CHEMISTRY

CHAPTER - 2

अम्ल, क्षारक एवं लवण ACID, BASE & SALT

प्रश्न 1. अम्ल किसे कहते हैं ?

उत्तर – अम्ल वह पदार्थ है जिसका स्वाद खट्टा होता है। जो नीले लिटमस के घोल को लाल कर देता है। जलीय विलयन में हाइड्रोजन आयन (H^+) मुक्त करता है तथा धातु पर अम्ल की अभिक्रिया से हाइड्रोजन गैस मुक्त होते हैं। $\frac{1}{3}$ जैसे – HCl, HNO_3 , H_2SO_4 इत्यादि।

प्रश्न 2. क्षारक या भस्म किसे कहते हैं ?

उत्तर-क्षारक वह पदार्थ है जिसका स्वाद कड़वा होता है, लाल लिटमस को नीला बनाता है। इसका जलीय विलयन (OH⁻) हाइड्रोजन आयन मुक्त करता है। तथा अम्ल से अभिक्रिया कर लवण बनाता है। जैसे-NaOH, CuO, CaO तथा Ca(OH)2 इत्यादि।

प्रश्न 3. लवण की परिभाषा उदाहरण द्वारा दें।

उत्तर-वे पदार्थ लवण कहलाते हैं जो लिटमस पत्रें के प्रति उदासीन होते हैं। धातु तथा अम्लों के बीच अभिक्रिया के फलस्वरूप लवण बनते हैं।

Singh

 $Zn + 2HCl \longrightarrow ZnCl_2 + H_2 \uparrow$

प्रश्न 4. अम्ल के पाँच गुणों को लिखें।

उत्तर - अम्ल के पाँच गुण निम्नलिखित हैं -:

- (i) अम्ल स्वाद में खट्टे होते हैं। जैसे-नींबू, संतरा।
- (ii) कुछ अम्ल विषैले होते हैं। जैसे-कार्बोलिक अम्ल द्धिफनॉलऋ
- (iii) कुछ अम्ल संक्षारक एवं हानिकारक होते हैं। जैसे-सल्फ्यूरिक अम्ल।
- (iv) कुछ अम्लों से अनेक प्रकार के खाद एवं विस्फोटक बनाये जाते हैं। जैसे -नाइट्रिक अम्ल।
- (v) कुछ अम्ल स्वास्थ्य पर बुरा प्रभाव डालते हैं।

प्रश्न 5. क्षार के पाँच गुणों को लिखें।

उत्तर - क्षार के गुण निम्नलिखित हैं -:

- (i) इनका स्वाद कड़वा होता है।
- (ii) ये साबुन जैसे चिकने होते हैं तथा त्वचा को हानि पहुँचाते हैं।
- (iii) ये लाल लिटमस को नीला कर देते हैं।
- (iv) ये हल्दी के रंग को भूरा लाल कर देते हैं।
- (v) ये अम्लों के साथ क्रिया करके लवण तथा जल बनाते हैं।

प्रश्न 6. क्षारों के उपयोग बतावें।

उत्तर - क्षारों के उपयोग निम्नलिखित हैं -:

- (i) इसका उपयोग साब्न बनाने में किया जाता है।
- (ii) इन्हें क्षारीय बैटरियों में प्रयुक्त किया जाता है।
- (iii) इनका उपयोग पेट्रोल रिफाइनिंग और कागज उद्योग में प्रयुक्त होता है।
- (iv) कठोर जल को मृदु बनाने में इसका उपयोग किया जाता है।

प्रश्न 7. अम्ल तथा क्षार में अंतर स्पष्ट करें।

उत्तर - अम्ल तथा क्षार में निम्नलिखित अंतर हैं-:

A	अम्ल		क्षार 🛰
(i) इस	का स्वाद खट्टा होता है।	(i)	इसका स्वाद कड़वा होता है।
(ii) यह	ं∖नीले लिटमस पृत्र को लाल कर	(ii)	यह लाल लिटमस पर्न को नीला कर
	त है।		देता है।
(iii) यह	जल में विलेय होकर हाइड्रोजन	(iii)	यह जल में विलेय होकर हाइड्रॅक्साइड
	यन (H⁺)्देता है।		आयन (OHT) देता है।
	क्षारक को उदासीन कर देता है।	(iv)	यह अम्ल को उदासीन कर देता है।
<u>(v)</u> इस	का pH मान 7 से कम होता है।	(v)	इसका pH मान 7 से अधिक होता है।

प्रश्न 8. आरहेनिस द्वारा दी गई अम्ल तथा भस्म की परिभाषा दें।

उत्तर - अम्ल - अम्ल वह पदार्थ है जो जल में घुलकर हाइड्रोजन आयन (H⁺) प्रदान करता है।

जैसे - HCI, H₂SO₄, HNO₃, CH₃COOH इत्यादि।

$$HCI \longrightarrow H_2O \longrightarrow H^+ + CI^-$$

भस्म – भस्म वह पदार्थ है जो जल में घुलकर हाइड्रॉक्साइड (OH^-) आयन देता है।

जैसे NaOH, KOH, NH4OH, Ca(OH)2 इत्यादि।

NaOH
$$\stackrel{\text{H}_2\text{O}}{\longrightarrow}$$
 Na⁺ + **OH**⁻

- प्रश्न 9. आयनीकरण के आधार पर अम्लों का विभाजन किन वर्गों में किया जाता है ? वर्णन करें।
- उत्तर आयनीकरण के आधार पर अम्लों का विभाजन दो वर्गों में किया जाता है-:
 - (i) प्रबल अम्ल (Strong Acid) जो अम्ल जल में घुलकर लगभग पूर्णतः आयनित होकर हाइड्रोजन आयन (\mathfrak{p}) प्रदान करते हैं। जैसे हाइड्रोक्लोरिक अम्ल (HCl), नाइट्रिक अम्ल (HNO $_3$), सल्फ्यूरिक अम्ल (H_2 SO $_4$) इत्यादि।
 - (ii) दुर्बल अम्ल (Weak Acid) वे अम्ल जो जल में घुलकर सिर्फ आंशिक रूप से आयनित होते हैं, उसे दुर्बल अम्ल कहते हैं। जैसे कार्बोनिक अम्ल (H_2CO_3), ऐसीटिक अम्ल (CH_3COOH), दुर्बल अम्ल हैं। बोरिक अम्ल (H_3BO_3) भी एक दुर्बल अम्ल है, जिसका उपयोग ऐंटीसेप्टिक के रूप में होता है।
- प्रश्न 10. विलयन में उपस्थित अम्ल की मात्र के अनुसार अम्लों का विभाजन किन वर्गों में किया जाता है ? वर्णन करें।
- उत्तर वियलन में उपस्थित अम्ल की मात्रा के अनुसार अम्लों को दो वर्गों में बाँटा गया है-:
 - (i) सांद्र अम्ल (Concentrated Acid) जब विलयन में अम्ल की अधिक मात्र उपस्थित रहती है तो उसे सांद्र अम्ल कहते हैं। सांद्र अम्ल में जल की मात्रा कम रहती है।
 - (ii) तनु अम्ल (Dilute Acid) जब विलयन में अम्ल की मात्र कम रहती है तो उसे तनु अम्ल कहते हैं। तनु अम्ल में जल की मात्रा अधिक रहती है।
- प्रश्न 11. अम्ल तथा क्षार के आरहेनियस सि)ान्त की सीमाओं का उल्लेख करें। उत्तर – आरहेनियस सिद्धान्त के दोष निम्नलिखित हैं –:
 - (i) इस सि)ान्त के अनुसार अम्ल H युक्त यौगिक हैं और क्षार OH युक्त यौगिक हैं। लेकिन कुछ ऐसे क्षार हैं जिनमें OH Uहीं रहता। इन अम्लों तथा क्षारों की व्याख्या इस सिद्धान्त के आधार पर नहीं की जा सकती।
 - (ii) द्रव अमोनिया में NH_4NO_3 का आचरण अम्लीय होता है। इसकी व्याख्या इस सि) I=1 के आधार पर नहीं की जा सकती।
 - (iii) जलीय विलयन में HCl तो अम्ल माना जाता है किंतु गैसीय अवस्था में या अन्य विलायक द्धजैसे-बेंजीनऋ में अम्ल नहीं माना जाता।
- प्रश्न 12. आयनीकरण के आधार पर भस्मों को कितने भागों में बांटा गया है ? वर्णन करें। उत्तर-आयनीकरण के आधार पर भस्मों को दो वर्गों में बांटा गया है-:

- (i) i Ly IILe (Strong base)- वे भस्म जो जलीय विलयन में पूर्णतः आयनित होकर काफी मात्र में हाइड्रॉक्साइड आयन (OH⁻) प्रदान करते हैं। उसे प्रबल भष्म या प्रबल क्षार कहते हैं। जैसे NaOH, KOH प्रबल भष्म है।
- (ii) दुर्बल भस्म (Weak base) वे भस्म जो जलीय विलयन में सिर्फ अंशतः आयिनत होकर कम मात्र में हाइड्रॉक्साइड (OH $^-$) प्रदान करते हैं। उसे दुर्बल भस्म या दुर्बल क्षार कहलाते हैं। जैसे अमोनियम हाइड्रॉक्साइड (NH $_4$ OH), कैल्शियम हाइड्रkIII kbM Ca(OH) $_2$ |

प्रश्न 13. सूचक (Indicator) किसे कहते हैं ? ये कितने प्रकार के होते हैं ? परिभाषित करें। उत्तर – सूचक ऐसे पदार्थ होते हैं जो अपने रंग परिवर्तन के द्वारा पदार्थ के अम्लीय या क्षारीय या उदासीन होने की सूचना देते हैं।

तीन सामान्य सूचक लिटमस प्रः, मिथाइल ऑरेंज तथा फीनॉल्फथैलिन हैं। सूचक को अम्ल क्षारक सूचक भी कहते हैं।

ये दो प्रकार के होते हैं-:

- (i) प्राकृतिक सूचक प्राकृतिक सूचक के अंतर्गत लिटमस पृत्र तथा हल्दी आते हैं। चुकन्दर, लाल गोभी पत्ता।
- (ii) संश्लेषित सूचक इसके अंतर्गत मिथाइल ऑरेंज तथा फिनॉल्फथिलन हैं। प्रश्न 14. गृह निर्मित सूचक आप कैसे बनायेंगे ?
- उत्तर -हल्दी के छोटे-छोटे टुकड़े को जल के साथ गरम कर छान लेते हैं। हल्दी से प्राप्त विलयन को दो अलग-अलग परखनिलयों में लेते हैं। एक परखनिली में साबुन का विलयन डालते हैं। परखनिली के विलयन का पीला रंग लाल-भूरे रंग में बदल जाता है, जिससे साबुन के क्षारीय होने की पहचान होती है। दूसरे परखनिली में सिरका डालते हैं। सिरका परखनिली में रखे विलयन के रंग में कोई परिवर्तन नहीं करता। अतः सिरका अम्लीय है।
- प्रश्न 15. अम्लों की शक्ति के बारे में आप क्या जानते हैं ? किन-किन तरीकों से अम्लों की शक्ति की तुलना की जा सकती है ?
- उत्तर अम्ल के जलीय विलयन में अम्ल द्वारा प्राप्त हाइड्रोजन आयनों की मात्र से उसकी अम्लीय शक्ति का निर्धारण होता है।

निम्न तरीकों से अम्लों की तुलना की जा सकती है-

- (i) अम्ल के स्रोत के आधार जैसे-कार्बनिक यौगिक पौधा से प्राप्त अम्ल –साइट्रिक अम्ल, ऑक्जैलिक अम्ल।
- (ii) आण्विक संरचना के आधार पर अम्ल हाइड्रा अम्ल HCI, HBr, HI
- (iii) प्रबल अम्ल के आधार पर अम्ल जलीय विलयन में पूर्णतः आयनित होता है

जिसके आयनीकरण का अंश लगभग 100: होता है।

प्रश्न 16. लवण किसे कहते हैं ? ये कितने प्रकार के होते हैं ? परिभाषित करें।

उत्तर - लवण वे यौगिक हैं जिनका निर्माण किसी अम्ल का किसी क्षारक के अभिक्रिया के फलस्वरूप होता है एवं जिसमें अम्ल अणु के यौगिक में उपस्थित हाइड्रोजन परमाणु किसी धातु द्वारा विस्थापित होते हैं।

उदासीनीकरण अभिक्रिया में कोई अम्ल किसी क्षारक के साथ अभिक्रिया कर लवण एवं जल बनाता है।

जैसे -सोडियम हाइड्रॉक्साइड एवं हाइड्रोक्लोरिक अम्ल के उदासीनीकरण अभिक्रिया में साधारण नमक लवण एवं जल बनाते हैं।

NaOH + HCl → NaCl + H2O

लवण के प्रकार निम्नलिखित हैं -:

- (i) सामान्य लवण (Normal Salt) वह लवण जिससे आयनीकृत φ परमाणु या हाइड्रोक्सिल समूह नहीं रहता है, उसे सामान्य लवण कहते हैं। यह अम्ल एवं भस्म के पूर्ण उदासीनीकरण के फलस्वरूप बनता है। जैसे NaCl, HCl, NaNO $_3$, Na $_2$ SO $_4$ इत्यादि।
- (ii) अम्लीय लवण (Acidic Salt) किसी अम्ल के अणु में उपस्थित विस्थापन योग्य हाइड्रोजन परमाणु को धातु द्वारा अंशतः विस्थापित करने के फलस्वरूप बने लवण को अम्लीय लवण कहते हैं।

अथवा

वे लवण जो किसी भस्म द्वारा किसी अम्ल के अपूर्ण उदासीनीकरण के फलस्वरूप बनते हैं, उसे अम्लीय लवण कहते हैं। इसमें विस्थापन योग्य हाइड्रोजन होते हैं। जैसे – NaHSO₄, KHSO₄, इत्यादि ।

(iii) भरमीय लवण (Basic Salt) – वे भरम जिनके अणु में एक से अधिक OH समूह होते हैं। अम्लों द्वारा आंगिक रूप से उदासीन होकर भार्सिक लवण बनाता है। जैसे – Pb(OH)NO₃. इसमें विस्थापन योग्य हाइड्रॉक्साइड मूलक होते हैं।

प्रश्न 17. pH के आधार पर लवणों का वर्गीकरण करें।

उत्तर - अम्ल और भस्म की प्रकृति या च¥ आधारित लवणों के विलयन तीन तरह के होते हैं-:

(i) उदासीन लवण विलयन (Natural Salt Solution)&प्रबल अम्ल एवं प्रबल भस्म के लवण विलयन उदासीन होते हैं। इनका pH मान 7 होता है। ये लिटमस का रंग परिवर्तन नहीं करते। जैसे – NaCl, KCl, NaNO $_3$, Na $_2$ SO $_4$ इत्यादि ।

- (ii) अम्लीय लवण वियलन (Acidic Salt Solution)-प्रबल अम्ल एवं दुर्बल भस्म के लवण विलयन अम्लीय होते हैं। इसका pH मान 7 से कम होता है। ये लिटमस का लाल रंग नीला में परिवर्तित करते हैं। जैसे – NH_4CI , $(NH_4)_2SO_4$ ।
- (iii) भस्मीय लवण विलयन (Basic Salt Solution)-प्रबल भस्म एवं दुर्बल अम्ल के लवण विलयन क्षारीय होते हैं। इनका pH मान 7 से अधिक होता है। जैसे . Na_2CO_3 , K_3PO_4 इत्यादि।

प्रश्न 18. लवण के सामान्य गुणों को लिखें।

उत्तर - लवण के गुण निम्नलिखित हैं-:

- (i) प्रबल अम्ल तथा प्रबल भस्म से बने लवणों का जलीय विलयन उदासीन होता है तथा विलयन का pH मान 7 होता है। जैसे. KCI, NaCI, KNO3 इत्यादि।
- (ii) प्रबल अम्ल तथा दुर्बल भस्म से बने लवणों का जलीय विलयन अम्लीय होता है। जैसे - NH₄CI, FeCl₃, FeSO₄ इत्यादि।
- (iii) दुर्बल अम्ल तथा प्रबल भस्म से बने लवणों का जलीय विलयन क्षारीय होता है तथा विलयन का pH मान 7 से अधिक होता है। जैसे - Na₂CO₃, NaHCO₃, CH₃COONa इत्यादि।

प्रश्न 19. pH स्केल क्या है ? (SPL)

उत्तर - 1909 ई. में सोरेन्सन ने H⁺ आयन की सांद्रता को व्यक्त करने के लिए pH चिह्न का उपयोग किया। इसमें 0 से 14 तक की संख्याएँ होते हैं। इसे pH स्केल कहा जाता है।

प्रश्न 20. pH मान क्या है ?

उत्तर –ग्राम अणु प्रति लीटर में व्यक्त हाइड्रोजन आयनों के सांद्रण के ऋणात्मक लघुगुणक R.B. Singl को pH मान कहा जाता है।

$$pH = -\log [H^{+}] = \log \left[\frac{1}{H^{+}}\right]$$

शृद्ध जल का pH मान 7 होता है।

प्रश्न 21. pH मान का क्या महत्व है ?

- उत्तर हमारे दैनिक जीवन में pH अत्यन्त महत्वपूर्ण स्थान रखता है। इसके महत्व निम्नलिखित हैं-:
 - (i) जल का pH मान ज्ञात करके पता लगाया जाता है कि जल किस कार्य के लिए उपयुक्त है।
 - (ii) रक्त का pH मान ज्ञात करके पता लगाया जाता है कि रक्त शु) है या अशु)।

- (iii) मिट्टी का pH मान ज्ञात करके पता लगाया जाता है कि इसमें कौन-सी फसल उगायी जा सकती है।
- (iv) अनेक रसायनिक अभिक्रियायें pH द्वारा नियंत्र्ति की जाती हैं। जैसे-जल अपघटन अभिक्रिया, किण्वन इत्यादि।
- (v) पाचन तंत्र के pH का पता लगाकर रोगों की जानकारी प्राप्त की जाती है। (1.0)
- (vi) दाँतों के pH मान में परिवर्तन होने पर दाँत नष्ट होने लगते हैं। (5.5)
- (vii)जल का pH एक निश्चित सीमा के अंदर रहने पर रहने वाले जलीय जीव जीवित रहते हैं।

प्रश्न 22. उदासीनीकरण अभिक्रिया से आप क्या समझते हैं ? उदाहरण द्वारा समझावें।

उत्तर - अम्ल तथा क्षारक के अभिक्रिया के फलस्वरूप लवण तथा जल बनता है। उसे उदासीनीकरण अभिक्रिया कहते हैं।

प्रश्न 23. नेटल पौधे (बूटी) की क्या विशेषता है ?

