

Machine Learning **Model with RWD** Harmonized by OMOP

AGENDA

Intro: Synopsis

Data Preparation: Handle Missing Data, Outliers, and Inconsistencies

Machine Learning Model: Logisitic Regression & Random Forest

Conclusion: R Markdown

About Me

- Name: Jeet Patel
- Major: Statistics & Economics at University of Illinois at Chicago
- Career Goal: Aspiring Data Analyst
- Achievement: Winner of the UIC SparkHacks Hackathon

OMOP

Standardizes healthcare data for consistent analysis across studies

SDTM

Standard format for organizing clinical trial data for regulatory submission

ERD

Diagram showing the relationships between data entities in a database

CDASH

Standardizes how clinical trial data is collected for consistency and analysis.

R

Programming language for statistics, data analysis, and visualization

Synopsis

- Project Title: Developing a Machine Learning Model for Risk Prediction Using Real-World Healthcare Data
- Goal: Build predictive models to assess clinical risk using healthcare datasets
- Objectives:
 - Prepare and clean the dataset (missing data, outliers, and feature engineering)
 - Perform exploratory data analysis (EDA)
 - Develop and compare supervised ML models (logistic regression and random forest)
- o **Tools:** R with reproducible documentation RMarkdown
 - Libraries included are "tidymodels" & "tidvyverse"

Background

- Healthcare generates massive amounts of data
- Predicting patient risk is critical for better outcomes & resource planning
- Challenge: data is messy, complex, and high-dimensional
- Goal: apply ML to improve clinical decision-making

library(haven)
library(tidyverse)
library(tidymodels)
library(vip)

PACKAGES

LIBRARY	 - PURPOSE		FUNCTIONS
haven	read SAS data	•	read_sas()
tidy verse	data maniuplation and visualization	•	left_join(), select(), filter()
tidy models	machine learning and workflows	•	recipe(), logistic_reg(), rand_forest(), fit(), predict(), metrics()
vip	visualize variable importance for random forest	•	vip()

Phase 1: Data Preparation

- Clinical data often contains missing values, duplicates, and inconsistencies
- Before modeling, data must be:
 - Cleaned (handle missing/outliers)
 - Standardized (consistent variable types)
 - Labeled (create outcome/target variable)
- Good preparation ensures reliable ML results

Data Preparation

- Select & rename columns –
 AGE, SEX, RACE, DCDECOD
 - Handle missing values
 - AGE → replace NA with median
 - SEX & RACE → replace NA with "Unknown"
 - Cap AGE outliers at 1st & 99th percentile
 - Remove rows where DCDECOD is missing
 - Create target variable → completed_flag (Yes/No)

```
# 1) Select relevant columns and rename
data <- data[, c("USUBJID", "AGE.y", "SEX.y", "RACE.y", "DCDECOD")]</pre>
names(data) [names(data) == "AGE.y"] <- "AGE"</pre>
names(data) [names(data) == "SEX.y"] <- "SEX"</pre>
names(data)[names(data) == "RACE.y"] <- "RACE"</pre>
# 2) Handle missing AGE values by replacing NA with median
median_age <- median(data$AGE, na.rm = TRUE)</pre>
data$AGE[is.na(data$AGE)] <- median_age</pre>
# 3) Handle missing SEX and RACE by replacing NA with "Unknown"
data$SEX <- fct_na_value_to_level(data$SEX, "Unknown")</pre>
data$RACE <- fct_na_value_to_level(data$RACE, "Unknown")</pre>
# 4) Cap AGE outliers at 1st and 99th percentile
age_lower <- quantile(data$AGE, 0.01)</pre>
age_upper <- quantile(data$AGE, 0.99)</pre>
data$AGE[data$AGE < age_lower] <- age_lower</pre>
data$AGE[data$AGE > age_upper] <- age_upper</pre>
# 5) Remove rows where DCDECOD is missing
data <- data[!is.na(data$DCDECOD), ]</pre>
# 6) Create binary target variable
data$completed_flag <- factor(ifelse(data$DCDECOD == "COMPLETED", "Y-</pre>
```

Exploratory Data Analysis

- Check structure & summary
- Class balance distribution of completed_flag
 - Count & proportion of Yes/ No
- Visualize distribution –
 horizontal bar chart

```
str(data)
glimpse(data)
summary(data)
table(data$completed_flag)
prop.table(table(data$completed_flag))
# Count the completed_flag categories
completed_counts <- table(data$completed_flag)</pre>
# Horizontal bar chart
barplot(completed_counts,
        horiz = TRUE,
        col = c("steelblue", "orange"),
        main = "Distribution of Completed Flag",
        xlab = "Count")
```

Bar Chart

 Bar chart shows patients who completed vs. did not complete the study

• 56% did not complete, 44% complete

 Target variable is fairly balanced → unlikely to affect ML model performance

Phase 2: Machine Learning

- Machine Learning helps predict risk/outcomes from data
- Process:
 - Split data into train/test sets
 - Train models (e.g., logistic regression, random forest)
 - Evaluate performance with metrics (Accuracy, AUC, Precision/Recall)
 - Compare models → pick best balance of accuracy + interpretability

