2022년 IoT기반 스마트 솔루션 개발자 양성과정

Firmware [펌웨어]

18-Step Motor

담당 교수 : 유근택

010-5486-5376

rgt3340@naver.com

Motor의 종류

용 도	Motor종류	정지 정도	속도 범위	
동력용	Induction Motor	OverRun : 30~40회전	일정속도	
간단한 위치결정	전자식 Braker부착 Motor	OverRun : 2~3회전	일정속도	
간단한 속도제어	속도제어용 Motor	OverRun : 0.5~1회전	90~1700rpm	
고정도 위치결정	Stepping Motor	±0.05'	0~2400rpm	
고속도 위치결정	AC Servo Motor	±0.36'	10~3000rpm	

Step Motor

- 위치결정이 쉽다
 - 고분해능, 고정도 위치
- 위치결정 센서가 필요치 않다
- 디지털제어가 가능하다
- 빈번한 동작이 가능하다
- 자기 유지력이 있다
- 오차가 누적되지 않는다

결선 방식

Wire Connection Diagrams

4 Lead	6 Lead	6 Lead		
Bipolar Connection	Unipolar Connection	Bipolar (Series) Connection		
Green Red Blue	Yellow (5) Green (6) Red White Blue (3) (2) (1)	Black (4) 0 N.C. (5) 0 Green (6) 0 Red N.C. Blue (3) (2) (1)		
8 Lead	8 Lead	8 Lead		
Unipolar Connection	Bipolar (Series) Connection	Bipolar (Parallel) Connection		
Orange Green White Herown Blue	Orange Green White Brown Blue	Orange Green White Brown Blue		

Power supply

Full step / Harlf step

Fig 1 – One phase on – full step

Fig2 – Two phase on – full step

Fig3 - One-two phase on - half step

Stepping Motor의 동작

28BYJ-48 Parameters

- Model: 28BYJ-48
- Rated voltage : 5VDC
- Number of Phase : 4
- Speed Variation Ratio : 1/64
- Stride Angle : 5.625° /64
- Frequency: 100Hz
- DC resistance : $50\Omega \pm 7\%(25^{\circ}\text{C})$
- Idle In-traction Frequency : > 600Hz
- Idle Out-traction Frequency: > 1000Hz
- In-traction Torque > 34.3mN.m(120Hz)
- Self-positioning Torque >34.3mN.m
- Friction torque: 600-1200 gf.cm
- Pull in torque: 300 gf.cm
- Insulated resistance > $10M\Omega(500V)$
- Insulated electricity power : 600VAC/1mA/1s
- Insulation grade : A
- Rise in Temperature <40K(120Hz)
- Noise <35dB(120Hz,No load,10cm)

ULN2003

28BYJ-48 + ULN2003

Wiring

fritzing

Steps

Fig3 - One-two phase on - half step

Step	1	2	3	4	5	6	7	8
A (A)	1	1	0	0	0	0	0	1
B (B)	0	1	1	1	0	0	0	0
C (A')	0	0	0	1	1	1	0	0
D (B')	0	0	0	0	0	1	1	1

관련 수식

- 회전각 = Step각도 x Pulse 수
- 속도(RPM)= (Step각도/360') x Pulse 속도(Hz) x 60
- 이동 거리 : Pully의 지름, 기어 피치 등에 관련하여 계산

StepMotor-1

```
Stride Angle: 5.625° * 2 = 11.25
Gear Ratio: 1/64 //63.684
Frequency: 100Hz
1회전 Step = (360/Stride Angle) * Gear Ratio
          = (360 / 11.25) * 64
          = 2048
1회전 Time = 1회전 Step / Frequency
           = 2048 / 100
           = 20.48 \text{ Sec}
최대 속도(RPM) = 60sec / 1회전 Time
          = 2.9296 = 3rpm
```

```
#include <Stepper.h>
const int stepsPerRevolution = 2048;
Stepper step28BYJ48(stepsPerRevolution, 8,10,9,11);
void setup() {
 step28BYJ48.setSpeed(3);
 Serial.begin(9600);
void loop( ) {
 Serial.println("Clockwise");
 step28BYJ48.step(stepsPerRevolution);
 delay(500);
 Serial.println("counterClockwise");
 step28BYJ48.step(-stepsPerRevolution);
 delay(500);
```

