

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЦЕПИ ТЯГОВЫЕ ПЛАСТИНЧАТЫЕ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 588—81 [CT C9B 1011—78]

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЦЕПИ ТЯГОВЫЕ ПЛАСТИНЧАТЫЕ

Технические условия

Pulling block chains.
Specifications

ГОСТ 588—81*

(CT C3B 1011—78)

Взамен ГОСТ 588—74

OKII 41 7320

Постановлением Государственного комитета СССР по стандартам от 15 января 1981 г. № 5 срок введения установлен с 01.07.81

Проверен в 1986 г. Постановлением Госстандарта от 19.12.86 № 4139 срок действия продлен

до 01.01.92

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на тяговые пластинчатые втулочные, роликовые и катковые цепи, применяемые в подъемно-транспортных машинах и других механизмах.

Стандарт полностью соответствует СТ СЭВ 1011-78.

В стандарте учтены требования международных стандартов ИСО 1977/I (разд. 1) и ИСО 1977/III (разд. 2).

1. ТИПЫ, ИСПОЛНЕНИЯ, ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ ЦЕПЕЙ

- 1.1. Стандарт устанавливает следующие типы тяговых пластинчатовых цепей:
 - 1 втулочные;
 - 2 роликовые;
 - жатковые с гладкими катками с подшипниками скольжения;
 - 4 катковые с ребордами на катках с подшипниками скольжения.
- 1.2. По конструкции цепи каждого типа должны изготавливаться исполнений:
 - 1 неразборная цепь со сплошными валиками (индекс М);
 - 2 разборная цепь со сплошными валиками (индекс М);
 - 3 неразборная цепь с полыми валиками (индекс МС).

Издание официальное ★

Перепечатка воспрещена

 * Переиздание (май 1987 г.) с Изменением № 1, утвержденным в декабре 1986 г. (ИУС 3—87).

© Издательство стандартов, 1987

C. 2 FOCT 588-81

- 1.3. Для соединения отрезков неразборной цепи исполнений 1 и 3 должны применяться соединительные звенья в виде наружных звеньев с одной съемной пластиной.
- 1.4. Допускается в звеньях разборных цепей неразборное соединение валиков с одной пластиной (например, расклепкой).
- 1.5. Основные параметры и размеры цепей должны соответствовать черт. 1—4 табл. 1.

Примечание. Черт. 1—4 не определяют конструкцию цепей.

1.6. Масса цепей без присоединительных элементов приведена в табл. 2.

Исполнение 2

1—валик; 2—втулка; 3—внутренняя пластина; 4—наружная пластина; 5—ригель; 6—болт; 7—шайба; 8—полый валик.

Черт. 1

Тип 2

Исполнение 3

1-валик; 2-втулка; 3-ролик; 4-внутренняя пластина; 5-наружная пластина; 6-ригель; 7-болт; 8-шайба; 9-полый валик.

Черт. 2

Тип 3

1—валик; 2—втулка; 3—каток; 4—внутренняя пластина; 5—наружная пластина; 6— ригель; 7—болт; 8—шайба; 9—полый валик.

Черт. 3

Тип 4

Исполнение 3

1—валик; 2—втулка; 3—каток с ребордой; 4—внутренняя пластина; 5—варужная пластина; 6—ригель; 7—болт; 8—шайба; 9—полый валик.

