USB

Ing. Pablo Martín Gomez pgomez@fi.uba.ar

USB - Historia

- Introducido y estandarizado por un grupo de compañias Compaq, DEC, IBM, Intel, Microsoft, NEC, HP, Lucent, Philips y Nortel) en 1995
- La idea fundamental fue la de reemplazar la gran cantidad de conectores disponibles en la PC's simplificando la conexión y configuración de dispositivos logrando grandes anchos de banda

USB - Historia

- Existen 3 versiones de USB
 - USB 1.0 Enero 1996
 - Velocidades de 1.5 Mbps hasta 12 Mbps
 - USB 1.1 Septiembre 1998
 - Primer versión popular de USB
 - USB 2.0 Abril 2000
 - La principal mejora es la inclusión de una tasa de transferencia de alta velocidad de 480 Mbps
 - USB 3.0 Noviembre 2008
 - Tasa de transferencia de 5 Gbps

USB 3.0

- Upgrade del USB 2.0
 - retro-compatible
- También llamado "SuperSpeed" USB por la significante mejora respecto a especificaciones USB existentes
- Nuevo protocolo de comunicación para dispostivos
- Nuevos modos de transferencia
- Nuevas formas de administrar la alimentación
- Mayor longitud de cable permitida
- Similar a al tecnología PCI Express 2.0

USB 2.0 vs. USB 3.0 – Hardware

USB 2.0

- El cable es más delgado
- Tiene 4 líneas
- Modo de transferencia de datos "half-duplex"

USB 3.0

- El cable se parece al utilizado en Ethernet debido a su grosor
- Tiene 8 líneas
 - Tres pares trenzados para datos y un par para alimentación
- Modo de transferencia de datos "Full-duplex"

USB 2.0 vs. USB 3.0

USB 2.0 vs. USB 3.0

USB 2.0 vs. USB 3.0

 Aunque la especificación de USB 3.0 esta diseñada para retro-compatibilidad con USB 2.0, los cables USB 3.0 no son compatibles con el conector regular B de USB 2.0

USB 3.0 vs. otros estándares

- FireWire 800 tiene como máxima tasa de transferencia: 800 Mbps
- eSATA bus tiene una máxima tasa de transferencia de 3.2 Gbps
- Ejemplo:
 - Intel mostró que la transferencia de una película de 25 GB HD demoró 70 segundos utilizando un bus USB 3.0 contra 4 horas a través de USB 2.0

USB - Introducción

- USB significa "Universal Serial Bus"
- Controlado por "Host" (solamente uno por bus)
 - On-the-Go (Protocolo de negociación de host) permite a dos dispositivos negociar el rol de host
- Topología estrella
 - Se pueden utilizar hubs para dividir alta y baja velocidad
- Hasta 127 dispositivos pueden ser conectados a un bus USB en cualquier momento
- Utiliza 4 líneas malladas: 2 son de alimentación (+5v & GND) y los otros 2, un par trenzado donde las señales se transmiten en modo diferencial

USB - Topología física y lógica

USB - Topología física y lógica

Topología física: estrella

Topología lógica: punto a punto

USB - Introducción

- Suporta plug'n'plug con drivers que son cargados dinámicamente - PID/VID (Product ID/Vendor ID)
- USB soporta diferentes modos de transferencia:
 Control, Interrupción (Interrupt), Masiva (Bulk) e Isócrona (Isochronous)
- La alimentación se transporta por el Bus
 - USB distribuye la alimentación a todos los dispositivos conectados, eliminando la necesidad de una fuente externa para dispositivos de bajo consumo

USB - Conectores

 Los conectores a cada lado del cable no son mecánicamente intercambiables

- El conector tipo A siempre se conecta "aguas arriba".
 En general los encontramos en hosts y hubs.
- El conector tipo B siempre se conecta "aguas abajo". Los encontramos en dispositivos.
- Los conectores micro-AB pueden ser tanto conectores micro-A como micro-B. Para USB On-the-Go.

Pin	Standard A, Standard B	Mini B, Micro B
1	VBUS	VBUS
2	D-	D-
3	D+	D+
4	GND	Open or $>= 1M\Omega$
5	Not present	GND
Shell	Shield	Shield

USB – Alimentación y niveles

- Alimentación
 - Entrega 5 V en una de las líneas (5 V±5%).
 - La unidad de carga es 100mA (USB 2.0) y 150mA (USB 3.0).
 - La máxima carga es 500 mA (USB 2.0) y 900 mA (USB 3.0).
 - Los hubs alimentados por Bus solamente entregan 1 unidad de carga para los dispositivos.
 - Los hubs alimentados autonomamente pueden entregar la máxima carga a todos los dispositivos.
- Niveles lógicos
 - '1' D+ 200mV mayor a D-
 - 'o' D+ 200mV menor a D-

