

Agentes de Procura Procura Cega

Uninformed Search

Capítulo 3:

Costa, E. e Simões, A. (2015). Inteligência Artificial – Fundamentos e Aplicações, 3.ª edição, FCA.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 1

Agentes de Procura

- Vamos analisar diferentes estratégias possíveis para a resolução de problemas
- Os ambientes em que ocorrem os problemas são tipicamente acessíveis, geralmente deterministas e estáticos
- As diferentes estratégias vão ser agrupadas em função do grau de conhecimento que o agente tem sobre o domínio do problema
- Será feito um estudo da complexidade das diferentes propostas

IPG-ESTG El 2020-21 Inteligência Artificial

Problema das N-Rainhas

Problema das 4 rainhas

 O problema consiste em colocar N rainhas num tabuleiro de dimensão NxN de modo a que nenhuma possa atacar as restantes
 – a solução obriga a que apenas possa existir uma rainha em cada linha, coluna ou diagonal

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 3

Problemas, Estados, Operadores e Procura

Problema dos Missionários e Canibais

MMM CCC	
В	В
,	↓

MMM CCC

Missionários e canibais

- 3 missionários e 3 canibais querem atravessar com segurança um rio, dispondo para isso de um barco que pode transportar no máximo 2 pessoas
- Nunca pode existir, nas margens ou no barco, um número de canibais superior aos missionários, sob pena de serem comidos

Problema das Torres de Hanói

Torres de Hanói

- N discos diferentes estão colocados numa vara de acordo com o seu diâmetro
- Como transportar os discos, um a um, para uma de outras duas varas, de modo a que fiquem na mesma posição relativa, nunca podendo em momento algum existir um disco em cima de outro de diâmetro menor ?

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 5

Problemas, Estados, Operadores e Procura

Problema da Charada de 15

1	5	7	13
12	6	3	4
8		2	9
10	15	14	11

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Charada de 15

- Num quadro de dimensão 4x4 encontram-se colocadas peças quadradas numeradas de 1 a 15
- Existe 1 posição vazia
- Como movimentar os números, inicialmente dispostos aleatoriamente, de modo a que figuem ordenados de acordo com o seu valor ?

Aspetos comuns a estes problemas:

- O agente é confrontado com uma situação, configuração ou estado inicial e uma configuração, situação ou estado final
- Existe um critério de reconhecimento de que o problema foi resolvido ou que o objetivo foi alcançado

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 7

Problemas, Estados, Operadores e Procura

Aspetos comuns a estes problemas:

 Associado à solução ou ao processo de gerar a solução existem restrições à "ação do agente":

N-Rainhas:

- para estarmos perante uma solução, estas não se podem atacar mutuamente;

Missionários e canibais:

- o barco tem um limite de passageiros que pode transportar;
- nunca se pode criar uma situação na qual o número de canibais seja superior ao número de missionários

Aspetos em que estes problemas são diferentes:

- No problema das N-Rainhas estamos apenas interessados em encontrar a solução;
- No problema dos Missionários e canibais estamos interessados na sequência de ações que respeite as restrições e permita alcançar o estado objetivo;

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 9

Problemas, Estados, Operadores e Procura

Aspetos em que estes problemas são diferentes:

- Nalguns problemas apenas interessa encontrar uma solução, enquanto que noutros interessa encontrar a melhor solução;
 - Se a tarefa for demonstrar teoremas, o importante é conseguir fazer a prova;
 - Se a tarefa for encontrar uma solução para um caixeiro viajante que tem de passar por um conjunto de cidades e regressar à cidade de origem, interessa encontrar a solução mais económica.

Aspetos em que estes problemas são diferentes:

 Os problemas que descrevemos confrontam-se todos com um ambiente determinista. No entanto, os problemas de jogos como o xadrez ou as cartas, envolvendo adversários, introduzem uma componente de incerteza.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 11

Problemas, Estados, Operadores e Procura

Como caracterizar um problema?

- Um problema pode ser definido pelo conjunto possível das suas configurações ou estados
- Um desses estados é o estado inicial
 - Em alguns problemas a situação inicial é sempre a mesma, enquanto que noutros casos pode ser qualquer estado admissível
- Outros são estados finais: aqueles que satisfazem o objetivo estipulado no enunciado do problema

Como caracterizar um problema?

- Ao conjunto de todos os estados chamaremos espaço de estados ou espaço de procura
- Além dos estados, pode existir um conjunto de restrições que devem ser satisfeitas, quer para uma solução ser válida, quer para o processo de procura da solução ser válido
- Existe um conjunto de operadores que permitem atuar sobre os estados, alterando-os

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 13

Problemas, Estados, Operadores e Procura

Como caracterizar um problema?

 As restrições e os operadores definem implicitamente ligações entre alguns estados

1	5	7	13	1	5	7	13
12	6	3	4	12	6	3	4
8		2	9	 8	2		9
10	15	14	11	10	15	14	11

Estados associados na charada de 15

Como caracterizar um problema?

