In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [3]:

```
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
```

In [4]:

```
df = pd.read_csv("F:\clg\Advertising.csv") # Loading the data
```

In [6]:

```
df.head() #showing first five data
```

Out[6]:

	Month	TV	radio	newspaper	sales
0	Jan-00	230.1	37.8	69.2	22.1
1	Feb-00	44.5	39.3	45.1	10.4
2	Mar-00	17.2	45.9	69.3	9.3
3	Apr-00	151.5	41.3	58.5	18.5
4	May-00	180.8	10.8	58.4	12.9

In [7]:

df.info() #by info method we cheak the whole dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

	•		•	
#	Column	Non-	-Null Count	Dtype
0	Month	200	non-null	object
1	TV	200	non-null	float64
2	radio	200	non-null	float64
3	newspaper	200	non-null	float64
4	sales	200	non-null	float64
dtyp	es: float64	(4),	object(1)	

memory usage: 7.9+ KB

In [8]:

df.describe() #by describe method we cheak statistical approach

Out[8]:

	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	14.022500
std	85.854236	14.846809	21.778621	5.217457
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	10.375000
50%	149.750000	22.900000	25.750000	12.900000
75%	218.825000	36.525000	45.100000	17.400000
max	296.400000	49.600000	114.000000	27.000000

In [9]:

df.shape

Out[9]:

(200, 5)

In [31]:

Out[31]:

<seaborn.axisgrid.PairGrid at 0x1d1afb06648>

In [32]:

```
df.corr()  # The diagonal of the above matirx shows the auto-correlation of t
he variables.
  # It is always 1.
  # observe that the correlation betweeb TV and Sales is highest i.
e. 0.78 and
  # then betweeb sales and radio i.e. 0.576.
  # correlations can vary from -1 to +1.
  # Closer to +1 means strong positive correlation and close -1 mean
s strong negative correlation.
  # Closer to 0 means not very strongly correlated.
```

Out[32]:

	TV	radio	newspaper	sales
TV	1.000000	0.054809	0.056648	0.782224
radio	0.054809	1.000000	0.354104	0.576223
newspaper	0.056648	0.354104	1.000000	0.228299
sales	0.782224	0.576223	0.228299	1.000000

In [12]:

```
sns.heatmap( df.corr() , annot = True)
```

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d1acb7d188>

LINEAR REGRESSION:

In [13]:

```
X = df[['TV', 'radio', 'newspaper']]
y = df['sales']
```

In [34]:

sns.pairplot(X)

Out[34]:

<seaborn.axisgrid.PairGrid at 0x1d1af686d88>

In [15]:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, test_size=0.3)

In [17]:

```
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
```

```
(140, 3)
(140,)
(60, 3)
(60,)
```

In [18]:

```
regressor=LinearRegression()
regressor.fit(X_train,y_train)
```

Out[18]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=F
alse)

In [22]:

```
y_pred = regressor.predict(X_test)
```

In [23]:

y_test

Out[23]:

Out[2.	,].
го	22.0
58	23.8
40	16.6
34	9.5
102	14.8
184	17.6
	17.0
198	25.5
95	16.9
4	12.9
29	10.5
168	17.1
	14.5
171	14.5
18	11.3
11	17.4
89	16.7
110	13.4
118	15.9
159	12.9
35	12.8
136	9.5
59	18.4
51	10.7
16	12.5
	12.5
44	8.5
94	11.5
31	11.9
162	14.9
38	10.1
28	18.9
	10.5
193	19.6
27	15.9
47	23.2
165	11.9
194	17.3
177	11.7
	20.2
176	20.2
97	15.5
174	11.5
73	11.0
69	22.3
172	7.6
	5.3
108	
107	8.7
189	6.7
14	19.0
56	5.5
19	14.6
114	14.6
39	21.5
185	22.6
124	19.7
98	25.4
123	15.2
119	6.6
53	21.2
33	17.4
179	12.6
181	12.2
106	
106 199	7.2 13.4

