Wyznaczanie maksymalnej energii promieniowania beta metodą absorpcyjną

1 Wstęp teoretyczny

1.1 Promieniowanie beta

Promieniowanie beta¹ to strumień elektronów lub pozytonów, emitowany przez jądra atomowe podczas przemiany jądrowej. Jest jednym z rodzajów promieniowania jonizującego oraz jest bardziej przenikliwe od promieniowania alfa(przenikliwe czyli zdolne do przenikania przez różne materiały). Energia promieniowania jest zależna od rodzaju źródła, a zasięg promieniowania dodatkowo od gęstości substancji absorbującej.

Przykładowe źródła promieniowania beta:

- promieniowanie sztucznych jądrach promieniotwórczych powstających podczas reakcji jądrowych
- rozpad izotopu sodu 22Na

1.2 Absorpcja promieniowania beta

Absorpcja promieniowania beta² jest to proces pochłaniania promieniowania przez substancję. Oddziaływanie promieniowania beta z materią powoduje straty energii cząstek beta oraz zmianę toru ich ruchu.

Zasięg masowy promieniowania³ jest zależny od energii cząsteczek beta, czyli od zasięgu maksymalnego dla danego izotopu pierwiastka promieniotwórczego oraz od współczynnika pochłaniania absorbującej materii.

2 Przebieg i cel ćwiczenia

Celem ćwiczenia jest wyznaczenie maksymalnej energii promieniowania beta metodą absorpcyjną.

2.1 Tabele pomiarowe

¹https://pl.wikipedia.org/wiki/Promieniowanie_beta, z dnia: 25.05.2017

²https://pl.wikipedia.org/wiki/Absorpcja_promieniowania_beta, z dnia: 25.05.2017

³https://pl.wikipedia.org/wiki/Oslona_przed_promieniowaniem, z dnia: 25.05.2017

N_T	99
t, min	10
Poziom tła	9,9
$I_T = N_T/t \text{ imp/min},$	θ, θ

grubość	ilość	czas	I = N/t
x,mm	impulsów N	t, min	imp/min
0	1000	0,69	1449,28
0,05	1000	1,16	862,07
0,10	1000	1,56	641,03
0,15	1000	2,06	485,44
0,20	1000	2,96	337,84
0,25	1000	3,69	271,00
0,30	1000	4,77	209,64
0,35	1000	6,28	159,24
0,40	1000	8,19	122,19
0,45	1000	10,97	91,16
0,50	1000	14,33	69,78

2.2 Opracowanie wyników pomiarów

Obliczyliśmy niepewność u(I) korzystając z prawa propagacji niepewności

$$u(I) = \sqrt{(\frac{1}{T} \cdot u(N)^2 + (-\frac{N}{T^2} \cdot u(T))^2}$$

gdzie $u(N)=\sqrt{1000}\approx 31,62$, a $u(T)=\frac{1}{60}$ czyli jest to 1 sekunda. Np. dla N=1000orazT=4,77

$$u(I) = \sqrt{(\frac{1}{4,77} \cdot 31,62)^2 + (-\frac{1000}{4,77^2} \cdot \frac{1}{60})^2} = 6,669$$

Niepewność grubości absorbenta to $10\mu m$ wynikająca z niepewności sprzętu, którym był on mierzony. Sporządziliśmy wykres zależności natężenia wiązki do grubości absorbenta I = f(x) Przekształciliśmy wzór

$$I = I_0 e - x \mu$$

do postaci

$$lnI = -x\mu + lnI_0$$

Ukazuje on nam zależność liniową pomiędzy lnI, a grubością absorbenta x Współczynniki zależności wyliczyliśmy korzystając z funkcji REGLINP(MS Excel), i tak:

$$a = -3,27(28)$$

$$b = 6,88(11)$$

Obliczyliśmy logarytm naturalny z wartości I

$$u(lnI) = \frac{1}{I} \cdot u(I)$$

Rysunek 1: Zależność natężenia wiązki od grubości absorbenta

I [imp/min]

1500

750

500

El x [mm]

-0.05 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

I[imp/min]	ln(I)
1449, 28	7,278(39)
862,07	6,759(35)
641,03	6,463(34)
485, 44	6,185(34)
337,84	5,822(33)
271	5,602(32)
209,64	5, 345(31)
159, 24	5,070(31)
12219	9,4101(31)
91, 16	4,512(31)
69,78	4,245(31)

Sporządziliśmy wykres zależności logarytmu naturalnego z ilością zliczeń w jednostce czasu od grubości absorbenta Na wykresie została również ukazana prosta $ln(I_T)$ czyli logarytm naturalny ilości zliczeń poziomu tła. Współczynnik

$$\mu = -a = 3,27(28) [1/mm]$$

Rysunek 2: Zależności logarytmu naturalnego z ilością zliczeń w jednostce czasu od grubości absorbenta

Punkt przecięcia prostej $y=ln(I_T)$ oraz prostej wyznaczonej powyższej zależności wyznacza nam zasięg maksymalny promieniowania

$$x_{max} = \frac{ln(I_0) - ln(I_T)}{\mu} = \frac{ln(I_T) - b}{a} = 0,84 \ [mm]$$

Metodą propagacji niepewności obliczamy

$$u(x_{max}) = \sqrt{\left(\frac{1}{I_{T}a} \cdot u(I_{T})\right)^{2} + \left(-\frac{1}{a} \cdot u(b)\right)^{2} + \left(\frac{a - \ln(I_{T})}{a^{2}} \cdot u(a)\right)^{2}}$$

więc,

$$x_{max} = 0,84(7) [mm]$$

Wyznaczyliśmy maksymalny zasieg masowy badanego promieniowania w badanym materiale

$$R_{max} = \rho_{Al} \cdot x_{max}, mg/cm^2$$

 $\rho_{Al} = 2.72 \cdot 10^3 kg/m^3 = 2.72 \cdot 10^3 mg/cm^3$

$$R_{max} = 2720 \cdot 0.084 = 228,48 \, mg/cm^2 = 0,228(38)g/cm^2$$

Z prawa przenoszenia niepewności obliczyliśmy

$$u(R_{max}) = \left| \frac{dR_{max}}{dx_{max}} \right| \cdot u(x_{max}) = 38,08mg/cm^2 = 0,038g/cm^2$$

Na podstawie tabeli sporządziliśmy wykres maksymalnego zasięgu masowego R promieniowania β od jego maksymalnej energii E_{max}

E_{max}, keV	$R_{max}, mg/cm^2$
100	13,5
150	26,5
200	42
250	59
300	78
400	120
500	165
800	310
1000	420

Rysunek 3: Zależność maksymalnego zasięgu promieniowania β od jego energii maksymalnej

Z wykresu odczytaliśmy, że w naszym przypadku $E_{max}=580keV$ Wyznaczyliśmy E'_{max} korzystając z półempirycznej zależności dla glinu, wstawiając R_{max} w jednostkach g/cm^2

$$E'_{max} = \frac{R_{max} + 0.09}{0.52} = 0.612(73)MeV = 612(73)$$

Korzystając z prawa przenoszenia niepewności wyznaczyliśmy niepewność

$$u(E'_{max}) = \left| \frac{dE'_{max}}{dR_{max}} \right| \cdot u(R_{max}) = 0,073 MeV$$

Rezultatem testu zgodności dla E_{max} i E'_{max} jest wynik zgodny. Zatem wszystkie przeprowadzone przez nas obliczenia są poprawne

2.3 Wnioski

Metoda absorpcyjna jest bardzo czasochłonna lecz dzięki temu pozwala wyznaczyć liniowy współczynnik absorpcyjny promieniowania β materiału pochłaniającego, przy pomocy którego można wyznaczyć maksymalną energię napromieniowanych cząstek, które mogą zostać zaabsorbowane przez przesłonę. W naszym przypadku udało się ustalić zakres tej energii bardzo dokładnie co udowadnia skuteczność tej metody.