

Trabalho de Construção de Circuito para Cálculo de Raiz Quadrada

Vinícius Schultz

Universidade Federal de Santa Maria (UFSM) 2025

MUDANÇAS NO CÓDIGO int main(){ int root, sum_2, square, ready, input=49; root = 1; $sum_2 = 2;$ square = 4;ready = 1; while(ready == 1){ root = root+1; $sum_2 = sum_2+2;$ square = square + sum_2 + 1; if(input-square < Ø)</pre> ready = 0; else ready = 1;

```
MUDANÇAS NO CÓDIGO
                    int main(){
                         int root, sum_2, square, ready, input=49;
                         root
                         sum_2 = 2;
o teste sempre
                         square = 4;
  vai ser
                         ready = 1;
verdadeiro na
                        while(ready == 1){
  primeira
                                    = root+1;
                             root
  iteração
                             sum_2 = sum_2+2;
                             square = square + sum_2 + 1;
                             if(input-square < 0)</pre>
                                 ready = 0;
                             else
                                 ready = 1;
```

```
int main(){
    int root, sum_2, square, ready, input=49;
   root = 1;
    sum_2 = 2;
    square = 4;
   ready = 1;
    do{
        root = root+1;
        sum_2 = sum_2+2;
        square = square + sum_2 + 1;
        if(input-square < Ø)</pre>
           ready = 0;
        else
           ready = 1;
    } while(ready == 1)
```

```
MUDANÇAS NO CÓDIGO
                 int main(){
                     int root, sum_2, square, ready, input=49;
                     root
                     sum_2 = 2;
                     square = 4;
                     ready = 1;
                     do{
                         root
                                 = root+1;
                          sum_2 = sum_2+2;
                          square = square + sum_2 + 1;
o teste do while
                         if(input-square < Ø)</pre>
é dependente
do teste do if
                             ready = 0;
                          else
                             ready = 1;
                       while(ready == 1)
```

MUDANÇAS NO CÓDIGO int main(){ int root, sum_2, square, ready, input=49; root $sum_2 = 2;$ square = 4; ready = 1; do{ root = root+1; $sum_2 = sum_2+2;$ square = square + sum_2 + 1; } while(!(input-square < Ø))</pre> ready = 0;

MUDANÇAS NO CÓDIGO int main(){ int root, sum_2, square, ready, input=49; root $sum_2 = 2;$ square = 4; ready = 1; do{ = root+1; root atribuições sum_2 = sum_2+2; repetidas square = square + sum_2 + 1; } while(!(input-square < 0))</pre> ready = 0;

MUDANÇAS NO CÓDIGO int main(){ int root, sum_2, square, ready, input=49; root = 2; $sum_2 = 4;$ square = 9; ready = 1; while(!(input-square < 0)){</pre> root = root+1; $sum_2 = sum_2+2;$ square = square + sum_2 + 1; ready = 0;

```
MUDANÇAS NO CÓDIGO
             int main(){
                 int root, sum_2, square, ready, input=49;
                 root
                       = 2;
                 sum_2 = 4;
                 square = 9;
                 ready = 1;
                 while(!(input-square < 0)){</pre>
                     root
                            = root+1;
                   sum_2
                            = sum_2+2;
sum_2 + 2
                   square = square + sum_2 + 1;
sum_2 + 1
                 ready = 0;
```

```
int main(){
    int root, sum_2, square, ready, input=49;
   root = 2;
   sum_2 = 5;
   square = 9;
   ready = 1;
    while(!(input-square < 0)){</pre>
       root
               = root+1;
        sum_2 = sum_2+2;
        square = square + sum_2;
   ready = 0;
```

BUGS?

Para raízes de 0 a 3 a resposta retornada é 2;

```
int main(){
    int root, sum_2, square, ready, input=49;
    root = 2;
    sum_2 = 5;
    square = 9;
    ready = 1;
    while(!(input-square < 0)){</pre>
        root = root+1;
        sum_2 = sum_2+2;
        square = square + sum_2;
    ready = 0;
```

SOLUÇÃO:

"Desfazer" os cálculos até root=0;

```
int main(){
    int root, sum_2, square, ready, input=49;
   root = Ø;
   sum_2 = 1;
    square = 1;
   ready = 1;
    while(!(input-square < 0)){</pre>
        root
               = root+1;
        sum_2 = sum_2+2;
        square = square + sum_2;
   ready = 0;
```

root	sum_2 square	
Ø	1	1
1	3	4
2	5	9
3	7	16
4	9	25
5	11	36
6	13	49
7	15	64
Incrementa 1	Sequência dos	Sequência das
a cada ciclo	números ímpares	raízes perfeitas

root	sum_2	square	
Ø	1 = Ø.2 + 1	1	
1	3 = 1.2 + 1	4	
2	5 = 2.2 + 1	9	
3	7 = 3.2 + 1	16	
4	9 = 4.2 + 1	25	
5	11 = 5.2 + 1	36	
6	13 = 6.2 + 1	49	
7	15 = 7.2 + 1	64	
Incrementa 1	Sequência dos	Sequência das	
a cada ciclo	números ímpares	raízes perfeitas	

root	sum_2	square	
Ø	1 = 0.2 + 1	1	
1	3 = 1.2 + 1	4	
2	5 = 2. 2 + 1	9	
3	7 = 3 .2 + 1	16	
4	9 = 4.2 + 1	25	
5	11 = 5.2 + 1	36	
6	13 = 6.2 + 1	49	
7	15 = 7. 2 + 1	64	
Incrementa 1	Sequência dos	Sequência das	
a cada ciclo	números ímpares	raízes perfeitas	

root	sum_2	square	
Ø	1 = 0.2 + 1	1	
1	3 = 1.2 + 1	4	
2	5 = 2. 2 + 1	9	9 + 7
3	7 = 3.2 + 1	16	9 + 3.2 + 1
4	9 = 4.2 + 1	25	square + root.2 + 1
5	11 = 5.2 + 1	36	square + root<<1 + 1
6	13 = 6.2 + 1	49	
7	15 = 7. 2 + 1	64	•
Incrementa 1	Sequência dos	Sequência das	
a cada ciclo	números ímpares	raízes perfeitas	

CÓDIGO ORIGINAL

```
int main(){
    int input = 49;
    int root = 1;
    int sum_2 = 2;
   int square = 4;
    int ready = 1;
   while(ready == 1){
        root = root + 1;
        sum_2 = sum_2 + 2;
        square = square + sum_2 + 1;
        if(input-square < 0)</pre>
            ready = 0;
        else
           ready = 1;
```

CÓDIGO REESCRITO

```
int main(){
    int input = 49;
    int root = 0;
    int square = 1;
    int ready = 1;
    while(!(input-square < 0)){</pre>
        root = root+1;
        square = square + (root<<1) + 1;</pre>
    ready = 0;
```


RESULTADOS

	16 bits	17 bits	8 bits
Somadores	Ø	2	2
Multiplexadores	Ø	6	3
Registradores	1	2	2

• Ciclos necessários para calcular √65535: 255