USB - Codificación

- Utiliza codificación NRZI para enviar los datos con un campo de sincronización para sincronizar el clock del host y el receptor
- NRZI define un o lógico como una transición en el valor de tensión, y un 1 manteniendo el nivel
- Se necesita Bit stuffing porque los receptores sincronizan transiciones. Si se envían muchos 1s

entonces el receptor puede perder sincronismo

USB - Velocidad

- Un dispositivo USB debe indicar su velocidad llevando D+ o D- a 3.3 volts.
- Sin resistencia de pull-up, USB asume que no hay nada conectado al Bus.
 - En el modo "high speed" el dispositivo primero se conecta en modo "full speed", luego se remueve el resistor de pull-up para balancear la línea

USB - Comunicación

• A diferencia de RS-232 o interfaces serie similares donde el formato de los datos a ser enviados no está definido, USB posee varias capas de protocolos

USB - Comunicación

USB – Paquetes

- Cada transacción USB consiste en:
 - **Paquete Token** (encabezado que define lo que se espera a continuación)
 - Paquete de datos (opcional contiene el payload)
 - Paquete de Status (Usado como acknowledge en las transacciones y como una forma de corregir errores)

USB - Campos del paquete

- Sync
 - Todos los paquetes deben comenzar con un campo de "sync" utilizado para sincronizar el clock receptor con el transmisor
- PID (Packet ID)
 - Utilizado para identificar el tipo de paquete que está siendo enviado (4 bits complementados)
- ADDR (Address field)
 - Especifica a que dispositivo va dirigido el paquete
 - Teniendo un tamaño de 7 bits permite soportar 127 dispositivos
 - La dirección cero no es válida ya que cualquier dispositivo al que todavía no se le ha asignado una dirección debe responder los paquetes enviados a ésta

USB - Campos del paquete - PID

Туре	PID value (msb-first)	Transmitted byte (Isb-first)	Name	Description
Reserved	0000	0000 1111		
Token	1000	0001 1110	SPLIT	High-bandwidth (USB 2.0) split transaction
Token	0100	0010 1101	PING	Check if endpoint can accept data (USB 2.0)
Special	1100	0011 1100	PRE	Low-bandwidth USB preamble
	1100	0011 1100	ERR	Split transaction error (USB 2.0)
	0010	0100 1011	ACK	Data packet accepted
Handshake	1010	0101 1010	NAK	Data packet not accepted; please retransmit
	0110	0110 1001	NYET	Data not ready yet (USB 2.0)
	1110	0111 1000	STALL	Transfer impossible; do error recovery
	0001	1000 0111	OUT	Address for host-to-device transfer
T-1	1001	1001 0110	IN	Address for device-to-host transfer
Token	0101	1010 0101	SOF	Start of frame marker (sent each ms)
	1101	1011 0100	SETUP	Address for host-to-device control transfer
	0011	1100 0011	DATA0	Even-numbered data packet
	1011	1101 0010	DATA1	Odd-numbered data packet
Data	0111	1110 0001	DATA2	Data packet for high-bandwidth isochronous transfer (USB 2.0)
	1111	1111 0000	MDATA	Data packet for high-bandwidth isochronous transfer (USB 2.0)

USB - Campos del paquete

- ENDP (Endpoint field)
 - Formado por 4 bits permite 16 posibles "endpoints"
- CRC (Cyclic Redundancy Check)
 - Efectuado en los datos contenidos en el "payload" del paquete. Todos los paquetes "token" tienen un CRC de 5 bits mientras que los de datos tienen un CRC de 16 bits
- EOP (End of packet)
 - Señalizado a través de un "Single Ended Zero" (SEo / D+ and D- se mantienen bajos) por aproximadamente el tiempo de 2 bits seguido por una J (estado lógico, el significado depende de la velocidad) durante el tiempo de 1 bit

USB - Tipos de paquete

- Paquetes "Token"
 - In Informa al dispositivo USB que el "host" desea leer información
 - Out Informa al dispositivo USB que el "host" desea enviar información
 - **Setup** Utilizado para comenzar transferencias de control

Sync PID	ADDR	ENDP	CRC5	EOP
----------	------	------	------	-----

- Paquete de datos
 - Dos tipos. Cada uno capaz de transmitir de o a 1023 bytes de datos

Sync PID	Data	CRC16	EOP
----------	------	-------	-----

USB – Tipos de paquete

- Paquetes de "Status" o "Handshake"
 - ACK (Acknowledgment) Confirmación de que el paquete fue recibido exitosamente
 - NAK Reporta que el dispositivo no puede enviar ni recibir datos temporalmente. También utilizado durante las transacciones de interrupción para informar al "host" que no hay datos para enviar
 - **STALL** Puede significar un "control request" no soportado, una falla en el "control request" o que el endpoint falla.

