### **Research Methods**

**Empirical Sampling Distributions 2** 

Dr. Sven Magg, Prof. Dr. Stefan Wermter



http://www.informatik.uni-hamburg.de/WTM/

## Plan for today!



- Quick Recap
  - a) Statistical tests and sampling distributions
  - b) Monte-Carlo Tests and Bootstrapping
- 2. Randomization
- 3. Data Collection Summary
- 4. The Final Experiment

### **Hypothesis Testing**

### Following Neyman-Pearson:

- 1. State null Hypothesis  $H_0$  and alternate hypothesis  $H_1$
- 2. Determine acceptable  $\alpha$  and  $\beta$  errors
- 3. Gather a sample statistic x (run experiment)
- 4. Find sampling distribution  $N_h$ , assuming  $H_0$  is true
- 5. Determine cut-off points  $c^+$  and  $c^-$  such that  $P(N_h \ge c^+) + P(N_h \le c^-) \le \alpha$
- **6.** Decide: If  $(x \ge c^+)$  or  $(x \le c^-)$ , reject  $H_0$ 
  - Reject  $H_0$  if x falls into rejection regions defined by  $\alpha$
- Problem is always to find a suitable sampling distribution

### Sampling distributions

- Different ways to get sampling distributions
  - Exact distributions
    - Derived analytically/mathematically
  - Estimated distributions
    - Central Limit Theorem (CLT)
    - Z-distribution (standard normal distribution)
    - t-Distributions
    - Fisher's z-distribution
  - Determining sampling distributions empirically
    - Monte-Carlo Tests
    - Bootstrapping
    - Randomization

### **Monte-Carlo Simulation**

- If we know the parameters of the population we draw from, we can
  - treat sampling as a stochastic simulation
  - create a probability distribution by drawing pseudo-samples

#### Monte-Carlo Simulation:

- 1. Determine population parameters and test statistic θ
  - a) For i = 1 to K
  - b) Draw pseudo-sample of size N from the population
  - c) Calculate and record test statistic  $\theta_i^*$  for pseudo-sample
- 2. Use the distribution of  $\theta^*$  to determine probability of original sample under  $H_0$

## **Monte-Carlo Example**

- We have two populations A and B and two samples  $S_A$  and  $S_B$  of sizes  $N_A$  and  $N_B$
- As statistic  $\theta$  we use the difference of the median  $\theta = median(S_A) median(S_B)$
- Generate probability distribution:
  For i = 1 to K
  - a. Draw pseudo-samples  $S_A^*$  of size  $N_A$  from population A and  $S_B^*$  of size  $N_B$  from B
  - b. Calculate and record  $\theta_i^* = f(S_A^*, S_B^*)$
- Find probability of  $\theta$  using the distribution of  $\theta^*$

## **Monte-Carlo Sampling**

#### Advantages

- Straightforward and usually simple to calculate
- Cheap for most computer science problems
- Can be used for any statistic

#### Disadvantages

- We have to know the population parameters to know where to draw samples from
- Often the population parameters are not known

### **Bootstrapping**

- Let's assume
  - We have sample(s) S of a reasonable size N
  - We don't know the population parameters
- We can perform Monte-Carlo Sampling on the sample
  - Treat the sample as the population
  - Run Monte-Carlo Simulation with replacement
- 1. For i = 1 to K
  - a) Select a sample  $S_i^*$  of size N from S with replacement
  - b) Calculate and record statistic  $\theta_i^*$  for  $S_i^*$
- 2. Determine and use probability distribution of  $\theta^*$

### **Bootstrapping**

- Reminder:
  - S and therefore  ${S_i}^*$  are taken from the population that belongs to  $H_1$
  - $\theta^*$  is the probability distribution under  $H_1$ !
- Since we want the sampling distribution under H<sub>0</sub>, we have to transform it:
  - If we can assume that the shapes of the population distributions under  $H_0$  and  $H_1$  are similar: Shift-Method
  - If we can assume that  $\bar{x} \mu$  is normally distributed: Normal Approximation Method

### **Bootstrapping**

#### Advantages

- Straightforward and usually simple to calculate
- One important assumption: The original sample is representative of the population
- Works well in many situations
- Can be used to bootstrap confidence intervals for distributions that are not normal (see Cohen 5.6)

#### Disadvantages

- Bootstrapping is dependent on the quality of the sample
- It is hard to decide whether we have a good sample

