Общие методы для более быстрого обучения и более эффективных моделей

Егор Швецов

tg: @dalime e-mail: e.shvetsov@skoltech.ru

План на сегодня:

- Данные
 - Дата лоадеры
 - Выбор данных и активное обучение
- Про ускорение работающих моделей Torch JIT, Tensor RT и ONNX, Torch Dynamo

>>> Данные

<u>Размер данных:</u> датасеты часто превышают емкость локального дискового хранилища, что требует распределенных систем хранения и эффективного доступа к сети.

Скорость передачи данных: ограниченная скорость I/O.

<u>Аугментация и перемешивание:</u> данные для обучения необходимо перемешивать и аугментировать.

<u>Масштабируемость:</u> пользователи часто хотят разрабатывать и тестировать небольшие наборы данных, а затем быстро масштабировать их до больших наборов данных.

- WebDataset
- TFRecord
- MXNet RecordIO
- FFCV

- Разобьем датасет на шарды
- Соберем все в один файл

Возможность поиска/индексируемость.

Хороший формат данных должен также изначально поддерживать быстрый доступ только к определенному подмножеству данных.

FFCV — библиотека для простого и быстрого обучения моделей машинного обучения.

FFCV ускоряет обучение модели за счет устранения (часто незаметных) узких мест в загрузке данных из процесса обучения.

В частности:

- Эффективный формат хранения файлов
- Кэширование
- Предварительная загрузка
- Асинхронная передача данных
- JIT компиляция для загрузки данных

ImageNet ResNet-50 75% за 20 минут на одной машине.

FFCV — библиотека для простого и быстрого обучения моделей машинного обучения.

FFCV ускоряет обучение модели за счет устранения (часто незаметных) узких мест в загрузке данных из процесса обучения.

В частности:

- Эффективный формат хранения файлов
- Кэширование
- Предварительная загрузка
- Асинхронная передача данных
- JIT компиляция для загрузки данных

ImageNet ResNet-50 75% за 20 минут на одной машине.

AN EMPIRICAL STUDY OF EXAMPLE FORGETTING DURING DEEP NEURAL NETWORK LEARNING

>>> Case Study

Профилировка:

Для определения медленных участков кода была проведена профилировка. Были обнаружены 2 слабых места: sklearn метрики и загрузка данных. Первая проблема ощущалась наиболее остро, т.к. сильно замедляла обучение со временем (рисунки до/после оптимизации ниже, ускорение с ~350 до ~46 тs). Решением первой проблемы был переход к torchmetrics, второй - webdataset. Переход к torchmetrics обусловлен также тем, что данная библиотека поддерживает ddp, mixed precision и работу на GPU.

Для ускорения обучения были имплементированы <u>multi-дри</u> и <u>ddp</u> методы.

<u>Multi-дри</u> подразумевает обучение одной архитектуры на одной видеокарте, <u>ddp</u> (distribute data parallel) - обучение одной модели на нескольких видеокартах путем распределения батча между видеокартами. Второй метод используется в тех случаях, когда использование первого невозможно, например в методе Diff NAS.

Также для ускорения были заменены <u>torch nn.LayerNorm</u> на арех <u>FusedLayerNorm</u> om Nvidia и оптимизаторы SGD и ADAM на <u>FusedSGD</u> и <u>FusedADAM</u>.
Поддерживаемые методы ускорения поиска оптимальной архитектуры

Для ускорения обучения были имплементированы <u>multi-дри</u> и <u>ddp</u> методы.

<u>Multi-дри</u> подразумевает обучение одной архитектуры на одной видеокарте, <u>ddp</u> (distribute data parallel) - обучение одной модели на нескольких видеокартах путем распределения батча между видеокартами. Второй метод используется в тех случаях, когда использование первого невозможно, например в методе Diff NAS.

Также для ускорения были заменены <u>torch nn.LayerNorm</u> на арех <u>FusedLayerNorm</u> om Nvidia и оптимизаторы SGD и ADAM на <u>FusedSGD</u> и <u>FusedADAM</u>.
Поддерживаемые методы ускорения поиска оптимальной архитектуры

Onmuмизация по памяти с mixed precision и FusedLayerNorm на примере датасета атех и трансформера.