Ex: millis()

- millis() 함수를 이용하여 1회전 시간을 측정하여 보자
- Number of milliseconds passed since the program started (unsigned long)
- Syntax

```
time = millis()
```

StepMotor-2

```
#include <Stepper.h>
const int stepsPerRevolution = 2048;
Stepper step28BYJ48(stepsPerRevolution, 8,10,9,11);
long StartTime;
void setup() {
 step28BYJ48.setSpeed(3);
 Serial.begin(9600);
```

```
void loop() {
 Serial.println("Clockwise");
 StartTime=millis();
 step28BYJ48.step(stepsPerRevolution);
 Serial.println(millis( )-StartTime);
 delay(500);
 Serial.println("counterClockwise");
 StartTime=millis();
 step28BYJ48.step(-stepsPerRevolution);
 Serial.println(millis( )-StartTime);
 delay(500);
```

StepMotor-2 RUN

충북대학교 공동훈련센터

Ex: Second Hand

- 시계의 초침을 구현하여 보자
- 1초의 Steps = 1회전 Steps / 60 = 34.13
- millis() 함수에 의해 1초 계산

StepMotor-3

```
#include <Stepper.h>
const int stepsPerRevolution = 2048;
Stepper step28BYJ48(stepsPerRevolution, 8,10,9,11);
int anglePerSecond=2048 / 60;
long StartTime;
void setup( ) {
 step28BYJ48.setSpeed(15);
 Serial.begin(9600);
 StartTime=millis( );
void loop( ) {
 if ((millis()-StartTime)>1000){
   StartTime=millis();
   step28BYJ48.step(anglePerSecond);
```

Ex : 프로그램 운전

- 미리 계획된 프로그램 데이터에 의해 순차적으로 실행
- 순서(각도) 반복 90 -> 45 -> 270 -> 90 -> 180 -> 0

StepMotor-4

```
const int stepsPerRevolution = 2048;
Stepper step28BYJ48(stepsPerRevolution, 8,10,9,11);
float stepPerAngle=2048.0/360.0;
#define programCount 6
int programData[programCount]={90,45,270,90,180,0};
int programPoint=0;
int currentAngle=0;
                                void loop( ) {
signed int steps;
                                  steps=(int)(programData[programPoint]-currentAngle)*stepPerAngle;
                                  step28BYJ48.step(steps);
void setup() {
                                  currentAngle=programData[programPoint];
 step28BYJ48.setSpeed(15);
                                  if (++programPoint>=programCount)
 Serial.begin(9600);
                                     programPoint=0;
                                  delay(1000);
```

Stepper speed control

fritzing

coding

```
#include <Stepper.h>
                                                               11. void loop() {
                                                                     // read the sensor value:
    const int stepsPerRevolution = 200; // change this
                                                                     int sensorReading = analogRead(A0);
                                                               13.
    to fit the number of steps per revolution
                                                               14.
                                                                     // map it to a range from 0 to 100:
    // for your motor
                                                                     int motorSpeed = map(sensorReading, 0, 1023, 100,
                                                               15.
                                                                    0);
                                                                     Serial.println(motorSpeed);
                                                               16.
    // initialize the stepper library on pins 8 through 11:
                                                               17.
                                                                     // set the motor speed:
    Stepper myStepper(stepsPerRevolution, 8, 10, 9, 11);
                                                               18.
                                                                     if (motorSpeed > 0) {
                                                               19.
                                                                       myStepper.setSpeed(motorSpeed);
    int stepCount = 0; // number of steps the motor
                                                               20.
                                                                       // step 1/100 of a revolution:
     has taken
                                                               21.
                                                                       myStepper.step(-stepsPerRevolution / 100);
                                                               22.
    void setup() {
                                                               23. }
8.
      // nothing to do inside the setup
      Serial.begin(9600);
9.
10.
```

