

YACHAY TECH UNIVERSITY

COURSE PROGRAM

1. General Information							
A.	SCHOOL	Physical Sciences and Nanotechnology		В.	MAJOR	Physics	
C.	COURSE	Computational Physics II			D.	CODE	ECFN-PHY-1109
E.	CURRICULAR UNIT	Professional			F.	STUDY MODE	In person
G.	TOTAL HOURS	48 ¹	48 ²	48 ³			

2. Prerequisites and Corequisites					
PREREQUISITES		COREQUISITES			
COURSE	Code	COURSE	Code		

3. Course Description

This is an advanced course on object-oriented programming for physics. It is the second module of the computational physics series taught at Yachay Tech. The course focuses on introducing advanced numerical methods and simulation techniques used in physics, and provides an overview of recent progress made in several areas of scientific computing. The course includes detailed step-by-step examples of how to design software and use parallel programming to solve problems in physics. Topics range from advanced data analysis, through ordinary and partial differential equations, nonlinear dynamics and chaos, basic thermodynamics and fluid simulations, to an introduction to machine learning. Each section of the course includes practical examples from different areas of science and technology in which computational physics and high performance computing have played an important role in recent years.

4. Course Contribution to professional training

This course helps students improve programming skills for the design and implementation of parallel software dedicated to applications in physics.

¹ Teaching Hours

² Hours of Internship and Experimental Learning

³ Hours of Independent Learning

5. Course objectives

- Improve object-oriented programming skills to solve physics problems within Linux environments.
- Design algorithms, implement and debug parallel software within the message passing interface in Python language.
- Apply numerical methods and computational techniques to simulate physical systems via reusable and extensible code packages.
- Use high-performance computing in research applications on thermodynamics, fluid dynamics, astrophysics, electromagnetism, particle physics, classical mechanics, quantum mechanics, and other areas of physics.

6. Units / Contents					
CURRICULAR UNITS	CONTENTS				
Unit 1.	Ordinary differential equations, and initial value problems				
Ordinary differential	Euler methods, Runge-Kutta methods, and applications				
equations in physics	Boundary value problems, shooting and finite difference methods, applications				
Unit 2.	Python classes and modules				
	Standalone modules and python packaging for physics				
object-oriented programming Timing tests and efficient coding					
Unit 3.	High-performance computing (HPC) and job managers				
Parallel computing for physics	Parallel computing, CPU/GPU, multiprocessing and joblib				
	The Message Passage Interface (MPI) and Application Programming Interfaces (APIs)				
Unit 4.	Partial differential equations, generalities, classification and solving methods				
Partial differential equations	Parabolic and elliptical problems. Heat and Poisson equations				
in physics	Hyperbolic problems: Introduction to computational fluid dynamics (CFD)				
Unit 5.	Advection, thermodynamic simulations and introduction to molecular dynamics				
	Nonlinear dynamics, chaotic systems, fractals and statistical growth				
computational physics	Introduction to machine learning				

7. Learning outcomes of the course

CAREER LEARNING OUTCOMES (ONLY THOSE THAT SPECIFICALLY APPLY TO THE SUBJECT)

- Improve object-oriented programming skills to solve physics problems within Linux environments.
- Design algorithms, implement and debug parallel software within the message passing interface in Python language.
- Apply numerical methods and computational techniques to simulate physical systems via reusable and extensible code packages.
- Use high-performance computing in research applications on thermodynamics, fluid dynamics, astrophysics, electromagnetism, particle physics, D. classical mechanics, guantum mechanics, and other areas of physics.

8. Methodology

- 1. Interactive lectures including theory and programming tasks.
- 2. Laboratory classwork including programming exercises and quizzes on reading material.
- 3. Individual and group projects including programming homework and research.

Scientists

9. Information Sources (Bibliography)

9.1 Main						
Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at Yachay Tech Library	
Landau, Rubin	Computational physics : problem solving with python	3rd	2015		530.0113 L2539c 2015	
9.2 Complementary						
Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at Yachay Tech Library	
Pang, Tao	An introduction to computational physics	2nd	2006	Cambridge University Press – United States	530.0285 P1917a 2006	
	Python Programming And Numerical Methods: A Guide For Engineers And	1st	2020	Elsevier: https://pythonnumericalmethods.bei	Online	

keley.edu/notebooks/Index.html

10. Student's Evaluation						
10.1. Evaluation during the course						
Midterm Exam (EME) 🗹	Formative Evaluation (EFO) 🗹	Laboratory (LAB) 🗹	Final Exam (EFI) 🗹			

The inputs that contribute to the completion of this format must be taken from the major project or major redesign approved by CES.

Prepared by:	Reviewed by:	Approved by:
PROFESSOR - PROFESSORS	DESIGNATED PERSONNEL	DEAN – LANGUAGE DIRECTOR
SIGNATURE AND DATE:	SIGNATURE AND DATE:	SIGNATURE AND DATE: