අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016

රසායන විදනව I இரசாயனவியல் I Chemistry I

சாக சுதைகீ இரண்டு மணித்தியாலம் Two hours

උපදෙස්:

- 🗱 ආවර්තිතා වගුවක් සපයා ඇත.
- * මෙම පුශ්න පතුය පිටු 08 කින් යුක්ත වේ.
- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- ※ ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- 🛠 උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න.
- * 1 සිට 50 තෙක් එක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන** පිළිතුර තෝරා ගෙන, එය **උත්තර පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක්** (X) **යොද දක්වන්න**.

සාර්වනු වායු නියතය $R=8.314\,\mathrm{J\,K^{-1}\,mol^{-1}}$ ඇවගාඩ්රෝ නියතය $N_A=6.022\times10^{23}\,\mathrm{mol^{-1}}$ ප්ලෑන්ක්ගේ නියතය $h=6.626\times10^{-34}\,\mathrm{J\,s}$ ආලෝකයේ පුවේගය $c=3\times10^8\,\mathrm{m\,s^{-1}}$

- 1. හයිඩුජන්වල විමෝචන වර්ණාවලියේ තරංග ආයාමය $4.42 \times 10^{-7} \, \mathrm{m}$ වන කොළ ආලෝකය නිරීක්ෂණය කර ඇත. මෙම කොළ ආලෝකයේ එක් ෆෝටෝනයක ශක්තිය වනුයේ,
 - (1) 4.5×10^{-19} kJ
- (2) $2 \times 10^{-19} \text{ kJ}$

(3) $1.5 \times 10^{-19} \text{ kJ}$

(4) $4.5 \times 10^{-22} \text{ kJ}$

- (5) $19.9 \times 10^{-26} \text{ kJ}$
- 2. පහත දී ඇති පරමාණුවලින් කුමක්, එහි වායුමය අවස්ථාවේ දී ඉලෙක්ටුෝනයක් ලබා ගත් විට විශාලතම ශක්ති පුමාණය පිට කරයි ද?
 - (1) S
- (2) P
- (3) No
- (4) Mg
- (5) Ne

3. X සංයෝගයේ IUPAC නම කුමක් ද?

(1) ethyl 2-formyl-2-nitrile-4-pentynoate

(2) 2-cyano-2-ethoxycarbonyl-4-pentynal

(3) 2-ethoxycarbonyl-2-nitrile-4-pentynal

(4) ethyl-2-cyano-2-formyl-4-pentynoate

- (5) ethyl 2-cyano-2-formyl-4-pentynoate
- 4. s හා p ගොනුවේ මූලදුවා සාදන අයනවල විශාලත්වය සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය අසතන වේ ද?
 - (1) කැටායන, ඒවායේ උදාසීන පරමාණුවලට වඩා සැමවිටම කුඩා ය.
 - (2) ඇතායන, ඒවායේ උදාසීන පරමාණුවලට වඩා සැමවිටම විශාල ය.
 - (3) ආවර්තයක් හරහා වමේ සිට දකුණට කැටායනවල විශාලත්වය අඩු වේ.
 - (4) ආවර්තයක් හරහා වමේ සිට දකුණට ඇතායනවල විශාලත්වය වැඩි වේ.
 - (5) දෙවැනි ආවර්තයේ මූලදුවා සාදන ඇනායන, තුන්වැනි ආවර්තයේ මූලදුවා සාදන කැටායනවලට වඩා විශාල වේ.
- 5. මූලදුවා $_{\text{DB}}$ යක පරමාණුවක අවසාන ඉලෙක්ටුෝන දෙක හා සම්බන්ධ ක්වොන්ටම් අංක කුලක $(3,0,0,\pm\frac{1}{2})$ සහ $(3,0,0,-\frac{1}{2})$ වේ. මූලදුවා $_{\text{DB}}$ වනුයේ,
 - (1) Li
- (2) Na
- (3) Mg
- (4) Al
- (5) K

6	. KIO $_3$ 0.60 g ක නියැදියක් ජලයේ දියකර එයට වැඩිපුර KI එකතු කරන ලදි. KIO $_3$ සම්පූර්ණයෙන් ම I_3^- බවට පසකිරීමට අවශා වන අවම 3.0 mol dm $^{-3}$ HCl පුමාණය වන්නේ, (O = 16 , K = 39 , I = 127)
	(1) 1.0 cm^3 (2) 4.7 cm^3 (3) 5.6 cm^3 (4) 10.2 cm^3 (5) 33.6 cm^3
7	. 25 °C දී MnS(s) හි දුාවාකා ගුණිකය, $K_{\rm sp} = 5.0 \times 10^{-15} {\rm mol}^2 {\rm dm}^{-6}$ වේ. ${\rm H_2S(aq)}$ හි අම්ල විඝටන නියක $K_{\rm l}$ හා $K_{\rm l}$ හි පිළිවෙළින් $1.0 \times 10^{-7} {\rm mol} {\rm dm}^{-3}$ හා $1.0 \times 10^{-13} {\rm mol} {\rm dm}^{-3}$ වේ.
	$MnS(s) + 2H^+(aq) ightleftharpoons Mn^{2+}(aq) + H_2^-S(aq)$ පුතිකිුයාවේ සමතුලිතතා නියතය, $K_{_{\mathbb{C}}}$ වනුයේ,
	(1) 2.0×10^{-16} (2) 5.0×10^{-8} (3) 20 (4) 5.0×10^{5} (5) 2.0×10^{7}
8.	. $f A$ නමැති කාබනික සංයෝගයේ බර අනුව 39.97% ක් $f C$, 6.73% ක් $f H$ හා 53.30% ක් $f O$ අඩංගු වේ. $f A$ හි ආනුභවික සූතුය කුමක් ද? ($f H=1$, $f C=12$, $f O=16$)
	(1) $C_6H_8O_2$ (2) $C_2H_4O_2$ (3) $C_3H_7O_3$ (4) $C_3H_6O_3$ (5) CH_2O
9.	. ලිතියම් (Li) සහ එහි සංයෝගවල රසායනය සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය අසතන වේ ද? (1) ලිතියම්, ඔක්සිජන් වායුව සමග පුතිකියා කර Li ₂ O ලබා දේ. (2) I කාණ්ඩයේ ලෝහ අතුරෙන් ඉහළ ම දවාංකය ඇත්තේ ලිතියම්වලට ය. (3) LiOH හි භාස්මිකතාව NaOH හි භාස්මිකතාවට වඩා අඩු ය. (4) I කාණ්ඩයේ කාබනේට අතුරෙන් අඩුම තාපස්ථායිතාවක් ඇත්තේ Li ₂ CO ₃ වලට ය. (5) LiCl පහන්සිඑ පරීක්ෂාවට භාජනය කළ වීට නිල් පැහැයක් ලබා දේ.
10.	${ m F_2NNO}$ අණුවේ වඩාත් ම ස්ථායි ලුවිස් වාූහයේ ${ m N}^0$ සහ ${ m N}^0$ පරමාණුවල ඔක්සිකරණ අවස්ථා වනුයේ පිළිවෙළින්,
	$_{\chi}$ ්ස සිත්ත්ව සිත්ත්ව සිත්ත්ව වෙන්න වෙන්න වෙන්න වෙන්න වෙන්න සිත්ත්ව සිත්ත්ව සිත්ත්ව සිත්ත්ව වෙන්න වෙන්න වෙන්න වෙන්න වෙන්න සිත්ත්ව සිත්ත්
	(1) +2 ww +2 (2) +1 ww +3 (3) +2 ww +3 (4) +1 ww +2 (5) +3 ww +1
11.	$\mathrm{CH}_4(\mathrm{g}) + \mathrm{CO}_2(\mathrm{g}) ightleftharpoons 2\mathrm{CO}(\mathrm{g}) + 2\mathrm{H}_2(\mathrm{g})$ යන පුතිකිුයාව සලකන්න.
	$25~^\circ$ C දී $0.60~\mathrm{mol}~\mathrm{CH_4(g)}$ හා $1.00~\mathrm{mol}~\mathrm{CO_2(g)}$, පරිමාව $1.00~\mathrm{dm}^3$ වූ සංවෘත දෘඪ භාජනයකට ඇතුළු කර පද්ධතිය සමතුලිතතාවට එළඹීමට ඉඩ හැරිය විට $0.40~\mathrm{mol}~\mathrm{CO(g)}$ සෑදුණි. පුතිකිුයාවේ සමතුලිතතා නියතය, $K_\mathrm{c}~\mathrm{(mol}^2~\mathrm{dm}^{-6})$ හි අගය වනුයේ,
	(1) 0.04 (2) 0.08 (3) 0.67 (4) 1.20 (5) 8.00
12.	Diamminebromidodicarbonylhydridocobalt(III) chloride වල රසායනික සූතුය IUPAC නීති අනුව චන්නේ, (1) [Co(CO) ₂ BrH(NH ₃) ₂]Cl (2) [CoBr(CO) ₂ (NH ₃) ₂ H]Cl (3) [Co(NH ₃) ₂ Br(CO) ₂ H]Cl (4) [CoBr(CO) ₂ H(NH ₃) ₂]Cl (5) [CoHBr(CO) ₂ (NH ₃) ₂]Cl
13.	ගල්අඟුරු නියැදියක සල්ෆර් පුමාණය නීර්ණය කිරීමට පහත දැක්වෙන කිුියාපිළිවෙළ යොදා ගන්නා ලදි. ස්කන්ධය 1.60 g වූ ගල්අඟුරු නියැදියක් ඔක්සිජන් වායුවේ දහනය කරන ලදි. සෑදුණු SO_2 වායුව H_2O_2 දාවණයක් තුළ එකතු කර ගන්නා ලදි. මෙම දාවණය 0.10 mol dm $^{-3}$ NaOH සමග අනුමාපනය කරන ලදි. අන්ත ලක්ෂායට එළඹීමට අවශා වූ NaOH පරිමාව 20.0 cm 3 විය. ගල්අඟුරු නියැදියේ සල්ෆර් පුතිශතය වනුයේ, $(S=32)$
14	(7) 211
14.	පහත පුතිකිුියාව මගින් එකිලීන්, $C_2H_4(g)$ හි දහනය දැක්වෙයි. $C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(g) \Delta H = -\ 1323 \ kJ \ mol^{-1}$
	මෙම දහනයේ දී වායුමය අවස්ථාවේ පවතින ජලය, $H_2O(g)$ වෙනුවට දුව අවස්ථාවේ පවතින ජලය, $H_2O(l)$ සෑදේ නම්, ΔH හි අගය $(kJ \ mol^{-1} \ D(g))$ කුමක් වේ ද $? \ (H_2O(g) \longrightarrow H_2O(l))$ සඳහා ΔH අගය වනුයේ – 44 $kJ \ mol^{-1}$ ය.)
	$(1) -1235 \qquad (2) -1279 \qquad (3) -1323 \qquad (4) -1367 \qquad (5) -1411$
15.	$25~^\circ\mathrm{C}$ දී බෙන්සීන්හි වාෂ්ප පීඩනය $12.5~\mathrm{kPa}$ වේ. මෙම උෂ්ණත්වයේ දී වාෂ්පශීලි නොවන නොදන්නා දුවායක් බෙන්සීන් $100~\mathrm{cm}^3$ ක දිය කළ විට දුාවණයේ වාෂ්ප පීඩනය $11.25~\mathrm{kPa}$ බව සොයා ගන්නා ලදි. මෙම දුාවණය තුළ එම නොදන්නා දුවායෙහි මවුල භාගය වනුයේ,
	(1) 0.05 (2) 0.10 (3) 0.50 (4) 0.90 (5) 0.95

