TTK4115

Lecture 8

Canonical decompositions & Minimal realizations

Morten O. Alver (based on slides by Morten D. Pedersen)

This lecture

1. Canonical decompositions

2. Minimal realizations

3. Next 4 weeks

Topic

1. Canonical decompositions

Minimal realizations

3. Next 4 weeks

Zero state equivalence

Zero-state equivalence

If the system:

$$\{\textbf{A},\textbf{B},\textbf{C},\textbf{D}\}$$

has the same transfer function as the system:

$$\left\{ \bar{\boldsymbol{A}},\bar{\boldsymbol{B}},\bar{\boldsymbol{C}},\bar{\boldsymbol{D}}\right\}$$

they are zero-state equivalent.

Canonical decomposition

- The above matrices may have different dimensions...
- ... but the transfer matrices are the same.
- Some information must be thrown away, that is not related to the transfer function!

Example:

$$\begin{bmatrix} \dot{\bar{x}}_1 \\ \dot{\bar{x}}_2 \end{bmatrix} = \begin{bmatrix} \bar{a}_c & \bar{a}_{12} \\ 0 & \bar{a}_{nc} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} + \begin{bmatrix} \bar{b}_c \\ 0 \end{bmatrix} u$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \bar{c}_{11} & \bar{c}_{1n} \\ \bar{c}_{21} & \bar{c}_{2n} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix}$$

Are one of these states uncontrollable?

Controllability matrix

$$\mathcal{C} = \left[egin{array}{ccc} ar{\mathbf{b}} & ar{\mathbf{A}} ar{\mathbf{b}} \end{array}
ight] = \left[egin{array}{ccc} ar{b}_c & ar{a}_c ar{b}_c \\ 0 & 0 \end{array}
ight]$$

Example:

$$\begin{bmatrix} \dot{\bar{x}}_1 \\ \dot{\bar{x}}_2 \end{bmatrix} = \begin{bmatrix} \bar{a}_c & \bar{a}_{12} \\ 0 & \bar{a}_{nc} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} + \begin{bmatrix} \bar{b}_c \\ 0 \end{bmatrix} u$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \bar{c}_{11} & \bar{c}_{1n} \\ \bar{c}_{21} & \bar{c}_{2n} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix}$$

 \bar{x}_2 is uncontrollable.

Transfer matrix:

$$\begin{bmatrix} y_1(s) \\ y_2(s) \end{bmatrix} = \begin{bmatrix} \overline{c}_{11} & \overline{c}_{1n} \\ \overline{c}_{21} & \overline{c}_{2n} \end{bmatrix} \left(s \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} \overline{a}_c & \overline{a}_{12} \\ 0 & \overline{a}_{nc} \end{bmatrix} \right)^{-1} \begin{bmatrix} \overline{b}_c \\ 0 \end{bmatrix} u(s)$$

Example:

$$\begin{bmatrix} \dot{\bar{x}}_1 \\ \dot{\bar{x}}_2 \end{bmatrix} = \begin{bmatrix} \bar{a}_c & \bar{a}_{12} \\ 0 & \bar{a}_{nc} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} + \begin{bmatrix} \bar{b}_c \\ 0 \end{bmatrix} u$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \bar{c}_{11} & \bar{c}_{1n} \\ \bar{c}_{21} & \bar{c}_{2n} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix}$$

 \bar{x}_2 is uncontrollable.

