三端变阻器 终结报告

2018011365 计84 张鹤潇

一、 数据整理及计算

	$R_{fz}(\Omega)$	INF	10k	1k	100	100(改进)	
$R_2(\Omega)$	$U_{fz}(V)$	IINF	TOK	IK	100		
0		0.00	0.00	0.00	0.00	0.00	
100		0.20	0.20	0.18	0.11	0.71	
200		0.40	0.39	0.35	0.15	0.86	
300		0.60	0.59	0.50	0.19	0.92	
400		0.80	0.78	0.65	0.24	0.96	
500 600		1.00	0.97	0.80	0.29	1.00	
		1.20	1.17	7 0.97 0.3		1.03	
70	700		1.37	1.16	0.45	1.07	
800		1.60	1.57	1.57 1.39 0.62		1.14	
900		1.80	1.78	1.66	0.95	1.28	
1000		2.00	2.00	2.00	2.00	2.00	

以 $\frac{U_{fz}}{U_s}$ 为纵坐标,以 $\frac{R_2}{R_0}$ 为横坐标,可以绘制三端变阻器通用调压特性曲线。据此,对数据处理如下:

$ \frac{R_{fz}}{R_0} $ $ \frac{R_2}{R_0} \qquad \frac{U_{fz}}{U_s} $	INF	10	1	0.1	0.1(改进)
0.0	0.00	0.00	0.00	0.00	0.00
0.1	0.10	0.10	0.09	0.06	0.36
0.2	0.20	0.20	0.18	0.08	0.43
0.3	0.30	0.30	0.25	0.10	0.46
0.4	0.40	0.39	0.33	0.12	0.48
0.5	0.50	0.49	0.40	0.15	0.50
0.6	0.60	0.59	0.49	0.18	0.52

0.7	0.70	0.69	0.58	0.23	0.54
0.8	0.80	0.79	0.70	0.31	0.57
0.9	0.90	0.89	0.83	0.48	0.64
1.0	1.00	1.00	1.00	1.00	1.00

曲线绘制如下:

分压器通用调压特性曲线

二、 误差分析

1. 系统误差

● 测量仪器和电路元件精度限制。

2. 偶然误差

- 电压表测电压时,表笔与电路接触不良导致误差;即使接触良好,也可能 因为表笔与电路接触位置的变化引发误差。
- 读数时电压表示数不稳定导致误差。

三、思考题

1. 对于两种实验电路,设 $y = \frac{u_{fz}}{u_s}, x = \frac{R_2}{R_0}, K = \frac{R_{fz}}{R_0} = 0.1$,写出函数y = f(x),并求 $\frac{dy}{dx}$,计算x = 0,0.1,0.2, …各点的 $\frac{dy}{dx}$ 值,画出曲线,讨论两种电路的优缺点。

答:

改进前:

$$y_1 = \frac{x}{-10x^2 + 10x + 1}$$
$$\frac{dy_1}{dx} = \frac{10x^2 + 1}{(-10x^2 + 10x + 1)^2}$$

改进后:

$$y_2 = \frac{-10x^2 + 11x}{-20x^2 + 20x + 1}$$
$$\frac{dy_2}{dx} = \frac{20x^2 - 20x + 11}{(-20x^2 + 20x + 1)^2}$$

经计算, $x = 0,0.1,0.2, \dots$ 各点导数如下:

X	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$\frac{\mathrm{d}y_1}{\mathrm{d}x}$	1.00	0.30	0.21	0.20	0.22	0.29	0.40	0.61	1.09	2.52	11.00
$\frac{\mathrm{d}y_2}{\mathrm{d}x}$	11.00	1.17	0.44	0.25	0.18	0.17	0.18	0.25	0.44	1.17	11.00

函数图像如下:

导数图像如下:

由此可见,改进前电路在 $x \in [0,0.7]$ 时,曲线的斜率较小,利于通过调节变阻器获得所需电压,相应电压区间 $y = \frac{U_{fz}}{U_s} \in [0,0.23]$. 在其它区间内,曲线斜率过大,不利于获得所需电压。

改进后电路在 $x \in [0.2,0.8]$ 时,曲线斜率较小,容易调节电压,相应 $y = \frac{u_{fz}}{u_s} \in [0.43,0.57]$. 其他区间内曲线斜率过大,不利于获得所需电压。

应该根据实际调压需求在两类方案之间进行取舍。如果需要在较小的电压下精细调节,可以选择改进前的电路;如果需要在中值电压附近精细调节,可以选择改进后的电路。

2. 对于电路 1,说明为了得到实用的调压特性,应如何选取 $\frac{R_{fz}}{R_0}$?

