ids-pdl09-hwk.ipynb: This Jupyter notebook is provided by Joachim Vogt for the *Python Data Lab* of the module *Introduction to Data Science* offered in Fall 2022 at Jacobs University Bremen. Module instructors are Hilke Brockmann, Adalbert Wilhelm, and Joachim Vogt. Jupyter notebooks and other learning resources are available from a dedicated *module platform*.

Homework assignments: Working with Pandas

The homework assignments in this notebook supplement the tutorial Working with Pandas.

- · Solve the assignments according to the instructions.
- Upload the completed notebook to the module platform.
- Do not forget to enter your name in the markdown cell below.

The homework set carries a total of 20 points. Square brackets in the assignment titles specify individual point contributions.

Name: Hamza Rehman

Preparation

Import NumPy, pyplot from matplotlib, and Pandas as usual.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
```

The following data files are expected to reside in the working directory. Identify the files on the module platform and upload them to the same folder as this Jupyter notebook.

- gdp-per-capita-in-us-dollar-world-bank.csv: GDP per capita in constant 2010 US dollars 1960-2020, published by the World Bank, 2021-07-30, available from Our World in Data.
- life-expectancy-at-birth-total-years.csv: Life expectancy at birth 1960-2019, published by the World Bank, 2021-07-30, available from Our World in Data.
- leb gdpint decade.png: graphics of a table to be reproduced in the assignment Pivot tables.

Assignment: Hierarchical indexing [5]

According to Wikipedia (accessed on 2022-07-26), the resident numbers of Berlin, Cologne, Hamburg, Munich in the years 1980, 2000, 2020/21 were as follows.

City	1980	2000	2020/21
Berlin	3048759	3382169	3677472
Cologne	976694	962884	1073096
Hamburg	1645095	1715392	1853935
Munich	1298941	1210223	1487708

In the cell below,

- 1. store the three sets of resident numbers for the years 1980, 2000, 2020/21 in a single Pandas DataFrame object ResA indexed by the city names,
- 2. apply the function stack() to ResA and store the result in a Pandas Series object ResB,
- 3. from ResB obtain the index (a Multilndex object) and store it as IndB,
- 4. using the Pandas function MultiIndex.from_arrays(), construct a MultiIndex object IndC identical to IndB,
- 5. using the Pandas function MultiIndex.from_product(), construct a MultiIndex object IndD identical to IndB.

```
1980
                      2000 2020/21
  Berlin 3048759 3382169 3677472
 Cologne
           976694
                    962884 1073096
Hamburg 1645095 1715392 1853935
 Munich 1298941 1210223 1487708
Berlin
           1980
                         3048759
                         3382169
           2000
           2020/21
                         3677472
Cologne
           1980
                          976694
                          962884
           2000
           2020/21
                         1073096
Hamburg
           1980
                         1645095
           2000
                         1715392
           2020/21
                         1853935
Munich
           1980
                         1298941
           2000
                         1210223
           2020/21
                        1487708
dtype: int64
MultiIndex([( 'Berlin',
                                 '1980'),
                 'Berlin', '2000'),
'Berlin', '2020/21'),
               ('Cologne',
                                  '1980'),
               ('Cologne', '2000'),
('Cologne', '2020/21'),
                                 '1980'),
               ('Hamburg',
               ('Hamburg', '2000'),
('Hamburg', '2020/21'),
                                 '1980'),
               ( 'Munich',
                                 '2000'),
               ('Munich',
               ( 'Munich', '2020/21')],
                                 '1980'),
MultiIndex([( 'Berlin',
                'Berlin', '2000'),
'Berlin', '2020/21'),
                                 '2000'),
               ('Cologne',
                                 '1980'),
               ('Cologne',
                                 '2000'),
               ('Cologne', '2020/21'),
('Hamburg', '1980'),
               ('Hamburg', '2000'),
('Hamburg', '2020/21'),
('Munich', '1980'),
                                 '2000'),
               ('Munich', '2000'),
('Munich', '2020/21')],
                                 '2000'),
MultiIndex([( 'Berlin',
                                  '1980'),
                 'Berlin',
                                 '2000'),
                'Berlin', '2020/21'),
               ('Cologne', ('Cologne',
                                 '1980'),
                                 '2000'),
               ('Cologne', '2020/21'),
               ('Hamburg',
('Hamburg',
                                  '1980').
                                 '2000'),
               ('Hamburg',
('Munich',
                              '2020/21'),
                                 '1980'),
                 'Munich',
                                 '2000'),
                 'Munich', '2020/21')],
```

Assignment: GroupBy mechanism [8]

The file gdp-per-capita-in-us-dollar-world-bank.csv contains data on GDP per capita in constant 2010 US dollars 1960-2020, as published by the World Bank on 2021-07-30, and made available through Our World in Data.

- Click on the filename in the directory listing to display the content of this comma-separated text file to study the structure.
- Consult the associated tutorial notebook ids-pdl09-tut.ipynb and study how the data from the file life-expectancy-at-birth-total-years.csv are processed.

• The same processing steps are to be applied to the GDP per capita data from the file gdp-per-capita-in-us-dollar-world-bank.csv . Details are given below.

Using the Pandas function read csv(), the data are loaded and stored in a DataFrame.