 As restrições e os operadores definem implicitamente ligações entre alguns estados

Estados associados nas torres de Hanói

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 15

Problemas, Estados, Operadores e Procura

 O espaço de estados com as respetivas ligações pode ser visto como um grafo, por vezes chamado grafo do espaço de estados

Grafos – Linguagem e designações

- Um grafo é formado por um conjunto de nós (ou vértices) e por um conjunto de ligações entre nós;
- Ao conjunto de nós ligados a um dado nó chamaremos vizinhos desse nó;
- Quando as ligações têm uma orientação recebem o nome de arcos e os vizinhos são chamados de sucessores

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 17

Problemas, Estados, Operadores e Procura

Grafos – Linguagem e designações

- Os sucessores de um nó referem-se a ele como o seu pai;
- Um caminho é uma sequência de nós ligados entre si;
- Uma árvore é um grafo no qual existe um caminho único entre quaisquer par de nós;

Grafos – Linguagem e designações

 As árvores podem ver designado qualquer dos seus nós como raiz. Se as ligações tiverem uma orientação, então todos os caminhos da árvore têm origem na raiz;

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 19

Problemas, Estados, Operadores e Procura

Para que o agente possa resolver este tipo de problemas, tem de ter um conjunto de capacidades:

- Tem de ser capaz de percecionar os estados e construir uma representação interna (um modelo) desses estados;
- Tem de ter a capacidade de atuar sobre eles, de acordo com as regras do problema, provocando transições entre estados, isto é, tem de ter operadores de mudança de estado;
- Tem de ter a capacidade de reconhecer que alcançou um estado final.

Estratégia:

- A estratégia genérica que o agente adotará basear-se-á na navegação pelo espaço de estados, procurando um caminho que ligue o estado inicial a um estado final;
- Esta estratégia é conhecida pelo paradigma da procura no espaço de estados;
- · Pode ser usada nos mais variados problemas.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 21

Problemas, Estados, Operadores e Procura

O agente vai procurar usar uma estratégia que satisfaça algumas características:

- Completa: se existir uma solução para o problema, ela será encontrada em tempo finito.
- Discriminadora (ou ótima): caso existam várias soluções, que seja encontrada a melhor.
- Económica: a solução é encontrada o mais rapidamente possível, ocupando o menor espaço de memória possível.

 Na maioria dos problemas não é possível ao agente adotar uma estratégia que envolva uma representação de todo o grafo dos estados e suas ligações.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 23

Problemas, Estados, Operadores e Procura

Missionários e canibais: grafo parcial do espaço de estados

- Na figura encontra-se o grafo parcial do espaço de estados do problema dos Missionários e canibais, a partir do estado inicial.
- · As setas indicam o sentido da procura

Problema: Procura de caminho entre 2 cidades.

- Problema de referência;
- Neste problema um estado coincide com uma cidade;
- A associação entre estados será dada pela existência ou não de uma ligação direta por estrada entre duas cidades.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 25

As estradas entre as capitais de distrito

 Existe apenas um operador que corresponde à travessia de uma estrada entre duas cidades vizinhas

 O modelo abstrato será um grafo em que cada nó representa uma cidade enquanto que uma ligação coincide com uma estrada

AVEIRO	Porto (68)	Viseu (95)	Coimbra (68)	Leiria (115)
BRAGA	Viana C.(48)	V. Real (106)	Porto (53)	
BRAGANÇA	V. Real (137)	Guarda (202)		
BEJA	Évora (78)	Faro (152)	Setúbal (142)	
C. BRANCO	Coimbra (159)	Guarda (106)	Portalegre (80)	Évora (203)
COIMBRA	Viseu (96)	Leiria (67)		
ÉVORA	Lisboa (150)	Santarém (117)	Portalegre (131)	Setúbal (103)
FARO	Setúbal (249)			
GUARDA	V. Real (157)	Viseu (85)		
LEIRIA	Lisboa (129)	Santarém (70)		
LISBOA	Santarém (78)	Setúbal (50)		
PORTO	V. Castelo (71)	V. Real (116)	Viseu (133)	
V. REAL	Viseu (110)			

Distâncias quilométricas entre cidades portuguesas

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 27

Problemas, Estados, Operadores e Procura

- Considerar que problema consiste em encontrar um caminho entre Coimbra e Faro
- Utilizando uma estratégia baseada no paradigma da procura num espaço de estados, o agente irá construir um grafo parcial
- Inicialmente poderá seguir em direção a Aveiro, Viseu, Leiria ou Castelo Branco

Primeira expansão a partir de Coimbra

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 28

 Este processo de determinar os vizinhos, ou sucessores, de uma cidade (nó) ainda não considerados designa-se por expansão (do nó)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 29

Problemas, Estados, Operadores e Procura

- Faz parte da estratégia do agente o modo como escolhe o caminho a seguir entre as várias alternativas possíveis
- Admitamos que opta por Castelo Branco. As novas direções a tomar a partir daí são Guarda, Portalegre e Évora (e Coimbra?)

