

RoKiX Sensor Node Data Sheet RKX01-1001

This document provides a brief introduction to the RoKiX Sensor Node, a key component in the RoKiX IoT Platform. RoKiX Sensor Node is a small device based on the Nordic Semiconductor nRF52840 advanced multiprotocol system-on-chip (SoC).

Key features

- External connectivity with USB, BLE 4.1, 4.2, 5.0.
- BLE 5.0 with an integrated crystal antenna and a connector for an external antenna.
- Integrates multiple sensors from Kionix and ROHM. These default sensors enable the measurement of 3D-acceleration, 3Dmagnetism, 3D-rotation, atmospheric pressure, and temperature.

- Can be powered by a rechargeable Li-Polymer battery, replaceable coin cell batteries, or via Micro USB.
- Low power consumption and long battery life
- The RoKiX Sensor Node comes in a compact (42 x 67 x 22 mm) housing and has a programmable RGY LED, expansion capability with extended I/O connectors, and 8 Mb of flash memory.
- The RoKiX Sensor Node comes with a mounting accessory that can be used to attach the device to surfaces with screws - or to mount the device onto a wristband to make the device wearable.

Software support

- RoKiX Firmware preinstalled
- The sensor node can be used with the Nordic Semiconductor's nRF5 SDK, that enables secure over-the-air device firmware updates (OTA-DFU).
- Supporting software packages include a RoKiX Windows GUI with visualization and data logging capability, a Python-based Command Line Interface (RoKiX Python CLI), and an Android Data Logger App.

Electronic specifications

Electronics is assembled on the 0.8 mm PCB (Printed Circuit Board) board. The main electronic blocks are: Power management, main controller (SoC), peripherals and interfaces.

Power management

- Functions for "power-on-logic", power sources and charger
- Power ON/OFF switch to start/shutdown the SoC
- SoC's power will be set ON if a powered USB cable is inserted to the USB connector
- SoC's power will be kept ON if USB cable is removed from the USB connector and a valid VBAT level is available.
- Enables/disables VDD voltage level for SoC, peripherals, and internal interfaces
- Main voltage supply and logic reference for the SoC: $VDD = 2.5 \text{ V} \pm 1\% (25^{\circ}\text{C})$

RoKiX Sensor Node Data Sheet RKX01-1001

- Max. current for VDD is 300 mA for all the internal and external devices
- LiPo battery (VBAT)
 - Voltage range: 3.0 V 4.3 V
 - Nominal cell voltage: 3.7 V
 - o Battery capacity: 250 mAh
 - o Battery size: 20.0 x 25.0 x 6.5 mm
- LiPo battery charger
 - Battery is charged when a powered USB cable is attached to the USB connector
 - The middle LED indicator is red when charging is ongoing
 - When the battery is fully charged, the LED goes off
 - o Maximum charging current is 220 mA
 - o Charging time is about 90 minutes from empty to fully charged battery
- USB (VUSB)
 - Voltage range: 4.75 5.5 V (USB 2.0 standard)
 - Supplied via a µUSB connector
 - o Protections on the board circuit: Over current (1A) fuse, EMC/ESD filters, wrong polarity.

Main controller

- The main controller block consists of SoC, interfaces from the SoC, peripherals, and a number of indicators.
- Main SoC: Nordic Semiconductor nRF52840 (Cortex M4F)
- Communication interfaces:
 - TWI0/SPI0 internal sensors
 - o TWI1/SPI1 external sensor boards
 - UART external device boards
 - o SPI2 SPI-flash memory on board
 - NFC external NFC antenna
 - USB external USB connection
 - BLE internal wireless connection
 - o Pxx SoC's I/O GPIO lines

Peripherals

- The peripherals block consists of (internal) onboard sensors and a memory device which is directly controlled by the SoC. In addition, a pull-up configuration for busses and signals belongs to this block.
- Memory: External flash memory of 8 Mbits is connected to the dedicated SPI bus (speed: up to 8
- Five (5) onboard sensor positions for TWI0/SPI0
- Onboard sensors can be configured to use either I2C or SPI bus. Every sensor position has dedicated Interrupt/Data Ready outputs.

Interfaces

- Onboard sensors have bus (TWI0/SPI0) lines and two types of digital bus interfaces available:
 - o I2C (TWI0/SPI0) with 100 kHz and 400 kHz speed modes
 - o SPI up to 8 MHz (TWI0/SPI0 and SPI2)
- For the external sensors, there are dedicated bus lines (TWI1/SPI1) and two combined digital bus interfaces (I2C and SPI) available. In addition, a dedicated UART bus can be used (UARTE).
- Loading the firmware and flashing can be done using either wired or wireless interface.
- RoKiX Sensor Node offers both the wired (USB 2.0, UARTE) and wireless (BLE, NFC) independent communication interfaces.

RoKiX Sensor Node Data Sheet RKX01-1001

On-board sensors

The following sensors are included on the main board:

SENSOR TYPE	PART NUMBER
Tri-Axis Accelerometer	KX122
Combination Tri-Axis Accelerometer + Tri-Axis Magnetometer	KMX62
Combination Tri-Axis Accelerometer + Tri-Axis Gyroscope	KXG08
Barometer	BM1383AGLV
Magnetometer	BM1422AGMV

Battery lifetimes

The following battery lifetime estimates are for the MAX variant of the RoKiX Sensor Node with a fully charged battery (250 mAh):

•	Stand-by, only power management running:	up to 6 months
•	SoC in active power mode, BLE active and sending data to gateway:	up to 16 h
•	SoC in active power mode, BLE active and sending advertisements:	up to 35 h
•	SoC in low-power mode, active time 0.5 seconds / 1 minute:	up to 10 days
•	SoC in low-power mode, waiting external trigger:	up to 12 days

Current consumption depends heavily on the FWs on SoC and Power-On-Logic. Above values are obtained with Power-On-Logic software: PoL FW v. #45b7c279 and SoC software: SoC FW v. #efc64721.

Dimensions and mechanics outline

39.0 x 33.0 x 0.8 mm PCB board only dimensions:

PCB dimensions of the fully assembled board: 40.0 x 33.0 x 4.7 mm (MAX variant)

 Cover mechanics with a bracket: 67.5 x 42.8 x 23.0 mm, weight: 30 g

46.6 x 41.0 x 22.4 mm, weight: 22 g, IP44 rating Cover mechanics without a bracket:

The main parts of the mechanic include a top and bottom cover, and an optional bracket for fixed position use or wristband use. The power ON/OFF button and the USB connector outlet are located at the longer sides of the node. PCB, battery, three indicator light guides and the Power ON/OFF switch are placed on the cover mechanics.

Identification of the RoKiX Sensor Node

The main SoC has a unique MAC number which identifies the assembled board and is readable from the SoC. Additionally, every sensor node has a unique serial number to identify the HW variant and manufacturing batch. The MAC and serial numbers are shown on the bottom cover of the node.