Algebraic Number Theory

Harry Armitage

January 30, 2021

Contents

2	Absolute Values and Places 1.1 Extensions and Places	2 3
	Number Fields 2.1 Places of Number Fields	5
3	Different and Discriminant	9

1 Absolute Values and Places

K is a field. An *absolute value* (AV) on *K* is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ such that, for all $x, y \in K$:

i)
$$|x| = 0 \iff x = 0$$

ii)
$$|xy| = |x||y|$$

iii)
$$|x + y| \le |x| + |y|$$

We will also assume that $|\cdot|$ is not trivial, i.e.

iv)
$$\exists x \in K : |x| \neq 0, 1$$

An AV is non-archimedean if it satisfies

iii-NA)
$$|x + y| \le \max(|x|, |y|)$$

and archimedean otherwise.

An AV determines a metric d(x, y) = |x - y| which makes K a *topological field*.

Remark It's convenient to weaken iii):

iii')
$$\exists \alpha > 0$$
 s.t. $\forall x, y, |x + y|^{\alpha} \le |x|^{\alpha} + |y|^{\alpha}$

For non-archimedean AVs, this makes no difference. What this does mean is that if $|\cdot|$ is an AV, then so is $|\cdot|^{\alpha}$ for any $\alpha > 0$. The point of this is that we want $z \mapsto z\bar{z}$ on \mathbb{C} to be an AV - we'll see why later.

Let's suppose $|\cdot|$ is a non-archimedean AV. Then $\{x \in K : |x| \le 1\} = R$ is a subring of K. It is a local ring with unique maximal ideal $\{|x| < 1\} = \mathfrak{m}_R$.

It is a *valuation ring* of K (i.e. $x \in K \setminus R \implies x^{-1} \in R$).

Lemma 1.1. *R is a maximal subring of K.*

Proof. Let $x \in K \setminus R$, so |x| > 1. Then if $y \in K$, there is some $n \ge 0$ with $|yx^{-n}| = \frac{|y|}{|x|^n} \le 1$. So $y \in x^n R$ for $n \gg 0$, and hence R[x] = K. Hence R is maximal.

There is a general notion of valuation (not nec. \mathbb{R} -valued). In the more general context, these valuations are called *rank 1 valuations*, and they have this maximality property.

We say two absolute values $|\cdot|$ and $|\cdot|'$ are *equivalent* if there is $\alpha > 0$ with $|\cdot|' = |\cdot|^{\alpha}$. This is an equivalence relation.

Proposition 1.2. *The following are equivalent:*

- i) $|\cdot|$, $|\cdot|'$ are equivalent.
- ii) $|x| \le |y| \iff |x|' \le |y|'$.
- iii) $|x| < |y| \iff |x|' < |y|'$.

Proof. From local fields, or exercise.

Corollary 1.3. Let $|\cdot|$, $|\cdot|'$ be non-archimedean AVs, with valuation rings R, R'. Then $|\cdot|$, $|\cdot|'$ are equivalent if and only if R = R' if and only if $R \subset R'$.

П

Equivalent AVs define equivalent metrics, hence the same topologies, hence the *completion* of K with respect to $|\cdot|$ depends only on the equivalence class of $|\cdot|$.

Inequivalent AVs determine "independent" topologies in the following sense:

Proposition 1.4 (Weak Approximation). Let $|\cdot|_i$ for $1 \le i \le n$ be pairwise inequivalent AVs on K, and $a_1, \ldots, a_n \in K$, $\delta > 0$.

Then there is $x \in K$ such that, for all i, $|x - a_i|_i < \delta$.

Proof. Suppose $z_j \in K$ such that $|z_j|_j > 1$, and $|z_j|_i < 1$ for all $i \neq j$. Then $|\frac{z_j^N}{z_j^N + 1}|_i \to 0$ as $N \to \infty$ if $i \neq j$, and to 1 if i = j.

So then $x = \sum a_j \frac{z_j^N}{z_j^N + 1}$ works for N sufficiently large. So it's enough to find z_j , and by symmetry take j = 1. We then induct on n. The case n = 1 is trivial.

Suppose we have y with $|y|_1 > 1$, and $|y|_2, \ldots, |y|_{n-1} < 1$. If $|y|_n < 1$, we're finished, otherwise pick $w \in K$ with $|w|_1 > 1 > |w|_n$, by **1.2**. If $|y|_n = 1$, then $z = y^N w$ works, and if $|y|_n > 1$, then $z = \frac{y^N w}{y^N + 1}$ works.

