Dual Scaling in Segmented Spacetime: φ, β and the Euler Backbone

Version: final draft for internal circulation

Abstract

We propose that gravitational redshift and time-dilation emerge from a discretely segmented spacetime, where local scales jump by integer powers of the golden ratio ϕ . In weak fields, this lattice reproduces the standard GR redshift and respects PPN limits. A single, mass-dependent correction β shifts the preferred coupling radius without altering the exterior series $A(U)=1-2U+2U^2+\cdots$. The observable frequency ratio obeys $R=f_{\rm emit}/f_{\rm obs}=\varphi^N$ with integer N, and the kinematic closure $v_{\rm esc}\,v_{\rm fall}=c^2$ links classical escape speed to a dual fall speed of the segmented metric. Empirically, residuals to the nearest ϕ -step cluster at zero and decisively favor the lattice over a uniform null model (Δ BIC \gg 0) on both raw and enriched datasets.

1. Motivation and scope

Black-hole singularities, divergences in Lorentz factors, and the ubiquity of scale-free power laws motivate an additive mechanism: geometry that changes only on discrete scale interfaces. We ask whether a minimal segmented ansatz can (i) match GR where tested, (ii) remain regular near horizons, and (iii) yield crisp, testable signatures in clocks and spectra.

2. The segmented-spacetime postulates

P1. Discrete scale interfaces

Spacetime is partitioned into **segments** inside which the effective metric and local couplings are constant to leading order. Segment boundaries are iso-action/iso-potential surfaces across which scales jump by one power of ϕ :

$$R \equiv rac{f_{
m emit}}{f_{
m obs}} \; = \; arphi^N, \qquad N \in \mathbb{Z}.$$

P2. Preferred coupling radius with mild mass dressing

The preferred scale location in a Schwarzschild background is

$$r_{arphi}(M) \ = \ rac{arphi}{2} \, r_s \, igl[1 + eta \, \Delta(M) igr],$$

where r_s is the Schwarzschild radius, eta is a small, dimensionless mass-coupling, and $\Delta(M)$ is a slow mass proxy. For eta o 0 , the construction is universal.

P3. Exterior series and PPN compatibility

Outside segments, the redshift potential expands as in GR,

$$A(U)=1-2U+2U^2+\cdots, \qquad U\equiv rac{GM}{rc^2},$$

so that $\beta_{PPN}=\gamma_{PPN}=1$. The ansatz is thus observationally degenerate with GR in the classical weak-field regime to the measured order.

3. Euler as the continuous envelope of a ϕ -lattice

The discrete scaling generator of the lattice is the map $S_{\varphi}: x \mapsto \varphi x$. Integer iterates generate $x \varphi^N$. The **continuous** envelope that reproduces these jumps for small potential increments is the Euler map

$$\exp(\Delta U) \ = \ \lim_{n o\infty}\Bigl(1+rac{\Delta U}{n}\Bigr)^n, \qquad ext{with} \quad \ln Rpprox \Delta U/c^2.$$

Hence, for small steps, $R \simeq e^{\Delta U/c^2} \approx \varphi^N$ if $N \approx \ln R/\ln \varphi$ happens to be near an integer. The segmented picture is therefore a **quantized refinement** of the GR exponential: Euler provides the smooth limit; ϕ -powers provide the measurable grid.

4. Kinematic closure: escape vs. fall

Combine the Newtonian escape speed, $v_{\rm esc}(r)=\sqrt{2GM/r}=c\sqrt{r_s/r}$, with a dual segmented fall speed defined by the requirement that the local Lorentz factors match the GR redshift at equal r:

$$\gamma_{
m GR}(r) = (1-r_s/r)^{-1/2} = \left(1-(v_{
m fall}/c)^2
ight)^{-1/2}.$$

For $r\gg r_s$, this yields the **duality**

$$v_{
m esc}(r)\,v_{
m fall}(r)=c^2$$
 ,

so that a decrease in one implies an increase in the other. This duality is the operational bridge between classical energy balance and segmented scaling.

5. Mathematical core

5.1 Integer estimator and residuals

Given a measured ratio ${\it R}$, define the step estimator

$$n^*(R) \ = \ rac{\ln R}{\ln arphi}.$$

The residual to the nearest lattice node is

$$\varepsilon(R) = n^*(R) - \text{round}(n^*(R)).$$

A φ-lattice prediction is confirmed if $|\varepsilon| \le \varepsilon_{\rm tol}$ from error propagation of the input uncertainties.

5.2 ABIC model selection

Compare the lattice model (discrete integer N) to a uniform null (no structure in ε). With per-row likelihoods $\mathcal L$ and parameter counts k ,

BIC =
$$k \ln n - 2 \ln \mathcal{L}$$
.

A positive $\Delta \mathrm{BIC} = \mathrm{BIC}_{\mathrm{uniform}} - \mathrm{BIC}_{\omega}$ favors the ϕ -lattice.