Размеры, мм

	v	2,5 3,0 3,5	4,0 5,0 6,0	7,0 8,0 10,0	12,0 14,0 16,0	20,0 22,0 3,0	4,0 6,0 8,0	
	<i>h</i> , не более	18 20 25	30 35 40	45 56 60	70 85 105	120 150 26	36 51 72	
	d_5	35 40 45	55 65 75	90 105 125	150 175 210	250 276 45	65 90 125	
: :	d ₄	25 30 36	42 50 60	70 85 100	120 140 170	200 236 36	50 70 100	
	d_3	12,5 15,0 18,0	21,0 25,0 30,0	36,0 42,0 50,0	60,0 70,0 85,0	100,0 118,0 22,5	27,0 38,0 53,0	-
	d_2	9,0 10,0 12,5	15,0 18,0 21,0	25,0 30,0 36,0	42,0 50,0 60,0	71,0 85,0 17,5	21,0 29,0 41,0	
	d_1	6,0 7,0 8,5	10,0 12,0 15,0	18,0 21,0 25,0	30,0 36,0 44,0	50,0 60,0 13,0	15,5 22,0 31,0	
M M	ä	111	111	111		8 8,3	10,3 14,3 20,3	-
азмеры,	<i>b</i> 4, не более	49 56 63	72 86 101	117 134 154	185 214 254	310	111	
r a 3 M	<i>b</i> 3, не менее	15 17 19	23 27 31	36 42 47	55 65 76	90 110 17	23 31 42	
	<i>b</i> 2, не более	8,4 0,4 5,5	5,0 6,0 7,0	8,5 10,0 12,0	14,0 16,0 13,0	22,0 24,0 4,5	5,0 7,0 10,0	
	<i>b</i> в. не более	35 40 45	52 62 73	85 98 112	135 154 180	230 260 42	48 67 90	
	Шаг цепи <i>t*</i>	40**—160 50**—200 63 —250	250 315 400	100**—500 125**—630 160**—630		1000 1000 160	-250 -315 -500	
	Mar 1	40** 50**	*	125** 160**	200 250 250**	315** 400 63	80 100 160	
	Разрушающая нагрузка, кН (кгс), не менее	(2000) (2800) (4000)	(5600) (8000) (11200)	(1600 0) (22400) (31500)	(45000) (63000) (90000)	(125000) (180000) (2800)	(5600) (11200) (22400)	
	Paspy Har KH He	20 28 40	56 80 112	160 224 315	450 630 900	1250 1800 28	56 112 224	
	Номер	M20 M28 M40	M56 M80 M112	M160 M224 M315	M450 M630 M900	M1250 M1800 MC28	MC56 MC112 MC224	

* Шаг цепи выбирается из ряда: 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000 мм. ** Применение шагов, отмеченных **, для катковых цепей не долускается.

Таблица 2

	1000	1	1	1	1	1	1	1	1	1	1	21,50	30,75	46,00	66,10	i	i	1	!	
	800		1	1	1	1	1	1	1	1	15,30	22,20	32,00	48,00	68,50		1	1	ì	
	069	1	i	į	j	ı	í	1	8,00	10,89		23,00	33,65	50,60	73,10	1	i	1	ſ	
	200	1	1	1	1	1	1	5,75	8,45	11,47	16,80	24,60	35,35	52,90	78,40	I	l	l	11,81	
н t, мм	400	ı		}	١	}	4,40	5,95	8,76	12,00	17,20	25,80	37,65	57,10	74,20	J	ı	I	12,42	
для шага цепн t,	315	1	I	1	1	3,30	4,55	6,28	9,28	12,60	18,60	27,60	41,60	61,20	-	1	1	6,10	13,23	
, для ш	250	1	1	1,58	2,30	3,47	4,80	6,64	9,80	13,60	20,00	29,50	44,50	1	1	1	2,88	6,46	14,22	
м цепи в кг, не более,	500	1	1,10	1,65	2,38	3,66	5,05	7,05	10,70	15,60	21,60	1	1	1	ì	ļ	3,04	6,89	15,43	
f B Kr, 1	160	0,85	1,15	1,70	2,46	3,80	5,30	7,75	11,40	15,90	1	-	1	!	1	1,62	3,22	7,44	16,92	
и цепя	125	0,88	1,20	1,76	2,62	3,95	5,80	8,20	12,70	ļ	1	ı	ı	ı	1	1,74	3,49	8,22	1	
Масса	100	0,93	1,26	1,90	2,82	4,40	00'9	9,15	1]	1	1	1	1	1	1,88	3,80	60'6	l	
	08	96'0	1,34	2,05	3,06	4,80	7,26	ı	1	1	i	ı	1	1	ı	2,05	4,19	1	l	-
	63	1,05	1,45	2,10	3,34	Ţ	1	ı	1	-	1	1	ı	ı		2,26	1	ı	1	
	20	1,14	1,58	1	1	1	l	l	1	1	1	l	1	ı	1	ı	i	Į.	i	
	40	1,26	1	I	İ	ì	1	١	1	1	ı	i	1	1	1	I		l	1	
	Номер цепи	M20	M28	M40	M56	M80	M112	M160	M224	M315	M450	M630	W300	M1250	M1800	MC28	MC56	MC112	MC224	
	ип цепи										7		_							

