Exercises Lecture 4 4.4, 4.6, 4.7

4.2 min
$$z = 3x, -6x_2$$
 $5 \cdot t = 5x_1 + 7x_2 + 5, = 35$
 $-x_1 + 2x_2 + 5_2 = 2$

basis $b = x_1 \times x_2 = 1$
 $-x_1 + 2x_2 + 5_2 = 2$

basis $b = x_1 \times x_2 = 1$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_2 = 2$
 $-x_2 + 5_1 = 2$
 $-x_1 + 2x_2 + 5_1 = 2$
 $-x_1$

The solution in the second tableau is optimal, since $\bar{c}_j \geq 0$ for all j, but since

 $C_1=0$ and x_1 is non-basic, we can bring x_1 into the basis to get another solution with the same objective value

The two extreme points are

$$\begin{pmatrix} X_1^* \\ X_2^* \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} X_1^* \\ X_2^* \end{pmatrix} = \begin{pmatrix} 56/17 \\ 45/17 \end{pmatrix}$

with $2^* = -6$ (56/17) (45/17)Set of all optimal solutions

The set of optimal solutions is the line segment between the two extreme points, including the points, i.e.,

$$x^* = \lambda_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 56/17 \\ 45/17 \end{pmatrix}, \lambda_1, \lambda_2 \ge 0, \lambda_1 + \lambda_2 = 1$$

with 2* = -6

4.6 $min = 2x_1 + x_2$ $x_1 + x_2 - s_1 + x_n^a = 1$ $3x, +2x_2 + s_2 = 6$ $X_1, X_2, S_1, S_2, X_1^a \ge 0$ Phase 1 min w = x, basis b | x, x2 s, s2 1 1 -1 0 1 $\chi^{\alpha}_{,}$ | l S_2 6 3 2 0 1 0 Express the objective row in non-basic variables x_2 S_1 S_2 x_1^a basis b | x, e Xa 1 1 1 -1 0 1 S_2 6 3 2 0 -w -1 -1 -1 1

basis
$$\overline{b}$$
 | x_1 | x_2 | x_3 | x_4 | x_5 | x_5

Optimal solution phase 1, since $\mathbb{Z}_{j} \geqslant 0$ for all j. $x_{j}^{a} = 0$ and non-basic, and W = 0.

Phase 2, re-introduce original objective function.

Exress 2 in non-basic variables From the tableau we see that

$$X_1 + X_2 - S_1 = 1$$
, i.e $X_1 = 1 - X_2 + S_1$

We obtain:
$$2 = 2x, +x_2$$

= $2(1-x_2+s,)+x_2$
= $2-x_2+2s,$

4.7 $Z = -3x_1 + x_2 - 20$ $-3x_1 + 3x_2 + s_1$ S. t $-8x_1 + 4x_2 + 5_2 = 4$ $X_1, X_2, S_1, S_2 > 0$ basis \overline{b} x_1 x_2 s_1 s_2 S₁ 6 -3 3 1 0 82 4 -8 -2 20 -3 Since $\overline{a}_{i1} < 0$ for i = 1, 2, the problem is unbounded, i.e., 2 = - to $-3x_1 + 3x_2 = 6$ -8x2+4x2=4 $-3 + 3x_z = 6$ $3 \times_2 = 9 \times_2 = 3$