Logic-Based Parsing with Neural Networks Compositional Models of Vector-based Semantics

Konstantinos Kogkalidis Utrecht Institute of Linguistics OTS, Utrecht University

ESSLLI, August 2022, Galway

Types

•00

ILL $_{\circ}$ plus \Diamond , \Box modalities for dependency domain demarkation.

Types inductively defined by:

$$\mathbb{T} := A \mid T {\:\multimap\:} T \mid \diamondsuit^d T \mid {\:\sqcap\:}^d T \qquad A \in \mathbb{A} \text{, } T \in \mathbb{T}$$

- → linear function builder
- ♦ reserved for "necessary arguments", i.e. complements
- □ reserved for "optional functors", i.e. adjuncts

Rules & Terms

000

function/argument structures

$$\overline{\mathbf{c}: T \vdash \mathbf{c}: T}$$
 Lex

$$\frac{\Gamma \vdash \mathtt{s} : T_1 \multimap T_2 \quad \Delta \vdash \mathtt{t} : T_1}{\Gamma, \Delta \vdash \mathtt{s} \ \mathtt{t} : T_2} \multimap E$$

Rules & Terms

(a) function/argument structures

$$\overline{\mathbf{c}: T \vdash \mathbf{c}: T}$$
 Lex

$$\frac{\Gamma \vdash \mathtt{s} : T_1 \multimap T_2 \quad \Delta \vdash \mathtt{t} : T_1}{\Gamma, \Delta \vdash \mathtt{s} \; \mathtt{t} : T_2} \multimap E$$

© simple dependency demarkation

$$\frac{\Gamma \vdash \mathsf{t} : T}{\langle \Gamma \rangle^d \vdash \wedge^d \mathsf{t} : \diamondsuit^d T} \diamondsuit^d I$$

$$\frac{\Gamma \vdash \mathbf{s} : \Box^d T}{\langle \Gamma \rangle^d \vdash \mathbf{\nabla}^d \mathbf{s} : T} \ \Box^d E$$

000

Rules & Terms

(3) function/argument structures

$$\overline{\mathbf{c}: T \vdash \mathbf{c}: T}$$
 Lex

$$\frac{\Gamma \vdash \mathbf{s} : T_1 \multimap T_2 \quad \Delta \vdash \mathbf{t} : T_1}{\Gamma, \Delta \vdash \mathbf{s} \ \mathbf{t} : T_2} \multimap E$$

simple dependency demarkation

$$\frac{\Gamma \vdash \mathsf{t} : T}{\langle \Gamma \rangle^d \vdash \wedge^d \mathsf{t} : \diamondsuit^d T} \diamondsuit^d I$$

$$\frac{\Gamma \vdash \mathbf{s} : \Box^d T}{\langle \Gamma \rangle^d \vdash \mathbf{\nabla}^d \mathbf{s} : T} \ \Box^d E$$

hypothetical reasoning

$$\overline{\mathbf{x}:T\vdash\mathbf{x}:T}$$
 Ax

$$\frac{\Gamma, \mathbf{x} : T_1 \vdash \mathbf{s} : T_2}{\Gamma \vdash \lambda \mathbf{x}.\mathbf{s} : T_1 \multimap T_2} \multimap I$$

Rules & Terms

(a) function/argument structures

$$\overline{\mathbf{c}:T\vdash\mathbf{c}:T}$$
 Lex

$$\frac{\Gamma \vdash \mathbf{s} : T_1 \multimap T_2 \quad \Delta \vdash \mathbf{t} : T_1}{\Gamma, \Delta \vdash \mathbf{s} \ \mathbf{t} : T_2} \multimap E$$

© simple dependency demarkation

$$\frac{\Gamma \vdash \mathsf{t} : T}{\langle \Gamma \rangle^d \vdash \wedge^d \mathsf{t} : \diamondsuit^d T} \diamondsuit^d I$$

$$\frac{\Gamma \vdash \mathbf{s} : \Box^d T}{\langle \Gamma \rangle^d \vdash \mathbf{\nabla}^d \mathbf{s} : T} \ \Box^d E$$

(2) hypothetical reasoning

$$\overline{\mathbf{x}:T \vdash \mathbf{x}:T}$$
 Ax

$$\frac{\Gamma, \mathbf{x}: T_1 \vdash \mathbf{s}: T_2}{\Gamma \vdash \lambda \mathbf{x}.\mathbf{s}: T_1 \multimap T_2} \multimap I$$

