Sujet

Plasma: effet FARADAY	1
I. Première partie: exercices indépendants.	1
A. <u>Pulsation plasma</u>	1
B.Pulsation cyclotron.	
C.Polarisation.	
II. Deuxième partie: le problème	3
A.Recherche de l'équation de dispersion.	
B.OPPMC	
1)OPPMCD.	4
2)OPPMCG	
3)Récapitulatif des résultats	
C.OPPMR	

NB: Vous pouvez ne pas faire la partie I.B

Plasma: effet FARADAY

I. Première partie: exercices indépendants

A. Pulsation plasma

On considère un plasma gazeux globalement neutre ($\rho=0$) en équilibre et au repos ($\vec{E}=\vec{0}$), comprenant des ions positifs supposés fixes et des électrons de masse m et de charge -e mobiles. On suppose que les électrons ne peuvent que se déplacer selon Oz. On envisage alors un petit déplacement d'ensemble ξ des électrons. Ce déplacement n'est pas supposé uniforme. Pour les électrons dont la position était repérée par z auparavant lorsqu'ils étaient au repos, le déplacement à l'instant t est noté: $\xi=\xi(z,t)$.

On désigne par N la densité volumique d'électrons dans le plasma au repos.

On supposera
$$\frac{\partial \xi}{\partial z} \ll 1$$
 . On donne : Pour une fonction $f(x,t)$: $f(x + dx,t) = f(x,t) + \frac{\partial f}{\partial x} dx$

On s'intéresse au plasma en z, t. On raisonne donc (voir schéma) sur une tranche élémentaire de section S qui était comprise entre z et z+dz dans le plasma au repos.

- 1. Que devient le volume élémentaire de la tranche considérée lors du déplacement.
- 2. En déduire que la densité volumique d'électrons est modifiée par le déplacement et donner son expression N^- en fonction de N et $\frac{\partial \xi}{\partial z}$. Écrire le résultat en tenant compte de $\frac{\partial \xi}{\partial z} \ll 1$ puis en déduire l'expression de la densité volumique de charge négative, en ne tenant compte que des électrons, en z, t.

- 3. En déduire que la densité volumique de charge en z, t est: $\rho(z,t) = Ne \frac{\partial \xi}{\partial z}$.
- 4. Le champ électrique qui apparaı̂t s'écrit: $\vec{E} = E(z,t)\vec{u}_z$. Connaissant $\rho(z,t)$, déterminer E(z,t).

Plasma en z à l'instant t

5. On s'intéresse alors au mouvement d'un électron en z, t (cf: dans la tranche considérée) dont la position, par rapport à sa position d'équilibre en z, est repérée par $\xi(z,t)$. Cet électron est soumis au champ $\vec{E} = E(z,t)\vec{u}_z$. Sous l'action des forces de rappel vers sa position d'équilibre dues au champ apparu, il se met à osciller à la pulsation plasma ω_P . Déterminer l'expression de ω_P . On considère (même si l'on ne se rend pas compte de la signification de cette approximation) que $\frac{d^2\xi}{dt^2} \approx \frac{\partial^2\xi}{\partial t^2}$.

B. Pulsation cyclotron

On étudie le mouvement d'un électron de masse m et de charge -e dans un champ magnétique uniforme et permanent $\vec{B_0} = B_0 \vec{u_z}$ (on supposera $B_0 > 0$). L'électron se trouve au départ au point O, origine des axes. La vitesse initiale de l'électron est $\vec{v_0} = v_{x,0} \vec{u_x} + v_{z,0} \vec{u_z}$. La vitesse de l'électron est $\vec{v}(t)$.