Remark. If $K = \mathbb{Q}$, $|\cdot|_1, \ldots, |\cdot|_n$ are the p_i -adic AVs for distinct primes p_i and $a_i \in \mathbb{Z}$, then weak approximation says that, for all $n_i \geq 1$, there is $x \in \mathbb{Q}$ which is a p_i -adic integer for all i, and $x \equiv a_i \mod p_i^{n_i}$ for all i. This is weaker than CRT, which guarantees $x \in \mathbb{Z}$.

Definition. A *place* of *K* is an equivalence class of AVs on *K*.

Example $K = \mathbb{Q}$. *Ostrowski's Theorem* implies every AV on \mathbb{Q} is equivalent to one of $|\cdot|_p$, $|\cdot|_{\infty}$. So places of \mathbb{Q} are the primes, and ∞ . We write V_K for the set of places of K.

We write $V_{K,\infty}$ for the places given by archimedean AVs (the infinite places).

We write $V_{K,f}$ for the places given by non-archimedean AVs (the finite places).

We often use letters v, w denote places. Given $v \in V_K, K_v$ will denote the completion of K at v. If $v : K^{\times} \to \mathbb{R}$ is a *valuation*, we will also use v to denote the corresponding place, i.e. the equivalence class of AVs $x \mapsto \gamma^{-v(x)}$.

We can restate the weak approximation in terms of places:

Proposition 1.4. Let v_1, \ldots, v_n be distinct places of K. Then the image of the diagonal inclusion

$$K \hookrightarrow \prod_{1 \le i \le n} K_{v_i}$$

is dense.

1.1 Extensions and Places

Let L/K be finite and separable, and let v, w be places of K, L respectively. Say w *lies over* or *divides* v (notation w|v) if v is the restriction of w to K.

Then there is a unique continuous $K_v \hookrightarrow L_w$ extending $K \hookrightarrow L$.

Proposition 1.5. There is a unique isomorphism of topological rings

$$L \otimes_K K_v \xrightarrow{\sim} \prod_{w|v} L_w$$

mapping $x \otimes y$ to $(xy)_w$.

Proof. Both sides are finite dimensional normed K_v -vector spaces. The idea will be to choose a basis of L/K so that $L \otimes_K K_v \cong K_v^{[L:K]}$ (with the sup norm), and on the RHS we also use the sup norm. Then we use the fact that any 2 norms on a finite dimensional vector space over a field complete with respect to an absolute value are equivalent (see Cassesl and Fröhlich, Ch. III, section 8).

Write L = K(a) where $f \in K[T]$ is a minimal polynomial for a, and is separable. Factor $f = \prod g_i$ in K_v , so that the $g_i \in K_v[T]$ are irreducible and distinct.

Let $L_i = K_v[T]/(g_i)$. Then $L \otimes_K K_v = K_v[T]/(f) \cong \prod_i L_i$. Now let w|v, inducing $i_w : L \hookrightarrow I_w$. Let $g_w \in K_v[T]$ be the minimal polynomial of $i_w(a)$ over K_v . Then $g_w|f$, so g_w is one of the g_i s, and $L_w = K_v(i_w(a)) = L_i$.

Conversely, K_v is complete and L_i/K_v is finite, so there is a unique extension of v to L_i , and we get a bijection $\{g_i\} \leftrightarrow \{w|v\}$, and $L \otimes_K K_v \cong \prod L_w$.

Corollary 1.6.

- 1. $\{w|v\}$ is finite, nonempty, and $[L:K] = \sum_{w|v} [L_w:K_v]$
- 2. $\forall x \in K$, $N_{L/K}(x) = \prod_{w|v} N_{L_w/K_v}(x)$ $\text{Tr}_{L/K}(x) = \sum_{w|v} \text{Tr}_{L_w/K_v}(x)$.

