Model For the Calcite Precipitation with reactants $NaHCO_3 + CaCl_2$

• REWRITE FOR VOLUME BASED!

$$CaCl_2 + 2NaHCO_3 \iff CaCO_3 + 2NaCl + CO_2 + H_2O$$

Conditions:

- Fed-batch operation: continuous additions of $CaCl_2$
- No recycle effects are considered (negligible residency time in the measurement loop)
- The initial carbone is all from $NaHCO_3$ in solution (no equlibrium with CO_2 for now required to be fixed)

TODO:

- Equilibrium of $NaHCO_3$ and air to adjust initial C concentration;
- Check if use the PSD as size based or mass/volume based (what are the implications for growth and aggregation?)

Mathematical Model

CHECK: use PSD in volume or absolute values? THis will change the PSD by an additional term and the solute consumption due to crystallization.

Population Balance

$$\frac{\partial n(l,t)}{\partial t} + \frac{\partial [G_l(t)n(l,t)]}{\partial l} = \dot{n}_{add}(l,t) + B_0\delta(l - l_{min}) + R_{l,agg}$$

Or, using the particle volume based distribution:

$$\frac{\partial n(v,t)}{\partial t} + \frac{\partial [G(t)n(v,t)]}{\partial v} = \dot{n}_{add}(v,t) + B_0 \delta(v - v_{min}) + R_{agg}$$

Applying the MSM without particle addition:

$$\frac{dN_0(t)}{dt} = B_0 + R_{agg,0}$$

$$\frac{dN_i(t)}{dt} = R_{agg,i}$$

$$\frac{dx_i}{dt} = G(x_i)$$

$$R_{agg} = \sum_{\substack{j,k \\ x_{i-1}(t) \le \nu(t) \le x_{i+1}(t)}}^{i \ge j \ge k} (1 - \frac{1}{2} \delta_{j,k}) \eta q_{j,k} N_j(t) N_k(t) - N_i(t) \sum_{k=1}^{M} q_{i,k} N_k(t)$$

$$\eta = \begin{cases} \frac{x_{i+1}(t) - \nu}{x_{i+1}(t) - x_i(t)}, & x_i(t) \le \nu \le x_{i+1}(t) \\ \frac{x_{i-1}(t) - \nu}{x_{i-1}(t) - x_i(t)}, & x_{i-1}(t) \le \nu \le x_i(t) \end{cases}$$

$$\nu(t) = x_i(t) + x_k(t)$$

Mass Balances for Total species in Liquid Phase

$$\frac{dm_{Ca}}{dt} = Q_{in}C_{Ca,in} + \xi_{Ca}\frac{dm_{c,tot}}{dt}$$

$$\frac{dm_C}{dt} = \xi_C \frac{dm_{c,tot}}{dt}$$

$$\frac{dm_{Na^+}}{dt} = 0$$

$$\frac{dm_{Cl^-}}{dt} = Q_{in}C_{Cl^-,in}$$

$$\frac{dV(t)}{dt} = Q_{in}$$

The rate of consumption of solute to the solid phase for size based is:

$$r_{p,l} = -\left(3\rho_c k_v \int Gl^2 n(l,t)dl\right)$$

However, since it is being working with volume (independent coordinate) based PSD:

$$m_{c,tot} = \rho_c k_v v_{c,t}$$

$$v_{c,t} = \int_0^\infty n(v,t)vdv$$

$$m_{c,tot} = \rho_c k_v \int_0^\infty n(v,t)v dv$$

The derivative is thus:

$$\frac{dm_{c,tot}}{dt} = \rho_c k_v \frac{d}{dt} \left[\int_0^\infty n(v,t)v dv \right]$$

$$\frac{dm_{c,tot}}{dt} = \rho_c k_v \int_0^\infty n(v,t)G(v)dv$$

If PSD is volumetric:

$$m_{c,tot} = \rho_c k_v v_{c,t} V(t)$$

$$\frac{m_{c,tot}}{V(t)} = \rho_c k_v v_{c,t}$$

$$\frac{d\left[\frac{m_{c,tot}}{V(t)}\right]}{dt} = r_p = \rho_c k_v \int_0^\infty n(v,t)G(v)dv$$

The fractions of species are:

$$\xi_{Ca} = \frac{M_{Ca}}{M_{CaCO_3}}$$

$$\xi_C = \frac{M_C}{M_{CaCO_2}}$$

The concentration [g/mL] for species ${\it Ca}$ and ${\it Cl}$ in the feed stream are:

$$C_{Ca,in} = \frac{M_{Ca}}{M_{CaCl_2}} C_{CaCl_2,in}$$

$$C_{Cl,in} = 2\frac{M_{Cl}}{M_{CaCl_2}}C_{CaCl_2,in}$$

Additionally, even though not required to close the ODE system, the added quantity of CaCl can be tracked by:

$$\frac{dm_{CaCl}}{dt} = Q_{in}C_{CaCl,in}$$

Supersaturation Equation

$$S = \frac{\gamma_{Ca^{2+}} x_{Ca^{2+}} \gamma_{CO^{2-}} x_{CO^{2-}}}{K_{sp}}$$

Equilibrium constant

Equilibrium constant from Torraca thesis for Calcite:

$$K_{sp} = -171.906 - 0.0779T + 2839.319/T + 71.595\log_{10}T$$

calciumcarbonate_supersaturation_module.py

The equilibrium module from Elvis used molar concentration in [g/L] (CHECK), thus the following auxiliary equations are requires:

Auxiliaries equations

$$m_{slv} = \rho_{mix}V(t)$$

$$\rho_{mix} \approx \rho_w$$

$$c_j = \frac{m_j}{m_{slv}(t)}$$

$$c_{Ca} = \frac{m_{Ca}}{M_{Ca}V_L}$$

$$c_C = \frac{m_C}{M_C V_L}$$

$$c_{Na} = \frac{m_{Na}}{M_{Na}V_L}$$

$$c_{Cl} = \frac{m_{Cl}}{M_{Cl}V_L}$$

Precipitation Kinetics

Growth

Potential References:

• A two-fluid model for calcium carbonate precipitation in highly supersaturated solutions (USED)

$$G(t) = k_q(S-1)^g$$

From Reis et al. (2018): g = 2 and k_g is:

$$\log k_g = -0.275 + 0.228 \left[\frac{I^{1/2}}{1 + I^{1/2}} - 0.3I \right]$$

where I is the ionic strength (mol/L) and $k_q[=]nm/s$.

