

Water a test for SCCdftb/MM

Xavier Prat-Resina Friday September 30, 2005 AD

Summary

- 0. Why liquid water? fundamental test for condensed phase reactions
- 1.Bibliography: molecular models of water
- 2.SCCdftb/MM: corrections
- 3.Implementation of a dynamical QM/MM partition (switching waters)
- 4. Test on condensed phase systems: diffusion coefficient
- Proton
- •Hydroxide
- Neutral water

Modelling condensed phase water

neutral water, acid, basic, autoionization, phase transition

Classical approximations (no explicit treatment of electrons)

MM, EVB (Warshel, Voth, Tuckerman)

Path Integrals

Full QM systems

Lagrangian: CPMD (Parrinello, Pratt), ADMP(Voth, Iyengar)

Linear Scaling: Siesta, Divide and Conquer. (AIMD,PM3,SCCdftb)

QM/MM

Ab initio/MM: Rode

SCCdftb/MM:

compromise between sampling and accuracy

SCCdftb/MM: corrections (Haibo and Yang)

$$E = \sum_{i}^{occ} \left\langle \psi_{i} \left| \hat{H}_{0} \right| \psi_{i} \right\rangle - \frac{1}{2} \iint \frac{n_{0}^{'} n_{0}}{\left| \vec{r} - \vec{r}' \right|} + E_{XC} \left[n_{0} \right] - \int V_{XC} \left[n_{0} \right] n_{0} + E_{ii} + \frac{1}{2} \iint \left(\frac{1}{\left| \vec{r} - \vec{r}' \right|} + \frac{\delta^{2} E_{XC}}{\delta n \delta n'} \right|_{n_{0}} \right) \delta n \delta n'$$

$$E_{rep} \left[n_{0} \right]$$

$$E_{2nd}$$

gaussw

Repulsion
$$E_{rep}[n_0]$$
 $E_{rep}(O-H) = E_{rep}(O-H)_{orig} + a_1 \exp(-\frac{(r-a_2)^2}{a_3})S(r)$

2nd order
$$E_{2nd} = \frac{1}{2} \sum_{A,B}^{N} \Delta q_A \Delta q_B \gamma_{AB} \qquad \qquad \text{Hbond}$$

$$\gamma(X,H) = \exp(-\frac{(U_X + U_H)^{kl1}}{2} R^2) \gamma_0(X,H)$$

SCCdftb/MM: corrections (Haibo and Yang)

3rd order correction (Hubbard derivative)

Bibliography

DHGA

$$E_{3rd} = \frac{1}{6} \int \int \int \left| \int \left| \frac{\delta^{3} E_{XC}}{\delta n \delta n' \delta n''} \right|_{n_{0}} \right| \delta n \delta n' \delta n'' = \frac{1}{6} \sum_{A}^{N} \frac{\partial U_{A}}{\partial q_{A}} \Delta q_{A}^{3}$$

$$f(\Delta q) = ae^{-b(\Delta q - q_0)^2}$$

Switching waters in the QM/MM selection

Since solvent waters during a MD move in and move out of the QM/MM partition we will select dynamically the QM zone

- Exchange MM water moving in by a QM water moving out
- The composition of QM is always the same and it is selected by the distance to a central point

Switching waters: criteria to select the QM waters

The waters that belong to the QM are reselected dynamically according to some criteria

- Around a point (fixed xyz or moving atom)
- Around two atoms
- Around the cylinder between two atoms

$$\xi_{z} = \sum_{i=1}^{N_{H}} r_{z}^{H_{i}} - \sum_{i=1}^{N_{O}} w^{O_{j}} r_{z}^{O_{j}} - \sum \sum f_{sw}(d_{O_{j},H_{i}}) \cdot (r_{z}^{H_{i}} - r_{z}^{O_{j}})$$

Around the closest proton or oxygen to the CEC

(see vmd)

QM

Switching waters: implementation in charmm

rxncor: define pcec sele (qm .and. type O*) end sele (qm .and. type H*) end sccdftb remove chrg 1 sele qm end TEMP 0.00 scft 0.00000001 – swit sele (qm .and. type O*) end sele ((.not. qm) .and. type O*) end swop 6 swfq 1 swpr 1.5

Test: QM/MM systems

Solvated proton Solvated OH-Neutral water (solvated water)

A 22 angstr. sphere of TIP3 waters with GSBP 300 K with Langevin+Stoch 20-22 angst., SHAKE for MM, 1fs timestep

QM: 6 angstr. around the target atom 90-150 atoms

SCCdftb corrections:

3rd order

hbond + gaussw

hbond + 3rd order + gaussw

Compute coefficient of diffusion and RDF

$$Diff = \lim_{t \to \infty} \frac{d}{dt} \frac{\left\langle (r(t) - r(0))^2 \right\rangle}{6}$$

H⁺

$$Diff = \frac{d}{dt} \frac{\left\langle (r(t) - r(0))^2 \right\rangle}{6}$$

experimental 9.3E-4 Å²/fs

3rd order: 5.5E-4 Å²/fs Hbond: 7.2E-4 Å²/fs 3rd+Hbond: 5.3E-4 Å²/fs

 H+
 who's the proton? CEC vs closest H to CEC
 CEC
 H to CEC

 experimental 9.3E-4 Ų/fs
 3rd order: 5.5E-4 Ų/fs 7.3E-4 Hbond: 7.2E-4 Ų/fs 7.3E-4 3rd+Hbond: 5.3E-4 Ų/fs 5.3E-4

H+	effect of the QM size			bigQM	smallQM
	experimental 9.3E-4 Å ² /fs	Hbond:	5.5E-4 Å ² /fs 7.2E-4 Å ² /fs 5.3E-4 Å ² /fs	7.6E-4	5.3E-4 6.7E-4 4.9E-4

(H₃O+ OH- H₂O Bibliography SCCdftb/MM **SwitchWaters**

effect of the edge of sphere

1st 2.5ps 2nd 2.5ps

experimental

 3^{rd} order: 5.5E-4 Å²/fs Hbond: 7.2E-4 Å²/fs 7.4E-4

6.0E-4

5.1E-4 6.1E-4

9.3E-4 Å²/fs

3rd+Hbond: 5.3E-4 Å²/fs 5.7E-4

5.1E-4

OH⁻: Herr doktor Haibo Yu

$$Diff = \frac{d}{dt} \frac{\left\langle (r(t) - r(0))^2 \right\rangle}{6}$$

experimental 5E-4 Å²/fs

3rd order: 2.3E-4 Å²/fs Hbond: 2.2E-4 Å²/fs 3rd+Hbond: 2.0E-4 Å²/fs

H_2O

 $Diff = \frac{d}{dt} \frac{\left\langle (r(t) - r(0))^2 \right\rangle}{6}$

experimental 2.9E-4 Å²/fs

3rd order: 6.8E-4 Å²/fs Hbond: 3.7E-4 Å²/fs 3rd+Hbond: 2.8E-4 Å²/fs

 H_2O

1st 5ps
$$Diff = \frac{d}{dt} \frac{\left\langle (r(t) - r(0))^2 \right\rangle}{6}$$

experimental 2.9E-4 Å²/fs

3rd order: 6.0E-4 Å²/fs Hbond: 3.2E-4 Å²/fs 3rd+Hbond: 2.1E-4 Å²/fs

H₂O: RDF gO-O

