17.2.24 Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y) = \left\langle \frac{-y}{(x^2 + y^2)^2}, \frac{x}{(x^2 + y^2)^2} \right\rangle$, and \mathcal{C} is the circle of radius R with the center at the origin oriented counterclockwise.

Solution A parameterization of C is $\mathbf{r}(t) = R \langle \cos t, \sin t \rangle$, with $t \in [0, 2\pi]$. Our line integral then becomes

$$\int_{0}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{0}^{2\pi} \left\langle \frac{-R \sin t}{((R \cos t)^{2} + (R \sin t)^{2})^{2}}, \frac{R \cos t}{((R \cos t)^{2} + (R \sin t)^{2})^{2}} \right\rangle \cdot \left\langle -R \sin t, R \cos t \right\rangle dt$$

$$= \int_{0}^{2\pi} \frac{1}{R^{2}} \left\langle -\sin t, \cos t \right\rangle \cdot \left\langle -\sin t, \cos t \right\rangle dt$$

$$= \frac{1}{R^{2}} \int_{0}^{2\pi} \sin^{2} t + \cos^{2} t dt$$

$$= \frac{1}{R^{2}} \int_{0}^{2\pi} dt$$

$$= \frac{1}{R^{2}} [t]_{0}^{2\pi}$$

$$= \frac{2\pi}{R^{2}}$$

17.2.44 Calculate the total mass of a metal tube in the helical shape $\mathbf{r}(t) = \langle \cos t, \sin t, t^2 \rangle$ (distance in centimeters) for $0 \le t \le 2\pi$ if the mass density is $\delta(x, y, z) = \sqrt{z}$ g/cm.

Solution With \mathcal{C} as the curve of the metal tube, the mass of the tube is given by

$$\int_{\mathcal{C}} \delta(x, y, z) \, \mathrm{d}s$$

$$= \int_{0}^{2\pi} \delta(\mathbf{r}(t)) \, \|\mathbf{r}'(t)\| \, \mathrm{d}t$$

$$= \int_{0}^{2\pi} \sqrt{t^{2}} \, \|\langle -\sin t, \cos t, 2t \rangle \| \, \mathrm{d}t$$

$$= \int_{0}^{2\pi} |t| \, \sqrt{\sin^{2} t + \cos^{2} t + 4t^{2}} \, \mathrm{d}t$$

$$= \int_{0}^{2\pi} |t| \, \sqrt{1 + 4t^{2}} \, \mathrm{d}t$$
On the interval $[0, 2\pi], t \ge 0$, so $|t| = t$. Thus,
$$= \int_{0}^{2\pi} t \sqrt{1 + 4t^{2}} \, \mathrm{d}t$$

$$= \left[\frac{1}{12} (1 + 4t^{2})^{3/2} \right]_{0}^{2\pi}$$

$$= \left(\frac{1}{12} (1 + 16\pi^{2})^{3/2} - \frac{1}{12} \right) g$$

17.2.67 Calculate the flux of $\mathbf{F}(x,y) = \langle e^y, 2x - 1 \rangle$ on the parabola $y = x^2$ for $0 \le x \le 1$, oriented left to right.

Solution A parameterization of the curve is $\mathbf{r}(t) = \langle t, t^2 \rangle$, for $t \in [0, 1]$. With this parameterization, $\mathbf{r}'(t) = \langle 1, 2t \rangle$ and the normal pointing towards the right is $\mathbf{n}(t) = \langle 2t, -1 \rangle$. Thus, the flux passing through the curve is

$$\int_{\mathcal{C}} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{n}(t) dt$$

$$= \int_{0}^{1} \left\langle e^{t^{2}}, 2t - 1 \right\rangle \cdot \left\langle 2t, -1 \right\rangle dt$$

$$= \int_{0}^{1} 2t e^{t^{2}} - 2t + 1 dt$$

$$= \left[e^{t^{2}} - t^{2} + t \right]_{0}^{1}$$

$$= e - 1 + 1 - 1$$

$$= e - 1$$