Knowledge Representation

Lecture 8: Abstract Argumentation
Introduction to Formal Argumentation
*slides adapted from Stefan Woltran's lecture on Abstract Argumentation

Atefeh Keshavarzi

20, November 2023

Outline

Argumentation in History

Abstract Argumentation Frameworks

Semantics

Admissible semantics

Preferred semantics

Grounded semantics

Complete semantics

Stable semantics

Argumentation in History

Plato's Dialectic

The dialectical method is discourse between two or more people holding different points of view about a subject, who wish to establish the truth of the matter guided by reasoned arguments.

Argumentation in History

Leibniz's Dream

The only way to rectify our reasonings is to make them as tangible as those of the Mathematicians, so that we can find our error at a glance, and when there are disputes among persons, we can simply say: Let us calculate [calculemus], without further ado, to see who is right.

- Developing automated methods: is an old, ambitious, and ongoing research goal
- One could say that Leibniz was thinking about a machine
 - 1. arguing as a human
 - 2. reasoning automatically and finding a correct conclusion, in the presence of conflicts among arguments

Argumentation Nowadays

- ► Internal Argumentation
- ► Human-Human Argumentation

Argumentation Nowadays

- ► Internal Argumentation
- ► Human-Human Argumentation
- ► Human-Machine Argumentation:
 - Purpose: Combining human and machine reasoning.
 - Example: Al-assisted decision-making, expert systems, Al recommendations.

TO PROVE YOU'RE A HUMAN, CLICK ON ALL THE PHOTOS THAT SHOW PLACES YOU WOULD RUN FOR SHELTER DURING A ROBOT UPRISING.

Argumentation Nowadays

- Internal Argumentation
- ► Human-Human Argumentation
- ► Human-Machine Argumentation:
 - Purpose: Combining human and machine reasoning.
 - Example: Al-assisted decision-making, expert systems, Al recommendations.

How should the process of arguing occur among automated systems?

Solid formalisms are required for modeling and evaluating argumentation

TO PROVE YOU'RE A HUMAN, CLICK ON ALL THE PHOTOS THAT SHOW PLACES YOU WOULD RUN FOR SHELTER DURING A ROBOT UPRISING.

> a: Menzis is the best insurance

► a: Menzis is the best insurance

- a: Menzis is the best insurance
- c: You have to pay Univé from 1th Feb. You arrived 1th March. Right?!

- ▶ a: Menzis is the best insurance
- c: You have to pay Univé from 1th Feb. You arrived 1th March. Right?!

- a: Menzis is the best insurance
- ► c: You have to pay Univé from 1th Feb. You arrived 1th March. Right?!
- ► The one who has the last word laughs best

Formal Models of Argumentation are concerned with

- 1. representation of an argument
- 2. representation of the relationship between arguments
- 3. solving conflicts between the arguments (acceptability)

Formal Models of Argumentation are concerned with

- 1. representation of an argument
- 2. representation of the relationship between arguments
- 3. solving conflicts between the arguments (acceptability)

- 1. Form abstract arguments: $\{a, b, c\}$
- 2. **Identify conflicts**: c attacks b, and b attacks a.

Formal Models of Argumentation are concerned with

- 1. representation of an argument
- 2. representation of the relationship between arguments
- 3. solving conflicts between the arguments (acceptability)

- 1. Form abstract arguments: $\{a, b, c\}$
- 2. **Identify conflicts**: c attacks b, and b attacks a.
- 3. **Resolve conflicts**: a is acceptable when considered together with c.

Formal Models of Argumentation are concerned with

- 1. representation of an argument
- 2. representation of the relationship between arguments
- 3. solving conflicts between the arguments (acceptability)

Example

- 1. Form abstract arguments: $\{a, b, c\}$
- 2. **Identify conflicts**: *c* attacks *b*, and *b* attacks *a*.
- 3. **Resolve conflicts**: *a* is acceptable when considered together with *c*.

What conclusions can be draw?

Formal Models of Argumentation are concerned with

- 1. representation of an argument
- 2. representation of the relationship between arguments
- 3. solving conflicts between the arguments (acceptability)

Example

- 1. Form abstract arguments: $\{a, b, c\}$
- 2. **Identify conflicts**: c attacks b, and b attacks a.
- 3. **Resolve conflicts**: a is acceptable when considered together with c.

What conclusions can be draw? Menzis is the best option for them.

