

Instituto de Matemática

Universidad Austral de Chile

Recta no vertical: L. G. de todos los puntos del plano tales que los segmentos que unen dos puntos distintos cualesquiera de él tienen igual pendiente.

$$m_{P_1P_2} = m_{P_1P}: \frac{y_2 - y_1}{x_2 - x_1} = \frac{y - y_1}{x - x_1}$$

Ecuaciones de la recta

• dos puntos

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

• pendiente - intercepto

$$y = mx + b$$

• punto-pendiente

$$y - y_1 = m(x - x_1)$$

interceptos

$$\frac{x}{a} + \frac{y}{b} = 1$$

$$ax + by + x = 0$$

1. Ecuación de una recta

Ejemplo 1.

Determine la ecuación de la recta que pasa por los puntos A(2,1), B(4,5). Grafique

Resolución:

Se tiene:

$$\frac{5-1}{4-2} = \frac{y-1}{x-2}$$

O bien:

$$2x - y - 3 = 0$$

1. Ecuación de una recta

Ejemplo 2.

Encuentre la(s) ecuación(es) de la(s) recta(s) que pasa por A(4,2) si sus interceptos a, b, con los ejes son tales que ab = -4.

Resolución:

De la figura:

L:
$$y-2 = m(x-4)$$

 $y = 0 \Rightarrow -2 = m(a-4)$
 $x = 0 \Rightarrow b-2 = -4m$

$$\therefore a = \frac{4m-2}{m}, b = 2-4m$$
 de donde: $\frac{4m-2}{m}(2-4m) = -4$

Soluciones de ésta ecuación: $m = \frac{1}{4}$, m = 1

Rectas solución: $y-2 = \frac{1}{4}(x-4), y-2 = x-4$

Instituto de Matemática

Universidad Austral de Chile

2. Paralelismo, perpendicularidad

$$L_1: y = m_1 x + b_1$$
 $L_2: y = m_2 x + b_2$

• L_1 y L_2 , no verticales, son paralelas si y sólo si $m_1 = m_2$

> Esto se sigue de la semejanza de los triángulos $P_1 P_3 Q$ y $P_2 P_4 Q$

• L_1 y L_2 , no verticales, son perpendiculares si y sólo si m_1 $m_2 = -1$

(puede suponerse $P_0 = O$)

2. Paralelismo, perpendicularidad

Ejemplo 1.

Determine la ecuación de la recta que pasa por A(4,2), paralela a la recta de ecuación 5x - 7y + 11 = 0.

Resolución:

La ecuación de L es de la forma:

$$5x - 5y + C = 0$$

$$A \in L \implies 5 \times 4 - 7 \times 2 + C = 0$$

$$C = -6$$

La recta L tiene ecuación : 5x - 7y - 6 = 0

2. Paralelismo, perpendicularidad

Ejemplo 2.

La recta que pasa por los puntos A(1,3) y B(4,-2) es paralela a la que pasa por C(0,7) y D(a,2) y es perpendicular a la que pasa por E(3,5) y F(-1,b). Encuentre a,b.

Resolución:

La primera condición se escribe:

$$m_{AB} = m_{CD}$$
: $\frac{3-(-2)}{1-4} = \frac{7-2}{0-a}$

$$\therefore a = 3$$

La segunda condición se escribe:

$$m_{AB} = -\frac{1}{m_{EF}}$$
: $\frac{3-(-2)}{1-4} = -\frac{1}{\frac{b-5}{-1-3}}$

$$\therefore b = \frac{13}{5}$$

3. Distancia de un punto a una recta

La distancia de $P_0(x_0, y_0)$ a la recta L: Ax + By + C = 0 está dada por

$$d(P_0, L) = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

- 2. L', perpendicular a L por P_0 , tiene pendiente m' = B/A.
- 3. El punto de intersección de L y L' es $Q\left(\frac{B^2x_0-ABy_0-AC}{A^2+B^2}, \frac{Ay_0-ABx_0-BC}{A^2+B^2}\right)$
- 4 La distancia se obtiene como $d(P_0, L) = d(P_0, Q)$

3. Distancia de un punto a una recta

Ejemplo 1.

Encuentre la distancia del punto A(10, 11) a la recta L: 3x - 4y + 7 = 0

Resolución:

Aquí:
$$d(A,L) = \frac{|3 \times 10 - 4 \times 11 + 7|}{\sqrt{3^2 + 4^2}} = \frac{7}{5}$$

Ejemplo 2.

¿Cuál es la longitud de la altura h_c del triángulo de vértices A(-2,-1), B(3,1), C(1,3)?

Resolución:

• Para la recta L por A,B :
$$m_{AB} = \frac{1-(-1)}{3-(-2)} = \frac{2}{5}$$

$$\therefore y - (-1) = \frac{2}{5}(x - (-2))$$
 o bien $L: 2x - 5y - 1 = 0$

· La longitud de h es :

$$d(C,L) = \frac{|2 \times 1 - 5 \times 3 - 1|}{\sqrt{2^2 + (-5)^2}} = \frac{14}{\sqrt{29}} \approx 2,6$$

4. Familia de rectas

1.
$$y = mx + b$$
, con m dado

3.
$$Ax + By + C + k (A'x + B'y + C') = 0$$

Todas las rectas que pasan por la intersección de L y L'

4. Familia de rectas

Ejemplo 1.

Determine la ecuación de la recta que pasa por la intersección de las rectas de ecuaciones x - 3y + 5 = 0, 2x + 4y - 3 = 0 y por el punto A(4,6).

Resolución:

La ecuación de la familia que pasa por la intersección es:

$$x - 3y + 5 + k(2x + 4y - 3) = 0$$
 (*)

Escogemos aquella que pasa por el punto A:

$$4-3\times 6+5+k(2\times 4+4\times 6-3)=0 \implies k=\frac{9}{29}$$

Reemplazando en (*) y simplificando:

$$47x - 51y + 118 = 0$$

ecuación de la recta pedida.

Nota: también se puede buscar el punto de intersección de ambas rectas.