Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

Teste 1 de Análise Matemática I - Engenharia Informática

20 de janeiro de 2021 Duração: 1h15m

- A avaliação do portfólio de actividades do CeaMatE substitui a resposta ao grupo 1.

- Não é permitido utilizar máquina de calcular ou telemóvel durante a prova.

$[2.0 \, val.]$

- 1. (a) Considere a função $f(x) = 1 + 2e^{3x}$.
 - i) Caracterize a função inversa de f, indicando o domínio, o contradomínio e a expressão
 - ii) Calcule os valores de f(0) e $f^{-1}(3)$. Comente os resultados.
 - (b) i) Calcule o valor numérico da expressão $\arcsin\left(-\sin\left(\frac{17\pi}{6}\right)\right)$.
 - $2\sin(2x) = -1$ ii) Resolva a equação

- $[1.0 \, val.]$ 2. A equação $e^x + x^2 2 = 0$ tem duas soluções, uma das quais pertence ao intervalo [0,1].
 - (a) Recorrendo ao método gráfico, justifique a afirmação anterior.
 - (b) Partindo do intervalo indicado, efectue 2 iterações do método de Newton para estimar a solução positiva da equação dada. Indique um majorante para o erro dessa estimativa e utilize 2 casas decimais em todos os cálculos que realizar.

Nota:
$$\frac{1.72}{4.72} \simeq 0.36$$
, $\frac{0.18}{3.10} \simeq 0.06$, $\frac{0.23}{3.10} \simeq 0.07$

[1.0 val.] 3. Considere a primitiva $\int \sec(x) \tan(x) dx$.

Recorrendo às regras de primitivação imediata, apresente 2 resoluções da primitiva anterior.

[2.0 val.] 4. (a) Recorrendo à definição de primitiva, mostre que

$$\int \arctan\left(x\right) dx \, = \, x \arctan\left(x\right) - \frac{1}{2}\, \ln\left|1 + x^2\right| + c \,, \quad c \in \mathbb{R} \,.$$

- (b) Recorrendo à alínea anterior, determine o valor do integral definido $\int_{0}^{1} \arctan(x) dx$.
- (c) O cálculo do integral anterior recorrendo à regra dos trapézios e a 2 sub-intervalos garante uma estimativa com 1 casa decimal correcta. Determine essa estimativa.

 $[5.0 \, val.]$ 5. Considere a região \mathcal{A} , sombreada, da figura seguinte.

- (a) Usando integrais, indique expressões simplificadas que permitam calcular a área de \mathcal{A}
 - i) em função da variável x;
- ii) em função da variável y.
- (b) Usando integrais, indique expressões simplificadas que permitam calcular o volume da região que se obtém pela rotação da região A em torno do eixo
 - i) Ox;

ii) Oy.

1. (a) i. Começamos por notar que a função f é injectiva e portanto é invertível. Para caracterizar a função inversa é necessário definir o domínio, o contradomínio e a expressão analítica, ou seja, é necessário completar o seguinte diagrama:

$$D_f = CD_{f^{-1}} = ? \xrightarrow{f} CD_f = D_{f^{-1}} = ?$$

 $? = x = f^{-1}(y) \longleftrightarrow f(x) = 1 + 2e^{3x}$

O contradomínio da função inversa coincide com o domínio da função original pelo que, tendo em conta o domínio do exponencial, tem-se

$$CD_{f^{-1}} = D_f = \mathbb{R}$$

A função inversa tem expressão analítica dada por

$$y = 1 + 2e^{3x} \Leftrightarrow y - 1 = 2e^{3x}$$

$$\Leftrightarrow \frac{y - 1}{2} = e^{3x}$$

$$\Leftrightarrow \ln\left(\frac{y - 1}{2}\right) = 3x$$

$$\Leftrightarrow \frac{1}{3}\ln\left(\frac{y - 1}{2}\right) = x.$$

e, consequentemente, tem domínio

$$D_{f^{-1}} = \{ y \in \mathbb{R} : \frac{y-1}{2} > 0 \} = \{ y \in \mathbb{R} : y > 1 \} =]1, +\infty[.$$

Tem-se então

$$D_{f} = CD_{f^{-1}} = \mathbb{R} \xrightarrow{f} CD_{f} = D_{f^{-1}} =]1, +\infty[$$

$$\frac{1}{3} \ln\left(\frac{y-1}{2}\right) = x = f^{-1}(y) \xrightarrow{f^{-1}} f(x) = 1 + 2e^{3x}$$

ii. Tendo em conta a expressão da função f(x), tem-se

$$f(0) = 1 + 2e^0 = 1 + 2 = 3$$

e portanto, por definição de função inversa, tem-se

$$f(0) = 3 \Leftrightarrow 0 = f^{-1}(3)$$
.

