6.2变换群

复习: 集合S上的变换是双射函数 $f: S \rightarrow S$

假设S上的所有变换的集合为S',则变换的二元运算(复合运算)

"o"构成了一个代数系统< S', o>, 此代数系统为群

原因:

- (1) 复合运算可结合;
- (2) "o"存在单位元, 即恒等变换 $f(x)=x, x \in S$
- (3) <S', ∘>中的每个变换必存在逆元素, 即逆变换所以, <S', ∘>是群, 若S''⊂S', <S'', ∘ >也可以构成群

定义6.11 集合S上的若干个变换与复合运算若构成一个群,称为变换群.

变换群的性质

定理6.10 任一群均与一个变换群同构.

证 设<G, *>是一个群, 从G中取一元素a, 则存在一个变换 $f_a: x \to x*a, x \in G$

这样, G中每个元素均有一个变换与之对应, 这些变换 f_a , f_b , f_c , … 构成一个变换的集合G.

			\$ -0 -0 200 E		
*	e	a	\boldsymbol{b}	c	d
e	· e	a	b	с	d
а	a	\boldsymbol{b}	C	d	e
ь	b	c	d	e	a
C	c	d	e	a	\boldsymbol{b}
d	d	e	a	\boldsymbol{b}	C

变换群的性质

存在一个双射函数 $g: G \rightarrow G'$ 使得: $g(a*b) = g(a) \circ g(b)$

(1) 令函数g为: $g(a) = f_a$,因此G'中每个元素 f_a ,均有G中元素a与之对应,故g为满射. 如果 $a \neq b$,则由消去律可知

$$x*a \neq x*b, x \in G$$

故有 $f_a \neq f_b$, 因此 $g: G \rightarrow G'$ 是一个双射函数.

所以有 $g(a*b) = g(a) \circ g(b)$ 因此, <G, *>与<G', $\circ>$ 同构. 由定理 6.9可知<G', $\circ>$ 也是一个群,且它是一个变换群.

Note: 对群的研究可以归结为对变换群的研究; 任一抽象群均可在变换群中找到它的一个实例.

6.3 对称群与置换群

定义6.12 设 $S = \{1, 2, ..., n\}$, S上的任何双射函数 σ : $S \rightarrow S$ 称为S上的n元置换.

例如 $S=\{1,2,3,4,5\}$, 下述为5元置换

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}, \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$$

定义6.13 设 σ , τ 是n元置换, σ 和 τ 的复合 $\sigma \circ \tau$ 也是n元置换,称为 σ 与 τ 的乘积,记作 $\sigma \tau$.

例如

$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}, \quad \tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 5 & 3 & 4 \end{pmatrix}$$

定义

定理6.11 所有的n元置换构成的集合 S_n 关于置换乘积构成群,称为n元对称群.n元对称群的子群称为n元置换群.

因为:

- (1)"置换乘积"运算封闭;
- (2) 单位元是恒等置换;
- (3) 每个n元置换均有逆元.

Note:

对称群是变换群的特例.

置换群是有限群的典型代表.

A={1,2,3}
$$p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
 $p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad p_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

<	p_1	p_2
p ₁	p_1	p_2
p_2	p_2	p_1

置换群

<	p ₁	p_2	p_3	p_4	p ₅	p_6
p_1	p ₁	p_2	p ₃	p_4	p ₅	p_6
p_2	p_2	p_1	p_5	p_6	p_3	p ₄
p 3	p_3	p_6	p_1	p_5	p_4	p_2
p ₄	p_4	p_5	p_6	p_1	p_2	p_3
p_5	p ₅	p_4	p_2	p_3	p_6	p_1
p_6	p_6	p_3	p_4	p_2	p_1	p ₅

对称群的性质

定理6.12 若有限集S的阶为n,则S的对称群 $< S_n$, $\circ >$ 的阶为n!.证 由排列组合理论 易证.

定理6.13 对于代数系统<G, $\diamond>$,若G有限且满足结合律和消去律,则该代数系统是一个群.(有限群的另一种定义)证 用群的第二个定义证明. 即只要证明 $a \circ x = b$ 和 $y \circ a = b$ 在G中有惟一解.

