Advanced Macroeconomics Klassische Wachstumsmodelle

Termin 5

Claudius Gräbner University of Duisburg-Essen Institute for Socio-Economics &

Johannes Kepler University Linz Institute for Comprehensive Analysis of the Economy (ICAE)

www.claudius-graebner.com | www.uni-due.de | www.jku.at/icae

Outline

- Im Folgenden wollen wir die bisher behandelten Theorien zum Arbeitsmarkt,
 Haushaltssektor und der Produktion zu Wachstumsmodelle kombinieren
- Wir unterscheiden dabei vier Ansätze
 - Klassische Wachstumsmodelle
 - Neoklassische Wachstumsmodelle
 - Keynesianische Wachstumsmodelle
 - Evolutorische Wachstumsmodelle
- Diese werden in den nächsten Terminen anhand von Beispielen eingeführt
- Unterschiede zeigen sich insbesondere bei...
 - ... Auswahl der Modellgleichungen und Theorie über zugrundeliegende Mechanismen
 - ... Wahl endogener und exogener Variablen
- Darüber tiefergehende epistemologische Unterschiede

Drei Bereiche und vier Gleichungen

$$w = x - vk \qquad c = x - (g_K + \delta) k$$

$1 + g_{Kt} = \frac{K_{t+1}}{K_t} = \beta \left(1 + r_t \right)$

Firmensektor

Entscheidungen über Produktion

 Firmen entscheiden was und wie viel sie produzieren

Haushaltssektor

Entscheidung über Sparen & Konsum

• Haushalte entscheiden wie viel sie konsumieren bzw. sparen

Arbeitsmarkt

Entscheidung über Arbeit und Lohn

 Haushalte entscheiden über Arbeitsangebot, Firmen über Lohn

$$\frac{K}{k(w)} = \bar{\Lambda}$$

 $w = \bar{w}$

oder

oder

$$\frac{K_{t+1}}{K_t} = 1 + g_K = 1 + n$$

Claudius Gräbner

Klassische Wachstumsmodelle

- Das Kernelement aller klassischen Wachstumsmodelle ist die Interdependenz zwischen Klassen - in der Regel Kapital und Arbeit
- Hier lernen wir zwei Arten klassischer Wachstumsmodelle kennen:
 - Das klassische Conventional Wage (Share) Model
 - Das klassische Full Employment Model
- Sie stehen für unterschiedliche Stränge innerhalb der klassischen Wachstumstheorie und stellen Grundbausteine für komplexere Modelle dar
- Unterscheiden sich durch die Mengen endogener und exogener Variablen
 - Das CW(S)M ist dabei ein endogenes Wachstumsmodell
 - Beim FEM handelt es sich um ein exogenes Wachstumsmodell
- Werden für unterschiedliche Fragen und Kontexte verwendet → nicht notwendigerweise Substitute, aber unterschiedliche Mechanismen

Erklärungsstruktur

$$w = \overline{w} \qquad \qquad v = \frac{x - w}{k}$$

Exogene Variablen: $\bar{w}, x, k/\rho, \delta, \beta$

$$\delta + g_K = \beta \nu - (1 - \beta)(1 - \delta)$$

Endogene Variablen: w, v, c, g_K

$$c = x - (g_K + \delta)k$$

Zusammenfassung der Modellgleichungen

 Insgesamt können wir das CWM durch die folgenden vier Gleichungen zusammenzufassen:

