

Data Processing & Analysis of Resting-State fMRI (Part II)

Chao-Gan YAN, Ph.D.

严超赣

ycg.yan@gmail.com http://rfmri.org

Research Scientist

The Nathan Kline Institute for Psychiatric Research

Research Assistant Professor

Department of Child and Adolescent Psychiatry /

NYU Langone Medical Center Child Study Center, New York University

DPARSF

frontiers in **SYSTEMS NEUROSCIENCE**

METHODS ARTICLE published: 14 May 2010 doi: 10.3389/fnsys.2010.00013

DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI

Yan Chao-Gan* and Zang Yu-Feng*

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China

Edited by:

Lucina Q. Uddin, Stanford University, USA

Reviewed by:

Martin Walter, Otto-von-Guericke-Universität Magdeburg, Germany Srikanth Ryali, Stanford University, USA

*Correspondence:

Yan Chao-Gan, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.

e-mail: ycg.yan@gmail.com; Zang Yu-Feng, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875. China.

e-mail: zangyf@bnu.edu.cn

Resting-state functional magnetic resonance imaging (fMRI) has attracted more and more attention because of its effectiveness, simplicity and non-invasiveness in exploration of the intrinsic functional architecture of the human brain. However, user-friendly toolbox for "pipeline" data analysis of resting-state fMRI is still lacking. Based on some functions in Statistical Parametric Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit (REST), we have developed a MATLAB toolbox called Data Processing Assistant for Resting-State fMRI (DPARSF) for "pipeline" data analysis of resting-state fMRI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), and fractional ALFF. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest.

Keywords: data analysis, DPARSF, REST, resting-state fMRI, SPM

Data Processing Assistant for RestingState fMRI (DPARSF)

Yan and Zang, 2010. Front Syst Neurosci.

http://rfmri.org/DPARSF

DPABI: a toolbox for Data Processing & Analysis of Brain Imaging

License: GNU GPL

Chao-Gan Yan
Programmer
Initiator

Xin-Di Wang Programmer

http://rfmri.org/dpabi http://dpabi.org

DPARSF

- Data Preparation
- Preprocessing
- ReHo, ALFF, fALFF Calculation
- Functional Connectivity
- Utilities

Data Organization

ProcessingDemoData.zip

Sub_001

Sub_002

Sub_003

Functional DICOM data

T1Raw

Sub_001

Sub_002

Sub_003

Structural DICOM data

http://rfmri.org/DemoData

Data Organization

ProcessingDemoData.zip

Sub_001

Sub_002

Sub_003

Functional NIfTI data (.nii.gz., .nii or .img)

T1Img

Sub_001

Sub_002

Structural NIfTI data (.nii.gz., .nii or .img)

Sub_003

DPARSF

Data Preparation

- Preprocessing
- ReHo, ALFF, fALFF Calculation
- Functional Connectivity
- Utilities

DPARSF Basic Edition's procedure

- **Convert DICOM files to NIFTI images**
- **Remove First 10 Time Points**
- **Slice Timing**
- Realign
- **Normalize**
- **Smooth (optional)**
- **Detrend (optional)**
- **Nuisance covariates regression**
- Calculate ALFF and fALFF
- Filter
- **Calculate ReHo (without smooth in preprocessing)**
- **Calculate Functional Connectivity**

DPARSF Basic Edition's procedure

- **Convert DICOM files to NIFTI images**
- **Remove First 10 Time Points**
- **Slice Timing**
- Realign
- **Normalize**
- **Smooth (optional)**
- **Detrend (optional)**
- **Nuisance covariates regression**
- Calculate ALFF and fALFF
- Filter
- **Calculate ReHo (without smooth in preprocessing)**
- **Calculate Functional Connectivity**

