কন্সেপ্ট	নোট
৩য অঃ	शाय

বুসায়ৰ

<u>পদার্থের</u> গঠন

Prepared by: SAJJAD HOSSAIN

প্রমাণু নিমে কিছু তথ্য

- গ্রিসের দার্শনিক ডেমোক্রিটাস প্রথম বলেছিলেন, প্রত্যেক পদার্থের একক আছে যা অতি স্কুদ্র আর অবিভাজ্য।
 তিনি এর নাম দেন এটম। তবে কোনো বৈজ্ঞানিক পরীক্ষা দিয়ে এটি প্রমাণ করা সম্ভব হয়নি ।
- বিজ্ঞানী অ্যারিস্টেটল এর বিরোধিতা করেছিলেন তাই এটি কোনো গ্রহণযোগ্যতা পায়নি।
- 1803 সালে ব্রিটিশ বিজ্ঞানী জন ডাল্টন বিভিন্ন পরীক্ষায় প্রাপ্ত ফলাফলের উপর ভিত্তি করে ডেমোক্রিটাসের ধারণাপ্রসূত পরমাণু সম্পর্কে একটি মতবাদ দেন। এই মতবাদ অনুসারে প্রতিটি পদার্থ তাজয় য়ৢয় এবং অবিভাজ্য কণার সমন্বয়ে গঠিত। তিনি দার্শনিক ডেমোক্রিটাসের সম্মানে এ একক য়ৢয় কণার নাম দেন Atom, যার অর্থ প্রমাণু।
- পরে প্রমাণিত হয় য়ে, পরমাণু অবিভাজ্য নয়। এদের ভাঙলে পরমাণুর চেয়েও য়ৣয় কণিকা ইলেকয়ন, প্রোটন,
 নিউয়ন ইত্যাদি পাওয়া য়য়। অর্থাৎ পরমাণু কতকগুলো য়ৢয়ৢয়তর কণার সমন্বয়ে গঠিত।

মৌলিক ও যৌগিক পদার্থ

মৌলিক পদার্থ যৌগিক পদার্থ যে পদার্থকে ভাঙলে সেই পদার্থ ছাডা অন্য কোনো যে সকল পদার্থ<mark>কে ভাঙলে দু</mark>ই বা দুইয়ের অধিক পদার্থ পাওয়া যায় না তাকে মৌলিক পদার্থ বা মৌল মৌল পাওয়া যায় তাদেরকে যৌগ বা যৌগিক পদার্থ বলে। বলে। উদাহরণস্থরূপ, পানিকে যদি ভাঙা হয় (অর্থাৎ কিছু মৌলের উদাহরণ হলো নাইট্রোজেন, ফসফরাস, কার্বন, অক্সিজেন, হিলিয়াম, ক্যালসিয়াম, আর্গন, রাসায়নিকভাবে বিশ্লেষণ করা যায়) তবে কিন্তু দৃটি ম্যাগ্রেসিয়াম, সালফার ইত্যাদি। ভিন্ন মৌল হাইড্রোজেন ও অক্সিজেন পাওয়া যাবে। এ পর্যন্ত 118টি মৌল আবিষ্কৃত হয়েছে। এগুলোর মধ্যে আবার, লেখার চককে যদি ভাঙা যায় ভাহলে সেখানে 98টি মৌল প্রকৃতিতে পাওয়া যায়। বাকি মৌলগুলো ক্যালসিয়াম, কার্বন ও অক্সিজেন এ তিনটি মৌল গবেষণাগারে তৈরি করা হয়েছে। এগুলোকে কৃত্রিম পাওয়া যাবে। মৌল বলে। যৌগের মধ্যে মৌলসমূহের সংখ্যার অনুপাত সব সম্য মানব শরীরে মোট 26 ধরনের ভিন্ন ভিন্ন মৌল <u>একই থাকে।</u> যেমন— যেথান থেকেই পানির নমুনা আছে। সংগ্রহ করা হোক না কেন রাসায়নিকভাবে বিশ্লেষণ করা হলে সব সময় দুই ভাগ হাইড্রোজেন এবং এক ভাগ অক্সিজেন পাওয়া যাবে। যৌগের ধর্ম মৌলসমৃহের ধর্ম থেকে সম্পূর্ণ আলাদা। যেমন – সাধারণ তাপমাত্রায় হাইড্রোজেন ও অক্সিজেন গ্যাসীয় কিন্তু এদের থেকে উৎপন্ন যৌগ পানি সাধারণ

তাপমাত্রায় তরল।

পদার্থেব গঠন

Prepared by: SAJJAD HOSSAIN

প্রমাণু ও অণু

প্রমাণু	অণু
পরমাণু হলো মৌলিক পদার্থের ক্ষুদ্রতম কণা যার	• দুই বা দুইয়ের অধিক সংখ্যক পরমাণু পরস্পরের
মধ্যে মৌলের গুণাগুণ বর্তমান থাকে।	সাথে রাসায়নিক বন্ধনের মাধ্যমে যুক্ত থাকলে তাকে
যেমন নাইট্রোজেনের পরমাণুতে নাইট্রোজেনের ধর্ম	অণু বলে।
বিদ্যমান আর অক্সিজেনের পরমাণুতে অক্সিজেনের ধর্ম	• একই মৌলের একাধিক পরমাণু পরস্পরের সাথে যুক্ত
বিদ্যমান খাকে।	<mark>হলে তাকে <u>মৌলের অণু</u> বলে। যেমন– O</mark> 2 ।
	• ভিন্ন ভিন্ন মৌলের পরমাণু পরস্পর যুক্ত হলে তাকে
	<u>যৌগের অণু বলে।</u> যেমন- CO₂ । একটি কার্বন
	পরমা <mark>ণু (C) দু</mark> টি অক্সিজেন পরমাণুর (O) সাথে
	যুক্ত হয়ে একটি কার্বন ডাই-অক্সাইড তাণু (CO₂)
	গঠিত হয়।