(b) i. Tendo em conta a periodicidade da função seno e respectiva restrição principal, tem-se

$$\arcsin\left(-\sin\left(\frac{17\pi}{6}\right)\right) = \arcsin\left(-\sin\left(2\pi + \frac{5\pi}{6}\right)\right)$$

$$= \arcsin\left(-\sin\left(\frac{5\pi}{6}\right)\right)$$

$$= \arcsin\left(-\sin\left(\pi - \frac{\pi}{6}\right)\right)$$

$$= \arcsin\left(-\sin\left(\frac{\pi}{6}\right)\right)$$

$$= \arcsin\left(-\sin\left(\frac{\pi}{6}\right)\right)$$

$$= \arcsin\left(-\frac{1}{2}\right)$$

$$= -\frac{\pi}{6}$$

.

ii. Recorrendo ao círculo trigonométrico e aos ângulos de referência, tem-se

$$2\sin(2x) = -1 \Leftrightarrow \sin(2x) = -\frac{1}{2}$$
$$\Leftrightarrow \sin(2x) = -\sin\left(\frac{\pi}{6}\right)$$

$$\Leftrightarrow 2x = -\frac{\pi}{6} + k \, 2\pi \, \vee \, 2x = \pi + \frac{\pi}{6} + k \, 2\pi \,, \quad k \in \mathbb{Z}$$

$$\Leftrightarrow x = -\frac{\pi}{12} + k \, \pi \, \vee \, x = \frac{7\pi}{12} + k \, \pi \,, \quad k \in \mathbb{Z} \,.$$

2. (a) Tendo em conta que

$$e^x + x^2 - 2 = 0 \Leftrightarrow e^x = -x^2 + 2$$

as soluções da equação correspondem às abcissas dos pontos de intersecção dos gráficos das funções $f_1(x)=e^x$ e $f_2(x)=-x^2+2$.

Então, a equação tem 2 soluções, umas das quais pertence ao intervalo [0, 1].

(b) Consideremos a função $f(x) = e^x + x^2 - 2$.

Então, $f'(x) = e^x + 2x$ e, uma vez que $f''(x) = e^x + 2$ é positiva no intervalo [0,1], consideraremos $x_0 = 1$ (pois f(1) tem o mesmo sinal de f''(x)). Assim,

n	x_n	erro
0	1	_
1	$1 - \frac{f(1)}{f'(1)} = 1 - \frac{e^1 + 1 - 2}{e^1 + 2} \simeq 1 - \frac{1.72}{2.72 + 2} \simeq 0.64$	0.36
2	$0.64 - \frac{f(0.64)}{f'(0.64)} = 0.64 - \frac{e^{0.64} + 0.64^2 - 2}{e^{0.64} + 1.28} \simeq 0.64 - \frac{1.82 + 0.36 - 2}{1.82 + 1.28} \simeq 0.64 - \frac{0.18}{3.1} \simeq 0.58$	0.06

Então, $\overline{x} = 0.58$ é uma aproximação para a solução, com erro máximo 0.06.

3. Recorrendo directamente à regra 10 das primitivas imediatas, tem-se

$$\int \underbrace{\sec(x) \tan(x)}_{R10} dx = \sec(x) + c, \quad c \in \mathbb{R}.$$

Também podemos reescrever recorrendo a senos e cossenos e usar a regra 2 das primitivas imediatas:

$$\int \sec(x) \tan(x) dx = \int \frac{1}{\cos(x)} \frac{\sin(x)}{\cos(x)} dx = \int \frac{\sin(x)}{\cos^2(x)} dx$$
$$= -\int \underbrace{-\sin(x) \cos^{-2}(x)}_{R^2} dx = -\frac{\cos^{-1}(x)}{-1} + c = \sec(x) + c, \quad c \in \mathbb{R}.$$