Продолжение табл. 2

				1		Macca	Масса 1 м цепи в кг, не более, для шага цепи t , мм	H B KF, 1	не болес	э, для п	ага цеп	н t, мм				
Номер цепи 40 50 63 80 100	20 83	89	08		96		125	160	500	250	315	400	200	089	800	1000
M20 1,42 1,27 1,16 1,04 1	1,27 1,16 1,04	1,16 1,04	1,04		-	00,1	0,93	08'0	i	1	1	!	1		1	1
M28 - 1,84 1,64 1,50	1,84 1,64	1,64		1,50		1,40	1,30	1,22	1,16	ı	1	1	ı	i	I	1
M40 — 2,38 2,28	2,38			2,28		2,10	2,00	1,82	1,75	1,70	l	1	l	I	1	1
M56 — — 3,23 3,45	- 3,23	<u> </u>	<u> </u>	3,45		3,15	2,85	2,65	2,55	3,37	l	1	1	1	ı	I
M80 5,40	1			5,40		4,90	4,35	4,10	3,90	3,67	3,46	1	1	i	1	1
M112 8,40	1			8,40		6,40	6,10	5,90	5,46	5,15	4.80	4,65	ı	١	1	1
M160	i ·			1		10,60	9,35	8,70	7,80	7,25	6,75	6,30	6,05	i	Į	1
M224 — — — — —	1			i		1.	14,30	12,70	11,70	10,60	9,95	9,27	8,86	8,20	1	1
M315	1			l		1	1	18,10	16,40	15,00	13,70	12,90	12,17	11,53	***	i
M450	1	1		l		1	ı	1	24,80	22,40	20,60	18,70	18,00	16,77	15,98	1
M630	1			1		ı	1		1	33,30	30,65	28,20	26,40	24,60	23,40	22,50
M900 006W	1	1		1		1	1	1	i	51,30	46,90	41,90	38,75	36,40	34,00	32,50
M1250	1			l		j	ļ	1	1	I	06,69	64,00	58,40	55,00	54,40	48,60
M1800	1	<u>.</u>	<u>.</u>	I		1	1	1	l	1	1	88,40	86,20	81,00	74,70	71,10
MC28 — — 2,56 2,29	- 2,56	2,56		2,29		2,07	1,89	1,74	l	i	1	[I	1	1	1
MC56 - - - 4,65	 	 -		4,65		4,18	3,79	3,45	3,23	3,03	l	1	i	1	1	1
MC112	1	1		!		10,20	9,11	8,13	7,45	06'9	6,45	i	l	1	ı	i
MC224	1	1		ı		!	i	18,70	16,85	15,36	14,13	13,13	12,38	1	1	1
				,							•					
 			_			_	_	_		_		_	_			

Продолжение табл. 2

				Macca	1 м цеп.	H B KL,	не более	, для п	Масса 1 м цепи в кг, не более, для шага цепи t , мм	и t, мм				
	22	63	08	100	125	160	200	250	315	400	200	069	800	1000
	2,04	1,80	1,52	1,38	1,25	1,12	ı	1	1	1	1	1		1
	I	2,45	2,35	2,05	1,85	1,65	1,50	ı	1	1		l	Ī	1
	1	3,80	3,40	3,00	2,60	2,38	2,18	2,15	ı	i		1	i	i
]	1	5,38	4,68	4,10	3,60	3,30	3,10	1	Ī		ı	1	1
	1	1	8,80	7,00	6,50	5,78	5,26	4,75	4,38	1	1	1	1	ŀ
	ì	1	1	10,80	10,00	8,00	7,55	88'9	6,17	5,70	1	1	1	1
	1	1	1	i	13,80	12,10	10,60	9,45	8,50	7,70	7,15	1	1	1
	l	1	ı	1	I	19,60	17,10	15,00	13,40	12,00	11,05	10,75		1
	Ī	l	1	1	i	1	25,70	22,50	19,70	17,60	16,00	14,50		1
	1	1	i		i	j	40,40	34,00	30,50	26,60	24,30	21,70	20,00	l
		l	i	Ī	!	ļ	1	53,30	46,50	40,60	36,40	32,50	29,60	27,45
_	1	l	-	ī	1	[1	i	74,20	63,40	56,00	50,00	44,80	41,00
	!	1	ı	1	1	-	1	1	Ī	97,90	85,50	76,60	68,40	62,10
	I	ł	ſ	- 1	1	I	i	1	Ī	138,60	130,00	114,10	100,70	91,90
	1	4,13	3,53	3,06	2,68	2,35	1	1	Ī	1	l	ı	Ţ	١
	Ţ	1	8,32	7,11	6,13	5,29	4,69	4,20	I	1	1	1	Ī	1
	Ţ	1	1	18,07	15,40	13,05	11,38	10,05	8,95		1	l	1	1
			1	١	1	32,66	28,03	24,29	21,21	18,71	16,85	1	1	1
									<u> </u>					
	_		-	_	_		-		_		_	_	_	

