

Grundbegriffe der Informatik **Tutorium 33**

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de Lukas Bach, lukas.bach@student.kit.edu | 09.02.2017

Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

<code>lukas.bach@student.kit.ed</code> Was sind Turingmaschinen?

Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.ed
Was sind Turingmaschinen?

Turingmaschinen

Sehr mächtige Erweiterung Automat

Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.ed
Was sind Turingmaschinen?

- Sehr m\u00e4chtige Erweiterung Automat
 - Was heißt m\u00e4chtig?

Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edWas sind Turingmaschinen?

- Sehr mächtige Erweiterung Automat
 - Was heißt mächtig?
 - Turingmaschinen können eine große Vielfalt von Problemen lösen, einschließlich vieler in GBI besprochener Probleme

Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edWas sind Turingmaschinen?

- Sehr m\u00e4chtige Erweiterung Automat
 - Was heißt mächtig?
 - Turingmaschinen können eine große Vielfalt von Problemen lösen, einschließlich vieler in GBI besprochener Probleme
- Gesteuert durch einen endlichen Automaten

Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edWas sind Turingmaschinen?

- Sehr mächtige Erweiterung Automat
 - Was heißt mächtig?
 - Turingmaschinen können eine große Vielfalt von Problemen lösen, einschließlich vieler in GBI besprochener Probleme
- Gesteuert durch einen endlichen Automaten, aber mit einem unendlichen Arbeitsband zum Zwischenspeichern von Informationen

Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edWas sind Turingmaschinen?

- Sehr mächtige Erweiterung Automat
 - Was heißt mächtig?
 - Turingmaschinen können eine große Vielfalt von Problemen lösen, einschließlich vieler in GBI besprochener Probleme
- Gesteuert durch einen endlichen Automaten, aber mit einem unendlichen Arbeitsband zum Zwischenspeichern von Informationen
- Besitzen einen Kopf um auf dem Band zu lesen und zu schreiben

Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edWas sind Turingmaschinen?

- Sehr mächtige Erweiterung Automat
 - Was heißt mächtig?
 - Turingmaschinen können eine große Vielfalt von Problemen lösen, einschließlich vieler in GBI besprochener Probleme
- Gesteuert durch einen endlichen Automaten, aber mit einem unendlichen Arbeitsband zum Zwischenspeichern von Informationen
- Besitzen einen Kopf um auf dem Band zu lesen und zu schreiben
- Turingmaschinen sind sozusagen genauso m\u00e4chtig wie Computer

Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edWas sind Turingmaschinen?

- Sehr m\u00e4chtige Erweiterung Automat
 - Was heißt mächtig?
 - Turingmaschinen können eine große Vielfalt von Problemen lösen, einschließlich vieler in GBI besprochener Probleme
- Gesteuert durch einen endlichen Automaten, aber mit einem unendlichen Arbeitsband zum Zwischenspeichern von Informationen
- Besitzen einen Kopf um auf dem Band zu lesen und zu schreiben
- Turingmaschinen sind sozusagen genauso m\u00e4chtig wie Computer
 - können also benutzt werden, um für Probleme zu entscheiden, ob sie gelöst werden können oder nicht

Definition von Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, lukas.bach@student.kit.

Definition von Turingmschinen

Turingmaschinen

Definition von Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.

Definition von Turingmschinen

Turingmaschinen

Eine Turingmaschine $T = (Z, z_0, X, f, g, m)$ besteht aus:

Z Zustandsmenge

Definition von Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

Definition von Turingmschinen lukas.bach@student.kit.

Turingmaschinen

- Z Zustandsmenge
- $z_0 \in Z$ Startzustand

Definition von Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

Definition von Turingmschinen lukas.bach@student.kit.

Turingmaschinen

- Z Zustandsmenge
- $z_0 \in Z$ Startzustand
- X Bandalphabet

Definition von Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.

Definition von Turingmschinen

Turingmaschinen

- Z Zustandsmenge
- $z_0 \in Z$ Startzustand
- X Bandalphabet
- □ Blanksymbol (sozusagen Markierung für Leerzeichen)

Definition von Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.

Definition von Turingmschinen

- Z Zustandsmenge
- $z_0 \in Z$ Startzustand
- X Bandalphabet
- □ Blanksymbol (sozusagen Markierung für Leerzeichen)
- $f: Z \times X \rightarrow Z$ partielle Zustandsübergangsfunktion

Definition von Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.

Definition von Turingmschinen

Turingmaschinen

- Z Zustandsmenge
- $z_0 \in Z$ Startzustand
- X Bandalphabet
- □ Blanksymbol (sozusagen Markierung für Leerzeichen)
- $f: Z \times X \rightarrow Z$ partielle Zustandsübergangsfunktion
- lack g: Z imes X o X partielle Ausgabefunktion

Definition von Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.

Definition von Turingmschinen

Turingmaschinen

Eine Turingmaschine $T = (Z, z_0, X, f, g, m)$ besteht aus:

- Z Zustandsmenge
- $z_0 \in Z$ Startzustand
- X Bandalphabet
- □ Blanksymbol (sozusagen Markierung für Leerzeichen)
- $f: Z \times X \rightarrow Z$ partielle Zustandsübergangsfunktion
- $g: Z \times X \rightarrow X$ partielle Ausgabefunktion
- $m: Z \times X \rightarrow \{L, N, R\}$ partielle Bewegungsfunktion

Anmerkung: partielle Funktionen sind nicht linkstotal, also manche Elemente des Definitionsbereichs werden nicht abgebildet.

