Understanding Financial Returns

Zhipeng Liao

UCLA

Version 1.0

Motivation

- ► We hear about stock price more often than stock returns, e.g., from news or other media.
- Both price and returns are used in financial data analysis
- Why not just price but returns?
 - return is a relative concept, i.e., how much we gain (future value) from our initial investment (current value)
 - another important reason is that, return has more standard stochastic property than price, so easier to study using standard prob/stat theory

Daily Prices of Amazon (01/01/1998 - 12/26/2017)

Daily Simple Returns of Amazon (01/01/1998 - 12/26/2017)

Outline

- Introductory concept: the time value of money
 - Future value
 - Compounding
 - ▶ Effective annual rate

Asset return calculations

- Simple returns: multi-periods returns, portfolio returns and real returns (inflation adjustment), adjusting for dividends, annualizing and averaging
- Continuously compounding (cc) returns: multi periods returns, portfolio returns and real returns (inflation adjustment)
- ▶ **Reading:** E. Zivot's book chapter on return calculation
- Optional: Chapter 1 (Asset Returns) in Fan and Yao's book
- Optional: Chapter 1 (Returns) and Chapter 2 (Fixed Income Securities) in Ruppert's book

The Time Value of Money

► Future Value:

- \$V invested for n years at simple interest rate R per year (annual rate)
- Compounding of interest occurs at end of year (1 time per year)¹

$$FV_n = \$V \cdot (1+R)^n$$

where FV_n is future value after n years

 $^{^1} compound:$ to pay interest on both an amount of money and the interest it has already earned

Example

Consider putting \$1000 in an interest checking account that pays a simple annual percentage rate of 3%. The future value after n = 1, 5 and 10 years is, respectively,

$$FV_1 = \$1000 \cdot (1.03)^1 = \$1030,$$

 $FV_5 = \$1000 \cdot (1.03)^5 = \$1159.27,$
 $FV_{10} = \$1000 \cdot (1.03)^{10} = \$1343.92.$

Future Value

- ▶ FV function $FV_n = \$V \cdot (1+R)^n$ is a relationship between four variables: FV_n , V, R and n. Given three variables, you can solve for:
- Present value:

$$V = \frac{FV_n}{(1+R)^n}.$$

Compound annual return:

$$R = \left(\frac{FV_n}{V}\right)^{1/n} - 1.$$

Investment horizon:

$$n=\frac{\ln(FV_n/V)}{\ln(1+R)}.$$

▶ in this course, both log and In will be natural log

Multiple Compounding

▶ If compounding occurs *m* times per year:

$$FV_n^m = \$V \cdot \left(1 + rac{R}{m}
ight)^{m \cdot n},$$
 $rac{R}{m} = ext{periodic interest rate}.$

If compounding occurs continuously²:

$$FV_n^{\infty} = \lim_{m \to \infty} \$V \cdot \left(1 + \frac{R}{m}\right)^{m \cdot n} = \$Ve^{R \cdot n},$$

$$e^1 = 2.71828.$$

²Exponential function: $e^{x}=\lim_{m\to\infty}\left(1+\frac{x}{m}\right)^{m}$

Multiple Compounding

Example: If the simple annual percentage rate is 10%, then the value of \$1000 at the end of one year (n = 1) for different values of m is given in the table below.

Compounding Frequency	Value of \$1000 at the end of 1 year $(R=10\%)$
Annually $(m=1)$	1100.00
Quarterly $(m=4)$	1103.81
Weekly $(m = 52)$	1105.06
Daily $(m = 365)$	1105.16
Continuously $(m = \infty)$	1105.17

Effective Annual Rate

Annual rate R_A that equates FV_n^m with FV_n ; that is,

$$\$V\left(1+\frac{R}{m}\right)^{m\cdot n}=\$V(1+R_A)^n.$$

- Recall R was annual rate with 1-time compounding
- \triangleright R_A : effective annual rate with *m*-times compounding
- Solving for R_A gives

$$\left(1+\frac{R}{m}\right)^m=1+R_A\Rightarrow R_A=\left(1+\frac{R}{m}\right)^m-1.$$

