

MANUAL DE INSTRUÇÕES DO MÓDULO DE ABASTECIMENTO E DESCARGA

MODELOS 90 E 150LPM PLUS Manual e Instruções de trabalho

Sumário

1.	DESCRIÇÃO DO SISTEMA	4
2.	COMPONENTES DO MÓDULO DE ABASTECIMENTO	4
3.	SKID	5
3.1.	COMPONENTES DO SKID PLUS 90LPM	5
3.2.	COMPONENTES DO SKID PLUS 150LPM	5
3.3.	DESCRIÇÃO DE COMPONENTES, RECOMENDAÇÕES E INFORMAÇÕES GERAIS	5
4.	MOVIMENTAÇÃO E INSTALAÇÃO	6
4.1.	MOVIMENTAÇÃO	6
4.2.	INSTALAÇÃO CIVIL	6
4.3.	INSTALAÇÃO ELÉTRICA	8
4.3.1	1. SISTEMA ELÉTRICO	8
4.3.1	1.1. DIAGRAMA DA CAIXA DE COMANDO 220V E 380V	9
4.3.1	1.2. DIAGRAMA DA CAIXA DE COMANDO 440V	10
4.3.1	1.3. LEGENDA DOS DIAGRAMAS	11
5.	OPERAÇÃO	11
5.1.	OPERAÇÃO DE DESCARGA	12
5.2.	OPERAÇÃO DE ABASTECIMENTO	13
6.	MANUTENÇÃO E ASSISTÊNCIA TÉCNICA	13
6.1.	CUIDADOS COM O SISTEMA	13
6.2.	CUIDADOS DURANTE MONTAGEM E DESMONTAGEM DO SISTEMA	14
6.3.	SUBSTITUIÇÃO DO ELEMENTO FILTRANTE	15
6.4.	INDICADOR VOLUMÉTRICO NKL	16
6.5.	TABELA DE FALHAS COM POSSÍVEIS SOLUÇÕES	17
7.	ANEXOS	17
7 1	CURVA DA MOTOROMBA THS-18	. 17

SKID DE ABASTECIMENTO E DESCARGA

Matriz Rodovia BR 101 - km 100,4 Nossa Senhora da Conceição - 88380-000 Balneário Piçarras - SC - Brazil + 55 47 2104.6700

Parabéns! Você acaba de adquirir um produto inovador e com a qualidade ARXO. Obrigado por escolher nosso produto.

Neste manual você encontra as informações para a sua segurança durante o uso adequado do seu equipamento. Leia todas as instruções contidas neste manual antes de utilizar o aparelho e guarde-o para futuras referências. Em caso de dúvidas, ligue para o nosso Serviço de Atendimento ao Consumidor.

Consulte também nosso site na Internet em www.arxo.com. Nele você poderá encontrar informações sobre outros produtos ARXO, como tabelas de arqueação teóricas, manuais e catálogos de toda nossa linha de produtos.

IMPORTANTE

Guarde a nota fiscal de compra. A garantia só é válida mediante sua apresentação no Serviço Autorizado ARXO.

ATENÇÃO

Este manual tem como finalidade fornecer informações para instalação e operação do módulo de abastecimento, visando à obtenção de melhor rendimento e vida útil do seu equipamento e garantir a segurança do operador. Guarde-o assim como a nota fiscal de compra.

arxo.com

arxostore.con

1. DESCRIÇÃO DO SISTEMA

O módulo de abastecimento e descarga foi desenvolvido para permitir o armazenamento e abastecimento de combustíveis, tais como diesel, gasolina e álcool, podendo ser filtrados ou não.

Este equipamento está disponível em diversas formas e configurações: os modelos Pro e Standard, de vazão 90 lpm, e os modelos Plus de 90 e 150lpm, que são contemplados neste manual. As operações e características de cada modelo estão na tabela abaixo.

Modelo	Vazão de Abastecimento	Filtragem	Spillbox	Operações realizadas pelo skid
Standard		Pode ser acompanhado de 1 filtro ou sem filtro	Niao acompanha	Abastecimento
Pro	90 lpm			Abastasimanta
Plus		Acompanha 1 filtro	Acompanha 1 spillbox	Abastecimento e Descarga
Fius	150 lpm Acompanha 2 filtros	Acompanha 1 spillbox	Descarga	

2. COMPONENTES DO MÓDULO DE ABASTECIMENTO

O módulo de abastecimento é constituído por uma bacia de contenção, tanque de armazenamento e skid de descarga e abastecimento, dotado de válvulas para operações de enchimento e descarga.