Dataset	Model	Mixed Precision	FusionLayerNorm	Batch	GPU mem	Saved mem
amex	EncoderDecoderModel	False	False	512	4.0 GB	0 GB
amex	EncoderDecoderModel	True	False	512	4.4 GB	- 0.4 GB
amex	EncoderDecoderModel	True	True	512	2.9 GB	1.1 GB
amex	EncoderDecoderModel	False	False	1024	6.9 GB	0 GB
amex	EncoderDecoderModel	True	False	1024	7.8 GB	- 0.9 GB
amex	EncoderDecoderModel	True	True	1024	4.7 GB	2.3 GB

Вывод: переход от ADAM к FusedADAM дает ускорение до 30%, а замена <u>LayerNorm</u> сильно уменьшает потребляемую видеокартой память (из-за особенности реализации архитектуры трансформера) для mixed precision. На следующих слайдах будут приведены результаты ускорения.

Onmumusaция по времени с использованием FusedAdam на примере gamacema amex и трансформера.

Dataset	Model	Mixed Precision	FusedAdam	Batch	time/epoch	Speedup
amex	EncoderDecoderModel	False	False	512	498 sec	0 %
amex	EncoderDecoderModel	True	False	512	387 sec	22 %
amex	EncoderDecoderModel	True	True	512	342 sec	<u>31 %</u>
amex	EncoderDecoderModel	False	False	1024	380 sec	0 %
amex	EncoderDecoderModel	True	False	1024	320 sec	16 %
amex	EncoderDecoderModel	True	True	1024	280 sec	26 %

Вывод: переход от ADAM к FusedADAM дает ускорение до 30%, а замена <u>LayerNorm</u> сильно уменьшает потребляемую видеокартой память (из-за особенности реализации архитектуры трансформера) для mixed precision. На следующих слайдах будут приведены результаты ускорения.

Docs » Apex (A PyTorch Extension)

C Edit on GitHub

Apex (A PyTorch Extension)

This site contains the API documentation for Apex (https://github.com/nvidla/apex), a Pytorch extension with NVIDIA-maintained utilities to streamline mixed precision and distributed training. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Installation instructions can be found here: https://github.com/NVIDIA/apex#quick-start.

Some other useful material, including GTC 2019 and Pytorch DevCon 2019 Slides, can be found here: https://github.com/mcarilli/mixed_precision_references.

AMP: Automatic Mixed Precision

· apex.amp

Distributed Training

apex.parallel

Fused Optimizers

apex.optimizers

Fused Layer Norm

· apex.normalization.fused_layer_norm

Indices and tables

- Index
- Module Index

Next O

https://nvidia.github.io/apex/

Compiler	Interpreter
Компилятор работает со всем кодом сразу	Работает с кодом по мере того как читает его
Компилятор генерирует машинный код	Не создает промежуточно представления в виде машинного кода
Компилятор подходит для продакшена	Хорошо подходит для быстрой разработки

	Programming Languages	Compilers and Interpreters version
Compiled	C, C++ Go Rust	gcc version 6.3.1 20161221- go version go1.7.5 rustc version 1.18.0
Semi- Compiled	VB.NET C# Java	mono version 4.4.2.0 (vbnc) mono version 4.4.2.0 (mics) javac version 1.8.0_131
Interpreted	JavaScript Perl PHP Python R Ruby Swift	node version 6.10.3 perl version 5.24.1 php version 7.0.19 python version 2.7.13 Rscript version 3.3.3 ruby version 2.3.3p222 swift version 3.0.2

Compiler

Компиляторы преобразуют код языка высокого уровня в машинный код за один сеанс. (1) <u>Компиляторам может потребоваться некоторое время</u>, поскольку им приходится сразу транслировать код высокого уровня на машинный язык более низкого уровня, а затем сохранять исполняемый объектный код в памяти. (2) <u>Компилятор создает машинный код, который выполняется на процессоре с определенной архитектурой</u> набора инструкций (ISA), которая зависит от процессора. Например, вы не сможете скомпилировать код для х86 и запустить его на архитектуре MIPS без специального компилятора. (3) <u>Компиляторы также зависят от платформы.</u> То есть компилятор может преобразовать, например, C++ в машинный код, предназначенный для платформы, на которой работает ОС Linux. Однако кросс-компилятор может генерировать код для платформы, отличной от той, на которой он работает сам.

Интерпретоторы

Существует несколько типов интерпретаторов:

- Синтаксически-управляемый интерпретатор (т. е. интерпретатор абстрактного синтаксического дерева (AST))
- Интерпретатор байт-кода и многопоточный интерпретатор (не путать с потоками параллельной обработки)
- JIT-интерпретатор (разновидность гибридного интерпретатора/компилятора) и некоторые другие.

