Theoretische Informatik

Lucien Perret, Jil Zerndt May 2024

Alphabete, Wörter, Sprachen

Alphabete endliche, nichtleere Mengen von Symbolen.

• $\Sigma_{\text{Bool}} = \{0, 1\}$ Boolsches Alphabet

Keine Alphabete: $\mathbb{N}, \mathbb{R}, \mathbb{Z}$ usw. (unendliche Mächtigkeit)

Wort endliche Folge von Symbolen eines bestimmten Alphabets.

Schreibweisen $|\omega| = \text{Länge eines Wortes}$

 $|\omega|_x =$ Häufigkeit eines Symbols x in einem Wort $\omega^R =$ Spiegelwort/Reflection zu ω

Teilwort (Infix) v ist ein Teilwort (Infix) von ω ist, wenn $\omega = xvy$. $\omega \neq v \rightarrow \text{ Echtes Teilwort}$, Präfix = Anfang, Suffix = Ende

Mengen von Wörtern Σ^k = Wörter der Länge k über Alphabet Σ

- $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cdots$ Kleensche Hülle

 ε Leeres Wort (über jedem Alphabet) $\Sigma^0 = \{\varepsilon\}$

Konkatenation = Verkettung von zwei beliebigen Wörtern x und y $x \circ y = xy := (x_1, x_2 \dots x_n, y_1, y_2 \dots y_m)$

Wortpotenzen Sei x ein Wort über einem Alphabet Σ

• $x^0 = \varepsilon$ • $x^{n+1} = x^n \circ x = x^n x$

Sprache über Alphabet $\Sigma = \text{Teilmenge } L \subset \Sigma^* \text{ von Wörtern}$

- $\Sigma_1 \subseteq \Sigma_2 \wedge L$ Sprache über $\Sigma_1 \to L$ Sprache über Σ_2
- Σ^* Sprache über jedem Alphabet Σ
- $\{\}=\emptyset$ ist die leere Sprache

Konkatenation von A und B: $AB = \{uv \mid u \in A \text{ und } v \in B\}$ Kleenesche Hülle A^* von A: $\{\varepsilon\} \cup A \cup AA \cup AAA \cup ...$

Reguläre Ausdrücke Wörter, die Sprachen beschreiben

 RA_{Σ} Sprache der Regulären Ausdrücke über $\{\emptyset, \epsilon, *, (), ...\} \cup \Sigma$

- $R \in RA_{\Sigma} \Rightarrow (R^*) \in RA_{\Sigma}$
- $\emptyset, \epsilon \in RA_{\Sigma}$ • $R, S \in RA_{\Sigma} \Rightarrow (RS) \in RA_{\Sigma}$
- $\Sigma \subset RA_{\Sigma}$ • $R, S \in RA_{\Sigma} \Rightarrow (R \mid S) \in RA_{\Sigma}$

Priorisierung von Operatoren

(1) * = Wiederholung \rightarrow (2) Konkatenation \rightarrow (3) |= Oder

Erweiterter Syntax

$$R^+ = R(R^*)$$
 $R^? = (R \mid \epsilon)$ $[R_1, \dots, R_k] = R_1 \mid R_2 \mid \dots \mid R_k$

Reguläre Sprache A über dem Alphabet Σ heisst regulär, falls A = L(R) für einen regulären Ausdruck $R \in RA_{\Sigma}$ gilt.

 $\forall R \in RA_{\Sigma}$ definieren wir die Sprache L(R) von R wie folgt:

- Leere Sprache: $L(\emptyset) = \emptyset$
- Sprache, die nur das leere Wort enthält: $L(\varepsilon) = \{\varepsilon\}$
- Beschreibt die Sprache $\{a\}$: $L(a) = \{a\} \quad \forall a \in \Sigma$
- Kombiniert die Wörter von R: $L(R^*) = L(R)^*$
- Verkettung von Wörtern (R = prefix): $L(RS) = L(R) \circ L(S)$
- Wörter in R oder S: $L(R \mid S) = L(R) \cup L(S)$

Endliche Automaten

Endliche Automaten Maschinen, die Entscheidungsprobleme lösen

- Links nach rechts
- Keinen Speicher
- Speichert aktuellen Zustand • Ausgabe über akzeptierende
- Keine Variablen
- Zustände

DEA deterministischer endlicher Automat: $M = (Q, \Sigma, \delta, q_0, F)$

- Q: endliche Menge von Zuständen $q_0 \in Q$ Startzustand Σ : endliches Eingabealphabet $F \subseteq Q$ Menge der
- $\delta: Q \times \Sigma \to Q$ Übergangsfunktion akzeptierenden Zustände

DEA Funktionen $M = (Q, \Sigma, \delta, q_0, F) : EA.$

Konfiguration von M auf ω ist ein Element aus $Q \times \Sigma^*$

- Startkonfiguration von M auf ω $\{q_0, \omega\} \in \{q_0\} \times \Sigma^*$
- Endkonfiguration (q_n, ε)

Berechnungsschritt \vdash_M von $M(q,\omega) \vdash_M (p,x)$

Berechnung ist eine endliche Folge von Berechnungsschritten $(q_a, \omega_1 \omega_2 \dots \omega_n) \vdash_M \dots \vdash_M (q_e, \omega_j \dots \omega_n) \to (q_a, \omega_1 \omega_2 \dots \omega_n) \vdash_M^* (q_e, \omega_j \dots \omega_n)$

Nichtdeterministischer endlicher Automat (NEA)

Unterschied zum DEA: Übergangsfunktion δ Übergangsfunktion $\delta: Q \times \Sigma \to P(Q)$

Ein ε -NEA erlaubt zusätzlich noch ε -Übergänge

Teilmengenkonstruktion ∀ NEA kann in DEA umgewandelt werden

- 1. $Q_{NEA} \rightarrow P(Q_{NEA}) = Q_{DEA}$ (Potenzmenge)
- 2. Verbinden mit Vereinigung aller möglichen Zielzustände
- 3. Nicht erreichbare Zustände eliminieren
- 4. Enthält akzeptierenden Zustand = $F_{NEA} \rightarrow$ akzeptierend

↓	q	$\delta(q,0)$	$\delta(q,1)$	0, 1
0	ø	Ø		
	$A = \{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$	\longrightarrow Start \longrightarrow
1	$- \{q_1\}$	Ø	{q₂}	$ \xrightarrow{\text{Start}} q_0 \xrightarrow{q_1} q_2 $
4	{q₂}	Ø	<u>Ø</u>	
	$B = \{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$	_0
	$C = \{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_{0}\}$	$-$ start $\rightarrow A$ $\longrightarrow B$ 1 C
2	$- \{q_1, q_2\}$	Ø	{q₂}	$-\text{Start} \longrightarrow A \longrightarrow B \qquad 1 \qquad C$
3	{90,91,92}	{an, a1}	{an, a>}	

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen durch äquivalente Mechanismen beschreibbar

- Akzeptierender Mechanismus DEA, NEA, ε -NEA
- Beschreibender Mechanismus RA

Zustandsklasse $\Sigma^* = \bigcup_{p \in Q} [p]$ $[p] \cap [q] = \emptyset, \forall p \neq q, p, q \in Q$ Jedes Wort landet in einem Zustand, aber kein Wort landet nach dem Lesen in zwei Zuständen!

Eigenschaften Seien L, L_1 und L_2 reguläre Sprachen über Σ

- Vereinigung: $L_1 \cup L_2 = \{ \omega \mid \omega \in L_1 \vee \omega \in L_2 \}$
- Schnitt: $L_1 \cap L_2 = \{ \omega \mid \omega \in L_1 \land \omega \in L_2 \}$ • Differenz: $L_1 - L_2 = \{ \omega \mid \omega \in L_1 \land \omega \notin L_2 \}$
- Komplement: $\bar{L} = \Sigma^* L = \{\omega \in \Sigma^* \mid \omega \notin L\}$
- Konkatenation:

$$L_1 \cdot L_2 = L_1 L_2 = \{ \omega = \omega_1 \omega_2 \mid \omega_1 \in L_1 \land \omega_1 \in L_2 \}$$

• Kleenesche Hülle:

$$L^* = \{\omega = \omega_1 \omega_2 \dots \omega_n \mid \omega_i \in L \text{ für alle } i \in \{1, 2, \dots, n\}\}$$

 $L(R_1)$: Menge der ganzen Zahlen in Dezimaldarstellung

• $((- | \varepsilon)(1, 2, 3, 4, 5, 6, 7, 8, 9)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) | 0).0$

Kontextfreie Grammatiken

Kontextfreie Grammatik (KFG) ist ein 4-Tupel (N, Σ, P, A) mit

- N: Alphabet der Nichtterminale (Variablen)
- Σ: Alphabet der Terminale
- P: endliche Menge von Produktionen mit der Form $X \to \beta$ Mit Kopf $X \in N$ und Rumpf $\beta \in (N \cup \Sigma)^*$
- A: Startsymbol, wobei $A \in N$

Ein Wort $\beta \in (N \cup \Sigma)^*$ nennen wir Satzform.

