

Mark Scheme (Results)

June 2022

Pearson Edexcel International Advanced Level In Physics (WPH15) Paper 5: Thermodynamics, Radiation, Oscillations and Cosmology

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Question Paper Log Number: P71881A Publications Code: WPH15_01_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Mark
1	B is the correct answer	(1)
	A is not the correct answer, as large values could fit on a linear scale C is not the correct answer, as distance from the star only affects the intensity	
	D is not the correct answer, as the temperature and luminosity scales are independent	
2	C is the correct answer	(1)
	A is not the correct answer, as $a = (2\pi f)^2 A$	
	B is not the correct answer, as $E_k = \frac{1}{2}m(2\pi fA)^2$	
	D is not the correct answer, as $T = \frac{1}{f}$	
3	C is the correct answer	(1)
	A is not the correct answer, as angular velocity has units (rad) s^{-1} B is not the correct answer, as frequency has units $Hz = s^{-1}$	
	D is not the correct answer, as rate of decay has units $Bq = s^{-1}$	
4	B is the correct answer, as $F = \frac{GMm}{r^2}$	(1)
5	D is the correct answer, as the temperature must be very high for the nuclei to come close enough for fusion and the density must be very high for the rate of collision of nuclei to be sufficient to sustain fusion.	(1)
6	B is the correct answer, as $g = \frac{GM}{r^2}$ and $M = \frac{4}{3}\pi\rho r^3$	(1)
7	C is the correct answer, as the mean momentum of the molecules is zero	(1)
8	C is the correct answer, as the molecules do not have to be identical	(1)
9	D is the correct answer	(1)
	A is not the correct answer, as this graph shows N decreasing with t B is not the correct answer, as this graph shows N decreasing with t C is not the correct answer, as this graph shows an increasing rate of change of N	
10	A is the correct answer, as the velocity is the gradient of the graph of displacement against time, and the gradient of this graph starts at zero and then becomes negative for the first half cycle.	(1)

Question Number	Answer	Mark
11	Use of $L = 14800 L_{Sun}$ (1)	
	Use of $I = \frac{L}{4\pi d^2}$ (1)	
	$d = 1.1 \times 10^{23} \mathrm{m} \tag{1}$	3
	Example of calculation	
	$L_{\text{candle}} = 14\ 800 \times 3.83 \times 10^{26}\ \text{W} = 5.67 \times 10^{30}\ \text{W}$	
	$d = \sqrt{\frac{L}{4\pi I}} = \sqrt{\frac{5.67 \times 10^{30} \text{W}}{4\pi \times 3.64 \times 10^{-17} \text{W m}^{-2}}} = 1.11 \times 10^{23} \text{ m}$	
	Total for question 11	3

Question Number	Answer		Mark
12(a)(i)	Use of $v = H_0 d$	(1)	
	$H_0 = 2.33 \times 10^{-1} \text{ (s}^{-1}\text{)}$	(1)	2
	Example of calculation		
	$H_0 = \frac{72 \times 10^3 \text{m s}^{-1}}{3.09 \times 10^{22} \text{ m}} = 2.33 \times 10^{-18} \text{ s}^{-1}$		
12(a)(ii)	Use of $t = \frac{1}{H_0}$	(1)	
	$t = 1.36 \times 10^{10} \text{ (years) ecf from (i)}$	(1)	2
	Example of calculation		
	$t = \frac{1}{2.33 \times 10^{-1} \text{ s}^{-1}} = 4.29 \times 10^{17} \text{ s}$		
	2100 / 10 0		
	$t = \frac{4.29 \times 10^{17} \text{ s}}{3.16 \times 10^7 \text{ s year}^{-1}} = 1.36 \times 10^{10} \text{ years}$		
12(b)	H_0 is halved (for the same recessional velocity)	(1)	
	So the (calculated) age of the universe doubles (dependent upon MP1)	(1)	
	OR		
	The universe would have taken twice as long to expand to its current size (assuming it expanded at the same rate)	(1)	
	So the age of the universe is double what was previously thought (dependent upon MP1)	(1)	2
	Allow 1 mark max for H_0 is lower so universe is older than previously thought Or universe would have taken longer to expand to current size so it is older than previously thought.		
	Total for question 12		6

Answer	Mark
Top line correct (1)	
Bottom line correct (1)	2
Example of calculation	
$^{40}_{19}\text{K} \rightarrow ^{40}_{20}\text{Ca} + ^{0}_{-1}\beta^{-} + ^{0}_{0}\overline{\nu}$	
Any TWO from:	
Both have the same mass (1)	
Both are leptons (1)	
Both are fundamental particles (1)	
Both have the same magnitude charge (1)	
Both are deflected in electric/magnetic fields (1)	
Both are (weakly) ionising (1)	2
	Top line correct (1) Bottom line correct (1) Example of calculation

13(c)	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	$csc or k = t_{1/2}$	(1)	
	Use of $A = A_0 e^{-\lambda t}$ to find time for activity to fall to background level		
	$t = 8.6 \times 10^9$ years, so claim is incorrect	(1)	
	OR		
	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	Use of $A = A_0 e^{-\lambda t}$ to find activity after 9×10^9 years	(1)	
	A = 0.33 Bq so claim is incorrect	(1)	3
	Example of calculation		
	$\lambda = \frac{\ln 2}{1.25 \times 10^9 \text{ years}} = 5.55 \times 10^{-10} \text{ year}^{-1}$		
	$\ln\left(\frac{0.42 \text{ Bq}}{48.6 \text{ Bq}}\right) = -5.55 \times 10^{-10} \text{ years}^{-1} \times t$		
	$\therefore t = \frac{-4.75}{5.55 \times 10^{-10} \text{ years}^{-1}} = 8.56 \times 10^9 \text{ years}$		
	Total for question 13		7

Question Number			Answer				Mark
14			udent's ability to sho kages and fully-susta			logically	
			icative content and f of reasoning.	or how th	e answe	r is	
		g table shows lines of reaso	how the marks shouning.	ıld be awa			
					awarde structu	re of answer stained line of	
	linkages and	ws a coherent I fully sustain ed throughout	and logical structured lines of reasoning	e with		2	
		artially struct	ured with some links	ages and		1	
	Answer has unstructured		etween points and is	S		0	
			e sum of marks for in es of reasoning	ndicative o	content a	and the	
	IC points	IC mark	Max linkage mark	Max f mai			
	6	4	2	6			
	5	3	2	5			
	4	3	1	4			
	3	2	1	3			
	2	2	0	2			
	1	1	0	1			
	Indicative co	ntent	0	0			
			sets the glass into (fr	ree) oscilla	ation		
	IC2 Energ	gy is transferr	red from glass/system ses (quickly to zero)	n and the		de (of	
		ne oscillation eases (quickly	is damped and the art to zero).	mplitude (of oscil	lation)	
		ng a wet finge /system into o	er around the top of to oscillation.	the glass of	lrives/fo	rces the	
	IC4 The	driving freque	ency (produced by the acy (of oscillation) of	_		-	
	IC5 Reso	nance occurs	and there is an effici				
	IC6 The a		oscillation) increase	es (and tra	nsfers ei	nergy to the	
	Total for que	estion 14					6

Question Number	Answer		Mark
15(a)(i)	Mass difference calculation	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	$\Delta E = 8.7 \times 10^{-13} \text{ (J)}$	(1)	3
	Example of calculation $\Delta m = (3.48572 - 3.41918 - 0.0664437) \times 10^{-25} \text{ kg} = 9.63 \times 10^{-30} \text{kg}$ $\Delta E = (3.00 \times 10^8 \text{ m s}^{-1})^2 \times 9.63 \times 10^{-30} \text{ kg} = 8.67 \times 10^{-1} \text{ J}$		
15(a)(ii)	Use of $E_{\mathbf{k}} = \frac{1}{2}mv^2$	(1)	
	$v = 1.6 \times 10^7 \mathrm{m \ s^{-1}} (\text{allow ecf from (a)(i)})$	(1)	2
	Example of calculation $0.98 \times 8.67 \times 10^{-1} J = \frac{1}{2} \times 6.64437 \times 10^{-27} \text{ kg } \times v^2$ $\therefore v = \sqrt{\frac{2 \times 0.98 \times 8.67 \times 10^{-13} \text{ J}}{6.64437 \times 10^{-27} \text{ kg}}} = 1.60 \times 10^7 \text{ m s}^{-1}$		
15(b)	Momentum must be conserved (in the decay)	(1)	
	The lead nucleus must recoil after the decay Or the lead nucleus moves in the opposite direction to the alpha particle	(1)	2
	Total for question 15		7