Verdoes, Kashchiev, and Rosmalen (1992) provides the growth kinetics in a similar form, but with g = 1.8 and $k_g = 2.4e - 12m/s$

Nucleation

The conventional equation for nucleation in the form:

$$B_0(t) = k_b (S - 1)^b \mu_3(t)$$

Or, from Reis et al. (2018):

$$B_0(t) = A \exp \left[-\frac{\beta \sigma^3 \nu^2}{2.30 k_b^3 T^3 (\log S)^2} \right]$$

where $\beta=16.75$ for spherically symmetric particles, $\sigma=0.068N/m;\ \nu=6.132\cdot 10^{-29}.$ An approximation for A is given:

$$A = \frac{D}{\epsilon^5 S^{5/3}}$$

$$D=8.67\cdot 10^{-10}m^2/s$$
 and $\epsilon=7.62\cdot 10^{-10}$

However, the profile for nucleation using Reis et al. (2018) is not reasonable for the working range of Supersaturation. It is reported a supersaturation of S=3235.94, but the equation for supersaturation is not provided.

Another reference for nucleation of $CaCO_3$ is Verdoes, Kashchiev, and Rosmalen (1992), with the following equation:

$$B_0 = K_s S \exp\left(-\frac{E_b}{\ln^2 S}\right)$$

where $K_s = 1.4e181/m^3/s$ and $E_b = 12.8$

Aggregation

$$q(x_i, x_i) = TODO$$

Conductance

The electrical conductance was estimated from Appelo modified Nernst-Einstein equation (see: http://www.aqion.de/site/77#Nernst-Einstein):

$$EC = \sum_{i} \Lambda_{m,i}^{0} (\gamma_{i})^{\alpha} c_{i}$$

$$\alpha = \begin{cases} 0.6 / |z_i|^{0.5} = const & \text{if } I \leq 0.36 |z_i| \\ \sqrt{I} / |z_i| & \text{otherwise} \end{cases}$$

The values for Λ_0 for each ion is listed in XXX.

Initial Conditions:

PSD:

No Seed at initial time: $N_i=0$

 $0 \le x_i \le 10 \mu m$

Components Concentration and Masses

$$V(0) = 600cm^3$$

$$C_{NaHCO_3}(0) = 1.2275 \cdot 10^{-3} g/cm^3$$

$$m_{Ca^{2+}}(0) = 0$$

$$m_C(0) = \frac{M_C}{M_{NaHCO_3}} C_{NaHCO_3}(0) V(0)$$

$$m_{Na}(0) = \frac{M_{Na}}{M_{NaHCO_3}} C_{NaHCO_3}(0) V(0)$$

$$m_{Cl}(0) = 0$$

Parameters

Operational Conditions

Parameter	Value	Unit
$C_{NaHCO_3}(0)$ $C_{CaCl,in}$ $V(0)^*$ T RPM	$ \begin{array}{r} 1.2275 \cdot 10^{-3} \\ 0.7275 \cdot 10^{-3} \\ 600 \\ 25 \\ 350 \\ \hline 1.75 \\ \end{array} $	g/cm^3 g/cm^3 cm^3 $^{\circ}C$ $^{\circ}C$
$Q_{in} \ t_f$	1.75 56	cm^3/min min

^{*:} confirm initial volume

Physico-chemical parameters

Parameter	Value	Unit
$\overline{M_C}$	12.0707	g/mol
M_{Na}	22.99	g/mol
M_{NaHCO_3}	84.007	g/mol
M_{CaCl_2}	110.98	g/mol
M_{Ca}	40.078	g/mol
M_{Cl}	35.453	g/mol
$ ho_w$	1	g/cm^3

Kinetic parameters

to do

Conductance Parameters

Substance	abs(z)	Di 1e-9 [m^2/s]	$\Lambda_{m,i}^0$ [S $cm^2 \ mol^{-1}$]\$
Na+	1	1.330	50.0
H+	1	9.310	349.6
Ca++	2	0.793	119.1
Cl-	1	2.030	76.2
HCO3-	1	1.180	44.3
NaCO3-	1	0.585	22.0
OH-	1	5.270	197.9
CO3-	2	0.955	143.5
CaOH+	1		
CaHCO3+	1	0.506	19.0

Experimentos - Torraca, 2018

Teste Branco (sem campo magnético)

References

Reis, MC, MFB Sousa, F Alobaid, CA Bertran, and Y Wang. 2018. "A Two-Fluid Model for Calcium Carbonate Precipitation in Highly Supersaturated Solutions." *Advanced Powder Technology* 29 (7): 1571–81.

Verdoes, D, D. Kashchiev, and G. M. van Rosmalen. 1992. "Determination of nucleation and growth rates from induction times in seeded and unseeded precipitation of calcium carbonate." *Journal of Crystal Growth* 118 (3-4): 401-13. https://doi.org/10.1016/0022-0248(92)90089-2.