Seien α, β und γ Satzformen und $A \rightarrow \gamma$ eine Produktion.

- Ableitungsschritt mit Produktion $A \to \gamma$ $\alpha A\beta \to \alpha \gamma\beta$
- Ableitung Folge von Ableitungsschritten $\alpha \to \cdots \to \omega$

Ableitungsbaum (Parsebaum)

mögliche Darstellung einer Ableitung

- $G_1 = \{\{A, B, C\}, \{0, 1\}, P, A\}$
- $P = \{A \to BC, B \to 0B | 0 | \varepsilon, C \to 1C | 1 | \varepsilon\}$

• $A \rightarrow BC \rightarrow 0AA \rightarrow 01C \rightarrow 011 \rightarrow ...$ $\rightarrow 011$

Mehrdeutige KFG \exists Wort, das mehrere Ableitungsbäume besitzt. Mehrdeutigkeiten eliminieren:

- Korrekte Klammerung vom Benutzer erzwingen
- Grammatik anpassen
- Den Produktionen einen Vorrang vergeben

Reguläre Srache durch KFG beschreiben ∀ L ∃ KFG

L reguläre Sprache $\Rightarrow \exists$ DEA $M = (Q, \Sigma, \delta, q_0, F)$ mit L(M) = LKFG für L bauen:

- \forall Zustand q_i gibt es ein Nichtterminal Q_i
- \forall Transition $\delta(q_i, a) = q_j$ erstelle Produktion $Q_i \rightarrow aQ_j$
- \forall akzeptierenden Zustand $q_i \in F$ erstelle Produktion $Q_i \to \varepsilon$
- Nichtterminal Q_0 wird zum Startsymbol A.

Kellerautomaten

Kellerautomaten (KA) besitzt «Speicher»

Deterministischer KA (DKA): $M = (Q, \Sigma, \Gamma, \delta, q_0, \$, F)$

Q: Menge von Zuständen $q_0 \in Q$: Anfangszustand

 Σ : Alphabet der Eingabe $\$ \in \Gamma$: Symbol vom Alphabet des Kellers

 Γ : Alphabet des Kellers $F \subseteq Q$: Akzeptierende Zustände

Übergangsfunktion: $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to Q \times \Gamma^*$

NKA: $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to P(Q \times \Gamma^*)$ (Nichtdeterministischer KA)

Zusätzliche Einschränkungen \forall Zustand q und \forall Symbole x, b gilt: wenn $\delta(q, b, c)$ definiert ist, dann ist $\delta(q, \varepsilon, x)$ undefiniert.

Darstellung Übergang $\delta(q, b, c) = (p, \omega)$: $q - b, c/\omega \longrightarrow p$

Berechnungsschritt $\delta(q, b, c) = (p, \omega)$ wird wie folgt interpretiert:

q = Aktueller Zustand ω = Wort auf Stack geschrieben

b =Symbol der Eingabe p = Neuer Zustand c =Symbol wird entfernt

Sprache L(M) eines Kellerautomaten M ist definiert durch

 $L(M) = \left\{ \omega \in \Sigma^* \mid (q_0, \omega, \$) \vdash^* (q, \varepsilon, \gamma) \text{ für ein } q \in F \text{ und ein } \gamma \in \Gamma^* \right\}$

Elemente von L(M) werden von M akzeptierte Wörter genannt.

Turingmaschinen

Turingmaschine (TM) $M = (Q, \Sigma, \Gamma, \delta, q_0, \sqcup, F)$

Q: Menge von Zuständen $q_0 \in Q$: Anfangszustand

 Σ : Alphabet der Eingabe $F \subseteq Q$: Akzeptierende Zustände

 Γ und $\Sigma \subset \Gamma$: Bandalphabet \sqcup : Leerzeichen mit $\mu \in \Gamma$ und $\mu \notin \Sigma$ Übergangsfunktion: $\delta : Q \times \Gamma \to Q \times \Gamma \times D, D = \{L, R\}$

Sie bestehen aus einem Lese-/Schreibkopf und einem unendlichen Band von Zellen.

Sie bildet das 2-Tupel (q, X) auf das Tripel (p, Y, D)D = Direction $q, p \in Q \text{ und } X, Y \in \Gamma$

X = Read $q, p \in \mathcal{G}$ and X, YY = Overwrite $q - X/Y, D \to p$

Band Unterteilt in Zellen mit jeweils einem beliebigen Symbol Beinhaltet zu Beginn die Eingabe, d.h. ein endliches Wort aus Σ^* . Alle anderen Zellen enthalten das besondere Symbol \sqcup

Konfiguration einer TM M wird eindeutig spezifiziert durch: Zustand der Zustandssteuerung, Position des Lese-/Schreibkopfes und Bandinhalt

Arten von TMs ∀ Sprachen L gleich akzeptierend wie normale TM

- semi-unendliches Band
- mehrere Stacks
- mit Speicher
- mehrere Spuren

• mit Zählern

• mehrere Bändern

Mehrband-Maschine

Spezifizieren Sie eine TM M_4 , welche die Subtraktion von zwei natürlichen Zahlen $(a - b, \text{ mit } a \ge b)$ realisiert.

Beispiel: 4-2=2

	1		:	1	2	3	4	5	6	7	8	9
1	q_0 000100 \vdash	<i>0</i> ⊔ / ⊔ 0, <i>RR</i>	()	0	0	0	1	0	0		
2	$q_0 \sqcup \vdash$	<i>0</i>										
1	⊔ <i>q</i> ₀ 000100 ⊢	<i>0</i> ⊔ / ⊔ <i>0 , RR</i>			0	0	0	1	0	0		
2	$0q_0 \sqcup \vdash$	0 U / U 0, KK	()								
1	⊔⊔ <i>q</i> ₀ 00100 ⊢	<i>0</i> ⊔ / ⊔ 0, <i>RR</i>				0	0	1	0	0		
2	00 <i>q</i> ₀ ⊔ ⊢	<i>U</i>	()	0							
1	⊔⊔⊔ <i>q</i> ₀ 0100 ⊢	011 /11 0 PP					0	1	0	0		
2	$000q_0 \sqcup \vdash$	<i>0</i> ⊔ / ⊔ <i>0 , RR</i>	()	0	0						
1	⊔⊔⊔⊔ q ₀ 100 ⊢	1 ⊔ /⊔⊔ , <i>RL</i>						1	0	0		
2	$0000q_0 \sqcup \vdash$	1 u / uu , KL	()	0	0	0					
1	⊔⊔⊔⊔⊔ <i>q</i> ₁ 00 ⊢	00 /1111 71							0	0		
2	$000q_10 \vdash$	00/цц, <i>RL</i>	()	0	0	0					
1	⊔⊔⊔⊔⊔⊔ <i>q</i> ₁ 0 ⊢	00 / 11								0		
2	$00q_1^0 \vdash$	00/⊔⊔, <i>RL</i>	()	0	0						
1	UUUUUUU q_1	0 / 0 P.P.										
2	$0q_1^0 \vdash$	⊔ 0/⊔ 0, RR	()	0							
1	UUUUUUU q_2 U											
2	$00q_2 \sqcup \vdash$		()	0							

Berechnungsmodelle

Turing-berechenbar = kann von Turing-Maschine gelöst werden Turing-berechenbare Funktion für TM $T: \Sigma^* \to \delta^*$

$$T(\omega) = \begin{cases} u & \text{falls T auf } \omega \in \Sigma^* \text{ angesetzt, nach endlich vielen} \\ & \text{Schritten mit u auf dem Band anhält} \\ \uparrow & \text{falls T bei Input } \omega \in \Sigma^* \text{ nicht hält} \end{cases}$$

Jedes algorithmisch lösbare Berechnungsproblem ist turing-berechenbar \Rightarrow Computer \equiv TM

