

Dozent: Prof. MARTIN KELLER-RESSEL

30. November 2019

In halts verzeichnis

Ι	Int	Introduction				
	1	The central issue of financial mathematics				
	2	Mathematical Financial Market Model				
	3	Bonds and basic examples of derivatives			4	
	4	Elementary replications and arbitrage-arguments				
	5	Conditional expectation values and Martingale				
		5.1 Conditional density and conditional expected value			7	
		5.2 Conditional expectation - measure theoretical access			9	
		5.3 Martingale			11	
II	Co	Cox-Russ-Rubenstein-model				
	1	Replication/Hedging of derivated in CRR-Model			17	
	2	Martingale and arbitrage in CRR-model			20	
Ш	Blo	Block-Scholes-model				
	1	Implizite Volatilität/ Grenzen des BS-Modells			32	
IV	IV Optimale Investition				35	
An	han	${f g}$			37	
Ind	ex				38	

Vorwort

Kapitel I

Introduction

1. The central issue of financial mathematics

Valuation:

Valuation of derivatives and hedge against the risks which emerges from the purchase / sale,

Definition (Derivative)

Financial product whose payouts are derived from price of one or more <u>basic goods</u> derived (underlying) derivative.

■ Beispiel

- Right to get 100,000 GBP in 3 months against 125,000 EUR (<u>Call-Option</u>, Underlying: Exchange rate GBP/EUR)
- Right within the next year to consume 100,000 Mw / h of electric energy at the price of 30EUR/Mwh with minimum order quantity of 50,000 Mwh (Swing-Option, Underlying: electricity price)
- buying and selling options on stock (Underlying: equity price)

Issue: What is the "fair" price for such a derivative? ("Pricing"). How can the sellers protect themselves against the ... risks? ("Hedging")

Optimal investment

Gathering Porftolios that are optimal for risk-return approach.

- How do I weigh risk against profit?
- What exactly is "optimal"?
- Solution of the resulting optimization problems

Risk management + Risk measurement

- Legal rules (Basel + Solvency) should ensure stability of the banking system/insurance system even in the face of various risks
 - ⇒ Mathematical theory of convex + coherent risk measures

Mathematical tools: Probability Theory + stochastic processes (dynamics in time, some linear algebra, optimization, measure theory).

2. Mathematical Financial Market Model

We consider:

- 1. Probability space $(\Omega, \mathscr{F}, \mathbb{P})$, later more probability measures Q, \ldots on the same measure space $(\Omega, \mathscr{F}), \omega \in \Omega$ basic events or "scenarios".
- 2. <u>Timeline</u> I is either $I = \{t_0, t_1, \dots, t_N = T\}$ N-period model (discrete model) or I = [0, T] (continious-time model), where T = time-horizon

A <u>stochastic process</u> S is a measurable mapping $S:(\Omega,\mathscr{F})\to\mathbb{R}^d$ mit $(\omega,t)\mapsto S_t(\omega)$ Especially:

- $t \mapsto S_t(\omega)$ function $I \to \mathbb{R}^d$ for every $\omega \in \Omega$ ("path")
- $\omega \mapsto S_t(\omega)$ random variable $\Omega \to \mathbb{R}^d$ for every $t \in I$
- 3. Percolation a sequence of ω -algebras $(F_t)_{t\in I}$ with the property $\mathscr{F}_S\subseteq F_t \quad \forall s,t\in I,x\leq t$ and $F_t\subseteq F \quad \forall t\in I$

Interpretation: $F_t = \text{market participant at time } t \text{ known/available information}$

Events $A \in \mathcal{F}_t$ are considered known 'at time t'

A \mathbb{R}^d -valued RV X is called $\underline{F_t$ -measurable, if $E = X^{-1}(B) \in F_t$ \forall Borel sets $B \subseteq \mathbb{R}^d$ (E is actually the preimage of B).

■ Beispiel

A stochastic process $(S_t)_{t\in I}$ on (Ω, \mathscr{F}) is called <u>adaptient</u> regarding a percolation $(\mathscr{F}_t)_{t\in I}$, wenn gilt:

$$S_t$$
 is F_t – measurable $\forall t \in I$

Interpretation: "the value S_t is known at time t"

Why percolation in the financial mathematics (FiMa)?

- Differentiation between future/past
- Different information (Insider/Outsider) corresponds to different percolation $(F_t)_{t\in I}$ or $(G_t)_{t\in I}$

 S^{i} = price of the i-th asset at the time t

4. Assets \mathbb{R}^{d+1} -valued stochastic process with components

$$S^i: (\Omega \times I) \to \mathbb{R} \quad (\omega, t) \mapsto S^i_t(\omega) \text{ mit } i \in \{0, 1, \dots, d\}$$

where S_i^i = price of the *i*-th asset at time t

 $S^i, i \in \{1, \dots, d\}$ is typically

- Stock, company share
- Currency or exchange rate
- Commodity such as oil, noble metal, electricity,...
- Bond ...

Principal assumption: S^i is liquid traded (eg on exchange), ie purchase/sale for the price S^i_t possible at any time.

 S^0 ... "numeraire" has a special role: describes interest rate of <u>not</u> in $(S^1, ..., S^d)$ invested capital; is mostly considered to be risk-free.

Definition I.1 (Finance market model)

A finance market model (FMM) with a time axis I is given by

- 1. a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with percolation $(F_t)_{t \in I}$
- 2. an adapted to $(F_t)_{t\in I}$, R^{d+1} -valued stochastic process $S_t = (S_t^0, S_t^1, \dots, S_t^d), t \in I$
- Beispiel (Cox-Rubinstein (CRR)-model (discrete-time))
 - $S_n^0 = (1+r)^n$, meaning interest at a constant rate r
 - $S_n^1 = S_0^1 \prod_{k=1}^n (1 + Ru)$, wobei (R_1, R_2, \dots) independent random variables with two possible values a < b

Image: " "recombined tree" with events ω corresponding paths in the tree

- Beispiel (Block-Scholes-modell (continious-time))
 - $S_t^0 = e^{rt}$, meaning interest at a constant rate r
 - $S_t^1 = S_0^1 \cdot \exp((\mu \frac{\sigma^2}{2}t + \sigma\beta_t))$ mit $\mu \in \mathbb{R}, \sigma > 0, S_0^1 > 0$ und β_t corresponds to Brownian motion(stochastic process in continuous time) and $\mu \frac{\omega^2}{2}$ corresponds to trend component

Image: Exchange curve = $S_t(\omega)$, wherein time-continuous model for infinite probability space

3. Bonds and basic examples of derivatives

We consider here only one basic good $S_t = S_t^1$

1. <u>Bond</u>: (more precisely: zero-coupon bond) Der <u>issuer</u> of a bond with maturity T guaranties to pay the buyer the amount N (EUR/USD/...) at time T.

Typical issuers:

- States [government bond]
- Companies (as an alternative to taking a credit)

After emission bonds are resold on the secondary market, ie liquid traded securities/stocks

Price of the emission: B(0,T)

Price of the resale at time $t \leq T$: B(t,T)

We always standardise $N = 1 \implies B(T, T) = 1$

Bonds of West / North / Central European countries + USA / Cananda are regarded as risk-free (secure payment).

Otherwise: credit risk

Risk free bonds can be used as numeral $S_t^0 = B(t,T)$

Image: can not describe it now:/

2. Forward contract

From buyers view: $\underline{\text{agreement}}$ to buy a unit of basic good S for price at a certain future date T (purchase required)

Popular with raw materials + electricity

Payout profile: $F_T = S_T - K$

Image: "A straight line with the intersection of the x axis at K and intersection of the y axis at S_T ge0, is only a 1st order polynomial"

Price at time t: F_t

- 3. European Put-/Call-Option: Right at a future time T to sell (put) or to buy (call) a unit of basic good S at the price K no supply/purchase obligation
 - Call:

$$C_T := \begin{cases} S_T - K & S_T \ge K \\ 0 & S_T < K \end{cases} = (S_T - K)_+$$

▶ Bemerkung

$$X_{+} = \max(X, 0)$$
 $X_{+} - X_{-} = X$
 $X_{-} = \min(X, 0)$ $X_{+} + X_{-} = |X|$

Image: (hockey stick function)

• Put:

$$P_{t} = \begin{cases} 0 & S_{T} \ge K \\ K - S_{T} & S_{t} < K \end{cases} = (K - S_{T})_{+}$$

Bild: "inversed" hockey stick function

4. American Put/Call-Option: As put/call but with exercising at any time $t \in [0, T]$

Price at time $t: P_t^{AM}, C_t^{AM}$

Payout profile at time τ : $(S_{\tau} - K), (K - S_{\tau})_{+}$

Time τ must generally be determined as a solution of a stochastic optimization problem ("Optimal stop problem")

4. Elementary replications and arbitrage-arguments

What can we state (with elementary means) on the "fair" prices $B(t,T), F_T, C_T, P_t$? We use:

- Replication principle: Two identical future cash flows have the same value even today. (A cash flow "replicates" the other)
- No-arbitage-principle: "Without capital investment, secure profit can be achieved without risk of loss"

- Arbitrage: risk-free profit
- Weaker form of replication principle:
 Super position principle: is a cash flow in any case greater than another, therefore also today it has the greater value

stark Rep. principle limited applicability

 \downarrow Super rep. principle \uparrow

light No-arbitrage-principle always applicable

Lemma I.2

Für den preis C_t des europäischen Calls gilt:

$$(S_t - K \cdot B(t,T))_+ \le C_t \le S_t$$

Beweis. • lower boundary: For contradiction $S_t - K \cdot (B(t,T)) - C_t = \varepsilon > 0$

	Portofolio	value in t	value in $T, S_t \leq K$	value in $T, S_t > K$
	Buy Call	C_t	0	$S_T - K$
	Sell basic good	$-S_t$	$-S_T$	$-S_T$
	Buy a bond	$\varepsilon + K \cdot B(t,T)$	$\frac{\varepsilon}{B(t,T)} + K$	$\frac{\varepsilon}{B(t,T)} + K$
	Σ	0	$K - S_T + \frac{\varepsilon}{B(t,T)} > 0$	$\frac{\varepsilon}{B(t,T)} > 0$
		no initial capital	sure profit	sure profit

⇒ In contradiction to no-arbitrage

 $\implies S_t - K \cdot B(t,T) \le C_t$ and moreover $C_t \ge 0 \implies C_t \ge (S_t - K \cdot B(t,T))_+$

• upper boundary: UE

Lemma I.3 (Put-Call-parity)

For put P_t , Call C_t with the same exercise price K and basic good S_t it holds

$$C_t - P_t = S_t - B(t, T)K$$

Image: need to add ..., but should be fast to do ...

