Fontes principais

- 1. J. Jaja, An introduction to Parallel Algorithms, Addison Wesley, 92
 - > Algoritmos paralelos
- 2. E. Cáceres, H. Mongeli, S. Song: Algoritmos paralelos usando CGM/PVM/MPI: uma introdução http://www.ime.usp.br/~song/papers/jai01.pdf

Divisão e Conquista

Divisão e Conquista

A estratégia de divisão e conquista consiste de três passos:

- 1) Particionamento da entrada em partes iguais
- 2) Resolver recursivamente o subproblema definido para cada partição da entrada
- 3) Combinar as soluções de diferentes subproblemas numa solução para o problema global

O sucesso desta estratégia depende de como o terceiro passo possa ser efetuado com eficiência.

Idéia:

- Para ordenar uma sequência de n números, dividimos essa sequência em 2 metades, ordenamos cada uma das metades e fazemos o merge das 2 metades já ordenadas.

Entrada:

 $\triangleright A, B$: vetores de $\frac{n}{2}$ elementos ordenados

Saída:

 \triangleright C: vetor de n elementos (de A e B) ordenado

Suposição inicial: Todos os elementos de A e B são distintos

Estruturas auxiliares:

ightharpoonup Posição em B, vetores com $\frac{n}{2}$ posições.

Posição em A[i] diz em que posição o elemento B[i] deveria ficar, caso fosse inserido em A, de maneira a manter a ordenação.

Posição em B[i] é análogo.

Algoritmo Merge

```
para 0 \le i \le \frac{n}{2} faça em paralelo posicaoEmA[i] := buscaBinaria(B[i], A, 0, \frac{n}{2} - 1) posicaoEmB[i] := buscaBinaria(A[i], B, 0, \frac{n}{2} - 1) C[posicaoEmA[i] + i] := B[i] C[posicaoEmB[i] + i] := A[i]
```

```
Algoritmo Busca Binária (num, vetor, i, f)
inicio := i, fim := f
enquanto inicio < fim faça
meio := [(inicio + fim)/2]
se num < vetor[meio] então
fim := meio - 1
senão se num > vetor[meio] então
inicio := meio + 1
```

```
se num < vetor[meio] então
devolva meio
senão se num > vetor[meio] então
devolva meio + 1
```

Ex.: n = 8

	0	1	2	3
Α	13	14	17	19
В	11	15	16	20

posicaoEmA 0 2 2 4

posicaoEmB 1 1 3 3

Submodelo e complexidades:

Submodelo: CREW

Complexidades

 \triangleright Tempo: $O(\log n)$

 \triangleright Processador: O(n)

Caso A e B tenham elementos iguais

Usamos 2 rotinas de busca binária.

- \triangleright Busca binária 1 retorna a posição em que B[i] seria inserido em A, de maneira que ele seja inserido após os elementos de A iguais a ele.
- \triangleright Busca binária 2 retorna a posição em que A[i] seria inserido em B, de maneira que ele seja inserido antes do elemento de B iguais a ele.

O algoritmo de ordenação utiliza o algoritmo de merge com uma subrotina da forma:

Merge(A, iniA, B, iniB, C, iniC, tamC)

```
\begin{aligned} \mathbf{Merge}(A, iniA, B, iniB, C, iniC, tamC) \\ \mathbf{para} \ 0 &\leq i \leq \frac{tamC}{2} - 1 \ \mathbf{faça} \ \mathbf{em} \ \mathbf{paralelo} \\ posicaoEmA[iniB+i] := buscaBinaria(B[iniB+i], A, \\ iniA, iniA + \frac{tamC}{2} - 1) \\ posicaoEmB[iniA+i] := buscaBinaria(A[iniA+i], B, \\ iniB, iniB + \frac{tamC}{2} - 1) \\ C[posicaoEmA[iniB+i] + iniB+i] := B[iniB+i] \\ C[posicaoEmB[iniA+i] + iniA+i] := A[iniA+i] \end{aligned}
```

Entrada:

 \triangleright S: vetor de n elementos a ser ordenado

 \triangleright *n*: potência de 2

Saída:

 $\triangleright R$: vetor de *n* elementos com os elementos de S ordenado

Estrutura auxiliar:

ightharpoonup T: vetor de n posições. Usado para fazer a cópia de R.

