Álgebra Linear e Geometria Analítica

Aplicações Lineares

Departamento de Matemática Universidade de Aveiro

Aplicação linear

Sejam $\mathcal V$ e $\mathcal W$ espaços vetoriais reais.

Uma aplicação linear (ou transformação linear) de ${\mathcal V}$ em ${\mathcal W}$ é uma função

$$\phi: \mathcal{V} \to \mathcal{W} \atop X \mapsto \phi(X)$$

tal que

- 1. $\phi(X + Y) = \phi(X) + \phi(Y)$, $\forall X, Y \in \mathcal{V}$;
- **2.** $\phi(cX) = c \phi(X)$, $\forall c \in \mathbb{R}$, $\forall X \in \mathcal{V}$.

Se W = V, então ϕ diz-se um operador linear (ou endomorfismo) de V.

Exemplos de aplicações lineares

1. Em \mathbb{R}^2 , a reflexão em relação ao eixo dos xx é dada pelo operador linear

$$\phi: \mathbb{R}^2 \to \mathbb{R}^2 (x,y) \mapsto (x,-y)$$

2. A rotação em \mathbb{R}^3 em torno do eixo dos zz de ângulo θ é o operador linear

$$\phi: \mathbb{R}^3 \to \mathbb{R}^3 (x, y, z) \mapsto (x \cos(\theta) - y \sin(\theta), x \sin(\theta) + y \cos(\theta), z)$$

3. A derivada de polinómios (funções deriváveis) é a aplicação linear

$$\phi: \mathcal{P}_n \to \mathcal{P}_{n-1}$$
$$p(x) \mapsto p'(x)$$

4. A primitiva (nula em a) de um polinómio é obtida pela aplicação linear

$$\phi: \mathcal{P}_n \to \mathcal{P}_{n+1}$$
$$p(x) \mapsto \int_a^x p(t) dt$$

Aplicações Lineares ALGA 💆 3/18

Propriedades e caraterização de uma aplicação linear

Teorema: Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então

- $\phi(0_{\nu}) = 0_{\nu}$.
- \bullet ϕ é uma aplicação linear se e só se

$$\phi\left(c_1X_1+\cdots+c_kX_k\right)=c_1\phi(X_1)+\cdots+c_k\phi(X_k),$$

para quaisquer $X_1, ..., X_k \in \mathcal{V}$ e $c_1, ..., c_k \in \mathbb{R}$, com $k \geq 2$.

Corolário: Sejam $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear e $\mathcal{B}_{\mathcal{V}} = (X_1, ..., X_n)$ uma base de \mathcal{V} . Então, ϕ é completamente determinada por $\phi(X_1), ..., \phi(X_n)$.

Aplicações Lineares ALGA 🖽 4/18

Determinar a aplicação linear $\phi: \mathcal{V} \to \mathcal{W}$, com $\mathcal{V} = \mathbb{R}^2$ e $\mathcal{W} = \mathbb{R}^3$, sabendo que

$$\phi(1,1) = (2,3,1) \text{ e } \phi(1,0) = (1,2,1).$$

- (1,1) e (1,0) são l.i. e, portanto, $\mathcal{B}_{\mathcal{V}} = ((1,1),(1,0))$ é base de \mathbb{R}^2 ;
- $\phi(c_1(1,1)+c_2(1,0))=c_1\phi(1,1)+c_2\phi(1,0)$, para todo $c_1,c_2\in\mathbb{R}$;
- se $(x_1, x_2) = c_1(1, 1) + c_2(1, 0) = (c_1 + c_2, c_1)$, então

$$\begin{cases} c_1 + c_2 = x_1 \\ c_1 = x_2 \end{cases} \iff \begin{cases} c_1 = x_2 \\ c_2 = x_1 - x_2 \end{cases}$$

• $\phi(x_1, x_2) = x_2\phi(1, 1) + (x_1 - x_2)\phi(1, 0)$ = $x_2(2, 3, 1) + (x_1 - x_2)(1, 2, 1)$ = $(x_1 + x_2, 2x_1 + x_2, x_1)$.

