Summarizing Data

Daniel A. Menascé, Ph.D. Dept of Computer Science George Mason University

© 2001 D. A. Menascé. All Rights Reserved.

Major Properties of Numerical Data

- Central Tendency: arithmetic mean, geometric mean, median, mode.
- Variability: range, interquartile range, variance, standard deviation, coefficient of variation, mean absolute deviation.
- Skewness: coefficient of skewness.
- Kurtosis

2

Measures of Central Tendency

• Arithmetic Mean

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Based on all observations greatly affected by extreme values.

© 2001 D. A. Menascé. All Rights Reserved.

3

Effect of Outliers on Average

© 2001 D. A. Menascé. All Rights Reserved.

Geometric Mean

- Geometric Mean: $\left(\prod_{i=1}^{n} X_{i}\right)^{1/n}$
- Used when the product of the observations is of interest.
- Important when multiplicative effects are at play:
 - Cache hit ratios at several levels of cache
 - Percentage performance improvements between successive versions.
 - Performance improvements across protocol layers.

© 2001 D. A. Menascé. All Rights Reserved.

5

Example of Geometric Mean

	Perforr	nance Improv	ement	
Test Number	Operating System	Middleware	Application	Avg. Performance Improvement per Layer
1	1.18	1.23	1.10	1.17
2	1.25	1.19	1.25	1.23
3	1.20	1.12	1.20	1.17
4	1.21	1.18	1.12	1.17
5	1.30	1.23	1.15	1.23
6	1.24	1.17	1.21	1.21
7	1.22	1.18	1.14	1.18
8	1.29	1.19	1.13	1.20
9	1.30	1.21	1.15	1.22
10	1.22	1.15	1.18	1.18
Δvera	ne Performanc	e Improvemer	nt ner Laver	1 20

© 2001 D. A. Menascé. All Rights Reserved.

Properties of the Geometric Mean

$$gm\left(\frac{x_1}{y_2},...,\frac{x_n}{y_n}\right) = \frac{gm(x_1,...,x_n)}{gm(y_1,...,y_n)} = \frac{1}{gm(y_1/x_1,...,y_n/x_n)}$$

- The choice of the base does not change the conclusion.
- Useful for benchmarks
 - x: throughput on target system.
 - y: throughput on base system.

© 2001 D. A. Menascé. All Rights Reserved.

7

Median

- Middle Value in an Ordered Set of Data.
- If there are no ties, 50% of the values are smaller than the median and 50% are larger.

	1.1	1.1
	1.4	1.4
	1.8	1.8
	1.9	1.9
	2.3	2.3
	2.4	2.4
	2.8	2.8
	3.1	3.1
	3.4	3.4
	3.8	3.8
	10.3	3.5
Median	2.4	2.4

© 2001 D. A. Menascé. All Rights Reserved.

Median

- The median is unaffected by extreme values.
- Obtaining the median:
 - Odd-sized samples: $X_{(n+1)/2}$
 - Even-sized samples: $\frac{X_{n/2} + X_{(n/2)+1}}{2}$

© 2001 D. A. Menascé. All Rights Reserved.

9

Mode

- Most frequently occurring value.
- Mode may not exist.
- Single mode distributions: unimodal.
- Distributions with two modes: bimodal.

© 2001 D. A. Menascé. All Rights Reserved.

bimodal

Quantiles (quartiles, percentiles) and midhinge

- Quartiles: split the data into quarters.
 - First quartile (Q1): value of Xi such that 25% of the observations are smaller than Xi.
 - Second quartile (Q2): value of Xi such that 50% of the observations are smaller than Xi.
 - Third quartile (Q3): value of Xi such that 75% of the observations are smaller than Xi.
- Percentiles: split the data into hundredths.
- Midhinge: $Midhinge = \frac{Q_3 + Q_1}{2}$

© 2001 D. A. Menascé. All Rights Reserved.

11

Example of Quartiles

1.05	
1.06	
1.09	
1.19	
1.21	
1.21	
1.34	
1.34	
1.77	
1.80	
1.83	
2.15	
2.21	
2.27	
2.61	
2.67	
2.77	
2.83	
3.51	
3.77	
5.76	
5.78	
32.07	
144.91	

Q1	1.32
Q2	2.18
Q3	3.00
Midhinge	2.16

In Excel:

Q1=PERCENTILE(<array>,0.25)

Q2=PERCENTILE(<array>,0.5)

Q3=PERCENTILE(<array>,0.75)

© 2001 D. A. Menascé. All Rights Reserved.

Example of Percentile

80-percentile 3.613002

1.05 1.06 1.09 1.19 1.21 1.28 1.34 1.34 1.77 1.80 1.83 2.15 2.21 2.27 2.61 2.67 2.77 2.83 3.51 3.77 5.76 5.78 32.07 144.91

In Excel:
p-th percentile=PERCENTILE(<array>,p)
(0≤p≤1)

© 2001 D. A. Menascé. All Rights Reserved.

13

Range, Interquartile Range, Variance, and Standard Deviation

- Range: $X_{\text{max}} X_{\text{min}}$
- Interquartile Range: $Q_3 Q_1$
 - not affected by extreme values.
- Variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$
In Excel:
$$s^{2} = \text{VAR}(\langle \text{array} \rangle)$$

• Standard Deviation: In Excel: $s=STDEV(\langle array \rangle)$ $s = \sqrt{\sum_{i=1}^{n} (x_i)^2}$

© 2001 D. A. Menascé. All Rights Reserved.

Meanings of the Variance and Standard Deviation

- The larger the spread of the data around the mean, the larger the variance and standard deviation.
- If all observations are the same, the variance and standard deviation are zero.
- The variance and standard deviation cannot be negative.
- Variance is measured in the square of the units of the data.
- Standard deviation is measured in the same units as the data.

