Задачи за вежбање од Математика 3 (2018)

1 Двојни интеграли

1.1 Пресметување двојни интеграли

Задача 1.1. Да се определат границите на интеграција на интегралот $\iint_D f(x,y) \, dx \, dy$, каде што D е триаголник ограничен со правите $y=x, \ y=-x+4, \ y=0.$

Задача 1.2. Да се промени редоследот на интеграција кај следните интеграли:

a)
$$\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy;$$
 6) $\int_{0}^{2a} dx \int_{\sqrt{2ax-x^2}}^{\sqrt{2ax}} f(x,y) dy;$ B) $\int_{1}^{2} dx \int_{2-x}^{2x} f(x,y) dy.$

Задача 1.3. Да се промени редоследот на интеграција и со тоа да се поедностави збирот:

$$\int_{0}^{R\sqrt{2}/2} dx \int_{0}^{x} f(x,y) \, dy + \int_{R\sqrt{2}/2}^{R} dx \int_{0}^{\sqrt{R^{2}-x^{2}}} f(x,y) \, dy.$$

Задача 1.4. Да се пресметаат следниве двојни интеграли:

a)
$$\int_{3}^{4} dx \int_{1}^{2} \frac{dy}{(x+y)^{2}}$$
;

б)
$$\iint_D (x+y)^2 \, dx \, dy$$
, каде што D е триаголник OAB со темиња $O(0,0), \, A(1,0), \, B(1,1);$

в)
$$\iint\limits_D xy\,dx\,dy$$
, каде што D е област зададена со неравенствата $x^2+y^2\leq a^2,\,x\geq 0,\,y\geq 0.$

Задача 1.5. Да се пресмета $\iint_D y^2 \, dx \, dy$, каде што областа D е област ограничена со кривата $y=\cos x$ и правите y=1 и $x=\frac{\pi}{2}$.

Задача 1.6. Да се промени редоследот на интеграција и да се пресмета вредноста на интегралот $I=\int\limits_{-1}^{1}dx\int\limits_{-1}^{1}\sqrt{\frac{y(1-y)}{y^2-x^2}}\,dy.$

Задача 1.7. Да се пресмета $\iint_D (x+2y) \, dx \, dy$, каде што областа D е област ограничена со правите $x+y=6, \ y=2x$ и y=x.

Задача 1.8. Да се пресмета двојниот интеграл: $\iint\limits_{D} \frac{\sqrt{1-x^2-y^2}}{y}\,dx\,dy,$ каде што D е област во првиот квадрант ограничена со кривите: $y=x,\ x=0$ и $x^2+y^2=1$.

Задача 1.9. Да се пресмета двојниот интеграл: $\iint\limits_{D}\arctan\frac{y}{x}\,dx\,dy, \text{ каде што } D \text{ е област во}$ првиот квадрант одредена со неравенствата $1\leq x^2+y^2\leq 9,\ y\geq \frac{x}{\sqrt{3}},\ y\leq x\sqrt{3}.$

Задача 1.10. Да се пресмета $\iint_D \sin \sqrt{x^2+y^2} \, dx \, dy$, каде што D е област ограничена со кружниците $x^2+y^2=\pi^2$ и $x^2+y^2=4\pi^2$.

Задача 1.11. Да се пресмета интегралот $\iint\limits_{D} \sqrt{1-\frac{x^2}{a^2}-\frac{y^2}{b^2}}\,dx\,dy,$ каде што D е внатрешноста на елипсата $\frac{x^2}{a^2}+\frac{y^2}{b^2}\leq 1.$

Задача 1.12. Да се пресмета интегралот $\iint_D (x+y)^3 (x-y)^3 \, dx \, dy$, каде што D е областа ограничена со правите: $x+y=1, \ x+y=3, \ x-y=-1, \ \text{и} \ x-y=1.$

Задача 1.13. Да се пресмета интегралот $\iint_D x^2 dx dy$, каде што D е областа ограничена со $y=x, \ y=4x, \ xy=2, \ \text{и} \ xy=5.$

1.2 Примена на двојните интеграли во геометријата

Задача 1.14. Да се пресмета плоштината на ликот ограничен со кружниците $x^2 + y^2 = 4$ и $x^2 + y^2 - 4y = 0$.

