Sistemas Digitais

ET46B

Prof. Eduardo Vinicius Kuhn

kuhn@utfpr.edu.br Curso de Engenharia Eletrônica Universidade Tecnológica Federal do Paraná

Capítulo 3 Descrição de circuitos lógicos

Conteúdo

Tecnológica Federal do Paraná

Universidade

- 3.1 Constantes e variáveis booleanas
- 3.2 Tabelas-verdade
- 3.3 Operação e porta OR
- 3.4 Operação e porta AND
- 3.5 Operação e porta NOT
- 3.6 Descrevendo circuitos lógicos algebricamente
- 3.7 Avaliando as saídas dos circuitos lógicos
- 3.8 Implementando circuitos a partir de expressões booleanas
- 3.9 Portas NOR e NAND
- 3.10 Teoremas booleanos
- 3.11 Teoremas de DeMorgan
- 3.12 Universalidade das portas NOR e NAND
- 3.15 Atraso de propagação youtube.com/@eduardokuhn87

Universidade Tecnológica Federal do Paraná

- Introduzir as três operações lógicas básicas (OR, AND e NOT).
- Descrever a operação e construir tabelas-verdade para as portas OR, NOR, AND, NAND e NOT.
- Obter expressões booleanas descrevendo circuitos lógicos.
- Implementar circuitos usando portas lógicas a partir de expressões booleanas.
- Mostrar como os teoremas da álgebra booleana podem ser usados para simplificar expressões lógicas.
- Demonstrar a universalidade das portas NOR e NAND.
- Discutir sobre o tempo de atraso de propagação.
 kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Tecnológica Federal do

Universidade

- Álgebra convencional não é adequada para lidar com circuitos digitais, uma vez que as variáveis podem assumir valores reais.
- Na álgebra booleana, as variáveis so podem assumir apenas dois "valores" distintos (i.e., 0 ou 1).
 - Proposta por George Boole (1854) e levada para o mundo dos circuitos digitais por Claude Shannon (1930).
 - ...introduz símbolos e operadores "próprios".
 - Torna possível descrever, manipular e simplificar expressões lógicas.
- Portanto, é uma ferramenta poderosa de análise, síntese e documentação para circuitos lógicos, tal como tabelas-verdade, símboloso diagramas esquemáticos e diagramas de tempo.

Constantes e variáveis booleanas

- Constantes e variáveis booleanas podem assumir apenas dois "valores", i.e., 0 ou 1.
- As variáveis booleanas 0 e 1
 representam efetivamente um estado/nível lógico.

Universidade Tecnológica Federal do

 Outros termos são, comumente, usados como sinónimos desses níveis lógicos.

_ like	
Lógico 0	Lógico 1
Falso	Verdadeiro
Baixo	Alto
Desligado	Ligado
Não	Sim
Aberto	Fechado

O valor booleano 0 pode representar qualquer tensão na faixa de 0–0,8 V, enquanto 1 pode representar qualquer tensão na faixa de 2–5 V. kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Constantes e variáveis booleanas

Federal do

Tecnológica

- As entradas (e.g., A, B, C, ...) e saídas (e.g., x, y, z, ...) de um circuito lógico são consideradas variáveis lógicas.
- Os níveis lógicos da(s) entrada(s) determinam, a qualquer momento, os níveis lógicos da(s) saída(s).
- A álgebra booleana permite expressar relações entre entradas e saídas (variáveis e constantes) de um circuito.

$$x = (A+0)\overline{CD} + \overline{(\overline{A}+C)(B+\overline{D})} + B(\overline{C}+1)D$$

- Variáveis booleanas, em momentos diferentes, podem assumir níveis lógicos 0 ou 1 (se não for um nível lógico, será o outro).
- Constantes booleanas são pontos no circuito onde os níveis lógicos <u>não se alteram</u> ao longo do tempo (são sempre 0 ou 1). kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

A álgebra booleana tem, de fato, apenas

três operações básicas (operações lógicas):

OR. AND e NOT

Constantes e variáveis booleanas

Em nosso mundo digital, essas operações são realizadas por portas lógicas construídas com transistores.

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Porta/Função	Número de Transistores
NOT	2
Buffer	4
NAND 2-input	4
NOR 2-input	4
AND 2-input	6
OR 2-input	6
NAND 3-input	6
NOR 3-input	6
MUX 2-input with TG	6
MUX 4-input with TG	18
MUX 4-input	24
1-bit <u>Adder full</u>	28
1-bit Adder-subtractor	48
8-bit multiplier	3,000
16-bit multiplier	9,000
32-bit multiplier	21,000
	-

Tecnológica Federal do

Universidade

Uma tabela-verdade descreve como a saída x de um circuito lógico depende dos níveis lógicos das entradas (e.g., $A \in B$).

A	B	x
0	0	1
0	1	0
1	0	1
1	1	0

- A lista das combinações possíveis é usualmente uma sequência de contagem binária; logo, é fácil preencher uma tabela-verdade sem esquecer nenhuma combinação.
- Caso o circuito lógico tenha mais entradas, basta adicionar mais colunas (e.g., C, D, E...).
- O número de linhas é 2^N , sendo N o número de entradas.

Universidade Tecnológica Federal do Paraná

Na álgebra booleana, a operação OR é representada por '+', i.e.,

$$x = A + B$$

a qual é lida como 'x é igual a A OU B

Com respeito a tabela-verdade e símbolo,

	C	R	6.	SO
Α	В	x = A	+ B	
0	0	0		$A \longrightarrow X = A + B$
0	1	/_1	0	
1	0	1		В
1	1 (1		
				Porta OR
	11	,		

Note que x assume nível lógico 1 caso <u>ao menos uma</u> entrada seja 1;

caso contrário, x assume nível lógico 0.

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Universidade Tecnológica Federal do Paraná

Exemplo: Determine a saída x para uma porta OR de 3 entradas $(A, B \in C).$

Exemplo: Determine a saída x para uma porta OR de 3 entradas $(A, B \in C)$.

R:

Universidade Tecnológica Federal do Paraná

			7	
	\overline{A}	B	C	x
	0	0	0	0
	0	0	1	1
	0	1	0	1
8.	0	1	1	1
~4O.	1	0	0	1
Α,	1	0	1	1
	1	1	0	1
	1	1	1	1

kuhn@utfpr.edu.br

Exemplo: Determine a saída da porta OR nos diferentes instantes de tempo indicados.

Exemplo: Determine a saída da porta OR nos diferentes instantes de tempo indicados.

Entre t_0 – t_1 e t_4 – t_5 , a saída assume nível lógico 0; em contraste, assume nível lógico 1 em todas os outros intervalos youtube.com/@eduardokuhn87

Na álgebra booleana, a operação AND é representada por '·' (comumente omitido por simplicidade), i.e.,

$$x = A \cdot B$$

a qual é lida como 'x é igual a $A \to B'$.

Com respeito a tabela-verdade e símbolo,

	ΑN	D 2	
Α	В	$x = A \cdot B$	
0	0	0	A
0	1	0	$A \longrightarrow X = AB$
1	0	• 0	R AB
1	4Q	1	
			Porta AND

Note que x assume nível lógico 1 caso todas as entradas sejam 1; kuhn@utfpasodcohtrário, yoassulmeonível @gilcondlokuhn87

Universidade Tecnológica Federal do Paraná

Exemplo: Determine a saída x para uma porta AND de 3 entradas $(A, B \in C)$.

Exemplo: Determine a saída x para uma porta AND de 3 entradas $(A, B \in C)$.

R:

Universidade Tecnológica Federal do Paraná

			_	
		. 0		
	A	B	C	x
	00	0	0	0
/.	0	0	1	0
	0	1	0	0
Α.	0	1	1	0
240	1	0	0	0
X	1	0	1	0
	1	1	0	0
	1	1	1	1

kuhn@utfpr.edu.br youtube.com/@eduardokuhn87

Exemplo: Determine a saída da porta AND nos diferentes instantes de tempo indicados.

Exemplo: Determine a saída da porta AND nos diferentes instantes de tempo indicados.

A saída assume nível lógico 1 apenas entre $t_2 - t_3$ e $t_6 - t_7$ ardokuhn87

Universidade Tecnológica Federal do Paraná

a) Qual a forma de onda da saída da porta AND?

b) E, caso a entrada B seja mantida em nível lógico 0?

Exemplo: Considerando

a) Qual a forma de onda da saída da porta AND?

R:

b) E, caso a entrada B seja mantida em nível lógico 0? R: Nesse caso, a porta AND é usada como circuito inibidor, já que B=0 implica x=0; por outro lado, quando B=1, tem-se a condição de habilitação, fazendo x=A. youtube.com/@eduardokuhn87

Paraná

Universidade Tecnológica Federal do

$$x = \overline{A}$$
 ou $x = A$

a qual é lida como 'x é igual a A negado' (complemento de A).

Com respeito a tabela-verdade e símbolo,

Note que x assume o <u>nível lógico oposto</u> ao aplicado na entrada A.

Universidade Tecnológica Federal do Paraná

Exemplo: Explique o funcionamento da porta NOT na aplicação (típica) ilustrada na figura.

Exemplo: Explique o funcionamento da porta NOT na aplicação (típica) ilustrada na figura.

R: Nessa aplicação, quando o botão é pressionado, tem-se nível lógico 0 na saída da porta NOT (inversora).

Qualquer circuito lógico pode ser descrito usando as 3 operações booleanas básicas (OR, AND e NOT).

Exemplo: Determine as expressões booleanas que descrevem a relação entre as entradas e a saída dos seguintes circuitos lógicos:

Exemplo: Determine as expressões booleanas que descrevem a relação entre as entradas e a saída dos seguintes circuitos lógicos:

R:

Exemplo: Determine a expressão booleana que descreve o seguinte circuito lógico:

Universidade Tecnológica Federal do Paraná

Exemplo: Determine a expressão booleana que descreve o seguinte circuito lógico:

R:

Universidade Tecnológica Federal do Paraná

$$x = \overline{A}BC\overline{(A+D)}$$

Exemplo: Determine a expressão booleana que descreve o seguinte circuito lógico:

Exemplo: Determine a expressão booleana que descreve o seguinte circuito lógico:

$$x = [D + \overline{(A+B)C}]E$$

Avaliando as saídas dos circuitos lógicos

A partir da expressão booleana que descreve um circuito, pode-se determinar o nível lógico da saída para uma dada entrada. Para tal, deve-se:

- i) atribuir o nível lógico às entradas, e, então,
- ii) avaliar a expressão usando a álgebra booleana.

Eventualmente, podem surgir dividas quanto a qual operação deve ser avaliada primeiro. Nesse contexto, lembre-se:

Precedência de operadores				
Operador	Símbolo	Descrição		
NOT	ou ′	Mais alta		
AND		Média		
OR	+	Mais baixa		

kuAwalle thrimeiro, as expressões bontidas/ entre parênteses?

Avaliando as saídas dos circuitos lógicos

Especificamente, as seguintes regras devem ser obedecidas:

- 1) Avalie as expressões dentro de parênteses.
- 2) Realize as operações NOT "simples" (uma variável).
 - Caso uma operação NOT envolva mais de uma variável, resolva a expressão e, em seguida, "inverta" o resultado.
- 3) Execute as operações AND e, então, OR.

A ordem das operações é a mesma da álgebra convencional.

Universidade Tecnológica Federal do Paraná

Avaliando as saídas dos circuitos lógicos

Exemplo: Determine a saída x = [D + (A + B)C]E quando

- a) A = B = 0 e C = D = E = 1
- b) A=B=E=0 e C=D=1

Universidade Tecnológica Federal do Paraná

Lembre-se da precedência de operadores, i.e., () \rightarrow NOT \rightarrow AND \rightarrow OR. kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Exemplo: Determine a saída x = [D + (A + B)C]E quando

a)
$$A = B = 0$$
 e $C = D = E = 1$

b)
$$A = B = E = 0$$
 e $C = D = 1$

R:

a)

Universidade Tecnológica Federal do Paraná

$$x = [1 + \overline{(0+0)1}]1$$

$$= [1 + \overline{0}]1$$

$$= 1.$$

b)

$$x = [1 + \overline{(0+0)1}]0$$

 $\begin{array}{c|c} \text{Lembre-se da precedência de operadores, i.e., ()} \to \texttt{NOT} \to \texttt{AND} \to \texttt{OR.} \\ \text{kuhn@utfpr.edu.br} & youtube.com/@eduardokuhn87 \end{array}$

E, se quiséssemos avaliar/verificar o

funcionamento de um dado circuito lógico

frente a todos os casos possíveis?

A melhor maneira de verificar como um circuito lógico funciona se dá através de sua tabela-verdade, a qual lista todas as possíveis combinações de entrada.

Dessa forma, torna-se possível:

Tecnológica Federal do Paraná

- Analisar uma porta ou combinação lógica de cada vez.
- Conferir se a implementação está correta.
- Identificar pontos de erros do circuito lógico.

Para cada possível combinação de entrada, determina-se o estado lógico em cada ponto (nó) do circuito lógico, inclusive a saída.

Exemplo: Determine a tabela-verdade do circuito combinacional ilustrado na figura.

R: Considerando que a saída do circuito lógico é dada por

$$x = \overline{A}B + BC$$

é possível mostrar que

Α	В	С	<u>u</u> =1	<u>v</u> =	W=	x=	
			A	AB	BC	V+W	
0	0	0	1	0	0	0	
0	0	7	1	0	0	0	
0	4	0	1	1	0	1	
0	τ	1	1	1	1	1	
1	0	0	0	0	0	0	
1	0	1	0	0	0	0	
1	1	0	0	0	0	0	
1	1	1	0	0	1	1	

A partir de uma tabela-verdade, pode-se então testar o circuito para todas as combinações de entradas, e.g.

- Se uma combinação de entrada produzir uma saída incorreta, basta verificar o nível lógico de cada nó intermediário.
- Se o nível lógico de um nó intermediário está correto, o problema está à direita; caso contrário, à esquerda desse nó.

Α	В	С	<u>u</u> = A	<u>v</u> = AB	w= BC	x= v+w
0	0	0	1	0	0	0
0	0	1	1	0	0	0
0	1	0	1	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	1	1

O diagrama de um circuito lógico pode ser

obtido diretamente a partir de uma dada

expressão booleana.

Exemplo: Desenhe o diagrama do circuito que implementa a seguinte expressão lógica:

essão lógica:
$$x = (A+B)(\overline{B}+C)$$

Exemplo: Desenhe o diagrama do circuito que implementa a seguinte expressão lógica:

$$x = (A+B)(\overline{B}+C).$$

R:

Exemplo: Desenhe o diagrama do circuito que implementa a seguinte expressão lógica:

e expressão lógica:
$$y = AC + B\overline{C} + \overline{A}BC.$$

Exemplo: Desenhe o diagrama do circuito que implementa a seguinte expressão lógica:

$$y = AC + B\overline{C} + \overline{A}BC$$

Paraná

Exceto pelo pequeno círculo na saída, que representa a operação de "inversão", os símbolos das portas NOR e NAND são iguais às portas OR e AND, respectivamente.

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Universidade Tecnológica Federal do Paraná

$$x = \overline{AB(C+D)}$$

usando apenas portas NOR e NAND. E, em seguida, determine o nível lógico da saída quando A=B=C=1 e D=0.

Exemplo: Implemente o circuito lógico cuja expressão booleanada é dada por

$$x = \overline{AB\overline{(C+D)}}$$

usando apenas portas NOR e NAND. E, em seguida, determine o nível lógico da saída quando A=B=C=1 e D=0.

R:

Em álgebra, um teorema é uma proposição que foi provada verdadeira por uma cadeia de raciocínio...

Elementos de ide
$$A + 0 = A$$

$$A \cdot 1 = A$$
2) Elementos nulos:
$$A + 1 = 1$$

$$A \cdot 0 = 0$$

$$\begin{cases} A+1=1\\ A\cdot 0=0 \end{cases}$$

Eduardo 3) Lei da involução: $\left\{\overline{\overline{A}}=A\right\}$

4) Lei da idempotência:
$$\begin{cases} A \cdot A = A \end{cases}$$

5) Complemento: $\begin{cases} A \cdot \overline{A} = 0 \\ A + \overline{A} = 1 \end{cases}$

$$\int A + \overline{A} = 1$$

6) Princípio da dualidade:

como os elementos 0 e 1.

dual obtido intercambiando-se as operações OR "+" e AND ":", bem

Cada postulado/teorema tem seu par

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

7) Propriedade comutativ
$$\begin{cases}
A + B = B + A \\
A \cdot B = B \cdot A
\end{cases}$$

$$\begin{cases} A + AB = A \\ A(A+B) = A \end{cases}$$

Propriedade associativa:
$$\begin{cases} (A+B)+C=A+B+C\\ (A\cdot B)\cdot C=ABC \end{cases}$$

11) Teorema '(?)':
$$\begin{cases} A + \overline{A}B = A + B \\ \overline{A} + AB = \overline{A} + B \end{cases}$$

$$\begin{cases} A(B+C) = AB + AC \\ A + BC = (A+B)(A+C) \end{cases}$$

12) Teoremas de De Morgan:*

^{*}Os dois teoremas mais importantes da álgebra booleana foram contribuições

Implicações dos Teoremas de De Morgan

Dado que

Universidade Tecnológica Federal do Paraná

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

verifica-se que

Analogamente, de

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

observa-se que

$$\overline{x} + \overline{y} = \overline{x} \overline{y}$$

kuhn@utfpr.edu.br

youtube.com/@eduardokuhn87

Os teoremas booleanos são úteis na simplificação de expressões lógicas...

