Trig Final (TEST v619)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 4.4 meters. The angle measure is 1.6 radians. How long is the radius in meters?

Question 2

Consider angles $\frac{-8\pi}{3}$ and $\frac{15\pi}{4}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\cos\left(\frac{-8\pi}{3}\right)$ and $\sin\left(\frac{15\pi}{4}\right)$ by using a unit circle (provided separately).

Find $sin(15\pi/4)$

Question 3

If $\sin(\theta) = \frac{-55}{73}$, and θ is in quadrant IV, determine an exact value for $\cos(\theta)$.

Question 4

A mass-spring system oscillates vertically with an amplitude of 4.02 meters, a midline at y = -2.05 meters, and a frequency of 6.33 Hz. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).