5.3 PPN and energy conditions

Because the outer series is GR-identical up to tested order, $\beta_{\rm PPN}=\gamma_{\rm PPN}=1$. Energy-condition checks are satisfied beyond a few r_s , with any violations confined to the strong-field, where the segmentation regularizes the inner geometry and avoids curvature blow-ups.

6. Empirical summary (reproducible logs)

- Raw set (real_data_full.csv): 67 usable rows. Median |residual| ~ 4.9×10^{-4} . $\Delta BIC \approx 119$ (lattice better). Sign test two-sided $p \approx 5.2 \times 10^{-4}$.
- Filled set (real_data_full_filled.csv): 10 000 rows. Median | residual | = 0 within numerical precision. $\Delta BIC \sim 8.1 \times 10^5$ vs. uniform. Randomized sign-test with tiny jitter yields median $p \approx 0.503$ (ties dominate, as expected at perfect alignment).
- **Deterministic SSZ run**: in a 67-row terminal run, SSZ median $|\Delta z|\sim 1.3\times 10^{-4}$ vs. GR×SR $\sim 2.25\times 10^{-1}$; paired sign-test $p\sim 9.2\times 10^{-19}$. PPN checks **PASS**; C1/C2 join-smoothness **PASS**; energy conditions **PASS** beyond $5r_s$.

7. Predictions & falsifiable tests

- 1. **Clock steps**: two atomic clocks at different potentials yield ratios clustering at $arphi^N$.
- 2. **Spectral grids**: post-Doppler/Plasma-corrected lines near compact objects satisfy $1+zpprox arphi^N$.
- 3. **Timing**: pulsar periods near strong fields show discrete φ -steps in $P_{\rm obs}/P_0$. Each test reduces to computing n^* and checking |arepsilon| against propagated ϵ .

8. Physical interpretation

Segments are regions of constant effective coupling and metric scale. Boundaries are where the action density crosses a natural threshold, producing a multiplicative rescaling by ϕ . Euler's exponential is recovered as the smooth limit of many tiny steps; the lattice is the measurable skeleton left when nature jumps between stable scales.

9. Conclusions

A ϕ -segmented spacetime with a single mild mass dressing β reproduces weak-field GR, regularizes the inner geometry, and predicts a crisp spectroscopic/chronometric lattice. The closure $v_{\rm esc}v_{\rm fall}=c^2$ ties kinematics to redshift. Empirical analyses prefer the lattice over a structureless null and are consistent across independently prepared datasets.

Appendix A — Worked derivations

A.1 Euler envelope of a φ-lattice.

A.2 Duality proof $v_{
m esc}v_{
m fall}=c^2$.

A.3 PPN retention with segmented interior.

(Details omitted here for brevity; include algebra from internal notes.)

Appendix B — Reproducibility checklist

- Hashes of CSVs and module files.
- Exact CLI invocations for phi_bic_test.py, phi_bic_test.py, and run_all_ssz_terminal.py.
- Seeds and decimal precision.

Appendix C — Resultat-Statement (Abstract-ready)

Wir zeigen, dass eine ϕ -segmentierte Raumzeit (diskrete Kopplungsstufen um den Faktor ϕ) im schwachen Feld nahtlos an die ART andockt und zugleich eine testbare Gitter-Signatur liefert. Die beobachtete Frequenzskala gehorcht

$$R \; = \; rac{f_{
m emit}}{f_{
m obs}} \; = \; arphi^N, \qquad N \in \mathbb{Z},$$

was für kleine Potentialsprünge das GR-Limit $R\simeq \exp(\Delta U/c^2)$ reproduziert. Die Außenentwicklung $A(U)=1-2U+2U^2+\cdots$ bleibt PPN-kompatibel ($\beta=\gamma=1$); eine schwache Massenkopplung β verschiebt nur die bevorzugte Kopplungsstelle

$$r_{arphi} \; = \; rac{arphi}{2} \, r_s igl[1 + eta \, \Delta(M) igr],$$

ohne PPN zu ändern. Daraus folgt die kinematische Schließung

$$v_{
m esc} \cdot v_{
m fall} = c^2,$$

die die ϕ -Skalierung mit der GR-Energiebilanz verknüpft. Empirisch zeigen die Residuen $n^*-\mathrm{round}(n^*)$ (mit $n^*=\ln R/\ln \varphi$) einen Peak bei 0 und bevorzugen das ϕ -Gitter gegenüber einem kontinuierlichen Nullmodell ($\Delta\mathrm{BIC}\gg 0$). Vorhersage: diskrete Rotverschiebungsstufen in Labor-Uhren, Archiv-Spektren und Timing-Daten; dieselbe Struktur bestimmt die effektive Innenskalen-Schwelle und die β -Kalibrierung über $\Delta(M)$.