Lecture 3

Polynomial Rings

Fix a commutative ring R with 1 (e.g. $R = \mathbb{Z}, R = \mathbb{Q}$, etc) Let X be an indeterminate

Definition 3.1: Polynomial Ring

A **polynomial** in X with coefficients in R is a formal, finite sum

$$a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0, \quad a_i \in R, i \in \{0, \dots, n\}$$

<u>Note:</u> If $a_n \neq 0$ and $a_m = 0$, $\forall m > n$. Then we say the **degree** of the polynomial is n. If $a_k = 1$, we often omit it from the notation, e.g

$$X^2 + 2$$

has a 1 "missing" infront of X^2 .

If $a_n = 1$, we say the polynomial is **monic**

Definition 3.2: Constant Polynomial

The set of polynomials in X w/ coefficients in R is denoted

$$R[X] := \{a_n X^n + \dots + a_0 | a_i \in R\}$$

If the degree of $p \in R[X]$ is zero, we say p is a **constant** polynomial.

Observe that there is an obvious inclusion map from a ring into the ring of polynomials, by taking each element $a \in R$ to the constant polynomial $a \in R[X]$.

$$R \to R[X]$$

$$a \mapsto a$$

Claim: R[X] is a ring.

Proof. We check the ring properties

(i) Closure under addition

$$(a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0) + (b_n X^n + b_{n-1} X^{n-1} + \dots + b_1 X + b_0)$$

= $(a_n + b_n) X^n + (a_{n-1} + b_{n-1}) X^{n_1} + \dots + (a_1 + b_1) X + (a_0 + b_0)$

(ii) Closure under multiplication

$$(a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0) \cdot (b_n X^n + b_{n-1} X^{n-1} + \dots + b_1 X + b_0)$$

= $(a_0 \cdot b_0) + (a_1 \cdot b_0 + a_0 \cdot b_1) X + (a_2 \cdot b_0 + a_1 \cdot b_1 + a_0 \cdot b_2) X^2$

$$+\cdots+\sum_{k=0}^{l}a_{k}\cdot b_{l-k}X^{l}+\cdots+(a_{n}\cdot b_{m})X^{n+m}$$

Example 3.1 $\mathbb{Z}[X], \mathbb{Q}[X], \mathbb{Z}/3\mathbb{Z}[X]$. In particular, we may write

$$X + 2, X^3 + 2X^2 + 1 \in \mathbb{Z}/3\mathbb{Z}[X]$$

Factoring polynomials depends on the coefficient ring. For example

$$X^2 - 2 \in \mathbb{Z}[X]$$

$$X^{2} - 2 = (X + \sqrt{2}) \cdot (X - \sqrt{2}) \in \mathbb{R}[X]$$

Similarly, $X^2 + 1 \in \mathbb{Z}[X], X^2 + 1 \in \mathbb{R}[X]$. These polynomials doesn't factor in either ring, but it does factor in $\mathbb{C}[X]$

$$X^2 + 1 = (X + i)(X - i)$$

it also factors in $\mathbb{Z}/2\mathbb{Z}[X]$

$$X^2 + 1 = (X+1)(X+1) \pmod{2}$$

Because $X^2 + 2X + 1 \equiv X^2 + 1 \pmod{2}$

Proposition 3.1

Let R be an integral domain and $p(X), q(X) \in R[X]$

- (i) $\deg(p(X) \cdot q(X)) = \deg p(X) + \deg q(X)$.
- (ii) $R[X]^{\times} = R^{\times}$
- (iii) R[X] is an integral domain

Proof.

(i) The leading term is

$$(a_n \cdot b_m) X^{n+m}$$

Since R is an integral domain and $a_n, b_m \neq 0$. Then $a_n \cdot b_m \neq 0$ (This also proves (iii))

(ii) Suppose $p(X) \in R[X]^{\times}$, say $p(X) \cdot q(X) = 1$. Then

$$\deg(p \cdot q) = \deg(1) = 0 \implies \deg(p) = \deg(q) = 0 \implies p \in R$$

Example 3.2 $\mathbb{Z}/4\mathbb{Z}[X]$

Consider $2X^2 + 1, 2X^5 + 3X$,

$$(2X^2+1) \cdot (2X^5+3X) = 2 \cdot 2X^7 + \text{lower terms} = 0 \cdot X^7 + \text{lower terms}$$

This implies

$$\deg((2X^2+1) \cdot (2X^5+3X)) < \deg(2X^2+1) + \deg(2X^5+3X)$$

Ring Homomorphisms

Definition 3.3: Ring homomorphism and isomorphism

Let R, S be rings. A **ring homomorphism** is a map $f: R \to S$ such that

- (i) $f(a +_R b) = f(a) +_S f(b)$ (Group homomorphism)
- (ii) $f(a \cdot_R b) = f(a) \cdot_S f(b)$

If f is a bijective ring homomorphism, we say it is a **ring isomorphism**.