Question Number	Answer		Mark
16(a)(i)	Use of $F = \frac{GMm}{r^2}$ with $F = m\omega^2 r$	(1)	
	Re-arrangement with $\omega = \frac{2\pi}{T}$ to obtain $T^2 = \frac{(2\pi)^2}{GM}r^3$	(1)	
	Statement that G, M (and π) are constants, so $T^2 \propto r^3$ (dependent upon MP2)	(1)	
	OR		
	Use of $F = \frac{GMm}{r^2}$ with $F = \frac{mv^2}{r}$	(1)	
	Re-arrangement with $v = \frac{2\pi r}{T}$ to obtain $T^2 = \frac{(2\pi)^2}{GM} r^3$	(1)	
	Statement that G, M (and π) are constants, so $T^2 \propto r^3$ (dependent upon MP2)	(1)	3
	Example of calculation		
	$\frac{GMm}{r^2} = m\omega^2 r$		
	$\frac{GM}{r^2} = \left(\frac{2\pi}{T}\right)^2 r$ $T^2 = \frac{(2\pi)^2}{GM} r^3$ $\therefore T^2 \propto r^3$		
	$T^2 = \frac{(2\pi)^2}{GM} r^3$		
	$\therefore T^2 \propto r^3$		

$T_{l} = 142 \text{ months } (11.9 \text{ years}) \tag{l}$ $Use of \omega = \frac{\theta}{t} \text{ and } \omega = \frac{2\pi}{T} \tag{l} Calculation of time elapsed for planets to be in opposition Time between opposition is 13.1 \text{ months, with an appropriate conclusion} \tag{l} (dependent upon MP4) \tag{l} Example of calculation \left(\frac{T_{l}}{T_{l}}\right)^{2} = \left(\frac{r_{l}}{r_{g}}\right)^{3} \left(\frac{T_{l}}{T_{l}}\right)^{2} = \left(\frac{r_{l}}{r_{g}}\right)^{3} \left(\frac{T_{l}}{T_{l}}\right)^{2} = \left(\frac{r_{l}}{r_{g}}\right)^{3} T_{l} = 12 \text{ months } \times \sqrt{\left(\frac{7.8 \times 10^{11} \text{ m}}{1.5 \times 10^{11} \text{ m}}\right)^{3}} = 142 \text{ months} At the next opposition Earth will have done one more orbit than Jupiter plus whatever fraction of an orbit Jupiter has completed. If t is the time to next opposition, both planets will have the same angular displacement, so equating \theta = 2\pi \theta T for both planets where for Earth the time is (t \cdot 12). \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{1}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{142 \text{month}} \div t = 13.1 \text{month} \frac{2\pi \text{rad}}{12 \text{month}} = \frac{2\pi \text{rad}}{12 \text{month}} \div t$	16(a)(ii)	Use of $T^2 \propto r^3$	(1)	
Calculation of time elapsed for planets to be in opposition Time between opposition is 13.1 months, with an appropriate conclusion (dependent upon MP4) (1) Example of calculation		$T_{\rm J} = 142 \; {\rm months} \; (11.9 \; {\rm years})$	(1)	
Time between opposition is 13.1 months, with an appropriate conclusion (dependent upon MP4) (1) Example of calculation		Use of $\omega = \frac{\theta}{t}$ and $\omega = \frac{2\pi}{T}$	(1)	
Time between opposition is 13.1 months, with an appropriate conclusion (dependent upon MP4) Example of calculation		Calculation of time elapsed for planets to be in opposition	(4)	
$ \left(\frac{T_{f}}{T_{R}}\right)^{2} = \left(\frac{r_{f}}{r_{g}}\right)^{3} $ $ \left(\frac{T_{f}}{1 \text{ year}}\right)^{2} = \left(\frac{7.8 \times 10^{11} \text{ m}}{1.5 \times 10^{11} \text{ m}}\right)^{3} $ $ T_{f} = 12 \text{ months} \times \sqrt{\left(\frac{7.8 \times 10^{11} \text{ m}}{1.5 \times 10^{11} \text{ m}}\right)^{3}} = 142 \text{ months} $ At the next opposition Earth will have done one more orbit than Jupiter plus whatever fraction of an orbit Jupiter has completed. If t is the time to next opposition, both planets will have the same angular displacement, so equating $\theta = 2\pi t/T$ for both planets where for Earth the time is $(t-12)$. $ \frac{2\pi \operatorname{rad}(t-12) \operatorname{month}}{12 \operatorname{month}} = \frac{2\pi \operatorname{rad}t}{142 \operatorname{month}} \div t = 13.1 \operatorname{month} $ Use of $V = (-1)\frac{GM}{r}$ (1) $ \frac{\Delta E_{grav}}{2} = 3.3 \times 10^{34} \text{ J} $ (1) $ \frac{Example of calculation}{2} = \frac{2\pi \operatorname{rad}t}{2} =$				5
$\left(\frac{T_{J}}{1\text{year}}\right)^{2} = \left(\frac{7.8 \times 10^{11}\text{m}}{1.5 \times 10^{11}\text{m}}\right)^{3}$ $T_{J} = 12\text{months} \times \sqrt{\left(\frac{7.8 \times 10^{11}\text{m}}{1.5 \times 10^{11}\text{m}}\right)^{3}} = 142\text{months}$ At the next opposition Earth will have done one more orbit than Jupiter plus whatever fraction of an orbit Jupiter has completed. If t is the time to next opposition, both planets will have the same angular displacement, so equating $\theta = 2\pit/T$ for both planets where for Earth the time is $(t \cdot 12)$. $\frac{2\pi\text{rad}(t-12)\text{month}}{12\text{month}} = \frac{2\pi\text{rad}t}{142\text{month}} \therefore t = 13.1\text{month}$ 16(b) Use of $V = (-)\frac{GM}{r}$ (1) Use of $\Delta V \times m$ (1) $\Delta E_{\text{grav}} = 3.3 \times 10^{34}\text{J}$ (1) $\frac{E\text{xample of calculation}}{\Delta V = -6.67 \times 10^{-11}\text{N}\text{m}^{2}\text{kg}^{-2} \times 2.0 \times 10^{30}\text{kg}} \times \left(\frac{1}{8.2 \times 10^{11}\text{m}} - \frac{1}{7.4 \times 10^{11}\text{m}}\right)$ $\Delta V = 1.76 \times 10^{7}\text{J}\text{kg}^{-1}$ $\therefore \Delta E_{\text{grav}} = 1.76 \times 10^{7}\text{J}\text{kg}^{-1} \times 1.9 \times 10^{27}\text{kg} = 3.34 \times 10^{34}\text{J}$		Example of calculation		
