

Module 40

Partha Pratim Das

Objectives of Outline

File Organization Fixed-Length Record Free Lists

Organization

Records in Files

Multi-Table

Data Diction

Storage Access

Buffer Manager
Buffer Replacement

Module Summar

Database Management Systems

Module 40: Storage and File Structure/2: File Structure

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Module Recap

Module 40

Partha Pratii Das

Objectives & Outline

File Organization
Fixed-Length Record
Free Lists
Variable-Length
Records

Organization of Records in Files

Data Dictiona

Storage Access

Buffer Manager

Buffer Replacement

Module Summar

- Understood the range of Physical Storage Media
- Studied the mechanism and performance of the Magnetic Disks
- Looked at the features of Magnetic Tape as tertiary storage
- Glimpsed through Other Storage including Optical Disk, Flash and SSD
- Considered the Future of Storage in terms of DNA and Quantum

Module Objectives

Module 40

Partha Pratii Das

Objectives & Outline

File Organization
Fixed-Length Record
Free Lists

Variable-Length
Records

Organization o Records in File Sequential

Data Diction

Storage Access
Buffer Manager
Buffer Replacement

Module Summa

- To familiarize with the organization for database files
- To understand how records and relations are organized in files
- To learn how databases keep their own information in Data-Dictionary Storage the metadata database of a database
- To understand the mechanisms for fast access of a database store

Module Outline

Module 40

Partha Prati Das

Objectives & Outline

File Organization
Fixed-Length Record
Free Lists
Variable-Length
Records

Organization of Records in Files

Sequential Multi-Table

Storage

Buffer Manager
Buffer Replacement

Module Summary

- File Organization
- Organization of Records in Files
- Data-Dictionary Storage
- Storage Access

Module 40

Partha Prat Das

Objectives Outline

File Organization

Fixed-Length Recor Free Lists

Organization o Records in File

> Sequential Multi-Table

Data Diction

Storage Acces

Buffer Manager
Buffer Replacement
Policy

Module Summar

File Organization

File Organization

Module 40

Partha Pratir Das

Objectives Outline

File Organization
Fixed-Length Record
Free Lists
Variable-Length

Organization of Records in Files Sequential

Data Dictional

Storage Access

Buffer Manager

Buffer Replacement

Policy

Module Summary

- A database is
 - o A collection of files. A file is
 - ▷ A sequence of records. A record is
 - A sequence of *fields*
- One approach:
 - o assume record size is fixed
 - o each file has records of one particular type only
 - o different files are used for different relations
 - o This case is easiest to implement; will consider variable length records later
- A database file is partitioned into fixed-length storage units called **blocks**
 - Blocks are units of both storage allocation and data transfer

Database Management Systems Partha Pratim Das 40.6

Fixed-Length Records

Module 40

Partha Pratii Das

Objectives Outline

File Organization
Fixed-Length Records
Free Lists
Variable-Length

Organization of Records in Files Sequential

Multi-Table

Data Dictions

Storage Access
Buffer Manager
Buffer Replacement

Module Summary

Simple approach:

- Store record *i* starting from byte n * (i 1), where *n* is the size of each record.
- o Record access is simple but records may cross blocks
 - ▶ Modification: do not allow records to cross block boundaries

- Deletion of record i: Alternatives:
 - o move records $i+1,\dots,n$ to $i,\dots,n-1$
 - o move record n to i
 - do not move records, but link all free records on a free list

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 3	22222	Einstein	Physics	95000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000

Deleting Record 3 with Compaction

Module 40

Partha Prati Das

Objectives Outline

Fixed-Length Records
Free Lists
Variable-Length

Organization o Records in File Sequential

Multi-Tab

Data Diction. Storage

Buffer Manager
Buffer Replacemen

Module Summar

Before deletion

record 0	10101	Srinivasan	T	
record 1	12121	Wu Finance		90000
record 2	15151	Mozart	Music	40000
record 3	22222	Einstein	Physics	95000
record 4	32343	43 El Said History		60000
record 5	33456	456 Gold Phys		87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000
		•		

After deletion & Compaction

			opaoe.e	
record 0	0 10101 Srinivasan Comp. Se		Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000