মৌলেব প্রতীক ও সংকেত

- কোনো মৌলের ইংরেজি বা ল্যাটিন নামের সংক্ষিপ্ত রূপকে প্রতীক বলে।
- - প্রথমত মৌলের ইংরেজি নামের প্রথম অক্ষর দিয়ে প্রতীক লেখা হয় এবং তা ইংরেজি বর্ণমালার
 বিভ হাতের অক্ষর দিয়ে প্রকাশ করা হয়। য়েয়ন-
 - शरेख़ारजन (Hydrogen) এর প্রতীক (H),
 - कार्वन (Carbon) এর প্রতীক (C),
 - विकासिक अधिक (0) देखापि।
 - মদি দুই বা দুইয়ের অধিক মৌলের ইংরেজি নামের প্রথম অক্ষর একই হয় তবে একটি
 মৌলকে নামের প্রথম অক্ষর (ইংরেজি বর্ণমালার বড় হাতের) দিয়ে প্রকাশ করা হয়।
 অন্যগুলোর ক্ষেত্রে প্রতীকটি দুই অক্ষরে লেখা হয়। নামের প্রথম অক্ষরটি ইংরেজি বর্ণমালার
 বড় হাতের অক্ষর এবং নামের অন্য একটি অক্ষর ছোট হাতের অক্ষর দিয়ে লেখা হয়।
 য়েমন-
 - कार्वन (Carbon) এর প্রতীক (C),
 - क्लांत्रिन (Chlorine) এর প্রভীক (CI),
 - क्यानित्राम (Calcium) এর প্রতীক (Ca),
 - (कावान्टे (Cobalt) এর প্রতীক (Co),
 - क्राफिस्राम (Cadmium) এর প্রতীক (Cd),
 - ক্রোমিয়াম (Chromium) এর প্রতীক (Cr).

প্রতীক

Prepared by: SAJJAD HOSSAIN
০ কিছু মৌলের প্রতীক তাদের ল্যাটিন নাম খেকে নেওয়া হয়েছে। যেমন–
■ (সাডিয়াম (ल्यािंटिन नाम Natrium) এর প্রতীক (Na),
■ কপার (ল্যাটিন নাম Cuprum) এর প্রতীক (Cu),
■ পটাশিয়াম (ल्यािं नाम Kalium) এর প্রতীক (K),
■ সিলভার (ল্যাটিন নাম Argentatum) এর প্রতীক (Ag),
■ টিন (ল্যাটিন নাম Stannum) এর প্রতীক (Sn),
■ এন্টিমনি (Stibium) এর <mark>প্রতীক</mark> (Sb),
■ গোল্ড (ল্যাটিন নাম Aur <mark>um) এর প্রতী</mark> ক (Au),
■ লেড (ল্যাটিন নাম Plumbum) এর প্রতীক (Pb),
■ টাংস্টেন (ल्যािंচिन नाम Wolfram) <u>এর প্রতীক (</u> W),
■ আয়রন (ল্যাটিন নাম Ferrum) এর প্রতীক (Fe),
■ মারকারি (ল্যাটিন না <mark>ম</mark> Hydrargyrum) এর প্রতীক (Hg).
 যেসব অক্ষর ও সংখ্যার সমন্বয়ে কোলো যৌগকে প্রকাশ করা হয়, তাকে ঐ যৌগের সংকেত বলে।
যেমল-
ं नाইট্রোজেন এর সংকেত N₂
সংকেত ○ <i>অ্যামোনিয়া এর <mark>সংকেত NH₃</mark></i>
০ <i>সালফিউরিক এ<mark>সিড এর সংকেত H₂SO₄</mark></i>

কন্সেপ্ট লোট

৩্য অধ্যায়

বুসায়ৰ

পদার্থের গঠন

প্রমাণুর সাংগঠনিক কণা

o भानि এর সংকেত H₂O

o शरेष्ट्राक्नातिक <u>अभिर</u>ु अत <mark>मःरक</mark>्छ HCI

কণা	সংজ্ঞা	প্রকাশ	আবিষ্কা রক	প্রকৃত ভর	প্রকৃত চার্জ
ইলেকট্ৰন	ঋণাত্মক আধানবিশিষ্ট পরমাণুর মৌলিক কণা	е	খমসন	$9.11 \times 10^{-28} g$	$-1.6 \times 10^{-19} C$
প্রোটন	ধণাত্মক আধানবিশিষ্ট পরমাণুর মৌলিক কণা	р	রাদারফোর্ড	$1.673 \times 10^{-24}g$	+1.6 × 10 ⁻¹⁹ C
নিউট্টন	আধান নিরপেক্ষ পরমাণুর মৌলিক কণা	n	চ্যাডউইক	$1.675 \times 10^{-24} g$	0

পদার্থের গঠন

Prepared by: SAJJAD HOSSAIN

পারমাণবিক সংখ্যা ও ভ্রসংখ্যা

_	
পারমাণবিক সংখ্যা	ভ্রসংখ্যা
কোনো মৌলের একটি পরমাণুর নিউক্লিয়াসে উপস্থিত	কোনো পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটন ও
প্রোটনের সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা	নিউট্রন সংখ্যার যোগফলকে ঐ পরমাণুর ভরসংখ্য
বলা হয়। যেমন- হিলিয়াম (He) এর একটি	বলে।
পরমাণুর নিউক্লিয়াসে দুটি প্রোটন থাকে। তাই	 ভরসংখ্যাকে A দিয়ে প্রকাশ করা হয়।
হিলিয়ামের পারমাণবিক সংখ্যা হলো দুই।	 যেহেতু ভরসংখ্যা হলো প্রোটন সংখ্যা ও নিউট্রন
• काला भत्रमानूत भात्रमानिक प्रःथ्या घाता ঐ	<mark>সংখ্যার</mark> যোগফল, কাজেই ভরসংখ্যা থেকে প্রোটন
পরমাণুকে চেনা याऱ्।	সংখ্য <mark>া বিয়োগ করলে নিউট্রন সংখ্</mark> যা পাওয়া যায়।
প্রোটন সংখ্যা বা পারমাণবিক সংখ্যাকে Z দিয়ে প্রকাশ	সোডি <mark>য়ামের (Na</mark>) ভরসংখ্যা হলো 23, এর প্রোটন
করা হয়।	সংখ্যা 11, ফলে এর নিউট্রন সংখ্যা হচ্ছে 23 – 11=
 যেহেতু প্রত্যেকটা পরমাণুই চার্জ নিরপেক্ষ অর্থাৎ মোট 	12
চার্জ বা আধান শূন্য তাই পরমাণুর নিউক্লিয়াসে যতটি	
প্রোটন থাকে নিউক্লিয়াসের বাইরে ঠিক <mark>ভ</mark> তটি	
ইলেকট্ৰন থাকে।	

কোনো পরমাণুর পারমাণবিক সংখ্যা পরমাণুর প্রতীকের নিচে বাম পাশে লেখা হয়, পরমাণুর ভরসংখ্যা প্রতীকের বাম পাশে উপরের দিকে লেখা হয়। যেমন সোডিয়াম পরমাণুর প্রতীক Na, এর পারমাণবিক সংখ্যা 11 এবং ভরসংখ্যা 23। এটাকে নিয়োক্তভাবে প্রকাশ করা য়ায়:

 $^{23}_{11}Na$

সাক্ষাদ স্যাবের স্পেশাল হ্যাকঃ 1 খেকে 30 পর্যন্ত পারমাণবিক সংখ্যা কিভাবে মলে রাখা যায়????

