Lenguaje matemático, conjuntos y números

Pregunta 1 (2,5 puntos)

Sea A un conjunto y $f:A\longrightarrow A$ una aplicación. Se define f^n para todo $n\in\mathbb{N}$ mediante

$$\begin{cases} f^0 &= I_A \text{ (aplicación identidad en A)} \\ f^{n+1} &= f^n \circ f \end{cases}$$

Demuestre por inducción sobre n lo siguiente:

- a) $f^{n+1} = f \circ f^n$ para todo $n \in \mathbb{N}$;
- b) si f es biyectiva entonces $(f^{-1})^n = (f^n)^{-1}$ para todo $n \in \mathbb{N}$.

Solución: a) i) La propiedad $f^{n+1} = f \circ f^n$ es cierta para n = 0 pues al substituir se obtiene por un lado $f^{0+1} = f^0 \circ f = I_A \circ f = f$ y por otro lado, $f \circ f^0 = f \circ I_A = f$. Por tanto, $f^{0+1} = f \circ f^0$.

ii) Supongamos que la propiedad $f^{n+1} = f \circ f^n$ es cierta para n. Veámosla para n+1, esto es, $f^{(n+1)+1} = f \circ f^{n+1}$. En efecto:

$$\begin{array}{lll} f^{(n+1)+1} & = & f^{n+1} \circ f & \text{se ha aplicado la definición de la potencia,} \\ & = & (f \circ f^n) \circ f & \text{se ha aplicado la hipótesis de inducción,} \\ & = & f \circ (f^n \circ f) & \text{por la propiedad asociativa de la composición de funciones,} \\ & = & f \circ f^{n+1} & \text{se ha aplicado la definición de la potencia.} \end{array}$$

- b) Sea f una aplicación biyectiva. Obviamente para $n=0, f^0=I_A$ es biyectiva y supuesto que f^n es biyectiva, entonces $f^{n+1}=f^n\circ f$ es biyectiva por ser composición de aplicaciones biyectivas. Por tanto, f^n es biyectiva para todo $n\in\mathbb{N}$.
- i) La propiedad $(f^{-1})^n = (f^n)^{-1}$ es cierta para n = 0 pues al substituir se obtiene por un lado $(f^{-1})^0 = I_A$ y por otro lado, $(f^0)^{-1} = (I_A)^{-1} = I_A$. Por tanto, $(f^{-1})^0 = (f^0)^{-1}$.
- ii) Supongamos que la propiedad $(f^{-1})^n = (f^n)^{-1}$ es cierta para n. Veámosla para n+1, esto es, $(f^{-1})^{n+1} = (f^{n+1})^{-1}$. En efecto:

$$(f^{-1})^{n+1} = (f^{-1})^n \circ f^{-1}$$
 se ha aplicado la definición de la potencia,
 $= (f^n)^{-1} \circ f^{-1}$ se ha aplicado la hipótesis de inducción,
 $= (f \circ f^n)^{-1}$ por la fórmula de la inversa de la composición de funciones,
 $= (f^{n+1})^{-1}$ se ha aplicado el apartado a).

Pregunta 2 (2,5 puntos)

Se dice que el orden de un conjunto ordenado (U, \preceq) es denso (o divisible) si para todo $a, b \in U$ tales que $a \prec b$ existe $c \in U$ tal que $a \prec c \prec b$. Sean (U, \preceq) y (V, \preccurlyeq) dos conjuntos ordenados tales que existe una aplicación biyectiva $f: U \to V$ cumpliendo que para todo $a, b \in U$, $a \preceq b$ si y sólo si $f(a) \preccurlyeq f(b)$.

- a) Demuestre que el orden de U es denso si y sólo si es denso el orden de V.
- b) Deduzca de lo anterior si existe una aplicación biyectiva $f: \mathbb{Z} \to \mathbb{Q}$ cumpliendo que para todo $a, b \in \mathbb{Z}$ si $a \leq b$ entonces $f(a) \leq f(b)$.

Solución: Observemos que si $f: U \to V$ es una aplicación biyectiva cumpliendo que para todo $a, b \in U, a \leq b$ si y sólo si $f(a) \leq f(b)$, entonces $f^{-1}: V \to U$ es una aplicación biyectiva cumpliendo que para todo $c, d \in V$, $c \leq d$ si y sólo si $f^{-1}(c) \leq f^{-1}(d)$. Basta aplicar lo anterior para $a = f^{-1}(c)$ y $b = f^{-1}(d)$ y tener en cuenta que f(a) = c y f(b) = d.

