```
Question 1
```

```
If (\log_{10} 5 + \log(5x + 1) = 1), then find (x).
```

```
Combine the logarithms: [\log_{10}(5) + \log_{10}(5x + 1) = \log_{10}(5(5x + 1))] Therefore, we have: [\log_{10}(5(5x + 1)) = 1]
```

Rewrite in exponential form: $[5(5x + 1) = 10^1]$ Simplifying gives: [5(5x + 1) = 10]

Solve for (x): $[5x + 1 = 2 \text{ limplies } 5x = 1 \text{ limplies } x = \frac{1}{5}]$

Answer: $(x = \frac{1}{5})$

Question 2

If ($a^2 + b^2 = c^2$), then find ($\frac{1}{\log_{(c + a)} b} + \frac{1}{\log_{(c + a)} b}$).

Use the change of base formula: [$\frac{1}{\log_{(c + a)}}$ b} = $\log_b(c + a)$] [$\frac{1}{\log_{(c - a)}}$ b} = $\log_b(c - a)$]

Combine the logarithms: $[\log_b(c + a) + \log_b(c - a) = \log_b((c + a)(c - a)) = \log_b(c^2 - a^2)]$

Substitute ($c^2 = a^2 + b^2$): [$c^2 - a^2 = b^2 \le \log_b(b^2) = 2$]

Answer: (2)