$T_{J} = 12 \text{ months} \times \sqrt{\left(\frac{7.8 \times 10^{11} \text{ m}}{1.5 \times 10^{11} \text{ m}}\right)^{3}} = 142 \text{ months}$ At the next opposition Earth will have done one more orbit than Jupiter plus whatever fraction of an orbit Jupiter has completed. If t is the time to next opposition, both planets will have the same angular displacement, so equating $\theta = 2\pi t/T$ for both planets where for Earth the time is $(t-12)$. $\frac{2\pi \operatorname{rad}(t-12)\operatorname{month}}{12\operatorname{month}} = \frac{2\pi \operatorname{rad}t}{142\operatorname{month}} \therefore t = 13.1\operatorname{month}$ $16(b)$ Use of $V = (-)\frac{GM}{r}$ Use of $\Delta V \times m$ (1) $\Delta E_{\operatorname{grav}} = 3.3 \times 10^{34} \text{ J}$ (1) $\Delta V = -GM\left(\frac{1}{r_{2}} - \frac{1}{r_{1}}\right)$ $\Delta V = -6.67 \times 10^{-11} \operatorname{N} \operatorname{m}^{2} \operatorname{kg}^{-2} \times 2.0 \times 10^{30} \operatorname{kg}$ $\times \left(\frac{1}{8.2 \times 10^{11} \operatorname{m}} - \frac{1}{7.4 \times 10^{11} \operatorname{m}}\right)$ $\Delta V = 1.76 \times 10^{7} \operatorname{J} \operatorname{kg}^{-1}$ $\therefore \Delta E_{\operatorname{grav}} = 1.76 \times 10^{7} \operatorname{J} \operatorname{kg}^{-1} \times 1.9 \times 10^{27} \operatorname{kg} = 3.34 \times 10^{34} \operatorname{J}$		$\left(\frac{T_J}{T_E}\right)^2 = \left(\frac{r_J}{r_E}\right)^3$		
At the next opposition Earth will have done one more orbit than Jupiter plus whatever fraction of an orbit Jupiter has completed. If t is the time to next opposition, both planets will have the same angular displacement, so equating $\theta = 2\pi t/T$ for both planets where for Earth the time is $(t-12)$. $\frac{2\pi \operatorname{rad}(t-12) \operatorname{month}}{12 \operatorname{month}} = \frac{2\pi \operatorname{rad} t}{142 \operatorname{month}} \therefore t = 13.1 \operatorname{month}$ Use of $V = (-)\frac{GM}{r}$ (1) Use of $\Delta V \times m$ (1) $\Delta E_{\operatorname{grav}} = 3.3 \times 10^{34} \operatorname{J}$ (1) Example of calculation $\Delta V = -GM\left(\frac{1}{r_2} - \frac{1}{r_1}\right)$ $\Delta V = -6.67 \times 10^{-11} \operatorname{N} \operatorname{m}^2 \operatorname{kg}^{-2} \times 2.0 \times 10^{30} \operatorname{kg} \times \left(\frac{1}{8.2 \times 10^{11} \operatorname{m}} - \frac{1}{7.4 \times 10^{11} \operatorname{m}}\right)$ $\Delta V = 1.76 \times 10^7 \operatorname{J} \operatorname{kg}^{-1} \times 1.9 \times 10^{27} \operatorname{kg} = 3.34 \times 10^{34} \operatorname{J}$		$\left(\frac{T_J}{1 \text{ year}}\right)^2 = \left(\frac{7.8 \times 10^{11} \text{ m}}{1.5 \times 10^{11} \text{ m}}\right)^3$		
whatever fraction of an orbit Jupiter has completed. If t is the time to next opposition, both planets will have the same angular displacement, so equating $\theta = 2\pi t/T$ for both planets where for Earth the time is $(t-12)$. $\frac{2\pi \operatorname{rad}(t-12) \operatorname{month}}{12 \operatorname{month}} = \frac{2\pi \operatorname{rad} t}{142 \operatorname{month}} \div t = 13.1 \operatorname{month}$ 16(b) Use of $V = (-)\frac{GM}{r}$ Use of $\Delta V \times m$ (1) $\Delta E_{\operatorname{grav}} = 3.3 \times 10^{34} \operatorname{J}$ Example of calculation $\Delta V = -GM \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$ $\Delta V = -6.67 \times 10^{-11} \operatorname{N} \operatorname{m}^2 \operatorname{kg}^{-2} \times 2.0 \times 10^{30} \operatorname{kg} \times \left(\frac{1}{8.2 \times 10^{11} \operatorname{m}} - \frac{1}{7.4 \times 10^{11} \operatorname{m}}\right)$ $\Delta V = 1.76 \times 10^7 \operatorname{J} \operatorname{kg}^{-1}$ $\therefore \Delta E_{\operatorname{grav}} = 1.76 \times 10^7 \operatorname{J} \operatorname{kg}^{-1} \times 1.9 \times 10^{27} \operatorname{kg} = 3.34 \times 10^{34} \operatorname{J}$		$T_J = 12 \text{ months} \times \sqrt{\left(\frac{7.8 \times 10^{11} \text{ m}}{1.5 \times 10^{11} \text{ m}}\right)^3} = 142 \text{ months}$		
displacement, so equating $\theta = 2\pi t/T$ for both planets where for Earth the time is $(t-12)$. $\frac{2\pi \operatorname{rad}(t-12) \operatorname{month}}{12 \operatorname{month}} = \frac{2\pi \operatorname{rad}t}{142 \operatorname{month}} : t = 13.1 \operatorname{month}$ (1) Use of $V = (-1)^{\frac{GM}{r}}$ (1) $\Delta E_{\operatorname{grav}} = 3.3 \times 10^{34} \operatorname{J}$ (1) $\Delta V = -GM \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$ $\Delta V = -6.67 \times 10^{-11} \operatorname{N} \operatorname{m}^2 \operatorname{kg}^{-2} \times 2.0 \times 10^{30} \operatorname{kg}$ $\times \left(\frac{1}{8.2 \times 10^{11} \operatorname{m}} - \frac{1}{7.4 \times 10^{11} \operatorname{m}}\right)$ $\Delta V = 1.76 \times 10^7 \operatorname{J} \operatorname{kg}^{-1}$ $\therefore \Delta E_{\operatorname{grav}} = 1.76 \times 10^7 \operatorname{J} \operatorname{kg}^{-1} \times 1.9 \times 10^{27} \operatorname{kg} = 3.34 \times 10^{34} \operatorname{J}$				
