MAC008 - Introdução ao Método dos Elementos Finitos - Lista 2 Antonio José de Medeiros Filho - 201965502B

Exercício 1

1.1 Enunciado

Seja o seguinte problema de propagação de calor transiente por condução em uma barra (Problema de valor inicial e contorno em um domínio unidimensional):

$$\rho c \frac{\partial T}{\partial t} - \kappa \frac{\partial^2 T}{\partial x^2} = 0$$

Com as seguintes condições iniciais e de contorno:

$$T(x, t = 0) = 200^{\circ} C \frac{\partial T}{\partial x}(x = 0, t) = 0 T(x = L, t) = 0^{\circ} C$$

A solução analítica deste problema é dada por:

$$T(x,t) = \frac{200 \cdot 4}{\pi} \cdot \sum_{n=1}^{m} \frac{(-1)^{n+1}}{2n-1} \cdot \exp\left(-\alpha \lambda_n^2 t\right) \cdot \cos\left(\lambda_n x\right)$$

Onde:

- $\lambda_n = \frac{(2n-1)\cdot\pi}{2L}$ são os autovalores da solução exata. $\alpha = \frac{\kappa}{\rho c}$ é o coeficiente de difusividade térmica.

Consideramos as seguintes propriedades físicas:

- $\kappa = 10 * q \frac{W}{m \cdot K}$ é o coeficiente de condutividade térmica.
- L = 2cm é o comprimento do domínio.
- $\rho c = 10^6 * q \frac{J}{m^3 \cdot K}$ é a capacidade calorífica por unidade de volume do material que constitue

A variável q é dada por

$$q = 10 + \frac{N-1}{20}$$

Resolver este problema pelo método dos elementos finitos empregando interpolações lineares utilizando uma discretização espacial com uma malha de 3 elementos de mesmo comprimento. Para a solução no tempo utilize o método da diferença central usando passo de tempo o valor de $\Delta t = 1s$.

Compare gráficamente (no mesmo gráfico!) as soluções numéricas com a solução exata para os tempos t=80s, t=100s e t=120s.

1.2 Resolução

1.2.1 Substituindo N

Temos que N=1, logo:

$$q = 10$$

1.2.2 Discretização Espacial

Vamos dividir o domínio (a barra de comprimento L) em 3 elementos de mesmo comprimento. Cada elemento terá dois nós, um em cada extremidade.

1.2.3 Formulação do Método dos Elementos Finitos

Função de Interpolação Para cada elemento, usamos funções de interpolação lineares N_i (x) para representar a temperatura T dentro do elemento:

$$T(x) = \sum_{i=1}^{n} N_i(x)T_i$$

onde n é o número de nós por elemento e T_i é temperatura e no nó i.

Montagem da Equação de Elemento Para cada elemento, aplicamos a equação diferencial. Através da integração por partes (ou método dos resíduos ponderados), obtemos a formulação fraca do problema. Para um elemento genérico, temos:

$$\int_{x_{e-1}}^{x_e} \rho c N_i \rho \frac{\partial T}{\partial t} dx + \int_{x_{e-1}}^{x_e} \kappa \frac{\partial N_i}{\partial x} \frac{\partial T}{\partial x} dx = 0$$

Montagem da Matriz Global As equações dos elementos individuais são então montadas em uma matriz global que representa o sistema inteiro.

Aplicação das Condições de Contorno As condições de contorno são aplicadas na matriz global. A condição $T(x=L,t)=0^{\circ}C$ é uma condição de Dirichlet e é aplicada diretamente na matriz. A condição $\frac{\partial T}{\partial x}(x=0,t)=0$ é uma condição de Neumann e afeta a formulação da equação de elemento do nó correspondente.

1.3 Implementação

```
# Propriedades físicas
kappa = 10 * q # W/(m.K)
rho_c = 10**6 * q # J/(m^3.K)
kappa, rho_c
```

[2]: (100.0, 10000000.0)

```
[3]: # Comprimento do domínio (em metros)

L = 2 / 100 # 2 cm convertido para metros

# Número de elementos e nós

num_elements = 3

num_nodes = num_elements + 1

# Comprimento de cada elemento

element_length = L / num_elements

# Posições dos nós

node_positions = [i * element_length for i in range(num_nodes)]

node_positions
```

[3]: [0.0, 0.006666666666666667, 0.0133333333333333334, 0.02]

1.3.1 Cálculo das Matrizes Globais

As matrizes globais de massa M e rigidez K para o sistema são:

Matriz de massa M:

$$\begin{bmatrix} 22222.22 & 11111.11 & 0 & 0 \\ 11111.11 & 44444.44 & 11111.11 & 0 \\ 0 & 11111.11 & 44444.44 & 11111.11 \\ 0 & 0 & 11111.11 & 22222.22 \end{bmatrix}$$

Matriz de rigidez K:

$$\begin{bmatrix} 15000 & -15000 & 0 & 0 \\ -15000 & 30000 & -15000 & 0 \\ 0 & -15000 & 30000 & -15000 \\ 0 & 0 & -15000 & 15000 \end{bmatrix}$$

[4]: import numpy as np

Função para criar as matrizes de massa e rigidez para um elemento
def create_element_matrices(length, kappa, rho_c):

```
M_element = (rho_c * length / 6) * np.array([[2, 1], [1, 2]]) # Matriz de_
      ⇔massa
         K_{element} = (kappa / length) * np.array([[1, -1], [-1, 1]]) # Matriz de_{local}
      ⇔riqidez
         return M_element, K_element
     # Inicialização das matrizes globais
     M_global = np.zeros((num_nodes, num_nodes))
     K_global = np.zeros((num_nodes, num_nodes))
     # Montagem das matrizes globais
     for i in range(num elements):
         M_element, K_element = create_element_matrices(element_length, kappa, rho_c)
         # Adicionando à matriz global
         M_global[i:i+2, i:i+2] += M_element
         K_global[i:i+2, i:i+2] += K_element
     M_global, K_global
[4]: (array([[22222.2222222, 11111.11111111,
                                                   0.
                                                                    0.
             [11111.11111111, 44444.44444444, 11111.11111111,
                                                                              ],
                            , 11111.11111111, 44444.4444444, 11111.11111111],
             0.
                                          , 11111.11111111, 22222.2222222]]),
             0.
      array([[ 15000., -15000.,
                                               0.],
                                      0.,
             [-15000., 30000., -15000.,
             Γ
                   0., -15000., 30000., -15000.],
             Γ
                         0., -15000., 15000.]]))
[5]: # Condições iniciais
     T_initial = 200 # Temperatura inicial em graus Celsius
     T = np.full(num_nodes, T_initial)
     # Condição de contorno: T(L, t) = 0°C
     T[-1] = 0
     # Passo de tempo
     delta t = 1 # segundo
     # Método da diferença central: (M + delta_t/2 * K) * T_new = (M - delta_t/2 * L)
     \hookrightarrow K) * T old
     # Como as condições de contorno não mudam com o tempo, elas são aplicadas_{\sqcup}
     ⇔apenas uma vez
     A = M \text{ global} + \text{delta t/2} * K \text{ global}
     B = M_global - delta_t/2 * K_global
     # Resolvendo a equação para o próximo passo de tempo
```

```
# Consideramos um único passo de tempo para este exemplo
T_new = np.linalg.solve(A, B @ T)
T_new
```

[5]: array([199.57444011, 203.50268528, 142.76597144, 107.88824646])

