Surgistra Laplaceove transf.

1) Množeuje varrijable konstantom f(t) on F(s)

$$f(t) \longrightarrow F(s) \qquad \text{aro}$$

$$\mathcal{L}(f(at)) = \int_{0}^{\infty} e^{-st} f(at) dt = \begin{vmatrix} at = u \\ adt = du \end{vmatrix} = \int_{0}^{\infty} e^{-st} f(u) \frac{1}{a} du$$

$$\mathcal{L}(f(at)) = \frac{1}{a} \int_{0}^{\infty} e^{-\frac{s}{a}u} f(u) du = \frac{1}{a} f(\frac{s}{a})$$

Priguseuje eat f(t) priguseuje od 1 Za a e R (ili a EC)

Z (e - t f(t)) = 7 (sta)

Priguseuje
$$e^{-at} f(t)$$
 priguseuje od f za $a \in \mathbb{R}$ (ili $a \in \mathbb{C}$)
$$\angle (e^{-at} f(t)) = \int_0^\infty e^{-st} e^{-at} f(t) dt = \int_0^\infty e^{-t} e^{-st} f(t) dt$$

 $\mathcal{L}\left(f(t-a)u(t-a)\right)=\int_{0}^{\infty}e^{-st}f(t-a)u(t-a)dt$ $0 = \int_{a}^{-st} f(t-a) dt = \left(\frac{u = t-a}{du = at} \right) = \int_{a}^{\infty} e^{-s(u+a)} f(u) du$

$$t = u$$

$$dt = du$$

$$= \int_{0}^{\infty} e^{\frac{u}{3}} f(u) \frac{1}{a} du$$

$$= \int_{0}^{\infty} e^{\frac{u}{3}} f(u) \frac{1}{a} du$$

RADIMO

$$=e^{-as}\int_{0}^{\infty}e^{-su}f(u)du - e^{-as}\cdot F(s)$$

a)
$$t^{n}e^{2t} = \frac{n!}{(s-2)^{n+1}}$$
, $t^{n} = \frac{n!}{s^{n+1}}$
 $e^{2t}f(t) = F(s+a)$

Primyer 2)

a) $t^{n}e^{2t} = e^{-t} + f(t) = \frac{1}{s+a}$
 $t^{n}e^{2t} = e^{-t}f(t) = F(s+a)$

Primyer 2)

 $t^{n}e^{2t} = e^{-t}f(t) = e^{-t}f(t) = F(s+a)$

Primyer 2)

 $t^{n}e^{2t} = e^{-t}f(t) = F(s+a)$

Primyer 2

 $t^{n}e^{2t}f(t) = F(s+a)$

Primyer 2

Primyer 1)

+(at) 0 − 1/a +(3/a)

b) $(t-2)^2 \mu(t-2)$ $t^2 - \frac{2}{53}$, $(t-2)^2 \mu(t-2)$ $e^{-25} \cdot \frac{2}{53}$ c) $(t-2)^2 e^{-t}$ $\frac{2}{(5+1)^3} - \frac{4}{(5+1)^2} + \frac{4}{(5+1)}$ (priguesci (a))

d)
$$(t-2)^2 \mu(t-2)e^{-t} = e^{-2s} \cdot \frac{2}{(s+1)^3}$$
 (priguécia (b))

Primier 3)

a) $3(t-3) \mu(t-3) = 0$. $3 \cdot \frac{e^{-3s}}{s^2}$

a) $3(t-3) \mu(t-3)$ $0 3 \cdot \frac{e^{-35}}{5^2}$

a)
$$3(t-3) \mu(t-3)$$
 $0 - 3 \cdot \frac{e^{-35}}{5^2}$
b) $5\mu(t-2) - 2\mu(t-3)$ $\mu(t-2) - e^{-25} \frac{1}{5}$
 $- 5e^{-25} \cdot \frac{1}{5} - 2e^{-35} \frac{1}{5}$

c) 3(+-1)3 m(+-1) 0- 3e3. 6

 $0 - 2e^{-5} \frac{1}{6^2} + 3 \cdot e^{-25} \cdot \frac{1}{5}$

d)(2++1) u(+-1) = 2tu (+-1) + u(+-1) = 2 (+,-1) u (+,-1) - 1 2 u (+-1) + u (+-1)

Gate funkcija

$$g_{[a,b]}(t)$$
 $g_{[a,b]}(t)$
 $g_{[a,b]}(t) = 0$
 $g_{[a,b]}(t) = \omega(t-a) - \omega(t-b)$
 $g_{[a,b]}(t) = \omega(t-a) - \omega(t-b)$

$$\mathcal{J}(g_{[a_{1}b]}(t)) \qquad g_{[a_{1}b]}(t) = u(t-a) - u(t-b)$$

$$g_{[a_{1}b]}(t) = u(t-a) - u(t-b) \quad e^{-as} \cdot \frac{1}{s} - e^{-bs} \cdot \frac{1}{s}$$
Primyer:
$$f(t) = \begin{cases}
3, & 0 < t < 2 \\
-1, & 2 < t < 4 \\
0, & t > 4
\end{cases}$$

$$f(t) = 3(u(t-o) - u(t-2)) - u(t-2) - u(t-2)$$

Primjer: f(t)= { sint, 0 \le t \le n}

o , inace

 $f(t) - 3u(t) - 3(t-2) - u(t-2) + \mu(t-4)$

f(t) = 3u(f) - 4(t-2)+u(+-4)

f(+) = sint · g[0,π](+) = sint (u(+) - u (+-π))

f(t) = sint. m(t) - sin (t-17) m(+-17)

 $0 - \frac{1}{s^2 + 1} + \frac{e^{-\sqrt{1}S}}{s^2 + 1}$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad f \text{ original }, \quad ft'$$

$$f(t) \circ F(s), \quad ft'$$

$$f(t) \circ F(s$$

$$\mathcal{L}(f'(t)) = \int_{0}^{\infty} e^{-st} f'(t) dt = \begin{vmatrix} u - e^{-st} & \rightarrow du^{-s} - se^{-st} dt \\ dv = f(t) dt & \rightarrow v = f(t) \end{vmatrix}_{0}^{\infty}$$

$$\mathcal{L}(f'(t)) = f(t) e^{-st} \int_{0}^{\infty} - \int_{0}^{\infty} f(t) e^{-st} (-s) dt$$

$$\lim_{t \to \infty} f(t) e^{-st} = 0 \quad \text{foriginal} \Rightarrow \text{forest f(t)} dt$$

$$\lim_{t \to \infty} f(t) e^{-st} = 0 \quad \text{forest f(t)} e^{-st} = 0$$

$$\text{Value of the prior of the$$

$$f(f(h) = 0 - f(0) + s \int_{0}^{\infty} f(h)e^{-sh} dt$$

$$f''(t) \longrightarrow S(SF(S) - f(0)) - f'(0) = S^2 F(S) - Sf(0) - f'(0)$$

D. 3!

Primyer:
$$t^{3} - \frac{3!}{s^{4}} = \frac{3!}{5!} - \frac{2!}{5^{3}}$$

Derivacije slike ?
$$\sigma = F'(s)$$
 $F'(s) = \frac{d}{ds} F(s) = \frac{d}{ds} \int_{c}^{\infty} e^{-st} f(t) dt$ po parametru

$$= \int_{-\infty}^{\infty} \frac{\partial}{\partial t} \left(e^{-st} \ell(t) \right) dt = \int_{-\infty}^{\infty} -\epsilon e^{-st} \ell(t) dt = -\epsilon \cdot \ell(t) \circ_{-\infty} F'(s)$$

Primyir:
$$te^{t}sint$$

sint $o = \frac{1}{s^2+1}$
 $e^{t}sint o = \frac{1}{(s-1)^2+1}$
 $te^{t}sint o = \frac{1}{as} \frac{1}{(s-1)^2+1} \cdot 2(s-1)$

Primjer: t f"(+) 0- ? f(+) 0- F(s)

 $t e^{ii}(t) \longrightarrow \frac{-d}{ds} (s^2 F(s) - s e(s) - e(s))$

 $=-(2^{1}5F(s)+3F(s)-f(0))$

Integrirance slike $\xi(t) \longrightarrow F(s) \mid \frac{\xi(t)}{t} \text{ original.} \longrightarrow \frac{\xi(t)}{t} \longrightarrow \int_{s}^{\infty} F(s) ds$

Primier <u>e - e</u> +

 $e^{-3t} - e^{-5t} = 0$

 $\lim_{5\to\infty} lu\left(\frac{5+3}{5+5}\right) = lu \lim_{5\to\infty} \frac{5+3}{5+5} = lu(1) - 0$

Primjer: $\int_0^\infty e^{-t} \frac{\sin^2 t}{t} dt = F(1)$

 $f(t) = \frac{s_1 n^2 t}{t}$

Izračunati int.

 $\sin^2 t = \frac{1 - \cos 2t}{2}$ o $\frac{1}{2} \cdot \frac{1}{5} - \frac{1}{2} \cdot \frac{5}{5^2 + 4}$

 $\frac{\sin^2 t}{t}$ $or \frac{1}{2} \int_{5}^{\infty} \left(\frac{1}{5} - \frac{s}{s^2 + 4} \right) ds = \frac{1}{4} \ln \frac{s^2 + 4}{s^2}$

 $= \left| \ln \left(\frac{5+3}{5+5} \right) \right|_{5}^{\infty} = 0 - \ln \left(\frac{5+3}{5+5} \right)$

+(1) = 1 lu(5)

 $= \frac{e^{-3+} - c^{-5+}}{t} = \int_{s}^{\infty} \frac{1}{s+3} - \frac{1}{s+5} ds - \ln(s+3) - \ln(s+5) \Big|_{s}^{\infty}$