Expansão a partir de Castelo Branco

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 30

 O processo pode ser iterado até que a estratégia encontre um caminho que ligue Coimbra a Faro, passando por Castelo Branco, Évora e Beja

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 31

Problemas, Estados, Operadores e Procura

Comentários

- A escolha "primeiro por Castelo Branco e depois por Portalegre" n\u00e3o foi determinada por nada;
- Se o objetivo fosse percorrer o menor número de quilómetros, uma possibilidade seria considerar a cada momento a cidade mais próxima, de entre as vizinhas;
- Mas, em geral, esta forma de proceder não garante que se encontre a melhor solução;
- Podia acontecer que Portalegre apenas estivesse ligada por estrada a Castelo Branco. Nesse caso, seria necessário voltar atrás e escolher, por exemplo, Guarda;

Comentários

- Mas qualquer uma das outras cidades (Aveiro, Viseu e Leiria) devem ser consideradas como alternativas;
- No caso de a estratégia apenas considerar como escolha uma cidade vizinha, dizemos que se trata de uma estratégia local;
- Caso todas as cidades ainda não visitadas sejam uma possibilidade de escolha, dizemos que a nossa estratégia é global.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 33

Problemas, Estados, Operadores e Procura

Comentários

- Em cada instante haverá um conjunto de cidades já visitadas e outras cuja ligação a Coimbra (neste exemplo) – direta ou indiretamente – é conhecida mas que ainda não foram exploradas;
- A estratégia é que indica a escolha a fazer;

Comentários

- Se não existir a possibilidade de, a partir de uma cidade, chegar a outra por caminhos distintos, então em vez de um grafo de procura, teremos uma árvore de procura;
- Mesmo quando tal n\u00e3o acontece, o grafo pode ser transformado numa \u00e1rvore cuja raiz \u00e0 a cidade de partida a que se associam os diferentes caminhos poss\u00edveis;
- Aparecerão na árvore cidades duplicadas;

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 35

Problemas, Estados, Operadores e Procura

Comentários

- Em cada momento as cidades conhecidas mas ainda não visitadas formam a fronteira do espaço de estados;
- A construção de uma estratégia que seja simultaneamente completa, económica e discriminadora é complexa;

IPG-ESTG El 2020-21 Inteligência Artificial

• Estrutura geral do algoritmo que implementa qualquer estratégia baseada no paradigma da procura num espaço de estados:

```
Função Procura Geral (problema, estratégia): solução ou falha

1. Inicializa a árvore de procura com o estado (nó) inicial do problema

2. Repete

2.1. Se não há candidatos para expandir, Então

2.1.1. Devolve falha

Fim_de_Se

2.2. Escolhe um nó na fronteira para expansão, de acordo com a estratégia

2.3. Se o nó contém o objectivo Então

2.3.1. Devolve a solução correspondente

Senão

2.3.2. Expande o nó e acrescenta à árvore de procura os seus sucessores, de acordo com a estratégia

Fim_de_Se

Fim_de_Repete

Fim_de_Função
```

Algoritmo geral de procura

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 37

Procura Cega

- Quando não existe informação sobre o problema que nos permita ajudar no processo de geração e teste dos nós, teremos de nos socorrer de uma estratégia dita cega
- Estas estratégias definem um modo sistemático de navegar na árvore de procura

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 38

Procura Cega

Existem fundamentalmente 2 possibilidades, cada uma com variantes:

- Analisar repetidamente um sucessor do último nó analisado (profundidade primeiro);
- Analisar todos os sucessores de um dado nó antes de passar para a análise de todos os sucessores dos sucessores (largura primeiro).

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 39

Procura em Largura Primeiro

Breadth-First Search

- Numa árvore de procura cada nó tem um nível
- A raiz tem nível 0, os seus sucessores têm nível 1, os sucessores dos sucessores têm nível 2, e assim sucessivamente.
- A estratégia de procura em largura primeiro caracteriza-se pelo facto de os nós do nível n serem todos analisados antes dos nós do nível n+1

Para o problema de encontrar o caminho de Coimbra para Faro:

 A árvore de procura irá passando sucessivamente pelas etapas seguintes

Coimbra

Árvore de procura contendo apenas o nível 0

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 41

Procura em Largura Primeiro

- Inicialmente a árvore de procura terá apenas um nó correspondente ao estado inicial (Coimbra)
- Como Coimbra não corresponde ao objetivo (Faro), o nó correspondente irá ser expandido, aparecendo todos os nós do nível seguinte (e que são os vizinhos de Coimbra)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 42

Árvore de procura após a expansão do nó do nível 0

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 43

Procura em Largura Primeiro

- O algoritmo em largura primeiro irá analisar sucessivamente estes nós
- Como nenhum deles é a solução, o algoritmo passa a analisar os nós do nível 2

