Biological purification of effluent waters

Patent number:

DE4445440

Publication date:

1995-12-21

Inventor:

WUESTENECK ALFONS M DR (DE); DREWECK

SLAWOJ DR (DE)

Applicant:

WUESTENECK ALFONS M DR (DE); DREWECK

SLAWOJ DR (DE)

Classification:

- international:

C02F3/02

- european:

C02F3/02, C02F3/06

Application number: DE19944445440 19941220 Priority number(s): DE19944445440 19941220

Abstract of DE4445440

Process for biological purification of waste waters, esp. urban effluent water, in which water from a mechanical pre-clarifier stage (1), pref. a multichamber clarifier pit, is passed continuously or discontinuously or overflows into a buffer vessel (2), from where it is metered by pump (3) into a biological filter (4) which pref. consists of one or more concentric, wound, perforated drainage tubes lying flat in running water, and microbial C-decomposition of the organic contaminants and N-decomposition of the N-contg. contaminants takes place by nitrification and denitrification, whereby the O2 required by the bacteria naturally present is supplied from the O2 content of the running water by continuous diffusion through the pores of the biofilter, and due to the biofilter an equilibrium of the biologically purified water is achieved, as it flows through the whole length of the biological filter and out into the running water stream.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO,

BUNDESREPUBLIK DEUTSCHLAND

[®] Patentschrift ® DE 44 45 440 C 1

(51) Int. Cl.⁶: C 02 F 3/02

DEUTSCHES PATENTAMT Aktenzeichen:

P 44 45 440.6-44

Anmeldetag:

20, 12, 94

Offenlegungstag:

Veröffentlichungstag

21. 12. 95 der Patenterteilung:

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Wüsteneck, Alfons M., Dr., 34587 Felsberg, DE; Dreweck, Slawoj, Dr., 34576 Homberg, DE

(74) Vertreter:

Jahn-Held, W., Dipl.-Chem. Dr.-Ing. Dr.agr., Pat.-Anw., 34355 Staufenberg

① Erfinder: gleich Patentinhaber

66) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften: NICHTS ERMITTELT

(3) Verfahren zur biologischen Reinigung von Abwässern, insbesondere kommunaler Provenienz

Verfahren zur biologischen Reinigung von Abwässern, dadurch gekennzeichnet, daß die Abwässer aus einer mechanischen Vorklärstufe in ein Pufferbecken überführt werden und aus diesem mit einer Dosierpumpe in ein biologisches Filter, wie ein umwickeltes, perforiertes Drainagerohr eingeleitet werden, das flachliegend in einem Fließgewässer angeordnet ist, und der mikrobielle C-Abbau und der N-Abbau durch Nitrifikation und Denitrifikation, derart erfolgt, daß den Bakterien aus dem O2-Gehalt des Fließwassers durch Hineindiffundieren durch die Poren des biologischen Filters O2 zugeführt wird, und durch dieses eine Vergleichmäßigung der praktisch gereinigten Abwässer erfolgt, oder, daß das biologische Filter in einem Behälter mit belüftetem Fließwasser angeordnet ist und der biologische C- und N-Abbau in einem Bypass zum Fließwasser erfolgt.

Beschreibung

Die Verminderung der Umweltbelastung durch Abwässer, insbesondere durch häusliches Abwasser, ist eine Aufgabe von volkswirtschaftlicher Bedeutung.

Gegenstand der Erfindung ist ein Verfahren zur biologischen Reinigung von Abwässern, insbesondere kommunaler Provenienz.

Nach dem Stand der Technik ist es möglich, einen biologischen Abbau in Reaktoren unter Zusatz von Mikroorganismen der organischen Ballaststoffe und Stickstoff-Verbindungen durchzuführen mit Sauerstoffzuführung durch Eindrücken von Luft zur O_2 -Limitierung.

Das Verfahren der Erfindung vermeidet diesen Investierungs- und höheren Betriebsaufwand des Rührens und der Luftzuführung.

