Sprawozdanie z logiki układów cyfrowych						
Prowadzący	Mgr inż. Antoni Sterna					
Temat zajęć						
Termin zajęć	czw 7:30-9:00 13 paź 2016					
skład grupy	Sebastian Korniewicz	226183				
	Bartosz Rodziewicz	226105				

1. Opis problemu, założenia projektu

Celem ćwiczenia było stworzenie układu cyfrowego składającego się z 4 wejść i jednego wyjścia w którym dla wartości na wejściu od 0 do 12 zwracana jest wartość 1 na wyjściu. Układ miał zostać wykonany w dwóch wersjach: w pierwszej za pomocą bramek NOT oraz NAND, w drugiej za pomocą bramek NOT oraz NOR.

2. Przebieg ćwiczenia

Na początku stworzyliśmy tabelę prawdy zadanego układu (a,b,c,d- wejścia, y-wyjście).

а	b	С	d	У
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Aby możliwie zminimalizować formułę boolowską użyliśmy metodę Karnaugh

00 1 1 1 1 01 1 1 1 1 11 1 1 1	ab cd	00	01	11	10
	00	1	1	1	1
11 1	01	1	1	1	1
	11	1			
10 1 1 1	10	1	1	1	1

Powstała funkcja reprezentuje się następująco

$$v = \overline{a} + \overline{b} + \overline{c} \, \overline{d}$$

Następnym krokiem było przekształcenie otrzymanego wzoru

$$y = \overline{a} + \overline{b} + \overline{c} \ \overline{d} = \overline{a + \overline{b} + \overline{c} \ \overline{d}} = \overline{a * \overline{b} * \overline{c} * \overline{d}} = \overline{a * b * \overline{c} * \overline{d}} = \overline{a * b * \overline{c} * \overline{d}} = \overline{a * b * \overline{c} * \overline{d}}$$

$$a = \overline{\overline{a}}$$

$$\overline{a} + \overline{b} = \overline{a * b}$$

$$\overline{a + b} = \overline{a} * \overline{b}$$

W przekształceniach wzoru został wykorzystany wzór de Morgana oraz prawo podwójnej negacji. W obecnej postaci wzór może zostać zrealizowany za pomocą tylko i wyłącznie bramek NAND oraz NOT.

Układ został połączony i przetestowany. Działał zgodnie z założeniami ćwiczenia.

Kolejnym etapem ćwiczenia było stworzenie układu cyfrowego realizującego te same założenia przy wykorzystaniu bramek NOT oraz NOR. Zaczęliśmy od przekształcenia wzoru.

$$y = \overline{a} + \overline{b} + \overline{c} \, \overline{d} = \overline{a + \overline{b}} + \overline{c} * \overline{d} = \overline{a + \overline{b}} + \overline{c} * \overline{d} = \overline{a + \overline{b}} + \overline{c} + \overline{d} = \overline{a + \overline{b}} + \overline{d} + \overline{d} = \overline{d} + \overline{d$$

Tak przekształcony wzór pozwala na sprawne zaprojektowanie kolejnego układu.

Układ został połączony i przetestowany. Działał zgodnie z założeniami ćwiczenia.

3.Uwagi i wnioski

- -układ cyfrowy realizujący te same założenia może być zaprojektowany na różne sposoby, przy wykorzystaniu różnych typów bramek logicznych
- -prawa de Morgana znacząco przyspieszają projektowanie prostych układów cyfrowych wykorzystujących z góry założone bramki logiczne