Beispiel einer Turingmaschine

Maximilian Staab,

maximilian.staab@fsmi.uni Lukas Bach,

lukas.bach@student.kit.ed

Beispiel einer Turingmaschine

Maximilian Staab. maximilian.staab@fsmi.uni Lukas Bach.

Funktionen von Turing Maschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas.bach@student.kit.ed

Turingmaschinen

$f: Z \times X \rightarrow Z$	

$$g: Z \times X \to X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

Funktionen von Turing Maschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas.bach@student.kit.ed

Turingmaschinen

$f: Z \times X \rightarrow Z$	

$$g: Z \times X \to X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

Funktionen von Turing Maschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas.bach@student.kit.ed

Turingmaschinen

	f : Z	$\times X$	ightarrow Z
_	—		. —

$$g: Z \times X \rightarrow X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

Funktionen von Turing Maschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas.bach@student.kit.ed

Turingmaschinen

f : Z	$\times X$	ightarrow Z

$$g: Z \times X \rightarrow X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

Funktionen von Turing Maschinen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach,

lukas.bach@student.kit.ed

Turingmaschinen

\bullet $t: Z \times X \rightarrow Z$		f : Z		ightarrow Z
---	--	-------	--	-------------

$$g: Z \times X \to X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

	f	g	m
0 0, N	$(s1,0)\mapsto s6$	$(s1,0)\mapsto 0$	$(s1,0)\mapsto N$
1 0, R	$(s1,1) \mapsto s2$	$(s1,1)\mapsto 0$	$(s1,1)\mapsto R$

Funktionen von Turing Maschinen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas.bach@student.kit.ed

Turingmaschinen

f·	7	V	X	\rightarrow	7
Ι.	_	\sim	Λ	\rightarrow	_

$$g: Z \times X \to X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

•		f	g	m
	0 0, <i>N</i>	$(s1,0)\mapsto s6$	$(s1,0)\mapsto 0$	$(s1,0)\mapsto N$
	1 0, R	$(s1,1) \mapsto s2$	$(s1,1)\mapsto 0$	$(s1,1)\mapsto R$
	1 1, <i>R</i>			

Funktionen von Turing Maschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach,

lukas.bach@student.kit.ed

Turingmaschinen

f:	z	×	Χ	\rightarrow	Ζ
	_				_

$$g: Z \times X \to X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

C	en Abbliddingsvorschiliten der linken vier i lelle aus:					
		f	g	m		
		$(s1,0)\mapsto s6$				
	1 0, R	$(s1,1) \mapsto s2$	$(s1,1)\mapsto 0$	$(s1,1)\mapsto R$		
	1 1, <i>R</i>	$(s2,1) \mapsto s2$				

Funktionen von Turing Maschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach,

lukas.bach@student.kit.ed

Turingmaschinen

	f : Z	$\times X$	ightarrow Z
_	–		

$$g: Z \times X \to X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

_	en Abbildangsvorsommen der imken vier i leile das.					
		f	g	m		
	0 0, N	$(s1,0)\mapsto s6$	$(s1,0)\mapsto 0$	$(s1,0)\mapsto N$		
	1 0, <i>R</i>	$(s1,1) \mapsto s2$	$(s1,1)\mapsto 0$	$(s1,1)\mapsto R$		
	1 1, <i>R</i>	$(s2,1) \mapsto s2$	$(s2,1)\mapsto 1$			

Funktionen von Turing Maschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas.bach@student.kit.ed

Turingmaschinen

	f:	z	×	Χ	\rightarrow	Z
_		_	′ `	٠.	,	_

$$g: Z \times X \to X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

	f	g	m					
0 0, N	$(s1,0)\mapsto s6$	$(s1,0)\mapsto 0$	$(s1,0)\mapsto N$					
1 0, R	$(s1,1) \mapsto s2$	$(s1,1)\mapsto 0$	$(s1,1)\mapsto R$					
1 1, <i>R</i>	$(s2,1)\mapsto s2$	$(s2,1)\mapsto 1$	$(s2,1)\mapsto R$					

Funktionen von Turing Maschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas.bach@student.kit.ed

Turingmaschinen

$$g: Z \times X \rightarrow X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

_	on Albandangevereen meet der minen vier i iene dae.						
		f	g	m			
		$(s1,0)\mapsto s6$, , ,				
	1 0, R	$(s1,1) \mapsto s2$	$(s1,1)\mapsto 0$	$(s1,1)\mapsto R$			
	1 1, <i>R</i>	$(s2,1) \mapsto s2$	$(s2,1)\mapsto 1$	$(s2,1)\mapsto R$			
	0 0,R						

Funktionen von Turing Maschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas.bach@student.kit.ed

Turingmaschinen

	f : Z	$\times X$	ightarrow Z
_	—	/ \	· —

$$g: Z \times X \to X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

_								
		f	g	m				
	0 0, <i>N</i>	$(s1,0)\mapsto s6$	$(s1,0)\mapsto 0$	$(s1,0)\mapsto N$				
	1 0, R	$(s1,1) \mapsto s2$	$(s1,1)\mapsto 0$	$(s1,1)\mapsto R$				
	1 1, <i>R</i>	$(s2,1)\mapsto s2$	$(s2,1)\mapsto 1$	$(s2,1)\mapsto R$				
	0 0. B	$(s2.1) \mapsto s3$		•				

Funktionen von Turing Maschinen

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas.bach@student.kit.ed

Turingmaschinen

f:	Z	×	\rightarrow	Z
	_			_

$$g: Z \times X \rightarrow X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