Beweis. with replication:

Portofolio 1	value in t	value in $T, S_t \leq K$	valuet in $T, S_t > K$
Buy Call	C_t	0	$S_T - K$
Buy bond	$K \cdot B(t,T)$	K	K
Value portofolio 1	$C_t + K \cdot B(t,T)$	K	S_T

5. Conditional expectation values and Martingale

5.1. Conditional density and conditional expected value

Motivation: Given: Two random variables (X, Y) with values in $\mathbb{R}^m \times \mathbb{R}^n$ and joint density $f_{XY}(x, y)$. From f_{XY} we can derive:

- $f_Y(y) := \int_{\mathbb{R}^m} f_{XY}(x,y) dx$ with marginal distribution of Y
- $S_Y := \{ y \in \mathbb{R}^n \colon f_Y(y) > 0 \}$ carrier of Y Image?

Definition (Conditional density of X with respect to Y)

Conditional density from X with respect to Y is defined as

$$f_{X|Y}(x,y) = \begin{cases} \frac{f_{XY}(x,y)}{f_{Y}(y)} & y \in S_Y \\ 0 & y \notin S_Y \end{cases}$$

Consider the following problem:

What is the best forecast from X if an observation Y = y is given?

Criteria:

Minimiye the quadratic distance/second moment/ L_2 -norm.

Vorhersage:

Measurable function $g: \mathbb{R}^n \to \mathbb{R}^m$ mit $y \mapsto g(y)$, meaning,.

$$\min \big\{ \mathbb{E}[(X - g(Y))]^2 \colon g \text{ messbar } \mathbb{R}^n \to \mathbb{R}^m \big\} \tag{min-1}$$

Satz I.4

When (X, Y) have a joint density with $\mathbb{E}[|X|^2] < \infty$, then (min-1) is going to be minimized through the conditional expected value

$$g(y) = \mathbb{E}[X \mid Y = y] := \int_{\mathbb{R}^m} x f_{X|Y}(x, y) \, \mathrm{d}x$$

(where $\mathbb{E}[X \mid Y = y]$ "expected value of X conditioned on Y = y")

In general, it holds:

Theorem I.5

Let (X,Y) be random variables with joint density on $\mathbb{R}^m \times \mathbb{R}^n$, $h: \mathbb{R}^m \to \mathbb{R}^n$ measurable with $\mathbb{E}[h(X,y)^2]$. Then that is going to be minimisation problem

$$\min\{\mathbb{E}[(h(X,Y)-g(y))^2]\}$$
 gmeasurable from \mathbb{R}^n towards \mathbb{R}

solved through

$$g(y) = \mathbb{E}[h(X,Y) \mid Y = y] = \int_{\mathbb{R}^m} h(X,Y) f_{X|Y}(x,y) \, \mathrm{d}x$$

Beweis (only proposition, the Theorem is analogous, for n=1). Set $g(y)=\int_{\mathbb{R}}f_{X|Y}(x,y)\,\mathrm{d}x$. Sei $p:\mathbb{R}\to\mathbb{R}$ arbitrary measurable function with $\mathbb{E}[p(y)^2]<\infty$. Set $g_{\varepsilon}(y)=g(y)+\varepsilon p(y)$. Minimize

$$\begin{split} F(\varepsilon) &:= \mathbb{E}[(X - g_{\varepsilon}(y))^2] = \mathbb{E}[(X - g(y) - \varepsilon p(y))^2] \\ &= \mathbb{E}[(X - g(y))^2] - 2\varepsilon \mathbb{E}[(X - g(y))p(y)] + \varepsilon^2 \mathbb{E}[p(y)^2] \\ \frac{\partial F}{\partial \varepsilon}(\varepsilon) &= 2\varepsilon \mathbb{E}[p(y)^2] - 2\mathbb{E}[(X - g(y))p(y)] \\ &\Longrightarrow \varepsilon_* := \frac{\mathbb{E}[(X - g(y))p(y)]}{\mathbb{E}[p(y)^2]} = \frac{A}{B} \end{split}$$

wobei

$$\begin{split} A &= \mathbb{E}[Xp(y)] - \mathbb{E}[g(y)p(y)] \\ &= \int_{\mathbb{R} \times \mathbb{R}^n} x p(y) f_{XY}(x,y) \, \mathrm{d}x \, \mathrm{d}y - \int_{S_y} g(y) p(y) f_Y(y) = [\text{Einsetzen von } g + \text{Fubini}] \\ &= \int_{\mathbb{R} \times \mathbb{R}^n} x p(y) f_{XY}(x,y) \, \mathrm{d}x \, \mathrm{d}y - \int_{\mathbb{R} \times S_y} x p(y) \underbrace{f_{X|Y}(x,y) f_Y(y \, \mathrm{d}y)}_{=f_{XY}(x,y)} = 0 \end{split}$$

so $\varepsilon^* = 0$ independent from $p \implies g(y)$ minimizes (min-1).

■ Beispiel

Let (X, Y) normaly distributed on $\mathbb{R} \times \mathbb{R}$ with

$$\mu = (\mu_x, \mu_y)^T \quad \Sigma = \begin{pmatrix} \sigma x^2 \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix} = \begin{pmatrix} \mathbb{V} \operatorname{ar}(X) & \mathbb{C}\operatorname{ov}(X, Y) \\ \mathbb{C}\operatorname{ov}(X, Y) & \mathbb{V}\operatorname{ar}(Y) \end{pmatrix} \text{ mit } \rho \in [-1, 1]$$

Then the arbitrary density is $f_{X|Y}(x,y)$. (Σ covariance matrix). Once more the density of a normaly distributed random variable with

$$\mathbb{E}[X \mid Y = y] = \mu_x + \rho \frac{\sigma_x}{\sigma_y} (y - \mu_y)$$

$$\mathbb{V}ar(X \mid Y = y) = \sigma_x^2 (1 - \rho^2)$$

(is ÜA!). The mapping $y \mapsto \mu_x + g(y) \frac{\sigma_x}{\sigma_y} (y - \mu_y)$ is called regression line for X given Y = y. Image: μ_x, μ_y are values on x, y-axis and the σ 's build the Triangle slope (slope is known substantially by ρ)

For disrete random variables, i.e. when X, Y accept only finitely many $\{x_1, \ldots, x_m\}$ or $\{y_1, \ldots, y_m\}$ annehmen then with similar considerations we obtain as a solution of (min-1)

$$\mathbb{E}[X \mid Y = y_j] = \sum_{i=1}^{m} X_i \mathbb{P}(X = x_i \mid Y = y_j)$$

wherein directly the conditional probabilities

$$\mathbb{P}(X = x_i \mid Y = y_j) = \begin{cases} \frac{\mathbb{P}(X = x_i \land Y = y_j)}{\mathbb{P}(Y = y_j)} & \text{wenn } \mathbb{P}(Y = y_j) > 0\\ 0 & \text{wenn } \mathbb{P}(Y = y_j) = 0 \end{cases}$$

5.2. Conditional expectation - measure theoretical access

We consider a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. For random variables $X : \Omega \to \mathbb{R}$ und $p \in [1, \infty)$ we define the L_p -norm

$$||X||_p = \mathbb{E}[|X|^p]^{1/p} = \left(\int_{\Omega} |X(\omega)|^p d\mathbb{P}(\omega)\right)^{1/p}$$

and L_p -space $L_p(\Omega, \mathscr{F}, \mathbb{P}) := \{X : \Omega \to \mathbb{R} : \mathscr{F} - \text{measurable}, \|X\|_p < \infty \}$. We identificate random variables which differ only at zero amounts, ie $\mathbb{P}(X \neq X') = 0 \implies X = X'$ (in L_p).

From measure theory it is known: (?)

The spaces $L_p(\Omega, \mathscr{F}, \mathbb{P})$ with norm $\|\cdot\|_p$, $p \in [1, \infty)$ are always BANACH-spaces (linear, complete, normed vector spaces). For p = 2 also hilbert spaces with inner product

$$\langle X, Y \rangle = \mathbb{E}[XY] = \int_{\Omega} X(\omega)Y(\omega) \, d\mathbb{P}(\omega)$$

Für $\mathscr{G} \subseteq \mathscr{F}$ Unter- σ -slgebra is $L_p(\Omega, \mathscr{F}, \mathbb{P}) \subseteq L_p(\Omega, \mathscr{F}, \mathbb{P})$ closed subspace.

We generalize "prediction problem" from the last section (1.3?)

Given are random variables X from $L_2(\Omega, \mathcal{F}, \mathbb{P})$ is $\mathscr{G} \subseteq \mathscr{F}$ Sub- σ -algebra.

What is the best \mathscr{G} -measurable forecast for Y?

$$\min\{\mathbb{E}[(X-G)^2]: G \in L_2(\Omega, \mathcal{F}, \mathbb{P})\}$$
 (min-2)

wobei $\mathbb{E}[(X-G)^2] = ||X-G||_2^2$.

From hilbert-space theory:

(min-2) possesses a unique solution $G_* \in L_2(\mathscr{F}, \mathscr{G}, \mathbb{P})$. G_* is optimization (with respect to $\langle \cdot, \cdot \rangle$) from $X \in L_2(\Omega, F, P)$ on closed subspace $L_2(\Omega, G, P)$

Image: maybe from Eric (Orthogonal projection on the subspace)

We denote the conditioned expected value $\mathbb{E}[X \mid \mathscr{G}]$ of X with respect to \mathscr{G} with G_* .

Theorem I.6

Let $X, Y \in L_2(\Omega, \mathscr{F}, \mathbb{P})$ and $\mathscr{G} \subseteq F$ sub- σ -algebra. Then it holds

- 1. (Linearity) $\mathbb{E}[aX + bY] = a\mathbb{E}[X \mid \mathcal{G}] + b\mathbb{E}[Y \mid \mathcal{G}]$
- 2. (Tower rule) For every further σ -algebra $\mathscr{H} \subseteq \mathscr{G}$ it holds

$$\mathbb{E}[E[X \mid \mathcal{G} \mid \mathcal{H}]] = \mathbb{E}[X \mid \mathcal{H}]$$

- 3. (Pullout-Property) $\mathbb{E}[XZ \mid \mathcal{G}] = Z\mathbb{E}[X \mid \mathcal{G}]$, if Z is bounded and \mathcal{G} -measurable.
- 4. (Monotonicity) $X \leq Y \implies \mathbb{E}[X \mid \mathscr{G}] \leq \mathbb{E}[Y \mid \mathscr{G}]$
- 5. (Δ -Inequality) $|\mathbb{E}[X \mid \mathcal{G}]| \leq \mathbb{E}[|X| \mid \mathcal{G}]$
- 6. (Independence) X independent from $G \implies \mathbb{E}[X \mid \mathscr{G}] = \mathbb{E}[X]$
- 7. (trivial σ -algebra) $\mathscr{G} = \{\varnothing, \Omega\} \implies \mathbb{E}[X \mid \mathscr{G}] = \mathbb{E}[X]$

Beweis. (without proof, see lecture probability theory with martingales or stochastics script SS19.)

