ATIVIDADE 1

Grupo

Nome: Geovane de Arruda Fernandes Ribeiro RA: 825145601

Esta atividade está baseada nos dois PDFs disponibilizados Material 1 e Material 2. Você deverá fazer cada um dos exercícios abaixo solicitados e copiar o enunciado e inserir sua resposta na parte indicada abaixo.

- 1) Leia o Material 1 e faça TODOS os exercícios resolvidos deste material (tópico 1.2, exercícios 1.1 até 1.11. (Verifique se você e seu grupo conseguiram chegar na resposta de cada um deles)
- 2) Faça TODOS os exercícios complementares do Material 1 (tópico 1.3, exercícios 1.12 até 1.21)
- 3) Leia o Material 2 e escolha 3 definições citadas. Em seguida, escreva 3 exemplos para cada definição escolhida. Escreva a primeira definição e os três exemplos. Faça o mesmo para as outras duas definições escolhidas. NÃO UTILIZE exemplos já dados no material!!!!
- 4) Faça os 6 exercícios do Material 2.
- 5) Procure na Internet 2 vídeos sobre alfabetos, strings, cadeias, operações com cadeias. Em seguida, para cada vídeo:
 - a) Insira o link do vídeo que você assistiu
 - b) Escolha 02 conceitos abordados no vídeo que você aprendeu ao assisti-lo (pode ser um exemplo, uma definição, uma explicação).

RESPOSTA DO ALUNO

MATERIAL 1

Tópico 1.2

exercício 1.1

Para cada conjunto abaixo:

- descreva de forma alternativa (usando outra forma de notação);
- diga se é finito ou infinito.

a) Todos os números inteiros maiores que 10;

Resposta: $\{x \in Z \mid x > 10\}$, portanto o conjunto é infinito.

Resposta: $\{y \mid y = 2x - 1, x \in \mathbb{N}\}$, portanto o conjunto é infinito.

c) Todos os países do mundo;

Resposta: $\{x \mid x \text{ \'e um pa\'is do mundo}\}$, portanto $\hat{\text{e}}$ um conjunto $\hat{\text{e}}$ finito.

d) A linguagem de programação Pascal;

Resposta: {x | x é um programa Pascal}, portanto o conjunto (de programas) é infinito.

exercício 1.2

Dado $A = \{1\}$, $B = \{1,2\}$ e $C = \{\{1\},1\}$, marque as afirmações corretas.

Respostas:

- a) $A \subset B[\checkmark] \ 2 \in Be \ 2 \notin A$
- b) $A \not\subset B [\checkmark] A \subset B$
- c) A ∈ B []
- d) $A = B[] B \not\subset A$
- e) $A \subset C[\checkmark] \{1\} \in Ce\{1\} \notin A$
- f) $A \subseteq C[\checkmark] A \subseteq C$
- g) $A \in C[\sqrt{3}] A \{1\} e\{1\} \in C$
- h) $A = C [] C \not\subset A$
- i) $1 \in A[\checkmark]$
- j) 1 ∈ C [**√**]
- k) $\{1\} \in A[]$
- 1) $\{1\} \in \mathbb{C}[\sqrt{\ }]$

m)
$$\emptyset \notin C[\checkmark]$$

n)
$$\emptyset \subseteq \mathbb{C}[\checkmark]$$

exercício 1.3

Seja A = $\{x \mid 2x = 6\}$ e b = 3. Justifique ou refute a seguinte afirmação: a = b

Resposta: A contém apenas o número 3, pois $2x = 6 \Rightarrow x = 3$.

Entretanto, a é um conjunto e b é um elemento, portanto, $A \neq b$.

exercício 1.4

Quais são todos os subconjuntos dos seguintes conjuntos?

