EDA - Aula 3 Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica _{Notação} *O*, Ω e Θ

Complexidades do

Aula 3 Crescimento de Funções e Notação Assintótica

Estruturas de Dados Avançadas

Professor Eurinardo Rodrigues Costa Universidade Federal do Ceará Campus Russas

2021.1

Sumário

EDA - Aula 3

Eurinard

Passadas

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e ⊖ Abusos de notação

Complexidade do Aulas Passadas

- 2 Crescimento de Funções
- Notação Assintótica
 - Notação O, Ω e Θ
 - Abusos de notação
- Complexidades do Insertion-Sort

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ

Complexidades do

Insertion-Sort

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ Abusos de notação

Complexidades do Insertion-Sort

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do Insertion-Sort

Complexidade de Tempo/Espaço

Pior caso,

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do

- Pior caso,
- Melhor caso e

EDA - Aula 3
Prof.

Aulas Passadas

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do

- Pior caso,
- Melhor caso e
- Caso médio.

EDA - Aula 3

Prof.
Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica _{Notação O, Ω e Θ}

Complexidades do Insertion Sort

- Pior caso,
- Melhor caso e
- Caso médio.
- Exemplo: Insertion-Sort

EDA - Aula 3 Prof. Eurinardo

Aulas Passadas

de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do Insertion-Sort

- Pior caso,
- Melhor caso e
- Caso médio.
- Exemplo: Insertion-Sort
 - Melhor caso = an b.

EDA - Aula 3 Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do

- Pior caso,
- Melhor caso e
- Caso médio.
- Exemplo: Insertion-Sort
 - Melhor caso = an b.
 - Pior caso = $an^2 + bn c$.

Crescimento de Funções

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação *O*, Ω e Θ

Abusos de notação

do Insertion-Sort

Crescimento de Funções

Crescimento de Funções

Sejam os algoritmos A e B que resolvem um determinado problema. No pior caso, temos as funções $T_A(n)$ e $T_B(n)$ para A e B, respectivamente, pelo gráfico abaixo. Sabemos que a partir de n_0 temos que sempre $T_B(n) \ge T_A(n)$. Qual o melhor algoritmo para resolver o problema? A ou B?

Crescimento de Funções

Crescimento de Funções

Sejam os algoritmos A e B que resolvem um determinado problema. No pior caso, temos as funções $T_A(n)$ e $T_B(n)$ para A e B, respectivamente, pelo gráfico abaixo. Sabemos que a partir de n_0 temos que sempre $T_B(n) \ge T_A(n)$. Qual o melhor algoritmo para resolver o problema? A ou B?

Resposta: Assintoticamente A

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação

Notação O, Ω e Θ

Notação O, Ω e Θ

Complexidades do

Insertion-Sort

Prof.

Notação O, Ω e Θ

Notação Ω

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação *O*, Ω e Θ

Complexidade do

Notação Ω

 $\Omega(g(n)) = \{f(n) \mid \exists c_1, n_0 \text{ constantes positivas tais que } \}$

$$0 \leq c_1 g(n) \leq f(n)$$

para todo $n \ge n_0$

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimente de Funções

Notação Assintótica

Notação *O*, Ω e Θ

Complexidade:

Notação Ω

 $\Omega(g(n)) = \{f(n) \mid \exists c_1, n_0 \text{ constantes positivas tais que } \}$

$$0 \leq c_1 g(n) \leq f(n)$$

para todo $n \ge n_0$

Notação O

Notação O, Ω e Θ

Notação Ω

 $\Omega(g(n)) = \{f(n) \mid \exists c_1, n_0 \text{ constantes positivas tais que } \}$

$$0 \leq c_1 g(n) \leq f(n)$$

para todo $n \ge n_0$

Notação O

 $O(g(n)) = \{f(n) \mid \exists c_2, n_0 \text{ constantes positivas tais que } \}$

$$0 \leq f(n) \leq c_2 g(n)$$

para todo $n > n_0$

EDA - Aula 3

Prof.

Aulas Passadas

Crescimento de Funções

Notação

Notação O, Ω e Θ

Notação *O*, Ω e ⊖

Complexidades do

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação

Notação O, Ω e Θ

Notação O, Ω e Θ

Complexidades do

Insertion-Sort

Notação ⊖

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação *O*, Ω e Θ

Complexidade do Insertion-Sort

Notação ⊖

$$\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2, n_0 \text{ constantes positivas tais que } \}$$

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$$

para todo
$$n \ge n_0$$

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação *O*, Ω e Θ

Complexidade: do Incortion Sort

Notação ⊝

$$\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2, n_0 \text{ constantes positivas tais que } \}$$