2. ТИПЫ, ИСПОЛНЕНИЯ И ОСНОВНЫЕ РАЗМЕРЫ ПРИСОЕДИНИТЕЛЬНЫХ ЭЛЕМЕНТОВ

- 2.1. Для тяговых пластинчатых цепей устанавливаются следующие типы присоединительных элементов:
 - 1.1 специальные пластины с одним отверстием в полке;
 - 1.2 специальные пластины с двумя отверстиями в полке;
 - 1.3 специальные пластины с тремя отверстиями в полке;
 - 2.1 специальные пластины без полки с одним отверстием:
 - 2.2 специальные пластины без полки с двумя отверстиями:
 - 2.3 специальные пластины без полки с тремя отверстиями;
 - 3 удлиненные валики.

Примечание. В цепях неразборной конструкции исполнения 1 с присоединительными элементами типа 3 допускается их установка на звеньях разборной конструкции.

- 2.2. Устанавливаются четыре исполнения специальных пластин по межцентровому расстоянию отверстий:
 - 0 отсутствует (одно отверстие);
 - 1 наименьшее;
 - 2 среднее;
 - 3 наибольшее.
- 2.3. Для присоединительных элементов устанавливается следующее их расположение в цепи:
 - 1 одностороннее;
 - 2 двухстороннее.
- 2.4. Основные размеры присоединительных элементов должны соответствовать черт. 5—7 и табл. 3.

Примечание. Чертежи приведены для указания основных размеров и не предопределяют конструкцию присоединительных элементов.

Допускается изготавливать специальные пластины с отверстиями некруглой формы.

(Измененная редакция, Изм. № 1).

- 2.5. Чередование присоединительных элементов устанавливается при заказе.
- 2.6. Допускается изготовление цепей со специальными пластинами и удлиненными валиками иных типов, исполнений и размеров.

Тип 1.1

Тип 1.2

Тип 1.3

Тип 2.3

Черт. 6

Тип 3

Черт. 7

									I	Типы		
							1.2 и 2.2	2.2	1.2	1.2 и 2.2	1.3 1	1.3 и 2.3
Howen					b_5 ,				Исп	Исполнения		
цепи	de.	Å,	ų,	ı.A	не более	90				61	i	8
							*,1	А	*1	А	*#	А
M20	9,9	7	16	54	84	30	63	20	80	35	100	20
M28	9,0	∞	20	64	100	34	80	25	100	40	125	65
M40	0,6	01	25	70	112	40	80	20	100	40	125	65
M56	11,0	12	30	88	140	49	100	25	125	20	160	82
M80	11,0	15	35	96	160	22	125	20	160	82	200	125
M112	14,0	18	40	110	184	29	125	35	160	65	200	100
M160	14,0	22	45	124	200	79	160	20	200	82	250	145
M224	18,0	25	55	140	228	94	200	65	250	125	315	190
M315	18,0	30	65	160	250	111	200	20	250	100	315	155
M450	18,0	35	75	180	280	129	250	82	315	155	400	240
M630	24,0	1	06	230	380	1	315	100	400	190	200	300
W900	30,0	1	110	280	480	1	315	65	400	155	200	240
_	_		_	_	_		_	_	_	-	_	

* Минимальный шаг t цепи при расстоянии A между отверстиями

Пример условного обозначения тяговой пластинчатой цепи М с разрушающей нагрузкой 112 кН (11200 кгс) типа 2 с шагом 100 мм исполнения 1:

То же, с шагом 200 мм с присоединительными элементами типа 1.3 исполнения 3 с односторонним их расположением (1) и чередованием через 3 шага:

То же, с шагом 100 с присоединительными элементами типа 1.1 исполнения 0, с односторонним их расположением (1) и чередованием через 3 шага:

То же, с присоединительными элементами типа 3 с односторонним их расположением и чередованием через 3 шага:

То же, с присоединительными элементами типа 1.2 (с размерами $h_1\!=\!31,\!5$ и $d_6\!=\!9$), исполнения 1 (с размером $A\!=\!30$), с односторонним их расположением (1) (с полурасстоянием $A_1/2$, для наружных специальных пластин равным 50 и для внутренних = 45) и чередованием через 3 шага:

Цепь
$$M112-2-100-1-1$$
 $(h_1=31,5)\cdot 2$ $(d_6=9)-1$ $(A=30)-1$ $(A_1/2=50/45)-3$ $\Gamma OCT 588-81$

То же, с присоединительными элементами типа 2.1 (с прямоугольными отверстиями размером 9×31), исполнения 0, с двусторонним их расположением (2) и чередованием через 2 шага:

Цепь
$$M112-2-100-1-2\cdot 1(9\times 31)-0-2-2$$
 ГОСТ $588-81$

То же, с присоединительными элементами типа 3 (с размером d_7 =15), с односторонним их расположением (с размером b_6 =72) и чередованием через 4 шага:

$$_{588-81}$$
 Цепь $M112-2-100-1-3(d_7=15)-1$ $(b_6=72)-4$ ГОСТ

Примечание. Для тяговых пластинчатых цепей со специальными пластинами, имеющими иную от установленной на черт. 5 и 6 форму отверстий и присоединительные элементы с размерами, отличающимися от указанных в табл. 3, после соответствующего условного обозначения типа, исполнения и расположения присоединительных элементов в скобках следует указывать обозначение размера и фактическое его значение.

(Измененная редакция, Изм. № 1).

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

3.1. Цепи должны изготавливаться в соответствии с требованиями настоящего стандарта по рабочим чертежам, утвержденным в установленном порядке.

Цепи должны изготавливаться отрезками. Длина отрезка ус-

танавливается по заказу потребителя.

3.2. Выбор марок сталей для деталей цепей должен обеспечивать разрушающие нагрузки не менее указанных в табл. 1.

3.3. Твердость деталей цепей на поверхности должна соответствовать указанной в табл. 5. Твердость пластин регламентируется только для их концов на длине не менее ширины пластины.

Таблина 5

	Твердос	сть, HRC _о
Деталь	Цементированная	Нецементированная
Пластина Валик Втулка Ролик Қаток	5563 51,559 51,559 51,559	3241,5 41,551,5 51,559 3441,5

При применении для изготовителя валиков легированных сталей без цементации допускается увеличение твердости до $51.5...59~\mathrm{HRC}_{\circ}$.

Допускается изготовление катков из чугуна с твердостью поверхности не менее 37 HRC₃.

Общая толщина диффузионного слоя после химико-термической обработки деталей должна составлять 10-25% от толщины стенки втулки и ролика и не менее 4% от диаметра валика (эффективная толщина и переходная зона).

(Введен дополнительно, Изм. № 1).

- 3.4. Детали цепей не должны иметь окалин, трещин, заусенцев, вмятин, рисок, коррозии. Заделка трещин и раковин не допускается.
- 3.5. Собранная цепь должна иметь легкую (без заедания) подвижность в шарнирных соединениях.
- 3.6. Суммарный боковой зазор между наружными и внутренними пластинами собранных цепей не должен быть более указанного в табл. 6.
- 3.7. Крутящие моменты при испытании на проворачивание валика (без лысок) и втулки (без лысок) в одной пластине и усилие выпрессовки одной втулки из пластины не должны быть ниже значений, указанных в табл. 7.

Номер цепи	Суммарный зазор, мм, не более
M 20; M 28; MC 28	1,5
M 40; M 56; MC 56	2,5
M 80; M 112; MC 112	4,0
M 160; M 224; MC 224	5,0
M 315; M 450	6,0
M 630; M 900	7,0
M 1250; M 1800	8,0

Таблица 7

	Крутящий	момент, кгс м	
Номер цепи	Валик	Втулка	Усилие выпрессовки втулки кН (кгс)
M 20 M 28; MC 28 M 40 M 56; MC 56 M 80 M 112; MC 112 M 160 M 224; MC 224 M 315 M 450 M 630 M 900 M 1250 M 1800	0,6 1,1 1,7 2,9 4,0 4,3 6,4 9,5 14,3 22,0 33,0 50,0 75,0 110,0	0,45 0,8 1,3 2,2 3,0 3,2 4,8 7,1 10,7 16,5 24,8 37,5 56,3 82,5	1,3(130) 2,0(200) 2,7(270) 3,7(370) 5,3(530) 8,0(800) 12,0(1200) 15,0(1500) 22,0(2200) 32,0(3200) 44,0(4400) 62,0(6200) 68,0(6800) 116,0(11600)

3.8. Предельное отклонение длины измеряемого отрезка цепи от номинального значения должно быть только положительным и не превышать величины, указанной в табл. 8.