Effective Annual Rate and CC Rate

▶ Effective annual rate R_A with ∞-times compounding

$$R_A = \lim_{m \to \infty} \left(1 + \frac{R}{m}\right)^m - 1 = e^R - 1$$

Continuous Compounding Rate: an annual rate r corresponding with the above R_A

$$r = \ln(1 + R_A)$$

▶ in lecture note *R* is used for *r*, but we use *r* to be consistent with cc return concept below

Multiple Compounding

- Example: Compute effective annual rate with semi-annual compounding
 - the effective annual rate associated with an investment with a simple annual rate R = 10% and semi-annual compounding (m = 2) is determined by solving

$$(1+R_A) = \left(1+\frac{0.10}{2}\right)^2$$

 $\Rightarrow R_A = \left(1+\frac{0.10}{2}\right)^2 - 1 = 0.1025.$

Multiple Compounding

 \triangleright Effective annual rate, R_A , with above example:

Compounding Frequency	Value of \$1000 at end of 1 year $(R=10\%)$	R_A
Annually $(m=1)$	1100.00	10%
Quarterly $(m=4)$	1103.81	10.38%
Weekly $(m = 52)$	1105.06	10.51%
Daily $(m = 365)$	1105.16	10.52%
Continuously $(m = \infty)$	1105.17	10.52%

► Thus *cc* rate $r = \ln(1 + R_A) = \ln(1.1052)$

Outline

- ► Simple returns
 - concept and multi-periods returns,
 - portfolio returns
 - some adjustment: real returns (inflation adjustment), adjusting for dividends, annualizing and averaging
- Continuously compounding (cc) returns
 - concept and multi periods returns,
 - portfolio returns
 - real returns (inflation adjustment)

- ► Now let's think of monthly rate of return, rather than annual rate
- ▶ Recall (for n = 1 period): $\$FV = \$V \cdot (1 + R)$
- From now on, $V = P_{t-1}$ and $FV = P_t$

► Simple Returns:

$$P_t = P_{t-1} \left(1 + R_t \right)$$

- P_t = price at the end of month t on an asset that pays no dividends³
- $P_{t-1} = \text{price at the end of month } t-1$
- ► The simple return R_t:

$$1+R_t=rac{P_t}{P_{t-1}}=$$
 gross return over month t , $R_t=rac{P_t-P_{t-1}}{P_{t-1}}=(\% \ \triangle \ P_t)=$ net return over month t

 $^{^3}$ dividend: an amount of a company's profits that the company pays to people who own stock in the company

Example. One month investment in Amazon stock.

Buy stock at end of month t-1 at $P_{t-1}=\$85$ and sell stock at end of next month for $P_t = \$90$. Assuming that Amazon does not pay a dividend between months t-1 and t, the one-month simple net and gross returns are

$$R_t = \frac{\$90 - \$85}{\$85} = \frac{\$90}{\$85} - 1 = 1.0588 - 1 = 0.0588, \ 1 + R_t = 1.0588.$$

The one month investment in Amazon yielded a 5.88% monthly return.

- ► Multi-period Returns
- ► Simple two-month return

$$R_t(2) = \frac{P_t - P_{t-2}}{P_{t-2}}$$
$$= \frac{P_t}{P_{t-2}} - 1.$$

Relationship to one month simple returns

$$R_t(2) = \frac{P_t}{P_{t-2}} - 1 = \frac{P_t}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}} - 1$$
$$= (1 + R_t) \cdot (1 + R_{t-1}) - 1.$$

▶ Here

$$1+R_t=$$
 one-month gross return over month t , $1+R_{t-1}=$ one-month gross return over month $t-1$, $\Longrightarrow 1+R_t(2)=(1+R_t)\cdot (1+R_{t-1}).$