▶ Bemerkung

- The conditioned expectation value $\mathbb{E}[X \mid \mathscr{G}]$, which is defined for $X \in L_2(\Omega, \mathscr{F}, \mathbb{P})$, can be extended by approximation on all $X \in L_1(\Omega, \mathscr{F}, \mathbb{P})$. All properties from Theorem ??? remain the same!
- Let Y be a random variable and $\mathscr{G} = \sigma(Y)$ the σ -algebra which is generated by Y. We write:

$$\mathbb{E}[X \mid Y] = \mathbb{E}[X \mid \sigma(Y)]$$
 σ -measurable random variables

• Measure theory: Doob-Dynkin-Lemma $\implies \exists$ measurable function $g: \mathbb{R}^n \to \mathbb{R}$ such that

$$\mathbb{E}[X \mid Y] = g(Y)$$

Where g is exactly the function from (min-1).

Summary:

Let X, Y from $L_1(\Omega, \mathscr{F}, \mathbb{R}), \mathscr{G} \subseteq \mathscr{F}$ sub- σ -algebra

1. $\mathbb{E}[X \mid Y = y]$ is a measurable function $g : \mathbb{R}^n \to \mathbb{R}^n$. If the conditioned density exists, then it holds:

$$\mathbb{E}[X \mid Y = y] = \int_{\mathbb{R}^m} f_{X|Y}(x, y) \, \mathrm{d}x$$

2. $\mathbb{E}[X \mid Y]$ is a $\sigma(y)$ -measurable random variable, this can be represented as g(Y). If the conditioned

density exists, then it holds

$$\mathbb{E}[X \mid Y](\omega) = \int_{\mathbb{D}^n} x f_{X|Y}(x, Y(\omega)) \, \mathrm{d}x$$

3. $\mathbb{E}[X \mid \mathcal{G}]$ is a \mathcal{G} -measurable random variable. If $\mathcal{G} = \sigma(y)$ then 2) occurs.

In the general case $\mathbb{E}[\bar{X} \mid \cdot]$ can be interpreted as best forecast for X, given

- 1. Pointwise observation Y = y
- 2. Observation Y
- 3. Information \mathscr{G}

5.3. Martingale

Prototype of a "neutral" stochastic process, which has neither upward nor downward trend. Here only in discrete time $Z = \mathbb{N}_0$.

Definition (Martingale without a percolation)

Let $(X_n)_{n\in\mathbb{N}_0}$ be a stochastic process. If it holds

1. $\mathbb{E}[|X_n|] < \infty \ \forall n \in \mathbb{N}$ 2. $\mathbb{E}[X_{n+1}, \dots, X_n] = X_n \ \forall n \in \mathbb{N}$ then (X_n) is called a <u>martingale</u>. If we define $\mathscr{F}_n^* = \sigma(X_1, \dots, X_n)$, then we can write 2) as

$$\mathbb{E}[X_{n+1} \mid \mathscr{F}_n^*] = X_n \quad \forall n \in \mathbb{N}$$

Interpretation:

- The best forecast for a future value X_{n+1} , based on the past $\sigma(X_1,\ldots,X_n)$ is the current value X_n .
- From the tower tule it follows

$$\mathbb{E}[X_{n+k} \mid \mathscr{F}_n^*] = X_n \quad n, k \in \mathbb{N}_0$$

since

$$\mathbb{E}[X_{n+k}\mid \mathscr{F}_n^*] = \mathbb{E}[\mathbb{E}[X_{n+k}\mid \mathscr{F}_{n+k-1}\mid \mathscr{F}_n^*]] = \mathbb{E}[X_{n+k-1}\mid \mathscr{F}_n^*] = (k\text{-mal}) = X_n$$

It can be extended from $(\mathscr{F}_n)_{n\in\mathbb{N}}$ to arbitrary percolations $(\mathscr{F}_n)_{n\in\mathbb{N}_0}$.

Definition (Martingale with percolation)

Let $(X_n)_{n\in\mathbb{N}_0}$ be a stochastic process, which is adapted to a percolation $(\mathscr{F}_n)_{n\in\mathbb{N}_0}$. If it holds

- 1. $\mathbb{E}[|X_n|] < \infty \ \forall n \in \mathbb{N}_0$ 2. $\mathbb{E}[X_{n+1} \mid \mathscr{F}_n] = X_n \ \forall n \in \mathbb{N}_0$

then $(X_n)_{n\in\mathbb{N}_0}$ is called a martingal with respect to percolation $(\mathscr{F}_n)_{n\in\mathbb{N}_0}$

Interpretation:

The best forecast for future values X_{n+1} , based on the available information \mathscr{F}_n is the current value X_n .

Definition (Supermatringale, Submartingale)

In in 2) instead of "=" the inequality \leq oder \geq holds, then $(X_n)_{n\in\mathbb{N}}$ is called a <u>Supermartingale</u> or a Submartingale.

First observation:

• X Martingale $\Longrightarrow \mathbb{E}[X_n] = X_0$, i.e. $n \mapsto \mathbb{E}[X_n]$ is constant. Begründung:

$$\mathbb{E}[X_{n+1} \mid \mathscr{F}_n] = X_n \implies \mathbb{E}[\mathbb{E}[X_{n+1} \mid \mathscr{F}_n]] = \mathbb{E}[X_n] = \mathbb{E}[X_{n+1}] \implies (n\text{-times aplied}\mathbb{E}[X_n] = X_0)$$

Image: expected value is constant, but not a martingale.

- X Submartingale $\implies n \mapsto \mathbb{E}[X_n]$ is monotone increasing
- X Supermartingale $\implies n \mapsto \mathbb{E}[X_n]$ is monotone decreasing

In order to remember the difference between super and submartingale, here's a little help: "Life is a supermartingale, expectations fall with time."

■ Beispiel

• Let $(Y_n)_{n\in\mathbb{N}}$ be independent random vriables in $L_1(\Omega, \mathcal{F}, \mathbb{P})$ mit $\mathbb{E}[Y_n] = 0$. Define $X_n := \sum_{k=1}^n Y_k$ mit $X_0 = 0$. Then $(X_n)_{n\in\mathbb{N}_0}$ is a martingale, since

1.
$$\mathbb{E}[|X_n|] \leq \sum_{k=1}^n \mathbb{E}[|Y_k|] < \infty \quad \forall n \in \mathbb{N} \checkmark$$

2.

$$\begin{split} \mathbb{E}[X_{n+1} \mid \mathscr{F}_n^*] &= \mathbb{E}[Y_{n+1} + X_n \mid \mathscr{F}_n^*] \\ &= \mathbb{E}[Y_{n+1} \mid \mathscr{F}_n^*] = \mathbb{E}[X_n \mid \mathscr{F}_n^*] \quad \text{(tower und } \mathscr{F}_n^*\text{-measurable)} \\ &= \underbrace{\mathbb{E}[Y_{n+1}]}_{=0} + X_n = X_n \checkmark \end{split}$$

• Further examples are to be found on the first exercise sheet!

Definition (predictable)

Let $(\mathscr{F}_n)_{n\in\mathbb{N}_0}$ be a percolation. A stochastic process $(X_n)_{n\in\mathbb{N}}$ is called <u>predictable</u> with respect to $(\mathscr{F}_n)_{n\in\mathbb{N}_0}$, if it holds:

$$H_n$$
 is \mathscr{F}_{n-1} -measurable $\forall n \in \mathbb{N}$

▶ Bemerkung

Stronger property than "adapted".

Definition (discrete stochastic integral)

Let X be adapted and H a predictable stochastical process with respect to $(\mathscr{F}_n)_{n\in\mathbb{N}}$. Then

$$(H \cdot X)_n := \sum_{k=1}^n H_k (X_k - X_{k-1}) \tag{*}$$

is called a discrete stochastic integral of H with respect to X.

▶ Bemerkung

Sums (*) are in the analysis called RIEMANN-STIELTJES-summs. They are used for constructions of the RS-integral $\int h \, d\rho$.

Definition (locally bounded)

A stochastic process $(H_n)_{n\in\mathbb{N}}$ is called <u>locally bounded</u>, if there exists a (defined) sequence $c\in\mathbb{R}_{\geq 0}$ such that

$$|H_n| \le c_n \text{ a.s.} \quad \forall n \in \mathbb{N}$$

Theorem I.7

Let X be adapted stochastic process (with respect to percolation $(\mathscr{F}_n)_{n\in\mathbb{N}}$). Then the following statements are equivalent:

- 1. X is a martingale
- 2. $(H \cdot X)$ is a martingale for all locally bounded, predictable $(H_n)_{n \in N}$

That means: the stochastic integral obrains the martingale-property.

Beweis. 8.11.2019!

► Bemerkung

The random variable H is later going to be the investment strategy.

Beweis. $\bullet \Rightarrow$:

- Adaptability: clear
- Integrability: H is locally bounded, i.e. $|H_k| \le c_k < \infty$ for all k.

$$\mathbb{E}[|H_k(X_k - X_{k-1})|] \le c_k * (\mathbb{E}[|x_k|] + \mathbb{E}[|X_{k+1}|]) < \infty$$

With the triangle-inequality it follows $\mathbb{E}[|(H \cdot X)_n|] < \infty$.