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$$

para todo $n \ge n_0$

Teorema

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica

ASSINTOTICA

Notação *O*, Ω e Θ

Abusos de notação

Notação ⊖

 $\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2, n_0 \text{ constantes positivas tais que } \}$

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$$

para todo $n \ge n_0$

Teorema

Sejam as funções f(n) e g(n). Temos que

$$f(n) \in \Theta(g(n)) \Longleftrightarrow f(n) \in O(g(n)) \text{ e } f(n) \in \Omega(g(n))$$

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Abusos de notação

Complexidades do

Obs.:

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ Abusos de notação

Complexidade

do Insertion-Sort Obs.: Para $f(n) = n e g(n) = n^2$,

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação
Assintótica
Notação *O*, Ω e ⊖
Abusos de notação

Complexidades

do Insertion-Sort Obs.: Para $f(n) = n e g(n) = n^2$, faremos $n \in O(n^2)$,

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Assintótica
Notação O, Ω e Θ
Abusos de notação

Complexidades do Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n))$.

•
$$n = O(n^2)$$
,

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e ⊖ Abusos de notação

Complexidades do Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n))$.

Abusos

• $n = O(n^2)$, significado $n \in O(n^2)$.

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Assintótica
Notação Ο, Ω e Θ
Abusos de notação

Complexidades

do

Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n))$.

- $n = O(n^2)$, significado $n \in O(n^2)$.
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$,

Abusos de notação

Obs.: Para $f(n) = n e g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n)).$

- $n = O(n^2)$, significado $n \in O(n^2)$.
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$, significado

Abusos de notação

Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n)).$

- $n = O(n^2)$, significado $n \in O(n^2)$.
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n),$ significado $2n^2 + 3n + 1 = 2n^2 + g(n)$, onde $g(n) = \Theta(n)$.

Abusos de notação

Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n)).$

- $n = O(n^2)$, significado $n \in O(n^2)$.
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n),$ significado $2n^2 + 3n + 1 = 2n^2 + g(n)$, onde $g(n) = \Theta(n)$.
- $2n^2 + \Theta(n) = \Theta(n^2)$,

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Assintótica
Notação Ο, Ω e Θ
Abusos de notação

Complexidades do

Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n))$.

- $n = O(n^2)$, significado $n \in O(n^2)$.
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$, significado $2n^2 + 3n + 1 = 2n^2 + g(n)$, onde $g(n) = \Theta(n)$.
- $2n^2 + \Theta(n) = \Theta(n^2)$, significado

Abusos de notação

Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n)).$

- $n = O(n^2)$, significado $n \in O(n^2)$.
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n),$ significado $2n^2 + 3n + 1 = 2n^2 + g(n)$, onde $g(n) = \Theta(n)$.
- $2n^2 + \Theta(n) = \Theta(n^2)$, significado para qualquer função $f(n) = \Theta(n)$,

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Assintótica
Notação Ο, Ω e Θ
Abusos de notação

Complexidades do

Obs.: Para f(n) = n e $g(n) = n^2$, faremos $n \in O(n^2)$, em vez de $f(n) \in O(g(n))$.

- $n = O(n^2)$, significado $n \in O(n^2)$.
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$, significado $2n^2 + 3n + 1 = 2n^2 + g(n)$, onde $g(n) = \Theta(n)$.
- $2n^2 + \Theta(n) = \Theta(n^2)$, significado para qualquer função $f(n) = \Theta(n)$, temos que $2n^2 + g(n) = \Theta(n^2)$.

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e 6

Abusos de notação

Complexidades

do Insertion-Sort

Marque V ou F

• ()
$$2n^2 + \Theta(n) = 2n^2 + 7n$$

$$\bullet \ (\)\ \Theta(n^2) + 2n = \Omega(n)$$

• ()
$$\Omega(n^2) + 3n = 10n^3$$
)

• ()
$$5n^2 + 2n + 10 = \Omega(n^3)$$

• ()
$$n^2 + 2n + 10 = O(\frac{n^2}{10})$$

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e 6

Abusos de notação

Complexidades

do

- (F) $2n^2 + \Theta(n) = 2n^2 + 7n$
- () $\Theta(n^2) + 2n = \Omega(n)$
- () $\Omega(n^2) + 3n = 10n^3$)
- () $5n^2 + 2n + 10 = \Omega(n^3)$
- () $n^2 + 2n + 10 = O(\frac{n^2}{10})$

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

de Funções

Notação Assintótica Notação *O*, Ω e 6

Abusos de notação

Complexidades

do Insertion-Sort

• (F)
$$2n^2 + \Theta(n) = 2n^2 + 7n$$

• ()
$$\Theta(n^2) + 2n = \Omega(n)$$

• (F)
$$\Omega(n^2) + 3n = 10n^3$$
)

