DIN EN 1591-2

ICS 23.040.60

Ersatz für DIN V ENV 1591-2:2001-10

Flansche und ihre Verbindungen – Regeln für die Auslegung von Flanschverbindungen mit runden Flanschen und Dichtung – Teil 2: Dichtungskennwerte; Deutsche Fassung EN 1591-2:2008

Flanges and their joints –
Design rules for gasketed circular flange connections –
Part 2: Gasket parameters;
German version EN 1591-2:2008

Brides et leurs assemblages – Règles de calcul des assemblages à brides circulaires avec joint – Partie 2: Paramètres de joint; Version allemande EN 1591-2:2008

Gesamtumfang 47 Seiten

Normenausschuss Rohrleitungen und Dampfkesselanlagen (NARD) im DIN

Nationales Vorwort

Dieses Dokument (EN 1591-2:2008) ist vom Technischen Komitee CEN/TC 74 "Flansche und ihre Verbindungen" (Sekretariat: DIN, Deutschland) unter deutscher Mitwirkung ausgearbeitet worden.

Für die deutsche Mitarbeit ist der Arbeitsausschuss NA 082-00-16 AA "Flansche und ihre Verbindungen" im Normenausschuss "Rohrleitungen und Dampfkesselanlagen (NARD)" verantwortlich.

Änderungen

Gegenüber DINV ENV 1591-2:2001-10 wurden folgende Änderungen vorgenommen:

a) Die in dieser Europäischen Norm enthaltenen Daten wurden nach den in EN 13555:2004 festgelegten Prüfverfahren ermittelt. Diese Daten wurden auf der Grundlage des PERL-Projektes¹⁾ erzielt, in dem die Prüfverfahren der EN 13555 auf ihre Eignung und Wiederholbarkeit bewertet wurden. Die im Rahmen dieses Projektes betrachteten Werkstoffe wurden von den am PERL-Projekt teilnehmenden Organisationen vorgeschlagen.

Frühere Ausgaben

DIN V ENV 1591-2: 2001-10 DIN 2505:1927-01, 1964-10

DIN 2506: 1927-01 DIN 2507: 1927-07 DIN V 2505: 1986-01

I) PERL, Druckgeräte, Reduzierung der Leckrate: Messung der Dichtungskennwerte, RTD-Projekt im Rahmen des Programms "Competitive & Sustainable Growth".

EUROPÄISCHE NORM EUROPEAN STANDARD NORME EUROPÉENNE

EN 1591-2

Juni 2008

ICS 23.040.60

Ersatz für ENV 1591-2:2001

Deutsche Fassung

Flansche und ihre Verbindungen —
Regeln für die Auslegung von Flanschverbindungen mit runden
Flanschen und Dichtung —
Teil 2: Dichtungskennwerte

Flanges and their joints —

Design rules for gasketed circular flange connections –

Part 2: Gasket parameters

Brides et leurs assemblages —
Règles de calcul des assemblages à brides circulaires
avec joint —
Partie 2: Paramètres de joint

Diese Europäische Norm wurde vom CEN am 8. Mai 2008 angenommen.

Die CEN-Mitglieder sind gehalten, die CEN/CENELEC-Geschäftsordnung zu erfüllen, in der die Bedingungen festgelegt sind, unter denen dieser Europäischen Norm ohne jede Änderung der Status einer nationalen Norm zu geben ist. Auf dem letzten Stand befindliche Listen dieser nationalen Normen mit ihren bibliographischen Angaben sind beim Management-Zentrum des CEN oder bei jedem CEN-Mitglied auf Anfrage erhältlich.

Diese Europäische Norm besteht in drei offiziellen Fassungen (Deutsch, Englisch, Französisch). Eine Fassung in einer anderen Sprache, die von einem CEN-Mitglied in eigener Verantwortung durch Übersetzung in seine Landessprache gemacht und dem Management-Zentrum mitgeteilt worden ist, hat den gleichen Status wie die offiziellen Fassungen.

CEN-Mitglieder sind die nationalen Normungsinstitute von Belgien, Bulgarien, Dänemark, Deutschland, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Lettland, Litauen, Luxemburg, Malta, den Niederlanden, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, der Schweiz, der Slowakei, Slowenien, Spanien, der Tschechischen Republik, Ungarn, dem Vereinigten Königreich und Zypern.

EUROPÄISCHES KOMITEE FÜR NORMUNG EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION

Management-Zentrum: rue de Stassart, 36 B-1050 Brüssel

Inhalt

		Seite
Vorw	vort	3
1	Anwendungsbereich	4
2	Normative Verweisungen	4
3	Symbole und Begriffe	4
4 4.1 4.2 4.3 4.4	Typische Dichtungskennwerte für verschiedene Dichtungsausführungen	4 6 21
Anha	ang A (informativ) Zusammenhang zwischen den Dichtungsarten und den in den Tabellen angewendeten Kurzzeichen	
Anha	ang B (informativ) Veröffentlichte Quellen zuverlässiger Daten	43
Anha	ang C (informativ) Darstellung eines Vorberechnungsverfahrens der Dichtungsauswahl	44
1 :40 ==	aturbinusiaa	45

Vorwort

Dieses Dokument (EN 1591-2:2008) wurde vom Technischen Komitee CEN/TC 74 "Flansche und Flanschverbindungen" erarbeitet, dessen Sekretariat vom DIN gehalten wird.

Diese Europäische Norm muss den Status einer nationalen Norm erhalten, entweder durch Veröffentlichung eines identischen Textes oder durch Anerkennung bis Dezember 2008, und etwaige entgegenstehende nationale Normen müssen bis Dezember 2008 zurückgezogen werden.

Es wird auf die Möglichkeit hingewiesen, dass einige Texte dieses Dokuments Patentrechte berühren können, ohne dass diese vorstehend identifiziert wurden. CEN [und/oder] CENELEC sind nicht dafür verantwortlich, einige oder alle diesbezüglichen Patentrechte zu identifizieren.

Dieses Dokument ersetzt ENV 1591-2:2001.

EN 1591 "Flansche und ihre Verbindungen — Regeln für die Auslegung von Flanschverbindungen mit runden Dichtungen" besteht aus den folgenden drei Teilen:

- Teil 1: Berechnungsmethode
- Teil 2: Dichtungskennwerte
- Teil 3: Berechnungsmethode für Flanschverbindungen mit Dichtungen im Kraft-Nebenschluss (CEN/TS)

Die in dieser Europäischen Norm enthaltenen Daten wurden nach den in EN 13555 festgelegten Prüfverfahren ermittelt. Diese Daten wurden auf der Grundlage des PERL-Projektes¹⁾ erzielt, in dem die Prüfverfahren der EN 13555 auf ihre Eignung und Wiederholbarkeit durch die Prüflabore der MPA und CETIM bewertet wurden, siehe Tabelle A.1, Fußnoten a und b. Die im Rahmen dieses Projektes für die Evaluierung ausgewählten Materialien wurden von den am PERL-Projekt teilnehmenden Organisationen vorgeschlagen. Die in diesem Projekt geprüften Materialien und somit die in diesem Dokument enthaltenen Daten sind daher nur als eine Auswahl aus dem Gesamtbereich der handelsüblichen Dichtungsangebote zu sehen, die bei den verschiedenen Dichtungsherstellern und Lieferanten erhältlich sind. Die in diesem Dokument angegebenen Daten sollen den Ingenieuren, die die Norm EN 1591-1 anwenden, bei ihren vorausgehenden Berechnungen als Hilfestellung dienen. Andere veröffentlichte Quellen zuverlässiger Daten sind im Anhang B enthalten. In allen Fällen wird davon ausgegangen, dass die Ingenieure vom Hersteller ihrer Wahl die Daten für diejenige Dichtung bekommen, die für den jeweiligen Anwendungsfall vorgesehen ist. Die Website der European Sealing Association, www.europeansealing.com, enthält Netzverweise zu ihren Mitgliedern in ganz Europa.

Die Streuung der Ergebnisse zwischen den Dichtungsausführungen einer Bauart und Dicke in diesem Dokument zeigt, wie wichtig es ist, die Daten für genau die Bauart, Ausführung und Dicke der Dichtung zugrunde zu legen, die für den Anwendungsfall vorgesehen ist.

ANMERKUNG Der Grund für die Veröffentlichung dieser Version von EN 1591-2 besteht darin, Wertetabellen vorzustellen und für die Normungsarbeit von CEN/TC 54/TC 74/TC 267/TC 69/TC 269/JWG verfügbar zu machen, die zuverlässiger sind als diejenigen in der experimentellen Norm ENV 1591-2:2001.Diese EN 1591-2 soll durch die Joint Working Group in Abhängigkeit von der in Revision befindlichen EN 1591-1 geändert werden.

Entsprechend der CEN/CENELEC-Geschäftsordnung sind die nationalen Normungsinstitute der folgenden Länder gehalten, diese Europäische Norm zu übernehmen: Belgien, Bulgarien, Dänemark, Deutschland, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Lettland, Litauen, Luxemburg, Malta, Niederlande, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, Schweiz, Slowakei, Slowenien, Spanien, Tschechische Republik, Ungarn, Vereinigtes Königreich und Zypern.

¹⁾ PERL, Druckgeräte, Reduzierung der Leckrate: Messung der Dichtungskennwerte, RTD-Projekt im Rahmen des Programms "Competitive & Sustainable Growth".

1 Anwendungsbereich

Diese Europäische Norm legt Dichtungskennwerte für vorausgehende Berechnungen von Flanschverbindungen nach EN 1591-1 fest. Sobald dieser Dichtungstyp ausgewählt wurde, sollten die Parameter für Dichtungen dieses Typs von den unterschiedlichen möglichen Lieferern für weitere Berechnungen angewendet werden, weil es innerhalb eines Dichtungstyps Unterschiede geben wird, die herstellerabhängig sind.

WARNHINWEIS — Für die endgültigen Berechnungen nach dem in EN 1591-1 festgelegten Verfahren ist der Anwender gehalten, die Dichtungskennwerte für den ausgewählten Typ vom Dichtungshersteller zu beziehen. Dies ist notwendig, da die Dichtungskennwerte zwischen Herstellern variieren können. Diese Abweichungen können aus den Tabellen dieses Dokuments entnommen werden.

