Tabla de Identidades Trigonométricas © 2012 neoparaiso.com/imprimir

Funciones Trigonométricas

$$\tan x = \frac{\sin x}{\cos x}$$
, $\sec x = \frac{1}{\cos x}$, $\csc x = \frac{1}{\sin x}$, $\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$

Funciones Trigonométricas en función de las Otras Cinco

	$\sin x$	$\cos x$	an x
$\sin x =$	$\sin x$	$\pm\sqrt{1-\cos^2 x}$	$\pm \frac{\tan x}{\sqrt{1 + \tan^2 x}}$
$\cos x =$	$\pm\sqrt{1-\sin^2 x}$	$\cos x$	$\pm \frac{1}{\sqrt{1+\tan^2 x}}$
$\tan x =$	$\pm \frac{\sin x}{\sqrt{1 - \sin^2 x}}$	$\pm \frac{\sqrt{1 - \cos^2 x}}{\cos x}$	$\tan x$
$\csc x =$	$\frac{1}{\sin x}$	$\pm \frac{1}{\sqrt{1-\cos^2 x}}$	$\pm \frac{\sqrt{1 + \tan^2 x}}{\tan x}$
$\sec x =$	$\pm \frac{1}{\sqrt{1-\sin^2 x}}$	$\frac{1}{\cos x}$	$\pm\sqrt{1+\tan^2x}$
$\cot x =$	$\pm \frac{\sqrt{1-\sin^2 x}}{\sin x}$	$\pm \frac{\cos x}{\sqrt{1 - \cos^2 x}}$	$\frac{1}{\tan x}$
	$\csc x$	$\sec x$	$\cot x$
$\sin x =$	$\frac{1}{\csc x}$	$\pm \frac{\sqrt{\sec^2 x - 1}}{\sec x}$	±1
		500 w	$\pm \frac{1}{\sqrt{1+\cot^2 x}}$
$\cos x =$	$\pm \frac{\sqrt{\csc^2 x - 1}}{\csc x}$	$\frac{1}{\sec x}$	$\pm \frac{\cot x}{\sqrt{1 + \cot^2 x}}$
$\cos x = \frac{1}{\tan x}$	$\frac{\pm}{\csc x}$	_1_	$\sqrt{1 + \cot^2 x}$ $\cot x$
	$\frac{\pm}{\csc x}$	$\frac{1}{\sec x}$	
$\tan x =$	$\pm \frac{1}{\sqrt{\csc^2 x - 1}}$	$\frac{1}{\sec x}$ $\pm \sqrt{\sec^2 x - 1}$ $\sec x$	$ \frac{\sqrt{1 + \cot^2 x}}{\pm \frac{\cot x}{\sqrt{1 + \cot^2 x}}} $ $ \frac{1}{\cot x} $

Algunos Valores Especiales

Función	0(0°)	$\frac{\pi}{12}(15^{\circ})$	$\frac{\pi}{6}(30^{\circ})$	$\frac{\pi}{4}(45^{\circ})$	$\frac{\pi}{3}(60^{\circ})$	$\frac{5\pi}{12}(75^{\circ})$	$\frac{\pi}{2}(90^{\circ})$
sin	0	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	1
cos	1	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	0
tan	0	$2-\sqrt{3}$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$2+\sqrt{3}$	$\nexists(\pm\infty)$
csc	$ \nexists(\pm\infty) $	$\sqrt{6} + \sqrt{2}$	2	$\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	$\sqrt{6}-\sqrt{2}$	1
sec	1	$\sqrt{6}-\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	$\sqrt{6} + \sqrt{2}$	$\nexists(\pm\infty)$
cot	$\nexists(\pm\infty)$	$2+\sqrt{3}$	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	$2-\sqrt{3}$	0