• ()
$$5n^2 + 2n + 10 = \Omega(n^3)$$

• ()
$$n^2 + 2n + 10 = O(\frac{n^2}{10})$$

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Cresciment de Funções

Notação Assintótica Notação *O*, Ω e 6

Abusos de notação

Complexidades

do Incortion Sort

• (F)
$$2n^2 + \Theta(n) = 2n^2 + 7n$$

• (V)
$$\Theta(n^2) + 2n = \Omega(n)$$

• (F)
$$\Omega(n^2) + 3n = 10n^3$$
)

• ()
$$5n^2 + 2n + 10 = \Omega(n^3)$$

• ()
$$n^2 + 2n + 10 = O(\frac{n^2}{10})$$

Abusos de notação

• (F)
$$2n^2 + \Theta(n) = 2n^2 + 7n$$

• (V)
$$\Theta(n^2) + 2n = \Omega(n)$$

• (F)
$$\Omega(n^2) + 3n = 10n^3$$
)

• (F)
$$5n^2 + 2n + 10 = \Omega(n^3)$$

• ()
$$n^2 + 2n + 10 = O(\frac{n^2}{10})$$

Abusos de notação

- (F) $2n^2 + \Theta(n) = 2n^2 + 7n$
- (V) $\Theta(n^2) + 2n = \Omega(n)$
- (F) $\Omega(n^2) + 3n = 10n^3$)
- (F) $5n^2 + 2n + 10 = \Omega(n^3)$
- (V) $n^2 + 2n + 10 = O(\frac{n^2}{10})$

Prof.

Complexidades Insertion-Sort

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Notação Assintótica

Notação O, Ω e Θ

Complexidades do Insertion-Sort

EDA - Aula 3

Prof. Eurinardo

Aulas Passadas

Crescimento de Funções

Assintótica
Notação *O*, Ω e Θ

Complexidades do Insertion-Sort

•
$$7n^3 - 15n^2 + 20n - 300 = \Theta(n^3)$$

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica _{Notação O, Ω e Θ}

Complexidades do Insertion-Sort

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- o Insertion-Sort no melhor caso é $\Theta(n)$

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica _{Notação} *O*, Ω e Θ

Abusos de notação

Complexidades

do
Insertion-Sort

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- o Insertion-Sort no melhor caso é $\Theta(n)$
- o Insertion-Sort no pior caso é $\Theta(n^2)$

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do Insertion-Sort

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- o Insertion-Sort no melhor caso é $\Theta(n)$
- o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do Insertion-Sort

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- o Insertion-Sort no melhor caso é $\Theta(n)$
- o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

Não confundir!!! Pior caso com $O(\cdot)$

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do Insertion-Sort

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- o Insertion-Sort no melhor caso é $\Theta(n)$
- o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação l

Não confundir!!! Pior caso com $O(\cdot)$ e Melhor caso com $\Omega(\cdot)$.

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do Insertion-Sort

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- o Insertion-Sort no melhor caso é $\Theta(n)$
- o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

Não confundir!!! Pior caso com $O(\cdot)$ e Melhor caso com $\Omega(\cdot)$.

• Insertion-Sort, no pior caso, é $\Omega(n^2)$?

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do Insertion-Sort

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- o Insertion-Sort no melhor caso é $\Theta(n)$
- o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

Não confundir!!! Pior caso com $O(\cdot)$ e Melhor caso com $\Omega(\cdot)$.

• Insertion-Sort, no pior caso, é $\Omega(n^2)$? Sim

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do Insertion-Sort

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- o Insertion-Sort no melhor caso é $\Theta(n)$
- o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação l

Não confundir!!! Pior caso com $O(\cdot)$ e Melhor caso com $\Omega(\cdot)$.

- Insertion-Sort, no pior caso, é $\Omega(n^2)$? Sim
- Insertion-Sort, no melhor caso, é O(n)?

EDA - Aula 3

Prof. Eurinardo

Aulas Passada

Crescimento de Funções

Notação Assintótica Notação *O*, Ω e Θ

Complexidades do Insertion-Sort

Mostre que:

- $7n^3 15n^2 + 20n 300 = \Theta(n^3)$
- o Insertion-Sort no melhor caso é $\Theta(n)$
- o Insertion-Sort no pior caso é $\Theta(n^2)$

Observação

Não confundir!!! Pior caso com $O(\cdot)$ e Melhor caso com $\Omega(\cdot)$.

- Insertion-Sort, no pior caso, é $\Omega(n^2)$? Sim
- Insertion-Sort, no melhor caso, é O(n)? Sim

Prof.

Complexidades

Insertion-Sort

Obrigado!