Aplicações Lineares ALGA 💆 5/18

Aplicações lineares e vetores de coordenadas

Sejam $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear, $X \in \mathcal{V}$ e $\phi(X) \in \mathcal{W}$, $\mathcal{B}_{\mathcal{V}} = (X_1, \dots, X_n)$ uma base de \mathcal{V} e $\mathcal{B}_{\mathcal{W}}$ uma base de \mathcal{W} .

Qual a relação entre os vetores de coordenadas $[X]_{\mathcal{B}_{\mathcal{V}}}$ e $[\phi(X)]_{\mathcal{B}_{\mathcal{W}}}$?

$$[X]_{\mathcal{B}_{\mathcal{V}}} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} \Longrightarrow \qquad X = a_{1}X_{1} + \dots + a_{n}X_{n}$$

$$\Rightarrow \qquad \phi(X) = a_{1}\phi(X_{1}) + \dots + a_{n}\phi(X_{n})$$

$$\Rightarrow \qquad [\phi(X)]_{\mathcal{B}_{\mathcal{W}}} = a_{1}[\phi(X_{1})]_{\mathcal{B}_{\mathcal{W}}} + \dots + a_{n}[\phi(X_{n})]_{\mathcal{B}_{\mathcal{W}}}$$

$$\Rightarrow \qquad [\phi(X)]_{\mathcal{B}_{\mathcal{W}}} = [[\phi(X_{1})]_{\mathcal{B}_{\mathcal{W}}} \cdot \dots \cdot [\phi(X_{n})]_{\mathcal{B}_{\mathcal{W}}}] \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix}$$

$$M(\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{B}_{\mathcal{W}}) \qquad [X]_{\mathcal{B}_{\mathcal{V}}}$$

Aplicações Lineares ALGA 💆 6/18

Matriz representativa de uma aplicação linear

Teorema: Sejam $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear, $\mathcal{B}_{\mathcal{V}} = (X_1, \dots, X_n)$ uma base de \mathcal{V} e $\mathcal{B}_{\mathcal{W}}$ uma base de \mathcal{V} .

Para cada
$$X \in \mathcal{V}$$
,

$$[\phi(X)]_{\mathcal{B}_{\mathcal{W}}} = M(\phi, \underline{\mathcal{B}}_{\mathcal{V}}, \mathcal{B}_{\mathcal{W}})[X]_{\underline{\mathcal{B}}_{\mathcal{V}}}$$

onde

$$M(\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{B}_{\mathcal{W}}) = [[\phi(X_1)]_{\mathcal{B}_{\mathcal{W}}} \cdots [\phi(X_n)]_{\mathcal{B}_{\mathcal{W}}}]$$

é a matriz representativa de ϕ relativamente às bases $\mathcal{B}_{\mathcal{V}}$ e $\mathcal{B}_{\mathcal{W}}$.

As colunas desta matriz são os vetores das coordenadas na base $\mathcal{B}_{\mathcal{W}}$ das imagens dos vetores da base $\mathcal{B}_{\mathcal{V}}$.

Aplicações Lineares ALGA 💆 7/18

Determinar a matriz da aplicação linear $\phi: \mathcal{V} \to \mathcal{W}$ do exemplo 1 relativa às bases $\mathcal{B}_{\mathcal{V}}$ de $\mathcal{V} = \mathbb{R}^2$ e $\mathcal{B}_{\mathcal{W}} = ((1,0,1), (1,1,0), (0,1,1)) \text{ de } \mathcal{W} = \mathbb{R}^3.$

Pela definição,

$$M(\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{B}_{\mathcal{W}}) = \left[[\phi(1,1)]_{\mathcal{B}_{\mathcal{W}}} \ [\phi(1,0)]_{\mathcal{B}_{\mathcal{W}}} \right].$$