Steps

- Starting point: knowledge-base
- ► Form arguments
- ► Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

Steps

- Starting point: knowledge-base
- ► Form arguments
- ► Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$

Steps

- Starting point: knowledge-base
- Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$

$$\Big(\langle\{w,w{
ightarrow}\neg s\},\neg s\rangle\Big)$$

$$\Big(\langle\{s,s{
ightarrow}
eg r\},
eg r\Big)$$

$$(\langle \{r, r \rightarrow \neg w\}, \neg w \rangle)$$

Steps

- Starting point: knowledge-base
- ► Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$

Steps

- Starting point: knowledge-base
- ► Form arguments
- ► Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$

Steps

- Starting point: knowledge-base
- ► Form arguments
- ► Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$

$$pref(AF_{\Delta}) = \{\emptyset\}$$

$$stage(AF_{\Delta}) = \{\{\alpha\}, \{\beta\}, \{\gamma\}\}\}$$

Steps

- Starting point: knowledge-base
- ► Form arguments
- Identify conflicts
- Abstract from internal structure
- Resolve conflicts
- Draw conclusions

$$\Delta = \{s, r, w, s \rightarrow \neg r, r \rightarrow \neg w, w \rightarrow \neg s\}$$

$$Cn_{pref}(AF_{\Delta}) = Cn(\top)$$

 $Cn_{stage}(AF_{\Delta}) = Cn(\neg r \lor \neg w \lor \neg s)$

Classical Arguments [Besnard & Hunter, 2001]

- ightharpoonup Given is a KB (a set of propositions) Δ
- **▶** argument is a pair (Φ, α) , such that $\Phi \subseteq \Delta$ is consistent, $\Phi \models \alpha$ and for no $\Psi \subset \Phi$, $\Psi \models \alpha$
- \triangleright conflicts between arguments (Φ, α) and (Φ', α') arise if Φ and α' are contradicting.

Classical Arguments [Besnard & Hunter, 2001]

- ightharpoonup Given is a KB (a set of propositions) Δ
- **▶** argument is a pair (Φ, α) , such that $\Phi \subseteq \Delta$ is consistent, $\Phi \models \alpha$ and for no $\Psi \subset \Phi$, $\Psi \models \alpha$
- ightharpoonup conflicts between arguments (Φ, α) and (Φ', α') arise if Φ and α' are contradicting.

$$(\langle \{s,s{
ightarrow} \neg r\}, \neg r \rangle)$$

$$\left(\langle\{r,r\rightarrow\neg w\},\neg w\rangle\right)$$

Classical Arguments [Besnard & Hunter, 2001]

- ightharpoonup Given is a KB (a set of propositions) Δ
- **▶** argument is a pair (Φ, α) , such that $\Phi \subseteq \Delta$ is consistent, $\Phi \models \alpha$ and for no $\Psi \subset \Phi$, $\Psi \models \alpha$
- ightharpoonup conflicts between arguments (Φ, α) and (Φ', α') arise if Φ and α' are contradicting.

$$(\langle \{s, s \rightarrow \neg r\}, \neg r\rangle) \longrightarrow (\langle \{r, r \rightarrow \neg w\}, \neg w\rangle)$$

Classical Arguments [Besnard & Hunter, 2001]

- ightharpoonup Given is a KB (a set of propositions) Δ
- **▶** argument is a pair (Φ, α) , such that $\Phi \subseteq \Delta$ is consistent, $\Phi \models \alpha$ and for no $\Psi \subset \Phi$, $\Psi \models \alpha$
- ightharpoonup conflicts between arguments (Φ, α) and (Φ', α') arise if Φ and α' are contradicting.

Example

$$(\langle \{s, s \rightarrow \neg r\}, \neg r\rangle) \longrightarrow (\langle \{r, r \rightarrow \neg w\}, \neg w\rangle)$$

Other Approaches

- Arguments are trees of statements
- claims are obtained via strict and defeasible rules
- different notions of conflict: rebuttal, undercut, etc.

Example

Main Properties

- ▶ Abstract from the concrete content of arguments but only consider the relation between them
- Semantics select subsets of arguments respecting certain criteria
- Simple, yet powerful, formalism
- Most active research area in the field of argumentation.
 - "plethora of semantics"

Seminal Paper by Phan Minh Dung:

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

Seminal Paper by Phan Minh Dung:

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

- Based on Google Scholar there are more than 5000 citations to [Dung, 1995]
- ▶ AFs have become a base for formal and computational argumentation [Baroni et al., 2020]
- ▶ AFs capture the essence of different non-monotonic formalisms, such as, Reiter's default logic [Reiter, 1980].
- ▶ Special issue of *Argument and Computation*, Vol. 11(1–2), 2020, dedicated to celebrate the 25 years anniversary

Definition

An argumentation framework (AF) is a pair (A, R) where

- ► *A* is a set of arguments
- $ightharpoonup R \subseteq A \times A$ is a relation representing the conflicts ("attacks")

Definition

An argumentation framework (AF) is a pair (A, R) where

- ► *A* is a set of arguments
- ▶ $R \subseteq A \times A$ is a relation representing the conflicts ("attacks")

Example

Given F = (A, R) s.t. $A = \{a, b, c, d, e\}$ and $R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}$

The main Objection

How can we assess the credibility of an argument in an abstract argumentation frameworks?

