

DECODERS

A decoder is a combinational circuit that converts binary information from n input lines to $\leq 2^n$ unique output lines

5

DECODERS

- X A decoder selects one output based on binary input
- X Converts *n*-bit code into 2ⁿ outputs, only one being active for any combination of inputs
- X Selects output x if input is binary representation of x
- \times Also called *n*-to-*m* line decoders for example:
 - X 2-to-4 line decoder
 - X 3-to-8 line decoder

0

DECODER EXAMPLES

X 3-to-8-Line Decoder

			Outputs							
Bir	Binary Inputs			D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

•Three inputs are decoded into eight outputs, each representing one of the minterms of the three input variable

•If the input corresponds to minterm $m_{\rm i}$ then the decoder ouput will be the corresponding single output

7

DECODER WITH ENABLE INPUT

- X The decoder is enabled when EN = 1. The output whose value = 1 represents the minterm is selected by inputs A and B.
- X The decoder is disabled when $EN = 0 \rightarrow D_0 \dots D_3 = 0$

DECODER WITH ENABLE INPUT

- X A Decoder with enable input is called a demultiplexer.
- X Demultiplexer receives information from a single line and directs it to the output lines.

11

DEMULTIPLEXER

X A demultiplexer "connects" a data input to one and only one output. The selected output is specified by a decoding of the control inputs.

D	Α	В	F3	F2	F1	F0
D	0	0	0	0	0	D
D	0	1	0	0	D	0
D	1	0	0	D	0	0
D	1	1	D	0	0	0

13

13

14

Digital Design Spring 2024 Instructor: Ms. Umarah Qaseem

DECODER WITH ENABLE

- X EN is called a Control Signal
- X Control Signals can be
 - X Active High Signal
 - EN = 1 Turns "ON" Decoder
 - X Active Low Signal
 - EN=0 Turns "ON" Decoder

- X Truth table for NAND decoder
- X Complemented outputs and *Enable*

17

18

Digital Design Spring 2024 Instructor: Ms. Umarah Qaseem

ADVANCED DECODER

- X Enable bit allows construction of large decoders using smaller ones
- X Example: Construct a 4-to-16 decoder only using 3-to-8 decoders

19

A 4x16 DECODER

When w = 1, the top decoder is disabled and the bottom is enabled.

Bottom decoder generates 8 minterms 1000 to 1111, while the top decoder outputs are 0's.

When w = 0, the top decoder is enabled and the bottom is disabled.

Top decoder generates 8 minterms 0000 to 0111, while the bottom decoder outputs are 0's.

IMPLEMENTING FUNCTIONS WITH DECODERS

- \times Implement m functions of n variables with:
 - X Sum-of-minterms expressions
 - X One n-to- 2^n -line decoder
 - X m OR gates, one for each output
- X Approach
 - X Find the minterms for each output function
 - X OR the minterms together

21

21

EXAMPLE: FULL ADDER WITH DECODER

X The sum and carry outputs of a full adder are given by:

$$S(x, y, z) = \Sigma(1, 2, 4, 7)$$

$$C(x, y, z) = \Sigma(3, 5, 6, 7)$$

Α	В	C_{in}	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

ENCODERS

- X Encoding the opposite of decoding
- X Circuits that perform encoding are called encoders
- \times An encoder has 2^n (or fewer) input lines and n output lines which generate the binary code corresponding to the input values
- X Typically, an encoder converts a code containing exactly one bit that is 1, to a binary code corresponding to the position in which the 1 appears.