Примерами языков программирования, использующих интерпретаторы, являются Python, Ruby, Perl и PHP.

Just-in-time - компиляция «точно в срок» — это метод повышения производительности интерпретируемых программ. Во время выполнения программа может быть скомпилирована в нативный код для повышения производительности..

Статическая компиляция преобразует код в язык для конкретной платформы. **Интерпретатор непосредственно выполняет исходный код.**

JIT-компиляция пытается использовать преимущества обоих. Пока интерпретируемая программа выполняется, JIT-компилятор определяет наиболее часто используемый код и компилирует его в машинный код.

В зависимости от компилятора это преобразование может выполняться для небольшого участка кода или для всего.

Что важно понимать о JIT-компиляции, так это то, что она скомпилирует байт-код в инструкции машинного кода работающей машины. Это означает, что полученный машинный код оптимизирован для архитектуры ЦП работающей машины.

Динамический анализ делает JIT очень эффективным:

- Например. он запускает код и видит, что код использует только целые числа, поэтому мы можем оптимизировать эту часть.
- Он содержит больше информации, чем компилятор.

Dynamic Analysis makes JIT very effective:

- E.g. it runs code and sees that it uses only integers, so we can
 optimize that part.
- It has more information than a compiler

Dynamic Analysis makes JIT very effective:

- E.g. it runs code and sees that it uses only integers, so we can
 optimize that part.
- It has more information than a compiler

```
diff?@droid: time python3 add_random.py 5
0.044
diff?@droid: time pypy3 add_random.py 5
0.897
diff?@droid:

def my_add(x,y):
    return x+y

a = 0
w = ''
for _in range(int(10**s)):
    if random.random() > 0.5:
        w+=my_add('a','b')
    else:
        a +=my_add(1,1)
```

Python Global Interpreter Lock (GIL)

К чему это все?

- Хотим уметь перенести код в другую среду выполнения (любую)

- Хотим уметь перенести код в другую среду выполнения (любую)
- Хотим адаптировать код под текущее железо (любое)

- Хотим уметь перенести код в другую среду выполнения (любую)
- Хотим адаптировать код под текущее железо (любое)
- Хотим адаптировать код в принципе (чуть позже о том как)

- Хотим уметь перенести код в другую среду выполнения (любую)
- Хотим адаптировать код под текущее железо (любое)
- Хотим адаптировать код в принципе (чуть позже о том как)
- Хотим избавиться от Python GIL

- Xomuм уметь перенести код в другую среду выполнения (любую)
- Хотим адаптировать код под текущее железо (любое)
- Хотим адаптировать код в принципе (чуть позже о том как)
- Хотим избавиться от Python GIL
- Хотим чтобы это было удобно