DPARSF

▼ EPI DICOM to NIFTI ▼ Remove First 10 Time Points
Slice Timing Slice Number: 33 Slice Order: [1 3 5 7 9 11] Reference Slice: 33
✓ Realign ✓ Normalize Bounding Box: [-90 -126 -72;90 90] Voxel Size: [3 3 3]
Normalize by using: EPI templates T1 image unified segmentation DARTEL
✓ Smooth FWHM: [4 4 4] Detrend ✓ Regress out nulsance covariates: Polynomial trend: 2 ✓ Friston 24 head motion parameters Global mean signal ✓ White matter signal ✓ Cerebrospinal fluid signal Other covariates
Default mask
✓ ALFF ✓ fALFF Band (Hz): 0.01 ~ 0.1
▼ Filter (Hz): 0.01 ~ 0.1
☐ ReHo Cluster: ☐ 7 voxels ☐ 19 voxels 27 voxels smReHo
Extract ROI time courses Functional Connectivity Define ROI
Parallel Workers #: 0 Starting Directory Name: FunRaw

DPARSF Basic Edition's procedure

- **Convert DICOM files to NIFTI images**
- **Remove First 10 Time Points**
- **Slice Timing**
- Realign
- **Normalize**
- **Smooth (optional)**
- **Detrend (optional)**
- **Nuisance covariates regression**
- Calculate ALFF and fALFF
- Filter
- **Calculate ReHo (without smooth in preprocessing)**
- **Calculate Functional Connectivity**

Data Processing Assistant for Resting-State fMRI

Basic Edition

Extract ROI time courses

Parallel Workers #:

DPARSF

VUsers/vcg/ITraAllOnline/ITraAll/ITraData/DPARSF_Updating/Ba:

	✓ EPI DICOM to NIFTI ✓ Remove First 10 Time Points
CF.	✓ Slice Timing Slice Number: 33 Slice Order: [1 3 5 7 9 11] Reference Slice: 33
	✓ Realign ✓ Normalize Bounding Box: [-90 -126 -72;90 90] Voxel Size: [3 3 3]
	Normalize by using: EPI templates T1 image unified segmentation DARTEL
	✓ Smooth FWHM: [4 4 4] Detrend
	✓ Regress out nuisance covariates: Polynomial trend: 2
	Friston 24 head motion parameters Global mean signal
	✓ White matter signal Cerebrospinal fluid signal Other covariates
	Default mask
	ALFF ALFF Band (Hz): 0.01 ~ 0.1
	✓ Filter (Hz): 0.01 ~ 0.1

Functional Connectivity

Define ROI

Starting Directory Name:

DPARSF

FunRaw

DPARSF Basic Edition's procedure

- **Convert DICOM files to NIFTI images**
- **Remove First 10 Time Points**
- **Slice Timing**
- Realign
- **Normalize**
- **Smooth (optional)**
- **Detrend (optional)**
- **Nuisance covariates regression**
- Calculate ALFF and fALFF
- Filter
- **Calculate ReHo (without smooth in preprocessing)**
- **Calculate Functional Connectivity**

Slice Timing

Why?

Huettel et al., 2004

Data Processing Assistant for Resting-State fMRI

Basic Edition

Filter (Hz):

0.01

DPARSF

DPARSF

Working Directory: Users/ycg/ITraAll/Online/ITraAll/ITraData/DP	ARSF_Updating/Ba:			
Sub_001 Sub_002 Sub_003 Participants:	Time Points: 0 TR (s): 2			
✓ EPI DICOM to NIFTI ✓ Remove First 10 Time Points				
Slice Timing Slice Number: 33 Slice Order: [1 3 5 7 9 1	Reference Slice: 33			
✓ Realign ✓ Normalize Bounding Box: [-90 -126 -72;90 90]	Voxel Size: [3 3 3]			
Normalize by using: EPI templates T1 image unified segmentation DARTEL				
✓ Smooth FWHM: [4 4 4] Detrend ✓ Regress out nulsance covariates: Polynomial trend: 2				
Friston 24 head motion parameters Global	mean signal			
White matter signal Cerebrospinal fluid signa				
Default mask	e Default Mask			
✓ ALFF ✓ fALFF Band (Hz): 0.01 ~ 0.1				

0.1

1:2:33,2:2:32

DPARSF Basic Edition's procedure

- **Convert DICOM files to NIFTI images**
- **Remove First 10 Time Points**
- **Slice Timing**
- Realign
- **Normalize**
- **Smooth (optional)**
- **Detrend (optional)**
- **Nuisance covariates regression**
- Calculate ALFF and fALFF
- Filter
- **Calculate ReHo (without smooth in preprocessing)**
- **Calculate Functional Connectivity**

Realign

Why?

