

G7A

硬件设计指南

版本 1.2 日期 2019-08-15

版权声明

版权所有 © 深圳市有方科技股份有限公司 2019。深圳市有方科技股份有限公司保留所有权利。 未经深圳市有方科技股份有限公司书面同意,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部, 并不得以任何形式传播。

∩ COWOY 有方 是深圳市有方科技股份有限公司所有商标。

本文档中出现的其他商标, 由商标所有者所有。

说明

本文档对应产品为 G7A 模块。

本文档的使用对象为系统工程师, 开发工程师及测试工程师。

本设计指南为客户产品设计提供支持,客户须按照本文中的规范和参数进行产品设计和调试。如因客户操作不当造成的人身伤害和财产损失,有方概不承担责任。

由于产品版本升级或其它原因,本文档内容会在不预先通知的情况下进行必要的更新。除非另有约定,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市有方科技股份有限公司为客户提供全方位的技术支持,任何垂询请直接联系您的客户经理或发送邮件 至以下邮箱:

> Sales@neoway.com Support@neoway.com

公司网址: http://www.neoway.com

目 录

关	于本文档	vii
	范围	vii
	读者对象	vii
	修订记录	vii
	符号约定	vii
	相关文档	viii
1	产品介绍	1
	1.1 产品概述	1
	1.2 设计框图	1
	1.3 基本规格	
2	模块管脚	4
	2.1 管脚布局	4
	2.2 管脚说明	5
3	应用接口	
	3.1 电源接口	7
	3.2 工作模式	
	3.3 RESET_N	
	3.4 UART	9
	3.5 1PPS	
	3.6 ANT_ON	
4	天线接口	
	4.1 阻抗控制	11
	4.2 参考设计	
	4.3 推荐天线规格	15
5	电气特性及可靠性	16
	5.1 电气特性	16
	5.2 温度特性	17
	5.3 ESD 防护特性	17
6	机械特性	18
	6.1 尺寸	18
	6.2 标贴	19
	6.3 包装	19
	6.3.1 卷带	19
	6.3.2 湿敏	21

∩eowoy有方

装配	22
7.1 模块底部尺寸	22
7.3 钢网	23
7.4 锡膏	23
7.5 贴片炉温曲线	24
安全建议	25
缩略语	26
	7.1 模块底部尺寸

插图目录

图	1-1	设计框图	2
图	2-1	G7A 管脚定义	4
图	3-1	按键控制模块复位	8
图	3-2	复位三极管隔离参考电路	9
图	3-3	G7A 模块复位时序	9
图	3-4	UART 连接原理图	10
图	3-5	1PPS 时序图	10
		G7A 模块内部连接图示	
		L 型匹配网络示意图	
		T 型匹配网络示意图	
图	4-4	π型匹配网络示意图	12
图	4-5	射频部分 PCB 推荐	13
图	4-6	带控制的有源天线设计参考	14
图	4-7	不带控制的有源天线设计参考	14
图	6-1	G7A 俯视和侧视尺寸(单位: mm)	18
图	6-2	国内版 G7A-B1 标贴	19
图	6-3	海外版 G7A-D1 标贴	19
图	7-1	G7A 模块底视图(单位: mm)	22
图	7-2	G7APCB 推荐封装(单位: mm)	23
图	7-3	炉温曲线	24

表格目录

表	1-1	版本与频段	. 1
表	2-1	参数定义	. 5
表	2-2	管脚说明	. 5
表	3-1	不同模式下的供电电源状态、时钟状态和功耗	. 8
表	4-1	推荐天线规格	15
表	5-1	G7A 极限工作条件	16
表	5-2	G7A 推荐工作条件	16
表	5-3	G6 模块耗流	16
表	5-4	G7A 温度特性	17
表	5-5	G7A ESD 防护特性	17