- 01 Tanque
- 02 Bacia de contenção
- 03 Skid
- 04 Tampa da boca de visita
- 05 Respiro
- 06 Medidor Volumétrico (NKL)
- 07 Extintor de incêndio
- 08 Engate rápido para descarga
- 09 Pontos de aterramento
- 10 Olhais de içamento
- 11 Placa de identificação do tanque

Atenção: Esta imagem é meramente ilustrativa.

O leiaute pode mudar conforme o pedido (volume do tanque, especificações de modelo e vazão do skid etc.).

O engate rápido para descarga presente na geratriz superior do tanque (item 08) acompanha somente os módulos de abastecimento Standard. Nos outros modelos (Pro e Plus), a descarga é feita através do skid.

Ainda, não presente na representação acima, é possível também conter escada e plataforma no tanque e escada na bacia. No entanto, estes itens são opcionais e podem ser cobrados valores caso sejam solicitados no pedido.

3. SKID

O skid é o equipamento que realiza as principais operações do conjunto, sendo elas: descarga (somente para modelos Pro e Plus), abastecimento, dreno de bacia e dreno do tanque (ao lado da bandeja de contenção do skid). É no skid, também, que estão localizados o filtro, bico abastecedor, bloco medidor volumétrico, motobomba e válvulas operacionais.

3.1. COMPONENTES DO SKID PLUS 90LPM

O skid Plus 90lpm é um dos modelos mais completos oferecidos, onde realiza as operações de abastecimento e descarga e, ainda, possui um spillbox. Além da vazão, o que também o difere este modelo do Plus 150lpm é que não contém dois filtros.

3.2. COMPONENTES DO SKID PLUS 150LPM

O skid Plus 150lpm é o modelo mais completo da gama de produtos oferecidos. Realiza as operações de abastecimento e descarga e, ainda, possui spillbox. Assim como o anterior, o engate rápido disposto na parte frontal do equipamento é dotado de uma válvula de retenção, que impede o combustível de sair pelo mesmo, evitando vazamentos e possíveis acidentes.

- 01 Badeja para de contenção
- 02 Flange de união com a bacia e tanque
- 03 Motobomba centrífuga
- 04 Filtro
- 05 Caixa de comando elétrico
- 06 Bloco medidor volumétrico
- 07 Bico abastecedor
- 08 Mangueira de abastecimento
- 09 Dreno da bacia
- 10 Dreno da bandeja do skid
- 11 Ponto de aterramento/equalização de cargas
- 12 Manômetro de controle do filtro
- 13 Engate rápido com válvula de retenção
- 14 Válvula borboleta
- 15 Válvula borboleta
- 16 Válvula esfera direcional
- 17 Spillbox de descarga

3.3. DESCRIÇÃO DE COMPONENTES, RECOMENDAÇÕES E INFORMAÇÕES GERAIS

a. Filtro micrônico coalescente: Está instalado no recalque (saída) da bomba, onde age retirando as partículas de água em suspensão no diesel. O elemento filtrante é descartável e tem grau de retenção de

25 micra. Para mais informações, consultar o manual do fabricante.

ATENÇÃO: Falta de fluxo e pressão no bico de abastecimento é indicação de saturação do elemento filtrante.

- b. Bloco medidor volumétrico:
 - O sistema de medição contempla um medidor totalizador de volume com indicação perpétua e resetável para a vazão especificada (90 lpm). Está instalado na saída do conjunto de linha de abastecimento, antes do bico abastecedor.
- c. Caixa de comando elétrico:
 - Tem como função controlar o equipamento de forma segura e funcional, alternando entre as opções de trabalho "Automático", "Manual" e "Desligado". A caixa de comando deve ser alimentada em uma rede elétrica trifásica, que pode ter sua Tensão 220v, 380V ou 440V, conforme solicitado na compra. Esta contém equipamentos que monitoram e operam o equipamento, enviando comandos à motobomba e demais componentes elétricos.
- d. Sensor de nível tipo boia:
 - Não é disponibilizado com o módulo. Deve ser comprado e instalado a parte. No entanto, a caixa de comando já tem esperas para suportar este equipamento, bastando instalá-lo.
 - **ATENÇÃO:** Como o sensor de nível não acompanha o produto, a função "Automática" somente será valida com a instalação do mesmo. Enquanto este não é instalado, esta função funcionará como a opção "Manual".