2 Normative Verweisungen

Die folgenden zitierten Dokumente sind für die Anwendung dieses Dokuments erforderlich. Bei datierten Verweisungen gilt nur die in Bezug genommene Ausgabe. Bei undatierten Verweisungen gilt die letzte Ausgabe des in Bezug genommenen Dokuments (einschließlich aller Änderungen).

EN 1591-1:2001, Flansche und ihre Verbindungen — Regeln für die Auslegung von Flanschverbindungen mit runden Flanschen und Dichtung — Teil 1: Berechnungsverfahren

EN 13555:2004, Flansche und ihre Verbindungen — Dichtungskennwerte und Prüfverfahren für die Anwendung der Regeln für die Auslegung von Flanschverbindungen mit runden Flanschen und Dichtungen

3 Symbole und Begriffe

Für die Anwendung dieses Dokuments gelten die Symbole und Begriffe nach EN 1591-1:2001 und EN 13555:2004.

4 Typische Dichtungskennwerte für verschiedene Dichtungsausführungen

4.1 Allgemeines

Es ist zu beachten, dass die in den folgenden Tabellen enthaltenen Daten nur für vorausgehende Berechnungen nach EN 1591-1 bestimmt sind. Die Daten wurden mit den in EN 13555 festgelegten Prüfverfahren bei der Prüfung an einer kleinen Auswahl der vielen Bauarten und Ausführungen handelsüblicher Dichtungen erzielt, die in Europa im Angebot sind. Für die endgültigen Berechnungen muss der Anwender der EN 1591-1 mit dem Dichtungslieferanten seiner Wahl Verbindung aufnehmen, um die Daten für die für die Anwendung vorgesehene Ausführung und Dicke der Dichtung zu erhalten.

Eine Gruppe von Endanwendern hat ein Vorkalkulationsverfahren für die Anwendung von EN 1591-1 abgeleitet, die eine Dichtungsauswahl ohne weitere Berechnung erlaubt. Diese ist in Anhang C angegeben.

EN 13555 erlaubt die Prüfung von Dichtungsgrößen für DN40/PN40- oder NPS 4 CLASS 300-Flansche. Alle in diesem Dokument angegebenen Datenwerte stammen von DN40/PN40-Dichtungen.

Ferner sollte beachtet werden, dass die Regeln der EN 13555 insoweit übernommen wurden, als dass – falls bei der $Q_{\rm Smax}$ -Prüfung kein Versagen der Dichtung festgestellt wurde – der Wert für $Q_{\rm Smax}$ mit dem bei der $P_{\rm QR}$ -Prüfung mit dem höchsten Tabellenwert eingesetzten Wert für die Flächenpressung $Q_{\rm i}$ gleichgesetzt wird.

Die Daten in den folgenden Tabellen werden in drei Dichtungsparametergruppen angegeben, $Q_{\min[L]}$, $Q_{\min[L]}$ in den Tabellen in 4.2, Q_{\max} und P_{QR} in 4.3 und E_{G} in 4.4, um eine einfache Beurteilung treffen zu können, wie sich die Parameter mit den Dichtungstypen verändern. Eine kurze Erklärung in den Gruppen wird am Beginn jedes Abschnitts gegeben. Für mehr Informationen über die Dichtungskennwerte oder Prüfverfahren sollte EN 13555 herangezogen werden.

Die nach EN 13555 ermittelten Daten sollten zusammen mit EN 1591-1 angewendet werden, um sicherzustellen, dass eine Flanschverbindung genauso sicher wie dicht ist, wie gefordert. Es wird niemals möglich sein, für Dichtungskennwerte alle Werte der Kontrollparameter tabellarisch darzustellen, daher sollten Ergebnisse um die nächst "schlechteren" Werte dieser Kontrollparameter angewendet werden, um sicherzustellen, dass es sich bei dem Ergebnis um herkömmliche Werte handelt.

Die durch die in EN 13555 festgelegten Prüfungen von Dichtungen ermittelten unterschiedlichen Parameter stehen auf vielschichtige Art und Weise in gegenseitiger Beziehung und die nachfolgend angegebene Anleitung ist unter bestimmten Umständen in Hinblick auf diese Zusammenhänge stark vereinfacht. Falls eine weitere Anleitung erforderlich ist, wird empfohlen, dass die bevorzugten Lieferer oder Hersteller konsultiert werden, da sie kompetent sind, die gesamte erforderliche Anleitung bereitzustellen, um die Auswahl eines optimierten Lösungskonzepts für jede Anwendung von Dichtungen zu unterstützen.

 $Q_{\mathsf{Smin}[\mathsf{L}]}$ wird beeinflusst durch Q_{A} , das bei der Montage erreichte höhere Niveau von Q_{A} ist das Bessere.

 $Q_{\rm A}$ wird entweder durch die verfügbare Schraubenkraft, die maximale Flanschbeanspruchung, die zulässig sein kann oder durch die maximale Dichtungsbelastung $Q_{\rm Smax}$ begrenzt, der standgehalten werden kann.

Hohe $Q_{\rm Smax}$ -Werte sind wünschenswert. Wenn der $Q_{\rm Smax}$ -Wert nicht bei der interessierenden Temperatur und der Dichtungsdicke tabellarisch dargestellt ist, dann sollte der $Q_{\rm Smax}$ -Wert bei den nächsthöheren Werten angewendet werden.

Für eine sichere Ausführung eines vorgegebenen Niveaus der Dichte L ist der niedrigere Wert von $\mathcal{Q}_{\min[L]}$ und $\mathcal{Q}_{\text{Smin}[L]}$ der bessere. Falls Daten für mehr als einen Heliumdruck tabellarisch dargestellt sind, dann ist eine Interpolation zur Ableitung eines Wertes für den interessierenden Druck erlaubt. Wenn für die interessierende Dicke keine Daten vorhanden sind, dann sollten die Daten von der nächsthöheren vorhandenen Dicke angewendet werden.

Niedrige Werte von $Q_{\min[L]}$ und $Q_{\min[L]}$ sind wünschenswert. Eine geringe Differenz zwischen den $Q_{\min[L]}$ Werten bei aufeinander folgenden L-Werten ist ebenfalls wünschenswert, weil das eine geringe Empfindlichkeit auf Entlastung im Betrieb anzeigt.

Innerhalb der Dichtungsart sind hohe P_{QR} -Werte wünschenswert. Wenn ein P_{QR} -Wert nicht bei genau der geforderten Temperatur, Steifigkeit und Flächenpressung tabellarisch dargestellt ist, dann sollte der P_{QR} -Wert bei dem nächsten Niveau oberhalb des geforderten angewendet werden.

Niedrige Werte von E_{G} sind wünschenswert. Wenn ein E_{G} -Wert nicht bei genau der geforderten Temperatur, Flächenpressung und Dicke tabellarisch dargestellt ist, dann sollte der E_{G} -Wert bei dem nächsten Niveau oberhalb des geforderten angewendet werden.

Die Daten in den folgenden Reihen der Tabellen wurden ermittelt, als die Prüfverfahren von EN 13555 entwickelt wurden. Demzufolge stimmen die Daten für einige geprüfte Dichtungen nicht in jeder Hinsicht mit den nachträglich abgeleiteten und in EN 13555 angegebenen Regeln überein. Ein Beispiel dafür gibt $P_{\rm QR}$ in den Tabellen in 4.3, weil die Werte nur für eine Steifigkeit von 500 kN/mm angegeben sind, obwohl die Norm für $P_{\rm QR}$ -Werte einen Bereich fordert, der noch nicht festgelegt ist.

Die Anmerkungen am Ende der Tabellen in 4.3 von Q_{Smax} und P_{QR} geben eine wichtige Anleitung für die Anwendung der Daten in dieser Tabellenreihe.

Siehe Anhang A für den Zusammenhang zwischen den Dichtungsarten und den in den Tabellen angewendeten Kurzzeichen.

4.2 $Q_{\min[L]}, Q_{\min[L]}$

 $Q_{\min[L]}$ ist die erforderliche Mindest-Flächenpressung auf der Dichtung bei Montage bei Raumtemperatur, damit durch Anpassung der Dichtung an die Rauheit der Flanschdichtflächen und Abdichten der inneren Leckagewege die geforderte Dichtheitsklasse L für den gegebenen Innendruck erreicht wird.

 $Q_{\mathsf{Smin[L]}}$ ist die erforderliche Mindest-Flächenpressung auf der Dichtung unter Betriebsbedingungen, d. h. nach Entlastung im Betrieb bei Betriebstemperatur, damit die erforderliche Dichtheitsklasse L für den gegebenen Innendruck gehalten wird. Im Fall der Daten in den Tabellen 2 bis 15 ist folglich nur die Umgebungstemperatur angegeben.

L wird in Tabelle 1 in Form von spezifischen Leckageraten festgelegt. Weitere, bessere Dichtungsklassen als gefordert, werden durch Fortsetzung der Reihen eingesetzt.

Tabelle 1 — Dichtungsklassen

	Spezifische Leckagerate
Dichtungsklasse	mg/(s⋅m)
L _{1,0}	≤ 1,0
L _{0,1}	≤ 0,1
L _{0,01}	≤ 0,01

Bei den Tabellen 2 bis 15 gilt folgende Kennzeichnung:

 $Q_{\min[L]}$ oder $Q_{\min[L]}$ -Werte für 40 bar ohne Unterstreichung;

 $Q_{\min[L]}$ - oder $Q_{\min[L]}$ -Werte für 10 bar sind durch eine gestrichelte Linie gekennzeichnet;

 $Q_{\min[L]}$ - oder $Q_{\min[L]}$ -Werte für 80 bar sind unterstrichen;

 $Q_{\min[L]^-}$ oder $Q_{\min[L]^-}$ Werte für 160 bar sind doppelt unterstrichen.