- Martignale property:

$$\mathbb{E}[(H \cdot X)_n \mid \mathscr{F}_{n-1}] = (H \cdot X)_{n-1} + \mathbb{E}[H_n(X_n - X_{n-1}) \mid \mathscr{F}_{n-1}]$$

$$= (H \cdot X)_{n-1} + H_n * \underbrace{(\mathbb{E}[X_n \mid \mathscr{F}_{n-1}] - X_{n-1})}_{=0}$$

$$= (H \cdot X)_{n-1} \quad \forall n \in \mathbb{N}$$

Hence, also $(H \cdot X)$ is a martingale.

$$(H \cdot X)_n = \sum_{k=1}^n H_k(X_k - X_{k-1}).$$

 \Leftarrow : Fix $N \in \mathbb{N}$. Set $H_n := \mathbb{1}_{n=N}$, this is locally bounded and deterministic (also predictable). One notices that $(H \cdot X)_n = 0$ for all $n \leq N-1$. Conversely, for all $n \geq N$ it holds $(H \cdot X)_n = X_N - X_{N-1}$. We check only the martingale property (the integrability follows from the triangle-inequality). We know that $(H \cdot X)$ is a martingale.

$$\begin{split} 0 &= (H \cdot X)_{N-1} = \mathbb{E}[(H \cdot X)_N \mid \mathscr{F}_{N-1}] \\ &= \mathbb{E}[x_N - X_{N-1} \mid \mathscr{F}_{N-1}] \\ &= \mathbb{E}[X_N \mid \mathscr{F}_{N-1}] - X_{N-1} \\ &\Longrightarrow X_{N-1} = \mathbb{E}[X_N \mid \mathscr{F}_{N-1}] \text{ mit } N \in \mathbb{N} \text{ beliebig} \end{split}$$

With that, X is a martingale.

Folgerung I.8

Let $X = \{X_n\}n = 1, ..., N$ be an adapted stochastic process with respect to a filtration $\{\mathscr{F}_n\}n = 1, ..., N$. If $\mathbb{E}[(H \cdot X)_N] = 0$ for all locally bounded predictable processes H, then X is a martingale with respect to $\{\mathscr{F}_n\}$.

Beweis. Fix $K \in [N] := \{1, 2, ..., N\}$ and a set $A \in \mathscr{F}_{K-1}$. Define $H_n(\omega) = \mathbbm{1}_A(\omega) * \mathbbm{1}_{\{n=K\}}$, this is locally bounded and predictable. It holds $(H \cdot X)_n = 0$ for all $n \leq K - 1$. For all $n \geq K$ it holds $(H \cdot X)_n = \mathbbm{1}_A * (X_K - X_{K-1})$.

$$\begin{split} 0 &= \mathbb{E}[(H \cdot X)_N] = \mathbb{E}[\mathbbm{1}_A(X_K - X_{K-1})] \\ &\stackrel{Tower}{=} \mathbb{E}[\mathbb{E}[\mathbbm{1}_A(X_K - X_{K-1}) \mid \mathscr{F}_{K-1}]] \\ &= \mathbb{E}[\mathbbm{1}_A * \left(\underbrace{\mathbb{E}[X_K \mid \mathscr{F}_{K-1}]_{-X_{K-1}}}_{Y_{K-1}}\right) \quad \forall A \in \mathscr{F}_{K-1} \\ &\Longrightarrow \int_A Y_{K-1}(\omega) \, \mathrm{d}\mathbb{P}(\omega) \\ &= \int_A X_{K-1}(\omega) \, \mathrm{d}\mathbb{P}(\omega) \quad \forall A \in \mathscr{F}_{K-1} \\ &\Longrightarrow Y_{K-1} = X_{K-1} \text{ almost surely} \\ &\Longrightarrow \mathbb{E}[X_K \mid \mathscr{F}_{K-1}|_{-X_{K-1}}] = X_{K-1} \end{split}$$

for arbitrary K. Hence, X is a martingale.

▶ Bemerkung

We write $[N] := \{1, 2, ..., N\}$ and $[N]_0 := \{0, 1, 2, ..., N\}$.

Kapitel II

$Cox ext{-}Russ ext{-}Rubenstein ext{-}model$

The Cox-Ross-Rubinstein-Model (short: CRR-Model) is also called a binomial model and is developed in 1979 from Cox, Ross and Rubinstein.

It deals with a model for development of the price of a security (paper) plus a offset account with constant interest (numeraire) in discrete time.

Parameter:

r	Rate of interes	
b	Rate of return of the security up	
a	a Rate of return of the security down	
$p \in (0,1)$	Probability for up	
$S_0 > 0$	Price of the security at time zero	
$N \in \mathbb{N}$	Number of time steps	

Assumptions: r > -1, b > a > -1 We model security $\{S_k\}_{k \in \mathbb{N}}$ and offset account $\{S_k\}_{k \in \mathbb{N}}$ as stochastic processes on a probability space $(\mathscr{F}, \mathbb{P})$.

- $S_0^0 = 1$ and $S_n^0 = (1+r)^n$
- We define the rate of return $R_n(\omega)$ in the n-th market period with

$$R_n = \begin{cases} b & \text{mit } p \\ a & \text{mit } 1 - p \end{cases}$$

The rates of return (R_1, \ldots, R_N) are independent.

$$S_n = S_0 * \prod_{k=1}^{n} (1 + R_k)$$

The progress of S can be represented graphically as a binomial tree:

$$S_0 \xrightarrow{S_0(1+b)^2} S_0(1+b)^2$$

$$S_0 \xrightarrow{S_0(1+a)(1+b)} S_0(1+a)(1+b)$$

$$S_0(1+a)^2$$

One also names this as a 'recombined tree model'. It has the advantage that the number of nodes grows only linearly with n.

- Discountinious price process $\tilde{S}_n := \frac{S_n}{S_n^0} = S_0 * \prod_{k=1}^n \frac{1+R_k}{1+r}$.
- Filtration: natural filtration $\mathscr{F}_n = \sigma(S_1, \dots, S_n)$.

Satz II.1

Im CRR-Modell gilt:

- 1. The number of upward trends $U_n := \#\{k \in [n]: R_k = b\}$ is binomially distributed, i.e. $U_n \sim \text{Bin}(n,p)$.
- 2. It holds

$$\log\left(\frac{\tilde{S}_n}{S_0}\right) = U_n \log\left(\frac{1+b}{1+a}\right) + n \log\left(\frac{1+a}{1+r}\right)$$

d.h. $\log\left(\frac{\tilde{S}_n}{S_0}\right)$ is per Skalen-Lagen-transformation binomially distributed.

3. The distribution of S_n is

$$\mathbb{P}(S_n = S_0(1+b)^k (1+a)^{n-k}) = \binom{n}{k} p^k (1-p)^{n-k}$$

Beweis. 1. clear

$$2. \quad \frac{\tilde{S}_n}{S_0} = \left(\frac{1+b}{1+a}\right)^{U_n} * \left(\frac{1+a}{1+r}\right)^n \implies \log\left(\frac{\tilde{S}_n}{S_0}\right) = U_n \log\left(\frac{1+b}{1+a}\right) + n \log\left(\frac{1+a}{1+r}\right)$$

3. Es ist $S_n = S_0(1+b)^{U_1}(1+a)^{n-U_n}$. Also

$$\mathbb{P}(S_n = S_0(1+b)^k (1+a)^{n-k}) = \mathbb{P}(U_n = k) \stackrel{(a)}{=} \binom{n}{k} p^k (1-p)^{n-k}$$

▶ Bemerkung

Part (b) suggests convergence of $\log\left(\frac{\tilde{S}_n}{S_0}\right)$ towards the normal distribution for $n \to \infty$ (per scaling) \sim Black-Scholes-Model (\nearrow Chapter 3).

Lemma II.2

A self-financed investment strategy $(\eta_n, \xi_n)_{n \in \mathbb{N}}$ with initial capital $w \in \mathbb{R}$ and value process Π_n are completely defined through w and $(\xi_n)_{n \in \mathbb{N}}$.

• The discrete value process can be represented as

$$\tilde{\Pi}_n = w + \sum_{k=1}^n \xi_k (\tilde{S}_k - \tilde{S}_{k-1}) = w + (\xi \cdot \tilde{S})_n$$

• The amount η_n is uniquely given by

$$\eta_n = \tilde{\Pi}_n - \xi_n \tilde{S}_n$$

Beweis. klar!

1. Replication/Hedging of derivated in CRR-Model

Derivative C with payout $h(S_1, S_2, \ldots, S_N)$ at time N, i.e. $C = h(S_1, S_2, \ldots, S_n)$ mit h measurable. We are looking for a strategy which replicated $(\xi_n)_{n \in [N]}$ and initial capital w, i.e.

- (ξ_n) predictable with discrete value process $\tilde{\Pi}_n = w + (\xi \cdot \tilde{S})_n$
- Replication condition

$$C = h(S_1, \dots, S_N) = \Pi_N \text{ f.s.}$$
 (Rep)

Definition II.3

- 1. Derivative C is called reachable, if there exists a replication strategy.
- 2. A financial model is called complete, if every derivative is reachable.

Theorem II.4

Let $C = h(S_1, ..., S_N)$ be a derivative im CRR-Model. Then C is reachable, i.e. $\exists w \in \mathbb{R}$ and $(\xi_n)_{n \in \mathbb{N}}$ with (Rep). It holds:

1. \exists measurable function $f_n : \mathbb{R}^n \to \mathbb{R}, n \in [N]$ so that

$$\Pi_n = f_n(S_1, \dots, S_n)$$

and values of f_n along the paths in the binomial tree are recursively set through

$$Rek = \begin{cases} f_N(S_1, \dots, S_N) = h(S_1, \dots, S_N) = C\\ f_n(S_1, \dots, S_N) = \frac{1}{1+r} \left(\frac{r-a}{b-a} f_{n+1}^b + \frac{b-r}{b-a} f_{n+1}^a \right) \forall n \in [N]_0 \end{cases}$$

where
$$f_{n+1}^b = f_{n+1}(S_1, \dots, S_n(1+b))$$
 und $f_{n+1}^a = f_{n+1}(S_1, \dots, S_n(1+a))$

2. The strategy to be replicated is given by

$$\xi_n = \frac{f_n^b - f_n^a}{S_{n-1}(b-a)} \tag{\Delta-Hedge}$$

Folgerung II.5

The CRR-Model is complete.