Deleting Record 3 with Moving last record

Module 40

Partha Pratio

Objectives Outline

File Organization
Fixed-Length Record
Free Lists

Organization of Records in Files

Multi-Tabl

Data Diction: Storage

Storage Access

Buffer Manager

Buffer Replacement

Module Summary

Before deletion

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 3	22222	Einstein	Physics	95000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000
		•		

After deletion & Movement

10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
98345	Kim	Elec. Eng.	80000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
	12121 15151 98345 32343 33456 45565 58583 76543 76766	12121 Wu 15151 Mozart 98345 Kim 32343 El Said 33456 Gold 45565 Katz 58583 Califieri 76543 Singh 76766 Crick	12121 Wu Finance 15151 Mozart Music 98345 Kim Elec. Eng. 32343 El Said History 33456 Gold Physics 45565 Katz Comp. Sci. 58583 Califieri History 76543 Singh Finance 76766 Crick Biology

Free Lists

Module 40

Partha Pratir Das

Objectives Outline

Fixed-Length Record
Free Lists
Variable-Length

Organization of Records in Files
Sequential
Multi-Table

Data Dictionar Storage

Storage Access

Buffer Manager

Buffer Replacement
Policy

Module Summar

- Store the address of the first deleted record in the file header
- Use this first record to store the address of the second deleted record, and so on
- Consider these stored addresses as pointers since they point to the location of a record
- More space efficient representation: reuse space for normal attributes of free records to store pointers (No pointers stored in in-use records)

header				,	
record 0	10101	Srinivasan	Comp. Sci.	65000	
record 1				1	
record 2	15151	Mozart	Music	40000	
record 3	22222	Einstein	Physics	95000	
record 4					
record 5	33456	Gold	Physics	87000	
record 6				4	
record 7	58583	Califieri	History	62000	
record 8	76543	Singh	Finance	80000	
record 9	76766	Crick	Biology	72000	
record 10	83821	Brandt	Comp. Sci.	92000	
record 11	98345	Kim	Elec. Eng.	80000	

Database Management Systems Partha Pratim Das 40.10

Variable-Length Records

Module 40

Partha Pratii Das

Objectives Outline

Fixed-Length Record
Free Lists

Variable-Length
Records

Organization of Records in Files Sequential

Data Dictionar

Storage Access

Buffer Manager

Buffer Replacement
Policy

• Variable-length records arise in database systems in several ways:

- Storage of multiple record types in a file
- Record types that allow variable lengths for one or more fields such as strings (varchar)
- Record types that allow repeating fields (used in some older data models)
- Attributes are stored in order
- Variable length attributes represented by fixed size (offset, length), with actual data stored after all fixed length attributes
- Null values represented by null-value bitmap

Database Management Systems Partha Pratim Das 40.11

Variable-Length Records (2)

Module 40

Partha Pratim Das

Objectives Outline

Fire Organization
Fixed-Length Record
Free Lists
Variable-Length

Organization of Records in File

Records

Multi-Table

Storage Access
Buffer Manager
Buffer Replacemen

Module Summary

End of Free Space

- Slotted Page header contains:
 - o number of record entries
 - o end of free space in the block
 - o location and size of each record
- Records can be moved around within a page to keep them contiguous with no empty space between them; entry in the header must be updated
- Pointers should not point directly to record instead they should point to the entry for the record in header

Organization of Records in Files

Module 40

Partha Prati Das

Objectives Outline

File Organization
Fixed-Length Reconfire Lists
Variable-Length

Organization of Records in Files

Multi-Table

Data Diction

Storage Access

Buffer Manager
Buffer Replacemen
Policy

Module Summa

Organization of Records in Files

Database Management Systems Partha Pratim Das 40.13

Organization of Records in Files

Module 40

Partha Pratin Das

Objectives Outline

File Organization
Fixed-Length Record
Free Lists
Variable-Length
Records

Organization of Records in Files

Multi-Table

Storage

Storage Access

Buffer Manager

Buffer Replacemen
Policy

Module Summar

- Heap: A record can be placed anywhere in the file where there is space
- Sequential: Store records in sequential order, based on the value of the search key of each record
- Hashing: A hash function computed on some attribute of each record; the result specifies in which block of the file the record should be placed
- Records of each relation may be stored in a separate file. In a multitable clustering file organization records of several different relations can be stored in the same file
 - Motivation: store related records on the same block to minimize I/O

