"Introduction to Artificial Intelligence: Homework #2"

LAINE Bastien #20156441

Oct. 26th 2015

Contents

1	Problem 1	2
	1.1 1-A	2
	1.2 1-B	2
	1.3 1-C	2
	1.4 1-D	4
2	Problem 2	4
	2.1 2-A	4
	2.2 2-B	4
	2.3 2-C	4
	2.4 2-D	4
	2.5 2-E	4
	2.6 2-F	4
	2.7 2-G	4
	2.8 2-H	4
		4
	2.10 2-J	5
	2.11 2-K	5
	2.12 2-L	-
3	Problem 3	5
	3.1 3-A	6
	3.2 3-B	7

1 Problem 1

1.1 1-A

- 1. 3: Indeed, C has to be true (else $x \wedge C$ would be false). Then, since we want $A \vee B$ to be true, we know there is only 3 ways to make it true ((True, True), (False, True), (True, False)). In that case, there is only 3 models for that sentence (Or 3*2=6 if we
 - In that case, there is only 3 models for that sentence (Or 3 * 2 = 6 if we consider that D is still part of the problem)
- 2. 1: Since we have $\neg A \land B \land C \land D$, we know that (A, B, C, D) has to be (False, True, True, True). Then, it only remain $(A \Rightarrow B)$. Since we have already constrained our 4 letters, we can just check if this sentence is correct. Hopefully, it is. (If it wasn't, there were only 0 models for that sentence, so the problem would be unsatisfiable)

1.2 1-B

- 1. Neither: The sentence cannot be:
 - Unsatisfiable since (Smoke=True, Fire=True) is True
 - Valid since (Smoke=True, Fire=False) is False
- 2. Unsatisfiable: Since we have $Fire \land Fire$, we cannot find a value for Fire such that the sentece is correct. So we cannot find any model in which this sentence is true, so it is unsatisfiable.
- 3. Valid: To do that, let us manipulate the sentence:

```
 \begin{array}{ll} ((Smoke \wedge Heat) \Rightarrow Fire) & \Leftrightarrow & \neg (Smoke \wedge Heat) \vee Fire \\ & \Leftrightarrow & \neg Smoke \vee \neg Heat \vee Fire \\ & \Leftrightarrow & \neg Smoke \vee \neg Heat \vee Fire \vee Fire \\ & \Leftrightarrow & (\neg Smoke \vee Fire) \vee (\neg Heat \vee Fire) \\ & \Leftrightarrow & (Smoke \Rightarrow Fire) \vee (Heat \Rightarrow Fire) \end{array}
```

1.3 1-C

Let's add first the negation of our goal sentence in our set of "known sentence":

- S0: $A \vee B$
- S1: $A \Leftrightarrow (B \vee E)$
- S2: $E \Rightarrow D$
- S3: $C \wedge F \Rightarrow \neg B$
- S4: $E \Rightarrow B$

- S5: $B \Rightarrow F$
- S6: $F \Rightarrow C$

Then, let us develop those sentences:

- 1. $A \lor B$
- 2. (a) $\neg A \lor B \lor E$
 - (b) $\neg B \lor A$
 - (c) $\neg E \lor A$
- 3. $\neg E \lor D$
- 4. $\neg C \lor \neg F \lor \neg B$
- 5. $\neg E \lor B$
- 6. $\neg B \lor F$
- 7. $\neg F \lor C$

One we have this, we can solve the problem according to the following diagram:

Figure 1: Solution

We can then assume that $\neg A \wedge \neg B$

1.4 1-D

- 1. $\exists x \, \forall y \, Dog(x) \land Human(y) \land Loves(x, y)$
- 2. $\exists x \, \forall y \, Barber(x) \wedge ((Shaves(x,y) \vee Shaves(y,y)))$
- 3. $\forall x, y \ Smart(x) \land StudiesHard(x) \land (\neg Smart(y) \lor \neg StudiesHard(y)) \Rightarrow gt(Grade(x), Grade(y))$

2 Problem 2

2.1 2-A

Wrote(Gershwin, TheManILove)

2.2 2-B

 $\neg Wrote(Gershwin, EleanorRigby)$

2.3 2-C

 $Wrote(Gershwin, TheManILove) \lor Wrote(McCartney, TheManILove)$

2.4 2-D

 $\exists song\ Wrote(Joe, song)$

2.5 2-E

 $\exists disk\ Owns(Joe, disk) \land CopyOf(disk, Revolver)$

2.6 2-F

 $\forall song\ Sings(McCartney, song, Revolver) \Rightarrow Wrote(McCartney, song)$

$2.7 \quad 2-G$

 $\forall song \exists singer Sings(singer, song, Revolver) \Rightarrow \neg Wrote(Gershwin, song)$

2.8 2-H

 $\forall song\ Wrote(Gershwin,song) \Rightarrow \exists album, singer\ Sings(singer,song,album)$

2.9 2-I

 $\exists album \ \forall song \ Wrote(Joe, song) \Rightarrow \exists singer \ Sings(singer, song, album)$

2.10 2-J

 $\exists disk(Owns(Joe, disk) \land \exists album(CopyOf(disk, album) \land Sings(BillyHoliday, TheManILove, album))$

2.11 2-K

 $\forall album(\exists songSings(McCartney, song, album)) \Rightarrow (\exists diskCopyOf(disk, album) \land Owns(Joe, disk))$

2.12 2-L

 $\forall song \exists album, singer(Sings(singer, osng, album) \land (singer! = BillyHoliday) \Leftrightarrow (\exists disk\ CopyOf(disk, album) \land Owns(Joe, disk))$

3 Problem 3

Let us recall the property given in the exercice:

- 1. $0 \le 4$
- 2. $5 \le 9$
- 3. $\forall x, x \leq x$
- 4. $\forall x, x \leq x + 0$
- 5. $\forall x, x + 0 \le x$
- 6. $\forall x, y, x + y \le y + x$
- 7. $\forall w, x, y, z, \ x \leq y \land x \leq z \Rightarrow w + x \leq y + z$
- 8. $\forall x, y, z, x \leq y \land y \leq z \Rightarrow x \leq z$

3.1 3-A

Figure 2: Backward chaining

3.2 3-B

Figure 3: Forward Chaining