

70

AFAPL-TR-77-8
Volume III

USER'S GUIDE - COMPUTER PROGRAM COMBUSTOR RELIABILITY PREDICTION USER'S GUIDE - COMPUTER PROGRAM -

BO25 onl

UNITED TECHNOLOGIES CORPORATION PRATT & WHITNEY AIRCRAFT GROUP, GOVERNMENT PRODUCTS DIVISION WEST PALM BEACH, FLORIDA 33402

OCTOBER 1977

TECHNICAL REPORT AFAPL-TR-77-8, VOLUME III Final Report for Period 15 June 1975 - 30 November 1976

Approved for public release; distribution unlimited

DDC MAR 7 1978 GUUU

AIR FORCE AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Dale A. Hudson Project Engineer

FOR THE COMMANDER

Ernest C. Simpson

Director, Turbine Engine Division
Air Force Aero Propulsion Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFAPL/TBC, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/26 January 1978 - 100

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORI
REPORT NUMBER 2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
AFAPL-TR-77-8, Vol III	
TITLE (and Subtitle)	S TYPE OF REPORT & BERIOD COVE
USER'S GUIDE - Computer Program -	Final Report
Combustor Reliability Prediction	15 Jun 175-30 Nov 176
	147 FR-8350 - VO/ 3
AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(s)
B. C. Schlein	15 F33615-75-C-2057
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM EL EMENT PROJECT T
Pratt & Whitney Aircraft Group	10. PROGRAM ELEMENT, PROJECT, T AREA & WORK UNIT NUMBERS
Government Products Division	P. E. 62203F, Project 3066
West Palm Beach, FL 33402	Task, 306605, W. U. 3066
. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Aero-Propulsion Laboratory (TBC)	1 October 977
Wright-Patterson AFB OH 45433	12 410 40
4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office	
(18) AFAPL	
	UNCLASSIFIED
19 TR-77-8-VOL-3	15a. DECLASSIFICATION/DOWNGRAD
5. DISTRIBUTION STATEMENT (of this Report)	
	(16)3066
Approved for public release; Distribution unlimited.	(2) 24 11 A5
	2139664
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differen	nt from Report)
. SUPPLEMENTARY NOTES	
B. KEY WORDS (Continue on reverse side if necessary and identify by block nur	
Daliability.	Combustor Durability
Reliability Mission Analysis	Failure Models
Life Prediction	Creep LCF
Life Flediction	Louver Lip Buckling
ABSTRACT (Continue on reverse side if necessary and identify by block num	nber)

of time. A description of the failure mode selection, model development and program sensitivity

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

studies was included in the Final Report (Vol. I) under this contract.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

J.B. 392887

Preceding Page BLank - FILMES

PREFACE

This final report was submitted by Pratt & Whitney Aircraft Group Government Products Division United Technologies Corporation, under Contract F33615-75-C-2057. The effort was sponsored by the Air Force Aero Propulsion Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio with Dale Hudson/TBC as Project Engineer. Barry Schlein of Pratt & Whitney Aircraft was technically responsible for the work.

Technical assistance provided by W. H. Vogel and M. T. Loferski was essential to the completion of the project.

HARTHER TIPE	1.1
	D
101114122.1108	
BY BISTRICHTION/MARKETERS CON	543
Blet. AVAIL DAY W STOCK	IAL

TABLE OF CONTENTS

Section	Subject	Page
1	INTRODUCTION	1
11	PROGRAM DESCRIPTION	2
	1. General Description	2
	2. Life Calculation	3
	a. Burner Creep - Low Cycle Fatigue (LCF) Cracking	3
	b. Burner Louver Lip Buckling	5
Ш	PROGRAM OPERATION	8
	1. Program Input	8
	a. Program Instructions	8
	b. Input Package	8
	c. Sample Case	25
	2. Program Output	27

SECTION I

INTRODUCTION

This document is a user's guide to the Combustor Reliability Prediction Program.

The program relates burner crack initiation life and louver lip buckling life to the boundary conditions of compressor exit and turbine inlet temperature, expressed as a function of time. The user must provide a set of reference conditions; metal temperature and strain range for a particular set of compressor exit and turbine inlet gas temperatures. The program then integrates the damage for each failure mode over the flight and provides a predicted life.

Section 2 of the document provides a program flow map, an engineering description, and a definition of the function of each subroutine. A detailed engineering description, including failure model selection, model development and program sensitivity studies, are provided in the final report for this Contract (Volume I).

Section 3 contains the input instructions, a listing of input for a sample case and the corresponding program output.

SECTION II

PROGRAM DESCRIPTION

1. General Description

The Combustor Reliability Computer program described in this report is a FORTRAN program compiled on both an IBM 370/168 at P&WA and a CDC 2000 for use at Wright-Patterson AFB. An overview of the program is provided in schematic form in Figure 1. The figure traces the flow of the calculation from the input stages through the calculation of component environment and incremental damage at each portion of the flight to the final summation of the damage for the mission. The appropriate subroutines are indicated by name in parenthesis in each box. Table I is a summary of the subroutine names and functions.

Figure 1. CRC Program Overview

TABLE 1
List Of Names, Routines, and Functions

Name	Type	Purpose
INPUT	Subroutine	reads in flight condition, temperature, and flight time
MAIN	Main Program	directs mission analysis program flow and calculates turbine metal temperature, stress, and strain range; reads in reference condition
MLIBR	Subroutine	reads and organizes materials' properties for turbine life analysis
UNBAR	Subroutine	interpolates two-dimensional tables

2. Life Calculation

a. Burner Creep-Low Cycle Fatigue (LCF) Cracking

This model, and the following one defining burner lip buckling life, are described in detail in the final report for this contract (Volume I).

The nomenclature for this section is described in Figure 2 and the following table.

A, B = Influence coefficients for temperature referencing

 B_t = Time - temperature dependent plastic stress-strain relationship

 C = Strain-temperature proportionality constant, a function of material and radius.

