Practical Magnetic Design

Topic 6.

Lajos Török lat@et.aau.dk

Agenda

- Basic magnetics theory
 - Basic concepts
 - Magnetic circuits
- Inductor design
 - Design constraints
 - A step-by-step procedure
- Transformer design
 - Transformer model
 - Design constraints
 - A step-by-step procedure
- Magnetic materials

Basic concepts

Magnetic quantities

Electrical quantities

Magnetic Field H and Magneto Motive Force F

$$\mathscr{F} = \int_{x_1}^{x_2} \boldsymbol{H} \cdot d\boldsymbol{\ell}$$

Flux Density B and Total Flux φ

$$\Phi = \int_{\text{surface } S} \mathbf{B} \cdot d\mathbf{A}$$

Connection between the electrical and magnetic quantities

Faraday's law

Voltage v(t) is induced in a loop of wire by change in the total flux $\phi(t)$ passing through the interior of the loop, according to:

$$v(t) = \frac{d\Phi(t)}{dt} = A_c \frac{dB(t)}{dt}$$

Ampere's law

The net MMF around a closed path is equal to the total current passing through the interior of the path:

$$\int H \cdot dl = ext{total current passing through interior of path}$$

$$H(t)l_m = i(t)$$

• Core material characteristics: the relation between B and H

 $\mu_0 = 4 \cdot \pi \cdot 10^{-7}$ permeability of the free space [H/m]

Piecewise-linear modelling of core material characteristics:

No hysteresis or saturation

Typical relative permeability $\mu_r = 10^3 \text{ to } 10^5$

Saturation, no hysteresis

Typical values for saturation flux densities:

 $B_{sat} = 0.3T$ to 0.5T ferrite

 $B_{sat} = 0.5T$ to 1T powder iron

 $B_{sat} = 1T$ to 2T iron lamination

Units

quantity	MKS	unrationalized cgs	conversions	
core material equation	$B=\mu_0\;\mu_{\rm r}\;H$	$B = \mu_{\rm r} H$		
B	Tesla	Gauss	$1T = 10^4 G$	
H	Ampere / meter	Oersted	$1A/m = 4\pi \cdot 10^{-3} \text{ Oe}$	
Φ	Weber	Maxwell	$1Wb = 10^8 Mx$ $1T = 1Wb / m^2$	

Example – simple inductor – Faraday's law:

Faraday's law:

For each turn of wire, we can write

$$v_{turn}(t) = \frac{d\Phi(t)}{dt}$$

Total winding voltage is

$$v(t) = nv_{turn}(t) = n \frac{d\Phi(t)}{dt}$$

Express in terms of the average flux density $B(t) = \mathcal{F}(t)/A_c$

$$v(t) = nA_c \frac{dB(t)}{dt}$$

• Example – simple inductor – Ampere's law:

$$H(t) \cdot l_m = n \cdot i(t)$$

• Example – simple inductor – core material model:

$$B = \begin{cases} B_{sat} & \text{for } H \ge B_{sat}/\mu \\ \mu H & \text{for } |H| < B_{sat}/\mu \\ -B_{sat} & \text{for } H \le -B_{sat}/\mu \end{cases}$$

$$I_{sat} = \frac{B_{sat}l_m}{\mu n}$$

• Example – simple inductor – electrical terminal characteristics:

$$v(t) = nA_c \frac{dB(t)}{dt} \qquad H(t) \ \ell_m = n \ i(t) \qquad B = \begin{cases} B_{sat} & \text{for } H \ge B_{sat}/\mu \\ \mu H & \text{for } |H| < B_{sat}/\mu \\ -B_{sat} & \text{for } H \le -B_{sat}/\mu \end{cases}$$

$$|i| < I_{sat}: \quad v(t) = \mu n A_c \frac{dH(t)}{dt}$$
 \longrightarrow $v(t) = \frac{\mu n^2 A_c}{\ell_m} \frac{di(t)}{dt}$

$$v(t) = L \frac{di(t)}{dt}$$
 where $L = \frac{\mu n^2 A_c}{l_m}$ Inductance

$$|i| \ge I_{sat}$$
: $v(t) = nA_C \frac{dB_{sat}(t)}{dt} = 0$ Flux density is constant and equal to B_{sat}

Magnetic circuits

Uniform flux and magnetic field inside a rectangular element:

MMF between ends of element is

$$\mathscr{F} = H\ell$$

Since $H = B / \mu$ and $B = \Phi / A_c$, we can express \mathscr{F} as

$$\mathcal{F} = \Phi \mathcal{R}$$

$$\mathcal{R} = \frac{\ell}{\mu A_c}$$

A corresponding model:

 \mathcal{R} = reluctance of element

Magnetic analog of Kirchhoff's current law:

Magnetic analog of Kirchhoff's voltage law:

$$\int H \cdot dl = ext{total current passing through interior of path}$$

Left-hand side: sum of MMF's across the reluctances around the closed path

Right-hand side: currents in windings are sources of MMF's. An n-turn winding carrying current i(t) is modelled as an MMF (voltage) source, of value $n \cdot i(t)$.

