

ABSTRACT OF THE DISCLOSURE

In a stereoscopic image pickup device, an image pickup device A accommodates one image pickup element 110 to which an image light for a left eye and an image light for a right eye for picking up a left-eye image and a right-eye image are guided, and one objective lens in a case. A light shield plate 220 having two openings defined is disposed between the image pickup element 110 and the objective lens 210. Polarizers that polarize lights which have passed therethrough into linear polarized lights whose vibration planes are orthogonal to each other are fitted into those two openings. A liquid crystal plate 120 and a selection polarizing plate 125 are disposed between the objective lens and the image pickup element 110 / The selection polarizing plate 125 polarizes a light that has passed therethrough into a linear polarized light whose vibration plane has the same orientation as that of the light that has passed through any one of the above-mentioned/polarizers. The liquid crystal plate 120 alternately takes a state where the polarized light is allowed to pass through the liquid crystal plate 120 after rotating the vibration plane of the polarized light that has passed through the above-mentioned opening by 90 and a state the polarized light is allowed to pass through the liquid crystal plate 120 as it is. As a result, the image lights that have passed those two openings are alternately picked up by the one image pickup element 110.