Integrales

Vólumenes

Prof. Arnoldo Del Toro Peña

12 de julio de 2025

Fórmulas Clave

FÓRMULA

Método de Discos (revolución alrededor del eje x): $V = \pi \int_a^b [f(x)]^2 dx$

FÓRMULA

Método de Arandelas (revolución alrededor del eje x): $V=\pi\int_a^b [R(x)]^2-[r(x)]^2dx$

Donde:

 $R(x)=\mathrm{radio}$ exterior (función superior) $r(x)=\mathrm{radio}$ interior (función inferior) $[a,b]=\mathrm{intervalo}$ de integración

NOTA IMPORTANTE

Es fundamental identificar correctamente cuál función está "arriba" y cuál está "abajo" en el intervalo de integración.

1

Solución de Volúmenes de Sólidos de Revolución

Problema 1: $y = x^2$, $y = 4x - x^2$

Paso 1: Encontrar los puntos de intersección

$$x^2 = 4x - x^2$$

$$2x^2 = 4x$$

$$2x^2 - 4x = 0$$

$$2x(x-2) = 0$$

$$x = 0 \text{ o } x = 2$$

Paso 2: Determinar cuál función está arriba

Para
$$x=1$$
: $y_1=1^2=1, y_2=4(1)-1^2=3$

Por lo tanto, $4x - x^2 > x^2$ en el intervalo [0, 2]

Paso 3: Aplicar la fórmula del volumen (método de discos)

$$V=\pi \int_0^2 [(4x-x^2)^2-(x^2)^2] dx$$

$$V = \pi \int_{0}^{2} [(4x - x^{2})^{2} - x^{4}] dx$$

$$V = \pi \int_0^2 [16x^2 - 8x^3 + x^4 - x^4] dx$$

$$V = \pi \int_0^2 [16x^2 - 8x^3] dx$$

$$V = \pi \left[\frac{16x^3}{3} - \frac{8x^4}{4} \right]_0^2$$

$$V = \pi \left[\frac{16x^3}{3} - 2x^4 \right]_0^2$$

$$V=\pi\left\lceil\frac{16(8)}{3}-2(16)\right\rceil$$

$$V = \pi \left[\frac{128}{3} - 32 \right] = \pi \left[\frac{128 - 96}{3} \right] = \frac{32\pi}{3}$$

Problema 2: $y = \sqrt{2x - 5}, y = 0, x = 4$

Paso 1: Encontrar el dominio

$$2x - 5 \ge 0 \Rightarrow x \ge \frac{5}{2}$$

Paso 2: Determinar los límites de integración

La región está entre $x = \frac{5}{2}$ y x = 4

Paso 3: Aplicar la fórmula del volumen

$$V = \pi \int_{5/2}^{4} (\sqrt{2x - 5})^2 dx$$

$$V = \pi \int_{5/2}^{4} (2x - 5) dx$$

$$V = \pi \left[x^2 - 5x \right]_{5/2}^4$$

$$V = \pi \left[(16 - 20) - \left(\frac{25}{4} - \frac{25}{2} \right) \right]$$

$$V = \pi \left[-4 - \left(\frac{25}{4} - \frac{50}{4} \right) \right]$$

$$V = \pi \left[-4 - \left(-\frac{25}{4} \right) \right]$$

$$V = \pi \left[-4 + \frac{25}{4} \right] = \pi \left[\frac{-16 + 25}{4} \right] = \frac{9\pi}{4}$$

Problema 3: $y = x^{3/2}, y = 8, x = 0$

Paso 1: Encontrar el punto de intersección

$$x^{3/2} = 8$$

$$x = 8^{2/3} = (2^3)^{2/3} = 2^2 = 4$$

Paso 2: Determinar los límites de integración

La región está entre x=0 y x=4

Paso 3: Aplicar la fórmula del volumen (método de arandelas)

$$V = \pi \int_0^4 [8^2 - (x^{3/2})^2] dx$$

$$V = \pi \int_0^4 [64 - x^3] dx$$

$$V = \pi \left[64x - \frac{x^4}{4} \right]_0^4$$

$$V = \pi \left[64(4) - \frac{4^4}{4} \right]$$

$$V = \pi \left[256 - \frac{256}{4} \right]$$

$$V = \pi[256 - 64] = 192\pi$$

Problema 4: $y = 4x^2$, x = 0, y = 4

Paso 1: Encontrar el punto de intersección

 $4x^2 = 4 \Rightarrow x^2 = 1 \Rightarrow x = 1$ (tomamos el valor positivo)