138 9.6

Name: sales, dtype: float64

In [24]:

```
y_pred
```

Out[24]:

```
array([21.66318307, 16.44137936, 7.69144625, 17.9163172, 18.67047113, 23.79199311, 16.2825425, 13.44138683, 9.15294033, 17.32475313, 14.43922876, 9.84019547, 17.26329945, 16.62853147, 15.09158705, 15.50173894, 12.43404074, 17.32591521, 11.04327486, 18.05652777, 9.35309526, 12.79465958, 8.73413846, 10.47225333, 11.38216042, 15.02658554, 9.7406823, 19.44676903, 18.19211174, 17.20178728, 21.56359539, 14.70484262, 16.2635213, 12.37098906, 19.97059316, 15.36768988, 14.00399515, 10.0772945, 20.91891557, 7.43833283, 3.67031166, 7.27760354, 5.99523188, 18.41497546, 8.31868226, 14.1090252, 14.93697583, 20.35882814, 20.56271636, 19.55380813, 24.10360923, 14.84985778, 6.71474914, 19.77761567, 18.93996367, 12.5109195, 14.20052652, 6.10844697, 15.3695344, 9.56769111])
```

In [48]:

```
plt.scatter(y_test,y_pred) #in this graph we see that there is linear relation b
etween y_test and y _pred.
plt.xlabel('y_test')
plt.ylabel('y_pred')
```

Out[48]:

Text(0, 0.5, 'y_pred')

In [36]:

```
import statsmodels.api as sm
```

In [37]:

```
X = np.append(arr=np.ones((200,1)).astype(int),values = X,axis = 1)
```

In [38]:

Х

Out[38]:

```
1., 230.1,
                       37.8,
array([[
                               69.2],
               44.5,
                       39.3,
                               45.1],
          1.,
          1.,
               17.2,
                       45.9,
                               69.31,
          1., 151.5,
                       41.3,
                               58.5],
          1., 180.8,
                       10.8,
                               58.4],
          1.,
                 8.7,
                       48.9,
                               75.],
          1.,
               57.5,
                       32.8,
                               23.5],
          1., 120.2,
                       19.6,
                               11.6],
                        2.1,
                                1.],
          1. ,
                 8.6,
          1., 199.8,
                        2.6,
                               21.2],
          1., 66.1,
                        5.8,
                               24.2],
                       24.,
          1., 214.7,
                                4.],
                23.8,
          1.,
                       35.1,
                               65.9],
          1.,
                97.5,
                        7.6,
                                7.2],
          1., 204.1,
                       32.9,
                               46. ],
          1., 195.4,
                       47.7,
                               52.9],
          1., 67.8,
                       36.6, 114. ],
          1., 281.4,
                       39.6,
                               55.8],
          1., 69.2,
                       20.5,
                               18.3],
          1., 147.3,
                       23.9,
                               19.1],
          1., 218.4,
                       27.7,
                               53.4],
          1., 237.4,
                        5.1,
                               23.5],
                       15.9,
          1., 13.2,
                               49.6],
          1., 228.3,
                       16.9,
                               26.2],
          1., 62.3,
                       12.6,
                               18.3],
          1., 262.9,
                       3.5,
                               19.5],
          1., 142.9,
                       29.3,
                               12.6],
          1., 240.1,
                       16.7,
                               22.9],
          1., 248.8,
                       27.1,
                               22.9],
                       16.,
          1., 70.6,
                               40.8],
          1., 292.9,
                       28.3,
                               43.2],
          1., 112.9,
                       17.4,
                               38.6],
                        1.5,
          1., 97.2,
                               30.],
          1., 265.6,
                       20.,
                                0.3],
                95.7,
          1.,
                        1.4,
                                7.4],
          1., 290.7,
                        4.1,
                                8.5],
          1., 266.9,
                       43.8,
                                5.],
          1.,
                74.7,
                       49.4,
                               45.7],
          1.,
               43.1,
                        26.7,
                               35.1],
          1., 228.,
                        37.7,
                               32.],
          1., 202.5,
                       22.3,
                               31.6],
          1., 177.,
                       33.4,
                               38.7],
          1., 293.6,
                        27.7,
                                1.8],
          1., 206.9,
                        8.4,
                               26.4],
          1.,
                       25.7,
               25.1,
                               43.3],
          1., 175.1,
                        22.5,
                               31.5],
                               35.7],
          1., 89.7,
                        9.9,
          1., 239.9,
                       41.5,
                               18.5],
          1., 227.2,
                       15.8,
                               49.9],
          1.,
                66.9,
                       11.7,
                               36.81,
          1., 199.8,
                        3.1,
                               34.6],
          1., 100.4,
                        9.6,
                                3.6],
          1., 216.4,
                       41.7,
                               39.6],
          1., 182.6,
                       46.2,
                               58.7],
          1., 262.7,
                        28.8,
                               15.9],
          1., 198.9,
                       49.4,
                               60.],
                 7.3,
                        28.1,
                               41.4],
          1., 136.2,
                       19.2,
                               16.6],
```