© cosmic horror from the great beyond

$$\frac{\langle \Gamma \rangle^d \vdash \mathbf{s} : T}{\Gamma \vdash \mathbf{A}^{d} \mathbf{s} \cdot \Box^d T} \ \Box^d I$$

$$\frac{\Gamma[\langle \mathtt{x}: T_1 \rangle^d] \vdash \mathtt{t}: T_2 \qquad \Delta \vdash \mathtt{s}: \diamondsuit^d T_1}{\Gamma[\Delta] \vdash \mathtt{t}[\mathtt{x} \mapsto \nabla^d \mathtt{s}]: T_2} \, \diamondsuit^d E$$

Rules & Terms

Bonus:

000

ad-hoc extraction

$$\frac{\langle \Gamma, \langle \mathbf{x}: T_1 \rangle^{\mathbf{X}}, \Delta \rangle^d \vdash \mathbf{s}: T_2}{\langle \Gamma, \Delta \rangle^d, \langle \mathbf{x}: T_1 \rangle^{\mathbf{X}} \vdash \mathbf{s}: T_2} \ \mathbf{X}$$

Example

000

alt-tab!

$$\lozenge^{relcl}(\lozenge^x\square^x\lozenge^{mod}\square^{mod}(ppart\multimap ppart)\multimap ssub)\multimap \square^{mod}(np\multimap np)$$

$$\lozenge^{relcl}(!^x!^{mod}(ppart \multimap ppart) \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$!(_) := \Diamond \Box (_)$$

$$\lozenge^{relcl}(!^x!^{mod}(ppart \multimap ppart) \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$\diamond^{relcl}(!^x!^{mod}(ppart \multimap ppart) \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$\lozenge^{relcl}(!^x!^{mod}(ppart \multimap ppart) \multimap ssub) \multimap \square^{mod}(np \multimap np)$$

$$\lozenge^{relcl}(!^x!^{mod}(ppart \multimap ppart) \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$\lozenge^{relcl}(!^{x!mod}(ppart \multimap ppart) \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$\lozenge^{relcl}(!^x!^{mod}(ppart \multimap ppart) \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$\lozenge^{relcl}(!^x!^{mod}(ppart \multimap ppart) \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

$$\lozenge^{relcl}(!^x!^{mod}(ppart \multimap ppart) \multimap ssub) \multimap \square^{mod}(np \multimap np)$$

$$\lozenge^{relcl}(!^x!^{mod}(ppart \multimap ppart) \multimap \underset{\pmb{ssub}}{ssub}) \multimap \square^{mod}(np \multimap np)$$

$$\lozenge^{relcl}(!^x!^{mod}(ppart \multimap ppart) \multimap ssub) \multimap \Box^{mod}(np \multimap np)$$

- + we have
- we miss

RECAP: GRAMMAR

RECAP: GRAMMAR

Proof Frames

Recap: Grammar

Recap: Grammar

Recap: Grammar

Recap: Grammar

written and directed by KOKOS

"Lets neural shit up"

- Alonzo Church, 1973

Main ingredients

- ► Type assignment (supertagging)
 parallel tree decoding with dynamic graph convolutions
- ► Axiom linking (neural bijections) optimal transport with Sinkhorn iterations
- ► Formal verification proof net traversal

Supertagging 101

```
goal maximize p(T_1, \ldots T_n) conditional on some input (w_1, \ldots w_n)
```

the catch

types are sparse \implies fixed vocabulary classification = no good

Supertagging 101

```
goal
```

maximize $p(T_1, \ldots T_n)$ conditional on some input $(w_1, \ldots w_n)$

the catch

types are sparse \implies fixed vocabulary classification = no good

??? ??? ??? ??? ???

the land where democracy was murdered

??? ??? ??? ??? ???

the land where democracy was murdered

the land where democracy was murdered

the

land

where

democracy

was

the land

where

democracy

was

the

land

where

democracy

was

missing edges \odot

np

ppart

- ! only consider edges between atoms of the same sign and different polarity
- ! each atom can only be used once

- ! only consider edges between atoms of the same sign and different polarity
- ! each atom can only be used *once*

missing edges ©

- ! only consider edges between atoms of the same sign and different polarity
- ! each atom can only be used *once*

- ! only consider edges between atoms of the same sign and different polarity
- ! each atom can only be used once

- ! only consider edges between atoms of the same sign and different polarity
- ! each atom can only be used *once*

- ! only consider edges between atoms of the same sign and different polarity
- ! each atom can only be used once

- ! only consider edges between atoms of the same sign and different polarity
- ! each atom can only be used once

- ! only consider edges between atoms of the same sign and different polarity
- ! each atom can only be used once

