

Figure 1: Preferred foliation by T(x) with unit timelike u^{μ} normal to the leaves $\Sigma_t.$

2) Circulation quantization on a ring latex Copy code 3) Energy land-scape for \to R \to T latex Copy code 4) Preferred foliation and u latex Copy code 5) Flux of = d H=dB through a surface pierced by a string latex Copy code

Figure 2: Any vector decomposes into temporal and spatial parts via the projector h^{μ}_{ν} .

Figure 3: Canonical profile $\Omega(r) = \Omega(0)e^{-r/r_c}$.

- 1) Mach-Zehnder Interferometer (SST view)
- 2) Knot invariants overlay on a trefoil (C(K)C(K)C(K), H(K)H(K)H(K))
- 3) Core profile (r) $\Omega(r)(r)$ and $Swirl Clock dt local/dt dt_{local}/dt_{/dt}$
- 4) Fringe geometry (slit separation sss, distance LLL, screen coordinate xxx)
- 5) Polarization selection (helicity matching to trefoil chirality)
- 6) (Already supplied earlier) Visibility vs. which-way coupling $V=eV=e^{-\Gamma} V=e$

(Keep for completeness; no changes needed.)

Figure 4: Rankine model: solid-body core $(v \propto r)$ matched to irrotational shell $(v \propto 1/r)$.

7) (Optional EFT block diagram) Lagrangian terms as modules

\mathcal{L} (SST EFT)

Figure 5: SST Lagrangian as modular terms.

Figure 6: Variation of the action: Euler–Lagrange equations plus boundary term.

Figure 7: Illustrative stability/causality window in (c_{13}, c_T) .

Figure 8: Linearized mode cones with different propagation speeds.

Figure 9: String loop and its worldsheet Σ (schematic).

Figure 10: Worldsheet piercing a surface S, quantizing the H-flux.

Figure 11: Schematic Noether current J^{μ} flowlines.

Figure 12: Energy–momentum flux crossing a surface element.

Figure 13: Qualitative pressure well induced by swirl.

Figure 14: Effective potential with core scale r_c (schematic).

Figure 15: Illustrative relative change $\delta G/G$ vs. small parameter shifts (toy scaling).

Figure 16: Toy sensitivity bars (edit with actual derivatives).

Figure 17: Two-phase electron in SST: delocalized toroidal circulation \mathcal{R} and localized knotted soliton \mathcal{T} .

Figure 18: Circulation quantization and de Broglie relation on the ring phase \mathcal{R} .

Figure 19: SST transition energy: $\Delta E = (\epsilon_0 A + \beta)\Delta L + \alpha C(\mathcal{T}) + \gamma \mathcal{H}(\mathcal{T}).$

Figure 20: Preferred foliation by the clock field T(x) with unit timelike u^{μ} , and spatial projector $h_{\mu\nu} = g_{\mu\nu} + u_{\mu}u_{\nu}$.

Figure 21: Worldsheet/flux cartoon: the swirl string pierces S, quantizing the H-flux.

Figure 22: Mach–Zehnder in SST. The delocalized \mathcal{R} phase splits/recombines; a phase/impedance element ϕ controls output fringes vs. which-way collapse to \mathcal{T} .

Figure 23: Trefoil schematic with overlays indicating near-contact regions (C(K)) and helicity/chirality cue $(\mathcal{H}(K))$.

Figure 26: Left: canonical angular profile. Right: local time rate vs. v/c.

Figure 27: Double-slit geometry: path difference $\Delta \ell \approx s\,x/L$ and fringe spacing $d=\lambda L/s$.

Figure 28: Helicity selection: circularly polarized light σ^{\pm} couples preferentially to the chirality of the target knot \mathcal{T} , setting transition strength.

$\mathcal{L} \; (\text{SST EFT}) \qquad \text{preferred foliation } \Sigma_t, \, \text{worldsheet } \Sigma$

Figure 29: SST EFT ingredients as modular terms composing \mathcal{L} .