Curve Trees: Practical and Transparent Zero-Knowledge Accumulators

Matteo Campanelli¹, Mathias Hall-Andersen², and *Simon Holmgaard Kamp*²

¹ Protocol Labs, ² Aarhus University

- Prove membership
- Prove ownership
- Reveal nullifier

Trusted Setup

https://z.cash/technology/paramgen/

A simple transparent ZCash using Bulletproofs?

- Use a "native" hash function: Pedersen hashing.
- Constrain hashes recursively using bit decomposition.
- A single membership proof for set size 2^32: about 45,000 constraints
- A single membership proof using a Curve Tree: <5000 constraints

Commit and Prove

- Given a commitment, prove properties of the committed values.
- Replace Pedersen hashing with Pedersen commitments.
- P provides the path of commitments to V.
 - Show parent child relations.
 - Reveals the path to the leaf!
- The digest is not a native input of the hash function :(

What if the digest is native to another hash function?

- What if the digest is native to another hash function?
- Pick a sequence of elliptic curves $\mathbb{E}_0(\mathbb{F}_{p_0}), \ldots, \mathbb{E}_{\mathsf{D}}(\mathbb{F}_{p_{\mathsf{D}}})$ where each $\mathbb{E}_i(\mathbb{F}_{p_i})$ has p_{i+1} points.

- What if the digest is native to another hash function?
- Pick a sequence of elliptic curves $\mathbb{E}_0(\mathbb{F}_{p_0}), \ldots, \mathbb{E}_{\mathsf{D}}(\mathbb{F}_{p_{\mathsf{D}}})$ where each $\mathbb{E}_i(\mathbb{F}_{p_i})$ has p_{i+1} points.
- Now points on the i+1'th curve are native inputs to the Pedersen hash function over the i'th curve.

- What if the digest is native to another hash function?
- Pick a sequence of elliptic curves $\mathbb{E}_0(\mathbb{F}_{p_0}), \ldots, \mathbb{E}_{\mathsf{D}}(\mathbb{F}_{p_{\mathsf{D}}})$ where each $\mathbb{E}_i(\mathbb{F}_{p_i})$ has p_{i+1} points.
- Now points on the i+1'th curve are native inputs to the Pedersen hash function over the i'th curve.
- Commit to a point by committing to both coordinates.

- What if the digest is native to another hash function?
- Pick a sequence of elliptic curves $\mathbb{E}_0(\mathbb{F}_{p_0}), \ldots, \mathbb{E}_{\mathsf{D}}(\mathbb{F}_{p_{\mathsf{D}}})$ where each $\mathbb{E}_i(\mathbb{F}_{p_i})$ has p_{i+1} points.
- Now points on the i+1'th curve are native inputs to the Pedersen hash function over the i'th curve.
- Commit to a point by committing to both coordinates.
 - A Curve Tree with branching factor I has 2I generators.

- What if the digest is native to another hash function?
- Pick a sequence of elliptic curves $\mathbb{E}_0(\mathbb{F}_{p_0}), \ldots, \mathbb{E}_{\mathsf{D}}(\mathbb{F}_{p_{\mathsf{D}}})$ where each $\mathbb{E}_i(\mathbb{F}_{p_i})$ has p_{i+1} points.
- Now points on the i+1'th curve are native inputs to the Pedersen hash function over the i'th curve.
- Commit to a point by committing to both coordinates.
 - A Curve Tree with branching factor I has 2I generators.
 - o Can we do better?

- Standard trick: compress a point into the x-coordinate and a sign.
- Permissible points: points with a positive sign.
- Only permissible points are added to the tree.
- A sign is often y>p/2 or lsb(y).
 - \circ Proving this inside the circuit adds roughly λ constraints.

• Let $\mathcal{U}_{\alpha,\beta}(v) \mapsto S(\alpha \cdot v + \beta)$ where S(v) is 1 if v is a quadratic residue, and otherwise 0.