Transfer matrix:

$$\left[\begin{array}{c} y_1(s) \\ y_2(s) \end{array}\right] = \left[\begin{array}{cc} \bar{c}_{11} & \bar{c}_{1n} \\ \bar{c}_{21} & \bar{c}_{2n} \end{array}\right] \left[\begin{array}{cc} \frac{1}{s - \bar{a}_c} & \frac{\bar{a}_{12}}{(s - \bar{a}_c)(s - \bar{a}_{nc})} \\ 0 & \frac{1}{s - \bar{a}_{nc}} \end{array}\right] \left[\begin{array}{c} \bar{b}_c \\ 0 \end{array}\right] u(s)$$

Example:

$$\begin{bmatrix} \dot{\bar{x}}_1 \\ \dot{\bar{x}}_2 \end{bmatrix} = \begin{bmatrix} \bar{a}_c & \bar{a}_{12} \\ 0 & \bar{a}_{nc} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} + \begin{bmatrix} \bar{b}_c \\ 0 \end{bmatrix} u$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \bar{c}_{11} & \bar{c}_{1n} \\ \bar{c}_{21} & \bar{c}_{2n} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix}$$

 \bar{x}_2 is uncontrollable.

Transfer matrix:

$$\begin{bmatrix} y_1(s) \\ y_2(s) \end{bmatrix} = \begin{bmatrix} \bar{c}_{11} & \bar{c}_{1n} \\ \bar{c}_{21} & \bar{c}_{2n} \end{bmatrix} \begin{bmatrix} \frac{\bar{b}_c}{s - \bar{a}_c} \\ 0 \end{bmatrix} u(s) = \frac{\bar{b}_c}{s - \bar{a}_c} \begin{bmatrix} \bar{c}_{11} \\ \bar{c}_{21} \end{bmatrix} u(s)$$

All information about the uncontrollable state is gone!

General case: Controllability

Notation

c: Controllable \bar{c} : Uncontrollable

o: Observable ō: Unobservable

General case: Controllability

$$\begin{bmatrix} \dot{\bar{x}}_c \\ \dot{\bar{x}}_{\bar{c}} \end{bmatrix} = \begin{bmatrix} \bar{A}_c & \bar{A}_{12} \\ 0 & \bar{A}_{\bar{c}} \end{bmatrix} \begin{bmatrix} \bar{x}_c \\ \bar{x}_{\bar{c}} \end{bmatrix} + \begin{bmatrix} \bar{B}_c \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} \bar{C}_c & \bar{C}_{\bar{c}} \end{bmatrix} \begin{bmatrix} \bar{x}_c \\ \bar{x}_{\bar{c}} \end{bmatrix} + Du$$

Controllability matrix

$$\mathcal{C} = \left[\begin{array}{cccc} \bar{\mathbf{B}}_c & \bar{\mathbf{A}}_c \bar{\mathbf{B}}_c & \dots & \bar{\mathbf{A}}_c^{n-1} \bar{\mathbf{B}}_c \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} \end{array} \right], \quad \rho(\mathcal{C}) = n_1 < n$$

Transform (theorem 6.6): $\mathbf{x} = \mathbf{T}\bar{\mathbf{x}}, \bar{\mathbf{A}} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}..$

$$\mathbf{T} = [\begin{array}{ccccc} \mathbf{q}_1 & \cdots & \mathbf{q}_{n_1} & \cdots & \mathbf{q}_n \end{array}]$$

Use all n_1 linearly independent columns of C, then fill in the rest so that **T** is invertible.

General case: Controllability

$$\begin{bmatrix} \dot{\bar{x}}_c \\ \dot{\bar{x}}_{\bar{c}} \end{bmatrix} = \begin{bmatrix} \bar{A}_c & \bar{A}_{12} \\ 0 & \bar{A}_{\bar{c}} \end{bmatrix} \begin{bmatrix} \bar{x}_c \\ \bar{x}_{\bar{c}} \end{bmatrix} + \begin{bmatrix} \bar{B}_c \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} \bar{C}_c & \bar{C}_{\bar{c}} \end{bmatrix} \begin{bmatrix} \bar{x}_c \\ \bar{x}_{\bar{c}} \end{bmatrix} + Du$$

Transform (theorem 6.6):
$$\mathbf{x} = \mathbf{T}\bar{\mathbf{x}}, \,\bar{\mathbf{A}} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}...$$

$$\mathbf{T} = [\begin{array}{ccccc} \mathbf{q}_1 & \cdots & \mathbf{q}_{n_1} & \cdots & \mathbf{q}_n \end{array}]$$

Use all n_1 linearly independent columns of C, then fill in the rest so that **T** is invertible.

