# Chapter $4 \overline{\text{Vector Spaces}}$

## 4.1 Vector Spaces and the Invertible Matrix Theorem

Let A be an  $m \times n$  matrix  $A = [\boldsymbol{a}_1, \dots, \boldsymbol{a}_n]$ 

The **column space** of A is the span of its columns:  $\operatorname{Col}(A) = \operatorname{Span}\{a_1, \dots, a_n\}$ . It's dimension is called the **rank** of A.

The **null space** of A is all vectors solving the equation Ax = 0.

The sum of their dimensions must equal the size of A: Dim(Col(A)) + Dim(Nul(A)) = n.

A will map any vector from  $\mathbb{R}^n$  onto some space  $\mathbb{R}^k$ , where k = Rank(A). The dimensions of the column space therefor decides the dimension of the space we map onto. The null space then represents all the dimensions that "disappear" during the transform.

#### The Invertible Matrix Theorem

- A is invertible.
- The columns of A are linearly independent, and A spans  $\mathbb{R}^n$ .
- A is row-equivalent to the identity matrix  $I_n$ .
- A has n pivot columns.
- The dimensions of A's null space is zero. (Ax = x has only the solution x = 0).
- 0 is not an eigenvalue of A.
- $\bullet$  The determinant of A is different from zero.
- $A^T$  is also invertible, and all of this applies to it.

## 4.2 Coordinate systems and mapping

Consider a vector  $\boldsymbol{x}$  living in a vector space V. The vector  $\boldsymbol{x}$  is an abstract concept, living in some abstract space V. It may have some physical or gemoetric meaning or whatnot.

We now enforce a basis onto V, called  $\mathcal{B} = \{b_1, \dots, b_n\}$ . This makes V behave like  $\mathbb{R}^n$ , in the sense that each vector  $\mathbf{x}$  in V is mapped onto a vector  $[\mathbf{x}]_{\mathcal{B}}$  in  $\mathbb{R}^n$ . This is called a coordinate mapping  $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$  "onto" the basis  $\mathcal{B}$ . The vector space V might be foreign to us, and it can be important to create a mapping onto a more familiar vector space  $\mathbb{R}^n$ , which we know how behaves. This transformation is "one-to-one", mapping each point in V onto a point in  $\mathbb{R}^n$ , and vice versa. This relation is called an isomorphism, and makes any vector space V with a basis of n vectors indistinguishable from  $\mathbb{R}^n$ .

Usually, when a vector is written plainly as  $\boldsymbol{x}$ , we consider it to be written in a standard basis  $\mathcal{E} = \{\boldsymbol{e}_1, \, \boldsymbol{e}_2\} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ , meaning that  $\boldsymbol{x} = [\boldsymbol{x}]_{\mathcal{E}}$ .

The relation between x and  $[x]_{\mathcal{B}}$  is given by a **change-of-basis matrix**  $P_{\mathcal{B}}$ , which consists of the basis-vectors of  $\mathcal{B}$ , written in the basis of  $\mathcal{E}$ :

$$\boldsymbol{x} = P_{\mathcal{B}}[\boldsymbol{x}]_{\mathcal{B}}$$
  $P_{\mathcal{B}} = [\boldsymbol{b}_1 \ \boldsymbol{b}_2 \ \dots \ \boldsymbol{b}_n]$ 

# 4.3 Change of basis

This change of basis is just a special case of a more general change of basis between two basises  $\mathcal{B} = \{b_1, \dots b_n\}$  and  $\mathcal{C} = \{c_1, \dots c_n\}$ , both spanning the same vector space V. The general change of basis is then

$$[\boldsymbol{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [\boldsymbol{x}]_{\mathcal{B}} \qquad \qquad \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} = [[\boldsymbol{b}_1]_{\mathcal{C}} [\boldsymbol{b}_2]_{\mathcal{C}} \dots [\boldsymbol{b}_1]_{\mathcal{C}}]$$

1

The change-of-basis matrix from  $\mathcal{C}$  to  $\mathcal{B}$  is simply the inverse:  $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P} = \begin{pmatrix} P \\ \mathcal{C}\leftarrow\mathcal{B} \end{pmatrix}^{-1}$ 

The change of basis of a linear transformation is

$$[T]_{\mathcal{C}} = P[T]_{\mathcal{B}} P^{-1}$$

where P is the change-of-basis matrix  $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ 

## 4.4 Linear transformations (mappings) between vector spaces

Any linear transformation is solely defined by how it acts on the unit vectors.