Aufgabe des Verfahrens der Erfindung ist mit organischen Stoffen und Stickstoff-Verbindungen belastete Abwässer durch biologischen Abbau in technisch einfacher Weise so weit zu reinigen, daß diese in Fließwässer zur Entlastung der Selbstreinigungskraft eingeleitet werden können.

Das Verfahren der Erfindung ist in den Patentansprüchen 1 und 2 definiert. Die Unteransprüche beanspruchen die alternative und bevorzugte Ausgestaltung.

Ein technischer Effekt des Verfahrens der Erfindung beruht auf der Kombination der zu reinigenden Abwässer mit dem Wasser von Fließgewässern. Es ist überraschend, das der O₂-Gehalt von Fließwässern zur O₂-Versorgung von Bakterien zur Förderung des Wachstums ausgenutzt werden kann durch Eindiffundieren durch die Poren eines biologischen Filters.

Ein weiterer technischer Effekt besteht in der Vergleichmäßigung der Einleitung des biologisch gereinigten Abwassers in dem Fließgewässer.

Sofern als biologisches Filter Drainagerohre mit Poren vorzugsweise verwendet werden sind diese mit Naturund/oder Kunststoffasern umwickelt. Derartige Rohre werden von den Fränkischen Rohrwerken, Königsberg/ Bayern, hergestellt.

Diese perforierten Rohre verwenden eine oder mehrere Schichten aus anorganischem Material, wie Mineralwolle, oder aus organischem Material, wie Kokosfasern als Berieselungs- und Filterfläche des biologischen Filters.

Die verwendeten Stützelemente bei Drainagerohren können aus mehreren, konzentrischen Rohren, wie aus Edelstahlgitterrohren bestehen.

Unter einem biologischen Filter wird ein perforierter, rohrförmiger Körper aus anorganischem oder organischem Material verstanden, der von Abwässern durchflossen wird und in seinem Inneren und auf seiner umhüllenden Schicht nach einer Anfangsphase ein biologischen System mit natürlich im Abwasser vorhandenen Mikroorganismen aufbaut.

Es ist offenbar so, daß die Abwässer in dem biologischen Filter ein abgestuftes biologisches System aufbauen, das bereits in der äußeren Schicht zur Nitrifikation führt und in der inneren Schicht des biologischen Filters auch eine Denitrifikation erfolgt. Nach dem Verfahren der Erfindung kann beispielsweise mit einem kontinuierlichem Zulauf von 0,5—20 m³ kommunalem Abwasser in 24 h ein biologisch gereinigtes Abwasser erzeugt werden. Die O₂-Versorgung der angesiedelten Mikroorganismen findet über den ständigen Kontakt mit dem umgebenden Fließwasser statt. Es können auch Vermischungen und Verdünnungen mit dem Fließwasser im Inneren des perforierten, rohrförmigen bilogischem Filter erfolgen. Es wird aber das biologische Filter stets von dem zugeführten Abwasser durchströmt bevor dieses auf der Länge des rohrförmigen Filters austritt.

Es erfolgt die maximale, biologische Abbauleistung im Inneren des biologischen Filters. Es baut sich im biologischen Filter vom Einlauf her bis zur Rohrmitte Schlamm auf, der bis zum Rohrende ein gutes Absatzverhalten aufgrund seiner Konsistenz aufweist. Dieser Schlamm wird periodisch durch ein zentrales inneres Rückspülrohr in die mechanische Vorklärstufe zurückgepumpt und daraus periodisch abgezogen.