The main Objection

How can we assess the credibility of an argument in an abstract argumentation frameworks?

An argument is believable if it can be argued successfully against the counterarguments.

The main Objection

How can we assess the credibility of an argument in an abstract argumentation frameworks?

An argument is believable if it can be argued successfully against the counterarguments.

- ▶ Semantics: Methods used to clarify the acceptance of arguments
 - Extension-based semantics
 - Labelling-based semantics

How Can We Deal with Conflict in a Loop?

Example

- ▶ a: Let's go to Norway for Christmas holiday to see the northern lights.
- ▶ b: Let's go to Spain for Christmas holiday to enjoy warm weather.

How Can We Deal with Conflict in a Loop?

Example

- ▶ a: Let's go to Norway for Christmas holiday to see the northern lights.
- b: Let's go to Spain for Christmas holiday to enjoy warm weather.

How Can We Deal with Conflict in a Loop?

Example

- ▶ a: Let's go to Norway for Christmas holiday to see the northern lights.
- b: Let's go to Spain for Christmas holiday to enjoy warm weather.

▶ We do not accept arguments that have conflicts, do we?

Definition

Given F = (A, R).

A set $S \subseteq A$ is *conflict-free* if there is no attack/conflict within S. A set $S \subseteq A$ is *conflict-free* $(S \in cf(F))$ if, for each $a, b \in S$, $(a, b) \notin R$

Definition

Given F = (A, R).

A set $S \subseteq A$ is *conflict-free* if there is no attack/conflict within S. A set $S \subseteq A$ is *conflict-free* $(S \in cf(F))$ if, for each $a, b \in S$, $(a, b) \notin R$

Example

Given F = (A, R) s.t. $A = \{a, b, c, d, e\}$ and $R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}$

▶ What are the conflict-free sets of *F*?

Definition

Given F = (A, R).

A set $S \subseteq A$ is *conflict-free* if there is no attack/conflict within S. A set $S \subseteq A$ is *conflict-free* $(S \in cf(F))$ if, for each $a, b \in S$, $(a, b) \notin R$

▶ What are the conflict-free sets of *F*?

Example

$$cf(F) = \{\{a, c\},\$$

Definition

Given F = (A, R).

A set $S \subseteq A$ is *conflict-free* if there is no attack/conflict within S. A set $S \subseteq A$ is *conflict-free* $(S \in cf(F))$ if, for each $a, b \in S$, $(a, b) \notin R$

▶ What are the conflict-free sets of *F*?

Example

$$cf(F) = \{\{a, c\}, \{a, d\}\}$$

Definition

Given F = (A, R).

A set $S \subseteq A$ is *conflict-free* if there is no attack/conflict within S. A set $S \subseteq A$ is *conflict-free* $(S \in cf(F))$ if, for each $a, b \in S$, $(a, b) \notin R$

▶ What are the conflict-free sets of *F*?

Example

$$cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}\}$$

Definition

Given F = (A, R).

A set $S \subseteq A$ is *conflict-free* if there is no attack/conflict within S. A set $S \subseteq A$ is *conflict-free* $(S \in cf(F))$ if, for each $a, b \in S$, $(a, b) \notin R$

▶ What are the conflict-free sets of *F*?

Example

$$cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}\}$$

Definition

Given F = (A, R).

A set $S \subseteq A$ is *conflict-free* if there is no attack/conflict within S. A set $S \subseteq A$ is *conflict-free* $(S \in cf(F))$ if, for each $a, b \in S$, $(a, b) \notin R$

▶ What are the conflict-free sets of *F*?

Example

$$cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \{\}\}\}$$

Definition

Given an AF F = (A, R). Let $S \subseteq A$.

An argument $a \in A$ is defended by S (or, it is *acceptable* w.r.t. S) in F, if for each $b \in A$ with $(b,a) \in R$ then there exists a $c \in S$, such that $(c,b) \in R$.

Definition

Given an AF F = (A, R). Let $S \subseteq A$.

An argument $a \in A$ is defended by S (or, it is *acceptable* w.r.t. S) in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Example

Given F = (A, R) s.t. $A = \{a, b, c, d, e\}$ and $R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}$

▶ Is c acceptable w.r.t. any set? Is c defended by any set?

