Assignment - 4

Write code and connections in wokwi for ultrasonic sensor. Whenever distance is less than 100cms send "alert" to ibm cloud and display in device recent events

Team ID	PNT2022TMID40035
Project Name	IOT-based smart crop protection system for
	agriculture

PROGRAM:

```
// ARDUINO PINS (TRIGGER PIN, ECHO
PIN) const int TRIG_PIN = 7; const int
ECHO_PIN = 8;

// Anything over 400 cm (23200 us pulse) is "out of range"
const unsigned int max_dist = 23200;
void setup()
{

    // The Trigger pin will tell the sensor to range find
    pinMode(TRIG_PIN, OUTPUT);
    digitalWrite(TRIG_PIN, LOW);
    //Set Echo pin as input to measure the time duration of pulse returning back from the distance sensor
    pinMode(ECHO_PIN, INPUT);

// We'll use the serial monitor to view the sensor output
Serial.begin(9600);
```

```
}
 void loop() {
 unsigned long t1: unsigned
  long t2; unsigned long
  pulse width: float cm;
  float inches;
  // Hold the trigger pin high for at least 10 us
  digitalWrite(TRIG PIN,
                               HIGH);
   delayMicroseconds(10):
  digitalWrite(TRIG PIN, LOW); // Wait for pulse on echo
   pin while ( digitalRead(ECHO PIN) == 0 ); // Measure how
  long the echo pin was held high (pulse width) // Note: the
  micros() counter will overflow after ~70 min t1 = micros();
  while ( digitalRead(ECHO PIN) == 1); t2 = micros();
   pulse width = t2 - t1:
   // Calculate distance in centimeters and inches. The constants //
   are found in the datasheet, and calculated from the assumed speed
  //of sound in air at sea level (~340 m/s).
   cm = pulse width / 58.0;
  inches = pulse width / 148.0;
  // Print out results
 if ( pulse width > max dist ) {
    Serial.println("Out of range");
  } else {
    Serial.println("********************************);
    Serial.print("Distance Measured in cm : ");
    Serial.println(cm);
if(cm<100){
      // while(true){
       Serial.println("Alert !!");
      // }
     }
```

```
Serial.print("**************************);
}

// Wait at least 1000ms before next measurement delay(1000);
}

OUTPUT:
```


Project Link: https://wokwi.com/projects/346290927428436563