Tabelle 2 — Spiraldichtung mit Graphitfüllstoff, mit Außenring

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur. Kurzzeichen 3-3-100-1, 4,5 mm

L mg/(s⋅m)	$Q_{min[L]}$ MPa	Q_{A} MPa	20	40	60	80	100	160
		– Werkstoff- Kurzzeichen				Smin[L] MPa		
10 ¹	ı	-	_	_	ı	_	ı	_
10 ⁰	<u>10</u> 30 <u>35</u>	3-3-100-1	_	10 <u>10</u>	10 <u>10</u>	10 <u>10</u>	10 <u>10</u>	<u>10</u> 10 <u>11</u>
10 ⁻¹	<u>49</u> 37 <u>57</u>	3-3-100-1	_	_	10 <u>43</u>	10 <u>11</u>	10 <u>10</u>	<u>10</u> 10 <u>12</u>
10 ⁻²	<u>63</u> 62 <u>71</u>	3-3-100-1	_	-	ı	19 <u>25</u>	10 <u>17</u>	<u>10</u> 10 <u>15</u>
10 ⁻³	<u>74</u> 80 <u>87</u>	3-3-100-1	_	-	ı	80	28 <u>32</u>	<u>10</u> 19 <u>28</u>
10 ⁻⁴	<u>98</u> 126 <u>104</u>	3-3-100-1	_	-	-	-	-	<u>24</u> 71 <u>40</u>
10 ⁻⁵	ı	-	_	_	ı	_	ı	_
10 ⁻⁷	_	-		_	_	_		_
10 ⁻⁸	_	_						
10 ⁻⁹	_	_	_	_	_	_	_	_

Tabelle 3 — Spiraldichtung mit Graphitfüllstoff, mit Innen- und Außenring

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur. Kurzzeichen 3-4-104-1, 4,5 mm

L mg/(s⋅m)	$Q_{min[L]}$ MPa	\mathcal{Q}_{A} MPa	20	40	60	80	100	160	320
		– Werkstoff- Kurzzeichen		$\mathcal{Q}_{Smin[L]}$ MPa					
10 ¹	-	ı	_	ı	_	_	-	-	
10 ⁰	10 <u>10</u> <u>10</u>	3-4-104-1	10	10	10	10	10	10 – <u>10</u>	10 <u>10</u>
10 ⁻¹	16 <u>32</u> <u>20</u>	3-4-104-1	_	10	10	10	10	10 – <u>10</u>	10 <u>10</u>
10 ⁻²	25 <u>48</u> <u>45</u>	3-4-104-1	_	10	10	10	10	10 – <u>10</u>	10 <u>10</u>
10 ⁻³	42 <u>81</u> <u>83</u>	3-4-104-1	_	_	16	18	17	10 – <u>31</u>	10 <u>15</u>
10 ⁻⁴	81 <u>143</u> <u>159</u>	3-4-104-1	_	_	_	_	62	35 – <u>157</u>	26 <u>51</u>
10 ⁻⁵	181 <u>281</u>	3-4-104-1	_	_	_	_	_	_	83 <u>198</u>
10 ⁻⁶	314	3-4-104-1	_	_	_	_	_	_	298
10 ⁻⁷	_		_	_	_	_	_		
10 ⁻⁸	_	-	_	_	_	_	_	_	

Tabelle 4 — Spiraldichtung mit Graphitfüllstoff, mit Innen- und Außenring, für geringe Flächenpressung

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur. Kurzzeichen 3-5-102-1, 4,5 mm

L mg/(s⋅m)	$Q_{min[L]}$ MPa	\mathcal{Q}_A MPa	20	40	60	80	100	160	320
		– Werkstoff- Kurzzeichen	$\mathcal{Q}_{Smin[L]}$ MPa						
10 ¹	_	_	_	_	_	_	_	-	_
10 ⁰	<u> 10 – 10</u>	_	_	_	_	<u> 10</u> –	_	-	- <u>10</u>
10 ⁻¹	<u>10</u> 10 <u>12</u>	3-5-102-1	10	10	10	<u>10</u> 10	10	10	10 <u>10</u>
10 ⁻²	<u>10</u> 19 <u>33</u>	3-5-102-1	10	10	10	<u>10</u> 10	10	10	10 <u>10</u>
10 ⁻³	<u>29</u> 70 <u>174</u>	3-5-102-1	_	_	_	<u>10</u> 20	10	14	26 <u>168</u>
10 ⁻⁴	140 <u>231</u>	3-5-102-1	_	_	_	_	_	82	88 <u>230</u>
10 ⁻⁵	154 <u>290</u>	3-5-102-1	_	_	_	-	_	101	123 <u>288</u>
10 ⁻⁶	167	3-5-102-1	_	-	_	-	_	_	157
10 ⁻⁷	180	3-5-102-1	_	-	_	_	_	_	192
10 ⁻⁸	194	3-5-102-1	_	_	-	_	-	-	258

Tabelle 5 — Spiraldichtung mit PTFE-Füllstoff, mit Innen- und Außenring

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur. Kurzzeichen G03, 5,1 mm

L mg/(sm)	$Q_{min[L]}$ MPa	Q_{A} MPa	60	120	180	240	300	480
		– Werkstoff- Kurzzeichen			Q_{Sm}			
10 ¹	_	ı	_	_	_	ı	_	_
10 ⁰	_	-	_	_	-	-	_	_
10 ⁻¹	<u>30</u> 58	G03	30	30	30	30	30	<u>30</u> 30
10-2	<u>39</u> 74	G03	_	30	30	30	30	<u>30</u> 30
10-3	<u>52</u> 90	G03	_	30	30	30	30	30 30
10-4	<u>69</u> 105	G03	_	43	30	30	30	<u>30</u> 30
10 ⁻⁵	<u>101</u> 125	G03	_	_	30	30	30	<u>30</u> 30
10 ⁻⁶	<u>149</u> 166	G03	_	_	97	47	48	<u>35</u> 34
10 ⁻⁷	<u>353</u> 428	G03	_	_	_	_	_	<u>132</u> 372
10 ⁻⁸	_	_	_	_	_	_	_	_

Tabelle 6 — Wellringdichtung mit Metallkern und mit Graphitauflage

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur.

Kurzzeichen 7-01-104-1, Kurzzeichen K04,

3,2 mm 2,3 mm

			ichch ito	-,	2,5 11				
L mg/(s·m)	$Q_{min[L]}$ MPa	Q_{A} MPa	20	40	60	80	100	160	320
		– Werkstoff- Kurzzeichen				Q _{Smin[l}	-]		
10 ¹	_	_	_	-	_	_	_	_	_
10 ⁰	_	_	_	_	_	_	_	_	_
40.1	10	7-01-104-1	10	10	10	10	10	10	10
10 ⁻¹	10	K04	_	_	-	-	_	-	-
40-2	11	7-01-104-1	10	10	10	10	10	10	17
10 ⁻²	11	K04	10	10	10	10	10	10	_
10 ⁻³	17 <u>10</u> <u>20</u>	7-01-104-1	10	10	10	10	10	10 – <u>10</u>	24 <u>10</u>
10 0	<u>10</u> 22	K04	10	10	10	10	10	<u>10</u> 10	_
10 ⁻⁴	21 <u>75</u> <u>30</u>	7-01-104-1	_	33	13	17	27	24 – <u>20</u>	32 <u>10</u>
10 .	<u>14</u> 28	K04	_	10	10	10	10	<u>11</u> 10	10
10 ⁻⁵	45 <u>104</u> <u>40</u>	7-01-104-1	_		18	27	46	36 – <u>28</u>	37 <u>33</u>
10 9	<u>41</u> 35	K04	_	25	10	10	10	<u>20</u> 10	
10 ⁻⁶	52 <u>165</u> <u>95</u>	7-01-104-1	_	-	32	36	66	68 – <u>35</u>	116 <u>74</u>
10 9	<u>84</u> 68	K04	_	_	_	10	10	10	-
10 ⁻⁷	57 <u>295</u> <u>152</u>	7-01-104-1	_	_	_	73	86	159 – <u>95</u>	165 <u>243</u>
10 .	<u>100</u> 80	K04	_	_	_	_	44	10	_
10 ⁻⁸	306	7-01-104-1	_	_	_	_	_	_	305

Tabelle 7 — Metallummantelte Dichtung mit Graphitfüllstoff

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur. Kurzzeichen 6-4-103-1, 3,2 mm Keine Dichtungsdaten für H02

L ma/(a m)	$Q_{min[L]}$	Q_{A}	20	40	60	80	100	160	320
mg/(s⋅m)	MPa	MPa							
		_			9	$Q_{Smin[L]}$			
		Werkstoff- Kurzzeichen				MPa			
10 ¹	34	6-4-103-1	_	10	10	10	10	10	10 <u>20</u>
10 ⁰	55 <u>63</u> <u>120</u>	6-4-103-1	_	_	26	23	21	10	10 <u>20</u>
10 ⁻¹	96 <u>187</u> –	6-4-103-1	_	_	_	_	-	56	14 <u>20</u>
10 ⁻²	171 <u>287</u> –	6-4-103-1	-	_	_	_	ı	-	35 <u>40</u>
10 ⁻³	253	6-4-103-1	_	_	_	_	-	-	133 –
10 ⁻⁴	_	_	_	_	_	_	_	-	_
10 ⁻⁵	_	_	_	-	-	_	-	-	_
10 ⁻⁶	_	_	_	_	_	_	-	_	_
10 ⁻⁷	_	_	_	_	-	_	-	_	_
10 ⁻⁸	_	_	_	-	_	_	-	-	_

Tabelle 8 — Metallummantelte Dichtung mit Graphitauflage, Graphitfüllstoff und Außenring

 $Q_{\mathsf{min[L]}}$, $Q_{\mathsf{Smin[L]}}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur.