Folgerung II.6

If C is an european derivative, i.e. $C = h(S_N)$, with $h: \mathbb{R} \to \mathbb{R}$ measurable, then the following simplifications hold: It is sufficient to take $f_n: \mathbb{R} \to \mathbb{R}$ and it holds

$$\Pi_n = f_n(S_n)$$
 $f_{n+1}^b = f_{n+1}(S_n(1+b))$ $f_{n+1}^a = f_{n+1}(S_n(1+a))$

▶ Bemerkung

1. The recursions Rek corresponds to a backward iteration of the tree diagramm. Image: *tree diagram is missing :/* f_n is set as discontinious mean value of f_{n+1}^b and f_{n+1}^a . The weights $q_b = \frac{r-a}{b-a}, q_a = \frac{b-r}{b-a}$. It holds: $q_a + q_b = 1$

- 2. Originally the transition probabilities $p ext{ do not}$ play a role in the evaluation of C: it is replaced through the "risk-neutral" probabilities $q_b, q_a = 1 q_b$
- 3. They can be efficiently implemented on the computer also for big trees
- 4. The formula for ξ_n is also denoted as "Delta-Hedge"

$$\xi_n = \frac{\text{"Price reduction derivative"}}{\text{"Price reduction basic goods"}}$$
 difference quotient

- 5. Weitere Interpretation of ξ_n
 - $\xi_n > 0$ The price change derivative has same sign as the price reduction basic good, there is no need of short sale!
 - $\xi_n < 0$ Price alternation derivative has opposed sign as the price reduction basic good, there is noo need of short sale!
 - $\xi_n \approx 0$ Price alternation derivative barely depends from the price change basic good.

Beweis. With backwards induction over $n \in [N]_0$

- 1. For $n \in \mathbb{N}$ it holds: $\Pi_N = C = h(S_1, \dots, S_N)$ (Rep.) so $\Pi_N = f_N(S_1, \dots, S_N)$ with $f_N = h$
- 2. Induction step from SF-condition follows

$$\tilde{\Pi}_{n+1} = \tilde{\Pi}_n = \xi_{n+1} (\tilde{S}_{n+1} - \tilde{S}_n) \quad |(1+r)^{n-1}|$$

$$\Longrightarrow \Pi_{n+1} - (1+r)\Pi_n = \xi_{n+1} (S_{n+1} - (1+r)S_n) \tag{*}$$

Per induction condition it holds $\Pi_{n+1} = f_{n+1}(S_1, \dots, S_{n+1}) = f_{n+1}(S_1, \dots, S_n, S_n(1+R_{n+1}))$ (because of the definition of CRR and $S_{n+1} = S_n(1+R_n)$). The second cases $R_k = b$ and $R_k = a$ can occur respectively with strictly positive probability.

Case 1: $\Pi_{n+1} = F_{n+1}(S_1, \dots, S_n, S_n(1+b)) = f_{n+1}^b$, substitution in (*), yields

$$f_{n+1}^b - (1+r)\Pi_n = \xi_{n+1}S_n(b-r) \tag{I}$$

Case 2: $S_{n+1} = S_n(1-a)$ und $\Pi_{n+1} = f_{n+1}(S_1, \dots, S_n, S_n(1+a)) = f_{n+1}^a$, substitution in (*), yields

$$f_{n+1}^a - (1+r)\Pi_n = \xi_{n+1}S_n(a-r)$$
 (II)

 Π_n is ξ_{n+1} \mathscr{F}_n -measurable, meaning independent from $R_{n-1} \implies (II)$ (I)

- (II) (I): $f_{n+1}^b f_{n+1}^a = \xi_{n+1} S_n(b-a)$, then $\xi_{n+1} = \frac{f_{n+1}^b f_{n+1}^a}{S_n(b-a)}$ so $(\Delta$ -Hedge) \checkmark
- in (I) $f_{n+1}^b (1+r)\Pi_n = \frac{b-r}{b-a}(f_{n+1}^b f_{n+1}^a)$, then $\Pi_n = \frac{1}{1+r}\left(\frac{r-a}{b-r}f_{n+1}^a + \frac{b-r}{b-a}f_{n+1}^a\right) \implies (\text{Rep}) \checkmark$

▶ Bemerkung

Systems of linear equations (I) + (II) can be written as

$$\begin{pmatrix} 1+r & b-r \\ 1+r & a-r \end{pmatrix} \begin{pmatrix} \Pi_n \\ \xi_{n+1} S_n \end{pmatrix} = \begin{pmatrix} f_{n+1}^b \\ f_{n+1}^a \end{pmatrix}$$
 (SLE-1)

■ Beispiel

"Asiatic call-option", payout:

$$C = (\overline{S}_N - K)_+ \text{ mit } \overline{S}_N = \frac{1}{1+N} \sum_{k=0}^N S_k$$

Path dependent derivative. Evaluation in CRR-model with ${\cal N}=2$ with parameter:

$$b = 0, 3$$
 $a = 0, 3$ $r = 0, 2$ $S_0 = 100$ $K = 100$

Binomial tree:

$$C = h(S_1, S_2) \text{ mit } h = f_2$$

$$h(130, 169) = (\frac{399}{3} - 100)_+ = 33$$

$$h(130, 91) = (\frac{321}{3} - 100)_+ = 7$$

$$h(70, 91) = (\frac{261}{3} - 100)_+ = 0$$

$$h(70, 49) = (\frac{219}{3} - 100)_+ = 0$$

Recursion:

Auxiliary calculation:
$$q = \frac{r-a}{b-a} = \frac{0,4}{0,6} = 2/3$$
 und $1-a = 1/3$
$$f_1(130) = \frac{1}{1+r}(q \cdot f^b + (1-q)f^a)$$
$$= \frac{1}{1,1}(2/333 + 1/37) = \frac{1}{1,1} \cdot 73/3$$
$$\approx 22,12$$
$$f_1(70) = \frac{1}{1,1}(2/30 + 1/30) = 0$$
$$f_0 = \frac{1}{1,1}(2/3\frac{1}{1,1}73/3 + 1/\cdot 0) \approx 13,41$$

Strategy:

$$\xi_2(130) = \frac{f_2^b - f_2^a}{S_1(b-a)} = \frac{33-7}{130 \cdot 0, 6} = \frac{26}{13 \cdot 6} = 1/3$$

$$\xi_2(70) = \frac{0-0}{70 \cdot 0, 6} = 0$$

$$\xi_1 = \frac{f_1^b - f_1^a}{S_0(b-a)} = \frac{\frac{1}{1,1}73/3 - 0}{100 \cdot 0, 6} = \frac{73}{3 \cdot 11 \cdot 6} = \frac{73}{196} \approx 0,37$$

2. Martingale and arbitrage in CRR-model

Consider a CRR-model on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Set another probability measure \mathbb{Q} on (Ω, \mathscr{F}) . I.e. we leave the structure of the tree unaltered, but we change the transition probability:

von
$$p = \mathbb{P}(R_n = b)$$

zu $q = \mathbb{Q}(R_n = b)$

Notation: $\mathbb{E}^{\mathbb{Q}}[\cdot]$ expected value under $\mathbb{Q}.$

Definition II.7

A probability measure \mathbb{Q} on (Ω, \mathscr{F}) is called equivalent martingale measure (EMM) for the CRR-model, if it holds

- 1. $\mathbb{Q} \sim \mathbb{P} \ (\mathbb{Q} \ \text{equivalent to} \ \mathbb{P})$
- 2. discrete price process $(\tilde{S}_n)_{n\in[N]}$ is $\mathbb{Q}\text{-martingale, i.e.}$

$$\mathbb{E}^{\mathbb{Q}}[\tilde{S}_{n+1} \mid \mathscr{F}_n] = \tilde{S}_n \quad \forall n \in [N-1]_0$$

▶ Erinnerung II.8

 \mathbb{P}, \mathbb{Q} probability measures on (Ω, \mathscr{F})

- $\mathbb{P} \sim \mathbb{Q} : \Leftrightarrow (\mathbb{P}(A) = 0 \Leftrightarrow \mathbb{Q}(A) = 0 \forall A \in \mathscr{F} \text{ (equivalent)}$
- $\mathbb{Q} << \mathbb{P} \Leftrightarrow (\mathbb{P}(A) = 0 \implies \mathbb{Q}(A) = 0 \forall A \in \mathscr{F} (\mathbb{Q} \text{ absolute continious with respect to } \mathbb{P})$
- It holds: $\mathbb{Q} \sim \mathbb{P} \Leftrightarrow (\mathbb{Q} << \mathbb{P} \wedge \mathbb{P} << \mathbb{Q})$

Theorem II.9

- 1. In CRR-model there exists a EMM iff it holds a < r < b
- 2. The EMM $\mathbb Q$ is unique and it holds

$$q := \mathbb{Q}(R_n = b) = \frac{r - a}{b - a}$$
$$1 - q = \mathbb{Q}(R_n = a) = \frac{b - r}{b - a} \quad \forall n \in [N]$$

▶ Bemerkung

q and 1-q are exactly the risk-neutral weights, which appear in (Rep)

Beweis. Let $\mathbb Q$ be an arbitrary probability measure on $(\Omega, \mathscr F)$. Set

$$q_{n} := \mathbb{Q}(R_{n} = b \mid \mathscr{F}_{n-1}) \in [0, 1]$$

$$\mathbb{E}^{\mathbb{Q}}[\tilde{S}_{n} \mid \mathscr{F}_{n-1}] = \mathbb{E}^{\mathbb{Q}}[\tilde{S}_{n} \cdot (\frac{1 + R_{n}}{1 + r}) \mid \mathscr{F}_{n-1}]$$

$$= \tilde{S}_{n-1} \frac{1}{1 + r} \mathbb{E}^{\mathbb{Q}}[1 + R_{n} \mid \mathscr{F}_{n-1}]$$

$$= \tilde{S}_{n-1} \cdot \frac{1}{1 + r} (q_{n}(1 + b) + (1 - q_{n})(1 + a))$$

Then

$$\begin{split} (\tilde{S}_{n\in[N]}) \text{ ist } \mathbb{Q}\text{-martingale} \Leftrightarrow \\ \frac{1}{1+r}(q_n(1+b)+(1-q_n)(1-a)=1 \quad \forall n \\ q_nb=(1-q_n)a=r \\ q_n(b-a)=r-a \implies q_n=\frac{r-a}{b-a} \end{split}$$

$$q_n \in [0,1] \Leftrightarrow a \le r \le b$$

$$\mathbb{Q} \sim \mathbb{P} \colon q_n \in (0,1) \Leftrightarrow a < r < b$$

i.e. \mathbb{Q} is EMM $\Leftrightarrow a < r < b$.