4. MOVIMENTAÇÃO E INSTALAÇÃO

4.1. MOVIMENTAÇÃO

O módulo de abastecimento deve ser movimentado sempre vazio, por equipamento compatível com a carga requerida. Deve ser içado pelos olhais de içamento posicionados na geratriz superior do tanque. Os cabos (ou cintas) empregados no içamento não devem ter inclinação horizontal menor de 60°. Para não precisar usar cabos muito longos, pode-se fazer uso de cambão.

4.2. INSTALAÇÃO CIVIL

Anteriormente à instalação, assegure-se de que toda a embalagem e suportes de travamento tenham sido removidos. Verifique, também, se houve algum dano de transporte e assegure que todas as partes móveis possam ser operadas manualmente. Recomenda-se que seja solicitada uma instrução sobre o posicionamento dos tanques ao Corpo de Bombeiros local. Se o mesmo não tiver instruções específicas, consulte a NR 20 pelo site http://goo.gl/l5dAG7. Como referência, podem ser empregadas as informações a seguir:

Matriz Rodovia BR 101 - km 100,4 Nossa Senhora da Conceição - 88380-000 Balneário Piçarras - SC - Brazil + 55 47 2104.6700

- 01 Rede de para-raios do prédio e da cobertura *
- 02 Cobertura dos tanques (opcional) *
- 03 Rede de calhas (opcional) *
- 04 Caixa separadora de água e óleo (opcional) *
- 05 Aterramento dos módulos *
- 06 Aterramento do prédio e da cobertura (opcional) *
- A Distância mínima entre construções e os tanques
- B Distância mínima entre tanques
- C Distância mínima entre tanques e as divisas da propriedade
- D Piso com declividade máxima de 1%

ATENÇÃO: Os itens indicados com asterisco (*) não acompanham o produto.

A distância entre os tanques de armazenamento de líquidos combustíveis e edificações (A) deve ser de no mínimo 1,5m (um metro e meio).

A distância entre dois tanques de armazenamento de mesmos líquidos combustíveis (B) não deverá ser inferior a 1m (um metro).

O espaçamento mínimo entre dois tanques de armazenamento de líquidos combustíveis diferentes ou de qualquer outro combustível deverá ser de pelo menos 6m (seis metros).

Outras dimensões:

Capacidade do tanque (litros)	Distância do tanque à linha de divisa	Distância mínima do
	das propriedades adjacentes (C)	tanque às vias públicas
De 250 até 1.000	1,5m	1,5m
De 1.001 até 2.800	3m	1,5m
De 2801 até 45.000	4,5m	1,5m
De 45.001 até 110.000	6m	1,5m

Depois de e o equipamento estar corretamente alocado, interligue as conexões hidráulicas – Flange de ENTRADA/SAÍDA ou tanque de armazenamento. Instale a parte elétrica conforme diagrama/esquema elétrico, entre caixa de comando e a rede elétrica de alimentação.

CUIDADO

Todos os componentes elétricos instalados em atmosferas potencialmente explosivas possuem Certificado de Conformidade. Portanto, NÃO é permitida nenhuma intervenção que altere a configuração original.

Deverá ser instalada a unidade seladora imediatamente a entrada de cada caixa de ligação, sendo compulsória (obrigatório) a utilização de materiais certificados à prova de explosão. Tratando-se de líquidos inflamáveis, utilize somente acessórios e/ou componentes apropriados e certificados para atmosferas explosivas.

A instalação deve ser executada por profissionais aptos, devidamente treinados para tal operação.

4.3. INSTALAÇÃO ELÉTRICA

O skid opera em rede trifásica, podendo ser 220V, 380V ou 440V (conforme pedido/região). É necessário prever fiação elétrica trifásica mais terra, capaz de suportar de 3cv (três cavalos). A bitola do fio deve ser dimensionada pelo profissional habilitado responsável pela instalação do conjunto.