Kurzzeichen 5-5-103-1, 4,5 mm Kurzzeichen H01, 4,8 mm

L mar((a, m))	$Q_{min[L]}$	Q_{A}	20	40	60	80	100	160	320
mg/(s⋅m)	MPa	MPa - Werkstoff- Kurzzeichen	$Q_{Smin[L]}$ MPa						
10 ¹	_	-	-	-	-	-	-	_	_
10 ⁰	_	-	_	_	_	_	_	_	_
10 ⁻¹	- <u>13</u> <u>28</u>	5-5-103-1	10	10	10	10	10	10 – <u>20</u>	10 <u>10</u>
10 ⁻²	14 <u>32 73</u>	5-5-103-1	10	10	10	10	10	10 – <u>32</u>	10 <u>10</u>
10 ⁻³	10	H01	10	10	10	10	10	10	-
10 9	60 <u>69</u>	5-5-103-1	-	-	_	33	25	24	22 <u>34</u>
10 ⁻⁴	<u>10</u> 15	H01	10	10	10	10	10	10	-
10	218	5-5-103-1	_	_	_	_	-	_	131
10 ⁻⁵	<u>14</u> 23	H01	_	10	10	10	10	10	_
10 ⁻⁶	<u>20</u> 33	H01	_	15	10	10	10	<u>10</u> 10	_
10 ⁻⁷	<u>31</u> 60	H01	_	_	_	38	32	14 28	_
10 ⁻⁸	<u>50</u> –	-	_	_	_	_	-	127 –	1

Tabelle 9 — Graphitplatte mit mehreren dünnen Metalleinlagen

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur. Kurzzeichen A01, 2,1 mm

L mg/(s·m)	$Q_{min[L]}$ MPa	\mathcal{Q}_{A} MPa	20	40	60	80	100	160
		– Werkstoff- Kurzzeichen			Q_{Sm}			
10 ¹	_	_	_	_	_	_	_	_
10 ⁰	_	_	_	_	_	_	_	_
10-1	10	A01	10	10	10	10	10	10
10 ⁻²	<u>10</u> 30	A01	_	10	10	10	10	10
10 ⁻³	<u>38</u> 72	A01	_	_	_	37	17	10
10-4	<u>83</u> 120	A01	_	_	_	_	_	<u>10</u> 38
10 ⁻⁵	<u>123</u> 157	A01	_	-	_	-	_	<u>52</u> 150
10 ⁻⁶	_	_	_	_	_	_	_	_
10 ⁻⁷	_	_	_	_	_	_	_	_
10 ⁻⁸	_	_	_	_	_	_	_	_

Tabelle 10 — Graphitplatte mit Spießblecheinlage aus nichtrostendem Stahl

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur.

Kurzzeichen 1-5-101-1, 2 mm Kurzzeichen E02, 2,1 mm

		1.01	ZZEIGHEH E	· · · · · · · · · · · · · · · · · · ·	۷,۱۱۱۱۱۱۱			
L mg/(s·m)	$Q_{min[L]}$ MPa	\mathcal{Q}_{A} MPa	20	40	60	80	100	160
		_			$Q_{\mathfrak{S}}$	Smin[L]		l
		Werkstoff- Kurzzeichen				ЛРа		
10 ¹	_	-	-	_	_	-	-	-
10 ⁰	10	1-5-101-1	10	10	10	10	10	10
10 ⁻¹	<u>10</u> 10 –	E02	10	10	10	10	10	10
10 .	<u>10</u> 15 <u>27</u>	1-5-101-1	10	10	10	10	10	<u>10</u> 10
10 ⁻²	<u> 28</u> 47 –	E02	-	_	11	10	10	10
10 -	<u>23</u> 41 <u>60</u>	1-5-101-1	ı	-	10	10	10	<u>10</u> 10
10 ⁻³	<u>62</u> 88 –	E02	ı	-	-	ı	36	10
10 -	<u>49</u> 84 <u>96</u>	1-5-101-1	1	_	_	1	39	<u>10</u> 12
10 ⁻⁴	<u>94</u> 122 –	E02	-	_	-	-	ı	<u>10</u> 29
10 .	<u>93</u> 139 –	1-5-101-1	ı	-	-	ı	ı	<u>16</u> 95
10 ⁻⁵	<u>124</u> 149	E02	1	_	_	1	ı	<u>33</u> 117
10 -	<u>135</u> 200	1-5-101-1	1	_	_	-	-	<u>130</u> –
10 ⁻⁶	<u> 151</u> –	-	ı	-	-	ı	ı	<u> 125</u> –
10 ⁻⁷	_	-	-	_	_	ı	_	_
10 ⁻⁸	_	_	_	_	_	_	-	

Tabelle 11 — (Kammprofil-)Dichtung mit gezahntem Metallkern und Graphitauflage

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur. Kurzzeichen 2-5-104-1, 4 mm

L mg/(s·m)	$Q_{min[L]}$ MPa	Q_{A} MPa	20	40	60	80	100	160	320
		– Werkstoff- Kurz- zeichen					min[L] IPa		
10 ¹	<u>29</u>	2-5-104-1	_	_	_	_	_	<u>10</u>	_
10 ⁰	- <u>10</u> <u>37</u>	2-5-104-1	- <u>10</u>	- <u>10</u>	- <u>10</u>	- <u>10</u>	- <u>10</u>	- <u>10</u> <u>10</u>	- <u>10</u>
10 ⁻¹	10 <u>33 50</u>	2-5-104-1	10	10 <u>30</u>	10 <u>17</u>	10 <u>14</u>	10 <u>10</u>	10 <u>10</u> <u>23</u>	10 <u>10</u>
10-2	12 <u>45 62</u>	2-5-104-1	12	16	18 <u>32</u>	14 <u>24</u>	13 <u>23</u>	17 <u>10</u> <u>43</u>	10 <u>20</u>
10 ⁻³	28 <u>53 69</u>	2-5-104-1	17	27	29 <u>46</u>	22 <u>35</u>	20 <u>33</u>	24 <u>32</u> <u>62</u>	18 <u>30</u>
10 ⁻⁴	47 <u>60 76</u>	2-5-104-1	_	_	46	31 <u>50</u>	31 <u>46</u>	34 <u>42</u> <u>82</u>	32 <u>55</u>
10 ⁻⁵	59 <u>71 101</u>	2-5-104-1	_	_	_	46 <u>66</u>	43 <u>70</u>	48 <u>59</u> <u>101</u>	77 <u>97</u>
10 ⁻⁶	71 <u>83 <u>126</u></u>	2-5-104-1	_	_	-	64	73 <u>86</u>	73 <u>76</u> <u>121</u>	123 <u>125</u>
10 ⁻⁷	111 <u>110 <u>138</u></u>	2-5-104-1	_	_	_	_	-	108 <u>149</u> <u>141</u>	170 <u>154</u>
10 ⁻⁸	138 – <u>160</u>	2-5-104-1	_	_	_	_	_	139 – <u>160</u>	255
10 ⁻⁹	308	2-5-104-1	_		_	_	_	_	316
10 ⁻¹⁰	_	_	_	_	_	_	_	_	_

Tabelle 12 — Modifiziertes PTFE

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur.

Kurzzeichen 1-10-102-1, 2 mm
Kurzzeichen 1-10-100-1, 2 mm
Kurzzeichen G02, 2,0 mm
Kurzzeichen D01, 2,0 mm
Kurzzeichen A02, 2,0 mm
Kurzzeichen K02, 2,0 mm

L mg/(s·m)	$Q_{min[L]}$ MPa	Q_{A} MPa	20	40	60	80	100	160
		– Werkstoff- Kurzzeichen	$Q_{Smin[L]}$ MPa					
10 ¹	_	_	_	_	_	_	-	_
10 ⁰	<u> 10</u> –	1-10-102-1	<u>10</u> 10	<u>10</u> 10	<u>10</u> 10	<u>10</u> 10	_	_
100	10 –	1-10-100-1	10	10	10	10		
	<u>12</u> 12 <u>19</u>	1-10-102-1	<u>10</u> 10	<u>10</u> 10	<u>10</u> 10	<u>10</u> 10 <u>10</u>	_	_
	10 <u>10</u>	1-10-100-1	10	10	10	– 10 <u>10</u>	_	-
10 ⁻¹	<u>10</u> 10	G02	10	10	10	10	10	10
	10	D01	10	10	10	10	10	10
	10	A02	10	10	10	10	10	10
	<u>17</u> 16 <u>26</u>	1-10-102-1	<u>11</u> 10	<u>10</u> 10	<u>10</u> 10	<u>10</u> 10 <u>10</u>	_	-
	<u>10</u> 12 <u>22</u>	1-10-100-1	<u>10</u> 10	<u>10</u> 10	<u>10</u> 10	<u>10</u> 10 <u>10</u>	_	-
10 ⁻²	<u>11</u> 25	G02	_	10	10	10	10	10
	<u>10</u> 25	D01	_	10	10	10	10	10
	11	A02	_	10	10	10	10	10
	<u>26</u> 21 <u>33</u>	1-10-102-1	_	<u>10</u> 10	<u>10</u> 10	<u>10</u> 10 <u>10</u>	_	-
	<u>12</u> 17 <u>30</u>	1-10-100-1	<u>10</u> 10	<u>10</u> 10	<u>10</u> 10	<u>10</u> 10 <u>10</u>	_	_
10 ^{−3}	<u>27</u> 52	G02	_	_	33	13	10	10
10 0	<u>22</u> 30	D01	_	10	10	10	10	10
	<u>10</u> 15	A02	10	10	10	10	10	10
	<u>10</u> –	K02						

Tabelle 12 (fortgesetzt)

L mg/(s⋅m)	$Q_{min[L]}$ MPa	Q_{A} MPa	20	40	60	80	100	160
	1	_		•	Q _c	Smin[L]		
		Werkstoff- Kurzzeichen	MPa					
	<u>38</u> 31 <u>39</u>	1-10-102-1	_	<u>17</u> 10	<u>10</u> 10	<u>10</u> 10 <u>10</u>	-	_
	<u>17</u> 42 <u>37</u>	1-10-100-1	<u> 10</u> –	<u>10</u>	<u>10</u> 10	<u>10</u> 10 <u>10</u>	-	_
10 ⁻⁴	<u>58</u> 83	G02	_	_	_	_	27	10
10 .	<u>31</u> 36	D01	_	15	10	10	10	10
	<u>12</u> 20	A02	14	10	10	10	10	10
	<u>13</u> 10	K02	10	10	10	10	10	<u>10</u> 10
	<u>62</u> 41	1-10-102-1	_	_	11	<u>43</u> 10	_	_
	<u>50</u> –	1-10-100-1	_	-	<u>25</u> –	10 -	-	_
10 ^{−5}	<u>94</u> 160	G02						10 -
10 °	<u>40</u> 54	D01	_	_	33	16	<u>10</u> 10	10
	<u>20</u> 58	A02	_	-	50	<u>10</u> 11	10	10
	<u>17</u> 27	K02	_	16	13	11	10	<u>13</u> 10
10 ⁻⁶	67	1-10-102-1			_	64	_	_
10 0	<u>40</u> 92	K02	_	_			83	<u>31</u> 65
10 ⁻⁷	_	_	_	_		_	_	_
10 ⁻⁸	_	_	_	_	_	_	_	-

Tabelle 13 — Asbestfreie Faserplatte

 $Q_{\mathsf{min[L]}}, Q_{\mathsf{Smin[L]}}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur.