Definition

Given an AF F = (A, R). Let $S \subseteq A$.

An argument $a \in A$ is defended by S (or, it is *acceptable* w.r.t. S) in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Example

- ▶ Is c acceptable w.r.t. any set? Is c defended by any set?
 - ightharpoonup c is acceptable w.r.t. (defended by) $\{c\}, \{a, c\}$

Definition

Given an AF F = (A, R). Let $S \subseteq A$.

An argument $a \in A$ is defended by S (or, it is *acceptable* w.r.t. S) in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Example

- ▶ Is c acceptable w.r.t. any set? Is c defended by any set?
 - ightharpoonup c is acceptable w.r.t. (defended by) $\{c\}, \{a, c\}$
- ▶ Is b acceptable w.r.t. any set? Is d defended by any set?

Definition

Given an AF F = (A, R). Let $S \subseteq A$.

An argument $a \in A$ is defended by S (or, it is *acceptable* w.r.t. S) in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Example

- ▶ Is c acceptable w.r.t. any set? Is c defended by any set?
 - ightharpoonup c is acceptable w.r.t. (defended by) $\{c\}, \{a, c\}$
- ▶ Is b acceptable w.r.t. any set? Is d defended by any set?
 - No, because $(a, b) \in R$ and a is not attacked.

Characteristic Operator

Given
$$F = (A, R)$$

- ▶ $S \subseteq A$ is conflict-free if, for each $a, b \in S$, $(a, b) \notin R$
- An argument $a \in A$ is defended by S (or, it is *acceptable* w.r.t. S) in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Definition

Characteristic operator $\Gamma_F(S)$ is a function that take set $S \subseteq A$ and returns the set of all arguments that are defended by S.

$$\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$$

Example

Given F = (A, R) s.t. $A = \{a, b, c, d, e\}$ and $R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}$

What are the outputs of $\Gamma_F(S)$ for any of the following sets?

Recall: $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$. $a \in A \text{ is defended by } S$, if for each $b \in A$ with $(b,a) \in R$ then there exists a $c \in S$, s.t. $(c,b) \in R$.

- ► *S* = {}
- ► $S = \{a\}$
- ► $S = \{c\}$
- $ightharpoonup S = \{a, b\}$

menti .com

8174

632

Example

Given F = (A, R) s.t. $A = \{a, b, c, d, e\}$ and $R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}$

What are the outputs of $\Gamma_F(S)$ for any of the following sets?

Recall: $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$. $a \in A \text{ is defended by } S$, if for each $b \in A$ with $(b,a) \in R$ then there exists a $c \in S$, s.t. $(c,b) \in R$.

- ► *S* = {}
- $\Gamma_F(S) = \{a\}$

- ► $S = \{a\}$
- ► $S = \{c\}$
- $S = \{a, b\}$

Example

Given F = (A, R) s.t. $A = \{a, b, c, d, e\}$ and $R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}$

What are the outputs of $\Gamma_F(S)$ for any of the following sets?

Recall: $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$. $a \in A$ is defended by S, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, s.t. $(c, b) \in R$.

- ► $S = \{\}$ $\Gamma_F(S) = \{a\}$
- $ightharpoonup S = \{a\}$ $\Gamma_E(S) = \{a\}$

- ► $S = \{c\}$
- $S = \{a, b\}$

Example

Given F = (A, R) s.t. $A = \{a, b, c, d, e\}$ and $R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}$

What are the outputs of $\Gamma_F(S)$ for any of the following sets?

Recall: $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$. $a \in A$ is defended by S, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, s.t. $(c, b) \in R$.

- ► $S = \{\}$ $\Gamma_F(S) = \{a\}$
- ► $S = \{a\}$ $\Gamma_F(S) = \{a\}$

- $S = \{a, b\}$

Example

Given F = (A, R) s.t. $A = \{a, b, c, d, e\}$ and $R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}$

What are the outputs of $\Gamma_F(S)$ for any of the following sets?

Recall: $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$. $a \in A$ is defended by S, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, s.t. $(c, b) \in R$.

- ► $S = \{\}$ $\Gamma_F(S) = \{a\}$
- ► $S = \{a\}$ $\Gamma_F(S) = \{a\}$
- ► $S = \{c\}$ $\Gamma_F(S) = \{a, c\}$

Properties of the Characteristic Operator

Let F be a function, and let S and S' be inputs of F:

▶ A function F is a monotonic function: if $S \subseteq S'$ then $F(S) \subseteq F(S')$.

Properties of the Characteristic Operator

Let F be a function, and let S and S' be inputs of F:

▶ A function F is a monotonic function: if $S \subseteq S'$ then $F(S) \subseteq F(S')$.

Theorem

Given an AF F = (A, R). Let Γ_F be the characteristic operator of F. Γ_F is a monotonic function. That is, if $S \subseteq S'$ then $\Gamma_F(S) \subseteq \Gamma_F(S')$.

Properties of the Characteristic Operator

Let F be a function, and let S and S' be inputs of F:

▶ A function F is a monotonic function: if $S \subseteq S'$ then $F(S) \subseteq F(S')$.

Theorem

Given an AF F = (A, R). Let Γ_F be the characteristic operator of F. Γ_F is a monotonic function. That is, if $S \subseteq S'$ then $\Gamma_F(S) \subseteq \Gamma_F(S')$.

proof

```
\begin{split} \Gamma_F(S') &= \{ a \in A \mid a \text{ is defended by } S' \text{ in } F \} \\ &= \{ a \in A \mid a \text{ is defended by } S \cup (S' \setminus S) \text{ in } F \} \\ &= \{ a \in A \mid a \text{ is defended by } S \text{ in } F \} \cup \{ a \in A \mid a \text{ is defended by } (S' \setminus S) \text{ in } F \} \\ &= \Gamma_F(S) \cup \{ a \in A \mid a \text{ is defended by } S' \setminus S \text{ in } F \} \end{split}
```

Definition

Given an AF F = (A, R). A set S is admissible $(S \in adm(F))$ in F, if

- ► *S* is conflict-free in *F*
- $ightharpoonup S \subseteq \Gamma_F(S)$
 - $\Gamma_F(S) = \{ a \in A \mid a \text{ is defended by } S \text{ in } F \}$
 - ▶ $a \in A$ is <u>defended</u> by $S \subseteq A$ in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Definition

Given an AF F = (A, R). A set S is admissible $(S \in adm(F))$ in F, if

- ► *S* is conflict-free in *F*
- $ightharpoonup S \subseteq \Gamma_F(S)$
 - $ightharpoonup \Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$
 - ▶ $a \in A$ is <u>defended</u> by $S \subseteq A$ in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Example

Definition

Given an AF F = (A, R). A set S is admissible $(S \in adm(F))$ in F, if

- ► *S* is conflict-free in *F*
- $ightharpoonup S \subseteq \Gamma_F(S)$
 - $ightharpoonup \Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$
 - ▶ $a \in A$ is defended by $S \subseteq A$ in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$adm(F) = \{\{a, c\},$$

Definition

Given an AF F = (A, R). A set S is admissible $(S \in adm(F))$ in F, if

- ► *S* is conflict-free in *F*
- $ightharpoonup S \subseteq \Gamma_F(S)$
 - $\Gamma_F(S) = \{ a \in A \mid a \text{ is defended by } S \text{ in } F \}$
 - ▶ $a \in A$ is defended by $S \subseteq A$ in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$adm(F) = \{\{a, c\}, \{a, d\}\}$$

Definition

Given an AF F = (A, R). A set S is admissible $(S \in adm(F))$ in F, if

- ► *S* is conflict-free in *F*
- $ightharpoonup S \subseteq \Gamma_F(S)$
 - $\Gamma_F(S) = \{ a \in A \mid a \text{ is defended by } S \text{ in } F \}$
 - ▶ $a \in A$ is defended by $S \subseteq A$ in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$adm(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{b, d\}, \{a, d\}, \{a$$

Definition

Given an AF F = (A, R). A set S is admissible $(S \in adm(F))$ in F, if

- ► *S* is conflict-free in *F*
- $ightharpoonup S \subseteq \Gamma_F(S)$
 - $\Gamma_F(S) = \{ a \in A \mid a \text{ is defended by } S \text{ in } F \}$
 - ▶ $a \in A$ is defended by $S \subseteq A$ in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$adm(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}\}$$

Definition

Given an AF F = (A, R). A set S is admissible $(S \in adm(F))$ in F, if

- ► *S* is conflict-free in *F*
- $ightharpoonup S \subseteq \Gamma_F(S)$
 - $\Gamma_F(S) = \{ a \in A \mid a \text{ is defended by } S \text{ in } F \}$
 - ▶ $a \in A$ is defended by $S \subseteq A$ in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Example

Definition

Given an AF F = (A, R). A set S is admissible $(S \in adm(F))$ in F, if

- ► *S* is conflict-free in *F*
- $ightharpoonup S \subseteq \Gamma_F(S)$
 - $\Gamma_F(S) = \{ a \in A \mid a \text{ is defended by } S \text{ in } F \}$
 - ▶ $a \in A$ is defended by $S \subseteq A$ in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$adm(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \{\}\}\}$$

Properties of Admissible Extensions

Theorem

Every AF has at least one admissible extension.