6. Appliquer le principe fondamental de la dynamique à l'électron et en déduire que l'on peut écrire $\frac{d\vec{v}}{dt} = \vec{\omega_C} \wedge \vec{v} \quad \text{où} \quad \vec{\omega_C} = \omega_C \vec{u}_z \quad \text{désigne la pulsation cyclotron dont on donnera l'expression.}$

- 7. La relation précédente est caractéristique de la dérivée d'un vecteur de norme constante donc d'un « vecteur tournant ». Démontrer, en partant de cette relation vectorielle que $\|\vec{v}\|$ est effectivement une constante. On pourra multiplier la relation par \vec{v} .
- 8. Projeter la relation sur trois axes. On utilisera la notation ω_C .
- 9. Pour résoudre, on introduit le complexe noté ici $r^* = x + iy$ avec $v^* = \frac{dr^*}{dt} = v_x + iv_y$. Déduire des 3 équations précédentes l'équation différentielle vérifiée par $v^*(t)$. Résoudre. On introduira $v^*_0 = v^*(t=0)$ dont on donnera l'expression en fonction des données.
- 10. En déduire par intégration $r^*(t)$ puis x(t) , y(t) , z(t) .
- 11. Que vaut le rayon du cercle décrit en projection dans le plan xOy.
- 12. Faire un schéma représentant soigneusement l'hélice décrite par l'électron en y indiquant $\vec{B_0}$, $\vec{w_C}$, en y portant l'origine et en y indiquant le sens de parcours de l'électron sur sa trajectoire. S'agit-il d'une hélice droite ou gauche?

C. Polarisation

- 13.On considère l'onde $\underline{\vec{E}} = \underline{E} \times (\vec{u}_x + i\vec{u}_y)$ avec $\underline{E} = E_0 \exp i(\omega t kz)$. L'écrire en réel. Montrer qu'il s'agit d'une onde polarisée circulairement. S'agit-il d'une onde polarisée à droite ou à gauche ? Justifier.
- 14.On considère l'onde $\underline{\vec{E}} = \underline{E} \times (\vec{u}_x i \vec{u}_y)$ avec $\underline{E} = E_0 \exp i (\omega t k z)$. L'écrire en réel. Montrer qu'il s'agit d'une onde polarisée circulairement. S'agit-il d'une onde polarisée à droite ou à gauche ? Justifier.
- 15.On considère l'onde polarisée rectilignement selon \vec{u}_x : $\vec{\underline{E}} = E_0 \exp i(\omega t kz)\vec{u}_x$. Montrer que cette onde se décompose en une onde polarisée circulairement à droite et une onde polarisée circulairement à gauche. Donner les expressions en complexe de ces deux ondes circulaires.

II. Deuxième partie: le problème

On se propose d'étudier la propagation d'une onde électromagnétique dans un plasma peu dense en tenant compte de la présence d'un champ magnétique uniforme et permanent $\vec{B_0} = B_0 \vec{u_z}$ (penser par exemple au champ magnétique terrestre présent au voisinage de la terre). On désigne le champ de l'onde dans le plasma par \vec{E} et le champ magnétique de l'onde dans le plasma par \vec{B} . La densité volumique des électrons est désignée par N.

Pour le plasma considéré, on supposera $\omega_P > \omega_C \sqrt{2}$. Avec $w_c = \frac{e B_0}{m}$

A. Recherche de l'équation de dispersion

- 16. Écrire l'équation du mouvement d'un électron du plasma en faisant intervenir \vec{E} , \vec{B} , \vec{B}_0 . Rappeler pourquoi, en justifiant rapidement, on n'a pas à prendre en considération le champ magnétique \vec{B} de l'onde.
- 17. En déduire l'équation différentielle vérifiée par la densité de courant \vec{j} dans le plasma en fonction de \vec{E} , \vec{u}_z , des pulsations plasma ω_P et cyclotron ω_C , et de ε_0 .

On envisage désormais le cas particulier d'une OPPM se propageant dans la direction de \vec{E}_0 selon les z croissants. On écrit donc cette onde sous la forme $\vec{E} = \vec{E}_0 \exp i (\omega t - k z)$ avec $\vec{k} = k \vec{u}_z$.