If L/K is Galois with Galois group G, then G acts on the places w of L lying over a given v: if $|\cdot|$ is an AV on L then, for all $g \in G$, the map $x \mapsto |g^{-1}x|$ is an AV on L, agreeing with $|\cdot|$ on K, and hence gives a (left) action of G on $\{w|v\}$, $g(w) = w \circ g^{-1}$. If $w = v_P$ for a prime P, then $gw = v_{g(P)}$.a

We define the *decomposition group* D_w or G_w to be the stabiliser of w. This action is transitive. If $g \in D_w$, then it is continuous for the topology induced by w on L, so it extends to an automorphism of L_w , the completion of L at w.

$$G \supset \operatorname{Gal}(L_w/K_v) \supseteq D_w$$

Then we have

$$\begin{split} \#G &= (G:G_w) \# G_w \\ &\leq (G:G_w) [L_w:K_v] \\ &= \sum_{g \in G/G_w} [L_{g(w)}:K_v] \\ &\leq \sum_{w|v} [L_w:K_v] \\ &= [L:K] = \# G \end{split}$$

Hence equality holds throughout, and $G_w = Gal(L_w/K_v)$.

Suppose v is a *discrete valuation* of L, i.e. it is a finite place, and the valuation ring is a DVR. Then so is any w|v, and we define:

- f(w|v), the degree of residue class extension, = e_{L_w/K_v}
- e(w|v), the ramification degree

and $[L_w : K_v] = e(w|v) f(w|v)$.

2 Number Fields

A lot of this theory applies to other global fields, e.g. function fields. K will here be a number field (i.e. finite extension of the rationals) with ring of integers O_K . We have some basic properties:

- O_K is a *Dedekind domain*, i.e.
 - 1. Noetherian (in fact, O_K is a f.g. \mathbb{Z} -module).
 - 2. Integrally closed in *K* (by definition).
 - 3. Every non-zero prime ideal is maximal, so has Krull dimension ≤ 1 .

We have some basic results about Dedekind domains:

Theorem 2.1.

- 1. A local domain is Dedekind if and only if it is a DVR.
- 2. For a domain R, TFAE:
 - (a) R is Dedekind.
 - (b) R is Noetherian and for every non-zero prime \mathfrak{p} , $R_{\mathfrak{p}}$ is a DVR.
 - (c) Every fractional ideal of R is invertible.
- 3. A Dedekind domain with only finitely many prime ideals (i.e. semi-local) is a PID.

Proof.

- 1. Proved in local fields, \implies is the hardest part.
- 2. Let $K = \operatorname{Frac}(R)$. A fractional ideal of R is a non-zero R-submodule $I \subset K$ for some $0 \neq x \in R$ where $xI \subset R$ is an ideal. For $(a) \Longrightarrow (b)$ it is enough to check (exercise) that the basic properties are preserved under localisation.

For $(b) \Longrightarrow (c)$, I is invertible if there is a fractional ideal I^{-1} such that $II^{-1} = R$. To prove (c), we may assume $I \subset R$ is an ideal. Then let $I^{-1} = \{x \in K : xI \subset R\}$. If $0 \neq y \in I$, then $R \subset I^{-1} \subset y^{-1}R$, and so I^{-1} is a fractional ideal. Clearly $I^{-1}I \subset R$. Now let $P \subset R$ be prime - it is sufficient to show $I^{-1}I \not\subset P$. Let $I = (a_1, \ldots, a_n)$. WLOG take $v_P(a_1) \leq v_P(a_i)$ for all i > 1. Then $IR_P = a_1R_P$, as R_P is a DVR.

Hence $a_i/a_1 = x_i/y_i \in R_P$ where $x_i \in R$, $y_i \in R \setminus P$. Then $y = \prod y_i \notin P$ as P is prime, and $ya_i/a_1 \in R$ for all i, and so $y/a_i \in I^{-1}$, so $y \in II^{-1} \setminus P$.

For $(c) \Longrightarrow (a)$, we check the properties. R is Noetherian - let $I \subset R$ be an ideal. Then $II^{-1} = R \Longrightarrow 1 = \sum_{i=1}^n a_i b_i, a_i \in I, b_i \in I^{-1}$. Let $I' = (a_1, \ldots, a_r) \subset I$. Then $I'I^{-1} = R = II^{-1}$, and so I' = I, and I is finitely generated.

R is integrally closed. Let $x \in K$, integral over R. Then $I := R[x] = \sum_{0 \le i < d} Rx^i \subset K$ is a fractional ideal. Obviously $I^2 = I$, so $I = I^2I^{-1} = II^{-1} = R$, i.e. $x \in R$.