- Let $\mathcal{U}_{\alpha,\beta}(v) \mapsto S(\alpha \cdot v + \beta)$ where S(v) is 1 if v is a quadratic residue, and otherwise 0.
- $\mathcal{P}_{\mathbb{E}} = \{(\mathbf{x}, \mathbf{y}) \mid (\mathbf{x}, \mathbf{y}) \in \mathbb{E}(\mathbb{F}_p) \land \mathcal{U}_{\alpha, \beta}(\mathbf{y}) = 1 \land \mathcal{U}_{\alpha, \beta}(-\mathbf{y}) = 0\}$

- Let $\mathcal{U}_{\alpha,\beta}(v) \mapsto S(\alpha \cdot v + \beta)$ where S(v) is 1 if v is a quadratic residue, and otherwise 0.
- $\mathcal{P}_{\mathbb{E}} = \{(\mathbf{x}, \mathbf{y}) \mid (\mathbf{x}, \mathbf{y}) \in \mathbb{E}(\mathbb{F}_p) \land \mathcal{U}_{\alpha, \beta}(\mathbf{y}) = 1 \land \mathcal{U}_{\alpha, \beta}(-\mathbf{y}) = 0\}$
- Proving permissibility inside the circuit: $w^2 = (\alpha \cdot v + \beta)$

Root

Reducing the number of proofs

- Use a cycle of curves.
- Combine all constraints over the same curve in one proof.

Adding zero knowledge

- Rerandomize the path!
 - Root, C1, C2, ..., Leaf becomes Root, C1*, C2*, ..., Leaf*
- Show:
 - The first commitment, **C1***, on the path is a rerandomization of a child of the root.
 - The second commitment on the path is rerandomization of a child of C1*.
 - o Etc.

$$\mathcal{R}^{(\mathsf{single-level}^{\star},d)} \coloneqq egin{dcases} C = \langle \left[ec{\mathbb{x}}
ight], ec{G}_{\mathsf{x}}^{(d-1)}
angle \ + \left[r
ight] \cdot H^{(d-1)} \ & \wedge \left(\mathbb{x}_i, \mathbb{y}
ight) \in \mathcal{P}_{\mathbb{E}^{(d)}} \ & \wedge \hat{C} = \left(\mathbb{x}_i, \mathbb{y}
ight) + \left[\delta
ight] \cdot H^{(d)} \end{pmatrix}$$

Rerandomized Curve Treenode

Benchmarks of set membership

(D,ℓ)	Set //	Constraints	Proof	Proving	Verification	Amort. batch verification
	$\mathrm{size}^{\ \#}$		size (kb)	time (s)	time (ms)	${\rm time} \; ({\rm ms})$
(2, 1024)	2^{20}	3870	2.6	1	24.03	1.43
() /	2^{32}	4668	3	1.94	41.78	2.36
(4, 1024)	2^{40}	7740	3	1.96	42.88	2.69

- Implemented using the Pasta curves and bulletproofs.
- Bulletproofs R1CS implementation supporting arkworks curves, batch verification, and commitments of arbitrary dimension.
- Code available at <u>github.com/simonkamp/curve-trees</u>

VCash

- Store commitments to coins in a Curve Tree
 - a. The value of the coin
 - b. The hash of a rerandomizable public key
 - Used for opening and nullifying.
- Sending a transaction
 - a. Commit to each receivers output value and a rerandomization of their public key.
 - b. Open the rerandomized public key of each spent coin.
 - c. Show positive value of and balance between minted and spent coins.
 - d. Sign the transaction with each spent public key.

Benchmarks of 2-2-pour

I	Anonymity	Transparent	Tx size	Proving	Verification	Amort. batch verification
	set size	setup	(kb)	time (S)	time (ms)	${\rm time} ({\rm ms})$
Zcash	2^{32}	X	1	2.38	7	-
Veksel	Any	X *	5.3	0.44	61.88	-
	2^{10}	√	2.7	0.27†	-	6.8†
Lelantus	2^{14}	\checkmark	3.9	$2.35\dagger$	-	$10.2\dagger$
	2^{16}	✓	5.6	$4.8\dagger$	-	52†
Omniring		√	1	$\approx 1.5\ddagger$	$\approx 130\ddagger$	-
	2^{20}	$\overline{\hspace{1cm}}$	3.6	1.98	42.75	2.82
VCash	2^{32}	\checkmark	4.1	3.85	81.27	4.94
	2^{40}	✓	4.1	3.91	82.83	5.66

Future work

- Batch membership proofs in Curve Trees.
- Stacking the odd and even layers of the Curve Tree.
- The Curve Tree technique applies in any Commit-and-Prove system.

Thank you!

ia.cr/2022/756