Problem 5 of Activity 1 What if I allow a = bi? $I_1 = [0, \frac{\xi_2}{2}]$ $S \sim I_1$ is a finite set, say $\{\chi_1, \chi_2, \ldots, \chi_m\}$ Why finite? $S > I_1 = \frac{2}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = \frac{1}{5} + \frac{$ $= \{\frac{1}{n}: n \in \mathbb{N}, n < \frac{2}{\varepsilon} \}$ This is finite. $I_2 = [\alpha_1, \alpha_1], \quad I_3 = [\alpha_2, \alpha_2], \dots, \quad I_{m+1} = [\alpha_m, \alpha_m]$ (Here k=m+1)

 $\sum (b_i - a_i) = \frac{5}{2} \leq 5.$

What if I ask for a: < bi? $I_1 = [0, \xi/2]$ $S \setminus I_1$ finite, $S = \{x_2, x_3, \dots, x_m\}$ $I_{k} = \left[\alpha_{k}, \alpha_{k} + \frac{\varepsilon}{2m}\right] + k > 2,$ $\sum (b_i - a_i) = \frac{\varepsilon}{2} + (m-1) \times \frac{\varepsilon}{2m}$

The above was an example of a "measure o" set or a "content o" set.

Exercise: You pick a number from I. Denote this by X. What is P(X=0)? What is P(X is even)? 1/2

What is $P(X \text{ is a multiple of } 4)? \frac{1}{4}$

X SR be subset.

We say $x \in X$ is an interior point of X if there is an open interval U s.t. $x \in U \subseteq X$.

Example: ① X = [0,1]. $x = \frac{1}{2} \subseteq (0,1) \subseteq X$.

X is an int pt X = [0,1]. X = 1. This is not an int pt. Exercise: Prove this.

The set of all interior points of X is called the interior of X & denoted by X° or int (X).

Fact: (1) X finite $\Rightarrow X^0 = \phi$

(2) X open \iff $\times^{\circ} = \times$

(3) X any subset $g R \Rightarrow X^0 \subseteq X$.

(4) X° is the largest open set contained in X.

(5) $U \subseteq X$ is open then $U \subseteq X_{K}^{0}$.

(6) $X^{\circ} = \bigcup_{u \in X} u$

 $(7)(X^0)^0 = X^0 \text{ "is open }.$

>> What does "largest" mean? -

Def: Let $X \subseteq \mathbb{R}$. We say $A \subseteq X$ is open in X if there is some open $V \subseteq \mathbb{R}$ s.t. $A = X \wedge V$.

We say $A \subseteq X$ is closed in X if $X \setminus A$ is open in X.

Example: (1)
$$X = (0,1)$$
, $A = (0,1)$
A is open in $X [V = (0,1)]$
A is closed in $X [P is open in X]$
(2) $X = [0,1]$. $A = [0,1]$

(3) Let
$$X \subseteq \mathbb{R}$$
. $A = X$

A is open in $X [V = \mathbb{R}]$

A is closed in $X [\phi \text{ is open in } X]$

- Theorem: (1) Open sets are closed under cirbitrary union le finite intersection.
 - (2) Closed sets are closed under arbitrary intersection I finite union.

[The above statements are equivalent because of deMoivre's law]

Theorem: Let $X \subseteq \mathbb{R}$ be open. Let $A \subseteq X$ be open in X. Then A is open.

Pf: $A = X \cap V$ for some open set V. Open sets closed under finite union \Longrightarrow A open. Let $X \subseteq R$. Let X' be the set of all limit points of X in R. Define $X := X \cup X'$.

Thm:(1) Let $X \subseteq \mathbb{R}$, X be its closure in \mathbb{R} . Then $X = \{x \in \mathbb{R} \mid x = \lim_{n \to \infty} a_n \text{ for some sequence of } x = x \}$ in $X \}$

(2) $\overline{X} = \{x \in \mathbb{R} \mid U \cap x \neq \phi \text{ for every open nbd} u \text{ of } x\}$