4.3.1. SISTEMA ELÉTRICO

Através do painel elétrico é possível ligar e desligar o motor, para descarga e abastecimento.

Se o produto foi adquirido com eletro boia, o painel elétrico permitirá que o funcionamento ocorra em modo manual ou automático. Quando em automático, a eletro boia desligará o motor para evitar o transbordamento do tanque em caso de descarga realizada pela bomba do skid.

ATENÇÃO: A instalação do sistema em Tensões diferentes da solicitada no pedido sem a intervenção da Arxo implica imediatamente na perda da garantia do produto.

4.3.1.1. DIAGRAMA DA CAIXA DE COMANDO 220V E 380V

4.3.1.2. DIAGRAMA DA CAIXA DE COMANDO 440V

4.3.1.3. LEGENDA DOS DIAGRAMAS

TABELA DE DADOS DA CAIXA DE COMANDO					
Rede:	de: Trifásica Po		3cv (2,2kW)		
LEGENDA DO DIAGRAMA ELÉTRICO					
Tensão	Item	Descrição	Observação		
	K1	Minicontator WEG CWC012-10-30D23	-		
220V	FT1	Rele Térmico WEG RW17-1D3 de 7,0 a 10,0A	Ajustar em 10A		
220V	S1	Chave Comutadora Sermatex-GRÜN GCAGRC 1320	-		
	М	Motobomba de 3cv	-		
	UCS	Unidade de Controle 220Vca Sermatex-GRÜN	-		
	K1	Minicontator WEG CWC07-10-30D33	-		
	FT1	Rele Térmico WEG RW17-1D3 de 4,0 a 6,3A	Ajustar em 6A		
380V	S1	Chave Comutadora Sermatex-GRÜN GCAGRC 1320	-		
-	М	Motobomba de 3cv	-		
	UCS	Unidade de Controle 380Vca Sermatex-GRÜN	-		
	K1	Minicontator WEG CWC07-10-30D23	-		
440V	FT1	Rele Térmico WEG RW17-1D3 de 4,0 a 6,3A	Ajustar em 5A		
*circuito de	S1	Chave Comutadora Sermatex-GRÜN GCAGRC 1320	-		
comando em 220V		Transformador 30VA 220-380- 440V/110-220Vca	-		
	М	Motobomba de 3cv	-		
	UCS	Unidade de Controle 220Vca Sermatex-GRÜN	-		

5. OPERAÇÃO

CUIDADO NUNCA ABRA O PAINEL ELÉTRICO COM O EQUIPAMENTO ENERGIZADO

Matriz Rodovia BR 101 - km 100,4 Nossa Senhora da Conceição - 88380-000 Balneário Piçarras - SC - Brazil + 55 47 2104.6700

O skid Pro é modelo intermediário. Possui vazão de 90 litros por minuto e não possui spillbox para o engate rápido de descarga. Para operá-lo, basta realizar algumas combinações nos posicionamentos das válvulas ali presentes.

5.1. OPERAÇÃO DE DESCARGA

A operação de descarga consiste em transferir o combustível do caminhão para o módulo. Este pode ser feito através da bomba do caminhão, pela bomba do skid ou até mesmo as duas simultaneamente.

Para realizar esta operação, é necessário deixar a válvula borboleta "01" aberta, a válvula borboleta "02" fechada e a válvula esfera bidirecional "03" voltada para trás, conforme a figura abaixo. Depois, basta colocar chave da caixa de comando na posição "Automático".

ATENÇÃO: DURANTE AS OPERAÇÕES DE DESCARGA, ESPECIALMENTE QUANDO SE TRATA DO SKID STANDARD, TOME CUIDADO PARA NÃO EXCEDER A CAPACIDADE DO TANQUE, ASSIM TRANSBORDANDO-O.

Ao finalizar a operação, caso haja combustível dentro do spillbox, é possível drená-lo para dentro do tanque mantendo o motor ligado e abrindo a válvula "04". Vale ressaltar que, após esvaziado o spillbox, recomenda-se que esta válvula seja fechada imediatamente, evitando a entrada e ar na bomba.

