See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/51430060

Unusual C25 Steroid Isomers with Bicyclo[4.4.1]A/B Rings from a Volcano Ash-Derived Fungus Penicillium citrinum

ARTICLE in JOURNAL OF NATURAL PRODUCTS · AUGUST 2008

Impact Factor: 3.8 · DOI: 10.1021/np8000442 · Source: PubMed

CITATIONS

23

READS

30

5 AUTHORS, INCLUDING:

Lin Du

Northwestern Polytechnical University

45 PUBLICATIONS 611 CITATIONS

SEE PROFILE

Tian-Jiao Zhu

Ocean University of China

144 PUBLICATIONS 1,755 CITATIONS

SEE PROFILE

Weiming Zhu

Ocean University of China

164 PUBLICATIONS 2,110 CITATIONS

SEE PROFILE

Unusual C25 Steroid Isomers with Bicyclo[4.4.1]A/B Rings from a Volcano Ash-Derived Fungus *Penicillium citrinum*

Lin Du, Tianjiao Zhu, Yuchun Fang, Qianqun Gu,* and Weiming Zhu*

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China

Received January 20, 2008

Eleven new unusual C25 steroid isomers with bicyclo[4.4.1]A/B rings, 24-epi-cyclocitrinol (1), 20-O-methyl-24-epi-cyclocitrinol (3), 20-O-methylcyclocitrinol (4), 24-oxocyclocitrinol (7), 12R-hydroxycyclocitrinol (8), neocyclocitrinols B (10) and D (12), erythro-23-O-methylneocyclocitrinol (13), threo-23-O-methylneocyclocitrinol (14), isocyclocitrinol B (15), and precyclocitrinol B (18), and five known steroids, cyclocitrinol (2), neocyclocitrinols A (9) and C (11), isocyclocitrinol A (16), and 22-O-acetylisocyclocitrinol A (17), were characterized from cultures of the volcanic ashderived fungus Penicillium citrinum HGY1-5. Their structures and absolute configurations were established by spectroscopic and chemical methods together with X-ray diffraction analysis. Compounds 3, 4, and 10–14 were determined to be artifacts on the basis of acidic transformation of 1–4. The biosynthetic origin of these steroids derived from ergosterol was investigated by feeding ¹³C-labeled acetates to the growing cultures of P. citrinum HGY1-5. The biological activities of all 16 steroids were tested using the cAMP assay on GPR12-CHO and WT-CHO cells. The results showed that compounds 1, 2, 10, 11, and 14 could induce the production of cAMP in GPR12-transfected CHO cells.

C25 steroids with bicyclo[4.4.1]A/B rings are a series of very unusual steroids. Only four examples, cyclocitrinol, isocyclocitrinol A (16), 22-acetylisocyclocitrinol A (17),² and neocyclocitrinol,³ have been reported. The first compound of this type, cyclocitrinol, was isolated from a terrestrial Penicillium citrinum and reported as a new sesterterpenoid. Afterward, its structure was revised to a bicyclo[4.4.1] A/B ring steroid by X-ray structure analysis and modified Mosher's method.² Recently, neocyclocitrinol was reported as a mixture of 23,24-epimers from a plant-derived Penicillium janthinellum, and the configuration of the 20,22-double bond was not determined.³ A biosynthesis route originating from ergosterol was proposed to explain the origins of the bicyclic system and the side chain.³ Isocyclocitrinol A (16) and 22-O-acetylisocyclocitrinol A (17) showed weak antibacterial activity against Staphylococcus epidermidis and Enterococcus durans.² Our recent investigation of secondary metabolites of a volcano ash isolate of P. citrinum led to the discovery of a series of C25 steroids with bicyclo[4.4.1]A/B rings. Details of the isolation, structural elucidation, absolute configuration determination, biosynthesis pathway, and the effects on GPR12 activation are described in this paper.

Results and Discussion

Penicillium citrinum HGY1-5, isolated from the crater ash collected from the extinct volcano Huguangyan in Guangdong, China, was cultured in 20 L of liquid medium for 9 days, and the metabolites were extracted with EtOAc. The crude extracts (22 g) were repeatedly chromatographed on Si gel columns and extensive reversed-phase semipreparative HPLC to afford 24-epi-cyclocitrinol (1), cyclocitrinol (2), 120-O-methyl-24-epi-cyclocitrinol (3), 20-O-methylcyclocitrinol (4), isocyclocitrinol A (16), 2 and 22-O-acetyl-isocyclocitrinol A (17). Some minor constituents were also detected on HPLC analysis. In order to isolate these minor analogues, the strain was refermented in 40 L of liquid medium for 15 days to afford 24-oxocyclocitrinol (7), 12R-hydroxycyclocitrinol (8), neocyclocitrinols A-D (9-12), erythro-23-O-methylneocyclocitrinol B (15), and precyclocitrinol B (18).

Compound **1** was obtained as colorless needles following crystallization from MeOH. Its molecular formula, C₂₅H₃₆O₄, was determined by HRESIMS, indicating eight degrees of unsaturation. Its IR spectrum exhibited strong absorptions at 3421 and 1649 cm⁻¹, indicative of hydroxy and conjugated carbonyl groups. Analysis of the ¹³C NMR data for **1** revealed one carbonyl, four quaternary carbons, 10 methines, seven methylenes, and three methyls. Comparison of the ¹H and ¹³C NMR data (Tables 1 and 2) with those of the known compound cyclocitrinol¹ indicated they had the same constitution. The key ¹H — ¹H COSY correlation of H-18α with H-5 and the HMBC correlations from H-18α to C-1, C-4, C-5, C-6, C-9, and C-10, from H-4α to C-6, from H-1 to C-9 and C-18, from H-9 to C-1, C-10, and C-18, and from H-7 to C-5 (Figure 1a) proved the existence of the bicyclo[4.4.1] system of the A/B rings.

Compound 2 was obtained as colorless needles following crystallization from MeOH, and its formula C25H36O4 was determined by HRESIMS. Comparison of the ¹H and ¹³C NMR data (Tables 1 and 2) with those of 1 showed that their ¹H NMR data were similar except for small discrepancies of the coupling patterns of H-22 (doublet for 1, doublet of doublets for 2), coupling constants of $J_{23,24}$ (5.9 Hz for 1, 5.5 Hz for 2), and the chemical shifts of the side-chain carbons (C-20 to C-24) in the ¹³C NMR spectrum. This indicated that 2 was an epimer of 1 with different stereogenicity on the side chain. The X-ray crystallographic analysis of their p-bromobenzoates (5, 6) established the absolute configuration of 1 and 2. They were C-24 epimers, i.e., 24S (1) and 24R (2), respectively (Figure 2). Compound 2 was thus the known compound cyclocitrinol, as they had the same coupling patterns of H-22 (doublet of doublets) and the same strong hydroxy absorption at 3405 cm^{-1} in the IR spectra.

Compounds **3** and **4**, obtained as colorless needles following crystallization from MeOH, had the same molecular formula, $C_{26}H_{38}O_4$, according to the HRESIMS. Except for the C-20 *O*-methyl resonance, their 1D NMR data were similar to those of **1** and **2** (Tables 1 and 2). The key HMBC correlation of $CH_3O-(\delta\ 3.12)$ with C-20 indicated that **3** and **4** were 20-*O*-methyl derivatives of cyclocitrinols (Figure 1a). Compounds **1** and **3** could interconvert like **2** and **4** experienced in acidic solution (Figure 5,

^{*}To whom correspondence should be addressed. Tel: 0086-532-82032065. Fax: 0086-532-82033054. E-mail: weimingzhu@ouc.edu.cn; guqianq@ouc.edu.cn.

Chart 1

Scheme 1). The absolute configurations of $\bf 3$ and $\bf 4$ were determined as 24S and 24R, respectively.

The molecular formula of **7**, assigned as $C_{25}H_{34}O_4$ by HRESIMS, was consistent with both ^{13}C and ^{1}H NMR spectroscopic data (Tables 1 and 2). Analysis of the 1D NMR data revealed **7** was an analogue of **1**. The carbonyl (δ_C 198.5) substitution for the oxygenated methine (δ_H 4.10/ δ_C 66.6) and the obvious chemical shift effects for C-22/H-22 (+16.4/+1.27 ppm), C-23/H-23 (-4.2/+0.79 ppm), and C-25/H-25 (+3.8/+1.19 ppm) were observed. The H-25 resonance was changed to a singlet in the ^{1}H NMR spectrum of **7**. Thus, the structure of **7** was established as 24-oxocyclocitrinol.