Data Processing Assistant for Resting-State fMRI

Basic Edition

DPARSF

Т.		DQ.	
	PA]		
		~	

Working Directory: (Users/ycg/ITraAll/Online/ITraAll/ITraData/DPARSF_Updating/Ba:
✓ EPI DICOM to NIFTI ✓ Remove First 10 Time Points
Slice Timing Slice Number: 33 Slice Order: [1 3 5 7 9 11] Reference Slice: 33
✓ Realign ✓ Normalize Bounding Box: [-90 -126 -72;90 90 Voxel Size: [3 3 3]
Normalize by using: EPI templates T1 image unified segmentation DARTEL
✓ Smooth FWHM: [4 4 4] Detrend ✓ Regress out nulsance covariates: Polynomial trend: 2 ✓ Friston 24 head motion parameters Global mean signal ✓ White matter signal ✓ Cerebrospinal fluid signal Other covariates
Default mask
ALFF In the state of the state
▼ Filter (Hz): 0.01 ~ 0.1
☐ ReHo Cluster: ☐ 7 voxels ☐ 19 voxels 27 voxels ✓ smReHo
Extract ROI time courses Functional Connectivity Define ROI
Parallel Workers #: 0 Starting Directory Name: FunRaw

Realign

```
Check head motion:

{WorkingDir}\RealignParameter\Sub_xxx:

rp_*.txt: realign parameters

FD_Power_*.txt: Frame-wise Displacement (Power et al.,
```

2012)

FD_VanDijk_*.txt: Relative Displacement (Van Dijk et al., 2012)

FD_Jenkinson_*.txt: Relative RMS (Jenkinson et al., 2002)

(Yan et al., Neuroimage 2013a)

Excluding Criteria: 2.5mm and 2.5 degree in max head motion None

Excluding Criteria: 2.0mm and 2.0 degree in max head motion Sub_013

{Worki

Check

Excluding Criteria: 1.5mm and 1.5 degree in max head motion Sub_013

Exclud

Excluding Criteria: 1.0mm and 1.0 degree in max head motion

Sub_007

Sub_012

Sub_013

Sub_017

Sub_018

Realign

Check head motion:

HeadMotion.csv: head motion characteristics for each subject (e.g., max or mean motion, mean FD, # or % of FD>0.2)

Threshold:

Group mean (mean FD) + 2 * Group SD (mean FD)

Yan et al., 2013b, Neuroimage; Di Martino, 2013, Mol

Psychiatry

Preprocessing and R-fMRI measures Calculation

Voxel-Specific Head Motion Calculation

(Yan et al., Neuroimage 2013a)

Voxel-Specific Head

DPARSF Basic Edition's procedure

- **Convert DICOM files to NIFTI images**
- **Remove First 10 Time Points**
- **Slice Timing**
- Realign
- **Normalize**
- **Smooth (optional)**
- **Detrend (optional)**
- **Nuisance covariates regression**
- Calculate ALFF and fALFF
- Filter
- **Calculate ReHo (without smooth in preprocessing)**
- **Calculate Functional Connectivity**

Why?

Huettel et al., 2004

Methods:

- I. Normalize by using EPI templates
- II. Normalize by using T1 image unified segmentation
- III. Normalize by using DARTEL
- IV. Normalize by using T1 templates (Not supported)

Methods:

- I. Normalize by using EPI templates
- II. Normalize by using T1 image unified segmentation
- III. Normalize by using DARTEL
- IV. Normalize by using T1 templates (Not supported)

Data Processing Assistant for Resting-State fMRI

Basic Edition

DPARSF

DPARSF

Working Directory: (Users/ycg/ITraAll/Online/ITraAll/ITraData/DPARSF_Updating/Ba:			
EPI DICOM to NIFTI Remove First 10 Time Points			
Slice Timing Slice Number: 33 Slice Order: [1 3 5 7 9 11] Reference Slice: 33			
✓ Realign ✓ Normalize Bounding Box: [-90 -126 -72;90 90] Voxel Size: [3 3 3]			
Normalize by using: EPI templates T1 image unified segmentation DARTEL			
✓ Smooth FWHM: [4 4 4] Detrend			
✓ Regress out nuisance covariates: Polynomial trend: 2			
Friston 24 head motion parameters Global mean signal			
✓ White matter signal			
Default mask			
✓ ALFF ✓ fALFF Band (Hz): 0.01 ~ 0.1			
▼ Filter (Hz): 0.01 ~ 0.1			
☐ ReHo Cluster: ☐ 7 voxels ☐ 19 voxels 27 voxels smReHo			
Extract ROI time courses Functional Connectivity Define ROI			
Parallel Workers #: 0 Starting Directory Name: FunRaw			