Consider two vector spaces V and W, with basises  $\mathcal{B} = \{b_1, \dots b_n\}$  and  $\mathcal{C} = \{c_1, \dots, c_m\}$  in  $\mathbb{R}^n$  and  $\mathbb{R}^m$ , respectively. We introduce a *linear transformation*  $T: V \mapsto W$  such that T(x) = Ax. This is all well and good, but we might only have the vector x represented in the basis  $\mathcal{B}$ , and usually want it written in the basis  $\mathcal{C}$  after the transformation, as  $[T(x)]_{\mathcal{C}}$ .

What we want is some matrix M that carries us straight from  $[\boldsymbol{x}]_{\mathcal{B}}$  to  $[T(\boldsymbol{x})]_{\mathcal{C}}$ . If we combine the change of basis with T, we get

$$[T(\boldsymbol{x})]_{\mathcal{C}} = M[\boldsymbol{x}]_{\mathcal{B}}$$



**FIGURE 1** A linear transformation from V to W.

where

$$M = \left[ [T(\boldsymbol{b}_1)]_{\mathcal{C}} \dots [T(\boldsymbol{b}_n)]_{\mathcal{C}} \right] = \left[ [A\boldsymbol{b}_1]_{\mathcal{C}} \dots [A\boldsymbol{b}_n]_{\mathcal{C}} \right]$$

This matrix is called the matrix for T relative to the bases  $\mathcal{B}$  and  $\mathcal{C}$ .

If M is invertible, there exists an inverse linear transform  $T^{-1}$  with matrix representation  $M^{-1}$ , mapping every point in  $\mathcal{B}$  to a point in  $\mathcal{C}$ . This makes T an **isomorphism** (one-to-one mapping).

# Tigenvalues and Eigenvectors

#### 5.1 Eigenvalues and Eigenvectors

Let A be an  $n \times n$  matrix with eigenvalues  $\lambda_1, \lambda_2, \ldots, \lambda_n$  in decreasing order, and corresponding eigenvectors  $v_1, v_2, \ldots, v_n$ .

- The eigenvalues of A is given by the characteristic equation  $Det(A \lambda I) = 0$ .
- ullet If A is triangular, the eigenvalues are the entries of it's diagonal.
- If A has  $\underline{n}$  distinct eigenvalues, the eigenvectors are linearly independent. If A has degenerate eigenvalues, we have to check whether the eigenvector are independent or not.

#### 5.2 Diagonalization

#### The Diagonalization Theorem

An  $n \times n$  matrix A is diagonalizable if it has n linearly independent eigenvectors.

We can then write

$$A = PDP^{-1}$$

where D is a diagonal matrix and P is an invertable matrix such that

$$D = egin{pmatrix} \lambda_1 & & & & & \\ & \lambda_2 & & & & \\ & & \ddots & & & \\ & & & \lambda_n \end{pmatrix} \qquad P = egin{pmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_n \end{pmatrix}$$

# 5.3 Discrete dynamical systems

Cosider a difference equation on the form

$$x_{i+1} = Ax_i \qquad \Rightarrow \qquad x_k = A^k x_0$$

where  $\{x_0, x_1, ...\}$  is a vector sequence describing the properties of some system, and A is an  $n \times x$  invertable matrix, giving it n descrete eigenvalues, with n orthogonal eigenvectors spanning  $\mathbb{R}^n$ . This means any vector  $x_i$  can be written as a linear combination of these:

$$x_i = c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n$$

such that the matrix-vector multiplication  $A^k x_0$  can be rewritten as

$$x_k = A^k x_0 = A^k (c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n) = (\lambda_1)^k c_1 \boldsymbol{v}_1 + \dots + (\lambda_n)^k c_n \boldsymbol{v}_n$$

In short, any such dynamical system can be decomposed into the eigenvectors of A, where the eigenvalues decides how the system behaves over time.

The coefficients are usually found as

$$\boldsymbol{c} = P^{-1} \boldsymbol{x}$$

#### 5.3.1 Attractors

We see that if all eigenvalues of A are less than 1, the system will tend towards  $\mathbf{0}$ , and we say that  $\mathbf{0}$  is an **attractor** for the system.

# 5.4 Complex Eigenvalues

Let A be a real  $2 \times 2$  matrix with a complex eigenvalue  $\lambda = a - bi$ , and an associated eigenvector  $\boldsymbol{v}$ . Then

$$A = PCP^{-1}$$
, where  $P = \begin{bmatrix} \operatorname{Re}(\boldsymbol{v}) \operatorname{Im}(\boldsymbol{v}) \end{bmatrix}$  and  $C = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ 

# 5.5 Applications to Differential Equations

Consider the system of equations

$$x'_{1} = a_{11}x_{1} + \dots + a_{1n}x_{n}$$
  
 $x'_{2} = a_{21}x_{1} + \dots + a_{2n}x_{n}$   
 $\vdots$   
 $x'_{n} = a_{n1}x_{1} + \dots + a_{nn}x_{n}$ 

where  $x_i$  are differentiable functions of t.