IPG-ESTG El 2020-21 Inteligência Artificial

IPG-ESTG El 2020-21 Inteligência Artificial

Árvore de procura com todos os nós até ao nível 2

AGENTES DE PROCURA CEGA 45

Procura em Largura Primeiro

- O processo de expansão e análise continuaria até se alcançar o objetivo Faro
- Do ponto de vista algorítmico, se estivermos a resolver um problema em que apenas interessa a solução, então não será necessário manter guardada toda a árvore de procura, mas sim a sua fronteira
- Caso nos interesse o caminho, como neste exemplo, teremos de manter todos os caminhos que ligam a raiz da árvore aos nós na fronteira

IPG-ESTG El 2020-21 Inteligência Artificial AGENTES DE PROCURA CEGA 46

- A fronteira deverá ser guardada numa fila (estrutura de dados na qual os primeiros elementos a serem armazenados são os primeiros a sair – FIFO)
- Os elementos à cabeça da fila serão os primeiros a ser analisados
- Os sucessores de um nó, gerados pela estratégia, serão introduzidos no fim da fila

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 47

Procura em Largura Primeiro

Algoritmo de procura em largura primeiro

```
Função ProcuraLarguraPrimeiro (problema, InsereFila): solução ou falha

1. l_nós ← Faz_Fila (EstadoInicial (problema))

2. Repete

2.1. Se VaziaFila(l_nós) Então

2.1.1. Devolve falha
Fim_de_Se

2.2. nó ← RetiraFila(l_nós)

2.3. Se TesteObjectivo(nó) Então

2.3.1. Devolve nó

Senão

2.3.2. InsereFila(l_nós, Expansão(nó,Operadores(problema)))
Fim_de_Se
Fim_de_Repete
Fim_de_Função
```

Algoritmo de procura em largura primeiro

IPG-ESTG EI 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 48

 Vejamos como a variável I_nós evolui ao longo do tempo (contém em cada momento os nós expandidos mas ainda não analisados)

ITERAÇÃO	L_Nós
0	[Coimbra]
1	[Aveiro, Viseu, Leiria, C. Branco]
2	[Viseu, Leiria, C. Branco, Porto, Viseu, Leiria, Coimbra]
3	[Leiria, C. Branco, Porto, Viseu, Leiria, Coimbra, Aveiro, Porto, V. Real, Guarda, Coimbra]

A evolução do conteúdo de I-nós

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 49

Procura em Largura Primeiro

- Os nós de um dado nível não são gerados todos na mesma iteração;
- Aparecem nós já anteriormente expandidos e analisados (possibilidade de existirem ciclos)
- O crescimento do número de nós na lista de nós não é linear

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 50

Este Algoritmo:

- É Completo: se existir uma solução, mais tarde ou mais cedo ela será encontrada;
- É Discriminador ?
- Se todas as ligações tiverem o mesmo custo (neste exemplo, se a distância entre 2 quaisquer cidades for a mesma), então a solução encontrada será a melhor (menor quilometragem percorrida) pois o factor determinante será o nível a que foi encontrada a solução (será impossível existir uma solução melhor a um nível mais baixo)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 51

Procura em Largura Primeiro

- Mas, no caso geral, esta estratégia não garante que se encontre sempre a melhor solução
- Exemplo:

De Coimbra a Évora por caminhos de comprimento diferente

IPG-ESTG El 2020-21 Inteligência Artificial

 Existe uma solução no nível 2 que envolve o caminho

Coimbra – Castelo Branco – Évora de custo 362.

No entanto, existe uma solução no nível 3
 Coimbra – Leiria – Santarém – Évora
 cujo custo é apenas 254

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 53

Procura em Largura Primeiro

• É Económico ?

Esta análise desdobra-se em 2 componentes:

- uma análise do tempo de execução do algoritmo, e
- Uma análise do espaço de memória que é necessário.

- No 1.º caso (tempo de execução) utilizamos como referência o número de nós analisados até encontrar a solução;
- No 2.º (espaço de memória), vamos considerar o número de nós armazenados em cada instante até se encontrar a solução.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 55

Procura em Largura Primeiro

Vamos considerar que:

- Todos os nós têm o mesmo número de sucessores: fator de ramificação, r;
- n representa o nível de um nó.

Análise temporal

- Admitamos que a solução se encontra no nível n;
- Todos os nós dos níveis anteriores tiveram de ser analisados;
- No nível n a solução pode estar entre as "posições" 1 e r. No pior caso a solução encontrar-se-á no último nó do nível;
- No nível k existem r^k nós.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 57

Procura em Largura Primeiro

· Assim,

$$1 + r + r^{2} + r^{3} + \dots + r^{n} = \sum_{k=0}^{n} r^{k} = \frac{r^{n+1} - 1}{r - 1}$$

Número de nós analisados na procura em largura primeiro

 O número de nós analisados cresce exponencialmente com o fator de ramificação, para um dado nível

Número de nós analisados em função do factor de ramificação (n = 15)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 59

Procura em Largura Primeiro

 O mesmo comportamento (forte crescimento exponencial) pode ser observado analisando a variação do n.º de nós visitados em função do nível a que se encontra a solução (fator de ramificação fixado no valor 8)

