MATH 1B03/1ZC3 Winter 2019

## **Lecture 14: Complex numbers I**

**Instructor: Dr Rushworth** 

**February 26th** 

## **Introduction to complex numbers**

(from Chapter 10.1 and 10.2 of Anton-Rorres 9th edition))

#### What's the point?

In earlier mathematics courses you have encountered quadratic polynomials that do not possess real roots. For example

$$x^2 + 1 = 0$$

has a root exactly when  $x^2=-1$ . But if we restrict to the real numbers, such an x does not exist (as  $x^2\geq 0$  for x real). We encountered this earlier in this course, and saw that it is possible for matrices with real entries to have complex eigenvalues.

What happens if we produce a new number, by defining it to be a solution to

$$x^2 = -1$$

that is, to be the square root of -1? We denote this new number by i, so that

$$i^2 = -1$$

The solutions to the equation

$$x^2 = -1$$

are therefore  $x = \pm i$ .

It turns out that defining this new number yields a rich and deep new theory, known as the theory of complex numbers, which appears in many surprising situations in the natural world.

#### Why should you care?

If you are a mathematician, you should be interested in complex numbers as they represent your first step into a gigantic new realm of number systems distinct to the real numbers. This is the field of <u>abstract algebra</u>, where 0 can be equal to 1, ab is not necessarily ba, and you can add a number to itself and get back to 0, among many other things.

If you are an engineer, a physicist, or studying another science, you will need to understand complex numbers as they are essential tools in the physics of waves, optics, signals processing, electronics, quantum physics, and a great many other physical situations.

#### Misleading names

The name *complex numbers* does not mean that this topic is complicated or more difficult than any others we have been studying. In this context, the word *complex* means

"composed of interconnected parts, formed by a combination of simple elements"

(It comes from the Latin *plectere*: to weave, braid, or intertwine.)

The number i is often referred to as an *imaginary number*. This does not mean that complex numbers don't appear in the real world: the name was chosen a long time ago, and it's too late to change it!

#### **Definition**

## Definition 14.1: The imaginary unit

Denote by i the imaginary unit, defined  $i = \sqrt{-1}$ .

### **Definition 14.2: Complex number**

A complex number z is a number of the form

$$z = a + ib$$

for a, b real numbers.

The collection of all complex numbers is often denoted  $\mathbb{C}$  (collection of all real numbers is denoted  $\mathbb{R}$ ).

There are multiple ways to express the same complex number. For example, we can express complex numbers as ordered pairs of real numbers. That is,

$$z = (a, b) = a + ib$$

The word ordered here means that it matters which order  $\boldsymbol{a}$  and  $\boldsymbol{b}$  appear in, so that

$$a + ib = (a, b) \neq (b, a) = b + ia$$

in general.

#### **Definition 14.3**

Let z = a + ib be a complex number. The real part of z is

$$Re(z) = a$$
.

The imaginary part of z is

$$Im(z) = b$$
.

For example, if z = 17 - 3i then Re(z) = 17, and Im(z) = -3.

If Im(z) = 0, then z is a real number. If Re(z) = 0, then we say that z is an <u>imaginary number</u>. Notice that every real number is a complex number, but not every complex number is a real number.

In this light we see why complex numbers have the name they do: they are made up of a real part, and an imaginary part.

#### **Complex numbers as vectors**

We can represent complex numbers as vectors (this is often the best way to understand them). Let z=a+ib, then:



This set of axes, one real and one imaginary, produces the <u>Argand plane</u> a.k.a an Argand diagram.

Treating complex numbers as special types of vectors often lets us work faster and lets us introduce new concepts.

# **Operations on complex numbers**

The theory of complex numbers would be very boring if we couldn't combine them, or have any other operations.

#### **Definition 14.4**

Let z=a+ib and w=c+id be complex numbers. Then z=w if and only if

$$\operatorname{Re}(z) = \operatorname{Re}(w)$$

$$Im(z) = Im(w)$$
.

#### **Definition 14.5: Operations on complex numbers**

Let z = a + ib and w = c + id be complex numbers.

• Addition:

$$z + w = (a + c) + i(b + d)$$

• Subtraction:

$$z - w = (a - c) + i(b - d)$$

• Multiplication by real numbers: let k be a real number. Then

$$kz = ka + ikb$$

#### Example 14.6

Let 
$$z=-2+i$$
,  $w=2+3i$ . Then 
$$z+w=-2+2+i(1+3)$$
 
$$=4i$$
 
$$z-w=-4-2i$$

If 
$$z = 12 - 4i$$
, then  $\frac{1}{4}z = 3 - i$ .

It is very important to note that it is not possible to order the complex numbers, as we can order real numbers. That is, the symbols <, >,  $\ge$ ,  $\le$  do not make sense.

While complex numbers can be treated as vectors in the plane there are operations which are specific to complex numbers. The first such operation is  $\frac{\text{multiplication}}{\text{multiply two }2\times1}$  matrices together, but we can define a special kind of multiplication for complex numbers.

#### **Definition 14.7: Multiplication of complex numbers**

Let z = a + ib and w = c + id be complex numbers. Define the product

$$zw = (a + ib)(c + id)$$

$$= ac + iad + ibc + i^{2}bd$$

$$= ac - bd + i(ad + bc)$$

(as 
$$i^2 = -1$$
 ).

Notice that zw = wz, so that multiplication of complex numbers is commutative.

