对 Δt 进行讨论

通过编码实现 Δt 从 $0.0001\sim0.003$ 的变动(步长为 0.0001),观测每个 Δt 任意时刻 t (在 $0\sim10$ 以内,且时刻的步长为 Δt)的 T 的数值解与解析解。得到下图(部分),其中 1 代表此时此刻(t,x)的解析解大于数值解; -1 代表此时此刻 (t,x)的解析解等于数值解。

	x=0	x=0.02	x=0.04	x=0.06	x=0.08	x=0.1	x=0.12	 x=0.94	x=0.96	x=0.98	x=1
deltt=0.0001	0	-1	-1	-1	-1	-1	-1	 -1	-1	-1	0
deltt=0.0002	0	-1	-1	-1	-1	-1	-1	 -1	-1	-1	0
deltt=0.0003	0	-1	-1	-1	-1	-1	-1	 -1	-1	-1	0
deltt=0.0004	0	-1	-1	-1	-1	-1	-1	 -1	-1	-1	0
deltt=0.0005	0	-1	-1	-1	-1	-1	-1	 -1	-1	-1	0
deltt=0.0006	0	-1	-1	-1	-1	-1	-1	 -1	-1	-1	0
deltt=0.0007	0	-1	-1	-1	-1	-1	-1	 -1	-1	-1	0
deltt=0.0008	0	-1	-1	-1	-1	-1	-1	 -1	-1	-1	0
deltt=0.0009	0	-1	-1	-1	-1	-1	-1	 -1	-1	-1	0
deltt=0.0010	0	-1	-1	-1	-1	-1	-1	 -1	-1	-1	0
deltt=0.0011	0	-1	-1	-1	-1	-1	-1	 -1	-1	-1	0
deltt=0.0012	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0013	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0014	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0015	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0016	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0017	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0018	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0019	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0020	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0021	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0022	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0023	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0024	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0025	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0026	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0027	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0028	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0029	0	1	1	1	1	1	1	 1	1	1	0
deltt=0.0030	0	1	1	1	1	1	1	 1	1	1	0

图 1: 解析解与数值解关于 deltt 的大小关系

结论: $1.同-\Delta t$ 的任意时刻与位置处的 T 的解析解与数值解的误差同号(即解析解同时大于数值解或者解析解同时小于数值解,边界位置除外);

 $2. \Delta t$ 在 $0\sim0.0011$ 时 (大约), T 的解析解小于数值解, 当 Δt 大于等于 0.0012 时, T 的解析解大于数值解。

代码

```
clc
clear all
close all
%% parameter set up
format long
afa=0.06;
deltx=0.02;
T0=50;
endt=10;endx=1;n=(0.003-0.0001)/0.0001+1;
A=zeros(n,endx/deltx+1);
deltt=zeros(1,n);
for i=1:n
deltt(1,i)=0.0001*i;
end
%% calculate
for p=1:n
B=change(afa,deltx,deltt(1,p),T0,endt,endx);A(p,:)=B;
end
for i=1:n
     for j=1:endx/deltx+1
         if A(i,j)>0
              A(i,j)=1;
         elseif A(i,j) < 0
                   A(i,j)=-1;
         end
     end
end
```

```
if A(1,k-1) \sim = 0
    A(1,k-1)=0;
end
%solve
for n=2:1:numbert
  for i=2:1:numberx-1
      1));A(n,i)=Tin;%calculate inner value
  A(n,1)=0; A(n,numberx)=0; %boundary condition set up
end
%% post-processing
%calculate the exact value
k=randi([1,numbert]);
B1=A(k,:);
B2=zeros(1,numberx);
p=1;
for x=0:deltx:endx
    T=T0*sin(pi*x)*exp((-afa*(pi)^2)*(k-1)*deltt);B2(1,p)=T;p=p+1;
end
B2(1,p-1)=0;
%calculate the variance
B=B2-B1;
% Var=var(B);Vart=Var
end
```