- Paquetes de comienzo de "frame" (SOF)
 - El número de frame (11 bits) es enviado por el "host" cada 1mS ± 500nS

 Sync PID Frame Number CRC5 EOP

USB – Analizador de protocolo

 Las transferencias consisten en una o más transacciones. Un pipe solamente soporta un tipo de transferencia

• En una transacción, transferencia desde "host" a dispositivo o viceversa. La dirección se define en el paquete "token"

• En general, el destinatario responde con un paquete de status

indicando si fue exitosa

LeCroy U	SBTracer Bus And Pr	otocol Ana	alyzer - [C:\Pro	gram Files\Le	Croy\USB\Di	skOnKeyEnum	AndWrite.u	ısb]		×
∬ <mark>⊞</mark> Eile :	Setu <u>p R</u> ecord <u>G</u> ene	erate R <u>e</u> p	ort <u>S</u> earch	<u>V</u> iew <u>W</u> indow	<u>H</u> elp				_8	<
∥ 🛎 *	🕱 🕱 🔁 👀	M 🔏 🖟	Me- code	🔪 🔢 🕕	(1)	♦ Pkt Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr	's Trs Xfr	HVA HVA DVA DVA SEG XFR SEG XFR	TRA OBJ SES	
Trans	fer F Bull	k ADI	OR ENDP	Mass N	QUIRY Devi	Typ Rem Ve	endor Id	Product Id	Product Rev	
16	S IN	4	1 5	Storage Re	sponse Ox(00 1 M	1-Sys Di	iskOnKey	2.01	_
	Transaction F	IN	ADDR EN	DP T	Data	ACK	Time S	tamp		
	44 S	0x96	4 1	0 36	bytes	0x4B	00008.009	94 6420		
	Packet	Dir F	Sync	IN	ADDR END	P CRC5	EOP	Idle	Time S	
	394	> S	00000001	0x96	4 1	0x19 233	3.330 ns	366.650 ns	00008.00	
	Packet	Dir F	Sync	DATA0	Data	CRC16	EOP	ldle	Time	
	395	< S	00000001	0xC3	36 bytes	≊ 0x960C 23	33.330 ns	500.000 ns	0.8000	
	Packet	Dir F	Sync	ACK	EOP	Time	T	ime Stamp		
	396	> S	00000001	0x4B	250.000 ns	487.133 μ:	s 000	08.0095 0760		1
I Ready					Rec Speed	Ch0:Hi Ch1:Hi			Search: Fwd	
roddy					livor pheed	CHON II CHIMII		T.	joodren'i wa	111

USB - Funciones

Funciones USB

• Pueden verse como dispositivos USB que proveen capacidades o funciones tales como impresora, escáner, lector de memorias u

otro periférico

USB - Pipes

- Son las conexiones lógicas entre "host" y "endpoint(s)"
- Tienen una serie de parámetros:
 - Ancho de banda asignado
 - Tipo de transferencia:
 - Control, Másiva (Bulk), Isócrona o Interrupción
 - Dirección del flujo de datos
 - Tamaño máximo de paquetes/buffer
 - Todos los dispositivos tienen un "default control pipe" que utiliza el endpoint cero

USB - Endpoints

- Pueden describirse como fuentes o sumideros de datos
- Todos los dispositivos deben tener "endpoint" cero

USB – Transferencias de control

- Las transferencias de control son típicamente utilizadas para operaciones con comandos y de status
- Una transferencia de control puede tener hasta tres etapas
 - Etapa "**Setup**": donde la petición es enviada. Contiene la dirección y el número de endpoint
 - Etapa de datos (opcional): consiste en una o multiples transferencias IN / OUT
 - Etapa de "Status": informa el status de la totalidad de la petición.
 Varia en función de la dirección de la transferencia

USB – Transferencias de control

• Formato de transferencia de control

USB – Transferencia de Interrupción

- El dispositivo que requiere atención debe esperar que el "host" le "encueste" antes que pueda informar que necesita atención
- Características
 - Latencia garantizada
 - Flujo del "pipe": Unidireccional
 - Detecciones de errores y re-proceso en próximo período
- Interrupción IN
 - El "host" encuesta periódicamente al endpoint. La frecuencia con que encuesta está especificada en el **descriptor del endpoint**. Cada encuesta implica que el "host" envíe un IN Token
- Interrupción OUT
 - Cuando el "host" desea enviar al dispositivo datos de interrupción, solicita un OUT token seguido por un paquete de datos que contiene los datos de interrupción

