# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/00, C07K 7/10, 13/00 A61K 37/02, 27/00

A1

(11) International Publication Number:

WO 92/07073

(43) International Publication Date:

30 April 1992 (30.04.92)

(21) International Application Number:

PCT/US91/07635

(22) International Filing Date:

18 October 1991 (18.10.91)

(30) Priority data:

599,543

18 October 1990 (18.10.90) US

(71) Applicant: CREATIVE BIOMOLECULES, INC. [US/US]; 35 South Street, Hopkinton, MA 01748 (US).

(72) Inventors: OPPERMANN, Hermann; 25 Summer Hill Road, Medway, MA 02053 (US). OZKAYNAK, Engin; 44 Purdue Drive, Milford, MA 01757 (US). RUEGER, David, C.; 150 Edgemere Road, Apt. 4, West Roxbury, MA 02132 (US). KUBERASAMPATH, Thangavel; 6 Spring Street, Medway, MA 02053 (US).

(74) Agent: PITCHER, Edmund, R.; Testa, Hurwitz & Thibeault, Exchange Place, 53 State Street, Boston, MA 02109-2809 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

#### Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: OSTEOGENIC PEPTIDES

#### (57) Abstract

Disclosed are 1) the cDNA and amino acid sequences for novel polypeptide chains useful as subunits of dimeric osteogenic proteins, 2) osteogenic devices comprising these proteins in association with an appropriate carrier matrix, 3) methods of producing the polypeptide chains using recombinant DNA technology, and 4) methods of using the osteogenic devices to mimic the natural course of endochondral bone formation in mammals.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT  | Austria                  | ES  | Spain                        | MG  | Madagascar               |
|-----|--------------------------|-----|------------------------------|-----|--------------------------|
| AU  | Australia                | FI  | Finland                      | ML  | Mali                     |
| BB  | Barbados                 | FR  | France                       | MN  | Mongolia                 |
| 8E  | Belgium                  | GA  | Gabon                        | MR  | Mauritania               |
| BF  | Burkina Faso             | GB  | United Kingdom               | MW  | Malawi                   |
| BG  | Bulgaria                 | GN  | Guinca                       | NL  | Netherlands              |
| BJ  | Benin                    | GR  | Greece                       | NO  | Norway                   |
| BR  | Brazil                   | ผบ  | Hungary                      | PL  | Poland                   |
| CA  | Canada                   | п   | Italy                        | RO  | Romania                  |
| CF  | Central African Republic | JP  | Japan                        | SD  | Sudan                    |
| CG  | Congo                    | KP  | Democratic People's Republic | SE  | Sweden                   |
| CH  | Switzerland              |     | of Korea                     | SN  | Senegal                  |
| CI  | Côte d'Ivoire            | KR  | Republic of Korea            | su+ | Soviet Union             |
| CM  | Cameroon                 | LI  | Liechtenstein                | TD  | Chad                     |
| CS  | Czechoslovakia           | LK  | Sri Lanka                    | TG  | Togo                     |
| DE* | Germany                  | iii | Luxembourg                   | US  | United States of America |
| UK  | Denmark                  | MC  | Monage                       |     |                          |

<sup>+</sup> Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

### Osteogenic peptides

## Background of the Invention

This invention relates to novel polypeptide chains and to osteogenic proteins comprising these polypeptide chains which are capable of inducing osteogenesis in mammals; to genes encoding the polypeptide chains; to methods for their production using recombinant DNA techniques, and to bone and cartilage repair procedures using the osteogenic proteins.

Mammalian bone tissue is known to contain one or more proteinaceous materials, presumably active during growth and natural bone healing, which can induce a developmental cascade of cellular events resulting in endochondral bone formation. This active factor (or factors) has variously been referred to in the literature as bone morphogenetic or morphogenic protein, bone inductive protein, osteogenic protein, osteogenin, or osteoinductive protein.

The developmental cascade of bone differentiation consists of recruitment of mesenchymal cells,

25 proliferation of progenitor cells, calcification of cartilage, vascular invasion, bone formation, remodeling, and finally marrow differentiation (Reddi (1981) Collagen Rel. Res. 1:209-226).

Though the precise mechanisms underlying these phenotypic transformations are unclear, it has been shown that the natural endochondral bone differentiation activity of bone matrix can be dissociatively extracted and reconstituted with

- 2 -

inactive residual collagenous matrix to restore full bone induction activity (Sampath and Reddi, (1981) Proc. Natl. Acad. Sci. USA 78:7599-7603). This provides an experimental method for assaying protein extracts for their ability to induce endochondral bone in vivo. Several species of mammals produce closely related protein as demonstrated by cross species implant experiments (Sampath and Reddi (1983) Proc. Natl. Acad. Sci. USA 80:6591-6595).

05

20

The potential utility of these proteins has been 10 recognized widely. It is contemplated that the availability of the protein would revolutionize orthopedic medicine, certain types of plastic surgery, and various periodontal and craniofacial reconstructive procedures. 15

The observed properties of these protein fractions have induced an intense research effort in various laboratories directed to isolating and identifying the pure factor or factors responsible for osteogenic activity. The current state of the art of purification of osteogenic protein from mammalian bone is disclosed by Sampath et al. ((1987) Proc. Natl. Acad. Sci. USA 84: 7109-7113). Urist et al. (1984) Proc. Soc. Exp. Biol. Med. 173: 194-199 disclose a human osteogenic protein fraction which was extracted from demineralized 25 cortical bone by means of a calcium chloride-urea inorganic-organic solvent mixture, and retrieved by differential precipitation in guanidine-hydrochloride and preparative gel electrophoresis. The authors report that the protein fraction has an amino acid composition of an acidic polypeptide and a molecular weight in a range of 17-18 kD.

- 3 -

Urist et al. (1984) Proc. Natl. Acad. Sci. USA 81: 371-375 disclose a bovine bone morphogenetic protein extract having the properties of an acidic polypeptide and a molecular weight of approximately 18 kD. The 05 authors reported that the protein was present in a fraction separated by hydroxyapatite chromatography, and that it induced bone formation in mouse hindquarter muscle and bone regeneration in trephine defects in rat and dog skulls. Their method of obtaining the extract 10 from bone results in ill-defined and impure preparations.

European Patent Application Serial No. 148,155, published October 7, 1985, purports to disclose osteogenic proteins derived from bovine, porcine, and 15 human origin. One of the proteins, designated by the inventors as a P3 protein having a molecular weight of 22-24 kD, is said to have been purified to an essentially homogeneous state. This material is reported to induce bone formation when implanted into 20 animals.

International Application No. PCT/087/01537, published January 14, 1988, discloses an impure fraction from bovine bone which has bone induction qualities. The named applicants also disclose putative 25 "bone inductive factors" produced by recombinant DNA techniques. Four DNA sequences were retrieved from human or bovine genomic or cDNA libraries and expressed in recombinant host cells. While the applicants stated that the expressed proteins may be bone morphogenic 30 proteins, bone induction was not demonstrated, suggesting that the recombinant proteins are not osteogenic. The same group reported subsequently (Science, 242:1528, Dec, 1988) that three of the four

factors induce cartilage formation, and postulate that bone formation activity "is due to a mixture of regulatory molecules" and that "bone formation is most likely controlled ... by the interaction of these 05 molecules." Again, no bone induction was attributed to the products of expression of the cDNAs. See also Urist et al., EPO,212,474 entitled Bone Morphogenic Agents.

Wang et al. (1988) Proc. Nat. Acad. Sci. USA 85:

10 9484-9488 discloses the purification of a bovine bone morphogenetic protein from guanidine extracts of demineralized bone having cartilage and bone formation activity as a basic protein corresponding to a molecular weight of 30 kD determined from gel elution.

15 Purification of the protein yielded proteins of 30, 18 and 16 kD which, upon separation, were inactive. In view of this result, the authors acknowledged that the exact identity of the active material had not been determined.

Wang et al. (1990) <u>Proc. Nat. Acad. Sci. USA</u> <u>87</u>: 2220-2227 describes the expression and partial purification of one of the cDNA sequences described in PCT 87/01537. Consistent cartilage and/or bone formation with their protein requires a minimum of 600 25 ng of 50% pure material.

International Application No. PCT/89/04458

published April 19, 1990 (Int. Pub. No. WO90/003733),

describes the purification and analysis of a family of
 osteogenic factors called "P3 OF 31-34". The protein

30 family contains at least four proteins, which are
 characterized by peptide fragment sequences. The
 impure mixture P3 OF 31-34 is assayed for osteogenic

- 5 -

05 activity. The activity of the individual proteins is neither assessed nor discussed.

It is an object of this invention to provide novel polypeptide chains useful as subunits of dimeric osteogenic proteins capable of endochondral bone formation in allogenic and xenogenic implants in mammals, including humans. Another object is to provide genes encoding these polypeptide chains and methods for the production of osteogenic proteins comprising these polypeptide chains using recombinant DNA techniques, as well as to provide antibodies capable of binding specifically to these proteins.

These and other objects and features of the invention will be apparent from the description, drawings, and claims which follow.

## Summary of the Invention

This invention provides novel polypeptide chains useful as either one or both subunits of dimeric osteogenic proteins which, when implanted in a 05 mammalian body in association with a matrix, can induce at the locus of the implant the full developmental cascade of endochondral bone formation and bone marrow differentiation.

A key to these developments was the elucidation of amino acid sequence and structure data of native bovine osteogenic protein. A protocol was developed which results in retrieval of active, substantially pure osteogenic protein from bovine bone having a half-maximum bone forming activity of about 0.8 to 1.0 ng per mg of implant. The availability of the material enabled the inventors to elucidate key structural details of the protein necessary to achieve bone formation. Knowledge of the protein's amino acid sequence and other structural features enabled the identification and cloning of native genes in the human genome.

Consensus DNA sequences based on partial sequence data and observed homologies with regulatory proteins disclosed in the literature were used as probes for extracting genes encoding osteogenic protein from human genomic and cDNA libraries. One of the consensus sequences was used to isolate a previously unidentified gene which, when expressed, encoded a protein comprising a region capable of inducing endochondral bone formation when properly modified, incorporated in a suitable matrix, and implanted as disclosed herein. The gene, called "hOP1" or "OP-1" (human OP-1), is

described in greater detail in copending U.S. 422,699, the disclosure of which is herein incorporated by reference.

In its native form, hOP1 expression yields an

05 immature translation product ("hOP1-PP", where "PP"

refers to "prepro form") of about 400 amino acids that
subsequently is processed to yield a mature sequence of
139 amino acids ("OP1-18"). The active region

(functional domain) of the protein comprises the

10 C-terminal 97 amino acids of the hOP1 sequence ("OPS").

A long active sequence is OP7 (comprising the
C-terminal 102 amino acids).

Further probing of mammalian cDNA libraries (human and mouse) with sequences specific to hOP1 also has 15 identified novel OP1-like sequences herein referred to as "OP2" ("hOP2" or "mOP2"). The OP2 proteins share significant amino acid sequence homology, approximately 74%, with the active region of the OP1 proteins (e.g., OP7), and less homology with the intact mature form 20 (e.g., OP1-18, 58% amino acid homology).

The amino acid sequence of the osteogenic proteins disclosed herein also share significant homology with various of the regulatory proteins on which the consensus probe was modeled. In particular, the 25 proteins share significant homology in their C-terminal sequences, which comprise the active region of the osteogenic proteins. (Compare, for example, OP7 with DPP from Drosophila and Vgl from Xenopus. See, for example, U.S. Pat. No. 5,011,691). In addition, these 30 proteins share a conserved six or seven cysteine skeleton in this region (e.g., the linear arrangement of these C-terminal cysteine residues is conserved in

- 8 -

the different proteins.) See, for example, OP7, whose sequence defines the seven cysteine skeleton, or OPS, whose sequence defines the six cysteine skeleton. The OP2 proteins also contain an additional cysteine O5 residue within this region.

Thus, in one preferred aspect, the invention comprises osteogenic proteins comprising a polypeptide chain comprising an amino acid sequence described by Seq. ID No. 3 or 5, including allelic and species variants thereof, and naturally-occurring or biosynthetic mutants, such that a dimeric protein comprising this polypeptide chain has a conformation capable of inducing endochondral bone formation when implanted in a mammal in association with a suitable matrix. Useful proteins include the full-length protein, mature proteins and truncated proteins comprising the functional domain described by the C-terminal.

In addition, the invention is not limited to thse specific constructs. Thus, the osteogenic proteins of this invention comprising any of these polypeptide chains may include forms having varying glycosylation patterns, varying N-termini, a family of related proteins having regions of amino acid sequence homology which may be naturally occurring or biosynthetically derived, and active truncated or mutated forms of the native amino acid sequence, produced by expression of recombinant DNA in procaryotic or eucaryotic host cells. Active squances useful as osteogenic proteins of this invention are envisioned to include proteins capable of inducing endochondral bone formation when implanted in a mammal in association wiht a matrix and having at lest a 70% sequence homology, preferably at

- 9 -

least 80%, with the amino acid sequence of OPS. This includes longer forms of a given protein, as well as allelic variants and muteins, including addition and deletion mutants, such as those which may alter the conserved C-terminal cysteine skeleton, provided that the alteration still allows the protein to form a dimeric species having a conformation capable of inducing bone formation in a mammal when implanted in the mammal in association with a matrix.

The novel polypeptide chains and the osteogenic roteins they comprise can be expressed from intact or truncated cDNA or from synthetic DNAs in procaryotic or eucaryotic host cells, and then purified, cleaved, refolded, dimerized, and implanted in experimental animals. Currently preferred host cells include <a href="E.coli">E.coli</a> or mammalian cells, such as CHO, COS or BSC cells. The osteogenic protein of the invention may include forms having varying glycosylation patterns, varying N-termini, a family of related proteins having regions of amino acid sequence homology, and active truncated or mutated forms of native or biosynthetic proteins, produced by expression of recombinant DNA in host cells.

Thus, in view of this disclosure, skilled genetic

25 engineers can isolate genes from cDNA or genomic
libraries of various different species which encode
appropriate amino acid sequences, or construct DNAs
from oligonucleotides, and then can express them in
various types of host cells, including both procaryotes
and eucaryotes, to produce large quantities of active
proteins capable of inducing bone formation in mammals
including humans. In view of this disclosure, those
skilled in the art, using standard immunology

techniques also may create antibodies capable of binding specifically to the osteogenic proteins disclosed herein, including fragments thereof.

The osteogenic proteins are useful in clinical applications in conjunction with a suitable delivery or 05 support system (matrix). The matrix is made up of particles of porous materials. The pores must be of a dimension to permit progenitor cell migration and subsequent differentiation and proliferation. particle size should be within the range of 70 - 850 mm, preferably 150mm - 420mm. It may be fabricated by close packing particulate material into a shape spanning the bone defect, or by otherwise structuring as desired a material that is biocompatible (noninflammatory) and, biodegradable in vivo to serve as a "temporary scaffold" and substratum for recruitment of migratory progenitor cells, and as a base for their subsequent anchoring and proliferation. Currently preferred carriers include particulate, demineralized, 20 guanidine extracted, species-specific (allogenic) bone, and specially treated particulate, protein extracted, demineralized, xenogenic bone. Optionally, such xenogenic bone powder matrices also may be treated with proteases such as trypsin and/or fibril modifying 25 agents to increase the intraparticle intrusion volume and surface area. Useful agents include solvents such as dichloromethane, trichloroacetic acid, acetonitrile and acids such as trifluoroacetic acid and hydrogen fluoride. Alternatively, the matrix may be treated 30 with a hot aqueous medium having a temperature within the range of about 37°C to 75°C, including a heated acidic aqueous medium. Other potentially useful matrix materials comprise collagen, homopolymers and copolymers of glycolic acid and lactic acid,

- 11 -

hydroxyapatite, tricalcium phosphate and other calcium phosphates.

The osteogenic proteins and implantable osteogenic devices enabled and disclosed herein will permit the physician to obtain optimal predictable bone formation to correct, for example, acquired and congenital craniofacial and other skeletal or dental anomalies (Glowacki et al. (1981) Lancet 1:959-963). The devices may be used to induce local endochondral bone formation in non-union fractures as demonstrated in animal tests, and in other clinical applications including dental and periodontal applications where bone formation is required. Another potential clinical application is in cartilage repair, for example, in the treatment of osteoarthritis.