General case: Controllability

Transfer matrix

$$\mathbf{G}(s) = \begin{bmatrix} \bar{\mathbf{C}}_c & \bar{\mathbf{C}}_{\bar{c}} \end{bmatrix} \begin{pmatrix} s \begin{bmatrix} \mathbb{I} & \mathbf{0} \\ \mathbf{0} & \mathbb{I} \end{bmatrix} - \begin{bmatrix} \bar{\mathbf{A}}_c & \bar{\mathbf{A}}_{12} \\ \mathbf{0} & \bar{\mathbf{A}}_{\bar{c}} \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} \bar{\mathbf{B}}_c \\ \mathbf{0} \end{bmatrix} + \mathbf{D}$$
$$= \bar{\mathbf{C}}_c (s\mathbb{I} - \bar{\mathbf{A}}_c)^{-1} \bar{\mathbf{B}}_c + \mathbf{D}$$

Example:

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -0.5 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

Transform:

$$C = [\begin{array}{cccc} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^2\mathbf{B} \end{array}] = \begin{bmatrix} \begin{array}{cccc} 1 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array} \end{bmatrix} \implies \mathbf{T} = \begin{bmatrix} \begin{array}{cccc} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \end{bmatrix}$$

Transformed system:

$$\ddot{\textbf{A}} = \textbf{T}^{-1} \textbf{A} \textbf{T} = \left[\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 0 & 0 & -0.5 \end{array} \right], \quad \ddot{\textbf{B}} = \textbf{T}^{-1} \textbf{B} = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right], \quad \ddot{\textbf{C}} = \textbf{C} \textbf{T} = \left[\begin{array}{ccc} 1 & 2 & 1 \end{array} \right]$$

Example:

$$\begin{bmatrix} \dot{\bar{x}}_1 \\ \dot{\bar{x}}_2 \end{bmatrix} = \begin{bmatrix} \bar{a}_0 & 0 \\ \bar{a}_{21} & \bar{a}_{no} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} + \begin{bmatrix} \bar{b}_1 \\ \bar{b}_n \end{bmatrix} u$$

$$y_1 = \begin{bmatrix} \bar{c}_1 & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix}$$

Are one of these states unobservable?

Observability matrix:

$$\mathcal{O} = \left[\begin{array}{cc} \bar{c}_1 & 0 \\ \bar{c}_1 a_0 & 0 \end{array} \right]$$

Example:

$$\begin{bmatrix} \dot{\bar{x}}_1 \\ \dot{\bar{x}}_2 \end{bmatrix} = \begin{bmatrix} \bar{a}_0 & 0 \\ \bar{a}_{21} & \bar{a}_{no} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} + \begin{bmatrix} \bar{b}_1 \\ \bar{b}_n \end{bmatrix} u$$

$$y_1 = \begin{bmatrix} \bar{c}_1 & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix}$$

 \bar{x}_2 is unobservable.

Transfer matrix:

$$y_1(s) = \begin{bmatrix} \bar{c}_1 & 0 \end{bmatrix} \begin{pmatrix} s \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} \bar{a}_0 & 0 \\ \bar{a}_{21} & \bar{a}_{no} \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} \bar{b}_1 \\ \bar{b}_n \end{bmatrix} u(s)$$

Example:

$$\begin{bmatrix} \dot{\bar{x}}_1 \\ \dot{\bar{x}}_2 \end{bmatrix} = \begin{bmatrix} \bar{a}_0 & 0 \\ \bar{a}_{21} & \bar{a}_{no} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} + \begin{bmatrix} \bar{b}_1 \\ \bar{b}_n \end{bmatrix} u$$

$$y_1 = \begin{bmatrix} \bar{c}_1 & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix}$$

 \bar{x}_2 is unobservable.