उत्तर -नेटल एकशाखीय पौधा है जो जंगलों में उपजता है। इसके पत्तियों में डंकनुमा बाल होते हैं। अगर गलती से छू लिया जाए तो डंक जैसा दर्द होता है। इन बालों में मेथेनोइक अम्ल का स्राव होने के कारण दर्द होता है। डंक मारने के स्थान पर डॉक पौधे की पत्ती रगड़ने पर इलाज हो जाता है। ये पौधे अधिकतर नेटल के पास पाये जाते हैं। डॉक पौधों से कुछ भस्म या क्षार निकलते हैं, जो अम्ल के प्रभाव को उदासीन कर देते हैं।

प्रश्न 24. अच्छे फसल के लिए मिट्टी का pH मान 5.5-7.0 होना चाहिए। किसान मिट्टी में चूना क्यों मिलाता है ?

उत्तर - मिट्टी का pH मान 5.5 - 7.0 के बीच रहने पर फसल अच्छे होते हैं। मिट्टी के अत्यधिक अम्लीय या क्षारीय होने पर पौधों की वृि बाधित हो जाती है। मिट्टी के अधिक अम्लीय होने पर उसमें कली चूना, भखरा चूना या कैल्शियम कार्बोनेट डालकर उसका pH नियंद्रित किया जाता है। इन रासायनिक पदार्थों के भास्मिक होने के कारण ये मिट्टी के अतिरिक्त अम्लीयता को कम कर देते हैं। अतः किसान चूना मिलाता है।

प्रश्न 25. क्षारों के महत्वपूर्ण रासायनिक गुणों को लिखें।

उत्तर - क्षारों के महत्वपूर्ण रासायनिक गुण निम्नलिखित हैं -:

(i) धातुओं से क्रिया – क्षार कुछ धातुओं से क्रिया कर H_2 गैस उत्पन्न करते हैं। $Zn + 2NaOH \longrightarrow Na_2ZnO_2 + H_2$ (सोडियम जिंकेट)

- (ii) वायु से क्रिया कुछ क्षार वायु में उपस्थित CO_2 से क्रिया करते हैं। $2NaOH + CO_2 \longrightarrow Na_2CO_3$
- (iii) अम्लों से क्रिया क्षार अम्लों से क्रिया करके लवण तैयार करते हैं। NaOH + HCl \longrightarrow NaCl + H_2O
- (iv) लवणों से क्रिया ताँबा, लोहा, जिंक आदि के लवण क्षारों से क्रिया करते हैं, और अधुलनशील धात्विक हाइड्रॉक्साइड तैयार करते हैं।

 $ZnSO_4 + 2NaOH \longrightarrow Na_2SO_4 + Zn(OH)_2$

प्रश्न 26. हमारे दैनिक जीवन में अम्लों के चार उपयोग बतावें।

उत्तर - हमारे दैनिक जीवन में अम्ल के उपयोग निम्नलिखित हैं -:

- (i) सिरका हमारे भोजन को पकाने और उसकी सुरक्षा तथा आचार बनाने में काम आता है।
- (ii) हमारे पेट में HCI हानिकारक जीवाणुओं को नष्ट कर देता है। जो भोजन के साथ पहुंच जाते हैं।
- (iii) टारटैरिक अम्ल बेकिंग पाउडर बनाने में काम आता है।
- (iv) कार्बनिक अम्ल पेय पदार्थों में प्रयुक्त होता है।

प्रश्न 27. अम्लों की हमारे जीवन में क्या हानियाँ हैं ?

उत्तर - अम्लों से होनेवाली हानियाँ निम्नलिखित हैं -:

- (i) ये सजीव कोशिकाओं को नष्ट करते हैं।
- (ii) सांद्र अम्ल त्वचा और कोमल अंगों को गंभीर क्षति पहुंचाते हैं।
- (iii) कुछ खाद्य पदार्थों को खराब कर देते हैं।

प्रश्न 28. सोडियम क्लोराइड (साधारण नमक) कैसे बनायाजाता है ? इसके दो मुख्य रसायनिक गुण तथा उपयोग बतावें।

उत्तर-गर्म सोडियम पर क्लोरीन गैस प्रवाहित करने पर सोडियम क्लोराइड बनता है। $2Na + Cl_2 \longrightarrow 2NaCl$

रासायनिक गुण-ः

- (i) यह एक आयनिक यौगिक है, जो अति घुलनशील है।
- (ii) यह एक श्वेत रवादार पदार्थ है। उपयोग —:
- (i) भोजन बनाने में।
- (ii) हाइड्रोजन क्लोराइड (HCI), बेकिंग पाउडर, सोडियम बाईकार्बोनेट, सोडियम हाइड्रॉक्साइड आदि के निर्माण में।

प्रश्न 29. साधारण नमक की प्राप्ति कहाँ – कहाँ होती है ? स्पष्ट करें।

- उत्तर साधारण नमक निम्नलिखित स्रोतों से प्राप्त होता है-:
 - (i) समुद्री जल-समुद्र के खारे जल को बड़े-बड़े गड्ढों में एक कर सूर्य के प्रकाश में वाष्पित होने देते हैं। वाष्पन के बाद ठोस नमक के रवे प्राप्त होते हैं।
 - (ii) खिनज नमक द्धरवानों या चट्टानों सेऋ-आस्ट्रेलिया में नमक खानों से निकाला जाता है। इसके लिए जमीन के अंदर एक पम्प घुसाते हैं, जिसमें तीन संकेन्द्री नालियाँ होती हैं। बाहर वाली नली से गर्म जल अंदर प्रवेश कराया जाता है, जिससे नमक का विलयन तैयार होता है। सबसे अंदर वाली नली से होकर उच्च दाब पर हवा का झोंका अंदर भेजा जाता है। नमक के विलयन को बीच वाली नली से होकर बाहर निकाल देता है। विलयन को छानकर वाष्पित करने पर नमक प्राप्त होता है।
 - (iii) झीलों से राजस्थान की सांभर झील, अमेरिका की ग्रेट साल्ट लेक, रूस की लेक एल्टन से भी नमक तैयार होता है। इसे जल के वाष्पीकरण से प्राप्त किया जाता है।

itu 30- साधारण नमक हवा में क्यों पसीजने लगता है ?

उत्तर -साधारण नमक में अशु) के रूप में मैगनीशियम क्लोराइड रहता है। MgCl₂ एक प्रस्वेदी पदार्थ है जो नमी सोखता है। इसी कारण साधारण नमक खुली हवा में रखने पर पसीजने लगता है।

प्रश्न 3 । सोडियम हाइड्रॉक्साइड (NaOH) कैसे बनाया जाता है ? इसके उपयोग बतावें।

उत्तर-सोडियम हाइड्रॉक्साइड को क्लोर एल्कली विधि द्वारा बनाया जाता है। इसे कास्टिक सोडा भी कहते हैं। इसे विद्युत अपघटन विधि द्वारा बनाया जाता है।

सोडियम क्लोराइड के जलीय विलयन में विद्युत धारा प्रवाहित करने पर यह अपघटित होकर सोडियम हाइड्रॉक्साइड, क्लोरीन तथा हाइड्रोजन बनाता है।

sing

$$2NaCI + H_2O \longrightarrow 2NaOH + CI_2 + H_2 \uparrow$$

उपयोग-:

- (i) धातुओं के ग्रीज हटाने में।
- (ii) साबुन, अपमार्जक तथा कागज के निर्माण में।
- (iii) कृत्रिम फाइबर, कृत्रिम वस्त्र, रेशे आदि के निर्माण में।

itu 32- l kfM; e ckbldkckilusV; k [kkus dk l ktMk ds] s cuk; k tkrk gs\ bl ds nks eq[; jkl k; fud xqk rFkk mi; ksx crkosA

 $m\ddot{U}kj$ &सोडियम बाईकार्बोनेट को अमोनिया सोडा विधि या साल्वे विधि द्वारा बनाया जाता है। सोडियम कार्बोनेट के जलीय घोल में CO_2 गैस प्रवाहित करने पर सोडियम बाईकार्बोनेट का अवक्षेप प्राप्त होता है।

$$Na_2CO_3 + H_2O + CO_2 \longrightarrow 2NaHCO_3$$

रासायनिक गुण -:

- (i) यह एक रवादार सफेद ठोस पदार्थ है।
- (ii) खाना पकाते समय जब यह गर्म होता है तो यह सोडियम कार्बोनेट, जल तथा कार्बन डाईऑक्साइड गैस देता है। अतः खाना को शीघता से पचाने के लिए इसका उपयोग किया जाता है।

2NaHCO₃
$$\xrightarrow{\text{35}\text{CHI}}$$
 Na₂CO₃ + H₂O + CO₂

उपयोग -:

- (i) इसका उपयोग अग्निशामक के रूप में होता है।
- (ii) इसका उपयोग बेकिंग पाउडर के निर्माण में किया जाता है।
- प्रश्न 33. सोडियम कार्बोनेट द्धधोने का सोडाऋ कैसे बनाया जाता है ? इसके दो मुख्य रासायनिक गुण तथा उपयोग बतावें।
- उत्तर इसका रासायनिक नाम सोडियम कार्बोनेट डेका हाइड्रेट है। जिसका सूत्र Na_2CO_3 . $10H_2O$ होता है।

बेकिंग सोडा को गरम करने पर सोडियम कार्बोनेट बनता है।

 $2NaHCO_3 \longrightarrow Na_2CO_3 + H_2O + CO_2$

प्राप्त सोडियम कार्बोनेट को जल से क्रिस्टलीकृत करने से धोवन सोडा प्राप्त होता है।

$$Na_2CO_3 + 10H_2O \longrightarrow NaCO_3$$
. $10H_2O$

रासायनिक गुण -:

- (i) यह सफोद पारदर्शी रवादार पदार्थ होता है।
- (ii) इसको गरम करने पर यह 10 अणु रवा जल के खो देता है। और निर्जलीय Na_2CO_3 बनाता है।

 Na_2CO_3 . $10H_2O\longrightarrow Na_2CO_3+10H_2O$ निर्जलीय Na_2CO_3 को सोडा क्षार या सोडा राख कहते हैं।

उपयोग-:

- (i) इसका उपयोग खारा जल को मृदु बनाने में होता है।
- (ii) वाशिंग सोडा के रूप में।
- (iii) dkxt m | kx esA
- (iv) काँच उद्योग में।
- प्रश्न 3 4. उत्फुलन किसे कहते हैं ? उत्फुलन प्रदर्शित करने वाले एक यौगिक का नाम लिखें। एक अभिक्रिया देकर समझावें।
- उत्तर-वायु में खुला छोड़ देने पर सोडियम कार्बोनेट रवा जल खोकर सफेद पूर्ण में बदल जाता है। इसके 10 अणु में से 9 अणु निकाल कर वायुमंडल में चले जाते हैं। सफेद

अपारदर्शक पाउडर बच जाता है, जिसे सोडियम कार्बोनेट मोनोहाइड्रेट कहते हैं। इस क्रिया को उत्फुलन कहते हैं।

 Na_2CO_3 . $10H_2O \longrightarrow Na_2CO_3H_2O + 9H_2O$ उत्फुलन प्रदर्शित करने वाले यौगिक सोडियम कार्बोनेट होता है।

प्रश्न 35. अग्निशामक यंत्र द्वारा आग बुझाने की क्रिया को रासायनिक अभिक्रिया द्वारा समझावें।

उत्तर-सोडियम बाईकार्बोनेट का उपयोग अग्निशामक यंत्रें में भी किया जाता है। अग्निशामक यंत्र में $NaHCO_3$ या H_2SO_4 रहते हैं। आग लगने पर इस यंत्र की घुडी पर दाब डाला जाता है, जिससे $NaHCO_3$ तथा H_2SO_4 परस्पर सम्पर्क में आकर CO_2 गैस बनाते हैं। यह गैस तेजी से बाहर निकलकर आग को बुझा देती है।

$$2NaHCO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O + 2CO_2\uparrow$$

प्रश्न 3 6. विरंजक चूर्ण कैसे बनाया जाता है ? इसके दो मुख्य रासायनिक गुण तथा उपयोग बतावें।

उत्तर-इसका रासायनिक नाम कैल्श्यिम ऑक्सीक्लोराइड होता है। इसका सूत्र CaOCl₂ होता है। इसे ब्लीचिंग पाउडर या चूने का क्लोराइड भी कहते हैं।

ठोस शुष्क बुझे चूने पर 313 K या 40°C पर क्लोरीन गैस प्रवाहित करने पर विरंजक चूर्ण बनता है।

$$Ca(OH)_2 + Cl_2 \xrightarrow{313K} CaOCl_2 + H_2O$$

रासायनिक गुण -:

- (i) यह सफेद चूर्ण है जिसमें क्लोरीन जैसी गंध होती है।
- (ii) यह तनु H_2SO_4 की अल्प मात्र के साथ अभिक्रिया कर कैल्शियम सल्फेट, हाइड्रोक्लोरिक अम्ल तथा ऑक्सीजन देता है।

$$2Ca(OCI)CI + H2SO4 \longrightarrow CaCI2 + CaSO4 + 2HCIO$$

$$HCIO \longrightarrow HCI + O$$

इस प्रकार प्राप्त ऑक्सीजन नवजात ऑक्सीजन होता है। अतः इसका उपयोग विरंजक के रूप में किया जाता है।

उपयोग -:

- (i) इसका उपयोग जल को शु) करने में कीटाणुनाशक के रूप में किया जाता है।
- (ii) कागज तथा कपड़ा उद्योग में विरंजक के रूप में।

प्रश्न 37. कली – चूना कैसे बनाया जाता है ? इसके दो मुख्य रासायनिक गुण तथा उपभोग बतावें।

उत्तर-इसका रासायनिक नाम कैल्शियम ऑक्साइड (CaO) है।

जब चूना पत्थर को 1000°C से कम ताप पर एक भट्ठी में गरम किया जाता है तो चूना-पत्थर टूटकर कली-चूना तथा CO_2 बनाता है।

$$CaCO_3 \xrightarrow{797^{\circ}C-997^{\circ}C} CaO + CO_2 \uparrow$$

रासायनिक गुण:-

- (i) यह सफेद बेरवादार पदार्थ है। इसका द्रवणांक 2597°C होता है।
- (ii) यह जल से प्रतिक्रिया कर कैल्शियम हाइड्रॉक्साइड तथा ऊष्मा मुक्त करता है।

$$CaO + H_2O \longrightarrow Ca(OH)_2 \downarrow + ऊष्मा$$

इसे बुझा चूना भी कहते हैं। इस प्रक्रिया को भरकना या प्राप्त चूने को भरकी चूना कहा जाता है।

रासायनिक गुण -:

- (i) सीमेंट उद्योग में।
- (ii) ब्लीचिंग पाउडर बनाने में।
- (iii) काँच के उत्पादन में।

प्रश्न 3 8. प्लास्टर ऑफ पेरिस कैसे बनाया जाता है ? इसके दो मुख्य रासायनिक गुण तथा उपयोग बतावें।

उत्तर – इसका रासायनिक नाम कैल्शियम सल्फेट अर्धहाइड्रेट है। जिसका सूत्र CaSO4 . $\frac{1}{2}$ H_2 O होता है। $\frac{100^{\circ}\text{C}}{}$

इसे अर्धजलयोजित कैल्शियम सल्फेट कहते हैं। इसे संक्षेप में च्ण्ळच् कहा जाता है। जिप्सम को इस्पात के बरतन में 100°C ताप पर गरम करने पर यह जल के

 $1\frac{1}{2}$ अणुओं का त्या ग कर प्लास्टर ऑफ पेरिस बनता है।

CaSO₄ . 2H₂O CaSO₄ .
$$\frac{1}{2}$$
 H₂O + $\frac{3}{2}$ H₂O

रासायनिक गुण -:

- (i) यह एक सफेद चूर्ण है।
- (ii) जल के साथ मिलकर यह कड़ा तथा छिद्रयुक्त बन जाता है। उपयोग-:
- (i) शल्य चिकित्सा में भी हिड्डयों को जोड़ने में।
- (ii) मूर्तियों का साँचा बनाने में।
- (iii) अग्निरोधक पदार्थ बनाने में।
- प्रश्न ३ %. निम्न के कारण बतावें -
 - (i) पीतल तथा ताँबे के बरतन में दही तथा खट्टे पदार्थ क्यों नहीं रखना चाहिए ?

- उत्तर-दही तथा खट्टे पदार्थों में अम्ल होता है। अम्ल धातुओं से अभिक्रिया कर लवण तथा H_2 गैस बनाते हैं। जिससे पदार्थ खाने योग्य नहीं रहता है। साथ ही दही एवं खट्टे पदार्थों को ताँबे के बरतनों में रखा जाएगा तो अम्ल की क्रिया के कारण बरतन संक्षारित हो जाएगा।
- (ii) अम्ल का जलीय विलयन विद्युत का चालन क्यों करता है ? उत्तर-अम्ल जल में घुलकर धन एवं ;ण का निर्माण करता है ? $HCI \longrightarrow H^+ + CI^-$
 - (iii) शुष्क हाइड्रोक्लोरिक गैस लिटमस पत्र का रंग क्यों नहीं बदलती है ?
- उत्तर-शुष्क हाइड्रोक्लोरिक गैस में हाइड्रोजन आयन (H⁺) नहीं रहता है। इसलिए यह अम्लीय अभिलक्षण प्रदर्शित नहीं करता है। जिसके कारण लिटमस पृत्र के रंग को नहीं बदलती है।
 - (iv) आसवित जल में विद्युत का चालन क्यों नहीं होता बल्कि वर्षा जल में होता है ?
- उत्तर आसिवत जल में कोई आयिनक यौगिक विलेय नहीं होते। जिसके कारण ये आयनों में विघटित नहीं होते हैं। वर्षा जल वायुमंडल से होते हुए भूमि पर गिरते समय वायु के अम्लीय गैसें CO_2 , SO_2 , NO_2 इत्यादि को घुला देता है। जिससे विभिन्न प्रकार के अम्ल क्रमशः कार्बनिक अम्ल (H_2CO_3) , सल्क्यूरस अम्ल (H_2SO_3) , नाइट्रस अम्ल (HNO_2) या नाइट्रिक अम्ल (HNO_3) बनाते हैं। ये अम्ल आयनों में विघटित होते हैं। इसलिए वर्षा जल विद्युत का चालन करते हैं।
 - (v) जल की अनुपस्थिति में अम्ल का व्यवहार अम्लीय क्यों नहीं होता ?
- उत्तर-अम्ल केवल जल की उपस्थिति में हाइड्रोजन आयन उत्पन्न करते हैं। हाइड्रोजन आयन की उपस्थिति के कारण अम्लों का व्यवहार अम्लीय होता है। अतः जल की अनुपस्थिति में हाइड्रोजन आयन नहीं बनते। इस कारण अम्ल अपना अम्लीय व्यवहार नहीं करता।
- प्रश्न 40. ताजे दूध के **pH** मान 6 होता है। दही बन जाने पर इसके चभ मान में क्या परिवर्तन होगा ?
- उत्तर-दही में लैक्टिक अम्ल होता है। अर्थात् जब दूध से दही बन जाता है तो वह अधिक अम्लीय हो जाता है। इसलिए दूधा pH का मान 6 से कम हो जाएगा।
- प्रश्न 41. एक ग्वाला ताजे दूध में थोड़ा बेकिंग सोडा मिलाता है।

- (a) ताजा दूध के pH मान को 6 से बदल कर थोड़ा क्षारीय क्यों बना देता है ?
- (b) इस दूध को दही बनने में अधिक समय क्यों लगता है ?
- mùkj &(a) दूध में बेकिंग सोडा मिलाकर क्षारीय बना दिया जाता है। ताकि दूध अधिक समय तक रह सके। अर्थात् दूध फटे नहीं। दूध फटने का तात्पर्य है दूध का खट्टा हो जाना।
 - (b) ऐसे दूध में दही बनने में अधिक समय इसलिए लगता है कि क्षारीय दूध पहले उदासीन होता है तब दही बनता है। अतः दूध के लैक्टिक अम्ल को पहले उसमें उपस्थित क्षार को उदासीन करना होता है तब दही बनता है।
- प्रश्न 42. आपको तीन परखनिलयाँ दी गई हैं। इसमें से एक में आसवित जल एवं शेष दो में से एक में अम्लीय विलयन तथा दूसरे में क्षारीय विलयन है। यदि आपको केवल लाल लिटमस पठ दिया जाता है तो आप प्रत्येक परखनली में रखे गये पदार्थ की पहचान कैसे करेंगे ?
- उत्तर-लाल लिटमस पत्र को बारी-बारी से तीनों परखनिलयों में डालते हैं। जो विलयन लाल लिटमस पत्र को नीला कर देता है। वह क्षारीय विलयन है।

अब नीला हुए लिटमस पत्र को बारी-बारी से शेष दो परखनलियों में डालते हैं। जो विलयन नीला लिटमस पत्र को लाल कर देता है। वह अम्लीय विलयन है।

शेष बचा विलयन आसवित जल है। इसमें लाल एवं नीले लिटमस पत्र पर कोई प्रभाव नहीं पड़ता है।

प्रश्न 43. एल्कोहॉल एवं ग्लूकोज जैसे यौगिकों में भी हाइड्रोजन होते हैं, लेकिन इनका वर्गीकरण अम्ल की तरह नहीं होता है। एक क्रियाकलाप द्वारा इसे साबित करें।

उत्तर – एल्कोहल एवं ग्लूकोज जल में घुलने पर हाइड्रोजन आयनों (H^+) के रूप में अर्थात् ये आयनों में विघटित नहीं होते हैं। इसलिए इनके घोल विद्युत का चालन नहीं करते हैं।

इसे साबित करने के लिए चित्रनुसार उपकरणों को सजाया जाता है। बीकर में अल्कोहल का घोल लेते हैं। इसमें विद्युत धारा प्रवाहित की जाती है। हम पाते हैं कि बल्ब नहीं जलता है। इससे सि) होता है कि एक्कोहल का घोल विद्युत का चालन

नहीं करता है।

हम बीकर में ग्लूकोज का घोल लेकर प्रयोग को दुहराते हैं। बल्ब फिर भी नहीं जलता है। इससे सिद्ध होता है कि ग्लूकोज का घोल भी विद्युत का चालन नहीं करता है। अतः एल्कोहल तथा ग्लूकोज।

जैसे यौगिकों में हाइड्रोजन होते हुए भी इनका वर्गीकरण अम्ल की तरह नहीं होता है। प्रश्न 44. क्या होता है जब-:

- (i) तनु सल्फ्यूरिक अम्ल की अभिक्रिया जस्ता से होती है।
- (ii) तन् हाइड्रोक्लोरिक अम्ल की अभिक्रिया मैगनीशियम से होती है।
- (iii) तनु सल्फ्यूरिक अम्ल की अभिक्रिया एल्युमिनियम से होती है।
- (iv) तनु हाइड्रोक्लोरिक अम्ल की अभिक्रिया लोहा से होती है।
- (v) तनु सल्पयूरिक अम्ल में ठोस सोडियम कार्बीनेट मिलाते हैं।
- (vi) तन् सल्फ्यूरिक अम्ल, दानेदार जिंक के साथ अभिक्रिया करता है।
- mÙkj &(i) तनु सल्फ्यूरिक अम्ल की अभिक्रिया जस्ता से करायी जाती है तो जिंक सल्फेट तथा हाइड्रोजन गैस बनता है।

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2\uparrow$$

(ii) तनु हाइड्रोक्लोरिक अम्ल की अभिक्रिया जब मैगनीशियम से करायी जाती है तो मैग्नीशियम क्लोराइड तथा हाइड्रोजन गैस बनता है।

$$Mg + 2HCI \longrightarrow MgCl_2 + H_2\uparrow$$

(iii) तनु सल्फ्यूरिक अम्ल की अभिक्रिया एल्युमिनियम से करायी जाती है तो एल्युमिनियम सल्फट तथा हाइड्रोजन गैस बनता है।

$$2AI + 3H_2SO_4 \longrightarrow AI_2(SO_4)_3 + 3H_2\uparrow$$

(iv) तनु हाइड्रोक्लोरिक अम्ल की अभिक्रिया लोहा से करायी जाती है तो फेरस क्लोराइड बनता है तथा हाइड्रोजन गैस मुक्त होती है।

$$3Fe + 6HCI \longrightarrow 3FeCl_2 + 3H_2\uparrow$$

(v) तनु सल्फ्यूरिक अम्ल में सोडियम कार्बोनेट मिलाते हैं तो सोडियम सल्फेट बनता है तथा H_2O एवं CO_2 बनते हैं।

