Funções

Composição de funções

Funções

Universidade de Aveiro 2020/2021

Moodle http://elearning.ua.pt

MS Teams http://bit.ly/30oFHIB

Função, conjunto de partida e conjunto de chegada

Definição (de função)

Sejam A e B dois conjuntos e $f \subset A \times B$ uma relação entre A e B. Se, para todo $x \in A$ existe um e um só $y \in B$ tal que $(x,y) \in f$, diz-se que f é uma função definida em A e imagem em B. Nestas condições A designa-se conjunto de partida e B conjunto de chegada.

Função, conjunto de partida e conjunto de chegada

Definição (de função)

Sejam $A \in B$ dois conjuntos e $f \subseteq A \times B$ uma relação entre $A \in B$. Se, para todo $x \in A$ existe um e um só $y \in B$ tal que $(x, y) \in f$, diz-se que f é uma função definida em A e imagem em B. Nestas condições A designa-se conjunto de partida e B conjunto de chegada.

• Usualmente escreve-se: f(x) = y, em vez de $(x, y) \in f$.

Função, conjunto de partida e conjunto de chegada

Definição (de função)

Sejam $A \in B$ dois conjuntos e $f \subseteq A \times B$ uma relação entre $A \in B$. Se, para todo $x \in A$ existe um e um só $y \in B$ tal que $(x, y) \in f$, diz-se que f é uma função definida em A e imagem em B. Nestas condições A designa-se conjunto de partida e B conjunto de chegada.

- Usualmente escreve-se: f(x) = y, em vez de $(x, y) \in f$.
- Também se escreve $f: A \rightarrow B$ ou

$$f: A \rightarrow B$$

 $x \mapsto f(x)$

para significar que f é uma função definida em A e com imagem em B.

Exemplo: De entre as relações binárias entre $A = \{1, 2, 3\}$ e $B = \{a, b, c, d\}$ a seguir indicadas, vamos determinar as que são funções.

- 1) $f = \{(1, a), (2, a), (3, b)\}.$
- 2) $g = \{(1, a), (2, c), (3, d), (2, b)\}.$
- 3) $h = \{(1, a), (2, b)\}.$

Funções injectivas, sobrejectivas e bijectivas

Uma função $f: A \rightarrow B$ diz-se

injectiva se

$$f(x) = f(y) \Rightarrow x = y$$
, quaisquer que sejam $x, y \in A$;

Funções injectivas, sobrejectivas e bijectivas

Uma função $f: A \rightarrow B$ diz-se

injectiva se

$$f(x) = f(y) \Rightarrow x = y$$
, quaisquer que sejam $x, y \in A$;

sobrejectiva se

para todo
$$y \in B$$
 existe $x \in A$ tal que $f(x) = y$;

Funções injectivas, sobrejectivas e bijectivas

Uma função $f: A \rightarrow B$ diz-se

injectiva se

$$f(x) = f(y) \Rightarrow x = y$$
, quaisquer que sejam $x, y \in A$;

Composição de funções

sobrejectiva se

para todo
$$y \in B$$
 existe $x \in A$ tal que $f(x) = y$;

bijectiva se é injectiva e sobrejectiva.

Vamos classificar as funções a seguir indicadas quanto à injectividade e sobrejectividade.

1)
$$f: \mathbb{N} \rightarrow \mathbb{N}$$

 $n \mapsto 2n$

Vamos classificar as funções a seguir indicadas quanto à injectividade e sobrejectividade.

- 1) $f: \mathbb{N} \to \mathbb{N}$ $n \mapsto 2n$
- 2) $g: \mathbb{Z} \rightarrow \mathbb{N} \cup \{0\}$ $n \mapsto n^2$

Vamos classificar as funções a seguir indicadas quanto à injectividade e sobrejectividade.

- 1) $f: \mathbb{N} \to \mathbb{N}$ $n \mapsto 2n$
- 2) $g: \mathbb{Z} \rightarrow \mathbb{N} \cup \{0\}$ $n \mapsto n^2$
- 3) $h: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^3$

Vamos classificar as funções a seguir indicadas quanto à injectividade e sobrejectividade.

