UNCLASSIFIED 415052

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

Best Available Copy

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

CATALOGED BY DDG 15052
AS AD NO.

REPORT NO. RR-TR-63-11
COPY 9

DECAY OF U235 FISSION PRODUCTS

25 July 1963

415052

U S ARMY MISSILE COMMAND
REDSTONE ARSENAL, ALABAMA

DDC Availability Notice

Qualified requesters may obtain copies of this report from the Defense Documentation Center for Scientific and Technical Information, Cameron Station (Bl 5), Alexandria, Virginia, 22314.

Destruction Notice

Destroy; do not return.

Report No. RR-TR-63-11

25 July 1963

Decay of U235 Fission Products

Ву

J. F. Perkins

Plasma Physics Branch
Physical Science Laboratory
Directorate of Research and Development
U. S. Army Missile Command
Redstone Arsenal, Alabama

ABSTRACT

Decay properties of mixed fission products from thermal fission of U235 have been calculated by a method employed earlier but with revised input data describing decay of individual nuclides. Input data and calculated decay rates and rates of beta and gamma energy release are presented.

DECAY OF U235 FISSION PRODUCTS

The decay properties of mixed fission products resulting from thermal fission of U235 have been calculated by a method employed previously¹, with use of revised input data describing the decay properties of individual nuclides. Total rates of release of beta and gamma energy and the gamma energy release in each of several energy groups were calculated for a range of decay times from $10^2 - 10^8$ seconds by summing the contributions from individual nuclides.

Input data employed in the present calculations are listed in Table 1. The data of Table I incorporate results of experimental measurements² reported in the period 1957-1960, subsequent to completion of the original calculations and correction of numerical errors in the original tabulation of data. Assignment of decay data to some of the shorterlived activities remains uncertain in the absence of experimental determination of decay schemes, and is based on mass differences and shell-model systematics. The decay constant of a nuclide and its precursor are labelled λ_2 and λ_1 , respectively. Fission yields, in percent, are labelled Y1 and Y2. Y1 is independent yield, while Y2 is total yield, including direct yield and the contribution from decay of preceding members of the decay chain. The energies of betas and gammas, in Mev per decay, are listed in the remaining columns of Table 1. E_B is average beta energy; E_{GT} is total gamma energy. Columns headed EGI toGVII give gamma energy in each of seven energy groups, as follows:

Group	Gamma energy range (Mev)
I	0.1 - 0.4
11	0.4 - 0.9
III	0. 9 - 1. 35
IV	1. 35 - 1. 8
v	1.8 - 2.2
VI	2. 2 - 2. 6
VII	> 2.6

The decay rate, D_i , of the i^{th} nuclide at time t after shutdown from an operating period of T seconds at constant power corresponding to F fissions per second is

$$D_i(t) = 0.01 \text{ F} \left[A_i \exp \left(-\lambda_{1i}t\right) + B_i \exp\left(-\lambda_{2i}t\right) \right]$$

Where

$$\begin{array}{lll} A_{i} & = & \frac{-(Y_{2i} - Y_{1i})}{(\lambda_{1i} - \lambda_{2i})} & \lambda_{2i} & \left[1 - \exp(-\lambda_{1i} T)\right] \\ \\ B_{i} & = & \left[\frac{(Y_{2i} - Y_{1i})}{(\lambda_{1i} - \lambda_{2i})} \lambda_{1i} + Y_{1i}\right] & \left[1 - \exp(-\lambda_{2i} T)\right]. \end{array}$$

Total rates of energy release are obtained by summing over all nuclides:

$$D(t) = \sum_{i} D_{i}(t)$$

$$B(t) = \sum_{i} D_{i}(t) \cdot E_{B,i}$$

$$\Gamma_{T}(t) = \sum_{i} D_{i}(t) \cdot E_{GT,i}$$

$$\Gamma_{I}(t) = \sum_{i} D_{i}(t) \cdot E_{GI,i}$$

$$\vdots$$

$$\Gamma_{T}(t) = \sum_{i} D_{i}(t) \cdot E_{GI,i}$$

Results of calculations are shown in Figures 1-5 for instantaneous fission and operating periods of 1, 10, 100, and 1000 hours, and for decay times of 10^2 - 10^8 seconds.* Energy release rates in some of the gamma energy groups differ appreciably from the previous results for certain ranges of decay times. Total rates of beta and gamma energy release for $t > 10^3$ seconds differ only slightly from those obtained earlier and are in reasonable agreement with experiment. The total rate of gamma energy release for 10^2 sec $\leq t \leq 10^3$ sec is somewhat higher than previously calculated and is in good agreement with measured values.

^{*} These results and the data of Table I have been circulated in tabular form but have not been presented previously in report form.

Table I. NUCLEAR DATA USED AS INPUT FOR CALCULATIONS OF FISSION PRODUCT DECAY

Table I. NUCLEAR DATA USED AS INPUT FOR CALCULATIONS OF FISSION PRODUCT DECAY - Continued

EG VII	-000	000	.50.	000	000-	- 000	2001	200	000.	200.	0000	000	200•	0000	000	000	000.	0000	000.	000	000	202.	000	- 200	000
))	000	000.	000.	000.	000.	900.	000.	000.	.000	000	• 000	0000	• 200	000.	0000	000.	0000	000.	200.	000.	000.	000	000	000	000
> >	200.	000	000.	910.	000.	000.	000	000	000	000	000	000	000	000	325	000.	0000	0000	000	000	0000	000	000	200.	- 000
دو ۱۸	000	000.	000.	.173	000-	07**	000.	0000	600.	200	000.	000.	000.	0000	.360	000	1.500	0000	0000	000	000	000	000	000	000
EG 111	000	000.	* 20.	102.	000.	966.	204.	200.	033	000	000	000°.	010.	000.	4.00	000.	000	000.	700.	770.	2.000	1.300	000.	000	600.
E5 11	000-	. 523	000-	590.	966.	000.	2000	. 739	000	000	.760	147.	.658	104	0440	000.	000	000.	• 9 > 5	. 341	000.	000	€64.	.126	200.
- L 93	900.	000.	000.	•029	200-	000.	0000	000.	000	.235	000-	0000	-000	-022	.073	• 000	000.	.140	387	0000	0000	000.	• 003	000-	000-
1 5 1	• 630	.523	+000	595	.350	816.	006.	.739	.042	•235	.760	747	699•	176	1.663	000.	1.500	140	168.	.364	000	1.300	867.	.726	• 000
10 10	516.	•028	. 593	1.386	1.151	1.962	1.603	.111	. 748	000.	• 0 4 5	0000	195.	.405	814	.436	1.740	• 000	1981	1.660	161	€ 00 00 •	•065	777.	.010
Y2	5.800	3.400	5 - 800	000-9	6.400	027.9	006.9	6.300	5.900	090	6.300	5.830	6.130	6.130	9.000	4.150	.630	5.300	000-9	2.05C	2.050	0000	3.000	006.	.380
۲۱	000•	0000	.000	.000	•100	. > 00	1.000	0000	1.600	000	000-	000	-200	0000	000.	000.	0000	0000	000	000	0000	• 300	000.	000	• 000
LAMBDA 2	-5 301	-3 231	-6 131	-4 535	-4 193	-3 700	-2 :10	-6 123	-4 113	-5 214	-6 229	-1 116	-3 156	-5 283	-3 770	-2 100	-2 578	-4 321	-3 808	139	-2 257	-2 116	-6 201	-4 423	022_1=-
LAMBDA 1	-3 784	-4 198	-4 198	-4 713	-2 165	-2 578	1 100	-2 110	1 100	-6 123	-6 123	-4 113	-4 113	-2 302	1 100	1 100	1 100	-5 283	-3 770	-2 100	-2 100	-2 578	-2 960	-2 116	1 100
NUCL 10E	06x	Y 9 1 M	491	Y 92	Y 93	76 X	Y95	2R95	2R97	MS95M	NB95	WB97W	NB97	660×	M0101	M0102	MO105	M66⊃1	10101	TC102A	TC1025	10105	RU103	RU105	RU106

Table I. NUCLEAR DATA USED AS INPUT FOR CALCULATIONS OF FISSION PRODUCT DECAY - Continued

))	000	200.	200	200	.003	000	000	• 000	000	200.	000.	000.	000	000.	000	• 000	• 000	000	000	000	000.	000	2000	***	*
2 2	000	000	000	000	100	000	000	000.	000	coc.	0000	000.	000.	000.	220.	2.300	.000	0000	- 200	• 200	000.	9034	2500	200	30.00
£0 4	000	000	000	220	•000	000	2000	.000	000	000	000.	000.	000	000.	000	.160	000	000	200	0000	000	000	200	300	
200	000	200	0000	000	010	000	000	000	0000	000	000	000	009.1	000.	000	000	000	000.	200.	000	000.	0000	000.	000	990
11	000	000	200	0000	070.	200	200.	200.	000	0000	200.	200.	000.	1.020	050-1	- 222	0000	000	000	000	110	.110	• 260	• 1 10	• : : •
5 .	000	000	0000	0000	197	• 0 2 8	•000	0000	2000	245.	000	. 661	0.8.	000.	0000	000	0000	· C04	200.	000	960.	3-0-	700.	012	D
2	•220	000	.130	0 + 0	0000	.303	000	000	000	246.	376	9 5	000-	0000	000-	000-	000	000	000	0000	700	200.	¥ : 0 .	5 5 7 .	161.
← 5	0220	100	.130	0 10 .	.368	. 391	2.000	. 000	004.	• 50 t	1.0/0	1.0.	2.650	070-7	000-	2.150	100	700	-000	000	947.	627.	7 7 7 1	• • •	. 7 2
n u	696.	•039	0000	. 140	1.358	107.	• 430	011	. 782	.374	1.198	-422	1 . 1 4 0	.051	2.147		-0 5	• 5 2 4	.224	•106	1:4	1. 12		J j	701.
₹	• 230	3.000	004	0004	. 380	-200	.130	.330	1.400	.130	.3/0	006.	2.000	009-2	3000	3.700	.041	0 T T •	.021	•350	0 4	000	0 7 7 •	00000	.130
41	070.	0000	.000	000	000.	000	0000	000-	000	0000	070.	007.	009.	1.200	2.000	.000	0000	0000	000-	000	0000	000	000	005.	000
LAMEDA 2	-2 241	-3 203	-1 154	15 550	-1 231	-3 526	-4 935	-3 203	757 2-	-5 217	-2 116	867 7-	-2 115	-3 505	-2 553	-2 262	-7 764	-4 205	-4 205	-6 243	-3 186	927	1976-	-3 45-	-3 402
LAMBDA 1	-2 770	-6 201	-4 428	-4 428	-7. 220	-2 241	1 100	1 100	1 100	-4 935	-3 203	1 100	-3,203	-2 340	-2 526	1 100	-5 217	-5 217	-7 764	-4 458	-4 453	-6 243	-3 502	-3 502	-5 659
NUCL IVE	RU107	RH103H	MUDITE M	RH105	801HA	PH107	SN127	SN128	SN130	53127	53128	58129	58130	58131	58132	58133	TE1274	TE1274	TE1278	TE129M	1E129A	121290	Je 131.	fe131A	TE 1 910

Table I. NUCLEAR DATA USED AS INPUT FOR CALCULATIONS OF FISSION PRODUCT DECAY - Continued

2000
200
000
000 000 000 000 000 000 000 000 000 00
0000
1.300
.132208 .619 1.900 .124992
.600 ->-500 .600 ->-500 .000 2-560 .000 .340
-3 183 -1 -2 576 -3 263 -3
-2 282 -3 183

Table I. NUCLEAR DATA USED AS INPUT FOR CALCULATIONS OF FISSION PRODUCT DECAY - Concluded

EG VII	999.	-000	- 500	000.	187	000.	000.	000	000.	000.	000.	000.	000.	000.	900.	0000	000-	000-	000	000	000-	9604	000
EG VI	900.	000.	840.	000	146.	• 000	000.	000	• 000	000	000.	900	000.	000	000	000.	000.	000	000	000	-000	200.	000
۳ د ۲	900.	•000	000	000	.178	• 000	000.	000	000.	000	000.	000.	110.	• 000	000.	000	000.	000	000	000	000.	000	000
EG 1V	000.	000	1.530	120	•106	.075	000-	000	000.	000.	000.	000	0000	000.	-492	000	000	000	000	000	•015	0000	000
LG 111	200	.000	460.	000.	-062	000.	000	•066	000.	006.	2020	200.	200	205.	200.	000	000.	1.026	200.	000	000.	200	-69·
re 11	000.	000	.435	000.	095.	000•	000.	.133	0000	-000	000.	000.	110.	000.	.620	440.	.130	.115	000	0000	-175	000.	.000
2	180	• 300	990•	000	0000	0000	160.	.125	-012	2000	376	000.	000-	0000	000.	-014	.200	•100	0000	.285	.263	000.	9.0.
<u>د</u> د	. 180	• 300	2.231	-027	1.344	• 075	160.	.332	.016	. 006	.372	000•	260	100.	1-112	7.1	• 330	1.241	000.	-285	.455	020	• 0 •
ני	1.059	.176	665.	.938	1.325	1.200	.146	.428	•093	.512	.225	315	1.214	049.	1.254	.271	.455	.725	-062	-362	- 382	070.	. 3 2 4
72	2.900	2.400	007-9	9 • 000	5.900	6.030	000-9	000-9	5.700	4.000	3.100	6.000	5-700	4.000	3.100	2.400	1.100	044	2.400	1.100	.450	064.	.150
۲1	1.400	2.200	000	.100	.500	1.000	000.	000	• 300	000.	• 000	• 000	• 000	000•	• 000	000.	000.	000.	0000	000.	.010	000.	0000
LAWBUA 2	-3 642	501 2-	-5 479	-4 507	-3 136	-3 608	-6.251	-5 583	-7 281	-2 385	-3 825	6 573	-3 660	-4 321	-3 481	269 9-	-4 963	-3 770	-8 872	-5 357	-5 683	-9 301	-5 410
LAMBDA 1	1 100	-1 116	-6 627	-3 642	-2 105	-1 231	105 7-	-3 608	1 100	1 100	1 100	-5 583	-7 281	-2 385	-3 825	1 100	1 100	1 100	269 9-	E9E 7-	-3 770	-5 688	1 100
NUCL 10E	84141	BA142	LA140	LA141	LA142	LA143	CE 141	CE 143	CE 144	CE 145	CE 146	pg 143	PR 144	PR 145	PR 146	1910N	671CN	NO151	PM 147	Pu 149	PM151	5W151	5w153

Figure 1. DECAY RATES DUE TO INSTANTANEOUS FISSION

Figure 2. DECAY RATES DUE TO 1-HOUR REACTOR OPERATION

Figure 3. DECAY RATES DUE TO 10-HOUR REACTOR OPERATION

Figure 4. DECAY RATES DUE TO 100-HOUR REACTOR OPERATION

Figure 5. DECAY RATES DUE TO 1000-HOUR REACTOR OPERATION

REFERENCES

- 1. Perkins, J. F. and King, R. W., <u>Nuc. Sci. and Engrng.</u> 3: 726, 1958.
- 2. Nuclear Data Sheets, National Research Council-National Academy of Sciences, Washington 25, D. C., 1960.
- 3. Maienschein, F. C., Neutron Phys. Ann. Prog. Rep., Sept. 1, 1961, ORNL-3193, p. 189.

25 July 1963

Report No. RR-TR-63-11

APPROVED:

TOHN P HALLOWES IR

Director, Physical Science Laboratory

DR&D, USAMICOM

DISTRIBUTION	Сору
U. S. Army Missile Command Distribution List A for Technical Reports (11 March 1963)	1-108
Mr. Roy D. Peak Aerojet-General Nucleonics P. O. Box 2908	
Idaho Falls, Idaho	109
Dr. A. D. Rossin Argonne National Laboratory	
P. O. Box 299 Lemont, Illinois	110
Dr. Rene Zentner 2987 Dwight Way	
Berkeley 4, California	111
Dr. Herbert Goldstein Nuclear Engineering Dept. Columbia University	
New York, New York	112
Dr. K. Shure Westinghouse Corporation	
P. O. Box 1468 Pittsburgh, Pennsylvania	113
	113
Mr. Robert Mueller Atomic Power Development Associates 1911 First Street	
Detroit 26, Michigan	114
Dr. R. W. King Advanced Research Corporation	
402 Northwestern Avenue	
Lafayette, Indiana	115
Dr. A. O. Burford	
Lockheed Aircraft Corporation	, , , /
Marietta, Georgia	116

DISTRIBUTION (Concluded)

Dr. M. R. Smith General Electric Co. Cincinnati Ohio	117
Chiefman, Onio	
Dr. C. L. Storrs	
General Electric Co.	
P. O. Box 2147	
Idaho Falls, Idaho	118
Dr. D. J. Dudziak	
Westinghouse Electric Corporation	
P. O. Box 1468	
Pittsburgh 30, Pennsylvania	119
Mr. D. W. Starr	
Aerojet General	
P. O. Box 1947	
Sacramento, California	120
Dr. Nathan Ballou	
U. S. Naval Radiological	
Defense Laboratory	
San Francisco 24, California	121
AMSMI-R	122
-RAP	123
-RR	124-133
-RRP	134-163
PRI.	164-168

ON no second	ITNC! ASSIFIED	AD Accession No	UNCLASSIFIED
Approximate Command. Directorate of Research	1. Fission product activity	y Missile Command	1. Fission product activity
and Development, Physical Science Laboratory,	2. Fission products Decay	and Development, Physical Science Laboratory,	2. Fission products Decay
Redstone Arsenal, Alabama	3. NucleiDecay	Redstone Arsenal, Alabama	3. NucleiDecay
DECAY OF U235 FISSION PRODUCTS - J. F.	4. Nuclei Energy	DECAY OF U235 FISSION PRODUCTS - J. F.	4. Nuclei Energy
Perkins	5. Uranium isotopes (Radio-	Perkins	5. Uranium isotopes (Radio-
	active)Decay		active)Decay
Army Msl Cmd RR-TR-63-11, 25 Jul 63, 16 pp -	6. Uranium isotopes (Radio-	Army Msl Cmd RR-TR-63-11, 25 Jul 63, 16 pp -	6. Uranium isotopes (Radio-
illus. Unclassified Report	active)Fission	illus. Unclassified Report	active) Fission
	7. U235		7. U23S
Decay properties of mixed fission products from	1. Perkins, J. F.	Decay properties of mixed fission products from	1. Perkins, J. F.
thermal fission of U235 have been calculated by a		thermal fission of U235 have been calculated by a	
method employed earlier but with revised input	DI STRIBUTION: Copies ob-	method employed earlier but with revised input	DISTRIBUTION: Copies ob-
uput	tainable from DDC, Cameron	data describing decay of individual nuclides. Input	tainable from DDC, Cameron
data and calculated decay rates and rates of beta	Station (Bl 5), Alexandria,	data and calculated decay rates and rates of beta	Station (Bl 5), Alexandria,
and gamma energy release are presented.	Virginia, 22314.	and gamma energy release are presented.	Virginia, 22314.
AD A ccession No	UNCLASSIFIED	AD Accession No	UNCLASSIFIED
Army Missile Command, Directorate of Research	1. Fission product activity	Army Missile Command, Directorate of Research	1. Fission product activity
and Development, Physical Science Laboratory,	2. Fission products Decay	and Development, Physical Science Laboratory,	2. Fission products Decay
Redstone Arsenal, Alabama	3. NucleiDecay	Redstone Arsenal, Alabama	3. NucleiDecay
DECAY OF U235 FISSION PRODUCTS - J. F.	4. Nuclei Energy	DECAY OF U235 FISSION PRODUCTS - J. F.	4. Nuclei Energy
Perkins	5. Uranium isotopes (Radio-	Perkins	5. Uranium isotopes (Radio-
	active)Decay		active)Decay
Army Msl Cmd RR-TR-63-11, 25 Jul 63, 16 pp -	6. Uranium isotopes(Radio-	Army Msl Cmd RR-TR-63-11, 25 Jul 63, 16 pp -	6. Uranium isotopes (Radio-
illus. Unclassified Report	active)Fission	illus. Unclassified Report	active)Fission
	7. U235		7. U235
Decay properties of mixed fission products from	1. Perkins, J. F.	Decay properties of mixed fission products from	I. Perkins, J. F.
thermal fission of U235 have been calculated by a		thermal fission of U235 have been calculated by a	
method employed earlier but with revised input	DISTRIBUTION: Copies ob-	method employed earlier but with revised input	DISTRIBUTION: Copies ob-
data describing decay of individual nuclides. Input	tainable from DDC, Cameron	data describing decay of individual nuclides. Input	tainable from DDC, Cameron
data and calculated decay rates and rates of beta	Station (Bl 5), Alexandria,	data and calculated decay rates and rates of beta	Station (Bl 5), Alexandria,
and gamma energy release are presented.	Virginia, 22314.	and gamma energy release are presented.	Virginia, 22314.

UNCLASSIFIED 1. Fission product activity 2. Fission product - Decay 3. Nuclei Lerry 5. Uranium intopes (Radio-active) Decay 6. Uranium intopes (Radio-active)- Fission 7. U235 1. Perkins, J. F. DISTRIBUTION: Copies obtainable from DDC, Cameron Station (BI 5), Alexandria, Virginia, 22314.	UNCLASSIFIED 1. Fission product activity 2. Fission productsDecay 3. NucleiBecay 4. NucleiBergy 5. Uranium isotopes (Radio-active)Decay 6. Uranium isotopes (Radio-active)Fission 7. U235 1. Perkins, J. F. DISTRIBUTION: Copies obtainable from DDC, Cameron Station (BI S), Alexandria, Virginia, 22314.
Accession No Army Missile Command, Directorate of Research and Development, Physical Science Laboratory, Redstone Arsenal, Alabama DECAY OF U235 FISSION PRODUCTS - J. F. Perkins Army Msl Cmd RR-TR-63-11, 25 Jul 63, 16 pp - illius, Unclassified Report Decay properties of mixed fission products from thermal fission of U235 have been calculated by a method employed earlier but with revised input data describing decay of individual nuclides. Input data and calculated decay rates and rates of beta and gamma energy release are presented.	Army Missile Command, Directorate of Research and Development, Physical Science Laboratory, Redstone Arsenal, Alabama DECAY OF U235 FISSION PRODUCTS - J. F. Perkins Army Msl Cmd RR-TR-63-11, 25 Jul 63, 16 pp - illus. Unclassified Report Decay properties of mixed fission products from thermal fission of U235 have been calculated by a method employed earlier but with revised input data describing decay of individual nuclides. Input data and calculated decay rates and rates of beta and gamma energy release are presented.
UNCLASSIFIED 1. Fission product activity 2. Fission productsDecay 3. NucieiDecay 4. NucleiEnergy 5. Uranium isotopes (Radio-active)Decay 6. Uranium isotopes (Radio-active)Fission 7. U235 1. Perkins, J. F. DISTRIBUTION: Copies obtainable from DDC, Cameron Station (Bi 5), Aiexandria, Virginia, 22314.	UNCLASSIFIED 1. Fission product activity 2. Flssion productsDecay 3. NucleiDecay 4. NucleiBergy 5. Uranium isotopes (Radio-active)Decay 6. Uranium isotopes(Radio-active)Fission 7. U235 1. Perkins, J. F. DISTRBUTION: Copies obtainable from DDC, Cameron Station (BI 5), Alexandria, Virginia, 22314.
And Accession No Army Missile Command, Directorate of Research and Development, Physical Science Laboratory, Redutone Arsenal, Alabama DECAY OF U235 FISSION PRODUCTS - J. F. Perkins Army Msl Cmd RR-TR-63-11, 25 Jul 63, 16 pp - lilus, Unclassified Report Decay properties of mixed fission products from thermal fission of U235 have been calculated by a method employed earlier but with revised input data and caiculated decay rates and rates of beta and gamma energy release are presented.	Army Missile Command, Directorate of Research and Development, Physical Science Laboratory, Redstone Arsenal, Alabama DECAY OF U235 FISSION PRODUCTS - J. F. Perkins Army Msl Cmd RR-TR-63-11, 25 Jul 63, 16 pp - illus, Unclassified Report Decay properties of mixed fission products from thermal fission of U235 have been calculated by a method employed earlier but with revised input data describing decay of individual nuci. 1s. Input data and calculated decay rates and rates of beta and gamma energy release are presented.