This problem can be written as the matrix problem

$$\boldsymbol{x}'(t) = A\boldsymbol{x}(t)$$

where we need to solve it for some known t.

# Orthogonality and least squares

#### 6.1 Orthogonal Matrixes

Consider an  $m \times n$  matrix U with orthonormal columns. We call this an orthonormal matrix. This matrix has the properties:

- U is orthonormal only if  $U^TU = I$ .
- U preserves length:  $||U\boldsymbol{x}|| = ||\boldsymbol{x}||$ .
- If U is square, we have that  $U^{-1} = U^T$ .

#### 6.2 Projections

#### 6.2.1 Projection of vector onto vector

The projection of a vector y onto another vector x is

$$\widehat{m{y}} = \overline{\mathrm{proj}_{m{x}}(m{y})} = \frac{m{y} \cdot m{x}}{m{x} \cdot m{x}} m{x}$$

#### 6.2.2 Projection of vector onto subspace

Let W be subspace of  $\mathbb{R}^n$  with an orthogonal basis  $\{u_1, \dots, u_p\}$  and y be any vector in  $\mathbb{R}^n$ . Then the projection of y onto W is simply the projection onto each basis-vector:

$$\widehat{m{y}} = \operatorname{proj}_W(m{y}) = rac{m{y} \cdot m{u}_1}{m{u}_1 \cdot m{u}_1} m{u}_1 + \dots + rac{m{y} \cdot m{u}_p}{m{u}_p \cdot m{u}_p} m{u}_p$$

If you have an <u>orthonormal</u> basis, the dot products reduces to 1, and this can be written.

$$\hat{\boldsymbol{y}} = \operatorname{proj}_W(\boldsymbol{y}) = (\boldsymbol{y} \cdot \boldsymbol{u}_1)\boldsymbol{u}_1 + \dots + (\boldsymbol{y} \cdot \boldsymbol{u}_n)\boldsymbol{u}_n = UU^T\boldsymbol{y}$$

where  $U = [\boldsymbol{u}_1, \dots \boldsymbol{u}_n]$  contains the basis vectors.

# 6.3 The Gram-Schmidt process of orthogonal factorization

The Gram-Schmidt process takes any basis of vectors  $\{x_1, \ldots, x_p\}$  spanning a subspace in  $\mathbb{R}^n$ , and creates a new *orthogonal* basis of the same space,  $\{v_1, \ldots, v_p\}$ .

The idea is to create one and one new vector  $v_i$  from the corresponding  $x_i$ , but subtract the projection of  $x_i$  onto each of the former vectors  $v_1, \ldots, v_{i-1}$ , such that the new vector is orthogonal to all formerly created vectors.

- $ullet v_1 = x$
- $\bullet \ \boldsymbol{v}_2 = \boldsymbol{x}_2 \frac{\boldsymbol{x}_2 \cdot \boldsymbol{v}_1}{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1} \boldsymbol{v}_1$
- $\bullet \ \ \boldsymbol{v}_3 = \boldsymbol{x}_3 \frac{\boldsymbol{x}_3 \cdot \boldsymbol{v}_1}{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1} \boldsymbol{v}_1 \frac{\boldsymbol{x}_3 \cdot \boldsymbol{v}_2}{\boldsymbol{v}_2 \cdot \boldsymbol{v}_2} \boldsymbol{v}_2$
- ..

Remember to normalize afterwards if you need an orthonormal basis.

#### 6.4 QR-factorization

If the columns of any  $m \times n$  matrix A are linearly independent, it can be QR-factorized:

$$A = QR$$

- $Q = [u_1 \ u_2...u_n]$  where  $u_i$  is an <u>orthonormal</u> basis for the columnspace of A. Simply use Gram-Schmidt on the columns of A, and normalize them.
- $R = Q^{-1}A = Q^{T}A$ , because  $Q^{T} = Q^{-1}$  due to orthonormal columns. R will always be upper diagonal.

### 6.5 Least-square problems

Let W be the column space of some matrix A:  $W = \text{span}\{\text{col}(A)\}.$ 

Sometimes, the equation  $A\hat{x} = b$  has no solutions, because b is not in W. We then often wish to find the solutions  $\hat{x}$  which places the solutions  $A\hat{x} = \hat{b}$  as close to the actual solution b as possible.

This "closest solution" is the projection of  $\boldsymbol{b}$  onto W,  $\hat{\boldsymbol{b}} = \operatorname{proj}_W \boldsymbol{b}$ .

The least-square solution to Ax = b is then:

$$A\widehat{x} = \widehat{b}$$
  $\Rightarrow$   $\widehat{x} = A^{-1}\widehat{b}$   $(= A^{-1}AA^{T}b)$ 

If we have a QR factorization of A, we can solve the least square problem as

$$\widehat{x} = R^{-1}Q^T \boldsymbol{b}$$

6

#### 6.5.1 Applications to linear models

Let's say we wish to fit some data  $(x_1, y_1), (x_2, y_2), \dots$  to a linear model  $y(x) = \beta_0 + \beta_1 x$ .

| Predicted y-value                  | • | Observed y-value |  |
|------------------------------------|---|------------------|--|
| $\overline{\beta_0 + \beta_1 x_1}$ | = | $y_1$            |  |
| $\beta_0 + \beta_1 x_2$            | = | $y_2$            |  |
|                                    |   |                  |  |
| $\beta_0 + \beta_1 x_n$            | = | $y_n$            |  |

We can write this system as

$$X\boldsymbol{\beta} = \mathbf{y}$$
, where  $X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$ ,  $\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$ ,  $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ 

which produces a least-square solution  $X\widehat{\beta} = \widehat{y}$ .

# CHAPTER 7

# Symmetric Matrices and Quadratic Forms

#### 7.1 Diagonalization of symmetric Matrices

A symetric matrix A is such that  $A^T = A$ .

If A is symetric, any two eigenvectors from different eigenspaces are orthogonal.

A is then orthogonally diagonalizable, such that  $A = PDP^{-1} = PDP^{T}$ , where P consists of A's orthogonal eigenvectors.

#### 7.2 Quadratic Forms

Consider a function  $Q: \mathbb{R}^n \to \mathbb{R}$  given by  $Q(x) = x^T A x$  called a quadratic form, defined by a symmetric  $n \times n$  matrix A

The result will then be a second order polynomial

$$c_{00} x_1^2 + c_{11} x_2^2 + c_{12} x_1 x_2 + \dots$$

The matrix will then be a form

$$A = \begin{pmatrix} c_{00} & \frac{1}{2}c_{12} & \frac{1}{2}c_{13} & \cdots \\ \frac{1}{2}c_{12} & c_{11} & & & \\ \vdots & & \ddots & & \\ & & & c_{nn} \end{pmatrix}$$

The non-diagonals are halved, because they "share" the coefficients due to the symetry.

If the eigenvalues of A are

- All positive, Q(x) takes only positive values in  $\mathbb{R}$ .
- All negative, Q(x) takes only negative values in  $\mathbb{R}$ .

#### 7.2.1 Change of variable

Let  $A = PDP^{-1}$ . We can then substitute  $\mathbf{x} = P\mathbf{y}$ , giving

$$\mathbf{x} \mathbf{x}^T A \mathbf{x} = \mathbf{u}^t D \mathbf{u}$$

where D is diagonal.

## 7.3 Constraint optimization

We often wish to solve for the x that gives the maximum or minimum Q(x) under some constraint  $||x|| = ||x^2|| = x^T x = 1$ .

- The maximum value of Q(x) is the largest eigenvalue of A. The x giving this value is the corresponding eigenvector.
- The minimum value of Q(x) it the smallest eigenvalue of A. The x giving this value is the corresponding eigenvector.

## 7.4 Singular Value Decomposition

We know the  $A = PDP^{-1}$  diagonalization of A can only be applied to  $n \times n$ , diagonalizable matrices A.

However, the singular value decomposition  $A = U\Sigma V$  can be applied to any matrix A. It reduces to  $PDP^{-1}$  factorization if A is diagonalizable.

• The singular values of A are the squareroots of the eigenvalues of  $A^TA$ , in decreasing order:

$$\sigma_i = \sqrt{\lambda_i}$$

• The singular vectors of A are the <u>normalized</u> eigenvectors of  $A^TA$ , ordered by decending eigenvalues.

Let A be some  $m \times n$  matrix with rank r. Then A can be factorized into  $A = U \Sigma V$  where

•  $\Sigma$  is a  $m \times n$  matrix (same shape as A), where the diagonal values are all the <u>singular values</u> of A, with trailing zeros.

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• V is an orthogonal  $n \times n$  matrix, consisting of the singular vectors of A:

$$V = \begin{pmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_3 \end{pmatrix}$$

• U is an orthogonal  $m \times m$  matrix where the columns are the normalized  $Av_i$  vectors:

$$U = \begin{pmatrix} Av_1 & Av_2 & Av_3 \\ \sigma_1 & \sigma_2 & \sigma_3 \end{pmatrix}$$

If there aren't m non-zero vectors to use, construct the rest of U as orthonormal vectors from Gram-Schmidt.

# CHAPTER $8 \frac{}{\text{Matlab}}$

# Poly(A)

Returns the negative of the characteristic polynomial of A. Ex:

INPUT: poly(A) OUTPUT:  $1-4 \ 3 \ 0$  $\Rightarrow -(\lambda^3 - 4\lambda^2 + 3\lambda + 0) = 0$