Compound **8** analyzed by HRESIMS for the molecular formula $C_{25}H_{36}O_5$. The physical data of **8** were similar to those of **1** and **2** (Tables 1 and 2). Examination of the 1H and ^{13}C NMR data revealed that a methylene on the C ring of the steroid nucleus was replaced by an oxygenated methine. $^1H^{-1}H$ COSY correlations from H-12 (δ_H 3.52) to H-11 and from H-11 to H-9, and the NOESY coupling between H-12 and H-9 (Figure 1a), revealed that the additional hydroxy group was located at C-12, and the orientation of H-12 was further supported by $J_{11,12}$ (7.3 and 8.7 Hz). The absolute configuration of C-24 was determined as R by application of the modified Mosher's method (Figure 1b). The structure of **8** was thus elucidated as 12R-hydroxycyclocitrinol.

HRESIMS at m/z 399.2544 [M – H]⁻ established the molecular formula of compound 9 as C₂₅H₃₆O₄, implying 9 was an isomer of 1. ¹H NMR and ¹³C NMR data revealed they had the same steroid nucleus but different side chains. ¹H-¹H COSY correlations indicated one =CH-CH(OH)-CH(OH)-CH₃ moiety in the side chain of **9** (Figure 1a). The NOE association between Me-21 ($\delta_{\rm H}$ 1.66) and H-23 ($\delta_{\rm H}$ 3.95) (Figure 1a) established the *E*-configuration of the 20,22-double bond. Compounds 10-12 shared the same formula, C25H36O4, with 9 established by their HRESIMS data, and comparison of their spectroscopic data with those of 9 suggested that they were 23,24-diastereomers. Searching the structure on SciFinder Scholar 2006, neocyclocitrinol, reported as a mixture,³ was hit. By comparing the physical data, the structures of compounds 9-12 were established as shown. The absolute configuration of the stereogenic centers of the side chain of 9 was determined to be 23R, 24R by X-ray crystallographic analysis (Figure 2). Interpretation of the ¹H and ¹³C NMR spectra (Tables 1 and 2) of 9-12 with emphasis on the $J_{23,24}$ values⁴ indicated that 9 and 10 were the 23,24-threo-isomers, while 11 and 12 were the 23,24-erythro-isomers. The resonances of threo H-23 and H-24 were upfield compared to those of the erythro-isomers due to steric effects (Figure 3). Comparing the ¹³C NMR data (Table 2), the chemical shifts of C-21 and C-22 in 9 and 11 were consistent. This indicated they should have the same configuration at C-23. Similar analysis indicated that compounds 10 and 12 should also be C-24 epimers. Consequently the absolute configurations of 10–12 were assigned as 23*S*,24*S*, 23*R*,24*S*, and 23*S*,24*R*, respectively. This determination from the NMR data was further supported by the acid-catalyzed isomerizations (Figure 5, Scheme 1). By comparison of the ¹H and ¹³C NMR data of **9–12** measured in CD₃OD with those of the known neocyclocitrinol³ (Supporting Information, T7 and T8), the reported compound comprises a mixture of **9** and **11**.

Compound 13 was obtained as an amorphous powder that gave a pseudomolecular ion peak at m/z 413.2678 [M - H]⁻ in the HRESIMS, consistent with the molecular formula $C_{26}H_{38}O_4$. The ¹H and ¹³C NMR data of 13 revealed that it was a mixture of two epimers. Further comparing the data with those of 9–12, combined with the key HMBC correlation between MeO (δ_H 3.15/3.16) and C-23 (δ_C 81.39/81.32) (Figure 1a), indicated that 13 was a mixture of the 23-O-methyl derivatives of 11 and 12. Compound 14 had the same molecular formula, $C_{26}H_{38}O_4$, established by HRESIMS at m/z 415.2851 [M + H]⁺ (calcd 415.2848), and similar ¹H and ¹³C NMR data to those of 13. It was also obtained as a mixture, and the $J_{23,24}$ value (6.4 Hz) and the upper field shifts of H-23 and H-24 in 14 indicated a *threo*-configuration.

The molecular formula of **15** was determined as $C_{25}H_{36}O_4$ from HRESIMS. Its 1H and ^{13}C NMR data were similar to those of the known isocyclocitrinol A (**16**), 2 except for minor differences at C-17, C-20, C-21, and C-22 (Tables 1 and 2). HMBC correlations from H-21 to C-17, C-20, and C-22, from H-22 to C-20, C-21, C-23, and C-24, from H-23 to C-20 and C-25, from H-24 to C-22 and C-25, and from H-25 to C-24 (Figure 1a) confirmed **15** as the 20- or 22-epimer of **16**. Comparing the ^{13}C NMR data with those of **16**, a downfield shift of C-17 and an upfield shift of C-21 were observed in **15**, probably due to the steric effects of ^{22}R -OH (Figure 3), which was confirmed by the subsequent epoxide opening of **18** (Figure 4). Thus, the structure of **15** was deduced as the 22-epimer of **16**.

The molecular formula of **18** was identified as $C_{25}H_{34}O_3$ on the basis of HRESIMS. Its ¹H NMR spectrum was similar to those of **15** and **16** except for the obvious shift effects of H-17, H-19, and H-21-H-24 (Table 1), indicating **18** could be the epoxide precursor of **15** or **16**, i.e., precyclocitrinol. Subjected to acidic hydrolysis in MeOH and H₂O, **18** transformed into **1**, **2**, **15**, **16**, and the corresponding *O*-methyl derivatives **1**'-**4**' (Figure 4). Compounds **1**-**4** transformed into **10**, **11**, **13a**, and **14a**; **9**, **12**, **13b**, and **14b**; **10**, **11**, **13a**, and **14a**; and **2**, **9**, **12**, **13b**, and **14b**, respectively, after similar treatment (Figure 5), while **9** and **15** resisted isomerization under the same conditions.

These results provided significant support for further elucidating the configuration and analyzing the origin of the side chains of compounds 1-4 and 7-18 (Schemes 1 and 2). According to Andrey's assumption of the biosynthesis pathway of the side chain, (1Z,3E)-1-methylpenta-1,3-dien-1-yl or (1E,3E)-1-methylpenta-1,3-dien-1-yl (a) was formed first and then transformed into 18. As

Table 1. 1 H NMR Data for Compound 1–4 and 7–18 (600 MHz, TMS, δ ppm, J in Hz)

