METHOD FOR MEASURING THICKNESS OF THIN METAL FILM

Patent Number:

JP61066104

Publication date:

1986-04-04

Inventor(s):

FUKUSHIMA SHIRO

Applicant(s):

ANELVA CORP

Requested Patent:

☑ <u>JP61066104</u>

Application Number: JP19840187750 19840907

Priority Number(s):

IPC Classification:

G01B7/10

EC Classification:

Equivalents:

JP1797718C, JP5006641B

Abstract

PURPOSE:To measure the thickness of very thin films highly accurately, by providing two current coils inducing eddy currents so as to face the upper and lower surfaces of the thin metal films. CONSTITUTION: The oscillating coil of a Copitts-type oscillator is divided into two parts L1 and L2, which are both eddy-current inducing coils. Thin films to be measured are provided between the coil L1 and the coil L2, and the measurement is carried out. Namely, three thin films to be measured 31, whose thicknesses t=t1, t2 and t3 are accurately measured, are prepared. A distance lbetween the two coils L1 and L2 is fixed at a constant value. The thin film 31 and an insulating substrate 30 are held between the measuring coils. A distance (d) between the coil L1 and the surface of the thin films 31 are variously changed, and the oscillating amplitude of the oscillator is measured. The value of (d) is made to be the value in the vicinity of 1/2. Thus the measurement with few errors can be carried out.

Data supplied from the esp@cenet database - 12

⑩日本国特許庁(JP)

①特許出願公開

[®] 公開特許公報(A) 昭61-66104

@Int_Cl_4

識別記号

庁内整理番号

❸公開 昭和61年(1986)4月4日

G 01 B 7/10

7355-2F

審査請求 有 発明の数 1 (全4頁)

❷発明の名称

金属薄膜膜厚測定方法

②特 願 昭59-187750

②出 願 昭59(1984)9月7日

切発 明 者 福 島

志郎

東京都府中市四谷5-8-1 日電アネルバ株式会社内

⑪出 願 人 日電アネルバ株式会社

東京都府中市四谷5-8-1

砂代 理 人 弁理士 村上 健次

月 組 有

1. 発明の名称

金属薄膜膜厚侧定方法

2. 特許請求の範囲

被制定金貨簿股に鍋電流を流し、該鍋電流によって生ずるエネルギー損失の大小を該金属等膜の列定方法において、該鍋電流を誘導する二個の電流コイルを、該金属等膜の表,裏に、対向設置したことを特徴とする金属等膜の表別に方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は半導体デバイス,ブリント配線板等の製造工程その他で利用される金属準膜の腹厚を測定する方法に関するものである。

(従来技術とその問題点)

金嶌輝線の膜厚を測定する方法の一つとして、 高周波を印加したコイルを当該被測定薄膜に近接 させて得膜中に過電流を発生させ、この薄膜に生 する過電流損が当該薄膜の膜厚に比例しかつこれ が前記コイルのQを低下させることを利用してその膜厚を御定する方法がある。

との方法を利用する従来の側定法は、次のよう なものとなっている。

この従来の副定法には次の欠点がある。即ち、 コイルLから被測定膜 3 1 の表面までの距離 d が、 d,からd。,d,に変るときは「発掘振幅対機厚の曲線」が第6図のように、曲線 Di(d = di)から Di(d = di),Di(d = di)の如く変化するので、 御定に当っては距離 d を正確に diに合致させなければ測定誤差が大きくなるということである。

(発明の目的)

本発明は従来法のこの欠点を克服し、従来法で 脚定不可能な極めて群い膜をも、小さい脚定誤差 で測定することのできる新規の薄膜御定法の提供 を目的とする。

- 3 -

t をパラメータとして描いたのが、第3凶の Tı(t=tı), T₂(t=t₂), T₃(t=t₃) 曲線である。

第3図には、前記した第4,5図の従来の測定法で、同じ試料を測定して得た曲線 $T_i'(t=t_1)$, $T_i'(t=t_2)$, $T_i'(t=t_2)$, $t_1'(t=t_2)$, $t_2'(t=t_3)$, $t_3'(t=t_3)$, $t_4'(t=t_3)$, $t_5'(t=t_3)$, $t_5'(t=t_$

1 例をあげると、絶縁皮膜剣線を直径 2 mmのコアに 6 5 ターン巻いて 8 0 μ Hのコイルにしたもの 2 個を L_1 , L_2 として使用し、 2 0 0 KH_2 の関波数を使って、 1 μ m の 尊膜の 膜厚を 0.0 1 μ m の 誤差で測定せんとする場合、 距離 d に許される誤差は \pm 5 0 μ m であった。