Variação do número de nós visitados em função do nível (r = 8)

IPG-ESTG El 2020-21 Inteligência Artificial

• Se considerarmos o comportamento do n.º de nós analisados para diferentes valores de r e n conjugados, uma vez mais se verifica o efeito de forte crescimento exponencial

Número de nós visitados em função do factor de ramificação e do nível

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 61

Procura em Largura Primeiro

- Podiamos ter chegado a estas conclusões através de uma análise da complexidade assimptótica.
- Para valores elevados de r e n, o n.º de nós analisados pode ser aproximado por

$$\sum_{k=0}^{n} r^{k} = \frac{r^{n+1} - 1}{r - 1} \approx r^{n} = O(r^{n})$$

Complexidade temporal assimptótica

- Análise da complexidade espacial (memória ocupada)
- Para analisar os nós de um dado nível, o algoritmo terá de os manter todos em memória;
- Como no nível n existem rⁿ nós, a complexidade assimptótica será também O(rⁿ).

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 63

Procura em Largura Primeiro

 Os problemas que apresentam uma complexidade exponencial podem ser resolvidos por métodos convencionais, em particular os métodos cegos, apenas para pequenos valores de r e n.

IPG-ESTG El 2020-21 Inteligência Artificial

- As dificuldades deste método estão patentes no seguinte quadro
- Fator de ramificação: 8
- 1 nó é processado num milissegundo (10⁻³s)
- Espaço em memória ocupado por 1 nó: 10 Bytes

NiveL	Nós	Темро	Espaço
0	1	1 ms	10 bytes
5	4681	4,68 s	45 Kbytes
10	153*10 ⁶	1,9 dias	1,5 Gbytes
15	5*10 ¹²	175 anos	50 Tbytes

Tempo e espaço de memória em função do nível (r = 8, 1 ms por nó, 10 bytes por nó)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 65

Procura de Custo Uniforme

Uniform-Cost Search

- Pode existir um custo associado às transições de estados
- No problema das cidades, esse custo será dado pela distância quilométrica entre duas cidades
- Ao aplicar uma sequência de operadores desde o nó inicial até um dado nó k, o custo do caminho correspondente será definido pela soma dos custos parciais
- Designemos g(k) a função que nos dá o custo associado ao caminho que nos leva ao nó k

Procura de Custo Uniforme

- O algoritmo de procura de custo uniforme é uma variante do algoritmo de procura em largura primeiro, que escolhe para expansão a cada momento o nó pertencente à fronteira cujo custo é o mais pequeno
- Se g(k)=nível(k) então o algoritmo de custo uniforme reduz-se ao algoritmo de procura em largura primeiro

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 67

Procura de Custo Uniforme

Algoritmo de procura de custo uniforme

```
Função ProcuraCustoUniforme (problema, InsereOrdem_Fila): solução ou falha

1. l_nós ← FazFila (EstadoInicial (problema))

2. Repete

2.1. Se VaziaFila(l_nós) Então

2.1.1. Devolve falha

Fim_de_Se

2.2. nó ← RetiraFila(l_nós)

2.3. Se TesteObjectivo(nó) Então

2.3.1. Devolve nó

Senão

2.3.2. InsereOrdemFila(l_nós, Expansão(nó, Operadores(problema)))

Fim_de_Se

Fim_de_Repete

Fim_de_Função
```

Algoritmo de procura custo uniforme

IPG-ESTG EI 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 68

Procura de Custo Uniforme

- A única diferença neste algoritmo reside no facto de a inserção na fila ser feita de forma ordenada
- Os elementos de menor custo são agora colocados à cabeça da fila

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 69

Procura de Custo Uniforme

Evolução do conteúdo da variável | nós

ITERAÇÃO	L_Nós
0	[[Coimbra, 0]]
1	[[Leiria, 67], [Aveiro, 68], [Viseu, 96], [C. Branco, 159]]
2	[[Aveiro, 68], [Viseu, 96], [Coimbra, 134], [Santarém, 137] , [C. Branco, 159], [Aveiro, 182], [Lisboa, 196]]
3	[[Viseu, 96], [Coimbra, 134], [Porto, 136], [Coimbra, 136], [Santarém, 137], [C. Branco, 159], [Viseu, 163], [Aveiro, 182], [Leiria, 183], [Lisboa, 196]]

A evolução do conteúdo de I nós

Os valores indicados correspondem ao custo dado pela função g(k) — a negrito indicam-se os novos caminhos introduzidos em cada etapa

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 70

Procura de Custo Uniforme

- Mantendo o teste e expansão do elemento à cabeça da fila, vemos que a ordem de análise irá ser distinta da procura em largura primeiro
- Existe uma condição importante da função de custo g(k) que permite ao algoritmo apresentar boas propriedades:

g(sucessor(k)) >= g(k)

O custo de um caminho não pode diminuir à medida que se desce de nível

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 71

Procura de Custo Uniforme

Assim,

- O algoritmo é completo: todos os nós irão ser analisados de forma sistemática até ser encontrada a solução;
- O algoritmo é discriminador: encontra sempre a solução de menor custo.