4. (a) Basta verifica que a derivada de
$$x \arctan(x) - \frac{1}{2} \ln|1 + x^2| + c$$
 é $\arctan(x)$:

$$\underbrace{\left(x \arctan(x) - \frac{1}{2} \ln|1 + x^{2}| + c\right)'}_{R4+R3}$$

$$= \underbrace{\left(x \arctan(x)\right)' - \frac{1}{2}}_{R5} \underbrace{\left(\ln|1 + x^{2}|\right)' + \underbrace{\left(c\right)'}_{R1}}_{R11}$$

$$= \underbrace{\left(x\right)'}_{R2} \arctan(x) + x \underbrace{\left(\arctan(x)\right)' - \frac{1}{2}}_{R21+R2} \underbrace{\frac{\left(1 + x^{2}\right)'}{1 + x^{2}}}_{1 + x^{2}} + 0$$

$$= \arctan(x) + x \frac{1}{1 + x^{2}} - \frac{1}{2} \frac{2x}{1 + x^{2}}$$

$$= \arctan(x) \checkmark$$

(b) Tendo em conta o resultado da alínea anterior, tem-se

$$\int_0^1 \arctan(x) \, dx = \left[x \arctan(x) - \frac{1}{2} \ln|1 + x^2| \right]_0^1$$

$$= \arctan(1) - \frac{1}{2} \ln(2) - \left(0 - \frac{1}{2} \ln(1) \right)$$

$$= \frac{\pi}{4} - \frac{1}{2} \ln(2).$$

(c) Considerando a regra dos trapézios e uma partição uniforme do intervalo [0,1] em 2 sub-intervalos, tem-se

$$\int_{0}^{1} \underbrace{\arctan(x)}_{f(x)} dx \simeq \frac{0.5}{2} \Big(f(0) + 2 f(0.5) + f(1) \Big)$$

$$= 0.25 \Big(\arctan(0) + 2 \arctan(0.5) + \arctan(1) \Big)$$

$$\simeq 0.25 \Big(0 + 2 \times 0.46 + 0.79 \Big)$$

$$\simeq 0.43$$

5. (a) i. Tendo em conta as funções que delimitam a região, tem-se

ii. Comecemos por explicitar as curvas que delimitam a região, em função da variável y:

•
$$y = -(x+1)^2 - 1 \Leftrightarrow -y - 1 = (x+1)^2 \Leftrightarrow x = -1 \pm \sqrt{-y - 1}$$

•
$$y = x - 2 \Leftrightarrow x = y + 2$$

Então

$$\text{Área}(\mathcal{A}) = \int_{-2}^{-1} \underbrace{y+2}_{f_{sup}} - \underbrace{\left(-1 + \sqrt{-y-1}\right)}_{f_{inf}} dy$$

$$= \int_{-2}^{-1} y+3 - \sqrt{-y-1} dy$$

(b) i. O volume do sólido de revolução que se obtém pela rotação da região $\mathcal A$ em torno do eixo Ox é dado por

Volume(
$$\mathcal{A}_{Ox}$$
) = $\pi \int_{-1}^{0} \left(\underbrace{-(x+1)^2 - 1}_{R_{ext}} \right)^2 - \left(\underbrace{-1}_{R_{int}} \right)^2 dx + \pi \int_{0}^{1} \left(\underbrace{x-2}_{R_{ext}} \right)^2 - \left(\underbrace{-1}_{R_{int}} \right)^2 dx$
= $\pi \int_{-1}^{0} \left(-(x+1)^2 - 1 \right)^2 - 1 dx + \pi \int_{0}^{1} (x-2)^2 - 1 dx$.

ii. Na rotação da região \mathcal{A} em torno do eixo Oy o sólido gerado pela parte esquerda vai ficar embutido no sólido gerado pela parte direita, pelo que temos que considerar apenas a rotação desta última:

Assim,

Volume
$$(\mathcal{A}_{Oy})$$
 = $\pi \int_{-2}^{-1} \left(\underbrace{y+2}_{R_{ext}}\right)^2 - \left(\underbrace{0}_{R_{int}}\right)^2 dy$
 = $\pi \int_{-2}^{-1} (y+2)^2 dy$.