নাম	প্রতীক	পারমাণবিক সংখ্যা	छ न्प
হাইড্রোজেন	(H)	1	
হিলিয়াম	(He)	2	
লিখিয়াম	(Li)	3	
বেরিলিয়াম	(Be)	4	
বোরন	(B)	5	Hi(H) hello(He+Li) BBC(Be+B+C) news(N) on (O)
কাৰ্বন	(C)	6	Friday(F) night(Ne).
নাইট্রোজেন	(N)	7	
অক্সিজে ন	(O)	8	
স্লোরিন	(F)	9	
নিয়ন	(Ne)	10	

ক্সেপ্ট নোট			
বসায়ৰ	৩্ম অধ্যাম	পদার্থের গঠন	
		Prepared by: SAJJAD HOSSAIN	

(Na)	11	
(Mg)	12	
(AI)	13	
(Si)	14	
(P)	15	নামাজ(Na+Mg) এসে(Al+Si) পড়বে(P) স্কুলে(S+Cl)
(S)	16	আক্তার <mark>(Ar)</mark> কাকা(K+Ca)।
(CI)	17	
(Ar)	18	
(K)	19	
(Ca)	20	
(Sc)	21	
(Ti)	22	
(V)	23	
(Cr)	24	
(Mn)	25	সাইন্স(Sc) টিচার(<mark>Ti</mark>) VC <mark>(V+Cr)</mark> মাহফুজ(Mn+Fe)
(Fe)	26	কণিকার(Co+Ni+Cu) জামাই(Zn)
(Co)	27	
(Ni)	28	
(Cu)	29	
(Zn)	30	
	(Mg) (AI) (Si) (P) (S) (CI) (Ar) (K) (Ca) (Sc) (Ti) (V) (Cr) (Mn) (Fe) (Co) (Ni) (Cu)	(Mg) 12 (Al) 13 (Si) 14 (P) 15 (S) 16 (Cl) 17 (Ar) 18 (K) 19 (Ca) 20 (Sc) 21 (Ti) 22 (V) 23 (Cr) 24 (Mn) 25 (Fe) 26 (Co) 27 (Ni) 28 (Cu) 29

বাড়ির কাজঃ নিম্নোক্ত প্রতীক থেকে প্রোটন, ইলেকট্রন ও ভরসংখ্যা নির্ণ্য় করোঃ ${}^{7}_{3}Li, {}^{9}_{4}Be, {}^{40}_{20}Ca$

কন্সেপ্ট **ৰোট** বসায়ৰ ৩য় অধ্যায় পদাৰ্থেব গঠৰ

Prepared by: SAJJAD HOSSAIN

প্রমাণুর মডেল

মডেলের নাম	প্ৰদাৰকাল	অপ্র লাম
রাদার্কোর্ডের প্রমাণ মডেল	1911	সোলার সিস্টেম/ সৌর মডেল নিক্লিয়ার মডেল
বোরের প্রমাণ মডেল	1913	-

রাদারফোর্ডের প্রমাণু মডেল

1911 খ্রিষ্টাব্দে বিজ্ঞানী রাদারফোর্ড পরমাণুর গঠন সম্পর্কে একটি মডেল প্রদান করেন। এ মডেল অনুসারে–

- প্রত্যেকটি পরমাণুর একটি কেন্দ্র আছে। এই কেন্দ্রের নাম **নিউক্লিয়াস**। নিউক্লিয়াসের ভেতরে প্রোটন ও নিউট্রন এবং নিউক্লিয়াসের বাইরে ইলেকট্রন অবস্থান করে। যেহেতু আপেক্ষিকভাবে ইলেকট্রনের ভর শূন্য ধরা হয় কাজেই নিউক্লিয়াসের ভেতরে অবস্থিত প্রোটন এবং নিউট্রনের ভরই পরমাণুর ভর হিসেবে বিবেচনা করা হয়।
- নিউক্লিয়াস অত্যন্ত য়ৣ৸ এবং নিউক্লিয়াসের বাইরে ও পরমাণুর ভেতরে বেশির ভাগ জায়গাই ফাঁকা।
- সৌরজগতে সূর্যকে কেন্দ্র করে বিভিন্ন কক্ষপথে যেমন গ্রহগুলো ঘুরে তেমনি নিউক্লিয়াসকে কেন্দ্র করে বিভিন্ন কক্ষপথে ইলেকট্রনগুলো ঘুরছে। কোনো পরমাণুর নিউক্লিয়াসে যে কয়টি প্রোটন থাকে নিউক্লিয়াসের বাইরে ঠিক সেই কয়টি ইলেকট্রন থাকে। যেহেতু প্রোটন এবং ইলেকট্রনের চার্জ একে অপরের সমান ও বিপরীত চিছের, তাই পরমাণুর সামগ্রিকভাবে চার্জ শূল্য।

চিত্র 3.01: রাদারফোর্ডের পরমাণু মডেল।

• ধনাম্মক চার্জবাহী নিউক্লিয়াসের প্রতি ঋণাম্মক চার্জবাহী ইলেকট্রন এক ধরনের আকর্ষণ বল অনুভব করে। এই আকর্ষণ বল কেন্দ্রমুখী এবং এই কেন্দ্রমুখী বলের কারণে পৃথিবী যেরকম সূর্যের চারদিকে ঘুরে ইলেকট্রন সেরকম নিউক্লিয়াসের চারদিকে ঘুরে। রাদারফোর্ডের পরমাণু মডেলকে সৌরজগতের সাথে তুলনা করা হয়েছে বলে এ মডেলটিকে সোলার সিস্টেম মডেল বা সৌর মডেল বলে। আবার,এ মডেলের মাধ্যমে বিজ্ঞানী রাদারফোর্ড সর্বপ্রথম নিউক্লিয়াস সম্পর্কে ধারণা দেন বলে এ মডেলটিকে নিউক্লিয়ার মডেলও বলা হয়।

রাদারফোর্ডের প্রমাণু মডেলের সীমাবদ্ধতা

রাদারফোর্ডই সর্বপ্রথম নিউক্লিয়াস এবং ইলেকট্রনের কক্ষপথ সম্বন্ধে ধারণা দেন। তিনিই সর্বপ্রথম একটি গ্রহণযোগ্য পরমাণু মডেল প্রদান করলেও তার পরমাণু মডেলের কিছু সীমাবদ্ধতা ছিল। সেগুলো হলো:

• এই মডেল ইলেকট্রনের <mark>কক্ষপথের আকার (ব্যাসার্ধ) ও আকৃতি</mark> সম্বন্ধে কোনো ধারণা দিতে পারেনি।

