Correction

Partie I

- 1. Puisque $\left[A,A'\right]$ est un diamètre du cercle $\mathcal C$ et que $B\in\mathcal C$, le triangle (ABA') est rectangle en B. Par suite, B est le projeté orthogonal de A' sur $\mathcal D$. Par suite $\overrightarrow{MA}\cdot\overrightarrow{MA'}=\overrightarrow{MA}.\overrightarrow{MB}$. De plus $\overrightarrow{MA}\cdot\overrightarrow{MA'}=\left(\overrightarrow{M\Omega}+\overrightarrow{\Omega A}\right)\cdot\left(\overrightarrow{M\Omega}+\overrightarrow{\Omega A'}\right)=M\Omega^2-R^2$ car $\overrightarrow{\Omega A'}=-\overrightarrow{\Omega A}$ et $\Omega A=R$.
- 2.a Le cercle de diamètre $[\Omega, M]$ coupe le cercle \mathcal{C} en des points T et S tels que les triangles (ΩTM) et (ΩSM) soient rectangles en T et S. Les droites (TM) et (SM) sont les tangentes à \mathcal{C} issues de M.
- 2.b Les triangles (ΩTM) et (ΩSM) étant rectangles en T et S, le théorème de Pythagore donne : $\Omega M^2 = MT^2 + T\Omega^2 = MS^2 + S\Omega^2 \text{ d'où } MT^2 = MS^2 = \Omega M^2 R^2 = p_c(M) \,.$
- 3. Si A,B,C,D appartiennent à un même cercle $\mathcal C$ alors $\overline{MA}.\overline{MB}=p_{\mathcal C}(M)=\overline{MC}.\overline{MD}$. Inversement, supposons $\overline{MA}.\overline{MB}=\overline{MC}.\overline{MD}$. Puisque les quatre points A,B,C,D ne sont pas alignés, il en existe au moins trois qui ne le sont pas. Quitte à échanger, supposons A,B,C non alignés et considérons $\mathcal C$ le cercle circonscrit au triangle (ABC). Le point M est nécessairement distinct de C car $M\in (AB)$. La droite (MC) coupe le cercle $\mathcal C$ en les points C et C' (éventuellement confondus en cas de tangence) tels que $\overline{MC}.\overline{MC'}=p_{\mathcal C}(M)$. Or $\overline{MA}.\overline{MB}=p_{\mathcal C}(M)$ donc $\overline{MC}.\overline{MC'}=\overline{MC}.\overline{MD}$. Puisque $\overline{MC}\neq 0$, on a $\overline{MC'}=\overline{MD}$ et donc C'=D. Par suite les points A,B,C,D sont cocycliques.

Partie II

- $$\begin{split} 1.\mathrm{a} & \quad p_{\mathcal{C}'}(M) = p_{\mathcal{C}}(M) \Leftrightarrow \Omega' M^2 \Omega M^2 = R'^2 R^2 \,. \\ & \quad \mathrm{Or} \ \Omega' M^2 \Omega M^2 = \left(\overrightarrow{\Omega' M} \overrightarrow{\Omega M} \right) \cdot \left(\overrightarrow{\Omega' M} + \overrightarrow{\Omega M} \right) = 2 \overrightarrow{\Omega' \Omega} \cdot \overrightarrow{IM} \\ & \quad \mathrm{donc} \ p_{\mathcal{C}'}(M) = p_{\mathcal{C}}(M) \Leftrightarrow \overrightarrow{\Omega \Omega'} \cdot \overrightarrow{IM} = k \ \mathrm{avec} \ k = \frac{1}{2} \left(R^2 R'^2 \right). \end{split}$$
- 1.b (1) On sait que les lignes de niveaux $\vec{u} \cdot \overrightarrow{AM} = \lambda$ (avec $\vec{u} \neq 0$) sont des droites dont \vec{u} est vecteur normal. On peut donc conclure.
 - (2) Considérons J le point $(\Omega\Omega')$ déterminé par $\overline{\Omega\Omega'}.\overline{IJ}=k$, on a $J\in\Delta$. Alors $\overline{\Omega\Omega'}.\overline{IM}=k\Leftrightarrow \overline{\Omega\Omega'}.\overline{IM}=\overline{\Omega\Omega'}.\overline{IJ}\Leftrightarrow \overline{\Omega\Omega'}.\left(\overline{IM}-\overline{IJ}\right)=0\Leftrightarrow \overline{\Omega\Omega'}.\overline{JM}=0$

donc Δ est la droite passant par J dont $\overrightarrow{\Omega\Omega'}$ est vecteur normal.

- 2.a On a $p_c(A) = 0 = p_{c'}(A)$ donc $A \in \Delta$ et de même $B \in \Delta$ d'où $\Delta = (AB)$.
- 2.b Comme ci dessus $A \in \Delta$. Δ est donc la perpendiculaire à $(\Omega \Omega')$ en A.
- 3. Puisque les droites $(\Omega\Omega')$ et $(\Omega\Omega'')$ ne sont pas parallèles, il en est de même des axes radicaux Δ'' et Δ' qui leurs sont orthogonaux. Notons R le point de concours de Δ' et Δ'' . On a $p_{\mathcal{C}'}(R) = p_{\mathcal{C}}(R)$ car $R \in \Delta''$ et $p_{\mathcal{C}''}(R) = p_{\mathcal{C}}(R)$ car $p_{\mathcal{C}'}(R) = p_{\mathcal{C}''}(R) = p_{\mathcal{C}''}(R)$ et donc $p_{\mathcal{C}'}(R) = p_{\mathcal{C}''}(R)$ concourent en $p_{\mathcal{C}'}(R) = p_{\mathcal{C}''}(R)$ et donc $p_{\mathcal{C}'}(R) = p_{\mathcal{C}''}(R)$ concourent en $p_{\mathcal{C}'}(R) = p_{\mathcal{C}''}(R)$ et donc $p_{\mathcal{C}'}(R) = p_{\mathcal{C}''}(R)$ concourent en $p_{\mathcal{C}'}(R) = p_{\mathcal{C}''}(R)$
- 4. Considérons un cercle \mathcal{C}'' de centre $\Omega'' \not\in (\Omega\Omega')$ coupant les cercles \mathcal{C} et \mathcal{C}' . Puisque \mathcal{C} et \mathcal{C}'' sont sécants on peut construire (cf. question 2) leur axe radical Δ' . Puisque \mathcal{C}' et \mathcal{C}'' sont sécants on peut construire leur axe radical Δ'' . Le point de concours de Δ' et Δ'' est le centre radical R des trois cercles. Δ est la perpendiculaire à $(\Omega\Omega')$ passant par R.