Dynamic control flow	Когда выполнение зависит от данных if x[0] == 4: x += 1
Tracing	Метод экпорта. Он запускает модель с определенными входными данными и «отслеживает/записывает» все выполняемые операции в граф.
Scripting	Еще один способ экспорта. Он анализирует исходный код модели на Python и компилирует код в граф.
TorchScript	TorchScript gaem нам представление, в котором мы можем оптимизировать код компилятором, чтобы обеспечить более эффективное выполнение.
torch.jit.trace	При использовании torch.jit.trace вы предоставляете свою модель и образец входных данных в качестве аргументов. Входные данные будут передаваться через модель, как при обычном запуске, выполненные операции будут отслеживаться и записываться в TorchScript. Логическая структура будет заморожена в пути, выбранном во время выполнения.
torch.jit.script	При использовании torch.jit.script вы просто указываете свою модель в качестве аргумента. TorchScript будет сгенерирован в результате статической проверки содержимого nn.Module (рекурсивно).
torch.fx.symbolic_trace	torch.fx это платформа для Python-to-Python преобразований кода PyTorch. TorchScript, с другой стороны, больше ориентирован на перемещение программ PyTorch за пределы Python для целей развертывания.
(другой зверь, но тоже рядом)	В этом смысле FX и TorchScript ортогональны друг другу и даже могут быть составлены друг из друга (например, преобразовывать программы PyTorch с помощью FX, а затем экспортировать их в TorchScript для развертывания).
	Одно из применений torch.fx это создание графа вычислений и манипуляция этим графом.


```
graph(%0 : Float(3, 10), %1 : Float(3, 20), %2 : Float(3, 20), %3 : Float(80, 10)
      %4 : Float(80, 20), %5 : Float(80), %6 : Float(80)) {
 %7 : Float(10!, 80!) = aten::t(%3)
 %10 : int[] = prim::ListConstruct(3, 80)
 %12 : Float(3!, 80) = aten::expand(%5, %10, 1)
 %15 : Float(3, 80) = aten::addmm(%12, %0, %7, 1, 1)
 %16 : Float(20!, 80!) = aten::t(%4)
 %19 : int[] = prim::ListConstruct(3, 80)
 %21 : Float(3!, 80) = aten::expand(%6, %19, True)
 %24 : Float(3, 80) = aten::addmm(%21, %1, %16, 1, 1)
 %26 : Float(3, 80) = aten::add(%15, %24, 1)
 %29 : Dynamic[] = aten::chunk(%26, 4, 1)
 %30 : Float(3!, 20), %31 : Float(3!, 20), %32 : Float(3!, 20), %33 : Float(3!, 20) = prim::ListUnpack(%29)
 %34 : Float(3, 20) = aten::sigmoid(%30)
 %35 : Float(3, 20) = aten::sigmoid(%31)
 %36 : Float(3, 20) = aten::tanh(%32)
 %37 : Float(3, 20) = aten::sigmoid(%33)
 %38 : Float(3, 20) = aten::mul(%35, %2)
 %39 : Float(3, 20) = aten::mul(%34, %36)
 %41 : Float(3, 20) = aten::add(%38, %39, 1)
 %42 : Float(3, 20) = aten::tanh(%41)
 %43 : Float(3, 20) = aten::mul(%37, %42)
 return (%43, %41);
```

А в чем всетаки разница?

torch.jit.trace

torch.jit.script

А когда нам лучше "поймать" граф вычислений? torch.jit.script фиксирует как операции, так и полную условную логику вашей модели.

Но только в случае если ваша модель не использует не <u>Pytorch функционанал</u> и ее логика ограничена <u>поддерживаемым подмножеством функций и синтаксиса Python</u>.

Если что-то не поддерживается или не стандартно то нам надо переписывать код, это работает в большинстве случаев.

Поддерживает только статическую типизацию.

torch.jit.trace не учитывает динамически меняющуюся структуру, которая зависит от входных данных. Может сгенерировать код, только по одному графу вычислений и не выдать ошибок.

```
def f1(x, y):
    if x.sum() < 0:
        return -y
    return our_lib.squeeze(y)</pre>
```

torch.jit.trace запомнит только один путь

torch.jit.script не будет работать с какой-то непонятной библиотекой если она не на чистом Python или Pytorch. Например часть Scipy на C++.

Pytorch 2.0 - Torch Dynamo

Разобьет граф вычислений на кусочки, будет работать только с тем с чем может.

Как происходит оптимизация?

Vertical Fusion

Horizontal Fusion

Источник

Vertical Fusion

Horizontal Fusion

Источник

Vertical Fusion

Horizontal Fusion

Источник

- Fusion
- Algebraic rewriting
- Loop unrolling
- Automatic work placement
- Out of order execution
- Allow Multithreading
- TorchScript automatically optimizes common patterns

ResNet 18

```
1 import torchvision
 2 import torch
 3 from time import perf_counter
    import numpy as np
 6 def timer(f,*args):
        start = perf_counter()
        f(*args)
        return (1000 * (perf_counter() - start))
10
    # Example 1.1 Pytorch cpu version
11
12
    model_ft = torchvision.models.resnet18(pretrained=True)
13
    model_ft.eval()
   x_{ft} = torch.rand(1, 3, 224, 224)
    np.mean([timer(model_ft,x_ft) for _ in range(10)])
17
    # Example 1.2 Pytorch gpu version
18
19
    model_ft_gpu = torchvision.models.resnet18(pretrained=True).cuda()
   x_{ft_gpu} = x_{ft.cuda()}
    model_ft_gpu.eval()
    np.mean([timer(model_ft_gpu,x_ft_gpu) for _ in range(10)])
23
24
    # Example 2.1 torch.jit.script cpu version
26
    script_cell = torch.jit.script(model_ft, (x_ft))
    np.mean([timer(script_cell,x_ft) for _ in range(10)])
29
    # Example 2.2 torch.jit.script gpu version
30
31
    script_cell_gpu = torch.jit.script(model_ft_gpu, (x_ft_gpu))
33 np.mean([timer(script_cell_gpu,x_ft.cuda()) for _ in range(100)])
ResNet-truncated.py hosted with ♥ by GitHub
                                                                                   view raw
```