Kurzzeichen 1-9-101-1, 2 mm
Kurzzeichen G01, 2 mm
Kurzzeichen E01, 2,1 mm
Kurzzeichen D02, 1,9 mm
Kurzzeichen B01, 2 mm

L mg/(s⋅m)	$Q_{min[L]}$ MPa	\mathcal{Q}_{A} MPa	20	40	60	80	100	160
		– Werkstoff- Kurzzeichen	$Q_{Smin[L]}$ MPa					
10 ¹	– 10	1-9-101-1	10	10	10	10	10	10
10 ⁰	- 12 <u>10</u>	1-9-101-1	10 <u>10</u>	10 <u>10</u>	10 <u>10</u>	10 <u>10</u>	10 <u>10</u>	10 <u>10</u>
	<u>10</u> 10	G01	10	10	10	10	10	10
	<u>10</u> 10	E01	10	10	10	10	10	10
10 ⁻¹	<u>10</u> 10	D02	10	10	10	10	10	10
	<u>10</u> 10	B01	10	10	10	10	10	10
	<u>10</u> 20 <u>22</u>	1-9-101-1	- <u>10</u>	10 <u>10</u>	10 <u>10</u>	10 <u>10</u>	10 <u>10</u>	10 <u>10</u>
	22 24	G01	_	10	10	10	10	10
	<u>12</u> 48	E01	_	_	15	10	10	10
10 ⁻²	<u>40</u> 64	D02	_	_	_	14	10	10
	<u>15</u> 25	B01	_	10	10	10	10	10
	<u>16</u> 35 <u>43</u>	1-9-101-1	_	10 <u>10</u>				
	<u>40</u> 54	G01	_	_	19	10	10	10
	<u>56</u> 86	E01	_	_	_	_	22	10
10 ⁻³	<u>77</u> 92	D02	_	_	_	_	34	<u>10</u> 13
	<u>32</u> 42	B01	_	_	10	10	10	10
	<u>33</u> 57 <u>69</u>	1-9-101-1	_	_	20	19 <u>15</u>	10 <u>10</u>	10 <u>10</u>

Tabelle 13 (fortgesetzt)

L mg/(s·m)	$Q_{min[L]}$ MPa	\mathcal{Q}_A MPa	20	40	60	80	100	160
9, (5)	IVII a	IVII a						
					Q_{Sm}	nin[L]		
		Werkstoff- Kurzzeichen			MF	Pa		
	<u>66</u> 68	G01	_	_	_	19	10	<u>10</u> 10
	<u>84</u> 108	E01	_	_	_	_	_	<u>10</u> 15
10 ⁻⁴	<u>100</u> 111	D02	_	_	-	_	_	<u>17</u> 32
	47 54	B01	_	_	19	10	10	10
	<u>60</u> 81 <u>95</u>	1-9-101-1	_	_	_	40	33 <u>38</u>	17 <u>19</u>
	100 83	G01	_	_	_	_	29	<u>12</u> 14
	<u>107</u> 130	E01	_	_	_	_	_	<u>18</u> 39
10 ⁻⁵	<u>116</u> 134	D02	_	_	_	_	_	44 111
	60 75	B01	_	_	_	34	20	<u>10</u> 19
	<u>85</u> 112 <u>130</u>	1-9-101-1	_	_	_	_	_	33 <u>37</u>
	<u>130</u> 111	G01	_	_	_	_	_	<u>79</u> 108
	129 –	E01						52 -
10 ⁻⁶	144 –	D02						140 –
	<u>98</u> 113	B01						<u>92</u> 109
	<u>108</u> 151	1-9-101-1	_	_	_	_	_	125
10 ⁻⁷	_	_	-	_	_	_	_	-
10 ⁻⁸	_	_	_	_	_	_	_	_

Tabelle 14 — Kammprofildichtung mit Graphitauflagen mit sekundärer metallischer Dichtung, markenrechtlich geschützt

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur. Kurzzeichen F01, 4,1 mm

				,	,				
L mg/(s·m)	$Q_{min[L]}$ MPa	Q_{A} MPa	20	40	60	80	100	160	320
		– Werkstoff- Kurzzeichen	$\mathcal{Q}_{Smin[L]}$ MPa						
10 ¹	_	_	_	_	_	_	_	_	_
10 ⁰	_	_	_	_	_	_	_	_	_
10 ⁻¹	_	_	_	_	_	_	_	_	_
10-2	_	_	_	_	_	_	_	_	_
10 ⁻³	_	_	_	_	_	_	_	_	_
10-4	_	_	_	_	_	_	_	-	_
10 ⁻⁵	_	_	_	_	_	_	_	_	_
10 ⁻⁶	_	_	_	_	_	_	_	_	_
10 ⁻⁷	34	F01	_	_	34	_	_	ı	-
10 ⁻⁸	41	F01	_	_	34	_	-	-	_
10 ⁻⁹	47	F01	_	_	34	_	_	1	
10 ⁻¹⁰	54	F01	_	_	45	_	_	-	_
10 ⁻¹¹	61	F01	_	_	_	_	_	_	_

Tabelle 15 — PTFE-/Graphitdichtung mit metallischer Inneneinfassung, markenrechtlich geschützt

 $Q_{\min[L]}$, $Q_{\min[L]}$ für 40 bar Helium, zuzüglich einiger Daten für andere Drücke, bei Umgebungstemperatur. Kurzzeichen K01, 1,9 mm

L mg/(s·m)	$Q_{min[L]}$ MPa	Q_{A} MPa	20	40	60	80	100	160
		– Werkstoff- Kurzzeichen	$Q_{Smin[L]}$ MPa					
10 ¹	_	_	-	_	-	_	_	-
10 ⁰	_	_	_	_	_	_	_	_
10 ⁻¹	_	_	_	_	-	_	_	_
10-2	_	_	_	_	-	_	_	_
10 ⁻³	_	_	_	_	_	_	_	_
10-4	<u>10</u> 10	K01	10	10	10	10	10	10
10 ⁻⁵	<u>14</u> 15	K01	_	_	37	22	19	<u>10</u> 12
10 ⁻⁶	<u>28</u> 107	K01	_	_	_	_	_	<u>18</u> 56
10 ⁻⁷	106	K01	_	_	_	_	_	83
10 ⁻⁸	_	_	_	_	_	_	_	_

4.3 Q_{Smax} und P_{QR}

 $Q_{
m Smax}$ ist die maximale Flächenpressung, mit der die Dichtung bei den angegebenen Temperaturen belastet werden darf, ohne dass ein Kollaps der Dichtung oder Versagen durch Stauchverformung auftritt. $P_{
m QR}$ ist der Faktor zur Berücksichtigung des Relaxationseinflusses auf die Dichtungsbelastung nach dem Anziehen der Schrauben und der Langzeiteinwirkung der Betriebstemperatur.

Tabelle 16 — Q_{Smax} und P_{QR} (Daten aus EN 13555)

Tabelle 10 — 2 Smax und 1 QR (Datell aus LIV 13333)								
Temperatur °C	\mathcal{Q}_{Smax}	P_{QR} (Q_{i}) je nach Verbindungssteifigkeit, Q_{i} in MPa 500 kN/mm	Werkstoff- Kurzzeichen, Anfangsdicke der Dichtung					
	Asbestfreie Faserplatte							
	120	1,0 (120)	G01, 2,0 mm					
	120	1,0 (120)	E01, 2,1mm					
Umgebungstemperatur	120	1,0 (120)	D02, 1,9 mm					
	120	1,0 (120)	B01, 2,0 mm					
	150	0,98 (150)	1-9-101-1, 2 mm					
	120	0,9 (120)	G01, 2,0 mm					
475	120	0,8 (120)	E01, 2,1 mm					
175	80	0,7 (80)	D02, 1,9 mm					
	80	0,8 (80)	B01, 2,0 mm					
200	60	0,81 (60)	1-9-101-1, 2 mm					
	120	0,9 (120)	G01, 2,0 mm					
	100	0,8 (100)	E01, 2,1 mm					
250	80	0,5 (80)	D02, 1,9 mm					
	80	0,6 (80)	B01, 2,0 mm					
	50	0,77 (50)	1-9-101-1, 2 mm					
	Platte aus mod	ifiziertem PTFE						
	60	0,9 (60)	1-10-102-1, 2 mm					
	50	0,84 (50)	1-10-100-1, 2 mm					
Umgebungstemperatur	120	1,0 (120)	G02, 2,0 mm					
onigebungstemperatur	80	0,9 (80)	D01, 2,0 mm					
	120	0,9 (120)	A02, 2,0 mm					
	40	0,9 (40)	K02, 2,0 mm					
	120	1,0 (120)	G02, 2,0 mm					
150	40	0,6 (40)	D01, 2,0 mm					
130	120	0,6 (120)	A02, 2,0 mm					
	40	0,5 (40)	K02, 2,0 mm					

Tabelle 16 (fortgesetzt)