1.
$$w = x - vk$$

$$2. c = x - (g_K + \delta) k$$

3.
$$\delta + g_K = \beta v - (1 - \beta)(1 - \delta)$$

4.
$$w = \bar{w}$$

$$1. \ w = x - \left(1 - \frac{v}{\rho}\right)$$

$$2. \ c = x \left(1 - \frac{g_K + \delta}{\rho} \right)$$

3.
$$\delta + g_K = \beta v - (1 - \beta)(1 - \delta)$$

4.
$$w = \bar{w}$$

Exogene Variablen: $\bar{w}, x, k/\rho, \delta, \beta$

Endogene Variablen: w, v, c, g_K

Anwendung: comparative dynamics

- Verwenden wir das Modell um die Variation in den endogenen Variablen als Reaktion auf die Variation der exogenen Variablen abzuleiten
- Beispiel: was ist die Implikation wachsender Kapitalintensität?
- Das können wir grafisch oder algebraisch lösen. Grafisch:

- $\rho = \frac{x}{k}$ sinkt \rightarrow steilere Kurve
- w bleibt konstant $\rightarrow v$ sinkt
- Wenn $v\downarrow$, dann $g_K\downarrow$

 ρ

 Aus der Konsumfunktion ergibt sich zudem steigender Konsum für beide Klassen

 $g_K + \delta, v$

Anwendung: comparative dynamics

- Verwenden wir das Modell um die Variation in den endogenen Variablen als Reaktion auf die Variation der exogenen Variablen abzuleiten
- Beispiel: was ist die Implikation wachsender Kapitalintensität?
- Das können wir grafisch oder algebraisch lösen. Algebraisch:

$$w = \bar{w}$$

Keine Änderung in w

$$v = \frac{x - w}{k}$$

Profitrate sinkt

$$\delta + g_K = \beta v - (1 - \beta) (1 - \delta)$$

Wachstum sinkt

$$c = c^c + c^w = c^c + w$$

Konsum steigt

Anwendung: comparative dynamics

- Warum steigt der Konsum genau?
 - $c^c = (1 \beta)(1 + r)k$
 - $c^c = (1 \beta)(1 + v \delta)k$
 - $c^c = (1 \beta)(k + \nu k \delta k) = (1 \beta)(k \delta k + \nu k)$
 - $c^c = (1 \beta) ((1 \delta)k + vk)$
 - Da vk = x w und β konstant sind, muss c^c steigen
- Implikationen können auch anhand empirischer Daten untersucht werden
 - Variation in endogenen Variablen in der Empirie über Modellmechanismen erklären
 - Ableitung von nicht beobachtbaren Parametern wie eta
 - Es ist an diesen Stellen wo es zum Dissens zwischen Modellen kommt
- Auf diese Art und Weise können wir auch die Plausibilität von Modellen untersuchen (sozusagen 'process validation light')

Wiederholungs- und weiterführende Aufgaben

- Was ist das zentrale Element in klassischen Wachstumsmodellen?
- Was sind die endogenen und was die exogenen Variablen im CWM?
- Fasst die Erklärungsstruktur des CWM kurz zusammen.
- Wieso sprechen wir beim CWM von einem endogenen Wachstumsmodell?
- Ladet euch die EPWT aus Moodle herunter und berechnet für das Jahr 2014 den empirisch umbeobachtbaren Wert β für Deutschland und die USA.
- Betrachtet die Verlauf von Löhnen und Arbeitsproduktivität über die letzten 50 Jahre. Welchen Trend erkennt ihr? Was impliziert das für das CWM?

Das Classical Conventional Wage Share Model Motivation

- Über die letzten Jahre ist ein klarer Auswärtstrend für Löhne und Arbeitsproduktivität zu erkennen
- Das passt nicht zu der aktuellen Struktur des CWM:
 - Sowohl x als auch w sind als exogene Variablen bislang konstant

Quelle: EPWT 6.0

- Wir könnten diese exogenen Variablen entsprechend der Empirie steigen lassen
 - Annahme arbeits-sparendem technologischen Wandel $\rightarrow w/x \rightarrow 0$
 - Wie sieht die Lohnquote in der Empirie aus?