_	on hoomaangevereen meet were nede ade.							
		f	g	m				
	0 0, <i>N</i>	$(s1,0)\mapsto s6$	$(s1,0)\mapsto 0$	$(s1,0)\mapsto N$				
	1 0, R	$(s1,1) \mapsto s2$	$(s1,1)\mapsto 0$	$(s1,1)\mapsto R$				
	1 1, <i>R</i>	$(s2,1)\mapsto s2$	$(s2,1)\mapsto 1$	$(s2,1)\mapsto R$				
	0 0, R	$(s2,1) \mapsto s3$	$(s2,1)\mapsto 0$					

Funktionen von Turing Maschinen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach,

lukas.bach@student.kit.ed

Turingmaschinen

	f:	Z	×	Χ	\rightarrow	Ζ
_		_	′ `		,	_

$$g: Z \times X \to X$$

$$m: Z \times X \rightarrow \{L, N, R\}$$

C	en Abbliddingsvorschillten der linken vier Fleile aus!						
		f	g	m			
	0 0, N	$(s1,0)\mapsto s6$	$(s1,0)\mapsto 0$	$(s1,0)\mapsto N$			
	1 0, R	$(s1,1) \mapsto s2$	$(s1,1)\mapsto 0$	$(s1,1)\mapsto R$			
	1 1, <i>R</i>	$(s2,1)\mapsto s2$	$(s2,1)\mapsto 1$	$(s2,1)\mapsto R$			
	0 0, R	$(s2,1)\mapsto s3$	$(s2,1)\mapsto 0$	$(s2,1)\mapsto R$			

Das Band einer Turingmaschine

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach, lukas.bach@student.kit.edu

Das Band einer Turingmaschine

Maximilian Staab, Unendliche Anreihung von Zeichen, die nach links und rechts maximilian. staab@fsmi.uni-karlsruhe,de.grenzt weiter geht

lukas.bach@student.kit.edu

Das Band einer Turingmaschine

Maximilian Staab,

Unendliche Anreihung von Zeichen, die nach links und rechts

maximilian.staab@fsmi.uni-karlsruhe.de.
Lukas Bach,
lukas.bach@student.kit.edu

Das Band einer Turingmaschine

Maximilian Staab.

 Unendliche Anreihung von Zeichen, die nach links und rechts maximilian.staab@fsmi.uni-karlsruhe.de. unbegrenzt weiter geht

lukas bach@student kit edu

Turingmaschinen

Die Turingmaschine hat einen Kopf, mit dem sie das aktuelle Zeichen lesen oder überschreiben kann, oder kann ihn nach links oder rechts bewegen.

Das Band einer Turingmaschine

Maximilian Staab.

lukas bach@student kit edu

Turingmaschinen

 Unendliche Anreihung von Zeichen, die nach links und rechts maximilian.staab@fsmi.uni-karlsruhe.de. unbegrenzt weiter geht

- Die Turingmaschine hat einen Kopf, mit dem sie das aktuelle Zeichen lesen oder überschreiben kann, oder kann ihn nach links oder rechts bewegen.
- Das Band einer Turingmaschine wird benutzt als...

Das Band einer Turingmaschine

Maximilian Staab.

lukas bach@student kit edu

Turingmaschinen

 Unendliche Anreihung von Zeichen, die nach links und rechts maximilian.staab@fsmi.uni-karlsruhe.degrenzt weiter geht

- Die Turingmaschine hat einen Kopf, mit dem sie das aktuelle Zeichen lesen oder überschreiben kann, oder kann ihn nach links oder rechts bewegen.
- Das Band einer Turingmaschine wird benutzt als...
 - Erhalten der Eingabe:

Das Band einer Turingmaschine

Maximilian Staab.

 Unendliche Anreihung von Zeichen, die nach links und rechts maximilian.staab@fsmi.uni-karlsruhe.degrenzt weiter geht

lukas bach@student kit edu

- Die Turingmaschine hat einen Kopf, mit dem sie das aktuelle Zeichen lesen oder überschreiben kann, oder kann ihn nach links oder rechts bewegen.
- Das Band einer Turingmaschine wird benutzt als...
 - Erhalten der Eingabe: Bevor die Turingmaschine startet, steht das Eingabewort auf dem Band, der Kopf steht auf dem ersten Zeichen der Eingabe.

Das Band einer Turingmaschine

Maximilian Staab.

 Unendliche Anreihung von Zeichen, die nach links und rechts maximilian.staab@fsmi.uni-karlsruhe.degrenzt weiter geht

lukas bach@student kit edu

- Die Turingmaschine hat einen Kopf, mit dem sie das aktuelle Zeichen lesen oder überschreiben kann, oder kann ihn nach links oder rechts bewegen.
- Das Band einer Turingmaschine wird benutzt als...
 - Erhalten der Eingabe: Bevor die Turingmaschine startet, steht das Eingabewort auf dem Band, der Kopf steht auf dem ersten Zeichen der Eingabe.
 - Rückgabe der Ausgabe:

Das Band einer Turingmaschine

Maximilian Staab.