Proof

In any AF empty set is an admissible extension.

Properties of Admissible Extensions

Theorem

Every AF has at least one admissible extension.

Properties of Admissible Extensions

Theorem

Every AF has at least one admissible extension.

The relation between admissible extensions of F with respect to the subset relation.

Preferred Semantics

Definition

Given an AF F = (A, R). A set S is a preferred extension $(S \in pref(F))$ in F if

▶ S is \subseteq -maximal admissible in F, that is, for each $T \subseteq A$ admissible in F, $S \not\subset T$.

Preferred Semantics

Definition

Given an AF F = (A, R). A set S is a preferred extension $(S \in pref(F))$ in F if

▶ S is \subseteq -maximal admissible in F, that is, for each $T \subseteq A$ admissible in F, $S \not\subset T$.

Example

Given F = (A, R) s.t. $A = \{a, b, c, d, e\}$ and $R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}$

▶ What are the preferred extensions for *F*?

Preferred Semantics

Definition

Given an AF F = (A, R). A set S is a preferred extension $(S \in pref(F))$ in F if

▶ S is \subseteq -maximal admissible in F, that is, for each $T \subseteq A$ admissible in F, $S \not\subset T$.

Example

$$pref(F) = \{ \{a, c\}, \{a, d\}, \{a\}, \{c\}, \{d\}, \emptyset \} \}$$

Characterize of Semantics of AFs

Theorem

Any AF has at least a preferred extension.

Proof

Let F be an AF. Every AF has at least an admissible extension. For each admissible set S of AF, there exists a preferred extension E of AF such that $S \subseteq E$.

Characterize of Semantics of AFs

Theorem

Any AF has at least a preferred extension.

Proof

Let F be an AF. Every AF has at least an admissible extension. For each admissible set S of AF, there exists a preferred extension E of AF such that $S \subseteq E$.

Properties of Semantics of AFs

- ► Any admissible extension is a conflict-free set.
- ▶ In any AF empty set is an admissible extension.
- Every AF has at least one admissible extension.
- Every AF has at least one preferred extension.
- **.**..

Flashback

Given an AF F = (A, R), and $S \subseteq A$. The characteristic operator is $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$.

▶ Characteristic operator is monotonic, that is, if $S \subseteq S'$, then $\Gamma_F(S) \subseteq \Gamma_F(S')$.

Flashback

Given an AF F = (A, R), and $S \subseteq A$. The characteristic operator is $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$.

▶ Characteristic operator is monotonic, that is, if $S \subseteq S'$, then $\Gamma_F(S) \subseteq \Gamma_F(S')$.

Definition

S is termed the least fixed point of Γ_F if:

- $ightharpoonup S = \Gamma_F(S),$
- ▶ for each $S' \subseteq A$, if $\Gamma_F(S') = S'$, then $S \subseteq S'$.

Flashback

Given an AF F = (A, R), and $S \subseteq A$. The characteristic operator is $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$.

▶ Characteristic operator is monotonic, that is, if $S \subseteq S'$, then $\Gamma_F(S) \subseteq \Gamma_F(S')$.

Definition

S is termed the least fixed point of Γ_F if:

- $ightharpoonup S = \Gamma_F(S),$
- ▶ for each $S' \subseteq A$, if $\Gamma_F(S') = S'$, then $S \subseteq S'$.

Theorem

Given an AF F = (A, R). Γ_F has the least fixed point.

Flashback

Given an AF F = (A, R), and $S \subseteq A$. The characteristic operator is $\Gamma_F(S) = \{a \in A \mid a \text{ is defended by } S \text{ in } F\}$.

▶ Characteristic operator is monotonic, that is, if $S \subseteq S'$, then $\Gamma_F(S) \subseteq \Gamma_F(S')$.

Definition

S is termed the least fixed point of Γ_F if:

- $ightharpoonup S = \Gamma_F(S),$
- ▶ for each $S' \subseteq A$, if $\Gamma_F(S') = S'$, then $S \subseteq S'$.

Theorem

Given an AF F = (A, R). Γ_F has the least fixed point.

Proof.