Database Management Systems Partha Pratim Das 40.14

Sequential File Organization

Module 40

Partha Pratir Das

Objectives Outline

File Organization
Fixed-Length Recore
Free Lists
Variable-Length

Organization of Records in Files Sequential

Data Diction

Storage Access
Buffer Manager

Module Summary

- Suitable for applications that require sequential processing of the entire file
- The records in the file are ordered by a search-key

10101	Srinivasan	Comp. Sci.	65000	
		1		\longrightarrow
12121	Wu	Finance	90000	
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	

Sequential File Organization (2)

Module 40

Partha Pratir Das

Objectives Outline

File Organization
Fixed-Length Record
Free Lists
Variable-Length

Organization of Records in Files Sequential Multi-Table

Data Dictionar Itorage

Storage Access
Buffer Manager
Buffer Replacemer

Module Summar

- Deletion: Use pointer chains
- Insertion: Locate the position where the record is to be inserted
 - o if there is free space insert there
 - if no free space, insert the record in an overflow block
 - In either case, pointer chain must be updated
- Need to reorganize the file from time to time to restore sequential order

10101	Srinivasan	Comp. Sci.	65000	-
12121	Wu	Finance	90000	-
15151	Mozart	Music	40000	-
22222	Einstein	Physics	95000	-
32343	El Said	History	60000	-
33456	Gold	Physics	87000	-
45565	Katz	Comp. Sci.	75000	-
58583	Califieri	History	62000	-
76543	Singh	Finance	80000	-
76766	Crick	Biology	72000	-
83821	Brandt	Comp. Sci.	92000	-
98345	Kim	Elec. Eng.	80000	_

32222	Verdi	Music	48000	4

Multitable Clustering File Organization

Module 40

Partha Pratio

Objectives Outline

File Organization
Fixed-Length Reconfere Lists
Variable-Length
Records

Organization of Records in Files

Multi-Table

Storage

Buffer Manager
Buffer Replacement
Policy

Module Summar

Store several relations in one file using a multitable clustering file organization

dept_name	building	budget
Comp. Sci.	Taylor	100000
Physics	Watson	70000

IDname dept name salary 10101 65000 Srinivasan Comp. Sci. 33456 Gold Physics 87000 45565 Katz Comp. Sci. 75000 83821 Comp. Sci. 92000 Brandt

Comp. Sci.	Taylor	100000
45564	Katz	75000
10101	Srinivasan	65000
83821	Brandt	92000
Physics	Watson	70000
33456	Gold	87000

multitable clustering of department and instructor

department

instructor

Multitable Clustering File Organization (2)

Module 40

Partha Pratir Das

Objectives Outline

File Organization
Fixed-Length Reconstruct
Free Lists
Variable-Length
Records

Organization of Records in Files

Multi-Table

Storage Access
Buffer Manager
Buffer Replacemen

Module Summar

- good for queries involving *department* \bowtie *instructor*, and for queries involving one single department and its instructors
- bad for queries involving only department
- results in variable size records
- Can add pointer chains to link records of a particular relation

Comp. Sci.	Taylor	100000	
45564	Katz	75000	
10101	Srinivasan	65000	
83821	Brandt	92000	
Physics	Watson	70000	
33456	Gold	87000	

Module 40

Partha Pratio

Objectives Outline

Fixed-Length Reco

Organization o Records in File Sequential

Data Dictionary
Storage

Storage Access
Buffer Manager

Module Summar

Data Dictionary Storage

Data Dictionary Storage

Module 40

Partha Prati Das

Objectives Outline

Fire Organization
Fixed-Length Recon
Free Lists

Variable-Length
Records

Organization of Records in Files Sequential Multi-Table

Storage
Storage Access
Buffer Manager
Buffer Replacement

Module Summary

Data Dictionary (also, System Catalog) stores metadata (data about data) such as:

- Information about relations
 - o names of relations
 - o names, types and lengths of attributes of each relation
 - names and definitions of views
 - integrity constraints
- User and accounting information, including passwords
- Statistical and descriptive data
 - o number of tuples in each relation
- Physical file organization information
 - \circ How relation is stored (sequential/hash/ \cdots)
 - Physical location of relation
- Information about indices