 Unendliche Anreihung von Zeichen, die nach links und rechts maximilian.staab@fsmi.uni-karlsruhe.de. unbegrenzt weiter geht

lukas bach@student kit edu

- Die Turingmaschine hat einen Kopf, mit dem sie das aktuelle Zeichen lesen oder überschreiben kann, oder kann ihn nach links oder rechts bewegen.
- Das Band einer Turingmaschine wird benutzt als...
 - Erhalten der Eingabe: Bevor die Turingmaschine startet, steht das Eingabewort auf dem Band, der Kopf steht auf dem ersten Zeichen der Eingabe.
 - Rückgabe der Ausgabe: Nach Beenden steht auf dem Band die Ausgabe (und der Kopf irgendwo).

Das Band einer Turingmaschine

Maximilian Staab.

 Unendliche Anreihung von Zeichen, die nach links und rechts maximilian.staab@fsmi.uni-karlsruhe.de. unbegrenzt weiter geht

lukas bach@student kit edu

В 0 0

- Die Turingmaschine hat einen Kopf, mit dem sie das aktuelle Zeichen lesen oder überschreiben kann, oder kann ihn nach links oder rechts bewegen.
- Das Band einer Turingmaschine wird benutzt als...
 - Erhalten der Eingabe: Bevor die Turingmaschine startet, steht das Eingabewort auf dem Band, der Kopf steht auf dem ersten Zeichen der Eingabe.
 - Rückgabe der Ausgabe: Nach Beenden steht auf dem Band die Ausgabe (und der Kopf irgendwo).
 - Zwischenspeicher:

Das Band einer Turingmaschine

Maximilian Staab.

 Unendliche Anreihung von Zeichen, die nach links und rechts maximilian.staab@fsmi.uni-karlsruhe.degrenzt weiter geht

lukas bach@student kit edu

- Die Turingmaschine hat einen Kopf, mit dem sie das aktuelle Zeichen lesen oder überschreiben kann, oder kann ihn nach links oder rechts bewegen.
- Das Band einer Turingmaschine wird benutzt als...
 - Erhalten der Eingabe: Bevor die Turingmaschine startet, steht das Eingabewort auf dem Band, der Kopf steht auf dem ersten Zeichen der Eingabe.
 - Rückgabe der Ausgabe: Nach Beenden steht auf dem Band die Ausgabe (und der Kopf irgendwo).
 - Zwischenspeicher: Die Turingmaschine kann überall Informationen zwischenspeichern, diese müssen von der TM am Ende aber gelöscht werden.

Beispielabarbeitungen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Turingmaschinen

Gemeinsame Übung

Arbeite folgende Wörter mit der Turingmaschine ab:

- **0**
- 1
- 11
- 111

Was macht die Turingmaschine?

Beispielabarbeitungen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Turingmaschinen

Gemeinsame Übung

Arbeite folgende Wörter mit der Turingmaschine ab:

- **0**
- 1
- 11
- 111

Was macht die Turingmaschine?

Die Turingmaschine macht aus 1^k die Ausgabe $1^k \square 1^k$.

Halten von Turingmaschinen

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach, lukas.bach@student.kit.edu

Halten von Turingmaschinen

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Turingmaschinen

Halten einer Turingmaschine

Wenn eine Turingmaschine in einem Zustand ist, für den das nächste Eingabezeichen durch die Übergangsfunktion f nicht definiert ist, hält die Maschine.

Halten von Turingmaschinen

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas bach@student.kit.edu

Turingmaschinen

Halten einer Turingmaschine

Wenn eine Turingmaschine in einem Zustand ist, für den das nächste Eingabezeichen durch die Übergangsfunktion *f* nicht definiert ist, hält die Maschine.

Wann hält also eine Turingmaschine nicht?

Halten von Turingmaschinen

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas bach@student.kit.edu

Turingmaschinen

Halten einer Turingmaschine

Wenn eine Turingmaschine in einem Zustand ist, für den das nächste Eingabezeichen durch die Übergangsfunktion f nicht definiert ist, hält die Maschine.

Wann hält also eine Turingmaschine nicht?

Nicht-Halten einer Turingmmaschine

Wenn eine Turingmaschine in eine endlose Schleife gerät, so hält sie nicht.

Grundbegriffe Entscheidbarkeit der Informatik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Entscheidbarkeit

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.

Durch Turingmaschine akzeptierte Sprache

Turingmaschinen

Eine Turingmaschine akzeptiert eine formale Sprache L, wenn sie für jedes Wort $w \in L$ in einem akzeptierenden Zustand hält.

Entscheidbarkeit

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Durch Turingmaschine akzeptierte Sprache

Turingmaschinen

Eine Turingmaschine akzeptiert eine formale Sprache L, wenn sie für jedes Wort $w \in L$ in einem akzeptierenden Zustand hält.

Entscheidbare Sprache

Eine formale Sprache L heißt entscheidbar, wenn es eine Turingmaschine gibt, die immer hält und L akzeptiert.

Entscheidbarkeit

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Durch Turingmaschine akzeptierte Sprache

Turingmaschinen

Eine Turingmaschine akzeptiert eine formale Sprache L, wenn sie für jedes Wort $w \in L$ in einem akzeptierenden Zustand hält.

Entscheidbare Sprache

Eine formale Sprache L heißt entscheidbar, wenn es eine Turingmaschine gibt, die immer hält und L akzeptiert.

Aufzählbare Sprache

Eine formale Sprache *L* heißt aufzählbar, wenn es eine Turingmaschine gibt, die *L* akzeptiert.

Vom endlichen Akzeptor zur Turingmaschine

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Akzeptieren von Turingmaschinen

Turingmaschinen

Wie kann man aus dem gegebenen endlichen Akzeptor eine Turingmaschine machen, die dieselbe Sprache akzeptiert?

