Ensemble Methods (Adaboost and GBDT)

Prof.Mingkui Tan

South China University of Technology Southern Artificial Intelligence Laboratory(SAIL)

November 7, 2017

Content

- Introduction of Boosting Method
- 2 Adaboost
- **3** GBDT

Contents

- 1 Introduction of Boosting Method
- 2 Adaboost
- GBDT

Ensemble Learning

- Ensemble learning: Combine numerous weak learners to a strong learner
- Main methods: Boosting, Bagging

Boosting Method

Algorithm 1: Adaboost

Input: $D = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}, \text{ where } \mathbf{x}_i \in X, y_i \in \{-1, 1\}$

Initialize: Sample weight distribution $D_1 = \frac{1}{n}$

- 1 Train a base learner $h_1(\mathbf{x})$ with D_1
- 2 for m=2,3,...,M do
- Update the sample distribution D_m , to make the wrong predictive samples more important
- 4 Train a new base learner $h_m(\mathbf{x})$ with D_m
- 5 end

Output:
$$H(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})$$

Contents

- Introduction of Boosting Method
- 2 Adaboost
- GBDT

How to train the base leaner?

Make the wrong predictive samples more important, and handle it in next round:

Sample weight updating formula

$$w_{m+1}(i) = \frac{w_m(i)}{z_m} e^{-\alpha_m y_i h_m(\mathbf{x}_i)}$$

 $z_m=\sum_{i=1}^n w_m(i)e^{-\alpha_m y_i h_m(\mathbf{x}_i)}$ is normalization term, makes $w_m(i)$ become probability distributions

$$w_{m+1}(i) = \begin{cases} \frac{w_m(i)}{z_m} e^{-\alpha_m} & \text{for right predictive sample} \\ \frac{w_m(i)}{z_m} e^{\alpha_m} & \text{for wrong predictive sample} \end{cases}$$

so in next round, $\frac{w_{wrong}(i)}{w_{right}(i)}=e^{2\alpha_m}=\frac{1-\epsilon_m}{\epsilon_m}$ and $\epsilon_m<0.5$, wrong samples will be more important

How to combine the base learner?

Every iteration generates a new base learner $h_m(\mathbf{x})$ and its importance score α_m

Evaluate the performance of the base learner

Base learner

$$h_m(\mathbf{x}): \mathbf{x} \mapsto \{-1, 1\}$$

Error rate

$$\epsilon_m = p(h_m(\mathbf{x}_i) \neq y_i) = \sum_{i=1}^n w_m(i) \mathbb{I}(h_m(\mathbf{x}_i) \neq y_i)$$

 ϵ_m j0.5, or the performance of Adaboost is weaker than random classification.

Importance score of base learner

Make the base learner with lower ϵ_m more important

$$\alpha_m = \frac{1}{2} \log \frac{1 - \epsilon_m}{\epsilon_m}$$

Adaboost Additive model

Final learner

$$H(\mathbf{x}) = \operatorname{sign}(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x}))$$

Note: $h_m(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x})$ is a nonlinear function, so the Adaboost can deal with nonlinear problem

Algorithm

Algorithm 2: Adaboost

```
Input: D = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}, where \mathbf{x}_i \in X, y_i \in \{-1, 1\}
     Initialize: Sample distribution w_m
     Base learner: \mathcal{L}
 1 w_1(i) = \frac{1}{n}
 2 for m=1,2,...,M do
           h_m(x) = \mathcal{L}(D, w_m)
           \epsilon_m = \sum_{i=1}^n w_m(i) \mathbb{I}(h_m(\mathbf{x}_i) \neq y_i)
            if \epsilon_m > 0.5 then
                    break
            end
            \alpha_m = \frac{1}{2} \log \frac{1 - \epsilon_m}{\epsilon_m}
           w_{m+1}(i) = \frac{w_m(i)}{z_m} e^{-\alpha_m y_i h_m(\mathbf{x}_i)}, where i = 1, 2, ..., n and
              z_m = \sum_{i=1}^n w_m(i) e^{-\alpha_m y_i h_m(\mathbf{x}_i)}
10 end
```

4

5

7

8

9

Output: $H(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})$

Contents

Introduction of Boosting Method

- 2 Adaboost
- GBDT

Gradient Boosting Decision Trees

GBDT is a decision tree algorithm with iteration

Example: What is the difference between regression tree and GBDT?

Suppose: There are 4 peoples A, B, C and D, whose age are 14, 16, 24, 26 respectively.

Figure: Single regression tree

Gradient Boosting Decision Trees

- The key of GBDT is that trees learn all the results and residuals of all trees before.
- The residual is the difference of predictive value and real value, so the predictive value is the sum of all results of trees.

• So, A=15+(-1)=14 B=15+1=16 C=25+(-1)=24 D=25+1=26

Gradient Boosting Decision Trees Question

Q1:when results of these two algorithms are same, Why do we choose GBDT?

- The motivation of this algorithm is that every calculation of residual is to increase the weight of wrong predictive samples, and the residual of right predictive sample is zero.
- So in the next iteration, model can concentratively address these wrong predictive samples. Another function is to prevent over fitting.

Gradient Boosting Decision Trees Question

Q2: Where does this algorithm reflect gradient boosting?

In algorithm, residual is the gradient descent direction, which
is the derivation of mean square error(MSE). Actually, MSE is
the loss function of CART regression tree.

Setting	Loss Function	$-\partial L(y_i, f(x_i))/\partial f(x_i)$
Regression	$\frac{1}{2}[y_i - f(x_i)]^2$	$y_i - f(x_i)$
Regression	$ y_i - f(x_i) $	$sign[y_i - f(x_i)]$
Regression	Huber	$\begin{aligned} y_i - f(x_i) &\text{ for } y_i - f(x_i) \leq \delta_m \\ \delta_m &\text{ sign}[y_i - f(x_i)] &\text{ for } y_i - f(x_i) > \delta_m \\ &\text{ where } \delta_m = \text{ αth-quantile}\{ y_i - f(x_i) \} \end{aligned}$
Classification	Deviance	kth component: $I(y_i = \mathcal{G}_k) - p_k(x_i)$

Algorithm

Algorithm 3: GBDT

```
Input: D = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}, \text{ where } \mathbf{x}_i \in X, y_i \in \{-1, 1\}
      Initialize: f_0(x) = \arg\min_{\mu} \sum_{i=1}^n L(y_i, \mu)
     for m=1,2,...,M do
             \overline{\text{for i}}=1,2,...,n do
 2
                    r_{im} = -\left[\frac{\partial L(y_i, f_{m-1}(\mathbf{x}_i))}{\partial f_{m-1}(\mathbf{x}_i)}\right]
 3
                     Fit a regression tree to targets r_{im} giving terminal regions
 4
                      R_{im}, i = 1, 2, ..., J_m
             end
 5
             for j=1,2,...,J_m do
 6
                    \mu_{jm} = \arg\min_{\mu} \sum_{\mathbf{x}_i \in R_{jm}} L(y_i, f_{m-1}(\mathbf{x}_i) + \mu), j = 1, 2, ..., J_m
                    Update f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \sum_{i=1}^{J_m} \mu_{jm} \mathbb{I}(\mathbf{x} \in R_{jm})
 8
             end
 9
10 end
     Output: \hat{f}(\mathbf{x}) = f_M(\mathbf{x})
```

THANK YOU!