COMP9334 Capacity Planning for Computer Systems and Networks

Assignment Project Exam Help

Week 3Ahttps://eduassistpro.gistouto.au/rivals (2)

Add WeChat edu_assist_pro

Pre-lecture exercise

- You have a loaded die with 6 faces with values 1, 2, 3, 4, 5 and 6
- The probability that you can get each face is given in the table below
- What is the masignalenet that jyou Exampletelp

Value	Probabilit	https	s://eduassistpro.github.io/
1	0.1	Add	WeChat edu_assist_pro
2	0.1		_ _
3	0.2		
4	0.1		
5	0.3		
6	0.2		

Single-server queue

- Open, single server queues. Assignment Project Exam Help
- How to find:
 - Waiting time https://eduassistpro.github.io/
 - Mean queue length etc.

 Mean queue length etc.
- The technique to find waiting time etc. is called Queueing Theory

T1, 2021 **COMP9334** 3

Multiple server queue

What will you be able to do with the results?

5

Single Server Queue: Terminology

Tarsing Antheriting roject Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Response Time T

= Waiting time W + Service time S

Note: We use T for response time because this is the notation in many queueing theory books. For a similar reason, we will use ρ for utilisation rather than U.

T1, 2021 C

Call centre analogy from Week 2B

- Consider a call centre
 - Calls are arriving according to Poisson distribution with rate λ
 - The length of each call is exponentially distributed with parameter μ
 - Mean length of a call is 1/ μ

Assignment Project Exam Heall centre:

Arrivals

If all https://eduassistpro.github.io/
If all https://eduassistpro.github.io/
at most nadditional edu_assist_pro
If a call arrives when s and holding
slots are used, the call is rejected.

- We solved the problems for
 - (m = 1 and n = 0), and (m = 1 and n = 1)
- How about other values of m and n? What about response time?

T1, 2021 COMP9334

Kendall's notation

- To represent different types of queues, queueing theorists use the Kendall's notation
- The call centre example on the previous page can be represented as:

The call centre example on the last page is a M/M/m/(m+n) queue If $n = \infty$, we simply write M/M/m

M/M/1 queue

Exponential Inter-arrivals (λ) **Exponential** Service time (μ)

Infinite buffer

One server

- Consider a call captral analogy ect Exam Help
 - Calls are arrivin tribution with rate λ
 - The length of ea https://eduassistpro.githublio/th parameter u
 - Mean length of a call is 1/that edu assist pro

Arrivals

Call centre with 1 operator If the operator is busy, the centre will put the call on hold.

A customer will wait until his call is answered.

- Queueing theory will be able to answer these questions:
 - What are the mean waiting time, mean response time for a call?

COMP9334 T1, 2021

Little's Law

- Applicable to any "box" that contains some queues or servers
- Mean number of jobs in the "box" =
 Mean response time x Throughput
- We will use Little's Law in this lecture to derive the mean response time
 - We first compute the mean number of jobs in the "box" and throughput Assignment Project Exam Help

https://eduassistpro.github.io/

M/M/1: State and transition diagram

- We will solve for the steady state response
- Define the states of the queue
 - State 0 = There is zero job in the system (= The server is idle)
 - State 1 = There is 1 job in the system (= 1 job at the server, no job queueing)
 - State 2 = There are 2 jobs in the system (= 1 job at the server, 1 job queueing) Assignment Project Exam Help
 - State k = There a property of the server is a
- The state transition diagram
 Add WeChat edu_assist_pro

M/M/1 state balance:

$$P_k = \text{Prob. } k \text{ jobs in system}$$

$$\lambda P_0 = \mu P_1$$

$$\Rightarrow P_1 = \frac{\lambda}{\mu} P_0$$

M/M/1 state balance: Exercise 1

https://eduassistpro.github.io/

• Exercise: Write the state balance eq ate 1 Add WeChat edu_assist_pro

M/M/1 state balance: Exercise 2

• Exercise: Write the state balance or magenta box, i.e. Add WeChat edu_assist_pro

Rate of transiting out of the magenta box

= Rate of transiting into the magenta box

Which state balance is easier to work with?

Add WeChat edu_assist_pro

M/M/1 state balance: Relating P₂ and P₀

https://eduassistpro.github.io/

$$\lambda P_0 = \mu P_1$$
 Add WeChat edu_assist_pro

$$\Rightarrow P_2 = \frac{\lambda}{\mu} P_1 \quad \Rightarrow P_2 = \left(\frac{\lambda}{\mu}\right)^2 P_0$$

M/M/1 state balance: Relating P_3 and P_0

https://eduassistpro.github.io/

$$\lambda P_2 = \mu P_3$$
 Add WeChat edu_assist_pro

$$\Rightarrow P_3 = \frac{\lambda}{\mu} P_2 \quad \Rightarrow P_3 = \left(\frac{\lambda}{\mu}\right)^3 P_0$$

