Практическое занятие №36

Построение графиков тригонометрических и обратных тригонометрических функций

Рассмотрим построение графиков тригонометрических функций Пример 1

Построить график функции $y = \sin 2x$

Сначала изобразим график синуса, его период равен $T = 2\pi$:

Обратите внимание на масштаб в данных чертежах.

К слову, чертить графики тригонометрических функций вручную – занятие

 $\pi \approx 3.14$, $\frac{\pi}{2} \approx 1.57$, $2\pi \approx 6.28$ кропотливое, поскольку и

и т.д., то есть на

стандартной клетчатой бумаге аккуратным нужно быть вплоть до миллиметра. Поэтому можно сделать это проще, зная поведение синусоиды.

 $\cap \mathcal{V}$

То есть, график функции $y=\sin 2x$ получается путём сжатия графика $y=\sin x$ к оси ординат в два раза. Логично, что период итоговой функции тоже сократился на половину: $T=\pi$

В целях самоконтроля можно взять 2-3 значения «икс» и устно либо на черновике выполнить подстановку:

$$x = \frac{\pi}{4} \Rightarrow \sin\left(2 \cdot \frac{\pi}{4}\right) = \sin\frac{\pi}{2} = 1$$

$$x = \frac{\pi}{2} \Rightarrow \sin\left(2 \cdot \frac{\pi}{2}\right) = \sin \pi = 0$$

Смотрим на чертёж, и видим, что это действительно так.

Пример 2

Построить график функции $y = \cos 3x$

 $y = \cos 3x$ Птоговый график у проведён красным цветом.

 $_{
m Uсходный}$ период $T=2\pi$ косинуса закономерно уменьшается в три

$$T = \frac{2\pi}{3}$$
 раза: (отграничен жёлтыми точками).

Пример 3

Построить график функции $y = \sin \frac{x}{2}$

То есть, график

 $y = \sin \frac{x}{2}$ функции $y = \sin \frac{x}{2}$ получается

путём растяжения графика $\mathcal{Y} = \text{Sift} \ X$ от оси ординат в два раза. Период итоговой функции увеличивается в 2 раза: $\mathcal{T} = 2\pi \cdot 2 = 4\pi$, он толком даже не вместился на данный чертёж.

Пример 4

Построить график функции $y = \sin\left(x + \frac{\pi}{2}\right)$

График синуса $y = \sin x$ (чёрный цвет) сдвинем вдоль оси OX на $\frac{1}{2}$ влево:

Внимательно присмотримся к полученному красному графику $y = \sin\left(x + \frac{\pi}{2}\right)$

Это в точности график косинуса По сути, мы получили

геометрическую иллюстрацию формулы приведения перед вами, пожалуй, самая «знаменитая» формула, связывающая данные функции $y = \cos x$ получается График тригонометрические функции.

путём сдвига синусоиды $y = \sin x$ вдоль оси OX на $\frac{1}{2}$ единиц влево.

Пример 5

 $y = 2\sin x, \quad y = \frac{1}{2}\sin x$ Построить графики функций

Вытягиваем синусоиду вдоль

раза:

2

Период функции $y = 2 \sin x$ не изменился и составляет $T = 2\pi$, а вот значения (все, кроме нулевых) увеличились *по модулю* в два раза, что логично — ведь функция умножается на 2, и область её значений удваивается: $E(y) = \begin{bmatrix} -2,2 \end{bmatrix}$.

Построение второго графика: **сожмём** синусоиду **вдоль оси** OY в 2 раза:

Аналогично, период $T = 2\pi$ не изменился, но область значений функции

$$E(y) = \left[-\frac{1}{2}, \frac{1}{2}\right].$$
 «сплющилась» в два раза:

Пример 6

Построить графики функций $y = \sin x + 2$, $y = \sin x - 1$.

В первом случае переносим синусоиду на 2 единицы в вверх по оси OY , Во втором — вниз на 1 единицу по оси OY .

Обратные тригонометрические функции

Графики обратных тригонометрических функций мы рассматривали на прошлом занятии.

Сегодня предлагаю посмотреть видеоурок.

https://www.youtube.com/watch?v=lock8FPo6P4

 $y = \operatorname{arctg} x$

Глава 7 «Графики и функции», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. – 4-е изд., стер. – М.: ИЦ «Академия», 2017, - 256 с.

 $y = \operatorname{arcctg} x$

В случае отсутствия печатного издания, Вы можете обратиться к Электроннобиблиотечной системе «Академия»

Список использованных интернет-ресурсов:

- 1. https://urait.ru/
- 2. http://mathprofi.ru/
- 3. https://23.edu-reg.ru/