前記した従来の測定法を用いる 1 6 0 μH のコイ ルで、 d の許容誤差が± 5 μm であったのと較べる と格段の向上と言うととができる。

なお、実験によれば、 Li と Li は その結線を逆向 きにしても、ほゞ同 の好成績で膜厚測定を行な

(発明の構成)

本発明は、被測定金具薄膜を挟んでその表裏に、 との薄膜に渦電流を誘導するコイル 2 個を対向設 置し、この渦電流によって生ずるエネルギー損失 の量を用いて前記薄膜の膜厚を測定することで、 前記目的を達成したものである。

(寒施例)

第1図は本発明の実施例の発振器であって、第 4図のコルピッツ型発振器発振コイルLを2分割 して Li とLi にし、 これらをともに過電流誘導コイルとし、コイル Li とコイル Li の間に被測定薄膜を置いて測定を行なりものである。

第2図にその測定状況を示す。

この第1,2図で、腹厚 t = t1,t2,t3 を正確に測定された3個の被測定審膜31を用意し、二つのコイル L1,L2間の距離 e を一定に固定した測定コイルの間に、第2図のように薄膜31の表面の間の距離 d を挟み、コイル L1 と薄膜31の表面の間の距離 d を様々に変更して第1図の発振器の発振々幅を実測して、「発振々幅対距離 d の曲線」を

- 4 -

りととが可能であった。

また、この測定装置を用いるような被測定膜 3 1 の表面の凹凸、絶縁基板 3 0 の弯曲等はコイ ルの大きさの範囲内では、一般に、ほど 1 0 μm以 下であり、上記の測定法は充分な実用性をもつこ とがわかった。

第7図に別の実施例の測定結果を示す。

シリコン単結晶基板厚さ500 μmの上に蒸着されたアルミニウム薄膜~2 μmを被測定物とし、68 μHのコイル2個を Li, Lsとしてこれらを距離 e = 3.5 mm で対向固定し、その中央に被測定基板の挿入場所を固散して繰返し測定を行い、「発振器出力対膜準曲線」Bを得た。測定を繰返しても、その結果は常に曲線 B の太さの範囲内にあった。

同様の測定を、従来の方法で L = 150 μHのコイルを用いるとき、曲線帯 B がえられた。 測定を繰返すとき、 測定結果はこの曲線帯 B の中を浮動し、 誤差の大きいことがわかる。

本発明の方法は金属釋膜に生ずる過電流のエネルギー損失を測定するのであるから、測定は発根

器によらずとも、第8図のように共振回路を使っ ても可能である。

第8図では、水晶発振器XOSCの出力が増幅器AMPiを経て一定値となり、コイル Li+Liとコンデンサ Cの共振回路に印加され、共振回路の端子電圧が、バッファ AMPiを経て計器 Mで脱まれるようになっている。被測定基板 3 0 , 薄膜 3 1 は前記同様に、図のように、コイル LiとLiの間に挿入測定される。

また、これまでは電圧の変化を利用して過電低のエネルギー損失を測定するものを示したが、位相の変化を利用しても測定は可能であり、このほかにも本発明の方法は、多くの実施憩様をもつ。

なお、被測定金属存膜31の離かれる基板30の材質は必ずしも絶縁体であることを要しない。 存膜31と基板30の電気伝導度に差異がありさ えすれば、原理上、 存膜の膜厚測定は本発明の方 法で可能である。 もっとも、 電気伝導度に大差の あるときほど、測定の精度は高いものとなって有利である。 (発明の効果)

本発明は上記の通りであって、 極めて薄い金属 膜の膜厚を高い精度で測定することが可能であり、 装置は安価に構成できる。

4. 図面の簡単を説明

第1 図は、本発明の実施例の測定用発振器の回 路図。

第2図は、その測定状況を示す図。

第3凶は、その測定結果のグラフ。

第4図は、従来の御定用発振器の回路図。

第5 図は、その測定状況を示す図。

第6図は、その測定結果のグラフ。

第7凶は、本発明の別の実施例の側定結果を、 従来の方法の側定結果と比較するグラフ。

第8凶は、本発明の別の実施例の測定用回路図。

L. L., L. … - 例定用コイル

30 ……基板、 31 ……被劍定金萬海膜

代理人 弁理士村上健庆

- 7 -

- 8 -