Das Verfahren der Erfindung wird durch die folgenden chemischen Analysen erläutert:

50

10

55

60

65

PH-Wert	Probe 1 Probe 2 Zulauf Ventil 1 Abwasser- behandlung	Probe 3 Ventil 2
Nitrat(mg/l)	231 99	0,06
Gesamt-Stickstoff (mg/l) 209 89 5.5	1,8 8,6 mg/l) < 0,5 1,9 < 0,01 6,2	18,2 4,1 0,07
CSB, homogenisiert (mg/l)	f (mg/l) 209 89 -Phosphor (mg/l) 13,4 5,60 170 76	5,5 0,20 28
Probe 4 Bachprobe nach Riarsystem Bachprobe vor Außenhaut	rt (mg/l) 401 160 l) 188 83	230 < 10
Bachprobe nach Riarsystem Bachprobe vor Riarsystem Außenhaut		
Ammonium (mg/l) 0,12 0,09 0,2 Ammonium-Stickstoff (mg/l) 0,09 0,07 0,16 Nitrat (mg/l) 17,1 17,0 19,0 Nitrat-Stickstoff (mg/l) 0,08 0,09 0,08 Nitrit-Stickstoff (mg/l) 0,02 0,03 0,02 Gesamt-Stickstoff (mg/l) 4,0 3,9 — Gesamt-Phosphat-Phosphor (mg/l) 0,15 0,11 0,14 Chlorid (mg/l) 28 28 33 BSB5 (mg/l) < 5	Bachprobe nach Bachprobe vor	aus Klärsystem am Zulauf
Nitrit (mg/l) 0,08 0,09 0,08 Nitrit (mg/l) 0,02 0,03 0,02 Gesamt-Stickstoff (mg/l) 4,0 3,9 — Gesamt-Phosphat-Phosphor (mg/l) 28 28 33 BSB5 (mg/l) < 5 < 5 — CSB, homogenisiert (mg/l) < 10 10 < 10 CSB, filtriert (mg/l) < 10 10 < 10 CSB, abgesetzt (mg/l) < 10 10 cm Systemende Außenhaut am Zulauf Rohr 3 m vor Ende pH-Wert — 7,8 7,7 Ammonium (mg/l) 0,1 0,09 0,09 Ammonium-Stickstoff (mg/l) 17,9 17,7 17,3 Nitrat-Stickstoff (mg/l) 0,09 0,08 Nitrit (mg/l) 0,09 0,08 Nitrit (mg/l) 0,09 0,08 Nitrit (mg/l) 0,00 0,00 0,00 Gesamt-Phosphat-Phosphor (mg/l) — 0,16 0,24 Gesamt-Phosphat-Phosphor (mg/l) — 0,16 0,24 Only Only O,00 0,002 Only O,002 Only O,003 Only O,004 Only O,005 Only O,007 On	0,12 0,09 stoff(mg/l) 0,09 0,07 17,1 17,0	0,2 0,16 19,0
Chlorid (mg/l) 28 28 33	0,08 0,09 ng/l) 0,02 0,03 f (mg/l) 4,0 3,9	0,08 0,02 —
Probe 7 aus Klärsystem Bachwasser Bachwasser 3 m vor 10 cm 10 cm 10 cm hinter Rohr 3 m vor Ende PH-Wert — 7,8 7,7 Ammonium (mg/l) 0,1 0,09 0,09 Ammonium-Stickstoff (mg/l) 0,08 0,07 0,07 Nitrat (mg/l) 17,9 17,7 17,3 Nitrat-Stickstoff (mg/l) 4,0 4,0 3,9 Nitrit (mg/l) 0,09 0,08 0,08 Nitrit (mg/l) 0,09 0,08 0,08 Nitrit-Stickstoff (mg/l) 0,03 0,02 0,02 Gesamt-Stickstoff (mg/l) — — — — — — — — — — — — — — — — — — —	28 28 28 < 5 < 5 < 10 < 10 < 10 < 10 < 10	33
aus Klärsystem 3 m vor 10 cm 10 cm 10 cm	(g/1) \ \ 10	
Ammonium (mg/l) 0,1 0,09 0,09 Ammonium-Stickstoff (mg/l) 0,08 0,07 0,07 Nitrat (mg/l) 17,9 17,7 17,3 Nitrat-Stickstoff (mg/l) 4,0 4,0 3,9 Nitrit (mg/l) 0,09 0,08 0,08 Nitrit-Stickstoff (mg/l) 0,03 0,02 0,02 Gesamt-Stickstoff (mg/l) - - - Gesamt-Phosphat-Phosphor (mg/l) - 0,16 0,24	aus Klärsystem Bachwasser 3 m vor 10 cm Systemende nach Klärrohr	Bachwasser 10 cm hinter Rohr
Nitrit (mg/l) 0,09 0,08 0,08 Nitrit-Stickstoff (mg/l) 0,03 0,02 0,02 Gesamt-Stickstoff (mg/l) — — — Gesamt-Phosphat-Phosphor (mg/l) — 0,16 0,24) 0,1 0,09 stoff (mg/l) 0,08 0,07 17,9 17,7	0,09 0,07 17,3
Sesami I nospitat I nospitat (8-7)	0,09 0,08 ng/l) 0,03 0,02 f (mg/l) — —	0,08 0,02 —
CSB, homogenisiert (mg/l)	- 28 ert (mg/l)	27

