FLIP: Cross-domain Face Anti-spoofing with Language Guidance

Koushik Srivatsan Muzammal Naseer Karthik Nandakumar Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) Abu Dhabi, United Arab Emirates

{koushik.srivatsan, muzammal.naseer, karthik.nandakumar}@mbzuai.ac.ae

ICCV 2023

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Introduction

- Presentation attack instruments (PAI) such as printed photos, replayed videos, or 3D synthetics masks
- Existing Face anti-spoofing (FAS) methods fail to generalize well
 - (a) Variations due to <u>camera sensors</u>, <u>presentation attack instruments</u>, <u>illumination changes</u>, and image resolution cause a **large domain gap** between the source and target distributions
 - (b) FAS benchmark datasets have **limited training data**, causing the model to overfit to the source domain
- Propose a multimodal contrastive learning strategy, which enforces the model to learn more generalized features that bridge the FAS domain gap even with limited training data.

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Framework

- Preliminary
- Framework
- Method
- Experiment
- Conclusion

FLIP-Vision

$$[\mathbf{c}_k,oldsymbol{e}_k]=\mathcal{V}_k([\mathbf{c}_{k-1},oldsymbol{e}_{k-1}]) \qquad k=1,2,\cdots,K.$$
 $oldsymbol{x}= ext{ImageProj}(\mathbf{c}_K) \qquad oldsymbol{x}\in\mathbb{R}^{d_{vl}}.$

FLIP-Image-Text Similarity

 $\boldsymbol{w}_k = \mathcal{L}_k(\boldsymbol{w}_{k-1})$ $k = 1, 2, \cdots, K.$

$$oldsymbol{z} = exttt{TextProj}(w_K^Q) \qquad \qquad oldsymbol{z} \in \mathbb{R}^{d_{vl}}$$

$$p(\hat{y}|x) = \frac{\exp(sim(\boldsymbol{x}, \boldsymbol{z}_{\hat{y}})/\tau)}{\exp(sim(\boldsymbol{x}, \boldsymbol{z}_r)/\tau) + \exp(sim(\boldsymbol{x}, \boldsymbol{z}_s)/\tau)},$$

Prompt No.	Real Prompts	Spoof Prompts
P1	This is an example of a real face	This is an example of a spoof face
P2	This is a bonafide face	This is an example of an attack face
P3	This is a real face	This is not a real face
P4	This is how a real face looks like	This is how a spoof face looks like
P5	A photo of a real face	A photo of a spoof face
P6	This is not a spoof face	A printout shown to be a spoof face

(b) FLIP-Image-Text Similarity

FLIP-Image-Text Similarity

(c) FLIP-Multimodal-Contrastive-Learning

$$m{x}^{v_1} = \mathcal{V}(I^{v_1}), \quad m{x}^{v_2} = \mathcal{V}(I^{v_2})$$
 $m{h}_1 = \mathcal{H}(m{x}^{v_1}) \;, \; h_2 = \mathcal{H}(m{x}^{v_2}) \; \quad m{h}_1, m{h}_2 \in \mathbb{R}^{d_h}$ $m{h}_1 = \mathcal{H}(m{x}^{v_1}) \;, \; h_2 = \mathcal{H}(m{x}^{v_2}) \; \quad m{h}_1, m{h}_2 \in \mathbb{R}^{d_h}$ $m{h}_1, m{h}_2 \in \mathbb{R}^{d_h}$ $m{h}$

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Experimental Setup

- Each dataset is considered as a domain
- Protocol 1
 - 3-source-to-single-target domain
- Protocol 2
 - Large scale 3-source-to-single-target domain
- Protocol 3
 - single-source-to-single-target domain

