® BUNDESREPUBLIK

Offenlegungsschrift ® DE 196 30 030 A 1

(5) Int. Cl.5: H 02 K 5/26

E 06 B 9/72

DEUTSCHES PATENTAMT

- 198 30 030.4 ② Aktenzeichen: 25. 7.98 Anmeldetag:
 - 29. 1.98 Offenlegungstag:

(71) Anmelder:

Becker-Antriebe GmbH, 35764 Sinn, DE

(A) Vertreter:

Müller, E., Dipl.-Phys. Dr.phil.nst., Pat.-Anw., 65597 Hünfelden

7 Erfinder:

Schneider, Dieter, 35719 Angelburg, DE; Weiden, Michael, 64839 Münster, DE; Manche, Jörg, 35614 Aßlar, DE; Keiner, Helmut, 35764 Sinn, DE; Schneider, Wendelin, 35684 Dillenburg, DE

(6) Entgegenhaltungen:

42 42 701 A1 DE 31 38 180 A1 DÉ

Prüfungsantrag gem. § 44 PatG ist gestellt

- (5) Haltevorrichtung zur Fixierung eines Antriebes, insbesondere eines Rohrmotors
- Es wird eine Heitevorrichtung (10) zur Fixierung eines Antriebes (12), insbesonders eines Elektromotors oder einer Motor-Getriebe-Einheit, in einem Rohr (14) baschrieben. Die Motor-Getriebe-Einheit, in einem Rohr (14) baschrieben. Die Heltsvorrichtung (10) ist als Ringelement (16) mit am Außenumfangerand (16) angeformten, radial nach außen weisenden Heltsfortsätzen (20) ausgebildet. Die Haltsfortsätzen (20) ausgebildet. Die Haltsfortsätzen (20) stützen sich nach dem Einführen des Ringelements (16) in das Rohr (14) zur adelen Foderung des Antriebes (12) in dem Rohr (14) an der Rohrinnenwand (22) ab. Das Ringelement (16) besitzt weiterhin federalzstische Elemente (24), die in der Momageposition des Ringelaments (16) an dam Antrieb (12), insbasonders einem Gehäuse (28) des Antriebes (12) anliegen (Figur 1). des Antriebes (12) anliegen (Figur 1).

1

Beschreibung

Die Erfindung betrifft eine Haltevorrichtung zur Fixlerung eines Antriebes, insbesondere eines Elektromotors oder einer Motor-Getriebe-Einheit, in einem Rohr.

Derartige, sogenannte Rohrmotoren bzw. Rohrantriebe werden unter anderem dazu eingesetzt, Rolladen, Markisen, Garagentore, Rolltore, Rolligitter o. dgl. auf und ab zu bewegen, wobei eine Welle oder ein Rohr durch den Rohrantrieb in Rotation und der an der Welle 10 oder dem Rohr befestigte Rolladen o. dgl. auf- bzw. abwickelbar ist. Bisher wurden nach dem Stand der Technik derartige Antriebe in dem Rohr, bspw. mittels Schrauben oder auch mittels Sicken fixiert. Diese Maßnahmen stellen sowohl einen hohen fertigungstechni- 15 schen als auch montagetechnischen Aufwand dar. Bei der Befestigung mittels Verschraubung wie auch mittels Sicken besteht zusätzlich das Problem, daß Feuchtigkeit in den Motor dringen kann, so daß eine zusätzliche Dichtung erforderlich ist. Weiterhin besteht das Pro- 20 blem, daß der Antrieb während der Betätigung einer hohen Belastung ausgesetzt ist, die zu einer Erwärmung des Antriebs, insbesondere des Elektromotors oder der Motor-Getriebe-Einheit führt. Mit den bisher bekannten Maßnahmen zur Fixierung des Antriebes in dem 25 Rohr ist eine Kompensation der infolge der Erwärmung auftretenden Wärmeausdehnung des Antriebes nicht möglich.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, eine Haltevorrichtung der eingangs genannten 30 Art dahingehend weiterzubilden, daß eine einfache fertigungs- und montagetechnische Fixierung des Antriebes in dem Rohr ermöglicht und eine Kompensation der Wärmeausdehnung des Antriebes bei Belastung gewährleistet sind.

Diese Aufgabe wird nach der Erfindung bei der Haltevorrichtung mit den eingangs genannten Merkmalen i. w. dadurch gelöst, daß die Haltevorrichtung als Ringelement mit am Außemumfangsrand angeformten radial nach außen weisenden Haltefortsätzen, wie Zacken, 40 Krallen o. dgl. ausgebildet ist und die Haltefortsätze sich nach dem Einführen des Ringelements in das Rohr zur axialen Fixierung des Antriebes in dem Rohr an der Rohrinnenwand abstitzen, wobei das Ringelement federelastische Elemente aufweist, die in der Montageposition des Ringelements an dem Antrieb, insbesondere einem Gehäuse des Antriebes anliegen.

