

Aprendizagem 2024

Lab 3: Bayesian learning

Practical exercises

I.

Probability theory

	Α	В	С	D
<i>X</i> 1	1	1	0	0
Х2	1	1	1	0
Х3	0	0	0	1
<i>X</i> 4	0	0	0	1
<i>X</i> 5	0	0	0	0
<i>X</i> 6	0	0	0	0

Consider the following registry where an experiment is repeated six times and four events (A, B, C and D) are detected.

Considering frequentist estimates, compute:

p(A)

p(A, B)

p(B|A)

p(A, B, C)

 $p(A \mid B, C)$

p(A, B, C, D)

p(D|A,B,C)

- 1. Considering the following two-dimensional measurements $\{(-2,2),(-1,3),(0,1),(-2,1)\}$.
 - a) What are the maximum likelihood parameters of a multivariate Gaussian distribution for this set of points?
 - b) What is the shape of the Gaussian? Draw it approximately using a contour map.

II.

Bayesian learning

	У1	y 2	y 3	y 4	y 5	clas s
<i>X</i> 1	1	1	0	1	0	1
<i>X</i> 2	1	1	1	0	0	0
Х3	0	1	1	1	0	0
<i>X</i> 4	0	0	0	1	1	0
<i>X</i> 5	1	0	1	1	1	1
<i>X</i> 6	0	0	1	0	0	1
<i>X</i> 7	0	0	0	0	1	1

Consider the following dataset where:

- 0: False and 1: True
- y1: Fast processing
- y2: Decent Battery
- y3: Good Camera
- y4: Good Look and Feel
- y5: Easiness of Use
- class: iPhone

And the query vector $x_{new} = \begin{bmatrix} 11111 \end{bmatrix}^T$

- a) Using Bayes' rule, without making any assumptions, compute the posterior probabilities for the query vector. How is it classified?
- b) What is the problem of working without assumptions?
- c) Compute the class for the same query vector under the naive Bayes assumption.
- d) Consider the presence of missings. Under the same naive Bayes assumption, how do you classify $x_{new} = \begin{bmatrix} 1?1?1 \end{bmatrix}^T$

	weight (kg)	height (cm)	NBA player
<i>X</i> 1	170	160	0
Х2	80	220	1
Х3	90	200	1
<i>X</i> 4	60	160	0
<i>X</i> 5	50	150	0
<i>X</i> 6	70	190	1

Consider the following dataset

And the query vector $x_{new} = \begin{bmatrix} 100225 \end{bmatrix}^T$

- a) Compute the most probable class for the query vector assuming that the likelihoods are 2-dimensional Gaussians
- b) Compute the most probable class for the query vector, under the Naive Bayes assumption, using 1-dimensional Gaussians to model the likelihoods
- 5. Assuming training examples with m Boolean features.
 - a) How many parameters do you have to estimate considering features are Boolean and:
 - i. no assumptions about how the data is distributed
 - ii. naive Bayes assumption
 - b) How many parameters do you have to estimate considering features are numeric and:
 - iii. multivariate Gaussian assumption
 - iv. naive Bayes with Gaussian assumption

Programming quests

Resources: Classification and Evaluation notebooks available at the course's webpage

- 6. Reuse the **sklearn** code from last lab where we learnt a decision tree in the *breast.w* data:
 - a) apply the naïve Bayes classifier with default parameters
 - b) compare the accuracy of both classifiers using a 10-fold cross-validation