CSC265 Fall 2020 Homework Assignment 5

due Tuesday, October 20, 2020

A family of hash functions \mathcal{H} from U to $\{0, \dots, m-1\}$ is *pairwise independent* if for every two distinct keys $x_1, x_2 \in U$ and for every $y_1, y_2 \in \{0, \dots, m-1\}$,

Prob
$$h \in \mathcal{H}$$
 $[h(x_1) = y_1 \text{ and } h(x_2) = y_2] = 1/m^2.$

Let \mathcal{H} be a pairwise independent family of hash functions from U to $\{0,\ldots,m-1\}$.

- 1. Prove that \mathcal{H} is universal.
- 2. Let u = |U| and let $m = u^3$. Prove that $\underset{h \in \mathcal{H}}{\text{Prob}}$ [h is perfect for U] > 1 1/u.
- 3. Let $k \in \{0, ..., m-1\}$. For any value $a \in U$, let $X_a : \mathcal{H} \to \{0, 1\}$ be the indicator variable such that $X_a(h) = 1$ if and only if h(a) < k. Let $S \subseteq U$ and let $Y = \sum \{X_a \mid a \in S\}$. Prove that

$$\operatorname{var}_{h \in \mathcal{H}} [Y] \leq \operatorname{E}_{h \in \mathcal{H}} [Y] = |S|k/m.$$

You may use without proof any property of variance given in CLRS section C.3.

4. Consider the following algorithm that takes as input a sequence a_1, \ldots, a_n of n elements from U and is supposed to return an estimate of the number d of distinct elements in the sequence. Here t is a parameter of the algorithm.

Let $h \in \mathcal{H}$ be chosen uniformly at random.

Determine the set T of the t smallest distinct elements in $\{h(a_i) \mid 1 \le i \le n\}$.

If there are fewer than t distinct elements in $\{h(a_i) \mid 1 \le i \le n\}$,

then return the size of this set;

else let V be the largest element in T.

Return
$$D = (t - \frac{1}{2})(m - 1)/V$$
.

Explain how to implement this algorithm so that it takes $O(n \log t)$ time and uses O(t) words of memory, each storing $O(\log m)$ bits.

Assume that a hash function can be stored in O(1) words of memory and that it can be evaluated on an element of U in O(1) time.

5. Give a brief, intuitive explanation why $\underset{h \in \mathcal{H}}{\mathbb{E}} [D]$ is approximately d.