- 18. Réécrire l'équation précédente vérifiée par le complexe associé \vec{j} en tenant compte de cette restriction. En déduire la relation(1) entre \vec{j} et $\underline{\vec{E}}$.
- 19.On veut démontrer que $\rho=0$ (on a vu que les oscillations de plasma en cas de perturbation avec $\rho\neq 0$ avaient pour pulsation ω_P . Si le régime forcé a lieu à une pulsation différente de ω_P , on va montrer que $\rho=0$). En utilisant l'équation de conservation de la charge $div(\vec{j})=-\frac{\partial \rho}{\partial t}$ et l'équation de Maxwell-Gauss, en faisant les simplifications dues à l'écriture de l'onde particulière envisagée, démontrer que $\rho=0$. On sera amené à utiliser aussi la relation liant $\vec{\underline{E}}$ et $\vec{\underline{j}}$ obtenue plus haut.
- 20. Écrire les 4 équations de Maxwell vérifiées alors par $\vec{\underline{E}}$ et $\vec{\underline{B}}$ dans le cas de l'onde envisagée. En utilisant deux de ces équations, obtenir une relation(2) entre $\vec{\underline{I}}$ et $\vec{\underline{E}}$.

B. OPPMC

- 1) OPPMCD
- 21. Établir l'équation de dispersion pour une onde $\vec{\underline{E}} = E_0 \times (\vec{u}_x + i\vec{u}_y) \exp i(\omega t kz)$ (on constatera que $\vec{\underline{E}}$ peut finalement se simplifier lors du calcul réalisé et que l'on obtient alors l'équation de dispersion).
- 22. Écrire $k = k_D$ sous la forme $k_D = \frac{\omega}{c} \sqrt{1 g(\frac{\omega_P}{\omega}, \frac{\omega_C}{\omega})}$ où g désigne une fonction de $\frac{\omega_P}{\omega}$ et de $\frac{\omega_C}{\omega}$. Représenter graphiquement k_D en fonction de ω .
- 23.En déduire que pour une onde circulaire droite la propagation n'est possible que pour des fréquences supérieures à une fréquence f_D dont on donnera l'expression.
- 24. Donner l'expression de la vitesse de phase de l'onde progressive v_D en fonction de c, $\frac{\omega_P}{\omega}$ et de $\frac{\omega_C}{\omega}$.
- 2) OPPMCG
- 25. Établir l'équation de dispersion pour une onde $\underline{\vec{E}} = E_0 \times (\vec{u}_x i\vec{u}_y) \exp i(\omega t kz)$.
- 26. Représenter graphiquement $k = k_G$ en fonction de ω .
- 27.En déduire que pour une onde circulaire gauche la propagation n'est possible que pour des fréquences supérieures à $f_{\it G}$ ou inférieures à $f_{\it C}$.
- 28. Donner l'expression de la vitesse de phase de l'onde progressive v_G .
- 3) Récapitulatif des résultats
- 29. Vérifier que $f_C < f_D < f_G$.

30. Faire un tableau récapitulatif indiquant le(s) type(s) de polarisation circulaire pouvant se propager ou non dans le plasma selon les fréquences.

C. OPPMR

On se place dans le domaine de fréquence permettant la propagation des deux types d'ondes circulaires. On envisage la propagation d'une onde polarisée rectilignement $\vec{E} = E_0 \exp i(\omega t - k z) \vec{u}_x$. On se propose de montrer, en s'appuyant sur les résultats précédents concernant les ondes circulaires, que l'onde reste polarisée rectilignement mais que la direction de polarisation tourne d'un angle proportionnel à la distance parcourue notée z. Cet angle est aussi proportionnel au champ magnétique B_0 (effet FARADAY).

On rappelle qu'une onde polarisée rectilignement OPPMR peut être décrite comme la somme de deux ondes circulaires OPPMCD et OPPMCG.

- 31. Préciser le domaine de fréquence permettant à une onde rectiligne de se propager selon z dans le plasma en présence de \vec{B}_0 .
- 32. Comparer k_D à k_G . De même comparer v_D à v_G .

On propose dans la suite une résolution graphique et une résolution par calcul du problème.