16.	ුබල අම්ලයක් ($K=4.0 imes10^{-7}$ mol dm $^{-3}$) පුබල භස්මයක් සමග මිශු කිරීමෙන් ස්වාරක්ෂක දුාවණයක් සාදා ගත හැක.
	ho H = 6 වන ස්වාරක්ෂක දුාවණයක් සාදා ගැනීමට අවශා වන අම්ල සහ භස්ම සාන්දුණ අතර අනුපාතය (අම්ල : භස්ම)
	වන්නේ,

(1) 1:1 (2) 2:1 (3) 2:5 (4) 5:1 (5) 5:2

17.

$$\text{CH}_2\text{OH}$$
 ජලීය NaOH $\text{CH}_2\text{CO}_2\text{H}$

ඉහත සඳහන් පුතිකිුයාවේ පුධාන ඵලය 🗛 වනුයේ,

$$(3) \bigcirc_{\text{CH}_2\text{CO}_2^{\bullet}\text{Na}}^{\text{CH}_2\text{OO}}$$

$$\begin{array}{c}
\operatorname{CH}_{2} & \operatorname{CH}_{2} \\
\operatorname{CH}_{3}
\end{array}$$

- 18. $NO_2(g) + CO(g) \longrightarrow NO(g) + CO_2(g)$, පුතිකිුයාව සඳහා ශීඝුතා නියමය වනුයේ, ශීසුතාව = $k[NO_2]^2$ ය. දී qැති උෂ්ණත්වයක දී මෙම පුතිකිුිිිියාව සිදු වෙමින් පවතින සංවෘත දෘඪ භාජනයක් තුළට $\mathrm{CO}(g)$ ස්වල්පයක් ඇතුළු කළ විට සිදු විය හැකි වෙනස්වීම් පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය **ගත** වේ ද?
 - (1) k සහ පුතිකිුියාවේ ශීඝුතාව යන දෙකම වැඩි වේ.
 - (2) k සහ පුතිකිුියාවේ ශීඝුතාව යන දෙකම නොවෙනස්ව පවතී.

 - (4) k වැඩි වන අතර පුතිකිුිිිිිිිිිිිිිි ශීකාව නොවෙනස්ව පවතී.
 - (5) k නොවෙනස්ව පවතින අතර පුතිකිුියාවේ ශීඝුතාව වැඩි වේ.

19. 25 °C ₹

$$M(s) + 3Ag^{+}(aq) \longrightarrow 3Ag(s) + M^{3+}(aq)$$
 $E_{cell}^{\circ} = 2.46 \text{ V}$ $Ag^{+}(aq) + e \longrightarrow Ag(s)$ $E^{\circ} = 0.80 \text{ V}$ බව දී ඇත.

 $25~^{\circ}\mathrm{C}$ දී $\mathrm{M}^{3+}(\mathrm{aq}) + 3\mathrm{e} \longrightarrow \mathrm{M}(\mathrm{s})$ අර්ධ පුතිකිුයාවේ සම්මත ඔක්සිහරණ විභවය වනුයේ,

(1) -1.66 V

(2) -0.06 V

(3) 0.06 V

(4) 1.66 V

(5) 3.26 V

20. $N_2^{}O_3^{}$ අණුව සඳහා සම්පුයුක්ත වාුහ කොපමණ ඇඳිය හැකි ද? (සැකිල්ල, O-N-N-O)

(2) 3

(3) 4

- 21. ආන්තරික ලෝහ හා ඒවායේ සංයෝග පිළිබඳ ව මින් කුමන වගන්තිය සත්‍‍ වේ ද?
 - (1) කොපර් හි ඉලෙක්ටුෝන විනාහසය $1s^2\,2s^2\,2p^6\,3s^2\,3p^6\,3d^{10}$ වේ.
 - (2) d-ඉලෙක්ටෙුා්න ඇති සියලු ම මූලදුවා, 'ආන්තරික මූලදුවා' වේ.
 - (3) TiO ු හි Ti වල ඉලෙක්ටෝන විනාහසය හා ScCl ූ හි Sc වල ඉලෙක්ටෝන විනාහසය එකම වේ.
 - (4) දෙන් ලද ආන්තරික ලෝහයක ඔක්සයිඩවල ආම්ලිකතාව, ලෝහ අයනයෙහි ඔක්සිකරණ අවස්ථාව වැඩිවන විට අඩු වේ.
 - (5) 3d ශ්‍රේණියේ ආන්තරික ලෝහවලට ක්වොන්ටම් අංකය $m_{_{I}}=\pm 3$ තිබිය හැක.

More Past Papers at

tamilguru.lk

නියත උෂ්ණත්වයක ඇති සංවෘත භාජනයක් තුළ $PCl_3(g) + 3NH_3(g) \rightleftharpoons P(NH_3)_3(g) + 3HCl(g)$ යන සමතුලිතතාව ශීසුතාවල සිදුවිය හැකි වෙනස්කම් පිළිබඳ ව පහත සඳහන් කුමක් **සත**ෂ වේ ද?

ඉදිරි පුතිකියාව

(5) වෙනස් නොවේ.

ආපසු පුතිකුියාව

- (1) වැඩි වේ.
- (2) අඩු වේ.
- (3) අඩු වේ.
- (4) වැඩි වේ.

- අඩු වේ.
- වැඩි වේ.
- අඩු මව්.
- වැඩි වේ.
- වෙනස් නොවේ.
- 23. ඝන ඇමෝනියම් ක්ලෝරයිඩ්, NH Cl(s), 25 °C දී ජලයේ දිය කළ විට දුාවණයේ උෂ්ණත්වය අඩු වේ. පහත සඳහන් කුමක් මෙම කිුිිියාවලියෙහි ΔH° හා ΔS° සඳහා **සත** වේ ද?

	ΔH°	ΔS°
(1)	ධන	ධන
(2)	ධන	සෘණ
(3)	ධන	ශුතාප
(4)	ස3 ණ	ධන
(5)	සෑණ	දහ.ණ

- **24.** 3d ආන්තරික ලෝහ සහ ඒවායේ සංයෝග පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය **අසත** වේ ද?
 - (1) සමහර ලෝහවල ඔක්සයිඩ උභයගුණි වේ.
 - (2) සමහර ලෝහ සහ ලෝහ ඔක්සයිඩ උත්පේුරක ලෙස කර්මාන්තවල යොදා ගනු ලැබේ.
 - (3) 3d ආන්තරික ලෝහවල විදයුත් සෘණතාව 4s ලෝහවල විදයුත් සෘණතාවට වඩා ඉහළ ය.
 - (4) +7 ඔක්සිකරණ අවස්ථාව පෙන්නුම් කරන්නේ එක මූලදුවායයක් පමණි.
 - (5) MnO_4^- , $Cr_2O_7^{2-}$ වැනි ඔක්සොඅයන ඔක්සිහරණයට පුතිරෝධයක් දක්වයි.

ඉහත සඳහන් සංයෝගය වැඩිපුර $\mathrm{CH_{j}MgBr}$ සමග පුතිකිුයා කර ජලවිච්ඡේදනය කළ විට ලැබෙන පුධාන ඵලය

(1)
$$HOCH_2CH_2$$
— \bigcirc — C — CH_3 (2) CH_3 — C — CH_2 — \bigcirc — C — CH_3

(3)
$$HOCH_2CH_2$$
— \bigcirc — C — CH

(4)
$$CH_3 - CH_2 - COC_2H_5$$

$$\frac{(1) \text{ LiAlH}_4}{(2) \text{ H}^4/\text{H O}} > X$$

ඉහත සඳහන් පුතිකියා අනුපිළිවෙළෙහි ${f X}$ සහ ${f Y}$ හි වනුහ පිළිවෙළින් වනුයේ,

- (4) $CH_3COCH_2CH_2NH_2$, $CH_3COCH_2CH_2NHCOCH_3$

- 27. NH සම්බන්ධව පහත සඳහන් කුමන වගන්තිය **අසත** වේ ද?
 - (1) NH ු වලට කිුියා කළ හැක්කේ භස්මයක් ලෙස පමණි.
 - (2) NH_{3}^{3} , ඔක්සිජන් වල දහනය වී N_{3} වායුව ලබා දේ.
 - (3) NH නෙස්ලර් පුතිකාරකය සමග දුඹුරු වර්ණයක් ලබා දේ.
 - (4) NH_{3} , Li සමග පුතිකිුයා කර $Li_{3}N$ සහ H_{2} වායුව ලබා දේ.
 - (5) NH_{3}^{3} වල බන්ධන කෝණය 109° 28' ට වඩා අඩුවන නමුත්, NF_{3} වල බන්ධන කෝණයට වඩා වැඩි වේ.
- 28. $Zn^{2+}(aq)/Zn(s)$ සහ $Sn^{2+}(aq)/Sn(s)$ ඉලෙක්ටෝඩ භාවිත කර විදුපුත් රසායනික කෝෂයක් සාදන ලදි. පහත සඳහන් කුමන වගන්තිය මෙම කෝෂයෙහි කිුයාවලිය නිවැරදි ව විස්තර කරයි ද?

$$E_{\text{Zn}^{2+}(\text{aq})/\text{Zn}(s)}^{\circ} = -0.76 \,\text{V}, \qquad E_{\text{Sn}^{2+}(\text{aq})/\text{Sn}(s)}^{\circ} = -0.14 \,\text{V}$$

- (1) Zn ඉලෙක්ටුෝඩය කැතෝඩය වේ, Zn ඔක්සිකරණය වේ, ඉලෙක්ටුෝන Sn සිට Zn වෙත ගලා යයි.
- (2) Zn ඉලෙක්ටුෝඩය කැතෝඩය වේ, Sn ඔක්සිකරණය වේ, ඉලෙක්ටුෝන Sn සිට Zn වෙත ගලා යයි.
- (3) Sn ඉලෙක්ටෝඩය ඇනෝඩය වේ, $\mathrm{Zn}^{2+}(\mathrm{aq})$ ඔක්සිහරණය වේ, ඉලෙක්ටෝන Zn සිට Sn වෙත ගලා යයි.
- (4) Zn ඉලෙක්ටෝඩය ඇනෝඩය වේ, Zn ඔක්සිකරණය වේ, ඉලෙක්ටුෝන Zn සිට Sn වෙත ගලා යයි.
- (5) Zn ඉලෙක්ටෝඩය ඇනෝඩය වේ, Sn²⁺(aq) ඔක්සිහරණය වේ, ඉලෙක්ටෝන Sn සිට Zn වෙත ගලා යයි.
- **29.** පහත සඳහන් කුමන වගන්තිය $C_{\xi}H_{\xi}NH_{\gamma}$ පිළිබඳ ව **අසත** වේ ද?
 - (1) CH_COCI සමග පුතිකියා කර ඒමයිඩයක් සාදයි.
 - (2) ජලීය NaOH සමග රත් කළ විට ඇමෝනියා වායුව පිට කරයි.
 - (3) බෝමීන් දියර සමග සුදු පැහැති අවක්ෂේපයක් ලබා දේ.
 - (4) නයිටුස් අම්ලය සමග පුතිකිුයා කර වූ විට ෆීනෝලයක් ලබා දේ.
 - (5) $C_6^{}H_5^{}CH_2^{}NH_2^{}$ වලට වඩා භාස්මිකතාව අඩු ය.
- 30. CH₃COOAg(s) හා ස්පර්ශ වෙමින් පවතින සන්කෘප්ත සිල්වර් ඇසිටේට් දුාවණ හතරක් බීකර හතරක අඩංගු වේ. පහත සඳහන් දුාවණ එක් එක් බීකරයට වෙන වෙනම එකතු කළ විට සිල්වර් ඇසිටේට්හි දුාවාතාව වෙනස් වන්නේ කෙසේ ද?

