

Testing and improving the robustness of amortized Bayesian inference for cognitive models

Yufei Wu, Stefan T. Radev, Francis Tuerlinckx March 27th 2025

Testing and improving the robustness of amortized Bayesian inference for cognitive models

Yufei Wu, Stefan T. Radev, Francis Tuerlinckx March 27th 2025

The presence of outliers

Robustness refers to the resilience of an estimator to outliers.

Cognitive models

- Mathematical expressions of cognitive processes with interpretable parameters
- Some models are sensitive to outliers due to the nature of its assumptions
- E.g., the drift diffusion model (DDM)

Research question

- How to study the influence of outliers of complex stochastic cognitive models?
- How to robustify the inference of complex stochastic cognitive models?

1

Testing and improving the robustness of amortized Bayesian inference for Cognitive Models

Origin of robust statistics

ROBUST ESTIMATION OF A LOCATION PARAMETER¹

By Peter J. Huber²

University of California, Berkeley

Which is more robust?

$x \sim N(\mu, 1^2)$

Original Data
1.66
1.82
0.43
1.37
0.82
0.11
1.27
3.10
0.95
1.20

$$Mean_1 = 1.27$$

 $Median_1 = 1.24$

Contaminated Data
1.66
1.82
0.43
1.37
0.82
0.11
1.27
3.10
0.95
-100

$$Mean_2 = -8.85$$

 $Median_2 = 1.24$

Tools to assess robustness

- 1. Empirical influence function (Cook & Weisberg, 1982)
 - Add outlier x^c with different values
- 2. Breakdown point (Donoho & Huber, 1982)
 - Add outlier x^c with different fractions

Original Data
1.66
1.82
0.43
1.37
0.82
0.11
1.27
3.10
0.95
1.20

$$Mean_1 = 1.27$$

Contaminated			
Data			
1.66			
1.82			
0.43			
1.37			
0.82			
0.11			
1.27			
3.10			
0.95			
-100			
χ^c			

$$Mean_2 = -8.85$$

$$EIF_{-100}$$

= $Mean_2 - Mean_1$
= $-8.85 - 1.27$
= -10.12

Original Data
•••
•••
•••
• • •
• • •
•••
•••
•••
•••
•••

 $Mean_1$

 $Mean_2$

$$\overline{EIF}_{-100} \\
= \overline{Mean_1 - Mean_2}$$

For each $x^c = k$, 200 datasets are simulated.

Tools to estimate robustness

- 1. Empirical influence function (Cook & Weisberg, 1982)
 - Add outlier x^c with different values
- 2. Breakdown point (Donoho & Huber, 1982)
 - Add outlier x^c with different fractions

Breakdown point

Contaminated Data
1.66
1.82
0.43
1.37
0.82
0.11
1.27
3.10
-100
-100
χ^c

Mean = -18.9

Breakdown point

Mean

Breakdown point ($x^c = -100$)

Tools to estimate robustness

- 1. Empirical influence function (Cook & Weisberg, 1982)
 - Add outlier x^c with different values
- 2. Breakdown point (Donoho & Huber, 1982)
 - Add outlier x^c with different fractions

How to make $\hat{\mu}$ more robust?

- Minimizing the loss function: $\sum_{i=1}^{n} \rho(\epsilon_i)$
 - Mean: $\rho(\epsilon_i) = \epsilon_i^2$
 - Median: $\rho(\epsilon_i) = |\epsilon_i|$
 - Tukey's biweight function (Tukey, 1979):

•
$$\rho(\epsilon_i) = \begin{cases} \left(1 - \left(\frac{\epsilon_i}{k}\right)^2\right)^2, & \text{if } |\epsilon_i| \leq k \\ 0, & \text{if } |\epsilon_i| > k \end{cases}$$

Tukey's biweight function

But...

• 1. Modifying loss function can be difficult

2

Testing and improving the robustness of amortized Bayesian inference for Cognitive Models

Training

Inference

Advantages

- Expensive training, cheap inference
- Likelihood-free

Standard estimator training

Standard estimator training

- Summary network: DeepSet(summary_dim=2) (other settings stay the same as in bayesflow 1.1.4/ bayesflow stable-legacy branch)
- Inference network: Normalizingflow (Couplingflow)

Assuming outliers in simulation

$$\boldsymbol{x} \sim N(\mu, 1^2)$$

Assuming outliers in simulation

$$\boldsymbol{x} \sim N(\mu, 1^2)$$

$$\mathbf{x}^{c} \sim \begin{cases} N(\mu, 1^{2}), & \text{with probablity } 1 - \pi = 0.9 \\ t_{\nu}(\mu, 1^{2}), & \text{with probablity } \pi = 0.1 \end{cases}$$

Robust estimator training

The smaller the ν , the more robust the estimator.

How many outliers during training?

		Regular outliers		Far outliers	
Estimator		$Q_3 + 1.5 \cdot IQR$	%	$Q_3 + 3 \cdot IQR$	%
Robust	$\mathrm{normal} + 10\% \ t_1$	2.828	2.585	4.949	1.269
	$\mathrm{normal} + 10\% \; t_3$	2.734	1.280	4.785	0.174
	$\mathrm{normal} + 10\% \; t_5$	2.719	1.008	4.758	0.051
Standard	normal	2.698	0.698	4.721	0.0002

Coincidence

• Those (specific) neural networks works in a similar way as an M-estimator in traditional robust statistics.

Breakdown point ($x^c = -100$)

When there is no information, estimation goes to the 0, the prior mean.

3

Robust Amortized Bayesian Inference of Cognitive Model Parameters

Drift diffusion model (DDM)

Condition	Response	Reaction Time
0	0	0.63
1	1	0.89
0	1	0.23
• • •	• • •	•••

Drift diffusion model (EZ version)

Sufficient summary statistics

$$P_{c} = \frac{1}{1 + \exp(h)}$$

$$M_{RT} = \left(\frac{a}{2v}\right) \frac{1 - \exp(h)}{1 + \exp(h)} + T_{er}$$

$$V_{RT} = \left(\frac{as^{2}}{2v^{3}}\right) \frac{2h \exp(h) - \exp(2h) + 1}{[\exp(h) + 1]^{2}}$$

$$h = -va/s^2$$

Sufficient summary statistics

• P_c , M_{RT} , V_{RT}

EZ version DDM estimator training

- Summary network: SetTransformer(summary_dim=3) (other settings stay the same as in bayesflow 1.1.4/ bayesflow stable-legacy branch)
- Inference network: Normalizingflow (Couplingflow)

Learned summary statistics

• S_{B1} , S_{B2} , S_{B3}

Sufficient vs. learned summary statistics

Sufficient vs. learned summary statistics

Sensitive to outliers by nature

non-decision time is shorter than the shortest reaction time

Simulation

 $(rt,r) \sim Wiener(v,a,z,T_{er})$

Standard estimator training

Parameter recovery

Empirical influence function

Empirical influence function

- Short outlier:
 - Underestimated non-decision time
 - Overestimated time for evidence accumulation process in both conditions
 - Reflected on the rising boundary separation
- Long outlier:
 - Overestimated time for evidence accumulation process in condition 1
 - Drift rate in condition 1 is underestimated

Breakdown point ($x^c = 20s$)

Simulation

$$(rt,r) \sim Wiener(v,a,z,T_{er})$$

$$(rt^c, r^c) \sim \begin{cases} Wiener(v, a, z, T_{er}), & 1 - \pi = 0.9 \\ contamination distribution & \pi = 0.1 \end{cases}$$

Assuming outliers in simulation

$$rt^c \sim egin{cases} folded t_1 \\ folded t_3 \\ folded t_5 \\ U(0,20) \end{cases}$$

$$r^c \sim Bern(0.5)$$

Robust estimator training

Empirical influence function

Breakdown point ($x^c = 20s$)

Breakdown point ($x^c = 0.01s$)

The cost of robustness

MAE Ratio_j^{S,R} =
$$\frac{1}{B} \sum_{b=1}^{B} \frac{|\hat{\theta}_{j}^{S}(\boldsymbol{x}_{b}) - \theta_{j(b)}|}{|\hat{\theta}_{j}^{R}(\boldsymbol{x}_{b}) - \theta_{j(b)}|}$$
,

Robust estimator	v_1	v_2	a	z	T_{er}
$\overline{t_1}$	0.76	0.79	0.769	0.88	0.792
t_3	0.731	0.722	0.728	0.865	0.764
t_5	0.728	0.74	0.734	0.862	0.733
U(0, 20)	0.876	0.894	0.907	0.936	0.848

Posterior Variance Ratio_j^{S,R} =
$$\frac{1}{B} \sum_{b=1}^{B} \frac{\text{var}(\hat{\theta}_{j}^{S} \mid \boldsymbol{x}_{b})}{\text{var}(\hat{\theta}_{j}^{R} \mid \boldsymbol{x}_{b})}$$
,

Robust estimator	v_1	v_2	a	z	T_{er}
$\overline{t_1}$	0.613	0.596	0.621	0.732	0.571
t_3	0.637	0.569	0.634	0.694	0.581
t_5	0.618	0.569	0.672	0.713	0.568
U(0, 20)	0.723	0.672	0.723	0.756	0.636

Summary

- 1. Amortized Bayesian inference works:
 - It makes accurate inference through learning the mapping between data and $P(\theta|x)$
- 2. Amortized Bayesian inference can be robust:
 - Assuming the presence of outliers in simulation process increases the robustness of amortized Bayesian inference
- 3. The robustness depends on the contamination distribution:
 - Different contamination distributions have different effect on robustness
- 4. In our given example, the estimator with t_1 performs the best.

Thanks!

