Volatility forecast of financial returns with explanatory variables of different frequencies

Louis Geist

16/11/2023

- Financial risk measurement
- Daily volatility forecast can be useful to build confidence interval of the returns forecast
- Understand impact of long term explanatory variable on financial returns volatility
- Focus on S&P 500 and NASDAQ-100
- C. Conrad and O. Kleen. "Two are better than one: Volatility forecasting using multiplicative component GARCH-MIDAS models", 2020. [3]

Introduction

- 1 GARCH-MIDAS model
- 2 Data
- 3 Empirical results

•00000

GARCH-MIDAS model

GARCH-MIDAS Model Definition

GARCH-MIDAS model

A process $(\varepsilon_{i,t})_{t\in\mathbb{Z},i\in I_t}$ follows a **GARCH-MIDAS model** if : $\exists (\alpha, \beta, \gamma) \in \mathbb{R}^3, \exists (Z_{i,t})_{t \in \mathbb{Z}} \in I_t \sim WN, \forall t \in \mathbb{Z}, \forall i \in I_t$

$$\varepsilon_{it} = \sqrt{g_{it}\tau_t}Z_{i,t}$$

with:

- $g_{i,t} = (1 \alpha \frac{\gamma}{2} \beta) + (\alpha + \gamma \mathbb{1}_{\varepsilon_{i-1,t}} < 0)^{\frac{\varepsilon_{i-1,t}^2}{\tau_{\star}}} + \beta g_{i-1,t}$
- τ_t is a fixed function of a low-frequency explanatory process X
- It, the list of values that can take "i" during the period t.

GARCH-MIDAS Model Definition - τ definition

GARCH-MIDAS model

 τ expresses the influence of the low-frequency variable X

$$\forall t \in \mathbb{N}, \left| \tau_t = \exp(m + \theta \sum_{k=1}^K \varphi_k X_{t-k}) \right|$$

GARCH-MIDAS Model Definition - au definition

ullet au expresses the influence of the low-frequency variable X

$$\forall t \in \mathbb{N}, \quad \tau_t = \exp(m + \theta \sum_{k=1}^K \varphi_k X_{t-k})$$

where:

- K is the number of lags of the variable X
- m and θ have to be estimated

GARCH-MIDAS model

 τ expresses the influence of the low-frequency variable X

$$orall t \in \mathbb{N}, \left| au_t = \exp(m + heta \sum_{k=1}^K arphi_k X_{t-k})
ight|$$

where:

Introduction

- K is the number of lags of the variable X
- m and θ have to be estimated
- φ_k is the weighting scheme $\forall k \in [1, K]$

$$\varphi_k = \lambda \left[\left(\frac{k}{K+1} \right)^{w_1 - 1} \left(1 - \frac{k}{K+1} \right)^{w_2 - 1} \right]$$

where λ is defined so that $\sum_{k=1}^K \varphi_k = 1$.

Results of estimation: Weighting Schemes

Figure 1: Examples of Weighting Schemes (restricted and unrestricted)

000000

GARCH-MIDAS model

Figure 2: Example of a τ transformation

GARCH-MIDAS Forecast Formula

$$orall s \in \mathbb{N}^*, \left[\hat{h}_{k,t+s|t} = au_{t+1} ig(1 + \delta^{n_h} (g_{1,t+1} - 1) ig)
ight]$$

where:

- $\delta = \alpha + \frac{\gamma}{2} + \beta$
- $n_h = \#I_{t+1} + ... + \#I_{t+s-1} + k 1$ (horizon)

- **1** GARCH-MIDAS model
- 2 Data
- 3 Empirical results

Table of Daily Quotation Availability

Index / Data Series	Start Date
S&P 500 (SPX)	05/01/1971
NASDAQ-100 (NDX)	02/10/1985
VIX	02/01/1990
RVOL22	03/02/1971
VRP	02/01/1990
NFCI	04/01/1971
NAI	01/02/1959
IP	01/02/1959
HOUST	01/02/1959