A) =
$$\{a, b, c\}$$

Resposta:

Subconjuntos: $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$

B) =
$$\{a, \{b,c\}, D\}$$
, onde D = $\{1,2\}$

Resposta:

```
Subconjuntos: \{\emptyset, \{a\}, \{\{b,c\}\}, \{\{1,2\}\}, \{a,\{b,c\}\}, \{a,\{1,2\}\}, \{\{b,c\},\{1,2\}\}\}, \{a,\{b,c\},\{1,2\}\}\}
```

exercício 1.5

O conjunto vazio está contido em qualquer conjunto (inclusi-ve nele próprio)? Justifique a sua resposta.

Resposta:

Sim, pois a definição de subconjunto diz que $A \subseteq B$ se todo elemento de A pertence a B.O conjunto vazio não tem elementos, então qualquer afirmação sobre seus elementos é automaticamente verdadeira

exercício 1.6

Todo conjunto possui um subconjunto próprio? Justifique a sua resposta.

Se $A \neq \emptyset$, então o próprio conjunto vazio é sempre um subconjunto próprio.

Mas se $A = \emptyset$, ele não tem subconjunto próprio, pois o único subconjunto de \emptyset é ele mesmo.

exercício 1.7

Sejam A {0, 1, 2, 3, 4, 5}, B {3, 4, 5, 6, 7, 8}, C {1, 3, 7, 8}, D {3, 4}, E {1, 3}, F {1} e X um conjunto desconhecido. Para cada item abaixo, determine quais dos conjuntos A, B, C, D, E ou F podem ser iguais a X.

a) $X \subseteq A e X \subseteq B$

Resposta: $X \subseteq A \ e \ X \subseteq B \rightarrow X = D$

b) $X \not\subset B e X \subseteq C$

Resposta: $X \subseteq B$ e $X \subseteq C \rightarrow X$ pode ser C, E ou F

c) $X \not\subset A e X \not\subset C$

Resposta: $X \subseteq A \in X \subseteq C \rightarrow X = B$

d) $X \subseteq B e X \not\subset C$

Resposta: $X \subseteq B$ e $X \subseteq C \rightarrow X = B$ ou D

exercício 1.8

Sejam A um subconjunto de B e B um subconjunto de C. Suponha que $a \in A$, $b \in B$, $c \in C$, $d \notin A$, $e \notin B$, $f \notin C$. Quais das seguintes afirmações são verdadeiras?

- a) a \in C \rightarrow Afirmação verdadeira.
- b) $b \in A \rightarrow Afirmação falsa.$
- c) $c \in A \rightarrow Afirmação falsa.$
- d) $d \in B \rightarrow Afirmação falsa.$
- e) e \in A \rightarrow A afirmação é verdadeira.
- f) $f \in A \rightarrow A$ afirmação é verdadeira.

exercício 1.9

Marque os conjuntos que são alfabetos:

solução: Para cada item, a afirmação correta é marcada com o símbolo ✓.

Respostas:

- a) Conjunto dos números naturais []
- b) Conjunto dos números primos []
- c) Conjunto das letras do alfabeto brasileiro [✓]
- d) Conjunto dos algarismos arábicos [✓]
- e) Conjunto dos algarismos romanos [🗸]
- f) Conjunto $\{a, b, c, d\}$ [\checkmark]
- g) Conjunto das vogais [✓]
- h) Conjunto das letras gregas [🗸]

exercício 1.10

Sejam {a, b, c,..., z} e Dígitos {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} alfabetos. Então:

- a) Para cada um dos alfabetos abaixo, descreva o correspondente conjunto de todas as palavras:
 - a.1) Σ
 - O conjunto contém a palavra vazia (ε).
 - Contém todas as palavras possíveis formadas por letras do alfabeto: $\{\epsilon, a, b, c, ..., z, aa, ab, ac, ..., az, ba, bb, bc, ..., zz, aaa, ...\}$
 - É um conjunto infinito, pois não há limite para o número de letras em uma palavra.
 - a.2) Dígitos
 - O conjunto contém a palavra vazia (ε).