Theorem II.10 (Risk-neutral evaluation formula)

Let $C = h(S_1, ..., S_n)$ be a derivative in CRR-model with EMM \mathbb{Q} . For the price process $(\Pi_n)_{n \in [N]}$ of C it holds:

$$\Pi_n = (1+r)^{-(N-n)} \cdot \mathbb{E}^{\mathbb{Q}}[C \mid \mathscr{F}_n]$$

It especially holds

$$w = \Pi_0 = (1+r)^{-N} \cdot \mathbb{E}^{\mathbb{Q}}[C]$$

<u>In words:</u> The fair price of C is unique and given by the discontinious expected value of C <u>under the martingale measure \mathbb{Q} .</u>

Beweis. The probability space for the CRR-model is finite, i.e. $|\Omega| = 2^N < \infty$ (finitely many paths in CRR-model). Hence, every random variable is bounded and especially C and $(\xi_n)_{n\in[N]}$. Let (ξ_n) be a replication strategy for C with discontinuous value process $(\tilde{\Pi}_n)$, i.e.

$$\tilde{\Pi}_n = w + \sum_{k=1}^n \xi_k (\tilde{S}_k - \tilde{S}_{k-1}) = w + (\xi \cdot \tilde{S})_n$$

und

$$\tilde{\Pi}_n = (1+r)^{-N}C$$

 \mathbb{Q} is EMM \implies (\tilde{S}_n) is \mathbb{Q} -martingale. With Theorem 1.6 $(\xi \cdot \tilde{S})_n$ is \mathbb{Q} -martingale. Hence it follows $\tilde{\Pi}_n$ is \mathbb{Q} -martingale.

$$\Pi_n = (1+r)^n \cdot \tilde{\Pi}_n = (1+r)^n \mathbb{E}^{\mathbb{Q}}[\Pi_N \mid \mathscr{F}_n] \quad \text{martingale}$$
$$= (1+r)^{-(N-n)} \cdot \mathbb{E}^{\mathbb{Q}}[C \mid \mathscr{F}_n].$$

▶ Bemerkung (to martingale condition for Q)

We write (somewhat incovenietly)

- $q_b = \mathbb{Q}(R_n = b)$ und $q_a = \mathbb{Q}(R_n = a)$
- Q-measure: $q_a + q_b = 1 \Leftrightarrow q_b(1+r) + q_a(1+r) = 1+r$
- Martingale condition:

$$(1+b)q_b + (1+a)q_a = 1 - r \Leftrightarrow q_b(b-r) + q_a(a-r) = 0$$

As a system of linear equations:

$$\begin{pmatrix} 1+r & 1+r \\ b-r & a-r \end{pmatrix} \begin{pmatrix} q_b \\ q_a \end{pmatrix} = \begin{pmatrix} 1+r \\ 0 \end{pmatrix}$$
 (SLE-2)

is a condition for martingale measure. Compare with

$$\begin{pmatrix} 1+r & 1+r \\ b-r & a-r \end{pmatrix} \begin{pmatrix} \Pi_{n+1} \\ \xi_n \cdot S_{n-1} \end{pmatrix} = \begin{pmatrix} f_n^b \\ f_n^a \end{pmatrix}$$

the latter is again (SLE-1), the same matrix but transposed \implies duality!

Arbitrage in CRR-model

Definition II.11

An investment strategy $(\xi_n)_{n\in[N]}$ with time horizon N and discontinuous value process $(\tilde{\Pi}_n)_{n\in[N]}$ is called an arbitrage, if it holds:

- 1. $\tilde{\Pi}_0 = 0$ (no initial capital)
- 2. $\mathbb{P}(\tilde{\Pi}_N \ge 0) = 1$ (no risk of loss)
- 3. $\mathbb{P}(\tilde{\Pi}_N > 0) > 0$ (positive profit with positive probability)

We negotiate the 3 conditions (arb.)

Theorem II.12

In CRR-model are equivalent

- 1. There does not exist an arbitrage (NA = "No-arbitrage")
- 2. There exists an EMM \mathbb{Q}

▶ Bemerkung

This Theorem basically holds in <u>all</u> financial models (discrete, continious, ...). It is also called $\underline{1}$. Main theorem of the price theory.

Beweis. • b) \Longrightarrow a) with contradiction. Let $\mathbb Q$ be an EMM and (ξ) arbitrage. Because of $\mathbb Q \sim \mathbb P$ it follows from (arb):

$$Q(\tilde{\Pi}_N \ge 0) = 1$$

$$Q(\tilde{\Pi}_N > 0) > 0$$

$$\Longrightarrow \mathbb{E}^{\mathbb{Q}}[\tilde{\Pi}_N] > 0 \tag{*}$$

Otherwise: $\tilde{\Pi}_N = 0 + (\xi \cdot \tilde{S})_N$. \tilde{S} is Q-martingale $\implies (\xi \cdot \tilde{S})$ is Q-martingale, then

$$\mathbb{E}^{\mathbb{Q}}[\tilde{\Pi}_N] = \mathbb{E}^{\mathbb{Q}}((\xi \cdot \tilde{S})_N) = 0$$

and that is a contradiction to (*).

Kapitel III

$Block ext{-}Scholes ext{-}model$

THe goal is to transition from CRR-model (in discrete time) to Block-Scholes (BS-)model (in continious time) through fomation of limit.

• Derivation of Block-Scholes-formula for price of european put- and call-options.

Consider the time interval [0,T], for every $N \in \mathbb{N}$ divided in steps of length $\Delta_n = \frac{T}{N}$. Choose a parameter $r \in \mathbb{R}, \mu \in \mathbb{R}$ (trend parameter), $\sigma > 0$ (violatility). Define a sequence of CRR-models $(S^N)_{N \in \mathbb{N}}$ embedded in [0,T] with parameters

$$r_N = r \cdot \Delta_n$$
 $b_N = \mu \Delta_n + \sigma \sqrt{\Delta_n}$ $a_N = \mu \Delta_n - \sigma \sqrt{\Delta_n} \ p \in (0, 1), \ s > 0$

i.e. $S_0^N = s$, $S_{t_k}^N = s \cdot \prod_{i=1}^k (1 + R_i^N)$ with $t_k = k \cdot \Delta_n$, or $\tilde{S}_0^N = s$ and hence $\tilde{S}_{t_k}^N = s \cdot \prod_{i=1}^k \frac{1 + R_i^N}{1 + r_N}$, where $\mathbb{P}(R_i^N = n_N) = p$, $\mathbb{P}(R_i^N = a_N) = 1 - p$. Denote the sequence with CRR_N . If its necessary, we interpolate between the grid points with

$$S_t^N = S_{t_k}^N \quad t \in [t_k, t_{k+1}]$$

Calculate the risk-neutral probabilities

$$q_N = \mathbb{Q}_N(R_i^N = b_N) = \frac{r_N - a_N}{b_N - a_N} = \frac{(r - \mu)\Delta_n + \sigma\sqrt{\Delta_n}}{2\sigma\sqrt{\Delta_n}} = \frac{1}{2} - \frac{\lambda}{2}\sqrt{\Delta_n}$$

with $\lambda := \frac{\mu - r}{\sigma}$

▶ Bemerkung

- If $\mu = r$, then $q_N = \frac{1}{2}$ and in generall $\lim_{k \to \infty} a_N = \frac{1}{2}$
- $\lambda := \frac{\mu r}{\sigma}$ is called "Sharp-ratio" or market risk price

Question: convergence of the distribution of S_T^N under \mathbb{Q}_N for $N \to \infty$? Transition to logarithm:

$$\mathcal{Z}_N := \log(\frac{S_T^N}{S_0}) = \sum_{k=1}^N \underbrace{\log(1 + R_k^N)}_{L_k^N}$$

Sum the independent, identically distributed random variables, then use the central convergence theorem?

There exists a so-called Triangle-scheme

$$\mathcal{Z}_1 = L_1^1$$

 $\mathcal{Z}_2 = L_2^1 + L_2^2$ Random variables in a row are stochastically independent.

$$\mathcal{Z}_3 = L_3^1 + L_2^3 + L_3^3$$

Theorem III.1 (Central convergence theorem for triangle-scheme)

Let $L^N := (L_1^N, L_2^N, \dots, L_N^N)$ be a vector of random variables for every $N \in \mathbb{N}$ ("triangle-scheme") with the following properties:

- 1. $\forall N \in \mathbb{N}, (L_1^n, \dots, L_N^N)$ are independent with identical distribution
- 2. \exists Sequence of (deterministic) constants $C_N \to 0$, such that

$$|L_k^N| \le C_N \quad \forall k \in [N]$$

3. With $\mathcal{Z}_N = L_1^N + \cdots + L_N^N$ it holds

$$\mathbb{E}[\mathcal{Z}_N] \to m \in \mathbb{R}$$

$$\mathbb{V}\mathrm{ar}(\mathcal{Z}_N) \to s^2 > 0 \text{ für } N \to \infty$$

Then $(\mathcal{Z}_N)_{N\in\mathbb{N}}$ converges in distribution towards the normally distributed random variable \mathcal{Z} with $\mathbb{E}[\mathcal{Z}] = m$ und $\mathbb{V}\mathrm{ar}(\mathcal{Z}) = s^2$

Beweis. Without a proof, see eg Probability theory with martingale.

▶ Bemerkung

Compare 2nd exercise sheet/ 1st exercise.

► Erinnerung III.2

The density of the standard normal distribution is:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

and the distribution function:

$$\Phi(x) = \int_{-\infty}^{x} \varphi(y) \, \mathrm{d}y = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \, \mathrm{d}y$$

The normal distribution with expecte value m and variance s^2 has distribution function $\Phi(\frac{x-m}{s})$

Definition III.3

A strict positive random variable X is called <u>log-normally distributed</u> with parameter m, s^2 , if it holds

$$\log(X) \sim \mathcal{N}(m, s^2)$$

Theorem III.4

Consider the sequence $(S^N)_{N\in\mathbb{N}}$ of CRR-models, as described in CRR_N. Then S_T^N converges in distribution under \mathbb{Q}_N towards a random variable S_T and S_T/S_0 is log-normally distributed with paraeters $n = T(r - \sigma^2/2)$ and $s^2 = T\sigma^2$. Equivalently it holds $\mathcal{Z}_N = \log(S_T^N/S_0)$

$$\mathbb{Q}_N(\mathcal{Z}_N \le x) \xrightarrow{N \to \infty} \Phi\left(\frac{x - T(r - \sigma^2/2)}{\sigma\sqrt{T}}\right)$$

Beweis. The triangle-scheme $L^N = (L_1^N, \dots, L_N^N)$ with $L_k^N = \log(1 + R_k^N)$ obviously satisfies the condition 1. and 2. from theorem 3.1, (under \mathbb{Q}_N). Choose as eg.:

$$C_N = \max(\left|\log(1 + \mu \Delta_n + \sigma \sqrt{\Delta_n})\right|, \left|\log(1 + \mu \Delta_n - \sigma \sqrt{\Delta_n})\right|)$$