D_p = Material ductility

E = Youngs modulus

f = Flight increment

K₁ = Temperature dependent plastic strain relationship

L = Life

m = Total number of increments

n = Slope of the material LCF curve

 N_c = Damage fraction associated with creep

N_f = Damage fraction associated with LCF

T_K = Louver knuckle temperature

T_M = Metal temperature

T_{MR} = Reference condition metal temperature

T₁ = Combustor inlet temperature

T_{1R} = Combustor inlet temperature under reference conditions

T₂ = Combustor exit temperature

T_{2R} = Combustor exit temperature under reference conditions

 $\Delta \epsilon_{\rm c}$ = Endurance limit strain range

 $\Delta \epsilon_{TR}$ = Total strain range

Figure 2. Burner Creep - LCF Nomenclature

At any flight condition, the metal temperature is related to temperatures at the reference conditions by:

$$T_{M} = T_{MR} + A(T_{1} - T_{1R}) + B(T_{2} - T_{2R})$$
 (1)

The cold knuckle of the louver (See Figure 2) is

$$T_{K} = T_{1} + 20^{\circ}F$$
 (2)

and the total strain range is calculated from

$$\Delta \epsilon_{\text{TR}} = C \left[T_{\text{M}} - T_{\text{K}} \right] \tag{3}$$

The program has built in curves of C as a function of radius for bending and hoop stress. The user selects the failure mode (axial or circumferential cracking). A fatigue damage fraction is calculated for take-off conditions (equation 4) and a creep damage factor is calculated over the entire flight spectrum (equation (5).

$$N_{f} = \left(\frac{\Delta \epsilon_{TR} - \Delta \epsilon_{e}}{D_{p}}\right)^{1.667}$$
(4)

$$N_{c} = \left[\frac{(\Delta \epsilon_{TR})^{1/n}}{1.25 D_{p}E}\right]^{1.25} \left\{ \left[K_{1}^{-1/n} - (B_{t})_{i-1}^{-1/n}\right] + \right.$$

$$\sum_{i=2}^{m} \begin{bmatrix} B_{t_{i-1}}^{-1/n} - B_{t_{i}}^{-1/n} \end{bmatrix}$$
 1.25 (5)

The values of $\Delta \epsilon_e$, D_p , E, K_1 and B_t are functions of temperature (Bt is a function of time as well) and are obtained by interpolation of input data tables. The cracking life is then:

$$L = \frac{f}{N_c + N_f} \tag{6}$$

b. Burner Louver Lip Buckling

The burner louver lip buckling model is a dual mechanism failure model of thermal buckling and coating induced buckling. Failure is considered to occur when the lip is completely closed. Temperatures for this failure model are the same as those used in the creep - LCF model described in the preceding section (equations 1 and 2). Nomenclature for this section is described in Figure 3 and in the table below:

Materials property parameter

Hoop restraint factor

C_{ro} = Geometric hoop restraint factor E = Youngs modulus

= Youngs modulus

= flight increment

= Lip buckling coefficient

L = Lip length

Material property parameter

n = total number of flight increments

T_C = Critical buckling temperature

T_V = Louver knuckle temperature

T_M = Louver lip temperature

t = time

t_f = time to failure

W = Lip height

W_t = Thermal buckling

δ = Strip coating deflection

 Δt = Time increment

The subscript MAX refers to the largest value over the course of the mission while the superscript* indicates an equivalent value as explained in the text.

Figure 3. Burner Louver Lip Collapse Nomenclature

The temperature below which thermal buckling will not occur, called the critical buckling temperature, is determined from:

$$T_{C} = \Delta \epsilon_{ce} / k + T_{K}$$
 (7)

where:

$$\Delta \epsilon_{ce} = \frac{\Delta \epsilon_{cp} E' + m \ln (\Delta \epsilon_{cp}) + b}{E + E'}$$
 (8)

The values of E, m and b are functions of the material and hot metal temperature T_M while E' is Youngs Modulus, evaluated at the cold knuckle temperature. The value of k is a function of the lip geometry and Δ ϵ_{cp} is calculated from built in curves that relate the critical plastic strain to the lip temperature and buckling coefficient.

If the critical buckling temperature is exceeded, the lip buckles by an amount relative to the total strain. The curve, independent of material and radius, is built into the program. The program takes the maximum value of lip strain to calculate the thermal buckling.

Superimposed upon the thermal buckling is a coating induced buckling which forces the lip to close as a result of volumetric lip changes in the coating. The amount of closure is proportional to the geometry, temperature, and time at temperature. In any time increment, the amount of closure is:

$$W_{c_i} = C_{r_i} \left(\frac{L}{1.5}\right)^2 \delta_i \tag{9}$$

 C_{ri} is a geometric restraint factor that varies from C_{ro} at or below the critical buckling temperature to 1 at 2000°F (1367°K). C_{ri} is a function of lip geometry and is a part of the program. The coating strip deflection δ_i is a function of time at temperature and is computed from curves that are also a part of the program.

Since the lip temperature varies with each flight increment, an equivalent term is calculated to reach the deflection just prior to the start of the increment and at the new temperature. If δ_{i-1} represents the coating strip deflection up to the flight increment and T_{M_i} the new lip temperature:

$$t^*_{i-1} = f \left[\delta_{i-1}, T_{\mathbf{M}_i} \right]$$
 (10)

$$\delta_{i} = f \quad \left[t_{i-1}^{*} + \Delta t_{i}, T_{M_{i}}\right] \quad -\delta_{i-1}$$
(11)

At the conclusion of the flight, an equivalent temperature is calculated such that

$$T^* = f \qquad \left[\sum_{i=1}^{n} \delta_i, \sum_{i=1}^{n} t_i \right]$$
 (12)

Since failure is assumed to be the complete lip closure, the amount of strip coating closure for failure is

$$\delta_{f} = \frac{W - W_{t \text{ max}}}{C_{r_{\text{max}}} \left(\frac{L}{1.5}\right)^{2}}$$
(13)

and the time to complete collapse

$$t_f = f \left[\delta_f, T^*\right]$$
 (14)

SECTION III

PROGRAM OPERATION

This section describes both the input information and format required to run the mission analysis-failure model program, and the output from the program. A sample case (input and output) is also provided.

1. Program Input

a. Program Instructions

Details of the input for this deck, and the format of the input, are described in the following pages. Each page (or more than one page if required) illustrates and describes each data card or type of data card. Each card or type of card is divided into fields, or sequences of card columns, into which are entered the input parameter values.

