TD 01

Exercice 01:

Etant donné les automates d'états finis

```
a. X = \{Q, A, \delta, q_0, Q_F\} avec  - Q = \{0, 1, 2\} 
 - A = \{a, b\} 
 - \delta = \{\delta(0, a) = 0; \delta(0, a) = 1; \delta(1, a) = 1; \delta(1, b) = 2; \delta(0, b) = 2; \delta(2, b) = 2; \delta(2, b) = 0; \} 
 - q_0 = 0 
 - Q_F = \{0, 1\} 
b. Y = \{Q, A, \delta, q_0, Q_F\} avec  - Q = \{0, 1, 2, 3\} 
 - A = \{a, b\} 
 - \delta = \{\delta(0, a) = 0; \delta(0, a) = 1; \delta(0, b) = 2; \delta(1, b) = 2; \delta(2, a) = 2; \delta(2, b) = 1; \delta(1, a) = 3; \delta(3, a) = 1; \delta(2, b) = 3; \delta(3, b) = 2; \} 
 - q_0 = 0 
 - Q_F = \{1\}
```

- 1. Déterminer si les mots $w_1 = aaa$, $w_2 = bbaa$, $w_3 = aaba$ et $w_4 = babb$ sont accepter par X
- 2. Déterminer si les mots m₁ = aabb, m₂ = abba, m₃ = aabb, m₄ = abb et m₅ = aba sont accepter par X
- 3. Dessiner le diagramme graphique représentant chacun des automates X et Y.

Exercice 02:

Pour chacun des langages suivants,

- 1- donner des exemples de mots contenus dans ce langage
- 2- donner une définition formelle pour ce langage
- 3- construire un automate d'états finis qui l'accepte
 - $L_1 = \{ w \in \{a, b, c\}^* / w \text{ commence par la lettre 'a' et se termine par la lettre 'a' } \}$
 - $L_2 = \{ w \in \{a, b, c\}^* / w \text{ contient au moins une occurrence de la lettre 'a'} \};$
 - $L_3 = \{ w \in \{a, b, c\}^* / w \text{ contient au moins deux occurrences la lettre 'a' } \};$
 - L₄ = { $w \in \{a, b, c\}^*$ / w contient au moins deux occurrences consécutives de la lettre 'a' }
 - L_5 : Ensemble des mots construits sur l'alphabet $\{a, b\}$, commençant par des a et se terminant par des b et tel que le nombre de a et le nombre de b soit égal
 - L₆: Le langage des mots contenant un nombre pair de fois la lettre *a*
 - L₇: Le langage des nombres binaires
 - L₈: Le langage des mots de longueur 2 définis sur l'alphabet {0, 1}
 - L₉: Le langage des mots de longueur paire définis sur l'alphabet {a, b}
 - $L_{10} = \{w \in \{a,b\}^*, \text{ tel que } w \text{ contient seulement 2b, le reste c'est des a's} \}$
 - $L_{11} = \{w \in \{a,b\}^*, \text{ tel que } w \text{ contient un nombre de } a \text{ divisible par 3} \}$
 - $L_{12} = \{w \in \{a,b\}^*, \text{ tel que } w \text{ contient un nombre } impaire \text{ de } b\}$
 - L_{13} : le langage des mots formés de n fois la lettre a suivi de n fois la lettre b
 - L₁₄: le langage dénoté par *abb* + *bab*.
 - L₁₅: Le langage des mots admettant *aba* pour facteur

Opérations sur les langages:

Soient L, L_1 et L_2 trois langages définis sur l'alphabet A, nous définissons les opérations suivantes :

- **L'union**: $L_1 \cup L_2$ ($L_1 | L_2$ ou bien $L_1 + L_2$) = { $m \text{ tel que } m \in L_1 \lor m \in L_2$ };
- **L'intersection** : $L_1 \cap L_2 = \{m \text{ tel que } m \in L_1 \land m \in L_2\}$;
- Le **complément** : \overline{L} = {tous les mots m sur A tel que $m \notin L$ };
- La **concaténation** : $L_1.L_2 = \{m \text{ tel que } \exists u \in L_1, \exists v \in L_2 : m = uv \}$;
- **Exposant**: $L^n = L.L...L(n fois)$

$$= \{m \text{ tel que } \exists u_1, u_2, \dots u_n \in L : m = u_1 u_2 \dots u_n\}$$

- **Fermeture transitive de Kleene** : notée $L^* = \bigcup_{i \geq 0} L^i$.

En particulier, si L = A on obtient A^* : l'ensemble de tous les mots possibles sur l'alphabet A.