16(b) Use of $V = (-)\frac{GM}{r}$ (1) Use of $\Delta V \times m$ (1) $\Delta E_{\text{grav}} = 3.3 \times 10^{34} \text{ J}$ (1) Example of calculation $\Delta V = -GM \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$ $\Delta V = -6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 2.0 \times 10^{30} \text{ kg}$ $\times \left(\frac{1}{8.2 \times 10^{11} \text{ m}} - \frac{1}{7.4 \times 10^{11} \text{ m}}\right)$ $\Delta V = 1.76 \times 10^7 \text{ J kg}^{-1}$ $\therefore \Delta E_{\text{grav}} = 1.76 \times 10^7 \text{ J kg}^{-1} \times 1.9 \times 10^{27} \text{ kg} = 3.34 \times 10^{34} \text{ J}$		displacement, so equating $\theta = 2\pi t/T$ for both planets where for Earth the time is		
Use of $\Delta V \times m$ (1) $\Delta E_{\text{grav}} = 3.3 \times 10^{34} \text{ J}$ (1) $\Delta V = -GM \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$ $\Delta V = -6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 2.0 \times 10^{30} \text{ kg}$ $\times \left(\frac{1}{8.2 \times 10^{11} \text{ m}} - \frac{1}{7.4 \times 10^{11} \text{ m}}\right)$ $\Delta V = 1.76 \times 10^7 \text{ J kg}^{-1}$ $\therefore \Delta E_{\text{grav}} = 1.76 \times 10^7 \text{ J kg}^{-1} \times 1.9 \times 10^{27} \text{ kg} = 3.34 \times 10^{34} \text{ J}$		$\frac{2\pi \operatorname{rad}(t-12) \operatorname{month}}{12 \operatorname{month}} = \frac{2\pi \operatorname{rad} t}{142 \operatorname{month}} :: t = 13.1 \operatorname{month}$		
Use of $\Delta V \times m$ $\Delta E_{\text{grav}} = 3.3 \times 10^{34} \text{ J}$ $Example of calculation$ $\Delta V = -GM \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$ $\Delta V = -6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 2.0 \times 10^{30} \text{kg}$ $\times \left(\frac{1}{8.2 \times 10^{11} \text{ m}} - \frac{1}{7.4 \times 10^{11} \text{ m}}\right)$ $\Delta V = 1.76 \times 10^7 \text{ J kg}^{-1}$ $\therefore \Delta E_{\text{grav}} = 1.76 \times 10^7 \text{ J kg}^{-1} \times 1.9 \times 10^{27} \text{ kg} = 3.34 \times 10^{34} \text{ J}$	16(b)	Use of $V = (-)\frac{GM}{r}$	(1)	
$\Delta E_{\text{grav}} = 3.3 \times 10^{34} \text{ J}$ $Example of calculation$ $\Delta V = -GM \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$ $\Delta V = -6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 2.0 \times 10^{30} \text{kg}$ $\times \left(\frac{1}{8.2 \times 10^{11} \text{ m}} - \frac{1}{7.4 \times 10^{11} \text{ m}}\right)$ $\Delta V = 1.76 \times 10^7 \text{ J kg}^{-1}$ $\therefore \Delta E_{\text{grav}} = 1.76 \times 10^7 \text{ J kg}^{-1} \times 1.9 \times 10^{27} \text{ kg} = 3.34 \times 10^{34} \text{ J}$		Use of $\Delta V \times m$	(1)	
$\Delta V = -GM \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$ $\Delta V = -6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 2.0 \times 10^{30} \text{kg}$ $\times \left(\frac{1}{8.2 \times 10^{11} \text{ m}} - \frac{1}{7.4 \times 10^{11} \text{ m}}\right)$ $\Delta V = 1.76 \times 10^7 \text{ J kg}^{-1}$ $\therefore \Delta E_{\text{grav}} = 1.76 \times 10^7 \text{ J kg}^{-1} \times 1.9 \times 10^{27} \text{ kg} = 3.34 \times 10^{34} \text{ J}$		$\Delta E_{\rm grav} = 3.3 \times 10^{34} \mathrm{J}$	(1)	3
$\Delta V = -6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 2.0 \times 10^{30} \text{kg}$ $\times \left(\frac{1}{8.2 \times 10^{11} \text{ m}} - \frac{1}{7.4 \times 10^{11} \text{ m}}\right)$ $\Delta V = 1.76 \times 10^7 \text{ J kg}^{-1}$ $\therefore \Delta E_{\text{grav}} = 1.76 \times 10^7 \text{ J kg}^{-1} \times 1.9 \times 10^{27} \text{ kg} = 3.34 \times 10^{34} \text{ J}$		Example of calculation		
$\times \left(\frac{1}{8.2 \times 10^{11} \mathrm{m}} - \frac{1}{7.4 \times 10^{11} \mathrm{m}}\right)$ $\Delta V = 1.76 \times 10^7 \mathrm{J kg^{-1}}$ $\therefore \Delta E_{\mathrm{grav}} = 1.76 \times 10^7 \mathrm{J kg^{-1}} \times 1.9 \times 10^{27} \mathrm{kg} = 3.34 \times 10^{34} \mathrm{J}$		$\Delta V = -GM\left(\frac{1}{r_2} - \frac{1}{r_1}\right)$		
$\Delta V = 1.76 \times 10^7 \mathrm{J kg^{-1}}$ $\therefore \Delta E_{\rm grav} = 1.76 \times 10^7 \mathrm{J kg^{-1}} \times 1.9 \times 10^{27} \mathrm{kg} = 3.34 \times 10^{34} \mathrm{J}$				
$ \therefore \Delta E_{\text{grav}} = 1.76 \times 10^7 \text{J kg}^{-1} \times 1.9 \times 10^{27} \text{kg} = 3.34 \times 10^{34} \text{J} $		$\times \left(\frac{1}{8.2 \times 10^{11} \text{ m}} - \frac{1}{7.4 \times 10^{11} \text{ m}} \right)$		
		$\Delta V = 1.76 \times 10^7 \mathrm{Jkg^{-1}}$		
		$ \therefore \Delta E_{\text{grav}} = 1.76 \times 10^7 \text{J kg}^{-1} \times 1.9 \times 10^{27} \text{kg} = 3.34 \times 10^{34} \text{J} $		
Total for question 16		Total for question 16		11