CH₃COONa, නනුක HNO₃, NH₄OH, AgNO₃

		**	**		
		CH ₃ COONa	තනුක HNO ₃	NH ₄ OH	AgNO ₃
ľ	(1)	වැඩි වේ.	වැඩි වේ.	වැඩි වේ.	වැඩි වේ.
ł	(2)	අඩු වේ.	අඩු වේ.	අඩු වේ.	අඩු වේ.
	(3)	අඩු වේ.	වැඩි වේ.	වැඩි වේ.	අඩු වේ.
	(4)	අඩු වේ.	වැඩි වේ.	අඩු වේ.	අඩු වේ.
1	(5)	අඩු වේ.	අඩු වේ.	වැඩි වේ.	අඩු වේ.

- lacktriangle අංක lacktriangle 31 සිට lacktriangle තෙක් එක් පුශ්නය සඳහා දී ඇති (a),(b),(c) සහ (d) යන පුතිවාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

		3		
(1)	(2)	(3)	(4)	(5)
(a) සහ (b)	(b) සහ (c)	(c) සහ (d)	(d) සහ (a)	වෙනත් පුකිචාර
පමණක්	පමණක්	පමණක්	පමණක්	සංඛනාවක් හෝ
නිවැරදියි	නිවැරදියි	නිවැරදියි	නිවැරදියි	සංයෝජනයක් හෝ නිවැරදියි

31. පහත දී ඇති පුතිකුියාව සලකන්න.

$$2\text{HI(g)} \rightleftharpoons I_2(\text{s}) + H_2(\text{g}) \quad \Delta \text{H}^{\circ} = -52.96 \text{ k J mol}^{-1}$$

මෙම පුතිකියාව සංවෘත භාජනයක සිදු වන විට පහත කුමන වගන්තිය/වගන්ති **නිවැරදි** වේ ද?

- (a) උෂ්ණත්වය වැඩි කළ වීට සහ පීඩනය අඩු කළ විට සමතුලිතතාව දකුණට යොමු කෙරේ.
- (b) උෂ්ණත්වය වැඩි කළ විට සහ පීඩනය අඩු කළ විට සමතුලිතතාව වමට යොමු කෙරේ.
- (c) උෂ්ණත්වය අඩු කළ විට සහ පීඩනය වැඩි කළ විට සමතුලිතතාව දකුණට යොමු කෙරේ.
- (d) උෂ්ණත්වය අඩු කළ විට සහ පීඩනය වැඩි කළ විට සමතුලිතතාව වමට යොමු කෙරේ.

- 32. CH,= CHCHO අණුව පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති **යත**න වේ ද?
 - $(a)^{-}$ කාබන් පරමාණු තුනම sp^2 මුහුම්කරණය වී ඇත.
 - (b) කාබන් පරමාණු තුනම සරල රේඛාවක පිහිටයි.
 - (c) කාබන් පරමාණු තුනම එකම තලයේ නොපිහිටයි.
 - (d) කාබන් පරමාණු තුනම එකම තලයේ පිහිටයි.
- 33. සොල්වේ කුමය හා සම්බන්ධ සමහර පුතිකියා වන්නේ,
 - (a) $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$
 - (b) NaCl + NH₃ + H₂O + CO₂ \longrightarrow NaHCO₃ + NH₄Cl (c) Na₂CO₃ + CO₂ + H₂O \longrightarrow 2NaHCO₃

 - (d) $Ca(OH)_2 + 2NH_4CI \longrightarrow CaCl_2 + 2NH_4OH$
- 34. මූලික ප්‍රතිත්‍රියාවක ශී්සුතාව සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය/වගන්ති සැමවිටම සත්‍ර වේ ද?
 - (a) උෂ්ණත්වය වැඩි කිරීමෙන් ශීඝුතාව වැඩි කළ හැක.
 - (b) පුතිකියා මාධානයෙන් ඵල ඉවත් කිරීමෙන් ශීසුතාව වැඩි කළ හැක.
 - (c) පුතිකිුයාවේ ශීඝුතාව, වඩාත් ම සෙමින් සිදු වන පියවරෙහි ශීඝුතාව මත රඳා පවතී.
 - (d) $\Delta G < 0$ කිරීමෙන් පුතිකිුිියාවෙහි ශීඝුතාව වැඩි කළ හැක.
- 35. 4-pentenal අණුව පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති **සත**ෂ වේ ද?
 - (a) ජාාමිතික සමාවයවිකතාව පෙන්වයි.
 - (b) HBr සමග පුතිකිුයා කළ විට ලැබෙන සංයෝගය පුකාශ සමාවයවිකතාව නොපෙන්වයි.
 - (c) HBr සමග පුතිකිුයා කළ විට ලැබෙන සංයෝගය පුකාශ සමාවයවිකතාව පෙන්වයි.
 - (d) CH₃MgBr සමග පුතිකිුයා කළ විට ලැබෙන එලය පුකාශ සමාවයවිකතාව පෙන්වයි.
- 36. නයිටුක් අම්ලය සම්බන්ධව කුමන වගන්තිය/වගන්ති **අසත**ු වේ ද?
 - (a) සංශුද්ධ නයිට්‍රික් අම්ලය ලා කහ දුවයකි.
 - (b) නයිටුික් අම්ලයේ සියලු ම ${
 m N-O}$ බන්ධනවල දිග සමාන ය.
 - .(c) නයිටුික් අම්ලයට ඔක්සිහාරකයක් ලෙස කිුියා කළ නොහැක.
 - (d) එය වැදගත් පොහොරක් වන ඇමෝනියම් නයිටේට් නිෂ්පාදනයේ දී භාවිත වේ.
- 37. $C(s), O_{s}(g)$ සමග පුතිකියා කර $CO_{s}(g)$ 0.40 mol සාදන විට $40\,\mathrm{kJ}$ තාප පුමාණයක් පිට වේ. පහත සඳහන් කුමන වගන්තිය/ වගන්ති මෙම පද්ධතිය සඳහා **සත** \mathbf{z} වේ ද? ($\mathbf{C}=12,\ \mathbf{O}=16$)
 - (a) ${
 m CO}_{\gamma}({
 m g})$ මවුලයක් ${
 m C}({
 m s})$ සහ ${
 m O}_{\gamma}({
 m g})$ වලට විඝටනය කිරීම සඳහා $100~{
 m kJ}$ තාප පුමාණයක් අවශා වේ.
 - (b) $CO_2(g)$ 11 g ක් සෑදීම සඳහා $25 \, \mathrm{kJ}$ තාප පුමාණයක් අවශා වේ.
 - (c) එලයින්හි එන්තැල්පි අගයයන්ගේ එකතුව පුතිකියකවල එන්තැල්පි අගයයන්ගේ එකතුවට වඩා අඩු වේ.
 - (d) එලයන්හි එන්නැල්පි අගයයන්ගේ එකතුව පුතිකියකවල එන්නැල්පි අගයයන්ගේ එකතුවට වඩා වැඩි වේ.
- ${f 38.}$ මූලික පුතිකිුයාවක තුලිත රසායනික සමීකරණය සඳහා පහත සඳහන් කුමන වගන්තිය/වගන්ති **සක** වේ ද?
 - (a) පුතිකිුියාවේ පෙළ සහ අණුකතාව එකම වේ.
 - (b) ප්‍රතිකියාවේ පෙළ අණුකතාවට වඩා අඩු වේ.
 - (c) පුතිකියාවේ පෙළ අණුකතාවට වඩා වැඩි වේ.
 - (d) අණුකතාව ශූනා විය නොහැක.
- 39. පහත දී ඇති අණුව පිළිබඳ ව මින් කුමන වගන්තිය/වගන්ති **සහ**ෂ වේ ද?

- (a) ඉබු්මීන් දියර විවර්ණ කරයි.
- (b) ජලීය NaOH දාවණයක් සමග උණුසුම් කළ විට ඇමෝනියා නිදහස් කරයි.
- (c) 2,4-DNP පුතිකාරකය සමග තැඹිලි පැහැති අවක්ෂේපයක් ලබා දේ.
- (d) NaBH සමග පිරියම් කළ විට පුාථමික ඇමීනයක් ලබා දේ.
- 40. පහත දී ඇති සංයෝග සලකන්න.
 - (A) HCHO

(B) NH₂CONH₂

(C) C₆H₅OH

- (**D**) $HO_2C(CH_2)_4CO_2H$
- (E) H₂N(CH₂)₂NH₂

අදාළ තත්ත්වයන් යටතේ පුතිකිුිිියා කළ විට පහත දී ඇති කුමන යුගලය / යුගලයන් තාපස්ථාපන බහුඅවයවකයක් ලබා ලද් ද?

- (a) A සහ B
- (b) A සහ C
- (c) C සහ D
- (d) D සහ E

අංක 41 සිට 50 තෙක් එක් එක් ප්‍රශ්නය සඳහා ප්‍රකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම ප්‍රකාශ යුගලයට හොඳින් ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන ප්‍රතිචාරවලින් කවර ප්‍රතිචාරය දැ'යි තෝරා උත්තර පත්‍රයෙහි උච්ත ලෙස ලකුණු කරන්න.

	- -	
පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
(1)	සතා වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි.
(2)	සතා වේ.	සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහදා නොදෙයි .
(3)	සතා වේ.	අසතා වේ.
(4)	අසතා වේ.	සතා වේ.
(5)	අසතා වේ.	අසතා වේ.

