WithFlextable

Jianying

2025-06-19

```
ft <- flextable(head(airquality))
ft <- autofit(ft)
theme_vader(ft)</pre>
```

Ozone	Solar.R	Wind	Temp	Month	Day
41	190	7.4	67	5	1
36	118	8.0	72	5	2
12	149	12.6	74	5	3
18	313	11.5	62	5	4
		14.3	56	5	5
28		14.9	66	5	6

library(dplyr)

```
##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

```
df <- read.table(header=TRUE, text='
  id age
    1      20
    2      27
    3      24
    4      26
    5      20
')
stats <- df %>% summarise(N = n(), mean = mean(age),
```

```
std=round(sd(age),2),max = max(age),min = min(age))

ft <- flextable(stats)
ft <- autofit(ft)
theme_vader(ft)</pre>
```

N	mean	std	max	min
5	23.4	3.29	27	20

```
library(haven)
adsl <- read_xpt("https://github.com/phuse-org/TestDataFactory/raw/main/Updated/TDF_ADaM/adsl.xpt")</pre>
library(Tplyr)
options(
  # Categorical variable defaults
  tplyr.count_layer_default_formats =
   list(n_counts = f_str("xxx [xx.xx%]", n, pct)),
  # Continuous variable defaults
  tplyr.desc_layer_default_formats =
   list('N'
               = f_str('xx', n),
         'Mean [SD]' = f_str('xx.xx [xx.xxx]', mean, sd),
         'Median' = f_str('xx.x', median),
         'Min, Max' = f_str('xx, xx', min, max))
)
library(dplyr)
# Initiate Tplyr, specify treatment variable, optional where condition
my_table <- tplyr_table(adsl, TRT01P, where = SAFFL == "Y") %>%
  # Add a total group column
  add_total_group() %>%
  # Add individual variables here
  add_layer(group_desc(AGE, b = "Age (years)")) %>%
  add_layer(group_count(AGEGR1, b = "Age Group 1 (years)")) %>%
  add_layer(group_count(SEX, b = "Gender")) %>%
  add_layer(group_count(ETHNIC, b = "Ethnicity")) %>%
  add_layer(group_desc(BMIBL, b = "Baseline Body Mass Index (kg/m2)")) %>%
  # Build
  build()
head(my_table, n = 9)
## # A tibble: 9 x 9
```

`var1_Xanomeline High Dose`

row_label2 var1_Placebo

row_label1

```
## <chr>
                         <chr>
                                    <chr>
                                                     <chr>>
                                    "86"
                                                     "84"
## 1 Age (years)
                         N
                         Mean [SD]
                                    "75.21 [ 8.590]" "74.38 [ 7.886]"
## 2 Age (years)
## 3 Age (years)
                         Median
                                    "76.0"
                                                     "76.0"
                                    "52, 89"
                                                     "56, 88"
## 4 Age (years)
                         Min, Max
## 5 Age Group 1 (years) <65
                                    " 14 [16.28%]" " 11 [13.10%]"
                                    " 30 [34.88%]" " 18 [21.43%]"
## 6 Age Group 1 (years) >80
                                    " 42 [48.84%]"
                                                   " 55 [65.48%]"
## 7 Age Group 1 (years) 65-80
## 8 Gender
                         F
                                    " 53 [61.63%]"
                                                     " 40 [47.62%]"
## 9 Gender
                         М
                                    " 33 [38.37%]"
                                                   " 44 [52.38%]"
## # i 5 more variables: `var1_Xanomeline Low Dose` <chr>, var1_Total <chr>,
## # ord_layer_index <int>, ord_layer_1 <int>, ord_layer_2 <dbl>
my_table <- my_table %>%
  # remove repeating labels
  apply_row_masks(., row_breaks = TRUE) %>%
  # specify order of relevant variables
  select(row_label1,
         row_label2,
         `var1_Xanomeline High Dose`,
         `var1_Xanomeline Low Dose`,
         var1_Placebo,
         var1_Total)
library(flextable)
# a basic flextable
my_flextable <- my_table %>%
  # start flextable
 flextable() %>%
  autofit()
my_flextable
```

row_label1	row_label2	var1_Xanomeline High Dose	vai
Age (years)	N	84	84
	Mean [SD]	74.38 [7.886]	75.
	Median	76.0	77.
	Min, Max	56, 88	51
Age Group 1 (years)	<65	11 [13.10%]	8
	>80	18 [21.43%]	29
	65-80	55 [65.48%]	47
Gender	F	40 [47.62%]	50

row_label1	row_label2	var1_Xanomeline High Dose	vai	
	М	44 [52.38%]	34	
Ethnicity	HISPANIC OR LATINO	3 [3.57%]	6	
	NOT HISPANIC OR LATINO	81 [96.43%]	78	
Baseline Body Mass Index (kg/m2)	N	84	84	
	Mean [SD]	25.35 [4.158]	25.	
	Median	24.8	24.	
	Min, Max	14, 34	18,	

var1 Xanomeline High Dose

row label2

row label1

```
# a nicer flextable
my_flextable <- my_table %>%
  # start flextable
  flextable() %>%
  autofit() %>%
  # add some padding between rows
  padding(padding = 0.5) %>%
  # adjust width of first two columns
  width(j = 1:2, width = 0.5) \%
  # align treatment columns to center
  align(part = "all", align = "center", j = 3:6) %>%
  # column header labels
  set_header_labels(., values = list(
   row_label1 = 'Variable',
   row_label2 = ' ',
    `var1_Xanomeline High Dose` = 'Xanomeline \nHigh Dose',
    `var1_Xanomeline Low Dose` = 'Xanomeline \nLow Dose',
   var1_Placebo = 'Placebo',
    var1_Total = 'Total')) %>%
  # header + footers
  add_header_lines(values = "Table: Demographics (Safety Analysis Set)") %>%
  add_footer_lines(values = "This was produced in R!") %>%
  # font size, font name
 fontsize(part = "all", size = 8)
# font()
# font(part = "all", fontname = "Times")
# This errors, perhaps version issue. -- SZ
ft <- my_flextable
```

```
#ft <- autofit(ft)
#ft

set_table_properties(ft, width = .5, layout = "autofit")</pre>
```

Table: Demographics (Safety Analy	vsis Set)				
Variable		Xanomeline High Dose	Xanomeline Low Dose	Placebo	Total
Age (years)	N	84	84	86	254
	Mean [SD]	74.38 [7.886]	75.67 [8.286]	75.21 [8.590]	75.09 [8.246
	Median	76.0	77.5	76.0	77.0
	Min, Max	56, 88	51, 88	52, 89	51, 89
Age Group 1 (years)	<65	11 [13.10%]	8 [9.52%]	14 [16.28%]	33 [12.99%]
	>80	18 [21.43%]	29 [34.52%]	30 [34.88%]	77 [30.31%]
	65-80	55 [65.48%]	47 [55.95%]	42 [48.84%]	144 [56.69%]
Gender	F	40 [47.62%]	50 [59.52%]	53 [61.63%]	143 [56.30%]
	M	44 [52.38%]	34 [40.48%]	33 [38.37%]	111 [43.70%]
Ethnicity	HISPANIC OR LATINO	3 [3.57%]	6 [7.14%]	3 [3.49%]	12 [4.72%]
	NOT HISPANIC OR LATINO	81 [96.43%]	78 [92.86%]	83 [96.51%]	242 [95.28%]
Baseline Body Mass Index (kg/m2)	N	84	84	86	254
	Mean [SD]	25.35 [4.158]	25.06 [4.271]	23.64 [3.672]	24.67 [4.092
	Median	24.8	24.3	23.4	24.2
	Min, Max	14, 34	18, 40	15, 33	14, 40

This was produced in R!