MAE0217 - Estatística Descritiva - Lista 2

Natalia Koza¹ Rafael Gonçalves Pereira da Silva² Ricardo Geraldes Tolesano³ Rubens Kushimizo Rodrigues Xavier⁴ Rubens Gomes Neto⁵ Rubens Santos Andrade Filho⁶ Thamires dos Santos Matos⁷

Maio de 2021

Sumário

Exercício	1						 		 														2	2
Exercício	12			•			 		 					 									2	2
Exercício	14						 		 					 									2	2
Exercício	15						 		 					 									3	3
Exercício	17			•			 		 					 									4	ı
Exercício	19						 		 					 									4	1
Exercício	23			•			 		 					 									Ę	5
Exercício	28						 		 					 									6	3
Exercício	30						 		 					 									6	3
Erranafaia	99																							7

 $^{^{1}}$ Número USP: 10698432

 $^{^2\}mathrm{N\'umero}$ USP: 9009600

 $^{^3\}mathrm{N\'umero}$ USP: 10734557

 $^{^4\}mathrm{Número}$ USP: 8626718

⁵Número USP: 9318484

⁶Número USP: 9318484

⁷Número USP: 9402940

O arquivo **rehabcardio** contém informações sobre um estudo de reabilitação de pacientes cardíacos. Elabore um relatório indicando possíveis inconsistências na matriz de dados e faça uma análise descritiva de todas as variáveis do estudo, construindo distribuições de frequências para as variáveis qualitativas e obtendo medidas resumo para as variáveis qualitativas.

Exercício 12

Exercício 14

Na tabela abaixo estão indicadas as durações de 335 lâmpadas.

Duração(horas)	Número de Lâmpadas
0-100	82
100-200	71
200-300	68
300-400	56
400-500	43
500-800	15

a) Esboce o histograma correspondente.

Duração em horas de 335 lâmpadas

b) Calcule os quantis de ordem p=0,1; 0,3; 0,5; 0,7 e 0,9

Exercício 15

Os dados apresentados na Tabela 2 referem-se aos instantes nos quais o centro de controle operacional de estradas rodoviárias recebeu chamados solicitando algum tipo de auxílio em duas estradas num determinado dia.

Estrada 1	12:07:00AM	12:58:00AM	01:24:00AM	01:35:00AM	02:05:00AM
	03:14:00AM	03:25:00AM	03:46:00AM	05:44:00AM	05:56:00AM
	06:36:00AM	07:26:00AM	07:48:00AM	09:13:00AM	12:05:00PM
	12:48:00PM	01:21:00PM	02:22:00PM	05:30:00PM	06:00:00PM
	07:53:00PM	09:15:00PM	09:49:00PM	09:59:00PM	10:53:00PM
	11:27:00PM	11:49:00PM	11:57:00PM		
Estrada 2	12:03:00AM	01:18:00AM	04:35:00AM	06:13:00AM	06:59:00AM
	08:03:00 AM	10:07:00AM	12:24:00PM	01:45:00PM	02:07:00PM
	03:23:00PM	06:34:00PM	07:19:00PM	09:44:00PM	10:27:00PM
	10:52:00PM	11:19:00PM	11:29:00PM	11:44:00PM	_

Tabela 2: Planilha com instantes de realização de chamados solicitando auxílio em estradas.

a) Construa um histograma para a distribuição de frequências dos instantes de chamados em cada uma das estradas.

- b) Calcule os intervalos de tempo entre as sucessivas chamadas e descreva-os, para cada uma das estradas, utilizando medidas resumo e gráficos do tipo boxplot. Existe alguma relação entre o tipo de estrada e o intervalo de tempo entre as chamadas?
- c) Por intermédio de um gráfico do tipo QQ, verifique se a distribuicão da variável "Intervalo de tempo entre as chamadas" em cada estrada é compatível com um modelo normal. Faça o mesmo para um modelo exponencial. Compare as distribuições de frequências correspondentes às duas estradas.

Considere o seguinte resumo descritivo da pulsação de estudantes com atividade física intensa e fraca:

Atividade	N	Média	Mediana	DP	Min	Max	Q1	Q3
Intensa	30	79,6	82	10,5	62	90	70	85
Fraca	30	73,1	70	9,6	58	92	63	77

DP: desvio padrão, Q1: primeiro quartil, Q3: terceiro quartil

Indique se as seguintes afirmações estão corretas, justificando a sua respostas:

- a) 5% e 50% dos estudantes com atividade física intensa e fraca, respectivamente, tiveram pulsação inferior a 70.
- b) A proporção de estudantes com fraca atividade física com pulsação inferior a 63 é menor que a proporção de estudantes com atividade física intensa com pulsação inferior a 70.
- c) A atividade física não tem efeito na média da pulsação dos estudantes.
- d) Mais da metade dos estudantes com atividade física intensa têm pulsação maior que 82 .

