Molecular Networking and in-silico MS/MS Database: a workflow to dereplicate and visualize results

I LC-MS/MS analysis of crude extract

- use ramp energy gradient or combined energies (ex: 15,30 and 45 eV) for optimal MS/MS spectrum coverage

II Conversion of proprietary to .mzXML format

- use ProteoWizard (http://proteowizard.sourceforge.net/)

III Generate Molecular Networks on GNPS

- GNPS server : http://gnps.ucsd.edu
- follow instructions at https://bix-lab.ucsd.edu/display/Public/ Molecular+Networking+Documentation for optimal parameters and MN visualization in Cytoscape
- Cytoscape is available at http://www.cytoscape.org/

IV Fetch clustered data from the MN on GNPS

- hit «Download Clustered Data». You will get a folder containg files as described on **Fig. I**
- the MN attributes file appears as an .out file in the folder. Let's call it cytoscape_attributes.out
- the clustered spectra appears as a .mgf file in the folder. Let's call it your_spectra.mgf

V Library search using Tremolo

- Tremolo runs under Linux. If you don't have a Linux-based system you can easily install Ubuntu on your Windows or Mac OS via a virtual machine. See instructions here: http://www.wikihow.com/Install-Ubuntu-on-VirtualBox
- download Tremolo http://proteomics.ucsd.edu/Software/Tremolo/
- in order to easily perform library search using Tremolo and merge results within the MN attributes file we wrote a python scipt (treat.py) and a bash script (run.sh). These scripts and the UNPD_ISDB files should be placed in the folders (respect folders names) as described in **Fig. 2**
- to adjust the library search parameters you nead to edit the **run.sh** file.

The important parameters are seen on Fig. 3

- TOLERANCE: ± tolerance for parent mass search in Da. Set a small tolerance for dereplication using parent ion mass as prefilter, keeping in mind the resolution of your data. Increase to the wanted range for variable dereplication search (ex: 100 or 200 Da) Caution as this will also increase calculation times!
- SCORE_THRESHOLD: should be kept low when using *in-silico* DB. Typically 0.2 to 0.3.
- TOP_K_RESULTS: Defines the maximal number of results returned

To launch the search open a terminal window and navigate to the results folder. Type:

bash run.sh your_spectra.mgf cytoscape_attributes.out results.out

Thermo & Staces of the state of

Fig. 2 Organization of the files & folders to run the ISDB library search

```
# Set the tolerance to be used
TOLERANCE=0.005
# Score threshold in Da
SCORE_THRESHOLD=0.2
# Top K results
TOP_K_RESULTS=5
```

Fig. 3 Library search parameters to edit in run.sh

VIII Visualize dereplication results in Cytoscape

- Install chemViz plugin (http://apps.cytoscape.org/apps/chemviz)
- load the results.out file as attribute file with corresponding SMILES and IDs
- select nodes of interest, right click and under Chemoinformatic tools select Show structures window.

Start exploring the network!

Examples of results visualization

Fig. A - variable dereplication against the UNPD-ISDB indicates the possible presence of diterpenoids for this extract of *Salvia* sp.

Fig. B - structures can be viewed as a table wich can in turn be searched for substructures or exported.

Fig. C - here caffeoyl and coumarin glycosylated compounds seem to hide under this cluster.

Fig. D - structures can also be directly displayed on top of the nodes

Notes

- Outliers in the panel of proposed structures should be spotted (see **Fig. A** for ex.) and attention should be focussed on compounds of a common class or bearing common structural functionalities that can lead to similar MS/MS fragmentation data (sugars, aliphatic side chains etc ...)
- Merging orthogonal informations: phylogenetic data, comparison of hits logP with experimental retention times, input of exact mass for the molecular formula determination is the key to assess the relevance of the hits.
- More than an strict dereplication tool, using variable dereplication mode against the ISDB should be seen as an exploratory tool allowing to gain a feeling of the chemistry behind a cluster of metabolites.