# Brief Description of the Drawing

The foregoing and other objects of this invention, the various features thereof, as well as the invention itself, may be more fully understood from the following description, when read together with the accompanying drawings, in which:

FIGURE 1 compares the amino acid sequences of the mature mOP-2 and hOP-2 polypeptide chains: hOP2-A and mOP2-A; and

25 FIGURE 2 compares the amino acid sequences of the mature OP1 and OP2 polypeptide chains: OP1-18, mOP1-S, hOP2-A and mOP2-A.

# Description

Purification protocols first were developed which enabled isolation of the osteogenic protein present in crude protein extracts from mammalian bone. (See PCT WO 89/09787, published 19-OCT-89, and U.S. Serial No. 05 179,406 filed April 8, 1988, now U.S. Patent No. 4,968,950). The development of the procedure, coupled with the availability of fresh calf bone, enabled isolation of substantially pure bovine osteogenic protein (bOP). bOP was characterized significantly; 10 its ability to induce cartilage and ultimately endochondral bone growth in cat, rabbit, and rat were demonstrated and studied; it was shown to be able to induce the full developmental cascade of bone formation previously ascribed to unknown protein or proteins in 15 heterogeneous bone extracts. This dose dependent and highly specific activity was present whether or not the protein was glycosylated (see Sampath et al., (1990) J. Biol. Chem. 265: 13198-13205). Sequence data obtained from the bovine materials suggested probe designs which 20 were used to isolate human genes. The OP human counterpart proteins have now been expressed and extensively characterized.

These discoveries enabled preparation of DNAs encoding totally novel, non-native protein constructs which individually as homodimers and combined with other species as heterodimers are capable of producing true endochondral bone (see PCT WO 09788, published 19-OCT-89, and US Serial No. 315,342, filed 23-FEB-89, now U.S. Patent No. 5,011,691). They also permitted expression of the natural material, truncated forms, muteins, analogs, fusion proteins, and various other variants and constructs, from cDNAs and genomic DNAs retrieved from natural sources or from synthetic DNA produced using the techniques disclosed herein and

using automated, commercially available equipment. The DNAs may be expressed using well established molecular biology and recombinant DNA techniques in procaryotic or eucaryotic host cells, and may be oxidized and refolded in vitro if necessary, to produce biologically active protein.

One of the DNA sequences isolated from human genomic and cDNA libraries encoded a previously unidentified gene, referred to herein as OP1. The protein encoded by the isolated DNA was identified originally by amino acid homology with proteins in the TGF-β family. Consensus splice signals were found where amino acid homologies ended, designating exonintron boundaries. Three exons were combined to obtain a functional TGF-β-like domain containing seven cysteines. (See, for example, U.S. Patent No. 5,011,691, or Ozkaynak, E. et al., (1990) EMBO. 9: 2085-2093).

The full-length cDNA sequence for hOP1, and its encoded "prepro" form "hOP1-PP," which includes an N-20 terminal signal peptide sequence, are disclosed in Seq. ID No. 1 (residues 1-431). The mature form of the hOP1 protein expressed in mammalian cells, "OP1-18", is described by amino acid residues 293-431 of Seq. ID No. 1. The full length form of hOP1, as well as 25 various truncated forms of the gene, and fused genes, have been expressed in  $\underline{E}$ .  $\underline{coli}$  and numerous mammalian cells (see, for example, published PCT application WO 91/05802, published 2-MAY-91) and all have been shown to have osteogenic activity when implanted in a mammal 30 in association with a suitable matrix.

- 14 -

Given the foregoing amino acid and DNA sequence information, various nucleic acids (RNAs and DNAs) can be constructed which encode at least the active region of the hOPl protein (e.g., OPS or OP7) and various

05 analogs thereof (including allelic and species variants and those containing genetically engineered mutations), as well as fusion proteins, truncated forms of the mature proteins, and similar constructs. Moreover, DNA hybridization probes can be constructed from fragments

10 of the hOPl DNA or designed de novo based on the hOPl DNA or amino acid sequence. These probes then can be used to screen different genomic and cDNA libraries to identify additional osteogenic proteins.

The DNAs can be produced by those skilled in the
art using well known DNA manipulation techniques
involving genomic and cDNA isolation, construction of
synthetic DNA from synthesized oligonucleotides, and
cassette mutagenesis techniques. 15-100mer
oligonucleotides may be synthesized on a Biosearch DNA
00 Model 8600 Synthesizer, and purified by polyacrylamide
gel electrophoresis (PAGE) in Tris-Borate-EDTA buffer.
The DNA then may be electroeluted from the gel.
Overlapping oligomers may be phosphorylated by T4
polynucleotide kinase and ligated into larger blocks
which may also be purified by PAGE.

DNAs used as hybridization probes may be labelled (e.g., as with a radioisotope, by nick-translation) and used to identify clones in a given library containing DNA to which the probe hybridizes, following techniques well known in the art. The libraries may be obtained commercially or they may constructed de novo using conventional molecular biology techniques. Further information on DNA library construction and

hybridization techniques can be found in numerous texts known to those skilled in the art. See, for example, F.M. Ausubel., ed., <u>Current Protocols in Molecular Biology-Vol. 1</u>, (1989). In particular, see unit 5, "Construction of Recombinant DNA Libraries" and Unit 6, "Screening of Recombinant Libraries."

The DNA from appropriately identified clones then can be isolated, subcloned (preferably into an expression vector), and sequenced. Plasmids containing 10 sequences of interest then can be transfected into an appropriate host cell for protein expression and further characterization. The host may be a procaryotic or eucaryotic cell since the former's inability to glycosylate protein will not destroy the 15 protein's osteogenic activity. Useful host cells include E. coli, Saccharomyces, the insect/baculovirus cell system, myeloma cells, and various mammalian The vector additionally may encode various sequences to promote correct expression of the 20 recombinant protein, including transcription promoter and termination sequences, enhancer sequences, preferred ribosome binding site sequences, preferred mRNA leader sequences, preferred signal sequences for protein secretion, and the like. The DNA sequence 25 encoding the gene of interest also may be manipulated to remove potentially inhibiting sequences or to minimize unwanted secondary structure formation. recombinant osteogenic protein also may be expressed as a fusion protein. After being translated, the protein 30 may be purified from the cells themselves or recovered from the culture medium. All biologically active protein forms comprise dimeric species joined by disulfide bonds or otherwise associated, produced by oxidizing and refolding one or more of the various

recombinant polypeptide chains within an appropriate eucaryotic cell or in vitro after expression of individual subunits. A detailed description of osteogenic protein expressed from recombinant DNA in E. coli is disclosed in U.S. Serial No. 660,162, filed 27-FEB-91, the disclosure of which incorporated by reference herein. A detailed description of osteogenic protein expressed from recombinant DNA in numerous different mammalian cells is disclosed in PCT 10 W091/05802, also incorporated herein by reference.

Finally, in view of the disclosure made herein, and using standard methodologies known in the art, persosn skilled inthe art can raise polyclonal and monoclonal antibodies against all or part of a polypeptide chain disclosed herein, such that the antibodies are capable of binding specifically to an epitope on the polypeptide chain. Useful protocols can be found in, for example, Molecular Cloing-A Laboratory Manual (Sambrook et al. eds., Cold Spring Harbor Press 2nd ed. 1989). See Book 3, Section 18.

## Exemplification

In an effort to identify additional DNA sequences encoding osteogenic proteins, a hybridization probe specific to the C-terminus of the DNA of mature OP-1

25 was prepared using a StuI-EcoRl digest fragment of OP-1 (base pairs 1034-1354 in Sequence ID No. 1), and labelled with <sup>32</sup>P by nick translation, as described in the art. As disclosed supra, the OP1 C-terminus encodes a key functional domain, e.g., the "active region" for osteogenic activity. The C-terminus also is the region of the protein whose amino acid sequence shares specific amino acid sequence homology with

- 17 -

particular proteins in the TGF- $\beta$  super-family of regulatory proteins, and which includes the conserved cysteine skeleton.

Approximately 7 x 10<sup>5</sup> phages of an oligo(dT) primed 17.5 days p.c. mouse embryo 5' stretch cDNA (gt10) library (Clonetech, Inc., Palo Alto, CA) was screened with the labelled probe. The screen was performed using the following stringent hybridization conditions: 40% formamide, 5 x SSPE, 5 x Denhart's solution, 0.1% SDS, at 37°C overnight, and washing in 0.1 x SSPE, 0.1% SDS at 50°C.

Five recombinant phages were purified over three rounds of screening. Phage DNA was prepared from all five phages, subjected to an EcoRl digest, subcloned into the EcoRl site of a common pUC-type plasmid modified to allow single strand sequencing, and sequenced using means well known in the art.

Two different DNAs were identified by this procedure. One DNA, referred to herein as mOP1, has substantial homology to the mature form of OP1 (about 98%), and is described in detail in copending USSN 600,024, filed 18-Oct-90. A second DNA, encoding the C-terminus of a related gene and referred to herein as mOP2, also was identified by this procedure. The N-terminus of the gene encoding mOP2 was identified subsequently by screening a second mouse cDNA library (Mouse PCC4 cDNA (ZAP) library, Stratagene, Inc., La Jolla, CA).

Mouse OP2 (mOP2) protein shares significant amino acid sequence homology with the amino acid sequence of the hOP1 active region, e.g., OPS or OP7, about 74%

homology, and less homology with the intact mature form, e.g., OP1-18, about 58% homology. The cDNA sequence, and the encoded amino acid sequence, for the full length mOP-2 protein is depicted in Sequence ID 05 No. 3. The full-length form of the protein is referred to as the prepro form of mOP-2 ("mOP2-PP"), and includes a signal peptide sequence at its N-terminus. The amino acid sequence Leu-Ala-Leu-Cys-Ala-Leu (amino acid residues 13-18 of Sequence ID No. 3) is believed 10 to constitute the cleavage site for the removal of the signal peptide sequence, leaving an intermediate form of the protein, the "pro" form, to be secreted from the expressing cell. The amino acid sequence Arg-Ala-Pro-Arg-Ala (amino acid residues 255-259 of Sequence ID 15 No. 3) is believed to constitute the cleavage site that produces the mature form of the protein, herein referred to as "mOP2-A", and described by residues 259-397 of Seq. ID No. 3. Residues 301-397 of Seq. ID No. 3 correspond to the region defining the conserved six cysteine skeleton. Residues 296-397 of Seq. ID 20 No. 3 correspond to the region defining the conserved seven cysteine skeleton.

Using a probe prepared from the pro region of mOP2
(an EcoR1-BamH1 digest fragment, bp 467-771 of Sequence
25 ID No. 3), a human hippocampus library was screened
(human hippocampus cDNA lambda (ZAP II library
Stratagene, Inc., La Jolla, CA) following essentially
the same procedure as for the mouse library screens.
The procedure identified the N-terminus of a novel DNA
encoding an amino acid sequence having substantial
homology with mOP2. The C-terminus of the gene
subsequently was identified by probing a human genomic
library (in lambda phage EMBL-3, Clonetech, Inc., Palo
Alto, CA) with a labelled fragment from the novel human

05

10

15

20

25

30

DNA in hand. The novel polypeptide chain encoded by this DNA is referred to herein as hOP2 protein, and shares almost complete amino acid identity (about 92% amino acid sequence homology) with mOP2-A (see Fig. 1 and infra).

The cDNA sequence, and the encoded amino acid sequence, for the prepro form of hOP2, "hOP2-PP", is described in Sequence ID No. 5. This full-length form of the protein also includes a signal peptide sequence at its N-terminus. The amino acid sequence Leu-Ala-Leu-Cys-Ala-Leu (amino acid residues 13-18 of Sequence ID No. 5) is believed to constitute the cleavage site for the removal of the signal peptide sequence, leaving an intermediate form of the protein, the "pro" form, to be secreted from the expressing cell. The amino acid sequence Arg-Thr-Pro-Arg-Ala (amino acid residues 257-261 of Sequence ID No. 5) is believed to constitute the cleavage site that produces what is believed to be the mature form of the protein, herein referred to as hOP2-A" and described by residues 261-399 of Seq. ID No. 5.

Additional mature species of hOP2 thought to be active include truncated sequences, "hOP2-P" (described by residues 264-399 of Seq. ID No. 5) and "hOP2-R" (described by residues 267-399 of Seq. ID No. 5), and a slightly longer sequence ("hOP2-S", described by residues 240-399 of Seq. ID No. 5). Residues 303-399 of Seq. ID No. 5 correspond to the region defining the conserved six cysteine skeleton. Residues 297-399 of Seq. ID No. 5 correspond to the region defining the conserved seven cystein skeleton.

It should be noted that the nucleic acid sequence encoding the N-terminus of the prepro form of both mOP2 and hOP2 is rich in guanidine and cytosine base pairs. As will be appreciated by those skilled in the art, 05 sequencing such a "G-C rich" region can be problematic, due to stutter and/or band compression. Accordingly, the possibility of sequencing errors in this region can not be ruled out. However, the definitive amino acid sequence for these and other, similarly identified proteins can be determined readily by expressing the protein from recombinant DNA using, for example, any of the means disclosed herein, and sequencing the polypeptide chain by conventional peptide sequencing methods well known in the art.

15 Figure 1 compares the amino acid sequences of mature mOP2 and hOP2. Identity is indicated by three dots (...) in the mOP2 sequence. As is evident from the figure, the amino acid sequence homology between the mature forms of these two proteins is substantial 20 (92% homology between the mature sequences, about 95% homology within the C-terminal active region (e.g., residues 38-139 or 42-139 of Fig. 1.)

Fig. 2 compares the amino acid sequences for the mature forms of all four species of OP1 and OP2 proteins. Here again, identity is indicated by three dots (...). Like the mOP2 protein, the hOP2 protein shares significant homology (about 74%) with the amino acid sequence defining the OP1 active region (OPS or OP7, residues 43-139 and 38-139, respectively, in Fig. 2), and less homology with OP1-18 (about 58% homology). Both OP2 proteins share the conserved seven cysteine skeleton seen in the OP1 proteins. In

addition, the OP2 proteins comprise an eighth cysteine residue within this region (see position 78 in FIG. 2).

A preferred generic amino acid sequence useful as a subunit of a dimeric osteogenic protein capable of inducing endochondral bone or cartilage formation when implanted in a mammal in association with a matrix, and which incorporates the maximum homology between the identified OP1 and OP2 proteins, can be described by the sequence referred to herein as "OPX", described below and in Seq. No.7.

|    | Cys | Xaa  | Xaa | His | Glu | Leu | Tyr | Val | Xaa | Phe |
|----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
|    | 1   |      |     |     | 5   |     |     |     |     | 10  |
| 15 | Xaa | Asp  | Leu | Gly | Trp | Xaa | Asp | Trp | Xaa | Ile |
|    |     |      |     |     | 15  |     |     |     |     | 20  |
|    | Ala | Pro  | Xaa | Gly | Tyr | Xaa | Ala | Tyr | Tyr | Cys |
|    |     |      |     |     | 25  |     |     |     |     | 30  |
|    | Glu | Gly  | Glu | Cys | Xaa | Phe | Pro | Leu | Xaa | Ser |
| 20 |     |      |     |     | 35  |     |     |     |     | 40  |
|    | Xaa | Met  | Asn | Ala | Thr | Asn | His | Ala | Ile | Xaa |
|    |     |      |     |     | 45  |     |     |     |     | 50  |
|    | Gln | Xaa  | Leu | Val | His | Xaa | Xaa | Xaa | Pro | Xaa |
|    |     |      |     |     | 55  |     |     |     |     | 60  |
| 25 | Xaa | Val  | Pro | Lys | Xaa | Cys | Cys | Ala | Pro | Thr |
|    |     |      |     |     | 65  |     |     |     |     | 70  |
|    | Xaa | Leu  | Xaa | Ala | Xaa | Ser | Val | Leu | Tyr | Xaa |
|    |     |      |     |     | 75  |     |     |     |     | 80  |
|    | Asp | Xaa  | Ser | Xaa | Asn | Val | Xaa | Leu | Xaa | Lys |
| 30 |     |      |     |     | 85  |     |     |     |     | 90  |
|    | Xaa | Arg  | Asn | Met | Val | Val | Xaa | Ala | Cys | Gly |
|    |     |      |     |     | 95  |     |     |     |     | 100 |
|    | Cys | His, | •   |     |     |     |     |     |     |     |
|    |     |      |     |     |     |     |     |     |     |     |

and wherein Xaa at res. 2 = (Lys or Arg); Xaa at res. 3 = (Lys or Arg); Xaa at res. 9 = (Ser or Arg); Xaa at res. 11 = (Arg or Gln); Xaa at res. 16 = (Gln or Leu); Xaa at res. 19 = (Ile or Val); Xaa at res. 23 = 5 (Glu or Gln); Xaa at res. 26 = (Ala or Ser); Xaa at res. 35 = (Ala or Ser); Xaa at res. 39 = (Asn or Asp); Xaa at res. 41 = (Tyr or Cys); Xaa at res. 50 = (Val or Leu); Xaa at res. 52 = (Ser or Thr); Xaa at res. 56 = (Phe or Leu); Xaa at res. 57 = (Ile or Met); Xaa at 10 res. 58 = (Asn or Lys); Xaa at res. 60 = (Glu, Asp or Asn); Xaa at res. 61 = (Thr, Ala or Val); Xaa at res. 65 = (Pro or Ala); Xaa at res. 71 = (Gln or Lys); Xaa at res. 73 = (Asn or Ser); Xaa at res. 75 = (Ile or Thr); Xaa at res. 80 = (Phe or Tyr); Xaa at res. 82 = 15 (Asp or Ser); Xaa at res. 84 = (Ser or Asn); Xaa at res. 87 = (Ile or Asp); Xaa at res. 89 = (Lys or Arg); Xaa at res. 91 = (Tyr, Ala or His); and Xaa at res. 97 = (Arg or Lys).

