Assignment Project Exam Help

https://tutorgs.com

WeChat: cstutorcs
February 15, 2023

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

https://tutorcs.com

February 15, 2023 : estutores

- conatenation - complements

Assignment Project Exam Help Regular Expressions https://tutorcs.com

WeChat: cstutorcs

Assignment Project Exam Help

A regular expression is a compact way of defining a set of words. It is a state to Σ symbolic the Oeb Cost. Can lag over some alphabet Σ .

WeChat: cstutorcs

Assignment Project Exam Help

- 2. A core set $C \subseteq U$
- 3. A finite set 0/= {01.02....0} of operations from http://www.com/states/second/secon

We developed the Set perfect that we obtain by starting with the core set and putting all those elements of U into $\mathcal{I}(U,C,O)$ that one can reach by successively applying the operations in O.

Regular expression-inductive definition

Assignment the define the set Exam), Help

- 1. The universe *U* is the set of all strings over
 - https://tutorcs.com
- 2. The core set C is the set of all symbols in Σ and ϵ, \emptyset and two additional symbols: $C = \Sigma \cup \{\epsilon, \emptyset\}$.
- 3. We Chat: cstutores
 - $o_{\cup}(R_1,R_2)=(R_1\cup R_2),$
 - $o_{\circ}(R_1, R_2) = (R_1 \circ R_2),$
 - $o_*(R) = (R^*).$

Regular expression—inductive definition

Assignment alphabet (e) the cate \mathcal{R} from the expressions over Σ inductively by setting $\mathcal{R}_{\Sigma} = \mathcal{I}(\mathcal{U},\mathcal{C},\mathcal{O})$, where

1. The universe U is the set of all strings over $\Sigma \cup \{(,), (,), (,), *, \epsilon, \emptyset\}$.

The core let A it let A substitute A additional symbols: $C = \Sigma \cup \{e, \emptyset\}$.

3. Three operations:

echate estutores

expression

Markey V

of universe

plesa feo

regular

expression

The language of a regular expression

Each regular expression $R \in \mathcal{R}_{\Sigma}$ over some alphabet Σ represents a language over \bullet X. We define the interpretation L(R) of a regular expression R according to the stress of the stress Members of the core-set:

- The expression a for $a \in \Sigma$ represents the language $\{a\}$, that is
- $https://tutorcs.com_{(\epsilon)} = \{\epsilon\}.$
- The expression \emptyset represents the language \emptyset , that is $L(\emptyset) = \emptyset$.

Result to operation: For regular expressions R_1 , R_2 and R_3 , we define:

- $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
- $L((R^*)) = L(R)^*$

We call L(R) the language of R.

The language of a regular expression.

Assign the popular expression R . Receiver some alphabet Σ approximate a language Γ to the inductive definition:

Members of the core-set:

- The expression a for $a \in \Sigma$ represents the language $\{a\}$, that is $L(a) = \{a\}$. Since expression of expressions the language $\{a\}$ that is like expression of represents the language $\{a\}$ that is $\{a\}$.
- **Result of operation:** For regular expressions R_1 , R_2 and R, we define:
 - $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$

VeChat: cstutorcs

Assignmentalilit Projectoring Extra Inventile Ip

- 1. For an alphabet Σ , we use Σ as a regular expression representing all words of length 1 over Σ . And then Σ^* is a regular expression for the set of all words over Σ .
- 2. Attended by a kturtore of Secontal is: *, o, U.
- 3. The o-symbol is typically omitted: we use R_1R_2 as shorthand for $R_1 \circ R_2$.
- 4. Weeklatter estutores
- 5. We let R^k be the k times repeated concatenation of R with itself: $R^k = R \circ R \circ R \circ \dots \circ R$.

```
We let \Sigma = \{0, 1\}.
```

Assignment Project Exam Help

- 0*10*
- https://tutorcs.com
- Σ*001Σ*
- WeChat: cstutorcs
- $(\Sigma\Sigma)^*$
- $(\Sigma\Sigma\Sigma)^*$

Regular expressions-examples

Assignment Project Exam Help

https://tutores.com.s at

WeChat: cstutorcs

E 2+ E 2*

Regular expressions-examples

Assignment: Project Exam Help 0*10*

https://tutores.com

WeChat: cstutorcs

Regular expressions–examples

→ ○ ∪

Assignment Project Exam Help

https://tutores.com

VeChat: cstutorcs

Assignment Project Exam Help 0*10*

https://tutorcs.com

```
VeChat: cstutorcs
```

Regular expr

signment Project Exam Help 10*10* L(Z) = {\omega \in Z^* | \omega has only are Went}

 $ttps: \int_{1*(01+)*}^{2*12} tutorcs com$

• 1*(01*)*

VeChat: estutores 🚐 🖔

Regular exp

Assignment Project Exam Help 0*10*

https://tutorcs.com

1*(01⁺)*

WeChat: cstutorcs

Regular expressions-examples

```
We let \Sigma = \{0,1\}. Assignment Project Examer Help
```

- 01 ∪ 10
- https://tutorcs.com
- $(0 \cup \epsilon)1^*$
- · WeChat: cstutorcs
- 1*∅
- Ø*

Assignment Project Exam Help • 01 ∪ 10 ~ ((○ · 1) ∪ (1 · ○))

```
https://tutorcs.com
3. (001) (appyin 00 10 2+1) 1 ((001)) = {01}

VeChatenestutores()
```