设G有n个元素G= { $a_1, a_2, ..., a_n$ },作集合G'= { $a \circ a_1, a \circ a_2, ..., a \circ a_n$ },则G' $\subseteq G$,根据消去律,当 $i \neq j$ 时, $a \circ a_i \neq a \circ a_j$ 所以G'也有n个不同的元素,故G' = G. 这样,对G中的元素b必有一 a_k ,使得b= $a \circ a_k$,而且 a_k 惟一。同理,可证 $y \circ a$ =b有惟一解。得证.

群的运算表(群表)

有限群的置换运算表称为<mark>群表</mark>. 群表对研究有限群的性质很有用。设<mark>有限群<G, \circ >,其中G={1,2,3},其群表为:</mark>

0	1	2	3
1	1	2	3
2	2	3	1
3	3	1	2

可看出群表的一些性质:

- (1) 第一行, 第一列与群元素相同, 且顺序相同;
- (2)每一行(列)内元素各不相同,且任意两行(列)对应元素亦均不相同;

原因: 每行(列)具有 $a \circ a_1, a \circ a_2, ..., a \circ a_n$ 的形式, 由定理**6.13** 证明可知, 成立.

群表

*	e
e	e

*	e	a
e	e	а
a	а	e

*	e	a	b
e	e	а	ь
a	а	b	e
b	b	e	a

*	e	a	b	c
e	e	а	b	с
a	a	ь	c	e
\boldsymbol{b}	ь	\boldsymbol{c}	e	a
c	c	e	а	b

*	e	a	ь	С
e	e	а	b	с
а	а	e	c	b
b	b	c	e	a
C	с	ь	a	e

群表的性质

(3) 如果一个群是可换群,其可换性与群表的对称性一致. 由群表可知,以上有限群<G, $\diamond>$ 是可换的.

Note:

- (1) 一个有限代数系统是否构成群,是否可换从群表可以看出来;
- (2) 有限群<G, $\circ>$ 中的每个元素对应G的一个置换. 即对 $G=\{a_1, a_2, ..., a_n\}$, 存在一个函数 φ :

$$\varphi(a_i) = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_i \circ a_1 & a_i \circ a_2 & \dots & a_i \circ a_n \end{pmatrix} = p_{ki} (i = 1, 2, \dots, n)$$

由这些置换组成一个集合 $P = \{p_{k1}, p_{k2}, ..., p_{kn}\}$. 由于置换是变换的特例,由定理6.10可知,这些置换与其置换乘积构成群,且与其对应的有限群同构.

定理6.14 每个有限群均与一个置换群同构.

6.4 循环群

定义6.14 设G是群, $a \in G$, $n \in \mathbb{Z}$, 则a 的 n次幂.

$$a^{n} = \begin{cases} e & n = 0 \\ a^{n-1} \circ a & n > 0 \\ a^{-1} \end{pmatrix}^{m} \quad n < 0, n = -m$$

群中元素可以定义负整数次幂.

在<Z₃,⊕>中有

$$2^{-3} = (2^{-1})^3 = 1^3 = 1 \oplus 1 \oplus 1 = 0$$

在<Z,+>中有

$$(-2)^{-3} = 2^3 = 2 + 2 + 2 = 6$$

元素的阶

定义6.15 设G是群, $a \in G$,使得等式 $a^k = e$ 成立的最小正整数 k 称为a 的阶(或周期),记作|a| = k,称 a 为 k 阶元. 若不存在 这样的正整数 k,则称 a 为无限阶元.

例如,在 $<\mathbb{Z}_6$, $\oplus>$ 中,

2和4是3阶元,

3是2阶元,

1和5是6阶元,

0是1阶元.

在<Z,+>中,0是1阶元,其它整数的阶都不存在.