Identidades por Simetría, Periodicidad o Desplazamiento

$-x \ o \ 360^{\circ} - x$	$90^{\circ} - x$	$180^{\circ} - x$
$\sin(-x) = -\sin x$	$\sin(\frac{\pi}{2} - x) = +\cos x$	$\sin(\pi - x) = +\sin x$
$\cos(-x) = +\cos x$	$\cos(\frac{\pi}{2} - x) = +\sin x$	$\cos(\pi - x) = -\cos x$
$\tan(-x) = -\tan x$		$\tan(\pi - x) = -\tan x$
$\csc(-x) = -\csc x$	$\csc(\frac{\pi}{2} - x) = +\sec x$	$\csc(\pi - x) = +\csc x$
$\sec(-x) = +\sec x$	$\sec(\frac{\pi}{2} - x) = +\csc x$	$\sec(\pi - x) = -\sec x$
$\cot(-x) = -\cot x$	$\cot(\frac{\pi}{2} - x) = +\tan x$	$\cot(\pi - x) = -\cot x$
. 000		
$x + 90^{\circ}$	$x + 180^{\circ}$	$x + 360^{\circ}$
$\frac{x + 90^{\circ}}{\sin(x + \frac{\pi}{2}) = +\cos x}$	$x + 180^{\circ}$ $\sin(x + \pi) = -\sin x$	$x + 360^{\circ}$ $\sin(x + 2\pi) = +\sin x$
$\sin(x + \frac{\pi}{2}) = +\cos x$	$\sin(x+\pi) = -\sin x$	$\sin(x+2\pi) = +\sin x$
$\sin(x + \frac{\pi}{2}) = +\cos x$ $\cos(x + \frac{\pi}{2}) = -\sin x$	$\sin(x+\pi) = -\sin x$ $\cos(x+\pi) = -\cos x$	$\sin(x + 2\pi) = +\sin x$ $\cos(x + 2\pi) = +\cos x$
$\sin(x + \frac{\pi}{2}) = +\cos x$ $\cos(x + \frac{\pi}{2}) = -\sin x$ $\tan(x + \frac{\pi}{2}) = -\cot x$	$\sin(x + \pi) = -\sin x$ $\cos(x + \pi) = -\cos x$ $\tan(x + \pi) = +\tan x$	$\sin(x + 2\pi) = +\sin x$ $\cos(x + 2\pi) = +\cos x$ $\tan(x + 2\pi) = +\tan x$

Cálculo de Funciones Trigonométricas

Función	Derivada	Integral
$\sin x$	$\cos x$	$-\cos x + C$
$\cos x$	$-\sin x$	$\sin x + C$
$\tan x$	$\sec^2 x = 1 + \tan^2 x$	$-\ln \cos x + C$
$\csc x$	$-\csc x \cot x$	$-\ln \csc x + \cot x + C$
$\sec x$	$\sec x \tan x$	$\ln \sec x + \tan x + C$
$\cot x$	$-\csc^2 x = -(1+\cot^2 x)$	$\ln \sin x + C$

Ley de Senos

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Ley de Cosenos

$$a2 = b2 + c2 - 2bc \cos A$$

$$b2 = a2 + c2 - 2ac \cos B$$

$$c2 = a2 + b2 - 2ab \cos C$$

Ley de Tangentes

$$\frac{a-b}{a+b} = \frac{\tan\left(\frac{A-B}{2}\right)}{\tan\left(\frac{A+B}{2}\right)}$$

$$\frac{b-c}{b+c} = \frac{\tan\left(\frac{B-C}{2}\right)}{\tan\left(\frac{B+C}{2}\right)}$$

$$\frac{a-c}{a+c} = \frac{\tan\left(\frac{A-C}{2}\right)}{\tan\left(\frac{A+C}{2}\right)}$$

Identidades Pitagóricas

$$\cos^2 x + \sin^2 x = 1$$
$$\sec^2 x - \tan^2 x = 1$$
$$\csc^2 x - \cot^2 x = 1$$
$$\sin x = \pm \sqrt{1 - \cos^2 x}$$
$$\cos x = \pm \sqrt{1 - \sin^2 x}$$

Suma y Diferencia de Ángulos

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\csc(x \pm y) = \frac{1}{\sin(x \pm y)}$$

$$\sec(x \pm y) = \frac{1}{\cos(x \pm y)}$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot y \pm \cot x}$$

Producto a Suma

$$\cos x \cos y = \cos(x - y) + \frac{\cos(x + y)}{2}$$
$$\sin x \sin y = \cos(x - y) - \frac{\cos(x + y)}{2}$$
$$\sin x \cos y = \sin(x + y) + \frac{\sin(x - y)}{2}$$
$$\cos x \sin y = \sin(x + y) - \frac{\sin(x - y)}{2}$$

Suma a Producto

$$\sin x \pm \sin y = 2\sin\left(\frac{x \pm y}{2}\right)\cos\left(\frac{x \mp y}{2}\right)$$

$$\cos x + \cos y = 2\cos\left(\frac{x + y}{2}\right)\cos\left(\frac{x - y}{2}\right)$$

$$\cos x - \cos y = -2\sin\left(\frac{x + y}{2}\right)\sin\left(\frac{x - y}{2}\right)$$

$$\tan x \pm \tan y = \frac{\sin(x \pm y)}{\cos x \cos y}$$

Identidades de Ángulo Doble

$$\sin 2x = \frac{2\tan x}{1 + \tan^2 x} = 2\sin x \cos x$$

$$\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x} = \cos^2 x - \sin^2 x$$

$$= 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$\cot 2x = \frac{\cot^2 x - 1}{2\cot x}$$

