Dynamic Programming: Major Algorithms

John Stachurski

March 2024

Topics

- Introduction to the problem
- Lifetime value
- Optimality
- Value function iteration
- Howard policy iteration
- Optimistic policy iteration

Set Up

We take as given

- 1. a finite set X called the **state space** and
- 2. a finite set A called the action space

We study a controller who, at each integer $t\geqslant 0$

- 1. observes the current state $X_t \in \mathsf{X}$
- 2. responds with an action $A_t \in A$

Her aim is to maximize

$$\mathbb{E}\sum_{t>0}\beta^t r(X_t, A_t) \quad \text{ given } X_0 = x_0$$

Actions restricted by a **feasible correspondence** Γ

- $\Gamma(x)$ is a nonempty subset of A for each $x \in X$
- interpretation: $\Gamma(x) = \text{actions available in state } x$

Reward r(x,a) is received at feasible state-action pair (x,a)

Let P denote transition probabilities:

$$P(x, a, x') = \text{ prob of transitioning to } x' \text{ given } x, a$$

MDP dynamics:

```
 \begin{array}{c|c} \hline t \leftarrow 0 \\ \text{input } X_0 \\ \textbf{while } t < \infty \text{ do} \\ \hline \\ \text{observe } X_t \\ \text{choose action } A_t \text{ from } \Gamma(X_t) \\ \text{receive reward } r(X_t, A_t) \\ \text{draw } X_{t+1} \text{ from } P(X_t, A_t, \cdot) \\ t \leftarrow t+1 \\ \hline \text{end} \\ \hline \end{array}
```

The Bellman equation is

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x' \in \mathsf{X}} v(x') P(x, a, x') \right\}$$

Policies

A feasible policy is a map σ from X to A such that

$$\sigma(x) \in \Gamma(x)$$
 for all $x \in X$

• Let $\Sigma :=$ the set of all feasible policies

Choosing
$$\sigma \in \Sigma \implies$$

respond to state X_t with action $A_t := \sigma(X_t)$ at all $t \ge 0$

If $A_t := \sigma(X_t)$ at all $t \geqslant 0$, then

$$X_{t+1} \sim P(X_t, \sigma(X_t), \cdot)$$
 for all $t \geqslant 0$

Thus, X_t is P_{σ} -Markov for

$$P_{\sigma}(x, x') := P(x, \sigma(x), x') \qquad (x, x' \in \mathsf{X})$$

• Fixing a policy "closes the loop" in the state dynamics

Lifetime rewards

Under the policy σ , rewards at x given by $r(x, \sigma(x))$

Let

- $r_{\sigma}(x) := r(x, \sigma(x))$
- $\mathbb{E}_x := \mathbb{E}[\cdot \mid X_0 = x]$

Now

$$\mathbb{E}_x r(X_t, A_t) = \mathbb{E}_x r_{\sigma}(X_t) = \sum_{x'} r_{\sigma}(x') P_{\sigma}^t(x, x') = (P_{\sigma}^t r_{\sigma})(x)$$

The **lifetime value of** σ starting from x is

$$v_{\sigma}(x) := \mathbb{E}_{x} \sum_{t \geqslant 0} \beta^{t} r_{\sigma}(X_{t})$$
$$= \sum_{t \geqslant 0} \mathbb{E}_{x} \left[\beta^{t} r_{\sigma}(X_{t}) \right]$$
$$= \sum_{t \geqslant 0} \beta^{t} (P_{\sigma}^{t} r_{\sigma})(x)$$

By the Neumann (geometric) series lemma,

$$v_{\sigma} = \sum_{t>0} (\beta P_{\sigma})^t r_{\sigma} = (I - \beta P_{\sigma})^{-1} r_{\sigma}$$

Policy Operators

The **policy operator** corresponding to σ is

$$(T_{\sigma} v)(x) = r(x, \sigma(x)) + \beta \sum_{x' \in \mathsf{X}} v(x') P(x, \sigma(x), x')$$

In vector notation, we can write

$$T_{\sigma} v = r_{\sigma} + \beta P_{\sigma} v$$

• Fact. T_{σ} is a contraction map

Fact. v_{σ} is the unique fixed point of T_{σ} in \mathbb{R}^n

Proof: Since $\beta < 1$, we have

$$v = T_{\sigma} v \iff v = r_{\sigma} + \beta P_{\sigma} v$$
 $\iff v = (I - \beta P_{\sigma})^{-1} r_{\sigma}$
 $\iff v = v_{\sigma}$