1., 210.8, 37.7], 49.6, 1., 210.7, 29.5, 9.3], 53.5, 21.4], 1., 2., 42.7, 1., 261.3, 54.7], 1., 239.3, 15.5, 27.3], 1., 102.7, 29.6, 8.4], 1., 131.1, 42.8, 28.9], 69., 9.3, 1., 0.9], 31.5, 24.6, 1., 2.2], 1., 139.3, 14.5, 10.2], 1., 237.4, 27.5, 11.], 1., 216.8, 43.9, 27.2], 30.6, 1., 199.1, 38.7], 1., 109.8, 14.3, 31.7], 1., 26.8, 33., 19.3], 1., 129.4, 5.7, 31.3], 24.6, 1., 213.4, 13.1], 1., 16.9, 43.7, 89.4], 1., 27.5, 1.6, 20.7], 1., 120.5, 28.5, 14.2], 5.4, 29.9, 1., 9.4], 7.7, 1., 116., 23.1], 76.4, 26.7, 22.3], 1., 239.8, 4.1, 36.9], 75.3, 32.5], 1., 20.3, 1., 68.4, 44.5, 35.6], 1., 213.5, 43., 33.8], 1., 193.2, 18.4, 65.7], 76.3, 16.], 27.5, 1., 110.7, 40.6, 63.2], 73.4], 1., 88.3, 25.5, 1., 109.8, 47.8, 51.4], 1., 134.3, 4.9, 9.3], 1., 28.6, 1.5, 33.], 1., 217.7, 33.5, 59.], 1., 250.9, 36.5, 72.3], 1., 107.4, 14., 10.9], 1., 163.3, 31.6, 52.9], 1., 197.6, 3.5, 5.9], 21., 1., 184.9, 22.], 1., 289.7, 42.3, 51.2], 1., 135.2, 41.7, 45.9], 1., 222.4, 4.3, 49.8], 1., 296.4, 36.3, 100.9], 1., 280.2, 10.1, 21.4], 1., 187.9, 17.2, 17.9], 1., 238.2, 34.3, 5.3], 1., 137.9, 46.4, 59.], 1., 25., 11., 29.7], 1., 90.4, 0.3, 23.2], 13.1, 25.6], 1., 0.4, 1., 255.4, 26.9, 5.5], 1., 225.8, 8.2, 56.5], 241.7, 38., 1., 23.2], 1., 175.7, 15.4, 2.4], 1., 209.6, 20.6, 10.7], 1., 78.2, 46.8, 34.5], 35., 75.1, 52.7], 1., 139.2, 14.3, 25.6], 76.4, 0.8, 14.8], 79.2], 1., 125.7, 36.9,