Basta calcular

$$\begin{split} & [\phi(\textbf{1},\textbf{1})]_{\mathcal{B}_{\mathcal{W}}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} \iff (2,3,1) = \alpha_1(1,0,1) + \alpha_2(1,1,0) + \alpha_3(0,1,1), \\ & [\phi(\textbf{1},\textbf{0})]_{\mathcal{B}_{\mathcal{W}}} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} \iff (1,2,1) = \beta_1(1,0,1) + \beta_2(1,1,0) + \beta_3(0,1,1). \end{split}$$

$$\begin{array}{lll} \text{Obt\^{e}m-se os sistemas} & \begin{cases} \alpha_1+\alpha_2=2\\ \alpha_2+\alpha_3=3\\ \alpha_1+\alpha_3=1 \end{cases} & \text{e} & \begin{cases} \beta_1+\beta_2=1\\ \beta_2+\beta_3=2\\ \beta_1+\beta_3=1 \end{cases} \end{cases}$$

que se podem resolver em simultâneo utilizando a matriz ampliada:

$$\begin{bmatrix} 1 & 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 3 & 2 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} \ \Rightarrow \ \textit{M}(\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{B}_{\mathcal{W}}) = \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \\ \alpha_3 & \beta_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

ALGA 🖽 8/18 Aplicações Lineares

Determinação de uma matriz representativa

Método para a determinação de uma matriz representativa de $\phi: \mathbb{R}^n \to \mathbb{R}^m$.

Sejam

$$\phi: \mathcal{V} \to \mathcal{W}$$
 uma aplicação linear, com $\mathcal{V} = \mathbb{R}^n$ e $\mathcal{W} = \mathbb{R}^m$ $\mathcal{B}_{\mathcal{V}} = (X_1, \ldots, X_n)$ uma base de \mathcal{V} , $\mathcal{B}_{\mathcal{W}} = (Y_1, \ldots, Y_m)$ uma base de \mathcal{W} e \mathcal{C}_m a base canónica de $\mathcal{W} = \mathbb{R}^m$.

Então,

$$[M(\mathcal{B}_{\mathcal{W}}, \mathcal{C}_m)|M(\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{C}_m)] = [Y_1 \cdots Y_m|\phi(X_1) \cdots \phi(X_n)] \sim [I_m|M(\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{B}_{\mathcal{W}})]$$

\(\daggered{\tau}\)

método de eliminação de Gauss-Jordan

Aplicações Lineares ALGA 💆 9/18

Mudança das bases da matriz de uma aplicação linear

As matrizes da aplicação linear $\phi: \mathcal{V} \to \mathcal{W}$ relativas às bases $\mathcal{S}_{\mathcal{V}}$ de \mathcal{V} e $\mathcal{S}_{\mathcal{W}}$ de \mathcal{W} e, respetivamente, às bases $\mathcal{T}_{\mathcal{V}}$ de \mathcal{V} e $\mathcal{T}_{\mathcal{W}}$ de \mathcal{W} , satisfazem

$$M(\phi, \mathfrak{T}_{\mathcal{V}}, T_{\mathcal{W}}) = M(\mathcal{S}_{\mathcal{W}}, \mathfrak{T}_{\mathcal{W}}) M(\phi, \mathcal{S}_{\mathcal{V}}, \mathcal{S}_{\mathcal{W}}) M(\mathfrak{T}_{\mathcal{V}}, \mathcal{S}_{\mathcal{V}})$$

onde $M(\mathcal{T}_{\mathcal{V}}, \mathcal{S}_{\mathcal{V}})$ e $M(\mathcal{S}_{\mathcal{W}}, \mathcal{T}_{\mathcal{W}})$ são as matrizes de mudança da base $\mathcal{T}_{\mathcal{V}}$ para a base $\mathcal{S}_{\mathcal{V}}$ de \mathcal{V} e, respetivamente, da base $\mathcal{S}_{\mathcal{W}}$ para a base $\mathcal{T}_{\mathcal{W}}$ de \mathcal{W} .

