Tópicos de Matemática

Exercícios -

4. Funções

4.1 Sejam $A = \{a, b, c\}$ e $B = \{1, 2, 3\}$. Diga, justificando, quais dos seguintes subconjuntos de $A \times B$ são funções de A em B.

(a)
$$\{(b,1),(c,2),(a,3)\}.$$

(d)
$$\{(a,1),(b,3)\}$$

(b)
$$\{(a,3),(c,2),(a,1)\}.$$

$$\begin{array}{lll} \text{(a) } \{(b,1),(c,2),(a,3)\}. & \text{(d) } \{(a,1),(b,3)\}. \\ \text{(b) } \{(a,3),(c,2),(a,1)\}. & \text{(e) } \{(c,1),(a,2),(b,3),(c,2)\}. \\ \text{(c) } \{(c,1),(b,1),(a,2)\}. & \text{(f) } \{(a,3),(c,3),(b,3)\}. \end{array}$$

(c)
$$\{(c,1),(b,1),(a,2)\}$$

(f)
$$\{(a,3),(c,3),(b,3)\}$$

4.2 Diga qual das seguintes expressões define uma função de \mathbb{R} em \mathbb{R} .

(a)
$$f(x) = \sin(x)$$
, para todo $x \in \mathbb{R}$.

(d)
$$s(x) = \begin{cases} x^2 & \text{se } x \ge 1 \\ x^3 & \text{se } x \le 0 \end{cases}$$
.

(b)
$$p(x) = \frac{x^2 + 3}{x + 5}$$
, para todo $x \in \mathbb{R}$.

(e)
$$t(x) = \begin{cases} x^3 - 2 & \text{se } x \ge 1 \\ |x| & \text{se } x \le 1 \end{cases}$$
.

(c)
$$q(x) = \ln(x^4 + 1)$$
, para todo $x \in \mathbb{R}$.

(f)
$$g(x) = \begin{cases} \sin x & \text{se } x > \pi \\ x & \text{se } x < \pi \end{cases}$$
.

4.3 Considere os conjuntos $A = \{1, 2, 3\}$ e $B = \{a, b, c, d\}$.

- (a) Dê exemplo de uma relação de A em B que não seja função.
- (b) Quantas funções existem de A para B e quantas de B para A?

4.4 Considere as funções:

 $g: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $g(x) = x^2 - 1$, para todo $x \in \mathbb{R}$; $f: \mathbb{N} \longrightarrow \mathbb{N}$, definida por f(x) = m.d.c.(x, 6), para todo $x \in \mathbb{N}$.

Determine:

(a)
$$g(\{-1,0,1\});$$

(b)
$$g(]-\infty,0]$$
; (c) $g(\mathbb{R})$;

(c)
$$a(\mathbb{R})$$
:

(d)
$$q^{\leftarrow}(\{0\})$$
;

(e)
$$g^{\leftarrow}(]-\infty,0]$$
; (f) $f(\{4,6,9\};$

(f)
$$f(\{4,6,9\})$$
:

(g)
$$f(\{x \mid x \in \mathbb{N} \land \exists y \in \mathbb{N} (x = 3y)\};$$
 (h) $f^{\leftarrow}(\{2\});$ (i) $f^{\leftarrow}(\{3, 4, 5\}.$

(h)
$$f^{\leftarrow}(\{2\})$$
:

(i)
$$f^{\leftarrow}(\{3,4,5\})$$
.

4.5 Sejam f, g e h as funções de \mathbb{N} para \mathbb{N} definidas por:

$$f(n) = n + 1;$$
 $g(n) = 2n;$ $h(n) = \begin{cases} 0, \text{ se } n \text{ \'e par} \\ 1, \text{ se } n \text{ \'e impar.} \end{cases}$

Determine:

(a)
$$f \circ f$$
:

(b)
$$f \circ a$$
:

(c)
$$a \circ f$$
:

(d)
$$a \circ h$$

(f)
$$h \circ f$$
:

$$(g)h \circ a$$

$$(b)$$
 $b \circ f \circ d$

4.6 Dê um exemplo de:

- (a) Duas funções $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ tais que f e g não sejam constantes e $f\circ g$ seja constante.
- (b) Uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$ tal que $f \neq id_{\mathbb{R}}$ mas $f \circ f = id_{\mathbb{R}}$.

