

Departament d'Enginyeria Mecànica i Construcció

Ejercicio II.01 Válvula antirretorno

Pedro Company Carmen González

Enunciado

Enunciado

Estrategia

Ejecución

Conclusiones

La figura muestra el boceto del conjunto de una válvula antirretorno

Nótese que el ensamblaje contiene un subconjunto

Enunciado

Enunciado

Estrategia
Ejecución
Conclusiones

Se trata de un nuevo diseño que aprovecha el cuerpo de una válvula anterior

Por lo tanto, se pueden fijar las medidas de las piezas nuevas a partir del plano de diseño del cuerpo de la válvula

ø175 A (1:2) Ø190

Se pide:

A Obtenga el modelo sólido de todas las piezas

Fuente: Félez J. y otros. Ingeniería Gráfica. Ed. Síntesis, Madrid, 1997

B Obtenga el ensamblaje del subconjunto antirretorno

C Obtenga el ensamblaje de la válvula

Estrategia

Enunciado

Estrategia

Ejecución

Conclusiones

Para obtener los modelos sólidos se precisa:

- Identificar las piezas que componen el ensamblaje
- 2 Obtener sus dimensiones
- 3 Fijar todos los detalles de su forma

La estrategia para ensamblar requiere dos etapas:

- 1 Obtenga el ensamblaje del subconjunto
- 2 Inserte subconjunto en el ensamblaje del conjunto completo

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Analizando el conjunto dado, se puede:

- Identificar las piezas
- 2 Obtener sus dimensiones
- 3 Dibujar sus planos de diseño

Para determinar las piezas:

- √ Descubra las piezas estándar: tornillo y muelle
- √ Analice las diferencias de rayado

6	Tornillo	8	Acero
5	Tapón	1	Bronce
4	Bola	1	Acero
3	Muelle	1	Acero
2	Тара	1	Bronce
1	Cuerpo	1	Bronce
Marca	Denominación	Nº de Piezas	Material

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Analizando el conjunto dado, se puede:

- Identificar las piezas
- 2 Obtener sus dimensiones
- Dibujar sus planos de diseño

Para determinar las dimensiones:

- √ Analice la forma de encajar las piezas 2, 5
 y 6 con la pieza 1
- ✓ Analice la forma de encajar las piezas 3 y 4 en el hueco de la pieza 2

✓ Asigne un valor arbitrario, pero razonable, al resto de dimensiones

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Analizando el conjunto dado, se puede:

Identificar las piezas

2 Obtener sus dimensiones

3 Dibujar sus planos de diseño

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Analizando la función y los requerimientos de ensamblaje del conjunto se pueden añadir ciertos detalles de la forma de las piezas que no quedan definidos en el boceto inicial:

El tapón tiene que enroscarse y desenroscarse

Se opta por añadirle una ranura para un destornillador plano

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

A partir del plano de diseño, obtenga el modelo de la marca 1:

√ Obtenga el núcleo del cuerpo por revolución

- √ Obtenga la posición del primer taladro de la base
- √ Añada el primer taladro
- √ Obtenga el resto por matriz circular

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

- √ Obtenga la posición del primer taladro de la tapa
- √ Añada el primer taladro
- √ Obtenga el resto por matriz circular

- √ Obtenga un plano paralelo al lateral
- √ Obtenga la brida lateral por extrusión

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

 ✓ Añada el tubo de conexión de la brida lateral mediante una extrusión hasta siguiente

¡Si hace las dos extrusiones simultáneas, el agujero no será pasante!

 ✓ Obtenga el agujero lateral con una extrusión hasta siguiente

- ✓ Obtenga la posición del primer taladro de la brida lateral
- √ Añada el primer taladro
- Obtenga el resto por matriz circular

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

El modelo de la tapa marca 2 se obtiene así:

√ Obtenga el núcleo por revolución

√ Añada la rosca cosmética

- ✓ Coloque un taladro sobre una circunferencia auxiliar
- Obtenga los demás taladros por matriz circular

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

 ✓ Añada un taladro ciego desde la cara inferior

 ✓ Añada un taladro ciego concéntrico con un eje auxiliar dibujado previamente

🖟 Rosca cosmética .

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

El modelo del tapón marca 5 se obtiene así:

✓ Obtenga el núcleo por revolución

Configuración de rosca

Arista < 1>
Estándar:

Din
Tipo:
Roscas métricas
Tamaño:
M50x1.5

So.00mm
Hasta el siguiente

✓ Añada la rosca cosmética

 ✓ Coloque un taladro pasante desde el centro de la base

Añada la ranura inferior

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Obtenga el modelo de la marca 3:

- ✓ Dibuje y restrinja la trayectoria helicoidal
- ✓ Dibuje y restrinja el perfil

✓ Obtenga el muelle por barrido

√ Obtenga el eje central

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Obtenga el muelle con su longitud de trabajo:

√ Añada un croquis auxiliar simulando el contacto entre el muelle y las piezas adyacentes

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

√ Dibuje croquis auxiliares para disponer de puntos de contacto durante el ensamblaje:

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Obtenga el modelo de la marca 4:

 ✓ Aplique extrusión de revolución

- √ Añada una curva auxiliar para facilitar el ensamblaje
 - V Dibuje en la planta una circunferencia del mismo diámetro que la boca del agujero donde debe descansar la bola
 - √ Obtenga la proyección sobre la esfera
- 🖃 🤏 Bola (Predeterminado < < Pr... - 🔯 Sensores 🔟 Curva de contacto −ቼ = Material <sin especifica... -≪ Alzado -🄖 Planta **Selecciones** −🌣 Vista lateral Croquis2 - ♣+ Origen Cara<1> 🗗 碎 Revolución1 - Curva de contacto - Croquis3 Proyección inversa

✓ Obtenga el datum que contiene a la curva proyección

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

El modelo de la marca 6 no hay que obtenerlo, porque se puede tomar de la librería:

Tornillo ISO 4018 - M10 x 20-NC

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Ensamble primero el subconjunto:

- √ Utilice la marca 2 como pieza base
- √ Haga coincidir los tres planos de referencia de la pieza con los tres planos homónimos del sistema global
- ✓ Coloque la marca 3 con su rosca concéntrica con la de la marca 2
- ✓ Coloque la marca 3 con su cara superior coincidente con el escalón de la marca 2
- √ Coloque la ranura de la marca 3 paralela al alzado (para que se vea bien en la vista cortada)

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

- √ Inserte la bola
- √ Haga visibles los ejes temporales
- √ Coloque el eje de la bola concéntrico con el del agujero

 ✓ Coloque el plano auxiliar de la bola coincidente con la boca del agujero

> Haga coincidentes el plano que contiene a la curva de contacto con la cara interior del tapón

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

- √ Inserte el muelle
- √ Haga visibles los ejes temporales
- √ Coloque el eje del muelle concéntrico con el del agujero

📦 Tapa<1> (Predeterminado ¡Utilice el eje 1 si 🛓 🦠 🏿 Tapón<1> (Predeterminad no puede detectar 😘 🗃 (-) Bola<2> (Predetermina) 😘 🗟 (-) Muelle<1> (Predetermii el eje temporal del Sensores muelle! Anotaciones ₹ Material < sin especificar> Alzado N Planta Vista lateral Origen Plano1 Barrer1 Piezas adyacentes Contacto esfera

© 2013 P. Company y C. González Ejercicio 11.01 / 23

Contacto punta taladro

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

√ Haga coincidente el punto auxiliar del extremo final del muelle con la terminación cónica del agujero

 ✓ Haga coincidente el punto auxiliar del extremo inicial del muelle con la superficie de la bola

Relación de posición

Los componentes no pueden moverse a una posición que satisfaga esta relación de posición. Esfera y punto no son coincidentes. La distancia de separación es 0.00405862mm.

¡Si la longitud del muelle no se ha calculado con suficiente precisión, es posible que esta última – condición sea incompatible!

¡Mantenga la restricción como suprimida!

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Para poder simular el movimiento de la bola:

 ✓ Suprima la restricción de ajuste de la bola en la boca del agujero

√ Haga coincidente el punto auxiliar del extremo inicial del muelle con la superficie de la bola

√ Reduzca el paso del muelle

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Comience un nuevo ensamblaje con el cuerpo como pieza base:

- √ Inserte el cuerpo
- √ Hágalo "flotante"
- √ Haga coincidentes sus tres planos de referencia con los homónimos del sistema

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Añada el subconjunto:

√ Inserte el subconjunto

 ✓ Haga paralelos los ejes de los agujeros laterales

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

 √ Haga coincidente el círculo de la boca superior del cuerpo con el círculo del escalón de la tapa

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

¡Por defecto, los sub-ensamblajes se insertan como cuerpos rígidos!

Modifique la configuración del sub-ensamblaje para que conserve la movilidad

 ✓ Seleccione "Propiedades de componente" en el menú contextual

✓ Seleccione "Flexible" en "Solucionar como"

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Añada los tornillos:

 Selecione el tornillo del toolbox

Seleccione la instancia apropiada

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Haga la caña coaxial con el agujero

 ✓ Haga la base de la cabeza coincidente con la cara superior de la tapa

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

Enunciado

Estrategia

Ejecución

Diseño

Modelos

Ensamblaje

Conclusiones

El resultado final es:

Conclusiones

Enunciado Estrategia Ejecución

Conclusiones

Se necesitan modelos completamente definidos para proceder a ensamblar

Puede ser necesario analizar el dibujo de conjunto para deducir información sobre los detalles de las piezas

2 Para definir las relaciones de emparejamiento hay que analizar la función y el montaje del ensamblaje

Algunas condiciones de emparejamiento requieren construcciones auxiliares previas en los modelos

Conclusiones

Enunciado
Estrategia
Ejecución

Conclusiones

Las piezas elásticas o móviles requieren procedimientos de ensamblaje especiales

Puede ser necesario disponer de diferentes modelos de una misma pieza: en reposo, en posición de trabajo, etc.

Los objetos complejos o con subconjuntos independientes, se ensamblan jerárquicamente

Ensamble "de abajo arriba": primero los subconjuntos, y, luego, estos en los conjuntos principales