© 2001 D. A. Menascé. All Rights Reserved.

15

Coefficient of Variation

• Coefficient of variation (COV) : s/\overline{X}

no units

1.06
1.09
1.19
1.21
1.28
1.34
1.34
1.77
1.80
1.83
2.15
2.21
2.27
2.61
2.67
2.77
2.83
3.51
3.77
5.76
5.78
32.07
144.91

S 29.50 Average 9.51 COV 3.10

© 2001 D. A. Menascé. All Rights Reserved.

Coefficient of Skewness

• Coefficient of skewness: $\frac{1}{ns^3} \sum_{i=1}^{n} (X_i - \overline{X})^3$

	(X-Xi)^3
1.05	-606.1
1.06	-602.9
1.09	-596.1
1.19	-575.2
1.21	-571.8
1.28	-557.9
1.34	-546.4
1.34	-544.8
1.77	-464.5
1.80	-458.1
1.83	-453.1
2.15	-398.9
2.21	-388.8
2.27	-379.0
2.61	-328.5
2.67	-320.5
2.77	-306.6
2.83	-298.7
3.51	-215.9
3.77	-189.6
5.76	-52.9
5.78	-52.1
32.07	11476.6
144.91	2482007.1

4.033

© 2001 D. A. Menascé. All Rights Reserved.

1

Mean Absolute Deviation

• Mean absolute deviation: $\frac{1}{n} \sum_{i=1}^{n} |X_i - \overline{X}|$

	abs(Xi-Xbar)
1.05	8.46
1.06	8.45
1.09	8.42
1.19	8.32
1.21	8.30
1.28	8.23
1.34	8.18
1.34	8.17
1.77	7.74
1.80	7.71
1.83	7.68
2.15	7.36
2.21	7.30
2.27	7.24
2.61	6.90
2.67	6.84
2.77	6.74
2.83	6.68
3.51	6.00
3.77	5.74
5.76	3.75
5.78	3.73
32.07	22.56
144.91	135.39
	315.90

Average 9.51
Mean absolute deviation 13.16

© 2001 D. A. Menascé. All Rights Reserved.

Confidence Interval for the Mean

- The sample mean is an estimate of the population mean.
- Problem: given *k* samples of the population (with *k* sample means), get a single estimate of the population mean.
- Only probabilistic statements can be made:

20

Confidence Interval for the Mean

$$\Pr[c_1 \le \mu \le c_2] = 1 - \alpha$$

where,

 (c_1, c_2) : confidence interval

 $100(1-\alpha)$: confidence level (usually 90 or 95%)

 $1-\alpha$: confidence coefficient.

© 2001 D. A. Menascé. All Rights Reserved.

21

Central Limit Theorem

- If the observations in a sample are independent and come from the same population that has mean μ and standard deviation σ then the sample mean for large samples has a normal distribution with mean μ and standard deviation $\sigma k \sqrt{n}$.
- The standard deviation of the sample mean is called the *standard error*.

© 2001 D. A. Menascé. All Rights Reserved.

Population mean = μ Population std deviation = σ

Average of $x_1, ..., x_M = \mu$ Standard deviation of $x_1, ..., x_M = \sigma / \text{sqrt}(n)$

© 2001 D. A. Menascé. All Rights Reserved.

23

Confidence Interval

• $100 (1-\alpha)\%$ confidence interval for the population mean:

$$(\overline{x} - z_{1-\alpha/2}s / \sqrt{n}, \overline{x} + z_{1-\alpha/2}s / \sqrt{n})$$

 \overline{x} : sample mean

s: sample standard deviation

n: sample size

 $z_{1-\alpha/2}$: (1- $\alpha/2$)-quantile of a unit normal variate (N(0,1)).

24

Example of Confidence Interval Computation

CPU	I
Time	
(msec)	
5.76	1
2.67	1
3.77	1
2.27	1
2.83	
1.05	
2.61	
1.06	
5.78	
3.51	
2.77	1
1.83	
1.77	1
1.19	
2.21	
24.80	
1.80	
1.34	
1.28	
1.21	
2.15	
1.09	
1.34	
32.07	1

n	24	
sample mean	4.51	
sample std	7.56	
alpha	0.1	
conf level	90	
1-(alpha/2)	0.95	
z0.95	1.645	from a Normal Table
c1	1.97	
c2	7.04	
		!

With 90% confidence the population mean is in the interval 1.97 7.04

© 2001 D. A. Menascé. All Rights Reserved.

25

From Excel: Tools > Data Analysis > Descriptive Statistics

Descriptive Statistics (from Excel Analysis Pack)

Standard Error 6.021322 Median 2.180555 Mode #N/A Standard Deviation 29.49833 Sample Variance 870.1515 Kurtosis 21.65021 Skewness 4.59114 Range 143.8572 Minimum 1.047923
Mode #N/A Standard Deviation 29.49833 Sample Variance 870.1515 Kurtosis 21.65021 Skewness 4.59114 Range 143.8572
Standard Deviation 29.49833 Sample Variance 870.1515 Kurtosis 21.65021 Skewness 4.59114 Range 143.8572
Sample Variance 870.1515 Kurtosis 21.65021 Skewness 4.59114 Range 143.8572
Kurtosis 21.65021 Skewness 4.59114 Range 143.8572
Skewness 4.59114 Range 143.8572
Range 143.8572
Minimum 1 047022
Willillium 1.047923
Maximum 144.9051
Sum 228.2541
Count 24
Confidence Level(95.0%) 12.45604

26

Box-and-Whisker Plot

• Graphical representation of data through a five-number summary.

