Semantic Segmentation

Deep Learning and Image Processing

Image Understanding (Recognition)

Image Classification

Tree

Grass

Post

Car

Post

Goal: Assign a semantic label to every pixel in the image (objects and stuff)

Semantic Segmentation

Object Detection

Instance Segmentation

combination of both: panoptic segmentation

A Few More Image Data Sets

PASCAL VOC Data Set

- PASCAL Visual Object Class challenge
- widely used as benchmark for object detection and semantic segmentation
- 20 object categories such as person, sofa, sheep, car, ...
- 11530 annotated images
- available annotations: pixel-level segmentation, bounding boxes, object classes

MS COCO Data Set

- Microsoft Common Objects in Context
- images of complex everyday scenes containing common objects in their natural context
- 91 objects types
- 2.5 million annotated instances in 328k images → instance segmentation

Cityscapes Data Set

- goal: semantic understanding of urban street scenes (captured in 50 cities)
- pixel annotations for 30 classes (person, car, building, ...)
- 5000 fine-annotated and 20000 coarse-annotated images

Semantic Segmentation

Object Segmentation from DINO

thresholding self-attention map of last layer:

Source

not a full segmentation mask though ...

Classification of Each Pixel

segmentation: no objects, just pixels

GRASS, CAT, TREE, SKY, ...

Paired training data: for each training image, each pixel is labeled with a semantic category.

At test time, classify each pixel of a new image.

minimize sum over classification losses (cross-entropy loss at every output pixel)

Idea: Fully Convolutional, No Downsampling

replace flattened, fully-connected classification layers with 1×1 convolutions \rightarrow maintain spatial relationships and enable pixel-wise classification: conversion of feature maps into classification heat maps (one for each class)

but no downsampling means small receptive field and no hierarchical learning

Upsampling to the Rescue

typical spatial feature extraction: convolution and pooling layers → downsampling

upsampling layers to restore original image size

Input: 3 x H x W

pixel-wise classification

Predictions: H x W

different options for down- (pooling, strided convolution) and upsampling ...

Reverse Pooling

resampling (no learned parameters) Nearest Neighbor 1 1 2 2 1 1 2 2 3 4 4 3 3 4 4 Input: 2 x 2 Output: 4 x 4

unpooling (recording max positions from pooling)

filled with learned parameters in subsequent convolution

Reverse Convolution

convolution

not inverse convolution

→ additional learned parameters

U-Net

also used for learning of depth maps, image synthesis (diffusion), ...

Aside: Autoencoders

Autoencoder

(deep) encoder network (deep) decoder network learned together by minimizing differences between original input and reconstructed input (expressed as losses)

compressed intermediate representation: dimensionality reduction (alternative to PCA)

Denoising Autoencoder

goal: avoid overfitting and improve robustness of plain autoencoder

learn to remove noise of distorted input $\tilde{x} \rightarrow$ restore original input x

similar to dropout

alternative to deconvolution (image restoration)