5.2. OPERAÇÃO DE ABASTECIMENTO

A operação de abastecimento é a função principal. É quando o módulo abastece algum veículo etc. Ou seja, o combustível sai do módulo para outro equipamento que deverá ser abastecido. Esta operação somente pode ser executada através da bomba do skid.

Basta deixar a válvula borboleta "01" fechada, a válvula borboleta "02" aberta e a válvula esfera bidirecional "03" voltada para frente, conforme a figura abaixo. Após as válvulas estarem posicionadas conforme descrito anteriormente, basta posicionar a chave da caixa de comando na opção "Manual" e abastecer com o bico abastecedor, pressionando seu gatilho.

6. MANUTENÇÃO E ASSISTÊNCIA TÉCNICA

6.1. CUIDADOS COM O SISTEMA

A boca de visita do tanque tem função de alívio de pressão, portanto, para perfeito funcionamento do tanque, deve-se manter os parafusos de fixação com suas porcas apertadas apenas nas extremidades dos parafusos, conforme imagem. O travamento da boca de visita causa a perda imediata da garantia do produto.

Verificar periodicamente o manômetro. É através dele que se sabe se o filtro está ficando saturado. A saturação do filtro acontece em tempo indeterminado, pois está diretamente relacionado com a quantidade de combustível utilizado.

Evite fazer qualquer serviço de solda no equipamento. Caso isto seja realmente necessário, além dos cuidados de esvaziamento e desgaseificação do tanque e tubulação, desligue qualquer outra interface com o sistema elétrico.

Verifique diariamente o conjunto da tubulação e demais componentes do módulo de abastecimento e elimine eventuais vazamentos.

Para tanques empregados no armazenamento de diesel, recomenda-se abrir o dreno do tanque realizando uma purga sempre que se perceber a presença de impurezas.

6.2. CUIDADOS DURANTEMONTAGEME DESMONTAGEM DO SISTEMA

Desligue a chave geral, esvazie o tanque e a tubulação, desligue totalmente a alimentação elétrica sempre que o serviço de manutenção envolver sistema elétrico, esmerilhamento/desbaste e soldas.

Verifique se as peças novas têm as mesmas especificações de desempenho das peças substituídas.

Tenha cuidado ao substituir juntas, anéis de vedação, retentores e gaxetas. Utilize sempre materiais compatíveis com o fluido armazenado, com a temperatura e a pressão de trabalho.

Ao apertar parafusos e aplique o torque correto, sempre atentando-se na ordem de aperto dos parafusos dos flanges, apertando-os em "X" (intercaladamente). Não utilize martelo para bater em chaves visando o aperto de elementos de fixação.

6.3. SUBSTITUIÇÃO DO ELEMENTO FILTRANTE

O elemento filtrante do filtro do skid é do tipo micrônico e coalescente, de 25 micra. A frequência de substituição do elemento filtrante depende das seguintes condições:

- a. 1 ano de operação.
- b. Redução significante na vazão de abastecimento.
- c. Quando a pressão permanecer fixa crescente e então começar a decrescer.

A troca deve ser efetuada de acordo com o que ocorrer primeiro dos itens anteriores e deve ser realizada conforme abaixo:

- 01. Mantenha o Skid desligado e com todas as válvulas fechadas, inclusive a válvula que está na saída do tanque, dentro da bacia de contenção.
 - 02. Abra a válvula do dreno na base do filtro e deixe todo o fluido ser drenado da carcaça.
 - 03. Abra a válvula do respiro na tampa da carcaça e deixe todo o ar escapar do filtro.
 - 04. Solte os quatro parafusos que fixam o cabeçote ao flange da carcaça.
 - 05. Remova e descarte a vedação do cabeçote.
- 06. Remova e descarte o elemento filtrante usado em um local que possa ser queimado, de acordo com as orientações ambientais locais.
- 07. Lave o interior da carcaça com um produto limpo, processado, filtrado ou um solvente adequado. Uma escova de cerdas não metálicas ajudará a remover os detritos que estão aderidos à parede da carcaça. Enxague a carcaça e a tampa com um solvente limpo e seque com um pano seco, macio e que não solte pelos.
- 08. Lubrifique suavemente a nova vedação do cabeçote com gelatina de vaselina ou petróleo e posicione-a no cabeçote. Caso não disponha de vaselina, lubrifique a vedação com o combustível ou óleo que será utilizado.
- 09. Insira o novo elemento filtrante na carcaça. Posicione a carcaça (com o elemento) abaixo do cabeçote. Empurre e gire o elemento no cabeçote. A mola cônica do cabeçote assentará, vedando o elemento na carcaça.
- 10. Aperte os parafusos para finalizar a vedação utilizando de uma chave de torque, com uma força de 50 libras.