44 45 440

Probe 1 zeigt einen hohen Gehalt an Ammonium (NH₄), entsprechend an NH₄-N. Dieser ist ab Probe 3 praktisch vollständig mikrobiell abgebaut und entspricht dem Fließwasser in Probe 9. Der Nitratgehalt nimmt dagegen von Probe 1 bis Probe 3 zu und bleibt danach praktisch konstant bis Probe 7 und entspricht dem Nitratgehalt des Fließwassers (Probe 9).

Der Nitritgehalt nimmt von Probe 1 bis Probe 2 zu und sinkt ab Probe 3 bis Probe 7 ab und entspricht dem

Nitritgehalt des Fließwassers.

Da der Nitritgehalt intermediär zunimmt und der Nitratgehalt bei Probe 6 den des umgebenden Gewässers überschreitet, wird dadurch die Nitrifikation und Denitrifikation bestätigt.

Die Proben 1-7 zeigen einen abnehmenden Phosphat/P-Gehalt (P2O5/P) entsprechend der Probe 9 des Fließwassers.

Die Proben 1-3 zeigen einen abnehmenden Chlorid-(Cl)-gehalt, der ab Probe 4 der Probe 9 des Fließwassers

Der BSB 5-Gehalt nimmt von Probe 1 bis Probe 3 ab und liegt bei Probe 4 unter 5 mg/l.

Der Gehalt an CSB nimmt ab Probe 1 ab. Der CSB-Gehalt, filtriert entspricht in allen Proben der Probe 9 des Fließwassers.

Der Meßwert BSB 5 bedeutet:

Biochemischer Sauerstoffbedarf in 5 Tagen.

Der Meßwert CSB bedeutet:

Chemischer Sauerstoffbedarf.

Es bedeutet in der Tabelle: Ventil 1/2 Schrauböffnungen im rohrförmigen biologischen Filter zur Probeentnahme aus dem Inneren des Rohres.

Das Verfahren der Erfindung wird auch durch die folgenden mikrobiologischen Untersuchungen erläutert.

25		Probe Nr. 1	Probe Nr. 2	Probe Nr. 3	Probe Nr. 4	Probe Nr. 5	Probe Nr. 6	Probe Nr. 7
30	Gesamtkeimzahl in 37°C KBE/ml	$3,2 \times 10^{3}$	$2,7\times10^6$	4,5 × 10 ⁵	1,8 × 10 ⁴	1,9 × 10 ⁴	1,1 × 10 ⁴	$6,0 \times 10^{3}$
	Gesamtkeimzahl in 20°C KBE/ml	$3,9 \times 10^{3}$	$4,7\times10^6$	8,6 × 10 ⁶	7.1×10^4	$1,7\times10^6$	$8,7 \times 10^5$	5,4 × 10 ⁴
35	E. coli + Coliforme	+	+	+		+		
	Fäkalstreptokokken	_	+	+		+	_	_
	Gramnegative Stb. KBE/ml	$1,1\times10^3$	> 104	> 104	$1,2\times10^3$	$3,4 \times 10^{3}$	$1,8\times10^3$	$1,6 \times 10^{3}$
40	Hefe + Schimmelpilze KBE/ml	3.0×10^{1}	~ 104	~ 104	$8,7\times10^2$	~103	~10 ³	$8,0 \times 10^{2}$
‡ 5	Anaerobe Keime		+ Sp.	-	_	+ Sp.	_	_

