Х24 — Физика дождевых капель

А1^{1.00} Найдите изменение свободной энергии водяного пара, если из него образовать каплю радиуса r. Выразите ответ через r, σ , φ , R, T, ρ_L , μ .

За счет энергии поверхностного натяжения свободная энергия увеличится на

$$\Delta G_{surf} = \sigma A = 4\pi \sigma r^2$$
.

С другой стороны, при переходе пара в жидкое состояние его свободная энергия уменьшается на

$$\Delta G_{v} = vRT \ln \varphi$$

где количество вещества в капле

$$v = \frac{4\pi\rho_L r^3}{3\mu}.$$

Здесь мы использовали формулу для изменения свободной энергии пара и тот факт, что для насыщенного пара свободная энергия равна свободной энергии жидкости.

Ответ:

$$\Delta G = 4\pi\sigma r^2 - \frac{4\pi\rho_L}{3\mu}r^3RT\ln\varphi$$

А2^{0.80} Найдите критическое значение радиуса капли r_c , при котором ΔG максимально, а также соответствующее значение Δ G_c . Выразите ответ через σ , φ , R, T, ρ_L , μ . Найдите численное значение r_c при $\varphi = 1.01$.

Для нахождения максимума найдем производную

$$\frac{\partial \Delta G}{\partial r} = 8\pi\sigma r - \frac{4\pi\rho_L}{\mu}r^2RT\ln\varphi = 0.$$

Отсюда

$$r_c = \frac{2\sigma\mu}{\rho_L RT \ln \varphi}.$$

Подставляя в формулу для ΔG , получим

$$\Delta G_c = \frac{16\pi}{3} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi} = \frac{4\pi r_c^2 \sigma}{3}.$$

Ответ:

$$r_c = \frac{2\sigma\mu}{\rho_L RT \ln \varphi} = 1.15 \cdot 10^{-7} \text{M}, \quad \Delta G_c = \frac{16\pi}{3} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}.$$

АЗ^{0.70} Рассмотрим каплю критического радиуса r_c . Определите время τ , за которое количество молекул в ней увеличится на g. Выразите ответ через r_c , g, p_s , m, k, T, φ . Считайте, что в процессе роста радиус капли не меняется, испарением молекул из капли можно пренебречь. Известно, что на площадь dS поверхности за время dt попадает

$$dN = dtdS \frac{p_{\nu}}{\sqrt{2\pi mkT}}$$

молекул. Здесь p_{v} - давление пара, m - масса молекул, T - температура газа.

страница 1 из 5 ∞

На всю площадь поверхности капли за время dt попадает

$$dN = 4\pi r_c^2 \frac{p_v}{\sqrt{2\pi mkT}} = 4\pi r_c^2 \frac{p_s \varphi}{\sqrt{2\pi mkT}}$$

молекул. Здесь использовано соотношение $p_{\nu}=p_{s}\phi$. Поскольку изменением радиуса можно пренебречь, коэффициент пропорциональности постоянен, а значит искомое время

$$\tau = g \left(4\pi r_c^2 \frac{p_s \varphi}{\sqrt{2\pi m k T}} \right)^{-1}.$$

Ответ:

$$\tau = \frac{g\sqrt{2\pi mkT}}{4\pi r_c^2 p_s \varphi}.$$

А4^{0.60} Найдите количество капель J, которые образуются в единицу времени в единице объема перенасыщенного водяного пара. Выразите ответ через σ , φ , p_s , r_c , T, g.

По условию за время au все зародыши в объеме превращаются в капли, поэтому

$$J = \frac{n_c}{\tau} = \frac{4\pi r_c^2 p_s \varphi}{g\sqrt{2\pi mkT}} n \exp\left(-\frac{16\pi}{3kT} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}\right).$$

Выразим концентрацию пара через давление:

$$n=\frac{p_{v}}{kT}=\frac{p_{s}\varphi}{kT},$$

получим

Ответ:

$$J = \frac{4\pi r_c^2}{\sqrt{2\pi mkT}} \frac{p_s^2 \varphi^2}{kT} \frac{1}{g} \exp\left(-\frac{16\pi}{3kT} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}\right) = \frac{4\pi r_c^2}{\sqrt{2\pi mkT}} \frac{p_s^2 \varphi^2}{kT} \frac{1}{g} \exp\left(-\frac{4\pi r_c^2 \sigma}{3kT}\right).$$

А5^{0.90} Из результатов предыдущего пункта следует, что скорость образования капель очень сильно зависит от коэффициента перенасыщения пара. Определите численно значение коэффициента перенасыщения пара φ , при котором при температуре T=283К в 1см³ воздуха рождается одна капля в секунду. Считайте, что g=100. Остальные численные данные приведены в начале задачи.