Temperatur °C	Q_{Smax}	$P_{QR}\left(\mathcal{Q}_{j} ight)$ je nach Verbindungssteifigkeit, \mathcal{Q}_{j} in MPa 500 kN/mm	Werkstoff-Kurzzeichen, Anfangsdicke der Dichtung
475	60	0,5 (60)	1-10-102-1, 2 mm
175	40	0,41 (40)	1-10-100-1, 2 mm
	60	0,42 (60)	1-10-102-1, 2 mm
	25	0,36 (25)	1-10-100-1, 2 mm
205	120	0,8 (120)	G02, 2,0 mm
225	40	0,4 (40)	D01, 2,0 mm
	120	0,5 (120)	A02, 2,0 mm
	40	0,4 (40)	K02, 2,0 mm
(Kammpr	ofil-)Dichtung mit gezah	ntem Metallkern und Grap	hitauflage
Umachungatamparatur	600	1,00 (600)	2-5-104-1, 4 mm
Umgebungstemperatur	328	1,0 (328)	F01, 4,1 mm
300	450	0,94 (450)	2-5-104-1, 4 mm
300	328	0,98 (328)	F01, 4,1 mm
450	400	0,80 (400)	2-5-104-1, 4 mm
430	328	0,96 (328)	F01, 4,1 mm
Graph	itplatte mit Spießbleche	einlage aus nichtrostender	n Stahl
Umgebungstemperatur -	200	1,0 (200)	E02, 2,1 mm
Omgebungstemperatur	200	1,0 (200)	1-5-101-1, 2 mm
300	120	1,0 (120)	E02, 2,1 mm
300	140	0,78 (140)	1-5-101-1, 2 mm
400	120	1,0 (120)	E02, 2,1 mm
450	120	0,62 (120)	1-5-101-1, 2 mm
	Graphitplatte mit mehre	eren dünnen Metalleinlagei	1
Umgebungstemperatur	120	1,0 (120)	A01, 2,1 mm
300	120	1,0 (120)	A01, 2,1 mm
400	120	0,98 (120)	A01, 2,1 mm
Metallummant	elte Dichtung mit Graph	nitauflage, Graphitfüllstoff	und Außenring
Umgebungstemperatur	120	1,0 (120)	H01, 4,8 mm
omyebungstemperatur	400	0,98 (400)	5-5-103-1, 4,5 mm
300	120	1,0 (120)	H01, 4,8 mm
400	120	1,0 (120)	H01, 4,8 mm

Tabelle 16 (fortgesetzt)

Temperatur °C	\mathcal{Q}_{Smax}	$P_{QR}\left(\mathcal{Q}_{i} ight)$ je nach Verbindungssteifigkeit \mathcal{Q}_{i} in MPa 500 kN/mm	Werkstoff-Kurzzeichen, Anfangsdicke der Dichtung					
	Metallummantelte Dich	tung mit Graphitfüllstoff						
Limachungatamparatur	400	1,0 (400)	6-4-103-1, 3,2 mm					
Umgebungstemperatur	120	1,0 (120)	H02, 3,6 mm					
300	400	0,93 (400)	6-4-103-1, 3,2 mm					
300	120	1,0 (120)	H02, 3,6 mm					
400	120	1,0 (120)	H02, 3,6 mm					
450	400	0,87 (400)	6-4-103-1, 3,2 mm					
	Wellringdichtung mit Metallkern und Graphitauflage							
Umachungatamparatur	400	1,00 (400)	7-01-104-1, 3,2 mm					
Umgebungstemperatur	120	0,9 (120)	K04, 2,3 mm					
300	200	0,72 (200)	7-01-104-1, 3,2 mm					
300	120	0,5 (120)	K04, 2,3 mm					
400	120	0,4 (120)	K04, 2,3 mm					
450	180	0,52 (180)	7-01-104-1, 3,2 mm					
Spir	aldichtung mit PTFE-Füll	stoff, mit Innen- und Auß	enring					
Umgebungstemperatur	360	0,98 (360)	G03, 5,1 mm					
150	360	0,98 (360)	G03, 5,1 mm					
225	360	0,99 (360)	G03, 5,1 mm					
Spiraldichtung mit (Graphitfüllstoff, mit Innen	- und Außenring, für ger	inge Flächenpressung					
Umgebungstemperatur	297	0,99 (297)	3-5-102-1, 4,5 mm					
	Spiraldichtung mit Grap	hitfüllstoff, mit Außenrin	g					
Umgebungstemperatur	125	0,99 (125)	3-3-100-1, 4,5 mm					
	Spiraldichtung mit Grap	hitfüllstoff, mit Außenrin	g					
Umgebungstemperatur	311	1,00 (311)	3-4-104-1, 4,5 mm					
300	250	0,94 (250)	3-4-104-1, 4,5 mm					
450	220	0,92 (220)	3-4-104-1, 4,5 mm					
PTFE-/Graphitdic	chtung mit metallischer Ir	nneneinfassung, marken	rechtlich geschützt					
Umgebungstemperatur	120	1,0 (120)	K01, 1,9 mm					
300	120	0,9 (120)	K01, 1,9 mm					

ANMERKUNGEN Der Anwender muss, wenn er die vorstehend angegebenen $\mathcal{Q}_{\mathsf{Smax}}$ -Werte einsetzt, berücksichtigen, dass der Wert $\mathcal{Q}_{\mathsf{Smax}}$ im Betrieb stark durch die Dicke und die Stegbreite der Dichtung, die Oberflächenbeschaffenheit der Flansche und weitere Faktoren beeinflusst wird.

In einigen Beispielen in dem Obengenannten wurde der $Q_{\rm Smax}$ -Wert von dem Dichtungslieferer als ein herkömmlicherer Wert, als der bei dem in EN 13555 enthaltenen Prüfverfahren angegebene, eingesetzt.

Es gibt zwei unterschiedliche Philosophien, die die Anwendung von Spiraldichtungen regeln. Bei den nach PN bezeichneten Flanschen ist kein metallischer Kontakt zwischen den Flanschflächen und dem äußeren Führungsring erlaubt, wohingegen es bei nach einer Klasse bezeichneten Flanschen übliche Praxis ist, die Dichtung zu belasten, bis der Kontakt erreicht ist. Somit widerspiegeln die $Q_{\rm Smax}$ -Werte diese Differenzen.

4.4 *E*_G

 $E_{\rm G}$ ist das Sekantenmodul, abgeleitet aus der Rückverformung der Dichtung zwischen Anfangs-Flächenpressung und der Entlastung auf ein Drittel der ursprünglichen Flächenpressung.

Tabelle 17 — Spiraldichtung mit Graphitfüllstoff, mit Außenring

Temperatur	Umgebungstemperatur	300 °C	450 °C
Werkstoff- Kurzzeichen	3-3-100-1	3-3-100-1	3-3-100-1
Flächenpressung	4.5	4 E 2020	4.5
MPa	4,5 mm	4,5 mm	4,5 mm
2,5	-	ı	_
5	-	ı	-
10	1	-	_
20	1 854	2 904	2 299
30	1 975	-	_
40	2 158	3 359	4 094
50	2 563	_	-
60	2 892	4 694	6 081
80	3 643	6 874	7 835
100	4 714	10 291	9 943
120	6 147	15 117	11 529
140	-	-	_
160	_	_	-
180	-	-	-
240	1	-	_
260	_	-	-
300	-	ı	-
340	-	-	_
380	_	-	_
400	-	-	-
440	_		_
490	-	ı	-
550	_	-	-
600	_	-	-
650	_	_	-

Tabelle 18 — Spiraldichtung mit Graphitfüllstoff, mit Innen- und Außenring

Temperatur	Umgebungstemperatur	300 °C	450 °C
Werkstoff- Kurzzeichen	3-4-104-1	3-4-104-1	3-4-104-1
Flächenpressung	1	4.5	4.5
MPa	4,5 mm	4,5 mm	4,5 mm
2,5	_	_	_
5	_	_	_
10	_	_	_
20	1 233	1 423	1 489
30	1 620	_	_
40	1 916	2 790	3 013
50	2 316	3 997	_
60	2 719	4 203	4 739
80	3 372	4 291	6 156
100	3 987	5 205	7 428
120	4 793	6 111	8 525
140	5 808	6 972	9 297
160	7 024	7 938	10 206
180	8 520	9 661	10 968
240	15 577	11 638	-
260	_	-	_
300	30 036	-	_
340	_	-	-
380	_	_	-
400	_	_	_
440	_	-	_
490	_	_	_
550	_	_	_
600	_	-	_
650	_		_

Tabelle 19 — Spiraldichtung mit Graphitfüllstoff, mit Innen- und Außenring, für geringe Flächenpressung

Temperatur	Umgebungstemperatur	200 °C	300 °C	450 °C
Werkstoff- Kurzzeichen	3-5-102-1	3-5-102-1	3-5-102-1	3-5-102-1
Flächenpressung	4.5 mm	4,5 mm	4,5 mm	4.5 mm
MPa	4,5 mm	4,5 11111	4,5 11111	4,5 mm
2,5	_	ı	_	
5	-	ı	_	
10	_	-	_	
20	725	843	942	850
30	996	_	_	_
40	1 207	1 809	1 988	2 259
50	1 703	_	_	_
60	2 268	4 211	3 776	3 840
80	-	8 537	6 992	4 945
100	-	_	_	_
120	-	-	_	_
140	-	ı	_	_
160	_	-	_	_
180	_	_	_	_
240	_	-	_	_
260	_	-	_	_
300	_	_	_	_
340	_	ı	_	_
380	_	ı	_	_
400	_		_	_
440	-	ı	_	_
490	_	1	_	
550	-	ı	_	
600	_	_	_	
650	_		_	

Tabelle 20 — Spiraldichtung mit PTFE-Füllstoff, mit Innen- und Außenring

Temperatur	Umgebungstemperatur	150 °C	225 °C
Werkstoff- Kurzzeichen	G03	G03	G03
Flächenpressung MPa	5,1 mm	5,1 mm	5,1 mm
2,5	_	_	_
5	_	_	_
10	-	_	_
20	-	_	_
30	_	_	_
40	-	_	_
50	_	_	_
60	2 989	3 232	2 415
80	3 742	3 507	2 694
100	_	_	_
120	4 723	3 933	3 241
140	5 324	4 980	4 363
160	_	_	_
180	5 241	5 479	5 221
240	6 519	6 751	6 597
260	_	_	_
300	7 566	10 077	8 521
340	10 518	13 690	11 485
380	_	-	_
400	14 394	19 892	15 054
440	17 000	28 614	18 352
490	25 742	34 196	25 922
550	_	-	_
600	_	-	_
650	_	_	_