Hence

v is a fixed point of $T_{\sigma} \iff v = v_{\sigma}$

Fact. v_{σ} is the unique fixed point of T_{σ} in \mathbb{R}^n

Proof: Since $\beta < 1$, we have

$$v = T_{\sigma} v \iff v = r_{\sigma} + \beta P_{\sigma} v$$

$$\iff v = (I - \beta P_{\sigma})^{-1} r_{\sigma}$$

$$\iff v = v_{\sigma}$$

Hence

v is a fixed point of $T_{\sigma} \iff v = v_{\sigma}$

Greedy Policies

Fix $v \in \mathbb{R}^n$

A policy σ is called v-greedy if

$$\sigma(x) \in \operatorname*{argmax}_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v(x') P(x, a, x') \right\}$$

for all $x \in X$

Ex. Prove: at least one v-greedy policy exists in Σ

The Bellman Operator

Recall: the Bellman equation is

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v(x') P(x, a, x') \right\}$$

The Bellman operator is defined by

$$(Tv)(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v(x') P(x, a, x') \right\}$$

By construction, $Tv = v \iff v$ satisfies the Bellman equation

Optimality

The value function is defined by $v^* := \vee_{\sigma \in \Sigma} v_{\sigma}$ More explicitly,

$$v^*(x) := \max_{\sigma \in \Sigma} v_{\sigma}(x) \qquad (x \in \mathsf{X})$$

Thus, $v^*(x) = \underline{\text{maximal lifetime value}}$ from state x

A policy $\sigma \in \Sigma$ is called **optimal** if

$$v_{\sigma} = v^*$$

Thus, σ is optimal \iff lifetime value is maximal at each state

Theorem. For the DP model described above,

- 1. v^* is the unique fixed point of T in \mathbb{R}^n
- 2. A feasible policy is optimal if and only it is v^* -greedy
- 3. At least one optimal policy exists

Remark: Point (2) is called Bellman's principle of optimality

Algorithms

Previously we used value function iteration (VFI) to solve optimal stopping problems

Here we

- 1. present a generalization suitable for arbitrary MDPs
- 2. introduce two other important methods

The two other methods are called

- 1. Howard policy iteration (HPI) and
- 2. Optimistic policy iteration (OPI)

Algorithm 1: VFI for MDPs

input $v_0 \in \mathbb{R}^n$, an initial guess of v^* input τ , a tolerance level for error $\varepsilon \leftarrow \tau + 1$ $k \leftarrow 0$

while
$$\varepsilon > \tau$$
 do

$$v_{k+1} \leftarrow T v_k$$

$$\varepsilon \leftarrow ||v_k - v_{k+1}||_{\infty}$$

$$k \leftarrow k + 1$$

end

Compute a v_k -greedy policy σ

$\mathbf{return}\ \sigma$

VFI is

- easy to understand
- easy to implement
- globally convergent
- relatively robust

But convergence can be slow...

Howard Policy Iteration

Iterates between computing the value of a given policy and computing the greedy policy associated with that value

Algorithm 2: Howard policy iteration for MDPs

```
\begin{array}{l} \text{input } \sigma \in \Sigma \\ v_0 \leftarrow v_\sigma \text{ and } k \leftarrow 0 \\ \text{repeat} \\ \mid \sigma_k \leftarrow \text{a } v_k\text{-greed} \\ v_{k+1} \leftarrow (I - \beta P_\sigma) \end{array}
```

$$\begin{array}{l} \sigma_k \leftarrow \text{a} \ v_k\text{-greedy policy} \\ v_{k+1} \leftarrow (I-\beta P_{\sigma_k})^{-1} r_{\sigma_k} \\ \text{if} \ v_{k+1} = v_k \ \text{then} \ \text{break} \\ k \leftarrow k+1 \end{array}$$

return σ_k

Proposition. HPI returns an exact optimal policy in a finite number of steps

Also, rate of convergence is faster than VFI

In fact HPI is analogous to gradient-based Newton iteration on T

Details are in the text

In general, for a given fixed point problem,

- 1. Newton iteration yields a quadratic rate of convergence
- 2. Successive approximation yields a linear rate of convergence

- σ' is v_{σ} -greedy if $T_{\sigma'}v_{\sigma}=Tv_{\sigma}$
- $v_{\sigma'}$ is the fixed point of $T_{\sigma'}$

Optimistic Policy Iteration

OPI is a "convex combination" of VFI and HPI

Similar to HPI except that

- HPI takes current σ and obtains v_{σ}
- ullet OPI takes current σ and iterates m times with T_{σ}

Recall that, for any $v \in \mathbb{R}^n$, we have $T_\sigma^m v \to v_\sigma$ as $m \to \infty$

Hence OPI replaces v_{σ} with an approximation

Algorithm 3: Optimistic policy iteration for MDPs

end

return σ_k

Fact. $\mathsf{OPI} = \mathsf{VFI}$ when m = 1

Proposition. For all values of m we have $v_k \to v^*$

If m is large, OPI is similar to HPI

• because $\lim_{m\to\infty}T^m_{\sigma_k}v_k=v_{\sigma_k}$

Rules of thumb:

- parallelization tends to favor HPI
- ullet OFI is simple and dominates VFI for many values of m
- ullet VFI works well when eta is small and optimization is cheap