Lösung

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, Einfach gesagt: mache aus jedem Übergang a einen lukas bach@student.kit.edu

Turingmaschinen-Übergang der Art a|a, R, also bei jedem Zeichen mache

Turingmaschinen den Zustandsübergang, überschreibe aber das Zeichen nicht und gehe

zum nächsten Zeichen.

Lösung

Maximilian Staab,

 $\verb|maximilian.staab@fsmi.uni-karlsruhe.de|,\\$

Lukas Bach, Einfach gesagt: mache aus jedem Übergang a einen lukas bach@student.kit.edu

Turingmaschinen-Übergang der Art ala, R, also bei jedem Zeichen mache

Turingmaschinen den Zustandsübergang, überschreibe aber das Zeichen nicht und gehe zum nächsten Zeichen.

Formaler ausgedrückt?

Lösung

Maximilian Staab,

 $\verb|maximilian.staab@fsmi.uni-karlsruhe.de|,\\$

Lukas Bach, Einfach gesagt: mache aus jedem Übergang a einen

Turingmaschinen

Turingmaschinen-Übergang der Art a|a,R, also bei jedem Zeichen mache den Zustandsübergang, überschreibe aber das Zeichen nicht und gehe zum nächsten Zeichen.

Formaler ausgedrückt?

- Für allgemeinen endlichen Akzeptor (Z, z_0, X, f, Y, h) , definiere eine Turingmaschine $T := (Z, z_0, X \cup Y, f, g, h)$, also Z, z_0, f gleich und mit Bandalphabet = Eingabealphabet \cup Ausgabealphabet
- $g(z, x) := x \quad \forall (z, x) \text{ in } f \text{ definiert}$
- $m(z,x) := R \quad \forall (z,y) \text{ in } f \text{ definiert}$

Lösung

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, Lukas bach@student.kit.edu Einfach gesagt: mache aus jedem Übergang a einen

Turingmaschinen

Turingmaschinen-Übergang der Art a|a,R, also bei jedem Zeichen mache den Zustandsübergang, überschreibe aber das Zeichen nicht und gehe zum nächsten Zeichen.

Formaler ausgedrückt?

- Für allgemeinen endlichen Akzeptor (Z, z_0, X, f, Y, h) , definiere eine Turingmaschine $T := (Z, z_0, X \cup Y, f, g, h)$, also Z, z_0, f gleich und mit Bandalphabet = Eingabealphabet \cup Ausgabealphabet
- $g(z, x) := x \quad \forall (z, x) \text{ in } f \text{ definiert}$
- $\mathbf{m}(z,x) := R \quad \forall (z,y) \text{ in } f \text{ definiert}$

Jeder endliche Akzeptor kann so zu einer Turingmaschine umgeformt werden, die dieselbe Sprache akzeptiert.

Über endliche Akzeptoren hinaus

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Turingmaschinen

Sei L die Sprache von Palindromen über $\{a, b\}$ $(L = \{aabaa, bbababb, aa, \varepsilon\}).$

Über endliche Akzeptoren hinaus

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas bach@student.kit.edu

Turingmaschinen

Sei L die Sprache von Palindromen über $\{a, b\}$ $(L = \{aabaa, bbababb, aa, \varepsilon\}).$

Ist die Sprache regulär, also gibt es einen endlichen Akzeptor, der diese akzeptiert?

Über endliche Akzeptoren hinaus

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas bach@student.kit.edu

Turingmaschinen

Sei L die Sprache von Palindromen über $\{a, b\}$ $(L = \{aabaa, bbababb, aa, \varepsilon\}).$

Ist die Sprache regulär, also gibt es einen endlichen Akzeptor, der diese akzeptiert? Nein.

Über endliche Akzeptoren hinaus

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas bach@student.kit.edu

Turingmaschinen

Sei L die Sprache von Palindromen über $\{a, b\}$ $(L = \{aabaa, bbababb, aa, \varepsilon\}).$

- Ist die Sprache regulär, also gibt es einen endlichen Akzeptor, der diese akzeptiert? Nein.
- Ist die Sprache entscheidbar, also gibt es eine stets haltende Turingmaschine, die L akzeptiert?

Palindromerkennung mit Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.unijkarlsruhe dech: Lukas Bach. Ja, namiich:

lukas.bach@student.kit.ed

Turingmaschinen Entwurfsaufgabe

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas.bach@student.kit.edu

Turingmaschinen

Turingmaschine Entwurf

- als Eingabe eine Binärzahl auf dem Band erhält
- als Ausgabe diese Zahl restlos durch zwei teilt und auf dem Band stehen lässt

Turingmaschinen Entwurfsaufgabe

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Turingmaschinen

Turingmaschine Entwurf

- als Eingabe eine Binärzahl auf dem Band erhält
- als Ausgabe diese Zahl restlos durch zwei teilt und auf dem Band stehen lässt

Turingmaschinen Entwurfsaufgabe

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas.bach@student.kit.edu

Turingmaschine

Turingmaschine Entwurf

- als Eingabe eine Binärzahl auf dem Band erhält
- als Ausgabe diese Zahl um eins erh\u00f6ht auf dem Band stehen l\u00e4sst
- den Kopf der Turingmaschine auf dem ersten Zeichen der Ausgabe stehen hat.

