

Sistema de informação geográfica com GeoPandas

Francisco Carlos Freire

- 1. Motivação
- 2. Objetos geométricos
- 3. Introdução a GeoPandas
- Sistema de referência de coordenadas
- Geocodificação e operações entre geometrias
- 6. Rede de ruas e menor caminho

1. Motivação

Python para dados georreferenciados.

Porque usar python para GIS?

Python é uma linguagem com uma **grande quantidade de bibliotecas** para GIS, machine learning e tudo que existe no mundo.

Muitos dos diferentes pacotes de software específicos para geoprocessamento fornecem API para análise usando python.

Exemplo:

- ArcGIS
- QGIS
- PostGIS

Porque usar python para GIS?

Porém vamos utilizar python sem nenhum software de terceiros, por alguns motivos, como:

- Bibliotecas livres e sem necessidade de licenças;
- Vamos entender mais profundamente como as operações funcionam;
- Existem bibliotecas em Python eficientes para análise de grande conjuntos de dados;
- Python também é muito flexível e suporta diversos formatos de dados;
- Integração com outros softwares e muitos outros motivos...

Módulos disponíveis para python e GIS

- Shapely: pacote para manipulação e análise de objetos geométricos planares (baseado no GEOS)
- Geopandas: facilita a manipulação de dados geoespaciais, combinando a capacidade do pandas e shapely.
- **Pyproj**: transformações cartográficas e cálculos geodésicos.
- Pysal: biblioteca para análises espaciais.
- Geopy: biblioteca para geocoding, transformação de endereços para coordenadas e virce-versa
- **Contextly**: mapas estáticos para visualização.
- **Folium**: mapas interativos utilizando o Leaflet.
- **OSMnx**: operações para manipulação de dados do OpenStreetMap.
- **Networkx**: pacote para manipulação de grafos, possibilitando análises de rotas.

2.
Objetos
geométricos

Modelo de dados espaciais.

Objetos geométricos

Acompanhe pelo Jupyter Notebook:

https://github.com/InsightLab/data-science-cookbook/blob/master/2020/05-geographic-information-system/Notebook_Geometric_Objects.ipynb

Exercício:

https://github.com/InsightLab/data-science-cookbook/blob/master/2020/05-geographic-information-system/Notebook Exercise-1.ipynb

3. Introdução a GeoPandas

Introdução a GeoPandas

Acompanhe pelo Jupyter Notebook:

https://github.com/InsightLab/data-science-cookbook/blob/master/2020/05-geographic-information-system/Notebook_Geopandas_Basics.ipynb

Exercício:

https://github.com/InsightLab/data-science-cookbook/blob/master/2020/05-geographic-information-system/Notebook Exercise-2.ipvnb

4. Sistema de referência de coordenadas

Reference Coordinate System (CRS)

Existem dois sistemas de coordenadas diferentes:

- Sistema de Coordenadas Geográficas: os dados são gerados com unidades em graus.
- Sistema de Coordenadas Projetadas: os dados são gerados com unidades em metros.

Cada sistema de coordenadas possui diferentes finalidades. O **Sistema de Coordenadas Geográficas** é ideal para mapas de localização, enquanto o **Sistema de Coordenadas Projetadas** é utilizado para cálculo de área e distância.

Um arquivo de dados georreferenciados **nunca** será referenciado em mais de um sistema, porém, podemos mudar facilmente a projeção para um outro sistema.

Para identificar um sistema de referência, utilizamos um padrão internacional iniciado pela sigla **EPSG** (European Petroleum Survey Group) e um **código numérico único**.

Por exemplo:

O sistema de referência <u>World Geodetic System de 1984</u> (WGS 84), utilizado nos sistemas de GPS, Google e OpenStreetMap, é identificado pelo código:

EPSG: 4326

Base de dados para pesquisar sistemas de coordenadas: https://epsg.io/

Como mudamos a projeção?

Inicialmente precisamos identificar os códigos EPSG de <u>origem</u> e <u>destino</u>.

Para identificar um código EPSG específico, em cada sistema precisamos:

Sistema de Coordenadas Geográficas	Sistema de Coordenadas Projetadas
Unidades em graus	Unidades em metros
Requisitos: *datum	Requisitos: *datum, projeção, fuso horário e hemisfério

^{*}Um **datum** também é conhecido como Modelo da Terra ou Elipsóide de Revolução.