USB – Transferencia de Interrupción

• Formato de transferencia de interrupción

USB - Transferencia Isócrona

- Las transferencias isócronas ocurren continua y periódicamente.
 Típicamente contienen información sensible al tiempo, como flujo de video o audio
- Características
 - Ancho de banda USB garantizado
 - Latencia acotada
 - Flujo del "Pipe": Unidireccional
 - Detección de errores vía CRC, pero sin re-proceso ni garantía de entrega
 - Disponible solamente en modos "full speed" y "high speed"

 Las transferencias isócronas no tienen etapa de "handshaking" y no pueden reportar errores o condiciones de STALL/HALT

USB – Transferencias masivas

- Utilizado para envío masivo de datos (Ej.: datos de impresión enviados a una impresora o datos de una imagen generados por un escáner)
- Características
 - Corrección de errores (Campo CRC16 en el "data payload")
 - Detección de errores / mecanismos de re-transmisión
- Utiliza espacio no asignado del ancho de banda del bus después que todas las otras transacciones han sido asignadas
 - Solamente utilizado en comunicaciones no sensibles al tiempo debido a que no hay garantías respecto a la latencia
- Disponible solamente en modos "full speed" y "high speed"

USB – Resumen transferencias

Transfer Type	Control	Bulk	Interrupt	Isochronous
Typical Use	Identification and configuration	Printer, scanner, drive	Mouse, keyboard	Streaming audio, video
Support required?	yes	no	no	no
Low speed allowed?	yes	no	yes	no
Maximum packet size; maximum guaranteed packets/interval (SuperSpeed).	512; none	1024; none	1024; 3 / 125 μs	1024; 48 / 125 μs
Maximum packet size; maximum guaranteed packets/interval (high speed).	64; none	512; none	1024; 3 / 125 μs	1024; 3 / 125 μs
Maximum packet size; maximum guaranteed packets/interval (full speed).	64; none	64; none	64: 1 / ms	1023; 1 / ms
Maximum packet size; maximum guaranteed packets/interval (low speed).	8; none	not allowed	8; 1 / 10 ms	not allowed
Direction of data flow	IN and OUT	IN or OUT	IN or OUT (IN only for USB 1.0)	IN or OUT
Reserved bandwidth for all transfers of the type	10% at low/full speed, 20% at high speed & SuperSpeed	none	90% at low/full speed, 80% at high speed and SuperSpeed (isochronous and interrupt combined, maximum)	
Message or Stream data?	message	stream	stream	stream
Error correction?	yes	yes	yes	no
Guaranteed delivery rate?	no	no	no	yes
Guaranteed latency (maximum time between transfers attempts)?	no	no	yes	yes

USB - Frames

- El tráfico en el bus USB es regulado utilizando el tiempo. La unidad de tiempo se llama "frame"
 - Velocidad "Full" y "Low": "frames" cada 1 ms
 - Velocidad "High": "micro-frames" cada 125 μs
- Cada "frame" comienza con un paquete SOF
- A cada "pipe" se le asigna un espacio en cada "frame"
- 10 % asignado a transferencias de control

USB - "Throughput" teórico

- A medida que los dispositivos son enumerados el host va contabilizando el ancho de banda solicitado por los endpoints isócronos y de interrupción
- Pueden consumir hasta un 90 % del disponible, luego el host niega el acceso

Tipo de transferencia	Low-Speed (1.5 Mbps / 187 kBps)	Full-Speed (12 Mbps / 1,5 MBps)	High-Speed (480 Mbps / 60 MBps)
Control	24 kBps	832 kBps	15.872 kBps
Interrupción	o,8 kBps	64 kBps	24.576 kBps
Masiva	_	1.216 kBps	53.248 kBps
Isócrona	-	1.023 kBps	24.576 kBps

USB – Descriptores

- Todos los dispositivos USB tienen una jerarquía de descriptores que definen al "host" información tal como:
 - que es el dispositivo
 - quien lo fabricó
 - que versión de USB soporta
 - de cuantas formas puede configurarse
 - el número de endpoints y sus tipos
- Los descriptores USB más comunes son
 - Descriptores de dispositivo (Device descriptors)
 - Descriptores de configuración (Configuration Descriptors)
 - Descriptores de interfaz (Interface Descriptors)
 - Descriptores de Endpoint (Endpoint Descriptors)
 - Descriptores de String (String Descriptors)
 - Proporciona información humanamente legible y son opcionales

USB – Descriptores

USB – Descriptores de dispositivo

- El descriptor de dispositivo del dispositivo USB representan a la totalidad del mismo por lo tanto, **sólo puede tener uno**
- Contienen
 - la versión de USB soportada
 - el máximo tamaño de paquete para el endpoint o
 - identificación de proveedor y producto
 - el número de posibles configuraciones que el dispositivo puede tener
- Ejemplo:
 - bDeviceClass, bDeviceSubClass y bDeviceProtocol son utilizados por el sistema operativo para encontrar un driver para el dispositivo
 - Generalmente solo bDeviceClass es especificado en este nivel
 - Se suelen especificar los demás parámetros a nivel de interfaz. Esto permite que un mismo dispositivo soporte múltiples clases