Table 1: Availability of Daily Quotations at Closing

Index / Data Series Start Date S&P 500 (SPX) 05/01/1971 NASDAQ-100 (NDX) 02/10/1985 VIX 02/01/1990 RVOL22 03/02/1971 **VRP** 02/01/1990 **NFCI** 04/01/1971 NAI 01/02/1959 IΡ 01/02/1959 **HOUST** 01/02/1959

Table 1: Availability of Daily Quotations at Closing

Realized volatility availibility:

- S&P 500 : 2000 2019 and 01/06/2023 today
- NASDAQ-100 : 01/06/2023 today

Introduction

Index Plots

Figure 3: Raw Series of Industrial Production Index (IP) & Logarithmic Differences Transformation of Industrial Production Index (IP) Over Time

- GARCH-MIDAS model
- 2 Data
- 3 Empirical results

• daily volatility : a theoretical quantity \rightarrow no realization

Evaluating Volatility Prediction

- daily volatility : a theoretical quantity \rightarrow no realization
- estimator of the daily volatility based on the 5 minutes intraday data of the index

Volatility point predictions of S&P500

Figure 4: Prediction of S&P 500 daily volatility with an origin date of 15/08/2023. "GM" stands for GARCH-MIDAS.

Confidence Interval

Algorithm 1 Estimation of a Confidence Interval for a forecast of horizon h

Require:

Introduction

- $(X_t)_{t \in [1,N]}$ target values
- $(\hat{X}_t)_{t \in [1,N]}$ predictions
- ullet $\hat{X}_{
 u}$ for u > N, which is the prediction for which we want the confidence interval

Ensure: q_- and q_+ , the bounds of the confidence interval of \hat{X}_{ν} at level α .

- 1: for i in [1, N] do
- 2: $\gamma_i \leftarrow \frac{X_i}{\hat{X}_i}$
- 3: end for
- 4: Sort γ in ascending order.
- 5: Calculate $n_- \leftarrow \lfloor \frac{1-\alpha}{2} N \rfloor \& n_+ \leftarrow \lceil (1-\frac{1-\alpha}{2}) N \rceil$
- 6: Calculate $q_- \leftarrow \gamma_{n_-} \hat{X}_{\nu} \& q_+ \leftarrow \gamma_{n_+} \hat{X}_{\nu}$ return q_- and q_+

Confidence Intervals

Figure 5: 90% confidence intervals for volatility predictions on S&P 500 from horizon 1 to 10 with an origin date of 15/08/2023.

Model Comparison

Loss function

- σ^2 the variance
- *h* its prediction

$$QLIKE(\sigma^2, h) = \log\left(\frac{h}{\sigma^2}\right) + \frac{\sigma^2}{h} - 1$$

Figure 6: QLIKE Loss for $\sigma^2 = 1$.

Horizon	1	2	5	10	22	44	66
GM dhoust	0.29	0.26	0.36	0.42	0.40	0.33	0.29
GM ⁻ ip	0.32	0.28	0.35	0.39	0.36	0.29	0.23
GM nai	0.29	0.26	0.34	0.39	0.36	0.29	0.23
GM_nfci	0.26	0.22	0.31	0.37	0.35	0.30	0.27
GM_Rvol22	0.27	0.23	0.32	0.38	0.36	0.29	0.24
GM_vix	0.20	<u>0.16</u>	0.28	0.40	0.46	0.45	0.44
GM_vrp	0.31	0.27	0.35	0.40	0.38	0.31	0.26
GM vix dhoust	0.23	0.21	0.34	0.43	0.47	0.45	0.44
GM_vix_ip	0.23	0.21	0.33	0.43	0.46	0.45	0.42
GM_vix_nai	0.23	0.21	0.32	0.41	0.42	0.39	0.37
GM_vix_nfci	0.22	0.20	0.33	0.43	0.47	0.46	0.44
GARCH(1,1)	0.43	0.42	0.49	0.48	0.43	0.36	0.29

Table 2: Cumulative Mean Error of S&P 500 Volatility Predictions - Training period: 1991 - 2014. n = 250. For each horizon, the underlined value is the minimum error.

Graphical User Interface Main plot

Figure 7: RShiny app - Part 1

Graphical User Interface

Average error

Models evaluation

QLIKE mean error

	1	2	5	10	22	44	66
GM_dhoust	0.30	0.26	0.36	0.42	0.40	0.33	0.29
GM_ip	0.32	0.28	0.35	0.39	0.36	0.29	0.23
GM_nai	0.30	0.26	0.34	0.39	0.36	0.29	0.23
GM_nfci	0.26	0.22	0.31	0.37	0.35	0.30	0.27
GM_Rvol22	0.27	0.23	0.33	0.39	0.37	0.30	0.24
GM_vix	0.20	0.16	0.28	0.40	0.46	0.45	0.44
GM_vrp	0.31	0.27	0.35	0.40	0.38	0.31	0.26
GM_vix_dhoust	0.23	0.21	0.34	0.43	0.47	0.46	0.44
GM_vix_ip	0.23	0.21	0.33	0.43	0.46	0.45	0.42
GM_vix_nai	0.24	0.21	0.32	0.41	0.43	0.40	0.37
GM_vix_nfci	0.22	0.20	0.33	0.43	0.47	0.46	0.44

Minimum mean error

	1	2	5	10	22	44	66
GM_dhoust							
GM_ip							
GM_nai						True	True
GM_nfci				True	True		
GM_Rvol22							
GM_vix	True	True	True				
GM_vrp							
GM_vix_dhoust							
GM_vix_ip							
GM_vix_nai							
GM_vix_nfci							
GARCH(1.1)							

Figure 8: RShiny - Part 2

Conclusion

- Utilizing explanatory variables in a GARCH-MIDAS model enhances prediction accuracy compared to a classical GARCH model.
- However, the effectiveness depends on selecting the appropriate explanatory variables for the appropriate horizon.
- Not all GARCH-MIDAS models consistently outperform the GARCH(1,1) model in certain test periods.

- [1] Ole E. Barndorff-Nielsen and Neil Shephard. "Econometric Analysis of Realized Volatility and Its Use in Estimating Stochastic Volatility Models". In: Journal of the Royal Statistical Society. Series B (Statistical Methodology) 64.2 (2002), pp. 253–280. ISSN: 13697412, 14679868. URL: http://www.jstor.org/stable/3088799 (visited on 07/24/2023).
- [2] Winston Chang et al. shiny: Web Application Framework for R. R package version 1.7.4. 2022. URL: https://CRAN.R-project.org/package=shiny.
- [3] C. Conrad and O. Kleen. "Two are better than one: Volatility forecasting using multiplicative component GARCH-MIDAS models". In: *J Appl Econ.* 35 (2020), pp. 19–45. URL: https://doi.org/10.1002/jae.2742.
- [4] Francis X Diebold and Robert S Mariano. "Comparing Predictive Accuracy". In: Journal of Business & Economic

- [5] Ghysels E. Engle R. F. and Sohn B. "Stock market volatility and macroeconomic fundamentals". In: *Review of Economics and Statistics* 95 (2013), pp. 776–797.
- [6] Alexios Ghalanos. *rugarch: Univariate GARCH models.* R package version 1.4-9. 2022.
- [7] Onno Kleen. alfred: Downloading Time Series from ALFRED Database for Various Vintage. R package version 0.2.1. URL: https://github.com/onnokleen/alfred/.
- [8] Onno Kleen. mfGARCH: Mixed-Frequency GARCH Models. R package version 0.2.1. 2021. URL: https://github.com/onnokleen/mfGARCH/.

Introduction

[9] Carson Sievert. Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC, 2020. ISBN: 9781138331457. URL: https://plotly-r.com.