Identidades de Ángulo Triple

$$\sin 3x = 3\cos^2 x \sin x - \sin^3 x$$

$$= 3\sin x - 4\sin^3 x$$

$$\cos 3x = \cos^3 x - 3\sin^2 x \cos x$$

$$= 4\cos^3 x - 3\cos x$$

$$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

$$\cot 3x = \frac{3\cot x - \cot^3 x}{1 - 3\cot^2 x}$$

Identidades de Ángulo Medio

$$\sin\frac{x}{2} = \pm\sqrt{\frac{1-\cos x}{2}}$$

$$\cos\frac{x}{2} = \pm\sqrt{\frac{1+\cos x}{2}}$$

$$\tan\frac{x}{2} = \pm\sqrt{\frac{1-\cos x}{1+\cos x}} = \csc x - \cot x$$

$$= \frac{\sin x}{1+\cos x}$$

$$\cot\frac{x}{2} = \pm\sqrt{\frac{1+\cos x}{1-\cos x}} = \csc x + \cot x$$

$$= \frac{\sin x}{1-\cos x} = \frac{1+\cos x}{\sin x}$$

$$\tan\left(\frac{x+y}{2}\right) = \frac{\sin x + \sin y}{\cos x + \cos y} = -\frac{\cos x - \cos y}{\sin x - \sin y}$$

Reducción de Exponentes

$$\sin^{2} x = \frac{1 - \cos 2x}{2}$$

$$\sin^{3} x = \frac{3 \sin x - \sin 3x}{4}$$

$$\sin^{4} x = \frac{3 - 4 \cos 2x + \cos 4x}{8}$$

$$\sin^{5} x = \frac{10 \sin x - 5 \sin 3x + \sin 5x}{16}$$

$$\cos^{2} x = \frac{1 + \cos 2x}{2}$$

$$\cos^{3} x = \frac{3\cos x + \cos 3x}{4}$$

$$\cos^{4} x = \frac{3 + 4\cos 2x + \cos 4x}{8}$$

$$\cos^{5} x = \frac{10\cos x + 5\cos 3x + \cos 5x}{16}$$

$$\sin^{2} x \cos^{2} x = \frac{1 - \cos 4x}{8}$$

$$\sin^{3} x \cos^{3} x = \frac{3 \sin 2x - \sin 6x}{32}$$

$$\sin^{4} x \cos^{4} x = \frac{3 - 4 \cos 4x + \cos 8x}{128}$$

$$\sin^{5} x \cos^{5} x = \frac{10 \sin 2x - 5 \sin 6x + \sin 10x}{512}$$

Diferencia de Cuadrados a Producto

$$\sin^{2}(x) - \sin^{2}(y) = \sin(x+y)\sin(x-y)$$
$$\cos^{2}(x) - \sin^{2}(y) = \cos(x+y)\cos(x-y)$$

Composición de Funciones

$$\sin(\arccos x) = \sqrt{1 - x^2}$$

$$\tan(\arcsin x) = \frac{x}{\sqrt{1 - x^2}}$$

$$\sin(\arctan x) = \frac{x}{\sqrt{1 + x^2}}$$

$$\tan(\arccos x) = \frac{\sqrt{1 - x^2}}{x}$$

$$\cos(\arctan x) = \frac{1}{\sqrt{1 + x^2}}$$

$$\cot(\arcsin x) = \frac{\sqrt{1 - x^2}}{x}$$

$$\cos(\arcsin x) = \sqrt{1 - x^2}$$

$$\cot(\arccos x) = \frac{x}{\sqrt{1 - x^2}}$$

Suma y Diferencia de Inversas

$$\arcsin x + \arccos x = \frac{\pi}{2}$$

$$\arctan x + \operatorname{arccot} x = \frac{\pi}{2}$$

$$\arctan x + \arctan \frac{1}{x} = \begin{cases} \frac{\pi}{2}, & \text{si } x > 0 \\ -\frac{\pi}{2}, & \text{si } x < 0 \end{cases}$$

$$\arcsin x \pm \arcsin y$$

$$= \arcsin(x\sqrt{1 - y^2} \pm y\sqrt{1 - x^2})$$

$$\arccos x \pm \arccos y$$

$$= \arccos(xy \mp \sqrt{(1 - x^2)(1 - y^2)})$$

$$\arctan x \pm \arctan y$$

$$= \arctan\left(\frac{x \pm y}{1 \mp xy}\right)$$