

RECURSION

Here we go again

Notable Points

• Every recursive program can also be written without recursion

 <u>Recursion is used</u> for programming <u>convenience</u>, <u>not for performance</u> enhancement

 Sometimes, if the function being computed has a <u>nice recurrence</u> form, then a recursive code may be <u>more readable</u>

Common Errors in Writing Recursive Functions

- No base case
- The base case is never reached
- Mixing up loops and recursion

Difference b/w Recursion & loop

- Both involve repetition.
- Both involve a termination test.
- Both can occur infinitely.

Iteration	Recursion
Iteration explicitly user a repetition	Recursion achieves repetition through
structure.	repeated function calls.
Iteration terminates when the loop	Recursion terminates when a base case
continuation.	is recognized.
Iteration keeps modifying the counter	Recursion keeps producing simple
until the loop continuation condition	versions of the original problem until
fails.	the base case is reached.
Iteration normally occurs within a loop	Recursion causes another copy of the
so the extra memory assigned is	function and hence a considerable
omitted.	memory space's occupied.
It reduces the processor's operating	It increases the processor's operating
time.	time.

Fibonacci

We will now use the definition to compute fib(5):

We see that fib(2) is computed 3 times, and fib(3), 2 times in the above calculations. We save the values of fib(2) or fib(3) and reuse them whenever needed.

Recursive Call Tree