- Contém todas as palavras possíveis formadas por dígitos: $\{\epsilon, 0, 1, 2, ..., 9, 00, 01, 02, ..., 09, 10, 11, ..., 99, 000, ...\}$
- É um conjunto infinito, pois podemos formar números de qualquer comprimento.

b) Discuta as seguintes afirmações:

- b.1) Português é uma linguagem sobre Σ , ou seja, é um subconjunto de Σ^*
- O conjunto Σ^* contém todas as palavras que podem ser formadas com as letras a-z, mas não inclui espaços, acentos, pontuações ou caracteres especiais.
- Exemplo: "computador" está em Σ^* , mas "olá!" não está, porque contém "á" e "!".
- Conclusão: A afirmação é falsa, pois a língua portuguesa usa símbolos fora de Σ .
- b.2) N é uma linguagem sobre Dígitos, ou seja, é um subconjunto de Dígitos*
- O conjunto dos números naturais ($N = \{0,1,2,3,...\}$) pode ser escrito usando somente dígitos.
- Conclusão: A afirmação é verdadeira em termos de sintaxe (pois N pode ser formado com dígitos), mas falsa em termos de semântica (pois a representação binária de números não faz parte de Dígitos*).

b.3) N= Dígitos

- Falsa, pois Dígitos contém a palavra vazia (ε), que não representa nenhum número natural.

exercício 1.11

Em que condições o conjunto de todas os palíndromos sobre um alfabeto constitui uma linguagem finita?

Resposta:

O conjunto de palíndromos será finito apenas quando o alfabeto for vazio ($\Sigma = \emptyset$), pois nesse caso, o único palíndromo existente é a palavra vazia (ε).

Tópico 1.3 - Exercícos complementares

exercício 1.12

Para cada item a seguir, verifique se a afirmação é verdadeira ou falsa e justifique:

Respostas:

- a) $\emptyset \subseteq \emptyset \rightarrow Verdadeiro$
 - Qualquer conjunto está contido nele mesmo, incluindo o conjunto vazio.
- b) $\emptyset \in \emptyset \rightarrow Falso$
 - O conjunto vazio n\u00e3o tem elementos, ent\u00e3o n\u00e3o pode conter a si mesmo.
- c) $0 \in \emptyset \rightarrow Falso$
 - O conjunto vazio não contém nenhum elemento, então 0 não está nele.
- d) $\emptyset \subseteq 0 \rightarrow Falso$
 - "0" aqui é um número, não um conjunto. Subconjuntos só podem ser comparados com outros conjuntos.
- e) $\emptyset \subseteq \{0\} \rightarrow Verdadeiro$
 - O conjunto vazio é subconjunto de qualquer conjunto.
- f) $\emptyset \in \{0\} \rightarrow Falso$
 - O único elemento de {0} é o número 0, e não o conjunto vazio.

exercício 1.13

O conjunto vazio é finito? Justifique.

Sim, o conjunto vazio é finito.

Um conjunto é finito se possui um número limitado de elementos e também o conjunto vazio tem 0 elementos, o que é um número finito.

exercício 1.14

Justifique ou apresente um contraexemplo para a seguinte afirmação:

Resposta:

- Um subconjunto próprio é aquele que não é igual ao próprio conjunto.
- Se um conjunto for finito, ele sempre terá pelo menos um subconjunto próprio finito (por exemplo, Ø).
- Mas se o conjunto for infinito, pode não haver subconjuntos próprios finitos (exemplo: N, o conjunto dos números naturais).

exercício 1.15

Sejam
$$A = \{x \in \mathbb{R} \mid x^2 - 5x + 6 = 0\}$$
 e $B = \{2,3\}$. Então $A = B$?? Justifique.

Resposta:

Sim, A = B.