33. Résolution graphique:

- Représenter les vecteurs \vec{E} pour l'OPPMR, l'OPPMCD, l'OPPMCG en z=0 pour t=0 .
- Représenter les vecteurs \vec{E} pour l'OPPMCD, l'OPPMCG en z>0 pour t>0 . Vérifier que l'OPPMCG a tourné davantage.
- En déduire le \vec{E}_{TOTAL} et vérifier que la polarisation de l'onde reste rectiligne. Déterminer sur la figure l'angle, en fonction de k_D , k_G et z, dont la direction de polarisation a tourné. Tourne t-elle dans le sens direct (vers la gauche) ou dans le sens indirect ?

34. Résolution par calcul:

- Écrire $\vec{E}_{\mathit{OPPMCD}}(z,t)$ et $\vec{E}_{\mathit{OPPMCG}}(z,t)$.
- En déduire $\vec{E}_{TOTAL}(z,t)$. Vérifier qu'il s'agit effectivement d'une OPPMR. Déterminer l'angle dont a tourné la direction de polarisation.

Réponses

1) an depart (equilibra):
$$dV = 5 dz$$

ici (partiurbation): $dV' = 5 \left(z_1 dz_2 + 5(z_2 + dz_3, t) - z_2 - 5(z_3, t)\right)$

$$= 5 \left(dz_2 + 5(z_2 + dz_3, t) - 5(z_3, t)\right)$$

$$= 5 \left(dz_2 + \frac{35}{3z_2} dz_3\right)$$

$$= 5 dz_3 \left(1 + \frac{35}{3z_2}\right)$$

$$dV' = dV \left(1 + \frac{35}{3z_3}\right)$$

$$N^{-} = N \frac{dV}{dV'}$$

$$N_{(3,t)}^{-} = N \frac{1}{1 + \frac{35}{52}}$$

$$N_{(3,t)}^{-} = N (1 - \frac{32}{52})$$

La derroite volumique des charges négatives est donc:

$$\begin{pmatrix} C^{-} &=& N^{-} \times (-\epsilon) \\ \begin{pmatrix} C^{-} & & \\ & & \end{pmatrix} &=& -N \cdot \epsilon \cdot \left(1 - \frac{\partial S}{\partial S}\right) \end{pmatrix}$$

3) La denoité volunique des charges positives nede inchargée malgré la porturbation

$$P(z,t) = Ne$$

Le denoité volumique de charge est donc

$$P(z,t) = P(z,t) + P(z,t)$$

$$P(z,t) = Ne \frac{\partial z}{\partial z}$$

4) Pour détenir
$$\vec{E}(z,t)$$
 on utilise l'équation de Maxwell-gauss div $\vec{E}'=\frac{C}{E_0}$ avec $\vec{E}=E(z,t)$ $\vec{u_z}$

$$\frac{\partial E}{\partial x} = \frac{1}{E} \frac{\partial E}{\partial x}$$

En integrant, à t constant, on obtient

$$E(3,t) = \frac{Ne}{50} S(3,t) + f(t)$$

A l'aquilibre, on avait \$ =0 et E =0

Done finalement:
$$\overline{E(3,t)} = \frac{Ne}{E_0} \frac{C(2,t)}{U_2^2}$$

on appique le principe fondamental à l'élection

$$\overrightarrow{F_E} = m \overrightarrow{a}$$

$$-e\overrightarrow{E} = m \overrightarrow{dt}$$

$$-\frac{Ne^2}{\xi_c} \quad \frac{3(s,t)}{\xi_c} = m \quad \frac{d^2\xi}{dt^2}(s,t)$$

$$\frac{d^{2}\S(3,t)}{dt^{2}} + \frac{Ne^{2}}{m \varepsilon_{0}} \S(3,t) = 0$$

qu'on assimile à

$$\frac{\partial^2 \xi(3nt)}{\partial t^2} + \frac{Ne^2}{m \epsilon_0} \xi(3nt) = 0$$

$$\omega_p^2$$

on peut donc prévoir que <u>3</u>(3,t) varie en exp i wpt

Wec
$$\omega_p = \sqrt{\frac{Ne^2}{ME}}$$

brincipe fondamental

avlec

$$\overrightarrow{wc} = \underbrace{e^{B_o}}_{m}$$

(vecteir "townant" done de module constant)