27

ENCODERS

- X Encoder: translates 2ⁿ input lines into n output lines
 - X Input: 2^n lines
 - X Output: n bits
 - X Output is binary coding of input that is 1

28

ENCODER - TRUTH TABLE

					Output	s				
D ₇	D ₆	D ₅	\mathbf{D}_4	\mathbf{D}_3	\mathbf{D}_2	D ₁	D ₀	$\overline{\mathbf{A}_2}$	A ₁	A ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

29

29

ENCODERS

- X Inputs are Minterms
- X Can OR them together appropriately
- $X A_0 = D_1 + D_3 + D_5 + D_7$

			In			Output	s			
D ₇	\mathbf{D}_6	D ₅	\mathbf{D}_4	D ₃	\mathbf{D}_2	D ₁	D ₀	$\overline{\mathbf{A}_2}$	A ₁	A ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	(1)	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	(1)	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	(1)	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1)	0	0	0	0	0	0	0	1	1	1

30

ENCODERS - ACTIVITY

X Find A_1 and A_2

			In			Output	s			
D ₇	D ₆	D ₅	\mathbf{D}_4	D ₃	D ₂	D ₁	D ₀	A ₂	A ₁	A ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	(1)	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	(1)	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	(1)	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1)	0	0	0	0	0	0	0	1	1	1

3

31

ENCODERS

$$X A_0 = D_1 + D_3 + D_5 + D_7$$

$$X A_1 = D_2 + D_3 + D_6 + D_7$$

$$X A_2 = D_4 + D_5 + D_6 + D_7$$

					Output	s				
D ₇	\mathbf{D}_6	D ₅	\mathbf{D}_4	D ₃	\mathbf{D}_2	D ₁	D ₀	$\overline{\mathbf{A}_2}$	A ₁	A ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

32

ENCODERS

Can you see any problem here?

$$X A_0 = D_1 + D_3 + D_5 + D_7$$

 $X A_1 = D_2 + D_3 + D_6 + D_7$
 $X A_2 = D_4 + D_5 + D_6 + D_7$

					Output	s				
D ₇	D_6	D ₅	\mathbf{D}_4	D ₃	D ₂	D ₁	D ₀	$\overline{\mathbf{A}}_{2}$	A ₁	A ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

33

33

ENCODERS: PROBLEMS

- X Only one input can be active at a time
- X Simultaneous active inputs result in undefined output When all inputs are zero
 - X Equal to the case when D₀ is 1

x = D4 + D5 + D6 + D7 y = D2 + D3 + D6 + D7z = D1 + D3 + D5 + D7

- X Example
 - X If D3 and D6 are active simultaneously, what is the output?
 - X 111
- X How can we solve this problem?
 - X What should the output be if multiple lines are active?
 - X Different solutions:
 - Anyone (random)
 - Give priority to lower or higher lines
 - Indicate invalid input (requires extra bit, valid bit **V**)

PRIORITY ENCODER

- X Chooses one with highest priority
 - X Largest number, usually
 - X To solve problem of multiple inputs

	Inp	outs			Outputs
\mathbf{D}_3	D ₂	D ₁	D ₀	A ₁	\mathbf{A}_0
0	0	0	1	0	0
0	0	1	X	0	1
0	1	X	X	1	0
1	X	X	X	1	1

What if all inputs are zero?

35

35

PRIORITY ENCODER

- X Add another output, why?
- X To solve the problem of all 0s.

	In	puts		Outputs					
\mathbf{D}_3	\mathbf{D}_2	D ₁	D ₀	A ₁	\mathbf{A}_0	٧			
0	0	0	0	X	X	0			
0	0	0	1	0	0	1			
0	0	1	X	0	1	1			
0	1	X	X	1	0	1			
1	X	X	X	1	1	1			

PRIORITY ENCODER — WHAT DID WE LEARN SO FAR?

- X Simple encoder, with additional functionality
 - X If multiple inputs are 1, give priority to one of them
- X Example: 4-to-2 priority encoder with priority given to one bit

	Inp	uts		(Output	s
D ₀	D ₁	D ₂	D ₃	x	у	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

X Which bit has the highest priority?

X D^3

37

		Inp	uts		(Output	5
	D_0	D ₁	D ₂	D ₃	x	у	v
PRIORITY ENCODER	0	0	0	0	X	X	0
I WIOWILL FLACODEW	1	0	0	0	0	0	1
	X X	1 X	0	0	0	0	1
	X	X	X	1	1	1	1
Activity Design it your	self	f					

