Annual EQuS workshop '15

A new bulk/boundary correspondence for quantum many-body systems

Sukhi Singh

Macquarie University

Ongoing work with

Gavin Brennen (Macquarie)

Nathan McMahon (PhD, UQ)

Quantum many-body systems

Lattice of N sites with a local Hamiltonian:

- (a) Find the ground state phase diagram
- (b) Ground state correlation functions/entanglement

1D quantum Ising model

$$H = \sum_{k} \sigma_{\chi}^{k} \sigma_{\chi}^{k+1} + h \ \sigma_{z}^{k}$$
 Magnetic Disordered
$$h = 1$$

$$\sigma_{\chi,z} : \text{Pauli matrices}$$
 Critical point

Key challenge

- Exponentially large Hilbert space.
- Have to diagonalize an exponentially large Hamiltonian
- \circ Generic state specified by d^N complex numbers
- (a) d=2, N=30 requires 17 GB memory
- (b) d=3, N=20 requires 55 GB memory

But ground states of local Hamiltonians are atypical ...

- Ground states of local hamiltonians have much less entanglement than generic states
- One way this limited entanglement in ground states has been exploited is to build efficient representations of ground states.
 - (Polynomial number of complex numbers.)

Ground state can be decomposed as a MERA

G. Vidal, PRL 99, 220405 (2007)

$$\left|\Psi_{ground}\right\rangle = \sum \Psi_{y_1y_2\dots y_N} \ \left|y_1\right\rangle \otimes \left|y_2\right\rangle \otimes \cdots \otimes \left|y_N\right\rangle$$

$$\begin{array}{c} \text{(tensor)} \\ \hline \Psi \\ \hline \\ I \\ y_1 \\ y_2 \\ \cdots \\ y_N \end{array} =$$

 d^N coefficients

Ground state can be decomposed as a MERA

G. Vidal, PRL 99, 220405 (2007)

$$\left|\Psi_{ground}\right\rangle = \sum \Psi_{y_1y_2\dots y_N} \ \left|y_1\right\rangle \otimes \left|y_2\right\rangle \otimes \cdots \otimes \left|y_N\right\rangle$$

Features of the MERA representation

- Ground state properties can be efficiently computed.
- Algorithms known for: $\hat{H} \rightarrow$ ground state as MERA
 - Applied to several 1D & 2D quantum lattice models
 - Works well for both gapped and critical ground states

 $O(N\chi^4)$ coefficients

Bulk/boundary correspondence

- Is a map between two different quantum systems
- One lives at the boundary of a given spacetime manifold
- The other lives inside the bulk
- Properties of the two systems are related in a given way

This talk: 1d boundary

2d bulk

Example: AdS/CFT correspondence

J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

AdS/CFT: Ryu-Takayanagi formula

S. Ryu & T. Takayanagi, PRL 96, 181602 (2006)

Entanglement entropy
$$=$$
 Length of geodesic $(\propto c \log \ell)$ $(\propto R \log \ell)$

AdS/CFT : Symmetries

If boundary state has a global symmetry $G = \{g,g',g'',...\}$

AdS/CFT: Symmetries

If boundary state has a global symmetry G = {g,g',g'',...}

Then the bulk state has a local symmetry

Applications in condensed matter physics

S. Sachdev, Annual Review of Condensed Matter Physics 3, 9 (2012)

- Originated in String theory and quantum field theory but now applied in condensed matter physics

MERA can be viewed as a tiling of the hyperbolic plane

B. Swingle, Phys. Rev. D 86, 065007 (2012)

The red, green and yellow tiles have the same area!

MERA related to AdS/CFT correspondence?

- MERA is a 2D representation of a 1D ground state and has a hyperbolic geometry, reminds of AdS/CFT
- Several other features of the AdS/CFT correspondence have been realized using the MERA

 Mostly qualitative observations
- One of the goals: Attempt a concrete connection to AdS/CFT by constructing a bulk state from the MERA.

$$\left|\Psi_{ground}\right\rangle = \sum \Psi_{y_1 y_2 \dots y_N} \, \left|y_1\right\rangle \otimes \left|y_2\right\rangle \otimes \dots \otimes \left|y_N\right\rangle$$

$$|\Phi\rangle = \sum \Phi_{k_1,k_2,\dots y_1y_2\dots} \ |k_1\rangle \otimes |k_2\rangle \cdots \otimes |y_1\rangle \otimes |y_2\rangle \cdots$$

$$\langle k'|k\rangle = \delta_{k'k}$$

$$\Phi$$

$$k_1k_2 \cdots y_1 y_2 \dots$$

Same MERA tensor network

Project each bulk site to $|+\rangle = |0\rangle + |1\rangle + \cdots |\chi\rangle$

Example 1: critical boundary state

Example 1: critical boundary state

Example 1: critical boundary state

- We find that the entanglement entropy scales as log L
 with a slope that increases with central charge.
- And that for different models with the same central charge the slope is approximately equal.
- This suggests that the bulk states "knows" the central charge of the boundary.

- From 3 different value of c we could not ascertain a functional dependence of the slope on the central charge.
- O But if the entanglement entropy of the geodesic sites indeed scales as log L with a prefactor that depends on the central charge, and we know that the entanglement entropy of the critical boundary state scales as c/3 log L (from CFT), then we can equate the two quantities together under this correspondence:

 $S^{boundary}$ (boundary sites) $\approx S^{bulk}$ (geodesic sites)

 This looks like the Ryu-Takayanagi formula where we have replaced the length of the geodesic with entanglement entropy of sites lying on the geodesic.

 \circ Consider a $\chi = 2$ MERA made of following tensors:

$$|0\rangle, |1\rangle \rightarrow irreps \ of \ Z_2 = \{I, X\}$$
 $\widehat{w}_{00}^0 = \widehat{w}_{11}^0 = \widehat{w}_{01}^1 = \widehat{w}_{10}^1 = 1$
 $\widehat{u}_{00}^{00} = \widehat{u}_{11}^{00} = \widehat{u}_{00}^{11} = \widehat{u}_{01}^{01} = \widehat{u}_{10}^{01} = \widehat{u}_{10}^{10} = 1$

• Consider a $\chi = 2$ MERA made of following tensors:

$$|0\rangle, |1\rangle \rightarrow irreps \ of \ Z_2 = \{I, X\}$$
 $\widehat{w}_{00}^0 = \widehat{w}_{11}^0 = \widehat{w}_{01}^1 = \widehat{w}_{10}^1 = 1$
 $\widehat{u}_{00}^{00} = \widehat{u}_{11}^{00} = \widehat{u}_{00}^{11} = \widehat{u}_{01}^{01} = \widehat{u}_{10}^{10} = \widehat{u}_{10}^{10} = 1$

 Bulk state belongs to a topological phase (ground state of \mathbb{Z}_2 lattice gauge theory on a hyperbolic lattice)

 \circ Consider a $\chi = 2$ MERA made of following tensors:

$$|0\rangle, |1\rangle \rightarrow irreps \ of \ Z_2 = \{I, X\}$$
 $\widehat{w}_{00}^0 = \widehat{w}_{11}^0 = \widehat{w}_{01}^1 = \widehat{w}_{10}^1 = 1$
 $\widehat{u}_{00}^{00} = \widehat{u}_{11}^{00} = \widehat{u}_{00}^{11} = \widehat{u}_{01}^{01} = \widehat{u}_{10}^{01} = \widehat{u}_{10}^{10} = 1$

- O Bulk state belongs to a topological phase (ground state of \mathbb{Z}_2 lattice gauge theory on a hyperbolic lattice)
- O Boundary state obtained by multiplying all the tensors, $|\Psi\rangle = |++\cdots\rangle + |---\cdots\rangle$, $|\pm\rangle = |0\rangle \pm |1\rangle$ (GHZ state)

o Tensors \hat{u} , \hat{w} commute with Z_2

 \circ Tensors \widehat{u} , \widehat{w} commute with Z_2

The bulk state has a local Z_2 symmetry (ground state of a lattice gauge theory)

 \circ Tensors \widehat{u} , \widehat{w} commute with Z_2

The boundary GHZ state has a global Z_2 symmetry

bulk

Bulk ground state with Z_2 topological order

boundary

GHZ state

Topological phase of matter

?

Symmetry breaking phase of matter

e.g. fractional quantum hall system

e.g. Ising model, superfluids

Outlook

- MERA is a successful approach for practical simulations of ground states.
- Here we have argued that it also leads to a bulk/boundary correspondence.
- As a toy model to explore the AdS/CFT correspondence? (AdS/CFT of interest in quantum gravity + condensed matter physics.)
- And possibly to relate together interesting ground states e.g. different types of quantum phases?

Thanks