We say, in this case R is **isomorphic** to S as rings and write

$$R \cong S$$

Definition 3.4

The **kernel** of a ring homomorphism $f: R \to S$ is the subset

$$\operatorname{Ker} f := f^{-1}(0_S) \subset R$$

Proposition 3.2

Let R, S be rings and $f: R \to S$ a homomorphism

- (i) Im $f \subset S$ is a subring
- (ii) Ker $f \subset R$ is a subring

Moreover, if $r \in R$, $a \in \text{Ker } f$ then $r \cdot a \in \text{Ker } f$

Proof.

(i`

Claim: $f(0_R) = 0_S$ and in particular Im $f \neq \emptyset$.

Proof. By definition of ring homomorphism

$$f(0_R) = f(0_R + 0_R) = f(0_R) + f(0_R) \implies 0_s = f(0_R)$$

Where we have subtracted (in S) $f(0_R)$ from both sides.

Suppose now $f(a), f(b) \in \text{Im } f$, then

$$f(a) \cdot f(b) = f(a \cdot b) \in \operatorname{Im} f$$

To see $f(a) - f(b) \in \text{Im } f$, it suffices to see that -f(b) = f(-b).

Claim: -f(b) = f(-b)

Proof. Again using the ring homomorphism definition

$$0 = f(0_R) = f(b + (-b)) = f(b) + f(-b) \implies f(-b) = -f(b)$$

Since $f(0_R) = 0_S \implies 0_R \in \text{Ker } f$, hence Ker f is nonempty. Suppose $a, b \in \text{Ker } f$, then

$$f(a-b) = f(a) - f(b) = 0 - 0 = 0 \implies a - b \in \text{Ker } f$$

and

$$f(a \cdot b) = f(a) \cdot f(b) = 0 \cdot 0 = 0 \implies a \cdot b \in \operatorname{Ker} f$$
 Now suppose $r \in R$
$$f(r \cdot a) = f(r) \cdot f(a) = f(r) \cdot 0 = 0$$

$$f(r \cdot a) = f(r) \cdot f(a) = f(r) \cdot 0 = 0$$

Example 3.3 Consider

$$f: \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$$

 $a \mapsto a \pmod{2}$

Check the possible situations

$$\begin{array}{c|c} \operatorname{Addition} & \overline{0} + \overline{0} = \overline{0} & \operatorname{even} + \operatorname{even} = \operatorname{even} \\ \overline{0} + \overline{1} = \overline{1} & \operatorname{even} + \operatorname{odd} = \operatorname{odd} \\ \overline{1} + \overline{1} = \overline{0} & \operatorname{odd} + \operatorname{odd} = \operatorname{even} \\ \\ \overline{0} \cdot \overline{1} = \overline{0} & \operatorname{even} \cdot \operatorname{even} = \operatorname{even} \\ \overline{0} \cdot \overline{1} = \overline{0} & \operatorname{even} \cdot \operatorname{odd} = \operatorname{even} \\ \overline{1} \cdot \overline{1} = \overline{1} & \operatorname{odd} \cdot \operatorname{odd} = \operatorname{odd} \\ \end{array}$$

Therefore $\operatorname{Ker} f = \{ \operatorname{evens} \} = 2\mathbb{Z}$ and observe that

$$f^{-1}(\overline{1}) = {\text{odds}} = 1 + 2\mathbb{Z} = {1 + 2n | n \in \mathbb{Z}} = 1 + \text{Ker } f$$

Example 3.4 The following is a non-example. Consider

$$f_n: \mathbb{Z} \to \mathbb{Z}$$
$$a \mapsto n \cdot a$$

Then

$$f_n(a+b) = n \cdot (a+b) = n \cdot a + n \cdot b = f_n(a) + f_n(b)$$

But

$$f_n(a \cdot b) = n(a \cdot b) \stackrel{?}{=} n^2(a \cdot b) = (n \cdot a) \cdot (n \cdot b) = f_n(a) \cdot f_n(b)$$

So f_n is a ring homomorphism if and only if $n^2 = n$ (i.e n = 0, 1). f_0 is the constant map zero and f_1 is the identity

Therefore f_2, f_3, \ldots are **NOT** ring homomorphisms

Example 3.5 Here is a polynomial homomorphism which maps a polynomial to its own constant term

$$\phi: \mathbb{R}[X] \to \mathbb{R}$$
$$p(X) \mapsto p(0)$$

This can easily be checked

$$\phi(p+q) = (p+q)(0) = p(0) + q(0) = \phi(p)\phi(q)$$

$$\phi(p \cdot q) = (p \cdot q)(0) = p(0) \cdot q(0) = \phi(p) \cdot \phi(q)$$

Its kernel can also be stated

$$\operatorname{Ker}\{p\in\mathbb{R}[X]\,|\,p(0)=0\}=\{p\in R[X]\,|\,p(x)=x\boldsymbol{\cdot} p'(x) \text{for some} p'\in\mathbb{R}[X]\}$$

Question: What about

$$\phi_1 : \mathbb{R}[X] \to \mathbb{R}$$

$$p(x) \mapsto p(1)$$