## Example 14.8

Let 
$$z = -2 + i$$
,  $w = 2 + 3i$ . Then 
$$zw = (-2 + i)(2 + 3i)$$
$$= -4 - 6i + 2i - 6i^2$$
$$= 6 - 4 + i(2 - 6)$$

Let 
$$z=4-4i$$
 and  $w=4+4i$ . Then 
$$zw=(4-4i)(4+4i)$$

$$iw = (4 - 4i)(4 + 4i)$$
  
=  $16 - 16i^2$   
=  $32$ 

= 2 - 4i

Here we see that it is possible to multiply two complex numbers together to obtain a real number.

We can define powers of complex numbers exactly as they are defined for real numbers.

#### **Definition 14.9: Powers of a complex number**

Let z be a complex number, and k a positive integer. The k-th power of z is denote  $z^k$  and is defined

$$z^k = \underbrace{zz\cdots z}_{k \text{ times}}.$$

For example, if z = 2 - i, then

$$z^{3} = (2 - i)(2 - i)(2 - i)$$

$$= (2 - i)(4 - 4i + i^{2})$$

$$= (2 - i)(3 - 4i)$$

$$= 6 - 8i - 3i + 4i^{2}$$

$$= 2 - 11i$$

We saw in Example 14.8 that if z=4-4i and w=4+4i then zw=32. This was a special case of the following concept.

### **Definition 14.10: Complex conjugate**

Let z=a+ib be a complex number. The <u>complex conjugate</u> of z is denote  $\overline{z}$ , and is defined

$$\overline{z} = a - ib$$

We say "z-bar" for  $\overline{z}$ . The complex conjugate is often simply called the conjugate. For example, if z=18-7i then  $\overline{z}=18+7i$ .

#### Fact 14.11

Let z be a complex number and  $\overline{z}$  its conjugate. Then

$$z\overline{z} = \overline{z}z$$

is a real number.

**Proof:** Let z=a+ib, so that  $\overline{z}=a-ib$  and

$$z\overline{z} = (a+ib)(a-ib)$$
$$= a^2 + iab - iab - b^2i^2$$
$$= a^2 + b^2$$

It is not possible to directly compare the size of complex numbers. However, we can indirectly compare their sizes in the following way.

#### **Definition 14.12: Modulus**

Let z=a+ib be a complex number. The  $\underline{\text{modulus}}$  of z is denoted |z| and is defined

$$|z| = \sqrt{a^2 + b^2}$$

The modulus is also known as the absolute value.

#### Fact 14.13

Let z be a complex number. Then

$$|z|^2 = z\overline{z}$$

**Proof:** Let z = a + ib. Then

$$z\overline{z} = (a+ib)(a-ib)$$

$$= a^2 + b^2$$

$$= (\sqrt{a^2 + b^2})^2$$

$$= |z|^2$$

Notice that if z is a real number, then |z| = z.

Using the modulus we can define division of complex numbers.

## Definition 14.14: Reciprocal of a complex number

Let z = a + ib be a non-zero complex number. We define

$$z^{-1} = \frac{1}{z} = \frac{1}{|z|^2} \overline{z}$$

Why is this definition the correct one? If a is a real number, then

$$a\frac{1}{a}=1.$$

We want to replicate this for complex numbers:

$$z \frac{1}{z} = z \frac{1}{|z|^2} \overline{z}$$

$$= \frac{1}{|z|^2} z \overline{z}$$

$$= \frac{1}{|z|^2} |z|^2, \text{ by Fact 14.13}$$

$$= 1$$

as desired.

Using this, we can manipulate complex fractions. If  $\boldsymbol{z}$  and  $\boldsymbol{w}$  are complex numbers, then

$$\frac{z}{w} = z(\frac{1}{w}) = \frac{1}{|w|^2} z\overline{w}.$$

### **Example 14.15**

**Question:** Express the complex number

$$\frac{7-3i}{-2+5i}$$

in the form a + ib.

**Answer:** Let z = 7 - 3i and w = -2 + 5i.

Then 
$$|w|^2 = (-2)^2 + 5^2 = 29$$
 and 
$$\overline{w} = -2 - 5i$$
 Then 
$$\frac{7 - 3i}{-2 + 5i} = \frac{z}{w}$$
 
$$= \frac{1}{|w|^2} z \overline{w}$$
 
$$= \frac{1}{29} (7 - 3i)(-2 - 5i)$$
 
$$= \frac{1}{29} (-14 - 35i + 6i + 15i^2)$$
 
$$= \frac{1}{29} (-29 - 29i)$$
 
$$= -1 - i$$

We conclude by giving some other important properties of the complex conjugate.

## Fact 14.16: Properties of the complex conjugate

Let  $\boldsymbol{z}$  and  $\boldsymbol{w}$  be complex numbers. Then

• 
$$\overline{z+w} = \overline{z} + \overline{w}$$

• 
$$\overline{z-w} = \overline{z} - \overline{w}$$

• 
$$\overline{zw} = (\overline{z})(\overline{w})$$

• 
$$\frac{\overline{z}}{w} = \frac{\overline{z}}{\overline{w}}$$

• 
$$\overline{\overline{z}} = z$$

# **Suggested Problems**

Practice the material covered in this lecture by attempting the following questions from Chapter 10.1 of Anton-Rorres 9th Edition (available on the coursepage)

• Questions 5, 11, 17, 19, 21, 22

and the questions from Chapter 10.2 of Anton-Rorres 9th Edition

• Questions 9, 11, 15, 16, 19, 21