南京大学数学系试卷

共4页 第1页

200	05 / 20	006	学年第_二_学期	课	程	名	称 _		数字	学分析	斤		
试卷	类型_A	卷	考试形式_闭卷_	使	用	班	级_		20	05 级	Ĺ		
命	题	人	梅加强	考	试	时	间 _	2006	年	6	月_	20	_日

题号	_	=	三	四	五	六	七	八	九	+	总分	阅卷人
得分				·								

说明:

- 1. 请将班级、学号、姓名写在试卷左侧装订线外。
- 2. 本试卷共 4 道大题, 含 12 道小题, 满分 100 分, 考试时间 120 分钟。
- 一、 叙述题 (20分)
- 1. 设 $f: \mathbb{R}^m \to \mathbb{R}^n$ 为多元向量值函数, $x_0 \in \mathbb{R}^m$. 叙述 f 在 x_0 可微的定义. (10分)

2. 叙述正项级数 Cauchy 判别法的条件及结论, 并举一个不能用 Cauchy 判别法判别 收敛性的例子. (10分)

- 二、 计算题 (25分)
- 1. 求级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$ 之和. (5分)

森名

:84 54

£ 级

2. 方程 $x^2+2y^2+3z^3+2xy-z=7$ 在 (1,-2,1) 附近决定了隐函数 z=z(x,y). 求 $\frac{\partial^2 z}{\partial x \partial y}(1,-2)$ 的值. (10 分)

3. 求函数 $f(x,y,z)=x^3+y^3+z^3$ 在约束条件 $x+y+z=2,\ x^2+y^2+z^2=12$ 下的 极值. (10 分)

三、 判断题(15分)判断如下级数的敛散性并说明理由:

1.
$$\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$$
. (5分)

2.
$$\sum_{n=1}^{\infty} \ln[1 + \frac{(-1)^n}{2n}]$$
. (5分)

3.
$$\sum_{n=1}^{\infty} \sin(n^2)$$
. (5分)

四、证明题(40分)

(10分)

1. 设 $f: R^n \to R$ 为任意次可微的多元函数,且 $f(0, \dots, 0) = 0$. 证明,存在任意次可微的多元函数 $g_i: R^n \to R (i = 1, 2, \dots, n)$,使得

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n x_i \cdot g_i(x_1, x_2, \dots, x_n), \ \forall \ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$

- 2. 设 $A=(a_{ij})$ 为 n 阶实正定对称方阵, $b_i(i=1,2,\cdots,n)$ 为实数.考虑 R^n 上的函数 $f(x_1,x_2,\cdots,x_n)=\sum_{i,j=1}^n a_{ij}x_ix_j-\sum_{i=1}^n b_ix_i$. 证明
- (i) f 在 R^n 上有惟一的最小值点; (ii) f 的最小值为 $-\frac{1}{4}\sum_{i,j=1}^n a^{ij}b_ib_j$, 这里 a^{ij} 是 A 的逆矩阵在 ij 位置的元素. (10 分)

- 3. 设 $A = (a_{ij})$ 为 n 阶实方阵, 定义其范数为 $\|A\| = [\sum_{i,j=1}^n a_{ij}^2]^{\frac{1}{2}}$. 对于一列 n 阶实方阵 $B_k = (b_{kij})$, 如果对于 $i,j=1,2,\cdots,n$, 每个数项级数 $\sum_{k=0}^{\infty} b_{kij}$ 都收敛, 我们就称矩阵级数 $\sum_{k=0}^{\infty} B_k$ 收敛, 其和仍为 n 阶实方阵, 此方阵在 i,j 位置的元素是上述 i,j 位置数项级数之和. 现假设 $\|A\| < 1$, 证明
 - (i) 矩阵级数 $\sum_{k=0}^{\infty} A^k$ 收敛, 其中 A^k 表示 A 的 k 次幂, A^0 为单位矩阵.
- (ii) 把(i) 中矩阵级数之和记为B, 证明 B 为可逆矩阵, 且 $\|I_n B\| \le \|A\| \cdot [1 \|A\|]^{-1}$.

(10分)

4. 设 $f: \mathbb{R}^n \to \mathbb{R}^n$ 为连续可微的映射, 满足条件

$$||f(x) - f(y)|| \ge ||x - y||, \quad \forall x, y \in \mathbb{R}^n.$$

证明 f 为一一映射, 且其逆映射 f^{-1} 也是连续可微的. (10分)