18.100A Assignment 7

Octavio Vega

April 24, 2023

Problem 1

Proof. Since $\sum_n a_n$ and $\sum_n b_n$ converge absolutely, suppose that $\sum_n |a_n| < M$ and $\sum_n |b_n| < N$. Then

$$\sum_{n=0}^{m} |c_n| = \sum_{n=0}^{m} \left| \sum_{k=0}^{n} a_k b_{n-k} \right| \tag{1}$$

$$\leq \sum_{n=0}^{m} \sum_{k=0}^{n} |a_k b_{n-k}| \tag{2}$$

$$= |a_0b_0| + (|a_0b_1| + |a_1b_0|) + \dots +$$

$$(|a_0b_m| + |a_1b_{m-1}| + \dots + |a_mb_0|) \tag{3}$$

$$=\sum_{n=0}^{m}|a_n|\sum_{k=0}^{m-n}|b_k|\tag{4}$$

$$\langle MN.$$
 (5)

Thus $\sum_{n} |c_n|$ is bounded above and monotone, so it converges.

Problem 2

(a)

Let
$$a_n = 2^n x^n$$
. Then $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{2^{n+1} x^{n+1}}{2^n x^n} \right| = 2|x|$.

By the ratio test, we must have

$$L = \lim_{n \to \infty} 2|x| < 1. \tag{6}$$

Thus, $\sum_{n=0}^{\infty} 2^n x^n$ converges for all $|x|<\frac{1}{2}.$

(b)

We have $a_n = nx^n$, so $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)x^{n+1}}{nx^n} \right| = \frac{n+1}{n}|x|$.

Thus, we require

$$\lim_{n \to \infty} \frac{n+1}{n} |x| < 1. \tag{7}$$

Therefore, $\sum_{n} nx^{n}$ converges for all |x| < 1.

(c)

Proceeding with the ratio test, we have

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(x-10)^{n+1}(2n)!}{(2n+2)!(x-10)^n} \right| = \left| \frac{x-10}{(2n+2)(2n+1)} \right|$$
(8)

Then, we require

$$\lim_{n \to \infty} \left| \frac{x - 10}{4n^2 + 6n + 2} \right| = 0 < 1,\tag{9}$$

which is always satisfied. Thus, $\sum_{n} \frac{1}{(2n)!} (x-10)^n$ converges $\forall x \in \mathbb{R}$.

(d)

Letting $a_n = n!x^n$, we have

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right| = (n+1)|x|. \tag{10}$$

Thus we must have

$$\lim_{n \to \infty} (n+1)|x| < 1,\tag{11}$$

which is only satisfied for x = 0. Thus, $\sum_{n} n! x^{n}$ converges only for x = 0.

Problem 3

Proof. (i) Let $z_n = \max\{|x_n|, |y_n|\}$ for each $n \in \mathbb{N}$. Then

$$|x_n y_n| = |x_n||y_n| \le |x_n||z_n| \le |z_n|^2. \tag{12}$$

But we assumed that both $\sum_n |x_n|^2$ and $\sum_n |y_n|^2$ converge, so $\sum_n |z_n|^2$ converges. Thus, by (12) we see that $\sum_n |x_n y_n|$ converges by comparison.

Therefore, $\sum_{n} x_n y_n$ converges absolutely.

(ii) By the triangle inequality for infinite series, we have

$$\left| \sum_{n=1}^{\infty} x_n y_n \right| \le \sum_{n=1}^{\infty} |x_n y_n|. \tag{13}$$

Let $N \in \mathbb{N}$ and let $A = \sqrt{x_1^2 + \dots + x_N^2}$ and $B = \sqrt{y_1^2 + \dots + y_N^2}$. By the arithmetic mean - geometric mean inequality, for each $n \in \mathbb{N}$ we have

$$\sqrt{\frac{x_n^2 y_n^2}{A^2 B^2}} \le \frac{1}{2} \left(\frac{x_n^2}{A^2} + \frac{y_n^2}{B^2} \right). \tag{14}$$

Summing over all k = 1, ..., N,

$$\sum_{n=1}^{N} \frac{x_n y_n}{AB} \le \sum_{n=1}^{N} \frac{1}{2} \left(\frac{x_n^2}{A^2} + \frac{y_n^2}{B^2} \right) = 1$$
 (15)

Multiplying both sides of (15) by AB, we get

$$\sum_{n=1}^{N} x_n y_n \le AB = \left(\sum_{n=1}^{N} x_n^2\right)^{\frac{1}{2}} \left(\sum_{n=1}^{N} y_n^2\right)^{\frac{1}{2}}.$$
 (16)

Letting $N \to \infty$, since limits respect inequalities we arrive at

$$\sum_{n=1}^{\infty} |x_n y_n| \le \left(\sum_{n=1}^{\infty} x_n^2\right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} y_n^2\right)^{\frac{1}{2}},\tag{17}$$

as desired. \Box

Problem 4

Proof. Let $x \in \mathbb{R}$ and let $\epsilon > 0$.

Consider the set $(x - \epsilon, x + \epsilon)$. We already showed that $\forall x, y \in \mathbb{R}$ with x < y, $\exists z \in \mathbb{R} \setminus \mathbb{Q}$ such that x < z < y.

Thus $\forall x \in \mathbb{R}$ and for every $\epsilon > 0$,

$$(x - \epsilon, x + \epsilon) \cap (\mathbb{R}\backslash\mathbb{Q})\backslash\{x\} \neq \emptyset. \tag{18}$$

Therefore, every real number is a cluster point of the irrationals. \Box

Problem 5

Proof. Since c is a cluster point of S, then \exists a sequence $\{y_k\}_k$ of elements in $S\setminus\{c\}$ such that $y_k\to c$.

Also, since f is bounded, then $\exists B \geq 0$ such that $\forall x \in S$, $|f(x)| \leq B$. Then the sequence $\{f(y_k)\}_k$ is bounded. By the Bolzano-Weierstrass theorem, \exists a convergent subsequence $\{f(y_{k_n})\}_n$. Simply taking $x_n = y_{k_n}$ for each $n \in \mathbb{N}$, we see that $\{f(x_n)\}_n$ converges, as desired.

Problem 6

(a)

Proof. Since $\lim_{x\to c} f(x) = L$, then for every $\epsilon > 0 \; \exists \; \delta > 0$ such that if $|x-c| < \delta$, then $|f(x)-L| < \epsilon$.

Let $\epsilon = |L|$, and suppose $0 < |x - c| < \delta$ with δ chosen appropriately. Then

$$|f(x)| = |f(x) - L + L|$$
 (19)

$$\leq |f(x) - L| + |L| \tag{20}$$

$$<\epsilon + |L|$$
 (21)

$$=2|L|. (22)$$

Choosing B = 2|L|, we see that f is bounded, and we are done.

(b)

Proof. Since $\lim_{x\to c} f(x) = L > 0$, then $\forall \epsilon > 0$, $\exists \delta_0 > 0$ such that if $|x-c| < \delta_0$, then $|f(x) - L| < \epsilon$. Equivalently, for $|x-c| < \delta_0$,

$$L - \epsilon < f(x) < L + \epsilon. \tag{23}$$

Let $0 < \epsilon < L$. Then $\exists \delta_1 > 0$ such that if $|x - c| < \delta_1$, then

$$0 < L - \epsilon < f(x) < L + \epsilon. \tag{24}$$

Choosing $\delta = \delta_1$, we see that f(x) is positive for $|x-c| < \delta$, and we are done. \square