USB – Descriptores de dispositivo

Offset Field (decimal)		Size (bytes)	Description	
0	bLength	1	Descriptor size in bytes (12h)	
1	bDescriptorType	1	The constant DEVICE (01h)	
2	bcdUSB	2	USB specification release number (BCD)	
4	bDeviceClass	1	Class code	
5	bDeviceSubclass	1	Subclass code	
6	bDeviceProtocol	1	Protocol Code	
7	bMaxPacketSize0	1	Maximum packet size for endpoint zero	
8	idVendor	2	Vendor ID	
10	idProduct	2	Product ID	
12	bcdDevice	2	Device release number (BCD)	
14	iManufacturer	1	Index of string descriptor for the manufacturer	
15	iProduct	1	Index of string descriptor for the product	
16	iSerialNumber	1	Index of string descriptor for the serial number	
17	bNumConfigurations	1	Number of possible configurations	

USB – Descriptores de configuración

- Un dispositivo USB puede tener diferentes configuraciones. De todas formas, la mayoría de los dispositivos son simples y solamente tienen una
- Especifica
 - como se alimenta el dispositivo
 - cual es el máximo consumo de potencia
 - el número de interfaces que tiene
- Por lo tanto, es posible tener dos configuraciones: una para el dispositivo siendo alimentado por el bus y otra cuando lo hace externamente. Como este es el "encabezado" de los descriptores de interfaz, es también posible tener para cada una de las configuraciones, diferentes **modos de transferencia**

USB – Descriptores de configuración

Offset (decimal)	Field	Size (bytes)	Description
0	bLength	1	Descriptor size in bytes (09h)
1	bDescriptorType	1	The constant CONFIGURATION (02h)
2	wTotalLength	2	The number of bytes in the configuration descriptor and all of its subordinate descriptors
4	bNumInterfaces	1	Number of interfaces in the configuration
5	bConfigurationValue	1	Identifier for Set Configuration and Get Configuration requests
6	iConfiguration	1	Index of string descriptor for the configuration
7	bmAttributes	1	Self/bus power and remote wakeup settings
8	bMaxPower	1	Bus power required in units of 2 mA (USB 2.0) or 8 mA (SuperSpeed).

USB – Descriptores de interfaz

• Pueden ser vistos como "headers" de los endpoints en grupos funcionales que desarrollan una misma función en el dispositivo

Offset	Field	Size	Size Value Description	
0	bLength	1	Number	Size of Descriptor in Bytes
1	bDescriptorType	1	Constant	Interface Descriptor (0x04)
2	bInterfaceNumber	1	Number	Number of Interface
3	bAlternateSetting	1	Number	Value used to select alternative setting
4	bNumEndpoints	1	Number	Number of Endpoints used for this interface
5	bInterfaceClass	1	Class	Class Code (Assigned by USB Org)
6	bInterfaceSubClass	1	SubClass	Subclass Code (Assigned by USB Org)
7	bInterfaceProtocol	1	Protocol	Protocol Code
8	iInterface	1	Index	Index of String Descriptor Describing this interface

USB – Descriptor de endpoint

Offset	Field	Size	Value	Description
0	bLength	1	Number	Size of Descriptor in Bytes (7 bytes)
1	bDescriptionType	1	Constant	Endpoint Descriptor (0x05)
2	bEndpointAddress	1	Endpoint	Endpoint Address, Encoded as follows
				03b Endpoint Number 46b Reserved. Set to Zero 7b Direction (Ignored for Control Endpoints) 0 = Out Endpoint, 1 = In Endpoint
3	bmAttributes	1	Bitmap	Bits 01 Transfer Type 00 = Control 01 = Isochronous 10 = Bulk 11 = Interrupt Bits 27 are reserved. If Isochronous endpoint, Bits 32 = Synchronisation Type (Iso Mode) 00 = No Synchonisation 01 = Asynchronous 10 = Adaptive 11 = Synchronous Bits 54 = Usage Type (Iso Mode) 00 = Data Endpoint 01 = Feedback Endpoint 10 = Explicit Feedback Data Endpoint 11 = Reserved
4	wMaxPacketSize	2	Number	Maximum Packet Size this endpoint is capable of sending or receiving
6	binterval	1	Number	Interval for polling endpoint data transfers. Value in frame counts. Ignored for Bulk & Control Endpoints. Iso must equal 1 and field may range from 1 to 255 for interrupt endpoints.

