

16.16 由运算表显然有 $q_0 \sim q_1, q_2 \sim q_3, q_4 \sim q_5$ 。

注意到,虽然 $\forall x \in \Sigma, \lambda(q_0,x) = \lambda(q_2,x)$,但 $\lambda*(q_0,00) = \lambda(q_0,0)\lambda(q_1,0) = 00$,而 $\lambda*(q_2,00) = \lambda(q_2,0)\lambda(q_4,0) = 01$,所以 $q_0 \nsim q_2$ 。

从而: $Q/\sim = \{\{q_0,q_1\},\{q_2,q_3\},\{q_4,q_5\},\{q_6\}\}$ 。

$\overline{\delta}$	0	1		$\overline{\lambda}$	0	1
$\overline{[q_0]}$	$[q_0]$	$[q_6]$	•	$[q_0]$	0	0
$[q_2]$	$[q_0]$ $[q_4]$	$[q_0]$		$[q_0]$ $[q_2]$	0	0
$[q_4]$	$\begin{bmatrix} q_4 \\ q_0 \end{bmatrix}$	$[q_2]$		$[q_4]$ $[q_6]$	1	0
$[q_6]$	$[q_0]$	$[q_4]$		$[q_6]$	0	1