Tema nr. 2

Exercițiul 1

Completați umătorul tabel, folosind \checkmark atunci când mulțimea este închisă și X atunci când ea nu este închisă :

[-1,2]	(-1,1)	[-1, 1]	$\mathbb{R} \setminus \{1\}$	$\{1, 2, 3\}$	$\mathbb{R}\setminus(0,1)$	\mathbb{Z}	Q	$\mathbb{R} \backslash \mathbb{Q}$	\mathbb{R}

Argumentați (demonstrați) fiecare afimație folosind rezultatele teoretice de la curs.

Exerciţiul 2

Specificați caracterul umătoarelor mulțimi (deschise sau închise) cu demonstații.

$$A = \bigcup_{n \in \mathbb{N} \setminus \{1\}} \left(-1 + \frac{1}{n}, 1 - \frac{1}{n} \right), \quad B = \bigcup_{n \in \mathbb{N}} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right]$$

$$C = \bigcap_{n \in \mathbb{N} \setminus \{1\}} \left(-1 + \frac{1}{n}, 1 - \frac{1}{n} \right) \quad D = \bigcap_{n \in \mathbb{N}} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right]$$

$$E = \bigcup_{n \in \mathbb{N}} \left[-1 - \frac{1}{n}, 1 + \frac{1}{n} \right] \quad D = \bigcap_{n \in \mathbb{N}} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n} \right)$$

Exercițiul 3

Completați umătorul tabel, folosind \checkmark atunci când mulțimea este vecinătate a lui -1 și \varkappa atunci când ea nu este :

(-1, 2]	(-2,1)	[-1, 1]	$\mathbb{R} \setminus \{1\}$	Z	$\mathbb{R}\setminus(-1,0)$	\mathbb{Q}

Argumentați (demonstrați) fiecare afimație folosind rezultatele teoretice de la curs.

 $\textbf{Excercițiul 4} \ \text{Completați umătorul tabel și argumentați (demonstrați) structura acestor mulțimi pentru exemplele \textbf{1,3,5,6,9,11} \\ \text{folosind rezultatele teoretice de la curs:}$

Nr.	A	int A	bd A	cl A	ext A	Izo A	A'
1	$(-\infty, -1] \cup (2, +\infty)$						
2	$(-1,9] \cup [10,20)$						
3	$\left((-1,9] \cup [10,20) \right) \cap \mathbb{N}$						
4	$\{1, 2, 3\}$						
5	N						
6	$\mathbb{R}\backslash\left\{ 1,2,3\right\}$						
7	$\mathbb{R} \backslash \mathbb{N}$						
8	\mathbb{Z}						
9	$\mathbb{R} \backslash \mathbb{Z}$						
10	Q						
11	$\mathbb{R} \backslash \mathbb{Q}$						
12	\mathbb{R}						