

# The RLC Circuit

#### The RLC Circuit

An *RLC* circuit has **both** an inductor and a capacitor

These circuits have a wide range of applications, including oscillators and frequency filters

They also can model automobile suspension systems, temperature controllers, airplane responses, and more

#### **Energy Transfer in RLC Circuits**

Inductors and capacitors store and release energy with varying times, leading to oscillation

Resistors dissipate energy, leading to damping





#### The Source-Free Parallel Circuit

Apply KCL and differentiate:



$$C\frac{d^2v}{dt^2} + \frac{1}{R}\frac{dv}{dt} + \frac{1}{L}v = 0$$

# Solving the Differential Equation

To solve, assume  $v=Ae^{st}$ .

The solution must then satisfy

$$Cs^2 + \frac{1}{R}s + \frac{1}{L} = 0$$

which is called the *characteristic equation*.

If  $s_1$  and  $s_2$  are the solutions, then the natural response is

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

# **Exploring the Solution**

The solutions to the characteristic equation are

$$-\frac{1}{2RC} \pm \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$$

Define  $\omega_0$  the resonant frequency:  $\omega_0 = \sqrt[1]{LC}$ 

and  $\alpha$  the damping coefficient:  $\alpha = \frac{1}{2RC}$ 

#### **Exploring the Solution**

With these definitions, the solutions can be expressed as:

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

The constants  $A_1$  and  $A_2$  are determined by the initial conditions.

#### **Types of Responses**

If  $\alpha > \omega_0$  the solutions are real, unequal and the response is termed *overdamped*.

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

If  $\alpha < \omega_0$  the solutions are complex conjugates and the response is termed underdamped.

If  $\alpha = \omega_0$  the solutions are real and equal and the response is termed *critically damped*.

#### Overdamped Parallel RLC

Show that  $v(t) = 84(e^{-t} - e^{-6t})$  when  $i(0^+)=10$  A and  $v(0^+)=0$  V.



#### **Graphing the Response**



#### The Underdamped Response

#### If $\alpha < \omega_0$ define

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

#### and the solution is

$$v(t) = e^{-\alpha t} \left( A_1 e^{j\omega_d t} + A_2 e^{-j\omega_d t} \right)$$

#### or equivalently

$$v(t) = e^{-\alpha t} \left( B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t) \right)$$

# **Example: Underdamped Response**



#### **Comparing the Responses**



#### Source-Free Series RLC Circuit

For the series RLC circuit,



$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{1}{C}i = 0$$

#### Series RLC Differential Equation

The characteristic equation is

$$Ls^2 + Rs + \frac{1}{C} = 0$$

and the solution is

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

where

$$s_1, s_2 = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

#### Series RLC Circuit Solution

Define 
$$\omega_0 = 1/\sqrt{LC}$$
 and  $\alpha = \frac{R}{2L}$   $s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$   
Then if  $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$   $\alpha > \omega 0$  (overdamped):  $v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$   $\alpha = \omega 0$  (critically damped):  $v(t) = e^{-\alpha t} (A_1 t + A_2)$   $\alpha < \omega 0$  (underdamped):  $v(t) = e^{-\alpha t} (B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t))$ 

# Summary for Source-Free RLC

| Condition         | Criteria            | α                                                  | $\omega_{0}$          | Response                                                                                              |
|-------------------|---------------------|----------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|
| Overdamped        | $\alpha > \omega_0$ | $\frac{1}{2RC} (parallel)$ $\frac{R}{2L} (series)$ | $\frac{1}{\sqrt{LC}}$ | $A_1 e^{s_1 t} + A_2 e^{s^2 t}$ , Where $s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$          |
| Critically damped | $\alpha = \omega_0$ | $\frac{1}{2RC} (parallel)$ $\frac{R}{2L} (series)$ | $\frac{1}{\sqrt{LC}}$ | $e^{-\alpha t}(A_1t+A_2)$                                                                             |
| Underdamped       | $\alpha < \omega_0$ | $\frac{1}{2RC} (parallel)$ $\frac{R}{2L} (series)$ | $\frac{1}{\sqrt{LC}}$ | $e^{-\alpha t}(B_1 \cos \omega_d t + B_2 \sin \omega_d t),$ $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$ |

#### The Complete Response

The response of *RLC* circuits with dc sources and switches will consist of the natural response and the forced response:

$$v(t) = v_f(t) + v_n(t)$$

The complete response must satisfy both the initial conditions and the "final conditions" or the forced response.

# Summary of Procedure for Solving RLC Circuits

Determine initial conditions

Obtain a numerical value for the forced response

Write the appropriate form of the natural response with unknown constants. Calculate  $\alpha$  and  $\omega_0$ 

Add forced and natural response to form complete response

Evaluate the response and its derivative at t = 0 and solve for unknown constants using initial conditions

#### **Example: Initial Conditions**

Find the labeled voltages and currents at  $t = 0^-$  and  $t = 0^+$ .



Answer:

$$i_{R}(0^{-}) = -5 A$$
  $v_{R}(0^{-}) = -150 V$   $i_{R}(0^{+}) = -1 A$   $v_{R}(0^{+}) = -30 V$   
 $i_{L}(0^{-}) = 5 A$   $v_{L}(0^{-}) = 0 V$   $i_{L}(0^{+}) = 5 A$   $v_{L}(0^{+}) = 120 V$   
 $i_{C}(0^{-}) = 0 A$   $v_{C}(0^{-}) = 150 V$   $i_{C}(0^{+}) = 4 A$   $v_{C}(0^{+}) = 150 V$ 

#### **Example: Initial Slopes**

Find the first derivatives of the labeled voltages and currents at *t* = 0<sup>+</sup>.



#### Answer:

$$di_R / dt(0^+) = -40 A / s$$
  $dvR / dt(0^+) = -1200 V / s$   
 $di_L / dt(0^+) = 40 A / s$   $dvR / dt(0^+) = -1092 V / s$   
 $di_C / dt(0^+) = -40 A / s$   $dvR / dt(0^+) = 108 V / s$ 

Show that for t > 0

$$v_C(t) = 150 + 13.5(e^{-t} - e^{-9t})$$
 volts







