knn

k Nearest Neighbor k Ближайших Соседей

KNN

KNN - одна из самых простых и интуитивно понятных моделей классификации

- Модель содержит все объекты из обучающей выборки
- Чтобы классифицировать новый объект нужно найти К ближайших объектов из обучающей выборки. Класс нового объекта самый частый класс соседей

Параметры

- К гиперпараметр
- Метрика (расстояние)
 - Евклидово расстояние
 - Косинусное расстояние
 - Манхэттенское расстояние

Евклидово расстояние

Косинусное расстояние

Чаще используется в разреженном пространстве

$$similarity(A,B) = \frac{A \cdot B}{\|A\| \times \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Манхэттенское расстояние

Нормализация

Для KNN данные необходимо нормализовывать для снижения зависимостей от атрибутов с большим диапозоном значений.

Разные атрибуты - разный диапазон значений.

MinMax нормализация

$$x' = (x - \min[X])/(\max[X] - \min[X])$$

Z нормализация

$$x' = (x - M[X])/\sigma[X]$$

Применение

Классификация

Чтобы классифицировать новый объект нужно найти К ближайших объектов из обучающей выборки. Класс нового объекта - самый частый класс соседей

Применение

Регрессия

Нахождение точек, наиболее близких с выбранному значению.

Итоговое значение - среднее между ближайшими.

Применение

Регрессия

Преимущества и недостатки

Преимущества

- Легок в реализации
- Не чувствителен к выбросам
- Нет необходимости строить модель, настраивать несколько параметров
- Алгоритм универсален. Его можно использовать для обоих типов задач: классификации и регрессии.

Преимущества и недостатки

Недостатки

- Возрастание вычислительных затрат при увеличении выборки
- Сложно интерпретировать
- Всегда нужно определять оптимальное значение **k**