Das Classical Conventional Wage Share Model Motivation

- Die Lohnquote erscheint über die Zeit deutlich stabiler zu sein
- Zumindest in den USA und den meisten westlichen Ländern
 - Offene Frage: Trendwende seit den späten 80ern
 - → Annahme exogener konstanten
 Lohnquote anstatt exogenen Lohns

 Die entsprechenden Umformungen machen aus dem CWM das CWSM - das klassische Conventional Wage Share Model

Das Classical Conventional Wage Share Model Kerngleichungen

• Gemäß unserer vorherigen Beobachtung nehmen wir konstantes Wachstum der Arbeitsproduktivität um den Faktor γ an:

$$x_{t} = (1 + \gamma) x_{t-1} \rightarrow x_{t} = x_{0} (1 + \gamma)^{t}$$

• Das hat Implikationen für die Kapitelintensität k:

$$k_t = \frac{x_t}{\rho} = \frac{x_0}{\rho} \left(1 + \gamma \right)^t = k_0 \left(1 + \gamma \right)^t$$

- ullet Auch die Kapitalintensität ist dynamisch und ändert sich um Faktor γ
- Ab jetzt ist nun nicht mehr der conventional wage \bar{w} gegeben, sondern der conventional wage share $1-\bar{\pi}$ (und damit auch die Profitquote $\bar{\pi}$)
- Daraus ergibt sich dann der Lohn w_t :

$$w_t = (1 - \bar{\pi}) x_t$$

Das Classical Conventional Wage Share Model Kerngleichungen

• Daraus ergibt sich dann der Lohn w_t :

$$w_t = (1 - \bar{\pi}) x_t$$

• Wenn wir dort die Formel für x_t einsetzen:

$$w_t = (1 - \bar{\pi}) x_t = (1 - \bar{\pi}) x_0 (1 + \gamma)^t \rightarrow w_t = w_0 (1 + \gamma)^t$$

- ullet Wir sehen hier, dass der Lohn nun konstant um den Faktor γ wächst
- Um die Lohn-Profit-Plan zu bekommen erinnern wir uns, dass $x_t vk_t = w_t$:

$$w_t = x_t - vk_t = x_0 (1 + \gamma)^t - vk_0 (1 + \gamma)^t$$

• Das schöne ist, dass wir das neue Modell formal fast komplett auf das CWM zurückführen können indem wir die Gleichung durch $\left(1+\gamma\right)^t$ teilen:

$$w_0 \frac{(1+\gamma)^t}{(1+\gamma)^t} = x_0 \frac{(1+\gamma)^t}{(1+\gamma)^t} - vk_0 \frac{(1+\gamma)^t}{(1+\gamma)^t} \to w_0 = x_0 - vk_0$$

Das Classical Conventional Wage Share Model Vergleich mit dem Conventional Wage Model - Algebra

• Die Gleichung $w_0 = x_0 - vk_0$ findet sich so quasi genauso im CWM (nur ohne Zeit-Indices) \rightarrow Transformation der Variablem im CWM:

$$\tilde{x} = \frac{x}{\left(1 + \gamma\right)^t}, \, \tilde{k} = \frac{k}{\left(1 + \gamma\right)^t}, \, \tilde{w} = \frac{w}{\left(1 + \gamma\right)^t}, \, \tilde{c} = \frac{c}{\left(1 + \gamma\right)^t}$$

Diese neuen Variablen sind dann ebenfalls konstant über die Zeit hinweg

1.
$$w = x - vk$$

2. $c = x - (g_K + \delta) k$
3. $\delta + g_K = \beta v - (1 - \beta) (1 - \delta)$
4. $w = \bar{w}$

- 1. $\tilde{w} = \tilde{x} v\tilde{k}$ 2. $\tilde{c} = \tilde{x} - (g_K + \delta)\tilde{k}$ 3. $\delta + g_K = \beta v - (1 - \beta)(1 - \delta)$ 4. $\tilde{w} = (1 - \bar{\pi})\tilde{x}$
- Technisch gesehen brauchen wir also nichts neues lernen
 - Zudem: wenn $\gamma = 0$ sind die Modelle äquivalent!
 - Lediglich die Interpretation der Variablen und Gleichungen ändert sich leicht

