Severity

Roland Schäfer

4. April 2024

1 Nomenklatur

Im Folgenden wird μ für den wahren Mittelwert verwendet. Der Mittelwert unter der Nullhypothese sei μ_0 . Gemessene Werte werden als μ_n mit n als Index angegeben (bei Mayo auch \bar{x}). Die unter der Auswertung von Severity betrachteten Partikularhypothesen bezeichnen wir hier als μ' . Bei Mayo heißen diese Hypothesen μ_1 .

2 Test

Ein einseitiger Test liefert die frequentistische Wahrscheinlichkeit, das konkrete Ergebnis oder ein extremeres zu finden, wenn die H_0 korrekt ist. Analog zum Artikel anhand eines z-Tests über Mittelwerte: Wir betrachten die H_0 in (1).

$$H_0: \mu_0 = 0$$
 (1)

In Worten: *Der Mittelwert unter der Nullhypothese ist 0*. Für die Illustration nehmen wir einen einseitigen -- hier rechtsseitigen -- Test gemäß (2). In Worten: *Der Mittelwert unter der Nullhypothese ist größer als 0*.

$$H_1: \mu > 0 \tag{2}$$

Die Varianz sei bekannt ($\sigma = 2$), und wir gehen von einer Stichprobengröße von n = 100 aus. Damit ist der Standardfehler gegeben gemäß (3).

$$SE = \frac{\sigma}{\sqrt{n}} = \frac{2}{10} = 0.2$$
 (3)

Wir betrachten die drei möglichen Ausgänge des Experiments: $\mu_1=0.4$, $\mu_2=0.6$ und $\mu_3=1.0$. In einem Fisherschen Rahmen können diese Beobachtungen die H_0 zurückweisen, hier zu sig=0.025 (bzw. 2σ). Am Beispiel μ_1 gezeigt in (4) mit $\mathcal N$ als kumulativer Verteilungsfunktion der Standardnormalverteilung.

$$P(\mu_1 \ge 0.4; \mu = \mu_0 = 0) = 1 - \mathcal{N}(\frac{\mu_1}{SE}) = 1 - \mathcal{N}(2) = 0.023$$
 (4)

Anders formuliert erreichen wir 2σ , denn (5).

$$\frac{\mu_1}{SE} = \frac{0.4}{0.2} = 2\tag{5}$$

3 Severity

3.1 Grundidee

Der Test aus Abschnitt 2 verläuft bei einer binären Entscheidung für oder gegen eine Zurückweisung der H_0 in allen drei betrachteten Fällen gleich. Die H_0 wird zurückgewiesen. Der p-Wert gibt zusätzlich darüber Auskunft, wie gut die Evidenz für die Zurückweisung war, denn (6).

$$P(\mu_1 \ge 0.4; \mu = 0) < P(\mu_2 \ge 0.6; \mu = 0) < P(\mu_3 \ge 1.0; \mu = 0)$$
 (6)

Der Ausgang μ_3 liefert also stärkere Evidenz gegen die H_0 als der Ausgang μ_2 usw. Severity quantifiziert darüberhinaus, wie gut die Evidenz für konkrete Abweichungen von der H_0 ist. Sie beantwortet also Fragen wie: Wie gut ist die Evidenz $\mu_1=0.4$ für eine Abweichung von $\gamma=0.2$ von H_0 ? Die Abweichung γ ist hier eine Effektstärke im Sinn von Power-Berechnungen.

Dazu betrachten wir zusätzlich zur $H_1: \mu > 0$ auf Basis eines konkreten signifikanten Ausgangs eines Experiments weitere Partikularhypothesen H' über den wahren Wert μ wie in (7).

$$H': \mu > \mu'$$

$$\mu' = \mu_0 + \gamma \tag{7}$$

Der Unterschied zwischen μ und μ_0 ist hier eventuell relevant. Der Test weist die H_0 über einen arbiträr gesetzten Wert μ_0 zurück und sagt im Prinzip damit wenig über μ . Severity quantifiziert die Evidenz für Schätzwerte μ' des wahren Werts μ als Abweichung von μ_0 um die Differenz γ . Diese Betrachtung ist zulässig, sofern der Test bereits gezeigt hat, dass es gute Evidenz dafür gibt, dass die H_0 (in die erwartete Richtung) inkorrekt ist.