Resolvendo a equação quadrática:

$$x^2 - 5x + 6 = 0$$

$$(x-2)(x-3)=0$$

$$x = 2$$
 ou $x = 3$

Portanto, $A = \{2,3\}$, que é exatamente igual ao conjunto B.

exercício 1.16

Seja A = $\{x \in \mathbb{N} \mid x^4 - 10x^3 + 35x^2 - 50x + 64 = 0\}$. Denote o conjunto A por extensão.

Resposta:

- Para
$$x = 2 \rightarrow 2^4 - 10(2^3) + 35(2^2) - 50(2) + 64 = 16 - 80 + 140 - 100 + 64 = 0$$

- Para
$$x = 4 \rightarrow 4^4 - 10(4^3) + 35(4^2) - 50(4) + 64 = 256 - 640 + 560 - 200 + 64 = 0$$

- Conjunto por extensão:

$$A = \{2,4\}$$

exercício 1.17

Sobre alfabetos e conjuntos de todas as palavras:

a) Exemplifique um alfabeto Σ tal que Σ * é finito.

Resposta:

Se $\Sigma = \{x, y\}$, mas permitimos apenas palavras de no máximo 2 caracteres: $\Sigma^* = \{\epsilon, x, y, xx, xy, yx, yy\}$ (finito).

b) Em que situação um conjunto de palavras sobre um alfabeto é um alfabeto?

Resposta:

- Se cada palavra for considerada um símbolo indivisível.
- Exemplo: Se $\Sigma = \{ \text{casa, carro, moto} \}$, então cada palavra é um símbolo do alfabeto.
- c) Dado um alfabeto, em que condições o conjunto de todas palavras sobre este alfabeto (onde cada palavra é vista como um símbolo) é um alfabeto? Justifique a sua resposta.

Resposta:

- Quando cada palavra gerada pelo alfabeto é tratada como um símbolo único.
- Exemplo: se pegamos $\Sigma = \{a, b\}$, então Σ^* poderia ser um novo alfabeto, onde cada palavra (aa, ab, ba, bb, etc.) é um novo símbolo.

exercício 1.18

Para o alfabeto {a, b} apresente por extensão a linguagem formada por todas as palavras contendo exatamente 4 caracteres e que formam um palíndromo.

Um palíndromo é uma palavra que pode ser lida da mesma forma da esquerda para a direita e vice-versa.

Todas as palavras de 4 letras que obedecem a essa regra: {aaaa, abba, baab, bbbb}

exercício 1.19

Para o alfabeto Σ {ab, bd, ac, cc, d}, mostre que abdbd Σ * e ccaaac $\notin \Sigma$ *

Resposta:

- abdbd pode ser formado usando os símbolos {ab, bd}, então abdbd $\in \Sigma^*$.
- ccaaac não pode ser formado, pois "aaac" não faz parte de Σ , então ccaaac $\notin \Sigma^*$.

exercício 1.20

Desenvolva um programa em Pascal (ou outra linguagem de seu conhecimento) tal que, dada uma palavra de entrada, verifique se trata-se de um palíndromo.

Resposta:

```
palavra = input("Digite uma palavra: ")
if palavra == palavra[::-1]:
    print("É um palíndromo!")
else:
    print("Não é um palíndromo.")
```

exercício 1.21

Para que o leitor se convença plenamente da importância da matemática discreta para a computação e informática, realize duas pesquisas na internet, a saber:

a) uma sobre currículos de cursos de computação e informática no mundo,
 e sua relação com a matemática discreta. Observe que algumas vezes a
 matemática discreta é denominada de álgebra;

A Matemática Discreta é essencial para cursos de Computação, Engenharia de Software e Sistemas de Informação ao redor do mundo.

Presença nos Currículos Universitários:

- Brasil (MEC) Disciplina obrigatória nos cursos de Computação, cobrindo
 Lógica, Grafos e Linguagens Formais.
- EUA (ACM/IEEE) Universidades como MIT, Stanford e Harvard adotam a disciplina desde os primeiros semestres.
- Europa (Processo de Bolonha) Presente em cursos de IA, Blockchain e
 Segurança Digital em universidades como Oxford e TU München.