Das Classical Conventional Wage Share Model Vergleich mit dem Conventional Wage Model - Interpretation

- Die notwendigen Re-Interpretationen werden durch das Konzept der effektiven Arbeiter:innen enorm erleichtert
 - Während x den Output pro Arbeiter:in angibt, gibt \tilde{x} den Output pro effektiver Arbeiter:in an \rightarrow eine Arbeiter:in in t ist das produktive Äquivalent von $\left(1+\gamma\right)^t$ Arbeiter:innen in t Zeitschritten
 - → Das CWM impliziert konstanten Output pro Arbeiter:in
 - → Das CWSM impliziert konstanten Output pro effektiver Arbeiter:in
- Letzteres korrespondiert zu mit Faktor γ wachsendem Output pro Arbeiter:in
- Entsprechend muss auch Konsum und Lohn re-interpretiert werden
- Dieser Pattern übrigens keine schlechte Beschreibung dessen was wir empirisch gerade in westlichen Ländern beobachten können

16 Claudius Gräbner

Das Classical Conventional Wage Share Model Vergleich mit dem Conventional Wage Model - Interpretation

- Eine alternative Darstellungsform fokussiert auf die beiden zentralen Trade-Offs im CW(S)M:
 - Konsum vs. Investment und Profite vs. Lohn
 - Profitquote $\pi = 1 (w/x)$ als Maß für Verteilung zwischen Profiten und Lohn
 - Sparquote s = 1 (c/x) als Maß für Verteilung zwischen Sparen und Konsum

$$1. \ \tilde{w} = \tilde{x} - v\tilde{k}$$

$$2. \ \tilde{c} = \tilde{x} - (g_K + \delta) \, \tilde{k}$$

3.
$$\delta + g_K = \beta v - (1 - \beta)(1 - \delta)$$

$$4. \ \tilde{w} = (1 - \bar{\pi}) \, \tilde{w}$$

1.
$$v = \pi \rho$$

$$2. g_K + \delta = s\rho$$

2.
$$g_K + \delta = s\rho$$

3. $\delta + g_K = \beta v - (1 - \beta)(1 - \delta)$

4.
$$\pi = \bar{\pi}$$

- Übrigens: bisherige Betrachtung mit nur einer Produktionstechnik
 - Das korrespondiert zu einer Leontief-Produktionsfunktion → äquivalente Implikationen für den Fall dass profitmaximierende Entrepreneure Produktionstechniken wählen

Wiederholungsfragen

- Mit welchem empirischen Problem des CWM können wir das CWSM motivieren?
- Welche Annahme liegt stattdessen dem CWSM zugrunde?
- Was verstehen wir unter einer effektiven Arbeiter:in?
- Worin liegen strukturelle und interpretatorische Unterschiede zwischen dem CWM und dem CWSM?
- Für welche Parameterkonstellation sind CWM und CWSM komplett äquivalent?
- Gegeben die vorherige Frage, welches Modell ist wissenschaftstheoretisch attraktiver?
- Warum handelt es sich sowohl beim CWM als auch dem CWSM um ein endogenes Wachstumsmodell?

Das klassische Full Employment Modell

- Das CWSM wurde über den Arbeitsmarkt mit der Annahme des üblichen Lohns ($w=\bar{w}$) bzw. der üblichen Lohnquote ($\tilde{w}=(1-\bar{\pi})\tilde{x}$ oder $\pi=\bar{\pi}$) geschlossen
- Alternativ kann ein Wachstum über die Annahme eines geräumten Arbeitsmarktes ('full employment assumption') geschlossen werden
- Gleichzeitig gibt es zahlreiche Ähnlichkeiten zum CWSM:
 - Aufgrund von arbeits-sparendem technischen Wandel wachsen k und x mit Rate γ
 - Die Variablen mit Basis der effektiven Arbeiter:innen sind \tilde{k} und \tilde{x} und bleiben konstant
 - Die Theorien der Produktion und für das Investment (und damit die ersten drei Modellgleichungen) bleiben genau gleich
- Hinzu kommt die Annahme konstanten Bevölkerungswachstums
- Zudem: vierte Modellgleichung wegen anderer Arbeitsmarkttheorie anders