Methods:

- I. Normalize by using EPI templates
- II. Normalize by using T1 image unified segmentation
- III. Normalize by using DARTEL
- IV. Normalize by using T1 templates (Not supported)

II. Normalize by using T1 image unified segmentation

- Structural image was coregistered to the mean functional image after motion correction
- **❖** The transformed structural image was then segmented into gray matter, white matter, cerebrospinal fluid by using a unified segmentation algorithm
- ❖ Normalize: the motion corrected functional volumes were spatially normalized to the MNI space using the normalization parameters estimated during unified segmentation (*_seg_sn.mat)

DPARSF

Data Processing Assistant for Resting-State fMRI Basic Edition DPARSF
Working Directory: /Users/ycg/ITraAllOnline/ITraAll/ITraData/DPARSF_Updating/Ba:
rticipants: Sub_001 Sub_002 Sub_003 Time Points: 0 TR (s): 2
EPI DICOM to NIFTI Remove First 10 Time Points
Slice Timing Slice Number: 33 Slice Order: [1 3 5 7 9 11] Reference Slice: 33
Realign Voxel Size: [3 3 3]
Normalize by using: EPI template
T1 DICOM to NIFTI Affine Regularisation in Segmentation: East Asian European
Smooth FWHM: [4 4 4] Detrend Regress out nulsance covariates: Polynomial trend: 2 Friston 24 head motion parameters Global mean signal White matter signal Cerebrospinal fluid signal Other covariates
Default mask No mask User-defined mask Use Default Mask
ALFF of fALFF Band (Hz): 0.01
Filter (Hz): 0.01 ~ 0.1
ReHo Cluster: ○ 7 voxels ○ 19 voxels ● 27 voxels ✓ smReHo
Extract ROI time courses Functional Connectivity Define ROI
Parallel Workers #: 0 Starting Directory Name: FunRaw

Normalize

Methods:

- I. Normalize by using EPI templates
- II. Normalize by using T1 image unified segmentation
- III. Normalize by using DARTEL
- IV. Normalize by using T1 templates (Not supported)

Normalize

III. Normalize by using DARTEL

- **Structural image was coregistered to the mean** functional image after motion correction
- **❖** The transformed structural image was then segmented into gray matter, white matter, cerebrospinal fluid by using a unified segmentation algorithm (New Segment)
- **DARTEL:** create template
- **❖ DARTEL:** Normalize to MNI space. The motion corrected functional volumes were spatially normalized to the MNI space using the normalization parameters estimated in DARTEL.

DPARSF

Data Processing Assistant for Resting-State fMRI **DPARSF** Basic Edition Working Directory: /Users/ycg/ITraAllOnline/ITraAll/ITraData/DPARSF_Updating/Ba: Sub_002 Sub_003 Time Points: 0 Participants: 2 TR (s): EPI DICOM to NIFTI ✓ Remove First 10 Time Points Slice Order: [1 3 5 7 9 11 Slice Timing Slice Number: 33 Reference Slice: 33 Bounding Box: [-90 -126 -72;90 90 ✓ Realign [3 3 3] Voxel Size: EPI templates (T1 image unified segmentation Normalize by using: DARTEL T1 DICOM to NIFTI Affine Regularisation in Segmentation: East Asian (European Smooth FWHM: [4 4 4] Detrend Regress out nuisance covariates: Polynomial trend: 2 Friston 24 head motion parameters Global mean signal White matter signal Cerebrospinal fluid signal Other covariates User-defined mask No mask Use Default Mask fALFF Band (Hz): 0.01 0.1 Filter (Hz): 0.01 0.1 19 voxels (♠) 27 voxels (✔) smReHo 7 voxels Functional Connectivity Extract ROI time courses Define ROI FunRaw 10 Parallel Workers #: Starting Directory Name:

DPARSF

T1 Data should be arranged in T1Raw or T1Img (co*.img) directory!

