Quantum State Tomography via Compressed Sensing

Gross, Liu, Flammia, Becker, Eisert Brief paper review

March 14, 2025

The Problem with Traditional Tomography

Quantum Tomography

- ► Reconstruct unknown quantum states (density matrices)
- ► Critical for verifying quantum hardware

Exponential Scaling:

$$d=2^n$$
 Parameters $=d^2-1$

Example

10 qubits \Rightarrow 1,048,575 parameters $\mathcal{O}(d^2)$ measurements needed

Low-Rank States

Structured States

▶ Bell / GHZ states (quantum entanglement)

Low-Rank Advantage

$$\begin{aligned} \mathsf{Parameters} &= \mathcal{O}(\mathit{rd}) \\ \mathsf{vs} \; \mathcal{O}(\mathit{d}^2) \end{aligned}$$

Noisy pure states

10-qubit Example

Rank 3 state: 30,000 vs 1,000,000 parameters

Compressed Sensing Framework

Step 1: Measurements

- ▶ Random Pauli measurements: $\sigma_{\mu} = \bigotimes_{i=1}^{n} \sigma_{\mu_i}$
- ▶ Sample complexity: $m = \mathcal{O}(rd \log^2 d)$

Step 2: Optimization

$$\min_{\sigma} \|\sigma\|_{\mathsf{tr}}$$
s.t. $\mathcal{R}(\sigma) = \mathcal{R}(\rho)$

Nuclear norm promotes low-rank solutions

Theoretical Guarantees

Theorem (Gross et al.)

For rank-r states:

 $m = \mathcal{O}(rd \log^2 d)$ measurements suffice

Success probability: $1 - e^{-\mathcal{O}(m)}$

Robustness

Stable against depolarizing noise

▶ Error scaling: $\mathcal{O}(\epsilon \sqrt{rd})$

Tomography Quantities

- ► No prior assumptions needed
- Rank estimation via singular value thresholding

Experimental Demonstration 99% fidelity with 30% of Pauli measurements

Fast Post-Processing

Hybrid Method

- $ightharpoonup \mathcal{O}(r \log d)$ operators
- $ightharpoonup \mathcal{O}(d)$ -time completion

Result 8-qubit state: 1 min runtime 95% fidelity

Applications

Verify entangled states Gate benchmarking

Limitations & Open Questions

Challenges

- Exponential scaling remains
- ► Optimal measurement sets?

Future Work

- ► ML for adaptive measurements
- ► Hardware implementations

Conclusion: Scalable tomography is possible thanks to low-rank structure

Feel free to ask your questions!

D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, J. Eisert "Quantum State Tomography via Compressed Sensing", Physical Review Letters (2010)