We calculate the expected value and variance of L_k^N or \mathcal{Z}_N . Use the Taylor expansion:

$$\log(1+x) = x - x^2/2 + x^3/3 + \mathcal{O}(x^4) \quad (x \to 0)$$

I.e.

$$\log(1 + \underbrace{\mu \Delta_n \pm \sigma \sqrt{\Delta_n}}_{b_N \text{ or } a_N}) = \pm \sigma \sqrt{\Delta_n} + \mu \Delta_n - \sigma^2 / 2\Delta_n + \mathcal{O}(\Delta_n^{3/2})$$

 $q_N = \frac{1}{2} - \frac{\lambda}{2} \sqrt{\Delta_n}$ $1 - q_N = \frac{1}{2} + \frac{\lambda}{2} \sqrt{\Delta_n}$

The risk-neutral probabilities are

$$\mathbb{E}^{\mathbb{Q}_{N}}[L_{k}^{N}] = \mathbb{E}^{\mathbb{Q}_{N}}[\log(1+R_{k}^{N})] = q_{N}\log(1+b_{N}) + (1+p_{N})\log(1+a_{N})$$

$$= (\mu - \sigma^{2}/2)\Delta_{n} - \lambda\sigma\Delta_{n} + \mathcal{O}(\Delta_{n}^{3/2}) \quad \text{mit } \lambda = \frac{\mu - r}{\sigma}$$

$$= (\mu - (\mu - r) - \sigma^{2}/2)\Delta_{n} + \mathcal{O}(\Delta_{n}^{3/2})$$

$$= (r - \sigma^{2}/2)\Delta_{n} + \mathcal{O}(\Delta_{n}^{3/2})$$

$$\mathbb{E}^{\mathbb{Q}_{N}}[(L_{k}^{N})^{2}] = q_{N}\log^{2}(1+b_{N}) + (1-q_{N})\log^{2}(1+a_{N})$$

$$= \sigma^{2}\Delta_{n} + \mathcal{O}(\Delta_{n}^{3/2})$$

$$\mathbb{V}\mathrm{ar}^{\mathbb{Q}_N}(L_k^N) = \mathbb{E}^{\mathbb{Q}_N}[(L_k^N)^2] - \mathbb{E}^{\mathbb{Q}_N}[L_k^N]^2 = \sigma^2\Delta_n + \mathcal{O}(\Delta_n^{3/2})$$

So, it holds

$$\mathbb{E}^{\mathbb{Q}_N}[\mathcal{Z}_N] = N \cdot \mathbb{E}^{\mathbb{Q}_N}[L_k^N] = (r - \sigma^2/2)T + \mathcal{O}(N^{-1/2}) \xrightarrow{N \to \infty} (r - \sigma^2/2)T =: m$$

$$\mathbb{V}\mathrm{ar}^{\mathbb{Q}_N}[\mathcal{Z}_N] = N \cdot \mathbb{V}\mathrm{ar}^{\mathbb{Q}_N}[L_k^N] = \sigma^2 T + \mathcal{O}(N^{-1/2}) \xrightarrow{N \to \infty} \sigma^2 T =: s^2$$

The result follows with the central limit theorem (Theorem 3.1).

Asymptotics of put- and call-option

Fix the duration T and the strike price K and write:

- $C_N(t, S_t^N)$... price of a european call-option in CRR_N model, dependant of time t and basic good S_t^N
- $P_N(t, S_t^N)$... analogously for put

Theorem III.5 (Block-Scholes-formula)

The prices $C_N,\,P_N$ converge for $N\to\infty$ towards a BS-price

$$C_{BS}(t, S_t) = \lim_{N \to \infty} C_N(t, S_t^N)$$

$$P_{BS}(t, S_t) = \lim_{N \to \infty} P_N(t, S_t^N)$$

and the following Block-Scholes-formula holds:

$$C_{BS}(t, S_t) = S_t \Phi(d_1) - e^{-r(T-t)} K \Phi(d_2)$$

$$P_{BS}(t, S_t) = S_t \Phi(-d_1) - e^{-r(T-t)} K \Phi(-d_2)$$

where

$$d_1 = d_1(t, S_t) = \frac{\log(S_t/K) + (r + \sigma^2/2)(T - t)}{\sigma\sqrt{T - t}}$$
$$d_2 = d_2(t, S_t) = \frac{\log(S_t/K) + (r - \sigma^2/2)(T - t)}{\sigma\sqrt{T - t}} = d_1 - \sigma\sqrt{T - t}$$

▶ Bemerkung

- Geschlossener Ausdruck für Bewertung von europäischen Put- und Call-Optionen
- Herleitung als Grenzwert aus dem CRR-Modell entspricht nicht der ursrünglichen Herleitung von Black & Scholes mittels stochastische Analysis (⇒ VL stoch. Calculus)
- Für Entwicklung von BS-Formel und BS-Modell erhielten SCHOLES & MERTON dem Wirtschaftsnobel(gedenk)preis 1997
- Der Parameter σ heißt Voliatitität und entspricht der Schwankungsbreite der Preisänderung

Skizze vom BS-Call-Preis

BS-Call-Preis

- innere Wert: $(S_t K)_+$ konvergiert gegen Auszahlungsprofil: $(S_T K)_+$, für $t \to T$
- Zeitwert: $C_{BS}(t, S_t) (S_t K)_+ \ge 0$ konvergiert gegen Null für $t \to T$
- – out of the money (OTM): Innere Wert = 0 bei $S_t < K$
 - in the money (ITM): Innere Wert >0 bzw. $S_t>K$
 - at the money (ATM): Grenzfall $S_t = K$
- Zeitwert ist am größten für ATM-Optionen
- $t \mapsto C_{BS}(t, S_t)$ ist streng monoton fallend bzw.

$$\frac{\partial C_{BS}(t, S_t)}{\partial t} < 0$$

• $S_t \mapsto C_{BS}(t, S_t)$ ist streng monoton steigend und konvex bzw

$$\frac{\partial C_{BS}(t,S_t)}{\partial S}(t,S_t)>0 \text{ und } \frac{\partial^2 C_{BS}}{\partial S^2}(t,S_t)>0$$

• Für den Put ist das ganze Symmetrisch

Skizze vom BS-Put-Preis

BS-Put-Preis

- innere Wert: $(K S_t)_+$ konvergiert gegen Auszahlungsprofil: $(K S_T)_+$, für $t \to T$
- Zeitwert: $P_{BS}(t, S_t) (K S_t)_+ \ge 0$ konvergiert gegen Null für $t \to T$
- - out of the money (OTM): Innere Wert = 0 bei $S_t > K$
 - in the money (ITM): Innere Wert > 0 bzw. $S_t < K$
 - at the money (ATM): Grenzfall $S_t = K$
- Zeitwert ist am größten für ATM-Optionen
- $t \mapsto C_{BS}(t, S_t)$ ist streng monoton fallend bzw.

$$\frac{\partial C_{BS}(t, S_t)}{\partial t} < 0$$

- $S_t \mapsto C_{BS}(t, S_t)$ ist streng monoton fallend und konvex bzw

$$\frac{\partial C_{BS}(t, S_t)}{\partial S}(t, S_t) < 0 \text{ und } \frac{\partial^2 C_{BS}}{\partial S^2}(t, S_t) > 0$$

Beweis (???). Wir beweisen das Resultat für t=0: andere Zeitpunkte $t\in[0,T]$ können analog behandelt werden.

• Nach ???, gilt für Preis der Put-Option im CRR_N -Modell

$$\begin{split} P^{N}(0, S_{0}^{N}) &= (1 + r\Delta_{n})^{-N} \cdot \mathbb{E}^{\mathbb{Q}}[(K - S_{T}^{N})_{+}] \\ &= (1 + r\Delta_{n})^{-N} \cdot \mathbb{E}^{\mathbb{Q}}[(K - S_{0}e^{\mathcal{Z}_{N} = \log(\frac{S_{T}^{N}}{S_{0}})})] \\ &= (1 + r\Delta_{n})^{-N} \cdot \mathbb{E}^{\mathbb{Q}}[f(\mathcal{Z}_{N})] \end{split}$$

mit $f(z) = (K - S_0 e^z)_+$ stetig und beschränkt. Aus Stochastik ist bekannt $\mathcal{Z}_N \to \mathcal{Z}$ in Verteilung, dann folgt $\mathbb{E}[f(\mathcal{Z}_N)] \to \mathbb{E}[f(\mathcal{Z})] \quad \forall f \in C_b(\mathbb{R}).$

$$- \lim_{N \to \infty} (1 + r\Delta_n)^{-N} = \lim_{N \to \infty} (1 + rT/N)^{-N} = e^{-rT}$$

$$-\lim_{N\to\infty} \mathbb{E}^{\mathbb{Q}}[f(\mathcal{Z}_N)] = \mathbb{E}[f(Z)] \text{ mit } \mathcal{Z} \sim \mathcal{N}((r - \sigma^2/2)T, \sigma^2 T) = \mathcal{N}(mT, \sigma^2 T)$$

$$\mathbb{E}[f(\mathcal{Z})] = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma\sqrt{T}} \int_{-\infty}^{\infty} (K - S_0 e^{\mathcal{Z}})_+ \exp(-\frac{(\mathcal{Z} - mt)^2}{2\sigma^2 T}) \, \mathrm{d}z$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\log(K/S_0)} (K - S_0 e^{\mathcal{Z}}) \exp(-\frac{1}{2} (\frac{\mathcal{Z} - mT}{\sigma\sqrt{T}})^2) \, \mathrm{d}z$$

$$= \begin{pmatrix} y = \frac{\mathcal{Z} - mT}{\sigma\sqrt{T}} \\ \mathrm{d}y = \frac{\mathrm{d}\mathcal{Z}}{\sigma\sqrt{T}} \end{pmatrix}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-d_2} (K - S_0 \exp(y\sigma\sqrt{T} + mT)e^{y^2/2} \, \mathrm{d}y$$

$$= K\Phi(-d_2) - S_0 \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-d_2} \exp(-y^2/2 + y\sigma\sqrt{T} + mT) \, \mathrm{d}y$$

Nebenrechung:

$$y^{2}/2 + y\sigma\sqrt{T}(+mT = rT - \frac{1}{2}(y^{2} - 2y\sigma\sqrt{T} + \sigma^{2}T) = rT - \frac{1}{2}(y - \sigma\sqrt{T})$$

$$= K\Phi(-d_{2}) = S_{0}e^{rT}\underbrace{\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{-d_{2}} e^{(y - \sigma\sqrt{T})/2} dy}_{\Phi(-d_{2} - \sigma\sqrt{T})}$$

$$= K\Phi(-d_{2}) - S_{0}e^{rT}\Phi(-d_{1})$$

Dann folgt $\lim_{N\to\infty} P_N(0,S_0^N) = e^{-rT}K\Phi(-d_2) - S_0\Phi(-d_1)$ und das ist die Formel für den Put \checkmark

• Für Call: Nutze Put-Call-Parität

$$C^{N}(0, S_{0}) - \underbrace{P^{N}(0, S_{0})}_{P_{BS}(0, S_{0})} = \underbrace{S_{0}}_{S_{0}} - \underbrace{(1 + r\Delta_{n})^{-N}K}_{\rightarrow e^{-rT}K}$$

$$C_{BS}(0, S_0) = \lim_{N \to \infty} C^N(0, S_0)$$

$$= P_{BS}(0, S_0) + S_0 - e^{rT} K$$

$$= e^{-rT} K(\underbrace{\Phi(-d_2) - 1}_{-\Phi(d_2)}) - S_0(\underbrace{\Phi(-d_1) - 1}_{-\Phi(d_1)})$$

$$= S_0 \Phi(d_1) - e^{-rT} K \Phi(d_2)$$

wobei wir die Symmetrie der Normalverteilung: $\Phi(-x) = 1 - \Phi(x)$ genutzt haben. Damit ist auch die BS-Formel für den Call gezeigt \checkmark .