关于本文档

范围

本文档对应产品为 G7A 模块,描述了 G7A 的基本信息、功能接口设计、特性。

本文中的参考设计仅供参考,客户应用设计过程中应根据实际场景和条件进行设计。如有疑问,可 联系有方技术支持。

读者对象

本文档的使用对象为系统工程师,开发工程师及测试工程师。

修订记录

版本	日期	变更	作者
1.0	2019-01	初始版本	Zhuo Jianzheng
1.1	2019-07	删除 I2C 功能相关描述更新模块底部尺寸	Gong Hualiang
1.2	2019-08	修正标贴图片修正捕获和跟踪通道数	Gong Hualiang

符号约定

符号	含义
0	危险或警告,用户必须遵从的规则,否则会造成模块或客户设备不可逆的故障损坏,甚至可能造成人员身体伤害。
1	注意,警示用户使用模块时应该特别注意的地方,如不遵从,模块或客户设备可能出现故障。
•	说明或提示,提供模块使用的意见或建议。

相关文档

《Neoway_G7A_Datasheet》

《Neoway_G7A_产品规格书》

《NEOWAY_G2_G7A_命令手册》

《Neoway_G7A_EVK 用户指南》

《有方模块贴片回流焊生产建议》

1产品介绍

G7A 是一款支持 BDS B1/GPS L1/GLONASS L1 等频点导航定位模块。采用基带+射频一体芯片,为车载、船载、手持及-穿戴等导航定位终端产品的制造提供了高灵敏度、低功耗、低成本的定位/导航解决方案。

本设计指南详细介绍了 G7A GNSS 模块的各种特性,指标及测试标准,并提供各接口参考设计,指导客户进行应用设计。

1.1 产品概述

G7A 包含多个版本配置,各个版本及支持定位系统如表 1-1 所示:

表 1-1 版本与频段

1.2 设计框图

G7A 模块主要由以下几大部分构成,各部分协调工作,完成定位授时功能:

- 卫星定位导航授时数字基带
- 射频前端器件
- RTC
- 对外接口

-UART_TXD---> -UART_RXD---Peripheral Controller 1PPS-LNA SAW **GNSS** Baseband ANT_GNSS Engine ROM Cortex-M3 FLASH RAM RESET_N PMVBAT VDD_IO VBACKUP

图 1-1 设计框图

1.3 基本规格

参数	描述	最小值	典型值	最大值	单位	备注
定位精度(open	水平		<3		m	
air)	高度		<4.5		m	
速度精度			<0.1		m/s	
通道数	捕获		32			
	跟踪		32			
	冷启动		<32		S	
TTFF (@-130dBm)	热启动		1		S	
,	重捕获		1		S	
	冷启动捕获		-148		dBm	
灵敏度	热启动捕获		-156		dBm	
	重捕获		-160		dBm	

	追踪		-162		dBm	
波特率		4800	9600	256000	bps	9600bps 默认
授时更新速率			1	10	Hz	1Hz 默认
	VBAT	2.7	3.3	3.6	V	
工作电压	VDD_IO	2.7	3.3	3.6	V	
	VBACKUP	1.4	3.3/3.0	3.6	V	
_1.4<	捕获		30		mA	3.3 V 供电
功耗 〔@instrument〕	跟踪		28		mA	3.3 V 供电
	待机		10		μA	3.3 V 备份电源
认证	RoHS, CE					

2 模块管脚

G7A 共 18 个管脚, 焊盘采用 LCC 封装, 支持以下功能接口:

- 电源
- 串口
- 1PPS

2.1 管脚布局

G7A 模块管脚布局如下图所示。

图 2-1 G7A 管脚定义 **GND** RESERVED UART_TXD **RESERVED** UART_RXD 3 RESERVED 16 1PPS 15 RESERVED G7A RESERVED VCC_ANT_3P3 Top View **VBACKUP** ANT_ON VDD_IO 12 GND VBAT ANT_GNSS RESET_N 9 **GND** 10 **POWER GND** ANT UART **RESERVED RESET OTHERS**