22.3], 1., 19.4, 16., 1., 141.3, 26.8, 46.2], 18.8, 50.4], 1., 21.7, 1., 224., 2.4, 15.6], 1., 123.1, 34.6, 12.4], 229.5, 32.3, 74.2], 1., 87.2, 11.8, 25.9], 7.8, 38.9, 1., 50.6], 80.2, 0., 1., 9.2], 1., 220.3, 49., 3.2], 59.6, 12., 1., 43.1], 0.7, 39.6, 8.7], 1., 265.2, 2.9, 43.], 8.4, 27.2, 1., 2.1], 1., 219.8, 33.5, 45.1], 1. , 36.9, 38.6, 65.6], 1., 48.3, 47., 8.5], 39., 1., 25.6, 9.3], 1., 273.7, 28.9, 59.7], 43., 25.9, 1., 20.5], 1., 184.9, 43.9, 1.7], 17., 1., 73.4, 12.9], 1., 193.7, 35.4, 75.6], 1., 220.5, 33.2, 37.9], 1., 104.6, 5.7, 34.4], 1., 96.2, 14.8, 38.9], 1., 140.3, 1.9, 9.], 1., 240.1, 7.3, 8.7], 49., 1., 243.2, 44.3], 1., 38., 40.3, 11.9], 1., 44.7, 25.8, 20.6], 1., 280.7, 13.9, 37.], 1., 121., 8.4, 48.7], 1., 197.6, 23.3, 14.2], 1., 171.3, 39.7, 37.7], 21.1, 1., 187.8, 9.5], 1., 4.1, 11.6, 5.7], 1., 93.9, 43.5, 50.5], 1., 149.8, 1.3, 24.3], 1., 11.7, 36.9, 45.21, 1., 131.7, 18.4, 34.6], 1., 172.5, 18.1, 30.7], 85.7, 35.8, 49.3], 1., 188.4, 18.1, 25.6], 1., 163.5, 36.8, 7.4], 1., 117.2, 14.7, 5.4], 1., 234.5, 3.4, 84.8], 1., 17.9, 37.6, 21.6], 1., 206.8, 5.2, 19.4], 1., 215.4, 23.6, 57.6], 6.4], 1., 284.3, 10.6, 1., 50., 11.6, 18.4], 1., 164.5, 20.9, 47.4], 1., 19.6, 20.1, 17.], 1., 168.4, 7.1, 12.8], 3.4, 1., 222.4, 13.1], 1., 276.9, 48.9, 41.8], 1., 248.4, 30.2, 20.3], 1., 170.2, 7.8, 35.2], 1., 276.7, 2.3, 23.7], 1., 165.6, 10., 17.6],

```
1., 156.6,
            2.6,
                   8.3],
1., 218.5,
             5.4,
                   27.4],
1., 56.2,
             5.7,
                   29.7],
            43.,
1., 287.6,
                   71.8],
1., 253.8,
            21.3,
                   30.],
1., 205.,
            45.1,
                   19.6],
1., 139.5,
             2.1,
                   26.6],
1., 191.1,
            28.7,
                   18.2],
1., 286.,
            13.9,
                   3.7],
1., 18.7,
            12.1,
                   23.4],
1., 39.5,
            41.1,
                    5.8],
1., 75.5,
            10.8,
                    6.],
    17.2,
            4.1,
                  31.6],
1.,
1., 166.8,
            42.,
                    3.6],
1., 149.7,
            35.6,
                    6.],
1., 38.2,
            3.7,
                   13.8],
            4.9,
1., 94.2,
                    8.1],
1., 177.,
            9.3,
                    6.4],
1., 283.6,
            42.,
                   66.2],
1., 232.1,
            8.6,
                   8.7]])
```

In [40]:

```
X_{opt} = X[:,[0,1,2,3]]
```

In [41]:

X_opt

Out[41]:

```
array([[
          1., 230.1,
                        37.8,
                               69.21,
          1., 44.5,
                        39.3,
                               45.1],
               17.2,
                       45.9,
          1.,
                               69.3],
          1., 151.5,
                       41.3,
                               58.5],
          1., 180.8,
                        10.8,
                               58.4],
                        48.9,
          1.,
                 8.7,
                               75.],
          1.,
               57.5,
                        32.8,
                               23.5],
          1., 120.2,
                        19.6,
                               11.6],
          1.,
                 8.6,
                         2.1,
                                1. ],
          1., 199.8,
                         2.6,
                               21.2],
          1.,
               66.1,
                        5.8,
                               24.2],
                        24.,
          1., 214.7,
                                4. ],
          1., 23.8,
                        35.1,
                               65.9],
                        7.6,
               97.5,
          1.,
                                7.2],
          1., 204.1,
                        32.9,
                               46.],
          1., 195.4,
                       47.7,
                               52.9],
          1., 67.8,
                        36.6, 114. ],
          1., 281.4,
                        39.6,
                               55.8],
                69.2,
          1. ,
                        20.5,
                               18.3],
          1., 147.3,
                        23.9,
                               19.1],
          1., 218.4,
                        27.7,
                               53.4],
          1., 237.4,
                        5.1,
                               23.5],
          1., 13.2,
                       15.9,
                               49.6],
          1., 228.3,
                       16.9,
                               26.2],
          1., 62.3,
                       12.6,
                               18.3],
          1., 262.9,
                        3.5,
                               19.5],
          1., 142.9,
                        29.3,
                               12.6],
          1., 240.1,
                        16.7,
                               22.9],
          1., 248.8,
                        27.1,
                               22.9],
               70.6,
                        16.,
                               40.8],
          1.,
          1., 292.9,
                        28.3,
                               43.2],
          1., 112.9,
                        17.4,
                               38.6],
                               30.],
                97.2,
                        1.5,
          1. ,
                        20.,
                                0.3],
          1., 265.6,
          1.,
                95.7,
                         1.4,
                                7.4],
                        4.1,
          1., 290.7,
                                8.5],
          1., 266.9,
                        43.8,
                                5.],
                        49.4,
          1.,
                74.7,
                               45.7],
          1.,
                43.1,
                        26.7,
                               35.1],
                        37.7,
          1., 228.,
                               32.],
          1., 202.5,
                               31.6],
                        22.3,
          1., 177.,
                        33.4,
                               38.7],
          1., 293.6,
                        27.7,
                                1.8],
          1., 206.9,
                         8.4,
                               26.4],
          1.,
               25.1,
                        25.7,
                               43.3],
          1., 175.1,
                        22.5,
                               31.5],
               89.7,
                        9.9,
          1.,
                               35.7],
          1., 239.9,
                        41.5,
                               18.5],
          1., 227.2,
                       15.8,
                               49.9],
          1.,
                66.9,
                        11.7,
                               36.8],
          1., 199.8,
                         3.1,
                               34.6],
          1., 100.4,
                        9.6,
                                3.6],
          1., 216.4,
                       41.7,
                               39.6],
          1., 182.6,
                        46.2,
                               58.7],
          1., 262.7,
                        28.8,
                               15.9],
          1., 198.9,
                       49.4,
                               60. ],
                        28.1,
                 7.3,
                               41.4],
          1., 136.2,
                        19.2,
                               16.6],
          1., 210.8,
                        49.6,
                               37.7],
```