20 The high degree of homology exhibited between the various OP1 and OP2 proteins suggests that the novel osteogenic proteins identified herein will purify essentially as OP1 does, or with only minor modifications of the protocols disclosed for OP1. Similarly, the purified mOP1, mOP2, and hOP2 proteins are predicted to have an apparent molecular weight of about 18 kDa as reduced single subunits, and an apparent molecular weight of about 36 kDa as oxidized dimers, as determined by comparison with molecular 30 weight standards on an SDS-polyacrylamide electrophoresis gel. Unglycosylated dimers (e.g., proteins produced by recombinant expression in E. coli) are predicted to have an apparent molecular weight of about 27 kDa. There appears to be one potential N

glycosylation site in the mature forms of the mOP2 and hOP2 proteins.

The identification of osteogenic proteins having an active region comprising eight cysteine residues also allows one to construct osteogenic polypeptide chains 05 patterned after either of the following template amino acid sequences, or to identify additional osteogenic proteins having this sequence. The template sequences contemplated are "OPX-7C", comprising the conserved six 10 cysteine skeleton plus the additional cysteine residue identified in the OP2 proteins, and "OPX-8C", comprising the conserved seven cysteine skeleton plus the additional cysteine residue identified in the OP2 proteins. The OPX-7C and OPX-8C sequences are described below and in Seq. ID Nos. 8 and 9, 15 respectively. Each Xaa in these template sequences independently represents one of the 20 naturallyoccurring L-isomer, \alpha-amino acids, or a derivative thereof. Biosynthetic constructs patterned after this template readily are constructed using conventional DNA 20 synthesis or peptide synthesis techniques well known in the art. Once constructed, osteogenic proteins comprising these polypeptide chains can be tested as disclosed herein.

25 "OPX-7C" (Sequence ID No. 8):

30

 Xaa
 X

|    |          |     | 35   |      |      |     |      | 40   |      |      |              |          |
|----|----------|-----|------|------|------|-----|------|------|------|------|--------------|----------|
|    |          | Xaa | Xaa  | Xaa  | Xaa  | Xaa | Xaa  | Xaa  | Xaa  | Xaa  | Xaa          | Xaa      |
|    |          | 45  |      |      |      |     | 50   |      |      |      |              | 55       |
|    |          | Xaa | Xaa  | Xaa  | Xaa  | Xaa | Cys  | Cys  | Xaa  | Xaa  | Xaa          | Xaa      |
| 05 |          |     |      |      |      | 60  |      |      |      |      | 65           |          |
|    |          | Xaa | Xaa  | Xaa  | Xaa  | Xaa | Xaa  | Xaa  | Xaa  | Xaa  | Xaa          | Xaa      |
|    |          |     |      |      | 70   |     |      |      |      | 75   |              |          |
|    |          | Xaa | Xaa  | Xaa  | Xaa  | Xaa | Xaa  | Xaa  |      | Xaa  | Xaa          | Xaa      |
|    |          |     |      | 80   |      |     |      |      | 85   |      |              |          |
| 10 |          | Xaa | Xaa  | Xaa  | Xaa  | Xaa | Cys  | Xaa  | Cys  | Xaa  |              |          |
|    |          |     | 90   |      |      |     |      | 95   |      |      |              |          |
|    |          |     |      |      |      |     |      |      |      |      |              | . five   |
|    | "OPX-8C" | (Se | quen | ce I | D No | . 9 | comp | risi | ng a | ddit | lona         | 1 11ve   |
|    | residues | at  | the  | N-te | rmin | us, | incl | udin | g a  | cons | erve         | <b>a</b> |
|    | cysteine | res | idue | ):   |      |     |      |      |      |      |              |          |
|    |          |     |      |      |      |     |      |      |      | ••   | V            |          |
| 15 | Cys      | Xaa | Xaa  | Xaa  | Xaa  | Xaa | Xaa  | Xaa  | Xaa  | хаа  | Xaa          |          |
|    | 1        |     |      |      | 5    |     |      |      |      | 10   | <b>V</b> = = |          |
|    | Xaa      | Xaa | Xaa  | Xaa  | Xaa  | Xaa | Xaa  | Xaa  | Xaa  | хаа  | хаа          |          |
|    |          |     |      | 15   |      |     |      | Δ    | 20   | V    | Vaa          |          |
|    | Xaa      | Xaa |      | Xaa  | Xaa  | Xaa | Xaa  |      | хаа  | Xaa  | Naa          |          |
| 20 |          |     | 25   |      |      |     |      | 30   | W    | Vaa  | Vaa          | Yaa      |
|    | Cys      | Xaa | Xaa  | Xaa  | Xaa  | Xaa |      | Cys  | xaa  | хаа  | Add          | 45       |
|    |          | 35  |      |      |      |     | 40   |      | V    | V    | Vaa          | 45       |
|    | Xaa      | Xaa | Xaa  | Xaa  |      | Xaa | Xaa  | хаа  | хаа  | 55   | Add          |          |
|    |          |     |      |      | 50   |     |      | **   | Van  |      |              |          |
| 25 | Xaa      | Xaa | Xaa  |      | Xaa  | Xaa | Xaa  | хаа  | Xaa  | Cys  |              |          |
|    |          |     |      | 60   |      |     |      | ••   | .65  | Van  | Vaa          |          |
|    | Cys      | Xaa | Xaa  | Xaa  | Xaa  | Xaa | Xaa  | хаа  | 75   | Naa  | Auu          |          |
|    |          |     |      | 70   |      |     |      | ••   |      |      | Yaa          |          |
|    | Xaa      | Xaa | Xaa  | Xaa  | Xaa  | Xaa | хаа  | SBX  | Yaq  | Vaa  | AGG          |          |
| 30 |          |     | 80   |      |      |     |      | 85   |      | V    | Cuc          |          |
|    | Yaa      | Хаа | Xaa  | Xaa  | Xaa  | Xaa | Xaa  | Xaa  | хаа  | xaa  | Cys          |          |

95

90 Xaa Cys Xaa

- 25 -

100

#### MATRIX PREPARATION

# A. General Consideration of Matrix Properties

The currently preferred carrier material is a

xenogenic bone-derived particulate matrix treated as
disclosed herein. This carrier may be replaced by
either a biodegradable-synthetic or synthetic-inorganic
matrix (e.g., hydroxylapatite (HAP), collagen,
tricalcium phosphate or polylactic acid, polyglycolic
acid and various copolymers thereof.)

Studies have shown that surface charge, particle size, the presence of mineral, and the methodology for combining matrix and osteogenic protein all play a role in achieving successful bone induction. Perturbation of the charge by chemical modification abolishes the inductive response. Particle size influences the quantitative response of new bone; particles between 75 µm and 420 µm elicit the maximum response. Contamination of the matrix with bone mineral will inhibit bone formation. Most importantly, the procedures used to formulate OP onto the matrix are extremely sensitive to the physical and chemical state of both the osteogenic protein and the matrix.

The sequential cellular reactions in the
interface of the bone matrix/osteogenic protein
implants are complex. The multistep cascade includes:
binding of fibrin and fibronectin to implated matrix,
chemotaxis of cells, proliferation of fibroblasts,
differentiation into chondroblasts, cartilage

- 26 -

formation, vascular invasion, bone formation, remodeling, and bone marrow differentiation.

05

10

15

20

25

30

A successful carrier for osteogenic protein must perform several important functions. It must bind osteogenic protein and act as a slow release delivery system, accommodate each step of the cellular response during bone development, and protect the osteogenic protein from nonspecific proteolysis. In addition, selected materials must be biocompatible in vivo and preferably biodegradable; the carrier must act as a temporary scaffold until replaced completely by new bone. Polylactic acid (PLA), polyglycolic acid (PGA), and various combinations have different dissolution rates in vivo. In bones, the dissolution rates can vary according to whether the implant is placed in cortical or trabecular bone.

Matrix geometry, particle size, the presence of surface charge, and the degree of both intra-and-inter-particle porosity are all important to successful matrix performance. It is preferred to shape the matrix to the desired form of the new bone and to have dimensions which span non-union defects. Rat studies show that the new bone is formed essentially having the dimensions of the device implanted.

The matrix may comprise a shape-retaining solid made of loosely adhered particulate material, e.g., with collagen. It may also comprise a molded, porous solid, or simply an aggregation of close-packed particles held in place by surrounding tissue.

Masticated muscle or other tissue may also be used.

Large allogenic bone implants can act as a carrier for the matrix if their marrow cavities are cleaned and

packed with particle and the dispersed osteogenic protein.

The preferred matrix material, prepared from xenogenic bone and treated as disclosed herein, 05 produces an implantable material useful in a variety of clinical settings. In addition to its use as a matrix for bone formation in various orthopedic, periodontal, and reconstructive procedures, the matrix also may be used as a sustained release carrier, or as a 10 collagenous coating for implants. The matrix may be shaped as desired in anticipation of surgery or shaped by the physician or technician during surgery. the material may be used for topical, subcutaneous, intraperitoneal, or intramuscular implants; it may be 15 shaped to span a nonunion fracture or to fill a bone defect. In bone formation or conduction procedures, the material is slowly absorbed by the body and is replaced by bone in the shape of or very nearly the shape of the implant.

Various growth factors, hormones, enzymes, therapeutic compositions, antibiotics, and other body treating agents also may be absorbed onto the carrier material and will be released over time when implanted as the matrix material is slowly absorbed. Thus, various known growth factors such as EGF, PDGF, IGF, FGF, TGF-α, and TGF-ß may be released in vivo. The material can be used to release chemotherapeutic agents, insulin, enzymes, or enzyme inhibitors.

#### B. Bone-Derived Matrices

1. Preparation of Demineralized Bone

Demineralized bone matrix, preferably bovine bone matrix, is prepared by previously published procedures (Sampath and Reddi (1983) Proc. Natl. Acad. Sci. USA 80:6591-6595). Bovine diaphyseal bones (age 05 1-10 days) are obtained from a local slaughterhouse and used fresh. The bones are stripped of muscle and fat, cleaned of periosteum, demarrowed by pressure with cold water, dipped in cold absolute ethanol, and stored at -20°C. They are then dried and fragmented by crushing 10 and pulverized in a large mill. Care is taken to prevent heating by using liquid nitrogen. The pulverized bone is milled to a particle size in the range of 70-850  $\mu\mathrm{m}$ , preferably 150-420  $\mu\mathrm{m}$ , and is defatted by two washes of approximately two hours 15 duration with three volumes of chloroform and methanol (3:1). The particulate bone is then washed with one volume of absolute ethanol and dried over one volume of anhydrous ether yielding defatted bone powder. defatted bone powder is then demineralized by four 20 successive treatments with 10 volumes of 0.5 N HCl at 4°C for 40 min. Finally, neutralizing washes are done on the demineralized bone powder with a large volume of water.

# 2. Guanidine Extraction

Demineralized bone matrix thus prepared is extracted with 5 volumes of 4 M guanidine-HCl, 50mM Tris-HCl, pH 7.0 for 16 hr. at 4°C. The suspension is filtered. The insoluble material is collected and used to fabricate the matrix. The material is mostly collagenous in nature. It is devoid of osteogenic or chondrogenic activity.

# 3. Matrix Treatments

The major component of all bone matrices is Type-I collagen. In addition to collagen, demineralized bone extracted as disclosed above 05 includes non-collagenous proteins which may account for 5% of its mass. In a xenogenic matrix, these noncollagenous components may present themselves as potent antigens, and may constitute immunogenic and/or inhibitory components. These components also may 10 inhibit osteogenesis in allogenic implants by interfering with the developmental cascade of bone differentiation. It has been discovered that treatment of the matrix particles with a collagen fibril-modifying agent extracts potentially unwanted 15 components from the matrix, and alters the surface structure of the matrix material. Useful agents include acids, organic solvents or heated aqueous media. Various treatments are described below. A detailed physical analysis of the effect these fibril-20 modifying agents have on demineralized, quanidineextracted bone collagen particles is disclosed in PCT WO 90/10018, published 7-SEP-90.

After contact with the fibril-modifying agent, the treated matrix is washed to remove any extracted components, following a form of the procedure set forth below:

1. Suspend in TBS (Tris-buffered saline)
1g/200 ml and stir at 4°C for 2 hrs; or in 6 M urea, 50
mM Tris-HCl, 500 mM NaCl, pH 7.0 (UTBS) or water and
30 stir at room temperature (RT) for 30 minutes
(sufficient time to neutralize the pH);

- 30 -

- 2. Centrifuge and repeat wash step; and
- 3. Centrifuge; discard supernatant; water wash residue; and then lyophilize.

# 3.1 Acid Treatments

## 05 1. Trifluoroacetic acid.

Trifluoroacetic acid is a strong non-oxidizing acid that is a known swelling agent for proteins, and which modifies collagen fibrils.

Bovine bone residue prepared as described

10 above is sieved, and particles of the appropriate size are collected. These particles are extracted with various percentages (1.0% to 100%) of trifluoroacetic acid and water (v/v) at 0°C or room temperature for 1-2 hours with constant stirring. The treated matrix is

15 filtered, lyophilized, or washed with water/salt and then lyophilized.

## 2. Hydrogen Fluoride.

Like trifluoroacetic acid, hydrogen fluoride is a strong acid and swelling agent, and also is capable of altering intraparticle surface structure. Hydrogen fluoride is also a known deglycosylating agent. As such, HF may function to increase the osteogenic activity of these matrices by removing the antigenic carbohydrate content of any glycoproteins still associated with the matrix after guanidine extraction.

Bovine bone residue prepared as described above is sieved, and particles of the appropriate size are The sample is dried in vacuo over P2O5, collected. transferred to the reaction vessel and exposed to  $^{05}$  anhydrous hydrogen fluoride (10-20 ml/g of matrix) by distillation onto the sample at -70°C. The vessel is allowed to warm to 0°C and the reaction mixture is stirred at this temperature for 120 minutes. After evaporation of the hydrogen fluoride in vacuo, the 10 residue is dried thoroughly in vacuo over KOH pellets to remove any remaining traces of acid. Extent of deglycosylation can be determined from carbohydrate analysis of matrix samples taken before and after treatment with hydrogen fluoride, after washing the 15 samples appropriately to remove non-covalently bound carbohydrates. SDS-extracted protein from HF-treated material is negative for carbohydrate as determined by Con A blotting.

The deglycosylated bone matrix is next washed 20 twice in TBS (Tris-buffered saline) or UTBS, water-washed, and then lyophilized.

Other acid treatments are envisioned in addition to HF and TFA. TFA is a currently preferred acidifying reagent in these treatments because of its <sup>25</sup> volatility. However, it is understood that other, potentially less caustic acids may be used, such as acetic or formic acid.

### 3.2 Solvent Treatment

1. Dichloromethane.

- 32 -

Dichloromethane (DCM) is an organic solvent capable of denaturing proteins without affecting their primary structure. This swelling agent is a common reagent in automated peptide synthesis, and is used in 05 washing steps to remove components.

