

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 4: Proteção em Instalações Elétricas- Aula 08

Instalações Elétricas I Engenharia Elétrica

4.1- Prescrições da NBR 5410

- A NBR 5410/2004 estabelece prescrições fundamentais para garantir a segurança de pessoas, animais domésticos e bens, permitindo o uso da instalação elétrica sem riscos.
- As principais prescrições para proteção da instalação elétrica são:
 - 1. Proteção contra Choques Elétricos;
 - 2. Proteção contra Efeitos Térmicos;
 - 3. Proteção contra Sobrecorrentes;
 - 4. Proteção contra Sobretensões.
- Neste capítulo serão tratados os itens 1 a 3.
- Na Unidade 9 será tratado o dispositivo de proteção contra sobretensão (DPS).

4.2- Conceitos Fundamentais

- Sobrecorrentes:
 - São valores que excedem o valor da corrente nominal. Tem como origem:
 - Sobrecargas;
 - Falta elétrica (curto-circuito).
- Correntes de sobrecarga:
 - São extremamente prejudiciais ao sistema elétrico, provocando a elevação de temperatura e danos ao circuito.
- Correntes de curto-circuito:
 - São provenientes de falhas ou defeitos graves da instalação, tais como:
 - Falha ou rompimento da isolação entre fase e terra, fase e neutro e entre fases distintas.
 - Podem gerar correntes da ordem de 100 a 1000 pu.

4.3- Proteção contra Sobrecorrentes

• Como principais dispositivos para proteção contra sobrecarga e curto-circuito temos:

4.3.1- Disjuntores Termomagnéticos (DTM)

- São dispositivos que garantem simultaneamente:
 - Manobra;
 - Proteção contra correntes de sobrecarga e curto-circuito.
- Possuem aplicações em instalações elétricas residenciais, comerciais e industriais.
- São cobertos por uma normatização NBR IEC 60947-2 (Para tensões inferiores a 1000 V_{ca} e 1500 V_{cc}).
- Disjuntores com tensão inferior a 400 V_{ca} e corrente inferior a 125A devem atender a NBR IEC 60898.
- Vantagem:
 - Permite o religamento sem substituição de componentes.

Partes Componentes dos Disjuntores

- 1 Parte externa, termoplástica
- 2) Terminal superior
- 3 Câmara de extinção de arco
- 4 Bobina responsável pelo disparo instantâneo (magnético)
- 5 Alavanca: 0 - Desligado I - Ligado
- 6 Contato fixo
- (7) Contato móvel
- Guia para o arco sob condições de falta, o contato móvel se afasta do contato fixo e o arco resultante é guiado para a câmara de extinção, evitando danos no bimetal, em caso de altas correntes (curto-circuito)
- Bimetal responsável pelo disparo por sobrecarga (térmico)
- (10) Terminal inferior
- (11) Clip para fixação no trilho DIN

Funcionamento do Disjuntor

Característica tempo-corrente de um DTM

- Disparador térmico:
 - Lâmina bimetálica.

- Disparador magnético:
 - Bobina (eletroímã).

Instalação em Quadros de Distribuição (QD's)

- Tensões Nominais:
 - Tensão nominal de operação ou de serviço (U_e);
 - Tensão nominal de isolamento (U_i);
 - Geralmente $U_i = U_e$.
- Corrente Nominal:
 - Corrente nominal (I_n) .
 - Valore Padronizados NBR IEC 60898 (Temperatura ambiente de 30°C):
 - I_n=6, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100 e 125 A.
- Correntes Convencionais:
 - Corrente convencional de atuação (I₂);
 - Corrente convencional de não atuação (I_{nt});
 - São todas função da corrente nominal (I_n).

- Disparo Instantâneo
 - A Norma define as faixas para o disparo instantâneo (magnético) em:
 - B: $3I_n$ a $5I_n$
 - C: $5I_n$ a $10I_n$
 - D: $10I_n$ a $20I_n$
- Aplicações:

В	Aplicação	Tempo de Diparo
В	Cargas resistivas, como: • Aquecedores, Chuveiros elétricos • Fornos elétricos • Iluminação incandescente	0.1 < t < 45s (In ≤ 32A) 0.1 < t < 90s (In > 32A) t < 0.1s
С	Cargas indutivas ou com ærrente de partida elevada Iluminação fluorescente Pequenos motores	0.1 < t < 15s (In ≤ 32A) 0.1 < t < 30s (In > 32A) t < 0.1s
D	Circuitos com corrente elevada de partida como grandes motores e transformadores	0.1 < t < 4s ¹ (In ≤ 32A 0.1 < t < 8s (In > 32A t < 0.1s

IEC 898: Curva de Disparo

• Fonte GE (Catálogo de mini-disjuntores)

I_{nt}: Corrente convencional de não atuação.

I₂: Corrente convencional de atuação.

- Capacidade de interrupção:
 - IEC 60898 se refere a capacidade de interrupção nominal (I_{cn}).
 - Valores padronizados de I_{cn}: 1,5, 3, 4, 5, 6, 10, 15, 20 e 25kA.
 - A capacidade de interrupção de serviço (I_{cs}):
 - para $I_{cn} \leq 6 \text{ kA}$, $I_{cs} = I_{cn}$;
 - para $6 < I_{cn} \le 10 \text{ kA}, I_{cs} = 0.75I_{cn} \text{ (mínimo 6 kA)};$
 - para $I_{cn} > 10 \text{ kA}$, $I_{cs} = 0.5I_{cn}$ (mínimo de 7.5 kA).
 - O valor de I_{cs} deve ser utilizado, pois garante a operação do disjuntor mesmo após um curto-circuito.
- Quanto ao número de pólos:
 - Monopolar, Bipolar, Tripolar, Tetrapolar.

Simbologia IEC

Esquemas de Ligação

Curva de atuação: C

Capacidade de interrupção: 3 kA

 $U_e = U_n = 220V/380V$

Bipolar com os dois pólos protegidos (proteção térmica e magnética)