## 0.1 矩阵相似的全系不变量

## 0.1.1 矩阵相似的判定准则之一: 特征矩阵相抵

回顾定理??中矩阵相似的充要条件.

#### 命题 0.1

设 A, B 是数域  $\mathbb{F}$  上的 n 阶矩阵,  $\lambda I_n - A$  相抵于 diag  $\{f_1(\lambda), f_2(\lambda), \cdots, f_n(\lambda)\}$ ,  $\lambda I_n - B$  相抵于 diag  $\{f_{i_1}(\lambda), f_{i_2}(\lambda), \cdots, f_{i_n}(\lambda)\}$ , 其中  $f_{i_1}(\lambda), f_{i_2}(\lambda), \cdots, f_{i_n}(\lambda)$  是  $f_1(\lambda), f_2(\lambda), \cdots, f_n(\lambda)$  的一个排列. 求证:  $A \subseteq B$  相似.

证明 对换  $\lambda$ -矩阵 diag{ $f_1(\lambda)$ ,  $f_2(\lambda)$ ,  $\cdots$ ,  $f_n(\lambda)$ } 的第 i, j 行, 再对换第 i, j 列, 可将  $f_i(\lambda)$  与  $f_j(\lambda)$  互换位置. 由于任一排列都可由若干次对换实现, 故 diag{ $f_1(\lambda)$ ,  $f_2(\lambda)$ ,  $\cdots$ ,  $f_n(\lambda)$ } 相抵于 diag{ $f_{i_1}(\lambda)$ ,  $f_{i_2}(\lambda)$ ,  $\cdots$ ,  $f_{i_n}(\lambda)$ }, 于是  $\lambda I_n - A$  相抵于  $\lambda I_n - B$ , 从而 A 与 B 相似.

例题 0.1 设 n 阶方阵 A, B, C, D 中 A, C 可逆, 求证: 存在可逆矩阵 P, Q, 使得 A = PCQ, B = PDQ 的充要条件是  $\lambda A - B = \lambda C - D$  相抵.

证明 必要性由  $\lambda A - B = P(\lambda C - D)Q$  即得. 下证充分性.

设  $\lambda A - B = \lambda C - D$  相抵, 则由 A, C 可逆知,  $\lambda I_n - A^{-1}B = \lambda I_n - C^{-1}D$  相抵, 于是  $A^{-1}B = C^{-1}D$  相似. 设 Q 为可逆矩阵, 使得  $A^{-1}B = Q^{-1}(C^{-1}D)Q$ , 令  $P = AQ^{-1}C^{-1}$ , 则 P 可逆且 A = PCQ, B = PDQ.

## 0.1.2 矩阵相似的判定准则二: 有相同的行列式因子组

回顾定理??中矩阵相似的充要条件和 $\lambda$ -矩阵的行列式因子相关定义和性质.

#### 命题 0.2

求证: 任一n 阶矩阵 A 都与它的转置 A' 相似.

证明 注意到  $(\lambda I_n - A)' = \lambda I_n - A'$ , 并且行列式的值在转置下不改变, 故  $\lambda I_n - A$  和  $\lambda I_n - A'$  有相同的行列式因子组, 从而 A 和 A' 相似.

例题 0.2 求证: 对任意的  $b \neq 0,n$  阶方阵 A(a,b) 均相互相似:

$$A(a,b) = \begin{pmatrix} a & b & \cdots & b & b \\ & a & \ddots & \ddots & b \\ & & \ddots & \ddots & \vdots \\ & & & a & b \\ & & & & a \end{pmatrix}$$

证明 只要证明对任意的  $b \neq 0$ ,A(a,b) 的行列式因子组都一样即可. 显然  $D_n(\lambda) = (\lambda - a)^n . \lambda I_n - A(a,b)$  的前 n-1 行、前 n-1 列构成的子式, 其值为  $(\lambda - a)^{n-1}$ ; $\lambda I_n - A(a,b)$  的前 n-1 行、后 n-1 列构成的子式, 其值设为  $g(\lambda)$ . 注意到 g(a) 是 n-1 阶上三角行列式, 主对角元素全为 -b, 从而  $g(a) = (-b)^{n-1} \neq 0$ . 因此  $(\lambda - a)^{n-1}$  与  $g(\lambda)$  没有公共根, 故  $((\lambda - a)^{n-1}, g(\lambda)) = 1$ , 于是  $D_{n-1}(\lambda) = 1$ , 从而 A(a,b) 的行列式因子组为  $1, \dots, 1, (\lambda - a)^n$ , 结论得证.  $\square$  注