- El endpoint cero siempre se asume como de control
- El "host" utilizará la información devuelta por estos descriptores para definir los requerimientos de ancho de banda del bus

USB – Paquetes de Setup

- Todos los dispositivos USB tienen que responder a paquetes en el "default pipe" (Transferencias de control).
- Los paquetes de setup se utilizan para la detección y configuración del dispositivo. También para llevar a cabo algunas funciones comunes como asignar una dirección al dispositivo, solicitar el descriptor del dispositivo o chequear el status de algún endpoint.
- El host espera que todos los pedidos sean procesados en un período máximo de 5 segundos. También especifica períodos más estrictos para algunos pedidos específicos. Esto puede traer problemas para debuggear el código.

USB – Paquetes de Setup

Offset	Field	Size	Value	Description
0	bmRequestType	1	Bit-Map	D7 Data Phase Transfer Direction 0 = Host to Device 1 = Device to Host D65 Type 0 = Standard 1 = Class 2 = Vendor 3 = Reserved D40 Recipient 0 = Device 1 = Interface 2 = Endpoint 3 = Other
1	bRequest	1	Value	431 = Reserved Request
2	w∀alue	2	Value	Value
4	wlndex	2	Index or Offset	Index
6	wLenght	2	Count	Number of bytes to transfer if there is a data phase

- bRequest define el tipo de pedido
- La especificación USB define algunos pedidos standard (Standard Request)
- También existen los llamados "Class Request" definidos definidos por los "Class drivers"
- En función del tipo de dispositivo tendrá un set de pedidos específicos

USB – Paquetes de Setup

omRequestType	bRequest	wValue	windex	wLength	Data
00000000B 00000001B 00000010B	CLEAR_FEATURE	Feature Selector	Zero Interface Endpoint	Zero	None
10000000B	GET_CONFIGURATION	Zero	Zero	One	Configuration Value
10000000B	GET_DESCRIPTOR	Descriptor Type and Descriptor Index	Zero or Language ID	Descriptor Length	Descriptor
10000001B	GET_INTERFACE	Zero	Interface	One	Alternate Interface
10000000B 10000001B 10000010B	GET_STATUS	Zero	Zero Interface Endpoint	Two	Device, Interface, or Endpoint Status
00000000B	SET_ADDRESS	Device Address	Zero	Zero	None
00000000B	SET_CONFIGURATION	Configuration Value	Zero	Zero	None
0000000B	SET_DESCRIPTOR	Descriptor Type and Descriptor Index	Zero or Language ID	Descriptor Length	Descriptor
	SET_FEATURE	Feature	Zero Interface	Zero	None
00000000B 00000001B 00000010B	_	Selector	Endpoint		
00000001B	SET_INTERFACE	Alternate Setting		Zero	None

- Un pedido de GET_STATUS puede dirigirse tanto a dispositivo, interfaz o endpoint.
- En el caso de ser enviada a dispositivo responde sobre "remote wake up" y "self powered"
- En el caso de endpoint responde si esta "halted" o "stalled"

USB - Enumeración

- 1. El sistema tiene un nuevo dispositivo.
- 2. El hub detecta un dispositivo.
- 3. El host es notificado del nuevo dispositivo.
- 4. El hub detecta si el dispositivo es low o full speed.
- El hub resetea el dispositivo.
- 6. El host es notificado si el dispositivo soporta high speed.
- 7. El hub establece un camino de señal entre dispositivo y bus.
- 8. El host envia un pedido de Get Descriptor para conocer el máximo tamaño de paquete del default pipe.
- 9. El host asigna le asigna una dirección al dispostivo.
- 10. El host aprende las habilidades del dispositivo.
- 11. El host asigna y carga los drivers del dispositivo.
- 12. El driver del host selecciona una configuración.

USB – Enumeración

Item		Device	Payload
	7	7	Y
5E0	Reset (2.3 s)		
IDLE	Suspended (114.0 ms)		
5E0 B. //	Reset (10.0 ms)		
CHIRP LIVE	High speed Detection Handshake		
+	GetDescriptor (Device)	0 (5)	8 bytes (12 01 00 02 FF 00 00 08)
5E0 D. //	Reset (10.0 ms)		
CHIRP LIVE	High speed Detection Handshake		
+ 📴	SetAddress (5)	0 (5)	No data
+ 🔯	GetDescriptor (Device)	5	18 bytes (12 01 00 02 FF 00 00 08
± 🖓	GetDescriptor (Configuration)	5	9 bytes (09 02 2E 00 01 01 00 A0 32)
+ 🔯	GetDescriptor (Configuration)	5	46 bytes (09 02 2E 00 01 01 00 A0
+ 🔯	GetDescriptor (String lang IDs)	5	4 bytes (04 03 09 04)
+ 🔯	GetDescriptor (String iProduct)	5	24 bytes (18 03 57 00 69 00 6E 00
+ 🔯	GetDescriptor (String lang IDs)	5	4 bytes (04 03 09 04)
+ 🔯	GetDescriptor (String iProduct)	5	24 bytes (18 03 57 00 69 00 6E 00
+	GetDescriptor (Device)	5	18 bytes (12 01 00 02 FF 00 00 08
+ 6	GetDescriptor (Configuration)	5	9 bytes (09 02 2E 00 01 01 00 A0 32)
+ 🔯	GetDescriptor (Configuration)	5	46 bytes (09 02 2E 00 01 01 00 A0
+ 🔯	GetStatus (Device)	5	2 bytes (00 00)
+ 📴	SetConfiguration (1)	5	No data