Data will always be input in one of the three following forms:

- Floating point number (denoted by F. P.) this form of input may consist of the characters "+", "—" 0-9, and "." (decimal point). If neither "+" nor "—" is input, then a positive number is assumed. The decimal point must be input unless otherwise specified. If the decimal point is input, then a number may be entered anywhere within its field. An additional character, "E", may be used to input a floating point number with an exponent. For instance, the number 13,460,000.0 may be input as .1346 E8 or the number 0.0000001346 may be input as .1346 E-6. When a number is input with an exponent, then the exponent (E-6 for example) must be right adjusted within its field.
- Integer number (denoted by INT.) this form of input may consist of the same characters as a floating point number except for the decimal point (a decimal point must not be input). An integer number must be right-adjusted within its field.
- Alphanumeric input (denoted by A/N) this form of input may consist of any character available on the computer and may be entered anywhere within its field.

If the input field for a floating point number or an integer number is left blank, then a zero is assumed. Blanks in alphanumeric input will be blank characters.

b. Input Package

The input package is divided into three parts, as described below:

- Part 1 consists of the first card indicating the number of cases to be run and the number of burner material packages to be input.
- Part 2 (card types 2-7) defines the material properties. Up to five packages can be loaded.

Part 3 is the reference condition package including eight data cards.

The case title card (card type 8) indicates the number of reference conditions, up to 5. The program will generate a life prediction for each reference condition input. Card type 9 describes the flight duration and frequency used for averaging damage over a mixed set of missions.

Card type 10 identifies the material and the failure mode (cracking or buckling). Card type 11 indicates the number of reference modes (louvers) to be analyzed plus the units of temperature input.

Card type 12 identifies the compressor exit and turbine inlet temperatures at the reference conditions.

A card type 13 is required for each louver to be analyzed to define parameters for either the cracking or buckling failure model.

Card type 14 identifies the flight condition and the time-gas temperature boundary condition.

The last card of each case (type 15) contains a minus 1.

NOTE

The input data cards, as described above, are illustrated on pages 10-24 following.

AFAPL-TR-77-8 Volume III

Card Type: 1

Title:

Indicator Card

		A service of the contract profession of the cont
NCASES	IBRN	
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name	Туре	Column(s)	Description
NCASES	INT	1-10	Total number of cases to be run (no limit). Each case is described by cards 8-14.
IBRN	INT	11-20	Number of Burner Material Packages input, up to a maximum of 5. Input described by card types 2-7.
			10

Card Type: 2

Title:

Burner Material Package

General Instruction:

Input package IBRN times if IBRN >0 on card Type 1, Columns 11-20.

AME	BURNER MATERIAL PACKAGE

TITLE	INT A/N	1-4 9-80	Material name (1038, 5566, Descriptive title of material p		
				package.	
3102.1	B smill	b of the xell			
loye.	990943	Blatch-lagrances			
		duo _{in j} a vot ir			
¥1.4°	E) 3 18	3. Hoos vaudo.			
		18101 so 8	EA = E3 touteurs langueld		
h h	alno ga	shniost ni tequ) seed 18 to Fuero and 1	08/39	
				188.43	
				07-16	

AFAPL-TR-77-8 Volume III
Card Type:

3

Title:

Burner Material Package

Name	Туре	Column(s)	Description
NT1	INT.	1-2	Number of metal temperatures used to define parameters on card type 30 Max = 9
NT2	INT.	3-4	Number of metal temperatures used to define BT curve. Max = 9
NT3	INT.	5-6	Number of ϵ_{TR} and corresponding buckled deflection values input. Max = 15
NT4	INT.	7-8	No. of Tm for ϵ_{CP} curve
NT5	INT.	9-10	NT + NT5 \leq 20 No. of buckling coeff. for ϵ_{CP} curve
N	F.P.	11-20	Material constant (N = 2.35 for 1038)
T1	F.P.	21-30	
T2	F.P.	31-40	
Т3	F.P.	41-50	Time input for BT curve (input in ascending order)
T4	F.P.	51-60	
T5	F.P.	61-70	
		,	
			12

Card Type:

4 (Optional)

Title:

Burner Material Package

General Instruction:

Repeat these 2 cards NT1 times.

1	F10.3	E10.4	E10.4	E10.4	E10.4	E10.4	E10.4	E10.4
	FTAL (NIT1)	DP (SMOOTH)	DP (WELDED)	$\Delta\epsilon$ e	E	к,	м	b
	ETAL (NT1)							
			21 22 23 24 25 25 27 26 29 30					
								0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	E10.4	11 12 13 14 15 15 17 18 19 70						
	2 4 5 6 7 4 9 10	11 12 13 14 15 15 17 18 19 70						

Name	Туре	Column(s)	Description	
TMetal (NT1)	F.P. mon	1-10	Metal temperature at which the following taken. (°F)	g 9 parameters are
DP (Smooth)	F.P.	11-20	BRN cracking parameter.	43 5 05 08
DP (Welded)	F.P.	21-30	BRN cracking parameter.	9.1
$\Delta\epsilon_{ m e}$	F.P.	31-40	BRN cracking parameter.	313 (8) 18
E E	F.P.	41-50	BRN cracking + buckling parameter.	Taken from materials
к ₁	F.P.	51-60	BRN cracking parameter.	curves provided corresponding to TMetal (NT1
М	F.P.	61-70	Louver buckling parameter.	ponding to Thetal (NT)
b	F.P.	71-80	Louver buckling parameter.	
β	F.P.	1-10	Louver buckling parameter (log value)	
δ _{Max}	F.P.	11-20	Louver buckling parameter.	
			13	

AFAPL-TR-77-8
Volume III
Card Type: 5

Title:

Burner Material Package

General Instruction:

Repeat this card NT2 times.

F10.3	E10.4	E10.4	E10.4	E10.4	E10.4	
METAL (NT2)	BT (T1)	BT (T2)	BT (T3)	BT (T4)	BT (1'5)	\ \
0000000000	000000000	00000000000	00000000000	0000000000	00000000000	000000000000000000000

Name	Туре	Column(s)	Description				
TMetal (NT2)	F.P. 1-10		Metal temperature for the corresponding values of BT (Repeat card NT2 times) - °F				
BT (T1)	F.P.	11-20					
BT (T2)	F.P.	21-30	Time — temperature d	Time – temperature dependent parameters			
BT (T3)	F.P.	31-40	(Input to correspond				
BT (T4)	F.P.	41-50	an Post of PAR				
BT (T5)	F.P.	51-60	action and the second second				
		alian.	methy problems the end of				
		1925	Lossy possing part				
		60000 200000	0.000 5.000 00 17500				
		1970	Latver subtine part				
			14				

Card Type:

Title:

Burner Material Package (Strain Range - Buckled Deflection)

General Instruction:

Input values continuously leaving no blank fields.

