Отчёт по лабораторной работе №5

Модель эпидемии

Надежда Александровна Рогожина

Содержание

1	Задание	5
2	Теоретическое введение	6
3	Выполнение лабораторной работы	7
4	Выводы	19
Список литературы		

Список иллюстраций

3.1	Обозначение постоянных	7
3.2	Настройка интеграла для s(t)	8
3.3	Настройка интеграла для i(t)	8
3.4	Установка max(t)	9
3.5	Модель эпидемии SIR	9
3.6	Модель эпидемии SIR	10
3.7	Установка значений блока	10
3.8	Код OpenModelica	11
3.9	Модель эпидемии SIR	11
3.10	Модель эпидемии SIR	12
3.11	Конфигурация контекста	12
3.12	Реализованная модель	13
3.13	$\mu = 0.01$	14
3.14	$\mu = 0.1 \ldots \ldots \ldots \ldots$	14
3.15	$\mu=1$	15
3.16	Диаграмма OpenModelica	15
	Вводимые значения	16
3.18	Код OpenModelica	16
	$\mu = 0.01$	17
	$\mu = 0.1 \ldots \ldots \ldots \ldots$	17
	u = 2.4	18

Список таблиц

1 Задание

В дополнение к предположениям, которые были сделаны для модели SIR, предположим, что учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуумы появляются на свет абсолютно здоровыми. Тогда получим следующую систему уравнений:

- 1. $s = -\beta s(t)i(t) + \mu (N s(t));$
- 2. $i = \beta s(t)i(t) \nu i(t) \mu i(t)$;
- 3. $r = \nu i(t) \mu r(t)$,

где μ — константа, которая равна коэффициенту смертности и рождаемости.

Требуется: - реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica; - построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ); - сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

2 Теоретическое введение

Модель SIR предложена в 1927 г. (W. O. Kermack, A. G. McKendrick).

Предполагается, что особи популяции размера N могут находиться в трёх различных состояниях: - S (susceptible, уязвимые) — здоровые особи, которые находятся в группе риска и могут подхватить инфекцию; - I (infective, заражённые, распространяющие заболевание) — заразившиеся переносчики болезни; - R (recovered/removed, вылечившиеся) — те, кто выздоровел и перестал распространять болезнь (в эту категорию относят, например, приобретших иммунитет или умерших).

Внутри каждой из выделенных групп особи считаются неразличимыми по свойствам. Типичная эволюция особи популяции описывается следующей диаграммой:

$$S \to I \to R$$
.

Считаем, что система замкнута, т.е.

$$N = S + I + R$$
.

Почитать подробнее про xcos можно в [1]. Лабораторная работа выполнялась на основе [2].

3 Выполнение лабораторной работы

Открыв окно визуального моделирования, первое что было установлено - контекст (рис. 3.1).

Рис. 3.1: Обозначение постоянных

Для первого интеграла было выставлено Initial Condition = .999 (рис. 3.2).

Рис. 3.2: Настройка интеграла для s(t)

Для второго интеграла было выставлено Initial Condition = .001 (рис. 3.3).

Рис. 3.3: Настройка интеграла для i(t)

Также, необходимо было установить максимальное время моделирования как 30 единиц модельного времени (рис. 3.4).

Рис. 3.4: Установка max(t)

Схему, которая была изображена в тексте лабораторной работы, мы повторили (рис. 3.5).

Рис. 3.5: Модель эпидемии SIR

Смоделировав ситуацию, мы видим планомерное уменьшение здоровых граждан, планомерное увеличение вылечившихся, а также пик количества зараженных граждан, что одновременно является точкой пересечения всех 3 линий (рис. 3.6).

Рис. 3.6: Модель эпидемии SIR

Далее, мы повторили ту же модель, но через блок OpenModelica (рис. 3.7, рис. 3.8, рис. 3.9).

Рис. 3.7: Установка значений блока

Рис. 3.8: Код OpenModelica

Рис. 3.9: Модель эпидемии SIR

Видно, что результаты совпадают с аналитическим подсчетом (рис. 3.10).

Рис. 3.10: Модель эпидемии SIR

Далее, было необходимо реализовать модель эпидемии, учитывающую смертность и рождаемость (коэффициент μ) (рис. 3.11, рис. 3.12).

Рис. 3.11: Конфигурация контекста

Рис. 3.12: Реализованная модель

При запуске, с $\mu=0.01;0.1;1$ получились следующие результаты (рис. 3.13, рис. 3.14, рис. 3.15):

Рис. 3.13: $\mu = 0.01$

Рис. 3.14: $\mu = 0.1$

Рис. 3.15: $\mu = 1$

Аналогично, необходимо было доработать код OpenModelica (рис. 3.16, рис. 3.17, рис. 3.18):

Рис. 3.16: Диаграмма OpenModelica

▼	Ввод значений	+ ×
	Set Modelica generic block p	arameters
	Input variables:	["beta";"nu";"mu"]
	Input variables types:	["E";"E";"E"]
	Output variables:	["s";"i";"r"]
	Output variables types:	["E";"E";"E"]
	Parameters in Modelica:	
	Parameters properties:	
	Function name:	generic
		ОК Отменить

Рис. 3.17: Вводимые значения

Рис. 3.18: Код OpenModelica

Аналогично, были получены результаты для разных μ (рис. 3.19, рис. 3.20, рис. 3.21):

Рис. 3.19: $\mu = 0.01$

Рис. 3.20: $\mu = 0.1$

Рис. 3.21: $\mu = 2.4$

4 Выводы

В ходе лабораторной работы мы получили базовые навыки программирования модели эпидемии с помощью xcos и OpenModelica.

Список литературы

- 1. Хсоз. Официальный сайт Хсоз. 2025.
- 2. А. В. Королькова Д.С.К. Моделирование информационных процессов. 1-е изд. Москва: Типография РУДН, 2014. 191 с.