	පළමුවැනි උකාශය	දෙවැනි පුකාශය
41.	සුක්රෝස්, සාන්දු ${ m H_2SO_4}$ සමග පිරියම් කළ විට කළු පැහැති ස්කන්ධයක් ලැබේ.	සාන්දු H ₂ SO ₄ පුබල ඔක්සිකාරකයකි.
42.	$\mathrm{CH_3CH}{=}\mathrm{CH_2}$ සහ HX අතර ආකලන පුතිකුියාවේ දී $\mathrm{CH_3CH_2CH_2^{\oplus}}$ කාබොකැටායනය අතරමැදියක් ලෙස පහසුවෙන් සෑදේ.	ධන ආරෝජිත කාබන් පරමාණුවකට සම්බන්ධ ඇල්කයිල් කාණ්ඩ මගින් C—C, σ-බන්ධන හරහා ධන ආරෝපිත කාබන් වෙත ඉලෙක්ටුෝන නිදහස් කර කාබොකැටායනයේ ස්ථායිතාව වැඩි කරයි.
43.	80 °C දී H $_2$ (g) හි මධානා අණුක වේගය, 40 °C දී N $_2$ (g) හි මධානා අණුක වේගයට වඩා අඩු වේ.	මධානා අණුක වේගය උෂ්ණත්වයෙහි වර්ග මූලයට අනුලෝමව සමානුපාතික වන අතර මෞලික ස්කන්ධයෙහි වර්ග මූලයට පුතිලෝමව සමානුපාතික වේ.
44.	කාණ්ඩයේ පහළට යන විට ජලය සමග ක්ෂාර ලෝහවල පුතිකිුයතාව වැඩි වේ.	ලෝහ පරමාණුවේ විශාලත්වය වැඩි වන විට පුබල ලෝහක බන්ධන සෑදේ.
45.	CH ₃ C≡CH ඇමෝනිකෘත Cu ₂ Cl ₂ සමග පිරියම් කළ විට රතු අවක්ෂේපයක් ලබා දේ.	ඇල්කයිනවල අගුස්ථවල ඇති ආම්ලික හයිඩුජන් ලෝහ මගින් විස්ථාපනය කළ හැක.
46.	සියලු ම ස්වයංසිද්ධ පුතිකියා තාපදායක වේ.	ඕනෑම පුතිකිුියාවකට $\Delta G = \Delta H + T \Delta S$ වේ.
47.	$\mathrm{NH}_3(\mathrm{g})$ නිෂ්පාදනයේ දී $\mathrm{N}_2(\mathrm{g})$ හා $\mathrm{H}_2(\mathrm{g})$ අතර පුතිකිුයාව තාපාවගෝෂක වේ.	නයිටුක් අම්ලය හා යූරියා සංශ්ලේෂණයේ දී $\operatorname{NH}_3(\operatorname{g})$ භාවිත වේ.
48.	බෝමොක්ලෝරොමීතේන්හි දර්පණ පුතිබිම්බ, පුතිරූපඅවයව සමාවයවික වේ.	එකිනෙක මත සමපාත කළ නොහැකි දර්පණ පුතිබිම්බ පුතිරූපඅවයව සමාවයවික වේ.
49.	ආම්ලික ජලීය මාධාඃයක දී බේරියම් ඔක්සලේට්, $\mathrm{BaC_2O_4(s)}$ හි දාවෳතාව, ජලයේ දී එහි දුාවෳතාවට වඩා අඩු වේ.	$\mathrm{C_2O_4^{2-}}$ වල සංයුග්මක අම්ලය වන්නේ $\mathrm{H_2C_2O_4}$ දුර්වල අම්ලයයි.
50.	සමහර ශාකවල මූල ගැටීතිවල පවතින එන්සයිමවලට N ₂ තිර කිරීමේ හැකියාවක් ඇත.	N ₂ අණුව අකිුය වන්නේ මූලික වශයෙන් එහි අඩංගු N–N නිුත්ව බන්ධනය හේතුවෙනි.

* * *

More Past Papers at

tamilguru.lk

ආවර්තිතා වගුව

	1]																2
1	H																	He
	3	4											5	. 6	7	8	9	10
2	Li	Be											В	C	N	o	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113		•			
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	•••				

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	\mathbf{Gd}^*	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

3

අධනයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016

<mark>රසායන විදනව II</mark> இரசாயனவியல் **II** Chemistry II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

ව්භාග	අංකය	:	· · · · · · · · · · · · · · · · · · ·
	7	-	

- 🔆 ආවර්තිතා වගුවක් 15 වැනි පිටුවෙහි සපයා ඇත.
- * ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * සාර්වනු වායු නියතය, $R = 8.314 \,\mathrm{J \ K^{-1} \ mol^{-1}}$
- * ඇවගාඩ්රෝ නියතය, $N_A = 6.022 \times 10^{23} \,\mathrm{mol}^{-1}$
- * මෙම පුශ්න පතුයට පිළිතුරු සැපයීමේ දී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ය.

- A කොටස වපුහගත රචනා (පිටු 2 8)
- * සියලු ම පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.
 - □ B කොටස සහ C කොටස රචනා (පිටු 9 14)
- * එක් එක් කොටසින් පුශ්න දෙක බැගින් තෝරා ගනිමින් පුශ්න හතරකට පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- st සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු f A, f B සහ f C කොටස්වලට පිළිතුරු, f A කොටස මූලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යා හැකි ය.

ප්රීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

කොටස	පුග්ත අංකය	ලැබූ ලකුණු
	1	
A	2	
***	3	
	4	
	5	
В	6	
	7	
	8	
C	9	·
	10	
එකතුව		
පුතිශතය		

අවසාන ලකුණ

ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
පරීක්ෂා කළේ :	
අධීක්ෂණය කළේ :	

A	කොටස		වපුහගහ	රවනා
<i>,</i>	wwwww	-	WEND WIND	

පුශ්න <mark>හතරට ම</mark> මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 10 කි.)

මේම නිරයේ නිගිවක් නො ලියන්න

 $1.\ \ (a)\ \$ ඔබට අාවර්තිතා වගුවේ p-ගොනුවේ මූලදුවා කිහිපයක් අඩංගු ලැයිස්තුවක් පහත සපයා ඇත.

В	C	N	О	F	Ne
Al	Si	P	S	CI	Ar

එම ලැයිස්තුවෙන්,

- (i) ඉහළ දැඩි බවකින් යුතු සමපරමාණුක සහසංයුජ දැලිසක් සාදන අලෝහමය මූලදුවාසය හඳුනාගන්න.
- (iii) වැඩි ම පළමු අයනීකරණ ශක්තිය ඇති මූලදුවාසය හඳුනාගන්න.
- (iv) උභයගුණි ලක්ෂණ පෙන්නුම් කරන මූලදුවායෙ හඳුනාගන්න.

(ලකුණු 2.4 යි)

(b) පහත දී ඇති (i) සිට (v) කොටස් CN_4 අණුව මත පදනම් වේ. එහි සැකිල්ල පහත දී ඇත.

- (i) N—N බන්ධන දිග ආසන්න වශයෙන් සමාන බව උපකල්පනය කරමින්, මෙම අණුව සඳහා **වඩාත් ම** පිළිගත හැකි ලුවිස් වයුහය අඳින්න.
- (ii) මෙම අණුව සඳහා සම්පුයුක්ත වනුහ **තුනක්** අඳින්න (ඉහත (i) කොටසෙහි අඳින ලද වනුහය හැර).

- (iii) ඉහත (i) හි අදින ලද ලුවිස් වාුහය පදනම් කර ගෙන, පහත වගුවේ දක්වා ඇති C සහ N පරමාණුවල,
 - I. පරමාණුව වටා VSEPR යුගල්

II. පරමාණුව වටා ඉලෙක්ටුෝන යුගල් ජාාමිතිය

III. පරමාණුව වටා හැඩය

IV. පරමාණුවේ මුහුම්කරණය

සඳහන් කරන්න.

 CN_4 හි නයිටුජන් පරමාණු පහත දක්වා ඇති ලෙස අංකනය කර ඇත:

N	L	C	-N ² -	N ³ -	N

		С	N ²	N ³
I.	VSEPR යුගල්			
II.	ඉලෙක්ටුෝන යුගල් ජාාාමිතිය			
III.	හැඩය			
IV.	මුහුම්කරණය			

016/02	S-II(A)		- 3 -	**)භාග අං		1
	~2220 (i) emoles	හි අඳින ලද ලුi ා්රා ගැනීමට (හේතු දක්වන්න. [පරම	ාණුවල අංකන (ාා) කො	් N ² හෝ N ³ ට දැයි සඳහ ප ටසෙහි ආකාරයට වේ.]	මෙම නිරයේ සිසිවක් නො ලිං
							**********************	.
	,,,,,,,,		***********					
		,,,,,,,	*******		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
(v)	ඉහත මුහුම්	(i) කොටසෙ කාක්ෂික හ	ාහි අඳින ලද දු දුනාගන්න. [ප	පුවිස් වාුුහයෙහි පහත රෙමාණුවල අංකන (iii)	සඳහන් <i>σ</i> බන්ධ:) කොටසෙහි ආ	න සෑදීම කාරයට	ට සහභාගි වන පරමාණුක වේ.]	o/
	1.	N^1 —C	N^1		, C	,,,,,,,,,,		
	П.	CN ²	C	***************************************	, N ²		***************************************	
	III.	N ² N ³	N ²		, N ³			***************************************
	IV.	N ³ —N ⁴	N ³	*********	, N ⁴		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
							(ලකුණු 5.6	ය)
				මෙහාත් අඟත % දෙ යන ම	බව සඳහන් කරු	න්න. (මෙ	්තු අවශා නොවේ.)	
			දෙක ම ස්ථා				***************************************	•••
(ii) SiCl ₂	, NCl ₃ සහ	SCl ₂ හි ඉලෙස	ක්ටෝන යුගල් ජනාමිති	ය චතුස්තලීය දි	<u>ට</u> ුවද		
			කෝණ වෙන					
	•			ායට වඩා වැඩි ය. -	_		*************************	/
(iv	/) II ව වන්	ත කාණ්ඩයෙ නේ මූලික වශ	් සල්ෆේටවල ායෙන් කැටායෑ	දාවාෟතාව කාණ්ඩයේ නවල ජලීකරණ එන්තැ	පහළට යන විට ල්පිය අඩුවන නි¢) අඩු 30 ය.	(ලකුණු 2.0	 ක) \ <u>1</u> (
Y ·	හි හයි මොදන	ඩුාක්සයිඩය යේ දී භාවිත	ට වඩා X හි : ා කාරයි. Y හි	හයිබොක්සය්ඩය හාෂ්	මක වෙ. A හි ර ලීය උණුසුම්කර	ුණුය සැ පොතා	ා කර හයිඩොක්සයිඩ සාද සයිඩය ළදරුවන්ගේ සබ ැහා පුධාන ලෙස හේතුව	٠-,
		හ ¥ හඳුනාශ				٦.		
			X		Y			
				2008 B(20000				
((i) X @	හ Y හි ඉලෙ	_ී ක්ටුෝන වන	ma Garenen.				
((i) X @	හ Y හි ඉල(X =	_{ික්} ටුෝන වින 					
((i) X ∞		_ි					A MANAGEMENT AND
		x = y =	*******			වර්ණ ලි	දියන්න.	
		x = y =	 ෂාලව් දී 🗶 සහ			වර්ණ ලි =	යන්න.	
(ii) පහ	X = Y = න්සිඑ පරීක් X =	 ඎවේ දී 🗶 සහ	o Y හි ලවණ පෙන්නුම්) කරන දැල්ලේ Y	වර්ණ ලි =	්යත්ත.	
(ii) පත (i:) X e	X = Y = න්සිඑ පරික් X =	ව ෂාලව් දී 🗶 සහ ත දෑ සඳහා ස	ා ¥ හි ලවණ පෙන්නුල්) කරන දැල්ලේ Y	වර්ණ ලි =	යන්න.	
((ii) exw (ii) X e	X = Y = න්සිඑ පරීක් X = නෙ Y හි පහ	 ඎවේ දී 🗶 සහ	ා ¥ හි ලවණ පෙන්නුල් හාජෙක්ෂ විශාලත්වයන්) කරන දැල්ලේ Y	වර්ණ ලි =	දියන්න.	
((ii) exw (ii) X e I	X = Y = න්සිඑ පරික් X =	ව ෂාලව් දී 🗶 සහ ත දෑ සඳහා ස	ා ¥ හි ලවණ පෙන්නුල් තාපේක්ෂ විශාලත්වයන්) කරන දැල්ලේ Y	වර්ණ ලි =	ියන්න. 	
(ii) =380 (ii) X e II III	X = Y = න්සිඑ පරීක් X = න Y හි පහ . පරමාණු . සනත්වය . දුවාංකය	ව ෂාලව් දී 🗶 සහ ත දෑ සඳහා ස	o ¥ හි ලවණ පෙන්නුල් ාාපේක්ෂ විශාලත්වයන් > >) කරන දැල්ලේ Y	වර්ණ ලි =)යන්න. 	