IPG-ESTG El 2020-21 Inteligência Artificial

Procura de Custo Uniforme

• Exemplo: Ir de Coimbra para Évora

De Coimbra a Évora por caminhos de comprimento diferente

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 73

Procura de Custo Uniforme

Evolução da árvore de procura (simplificada)

 Numa 1.ª fase são expandidos Leiria e Castelo Branco, optando-se por Leiria por ter o menor custo

Procura de Custo Uniforme

- Como Leiria não é solução, é expandido, dando origem a Santarém
- Apesar de estar num nível mais baixo do que Castelo Branco, Santarém apresenta um custo menor pelo que vai ser testado primeiro

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 75

Procura de Custo Uniforme

- Como Santarém não é solução, é expandido, dando origem a Évora, o nosso objetivo, com um custo 254
- Como existe um caminho de custo menor (Castelo Branco, 159), é esse a ser testado primeiro, e não Évora!

Procura de Custo Uniforme

- Como Castelo Branco não é solução, é expandido, dando origem a Évora, agora com um custo 362
- A fila é composta por 2 caminhos que levam a Évora. O
 1.º a ser testado é o de menor custo

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 77

Procura de Custo Uniforme

Vertente económica do algoritmo:

 Este algoritmo tem características semelhantes à procura em largura primeiro, pelo que apresentará complexidade temporal e espacial exponencial, O(rⁿ).

IPG-ESTG El 2020-21 Inteligência Artificial

Depth-First Search

- Partindo da raiz, o algoritmo vai expandindo um nó, escolher um dos seus sucessores, expandi-lo por sua vez, continuando o processo até que ou encontra a solução ou o nó não possa ser mais expandido.
- Neste último caso, o algoritmo continua o processo com um irmão do último nó analisado, caso exista, ou regressa ao nível anterior para continuar o processo.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 79

Procura em Profundidade Primeiro

- Exemplo: Viagem de Coimbra a Faro
- Começamos por Coimbra, que não sendo a solução, vai originar a expansão do nó:

Árvore de procura após expandir Coimbra

IPG-ESTG EI 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 80

- Consideremos que o algoritmo opta por Castelo Branco.
- O facto de não ser solução vai originar a sua expansão

Procura em Profundidade Primeiro

Suponhamos que a análise se faz com Portalegre, que não sendo solução, origina a sua expansão, crescendo a árvore mais um nível

Árvore de procura depois da escolha e expansão de Portalegre

IPG-ESTG El 2020-21 Inteligência Artificial

 Para garantir que o algoritmo se comporta conforme indicado, basta que a fronteira da árvore de procura seja guardada numa pilha (estrutura de dados na qual os últimos elementos a serem armazenados são os primeiros a serem processados – LIFO)

```
Função ProcuraProfundidadePrimeiro (problema, InserePilha): solução ou falha

1. l_nós ← FazPilha (EstadoInicial (problema))

2. Repete

2.1. Se VaziaPilha(l_nós) Então
2.1.1. Devolve falha
Fim_de_Se
2.2. nó ← RetiraPilha(l_nós)

2.3. Se TesteObjectivo(nó) Então
2.3.1. Devolve nó
Senão
2.3.2. InserePilha(l_nós, Expansão(nó, Operadores(problema)))
Fim_de_Se
Fim_de_Repete
Fim_de_Função
```

Algoritmo de procura em profundidade primeiro

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 83

Procura em Profundidade Primeiro

 Vejamos como evolui o conteúdo da variável | nós ao longo das primeiras iterações do algoritmo:

ITERAÇÃO	RAÇÃO L_NÓS		
0	[Coimbra]		
1	[C. Branco, Aveiro, Viseu, Leiria,]		
2	[Portalegre, Évora, Guarda, Coimbra, Aveiro, Viseu, Leiria]		
3	[Évora, C. Branco, Évora, Guarda, Coimbra, Aveiro, Viseu, Leiria		

O conteúdo da pilha ao longo das primeiras iterações do algoritmo

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 84

- Os nós dos níveis mais pequenos que não são escolhidos vão ficando para trás na pilha;
- Por isso, são analisados posteriormente àqueles que se encontram mais fundo na árvore de procura;
- Existe a possibilidade de existência de ciclos;
- O número de nós na pilha aparenta não crescer tão rapidamente como no caso das estratégias em largura primeiro.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 85

Procura em Profundidade Primeiro

- Esta estratégia não é completa
- Não é completa mesmo que o espaço de procura seja finito
- Basta que exista um ciclo no caminho de aprofundamento escolhido, para que não mais termine.
- Exemplo: se o sucessor de Castelo Branco escolhido fosse Coimbra, entraríamos num ciclo infinito que gerava o caminho

Coimbra - Castelo Branco - Coimbra - Castelo Branco - ...

