JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering Electrical Science-1 (15B11EC111) Tutorial Sheet: 6

Q. 1. [CO2] A voltage V= $3\cos 4t + 4\sin 3t$. Find the voltage in the form of V=A $\cos(\omega t + \theta)$.

Q. 2. [CO2] Express the following summations of sinusoids in the general form $A\sin(\omega t + \theta)$ by using trigonometric identities:

$$i(t) = 2\cos(6t+120^\circ)+4\sin(6t-60^\circ)$$

Q. 3. [CO2] The voltage across an element is $v = 3\cos 3t \, V$, and the associated current through the element is $i = -2\sin (3t + 100^{\circ}) \, A$. Determine the phase relationship between voltage and current.

Q. 4. [CO2] Find Z and Y for the circuit shown in Fig. operating at 10 KHz.

Q.5 [CO2] Find i_1 , i_2 , V_L and V_c for the circuit shown below using mesh analysis:

Q. 6. [CO2] Determine mesh equation for the circuit given below:

Q. 7. [CO2] Determine B and L for the circuit shown in Fig. below, when i (t) = B $\cos (3t-51.87^{\circ})$ A.

Q. 8. [CO2] Determine i in the circuit below:

Q. 9. [CO2] Determine V_x in the circuit of Fig. using any method of your choice.

Q. 10. [CO2] Use the superposition theorem to obtain v_x in the circuit shown in Fig. 1. Let $v_s = 50\sin 2t \text{ V}$ and $i_s = 12\cos(6t+10^\circ) \text{ A}$.

Q. 11. [CO2] use superposition to find i (t) in the circuit shown in Fig. 2.

