

Proof Techniques

10 February 2021

Sebastian Wild

Outline

Proof Techniques

- 0.1 Proof Templates
- 0.2 Mathematical Induction
- 0.3 Correctness Proofs

What is a formal proof?

A formal proof (in a logical system) is a **sequence of statements** such that each statement

- 1. is an axiom (of the logical system), Or
- **2.** follows from previous statements using the *inference rules* (of the logical system).

Among experts: Suffices to *convince a human* that a formal proof *exists*.

But: Use formal logic as guidance against faulty reasoning. --- bulletproof

Notation:

- ▶ Statements: $A \equiv$ "it rains", $B \equiv$ "the street is wet".
- ▶ Negation: $\neg A$ "Not A."
- ► And/Or: $A \wedge B$ "A and B"; $A \vee B$ "A or B or both."
- ► Implication: $A \Rightarrow B$ "If A, then B."
- ► Equivalence: $A \Leftrightarrow B$ "A holds true if and only if ('iff') B holds true."

0.1 Proof Templates

Implications

To prove $A \Rightarrow B$, we can

- ► directly derive *B* from *A* direct proof
- ▶ prove $(\neg B) \Rightarrow (\neg A)$ indirect proof, proof by contraposition
- ▶ assume $A \land \neg B$ and derive a contradiction proof by contradiction, reduction ad absurdum
- ▶ distinguish cases, i. e., separately prove $(A \land C) \Rightarrow B$ and $(A \land \neg C) \Rightarrow B$. proof by exhaustive case distinction

Equivalences

To prove $A \Leftrightarrow B$, we prove both implications $A \Rightarrow B$ and $B \Rightarrow A$ separately. (Often, one direction is much easier than the other.)

Set Inclusion and Equality

To prove that a set *S* contains a set *R*, i. e., $R \subseteq S$, we prove the implication $x \in R \Rightarrow x \in S$.

To prove that two sets S and R are equal, S = R, we prove both inclusions, $S \subseteq R$ and $R \subseteq S$ separately.

0.2 Mathematical Induction

Quantified Statements

Notation

- ► Statements with parameters: $A(x) \equiv$ "x is an even number."
- **E**xistential quantifiers: $\exists x : A(x)$ "There exists some x, so that A(x)."
- ► Universal quantifiers: $\forall x : A(x)$ "For all x it holds that A(x)." Note: $\forall x : A(x)$ is equivalent to $\neg \exists x : \neg A(x)$

Quantifiers can be nested, e. g., ε - δ -criterion for limits:

$$\lim_{x \to \xi} f(x) = a \qquad :\Leftrightarrow \qquad \forall \varepsilon > 0 \; \exists \delta > 0 \; : \; \left(|x - \xi| < \delta \right) \Rightarrow \left| f(x) - a \right| < \varepsilon.$$

To prove $\exists x : A(x)$, we simply list an example ξ such that $A(\xi)$ is true.

For-all statements

To prove $\forall x : A(x)$, we can

- derive A(x) for an "arbitrary but fixed value of x", or,
- ▶ for $x \in \mathbb{N}_0$, use *induction*, i. e.,
 - ightharpoonup prove A(0), induction basis, and
 - ▶ prove $\forall n \in \mathbb{N}_0 : A(n) \Rightarrow A(n+1)$ inductive step

More general variants of induction:

- ► complete/strong induction inductive step shows $(A(0) \land \cdots \land A(n)) \Rightarrow A(n+1)$
- structural/transfinite induction works on any well-ordered set, e. g., binary trees, graphs, Boolean formulas, strings, . . .

no infinite strictly decreasing chains

0.3 Correctness Proofs

Formal verification

- verification: prove that a program computes the correct result
- not our focus in COMP 526 but some techniques are useful for *reasoning* about algorithms

Here:

- **1.** Prove that loop or recursive call eventually *terminates*.
- **2.** Prove that a *loop* computes the *correct* result.

Proving termination

To prove that a recursive procedure $proc(x_1, ..., x_m)$ eventually terminates, we

- ▶ define a *potential* $\Phi(x_1, ... x_m) \in \mathbb{N}_0$ of the parameters (Note: $\Phi(x_1, ... x_m) \ge 0$ by definition!)
- ▶ prove that every recursive call decreases the potential, i. e., any recursive call $proc(y_1, ..., y_m)$ inside $proc(x_1, ..., x_m)$ satisfies

$$\Phi(y_1,\ldots,y_m) < \Phi(x_1,\ldots,x_m)$$

 \leadsto proc $(x_1, ..., x_m)$ terminates because we can only strictly *decrease* the (integral!) potential a *finite* number of times from its initial value

- ► Can use same idea for a loop: show that potential decreases in each iteration.
 - → see tutorials for an example.

Loop invariants

Goal: Prove that a *post condition* holds after execution of a (terminating) loop.

```
1 //(A) before loop
2 while cond do
3 //(B) before body
4 body
5 //(C) after body
6 end while
7 //(D) after loop
```

For that, we

- ► find a *loop invariant I* (that's the tough part!)
- ▶ prove that *I* holds at (A)
- ▶ prove that $I \land cond$ at (B) imply I at (C)
- ▶ prove that $I \land \neg cond$ imply the desired post condition at (D)

Note: *I* holds before, during, and after the loop execution, hence the name.

Loop invariant – Example

- ▶ loop condition: $cond \equiv i < n$
- ▶ post condition (after line 9): $curMax = \max_{k \in [0..n-1]} A[k]$

$$I \equiv curMax = \max_{k \in [0..i-1]} A[k] \land i \le n$$

We have to proof:

- (i) I holds at (A)
- (ii) $I \wedge cond$ at (B) $\Rightarrow I$ at (C)
- (iii) $I \land \neg cond \Rightarrow post condition$

```
1 procedure arrayMax(A,n)
      // input: array of n elements, n \ge 1
      // output: the maximum element in A[0..n-1]
       curMax := A[0]; i = 1
      //(A)
       while i < n \text{ do}
           //(B)
           if A[i] > curMax
               curMax := A[i]
           i := i + 1
10
           //(C)
       end while
12
      //(D)
       return curMax
14
```