Linjär Algebra

Föreläsning 14 - Baser och linjärt beroende

Erik Sjöström

December 2, 2015

1 Linjärt beroende

Obs:

$$\begin{cases} x_1 + x_2 + 2x_3 = 0 \\ x_1 + 2x_2 + x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases} \Leftrightarrow \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot x_1 + \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot x_2 + \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \cdot x_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\Leftrightarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Definition 1.1. Vektorerna $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ är linjärt oberoende om enda lösningen till ekvationen:

$$x_1 \cdot \vec{v_1} + x_2 \cdot \vec{v_2} + \dots + x_n \cdot \vec{v_n} = \emptyset$$
 $\ddot{a}r$ $x_1 = x_2 = \dots = x_n = 0$ $x_i \in \mathbb{R}$

Definition 1.2. Vektorerna $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ är linjärt beroende om enda lösningen till ekvationen:

$$x_1 \cdot \vec{v}_1 + x_2 \cdot \vec{v}_2 + \dots + x_n \cdot \vec{v}_n = \emptyset$$

har en lösning där åtminstonde något $x_i \neq 0$

Exempel 1.1.

$$\vec{e_1} = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}$$
 $\vec{e_2} = egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}$ $\vec{e_3} = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$

är linjärt oberoende ty:

$$x_1 \cdot \vec{e_1} + x_2 \cdot \vec{e_2} + x_3 \cdot \vec{e_3} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x_1 = x_2 = x_3 = 0$$

Exempel 1.2.

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \qquad \vec{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad \qquad \vec{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

är linjärt oberoende ty:

$$x_1 \cdot \vec{v}_1 + x_2 \cdot \vec{v}_2 + x_3 \cdot \vec{v}_3 = \emptyset \Leftrightarrow \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Gausseliminering ger:

$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \Rightarrow x_1 = x_2 = x_3 = 0$$

Exempel 1.3.

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 $\vec{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ $\vec{v}_3 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$

Är linjärt beroende ty:

$$x_1 \cdot \vec{v}_1 0 x_2 \cdot \vec{v}_2 + x_3 + \vec{v}_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Gausseliminering ger:

$$\left[\begin{array}{cc|ccc|c} 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 1 & 1 & 0 \end{array}\right] \sim \dots \sim \left[\begin{array}{cccc|c} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Vi har en fri kolumn, och en fri variabel x3, vilket ger lösningarna:

$$\begin{cases} x_1 = -(-2t) - t = t \\ x_2 = -2t \\ x_3 = t \end{cases}$$

Vi får:

$$t \cdot \vec{v}_1 - 2t \cdot \vec{v}_2 + t \cdot \vec{v}_3 = \emptyset$$

 $t \ \ddot{a}r \ ett \ godtyckligt \ reellt \ tal. \ Om \ vi \ s\"{a}tter \ t=1 \ f\r{a}r \ vi:$

$$\begin{cases} x_1 = 1, \\ x_2 = -2, \\ x_3 = 1 \end{cases}$$

Vi har då:

$$\vec{v}_1 = 2\vec{v}_2 - \vec{v}_3$$

- Två vektorer \vec{v}_1 och \vec{v}_2 är linjärt beroende om de är parallella, ty $\vec{v}_1=t\cdot\vec{v}_2,\,t\in\mathbb{R}$
- \bullet n stycken vektorer är <u>linjärt beroende</u> om minst en av dom kan uttryckas som en linjärkombination av dom andra vektorerna.

(dvs: denna vektor är "överflödig" i den mening att man kan uttrycka lika många linjärkombinationer om man tar bort denna vektor)

Exempel: 1.3. (igen)

Ta bort \vec{v}_3 , vi kan fortfarande uttrycka lika många linjärkombinationer med \vec{v}_1 och \vec{v}_2

2 Baser

Definition 2.1. Vektorerna $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ utgör en bas för en mängd \mathbb{V} om de är <u>linjärt oberoende</u> och om varje vektor $\vec{v} \in \mathbb{V}$ kan skrivas som en linjärkombination av vektorerna $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$.

- Dimensionen för $\mathbb V$ är antalet vektorer i basen.

Exempel 2.1.

$$ec{e}_1 = egin{bmatrix} 1 \ 0 \end{bmatrix}$$
 $ec{e}_2 = egin{bmatrix} 0 \ 1 \end{bmatrix}$

 $\ddot{a}r$ en bas i \mathbb{R}^2 eftersom de $\ddot{a}r$ <u>linjärt oberoende</u> och alla vektorer i \mathbb{R}^2 kan skrivas som en linjärkombination av \vec{e}_1 och \vec{e}_2

Exempel 2.2.