Wir haben gezeigt: CRR_N -Preise konvergieren gegen BS-Preise.

Frage: Was gilt für die Replikationsstrategie? Konvergiert diese auch?

Theorem III.6

Für die Replikationsstrategie $\xi^N_{t_N}$ der Put- bzw. Call-Optionen in CRR $_N$ -Modell gilt:

- Put: $\lim_{N\to\infty} \xi_{t_N}^N = \frac{\partial P_{BS}}{\partial S}(t, S_t) = -\Phi(-d_1)$
- Call: $\lim_{N\to\infty} \xi_{t_N}^N = \frac{\partial C_{BS}}{\partial S}(t, S_t) = \Phi(d_1)$

Diese partielle Ableitungen heißen auch "Delta" des Put- bzw. Call-Preisen.

Beweis. B Etrachte nur $t=0,\,t\in[0,T]$ kann analog behandelt werden. Nach ??? ist ξ_0^N für Put gegeben durch

$$\xi_0^N = \frac{P_N(\Delta_N, S_0(1+b_N)) - P_N(\Delta_N, S_0(1+a_N))}{S_0(b_N - A_N)}$$

$$= \frac{P_N(\Delta_N, S_0(1+\mu\Delta_n + \sigma\sqrt{\Delta_n})) - P_N(\Delta_N, S_0(1+\mu\Delta_N + \sigma\sqrt{\Delta_N}))}{2S_0\sigma\sqrt{\Delta_N}}$$

Es gilt $\lim_{N\to\infty} P_N(\Delta_N, S_0(1+\mu\Delta_N)) = P_{BS}(0, S_0)$. Unter geeigneten Annahmen an gleichmäßige Konvergenz folgt

$$\lim_{N \to \infty} \xi_0^N = \frac{\partial P_{BS}}{\partial S}(t, S_t)$$

und analog für Call. Wir berechnen explizit:

$$\begin{split} \frac{\partial C_{BS}}{\partial S}(t,S) &= \Phi(d_1) + S\varphi(d_1) \cdot \frac{\partial d_1}{\partial S} - e^{-r(T-t)} K\varphi(d_2) \frac{\partial d_1}{\partial d_2} \\ &= \Phi(d_1) + \frac{\partial d_1}{\partial S} (S\varphi(d_1) - e^{-r(T-t)} K\varphi(d_2)) \end{split}$$

Nebenrechung:

$$e^{-rt}K/S\varphi(d_2) = e^{-r\tau} \frac{1}{\sqrt{2\pi}} K/S \exp(-\frac{1}{2} \frac{\log(S/K) + r\tau - \sigma^2 r/\tau}{\sigma\sqrt{\tau}})$$

$$= \frac{1}{\sqrt{2\pi}} e^{-r\tau} K/S \exp(-\frac{1}{2} \frac{(\log(S/K) + r\tau)^2}{\sigma^2 \tau} - 2(\log(S/K) + r\tau) + \sigma^2 \tau/4)$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} \frac{(\log(S/K) + r\tau)^2}{\sigma^2 \tau} + (\log(S/K) + r\tau + \sigma^2 \tau/4)$$

$$= \varphi(d_1)$$

also

$$e^{-r(T-t)}K\varphi(d_2) = S\varphi(d_1)$$

Das heißt: $\frac{\partial C_{BS}}{\partial S}(t,S) = \Phi(d_1)$. Put folgt analog oder mit Put-Call-Parität.

▶ Bemerkung

• $\frac{\partial C_{BS}}{\partial S}$ bzw. $\frac{\partial P_{BS}}{\partial S}$ lassen sich auch interpretieren als <u>Sensitivität</u> des Call- bzw. Put-Preises gegenüber Preisänderungen des Basisguts.

Analog lassen sich die Sensitivitäten ("Greeks") nach den weiteren Parametern berechnen.

Definition III.7

Die "Greeks" des BS-Preises sind folgende partielle Ableitungen

Bezeichg.	Def. der part. Abl.	Call	Put	
Delta	$\frac{\partial}{\partial S}$	$\Phi(d_1)$	$-\Phi(-d_1)$	Bestim
Gamma	$\frac{\partial^2}{\partial S^2}$	$\frac{\varphi(d_1)}{S\sigma\sqrt{T-t}}$	$\frac{\varphi(d_1)}{S\sigma\sqrt{T-t}}$	Sensitivität von Delta ggi
Vega	$\frac{\partial}{\partial \sigma}$	$S_t\sqrt{T-t}\varphi(d_1)$	$S_t\sqrt{T-t}\varphi(d_1)$	Sensitivit
Theta	$\frac{\partial}{\partial t}$	siehe ÜA	siehe ÜA	
Rho	$\frac{\partial}{\partial r}$	$K(T-t)(e^{-r(T-t)})\Phi(d_2)$	$-K(T-t)(e^{-r(T-t)})\Phi(-d_2)$	Se

► Bemerkung

"Vega" ist kein Buchstabe des griechischen Alphabets :/

Folgerung III.8

Der BS-Preis $C_{BS}(t,S)$ erfüllt folgende partielle DGL

$$\frac{\partial C_{BS}}{\partial t} + rS \frac{\partial C_{BS}}{\partial S} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C_{BS}}{\partial S^2} + rC_{BS} = 0 \tag{BS-PDE}$$

wobei $(t,s) \in [0,T] \times \mathbb{R}_{\geq 0}$. Mit Endwertbedingung

$$\lim_{t \to T} C_{BS}(t, S) = (S - K)_+$$

Für P_{BS} gilt die gleiche PDE mit Endwertbedingung

$$\lim_{t \to T} P_{BS}(t, S) = (K - S)_+$$

Beweis. Siehe Übung 3.0.

▶ Bemerkung

In Erweiterungen des BS-Modells gibt es <u>keine</u> geschlossene Ausdrücke für Put/Call-Preise, aber eine PDE ähnlich zu (BS-PDE) gilt weiterhin.

1. Implizite Volatilität/ Grenzen des BS-Modells

Wir schreiben etwas ausführlicher

$$C_{BS}(t, S_t, T, K, \sigma) := C_{BS}(t, S_t)$$

eine Abhängigkeit von (T, K, σ) zu verdeutlichen.

Theorem III.9 (Implizite Volatlität)

Sei $C_*(0, S_0, T, K)$ ein vorgegebener (beobachtbarer) Preis einer Call-Option mit Fälligkeit T, Ausübungspreis K welcher innerhalb der Arbitragegrenzen liegt

$$(S_0 - e^{-rT}K)_+ < C_*(0, S_0, T, K) < S_0$$

Dann existiert ein eindeutiges $\sigma_*(T,K) \in (0,\infty)$, die implizite Volativilität von C_* sodass

$$C_*(0, S_0, T, K) = C_{BS}(0, S_0, T, K, \sigma_*(T, K))$$

gilt.

▶ Bemerkung

 $\sigma_*(T,K)$ ist Lösung eines inversen Problems.

Vorwärtsproblem: Parameter \rightarrow Call-Preis

inverses Problem: Call-Preis \rightarrow Parameter

Kann zur impirischen Überpürfung des BS-Modells verwendet werden:

- BS-Modell passt gut zu Daten: $(T,K)\mapsto \sigma_*(T,K)$ ist annähernd konstant
- BS-Modell passt nicht gut zu Daten: $(T,K) \mapsto \sigma_*(T,K)$ variiert stark mit (T,K)

Typische tatsächliche Beobachtung:

Volativitäts-Smile

Eigenschaften:

- konvex
- assymetrisch (höher für große K)
- Minimum bei ATM

• flacher für lange Laufzeiten, steiler für kurze Laufzeiten

Form weist daraufhin, dass BS-Modell große Preissprünge des Basisguts <u>unterschätzt</u>. Form des Volasmilles in Modellen jeweils von BS \implies <u>aktuelles Forschungsthema</u>.

Kapitel IV

$Optimale\ Investition$

Literaturverzeichnis				

Index

F_t -measurable, 3	locally bounded, 13		
Block-Scholes-formula, 27	log-normally distributed, 26		
an arbitrage, 23	martingal with respect to percolation, 11		
	martingale, 11		
Arbitrage, 6	martingare, 11		
Assets, 3	No-arbitage-principle, 5		
at the money, 28, 29			
basic goods, 2	Optimal investment, 2		
<u> </u>	Optimal stop problem, 5		
Bond, 4	out of the money, 28, 29		
Call-Option, 2	predictable, 12		
complete, 17	predictable, 12		
• ,	rate of return, 15		
Derivative, 2	reachable, 17		
discrete stochastic integral, 13	Replication principle, 5		
duality, 23	Risk management + Risk measurement, 2		
European Put-/Call-Option, 5	Sensitivität, 31		
	stochastic process, 3		
finance market model, 4	stochastic processadaptiert, 3		
Forward contract, 4	Submartingale, 12		
C 1 91	Super position principle, 6		
Greeks, 31	Supermartingale, 12		
implizite Volativilität, 33	Swing-Option, 2		
in the money, 28, 29	Walantian 0		
innere Wert, 28, 29	Valuation, 2		
issuer, 4	Zeitwert, 28, 29		