- a) Por la observación anterior basta demostrar que si el orden de U es denso entonces es denso el orden de V. Supongamos que el orden de U es denso. Sean $c,d \in V$ tales que $c \prec d$, es decir, $c \preccurlyeq d$ y $c \neq d$. En consecuencia, $f^{-1}(c) \preceq f^{-1}(d)$ y como f^{-1} es biyectiva, $f^{-1}(c) \neq f^{-1}(d)$. Por tanto, $f^{-1}(c) \prec f^{-1}(d)$, y por ser el orden de U denso, existe $h \in U$ tal que $f^{-1}(c) \prec h \prec f^{-1}(d)$. Tomando g = f(h) se tiene que $c = f(f^{-1}(c)) \preccurlyeq g \preccurlyeq d = f(f^{-1}(d))$ pues f conserva el orden y además $g \neq c$ y $g \neq d$ pues f es biyectiva. Por tanto, $c \prec g \prec d$, y en consecuencia el orden de V es denso.
- b) Sabemos que el orden de $\mathbb Q$ es denso, (veáse la proposición 6.6 del texto base o directamente, si $a,b\in\mathbb Q$ es tal que a< b entonces existe c tal que a< c< b, por ejemplo, tomando $c=\frac{a+b}{2}$), mientras que el orden de $\mathbb Z$ no es denso, por ejemplo, 2<3 (o n< n+1) y no existe $d\in\mathbb Z$ tal que 2< d<3 (o n< d< n+1). En consecuencia, aplicando el apartado a) se deduce que no existe una aplicación biyectiva $f\colon\mathbb Z\to\mathbb Q$ cumpliendo que para todo $a,b\in\mathbb Z$ $a\leqslant b$ si y sólo si $f(a)\leqslant f(b)$. Por tanto, veáse la siguiente observación, no existe una aplicación biyectiva $f\colon\mathbb Z\to\mathbb Q$ cumpliendo que para todo $a,b\in\mathbb Z$ si $a\leqslant b$ entonces $f(a)\leqslant f(b)$.

Observación: si $f: \mathbb{Z} \to \mathbb{Q}$ es una aplicación biyectiva cumpliendo que para todo $a, b \in \mathbb{Z}$ si $a \leqslant b$ entonces $f(a) \leqslant f(b)$, entonces también se cumple que $a \leqslant b$ si y sólo si $f(a) \leqslant f(b)$. En efecto, si esto no fuera cierto, existirían $a, b \in \mathbb{Z}$ tales que $f(a) \leqslant f(b)$ y sin embargo $a \nleq b$. Como el orden de \mathbb{Z} es total, resulta que b < a, es decir, $b \leqslant a$ y $b \neq a$. Por tanto, $f(b) \leqslant f(a)$ y como f es biyectiva, $f(b) \neq f(a)$, o equivalentemente, f(b) < f(a), que es absurdo pues $f(a) \leqslant f(b)$.

Pregunta 3 (2,5 puntos) Sea $(A, +, \cdot)$ un anillo conmutativo unitario. Dados H y P dos subconjuntos no vacíos de A, se considera la suma H + P y el producto $H \cdot P$ definidos por:

$$H + P = \{a + b \mid a \in H \ y \ b \in P\}$$

$$H \cdot P = \{a_1b_1 + a_2b_2 + \dots + a_nb_n \mid a_i \in H, b_i \in P, i = 1, 2\dots, n \text{ y } n \in \mathbb{N}^*\}.$$

Sean I y J dos ideales de A.

- a) Demuestre: i) $I \cdot J \subset I \cap J$; ii) $(I + J) \cdot (I \cap J) \subset (I \cdot J)$.
- b) Demuestre que si A = I + J entonces $I \cdot J = I \cap J$.

Solución: a) i) Veamos que $I \cdot J \subset I \cap J$: en efecto, si $z \in I \cdot J$, entonces existen $i_k \in I$, $j_k \in J$, k = 1, 2, ..., n y $n \in \mathbb{N}^*$ tales que $z = i_1 j_1 + i_2 j_2 + \cdots + i_n j_n$. Pero si I y J son ideales de A entonces $i_k j_k \in I$ e $i_k j_k \in J$ para todo k = 1, 2, ..., n y por tanto, $z = i_1 j_1 + i_2 j_2 + \cdots + i_n j_n \in I$ y $z = i_1 j_1 + i_2 j_2 + \cdots + i_n j_n \in J$ pues I y J son subgrupos aditivos de A. En consecuencia $z \in I \cap J$.