Transfer matrix:

$$y_1(s) = \frac{\bar{c}_1 \bar{b}_1}{s - \bar{a}_0} u(s)$$

No information about the unobservable state remains..

General case: Observability

Notation

c: Controllable \bar{c} : Uncontrollable

o: Observable ō: Unobservable

Observability matrix

$$\mathcal{O} = \left[\begin{array}{cc} \bar{\mathbf{C}}_o & \mathbf{0} \\ \bar{\mathbf{C}}_o \bar{\mathbf{A}}_o & \mathbf{0} \end{array} \right], \quad \rho(\mathcal{O}) = n_2 < n$$

Transform (theorem 6.O6): $\mathbf{x} = \mathbf{T}\bar{\mathbf{x}}, \,\bar{\mathbf{A}} = \mathbf{T}^{-1}\mathbf{AT}..$

$$\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{p}_1 \\ \vdots \\ \mathbf{p}_{n_2} \\ \vdots \\ \mathbf{p}_n \end{bmatrix}$$

Use all n_2 linearly independent **rows** of \mathcal{O} , then fill in the rest so that \mathbf{T}^{-1} is invertible.

Example:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Transform:

$$\mathcal{O} = \begin{bmatrix} \mathbf{C} \\ \mathbf{CA} \\ \mathbf{CA}^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix} \implies \mathbf{T}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Transformed system:

$$\bar{\mathbf{A}} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right], \quad \bar{\mathbf{B}} = \mathbf{T}^{-1}\mathbf{B} = \left[\begin{array}{c} 1 \\ 3 \\ 1 \end{array} \right], \quad \bar{\mathbf{C}} = \mathbf{C}\mathbf{T} = \left[\begin{array}{ccc} 1 & 0 & 0 \end{array} \right]$$

General case: Observability

Transfer matrix

$$\mathbf{G}(s) = \bar{\mathbf{C}}_o \left(s \mathbb{I} - \bar{\mathbf{A}}_o \right)^{-1} \bar{\mathbf{B}}_o + \mathbf{D}$$

General case

$$\begin{bmatrix} \dot{\bar{x}}_{\text{CO}} \\ \dot{\bar{x}}_{\text{C}\bar{o}} \\ \dot{\bar{x}}_{\bar{c}\bar{o}} \\ \dot{\bar{x}}_{\bar{c}\bar{o}} \end{bmatrix} = \begin{bmatrix} \bar{A}_{\text{CO}} & 0 & \bar{A}_{13} & 0 \\ \bar{A}_{21} & \bar{A}_{c\bar{o}} & \bar{A}_{23} & \bar{A}_{24} \\ 0 & 0 & \bar{A}_{\bar{c}\bar{o}} & 0 \\ 0 & 0 & \bar{A}_{43} & \bar{A}_{\bar{c}\bar{o}} \end{bmatrix} \begin{bmatrix} \bar{x}_{\text{CO}} \\ \bar{x}_{c\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \end{bmatrix} + \begin{bmatrix} \bar{B}_{\text{CO}} \\ \bar{B}_{c\bar{o}} \\ \bar{B}_{c\bar{o}} \\ \bar{0} \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} \bar{C}_{\text{CO}} & 0 & \bar{C}_{\bar{c}\bar{o}} & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_{\text{CO}} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \end{bmatrix} + Du$$

