Administración de Memoria.

Sistemas Operativos Tema 4.

Sistemas Operativos (IS11) - Tema 4

Administración de memoria.

- Jerarquía de memoria:
 - Registros CPU del procesador
 - Caché (memoria rápida)
 - Memoria principal RAM
 - Almacenamiento secundario (memoria virtual)
- Al bajar en la jerarquía más capacidad pero más lento es el dispositivo y más barato.
- Administrador de memoria:
 - Parte del S.O. que gestiona la memoria:
 - Control de que partes de la memoria están utilizadas o libres.
 - Asignar memoria a procesos y liberarla cuando terminan.
 - Administrar intercambio entre memoria y disco (Memoria Virtual).

Administración de memoria.

Proceso de Compilación y Carga de un Programa:

- Ejemplo: (enlace de direcciones) Programa ensamblador con salto a una etiqueta:
 - ETIQ ---jmp ETIQ

Sistemas Operativos (IS11) - Tema 4

3

Proceso de Compilación y Carga de Programas.

- ¿En que momento se realiza el enlace o traducción de direcciones?
 - Compilación: Generando código absoluto, en el momento de compilación se sabe donde residirá el programa en memoria.
 - Carga (Reubicación estática):
 - El compilador genera código relocalizable.
 - Se crean direcciones de memoria absolutas cuando se carga el programa en memoria.
 - **Ejecución** (Reubicación dinámica) :
 - Durante la ejecución puede moverse el código de un proceso.
 - Necesita apoyo del hardware:

Sistemas Operativos (IS11) - Tema 4

4

Administración en sistemas Monoprogramados.

- En sistemas monoprogramados generalmente la memoria principal dividida en dos particiones:
 - Una para el usuario:
 - Un proceso con su código.
 - Dirección a partir de la que se cargan programas de usuario.
 - Otra para el sistema operativo residente (memoria baja).

Es necesario proteger las particiones entre sí.

Sistemas Operativos (IS11) - Tema 4

5

Administración en sistemas Monoprogramados.

- A veces el tamaño del S.O. desea variarse:
 - Ej.: Manejadores de dispositivos que no se usan.
 - Se puede realizar una reubicación dinámica del espacio.

• También, cargar los procesos de usuario en memoria alta.

Administración en sistemas Multiprogramados.

- Es deseable que haya varios procesos en memoria para su ejecución concurrente.
- Se debe compartir la memoria entre varios procesos que esperan asignación de la misma.
- Esquemas de asignación de memoria:
 - Contigua: particiones fijas y variables
 - Intercambio (swapping)
 - Paginación
 - Segmentación
 - Segmentación paginada

Sistemas Operativos (IS11) - Tema 4

7

Administración en sistemas Multiprogramados.

- Primer esquema de asignación de memoria: **Particiones**
 - La memoria está dividida de antemano en espacios (Particiones).
 - Un proceso necesita ejecutarse -> Se le asigna uno de dichos espacios (Partición).
 - Cada partición puede contener un único proceso.
 - Pueden ser:
 - Particiones Fijas:
 - Todas el mismo tamaño.
 - Con diferentes Tamaños.
 - Particiones Variables.

Particiones Fijas.

• Particiones de igual tamaño:

- Nivel de multiprogramación limitado por número de particiones.
- Hay una cola con procesos que quieren utilizar memoria y ejecutarse.
- Hay una tabla para indicar particiones ocupadas y libres.

Sistemas Operativos (IS11) - Tema 4

9

Particiones Fijas

Particiones con diferentes tamaños:

- Para procesos que quieren utilizar memoria para ejecutarse:
 - Podemos tener varias colas:
 - Cada proceso se asigna a una cola en función de su tamaño.

- Podemos tener una única cola:
- Cuando se libera una partición -> se asigna al primer proceso que cabe en ella.

Proceso 6

Particiones Fijas.