$$Na_2CO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O + CO_2 \uparrow$$

विभिन्न विलयनों का pH मान

00		7.		
ावाभन्न	पढाश्चा	म	उपस्थित	अम्ल
			• 11 (-1 (1	•••

विभिन्न विलयन	9/1				। उपास्थत अन्ल
विलयन	_	pH मान	प्राकृतिक स्रोत	_	अम्ल
अमाशय रस	_	1	सिरका	_	एसीटिक अम्ल
नींबू रस	—	2.5			
सिरका	_	3.0	संतरा	_	साइट्रिक अम्ल
टमाटर रस		4.1	 इमली	_	टार्टरिक अम्ल
पसीना	_	4.5			
अम्ल वर्षा	_	5.6	टमाटर	_	ऑक्जैलिक अम्ल
पेशाब	_	6	खट्टा दूध (दर्ह	t) —	लैक्टिक अम्ल
दूधा		6.5	नींबू े		
शुद्ध जल	5	7	1		साइट्रिक अम्ल
आँसू		7.3	चींटी (नेटल) का उ	<u>ं</u> क —	मेथेनोइक (फॉर्मिक) अम्ल
खून		7.4	। सिंब		मौलिक अम्ल
पित्त	_	7.5–7.8			
चूना जल		11.0	अमरूद	_	ऑक्जेलिक अम्ल
लार (खाने के पहले)		8	 मक्खन	_	ब्युटीरिक अम्ल
लार (खाने के बाद)		6			9
नींबू रस रंग रहित पेय		2	चाय	_	टैनिक अम्ल
		10	वसा	_	स्टीयरिक अम्ल
गाजर का रस कॉफी		6 5		<u>. </u>	
टमाटर का रस		4	मधुमक्खा का इ	<u>क</u> —	मेथेनोइक अम्ल
नल का जल		8	प्याज	_	एस्कॉर्बिक अम्ल
1 M NaOH		14	L		
1 M HCI		0			
मानव शरीर	_ -	703779			
मिल्क ऑफ मैगनेशिय		10.5		1	
[Mg(OH) ₂]	Vini	1313			
	7	d has	DRS		
		July:	R.B. Si		

प्रश्न 4 उत्तर-

15. कार्बनिक अम्ल और अकार्बनिक अम्ल में अंतर स्पष्ट करें?			
- कार्बनि	क अम्ल और अकार्बनिक अम्ल में	i निम्नलिखित अंतर हैं-:	
S.No.	कार्बनिक अम्ल	अकार्बनिक अम्ल	
1.	सिट्रिक अम्ल – इस अम्ल का उपयोग	गंधक का अम्ल या सल्फ्यूरिक अम्ल-इस	
	खाद्य पदार्थों के परिरक्षण और	अम्ल का उपयोग बैटरी, रसायनिक	
	स्वादिष्ठता के लिए होता है।	खाद, पेंट, डिटरजेंट, हाइड्रोक्लोरिक	
		अम्ल आदि के निर्माण में उपयोगी है।	
2.	एसिटिक अम्ल-सिरका के रूप	हाइड्रोक्लोरिक अम्ल-बाथरूम साफ	
	में अचार को खट्टा बनाने के काम में आता है।	करने, PVC के उत्पादन में प्रयुक्त होता है।	
3.	टार्टरिक अम्ल-बेकिंग पाउडर	नाइट्कि अम्ल-इस अम्ल का अपयोग	
J.	बनाने में प्रयुक्त होता है।	TNT, डायनामाइट आदि विस्फोटक	
	जनाम म अनुप्रता होता हो	के उत्पादन में होता है।	
	9/		
1 1	2 3 4 5 6 7	8 9 10 11 12 13 14	
i_	<u>i i i i i i i i i i i i i i i i i i i </u>		
		<u> </u>	
		OH	
	/		
	H		
سر			
	3000 OV 20	ge 980 1560	
	H⁺की बढ़ती सांद्रता 🛕	H⁺की घटती सांद्रता	

रंग परिवर्त्तन

S.No.		अम्लीय	अम्लीय
I.	fyVeI	लाल	नीला
II.	e s Fky vk ys t	लाल	पीला
III.	fQukWji FkSyhu	रंगहीन	गुलाबी
IV.	gYnh	पीला	लाल – भूरा
V.	p¢dUnj	लाल – बैंगनी	पीला
VI.	yky xktkh dk irk	लाल – बैंगनी	हरा

ऑल फैक्टरी सूचक क्या है? उनके नाम लिखें?

उत्तर – कुछ ऐसे पदार्थ होते हैं। जिनकी गंधा अम्लीय तथा क्षारीय माध्यम में भिन्न – भिन्न होती है। उन्हें ऑल फैक्टरी सूचक कहते हैं। जैसे-प्याज, लवंग का तेल, वैनिला इत्र।

रसायनिक सूत्र

(1)	संगमरमर	_	CaCO
\ \ - <i>I</i>	' ' ' ' ' ' ' '		₂

(V) नीला थोथा द्धतुतियाऋ –
$$CuSO_4CO_3.5H_2O$$

(VII) प्लास्टर ऑफ पेरिस – (CaSO₄)₂.H₂O ; k CaSO₄.
$$\frac{1}{2}$$
H₂O

(XII) लाल सिन्दूर –
$$Pb_3O_4$$

(XIII) लैक्टिक अम्ल –
$$C_3H_6O_3$$

(XIV)टार्टरिक अम्ल –
$$C_4H_6O_6$$

(XVI)	ऑक्जैलिक अम्ल	-	$C_2H_2O_4$
(XVII)	फॉस्फोरिक अम्ल	_	H ₃ PO ₄
(XVIII)	कार्बनिक अम्ल्ल	-	H ₂ CO ₃
(XIX)	एस्कार्बिक अम्ल	-	C ₆ H ₈ O ₆
(XX)	यूरिक अम्ल	-	$C_5H_4N_4O_3$

रंग	PH	मान
(I) गाढ़ा लाल (Dark Red)	0	W.C.
(II) लाल (Red) –	1	
(III) गहरा लाल (Dark Red) -	2	
(IV) नारंगी लाल (Orange Red)	_	4 अम्लीय
(V) नारंगी पीला (Orange Yellow)	_	5
(VII) हरित पीला (Greenish Yellow)	_	6
(VIII) हरा (Green)	_	7 } उदासीन
(IX) हरित नीला (Greenish Blue)	_	8
(X) नीला (Blue)	_	9
(XI) हरित पीला (Navy Blue)	_	10 क्षारीय
(XII) जामुनी (Purple)	_	11
(XIII) गाढ़ा जामुनी (Dark Purple)	_	12
(XIV)बैंगनी (Violet)	_	13-14
(XIII) गाढ़ा जामुनी (Dark Purple) (XIV) बैंगनी (Violet)	R.	B. Silva