

Norwegian University of Life Sciences



BioSim – Simulation of Population Dynamics on Rossumøya Island INF200 – Advanced Programming, June 2021 Block

Muntazir Naqvi & Talha Naveed 22 June 2021



#### **Problem**

#### Model the Ecosystem on Rossumøya Island

- Animals
  - Carnivores
  - Herbivores
- Geography
  - Water
  - Desert
  - Lowland
  - Highland

The properties and behavior over time is dictated by a set of defined rules and conditions



### Solution

#### **Object-Oriented Programming!**

- Easy to use and efficient simulation software that is built using:
  - -Classes and objects
  - Inheritance
  - Abstraction
  - Polymorphism
- Programming language: Python 3



### Solution

#### **BioSim: Population Dynamics Simulation**





# The software package offers...

- Quality assurance
- Accurate model and visualization
- Graphical User Interface
- Performance
- Documentation



# Quality assurance

- PEP8 Guidelines: *flake8* check
- Testing covers 84% of the code:
  - Tests for methods in classes
  - Usage of fixtures
  - Statistical tests

| coverage: platform win32, python 3.8.10          | -final-0 |      |       |
|--------------------------------------------------|----------|------|-------|
| Name                                             | Stmts    | Miss | Cover |
|                                                  |          |      |       |
| .tox\py38\Lib\site-packages\biosim\initpy        | 3        | 0    | 100%  |
| .tox\py38\Lib\site-packages\biosim\animals.py    | 120      | 21   | 82%   |
| .tox\py38\Lib\site-packages\biosim\cells.py      | 127      | 23   | 82%   |
| .tox\py38\Lib\site-packages\biosim\graphics.py   | 205      | 37   | 82%   |
| .tox\py38\Lib\site-packages\biosim\island.py     | 177      | 28   | 84%   |
| .tox\py38\Lib\site-packages\biosim\simulation.py | 65       | 2    | 97%   |
|                                                  |          |      |       |
| TOTAL                                            | 697      | 111  | 84%   |



# Quality assurance

Automated testing on Gitlab to ensure quality





### Accurate model and visualization





# Graphical user interface





### Performance

Visualization and saving image files have the highest computation cost.





#### Performance

- Runtime:
  - -27.89 seconds (without visualization)
  - -93.40 seconds (with real-time visualization and without saving images)
  - -167.38 seconds (with real-time visualization and with saving images)

Calculated on Windows 10 Home (OS Build 19042.1052) running on AMD Ryzen 7 4700U CPU ~ 2.00 GHz with 15.4 GB of usable random access memory; storage media is a solid-state drive.



### **Documentation**

- Documentation generated using Sphinx 4.0.1
  - Figures, math, tables, code examples etc.







# Future Development

- Additional features, e.g. data logging to a .csv file
- Testing to cover 100% of the code
- Optimization to reduce runtime
- More informative and interactive GUI
- More comprehensive documentation



# Thank you

