Алгоритмы и модели вычислений. Задание 6

Сергей Володин, 272 гр. задано 2014.03.20

(каноническое) Задача 24

 $\psi = \overline{x_1} \vee x_2$. $\psi' = (\overline{x_1} \vee x_2 \vee y) \wedge (\overline{x_1} \vee x_2 \vee \overline{y})$. Граф $W_{\psi'}$ с раскраской:

(каноническое) Задача 25

1. $\psi = \overline{x_1} \lor x_2$, $\psi' = (\overline{x_1} \lor x_2 \lor y) \land (\overline{x_1} \lor x_2 \lor \overline{y})$. n = 3, m = 2. Граф $Q_{\psi'}$. Клика мощности s = m = 2 выделена красным цветом.

2. $(доказано \ на \ семинаре)$ 3-SAT \leqslant_m^p CLIQUE. Формула $\chi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3) \land \overline{x_3},$ $\chi' = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor y_1) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{y_1}) \land (x_1 \lor \overline{x_2} \lor y_2) \land (x_1 \lor \overline{x_2} \lor \overline{y_2}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_3} \lor y_3 \lor y_4) \land (\overline{x_3} \lor y_3 \lor y_4) \land (\overline{x_3} \lor \overline{y_3} \lor \overline{y_4}) \land (\overline{x_3} \lor \overline{y_3} \lor \overline{y_4}) \land (\overline{x_3} \lor \overline{y_3} \lor \overline{y_4}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{y_1}) \land (x_1 \lor \overline{x_2} \lor y_2) \land (x_1 \lor \overline{x_2} \lor \overline{y_2}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_3} \lor y_3 \lor y_4) \land (\overline{x_3} \lor y_3 \lor y_4) \land (\overline{x_3} \lor \overline{y_3} \lor \overline{y_4}) \land (\overline{x_3} \lor \overline{y_4}) \land (\overline{x_$

(каноническое) Задача 26

- 0. Исходный дизъюнкт $w=(a_i\vee b_i\vee c_i)$. Не будем писать индексы (рассматриваем один дизъюнкт). Рассмотрим $L\stackrel{\text{def}}{=} \{a,b,c,d,\overline{a}\vee \overline{b},\overline{a}\vee \overline{c},\overline{b}\vee \overline{c},a\vee \overline{d},b\vee \overline{d},c\vee \overline{d}\}.$
 - (a) Пусть w не выполнена. Тогда a=b=c=0. Найдем $q\colon \ \forall d\in\{0,1\}$ в L менее q формулы выполнены. Случаи:
 - і. d=0. Рассмотрим L, выделим выполненные дизъюнкции: $\{\not a,\not b,\not e,\not d,\overline{a}\vee \overline{b}\}$, $\overline{a}\vee \overline{c}$, $\overline{b}\vee \overline{c}$, $\overline{a}\vee \overline{d}$, $\overline{b}\vee \overline$
 - іі. d=1. $\{\not a, \not b, \not c, \boxed{d}, \boxed{\overline{a} \lor \overline{b}}, \boxed{\overline{a} \lor \overline{c}}, \boxed{\overline{b} \lor \overline{c}}, \cancel{a} \checkmark \overrightarrow{d}, \cancel{b} \checkmark \overrightarrow{d}, \cancel{c} \checkmark \overrightarrow{d}\}$. Выполнено 4 дизъюнкции.

Значит, $q > \max(4,6)$. Возьмем q = 7 и докажем вторую часть.

(b) Пусть w — выполнена. Тогда $\begin{bmatrix} a & = & 1 \\ b & = & 1 \end{bmatrix}$. Рассмотрим различные случаи, и подберем d так, чтобы было выполнено c = 1

 $\geqslant q \equiv 7$ дизъюнкций. Поскольку w и L симметричны относительно замены переменных (например, $a \leftrightarrow b$), разделим случаи по количеству a + b + c (количество единиц в наборе).

- і. (a,b,c)=(1,0,0). Возьмем d=0, получим $\{\overline{a},b,\not c,\not d,\overline{\overline{a}\vee \overline{b}},\overline{\overline{a}\vee \overline{c}},\overline{\overline{b}\vee \overline{c}},\overline{\overline{a}\vee \overline{d}},\overline{\overline{b}\vee \overline{d}},\overline{\overline{b}\vee \overline{d}},\overline{\overline{b}\vee \overline{d}}\}$ выполнено $7\geqslant 7\equiv q$ дизъюнкций.
- іі. (a,b,c)=(1,1,0). Возьмем d=0, получим $\{\overline{a},\overline{b},\cancel{c},\cancel{d},\overline{a}\sqrt{\overline{b}},\overline{\overline{a}\vee\overline{c}},\overline{\overline{b}\vee\overline{c}},\overline{a}\sqrt{\overline{d}},\overline{b}\sqrt{\overline{d}},\overline{c}\sqrt{\overline{d}}\}$ выполнено $7\geqslant 7\equiv q$ дизъюнкций.
- іїі. (a,b,c)=(1,1,1). Возьмем d=1, получим $\{[\overline{a}],[\overline{b}],[\overline{c}],[\overline{d}],\overline{a}$ $\forall \overline{b},\overline{a}$ $\forall \overline{c},\overline{b}$ $\forall \overline{c},\overline{a}$ $|\overline{b}|$, $|\overline{b}|$, $|\overline{c}|$ $|\overline{d}|$ $|\overline{b}|$ выполнено $7\geqslant 7\equiv q$ дизъюнкций.
- 1. $\psi' = (\overline{x_1} \lor x_2 \lor y) \land (\overline{x_1} \lor x_2 \lor \overline{y}).$ $L_1 = \{\overline{x_1}, x_2, y, d_1, x_1 \lor \overline{x_2}, x_1 \lor \overline{y}, \overline{x_2} \lor \overline{y}, \overline{x_1} \lor \overline{d_1}, x_2 \lor \overline{d_1}, y \lor \overline{d_1}\}$ $L_2 = \{\overline{x_1}, x_2, \overline{y}, d_2, x_1 \lor \overline{x_2}, x_1 \lor y, \overline{x_2} \lor y, \overline{x_1} \lor \overline{d_2}, x_2 \lor \overline{d_2}, \overline{y} \lor \overline{d_2}\}. \text{ Образ } \widetilde{\psi}' = L_1 \cup L_2. \ k = 2 \text{ (количество дизъюнктов)},$ Пороговое значение $kq = 2 \times 7 = 14.$
- 2. Возьмем набор $(x_1, x_2, y, d_1, d_2) = (0, 1, 1, 1, 0)$. Рассмотрим $L_1 = \{ \boxed{\overline{x_1}}, \boxed{x_2}, \boxed{y}, \boxed{d_1}, \boxed{x_1 \lor \overline{x_2}}, \boxed{x_1 \lor \overline{y}}, \boxed{\overline{x_2} \lor \overline{y}}, \boxed{\overline{x_1} \lor \overline{d_1}}, \boxed{x_2 \lor \overline{d_1}}, \boxed{y \lor \overline{d_1}} \}$ — выполнено 7 дизъюнкций Рассмотрим $L_2 = \{ \boxed{\overline{x_1}}, \boxed{x_2}, \boxed{y}, \cancel{y_2}, \boxed{x_1 \lor \overline{x_2}}, \boxed{x_1 \lor y}, \boxed{\overline{x_2} \lor y}, \boxed{\overline{x_1} \lor \overline{d_2}}, \boxed{x_2 \lor \overline{d_2}}, \boxed{y \lor \overline{d_2}} \}$ — выполнено 7 дизъюнкций Получаем, что в $\widetilde{\psi}'$ выполнено $2 \times 7 = 14 \geqslant 14 \equiv kq$ дизъюнкций \blacksquare .

(каноническое) Задача 27

Пусть $f: \Gamma \coprod \subset \Sigma^* \to \{0,1\}, f(x) = 1 \Leftrightarrow x \in \Gamma \coprod, \text{ и } T_f(x) = \text{poly}(|x|)$ (f вычислима за полиномиальное по |x| время). Считаем граф ориентированным.

- 1. Определим h(G, u, v) граф, полученный из G объединением **смежных** вершин u и v в одну \underline{uv} . Ребра, идущие в u, и только они идут в \underline{uv} ; ребра, идущие из v, и только они идут из \underline{uv} .
 - (a) Фиксируем гамильтонов граф G и его вершину u. Переберем все вершины v, такие, что $(u,v) \in E_G$ и рассмотрим h(G,u,v).
 - і. Пусть в некоторый ГЦ G входит ребро (u,v). Тогда h(G,u,v) гамильтонов. В u приходим из u_0 , из v уходим в v_1 . Значит, этот кусок ГЦ $u_0 \to u \to v \to v_1$ можно заменить на $u_0 \to \underline{uv} \to v_1$. Полученная последовательность вершин будет ГЦ в h(G,u,v)
 - іі. Хотя бы на одной v граф h(G, u, v) гамильтонов. Действительно, рассмотрим произвольный ГЦ в G. В нем есть пара смежных вершин. Возьмем их за (u, v), воспользуемся предыдущим утверждением.
 - ііі. Пусть при некотором v граф h(G,u,v) гамильтонов. Тогда в G есть ГЦ, в который входит (u,v). Действительно, рассмотрим имеющийся ГЦ $s \to ... \to \underline{uv} \to ... \to s$, заменим \underline{uv} на $u \to v$, получим ГЦ в G.
 - (b) Определим индуктивно $w_1...w_k = w_1...w_{k-1}, w_k$ (база k=2).
 - (c) Определим индуктивно $G_{w_1w_2} \equiv G_{w_2}^{w_1} = h(G, w_1, w_2)$. Определим $G_{w_1w_2w_3} = (G_{w_2}^{w_1}) \frac{w_1w_2}{w_3}$, ..., $G_{w_1w_2...w_k} = (G_{w_1w_2...w_{k-1}}) \frac{w_1...w_{k-1}}{w_k}$ (вершины (w_i, w_j) считаем смежными).
 - (d) Пусть $G_{w_1...w_k}$ гамильтонов, и в некотором его цикле содержится $\underline{w_1...w_k}, w_{k+1}, ..., w_n$. Тогда $G_{w_1...w_{k-1}}$ гамильтонов, и в некотором его цикле содержится $\underline{w_1...w_{k-1}}, w_k, w_{k+1}, ..., w_n$. Действительно, цикл в $G_{w_1...w_k}$: $s \to ... \to \underline{w_1...w_k} \to w_{k+1} \to ... \to w_n$. Поскольку $G_{w_1...w_k} = (G_{w_1...w_{k-1}})^{\underline{w_1}...w_{k-1}}_{\underline{w_k}}$, и вершины $\underline{w_1...w_{k-1}}$ и w_k смежные в $\overline{G}_{w_1...w_{k-1}}$, в $G_{w_1...w_{k-1}}$ есть цикл $s \to ... \to \underline{w_1...w_{k-1}} \to w_k \to w_{k+1} \to ... \to w_n \to s$, и он гамильтонов, так как содержит все вершины графа, и каждая встречается один раз.
 - (е) Пусть $G_{w_1...w_n}$ гамильтонов. Тогда в некотором ГЦ G содержится $w_1,...w_n$. Действительно, $G_{w_1...w_n}$ имеет одну вершину $(n=|V_G|)$, и она образует гамильтонов цикл. Применим предыдущее утверждение: в $G_{w_1...w_{n-1}}$ содержится $\underline{w_1...w_{n-2}}$, w_n , еще раз: в $G_{w_1...w_{n-2}}$ содержится $\underline{w_1...w_{n-2}}$, w_{n-1} , w_n , *** (индукция), в G содержится $w_1,...,w_n$.
- 2. Алгоритм. Вычисляем f(G)
 - (a) Если f(G) = 0, то ГЦ нет, возвращаем \varnothing
 - (b) Иначе выбираем случайную вершину w_1 . Рассмотрим ее соседей: $(w_1, w_2) \in E_G$. Один из графов $G_{w_1w_2}$ (получается за полиномиальное время) будет гамильтоновым (1(a)ii). Далее продолжим процедуру (рассмотрим соседей $w_1w_2...$). Получим некоторую последовательность вершин $w_1...w_n$, и (инвариант цикла) $G_{w_1...w_n}$ гамильтонов. Тогда (1e) в G есть Γ Ц $(w_1,...w_n)$. Возвращаем $(w_1,...w_n)$.
 - (c) Время работы. На каждом шаге время $O(|V_G| \times T_f(G)) = \text{poly}(|x|)$. На каждом шаге вершин становится меньше на одну, поэтому шагов не больше, чем $|V_G|$. Значит, суммарное время $O(|V_G| \times \text{poly}(|x|)) = \text{poly}(|x|)$.