```
In [15]: gdp_full = pd.read_csv('gdp-per-capita-in-us-dollar-world-bank.csv')
    display(gdp_full)
```

	Entity	Code	Year	GDP per capita (constant 2010 US\$)
0	Afghanistan	AFG	2002	330.303494
1	Afghanistan	AFG	2003	343.080890
2	Afghanistan	AFG	2004	333.216617
3	Afghanistan	AFG	2005	357.234762
4	Afghanistan	AFG	2006	365.284371
12147	Zimbabwe	ZWE	2016	1224.314460
12148	Zimbabwe	ZWE	2017	1263.278346
12149	Zimbabwe	ZWE	2018	1289.146499
12150	Zimbabwe	ZWE	2019	1168.008072
12151	Zimbabwe	ZWE	2020	1058.845827

12152 rows × 4 columns

From the full DataFrame gdp full, remove rows for entities that are not single countries but world regions.

```
In [16]: gdp_full.dropna(inplace=True)
  gdp_full = gdp_full[gdp_full["Entity"]!="World"]
  display(gdp_full)
```

	Entity	Code	Year	GDP per capita (constant 2010 US\$)
0	Afghanistan	AFG	2002	330.303494
1	Afghanistan	AFG	2003	343.080890
2	Afghanistan	AFG	2004	333.216617
3	Afghanistan	AFG	2005	357.234762
4	Afghanistan	AFG	2006	365.284371
12147	Zimbabwe	ZWE	2016	1224.314460
12148	Zimbabwe	ZWE	2017	1263.278346
12149	Zimbabwe	ZWE	2018	1289.146499
12150	Zimbabwe	ZWE	2019	1168.008072
12151	Zimbabwe	ZWE	2020	1058.845827

9525 rows × 4 columns

Rename the GDP per capita column label to 'GDP/cap.'.

```
In [17]: gdp_full.rename(columns = {gdp_full.columns[3] : 'GDP/cap.'},inplace = True, errors= 'raise')
display(gdp_full.head)

<br/>
```

```
1
      Afghanistan AFG
                       2003
                              343.080890
2
      Afghanistan AFG
                              333.216617
                       2004
3
      Afghanistan AFG 2005
                              357.234762
4
      Afghanistan AFG 2006
                             365.284371
12147
         Zimbabwe ZWE
                       2016 1224.314460
12148
         Zimbabwe
                  ZWE
                       2017
                             1263.278346
12149
         Zimbabwe ZWE
                       2018 1289.146499
         Zimbabwe
                             1168.008072
12150
                  7WF
                       2019
12151
         Zimbabwe
                  ZWE
                       2020
                             1058.845827
```

[9525 rows x 4 columns]>

Store the column of GDP per capita values.

```
In [18]: gdp_per_capita_values = gdp_full['GDP/cap.'].values
```

Construct the MultiIndex object from the 'Code' and 'Year' columns.

Using the array of GDP per capita values with the MultiIndex object as an index, we construct a Series object that is then unstacked to yield a DataFrame in the desired format.