- Problemas que presenta este tipo de asignación de memoria:
 - Debe proporcionarse reubicación:
 - ¿En que partición entrará el proceso?.
 - Existe Fragmentación Interna y Externa:
 - Interna:
 - Una partición asignada y no ocupada totalmente por el proceso.
 - Externa:
 - Un proceso quiere ejecutarse, hay una partición libre, pero de menor tamaño que el proceso.
 - Necesidad de protección: (en sistemas multiprogramados)
 - Un proceso no acceda al área de memoria del otro.
 - Si la reubicación es dinámica puede usarse registros base-límite.

Sistemas Operativos (IS11) - Tema 4

11

Particiones Variables.

- Funcionamiento:
 - Inicialmente: Toda la memoria (salvo partición del S.O.) disponible para procesos, como si fuese un gran hueco.
 - Llega un proceso:
 - Se introduce en un hueco libre.
 - El espacio no ocupado será un nuevo hueco.
 - Cada zona de memoria ocupada -> una partición.
 - Proceso termina:
 - Libera su zona de memoria
 - Se convierte en un hueco.
 - Dicho hueco se fusiona con los advacentes.
 - Se conserva una tabla de partes de memoria ocupadas y libres y la cola de entrada de procesos en memoria.

2300K**→** 2560K**→**

Un ejemplo:los procesos se cargan en memoria, compiten por la CPU y al acabar liberan la memoria

por	Proceso	Memoria Requerida		Memoria Requerida		ııu		
	P ₁	600 K	P ₄	700 K				
	P_2	1000 K	P ₅	500 K				
	P ₃	300 K						
400K ³	S.O.	S.O.	S.O.	S.O.	S.O.	S.O.	S.O.	S.O.
400K≯		Proceso P1	Proceso P1	Proceso P1	Proceso P1	Proceso P1	600K	Proceso P5
1000K								
1700K ≻	2160K	560K	Proceso P2	Proceso P2	1000K	Proceso P4	Proceso P4	Proceso P4
2000K		+				300K	300K	300K
2000K			~	Proceso	Proceso	Proceso	Proceso	Proceso

Sistemas Operativos (IS11) - Tema 4

Proceso

Proceso

13

Proceso

Proceso

Proceso

Particiones Variables.

- Fragmentación de Particiones Variables:
 - Externa: SI. (memoria dividida en huecos pequeños)
 - Suma del espacio libre en memoria suficiente para el nuevo proceso.
 - Pero no hay huecos suficientemente grandes para él.
 - El nuevo proceso no se carga en memoria.
 - Interna: NO.
 - Las particiones se crean con el tamaño solicitado por el proceso.

- Esta asignación de memoria se denomina: **Asignación** dinámica de almacenamiento
- ¿Como elegir un hueco cuando llega un nuevo proceso de tamaño N?
- Estrategías:
 - Primer Ajuste:
 - Escoge el primer hueco libre de tamaño suficiente.
 - Mejor Ajuste:
 - Hueco más pequeño con tamaño suficiente (requiere ver toda la lista si no está ordenada).
 - Peor Ajuste:
 - Hueco más grande: Pretende conseguir que los huecos que queden sean grandes (requiere ver toda la lista si no ordenada).

Sistemas Operativos (IS11) - Tema 4

15

Particiones Variables.

- ¿Cuál es el mejor?
 - Simulaciones y Estadísticas:
 - Criterio tiempo (reducción) y utilización de memoria (aprovechamiento):
 - "Primer Ajuste" y "Mejor Ajuste" son mejores que "Peor Ajuste".
 - Regla del 50%: un análisis estadístico refleja que
 - Con Primer Ajuste por cada N bloques de memoria asignados se pierden 0,5 N bloques por fragmentación externa (1/3 memoria inutilizada).

- Protección de Memoria: se utiliza código reubicable
 - Si código reubicable -> se pueden usar registros base y límite.

Sistemas Operativos (IS11) - Tema 4

17

Particiones Variables.

- Compactación: intenta solucionar fragmentación ext.
 - Consiste en desplazar las particiones ocupadas para que estén juntas en memoria:
 - Queda un solo hueco libre de mayor tamaño.
 - Es una solución al problema de fragmentación externa.
 - Sólo es posible si la reubicación es dinámica (en ejecución).

Sistemas Operativos (IS11) - Tema 4

18

- Problemas de la Compactación:
 - Consume tiempo: Desplazar zonas de memoria.
 - Difícil seleccionar una estrategia de compactación óptima.

- ¿Cuál es la mejor?

Sistemas Operativos (IS11) - Tema 4

19

Paginación.

- Paginación: (solución a fragmentación externa)
 - Permite que la memoria de un proceso no sea contigua.
 - Hay una distinción entre direcciones lógicas y físicas.
 - La memoria física la dividimos en bloques de tamaño fijo: marcos.
 - La memoria lógica:
 - La dividimos en bloques llamados: *páginas*.
 - De igual tamaño que el marco.
 - Las páginas de un proceso se cargan en los marcos de la memoria principal que estén disponibles:
 - Tenemos "trozos" del proceso allí donde la memoria está disponible.

• Hardware de paginación: para traducción de direcciones

- La dirección lógica generada consta de dos partes:
 - Número de Pagina (P).
 - Desplazamiento dentro de la página (D).
- La tabla de páginas: (contiene la dirección base en memoria física)
 - Permite establecer una correspondencia entre el número de página y un número de marco de memoria física.
- La dirección física es el número de marco y el desplazamiento.

Sistemas Operativos (IS11) - Tema 4

21

Paginación.

Memoria Tabla de Memoria Ejemplos: Física Lógica Páginas 0 Pagina 0 0 1 1 Pagina 0 Pagina 1 4 2 Pagina 2 2 3 3 Pagina 2 4 Pagina 1 Pagina 3 7 5 6 7 Pagina 3 Memoria Tabla de Memoria 8 Lógica Páginas Física 0 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Pagina 0 5 1 6 Pagina 1 2 1 2 Pagina 2 12 13 Pagina 3 n

- Tamaño de páginas y marcos definidos por Hardware.
- Normalmente se escoge un tamaño de página potencia de 2:
 - Ya que es más fácil la traducción de direcciones lógicas a físicas.

Sistemas Operativos (IS11) - Tema 4

23

Paginación.

- El SO traduce direcciones usando una copia de la tabla páginas en memoria
- Implementación Hardware de la Tabla de Páginas:
 - 1) Un conjunto de registros (circuitos lógicos de alta velocidad):
 - Habrá que cargar estos registros en un cambio de contexto.
 - Se usa para pocas entradas (unas 256)
 - 2) Tabla en memoria principal y registro base cuyo contenido apunta a la tabla de páginas:
 - Para cambiar de tabla de páginas -> Basta cambiar de registro base.
 - Menor tiempo de cambio de contexto pero mayor de acceso a memoria
 - Accedemos dos veces a memoria para obtener un dato en memoria.
 - Para tablas grandes (millones de entradas)

- 3) Registros Asociativos (TLB): (pequeña caché de acceso rápido), (translation look-aside buffers)
 - Los registros contienen solo unas pocas entradas de una T.páginas
 - 2 partes en cada registro:
 - Una clave (número de página).
 - Y un valor (número de Marco).
 - Compara el valor de la página deseada con todas las claves.
 - Si la clave está: Proporciona el número de marco asociado.
 - Si no está: Se accede a la tabla de páginas de memoria.

Sistemas Operativos (IS11) - Tema 4

25

Paginación.

- Ventaja: Páginas Compartidas:
 - La paginación permite compartir código común entre varios procesos:
 - Sólo si el código es reentrante (no se modifica durante ejecución).
 - El área de datos de los procesos sería diferente.
 - Ejemplo: varios procesos ejecutan el mismo editor de textos

Una única copia Del editor en Memoria física

Sistemas Operativos (IS11) - Tema 4

26

- Protección de memoria en entorno con paginación:
 - En la tabla de páginas pueden encontrarse unos bits de protección asociados a cada marco
 - indican si la página es de sólo lectura o lectura y escritura.
 - Cuando se consulta el número de marco, se consultan además los bits de protección.
 - Se debe controlar que el número de página no supere el total de páginas usadas por el proceso (sería una dirección incorrecta).