E10.4	E10.4	E10.4	E10,4	E10.4	E10.4	E10.4	E10.4
$\epsilon_{TR\;(1)}$	€ _{TR (2)}		ϵ_{TR} (NT3)	WB (1)	WB (2)		WB (NT3)
	C O C O O O O O O O						

Name	Туре	Column(s)	Description
εTR (1→NT3)	F.P.	1-As Required (In Fields of 10)	Total strain range.
WB (1→NT3)	F.P.	Fields of 10 Immediately Following ϵ_{TR} Values	Buckled deflection corresponding to ϵ_{TR} (NT3) values
	All established	edi, sina saatsa Salihin daasa	The control of the co
			15

AFAPL-TR-77-8 Volume III Card Type:

7

Title:

Burner Material Package (Critical Plastic Strain Curve)

General Instruction:

Input values continuously leaving no blank fields.

E10.4	E10-4	E10.4	E10.4	E10,4	E10.4	E10.4	E10.4
TM (1)	TM(2)		TM (NT4)	KB (1)	KB (2)		KB (NT5)
0000000000	00000000				00000000000	0000000000	
00000000	000000000		0000000000	0000000000	0000000000	00000000000	000000000
							71 72 73 74 75 76 77 78 79 80
2 2 4 5 6 7 8 9 10 11							
2 2 4 5 6 7 8 9 10 11				41 42 43 42 45 46 47 49 49 50		61 52 63 64 65 66 67 68 69 76	

Name	Туре	Column(s)	Description
TM (1 → NT4)	F.P.	1-80 As Required in Fields of 10	Metal temperature for critical plastic strain curve. – °F
KB (1→ NT5)	F.P.	1-80 As Required in Fields of (immediately following last TM value input)	Buckling coefficient for critical plastic strain curve.
ε _{CP} (1,1→NT4, NT5)	F.P.	1-80	Critical plastic strain [Input values of ϵ_{CP} continuously along lines of constant metal temp. (TM) for given buckling coefficients (KB).]
			16

Card Type: 8 (Required)

Title:

Case Information

Name	Туре	Column(s)	Description
TITLE	A/N	1-72	Descriptive title describing case.
кро	INT	74-76	Printout Option 0 - Standard 1 - Expanded
KREF	INT	78-80	Number of reference conditions up to a maximum of 5.
			17

AFAPL-TR-77-8 Volume III

Card Type: 9

Title:

Case Information

General Instruction:

Name	Туре	Column(s)	Description
ВТ	F.P.	1-10	Block time - hours.
TT	F.P.	11-20	Taxi time - minutes.
FREQ	F.P.	21-30	Frequency of flights. When more than one case is run; the program will weight the damage for each case and print a summary life based upon each case and its frequency.
			18

Card Type:

10

Title:

Burner Cracking or Buckling Reference Condition

Name	Туре	Column(s)	Description
Name	INT.	1-4	Material name (1038, 5536, etc.)
ICORB	INT.	5	Indicator for cracking or buckling model (1 = cracking, 2 = buckling)
Title	A/N	11-76	Descriptive title or burner reference condition
			19

AFAPL-TR-77-8 Volume III

Card Type: 11

Title:

Burner Reference Condition

Name	Туре	Column(s)	Description				
NR	INT	1-2	Number of louvers, up to a maximum of 9, examined				
RORF	INT	3	$^{\circ}$ R or $^{\circ}$ F (0 = $^{\circ}$ R, 1 = $^{\circ}$ F)				
КТМ	INT	4	= 1 for burner				
	EDURAN						
			20				

Card Type: 12

Title:

Burner Reference Condition

T _{T4 REF}	T _{T5 REF}	
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name	Type	Column(s)	a na artistopi offi stational	Description	
TT4 Ref	F.P.	1-10	Reference T _{T4} (°R or °F)		Marca
TT5 Ref	F.P.	11-20	Reference T _{T5} (°R or °F)		
		gowood = 1 s Proposition = 1 Region = 1	ets soungers molt.		
		4.150	ar soft free promoted.		
100	ang/ -	7 7 70	lasi-Stato enegaci		
aber ²⁰⁰ 733.93	I-referen	G prestuces	nic'l' latable agus attain 🧸		
			y Summer		
			gl was stadil		
T					
	n T				
9379	era Berg	k mg/t	21		

AFAPL-TR-77-8 Volume III

Card Type:

13

Title:

Burner Reference Condition

General Instruction:

Repeat NR Times

F8.5	F8.5	F8.5	F8.5	F8.5	F8.5	F8.5	F8.2	F8.2	F8.2
RAD	L	L ² /RH	w	СНВ	AREF	BREF	BTMR	T ₄ (FI)	T ₅ (FI)
00000000	oococooo'	00000000	00000000	00000000	00000000	000000000	00000000	00000000	00000000

Name	Type	Column(s)	Description
RAD	F.P.	1-8	Radius of louver in inches
L	F.P.	9-16	Louver lip length in inches – (not input if ICORB = 1)
L2/RH	F.P.	17-24	Non-dimensional constant – (not input if ICORB = 1)
w	F.P.	25-32	Non-deflected louver lip gap (See Fig. below)
СНВ	F.P.	33-40	Hoop or bending stress 1. = bending stress outer liner 2. = hoop stress - outer liner 3. = hoop stress - inner liner
AREF	F.P.	41-48	Influence coefficient for T ₄
BREF	F.P.	49-56	Influence coefficient for T_5 $T_M = A_{REF} (T_4 - T_{4REF}) +$
BTMR	F.P.	57-64	Reference Metal Temperature $B_{REF} (T_5 - T_5 REF) + B_{TMR}$
T4(FI)	F.P.	65-72	Flight idle T ₄
T5(FI)	F.P.	73-80	Flight idle T ₅
			Figure 4 Louver Geometry

Card Type: 14

Title:

Time - Temperature Boundary Conditions

General Instruction:

As many as required.