1)
$$f: \mathbb{N} \to \mathbb{N}$$

 $n \mapsto 2n$

2)
$$g: \mathbb{Z} \rightarrow \mathbb{N} \cup \{0\}$$

 $n \mapsto n^2$

3)
$$h: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^3$

4)
$$i: \mathbb{Z} \rightarrow \mathbb{N}$$
 definido por $i(n) = \begin{cases} 2n+1 & \text{se } n \geq 0 \\ -2n & \text{se } n < 0 \end{cases}$

Funções iguais

Definição (de igualdade de funções)

Duas funções f e g dizem-se iguais (e escreve-se f = g) se

- 1) dom(f) = dom(g) = D e $f, g : D \rightarrow B$;
- 2) f(x) = g(x) para todo $x \in D$.

Funções iguais

Definição (de igualdade de funções)

Duas funções f e g dizem-se iguais (e escreve-se f = g) se

- 1) dom(f) = dom(g) = D e $f, g : D \rightarrow B$;
- 2) f(x) = g(x) para todo $x \in D$.

Exercício

De entre as funções a seguir indicadas, quais as que são iguais?

- 1) $f(x) = x^3 + x^2 x 1, x \in \mathbb{Z};$
- 2) $g(x) = x^3 + x^2 x 1$, $x \in \mathbb{R}$;
- 3) $h(x) = (x^2 1)(x + 1), x \in \mathbb{R}.$

Definição (de imagem e imagem recíproca)

Considere a função $f : A \rightarrow B$ e os subconjuntos $X \subseteq A$ e $Y \subseteq B$.

Designa-se imagem de X por f, o conjunto

$$f(X) = \{b \in B : f(x) = b, \text{ para algum } x \in X\}.$$

Por sua vez, img(f) = f(A).

Designa-se imagem recíproca de Y por f, o conjunto

$$f^{-1}(Y) = \{a \in A : f(a) \in Y\}.$$

Definição (de imagem e imagem recíproca)

Considere a função $f: A \rightarrow B$ e os subconjuntos $X \subseteq A$ e $Y \subseteq B$.

Designa-se imagem de X por f, o conjunto

$$f(X) = \{b \in B : f(x) = b, \text{ para algum } x \in X\}.$$

Por sua vez, img(f) = f(A).

Designa-se imagem recíproca de Y por f, o conjunto

$$f^{-1}(Y) = \{a \in A : f(a) \in Y\}.$$

Nota: quando $Y = \{y\}$, escreve-se $f^{-1}(y)$ em vez de $f^{-1}(\{y\})$.

Exercício

Considerando a função

$$g: \quad \mathbb{Z} \quad \to \quad \mathbb{N} \cup \{0\}$$

$$n \quad \mapsto \quad n^2$$

e os conjuntos $X_1 = \{-4, -3, -2, -1\}$ e $X_2 = \{1, 2, 3, 4\}$, determine:

1)
$$g(X_1)$$
;

Exercício

Considerando a função

$$g: \quad \mathbb{Z} \quad \to \quad \mathbb{N} \cup \{0\}$$

$$n \quad \mapsto \quad n^2$$

e os conjuntos $X_1 = \{-4, -3, -2, -1\}$ e $X_2 = \{1, 2, 3, 4\}$, determine:

- 1) $g(X_1)$;
- 2) $g(X_2)$;

Exercício

Considerando a função

$$g: \ \mathbb{Z} \to \mathbb{N} \cup \{0\}$$
$$n \mapsto n^2$$

e os conjuntos $X_1 = \{-4, -3, -2, -1\}$ e $X_2 = \{1, 2, 3, 4\}$, determine:

- 1) $g(X_1)$;
- 2) $g(X_2)$;
- 3) $g^{-1}(X_2)$.

Composição de funções

Sequências

Definição (de sequência finita)

Uma sequência finita de um conjunto A é uma função

$$a: [k] \rightarrow A$$
 $n \mapsto a(n)$

onde $[k] = \{1, 2, ..., k\}$. Neste caso, *a* diz-se uma sequência de comprimento k.

Sequências

Definição (de sequência finita)

Uma sequência finita de um conjunto A é uma função

$$a: [k] \rightarrow A$$

 $n \mapsto a(n)$

onde $[k] = \{1, 2, ..., k\}$. Neste caso, a diz-se uma sequência de comprimento k.

Notação:

- Escrevemos a_n em vez de a(n);
- Uma sequência a de k elementos de um conjunto A denota-se por

$$a = (a_1, ..., a_k), a_i \in A, i = 1, ..., k$$

Composição de funções

Exemplo

• Considerando a função

$$a: [3] \rightarrow \mathbb{N}$$
 $n \mapsto 2n$

podemos denota-la por a = (2, 4, 6).

• Considerando a função

$$a: [3] \rightarrow \mathbb{N}$$

 $n \mapsto 2n$

Composição de funções

podemos denota-la por a = (2, 4, 6).

