Relatório 3º Projeto ASA 2023/2024

Grupo: AL116

Aluno(s): Rodrigo Freire (106485)

Descrição do Problema e da Solução

Uma fábrica produz n tipos de brinquedos t_i , $i \in \{1 \dots n\}$ com capacidade máxima c_i e lucro l_{t_i} . Além de haver uma capacidade máxima por brinquedo existe um limite máximo M de produção total de brinquedos. Adicionalmente, existe a opção de vender pacotes que contêm três brinquedos distintos. Cada pacote tem lucro l_{p_j} que é superior ao lucro somado dos três brinquedos vendidos em separado.

O objetivo, é maximizar o lucro total de forma a respeitar as restrições. Podemos formular este problema num de programação linear formulado da seguinte forma:

Variáveis:

- Seja $T=\{t_i\mid 1\leq i\leq n\},\ n\geq 1$ o conjunto de brinquedos. E seja l_{t_i},c_{t_i} o lucro e capacidade máxima, respetivamente, de cada brinquedo t_i
- Seja $P = \begin{cases} \emptyset & \text{if } p = 0 \\ \{p_j \mid 1 \leq j \leq p\} & \text{if } p \geq 1 \end{cases}$ o conjunto de pacotes. E seja l_{p_j} o lucro de cada pacote $p_j \supseteq \{t_{i_1}, t_{i_2}, t_{i_3}\}, \ t_{i_1}, t_{i_2}, t_{i_3} \in T$

Função Objetivo:

$$\max \left(\sum_{t_i \in T} l_{t_i} \cdot t_i + \sum_{p_j \in P} l_{p_j} \cdot p_j \right)$$

Restrições:

- Limite total de brinquedos: $(\sum_{t_i \in T} t_i + 3\sum_{p_j \in P} p_j) \le M$, $t_i \ge 0$, $p_j \ge 0$
- Capacidade máxima por brinquedo: $(t_i + \sum_{r \in R_i} r) \le c_{t_i}$. Seja R_i o conjunto de todos os pacotes p que contêm o brinquedo t_i , designados por r_i .

Análise Teórica

Complexidades em função do número de brinquedos (n) e o número de pacotes (p):

- Como já definido, T, P representam os conjuntos das variáveis dos brinquedos e pacotes t_i , p_i . Existem n brinquedos e p pacotes. Logo: O(n + p)
- Foi definida uma restrição global que representa o número máximo de brinquedos produzidos e n restrições para cada t_i que representam a capacidade máxima de cada brinquedo. Logo: O(1+n) = O(n)

Avaliação Experimental dos Resultados

Foram geradas 50 instâncias com tamanho inicial $N=200; P=100 \ (N+P=300)$ com um incremento de $N+=200; P+=100 \ ((N+P)+=300)$. De seguida, foram gerados 2 gráficos:

- Gráfico 1: Tempo de execução em função do tamanho do programa linear codificado (número de variáveis (N + P) + número de restrições (N + 1))
- Gráfico 2: Tempo de execução em função dos parâmetros do problema (número de brinquedos (N) + número de pacotes (P))