1.4 Resultados

```
[8]: import matplotlib.pyplot as plt
     plt.style.use('ggplot')
     # Função para calcular a solução analítica
     def analytical_solution(x, t, kappa, rho_c, L, m=3):
         alpha = kappa / rho_c
         summation = sum(((-1)**(n+1)) / (2*n - 1) * np.exp(-alpha * ((2*n - 1) * np.
      ⇒pi / (2 * L))**2 * t) *
                         np.cos((2*n - 1) * np.pi * x / (2 * L)) for n in range(1, L)
      \rightarrowm+1))
         return 200 * 4/np.pi * summation
     # Tempos específicos
     times = [80, 100, 120]
     # Solução numérica para cada tempo
     T_numerical = {time: np.full(num_nodes, T_initial) for time in times}
     for time in times:
         for _ in range(int(time/delta_t)): # Avançando no tempo
             T_numerical[time] = np.linalg.solve(A, B @ T_numerical[time])
             T numerical[time][-1] = 0 # Aplicando a condição de contorno
     # Solução analítica para cada tempo e posição
     x_values = np.arange(0, L + L/3, L/3) # Valores de x para plotagem
     T_analytical = {time: [analytical_solution(x, time, kappa, rho_c, L, m=3) for x_
      →in x_values] for time in times}
     # Plotando as soluções
     plt.figure(figsize=(12, 8))
     shades = ['#d62728', '#ea676c', '#1f77b4', '#4c9ed9', '#2ca02c', '#5cb85c']
     for time in times:
         plt.plot(x_values, T_analytical[time], color=shades.pop(0), label=f'Sol.u
      ⇔Analítica para t={time}s')
         plt.plot(node positions, T numerical[time], color=shades.pop(0), __
      ⇔label=f'Sol. Numérica para t={time}s', ls='--')
```

```
plt.title('Resultados Analítica x Numérica para t = 80, 100 e 120s')
plt.xlabel('x (m)')
plt.ylabel('T (°C)')
plt.legend()
plt.grid(True)
plt.show()
```


No gráfico podemos visualizar o resultado para os tempos 80s (vermelho), 100s (azul) e 120s (verde), com as soluções exatas representadas através de linhas contínuas e as soluções numéricas com linhas tracejadas.

2 Exercício 2

2.1 Enunciado

Para a viga em balanço da figura abaixo tratada como um problema de Estado Plano de Tensões determine a matriz de rigidez e o vetor de forças para as seguintes discretizações:

- a) Com 2 elementos triangulares lineares conforme mostrado nesta figura.
- b) Com 1 elemento retangular com os nós 1,2,3 e 4.

Determine os deslocamentos livres considerando os nós 3 e 4 presos(deslocamentos nulos).

Determine também os valores das tensões, segundo o sistema de eixos indicado nos pontos nodais e nos pontos centrais dos elementos considerados. Considere o carregamento indicado nesta figura com a distribuição de carga onde p=150*(N+1)/20. Adotar E (200.000) e Poisson(0.3) indicados na figura. Atente para trabalhar com unidades coerentes e que a espessura também está dada (t = 1). Utilize para as medidas do domínio o valor a=b=4+(N-1)/20

2.2 Resolução

2.2.1 Substituindo N

Temos que N=1, logo as dimensões do domínio serão:

$$a = b = 4$$

2.2.2 Coordenadas dos nós

- Nó 1: (4,4)
- Nó 2: (4,0)
- Nó 3: (0,4)
- Nó 4: (0,0)

2.2.3 a) Elementos Triangulares

Montagem da Matriz de Rigidez A matriz de rigidez K de um elemento triangular em estado plano de tensões é calculada como:

$$K = tAB^TDB$$

onde:

- t é a espessura do elemento,
- A é a área do elemento triangular,
- \bullet B é a matriz de gradiente de deslocamento
- D é a matriz de elasticidade plana.

A matriz D é dada por:

$$D = \frac{E}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}$$

A matriz B para um elemento triangular é derivada das coordenadas dos nós do elemento e é dada por:

$$B = \frac{1}{2A} \begin{bmatrix} b_1 & 0 & b_2 & 0 & b_3 & 0 \\ 0 & c_1 & 0 & c_2 & 0 & c_3 \\ c_1 & b_1 & c_2 & b_2 & c_3 & b_3 \end{bmatrix}$$

```
import numpy as np
import sympy as sp

# Propriedades do material
E = 200000 # Módulo de elasticidade (N/mm²)
nu = 0.3 # Coeficiente de Poisson
t = 1 # Espessura da viga (mm)

# Dimensões da viga
a = b = 4 # Dimensões para N = 1

# Carga aplicada
p = 150 * (1 + 1) / 20

# Coordenadas dos nós (em mm)
nodes = np.array([
    [a, b], # Nó 1
    [a, 0], # Nó 2
    [0, b], # Nó 3
```

```
[0, 0], # Nó 4
])
# Elementos (triângulos) definidos pelos nós
elements = np.array([
    [1, 2, 3], # Elemento 1
    [1, 3, 4] # Elemento 2
])
# Número de nós e elementos
num nodes = len(nodes)
num_elements = len(elements)
# Função para calcular a matriz de rigidez de um elemento triangular linear
def stiffness_matrix_triangle_linear(element, nodes, E, nu, t):
    # Coordenadas dos nós do elemento
    x = nodes[element - 1, 0]
    y = nodes[element - 1, 1]
    # Área do elemento
    A = 0.5 * np.linalg.det(np.array([[1, x[0], y[0]]),
                                       [1, x[1], y[1]],
                                       [1, x[2], y[2]]))
    # Matriz B
    B = 1 / (2 * A) * np.array([
        [y[1] - y[2], 0, y[2] - y[0], 0, y[0] - y[1], 0],
        [0, x[2] - x[1], 0, x[0] - x[2], 0, x[1] - x[0]],
        [x[2] - x[1], y[1] - y[2], x[0] - x[2], y[2] - y[0], x[1] - x[0], y[0]_{\sqcup}
 →- y[1]]
    ])
    # Matriz de elasticidade plana
    D = E / (1 - nu**2) * np.array([
        [1, nu, 0],
        [nu, 1, 0],
        [0, 0, (1 - nu) / 2]
    ])
    # Matriz de rigidez do elemento
    k = t * A * np.dot(np.dot(B.T, D), B)
    return k
# Inicialização da matriz de rigidez global
K_global = np.zeros((2 * num_nodes, 2 * num_nodes))
```

$-3.85 \cdot 10^4$	$-7.14\cdot 10^4$	$3.85\cdot 10^4$	$3.3 \cdot 10^4$	0	$7.14\cdot 10^4$	0	$-3.3 \cdot 10^{4}$
$-7.14 \cdot 10^4$	$-1.1\cdot10^5$	$3.85\cdot 10^4$	$1.1 \cdot 10^5$	$7.14\cdot 10^4$	0	$-3.85 \cdot 10^4$	0
$3.85 \cdot 10^4$	$3.85\cdot 10^4$	$-3.85 \cdot 10^4$	0	0	$-3.85 \cdot 10^4$	0	0
$3.3 \cdot 10^4$	$1.1 \cdot 10^5$	0	$-1.1 \cdot 10^{5}$	$-3.3 \cdot 10^4$	0	0	0
0	$7.14 \cdot 10^4$	0	$-3.3 \cdot 10^4$	$3.85 \cdot 10^{4}$	$-7.14 \cdot 10^4$	$-3.85 \cdot 10^4$	$3.3 \cdot 10^4$
$7.14 \cdot 10^4$	0	$-3.85 \cdot 10^4$	0	$-7.14 \cdot 10^4$	$1.1\cdot 10^5$	$3.85\cdot 10^4$	$-1.1 \cdot 10^{5}$
0	$-3.85\cdot10^4$	0	0	$-3.85\cdot10^4$	$3.85\cdot 10^4$	$3.85\cdot 10^4$	0
$-3.3 \cdot 10^4$	0	0	0	$3.3\cdot 10^4$	$-1.1\cdot 10^5$	0	$1.1 \cdot 10^{5}$