Name	Туре	Column(s)	Description
IPERF	INT	1-10	Flight Condition 1. Takeoff 2. Climb 3. Cruise 4. Descent 5. Thrust Reversal
TT4	F.P.	11-20	Compressor Exit Temperature (°F or °R)
TT5	F.P.	21-30	Turbine Inlet Temperature (°F or °R)
FLTIME	F.P.	31-40	Time spent at flight condition (min.)
			23

AFAPL-TR-77-8 Volume III

Card Type: 15 (Required)

Title:

Finalizing Card

General Instruction:

If M = 0 on this card, this card would then be the last card. If M = -1 then card type 1 must follow this card.

Name	Туре	Column(s)		Descri	ption	
М		79-80	~1 indicates end of t	the data for the	e case.	
	151.10	1) omtersom	a disci reservino i			
	1.8	so Wildensein	To Sinc baset Tests			
	- 6	im) poitbaas	Capit in specie unit		14.7	
			24			

c. Sample Case (Input and Output)

Table 2 consists of a listing of the input for a sample test case. The numbers to the right of the input listing on Table 2 indicate the card type corresponding to the preceding input instructions.

The test case predicts combustor creep low cycle fatigue (LCF), and lip buckling life, for two cases.

TABLE 2

Sample Case

PILE: W508AF DATA

	2	1							1
1038	JT9D B	RN MAT'L P	ACKAGE CRP	-LCF, LOUVE	R BUCKLING	RH 11/4/7	6 (BASE)		2
8 511 6	92.35	.01	.03	.1	.5	1.			3
1000.	.745	E 0.495	E 0.396	E-2.246	E 8.76	E-6.118	E 5. 102	E 6	
35229E		E O							1
1400.	.805	E 0.535	E 0.291	E-2.22	E 8.14	E-5.1045	E 5.9	E 5	
23979E		E O							
1500.	.720	E 0.485	E 0.265	E-2.21	E 8.157	E-5.94	E 4.82	E 5	
20458E		E O							
1600.	.595	E 0.395	E 0.238	E-2.198	E 8.19	E-5.775	E 4.688	E 5	
16990B		E O						1	>4
1700.	.480	B 0.315	E 0.21	E-2.184	E 8.277	E-5.56	E 4.51	E 5	
13768E		E O		- 2 465		n c 27			
1800.	.380	E 0.250	E 0.18	B-2.165	E 8.502	B-5.37	E 4.344	E 5	
10783E		B 0	B 0 440	E-2.136	E 8.770	E-5.213	E 4.213	E 5	
1900.	. 31	E 0.200	E 0.149	E-2. 130	E 8.770	6-5.213	2 4.213	E 2	
82390E	.255	E 0 E 0-170	E 0.117	E-2.77	E 7.1063	E-4.99	E 3.1	E 5	
63830E		E 0.170	E 0.117	6-2.11	E 7.1003	5-4.77	E 3.1	F 3.	
1000.	.179	E-8.185	E-8.198	E-8.222	E-8.237	E-8			1
1500.	.275	E-5.345	E-5.49	E-5.87	E-5.113	E-4			
1600.	.58	E-5.83	E-5. 135	E-4.28	E-4.395	E-4			>5
1700.	.98	E-5.166	E-4.28	E-4.56	E-4.97	E-4			
1800.	. 15	E-4-265	B-4.53	B-4.145	E-3-227	E-3			
	0.2	E-3.4	E-3.6	E-3.8	E-3.1	B-2.15	E-2.2	B-2	
	-2.4	E-2.6	E-2.0	E 0.8	E-2-12	B-1.152	E-1.178	E-1	6
	-1.243	E-1-278	E-1.332	E-1.378	E-1.462	E-1		- '	
	4.15	E 4-16	E 4.17	E 4.18	E 4.19	E 4.0	E 0.1	B-2	
	-2.3	E-2.4	E-2.5	E-2.1	E-1.15	B-1.2	E-1.0	E O	1
	-3.11	B-2.145	E-2.175	B-2.205	E-2.338	B-2.462	E-2.578	E-2	
	-0.63	E-3.105	E-2.14	E-2.17	E-2.2	B-2.333	E-2.452	E-2	
	-20.	E 0.55	E-3.98	E-3.134	E-2.163	E-2.191	E-2.320	E-2	>7
	-2.552	E-2.0	B 0.54	E-3.93	E-3.126	E-2.152	E-2.179	E-2	
	-2.412	B-2.517	E-2.0	E 0.4	E-3.82	B-3.113	E-2.14	E-2	
	-2.28	E-2.385	E-2.485	E-2.0	E 0.38	B-3.72	E-3.1	E-2	
.126 E	-2.15	E-2.257	E-2.354	E-2.447	E-2			,	
D7A LKAV	GHISSION	10/11/76						1 2	8
4.0	10.0	1.0							9
10381	HAST-X	BRN CRACK	ING HODEL	RM 10/76					10

TABLE 2 (Cont'd)

111	22	00						11
1028.		00.		1				12
15.	.4	.237		2.	.6 .4	1870. 4	86.1295.	12 13
10382	HA	ST-X BRN	BUCKLING	HODEL RH	8/3/16			10
111								11
1028.	27	00.						12
15.	- 4	.237		3.	.6 .4	1870. 4	86.1295.	12 13
	1	1480.	3024.	2.				
	2	1354.	2782.	18.				1
	3	1260.	2660.	30.				
	3	1260.	2660.	30.				
	3	1260.	2660.	30.				>14
	3	1260.	2660.	30.				("
	2 3 3 3 3 3 3	1260.	2660.	30.				
	3	1260.	2660.	30.				
	3	1260.	2660.	12.				,
PILE:	W508AF	DATA	λ					
	4	1150.	2500.	18.0			\. .	
	5	1356.	2735.	.25			}14	
						-1	15	
DIA L	KAVGMIS	SION 10/	11/76			1 0	8	
4.0		10.0	1.0				9	
	1	1410.	2960.	2.			5 5 600	
	2	1335.	2680.	18.			01 to 1	
	3	1160.	2360.	120.			14	
	4	1110.	2260.	18.			(14	
	5	1360.	2660.	.25)	
						-1	15	
							13	

| Company | Comp

2. Program Output

This section notes the program output listing (Table 3) corresponding to the sample case in Table 2 above. The output has been labeled along the left margin with letters which correspond to the section in the description below:

Section	Description
A	Burner materials properties
В	Title and flight description
Cl	Reference condition 1, cracking model
C2	Reference condition 2, buckling model
D	Flight condition - time - temperature relationship
Е	Description of part life at the end of each increment of the flight profile. Note that the creep and fatigue fractions are all cumulative and are shown for each reference conditions.
El	This portion of section E is only printed when KPO = 1, and represents the long form print out. Intermediate calculated quantities are printed.
F	Printout of mission life and breakdown of damage by flight portion.
G	Weighted average of the damage and damage breakdown for all the missions run.