By-Product: VBM

Bet & Coregistration

43

A	В	С	D	E
Subject ID	QC Score	QC Comment		
Sub_001	5	The spatial normalization is very good!		

DPARSF Basic Edition's procedure

- Convert DICOM files to NIFTI images
- Remove First 10 Time Points
- Slice Timing
- Realign
- Normalize
- Smooth (optional)
 - Detrend (optional)
 - Nuisance covariates regression
 - Calculate ALFF and fALFF
 - Filter
 - Calculate ReHo (without smooth in preprocessing)
 - Calculate Functional Connectivity

Smooth

Why?

 Reduce the effects of bad normalization

Increase SNR

•

Data Processing Assistant for Resting-State fMRI

Basic Edition

Filter (Hz):

0.01

DPARSF

DPARSF

/Users/ycg/ITraAllOnline/ITraAll/ITraData/DPARSF_Updating/Ba: Working Directory: Sub_001 Sub 002 Sub 003 Time Points: 0 Participants: TR (s): 2 EPI DICOM to NIFTI Remove First 10 Time Points 33 [1357911 33 Slice Timing Slice Number: Slice Order: Reference Slice: ✓ Normalize Bounding Box: [-90 -126 -72;90 90 Realign $[3\ 3\ 3]$ Voxel Size: Normalize by using: EPI templates T1 image unified segmentation DARTEL FWHM: [4 4 4] Smooth Detrend Regress out nuisance covariates: 2 Polynomial trend: Friston 24 head motion parameters Global mean signal White matter signal Cerebrospinal fluid signal Other covariates Default mask No mask User-defined mask Use Default Mask ✓ ALFF fALFF Band (Hz): 0.01

0.1

ReHo: Do not smooth before calculation

DPARSF Basic Edition's procedure

- Convert DICOM files to NIFTI images
- Remove First 10 Time Points
- Slice Timing
- Realign
- Normalize
- Smooth (optional)
- Detrend (optional)
- Nuisance covariates regression
- Calculate ALFF and fALFF
- Filter
- Calculate ReHo (without smooth in preprocessing)
- Calculate Functional Connectivity

DPARSF Basic Edition's procedure

- Convert DICOM files to NIFTI images
- Remove First 10 Time Points
- Slice Timing
- Realign
- Normalize
- Smooth (optional)
- Detrend (optional)
- Nuisance covariates regression
- Calculate ALFF and fALFF
- Filter
- Calculate ReHo (without smooth in preprocessing)
- Calculate Functional Connectivity

Regress out nuisance Covariates

DPARSE

Polynomial trend

Based on rp*.txt

BrainMask_05_61x

73x61.img

WhiteMask_09_61x

73x61.img CsfMask_07_61x73 x61.img

DPARSF Basic Edition's procedure

- Convert DICOM files to NIFTI images
- Remove First 10 Time Points
- Slice Timing
- Realign
- Normalize
- Smooth (optional)
- Detrend (optional)
- Nuisance covariates regression
- Calculate ALFF and fALFF
- Filter
- Calculate ReHo (without smooth in preprocessing)
- Calculate Functional Connectivity

ALFF
(Amplitude of Low
Frequency Fluctuation)

Zang et al., 2007

fALFF (fractional ALFF)

PCC: posterior cingulate cortex

SC: suprasellar cistern

Zou et al., 2008

ALFF and fALFF

DPARSF

Please ensure the resolution of your own mask is the same as your functional data.

DPARSF Basic Edition's procedure

- Convert DICOM files to NIFTI images
- Remove First 10 Time Points
- Slice Timing
- Realign
- Normalize
- Smooth (optional)
- Detrend (optional)
- Nuisance covariates regression
- Calculate ALFF and fALFF
- Filter
 - Calculate ReHo (without smooth in preprocessing)
 - Calculate Functional Connectivity

Filter

- Low frequency (0.01–0.08 Hz) fluctuations (LFFs) of the resting-state fMRI signal were of physiological importance. (Biswal et al., 2005)
 - LFFs of resting-state fMRI signal were suggested to reflect spontaneous neuronal activity (Logothetis et al., 2001; Lu et al., 2007).
 - Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34: 537-541.
 - Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412: 150-157.
 - Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, et al. (2007) Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci U S A 104: 18265-18269.

