RESPOSTAS

CALCULE:

- a) $\log_3 3 = 1$
- b) $\log_3 9 = 2$
- c) $\log_3 27 = 3$
- d) $\log_3 81 = 4$
- e) $\log_3 243 = 5$

f)
$$3^{\log_3 3} = 3^1 = 3$$

g)
$$3^{\log_3 9} = 3^2 = 9$$

h)
$$3^{\log_3 27} = 3^3 = 27$$

i)
$$3^{\log_3 81} = 3^4 = 81$$

j)
$$3^{\log_3 243} = 3^5 = 243$$

ASSIM

$$a^{\log_a b} = b$$

POR EXEMPLO, $5^{\log_5 7} = 7$

BASE e

UMA BASE MUITO COMUM, NA CALCULADORA O ALÉM DA BASE DEZ, É O LOGARITMO DE BASE e É NÚMERO DE EULER. INDICADO COM ln

O NÚMERO DE EULER É ASSIM, POR EXEMPLO INDICADO COM A LETRA e E $log_e 10 = ln 10 \cong 2,3$ VALE APROXIMADAMENTE 2,71

LOGARITMO BINÁRIO

UMA BASE MUITO COMUM, ALÉM DA BASE DEZ E O NÚMERO DE EULER É A BASE 2. PODEMOS ESCREVER O LOGARITMO BINÁRIO OU DE BASE DOIS DA SEGUINTE FORMA:

 $lgx = log_2x$

EM TEORIA DA INFORMAÇÃO, O NÚMERO DE DÍGITOS (BITS) NA REPRESENTAÇÃO BINÁRIA DE UM INTEIRO POSITIVO n É A PARTE INTEIRA DE 1 + lgn.

MUDANÇA DE BASE

CONSIDERANDO A EQUAÇÃO

$$2^{x} = 8$$

PODERÍAMOS ESCREVER NA FORMA DE LOGARITMO DA SEGUINTE FORMA

$$\log_2 8 = x$$

RESOLVER ESSA EXPRESSÃO É FÁCIL, POIS 2³ = 8 E, POR CONSEQUÊNCIA, log₂8 = 3 2) REESCREVA NA FORMA DE LOGARITMOS AS SEGUINTES EQUAÇÕES E AS RESOLVA, SE POSSÍVEL

a)
$$2^x = 16$$

b)
$$3^{x} = 81$$

c)
$$10^x = 1000$$

d)
$$e^{x} = e^{2}$$

e)
$$7^{x} = 5$$

MUDANÇA DE BASE

a)
$$2^x = 16 \rightarrow \log_2 16 = 4$$

b)
$$3^x = 81 \rightarrow \log_3 81 = 4$$

c)
$$10^x = 1000 \rightarrow \log 1000 = 3$$

d)
$$e^x = e^2 \to lne^2 = 2$$

e)
$$7^{x} = 5 \rightarrow \log_{7} 5 = ?$$

PARA OS CASOS EM QUE NÃO É POSSÍVEL FATORAR, EXISTE A MUDANÇA DE BASE.

ESCOLHEMOS A BASE a CONVENIENTE E PROCEDEMOS A SEGUINTE RELAÇÃO:

$$\log_a b = \frac{\log_c b}{\log_c a}$$

MUDANÇA DE BASE

e)
$$7^x = 5 \to \log_7 5 = ?$$

SABENDO QUE

$$\log_a b = \frac{\log_c b}{\log_c a}$$

VAMOS APLICAR NO EXEMPLO. UMA BASE INTERESSANTE PARA TRABALHARMOS É A BASE 10, QUE TEM OS VALORES DADOS NA CALCULADORA

$$\log_7 5 = \frac{\log_c 5}{\log_c 7} = \frac{\log 5}{\log 7} \cong 0.8271$$

ENTÃO

$$7^{0,8271} \cong 5$$

OBSERVAÇÃO: VOCÊ PODE UTILIZAR A BASE e:

$$\log_7 5 = \frac{\ln 5}{\ln 7} \cong 0.8271$$

- 3) DETERMINE, COM O AUXÍLIO DA CALCULADORA A SOLUÇÃO DAS SEGUINTES EQUAÇÕES EXPONENCIAIS:
- a) $13^x = 143$
- b) $1.5^x = 6.42$
- c) $10^x = 64$
- d) $2^{x} = 8$

- 3) DETERMINE, COM O AUXÍLIO c) $10^x = 64 \rightarrow x = \log 64 \approx 1.81$ DA CALCULADORA A SOLUÇÃO DAS SEGUINTES EQUAÇÕES **EXPONENCIAIS:**

- a) $13^{x} = 143 \rightarrow x = \log_{13} 143 =$ $log143/log13 \cong 1,93$
- d) $2^{x} = 8 \rightarrow x = \log_{2}8 =$ log8/log2 = 3
- b) $1.5^x = 6.42 \rightarrow x = \log_{1.5}6.42 = 100$ $\log 6,42/\log 1,5 \cong 4,59$

- 3) DETERMINE, COM O AUXÍLIO c) $10^x = 64 \rightarrow x = \log 64 \approx 1.81$ DA CALCULADORA A SOLUÇÃO DAS SEGUINTES EQUAÇÕES **EXPONENCIAIS:**

- a) $13^{x} = 143 \rightarrow x = \log_{13} 143 =$ $log143/log13 \cong 1,93$
- d) $2^{x} = 8 \rightarrow x = \log_{2}8 =$ log8/log2 = 3
- b) $1.5^x = 6.42 \rightarrow x = \log_{1.5}6.42 = 100$ $\log 6,42/\log 1,5 \cong 4,59$

EXERCÍCIOS

- 16) O PIB de um país cresce a uma taxa igual a 5% ao ano. Daqui a quantos anos aproximadamente o PIB triplicará?
- 17) Um automóvel novo vale hoje \$ 20.000,00 e sofre desvalorização de 15% ao ano. Daqui a quanto tempo seu valor se reduzirá à metade.