Every non-zero prime is maximal. Take $\{0\} \neq Q \subset P \subsetneq R$ where P,Q are prime. Then $R \subsetneq P^{-1} \subset Q^{-1}$, and $Q \subsetneq P^{-1}Q \subset R$, and $P(P^{-1}Q) = Q$, so as Q is prime and $P^{-1}Q \not\subset R$, we must have $P \subset Q$, and so P = Q.

3. Let R be a semi-local Dedekind domain with non-zero primes P_1, \ldots, P_n . Choose $x \in R$ with $x \in P_1 \setminus P_1^2, x \in P_2, \ldots, P_n$. Then $P_1 = (x)$ and every ideal is a product of powers of $\{P_i\}$ (see below), hence R is a PID.

Theorem 2.2. Let R be Dedekind. Then:

1. The group of fractional ideals is freely generated by the non-zero prime ideals, and

$$I = \prod_{P} P^{v_P(I)}$$

with $v_P(I) = \inf_{x \in I} (v_P(x))$.

2. If $(R:I) < \infty$ for all $I \neq (0)$, then for all I, I, (R:II) = (R:I)(R:I).

Proof.

1. If $I \neq R$, then $I \subset P$ for some prime ideal P. Then $I = PI', I' = IP^{-1} \supseteq I$. Then by Noetherian induction, I is a product of powers of prime ideals, say $I = \prod P^{a_P}$.

We get the same for fractional ideals $I = x^{-1}I$.

Consider the homomorphisms {fractional ideals of R} \to {fractional ideals of R_P } $\to \mathbb{Z}$ given by $I \mapsto IR_P$, $(\pi^n) \mapsto n$.

The composition is $I \mapsto v_P(I)$, and if $Q \neq P$ then $v_P(Q) = 0$.

So {fractional ideals of R} $\to \bigoplus_P \mathbb{Z}$ maps $\prod P^{a_P}$ to $(a_P)_P$. Hence the a_P are unique and this is an isomorphism.

2. By unique factorisation of ideals (part 1.), $\prod P^{a_P} \cap \prod P^{b_P} = \prod P^{\max a_P, b_P}$. So if I + J = R, then $IJ = I \cap J$, and so by CRT, $R/IJ \cong R/I \cap J \cong R/I \times R/J$, and we are done in this case.

Hence this step reduces to showing that $(R:P^{n+1}) = (R:P)(R:P^n)$.

Now localising at *P* gives $P^n \cong R_P/P^nR_P$, so WLOG *R* is local, hence a DVR, and $P = (\pi)$.

Then $R/(\pi^n) \cong (\pi)/(\pi^{n+1})$ via multiplication by π , and hence $(R:P^{n+1}) = (R:P)(P:P^{n+1}) = (R:P)(R:P^n)$.

The quotient group $Cl(R) := \{ fractional ideals of R \} / \{ principal fractional ideals of R \}$ is the *class group* (or *Picard group*) of *R*.

If *K* is a number field, then we write $Cl(K) = Cl(O_K)$, the *ideal class group* of *K*.

Theorem 2.3. For K a number field, Cl(K) is finite.

The proof will come later.

2.1 Places of Number Fields

Recall Ostrowski's theorem, which says that $V_{\mathbb{Q}} = \{p : p \text{ prime}\} \cup \{\infty\}.$

Let $\mathfrak{p} \subset O_K$ be a nonzero prime ideal. Then \mathfrak{p} determines a discrete valuation $v_{\mathfrak{p}}$ of K, and so a non-archimedean absolute value $|x|_{\mathfrak{p}} = r^{-v_{\mathfrak{p}}(x)}$ where r > 1.

Theorem 2.4. This gives a bijection {primes of O_K } $\rightarrow V_{K,f}$.

Proof. Let $P \neq Q$. Then there exists $x \in P \setminus Q$, and then $|x|_P < 1 = |x|_Q$, so $|\cdot|_P$, $|\cdot|_Q$ are inequivalent, and the map is injective.

Let $|\cdot|$ be a non-archimedean absolute value on K, with valuation ring $R = \{x \in K : |x| \le 1\}$. As $|\cdot|$ is non-archimedean, $\mathbb{Z} \subset R$ and hence $R \supset O_K$ as R is integrally closed. So $R \supset O_{K,P}$ for some prime $P = \mathfrak{m}_R \cap O_K$. Hence $R = O_{K,P}$ because by **1.1**, $O_{K,P}$ is a maximal subring of K.