Sistemas Operativos (IS11) - Tema 4

27

Segmentación.

- Otro esquema de asignación memoria: Segmentación
 - El espacio de direcciones lógicas se compone de un conjunto de segmentos: Cada uno tiene un nombre y una longitud.
 - Para el usuario las direcciones especifican el nombre del segmento y el desplazamiento dentro de él.
 - El nombre del segmento se numera (es un número).
 - <número segmento, desplazamiento>
 - El procesador *Intel 8086* usa segmentación, los programas se separan en:
 - Segmento de Código.
 - Segmento de Datos.
 - Segmento de Pila.
 - Hay una división lógica del proceso en diferentes segmentos.

Segmentación.

- Hardware de segmentación mediante Tabla de segmentos:
 - Establece la correspondencia entre direcciones físicas y lógicas.
 - Se busca en la tabla de acuerdo con el número de segmento.
 - Cada entrada 2 registros:
 - base (dir. Física inicial del segmento en memoria)
 - límite de segmento (longitud del segmento)
 - Se compara límite del segmento con desplazamiento.
 - Si desplazamiento válido, se suma a la dirección el registro base.

Sistemas Operativos (IS11) - Tema 4

29

Segmentación.

Acceso a byte 1200 del segmento 0 da error direccionamiento

Segmentación

Implementación Hardware de la tabla de segmentos:

- Puede ubicarse en registros rápidos o memoria (como paginación).
- Si está en memoria:
 - Un registro base STBR (segment table base register) indica inicio de la tabla de segmentos en memoria.
 - Un registro límite indica longitud de la tabla de segmentos.

Protección:

- Bits de protección: Segmento de sólo lectura o lectura y escritura.
- Se consultan antes de acceder al segmento.

Compartición de código:

- Puede realizarse a nivel de segmento (código o datos).
- Cada proceso tendrá una tabla de segmentos.
- Compartir un segmento significa que una entrada de la tabla de segmentos coincide en varios procesos (igual posición física).

Sistemas Operativos (IS11) - Tema 4

31

Segmentación.

Ejemplo compartición editor:

Si compartimos un segmento todos los procesos que lo comparten deben definir dicho segmento con el mismo código.

Dirección (S, desplazamiento)

Sistemas Operativos (IS11) - Tema 4

Segmentación.

- Fragmentación:
 - Los segmentos son de tamaño variable:
 - Puede haber fragmentación externa.
 - Bloques de memoria demasiado pequeños para contener un segmento.
 - Solución: Se puede compactar la memoria (segmentación usa reubicación dinámica).
 - Problema de fragmentación, casos extremos:
 - Cada proceso un segmento, igual esquema que en particiones variables.
 - Cada palabra (byte) un segmento:
 - No habría fragmentación externa.
 - Necesitamos una tabla de segmentos del tamaño de la memoria.

Sistemas Operativos (IS11) - Tema 4

33

Segmentación Paginada.

- Otro esquema de asignación de memoria es: Segmentación paginada
 - La Memoria lógica está dividida en bloque llamados segmentos que contienen las regiones de un proceso.
 - Dirección lógica=<nº segmento, desplazamiento>=<S,d>
 - Los segmento están divididos en páginas de igual tamaño que los marcos (potencias de 2).
 - Las páginas de un proceso se cargan en marcos de la memoria principal.
 - Cada segmento tiene asociada una tabla de páginas
 - Se usa un registro límite y base de la tabla de páginas para cada segmento

Segmentación Paginada.

- Esquema de traducción de direcciones
 - Dirección lógica=<nº segmento, desplazamiento>=<S,d>
 - S= entrada de la tabla de segmentos:
 - Contiene el límite del segmento
 - Contiene la dirección base de una tabla de páginas.
 - Habrá una tabla de páginas por cada segmento.
 - El desplazamiento d es:
 - Un número de página P.
 - Un nuevo desplazamiento dentro de la página d'.

