Examen partiel du jeudi 28 mars 2024

Durée : 2h. Aucun document et aucun appareil électronique n'est autorisé.

Questions de cours

- 1) Rappeler la définition de la branche principale du logarithme, et expliquer pourquoi c'est une fonction holomorphe.
- 2) Rappeler la définition du rayon de convergence d'une série entière, et énoncer la formule d'Hadamard. Donner un exemple de calcul de rayon de convergence.

Exercice 1: Une fonction holomorphe

On note $H := \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 0\}$. Pour $x, y \in \mathbb{R}$ vérifiant x > 0, on pose :

$$f(x+iy) = \frac{1}{2}\ln(x^2+y^2) + i\arctan\left(\frac{y}{x}\right).$$

Montrer que ceci définit une fonction f holomorphe sur H. Quelle est sa dérivée ?

Exercice 2: Une question d'harmonicité

Le but de cet exercice est de déterminer les fonctions $\varphi:]0, \infty[\longrightarrow \mathbb{R}$ de classe \mathcal{C}^2 telles que la fonction $u: (x,y) \mapsto \varphi(x^2+y^2)$ soit harmonique sur $\mathbb{R}^2 - \{(0,0)\}$.

- 1) Montrer que φ vérifie cette condition si et seulement si $t\varphi''(t) + \varphi'(t) = 0$ pour tout $t \in]0, \infty[$.
- 2) Résoudre cette équation différentielle pour déterminer ce que peut être φ' . On pourra commencer par faire apparaître la dérivée de $t \mapsto t\varphi'(t)$.
- 3) En déduire toutes les fonctions φ solutions du problème.
- 4) Déterminer toutes les fonctions f holomorphes telles que Re(f(z)) ne dépend que de |z|, sur \mathbb{C} privé de \mathbb{R}_{-} , puis sur \mathbb{C}^* . On admet que la partie réelle d'une fonction holomorphe est nécessairement de la classe \mathcal{C}^2 .

Exercice 3 : Problèmes au bord du disque de convergence

On considère la série entière $f(z) = \sum_{n \ge 1} z^{2^n}$.

- 1) Déterminer le rayon de convergence de cette série entière.
- 2) Étudier la limite de f(z) quand $z \in [0, 1[$ tend vers 1 (on pourra par exemple comparer f aux fonctions $z \mapsto z$, $z \mapsto z + z^2$, $z \mapsto z + z^2 + z^4$, etc., ou bien utiliser la question précédente). En déduire qu'on ne peut pas prolonger f par continuité en 1.
- 3) Montrer que pour tout z dans le disque de convergence, $f(z) = z^2 + f(z^2)$.
- 4) Utiliser les deux questions précédentes pour montrer que f ne peut pas être prolongée par continuité en -1. Puis montrer qu'on ne peut pas non plus la prolonger par continuité en $\pm i$.
- 5) Montrer que pour tout $k \ge 0$, si ω est une racine 2^k -ième de l'unité, f ne peut pas être prolongée par continuité en ω . On pourra raisonner par récurrence sur k et étudier la limite de $f(t\omega)$ si $t \in [0,1[$ tend vers 1.
- 6) Peut-on prolonger f en une fonction continue sur un ouvert connexe contenant strictement le disque de convergence? On pourra commencer par faire un dessin.