- 11. Feche a válvula do dreno.
- 12. Após completamente fixo e vedado, coloque todas as válvulas na posição de ABASTECIMENTO e abra a válvula do tanque. Ligue o skid e deixe o filtro encher completamente.
- 13. Deixe a válvula do respiro do filtro aberta até que saia todo o ar. Será possível notar o momento de fechar quando sair uma pequena quantidade de combustível pela mesma. Neste momento, desligue o skid e feche o respiro.
- 14. Ligue o skid novamente e procure por vazamentos. Certifique-se de consertá-lo caso apareça algum.

CUIDADO: Devido ao efeito tóxico de alguns aditivos utilizados em fluidos filtrados, orienta-se tomar as devidas precauções ao manusear o elemento filtrante a ser descartado.

6.4. INDICADOR VOLUMÉTRICO NKL

O medidor volumétrico NKL é uma régua eletrônica que serve para avaliar o volume contido em um tanque dando uma estimativa relativamente precisa sobre em que momento deve-se realizar a compra do combustível e o volume aproximado a ser comprado de forma que o combustível não transborde no momento de recebimento. O medidor volumétrico NKL não deve ser empregado para fins de controle fiscal pois o erro do sistema NKL-Tanque pode ser de até 2,5 %. Para perfeito funcionamento do equipamento o tanque deverá ter inclinação máxima de 1,5%.

O equipamento funciona com quatro pilhas grandes (A) que tem duração média de 6 meses, contudo esta duração pode variar conforme o uso do aparelho. Pode permanecer exposto a chuvas e intempéries e não perde sua calibração nem mesmo no momento da troca das pilhas;

O mostrador pode ser instalado remotamente em relação ao tanque. O cabo de comunicação pode ter até 100 metros, contudo, a distância máxima depende do número de curvas do percurso. Cada NKL sai de fábrica com 03 metros de cabo. Para distâncias maiores o cabo pode ser encontrado facilmente no mercado. Sua especificação é tipo PP 3 x 0,50 mm².

Caso seja necessário substituir ou realizar alguma aferição no NKL, é possível acessar todas as informações necessárias o manual do fabricante através do link http://goo.gl/mlBfaH.

6.5. TABELA DE FALHAS COM POSSÍVEIS SOLUÇÕES

Vale ressaltar que esta tabela não deve ser tomada como regra. Estas informações visam auxiliar o mantenedor em caso de possíveis falhas apresentando soluções prováveis. Caso necessário, a assistência técnica Arxo deve ser contatada*.

^{*}Valores a dicionais podem ser cobrados dependendo da origem e natureza no problema.

PROBLEMA	CAUSA	AÇÃO CORRETIVA
Equipamento não funciona na	Falta de energia	Checar alimentação
posição	Falta de fase	Checar Fases
Abastecimento/Descarga e/ou	Tensão de alimentação	Checar/medir Tensão de
motor não parte	inadequada	alimentação trifásica
	Queda de Tensão	Checar/medir compatibilidade da Tensão de alimentação com a Tensão exigida pelo sistema
Motor desarma constantemente	Dala témpia a da a masa da	Verificar se o motor não está com sobrecarga ou com falta de fase
	Rele térmico desarmando	Verificar se o rele térmico é compatível com o exigido pelo motor
Perda de vazão durante o abastecimento	Elemento filtrante saturado	Efetuar a substituição do elemento filtrante conforme o tópico 6.3.
Perda de vazão durante a descarga	Rotação da bomba invertida	Efetuar a inversão de duas fases quaisquer das três que estão alimentando o sistema.
Falta de fluxo	Posicionamento da válvula direcional de fluxo e válvulas borboletas	Checar o posicionamento das válvulas conforme o item 5.2.
	Respiro do tanque obstruído ou tamponado	Checar tubo/conexão de respiro

7. ANEXOS

7.1 CURVA DA MOTOBOMBA THS-18