Die mikrobiologischen Untersuchungen bestätigen das Ergebnis der chemischen Analysen.

Die Gesamtkeimzahl nimmt von Probe 2-4 stark ab. Es sind bei Probe 4 auch keine coliforme und fäkale Streptokokken zu beobachten. Andere Mikroorganismen wie grammnegative Stäbchen liegen in der Größenordnung des umgebenden Fließwassers.

Es bedeuten KBF: Kolonien-bildende Einheiten, Sp.: Sporenbildende Keime: - nicht, + nachgewiesene Keime.

Das Verfahren der Erfindung wird durch die folgenden Figuren erläutert:

- Fig. 1 Verfahrensschema mit Teilvorrichtungen und der biologischen Abbaueinheit,
- Fig. 2 Konstruktive Ausbildung der Querschnitte der Drainagerohre,
- Fig. 3 Kennzeichnung der Probenahmestellen chemischer Analysen,
- Fig. 4 Kennzeichnung der Probenahmestellen mikrobieller Untersuchungen.

Es bedeuten in den Figuren die Ziffern:

Bezugszeichenliste

- 1 Mechanische Vorklärstufe/Mehrkammerklärgrube
- 2 Pufferbecken
- 3 Dosierpumpe
- 4 Biologische Abbaueinheit/Dranageeinheit
 - 5 Stützelemente (fehlt in Fig. 2)
 - 6 Rückspülrohr
 - 7 Rückspülpumpe