Таблица 8

Шаг цепя, мм	Число звеньев в измеряемом отрезке	Предельное отклонение длины отрезка от номинала, %
40 63	15	0,3
80 125	10	0,28
160 250	8	0,24
315 400	5	0,2
500 630	4	0,18
800 1000	3	0,16

3.9. Показатели надежности цепного контура единичной длины (10 звеньев) приведены в табл. 9.

Таблица 9

Номер цепи	Средняя наработка до отказа, ч	Установленная безотказ- ная наработка, ч
M20 M28; MC28 M40; M56; MC56; M80 M112; MC112 M160 M224; MC224 M315; M450; M630; M900 M1250 M1800	560 540 520 540 530 510 500 490 480	350 330 320 330 330 320 310 300

Критерием отказа является увеличение длины измеряемого отрезка цепи с числом звеньев, указанным в табл. 8, более 3%.

 Π римечание. Для цепного контура, состоящего из n звеньев, показатели надежности увеличиваются в 0,1 п раз.

(Введен дополнительно, Изм. № 1).

A. ITPHEMKA

- 4.1. Для проверки соответствия цепей требованиям настоящего стандарта изготовитель должен проводить приемо-сдаточные и периодические испытания.
- 4.2. Приемо-сдаточным испытаниям подвергают каждую партию цепей на соответствие требованиям пп. 1.5, 3.3—3.8.
- 4.3. Партия должна состоять не более чем из 500 цепей одного типоразмера. Для проведения испытаний от каждой партии цепей должно быть отобрано следующее минимальное количество образцов:

на соответствие п. 1.5 (разрушающая нагрузка);

— один образец длиной не менее трех звеньев;

на соответствие п. 3.3—10 образцов каждого наименования деталей;

на соответствие п. 3.4 —вся партия;

на соответствие п. 3.5—5 цепей (по 4 шарнира); на соответствие п. 3.6—5 цепей (по 20 шарниров); на соответствие п. 3.7—1 цепь (у 5 шарниров); на соответствие п. 3.8—1 цепь (10 замеров).

4.4. Периодические испытания проводят один раз в два года в объеме требований настоящего стандарта.

- 4.5. По требованию потребителя изготовитель должен представить протоколы приемо-сдаточных и периодических испытаний по ГОСТ 15.001—73.
- 4.6. Если в процессе приемо-сдаточных и периодических испытаний хотя бы один из параметров цепей не будет соответствовать требованиям настоящего стандарта, проводят повторное испытание удвоенного количества образцов цепей. Результаты повторных испытаний являются окончательными и распространяются на всю партию.
- 4.7. Показатели надежности цепей контролируют по результатам эксплуатации по ГОСТ 16468—79 и ГОСТ 27.401—84.

(Введен дополнительно, Изм. № 1).

5. МЕТОДЫ ИСПЫТАНИЙ

- 5.1. Твердость и общую толщину диффузионного слоя контролируют в процессе изготовления деталей.
 - 5.2. Внешний осмотр производится невооруженным глазом.
- 5.3. Проверку подвижности шарнирных соединений на соответствие требованиям п. 3.5 производят поворотом от руки звеньев, роликов и катков. При этом цепи должны лежать на горизонтальной плоскости.
- 5.4. Проверка суммарного бокового зазора между пластинами должна осуществляться в цепи, лежащей на горизонтальной плоскости, универсальным измерительным инструментом или специальным калибром. Величина зазора должна соответствовать требованиям п. 3.6.
- 5.5. Проверка прочности соединения валиков и втулок с пластинами производится на универсальных приспособлениях или специальных машинах. Крутящий момент и усилие выпрессовки должны соответствовать требованиям п. 3.7.
- 5.6. Измерение длины отрезка цепи должно производиться при нагрузке, равной 2% от разрушающей нагрузки согласно п. 1.5 табл. 1, при этом цепь должна лежать на горизонтальной плоскости. Длина отрезка измеряется штангенциркулем с погрешностью измерения в соответствии с ГОСТ 8.051—81. Испытание на разрыв производится на универсальных разрывных машинах. Объемы проверок установлены в п. 4.3.

6. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1. Маркировка товарного знака или условного обозначения изготовителя должна быть нанесена клеймением не менее чем на 5% наружных пластин с внешней стороны. Размеры и место нанесения клейма устанавливаются рабочими чертежами.

6.2. Консервация готовых цепей по ГОСТ 9.014—78 должна обеспечивать стойкость против коррозии не менее 6 месяцев со

дня консервации.

6.3. Цепи должны транспортироваться железнодорожным, водным и автотранспортом. При транспортировании цепи должны быть упакованы в дощатые ящики по ГОСТ 10198—78 и ГОСТ 2991—85, выложенные внутри упаковочной бумагой (битумированной или дягтевой по ГОСТ 515—77) или другим водонепроницаемым материалом.

Допускается, по согласованию с заказчиком, транспортирование цепей автотранспортом и в крытых вагонах без упаковки при условии предохранения их от коррозии, абразивного загрязнения и механических повреждений.

6.4. Қаждая партия одного типоразмера должна сопровож-

даться документом, содержащим:

товарный знак или условное обозначение изготовителя;

обозначение цепи по настоящему стандарту; номер партии (согласно п. 4.3);

клеймо ОТК.

6.5. Цепи должны храниться под навесом или в закрытом помещении в условиях, исключающих их механические повреждение и коррозию.

7. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

7.1. Изготовитель должен гарантировать соответствие цепей требованиям настоящего стандарта при условии соблюдения правил транспортирования, хранения и эксплуатации.

7.2. Гарантийный срок эксплуатации— 12 месяцев со дня

ввода цепей в эксплуатацию.

Редактор В. С. Аверина Технический редактор Э. В. Митяй Корректор Г. И. Чуйко

Сдано в наб. 28.04.87 Подп. в печ. 02.07.87 1,5 усл. п. л. 1,625 усл. кр.-отт. 1,34 уч.-изд. л. Тираж 12 000 Цена 5 коп.

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресненский пер., д. 3. Вильнюсская типография Издательства стандартов, ул. Миндауго, 12/14. Зак. 2560.

	LAMMA	
Накиенование	Обозна	чение
THE REPORT OF THE PERSON OF TH	международное	русское
Е ЕДИНИ	цы си	
метр	m	M
килограмм	kg	KL
секунда	s	C
ампер	A	A
кельвин	К	K
моль	mol	моль
кандела	cd	кд
	метр килограмм секунда ампер кельвин моль	международное Е ЕДИНИЦЫ СИ метр m kg kg cекунда s amnep A kg kg kg kg kg kg kg

ДОПОЛНИТЕЛЬНЫЕ ЕДИНИЦЫ СИ

 Плоский угол
 радиан
 rad
 рад

 Телесный угол
 стерадиан
 sr
 ср

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

Величина	Единица			Выражение через
	Наименова- ние	Обозначение		основные и до-
		междуна- родное	русское	полнительные единицы СИ
Частота	герц	Hz	Гц	c-1
Сила	ньютон	N	н	M·KΓ·C ⁻²
Давление	паскаль	Pa	Па	M-1 · K Γ · C-2
Энергия	джоуль	J	Дж	M2 · KT · C-2
Мощность	BOTT	W	Вт	M2·KT·C-3
Количество электричества	кулон	C	Кл	c∙A
Электрическое напряжение	вольт	l v	В	M2-KF-C-3-A-1
Электрическая емкость	фарад	F	Ф	M-2Kr-1.c4.A2
Электрическое сопротивление	ОМ	Ω	OM	M ² ·KΓ·C ⁻³ ·A ⁻²
Электрическая проводимость	сименс	S	CM	M-2Kr-1.c3.A2
Поток магнитной индукции	вебер	Wb	Вб	M2 · Kr · C-2·A-1
Магнитная индукция	тесла	T	Тл	кг∙с-2 • А-1
Индуктивность	генри	Н	Гн	M2 · Kr · C-2 · A-2
Световой поток	люмен	- lm	лм	кд ср
Освещенность	люкс	l _X	лк	м ² • кд • ср
Активность радионуклида	беккерель	Bq	Бк	c−1
Поглощенная доза ионизирую-	йєцт	Gy	Гр	W ₅ · C− ₅
щего излучения	İ		•	
Эквивалентная доза излучения	зиверт	Sv	3в	M ² · C ⁻²