

开环放大倍数:
$$\dot{A} = \frac{\dot{x}_o}{\dot{x}_i'}$$

反馈系数:
$$\dot{\mathbf{F}} = \frac{\dot{\mathbf{X}}_{\mathbf{f}}}{\dot{\mathbf{X}}_{\mathbf{0}}}$$

闭环放大倍数:
$$\dot{A} = \frac{\dot{X}_0}{\dot{X}_i} = \frac{\dot{A}}{1+\dot{A}\dot{F}}$$

- ① |1+ AF|>1时, 是负反馈
- ② $|1 + \dot{A}\dot{F}| \gg 1$ 时,是深度负反馈,此时 $\dot{A} = \frac{\dot{X}_0}{\dot{X}_1} = \frac{\dot{A}}{1 + \dot{A}\dot{F}} \approx \frac{1}{\dot{F}}$
- ③ |1+ ÀF | <1时, 是正反馈
- ④ | 1 + AF | = 1 时, 无反馈
- ⑤ 1 + AF = 0 时, 是正反馈, 自激现象

- 2、反馈:将电路的输出量(电压或电流)的一部分或全部通过反馈网络,用一定的方式送回到输入回路,以影响输入量(电压或电流)的过程
- 3、直流反馈:存在于放大电路直流通路中的反馈(将输出的直流信号引回到电路的输入端)
- 4、交流反馈:存在于放大电路交流通路中的反馈(将输出的交流信号引回到电路的输入端)
- 5、正反馈: 反馈信号回送到输入回路中与原输入信号共同作用后, 使净输入信号增强
- 6、负反馈: 反馈信号回送到输入回路中与原输入信号共同作用后, 使净输入信号减小

7、负反馈放大电路的四种基本组态:

电压串联负反馈 电压并联负反馈 电流串联负反馈 电流串联负反馈

8、反馈量由输出量决定,与输入量无关

9、负反馈对输入电阻、输出电阻的影响以及电路组态的特点、用途

	电压串联	电压并联	电流串联	电流并联
输入电阻Ri	增大	减小	增大	减小
输出电阻R _o	减小	減小	增大	增大
特点	稳定输出电压		稳定输出电流	
用途	电压放大	电流—电压变换	电压—电流变换	电流放大

10、直流负反馈与交流负反馈的作用

稳定放大倍数

交流负反馈《改变输入电阻、输出电阻

展宽频带

正反馈 (产生振荡) 产生正弦波信号