Filter

MoLFF: A theoretical framework of the underlying "mechanisms" for R-fMRI spontaneous fluctuations

Data Processing Assistant for Resting-State fMRI

Basic Edition

0.01

DPARSF

Working Directory: Users/ycg/ITraAllOnline/ITraAll/ITr	aData/DPARSF_Updating/Ba:		
Sub_001 Sub_002 Sub_003 Participants:	Time Points: 0 TR (s): 2		
☑ EPI DICOM to NIFTI ☑ Remove First 10 Tim	ne Points		
Slice Timing Slice Number: 33 Slice Order: [1	3 5 7 9 11 Reference Slice: 33		
✓ Realign ✓ Normalize Bounding Box: [-90 -126 -72;90 90 Voxel Size: [3 3 3]			
Normalize by using: EPI templates T1 image unified segmentation DARTEL			
✓ Smooth FWHM: [4 4 4]			
Default mask	Use Default Mask		
ALFE ALFE Band (Hz): 0.01	0.1		

DPARSF Basic Edition's procedure

- Convert DICOM files to NIFTI images
- Remove First 10 Time Points
- Slice Timing
- Realign
- Normalize
- Smooth (optional)
- Detrend (optional)
- Nuisance covariates regression
- Calculate ALFF and fALFF
- Filter
- Calculate ReHo (without smooth in preprocessing)
- Calculate Functional Connectivity

ReHo

(Regional Homogeneity)

Note: Please do not smooth your data in preprocessing, just smooth your data after ReHo calculation.

$$W = \frac{\Sigma (R_i)^2 - n(\overline{R})^2}{\frac{1}{12} K^2 (n^3 - n)}$$

Zang et al., 2004

ReHo

DPARSF

Please ensure the SmesthuthenvoRyHar results.nThskRyYHeM kesmeleisathyosame as feactiothal statatath step.

Outline

- Overview
- Data Preparation
- Preprocess
- ReHo, ALFF, fALFF Calculation
- Functional Connectivity
- Utilities

Functional Conncetivity

Voxel-wise

ROI-wise

r=0.36

Functional Connectivity

DPARSF

Please ensure the resolution of your own mask is the same as your functional data.

Functional Connectivity

DPARSF

You will get the Voxel-wise

functional connectivity results

of each ROI in {working

directory}\Results\FC:

zROI1FCMap_Sub_001.img

zROI2FCMap_Sub_001.img

For ROI-wise results, please see Part Utilities:

Extract ROI time courses.

Outline

- Overview
- Data Preparation
- Preprocess
- ReHo, ALFF, fALFF Calculation
- Functional Connectivity

Extract ROI Signals

DPARSF

Extract ROI Signals

DPARSE

Results in {working

direcotry}\/Results/FunImgARWSC

F_ROISignals/:

ROISignals_Sub_001.txt: Time courses, each column represent a time course of one ROI.

ROICorrelation_Sub_001.txt: ROI-wise Functional Connectivity

Save and Load Parameters

DPARSF

Save parameters to

*.mat

Load parameters

from *.mat

Further Help

Further questions:

http://rfmri.org/dpabi

http://dpabi.org

The R-fMRI Network (RFMRI.ORG):

A network for supporting resting-state fMRI related studies!

Forum

Propose research ideas

You can propose your research ideas here. If you have an interesting idea that you would like to share with other researchers, or you are eager to see the results but lack enough time/resource to realize it. you can suggest your idea here. Researchers who are interested can pursue the idea, discuss it with you and others, and, ideally, conduct related studies. Researchers who follow-up ideas shared in this forum should acknowledge the proposer and cite this dated document when publishing or presenting their work.

Discuss (controversial) issues

You can discuss R-fMRI related issues here, especially controversial issues. We invite all interested researchers to provide their opinions on the issues, as an immediate, efficient, direct and "peerviewed" way to reach some level of consensus.

Request help for software usage

If you encountered any technical problems/issues related to R-fMRI software (e.g., DPARSF, REST, C-PAC, SPM, ...), you can post your problem/issue including the error message here. A software team member or other experienced user may respond to help solve the problems/issues, which may also help other users.

