Brief history

- Inspired by 1940s understanding of neurons in animal brains (Mccullough-Pitt)
- Basic training algorithm (backpropagation) discovered in 1986 (Rumelhart, Hinton, Williams).
- Convolutional nets + modern training from late 1980s.

Published: 09 October 1986

Learning representations by back-propagating errors

David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams

Nature 323, 533–536 (1986) Cite this article

75k Accesses 11068 Citations 238 Altmetric Metrics

Brief history

 Out of fashion for a decade; came back strong with around 2012. Now dominant in AI (computer vision, NLP, robotics, etc).

Why popular now?

hardware

1998

LeCun et al.

of transistors

106

of pixels used in training

107

NS

of pixels

2012

Krizhevsky et al.

of transistors

GPUs

109

IM & GENET

used in training

GPUs have 8×10^{10} transistors. 2022

Commercial payoff

- Works well enough to monetize, across a range of applications
- Open-source tools enable democratization of access

Neural Network Basics

An artificial neuron

- output X₂

 output

 X₂
- A neuron is a computational unit that has scalar inputs and an output
- Each input has an associated weight.
- The neuron multiples each input by its weight, sums them, applied a nonlinear activation function to the result, and passes it to its output.

Input: X₁, X₂, X₃, X₄, X₅

weights: W₁, W₂, W₃, W₄, W₅

output:

$$y = \sigma(\sum_{j=1}^{5} \mathbf{w}_j \mathbf{x}_j) \text{ or } y = \sigma(\mathbf{w} \cdot \mathbf{x})$$

A neuron can be a logistic regression unit!

Popular Activation functions

$$\mathbf{S}$$
 $\mathbf{\sigma}(\mathbf{w} \cdot \mathbf{x})$

sigmoid
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

tanh:
$$\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

 $(\tanh(z) = 2\sigma(2z) - 1)$

Activation function: ReLU

A popular choice: Rectified Linear Unit (ReLU)

$$ReLU(z) = \max\{z, 0\} = \begin{cases} 0 & z \le 0 \\ z & z > 0 \end{cases}$$

Shorthand: $ReLU(z) = [z]_+$

Q: What is the advantage of ReLU?

1) avoid gradient vanishing; 2) cheaper to compute

Neural networks (high level)

- The artificial neurons are connected to each other, forming a network
- The output of a neuron may feed into the inputs of other neurons

The intermediate layers are called hidden layers

Feedforward neural networks

- A feedforward network is a multilayer feedforward network:
 - The units are connected with no cycles
 - The outputs from units in each layer are passed to units in the next higher layer
 - No outputs are passed back to lower layers

Fully-connected layers:

All the units from one layer are fully connected to every unit of the next layer.

Note: each edge has an associated weight