Das klassische Full Employment Modell Alternative Theorie für den Arbeitsmarkt

- Vorher: Annahme eines herkömmlichen Lohnes
- Jetzt: Arbeitsangebot wächst mit gegebener Rate und der Lohn passt sich so an, dass der Arbeitsmarkt geräumt wird
 - $N_t^S = N_0 (1+n)^t$
- Ohne die Möglichkeit der profitmaximierenden Technologiewahl besteht die Möglichkeit eines Mismatches $N_t^S \neq N_t^D$
 - Zu wenig Kapitel → Arbeitslosigkeit → sinkender Lohn
 - Zu viel Kapitel → Unterauslastung → steigender Lohn
- Im Gleichgewicht gilt dann aber:
 - $\frac{K_t}{k_t} = N_t^S$ → ausreichend Jobs für Vollbeschäftigung
 - Erinnerung: $\frac{K}{k} = \frac{K}{K/N} = N$

Das klassische Full Employment Modell

Alternative Theorie für den Arbeitsmarkt

- Im Gleichgewicht gilt dann aber: $K_t/k_t = N_t^S$
- Damit das in der nächsten Periode auch noch so ist, muss der Kapitelstock mit dem Arbeitsangebot 'mitwachsen':

$$N_{t+1}^{S} = (1+n)N_{t}^{S}$$

$$N_{t+1}^{S} = (1+n)\frac{K_{t}}{k_{t}} = \frac{K_{t+1}}{k_{t+1}}$$

$$N_{t+1}^{S} = (1+n)\frac{K_{t}}{k_{t}} = \frac{K_{t+1}}{k_{t+1}} = \frac{(1+g_{K})K_{t}}{(1+\gamma)k_{t}}$$

Natürliche Wachstumsrate

Das impliziert:
$$(1+n) = \frac{\left(1+g_K\right)}{\left(1+\gamma\right)} \rightarrow 1+g_K = (1+n)\left(1+\gamma\right) \approx 1+n+\gamma$$

 Natürliche Wachstumsrate als Zielgröße für das Kapitalwachstum wenn es Vollbeschäftigung geben soll → vierte Modellgleichung

Das klassische Full Employment Modell Modellgleichungen und Abgrenzung vom CWSM

Insgesamt haben wir damit das folgende Gleichungssystem:

1.
$$\tilde{w} = \tilde{x} - v\tilde{k}$$

$$2. \ \tilde{c} = \tilde{x} - (g_K + \delta) \ \tilde{k}$$

3.
$$\delta + g_K = \beta v - (1 - \beta)(1 - \delta)$$

4.
$$1 + g_K = (1 + n) (1 + \gamma)$$

1.
$$\tilde{w} = \tilde{x} - v\tilde{k}$$

$$2. \ \tilde{c} = \tilde{x} - (g_K + \delta) \, \tilde{k}$$

3.
$$\delta + g_K = \beta v - (1 - \beta)(1 - \delta)$$

$$4. \ \tilde{w} = (1 - \bar{\pi}) \, \tilde{w}$$

Exogene Variablen: $\tilde{k}, \tilde{x}, \delta, \beta, n, \gamma$

Endogene Variablen: $\tilde{w}, v, \tilde{c}, g_K$

Exogene Variablen: $\tilde{k}, \tilde{x}, \delta, \beta, \bar{\pi}$

Endogene Variablen: $\tilde{w}, v, \tilde{c}, g_K$

- Damit ist Wirtschaftswachstum nicht mehr endogen, sondern wird durch das (exogen gegebene) Bevölkerungswachstum bestimmt
 - Anders als im CV(S)M hat eine größere Sparneigung der Kapitalist:innen keinen Effekt auf Wachstum → würden durch Änderungen in den Löhnen ausgeglichen