Bovine bone residue, prepared as described above, is sieved, and particles of the appropriate size are incubated in 100% DCM or, preferably, 99.9% DCM/0.1% TFA. The matrix is incubated with the swelling agent for one or two hours at 0°C or at room temperature. Alternatively, the matrix is treated with the agent at least three times with short washes (20 minutes each) with no incubation.

### Acetonitrile.

Acetonitrile (ACN) is an organic solvent, capable of denaturing proteins without affecting their primary structure. It is a common reagent used in high-performance liquid chromatography, and is used to elute proteins from silica-based columns by perturbing hydrophobic interactions.

Bovine bone residue particles of the appropriate size, prepared as described above, are treated with 100% ACN (1.0 g/30 ml) or, preferably, 99.9% ACN/0.1% TFA at room temperature for 1-2 hours with constant stirring. The treated matrix is then water-washed, or washed with urea buffer, or 4 M NaCl and lyophilized. Alternatively, the ACN or ACN/TFA treated matrix may be lyophilized without wash.

### 3. Isopropanol.

Isopropanol is also an organic solvent capable of denaturing proteins without affecting their primary structure. It is a common reagent used to elute proteins from silica HPLC columns.

Bovine bone residue particles of the appropriate size prepared as described above are treated with 100% isopropanol (1.0 g/30 ml) or, preferably, in the presence of 0.1% TFA, at room temperature for 1-2 hours with constant stirring. The matrix is then water-washed or washed with urea buffer or 4 M NaCl before being lyophilized.

#### 4. Chloroform

Chloroform also may be used to increase surface area of bone matrix like the reagents set forth above, either alone or acidified.

Treatment as set forth above is effective to assure that the material is free of pathogens prior to implantation.

# 3.3 <u>Heat Treatment</u>

The currently most preferred agent is a heated aqueous fibril-modifying medium such as water, to increase the matrix particle surface area and porosity. The currently most preferred aqueous medium is an acidic aqueous medium having a pH of less than about 4.5, e.g., within the range of pH 2 - pH 4. which may help to "swell" the collagen before heating. 0.1% acetic acid, which has a pH of about 3, currently is preferred. O.1 M acetic acid also may be used.

- 34 -

Various amounts of delipidated, demineralized guanidine-extracted bone collagen are heated in the aqueous medium (1g matrix/30ml aqueous medium) under constant stirring in a water jacketed glass flask, and 05 maintained at a given temperature for a predetermined period of time. Preferred treatment times are about one hour, although exposure times of between about 0.5 to two hours appear acceptable. The temperature employed is held constant at a temperature generally within the range of about 37°C to 75°C. The currently preferred heat treatment temperature is within the range of 45°C to 60°C.

After the heat treatment, the matrix is filtered, washed, lyophilized and used for implant. Where an acidic aqueous medium is used, the matrix also is preferably neutralized prior to washing and lyophilization. A currently preferred neutralization buffer is a 200mM sodium phosphate buffer, pH 7.0. To neutralize the matrix, the matrix preferably first is allowed to cool following thermal treatment, the acidic aqueous medium (e.g., 0.1% acetic acid) then is removed and replaced with the neutralization buffer and the matrix agitated for about 30 minutes. The neutralization buffer then may be removed and the matrix washed and lyophilized (see infra).

The matrix also may be treated to remove contaminating heavy metals, such as by exposing the matrix to a metal ion chelator. For example, following thermal treatment with 0.1% acetic acid, the matrix may 30 be neutralized in a neutralization buffer containing EDTA (sodium ethylenediaminetetraacetic acid), e.g., 200 mM sodium phosphate, 5mM EDTA, pH 7.0. 5 mM EDTA provides about a 100-fold molar excess of chelator to

residual heavy metals present in the most contaminated matrix tested to date. Subsequent washing of the matrix following neutralization appears to remove the bulk of the EDTA. EDTA treatment of matrix particles reduces the residual heavy metal content of all metals tested (Sb, As, Be, Cd, Cr, Cu, Co, Pb, Hg, Ni, Se, Ag, Zn, Tl) to less than about 1 ppm. Bioassays with EDTA-treated matrices indicate that treatment with the metal ion chelator does not inhibit bone inducing activity.

The collagen matrix materials preferably take the form of a fine powder, insoluble in water, comprising nonadherent particles. It may be used simply by packing into the volume where new bone growth or sustained release is desired, held in place by surrounding tissue. Alternatively, the powder may be encapsulated in, e.g., a gelatin or polylactic acid coating, which is adsorbed readily by the body. The powder may be shaped to a volume of given dimensions and held in that shape by interadhering the particles using, for example, soluble, species-biocompatible collagen. The material may also be produced in sheet, rod, bead, or other macroscopic shapes.

Demineralized rat bone matrix used as an allogenic matrix in certain of the experiments

25 disclosed herein, is prepared from several of the dehydrated diaphyseal shafts of rat femur and tibia as described herein to produce a bone particle size which passes through a 420 µm sieve. The bone particles are subjected to dissociative extraction with 4 M

30 guanidine-HCl. Such treatment results in a complete loss of the inherent ability of the bone matrix to induce endochondral bone differentiation. The remaining insoluble material is used to fabricate the

- 36 -

matrix. The material is mostly collagenous in nature, and upon implantation, does not induce cartilage and bone. All new preparations are tested for mineral content and osteogenic activity before use. The total loss of biological activity of bone matrix is restored when an active osteoinductive protein fraction or a pure osteoinductive protein preparation is reconstituted with the biologically inactive insoluble collagenous matrix.

10 FABRICATION OF OSTEOGENIC DEVICE

The naturally sourced and recombinant protein as set forth above, and other constructs, can be combined and dispersed in a suitable matrix preparation using any of the methods described below. In general, 50-100 ng of active protein is combined with the inactive carrier matrix (e.g., 25 mg for rat bioassays). Greater amounts may be used for large implants.

## 1. Ethanol Precipitation

Matrix is added to osteogenic protein

20 dissolved in guanidine-HCl. Samples are vortexed and incubated at a low temperature (e.g., 4°C). Samples are then further vortexed. Cold absolute ethanol (5 volumes) is added to the mixture which is then stirred and incubated, preferably for 30 minutes at -20°C.

25 After centrifugation (microfuge, high speed) the supernatant is discarded. The reconstituted matrix is washed twice with cold concentrated ethanol in water (85% EtOH) and then lyophilized.

#### Acetonitrile Trifluoroacetic

### Acid Lyophilization

In this procedure, osteogenic protein in an acetonitrile trifluroacetic acid (ACN/TFA) solution is added to the carrier material. Samples are vigorously vortexed many times and then lyophilized. This method is currently preferred, and has been tested with osteogenic protein at varying concentrations and different levels of purity.

## 3. Urea Lyophilization

For those osteogenic proteins that are prepared in urea buffer, the protein is mixed with the matrix material, vortexed many times, and then lyophilized. The lyophilized material may be used "as is" for implants.

# 15 4. Buffered Saline Lyophilization

OP1 and OP2 preparations in physiological saline may also be vortexed with the matrix and lyophilized to produce osteogenically active material.

These procedures also can be used to adsorb other active therapeutic drugs, hormones, and various bioactive species to the matrix for sustained release purposes.

#### BIOASSAY

The functioning of the various proteins and

25 devices of this invention can be evaluated with an <u>in</u>

<u>vivo</u> bioassay. Studies in rats show the osteogenic

effect in an appropriate matrix to be dependent on the

dose of osteogenic protein dispersed in the matrix. No activity is observed if the matrix is implanted alone.

In vivo bioassays performed in the rat model also have shown that demineralized, guanidine-extracted xenogenic bone matrix materials of the type described in the literature are ineffective as a carrier, fail to induce bone, and produce an inflammatory and immunological response when implanted unless treated as disclosed above. In certain species (e.g., monkey) allogenic matrix materials also apparently are ineffective as carriers. The following sets forth various procedures for preparing osteogenic devices from the proteins and matrix materials prepared as set forth above, and for evaluating their osteogenic utility.

## 15 A. Rat Model

## 1. Implantation

The bioassay for bone induction as described by Sampath and Reddi ((1983) Proc. Natl. Acad. Sci. USA 80 6591-6595), herein incorporated by reference, may be 20 used to monitor endochondral bone differentiation activity. This assay consists of implanting test samples in subcutaneous sites in recipient rats under ether anesthesia. Male Long-Evans rats, aged 28-32 days, were used. A vertical incision (1 cm) is made 25 under sterile conditions in the skin over the thoracic region, and a pocket is prepared by blunt dissection. Approximately 25 mg of the test sample is implanted deep into the pocket and the incision is closed with a metallic skin clip. The day of implantation is 30 designated as day one of the experiment. Implants were removed on day 12. The heterotropic site allows for the study of bone induction without the possible

ambiguities resulting from the use of orthotropic sites. As disclosed herein, both allogenic (rat bone matrix) and xenogenic (bovine bone matrix) implants were assayed.

#### 05 2. Cellular Events

Successful implants exhibit a controlled progression through the stages of protein-induced endochondral bone development, including: (1) transient infiltration by polymorphonuclear leukocytes on day 10 one; (2) mesenchymal cell migration and proliferation on days two and three; (3) chondrocyte appearance on days five and six; (4) cartilage matrix formation on day seven; (5) cartilage calcification on day eight; (6) vascular invasion, appearance of osteoblasts, and 15 formation of new bone on days nine and ten; (7) appearance of osteoblastic and bone remodeling and dissolution of the implanted matrix on days twelve to eighteen; and (8) hematopoietic bone marrow differentiation in the ossicle on day twenty-one. 20 results show that the shape of the new bone conforms to the shape of the implanted matrix.

## 3. Histological Evaluation

Histological sectioning and staining is preferred to determine the extent of osteogenesis in the implants. Implants are fixed in Bouins Solution, embedded in paraffin, and cut into 6-8  $\mu$ m sections. Staining with toluidine blue or hemotoxylin/eosin demonstrates clearly the ultimate development of endochondral bone. Twelve day implants are usually sufficient to determine whether the implants contain newly induced bone.

- 40 -

## 4. Biological Markers

Alkaline phosphatase activity may be used as a marker for osteogenesis. The enzyme activity may be determined spectrophotometrically after homogenization of the implant. The activity peaks at 9-10 days in vivo and thereafter slowly declines. Implants showing no bone development by histology have little or no alkaline phosphatase activity under these assay conditions. The assay is useful for quantitation and obtaining an estimate of bone formation quickly after the implants are removed from the rat. Alternatively, the amount of bone formation can be determined by measuring the calcium content of the implant.

The invention may be embodied in other specific

forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

10

15

35

#### SEQUENCE LISTING

## (1) GENERAL INFORMATION:

(1) APPLICANT: OPPERHANN, HERMANN
OZKAYNAK, ENGIN
KUBERASAMPATH, THANGAVEL
RUEGER, DAVID C.

- (ii) TITLE OF INVENTION: OSTEOGENIC DEVICES
- (iii) NUMBER OF SEQUENCES: 9
- (iv) CORRESPONDENCE ADDRESS:
  - (A) ADDRESSEE: TESTA, HURWITZ & THIBEAULT
    - (B) STREET: 53 STATE STREET
    - (C) CITY: BOSTON
    - (D) STATE: MASSACHUSETTS
    - (E) COUNTRY: U.S.A.
    - (F) ZIP: 02109
    - (v) COMPUTER READABLE FORM:
      - (A) MEDIUM TYPE: Floppy disk
      - (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
  - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
  - (vi) CURRENT APPLICATION DATA:
    - (A) APPLICATION NUMBER:
    - (B) FILING DATE:
    - (C) CLASSIFICATION:
- 25 (viii) ATTORNEY/AGENT INFORMATION:
  - (A) NAME: PITCHER, EDMUND R.
  - (B) REGISTRATION NUMBER: 27,829
  - (C) REFERENCE/DOCKET NUMBER: CRR056PC
- 30 (ix) TELECOMMUNICATION INFORMATION:
  - (A) TELEPHONE: 617/248-7000
  - (B) TELEFAX: 617/248-7100
  - (2) INFORMATION FOR SEQ ID NO:1:
    - (i) SEQUENCE CHARACTERISTICS:
      - (A) LENGTH: 1822 base pairs
      - (B) TYPE: nucleic acid
      - (C) STRANDEDNESS: single
      - (D) TOPOLOGY: linear
    - (ii) HOLECULE TYPE: cDNA
    - (iii) HYPOTHETICAL: NO

|    |                   |                  | (iv              | ) A              | NTI-             | SENS                  | E: N                                | 0                                    |                                      |                              |                           |                  |                  |                  |                  |                   |     |
|----|-------------------|------------------|------------------|------------------|------------------|-----------------------|-------------------------------------|--------------------------------------|--------------------------------------|------------------------------|---------------------------|------------------|------------------|------------------|------------------|-------------------|-----|
|    |                   |                  | (⊽i              | (.               | A)               | NAL<br>ORGA<br>TISS   | NISH                                | : HO                                 |                                      |                              |                           |                  |                  |                  |                  |                   |     |
|    | 05<br>10          |                  | (ix              | (,<br>()         | B)<br>C)         | NAME<br>LOCA'<br>IDEN | TION<br>TIFI<br>R IN<br>/pr<br>/ev: | : 49<br>CATIORM<br>FORM<br>oductiden | 13<br>ON M<br>ATIO<br>t= "!<br>ce= ! | ETHO<br>N: /<br>hOP1<br>EXPE | func <sup>.</sup><br>-PP" | tion:<br>NTAL    | imen<br>- "O     | tal<br>STEO      | GENI             | C PROTE           | IN" |
|    |                   |                  | (xi              | ) S              | EQUE             | NCE 1                 | DESC                                | RIPT                                 | ION:                                 | SEQ                          | ID I                      | NO:1             | :                |                  |                  |                   |     |
| :  | GGT(<br>15        | GCGG(            | GCC (            | CGGA             | GCCC             | GG A                  | GCCC                                | GGGT                                 | A GC                                 | GCGT                         | AGAG                      | CCG              | GCGC             | He               |                  | C GTG<br>s Val    | 57  |
|    | CGC<br>Arg        | TCA<br>Ser<br>5  | CTG<br>Leu       | CGA<br>Arg       | GCT<br>Ala       | GCG<br>Ala            | GCG<br>Ala<br>10                    | CCG<br>Pro                           | CAC<br>His                           | AGC<br>Ser                   | TTC<br>Phe                | GTG<br>Val<br>15 | GCG<br>Ala       | CTC<br>Leu       | TGG<br>Trp       | GCA<br>Ala        | 105 |
| 20 | CCC<br>Pro<br>20  | CTG<br>Leu       | TTC<br>Phe       | CTG<br>Leu       | CTG<br>Leu       | CGC<br>Arg<br>25      | TCC<br>Ser                          | GCC<br>Ala                           | CTG<br>Leu                           | GCC<br>Ala                   | GAC<br>Asp<br>30          | TTC<br>Phe       | AGC<br>Ser       | CTG<br>Leu       | GAC<br>Asp       | AAC<br>Asn<br>35  | 153 |
| 25 | GAG<br>Glu        | GTG<br>Val       | CAC<br>His       | TCG<br>Ser       | AGC<br>Ser<br>40 | TTC<br>Phe            | ATC<br>Ile                          | CAC<br>His                           | CGG<br>Arg                           | CGC<br>Arg<br>45             | CTC<br>Leu                | CGC              | AGC<br>Ser       | CAG<br>Gln       | GAG<br>Glu<br>50 | CGG<br>Arg        | 201 |
|    | CGG<br>Arg        | GAG<br>Glu       | ATG<br>Met       | CAG<br>Gln<br>55 | CGC<br>Arg       | GAG<br>Glu            | ATC<br>Ile                          | CTC<br>Leu                           | TCC<br>Ser<br>60                     | ATT<br>Ile                   | TTG<br>Leu                | GGC<br>Gly       | TTG<br>Leu       | CCC<br>Pro<br>65 | CAC<br>His       | CGC<br>Arg        | 249 |
| 30 | CCG<br>Pro        | CGC<br>Arg       | CCG<br>Pro<br>70 | CAC<br>His       | CTC<br>Leu       | CAG<br>Gln            | GGC<br>Gly                          | AAG<br>Lys<br>75                     | CAC<br>His                           | AAC<br>Asn                   | TCG<br>Ser                | GCA<br>Ala       | CCC<br>Pro<br>80 | ATG<br>Net       | TTC<br>Phe       | ATG<br>Het        | 297 |
|    | CTG<br>Leu        | GAC<br>Asp<br>85 | CTG<br>Leu       | TAC<br>Tyr       | AAC<br>Asn       | GCC<br>Ala            | ATG<br>Met<br>90                    | GCG<br>Ala                           | GTG<br>Val                           | GAG<br>Glu                   | GAG<br>Glu                | GGC<br>Gly<br>95 | GGC<br>Gly       | GGG<br>Gly       | CCC<br>Pro       | GGC<br>Gly        | 345 |
| 35 | GGC<br>Gly<br>100 | CAG<br>Gln       | GGC<br>Gly       | TTC<br>Phe       | TCC<br>Ser       | TAC<br>Tyr<br>105     | CCC<br>Pro                          | TAC<br>Tyr                           | AAG<br>Lys                           | GCC<br>Ala                   | GTC<br>Val<br>110         | TTC<br>Phe       | AGT<br>Ser       | ACC<br>Thr       | CAG<br>Gln       | GGC<br>Gly<br>115 | 393 |
|    | CCC<br>Pro        | CCT<br>Pro       | CTG<br>Leu       | GCC<br>Ala       | AGC<br>Ser       | CTG<br>Leu            | CAA<br>Gln                          | GAT<br>Asp                           | AGC<br>Ser                           | CAT<br>His                   | TTC<br>Phe                | CTC<br>Leu       | ACC<br>Thr       | GAC<br>Asp       | GCC<br>Ala       | GAC<br>Asp        | 441 |