(vi)	Z හැ පම ණ	නාගැනීම සඳහා Y හි හයිඩොක්සයිඩය භාවිත : ාක් භාවිතයෙන් දක්වන්න.	කළ හැක්කේ කෙසේ දැයි තුලිත රසායනික සමීකරණ	කිසිවක්
	සැ.යු . දක්ව	: අවක්ෂේප ඇතොත් "↓"ලෙස සහ හඳුනාගැනි න්න.	මේ දී උපයෝගී වන අවක්ෂේපවල / දුාවණවල වර්ණ	මතා ලියන්න
(vii)	කාබ ලෙස	ංන්ටයක් වශයෙන් පවතින ¥ හි ස්වාභාවික පුභ භාවිත කෙරේ.	වයක්, විෂබීජ නාශකයක් නිෂ්පාදනයේ දී අමුදුවාඃයක්	
	I.	ස්වාභාවික පුහවය නම් කරන්න		
		විෂබීජ නාශකය හඳුනාගත්න		
	III.	විෂබීජ නාශකය නිෂ්පාදන කිුයාචලියේ පියව ලියන්න.	ර තුලිත රසායනික සමීකරණ පමණක් භාවිතලෙයන්	
			(ලකුණු 5.0 යි)	
(b) (i)	දී ඇති කරන්	ලැයිස්තුවෙන් සුදුසු දුාවණය තෝරා ගෙන කෙ ත	හටුව තුළ ලිවීමෙන්, පහත දී ඇති පුතිකිුයා සම්පූර්ණ	
		 ලැයිස්තුව (පිළිවෙළින් නොවේ)		
		$Na_2S_2O_3(aq)$, $AgNO_3(aq)$, $K_2SO_4(aq)$	g), (NH ₄) ₂ CO ₃ (aq), BaCl ₂ (aq), KI (aq)	
	සැ.යු. :	එක් දුාවණයක් එක් වරක් පමණක් භාවිත කළ		
	Ĭ.		ක HCl හි දුවණය වී පැහැදිලි දුාවණයක් ාදෙන සුදු පැහැති අවක්ෂේපයක්)	
	II.	$Pb(NO_3)_2(aq)+$ \longrightarrow $B(c \ll b)$	ු ජලයෙහි දුවණය වන කහ පැහැති අවක්ෂේපයක්)	***************************************
	III.	AgNO ₃ (aq) +	තැබීමේ දී කළු පැහැවන සුදු පැහැති අවක්ෂේපයක්)	
	IV.	K ₂ SO ₃ (aq) +	ක HCl හි දුවණය වන සුදු පැහැති අවක්ෂේපයක්)	
	V.		්දු ඇමෝනියාහි සම්පූර්ණයෙන් ම දුවණය වන හ පැහැති අවක්ෂේපයක්)	
•	VI.	Ba(NO ₃) ₂ (aq)+	ක HCl හි දුවණය නොවන සුදු පැහැති අවක්ෂේපයක්)	
(ii) A	4 80 1	ි දක්වා ඇති අවක්ෂේපවල රසායනික සූතු ලිය	නේන.	
A	\	В.		
(J	D		
			ව වීම සඳහා තුලිත රසායනික සමීකරණ ලියන්න.	
-			1/	OHI PER
•	,,,,,,,,,			A CONTRACTOR AND A CONT
			l i	100
	······································		(ලකුණු 5.0 යි) ['] \	Sorder
			[පස්වැනි පිටුව (ශලතන. _{්දී}

AL,	/201	6/02-5	S-II(A)	- 5 -	
3.	(a)			$f A$ වායුවෙන් මවුල 0.010 ක් රේචනය කරන ලද $1.0~{ m dm}^3$ සංවෘත දෘඪ භාජනයක් තුළ ඝන සියිසේ කිව්වස් පුමාණයක් හමුවේ තැබූ විට, එය පහත දැක්වෙන ආකාරයට ව්යෝජනය වේ.	ನೆಜ
			A	$(g) \longrightarrow B(g) + C(g)$	
		A (g) 8	බි සාන්ද	දුණය කාලයත් සමග මනින ලදී. පුතිඵල පහත දැක්වෙන පුස්තාරයේ පෙන්වා ඇත. [A]/mol dm ⁻³	
				0.010 0.008 0.006	
				0.004 0.002 0 500 1000 1500 2000 කාලය/s	
				ාවේ පෙළ සහ ශීඝුතා නියතය පිළිවෙළින් $oldsymbol{a}$ සහ $oldsymbol{k}$ ලෙස ගනිමින් ඉහත පුතිකිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි	
		Ç	ටුකාශත:	තය ලියන්න.	
		(ii)	මන්තු දෘ	ක්වමින් a හි අගය නීර්ණය කරන්න.	
		(iii)	227 °C	හි දී ශීඝුතා නියකය, $m{k}$ ගණනය කරන්න.	
				යේ දී පැවති $A(g)$ හි පුමාණයෙන් අඩක් වියෝජනය වී ඇති විට භාජනය තුළ පීඩනය ගණනය . උත්පේුරකයෙහි පරිමාව නොසලකා හැරිය හැකි බව උපකල්පනය කරන්න.	
			. ,		

(ලකුණු 6.0 යි)

(b)	ඝත	උත්පේුරකයක්	හමුවේ	X වායුව	පහත	දැක්වෙන	රසායනික	සමීකරණය	අනුව	වියෝජනය	වේ.
-----	----	-------------	-------	----------------	-----	---------	---------	---------	------	---------	-----

(i) \mathbf{b}, k_1 සහ \mathbf{V}_0 පද අනුසාරයෙන් \mathbf{R}_0 සඳහා පුකාශනයක් ලියන්න.

මෙම තීරයේ කිසිවක් තො ලියන්න

$$\mathbf{X}(\mathbf{g}) \xrightarrow{\mathcal{C}} \Delta \mathbf{Z}(\mathbf{g}) + \mathbf{Z}(\mathbf{g})$$

රේචනය කරන ලද භාජනයක් තුළට X වායුවෙන් මවුල 1.0 ක් ඇතුළත් කරන ලදී. වායුවේ ආරම්භක පරිමාව V_0 ලෙස මැන ඇත. උත්පේරකයෙන් කුඩා පුමාණයක් (පරිමාව නොසලකා හැරිය හැක) ඇතුළත් කිරීමෙන් පුතිකිුියාව ආරම්භ කරන ලදී. උත්පේරනය කරන ලද පුතිකිුියාවේ ශීසුතා නියතය k_1 සහ X ට සාපේක්ෂව පුතිකිුියාවේ පෙළ b වේ. පුතිකිුියාවේ ආරම්භක ශීසුතාවය R_0 ලෙස මැන ඇත. භාජනය පුසාරණය වීමට ඉඩ හැරීමෙන් පද්ධතියේ පීඩනය නියත අගයක පවත්වා ගන්නා ලදී. පද්ධතියේ උෂ්ණත්වය ද නියත අගයක පවත්වා ගන්නා ලදී.

(ii) $X(g)$ හි 50% ක පුමාණයක් වැය වූ විට පුතිකිුිිිිිිිිිිිිි වන භාජනයේ පරිමාව දෙගුණ වූ බව සහ පුතිකිිිිිිිිිිිිිිිිිිිිිි		
	(ii)	$\mathbf{X}(\mathbf{g})$ හි 50% ක පුමාණයක් වැය වූ විට පුතිකිුයාව සිදු වන භාජනයේ පරිමාව දෙගුණ වූ බව සහ පුතිකිුයාවේ

(ලකුණු 4.0 යි) \ 100

[ඉත්වැනි පිටුව බලන්න.

~ AL/2016/02-S-II(A) (i) ${f A,B,C}$ සහ ${f D}$ යනු අණුක සූතුය ${f C_4H_{10}O}$ වූ වාුහ සමාවයවික වේ. සමාවයවික හතර ම ලෝහමය සෝඩියම් හා පුතිකිුයා කර ${
m H_2}$ වායුව මුක්ත කරයි. සමාවයවික හතරින් ${
m A}$ පමණක් පුකාශ සමාවයවිකතාව දක්වයි. ${f B},{f C}$ සහ ${f D},{f Z}$ n ${f C}$ l $_2$ අඩංගු සාන්දු ${f H}{f C}$ l වලට වෙන වෙන ම එකතු කළ විට, ${f B}$ අඩංගු මිශුණයෙහි ඉතා ඉක්මනින් ආවිලතාවයක් ඇති විය. ${f C}$ සහ ${f D}$ හි ආවිලතාව ඇති වීම ඉතා සෙමින් සිදු විය. ${f C}$ සහ ${f D}$ සාන්දු H_2SO_4 සමග රත් කළ විට ${f E}$ සහ ${f F}$ පිළිවෙළින් ලබා දුනි. ${f E}$ සහ ${f F}$ අණුක සූතුය C_4H_8 වූ වසුහ සමාවයවික වේ. ${f E}$ සහ ${f F}$ සංයෝග දෙකෙන් එකක්වත් ජාාමිතික සමාවයවිකතාව නොපෙන්වයි. ${f E}$ සහ ${f F}$, ${f HBr}$ සමග පිරියම් කළ විට G සහ H පිළිවෙළින් ලබා දුනි. G පමණක් පුකාශ සමාවයවිකතාව පෙන්වයි. A,B,C,D, ${f E},{f F},{f G}$ සහ ${f H}$ හි වයුහ පහත දී ඇති කොටුවල අඳින්න. (නිුමාන සමාවයවික ආකාර ඇඳ දැක්වීම **අවශ**න නැත.) \mathbf{C} \mathbf{B} A D E (ලකුණු 4.0 යි) H G (ii) A සහ C, PCC සමග පුතිකියා කරවූ විට I සහ J පිළිවෙළින් ලබා දුනි. I සහ J වල වනුන පහත දී ඇති කොටුවල අඳින්න. (PCC = පිරිඩීනියම් ක්ලෝරොකුෝමේට්) (ලකුණු 1.0 යි) (b) පහත දී ඇති පුතිකුියාවල **පුධාන** කාබනික ඵල වන ${f K},{f L},{f M},{f N},{f O},{f P},{f Q},{f R},{f S}$ සහ ${f T}$ හි වසුන ${f 8}$ වන පිටුවෙහි දී ඇති අදාළ කොටුවල අඳින්න. ① 2, 4 − DNP ② විජලනය L (ii) C₆H₅CHO (i) $CH_3CH=CH_2$ පෙරොක්සයිඩ \mathbf{K} (iv) C_6H_5COCI (iii) $C_6H_5N_2^{\dagger}Cl^{-}$ NaOH $0 - 5^{\circ} C$ (vi) $CH_3COC_2H_5 \xrightarrow{\text{Coords} HCI} HG$ $\xrightarrow{\text{සාන්ද HNO}_3}$ O (v) $C_6H_5CO_2H$ $\underbrace{\mathsf{Ag}(\mathsf{NH}_3)_2^+\mathsf{OH}^-}$ (viii) CH₃C≡CH -(vii) CH₂CHO (ix) $CH_3C \equiv CCH_3 \xrightarrow{H_2 \mid Pd} S$

