(Полу-)инварианты в алгебре

- 1. На доске записаны числа 2, $\sqrt{2}$, $1/\sqrt{2}$. Разрешается заменить любые два числа a и b на $(a+b)/\sqrt{2}$ и $(a-b)/\sqrt{2}$. Можно ли с помощью таких операций получить тройку 1, $\sqrt{2}$, $1+\sqrt{2}$?
- 2. На доске написаны многочлены $P(x) = x^2 + 2$ и Q(x) = x + 1. Разрешается записать на доску сумму, разность или произведение любых двух из уже выписанных на доску многочленов. Может ли на доске появиться многочлен $R(x) = x^3 + 2$?
- 3. Даны две числовые последовательности $(x_n)_{n\in\mathbb{N}}$ и $(y_n)_{n\in\mathbb{N}}$ такие, что $x_1=1,\,y_1=2$ и

$$x_{n+1} = \frac{x_n + y_n}{2}, \quad y_{n+1} = \frac{1}{1/x_n + 1/y_n}$$
$$\left(x_{n+1} = \frac{5x_n - 12y_n}{13}, \quad y_{n+1} = \frac{12x_n + 5y_n}{13}\right)$$

при всех $n \in \mathbb{N}$. Вычислите $x_{100} \cdot y_{100} \ (x_{100}^2 + y_{100}^2)$.

- 4. По кругу записано несколько действительных чисел. Если для каких-либо подряд идущих чисел a, b, c, d верно неравенство (a-d)(b-c) < 0, то разрешается поменять местами числа b и c. Можно ли проделывать эту операцию бесконечно много раз?
- 5. Над квадратным трёхчленом $ax^2 + bx + c$ разрешены следующие операции: а) поменять местами коэффициенты a и c; b) заменить x на x+t для любого $t \in \mathbb{R}$. Можно ли c помощью таких операций получить многочлен $x^2 x 1$ из многочлена $x^2 x 2$?