Algoritmos de búsqueda sobre secuencias

Algoritmos y Estructuras de Datos

Búsqueda lineal

s[0]	s[1]	s[2]	s[3]	s[4]	 s[s -1]
$= x? \neq x$		$= x? \neq x$			
\uparrow	\uparrow	\uparrow	\uparrow		\uparrow
i	i	i	i		i

► ¿ Qué invariante de ciclo podemos proponer?

$$I \equiv 0 \le i \le |s| \land_L$$
$$(\forall j : \mathbb{Z})(0 \le j < i \rightarrow_L s[j] \ne x)$$

► ¿Qué función variante podemos usar?

$$fv = |s| - i$$

Búsqueda lineal

- ► El problema de búsqueda por valor de un elemento en una secuencia es uno de los problemas fundamentales de la Informática.
- ► Vamos a aprovecharlo para aplicar el Teorema del Invariante y explorar su relación con el diseño de algoritmos
- ► Especificado formalmente:

```
proc contiene(in s: seq\langle \mathbb{Z} \rangle, in x: \mathbb{Z}, out result: Bool){

Pre {True}

Post {result = true \leftrightarrow (\exists i: \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)}}
}
```

▶ ¿Cómo podemos buscar un elemento en una secuencia?

Búsqueda lineal

► Invariante de ciclo:

$$I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le j < i \rightarrow_L s[j] \ne x)$$

► Función variante:

$$fv = |s| - i$$

► ¿Cómo lo podemos implementar en Java?

```
boolean contiene(int []s, int x) {
    int i = 0;
    while (i < s.length && s[i] != x) {
        i = i + 1;
    }
    return i < s.length;
}</pre>
```

► ¿Es la implementación correcta con respecto a la especificación?

2

.

Recap: Teorema de corrección de un ciclo

- ▶ **Teorema.** Sean un predicado I y una función $fv : \mathbb{V} \to \mathbb{Z}$ (donde \mathbb{V} es el producto cartesiano de los dominios de las variables del programa), y supongamos que $I \Rightarrow \text{def}(B)$. Si
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$,
 - 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
 - 5. $I \wedge fv < 0 \Rightarrow \neg B$.

... entonces la siguiente tripla de Hoare es válida:

 $\{P_C\}$ while B do S endwhile $\{Q_C\}$

5

Recap: Teorema de corrección de un ciclo

- 1. $P_C \Rightarrow I$,
- 2. $\{I \land B\} S \{I\}$,
- 3. $I \wedge \neg B \Rightarrow Q_C$
- 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
- 5. $I \wedge fv \leq 0 \Rightarrow \neg B$,

En otras palabras, hay que mostrar que:

- ► I es un invariante del ciclo (punto 1. y 2.)
- ► Se cumple la postcondición del ciclo a la salida del ciclo (punto 3.)
- ► La función variante es estrictamente decreciente (punto 4.)
- ➤ Si la función variante alcanza la cota inferior la guarda se deja de cumplir (punto 5.)

Búsqueda lineal

- ► Para este ciclo, tenemos:
 - $ightharpoonup P_C \equiv i = 0$,
 - $Q_C \equiv (i < |s|) \leftrightarrow (\exists j : \mathbb{Z})(0 \le j < |s| \land_L s[j] = x).$
 - $B \equiv i < |s| \land_L s[i] \neq x$
 - $I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le j < i \rightarrow_L s[j] \ne x)$
 - fv = |s| i
- ► Ahora tenemos que probar que:
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$
 - 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
 - 5. $I \wedge fv < 0 \Rightarrow \neg B$,

- 0

Corrección de búsqueda lineal

¿I es un invariante del ciclo?

$$I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le j < i \rightarrow_L s[j] \ne x)$$

- ▶ La variable i toma el primer valor 0 y se incrementa por cada iteración hasta llegar a |s|.
- ightharpoonup \Rightarrow $0 \le i \le |s|$
- ► En cada iteración, todos los elementos a izquierda de *i* son distintos de *x*
- $ightharpoonup \Rightarrow (\forall j : \mathbb{Z})(0 \le j < i \to_L s[j] \ne x)$

7

Corrección de búsqueda lineal

¿Se cumple la postcondición del ciclo a la salida del ciclo?