 C_6H_5OH

(x)

L/2016/02-S-II(A)	-8-		
			වෙව තිරයේ තිහිවක් වො ලියන්
			කිසිවක් හෝ දියන්
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
K	L	M	
N	О	P	
Q	R	S	
T			(ලකුණු 3.0 යි)
		8 JHAN 1	
(c) C ₂ H ₅ CH=CHC ₂ H ₅ www Br ₂ (C	Cl ₄) අතර පුතිකිුයාව සඳහා යන්	නුණය ලියන්න.	
·			
			The state of the s
			[/ \
			(ලකුණු 2.0 යි)
	* *		

සියලු ම හිමිකම් ඇවිරිනි / (மුழුப் பதிப்புரிமையுடையது / All Rights Reserved]

අධායන පොදු සහකික පතු (උසස් පෙළ) විභාගය, 2016 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2016 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2016

<mark>රසායන විදනව II</mark> இரசாயனவியல் **II** Chemistry **II**

* සාර්වනු වායු නියනය $R=8.314~{
m J~K^{-1}~mol^{-1}}$

* ඇවගාඩ්රෝ නියතය $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

B කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

- 5. (a) 25 °C හි දී ඊතර් සහ ජලය අතර බියුටේන්ඩයිඔයික් අම්ලයෙහි (BDA, HOOCCH $_2$ CH $_2$ COOH) විභාග සංගුණකය, K_{D} සෙවීම සඳහා පහත කිුයාපිළිවෙළ අනුගමනය කරන ලදි.
 - පළමු ව පුතිකාරක බෝතලයක් තුළ ඝන BDA වලින් 20~g ක්, ආසන්න වශයෙන් ඊතර් $100~cm^3$ ක් සහ ජලය $100~cm^3$ ක් අඩංගු මිශුණයක හොඳින් සොලවා ස්ථර වෙන්වීමට ඉඩ හරින ලදි. මෙම අවස්ථාවේ දිය නො වූ BDA යම් පුමාණයක් පුතිකාරක බෝතලයේ පතුලේ දක්නට ලැබුණි. ඉන්පසු ඊතර් ස්ථරයෙන් $50.00~cm^3$ ක පරිමාවක් සහ ජල ස්තරයෙන් $25.00~cm^3$ ක පරිමාවක්, $0.05~cm^3$ NaOH දාවණයක් සමග අනුමාපනය කරන ලදි. ඊතර් සහ ජල ස්තරවලින් ලබාගත් පරිමා සඳහා NaOH දාවණයෙන් පිළිවෙළින් $4.80~cm^3$ සහ $16.00~cm^3$ අවශා විය.
 - (i) $25~^{\circ}\mathrm{C}$ හි දී ඊතර් සහ ජලය අතර බියුවේන්ඩයිඔයික් අම්ලයෙහි වාහප්තිය සඳහා විභාග සංගුණකය, K_{D} ගණනය කරන්න.
 - (ii) බියුටේන්ඩයිඔයික් අම්ලයෙහි ජලයේ දුාවාතාවය $8.0~{
 m g}~{
 m dm}^3$ ලෙස දී ඇත්නම් ඊකර් තුළ මෙම අම්ලයේ දුාවාතාව ගණනය කරන්න. (ලකුණු $4.0~{
 m G}$)
 - (b) පහත දැක්වෙන පුතිකිුයා සලකන්න. තාපගතික දත්ත සපයා ඇත්තේ සම්මත අවස්ථාව සඳහා **නොවේ**. $\Delta H/kJ \; mol^{-1} \; \; \Delta S/J K^{-1} \; mol^{-1}$

 $C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$ 130 140 $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$ 40 50

- (i) $2{
 m CO}(g) o {
 m C(s)} + {
 m CO}_2(g)$ පුතිකිුයාව සඳහා $\Delta {
 m H}$ සහ $\Delta {
 m S}$ ගණනය කරන්න. $\Delta {
 m S}$ හි ලකුණ, සිදු වන පුතිකිුයාව හා එකඟ වේ දැයි හේතු සහිතව සඳහන් කරන්න.
- (ii) ඉහත (i) කොටසෙහි සඳහන් පුතිකිුයාව 27 °C හි දී ස්වයංසිද්ධ වේ දැයි සුදුසු ගණනය කිරීමක් භාවිතයෙන් පුරෝකථනය කරන්න. (ලකුණු 4.0 යි)
- (c) වැඩිපුර C(s) පුමාණයක් සහ $CO_2(g)$ 0.15 mol ක් සංවෘත දෘඪ 2.0 dm³ භාජනයක තබා, උෂ්ණත්වය 689 °C හි දී පද්ධතිය සමතුලිතතාවට එළඹීමට ඉඩ හරින ලදි. සමතුලිතතාවට එළඹුණු විට භාජනය තුළ පීඩනය $8.0 \times 10^5 \, \mathrm{Pa}$ බව සොයා ගන්නා ලදි. (689 °C හි දී $RT = 8000 \, \mathrm{J} \, \mathrm{mol}^{-1}$ ලෙස සලකන්න)
 - (i) $\mathrm{C(s)} + \mathrm{CO_2(g)} \rightleftharpoons 2\mathrm{CO(g)}$ පුතිකියාවේ සමතුලිතතා නියතය, K_{p} සඳහා පුකාශනයක් ලියන්න.
 - (ii) 689 °C හි දී $K_{\rm p}$ හා $K_{\rm c}$ ගණනය කරන්න.
 - (iii) වෙනත් පරීක්ෂණයක දී ඉහත විස්තර කළ භාජනය තුළ $689~^{\circ}$ C හි දී වැඩිපුර C(s) සමග CO(g) සහ $CO_2(g)$ අඩංගු වේ. එක් එක් වායුවෙහි ආරම්භක අාංශික පීඩනය $2.0\times10^5~Pa$ බැගින් වේ. පද්ධතිය සමතුලිතතාවට එළඹෙන විට $CO_2(g)$ හි අාංශික පීඩනයේ වෙනස්වීම ගණනය කිරීමක් ආධාරයෙන් පැහැදිලි කරන්න. (ලකුණු 7.0~G)

- ${f 6}$. ${\it (a)}~25~{
 m ^{\circ}C}$ හි දී පරිමාමිතික ප්ලාස්කුවක් තුළ සංශුද්ධ දුබල අම්ලයකින් සුදුසු පුමාණයක් $25.00~{
 m cm}^3$ දක්වා ආසුැත ජලයෙන් තනුක කිරීමෙන් ${f HA}$ දුබල අම්ලයෙහි $0.10~{
 m mol}~{
 m dm}^3$ දුාවණයක් සාදා ගන්නා ලදි. මෙම දුාවණයේ pH අගය $3.0~{
 m mi}$ විය.
 - (i) $\mathbf{H}\mathbf{A}(\mathrm{aq}) + \mathbf{H}_2\mathrm{O}(1) \rightleftharpoons \mathbf{H}_3\mathrm{O}^+(\mathrm{aq}) + \mathbf{A}^-(\mathrm{aq})$ යන සමීකරණය සලකමින් දුබල අම්ලයේ විඝටන නියනය, K_2 ගණනය කරන්න.
 - (ii) මෙම HA දුබල අම්ලයෙහි තනුක දුාවණයක්, BOH පුභල භස්මයක් සමග අනුමාපනය කරන ලදි. සමකතා ලක්ෂාය ළඟා වූ පසු අනුමාපන මිශුණයේ pH අගය 9.0 බව සොයා ගන්නා ලදි. අනුමාපන මිශුණයේ ඇති ${
 m AB}$ ලවණයෙහි සාත්දුණය ගණනය කරන්න. (25 °C දී $K_{\rm m}=1.0 imes 10^{-14}~{
 m mol}^2~{
 m dm}^{-6}$)
 - (iii) ඉහත අනුමාපන මිශුණය ආසුැත ජලය එක් කිරීමෙන් සියවරක් තනුක කරන ලදි. තනුක කරන ලද අනුමාපන මිශුණයෙහි pH අගය ගණනය කරන්න. (ලකුණු 5.0 යි)
 - (b) AgBr(s) ජලයේ අල්ප වශයෙන් දුාවා ලා කහ පැහැති ලවණයකි. 25 °C හි දී එහි දුාවානා ගුණිකය, $K_{\rm sn} 5.0 \times 10^{-13} \text{ mol}^2 \text{ dm}^{-6}$ වේ.
 - (i) 25 °C හි දී ඝන AgBr සමග සමතුලිතව පවතින සන්තෘප්ත AgBr දුාවණයක ඇති Ag $^{+}$ (aq) සාන්දුණය ගණනය කරන්න.
 - (ii) ඉහත (i) කොටපෙහි විස්තර කර ඇති දුාවණයෙන් $100.0~{
 m cm}^3$, සන ${
 m AgBr}$ සමග බීකරයක අඩංගු වේ. මෙම බීකරයට ආසුැත ජලය $100.0~{
 m cm}^3$ ක් එකතු කර සමතුලිතතාවට එළඹෙන තුරු මිශුණය හොඳින් කලතන ලදි. මෙම අවස්ථාවේ ඝන AgBr යම් පුමාණයක් බීකරයයේ පතුලේ තවදුරටත් ඉතිරි ව පැවතුණි. මෙම දුාවණයෙහි $Ag^{+}(aq)$ සාන්දුණය කුමක් විය හැකි ද? ඔබේ පිළිතුර පහදන්න.
 - (iii) සුදුසු ගණනය කිරීමක් භාවිතයෙන් $25~^{\circ}$ C හි දී $1.5 \times 10^{-4}~\text{mol dm}^{-3}~\text{AgNO}_3$ දාවණයකින් $10.0~\text{cm}^3~\text{සහ}$ $6.0 \times 10^{-4} \, \mathrm{mol} \, \mathrm{dm}^{-3} \, \mathrm{NaBr}$ දාවණයකින් $5.0 \, \mathrm{cm}^3 \,$ මිශු කළ විට බලාපොරොත්තු වන නිරීක්ෂණය පුරෝකථනය කරන්න. (ලකුණු 5.0 යි)
 - $\,$ (i) පරිපූර්ණ ද්වm sංගී දුාවණයක් සමග සමතුලිතව ඇති වාෂ්ප කලාපයෙහි පීඩනය P වේ. සංඝටක දෙකෙහි දුව (c) කලාපයෙහි මවුල භාග X_1 හා X_2 වන අතර ඒවායේ සන්තෘප්ත වාෂ්ප පීඩන පිළිවෙළින් P_1^0 සහ P_2^0 වේ. $X_1 = \frac{P - P_2^0}{P^0 - P_2^0}$ බව පෙන්වන්න.
 - (ii) $50~^{\circ}\mathrm{C}$ හි දී මෙතනෝල් සහ එතනෝල් අඩංගු ද්වාංගී දුාවණයක් සමග සමතුලිතව ඇති වාෂ්ප කලාපයෙහි පීඩනය $4.5 \times 10^4~\mathrm{Pa}$ වේ. මෙම උෂ්ණත්වයේ දී මෙතනෝල් සහ එතනෝල් හි සන්තෘප්ත වාෂ්ප පීඩන පිළිවෙළින් $5.5 \times 10^4~\mathrm{Pa}$ සහ $3.0 \times 10^4~\mathrm{Pa}$ වේ. දුාවණ පරිපූර්ණ ලෙස හැසිරෙන බව සලකන්න.
 - දුව කලාපයෙහි මෙතනෝල් සහ එතනෝල් හි මවුල භාග ගණනය කරන්න.
 - II. වාෂ්ප කලාපයෙහි මෙතතෝල් සහ එතතෝල් හි මවුල භාග ගණනය කරන්න.
 - (iii) ඉහත ගණනය කිරීම් සහ දී ඇති තොරතුරු පදනම් කර ගනිමින් $50~{
 m ^{\circ}C}$ හි දී මෙතනෝල්-එතනෝල් මිශුණයෙහි වාෂ්ප පීඩන-සංයුති සටහන ඇඳ දක්වන්න. දාවණ පරිපූර්ණ ලෙස හැසිරෙන බව සලකන්න. (ලකුණු 5.0 යි)
- 7.~~(a) ලැයිස්තුවේ දී ඇති රසායන දුවා $oldsymbol{\mathcal{C}}$ මණක් භාවිත කර, ඔබ පහත සඳහන් පරිවර්තනය සිදු කරන්නේ කෙසේදැයි පෙන්වන්න.