USB - FT232

• Precio: 4,50 U\$S (Mouser)

CBUS Signal Option	Available On CBUS Pin	Description
TXDEN	CBUSO, CBUS1, CBUS2, CBUS3, CBUS4	Enable transmit data for RS485
PWREN#	CBUSO, CBUS1, CBUS2, CBUS3, CBUS4	Output is low after the device has been configured by USB, then high during USB suspend mode. This output can be used to control power to external logic P-Channel logic level MOSFET switch. Enable the interface pull-down option when using the PWREN# in this way.*
TXLED#	CBUSO, CBUS1, CBUS2, CBUS3, CBUS4	Transmit data LED drive – pulses low when transmitting data via USB. See Section 7.5 for more details.
RXLED#	CBUSO, CBUS1, CBUS2, CBUS3, CBUS4	Receive data LED drive – pulses low when receiving data via USB. See Section 7.5 for more details.
TX&RXLED#	CBUSO, CBUS1, CBUS2, CBUS3, CBUS4	LED drive – pulses low when transmitting or receiving data via USB. See Section 7.5 for more details.
SLEEP#	CBUSO, CBUS1, CBUS2, CBUS3, CBUS4	Goes low during USB suspend mode. Typically used to power down an external TTL to RS232 level converter IC in USB to RS232 converter designs.
CLK48	CBUSO, CBUS1, CBUS2, CBUS3, CBUS4	48MHz Clock output.**
CLK24	CBUSO, CBUS1, CBUS2, CBUS3, CBUS4	24 MHz Clock output.**
CLK12	CBUSO, CBUS1, CBUS2, CBUS3, CBUS4	12 MHz Clock output.**
CLK6	CBUSO, CBUS1, CBUS2, CBUS3, CBUS4	6 MHz Clock output.**
CBitBangI/O	CBUSO, CBUS1, CBUS2, CBUS3	CBUS bit bang mode option. Allows up to 4 of the CBUS pins to be used as general purpose I/O. Configured individually for CBUSO, CBUS1, CBUS2 and CBUS3 in the internal EEPROM. A separate application note, AN232R-01, available from FTDI website (www.ftdichip.com) describes in more detail how to use CBUS bit bang mode.
BitBangWRn	CBUSO, CBUS1, CBUS2, CBUS3	Synchronous and asynchronous bit bang mode WR# strobe output.
BitBangRDn	CBUSO, CBUS1, CBUS2, CBUS3	Synchronous and asynchronous bit bang mode RD# strobe output.

Práctica USB

USB en LPC17xx

USB en LPC17xx

Logical endpoint	Physical endpoint	Endpoint type	Direction	Packet size (bytes)	Double buffer
0	0	Control	Out	8, 16, 32, 64	No
0	1	Control	In	8, 16, 32, 64	No
1	2	Interrupt	Out	1 to 64	No
1	3	Interrupt	In	1 to 64	No
2	4	Bulk	Out	8, 16, 32, 64	Yes
2	5	Bulk	In	8, 16, 32, 64	Yes
3	6	Isochronous	Out	1 to 1023	Yes
3	7	Isochronous	In	1 to 1023	Yes
4	8	Interrupt	Out	1 to 64	No
4	9	Interrupt	In	1 to 64	No
5	10	Bulk	Out	8, 16, 32, 64	Yes
5	11	Bulk	In	8, 16, 32, 64	Yes
6	12	Isochronous	Out	1 to 1023	Yes
6	13	Isochronous	In	1 to 1023	Yes
7	14	Interrupt	Out	1 to 64	No
7	15	Interrupt	In	1 to 64	No
8	16	Bulk	Out	8, 16, 32, 64	Yes
8	17	Bulk	In	8, 16, 32, 64	Yes
9	18	Isochronous	Out	1 to 1023	Yes
9	19	Isochronous	In	1 to 1023	Yes
10	20	Interrupt	Out	1 to 64	No
10	21	Interrupt	In	1 to 64	No
11	22	Bulk	Out	8, 16, 32, 64	Yes
11	23	Bulk	In	8, 16, 32, 64	Yes
12	24	Isochronous	Out	1 to 1023	Yes
12	25	Isochronous	In	1 to 1023	Yes
13	26	Interrupt	Out	1 to 64	No
13	27	Interrupt	In	1 to 64	No
14	28	Bulk	Out	8, 16, 32, 64	Yes
14	29	Bulk	In	8, 16, 32, 64	Yes
15	30	Bulk	Out	8, 16, 32, 64	Yes
15	31	Bulk	In	8, 16, 32, 64	Yes