Principais Tópicos:

- ✓ Lógica Booleana Base para circuitos digitais.
- ✓ Teoria dos Grafos Aplicada em redes e inteligência artificial.
- ✓ Autômatos e Linguagens Formais Fundamentais para compiladores.
- **b**) outra sobre a importância da matemática discreta para a computação e informática e o detalhamento do porquê do termo "discreta".

Resposta:

"Discreta" significa estruturas separadas e contáveis, diferente da matemática contínua.

Aplicações na Computação:

- ✓ Lógica Digital Portas lógicas (AND, OR, NOT) usadas em circuitos eletrônicos.
- ✓ Algoritmos e Estruturas de Dados Pilhas, filas e árvores binárias.
- ✓ Criptografia Segurança digital e proteção de dados.
- ✓ Computação Gráfica Representação de imagens e modelagem 3D.

MATERIAL 2

Definições e Exemplos

Definição 1: Alfabeto

Um alfabeto, denotado por ∑, é um conjunto finito não vazio de símbolos.

Exemplos:

- 1. $\sum = \{\text{sol, lua, estrela}\}\$
- 2. $\Sigma = \{A, B, C, D, E\}$
- 3. $\Sigma = \{\text{coração, diamante, espadas, paus}\}\$

Definição 2: Palavra, Cadeia de Caracteres ou Sentença

Uma palavra é um conjunto de símbolos de um alfabeto.

Exemplos:

Dado o alfabeto $\Sigma = \{1, 2, 3, 4, 5\}$

- 1. Palavra: 12
- 2. Palavra: 345
- 3. Palavra: 21134

Definição 3: Comprimento de palavras ou tamanho

O comprimento de uma palavra é a quantidade de símbolos que ela possui.

Exemplos:

Dado $\Sigma = \{\text{gato, cachorro, pássaro}\}:$

- 1. | cachorro | = 1
- 2. | gato | = 1
- 3. | pássarocachorro | = 2

Exercícios

1. Escreva 3 palavras para cada alfabeto:

- a) $\Sigma = \{GU,BA,LA\} \rightarrow GULA,BALA,LAGU$
- b) $\Sigma = \{0, 1, ..., 9, a, b, ..., z\} \rightarrow a1b, z99, 3x2$
- c) $\Sigma = \{ \text{Maria, João, José} \} \rightarrow \text{MariaJoão, JoãoJosé, MariaJoséMaria}$
- d) $\Sigma = \{:, =, 0, 1, \dots, 9\} \rightarrow :=0, 1=9, 00:$

2. Dado $\Sigma = \{a, b\}$, escreva:

- a) $\{a, b\}$
- b) {aa, ab, ba, bb}
- c) {aaa, aab, aba, abb, baa, bab, bba, bbb}
- d) ababababababa

3. Dado $\Sigma = \{do, re, mi, fa, sol, la, si\}$ determine os comprimentos das palavras abaixo:

- a) |re| = 1
- b) | sidoremi | = 4
- c) | misimisimisi | = 6
- d) rererererere = 7

4. Dado $\Sigma = \{$ do, re, mi, fa, sol, la, si $\}$ e a palavra doremifa sobre Σ determine:

- a) Sufixos: ε, fa, mifa, remifa, doremifa
- b) Prefixos: ε, do, dore, doremi, doremifa
- c) Subpalavras: Qualquer sufixo ou prefixo

Considere os alfabetos abaixo:

a.
$$\Sigma = \{V, F\}$$

b.
$$\sum = \{a, b, c\}$$

c.
$$\Sigma = \{\text{Maria, João, Casa, Boneca}\}\$$

1. Escreva 4 palavras quaisquer sobre cada um dos alfabetos

Resposta:

a)
$$\Sigma = \{V, F\}$$

• Palavras: V, F, VF, FF

b)
$$\sum = \{a, b, c\}$$

• Palavras: a, bc, cab, abca

c)
$$\Sigma = \{\text{Maria, João, Casa, Boneca}\}\$$

Palavras: MariaCasa, JoãoBoneca, MariaJoão, CasaCasa

2. Escreva todas as palavras possiveis para

Resposta:

- a. Palavras com comprimento 4 para o alfabeto a.
 - {VVVV, VVVF, VVFV, VVFF, VFVV, VFVF, VFFV, VFFF, FVVV, FVVF,FVFV, FVFF, FFVV, FFFF, FFFV, FFFF}
- b. Palavras com comprimento 2 para o alfabeto b.
 - {aa, ab, ac, ba, bb, bc, ca, cb, cc}
- c. Palavras com comprimento 2 para o alfabeto c
 - {MariaMaria, MariaJoão, MariaCasa, MariaBoneca, JoãoMaria, JoãoJoão, JoãoCasa, JoãoBoneca, CasaMaria, CasaJoão, CasaCasa, CasaBoneca, BonecaMaria, BonecaJoão, BonecaCasa, BonecaBoneca}

3. Dadas as palavras x = VVF, y = abbc, z = VF, escreva os resultados das concatenações abaixo:

- a) xxy = VVFVVFabbc
- b) xyz = VVFabbcVF
- c) xzy = VVFVFabbc
- d) $z^2y = VFVFabbc$
- e) zεy³ = VFabbcabbcabbc (ε é a palavra vazia, então não altera o resultado)
- f) $\epsilon yx = abbcVVF$
- g) $x^2y^2 = VVFVVFabbcabbc$
- h) $xy^3x = VVFabbcabbcVVF$

4. Dado $\Sigma = \{V, F\}$

Determine os conjuntos abaixo:

- a) $\sum_0 = \{\epsilon\}$ (só contém a palavra vazia)
- b) $\sum_{1} = \{V, F\}$
- c) $\sum_2 = \{VV, VF, FV, FF\}$
- d) $\Sigma_3 = \{VVV, VVF, VFF, VFV, FVV, FVF, FFV, FFF\}$

5. Dado $\Sigma = \{a, b, c\}$

Determine os conjuntos abaixo:

- a) $\sum_{1} = \{a, b, c\}$
- b) $\sum_{2} = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}$
- c) $\sum_3 = \{aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc \}$

6. Dado $\Sigma = \{\text{maria, joão, casa, boneca}\}$

Determine os conjuntos abaixo:

- a) $\sum_{1} = \{\text{Maria, João, Casa, Boneca}\}\$
- b) $\sum_2 = \{$ Maria
Maria, Maria João, Maria
Casa, Maria Boneca, João
Maria,

JoãoJoão, JoãoCasa, JoãoBoneca, CasaMaria, CasaJoão, CasaCasa, CasaBoneca, BonecaMaria, BonecaJoão, BonecaCasa, BonecaBoneca}

Vídeo 1

O que aprendi:

- O que é uma string? Basicamente, uma sequência de caracteres usada para representar textos. Pode ser uma palavra, uma frase ou até um número guardado como texto.
- 2. Por que strings são tão importantes? Sem elas, a maioria dos programas não conseguiria interagir direito com o usuário. Tipo, tudo que a gente digita num formulário ou vê numa tela é string.

Vídeo 2

https://www.youtube.com/watch?v=zkNzDAMC2u0

O que aprendi:

- 1. Uma string é uma sequência de caracteres, como letras, números ou símbolos, que é tratada como uma unidade em programação. No contexto de várias linguagens de programação, incluindo C, as strings são representadas como vetores ou arrays de caracteres.
- 2. A palavra cadeia refere-se a uma sequência contínua de elementos ligados entre si. No contexto de strings, uma cadeia de caracteres é simplesmente uma sequência de caracteres, ou seja, uma string.