- (1) 在上(下)三角矩阵(如 Jordan 块)或类上(下)三角矩阵(如友阵或 Frobenius 块)中, 若上(下)次对 角线上的元素全部非零, 可以尝试计算行列式因子组. 对一般的矩阵(如数字矩阵), 不建议计算行列式因 子组, 推荐使用 λ-矩阵的初等变换计算法式, 得到不变因子组.
- (2) 注意到  $A(a,0) = aI_n$  的行列式因子组为  $D_i(\lambda) = (\lambda a)^i (1 \le i \le n)$ . 因此, 在求相似标准型的过程中, 注意千万不能使用摄动法!

## 0.1.3 矩阵相似的判定准则三: 有相同的不变因子组

回顾定理??可知,所有不变因子的乘积等于特征多项式,整除关系下最大的那个不变因子等于极小多项式.因此,确定特征多项式和极小多项式可帮助确定不变因子组.

## 命题 0.3 (同阶幂零阵必相似)

设  $A \neq n$  阶 n 次幂零矩阵, 即  $A^n = O$  但  $A^{n-1} \neq O$ . 若 B 也是 n 阶 n 次幂零矩阵, 求证: A 相似于 B.

证明 显然 A 的极小多项式为  $\lambda^n$ , 故 A 的不变因子组是  $1, \dots, 1, \lambda^n$ . 同理 B 的不变因子组也是  $1, \dots, 1, \lambda^n$ , 因此 A 和 B 相似.

#### 命题 0.4

设 A 为 n 阶矩阵, 证明以下 3 个结论等价:

- (1)  $A = cI_n$ , 其中 c 为常数;
- (2) A 的 n-1 阶行列式因子是一个 n-1 次多项式;
- (3) A的不变因子组中无常数.

证明 (1) ⇒ (2): 显然成立.

- (2) ⇒ (3): 由于 A 的 n 阶行列式因子  $D_n(\lambda)$  是一个 n 次多项式, 故 A 的最后一个不变因子  $d_n(\lambda) = D_n(\lambda)/D_{n-1}(\lambda)$  是一个一次多项式, 设为  $\lambda c$ . 因为其他不变因子都要整除  $d_n(\lambda)$ , 并且所有不变因子的乘积等于 n 阶行列式因子  $D_n(\lambda)$ , 故 A 的不变因子组只能是  $\lambda c$ ,  $\lambda c$ ,  $\dots$ ,  $\lambda c$ .
- (3)  $\Rightarrow$  (1): 设 A 的不变因子组为  $d_1(\lambda), d_2(\lambda), \cdots, d_n(\lambda)$ , 则  $\deg d_i(\lambda) \geq 1$ . 注意到  $d_1(\lambda)d_2(\lambda)\cdots d_n(\lambda) = D_n(\lambda)$  的次数为 n, 因此  $\deg d_i(\lambda) = 1$ . 又  $d_i(\lambda) \mid d_n(\lambda)$ , 故只能是  $d_1(\lambda) = d_2(\lambda) = \cdots = d_n(\lambda) = \lambda c$ . 因此 A 与  $cI_n$  有相同不变因子组,从而它们相似,即存在可逆矩阵 P,使得  $A = P^{-1}(cI_n)P = cI_n$ . 另外,也可以利用 A 的极小多项式等于  $\lambda c$  或 A 的 Jordan 标准型来证明.

例题 0.3 设 n 阶矩阵 A 的特征值全为 1, 求证: 对任意的正整数  $k,A^k$  与 A 相似.

