ADAMAS	ADAMAS UNIVERSITY END (EVEN) SEMESTER EXAMINATION: MAY 2021 (Academic Session: 2020 – 21)		
UNIVERSITY PURSUE EXCELLENCE	(Academic Session, 2020 – 21)		
Name of the Program:	B.Tech - Civil Engineering	Semester:	IV
Paper Title :	WATER RESOURCE ENGINEERING	Paper Code:	ECE42108
Maximum Marks :	40	Time duration:	3 Hrs
Total No of questions:	9	Total No of	2
Total No of questions.	,	Pages:	2
(Any other information for the student may be	1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam.		
mentioned here)	2. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page.		
	3. Assumptions made if any, should be stated clearly at the beginning of your answer.		

Answer all the Groups

Group A

(Answer all the questions)

 $5 \times 1 = 5$

- 1. a) Define irrigation engineering from an engineer's point of view.
 - b) What do you understand by the term hygroscopic water?
 - c) What are the different zones of ground water?
 - d) What is the significance of soil salinity?
 - e) Define canal fall.

Group B

(Answer any three questions)

 $3 \times 5 = 15$

- 2. Compare Sprinkler and Drip irrigation.
- 3. Define field irrigation requirement. What are the various ways of determining the efficiency of irrigation? (1+4)
- 4. Explain the various types of saturated geological formation giving an example for each type.
- 5. Define water logging. Explain its various effects on the irrigation field. (1+4)
- 6. Explain the different storage zones of a reservoir with the help of a neat and clean diagram.

Group C

(Answer any two questions)

 $2 \times 10 = 20$

- 7. Derive Thiem's equilibrium equation for unconfined aquifer with the help of a neat diagram. Also, mention the various assumptions made in deriving the equation. (7+3)
- 8. What is evapotranspiration? After how many days will you supply water to soil in order to ensure sufficient irrigation to the crop, if

- i. Field capacity of the soil = 27 %
- ii. Permanent Wilting point = 12%
- iii. Dry density of soil = 1.33 gm/cc
- iv. Effective depth of root zone = 700 mm
- v. Daily consumptive use of the crop = 1.2 cmAssume any other relevant data. (2+8)
- 9. i) Design an irrigation channel to carry 50 cumecs of discharge. The channel is to be laid at a slope of 1 in 4000. The critical velocity ratio for the slope is 1.1. Use Kutter's rugosity coefficient (n) as 0.023.
 - ii) Design a regime channel for a discharge of 55 cumec and silt factor 1.1 using Lacey's theory. (5)