Test 1 du 27 février 2019

Durée: 1h50, Polycopié autorisé.

Trouver les solutions $t \to y(t)$ des équations différentielles sui-Exercice 1. vantes, en précisant le domaine de définition :

- a) $y'(t) = \frac{3y(t)}{1+t}$, avec pour donnée initiale y(0) = 1. b) $y'(t) = 4y(t) + \cos t$, avec pour donnée intiale y(0) = 0.
- c) $y'(t) = t \frac{2ty(t)}{1+t^2}$, avec pour donnée initiale y(0) = 1.

Exercice 2. On pose $\mathcal{D} =]0, +\infty[\times[0, +\infty[$, et on considère l'équation

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) + \frac{t}{4x^3} \frac{\partial u}{\partial x}(x,t) = 0 \text{ pour } (x,t) \in \mathcal{D}.\\ u(x,0) = x^2 \text{ pour } x \in \mathbb{R}^+. \end{cases}$$
 (1)

- A1) Vérifier qu'il s'agit d'une équation de transport linéaire.
- A2) Préciser la courbe caractéristique \mathscr{C}^{\star} qui passe par un point (x^{\star}, t^{\star}) donné, avec $x^* > 0$, $t^* \ge 0$.
- A3) Donner l'expression de la solution qui vérifie $u(x,0) = x^2, \forall x \in \mathbb{R}^+$.
- B) On considère l'équation

$$\begin{cases} \frac{\partial v}{\partial t}(x,t) + \frac{\partial}{\partial x} \left(\frac{t}{4x^3}v\right)(x,t) = 0 \text{ pour } (x,t) \in \mathcal{D}.\\ v(x,0) = x^2 \text{ pour } x \in \mathbb{R}^+. \end{cases}$$
 (2)

- B1) De quel type cette équation est-elle?
- B2) Donner l'expression de $u(x^*, t^*)$ pour $x^* > 0$, $t^* \ge 0$.

Exercice 3. 1) Montrer que le problème suivant

$$\begin{cases} u_t - u_{xx} = 0 \text{ sur } [0,1] \times [0,+\infty[\\ u(x,0) = \sin(\frac{\pi}{2}x) + 1 \text{ pour } x \in [0,1] \end{cases}$$

$$u(0,t) = 1 \text{ et } \frac{\partial u}{\partial x}(1,t) = 0 \text{ pour tout } t \in [0,+\infty[$$
(3)

possède au plus une solution.

2) On cherche à construire une solution de la forme u(x, t) = f(t)g(x) + C, où

 $f: \mathbb{R}^+ \to \mathbb{R}, \ g: [0,1] \to \mathbb{R}, \ C \in \mathbb{R}, \ \text{avec} \ f(0) = 1.$ Montrer que nécessairement, on a alors $g(x) + C = \sin(\frac{\pi}{2}x) + 1, \ \forall x \in [0,1].$

- 3) Montrer que g(0) = 0 en utilisant la condition en x = 0.
- 4) En déduire les expressions de *g* et *C*.
- 5) De quelle équation différentielle f doit-elle être la solution ? déterminer f.
- 6) Conclure.

Exercice 4. Soit u_0 une foncion 2π -périodique sur \mathbb{R} . On considère l'équation sur $\mathbb{R} \times [0, +\infty[$

$$\begin{cases} u_t - 3u_{xx} + u = 0 \text{ sur } \mathbb{R} \times [0, +\infty[\\ u(x, 0) = u_0(x) \text{ pour } x \in \mathbb{R} \end{cases}$$
 (4)

- 1) Montrer que si une solution 2π -périodique par rapport à x existe, alors elle est unique.
- 2) Trouver la solution du problème pour $u_0(x) = \exp ikx$ pour tout $x \in \mathbb{R}$, $k \in \mathbb{Z}$ donné. [Indication : On pourra chercher la solution sous la forme $u(x,t) = f(t) \exp ikx$, pour $t \ge 0$, $x \in \mathbb{R}$, et trouver une équation différentielle pour f].
- 3) Trouver la solution du problème pour $u_0 = (\sin x)^2(\cos x)$, pour tout $x \in \mathbb{R}$.
- 4*) Trouver la solution v, 2π -périodique par rapport à x, du problème

$$\begin{cases} v_t - 3v_{xx} + v = t(\sin x)^2(\cos x), \text{ sur } \mathbb{R} \times [0, +\infty[\\ v(x, 0) = 0, \text{ pour tout } x \in \mathbb{R}. \end{cases}$$
 (5)