Turingmaschinen Entwurfsaufgabe

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Turingmaschine

Turingmaschine Entwurf

- als Eingabe eine Binärzahl auf dem Band erhält
- als Ausgabe diese Zahl um eins erh\u00f6ht auf dem Band stehen l\u00e4sst
- den Kopf der Turingmaschine auf dem ersten Zeichen der Ausgabe stehen hat.

Turingmaschine Entwurfsaufgabe

Maximilian Staab, maximilian.staab@fsmi.um Lukas Bach,

Turingmaschine Entwurf

Lukas Bach, lukas bach@student.kit.e Entwerfe eine Turingmaschine, die die Sprache $\{a^kb^k:k\in\mathbb{N}_0\}$ erkennt.

Turingmaschine Entwurfsaufgabe

Maximilian Staab, maximilian.staab@fsmi.ur Lukas Bach, lukas.bach@student.kit.e

Turingmaschine Entwurf

, Entwerfe eine Turingmaschine, die die Sprache $\{a^kb^k:k\in\mathbb{N}_0\}$ erkennt.

Konfiguration von Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uniAkarlsruhe.de, man kennt eine Turingmaschine, hat mit der Abarbeitung

lukas.bach@student.kit.edu eines Wortes angefangen, will aber pausieren, um später weiterzumachen...

Turingmaschinen

Was muss man sich alles merken, um später weiter zu machen?

Konfiguration von Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni_karlsruhe.de. Lukas Bach, Turingmaschine, hat mit der Abarbeitung

lukas.bach@student.kit.edu eines Wortes angefangen, will aber pausieren, um später weiterzumachen...

Turingmaschinen

Was muss man sich alles merken, um später weiter zu machen?

Derzeitiger Zustand, in dem die Turingmaschine steht

Konfiguration von Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uniAkarlsruhe.de, de Lukas Bach, Angenommen, man kennt eine Turingmaschine, hat mit der Abarbeitung

lukas.bach@student.kit.edu eines Wortes angefangen, will aber pausieren, um später weiterzumachen...

Turingmaschinen

Was muss man sich alles merken, um später weiter zu machen?

- Derzeitiger Zustand, in dem die Turingmaschine steht
- Inhalt des Bandes

Konfiguration von Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uni_karlsruhe.de Lukas Bach, Angenommen, man kennt eine Turingmaschine, hat mit der Abarbeitung

lukas.bach@student.kit.edu eines Wortes angefangen, will aber pausieren, um später weiterzumachen...

Turingmaschinen

Was muss man sich alles merken, um später weiter zu machen?

- Derzeitiger Zustand, in dem die Turingmaschine steht
- Inhalt des Bandes

Konfiguration von Turingmaschinen

Wenn während dem Arbeiten einer Turingmaschine auf dem Band das Wort $w_1 a w_2$ mit $w_1, w_2 \in X^*, a \in X$ steht

Konfiguration von Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uni_karlsruhe.de, de Lukas Bach. Angenommen, man kennt eine Turingmaschine, hat mit der Abarbeitung

lukas.bach@student.kit.edu eines Wortes angefangen, will aber pausieren, um später weiterzumachen...

Turingmaschinen

Was muss man sich alles merken, um später weiter zu machen?

- Derzeitiger Zustand, in dem die Turingmaschine steht
- Inhalt des Bandes

Konfiguration von Turingmaschinen

Wenn während dem Arbeiten einer Turingmaschine auf dem Band das Wort $w_1 a w_2$ mit $w_1, w_2 \in X^*, a \in X$ steht, der Kopf der Turingmaschine auf das Zeichen a zeigt

Konfiguration von Turingmaschinen

Maximilian Staab,

maximilian.staab@fsmi.uni_karlsruhe.de, de Lukas Bach. Angenommen, man kennt eine Turingmaschine, hat mit der Abarbeitung

lukas.bach@student.kit.edu eines Wortes angefangen, will aber pausieren, um später weiterzumachen...

Turingmaschinen

Was muss man sich alles merken, um später weiter zu machen?

- Derzeitiger Zustand, in dem die Turingmaschine steht
- Inhalt des Bandes

Konfiguration von Turingmaschinen

Wenn während dem Arbeiten einer Turingmaschine auf dem Band das Wort $w_1 a w_2$ mit $w_1, w_2 \in X^*, a \in X$ steht, der Kopf der Turingmaschine auf das Zeichen a zeigt und die Turingmaschine im Zustand z ist

Konfiguration von Turingmaschinen

Maximilian Staab.

maximilian.staab@fsmi.uni_karlsruhe.de. Lukas Bach, Likas.bach@student.kit.edu

lukas.bach@student.kit.edu eines Wortes angefangen, will aber pausieren, um später

Turingmaschinen weiterzumachen...

Turingmaschinen

Was muss man sich alles merken, um später weiter zu machen?

- Derzeitiger Zustand, in dem die Turingmaschine steht
- Inhalt des Bandes

Konfiguration von Turingmaschinen

Wenn während dem Arbeiten einer Turingmaschine auf dem Band das Wort $w_1 a w_2$ mit $w_1, w_2 \in X^*, a \in X$ steht, der Kopf der Turingmaschine auf das Zeichen a zeigt und die Turingmaschine im Zustand z ist, so schreibt man die Konfiguration der Turingmaschine als $\Box w_1(z) a w_2 \Box$.

Konfiguration von Turingmaschinen

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas.bach@student.kit.edBeispiel:

Turingmaschinen

KOPF

Konfiguration von Turingmaschinen

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach, lukas.bach@student.kit.edBeispiel:

Turingmaschinen

...sei das Band der Turingmaschine während Abarbeitung der Eingabe, dazu steht sie im Zustand z_4 .