IPG-ESTG El 2020-21 Inteligência Artificial

- Esta estratégia não é discriminadora
- Podem existir 2 soluções, uma num nível alto e outra num nível baixo, podendo o algoritmo seguir pelo caminho que leva à primeira (que não é a ótima);
- Mesmo que os custos associados aos caminhos sejam não negativos, a solução de menor custo também não será encontrada;
- Exemplo: Para encontrar o caminho entre Coimbra e Castelo Branco, a opção pode ser o caminho

Coimbra – Viseu – Guarda – Castelo Branco (287 Km) em vez de se optar pelo caminho direto (159 Km)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 87

Procura em Profundidade Primeiro

Vertente Económica

- Qual a complexidade temporal do algoritmo?
- Consideremos um fator de ramificação constante e igual a r;
- Quantos nós são analisados quando estamos no nível n?

IPG-ESTG El 2020-21 Inteligência Artificial

- No melhor dos casos, se a solução estiver no ramo mais à esquerda no nível n, então serão analisados n+1 nós;
- Se a solução estiver no ramo mais à direita e no último nível, teremos o caso menos favorável, semelhante à procura em largura primeiro;
- O valor concreto será um valor entre estes dois extremos. Consideremos o valor médio:

$$\frac{\frac{r^{n+1}-1}{r-1}+(n+1)}{2} = \frac{r^{n+1}+rn-n+r-2}{2(r-1)}$$

Complexidade temporal: valor médio

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 89

Procura em Profundidade Primeiro

 Se considerarmos a complexidade assimptótica, ou seja, para valores de r e n bastante grandes, teremos O(rn) como valor para a complexidade

 O comportamento exponencial da complexidade temporal é idêntico ao da procura em largura primeiro, embora os valores sejam um pouco menores:

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 91

Procura em Profundidade Primeiro

Complexidade espacial (memória ocupada)

 Cálculo do máximo de memória necessária quando a solução se encontra no nível n. Vejamos o exemplo da figura

Árvore de procura em profundidade primeiro

- Quando estamos para analisar Portalegre, temos guardado em memória os 3 sucessores de Coimbra, mais os 3 sucessores de Castelo Branco, mais Portalegre
- Generalizando, para um fator de ramificação constante, teremos, no caso de a solução se encontrar no nível n, um valor máximo de nós guardados de

$$n(r-1) + 1$$

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 93

Procura em Profundidade Primeiro

 Para valores elevados de n e r a complexidade assimptótica será da ordem de O(nxr), ou seja, linear com o nível.

Complexidade espacial em função do factor de ramificação (n = 15)

IPG-ESTG EI 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 94

Complexidade espacial em função do nível (r = 8)

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 95

Procura em Profundidade Primeiro

Complexidade espacial

Vejamos alguns valores concretos

- Fator de ramificação: r = 8
- 1 nó é analisado num milissegundo (10⁻³s)
- Espaço para armazenar 1 nó: 10 Bytes

NÍVEL	Nós	Темро	Nós	Espaço
0	1	1 ms	1	10 bytes
5	9807	9,807 ms	36	360 bytes
10	164*10 ⁶	1.89 dias	71	710 bytes
15	2,7*10 ¹²	85,6 anos	106	1 Kbytes

Valores para a complexidade temporal e espacial, para r = 8.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 97

Procura em Profundidade Primeiro

- Notar que, neste caso, os nós para efeitos do cálculo do tempo são em número diferente dos nós para efeitos de cálculo do espaço.
- Comparando os resultados com os obtidos com a procura em Largura Primeiro, o ganho na quantidade de memória necessária é fantástico e há também uma redução do ponto de vista temporal

Pontos fracos:

- Impossibilidade de lidar com ciclos;
- Não há garantia de encontrar a melhor solução.

Desafio: como alterar o algoritmo por forma a que o problema dos ciclos seja evitado ?

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 98

Procura em Profundidade Limitada

Depth-Limited Search

- Este algoritmo procura evitar o problema da incapacidade em lidar com caminhos infinitos do algoritmo anterior, fixando o nível máximo da procura.
- O algoritmo exige apenas uma pequena modificação:
- Supõe-se que faz parte da descrição do estado o nível a que se encontra, podendo os operadores ser aplicados apenas caso o nível do nó seja inferior ao máximo escolhido.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 99

Procura em Profundidade Limitada


```
Função ProcuraProfundidadeLimitada (problema, InserePilha, nível_max): solução ou falha

1. l_nós ← FazPilha (EstadoInicial (problema))

2. Repete

2.1. Se VaziaPilha(l_nós) Então

2.1.1. Devolve falha

Fim_de_Se

2.2. nó ← RetiraPilha(l_nós)

2.3. Se TesteObjectivo(nó) Então

2.3.1. Devolve nó

Senão

2.3.2. InserePilha(l_nós, Expansão(nó, OperadoresNmx(problema)))

Fim_de_Se

Fim_de_Repete

Fim_de_Função
```