Задача 1.15. Да се пресмета полоштината на ликот ограничен со кривата $(x^2 + y^2)^2 = 2a^2xy$.

Задача 1.16. Да се пресмета волуменот на телото ограничено со површините $z=3+x^2+2y^2,$ $y=2x^2-1,\ y=0$ и z=0.

Задача 1.17. Затворена површина е дефинирана со равенките:

$$y^{2} + 4x^{2} = 2z$$
, $y^{2} + 4x^{2} - (z - 4)^{2} = 0$, $0 \le z \le 4$.

Да се одреди волуменот што го зафаќа таа затворена површина.

Задача 1.18. Да се пресмета волуменот на телото ограничено со површините: $y^2=x,\,y^2=4x,\,z=0,\,x+z=4$ и y>0 .

Задача 1.19. Да се пресмета волуменот на телото ограничено со цилиндрите: $x^2 + y^2 = 2x$, $x^2 + y^2 = 2y$, и рамнините: z = x + 2y и z = 0.

Задача 1.20. Телото T е ограничено со површините: $z^2+x^2=4$ ($0 \le x \le 2, \ z \ge 0$), $y=4-x^2,$ $y=1-\frac{x^2}{4}$, y=1+2x и z=0. Да се скицира телото, а потоа, со примена на двоен интеграл, да се пресмета неговиот волумен.

Задача 1.21. Површините $x^2+y^2=4, (x\geq 0), x^2-y^2=1, (x\geq 1), z=4-x^2, (z\geq 0),$ и координатната рамнина z=0 го ограничуваат телото Т. Да се пресмета неговиот волумен.

Задача 1.22. Да се пресмета волуменот на телото ограничено со површините

$$\left(\frac{x-a}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1 \quad \text{if} \quad z^2 = x.$$

Задача 1.23. Да се пресмета плоштината на површината која цилиндарот $x^2 + (y-2)^2 = 4$ ја отсекува од конусот $z = 2 - \sqrt{x^2 + y^2}$.

Задача 1.24. Да се најде плоштината на телото ограничена со цилиндрите: $x^2 + z^2 = a^2$ и $y^2 + z^2 = a^2$.

Задача 1.25. Да се пресмета плоштината и волуменот на телото зададено со релациите: $x^2+y^2+\frac{z^2}{4}\leq 6$ и $x^2+y^2-z^2\leq 1$.

Задача 1.26. Да се пресмета плоштината на делот од топката $x^2+y^2+z^2=4$ отсечен со цилиндарот $x^2+2y^2=4$, кој се наоѓа над рамнината z=0.

Задача 1.27. Да се пресмета плоштината на делот од површината $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$ што се наоѓа внатре во цилиндарот $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

2 Тројни интеграли

2.1 Пресметување тројни интеграли

Задача 2.1. Да се пресметаат следниве интеграли:

а)
$$\iiint\limits_{D} \frac{xy}{\sqrt{z}} \; dx \, dy, \; dz \; \text{каде што} \; D: \; c\sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}} \leq z \leq c, \; x \geq 0, \; y > 0;$$

б)
$$\iiint\limits_V \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right) \, dx \, dy \, dz \, \, \text{каде што} \, \, V : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1;$$

в)
$$\iiint\limits_F \sqrt{x^2 + y^2} \; dx \, dy \, dz \; \text{каде што} \; F: x^2 + y^2 = z^2, \; z = 1, \; z = 0;$$

г)
$$\iiint\limits_U \sqrt{x^2+y^2+z^2} \; dx \, dy \, dz \; \text{каде што} \; U: x^2+y^2+z^2 \leq R^2, \; x^2+y^2 \leq z^2, \; z \geq 0.$$