position	1^a	2^a	3^{b}	4^{b}	7^b	8^a	9^{a}
1	5.53 dd	5.53 dd	5.56 dd	5.56 dd	5.57 dd	5.54 m	5.55 dd
2α	(6.6, 8.1) 2.07 ddt	(6.8, 8.7) 2.07 ddt	(6.2, 8.4) 2.24 ddt	(6.2, 8.4) 2.24 ddt	(5.5, 8.2) 2.25 ddt	2.06 ddt	(6.4, 8.2) 2.07 m
	(2.2, 8.1, 13.2)	(2.1, 8.2, 13.3)	(2.2, 8.4, 13.2)	(2.6, 8.4, 13.2)	(2.2, 8.7, 13.2)	(2.3, 8.7, 13.2)	
2β	2.33 ddd (6.6, 11.0, 13.2)	2.33 ddd (6.4, 11.0, 13.3)	2.48 ddd (6.2, 11.3, 13.2)	2.48 ddd (6.2, 11.3, 13.2)	2.48 ddd (5.9, 11.9, 13.2)	2.33 ddd (6.4, 11.0, 13.2)	2.34 m
3	3.10 m	3.11 m	3.49 m	3.50 m	3.50 m	3.11 m	3.12 m
$\frac{4\alpha}{4\beta}$	2.61 brd (13.2) 1.51 dd	2.62 brd (13.2) 1.51 dd	2.89 brd (12.8) 1.67 m	2.89 brd (12.8) 1.67 m	2.89 brd (12.8) 1.68 m	2.61 brd (12.8) 1.51 m	2.63 brd (12.8) 1.52 m
	(3.7, 13.2)	(4.0, 13.2)	2.74 m	2.74 m	2.74 m	2.67 m	2.68 m
5 7	2.66 m 5.37 s	2.67 m 5.38 s	5.56 s	5.56 s	5.57 s	5.41 s	5.42 s
9	2.78 dd (5.8, 12.5)	2.78 dd (5.5, 12.4)	2.76 dd (5.8, 12.4)	2.76 dd (5.8, 12.4)	2.77 dd (5.9, 12.4)	2.93 brt (8.7, 9.7)	2.84 dd (6.0, 12.4)
11α	(3.8, 12.3) 1.49 m	1.49 m	1.58 m	1.58 m	1.61 m	1.58 m	1.54 m
$\frac{11\beta}{12\alpha}$	1.74 m 1.42 td	1.75 m 1.42 m	1.67 m 1.43 m	1.67 m 1.43 m	1.80 m 1.51 m	1.59 m 3.52 brt	1.76 m 1.43 td
	(4.4, 13.2)					(7.3, 8.7)	(4.4, 12.8)
12β 14	2.13 m 2.10 ddd	2.13 m 2.10 m	2.19 m 2.07 q (12.1)	2.19 m 2.07 q (12.1)	2.20 m 2.11 ddd	2.12 m	1.74 m 2.22 brt (8.7)
	(1.7, 6.6, 12.1)		• • •		(12.3, 6.9)		, ,
15α 15β	1.38 m 1.46 m	1.38 m 1.46 m	1.47 m 1.58 m	1.47 m 1.58 m	1.63 m 1.55 m	1.46 m 1.56 m	1.57 m (8.7) 1.52 m (8.7)
16α	1.56 m	1.56 m	1.68 m	1.68 m	1.82 m	1.54 m	1.82 m
$\frac{16\beta}{17}$	1.66 m 1.66 m	1.66 m 1.66 m	1.73 m 1.84m	1.73 m 1.84 m	1.73 m 1.87 t (10.0)	1.74 m 1.84 t (9.6)	1.68 m 2.27 brt (10.1)
18α	2.46 brs	2.47 brs	2.56 m	2.56 m	2.53 m	2.41 dd	2.47 brs (10.1)
18β	2.50 m	2.50 m	2.57 m	2.57 m	2.55 m	(6.4, 7.8) 2.47 brs	2.47 brs
19	0.69 s	0.71 s	0.74 s	0.74 s	0.78 s	0.55 s	0.53 s
21 22	1.20 s 5.62 d (15.3)	1.20 s 5.62 dd	1.29 s 5.67 d (15.7)	1.29 s 5.68 d (15.9)	1.41 s 6.89 d (15.5)	1.12 s 5.77 dd	1.66 s 5.15 d (8.7)
	` '	(1.3, 15.6)	` ′	· · ·	•	(1.3, 15.6)	
23	5.49 dd (5.9, 15.3)	5.49 dd (5.5, 15.6)	5.57 dd (6.2, 15.7)	5.57 dd (6.2, 15.9)	6.28 d (15.5)	5.53 dd (5.5, 15.6)	3.95 ddd (4.0, 6.6, 8.7)
24	4.10 m	4.10 m	4.35 m	4.35 m		4.11 m	3.40 m
25 MeO-	1.08 d (5.9)	1.08 d (6.4)	1.29 d (6.2) 3.14 s	1.29 d (6.2) 3.14 s	2.27 s	1.09 d (6.4)	0.96 d (6.4)
3-OH	4.60 d (4.4)	4.61 d (4.5)	5.11.5	5.11.5		4.61 d (4.1)	4.62 d (4.6)
12-OH 23-OH 24-OH	4.57 d (4.4)	4.57 d (4.5)				6.03 d (1.8) 4.58 d (4.6)	4.47 d (4.0) 4.38 d (4.0)
manitian	10a	11a	12a	124	1 1 a	1 5 <i>b</i>	10b
position	10 ^a	11 ^a	12 ^a	13 ^a	14 ^a	15 ^b 5 57 brt (7 3)	18 ^b
1	5.55 dd (6.4, 8.2)	5.55 dd (6.4, 8.2)	5.55 dd (6.6, 8.2)	5.55 dd (6.4, 8.2)	5.55 dd (6.4, 8.2)	5.57 brt (7.3)	5.57 dd ^c
	5.55 dd (6.4, 8.2) 2.07 m	5.55 dd	5.55 dd	5.55 dd	5.55 dd		5.57 dd ^c 2.25 ddt
1	5.55 dd (6.4, 8.2)	5.55 dd (6.4, 8.2)	5.55 dd (6.6, 8.2)	5.55 dd (6.4, 8.2)	5.55 dd (6.4, 8.2)	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd
1 2α 2β 3	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m	5.55 dd (6.4, 8.2) 2.07 m	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m	5.55 dd (6.4, 8.2) 2.07 m	5.55 dd (6.4, 8.2) 2.07 m	5.57 brt (7.3) 2.25 ddt (13.3,8.2)	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4)
$ \begin{array}{c} 1 \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \end{array} $	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8)	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4)	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8)	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1)
$ \begin{array}{c} 1 \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \end{array} $	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4)
1 2α 2β 3 4α 4β 5 7	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c
1 2α 2β 3 4α	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd
1 2α 2β 3 4α 4β 5 7 9	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m
1 2α 2β 3 4α 4β 5 7 9	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9)	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0)	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9)
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4)	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m
1 2α 2β 3 4α 4β 5 7 9	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.54 m	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α 12β 14	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8)	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7)	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4)	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.15 m 2.14 m
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α 12β 14	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8)	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7)	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.15 m 2.14 m 1.63 m 1.54 m
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α 12β 14	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m 1.52 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8)	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.82 m 1.68 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7)	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m 1.94 m	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.15 m 2.14 m 1.63 m 1.68 m 1.68 m
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α 12β 14 15α 15β 16α 16β 17	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m 1.84 m 1.65 m 2.23 brt (9.6)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8) 1.57 m 1.52 m 1.68 m 2.66 m	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.82 m 1.68 m 2.23 brt (9.6)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.82 m 1.82 m 1.83 m 1.84 m 1.85 m 1.85 brt (8.7)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.82 m 1.82 m 1.83 m 1.84 m 1.85 m 1.85 brt (8.7)	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m 1.74 m 1.74 m	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.15 m 2.14 m 1.63 m 1.54 m 1.68 m 1.54 m 1.68 m 1.62 m 1.85 t (9.6)
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α 12β 14 15α 15β 16α 16β 17 18α	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m 1.82 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8) 1.57 m 1.52 m 1.82 m	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.82 m 1.68 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.82 m 1.68 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.82 m 1.68 m	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m 1.94 m 1.74 m	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.15 m 2.14 m 1.63 m 1.64 m 1.68 m 1.62 m
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α 12β 14 15α 15α 16α 16β 17 18α 18β	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m 1.84 m 1.65 m 2.23 brt (9.6) 2.47 brs 2.47 brs	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8) 1.57 m 1.52 m 1.82 m 1.68 m 2.26 brt (9.6) 2.48 brs 2.48 brs	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.82 m 1.68 m 2.23 brt (9.6) 2.47 brs 2.47 brs	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m 1.74 m 1.74 m 1.74 m 1.74 m 2.55 d (13.3) 2.59 dd (13.3, 6.0)	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.14 m 1.63 m 1.64 m 1.63 m 1.62 m 1.85 t (9.6) 2.57 d (13.2) 2.59 dd (13.2, 6.4)
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α 12β 14 15α 15β 16α 16β 17 18α	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m 1.52 m 2.23 brt (9.6) 2.47 brs	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8) 1.57 m 1.52 m 1.82 m 1.68 m 2.26 brt (9.6) 2.48 brs	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.82 m 1.68 m 2.23 brt (9.6) 2.47 brs	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.68 m 1.49 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.68 m 1.49 m 1.82 m 1.68 m 1.82 m 1.68 m 1.82 m 1.68 m 1.47 m	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m 1.74 m 1.74 m 1.74 m 1.74 m 2.55 d (13.3) 2.59 dd	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.15 m 2.14 m 1.63 m 1.54 m 1.62 m 1.62 m 1.85 t (9.6) 2.57 d (13.2) 2.59 dd