### **Randomization Tests**

- Sometimes we don't need to draw conclusions about populations
- Question: Do two samples S<sub>A</sub> and S<sub>B</sub> significantly differ?
  - Parametric and bootstrap tests: Indirect answer through inference about population parameters
- Can we answer the question directly?
  - We only want to use information from the samples
  - We do not want to make assumptions about the populations those samples come from

### Randomisation Example

We have two samples and a statistic

|       | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | median |
|-------|----|----|----|----|----|----|----|----|----|----|--------|
| $S_A$ | 32 | 32 | 45 | 45 | 23 | 67 | 53 | 67 | 41 | 53 | 45     |
| $S_B$ | 43 | 24 | 42 | 23 | 23 | 43 | 23 | 60 | 32 | 41 | 36.5   |

 We want to know whether the difference in median of 8.5 means a significant difference

### Approximate randomisation

- We want to know whether both samples are drawn from the same population
- We have two samples of size  $N_A = N_B = 10$  and our test statistic is  $\theta = median(S_A) median(S_B)$
- $S_{A+B} = S_A + S_B$  is the concatenation of the two samples

## **Approximate randomisation**

- 1. For i = 1 to K
  - a) Shuffle the elements of  $S_{A+B}$  to create  $S_{A+B}^*$
  - b) Assign first  $N_A$  values to the randomised pseudo-sample  $S_A^*$  and remaining to  $S_B^*$
  - c) Calculate and record test statistic  $\theta_i^*$
- 2. Use distribution of  $\theta^*$  to determine probability of the sample result  $\theta$  under  $H_0$
- In our example:
  - K=5000
  - 502 elements are ≥ 8.5
  - p = 502/5000 = 0.1004



### Why approximate?

- If we would use all possible outcomes to create the probability distribution, we would perform exact randomisation
- In our example we can draw  $\frac{20!}{10!*10!} = 184756$  possible samples  $S_A^*$
- We only used 5000 (=2.7%), therefore "approximate"
- Exact randomisation may not be feasible due to the large number of possible randomised samples
- We have to use a smaller distribution and arrive only at an approximate probability

### **Randomisation Tests**

#### Advantages

- Can always be used if we have 2 samples
- Does not need assumptions about population parameters
- "suited to test hypotheses about arrangements of data and statistics that characterize the arrangements" [Cohen]

#### Disadvantages

- Does not create a real "sampling distribution"
- We can't infer general results about the underlying populations

### Randomisation Test of Independence

| x | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|---|----|----|----|----|----|----|----|----|----|----|
| y | 54 | 66 | 61 | 44 | 60 | 55 | 51 | 45 | 63 | 52 |

- Correlation coefficient: r = -0.255
- Question: Are x and y independent?
- Randomisation test of independence:
  - 1. Repeat 5000 times
    - a) Shuffle y to create  $y^*$
    - b) Calculate and record  $r^* = corr(x, y^*)$
  - 2. Use distribution of  $r^*$  to calculate probability of r = -0.255
- After 5000 repetitions, 1200 values are below −0.255
- For which number of values would we have rejected H<sub>0</sub>?

### **Bootstrap vs. Randomisation**

#### Both

- generate distributions from the original sample
- can be used if parametric assumptions can't be met
- can be used for statistical tests where no estimated sampling distribution is available (unconventional statistics)

#### Bootstrapping

- Resampling with replacement
- Simulates the process of drawing from an infinite population
- Assumes that the sample is representative of the population,
  i.e. that the frequency distribution is the same
- Can be used to construct confidence intervals
- Becomes very robust with larger sample sizes

### **Bootstrap vs. Randomisation**

#### Randomisation

- Resampling without replacement
- Needs at least two samples to generate a combined sample
- Tests whether a particular arrangements is unusual relative to the distribution under the null hypothesis
- Does not produce "real" sampling distributions
- We can therefore not infer population parameters (i.e. also no confidence intervals, etc.)

### **Bootstrap vs. Randomisation**

### Why use randomization then at all?

- Perform as well as parametric tests when parametric assumptions hold
- Outperform them when assumptions don't hold!
- Bootstrapping is as accurate as t-test for larger samples and generally equal when parametric assumptions are violated

### Computer-Intensive vs. parametric

- No need to check assumptions
- Usually not inferior to parametric tests in ideal conditions
- Ideal for computer scientists where large sample sizes are the standard and require no knowledge about specific sampling distributions

### What have we learned?

- 1. Randomisation allows us to compare two samples without knowledge about the population
- 2. Variants of randomisation can replace parametric tests (2-sample t-test, paired t-test, test of independence)
- 3. Computer-intensive tests are not inferior to parametric tests
- For you it is often a trade-off between practicability and the perfect test
- 5. Always: Once you have chosen a test, be careful about assumptions, limits, transformations, etc.
- 6. If in doubt: Run a second test (e.g. 2-sample t-test & randomisation test if not sure parametric assumptions hold)

### **Data-Collection Wrap-Up**

- Consent form and questionnaire
  - 15 participants, 13 male, 2 female
  - Only right handed people!
  - 13 different native languages, none English
  - 13/15 consented to possible public usage of the data
  - Why did we offer a "Don't use" option?
- Trying to prepare for confounding variables:
  - Conditions that affect movement/speech (injuries, sports)
  - Pre-existing knowledge on robots/HRI (field of study, previous HRI studies, specific order of people)

## Speech and Gesture Recording



### Speech and Gesture Recording: Data Set

#### Overall:

- 489 data points including test runs
- 4,14 GB video data, 382 MB sound recordings
- Recordings session (in sum): 3h, 53min
- Each participant labored 16,64min on average
- Conducted 4 different recordings:
  - Free speech & gesture: 206 recs, with Binaural head + Kinect
  - Free speech: 171 recs, with Binaural head + Android Phone
  - Free gesture: 26 recs, with Kinect
  - Speech & gesture from grammar: 86 recs, with Binaural head + Kinect
- Overall recordings with useful quality: estimated 80%

## **Speech Recording: Result Quality**



### Free Speech Recording: Interesting Results

- Example: Robot should stop its action.
  - Expected Utterance: Robot stop.
  - Recorded Utterance: Robot please don't do that.

Unexpected vocabulary

- Example: Robot should put down the object.
  - Expected Utterance: Robot put down object.
  - Recorded Utterance: Hi robot, please put the object that you are carrying down.

Complex and long utterances

- Example: Robot should move to the left.
  - Expected Utterance: Robot go left.

**Ambiguities** 

- Recorded Utterance: Robot I want you to go left, right now.
- Example: Robot's action was correct.
  - Expected Utterance: This is correct.

Slang

Recorded Utterance: Robot you are doing good, keep going.

# **Depth and Video recording**









### Things we have encountered

- Always provide cookies to keep people happy!
- Run pilot study!
  - To avoid technical problems (directed microphone, Kinect interference, delay in recording, ....)
  - To adjust timing and synchronisation between setups

#### Organisation

- Provide quiet place to fill consent form and questionnaire
- Prepare schedule that can deal with asynchronous setups
- Perform complete test run of setup before start
- Better preparation (e.g. forms for comments of investigator)

### Things we have encountered

- Full body movements
  - Kinects interfere with each other, creating noise
  - People try to be especially expressive when moving
    - Slower motion?
    - Looking towards the sensor / investigator
  - Some assumptions were wrong, e.g. people don't want to fall realistically
  - We always have the same sequence, maybe improve setup towards random order of actions
  - Potentially 100% of the data can be used, although standard libraries, e.g. skeleton model fitting, fail for some poses
  - Streams were not automatically synchronised

### Things we have encountered

- Speech & Gesture setup
  - Quality of sound recording inverse to expectation (head vs. phone)
  - Giving user control of begin & end of gesture worked and made post-processing easier
    - Cutting points unbiased by investigator
    - Automatic segmentation of video/audio streams
    - Automatic labelling

## The Final Experiment

#### Aim

- You are designing, setting up and running an HRI pilot study
- Possible questions to investigate: What is a human baseline for
  - a) detecting the gesture/command that was given
  - b) accuracy in understanding an utterance

#### Organisation

- Two groups run two different (but similar) studies
- Each group is accompanied by an advisor and supported by WTM in terms of rooms/equipment/expertise
- Deadline: Open for discussion

### The Final Experiment

#### You work:

- Break the whole task down into subtasks and prioritise
- Define the hypotheses
- Define and discuss the experiment protocol and the procedures that you want to use
- Specify how to collect the data and how to analyse it
- Organise and run the experiments.