• Deve observar-se que se trata de uma sequência de comprimento 3.

Sucessão

Definição (de sucessão)

Uma sucessão de elementos de um conjunto A é uma sequência com uma infinidade de elementos do conjunto A (que se designam por termos), ou seja, é uma função

 $a: \mathbb{N} \to A$.

Sucessão

Definição (de sucessão)

Uma sucessão de elementos de um conjunto A é uma sequência com uma infinidade de elementos do conjunto A (que se designam por termos), ou seja, é uma função

$$a: \mathbb{N} \to A$$
.

Notação: a sucessão $(a_1, a_2, ...)$ denota-se por $(a_n)_{n \in \mathbb{N}}$.

Sucessão

Definição (de sucessão)

Uma sucessão de elementos de um conjunto A é uma sequência com uma infinidade de elementos do conjunto A (que se designam por termos), ou seja, é uma função

$$a: \mathbb{N} \to A$$
.

Notação: a sucessão $(a_1, a_2, ...)$ denota-se por $(a_n)_{n \in \mathbb{N}}$.

Exemplo: $(2n)_{n\in\mathbb{N}}$ é a sucessão $(2,4,6,8,\ldots)$.

A composição de funções é um caso particular da composição de relações

Se
$$f: A \rightarrow B$$
 e $g: B \rightarrow C$, então

$$g \circ f: A \rightarrow C$$

 $x \mapsto g \circ f(x) = g(f(x))$

A composição de funções é um caso particular da composição de relações

Se $f: A \rightarrow B$ e $g: B \rightarrow C$, então

$$g \circ f: A \rightarrow C$$

 $x \mapsto g \circ f(x) = g(f(x))$

Exemplo: considerando as funções

$$f: \mathbb{R} \to \mathbb{R}$$
 e $g: \mathbb{R} \to \mathbb{R}$
 $x \mapsto x+1$ $x \mapsto 3x$

vamos determinar as funções $g \circ f \in f \circ g$.

Mais geralmente

Dada a família de funções $f_i: A_i \to A_{i+1}, i = 1, \dots, p$, define-se a função composta

Mais geralmente

Dada a família de funções $f_i: A_i \to A_{i+1}, i = 1, ..., p$, define-se a função composta

$$f_p \circ f_{p-1} \circ \cdots \circ f_1 : A_1 \rightarrow A_{p+1}$$

 $x \mapsto f_p(f_{p-1}(\ldots(f_1(x))))$

Exemplo: considerando a função $f: \mathbb{N} \to \mathbb{N}$ definida por $f(n) = \begin{cases} 3n+1 & \text{se } n \text{ \'e impar} \\ \frac{n}{2} & \text{caso contrário} \end{cases}$

escolhendo $n_1 \in \mathbb{N}$, podemos definir sequência

$$n_{k+1} = f(n_k), k = 1, 2, \dots$$

ou seja, $n_{k+1} = f^k(n_1), k = 1, 2, \dots$ Assim, n_{k+1} é a imagem de n_1 pela composição k vezes da função f com ela própria.

O problema de Collatz

Relativamente à função *f* anteriormente definida, compondo *f* com ela própria, obtêm-se sucessivamente os valores:

```
f(1) = 4, f(4) = 2, f(2) = 1.

f(2) = 1.

f(3) = 10, f(10) = 5, f(5) = 16, f(16) = 8, f(8) = 4, f(4) = 2.

f(5) = 16, f(16) = 8, f(8) = 4.

f(6) = 3.

f(6) = 3.
```

Note-se que a partir do momento que se obtém 1, a sequência passa a ser 1, 4, 2, 1, 4, 2, 1, Aparentemente, qualquer que seja o número inicial, a sequência obtida passa por 1.

O problema de Collatz

Relativamente à função *f* anteriormente definida, compondo *f* com ela própria, obtêm-se sucessivamente os valores:

```
f(1) = 4, f(4) = 2, f(2) = 1.

f(2) = 1.

f(3) = 10, f(10) = 5, f(5) = 16, f(16) = 8, f(8) = 4, f(4) = 2.

f(4) = 2.

f(5) = 16, f(16) = 8, f(8) = 4.

f(6) = 3.

f(6) = 3.
```

Note-se que a partir do momento que se obtém 1, a sequência passa a ser 1,4,2,1,4,2,1,.... Aparentemente, qualquer que seja o número inicial, a sequência obtida passa por 1. Conjectura de Collatz. $\forall n \in \mathbb{N} \ \exists k \in \mathbb{N} : f^k(n) = 1$.