Solução do Sistema de Equações

```
[20]: # Aplicação das condições de contorno (nós 3 e 4 fixos)
      fixed_nodes = [3, 4]
      free_dof = np.setdiff1d(np.arange(2 * num_nodes), np.array([2 * (node - 1) for_{\sqcup}
       →node in fixed_nodes] + [2 * node - 1 for node in fixed_nodes]))
      # Redução da matriz de rigidez e do vetor de forças para os graus de liberdadeu
       \hookrightarrow livres
      K_reduced = K_global[np.ix_(free_dof, free_dof)]
      # Vetor de forças externas (considerando a carga distribuída)
      F = np.zeros(2 * num_nodes)
      # Aplicando a carga no nó 2 (direção y)
      F[2 * 2 - 1] = -p * a * b / 2 # Carga dividida iqualmente entre os nós 2 e 3
      # Redução do vetor de forças
      F_reduced = F[free_dof]
      # Resolvendo o sistema para obter os deslocamentos nos graus de liberdade livres
      u_free = np.linalg.solve(K_reduced, F_reduced)
      \# Montagem do vetor de deslocamentos completo (incluindo zeros para graus de L
       \hookrightarrow liberdade fixos)
      u = np.zeros(2 * num_nodes)
      u[free_dof] = u_free
```

```
print('Deslocamentos:')
      for node in range(num_nodes):
          print('No \{\}; (\{\}, \{\})', format(node + 1, u[2 * node], u[2 * node + 1]))
     Deslocamentos:
     Nó 1: (-0.003639999999999887, -0.003119999999999988)
     Nó 2: (-0.006759999999999988, -0.00311999999999999)
     Nó 3: (0.0, 0.0)
     Nó 4: (0.0, 0.0)
     Cálculo das Tensões
[14]: def stress_triangle_linear(element, nodes, u, E, nu):
          # Coordenadas dos nós do elemento
          x = nodes[element - 1, 0]
          y = nodes[element - 1, 1]
          # Área do elemento
          A = 0.5 * np.linalg.det(np.array([[1, x[0], y[0]],
                                             [1, x[1], y[1]],
                                             [1, x[2], y[2]]))
          # Matriz B
          B = 1 / (2 * A) * np.array([
              [y[1] - y[2], 0, y[2] - y[0], 0, y[0] - y[1], 0],
              [0, x[2] - x[1], 0, x[0] - x[2], 0, x[1] - x[0]],
              [x[2] - x[1], y[1] - y[2], x[0] - x[2], y[2] - y[0], x[1] - x[0], y[0]_{\cup}
       →- y[1]]
         ])
          # Matriz de elasticidade plana
          D = E / (1 - nu**2) * np.array([
              [1, nu, 0],
              [nu, 1, 0],
              [0, 0, (1 - nu) / 2]
          1)
          # Vetor de deslocamentos do elemento
          u_element = np.array([u[2 * (node - 1):2 * node] for node in element]).
       →flatten()
          # Cálculo das tensões
          stress = np.dot(D, np.dot(B, u_element))
          return stress
```

Correção e cálculo das tensões

```
stresses = np.zeros((num_elements, 3)) # Inicializando o vetor de tensões

# Cálculo das tensões para cada elemento
for i, element in enumerate(elements):
    stresses[i] = stress_triangle_linear(element, nodes, u, E, nu)

print('Tensões nos elementos:')
for element in range(num_elements):
    print('Elemento {}: ({}, {}, {})'.format(element + 1, stresses[element, 0], u)
    stresses[element, 1], stresses[element, 2]))
```

Tensões nos elementos:

Elemento 1: (-5.592543275632488, 54.407456724367506, -5.592543275632486) Elemento 2: (1.6777629826897453, 5.592543275632484, 5.592543275632495)