Exercício 19

Os histogramas apresentados na Figura 3.35 mostram a distribuição das temperaturas ($^{\circ}$ C) ao longo de vários dias de investigação para duas regiões (R1 e R2). Indique se as afirmaçõees abaixo estão corretas, justificando as respostas:

- a) As temperaturas das regiões R1 e R2 têm mesma média e mesma variância.
- b) Não é possível comparar as variâncias.
- c) A temperatura média da regiões R2 é maior que a de R1.
- d) As temperaturas das regiões R1 e R2 têm mesma média e variância diferentes

Resposta: Apenas a alternativa d) está correta.

A seguir os cálculos que justificam a resposta:

```
# temperaturas
x<- c(10,12,14,16,18)
```

```
# freqs absolutas
Freq1<- c(6,4,1,4,6)
Freq2<- c(4,4,5,4,4)
# freqs relativas
f1 <- Freq1/sum(Freq1)</pre>
f2 <- Freq2/sum(Freq2)</pre>
# medias
EX_R1 <- sum(x*f1)</pre>
EX_R2 \leftarrow sum(x*f2)
# variancias
x2 <- x<sup>2</sup>
EX2_R1 \leftarrow sum(x2*f1)
VARX_R1 \leftarrow EX2_R1 - (EX_R1)^2
EX2_R2 \leftarrow sum(x2*f2)
VARX_R2 \leftarrow EX2_R2 - (EX_R2)^2
# tabela resumo
tibble(
  `Região` = paste0("R",1:2),
  Média = c(EX_R1, EX_R2),
  Variância = c(VARX_R1, VARX_R2),
) %>% kable(caption = "Medidas Resumo.")
```

Tabela 3: Medidas Resumo.

Região	Média	Variância
R1	14	10,67
R2	14	7,62

A tabela abaixo representa a distribuição do número de dependentes por empregado de uma determinada empresa.

Dependentes	Frequência
1	40
2	50
3	30
4	20
5	10
Total	150

Nenhuma das alternativas. De fato, a media é igual a 2.4 enquanto a mediana = 2 e moda = 2.

```
mutate(freq=`Frequência`/sum(`Frequência`))

# média
x %>% summarise(media = sum(Dependentes * freq)) %>% pull

## [1] 2.4

# mediana
x <- x %>% mutate(freqacum = cumsum(freq))
x %>% summarise(mediana = Dependentes[findInterval(0.5, freqacum)+1]) %>% pull

## [1] 2

# moda
x %>% summarise(moda = Dependentes[which.max(freq)]) %>% pull
```

[1] 2

x <- x %>%

Exercício 28

Exercício 30

Considere os valores X_1, \ldots, X_n de uma variável X, com média \bar{X} desvio padrão S. Mostre que a variável Z, cujos valores são $Z_i = \left(X_i - \bar{X}\right)/S, i = 1, \ldots, n$ tem média 0 e desvio padrão 1.

$$\bar{Z} = 1/n \sum_{1}^{n} Z_{i}$$

$$\bar{Z} = 1/n \sum_{1}^{n} (X_{i} - \bar{X})/S$$

$$\bar{Z} = \frac{1}{S} (1/n \sum_{1}^{n} X_{i} - 1/n \sum_{1}^{n} \bar{X})$$

$$\bar{X} = 1/n \sum_{1}^{n} X_{i} \qquad n\bar{X} = \sum_{1}^{n} n\bar{X}$$

$$\bar{Z} = \frac{1}{S} (\bar{X} - \frac{n\bar{X}}{n})$$

$$\bar{Z} = 0$$

$$dp(Z) = \sqrt{var(Z)}$$

$$dp(Z) = \sqrt{1/n \sum_{1}^{n} (Z_{i} - \bar{Z})^{2}}$$

$$\bar{Z} = 0$$

$$dp(Z) = \sqrt{\frac{1}{N} \sum_{1}^{n} \frac{X_{i} - \bar{X}}{N}}$$

$$dp(Z) = \sqrt{\frac{1}{N} \sum_{1}^{n} \frac{X_{i} - 2X_{i}\bar{X}}{N}}$$

$$\bar{X}^{2} = \frac{1}{N} \sum_{1}^{n} X_{i}^{2} \qquad \bar{X} = \frac{1}{N} \sum_{1}^{n} X_{i} \qquad n\bar{X}^{2} = \frac{1}{N} \sum_{1}^{n} \bar{X}^{2}$$

$$dp(Z) = \sqrt{\frac{1}{N} (X_{i}^{2} - 2\bar{X}^{2} + \bar{X}^{2})}$$

Com a finalidade de entender a diferença entre "desvio padrão" e "erro padrão",

- a) Simule 10000 dados de uma distribuição normal com média 12 e desvio padrão 4. Construa o histograma correspondente, calcule a média e o desvio padrão amostrais e compare os valores obtidos com aqueles utilizados na geração dos dados.
- b) Simule 500 amostras de tamanho n=4 dessa população. Calcule a média amostral de cada amostra, construa o histograma dessas médias e estime o correspondente desvio padrão (que é o erro padrão da média).
- c) Repita os passos a) e b) com amostras de tamanhos n=9 e n=100. Comente os resultados comparando-os com aqueles preconizados pela teoria.
- d) Repita os passos a) c) simulando amostras de uma distribuição qui-quadrado com 3 graus de liberdade.