Restrições e extensões de funções

Definição

Dada uma função $f: A \rightarrow B$ e $X \subseteq A$, designa-se por restrição de f a X (e escreve-se $f|_X$), a função $f|_X: X \to B$ definida por $f|_{X}(x) = f(x)$, para todo $x \in X$.

Composição de funções

Por sua vez, diz-se que f é uma extensão de $f|_X$ a A.

Restrições e extensões de funções

Definição

Dada uma função $f: A \to B$ e $X \subseteq A$, designa-se por restrição de f a X (e escreve-se $f|_X$), a função $f|_X: X \to B$ definida por $f|_X(x) = f(x)$, para todo $x \in X$.

Composição de funções

Por sua vez, diz-se que f é uma extensão de $f|_X$ a A.

Exemplo: considerando a função $f: \mathbb{N} \to \mathbb{N}$ definida por $f(n) = n^2$, para todo $n \in \mathbb{N}$ e $X = \{1, 2, 3\} \subseteq \mathbb{N}$. A restrição de f a X é a função $f|_X = \{(1, 1), (2, 4), (3, 9)\}$.

Função identidade e função inversa

Definição (de função identidade)

A função

$$id: A \rightarrow A$$
$$x \mapsto x$$

designa-se por função identidade sobre A.

Função identidade e função inversa

Definição (de função identidade)

A função

$$\text{id}: \quad \begin{matrix} A & \rightarrow & A \\ & x & \mapsto & x \end{matrix}$$

Composição de funções

designa-se por função identidade sobre A.

Nota: a função identidade é uma bijecção (a notação ida é utilizada para indicar que se trata da função identidade definida em A).

Função invertível

Definição (de função invertível)

Uma função $f: A \rightarrow B$ diz-se invertível se existe uma função $g: B \to A$ tal que

Composição de funções

$$g \circ f = id_A$$
 e $f \circ g = id_B$.

A função g designa-se por função inversa de f e denota-se

Função invertível

Definição (de função invertível)

Uma função $f:A\to B$ diz-se invertível se existe uma função $g:B\to A$ tal que

$$g \circ f = id_A$$
 e $f \circ g = id_B$.

A função g designa-se por função inversa de f e denota-se f^{-1} .

Nota: observe-se que se f é invertível, então f^{-1} também é e $(f^{-1})^{-1} = f$.

Função invertível

Definição (de função invertível)

Uma função $f: A \rightarrow B$ diz-se invertível se existe uma função $g: B \to A$ tal que

$$g \circ f = id_A$$
 e $f \circ g = id_B$.

A função q designa-se por função inversa de f e denota-se

Nota: observe-se que se f é invertível, então f^{-1} também é e $(f^{-1})^{-1} = f$.

Teorema

Uma função é invertível se e só se é uma bijecção.

Vamos determinar, caso existam, as inversas das seguintes funções:

Funções

Vamos determinar, caso existam, as inversas das seguintes funções:

1)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = ax + b$, onde $a, b \in \mathbb{R}$ e $a \neq 0$;

Funções

Vamos determinar, caso existam, as inversas das seguintes funções:

- 1) $f: \mathbb{R} \to \mathbb{R}$, f(x) = ax + b, onde $a, b \in \mathbb{R}$ e $a \neq 0$;
- 2) $g: \mathbb{R} \to (0, +\infty)$, tal que $g(x) = e^x$;

Vamos determinar, caso existam, as inversas das seguintes funções:

- 1) $f: \mathbb{R} \to \mathbb{R}$, f(x) = ax + b, onde $a, b \in \mathbb{R}$ e $a \neq 0$;
- 2) $g: \mathbb{R} \to (0, +\infty)$, tal que $g(x) = e^x$;
- 3) $h: \mathbb{Z} \to \mathbb{N}$, tal que $h(n) = \begin{cases} 2n+1 & \text{para} & n \geq 0 \\ -2n & \text{para} & n < 0 \end{cases}$.

- Referência bibliográfica principal:
 - D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2009.

Referências bibliográficas

- Referência bibliográfica principal:
 - D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2009.
- Referências bibliográficas complementares:
 - N. L. Biggs, *Discrete Mathematics*, Oxford University Press, 2nd Ed. (2002).
 - J. S. Pinto, *Tópicos de Matemática Discreta*, Universidade de Aveiro 1999 (disponível na página da disciplina).