Lecture16 Coreference Resolution

创建时间: 2020/1/6 15:36 **更新时间**: 2020/1/13 21:03

作者: wjj4work@163.com

Coreference Resolution共指消解

idea:我们有一个文本,找到提到实体的地方,共指消解就是找到提到了同一个实体的那些地方。

Barack Obama nominated Hillary Rodham Clinton as his secretary of state on Monday. He chose her because she had foreign affairs experience as a former First Lady.

应用:

全文理解、机器翻译、对话系统、

Coreference Resolution in Two Steps

1. 检测提及实体的地方

mention:指向某个实体的一段文本。

有三种类型的mention:代词、命名实体、宁次短语

可以使用其他的NLP系统作为预处理系统来查找mention。对代词而言,它们是言语标记的一部分;对于命名实体使用NER系统;对于名词短语,需要解析器根据句子结构找到名词短语的位置(尤其是选区解析)

但是存在一些不涉及指代的词,比如

(Every student, No student, The best donut in the world100, miles),

How to deal with these bad mentions?

训练分类器,过滤掉他们或者使所有mentions作为候选mentions,再进行下一步聚类

2. 将这些提及聚类

Can we avoid a pipelined system?

训练一个专门用于 mention 检测的分类器,而不是使用POS标记器、NER系统和解析器。 甚至端到端共同完成 mention 检测和共指解析,而不是两步。

Coreference

指代是指当两个mention指向同一个实体。

anaphora回指:文中的一些术语没有独立的参考,并通过将他们与文中的另一个内容联系起来来确定他们的参考。

Barack Obama said he would sign the bill. antecedent anaphor

he是一个照应者,可以追溯到Obama

Anaphora vs Coreference

• 前面已经说到了不是所有的名词短语都有指代

her指向dancer, 尽管没有参考仍可以有照应的文本关系

We went to see a concert last night. The tickets were really expensive.

这也被称为anaphora关系,但它们不是指代关系,因为音乐会和门票是两个不同的实

体。称为bridging anaphora

Cataphora后指

Coreference Models

- 基于规则的
- mention pair
- mention ranking (最简单)
- 聚类(难以从中获得最佳性能)

Hobbs' naive algorithm

仅用于寻找代词的参考,也可以延伸到其他案例。可以作为共指消解的 baseline

基于知识的代词指代

- She poured water from the pitcher into the cup until it was full
- She poured water from the pitcher into the cup until it was empty"

The city council refused the women a permit because they feared violence.

The city council refused the women a permit because they advocated violence.

这些例子中的两句话有了相同的句子结构,但不能用Hobbs的方法解决

mention pair

训练一个二进制分类器判断每一对mention是共指的还是非共指的,然后将文本从左到右移动,每当遇到新的mention,根据之前的每一个mention来评估

• $y_{ij} = 1$ if mentions m_i and m_j are coreferent, -1 if otherwise

根据阈值来建立共指连接,使用传递闭包获得集群。但是可能会过度集群,如果有一个共指连接判断错误,就会导致两个 cluster 被错误地合并了

mention ranking

对于每一个mention,试图找到在他之前出现的有关的先行词

I 只能选择NA作为自己的先行词,而she可以选择前面五个作为先行词,分别用softmax 计算得分,只添加得分最高的共指连接。

当前mention与它所关联的任何一个候选先行词相关联。将概率最大化:

$$\sum_{j=1}^{i-1} \mathbb{1}(y_{ij} = 1) p(m_j, m_i)$$

· Turning this into a loss function:

$$J = \sum_{i=2}^{N} -\log \left(\sum_{j=1}^{i-1} \mathbb{1}(y_{ij} = 1) p(m_j, m_i) \right)$$

Iterate over all the mentions in the document

Usual trick of taking negative log to go from likelihood to loss

和 mention-pair 模型几乎一样,除了每个 mention 只分配一个先行词

怎么计算这些概率得分的?

- 经典做法:有很多特征和基于特征的统计分类器。例如性别、相似语义等
- 神经系统

输入层:词嵌入和一些类别特征

• End-to-end Model

第一步从词开始,对于每一个词,查找他的embedding,还将加入字符级CNN,量他们的连接作为每一个token的表示。

然后在整个句子中来回运行深度双向LSTM

接下来,对于每一个子序列,

将每段文本 i 从 START(i)到 END(i)表示为一个向量

 Next, represent each span of text i going from START(i) to END(i) as a vector. For example, for "the postal service"

xi 是 span 的注意力加权平均的词向量

最后,为每个 span 对打分来决定他们是不是共指 mentions

基于聚类

开始时每个 mention 在它自己的单独集群中,每一步合并两个集群

Google recently ... the company announced Google Plus ... the product features ...

当没有集群要合并时,算法停止。 mention pair很难判断,但是cluster pair比较容易

Coreference Evaluation

MUC, CEAF, LEA, B-CUBED, BLANC 例如, B-CUBED: 对于每个 mention, 计算其准确率和召回率 然后平均每个个体的准确率和召回率

在集群下,会有很高的精确度,但召回率很差;如果超过集群,会得到很好的召回率,但 精确度很低。