Primitiv rekursive Grundfunktionen

 $\forall n \in \mathbb{N}$ und jede Konstante $k \in \mathbb{N}$ die n-stellige konstante Funktion:

$$c_k^n = \mathbb{N}^n \to \mathbb{N} \text{ mit } c_k^n(x_1, ..., x_n) = k$$

Nachfolgerfunktion: $\eta: \mathbb{N} \to \mathbb{N}$ mit $\eta(x) = x + 1$

 $\forall n \in \mathbb{N}, 1 < k < n$ die n-stellige Projektion auf die k-te Komponente:

$$\pi_k^n: \mathbb{N}^n \to \mathbb{N} \text{ mit } \pi_k^n(x_1,...,x_k,...,x_n) = k$$

n = Anzahl der Argumente, k = Position des Arguments

Loop (primitiv-rekursiv)

- Zuweisungen:
- x = y + c und x = y c
- Sequenzen: P und $Q \to P$; Q
- Schleifen:
 - $P \to \operatorname{Loop}\, x$ do Puntil End

 $\begin{array}{l} \text{Addition von natürlichen Zahlen} \\ \mathrm{Add}(x,\,y) = x + y \end{array}$

While (Turing vollständig)

Erweiterung deer Sprache Loop

• While $x_i > 0$ do ... until End

 $\begin{aligned} & \text{Multiplikation} \\ & \text{von natürlichen Zahlen} \\ & \text{Mul}(x,\,y) = x \, * \, y \end{aligned}$

GoTo (Turing vollständig)

- Zuweisungen: $x_i = x_i + c$ und $x_i = x_i c$
- Sprunganweisung: IF $x_i = c$ THEN GOTO L_k ELSE GOTO L_t or simple: GOTO L_k
- Schleifen: WHILE $x_i > 0$ DO ... HALT

Case distinction

M1:
$$x0 = x3 + 0$$

M2: IF $x1 = 0$ THEN GOTO M4

M3: x0 = x2 + 0M4: HALT

Entscheidbarkeit

Entscheidbarkeit

Entscheidbar: \exists Algorithmus, der \forall Eingabe eine Antwort liefert Semi-entscheidbar: \exists Algorithmus, der \forall Eingabe eine Antwort liefert, falls Antwort die Antwort «Ja» ist

Entscheidbarkeit einer Sprache $A \subset \Sigma^*$

 $A\subset \Sigma^*$ ist entscheidbar $\Leftrightarrow A$ und \bar{A} sind semi-entscheidbar

$$\bar{A} = \Sigma^* \backslash A = \left\{ \omega \in \Sigma^* \mid \omega \notin A \right\}$$

Entscheidbarkeit mit Turingmaschinen

 $A \subset \Sigma^*$ heisst entscheidbar, wenn TM T existiert, sodass:

- Bandinhalt $x \in A$ T hält mit Bandinhalt «1» (Ja) an
- Bandinhalt $x \in \Sigma^* \backslash A$ T hält mit Bandinhalt «0» (Nein) an

Äquivalente Aussagen:

- $A \subset \Sigma^*$ ist entscheidbar
- Es existiert eine TM, die das Entscheidungsproblem $T(\Sigma,A)$ löst
- Es existiert ein WHILE-Programm, dass bei einem zu A gehörenden Wort stets terminiert \to Entscheidungsverfahren für A

Semi-Entscheidbarkeit mit Turingmaschinen

 $A \subset \Sigma^*$ heisst semi-entscheidbar, wenn TM T existiert, sodass:

- Bandinhalt $x \in A$ T hält mit Bandinhalt «1» (Ja) an
- Bandinhalt $x \in \Sigma^* \backslash A$ T hält nie an

Äquivalente Aussagen:

- $A \subset \Sigma^*$ ist semi-entscheidbar
- $A \subset \Sigma^*$ ist rekursiv aufzählbar
- Es gibt eine TM, die zum Entscheidungsproblem $T(\Sigma, A)$ nur die positiven («Ja») Antworten liefert und sonst gar keine Antwort
- Es gibt ein WHILE-Programm, dass bei einem zu A gehörenden Wort stets terminiert und bei Eingabe von Wörtern die nicht zu A gehören nicht terminiert

Reduzierbarkeit $A \preceq B$ A ist reduzierbar auf B

 $A\subset \Sigma^*$ heisst auf $B\subset \Gamma^*$ reduzierbar, wenn es eine totale, Turingberechenbare Funktion $F:\Sigma^*\to \Gamma^*$ gibt, so dass:

$$\forall \omega \in \Sigma^* \quad \omega \in A \Leftrightarrow F(\omega) \in B$$