```
In [20]: nDF = pd.Series(gdp_per_capita_values,index = mulind).unstack()
    display(nDF)
```

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	
ABW	NaN										
AFG	NaN										
AGO	NaN										
ALB	NaN										
AND	NaN										
WSM	NaN										
YEM	NaN										
ZAF	4624.077033	4685.490949	4852.780839	5081.233260	5347.340956	5531.731402	5631.010299	5882.849706	5970.578833	6091.031057	
ZMB	1495.703272	1471.244667	1392.222249	1395.225016	1519.023893	1718.675662	1573.798595	1646.596597	1615.678326	1558.175421	
ZWE	994.698381	1022.764137	1002.974747	1030.026148	984.670135	998.754210	980.595168	1027.852205	1013.728418	1101.938805	

206 rows × 61 columns

Rows and columns are swapped through the application of $\ensuremath{\,\mbox{transpose}}\xspace()$.

```
In [21]: nDF = nDF.transpose()
display(nDF.head())
```

	ABW	AFG	AGO	ALB	AND	ARE	ARG	ARM	ASM	AIG	 VCI	VEN	VIR	VNM	VUI	WSM	YEM	
1960	NaN	NaN	NaN	NaN	NaN	NaN	5642.764587	NaN	NaN	NaN	 1752.014362	12457.210022	NaN	NaN	NaN	NaN	NaN	4624
1961	NaN	NaN	NaN	NaN	NaN	NaN	5853.170781	NaN	NaN	NaN	 1804.632391	12401.867700	NaN	NaN	NaN	NaN	NaN	468
1962	NaN	NaN	NaN	NaN	NaN	NaN	5711.182038	NaN	NaN	NaN	 1847.223030	12992.822489	NaN	NaN	NaN	NaN	NaN	485
1963	NaN	NaN	NaN	NaN	NaN	NaN	5323.493318	NaN	NaN	NaN	 1711.726256	13037.601796	NaN	NaN	NaN	NaN	NaN	508
1964	NaN	NaN	NaN	NaN	NaN	NaN	5772.649438	NaN	NaN	NaN	 1755.424051	13999.206299	NaN	NaN	NaN	NaN	NaN	534

5 rows × 206 columns

```
,
```

Apply the describe() method to obtain summary statistics of a DataFrame.

```
In [22]: display(nDF.describe().transpose().head())
```

	count	mean	std	min	25%	50%	75%	max
ABW	32.0	25413.523448	2612.067368	15669.365906	24616.439346	26280.841687	26986.424676	28413.318599
AFG	19.0	487.286078	101.190910	330.303494	385.416630	543.302967	572.366373	587.565035
AGO	41.0	2887.765429	585.847171	1733.843074	2433.861819	2902.616443	3409.927901	3843.198733
ALB	41.0	2873.909253	1234.499851	1243.605824	1986.321914	2244.624632	4094.350334	5207.305322
AND	51.0	40090.960490	4264.182125	32296.694560	35932.887541	40850.248143	42669.429552	47844.218979

Apply the GroupBy mechanism to aggregate the GDP per capita data from the DataFrame gdp_full in decades, using min, median, and max as aggregation functions.

Hint: Consult section 3.08 Aggregation and Grouping of the Python Data Science Handbook by Jake Vanderplas for an effective implementation of decade aggregation.

Assignment: Pivot tables [7]

2010s 208.074775 16058.684153 209224.505501 **2020s** 202.372052 13406.552083 107457.984960

The pivot table below shows the median life expectancy at birth in the six decades since 1960 for selected intervals of GDP per capita in 2010 US\$. As before, all statistics are based on the country distributions given in the files life-expectancy-at-birth-total-years.csv and gdp-per-capita-in-us-dollar-world-bank.csv.

Follow the instructions below to reproduce this pivot table.

Using the Pandas functions <code>read_csv()</code> and <code>merge()</code>, join the contents of the files <code>life-expectancy-at-birth-total-years.csv</code> and <code>gdp-per-capita-in-us-dollar-world-bank.csv</code> to obtain a single Pandas DataFrame object <code>leb_gdp</code>. Drop undefined data and world regions, keeping only data from indvidual countries, and rename inconveniently long column labels. See the first session of the Python Data Lab for an implementation of this sequence of operations.