Let $S = \emptyset$, and let $S' = \Gamma_F(\emptyset)$. clearly, $S \subseteq S'$ Since Γ_F is a monotonic function, $\Gamma_F^n(S) \subseteq \Gamma_F^{n+1}(S')$, where . $\Gamma_F^{n+1} = \Gamma_F(\Gamma_F^n)$. Since A is countable, there exists m s.t. $\Gamma_F^m(S) = \Gamma_F^{m+1}(S')$

Grounded Semantics

Definition

Given an AF F = (A, R). A conflict set $S \subseteq A$ is the *grounded extension* $(S \in grd(F))$ if S is the \subseteq -least fixed point of $\Gamma_F(S)$.

Grounded Semantics

Definition

Given an AF F = (A, R). A conflict set $S \subseteq A$ is the *grounded extension* $(S \in grd(F))$ if S is the \subseteq -least fixed point of $\Gamma_F(S)$.

Grounded Extension [Dung, 1995]

Given an AF F = (A, R). The unique grounded extension of F is defined as the outcome S of the following "algorithm":

- 1. put each argument $a \in A$ which is not attacked in F into S; if no such argument exists, return S;
- 2. remove from F all (new) arguments in S and all arguments attacked by them (together with all adjacent attacks); and continue with Step 1.

Grounded Semantics (ctd.)

Recall: *S* is the grounded extension of *F* if it is the \subseteq -least fixed point of $\Gamma_F(S)$.

Example

Given F = (A, R) s.t. $A = \{a, b, c, d, e\}$ and $R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}$

What is the grounded extension of F?

1.
$$grd(F) = \{\{\}\}$$

2.
$$grd(F) = \{\{a\}\}$$

3.
$$grd(F) = \{\{a, c\}\}$$

4.
$$grd(F) = \{\{a, d\}\}$$

5.
$$grd(F) = \{\{a,c\},\{a,d\}\}$$

Grounded Semantics (ctd.)

Recall: S is the grounded extension of F if it is the \subseteq -least fixed point of $\Gamma_F(S)$.

Example

$$grd(F) = \{\{a\}\}$$

Definition

Given an AF F = (A, R). A conflict set $S \subseteq A$ is a *complete extension* $(S \in comp(F))$ if $S = \Gamma_F(S)$. That is, each $a \in A$ defended by S in F is contained in S.

Definition

Given an AF F = (A, R). A conflict set $S \subseteq A$ is a *complete extension* $(S \in comp(F))$ if $S = \Gamma_F(S)$. That is, each $a \in A$ defended by S in F is contained in S.

Example

Given F = (A, R) s.t. $A = \{a, b, c, d, e\}$ and $R = \{(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)\}$

▶ What are the complete extensions for F?

Definition

Given an AF F = (A, R). A conflict set $S \subseteq A$ is a *complete extension* $(S \in comp(F))$ if $S = \Gamma_F(S)$. That is, each $a \in A$ defended by S in F is contained in S.

Example

$$comp(F) = \{\{a, c\},$$

Definition

Given an AF F = (A, R). A conflict set $S \subseteq A$ is a *complete extension* $(S \in comp(F))$ if $S = \Gamma_F(S)$. That is, each $a \in A$ defended by S in F is contained in S.

Example

$$comp(F) = \{\{a, c\}, \{a, d\}, \}$$

Definition

Given an AF F = (A, R). A conflict set $S \subseteq A$ is a *complete extension* $(S \in comp(F))$ if $S = \Gamma_F(S)$. That is, each $a \in A$ defended by S in F is contained in S.

Example

$$comp(F) = \{\{a, c\}, \{a, d\}, \frac{\{b, d\}}{\}}, \frac$$

Definition

Given an AF F = (A, R). A conflict set $S \subseteq A$ is a *complete extension* $(S \in comp(F))$ if $S = \Gamma_F(S)$. That is, each $a \in A$ defended by S in F is contained in S.

Example

Definition

Given an AF F = (A, R). A conflict set $S \subseteq A$ is a *complete extension* $(S \in comp(F))$ if $S = \Gamma_F(S)$. That is, each $a \in A$ defended by S in F is contained in S.

Example

$$comp(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{c\}, \{d\}, \emptyset\}\}$$

Characterize of Semantics (ctd.)

Properties of the Extensions

Given AF F = (A, R),

- F has a unique grounded extension.
- \triangleright the grounded extension of F is the subset-minimal complete extension of F.
- F has at least one complete extension.

Characterize of Semantics (ctd.)

Properties of the Extensions

Given AF F = (A, R),

- F has a unique grounded extension.
- \triangleright the grounded extension of F is the subset-minimal complete extension of F.
- F has at least one complete extension.

Remark

Since there exists exactly one grounded extension for each AF F, we often write grd(F) = S instead of $grd(F) = \{S\}$.

