자동차 보험 가입 예측

Health Insurance Cross Sell Prediction

프로젝트 개요

• 건강 보험 가입 고객이 차량 보험에 가입할 가능성 예측

고객 특성 연령 운전면허 보유 여부 기존 차량 보험 여부

성별 연간 보험료

차량 보험 가입 가능성 차량 특성

차량 연식

사고 경험

데이터셋 설명

- 데이터 셋: Kaggle Health Insurance Cross Sell Prediction
- 주요 수치형 변수

변수명	설명	
Age	나이	
Annual_Premium	연간 보험료 금액	
Vintage	고객의 건강 보험 지속기간	

데이터셋 설명

• 주요 범주형 변수

변수명	설명		
Gender	성별(Male, Female)		
Driving_License	운전 면허 보유 여부(No, Yes)		
Vehicle_Age	차량 연식(<1년, 1-2년, >2년)		
Vehicle_Damage	차량 사고 경험 여부		
Response	차량 보험 가입 의향		

데이터 전처리

• 연간 보험료: 이상치 제거

Annual_Premium 381109.000000 30564.389581 17213.155057 Min 2630.000000 24405.000000 Median 31669.000000 39400.000000 Max 540165.000000

```
cost = df["Annual_Premium"]
q1 = cost.quantile(0.25)
q3 = cost.quantile(0.75)

IQR = q3 - q1

Iower = q1 - 1.5 * IQR
upper = q3 + 1.5 * IQR

outliers = df[(cost < lower) | (cost > upper)]
print(f'lower bound : {lower}, upper bound: {upper}

# 이상치 제거 : 상한 및 하한 설정
filtered = df[(cost >= lower) & (cost <= upper)]
```

lower bound : 1912.5, upper bound: 61892.5 이상치 개수: 10320, 이상치 비율 = 0.03

데이터 전처리

• 라벨 인코딩

```
Gender: ['Female' 'Male']
Vehicle_Age: ['1-2 Year' '< 1 Year' '> 2 Years']
Vehicle_Damage: ['No' 'Yes']
```

```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()

# 범주형 데이터 라벨인코딩

df = train.copy()

df['Gender'] = encoder.fit_transform(df['Gender'])

df['Vehicle_Age'] = encoder.fit_transform(df['Vehicle_Age'])

df['Vehicle_Damage'] = encoder.fit_transform(df['Vehicle_Damage'])
```

Gender	Age		Vehicle_Age	Vehicle_Damage
1	44		2	1
1	76		0	0
1	47	• • •	2	1
1	21		1	0
0	29		1	0

EDA 요약 (1)

- 가입 O: 40대 > 30대 > 50대
- 가입 X: 20대 > 40대 > 30대

연령대 → 보험 가입에 영향

EDA 요약 (2)

• 차량이 오래될수록 보험에 가입하는 경향이 높음

Feature Engineering

- 표준화 : StandardScaler
- **파생변수** 생성
 - Age_Premium: 나이에 따른 보험료 변화 경향
 - → 나이가 많을수록 보험료가 높다는 보험 자체의 특징에 기반
 - Vintage_Year: 지속 일수를 100일 단위로 3개의 범주로 구분

Feature Engineering

• 파생변수 생성

```
filtered['Age_Premium'] = filtered['Annual_Premium']/filtered['Age']
 bins = [0, 100, 200, 300]
labels = [0,1,2]
filtered['Vintage Long'] = pd.cut(df['Vintage'], bins = bins, labels = labels, right = False)
filtered.head()
riving License Region Code Previously Insured Vehicle Age Vehicle Damage Annual Premium Policy Sales Channel Vintage Response
                                                                                                                                  Age_Premium Vintage_Long
                      28.0
                                                                                  40454.0
                                                                                                          26.0
                                                                                                                   217
                                                                                                                                     919.409091
                       3.0
                                                                                  33536.0
                                                                                                          26.0
                                                                                                                   183
                                                                                                                                     441.263158
                      28.0
                                                                                  38294.0
                                                                                                          26.0
                                                                                                                                     814.765957
                     11.0
                                                                                  28619.0
                                                                                                         152.0
                                                                                                                   203
                                                                                                                                    1362.809524
                      41.0
                                                                                  27496.0
                                                                                                         152.0
                                                                                                                                     948.137931
                                                                                                                    39
                                                                                                                               0
                                                                       0
```


Feature Engineering

• 최종 데이터

data.head()

	Gender	Age	Vehicle_Age	Vehicle_Damage	Annual_Premium	Vintage	Age_Premium	Vintage_Long	Response
0	1	0.345182	2	1	0.758959	0.748826	0.083977	2	1
1	1	2.417701	0	0	0.289720	0.342470	-0.799130	1	0
2	1	0.539480	2	1	0.612449	-1.521990	-0.109293	0	1
3	1	-1.144442	1	0	-0.043793	0.581503	0.902912	2	0
4	0	-0.626312	1	0	-0.119965	-1.378570	0.137038	0	0

결과 요약 및 인사이트

- 분석 결과 요약 및 인사이트
 - 중년층에서의 가입률이 가장 높고, 청년층의 가입률이 낮음
 - 차량이 오래될수록 보험 가입률이 높음
 - → 고객 군 별로 보험 필요성을 강조한 마케팅 활용
- 한계점
 - 일차원적으로 X와 Y 두 변수 간의 관계만 분석
 - 크게 유의미한 관계를 발견하지 못함

향후 계획 및 개선 방향

- 추가 분석 아이디어
 - Y와의 관계와는 상관 없이 X변수 간에 조합하여 분석해보기
- 데이터 보완 계획
 - 가입 경로에 대한 정보 확보해보기

마무리

- 새로운 데이터를 혼자 살펴본 경험은 처음이라 어떤 방향으로 분석을 진행해야 할 지 막막..
- 다양한 그래프 그리는 방식에 대해 좀 더 알아보고 싶음