

Docente Responsável: José A. B. Gerald

E-mail: jabg@tecnico.ulisboa.pt

jabg@inesc-id.pt

Tel: 213100368

Local: INESC-ID, 2º andar

Capítulo 1 Introdução

José Gerald

Mestrado em Engenharia Aeroespacial Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia Aeroespacial

> MEAer: 1º ano, 1º semestre LEFT: 3º ano, 1º semestre LEAer: 3º ano, 1º semestre

> > 2021/2022

Capítulo 1 Introdução

jabg@tecnico.ulisboa.pt

2

Objectivos

Desenvolver a capacidade de resolução de problemas de análise e síntese de circuitos simples. Verificação experimental dos principais conceitos apreendidos.

Programa

- Amplificadores Operacionais
- Filtros Ativos
- Osciladores
- Conversores de Sinal
- Conversores Eletrónicos de Potência
- Filtros Digitais
- Circuitos Digitais

Esquema/Plano das Aulas → fénix

Semana: 4TP+3L

Avaliação → **fénix**

NF=0,5(0,5L1+0,25L2+0,25L3)+0,5MAX(E,ER)

2 Exames (nota mínima 9,5)

Laboratório (nota mínima 9,5)

Estrutura da matéria → fénix

Bibliografia → **fénix**

Adel S. **Sedra** e Kenneth C. Smith, Microelectronic Circuits, Oxford University Press. (7º Edição)

Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, 3/E, Prentice Hall, 2013. (3º Edição)

Cópia dos slides da matéria teórica → **fénix**

Enunciados dos problemas → fénix

Enunciados dos laboratórios -> fénix

1. Sinais analógicos e digitais

Representações de uma fonte de sinal:

2. Espectro de sinais

Domínio do tempo:

Domínio da frequência:

3. Amplificadores

3.1. Amplificador de tensão

Modelo de um amplificador de tensão

Gerador e carga ligados a um amplificador de tensão

Fonte de tensão dependente de tensão

$$v_{o} = A_{vo}v_{i} \frac{R_{L}}{R_{L} + R_{0}} \qquad A_{v} = \frac{v_{0}}{v_{i}} = A_{vo} \frac{R_{L}}{R_{L} + R_{0}}$$

$$\frac{v_{0}}{v_{s}} = \frac{v_{0}}{v_{i}} \frac{v_{i}}{v_{s}} = A_{vo} \frac{R_{L}}{R_{L} + R_{0}} \frac{R_{i}}{R_{i} + R_{s}}$$

Os divisores de resistência na entrada e na saída provocam redução do ganho

3.2. Amplificador de corrente

Modelo de um amplificador de corrente (Ex. Transístor bipolar)

Fonte de corrente dependente de corrente

3.3. Amplificador de transcondutância

Modelo de um amplificador de transcondutância

Fonte de corrente dependente de tensão

TJB:

 $i_C = g_m v_{BE}$

MOSFET: $i_D = g_m v_{GS}$

3.4. Amplificador de transresistência

Fonte de tensão dependente de corrente

4. Resposta em frequência de amplificadores

4.1. Definições

Função de transferência:

$$T(\omega) = \frac{v_o(\omega)}{v_i(\omega)} \quad \Rightarrow \quad \begin{cases} |T(\omega)| & \mathsf{M\'odulo} \\ \mathsf{arg}\{T(\omega)\} & \mathsf{Fase} \end{cases}$$

4.2. Largura de banda

Largura de banda: -3 dB do patamar (banda de passagem)

$$LB = \omega_2 - \omega_1$$

Passa-Baixo:

Passa-Banda

4. Resposta em frequência de amplificadores (cont.)

4.2. Largura de banda (cont.)

Seguidor de tensão

Sinal de Entrada:

Sinal de Saída:

Limitação por slew-rate