ඔබගේ පරිවර්තනය පියවර 9 කට වැඩි නොවිය යුතු ය.

රසායන දුවන ලැයිස්තුව

(ලකුණු 6.0 යි)

(b) පහත සඳහන් පුතිකිුිිිිිිිිිි දාමය සම්පූර්ණ කිරීම සඳහා ${f R}_1$ - ${f R}_2$ සහ ${f X}_1$ - ${f X}_5$ හඳුනාගන්න.

(c) (i) පහත සඳහන් පුතිකිුයාව සඳහා යන්තුණය දෙන්න.

$$\begin{array}{ccc}
CH_3 & CH_3 & CH_3 \\
CH_3 & CH_3 & CH_3 & CH_3
\end{array}$$

$$CH_3 & CH_3 & CH_3$$

$$CH_3 & CH_3$$

$$CH_3 & CH_3$$

$$CH_3 & CH_3$$

$$CH_3 & CH_3$$

(ii) NaOH සමග f A හි පුතිකිුයාවෙන් f B ට අමතරව, f C නමැති වෙනත් එලයක් ලැබේ. f C හි වනුහය දෙන්න.

(ලකුණු 2.0 යි)

C කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

- 8. (a) A සංයෝගය (A = MX_n, M = 3d ගොනුවට අයත් ආන්තරික මූලදුවායක්, X = එකම වර්ගයකට අයත් ලිගන) වැඩිපුර තනුක NaOH සහ ඉන්පසු H₂O₂ සමග පිරියම් කළ විට B සංයෝගය ලබා දේ. B හි ජලීය දාවණයක් තනුක H₂SO₄ මගින් ආම්ලීකෘත කළ විට C සංයෝගය ලබා දේ. C සංයෝගය NH₄Cl සමග ප්‍රතිකියා කළ විට එක එලයක් ලෙස D සංයෝගය ලබා දේ. D ඝනය රත් කළ විට නිල්පැහැති E සංයෝගය, ජලවාෂ්ප සහ නිෂ්කිය ද්විපරමාණුක F වායුව ලබා දේ. Ca ලෝහය F වායුවේ දහනය කළ විට සුදු G ඝනය ලබා දේ. ජලය සමග G හි ප්‍රතිකියාවෙන් H වායුව නිදහස් කරයි. මෙම වායුව HCl වායුව සමග සුදු දුමාරයක් සාදයි. දව H සමග Na ලෝහය ප්‍රතිකියා කර එක් එලයක් ලෙස අවර්ණ ද්විපරමාණුක I වායුව ලබා දේ. A හි ජලීය දාවණයක් වැඩිපුර Na₂CO₃ සමග පිරියම් කළ විට වර්ණවත් අවක්ෂේපයක් සැදේ. මෙම අවක්ෂේපය පෙරා, පෙරනය තනුක HNO₃ වලින් ආම්ලිකෘත කරනු ලැබේ. මෙම දාවණයට AgNO₃(aq) එකතු කළ විට තනුක NH₄OH වල දාවා වන සුදු අවක්ෂේපයක් ලබා දේ.
 - (i) A, B, C, D, E, F, G, H සහ I හඳුනාගන්න.
 - (ii) C අඩංගු දුාවණයක් තනුක NaOH වලින් පිරියම් කළ විට ඔබට කුමක් නිරීක්ෂණය කළ හැකි වේ ද? මෙම නිරීක්ෂණයට අදාළ තුලිත රසායනික සමීකරණය දෙන්න. (ලකුණු 5.0 යි)

(b) T නම් ජලීය දුාවණයක ලෝහ අයන **තුනක්** අඩංගු වේ. මෙම ලෝහ අයන හඳුනාගැනීම සඳහා පහත සඳහන් පරීක්ෂණ සිදු කරන ලදි.

	පරීක්ෂණය	නිරීක්ෂණය
1.	තනුක HCl මගින් ${f T}$ ආම්ලීකෘත කර, ලැබුණු පැහැදිලි දාවණය තුළින් ${f H}_2 {f S}$ බුබුලනය කරන ලදි.	$oldsymbol{Q}_1$ කළු පැහැති අවක්ෂේපයක් සෑදුණි.
2.	\mathbf{Q}_{j} පෙරා ඉවත් කරන ලදී. $\mathrm{H_{2}S}$ සියල්ල ම ඉවත් වන තුරු පෙරනය නටවන ලදි. දාවණය සිසිල් කර, $\mathrm{NH_{4}Cl}$ හා $\mathrm{NH_{4}OH}$ එකතු කරන ලදි.	පැහැදිලි දුාවණයක් ලැබුණි.
	දාවණය තුලින් $ m H_2S$ බුබුලනය කරන ලදි.	\mathbf{Q}_{j} කළු පැහැති අවක්ෂේපයක් සැදුණි.
3.	${f Q}_2$ පෙරා ඉවත් කරන ලදි. ${f H}_2{f S}$ සියල්ලම ඉවත් වන තුරු පෙරනය නටවා, ${f (NH}_4)_2{f CO}_3$ දාවණයක් එකතු කරන ලදි.	\mathbf{Q}_3 සුදු පැහැති අවක්ෂේපයක් සෑදුණි.

\mathbf{Q}_1 , \mathbf{Q}_2 හා \mathbf{Q}_3 අවක්ෂේප සඳහා පරීක්ෂණ :

	ප රීක්ෂණය	නිරික්ෂණය					
1.	උණුසුම් තනුක HNO_3 හි \mathbf{Q}_1 දවණය කරන ලදි. සිසිල් කිරීමෙන් පසු, දාවණය උදාසීන කර KI එක් කරන ලදි.	අවක්ෂේපයක් හා දුඹුරු පැහැති දාවණයක් සෑදුණි.					
2.	උණුසුම් තනුක HCl හි $old Q_2$ දවණය කරන ලදි. දාවණය සිසිල් කර, තනුක NH $_4$ OH එක් කරන ලදි.	කොළ පැහැති අවක්ෂේපයක් සෑදුණි.					
	මෙම මිශුණයට තවදුරටත් තනුක NH ₄ OH එක් කරන ලදි.	කොළ පැහැති අවක්ෂේපය දුවණය වී තද නිල් පැහැති දුාවණයක් ලැබුණි.					
3.	සාන්දු HCl හි \mathbf{Q}_3 දුවණය කර දුාවණය පහන්සිළු පරීක්ෂාවට ලක් කරන ලදි,	කොළ පැහැනි දැල්ලක් ලැබුණි.					

- (i) T දුාවණයේ ඇති ලෝහ අයන **තුන** හඳුනාගන්න. (**හේතු අවශා නැත**)
- (ii) \mathbf{Q}_1 , \mathbf{Q}_2 හා \mathbf{Q}_3 අවක්ෂේපවල රසායනික සූතු ලියන්න.

(ලකුණ 5.0 යි)

(c) U දාවණයේ අඩංගු Al^{3+} අයනවල සාන්දුණය නීර්ණය කිරීම සඳහා පහත දැක්වෙන කිුිිියාපිළිවෙළ යොදා ගන්නා ලදි. Al^{3+} අයන pH=5 හි දී ඇලුම්නියම් ඔක්සිෙන්ට්, $Al(C_9H_6ON)_3$ ලෙස අවක්ෂේප කිරීම සඳහා U දාවණයෙන් $25.0~{\rm cm}^3$ කට වැඩිපුර 8-හයිඩෙුාක්සික්ව්නොලීන් (ඔක්සීන් ලෙස සාමානාසෙන් හැඳින්වේ. O() , C_9H_7ON) එකතු O()

කරන ලදි. අවක්ෂේපය පෙරා, ආසුැත ජලයෙන් සෝදා, වැඩිපුර KBr අඩංගු උණුසුම් තනුක HCl වල දුවණය කරන ලදි. ඉන්පසු, මෙම දුාවණයට $0.025~{
m mol}~{
m dm}^{-3}~{
m KBrO}_3~25.0~{
m cm}^3$ එකතු කරන ලදි. ඉහත දැක්වෙන කිුිියාපිළිවෙළ තුළ සිදු වන පුතිකිුියා පහත දැක්වේ.

අාම්ලික මාධාෘයක දී $\mathrm{Br_2}$ ජනනය කිරීම සඳහා $\mathrm{KBrO_3}$ පුාථමික සම්මනයක් ලෙස යොදා ගනු ලැබේ.

$$BrO_3(aq) + 5Br(aq) + 6H^+(aq) \longrightarrow 3Br_2(aq) + 3H_2O(l)$$

$$O(l) \longrightarrow O(l) \longrightarrow O(l)$$

$$O(l) \longrightarrow O(l) \longrightarrow O(l)$$

$$O(l) \longrightarrow O(l)$$

වැඩිපුර Br_2 , KI සමග පුතිකියා කිරීමෙන් I_3^- ලබා දේ. ඉන්පසු I_3^- , 0.05 mol dm^{-3} $\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3$ සමග පිෂ්ටය දර්ශකය වශයෙන් යොදා ගනිමින් අනුමාපනය කරන ලදි. අන්ත ලක්ෂායට ළඟාවීමට අවශා වූ $\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3$ පරිමාව $15.00~\mathrm{cm}^3$ වේ. U දාවණයේ ඇති AI^{3+} හි සාන්දුණය $\mathrm{mg}~\mathrm{dm}^{-3}$ වලින් ගණනය කරන්න. ($\mathrm{AI}=27$) (ලකුණු $5.0~\mathrm{G}$)

9. (a) අනාගතයේ දී ශ්‍රී ලංකාවේ රසායනික කර්මාන්තයක් ස්ථාපිත කිරීමට අවසන් වසරේ විශ්වවිදහාල ශිෂායෙකු විසින් අඳින ලද ගැලීම් සටහන පහත දැක්වේ.