2.2 Примена на тројните интеграли во геометријата

Задача 2.2. Да се пресмета волуменот на телото кое го ограничуваат следните површини:

$$z = \sqrt{1 - x^2 - y^2}, z = \sqrt{16 - x^2 - y^2}, z = \sqrt{x^2 + y^2}.$$

Задача 2.3. Да се пресмета волуменот на телото кое го ограничуваат следниве површини:

$$x^{2} + y^{2} = 2x$$
, $x^{2} + y^{2} = 2y$, $z = x + 2y$, $z = 0$.

Задача 2.4. Да се пресмета волуменот на телото ограничено со површините

$$z = x^2 + y^2$$
, $z = 2x^2 + 2y^2$, $y = x$, $y = x^2$.

Задача 2.5. Да се пресмета волуменот на телото: $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)^2 = \frac{x}{h}$, h > 0.

3 Криволиниски интеграли

3.1 Пресметување криволиниски интеграли од прв и втор вид

Задача 3.1. Да се пресметаат следниве интеграли:

- а) $\oint_C (x+y) \, dl$, каде што C е контура на триаголник со темиња: $O(0,0), \, A(1,0), \, B(0,1);$
- б) $\oint_C \sqrt{x^2 + y^2} \, dl$, каде што $C: x^2 + y^2 = ax$, a > 0;
- в) $\oint_C |y| \, dl$, каде што C е лемнискатата $(x^2 + y^2)^2 = a^2(x^2 y^2)$;
- г) $\oint_C (x^{4/3} + y^{4/3}) \, dl, \text{ каде што } C \text{ е астроидата} x^{2/3} + y^{2/3} = a^{2/3};$
- д) $\oint\limits_C dl, \text{ каде што } C \text{ е дадена со: } x(t) = a\cos t, \, y(t) = a\sin t, \, z(t) = \frac{at^2}{2},$ од A(a,0,0) до $B\left(0,a,\frac{a\pi^2}{8}\right).$

Задача 3.2. Да се пресметаат следниве интеграли:

- а) $\oint_C (x^2 2xy) dx + (y^2 2xy) dy$, каде што C е параболата $y = x^2$, $-1 \le x \le 1$;
- б) $\oint_C \frac{dx + dy}{|x| + |y|}$, , каде што C е контурата на квадратот со темиња: A(1,0), B(0,1), C(-1,0) и D(0,-1);

в)
$$\int\limits_{OmAnO}\arctan\frac{y}{x}\,dy-dx\,,\,\,,$$
 каде што OmA е лак на параболата $y=x^2,\,$ а OnA е дел од

правата y = x;

г)
$$\int\limits_C yz\,dx+z\sqrt{R^2-y^2}\,dy+xy\,dz, \ \text{каде што } C \ \text{е лак на цилиндричната спирала}$$

$$x=R\cos t, \ y=R\sin t, \ z=\frac{at}{2\pi}, \ \text{од } z=0 \ \text{до } z=a;$$

д)
$$\oint\limits_C y^2\,dx+z^2\,dy+x^2\,dz,$$
 каде што C е кривата која се добива како пресек на површините
$$x^2+y^2+z^2=a^2,\,x^2+y^2=ax\ (z\ge 0,\,a>0) \ (\text{Вивијаниевата крива});$$

е)
$$\oint\limits_C y\,dx+x^2\,dy+z\,dz, \text{ ако } C \text{ е пресечната крива на површините}$$

$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z}{c} \text{ и } \frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{x}{a}+\frac{y}{b} \ (a,b,c\neq 0).$$

3.2 Криволиниски интеграл од тотален диференцијал

Задача 3.3. Да се најде функцијата u ако е познат нејзиниот тотален диференцијал:

a)
$$du = (e^y + x) dx + (xe^y - 2y) dy;$$

6)
$$du = (2x\cos y - y^2\sin x) dx + (2y\cos x - x^2\sin y) dy;$$

B)
$$du = (2xyz + \ln y) dx + \left(x^2z + \frac{x}{y}\right) dy + (x^2y - 2z) dz.$$

Задача 3.4. Да се најде пресметаат следниве криволиниски интеграли:

a)
$$I = \int_{(0,1)}^{(3,-4)} x \, dx + y \, dy;$$

б)
$$I = \int\limits_{(2,1)}^{(1,2)} \frac{y\,dx - x\,dy}{x^2}\,,$$
 долж патот кој не се сече со правата $x=0;$

в)
$$I = \int_{(0,-1)}^{(1,0)} \frac{x \, dx - y \, dy}{(x-y)^2}$$
, долж патот кој не ја пресекува правата $x=y$;

$$\Gamma) \quad I = \int_{(1,1,1)}^{(2,3,-4)} x \, dx + y^2 \, dy - z^3 \, dz \, .$$

Задача 3.5. Да се покаже дека вредноста на интегралот: $I = \int\limits_{AB} yz\,dx + zx\,dy + xy\,dz$ не зависи од кривата која ги спојува точките A(1,2,3) и B(3,2,1). Колку е вредноста на интегралот? Задача 3.6. Да се пресмета криволинискиот интеграл:

$$I = \int_{R} \frac{(ax - y)(a + 1) dx + (x + ay)(a - 1) dy}{xy},$$

ако

- а) R е отсечката \overline{AB} , каде што A(1,1) и B(2,2);
- б) R е искршената линија ACB, при што C(1,2);
- в) Да се определи една вредност на константата a, така што тие два интеграли да бидат еднакви. Да се покаже дека тогаш интегралот не зависи од патот на интеграција.

3.3 Гринова формула

Задача 3.7. Да се пресмета интегралот: $\oint_C \sqrt{x^2+y^2}\,dx+y\left(xy+\ln\left(x+\sqrt{x^2+y^2}\right)\right)\,dy$, каде што кривата C е контура која ја ограничува областа: $y^2\leq 2(x-1),\,x<2,\,y\geq 0$.

Задача 3.8. Да се пресмета криволинискиот интеграл:

$$I = \int_{C} (x^{2} \sin y + 2y^{2}) dx + \left(\frac{1}{3}x^{3} \cos y - 2\right) dy,$$

каде што кривата C е горната половина од кружницата $x^2+y^2=2x\,$ од точката A(2,0) до точката O(0,0).

Задача 3.9. Да се пресмета криволинискиот интеграл:

$$I = \int_{C} (e^{x} \sin y - 2y) dx + (e^{x} \cos y - 4) dy,$$

каде што кривата C се состои од лакот на кружницата $x^2+y^2=a^2$ од точката A(a,0) до точката $B\left(a/\sqrt{2},\,a/\sqrt{2}\right)$ и отсечката \overline{BD} , при што $D\left(0,a/\sqrt{2}\right)$.

Задача 3.10. Да се пресмета интегралот: $I = \oint_C (x^2 + y^2) \, dx + (x^2 - y^2) \, dy$, каде што кривата C: |x-1| + |y-1| = 1.

Задача 3.11. Даден е криволинискиот интеграл:

$$I = \int_{L} \left(f(x) + \frac{x}{x^2 + y^2 + 1} \right) dx + \left(g(x) - \frac{y}{x^2 + y^2 + 1} \right) dy,$$

каде што f(x) и g(x) се непрекинати функции, а L е контура на областа дадена со неравенствата $y^2 \le x, \, x^2 + y^2 \le 2, \, y \ge 0$. Да се пресмета интегралот прво директно, а потоа со примена на Гриновата формула.

4 Површински интеграли

4.1 Пресметување површински интеграли од прв и втор вид

Задача 4.1. Да се пресмета површинскиот интеграл: $I = \iint\limits_S \frac{dS}{(1+x+z)^2}$, каде што S е делот од рамнината x+y+z=1 кој што припаѓа на првиот октант.