Подставим в результат предыдущего пункта выражение для r_c :

$$J = \frac{4\pi p_s^2}{\sqrt{2\pi mkT}} \frac{4\sigma^2 \mu^2}{gkT \rho_L^2 R^2 T^2} \frac{\varphi^2}{\ln^2 \varphi} \exp\left(-\frac{16\pi}{3kT} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2 \ln^2 \varphi}\right) = J_0 \frac{\varphi^2}{\ln^2 \varphi} \exp\left(-\frac{A}{\ln^2 \varphi}\right),$$

где

$$J_0 = \frac{16\pi p_s^2}{\sqrt{2\pi mkT}} \frac{\sigma^2 \mu^2}{gkT\rho_L^2 R^2 T^2} = 2.37 \cdot 10^{30} \text{m}^{-3} \cdot \text{c}^{-1},$$

$$A = \frac{16\pi}{3kT} \frac{\sigma^3 \mu^2}{\rho_L^2 R^2 T^2} = 106.$$

Нам нужно получить значение $J=10^6 {\rm m}^{-3}\cdot{\rm c}^{-1}$. Численно находим $\phi\approx3.86$. Приведем также таблицу значений J при близких значениях ϕ , видим что рост происходить очень быстро.

Ответ:

$$\varphi = 3.86$$

φ	$J, \mathbf{M}^{-3} \cdot \mathbf{c}^{-1}$
3.5	$8.4\cdot 10^1$
3.6	$1.61\cdot 10^2$
3.7	$2.34\cdot 10^4$
3.8	$2.79\cdot 10^5$
3.9	$2.68\cdot 10^6$

В1^{0.80} Для насыщенного пара, находящегося в равновесии с жидкостью, выразите производную давления по температуре dp_s/dT через p_s , L, R, T, μ . Используя полученный результат, найдите относительное изменение плотности насыщенного водяного пара $\Delta \rho_s/\rho_s$ при малом изменении температуры ΔT . Выразите ответ через ΔT , T, L, μ , R. Вы можете использовать связь малых изменений давления, плотности и температуры идеального газа

$$\frac{\Delta p_s}{p_s} = \frac{\Delta \rho_s}{\rho_s} + \frac{\Delta T}{T}.$$

Зависимость давления насыщенного пара от температуры определяется уравнением Клапейрона-Клаузиуса (считаем, что объем пара много больше соответствующего объема воды при той же температуры):

$$\frac{dp_s}{dT} = \frac{L\mu p}{RT^2}.$$

Используя соотношение из условия, найдем

$$\frac{\Delta \rho_s}{\rho_s} = \frac{\Delta p_s}{p_s} - \frac{\Delta T}{T} = \frac{\lambda \mu p}{RT^2} \Delta T - \frac{\Delta T}{T} = \frac{\Delta T}{T} \left(\frac{\mu L}{RT} - 1 \right).$$

Ответ:

$$\frac{\Delta \rho_{\rm S}}{\rho_{\rm S}} = \frac{\Delta T}{T} \left(\frac{\mu L}{RT} - 1 \right).$$

 $\mathbf{B2^{0.20}}$ Выразите dQ/dt через dM/dt и L.

Поскольку тепло выделяется только за счет конденсации воды dQ = LdM

Ответ:

$$\frac{dQ}{dt} = L\frac{dM}{dt}$$

В3^{0.30} Используя результат предыдущего пункта и уравнение теплопроводности, выразите разность температур капли и атмосферы, $T_r - T$, через dM/dt, а также r, L, K.

