

เอกสารคู่มือและคำอธิบายการใช้งาน โอลาฟ เครื่องแยกโลหะ (Olaf)

โดย

นายพีระทัศน์ เหล่ามูล รหัสนักศึกษา 643050206-0 นางสาววริษา สุทธิศัย รหัสนักศึกษา 643050209-4

เสนอ

ผู้ช่วยศาสตราจารย์ ดร.นฏกร ประมายันต์

เอกสารคู่มือการใช้งานเล่มนี้ เป็นส่วนหนึ่งของการประกอบการนำเสนอ รายวิชา ED254011 การเรียนรู้แบบคิดเองสร้างเอง (Constructionism Learning) ภาคปลาย ปีการศึกษา 2565 คณะศึกษาศาสตร์ สาขาวิชาคอมพิวเตอร์ศึกษา มหาวิทยาลัยขอนแก่น

สารบัญ

เรื่อง	หน้า
คู่มือการใช้งานโอลาฟ เครื่องแยกโลหะ (Olaf)	
1. หลักการทำงาน	1
2. ส่วนประกอบของชิ้นงาน	3
3. วัสดุอุปกรณ์	4
4. ภาคผนวก	5

คู่มือการใช้งานโอลาฟ เครื่องแยกโลหะ (Olaf)

1. <u>หลักการทำงาน</u>

1.1) ลำดับขั้นตอนการทำงาน

- 1. วางวัตถุบนแท่นวางวัตถุ
- 2. Ultrasonic Sensor ทำการ Detect ว่ามีวัตถุหรือไม่
- 3. ถ้ามีวัตถุ Inductive Proximity Sensor ทำการ Detect ว่าวัตถุเป็นโลหะหรือไม่
- 4. ถ้าวัตถุเป็นโลหะ Servo Motor หมุนไปที่ 180 องศา วัตถุตกลงไปที่ช่องสำหรับวัตถุโลหะ Servo Motor แล้วหมุนกลับมาที่ 90 องศา
- 5. ถ้าวัตถุเป็นอโลหะ Servo Motor หมุนไปที่ 0 องศา วัตถุตกลงไปที่ช่องสำหรับวัตถุอโลหะ Servo Motor แล้วหมุนกลับมาที่ 90 องศา

1.2) Flowchart

2. ส่วนประกอบของชิ้นงาน

2.1) ขึ้นงานด้านหน้า (Front)

2.2) ชิ้นงานด้านหลัง (Back)

3. <u>วัสดุอุปกรณ์</u>

3.1 อุปกรณ์

- Arduino UNO R3
- Protoboard
- Micro Servo Motor SG90
- Ultrasonic Sensor HC SR04
- Active buzzer
- 8mm Inductive Proximity Sensor
- Mini USB (Arduino-Compatible)
- Jumper Wire

3.2 อุปกรณ์อื่น ๆ

- Flute Board
- กรรไกร
- คัตเตอร์
- เทปใส
- ถัง (สำหรับทำถังขยะ)

3.3 อุปกรณ์ทดสอบ

- กระป๋องโลหะ
- ขวดพลาสติก

4. <u>ภาคผนวก</u>

- 1. วัสดุอุปกรณ์
 - 1.1 อุปกรณ์
 - Arduino UNO R3

• Protoboard

• Micro Servo Motor SG90

• Ultrasonic Sensor HC SR04

• Active buzzer

• 8mm Inductive Proximity Sensor

2. Source Code

```
#include <Servo.h>
Servo servo_5 ;
Servo servo_7 ;
int mesure_distance_cm(byte trig_pin,byte dist_pin)
  digitalWrite(trig_pin,HIGH);
  delayMicroseconds(1000);
digitalWrite(trig_pin,LOW);
   int value=(pulseIn(dist_pin,HIGH)/2)/29.1+2;
if(value>255) {value=255; }
  delay(20);
return value;
  pinMode(4,OUTPUT);
  pinMode(6,INPUT);
pinMode(3,OUTPUT);
  pinMode (val, INPUT);
pinMode (3, OUTPUT);
Serial.begin(9600);
  servo_5.attach (8);
servo_7.attach (7);
// put your main code here, to run repeatedly:
if(mesure_distance_cm(4,6)<=30){</pre>
   int sensor1 = digitalRead(val);
   if (sensor1 == 0) {
    Serial.println("ตรวจพบโลหะ");
    Serial.println();
      delay(500);
servo_7.write(0);
servo_5.write(180);
       tone(3, 10000);
      Serial.println("พบวัตถุ ไม่พบโลหะ");
Serial.println();
      delay(500);
      servo_7.write(180);
servo_5.write(0);
       tone(3, 1000);
   Serial.println("ไม่พบวัตถุ");
Serial.println();
servo_7.write(90);
servo_5.write(90);
   noTone(3);
```