Sistemas Operativos (IS11) - Tema 4

35

Memoria virtual

- Recordemos que queremos:
 - Mantener simultáneamente varios procesos en memoria para permitir multiprogramación.
- Memoria Virtual:
 - Permite separar la memoria lógica del usuario de la memoria física.
 - Un proceso en ejecución no tiene porque encontrarse totalmente en memoria principal (sólo parte).
 - Ahora un proceso puede ser mayor que la memoria física.
 - Permite transferencia de información entre memoria principal y secundaria (2 niveles consecutivos de la jerarquía de memoria).
 - Usa un dispositivo de almacenamiento secundario (disco) como dispositivo de intercambio.
- La memoria virtual puede implementarse sobre Paginación o Segmentación paginada: se transfieren páginas.
- La transferencia suele ser bajo demanda.

Paginación por demanda.

- Paginación por demanda:
 - Los procesos están divididos en páginas.
 - Inicialmente: una serie de páginas del proceso cargadas en memoria principal (MP), las que se usan.
 - El resto en almacenamiento secundario.
 - Necesario un bit de presencia en tabla de paginas: *Bit válido-inválido*
 - 1, página cargada en MP (v).
 - 0, página no cargada (i).
 - Si el proceso accede a páginas residentes en memoria (bit de presencia válido):
 - la ejecución prosigue normalmente
 - Si accede a una página no residente (bit presencia inválido)
 - Ocurre una interrupción o fallo de página, Control al SO

Sistemas Operativos (IS11) - Tema 4

37

Paginación por demanda.

Gestión de un Fallo de página

- 1. Se detecta que la página no está en memoria
- 2. Se produce una interrupción
- 3. Se busca la página en almacenamiento secundario (disco)
- 4. Se busca un marco libre, se lee la página de almacenamiento secundario y se copia en el marco seleccionado

5. Se actualiza la tabla de páginas

6. Reiniciamos en la instrucción interrumpida

La página está en

Sistemas Operativos (IS11) - Tema 4

38

Paginación por demanda.

- Hardware de apoyo a la paginación por demanda:
 - Capacidad de marcar en la tabla de páginas una entrada como válida o invalida (*bit valido-invalido*).
 - Unidad de almacenamiento secundario:
 - La sección de disco empleado para este fin se denomina: espacio de intercambio o almacenamiento auxiliar.
- Paginación por demanda pura:
 - Caso extremo: comenzamos la ejecución de un proceso sin ninguna página cargada en memoria.
 - Se irán produciendo fallos de páginas sucesivamente y cargando las páginas necesarias.

Sistemas Operativos (IS11) - Tema 4

39

Segmentación Paginada con Paginación por Demanda.

- No todas las páginas de todos los segmentos estarían en memoria.
- Usamos también bits de *valido-invalido* para la tabla de páginas asociada a cada segmento.
- El funcionamiento es igual que paginación por demanda.

Reemplazo de páginas.

- Utilizando Memoria Virtual:
 - Los procesos tienen parte de sus páginas cargadas en memoria.
 - En un instante, la totalidad de los marcos de memoria están ocupados.
- ¿Qué ocurre si ante un fallo de página no existe un marco libre en memoria principal?
- Posibles soluciones que aplicaría el S.O. :
 - Abortar el proceso de usuario (no es una buena solución).
 - Descargar otro proceso y llevarlo a almacenamiento secundario liberando sus marcos (se puede hacer).
 - Reemplazar páginas:
 - Encontramos un marco que no se esté "utilizando" y lo liberamos.

Sistemas Operativos (IS11) - Tema 4

41

Reemplazo de páginas.

- Fallo de página con reemplazo de páginas:
 - Se busca la página deseada en almacenamiento secundario.
 - Se busca un marco libre.
 - LO HAY: lo utilizamos.
 - NO LO HAY: reemplazo de página
 - usar un algoritmo de reemplazo de páginas para seleccionar un marco víctima que genere el menor número de fallos de página
 - Pasamos el contenido del marco a almacenamiento secundario.
 - Actualizamos la tabla de páginas.
 - Ya disponemos de un marco libre. Se lee la página de almacenamiento secundario y se copia en el marco libre.
 - Se actualiza la tabla de páginas.
 - Se reinicia la instrucción interrumpida.