Notation

c: Controllable c: Uncontrollable

o: Observable ō: Unobservable

Kalman decomposition

General case

$$\begin{bmatrix} \dot{\bar{x}}_{\text{C}\bar{o}} \\ \dot{\bar{x}}_{\text{C}\bar{o}} \\ \dot{\bar{x}}_{\bar{c}\bar{o}} \\ \dot{\bar{x}}_{\bar{c}\bar{o}} \end{bmatrix} = \begin{bmatrix} \bar{A}_{\text{C}\bar{o}} & 0 & \bar{A}_{13} & 0 \\ \bar{A}_{21} & \bar{A}_{\text{C}\bar{o}} & \bar{A}_{23} & \bar{A}_{24} \\ 0 & 0 & \bar{A}_{\bar{c}\bar{o}} & 0 \\ 0 & 0 & \bar{A}_{43} & \bar{A}_{\bar{c}\bar{o}} \end{bmatrix} \begin{bmatrix} \bar{x}_{\text{C}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \end{bmatrix} + \begin{bmatrix} \bar{B}_{\text{C}\bar{o}} \\ \bar{B}_{\text{C}\bar{o}} \\ \bar{0} \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} \bar{C}_{\text{C}\bar{o}} & 0 & \bar{C}_{\bar{c}\bar{o}} & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_{\text{C}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \end{bmatrix} + Du$$

Transfer matrix

$$\mathbf{y}(s) = \left[\bar{\mathbf{C}}_{\textit{co}}(s\mathbb{I} - \bar{\mathbf{A}}_{\textit{co}})^{-1}\bar{\mathbf{B}}_{\textit{co}} + \mathbf{D}\right]\mathbf{u}(s)$$

Kalman Decomposition Theorem (theorem 6.7)

Every state-space equation can be transformed into the form above.

Kalman decomposition

General case

$$\begin{bmatrix} \dot{\bar{x}}_{\text{CO}} \\ \dot{\bar{x}}_{\text{C\bar{O}}} \\ \dot{\bar{x}}_{\bar{c}\bar{o}} \\ \dot{\bar{x}}_{\bar{c}\bar{o}} \end{bmatrix} = \begin{bmatrix} \bar{A}_{\text{CO}} & 0 & \bar{A}_{13} & 0 \\ \bar{A}_{21} & \bar{A}_{\text{C\bar{O}}} & \bar{A}_{23} & \bar{A}_{24} \\ 0 & 0 & \bar{A}_{\bar{c}\bar{o}} & 0 \\ 0 & 0 & \bar{A}_{43} & \bar{A}_{\bar{c}\bar{o}} \end{bmatrix} \begin{bmatrix} \bar{x}_{\text{CO}} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \end{bmatrix} + \begin{bmatrix} \bar{B}_{\text{CO}} \\ \bar{B}_{\text{C\bar{O}}} \\ \bar{D}_{\bar{o}\bar{o}} \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} \bar{C}_{\text{CO}} & 0 & \bar{C}_{\bar{c}\bar{o}} & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_{\text{CO}} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \\ \bar{x}_{\bar{c}\bar{o}} \end{bmatrix} + Du$$

Transfer matrix

$$\boldsymbol{y}(s) = \left[\bar{\boldsymbol{C}}_{co}(s\mathbb{I} - \bar{\boldsymbol{A}}_{co})^{-1}\bar{\boldsymbol{B}}_{co} + \boldsymbol{D}\right]\boldsymbol{u}(s)$$

The same transfer matrix

$$\mathbf{y}(s) = \left[\mathbf{C}(s\mathbb{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D} \right] \mathbf{u}(s)$$

Kalman decomposition

General case

$$\begin{bmatrix} \dot{\bar{x}}_{\mathit{co}} \\ \dot{\bar{x}}_{\bar{\mathit{c}\bar{o}}} \\ \dot{\bar{x}}_{\bar{\mathit{c}o}} \\ \dot{\bar{x}}_{\bar{\mathit{c}o}} \end{bmatrix} \quad = \quad \begin{bmatrix} \bar{A}_{\mathit{co}} & 0 & \bar{A}_{13} & 0 \\ \bar{A}_{21} & \bar{A}_{\mathit{c}\bar{o}} & \bar{A}_{23} & \bar{A}_{24} \\ 0 & 0 & \bar{A}_{\bar{\mathit{c}o}} & 0 \\ 0 & 0 & \bar{A}_{43} & \bar{A}_{\bar{\mathit{c}\bar{o}}} \end{bmatrix} \begin{bmatrix} \bar{x}_{\mathit{co}} \\ \bar{x}_{\mathit{c}\bar{o}} \\ \bar{x}_{\bar{\mathit{c}o}} \\ \bar{x}_{\bar{\mathit{c}o}} \end{bmatrix} + \begin{bmatrix} \bar{B}_{\mathit{co}} \\ \bar{B}_{\mathit{c}\bar{o}} \\ \bar{B}_{\bar{\mathit{c}\bar{o}}} \\ 0 \\ 0 \end{bmatrix} u$$