1., 210.7, 29.5, 9.3], 2., 1., 53.5, 21.4], 261.3, 42.7, 54.7], 1., 1., 239.3, 15.5, 27.3], 1., 102.7, 29.6, 8.4], 1., 131.1, 42.8, 28.9], 1., 69., 9.3, 0.9], 31.5, 24.6, 2.2], 1., 139.3, 14.5, 10.2], 1., 237.4, 27.5, 11.], 1., 216.8, 43.9, 27.2], 1., 199.1, 30.6, 38.7], 1., 109.8, 14.3, 31.7], 26.8, 1., 33., 19.3], 1., 129.4, 5.7, 31.3], 1., 213.4, 24.6, 13.1], 1., 16.9, 43.7, 89.4], 1., 27.5, 1.6, 20.7], 1., 120.5, 28.5, 14.2], 5.4, 29.9, 1., 9.4], 7.7, 1., 116., 23.1], 26.7, 1., 76.4, 22.3], 1., 239.8, 4.1, 36.9], 1., 20.3, 75.3, 32.5], 1., 68.4, 44.5, 35.6], 43., 1., 213.5, 33.8], 1., 193.2, 18.4, 65.7], 76.3, 27.5, 16.], 1., 110.7, 40.6, 63.2], 1., 88.3, 25.5, 73.4], 1., 109.8, 47.8, 51.4], 4.9, 1., 134.3, 9.3], 1., 28.6, 1.5, 33.], 1., 217.7, 33.5, 59.], 1., 250.9, 36.5, 72.3], 1., 107.4, 14., 10.9], 1., 163.3, 31.6, 52.9], 1., 197.6, 3.5, 5.9], 1., 184.9, 21., 22.], 1., 289.7, 42.3, 51.2], 1., 135.2, 41.7, 45.9], 1., 222.4, 4.3, 49.8], 1., 296.4, 36.3, 100.9], 1., 280.2, 10.1, 21.4], 1., 187.9, 17.2, 17.9], 1., 238.2, 34.3, 5.3], 1., 137.9, 46.4, 59.], 11., 25., 1., 29.7], 1., 90.4, 0.3, 23.2], 1., 13.1, 0.4, 25.6], 1., 255.4, 5.5], 26.9, 1., 225.8, 8.2, 56.5], 1., 241.7, 38., 23.2], 1., 175.7, 15.4, 2.4], 1., 209.6, 20.6, 10.7], 78.2, 46.8, 34.5], 1., 1., 75.1, 35., 52.7], 1., 139.2, 25.6], 14.3, 76.4, 0.8, 14.8], 1., 125.7, 36.9, 79.2], 1., 19.4, 16., 22.3],

