編集距離に基づくカリキュラム学習 を用いたスタイル変換

門谷宙* 梶原智之** 荒瀬由紀* 鬼塚真*
*大阪大学大学院情報科学研究科 **愛媛大学大学院理工学研究科

- 1 背景
- 2 関連研究: Platanios et al. [1]
- 3 提案手法
- 4 評価実験
- 5 分析
- 6まとめ

- 1 背景
- 2 関連研究: Platanios et al. [1]
- 3 提案手法
- 4 評価実験
- 5 分析
- 6まとめ

スタイル変換

- 入力文の意味を保持したまま表現を変更するタスク
- 単言語パラレルコーパス上で機械翻訳と同様の手法を使用
- 応用事例: 文章読解支援, 機械翻訳の前処理

カリキュラム学習

- 簡単な問題から学習を始め、徐々に難しい問題を学習
- 機械学習モデルの性能向上
- 適用事例: 物体認識 [2], マルチメディア検索 [3]

Easy Medium Difficult

Thank you. Thank you very much.

Thank you for your helping me with my work.

Training Time

- [2] Xiao et al. (ACMMM 19) Error-Driven Incremental Learning in Deep Convolution Neural Network for Large-Scale Image classification
- [3] Jiang et al. (NIPS 14) Self-Paced Learning with Diversity

自然言語処理におけるカリキュラム学習

- 機械翻訳におけるカリキュラム学習
 - 訓練サンプルの難易度のみを考慮する手法 [4]
 - → 学習の収束は早くなるが, 翻訳品質は向上せず
 - モデルの能力を考慮する手法 [1]
 - → 収束後においても翻訳品質が向上
- スタイル変換におけるカリキュラム学習の先行研究はなし

- 1 背景
- 2 関連研究: Platanios et al. [1]
- 3 提案手法
- 4 評価実験
- 5 分析
- 6まとめ

Platanios et al. [1]: 手法概要

- 機械翻訳におけるカリキュラム学習手法
- 2つの指標を導入
 - \bullet 訓練サンプル s_i の難易度 $\bar{d}(s_i) \in [0,1]$
 - 訓練ステップ tにおけるモデルの能力 $c(t) \in [0,1]$
- 各ステップで $\bar{d}(s_i) \le c(t)$ を満たす訓練サンプルのみを使用 \rightarrow 訓練時間の経過に伴って使用できる訓練サンプルが増加

Platanios et al. [1]: 難易度の基準 $d(s_i)$

- ullet 訓練サンプル s_i の入力文は単語列 $\{w_1,\cdots,w_{N_i}\}$ で構成される
- 難易度の基準d_{length}(s_i)
 - 長文は難しい → **文長**が難易度の指標
 - $d_{length}(s_i) \triangleq N_i$
- 難易度の基準 $d_{rarity}(s_i)$
 - 低頻度語は難しい → **単語の出現頻度**が難易度の指標
 - $d_{rarity}(s_i) \triangleq -\sum_{j=1}^{N_i} \log \hat{p}(w_j)$ ($\hat{p}(w_j)$: 単語 w_j の出現確率)
- 既存の難易度の基準は、正解文を考慮していない

- 1背景
- 2 関連研究: Platanios et al. [1]
- 3 提案手法
- 4 評価実験
- 5 分析
- 6まとめ

[1] Platanios et al. (NAACL 19) Competence-based Curriculum Learning for Neural Machine Translation

スタイル変換における難易度

- ほとんど変換を必要としない訓練サンプル: 入力文をコピーするだけで,正解文とほぼ一致 (簡単)
- 多くの変換が必要な訓練サンプル: 複雑な書き換え操作が必要 (難しい)
- 入力文を正解文に変換するために必要な変換コストと仮定→ カリキュラム学習に編集距離を導入

入力文	正解文	
Their first two albums were pretty good.	Their first two albums were very good.	
no where there is no such thing	That does not exitst.	