证明 由 A 的特征值全为 1 可知  $A^k$  的特征值也全为 1. 设 P 为可逆矩阵, 使得  $P^{-1}AP = J = \operatorname{diag}\{J_{r_1}(1), \cdots, J_{r_s}(1)\}$  为 Jordan 标准型. 由于  $P^{-1}A^kP = (P^{-1}AP)^k = J^k$ , 故只要证明  $J^k = J^k$  相似即可 (见 Jordan 块的性质 (3)). 又因为  $J^k = \operatorname{diag}\{J_{r_1}(1)^k, \cdots, J_{r_s}(1)^k\}$ , 故问题可进一步归结到每个 Jordan 块, 即只要证明  $J_{r_i}(1)^k = J_{r_i}(1)$  相似即可. 因此不妨设  $J = J_n(1)$  只有一个 Jordan 块, 则  $J = I_n + J_0$ , 其中  $J_0 = J_n(0)$  是特征值为  $J_0$  的  $J_0$  的  $J_0$  Dordan 块. 注意到

$$J^{k} = (I_{n} + J_{0})^{k} = I_{n} + C_{\nu}^{1} J_{0} + C_{\nu}^{2} J_{0}^{2} + \dots + J_{0}^{k}.$$

故  $J^k$  是一个上三角矩阵, 其主对角线上的元素全为 1, 上次对角线上的元素全为 k, 从而它的特征多项式为  $(\lambda-1)^n$ . 为了确定它的极小多项式, 我们可进行如下计算:

$$(J^k-I_n)^{n-1}=({\rm C}_k^1J_0+{\rm C}_k^2J_0^2+\cdots+J_0^k)^{n-1}=k^{n-1}J_0^{n-1}\neq O.$$

于是  $J^k$  的极小多项式为  $(\lambda-1)^n$ , 其不变因子组为  $1, \dots, 1, (\lambda-1)^n$ . 因此  $J^k$  与 J 有相同的不变因子, 从而  $J^k$  与 J 相似.

例题 0.4 设 n 阶矩阵 A 的特征值全为 1 或 -1, 求证: $A^{-1}$  与 A 相似.

证明 设 P 为可逆矩阵, 使得  $P^{-1}AP = J = \text{diag}\{J_{r_1}(\lambda_1), \cdots, J_{r_s}(\lambda_s)\}$  为 Jordan 标准型, 其中  $\lambda_i = \pm 1$ . 由于  $P^{-1}A^{-1}P = (P^{-1}AP)^{-1} = J^{-1}$ , 故只要证明  $J^{-1}$  与 J 相似即可. 又因为  $J^{-1} = \text{diag}\{J_{r_1}(\lambda_1)^{-1}, \cdots, J_{r_s}(\lambda_s)^{-1}\}$ , 故问题可进一步归结到每个 Jordan 块, 即只要证明  $J_{r_i}(\lambda_i)^{-1}$  与  $J_{r_i}(\lambda_i)$  相似即可 (见 Jordan 块的性质 (4)). 因此不妨设  $J = J_n(\lambda_0)$  只有一个 Jordan 块, 则  $J = \lambda_0 I_n + J_0$ , 其中  $\lambda_0 = \pm 1, J_0 = J_n(0)$  是特征值为 0 的 n 阶 Jordan 块. 注意到

$$\lambda_0^n I_n = (\lambda_0 I_n)^n - (-J_0)^n = (\lambda_0 I_n + J_0)(\lambda_0^{n-1} I_n - \lambda_0^{n-2} J_0 + \dots + (-1)^{n-1} J_0^{n-1}).$$

以及  $\lambda_0^{-1} = \lambda_0$ , 故可得

$$J^{-1} = (\lambda_0 I_n + J_0)^{-1} = \lambda_0 I_n - \lambda_0^2 J_0 + \dots + (-1)^{n-1} \lambda_0^n J_0^{n-1}.$$

因此  $J^{-1}$  是一个上三角矩阵, 其主对角线上的元素全为  $\lambda_0$ , 上次对角线上的元素全为  $-\lambda_0^2$ , 从而它的特征多项式为

 $(\lambda - \lambda_0)^n$ . 为了确定它的极小多项式, 我们可进行如下计算:

$$(J^{-1} - \lambda_0 I)^{n-1} = (-\lambda_0^2 J_0 + \dots + (-1)^{n-1} \lambda_0^n J_0^{n-1})^{n-1} = (-1)^{n-1} J_0^{n-1} \neq O$$

于是  $J^{-1}$  的极小多项式为  $(\lambda - \lambda_0)^n$ ,其不变因子组为  $1, \dots, 1, (\lambda - \lambda_0)^n$ . 因此  $J^{-1}$  与 J 有相同的不变因子组,从而  $J^{-1}$  与 J 相似.