2.3 b) Elemento Retangular

```
[15]: import numpy as np
      # Propriedades do material
      E = 200000 \# M\'odulo de elasticidade (N/mm<sup>2</sup>)
      nu = 0.3 # Coeficiente de Poisson
      t = 1
                # Espessura da viga (mm)
      # Dimensões da viqa para N = 1
      a = b = 4 # Dimensões
      # Carga aplicada
      p = 150 * (1 + 1) / 20
      # Coordenadas dos nós (em mm)
      nodes = np.array([
          [0, 0], # Nó 1
          [a, 0], # Nó 2
          [a, b], # Nó 3
          [0, b]
                  # Nó 4
      ])
      # Número de nós
      num_nodes = len(nodes)
      # Função para calcular a matriz de rigidez de um elemento retangular
      def stiffness_matrix_rectangular(E, nu, t, a, b):
          # Matriz de elasticidade plana
          D = E / (1 - nu**2) * np.array([
              [1, nu, 0],
              [nu, 1, 0],
```

```
[0, 0, (1 - nu) / 2]
    ])
    # Matriz de rigidez do elemento retangular
    k = t * a * b / 36 * np.array([
        [4, 2, -1, -2, -2, -1, -1, 0],
        [2, 4, 0, -1, -1, -2, -2, -1],
        [-1, 0, 4, 2, 1, 0, -2, -1],
        [-2, -1, 2, 4, 0, 1, -1, -2],
        [-2, -1, 1, 0, 4, 2, -1, 0],
        [-1, -2, 0, 1, 2, 4, 0, -1],
        [-1, -2, -2, -1, -1, 0, 4, 2],
        [0, -1, -1, -2, 0, -1, 2, 4]
    ])
    return k
# Aplicando a matriz de rigidez para um elemento retangular
K_rectangular = stiffness_matrix_rectangular(E, nu, t, a, b)
# Aplicando as condições de contorno (nós 3 e 4 fixos)
fixed nodes = [3, 4]
free_dof_rect = np.setdiff1d(np.arange(2 * num_nodes), np.array([2 * (node - 1)]
 ofor node in fixed nodes] + [2 * node - 1 for node in fixed nodes]))
# Redução da matriz de rigidez e do vetor de forças para os graus de liberdade
 \hookrightarrow livres
K_reduced_rect = K_rectangular[np.ix_(free_dof_rect, free_dof_rect)]
# Vetor de forças externas (considerando a carga distribuída)
F_rect = np.zeros(2 * num_nodes)
# Aplicando a carga no nó 2 (direção y)
F_{rect}[2 * 2 - 1] = -p * a * b / 2 # Carga dividida iqualmente entre os nós <math>2_{\sqcup}
 ∍е 3
# Redução do vetor de forças
F_reduced_rect = F_rect[free_dof_rect]
# Resolvendo o sistema para obter os deslocamentos nos graus de liberdade livres
u_free_rect = np.linalg.solve(K_reduced_rect, F_reduced_rect)
# Montagem do vetor de deslocamentos completo (incluindo zeros para graus de _{f L}
\rightarrow liberdade fixos)
u_rect = np.zeros(2 * num_nodes)
u_rect[free_dof_rect] = u_free_rect
# Deslocamentos nos nós para o elemento retangular
```

```
display(sp.Matrix(u_rect.reshape((num_nodes, 2)).T).evalf(3))
```

```
\begin{bmatrix} -41.1 & 46.3 & 0 & 0 \\ -7.71 & -113.0 & 0 & 0 \end{bmatrix}
```

```
[17]: # Função para calcular as tensões em um elemento retangular
      def stress_rectangular(E, nu, u, a, b):
          # Matriz de elasticidade plana
          D = E / (1 - nu**2) * np.array([
              [1, nu, 0],
              [nu, 1, 0],
              [0, 0, (1 - nu) / 2]
          1)
          # Gradientes de deslocamento
          Bx = 1 / (2 * a) * np.array([-1, 1, 1, -1])
          By = 1 / (2 * b) * np.array([-1, -1, 1, 1])
          # Deslocamentos nos nós do elemento
          u_x = u[::2]
          u_y = u[1::2]
          # Cálculo das deformações
          epsilon_x = np.dot(Bx, u_x)
          epsilon_y = np.dot(By, u_y)
          gamma_xy = np.dot(Bx, u_y) + np.dot(By, u_x)
          # Cálculo das tensões
          stress = np.dot(D, np.array([epsilon_x, epsilon_y, gamma_xy]))
          return stress
      # Calculando as tensões no elemento retangular
      stress_rect = stress_rectangular(E, nu, u_rect, a, b)
      print('Tensões no elemento retangular: ({:.3f}, {})'.format(stress_rect[0], __
       ⇔stress_rect[1], stress_rect[2]))
```

Tensões no elemento retangular: (3397959.18367347, 4040816.3265306125, -1063186.8131868134)