Konfiguration von Turingmaschinen

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach, lukas.bach@student.kit.edBeispiel:

Turingmaschinen

...sei das Band der Turingmaschine während Abarbeitung der Eingabe, dazu steht sie im Zustand z_4 .

Dann sieht sieht die Konfiguration der Turingmaschine so aus:

Konfiguration von Turingmaschinen

Maximilian Staab,
maximilian.staab@fsmi.uni-karlsruhe.de,
Lukas Bach,
lukas.bach@student.kit.edBeispiel:
Turingmaschinen

' '

KOPF

...sei das Band der Turingmaschine während Abarbeitung der Eingabe, dazu steht sie im Zustand z_4 .

Dann sieht sieht die Konfiguration der Turingmaschine so aus:

 \square abcbabb(z_4)daabc \square

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.

Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.

Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.

Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.

Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.

[†] Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

[†] Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

[†] Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

 $\Box 1X(B)\Box 1\Box$

 $\rightarrow \Box 1X\Box (C)1\Box$

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Aufgabe zu Konfigurationen

Turingmaschinen

- $\rightarrow \Box 1X(B)\Box 1\Box$
- $\rightarrow \Box 1X\Box (C)1\Box$
- $\rightarrow \Box 1X\Box 1(C)\Box$

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Aufgabe zu Konfigurationen

Turingmaschinen

- $\rightarrow \Box 1X(B)\Box 1\Box$
- $\rightarrow \Box 1 X \Box (C) 1 \Box$
- $\rightarrow \Box 1X\Box 1(C)\Box$
- $\rightarrow \Box 1X\Box (D)11\Box$

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

[†] Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

[†] Aufgabe zu Konfigurationen

Turingmaschinen

Dokumentation einer Abarbeitung mit Konfigurationen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

[†] Aufgabe zu Konfigurationen

Turingmaschinen

Grundbegriffe Halteproblem der Informatik

Maximilian Staab, Halteproblem: Für einen gegebenen Algorithmus, gelingt dieser bei seiner Lukas Bach, Lukas bach@student.kit.edu zu einem Ende und hält?

Halteproblem

Maximilian Staab, Halteroblem: Für einen gegebenen Algorithmus, gelingt dieser bei seiner Lukas Bach, Lukas Bach, Lukas bach@student.kit.edu de, edu

Turingmaschinen

Algorithmen können durch Turingmaschinen durchgeführt werden

Halteproblem

Maximilian Staab, Halteroblem: Für einen gegebenen Algorithmus, gelingt dieser bei seiner Lukas Bach, Lukas Bach, Lukas bach@student.kit.edu

- Algorithmen können durch Turingmaschinen durchgeführt werden
- Turingmaschinen k\u00f6nnen durch sogenannte universelle Turingmaschinen simuliert werden

Halteproblem

Maximilian Staab, Halteproblem: Für einen gegebenen Algorithmus, gelingt dieser bei seiner Lukas Bach, Abarbeitung zu einem Ende und hält?

- Algorithmen können durch Turingmaschinen durchgeführt werden
- Turingmaschinen können durch sogenannte universelle Turingmaschinen simuliert werden
 - Wenn eine Turingmaschine T kodiert ist mit dem Wort w, dann ist T_w: X → X eine Funktion, die Eingaben auf die Ausgabe der Turingmaschine T mappt.

Halteproblem

Maximilian Staab, Halteproblem: Für einen gegebenen Algorithmus, gelingt dieser bei seiner Lukas Bach, Abarbeitung zu einem Ende und hält?

- Algorithmen können durch Turingmaschinen durchgeführt werden
- Turingmaschinen können durch sogenannte universelle Turingmaschinen simuliert werden
 - Wenn eine Turingmaschine T kodiert ist mit dem Wort w, dann ist T_w: X → X eine Funktion, die Eingaben auf die Ausgabe der Turingmaschine T mappt.
 - Also mit $X = \{1, 0\}$ gibt z.B. $T_w(100101) = 001$ genau dann zurück, wenn, sofern man 100101 als Eingabe an die Turingmaschine mit der Kodierung w gibt, diese hält und als Ausgabe 001 erzeugt.

Halteproblem

Maximilian Staab, Halteproblem: Für einen gegebenen Algorithmus, gelingt dieser bei seiner Lukas Bach, Abarbeitung zu einem Ende und hält?

Turingmaschinen

- Algorithmen können durch Turingmaschinen durchgeführt werden
- Turingmaschinen können durch sogenannte universelle Turingmaschinen simuliert werden
 - Wenn eine Turingmaschine T kodiert ist mit dem Wort w, dann ist T_w: X → X eine Funktion, die Eingaben auf die Ausgabe der Turingmaschine T mappt.
 - Also mit $X = \{1, 0\}$ gibt z.B. $T_w(100101) = 001$ genau dann zurück, wenn, sofern man 100101 als Eingabe an die Turingmaschine mit der Kodierung w gibt, diese hält und als Ausgabe 001 erzeugt.

Dann lässt sich das Halteproblem auch als Sprache formulieren:

 $H = \{ w \in A^* : w \text{ ist eine TM-Codierung und } T_w(w) \text{ hält.} \}$ bzw. als allgemeinerer Fall:

$$\hat{H} = \{(w, x) \in A^* \times A^* : w \text{ ist eine TM-Codierung und } T_w(x) \text{ hält.}\}$$

Halteproblem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Turingmaschinen

Das Halteproblem ist unentscheidbar

Halteproblem

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach, lukas.bach@student.kit.edu

Turingmaschinen

Das Halteproblem ist unentscheidbar, dh. es gibt keine Turingmaschine, die H entscheidet.

Busy Beaver

Maximilian Staab,

 $\verb|maximilian.staab@fsmi.uni-karlsruhe.de|,\\$

Lukas Bach, lukas.bach@student.kit.edBusy Beaver TM ist eine Turingmaschine mit n Zuständen, die möglichst viele Einsen auf das Band schreibt und hält.

Busy Beaver

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

Lukas bachestudent.kit.ed Busy Beaver TM ist eine Turingmaschine mit n Zuständen, die möglichst viele Einsen auf das Band schreibt und hält.

Turingmaschinen

Also nicht einfach ewig Einsen aufschreibt und nie aufhört.

Busy Beaver

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach,

Lukas bachestudent.kit.ed Busy Beaver TM ist eine Turingmaschine mit n Zuständen, die möglichst viele Einsen auf das Band schreibt und hält.

Turingmaschinen

Also nicht einfach ewig Einsen aufschreibt und nie aufhört.

Busy Beaver Problem: Für eine gegebene Turingmaschine mit n Zuständen, die Einsen aufschreibt und hält: Schreibt sie auch maximal viele Einsen auf?

Busy Beaver

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas . bach@student . kit . ed Busy Beaver TM ist eine Turingmaschine mit *n* Zuständen, die möglichst viele Einsen auf das Band schreibt und hält.

Turingmaschinen

Also nicht einfach ewig Einsen aufschreibt und nie aufhört.

Busy Beaver Problem: Für eine gegebene Turingmaschine mit *n* Zuständen, die Einsen aufschreibt und hält: Schreibt sie auch maximal viele Einsen auf?

Das Busy Beaver Problem ist nicht entscheidbar, bzw. die Busy Beaver Funktion bb(n), die definiert, wieviele einsen von einer Busy Beaver TM maximal geschrieben werden können, ist nicht berechenbar.

Busy Beaver

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,
1ukas. bach@student.kit.edBusy Beaver TM ist eine Turingmaschine mit n Zuständen, die möglichst
viele Einsen auf das Band schreibt und hält.

Turingmaschinen

Also nicht einfach ewig Einsen aufschreibt und nie aufhört.

Busy Beaver Problem: Für eine gegebene Turingmaschine mit *n* Zuständen, die Einsen aufschreibt und hält: Schreibt sie auch maximal viele Einsen auf?

Das Busy Beaver Problem ist nicht entscheidbar, bzw. die Busy Beaver Funktion bb(n), die definiert, wieviele einsen von einer Busy Beaver TM maximal geschrieben werden können, ist nicht berechenbar.

$$bb(1) = 1$$

Busy Beaver

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, lukas bach@student.kit.edBusy Beaver TM ist eine Turingmaschine mit n Zuständen, die möglichst viele Einsen auf das Band schreibt und hält.

Turingmaschinen

Also nicht einfach ewig Einsen aufschreibt und nie aufhört.

Busy Beaver Problem: Für eine gegebene Turingmaschine mit *n* Zuständen, die Einsen aufschreibt und hält: Schreibt sie auch maximal viele Einsen auf?

Das Busy Beaver Problem ist nicht entscheidbar, bzw. die Busy Beaver Funktion bb(n), die definiert, wieviele einsen von einer Busy Beaver TM maximal geschrieben werden können, ist nicht berechenbar.

$$bb(1) = 1, bb(2) = 4$$

Busy Beaver

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, lukas bach@student.kit.edBusy Beaver TM ist eine Turingmaschine mit n Zuständen, die möglichst viele Einsen auf das Band schreibt und hält.

Turingmaschinen

Also nicht einfach ewig Einsen aufschreibt und nie aufhört.

Busy Beaver Problem: Für eine gegebene Turingmaschine mit *n* Zuständen, die Einsen aufschreibt und hält: Schreibt sie auch maximal viele Einsen auf?

Das Busy Beaver Problem ist nicht entscheidbar, bzw. die Busy Beaver Funktion bb(n), die definiert, wieviele einsen von einer Busy Beaver TM maximal geschrieben werden können, ist nicht berechenbar.

$$bb(1) = 1, bb(2) = 4, bb(5) \ge 4098$$

Busy Beaver

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,
lukas.bach@student.kit.edBusy Beaver TM ist eine Turingmaschine mit *n* Zuständen, die möglichst
viele Einsen auf das Band schreibt und hält.

Turingmaschinen

Also nicht einfach ewig Einsen aufschreibt und nie aufhört.

Busy Beaver Problem: Für eine gegebene Turingmaschine mit *n* Zuständen, die Einsen aufschreibt und hält: Schreibt sie auch maximal viele Einsen auf?

Das Busy Beaver Problem ist nicht entscheidbar, bzw. die Busy Beaver Funktion bb(n), die definiert, wieviele einsen von einer Busy Beaver TM maximal geschrieben werden können, ist nicht berechenbar.

$$bb(1) = 1, bb(2) = 4, bb(5) \ge 4098, bb(6) > 10^{18276}.$$

Busy Beaver für n=3

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Organisatorisches

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

- Alle Folien und Folienpaket jetzt online.
- Fragen zur Klausur oder zur Vorbereitung?

Maximilian Staab,

maximilian.staab@fsmi.uni Lukas Bach,

lukas.bach@student.kit.ed