深圳市有方科技股份有限公司版权所有

2.2 管脚说明

IO类型说明如下表所示。

表 2-1 参数定义

IO 类型说明		
В	数字输入输出,COMS 逻辑电平	
DO	数字输出,COMS 逻辑电平	7/10
DI	数字输入,COMS 逻辑电平	
PO	电源输出	
PI	电源输入	
AO	模拟输出	
Al	模拟输入	
直流特性说明		
P1	数字 IO 口电压类型	3.3V 直流特性: V _{IH} =2.4V~3.6V, V _{IL} = -0.3V~0.6V V _{OH} =2.9V~3.3V, V _{OL} =0V~0.4V

表 2-2 管脚说明

管脚名称	管脚	I/O	功能描述	直流特性	备注
电源接口					
VBAT	8	PI	模块主电源输入	2.7V~3.6V (Typ: 3.3V)	供电电源最大应可提供 100mA电流。
VDD_IO	7	PI	模块 IO 电源输入	2.7V~3.6V (Typ: 3.3V)	为数字 IO 提供电源,建议将 其与 VBAT 相连
VBACKUP	6	PI	备份电源输入	1.4V~3.6V (Typ: 3.3/3.0V) I _{norm} =10uA	用于 RTC 及备份 RAM 供电,不使用则悬空。
VCC_ANT_3P3	14	РО	外部射频器件供 电电源	与 VBAT 电压相 同	可以给外置 LNA 或有源天线 供电,不使用则悬空
GND	1、10、	12			请保证所有 GND 引脚都接地

控制接口					
RESET_N	9	DI	系统复位	P1	低电平复位,不使用则悬空
射频接口					
ANT_GNSS	11	Al	射频信号输入		详细介绍请参考4章
UART 接口					
UART_TXD	2	DO	数据发送	P1	用于数据传输,不使用则悬
UART_RXD	3	DI	数据接收	P1	空。
其他接口					
ANT_ON	13	DO		3.3V 电源输出	可用于外部 LNA 或天线使能控制,待机模式下输出低电平,不使用则悬空
1PPS	4	DO		P1	默认上拉,秒脉冲信号输出, 不使用则悬空。
RESERVED	5、15	、18			预留接口,请悬空

3应用接口

G7A 模块共 18 个管脚,焊盘采用 LCC 封装,模块尺寸仅为 10.6 mm x 9.7 mm x 2.2 mm,包含了电源、串口、1PPS 等接口。本章将详细介绍 G7A 模块的各个应用接口及其设计注意事项。

3.1 电源接口

管脚名称	管脚序号	I/O	功能描述	备注
VBAT	8	ΡI	模块电源输入	2.7V~3.6V (Typ: 3.3V)
VDD_IO	7	PI	IO 电源输入	2.7V~3.6V (Typ: 3.3V)
VBACKUP	6	PI	备份电源输入	1.4V~3.6V(Typ: 3.3/3.0) 用于 RTC 及备份 RAM 供电,不使用则悬空。
VCC_ANT_3P3	14	РО	射频电源输出	输出电压与 VBAT 相同 可用于模块外部 LNA 或者有源天线供电
GND	1、10、12			请保证所有 GND 引脚都接地

电源管脚说明:

VBAT

VBAT 为模块主电源输入,电源输入范围为 2.7V~3.6V, 推荐值为 3.3V, 用于模块内部的基带及射频器件供电。电源的性能, 比如负载能力、纹波的大小等, 都会直接影响模块的性能和稳定性。为了保证模块的最佳性能推荐使用射频专用的低噪声 LDO 供电。

VDD IO

VDD IO 为模块数字 IO 电源输入,应用时建议将其与 VBAT 相连。

VBACKUP

VBACKUP 为模块备份电源输入,用于 RTC 以及备份 RAM 的供电,当主电源 VBAT 掉电后,模块仍能保留部分关键的星历数据及历书,以实现热启动、温启动、星历推算等功能。备份电源的输入范围为 1.4V~3.6V,推荐值为 3.3/3.0V,可外接纽扣电池或法拉电容。