Zur Befestigung des Antriebes in dem Rohr wird die erlindungsgemäße Haltevorrichung mittels eines Stempels oder eines sonstigen einfach ausgebildeten 50 Werkzeuges einfach in das Rohr hineingeschoben, bis die federelastischen Elemente an dem Antrieb bzw. dem Gehäuse des Antriebs anliegen. Die Haltefortslitze sind derart geformt, daß sie sich an der Rohrinnenwand abstützen bzw. in die Rohrinnenwand einkrallen, so daß 55 der Antrieb in dem Rohr axial gesichert ist. Dehnt sich das Gehäuse des Antriebes oder der Motor-Getriebe-Einheit aufgrund von Warmeausdehnungen aus, können die federelastischen Elemente um einen gewissen Hub nachgeben und diese Wärmeausdehnung kompensieren. 60 Nach dem Abhühlen des Antriebes und der damit einhergehenden Wärmeschrumpfung ledern die federelastischen Elemente in die ursprüngliche Lage zurück, so daß der Antrieb, auch unabhängig von den jeweiligen Betriebsbedingungen, sicher und dauerhaft in dem Rohr 65 axial gesichert ist. Es versteht sich, daß die federelastischen Elemente auch dann von Vorteil sind, wenn der in dem Rohr mittels der Haltevorrichtung fizierte Antrieb

Belastungen bei einer unsachgemäßen Behandlung, wie bspw. einem unbeabsichtigten Fallenlassen des Rohrmotors beim Transport, ausgesetzt ist.

Nach einer ersten, vorteilhaften Ausgestaltung der Erfindung sind die Haltefortsätze i. w. äquidistant über den Außenumfangsrand verteilt an dem Ringelement angeordnet. Hierdurch wird eine besonders sichere Festlegung der Haltevorrichtung in der Montageposition in dem Rohr möglich.

Von Vorteil weist das Ringelement zwischen zwei und zehn, bevorzugt zwischen vier und sechs Haltesortsätze aus, wodurch die von den Haltesortsätzen auf das Rohr ausgeübten Anpreßkräste relativ gleichmäßig über den Rohrumsang in das Rohr eingeleitet werden können.

Von Vorteil ist nach einer anderen Ausführungsform der Erfindung der Außenrand der Haltefortsätze mit einer konkav nach innen weisenden Krümmung versehen. Durch diese Maßnahme weist der Außenrand der Haltefortsätze zwei spitze Zacken, Krallen o. dgl. auf, die sich besonders sicher in der Montageposition der Haltevorrichtung an der Rohrinnenwand abstützen bzw. in dieser einkrallen.

Zum erleichtern des Einführens der Haltevorrichtung in das Rohr und zur sicheren Abstützung der Haltefortsätze in der Montageposition an der Rohrinnenwand weisen die Haltefortsätze bzgl der Ringelementebene eine bevorzugt spitzwinklige, der Einführrichtung des Ringelements entgegengerichtete Abwinklung auf. Während beim Einführen der Haltevorrichtung in das Rohr die Haltefortsätze aufgrund dieser Abwinklung federnd nachgeben, krallen sich die Haltefortsätze bei einer Belastung der Haltevorrichtung in zur Einführrichtung entgegengesetzter Richtung nur um so fester in die Rohrinnenwand ein.

Nach einer vorteilhaften Ausführungsform der Erfindung sind die federelastischen Elemente als dem Ringelement einstückig angeformte zungenartige, stegartige, amboßartige o. dgl. geformte Fortsätze ausgebildet und zur Anlage an dem Antrieb aus der Ringelementebene herausgebogen- oder gekröpft. Aufgrund dieser Maßnahmen kann die Haltevorrichtung ohne weiteres als einfaches Stanzteil o. dgl. Element hergestellt werden, wodurch die Kosten der Haltevorrichtung weiter reduziert sind.

Dabei hat es sich nach einer Ausführungsform als vorteilhaft erwiesen, daß die sederelastischen Elemente am Innenrand des Ringelements als stegartige, in Umfangsrichtung weisende Fortsätze ausgebildet sind, die randseitig eine stufige Abwinklung aufweisen.

Nach einer anderen Ausgestaltung besteht die Möglichkeit, daß die federelastischen Elemente am Außenumfangsrand des Ringelements jeweils zwischen benachbarten Haltefortsätzen und bzgl. dem Außenrand der Haltefortsätze radial nach innen zurückversetzt angeordnet sind.

Dabei können die sederelastischen Elemente von Vorteil als mittig oder endseitig mit dem Außenumfangsrand verbundene Zungen, Stege o. dgl. ausgebildet sein, deren freien Enden in Einsührrichtung vor der Ringelementebene enden.

