Assignment 3: Question 2

March 22, 2015

A Lambertian object illuminated by a point source has a reflectance map of the form given by

$$R(p,q) = \frac{1 + pp_s + qq_s}{\sqrt{1 + p_s^2 + q_s^2}\sqrt{1 + p^2 + q^2}}$$
(1)

where the surface normal is (-p, -q, 1) and the light source direction is $(-p_s, -q_s, 1)$. What value(s) of (p, q) will maximize R(p, q)? For what values, will you get R(p, q) = 0? [2 points]

Answer:

$$R(p,q) = \frac{1 + pp_s + qq_s}{\sqrt{1 + p_s^2 + q_s^2} \sqrt{1 + p^2 + q^2}}$$
 (2)

where the surface normal is (-p, -q, 1) and the light source direction is $(-p_s, -q_s, 1)$.

Then,

 $R(p,q) = cos(\theta)$ where θ is the angle between surface normal and the light source direction.

Maximum value of R(p,q) occurs when $cos(\theta)=1$, that is, (-p,-q,1) and $(-p_s,-q_s,1)$ are parallel.

Therefore, $p = p_s$ and $q = q_s$.

R(p,q) = 0 implies $\theta = 90^{\circ}$.

 $1 + pp_s + qq_s = 0$

 $p = -(1 + qq_s)/p_s$

Therefore, R(p,q) = 0 for any pair $(-(1+qq_s)/p_s,q)$ for any q.