3.2 Wann ist Severity niedrig?

Wir setzen als Beispiel $\mu' = 0.2$. Die Severity für μ' soll **niedrig** sein, wenn bei $\mu' = \mu = 0.2$ der konkrete Messwert μ_1 trotzdem sehr häufig (= frequentistisch wahrschein-

lich) ist. Dies ist generell der Fall, wenn die Stichprobe klein oder die Varianz groß ist. Es ist unabhängig davon auch der Fall, wenn die Differenz zwischen μ' und μ_1 größer bzw. positiver wird, wenn wir also eine stärkere Inferenz bezüglich der Punktschätzung des wahren Werts tätigen wollen. Im betrachteten Beispiel ($\mu'=0.2$) ist $\mu'-\mu_1=0.2-0.4=-0.2$. Würden wir hingegen eine Partikularhypothese $\mu'=0.6$ betrachten, wäre $\mu'-\mu_1=0.6-0.4=0.2$. Bei gleichbleibender Varianz und Stichprobengröße sollte dies auch (wenn $\mu'=\mu=0.2$) intuitiv unwahrscheinlicher sein, denn eine Beobachtung von 0.4 liefert schlechtere Evidenz für eine Abweichung um 0.6 von 0 als für eine Abweichung von 0.2 von 0. Es wird deutlich, dass die ursprüngliche H_0 und die Richtung der Ausgangshypothese mit Severity zusammenhängen. Bei einem linksseitigen Test sollte Severity hingegen kleiner werden, je kleiner (bzw. je negativer) die Differenz zwischen μ' und μ_1 wird.

3.3 Wann ist Severity hoch?

Die Severity für $\mu'=0.2$ soll nun **hoch** sein, wenn der Messwert $\mu_1=0.4$ selten zu erwarten ist, falls $\mu'=\mu$. (Wird fortgesetzt.)

3.4 Veranschaulichung und Berechnung

Abbildung 1 zeigt die Situation für $\mu'=0.2$. Die schwarze Kurve zeigt die Dichte der Standardnormalverteilung für den ursprünglichen Test, der mit p=0.023 die H_0 zurückweisen konnte. Die blaue Schleppe für den Beobachtungswert $\mu_1=0.4$ entspricht 2.3% der frequentistisch erwartbaren Werte. Unter der Annahme, dass $\mu=\mu'=0.2$, zeigt bei den gleichen Parametern σ und n die rote Kurve die erwartete Verteilung der Messwerte um $\mu'=0.2$. Die grüne Schlepppe (ebenfalls für den Beobachtungswert $\mu_1=0.4$) entspricht dem Anteil der erwarteten Messwerte, die dann größer oder gleich 0.4 sind. Da SE=0.2 und $\mu_1-\mu'=0.2$, entspricht dies $1-\mathcal{N}(1)=0.16$. In diesem Fall wären also $\mathcal{N}(1)=0.84$ (84%) der Werte kleiner als 0.4, also (8). Die Klausel is true nach dem Semikolon wurde als redundant ausgelassen.

$$SEV(\mu > 0.2) = P(\bar{X} < 0.4; \mu \le 0.2)$$
 (8)

Berechnet wird hier die *minimale* Severity. Das sagt Mayo in unter der namenlosen Gleichung auf S. 169. Ich sehe damit 2 Probleme:

- 1. The measured value should be a parameter of SEV, right now?
- 2. The composite character of the hypothesis should be incorporated in the defitself.

Abbildung 1: Severity for H': mu'>0.2 bei der Beobachtung mu1=0.4

We would get sth more like

$$SEV(\mu > 0.2, .4) = \min_{\mu' < 0.2} P(\bar{x} < 0.4; \mu = \mu') = P(\bar{x} < 0.4; \mu = .2) \tag{9}$$

Abbildung 2 zeigt dasselbe für $\mu'=0.1$. Trivialerweise $\mu_1-\mu'=0.4-0.1=0.3$. Bei SE=0.2 entspricht die Fläche unter der Kurve minus der grünen Schleppe einem Anteil von $\mathcal{N}(1.5)=0.93$. Kleinere δ entsprechen größeren Wahrscheinlichkeiten, also einer größeren Severity.

Paralleles gilt für größere beobachtete Abweichungen von 0 wie in Abbildung 3 mit $\mu_1=0.6$ und $\mu'=0.2$. Hier gilt $\mathcal{N}(2)=0.98$ wegen $\mu_1-\mu'=0.6-0.2=0.4$ bei SE=0.2. Steigt der Beobachtungswert μ_1 oder sinkt der Schätzwert μ' , dessen Severity zu bewerten ist, wird die Severity größer. Daher stellt die Berechnung mit (10) allgemein eine Untergrenze für SEV dar.

$$SEV(\mu > \mu') = P(\bar{X} < \mu_1; \mu < \mu') = \mathcal{N}(\frac{\mu_1 - \mu'}{SE})$$
 (10)

Für drei Beobachtungen ($\mu_1=0.4,\,\mu_2=0.6,\,\mu_3=1.0$) zeigt Abbildung 4 die Severity-Kurven für $\delta\in[0,1].$

4 Zweiseitige Tests

Abbildung 2: Severity for H': mu'>0.1 bei der Beobachtung mu1=0.4

Abbildung 3: Severity for H': mu'>0.2 bei der Beobachtung mu1=0.6

Abbildung 4: Severity-Kurven für verschiedene Beobachtungen