 $A \leq B$ und $B \leq C \rightarrow A \leq C$

Allgemeines Halteproblem H ist die Sprache (# = Delimiter):

$$H := \left\{ \omega \# x \in \{0, 1, \#\}^* \mid T_\omega \text{ angesetzt auf } x \text{ h\"{a}lt} \right\}$$

Weiter Halteprobleme (HP): leeres HPH_0 und spezielles HP H_S

- $H_0 := \{ \omega \in \{0,1\}^* \mid T_\omega \text{ angesetzt auf das leere Band hält } \}$
- $H_S := \{ \omega \in \{0,1\}^* \mid T_\omega \text{ angesetzt auf } \omega \text{ h\"alt } \}$

 H_0, H_S und H sind semi-entscheidbar.

Komplexitätstheorie

Quantitative Gesetze und Grenzen

der algorithmischen Informationsverarbeitung

- Zeitkomplexität: Laufzeit des besten Programms
- Platzkomplexität: Speicherplatz des besten Programms
- Beschreibungskomplexität: Länge des kürzesten Programms

Zeitbedarf von M auf Eingaben der Länge $n \in \mathbb{N}$ im schlechtesten Fall definiert als

$$\operatorname{Time}_{M}(n) = \max \left\{ \operatorname{Time}_{M}(\omega) || \omega |= n \right\}$$

Sei M eine TM, die immer hält und sei $\omega \in \Sigma^*$. Der Zeitbedarf von M auf der Eingabe ω ist

- Time $_{M}(\omega)=$ Anzahl von Konfigurationsübergängen in der Berechnung von M auf ω

P vs NP Klassifizierung von Problemen

Ein Problem U heisst in Polynomzeit lösbar, wenn es eine obere Schranke $O\left(n^{c}\right)$ gibt für eine Konstante c > 1.

- $P \doteq \text{L\"osung finden in Polynomzeit}$
- $\mathbb{N}P \doteq \text{L\"osung verifizieren in Polynomzeit}$

NP-schwer und NP-vollständig

Eine Sprache L heisst NP-schwer, falls für alle Sprachen $L' \in NP$ gilt, dass $L' \preccurlyeq_p L$ L heisst NP-vollständig, falls $L \in NP$

und L ist NP-schwer. Polynomzeit-Verifizierer

Überprüft die einzelnen Eingaben in einem Problem Zeuge: Informationen einer gültigen Eingabe

Asymptotische Komplexitätsmessung O-Notation

- $f \in O(g)$: Es existiert ein $n_0 \in \mathbb{N}$ und ein $c \in \mathbb{N}$, so dass für alle $n > n_0$ gilt
 - $-f(n) \le c \cdot g(n)f$ wächst asymptotisch nicht schneller als g
- $f \in \Omega(g)$: Es existiert ein $n_0 \in \mathbb{N}$ und ein $d \in \mathbb{N}$, so dass für alle $n \geq n_0$ gilt
- $-f(n) \ge \frac{1}{d} \cdot g(n)f$ wächst asymptotisch mindestens so schnell wie q
- $f \in \Theta(g)$: Es gilt $f(n) \in O(g(n))$ und $f(n) \in \Omega(g(n))$
 - f und q sind asymptotisch gleich

Schranken für die Zeitkomplexität von U

- O(f(n)) ist eine obere Schranke, falls Eine TM existiert, die U löst und eine Zeitkomplexität in O(f(n)) hat.
- $\Omega(g(n))$ ist eine untere Schranke, falls Für alle TM M, die U lösen, gilt dass Time $_{M}(n) \in \Omega(g(n))$

Rechenregeln

- Konstante Vorfaktoren c ignorieren $(c \in O(1))$.
- Bei Polynomen ist nur die höchste Potenz entscheidend:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 \in O(n^k)$$

- Die O-Notation ist transitiv.
- $f(n) \in O(g(n)) \land g(n) \in O(h(n)) \rightarrow f(n) \in O(h(n))$

• O(n) 7n+4

• $O(n^3)$ $25n^2 + n^3 + 100n$

• $O(n^2 \cdot \log(n))$ $n^2 + n \cdot n \cdot (\log(n)) + 20n^2 + 50n \cdot 100$ • $O(2^n)$ $10^{20} + 3n^3 + 2^n + 2^{10} \cdot 2^{30}$

Übersicht wichtigste Laufzeiten TODO: Tabelle mit Laufzeiten