Ultrasound-inertial sensor fusion algorithm implementation

Ruslan Agishev, Marsel Faizullin, Iakov Vasilev, Grigoriy Yashin

Background

Accurate indoor localization is a challenging problem. It is worth noting that the use of one type of sensors does not allow performing either precise positioning or robust object tracking.

An example of holding position (XY) by quadrotor: error ± 0.3 m

Sensors for solution

Combination of sensors:

 MarvelMind ultrasonic positioning system Accuracy: ± 2 cm Update rate: about 8 Hz

3. **Verification** by Vicon motion capture system Accuracy: 63+-5 microm

Update rate: 100 Hz

2. IMU sensor UM6-LT Accuracy: 0.3 m/s^2, 2° roll/pitch, 5° yaw Update rate: 20 Hz

Problem

Sensors properties:

- 1. Low frequency of update rate of ultrasonic positioning system: [x,y,z]-position
- 2. Low accuracy IMU sensors: [ax, ay, az] acceleration

Goal: robust object tracking

Approach: double step KF fusion algorithm

- Use data from IMU on prediction step
- 2. Use data from Ultrasonic system on correction step

Description of experiment

Type of tracked objects

1. Moving a cube with sensors to test the hypothesis

2. Wheel platform Pololu 3pi Robot

3. Quadrotor DJI F450

Experimental raw data

2D trajectory of cube

3D trajectory of cube

2D trajectory of Pololu Pi3

Motion model

Predict: IMU

$$\bar{x}_k = F x_{k-1} + B u_k$$

$$x_{k} = \begin{bmatrix} x \\ y \\ v_{x} \\ v_{y} \end{bmatrix} \quad F = \begin{bmatrix} 1 & 0 & dt & 0 \\ 0 & 1 & 0 & dt \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} \frac{\Delta t^{2}}{2} & 0 \\ 0 & \frac{\Delta t^{2}}{2} \\ \Delta t & 0 \\ 0 & \Delta t \end{bmatrix} \quad u_{k} = \begin{bmatrix} a_{x} \\ a_{y} \end{bmatrix}$$

$$\bar{P}_k = B P_{k-1} B^\top + Q$$

$$Q = B \begin{bmatrix} \sigma_a^2 & 0 \\ 0 & \sigma_a^2 \end{bmatrix} B^{ op} = egin{bmatrix} \sigma_p^2 & 0 & \sigma_p \sigma_v & 0 \\ 0 & \sigma_p^2 & 0 & \sigma_p \sigma_v \\ \sigma_p \sigma_v & 0 & \sigma_v^2 & 0 \\ 0 & \sigma_p \sigma_v & 0 & \sigma_v^2 \end{bmatrix} \qquad \sigma_p = \sigma_a rac{\Delta t^2}{2} \ \sigma_v = \sigma_a \Delta t$$

Update: US

III.
$$K_k = \bar{P}_k H^{\top} (H \bar{P}_k H^{\top} + R)$$

$$H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad R = \sigma_h^2 I_{2 \times 2}$$

IV.
$$x_k = \bar{x}_k + K_k (z_k - H\bar{x}_k)$$

V.
$$P_k = (I_{4\times 4} - K_k H) \bar{P}_k$$

Without bandpass filter

Using bandpass filter

Filter params:

- 1-st order
- Butterworth
- 0.02 0.4 Hz

Cartesian coordinates measurements filtered x, [m]

Drone simulated trajectory

Sharp moving direction change

Residual's pick at the moment of turn

time

Better filtration results for sharp turns

Conclusions

1. Fusion algorithm was implemented using sensors of different properties and

tasks

2. Data fusion was utilized for object localization

Thank you for attention

no filt filt