CS/B.TECH/IT/ODD SEM/SEM-7/IT-705D/2016-17

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: IT-705D

MICROELECTRONICS AND VLSI DESIGN

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Which design rule is scalable in the context of VLSI design?
 - a) α rule

) β rule

c) λ rule

- d) none of these.
- ii) What is the full form of FPGA?
 - a) Field Programmable Gate Array
 - b) Full Programmable Gate Array
 - c) Fast Programmable Gate Array
 - d) None of these.
- iii) What is ASIC?
 - a) Application simple IC
 - b) Authentic sample IC
 - c) Application specific IC
 - d) Authentication specific IC.

CS/B.TECH/IT/ODD SEM/SEM-7/IT-705D/2016-17

- iv) Which of the following processing techniques would be used to create the source and drain regions of a transistor?
 - a) Oxidation
 - b) Ion implantation
 - c) Sputtering
 - d) Polysilicon deposition.
- v) VHDL is acronym of
 - a) Very High Speed Integrated Circuit HDL
 - b) Vast HDL
 - c) Very simple HDL
 - d) Very important HDL.
- vi) Number of transistors used in LSI is
 - a) 200-2000

b) 100-500

c) 5-10

- d) 1.
- vii) In an Enhancement mode MOSFET
 - a) Conducting channel exists at zero gate bias
 - b) Conducting channel exists at negative gate bias
 - c) No conducting channel at zero gate bias
 - d) Conducting channel does not depend on gate bias.
- viii) The Substrate Fermi potential in NMOS is
 - a) Negative

b) Positive

c) Zero

- d) Infinite.
- The substrate bias coefficient in PMOS is
 - a) Positive

b) Negative

c) Zero

- d) Infinite.
- In full scaling, Saturation drain current is scaled down by a factor
 - a) S

b) S^2

c) S

d) S^{-1} .

CS/B.TECH/IT/ODD SEM/SEM-7/IT-705D/2016-17

- In a PLA
 - Only AND array is programmable
 - Only AND array is programmable
 - Both AND and OR arrays are programmable c)
 - Macro-cell is the building block.
- xii) VLSI stands for
 - Very Large Source Integration
 - Very Large Scale Integration
 - Very Long Scale Integration
 - Very Low Scale Integration.

GROUP - B

(Short Answer Type Questions)

 $3 \times 5 = 15$ Answer any three of the following.

- Draw the layout of 2 input CMOS NAND gate.
- What are the differences between ASIC and FPGA? 3.
- Describe with proper diagram Gajski-Kuhn chart.
- Define Moore's Law. What is the basic difference 2 + 2 + 1between E-MOS and D-MOS?
- Implement the function F = (A and B) using Static CMOS.
- What are the advantages of Dynamic CMOS over State 4 + 1CMOS? Define FPGA.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- Sketch a stick diagram of XOR gate. 8.
 - Implement the following function using PLA.

3

HTTP://WWW.MAKAUT.COM

$$F_1 = A^I B C + A B + A B^I C^I$$

$$F_2 = A B + A^I B C^I$$

$$F_3 = A^I B C + A B C + A B^I C^I$$

I Turn over

7/70408

HTTP://WWW.MAKAUT.COM

4

CS/B.TECH/IT/ODD SEM/SEM-7/IT-705D/2016-17

- Briefly describe the architecture and operation of FPGA. (1+3)+6+5
- 9. Explain with proper diagram the different steps involved in the fabrication process of n-well CMOS.
 - Explain the operation of basic CMOS inverter.

10 + 5

- Explain ASIC Design flow. 10. a)
 - b) Classify the design styles used in VLSI Design. Explain any two of the design styles, briefly.

$$5 + (2 + 4 + 4)$$

- Derive the expression of threshold voltage of an N-channel MOSFET.
 - Derive the current-voltage relationships of an Enhancement type N-channel MOSFET operating in linear region. 7 + 8
- 12. Write short notes on any three of the following: 3×5
 - Photolithography process
 - b) CPLD

7/70408

- Short Channel Effects of MOSFETs. c)
- Constant Voltage Scaling d)
- e) Capacitances associated with MOSFET
- Granularity and Regularity.