Lecture 12 vol. 2 **EM**

Information Systems (Machine Learning) Andrey Filchenkov

13.12.2018

- Mixture of distributions
- EM algorithm
- Improvements of EM

• The presentation is prepared with materials of the K.V. Vorontsov's course "Machine Leaning".

- Mixture of distributions
- EM algorithm
- Improvements of EM

The two problems of probabilistic classification

First problem: probability density recovering

Given: $T^{\ell} = \{(x_i, y_i)\}_{i=1}^{\ell}$.

Problem: find empirical estimates $\widehat{\Pr}(y)$ и $\hat{p}(x|y)$, $y \in Y$.

Second problem: mean risk minimization

Given:

- prior probabilities Pr(y),
- likelihood $p(x|y), y \in Y$.

Problem: find classifier a which minimizes R(a).

Which of these two problems is already solved and what is the answer?

Distributions mixture recovery

Generative distributions mixture model:

$$p(x) = \sum_{j=1}^{k} w_j p_j(x),$$

where $w_j > 0$, $\sum_{j=1}^k w_j = 1$; $p_j(x) = \varphi(x; \theta_j)$ is likelihood function of jth mixture component, w_j is its prior probability, k is the number of mixture components.

Two problems:

- 1) with given sample $X^m \sim p(x)$, number k and function φ estimate parameter vector $\Theta = (w_1, ..., w_k, \theta_1, ..., \theta_k)$.
- 2) find *k*.

Solving problems

We know how to solve such problems:

by maximizing logarithm of likelihood

$$L(\Theta) = \ln \prod_{i=1}^{m} p(x_i) = \sum_{i=1}^{m} \ln \sum_{j=1}^{k} w_j p_j(x_i; \theta_j) \to \max_{\Theta}.$$

What is a problem then?

Solving problems

We know how to solve such problems:

by maximizing logarithm of likelihood

$$L(\Theta) = \ln \prod_{i=1}^{m} p(x_i) = \sum_{i=1}^{m} \ln \sum_{j=1}^{k} w_j p_j(x_i; \theta_j) \to \max_{\Theta}.$$

It is unclear what to do with logarithm of sum, therefore we cannot find the analytical solution.

- Mixture of distributions
- EM algorithm
- Improvements of EM

EM algorithm idea

Main idea: add hidden variables, such that:

- 1) they can be expressed with Θ;
- 2) they can help to split the sum.

$$p(X, H|\Theta) = \prod_{i=1}^{k} p(X|H, \Theta)p(H|\Theta)$$

EM algorithm scheme

EM-algorithm is reiteration of the two steps:

 $H \leftarrow \text{E-STEP}(\Theta)$ (expectation):

finding the most probable values of the hidden variables

 $\Theta \leftarrow M\text{-STEP}(H, \Theta)$ (maximization):

finding the most probable parameters given the hidden variables values

Example (Gaussians)

E-STEP

$$p(x_i, \theta_j) = p(x) \Pr(\theta_j | x) = w_j p_j(x)$$

Hidden variables $H = (h_{ij})_{m \times k}$, where $h_{ij} = \Pr(\theta_j | x_i)$ are degrees of how likely x_i belongs to the jth component:

$$h_{ij} = \frac{w_j p_j(x_i)}{p(x_i)} = \frac{w_j p_j(x_i)}{\sum_{s=1}^k w_s p_s(x_i)},$$

$$\sum_{j=1}^k h_{ij} = 1.$$

M-STEP

Theorem

If hidden variables are known, then the problem of minimizing $Q(\Theta)$ can be reduced to k independent subproblems

$$\theta_j = \operatorname{argmax}_{\theta} \sum_{i=1}^m h_{ij} \ln \varphi(x_i, \theta),$$

and optimal weights are equal to

$$w_i = \frac{1}{m} \sum_{i=1}^m h_{ij}.$$

We will maximize θ_i .

Expectation minimization

Input: X^m , k, $\Theta^{[0]}$

- 1. Repeat
- 2. **E-step**: for all i = 1, ..., m; j = 1, ..., k $h_{ij} = \frac{w_j \varphi(x_i; \theta_j)}{\sum_{s=1}^k w_s \varphi(x_i; \theta_j)};$
- 3. **M-step**: for all j = 1, ..., k $\theta_j = \operatorname{argmax}_{\theta} \sum_{i=1}^m h_{ij} \ln \varphi(x_i, \theta) ; w_j = \frac{1}{m} \sum_{i=1}^m h_{ij} ;$
- 4. Until a **stopping criterion** is satisfied

Return
$$\Theta = \left(\theta_j^{[L]}, w_j^{[L]}\right)_{j=1}^k$$
.

Algorithm discussion

Advantages:

- Converges in many situations
- Can be easily turned to be insensitive to noise
- Most flexible approach

Questions:

- 1. When to stop?
- 2. How to accelerate convergence?
- 3. How to choose an initial approximation?
- 4. How to choose *k*?

Some answers (1/2)

1. When to stop?

Until the result do not stabilize. It is recommended to do it with respect to g:

$$\max_{i,j} |h_{ij} - h_{ij}^{[0]}| > \delta_1$$

$$\max_{i} \sum_{j} |h_{ij}^{[t]} - h_{ij}^{[t-1]}| > \delta_2$$

. . .

2. How to accelerate convergence? Accelerate M-step.

Some answers (2/2)

- 3. How to choose an initial approximation?
- Uniformly.
- Choose from distant point neighborhoods.

• • •

- 4. How to choose *k*?
- Iteratively check for each *k*.
- Check for some values of k and recover the plot.

- Mixture of distributions
- EM algorithm
- Improvements of EM

Improvements of EM

- Changing number of components try to add or to delete components
- Generalized EM-algorithm (GEM) do not try to find a good solution of M-step
- Stochastic EM-algorithm (SEM) try to find the maximum of unweighted likelihood on M-step
- Hierarchical EM-algorithm (HEM) try to split "bad" components