Evaluation of cross-domain performance

		$\mathbf{OCI} \to \mathbf{M}$		$\mathbf{OMI} \to \mathbf{C}$		$\mathbf{OCM} \to \mathbf{I}$			$\mathbf{ICM} \to \mathbf{O}$			Avg.		
I	Method	HTER	AUC	TPR@ FPR=1%	HTER	AUC	TPR@ FPR=1%	HTER	AUC	TPR@ FPR=1%	HTER	AUC	TPR@ FPR=1%	HTER
	MADDG (CVPR' 19) [38]	17.69	88.06	_	24.50	84.51	_	22.19	84.99	_	27.98	80.02	_	23.09
l	MDDR (CVPR' 20) [44]	17.02	90.10	_	19.68	87.43	_	20.87	86.72	_	25.02	81.47	_	20.64
1	NAS-FAS (TPAMI' 20) [53]	16.85	90.42	_	15.21	92.64	_	11.63	96.98	_	13.16	94.18	_	14.21
I	RFMeta (AAAI' 20) [39]	13.89	93.98	_	20.27	88.16	_	17.30	90.48	_	16.45	91.16	_	16.97
j	D^2 AM (AAAI' 21) [6]	12.70	95.66	_	20.98	85.58	_	15.43	91.22	_	15.27	90.87	_	16.09
I	DRDG (IJCAI' 21) [28]	12.43	95.81	_	19.05	88.79	_	15.56	91.79	_	15.63	91.75	_	15.66
0-shot S	Self-DA (AAAI' 21) [46]	15.40	91.80	_	24.50	84.40	_	15.60	90.10	_	23.10	84.30	_	19.65
I	ANRL (ACM MM' 21) [27]	10.83	96.75	_	17.85	89.26	_	16.03	91.04	_	15.67	91.90	_	15.09
I	FGHV (AAAI' 21) [26]	9.17	96.92	_	12.47	93.47	_	16.29	90.11	_	13.58	93.55	_	12.87
S	SSDG-R (CVPR' 20) [18]	7.38	97.17	_	10.44	95.94	_	11.71	96.59	_	15.61	91.54	_	11.28
S	SSAN-R (CVPR' 22) [48]	6.67	98.75	_	10.00	96.67	_	8.88	96.79	_	13.72	93.63	_	9.80
I	PatchNet (CVPR' 22) [42]	7.10	98.46	_	11.33	94.58	_	13.40	95.67	_	11.82	95.07	_	10.90
(GDA (ECCV' 22) [67]	9.20	98.00	_	12.20	93.00	_	10.00	96.00	_	14.40	92.60	-	11.45
0 -14 I	DiVT-M (WACV' 23) [23]	2.86	99.14	_	8.67	96.62	_	3.71	99.29	_	13.06	94.04	-	7.07
0-shot	ViT (ECCV' 22) [16]	1.58	99.68	96.67	5.70	98.91	88.57	9.25	97.15	51.54	7.47	98.42	69.30	6.00
5 abot	ViT (ECCV' 22) [16]	3.42	98.60	95.00	1.98	99.75	94.00	2.31	99.75	87.69	7.34	97.77	66.90	3.76
5-shot	ViTAF* (ECCV' 22) [16]	2.92	99.62	91.66	1.40	99.92	98.57	1.64	99.64	91.53	5.39	98.67	76.05	3.31
I	FLIP-V	3.79	99.31	87.99	1.27	99.75	95.85	4.71	98.80	75.84	4.15	98.76	66.47	3.48
0-shot I	FLIP-IT	5.27	98.41	79.33	0.44	99.98	99.86	2.94	99.42	84.62	3.61	99.15	84.76	3.06
I	FLIP-MCL	4.95	98.11	74.67	0.54	99.98	100.00	4.25	99.07	84.62	2.31	99.63	92.28	3.01

Evaluation of cross-domain performance

Ablation Studies

Method	$ \mathbf{OCI} \to \mathbf{M}$		OMI	$\mathbf{OMI} \to \mathbf{C}$ OC		$I \to I$	$\mathbf{ICM} \to \mathbf{O}$		Avg.
1120220	HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC	HTER
Scratch	18.32	87.36	40.05	61.13	19.22	88.15	29.72	73.66	25.86
BeIT [1]	4.73	98.46	7.86	96.62	13.51	92.42	15.19	91.95	8.70
ImageNet [16]	1.58	99.68	5.70	98.91	9.25	97.15	7.47	98.42	6.00
CLIP (FLIP-V)	3.79	99.31	1.27	99.75	4.71	98.80	4.15	98.76	3.48

Prompt	$\mathbf{OCI} \to \mathbf{M}$		OMI	$\mathbf{OMI} \to \mathbf{C}$		$\mathbf{OCM} \to \mathbf{I}$		$\mathbf{ICM} \to \mathbf{O}$	
	HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC	HTER
P1	6.00	98.17	0.54	99.97	3.60	99.19	3.47	99.24	3.40
P2	8.32	96.38	1.05	99.90	2.98	99.48	5.74	98.39	4.52
P3	4.68	98.43	0.21	99.99	4.30	99.06	4.07	99.02	3.31
P4	5.78	97.91	0.65	99.93	3.72	99.21	3.54	99.28	3.42
P5	6.48	98.37	0.46	99.96	2.52	99.55	3.24	99.30	3.17
P6	5.58	98.00	0.3	99.99	2.85	99.28	3.03	99.46	2.94
Ensemble	5.27	98.41	0.44	99.98	2.94	99.42	3.61	99.15	3.06

$$L_{mcl} = \alpha L_{ce} + \beta L_{simCLR} + \gamma L_{mse}$$

$(lpha,eta,\gamma$)	(1,1,1)	(1,1,0)	(1,0,1)	(1,2,2)	(1,5,5)
HTER	3.01	3.15	3.47	3.20	3.67

Visualization of Attention maps

Visualization of Mis-match class

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Conclusion

• Vision-language pre-training (e.g., CLIP) have **excellent generalization ability** for the face anti- spoofing task

• Aligning the image representations to text representations produced by the text encoder further boosts generalizability

• Using **multimodal contrastive learning** also enhances the generalizability across data regimes and domain gaps.