Simplificação de expressões usando teoremas booleanos

Exemplo: Simplifique as seguintes expressões booleanas:

a)
$$x = A \cdot \overline{B} \cdot D + A \cdot \overline{B} \cdot \overline{D}$$

b)
$$y = (\overline{A} + B)(A + B)$$

c)
$$z = ACD + \overline{A}BCD$$

d)
$$w = \overline{(\overline{A} + C)(B + \overline{D})}$$

Simplificação de expressões usando teoremas booleanos

Exemplo: Simplifique as seguintes expressões booleanas:

a)
$$x = A \cdot \overline{B} \cdot D + A \cdot \overline{B} \cdot \overline{D}$$

R: $y = A\overline{B}$

b)
$$y = (\overline{A} + B)(A + B)$$

R: $z = B$

c)
$$z = ACD + \overline{A}BCD$$

R: $z = (A + B)CD$

d)
$$w = \overline{(\overline{A} + C)(B + \overline{D})}$$

R: $w = A\overline{C} + \overline{B}D$

Qualquer expressão pode ser implementada

usando apenas portas NOR ou NAND.

Universalidade das portas NOR e NAND

Exemplo: Implemente a expressão booleana

$$x = AB + CL$$

usando apenas portas NAND.

Universalidade das portas NOR e NAND

Exemplo: Implemente a expressão booleana

$$x = AB + CD$$

usando apenas portas NAND.

R: A partir da Lei da involução e dos Teoremas de De Morgan,

$$x = \overline{\overline{AB}} + \overline{\overline{CD}}$$

$$= \overline{\overline{AB} \cdot \overline{CD}}$$

o que resulta em

Universidade Tecnológica Federal do Paraná

kuhn@utfpr.edu.br youtube.com/@eduardokuhn87

O atraso de propagação é definido, basicamente, como o tempo que leva para um sistema produzir uma saída apropriada após receber uma entrada.

Paraná

Federal do

Universidade Tecnológica

Quando a entrada assume nível ALTO, a saída assume um nível ALTO pouco depois (e vice-versa). Logo, observa-se que

- i) Transições não são verticais (instantâneas); por isso, mede-se o ponto de 50% na entrada até 50% na saída.
- ii) O tempo de propagação BAIXO/ALTO $t_{\rm PLH}$ não é necessariamente o mesmo de ALTO/BAIXO $t_{\rm PHL}$. kuhn@utfpr.edu.br youtube.com/@eduardokuhn87

Tecnológica Federal do Paraná

Philips Semic	onductors		Product specification						
8-input	NAND gate		74HC/HCT30						
QUICK REFERENEC DATA GND = 0 V, T _{amp} = 25 °C; t _t = t _t = 6 ns									
SYMBOL	DADAMETER	CONDITIONS	TYPICAL		UNIT				
	PARAMETER	CONDITIONS	HC	нст	UNII				
t _{PHL} / t _{PLH}	propagation delay A, B, C, D, E, F, G, H to Y	C _L = 15 pF; V _{CC} = 5 V	12	12	ns				
Cı	input capacitance		3.5	3.5	pF				
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	15	15	pF				

SN54/74LS32

AC CHARACTERISTICS (TA = 25°C)

		Limits				
Symbol	Symbol Parameter		Тур	Max	Unit	Test Conditions
tPLH	Turn-Off Delay, Input to Output		14	22	ns	V _{CC} = 5.0 ∨
tPHL L	Turn-On Delay, Input to Output		14	22	/ /P\$	C _L = 15 pF

- As 3 operações básicas foram mostradas, i.e., QR, AND e NOT.
- Ferramentas úteis de análise, síntese e documentação de

- Teoremas da álgebra booleana foram introduzidos e utilizados
- A universalidade das portas NOR e NAND foi mostrada, as quais possibilitam sintetizar quaisquer circuitos lógicos.
- O conceito de atraso de propagação foi discutido. kuhn@utfpr.edu.br youtube.com/@eduardokuhn87

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Considerações finais

Exercícios sugeridos:

3.16, 3.19, 3.20, 3.22, 3.24, 3.26-3.33, 3.38-3.40, 3.48 e 3.49

de R.J. Tocci, N.S. Widmer, G.L. Moss, Sistemas digitais: princípios e aplicações, 12a ed., São Paulo: Pearson, 2019. → (Capítulo 3)

Para a próxima aula:

R.J. Tocci, N.S. Widmer G.L. Moss, Sistemas digitais: princípios e aplicações, 12a ed Capítulo Pearson, 2019. → (Capítulo 4)

Até a próxima aula... =)

attes.cnpq.br/2456654064380180