$$I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z})(0 \le j < i \rightarrow_L s[j] \ne x)$$

$$Q_C \equiv (i < |s|) \leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)$$

- ▶ Al salir del ciclo, no se cumple la guarda. Entonces no se cumple i < |s| o no se cumple $s[i] \neq x$
 - Si no se cumple i < |s|, no existe ninguna posición que contenga x
 - Si no se cumple $s[i] \neq x$, existe al menos una posición que contiene a x

9

Corrección de búsqueda lineal

¿Es la función variante estrictamente decreciente?

$$fv = |s| - i$$

- ► En cada iteración, se incremente en 1 el valor de *i*
- ▶ Por lo tanto, en cada iteración se reduce en 1 la función variante.

10

Corrección de búsqueda lineal

¿Si la función variante alcanza la cota inferior la guarda se deja de cumplir?

$$fv = |s| - i$$

$$B \equiv i < |s| \land_{I} s[i] \neq x$$

- ▶ Si $fv = |s| i \le 0$, entonces $i \ge |s|$
- ▶ Como siempre pasa que $i \le |s|$, entonces es cierto que i = |s|
- ▶ Por lo tanto i < |s| es falso.

Corrección de búsqueda lineal

- ► Finalmente, ahora que probamos que:
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$,
 - 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
 - 5. $I \wedge fv \leq 0 \Rightarrow \neg B$,
- ► ...podemos por el teorema concluir que el ciclo termina y es correcto.

Búsqueda lineal

► Implementación:

```
bool contiene(vector<int> &s, int x) {
  int i = 0;
  while( i < s.size() && s[i] != x ) {
    i=i+1;
  }
  return i < s.size();
}</pre>
```

- ► Es bueno este programa?
- ► qué quiere decir bueno?
- ► Tarda mucho? tarda demasiado?
- ▶ usa mucha memoria?
- ► Vamos a ver esto con mucho más cuidado dentro de algunas clases
- ► Mientras tanto.....

13

Búsqueda lineal

- ▶ ¿De qué depende la cantidad de veces que se ejecuta el ciclo?
 - ▶ Del tamaño de la secuencia
 - De si el valor buscado está o no contenido en la secuencia
- ► ¿Qué tiene que pasar para que el tiempo de ejecución sea el máximo posible?
 - ▶ El elemento no debe estar contenido en la secuencia.
- Esto representa el **peor caso** en tiempo de ejecución.

Búsqueda lineal

► Implementación:

```
bool contiene(vector<int> &s, int x) {
  int i = 0;
  while( i < s.size() && s[i] != x ) {
    i=i+1;
  }
  return i < s.size();
}</pre>
```

► Analicemos cuántas veces va a iterar este programa:

S	Х	# iteraciones
$\langle \rangle$	1	0
$\langle 1 angle$	1	0
$\langle 1,2 angle$	2	1
$\langle 1, 2, 3 \rangle$	4	3
$\langle 1,2,3,4 \rangle$	4	3
$\langle 1,2,3,4,5 \rangle$	-1	5

Búsqueda lineal

► Dada una secuencia cualquiera, ¿cuál es el tiempo máximo (i.e. el peor caso) que puede tardar en ejecutar el programa?

Función contiene	T_{exec}	máx.# veces
int i = 0;	<i>c</i> ₁	1
while(i < s.size() && s[i] != x) {	<i>c</i> ₂	1+ s
i=i+1;	<i>c</i> ₃	s
}		
<pre>return i < s.size();</pre>	C ₄	1

$$T_{contiene}(n) = 1 * c_1 + (1+n) * c_2 + n * c_3 + 1 * c_4$$

1

Búsqueda sobre secuencias ordenadas

- ► Supongamos ahora que la secuencia está ordenada.
- ▶ proc contieneOrdenada(in $s : seq\langle \mathbb{Z} \rangle$, in $x : \mathbb{Z}$, out result : Bool){

 Pre {ordenada(s)}

 Post {result = true $\leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)}}
 }$
- ▶ ¿Podemos aprovechar que la secuencia está ordenada para crear un programa más eficiente ?
- ► Ejercicio: Escribir el predicado ordenada(s).