Tabelle 21 — Wellringdichtung mit Metallkern und Graphitauflage

Temperatur	Umgebungs- temperatur	Umgebungs- temperatur	300 °C	300 °C	400 °C	450 °C
Werkstoff- Kurzzeichen	7-01-104-1	K04	K04	7-01-104-1	K04	7-01-104-1
Flächen- pressung	3,2 mm	Innen- einfassung	Innen- einfassung	3,2 mm	Innen- einfassung	3,2 mm
MPa		2,3 mm	2,3 mm		2,3 mm	
2,5	_	_	113	_	62	_
5	_	_	178	_	186	_
10	_	_	622	_	533	_
20	1 498	50	1 027	3 559	3 446	2 933
30	1 822	193	3 548	_	2 494	_
40	2 134	618	2 323	4 518	2 474	4 903
50	2 221	1 326	2 327	_	3 179	_
60	1 968	1 632	2 632	4 823	4 698	5 113
80	2 824	2 403	4 646	6 942	2 393	5 530
100	3 968	2 741	2 666	7 662	2 338	5 528
120	5 185	2 807	3 088	7 821	3 331	5 394
140	6 804	2 606	_	7 812	_	5 302
160	8 046	3 127	_	7 388	ı	5 061
180	9 489	4 002	_	7 292	-	4 968
240	_	_	_	_	_	_

Tabelle 22 — Metallummantelte Dichtung mit Graphitfüllstoff

Temperatur	Umgebungs- temperatur	Umgebungs- temperatur	300 °C	300 °C	400 °C	450 °C
Werkstoff- Kurzzeichen	6-4-103-1	H02	6-4-103-1	H02	H02	6-4-103-1
Flächen- pressung	3,2 mm	3,6 mm	3,2 mm	3,6 mm	3,6 mm	3,2 mm
MPa						
2,5	_	_	_	_	_	_
5	_	_	-	_	_	-
10	_	_	_	-	_	_
20	696	709	1 004	798	796	1 033
30	1 126	1 120	_	1 050	1 070	_
40	1 718	1 344	2 120	1 531	1 372	2 434
50	2 435	1 902	_	1 952	2 647	_
60	3 334	2 424	3 402	2 509	2 519	3 845
80	5 787	3 171	4 521	3 613	3 379	5 021
100	9 029	3 495	5 405	3 621	4 099	5 977
120	13 855	5 158	6 296	4 866	5 487	6 513
140	19 811	5 876	7 048	4 975	5 282	7 108
160	28 779	5 525	7 886	6 288	5 607	7 252
180	40 961	5 965	8 547	6 618	6 302	7 682
240	_	_	10 584	_	_	8 677
260	_	-	_	_	-	_
300	_	_	12 474	_	_	9 610
340	_	_	_	_	_	_
380	_	_	_	_	_	_
400	_	_	17 061	_	_	11 381
440	_	_	_	_	_	_
490	_	_	_	_	_	_
550	_	_	_	_	_	_
600	_	_	_	_	_	_
650	_	_	_	_	_	_

Tabelle 23 — Graphitplatte mit mehreren dünnen Metalleinlagen

Temperatur	Umgebungstemperatur	300 °C	400 °C
Werkstoff-Kurzzeichen	A01	A01	A01
Flächenpressung MPa	2,1 mm	2,1 mm	2,1 mm
2,5	-	_	_
5	-	_	-
10	-	_	_
20	352	371	438
30	679	526	793
40	1 041	734	958
50	1 117	1 177	1 121
60	1 424	1 287	1 912
80	1 496	1 588	2 803
100	1 803	2 107	2 057
120	1 904	3 371	2 498
140	2 340	2 853	2 948
160	2 371	2 722	3 334
180	2 272	3 567	3 145
240	_	_	_
260	-	_	-
300	_	_	_
340	_	_	_
380	_	_	_
400	-	_	_
440	_	_	_
490	_	_	_
550	_	_	_
600	_	_	_
650	_	_	_

Tabelle 24 — Graphitplatte mit Spießblecheinlage aus nichtrostendem Stahl

Temperatur	Umgebungs- temperatur	Umgebungs- temperatur	200 °C	300 °C	300 °C	400 °C	450 °C
Werkstoff- Kurzzeichen	E02	1-5-101-1	1-5-101-1	E02	1-5-101-1	E02	1-5-101-1
Flächen- pressung MPa	2,1 mm	2 mm	2 mm	2,1 mm	2 mm	2,1 mm	2 mm
2,5	_	_	_	_	_	_	_
5	_	_	_	_	_	_	_
10	_	_	_	_	_	_	_
20	411	198	591	499	416	484	943
30	700	397	_	866	_	849	_
40	1 019	675	1 579	1 023	1 396	1 097	2 482
50	1 248	1 043	_	1 594	_	1 250	_
60	1 438	1 536	2 493	1 363	2 423	1 708	3 833
80	2 240	2 804	3 437	2 424	3 828	2 829	4 706
100	2 411	4 738	4 258	2 404	5 542	1 943	4 799
120	2 372	7 083	4 871	3 198	5 968	3 337	_
140	2 783	10 447	_	3 397	_	3 389	_
160	3 235	13 992	_	3 380	_	3 057	_
180	3 081	_	_	4 246	_	3 148	_
240	_	_	_	_	_	_	_
260	_	_	_	_	_	_	_
300	_	_	_	_	_	_	_
340	_	_	_	_	_	_	_
380	_	_	_	_	_	_	_
400	_	_	_	_	_	_	_
440	_	_	_	_	_	_	_
490	_	_	_	-	_	_	_
550	_	_	_	_	_	_	_
600	_	_	_	_	_	_	_
650	_	_	_	_	_	_	_

Tabelle 25 — Kammprofildichtung mit Metallkern und Graphitauflage

Temperatur	Umgebungstemperatur	300 °C	450 °C
Werkstoff- Kurzzeichen	2-5-104-1	2-5-104-1	2-5-104-1
Flächenpressung	4	4	4
MPa	4 mm	4 mm	4 mm
2,5	-	_	-
5	ı	_	-
10	-	_	_
20	3 273	13 379	12 923
30	3 598	_	-
40	4 369	19 157	20 649
50	5 722	_	_
60	7 391	30 932	58 406
80	12 085	52 885	73 918
100	16 774	_	68 786
120	22 854	_	141 110
140	32 441	_	-
160	35 528	_	-
180	38 537	_	_
240	-	_	-
260	45 757	_	_
300	-	_	_
340	45 542	_	_
380	_	_	_
400	44 702	_	_
440	-	_	-
490	-	_	-
550	-	_	-
600	-	_	_
650	-	_	-

Tabelle 26 — Modifiziertes PTFE

Temperatur		Um	gebungste	mperatur			150 °C			
Werkstoff- Kurzzeichen	1-10-102-1	1-10-100-1	G02	D01	A02	K02	G02	D01	A02	K02
Flächen- pressung MPa	2 mm	2 mm	2,0 mm	2,0 mm	2,0 mm	2,0 mm	2,0 mm	2,0 mm	2,0 mm	2,0 mm
2,5	_	_	_	_	_	23	_	_	_	27
5	_	_	_	_	_	74	_	_	_	72
10	_	_	_	_	_	219	_	_	_	230
20	1 924	2 170	2 704	402	2 175	434	1 981	510	2 023	511
30	2 587	2 986	3 283	_	_	658	2 833	_		893
40	3 894	8 625	3 125	883	2 552	750	4 491	1 092	2 161	810
50	6 378	_	4 286	_	_	883	4 276	_		999
60	9 750	_	3 880	1 345	3 577	1 124	4 982	1 313	2 257	1 357
80	_	_	4 413	1 889	5 753	1 378	3 663	2 538	2 764	912
100	_	_	4 779	2 055	4 057	1 671	4 074	1 224	2 739	1 497
120	_	_	4 684	1 663	3 942	2 051	4 422	1 212	2 404	968
140	_	_	5 081	1 333	4 420	2 034	4 536	808	2 596	_
160	_	_	5 205	1 145	4 022	1 394	5 629	617	2 376	_
180	_	_	5 410	1 357	3 063	1 629	5 450	499	2 847	_
240	_	_	_	_	_	_	_	_	_	_
260	_	-	_	_	_	_	_	_	_	_
300	_	-	_	_	_	_	_	_	_	_
340	_	_	_	_	_	-	_	_	-	_
380	_	_	ı	_	_	_	_	_	_	_
400	_	_	-	_	_	_	_	_	_	_
440	_	-	-	_	_	_	_	_	-	-
490	_	_	_	_	_	_	_	_	_	_
550	_	_	-	_	_	_	_	_	_	_
600	_	_	-	_	_	_	_	_	_	-
650	_	-	_	_	_	_	_	_	_	-

Tabelle 26 (fortgesetzt)

Temperatur	175	5 °C			225	°C		
Werkstoff- Kurzzeichen	1-10-102-1	1-10-100-1	1-10-102-1	1-10-100-1	G02	D01	A02	K02
Flächenpressung MPa	2 mm	2 mm	2 mm	2 mm	2,0 mm	2,0 mm	2,0 mm	2,0 mm
2,5	-	-	-	-	-	-	-	36
5	-	-	-	-	-	-	-	76
10	-	-	-	-	-	-	-	207
20	1 164	826	1 263	614	1 874	579	1 291	520
30	-	-	1 569	-	2 166	-	-	564
40	1 682	1 254	2 178	809	3 215	553	1 458	1 296
50	-	-	2 553	_	3 551	-	_	677
60	2 217	1 335	3 170	864	3 613	1 127	2 243	930
80	-	-	-	_	4 035	990	1 764	1 930
100	-	-	-	_	3 953	923	1 861	-
120	-	-	-	_	4 174	779	2 850	_
140	-	-	-	-	4 533	699	1 777	-
160	-	-	-	-	3 797	762	1 533	-
180	-	-	-	-	3 656	603	1 595	-
240	-	-	-	-	-	-	_	-
260	-	-	-	_	-	-	_	-
300	-	-	-	-	-	-	-	-
340	-	-	-	-	-	-	-	-
380	-	-	-	-	-	-	-	-
400	-	-	-	_	1	1	_	_
440	-	_	-	_	1	1	_	_
490	-	-	1	_	1	1	_	_
550	_	_	_	_	-	-	_	_
600	-	_	-	_	1	1	_	_
650	_	_	-	_	1	1	_	_

