Problem 2.2.25. Find the angle between the following pairs of lines:

(a)
$$\mathbf{r} = 2\hat{i} - 5\hat{j} + \hat{k} + \lambda(3\hat{i} + 2\hat{j} + 6\hat{k}), \quad \mathbf{r} = 7\hat{i} - 6\hat{j} + \mu(\hat{i} + 2\hat{j} + 2\hat{k})$$

(b)
$$\mathbf{r} = 3\hat{i} + \hat{j} - 2\hat{k} + \lambda(\hat{i} - \hat{j} - 2\hat{k}), \quad \mathbf{r} = 2\hat{i} - \hat{j} - 5\hat{k} + \mu(3\hat{i} - 5\hat{j} - 4\hat{k})$$

(c)
$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
, $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{-4}$

(d)
$$\frac{x}{2} = \frac{y}{5} = \frac{z}{1}$$
, $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$

General Formula:

If two lines are given in vector form, their direction vectors are denoted as

$$d_1, d_2.$$

The angle θ between the lines is the angle between these two vectors, given by

$$\cos \theta = \frac{\mathbf{d_1}^T \mathbf{d_2}}{\|\mathbf{d_1}\| \|\mathbf{d_2}\|}.$$
 (1)

Here:

- d_1, d_2 are the direction vectors of the given lines,
- $\mathbf{d_1}^T \mathbf{d_2}$ is the matrix product (dot product),
- $\|\mathbf{d_i}\| = \sqrt{\mathbf{d_i}^T \mathbf{d_i}}$ is the magnitude (norm) of vector $\mathbf{d_i}$.

Case	$\mathbf{a_1}$	d_1	$\mathbf{a_2}$	d_2
(a)	$\begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}$	$ \left(\begin{array}{c} 7 \\ -6 \\ 0 \end{array}\right) $	$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$
(b)	$\begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -5 \\ -4 \end{pmatrix}$
(c)	$\begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -2\\4\\5 \end{pmatrix}$	$ \begin{pmatrix} -1 \\ 8 \\ -4 \end{pmatrix} $
(d)	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 1 \\ 8 \end{pmatrix}$

Table 1: Points and direction vectors for Problem 2.2.25

(a)
$$\mathbf{r} = 2\hat{i} - 5\hat{j} + \hat{k} + \lambda(3\hat{i} + 2\hat{j} + 6\hat{k}), \quad \mathbf{r} = 7\hat{i} - 6\hat{j} + \mu(\hat{i} + 2\hat{j} + 2\hat{k})$$

Solution:

$$\mathbf{d_1} = \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}, \qquad \mathbf{d_2} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \tag{2}$$

$$\mathbf{d_1}^T \mathbf{d_2} = \begin{pmatrix} 3 & 2 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = 19 \tag{3}$$

$$\|\mathbf{d_1}\| = \sqrt{\mathbf{d_1}^T \mathbf{d_1}} = \sqrt{49} = 7,$$
 $\|\mathbf{d_2}\| = \sqrt{\mathbf{d_2}^T \mathbf{d_2}} = \sqrt{9} = 3$ (4)

$$\cos\theta = \frac{19}{21} \tag{5}$$

Final Answer:

$$\theta = \cos^{-1}\left(\frac{19}{21}\right) \tag{6}$$

(b)
$$\mathbf{r} = 3\hat{i} + \hat{j} - 2\hat{k} + \lambda(\hat{i} - \hat{j} - 2\hat{k}), \quad \mathbf{r} = 2\hat{i} - \hat{j} - 5\hat{k} + \mu(3\hat{i} - 5\hat{j} - 4\hat{k})$$
 Solution:

$$\mathbf{d_1} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}, \qquad \mathbf{d_2} = \begin{pmatrix} 3 \\ -5 \\ -4 \end{pmatrix} \tag{7}$$

$$\mathbf{d_1}^T \mathbf{d_2} = \begin{pmatrix} 1 & -1 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ -5 \\ -4 \end{pmatrix} = 16 \tag{8}$$

$$\|\mathbf{d_1}\| = \sqrt{\mathbf{d_1}^T \mathbf{d_1}} = \sqrt{6},$$
 $\|\mathbf{d_2}\| = \sqrt{\mathbf{d_2}^T \mathbf{d_2}} = \sqrt{50}$ (9)

$$\cos \theta = \frac{16}{\sqrt{6} \cdot \sqrt{50}} = \frac{8}{5\sqrt{3}} \tag{10}$$

Final Answer:

$$\theta = \cos^{-1}\left(\frac{8}{5\sqrt{3}}\right) \tag{11}$$

(c)
$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
, $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{-4}$

Solution:

$$\mathbf{d_1} = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}, \qquad \mathbf{d_2} = \begin{pmatrix} -1 \\ 8 \\ -4 \end{pmatrix} \tag{12}$$

$$\mathbf{d_1}^T \mathbf{d_2} = \begin{pmatrix} 2 & 5 & -3 \end{pmatrix} \begin{pmatrix} -1 \\ 8 \\ -4 \end{pmatrix} = 50 \tag{13}$$

$$\|\mathbf{d_1}\| = \sqrt{\mathbf{d_1}^T \mathbf{d_1}} = \sqrt{38},$$
 $\|\mathbf{d_2}\| = \sqrt{\mathbf{d_2}^T \mathbf{d_2}} = 9$ (14)

$$\cos \theta = \frac{50}{9\sqrt{38}}\tag{15}$$

Final Answer:

$$\theta = \cos^{-1}\left(\frac{50}{9\sqrt{38}}\right) \tag{16}$$

(d)
$$\frac{x}{2} = \frac{y}{5} = \frac{z}{1}$$
, $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$

Solution:

$$\mathbf{d_1} = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}, \qquad \mathbf{d_2} = \begin{pmatrix} 4 \\ 1 \\ 8 \end{pmatrix} \tag{17}$$

$$\mathbf{d_1}^T \mathbf{d_2} = \begin{pmatrix} 2 & 5 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ 8 \end{pmatrix} = 21 \tag{18}$$

$$\|\mathbf{d_1}\| = \sqrt{\mathbf{d_1}^T \mathbf{d_1}} = \sqrt{30},$$
 $\|\mathbf{d_2}\| = \sqrt{\mathbf{d_2}^T \mathbf{d_2}} = 9$ (19)

$$\cos \theta = \frac{21}{9\sqrt{30}} = \frac{7}{3\sqrt{30}} \tag{20}$$

Final Answer:

$$\theta = \cos^{-1}\left(\frac{7}{3\sqrt{30}}\right) \tag{21}$$

Figure 1

Figure 3

Figure 2

Figure 4