- 43 -

|    |            |                   |                   |            | 120               |            |                   |                   |            | 125               |            |                   |                   |            | 130               |            |      |  |
|----|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|-------------------|------------|-------------------|------------|------|--|
|    |            | GTC<br>Val        | Het               |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            | 489  |  |
| 05 |            | CCA<br>Pro        |                   |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            | 537  |  |
| 10 |            | GAA<br>Glu<br>165 |                   |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            | 585  |  |
|    |            | ATC<br>Ile        |                   |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            | 633  |  |
| 15 | CAG<br>Gln | GTG<br>Val        | CTC<br>Leu        | CAG<br>Gln | GAG<br>Glu<br>200 | CAC<br>His | TTG<br>Leu        | GGC<br>Gly        | AGG<br>Arg | GAA<br>Glu<br>205 | TCG<br>Ser | GAT<br>Asp        | CTC<br>Leu        | TTC<br>Phe | CTG<br>Leu<br>210 | CTC<br>Leu | 681  |  |
|    |            | AGC<br>Ser        | Arg               |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            | 729  |  |
| 20 | ATC<br>Ile | ACA<br>Thr        | GCC<br>Ala<br>230 | ACC<br>Thr | AGC<br>Ser        | AAC<br>Asn | CAC<br>His        | TGG<br>Trp<br>235 | GTG<br>Val | GTC<br>Val        | AAT<br>Asn | CCG<br>Pro        | CGG<br>Arg<br>240 | CAC<br>His | AAC<br>Asn        | CTG<br>Leu | 777  |  |
| 25 |            | CTG<br>Leu<br>245 |                   |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            | 825  |  |
|    |            | TTG<br>Leu        |                   |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            | 873  |  |
| 30 |            | ATG<br>Het        |                   |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            | 921  |  |
|    |            | TCC<br>Ser        |                   |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            | 969  |  |
| 35 | AAG<br>Lys | AAC<br>Asn        | CAG<br>Gln<br>310 | GAA<br>Glu | GCC<br>Ala        | CTG<br>Leu | CGG<br>Arg        | ATG<br>Het<br>315 | GCC<br>Ala | AAC<br>Asn        | GTG<br>Val | GCA<br>Ala        | GAG<br>Glu<br>320 | AAC<br>Asn | AGC<br>Ser        | AGC<br>Ser | 1017 |  |
| 40 | AGC<br>Ser | GAC<br>Asp<br>325 | CAG<br>Gln        | AGG<br>Arg | CAG<br>Gln        | GCC<br>Ala | TGT<br>Cys<br>330 | AAG<br>Lys        | AAG<br>Lys | CAC<br>His        | GAG<br>Glu | CTG<br>Leu<br>335 | TAT<br>Tyr        | GTC<br>Val | AGC<br>Ser        | TTC<br>Phe | 1065 |  |

| 05 | Arg<br>340        | ASP               | CTG<br>Leu        | GGC               | TGG<br>Trp        | CAG<br>Gln<br>345 | GAC<br>Asp        | TGG<br>Trp        | ATC<br>Ile        | ATC<br>Ile        | GCG<br>Ala<br>350 | CCT<br>Pro        | GAA<br>Glu        | GGC<br>Gly        | TAC<br>Tyr        | GCC<br>Ala<br>355 | 1113 |
|----|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| 10 | GCC<br>Ala        | TAC<br>Tyr        | TAC<br>. Tyr      | TGT<br>Cys        | GAG<br>Glu<br>360 | GGG<br>Gly        | GAG<br>Glu        | TGT<br>Cys        | GCC<br>Ala        | TTC<br>Phe<br>365 | CCT<br>Pro        | CTG<br>Leu        | AAC<br>Asn        | TCC<br>Ser        | TAC<br>Tyr<br>370 | ATG<br>Het        | 1161 |
|    | AAC<br>Asn        | GCC<br>Ala        | ACC<br>Thr        | AAC<br>Asn<br>375 | CAC<br>His        | GCC<br>Ala        | ATC<br>Ile        | GTG<br>Val        | CAG<br>Gln<br>380 | ACG<br>Thr        | CTG<br>Leu        | GTC<br>Val        | CAC<br>His        | TTC<br>Phe<br>385 | ATC<br>Ile        | AAC<br>Asn        | 1209 |
| 15 | CCG<br>Pro        | GAA<br>Glu        | ACG<br>Thr<br>390 | GTG<br>Val        | CCC<br>Pro        | AAG<br>Lys        | CCC<br>Pro        | TGC<br>Cys<br>395 | TGT<br>Cys        | GCG<br>Ala        | CCC<br>Pro        | ACG<br>Thr        | CAG<br>Gln<br>400 | CTC<br>Leu        | AAT<br>Asn        | GCC<br>Ala        | 1257 |
|    | ATC<br>Ile        | TCC<br>Ser<br>405 | GTC<br>Val        | CTC<br>Leu        | TAC<br>Tyr        | TTC<br>Phe        | GAT<br>Asp<br>410 | GAC<br>Asp        | AGC<br>Ser        | TCC<br>Ser        | AAC<br>Asn        | GTC<br>Val<br>415 | ATC<br>Ile        | CTG<br>Leu        | AAG<br>Lys        | AAA<br>Lys        | 1305 |
| 20 | TAC<br>Tyr<br>420 | AGA<br>Arg        | AAC<br>Asn        | ATG<br>Het        | GTG<br>Val        | GTC<br>Val<br>425 | CGG<br>Arg        | GCC<br>Ala        | TGT<br>Cys        | GGC<br>Gly        | TGC<br>Cys<br>430 | CAC<br>His        | TAGO              | TCCI              | CC                |                   | 1351 |
|    | GAGA              | ATTO              | AG A              | CCCI              | TTGG              | G GC              | CAAG              | TTTT              | TCI               | 'GGAT             | CCT               | CCAT              | TGCI              | CG C              | CTTG              | GCCAG             | 1411 |
|    | GAAC              | CAGO              | AG A              | CCAA              | CTGC              | C TI              | TTGT              | 'GAGA             | CCI               | TCCC              | CTC               | CCTA              | TCCC              | CA A              | CTTT              | AAAGG             | 1471 |
| 25 | TGTG              | AGAG              | TA I              | TAGG              | AAAC              | A TG              | AGCA              | GCAT              | ATG               | GCTT              | TTG               | ATCA              | GTTT              | TT C              | AGTG              | GCAGC             | 1531 |
|    | ATCC              | AATG              | AA C              | AAGA              | TCCT              | 'A CA             | AGCT              | GTGC              | AGG               | CAAA              | ACC               | TAGO              | AGGA              | AA A              | AAAA              | ACAAC             | 1591 |
|    | GCAT              | 'AAAG             | AA A              | AATG              | GCCG              | G GC              | CAGG              | TCAT              | TGG               | CTGG              | GAA               | GTCT              | CAGC              | CA T              | GCAC              | GGACT             | 1651 |
|    | CGTI              | TCCA              | GA G              | GTAA              | TATT              | G AG              | CGCC              | TACC              | AGC               | CAGG              | CCA               | CCCA              | GCCG              | TG G              | GAGG              | AAGGG             | 1711 |
|    | GGCG              | TGGC              | AA G              | GGGT              | GGGC              | A CA              | TTGG              | TGTC              | TGT               | GCGA              | AAG               | GAAA              | ATTG              | AC C              | CGGA              | AGTTC             | 1771 |
| 30 | CTGT              | AATA              | T AA              | GTCA              | CAAT              | A AA              | ACGA              | ATGA              | ATG               | AAAA              | AAA .             | AAAA              | AAAA              | AA A              |                   |                   | 1822 |

## (2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 431 amino acids
    (B) TYPE: amino acid
    (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:

- 45 -

05

## (D) OTHER INFORMATION: /Product="hOP1-PP"

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met His Val Arg Ser Leu Arg Ala Ala Pro His Ser Phe Val Ala 1 5 10

Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser 10 20 25 30

Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser 35 40 45

Gln Glu Arg Arg Glu Met Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu 50 55 60

Pro His Arg Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro 65 70 75 80

Het Phe Het Leu Asp Leu Tyr Asn Ala Het Ala Val Glu Glu Gly Gly 85 90 95

Gly Pro Gly Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser 20 100 105 110

Thr Gln Gly Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr 115 120 125

Asp Ala Asp Met Val Het Ser Phe Val Asn Leu Val Glu His Asp Lys 130 135 140

25 Glu Phe Phe His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu 145 150 155 160

Ser Lys Ile Pro Glu Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile 165 170 175

Tyr Lys Asp Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Arg Ile
30 185 190

Ser Val Tyr Gln Val Leu Gln Glu His Leu Gly Arg Glu Ser Asp Leu 195 200 205

Phe Leu Leu Asp Ser Arg Thr Leu Trp Ala Ser Glu Glu Gly Trp Leu 210 220

Val Phe Asp Ile Thr Ala Thr Ser Asn His Trp Val Val Asn Pro Arg 225 230 235 240

His Asn Leu Gly Leu Gln Leu Ser Val Glu Thr Leu Asp Gly Gln Ser 245 250 255

Ile Asn Pro Lys Leu Ala Gly Leu Ile Gly Arg His Gly Pro Gln Asn

- 46 -

05 260 265 270 Lys Gln Pro Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Phe 280 Arg Ser Ile Arg Ser Thr Gly Ser Lys Gln Arg Ser Gln Asn Arg Ser Lys Thr Pro Lys Asn Gln Glu Ala Leu Arg Met Ala Asn Val Ala Glu Asn Ser Ser Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu Tyr Val Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu 15 Gly Tyr Ala Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn Ser Tyr Met Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His 20 Phe Ile Asn Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln 390 Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile Leu Lys Lys Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His 25 (2) INFORMATION FOR SEQ ID NO:3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1929 base pairs (B) TYPE: nucleic acid 30 STRANDEDNESS: single (C) (D TOPOLOGY: linear (ii) HOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 103..1293 OTHER INFORMATION: /function= "osteogenic protein" /product= "mOP2-PP" /note= "mOP2 cDNA"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

PCT/US91/07635

| 05 | CCG        | ACCA | GCT 1 | ACCA | GTGG | AT GO             | CGCG( | CCGG( | C TG | AAAG1 | rccg |     |     |     | ATG ( |     | 114 |
|----|------------|------|-------|------|------|-------------------|-------|-------|------|-------|------|-----|-----|-----|-------|-----|-----|
| 10 |            |      |       |      |      | CTA<br>Leu<br>10  |       |       |      |       |      |     |     |     |       |     | 162 |
|    |            |      |       |      |      | CCC<br>Pro        |       |       |      |       |      |     |     |     |       |     | 210 |
| 15 | GCG<br>Ala |      |       |      |      | ATG<br>Het        |       |       |      |       |      |     |     |     |       |     | 258 |
|    |            |      |       |      |      | CCC<br>Pro        |       |       |      |       |      |     |     |     |       |     | 306 |
| 20 | CGT<br>Arg |      |       |      |      | ATG<br>Met        |       |       |      |       |      |     |     |     |       |     | 354 |
| 25 |            |      |       |      |      | CCA<br>Pro<br>90  |       |       |      |       |      |     |     |     |       |     | 402 |
|    |            |      |       |      |      | ATG<br>Met        |       |       |      |       |      |     |     |     |       |     | 450 |
| 30 | GAG<br>Glu |      |       |      |      | GAA<br>Glu        |       |       |      |       |      |     |     |     |       |     | 498 |
|    |            |      |       |      |      | GCT<br>Ala        |       |       |      |       |      |     |     |     |       |     | 546 |
|    |            |      |       |      |      | ACA<br>Thr        |       |       |      |       |      |     |     |     |       |     | 594 |
|    |            |      |       |      |      | AGG<br>Arg<br>170 |       |       |      |       |      |     |     |     |       |     | 642 |
|    |            |      |       |      |      | GAC<br>Asp        |       |       |      |       |      |     |     |     |       |     | 690 |
|    | GCC        | AGT  | GAC   | CGA  | TGG  | CTG               | CTG   | AAC   | CAT  | CAC   | AAG  | GAC | CTG | GGA | CTC   | CGC | 738 |