## 0.1.4 矩阵相似的判定准则四: 有相同的初等因子组

### 定义 0.1 (准素因子)

设  $f(\lambda)$  为数域  $\mathbb{K}$  上的多项式, $p(\lambda)$  是  $\mathbb{K}$  上的首一不可约多项式,若存在正整数 k,使得  $p(\lambda)^k \mid f(\lambda)$ ,但  $p(\lambda)^{k+1} \mid f(\lambda)$ ,则称  $p(\lambda)^k$  为  $f(\lambda)$  的一个**准素因子**. 所有  $f(\lambda)$  的准素因子称为  $f(\lambda)$  的**准素因子组**. 事实上, 若设  $f(\lambda)$  在  $\mathbb{K}$  上的标准因式分解为

$$f(\lambda) = cP_1(\lambda)^{e_1}P_2(\lambda)^{e_2}\cdots P_t(\lambda)^{e_t}$$

其中 c 为非零常数, $P_i(\lambda)$  为互异的首一不可约多项式, $e_i > 0$ ( $1 \le i \le t$ ), 则  $f(\lambda)$  的所有准素因子为  $P_1(\lambda)^{e_1}, P_2(\lambda)^{e_2}, \cdots, P_t(\lambda)^{e_t}$ .

## 定理 0.1 (*λ*-矩阵和初等因子的基本性质)

(1) 设  $f(\lambda)$ ,  $g(\lambda)$  是数域  $\mathbb{K}$  上的首一多项式,  $d(\lambda) = (f(\lambda), g(\lambda))$ ,  $m(\lambda) = [f(\lambda), g(\lambda)]$  分别是  $f(\lambda)$  和  $g(\lambda)$  的最大公因式和最小公倍式, 证明下列  $\lambda$ -矩阵相抵:

$$\begin{pmatrix} f(\lambda) & 0 \\ 0 & g(\lambda) \end{pmatrix}, \begin{pmatrix} g(\lambda) & 0 \\ 0 & f(\lambda) \end{pmatrix}, \begin{pmatrix} d(\lambda) & 0 \\ 0 & m(\lambda) \end{pmatrix}$$

(2) 设 A 是数域  $\mathbb{K}$  上的 n 阶矩阵, 其特征矩阵  $\lambda I_n$  — A 经过初等变换可化为对角矩阵  $\mathrm{diag}\{f_1(\lambda),f_2(\lambda),\cdots,f_n(\lambda)\}$ , 其中  $f_i(\lambda)$  是  $\mathbb{K}$  上的首一多项式. 求证: 矩阵 A 的初等因子组等于所有  $f_i(\lambda)$  的准素因子组.

# $\widehat{\Sigma}$ 笔记 由(2)可知,矩阵 A的初等因子组就是 A的所有不变因子的准素因子组.实际上,(2)就是引理??的一个推广.证明

(1) 由已知, 存在多项式  $u(\lambda)$ ,  $v(\lambda)$ , 使得  $f(\lambda)u(\lambda) + g(\lambda)v(\lambda) = d(\lambda)$ . 设  $f(\lambda) = d(\lambda)h(\lambda)$ , 则  $m(\lambda) = g(\lambda)h(\lambda)$ . 作下 列  $\lambda$ -矩阵的初等变换:

$$\begin{pmatrix} f(\lambda) & 0 \\ 0 & g(\lambda) \end{pmatrix} \rightarrow \begin{pmatrix} f(\lambda) & 0 \\ f(\lambda)u(\lambda) & g(\lambda) \end{pmatrix} \rightarrow \begin{pmatrix} f(\lambda) & 0 \\ f(\lambda)u(\lambda) + g(\lambda)v(\lambda) & g(\lambda) \end{pmatrix} = \begin{pmatrix} f(\lambda) & 0 \\ d(\lambda) & g(\lambda) \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 0 & -g(\lambda)h(\lambda) \\ d(\lambda) & g(\lambda) \end{pmatrix} \rightarrow \begin{pmatrix} 0 & g(\lambda)h(\lambda) \\ d(\lambda) & 0 \end{pmatrix} \rightarrow \begin{pmatrix} d(\lambda) & 0 \\ 0 & m(\lambda) \end{pmatrix}.$$

另一结论同理可得.