Train/Test Split

- Purpose: Separate data into training and testing sets for model evaluation.
- **Split:** 80% training, 20% testing
- Stratification: Maintain class balance of completed_flag

```
# 9) Split the data into training and testing sets
set.seed(123) # ensures reproducibility

split <- initial_split(data, prop = 0.8, strata = completed_flag)

train <- training(split) # training data (80%)
test <- testing(split) # testing data (20%)

nrow(train) # number of rows in training set
nrow(test) # number of rows in testing set

prop.table(table(train$completed_flag))</pre>
```

> prop.table(table(train\$completed_flag))

No Yes 0.5610256 0.4389744

Preprocessing

- Create a recipe for data transformations (recipe())
- Dummy variables for categorical predictors (SEX, RACE)
 → step dummy()
- Normalize numeric
 predictor (AGE)
 ⇒ step_normalize()

```
log_model <- logistic_reg(mode = "classification")
log_model <- set_engine(log_model, "glm")

log_wf <- workflow()
log_wf <- add_recipe(log_wf, rec)
log_wf <- add_model(log_wf, log_model)

log_fit <- fit(log_wf, data = train)</pre>
```


Logistic Regression

- Predicts two outcomes (Yes/No) using probabilities from input factors.
- Simple and interpretable, but works best with linear relationships.
- **Limitation**: May underfit when data patterns are complex.

Random Forest

- Predicts outcomes by combining many decision trees, each voting on the result.
- More accurate and handles complex, non-linear relationships.
- Limitation: Less interpretable and can be slower to train.

Logistic Regression

- Model: logistic_reg()
- Engine: glm
- Workflow:
 - Combine recipe + model

 → workflow(), add_recipe(),
 add model()
- Fit model on training data → fit()

```
log_model <- logistic_reg(mode = "classification")
log_model <- set_engine(log_model, "glm")

log_wf <- workflow()
log_wf <- add_recipe(log_wf, rec)
log_wf <- add_model(log_wf, log_model)

log_fit <- fit(log_wf, data = train)</pre>
```

Random Forest

- Model: rand_forest()
- Engine: ranger
- Workflow:
- Combine recipe + model
 → workflow(), add_recipe(), add_model()
- Fit model on training data → fit()

```
rf_model <- rand_forest(mode = "classification", trees = 500)
rf_model <- set_engine(rf_model, "ranger", importance = "impurity")

rf_wf <- workflow()
rf_wf <- add_recipe(rf_wf, rec)
rf_wf <- add_model(rf_wf, rf_model)

rf_fit <- fit(rf_wf, data = train)</pre>
```

Logistic Regression & Random Forest

- Predictions: predict() on test set
- Metrics: metrics() → accuracy, sensitivity, specificity
- Confusion
 matrix: conf_mat() → shows
 true positives, true negatives,
 false positives, false negatives

```
log_preds <- predict(log_fit, test)
log_preds <- bind_cols(log_preds, select(test, completed_flag))

log_metrics <- metrics(log_preds, truth = completed_flag, estimate = .pred_class
log_metrics

log_cm <- conf_mat(log_preds, truth = completed_flag, estimate = .pred_class)
log_cm</pre>
```

```
rf_preds <- predict(rf_fit, test)
rf_preds <- bind_cols(rf_preds, select(test, completed_flag))

rf_metrics <- metrics(rf_preds, truth = completed_flag, estimate = .pred_class)
rf_metrics

rf_cm <- conf_mat(rf_preds, truth = completed_flag, estimate = .pred_class)
rf_cm</pre>
```

Variable Importance Plot

• Shows which variables contributed most to predictions in the Random Forest model.

 AGE is the most important predictor of study completion.

 Other factors (e.g., sex, race) had smaller influence.

Conclusion

```
Figures
  .metric
           .estimator .estimate
  <chr>
           <chr>>
                           <dbl>
 accuracy binary
                          0.514
 kap
           binary
                         -0.0479
 log_cm
          Truth
Prediction
           No Yes
           108
       No
            29
                18
       Yes
  .metric
            .estimator .estimate
  <chr>>
            <chr>>
                            <db1>
  accuracy binary
                           0.645
2 kap
           binary
                           0.226
> rf_cm
          Truth
Prediction
            No Yes
                 29
       Yes
```

Statistics

Result

Random Forest outperformed Logistic Regression

Key Takeaway

Machine learning helps identify patient risk factors and supports clinical trial planning

Future Work

Test on larger datasets and include additional predictors for improved prediction

Recap

Data Preparation

Merge data, replace missing data, and cap outliers

Exploratory Data Analysis

Inspect class distribution & bar graph

Train/Test Split

80% training & 20% testing

Feature Engineering

Make a recipe

Recap

Logistic Regression/ Random Forest

Select a mode & engine

Evaluation

Metrics determine accuracy & confusion metrics notice false positives/negatives

Interpretation

Identify which features influences the predicter

Future

More machine learning models

Thank You!

Any Questions?