$$y \quad = \quad \begin{bmatrix} \bar{C}_{\mathit{co}} & 0 & \bar{C}_{\bar{\mathit{c}o}} & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_{\mathit{co}} \\ \bar{x}_{\bar{\mathit{c}\bar{o}}} \\ \bar{x}_{\bar{\mathit{c}\bar{o}}} \\ \bar{x}_{\bar{\mathit{c}\bar{o}}} \\ \bar{x}_{\bar{\mathit{c}\bar{o}}} \end{bmatrix} + Du$$

Zero state equivalent system

$$\begin{array}{cccc} \dot{\bar{x}}_{co} & = & \bar{A}_{co}\bar{x}_{co} + \bar{B}_{co}u \\ y & = & \bar{C}_{co}\bar{x}_{co} + Du \end{array}$$

Implications

- Transfer matrices do not contain any information about the unobservable and uncontrollable parts of the system.
- This explains why transfer matrices may have lower order than the original system.
- Realizations of transfer functions can only produce the controllable and observable subsystem.
- We should consider the unobservable and uncontrollable subsystems also: are they stable?

Eigenvalues

Characteristic polynomial

$$\begin{split} \Delta(\lambda) &= \left| \lambda \mathbb{I} - \bar{\mathbf{A}} \right| = \left| \begin{array}{cccc} \lambda \mathbb{I} - \bar{\mathbf{A}}_{co} & \mathbf{0} & -\bar{\mathbf{A}}_{13} & \mathbf{0} \\ -\bar{\mathbf{A}}_{21} & \lambda \mathbb{I} - \bar{\mathbf{A}}_{c\bar{o}} & -\bar{\mathbf{A}}_{23} & -\bar{\mathbf{A}}_{24} \\ \mathbf{0} & \mathbf{0} & \lambda \mathbb{I} - \bar{\mathbf{A}}_{\bar{c}o} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\bar{\mathbf{A}}_{43} & \lambda \mathbb{I} - \bar{\mathbf{A}}_{\bar{c}\bar{o}} \end{array} \right| \\ &= \left| \begin{array}{cccc} \lambda \mathbb{I} - \bar{\mathbf{A}}_{co} & \mathbf{0} & \left| \begin{array}{cccc} \lambda \mathbb{I} - \bar{\mathbf{A}}_{c\bar{o}} & \mathbf{0} \\ -\bar{\mathbf{A}}_{21} & \lambda \mathbb{I} - \bar{\mathbf{A}}_{c\bar{o}} \end{array} \right| \left| \begin{array}{cccc} \lambda \mathbb{I} - \bar{\mathbf{A}}_{\bar{c}\bar{o}} & \mathbf{0} \\ -\bar{\mathbf{A}}_{43} & \lambda \mathbb{I} - \bar{\mathbf{A}}_{\bar{c}\bar{o}} \end{array} \right| \\ &= \left| \lambda \mathbb{I} - \bar{\mathbf{A}}_{co} \right| \underbrace{\left| \lambda \mathbb{I} - \bar{\mathbf{A}}_{c\bar{o}} \right| \left| \lambda \mathbb{I} - \bar{\mathbf{A}}_{\bar{c}\bar{o}} \right| \left| \lambda \mathbb{I} - \bar{\mathbf{A}}_{\bar{c}\bar{o}}} \right|}_{\text{Not present in } \mathbf{G}(s)} \end{aligned}$$

Note

The transfer matrix does not tell the full story. Check the eigenvalues of the full state space model.