- Fermeture non transitive : $L^+ = \bigcup_{i>0} L^i$;
- Le langage miroir : $L^R = \{m \text{ tel que } \exists u \in L : m = u^R\}$

Exercice 03:

Sur l'alphabet $A = \{a, b\}$, on considère le langage L_1 des mots formés de n fois la lettre a suivi de n fois la lettre b, et le langage L_2 des mots comportant autant de a que de b.

- Définir formellement ces deux langages.
- Que sont les langages suivants : $L_1 \cup L_2$, $L_1 \cap L_2$, L_1^2 , $(L_2)^2$?
- Que peut-on dire de L_1^* et L_2^* par rapport à L_1 et L_2 ?

Exercice 04:

Sur l'alphabet $A = \{0, 1\}$, on considère les langages L_1 , L_2 , L_3 et L_4 définis par

$$L_1 = \{01^n/n \in \mathbb{N}\}\$$
 $L_2 = \{0^n1/n \in \mathbb{N}\}\$

$$L_3=\{00,11\}$$
 $L_4=\{0, 1, 01\}$

Définir les langages L_1L_2 , $L_1 \cap L_2$ et $(L_1)^2$, $L_3.L_4$

Exercice 05:

- 1. Soient les deux expressions régulières suivantes :
 - -R1 = a(ab)*ba
 - -R2 = (ab)*(ba)*(a*b*)
- a) Donnez un mot $m_1 \in L(R1) \land m_1 \not\in L(R2)$. $m_1 = aabba$
- b) Donnez un mot $m_2 \in L(R2) \land m_2 \not\in L(R1)$. $m_2 = ba$
- c) Donnez un mot $m_3 \in L(R1) \land m_3 \in L(R2)$. $m_3 = aba$
- d) Donnez un mot $m_4 \not\in L(R1) \land m_4 \not\in L(R2)$. $m_4 = aabbab$
- 2. Soient les deux expressions régulières suivantes :
- -S1 = a(a|b)*ba
- $-S2 = (ab)^*|(ba)^*|(a^*|b^*)$
 - a) Donnez un mot $m_1 \in L(S1) \land m_1 \not\in L(S2)$. m_1 =**aaba**
 - b) Donnez un mot $m_2 \in L(S2) \land m_2 \not\in L(S1)$. $m_2 = \boldsymbol{b}$
 - c) Donnez un mot $m_3 \in L(S1) \land m_3 \in L(S2)$. m_3 =il n'existe pas
 - d) Donnez un mot $m_4 \notin L(S1) \land m_4 \notin L(S2)$. $m_4 = baa$

Exercice 06.:

Donner une expression régulière ainsi qu'un automate d'état fini qui représentent chacun des langages suivants :

- 1. L_1 : l'ensemble des mots non vides commençant par \boldsymbol{c} et se terminant par \boldsymbol{a} ou \boldsymbol{b} sur l'alphabet A = $\{a, b, c, d\}$.
- 2. L_2 : l'ensemble des mots sur l'alphabet $A=\{a,b,c\}$:
 - Comportant exactement deux *a*.
 - Tout *b* est suivi d'au moins deux *c*.
 - Se termine par *a*.
- 3. L_3 : Ensemble de toutes les chaînes dans lesquelles chaque paire de 0 apparaît devant une paire de 1.
- 4. L_4 : Tous les nombres binaires divisibles par 4.
- 5. $L_5 = \{ w \in \{a,b\}^* / w = b^n , n > = 2 \}$
- 6. $L_6 = \{ w \in \{a,b\}^* / w = (ba)^{2n}, n > = 1 \}$
- 7. $L_7 = \{ w \in \{a, b\}^* \mid w \text{ contient } bab \text{ ou } ba \}$
- 8. $L_8 = \{ m \mid m \in \{a, b\}^* \text{ et } m \text{ se termine par '} bab' \text{ OU '} bb' \}$
- 9. $L_9 = \{w \in \{a,b\}^*, \text{ tel que } w \text{ contient un nombre de } \boldsymbol{a} \text{ divisible par 3}\}$
- **10.** L_{10} : Ensemble de toutes les mots défini sur $A=\{a,b\}$ ne contenant pas la sous chaîne bbb
- 11. $L_{11} = \{w \in \{a,b\}^*, \text{ tel que } w \text{ contient } \text{la sous chaîne } \textbf{aaa} \text{ ou la sous chaîne } \textbf{bbb} \text{ mais } pas \text{ les deux } \text{en }$ même temps}
- 12. L_{12} : Ensemble de toutes les chaînes ne contenant pas 101.