$$\begin{array}{ccccc} \phi: & \mathcal{V} & \xrightarrow{\qquad\qquad} & \mathcal{W} \\ & & \stackrel{M(\phi, \mathbb{S}_{\mathcal{V}}, \mathbb{S}_{\mathcal{W}})}{\longrightarrow} & [\phi(X)]_{\mathbb{S}_{\mathcal{W}}} \\ M(\mathbb{T}_{\mathcal{V}}, \mathbb{S}_{\mathcal{V}}) & \uparrow & \downarrow & M(\mathbb{S}_{\mathcal{W}}, \mathbb{T}_{\mathcal{W}}) \\ & [X]_{\mathbb{T}_{\mathcal{V}}} & \xrightarrow{\qquad\qquad} & [\phi(X)]_{\mathbb{T}_{\mathcal{W}}} \end{array}$$

Aplicações Lineares ALGA 🖽 10/18

Determinar $\phi: \mathcal{V} \to \mathcal{W}$ do exemplo 1 usando mudanças de bases.

Como
$$\phi(1,1)=(2,3,1), \phi(1,0)=(1,2,1)$$
 e $\mathcal{B}_{\mathcal{V}}=((1,1),(1,0)),$ tem-se

$$\phi(X) = [\phi(X)]_{\mathcal{C}_3} = M(\phi, \frac{\mathcal{C}_2}{2}, \mathcal{C}_3) [X]_{\mathcal{C}_2} = M(\phi, \frac{\mathcal{C}_2}{2}, \mathcal{C}_3) X,$$

sendo

•
$$M(\phi, \mathcal{C}_2, \mathcal{C}_3) = M(\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{C}_3) M(\mathcal{C}_2, \mathcal{B}_{\mathcal{V}})$$
, com

•
$$M(\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{C}_3) = \begin{bmatrix} [\phi(1,1)]_{\mathcal{C}_3} & [\phi(1,0)]_{\mathcal{C}_3} \end{bmatrix} = \begin{bmatrix} 2 & 1\\ 3 & 2\\ 1 & 1 \end{bmatrix} e$$

•
$$M(\mathcal{C}_2, \mathcal{B}_{\mathcal{V}}) = M(\mathcal{B}_{\mathcal{V}}, \mathcal{C}_2)^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{-1}$$
.

Logo,

$$\phi(X) = M(\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{C}_3) \ M(\mathcal{C}_2, \mathcal{B}_{\mathcal{V}}) \ X = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_1 + x_2 \\ x_1 \end{bmatrix}.$$

Aplicações Lineares ALGA 🖽 11/18

Operadores lineares, matrizes semelhantes e identidade

No caso de um operador linear $\phi: \mathcal{V} \to \mathcal{V}$ consideram-se, geralmente, matrizes relativas a uma única base. Assim, sendo \mathcal{S} e \mathcal{T} duas bases de \mathcal{V} ,

$$M(\mathfrak{T},\mathfrak{T}) = M(\mathfrak{T},\mathfrak{S}) M(\phi,\mathfrak{S},\mathfrak{S}) M(\mathfrak{S},\mathfrak{T})$$
$$= (M(\mathfrak{S},\mathfrak{T}))^{-1} M(\phi,\mathfrak{S},\mathfrak{S}) M(\mathfrak{S},\mathfrak{T}).$$

Teorema: Duas matrizes são semelhantes se e só se são matrizes representativas do mesmo operador linear relativas a duas bases diferentes.

A aplicação (operador) identidade de \mathcal{V} é $\mathrm{id}_{\mathcal{V}}: \mathcal{V} \to \mathcal{V}$ tal que $\mathrm{id}_{\mathcal{V}}(X) = X$.

- A matriz da aplicação identidade relativa a qualquer base S de V é a matriz identidade: $M(\mathrm{id}_{V}, S, S) = I$.
- A matriz da aplicação identidade relativa às bases S e T de V é a matriz de mudança da base S para a base T:

$$M(\mathrm{id}_{\mathcal{V}}, \mathcal{S}, \mathcal{T}) = M(\mathcal{S}, \mathcal{T}).$$

Aplicações Lineares ALGA 🖽 12/18

Núcleo e imagem de uma aplicação linear

Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. O núcleo de ϕ é o conjunto

$$\operatorname{ker}(\phi) = \{ X \in \mathcal{V} : \phi(X) = 0_{\mathcal{W}} \}.$$

A imagem de ϕ é o conjunto

$$im(\phi) = \{\phi(X) : X \in \mathcal{V}\}\$$

de todos os vetores de \mathcal{W} que são imagem de algum vetor de \mathcal{V} .

Teorema: Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então

- $ightharpoonup \ker(\phi)$ é um subespaço vetorial de \mathcal{V} ;
- ightharpoonup im (ϕ) é um subespaço vetorial de \mathcal{W} .

Exercício:

Dada A uma matriz $m \times n$ e ϕ a aplicação linear $\phi : \mathbb{R}^n \to \mathbb{R}^m$, com $\phi(X) = AX$, mostrar que $\ker(\phi) = \mathcal{N}(A)$ e $\operatorname{im}(\phi) = \mathcal{C}(A)$.

Aplicações Lineares ALGA 🖽 13/18

Determinar $\ker(\phi)$ e $\operatorname{im}(\phi)$ para $\phi: \mathbb{R}^3 \to \mathbb{R}^2$ definida por

$$\phi(x,y,z)=(x+y,x+y+z).$$

$$ker(\phi) = \{X \in \mathbb{R}^3 : \phi(X) = (0,0)\}$$
$$= \{(x,y,z) \in \mathbb{R}^3 : y = -x, z = 0\}$$
$$= \{(x,-x,0) : x \in X \in \mathbb{R}\}.$$

$$\operatorname{im}(\phi) = \{ Y \in \mathbb{R}^2 : \ \phi(X) = Y, \ X \in \mathbb{R}^3 \}$$

$$= \{ (u, v) \in \mathbb{R}^2 : \ \phi(x, y, z) = (u, v), \ (x, y, z) \in \mathbb{R}^3 \}$$

$$= \{ (u, v) : \ u = x + y, \ v = x + y + z, \ (x, y, z) \in \mathbb{R}^3 \}.$$

$$[A|B] = \begin{bmatrix} 1 & 1 & 0 & u \\ 1 & 1 & 1 & v \end{bmatrix} \xrightarrow{I_0 \leftarrow I_0 - I_1} \begin{bmatrix} 1 & 1 & 0 & u \\ 0 & 0 & 1 & v - u \end{bmatrix}$$

14/18

Para qualquer $(u, v) \in \mathbb{R}^2$, car(A) = car(A|B) = 2, ou seja, o sistema AX = B é possível. Portanto, $im(\phi) = R^2$.

Aplicação linear injetiva, sobrejetiva e isomorfismo

Recordar que uma função $\phi: \mathcal{V} \to \mathcal{W}$ é

- ▶ injetiva se, $\forall X_1, X_2 \in \mathcal{V}$, $X_1 \neq X_2 \Leftrightarrow \phi(X_1) \neq \phi(X_2)$, ou, equivalentemente, $\phi(X_1) = \phi(X_2) \Rightarrow X_1 = X_2$;
- ightharpoonup sobrejetiva se im $(\phi) = \mathcal{W}$,
- um isomorfismo se é injetiva e sobrejetiva, isto é, se é bijetiva.

Teorema: Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então

- ϕ é injetiva \iff $\ker(\phi) = \{0_{\mathcal{V}}\}$ \iff $\dim \ker(\phi) = 0$.
- ϕ é sobrejetiva \iff $\operatorname{im}(\phi) = \mathcal{W} \iff$ $\operatorname{dim}\operatorname{im}(\phi) = \operatorname{dim}\mathcal{W}$.

A aplicação linear do Exemplo 4 é sobrejetiva (im(ϕ) = \mathbb{R}^2) mas não é injetiva (ker(ϕ) \neq {(0,0,0)}), logo não é um isomorfismo.

Aplicações Lineares ALGA 🖽 15/18

Núcleo e espaço nulo, imagem e espaço das colunas

```
Sejam \phi: \mathcal{V} \to \mathcal{W} uma aplicação linear, \mathcal{B}_{\mathcal{V}} uma base de \mathcal{V}, dim \mathcal{V} = n, \mathcal{B}_{\mathcal{W}} uma base de \mathcal{W}, dim \mathcal{W} = m, A = M[\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{B}_{\mathcal{W}}] (matriz m \times n) e \mathcal{N}(A) e \mathcal{C}(A) são, respetivamente, o espaço nulo e o espaço das colunas de A.
```

Teorema:

- $X \in \ker(\phi) \Leftrightarrow [X]_{\mathcal{B}_{\mathcal{V}}} \in \mathcal{N}(A)$;
- $Y \in \operatorname{im}(\phi) \Leftrightarrow [Y]_{\mathcal{B}_{\mathcal{W}}} \in \mathcal{C}(A)$;

Corolário:

- dim ker(ϕ) = dim $\mathcal{N}(A)$ = nul(A);
- $\dim \operatorname{im}(\phi) = \dim \mathcal{C}(A) = \operatorname{car}(A);$
- ϕ é injetiva \Leftrightarrow car(A) = n;
- ϕ é sobrejetiva \Leftrightarrow car(A) = m.

Teorema das dimensões

Teorema (das dimensões): Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então

$$\dim \ker(\phi) + \dim \operatorname{im}(\phi) = \dim \mathcal{V}.$$

Corolário: Seja $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear.

- $\dim \mathcal{V} < \dim \mathcal{W} \Rightarrow \phi$ não é sobrejetiva;
- $\dim \mathcal{V} > \dim \mathcal{W} \Rightarrow \phi$ não é injetiva;
- se $\dim \mathcal{V} = \dim \mathcal{W}$ então

$$\phi$$
 é injetiva \iff ϕ é sobrejetiva \iff ϕ é um isomorfismo;

• ϕ é isomorfismo \Rightarrow dim $\mathcal{V} = \dim \mathcal{W}$.

Aplicações Lineares ALGA 💆 17/18

Isomorfismo e invertibilidade

Teorema: Sejam $\phi: \mathcal{V} \to \mathcal{W}$ uma aplicação linear, dim $\mathcal{V} = \dim \mathcal{W} = n$, $\mathcal{B}_{\mathcal{V}}$ uma base de \mathcal{V} e $\mathcal{B}_{\mathcal{W}}$ uma base de \mathcal{W} . Então,

- ϕ é um isomorfismo \iff $M(\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{B}_{\mathcal{W}})$ é invertível.
- Se ϕ é um isomorfismo, então ϕ é invertível e $\phi^{-1}: \mathcal{W} \to \mathcal{V}$ é uma aplicação linear com

$$M(\phi^{-1}, \mathcal{B}_{\mathcal{W}}, \mathcal{B}_{\mathcal{V}}) = (M(\phi, \mathcal{B}_{\mathcal{V}}, \mathcal{B}_{\mathcal{W}}))^{-1}.$$

Exercício: Sejam \mathcal{B} uma base de \mathcal{V} , com dim $\mathcal{V}=n$, e

$$\phi: \mathcal{V} \to \mathbb{R}^n, \\ X \mapsto [X]_{\mathcal{B}}.$$

Verifique que ϕ é um isomorfismo e que $M(\phi, \mathcal{B}, \mathcal{C}_n) = I_n$.

Aplicações Lineares ALGA 🖽 18/18