

Fig. 1A

Fig. 1B

AAG GAA TGC ACA CTC ACC AGC AAC ACC AAG TGC AAA GAG GAA GGA TCC AGA TCT AAC TTG GGG TGG
Lys Glu Cys Thr Leu Thr Ser Asn Thr Lys Cys Lys Glu Gly Ser Arg Ser Asn Leu Gly Trp
140 150 160

CTT TGT CTT CTT TTG CCA ATT CCA CTA ATT GTT TGG TTG AAG AGA AAG GAA GTA CAG AAA ACA
Leu Cys Leu Leu Leu Pro Ile Pro Ile Val Trp Val Lys Arg Lys Glu Val Gln Lys Thr
170 180

TGC AGA AAG CAC AGA AAG GAA AAC CAA GGT TCT CAT GAA TCT CCA ACC TTA AAT CCT GAA ACA GTG
Cys Arg Lys His Arg Lys Glu Asn Gln Gly Ser His Glu Ser Pro Thr Leu Asn Pro Glu Thr Val
190 200

GCA ATA AAT TTA TCT GAT GTT GAC TTG AGT AAA TAT ATC ACC ACT ATG GTC ATG ACA CTA
Ala Ile Asn Leu Ser Asp Val Asp Leu Ser Lys Tyr Ile Thr Thr Val Met Thr Leu
210 220

AGT CAA GTT AAA GGC TTT GTT CGA AAG ATT GGT GTC AA- SAA GCC AAA ATA GAT GAG ATC ARG AAT
Ser Gin Val Lys Glu Phe Val Arg Lys Asn Gly Val Asn Gly Val Asp Glu Ile Lys Asn
230 240

GAC AAT GTC CAA GAC ACA GCA GAA CAG AAA GTT CAA CTG CTT CGT AAA TGG CAT CAA CTT CTT GGA
Asp Asn Val Gln Asp Thr Ala Glu Gln Lys Val Gln Leu Lys Asp His Asn Trp His Asn Leu His Gln
250 260 270

AAG AAA GAA GCG TAT GAC ACA TTG ATT AAA GAT CTC AAA AAA
Lys Lys Glu Ala Tyr Asp Thr Leu Ile Lys Asp CTC Leu Lys Lys Lys

280

Fig. 2A

TGTGACATGGTCAATGGAACTTCCATTGAAATTCAATTTGAAATTCAATAGAAAACATTAATTATAATGTTGACTATTATATATGTTGATGCA

Fig. 2B

1800
TTTACTGGCTCAAAACTACCTACTTCCTTCAGGCATCAAAAGCATTTGAGCAGGAGAGATTACTAGAGCTTTGCC
1950
ACCTCTCCATTTGCCCTGGTGCTCATCTAATGGCTTAATGCCCTAATGCCCTAAACATGAAAATTCACAAAAAAATACTTA
2000
ATAGTCACCAAAAGGGAAGACTGCCTTAGAAATTCTAGCCTGGTTGGAGATACTAACTGCTCTCAGAGAAAGTAGCT
2100
TGTGACATGGTCAATGGAACTTCCATTGAAATTCAATGGAAATTAGATCTTATTTTCCCCCACCCCCGAAAAATGTT
2150
CAATAATGTCCTCATGTAACCAATGGCACTTATACATAGGAATGGTAAATCATACATCTGGATTAGGAAT
2200
TGCTCTGTCTACCCCTCAAGTTCTAAGATTAAAGATTCTCCTTAACTACTATCTACGTTAAATATCTTGAAGATT
2250
GTTAAATGTAATTAAAGAATTAATTATATTCTGTAATGTAACTGTGAAGATAGTTATAAACTGAAAGCA
2300
TACCTGGAACACCTAAAGAACTTCCATTATGGAGGATTGGCCCTTGTGTTGAAATTATAAAATATAGGTAA
2350
AGTACGTAATTAAATTAATGTTTTG

T0T290° Z3648860

FIG 3A

FIG 3B

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 4D

FIG. 4E

FIG. 4F

FIG. 5

FIG. 6

FIG. 7

卷之三

Fig. 8A

Fig. 8B

V	R	D	E	L	H	R	G	T	R	Q	-	-	K	E	E	V	-	T	E	G	E
C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
D	D	D	V	V	E	V	K	V	I	V	I	V	K	V	V	V	I	-	L	V	C
P	T	T	T	T	T	T	T	T	R	A	T	T	T	T	V	T	T	-	-	A	V
E	D	D	D	Q	E	D	N	D	N	D	D	D	N	N	D	N	D	-	-	D	D
D	G	Q	-	N	T	R	Q	R	D	E	-	T	E	S	Q	S	S	-	-	N	A
G	P	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	S	-
N	P	T	-	F	T	T	D	E	A	E	T	K	T	K	V	-	-	-	N	A	W
V	G	K	A	E	H	R	V	R	E	S	P	L	E	E	D	G	-	-	K	R	T
C	P	G	T	C	T	D	C	C	C	C	C	C	C	C	G	C	C	-	C	G	A
C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	G	C	-	C	C	T
-	-	-	-	-	-	-	N	S	A	-	K	N	-	S	P	S	I	-	E	I	E
D	D	F	P	S	R	I	S	Q	-	Q	Q	E	L	R	F	Q	-	-	I	E	Q
R	N	V	Q	S	S	V	E	I	P	Q	K	K	H	A	V	D	-	-	-	-	-
A	Y	K	A	V	V	E	V	E	S	A	V	L	I	V	V	I	V	-	A	R	Q
K	L	A	V	L	M	Q	Q	Q	S	M	L	S	T	T	G	S	G	-	V	L	V
R	Y	H	G	K	G	G	G	-	S	G	S	G	I	T	F	S	F	-	V	Q	V
E	T	Q	E	Q	H	H	M	-	Q	L	N	S	H	N	P	A	P	-	L	-	E
P	G	G	G	G	G	G	E	E	D	L	N	R	E	L	R	E	S	-	S	-	T
P	K	P	I	P	P	E	K	D	L	N	R	H	C	C	C	C	C	-	K	-	D
P	H	S	N	Q	Q	D	R	S	V	D	N	I	K	L	R	V	S	-	K	N	E
P	C	C	C	C	C	C	C	C	C	C	C	C	T	S	R	R	R	-	C	C	C
P	K	K	A	L	E	L	K	R	E	Y	Q	-	L	-	H	-	-	-	N	I	V
P	H	S	N	Q	Q	D	R	S	V	D	N	I	K	L	R	V	S	-	S	S	N

Fig 9

hCD40 (225-247)	K	A	P	H	P	K	Q	E	P	Q	E	I	N	F	?	D	D	L	P	G	S	N	T
hFAS (230-251)	K	G	F	V	R	K	N	G	V	N	E	A	K	I	-	D	E	I	K	N	D	N	V
hTNFRI (332-353)	K	E	F	V	R	R	L	G	L	S	D	H	E	I	-	D	R	L	E	L	Q	N	G
hCD40 (248-269)	A	A	P	V	Q	E	T	L	H	G	C	Q	P	V	?	2	E	D	G	-	K	E	S
hFAS (252-274)	Q	D	T	A	E	Q	K	V	Q	L	L	R	N	W	H	2	L	H	G	K	K	E	A
hTNFRI (354-376)	R	C	L	R	E	A	Q	Y	S	M	L	A	T	W	3	R	T	P	R	R	E	A	