$12a_{0491} \ (K12a_{0491})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 36464738633053u^{37} + 59977391192807u^{36} + \dots + 92390064679586b + 268221858684342, \\ & 152917149567933u^{37} + 224240062977026u^{36} + \dots + 184780129359172a + 822275190521781, \\ & u^{38} + 2u^{37} + \dots + 11u + 4 \rangle \\ I_2^u &= \langle -264u^{28}a + 1341u^{28} + \dots - 954a + 889, \ -4u^{28}a - 11u^{28} + \dots + 2a + 10, \ u^{29} + u^{28} + \dots + u - 1 \rangle \\ I_3^u &= \langle u^2 + 2b, \ -u^2 + 2a + 2u - 1, \ u^4 - u^3 + u^2 + 1 \rangle \\ I_4^u &= \langle 2au + 3b + a - u + 1, \ a^2 + 2a - 2, \ u^2 + u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 104 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 3.65 \times 10^{13} u^{37} + 6.00 \times 10^{13} u^{36} + \dots + 9.24 \times 10^{13} b + 2.68 \times 10^{14}, \ 1.53 \times 10^{14} u^{37} + \\ 2.24 \times 10^{14} u^{36} + \dots + 1.85 \times 10^{14} a + 8.22 \times 10^{14}, \ u^{38} + 2u^{37} + \dots + 11u + 4 \rangle \end{matrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} + u \\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} + u \\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.827563u^{37} - 1.21355u^{36} + \cdots - 4.66685u - 4.45002 \\ -0.394682u^{37} - 0.649176u^{36} + \cdots - 3.90259u - 2.90315 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.593828u^{37} - 0.803497u^{36} + \cdots - 3.09638u - 2.63169 \\ -0.431051u^{37} - 0.749146u^{36} + \cdots - 4.65100u - 2.78242 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.478729u^{37} - 0.704715u^{36} + \cdots - 1.21047u - 1.62604 \\ -0.261516u^{37} - 0.420727u^{36} + \cdots - 2.23130u - 2.01168 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0607175u^{37} - 0.142568u^{36} + \cdots - 0.459914u + 0.0392307 \\ 0.0514098u^{37} + 0.0422745u^{36} + \cdots + 0.976418u + 0.348449 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.657135u^{37} - 0.934060u^{36} + \cdots - 3.63692u - 3.16531 \\ -0.491481u^{37} - 0.777655u^{36} + \cdots - 4.82548u - 3.91534 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes $= \frac{140731106135951}{46195032339793}u^{37} + \frac{664007827422593}{184780129359172}u^{36} + \dots + \frac{520000519209215}{46195032339793}u + \frac{686592782892934}{46195032339793}u + \frac{686592782892934}{46195032339793}u^{36} + \dots + \frac{520000519209215}{46195032339793}u + \frac{686592782892934}{46195032339793}u^{36} + \dots + \frac{520000519209215}{46195032339793}u^{36} + \dots + \frac{686592782892934}{46195032339793}u^{36} + \dots + \frac{686592782892934}{4619503239793}u^{36} + \dots + \frac{686592782892934}{4619503239793}u^{36} + \dots + \frac{686592782892934}{46195032399793}u^{36} + \dots + \frac{686592782892934}{46195032399793}u^{36} + \dots + \frac{686592782892934}{46195032399793}u^{36} + \dots + \frac{686592782892934}{46195032399793}u^{36} + \dots + \frac{68659278289294}{46195032399793}u^{36} + \dots + \frac{68659278289294}{46195032399793}u^{36} + \dots + \frac{68659278289294}{46195032399793}u^{36} + \dots + \frac{68659278289294}{46195032399793}u^{36} + \dots + \frac{686592782892994}{46195032399793}u^{36} + \dots + \frac{68659278289294}{46195032399793}u^{36} + \dots + \frac{68659278289294}{46195032399799}u^{36} + \dots + \frac{686592782894}{461950329999}u^{36} + \dots + \frac{686592782894}{4619503299$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_7	$u^{38} + 10u^{37} + \dots + 31u + 16$
c_2, c_6	$u^{38} - 2u^{37} + \dots - 11u + 4$
c_3, c_4	$16(16u^{38} - 24u^{37} + \dots + 8u + 4)$
c_8, c_9, c_{11} c_{12}	$u^{38} - 4u^{37} + \dots + 26u^2 + 1$
c_{10}	$u^{38} + 3u^{37} + \dots + 2944u + 512$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7	$y^{38} + 38y^{37} + \dots - 865y + 256$
c_2, c_6	$y^{38} + 10y^{37} + \dots + 31y + 16$
c_3, c_4	$256(256y^{38} + 1856y^{37} + \dots + 368y + 16)$
c_8, c_9, c_{11} c_{12}	$y^{38} + 14y^{37} + \dots + 52y + 1$
c_{10}	$y^{38} - 11y^{37} + \dots - 2867200y + 262144$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.816967 + 0.516691I		
a = 0.66711 + 1.54872I	-2.09912 - 5.36511I	-0.24379 + 7.67654I
b = 0.259357 + 0.951073I		
u = -0.816967 - 0.516691I		
a = 0.66711 - 1.54872I	-2.09912 + 5.36511I	-0.24379 - 7.67654I
b = 0.259357 - 0.951073I		
u = 0.088344 + 1.071360I		
a = -0.786792 + 0.722196I	-8.07886 - 6.38919I	-7.94198 + 5.19165I
b = -0.06504 - 1.79265I		
u = 0.088344 - 1.071360I		
a = -0.786792 - 0.722196I	-8.07886 + 6.38919I	-7.94198 - 5.19165I
b = -0.06504 + 1.79265I		
u = -0.267518 + 1.051470I		
a = -1.003380 - 0.653197I	-2.74814 - 4.44465I	-2.46238 + 9.81067I
b = -0.72082 + 1.68906I		
u = -0.267518 - 1.051470I		
a = -1.003380 + 0.653197I	-2.74814 + 4.44465I	-2.46238 - 9.81067I
b = -0.72082 - 1.68906I		
u = -0.430113 + 1.014270I		
a = 1.43565 + 0.14917I	-1.89132 - 2.01335I	2.64980 + 1.56754I
b = 0.515460 - 1.274350I		
u = -0.430113 - 1.014270I		
a = 1.43565 - 0.14917I	-1.89132 + 2.01335I	2.64980 - 1.56754I
b = 0.515460 + 1.274350I		
u = 0.414376 + 1.035890I		
a = 1.79208 - 0.57007I	-6.1118 + 12.9461I	-4.95394 - 9.99096I
b = 0.67343 + 2.00434I		
u = 0.414376 - 1.035890I		
a = 1.79208 + 0.57007I	-6.1118 - 12.9461I	-4.95394 + 9.99096I
b = 0.67343 - 2.00434I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.347501 + 0.797377I		
a = 1.034560 + 0.900604I	1.31226 + 1.74609I	-8.3147 - 14.9516I
b = 0.050426 - 0.214066I		
u = 0.347501 - 0.797377I		
a = 1.034560 - 0.900604I	1.31226 - 1.74609I	-8.3147 + 14.9516I
b = 0.050426 + 0.214066I		
u = 0.876268 + 0.787294I		
a = 1.44677 - 1.98187I	4.92901 - 3.34858I	2.00441 + 3.76085I
b = 1.53330 - 1.23829I		
u = 0.876268 - 0.787294I		
a = 1.44677 + 1.98187I	4.92901 + 3.34858I	2.00441 - 3.76085I
b = 1.53330 + 1.23829I		
u = 0.766483 + 0.236896I		
a = -0.17616 + 2.12144I	-3.49461 - 8.73893I	-0.20669 + 6.08042I
b = -0.52364 + 1.60414I		
u = 0.766483 - 0.236896I		
a = -0.17616 - 2.12144I	-3.49461 + 8.73893I	-0.20669 - 6.08042I
b = -0.52364 - 1.60414I		
u = -0.619277 + 1.044970I		
a = -1.89941 + 0.04498I	-3.75027 + 0.04407I	-3.65209 - 4.05484I
b = -0.825361 + 1.032990I		
u = -0.619277 - 1.044970I		
a = -1.89941 - 0.04498I	-3.75027 - 0.04407I	-3.65209 + 4.05484I
b = -0.825361 - 1.032990I		
u = -0.854926 + 0.879047I		
a = -0.550203 + 0.024165I	8.59748 - 1.92899I	2.35323 - 2.21681I
b = 0.236741 + 0.729329I		
u = -0.854926 - 0.879047I		
a = -0.550203 - 0.024165I	8.59748 + 1.92899I	2.35323 + 2.21681I
b = 0.236741 - 0.729329I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.912785 + 0.820153I		
a = -0.94587 - 2.31254I	2.71412 + 11.17750I	0.33746 - 5.40278I
b = -1.27653 - 1.84714I		
u = -0.912785 - 0.820153I		
a = -0.94587 + 2.31254I	2.71412 - 11.17750I	0.33746 + 5.40278I
b = -1.27653 + 1.84714I		
u = -0.833449 + 0.933812I		
a = -0.199843 - 0.181143I	8.42458 - 4.34753I	1.37292 + 7.42145I
b = -0.117944 + 0.737215I		
u = -0.833449 - 0.933812I		
a = -0.199843 + 0.181143I	8.42458 + 4.34753I	1.37292 - 7.42145I
b = -0.117944 - 0.737215I		
u = 0.797919 + 0.999570I		
a = -2.81176 + 0.15661I	4.26696 + 9.56924I	0.36726 - 8.73949I
b = -1.61632 - 1.43028I		
u = 0.797919 - 0.999570I		
a = -2.81176 - 0.15661I	4.26696 - 9.56924I	0.36726 + 8.73949I
b = -1.61632 + 1.43028I		
u = 0.885259 + 0.924982I		
a = -0.402714 + 0.630130I	7.35435 + 1.80474I	1.40236 + 2.23426I
b = -0.426798 + 0.629711I		
u = 0.885259 - 0.924982I		
a = -0.402714 - 0.630130I	7.35435 - 1.80474I	1.40236 - 2.23426I
b = -0.426798 - 0.629711I		
u = -0.349555 + 0.626590I		
a = 0.198914 - 0.644452I	-0.163419 - 1.129300I	-2.57883 + 5.23119I
b = -0.336980 - 0.349923I		
u = -0.349555 - 0.626590I		
a = 0.198914 + 0.644452I	-0.163419 + 1.129300I	-2.57883 - 5.23119I
b = -0.336980 + 0.349923I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.890869 + 0.923910I		
a = 1.069640 + 0.049549I	7.36330 + 4.74827I	1.63906 - 7.30375I
b = 0.354749 + 0.558656I		
u = 0.890869 - 0.923910I		
a = 1.069640 - 0.049549I	7.36330 - 4.74827I	1.63906 + 7.30375I
b = 0.354749 - 0.558656I		
u = -0.831961 + 0.999886I		
a = 3.00130 - 0.50242I	2.1422 - 17.6191I	-0.56156 + 9.93310I
b = 1.30372 - 1.97922I		
u = -0.831961 - 0.999886I		
a = 3.00130 + 0.50242I	2.1422 + 17.6191I	-0.56156 - 9.93310I
b = 1.30372 + 1.97922I		
u = 0.416803 + 0.548680I		
a = -0.185246 + 1.297020I	2.08077 + 1.28136I	8.26270 + 1.93719I
b = 0.360369 - 0.039227I		
u = 0.416803 - 0.548680I		
a = -0.185246 - 1.297020I	2.08077 - 1.28136I	8.26270 - 1.93719I
b = 0.360369 + 0.039227I		
u = -0.567270 + 0.025000I		
a = 0.44037 - 1.76748I	0.53666 - 1.46350I	5.15173 + 4.88406I
b = 0.371874 - 0.911456I		
u = -0.567270 - 0.025000I		
a = 0.44037 + 1.76748I	0.53666 + 1.46350I	5.15173 - 4.88406I
b = 0.371874 + 0.911456I		

II.
$$I_2^u = \langle -264u^{28}a + 1341u^{28} + \cdots - 954a + 889, \ -4u^{28}a - 11u^{28} + \cdots + 2a + 10, \ u^{29} + u^{28} + \cdots + u - 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + u \\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.228968au^{28} - 1.16305u^{28} + \dots + 0.827407a - 0.771032 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.111015au^{28} + 0.654814u^{28} + \dots + 0.326106a + 0.888985 \\ 0.402428au^{28} - 1.49870u^{28} + \dots + 0.817866a - 0.597572 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.990460au^{28} + 1.17346u^{28} + \dots + 0.715525a - 3.00954 \\ -0.508239au^{28} - 1.48656u^{28} + \dots + 0.117953a - 1.50824 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.175195au^{28} - 0.549003u^{28} + \dots + 1.86036a + 11.1752 \\ 1.55594au^{28} + 4.61925u^{28} + \dots - 0.695577a + 0.555941 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.990460au^{28} + 1.17346u^{28} + \dots + 0.715525a - 4.00954 \\ -0.172593au^{28} - 1.77103u^{28} + \dots + 0.715525a - 4.00954 \\ -0.172593au^{28} - 1.77103u^{28} + \dots + 0.0555074a - 2.17259 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{28} - 12u^{26} + 4u^{25} - 48u^{24} + 12u^{23} - 100u^{22} + 44u^{21} - 208u^{20} + 92u^{19} - 312u^{18} + 172u^{17} - 424u^{16} + 252u^{15} - 456u^{14} + 296u^{13} - 432u^{12} + 288u^{11} - 328u^{10} + 216u^9 - 216u^8 + 128u^7 - 120u^6 + 56u^5 - 48u^4 + 32u^3 - 16u^2 + 12u - 6u^2 + 12u^2 +$$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_7	$(u^{29} + 7u^{28} + \dots - u - 1)^2$
c_2, c_6	$(u^{29} - u^{28} + \dots + u + 1)^2$
c_3, c_4	$u^{58} + 3u^{57} + \dots - 2526u + 541$
c_8, c_9, c_{11} c_{12}	$u^{58} + 9u^{57} + \dots + 4u + 1$
c_{10}	$(u^{29} - u^{28} + \dots + 3u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7	$(y^{29} + 31y^{28} + \dots + 15y - 1)^2$
c_{2}, c_{6}	$(y^{29} + 7y^{28} + \dots - y - 1)^2$
c_3, c_4	$y^{58} - 21y^{57} + \dots - 31273168y + 292681$
c_8, c_9, c_{11} c_{12}	$y^{58} + 35y^{57} + \dots + 128y + 1$
c_{10}	$(y^{29} - 9y^{28} + \dots - y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.438147 + 0.901074I		
a = 0.866777 + 0.306748I	-1.65464 - 2.09123I	-0.28547 + 3.54352I
b = 0.656173 - 0.646431I		
u = -0.438147 + 0.901074I		
a = 1.84101 + 0.17982I	-1.65464 - 2.09123I	-0.28547 + 3.54352I
b = 0.137940 - 1.357250I		
u = -0.438147 - 0.901074I		
a = 0.866777 - 0.306748I	-1.65464 + 2.09123I	-0.28547 - 3.54352I
b = 0.656173 + 0.646431I		
u = -0.438147 - 0.901074I		
a = 1.84101 - 0.17982I	-1.65464 + 2.09123I	-0.28547 - 3.54352I
b = 0.137940 + 1.357250I		
u = 0.409980 + 0.948974I		
a = -0.583985 - 0.702562I	-2.40330 + 7.55674I	-2.27529 - 8.69605I
b = 0.145390 + 0.076058I		
u = 0.409980 + 0.948974I		
a = -1.79153 + 0.98779I	-2.40330 + 7.55674I	-2.27529 - 8.69605I
b = -0.53216 - 1.57404I		
u = 0.409980 - 0.948974I		
a = -0.583985 + 0.702562I	-2.40330 - 7.55674I	-2.27529 + 8.69605I
b = 0.145390 - 0.076058I		
u = 0.409980 - 0.948974I		
a = -1.79153 - 0.98779I	-2.40330 - 7.55674I	-2.27529 + 8.69605I
b = -0.53216 + 1.57404I		
u = 0.273126 + 0.909412I		
a = 1.11650 - 1.20654I	-7.10499 + 2.50065I	-9.49416 - 5.21299I
b = -0.23945 + 1.49698I		
u = 0.273126 + 0.909412I		
a = -1.81954 + 1.31388I	-7.10499 + 2.50065I	-9.49416 - 5.21299I
b = -0.578605 - 0.951313I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.273126 - 0.909412I		
a = 1.11650 + 1.20654I	-7.10499 - 2.50065I	-9.49416 + 5.21299I
b = -0.23945 - 1.49698I		
u = 0.273126 - 0.909412I		
a = -1.81954 - 1.31388I	-7.10499 - 2.50065I	-9.49416 + 5.21299I
b = -0.578605 + 0.951313I		
u = 0.064282 + 0.911143I		
a = -0.791876 - 0.089875I	-4.28946 - 2.39368I	-6.11411 + 2.65936I
b = 0.146627 + 0.566746I		
u = 0.064282 + 0.911143I		
a = 0.79891 - 1.62494I	-4.28946 - 2.39368I	-6.11411 + 2.65936I
b = -0.167307 + 1.268310I		
u = 0.064282 - 0.911143I		
a = -0.791876 + 0.089875I	-4.28946 + 2.39368I	-6.11411 - 2.65936I
b = 0.146627 - 0.566746I		
u = 0.064282 - 0.911143I		
a = 0.79891 + 1.62494I	-4.28946 + 2.39368I	-6.11411 - 2.65936I
b = -0.167307 - 1.268310I		
u = -0.815394 + 0.851135I		
a = 0.251672 - 1.225170I	-0.467923 + 0.042330I	-2.03677 - 1.08568I
b = -0.21594 - 1.64229I		
u = -0.815394 + 0.851135I		
a = 1.94470 + 0.77465I	-0.467923 + 0.042330I	-2.03677 - 1.08568I
b = 0.879934 - 0.022790I		
u = -0.815394 - 0.851135I		
a = 0.251672 + 1.225170I	-0.467923 - 0.042330I	-2.03677 + 1.08568I
b = -0.21594 + 1.64229I		
u = -0.815394 - 0.851135I		
a = 1.94470 - 0.77465I	-0.467923 - 0.042330I	-2.03677 + 1.08568I
b = 0.879934 + 0.022790I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.886761 + 0.845005I		
a = 0.106105 - 0.124341I	5.93451 + 4.97924I	2.81712 - 2.83205I
b = -0.449081 - 0.545099I		
u = -0.886761 + 0.845005I		
a = 0.81426 + 1.80965I	5.93451 + 4.97924I	2.81712 - 2.83205I
b = 1.02756 + 1.59116I		
u = -0.886761 - 0.845005I		
a = 0.106105 + 0.124341I	5.93451 - 4.97924I	2.81712 + 2.83205I
b = -0.449081 + 0.545099I		
u = -0.886761 - 0.845005I		
a = 0.81426 - 1.80965I	5.93451 - 4.97924I	2.81712 + 2.83205I
b = 1.02756 - 1.59116I		
u = 0.829632 + 0.902432I		
a = 1.44505 - 4.20042I	2.66705 + 3.09358I	3.95361 - 2.70964I
b = 2.65889 - 2.68627I		
u = 0.829632 + 0.902432I		
a = -5.01880 - 0.63860I	2.66705 + 3.09358I	3.95361 - 2.70964I
b = -2.63453 - 2.74484I		
u = 0.829632 - 0.902432I		
a = 1.44505 + 4.20042I	2.66705 - 3.09358I	3.95361 + 2.70964I
b = 2.65889 + 2.68627I		
u = 0.829632 - 0.902432I		
a = -5.01880 + 0.63860I	2.66705 - 3.09358I	3.95361 + 2.70964I
b = -2.63453 + 2.74484I		
u = -0.796082 + 0.934420I		
a = 1.88242 - 0.84301I	-0.72258 - 6.08103I	-2.75508 + 6.19570I
b = 0.15088 - 1.74671I		
u = -0.796082 + 0.934420I		
a = -2.06357 - 0.52441I	-0.72258 - 6.08103I	-2.75508 + 6.19570I
b = -1.027530 + 0.185341I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.796082 - 0.934420I		
a = 1.88242 + 0.84301I	-0.72258 + 6.08103I	-2.75508 - 6.19570I
b = 0.15088 + 1.74671I		
u = -0.796082 - 0.934420I		
a = -2.06357 + 0.52441I	-0.72258 + 6.08103I	-2.75508 - 6.19570I
b = -1.027530 - 0.185341I		
u = 0.883056 + 0.860857I		
a = -0.415604 + 0.501030I	6.67034 + 1.00685I	4.05949 - 2.19242I
b = -0.167930 + 0.016154I		
u = 0.883056 + 0.860857I		
a = -0.87318 + 1.88119I	6.67034 + 1.00685I	4.05949 - 2.19242I
b = -1.18293 + 1.38438I		
u = 0.883056 - 0.860857I		
a = -0.415604 - 0.501030I	6.67034 - 1.00685I	4.05949 + 2.19242I
b = -0.167930 - 0.016154I		
u = 0.883056 - 0.860857I		
a = -0.87318 - 1.88119I	6.67034 - 1.00685I	4.05949 + 2.19242I
b = -1.18293 - 1.38438I		
u = -0.273342 + 0.693824I		
a = -3.32819 + 2.07273I	-3.62270 - 1.16630I	-0.21359 + 5.75923I
b = 1.62368 + 3.27488I		
u = -0.273342 + 0.693824I		
a = -2.49708 - 5.76954I	-3.62270 - 1.16630I	-0.21359 + 5.75923I
b = -3.05089 + 1.78246I		
u = -0.273342 - 0.693824I		
a = -3.32819 - 2.07273I	-3.62270 + 1.16630I	-0.21359 - 5.75923I
b = 1.62368 - 3.27488I		
u = -0.273342 - 0.693824I		
a = -2.49708 + 5.76954I	-3.62270 + 1.16630I	-0.21359 - 5.75923I
b = -3.05089 - 1.78246I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.610942 + 0.390932I		
a = 0.147063 - 1.231320I	-0.05631 - 1.79478I	3.97960 + 2.96423I
b = 0.165975 - 0.936149I		
u = -0.610942 + 0.390932I		
a = -0.322053 - 1.323370I	-0.05631 - 1.79478I	3.97960 + 2.96423I
b = -0.678870 - 0.634625I		
u = -0.610942 - 0.390932I		
a = 0.147063 + 1.231320I	-0.05631 + 1.79478I	3.97960 - 2.96423I
b = 0.165975 + 0.936149I		
u = -0.610942 - 0.390932I		
a = -0.322053 + 1.323370I	-0.05631 + 1.79478I	3.97960 - 2.96423I
b = -0.678870 + 0.634625I		
u = 0.840392 + 0.961339I		
a = 0.496454 + 0.102211I	6.35169 + 5.37662I	3.47961 - 2.73445I
b = 0.314511 - 0.035083I		
u = 0.840392 + 0.961339I		
a = 2.52374 + 0.40857I	6.35169 + 5.37662I	3.47961 - 2.73445I
b = 1.13451 + 1.54944I		
u = 0.840392 - 0.961339I		
a = 0.496454 - 0.102211I	6.35169 - 5.37662I	3.47961 + 2.73445I
b = 0.314511 + 0.035083I		
u = 0.840392 - 0.961339I		
a = 2.52374 - 0.40857I	6.35169 - 5.37662I	3.47961 + 2.73445I
b = 1.13451 - 1.54944I		
u = -0.833145 + 0.972573I		
a = 0.422071 + 0.340573I	5.53074 - 11.34930I	2.00299 + 7.67243I
b = 0.341866 - 0.590665I		
u = -0.833145 + 0.972573I		
a = -2.64455 + 0.38053I	5.53074 - 11.34930I	2.00299 + 7.67243I
b = -1.00673 + 1.69571I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.833145 - 0.972573I		
a = 0.422071 - 0.340573I	5.53074 + 11.34930I	2.00299 - 7.67243I
b = 0.341866 + 0.590665I		
u = -0.833145 - 0.972573I		
a = -2.64455 - 0.38053I	5.53074 + 11.34930I	2.00299 - 7.67243I
b = -1.00673 - 1.69571I		
u = 0.627727 + 0.308177I		
a = 0.116909 - 0.679446I	-0.39198 - 3.74340I	3.21764 + 3.16701I
b = -0.457619 - 0.120076I		
u = 0.627727 + 0.308177I		
a = 0.38122 - 1.46585I	-0.39198 - 3.74340I	3.21764 + 3.16701I
b = 0.541718 - 1.267480I		
u = 0.627727 - 0.308177I		
a = 0.116909 + 0.679446I	-0.39198 + 3.74340I	3.21764 - 3.16701I
b = -0.457619 + 0.120076I		
u = 0.627727 - 0.308177I		
a = 0.38122 + 1.46585I	-0.39198 + 3.74340I	3.21764 - 3.16701I
b = 0.541718 + 1.267480I		
u = 0.451236		
a = 1.49511 + 0.78863I	-4.65622	-2.67120
b = -0.036079 + 1.103390I		
u = 0.451236		
a = 1.49511 - 0.78863I	-4.65622	-2.67120
b = -0.036079 - 1.103390I		

III.
$$I_3^u = \langle u^2 + 2b, \ -u^2 + 2a + 2u - 1, \ u^4 - u^3 + u^2 + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{2} - u + \frac{1}{2} \\ -\frac{1}{2}u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{2} - u - \frac{1}{2} \\ -\frac{3}{2}u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{3}{2}u^{2} - u + \frac{3}{2} \\ \frac{1}{2}u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{4}u^{3} + \frac{1}{4} \\ \frac{1}{4}u^{3} - \frac{1}{4}u^{2} - \frac{1}{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{2} - u + \frac{1}{2} \\ -\frac{1}{2}u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{15}{4}u^3 + \frac{15}{4}u^2 4u + \frac{7}{4}$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^4 - u^3 + 3u^2 - 2u + 1$
c_2	$u^4 - u^3 + u^2 + 1$
<i>c</i> ₃	$16(16u^4 + 8u^3 + 12u^2 + 4u + 1)$
C_4	$16(16u^4 - 8u^3 + 12u^2 - 4u + 1)$
<i>c</i> ₆	$u^4 + u^3 + u^2 + 1$
	$u^4 + u^3 + 3u^2 + 2u + 1$
c_{8}, c_{9}	$(u+1)^4$
c_{10}	u^4
c_{11}, c_{12}	$(u-1)^4$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_2, c_6	$y^4 + y^3 + 3y^2 + 2y + 1$
c_3, c_4	$256(256y^4 + 320y^3 + 112y^2 + 8y + 1)$
c_8, c_9, c_{11} c_{12}	$(y-1)^4$
c_{10}	y^4

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.351808 + 0.720342I		
a = 0.654246 - 0.973764I	1.43393 - 1.41510I	-0.21489 - 4.38336I
b = 0.197562 + 0.253422I		
u = -0.351808 - 0.720342I		
a = 0.654246 + 0.973764I	1.43393 + 1.41510I	-0.21489 + 4.38336I
b = 0.197562 - 0.253422I		
u = 0.851808 + 0.911292I		
a = -0.404246 - 0.135046I	8.43568 + 3.16396I	3.58989 - 2.42402I
b = 0.052438 - 0.776246I		
u = 0.851808 - 0.911292I		
a = -0.404246 + 0.135046I	8.43568 - 3.16396I	3.58989 + 2.42402I
b = 0.052438 + 0.776246I		

IV.
$$I_4^u = \langle 2au + 3b + a - u + 1, \ a^2 + 2a - 2, \ u^2 + u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1\\-u-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u\\u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u\\-u-1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1\\u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{2}{3}au - \frac{1}{3}a + \frac{1}{3}u - \frac{1}{3} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{3}au + \frac{1}{3}a - \frac{1}{3}u - \frac{2}{3} \\ -\frac{1}{3}au - \frac{2}{3}a + \frac{2}{3}u - \frac{2}{3} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{2}{3}au - \frac{1}{3}a + \frac{1}{3}u + \frac{2}{3} \\ -\frac{1}{3}au - \frac{2}{3}a - \frac{4}{3}u - \frac{2}{3} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -au - a + 1 \\ \frac{2}{3}au - \frac{2}{3}a + \frac{2}{3}u - \frac{2}{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{2}{3}au - \frac{1}{3}a - \frac{5}{3}u - \frac{1}{3} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u 4

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6	$(u^2 - u + 1)^2$
c_2, c_7	$(u^2+u+1)^2$
c_3	$u^4 - 2u^3 + 2u^2 - 4u + 4$
C4	$u^4 + 2u^3 + 2u^2 + 4u + 4$
c_8, c_9, c_{11} c_{12}	$(u^2+1)^2$
c_{10}	$u^4 - u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7	$(y^2+y+1)^2$
c_3, c_4	$y^4 - 4y^2 + 16$
$c_8, c_9, c_{11} \\ c_{12}$	$(y+1)^4$
c_{10}	$(y^2 - y + 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.732051	-3.28987 - 2.02988I	-6.00000 + 3.46410I
b = -0.500000 - 0.133975I		
u = -0.500000 + 0.866025I		
a = -2.73205	-3.28987 - 2.02988I	-6.00000 + 3.46410I
b = -0.50000 + 1.86603I		
u = -0.500000 - 0.866025I		
a = 0.732051	-3.28987 + 2.02988I	-6.00000 - 3.46410I
b = -0.500000 + 0.133975I		
u = -0.500000 - 0.866025I		
a = -2.73205	-3.28987 + 2.02988I	-6.00000 - 3.46410I
b = -0.50000 - 1.86603I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5	$((u^{2} - u + 1)^{2})(u^{4} - u^{3} + 3u^{2} - 2u + 1)(u^{29} + 7u^{28} + \dots - u - 1)^{2}$ $\cdot (u^{38} + 10u^{37} + \dots + 31u + 16)$
c_2	$((u^{2} + u + 1)^{2})(u^{4} - u^{3} + u^{2} + 1)(u^{29} - u^{28} + \dots + u + 1)^{2}$ $\cdot (u^{38} - 2u^{37} + \dots - 11u + 4)$
c_3	$256(u^{4} - 2u^{3} + 2u^{2} - 4u + 4)(16u^{4} + 8u^{3} + 12u^{2} + 4u + 1)$ $\cdot (16u^{38} - 24u^{37} + \dots + 8u + 4)(u^{58} + 3u^{57} + \dots - 2526u + 541)$
c_4	$256(u^{4} + 2u^{3} + 2u^{2} + 4u + 4)(16u^{4} - 8u^{3} + 12u^{2} - 4u + 1)$ $\cdot (16u^{38} - 24u^{37} + \dots + 8u + 4)(u^{58} + 3u^{57} + \dots - 2526u + 541)$
<i>c</i> ₆	$((u^{2} - u + 1)^{2})(u^{4} + u^{3} + u^{2} + 1)(u^{29} - u^{28} + \dots + u + 1)^{2}$ $\cdot (u^{38} - 2u^{37} + \dots - 11u + 4)$
<i>c</i> ₇	$((u^{2} + u + 1)^{2})(u^{4} + u^{3} + 3u^{2} + 2u + 1)(u^{29} + 7u^{28} + \dots - u - 1)^{2}$ $\cdot (u^{38} + 10u^{37} + \dots + 31u + 16)$
c_8, c_9	$((u+1)^4)(u^2+1)^2(u^{38}-4u^{37}+\cdots+26u^2+1)$ $\cdot (u^{58}+9u^{57}+\cdots+4u+1)$
c_{10}	$u^{4}(u^{4} - u^{2} + 1)(u^{29} - u^{28} + \dots + 3u - 1)^{2}$ $\cdot (u^{38} + 3u^{37} + \dots + 2944u + 512)$
c_{11}, c_{12}	$((u-1)^4)(u^2+1)^2(u^{38}-4u^{37}+\cdots+26u^2+1)$ $\cdot (u^{58}+9u^{57}+\cdots+4u+1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7	$((y^{2} + y + 1)^{2})(y^{4} + 5y^{3} + \dots + 2y + 1)(y^{29} + 31y^{28} + \dots + 15y - 1)^{2}$ $\cdot (y^{38} + 38y^{37} + \dots - 865y + 256)$
c_2, c_6	$((y^{2} + y + 1)^{2})(y^{4} + y^{3} + 3y^{2} + 2y + 1)(y^{29} + 7y^{28} + \dots - y - 1)^{2}$ $\cdot (y^{38} + 10y^{37} + \dots + 31y + 16)$
c_3, c_4	$65536(y^4 - 4y^2 + 16)(256y^4 + 320y^3 + 112y^2 + 8y + 1)$ $\cdot (256y^{38} + 1856y^{37} + \dots + 368y + 16)$ $\cdot (y^{58} - 21y^{57} + \dots - 31273168y + 292681)$
c_8, c_9, c_{11} c_{12}	$((y-1)^4)(y+1)^4(y^{38}+14y^{37}+\cdots+52y+1)$ $\cdot (y^{58}+35y^{57}+\cdots+128y+1)$
c_{10}	$y^{4}(y^{2} - y + 1)^{2}(y^{29} - 9y^{28} + \dots - y - 1)^{2}$ $\cdot (y^{38} - 11y^{37} + \dots - 2867200y + 262144)$