ස්වාභාවික අමුදුවායෙන්, නිෂ්පාදන කිුයාවලි සහ ඵල නිරූපණය කිරීමට පහත දැක්වෙන සංකේත භාවිත කෙරේ.

- (i) \mathbf{R}_1 සහ \mathbf{R}_2 ස්වාභාවික අමුදුවායෙන් **දෙක** හඳුනාගන්න.
- (ii) ${f M}_1\,, {f M}_2\,, {f M}_3\,, {f M}_4\,$ නිෂ්පාදන කිුයාවලි **හතර** හඳුනාගන්න. [උදා : ඇමෝනියා නිෂ්පාදනය හෝ හේබර් කුමය]
- (iii) \mathbf{P}_{i} සිට \mathbf{P}_{o} දක්වා ඵල හඳුනාගන්න.
- (iv) ${f M}_1$ සහ ${f M}_2$ කියාවලියන්හි පියවර කෙටියෙන් විස්තර කරන්න. (උපකරණවල රූපසටහන් අවශා **නොවේ**)
- (v) M, කියාවලියේ දී භාවිත කරන උපකරණය ඇඳ නම් කරන්න.
- (vi) M_3 කිුයාවලියේ දී භාවිත වන ලවණය හඳුනාගන්න.
- (vii) P_5 , P_6 සහ P_9 හි එක් පුයෝජනයක් බැගින් දෙන්න.

(ලකුණු 7.5 යි)

(b) පහත දී ඇති ලැයිස්තුව භාවිතයෙන් මෙම පුශ්නවලට පිළිතුරු සපයන්න.

 CO_2 , CH_4 , වාෂ්පශීලි හයිඩොකාබන, NO, N O_2 , N $_2$ O, N O_3^- , S O_2 , H_2 S, CFC, Ca CO_3 , දුව පෙට්ටුෝලියම් සහ ගල්අඟුරු

- (i) අම්ල වැසි ඇතිවීමට හේතුවන වායුමය විශේෂ **දෙකක්** හඳුනාගෙන මෙම විශේෂ මගින් අම්ල වැසි ඇතිවන ආකාරය තුලිත රසායනික සමීකරණ අනුසාරයෙන් කෙටියෙන් පහදා දෙන්න.
- (ii) අම්ල වැසි පරිසරය කෙරෙහි අහිතකර බලපෑම් ඇති කරයි. මෙම පුකාශය කෙටියෙන් සාකච්ඡා කරන්න.
- (iii) ෆොසිල ඉන්ධන දහනය හේතුවෙන් පරිසරයට එකතුවන විශේෂ **තුනක්**, ඒ එකිනෙකක් මගින් ඇති කරන එක් පාරිසරික ගැටලුවක් සමග හඳුනාගන්න.
- (iv) "කාර්මික සංශ්ලේෂිත දුවා ඉතා කුඩා පුමාණවලින් වායුගෝලයේ පැවතීම අභිතකර පාරිසරික ගැටලුවලට හේතු වේ." උදාහරණයක් ලෙස CFC යොදා ගෙන මෙම පුකාශය පහදා දෙන්න.
- (v) හරිතාගාර වායු **පහක්** හඳුනාගෙන ඒ එක් එක් වායුව, වායුගෝලයට එක්වන මිනිස් කි්යාකාරකමක් බැගින් සඳහන් කරන්න.
- (vi) ෆොසිල ඉන්ධන දහනයේ දී පිටචන ආම්ලික වායූන් ඉවත් කිරීමට ස්වාභාවික දවායක් (ලැයිස්තුවෙන් තෝරාගන්න) යොදා ගත හැකි ආකාරය තුලිත රසායනික සමීකරණ භාවිතයෙන් කෙටියෙන් පහදා දෙන්න. (ලකුණු 7.5 යි)

10. (a) X, Y හා Z සංගත සංයෝග වේ. ඒවාට අෂ්ටතලීය ජාාමිතියක් ඇත. X, Y හා Z හි සංගත ගෝලයේ ඇති විශේෂයන්හි (එනම් ලෝහ අයනය සහ එයට සංගත වී ඇති ලිගන) පරමාණුක සංයුතිය පිළිවෙළින්, $\operatorname{FeH}_{10}\operatorname{CNO}_5S$, $\operatorname{FeH}_8\operatorname{C}_2\operatorname{N}_2\operatorname{O}_4S_2$ හා $\operatorname{FeH}_6\operatorname{C}_3\operatorname{N}_3\operatorname{O}_3S_3$ වේ. සංයෝග තුනෙහිම ලෝහ අයනයේ ඔක්සිකරණ අවස්ථාව එකම වේ. එක් එක් සංයෝගයෙහි ලිගන වර්ග දෙකක් ලෝහ අයනයට සංගත වී ඇත. මෙම සංයෝගවල **සංගත නොවූ** ඇනායන ඇත්නම් ඒවා එක ම වර්ගයේ වේ.

S ජලීය දාවණයක මවුල අනුපාත 1:1:1 වන පරිදි X,Y හා Z අඩංගු වේ. S දාවණයෙහි **එක් එක්** සංයෝගයේ සාන්දුණය $0.10\,\mathrm{mol}\,\mathrm{dm}^{-3}$ වේ. S හි $100.0\,\mathrm{cm}^3$ ට වැඩිපුර $AgNO_3$ දාවණයක් එක් කළ විට කහ පැහැති අවක්ෂේපයක් සැදුණි. අවක්ෂේපය ජලයෙන් සෝදා, ස්කන්ධයේ වෙනසක් නොවන තුරු උදුනක වියළන ලදි. අවක්ෂේපයේ ස්කන්ධය $7.05~\mathrm{g}$ විය. මෙම අවක්ෂේපය සාන්දු NH_4OH හි දුවණය නො වේ.

(කහ පැහැති අවක්ෂේපයේ අඩංගු රසායනික සංයෝගයෙහි සාපේක්ෂ අණුක ස්කන්ධය = 235)

- (i) \mathbf{X},\mathbf{Y} හා \mathbf{Z} හි ලෝහ අයනවලට සංගත වී ඇති ලිගන හඳුනාගන්න.
- (ii) කහ පැහැති අවක්ෂේපයේ රසායනික සූතුය ලියන්න.
- (iii) X,Y හා Z හි වාූහ, හේතු දක්වමින් නීර්ණය කරන්න.
- (iv) එතිලීන්ඩයිඇමින් (en) හි වාූහය පහත දී ඇත.

$$H_2\ddot{N}-CH_2-CH_2-\ddot{N}H_2$$

එතිලීන්ඩයිඇමීන් එහි නයිටුජන් පරමාණු දෙක මගින් ${f M}^{3+}$ ලෝහ අයනයට සංගත වී ${f Q}$ සංකීර්ණ අයනය (එනම් ලෝහ අයනය සහ එයට සංගත වී ඇති ලිගන) සාදයි. ${f Q}$ ට අෂ්ටතලීය ජාාමිතියක් ඇත.

Q හි වාූහ සුතුය ලියා එහි වාූහය අඳින්න.

හැ.ශූ. ලෝහ අයනයට එතිලීන්ඩයිඇමීන් පමණක් සංගත වී ඇතැයි සලකන්න. ඔබගේ වනුහ සූතුයේ එතිලීන්ඩයිඇමීන් 'en' යන කෙටි හැඳින්වීමෙන් පෙන්නුම් කරන්න. (ලකුණු 7.5යි)

- (b) පහත දැක්වෙන දෑ ඔබට සපයා ඇත.
 - Al(NO₃)₃ , Cu(NO₃)₂ සහ Fe(NO₃)₂ වල 1.0 mol dm⁻³ ජලීය දාවණ

More Past Papers at

tamilguru.lk

- Al, Cu සහ Fe ලෝහ කුරු
- 👂 ලවණ සේතුවල භාවිත කිරීමට අවශා රසායනික දුවා
- සන්නායක රැහැන් (conducting wires) සහ බීකරමීට අමතරව පහත දැක්වෙන දත්ත ද සපයා ඇත.

$$E_{\text{Fe}^{2+}/\text{Fe}}^{\text{o}} = -0.44 \text{ V}, \qquad E_{\text{Al}^{3+}/\text{Al}}^{\text{o}} = -1.66 \text{ V}, \qquad E_{\text{Cu}^{2+}/\text{Cu}}^{\text{o}} = +0.34 \text{ V}$$

- (i) ඉහත සඳහන් දුවා උපයෝගි කර ගනිමින් ගොඩනැඟිය හැකි විදයුත් රසායනික කෝෂ **තුන** රූපීයගත කරන්න. එක් එක් කෝෂයෙහි ඇනෝඩය සහ කැතෝඩය ඒවායේ ලකුණු සමග දක්වන්න.
- (ii) ඉහත (i) කොටසෙහි අඳින ලද එක් එක් විදායුත් රසායනික කෝෂයේ,
 - කෝෂ අංකනය දෙන්න.
 - $II. \quad E_{
 m cell}^0$ නිර්ණය කරන්න.
 - III. භෞතික තත්ත්ව දක්වමින් ඉලෙක්ටුෝඩ පුතිකිුයා සඳහා තුලිත රසායනික සමීකරණ දෙන්න.
- (iii) පහත දැක්වෙන කුමන සංයෝග(ය) ලවණ සේතුවල භාවිතයට සුදුසුදැයි හේතු දක්වමින් පහදා දෙන්න.

(iv) ආරම්භයේ දී වැඩිම E_{cell}^0 පෙන්නුම් කරන විදුඹුත් රසායනික කෝෂය සලකන්න. මෙම විදුෂුත් රසායනික කෝෂය සකස් කර ඇත්තේ එහි එක් එක් කුටීරයට අදාළ දුාවණවල පරිමාවන් සමාන වන ලෙස බවත් ඒවායේ පරිමාවන් පරීක්ෂණය සිදු කරන කාලය තුළ දී නොවෙනස්වන බවත් උපකල්පනය කරන්න.

මෙම කෝෂයෙහි ඉලෙක්ටෝඩ දෙක සන්නායක රැහැනකින් සම්බන්ධ කර යම් කාලයකට පසු ඇනෝඩ කුටීරය තුළ ඇති ලෝහ අයන සාන්දුණය ${f C}$ mol dm $^{-3}$ බව සොයා ගන්නා ලදි. කැනෝඩ කුටීරය තුළ ඇති ලෝහ අයන සාන්දුණය ${f C}$ ඇසුරින් පුකාශ කරන්න.

ආවර්තිතා වගුව

	1																	2
1	H																	He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	O	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113			. —		
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr