Due Sunday 03/13/20 (10:00pm); Beware of daylight saving adjustments

- 1. Determine the \mathcal{H}_{∞} and \mathcal{H}_2 norms of the following systems:
 - (a) $H(s) = \frac{1}{s+a}$, with a > 0. How do these norms compare to each other for different values of a? What happens for a = 0?

2. Consider the system parameterized by k and R

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -(1+k^2)/R & 0 \\ k & -(2+k^2)/R \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

$$y = x_2.$$

- (a) For what values of k and R is this system stable?
- (b) Derive the formula for the \mathcal{H}_2 norm of this system as a function of k and R. Using this formula, plot the \mathcal{H}_2 norm as a function of k for R = 1 and R = 1000, and as a function of R for k = 2.
- (c) Find the solution of the unforced system (i.e., determine operator G(t) that maps the initial conditions to the output y(t), $y(t) = G(t)x_0$).
- (d) Plot the maximal singular value of G(t) as a function of time (on the time interval $t \in (0, 1000)$) for two different cases: (i) R = 1000, k = 0; (ii) R = 1000, k = 2. How do these two cases compare to each other? Explain the obtained results.
- 3. (a) Prove that $\underline{\sigma} = \min_{x \neq 0} \frac{||Ax||_2}{||x||_2}$.
 - (b) Prove that $\bar{\sigma}(A^{-1}) = \frac{1}{\sigma(A)}$.
 - (c) Give and example of a 2×2 matrix $A(\epsilon)$ that has stable eigenvalues that are constant and independent of ϵ , but $\bar{\sigma}(A(\epsilon)) \to \infty$ with $\epsilon \to \infty$.
 - (d) Construct matrices $A(\epsilon)$, B, C, D (note that B, C, and D are constant matrices) such that if $G(s) = \begin{bmatrix} A(\epsilon) & B \\ \hline C & D \end{bmatrix}$ then $\|G(s)\|_{\mathcal{H}_{\infty}} \to \infty$ with $\epsilon \to \infty$, but the poles of G are independent of ϵ . Interpret this result.
- 4. Prove that if G_1 and G_2 have state-space realizations $\begin{bmatrix} A_1 & B_1 \\ \hline C_1 & D_1 \end{bmatrix}$ and $\begin{bmatrix} A_2 & B_2 \\ \hline C_2 & D_2 \end{bmatrix}$, respectively, then their serial and parallel interconnection yield

$$G_1 G_2 = \begin{bmatrix} A_1 & B_1 C_2 & B_1 D_2 \\ 0 & A_2 & B_2 \\ \hline C_1 & D_1 C_2 & D_1 D_2 \end{bmatrix} = \begin{bmatrix} A_2 & 0 & B_2 \\ B_1 C_2 & A_1 & B_1 D_2 \\ \hline D_1 C_2 & C_1 & D_1 D_2 \end{bmatrix}$$

and

$$G_1 + G_2 = \begin{bmatrix} A_1 & 0 & B_1 \\ 0 & A_2 & B_2 \\ \hline C_1 & C_2 & D_1 + D_2 \end{bmatrix}$$

respectively. Suppose $G(s) = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$ is square and D is invertible then

$$G^{-1} = \left[\begin{array}{c|c} A - BD^{-1}C & BD^{-1} \\ \hline -D^{-1}C & D^{-1} \end{array} \right].$$

- 5. Write $T = GK(I + GK)^{-1}$ as an LFT of K, i.e., find P such that $T = F_{\ell}(P, K)$.
- 6. Write K as an LFT of $T = GK(I + GK)^{-1}$, i.e., find J such that $K = F_{\ell}(J, T)$.
- 7. For the state-space description represented by (A, B, C, D), find H such that

$$F_{\ell}(H, 1/s) = C(sI - A)^{-1}B + D.$$