

P-Channel 1.8-V (G-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^b	Q _g (Typ.)	
	0.009 at $V_{GS} = -4.5 \text{ V}$	- 13.7		
- 8	0.011 at V _{GS} = - 2.5 V	- 12.4	55 nC	
	0.016 at V _{GS} = - 1.8 V	- 10		

FEATURES

- Halogen-free According to IEC 61249-2-21 Available
- TrenchFET[®] Power MOSFET
- 1.8 V Rated
- 100 % R_g Tested

Ordering Information: Si4465ADY-T1-E3 (Lead (Pb)-free)

Si4465ADY-T1-GE3 (Lead (Pb)-free and Halogen-free)

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS	T _A = 25 °C, unles	ss otherwise r	noted		
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	V _{DS}	- 8	V		
Gate-Source Voltage	V_{GS}	± 8	V		
	T _A = 25 °C	I _D	- 13.7		
Continuous Drain Current (T _{.I} = 150 °C) ^{a, b}	T _A = 70 °C		- 11		
Continuous Drain Current (1 _J = 150 °C) ^{4, 2}	T _C = 25 °C		- 20		
	T _C = 70 °C		- 16	Α	
Pulsed Drain Current		I _{DM}	- 40		
Continuous Source Current (Diode Conduction) ^{a, b}		I _S	- 2.5		
		I _{SM}	40	1	
	T _A = 25 °C		3.0	W	
Mariana Bana Biraina in a h	T _A = 70 °C	P _D	1.95		
Maximum Power Dissipation ^{a, b}	T _C = 25 °C		6.5	VV	
	T _C = 70 °C		4.2		
Operating Junction and Storage Temperature Ran	T _J , T _{stg}	- 55 to 150	°C		

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Manifestory Investigation to Ambient (MOCEFT)	t ≤ 10 s	R _{thJA}	34	41	°C/W
Maximum Junction-to-Ambient (MOSFET) ^a	Steady State		67	80	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	15	19	

Notes:

a. Surface Mounted on 1" x 1" FR4 board.

b. $t \le 10 \text{ s}$.

Si4465ADY

Vishay Siliconix

SPECIFICATIONS T _J = 25 °C, unless otherwise noted							
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static				•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 0.45		- 1.0	V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 100	nA	
Zara Cata Valtaga Drain Current	_	V _{DS} = -8 V, V _{GS} = 0 V V _{DS} = -8 V, V _{GS} = 0 V, T _J = 55 °C			- 1	μΑ	
Zero Gate Voltage Drain Current	I _{DSS}				- 5		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	- 20			Α	
		$V_{GS} = -4.5 \text{ V}, I_D = -14 \text{ A}$		0.0075	0.009		
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -2.5 \text{ V}, I_D = -12 \text{ A}$		0.0092	0.011	Ω	
		$V_{GS} = 1.8 \text{ V}, I_D = 10 \text{ A}$		0.013	0.016		
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 10 V, I _D = - 14 A		58		S	
Diode Forward Voltage ^a	V_{SD}	I _S = - 2.1 A, V _{GS} = 0 V		- 0.57	- 1.2	V	
Dynamic ^b			'	•		l	
Total Gate Charge	Q_g			55	85		
Gate-Source Charge	Q_{gs}	$V_{DS} = -4 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -14 \text{ A}$		6		nC	
Gate-Drain Charge	Q_{gd}			10			
Gate Resistance	R_{g}			2.5	3.8	Ω	
Turn-On Delay Time	t _{d(on)}			33	50		
Rise Time	t _r	V_{DD} = - 4 V, R_L = 4 Ω		170	255		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong$ - 10 A, V_{GEN} = - 4.5 V, R_g = 6 Ω		168	255	ns	
Fall Time	t _f			112	170		
Source-Drain Reverse Recovery Time t _{rr}		I _F = - 2.1 A, dl/dt = 100 A/μs		85	130		
Body Diode Reverse Recovery Charge	Q _{rr}	1μ = - 2.1 π, αι/αι = 100 π/μδ		81	125	nC	

Notes:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$

b. Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

V_{DS} - Drain-to-Source Voltage (V)

Output Characteristics

On-Resistance vs. Drain Current

VGS date to bounce voltage (V)

 $V_{DS}\,-\,$ Drain-to-Source Voltage (V)

Capacitance

On-Resistance vs. Junction Temperature

Vishay Siliconix

VISHAY

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

T_C – Case Temperature (°C)

Current Derating

Power, Junction-to-Ambient

^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Vishay Siliconix

VISHAY.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?73856.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08