${ \begin{array}{c} {\rm NUEN~647} \\ {\rm Uncertainty~Quantification~for~Nuclear~Engineering} \\ {\rm Homework~2} \end{array} }$

Due on Wednesday, October 19, 2016

Dr. McClarren

Paul Mendoza

Paul Mendoza	NUEN 647 UQ for Nuclear Engineering (Dr. McClarren)	Homework 2
Contents		
Problem 1		3
Problem 2		4
Problem 3		6
Problem 4		7
Problem 5		8

Consider a covariance function between points in 2-D space:

$$k(x_1, y_1, x_2, y_2) = exp[-|x_1 - x_2| - |y_1 - y_2|]$$

Generate 4 realizations of a Gaussian random process with zero mean, $\mu(x,y)=0$, and this covariance function defined on the unit square, $x,y\in[0,1]$. For the realizations, evaluate the process at 50 equally space points in each direction. Plot the realizations.

Assume you have 100 samples of a pair of random variables (X_1, X_2) that have a positive correlation, call this set of pairs, $\mathbf{A_1}$. You then draw another 100 samples and call this set $\mathbf{A_2}$. The Pearson correlation between (X_1, X_2) in $\mathbf{A_1}$ is positive and hte Pearson correlation between (X_1, X_2) in $\mathbf{A_2}$ is negative. What can you say about the Pearson correlation for all 200 samples?

A normalized measure of the relation between two random variables, is the Pearson correlation coefficient, ρ . Oftentimes, this is simply called the correlation coefficient or correlation.

$$\rho(X_1, X_2) = \frac{E[X_1 X_2] - E[X_1]E[X_2]}{\sigma_{X_1} \sigma_{X_2}}$$

The expectation value for a series of realizations is defined:

$$E[g(x)] \approx \frac{1}{N} \sum_{i=1}^{N} g(x_i)$$

For the first 100 values:

$$\rho_1 = \frac{\frac{1}{100} \sum_{i=1}^{100} X_{1,i} X_{2,i} - \frac{1}{10000} \sum_{i=1}^{100} X_{1,i} \sum_{i=1}^{100} X_{2,i}}{\sigma_{X1,A1} \sigma_{X2,A1}}$$

$$100\sigma_{X1,A1} \sigma_{X2,A1} \rho_1 = \sum_{i=1}^{100} X_{1,i} X_{2,i} - \frac{1}{100} \sum_{i=1}^{100} X_{1,i} \sum_{i=1}^{100} X_{2,i}$$

$$100\sigma_{X1,A1} \sigma_{X2,A1} \rho_1 + \frac{1}{100} \sum_{i=1}^{100} X_{1,i} \sum_{i=1}^{100} X_{2,i} = \sum_{i=1}^{100} X_{1,i} X_{2,i}$$

Similarly for the second 100 values:

$$\sum_{i=101}^{200} X_{1,i} X_{2,i} = 100 \sigma_{X1,A2} \sigma_{X2,A2} \rho_2 + \frac{1}{100} \sum_{i=101}^{200} X_{1,i} \sum_{i=101}^{200} X_{2,i}$$

The Pearson coefficient for all 200 values:

$$\rho_{3} = \frac{\frac{1}{200} \sum_{i=1}^{200} X_{1,i} X_{2,i} - \frac{1}{40000} \sum_{i=1}^{200} X_{1,i} \sum_{i=1}^{200} X_{2,i}}{\sigma_{X1,A3} \sigma_{X2,A3}}$$

$$200 \sigma_{X1,A3} \sigma_{X2,A3} \rho_{3} = \sum_{i=1}^{200} X_{1,i} X_{2,i} - \frac{1}{200} \sum_{i=1}^{200} X_{1,i} \sum_{i=1}^{200} X_{2,i}$$

$$200 \sigma_{X1,A3} \sigma_{X2,A3} \rho_{3} + \frac{1}{200} \sum_{i=1}^{200} X_{1,i} \sum_{i=1}^{200} X_{2,i} = \sum_{i=1}^{200} X_{1,i} X_{2,i}$$