Total MMF's around the closed path add up to zero.

Inductor with air-gap example:

Faraday's law: $v(t) = n \frac{d\Phi(t)}{dt}$

Substitute for Φ : $v(t) = \frac{n^2}{\Re_c + \Re_g} \frac{di(t)}{dt}$

Hence inductance is

$$L = \frac{n^2}{\mathcal{R}_c + \mathcal{R}_g}$$

Effect of the air-gap:

$$ni = \Phi\left(\mathcal{R}_c + \mathcal{R}_g\right)$$

$$L = \frac{n^2}{\mathcal{R}_c + \mathcal{R}_g}$$

$$\Phi_{sat} = B_{sat}A_c$$

$$I_{sat} = \frac{B_{sat} A_c}{n} \left(\mathcal{R}_c + \mathcal{R}_g \right)$$

- Decrease inductance
- Increase saturation current
- Inductance is less dependent on core permeability

Loss mechanisms in magnetic devices

Total core losses – usually check manufacturer data

- Hysteresis losses
- Eddy current losses

Empirical equation, at a fixed frequency:

$$P_{fe} = K_{fe} (\Delta B)^{\beta} A_c \ell_m$$

Core losses

In literature other formulas can also be found to the calculate P_{fe}

- Some depend on the volume of the core multiplied with some coefficient
- Some depend on the mass of the core multiplied with some coefficient

Those coefficients just as K_{fe} and β should be found from datasheet of the core material (ferrite ex.)

Example (see datasheets below):

$$V_{core} = 78,65 \text{ cm}^3 **$$

$$P_{fe_unity}$$
= 400 kW/m³ (at ΔB =200mT, 100°C, f_{ws} =100kHz – see next page) *

So: $P_{fe_tot} = P_{fe_unity} \cdot 2 \cdot V_{core}$ (usually the magnetics are built of even nr. of identical cores)

$$P_{fe tot} = 400 \cdot 10^3 \text{ W} / 10^6 \text{ cm}^3 \cdot 2.78,65 \text{ cm}^3 = 62,92 \text{ W}$$

Pay attention to units!

^{**}Core E65: http://docs-europe.electrocomponents.com/webdocs/13c0/0900766b813c0f15.pdf

Core losses

Relative core losses versus frequency (measured on R34 toroids)

Copper losses

Total copper losses

- Eddy current losses
 - Skin effect
 - Proximity effect

Current density

Wire

Eddy currents

Penetration depth ô, cm

$$\delta = \sqrt{\frac{\rho}{\pi \mu f}}$$

For copper at room temperature:

$$\delta = \frac{7.5}{\sqrt{f}} \text{ cm}$$

DC losses – wire resistance

$$P_{Cu} = I_{RMS}^{2} R$$

• Wire diameter (#AWG and mm) and A_w

Conversion table - American Wire Gauge - mm mm ²									
AWG N°	Diam. mm.	Area mm ²		AWG N°	Diam. mm.	Area mm ²			
1	7,350	42,400		16	1,290	1,3100			
2	6,540	33,600		17	1,150	1,0400			
3	5,830	26,700		18	1,024	0,8230			
4	5,190	21,200		19	0,912	0,6530			
5	4,620	16,800		20	0,812	0,5190			
6	4,110	13,300		21	0,723	0,4120			
7	3,670	10,600		22	0,644	0,3250			
8	3,260	8,350		23	0,573	0,2590			
9	2,910	6,620		24	0,511	0,2050			
10	2,590	5,270		25	0,455	0,1630			
11	2,300	4,150		26	0,405	0,1280			
12	2,050	3,310		27	0,361	0,1020			
13	1,830	2,630		28	0,321	0,0804			
14	1,630	2,080		29	0,286	0,0646			
15	1,450	1,650		30	0,255	0,0503			
Tnt-Audio Internet HiFi Review http://www.tnt-audio.com									

Objectives:

Design inductor having a given inductance L, which carries worst-case current I_{max} without saturating, and which has a given winding resistance R, or, equivalently, exhibits a worst-case copper loss of:

$$P_{Cu} = I_{RMS}^{2} R$$

Assumed geometry

$$\mathcal{R}_c = \frac{\ell_c}{\mu_c A_c}$$

$$\mathcal{R}_g = \frac{\ell_g}{\mu_0 A_c}$$

Solve magnetic circuit:

$$ni = \Phi\left(\mathcal{R}_c + \mathcal{R}_g\right)$$

Usually $\mathscr{R}_{c} \ll \mathscr{R}_{\rm g}$ and hence

$$ni \approx \Phi \mathcal{R}_g$$

Constraint 1.

Maximum flux density: Given a peak winding current I_{max} , it is desired to operate the core flux density at a peak value B_{max} . The value of B_{max} is chosen to be less than the worst-case saturation flux density B_{sat} of the core material.

$$ni = BA_c \mathcal{R}_g$$

$$B = B_{max}$$
:

$$nI_{max} = B_{max} A_c \mathcal{R}_g = B_{max} \frac{\ell_g}{\mu_0}$$

The turns ratio n and air gap length l_q are unknown.

• Constraint 2.

Specified inductance:

$$L = \frac{n^2}{\mathcal{R}_g} = \frac{\mu_0 A_c n^2}{\ell_g}$$

The turns ratio n_r , core area A_c , and air gap length I_q are unknown.

• Constraint 3.

Winding area: wires must fit into the core window

- Total area of the copper in the window

$$nA_w$$

- Area available for windings (K_u is the fill factor) K_uW_A

- Constraint

$$K_u W_A \ge nA_w$$

• Constraint 4: Winding resistance

$$R = \rho \frac{l_b}{A_W}$$

where ρ is the resistivity of the conductor material, I_b is the length of the wire, and A_W is the wire bare area. The resistivity of copper at room temperature is $1.724\cdot10^{-6}$ Ω cm. The length of the wire comprising an n-turn winding can be expressed as:

$$l_b = n(MLT)$$

where (*MLT*) is the mean-length-per-turn of the winding. The mean length-per-turn is a function of the core geometry. The above equations can be combined to obtain the fourth constraint:

$$R = \rho \frac{n(MLT)}{A_W}$$

Core geometrical constant K_q

$$nI_{max} = B_{max} A_c \mathcal{R}_g = B_{max} \frac{\ell_g}{\mu_0}$$

$$K_u W_A \ge nA_W$$

- A_c , W_A , and MLT are functions of the core geometry
- I_{max} , B_{max} , μ_0 , L, K_u , R, and ρ are given specifications or other known quantities
- n, l_g , and A_W are unknowns

$$L = \frac{n^2}{\mathcal{R}_g} = \frac{\mu_0 A_c n^2}{\ell_g}$$

$$R = \rho \, \frac{n \, (MLT)}{A_W}$$

$$\frac{A_c^2 W_A}{(MLT)} \ge \frac{\rho L^2 I_{max}^2}{B_{max}^2 R K_u}$$

$$K_g = \frac{A_c^2 W_A}{(MLT)}$$

• Core geometrical constant K_q

 K_g is a figure-of-merit that describes the effective electrical size of magnetic cores, in applications where the following quantities are specified:

- Copper loss
- Maximum flux density

How specifications affect the core size:

A smaller core can be used by increasing

 B_{max} -> use core material having higher B_{sat}

R -> allow more copper loss

How the core geometry affects electrical capabilities:

A larger K_a can be obtained by increase of

 A_c -> more iron core material, or

 W_A -> larger window and more copper

• Step-by-step procedure: see attached StepByStepInductorDesign.docx file

Two windings, no air gap:

$$\mathcal{R} = \frac{\ell_m}{\mu A_c}$$

$$\mathcal{F}_c = n_1 i_1 + n_2 i_2$$

$$\Phi \mathcal{R} = n_1 i_1 + n_2 i_2$$

Magnetic circuit model:

Ideal transformer

In the ideal transformer, the core reluctance \mathcal{R} approaches zero.

MMF $\mathscr{F}_c = \Phi \mathscr{R}$ also approaches zero. We then obtain

$$0 = n_1 i_1 + n_2 i_2$$

Also, by Faraday's law,

$$v_1 = n_1 \frac{d\Phi}{dt}$$
$$v_2 = n_2 \frac{d\Phi}{dt}$$

Eliminate Φ :

$$\frac{d\Phi}{dt} = \frac{v_1}{n_1} = \frac{v_2}{n_2}$$

Ideal transformer equations:

$$\frac{v_1}{n_1} = \frac{v_2}{n_2}$$
 and $n_1 i_1 + n_2 i_2 = 0$

Magnetizing inductance

For nonzero core reluctance, we obtain

$$\Phi \mathcal{R} = n_1 i_1 + n_2 i_2$$
 with $v_1 = n_1 \frac{d\Phi}{dt}$

Eliminate Φ:

$$v_1 = \frac{n_1^2}{\Re} \frac{d}{dt} \left[i_1 + \frac{n_2}{n_1} i_2 \right]$$

This equation is of the form

$$v_1 = L_M \frac{di_M}{dt}$$

with

$$L_{M} = \frac{n_{1}^{2}}{\Re}$$

$$i_{M} = i_{1} + \frac{n_{2}}{n_{1}} i_{2}$$

• Constraint 1:

Core losses:

Typical value of β for ferrite materials: 2.6 or 2.7 ΔB is the peak value of the ac component of B(t), i.e., the peak ac flux density So increasing ΔB causes core loss to increase rapidly

$$P_{fe} = K_{fe} (\Delta B)^{\beta} A_c \ell_m$$

Constraint 2:

Flux density:

Flux density B(t) is related to the applied winding voltage according to Faraday's Law. Denote the voltseconds applied to the primary winding during the positive portion of $v_1(t)$ as λ_1 .

This causes the flux to change from its negative peak to its positive peak. From Faraday's law, the peak value of the ac component of flux density is ΔB .

To attain a given flux density, the primary turns should be chosen as n_1 .

$$\lambda_1 = \int_{t_1}^{t_2} v_1(t) dt$$

$$\Delta B = \frac{\lambda_1}{2n_1 A_c} \qquad n_1 = \frac{\lambda_1}{2\Delta B A_c}$$

Constraint 3:

Copper losses:

Total copper loss is then equal to:

$$P_{cu} = I_{tot}^{2} R \leftarrow R = \rho \frac{n(MLT)}{A_{W}}$$

$$P_{cu} = \frac{\rho(MLT)n_{1}^{2}I_{tot}^{2}}{W_{A}K_{u}} \qquad K_{u}W_{A} \geq nA_{W}$$

with:

Eliminate n_1 (previous slide):

Thus the total loss will be:

$$I_{tot} = \sum_{j=1}^{k} \frac{n_j}{n_1} I_j$$

$$P_{cu} = \left(\frac{\rho \lambda_1^2 I_{tot}^2}{4K_u}\right) \left(\frac{(MLT)}{W_A A_c^2}\right) \left(\frac{1}{\Delta B}\right)^2$$

$$P_{\mathit{tot}} = P_{\mathit{fe}} + P_{\mathit{cu}}$$

• The core geometrical constant K_{gfe}

Core and material properties

$$\text{Define } \left(K_{\textit{gfe}} = \frac{W_{A} \left(A_{c}\right)^{\left(2(\beta-1)/\beta\right)}}{(MLT)\ell_{m}^{\left(2/\beta\right)}} \left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)} + \left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)} \right]^{-\left(\frac{\beta+2}{\beta}\right)}$$

Design procedure: select a core that satisfies

$$K_{gfe} = \underbrace{\frac{\rho \lambda_1^2 I_{tot}^2 K_{fe}^{(2/\beta)}}{4K_u (P_{tot})^{\left((\beta+2)/\beta\right)}}}_{\text{Design properties}}$$

This equation and inequality are the result of deriving the P_{tot} in function of the ΔB to find the optimum ac flux density

• Step-by-step procedure: see attached StepByStepTransformerDesign.docx file

Magnetic materials

Metal Alloy Tape-Wound Cores

- low frequency cores 50, 60, 400 Hz
- high saturation flux density $B_{sat} = 0.9 T$
- extremely high permeability 60 000
- build of tape wound laminations

Powdered Metal Cores

- used mostly for inductor design
- internal distributed air-gap
- low permeability 15-200, not suitable for transformer application
- relative high B_{sat} up to 1 T
- tend to have increased core loss depends on application
- pricy

Ferrite Cores

- most popular for SMPS
- fair permeability 1500-3000
- high frequency range up ti 1-2 MHZ
- low B_{sat} up to 0,5 T
- low cost and losses

Magnetic materials manufacturers

https://product.tdk.com/info/en/products/ferrite/catalog.html

http://www.micrometalsarnoldpowdercores.com/

	Kool Mu	MPP	High Flux	XFLUX	AmoFlux
Perm	14-125	14-550	14-160	26-60	60
Core Loss	Low	Very Low	Moderate	High	Low
DC Bias	Good	Better	Best	Best	Better
Saturation Flux Density (Tesla)	1.0	0.75	1.5	1.6	1.5
Curie Temperature (°C)	500	460	500	700	400
Operation Temp. Range (°C)	-55~200	-55~200	-55~200	-55~200	-55~155
60u, u flat to	900 kHz	2 MHz	1 MHz	500 kHz	2 MHz

^{*}Source: http://www.mag-inc.com/

Magnetic materials datasheets

Ferrite

http://docs-europe.electrocomponents.com/webdocs/13c0/0900766b813c0f15.pdf

 $CoolM\mu$

http://www.mag-

<u>inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/620%20Size/0077617A7.pdf</u>