PCT/US91/07635

| 05 | Ala               | a Se               | r Asp             | 200               | Trp               | Let               | Leu                 | Asn               | His<br>205        | His               | Lys               | Asp                 | Leu               | Gly<br>210        |                   | Arg               |      |
|----|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|------|
|    | CTO               | TAT                | GTG<br>Val<br>215 | . GIU             | ACC<br>Thr        | GCG               | GAT<br>Asp          | GGG<br>Gly<br>220 | His               | AGC<br>Ser        | ATG<br>Met        | GAI<br>Asp          | CCT<br>Pro<br>225 | Gly               | CTG               | GCT<br>Ala        | 786  |
| 10 | GG1<br>Gly        | CTC<br>Lev<br>230  | ı Leu             | GGA<br>Gly        | CGA               | CAA<br>Gln        | GCA<br>Ala<br>235   | Pro               | CGC               | TCC               | AGA<br>Arg        | CAG<br>Gln<br>240   | Pro               | TTC<br>Phe        | ATG<br>Met        | GTA<br>Val        | 834  |
| 15 | ACC<br>Thr<br>245 | rne                | TTC<br>Phe        | AGG<br>Arg        | GCC<br>Ala        | AGC<br>Ser<br>250 | Gln                 | AGT<br>Ser        | CCT<br>Pro        | GTG<br>Val        | CGG<br>Arg<br>255 | Ala                 | CCT<br>Pro        | CGG<br>Arg        | GCA<br>Ala        | GCG<br>Ala<br>260 | 882  |
|    | AGA<br>Arg        | CCA<br>Pro         | CTG<br>Leu        | AAG<br>Lys        | AGG<br>Arg<br>265 | AGG<br>Arg        | CAG<br>Gln          | CCA<br>Pro        | AAG<br>Lys        | AAA<br>Lys<br>270 | ACG<br>Thr        | AAC<br>Asn          | GAG<br>Glu        | CTT<br>Leu        | CCG<br>Pro<br>275 | CAC<br>His        | 930  |
| 20 | CCC<br>Pro        | AAC<br>Asn         | AAA<br>Lys        | CTC<br>Leu<br>280 | CCA<br>Pro        | GGG<br>Gly        | ATC<br>Ile          | TTT<br>Phe        | GAT<br>Asp<br>285 | GAT<br>Asp        | GGC<br>Gly        | CAC<br>His          | GGT<br>Gly        | TCC<br>Ser<br>290 | CGC<br>Arg        | GGC<br>Gly        | 978  |
|    | AGA<br>Arg        | GAG<br>Glu         | GTT<br>Val<br>295 | TGC<br>Cys        | CGC<br>Arg        | AGG<br>Arg        | CAT<br>His          | GAG<br>Glu<br>300 | CTC<br>Leu        | TAC<br>Tyr        | GTC<br>Val        | AGA<br>Arg          | TTC<br>Phe<br>305 | CGT<br>Arg        | GAC<br>Asp        | CTT<br>Leu        | 1026 |
| 25 | GGC<br>Gl         | TGG<br>y Tr<br>310 | CTG<br>p Lei      | GAC<br>1 Asj      | TGG<br>Tr         | GTC<br>Vai        | ATC<br>L Ile<br>315 | GCC<br>Ala        | CCC<br>Pro        | CAG<br>Cli        | GGC<br>n Gly      | TAC<br>7 Ty:<br>320 | TCT<br>Sei        | GCC<br>Ala        | TAT<br>Ty:        | TAC<br>Tyr        | 1074 |
| 30 | TGT<br>Cys<br>325 | GAG<br>Glu         | GGG<br>Gly        | GAG<br>Glu        | TGT<br>Cys        | GCT<br>Ala<br>330 | TTC<br>Phe          | CCA<br>Pro        | CTG<br>Leu        | GAC<br>Asp        | TCC<br>Ser<br>335 | TGT<br>Cys          | ATG<br>Het        | AAC<br>Asn        | GCC<br>Ala        | ACC<br>Thr<br>340 | 1122 |
|    | AAC<br>Asn        | CAT<br>His         | GCC<br>Ala        | ATC<br>Ile        | TTG<br>Leu<br>345 | CAG<br>Gln        | TCT<br>Ser          | CTG<br>Leu        | GTG<br>Val        | CAC<br>His<br>350 | CTG<br>Leu        | ATG<br>Het          | AAG<br>Lys        | CCA<br>Pro        | GAT<br>Asp<br>355 | GTT<br>Val        | 1170 |
| 35 | GTC<br>Val        | CCC<br>Pro         | AAG<br>Lys        | GCA<br>Ala<br>360 | TGC<br>Cys        | TGT<br>Cys        | GCA<br>Ala          | CCC<br>Pro        | ACC<br>Thr<br>365 | AAA<br>Lys        | CTG<br>Leu        | AGT<br>Ser          | Ala               | ACC<br>Thr<br>370 | TCT<br>Ser        | GTG<br>Val        | 1218 |
|    | CTG<br>Leu        | TAC<br>Tyr         | TAT<br>Tyr<br>375 | GAC<br>Asp        | AGC<br>Ser        | AGC<br>Ser        | Asn                 | TAA<br>nsa<br>380 | GTC<br>Val        | ATC<br>Ile        | CTG<br>Leu        | CGT<br>Arg          | AAA<br>Lys<br>385 | CAC<br>His        | CGT<br>Arg        | AAC<br>Asn        | 1266 |
|    | ATG<br>Het        | GTG<br>Val<br>390  | GTC<br>Val        | AAG<br>Lys        | GCC<br>Ala        | TGT<br>Cys        | GGC<br>Gly<br>395   | TGC<br>Cys        | CAC<br>His        | TGAG              | GCCC              | CG C                | CCAG              | CATC              | С                 |                   | 1313 |
|    | TGCI              | TCTA               | CT A              | CCTT              | ACCA              | т ст              | GGCC                | GGGC              | CCC               | TCTC              | CAG               | AGGC                | AGAA              | AC C              | СТТС              | ТАТСТ             | 1373 |

| 05 | TATCATAGUT CAGACAGGGG CAATGGGAGG CCCTTCACTT CCCCTGGCCA CTTCCTGCT                    | A |
|----|-------------------------------------------------------------------------------------|---|
|    | AAATTCTGGT CTTTCCCAGT TCCTCTGTCC TTCATGGGGT TTCGGGGCTA TCACCCCGC                    | С |
|    | CTCTCCATCC TCCTACCCCA AGCATAGACT GAATGCACAC AGCATCCCAG AGCTATGCT                    | A |
|    | ACTGAGAGGT CTGGGGTCAG CACTGAAGGC CCACATGAGG AAGACTGATC CTTGGCCAT                    | С |
|    | CTCAGCCCAC AATGGCAAAT TCTGGATGGT CTAAGAAGCC CTGGAATTCT AAACTAGATG                   | G |
| 10 | ATCTGGGCTC TCTGCACCAT TCATTGTGGC AGTTGGGACA TTTTTAGGTA TAACAGACA                    | С |
|    | ATACACTTAG ATCAATGCAT CGCTGTACTC CTTGAAATCA GAGCTAGCTT GTTAGAAAA                    | A |
|    | GAATCAGAGC CAGGTATAGC GGTGCATGTC ATTAATCCCA GCGCTAAAGA GACAGAGACA                   | A |
|    | GGAGAATCTC TGTGAGTTCA AGGCCACATA GAAAGAGCCT GTCTCGGGAG CAGGAAAAA                    | A |
|    | AAAAAAACG GAATTC                                                                    |   |
| 15 | (2) INFORMATION FOR SEQ ID NO:4:                                                    |   |
|    |                                                                                     |   |
|    | <ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 397 amino acids</li></ul> |   |
|    | (B) TYPE: amino acid (D) TOPOLOGY: linear                                           |   |
|    |                                                                                     |   |
| 20 | (ii) MOLECULE TYPE: protein                                                         |   |
|    | <pre>(ix) FEATURE:    (D) OTHER INFORMATION: /Product= "mOP2-PP"</pre>              |   |
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:                                             |   |
| 25 | Het Ala Het Arg Pro Gly Pro Leu Trp Leu Leu Gly Leu Ala Leu Cys 1 5 10 15           |   |
|    | Ala Leu Gly Gly Gly His Gly Pro Gly Pro Pro His Thr Cys Pro Gln 20 25 30            |   |
|    | Arg Arg Leu Gly Ala Arg Asp Arg Asp Het Gln Arg Glu Ile Leu Pro 35 40 45            |   |
| 30 | Val Leu Gly Leu Pro Gly Arg Pro Asp Pro Val His Asn Pro Pro Leu 50 55 60            |   |
|    | Pro Gly Thr Gln Arg Ala Pro Leu Phe Het Leu Asp Leu Tyr His Ala 65 70 75 80         |   |
|    | Met Thr Asp Asp Asp Gly Gly Pro Pro Gln Ala His Leu Gly Arg                         |   |

Ala Asp Leu Val Met Ser Phe Val Asn Met Val Glu Arg Asp Arg Thr Leu Gly Tyr Gln Glu Pro His Trp Lys Glu Phe His Phe Asp Leu Thr Gln Ile Pro Ala Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile Tyr Lys Glu Pro Ser Thr His Pro Leu Asn Thr Thr Leu His Ile Ser Met 150 155 Phe Glu Val Val Gln Glu His Ser Asn Arg Glu Ser Asp Leu Phe Phe Leu Asp Leu Gln Thr Leu Arg Ser Gly Asp Glu Gly Trp Leu Val Leu Asp Ile Thr Ala Ala Ser Asp Arg Trp Leu Leu Asn His His Lys Asp Leu Gly Leu Arg Leu Tyr Val Glu Thr Ala Asp Gly His Ser Het Asp 20 Pro Gly Leu Ala Gly Leu Leu Gly Arg Gln Ala Pro Arg Ser Arg Gln Pro Phe Het Val Thr Phe Phe Arg Ala Ser Gln Ser Pro Val Arg Ala Pro Arg Ala Ala Arg Pro Leu Lys Arg Arg Gln Pro Lys Lys Thr Asn Glu Leu Pro His Pro Asn Lys Leu Pro Gly Ile Phe Asp Asp Gly His Gly Ser Arg Gly Arg Glu Val Cys Arg Arg His Glu Leu Tyr Val Arg 30 Phe Arg Asp Leu Gly Trp Leu Asp Trp Val Ile Ala Pro Gln Gly Tyr Ser Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asp Ser Cys 330 Het Asn Ala Thr Asn His Ala Ile Leu Gln Ser Leu Val His Leu Met Lys Pro Asp Val Val Pro Lys Ala Cys Cys Ala Pro Thr Lys Leu Ser Ala Thr Ser Val Leu Tyr Tyr Asp Ser Ser Asn Asn Val Ile Leu Arg

- 51 -

| • | 05 | Lys His Arg Asn Het Val Val Lys Ala Cys Gly Cys His<br>385 390 395                                                                      |     |
|---|----|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
|   |    | (2) INFORMATION FOR SEQ ID NO:5:                                                                                                        |     |
|   | 10 | (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1941 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear      |     |
|   |    | (ii) MOLECULE TYPE: cDNA                                                                                                                |     |
|   | 15 | (vi) ORIGINAL SOURCE:  (A) ORGANISM: HOMO SAPIENS  (F) TISSUE TYPE: HIPPOCAMPUS                                                         |     |
|   | 20 | <pre>(ix) FEATURE:     (A) NAME/KEY: CDS     (B) LOCATION: 5071703     (D) OTHER INFORMATION: /function= "OSTEOGENIC PROTEIN"</pre>     |     |
|   |    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:                                                                                                 |     |
|   | 25 | GGAATTCCGG CCACAGTGGC GCCGGCAGAG CAGGAGTGGC TGGAGGAGCT GTGGTTGGAG                                                                       | 60  |
|   |    | CAGGAGGTGG CACGGCAGGG CTGGAGGGCT CCCTATGAGT GGCGGAGACG GCCCAGGAGG                                                                       | 120 |
|   |    | CGCTGGAGCA ACAGCTCCCA CACCGCACCA AGCGGTGGCT GCAGGAGCTC GCCCATCGCC                                                                       | 180 |
|   |    | CCTGCGCTGC TCGGACCGCG GCCACAGCCG GACTGGCGGG TACGGCGGCG ACAGAGGCAT                                                                       | 240 |
|   |    | TGGCCGAGAG TCCCAGTCCG CAGAGTAGCC CCGGCCTCGA GGCGGTGGCG TCCCGGTCCT                                                                       | 300 |
|   | 30 | CTCCGTCCAG GAGCCAGGAC AGGTGTCGCG CGGCGGGGCT CCAGGGACCG CGCCTGAGGC                                                                       | 360 |
|   |    | CGGCTGCCCG CCCGTCCCGC CCCGCCCGC CGCCCGAGCC CAGCCTCCTT                                                                                   | 420 |
|   |    | GCCGTCGGGG CGTCCCCAGG CCCTGGGTCG GCCGCGGAGC CGATGCGCGC CCGCTGAGCG                                                                       | 480 |
| • | 35 | CCCCAGCTGA GCGCCCCCGG CCTGCC ATG ACC GCG CTC CCC GGC CCG CTC TGG  Met Thr Ala Leu Pro Gly Pro Leu Trp  1 5                              | 533 |
| • |    | CTC CTG GGC CTG GCG CTA TGC GCG CTG GGC GGC GGC GGC CCC GGC CTG Leu Leu Gly Leu Ala Leu Cys Ala Leu Gly Gly Gly Pro Gly Leu 10 15 20 25 | 581 |
|   |    | CGA CCC CCG CCC GGC TGT CCC CAG CGA CGT CTG GGC GCG CGC GAC CGG                                                                         | 629 |

| 05 | ALE               | rr                | PIC               | ) PT(             | 30                | y Cys             | s Pro             | Glı               | n Arg             | g Arg             | g Lei             | ı Gly             | y Ala             | a Arg                        | g Asp<br>4(       | Arg               |      |
|----|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------------|-------------------|-------------------|------|
|    | GAC<br>Asp        | GT(               | G CAG             | GCGC<br>Arg<br>45 | GAC<br>Glu        | G AT(             | CTG<br>Leu        | GCC<br>Ala        | GTO<br>Val        | Let               | C GGO<br>1 Gly    | G CT(             | G CCT             | GG(<br>Gl <sub>3</sub><br>55 | 7 Arg             | CCC<br>Pro        | 677  |
| 10 | CGG               | Pro               | CGC<br>Arg<br>60  | vra               | CCA<br>Pro        | CCC<br>Pro        | GCC<br>Ala        | GCC<br>Ala<br>65  | Ser               | CGG<br>Arg        | CTG<br>Leu        | CCC<br>Pro        | GCG<br>Ala<br>70  | Ser                          | GCG<br>Ala        | CCG               | 725  |
| 15 | CTC<br>Leu        | Phe<br>75         | TIEL              | CTG<br>Leu        | GAC<br>Asp        | CTG<br>Leu        | TAC<br>Tyr<br>80  | Hls               | CGC               | ATG<br>Met        | GCC<br>Ala        | GGC<br>Gly<br>85  | ' Asp             | GAC<br>Asp                   | GAC<br>Asp        | GAG<br>Glu        | 773  |
|    | GAC<br>Asp<br>90  | 019               | GCC<br>Ala        | GCG<br>Ala        | GAG<br>Glu        | GCC<br>Ala<br>95  | ren               | GGC<br>Gly        | CGC               | GCC               | GAC<br>Asp<br>100 | Leu               | GTC<br>Val        | ATG<br>Het                   | AGC<br>Ser        | TTC<br>Phe<br>105 | 821  |
| 20 | GTT<br>Val        | AAC<br>Asn        | ATG<br>Met        | GTG<br>Val        | GAG<br>Glu<br>110 | Arg               | GAC<br>Asp        | CGT<br>Arg        | GCC<br>Ala        | CTG<br>Leu<br>115 | Gly               | CAC               | CAG<br>Gln        | GAG<br>Glu                   | CCC<br>Pro<br>120 | CAT<br>His        | 869  |
|    | TGG<br>Trp        | AAG<br>Lys        | GAG<br>Glu        | TTC<br>Phe<br>125 | CGC<br>Arg        | TTT<br>Phe        | GAC<br>Asp        | CTG<br>Leu        | ACC<br>Thr<br>130 | CAG<br>Gln        | ATC<br>Ile        | CCG<br>Pro        | GCT<br>Ala        | GGG<br>Gly<br>135            | GAG<br>Glu        | GCG<br>Ala        | 917  |
| 25 | GTC<br>Val        | ACA<br>Thr        | GCT<br>Ala<br>140 | GCG<br>Ala        | GAG<br>Glu        | TTC<br>Phe        | CGG<br>Arg        | ATT<br>Ile<br>145 | TAC<br>Tyr        | AAG<br>Lys        | GTG<br>Val        | CCC<br>Pro        | AGC<br>Ser<br>150 | ATC<br>Ile                   | CAC<br>His        | CTG<br>Leu        | 965  |
| 30 | CTC<br>Leu        | AAC<br>Asn<br>155 | AGG<br>Arg        | ACC<br>Thr        | CTC<br>Leu        | CAC<br>His        | GTC<br>Val<br>160 | AGC<br>Ser        | ATG<br>Met        | TTC<br>Phe        | CAG<br>Gln        | GTG<br>Val<br>165 | GTC<br>Val        | CAG<br>Gln                   | GAG<br>Glu        | CAG<br>Gln        | 1013 |
|    | TCC<br>Ser<br>170 | AAC<br>Asn        | AGG<br>Arg        | GAG<br>Glu        | TCT<br>Ser        | GAC<br>Asp<br>175 | TTG<br>Leu        | TTC<br>Phe        | TTT<br>Phe        | TTG<br>Leu        | GAT<br>Asp<br>180 | CTT<br>Leu        | CAG<br>Gln        | ACG<br>Thr                   | CTC<br>Leu        | CGA<br>Arg<br>185 | 1061 |
| 35 | GCT<br>Ala        | GGA<br>Gly        | GAC<br>Asp        | GAG<br>Glu        | GGC<br>Gly<br>190 | TGG<br>Trp        | CTG<br>Leu        | GTG<br>Val        | CTG<br>Leu        | GAT<br>Asp<br>195 | GTC<br>Val        | ACA<br>Thr        | GCA<br>Ala        | GCC<br>Ala                   | AGT<br>Ser<br>200 | GAC<br>Asp        | 1109 |
|    | TGC<br>Cys        | TGG<br>Trp        | TTG<br>Leu<br>2   | CTG<br>Leu<br>05  | AAG<br>Lys        | CGT<br>Arg        | CAC<br>His        | AAG<br>Lys        | GAC<br>Asp<br>210 | CTG<br>Leu        | GGA<br>Gly        | CTC<br>Leu        | CGC<br>Arg        | CTC<br>Leu<br>215            | TAT<br>Tyr        | GTG<br>Val        | 1157 |
| 40 | GAG<br>Glu        |                   | GAG<br>Glu<br>220 | GAC<br>Asp        | GGG<br>Gly        | CAC<br>His        | 26L               | GTG<br>Val<br>225 | GAT<br>Asp        | CCT<br>Pro        | GGC<br>Gly        | CTG<br>Leu        | GCC<br>Ala<br>230 | GGC<br>Gly                   | CTG<br>Leu        | CTG<br>Leu        | 1205 |
|    | GGT<br>Gly        | CAA<br>Gln        | CGG (             | GCC<br>Ala        | CCA<br>Pro        | CGC<br>Arg        | TCC<br>Ser        | CAA<br>Gln        | CAG<br>Gln        | CCT<br>Pro        | TTC<br>Phe        | GTG<br>Val        | GTC<br>Val        | ACT<br>Thr                   | TTC<br>Phe        | TTC<br>Phe        | 1253 |