- সৌরজগতের সূর্য ও গ্রহগুলোর সামগ্রিকভাবে কোনো আধান বা চার্জ নেই কিন্তু পরমাণুতে ইলেকট্রন এবং
 নিউক্লিয়াসের আধান বা চার্জ আছে। কাজেই চার্জহীন সূর্য এবং গ্রহগুলোর সাথে চার্যযুক্ত নিউক্লিয়াস এবং
 ইলেকট্রনের তুলনা করা সঠিক নয়।
- একের অধিক ইলেকট্রনবিশিষ্ট পরমাণুতে ইলেকট্রনগুলো কীভাবে নিউক্লিয়াসের চারদিকে পরিত্রমণ করে তার কোনো ধারণা এ মড়েলে দেওয়া হয়নি।

• ম্যাক্সওমেলের তত্বানুসারে ইলেকট্রন নিউক্লিয়াসকে কেন্দ্র করে ঘূর্ণনের সময় ক্রমাগত শক্তি হারাতে থাকবে। ফলে ইলেকট্রনের ঘূর্ণন পথও ছোট হতে থাকবে এবং এক সময় ইলেকট্রনটি নিউক্লিয়াসে পতিত হবে। অর্থাৎ পরমাণুর অস্তিত্ব বিলুপ্ত হবে। কিন্তু বাস্তবে সেটা ঘটে না অর্থাৎ ম্যাক্সওয়েলের তত্বানুসারে রাদারফোর্ডের পরমাণু মডেল সঠিক নয়।

চিত্র 3.02: ইলেকট্রন শক্তি হারিয়ে নিউক্রিয়াসে পতিত হচ্ছে।

বোর প্রমাণু মডেল

রাদারফোর্ডের পরমাণু মডেলের ক্রটিগু<mark>লোকে সংশোধন</mark> করে 1913 খ্রিস্টাব্দে বি<mark>জ্ঞানী নীলস্ ব</mark>োর পরমাণুর একটি মডেল প্রদান করেন। বোর পরমাণু ম<mark>ডেলের মত</mark>বাদগুলো এরকম–

- পরমাণুতে যে সকল ইলেকট্রন থাকে সেগুলো নিউক্লিয়াসকে কেন্দ্র করে ইচ্ছামতো যেকোনো কক্ষপথে ঘুরতে পারে না। শুধু নির্দিষ্ট ব্যাসার্ধের কতগুলো অনুমোদিত বৃত্তাকার কক্ষপথে ঘুরে। এই নির্দিষ্ট ব্যাসার্ধের অনুমোদিত বৃত্তাকার কক্ষপথগুলোকে প্রধান শক্তিস্তর বা শেল বা অরবিট বা শ্বির কক্ষপথ বলে। শ্বির কক্ষপথে ঘুরার সময় ইলেকট্রনগুলো কোনোরূপ শক্তি শোষণ বা বিকিরণ করে না। শ্বির কক্ষপথকে n দ্বারা প্রকাশ করা হয়। n = 1, 2, 3, 4 ইত্যাদি। অন্যভাবে বলা যায়, n = 1 হলে K প্রধান শক্তিস্তর, n=2 হলে L প্রধান শক্তিস্তর, n = 3 হলে M প্রধান শক্তিস্তর, n = 4 হলে N প্রধান শক্তিস্তর ইত্যাদি।
- বোর মডেল অনুসারে কোনো শক্তিস্তরে ইলেকট্রনের কৌণিক ভ্রবেগ

$$mvr = \frac{nh}{2\pi}$$

এখানে,

m হচ্ছে ইলেকট্রনের ভর (9.11 × 10⁻³¹ kg)

r হচ্ছে ইলেকট্রন যে কক্ষপথ বা শক্তিস্তরে ঘুরবে তার ব্যাসার্ধ

v হচ্ছে ইলেকট্রন যে কক্ষপথ বা শক্তিস্তরে ঘুরবে সেই কক্ষপথে ইলেকট্রনের বেগ

h হচ্ছে প্লাংক ধ্রুবক (h = 6.626 x 10⁻³⁴ m² kg/s)I

৩্য অধ্যায়

পদার্থের গঠন Prepared by: SAJJAD HOSSAIN

n হচ্ছে প্রধান শক্তিস্তর বা প্রধান কোয়ান্টাম সংখ্যা (n 1, 2, 3 ইত্যাদি।)

চিত্র 3.03: বোরের পরমাণু মডেল।

(c) কোনো প্রধান শক্তিস্তরে ঘূর্ণনের সময় ইলেকট্রন কোনো শক্তি শোষণ বা বিকিরণ করে না, তবে ইলেকট্রন
 যখন নিয় শক্তিস্তর থেকে উচ্চ শক্তিস্তর এ যায় তখন শক্তি শোষণ করে। আবার, ইলেকট্রন যখন উচ্চ শক্তিস্তর
 থেকে নিয় শক্তিস্তর এ যায় তখন শক্তি বিকিরণ হয়। এই শোষিত বা বিকিরিত শক্তির পরিমাণ

$$hv = \frac{hc}{\lambda}$$

এখানে,

- c হচ্ছে আলোর বেগ (3 X 10⁸ ms⁻¹)
- v হচ্ছে শোষিত বা বিকিরিত শক্তির কম্পাঙ্ক (একক s⁻¹ বা Hz)
- এ হচ্ছে শোষিত বা বিকিরিত শক্তির তরঙ্গ দৈর্ঘ্য (একক m)

ইলেকট্রন উদ্দ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে যাবার সময় যে আলো বিকিরণ করে তাকে প্রিজমের মধ্য দিয়ে Pass করালে পারমাণবিক বর্ণালির (atomic spectra) সৃষ্টি হয়।

বোরের প্রমাণু মডেলের সাফল্য

- রাদারফোর্ডের পরমাণু মডেল অনুসারে সৌরজগতে সূর্যকে কেন্দ্র করে গ্রহ-উপগ্রহগুলো যেমন ঘুরছে, পরমাণুতে
 ইলেকট্রনগুলোও তেমন নিউক্লিয়াসকে কেন্দ্র করে ঘুরছে। এখানে ইলেকট্রনের শক্তিস্তরের আকার সম্পর্কে কোনো
 কথা বলা হয়নি কিল্ক বোরের পারমাণবিক মডেলে পরমাণুর শক্তিস্তরের আকার ব্তাকার বলা হয়েছে।
- রাদারফোর্ডের পরমাণু মডেলে পরমাণু শক্তি শোষণ করলে বা শক্তি বিকিরণ করলে পরমাণুর গঠনে কী ধরনের পরিবর্তন ঘটে সে কথা বলা হয়নি কিন্ত বোর পরমাণু মডেলে বলা হয়েছে পরমাণু শক্তি শোষণ করলে ইলেকট্রন নিম্ন শক্তিস্তর থেকে উচ্চ শক্তিস্তরে ওঠে। আবার, পরমাণু শক্তি বিকিরণ করলে ইলেকট্রন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে নেমে আসে।

	কন্সেপ্ট নোট	
বুসামূল	৩্ম অধ্যাম	পদার্থের গঠন

• রাদারফোর্ডের পরমাণু মডেল অনুসারে কোনো মৌলের পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না কিল্ণ বোরের পরমাণু মডেল অনুসারে এক ইলেকট্রন বিশিষ্ট পরমাণু, হাইড্রোজেন (H) এর **বর্ণালি** ব্যাখ্যা করা যায়।

বোরের প্রমাণু মডেলের সীমাবদ্ধতা

- বোর মডেলের সাহায্যে এক ইলেকট্রন বিশিষ্ট পরমাণুর পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় সভিয় কিল্ফ একাধিক
 ইলেকট্রন বিশিষ্ট পরমাণুর পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না।
- বোরের পারমাণবিক মডেল অনুসারে এক শক্তিস্তর থেকে ইলেকট্রন অন্য শক্তিস্তরে গমন করলে পারমাণবিক বর্ণালিতে একটিমাত্র রেখা পাবার কথা। কিন্তু শক্তিশালী যন্ত্র দিয়ে পরীক্ষা করলে দেখা যায় প্রতিটি রেখা অনেকগুলো ক্ষুদ্র ক্ষুদ্র রেখার সমষ্টি। প্রতিটি রেখা কেন অনেকগুলো ক্ষুদ্র ক্ষুদ্র রেখার সমষ্টি হয় বোর মতবাদ অনুসারে তার ব্যাখ্যা দেওয়া যায় না।
- বোরের পরমাণুর মডেল অনুসারে পরমাণুতে শুধু বৃত্তাকার কক্ষপথ বিদ্যমান। কিন্তু পরে প্রমাণিত হয়েছে পরমাণুতে
 ইলেকট্রন শুধু বৃত্তাকার কক্ষপথেই নয় উপবৃত্তাকার কক্ষপথেও ঘুরে।

উপশক্তিম্বরের ধারণা

- প্রতিটি প্রধান শক্তিয়রকে n দিয়ে চিহ্নিত করা হয়। এই শক্তিয়রগুলো আবার কতগুলো উপশক্তিয়রে বিভক্ত থাকে
 এবং এই উপশক্তিয়রকে / দ্বারা চিহ্নিত করা হয়। / এর মান হয় 0 থেকে n-1 পর্যন্ত হয়। এই উপশক্তিয়র গুলোকে

 s, p, d, f
 ইত্যাদি নামে আখ্যায়িত করা হয়।
- উপশক্তিস্তরগুলোকেও আবার কিছু ভাগে বিভক্ত করা সম্ভব, যেখানে ইলেকট্রনের ঘনত্ব সর্বাধিক (90-95%)
 পাওয়া সম্ভব, এসমস্ত অঞ্চলকে অরবিটাল বলা হয়।
- n তম শক্তিস্তরে অরবিটাল পাওয়া যায় n² টি। আবার প্রতিটি অরবিটালের ইলেকট্রন ধারল ক্ষমতা 2টি। সুতরাং,
 প্রতিটি শক্তিস্তরে ইলেকট্রন সংখ্যা হচ্ছে: 2n²
- প্রতিটি উপশক্তিস্তরে বর্তমান অরবিটালের সংখ্যা হলো (2 / +1)। আবার প্রতিটি অরবিটালের ইলেকট্রন ধারণ ক্ষমতা 2টি। সুতরাং, প্রতিটি উপশক্তিস্তরে ইলেকট্রন সংখ্যা হচ্ছে: 2 (2 / + 1),

n	শক্তিস্তর	সর্বাধিক ইলেকট্রন সংখ্যা (2n²)	1	উপশক্তিস্তর	অব্ববিটাল সংখ্যা= (2/+1)	
1	K	2	0	S	1 টা	
2	_	8	0	S	1 টা	
	L	0		1	р	3 টা
			0	S	1 টা	
3	М	18	1	Р	3 টা	
			2	d	5 টা	
4	N	32	0	S	1 টা	

ক্সেপ্ট নোট					
বসামূল	৩য় অধ্যা	য় 💮	পদাৰ্থের গঠন		
		Prepare	ed by: SAJJAD HOSSAIN		
	1	р	3 টা		
	2	d	5 টা		
	3	f	7 টা		

প্রমাণুতে ইলেকট্রন বিন্যাসের নীতি

পরমাণুতে ইলেকট্রন বিন্যাসের তিনটি নীতি আছে। এগুলো হলো : ১) পাওলির বর্জন নীতি, ২) আউফ-বাউ নীতি এবং ৩) হল্ডস এর সূত্র।

আউফ-বাউ নীতি

- পরমাণুতে ইলেকট্রন প্রথমে সর্বনিয় শক্তির অরবিটালে প্রবেশ করে এবং পরে
 ক্রমান্বয়ে উদ্দশক্তির অরবিটালে প্রবেশ করে। অর্থাৎ যে অরবিটালের শক্তি
 কম সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে এবং যে অরবিটালের শক্তি
 বেশি সেই অরবিটালে ইলেকট্রন পরে প্রবেশ করবে।
- অরবিটালের মধ্যে কোনোটির শক্তি কম আর কোনোটির শক্তি বেশি তা অরবিটাল দুটির প্রধান শক্তিস্তরের মান (n) এবং উপশক্তিস্তরের মান (/) এর যোগফলের উপর নির্ভর করে। যে অরবিটালের (n+/) এর মান কম সেই অরবিটালের শক্তি কম এবং সেই অরবিটালেই ইলেকট্রন আগে প্রবেশ করবে। অপরদিকে (n +/) এর মান যে অরবিটালের বেশি তার শক্তিও বেশি এবং সেই অরবিটালেই ইলেকট্রন পরে প্রবেশ করবে।
- 25 2P 25 3P 3d 45 4P 4d 4f 55 5P 5d 5f 465 6P 6d
 - চিত্র 3.04: অরবিটালের শক্তিক্রম
- 3d অরবিটালের জন্য n = 3 এবং 1 = 2 অতএব n +/ এর মান 3 + 2 = 5 আবার 4s অরবিটালের জন্য n = 4, 1 = 0 অতএব n +/ এর মান 4 +0 = 4। কাজেই 3d অরবিটালের চেয়ে 4s অরবিটাল কম শক্তিসম্পন্ন। তাই ইলেকট্রন প্রথমে 4s অরবিটালে এবং পরে 3d অরবিটালে প্রবেশ করবে।
- আবার, দুটি অরবিটালের (n+/) এর মান যদি সমান হয় তাহলে যে অরবিটালটিতে n এর মান কম সেই অরবিটালের শক্তি কম হবে এবং সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে। যেমন 3d ও 4p এর n +/ এর মান যখাক্রমে 3 + 2 = 5 এবং 4 + 1 = 5 কিল্তু যেহেতু 3d অরবিটালে n এর মান কম, তাই এ অরবিটালের শক্তি কম এবং এ অরবিটালে ইলেকট্রন আগে প্রবেশ করবে। অপরদিকে 4p অরবিটালে n এর মান বেশি হওয়য়য় এর শক্তি 3d এর চেয়ে বেশি। তাই এ অরবিটালে ইলেকট্রন পরে প্রবেশ করবে।
- এ হিসাব অনুযায়ী পরমাণুর অরবিটালের ক্রমবর্ধমান শক্তি হবে এরকম:
- 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d < 6p < 7s < 5f < 6d < 7p < 8s
- এই নীতি অনুসারে আমরা নিম্নের মৌলগুলোর ইলেকট্রন বিন্যাস বিশ্লেষণ করতে পারব।

	ক্সেপ্ট লোট	
বৃসায়ৰ	৩্ম অধ্যাম	পদার্থের গঠন
		Prepared by: SAJJAD HOSSAIN

	 যেহেতু 4s অরবিটালের শক্তি 3d অরবিটালের শক্তির চেয়ে কয়,
K (19) \rightarrow 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹	তাই পটাশিয়ামের সর্বশেষ 19 তম ইলেকট্রনটি 3d অরবিটালে
	প্রবেশ না করে 4s অরবিটালে প্রবেশ করে।
	স্ক্যান্ডিয়ামের ক্ষেত্রে 19 ও 20 তম ইলেকট্রন দুটি 4s অরবিটাল
Sc (21) \rightarrow 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ 4s ²	পূর্ণ করে 21তম ইলেকট্রনটি পরবর্তী উচ্চ শক্তি সম্পন্ন (3d)
	অরবিটালে প্রবেশ করে।
	• বিশেষ করে মনে রাখতে হবে যে যখন ইলেকট্রন বিন্যাস লিখবে
	তখন এ <mark>কই প্রধান শক্তি</mark> স্তরের সকল উপশক্তিস্তর পাশাপাশি লিখবে।
Fe (26) \rightarrow 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ²	তা না হলে ইলেকট্রনের বিন্যাস লেখার সময় ভুল হয়ে যেতে
	পারে। যদিও এক্ষে <u>ত্রে</u> 4s <mark>অর</mark> বিটালে ইলেকট্রন 3d অরবিটালের
	আ <mark>গে প্রবেশ করে।</mark>

रेलकप्रेन विन्যासन् प्राधान्य निस्तान् किंषू वािक्य

সাধারণভাবে দেখা যায় য়ে, একই উপশক্তিস্তর p ও d এর অরবিটালগুলো অর্ধেক পূর্ণ (p³, d⁵) বা সম্পূর্ণরূপে পূর্ণ (p⁶, d¹⁰) হলে সে ইলেকট্রন বিন্যাস সুস্থিত হয়। তাই Cr (24) এর ইলেকট্রন বিন্যাস স্বাভাবিকভাবে হওয়ার কখা: Cr (24) ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁴ 4s² কিন্তু 3d অরবিটাল সুস্থিত অর্ধপূর্ণ হওয়ার আকাজ্জায় 4s অরবিটাল হতে একটি ইলেকট্রন 3d অরবিটালে আসে। ফলে ক্রোমিয়ামের ইলেকট্রন বিন্যাস হয় এরকয়:

 $Cr (24) \Rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$

বাড়ির কাজঃ Cu (29) এর ইলেকট্রন বিন্যাস স্বাভাবিকভাবে হওয়ার কথা: $Cu(29) \Rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6$ $3d^9 4s^2$ কিন্তু কপারের ইলেকট্রন বিন্যাস হয় এরকম: $Cu(29) \Rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$, কারণটি ব্যাখ্যা করো।

	কন্সেপ্ট নোট	
বসায়ৰ	৩্য অধ্যায়	পদাৰ্থের গঠৰ

আইসোটোপ

- যে সকল পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভরসংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে একে অপরের আইসোটোপ বলে।
- যেমনঃ হাইড্রোজেনের সাতটি আইসোটোপ (¹H, ²H, ³H, ⁴H, ⁵H, ⁶H এবং ७H) আছে। এর মধ্যে শুধু প্রথম তিনটি প্রকৃতিতে পাওয়া যায়, অন্যগুলোকে ল্যাবরেটরিতে প্রস্তুত করা হয়।

নাম	প্রতীক	প্ৰোটন সংখ্যা Z	ভ্রসংখ্যা A	নিউট্ৰন সংখ্যা A-Z
প্রোটিয়াম	1_1H	- 1/A //	1	0
ডিউটেরিয়াম	² ₁ H	1	2	1
<u> ডিটি</u> য়াম	³ ₁ H	1	3	2

প্রকৃত ও আপেক্ষিক পারমাণবিক ভ্র

প্রকৃত পারমাণবিক ভ্র	আপেষ্ক্রিক <mark>পারমাণবিক ভ্</mark> র
কোনো পরমাণু বাস্তবে কতটুকু ভারী, তার	কোনো পরমাণু কার্বন–12 <mark>আইসোটোপের</mark> পারমাণবিক ভরের
পরিমাপই হলো প্রকৃত পারমাণবিক <mark>ভর।</mark>	$\frac{1}{12}$ অংশের তুলনায় কতগুণ ভারী, তার পরিমাপই হলে
• যেমন অ্যালুমিনিয়ামের একটি পরমাণুর ভর	
4.482 x 10 ⁻²³ গ্রাম।	• কার্বন–12 আইসোটোপের পারমাণবিক ভরের $\frac{1}{12}$ অংশের
• এককঃ গ্রাম।	ভর হচ্ছে 1.66 x 10 ⁻²⁴ গ্রাম।
	• আপেক্ষিক পারমাণবিক ভর=
	প্রকৃত পারমাণবিক ভর
	কার্বন -12 আইসোটোপের <mark>পারমাণবিক ভরের $\frac{1}{12}$ অংশের ভর</mark>
	প্রকৃত পারমাণবিক ভর
	= 1.66 x 10 ⁻²⁴ গ্রাম
	• যেম <mark>নঃ</mark> Al এর আপেক্ষিক পারমাণবিক ভর
	$-4.482 \times 10^{-23} $ 277 -27
	$= \frac{1.66 \times 10^{-24} \text{ and }}{1.66 \times 10^{-24} \text{ and }} = 27$
	• এককঃ (নই।

	কন্সেপ্ট লোট	
বসায়ৰ	৩্ম অধ্যা্ম	পদার্থের গঠন

আইসোটোপের শতকরা হার থেকে মৌলের গড় আপেষ্কিক পারমাণবিক ভর নির্ণয়

- প্রকৃতিতে বেশির ভাগ মৌলেরই একাধিক আইসোটোপ রয়েছে। তাই যে মৌলের একাধিক আইসোটোপ আছে সেই মৌলের সকল আইসোটোপের প্রকৃতিতে প্রাপ্ত শতকরা হার খেকে মৌলের গড় আপেষ্ফিক পারমাণবিক ভর এর মান গণনা করতে নিচের ধাপগুলো অনুসরণ করা হয়।
 - ধাপ 1: প্রথমে কোনো মৌলের প্রত্যেকটি আইসোটোপের ভরসংখ্যা এবং প্রকৃতিতে প্রাপ্ত ঐ আইসোটোপের
 শতকরা পরিমাণ গুণ দিতে হবে।
 - ধাপ 2: প্রাপ্ত গুণফলগুলোকে যোগ করতে হবে।
 - o ধাপ 3: প্রাপ্ত যোগফলকে 100 দ্বারা ভাগ করলেই <mark>ঐ মৌলে</mark>র গড আপেক্ষিক ভর পাওয়া যাবে।
- যেমন
 ধরা যাক একটি মৌল A এর দুটি আইসোটোপ আছে। একটি আইসোটোপের ভরসংখ্যা p, প্রকৃতিতে প্রাপ্ত
 ঐ আইসোটোপের শতকরা পরিমাণ m, অপর আইসোটোপের ভরসংখ্যা q এবং প্রকৃতিতে প্রাপ্ত ঐ আইসোটোপের
 শতকরা পরিমাণ n তাহলে
- মৌল A এর গড় আপেক্ষিক পরমাণবিক ভর = $\frac{p \times m + q \times n}{100}$

উদাহরণ: প্রকৃতিতে ক্লোরিনের 2 টি আইসোটোপ আ<mark>ছে</mark> ³⁵CI এবং ³⁷CII

- প্রকৃতিতে প্রাপ্ত 35 C। এর শতকরা পরিমাণ 75% এবং প্রকৃতিতে প্রাপ্ত 37 C। এ<mark>র শতকরা পরি</mark>মাণ 25%। অতএব, ক্লোরিনের গড় আপেক্ষিক পারমাণবিক ভর = $\frac{35 \times 75 + 37 \times 25}{100}$ = 35.5
- উল্লেখ্য, পর্যায় সারণিতেও ক্লোরিনের গড় আপেষ্কিক পারমাণবিক ভর 35.5 লেখা আছে। পর্যায় সারণিতে যে
 পারমাণবিক ভর লেখা আছে তা মূলত গড় আপেষ্কিক পারমাণবিক ভর।

মৌলের গড আপেক্ষিক ভর নির্ণয়ের প্রয়োগ

মৌলের গড় আপেষ্কিক পরমাণু ভর থেকে আইসোটোপের শতকরা পরিমাণ নির্ণয়: প্রকৃতিতে যদি কোনো মৌলের
দুটি আইসোটোপ থাকে তাহলে সেই মৌলের গড় আপেষ্কিক পারমাণবিক ভর থেকে ঐ মৌলের বিভিন্ন আইসোটোপের
প্রকৃতিতে প্রাপ্ত শতকরা পরিমাণ নির্ণয় করা যায়।

উদাহরণ: প্রকৃতিতে কপারের দুটি আইসোটোপ আছে ⁶³Cu এবং ⁶⁵Cu। কপারের গড় আপেক্ষিক পারমাণবিক ভর 63.5 ।

- ধরা যাক, প্রকৃতিতে প্রাপ্ত 63 Cu এর শতকরা পরিমাণ x % এবং প্রকৃতিতে প্রাপ্ত 65 Cu এর শতকরা পরিমাণ (100 x) %
- এথানে, কপারের গড় আপেষ্ণিক পরমাণবিক ভর = $\frac{x \times 63 + (100 x) \times 65}{100} = 63.5$ বা, x = 75%
- প্রকৃতিতে প্রাপ্ত ⁶³Cu এর শতকরা পরিমাণ = 75% এবং প্রকৃতিতে প্রাপ্ত ⁶⁵Cu এর শতকরা পরিমাণ (100–75) % = 25%

	কন্সেপ্ট লোট	
বুসায়ৰ	৩্য অধ্যায়	পদার্থের গঠন

আপেষ্কিক পাব্মাণবিক ভব থেকে আপেষ্কিক আণবিক ভব নির্ণ্য

 কোনো মৌলিক বা যৌগিক পদার্থের অণুতে যে পরমাণুগুলো থাকে তাদের আপেক্ষিক পারমাণবিক ভর নিজ নিজ পরমাণু সংখ্যা দিয়ে গুণ করে যোগ করলে প্রাপ্ত যোগফলই হলো ঐ অণুর আপেক্ষিক আণবিক ভর। আপেক্ষিক পারমাণবিক ভরকে পারমাণবিক ভর এবং আপেক্ষিক আণবিক ভরকে সাধারণভাবে আণবিক ভর হিসেবে বিবেচনা করা হয়।

Na ₂ CO ₃	$(23 \times 2 + 12 + 16 \times 3) = 106$
• H ₂ SO ₄	$(1 \times 2 + 32 + 16 \times 4) = 98$
• KMnO ₄	$(39 + 55 + 16 \times 4) = 158$
• K ₂ Cr ₂ O ₇	$(39 \times 2 + 52 \times 2 + 16 \times 7) = 294$

তেজক্কিয় আইসোটোপ ও তাদের ব্যবহার

- কিছু কিছু আইসোটোপ আছে যাদের নিউক্লিয়াস স্বতঃস্ফূর্তভাবে (নিজে নিজেই) ভেঙে আলফা, বিটা, গামা ইত্যাদি
 তেজস্ক্রিয় রিশ্মি নির্গত করে। একটি মৌলের যে সকল আইসোটোপ তেজস্ক্রিয় রিশ্মি নিঃসরণ করে তাদেরকে
 তেজস্ক্রিয় আইসোটোপ বলে।
- এখন পর্যন্ত এ ধরনের আইসোটোপের সংখ্যা 3000 থেকে বেশি। এদের মধ্যে কিছু প্রকৃতিতে পাওয়া গেছে,
 অন্যগুলো গবেষণাগারে তৈরি করা হয়েছে।

		চিকিৎসা ক্ষেত্রে
7	•	আইসোটোপ ব্যবহার করে একজন রোগীর রোগাক্রান্ত স্থানের ছবি তোলা সম্ভব। এ পদ্ধতিতে
V		ইঞ্জেকশনের মাধ্যমে তেজস্ক্রিয় আইসোটোপ <mark>টেকনিশিয়াম–99 (⁹⁹Tc</mark>) কে শরীরের ভেতরে
1		প্রবেশ করানো হয়। এই আইসোটোপ যথন শরীরের নির্দিষ্ট স্থানে জমা হয় তথন ঐ তেজস্ক্রিয়
বোগ নিৰ্ণয়ে		আইসোটোপ গামা রশ্মি বিকিরণ করে, <mark>তখন বাইরে খেকে</mark> গামা রশ্মি শনাক্তকরণ ক্যামেরা
10		দিয়ে সেই স্থানের ছবি তোলা সম্ভব।
70	•	এই তেজস্ক্রিয় আইসোটোপ টেকনিশিয়াম–99 এর লাইফটাইম <mark>6 ঘল্টা।</mark> তাই সামান্য সময়েই এর
"	1	তেজস্ক্রিয়তা শেষ হয়ে যায় বলে এটি অনেক নিরাপদ।
	•	সর্বপ্রথম থাইরয়েড ক্যানসার নিরাময়ে তেজস্ক্রিয় আইসোটোপ ব্যবহার করা হয়। রোগীকে
		পরিমাণমতো তেজস্ক্রিয় আইসোটোপ ¹³¹ । সমৃদ্ধ দ্রবণ পান করানো হয়। এই আইসোটোপ
রোগ ভিক্ত ে		খাইরয়েডে পৌঁছায়। এ আইসোটোপ খেকে বিটা রশ্মি নির্গত হয় এবং খাইরয়েডের ক্যানসার
<u> </u>		কোষকে ধ্বংস করে।
	•	এছাড়া ইরিডিয়াম (¹⁹² Ir) আইসোটোপ ব্রেইন ক্যানসার নিরাময়ে ব্যবহার করা হয়।

			Prepared by: SAJJAD HOSSA	AIN
	টিটেমাবের টেপসিজি	बिर्नरा १ बिटाग्नास एक्सिन्रिस	। আইসোটোপ ⁶⁰ Co ব্যবহার করা হয়। ⁶⁰ C	Co
		াশ্মি ক্যানসারের কোষকলাবে		50
			্ফস্ফেট ব্যবহার করা হয়।	
		101171111 1 411	F (CPO 17 1XIII 1 XI X,11	
		কৃষিক্ষেত্ৰ		
	SISY AND		ব্যবহার করতে হয়। সার মূল্যবান বস্তু। ত	
// /		The state of the s	একদিকে প্রয়োজনের অতিরিক্ত সার ব্ <u>য</u> বহা	
			চেয়ে কম পরিমাণ সার ব্যবহার করা হ	লে
/ ///	ফসলের উৎপাদন ক্য			
ফস লে ব			পরিমাণ নাইট্রোজেন ও ফসফরাস আছে ত	
পুষ্টিতে			পরিমাণ নাইট্রোজেন ও ফসফরাস দিতে হা	
		_ ~	তেজস্ক্রিয় নাইট্রোজেন ও তেজস্ক্রিয় ফসফরা	াস
		উদ্ভিদের শরীরের বিভিন্ন অ		à.
T/			ৰশ্মি নিৰ্গত <mark>ি হয়। গাইগার মুলার কাউন্টা</mark>	াব
		<u>স্ক্রিয় রশ্মি</u> শনাক্ত ও পরিম		8.
			মারাত্মক হু <mark>মকিস্বরূপ। এগুলো যেমন ক</mark> সলে	
<u> শ্</u> ষতিকাবক			বাণুও উদ্ভিদে <mark>প্রবেশ করে।</mark> এসব পোকামাক	•
শোকামাকড			শক দেওয়া <mark>হয়। এ কী</mark> টনাশক পরিবেশ	ઉ
नियुद्ध व	আমাদের শরীরের জ			
করতে			পাকামাকড়ের সাথে সাথে অনেক উপকা	
V _c			টাপসমৃদ্ধ কীট <mark>নাশক ব্</mark> যবহারের মাধ্যমে জা	ানা
1			একটি ফসলের জন্য ব্যবহার করা যাবে।	,
ক্সলে ব			রের মাধ্যমে উদ্ভিদ কোষের জিনগত পরিবর্ত	<u>র্</u>
মালোন্নয়নে	ঘটিয়ে উন্নত মানের	ফসল উৎপাদন করা হয়।		
শিল্পক্ষেত্র				
			পরিণত করলে অর্থাৎ ফিশান বিক্রিয়া ঘটা	
			াশক্তি ব্যবহার করে জেনারেটর দিয়ে বিদ্যু	गुर
্বিদ্যুৎ		ামরা সেটিকে নিউক্লিয়ার বি		
উৎপাদৰে			রকার পারমাণবিক বিদ্যুৎকেন্দ্র স্থাপন করে	
			দুই হাজার চারশ মেগাওয়াট বিদ্যুৎ উৎপাদ	বন
	হবে বলে আশা করা	<u>र(ष्</u> र।		

কন্সেপ্ট লোট

৩্য অধ্যায়

বসায়ৰ

পদার্থের গঠন

	ক্সেপ্ট লোট	
বসায়ৰ	৩্য অধ্যায়	পদার্থের গঠন

তেজন্ধ্রিয় আইসোটোপের ক্ষতিকর প্রভাব

 তেজস্ক্রিয় আইসোটোপ আমাদের অনেক উপকারে আসে সে কখা সিত্তি কিল্ক এটি আমাদের জন্য শ্বতির কারণও হতে পারে। তেজস্ক্রিয় আইসোটোপ থেকে যে আলফা, বেটা ও গামা রিশ্ম নির্গত হয়। তা কোষের জিনগত পরিবর্তন ঘটাতে পারে যার ফলাফল হিসেবে ক্যানসারের মতো রোগ হতে পারে।

দ্বিতীয় বিশ্বয়ুদ্ধে জাপানের <u>হিরোশিমা ও নাগাসাকিতে</u> পারমাণবিক বোমার বিস্ফোরণ ঘটেছিল, তার জন্য কয়েক
লক্ষ জীবন ধ্বংস হয়েছে। 1986 সালে <u>রাশিয়ার চেরোনোবিলে</u> পারমাণবিক বিদ্যুৎকেন্দ্রে যে দুর্ঘটনা ঘটেছিল তার
ফলে অনেক প্রাণ হারিয়েছে এবং ঐ এলাকায় পরিবেশ দৃষণ ঘটেছে।