Question Number	Answer	Mark
17(a)	There is a (resultant) force/acceleration that is:	
	Proportional to the <u>displacement</u> from the equilibrium position (1)	
	and (always) acting towards the equilibrium position (1)	2
17(b)(i)	Use of $k = -\frac{\Delta F}{\Delta x}$ (1)	
	$k = 4100 \text{ (N m}^{-1}) $ (1)	2
	Example of calculation	
	$k = -\frac{mg}{\Delta x} = \frac{75 \text{ kg} \times 9.81 \text{ N kg}^{-1}}{0.18 \text{ m}} = 4088 \text{ N m}^{-1}$	
17(b)(ii)	Use of $T = 2\pi \sqrt{\frac{m}{k}}$ (1)	
	Use of $f = \frac{1}{T}$ (1)	
	f = 1.2 Hz (allow ecf from (b)(i)) (1)	3
	$\frac{\text{Example of calculation}}{T = 2\pi \sqrt{\frac{75 \text{ kg}}{4090 \text{ N m}^{-1}}}} = 0.85 \text{ s}$ $f = \frac{1}{0.85 \text{ s}} = 1.18 \text{ Hz}$	

17(c)	The resultant force on the man = $(mg - R)$ where R is the (normal) contact force from the board	(1)	
	R decreases as his displacement (from the equilibrium position) increases Man loses contact with board when $R = 0$	(1)	
	Or Man loses contact with board when resultant force on man is equal to his weight	(1)	
	OR		
	Acceleration (for SHM) increases as displacement increases	(1)	
	Maximum (downward) acceleration of man is g	(1)	
	Man loses contact with board when acceleration of the board is equal to g	(1)	3
	Total for question 17		10

