Eigen Systems

An introduction to basic properties of eigenvalue and eigenvector

Outline

- Introduction
- Characteristic polynomial
- Basic properties of eigen-systems
- Diagonalization process
- Similarity transformation
- Singular values

Introduction

• Definition: A is an n by n matrix and x is a non-zero vector in the R^n space. Then x is an eigenvector of A and λ is the associate eigenvalue if and only if

$$Ax = \lambda x$$
.

- Applications of eigensystem
 - Image analysis, computer vision, computer graphics and visualization
 - Dimension reduction and data classification
 - Vibration analysis
 - Flow field analysis
 - **–** ...

2- and 3-D Space Eigenvectors

- If x is an eigenvector of matrix A, then we have $Ax = \lambda x$, $(\lambda I A)x = 0$ where I is the identity matrix.
- Characteristic polynomial
 - The previous system has non-zero solution if the determinant $|\lambda I A| = 0$. //利用反證法證明,假設橫列式值 $\neq 0$
 - By expanding the determinant, we have $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$.
 - $p(\lambda)$ is the characteristic polynomial of A.
- In 2- and 3-D spaces, we can solve the eigenvalues analytically.
- But, in higher dimensional spaces, we have to compute eigenvalues by using numerical algorithms.

Properties of Eigen System (1/2)

- 1. If *A* is symmetric, all its eigenvalues are real and the eigenvectors are mutually orthogonal.
 - The eigenvectors form a basis for the *n*-D space.
- 2. If λ is an eigenvalue of A, then λ^k is an eigenvalue of A^k .
- 3. If λ is an eigenvalue of A, then λ^{-1} is an eigenvalue of A^{-1} .
- 4. The eigenvectors of A and A^{-1} are the same.

Proofs

- If A is symmetric, then its eigenvalues are real and its eigenvectors are mutually orthogonal.
- Proof:

Let (λ_i, x_i) and (λ_j, x_j) be two different eigen-pairs and the eigenvectors be unit vectors.

$$\langle Ax_i, Ax_i \rangle = x_i^T A^T Ax_i = x_i^T A^2 x_i = \lambda_i^2 > 0.$$

Thus λ_i is real.

$$\lambda_i < x_i, x_j > = < Ax_i, x_j > x_i^T A^T x_j = x_i^T A x_j$$
$$= < x_i, \lambda_j x_j > \lambda_j x_i^T x_j = \lambda_j < x_i, x_j > .$$

However, $\lambda_i \neq \lambda_j$. The previous equation holds if and only if $\langle x_i, x_i \rangle = 0$ and $x_i \perp x_i$.

Proofs

- If $A\vec{x} = \lambda \vec{x}$, then $A^{-1}\vec{x} = \frac{1}{\lambda}\vec{x}$.
- Proof:

$$A\vec{x} = \lambda \vec{x} \rightarrow A^{-1}A\vec{x} = A^{-1}\lambda \vec{x},$$

$$\vec{x} = \lambda A^{-1}\vec{x} \rightarrow \frac{1}{\lambda}\vec{x} = A^{-1}\vec{x}.$$

- 1. If λ is an eigenvalue of A, then λ^{-1} is an eigenvalue of A^{-1} .
- 2. The eigenvectors of A and A^{-1} are the same.

Properties of Eigen System (2/2)

- 5. If A is SPD, all its eigenvalues > 0.
- 6. If L is a lower triangular matrix, $\lambda_i = l_{ii}$.
 - Similar property holds for upper triangular matrices.
 - Eigenvalues of a diagonal matrix = the diagonal entries.
 - 利用 characteristic polynomial證明
- 7. The trace of A, $trace(A) = \sum a_{ii} = \sum \lambda_i$.
 - 利用 characteristic polynomial證明
- 8. Determinant of A, $|A| = \prod \lambda_i$.
 - 利用 characteristic polynomial證明

Diagonalization

- Let $\Lambda = \begin{bmatrix} \lambda_0 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}$ and $P = [v_0, v_1, v_2]$, where λ_i and v_i are eigenvalues and eigenvectors of matrix A.
- Then $AP = P\Lambda$ (column operation) and $P^{-1}AP = P^{-1}P\Lambda = \Lambda$. $A = P\Lambda P^{-1}$, $\Lambda = P^{-1}AP$.
- Conclusion 1: we can decompose A into the product of matrices P, Λ , and P^{-1} .
- Conclusion 2: we can diagonalize A by using the column matrix of the eigenvectors and the diagonal matrix of the eigenvalues.

Similarity Transformation

• Theorem: If matrix P is invertible, the following transformation preserves the eigenvalues of A. $P^{-1}AP$.

Proof:

- The characteristic polynomial of matrix A is:

$$f(\lambda) = \det(\lambda I - A).$$

- Consider the characteristic polynomial of the transformed matrix $det(\lambda I - P^{-1}AP) = det(\lambda P^{-1}P - P^{-1}AP)$

$$= \det(P^{-1}\lambda IP - P^{-1}AP) = \det(P^{-1}(\lambda I - A)P)$$

- $= \det(P^{-1}) \det(\lambda I A) \det(P)$
- $= \det(\lambda I A) = f(\lambda).$
- Both matrices have the same characteristic polynomial, and their eigenvalues are the same.

Similarity Transformation

- Theorem: Let $B = P^{-1}AP$ and x is an eigenvector of A. Then $y = P^{-1}x$ is an eigenvector of B.
- Proof:
 - Since y is an eigenvector of \mathbf{B} , we have

$$B * y = \lambda y.$$

– Expanding B*y, we have

$$B * y = P^{-1}AP(P^{-1}x) // y = P^{-1}x$$

$$= P^{-1}Ax = P^{-1}\lambda x = \lambda(P^{-1}x) = \lambda y.$$

- Thus $y = P^{-1}x$ is an eigenvector of **B**.

Singular Values

• Definition: A is a M x N matrix and $B = A^T A$. The singular values of A are the square roots of the eigenvalues of B.

- Question: Are singular values and eigenvalues of a square matrix the same?
- Answer: No!
 - If A is symmetric, then yes.