17

Búsqueda sobre secuencias ordenadas

Podemos interrumpir la búsqueda tan pronto como verificamos que s[i] > x.

Función contieneOrdenado	T_{exec}	máx.# veces
int i = 0;	c_1'	1
while(i < s.size() && s[i] < x) {	c_2'	1+ s
i=i+1;	c_3'	s
}		
return (i < s.size() && s[i] == x);	c ₄ '	1

▶ Sea n la longitud de s, ¿cuál es el tiempo de ejecución en el peor caso?

$$T_{contieneOrdenado}(n) = 1 * c'_1 + (1 + n) * c'_2 + n * c'_3 + 1 * c'_4$$

► El tiempo de ejecución de peor caso de contiene y contieneOrdenado está acotado por la misma función c * n.

Búsqueda sobre secuencias ordenadas

Podemos interrumpir la búsqueda tan pronto como verificamos que $s[i] \ge x$.

```
bool contieneOrdenada(vector<int> &s, int x) {
  int i = 0;
  while( i < s.size() && s[i] < x ) {
    i=i+1;
  }
  return (i < s.size() && s[i] == x);
}</pre>
```

¿Cuál es el tiempo de ejecución de peor caso?

18

Búsqueda sobre secuencias ordenadas

- ▶ ¿Podemos aprovechar el ordenamiento de la secuencia para mejorar el tiempo de ejecución de peor caso?
- ► Pensemos en el juego de "Adivinar un número.º "Adivinar el personaie"

```
▶ ¿Necesitamos iterar si |s| = 0? Trivialmente, x \notin s
```

 \triangleright ¿Necesitamos iterar si |s| = 1? Trivialmente,

 $s[0] == x \leftrightarrow x \in s$

Necesitamos iterar si x < s[0]? Trivialmente, $x \notin s$

▶ ¿Necesitamos iterar si $x \ge s[|s|-1]$? Trivialmente, $s[|s|-1] == x \leftrightarrow x \in s$

Búsqueda sobre secuencias ordenadas

Asumamos por un momento que $|s| > 1 \land_L (s[0] \le x \le s[|s|-1])$

21

Búsqueda sobre secuencias ordenadas

Si $x \in s$, tiene que estar en la posición *low* de la secuencia.

22

Búsqueda sobre secuencias ordenadas

▶ ¿Qué invariante de ciclo podemos escribir?

$$I \equiv 0 \le low < high < |s| \land_L s[low] \le x < s[high]$$

► ¿Qué función variante podemos definir?

$$fv = high - low - 1$$

Búsqueda sobre secuencias ordenados

```
boolean contieneOrdenada(int []s, int x) {
    // casos triviales
    if (s.length == 0) {
        return false;
    } else if (s.length == 1) {
        return s[0] == x;
    } else if (x<s[0]) {
        return false;
    } else if (x \geq s[s.length-1]) {
        return s[s.length-1] == x;
    } else {
        // casos no triviales
        o...
}</pre>
```

_

Búsqueda sobre secuencias ordenadas

```
} else {
    // casos no triviales
    int low = 0;
    int high = s.length - 1;
    while( low+1 < high ) {
        int mid = (low+high) / 2;
        if( s[mid] ≤ x ) {
            low = mid;
        } else {
            high = mid;
        }
        return s[low] == x;
}</pre>
```

A este algoritmo se lo denomina búsqueda binaria

Búsqueda binaria

► Veamos ahora que este algoritmo es correcto.

$$P_C \equiv ordenada(s) \land (|s| > 1 \land_L s[0] \le x \le s[|s| - 1])$$

 $\land low = 0 \land high = |s| - 1$
 $Q_C \equiv (s[low] = x) \leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)$
 $B \equiv low + 1 < high$
 $I \equiv 0 \le low < high < |s| \land_L s[low] \le x < s[high]$
 $f_V = high - low - 1$

26

Corrección de la búsqueda binaria

- ► ¿Es / un invariante para el ciclo?
 - ► El valor de *low* es siempre menor estricto que *high*
 - low arranca en 0 y sólo se aumenta
 - ▶ high arranca en |s| 1 y siempre se disminuye
 - ▶ Siempre se respecta que $s[low] \le x$ y que x < s[high]
- ightharpoonup ¿A la salida del ciclo se cumple la postcondicion Q_C ?
 - Al salir, se cumple que low + 1 = high
 - ► Sabemos que s[high] > x y s[low] <= x
 - ▶ Como s está ordenada, si $x \in s$, entonces s[low] = x

Corrección de la búsqueda binaria

- ► ¿Es la función variante estrictamente decreciente?
 - ► Nunca ocurre que *low* = *high*
 - ightharpoonup Por lo tanto, siempre ocurre que low < mid < high
 - ▶ De este modo, en cada iteración, o bien high es estrictamente menor, o bien low es estrictamente mayor.
 - ▶ Por lo tanto, la expresión high low 1 siempre es estrictamente menor.
- ➤ ¿Si la función variante alcanza la cota inferior la guarda se deja de cumplir?
 - ▶ Si $high low 1 \le 0$, entonces $high \le low + 1$.
 - Por lo tanto, no se cumple (high > low + 1), que es la guarda del ciclo

26

Búsqueda binaria

- ► ¿Podemos interrumpir el ciclo si encontramos x antes de finalizar las iteraciones?
- ► Una posibilidad **no recomendada** (no lo hagan en casa!):

```
while( low+1 < high) {
   int mid = (low+high) / 2;
   if( s[mid] < x ) {
      low = mid;
   } else if( s[mid] > x ) {
      high = low;
   } else {
      return true; // Argh!
   }
}
return s[low] == x;
}
```

20

Búsqueda binaria

- ➤ Si queremos salir del ciclo, el lugar para decirlo es ... la guarda!
- while(low+1 < high && s[low] != x) {
 int mid = (low+high) / 2;
 if(s[mid] ≤ x) {
 low = mid;
 } else {
 high = mid;
 }
 return s[low] == x;
 }</pre>
- ▶ Usamos fuertemente la condición $s[low] \le x < s[high]$ del invariante.

Búsqueda binaria

► Una posibilidad **aún peor** (ni lo intenten!):

```
bool salir = false;
while( low+1 < high && !salir ) {
   int mid = (low+high) / 2;
   if( s[mid] < x ) {
      low = mid;
      } else if( s[mid] > x ) {
      high = mid;
      } else {
      salir = true; // Puaj!
      }
}

return s[low] == x || s[(low+high)/2] == x;
}
```

30

Búsqueda binaria

► ¿Cuántas iteraciones realiza el ciclo (en peor caso)?

Número de iteración	high — low
0	s - 1
1	$\cong (s -1)/2$
2	$\cong (s -1)/4$
3	$\cong (s -1)/8$
:	:
t	$\cong (s -1)/2^t$

• Sea t la cantidad de iteraciones necesarias para llegar a high - low = 1.

```
1 = (|s|-1)/2^t entonces 2^t = |s|-1 entonces t = \log_2(|s|-1).
```

Luego, el tiempo de ejecución de peor caso de la búsqueda binaria es = proporcional a $log_2 |s|$ y no proporcional a |s|.

Búsqueda binaria

► ¿Es mejor un algoritmo que ejecuta una cantidad logarítmica de iteraciones?

	Búsqueda	Búsqueda	
s	Lineal	Binaria	
10	10	4	
10^{2}	100	7	
10^{6}	1,000,000	21	
$2,3 \times 10^{7}$	23,000,000	25	
7×10^9	7,000,000,000	33 (!)	
		•	

- ► Sí! Búsqueda binaria es más eficiente que búsqueda lineal
- ▶ Pero, requiere que la secuencia esté ya ordenada.

33

Nearly all binary searches are broken!

- ► En 2006 comenzaron a reportarse accesos fuera de rango a vectores dentro de la función binarySearch implementada en las bibliotecas estándar de Java.
- ► En la implementación en Java, los enteros tienen precisión finita, con rango $[-2^{31}, 2^{31} 1]$.
- ► Si low y high son valores muy grandes, al calcular k se produce overflow.
- ► La falla estuvo *dormida* muchos años y se manifestó sólo cuando el tamaño de los vectores creció a la par de la capacidad de memoria de las computadoras.
- ▶ Bugfix: Computar k evitando el overflow: int mid = low + (high-low)/2;

http://goo.gl/Ww0Cx6

34

Conclusiones

- ► La búsqueda binaria implementada en Java estaba formalmente demostrada ...
- ... pero la demostración suponía enteros de precisión infinita (en la mayoría de los lenguajes imperativos son de precisión finita).
 - ► En AED no nos preocupan los problemas de aritmética de precisión finita (+Info: Orga1).
 - Es importante validar que las hipótesis sobre las que se realizó la demostración valgan en la implementación (aritmética finita, existencia de acceso concurrente, multi-threading, etc.)

