Department of Mathematics and Computer Science

Chulalongkorn University

2301365 Algorithm Designs and Analysis	Fall 2020	Lab #7
Name	Student ID	Computer No.

Graph Algorithms 2

1. **มลภาวะทางเสียง** กำหนดให้กราฟแทนการเชื่อมโยงของเมือง โดยแต่ละเมืองแทนด้วยจุดยอด (vertex) และถนน แทนด้วยเส้นเชื่อม (edge) และระดับความดังของเสียงในหน่วยเดชิเบลแทนด้วยค่าน้ำหนัก (weight) ตัวอย่างดัง กราฟข้างล่าง

ให้นิสิตเขียนโปรแกรมเพื่อหาว่าถ้าต้องการเดินทางจากเมืองหนึ่งไปยังอีกเมืองหนึ่งผู้เดินทางต้องทนมลภาวะของ เสียงให้ได้อย่างน้อยที่สุดกี่เดชิเบล

ตัวอย่างเช่น ถ้าต้องการเดินทางจากเมือง 1 ไปเมือง 7 จะพบว่าอย่างน้อยผู้เดินทางต้องทนมลภาวะของเสียงให้ได้ สูงสุด 80 เดซิเบล ผ่านเส้นทาง 1-3-6-4-7 แต่ถ้าเลือกเส้นทางอื่นๆ เสียงที่ได้รับจะดังมากกว่า 80 เดซิเบล เช่น เส้นทาง 1-2-4-7 มีความดังสูงสุดถึง 120 เดซิเบล

รูปแบบที่ต้องการ

<u>อินพุต</u> ประกอบด้วย E+k+1 บรรทัด

บรรทัดแรก ประกอบด้วย จำนวนจุดยอด เส้นเชื่อม และจำนวนคู่ของเมืองต้นทางและปลายทางที่ต้องการ คำตอบ

บรรทัดที่สองถึงบรรทัดที่ E+1 ประกอบด้วย ตัวเลขสามตัว ตัวเลขตัวแรกและตัวเลขตัวที่สองแทนเมือง สองเมืองที่เชื่อมต่อด้วยเส้นเชื่อมหนึ่งเส้น ตัวเลขตัวที่สามแทนค่าระดับความดังของเสียง

บรรทัดที่เหลือจำนวน k บรรทัด แต่ละบรรทัดแสดงตัวเลขสองตัวหมายถึงเมืองต้นทางและปลายทางที่ ต้องการคำตอบ

<u>เอาท์พุต</u> ประกอบด้วย k คำตอบ แต่ละคำตอบแสดงระดับความดังที่ผู้เดินทางต้องทนให้ได้ในการเดินจากเมืองต้น ทางไปสู่เมืองปลายทาง ถ้าไม่มีเส้นทางให้พิมพ์ "no path"

<u>ตัวอย่าง</u>

Input	Output
793	80
1 2 50	60
1 3 60	60
2 4 120	
2 5 90	
3 6 50	
4 6 80	
4 7 70	
5 7 40	
6 7 140	
1 7	
2 6	
6 2	