Sistema de Referência de Coordenadas Grade de fusos no Brasil

Sistema de Referência de Coordenadas Datum Córrego Alegre

SRC	DATUM	CÓDIGO EPSG
SISTEMAS DE COORDENADAS GEOGRÁFICAS	Córrego Alegre	4225
SISTEMAS DE COORDENADAS PLANAS, PROJEÇÃO UTM	Córrego Alegre / UTM zone 21S	22521
	Córrego Alegre / UTM zone 22S	22522
	Córrego Alegre / UTM zone 23S	22523
	Córrego Alegre / UTM zone 24S	22524
	Córrego Alegre / UTM zone 25S	22525

Fonte:

http://www.processamentodigital.com.br/wp-content/uploads/2015/04/QGIS28 Reprojecao de Shapefile para o Sistema de Coordenadas Plangs.pdf

Sistema de Referência de Coordenadas Datum SIRGAS 2000

SRC	DATUM	CÓDIGO EPSG
SISTEMAS DE COORDENADAS GEOGRÁFICAS	SIRGAS 2000	4674
SISTEMAS DE COORDENADAS PLANAS, PROJEÇÃO UTM	SIRGAS 2000 / UTM zone 18N	31972
	SIRGAS 2000 / UTM zone 18S	31978
	SIRGAS 2000 / UTM zone 19N	31973
	SIRGAS 2000 / UTM zone 19S	31979
	SIRGAS 2000 / UTM zone 20N	31974
	SIRGAS 2000 / UTM zone 20S	31980
	SIRGAS 2000 / UTM zone 21N	31975
	SIRGAS 2000 / UTM zone 21S	31981
	SIRGAS 2000 / UTM zone 22N	31976
	SIRGAS 2000 / UTM zone 22S	31982
	SIRGAS 2000 / UTM zone 23S	31983
	SIRGAS 2000 / UTM zone 24S	31984
	SIRGAS 2000 / UTM zone 25S	31985

Fonte:

http://www.processamentodigital.com.br/wp-content/uploads/2015/04/QGIS28 Reprojecao de Shapefile para o Sistema de Coordenadas Planas.pdf

Para calcular a distância (m) e área (m²) das nossas geometrias, precisamos fazer um projeção das nossas coordenadas de latitude e longitude em graus, para um sistema de coordenadas planares.

De acordo com as informações apresentadas, qual seria a melhor escolha de código EPSG para o estado do **Ceará**?

Datum: ??

Projeção: ??

Fuso horário: ?? Hemisfério: ??

Para calcular a distância (m) e área (m²) das nossas geometrias, precisamos fazer um projeção das nossas coordenadas de latitude e longitude em graus, para um sistema de coordenadas planares.

De acordo com as informações apresentadas, qual seria a melhor escolha de código EPSG para o estado do **Ceará**?

Datum: Córrego Alegre

Projeção: UTM Fuso horário: 24 Hemisfério: Sul

EPSG:22524

Para calcular a distância (m) e área (m²) das nossas geometrias, precisamos fazer um projeção das nossas coordenadas de latitude e longitude em graus, para um sistema de coordenadas planares.

De acordo com as informações apresentadas, qual seria a melhor escolha de código EPSG para o estado do **Ceará**?

Datum: SIRGAS 2000

Projeção: UTM Fuso horário: 24 Hemisfério: Sul

EPSG:31984

Acompanhe pelo Jupyter Notebook:

https://github.com/InsightLab/data-science-cookbook/blob/master/2020/05-geographic-information-system/Notebook_Projections.ipynb

5. Geocodificação e operação entre geometrias

Geocoding e operações entre geometrias

Acompanhe pelo Jupyter Notebook:

https://github.com/InsightLab/data-science-cookbook/blob/master/2020/05-geographic-information-system/Notebook Geometric Operations.ipvnb

5. Rede de ruas e menor caminho

Rede de ruas e menor caminho

Acompanhe pelo Jupyter Notebook:

https://github.com/InsightLab/data-science-cookbook/blob/master/2020/05-geographic-information-system/Notebook_Network_Analysis.ipynb

REFERÊNCIAS

- Atlas & Boots
 https://www.atlasandboots.com/map-projections/
- Processamento Digital Canal de conteúdo Geo
 http://www.processamentodigital.com.br/wp-content/uploads/2015/04/QGIS28_Reprojecao_de_Sh_apefile_para_o_Sistema_de_Coordenadas_Planas.pdf