幂运算规则

定理6.15 设G 为群,则G中的幂运算满足:

- (1) $\forall a \in G, (a^{-1})^{-1} = a$
- (2) $\forall a,b \in G$, $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$
- (3) $\forall a \in G$, $a^n \circ a^m = a^{n+m}$, $n, m \in \mathbb{Z}$
- (4) $\forall a \in G$, $(a^n)^m = a^{n \times m}$, $n, m \in \mathbb{Z}$
- (5) 若G为交换群,则 $(a \circ b)^n = a^n \circ b^n$.

证 $(1)(a^{-1})^{-1}$ 是 a^{-1} 的逆元,a也是 a^{-1} 的逆元,根据逆元唯一性,等式得证.

(2) $(b^{-1} \circ a^{-1}) \circ (a \circ b) = b^{-1} \circ (a^{-1} \circ a) \circ b = b^{-1} \circ b = e$,

同理 $(a \circ b) \circ (b^{-1} \circ a^{-1}) = e$,

故 $b^{-1} \circ a^{-1}$ 是 $a \circ b$ 的逆元. 根据逆元的唯一性等式得证.

元素的阶

定理6.16 $\langle G, \circ \rangle$ 为群, $a \in G$ 且 |a| = r. 设k是整数,则

(1) $a^k = e$ 当且仅当 $r \mid k$ (r 整除 k) 因此r 又称为a的周期)

$$(2)|a^{-1}| = |a|$$

证 (1) 充分性. 由于r|k, 必存在整数m使得k = mr, 所以有

$$a^k = a^{mr} = (a^r)^m = e^m = e.$$

必要性. 根据除法,存在整数m和i使得

$$k = mr + i$$
, $0 \le i \le r - 1$

从而有
$$e = a^k = a^{mr+i} = (a^r)^m \circ a^i = e \circ a^i = a^i$$

因为|a|=r,必有i=0. 这就证明了r|k.

(2)
$$\dot{\boxplus}$$
 $(a^{-1})^r = (a^r)^{-1} = e^{-1} = e$

a的逆元的阶是a的 阶的因子

可知 a^{-1} 的阶存在. 令 $|a^{-1}| = t$,根据上面的证明有 $t \sqrt{r}$.

a又是 a^{-1} 的逆元,所以 $r \mid t$. 从而证明了r = t,即 $|a^{-1}| = |a|$

循环群

定义6.16 设G是群,若存在 $a \in G$ 使得

$$G=\{a^k|k\in \mathbb{Z}\}$$

则称G是循环群,记作 $G=\langle a\rangle$,称 a 为G 的生成元.

循环群的分类: n 阶循环群和无限循环群.

设 $G=\langle a\rangle$ 是循环群,若a是n 阶元,则

$$G = \{ a^0 = e, a^1, a^2, \dots, a^{n-1} \}$$

那么|G| = n,称G为n阶循环群.

若a 是无限阶元,则

$$G = \{ a^0 = e, a^{\pm 1}, a^{\pm 2}, \dots \}$$

称 G 为无限循环群.

例如<**Z**,+>是无限循环群,生成元是**1**和-**1**; <**Z**₆, \oplus >是**6**阶循环群,生成元是**1**和**5**. (生成元不唯一)

循环群的性质

定理6.17 设 $G=\langle a \rangle$ 是循环群.

- (1) 若G是无限循环群,则G与<Z,+>同构;
- (2) 若G是n 阶循环群,则G与< $Z_n,<math>\oplus$ >同构. 证明 略.

Note:

- (1) 无限循环群同构于整数加法群;
- (2) 周期为n的循环群同构于模n加法群.
- (3) 我们对整数加法群和模n加法群的研究很充分.

6.5 子群与群的陪集分解

回忆:

子代数:

设A=<S,*, \triangle ,k>是一代数,如果

- (1) S' \subset S
- (2) S'对S上的运算*和△封闭
- $(3) k \in S'$

那么A' = <S', , \triangle ,k>是A的子代数.

子群

定义6.17 设G是群,H是G的非空子集,

- (1) 如果H关于G中的运算构成群,则称H是G的子群,记作H≤G.
- (2) 若H是G的子群,且HCG,则称H是G的真子群,记作H<G.

例如 nZ (n是自然数) 是整数加群<Z,+> 的子群. 当 $n\neq$ 1时, nZ是Z的真子群.