Paso 2: Resolver usando el método de discos perpendiculares al eje y

Despejamos x en función de y: $x = \frac{\sqrt{y}}{2}$

Paso 3: Aplicar la fórmula del volumen

$$V = \pi \int_0^4 \left(\frac{\sqrt{y}}{2}\right)^2 dy$$

$$V = \pi \int_0^4 \frac{y}{4} dy$$

$$V = \frac{\pi}{4} \int_0^4 y dy$$

$$V = \frac{\pi}{4} \left[\frac{y^2}{2} \right]_0^4$$

$$V = \frac{\pi}{4} \cdot \frac{16}{2} = \frac{\pi}{4} \cdot 8 = 2\pi$$

Problema 5: $y = \sqrt{x+2}, y = x, y = 0$

Paso 1: Encontrar los puntos de intersección

Para
$$y = \sqrt{x+2}$$
 y $y = x$:

$$x = \sqrt{x+2}$$

$$x^2 = x + 2$$

$$x^2 - x - 2 = 0$$

$$(x-2)(x+1) = 0$$

$$x = 2 \text{ o } x = -1$$

Como y = x y $y \ge 0$, tomamos x = 2.

Para
$$y = \sqrt{x+2}$$
 y $y = 0$:

$$0 = \sqrt{x+2} \Rightarrow x = -2$$

Paso 2: Analizar la región

• Entre
$$x = -2$$
 y $x = -1$: solo $y = \sqrt{x+2}$

■ Entre
$$x = -1$$
 y $x = 2$: $y = \sqrt{x+2}$ está arriba de $y = x$

Paso 3: Aplicar la fórmula del volumen

$$V=\pi \int_{-2}^{-1} (\sqrt{x+2})^2 dx + \pi \int_{-1}^{2} [(\sqrt{x+2})^2 - x^2] dx$$

$$V = \pi \int_{-2}^{-1} (x+2)dx + \pi \int_{-1}^{2} [(x+2) - x^2]dx$$

Primera integral:

$$\pi \int_{-2}^{-1} (x+2)dx = \pi \left[\frac{x^2}{2} + 2x \right]_{-2}^{-1}$$

$$= \pi \left[\left(\frac{1}{2} - 2 \right) - \left(\frac{4}{2} - 4 \right) \right]$$

$$= \pi \left[-\frac{3}{2} - (-2) \right] = \pi \left[-\frac{3}{2} + 2 \right] = \frac{\pi}{2}$$

Segunda integral:

$$\pi \int_{-1}^{2} (x+2-x^2) dx = \pi \left[\frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{-1}^{2}$$

$$= \pi \left[\left(\frac{4}{2} + 4 - \frac{8}{3} \right) - \left(\frac{1}{2} - 2 + \frac{1}{3} \right) \right]$$

$$= \pi \left[\left(2 + 4 - \frac{8}{3} \right) - \left(\frac{1}{2} - 2 + \frac{1}{3} \right) \right]$$

$$= \pi \left[6 - \frac{8}{3} - \frac{1}{2} + 2 - \frac{1}{3} \right]$$

$$= \pi \left[8 - 3 - \frac{1}{2} \right] = \pi \left[5 - \frac{1}{2} \right] = \frac{9\pi}{2}$$

Volumen total:

$$V = \frac{\pi}{2} + \frac{9\pi}{2} = 5\pi$$

Resumen de Resultados

1.
$$V = \frac{32\pi}{3}$$

2.
$$V = \frac{9\pi}{4}$$

- 3. $V = 192\pi$ 4. $V = 2\pi$
- 5. $V = 5\pi$