CS 154

Foundations of Math and Kolmogorov Complexity

Computability and the Foundations of Mathematics

The Foundations of Mathematics

A formal system describes a formal language for

- writing (finite) mathematical statements,
- has a definition of what statements are "true"
- has a definition of a proof of a statement

Example: Every TM M defines some formal system ${\mathcal F}$

- {Mathematical statements in \mathcal{F} } = Σ^* String w represents the statement "M accepts w"
- {True statements in \mathcal{F} } = L(M)
- A proof that "M accepts w" can be defined to be an accepting computation history for M on w

Interesting Formal Systems

Define a formal system \mathcal{F} to be *interesting* if:

- 1. Any mathematical statement about computation can be (computably) described as a statement of \mathcal{F} . Given (M, w), there is a (computable) $S_{M,w}$ in \mathcal{F} such that $S_{M,w}$ is true in \mathcal{F} if and only if M accepts w.
- Proofs are "convincing" a TM can check that a proof of a theorem is correct
 This set is decidable: {(S, P) | P is a proof of S in F}
- 3. If S is in \mathcal{F} and there is a proof of S describable as a computation, then there's a proof of S in \mathcal{F} .

 If M accepts w, then there is a proof P in \mathcal{F} of $S_{M,w}$

Consistency and Completeness

A formal system \mathcal{F} is *consistent* or *sound* if no false statement has a valid proof in \mathcal{F} (Proof in \mathcal{F} implies Truth in \mathcal{F})

A formal system \mathcal{F} is *complete* if every true statement has a valid proof in \mathcal{F} (Truth in \mathcal{F} implies Proof in \mathcal{F})

Limitations on Mathematics

For every consistent and interesting \mathcal{F} ,

Theorem 1. (Gödel 1931) \mathcal{F} is incomplete: There are mathematical statements in \mathcal{F} that are true in \mathcal{F} but cannot be proved in \mathcal{F} .

Theorem 2. (Gödel 1931) The consistency of \mathcal{F} cannot be proved in \mathcal{F} .

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in \mathcal{F} has a proof is undecidable.

Unprovable Truths in Mathematics

(Gödel) Every consistent interesting \mathcal{F} is *incomplete:* there are true statements that cannot be proved.

Let $S_{M, w}$ in \mathcal{F} be true if and only if M accepts w

Proof: Define Turing machine G(x):

- 1. Obtain own description G [Recursion Theorem!]
- 2. Construct statement S' = $\neg S_{G, x}$
- 3. Search for a proof of S' in \mathcal{F} over all finite length strings. *Accept* if a proof is found.

Claim: S' is true in \mathcal{F} , but has no proof in \mathcal{F} S' basically says "There is no proof of S' in \mathcal{F} "

(Gödel 1931) The consistency of ${\mathcal F}$ cannot be proved within any interesting consistent ${\mathcal F}$

Proof: Suppose we can prove " \mathcal{F} is consistent" in \mathcal{F} We constructed $\neg S_{G,x} =$ "G does not accept x" which we showed is *true*, but *has no proof* in \mathcal{F} G does not accept x \Leftrightarrow There is no proof of $\neg S_{G,x}$ in \mathcal{F} But if there's a proof in \mathcal{F} of " \mathcal{F} is consistent" then there *is* a proof in \mathcal{F} of $\neg S_{G,x}$ (here's the proof):

"If $S_{G,x}$ is true, then there is a proof in \mathcal{F} of $\neg S_{G,x}$. \mathcal{F} is consistent, therefore $\neg S_{G,x}$ is true. But $S_{G,x}$ and $\neg S_{G,x}$ cannot both be true. Therefore, $\neg S_{G,x}$ is true"

This contradicts the previous theorem.

Undecidability in Mathematics

PROVABLE_F = {S | there's a proof in \mathcal{F} of S, or there's a proof in \mathcal{F} of \neg S}

(Church-Turing 1936) For every interesting consistent \mathcal{F} , PROVABLE $_{\mathcal{F}}$ is undecidable

Proof: Suppose PROVABLE $_{\mathcal{F}}$ is decidable with TM P. Then we can decide A_{TM} using the following procedure: On input (M, w), run the TM P on input $S_{M,w}$

If P accepts, examine all possible proofs in \mathcal{F} If a proof of $S_{M,w}$ is found then accept

If a proof of $\neg S_{M,w}$ is found then reject

If P rejects, then reject.

Why does this work?

Kolmogorov Complexity: A Universal Theory of Data Compression

The Church-Turing Thesis:

Everyone's
Intuitive Notion = Turing Machines
of Algorithms

This is not a theorem — it is a falsifiable scientific hypothesis.