Apareo (fusión, merge) de secuencias ordenadas

- ► **Problema:** Dadas dos secuencias ordenadas, fusionarlas en una única secuencia ordenada.
- ► El problema es importante per se y como subproblema de otros problemas importantes.
- Especificación:

```
proc merge(in \ a, b : seq\langle \mathbb{Z} \rangle, out \ result : seq\langle \mathbb{Z} \rangle) \{

Pre \{ordenada(a) \land ordenada(b)\}

Post \{ordenada(result) \land mismos(result, a + + b)\}

\}

pred mismos(s, t : seq\langle \mathbb{Z} \rangle) \{

(\forall x : \mathbb{Z})(\#apariciones(s, x) = \#apariciones(t, x)

\}
```

- ► ¿Cómo lo podemos implementar?
 - Podemos copiar los elementos de *a* y *b* a la secuencia *c*, y después ordenar *c*.
 - Pero no sabemos ordenar ¿Se podrá fusionar ambas secuencias en una única pasada?

Apareo de secuencias ordenadas

Ejemplo:

38

Apareo de secuencias

▶ ¿Qué invariante de ciclo tiene esta implementación?

```
\begin{split} I &\equiv \textit{ordenada}(a) \land \textit{ordenada}(b) \land |c| = |a| + |b| \\ &\land \quad ((0 \leq i \leq |a| \ \land \ 0 \leq j \leq |b| \ \land \ k = i + j) \\ &\land_L \quad (\textit{mismos}(\textit{subseq}(a, 0, i) + + \textit{subseq}(b, 0, j), \textit{subseq}(c, 0, k)) \\ &\land \quad \textit{ordenada}(\textit{subseq}(c, 0, k)))) \\ &\land \quad i < |a| \ \rightarrow_L \ (\forall t : \mathbb{Z})(0 \leq t < j \rightarrow_L b[t] \leq a[i]) \\ &\land \quad j < |b| \ \rightarrow_L \ (\forall t : \mathbb{Z})(0 \leq t < i \rightarrow_L a[t] \leq b[j]) \end{split}
```

▶ ¿Qué función variante debería tener esta implementación?

$$\mathit{fv} = |\mathsf{a}| + |\mathsf{b}| - \mathsf{k}$$

Apareo de secuencias

```
int[] merge(int[] a, int b[]) {
    int[] c = new int[a.length+b.length];
    int i = 0; // Para recorrer a
    int j = 0; // Para recorrer b
    int k = 0; // Para recorrer c

    while( k < c.length ) {
        if( /*Si tengo que avanzar i */ ) {
            c[k++] = a[i++];
        } else if(/* Si tengo que avanzar j */) {
            c[k++] = b[j++];
        }
    }
    return c;
}</pre>
```

- ▶ ¿Cuándo tengo que avanzar i? Cuando j está fuera de rango ó cuando i y j están en rango y a[i] < b[j]
- ▶ ¿Cuándo tengo que avanzar j? Cuando no tengo que avanzar i

Apareo de secuencias

- ► Al terminar el ciclo, ¿ya está la secuencia *c* con los valores finales?
- ► ¿Cuál es el tiempo de ejecución de peor caso de merge?
- ► Sea n = |c| = |a| + |b|
- ▶ El while se ejecuta n+1 veces.
- ▶ Por lo tanto, $T_{merge}(n) \in O(n)$

41

Bibliografía

- ► David Gries The Science of Programming
 - ► Chapter 16 Developing Invariants (Linear Search, Binary Search)
- ► Cormen et al. Introduction to Algorithms
 - ► Chapter 2.2 -Analyzing algorithms
 - ► Chapter 3 Growth of Functions

.