Limit Integral to find the area under the curve $y = \cos x$, $0 \le x \le 0.5\pi$ Created by Mr. Francis Hung on 25 Feb., 2022. Last updated: 25 February 2022.

$$\int_{0}^{\frac{\pi}{2}} \cos x dx = \lim_{n \to \infty} (A_{1} + A_{2} + \dots + A_{n})$$

$$= \lim_{n \to \infty} \frac{\pi}{2n} \cos \frac{\pi}{2n} + \frac{\pi}{2n} \cos \frac{2\pi}{2n} + \dots + \frac{\pi}{2n} \cos \frac{n\pi}{2n})$$

$$= \lim_{n \to \infty} \frac{\pi}{2n} \left(\cos \frac{\pi}{2n} + \cos \frac{2\pi}{2n} + \dots + \cos \frac{n\pi}{2n} \right)$$

$$= \lim_{n \to \infty} \frac{\pi}{4n \sin \frac{\pi}{4n}} \left(2 \cos \frac{\pi}{2n} \sin \frac{\pi}{4n} + 2 \cos \frac{2\pi}{2n} \sin \frac{\pi}{4n} + \dots + 2 \cos \frac{n\pi}{2n} \sin \frac{\pi}{4n} \right)$$

$$= \lim_{n \to \infty} \frac{\pi}{4n \sin \frac{\pi}{4n}} \left[\sin \frac{3\pi}{4n} - \sin \frac{\pi}{4n} + \sin \frac{5\pi}{4n} - \sin \frac{3\pi}{4n} + \dots + \sin \frac{(2n+1)\pi}{4n} - \sin \frac{(2n-1)\pi}{4n} \right]$$

$$= \lim_{n \to \infty} \frac{\pi}{4n \sin \frac{\pi}{4n}} \left[\sin \frac{(2n+1)\pi}{4n} - \sin \frac{\pi}{4n} \right]$$

$$= \lim_{n \to \infty} \frac{\pi}{4n \sin \frac{\pi}{4n}} \left[2 \cos \frac{(n+1)\pi}{4n} \sin \frac{n\pi}{4n} \right]$$

$$= \frac{1}{\lim_{n \to \infty} \frac{\sin \frac{\pi}{4n}}{\frac{\pi}{4n}}} \cdot 2 \cdot \lim_{n \to \infty} \cos \left[\frac{\pi}{4} \cdot \left(1 + \frac{1}{n} \right) \right] \sin \frac{\pi}{4}$$

$$= 1 \cdot 2 \cdot \cos \frac{\pi}{4} \cdot \sin \frac{\pi}{4}$$

$$= \sin \frac{\pi}{2} = 1$$