A Universal Theory of Computation

A Universal Theory of *Information*?

Can we quantify how much *information* is contained in a string?

A = 010101010101010101010101010101

B = 110010011101110101101001011001011

Idea: The more we can "compress" a string, the less "information" it contains....

Information as Description

Thesis: The amount of information in a string x is the length of the *shortest description* of x

How should we "describe" strings?

Use Turing machines with inputs!

Let $x \in \{0,1\}^*$

Def: A *description of x* is a string **<M**,**w>** such that **M on input w** halts with only **x** on its tape.

Def: The *shortest description of x*, denoted as **d(x)**, is the **lexicographically shortest string <M,w>** such that **M(w)** halts with only **x** on its tape.

A Specific Pairing Function

Theorem. There is a 1-1 computable function $<,>: \Sigma^* \times \Sigma^* \to \Sigma^*$ and computable functions π_1 and $\pi_2: \Sigma^* \to \Sigma^*$ such that:

$$z = \langle M, w \rangle$$
 iff $\pi_1(z) = M$ and $\pi_2(z) = w$

Define: $< M, w > := 0^{|M|} 1 M w$

(Example: <10110,101> = 00000110110101)

Note that |<M,w>| = 2|M| + |w| + 1

Kolmogorov Complexity (1960's)

Definition: The *shortest description of x*, denoted as **d(x)**, is the **lexicographically shortest string <M,w>** such that **M(w)** halts with only **x** on its tape.

Definition: The *Kolmogorov complexity of x*, denoted as K(x), is |d(x)|.

EXAMPLES??

Let's first determine some properties of K. Examples will fall out of this.

A Simple Upper Bound

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$ $K(x) \le |x| + c$

"The amount of information in x isn't much more than |x|"

Proof: Define a TM M = "On input w, halt."On any string x, M(x) halts with x on its tape. Observe that $\langle M, x \rangle$ is a description of x.

Let
$$c = 2|M|+1$$

Then $K(x) \le |< M,x>| \le 2|M| + |x| + 1 \le |x| + c$

Repetitive Strings have Low K-Complexity

Theorem: There is a fixed c so that for all $n \ge 2$, and all $x \in \{0,1\}^*$, $K(x^n) \le K(x) + c \log n$

"The information in xⁿ isn't much more than that in x"

Proof: Define the TM

N = "On input <n,<M,w>>,

Let x = M(w). Print x for n times."

Let <M,w> be the shortest description of x. Then $K(x^n) \le K(<$ N,<n,<M,w>>>) $<math>\le 2|N| + d \log n + K(x) \le c \log n + K(x)$

for some constants c and d

Repetitive Strings have Low K-Complexity

Theorem: There is a fixed c so that for all $n \ge 2$, and all $x \in \{0,1\}^*$, $K(x^n) \le K(x) + c \log n$

"The information in xn isn't much more than that in x"

Recall:

A = 010101010101010101010101010101

For $w = (01)^n$, we have $K(w) \le K(01) + c \log n$

So for all n, $K((01)^n) \le d + c \log n$ for a fixed c, d

Does The Computational Model Matter?

Turing machines are one "programming language." If we use other programming languages, could we get significantly shorter descriptions?

An interpreter is a "semi-computable" function $p: \Sigma^* \to \Sigma^*$

Takes programs as input, and (may) print their outputs

Definition: Let $x \in \{0,1\}^*$. The shortest description of x under p, called $d_p(x)$, is the lexicographically shortest string w for which p(w) = x.

Definition: The K_p complexity of x is $K_p(x) := |d_p(x)|$.

Does The Computational Model Matter?

Theorem: For every interpreter p, there is a fixed c so that for all $x \in \{0,1\}^*$, $K(x) \le K_p(x) + c$

Moral: Using another programming language would only change K(x) by some additive constant

Proof: Define M = "On w, simulate p(w) and write its output to tape"

Then $\langle M, d_p(x) \rangle$ is a description of x, so

$$K(x) \le |\langle M, d_p(x) \rangle|$$

 $\le 2|M| + K_p(x) + 1 \le c + K_p(x)$

There Exist Incompressible Strings

Theorem: For all n, there is an $x \in \{0,1\}^n$ such that $K(x) \ge n$

"There are incompressible strings of every length"

Proof: (Number of binary strings of length n) = 2ⁿ but (Number of descriptions of length < n) ≤ (Number of binary strings of length < n)

$$= 1 + 2 + 4 + \cdots + 2^{n-1} = 2^n - 1$$

Therefore, there is at least one n-bit string x that does *not* have a description of length < n

Random Strings Are Incompressible!

```
Theorem: For all n and c \ge 1, Pr_{x \in \{0,1\}^n}[K(x) \ge n-c] \ge 1-1/2^c
```

"Most strings are highly incompressible"

Proof: (Number of binary strings of length n) = 2ⁿ but (Number of descriptions of length < n-c) ≤ (Number of binary strings of length < n-c) = 2^{n-c} - 1

Hence the probability that a random x satisfies K(x) < n-c is at most $(2^{n-c}-1)/2^n < 1/2^c$.