答:尽可能选择较大的 $\frac{R_{fz}}{R_0}(\frac{R_{fz}}{R_0}>1)$ 。从图像可以看出, $\frac{R_{fz}}{R_0}$ 越大,调压曲线越接近直线,也就也容易在 $0\sim U_s$ 间调节到合适的电压。实际上, $\frac{R_{fz}}{R_0}$ 越大, R_{fz} 与 R_2 并联后的阻值越接近 R_2 ,分压也越趋于线性变化。

(自行思考提出的问题)

- 3. 考虑到电源内阻的影响,随着 R_{fz} 和 R_2 的变化,路端电压也会发生变化。应该如何调节输出电压,才能保持 U_s 不变?
- 答: 在实验中,我发现当 $\frac{R_{fz}}{R_0}$ 较大时,调节 R_2 导致的 U_s 变化不大;而 $\frac{R_{fz}}{R_0}$ 较小时,调

节 R_2 导致的 U_s 变化较大。作定性解释如下:

 $\frac{R_{fz}}{R_0}$ 越大, R_2 与 R_{fz} 的并联阻值就越接近 R_2 ,调节 R_2 导致的路端电阻变化就越小, U_s 变化小。而 $\frac{R_{fz}}{R_0}$ 越小,调节 R_2 导致的路端电阻变化就越大, U_s 变化大。

对于确定的 $\frac{R_{f_2}}{R_0}$,在改进前的电路中,路端电阻随着 R_2 的增大而变小,需要增大电压输出;在改进后的电路中,随着 R_2 的增大,路端电压先减小后增大,应先增大电压输出,再减小电压输出,以保证 U_s 不变。

4. 为什么改进前的电路在 $\frac{R_{fz}}{R_0}$ 较小时,在 $\frac{R_2}{R_0}$ 较大时调节 R_2 导致的电压变化较大?

答: 定量计算如下,设
$$y = \frac{u_{fz}}{u_s}, x = \frac{R_{fz}}{R_0}, K = \frac{R_2}{R_0}.$$

$$y = \frac{Kx}{x + K - K^2}$$

$$\frac{dy}{dx} = \frac{K^2 - K^3}{(x + K - K^2)^2}$$

 $K \to 1^-$ 时,x 越小, $\frac{\mathrm{d}y}{\mathrm{d}x}$ 越大, $y = \frac{u_{fz}}{u_s}$ 变化越大。

四、实验总结和结论

- 1. 根据调压特性曲线,为使调压特性在 $\frac{R_2}{R_0}=0.5$ 时有 $\frac{U_{fz}}{U_s}>0.4$,应当有 $\frac{R_{fz}}{R_0}>1.$
- 2. 在改进前的电路中,为使支路分压能较均匀的变化,应该使^{Ufz}_{Us}尽可能大; ^{Ufz}_{Us} 越大,调压曲线越接近线性。但如果需要在较小的范围内调节电压,也可以选择较小的^{Ufz}_{Us}; 如果需要在中值附近调节电压,可以采用改进后的电路。
- 3. 在本次实验中,电流表的作用似乎并不明确。如果有简化电路的需求又不用 测量干路电流,可将电流表省去。

在实验中,应注意的地方:

- 合理规划电路接线,避免线路混乱。
- 先接支路,后接电源。
- 重新连接电路时务必断开电源。

- 每次测量 $U_f z$ 前,要先保证 $U_s = 2V$ 。
- 待电压表示数稳定后再读数,注意数字万用表的单位。