Von Vorteil weist das Ringelement wenigstens zwei federelastische Elemente auf, die bevorzugt über den Umfang des Ringelements gleich verteilt angeordnet

In der Pranis hat es sich als vorteilhaft erwiesen, den axialen Hub der federelastischen Elemente im Bereich zwischen etwa 0,5 mm und 4 mm, bevorzugt bei etwa

196 30 030 Αl DE

3

2 mm festzulegen.

Weiterc Ziele, Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung der Ausführungsbeispiele anhand der Zeichnungen. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger sinnvoller Kombination den Gegenstand der vorliegenden Erfindung, auch unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung.

Es zeigen:

Fig. 1 in Schnitteildarstellung einen Längsschnitt durch ein erstes Ausführungsbeispiel der erfindungsgemäßen Haltevorrichtung in der Montageposition,

Fig. 2 eine Draufsicht auf die Haltevorrichtung der 15

Fig. 3 eine Draufsicht auf eine zweite Ausführungsform der Haltevorrichtung in der Montageposition und Fig. 4 eine dritte Ausführungsform der Haltevorrich-

tung in der Montageposition.

In den Fig. 1 und 2 ist ein erstes Ausführungsbeispiel der erfindungsgemäßen Haltevorrichtung 10 zur Fixierung eines Antriebes 12, insbesondere eines Elektromotors oder einer Motor-Getriebe-Einheit, in einem Rohr 16 dargestellt. Die Haltevorrichtung 10 ist als Ringele- 29 ment 16 mit am Außenumfangsrand 18 angeformten, radial nach außen weisenden Haltefortsätzen 20 ausgebildet. Die Haltefortsätze 20 können die Form von Zakken, Krailen o. dgl. aufweisen. Nach dem Einführen des Ringelements 16 in das Rohr 14 stützen sich die Halte- 30 50 Hub fortsätze 20 an der Rohrinnenwand 22 ab. Desweiteren sind an dem Ringelement 16 federelastische Elemente 24 vorgesehen, die in der Montageposition des Ringelements 16 an dem Antrieb 12, insbesondere einem Gehäuse 26 des Antriebs 12 anliegen. Weiterhin sind die 35 Haltefortsätze 20 i. w. äquidistant über den Außenumfangsrand 18 an dem Ringelement 16 angeordnet. Wie insbesondere aus Fig. 1 ersichtlich ist, weisen die Halte-fortsätze 20 bzgl. der Ringelementebene 32 eine spitzwinklige, der Einführrichtung 34 des Ringelements 16 40 entgegengerichtete Abwinklung 36 auf. Die federelastischen Elemente 24 sind als dem Ringelement 16 einstükkig angeformte zungenartige, stegartige Fortsätze 38 ausgebildet und zur Anlage an dem Antrieb 12 bzw. das Gehäuse 26 aus der Ringelementebene 32 herausgebogen oder gekröpfe. Wie insbesondere aus Fig. 2 ersichtlich ist, sind die federelastischen Elemente 24 am Innenrand 40 des Ringelements 16 als stegartige, in Umfangsrichtung weisende Fortsätze 38 ausgebildet, die randseitig eine stufige Abwinklung 42 besitzen.

Die Ausführungsformen gemäß den Fig. 3 und 4 weisen einen prinzipiell vergleichbaren Aufbau wie die in den Fig. 1 und 2 dargestellte Ausführungsform auf. Im Unterschied zu der ersten Ausführungsform der Haltevorrichung 10 sind die federelastischen Elemente 24 55 der Ausführungsformen 3 und 4 am Außenumfangsrand 18 des Ringelements 16 jeweils zwischen benachbarten Haltefortsätzen 20 angeordnet. Weiterhin sind die federelastischen Elemente 36 bzgl. des Außenrandes 28 der Haltefortsätze 20 radial nach innen zurückversetzt. 60 Dabei können die federelsstischen Elemente als mittig (Fig. 4) oder endseitig (Fig. 3) mit dem Außenumfangsrand 18 verbundene Zungen 48 oder Stege 46 ausgebildet sein. Die freien Enden 48 liegen in Einführungsrichtung 34 gesehen vor der Ringelementebene 32. Der Au- 65 Benrand 28 der Haltefortsätze 20 weist gemäß den Fig. 3 und 4 eine konkav nach innen gerichtete Krüm-

mung 30 auf.

Von Vorteil besitzt das Ringelement 16 zwei bis zehn, bevorzugt vier his sechs Haltefortsätze 20. Weiterhin sind wenigstens zwei federelastische Elemente 24 an dem Ringelement 16 vorgeschen. Der axiale Hub 50 der federelestischen Elemente 24 liegt im Bereich zwischen etwa 0.5 mm und 4 mm, bevorzugt bei etwa 2 mm.