	Latency on CPU (ms)	Latency on GPU(ms)
PyTorch	25.96	4.02
TorchScript	23.01	2.41

ResNet example for PyTorch and Script

BERT

```
1 from transformers import BertTokenizer, BertModel
     import numpy as np
     import torch
     from time import perf_counter
    def timer(f, *args):
 8
         start = perf_counter()
         f(*args)
 9
         return (1000 * (perf counter() - start))
10
11
     script_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', torchscript=True)
     script_model = BertModel.from_pretrained("bert-base-uncased", torchscript=True)
14
15
     # Tokenizing input text
     text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
     tokenized_text = script_tokenizer.tokenize(text)
19
       Masking one of the input tokens
     masked index = 8
21
22
     tokenized_text[masked_index] = '[MASK]'
24
     indexed_tokens = script_tokenizer.convert_tokens_to_ids(tokenized_text)
26
     segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
27
28
     # Creating a dummy input
     tokens_tensor = torch.tensor([indexed_tokens])
     segments_tensors = torch.tensor([segments_ids])
TorchScript-BERT-Example1.1.py hosted with ♥ by GitHub
                                                                                     view raw
```

```
# Example 1.1 BERT on CPU

anative_model = BertModel.from_pretrained("bert-base-uncased")

np.mean([timer(native_model,tokens_tensor,segments_tensors) for _ in range(100)])

# Example 1.2 BERT on GPU

# Both sample data model need be on the GPU device for the inference to take place

native_gpu = native_model.cuda()

tokens_tensor_gpu = tokens_tensor.cuda()

segments_tensors_gpu = segments_tensors.cuda()

np.mean([timer(native_gpu,tokens_tensor_gpu,segments_tensors_gpu) for _ in range(100)])

TorchScript-BERT-PyTorch-Example1-2.py hosted with ♥ by GitHub

view raw
```

	Latency on CPU (ms)	Latency on GPU(ms)
PyTorch	86.23	16.49
TorchScript	81.57	10.54

Image source: <u>deci.ai</u>

ONNX Runtime ONNX: Этот инструмент предоставляет стандартизированный формат для моделей глубокого обучения, что позволяет легко использовать их в различных средах и платформах. Часто ONNX используется для обеспечения плавного перехода моделей между различными средами.

ONNX Runtime	Открытый исходный код, первоначально созданный Microsoft и Facebook.	Может использоваться как интерфейс высокого уровня для TensorRT и OpenVino.
TensorRT	Nvidia	Этот инструмент специально разработан для графических процессоров NVIDIA и ориентирован на максимизацию пропускной способности и эффективности. Он оптимизирует модели нейронных сетей путем объединения слоев, выбора наиболее эффективных форматов данных и использования арифметики с пониженной точностью (FP16), где это возможно.
OpenVino	Intel	OpenVINO, разработанный Intel, специализируется на оптимизации моделей глубокого обучения для оборудования Intel, особенно процессоров. Это важнейший инструмент для повышения производительности моделей, в которых ресурсы графического процессора недоступны или ограничены.

Нам нужны промежуточные представления что бы импортировать модель в другую среду выполнения:

ONNX, Tensor RT, OvenVino u m.g.

И один из вариантов это сделать как раз через torch.jit.trace

Memog	Ускорение инференс
torch.compile (Torch Dynamo)	~ 1.5 x (CPU u GPU)
ONNX Runtime + NVIDIA Triton server	~ 2 - 4 x (CPU u GPU)
Nvidia TensorRT + NVIDIA Triton server	~ 5 - 10 x (только GPU)

Memog	Ускорение на обучении	
torch.compile (Torch Dynamo)	~1.25	
TorchScript	~1.25	
ONNX Runtime	~ 1.5	
TensorRT	Только инференс	

	TensorRT	ONNX
Лицензия	Apache 2.0 (optimization engine is closed source)	MIT
Легкость использования	сложна	терпимо
Документация	разбросано по кусочкам	становится лучше
Перформанс	Отличный	Хорошее

https://github.com/ELS-RD/transformer-deploy/tree/main