- two-month gross return = the product of two one-month gross returns
- Note: two-month returns are not additive:

$$R_t(2) = R_t + R_{t-1} + R_t \cdot R_{t-1}$$

 $pprox R_t + R_{t-1}$ if R_t and R_{t-1} are small

- **Example**: Two-month return on Amazon
- ▶ Suppose that the price of Amazon in month t-2 is \$80 and no dividend is paid between months t-2 and t. The two-month net return is

$$R_t(2) = \frac{\$90 - \$80}{\$80} = \frac{\$90}{\$80} - 1 = 1.1250 - 1 = 0.1250,$$

or 12.50% per two months. The two one-month returns are

$$R_{t-1} = \frac{\$85 - \$80}{\$80} = 1.0625 - 1 = 0.0625$$
 $R_t = \frac{\$90 - 85}{\$85} = 1.0588 - 1 = 0.0588,$

and the product of the two one-month gross returns is

$$1 + R_t(2) = 1.0625 \times 1.0588 = 1.1250.$$

► Simple *k*-months Return

$$R_{t}(k) = \frac{P_{t} - P_{t-k}}{P_{t-k}} = \frac{P_{t}}{P_{t-k}} - 1$$

$$1 + R_{t}(k) = \frac{P_{t}}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}} \cdot \dots \cdot \frac{P_{t-k+1}}{P_{t-k}}$$

$$= (1 + R_{t}) \cdot (1 + R_{t-1}) \cdot \dots \cdot (1 + R_{t-k+1})$$

$$= \prod_{j=0}^{k-1} (1 + R_{t-j})$$

Note

$$R_t(k) \neq \sum_{i=0}^{k-1} R_{t-j}$$

hence not additive

Portfolio Simple Return Calculations

- ▶ Invest \$V in two assets: A and B for 1 period
- ▶ x_A = share of \$V invested in A; \$ $V \times x_A$ = \$ amount
- ▶ x_B = share of \$V invested in B; \$ $V \times x_B$ = \$ amount
- Assume $x_A + x_B = 1$ (and this will always hold)
- Portfolio is defined by investment shares x_A and x_B

Portfolio Simple Return Calculations

▶ At the end of the period, the investments in A and B grow to

$$$V(1 + R_{p,t}) = $V[x_A(1 + R_{A,t}) + x_B(1 + R_{B,t})]$$$

$$= $V[x_A + x_B + x_A R_{A,t} + x_B R_{B,t}]$$$

$$= $V[1 + x_A R_{A,t} + x_B R_{B,t}]$$$

$$\Rightarrow R_{p,t} = x_A R_{A,t} + x_B R_{B,t}$$

► The simple portfolio return is a share weighted average of the simple returns on the individual assets: hence *additive* with proper weights.

Portfolio Simple Return Calculations

Example: Portfolio of Amazon and Starbucks stock

Purchase ten shares of each stock at the end of month t-1 at prices

$$P_{amzn,t-1} = \$85, P_{subx,t-1} = \$30,$$

The initial value of the portfolio is

$$V_{t-1} = 10 \times \$85 + 10 \times \$30 = \$1,150.$$

The portfolio shares are

$$x_{amzn} = 850/1150 = 0.7391, \ x_{sbux} = 300/1150 = 0.2609.$$

The end of month t prices are $P_{amzn,t} = 90 and $P_{sbux,t} = 28 .

▶ Assuming *Amazon* and Starbucks do not pay a dividend between periods t-1 and t, the one-period returns are

$$R_{amzn,t} = \frac{\$90 - \$85}{\$85} = 0.0588$$
$$R_{sbux,t} = \frac{\$28 - \$30}{\$30} = -0.0667$$

The return on the portfolio is

$$R_{p,t} = (0.7391)(0.0588) + (0.2609)(-0.0667) = 0.02609$$

and the value at the end of month t is

$$FV_t = \$1,150 \times (1.02609) = \$1,180$$

Simple Returns

Portfolio Simple Return Calculations

▶ In general, for a portfolio of n assets with investment shares x_i such that $x_1 + \cdots + x_n = 1$

$$1 + R_{p,t} = \sum_{i=1}^{n} x_i (1 + R_{i,t})$$

$$R_{p,t} = \sum_{i=1}^{n} x_i R_{i,t}$$

$$= x_1 R_{1t} + \dots + x_n R_{nt}$$

additive with proper weights.