TABLE 3
PROGRAM OUTPUT LISTING

776 (BASE)				0.02000 0.5780E-02 0.5520E-02 0.5520E-02 0.4850E-02	DELTAN	0.0 0.1250E+00 0.2300E+00 0.3180E+00 0.3800E+00 0.4280E+00		
JT9D BRN HAT'L PACKAGE CRP-LCF, LOUVER BUCKLING RM 11/4/76 (BASE)				0.01500 0.4620E-02 0.4520E-02 0.4120E-02 0.3850E-02	BETA	-0.3523E+01 -0.2398E+01 -0.1699E+01 -0.1377E+01 -0.1078E+01 -0.6383E+00	1.000	0.2370E-08 0.1130E-04 0.3950E-04 0.2270E-03
LOUVER BUCK				0.01000 0.3380E-02 0.3330E-02 0.320E-02 0.3020E-02 0.2570E-02	•	0.1020E+06 0.9000E+05 0.8200E+05 0.6880E+05 0.5100E+05 0.2130E+05 0.1000E+05	0.500 TS=	
AGE CRP-LCF,				0.00500 0.2050E-02 0.2000E-02 0.1790E-02 0.1500E-02		0.1180E+05 0.1045E+05 0.9400E+04 0.7750E+04 0.5600E+04 0.3700E+04 0.2130E+04	74= 0	0.2220E-08 0.8700E-05 0.2800E-04 0.5600E-04 0.1450E-03
N HAT'L PACK				0.00400 0.1750E-02 0.1700E-02 0.1530E-02 0.1520E-02 0.1260E-02	5	0.7600E-06 0.1400E-05 0.1570E-05 0.2770E-05 0.5020E-05 0.7700E-05	T3= 0.100	0.1980E-08 0.4900E-05 0.1350E-04 0.2800E-04 0.5300E-04
			CRITICAL PLASTIC STRAIN	0.00300 0.1450E-02 0.1400E-02 0.1340E-02 0.1260E-02 0.1130E-02	ш	0.2460E+08 0.2200E+08 0.2100E+08 0.1980E+08 0.1840E+08 0.1650E+08 0.1560E+08	0.030	0.1850E-08 0.3450E-05 0.8300E-05 0.160E-04 0.2650E-04
S 1038	9	0.0 0.80C0E-02 0.1520E-01 0.1520E-01 0.2780E-01 0.3780E-01 0.3780E-01	CRITICAL	0.00200 0.1100E-02 0.1050E-02 0.9800E-03 0.9300E-03 0.7200E-03	DELTAEE	0.3960E-02 0.2910E-02 0.2550E-02 0.2380E-02 0.1800E-02 0.1800E-02	0.010 T2=	
MATERIAL PROPERTIES				0.6700E-03 0.6300E-03 0.5500E-03 0.5400E-03 0.3800E-03	DP (WELCED)	0.4950E+00 0.5350E+00 0.4850E+00 0.3950E+00 0.2500E+00 0.2500E+00	T1= 0.	0.1790E-08 0.2750E-05 0.5800E-05 0.9800E-05 0.1500E-04
BURNER MATERI	ETR	0.0 0.2008-03 0.2008-03 0.60008-03 0.10008-02 0.10008-02 0.20008-02 0.20008-02 0.40008-02			DP (SHOOTH)	0.7450E+00 0.8050E+00 0.7200E+00 0.5950E+00 0.4800E+00 0.3400E+00 0.3100E+00	THETAL	1500.000 1500.000 1600.000 1700.000
-				1400.000 1500.000 1500.000 1600.000 1700.000 1900.000	THETAL	1000,000 1400,000 1500,000 1600,000 1700,000 1900,000		

TABLE 3 (Cont'd)

VERSION	
1 11/11/9 -	
ANALYSIS	
HISSION A	
M20807	

9
-
-
-
1
~
_
9
-
-
~
•
-
LA
S
-
-
-
9
-
-
×
LKAVGRISSION 10/11/76
-
27.4
-
0

	7	
	KREF=	
INFORMATION	-	
CASE	K PO=	

FLIGHT FREGUENCI= 1.00		
FRECUENC	10/76	
IGH		
FL	ROLEL	
NI	CRACKING	
0	B .	
1 = 3E	AST-I	
TAXI TIRE 10.0 BIN	1038	
	-	
0	C.	
BEOCH TIME 4:000 HKS	PRESENCE CONDITION NO. 1 1038 HAST-K DAN CRACKING HOLL RH 10/76	
TIME	MCE	
PLUCK	essessessessessessessessessessessessess	

BURNER CRACKING MODEL

METAL TEMPERATURE CALCULATED BY TH=TMR+A* (T4-T4R) +8* (T5-T5R)

REFERENCE POINT MC. 1 RADIUS 15.000 IM. STRESS TYPE IS HOOP-CUTER LINER	A CONSTANT = 0.600 B CONSTANT = 0.400 THETAL = 1870.000	LOUVER LIP LENGTH = 0.4000	NON-DEFLECTED LOUVER GAPH=0.1100	BURNER KB=0.011470 REFERENCE DETR=0.003062	FLIGHT ILLET4= 486.00 T5= 1295.00 DETR=0.1776E-02	

REFERENCE CONDITION NC. 2 1030 HAST-X BRN BUCKLING HOLEL RH 8/3/76

OUVER BUCKLING MODEL

METAL TEMPERATURE CALCULATED BY IM-TMR+A+ (T4-T4R) +B+ (T5-T5R)

