Università degli Studi di Parma - C. L. in Ingegneria I. E. T. Analisi Matematica - Prof. Domenico Mucci Esercizi proposti sul cap. 6 : funzioni derivabili

Calcolo di derivate di funzioni

$$x^{2}e^{x} + \operatorname{sen} x \cos x$$
, $\frac{x^{4}}{x^{2} + 1}$, $\frac{x + \cos x}{x - \operatorname{sen} x}$, $\cos(x^{3} \operatorname{sen} x)$, $\sqrt{2 + \operatorname{sen}^{2}(3x)}$, $2^{\operatorname{sen} x}$, $x^{\log x}$, $(\operatorname{sen} x)^{\cos x}$, $(x^{2})^{(x^{3})}$.

Applicazioni del teorema sulla derivata dell'inversa e del teorema di Lagrange

- i) Data la funzione $f(x) = \log x + e^{x^2}$, trovatene il dominio e l'immagine, dimostrate che è invertibile e che l'inversa f^{-1} è derivabile.
 - Calcolate la derivata $(f^{-1})'(x_0)$ della funzione inversa nel punto $x_0 = e$.

Scrivete l'equazione della retta tangente al grafico di f^{-1} nel punto $(e, f^{-1}(e))$.

- ii) Provate che $\arctan x + \arctan(1/x) = \pi/2$ per ogni x > 0.
- iii) Trovate il numero di soluzioni $x \in \mathbb{R}$ dell'equazione $e^x x = k$ al variare di $k \in \mathbb{R}$.
- iv) Determinate l'estremo superiore e inferiore della funzione $f(x) = x^3 5x^2/2 2x$ su A =]-3/2, 2[, specificando se sono massimo e/o minimo.
- v) Determinate l'estremo superiore e inferiore della funzione $g(x) = e^{-x^2}(x^2 1)$ su $A = \mathbb{R}$, specificando se sono massimo e/o minimo.
- vi) Trovate gli intervalli di monotonia della funzione $f(x) = |x|e^x$.
- vii) Trovate gli intervalli di monotonia della funzione $g(x) = \arctan(2x) \log x$.

Applicazioni del teorema di de l'Hôpital

Determinate i valori di $a, b \in \mathbb{R}$ per i quali la funzione

$$f(x) = \begin{cases} \arctan(1+ax) - b\log(x+e) & \text{se} \quad x > 0\\ (b-2)x^2 + \cos(bx) + \pi/4 & \text{se} \quad x \le 0 \end{cases}$$

risulta derivabile su tutto \mathbb{R} .

Funzioni convesse

Determinate gli intervalli di convessità e/o concavità delle seguenti funzioni:

$$\frac{1}{1+x^2}$$
, $\frac{|x|}{1+x^2}$, $|x|^4+6|x|^3+12|x|^2-5x+1$.