Stepper - Joystick

[결선 회로도]

Stepper - Joystick

```
1. #include <Stepper.h>
                                          10.void loop() {
                                          11. // 조이스틱 X축 A2에 연결
2. const int stepsPerRevolution = 64;
                                          12. int sensorReading = analogRead(A2);
3.//모터별 스탭 수 설정 (28YBJ-48의 경우64)
                                          13. if (sensorReading < 300)
Stepper stepper(stepsPerRevolution, 8,
                                          14.
                                          15. //시계방향으로 회전
  10, 9, 11);
                                          16. stepper.step(1);
5. void setup()
                                          17. }
                                          18. if (sensorReading > 800)
7.// 속도 설정
                                          19.{
                                          20. // 반시계방향 회전
8. stepper.setSpeed(220);
9.}
                                          21. stepper.step(-1);
                                          22. }
                                          23.}
                                          24.
```

Stepper-Joystick-I2C LCD

```
1.
         #include <LiquidCrystal I2C.h>
                                                                                                            lcd.print(char(0x7F));
                                                                                              24.
         #include <Stepper.h>
                                                                                               25.
                                                                                                            stepper.step(15); // 시계방향으로 회전
2.
                                                                                               26.
                                                                                                           delay(100);
         LiquidCrystal I2C lcd(0x27,16,2);
                                                                                               27.
                                                                                                            lcd.clear();
3.
                                                                                               28.
         const int stepsPerRevolution = 64; // 모터별 스탭수 (28YBJ-48의 경우 64)
                                                                                               29.
                                                                                                          if((sensorReading >= 300)&&(sensorReading <= 800))
4.
         Stepper stepper(stepsPerRevolution, 8, 10, 9, 11);
                                                                                              30.
                                                                                                            {point=-1;
         int point=0;
                                                                                              31.
                                                                                                            lcd.setCursor(4,0);
6.
                                                                                               32.
                                                                                                            lcd.print("NonMove");
7.
         void setup( ){
                                                                                               33.
                                                                                                            lcd.setCursor(7.1);
           stepper.setSpeed(220); // 속도 설정
                                                                                               34.
                                                                                                            lcd.print(char(0x3D));
           lcd.init();
                                                                                               35.
                                                                                                            lcd.setCursor(8,1);
10
           lcd.backlight();
                                                                                               36
                                                                                                            lcd.print(char(0x3D));
11.
           lcd.setCursor(0,0);
                                                                                              37.
12.
           lcd.print("Stepper control");
                                                                                               38.
                                                                                                          if(sensorReading > 800) {
13.
           lcd.setCursor(1,1);
                                                                                                            lcd.setCursor(4.0);
                                                                                               39.
14.
           lcd.print("Joystick Move");
                                                                                              40.
                                                                                                            lcd.print("Step RIGHT");
15.
           delay(2000);
                                                                                              41.
                                                                                                            lcd.setCursor(9+point%6,1);
16.
           lcd.clear(); }
                                                                                              42.
                                                                                                            lcd.print(char(0x7E));
                                                                                              43.
                                                                                                           stepper.step(-15); // 반시계방향 회전
                                                                                              44.
                                                                                                            delay(100);
17.
         void loop(){
18.
            int sensorReading = analogRead(A2); // 조이스틱 X축 A2에 연결
                                                                                              45.
                                                                                                            lcd.clear();
19.
           if(point==18){ point=0; }
                                                                                              46.
           if(sensorReading < 300) {
20.
                                                                                              47.
                                                                                                            point++;
21.
             lcd.setCursor(4,0);
                                                                                              48.
22.
             lcd.print("Step LEFT");
             lcd.setCursor(6-point%6,1);
23.
```

Timming Belt / Ball Screw

Rack Pinon / Index Table

Driver

Application

Scala Robot / Puma Robot

2쪽 보행 로봇