2

REFERENCE POINT NO.	
RADIUS= 15.000 IN.	STRESS TYPE IS HOOP-INNER LINE
A CONSTANT= 0.600	B CONSTANT= 0.400
TRETAL= 1870.000	
LOUVER LIP LENGTH = 0.4C00	0.400
L**2/RH= 0.2370	
NON-DEFLECTED LOUVER	NON-DEFLECTED LOUVER GAPW=0.1100
BURNER KB=0.011470	REFERENCE DETR=0.003062
70" -"8" " " " " " " " " " " " " " " " " "	CO-01555 O-0486 OO 3055 -36 OO 701 -18 2155 MILES

5

TABLE 3 (Cont'd)

--- INPUT PLIGHT CONDITIONS

PLIGHT CO		~	.,					.,		3	5
COND TT4	1480.	1354.	1260.	1260.	1260.	1260.	1260.	1260.	1260.	1150.	1356.
ITS	3024.	2782.	2660.	2660.	2660.	2660.	2660.	2660.	2660.	2500.	2735.
FLIGHT TIME	2.	18.	30.	30.	30.	30.	30.	30.	12.	18.	0.

1 1480. 3024. 2. DETR=0.3873E-02 TH=0.1811E+04 DTH=0.7708E+03 TDAMCR=0.2092E-03 TDAMFA=0.2896E-03 TH=0.1811E+04 TC=0.7708E+03 TDAMCR=0.2092E-03 TH=0.1811E+04 TK=0.1040E+04 TC=0.7754E+04 CRHAX=0.6874E+00 WBMAX=0.2959E-01 ECE=0.2161E-02 DT=0.1250E-01 REF COND REF PT. CREEP FRAC FAILGUE FRAC 1 1 0.2092E-03 0.2896E-03 2 1 0.1250E-01 PLIGHT COND EI

2 1354. 2782. 18. DETR=0.3873E-02 TH=0.1544E+03 TDAMCR=0.2505E-03 TDAMFA=0.2896E-03 TT=0.1638E+04 TK=0.1933E-01 TK=0.1638E+04 TK=0.9140E+03 TC=0.1733E+04 CRMAX=0.6874E+00 WEMAX=0.2959E-01 ECE=0.2477E-02 DT=0.1923E-01 REF COND REF PT. CREEP FRAC FATIGUE FRAC 1 0.2505E-03 0.2896E-03 2 1 0.1923E-01 E1

PLIGHT COND TT4

TABLE 3 (Cont'd)

DT=0.2149E-01	DT=0.2359E-01	DT=0.2556E-01	DT=0.2742E-01	DT=0.2919E-01
E 2E+03 TDAMCR=0,2607E-03 TDAMFA=0,2896E-03 04 CRMAX=0,6874E+00 WBMAX=0,2959E-01 ECE=0,2622E-02 C	E 2E+03 TDAMCR=0.2646E-03 TDAMFA=0.2896E-03 04 CRMAK=0.6874E+00 WBMAK=0.2959E-01 ECE=0.2622E-02 C	E 2E+03 TDAMCR=0.2668E-03 TDAMFA=0.2896E-03 04 CRAAK=0.6874E+00 WBMAX=0.2959E-01 ECE=0.2622E-02 C	E 2E+03 TDAMCR=0.2683E-03 TDAMFA=0.2896E-03 04 CRBAK=0.6874E+00 WBMAK=0.2959E-01 ECE=0.2622E-02 C	E 2E+03 TDAMCR=0,2694E-03 TDAMFA=0,2896E-03 04 CRMAX=0,6874E+00 WBMAX=0,2959E-01 ECE=0,2622E-02 C
FLIGHT TIME 30. 104 DTB-0.7132E+03 1 TC-0.1687E+04 CF 1 FATIGUE FRAC 0.2896E-03	FLIGHT TIME 30. 30. 104 DIM=0.7132E+03 1 TC=0.1687E+04 C8 1 FATIGUE FRAC 0.2496E=03	ELIGHT TIME 30. 04 DIM=0.7132E+03 1 TC=0.1687E+04 CR 1 FATIGUE FRAC 0.2896E-03	FLIGHT TIRE 30. 30. 30. 04. DIM=0.7132E+03 1 TC=0.1687E+04 CI 1 FAIGUE FRAC 0.2836E=03	FLIGHT TIRE 30. 30. 13. 1 TC-0.1647E+04 CI 1 TC-0.1647E+04 CI 0.2896E-03
1260. 2660. 1260. 2660. 13E-02 TH=0.1533E+04 1404 TK=0.8200E+03 1 0.2607E-03 0.	1260. 2660. 1260. 2660. 1260. 1533E+04 1904 TK=0.8200E+03 1 0.2359E-01	E1 (DETR=0.3873E-02' TH=0.1533E+04 TH=0.1533E+04 TK=0.8200E+03 TR=0.1533E+04 TR=0.1533E+04 TK=0.8200E+03 TR=0.153E+04 TR=0.153E+04 TR=0.155EEP TRAC TREE FRAC TREE FRA	1260. 2660. 1260. 2660. 1260. TR=0.1533E+04. 1360. TR=0.8200E+03. 10.2643E-03.0.	E1 (LETR=0.3873E-02 TH=0.1533E+04 E1 (TH=0.1533E+04 TK=0.8200E+03 REF CCMD REF PT. CREEP FRAC 1 0.2694E-03 0.2
	1260. 1260. 13E-02 TH 8+04 TK-0	1260. 1260. 13E-02' TH 2404 TK=0	1260. 1260. 13E-02 TH E+04 TK=0	1260. 1260. 138-02 TE 8+04 TK=0
3 3 3 8 7 3 8 1 5 3 3 E + 0	3 3 3 3 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5	COMD 3 3.3673E 5.3673E	COND 1 3 3 1 5 3 3 7 3 E - 0 15 3 3 E + 0 4	COMD 3 3.3873E 1533E+(
E1 (DETR=0.3873E-02 E1 (TR=0.1533E+04 E REF COND REF PT.	ELIGHT COND 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FLIGHT COMD 3 7 7 7 7 7 7 7 8 8 8 8 8 8	FLIGHT COMD 3 5 61 {DETR=0.3873 TH=0.1533E 1 REF COMD RE	FLIGHT COM
				<u></u>