Из уравнения теплопроводности

$$T_r - T = \frac{1}{4\pi r K} \frac{dQ}{dt} = \frac{L}{4\pi r K} \frac{dM}{dt}.$$

Ответ:

$$T_r - T = \frac{L}{4\pi r K} \frac{dM}{dt}.$$

с Страница 3 из 5 ∞

В4^{0.30} Будем считать, что вблизи поверхности капли плотность водяного пара равна плотности насыщенного пара при температуре капли. Считая разности температур и плотностей малыми и используя результаты B1, B3 выразите отношение $(\rho_r - \rho_s)/\rho_s$ (ρ_r - давление пара вблизи поверхности капли) через L, r, K, μ , R, T и dM/dt.

Из результата В1

$$\frac{\rho_r - \rho_s}{\rho_s} = \frac{T_r - T}{T} \left(\frac{\mu L}{RT} - 1 \right).$$

Подставляя в него выражение для разности температур, получим

Ответ:

$$\frac{\rho_r-\rho_s}{\rho_s}=\left(\frac{\mu L}{RT}-1\right)\frac{L}{4\pi r KT}\frac{dM}{dt}.$$

В5^{0.30} Используя уравнение диффузии, выразите отношение $(\rho_r - \rho_v)/\rho_s$ через $dM/dt, r, D, \rho_s$.

Из уравнения диффузии

$$\rho_{v} - \rho_{r} = \frac{1}{4\pi r D} \frac{dM}{dt},$$

Ответ:

$$\frac{\rho_r - \rho_v}{\rho_s} = -\frac{1}{4\pi r \rho_s D} \frac{dM}{dt}$$

Вычитая друг из друга выражения из двух последних пунктов, получим

$$\frac{\rho_{v}-\rho_{s}}{\rho_{s}}=\varphi-1=\frac{1}{4\pi r}\left(\left(\frac{\mu L}{RT}-1\right)\frac{L}{KT}+\frac{1}{\rho_{s}D}\right)\frac{dM}{dt}.$$

Также выразим плотность насыщенного пара через давление:

$$\rho_s = \frac{\mu p_s}{RT},$$

окончательно получим

Ответ:

$$\frac{dM}{dt} = \frac{4\pi r(\varphi - 1)}{\left(\frac{\mu L}{RT} - 1\right)\frac{L}{KT} + \frac{RT}{\mu p_s D}}$$

В7^{0.50} Скорость увеличения радиуса капли имеет вид

$$\frac{dr}{dt} = \frac{\xi}{r^k}.$$

Определите k и ξ , выразите ответ через φ , ρ_L , μ , R, T, D, p_s , L, K.

Масса капли связана с радиусом соотношением

$$M=\frac{4\pi}{3}\rho_L r^3,$$

поэтому

$$\frac{dM}{dt} = 4\pi \rho_L r^2 \frac{dr}{dt},$$

а значит

$$\frac{dr}{dt} = \frac{1}{4\pi\rho_L r^2} \frac{dM}{dt} = \frac{1}{r\rho_L} \frac{\varphi - 1}{\left(\frac{\mu L}{RT} - 1\right) \frac{L}{KT} + \frac{RT}{\mu p_s D}}$$

Ответ:

$$k=1, \quad \xi=rac{\varphi-1}{\left(rac{\mu L}{RT}-1
ight)rac{L}{KT}+rac{RT}{\mu p_s D}}rac{1}{
ho_L}.$$

B8^{0.50} Найдите зависимость радиуса капли от времени. Начальный радиус капли равен r_0 . Выразите ответ через r_0 , ξ , t.

Проинтегрируем уравнение

$$r\frac{dr}{dt}=\xi,$$

получим

$$\frac{r^2}{2} - \frac{r_0^2}{2} = \xi t,$$

Ответ:

$$r(t) = \sqrt{r_0^2 + 2\xi t}.$$

В9^{0.50} Пусть начальный радиус капли равен $r_0=0.7$ мкм. Найдите численное значение времени, за которое она вырастет до размера $r_1=10$ мкм при коэффициенте перенасыщения $\varphi=1.1$. Остальные численные значения приведены в начале этой части.

Для параметров из условия

$$\xi = 9.04 \cdot 10^{-12} \text{m}^2 \cdot \text{c}^{-1},$$

тогда время

Ответ:

$$t = \frac{r_1^2 - r_0^2}{2\xi} = 5.50c.$$