Definition

Given an AF F = (A, R). A set $S \subseteq A$ is a *stable extension* of F $(S \in stb(F))$ if

- ► *S* is conflict-free in *F*
- ▶ for each $a \in A \setminus S$: there exists a $b \in S$ such that $(b, a) \in R$.

Definition

Given an AF F = (A, R). A set $S \subseteq A$ is a *stable extension* of F $(S \in stb(F))$ if

- ► *S* is conflict-free in *F*
- ▶ for each $a \in A \setminus S$: there exists a $b \in S$ such that $(b, a) \in R$.

Example

Definition

Given an AF F = (A, R). A set $S \subseteq A$ is a *stable extension* of F $(S \in stb(F))$ if

- ► *S* is conflict-free in *F*
- ▶ for each $a \in A \setminus S$: there exists a $b \in S$ such that $(b, a) \in R$.

Example

Definition

Given an AF F = (A, R). A set $S \subseteq A$ is a *stable extension* of F $(S \in stb(F))$ if

- ► *S* is conflict-free in *F*
- ▶ for each $a \in A \setminus S$: there exists a $b \in S$ such that $(b, a) \in R$.

Example

$$stb(F) = \{ \frac{a, c}{a}, \frac{c}{a}, \frac{c}{a} \}$$

Definition

Given an AF F = (A, R). A set $S \subseteq A$ is a *stable extension* of F $(S \in stb(F))$ if

- ► *S* is conflict-free in *F*
- ▶ for each $a \in A \setminus S$: there exists a $b \in S$ such that $(b, a) \in R$.

Example

$$stb(F) = \{ \{a, c\}, \{a, d\},$$

Definition

Given an AF F = (A, R). A set $S \subseteq A$ is a *stable extension* of F $(S \in stb(F))$ if

- ► *S* is conflict-free in *F*
- ▶ for each $a \in A \setminus S$: there exists a $b \in S$ such that $(b, a) \in R$.

Example

$$stb(F) = \{ \{a, c\}, \{a, d\}, \{b, d\}, \{a, d\}, \{$$

Definition

Given an AF F = (A, R). A set $S \subseteq A$ is a *stable extension* of F $(S \in stb(F))$ if

- ► *S* is conflict-free in *F*
- ▶ for each $a \in A \setminus S$: there exists a $b \in S$ such that $(b, a) \in R$.

Example

$$stb(F) = \{ \{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{c\}, \{d\}, \emptyset \} \}$$

Characterize of Semantics (ctd.)

Some Relations

For any AF F the following relations hold:

- 1. Each stable extension of F is admissible in F
- 2. Each stable extension of F is also a preferred one
- 3. Each preferred extension of F is also a complete one

- Stable semantics reflect the 'zero-and-one' character of classical logic in argumentation frameworks.
- ► An AF may not have any stable extension.

Relation between the Semantics of AFs

Figure: An arrow from semantics σ to semantics τ encodes that each σ -extension is also a τ -extension.

Semantics in Summery

- ▶ $S \subseteq A$ is conflict-free if, for each $a, b \in S$ $(a, b) \notin R$
- An argument $a \in A$ is defended by S (or, it is *acceptable* w.r.t. S) in F, if for each $b \in A$ with $(b, a) \in R$ then there exists a $c \in S$, such that $(c, b) \in R$.
- $\Gamma_F(S) = \{ a \in A \mid a \text{ is defended by } S \text{ in } F \}$

Semantics of AFs

Given an AF F = (A, R). A conflict-free set S is

- ▶ admissible $(S \in adm(F))$ if $S \subseteq \Gamma_F(S)$
- ▶ preferred $(S \in pref(F))$ if S is \subseteq -maximal admissible
- ▶ stable $(S \in stb(F))$ if for each $a \in A \setminus S$: there exists $b \in S$ such that $(b, a) \in R$
- ▶ grounded $(S \in grd(F))$ if S is the \subseteq -least fixed point of $\Gamma_F(S)$
- ▶ complete $(S \in comp(F))$ if $S = \Gamma_F(S)$

Summery

We have seen

- Abstract Argumentation Frameworks
- Conflict-free sets
- Admissible semantics
- Preferred semantics
- Complete semantics
- Grounded semantics
- Stable semantics

Next

- Decision problems in AFs
- ► Labelling-based argumentation

References

Baroni, P., Toni, F., and Verheij, B. (2020).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games: 25 years later.

Argument & Computation, 11(1-2):1-14.

Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

Artificial Intelligence, 77(2):321-357.

Reiter, R. (1980).

A logic for default reasoning.

Artificial intelligence, 13(1-2):81-132.