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α 12β 14 15α 16α 16β 17 18α 18β 19 21	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m 1.84 m 1.65 m 2.23 brt (9.6) 2.47 brs 2.47 brs 0.50 s 1.66 s 5.16 d (8.7)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8) 1.57 m 1.52 m 1.82 m 1.68 m 2.26 brt (9.6) 2.48 brs 2.48 brs 0.53 s 1.64 s 5.22 d (8.7)	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7) 1.54 m 1.68 m 2.23 brt (9.6) 2.47 brs 2.47 brs 0.50 s 1.65 s 5.22 d (8.2)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs 0.52/0.53 s 1.68 s 5.11 d (9.1)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.47 brs 2.47 brs 2.47 brs 2.47 brs 2.50.54 s 1.71 s 5.01 d (9.6)	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m 1.74 m 1.74 m 1.74 m 1.74 m 2.55 d (13.3) 2.59 dd (13.3, 6.0) 0.86 s 1.26 s 3.91 d (7.8)	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.15 m 2.14 m 1.63 m 1.64 m 1.68 m 1.62 m 1.85 t (9.6) 2.57 d (13.2) 2.59 dd (13.2, 6.4) 0.78 s 1.33 s 3.09 d (7.4)
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α 12β 14 15α 15β 16β 17 18α 18β	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m 1.52 m 1.65 m 2.23 brt (9.6) 2.47 brs 2.47 brs 0.50 s 1.66 s	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8) 1.57 m 1.52 m 1.68 m 2.26 brt (9.6) 2.48 brs 2.48 brs 2.48 brs 0.53 s 1.64 s	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7) 1.54 m 1.68 m 2.23 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 0.50 s 1.65 s	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 2.55 dd (6.4, 8.2)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs 0.52/0.54 s 1.71 s	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m 1.74 m 1.74 m 1.74 m 2.55 d (13.3) 2.59 dd (13.3, 6.0) 0.86 s 1.26 s	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.15 m 2.14 m 1.63 m 1.64 m 1.62 m 1.65 m 1.62 m 1.85 t (9.6) 2.57 d (13.2) 2.59 dd (13.2, 6.4) 0.78 s 1.33 s
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α 12β 14 15α 16α 16β 17 18α 18β 19 21	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m 1.84 m 1.65 m 2.23 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 0.50 s 1.66 s 5.16 d (8.7) 3.95 ddd	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8) 1.57 m 1.52 m 1.82 m 1.68 m 2.26 brt (9.6) 2.48 brs 2.48 brs 0.53 s 1.64 s 5.22 d (8.7) 4.05 ddd	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.82 m 1.68 m 2.23 brt (9.6) 2.47 brs 2.47 brs 0.50 s 1.65 s 5.22 d (8.2) 4.09 ddd	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs 2.52/0.53 s 1.68 s 5.11 d (9.1) 3.78/3.77 dd	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.82 m 1.82 m 1.82 m 1.82 m 1.82 m 1.82 m 1.84 m 1.94 m 1.94 m 1.95 brt (8.7)	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m 1.74 m 1.75 m 1.76 dd (15.1, 8.2, 1.4) 5.78 ddd	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.15 m 2.14 m 1.63 m 1.64 m 1.62 m 1.62 m 1.62 m 1.62 m 1.63 t (9.6) 2.57 d (13.2) 2.59 dd (13.2, 6.4) 0.78 s 1.33 s 3.09 d (7.4) 5.37 ddq (15.4, 7.4, 1.3) 5.88 dqd
1 2α 2β 3 4α 4β 5 7 9 11α 11β 12α 12β 14 15α 15β 16α 16β 17 18α 18β 19 21 22 23	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m 1.84 m 1.65 m 2.23 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 0.50 s 1.66 s 5.16 d (8.7) 3.95 ddd (4.0, 6.6, 8.7)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8) 1.57 m 1.52 m 1.82 m 1.68 m 2.26 brt (9.6) 2.48 brs 2.48 brs 2.48 brs 0.53 s 1.64 s 5.22 d (8.7) 4.05 ddd (4.6, 4.6, 8.7)	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.68 m 2.23 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 2.49 ddd (4.6, 5.0, 8.2)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 2.11 d (9.1) 3.78/3.77 dd (4.1, 9.1)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.68 m 1.49 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 2.10 dd (6.4, 9.6)	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m 1.74 m 1.74 m 1.74 m 1.74 m 1.74 m 2.55 d (13.3) 2.59 dd (13.3, 6.0) 0.86 s 1.26 s 3.91 d (7.8) 5.41 ddq (15.1, 8.2, 1.4) 5.78 dqd (15.1, 6.4) 1.74 dd	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.15 m 2.14 m 1.63 m 1.54 m 1.68 m 1.62 m 1.85 t (9.6) 2.57 d (13.2) 2.59 dd (13.2, 6.4) 0.78 s 1.33 s 3.09 d (7.4) 5.37 ddq (15.4, 7.4, 1.3) 5.88 dqd (15.4, 7.4, 1.3) 5.88 dqd (15.4, 6.8) 1.76 ddd
1 2 α 2 β 3 4 α 4 β 5 7 9 11 α 11 β 12 α 12 β 14 15 α 16 α 16 β 17 18 α 18 β 19 21 22 23 24	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m 1.84 m 1.65 m 2.23 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 0.50 s 1.66 s 5.16 d (8.7) 3.95 ddd (4.0, 6.6, 8.7) 3.40 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8) 1.57 m 1.82 m 1.82 m 1.68 m 2.26 brt (9.6) 2.48 brs 2.48 brs 2.48 brs 2.48 brs 2.48 c 3.50 s 1.64 s 5.22 d (8.7) 4.05 ddd (4.6, 4.6, 8.7) 3.50 m	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7) 1.54 m 1.89 m 1.49 m 1.82 m 1.68 m 2.23 brt (9.6) 2.47 brs 2.47 brs 0.50 s 1.65 s 5.22 d (8.2) 4.09 ddd (4.6, 5.0, 8.2) 3.49 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 2.47 brs 3.168 s 5.11 d (9.1) 3.78/3.77 dd (4.1, 9.1) 3.60 m 0.96/0.98 d (6.4)	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 2.47 brs 3.71 dd (6.4, 9.6) 3.53 m 0.93/0.95 d (6.6)	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m 1.74 m 1.74 m 1.74 m 1.74 m 2.55 d (13.3) 2.59 dd (13.3, 6.0) 0.86 s 1.26 s 3.91 d (7.8) 5.78 dqd (15.1, 8.2, 1.4) 5.78 dqd (15.1, 8.2, 1.4)	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.14 m 1.63 m 1.54 m 1.68 m 1.62 m 1.85 t (9.6) 2.57 d (13.2) 2.59 dd (13.2, 6.4) 0.78 s 1.33 s 3.09 d (7.4) 5.37 ddq (15.4, 7.4, 1.3) 5.88 dqd (15.4, 6.8)
1 2 α 2 β 3 4 α 4 β 5 7 9 11 α 11 β 12 α 12 β 14 15 α 16 α 16 β 17 18 α 18 β 19 21 22 23	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (13.3) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47 td (4.6, 12.8) 1.74 m 2.25 brt 1.57 m 1.52 m 1.84 m 1.65 m 2.23 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 0.50 s 1.66 s 5.16 d (8.7) 3.95 ddd (4.0, 6.6, 8.7) 3.40 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.9, 11.5) 1.54 m 1.79 m 1.43 td (4.6, 12.4) 1.74 m 2.22 brt (8.8) 1.57 m 1.82 m 1.82 m 1.68 m 2.26 brt (9.6) 2.48 brs 2.48 brs 2.48 brs 2.48 brs 2.48 c 3.50 s 1.64 s 5.22 d (8.7) 4.05 ddd (4.6, 4.6, 8.7) 3.50 m	5.55 dd (6.6, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.8) 1.52 m 2.68 m 5.42 s 2.84 dd (5.5, 12.0) 1.54 m 1.80 m 1.47 td (4.2, 12.4) 1.74 m 2.25 brt (8.7) 1.54 m 1.89 m 1.49 m 1.82 m 1.68 m 2.23 brt (9.6) 2.47 brs 2.47 brs 0.50 s 1.65 s 5.22 d (8.2) 4.09 ddd (4.6, 5.0, 8.2) 3.49 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.63 brd (12.7) 1.52 m 2.67 m 5.42 s 2.84 dd (5.5, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs 2.47 brs 0.52/0.53 s 1.68 s 5.11 d (9.1) 3.78/3.77 dd (4.1, 9.1) 3.60 m	5.55 dd (6.4, 8.2) 2.07 m 2.34 m 3.12 m 2.62 brd (13.4) 1.52 m 2.67 m 5.42 s 2.84 dd (5.9, 11.9) 1.54 m 1.80 m 1.47m 1.74 m 2.25 brt (8.7) 1.54 m 1.49 m 1.82 m 1.68 m 2.31 brt (9.6) 2.47 brs 2.47 brs 2.50 to (9.6) 3.71 dd (6.4, 9.6) 3.53 m	5.57 brt (7.3) 2.25 ddt (13.3,8.2) 2.48 ddd (13.3,11.4,6.4) 3.50 brt (11.0) 2.89 brd (12.8) 1.68 m 2.75 m 5.59 s 2.78 dd (12.8, 6.0) 1.61 m 1.85 m 1.48 m 2.17 m 2.09 ddd (12.3, 6.4) 1.62 m 1.54 m 1.74 m 1.74 m 1.74 m 1.74 m 1.74 m 2.55 d (13.3) 2.59 dd (13.3, 6.0) 0.86 s 1.26 s 3.91 d (7.8) 5.41 ddq (15.1, 8.2, 1.4) 5.78 dqd (15.1, 6.4) 1.74 dd	5.57 dd ^c 2.25 ddt (13.3, 8.2, 2.2) 2.49 ddd (13.3, 11.4, 6.0) 3.51 brt (11.4) 2.89 brd (13.1) 1.68 m 2.75 m 5.59 s ^c 2.78 dd (12.4, 5.9) 1.61 m 1.89 m 1.51 m 2.15 m 2.14 m 1.63 m 1.54 m 1.68 m 1.62 m 1.85 t (9.6) 2.57 d (13.2) 2.59 dd (13.2, 6.4) 0.78 s 1.33 s 3.09 d (7.4) 5.87 ddq (15.4, 7.4, 1.3) 5.88 dqd (15.4, 7.4, 1.3) 5.88 dqd (15.4, 6.8) 1.76 dd

^a Spectra recorded at 600 MHz in DMSO-d₆. ^b Spectra recorded at 600 MHz in CDCl₃. ^c Overlapping signals.

Table 2. ¹³C NMR Data for Compound 1–4 and 7–17 (150 MHz, TMS, δ ppm)

position	1^a	2^a	3^{b}	4^{b}	7 ^b	8 ^a	9 ^a	10^a	11 ^a	12 ^a	13^a	14 ^a	15 ^b
1 (CH)	121.9	121.9	121.8	121.8	122.1	122.3	122.1	122.1	122.1	122.1	122.1	122.1	122.0
2 (CH ₂)	35.9	35.9	35.7	35.7	35.6	35.9	35.9	35.9	35.9	35.9	35.9	35.9	35.6
3 (CH)	63.1	63.1	64.6	64.6	64.5	62.9	63.1	63.1	63.1	63.1	63.1	63.1	64.5
4 (CH ₂)	41.3	41.3	41.7	41.6	41.5	41.2	41.4	41.3	41.4	41.3	41.3	41.3	41.6
5 (CH)	48.1	48.1	48.5	48.5	48.5	48.2	48.1	48.1	48.1	48.1	48.1	48.1	48.5
6 (qC)	204.1	204.1	205.2	205.2	205.1	204.2	204.1	204.1	204.1	204.1	204.0	204.1	205.3
7 (CH)	124.5	124.5	125.0	125.0	125.2	125.3	124.3	124.3	124.3	124.3	124.3	124.3	125.2
8 (qC)	157.1	157.1	157.7	157.7	156.7	155.1	156.9	156.9	157.0	157.0	156.83/156.86	156.8	157.3
9 (CH)	53.2	53.2	54.1	54.1	53.9	51.6	53.3	53.2	53.3	53.2	53.3	53.2	54.0
10 (qC)	145.7	145.7	146.0	146.0	145.6	144.7	145.5	145.5	145.5	145.5	145.5	145.5	145.9
11 (CH ₂)	27.5	27.5	27.7	27.7	27.6	34.6	27.4	27.5	27.4	27.5	27.4	27.4	27.6
12 (CH ₂)	38.8	38.8	39.4	39.4	39.3	75.0^{c}	36.9	37.3	36.9	37.2	37.13/37.08	37.13/37.07	39.3
13 (qC)	45.9	45.9	46.4	46.3	46.3	50.4	46.9	46.6	46.9	46.6	46.7	46.73/46.82	46.4
14 (CH)	55.2	55.2	55.9	55.9	55.7	52.8	54.3	54.5	54.3	54.4	54.4	54.3	55.8
15 (CH ₂)	22.1	22.1	22.5	22.5	22.7	21.8	22.4	22.2	22.4	22.3	22.36/22.33	22.3	22.8
16 (CH ₂)	22.3	22.3	22.5	22.5	22.5	23.4	23.7	23.8	23.7	23.8	23.8	23.85/23.74	21.2
17 (CH)	60.0	60.1	60.2	60.3	60.0	62.8	58.9	58.6	58.9	58.6	58.91/58.85	58.9	55.2
18 (CH ₂)	27.1	27.1	27.6	27.6	27.6	27.0	27.2	27.2	27.2	27.2	27.2	27.2	27.5
19 (CH ₃)	14.3	14.3	14.8	14.8	14.6	9.8	13.4	13.3	13.4	13.2	13.44/13.40	13.47/13.50	14.1
20 (qC)	73.2	73.3	79.4	79.6	75.3	73.0	135.8	135.8	135.0	134.9	138.62/138.74	139.5	77.0
21 (CH ₃)	28.9	28.9	21.7	21.7	29.0	30.2	17.3	18.9	17.3	18.7	18.24/18.01	18.53/18.16	20.6
22 (CH)	136.2	136.0	134.5	134.5	152.6	132.4	128.1	127.0	128.2	127.3	124.30/124.43	124.32/124.08	77.5
23 (CH)	130.8	130.8	134.1	134.2	126.6	131.5	72.0	72.2	71.5	71.6	81.39/81.32	81.94/81.85	129.3
24 (CH)	66.6	66.3	68.8	68.7	198.5	66.3	70.3	70.3	69.7	69.7	68.36/68.31	68.7	130.2
25 (CH ₃)	24.1	24.0	23.6	23.6	27.9	23.7	18.9	19.1	18.5	18.3	18.72/18.89	18.9	18.0
MeO-(CH ₃)			49.7	49.7							55.4	55.41/55.37	

^a Spectra recorded at 150 MHz in DMSO-d₆. ^b Spectra recorded at 150 MHz in CDCl₃. ^c CH.

Figure 1. (a) Selected HMBC, ${}^{1}H-{}^{1}H$ COSY, and NOE correlations of compounds 1, 3, 8, 9, 13, and 15. (b) Proton chemical-shift differences $(\Delta \delta = \delta_S - \delta_R)$ between the (*R*)- and (*S*)-MTPA esters 8a and 8b of 12*R*-hydroxylcyclocitrinol B (8), expressed in ppm.

the acidic condition induced by the mass production of the acidic compound citrinin⁵ (yield ~ 100 mg/L), the intermediate product 18 was rapidly transformed into compounds 1, 2, 15, and 16 by a nonenzymatic process in the fermentation broth. The absolute configuration of C-22 in 18 is still unsolved due to the lack of a pure sample. Compounds 3, 4, and 9–14 were all authenticated as artifacts (Figure 5, Schemes 1 and 2).

Andrey³ suggested a plausible biochemical route to the bicyclic system originated from ergosterol. We also isolated ergosterol from the gum of this strain. Ergosterol is the major sterol in the more advanced ascomycetes and basidiomycetes.⁶ The study of the biosynthetic origin of the des-A-ergostane type steroid blazeispirol A⁷ indicated that ergosterol might be an active precursor for novel steroid skeletons. Trying to prove the hypothesis, cultures of the fungus P. citrinum were supplemented with stable isotope-labeled precursors [1,2-13C₂]-acetate and [2-13C]-acetate and the incorporation patterns of the enriched compound 2 were measured by ¹³C NMR spectroscopy. Thirteen of the 25 carbon atoms were predominantly labeled from the methyl group of acetate by feeding of sodium $[2^{-13}C]$ -acetates, and the result of the sodium $[1,2^{-13}C_2]$ acetate feeding experiment revealed the incorporation of eight intact acetate units in 2 by strong coupling of the following pairs: C-2/ C-3, C-5/C-6, C-9/C-11, C-10/C-18, C-12/C-13, C-16/C-17, C-20/ C-21, and C-23/C-24 (Table 3 and Figure 6). The labeling pattern of 2 was identical to that previously observed for ergosterol⁷ and consistent with Andrey's hypothetical biosynthetic scheme.³

The biological activities of compounds 1-4 and 7-17 were evaluated using the cAMP assay^{8,9} in GPR12-CHO and WT-CHO

cells. Cyclic AMP regulates multiple neuronal functions, including neurite outgrowth and axonal regeneration. GPR12 is highly expressed in the central nervous system, and its expression in various cell lines results in constitutive stimulation of cAMP production. On the basis of the present findings, up-regulating GPR12 in damaged neurons may hold potential as a therapeutic strategy to treat various neurological disorders, including spinal cord injuries and stroke. The results showed that compounds 1, 2, 10, 11, and 14 could induce the production of cAMP in GPR12-transfected CHO cells at 10 μ M (Figure 7A). The induction of cAMP generation is receptor dependent, since no cAMP was detected in wild-type CHO cells (Figure 7B). Further pharmacological analysis should be performed to determine whether these compounds could be specific agonists for GPR12.

Experimental Section

General Experimental Procedures. Melting points were measured using a Yanaco MP-500D micromelting point apparatus and are uncorrected. Optical rotations were obtained on a JASCO P-1020 digital polarimeter. UV spectra were recorded on a Beckman DU 640 spectrophotometer. IR spectra were recorded on a Nicolet Nexus 470 spectrophotometer using KBr discs. ^{1}H and ^{13}C NMR, DEPT, and 2D NMR spectra were recorded on a JEOL JNM-ECP 600 spectrometer using TMS as internal standard, and chemical shifts were recorded as δ values. ESIMS were measured on a Q-TOF Ultima Global GAA076 LC mass spectrometer. Semiprepartive HPLC was performed using an ODS column [Shin-pak ODS (H), 20 \times 250 mm, 5 μ m, 4 mL/min].

Fermentation, Extraction, and Purification. *P. citrinum* HGY1-5 was isolated from the crater ash collected from the extinct volcano

Figure 2. X-ray structures of compounds 5, 6, and 9.

Scheme 1. Possible Mechanisms for the Reactions of the Side Chains of Compounds 1-4 and 18 with H₂O and MeOH in AcOH

Huguangyan in Guangdong, China. It was identified according to its morphological characteristics and 18S RNA by Prof. Li Tian, the First Institute of Oceanography, SOA, Qingdao, China. A voucher specimen

is deposited in our laboratory at $-80\,$ °C. The working strain was prepared on potato dextrose agar slants and stored at 4 °C. Fermentation was carried out as follows: Spores were directly inoculated into 500

Figure 3. Preferred conformations of compounds 9, 11, 15, and 16.

mL Erlenmeyer flasks containing 100 mL of fermentation media (mannitol 20 g, maltose 20 g, glucose 10 g, monosodium glutamate 10 g, KH₂PO₄ 0.5 g, MgSO₄•7H₂O 0.3 g, yeast extract 3 g, and corn steep liquor 1 g, dissolved in 1 L of water, pH 6.5). The flasks were incubated on a rotatory shaker at 165 rpm at 28 °C. After 9 days of cultivation, 20 L of whole broth was filtered through cheesecloth to separate the broth supernatant and mycelia. The former was extracted with EtOAc, while the latter was extracted with acetone. The acetone extract was evaporated under reduced pressure to afford an aqueous solution and then extracted with EtOAc. The two EtOAc extracts were combined and concentrated in vacuo to give a crude gum (20 g). The crude gum was subjected to Si gel column chromatography (CC, CHCl₃/ MeOH, v/v, gradient), and the fraction eluted with the solvent CHCl₃/ MeOH (20:1) was subjected to repeated chromatography on Sephadex LH-20 CC (CHCl₃/MeOH, 1:1). Subfraction 3-2-3 was further purified by HPLC (MeOH/H₂O, 6:4) to give compounds 1 (39.4 mg) and 2 (17.3 mg). Subfraction 2-5-4 was further purified by HPLC (MeOH/ H_2O , 7:3) to give compounds 3 (5.2 mg) and 4 (3.2 mg). Similar purification procedures were applied to subfraction 3-2-5 (HPLC eluted with CH₃CN/H₂O, 4:6) and subfraction 3-2-4 (HPLC eluted with CH₃CN/H₂O, 45:55) to afford compounds **16** (1.5 mg) and **17** (3.2 mg), respectively. The strain was referemented in 40 L of liquid medium for 15 days under the same fermentation and extraction conditions to give a crude gum (88 g). The gum was subjected to similar CC procedures and separated into several subfractions. Subfraction 2-1-6 was separated on HPLC eluted with MeOH/H₂O, 55:45, to yield compounds **9** (40 mg), **10** (10 mg), **11** (45 mg), and **12** (15 mg). Compounds **13** (121 mg) and **14** (201 mg) were separated form subfraction 2-1-2 by HPLC eluted with MeOH/H₂O, 65:35. Similar purification of subfractions 2-1-2-2 (HPLC eluted with CH₃OH/H₂O, 60:40), 2-1-9 (HPLC eluted with MeOH/H₂O, 45:55), 2-1-4 (HPLC eluted with CH₃OH/H₂O, 90:10), gave compounds **7** (13 mg), **8** (11 mg), **15** (14 mg), and **18** (1.1 mg), respectively.

Preparation of *p***-Bromobenzoates (5 and 6).** To a stirred suspension of 12 mg of **1** in 2 mL of dry CH₂Cl₂ was added 1 mL of Et₃N and 25 mg of *p*-BrC₆H₄COCl at room temperature. Four hours later 8 mg of DMAP was added and allowed to react another 2 h, and then the reaction was quenched by adding 2 mL of H₂O. The mixture was extracted with 3 × 5 mL of EtOAc, and the EtOAc solution was dried on anhydrous Na₂SO₄ and evaporated at reduced pressure. The residue was subjected to flash CC over Si gel (petroleum ether/acetone, 65: 35) and HPLC (92% MeOH/H₂O) to give **5** (3.3 mg, 18.9% yield). The same procedure was applied to **2** (12 mg) to afford **6** (2.0 mg, 10.9% yield).

3-p-Bromobenzoylepicyclocitrinol (5): colorless needles (v/v 1:1 of petroleum ether and acetone); $C_{32}H_{39}BrO_5$; mp 180–181 °C; $[\alpha]^{20}_D$ +33.2 (c 0.17,CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 5.66 (1H, dd, H-1), 2.44 (1H, m, H-2 α), 2.59 (1H, m, H-2 β), 4.76 (1H, m, H-3), 2.97 (1H, d, H-4 α), 2.83 (1H, m, H-5), 5.62 (1H, s, H-7), 2.82 (1H, m, H-9), 2.21 (1H, m, H-12 β), 2.12 (1H, m, H-14), 1.96 (1H, m, H-17), 2.63 (2H, m, H-18), 0.80 (3H, s, CH₃-19), 1.36 (3H, s, CH₃-21), 5.80

Figure 4. HPLC and LC-MS analysis of the ring-opening products of compound **18**. Conditions: 0–5 min, 60% MeOH/H₂O; 5–20 min, 60% MeOH/H₂O to 80% MeOH/H₂O, gradient; after 20 min, 80% MeOH/H₂O; 242 nm; 1 mL/min. (A) HPLC profile of the mixture of compounds **1**, **2**, **15**, and **16**. (B) HPLC-MS profile of compound **18** (the pure compound had been stored in MeOH and H₂O at room temperature for 30 days). (C) HPLC profile of the acid-catalyzed ring-opening products of **18** in the mixture of MeOH, H₂O, and AcOH.

Figure 5. HPLC analysis of the acid-catalyzed isomerization and alcoholysis products of compounds 1-4. Conditions: 0-5 min, 60% MeOH/H₂O; 5-20 min, 60% MeOH/H₂O to 80% MeOH/H₂O, gradient; after 20 min, 80% MeOH/H₂O; 242 nm; 1 mL/min. A-D show the HPLC profiles of isomerization products of compounds 1-4 at 30 °C for 24 h in MeOH/H₂O/HOAc (1:1:0.1), respectively. E and F show the HPLC profiles of alcoholysis products of compounds 1 and 2 at 4 °C for 48 h in MeOH/HOAc (1:0.05), respectively. Standards were used to verify the identities of the peaks when retention times changed due to the unstable HPLC conditions (Supporting Information, Figures F47-F52).

Scheme 2. Postulated Biosynthetic Pathway of Compounds 1, 2, 7, 8, 15, and 18

Table 3. ¹³C NMR Data of Compound **2** in DMSO-*d*₆ Together with Specific Incorporations and Coupling Constants after Feeding [2-¹³C]-Acetate (I) and [1,2-¹³C₂]-acetate (II)

r ccamg [2	ej Heetate (1)	, and [1,2 e ₂] dectain	S (II)
carbon	δ_{C} (ppm)	enriched factor (I) ^a	$J_{\rm CC}$ (Hz) (II)
1 (CH)	121.9	1.85	
2 (CH ₂)	35.9	0.91	38.9
3 (CH)	63.1	1.83	38.9
4 (CH ₂)	41.3	0.98	
5 (CH)	48.1	1.99	36.6
6 (qC)	204.1	1.06	36.6
7 (CH)	124.5	1.55	
8 (qC)	157.1	1.13	
9 (CH)	53.2	1.74	34.3
10 (qC)	145.7	0.99	41.2
11 (CH ₂)	27.5	0.92	34.3
12 (CH ₂)	38.8	1.15	38.9
13 (qC)	45.9	1.60	38.9
14 (CH)	55.2	_a	
15 (CH ₂)	22.1	1.46	
16 (CH ₂)	22.3	0.89	29.8
17 (CH)	60.1	1.71	29.8
18 (CH ₂)	27.1	2.09	41.2
19 (CH ₃)	14.3	1.40	
20 (qC)	73.3	0.84	41.2
21 (CH ₃)	28.9	1.75	41.2
22 (CH)	136.0	2.14	
23 (CH)	130.8	1.05	50.4
24 (CH)	66.3	2.22	50.4
25 (CH ₃)	24.0	1.07	

^a Mean of two independent experiments. Determined as the ratio of enriched to natural ¹³C NMR intensity normalized to carbon at 55.2 ppm (C-14).

Figure 6. Stable isotope labeled **2** formed after feeding $[2^{-13}C]$ -acetate, and $[1,2^{-13}C_2]$ -acetate.

(1H, d, H-22), 5.66 (1H, dd, H-23), 4.33 (1H, m, H-24), 1.27 (3H, d, CH₃-25), 7.56 (2H, d), 7.87 (2H, d), 1.49–1.89 (8H, H-4 β , H-11 α , H-11 β , H-12 α , H-15 α , H-15 β , H-16 α , H-16 β).

3-p-Bromobenzoylcyclocitrinol (6): colorless needles (v/v 1:1 of petroleum ether and acetone); $C_{32}H_{39}BrO_5$; mp 170–171 °C; $[\alpha]^{20}_D$ +94.1 (c 0.10, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 5.66 (1H, dd, H-1), 2.44 (1H, m, H-2α), 2.59 (1H, m, H-2β), 4.76 (1H, m, H-3), 2.97 (1H, d, H-4α), 2.83 (1H, m, H-5), 5.62 (1H, s, H-7), 2.82 (1H, m, H-9), 2.22 (1H, m, H-12β), 2.13 (1H, m, H-14), 1.96 (1H, m, H-17), 2.63 (2H, m, H-18), 0.81 (3H, s, CH₃-19), 1.36 (3H, s, CH₃-21), 5.82 (1H, dd, H-22), 5.68 (1H, dd, H-23), 4.34 (1H, m, H-24), 1.27 (3H, d, CH₃-25), 7.56 (2H, d), 7.87 (2H, d), 1.49–1.89 (8H, H-4β, H-11α, H-11β, H-12α, H-15α, H-15α, H-16α, H-16β).

(S)-MTPA Ester (8a) of Compound 8. To a solution of 8 (3 mg) in pyridine (1 mL) were added (R)-(-)-MTPACl (8 μ L) and DMAP (50 μ g). The mixture was allowed to stand at 20 °C for 12 h. After addition of H₂O (1 mL) and extraction with CHCl₃, the extract was evaporated and the residue was subjected to HPLC (10:90, H₂O/MeOH) to afford the (S)-MTPA ester (8a, 5 mg) of 8. 8a: colorless oil; ¹H NMR (600 MHz, DMSO- d_6) δ 5.60 (1H, m, H-1), 2.11 (1H, m, H-2α), 2.59 (1H, m, H-2 β), 4.66 (1H, m, H-3), 2.71 (1H, d, H-4α), 1.90 (1H, m, H-4 β), 2.90 (1H, m, H-5), 5.46 (1H, s, H-7), 3.00 (1H, dd, H-9), 3.52 (1H, m, H-12), 2.13 (1H, m, H-14), 1.71 (1H, m, H-16 β), 1.84 (1H, t, H-17), 2.41 (1H, dd, H-18α), 2.62 (1H, d, H-18 β), 0.36 (3H, s, CH₃-19), 1.07 (3H, s, CH₃-21), 5.98 (1H, d, H-22), 5.59 (1H, dd, H-23), 5.59 (1H, m, H-24), 1.35 (3H, d, CH₃-25), 6.24 (1H, s, HO-20), 5.99 (1H, d, HO-12), 1.40-1.60 (5H, H-11 α , H-11 β , H-15 α , H-15 β , H-16α), 3.50 (6H), 7.44-7.51 (10H).

(R)-MTPA Ester (8b) of Compound 8. Compound 8 (3 mg) was treated with (S)-(+)-MTPACl (8 μ L) by the same procedure described

X-ray Diffraction Analysis of 5, 6, and 9. X-ray crystal structure analysis of compound **5**: colorless block crystal; space group $P2_12_12_1$, a = 9.801(4) Å, b = 11.207(4) Å, c = 26.272(10) Å, V = 2885.8(19) Å³, Z = 4, crystal size $0.43 \times 0.40 \times 0.35$ mm³. A total of 5027 unique reflections $(2\theta < 50.02^\circ)$ were collected using graphite-monochromated Mo K α ($\lambda = 0.71073$ Å) on a CCD area detector diffractometer. The structure was solved by direct methods (SHELXS-97) and expanded using Fourier techniques (SHELXS-97). The final cycle of full-matrix least-squares refinement was based on 5027 unique reflections ($2\theta < 50.02^\circ$) and 343 variable parameters and converged with unweighted and weighted agreement factors of $R_1 = 0.043$ and $R_w = 0.081$ for $I > 2.0\sigma(I)$ data.

X-ray crystal structure analysis of compound **6**: colorless block crystal; space group $P2_12_12_1$, a=9.772(4) Å, b=11.108(5) Å, c=26.280(11) Å, V=2853(2) Å 3 , Z=4, crystal size $0.20\times0.17\times0.08$ mm 3 . A total of 5008 unique reflections $(2\theta<50.00^\circ)$ were collected using graphite-monochromated Mo K α ($\lambda=0.71073$ Å) on a CCD area detector diffractometer. The structure was solved by direct methods (SHELXS-97) and expanded using Fourier techniques (SHELXS-97). The final cycle of full-matrix least-squares refinement was based on 5008 unique reflections $(2\theta<50.00^\circ)$ and 343 variable parameters and converged with unweighted and weighted agreement factors of $R_1=0.046$ and $R_w=0.111$ for $I>2.0\sigma(I)$ data.

X-ray crystal structure analysis of compound 9: colorless block crystal; space group $P2_12_12_1$, a=6.6828(13) Å, b=10.1709(16) Å, c=33.541(3) Å, V=2279.8(6) Å 3 , Z=4, crystal size $0.65\times0.34\times0.04$ mm 3 . A total of 2339 unique reflections $(2\theta<50.02^\circ)$ were collected using graphite-monochromated Mo K α ($\lambda=0.71073$ Å) on a CCD area detector diffractometer. The structure was solved by direct methods (SHELXS-97) and expanded using Fourier techniques (SHELXS-97). The final cycle of full-matrix least-squares refinement was based on 2339 unique reflections $(2\theta<50.02^\circ)$ and 262 variable parameters and converged with unweighted and weighted agreement factors of $R_1=0.049$ and $R_w=0.110$ for $I>2.0\sigma(I)$ data.

Hydrolysis of Precyclocitrinol B (18). Compound **18** was stirred with MeOH (500 μ L), H₂O (500 μ L), and AcOH (50 μ L) for 2 h at room temperature. The products were identified as **1**, **2**, **15**, **16**, and the corresponding *O*-methyl derivatives **1**′–**4**′ by HPLC (HPLC conditions: phase A: H₂O; phase B: MeOH; 0–5 min, 60% MeOH/H₂O; 5–20 min, 60% MeOH/H₂O to 80% MeOH/H₂O, gradient; after 20 min, 80% MeOH/H₂O; 242 nm; 1 mL/min) and LC-MS (positive ESIMS)

Acidic Isomerization and Alcoholysis of Compounds 1–4. Compounds 1–4 were separately stirred in MeOH (500 μ L), H₂O (500 μ L), and AcOH (50 μ L) at 30 °C for 24 h. HPLC analysis revealed the products as 10, 11, 13a, and 14a; 9, 12, 13b, and 14b; 1, 10, 11, 13a, and 14a; and 2, 9, 12, 13b, and 14b, respectively. Compounds 1 and 2 were also stirred respectively in MeOH (1000 μ L) and HOAc (50 μ L) at 4 °C for 48 h, whose products were identified as 3 and 4, respectively, by HPLC analysis (HPLC conditions: phase A: H₂O; phase B: MeOH; 0–5 min, 60% MeOH/H₂O; 5–20 min, 60% MeOH/H₂O to 80% MeOH/H₂O, gradient; after 20 min, 80% MeOH/H₂O; 242 nm; 1 mL/min).

Sodium [2-¹³C]-Acetate and Sodium [1,2-¹³C₂]-Acetate Feeding Experiments. Sodium [2-¹³C]-acetate (500 mg) and sodium [1,2-¹³C₂]-acetate (500 mg) were separately fed to 16×0.15 L cultures on days 1, 4, 7, and 10, and then both 2.4 L cultures were harvested on day 13. A total of 6.5 and 8.4 mg of the labeled 2 were respectively isolated from the crude organic extracts. The ¹³C NMR data, percent relative enrichment, and $J_{\rm CC}$ coupling values in 2 are summarized in Table 3.

24-epi-Cyclocitrinol (1): colorless needles (methanol); mp 144–145 °C; $[\alpha]^{20}_D + 144.0$ (c 0.30, MeOH); UV (MeOH) λ_{max} ($\log \varepsilon$) 203 (4.38), 242 (4.22); CD (MeOH) λ_{max} ($\Delta \varepsilon$) 314.9 (-0.5), 247.1 (1.2), 216.9 (0.1), 192.9 (4.3); IR (film) ν_{max} 3421, 2943, 2866, 1649, 1459, 1366

Figure 7. Characterization of compounds using cAMP assay in GPR12-CHO cells. (A) Dose—response analysis of compounds in GPR12-CHO cells. (B) Analysis of compounds in WT-CHO cells. Statistical analysis was performed by unpaired student test. Statistical significant is indicated by *P < 0.05, **P < 0.005, N.S. refers to no significant difference. Fsk: forskolin.

cm⁻¹; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 399.2547 [M - H]⁻ (calcd for C₂₅H₃₅O₄, 399.2535).

Cyclocitrinol (2): colorless needles (methanol); mp 182–184 °C; $[α]^{20}_D$ +130.3 (c 0.30, MeOH); UV (MeOH) $λ_{max}$ (log ε) 203 (4.27), 242 (4.14); CD (MeOH) $λ_{max}$ (Δε) 317.0 (–0.6), 244.9 (1.2), 217.6 (0.1), 196.9 (3.1); IR (film) $ν_{max}$ 3405, 2943, 2866, 1650, 1456, 1370 cm⁻¹; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 399.2537 [M – H]⁻ (calcd for C₂₅H₃₅O₄, 399.2535).

20-*O*-**Methyl-24-***epi*-**cyclocitrinol** (3): colorless needles (methanol); mp 122–124 °C; $[\alpha]^{20}_D$ +157.8 (c 0.21, MeOH); UV (MeOH) λ_{max} (log ε) 203 (4.36), 241 (4.17); CD (MeOH) λ_{max} ($\Delta \varepsilon$) 315.8 (–0.5), 247.2 (1.2), 217.3 (0.1), 196.1 (2.7); IR (film) ν_{max} 3413, 2940, 2862, 1654, 1457, 1368 cm⁻¹; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 413.2675 $[M-H]^-$ (calcd for $C_{26}H_{37}O_4$, 413.2692).

20-*O*-**Methylcyclocitrinol** (**4**): colorless needles (methanol); mp 99–101 °C; $[\alpha]^{20}_D$ +174.1 (*c* 0.22, MeOH); UV (MeOH) λ_{max} (log ε) 203 (4.43), 242 (4.14); CD (MeOH) λ_{max} ($\Delta\varepsilon$) 313.7 (–0.6), 245.6 (1.4), 217.4 (0), 192.9 (3.7); IR (film) ν_{max} 3483, 3404, 2939, 2867, 1654, 1457, 1371 cm⁻¹; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 413.2693 $[M-H]^-$ (calcd for $C_{26}H_{37}O_4$, 413.2692).

24-Oxocyclocitrinol (7): colorless needles (methanol); mp 227–228 °C; $[\alpha]^{20}_{\rm D}$ +153.5 (c 0.21, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 205 (4.15), 237 (4.24); IR (film) $\nu_{\rm max}$ 3425, 3374, 2939, 2862, 1650, 1456, 1355, 1262, 1168, 1033 cm⁻¹; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 399.2530 [M + H]⁺ (calcd for $C_{25}H_{35}O_4$, 399.2535).

12R-Hydroxycyclocitrinol (8): colorless needles (methanol); mp 147–148 °C; $[α]^{20}_D$ +103.6 (*c* 0.27, MeOH); UV (MeOH) $λ_{max}$ (log ε) 205 (3.83), 238 (3.89); IR (film) $ν_{max}$ 3421, 2955, 2869, 1646, 1522, 1456, 1366, 1165, 1067, 1025 cm⁻¹; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 417.2641 [M + H]⁺ (calcd for $C_{25}H_{37}O_5$, 417.2641).

Neocyclocitrinol A (9): colorless needles (methanol); mp 205–206 °C; [α] $^{20}_{\rm D}$ +130.2 (c 0.065, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 204 (5.12), 241 (4.31); CD (MeOH) $\lambda_{\rm max}$ (Δ ε) 315.4 (-0.4), 244.5 (0.8), 219.5 (0.2), 195.1 (3.1); IR (film) $\nu_{\rm max}$ 3390, 2932, 2850, 1646, 1537, 1456, 1258, 1102, 1025 cm $^{-1}$; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 399.2544 [M – H] $^-$ (calcd for C₂₅H₃₅O₄, 399.2535).

Neocyclocitrinol B (10): colorless needles (methanol); mp 202–203 °C; [α]²⁰_D +125.9 (c 0.16, MeOH); UV (MeOH) λ_{max} (log ε) 205 (4.02), 243 (3.88); IR (film) ν_{max} 3425, 2970, 2935, 1673, 1646, 1456, 1370, 1021 cm⁻¹; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 401.2698 [M + H]⁺ (calcd for C₂₅H₃₇O₄, 401.2692).

Neocyclocitrinol C (11): colorless needles (methanol); mp 203–204 °C; $[\alpha]^{20}_D$ +94.2 (*c* 0.07, MeOH); UV (MeOH) λ_{max} (log ε) 205 (4.30), 242 (4.19); IR (film) ν_{max} 3308, 2970, 2932, 2842, 1646, 1611, 1460, 1122, 1083, 1029 cm⁻¹; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 401.2702 $[M + H]^+$ (calcd for $C_{25}H_{37}O_4$, 401.2692).

Neocyclocitrinol D (12): colorless needles (methanol); mp 173–174 °C; [α]²⁰_D +98.3 (c 0.075, MeOH); UV (MeOH) λ_{max} (log ε) 203 (4.55), 242 (4.16); CD (MeOH) λ_{max} (Δ ε) 317.5 (-0.6), 243.3 (1.1), 218.4 (0.3), 194.1 (4.0); IR (film) ν_{max} 3417, 2928, 2873, 1642, 1545, 1456, 1363 cm⁻¹; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 401.2683 [M + H]⁺ (calcd for C₂₅H₃₇O₄, 401.2692).

erythro-23-O-Methylneocyclocitrinol (13): white powder; UV (MeOH) $\lambda_{\text{max}}(\log \varepsilon)$ 204 (5.12), 242 (4.26); CD (MeOH) λ_{max} ($\Delta \varepsilon$)

315.8 (-0.5), 245.9 (0.8), 218.8 (0.3), 197.1 (3.3); IR (film) ν_{max} 3398, 2943, 2869, 1646, 1456, 1374, 1176, 1087 cm $^{-1}$; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 413.2678 [M - H] $^-$ (calcd for $C_{26}H_{37}O_4$, 413.2692).

threo-23-O-Methylneocyclocitrinol (14): white powder; UV (MeOH) λ_{max} (log ε) 203 (4.47), 241 (4.08); CD (MeOH) λ_{max} (Δ ε) 315.9 (-0.5), 247.8 (0.9), 221.3 (0.4), 198.4 (3.5); IR (film) ν_{max} 3401, 2932, 2873, 1650, 1448, 1382, 1231 cm⁻¹; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 415.2851 [M + H]⁺ (calcd for C₂₆H₃₉O₄, 415.2848).

Isocyclocitrinol B (15): colorless needles (methanol); mp 120–121 °C; [α]²⁰_D +184.1 (c 0.26, MeOH); UV (MeOH) λ_{max} (log ε) 205 (3.94), 242 (3.98); IR (film) ν_{max} 3429, 2943, 2869, 1646, 1448, 1366, 1172, 1033 cm⁻¹; ¹H NMR and ¹³C NMR data in Tables 1 and 2; HRESIMS m/z 401.2691 [M + H]⁺ (calcd for C₂₅H₃₇O₄, 401.2692).

Precyclocitrinol B (18): colorless powder; ${}^{1}H$ NMR data in Table 1; HRESIMS m/z 405.2412 [M + Na] $^{+}$ (calcd for $C_{25}H_{34}O_{3}Na$, 405.2406).

Acknowledgment. This work was financially supported by the project of Chinese National Programs for High Technology Research and Development (No. 2003AA624020) and the project of international cooperation of Australia and China (2005DFA30030-4). The fungus strain *P. citrinum* HGY1-5 was identified by Prof. L. Tian, First Institute of Oceanography, State Oceanic Administration of China. The cAMP assay was performed at the Shanghai Institute of Brain Functional Genomics, East China Normal University.

Supporting Information Available: The NMR spectra of compounds 1–18, HPLC profiles of the products of acidic hydrolysis and alcoholysis of 1–4, and CIF files of X-ray analysis of compounds 5, 6, and 9 are available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- Kozlovsky, A. G.; Zhelifonova, V. P.; Ozerskaya, S. M.; Vinokurova, N. G.; Adanin, V. M.; Grafe, U. *Pharmazie* 2000, 55, 470–471.
- (2) Amagata, T.; Amagata, A.; Tenney, K.; Valeriote, F. A.; Lobkovsky, E.; Clardy, J.; Crews, P. Org. Lett. 2003, 5, 4393–4396.
- (3) Andrey, M. R. M.; Edson, R. F.; Antônio, G. F.; Lourivaldo, S. S. J. Braz. Chem. Soc. 2005, 16, 1342–1346.
- (4) Bruce, B. J.; Shengjun, W.; Herman, L. A. J. Nat. Prod. 1996, 59, 254–261.
- (5) Joan, M.; Carsten, C.; Jens, C. F. Phytochemistry 2000, 54, 301–309.
- (6) Volkman, J. K. Appl. Microbiol. Biotechnol. 2003, 60, 495–506.
- (7) Masao, H.; Asami, K.; Yoshihisa, A.; Takafumi, Y. Tetrahedron Lett. 2000, 41, 6101–6104.
- (8) Uhlenbrock, K.; Gassenhuber, H.; Kostenis, E. Cell. Signalling 2002, 14, 941–953.
- (9) Hinckley, M.; Vaccari, S.; Horner, K.; Chen, R.; Conti, M. Dev. Biol. 2005, 287, 249–261.
- (10) Tanaka, S.; Ishii, K.; Kasai, K.; Yoon, S. O.; Saeki, Y. J. Biol. Chem. 2007, 282, 10506–10515.

NP8000442