COMP9334 17 T1, 2021

M/M/1 state balance: Relating P_k and P_0

In general
$$P_k = \left(\frac{\lambda}{\mu}\right)^k P_0$$

We have
$$P_k = \rho^k P_0$$

Solving for P_k

With
$$P_k=
ho^kP_0$$
 and

$$P_0 + P_1 + P_2 + P_3 + \dots = 1$$

Assignment Project Exam Help

https://eduassistpro.github.io/ p = utilisation

Add WeChat edu_assist=Prob server is busy

= 1- Prob server is idle

$$\Rightarrow P_k = (1 - \rho)\rho^k$$

Since
$$\rho = \frac{\lambda}{\mu}$$
 , $\rho < 1 \Rightarrow \lambda < \mu$

Arrival rate < service rate

COMP9334 19 T1, 2021

Exercise: Mean number of jobs

Recall that $P_k = \text{Prob. } k \text{ jobs in system}$

and we have calculated that

$$P_k = (1 - \rho)\rho^k$$

Determine the Ansignment beroit go by multiesp stem.

https://eduassistpro.github.io/

Hint 1: Look at pre

Add WeChat edu_assist_pro

You can use the following formula to help you.

For $0 \le x < 1$,

$$p + x(p+q) + x^{2}(p+2q) + x^{3}(p+3q) + \dots = \frac{p}{1-x} + \frac{xq}{(1-x)^{2}}$$

Mean number of jobs

$$P_k = \text{Prob. } k \text{ jobs in system}$$

$$P_k = (1 - \rho)\rho^k$$

The mean numbergofniche Probecsystem Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

M/M/1: mean response time

Little's law: Assignment Project Exam Help mean number of cust sponse time

https://eduassistpro.github.io/

Throughput is λ (whx?) WeChat edu_assist_pro

Response time
$$T = \frac{\rho}{\lambda(1-\rho)} = \frac{1}{\mu-\lambda}$$

Exercise: M/M/1 mean waiting time

What is the mean Assignment Runjequ Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Using the service time parameter ($1/\mu = 15$ ms) in the

example, let us see how response time T varies with λ

$$T = \frac{1}{\mu(1-\rho)}$$

Observation:

Assignment Project Exam HelpResponse time increases

https://eduassistpro.githubsimarply when

Add WeChat edu_assist_pro_1 gets close

Infinite queue assumption means $\rho \to 1$, $T \to \infty$

Non-linear effect on response time

• The response time of an M/M/1 queue

- Assuming the mean arrival rate is 10 requests/s
 We will calculate the effect of service rate on response time
- Complete the follohttps://eduassistpro.gitatukoio/can conclude

Service rate	Addidi Sational edu_as	sistsponse time
11	10/11 = 0.909	1
22	10/22 = 0.454	0.08

COMP9334 T1, 2021 25

Multi-server queues M/M/m

A call centre analogy of M/M/m queue

- Consider a call centre analogy
 - Calls are arriving according to Poisson distribution with rate λ
 - The length of each call is exponentially distributed with parameter μ
 - Mean length of a call is 1/ μ

Arrivals

Assignment Project Exam Help Call centre with *m* operators

If all *m* op https://eduassistpro.glithub.ib/t the call on

A customerand with wat Chait bisu_assist_projed.

State transition for M/M/m

T1, 2021 COMP9334 28

Add WeChat edu_assist_pro

M/M/m

Following the same method, we have mean response time T is

$$T = \frac{C(\rho,m)}{m\mu(1-\rho)} + \frac{1}{\mu}$$
Assignment Project Exam Help

where

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$$C(\rho, m) = \frac{\frac{(m\rho)^m}{m!}}{(1 - \rho) \sum_{k=0}^{m-1} \frac{(m\rho)^k}{k!} + \frac{(m\rho)^m}{m!}}$$

Multi-server queues M/M/m/m with no waiting room

A call centre analogy of M/M/m/m queue

- Consider a call centre analogy
 - Calls are arriving according to Poisson distribution with rate λ
 - The length of each call is exponentially distributed with parameter μ
 - Mean length of a call is 1/ μ

Arrivals

Assignment Project Exam Help Call centre with *m* operators

If all *m* op https://eduassistpro.gifhdb.pped.

Add WeChat edu_assist_pro

State transition for M/M/m/m

Add WeChat edu_assist_pro Probability that an arrival is

= Probability that there are m customers in the system

$$P_m = rac{rac{
ho^m}{m!}}{\sum_{k=0}^m rac{
ho^k}{k!}}$$
 where $ho = rac{\lambda}{\mu}$ "Erlang B formula"

What configuration has the best response time?

References

- Recommended reading
 - Queues with Poisson arrival are discussed in
 - Bertsekas and Gallager, Data Networks, Sections 3.3 to 3.4.3
 - Note: I derived the formulas here using continuous Markov chain but Bertsekas and Gallager used discrete Markov chain Assignment Project Exam Help Mor Harchal-Batter. Chapters 13 and 14

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

COMP9334 T1, 2021 34