Adjusting for Dividends

In addition to the price change, if dividend is being paid

$$\begin{split} D_t &= \text{ dividend payment between months } t-1 \text{ and } t \\ R_t^{total} &= \frac{P_t + D_t - P_{t-1}}{P_{t-1}} = \frac{P_t - P_{t-1}}{P_{t-1}} + \frac{D_t}{P_{t-1}} \\ &= \text{capital gain return} + \text{ dividend yield} \\ 1 + R_t^{total} &= \frac{P_t + D_t}{P_{t-1}} \end{split}$$

ightharpoonup We call R_t^{total} as total return

Adjusting for Dividends

Example. Total return on Amazon stock.

Buy stock in month t-1 at $P_{t-1}=\$85$ and sell the stock the next month for $P_t=\$90$. Assume Amazon pays a \$1 dividend between months t-1 and t. The capital gain, dividend yield and total return are then

$$R_t^{total} = \frac{\$90 + \$1 - \$85}{\$85} = \frac{\$90 - \$85}{\$85} + \frac{\$1}{\$85}$$
$$= 0.0588 + 0.0118$$
$$= 0.0707$$

The one-month investment in *Amazon* yields a 7.07% per month total return. The capital gain component is 5.88%, and the dividend yield component is 1.18%.

- ► The computation of real returns on an asset is a two step process:
- ▶ Deflate the nominal price P_t of the asset by an index of the general price level CPI_t
- Compute returns in the usual way using the deflated prices

$$egin{aligned} P_t^{\mathsf{Real}} &= rac{P_t}{CPI_t} \ R_t^{\mathsf{Real}} &= rac{P_t^{\mathsf{Real}} - P_{t-1}^{\mathsf{Real}}}{P_{t-1}^{\mathsf{Real}}} = rac{rac{P_t}{CPI_t} - rac{P_{t-1}}{CPI_{t-1}}}{rac{P_{t-1}}{CPI_{t-1}}} \ &= rac{P_t}{P_{t-1}} \cdot rac{CPI_{t-1}}{CPI_t} - 1 \end{aligned}$$

► Alternatively, define inflation as

$$\pi_t = \%\Delta CPI_t = \frac{CPI_t - CPI_{t-1}}{CPI_{t-1}},$$

$$1 + \pi_t = \frac{CPI_t}{CPI_{t-1}}$$

Then

Example. Compute real return on Amazon stock.

Suppose the CPI in months t-1 and t is 1 and 1.01, respectively, representing a 1% monthly growth rate in the overall price level. The real prices of Amazon stock are

$$P_{t-1}^{\mathsf{Real}} = \frac{\$85}{1} = \$85, \ P_t^{\mathsf{Real}} = \frac{\$90}{1.01} = \$89.1089$$

The real monthly return is

$$R_t^{\mathsf{Real}} = \frac{\$89.10891 - \$85}{\$85} = 0.0483$$

▶ The nominal return and inflation over the month are

$$R_t = \frac{\$90 - \$85}{\$85} = 0.0588, \ \pi_t = \frac{1.01 - 1}{1} = 0.01$$

Then the real return is

$$R_t^{\mathsf{Real}} = \frac{1.0588}{1.01} - 1 = 0.0483$$

Notice that simple real return is almost, but not exactly, equal to the simple nominal return minus the inflation rate

$$R_t^{\text{Real}} \approx R_t - \pi_t = 0.0588 - 0.01 = 0.0488$$

from the approximating formula

$$\frac{y}{1+x} \simeq y \text{ if } x \text{ is small}$$

Annualizing Returns

- Returns are often converted to an annual return to establish a standard for comparison
- **Example**: Assume same monthly return R_m for 12 months:

Compound annual gross return (CAGR)
=
$$1 + R_A = 1 + R_t(12) = (1 + R_m)^{12}$$

Compound annual net return
$$= R_A = (1 + R_m)^{12} - 1$$

Note: We don't use $R_A = 12R_m$ because this ignores multiple compounding.