- ii) Veamos que $(I+J) \cdot (I \cap J) \subset (I \cdot J)$: en efecto, si $z \in (I+J) \cdot (I \cap J)$, entonces existen $a_k \in I+J$, $b_k \in I \cap J$, $k=1,2\ldots,n$ y $n \in \mathbb{N}^*$ tales que $z=a_1b_1+a_2b_2+\cdots+a_nb_n$. Si $a_k \in I+J$ entonces para cada $k=1,2\ldots,n$ existen $i_k \in I$ y $j_k \in J$ tales que $a_k=i_k+j_k$. En consecuencia, $z=(i_1+j_1)b_1+(i_2+j_2)b_2+\cdots+(i_n+j_n)b_n=i_1b_1+b_1j_1+i_2b_2+b_2j_2+\cdots+i_nb_n+b_nj_n$. Teniendo en cuenta que los elementos i_kb_k cumplen $i_k \in I$ y $b_k \in J$ mientras que los elementos b_kj_k cumplen que $b_k \in I$ y $j_k \in J$ se obtiene que $z \in I \cdot J$.
- b) Aplicando el apartado a) i) sólo tenemos que ver que $I \cap J \subset I \cdot J$ si A = I + J. En efecto si A = I + J, entonces $1 \in I + J$ y por tanto existen $i \in I$ y $j \in J$ tales que 1 = i + j. Si $z \in I \cap J$ entonces z = 1.z = (i + j)z = iz + zj. Como $i \in I$, $z \in J$ e $z \in I$, $j \in J$ se tiene que $z \in I \cdot J$.

Pregunta 4(2,5 puntos) Sea en \mathbb{C} la ecuación $(z-1)^n-(z+1)^n=0$ siendo $n\in\mathbb{N}^*$.

- a) Demuestre que si $\omega \in \mathbb{C}$ es solución de la ecuación si y sólo si es solución de dicha ecuación el opuesto de ω , $-\omega$.
- b) Resuelva la ecuación.

Solución: a) Si $\omega \in \mathbb{C}$ es solución de la ecuación entonces $(\omega - 1)^n - (\omega + 1)^n = 0$. Comprobemos que $-\omega$ es solución de la ecuación. En efecto:

$$(-\omega - 1)^n - (-\omega + 1)^n = ((-1)(\omega + 1))^n - ((-1)(\omega - 1))^n$$
$$= (-1)^n ((\omega + 1)^n - (\omega - 1)^n) = (-1)^{n+1} ((\omega - 1)^n - (\omega + 1)^n)$$
$$= 0$$

Aplicando lo anterior, si $-\omega$ es solución de la ecuación entonces $-(-\omega) = \omega$ es solución.

b) Observemos en primer lugar que la ecuación $(z-1)^n - (z+1)^n = 0$ es en realidad una ecuación de grado n-1. Para n=1 se obtiene -2=0 que no tiene solución. Supondremos pues que n>1. Teniendo en cuenta que z=1 no es solución de la ecuación, dividimos por $(z-1)^n$ y se obtiene

$$1 = \left(\frac{z+1}{z-1}\right)^n.$$

Efectuando el cambio de variable $\omega = \frac{z+1}{z-1}$ se obtiene la ecuación $\omega^n = 1$, que expresando en forma exponencial para $\omega = re^{i\beta}$, se obtiene

$$r^n e^{in\beta} = e^{i \cdot 0}$$

cuyas soluciones son $\begin{cases} r^n = 1 \text{ (ecuación en } \mathbb{R}_+) \\ n\beta = 0 \text{ [mod } 2\pi\text{]} \end{cases}.$

Obtenemos n soluciones distintas $\omega_0, \, \omega_1, \, \ldots, \, \omega_{n-1}$:

$$\omega_k = e^{i\frac{2k\pi}{n}}$$
 para $k = 0, 1, \dots, n-1$.

Deshaciendo el cambio de variable, $\omega(z-1)=z+1$, esto es, $z(\omega-1)=\omega+1$. Y por tanto,

$$z = \frac{\omega + 1}{\omega - 1}$$

siempre que $\omega \neq 1$. En consecuencia como para k=0, se obtiene $\omega=1$, las soluciones de la ecuación propuesta son

$$z_k = \frac{e^{i\frac{2k\pi}{n}} + 1}{e^{i\frac{2k\pi}{n}} - 1}$$
 para $k = 1, 2, \dots, n - 1$.