Algoritmo de procura em profundidade limitada

Procura em Profundidade Limitada

- O problema que se coloca é o de saber qual o valor máximo para o nível que deve ser usado;
- Nem sempre é possível determinar esse valor;
- E quando é possível, depende do problema;
- No exemplo que temos vindo a considerar existem 18 cidades: o comprimento máximo de uma solução, um caminho entre 2 cidades, será 17.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 101

Procura em Profundidade Limitada

- Admitindo que é possível definir um limite máximo então o algoritmo de procura em profundidade limitada será completo;
- Continua, pelos mesmos motivos, a não ser discriminador;

Procura em Profundidade Limitada

Se I for o valor do limite máximo, teremos que:

- A complexidade temporal assimptótica será da ordem de O(r¹)
- A complexidade espacial assimptótica será da ordem de O(lxr)

Será, assim, económico do ponto de vista do espaço mas não do ponto de vista temporal.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 103

Procura de Aprofundamento Progressivo Iterative Deepening Depth-First Search

 No caso de não se saber antecipadamente o valor do limite máximo a que se pode encontrar a solução, faz-se variar esse limite entre o nível 0 e infinito

```
Função ProcuraAprofundamentoProgressivo (problema, InserePilha): solução ou falha
1. Para nível ← 0 Até infinito Faz
1.1. Se ProcuraProfundidadeLimitada(problema,InserePilha, nível) Então
1.1.1. Devolve solução
Fim_de_Se
Fim_de_Para
Fim_de_Função
```

Algoritmo de procura em aprofundamento progressivo

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 104

- Este algoritmo consiste na chamada repetida do algoritmo de procura limitada para valores crescentes do limite máximo;
- Combina aspetos positivos da procura em largura e da procura em profundidade;
- É completo: o problema dos caminhos infinitos desaparece;
- Não é discriminador: não é necessariamente encontrada a solução mais próxima da raiz.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 105

Procura de Aprofundamento Progressivo

- A complexidade espacial é a da procura em profundidade primeiro, ou seja, da ordem O(rxn), com n o nível da solução.
- Põe-se a questão, no entanto, da sobrecarga temporal, pelo facto de vários nós serem analisados mais do que uma vez.

De facto, se a solução estiver no nível k:

- a raiz será analisada k+1 vezes;
- os nós do nível 1 serão analisados k vezes;
- os nós do nível k-1 serão analisados 2 vezes;
- Finalmente, os nós do nível k serão analisados 1 vez.

(esta situação corresponde ao caso mais desfavorável da solução se encontrar no ramo mais "à direita")

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 107

Procura de Aprofundamento Progressivo

$$N_{ap} = \sum_{k=0}^{n} \frac{r^{k+1} - 1}{r - 1} = \frac{1}{r - 1} \left[r \left(\sum_{k=0}^{n} r^{k} \right) - \sum_{k=0}^{n} 1 \right] = \frac{1}{r - 1} \left[r \left(\frac{r^{n+1} - 1}{r - 1} \right) - (n + 1) \right]$$

Número de nós analisados em aprofundamento progressivo

Esta expressão pode ser simplificada para

$$N_{ap} = \frac{r^{n+2} - 2r - rn + n + 1}{(r-1)^2}$$

Nós analisados pelo algoritmo de aprofundamento progressivo

 Podemos ter uma ideia rigorosa da sobrecarga temporal dividindo este valor pelo valor obtido com a procura em largura primeiro, para diferentes valores do fator de ramificação e do nível

$$1 + r + r^{2} + r^{3} + \dots + r^{n} = \sum_{k=0}^{n} r^{k} = \frac{r^{n+1} - 1}{r - 1}$$

Número de nós analisados na procura em largura primeiro

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 109

Procura de Aprofundamento Progressivo

R	N	Eq,.3.6 / Eq. 3.1	
2	5	1.90	
	10	1.99	
5	5	1.25	
	10	1.25	
10	5	1.11	
	10	1.11	

Sobrecarga temporal no aprofundamento progressivo

- Para um fator de ramificação de 10, a sobrecarga é de apenas 11%
- Mesmo no caso simples de um fator de ramificação de apenas 5, a sobrecarga é da ordem dos 25%
- Claro que para valores mais elevados estes resultados serão ainda mais favoráveis.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 110

 Para valores elevados do fator de ramificação podemos aproximar aquele valor por

$$\frac{r^{n+2}}{(r-1)^2} \qquad e \qquad \frac{r^{n+1}}{r-1}$$

nós analisados por aprofundamento progressivo e por largura primeiro

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 111

Procura de Aprofundamento Progressivo

• O quociente das duas expressões é dado por:

$$\frac{r}{r-1}$$

Sobrecarga da complexidade temporal

podendo ser usado para determinar a sobrecarga da complexidade temporal motivada pelo algoritmo de procura por aprofundamento progressivo – notar que não depende do nível.

 O algoritmo de procura por aprofundamento progressivo é uma excelente opção para problemas em que é necessário recorrer a um método cego, o espaço de procura é grande, mas não se sabe qual é o nível máximo em que pode estar uma solução.

IPG-ESTG El 2020-21 Inteligência Artificial

AGENTES DE PROCURA CEGA 113