Average Returns

- ▶ For investments over a given horizon, it is often of interest to compute a measure of average return over the horizon
- Consider a sequence of monthly investments over the year with monthly returns

$$R_1, R_2, \ldots, R_{12}$$

The annual return is

$$R_A = R(12) = (1 + R_1)(1 + R_2) \cdots (1 + R_{12}) - 1$$

Average Returns

- ▶ Question: What is the average monthly return?
- Two possibilities
- 1. Arithmetic average (can be misleading)

$$\bar{R} = \frac{1}{12}(R_1 + \cdots + R_{12})$$

2. Geometric average (better measure of average return)

$$(1 + \bar{R})^{12} = (1 + R_A) = (1 + R_1)(1 + R_2) \cdots (1 + R_{12})$$

$$\Rightarrow \bar{R} = (1 + R_A)^{1/12} - 1$$

$$= [(1 + R_1)(1 + R_2) \cdots (1 + R_{12})]^{1/12} - 1$$

Average Returns

Example: Consider a two period investment with returns

$$R_1 = 0.5, R_2 = -0.5$$

\$1 invested over two periods grows to

$$FV = \$1 \times (1 + R_1)(1 + R_2) = (1.5)(0.5) = 0.75$$

for a 2-period return of

$$R(2) = 0.75 - 1 = -0.25$$

Hence, the 2-period investment loses 25%!

Average Returns

Example Cont'd: The arithmetic average return is

$$\bar{R} = \frac{1}{2}(0.5 + (-0.5)) = 0$$

This is misleading because the actual investment lost money over the 2 period horizon. The compound 2-period return based on the arithmetic average is

$$(1+\bar{R})^2-1=1^2-1=0$$

▶ The reason is that, as we have seen before, simple returns are not additive, so we should not use the additive average (arithmetic average)

Average Returns

Example Cont'd: The geometric average is

$$\left[(1+0.5)(1-0.5) \right]^{1/2} - 1 = (0.75)^{1/2} - 1 = -0.1340$$

This is a better measure because it indicates that the investment eventually lost money. The compound 2-period return is

$$(1+\bar{R})^2 - 1 = (0.867)^2 - 1 = -0.25$$

Log and Exponential Functions

- ▶ $\log(0) = -\infty$, $\log(1) = 0$
- $e^{-\infty} = 0$, $e^0 = 1$, $e^1 = 2.7183$

- $e^x e^y = e^{x+y}, e^x e^{-y} = e^{x-y}$
- $(e^x)^y = e^{xy}$

- Notation: simple return R_t , cc return r_t
 - ightharpoonup recall $P_t = P_{t-1} \cdot (1+R_t)$ so $\frac{P_t}{P_{t-1}} = (1+R_t)$
- Intuition: from the idea of continuous compounding,

$$P_t = P_{t-1} \cdot \lim_{m \to \infty} \left(1 + \frac{r_t}{m} \right)^m$$
$$= P_{t-1} \cdot e^{r_t}$$

- $r_t = \log\left(\frac{P_t}{P_{t-1}}\right)$: cc growth rate in prices between months t-1 and t
- ▶ Relation between simple return (R_t) and cc return (r_t)
 - $ightharpoonup r_t = \log(1 + R_t)$: worth remembering this formula.

For a function f(x), a first order Taylor series expansion about $x = x_0$ is

$$f(x) = f(x_0) + \frac{d}{dx}f(x_0)(x - x_0) + \text{remainder}$$

▶ let $f(x) = \log(1+x)$ and $x_0 = 0$. Note that

$$\frac{d}{dx}\log(1+x) = \frac{1}{1+x}, \ \frac{d}{dx}\log(1+x_0) = 1$$

Then

$$\log(1+x) \approx \log(1) + 1 \cdot x = 0 + x = x$$

- if x is small, $\log(1+x) \approx x$
- ▶ From $r_t = \log(1 + R_t)$, when R_t is small: $r_t \approx R_t$ (but not exactly same)

▶ Computational Trick: from stock price to cc return

$$\begin{split} r_t &= \log \left(\frac{P_t}{P_{t-1}} \right) \\ &= \log(P_t) - \log(P_{t-1}) \\ &= p_t - p_{t-1} \\ &= \text{difference in log prices} \end{split}$$

where

$$p_t = \ln(P_t)$$

- ► Mostly, lower case involves cc returns (hence log) while upper case used for simple returns.
- again, log and In are both natural logs, so same.