Hence $|\cdot|$ and $|\cdot|_P$ are equivalent.

For $v \in V_{K,f}$, write P_v for the corresponding prime deal of O_K . Then K_v , the completion of K at v, is a complete discretely valued field, with valuation ring O_v or $O_{K_v} \subset K_v$, not to be confused with O_{K,P_v} .

The normalised discrete valuation will be the one for which $v: K^{\times} \twoheadrightarrow \mathbb{Z}$ is surjective. We will denote by $\pi_v \in O_v$ any generator of the maximal ideal. We often assume $\pi_v \in K$. Then $v(\pi_v) = 1$.

We write $k_v = O_K/P_v \cong O_v/(\pi^v)$, is finite, of order $q_v = p^{f_v}$ for a rational prime p divisible by v.

We then normalise the absolute value so that $|x|_v = q_v^{-v(x)}$, so that $|\pi_v|_v = \frac{1}{q_v}$.

For infinite places, we have the unique infinite place ∞ of \mathbb{Q} , with $\mathbb{Q}_{\infty} = \mathbb{R}$. So then $K \otimes_{\mathbb{Q}} \mathbb{R} \cong \prod_{v \in V_{K,\infty}} K_v$. Each K_v is a finite extension of \mathbb{R} , so is one of \mathbb{R} and \mathbb{C} . These correspond to the cases where we say v is real or complex respectively.

In the complex case, since $K \subset K_v$ is dense, we cannot have $K \subset \mathbb{R}$. On the other hand, by Galois theory $\Sigma_K = \{\text{homomorphisms } K \hookrightarrow \mathbb{C}\}$ has order $n = [K : \mathbb{Q}]$, and $K \otimes_{\mathbb{Q}} \mathbb{C} \cong \prod_{\sigma \in \Sigma_K} \mathbb{C}$. Complex conjugation acts on both sides by $x \otimes z \mapsto x \otimes \overline{z}$ and $(z_{\sigma})_{\sigma} \mapsto (\overline{z_{\overline{\sigma}}})_{\sigma}$.

Let $\sigma_1, \ldots, \sigma_{r_1} : K \hookrightarrow \mathbb{R}$, $\sigma_{r_1+1} = \overline{\sigma}_{r_1+r_2+1}, \ldots, \sigma_{r_1+r_2} = \overline{\sigma}_n : K \hookrightarrow \mathbb{C}$ where $r_1 + 2r_2 = n$. Then, taking fixed points under complex conjugation,

$$K \otimes_{\mathbb{Q}} \mathbb{R} \cong \prod_{\sigma \text{ real}} \mathbb{R} \times \prod_{(\sigma, \bar{\sigma})} \{ (z, \bar{z}) \in \mathbb{C} \times \mathbb{C} \} \cong \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$$

Therefore we have:

Theorem 2.5. *There is a bijection*

$$\Sigma_K/(\sigma \sim \bar{\sigma}) \xrightarrow{\sim} V_{K,\infty}$$

given by $\sigma \mapsto |\sigma(\cdot)|$, where $|\cdot|$ is the Euclidean absolute value in \mathbb{R} or \mathbb{C} .

We write $K_{\infty} := K \otimes_{\mathbb{Q}} \mathbb{R}$, which is canonically isomorphic to $\prod_{v \in V_{K_{\infty}}} K_v$ and noncanonically isomorphic to $\mathbb{R}^{\#\{\text{real }v\}} \times \mathbb{C}^{\#\{\text{complex }v\}}$.

We now choose the normalised absolute values such that, if v is real corresponding to $\sigma: K \hookrightarrow \mathbb{R}$, then $|x|_v = |\sigma(x)|_{\infty}$, and if v is complex, then $|x|_v = \sigma(x)\overline{\sigma}(x) = |\sigma(x)|^2$.

If v is finite and w|v, then L_w/K_v is a finite extension of non-archimedean local fields, and $[L_w:K_v]=e(w|v)f(w|v).$

If v is infinite and w|v, then $L_w/K_v = \begin{cases} \mathbb{R}/\mathbb{R} & f=e=1\\ \mathbb{C}/\mathbb{C} & f=e=1\\ \mathbb{C}/\mathbb{R} & v \text{ ramified, } e=2, f=1 \end{cases}$

Proposition 2.6. *Let* $x \in L$, $v \in V_K$. *Then:*

$$|N_{L/K}(x)|_v = \prod_{w|v} |x|_w$$

Proof. $N_{L/K}(x) = \prod_{w \mid v} N_{L_w/K_v}(x)$, so it is enough to show that $|N_{L_w/K_v}(x)|_v = |x|_w$.

For v a finite place, it is enough to take $x = \pi_w \in L$. Then:

$$|N_{L_w/K_v}(\pi_w)|_v = |u\pi_v^{f(w|v)}|_v$$

= $q_v^{-f(w|v)} = q_w^{-1} = |\pi_w|_w$

For v an infinite place, we need only consider $L_w/K_v \cong \mathbb{C}/\mathbb{R}$. But $N_{\mathbb{C}/\mathbb{R}}(z) = z\bar{z}$ by definition. \square

Theorem 2.7 (Product Formula). Let $x \in K^{\times}$. Then:

 $|x|_v = 1$ for all but finitely many v

and

$$\prod_{v \in V_K} |x|_v = 1$$

Proof. Write x=a/b where $a,b\in O_K^{\times}$. Then $\{v\in V_K: |x|_v\neq 1\}\subset V_{K,\infty}\cup \{v\in V_{K,f}: |x|_v\neq 1\}$ v(a) or v(b) > 0, a finite set.

Now $\prod_{v \in V_K} |x|_v = \prod_{p \le \infty} \left(\prod_{v \mid p} |x|_v \right) = \prod_{p \le \infty} |N_{K/\mathbb{Q}}(x)|_p$, so it is enough to prove this for $K = \mathbb{Q}$.

By multiplicativity, we reduce to x = q, a prime, or x = -1. In the former case, $|q|_p =$ $\begin{cases} \frac{1}{q} & p = q \\ 1 & p \neq q, \infty, \text{ and in the latter, } |-1|_p = 1 \text{ for all } p \leq \infty. \text{ Hence the product over all of these is } \\ 2 & n = \infty \end{cases}$

Remark. In \mathbb{R} , the standard measure dx transforms under \mathbb{R}^{\times} as d(ax) = |a|dx. In \mathbb{C} , the standard measure is dxdy. This transforms under \mathbb{C}^{\times} as $dxdy \mapsto |a|^2 dxdy$. In both these cases, we see the scaling is the normalised AV of *a*.

Fact: on K_v for any v there is a translation-invariant measure, the "Haar measure", $d_v(x)$. Then for all $a \in K_v^{\times}$, $d_v(ax) = |a|_v d_v(x)$, where $|\cdot|_v$ is a normalised AV.

3 Different and Discriminant

Suppose $R \subset S$ are commutative rings with 1, such that S is a free R-module of finite rank $n \ge 1$. Then we have a trace map $\text{Tr}_{S/R} : S \to R$, the trace of the R-linear map $y \mapsto xy$.

If x_1, \ldots, x_n are elements of S, define the discriminant:

$$\operatorname{disc}_{S/R}(x_i) = \operatorname{disc}(x_i) = \operatorname{det} \operatorname{Tr}_{S/R}(x_i x_i) \in R$$

If $y_i = \sum_{j=1}^n r_{ji} x_j$, then $\text{Tr}_{S/R}(y_i y_j) = \sum_{k,\ell} r_{ki} r_{\ell j} \text{Tr}_{S/R}(x_k x_\ell)$.

Hence $disc(y_i) = det(r_{ij})^2 disc(x_i)$.

Writing $S = \bigoplus_{i=1}^{n} Re_i$, we also define $\operatorname{disc}(S/R) = (\operatorname{disc}(e_i)) \subset R$, an ideal of R, independent of basis by the previous line.

This has the following basic properties:

- $S = S_1 \times S_2$ implies $\operatorname{disc}(S/R) = \operatorname{disc}(S_1/R) \operatorname{disc}(S_2/R)$
- If $f: R \to R'$ is a ring homomorphism, then $\operatorname{disc}(S \otimes_R R'/R') = f(\operatorname{disc}(S/R)) \subset R'$.
- If R is a field, then $\operatorname{disc}(S/R)$ is an ideal, so is R or $\{0\}$, and is R iff the R-bilinear form $(x,y)\mapsto \operatorname{Tr}_{S/R}(sy)$ is non-degenerate.

If L/K is a finite field extension, then $\operatorname{disc}(L/K) = K \iff$ the trace form is non-degenerate, which holds \iff there is some $x \in L$ with non-zero trace, i.e. iff L/K is separable. More generally:

Theorem 3.1. Let k be a field and A a finite dimensional k-algebra. Then $disc(A/k) \neq 0$ (so = k) if and only if $A = \prod K_i$ where K_i/k are finite separable field extensions.

Proof. We can write $A = \prod A_i$ where A_i are indecomposable, so local, k-algebras, and so we may assume A is local with maximal ideal .

If = 0, i.e. A is field, then this is reduced to the previous statement.

If R is a Dedekind domain, $K = \operatorname{Frac}(R)$, and L/K is finite separable with S the integral closure of R in L, then we say S/R is an *extension of Dedekind domains*. Then S is a finitely generated R-module, but needn't be free.

Proposition 3.2. *S* is a **locally free** *R*-module of rank n = [L : K] (i.e. for all $P \subset R$, $S_P \cong R_p^n$).

Proof. $S \subset L$ so S is torsion free, hence so is S_P , and R_P is a PID, so S_P is free. S spans L as a K-vector space, so S has rank dim $_K L = n$. □

Lemma 3.3. *If* $x \in S$, $\operatorname{Tr}_{L/K}(x) \in R$.

Proof. If *R* is local, then *S* is a free *R*-module, so $\operatorname{Tr}_{L/K}(x) = \operatorname{Tr}_{S \otimes_R K/K}(x \otimes 1) = \operatorname{Tr}_{S/R}(x) \in R$. So, in general, for all $0 \neq P \subset R$, $y = \operatorname{Tr}_{L/K}(x) \in R_P$, and $\bigcap_P R_P = \{x \in K : v_P(x) \geq 0 \ \forall P\} = R$. □

Then there are 2 equivalent definitions of disc(S/R):

Definition. disc(S/R) := the ideal of R generated by {disc $_{L/K}(x_1, ..., x_n) : x_1, ..., x_n \in S$ }. If S is free, this gives the previous definition.

As $S \otimes_R K = L$ is separable over K, $\operatorname{disc}(L/K) \neq 0$, and so $\operatorname{disc}(S/R) \neq \{0\}$.

Proposition 3.4. $\operatorname{disc}(S/R)R_P = \operatorname{disc}(S_P/R_P)$ for all P.

Proof. We claim there exist $x_1, \ldots, x_n \in S$ which are an R_P -basis for S_P . Certainly, there is such a basis in S_P , say e_1, \ldots, e_n . Now let:

$$Q := \{ \text{primes } Q \subset S : v_O(e_i) < 0 \text{ for some } i \}$$

 \mathcal{Q} is finite. Then by the CRT, there are $a_i \in S$ such that $v_Q(a_i) + v_Q(e_i) \ge 0$ for all $Q \in \mathcal{Q}$, and $v_P(a_i) \ge 1$.

Then $x_i = a_i e_i \in S$, and $x_i \equiv e_i \mod PS$. So (x_i) is an R/P-basis for $S/PS = S_P/PS_P$. So (x_i) is an R_P basis for S_P .

Hence the discriminant $\operatorname{disc}(S_P/R_P) = \operatorname{disc}(x_i)R_P$, and hence $\operatorname{disc}(x_i) \in \operatorname{disc}(S/R)$. So $\operatorname{disc}(S_P/R_P) \subset \operatorname{disc}(S/R)R_P$, and the other inclusion is obvious.

The alternate definition of disc(S/R) is:

• if $x_1, \ldots, x_n \in S$ is a K-basis for L, then $\mathrm{disc}_{L/K}(x_i) \neq 0$. Let $\mathcal{P} = \{P \subset R : v_P(\mathrm{disc}_{L/K}(x_i)) > 0\}$, a finite set. So for all $P \notin \mathcal{P}$, $\mathrm{disc}(S_P/R_P) = R_P$. Then we can define $\mathrm{disc}(S/R) = \prod_{P \in \mathcal{P}} P^{v_P(\mathrm{disc}(S_P/R_P))}$.

This is equivalent to the previous definition by 3.4.

Theorem 3.5. $v_P(\operatorname{disc}(S/R)) = 0$ if and only if P is unramified in S and for all $Q \subset S$ over P, the residue field extension $\frac{S}{O}/\frac{R}{P}$ is separable.

Proof. We may assume R is local, so that S is a free R-module. We know $PS = \prod_{Q} Q^{e_Q}$. So:

$$S\otimes_R(R/P)\cong S/PS\cong\prod_O S/Q^{e_Q}$$

So $v_P(\operatorname{disc}(S/R)) = 0$ if and only if $\operatorname{disc}(\frac{S}{PS}/\frac{R}{P}) = \frac{R}{P}$ if and only if each S/Q^{e_Q} is a finite separable field extension of R/P, if and only if, for all Q, $e_Q = 1$ and $\frac{S}{Q}/\frac{R}{P}$ is separable.

Proposition 3.6. Let $P \subset R$. Then $v_P(\operatorname{disc}(S/R)) = \sum_{Q\supset P} v_P(\operatorname{disc}(\widehat{S}_Q/\widehat{R}_P))$.

Proof. By **3.4** we may assume *R* is local, so *S* is a free *R*-module, and then:

$$S \otimes_R \widehat{R} \cong \prod \widehat{S}_Q$$

So $v_P(\operatorname{disc}(S/R)) = v_P(\operatorname{disc}(S \otimes_R \widehat{R}/\widehat{R})) = \sum_Q v_P(\operatorname{disc}(\widehat{S}_Q/\widehat{R})).$

Definition. The *inverse different* $\mathcal{D}_{S/R}^{-1}$ of an extension S/R of Dedekind domains is:

$$\mathcal{D}_{S/R}^{-1} = \{ x \in L : \ \forall y \in S, \operatorname{Tr}_{L/K}(xy) \in R \}$$

This is the dual of *S* with respect to the trace form $(x, y) \mapsto \operatorname{Tr}_{L/K}(xy)$.

This is clearly an S-submodule of L. If $\bigoplus_{i=1}^n Rx_i \subset S$, let (y_i) be the dual basis to (x_i) for the trace form, i.e. $\operatorname{Tr}_{L/K}(x_iy_j) = \delta_{ij}$. Then $S \subset \mathcal{D}_{S/R}^{-1} \subset \bigoplus_{i=1}^n Ry_i$, so $\mathcal{D}_{S/R}^{-1}$ is a fractional ideal (since it is finitely generated), and its inverse $\mathcal{D}_{S/R}$ is an ideal of S, called the *different*.

Proposition 3.7.

- 1. $P \subset R \implies \mathcal{D}_{S_P/R_P} = \mathcal{D}_{S/R}S_P$
- 2. $N_{L/K}(\mathcal{D}_{S/R}) = \operatorname{disc}(S/R)$
- 3. $Q \subset S$ lying over $P \subset R$. Then $v_Q(\mathcal{D}_{S/R}) = v_Q(\mathcal{D}_{\widehat{S}_Q/\widehat{R}_P})$

Proof.

- 1. Exercise. Same idea as 3.4.
- 2. By (1) and **3.4**, we can suppose R is local. Then S is a PID by **2.1.iii**, so the inverse different $\mathcal{D}_{S/R}^{-1} = x^{-1}S$ for some $0 \neq x \in S$. Let (e_i) be a basis for S/R. Then there exists a basis (e_i') for S/R such that

$$\operatorname{Tr}_{L/K}(e_i x^{-1} e_i') = \delta_{ij}$$

Let $x^{-1}e_j = \sum_k b_{kj}e_k$ where $b_{kj} \in K$. Then the ideal:

$$(1) = (\det[\operatorname{Tr}_{L/K}(e_i x^{-1} e'_j)])$$

$$= (\det(\operatorname{Tr}_{L/K}(e_i e_j)) \det(b_i j))$$

$$= \det(b_{ij}) \operatorname{disc}(S/R)$$

But $N_{L/K}(x^{-1}) = u \det(b_{ij})$ for some unit in R. So $(1) = (N_{L/K}(x^{-1})) \operatorname{disc}(S/R)$. Since we are in Dedekind domains we can cancel $\operatorname{disc}(S/R)$, giving the result.