If we plug in the Pearson for the first 100 and second 100 for the right side of the equation,

$$200\sigma_{X1,A3}\sigma_{X2,A3}\rho_3 + \frac{1}{200} \sum_{i=1}^{200} X_{1,i} \sum_{i=1}^{200} X_{2,i}$$
=

$$100(\sigma_{X1A1}\sigma_{X2A1}\rho_1 + \sigma_{X1A2}\sigma_{X2A2}\rho_2) + \frac{1}{100} \left(\sum_{i=1}^{100} x_{1,i} \sum_{i=1}^{100} x_{2,i} + \sum_{i=101}^{200} x_{1,i} \sum_{i=101}^{200} x_{2,i} \right)$$

Grouping and setting:

$$\sum_{i=1}^{100} x_{1,i} = X_{1,1}$$

$$\sum_{i=1}^{100} x_{2,i} = X_{2,1}$$

$$\sum_{i=101}^{200} x_{1,i} = X_{1,2}$$

$$\sum_{i=101}^{200} x_{2,i} = X_{2,2}$$

$$\sum_{i=1}^{200} x_{1,i} = X_{1,3}$$

$$\sum_{i=1}^{200} x_{2,i} = X_{2,3}$$

$$200\sigma_{X1,A3}\sigma_{X2,A3}\rho_3 - 100(\sigma_{X1A1}\sigma_{X2A1}\rho_1 + \sigma_{X1A2}\sigma_{X2A2}\rho_2) = \frac{1}{100}(X_{1,1}X_{2,1} + X_{1,2}X_{2,2}) - \frac{1}{200}X_{1,3}X_{2,3}$$

Setting:

$$\sigma_{X1A1} = \frac{1}{100} \sum_{i=1}^{100} (x_{1,i}^2 - \mu_{X_{11}}^2) = \frac{1}{100} \sigma'_{X1A1}$$

$$\sigma_{X2A1} = \frac{1}{100} \sum_{i=1}^{100} (x_{2,i}^2 - \mu_{X_{21}}^2) = \frac{1}{100} \sigma'_{X2A1}$$

$$\sigma_{X1A2} = \frac{1}{100} \sum_{i=101}^{200} (x_{1,i}^2 - \mu_{X_{12}}^2) = \frac{1}{100} \sigma'_{X1A2}$$

$$\sigma_{X2A2} = \frac{1}{100} \sum_{i=101}^{200} (x_{2,i}^2 - \mu_{X_{22}}^2) = \frac{1}{100} \sigma'_{X2A2}$$

$$\sigma_{X1A3} = \frac{1}{200} \sum_{i=1}^{200} (x_{1,i}^2 - \mu_{X_{13}}^2) = \frac{1}{200} \sigma'_{X1A3}$$

$$\sigma_{X2A3} = \frac{1}{200} \sum_{i=1}^{200} (x_{2,i}^2 - \mu_{X_{22}}^2) = \frac{1}{200} \sigma'_{X2A3}$$

Where A3 and ρ_3 are for the series added to 200. Plugging these in, and multiplying both sides of the equation by 200.

$$\sigma'_{X1,A3}\sigma'_{X2,A3}\rho_3 - 2(\sigma'_{X1A1}\sigma'_{X2A1}\rho_1 + \sigma'_{X1A2}\sigma'_{X2A2}\rho_2) = 2(X_{1,1}X_{2,1} + X_{1,2}X_{2,2}) - X_{1,3}X_{2,3}$$

Note: $X_{1,3} = X_{1,1} + X_{2,1}$ and $X_{2,3} = X_{2,1} + X_{2,2}$ and that the right side of the equation simplifies to: $(X_{1,1} - X_{1,2})(X_{2,1} - X_{2,2})$. Then ρ_3 is:

$$\rho_3 = \frac{(X_{1,1} - X_{1,2})(X_{2,1} - X_{2,2}) + 2(\sigma'_{X1A1}\sigma'_{X2A1}\rho_1 + \sigma'_{X1A2}\sigma'_{X2A2}\rho_2)}{\sigma'_{X1,A3}\sigma'_{X2,A3}}$$

Problem3

Page 6 of 8

Problem 4

Page 7 of 8

Problem 5

Page 8 of 8