Задача 4.2. Да се пресмета површинскиот интеграл: $I = \iint_S (xy + yz + zx) \, dS$, каде што S е делот од конусот $z = \sqrt{x^2 + y^2}$ кој што се наоѓа во цилиндарот $x^2 + y^2 = 2ax$.

Задача 4.3. Да се пресмета површинскиот интеграл од втор тип:

$$I = \iint\limits_{S} z \, dx dy + x \, dx dz + y \, dy dz \,,$$

каде што S е горниот дел од рамнината x-y+z=1 пресечена со координатните рамнини.

Задача 4.4. Да се пресмета површинскиот интеграл од втор тип

$$I = \iint\limits_{S} 2 \, dx dy + y \, dx dz - x^2 z \, dy dz \,,$$

каде што S е ограничена со површините $4x^2+y^2+4z^2=1$ и $4x^2+y^2+4z^2=1$.

Задача 4.5. Да се пресмета површинскиот интеграл

$$I = \iint_{S} \frac{x \cos \alpha + y \cos \beta + z \cos \gamma}{\sqrt{x^2 + y^2 + z^2}} dS,$$

каде што α , β , γ се аглите меѓу нормалниот вектор на површината $S: x^2 + y^2 + z^2 = a^2$ и координатните оски.

Задача 4.6. Со помош на Штоксовата формула да се пресмета интегралот

$$\int_C x^2 y^3 \, dx + \, dy + z \, dz,$$

каде што кривата C е пресек на површините $x^2 + y^2 + z^2 = a^2$ и z = 0.

Задача 4.7. Да се пресмета интегралот

$$\int_{L} xy \, dx - yz \, dy + xz \, dz,$$

каде што кривата L е позитивно ориентирана, добиена како пресек на сферата $x^2+y^2+z^2=a^2$ и рамнината x+z=a и тоа директно и со помош на Штоксова формула.

Задача 4.8. Да се пресмета интегралот

$$\int_C x^2 y \, dx + y^2 z \, dy + xz^2 \, dz,$$

каде што кривата $C=C_1\cup C_2,\ C_1:\ x^2+y^2=1,\ z=0$ од точката A(1,0,0) до точката $B(0,1,0),\ a\ C_2:z=5(1-y),\ x=0$ од точката B(0,1,0) до точката C(0,0,5) директно и со помош на Штоксова формула.

Задача 4.9. Со помош на теоремата на Гаус-Остроградски да се пресмета интегралот

$$\iint\limits_{S} y^2 z \, dx dy + xz \, dy dz + x^2 y \, dx dz,$$

каде S е надворешната страна на површината образувана од: $z=x^2+y^2, \ x^2+y^2=1, \ x=0, y=0$ и z=0.

Задача 4.10. Да се пресмета интегралот

$$I = \iint_{C} (x - y + z) \, dy dz + (y - z + x) \, dz dx + (z - x + y) \, dx dy,$$

каде што S: |x-y+z| + |y-z+x| + |z-x+y| = 1.

Задача 4.11. Да се пресмета површинскиот интеграл од прв тип

$$I = \iint_{S} (x^{2} \cos \alpha + y^{2} \cos \beta + z^{2} \cos \gamma) dS,$$

каде што S е површината на телото ограничено со површините: $x^2+y^2+2rz=r^2,\ x=0,\ y=0,\ z=0.$ Да се трансформира дадениот интеграл во површински интеграл од втор тип, па повторно да се реши. Резултатот да се провери и со теоремата на Гаус-Остроградски.

Задача 4.12. Да се пресмета интегралот

$$I = \iint\limits_{S} x^2 \, dy dz + y^2 \, dz dx + z^2 x \, dx dy,$$

каде што S е делот од хиперболата

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \ 0 \le z \le c$$

.