Algoritmo Mergesort

para
$$0 \le i \le n-1$$
 faça em paralelo $R[i] := S[i]$

Double Loop sequencial, subindo na árvore para $j := (\log n) - 1$ até 0 faça para $0 \le i \le n - 1$ faça em paralelo T[i] := R[i]

 $tam := n/2^j
ightharpoonup Tamanho da sequência ordenada
ightharpoonup a ser obtida neste nível para <math>0 \le i \le 2^j - 1$ faça em paralelo $Merge(T, i*tam, T, i*tam + \frac{tam}{2}, R, i*tam, tam)$

Ex.: n = 8

Submodelo: CREW (leitura concorrente em T e tam)

Complexidades:

- \triangleright Tempo: $O(\log^2 n)$ ($\log n$ passos do sort e $\log n$ passos do merge)
 - \triangleright Processadores: O(n)

No nível j da árvore, usamos

- $\triangleright 2^{j}$ processadores, cada um fazendo um merge.
- \triangleright Para cada merge, cada processador usa $\frac{tam}{2}$ processadores.
- ightharpoonup Logo, no nível j usamos $2^j \cdot \frac{tam}{2}$ processadores

$$2^j \cdot \frac{tam}{2} = 2^j \cdot \frac{\frac{n}{2^j}}{2} = \frac{n}{2}$$

Dado um conjunto $S = \{p_1, p_2, \dots, p_n\}$ de n pontos no plano, cada um representado pelas suas coordenadas (x, y), a **envoltória convexa planar** de S é o menor polígono convexo contendo todos os n pontos de S.

O problema da envoltória convexa é o de determinar a lista ordenada (sentido horário) CH(S) de pontos de S definindo a fronteira da envoltória convexa de S.

Considere o conjunto S de pontos abaixo. O Fecho convexo de S é dado por $CH(S) = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$

Sejam p e q pontos de S com a menor e a maior coordenada x, respectivamente. Claramente p e q pertencem a CH(S) e particionam CH(S) em uma envoltória superior UH(S) consistindo de todos os pontos de p e q de CH(S) (sentido horário) e uma envoltória inferior LH(S) definida de modo análogo de p a q.

Considere o conjunto S de pontos abaixo.

$$\triangleright UH(S) = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\triangleright LH(S) = \{v_5, v_6, v_7, v_8, v_1\}$$

- \triangleright Vamos mostrar como computar UH(S). A computação de LH(S) é feita de modo análogo.
- \triangleright A ordenação pode ser feito em uma EREW PRAM em tempo $O(\log n)$ com n processadores
- ightharpoonup Assumimos por simplicidade que dados dois pontos quaisquer de S , eles não possuem a mesma coordenada x ou y e que n é potência de 2.

Iniciamos com a ordenação dos pontos p_i pelas suas coordenadas x.

Seja $x(p_1) < x(p_2) < \cdots < x(p_n)$, onde $x(p_i)$ é a coordenada x de p_i

Seja
$$S_1=(p_1,p_2,\cdots,p_{\frac{n}{2}})$$
 e $S_2=(p_{\frac{n}{2}+1},p_{\frac{n}{2}+2},\cdots,p_n).$

Vamos supor que $UH(S_1)$ e $UH(S_2)$ é a tangente comum tal que $UH(S_1)$ e $UH(S_2)$ estão abaixo dela.

O segmento de linha (a,b) é a tangente comum superior da envoltória de S_1 e S_2

A computação da tangente comum superior entre $UH(S_1)$ e $UH(S_2)$ pode ser feita em tempo sequencial $O(\log n)$, usando o método de busca binária. Isso pode ser feito de forma mais eficiente.

Sejam $UH(S_1)=(q_1,\cdots,q_s)$ e $UH(S_2)=(q_1',\cdots,q_t')$ as envoltórias superiores de S_1 e S_2 , respectivamente, dados na ordem da esquerda para a direita. Observe que a tangente comum superior tenha sido deteminada e seja dado por (q_i,q_i') .

Então, UH(S) é o vetor consistindo das primeiras i entradas de $UH(S_1)$ e as últimas t-j+1 entradas de $UH(S_2)$; isto é, $UH(S)=(q_1,\cdots,q_i,q_j',\cdots,q_t')$. Se s e t são dados, uma vez que i e j são conhecidos, UH(S) e seu tamanho pode ser determinado em tempo paralelo O(1) com n processadores.

Entrada:

 \triangleright Um conjunto S de n pontos no plano, dos quais não existam dois pontos que tenham as mesmas coordenadas x ou y, tal que $x(p_1) < x(p_1) < \cdots < x(p_n)$, onde n é uma potência de 2.

Saída:

ightarrow Envoltória convexa superior de S

Algoritmo Envoltória superior simples

- 1 Se $n \le 4$, então use um método de força bruta para determinar UH(S) e finalize
- 2 Sejam $S_1=(p_1,p_2,\cdots,p_{\frac{n}{2}})$ e $S_2=(p_{\frac{n}{2}+1},p_{\frac{n}{2}+2},\cdots,p_n).$ Recursivamente, compute $UH(S_1)$ e $UH(S_2)$ em paralelo.
- 3 Encontre a tangente comum superior entre $UH(S_1)$ e $UH(S_2)$ e deduza a envoltória convexa superior de S.

Submodelo CREW

 \triangleright Tempo: $O(\log^2 n)$

 \triangleright Processadores: $O(n \log n)$

Fim