Bezugszeichenliste

10 10 Haltevorrichtung

12 Antrieb

14 Rohr

16 Ringelement

18 Außenumfangsrand

20 Haltefortsatz

22 Rohrinnenwand

24 federelastisches Element

26 Gehäuse

28 Außenrand

30 Krūmmung

32 Ringelementebene

34 Einführrichtung

36 Abwinklung

38 Fortsatz

40 Innenwand

42 stufige Abwinklung

44 Zunge

46 Steg

48 freies Ende

Patentansprüche

1. Haltevorrichtung (10) zur Fixierung eines Antriebes (12), insbesondere eines Elektromotors oder einer Motor-Getriebe-Einheit, in einem Rohr (14), dadurch gekennzeichnet, daß die Haltevorrichtung (10) als Ringelement (16) mit am Außenumfangsrand (18) angeformten, radial nach außen weisenden Haltefortsätzen (20), wie Zacken, Krallen o. dgl. ausgebildet ist und die Haltefortsätze (20) sich nach dem Einführen des Ringelements (16) in das Rohr (14) zur szialen Fizierung des Antriebes (12) in dem Rohr (14) an der Rohrinnenwand (22) abstützen, wobei das Ringelement (16) federelastische Elemente (24) aufweist, die in der Montageposition des Ringelements (16) an dem Antrieb (12), insbesondere einem Gehäuse (26) des Antriebes (12) anliegen

2. Haltevorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Haltefortsätze (20) i. w. aquidistant über den Außenumfangsrand (18) verteilt an

dem Ringelement (16) angeordnet sind.

3. Haltevorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Ringelement (16) zwei bis zehn, insbesondere vier bis sechs Halte-

fortsätze (20) aufweist. 4. Haltevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Außenrand (28) der Haltefortsätze (20) eine konkav nach innen weisende Krümmung (30) besitzt.

5. Haltevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, das die Haltefortsätze (20) bzgl. der Ringelementebene (32) eine bevorzugt spitzwinklige, der Einführrichtung (34) des Ringelements (16) entgegengerichtete Abwinkhing (36) aufweisen.

6. Haltevorrichtung nach einem der vorhergehen-

6

DE 196 30 030 A1

5

den Ansprüche, dadurch gekennzeichnet, daß die federelastischen Elemente (24) als dem Ringelement (16) einstückig angeformte zungenartige, stegartige, amboßartige o. dgl. geformte Fortsätze (38) ausgebildet und zur Anlage an den Antrieb (12) aus der Ringelementebene (32) herausgebogen oder gekröpft sind.

7. Haltevorrichtung nach einem der vorhergebenden Ansprüche, dadurch gekennzeichnet, daß die federelastischen Elemente (24) am Innenrand (40) 10 des Ringelements (16) als stegartige, in Umfangsrichtung weisende Fortsätze (38) ausgebildet sind, die endseitig eine stufige Abwinklung (32) aufwei-

8. Haltevorrichtung nach einem der Ansprüche 1 15 bis 6, dadurch gekennzeichnet, daß die federelastischen Elemente (24) am Außenumfangsrand (18) des Ringelements (16) jeweils zwischen benachbarten Haltefortsätzen (20) und bzgl. dem Außenrand (28) der Haltefortsätze (20) radial nach innen zurückversetzt angeordnet sind.

9. Haltevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die sederelastischen Elemente (24) als mittig oder endseitig mit dem Außenumfangsrand (18) verbundene 25 Zungen (44), Stege (46) o. dgl. ausgebildet sind, deren freie Enden (48) in Einführrichtung (34) vor der Ringelementebene (32) enden.

10. Haltevorrichtung nach einem der vorhergehenden Amprüche, dadurch gekennzeichnet, daß das 30 Ringelement (16) wenigstens zwei federelastische Elemente (24) aufweist.

11. Haltevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der axiale Hub (50) der federelastischen Elemente (24) 35 im Bereich zwischen etwa 0,5 mm und 4 mm, bevorzugt bei etwa 2 mm liegt.

Hierzu 3 Seite(n) Zeichnungen

ii) Zeicinongen

40

45

65

- l eerceite -

ZEICHNUNGEN SEITE 1

Nummer: Int. Cl.5:

DE 196 30 030 A1 H 02 K 5/26 29. Januar 1998

Offenlegungstag:

Fig.1

ZEICHNUNGEN SEITE 2

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 196 30 030 A1 H 02 K 5/26 29. Januar 1998

702 065/377

ZEICHNUNGEN SEITE 3

Nummer: Int. Cl.⁶: Offenlegungstag: DE 196 30 030 A1 H 02 K 5/26 29. Januar 1998

702 065/377