Rendimiento

- Frecuencia de Fallo de página
 - Sea **p** la probabilidad de que una referencia a memoria provoque un fallo de página (0<p<1)
 - Si p=0, nunca hay fallos de página
 - Si p=1, hay fallo de página en todas las referencias
 - Sea t_m el tiempo de acceso a memoria principal
 - Sea t_{fp} el tiempo para resolver un fallo de página, que depende de:
 - Tiempo de transferencia entre almacenamiento secundario y memoria
 - Tiempo de actualización de tablas de páginas
 - Tiempo de reinicio de la ejecución del proceso
 - El tiempo efectivo de acceso a memoria **TEAM** vendrá dado por:

$$TEAM = (1-p).t_m + p.t_{fp}$$

• Objetivo de cualquier algoritmo de reemplazo:

Obtener la menor tasa de fallos de página posible

Sistemas Operativos (IS11) - Tema 4

43

Reemplazo de páginas.

Reducción del tiempo para resolver los fallos de página

- Fallo de página: dos accesos a almacenamiento secundario
 - Uno para guardar la página víctima
 - Otro para cargar la nueva página
- Usar bit de modificado en la tabla de páginas
 - Al cargar la página, desde almacenamiento secundario a memoria, el bit modificado se pone a 0 (no modificada)
 - Si se escribe en la página el bit pasa a 1 (modificado)
 - Si la página es elegida como víctima se mira su bit de modificado
 - Si la página no ha sido modificada (bit a cero) no habrá que salvarla
 - Si la página ha sido modificada (bit a uno) se salvará
- El uso de bit modificado reduce el tiempo \mathbf{t}_{fp}

Reemplazo de páginas.

- La tasa de fallos de página (p) dependerá de:
 - Número de páginas de los procesos
 - Número de procesos en memoria
 - Número de marcos disponibles
 - Del algoritmo de reemplazo de páginas que se utilice
 - Hay que usar aquel que conlleve menor número de fallos
- Para poder implementar un sistema de memoria virtual nos queda por responder a dos preguntas:
 - ¿Cómo reemplazar las páginas?
 - Es necesario escoger un algoritmo de reemplazo de páginas
 - ¿Cómo decidir cuantos marcos de cada proceso tenemos en memoria?

Sistemas Operativos (IS11) - Tema 4

45

Algoritmos de reemplazo de página.

- Clasificación de estrategias de reemplazo:
 - Reemplazo Global
 - Utilizan los algoritmos de reemplazo de páginas actuando sobre las páginas de todos los procesos
 - Reemplazo Local
 - Usa los algoritmos sólo entre las páginas del proceso que necesita un reemplazo de página
- Algoritmos de reemplazo de páginas:
 - FIFO
 - Óptimo
 - LRU (Last Recently Used)
 - De la segunda oportunidad o del reloj
 - Con bits referenciado y modificado

Algoritmos FIFO.

- Se reemplaza la página que lleva más tiempo en memoria
- El SO mantiene una lista de las páginas
 - Se reemplaza la página cabecera de la lista y se inserta al final
- El rendimiento no siempre es bueno, pueden sustituirse páginas muy usadas
- Puede presentarse la anomalía de Belady: más marcos en memoria no implica que hayan menos fallos de página

Ejemplo: Sea la secuencia: 7, 0, 1, 2, 7, 0, 5, 7, 0, 1, 2, 5

Con 3 marcos, 9 fallos de página, con 4 hay 10 fallos

Anomalía de Belady
7 0 1 2 7 0 5 7 0 1 2 5

7 7 7 7 7 7 7 5 5 5 5 2 2

0 0 0 0 0 0 0 0 7 7 7 7 5

1 1 1 1 1 1 1 0 0 0 0

2 2 2 2 2 2 2 1 1 1

Sistemas Operativos (IS11) - Tema 4

47

Algoritmos Óptimo.

