In [1]:
$$\blacktriangleright$$
 ## settings \leftrightarrow

\usepackageamssymb

4.3 Hierarchic Clustering

Hierarchic Clustering leads to a treelike division of clusters. There are two opposite procedures:

- divisive clustering: start with a single cluster that contains all data, stepwise division into smaller clusters (top-down)
- agglomerative clustering: initialize all data points as 1-element clusters, stepwise merging of clusters (bottom-up)

4.3.1 Agglomeratives Clustering

- 1. Initialization: Regard data points as 1-element cluster C_1, \ldots, C_n .
- 2. Find pair of clusters C_i , C_j with

$$(i^{\star}, j^{\star}) = \arg\min_{i < j} d(C_i, C_j)$$

Set
$$\tilde{d} = d(C_{i^{\star}}, C_{i^{\star}})$$

- 3. Replace $C_{i^{\star}} \leftarrow C_{i^{\star}} \cup C_{j^{\star}}$
- 4. If $j^* < n$: replace $C_i^* \leftarrow C_n$
- 5. Set $n \leftarrow n 1$
- 6. If termination condition $A(C_1, \ldots, C_n)$ =false: ~~goto 2

termination conditions:

- number of clusters: $n \le n_{\text{goal}}$
- error: $\sum_{i=1}^{n} \operatorname{Var}(C_i) > E_{goal}$
- distance: & $\tilde{d} > d_{max}$

Different clustering variants result according to the choice of the distance function in step 2

1. Single Linkage Clustering (SLC)

$$d(C_i, C_i) = d_1(C_i, C_i)$$

- SLC is inclined to form 'strings of clusters'
- 2. Complete Linkage Clustering (CLC)

$$d(C_i, C_j) = d_2(C_i, C_j)$$

• CLC has the tendency to result in compact sphere-shaped clusters

1 of 4

▼ Example

Consider the data set: $D = \{0, 0.5, 1.5, 2.8, 5\}$

Clustering yields the following dendrograms:

• Note that the x-coordinates of the plots do not match to the data point indices. sorting is always done so in dendrograms that neighbored items can be merged.

CLC:

SLC:

2 of 4

3. Average linkage clustering

$$d(C_i, C_i) = d_3(C_i, C_i)$$

well balanced, between CLC and SLC

4. Centroid Linkage Clustering

$$d(C_i, C_i) = d_4(C_i, C_i)$$

- Each cluster is represented by the mean of its center vectors
- The computation of means requires real-valued variables
- Attention: When merging two clusters, the center-of-mass of the resulting cluster is dominated by the bigger cluster

5. Ward's Linkage Clustering

Here, an optimality criterion is used:

ullet with each step that pair of clusters C_i, C_j is merged that increases the mean standard deviation

$$E = \frac{1}{N} \sum_{i} \sum_{\vec{x} \in C_i} (\vec{x} - \hat{\mu}_i)^2$$

of data around the cluster centers $\hat{\mu}_i = \langle \vec{x} \rangle_{C_i}$ the least.

• this favors the formation of spherical clusters.

▼ 4.3.2. Recursive Distance Measures

All methods described before can be derived from a recursively defined distance measure:

$$d_{k,(i,j)} = \alpha_i d_{ki} + \alpha_j d_{kj} + \beta d_{ij} + \gamma |d_{ki} - d_{kj}|$$

• Note that this Figure is a 90 degree rotated dendrogram, but the cluster distances $d(j,k)=d_{jk}$ and $d(i,k)=d_{ik}$ are not depicted. The red arrows highlight what distances are meant.

According to the choice of parameters α_i , α_j , β and γ we receive the above methods 1.-5., and further methods.

α_i	$lpha_j$	β	γ	Method
1/2	1/2	0	-1/2	Single Linkage
1/2	1/2	0	1/2	Complete Linkage
$\frac{n_i}{n_i + n_j}$	$\frac{n_j}{n_i + n_j}$	0	0	Centroid linkage Clustering
$\frac{n_i}{n_i + n_j}$	$\frac{n_j}{n_i + n_j}$	$-lpha_ilpha_j$	0	Average linkage Clustering
$\frac{n_i + n_j}{n_i + n_j + n_k}$	$\frac{n_j + n_k}{n_i + n_j + n_k}$	$-\frac{n_k}{n_i+n_j+n_k}$	0	Ward's linkage Clustering

3 of 4

4 of 4 18-12-11, 20:46