USB en LPC17xx

The SIE implementa el protocolo USB y realiza por hardware la transferencia de datos entre endpoint buffers y el bus USB.:

- levanta el patrón de sincronización
- bit stuffing/de-stuffing
- chequeo y generación de CRC
- verificación y generación de PID
- evaluación y generación de handshake

USB – Ejemplo HID

E.10 Report Descriptor (Mouse)

Item		Value (Hex)
Usage Page (Generic Desktop),		05 01
Usage (Mouse),		09 02
Collection (Application),		A1 01
Usage (Pointer),		09 01
Collection (Physical),		A1 00
Usage Page (Buttons),		05 09
Usage Minimum (01),		19 01
Usage Maximun (03),		29 03
Logical Minimum (0),		15 00
Logical Maximum (1),		25 01
Report Count (3),		95 03
Report Size (1),		75 01
Input (Data, Variable, Absolute),	;3 button bits	81 02
Report Count (1),		95 01
Report Size (5),		75 05
Input (Constant),	;5 bit padding	81 01
Usage Page (Generic Desktop),		05 01
Usage (X),		09 30
Usage (Y),		09 31
Logical Minimum (-127),		15 81
Logical Maximum (127),		25 7F
Report Size (8),		75 08
Report Count (2),		95 02
Input (Data, Variable, Relative),	;2 position bytes (X & Y)	81 06
End Collection,		C0
End Collection		C0

Apéndice E
 HID Class devices. P 66

USB

Class Code (hexadecimal)	Description
00	Reserved
01	Audio
02	Communications device class: communication interface
03	Human interface device
05	Physical
06	Image
07	Printer
08	Mass storage
09	Hub
0A	Communications device class: data interface
0B	Smart Card
0D	Content Security
0E	Video
0F	Personal healthcare device (can instead be declared at the device level)
DC	Diagnostic device (can instead be declared at the device level) bInterfaceSubclass= 01h, bInterfaceProtocol = 01h. USB2 compliance device
ЕО	Wireless controller bInterfaceSubclass = 01h bInterfaceProtocol = 01h: Bluetooth programming interface (can also be declared at the device level) bInterfaceProtocol = 02h: UWB Radio control interface (Wireless USB) bInterface bInterfaceProtocol = 03h: remote NDIS bInterfaceSubclass = 02h. Host and device wire adapters (Wireless USB)
EF	Miscellaneous bInterfaceSubclass = 01h bInterfaceProtocol = 01h: active sync bInterfaceProtocol = 02h: Palm sync bInterfaceSubclass = 03h. Cable based association framework (Wireless USB)
FE	Application specific bInterfaceSubclass = 01 h. Device firmware upgrade bInterfaceSubclass = 02 h. IrDA bridge bInterfaceSubclass = 03 h. Test and measurement
FF	Vendor specific (can instead be declared at the device level)

Fuentes

http://www.beyondlogic.org/usbnutshell/usb-in-a-nutshell.pdf usb in a nutshell Jan Axelson – USB COMPLETE – 4th edition http://www.usb.org

http://www.usblyzer.com/brief-usb-overview-and-history.htm
http://arstechnica.com/old/content/2007/09/intel-announces-demonstrates-usb-3-o.ars
http://arstechnica.com/hardware/news/2008/11/usb-3-o-specification-finalized-devices-in-2010.ars
http://techon.nikkeibp.co.jp/english/NEWS_EN/20090310/166949/
http://www.reghardware.co.uk/2008/01/09/ces_usb_3_revealed/
http://arstechnica.com/old/content/2007/09/intel-announces-demonstrates-usb-3-o.ars
http://en.wikipedia.org/wiki/Usb
http://news.cnet.com/8301-17938_105-9780794-1.html
http://thefutureofthings.com/news/5739/25gb-in-70-seconds-with-usb-3-o.html
http://www.intel.com/pressroom/archive/releases/20080813corp.htm
http://www.at91.com/repFichier/Document-123/USB-tutorial.ppt
http://www.computer-solutions.co.uk/info/Embedded_tutorials/usb_tutorial.htm