Låt $\vec{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Då $\ddot{a}r$ $\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ och \vec{v} ej parallella, så vi vet att de $\ddot{a}r$ <u>linjärt oberoende</u> Alla andra vektorer i \mathbb{R}^2 kan skrivas som en linjärkombination (\vec{e}_1, \vec{v}) , t.ex.:

$$\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -2\vec{e}_1 + \vec{v} = -2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Eller som en gausselimination:

$$\left[\begin{array}{cc|c} 1 & 2 & 0 \\ 0 & 1 & 0 \end{array}\right] \Rightarrow \begin{cases} x_1 = 1 \\ x_2 = -2 \end{cases}$$

Exempel 1.2. (igen)

$$\vec{e_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\vec{e_2} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$\vec{e_3} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

3

är tre stycken linjärt oberoende vektorer i \mathbb{R}^3 , och utgör därmed en bas för \mathbb{R}^3 .

Exempel 1.3. (igen)

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \qquad \vec{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad \qquad \vec{v}_3 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$

är inte en bas för \mathbb{R}^3 eftersom de är <u>linjärt beroende</u>

Vi måste alltså ha tre stycken <u>linjärt oberoende</u> vektorer i \mathbb{R}^3 för att få en bas för \mathbb{R}^3 , det finns alltså en vektorer $\vec{b} \in \mathbb{R}^3$ som ej kan skrivas som en linjärkombination av $\vec{v}_1, \vec{v}_2, \vec{v}_3$, t.ex. $\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

I exempel 1.3. fick vi en gausseliminering som gav:

$$\dots \sim \left[\begin{array}{ccc|c} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

Om det hade stått $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ i högerledet så hade vi fått ett system som saknar lösningar, ty vi hade då fått en ekvation:

$$0x_1 + 0x_2 + 0x_3 = 1$$

Vilket saknar lösning. Alltså har vi funnit en vektor som ej är en linjärkombinationen av $\vec{v}_1, \vec{v}_2, \vec{v}_3$

- Om $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ är linjärt beroende så har ekvationen:

$$\vec{v}_1 \cdot x_1 + \vec{v}_2 \cdot x_2 + \dots + \vec{v}_n \cdot x_n = \vec{b}$$

- oändligt många lösningar om \vec{b} kan skrivas som en linjärkombination av $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$.
- \bullet inga lösningar om \vec{b} ej kan skrivas som en linjärkombination av $\vec{v}_1,\vec{v}_2,...,\vec{v}_n.$

Eller uttryckt i matrisform:

Om $\mathbf{A} = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix}$ har linjärt beroende kolumner så har:

$$\mathbf{A} \cdot \vec{x} = \vec{b}$$

- $\bullet\,$ oändligt många lösningar om \vec{b} kan skrivas som en linjärkombination av kolumnerna.
- \bullet inga lösningar om \vec{b} ej kan skrivas som en linjärkombination av kolumnerna.

Om vektorerna $\vec{v}_1,\vec{v}_2,...,\vec{v}_n \in \mathbb{R}^n$ är linjärt oberoende så har:

$$\vec{v}_1 \cdot x_1 + \vec{v}_2 \cdot x_2 + \dots + \vec{v}_n \cdot x_n = \emptyset$$

Bara lösningen $x_1 = x_2 = \dots = x_n = 0$

Vilket betyder att:

$$\vec{v}_1 \cdot x_1 + \vec{v}_2 \cdot x_2 + \dots + \vec{v}_n \cdot x_n = \emptyset \qquad \qquad \vec{b} \in \mathbb{R}^n$$

har en entydig lösning.

Eller uttryckt i matriform: Om $\mathbf{A} = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_n \end{bmatrix}$ har <u>linjärt oberoende</u> kolumner så har $\mathbf{A} \cdot \vec{x} = \vec{b}$ en entydigt bestämd lösning. Dvs den homogena ekvationen:

$$\mathbf{A} \cdot \vec{x} = \emptyset$$

Vilket har den triviala lösningen: $\vec{x} = \emptyset$

Sats 2.1.

 $\vec{v}_1, \vec{v}_2, ..., \vec{v}_r$ är en bas för \mathbb{R}^n oom r = n (och $\vec{v}_1, ..., \vec{v}_r \in \mathbb{R}^n$) och dom är linjärt oberoende

Proof. Låt $\mathbf{A} = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_r \end{bmatrix}$ och gausseliminera \mathbf{A} till \mathbf{T} (trappstgsform). Om:

- r > n, då har vi fler obekanta än ekvationer. Vilket betyder att vi får fria kolumner i lösningen, dvs vi får oändligt många lösningar, dvs kolumnerna i **A** är linjärt beroende. De utgör alltså ej en bas för \mathbb{R}^n .
- r < n, få har vi fler ekvationer än obekanta. Vilket betyder att minst en rad ej kommer innehålla ett pivotelement. Eftersom \vec{b} kan väljas fritt, jämför exempel **1.3.**. Välj \vec{b} :

$$ec{b} = egin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

detta är ej lösbart av samma anledning som i exempel **1.3.**. Dvs \vec{b} kan ej skrivas som en linjärkombination av $\vec{v}_1, \vec{v}_2, ..., \vec{v}_r$. Dvs $\vec{v}_1, \vec{v}_2, ..., \vec{v}_r$ är ej en bas för \mathbb{R}^n

 \bullet r=n, är det enda kvarstående alternativet.