S Optimal Memory Allocation

Mali Akmanalp, Sophie Hilgard, Andrew Ross

Motivation

What does it depend on

What does it depend on

We know the right size matters:

Monkey: Optimal Navigable Key-Value Store

Niv Dayan
Harvard University

Manos Athanassoulis
Harvard University

Manos Athanassoulis
Harvard University

Manos@seas.harvard.edu

Manos@seas.harvard.edu

Stratos Idreos
Harvard University

Manos@seas.harvard.edu

stratos@seas.harvard.edu

How much do optimal sizes depend on the query distribution?

How well do we need to know the query distribution?

High-level strategy

Make sure they all agree

High-level strategy

Then:

Learn what matters

Annealing + Inference?

Implement in RocksDB

Preliminary Results

Simulation

Simulated tree with cache, memtable, layers, and bloom filters w/ configurable sizes.

Same LSM tree architecture

- + Different query distributions
- = Very different outcomes

Simulation

Different LSM tree architectures are best for different query distributions.

Randomly Distributed Requests

L2

Randomly Distributed Requests

L2

Randomly Distributed Requests

Skewed Requests (More Heavily Weighted 1-20)

Skewed Requests (More Heavily Weighted 1-20)

2, 4, 9, 12, 14, 21, 22, 23, 29, 31, 32, 35, 39, 42, 43, 48

Parameter space for experiment

- Memtable size
- Cache size
- Bloom filter size for each layer

Memtables in RocksDB: "write buffers"

- write_buffer_size:
 memtable size
- max_write_buffer_number:
 number of memtables
- min_write_buffer_number_t
 o_merge
 configure how often
 memtables get written

For us, memtable size is the total of all the write buffers. We probably want the Vector memtable.

Bloom Filters in RocksDB

- Block based bloom filter
 For each block
- Layer bloom filter:
 For a full layer

For us, bloom filter size is the total of all layer filters.

Caches in RocksDB

Cache

For us, cache size is the total block cache.

- No key cache?
- Persistent read cache:
 On-disk cache to look up blocks and files
- Block cache:
 Uncompressed blocks from files: LRU / Time
- OS Page cache?
 Unsure if we should try to bypass or include

Measurements

- Simulation Cache:
 - Neat feature that allows you to simulate cache behavior with different sizes on a real workload
- CreateDBStatistics()
 - Compaction Stats: Read/Write/Moved (GB)
 - General Stats: number / time spent of writes?
 - Block cache:
 - Hit/Miss rate
 - Layers:
 - Hit/miss for memtable
 - Hit for L1/L2/L2+ (interesting that it's not for all layers)
 - Bloom Filter:
 - Bloom filter "usefulness"

Problems and Bottlenecks

MOVING PARTS

MONKEY focused on changing just one thing.

RWS-6071-7X10

www.RightAwaySigns.com

MADE IN USA

How do we define success?

MONKEY VS. STATE-OF-THE-ART

FALSE POSITIVE RATES ENTRIES PER LEVEL Level State-Of-The-Art Monkey Buffer: 0 131,072 0.82% 0.000028% 1,310,720 2 0.82% 0.00028% 13,107,200 3 0.82% 0.0028% 131,072,000 4 0.82% 0.028% 1,310,720,000 5 0.82% 0.28% 13,107,200,000 1.2% 6 0.82% 54.156.066.816 Lookup cost: 0.049 I/Os 0.015 I/Os Monkey lookups are 3.32x faster! Update cost: 0.105 I/Os 0.105 I/Os Main memory: 80.002 GB 80.002 GB

Can we show similar results for different workloads and more memory options?

Preliminary Conclusions

Optimization is hard

Draw some circles

2. Draw the rest of the filming owl

But important

RocksDB offers good building blocks

but it might be hard to balance.

Actual quote: "Even we as RocksDB developers don't fully understand the effect of each configuration change"

Math + simulation + experimentation seems tractable.

Math + simulation + experimentation seems tractable.