TABLE 3 (Cont'd)

E1 DETR=0.38	REF COND	PLIGHT COND	DETR=0.38	REF CCND	PLIGHT COND	E1 DETR=0.38	REF COND	PLIGHT COND	E1 { TH=0.1621	REF COND
1260. 173E-02 T E+04 TK=	REF PT.	D II4	1260. 73E-02 T E+04 TK=	REF PT.	D TT4	1150. 73E-02 T E+04 TK=	REF PT.	D TT4	1356. #2E-02 T E+04 TK=	REF PT.
3 1260. DETR=0.3873E-02 TH=0.1533E+04 TH=0.1533E+04 TK=0.8200E+03	CREEP FRAC 0.2702E-03 0.3089E-01	TT.	2660. FM=0.1533E+ =0.8200E+03	CREEP FRAC 0.2704E-03 0.3155E-01	115	. 2500. FR=0.1403E+	CREEP FRAC 0.2710E-03 0.3171E-01	ITS	2735. EH=0.1621E+	CREEP FRAC 0.3461E-03
30. 04 DIM=0.7 TC=0.1687	PATIGUE PRAC 0.2896E-03	FLIGHT TIME	12. 04 DIM=0.71 IC=0.1687E	CREEP FRAC FAIIGUE FRAC 0.2704E-03 0.2896E-03 0.3155E-01	FLIGHT TIME	18. 04 DTM=0.69 TC=0.16011	CREEP FRAC FATIGUE FRAC . 2710E-03 0.2896E-03 0.3171E-01	FLIGHT TIME	04 DIM=0.70 TC=0.17451	FATIGUE FRAC 0.2896E-03
30. • DTH=0.7132E+03 TDAMCR=0.2702E-03 TDAMFA=0.2896E-03 TC=0.1687E+04 CRMAX=0.6874E+00 WBMAX=0.2959E-01 ECE	A C	82	3 1260. 2660. 12. Th=0.7132E+03 TDANCR=0.2704E-03 TDANFA=0.2896E-03 E=0.2622E-02 TH=0.1533E+04 TK=0.8200E+03 TC=0.1687E+04 CRMAX=0.6874E+00 WBMAX=0.2959E-01 ECE=0.2622E-02	9	ω Ε	4 1150. 2500. 18. DETR=0.3873E-02 TH=0.1403E+04 DTH=0.6932E+03 TDAMCR=0.2710E-03 TDAMFA=0.2896E-03 TH=0.1403E+04 TK=0.7100E+03 TC=0.1601E+04 CRHAX=0.6874E+00 WBMAX=0.2959E-01 ECE	A.C.	22 E	5 1356. 2735. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	AC.
			CR=0.2704E-			CR=0.2710E-			CR=0.3461E-	
03 TDANFA= WBMAX=0.295			03 TDAMFA= WBMAX=0.295			03 TDAMFA= WBMAX=0.295			03 TDAMFA= WBMAX=0.295	
0.2896E-03			0.2896E-03			0.2896E-03			.0.2896E-03	
.03 TDAHFA=0.2896E-03 WBHAX=0.2959E-01 ECE=0.2622E-02			E=0.2622B-02			03 TDAHCR=0.2710E-03 TDAHFA=0.2896E-03 CRMAX=0.6874E+00 WBHAX=0.2959E-01 ECE=0.2697E-02			ECE=0.2507E-02	
DT=0, 3089E-01			DT=0.3155E-01			DT=0.3171E-01			DT=0.3176E-01	

TABLE 3 (Cont'd)

**** LIFE CALCULATIONS

```
DT=0.7941E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DT=0.1261E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DT=0.1261E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DT=0.1267E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DT=0.1261E-01
                                                                             1 1410. 2960. 2. 1 1410. 2960. 2. 2960. 2. 2960. 2. 2960. 2. 2960. 29685E-02 TH=0.1743E+04 DTH=0.7732E+03 TDAMCR=0.1887E-03 TDAMFA=0.1894E-03 TH=0.1743E+04 TK=0.9700E+03 TC=0.1725E+04 CRHAX=0.6205E+00 WBMAX=0.2963E-01 ECE=0.2285E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  5 1360. 2660. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880. 0. 1880
                                                                                                                                                                                                                                                               ' PT. CREEP PRAC FATIGUE FRAC
1 0.1847E-03 0.1894E-03
1 0.7941E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C FATIGUE FRAC
0.1894E-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       REF COND REF PT. CREEP FRAC FATIGUE FRAC
1 1 0.2827E-03 0.1894E-03
2 1 0.1261E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            REF COND REF PT. CREEP FRAC FATIGUE FRAC
1 1 0.2850E-03 0.1894E-03
2 1 0.1261E-01
PLIGHT TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    REF COND REF PT. CREEP FRAC FATIGUE FRAC
1 1 0.5186E-03 0.2258E-03
2 1 0.1267E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FLIGHT TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PLIGHT TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FLIGHT TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CREEP PRAC
TIS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TIS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                TTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1 0.2298E-03
1 0.1261E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    REF COND REF PT.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            TIT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TIT
    TIT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TIT
                                                                                                                                                                                                                                                                            REF COND REF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PLIGHT COND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PLIGHT COND
    PLIGHT COND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FLIGHT COND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PLIGHT COND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           E ( E1 \
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E1
                                                                                                                                                          E/E1
```


TABLE 3 (Cont'd)

BEST AVAILABLE COPY

AVERAGE FLIGHT TIME = 3.83 AVERAGE FLICK TIME = 4.00 ATOTAL, PREGUENCY = 2.00	1038 н	REFERENCE POINT NO. 1 CYCLIC LIFE= 1449.22 LIFE BASED ON BLOCK TIME= 5313.81	PERCENT CREEP DAMAGE EREAKIOUN TAKE OFF 63.54 CLIMB 5.97	r 2	REFERENCE POINT NO. 1 CYCLIC LIFE= LIFE BASED ON BLOCK TIME= 5883.15	~	TAKE OFF 46.01 CLIMB 25.46 CRUISE 27.73 DESCENT 0.36 FN REV 0.24
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		PERCEN	• E	æ	PERCEN	

AFAPL/ TBC WRIGHT-PATTERSON AFB, OH 45433

UNITED STATES AIR FORCE OFFICIAL BUSINESS