Relational Representation of System Metadata

Module 40

Partha Pratir Das

Objectives Outline

File Organization
Fixed-Length Recon
Free Lists
Variable-Length

Organization of Records in Files Sequential Multi-Table

Data Dictionary Storage

Storage Access
Buffer Manager
Buffer Replacement

Module Summar

- Relational representation on disk
- Specialized data structures designed for efficient access, in memory

Storage Access

Module 40

Partha Prat Das

Objectives Outline

File Organizatio
Fixed-Length Reco

Organization of Records in Files

Multi-Table

Storage Access

Storage Access

Buffer Manager

Buffer Replacemen

Policy

Module Summar

Storage Access

Storage Access

Module 40

Storage Access

- A database file is partitioned into fixed-length storage units called blocks
 - Blocks are units of both storage allocation and data transfer
- Database system seeks to minimize the number of block transfers between the disk and memory
 - We can reduce the number of disk accesses by keeping as many blocks as possible in main memory
- Buffer: portion of main memory available to store copies of disk blocks
- Buffer Manager: subsystem responsible for allocating buffer space in main memory

Buffer Manager

Module 40

Partha Pratii Das

Objectives Outline

File Organization
Fixed-Length Recon
Free Lists
Variable-Length

Organization of Records in Files Sequential Multi-Table

Data Dictionary Storage

Storage Access

Buffer Manager

Buffer Replacement
Policy

Module Summar

- Programs call on the buffer manager when they need a block from disk
 - If the block is already in the buffer, buffer manager returns the address of the block in main memory
 - If the block is not in the buffer, the buffer manager
 - ▷ Allocates space in the buffer for the block
 - Replacing (throwing out) some other block, if required, to make space for the new block
 - Replaced block written back to disk only if it was modified since the most recent time that it was written to / fetched from the disk
 - ▶ Reads the block from the disk to the buffer, and returns the address of the block in main memory to requester

Buffer Replacement Policies

Module 40

Partha Pratir Das

Objectives Outline

File Organization
Fixed-Length Reconsists
Variable-Length
Records

Organization of Records in Files

Data Diction Storage

Storage Access

Buffer Manager

Buffer Replacement
Policy

Module Summary

- Most operating systems replace the block least recently used (LRU strategy)
- Idea behind LRU use past pattern of block references as a predictor of future references
- Queries have well-defined access patterns (such as sequential scans), and a database system can use the information in a user's query to predict future references
 - LRU may be a bad strategy for certain access patterns involving repeated scans of data
 - \triangleright For example: when computing the join of 2 relations r and s by a nested loop for each tuple tr of r do for each tuple ts of s do if the tuples tr and ts match ...
 - Mixed strategy with hints on replacement strategy provided by the query optimizer is preferable

Buffer Replacement Policies (2)

Module 40

Partha Pratin Das

Objectives Outline

File Organizatio Fixed-Length Reco Free Lists Variable-Length Records

Organization of Records in Files Sequential Multi-Table

Storage Access
Buffer Manager

Buffer Manager
Buffer Replacement
Policy

Module Summai

- Pinned block: memory block that is not allowed to be written back to disk
- Toss-immediate strategy: frees the space occupied by a block as soon as the final tuple of that block has been processed
- Most recently used (MRU) strategy: system must pin the block currently being
 processed. After the final tuple of that block has been processed, the block is unpinned,
 and it becomes the most recently used block.
- Buffer manager can use statistical information regarding the probability that a request will reference a particular relation
 - For example., the data dictionary is frequently accessed. Heuristic: keep data-dictionary blocks in main memory buffer
- Buffer managers also support forced output of blocks for the purpose of recovery

Module Summary

Module 40

Partha Prati Das

Objectives Outline

File Organization
Fixed-Length Recon
Free Lists
Variable-Length
Records

Organization Records in Fil Sequential Multi-Table

torage torage Access Buffer Manager

Buffer Manager Buffer Replaceme Policy

Module Summary

- Familiarized with the organization for database files
- Understood how records and relations are organized in files
- Learnt how databases keep their own information in Data-Dictionary Storage the metadata database of a database
- Understood the mechanisms for fast access of a database store

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

Edited and new slides are marked with "PPD"