46.2], 1., 141.3, 26.8, 1., 18.8, 21.7, 50.4], 1., 224., 2.4, 15.6], 1., 123.1, 34.6, 12.4], 1., 229.5, 32.3, 74.2], 87.2, 11.8, 25.9], 1., 7.8, 38.9, 50.6], 1., 80.2, 0., 9.2], 49., 1., 220.3, 3.2], 59.6, 12., 43.1], 1., 1., 0.7, 39.6, 8.7], 1., 265.2, 2.9, 43.], 1., 8.4, 27.2, 2.1], 1., 219.8, 33.5, 45.1], 1., 36.9, 38.6, 65.6], 1., 48.3, 47., 8.5], 1., 25.6, 39., 9.3], 1., 273.7, 28.9, 59.7], 43., 25.9, 1., 20.5], 1., 184.9, 43.9, 1.7], 73.4, 17., 1. , 12.9], 1., 193.7, 35.4, 75.6], 1., 220.5, 37.9], 33.2, 1., 104.6, 5.7, 34.4], 14.8, 1., 96.2, 38.9], 1., 140.3, 1.9, 9.], 1., 240.1, 7.3, 8.7], 49., 1., 243.2, 44.3], 38., 40.3, 11.9], 1., 44.7, 25.8, 20.6], 37.], 1., 280.7, 13.9, 1., 121., 8.4, 48.7], 1., 197.6, 23.3, 14.2], 39.7, 1., 171.3, 37.7], 21.1, 1., 187.8, 9.5], 11.6, 4.1, 5.7], 1., 93.9, 43.5, 50.5], 1., 149.8, 1.3, 24.3], 1., 11.7, 36.9, 45.2], 1., 131.7, 18.4, 34.61, 1., 172.5, 18.1, 30.7], 85.7, 35.8, 1., 49.3], 1., 188.4, 18.1, 25.6], 1., 163.5, 36.8, 7.4], 1., 117.2, 14.7, 5.4], 1., 234.5, 3.4, 84.8], 1., 17.9, 37.6, 21.6], 1., 206.8, 5.2, 19.4], 1., 215.4, 23.6, 57.6], 1., 284.3, 10.6, 6.4], 50., 1., 11.6, 18.4], 1., 164.5, 20.9, 47.4], 19.6, 20.1, 17.], 1., 1., 168.4, 7.1, 12.8], 1., 222.4, 3.4, 13.1], 1., 276.9, 48.9, 41.8], 1., 248.4, 30.2, 20.3], 1., 170.2, 7.8, 35.2], 1., 276.7, 2.3, 23.7], 1., 165.6, 10., 17.6], 2.6, 1., 156.6, 8.3],

1., 218.5, 5.4, 27.4], 1., 56.2, 5.7, 29.7], 1., 287.6, 43., 71.8], 1., 253.8, 21.3, 30.], 1., 205., 45.1, 19.6], 1., 139.5, 2.1, 26.6], 1., 191.1, 28.7, 18.2], 1., 286., 13.9, 3.7], 1., 18.7, 12.1, 23.4], 1., 39.5, 41.1, 5.8], 1., 75.5, 10.8, 6.], 1., 17.2, 4.1, 31.6], 1., 166.8, 42., 3.6], 1., 149.7, 35.6, 6.], 3.7, 1., 38.2, 13.8], 1., 94.2, 4.9, 8.1], 1., 177., 9.3, 6.4], 1., 283.6, 42., 66.2], 1., 232.1, 8.6, 8.7]])

In [43]:

```
regressor_ols = sm.OLS (endog = y,exog = X_opt, data= df).fit()
regressor_ols.summary()
```

Out[43]:

OLS Regression Results

Dep. Variable:	sales	R-squared:	0.897
Model:	OLS	Adj. R-squared:	0.896
Method:	Least Squares	F-statistic:	570.3
Date:	Fri, 01 May 2020	Prob (F-statistic):	1.58e-96
Time:	11:11:59	Log-Likelihood:	-386.18
No. Observations:	200	AIC	780.4
Df Residuals:	196	BIC	793.6
Df Model:	3		
Covariance Type:	nonrobust		
coef st	derr t P	>ltl	1

	coef	std err	t	P> t	[0.025	0.975]
const	2.9389	0.312	9.422	0.000	2.324	3.554
x1	0.0458	0.001	32.809	0.000	0.043	0.049
x2	0.1885	0.009	21.893	0.000	0.172	0.206
х3	-0.0010	0.006	-0.177	0.860	-0.013	0.011

 Omnibus:
 60.414
 Durbin-Watson:
 2.084

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 151.241

 Skew:
 -1.327
 Prob(JB):
 1.44e-33

 Kurtosis:
 6.332
 Cond. No.
 454.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Model1 has much higer adjusted R squared and hence a preferred model Since the p-value for neawspaper is higher than 0.05, it doesn't have significant influence on the dependent variable and hence can be canceled.

In [44]:

```
X_opt = X[:,[0,1,2]]
```

In [45]:

X_opt

Out[45]:

```
array([[
          1., 230.1,
                       37.81,
          1., 44.5,
                       39.3],
                       45.9],
               17.2,
          1.,
          1., 151.5,
                       41.3],
          1., 180.8,
                       10.8],
          1.,
                 8.7,
                       48.9],
          1., 57.5,
                       32.8],
          1., 120.2,
                       19.6],
          1.,
                 8.6,
                        2.1],
          1., 199.8,
                        2.6],
          1., 66.1,
                        5.8],
                       24.],
          1., 214.7,
          1., 23.8,
                       35.1],
          1.,
              97.5,
                        7.6],
          1., 204.1,
                       32.9],
          1., 195.4,
                       47.7],
          1., 67.8,
                       36.6],
          1., 281.4,
                       39.6],
       69.2,
          1. ,
                       20.5],
          1., 147.3,
                       23.9],
          1., 218.4,
                       27.7],
          1., 237.4,
                        5.1],
          1., 13.2,
                       15.9],
          1., 228.3,
                       16.9],
          1., 62.3,
                       12.6],
          1., 262.9,
                        3.5],
          1., 142.9,
                       29.3],
          1., 240.1,
                       16.7],
          1., 248.8,
                       27.1],
          1., 70.6,
                       16.],
          1., 292.9,
                       28.3],
          1., 112.9,
                       17.4],
          1.,
               97.2,
                        1.5],
                       20.],
          1., 265.6,
          1.,
              95.7,
                        1.4],
          1., 290.7,
                        4.1],
          1., 266.9,
                       43.8],
          1.,
               74.7,
                       49.4],
          1.,
               43.1,
                       26.7],
          1., 228.,
                       37.7],
          1., 202.5,
                       22.3],
          1., 177.,
                       33.4],
                       27.7],
          1., 293.6,
          1., 206.9,
                        8.4],
          1., 25.1,
                       25.7],
          1., 175.1,
                       22.5],
          1., 89.7,
                        9.9],
          1., 239.9,
                       41.5],
          1., 227.2,
                       15.8],
          1.,
                66.9,
                       11.7],
          1., 199.8,
                        3.1],
          1., 100.4,
                        9.6],
          1., 216.4,
                       41.7],
                       46.2],
          1., 182.6,
          1., 262.7,
                       28.8],
          1., 198.9,
                       49.4],
                 7.3,
                       28.1],
          1., 136.2,
                       19.2],
          1., 210.8,
                       49.6],
```

1., 210.7, 29.5], 1., 53.5, 2.], 1., 261.3, 42.7], 1., 239.3, 15.5], 29.6], 1., 102.7, 1., 131.1, 42.8], 69., 1., 9.3], 1., 31.5, 24.6], 1., 139.3, 14.5], 1., 237.4, 27.5], 1., 216.8, 43.9], 1., 199.1, 30.6], 1., 109.8, 14.3], 26.8, 1., 33.], 1., 129.4, 5.7], 1., 213.4, 24.6], 1., 16.9, 43.7], 1., 27.5, 1.6], 1., 120.5, 28.5], 5.4, 29.9], 1., 1., 116., 7.7], 1., 76.4, 26.7], 1., 239.8, 4.1], 1., 75.3, 20.3], 68.4, 1., 44.5], 1., 213.5, 43.], 1., 193.2, 18.4], 76.3, 27.5], 1., 110.7, 40.6], 1., 88.3, 25.5], 1., 109.8, 47.8], 1., 134.3, 4.9], 1., 28.6, 1.5], 1., 217.7, 33.5], 1., 250.9, 36.5], 1., 107.4, 14.], 1., 163.3, 31.6], 1., 197.6, 3.5], 1., 184.9, 21.], 1., 289.7, 42.3], 1., 135.2, 41.7], 1., 222.4, 4.3], 1., 296.4, 36.3], 1., 280.2, 10.1], 1., 187.9, 17.2], 1., 238.2, 34.3], 1., 137.9, 46.4], 11.], 1., 25., 1., 90.4, 0.3], 1., 13.1, 0.4], 1., 255.4, 26.9], 1., 225.8, 8.2], 1., 241.7, 38.], 1., 175.7, 15.4], 1., 209.6, 20.6], 78.2, 46.8], 1., 1., 75.1, 35.], 1., 139.2, 14.3], 76.4, 0.8], 1., 125.7, 36.9], 1., 19.4, 16.],

1., 141.3, 26.8], 21.7], 1., 18.8, 1., 224., 2.4], 1., 123.1, 34.6], 1., 229.5, 32.3], 87.2, 11.8], 1., 7.8, 38.9], 1., 80.2, 0.], 1., 220.3, 49.], 59.6, 1., 12.], 1., 0.7, 39.6], 1., 265.2, 2.9], 1., 8.4, 27.2], 1., 219.8, 33.5], 1., 36.9, 38.6], 1., 48.3, 47.], 1., 25.6, 39.], 1., 273.7, 28.9], 43., 1., 25.9], 1., 184.9, 43.9], 73.4, 17.], 1. , 1., 193.7, 35.4], 1., 220.5, 33.2], 1., 104.6, 5.7], 1., 96.2, 14.8], 1., 140.3, 1.9], 1., 240.1, 7.3], 1., 243.2, 49.], 38., 1., 40.3], 1., 44.7, 25.8], 1., 280.7, 13.9], 1., 121., 8.4], 1., 197.6, 23.3], 1., 171.3, 39.7], 1., 187.8, 21.1], 4.1, 11.6], 1., 43.5], 93.9, 1., 149.8, 1.3], 1., 11.7, 36.9], 1., 131.7, 18.4], 1., 172.5, 18.1], 1., 85.7, 35.8], 1., 188.4, 18.1], 1., 163.5, 36.8], 1., 117.2, 14.7], 1., 234.5, 3.4], 1., 17.9, 37.6], 1., 206.8, 5.2], 1., 215.4, 23.6], 1., 284.3, 10.6], 50., 11.6], 1., 1., 164.5, 20.9], 19.6, 20.1], 1., 1., 168.4, 7.1], 1., 222.4, 3.4], 1., 276.9, 48.9], 1., 248.4, 30.2], 1., 170.2, 7.8], 1., 276.7, 2.3], 1., 165.6, 10.], 1., 156.6, 2.6],

1., 218.5, 5.4], 1., 56.2, 5.7], 1. , 287.6, 43.], 1., 253.8, 21.3], 1., 205., 45.1], 1., 139.5, 2.1], 1., 191.1, 28.7], 1., 286., 13.9], 1., 18.7, 12.1], 1., 39.5, 41.1], 1., 75.5, 10.8], 1., 17.2, 4.1], 1., 166.8, 42.], 1., 149.7, 35.6], 3.7], 1., 38.2, 1., 94.2, 4.9], 1., 177., 9.3], 1., 283.6, 42.], 1., 232.1, 8.6]])

In [46]:

```
regressor_ols = sm.OLS (endog = y,exog = X_opt, data= df).fit()
regressor_ols.summary()
```

Out[46]:

OLS Regression Results

Dep. Variable:		sales F		R-se	quared:	0.897	
	Model:		OLS		Adj. R-squared:		0.896
	Metho	od: L	Least Squares		F-statistic:		859.6
	Da	te: Fri,	i, 01 May 2020		Prob (F-statistic):		4.83e-98
	Tin	ne:	11:13:37		Log-Likelihood:		-386.20
No. OI	oservatio	ns:		200		AIC:	778.4
Df Residuals:			197 BIC :		788.3		
	Df Mod	lel:		2			
Covariance Type:			nonrol	oust			
coef std err			t	P> t	[0.025	0.975]	
const	2.9211	0.294	9.919	0.000	2.340	3.502	
x1	0.0458	0.001	32.909	0.000	0.043	0.048	
x2	0.1880	0.008	23.382	0.000	0.172	0.204	
Omnihus: 60 022 Durhin-Watso					itson:	2 081	

Omnibus: 60.022 Durbin-Watson: 2.081

Prob(Omnibus): 0.000 Jarque-Bera (JB): 148.679

 Skew:
 -1.323
 Prob(JB):
 5.19e-33

 Kurtosis:
 6.292
 Cond. No.
 425.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

From the results, r-sq adjusted is 0.896 which is slightly closer to 1. This implies that 89% of the variability in our dependent variable "sales" is explained by this model. Then we can see that p-value of independent variables are less then 0.05.so independent variables('tv','newspaper') have significant influence on the dependent variable('sales').