- Example. Compute cc return
- Let $P_{t-1} = 85$, $P_t = 90$ and $R_t = 0.0588$. Then the cc monthly return can be computed in two ways:

$$r_t = \log(1.0588) = 0.0571$$

 $r_t = \log(90) - \log(85) = 4.4998 - 4.4427 = 0.0571.$

Notice that r_t is slightly smaller than R_t .

Understanding Returns

Asset Return Calculations

Continuously Compounded (cc) Returns

Multi-period cc Returns

$$r_t(2) = \log(1 + R_t(2))$$

$$= \log\left(\frac{P_t}{P_{t-2}}\right)$$

$$= p_t - p_{t-2}$$

Note that

$$e^{r_t(2)} = e^{\log(P_t/P_{t-2})} = \frac{P_t}{P_{t-2}}$$

 $\Rightarrow P_{t-2}e^{r_t(2)} = P_t$

 $\implies r_t(2) = \text{cc}$ growth rate in prices between months t-2 and t

▶ **Property**: cc returns are additive (UNLIKE simple returns)

$$r_t(2) = \ln\left(\frac{P_t}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}}\right)$$

$$= \ln\left(\frac{P_t}{P_{t-1}}\right) + \ln\left(\frac{P_{t-1}}{P_{t-2}}\right)$$

$$= r_t + r_{t-1}$$

- $ightharpoonup r_t = \operatorname{cc}$ return between months t-1 and t,
- $r_{t-1} = \text{cc}$ return between months t-2 and t-1

Example. Compute cc two-month return

Suppose $P_{t-2}=80$, $P_{t-1}=85$ and $P_t=90$. The cc two-month return can be computed in two equivalent ways: (1) take difference in log prices

$$r_t(2) = \ln(90) - \ln(80) = 4.4998 - 4.3820 = 0.1178.$$

(2) sum the two cc one-month returns

$$r_t = \ln(90) - \ln(85) = 0.0571$$

 $r_{t-1} = \ln(85) - \ln(80) = 0.0607$
 $r_t(2) = 0.0571 + 0.0607 = 0.1178$.

Notice that
$$r_t(2) = 0.1178 < R_t(2) = 0.1250$$
.

► General Result

$$\begin{split} r_t(k) &= \ln(1 + R_t(k)) = \ln(\frac{P_t}{P_{t-k}}) \\ &= \ln(\frac{P_t}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}} \cdot \dots \cdot \frac{P_{t-k+1}}{P_{t-k}}) \\ &= \ln(\frac{P_t}{P_{t-1}}) + \ln(\frac{P_{t-1}}{P_{t-2}}) + \dots + \ln(\frac{P_{t-k+1}}{P_{t-k}}) \\ &= r_t + r_{t-1} + \dots + r_{t-k+1} \\ &= \sum_{j=0}^{k-1} r_{t-j} \end{split}$$

Portfolio cc returns

► Note that

$$R_{p,t} = \sum_{i=1}^{n} x_i R_{i,t}$$

$$r_{p,t} = \ln(1 + R_{p,t}) = \ln(1 + \sum_{i=1}^{n} x_i R_{i,t}) \neq \sum_{i=1}^{n} x_i r_{i,t}$$

$$\Rightarrow \text{ portfolio returns are not additive}$$

If $R_{p,t} = \sum_{i=1}^{n} x_i R_{i,t}$ is not too large, then $r_{p,t} \approx R_{p,t}$ otherwise, $R_{p,t} > r_{p,t}$.