$$-\omega_{c} v_{y} = \frac{dv_{x}}{dt}$$
 (1)

$$\omega_c v_z = \frac{dv_y}{dt}$$
 (2)

$$O = \frac{dN_2}{dr} \qquad (3)$$

2) On multiple (2) por i et on additionne avec (1)

$$\frac{d}{dt}(\nabla_x + i \nabla_y) = -\omega_c \nabla_y + i \omega_c \nabla_x$$

$$= i^2 \omega_c \nabla_y + i \omega_c \nabla_x$$

$$= i\omega_c (\nabla_z + i \nabla_y)$$

$$\frac{1}{dt} v^* = i\omega_c v^*$$

L'equation conacteristique est:

donc

aute
$$v_0^* = v_{0x} + i v_{0y}^*$$
 $v_0^* = v_{0x}$
 $(c'sot ici mn red)$

AD) On integre $v^*(t) = v_0^* = iw_0 t$
 $v_0^* = iw_0 t$
 $v_0^* = v_0 t$
 $v_0^* = iw_0 t$
 $v_0^* = v_0 t$
 v_0

129

(dans le sens de B' pour une charge négative)

L'hélice est une hélice à droite.

13)
$$\overrightarrow{E} = E_0 \exp i(\omega t - kz_0) (\overrightarrow{uz} + i \overrightarrow{uz})$$

$$\overrightarrow{E} = E_0 \cos (\omega t - kz_0) (\overrightarrow{uz} - E_0 \sin (\omega t - kz_0) \overrightarrow{uz}$$

$$= E_z \qquad \overrightarrow{uz} + E_z \qquad \overrightarrow{uz}$$

 \rightarrow H s'agit d'une onde <u>aveulaire</u> pusque: $E_{\infty}^2 + E_{\gamma}^2 = E_{0}^2$

-> on représente E en deux instants séparés d'un quart de période:

the s'agit donc d'une orde circulaire

folarisée à droite

(sens indirect)

14)
$$\vec{E} = E_0 \exp i(\omega t - k_{\vec{x}}) \quad (\vec{u}_{\vec{x}} - i \vec{u}_{\vec{y}})$$

$$\vec{E} = E_0 \exp i(\omega t - k_{\vec{x}}) \quad \vec{u}_{\vec{x}} + E_0 \quad since (\omega t - k_{\vec{x}}) \quad \vec{u}_{\vec{y}}$$
C'est une orde circulaire $(E_{x^2} + E_{y^2} = cste)$

polarisée à paucle

$$\vec{E} = E_0 \exp i(\omega t - k v_g) \vec{u}_{x}$$

$$s'e crit : \qquad = E_0 \exp i(\omega t - k v_g) \frac{1}{2} \left[(\vec{u}_{x} + \iota \vec{u}_{y}) + (\vec{u}_{x} - \iota \vec{u}_{y}) \right]$$

$$\frac{E}{OPPMR} = \frac{E}{2} \left(\frac{M_{\chi} + \lambda M_{\chi}}{M_{\chi}} \right) + \frac{E}{2} \left(\frac{M_{\chi} - \lambda M_{\chi}}{M_{\chi}} \right)$$

$$OPPMCD OPPMCG$$

15) Mouvement d'un élection:

Si on admet que dans la plasma, on a à peu près IIBII NETI comme dans le vide, alors

ce rapport est beaucoup plus jetit que 1 car les vitesses sont oupresées non relativistes.

$$\frac{Ne^{2}E}{m} + \omega_{c}\overline{\omega_{s}}\wedge \overrightarrow{s} = \frac{d\overrightarrow{s}}{dt}$$

$$\varepsilon\omega_{p}^{2}E + \omega_{c}\overline{\omega_{s}}\wedge \overrightarrow{s} = \frac{d\overrightarrow{s}}{dt}$$

-> l'équation de concernation de la dange

- l'équation de Maxwell - gauss

$$dw \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\vec{u}_3 \vec{E} = i \frac{\rho}{\epsilon_0} / \rho$$