3.2 工作模式

G7A 支持持续定位模式和待机模式这两种工作模式。

• 持续定位模式

持续定位模式下捕获引擎全程打开,当搜索并获取到有效的位置信息、全部的星历和历书数据 后,将自动切换到跟踪状态,以减少工作电流。

• 待机模式

模块主电源 VBAT 关闭后进入待机模式,此时只保留 RTC 备份区正常工作,其他功能模块电源和时钟全部关闭,VBAT 上电后进入持续定位模式。为支持热启动和温启动功能,要求主电掉电后备份电源 VBACKUP 必须保持供电,若需快速定位,建议保持 VBACKUP 持续供电。

各个模式的时钟状态以及功耗如下图 3-1 所示。

工作模式 RTC 时钟 VBAT VBACKUP 主时钟 功耗 $I_{VBAT} + I_{VDD\ IO} = 30$ mA@多模 持续定位模式 ON ON ON ON 待机模式 $I_{VBACKUP} = 10uA$ OFF ON **OFF** ON

表 3-1 不同模式下的供电电源状态、时钟状态和功耗

3.3 RESET N

模块 RESET_N 管脚,输入 160ms 以上的低电平脉冲可触发模块复位。内部有上拉,高电平电压 典型值为 3.3V,不用时悬空。如果使用非 3.3V 电平 IO 控制,需要使用三极管隔离,具体设计请参考以下两图。若使用高电平复位,请参考图 3-2MCU 控制开机电路。

S 1 kΩ RESET_N RTS GNSS Module

图 3-1 按键控制模块复位

图 3-2 复位三极管隔离参考电路

模块复位时序如下图 3-3 所示。

VBAT

RESET_N

160ms

Active

Active

图 3-3 G7A 模块复位时序

3.4 UART

管脚名称	管脚序号	I/O	功能描述	备注
UART_TXD	2	DO	数据发送	
UART_RXD	3	DI	数据接收	

串口在 UTC 秒边界输出 NMEA 数据,上位机可通过指令设置模块的工作模式、波特率、以及串口选择等。更多详细说明请参考《Neoway_G2&G7A_Receiver_Commands_Manual》。模块支持的波特率范围为 4800bps~256000bps,默认波特率为 9600bps。数据格式为:起始位 1 位、数据位 8 位、停止位 1 位、无校验位,连接方式如下图 3-4 所示。如果模块和 MCU 逻辑电平不匹配,则需做电平转换。

图 3-4 UART 连接原理图

3.5 1PPS

1PPS 为秒脉冲信号输出, 1PPS 信号需要在模块实现定位并延迟数秒后开始输出秒脉冲信号,具体时序见图 3-5。

图 3-5 1PPS 时序图

3.6 ANT_ON

持续定位模式下输出 3.3V,可用于外部 LNA 或天线使能控制,待机模式下输出低电平,具体应用电路请参考 4.2 节。

4天线接口

G7A 模块提供一路 GNSS 天线接口,可连接有源天线和无源天线,接收 GNSS 卫星信号,实现卫星授时和定位功能。本章介绍如何控制 G7A 模块天线接口阻抗和进行有源天线设计,并提供推荐的天线规格信息,指导客户应用设计。

4.1 阻抗控制

G7A 模块的 ANT_GNSS 引脚为 GNSS 的射频接口,其阻抗特性要求为 50Ω ,GNSS 模块内部结构如下图 4-1 所示。从模块接口到天线之间的走线也需要控制在阻抗范围内,因此为保证射频性能,需要在中间需要增加匹配网络,匹配网络一般分为 L型,T型,π型三种,分别如下图所示,推荐使用 π型匹配网络。

ANT_GNSS
LNA SAW GNSS
Baseband

GNSS MODULE

图 4-1 G7A 模块内部连接图示

图 4-2 L 型匹配网络示意图

图 4-3 T 型匹配网络示意图

图 4-4 π 型匹配网络示意图

原理图设计注意事项:

- 以上射频匹配电路中的元器件是电容,电感与 0Ω 电阻元器件的组合,且 RLC 器件尽量靠近天线端口。
- 如果在天线上有引入静电的情况,建议增加静电防护,可使用超低结电容的 TVS 管,推荐使用结电容不大于 0.5pF 的 TVS 管,同时需要确保 TVS 管的反向击穿电压大于 10V,推荐反向击穿电压为 15V 以上的 TVS 管。
- G7A 模块内部已经内置了 LNA,如果使用无源 GNSS 天线,则无需外置 LNA。

PCB 设计注意事项:

- 射频线周围要用接地铜箔包裹,接地铜箔要多打接地过孔,保证接地阻抗尽量小。
- G7A 模块和射频线之间的 PCB 走线,需要进行 50Ω 阻抗控制,且长度尽量短。
- 如果使用 SMA 头射频座,为减小 RF 焊盘较大导致寄生电容较大而引起的天线性能降低的可能性,模块射频焊盘下第一层和第二层都建议挖空,如下图所示。

图 4-5 射频部分 PCB 推荐

模块射频信号以及射频相关的元器件的位置布局,应注意远离数字电路、开关电源、电源变压器、功率电感或时钟等。

4.2 参考设计

GNSS 天线接收 GNSS 卫星信号后,经过有源天线内部的前端 LNA(低噪声放大器)放大后送出来,经过馈线和 PCB 走线送入到 G7A 模块的 ANT_GNSS 引脚。GNSS 有源天线参考设计有带控制和不带控制两种接法,分别如下图所示。

图 4-6 带控制的有源天线设计参考

图 4-7 不带控制的有源天线设计参考

原理图设计注意事项:

- 模块 GNSS 接口到天线之间的匹配电路设计请参考上一节 4.1 中的原理图设计注意事项。
- 若有功耗要求,建议采用带控制的有源天线接法,持续定位模式下 ANT_ON 引脚输出高电平,Q2 和 Q3 同时导通,VCC_ANT_3P3 给有源天线供电,待机模式下,ANT_ON 引脚输出低电平,Q2 和 Q3 都处于截止状态,有源天线的电源被切断,通过这种方式可降低模块的功耗。

PCB 设计注意事项:

- 模块 GNSS 接口到天线之间的 PCB 设计请参考上一节 4.1 中的 PCB 设计注意事项。
- 不论是馈线还是 PCB 走线,都要求 50Ω 阻抗控制,并且走线不能太长。有源天线的电源从天线的信号线通过 47~100nH 的电感完成馈电。
- GNSS 射频部分与通信射频系统天线的布局和走线,在设计上要尽量远离,防止这两部分互相干扰,影响射频性能,如果布局设计不好,可能会干扰 GNSS。

4.3 推荐天线规格

表 4-1 推荐天线规格

天线类型	参数	规格	备注
	频点	GPS:1575.42MHz BDS:1561.098MHz GLONASS:1602.5625MHz	天线的频点与模块的型号配 置相对应
	带宽	>5MHz	
无源天线	极化方式	右旋圆极化(RHCP)	
	驻波比	<1.5	
	增益	≥2 dBi	
	效率	≥40%	
	频点	GPS:1575.42MHz BDS:1561.098MHz GLONASS:1602.5625MHz	天线的频点与模块的型号配 置相对应
	带宽	>5MHz	
	极化方式	右旋圆极化(RHCP)	
有源天线	驻波比	<1.5	
	增益(内置 LNA)	20±2 dB	
	增益	≥2 dBi	
	效率	≥40%	
	噪声系数	<1.5dB	
	工作电压	$3.0 \pm 0.3 \text{V}$	

5 电气特性及可靠性

本章介绍 G7A 模块的电气特性和可靠性,包括各电源管脚的极限工作电压和推荐工作电压、不同 状态下模块耗流、工作和存储温度范围、ESD 防护特性。

5.1 电气特性

表 5-1 G7A 极限工作条件

参数	描述	最小值	最大值	单位	
VBAT	电源	-0.3	4.5	V	
VDD_IO	电源	-0.3	4.5	V	
VBACKUP	备份电源	-0.3	4.5	V	
VIO	IO 输入电压	-0.3	4.5	V	

电压过低可能会导致模块无法正常开机; 电压过高或开机瞬间电压过冲有能会对模块本身造成永久性损坏。

表 5-2 G7A 推荐工作条件

参数	描述	最小值	典型值	最大值	单位
VBAT	主电源	2.7	3.3	3.6	V
VDD_IO	IO 电源	2.7	3.3	3.6	V
VBACKUP	备份电源	1.4	3.3/3.0	3.6	V

表 5-3 G6 模块耗流

模块状态		耗流	单位
持续定位	多模	30	mA
	单模	28	mA
待机		10	uA

5.2 温度特性

表 5-4 G7A 温度特性

模块状态	最小值	典型值	最大值	
工作温度	-40℃	25 ℃	85℃	
存储温度	-45℃		125 ℃	

当环境温度超过模块工作温度时,模块的个别射频指标可能会恶化,但对模块的正常使用不会造成较大影响。

5.3 ESD 防护特性

由于电子产品一般需要进行严格的 ESD 测试,以下是模块主要管脚的静电防护能力,客户在设计相关产品时需要根据产品的应用行业,添加相应的 ESD 防护,以保证产品质量。

测试环境: 湿度 45%; 温度 25℃

表 5-5 G7A ESD 防护特性

测试点	接触放电	空气放电
VBAT	±8KV	±15KV
GND	±8KV	±15KV
ANT	±8KV	±15KV
屏蔽盖	±8KV	±15KV
UART	±4KV	±8KV
其它	±4KV	±8KV

6 机械特性

本章介绍 G7A 的尺寸、标贴以及包装等机械特性。

6.1 尺寸

图 6-1 G7A 俯视和侧视尺寸(单位: mm)

6.2 标贴

图 6-2 国内版 G7A-B1 标贴

图 6-3 海外版 G7A-D1 标贴

6.3 包装

G7A 模块采用贴片方式进行过炉焊接,为防止产品从生产到客户使用过程中受潮,从而采用了盘装防潮包装的方式:铝箔袋、干燥剂、湿度指示卡、吸塑托盘、抽真空等处理方式,以保证产品的干燥,延长其使用时间。

6.3.1 卷带

量产的 G7A 采用如下卷带方式包装发货:

载带细节

ITEM	W	Αo	Bo	Κo	Κı	Р	F	Е	D	Dı	Р	Pa
DIM	24.0 ^{+0.30}	10.1 +0.10	11.0 ^{+0.10}	2.7 ^{+0.10} _{-0.10}	0.00 +0.10	16.0 ^{+0.10}	11.5 ^{+0.10}	1.75 ^{+0.10}	1.50 ^{+0.10}	0.00 +0.25	4.00 +0.10	2.00 ^{+0.10}

卷轴细节

6.3.2 湿敏

G7A 模块符合 IPC/JEDEC J-STD-020 标准湿敏等级 3 级要求,使用此类部件时,应特别注意所有相关要求。

模块拆包后,如果长期暴露在空气中,模块会受潮,在进行回流焊或实验室焊接的过程中,可能会导致模块损坏。建议长期暴露在空气中的模块再次使用时,必须进行烘烤,烘烤条件根据受潮情况而定,建议不低于为90℃/12 小时。

7 装配

G7A 模块的采用 18-PIN LCC 封装、SMD 焊接方式进行装配。

7.1 模块底部尺寸

图 7-1 G7A 模块底视图(单位: mm)

7.2 应用 PCB 封装

图 7-2 G7APCB 推荐封装(单位: mm)

7.3 钢网

客户在生产制作钢网时,建议制作 $0.12\sim0.15$ mm 厚度的阶梯钢网,用户可根据实际贴片效果进行 微调。

7.4 锡膏

锡膏的薄厚以及 PCB 的平整度均对生产合格率起着关键作用。原则上不建议客户使用和我司模块工艺不同的有铅锡膏,原因如下:

- 有铅锡膏熔点比无铅低 35℃,回流工艺参数中温度也比无铅低,时间上也就相应少,容易导致模块中的 LCC 在二次回流处于半融状态导致虚焊;
- 如果客户必须采用有铅制程,请保证回流温度在 220 °C 超过 45S, peak 达到 240 °C。

7.5 贴片炉温曲线

用户 PCB 如果较薄或细长,有在 SMT 过程中存在翘曲的潜在风险,推荐在 SMT 及回流焊过程中使用载具,防止因 PCB 翘曲引起的焊接不良。

图 7-3 炉温曲线

工艺参数要求如下:

- 上升斜率: 1~4℃/sec; 下降斜率: -3~-1℃/sec;
- 恒温区: 150-180℃ 时间: 60-100S;
- 回流区: 大于 220°C 时间: 40-90S;
- Peak 温度: 235-245℃。

热敏器件可能由于温度异常导致失效等不良, 由此产生的其它影响, 我司概不承担责任。

关于 G7A 的存储、贴片注意事项,请参考《有方模块贴片回流焊生产建议》。

拆卸模块时需要注意:使用较大口径风枪,温度均调至 **245** 摄氏度左右(根据锡膏类型而定),对模块上下加热,待锡融化后用镊子轻轻取下,避免在拆卸时(高温下)因为抖动导致模块内部元件偏移,无法维修。

8 安全建议

请仔细阅读并严格遵守以下安全原则,确保产品应用符合国家和环境要求,避免人身安全受到威胁、保护产品和工作场景免遭可能的损坏:

- 切勿在有可能起火、爆炸的场所使用。
 若在有丙烷气、汽油、可燃性喷雾剂等易燃性气体、粉尘的场所使用产品,将导致爆炸或火灾。
 该模块产品应用设计和使用过程中,请注意以下要求:
- 请勿私自拆解该产品,否则将无法得到产品的售后保修服务。
- 请按照硬件设计指南的指导正确设计产品。请为产品连接稳定的电源电压,走线应符合安全防火管理要求。
- 请避免接触产品引脚,以防静电损坏产品。

A 缩略语

缩写	英文全称	中文全称
AGPS	Assisted GPS	辅助 GPS
CEP	Circular Error Probable	圆概率误差
DGPS	Differential GPS	差分 GPS
EASY	Embedded Assist System	嵌入式辅助系统
EGNOS	European Geostationary Navigation Overlay Service	欧洲地球静止导航叠加服务
EPO	Extended Prediction Orbit	拓展预测轨道
EMI	Electro Magnetic Interference	电磁干扰
ESD	Electronic Static Discharge	静电放电
GPS	Global Positioning System	全球定位系统
GNSS	Global Navigation Satellite System	全球导航卫星系统
GGA	GPS Fix Data	GPS 定位数据
GLONASS	Global Navigation Satellite System	全球导航卫星系统(格洛纳斯)
GSV	GNSS Satellites in View	可视导航卫星
I/O	Input/Output	输入/输出
LNA	Low Noise Amplifier	低噪声功率放大器
MSAS	Multi-Functional Satellite Augmentation System	多功能卫星增强系统
NMEA	National Marine Electronics Association	国家海洋电子协会
PPS	Pulse Per Second	秒脉冲
PRN	Pseudo Random Noise Code	伪随机码
QZSS	Quasi-Zenith Satellite System	准天顶卫星系统
RHCP	Right Hand Circular Polarization	右旋圆极化
RMC	Recommended Minimum Specific GNSS Data	建议最低具体导航卫星系统数据
SBAS	Satellite-based Augmentation System	星基增强系统
SAW	Surface Acoustic Wave	声表面波滤波器
TTFF	Time To First Fix	首次定位时长

UART Universal Asynchronous Receiver & Transmitter 通用异步接收和发射