Portfolio cc returns

Example. Compute cc return on portfolio

Consider a portfolio of Amazon and Starbucks stock with

$$x_{amzn} = 0.25, R_{amzn,t} = 0.0588,$$

 $x_{sbux} = 0.75, R_{sbux,t} = -0.0503$
 $R_{p,t} = x_{amzn}R_{amzn,t} + x_{sbux,t}R_{sbux,t} = -0.02302$

The cc portfolio return is

$$r_{p,t} = \ln(1 - 0.02302) = \ln(0.977) = -0.02329$$

Note

$$r_{amzn,t} = \ln(1 + 0.0588) = 0.05714$$

 $r_{sbux,t} = \ln(1 - 0.0503) = -0.05161$

 $x_{amzn}r_{amzn} + x_{sbux}r_{sbux} = -0.02442 \neq r_{p,t}$

Adjusting for Inflation (cc returns)

▶ The cc one period real return is

$$egin{aligned} r_t^{\mathsf{Real}} &= \mathsf{In}(1 + R_t^{\mathsf{Real}}) \ 1 + R_t^{\mathsf{Real}} &= rac{P_t}{P_{t-1}} \cdot rac{\mathit{CPI}_{t-1}}{\mathit{CPI}_t} \end{aligned}$$

It follows that

$$\begin{split} r_t^{\mathsf{Real}} &= \ln \left(\frac{P_t}{P_{t-1}} \cdot \frac{\mathsf{CPI}_{t-1}}{\mathsf{CPI}_t} \right) = \ln \left(\frac{P_t}{P_{t-1}} \right) + \ln \left(\frac{\mathsf{CPI}_{t-1}}{\mathsf{CPI}_t} \right) \\ &= \ln(P_t) - \ln(P_{t-1}) + \ln(\mathsf{CPI}_{t-1}) - \ln(\mathsf{CPI}_t) \\ &= r_t - \pi_t^{\mathit{cc}} \end{split}$$

where

$$r_t = \ln(P_t) - \ln(P_{t-1}) = \text{nominal cc return}$$
 $\pi_t^{cc} = \ln(CPI_t) - \ln(CPI_{t-1}) = \text{cc inflation}$

Adjusting for Inflation (cc returns)

Example. Compute cc real return

Suppose:

$$R_t = 0.0588$$
 $\pi_t = 0.01$ $R_t^{\mathsf{Real}} = 0.0483$

The real cc return is

$$r_t^{\text{Real}} = \ln(1 + R_t^{\text{Real}}) = \ln(1.0483) = 0.047.$$

Equivalently, $r_t^{\text{Real}} = r_t - \pi_t^{cc} = \ln(1.0588) - \ln(1.01) = 0.047$

Selected Summary

	simple returns \mathbf{R}_t	cc returns \mathbf{r}_t
Def'n	$1+R_t=rac{P_t}{P_{t-1}}$	$r_t = \log\left(\frac{P_t}{P_{t-1}}\right)$
		$=\log(1+R_t)^{'}$
Multi-	$\begin{vmatrix} 1+R_t(2)=(1+R_t)(1+R_{t-1}) \ ; ext{ NOT additive over } t$'s	$r_t(2) = r_t + r_{t-1}$; additive over t 's
Real-	$1+R_t^{Real}=rac{1+R_t}{1+\pi_t}$	$r_t^{Real} = In(1 + R_t^{Real})$
	portfolio $\mathbf{R}_{p,t}$	portfolio $\mathbf{r}_{p,t}$
Def'n	$R_{p,t} = x_A R_{A,t} + x_B R_{B,t}$; additive across <i>i</i> 's	$r_{p,t} = \ln(1 + R_{p,t})$
	; additive across <i>i</i> 's	; NOT additive across <i>i</i> 's

What's next?

- ▶ Returns $(R_t \text{ and } r_t)$ are not constant over time but random
- Probabilistic thinking is a major tool to analyze financial returns
- Quick review on probability and statistics
 - basic knowledge (from prerequisites) will be assumed