編集距離

- 単語列Xを単語列Yに変換するために必要な<u>編集操作</u>の回数
 - 挿入 単語を1つ加える
 - 削除 単語を1つ消す
 - 置換 単語を1つ別の単語に変える
- 簡単な訓練サンプルは小さく, 難しい訓練サンプルは大きい

入力文	正解文	編集距離
Their first two albums were pretty good.	Their first two albums were very good.	1
no where there is no such thing	That does not exitst.	7

提案手法: 編集距離に基づくカリキュラム学習

- スタイル変換に初めてカリキュラム学習を適用
- カリキュラム学習の枠組みは Platanios et al. [1] に従う
- 難易度の基準 $d_{distance}(s_i)$
 - 難易度の指標: 編集距離
 - $d_{distance}(s_i) \triangleq E_i$ E_i : 訓練サンプル S_i の入力文と正解文の編集距離
 - 入力文と正解文の両方を考慮

カリキュラム学習の枠組み: Platanios et al. [1]

難易度 $\overline{d}(s_i)$

- ullet 難易度の基準 $d(s_i)$ から難易度 $ar{d}(s_i)$ への変換手順
 - 1. $d(s_i)$ に従って累積分布関数を作成
 - 2. 累積分布関数上で $d(s_i)$ に対応する値を $\bar{d}(s_i)$ とする
- \bullet $\bar{d}(s_i)$ が小さいほど簡単、大きいほど難しい

カリキュラム学習の枠組み: Platanios et al. [1]

モデルの能力 c(t)

• $c(t) = \min(1, \sqrt{t \frac{1 - c_0^2}{T} + c_0^2})$

 c_0 : モデルの能力の初期値

T: モデルの能力が完全に備わると予想されるステップ数

● c(t)は訓練開始時は小さく, 訓練の経過に伴い単調増加

- 1背景
- 2 関連研究: Platanios et al. [1]
- 3 提案手法
- 4 評価実験
- 5 分析
- 6まとめ

実験設定

フォーマルさに関するスタイル変換の性能を評価

- データセット: GYAFC [5]
- スタイル変換モデル: Transformer [6]
- 評価指標: BLEU [7]

	Train	Dev	Test
E&M	209,124	2,877	1,416
F&R	209,124	2,788	1,332

^[5] Rao and Tetreault (NAACL 18) Dear Sir or Madam, May I Introduce the GYAFC Dataset: Corpus, Benchmarks and Metrics for Formality Style Transfer

^[6] Vaswani et al. (NIPS 17) Attention is All you Need

^[7] Papineni et al. (ACL 02) Bleu: a Method for Automatic Evaluation of Machine Translation

比較手法

- ベースライン
- CL-SL
- CL-SR
- CL-ED

カリキュラム学習を用いない手法

文の長さに基づくカリキュラム学習

単語の出現頻度に基づくカリキュラム学習

編集距離に基づくカリキュラム学習

実験結果

- 両ドメインで, 提案手法がベースラインを上回る性能を達成
- 既存のカリキュラム学習は有効でないが、提案手法は有効

	カジュアル → フォーマル		
	E&M	F&R	
入力文	49.19	50.94	
正解文	100.0	100.0	
ベースライン	69.81	75.02	
CL-SL	69.83	74.90	
CL-SR	70.05	74.62	
CL-ED	70.34	75.41	

- 1背景
- 2 関連研究: Platanios et al. [1]
- 3 提案手法
- 4 評価実験
- 5 分析
- 6まとめ

分析手順

どのような特性を持つ事例に対する性能が向上するか分析

- 評価データを難易度の指標に従って,3つのビンに振り分け
- <u>比較手法</u>を用いて、ビン毎にBLEUを測定
 - ベースライン カリキュラム学習を用いない手法
 - CL-SL **文の長さ**に基づくカリキュラム学習
 - CL-SR単語の出現頻度に基づくカリキュラム学習
 - ◆ CL-ED 編集距離に基づくカリキュラム学習
- ベースラインからのBLUEの変化量を調べる

分析結果

- 全体的に簡単な事例に対する性能の向上が大きい
- 既存のカリキュラム学習は難しい事例に対する性能が悪化
- 提案手法は難しい事例に対する性能を改善

- 1背景
- 2 関連研究: Platanios et al. [1]
- 3 提案手法
- 4 評価実験
- 5 分析
- 6まとめ

まとめ

- 提案手法: 編集距離に基づくカリキュラム学習
 - スタイル変換に初めてカリキュラム学習を適用
 - 難易度の指標として編集距離を導入
- 評価実験の結果, 提案手法の有効性を確認
- 提案手法は難しい事例に対する性能改善に貢献