对任何群G都存在子群. G和 $\{e\}$ 都是G的子群,称为G的平凡子群.

子群判定定理1

定理6.19(判定定理一)

设G为群,H是G的非空子集,则H是G的子群当且仅当

- $(1) \forall a,b \in H$ 有 $a \circ b \in H$
- $(2) \forall a \in H$ 有 $a^{-1} \in H$.

证 必要性是显然的.

证明充分性。结合律、么元、逆元

只需证明 $e \in H$.

因为H非空,存在 $a \in H$. 由条件(2) 知 $a^{-1} \in H$,根据条件(1) $a \circ a^{-1} \in H$,即 $e \in H$.

子群判定定理2

定理6.20 (判定定理二)

设G为群,H是G的非空子集. H是G的子群当且仅当 $\forall a,b \in H$ 有 $a \circ b^{-1} \in H$.

证 必要性: H为群必有 $b^{-1} \in H$,从而有 $a \circ b^{-1} \in H$.

充分性. 因为H非空,必存在 $a \in H$.

根据给定条件得 $a \circ a^{-1} \in H$,即 $e \in H$.

任取 $a \in H$, 由 $e,a \in H$ 根据给定条件 $e \circ a^{-1} \in H$,即 $a^{-1} \in H$)

任取 $a,b \in H$,知 $b^{-1} \in H$. 再利用给定条件得 $a \circ (b^{-1})^{-1} \in H$,即

 $a \circ b \in H$.

综合上述,可知H是G的子群.

子群判定定理3

定理6.21 (判定定理三)

设G为群,H是G的非空<mark>有限</mark>子集,则H是G的子群当且仅当 $\forall a,b \in H$ 有 $a \circ b \in H$.

证 必要性显然.为证充分性,只需证明有限集H是一个代数系统,并且满足结合律和消去律即可.

由于G满足结合律和消去律,H是G的子集,故也满足;由a。 $b \in H$ 可知H是一个代数系统,故得证.

例:

<{[0],[2]},+4>是<Z4,+4>的子群。

作业

方 p217 8 10 13 14

```
7. 求出\langle N_5, +_5 \rangle和\langle N_{12}, +_{12} \rangle的所有子群。模k70名
              8. 设\langle G, * \rangle是一个群,且a \in G,如果对于每一个x \in G,有a * x = x * a,则由这样
         6元素a可以构成一个集合S。试证明(S,*)是群(G,*)的子群。
             g. 试证明,如果\langle G, * \rangle是一个循环群,则\langle G, * \rangle的每一个子群,都必定是个循环
       10. 设\langle G, * \rangle是一个群,H是G的非空子集,如果对任意元素a,b \in H,有a*b \in H,
      剪(H,*)是一个子群。
           11. 设(G, *)是一个群,这里G有偶数个元素,证明G中存在一个元素a \neq e,使
     · NAESSON AND SEE AND SEE AND SEE AND SEE AND SEE AS SEE OF SEE 
          12. 考察群(\{1,i,-1,-i\},*)和\left\{\begin{pmatrix}1&0\\0&1\end{pmatrix},\begin{pmatrix}-1&0\\0&-1\end{pmatrix},\begin{pmatrix}-1&0\\0&1\end{pmatrix},\begin{pmatrix}1&0\\0&-1\end{pmatrix}\right\},\circ\right\}
  这里*是复数乘法,。是矩阵乘法。作出它们的运算表并判别是否同构。
  13. 设\langle G, * \rangle是一个群,且a \in G。定义一个映射 f: G \rightarrow G,使得对于每一个x \in G,
  f(x)=a*x*a^{-1},试证明 f 是(G,*)的群自同构。
14. 设h 是从代数G 到G'的满同态,G 是一个循环群,证明G'也是一个循环群。
       15. 证明群\langle G, * \rangle的任意元素 a,都有 a''=e,这里 n=|G|。
16. 设\langle H, * \rangle和\langle K, * \rangle都是群\langle G, * \rangle的子群,
    HK = \{h * k \mid h \in H \land k \in K\}
T 88 1/ 12 /2 14 TTTT
```