Question Number	Answer		Mark
18(a)(i)	Use of trigonometry to calculate distance Or use of small angle approximation to calculate distance	(1)	
	Distance to Wolf $359 = 7.5 \times 10^{16} (m)$	(1)	2
	Example of calculation	. ,	
	Earth Q		
	$1.5 \times 10^{11} \text{m}$		
	Sun d		
	$\tan(2.01 \times 10^{-6}) = \frac{1.50 \times 10^{11} \text{ m}}{d}$		
	$\therefore d = \frac{1.50 \times 10^{11} \text{ m}}{2.01 \times 10^{-6}} = 7.46 \times 10^{16} \text{ m}$		
18(a)(ii)	Parallax angle decreases as distance from the Earth increases Or parallax is only suitable for (relatively) close stars	(1)	
	As parallax angle is too small to measure for distant stars	(1)	2
18(b)(i)	$\lambda_{ m max}$ read from graph	(1)	
	Use of $\lambda_{\text{max}}T = 2.898 \times 10^{-3} \text{ m K}$	(1)	
	$T = 2680 \text{ (K)} [\text{accept } 2635 \text{ K} \rightarrow 2760 \text{ K}]$	(1)	3
	Example of calculation		
	$T = \frac{2.898 \times 10^{-3} \text{ m K}}{1.08 \times 10^{-6} \text{ m}} = 2683 \text{ K}$		
18(b)(ii)	Use of $L = \sigma A T^4$	(1)	
	$L = 4.70 \times 10^{23} \text{ W (allow ecf from (b)(i))}$	(1)	
	Comparison of calculated value of L with $L_{\rm Sun}$ and appropriate conclusion Or comparison of calculated $L/L_{\rm Sun}$ percentage with 0.1% and appropriate conclusion	(1)	3
	Example of calculation		
	$L = 4\pi (0.16 \times 6.96 \times 10^8 \text{ m})^2 \times 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} (2700 \text{ K})^4$		
	$L = 4.70 \times 10^{23} W$		
	$\frac{L}{L_{\text{Sun}}} \times 100\% = \frac{4.70 \times 10^{23} W}{3.83 \times 10^{26} W} \times 100\% = 0.12\%$		