DPARSF/REST

SPM/SPM Extensions

C-PAC

GRETNA/BrainNet Viewer

GraphVar

AFNI/FSL/Freesurfer

Others

Share experiences

You can share your experiences related to designing studies, performing experiments, analyzing data, writing papers, publishing articles or applying for grants. Your experiences may be helpful to other researchers, especially junior investigators.

Report preliminary results

If you would like to report your preliminary results online, to initiate discussion with other researchers, and keep a dated online document which other researcher can cite, you can post your proceeding report here.

Initiate collaborations

If you want to find collaborators who have the resources to help with your studies, please post information regarding the proposed collaboration here. We hope this forum will help to enhance collaborations among researchers, especially between those doing basic and methodological neuroscience research and those doing clinical studies (bench to bedside and vice-versa).

Look for a job

If you want to find a job, you can post your information here. Researchers who have a vacancy may contact you.

Look for talent

If you want to hire talented researchers to support your studies, you can post the job information here. Talented nodes may contact you if they are qualified and interested in your project.

我想用中文提问 (I want to post in Chinese)

采用我们的母语,能够进行迅捷有效的沟通。但是鉴于英文是科技通用语言,建议所有研究者采用英文 发贴,做为训练自己英语的良机。如果你实在觉得英文无法表达你的思想,请在该论坛中采用美丽的中 文提问。

Speaker: Chao-Gan Yan, 严超赣, Ph.D.

Gray matter volume AAL regions

Submitted by joana on Sun, 07/06/2014 - 02:10

Dear all,

I would like to extract the gray matter volumes from the labels of the AAL and Dosenback atlases included in DPARSF.

Send emails only to rfmri.org@gmail.com:

1) sending new email means you are posting your personal blogs, 2) replying email means you are posting comments to that topic/blog, 3) then all the other R-fMRI nodes will receive email updates of your posts.

Notifications
 □ Do not send notifications for this update.

The Next BIG Effort Here!

"Journal" of the R-fMRI Network (JRN):

a free-submission, open-access, "peer viewed" "Journal"

Chao-Gan Yan, Ph.D.
Initiator
The R-fMRI Network
DPABI
DPARSF

JRN (planning)

Dear all,

We greatly appreciate that you are staying with us at the R-fURI Network, as well as DBBI and DBBIT. These efforts are running of the researchers, by the researchers and for the researchers. Given the unfunded nature of these efforts, we sincerely hope you can help us — your kind contributions shall make these efforts not perish from the earth!

Your kind contributions, as small as

slow and inefficient "peer reviewed" journal publication system. Please stay tuned!

If you want to contribute \$100 or even more, we will greatly appreciate!

Nonetheless, please keep in mind — many a little makes a mickle, \$100 px \$100 p

\$1 per month, can help us to pay the web Jomains, empower the server, enhance the bandwidth, improve the website and software, and make our experience at the R-fMRI Network, as well as DPABI and DPARSI better!

The next big effort here is a free-submission, open-access, "peer viewed"

"Journal" of the R-fMRI Network (FRN).

We would like to supplement the current

Thank you very much for your help!

P.S.: If you are not ready to

contribute now but next time, pay some
attention to (or even press) the following

Google Ads will be helpful for our
efforts as well!

Yours Sincerely.

YAN has-Gran

CONTRIBUTE

Many a little makes a mickle--聚沙成塔--Help us with an amount via PayPal slusp

1 USD

10x faster than

Xin-Di Wang Programmer

Yu-Feng Zang Consultant

Acknowledgments

Nathan Kline Institute

Charles Schroeder

Stan Colcombe

Gary Linn

Mark Klinger

NYU Child Study Center

F. Xavier Castellanos

Adriana Di Martino

Clare Kelly

Child Mind Institute

Michael P. Milham

R. Cameron Craddock

Zhen Yang

Hangzhou Normal University

Yu-Feng Zang

Beijing Normal University

Yong He

Fudan University

Tian-Ming Qiu

Chinese Academy of Sciences

Xi-Nian Zuo

Princeton University

Han Liu

My Research Network (RNET.PW)

The cloud way for doing research!