1 ((0.1) (1.0)) = {01,10}

Regular expenses

Assignment Project Exam Help 01 ∪ 10

https://tutorcs.com

L(02*00 | 2*10001) = {w \in 2* | &w \pm E and who on the same like.}

Assignment Project Exam Help 01 ∪ 10

https://tutores.com

WeChat: cstutores

Regular exp

Assignment Project Exam Help

https://tutorcs.com

• $(0 \cup \epsilon)(1 \cup \epsilon)$

WeChat: cstutores &

Regular expiration to the state of the state

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

• $(0 \cup \epsilon)(1 \cup \epsilon)$

Let R be some regular expression. Then we have:

Assignment Project Exam Help

- https://tutores.com
- $L(R \cup \epsilon)$ is not necessarily equal to L(R) WeChat: cstutorcs
- $L(R \circ \emptyset)$ is not necessarily equal to L(R)

Assignment Project Exam He

• $L(R \circ \epsilon) = L(R)$ https://tutorcs.com $L(R \cup \epsilon) \text{ is not necessarily equal to } L(R)$

```
Example: I(P) = {1, 103, BL(RUE) = {E,1,10}
```

WeChat: Cstutorcs = Ø

Assignment Project Exam Help describes it

https://tutorcs.com

Lemma 1

If a language is described by a regular expression, then it is regular. WeChat: cstutorcs

Lemma 2

If a language is regular, then there is regular expression that describes it

Assignment Project Exam Help A language is regular if and on if some regular expression describes it.

https://tutores.com

If a language is described by a regular expression, then it is regular.

Velabrat estutores that

Expressive power of regular expressions-proof of Lemma 1

Let Σ be some alphabet. We prove by induction (according to the inductive definition of regular expressions) that for every regular expression R there exists and NFA that recognizes the language L(R) (and this implies that L(R) is a

Assignment Project Exam Help

We prove that the claim is true for members of the core-set.

- 1. If R = a for some member of the alphabet Σ then we have $L(R) = \{a\}$.

 The solution of the alphabet Σ then we have $L(R) = \{a\}$.
- 2. If $R = \epsilon$, then me have $L(R) = \{\epsilon\}$. We can construct an NFA reconstruct L(R) allows: CSTUTOTCS

3. If $R = \emptyset$, then we have $L(R) = \emptyset$. We can construct an NFA recognizing L(R) as follows:

Expressive p

Let Σ be some alphabet. We prove by induction (according to the inductive definition of regular expressions) that for every regular expression R there exists an R that expression R is the expression R there exists the R that R is the expression R in R is the expression R that R is the expression R in R is the expression R there exists R is the expression R in R is the expression R in R

Base case

We prove that the claim is true for members of the core-set.

1. If R = a for some member of the alphabet Σ then we have $L(R) = \{a\}$. We can construct an NFA recognizing L(R) as follows:

https://tutorcs.com

2. If $R = \epsilon$, then we have $L(R) = \{\epsilon\}$. We can construct an NFA recognizing L(R) as follows:

Wechatcharcestutorics recognizing

Induction Hypothesis

We assume that for two regular expressions R_1 and R_2 there exists NFAs N_1 and N_2 such that

Assignment Project Exam Help

We need to show that, given the induction hypothesis, there exist NFAs that recognize the languages obtained by applying the three operations to the expressions R_1 and R_2 .

- 1. We have $o_1(R_1,R_2) \neq (R_1 \cup R_2)$ and $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$. By the induction in the start the legist of $A \cup S$ and $L(R_1) = L(R_1) \cup L(R_2)$. We have seen in Lecture 10, how to construct an NFA N recognizing the language $L(R_1) \cup L(R_2)$ (regular languages are closed under unions).
- 2. We have $e_0(R_1M_2) = (R_1 \circ R_2)$ and $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$. By the in $L(R_1) \circ L(R_2)$ by the in $L(R_2) \circ L(R_2)$ we have seen in Lecture 10, how to construct an NFA N recognizing the language $L(R_1) \circ L(R_2)$ (regular languages are closed under concatenation).
- 3. We have $o_*(R_1) = (R_1^*)$ and $L((R_1^*)) = L(R_1)^*$. By the induction hypothesis, there exists an NFA N_1 recognizing $L(R_1)$. We have seen in Lecture 10, how to construct an NFA N recognizing the language $L(R_1)^*$ (regular languages are closed under the star-operation).

Consider regular expression $R = (ab \cup a)^*$. We develop an automaton N recognizing L(R) following a sepstruction sequence of R:

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Assignment Project Exam Help

Non-regular Languages

https://tutorcs.com

WeChat: cstutorcs

Proving a language is not regular

We have seen multiple techniques to prove that a language L over

$Assignment Project Exam Help \\ \bullet \text{ It suffices to prove that there exists a DFA that recognizes}$

- (accepts) L.
- https://tutorcs.com
 https: (accepts) L.
- It while to mather that the setate a record expression that is interpreted as L.

To prove that some language L is not regular, we need to prove that none of these is possible.

Proving a language is not regular

Assignment Project Exam Help

- Prove that all members of S have some property P.
 https://tutorcs.com
 Prove that t doesn't have property P.
- WeChat: cstutorcs

We will next state (and prove) a property that all regular languages have.

The pumping lemma

Assigniment Project Exam, Help pumping length) with the following property:

For elers word w. A fellength at least there exists three words x, y, z will by the second words.

- 1. $\mathbf{w} = \mathbf{x}\mathbf{y}\mathbf{z}$
- 2. fwe except that the circumstance of the state of the s
- 4. |xy| < p.

eChat: cstutorcs