VIT Vellore Institute of Technology

SCHOOL OF MECHANICAL ENGINEERING

Continuous Assessment Test - I - Fall Semester 2019-2020

Programme Name & Branch:

B.Tech (BME, BEM, BMA)

Course Name & Code: Heat Transfer, MEE2005

Class Number: 1210 Slot: A1/TA1/V1 Exam Duration: 90 mins Maximum Marks: 50

General instruction(s):

Use of Heat and Mass Transfer Data book is permitted

Assume Suitable data if required

S.No.	Answer all questions (5 x 10 = 50 Marks) Question	Course Outcome (CO)
1.	The inside of a furnace wall is at 1000°C and with the existing wall of material with thermal conductivity of 1.7 W/mK, looses 2.5 kW/m² when the outside is exposed to convection to air at 30°C with h = 27 W/m²K. Determine the wall thickness. Additionally 75 mm thickness of insulation with k = 0.15 W/mK is added inside. The furnace wall temperature and the surrounding temperature and convection coefficient remain unchanged. Determine the reduction in heat flow and reduction in the outside surface temperature.	COI
	Derive the expression of critical radius of insulation. Heat is generated at the constant rate of $2 \times 10^8 \text{ W/m}^3$ in a copper sphere ($k = 386 \text{ W/m}K$) of 1 cm radius. The sphere is cooled by convection from its outer surface into an ambient at 10°C with a convection coefficient of 2000 W/m^2K . What would be the maximum rate of heat transfer can be achieved by the insulation with	COI
10	Derive a study state temperature profile $(T=f(x))$ for a semi-infinite slab width 2L) with constant heat generation (g), cooling in the environment T_{∞}). Assume the other parameters as constant.	CO2
the ste (a) con (b)	0.04 m that is generating heat at a constant rate of $q_{gen} = 4 \times 10^7 \text{ W/m}^3$. The heat generated is dissipated to the environment steadily. The outer race of the sphere is maintained at a uniform temperature of 80°C and the termal conductivity of the sphere is $k = 15 \text{ W/m}^2$ C. Assuming addy one dimensional heat transfer, Express the differential equation and the boundary conditions for heat adduction through the sphere. Determine the temperature at the centre of the sphere.	CO2
An boil taste take.	egg with mean diameter of 40 mm and initially at 20°C is placed in a ling water pan for 4 minutes and found to be boiled to the consumers e. For how long should a similar egg for same consumer be boiled when in from a refrigerator at 5°C? Take the following properties for egg: "mal conductivity = 50 W/m°C, density = 1200 kg/m³, Specific heat = 2 g°C and heat transfer coefficient = 100 W/m²°C.	CO3

SPARCHL YIT QUESTION PAPERS