D'équation reliant
$$\overrightarrow{A}$$
 et \overrightarrow{E} (pao de $\overrightarrow{A} = 8$ \overrightarrow{E} ini)

 $\mathcal{E} \omega_p^2 \overrightarrow{E} + \omega_c \overrightarrow{u_z} \wedge_{\overrightarrow{A}} = \lambda \omega_{\overrightarrow{A}}^2$
on multiplie par $\overrightarrow{u_z}$ pour faire apparaître $\overrightarrow{u_z}$. \overrightarrow{A} et $\overrightarrow{u_z}$ \overrightarrow{E}

$$\varepsilon_0 \omega_p^2 \cdot i \frac{\rho}{\varepsilon_0 k} + 0 = \iota \omega_1 \omega_1 \frac{\rho}{k}$$

ce qui donne :

Si w + wp , on auro ben e=0

M.G. div $\vec{E} = 0$ done $\vec{E} = \vec{E} = 0$ (onder M. flux div $\vec{B} = 0$ done $\vec{E} = \vec{E} = 0$ ($\vec{E} = 0$)

M.F. not $\vec{E} = -\frac{\delta \vec{B}}{\delta E}$ -ith $\vec{A} = -i\omega \vec{B}$ M.A. not $\vec{B} = \mu_0 \vec{A} + \frac{1}{2} \frac{\delta \vec{E}}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\delta \vec{E}}{\delta E}$ On reporte M.F.

-ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ On reporte M.F.

-ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$ -ith $\vec{A} = \mu_0 \vec{A} + \frac{1}{2} \frac{\omega}{\delta E}$

$$\left(\frac{\omega^2}{c^2} - k^2\right) \stackrel{=}{=} i \mu_0 \omega \stackrel{\longrightarrow}{\cancel{4}}$$

de (2), on tire

$$\vec{A} = \frac{\left(\frac{\omega^2 - k^2}{ct} - k^2\right)}{i \mu_0 \omega} \left(\vec{u}_x + i \vec{u}_y\right) =$$

on reporte dans (1)

$$\mathbb{E} \omega_{p}^{2} \stackrel{=}{=} + \omega_{e} \frac{\mathcal{A}_{g}^{2} \wedge \frac{(\omega_{e}^{2} - k^{2})}{i\mu_{o}\omega}}{(\omega_{e}^{2} + i\omega_{g}^{2})} \stackrel{=}{=} i\omega \frac{(\omega_{e}^{2} - k^{2})}{i\mu_{o}\omega} \stackrel$$

on peut donc simplifier par E et on obtient l'équation de dispersion:

$$\frac{\omega_{p}^{2}}{c^{2}} - \frac{1}{\mu_{o}} \frac{\omega_{c}}{\omega} \left(\frac{\omega^{2}}{c^{2}} - k^{2} \right) = \frac{1}{\mu_{o}} \left(\frac{\omega^{2}}{c^{2}} - k^{2} \right)$$

$$\frac{\omega_{p}^{2}}{c^{2}} - \left(\frac{\omega^{2}}{c^{2}} - k^{2} \right) \left(\frac{\omega_{c}}{\omega} + 1 \right) = 0$$

$$\frac{\omega^{2}}{c^{2}} - k^{2} = \frac{\omega_{p}^{2}/c^{2}}{1 + \omega_{c}/\omega}$$

$$k_{D}^{2} = \frac{\omega^{2}}{c^{2}} \left(1 - \frac{\omega_{p}^{2}/\omega^{2}}{1 + \omega_{c}/\omega} \right)$$

23) La propagation n'est possible que tour
$$f > f_D = \frac{f_c}{2} \left(\sqrt{1 + \left(\frac{2f_D}{f_c} \right)^2} - 1 \right)$$

25) On considere l'OPPMCG:
$$\vec{E} = \vec{E} (\vec{u}_{k} - i\vec{u}_{k})$$

On reprend le calcul fait en 21).

Avec cette fois $\vec{u}_{k} \wedge (\vec{u}_{k} - i\vec{u}_{k})$
 $= \vec{u}_{k} + i\vec{u}_{k}$
 $= i(\vec{u}_{k} - i\vec{u}_{k})$

Ce qui revient dans la démonstration précédente à renfacer

Done
$$K_{6}^{2} = \frac{\omega^{2}}{c^{2}} \left(1 - \frac{\omega_{p}^{2}/\omega^{2}}{1 - \omega_{c}/\omega} \right)$$

(on verifiera faalement que WG > WC)

27) La propagation est possible pour:

$$f < f_c$$

$$f > f_c = \frac{f_c}{2} \left(\sqrt{1 + \left(\frac{2 + f_p}{f_c} \right)^2} + 1 \right)$$

28)

$$v_{G} = \frac{c}{\sqrt{1 - \frac{(\omega_{P}/\omega)^{2}}{1 - (\omega_{e}/\omega)}}}$$

29) FG>FD (evident) fg > fc (évrident)

on doit verifier que

$$\frac{f_c}{2} \left(\sqrt{1 + \left(\frac{2f_p}{f_c} \right)^2} - 1 \right) > f_c$$

$$\sqrt{1+(\frac{2fp}{f_c})^2}$$
 > 3

$$\frac{\left(\frac{f_{P}^{2}}{f_{c}}\right)^{2} > 2}{f_{P} > f_{c}\sqrt{2}}$$

C'est l'inégalité proposé par l'énoncé.

30) Récapitulatif des types de polarisation circulaire pouvent se propager

fréquence	f < f _c	f _c < f < f _s	f ₂ < f < f ₆	f ₆ < f
OPPMCD	NoN	NoN	001	001
OPPMCG	OUI	Non	NoN	OUI
				PROPAGATION DES

CIRCULAIRES

31) Puroque l'OPPMR se décompse en deux ondes availaires. Il faut se trouver dans le domaine où les deux ondes analaires OPPMCD et OPPMCG jeuvent se propager.

+ > f_G

$$\overrightarrow{E}_{TOTAL} = E_0 \cos\left(\frac{k_D - k_G}{2}\right) z \cos\left(\omega t - \frac{(k_D + k_G)z}{2}\right) \overrightarrow{u_z}$$

$$+ E_0 \sin\left(\frac{k_D - k_G}{2}\right) z \cos\left(\omega t - \frac{(k_D + k_G)z}{2}\right) \overrightarrow{u_z}$$

Il s'agit bien d'une OPPMR inclinée de 8 par rapport à

Remarque:

Pour un plasma peu dense:
$$k_D \approx k_G \approx k_{VIDE} = \frac{\omega}{C}$$

done, en favoant un D.L.

$$k_{D} \approx \frac{\omega}{c} \left(1 - \frac{1}{2} \frac{\left(\omega_{P/\omega}\right)^{2}}{1 + \omega_{c/\omega}}\right)$$

$$k_{G} \approx \frac{\omega}{c} \left(1 - \frac{1}{2} \frac{\left(\omega_{P/\omega}\right)^{2}}{1 - \omega_{c/\omega}}\right)$$

$$k_{D} - k_{G} = \frac{1}{2} \frac{\omega}{C} \left(\frac{\omega_{P}}{\omega}\right)^{2} \left[\frac{1}{1 - \omega_{c}|_{\omega}} - \frac{\Lambda}{1 + \omega_{c}|_{\omega}} \right]$$

$$= \frac{1}{2} \frac{\omega}{C} \left(\frac{\omega_{P}}{\omega}\right)^{2} \frac{2\omega_{c}|_{\omega}}{1 - \left(\omega_{c}|_{\omega}\right)^{2}}$$

$$\theta = \frac{\omega_p^2 \, \omega_c}{\omega^2 - \omega_c^2} \, \frac{z_r}{2c}$$

A haute frequence W>> Wc

$$\theta \simeq \omega_{c} \frac{\omega_{p}^{2}}{\omega^{2}} \frac{3}{2c}$$

$$\uparrow_{\underbrace{eB_{o}}{m}}$$

O est proportional à z et à Bo