- 53 -

| 05 |                   | 235                   |                       |                   |                   |                   | 240               |                   |                   |                   |                   | 245               |                   |                   |                   |                   |      |
|----|-------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|    | AGG<br>Arg<br>250 | GCC<br>Ala            | AGT<br>Ser            | CCG<br>Pro        | AGT<br>Ser        | CCC<br>Pro<br>255 | ATC<br>Ile        | CGC               | ACC<br>Thr        | CCT<br>Pro        | CGG<br>Arg<br>260 | GCA<br>Ala        | GTG<br>Val        | AGG<br>Arg        | CCA<br>Pro        | CTG<br>Leu<br>265 | 1301 |
| 10 | AGG<br>Arg        | AGG<br>Arg            | AGG<br>Arg            | CAG<br>Gln        | CCG<br>Pro<br>270 | AAG<br>Lys        | AAA<br>Lys        | AGC<br>Ser        | AAC<br>Asn        | GAG<br>Glu<br>275 | CTG<br>Leu        | CCG<br>Pro        | CAG<br>Gln        | GCC<br>Ala        | AAC<br>Asn<br>280 | CGA<br>Arg        | 1349 |
|    | CTC<br>Leu        | CCA<br>Pro            | GGG<br>Gly            | ATC<br>Ile<br>285 | TTT<br>Phe        | GAT<br>Asp        | GAC<br>Asp        | GTC<br>Val        | CAC<br>His<br>290 | GGC<br>Gly        | TCC<br>Ser        | CAC<br>His        | GGC<br>Gly        | CGG<br>Arg<br>295 | CAG<br>Gln        | GTC<br>Val        | 1397 |
| 15 | TGC<br>Cys        | CGT<br>Arg            | CGG<br>Arg<br>300     | CAC<br>His        | GAG<br>Glu        | CTC<br>Leu        | TAC<br>Tyr        | GTC<br>Val<br>305 | AGC<br>Ser        | TTC<br>Phe        | CAG<br>Gln        | GAC<br>Asp        | CTC<br>Leu<br>310 | GGC<br>Gly        | TGG<br>Trp        | CTG<br>Leu        | 1445 |
| 20 | Asp               | TGG<br>Trp<br>315     | GTC<br>Val            | ATC<br>Ile        | GCT<br>Ala        | CCC<br>Pro        | CAA<br>Gln<br>320 | GGC<br>Gly        | TAC<br>Tyr        | TCG<br>Ser        | GCC<br>Ala        | TAT<br>Tyr<br>325 | TAC<br>Tyr        | TGT<br>Cys        | GAG<br>Glu        | GGG<br>Gly        | 1493 |
|    | GAG<br>Glu<br>330 | TGC<br>Cys            | TCC<br>Ser            | TTC<br>Phe        | CCA<br>Pro        | CTG<br>Leu<br>335 | GAC<br>Asp        | TCC<br>Ser        | TGC<br>Cys        | ATG<br>Met        | AAT<br>Asn<br>340 | GCC<br>Ala        | ACC<br>Thr        | AAC<br>Asn        | CAC<br>His        | GCC<br>Ala<br>345 | 1541 |
| 25 | ATC<br>Ile        | CTG<br>Leu            | CAG<br>Gln            | Ser               | CTG<br>Leu<br>350 | GTG<br>Val        | CAC<br>His        | CTG<br>Leu        | ATG<br>Met        | AAG<br>Lys<br>355 | CCA<br>Pro        | AAC<br>Asn        | GCA<br>Ala        | GTC<br>Val        | CCC<br>Pro<br>360 | AAG<br>Lys        | 1589 |
|    | GCG<br>Ala        | TGC<br>Cys            | Cys                   | GCA<br>Ala<br>65  | CCC<br>Pro        | ACC<br>Thr        | AAG<br>Lys        | CTG<br>Leu        | AGC<br>Ser<br>370 | GCC<br>Ala        | ACC<br>Thr        | TCT<br>Ser        | GTG<br>Val        | CTC<br>Leu<br>375 | TAC<br>Tyr        | TAT<br>Tyr        | 1637 |
| 30 | GAC .             | Ser                   | AGC .<br>Ser .<br>380 | AAC .<br>Asn .    | AAC<br>Asn        | GTC .<br>Val      | Ile               | CTG<br>Leu<br>385 | CGC<br>Arg        | AAA<br>Lys        | GCC<br>Ala        | Arg               | AAC<br>Asn<br>390 | ATG<br>Met        | GTG<br>Val        | GTC<br>Val        | 1685 |
| 35 | AAG (             | GCC S<br>Ala (<br>395 | TGC (<br>Cys (        | GGC Gly           | TGC<br>Cys        | CAC '             | TGAG              | TCAG              | cc c              | GCCC              | AGCC              | C TA              | CTGC              | AGCA              |                   |                   | 1733 |
|    | ATTC              | ACTG                  | GC C                  | GTCG:             | ITTT.             | A CA              | ACGT              | GTGA              | CTG               | GGAA              | AAC (             | CCTG              | GCGT              | TA C              | CCAA              | CTTAA             | 1793 |
|    | TCGC              | CTTG                  | CA G                  | CACA:             | rccc              | C CT              | rtcg(             | CCAG              | CTG               | GCTA              | ATA (             | GCGA              | AGAG              | GC C              | CCGC              | ACCGA             | 1853 |
|    | TCGC              | CTT                   | CC CA                 | AACA(             | GTTG              | C GC              | CCCA              | GTGA              | ATG               | GCGA              | ATG (             | GCAA.             | ATTG              | TA A              | GCGT              | ATAAT             | 1913 |
|    | TTTT(             | STTA/                 | AA AI                 | PTCG              | CGTT              | A AA:             | ITTT:             | PT.               |                   |                   |                   |                   |                   |                   |                   |                   | 1941 |

## (2) INFORMATION FOR SEQ ID NO:6:

- 54 -

| US |            |            | (1         | (1         | B) :          | LENG!<br>LYPE | CHAR<br>TH: :<br>: am:<br>LOGY: | 399 a      | amino<br>acid |                          | ids        |            |            |            |            |            |
|----|------------|------------|------------|------------|---------------|---------------|---------------------------------|------------|---------------|--------------------------|------------|------------|------------|------------|------------|------------|
|    |            |            | (ii)       | ) H(       | DLEC          | ULE !         | TYPE                            | : pro      | otei          | n                        |            |            |            |            |            |            |
| 10 |            |            | (ix)       |            | EATUI<br>D) ( |               | R IN                            | FORM       | ATIO          | <b>1:</b> / <sub>j</sub> | prodi      | uct=       | "h01       | P2-P1      | P "        |            |
|    |            |            | (xi        | ) SI       | EQUE          | NCE I         | DESCI                           | RIPT:      | ION:          | SEQ                      | ID 1       | NO:6       | :          |            |            |            |
|    | Met<br>1   | Thr        | Ala        | Leu        | Pro<br>5      | Gly           | Pro                             | Leu        | Trp           | Leu<br>10                | Leu        | Gly        | Leu        | Ala        | Leu<br>15  | Cys        |
| 15 | Ala        | Leu        | Gly        | Gly<br>20  | Gly           | Gly           | Pro                             | Gly        | Leu<br>25     | Arg                      | Pro        | Pro        | Pro        | Gly<br>30  | Cys        | Pro        |
|    | Gln        | Arg        | Arg<br>35  | Leu        | Gly           | Ala           | Arg                             | Asp<br>40  | Arg           | Asp                      | Val        | Gln        | Arg<br>45  | Glu        | Ile        | Leu        |
| 20 | Ala        | Val<br>50  | Leu        | Gly        | Leu           | Pro           | Gly<br>55                       | Arg        | Pro           | Arg                      | Pro        | Arg<br>60  | Ala        | Pro        | Pro        | Ala        |
|    | Ala<br>65  | Ser        | Arg        | Leu        | Pro           | Ala<br>70     | Ser                             | Ala        | Pro           | Leu                      | Phe<br>75  | Met        | Leu        | Asp        | Leu        | Tyr<br>80  |
|    | His        | Arg        | Het        | Ala        | Gly<br>85     | Asp           | Asp                             | Asp        | Glu           | Asp<br>90                | Gly        | Ala        | Ala        | Glu        | Ala<br>95  | Leu        |
| 25 | Gly        | Arg        | Ala        | Asp<br>100 | Leu           | Val           | Het                             | Ser        | Phe<br>105    | Val                      | Asn        | Het        | Val        | Glu<br>110 | Arg        | Asp        |
|    | Arg        | Ala        | Leu<br>115 | Gly        | His           | Gln           | Glu                             | Pro<br>120 | His           | Trp                      | Lys        | Glu        | Phe<br>125 | Arg        | Phe        | Asp        |
| 30 | Leu        | Thr<br>130 | Gln        | Ile        | Pro           | Ala           | Gly<br>135                      | Glu        | Ala           | Val                      | Thr        | Ala<br>140 | Ala        | Glu        | Phe        | Arg        |
|    | Ile<br>145 | Tyr        | Lys        | Val        | Pro           | Ser<br>150    | Ile                             | His        | Leu           | Leu                      | Asn<br>155 | Arg        | Thr        | Leu        | His        | Val<br>160 |
|    | Ser        | Het        | Phe        | Gln        | Val<br>165    | Val           | Gln                             | Glu        | Gln           | Ser<br>170               | Asn        | Arg        | Glu        | Ser        | Asp<br>175 | Leu        |
| 35 | Phe        | Phe        |            | Asp<br>180 | Leu           | Gln           | Thr                             | Leu        | Arg<br>185    | Ala                      | Gly        | Asp        | Glu        | Gly<br>190 | Trp        | Leu        |
|    | Val        | Leu        | Asp<br>195 | Val        | Thr           | Ala           | Ala                             | Ser<br>200 | Asp           | Cys                      | Trp        | Leu        | Leu<br>205 | Lys        | Arg        | His        |
|    | Lys        | Asp<br>210 | Leu        | Gly        | Leu           | Arg           | Leu<br>215                      | Tyr        | Val           | Glu                      | Thr        | Glu<br>220 | Asp        | Gly        | His        | Ser        |

- O5 Val Asp Pro Gly Leu Ala Gly Leu Leu Gly Gln Arg Ala Pro Arg Ser 225 Gln Gln Pro Phe Val Val Thr Phe Phe Arg Ala Ser Pro Ser Pro Ile 255
- Arg Thr Pro Arg Ala Val Arg Pro Leu Arg Arg Gln Pro Lys Lys 260 265 270
  - Ser Asn Glu Leu Pro Gln Ala Asn Arg Leu Pro Gly Ile Phe Asp Asp 275 280 285
  - Val His Gly Ser His Gly Arg Gln Val Cys Arg Arg His Glu Leu Tyr 290 295 300
- Val Ser Phe Gln Asp Leu Gly Trp Leu Asp Trp Val Ile Ala Pro Gln 305 310 315 320
  - Gly Tyr Ser Ala Tyr Tyr Cys Glu Gly Glu Cys Ser Phe Pro Leu Asp 325 330 335
- Ser Cys Met Asn Ala Thr Asn His Ala Ile Leu Gln Ser Leu Val His 340 340 350
  - Leu Met Lys Pro Asn Ala Val Pro Lys Ala Cys Cys Ala Pro Thr Lys 355 360 365
  - Leu Ser Ala Thr Ser Val Leu Tyr Tyr Asp Ser Ser Asn Asn Val Ile 370 380
- Leu Arg Lys Ala Arg Asn Met Val Val Lys Ala Cys Gly Cys His 385 390 395
  - (2) INFORMATION FOR SEQ ID NO:7:
    - (i) SEQUENCE CHARACTERISTICS:
      - (A) LENGTH: 102 amino acids
      - (B) TYPE: amino acid
      - (D) TOPOLOGY: linear
    - (ii) MOLECULE TYPE: protein
    - (ix) FEATURE:

30

35

- (A) NAME/KEY: Protein
- (B) LOCATION: 1..102
- (D) OTHER INFORMATION: /label= OPX
  /note= "WHEREIN EACH XAA IS INDEPENDENTLY SELECTED
  FROM A GROUP OF ONE OR MORE SPECIFIED AMINO ACIDS
  AS DEFINED IN THE SPECIFICATION
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

|    |     | Cys<br>1  | Xaa       | Xaa                      | His         | Glu<br>5             | Leu                         | Tyr                           | Val                           | Xaa         | Phe<br>10     | Xaa          | Asp       | Leu         | Gly         | Trp<br>15   | Xaa         | <b>a</b> . |
|----|-----|-----------|-----------|--------------------------|-------------|----------------------|-----------------------------|-------------------------------|-------------------------------|-------------|---------------|--------------|-----------|-------------|-------------|-------------|-------------|------------|
| 5  |     | Asp       | Trp       | Xaa                      | Ile<br>20   | Ala                  | Pro                         | Xaa                           | Gly                           | Tyr<br>25   | Xaa           | Ala          | Tyr       | Tyr         | Cys<br>30   | Glu         | Gly         | 7          |
|    |     | Glu       | Cys       | Xaa<br>35                | Phe         | Pro                  | Leu                         | Xaa                           | Ser<br>40                     | Xaa         | Het           | Asn          | Ala       | Thr<br>45   | Asn         | His         | Ala         | 3          |
| 10 |     | Ile       | Xaa<br>50 | Gln                      | Xaa         | Leu                  | Val                         | His<br>55                     | Xaa                           | Xaa         | Xaa           | Pro          | Xaa<br>60 | Xaa         | Val         | Pro         | Lys         | 5          |
| 15 |     | Xaa<br>65 | Cys       | Cys                      | Ala         | Pro                  | Thr<br>70                   | Xaa                           | Leu                           | Xaa         | Ala           | Xaa<br>75    | Ser       | Val         | Leu         | Tyr         | Xaa<br>80   |            |
|    |     | Asp       | Xaa       | Ser                      | Xaa         | Asn<br>85            | Val                         | Xaa                           | Leu                           | Xaa         | Lys<br>90     | Xaa          | Arg       | Asn         | Het         | Val<br>95   | Va]         | L          |
| 20 |     | Xaa       | Ala       | Cys                      | Gly<br>100  | Cys                  | His                         |                               |                               |             |               |              |           |             |             |             |             |            |
|    | (2) | INFO      | RMAT      | CION                     | FOR         | SEQ                  | ID 1                        | 8:08                          | :                             |             |               |              |           |             |             |             |             |            |
| 25 |     |           | (i)       | SE(<br>(A)<br>(B)<br>(D) | LI          | INGTI<br>PE:         | l: 97<br>amiı               | TER: 7 am: no ac line         | ino a                         |             | 3             |              |           |             |             |             |             |            |
| 30 |     | (         | ii)       | HOI                      | ECUI        | E T                  | PE:                         | prot                          | cein                          |             |               |              |           |             |             |             |             |            |
| 35 |     | (         | ix)       | FE#<br>(A)<br>(B)<br>(D) | LC          | ME/I<br>CATI<br>THER | ON:<br>INFO<br>note<br>NE ( | Prof<br>19<br>ORMA:<br>OF THE | 77<br>FION:<br>THERI<br>HE 20 | I NIE       | EACH<br>TURAI | XAA<br>LLY-( | INDI      | RIN(        | L-1         | CSONI       | ∜DIC<br>ER, | CATES      |
| 40 |     | (         | xi)       | SEC                      | )UEN(       | E DI                 | escr:                       | [PTI(                         | )N: S                         | SEQ 1       | ID NO         | ):8:         |           |             |             |             |             |            |
| 45 |     | Xa<br>1   |           | ia Xa                    | a Xa        | a Xa                 |                             | aa Xa                         | aa Xa                         | aa Xa       | _             | aa Xa<br>lO  | aa Xa     | a Xa        | a Xa        |             | aa X<br>15  | Kaa        |
| 30 |     | Xa        | a Xa      | a Xa                     |             | ia Xa<br>!0          | a Xa                        | aa Xa                         | aa Xa                         |             | 75 Xa<br>25   | aa Xa        | a Xa      | ia Cy       | _           | aa Xa<br>30 | aa X        | laa 💮      |
| 50 |     | Xa        | a Xa      |                          | ia Cy<br>15 | rs Xa                | a Xa                        | aa Xa                         |                               | aa Xa<br>40 | aa Xa         | aa Xa        | aa Xa     |             | ia Xa<br>i5 | aa Xa       | aa X        | (aa        |
|    |     | Xa        |           | ia Xa<br>iO              | a Xa        | a Xa                 | ıa Xa                       | aa Xa                         | a Xa<br>55                    | aa Xa       | aa Xa         | aa Xa        |           | ia C3<br>50 | rs Cy       | 7s Xa       | aa X        | laa        |