Give short algorithms for generating the strings:

- 1. 01000110110000010100111001011101110000
- 2. 123581321345589144233377610987
- 3. 126241207205040403203628803628800

Give short algorithms for generating the strings:

- 1. 01000110110000010100111001011101110000
- 2. 123581321345589144233377610987
- 3. 126241207205040403203628803628800

Give short algorithms for generating the strings:

- 1. 01000110110000010100111001011101110000
- 2. 123581321345589144233377610987
- 3. 126241207205040403203628803628800

Give short algorithms for generating the strings:

- 1. 01000110110000010100111001011101110000
- 2. 123581321345589144233377610987
- 3. 126241207205040403203628803628800

This seems hard to determine in general. Why?

Determining Compressibility?

Can an algorithm perform optimal compression?
Can algorithms tell us if a given string is compressible?

COMPRESS =
$$\{(x,c) \mid K(x) \le c\}$$

Theorem: COMPRESS is undecidable!

Idea: If decidable, we could design an algorithm that prints the **shortest incompressible string of length n**

But such a string could then be succinctly described, by providing the algorithm code and n in binary!

Berry Paradox: "The smallest integer that cannot be defined in less than thirteen words."

Determining Compressibility?

COMPRESS = $\{(x,c) \mid K(x) \le c\}$

Theorem: COMPRESS is undecidable!

Proof: Suppose it's decidable. Consider the TM:

 $M = "On input x \in \{0,1\}^*, let N = 2^{|x|}.$

For all $y \in \{0,1\}^*$ in lexicographical order, If $(y,N) \notin COMPRESS$ then print y and halt."

M(x) prints the shortest string y' with K(y') > $2^{|x|}$.

<M,x> is a description of y', and |<M,x> $| \le d + |x|$

So $2^{|x|} < K(y') \le d + |x|$. CONTRADICTION for large x!

Yet Another Proof that A_{TM} is Undecidable! COMPRESS = $\{(x,c) \mid K(x) \le c\}$

Theorem: A_{TM} is undecidable.

Proof: Reduction from COMPRESS to A_{TM} . Given a pair (x,c), our reduction constructs a TM:

 $M_{x,c} = On input w,$ For all pairs $< M', w' > with | < M', w' > | \le c,$ simulate each M' on w' in parallel. If some M' halts and prints x, then accept.

 $K(x) \le c \iff M_{x,c} \text{ accepts } \varepsilon$

More on Interesting Formal Systems

A formal system \mathcal{F} is *interesting* if it is finite and:

- 1. Any mathematical statement about computation can also be effectively described within \mathcal{F} .

 For all strings x and integers c, there is a $S_{x,c}$ in \mathcal{F} that is equivalent to " $K(x) \geq c$ "
- 2. Proofs are convincing: it should be possible to check that a proof of a theorem is correct This set is decidable: { (S,P) | P is a proof of S in F }

The Unprovable Truth About K-Complexity

Theorem: For every interesting consistent \mathcal{F} , There is a t s.t. for all x, "K(x) > t" is unprovable in \mathcal{F}

Proof: Define an M that treats its input as an integer:

 $M(k) := Search over all strings x and proofs P for a proof P in <math>\mathcal{F}$ that K(x) > k. Output x if found

Suppose M(k) halts. It must print some output x' Then $K(x') = K(\langle M, k \rangle) \le c + |k| \le c + \log k$ for some c Because \mathcal{F} is consistent, K(x') > k is true But $k < c + \log k$ only holds for small enough k If we choose t to be greater than these k... then M(t) cannot halt, so "K(x) > t" has no proof!

Random Unprovable Truths

Theorem: For every interesting consistent \mathcal{F} , There is a t s.t. for all x, "K(x) > t" is unprovable in \mathcal{F}

For a randomly chosen x of length t+100, "K(x) > t" is true with probability at least 1-1/2¹⁰⁰

We can randomly generate true statements in \mathcal{F} which have no proof in \mathcal{F} , with high probability!

For every interesting formal system \mathcal{F} there is always some finite integer (say, t=10000) so that you'll never be able to prove in \mathcal{F} that a random 20000-bit string requires a 10000-bit program!