- El algoritmo óptimo tiene la menor tasa de fallos
- Reemplazar la página que no se va a usar durante más tiempo
- Es irrealizable ya que no se conoce a priori la utilización de memoria de instrucciones futuras
- **Ejemplo:** En los fallos ① y ② hay que decidir la página:
 - ① entre la 0 , 1 y 7 → la 7
 - 2 entre la 0 , 1 y 2 → la 1

2 1 0 1 2 0 3 0 3 2 1 7 2 2 2 0 0 0 0 0 ? 3 个 2

3 Marcos

Secuencia páginas

Fallos de página

Algoritmos LRU (Last Recently Used).

- Sustituye la página que más tiempo lleva sin ser usada
- Implantación mediante un contador:
 - Cada vez que accedemos a memoria se incrementa su valor
 - Se copia el valor del contador en la tabla de páginas asociado a la página a la que hemos accedido
 - Se elimina la página que tiene el valor del contador más bajo
- Implementación mediante pila:
 - En la base, la página que lleva más tiempo, en la cima la más nueva

Ejemplo:

Sistemas Operativos (IS11) - Tema 4

40

Algoritmos de la segunda oportunidad o del reloj.

- Utiliza un bit de referencia asociado a cada página
 - Inicialmente están a cero
 - Cambia a 1 cuando se accede a la página para leer o escribir
 - El SO pone periódicamente todos a cero
- Funciona como FIFO pero:
 - Selecciona una página y examina su bit referenciado
 - Está a cero, reemplazamos la página
 - Está a uno, se da una segunda oportunidad a la página
 - Se pone el bit referenciado a cero
 - Buscamos la siguiente víctima
- ¿Cómo implementarlo?
 - Se usa una cola circular de las páginas residentes en memoria
 - Un puntero indica la siguiente página a reemplazar de la cola
 - Si bit referenciado = 1, lo ponemos a cero y avanzamos el puntero
 - Si bit referenciado =0, sustituimos esa página

Algoritmos con bits referenciado y modificado.

- Utiliza en cada página *un bit referenciado* (1 indica página accedida) y *un bit modificado* (1 indica acceso de escritura)
- Las páginas agrupadas en cuatro clases:
 - \bigcirc Referenciado = 0, Modificado = 0
 - 2 Referenciado = 0, Modificado = 1
 - 3 Referenciado = 1, Modificado = 0
 - 4 Referenciado = 1, Modificado = 1
- Se reemplazará la página de la clase inferior (número más bajo) no vacía
 - Si hay varias en esa clase se utilizará FIFO para la selección
- El SO pone periódicamente a cero el bit referenciado

Sistemas Operativos (IS11) - Tema 4

51

Políticas de asignación de marcos.

¿Cuántos marcos se asignan a cada proceso en un sistema multiprogramado?

- Estrategias de asignación
 - Asignación fija
 - Los marcos de memoria existentes se dividen:
 - Equitativamente: nº marcos/nº procesos
 - Proporcionalmente: se asignan más marcos a procesos más grandes
 - Suele estar asociada a una estrategia de reemplazo local
 - Asignación dinámica
 - La cantidad de marcos de cada proceso varía dinámicamente según la necesidades del mismo
 - Puede aplicarse a:
 - reemplazo local, cada proceso varia la cantidad de marcos que utiliza
 - reemplazo global, los procesos compiten por el uso de memoria

Hiperpaginación.

- Hiperpaginación (thrashing)
 - Número de fallos de página elevado debido a que el nº de marcos asignados al proceso no es suficiente para almacenar las páginas referenciadas por el mismo
 - Más tiempo en la cola de servicio de paginación que en CPU
 - El rendimiento de la CPU decrece
- Gráfica de utilización de CPU en función del grado de multiprogramación
- Solución:
 - Descargar las páginas de uno o varios procesos a almacenamiento secundario liberando marcos de memoria

 t_{fp}

Tiempo accesoefec $t = (1 - p) \cdot t_m + p \cdot t_{fp}$ $t_m = tiempo$ de acceso a memoria . $t_{fp} = tiempo$ de fallo de pagina . p = probabilid ad de fallo de pagina .

Sistemas Operativos (IS11) - Tema 4

53