Das klassische Full Employment Modell Mechanismus zur Räumung des Arbeitsmarktes

- Auf den ersten Blick wirkt das FEM fast neoklassisch
 - Der Mechanismus, der für Vollbeschäftigung sorgt, ist jedoch ganz anders
 - Situationen des Nicht-Gleichgewichts sind im FEM instabil:

• Im neoklassischen Kontext ist der Mechanismus anders:

Das klassische Full Employment Modell Ausblick

- Wie im Falle des CW(S)M funktioniert das Modell äquivalent für den Fall von unendlich vielen Produktionstechniken und einer Cobb-Douglas Produktionsfunktion
- Empirisch problematisch am FEM (und am CWSM) ist, dass Wachstums- und Profitraten über die Zeit hinweg konstant bleiben
 - In echten Ökonomien nehmen diese Raten tendenziell ab
- Um diese Regularität auch im Modell abzubilden, können wir aber die Modellierung des technologischen Wandels anpassen
 - Details siehe Kapitel 7 in Foley et al. (2019)
- Typisches Prinzip in der Arbeit mit Wachstumsmodellen: man findet eine Regularität, die dem Modell widerspricht oder exogen bleibt und man ergänzt endogene und exogene Variablen um dieses Phänomen zu erklären

Wiederholungsfragen

- Welche Variablen sind im FEM endogen, welche exogen? Wo liegen hier die Unterschiede zum CW(S)M?
- Welcher Faktor bestimmt im FEM letztendlich die Wachstumsrate der Ökonomie?
- Warum sprechen wir hier von einem exogenen Wachstumsmodell?
- Inwiefern unterscheidet sich der Mechanismus, welcher der Räumung des Arbeitsmarktes im klassischen FEM zugrundeliegt von dem, der den neoklassischen FEM zugrundeliegt?
- Mit welcher empirischen Beobachtung können wir die weitere Endogenisierung von technologischem Wandel motivieren?

Klassische Wachstumsmodelle - Zusammenfassung

- In klassischen Wachstumsmodellen ist das Zusammenspiel ökonomischer Klassen - ins. Kapital und Arbeit - zentral
- Wir haben zwei zentrale Modelle kennengelernt
 - Das CW(S)M als endogenes Wachstumsmodell
 - Das FEM als exogenes Wachstumsmodell
- Beide Modelle sind empirisch gesehen gute Ausgangsmodelle
- Viele wichtige Aspekte bleiben aber exogen → unattraktiv
- Je nach Erkenntnisinteresse können sie aber leicht um weitere Gleichungen erweitert werden um zusätzliche Variablen zu endogenisieren
 - Siehe Beispiel des technologischen Wandels
- Klassische Wachstumsmodelle sind heute weiterhin beliebt, aber nicht ansatzweise so verbreitet wie ihre neoklassischen Pendants

Wiederholungsfragen

- Fasst die Erklärungsstruktur des CW(S)M und des FEM kurz zusammen. Wo liegen die zentralen Unterschiede?
- Warum sprechen wir beim CW(S)M von einem endogenen und beim FEM von einem exogenen Wachstumsmodell?
- Mit welchem empirischen Problem des CWM können wir das CWSM motivieren?
- Für welche Parameterkonstellation sind CWM und CWSM äquivalent?
- Welcher Faktor bestimmt im FEM am Ende die Wachstumsrate der Ökonomie?
- Inwiefern unterscheidet sich der Mechanismus, welcher der Räumung des Arbeitsmarktes im klassischen FEM zugrundeliegt von dem, der den neoklassischen FEM zugrundeliegt?