- 57 -

05 Xaa (2) INFORMATION FOR SEQ ID NO:9: SEQUENCE CHARACTERISTICS: (A) LENGTH: 102 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: protein (ix) FEATURE: (A) NAME/KEY: Protein LOCATION: 1..102 (B) OTHER INFORMATION: /label= PROTEIN 20 /note= "WHEREIN EACH XAA INDEPENDENTLY INDICATES ONE OF THE 20 NATURALLY-OCCURRING L-ISOHER A-AHINO AICDS, OR A DERIVATIVE THEREOF." (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: 25 Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa 30 Xaa Xaa Cys Xaa Cys Xaa

100

## 05 What is claimed is:

- 1. A polypeptide chain comprising an amino acid sequence described by residues 303-399 of Seq. ID No. 5.
- The polypeptide chain of claim 1 comprising an amino acid sequence described by residues 297-399 of Seq. ID No. 5.
  - 3. The polypeptide chain of claim 2 comprising of amino acid sequence described by residues 267-399 of Seq. ID No. 5.
- 4. The polypeptide chain of claim 3 comprising an amino acid sequence described by residues 264-399 of Seq. ID No. 5.
- 5. The polypeptide chain of claim 4 comprising an amino acid sequence described by residues 240-399 of Seq. ID No. 5.
  - 6. The polypeptide chain of claim 5 comprising an amino acid sequence described by residues 1-399 of Seq. ID No. 5.
- A polypeptide chain comprising an amino acid
   sequence described by residues of 301-397 of Seq. ID
   No. 3.
  - 8. The polypeptide chain of claim 7 comprising an amino acid sequence described by residues 296-397 of Seq. ID No.3.

- 9. The polypeptide chain of claim 8 comprising an amino acid sequence described by residues 259-397 of Seq. ID No. 3.
  - 10. The polypeptide chain of claim 9 comprising an amino acid described by residues 1-397 of Seq. ID No. 3.

10

- 11. A polypeptide chain useful as a subunit of a dimeric osteogenic protein comprising a pair of disulfide-bonded polypeptide chains, said polypeptide chain having an amino acid sequence described by residues 303-399 of Seq. ID No. 5, including allelic and species variants thereof, such that the dimeric osteogenic protein comprising said polypeptide chain has a conformation capable of inducing endochondral bone formation when implanted in a mammal in association with a matrix.
  - 12. The polypeptide chain of claim 11 wherein said amino acid sequence comprises residues 261-399 of Seq. ID 5.
- 13. The polypeptide chain of claim 11 wherein the amino acid sequence comprises residues 301-397 of Seq. ID No. 3.
  - 14. The polypeptide chain of claim 13 wherein said amino acid sequent comprises residues 259-397 of Seq. ID No. 3.
- 30 15. A dimeric osteogenic protein capable of inducing endochondral bone formation in a mammal when implanted in said mammal in association with a matrix;

- 60 -

- os said protein comprising a pair of disulfide-bonded polypeptide chains constituting a dimeric species, wherein each said polypeptide chain is the polypeptide chain of claim 11.
- 16. The polypeptide chain of claim 3 or 11 produced by expression of recombinant DNA in a host cell.
  - 17. The polypeptide chain of claim 16 wherein said host cell is a procaryotic host cell.
  - 18. The polypeptide chain of claim 16 wherein said host cell is a mammalian cell.
- 19. The polypeptide of claim 1, 3 or 11 that is glycosylated.
  - 20. A nucleic acid encoding the polypeptide chain of claim 1, 3, or 11.
- 21. A dimeric protein comprising a pair of polypeptide chains expressed from a DNA sequence described by ID No. 3 or ID No. 5, including allelic and species variants thereof, such that, when said polypeptide chains are oxidized to produce a disulfide-bonded dimeric species, the dimeric species has a conformation that is capable of inducing endochondral bone or cartilage formation when disposed within a matrix and implanted in a mammal.

| hOP2<br>mOP2 | Ala        | Val<br>Ala | Arg        | Pro        | Leu<br>5   | Arg<br>Lys | Arg       | Arg        |
|--------------|------------|------------|------------|------------|------------|------------|-----------|------------|
| hOP2<br>mOP2 | Gln        | Pro<br>10  | Lys        | Lys        | Ser<br>Thr | Asn        | Glu<br>15 | Leu        |
| hOP2<br>mOP2 | Pro        | Gln<br>His | Ala<br>Pro | Asn<br>20  | Arg<br>Lys | Leu        | Pro       | Gly        |
| hOP2<br>mOP2 | Ile<br>25  | Phe        | Asp        | Asp        | Val<br>Gly | His<br>30  | Gly       | Ser        |
| hOP2<br>mOP2 | His<br>Arg | Gly        | Arg<br>35  | Gln<br>Glu | Val        | Cys        | Arg       | Arg<br>40  |
| hOP2<br>mOP2 | His        | Glu        | Leu        | Tyr        | Val<br>45  | Ser<br>Arg | Phe       | Gln<br>Arg |
| hOP2<br>mOP2 | Asp        | Leu<br>50  | Gly        | Trp        | Leu        | Asp        | Trp<br>55 | Val        |
| hOP2<br>mOP2 | Ile        | Ala        |            | Gĺn<br>60  |            |            | Ser       | Ala        |
| hOP2<br>mOP2 | Tyr<br>65  | Tyr        | Cys        | Glu        | Gly        | Glu<br>'70 | Cys       | Ser<br>Ala |

Fig. 1.1

# SUBSTITUTE SHEET

| hOP2<br>mOP2 | Phe        | Pro        | Leu<br>75  | Asp        | Ser        |            | Met        | Asn<br>80  |
|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
| hOP2<br>mOP2 |            | Thr        | Asn        | His        | Ala<br>85  | Ile        | Leu        | Gln        |
| hOP2<br>mOP2 | Ser        | Leu<br>'90 | Val<br>    | His<br>    | Leu        | Met        | Lys<br>95  | Pro        |
| hOP2<br>mOP2 |            | Ala<br>Val | Val        | Pro<br>100 | Lys        | Ala        | Cys        | Cys        |
| hOP2<br>mOP2 | Ala<br>105 | Pro        | Thr        | Lys        | Leu        | Ser<br>iio | Ala        | Thr        |
| hOP2<br>mOP2 | Ser        | Val        | Leu<br>115 | Tyr        | Tyr        | Asp        | Ser        | Ser<br>iżo |
| hOP2<br>mOP2 | Asn        | Asn        | Val        | Ile        | Leu<br>125 | Arg        | _          | Ala<br>His |
| hOP2<br>mOP2 | Arg        | Asn<br>130 | Met        | Val        | Val        | Lys        | Ala<br>135 | Cys        |
| hOP2<br>mOP2 | Gly        | Cys        | His        | }          |            |            |            |            |

Fig. 1.2

# SUBSTITUTE SHEET

| hOP1<br>mOP1<br>hOP2<br>mOP2 | <br>Ala | <br>Val    | Gly<br>Arg<br>Arg       | Gly<br>Pro | Leu     | Ara | • • •      | Ara   | • • • |
|------------------------------|---------|------------|-------------------------|------------|---------|-----|------------|-------|-------|
| hOP1<br>mOP1<br>hOP2<br>mOP2 | Pro     | Lys<br>Lys | Ser<br><br>Lys<br>Lys   | Ser        | <br>Asn | Glu | Leu        | Pro   | Gln   |
| hOP1<br>mOP1<br>hOP2<br>mOP2 | Ala     | Asn        | Leu<br><br>Arg<br>Lys   | <br>Leu    | Pro     | Gly | Ser<br>Ile | Phe   | Asp   |
| hOP1<br>mOP1<br>hOP2<br>mOP2 | Asp     | <br>Val    | Ser<br>His<br>His<br>30 | Gly        | • • •   | His | Gly        | • • • | • • • |
| hOP1<br>mOP1<br>hOP2<br>mOP2 |         |            | Lys<br><br>Arg<br>Arg   |            |         |     |            |       |       |

Fig. 2.1

| hOP1<br>mOP1<br>hOP2<br>mOP2 | • • • | • • •   | Arg<br>Gln | • • • | • • • | • • •   | • • • | Leu   | • • • |
|------------------------------|-------|---------|------------|-------|-------|---------|-------|-------|-------|
| hOP1<br>mOP1<br>hOP2<br>mOP2 | • • • | <br>Val | Ile        | • • • | • • • | Gln     | • • • | • • • | Ser   |
| hOP1<br>mOP1<br>hOP2<br>mOP2 | • • • | • • •   | Tyr<br>    | • • • | • • • | • • •   | • • • | • • • | Ser   |
| hOP1<br>mOP1<br>hOP2<br>mOP2 | • • • | • • •   | • • •      | Asp   | • • • | Cys     | • • • |       | • • • |
| hOP1<br>mOP1<br>hOP2<br>mOP2 | • • • | • • •   | • • •      | • • • | • • • | <br>Leu | • • • | Ser   | • • • |

Fig. 2.2

| hOP1<br>mOP1<br>hOP2<br>mOP2 | • • •          | His                      | Leu               | Met   | Lys   | • • •          | Asp<br>Asn | <br>Ala | • • •             |
|------------------------------|----------------|--------------------------|-------------------|-------|-------|----------------|------------|---------|-------------------|
| hOP1<br>mOP1<br>hOP2<br>mOP2 | Pro<br><br>100 | Lys                      | Pro<br>Ala<br>Ala | Cys   | Cys   | Ala<br><br>105 | Pro        | Thr     | Gln<br>Lys<br>Lys |
| hOP1<br>mOP1<br>hOP2<br>mOP2 | • • •          | Asn<br>Ser<br>Ser<br>110 | • • •             | Thr   | • • • | • • •          | • • •      | • • •   | Tvr               |
| hOP1<br>mOP1<br>hOP2<br>mOP2 |                | Asp<br><br>Ser<br>Ser    |                   |       |       |                | Asp        |         |                   |
| hOP1<br>mOP1<br>hOP2<br>mOP2 | • • •          | Tyr<br><br>Ala<br>His    | • • •             | • • • | • • • | • • •          | • • •      | Lys     |                   |
| hOP1<br>mOP1<br>hOP2<br>mOP2 | Ala 135        | Cys                      | Gly               | Cys   | His   |                |            |         |                   |

Fig. 2.3

# INTERNATIONAL SEARCH REPORT

International Application No PCT/US 91/07635

|                                                                                            | BJECT MATTER (if several classificati                                                                                      |                                                                                                                                     | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03 31/0/033                                            |  |  |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| Int.Cl.5                                                                                   | tent Classification (IPC) or to both Nation<br>C 12 N 15/00 C<br>A 61 K 27/00                                              | al Classification and IPC<br>07 K 7/10                                                                                              | C 07 K 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3/00                                                   |  |  |  |  |
| II. FIELDS SEARCHED                                                                        |                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                      |  |  |  |  |
|                                                                                            | Minimum Doc                                                                                                                | rumentation Searched <sup>7</sup>                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |  |  |  |  |
| Classification System                                                                      |                                                                                                                            | Classification Symbols                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |  |  |  |  |
| Int.C1.5                                                                                   | C 07 K                                                                                                                     | A 61 K                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |  |  |  |  |
|                                                                                            | Documentation Searched of<br>to the Extent that such Docume                                                                | ther than Minimum Documents<br>nts are Included in the Fields S                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |  |  |  |  |
|                                                                                            |                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |  |  |  |  |
| III. DOCUMENTS CONSIDE                                                                     |                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |  |  |  |  |
| Category ° Citation of                                                                     | Document, 11 with indication, where appre                                                                                  | opriate, of the relevant passage                                                                                                    | s 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Relevant to Claim No.13                                |  |  |  |  |
|                                                                                            | ,8909788 (CREATIVE BIO                                                                                                     |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11,15-<br>21<br>1-10,12<br>-14                         |  |  |  |  |
| X WO.A.                                                                                    | WO,A,9011366 (GENETICS INSTITUTE) 4                                                                                        |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |  |  |  |  |
| Octob                                                                                      | October 1990, see the whole document                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |  |  |  |  |
| A                                                                                          | •••                                                                                                                        |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11,15-<br>21                                           |  |  |  |  |
| Unive<br>Ozkay<br>prote                                                                    | Journal, volume 9, no. ersity Press (Eynsham, which was et al.: "OP-1 cDNA ein in the TGF-beta fame 2093, see the whole ar | Oxford, GB) E.<br>encodes an oste<br>iliy", pages                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11,15-<br>21                                           |  |  |  |  |
|                                                                                            |                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |  |  |  |  |
| considered to be of pari<br>"E" earlier document but pu<br>filing date                     | general state of the art which is not<br>icular relevance<br>blished on or after the international                         | "T" later document publis or priority date and a cited to understand a invention "X" document of particula cannot be considered     | not in conflict with the principle or theory ar relevance; the clair novel or cannot be control be control to control the control that control the control that control the control that control the control that con | e application but<br>underlying the<br>ned invention   |  |  |  |  |
| which is cited to establicitation or other special "O" document referring to a other means | n oral disclosure, use, exhibition or or to the international filing date but                                              | involve an inventive of particular cannot be considered document is combine ments, such combina in the art.  "4" document member of | er relevance; the claim<br>to involve an inventi-<br>d with one or more of<br>tion being obvious to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ve step when the<br>her such docu-<br>a person skilled |  |  |  |  |
| IV. CERTIFICATION                                                                          |                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |  |  |  |  |
| Date of the Actual Completion o                                                            | f the International Search                                                                                                 | Date of Mailing of th                                                                                                               | s International Searc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h Report                                               |  |  |  |  |
| 31-01-                                                                                     |                                                                                                                            |                                                                                                                                     | 20 FEB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1992                                                   |  |  |  |  |
| International Searching Authorit<br>EUROP                                                  | y<br>EAN PATENT OFFICE                                                                                                     | Signature of Authoriz                                                                                                               | MISS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAZELAAK                                               |  |  |  |  |

Form PCT/ISA/210 (second sheet) (Jamesry 1985)

# ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9107635 SA 53017

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 12/02/92

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

| Patent document cited in search report | Publication<br>date |                                                                                                          | nt family<br>aber(s)                                                                                                                                   | Publication date                                                                                                                                                     |  |
|----------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WO-A- 8909788                          | 19-10-89            | US-A-<br>US-A-<br>AU-A-<br>EP-A-<br>EP-A-<br>JP-T-<br>WO-A-<br>AU-A-<br>EP-A-<br>JP-T-<br>WO-A-<br>US-A- | 4968590<br>5011691<br>3444989<br>3530589<br>0372031<br>0362367<br>3500655<br>3502579<br>8909787<br>5174790<br>0411105<br>3504736<br>9010018<br>4975526 | 06-11-90<br>30-04-91<br>03-11-89<br>03-11-89<br>13-06-90<br>11-04-90<br>14-02-91<br>13-06-91<br>19-10-89<br>26-09-90<br>06-02-91<br>17-10-91<br>07-09-90<br>04-12-90 |  |
| WO-A- 9011366                          | 04-10-90            | AU-A-<br>CA-A-<br>EP-A-                                                                                  | 5357790<br>2030518<br>0429570                                                                                                                          | 22-10-90<br>29-09-90<br>05-06-91                                                                                                                                     |  |

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

OTHER: