Politecnico di Bari

Complementi di Analisi Matematica

Laurea Ingegneria Informatica e Automazione

A.A. 2016/2017 Appello 10 luglio 2017 Traccia A

Cognome		Nome	N° Matricola
Programma:		precedente AA 2014/2015 \square	da AA 2014/2015 in poi \square
1)	Calcolare la trasfo	ormata del segnale periodico di periodo π	definito da
		$f(t) = \begin{cases} -1 & t \\ \cos t & t \end{cases}$	$\in [0, \pi/2]$ $\in (\pi/2, \pi]$
			6 pts.
Per gli anni accademici precedenti al 2014/2015, si sostituisca l'esercizio 1) con il seguente:			
1)	Calcolare per serie	$\int_{1/2}^{1} \frac{e^{x^2}}{x^2} $	$\mathbb{I}x.$
		V 1/ 2	6 pts.
2)	Ricavare le relazioni che sussistono tra le derivate in z_0 della somma di una serie di potenze di centro z_0 e i coefficienti della serie stessa.		
			5 pts.
3)	Calcolare	<i>(</i> I	(.2)
		$\int_{C^+(2i,1)} \frac{\operatorname{Log}_0}{(z -$	$\frac{(z^{-})}{\frac{3}{2}i)^2}\mathrm{d}z,$
	dove $C^+(2i,1)$ è la circonferenza di centro $2i$ e raggio 1, orientata positivamente.		
			6 pts.
4) Dimostrare che la funzione $z \in \mathbb{C} \mapsto \sin z$ non è limitata.			
			5 pts.
5)	Usando il metodo	dei residui, calcolare $f^{+\infty} _{e^{it}t}$	
		$\int_{-\infty}^{+\infty} \frac{e^{it}t}{1+t}$	$\overline{_4}\mathrm{d}t.$
			7 pts.
6)	Enunciare l'identi	tà di Parseval. Usarla poi insieme alla fu	nzione $f(x) = x, x \in [-1, 1]$, per dimostrare che
		$\sum_{k=1}^{+\infty} \frac{1}{k^2} =$	$\frac{\pi^2}{6}$.