Question Number	Answer		Mark
19(a)	Use of $pV = NkT$	(1)	
	Use of $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$	(1)	
	$\frac{1}{2}m\langle c^2\rangle = 5.8 \times 10^{-20} \mathrm{J}$	(1)	3
	Example of calculation $T = \frac{pV}{Nk} = \frac{4.25 \times 10^4 \text{ Pa} \times 1.50 \times 10^{-5} \text{ m}^3}{1.65 \times 10^{19} \times 1.38 \times 10^{-23} \text{ J K}^{-1}} = 2800 \text{ K}$		
	$\frac{1}{2}m\langle c^2\rangle = \frac{3}{2} \times 1.38 \times 10^{-23} \text{ J K}^{-1} \times 2800 \text{ K} = 5.80 \times 10^{-20} \text{ J}$		
19(b)	Use of $\frac{v}{c} = \frac{\Delta \lambda}{\lambda}$ with wavelength measured on Earth in denominator	(1)	
	$v = 13500 \text{ m s}^{-1}$	(1)	
	The student is correct to say that the star is moving towards the Earth, as the measured wavelength is less than that from the lamp spectrum.	(1)	
	Comparison of calculated velocity with 1400 m s ⁻¹ and appropriate conclusion.	(1)	4
	Example of calculation		
	$v = \frac{\Delta \lambda}{\lambda} c = \frac{(576.933-576.959)\times 10^{-9} \text{ m}}{576.959\times 10^{-9} \text{ m}} \times 3.00\times 10^{8} \text{ m s}^{-1} = (-)1.35\times 10^{4} \text{ m s}^{-1}$		
	So the star's velocity is much larger than 1400 m s ⁻¹		
19(c)	On the main sequence, above the position of the Sun Or above and to the left of the position of the Sun	(1)	1
	Total for question 18		8

Question Number	Answer		Mark
20(a)(i)	Use of appropriate equation of motion	(1)	
	t = 2.9 (s)	(1)	2
	Example of calculation		
	$s = ut + \frac{1}{2}at^2$		
	$\therefore -41.5 \text{ m} = 0.5 \times (-9.81 \text{ m s}^{-2}) t^2$		
	$t = \sqrt{\frac{-41.5 \text{ m}}{-0.5 \times 9.81 \text{ m s}^{-2}}} = 2.91 \text{ s}$		
20(a)(ii)	Use of $V = \frac{4}{3}\pi r^3$	(1)	
	Use of $\rho = \frac{m}{V}$	(1)	
	Use of $\Delta E = mc\Delta\theta$	(1)	
	Use of $\Delta E = L\Delta m$	(1)	
	Use of $P = \frac{\Delta W}{\Delta t}$	(1)	
	P = 1.6 W (allow ecf from (a)(i))	(1)	6
	Example of calculation	()	
	$V = \frac{4}{3}\pi (1.2 \times 10^{-3} \text{ m})^3 = 7.24 \times 10^{-9} \text{ m}^3$		
	$m = 7.24 \times 10^{-9} \text{ m}^3 \times 1.13 \times 10^4 \text{ kg m}^3 = 8.18 \times 10^{-5} \text{ kg}$		
	$E = 8.18 \times 10^{-5} \text{ kg} \times 130 \text{ J kg}^{-1} \text{ K}^{-1} \times (615 \text{ K} - 370 \text{ K}) = 2.61 \text{ J}$		
	$E = 8.18 \times 10^{-5} \text{ kg} \times 2.47 \times 10^{4} \text{ J kg}^{-1} = 2.02 \text{ J}$		
	$P = \frac{(2.61 \mathrm{J} + 2.02 \mathrm{J})}{2.9 \mathrm{s}} = 1.60 \mathrm{W}$		
20(b)(i)	Change in gravitational potential energy of the lead shot and change in internal energy are both proportional to the mass of lead shot		
	Or $E_{\rm k}$ $(=\frac{1}{2}mv^2)$ and $\Delta E = mc\Delta\theta$ both include the same mass		
	Or E_{grav} (= $mg\Delta h$) and $\Delta E = mc\Delta\theta$ both include the same mass	(1)	
	So, mass cancels and $\Delta\theta$ is independent of the mass (if no energy is transferred to the surroundings) (dependent upon MP1)	(1)	2
20(b)(ii)	Not all the energy will be used to increase the temperature of the lead shot Or some energy will be transferred to the surroundings Or not all the lead shot will fall through a distance d	(1)	
	The method will not be accurate, as it will give a value of c that is too large Or The method will not be accurate as the (measured) temperature change will be too small	(1)	2
	Total for question 20		12