- 4.7 Sejam A, B conjuntos, $f:A\longrightarrow B$ uma função, $A_1,A_2\subseteq A$ e $B_1,B_2\subseteq B$. Mostre que
 - (a) $f(\emptyset) = \emptyset$.
 - (b) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$;
 - (c) $f^{\leftarrow}(B) = A$.
 - (d) Se $B_1 \subseteq B_2$, então $f^{\leftarrow}(B_1) \subseteq f^{\leftarrow}(B_2)$.
 - (e) $f^{\leftarrow}(B_1 \cap B_2) = f^{\leftarrow}(B_1) \cap f^{\leftarrow}(B_2)$.
- 4.8 Considere os conjuntos $A = \{1, 2, 3\}$ e $B = \{a, b, c, d\}$. Indique, caso exista, uma função de A para B que seja:
 - (a) não injetiva;
 - (b) injetiva;
 - (c) sobrejetiva;
 - (d) não sobrejetiva.
- 4.9 Diga, justificando, quais das seguintes funções são injetivas, sobrejetivas ou bijetivas:
 - (a) $f_1: \mathbb{N} \longrightarrow \mathbb{N}, f_1(x) = 2x 1;$
 - (b) $f_2: \mathbb{N} \longrightarrow \mathbb{N}, f_2(x) = x + 1;$
 - (c) $f_3: \mathbb{Q} \setminus \{0\} \longrightarrow \mathbb{Q} \setminus \{0\}, f_3(x) = \frac{1}{x}$;
 - (d) $f_4: \mathbb{Z} \longrightarrow \mathbb{Z}, f_4(x) = x + 1;$
 - (e) $f_5: \mathbb{R} \longrightarrow [0, +\infty[, f_5(x) = x^2;$
 - (f) $f_6: \mathbb{Z} \longrightarrow \mathbb{N}, f_6(x) = |x| + 2.$
- 4.10 Considere a função $f: \mathbb{N} \to \mathbb{N}$ definida por

$$f(n) = \begin{cases} 2n & \text{se } n \text{ \'e impar} \\ n+2 & \text{se } n \text{ \'e par} \end{cases}$$

- (a) Determine
 - (i) $f({3,4,8})$;
 - (ii) $f^{\leftarrow}(\{3,5,6\})$.
- (b) Diga se f é injetiva e se é sobrejetiva.
- 4.11 Seja $f: \mathbb{Z} \to \mathbb{Z}$ a função definida por

$$f(n) = \begin{cases} |n| & \text{se } -4 \le n < 3\\ n+1 & \text{se } n < -4 \text{ ou } n \ge 3 \end{cases}$$

- (a) Determine
 - (i) $f(\{-6, -5, -4, 2, 3\});$
 - (ii) $f(\mathbb{N})$;
 - (iii) $f^{\leftarrow}(\{-4, -3, 3\});$
 - (iv) $f^{\leftarrow}(\mathbb{N})$.
- (b) Diga se f é injetiva e se é sobrejetiva.
- 4.12 Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = |x| + 2, para todo o real x, e a função $g: \mathbb{R} \to \mathbb{R}$ definida da seguinte forma

$$g(x) = \begin{cases} x^2 & \text{se } x \le -2\\ x+2 & \text{se } x > -2 \end{cases}.$$

- (a) Determine $f(\{-2,2\})$ e f(]-2,4]).
- (b) Determine $f^{\leftarrow}(\{-2,0,1,2\})$.
- (c) Diga se $g \circ f$ é injetiva e se é sobrejetiva.
- 4.13 Sejam A, B conjuntos, $f:A\longrightarrow B$ uma função, $A_1,A_2\subseteq A$. Mostre que se f é injetiva, então $f(A_1\cap A_2)=f(A_1)\cap f(A_2)$.
- 4.14 Sejam A, B conjuntos, $f:A\longrightarrow B$ e $g:B\longrightarrow A$ funções tais que $f\circ g=id_B.$ Mostre que:
 - (a) f é sobrejetiva;
 - (b) g é injetiva;
 - (c) g é sobrejetiva se e só se f é injetiva.
- 4.15 Sejam A, B, C conjuntos, $f: A \longrightarrow B$ e $g: B \longrightarrow C$ funções. Diga, justificando, se as afirmações seguintes são necessariamente verdadeiras.
 - (a) Se $g \circ f$ é sobrejetiva, então g é sobrejetiva.
 - (b) Se $g \circ f$ é injetiva, então g é injetiva.
 - (c) Se f é injetiva e g é sobrejetiva, então $g \circ f$ é bijetiva.
- 4.16 Sejam A, B, C conjuntos, $f,g_1,g_2:A\longrightarrow B$ e $h,k_1,k_2:B\longrightarrow C$ funções. Mostre que:
 - (a) Se h é injetiva e $h \circ g_1 = h \circ g_2$, então $g_1 = g_2$.
 - (b) Se f é sobrejetiva e $k_1 \circ f = k_2 \circ f$, então $k_1 = k_2$.
- 4.17 Verifique que cada uma das funções seguintes é bijetiva e determine a respetiva inversa.
 - (a) $f: [0,1] \longrightarrow [0,1]$ $x \longmapsto x^3$
 - (b) $g: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto 2x - 3$
 - (c) $h: \mathbb{Z} \longrightarrow \mathbb{N}_0$ $x \longmapsto \begin{cases} 2x, & \text{se } x \ge 0 \\ -2x 1, & \text{se } x < 0 \end{cases}$
- 4.18 Sejam A, B conjuntos e $f: A \longrightarrow B$ uma função bijetiva. Mostre que:
 - (a) A função $f^{-1}: B \longrightarrow A$ é bijetiva e tem-se $(f^{-1})^{-1} = f$;
 - (b) $f^{\leftarrow}(\{b\}) = \{f^{-1}(b)\}$, para todo $b \in B$.