Topic

1. Canonical decompositions

2. Minimal realizations

3. Next 4 weeks

Minimal realizations

- We have seen that unobservable and uncontrollable subsystems are removed when going to the Laplace plane.
- There are infinitely many realizations of a proper rational transfer matrix G(s).
- By choosing a minimal realization, we do not create redundant unobservable and uncontrollable states.
- The resulting state space model will have the same dimensions as:

$$\begin{array}{rcl} \dot{\bar{x}}_{\textit{co}} & = & \bar{A}_{\textit{co}}\bar{x}_{\textit{co}} + \bar{B}_{\textit{co}}u \\ y & = & \bar{C}_{\textit{co}}\bar{x}_{\textit{co}} + Du \end{array}$$

which is minimal

Coprime fractions: SISO case

A state equation $\{\mathbf{A}, \mathbf{b}, \mathbf{c}, d\}$ is a *minimal realization* of a proper rational function $\hat{g}(s)$ if and only if:

- The pair {A, b} is controllable.
- The pair {**A**, **c**} is observable.
- $n = \dim(\mathbf{A}) = \deg(\hat{g}(s))$
- where $\hat{g}(s) = \frac{N(s)}{D(s)}$, and N(s) and D(s) do not have any common factors.
- I.e.: They are **coprime**, and $\frac{N(s)}{D(s)}$ is a **coprime fraction**.

Example

$$\hat{g}(s) = \frac{N(s)}{D(s)} = \frac{s^2 - 1}{4(s^3 - 1)}$$

$$= \frac{(s - 1)(1 + s)}{4(s - 1)(1 + s + s^2)}$$

$$= \underbrace{\frac{(s - 1)(1 + s)}{4(s - 1)(1 + s + s^2)}}_{\text{Coprime fraction}}$$

Coprimeness and minimal realizations

- If the transfer function is a coprime fraction, we only need to check the dimensions of **A** to verify whether the realized system is minimal: $dim(\mathbf{A}) = deg(\hat{g}(s))$
- This implies that the system is controllable and observable.
- If a fraction is coprime, every root of D(s) is a root of $\hat{g}(s)$.
- The eigenvalues of the minimal realization are the poles of $\hat{g}(s)$.
- All minimal realizations are equivalent, and relate via an equivalence transform $\mathbf{x} = \mathbf{T}\bar{\mathbf{x}}$.

Topic

1. Canonical decompositions

Minimal realizations

3. Next 4 weeks

Upcoming subjects

Deterministic systems

The material we have covered in the first 8 weeks, from *Linear system theory and design* by Chi-Tsong Chen has focused *mostly* on deterministic systems.

- Mathematical models and model parameters have been assumed to be exact
- Model inputs u(t) have been assumed to be exact
- ullet Measurements $oldsymbol{y}(t)$ have mostly been assumed to be exact
- ... except in some cases where we have included model uncertainty, disturbances and measurement noise

Stochastic systems

In real systems, model uncertainty, disturbances and measurement noise are often important enough that they require proper treatment:

- Uncertainties must be modelled according to their statistical properties, and represented as random processes.
- Systems affected by stochastic disturbances or random input values are stochastic systems
- State estimation in stochastic systems needs to take their random properties into account (e.g. the Kalman filter)

These are the subjects of the next 4 weeks, and the material is covered by *Introduction to random signals and applied Kalman filtering* by Brown & Hwang.

Upcoming subjects

Coming subjects

- Characterization of random signals in terms of expectation, variance, autocorrelation, power spectrum, correlation/covariance
- Random processes: systems with random inputs or initial values
- Mean and (co)variances of random state-space systems
- Optimal estimation of random process: Kalman filter in continuous and discrete time
- Noise shaping for Kalman filter systems