·				
A1 Perforiertes Rohr A2 Filtermaterial B1 Perforiertes Rohr B2 Filtermaterial C1 Perforiertes Rohr/Gitter als Schutzmantel C2 Perforiertes Rohr C3 Filtermaterial D1 Perforiertes Rohr/Gitter als Schutzmantel D2 Perforiertes Rohr D3 Filtermaterial Es bedeuten in den Figuren die Probenahmestellen zu den Untersuchungen:	10			
Fig. 3: Chemische Analysen				
 1 Zulauf Rohr bzw. Ablauf Mehrkammerklärgrube 2 Ventil 1 3 Ventil 2 4 Bachprobe nach Klärsystem 	15			
5 Bachprobe vor Klärsystem 6 aus Außenhaut Klärsystem in Zulaufnähe 7 aus Außenhaut Klärsystem 3 m vor Systemende 8 Bachwasser nach 10 cm hinter Klärrohr im Bereich des Zulaufs 9 Bachwasser nach 10 cm hinter Klärrohr 3 m vor Rohrende	20			
Fig. 4: Mikrobielle Untersuchung	2			
1 Bachwasser vor Klärsystem 2 Einlauf ins Klärrohr 3 Ventil 1 4 Ventil 2 5 aus der Außenhaut erster Bereich 6 aus der Außenhaut zweiter Bereich 7 aus der Außenhaut dritter Bereich	30			
Das Verfahren der Erfindung bietet den Vorteil, daß durch einfache Maßnahmen mit geringem Investierungs- aufwand und niedrigen Betriebskosten eine weitgehende bilogische Reinigung und eine Denitrifizierung ohne Aufwand an zusätzlichen Chemikalien bei kontinuierlichem Durchsatz von kontaminierten Abwässern erreicht wird, welche das Einleiten des gereinigten Abwassers in Fließwässer gestattet. Es ist damit auch eine Verbesserung für die Umwelt verbunden.	35			
Patentansprüche	40			
1. Verfahren zur biologischen Reinigung von Abwässern, insbesondere kommunaler Provenienz, dadurch gekennzeichnet, daß die Abwässer aus einer mechanischen Vorklärstufe (1), vorzugsweise einer Mehrkammerklärgrube, kontinuierlich oder diskontinuierlich in ein Pufferbecken (2) überführt werden, oder im freien Fall überfließen und aus diesem mit einer Dosierpumpe (3) in ein biologisches Filter (4), vorzugsweise aus einem oder mehreren, konzentrischen, umwickelten, perforierten Drainagerohren, eingeleitet werden das flach liegend in einem Fließgewässer angeordnet ist, und der mikrobielle C-Abbau der belastenden organischen Masse und der N-Abbau belastender N-haltiger Verbindungen durch Nitrifikation und Denitrifikation derart erfolgt, daß in der Natur gegenwärtige Bakterien der benötigte Sauerstoff aus dem O ₂ -Ge-				
halt des Fließgewässers durch ständiges Hineindiffundieren durch die Poren des biologischen Filters zug führt wird, und durch das biologische Filter eine Vergleichmäßigung der praktisch biologisch gereinigte Abwässer erfolgt, die über die gesamte Länge des biologischen Filters in das Fließgewässer abfließen. 2. Verfahren in Abänderung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, daß das biologisch Filter (4) in einem Behälter mit belüftetem Fließwasser angeordnet ist und der mikrobielle C-Abbau und d. N-Abbau in einem Bypass zum Fließgewässer erfolgt. 3. Verfahren nach den Ansprüchen 1 und 2. dadurch gekennzeichnet, daß das biologische Filter (4) aus der den Ansprüchen 1 und 2. dadurch gekennzeichnet, daß das biologische Filter (4) aus der den Ansprüchen 1 und 2. dadurch gekennzeichnet, daß das biologische Filter (4) aus der den Ansprüchen 1 und 2. dadurch gekennzeichnet, daß das biologische Filter (4) aus der den Ansprüchen 1 und 2. dadurch gekennzeichnet daß das biologische Filter (4) aus der den Ansprüchen 2 und				
perforierten Drainagerohren einer Länge von 10-20 m und einem inneren Durchmesser von 5-20 cm besteht. 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das perforierte Drainagerohr (A1) einen angeschlossenen, inneren Ring aus Filtermaterial (A2) aufweist, oder das perforierte Drainagerohr (B1) zusätzlich einen inneren, abgestützten konzentrischen Ring (B2) aus	60			
Filtermaterial (B2) aufweist, oder das perforierte Drainagerohr (C1) aus einem Gitter als Schutzmantel besteht, insbesondere aus einem Edelstahlgitter, und zusätzlich einen inneren, abgestützten konzentrischen Ring (C2) aus Filtermaterial (C3)	6:			
aufweist, oder das perforierte Drainagerohr (D1) oder Gitter (D1) 2 innere, abgestützte perforierte Drainagerohre (D2; D3) mit angeschlossenem, innerem Ring aus Filtermaterial aufweist;				

oder eine von der geometrischen Form des Drainagerohres abweichende Form verwendet wird. 5. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß mehrere biologische Filter (4) als Strecken etwa parallel angeordnet sind.

6. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der im Inneren des rohrförmigen, biologischen Filters sich gebildete Schlamm periodisch durch das Rückspülrohr (6) in die mechanische Vorklärstufe (1) zurückgepumpt und aus dieser abgezogen wird.

Hierzu 4 Seite(n) Zeichnungen

Nummer: Int. Cl.⁶: DE 44 45 440 C1 C 02 F 3/02

Nummer:

DE 44 45 440 C1 C 02 F 3/02

Int. Cl.6:

Figur 2

Nummer: Int. Cl.6:

DE 44 45 440 C1 C 02 F 3/02

Nummer: Int. Cl.6:

DE 44 45 440 C1 C 02 F 3/02

