Algorithmen und Analyse auf bibliographischen Daten

peterr und Lusy

10. November 2011

peterr und Lusy 1 / 12

Eigenschaften des Datensatzes

- enthält ca. 706 000 Einträge
- mit 19 verschiedenen Themengebieten
- nur der Themenbereich Physik wird in Themengruppen unterteilt
- 11 Einträge ohne Informationen
- Publikationen haben im Durchschnitt 1.3 und maximal 9
 Themen

peterr und Lusy 2 / 12

Aufbau des Datensatzes

Header

```
<identifier>oai:arXiv.org:0704.0001</identifier>
<datestamp>2007-07-24</datestamp>
<setSpec>physics:physics</setSpec>
<setSpec>math</setSpec>
```

Metadaten

```
<dc:title>Titel des Papers</dc:title>
<dc:creator>Author 1</dc:creator>
<dc:creator>Author 2</dc:creator>
<dc:subject>Physics - Optics</dc:subject>
<dc:subject>Physics - Optics</dc:subject>
<dc:description>Description</dc:description>
<dc:description>Comment</dc:description>
<dc:date>2007-04-02</dc:date>
<dc:date>2007-07-24</dc:date>
<dc:type>text</dc:type>
<dc:identifier>http://arxiv.org/abs/0704.0001</dc:identifier>
<dc:identifier>Phys. Rev. D76:013009, 2007</dc:identifier>
```

peterr und Lusy 3 / 12

Parsen der Daten

- Parser in Python geschrieben
- kompletter Datensatz in den Speicher
 - · Overhead des XML-Parser nicht beachtet
- iterativer Ansatz ¹
- benötigt ca. 70 Sekunden für 1.2 GB

¹http://www.ibm.com/developerworks/xml/library/x-hiperfparse/peterr und Lusy

Verteilung der Themen

peterr und Lusy 5 / 12

Aufschlüsselung von physics

Themen

peterr und Lusy 6 / 12

Häufigkeit von Themen pro Publikation

Häufigkeit der Anzahl von Themen im arxiv.org Datensatz

peterr und Lusy 7 / 12

Was sind Assoziationsregeln?

- bestimmen Korrelation des Auftretes von Mengen
- Regel der Form "Wenn Menge A, dann Menge B"
- Kenngrößen
 - Support relative Häufigkeit der Menge in den Daten
 - Konfidenz Häufikeit des gemeinsames Auftretens von A und B, unter der Bedingung das A auftritt

Lift - Bedeutung der Regel

peterr und Lusy 8 / 12

Assoziationsregeln - aller Themen

Regel	Support	Konfidenz	Lift
$math \implies stat$	0.6%	64%	3.0
physics:math-ph \implies math	3.8 %	100%	4.7
physics:hep-th, physics:math-ph \implies math	0.9 %	100%	4.7
math, physics:hep-th \implies physics:math-ph	0.9 %	63%	16.3
$physics.gr\text{-}qc,physics.hep\text{-}th \implies physics.hep\text{-}th$	0.6 %	72 %	6.1
physics:gr-qc, physics:hep-th \implies physics:astro-ph	0.6 %	70 %	3.5
$physics.gr-qc,\ physics.astro-ph \implies physics.hep-th$	0.9 %	50 %	4.3
physics:astro-ph, physics:hep-th \implies physics:gr-qc	0.9 %	74 %	12.4

Support: 0.5 % und Konfidenz 50 %

peterr und Lusy 9 / 12

Assoziationsregeln - Oberthemen

Regel	Support	Konfidenz	Lift
$\emptyset \implies physics$	78%	78%	1.0
$stat \implies math$	0.6 %	63 %	3.0
$nlin \implies physics$	1.3 %	50 %	0.64
math, nlin \implies physics	0.4 %	83 %	1.1

Support: 0.1 % und Konfidenz 50 %

peterr und Lusy 10 / 12

Probleme

- mehrere Datumsangaben
- Themen in Metadaten nicht eindeutig
 - unterschiedliche Kategorisierungen
 - auch in einem Eintrag
- Themenbereiche nachzuschlagen ist aufwendig

peterr und Lusy 11 / 12

Weitere Analysen

- Aufschlüsselung der Themenbereiche
- Regeln f
 ür die Unterthemen
- Algorithmus implementieren?
 - AIS-Algorithmnus
 - · Apriori-Algorithmus
 - FPGrowth
- Entwicklung in Abhängigkeit von der Zeit

peterr und Lusy 12 / 12