Curious Computation Models

CONNECTIONS workshop 2019 by fuzzy binaires

Gidon Ernst

an algorithm is a sequence of instructions to be executed by a computer

Ada Lovelace

f.I	Nature of Operation.	Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	Data			Working Variables. Result Variables.													
Number of Operation.						2000-	1V ₃ 00 00 2	1V3 0004 R	\$70000 [***0000	\$ 0000 [8,0000 [\$ 0000 L	F*0000 [*V.100000	*F.3000000000000000000000000000000000000	°V ₁₂ ○ 0 0 0 0 0	Ψ _B	E le a Carallo de fraction.	F BolomalON forestion.	"B" in a decimal Out	"V ₃₁ O 0 0 0 0 B ₇
3 4 5 6	- + + + -	$V_4 = {}^{\dagger}V_1$ $V_4 + {}^{\dagger}V_1$ $V_4 + {}^{\dagger}V_4$ $V_{11} + {}^{\dagger}V_3$ $V_{13} = {}^{\dagger}V_{11}$	2V ₄ , 1V ₄ , 1V ₆ 2V ₄	$\begin{cases} 1V_{x}^{2} = 2V_{x}^{2} \\ 1V_{1} = 1V_{1}^{2} \\ 1V_{2} = 2V_{2}^{2} \\ 1V_{3} = 2V_{3}^{2} \\ 2V_{4} = 1V_{3}^{2} \\ 2V_{5} = 9V_{4}^{2} \\ 2V_{11} = 2V_{31}^{2} \\ 1V_{2} = 1V_{2}^{2} \\ 2V_{11} = 6V_{21}^{2} \\ 4V_{22} = 1V_{33}^{2} \end{cases}$		1	2		2 n 2 n - 1 0	2 n + 1 0	2					$ \begin{array}{r} 2n - 1 \\ 2n + 1 \\ 1 \\ 2n - 1 \\ \hline 2n - 1 \\ \hline 0 \end{array} $		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}-\Lambda_{\phi}$				
9 10	+ x	V ₁₁ +1V ₁₁ V ₁₂ +1V ₁₁ V ₁₂ +1V ₁₁	1V ₂ 2V ₁₁ 2V ₁₂ 2V ₁₃	$ \begin{cases} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{2}V_{2} = {}^{1}V_{2} \\ {}^{2}V_{3} = {}^{1}V_{2} \\ {}^{2}V_{4} = {}^{1}V_{6} \\ {}^{2}V_{13} = {}^{2}V_{13} \\ {}^{2}V_{14} = {}^{2}V_{14} \\ {}^{2}V_{14} = {}^{2}V_{14} \\ {}^{2}V_{14} = {}^{2}V_{14} \\ \end{cases} $	= 2 + 0 = 2		2				2 n	2 2			 n – 2	$\frac{2 n}{2} = \Lambda_1$ $\frac{2 n}{2} = \Lambda_2$	B_1 , $\frac{2 s}{2} = B_1 A_3$ 0	$\left\{-\frac{1}{2}, \frac{2n-1}{2n+1} + B_1, \frac{2n}{2}\right\}$	В			
17 18.	+ + × · + + ×	V ₁ + V ₂ V ₄ + 2V ₂ V ₆ + 2V ₂ V ₆ + 2V ₁ V ₇ + 2V ₁ V ₇ + 2V ₂	³ V _e ³ V ₇ ¹ V ₉ ² V ₁₁	V' = V' V' = V'	$= 2n - 1$ $= 2 + 1 = 3$ $= \frac{2n - 1}{3}$ $= \frac{2n}{2} \cdot \frac{2n - 1}{3}$ $= 2n - 2$ $= 3 + 1 = 4$ $= \frac{2n - 2}{2} \cdot \frac{2n - 1}{3} \cdot \frac{2n - 2}{3} = A_3$ $= B_3 \cdot \frac{2n}{2} \cdot \frac{2n - 1}{3} \cdot \frac{2n - 2}{3} = B_3 A_3$ $= A_0 + B_1 A_1 + B_2 A_2$ $= n - 3 (= 1)$	1 1			and the second s		2 n - 1 2 n - 1 2 n - 2 2 n - 2	4 4	-	2 n - 2 4 0	 n – 3	$\begin{cases} \frac{2n}{2}, \frac{2n-1}{3} \\ \frac{2n}{2}, \frac{2n-1}{3}, \frac{2n-2}{3} \\ 0 \\ \dots \\ y-three, \end{cases}$	B ₃ A ₃	$\left\{A_3+B_1A_1+E_3A_3^{'}\right\}$		B ₂		
24	+ +	"V ₁ + "V ₂	iv _s	$\begin{cases} {}^{4}V_{13} = {}^{6}V_{13} \\ {}^{6}V_{23} = {}^{1}V_{23} \\ {}^{1}V_{1} = {}^{1}V_{2} \\ {}^{1}V_{3} = {}^{1}V_{2} \\ {}^{1}V_{3} = {}^{6}V_{2} \\ {}^{6}V_{7} = {}^{6}V_{7} \\ \end{cases}$	= B ₇	100		I	-		0	0	-									В,

an algorithm is a sequence of instructions to be executed by a computer

which *problems* can be solved by algorithms?

A simple game

Goal: at least one green symbol in each box

Rules

- two colors: red, green
- if a hollow symbol is red, then the same solid symbol must be green and vice versa example: means

A simple game: possible solution

Goal: at least one green symbol in each box

Rules

- two colors: red, green
- if a hollow symbol is red, then the same solid symbol must be green and vice versa example: means

This game solves logical formulas!

Goal: at least one green symbol in each box

Corresponds to:

(P or ~Q or S) and (~P or Q or R) and (~S)

Credit: Martina Seidl (Uni Linz)

Solving the game

Goal: at least one green symbol in each box

- An example algorithm:
 - 1) guess the correct answer if one exists
 - 2) check that the answer solves the game

Solving the game

Goal: at least one green symbol in each box

- Another algorithm:
 - 1) pick arbitrary colors for the hollow symbols, then set the colors for solid symbols by the rules
 - 2) check if each box contains a green symbol
 - 3) repeat if necessary

an algorithm is a sequence of instructions to be executed by a computer

which *problems* can be solved by algorithms? answer depends on *model of computation*!

Alan Turing

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

Alonzo Church

Computation

Game of Life

Game of Life

Game of Life

http://www.rendell-attic.org/gol/tm.htm