ECE570 Lecture 16: Diagnosis

Jeffrey Mark Siskind

School of Electrical and Computer Engineering

Fall 2013

A Circuit

Another Circuit

No Fault Model

"Transistors can fall from the sky"

A faulty component of n inputs can behave like any Boolean function of n inputs

Component Models—No Fault Model

INVERT
$$(ab, x, out)$$
 $\stackrel{\triangle}{=}$ $\neg ab \rightarrow (out \leftrightarrow \neg x)$
AND (ab, x, y, out) $\stackrel{\triangle}{=}$ $\neg ab \rightarrow (out \leftrightarrow (x \land y))$
OR (ab, x, y, out) $\stackrel{\triangle}{=}$ $\neg ab \rightarrow (out \leftrightarrow (x \lor y))$
XOR (ab, x, y, out) $\stackrel{\triangle}{=}$ $\neg ab \rightarrow (out \leftrightarrow \neg (x \leftrightarrow y))$

Component Models—Stuck-At-Zero Fault Model

$$\begin{array}{lll} \text{Invert}(ab,x,out) & \stackrel{\triangle}{=} & [\neg ab \to (out \leftrightarrow \neg x)] \land [ab \to \neg out] \\ \\ \text{And}(ab,x,y,out) & \stackrel{\triangle}{=} & [\neg ab \to (out \leftrightarrow (x \land y))] \land [ab \to \neg out] \\ \\ \text{Or}(ab,x,y,out) & \stackrel{\triangle}{=} & [\neg ab \to (out \leftrightarrow (x \lor y))] \land [ab \to \neg out] \\ \\ \text{Xor}(ab,x,y,out) & \stackrel{\triangle}{=} & [\neg ab \to (out \leftrightarrow \neg (x \leftrightarrow y))] \land [ab \to \neg out] \end{array}$$

Component Models in Scheme—I

Component Models in Scheme—II

Component Models in Scheme—III

Component Models in Scheme—IV

Component Models in Scheme—V

Component Models in Scheme—VI

System Description—I

in O
$$g0$$
 ou

 ${\tt Inverter}(ab(g_0), in, g_0) \land {\tt Inverter}(ab(g_1), g_0, out)$

System Description—II

 $XOR(ab(g_0), a, b, g_0) \land$ $AND(ab(g_1), a, b, g_1) \land$ $XOR(ab(g_2), g_0, c_{in}, s) \land$ $AND(ab(g_3), g_0, c_{in}, g_3) \land$ $OR(ab(g_4), g_3, c_{in}, c_{out})$

System Description in Scheme—I

in
$$\bigcirc$$
 g0 out

System Description in Scheme—II

Four Classes of Atomic Formulas

```
AB formulas: ab(g_0), ab(g_1), ab(g_2), ab(g_3), ab(g_4) inputs: a, b, c_{in} outputs: s, c_{out} internal nodes: g_0, g_1, g_3
```

Vectors—I

A *vector* is a CNF formula where each clause contains a single literal.

(A vector is also a DNF formula that contains a single minterm.)

An input literal is a true or negated input.

An output literal is a true or negated output.

An AB literal is a true or negated AB formula.

An input vector is a vector that contains only input literals.

An output vector is a vector that contains only output literals.

A test vector is a vector that contains only input or output literals.

A diagnosis is a vector that contains only AB literals.

Vectors—II

An input vector is a (partial) specification of the inputs to a circuit.

An output vector is a (partial) specification of the outputs of a circuit.

A diagnosis is a (partial) specification of which components are operational and which are faulty.

Diagnosis

```
Let i be an input vector.

Let o be an output vector.

Let t be a test vector.

Let d be a diagnosis.

simulation Given \Sigma, i, d, find o such
```

Let Σ be a system description.

```
simulation Given \Sigma, i, d, find o such that \Sigma \cup \{i,d\} \models o inverse simulation Given \Sigma, o, d, find i such that \Sigma \cup \{o,d\} \models i diagnosis Given \Sigma, i, o, find d such that \Sigma \cup \{i,o\} \models d Given \Sigma, t, find d such that \Sigma \cup \{t\} \models d
```

General Problem

Let Σ contain both the system description and some vectors.

Find a vector Φ that contains atomic formulas of a given class such that $\Sigma \models \Phi$ and that Φ is not covered by some other Ψ such that $\Sigma \models \Psi$.

General Algorithm

- ${\color{red} \bullet}$ find the set Π all of the prime implicates of Σ
- $oldsymbol{0}$ remove from Π any clause that contains atomic formulas that are not of the desired class
- $\ensuremath{\text{0}}$ find all of the prime implicants of Π

Terminology

A minimal conflict is a prime implicate that contains only AB literals.

A kernel diagnosis is a prime implicant of the set of all minimal conflicts.