```
In [28]: leb_full = pd.read_csv('life-expectancy-at-birth-total-years.csv')
    gdp_full = pd.read_csv('gdp-per-capita-in-us-dollar-world-bank.csv')
    leb_gdp = leb_full.merge(gdp_full)

leb_gdp.dropna(inplace = True)
    leb_gdp = leb_gdp[leb_gdp['Entity'] != 'World']

leb_gdp.rename(columns = {leb_gdp.columns[3] : 'Life exp.', leb_gdp.columns[4] : 'GDP/cap'},inplace = True, err
    display(leb_gdp)
```

	Entity	Code	Year	Life exp.	GDP/cap
0	Afghanistan	AFG	2002	56.784	330.303494
1	Afghanistan	AFG	2003	57.271	343.080890
2	Afghanistan	AFG	2004	57.772	333.216617
3	Afghanistan	AFG	2005	58.290	357.234762
4	Afghanistan	AFG	2006	58.826	365.284371
11474	Zimbabwe	ZWE	2015	59.534	1234.102191
11475	Zimbabwe	ZWE	2016	60.294	1224.314460
11476	Zimbabwe	ZWE	2017	60.812	1263.278346
11477	Zimbabwe	ZWE	2018	61.195	1289.146499
11478	Zimbabwe	ZWE	2019	61.490	1168.008072

8899 rows × 5 columns

Construct the variable decade from the Year column of the DataFrame leb gdp.

```
In [26]: decade = 10 * (leb_gdp['Year'] // 10)
  decade = decade.astype(str) + 's'
  decade.name = 'Decade'
```

Using the Pandas function cut(), define partitions of the GDP per capita data column in leb_gdp into intervals with boundaries 0,300,1000,3000,10000,30000,100000,300000, and save them in the variable $gdp_partition$.

```
In [27]: gdp_partition = pd.cut(leb_gdp['GDP/cap'], [0, 300, 1000, 3000, 10000, 30000, 100000, 300000])
          display(gdp_partition)
          0
                      (300, 1000]
          1
                      (300, 1000]
          2
                      (300, 1000]
          3
                      (300, 1000]
                      (300, 1000]
          4
          11474
                     (1000, 3000]
          11475
                     (1000, 3000]
          11476
                     (1000, 3000]
          11477
                     (1000, 3000]
          11478
                     (1000, 3000]
          Name: GDP/cap, Length: 8899, dtype: category Categories (7, interval[int64, right]): [(0, 300] < (300, 1000] < (1000, 3000] < (3000, 10000] < (10000, 30000]
          < (30000, 100000] < (100000, 300000]]
```

Call the Pandas function <code>pivot_table()</code> on the life expectancy at birth column as key variable, with <code>decade</code> and <code>gdp_partition</code> as further arguments, and <code>median</code> as the aggregation function.

```
In [29]: l=leb_gdp.pivot_table(leb_gdp ,decade, gdp_partition, aggfunc = 'median')
display(l)
```

							GDP/cap				
GDP/cap	(0, 300]	(300, 1000]	(1000, 3000]	(3000, 10000]	(10000, 30000]	(30000, 100000]	(100000, 300000]	(0, 300]	(300, 1000]	(1000, 3000]	 (10 30
Decade											
1960s	237.236614	619.652614	1510.540607	4898.340218	17102.594040	30736.683999	NaN	42.4605	46.1025	50.4795	 70.62
1970s	263.458488	609.165819	1779.605218	5228.366062	20559.723422	37973.160753	103686.021950	46.3270	46.8340	55.9785	 71.97
1980s	223.634924	548.404407	1734.989400	4440.105730	18549.701032	37741.078394	114664.571682	46.4305	49.9220	60.7920	 73.908
1990s	219.533511	543.142279	1665.354633	4898.700341	20065.078348	37354.951853	NaN	48.1940	53.6330	65.2510	 74.514
2000s	229.699443	600.455777	1755.418682	5209.038698	17616.650826	42859.796489	104943.439300	52.7560	56.1780	66.5390	 75.21;
2010s	231.333990	662.940658	1652.661261	5394.996711	15930.661772	47275.403025	106648.366503	59.8940	60.9935	66.8955	 76.484

6 rows × 21 columns