(2) 对任意的 i < j, 以下操作记为 O(i, j): 设  $d(\lambda) = (f_i(\lambda), f_j(\lambda)), m(\lambda) = [f_i(\lambda), f_j(\lambda)]$  分别是  $f_i(\lambda)$  和  $f_j(\lambda)$  的最大公因式和最小公倍式,则用  $d(\lambda)$  替代  $f_i(\lambda)$ ,用  $m(\lambda)$  替代  $f_j(\lambda)$ . 我们先证明,操作 O(i, j) 可通过  $\lambda$ -矩阵的初等变换来实现,并且前后两个对角矩阵,即 diag  $\{f_1(\lambda), \cdots, f_i(\lambda), \cdots, f_j(\lambda), \cdots, f_n(\lambda)\}$  与 diag  $\{f_1(\lambda), \cdots, f_i(\lambda), \cdots, f_i(\lambda), \cdots, f_n(\lambda)\}$  有相同的准素因子组.

由 (1) 即知 O(i,j) 是  $\lambda$ -矩阵的相抵变换. 设  $f_i(\lambda)$ ,  $f_i(\lambda)$  的公共因式分解为

$$f_i(\lambda) = P_1(\lambda)^{e_{i1}} P_2(\lambda)^{e_{i2}} \cdots P_t(\lambda)^{e_{it}}, \quad f_i(\lambda) = P_1(\lambda)^{e_{j1}} P_2(\lambda)^{e_{j2}} \cdots P_t(\lambda)^{e_{jt}}$$

其中  $P_i(\lambda)$  为互异的首一不可约多项式, $e_{ik} \geq 0$ , $e_{jk} \geq 0$ ( $1 \leq k \leq t$ ), 令  $r_k = \min\{e_{ik}, e_{jk}\}$ , $s_k = \max\{e_{ik}, e_{jk}\}$ , 则有

$$d(\lambda) = P_1(\lambda)^{r_1} P_2(\lambda)^{r_2} \cdots P_t(\lambda)^{r_t}, \quad m(\lambda) = P_1(\lambda)^{s_1} P_2(\lambda)^{s_2} \cdots P_t(\lambda)^{s_t}$$

显然  $\{f_i(\lambda), f_j(\lambda)\}$  和  $\{d(\lambda), m(\lambda)\}$  有相同的准素因子组,因此 O(i, j) 操作前后的两个对角矩阵也有相同的准素因子组.

对对角矩阵  $\operatorname{diag}\{f_1(\lambda), f_2(\lambda), \cdots, f_n(\lambda)\}$  依次实施操作  $O(1,j)(2 \leq j \leq n)$ ,则得到对角矩阵的第 (1,1) 元素的所有不可约因式的幂在主对角元素中都是最小的;然后依次操作  $O(2,j)(3 \leq j \leq n)$ ;  $\cdots$ ;最后操作 O(n-1,n),可得一个对角矩阵  $\Lambda = \operatorname{diag}\{d_1(\lambda), d_2(\lambda), \cdots, d_n(\lambda)\}$ .由操作的性质可知, $\Lambda$  满足  $d_i(\lambda) \mid d_{i+1}(\lambda)(1 \leq i \leq n-1)$ ,因此  $\Lambda$  就是矩阵  $\Lambda$  的法式.又因为对角矩阵  $\operatorname{diag}\{f_1(\lambda), f_2(\lambda), \cdots, f_n(\lambda)\}$  与法式有相同的准素因子组,故所有  $f_i(\lambda)$  的准素因子组就是矩阵  $\Lambda$  的初等因子组.

#### 命题 0.5

设  $A = \text{diag}\{A_1, A_2, \dots, A_k\}$  为分块对角矩阵, 求证: A 的初等因子组等于  $A_i(1 \le i \le k)$  的初等因子组的无交并集. 又若交换各块的位置, 则所得的矩阵仍和 A 相似.

#### 证明

显然  $\lambda I - A$  也是一个分块对角矩阵, 用  $\lambda$ -矩阵的初等变换将每一块化为法式, 则由 $\lambda$ -矩阵和初等因子的基本性质 (2)可知, A 的初等因子组就是所有各块的初等因子组的无交并集. 又交换 A 的各块并不改变 A 的初等因子组,因此所得之矩阵仍和 A 相似.