Tabelle 27 — Asbestfreie Faserplatte

Temperatur		Umge	bungste	mperatu	r		175	5 °C		200 °C
Werkstoff- Kurzzeichen	G01	E01	D02	B01	1-9-101-1	G01	E01	D02	B01	1-9-101-1
Flächen- pressung MPa	2,0 mm	2,1 mm	1,9 mm	2,0 mm	2 mm	2,0 mm	2,1 mm	1,9 mm	2,0 mm	2 mm
2,5	_	_	_	_	_	_	_	_	_	_
5	_	_	_	_	_	_	_	_	_	_
10	_	_	_	_	_	_	_	_	_	_
20	1 773	1 357	727	1 512	979	1 931	1 095	900	1 847	4 898
30	2 079	_	1 280	_	1 414	2 442	_	1 184	_	_
40	1 963	1 802	1 712	2 006	2 153	2 152	1 874	1 401	1 911	4 990
50	2 917	_	1 759	_	2 972	2 496	_	1 805	_	_
60	3 318	2 175	1 940	2 668	4 182	3 164	2 320	2 235	3 218	6 023
80	4 026	2 904	2 619	3 290	8 412	4 253	2 603	1 936	3 342	_
100	4 843	3 537	3 252	3 997	15 159	4 114	3 901	2 326	2 909	_
120	5 402	4 124	2 799	4 296	26 392	3 350	4 230	2 049	3 503	_
140	5 044	4 526	3 193	4 578	40 379	4 611	1 871	2 099	3 405	_
160	4 507	4 362	3 459	5 187	-	4 106	1 933	2 299	2 960	_
180	4 394	4 258	3 776	4 529	-	3 876	2 037	2 145	2 946	_
240	-	_	-	-	-	-	-	-	-	_
260	-	_	-	-	-	-	-	-	-	_
300	-	_	-	-	ı	-	-	ı	-	_
340	_	_	_	-	-	-	-	-	_	_
380	_	_		_	_	_	_		_	_
400	-	_	-	_	_	_	_	1	_	_
440	_	_	-	-	-	-	-	ı	-	_
490	_	_	_	-	_	-	_	-	-	_
550	_	_	_	_	_	_	_	_	_	_
600	_	_	-	_	-	_	_	ı	_	_
650	_	_	_	_	_	_	_	-	_	_

Tabelle 27 (fortgesetzt)

Temperatur			250 °C		
Werkstoff- Kurzzeichen	G01	E01	D02	B01	1-9-101-1
Flächen- pressung MPa	2,0 mm	2,1 mm	1,9 mm	2,0 mm	2 mm
2,5	_	_	_	_	_
5	_	_	_	_	_
10	_	_	_	_	_
20	2 259	2 096	1 140	2 575	3 731
30	3 522	_	1 402	_	_
40	3 339	2 082	1 471	2 063	4 159
50	2 814	_	2 041	-	_
60	2 950	3 165	2 046	3 392	4 024
80	4 929	3 592	2 100	2 967	_
100	4 514	3 657	3 189	3 417	_
120	4 029	2 588	2 605	2 903	_
140	4 331	1 834	2 145	2 848	_
160	5 231	2 120	2 174	3 006	_
180	5 467	2 276	2 348	3 001	_
240	_	_	_	_	_
260	_	_	_	_	_
300	_	_	_	_	_
340	_	_	_	_	_
380	_	_	_		_
400	_	_	_	_	_
440	_	_	_	_	_
490	_	_	_	_	_
550	_	_	-	-	_
600	_	_	_	_	_
650	_	_	_	_	_

Tabelle 28 — Kammprofildichtung mit Graphitauflage und metallischer Dichtkante, markenrechtlich geschützt

Temperatur	Umgebungstemperatur	300 °C	400 °C
Werkstoff- Kurzzeichen	F01	F01	F01
Flächenpressung MPa	4,1 mm	4,1 mm	4,1 mm
2,5	_	_	_
5	_	-	_
10	_	-	_
20	_	_	_
30	-	-	_
40	_	-	_
50	8 921	13 616	8 922
60	-	-	_
80	10 323	10 805	17 190
100	10 719	13 262	19 056
120	_	-	_
140	11 961	12 189	14 765
160	15 795	22 923	16 863
180	-	-	_
240	16 347	14 635	17 365
260	16 257	17 406	13 680
300	_	_	-
340	15 561	18 733	13 144
380	18 900	18 326	15 805
400	_	-	_
440	20 856	19 654	16 729
490	17 100	19 558	19 335
550	16 577	17 079	15 245
600	18 265	17 000	16 314
650	17 258	18 220	15 615

Tabelle 29 — Metallummantelte Dichtung mit Graphitauflage, Graphitfüllstoff und Außenring

Temperatur	Umgebungs- temperatur	Umgebungs- temperatur	300 °C	300 °C	400 °C	450 °C
Werkstoff- Kurzzeichen	H01	5-5-103-1	H01	5-5-103-1	H01	5-5-103-1
Flächen- pressung	4,8 mm	4,5 mm	4,8 mm	4,5 mm	4,8 mm	4,5 mm
MPa						
2,5	_	_	_	_	_	_
5	_	_	_	_	_	_
10	_	_	_	_	_	_
20	659	534	823	680	825	253
30	1 029	963	1 708	-	1 345	_
40	1 778	1 243	2 175	1 637	3 107	758
50	2 595	1 629	3 525	-	5 080	-
60	3 124	2 038	4 442	3 002	5 082	1 625
80	5 409	3 395	9 476	5 831	4 918	2 763
100	9 487	5 381	9 837	11 047	10 608	4 563
120	11 419	-	_	_	20 040	_
140	16 002	-	_	_	30 099	_
160	17 889	-	_	_	25 893	_
180	24 030	ı	ı	-	28 125	-
240	_	ı	ı	-	-	-
260	_	-	_	_	_	_
300	_	ı	ı	-	-	-
340	_	-	_	_	_	_
380	_	-	_	_	_	_
400	_	_	_	_	_	_
440	_	_	-	_	-	_
490	_	_	-	_	_	_
550	_	_	_	_	_	_
600	_	_	_	_	_	_
650	_	_	_	_	_	_

Tabelle 30 — PTFE-/Graphitdichtung mit metallischer Inneneinfassung, markenrechtlich geschützt

Temperatur	Umgebungstemperatur	300 °C	400 °C K01		
Werkstoff- Kurzzeichen	K01	K01			
Flächenpressung	4.0	4.0	4.0		
MPa	1,9 mm	1,9 mm	1,9 mm		
2,5	-	_	-		
5	_	_	_		
10	_	_	_		
20	532	544	471		
30	752	670	1 091		
40	1 101	960	848		
50	1 148	1 124	1 398		
60	1 681	1 788	1 586		
80	1 828	1 750	1 692		
100	2 451	2 723	2 202		
120	3 403	2 420	3 487		
140	3 717	1 651	1 203		
160	3 169	1 749	1 530		
180	3 345	2 264	1 718		
240	_	_	_		
260	_	_	_		
300	_	_	_		
340	_	_	_		
380	_	_	_		
400	_	_	_		
440	_	_	_		
490	_	-	_		
550	_	_	_		
600	_	_	_		
650	_	_	_		

Anhang A (informativ)

Zusammenhang zwischen den Dichtungsarten und den in den Tabellen angewendeten Kurzzeichen

Tabelle A.1 — Zusammenhang zwischen den Dichtungsarten und den unterschiedlichen verwendeten Kurzzeichen

	Dichtungstyp		Werkstoffe					Kurzzeichen	
Beschreibung	Form	Bauart	Aufbau	Zusätzliche Ringe	Einlage oder Füllstoff	Auflage	CETIMa	MPA b	
Platte aus modifiziertem PTFE	Platte	Allgemein	PTFE, modifiziert		Keine	-	1-10-102-1		
					:		1-10-100-1		
					Siliciumcarbid			G02	
			-		Expandierter Graphit			D01	
					Glasfaser	_		A02	
	Platte	Marken- rechtlich geschützt	PTFE, modifiziert	Innenein- fassung aus PTFE	PTFE, expandiert	PTFE, expandiert		K02	
PTFE-/Graphitdichtung mit metallischer Inneneinfassung, markenrechtlich geschützt				Metallische Einfassung	PTFE/Graphit	PTFE/Graphit		K01	
Metallummantelte Dichtung mit Graphitfüllstoff	Ummantelt	Allgemein	Metallum- mantelt		Graphit	_	6-4-103-1		
								H02	
Metallummantelte Dichtung mit Graphitauflage, Graphitfüllstoff und Außenring			-			Graphit	5-5-103-1		
					:	:		H01	
(Kammprofil-)Dichtung mit gezahntem Metallkern und Graphitauflage	Gezahnt (Kammprofil)	Allgemein	Metall			Graphit	2-5-104-1		
Markenrechtlich geschützter Typ einer Kammprofildichtung mit Graphitauflage und metallischer Dichtung	Gezahnt (Kammprofil)	Marken- rechtlich geschützt	Metall		-	Graphit, metallische Dichtung		F01	
	Gewellt	Marken- rechtlich geschützt	Metall	Einfassung aus nichtrostendem Stahl		·		K04	

Tabelle A.1 (fortgesetzt)

	Dichtungstyp		Werkstoffe				Kurzzeichen	
Beschreibung	Form	Bauart	Aufbau	Zusätzliche Ringe	Einlage oder Füllstoff	Auflage	CETIM ^a	MPAb
Graphitplatte mit Spießblecheinlage aus nichtrostendem Stahl	Platte	Allgemein	Graphit		Spießblech aus nichtrostendem Stahl	_		E02
		Allgemein	Asbestfrei, im "it" Kalander- Verfahren hergestellt		Keine	_		G01
						_		B01
						_	1-9-101-1	
Asbestfreie Faserplatte		Allgemein	Asbestfrei, im "it" Kalander- verfahren hergestellt, reduzierter Bindemittel- gehalt		_	_		E01
	Platte	Marken- rechtlich geschützt	Asbestfrei, Vliesstoff, imprägniert			_		D02
Graphitplatte mit mehreren dünnen Metalleinlagen	Platte	Marken- rechtlich geschützt	Graphit		Mehrere dünne Metalleinlagen	_		A01
Spiraldichtung mit PTFE-Füllstoff, mit Innen- und Außenring	Spiralgewickelt	Allgemein	Metallische Wickelung	Innen, Außen	PTFE	_		G03
Spiraldichtung mit Graphitfüllstoff, mit Innen- und Außenring					Graphit	_	3-4-104-1	
Spiraldichtung mit Graphitfüllstoff, mit Außenring		Allgemein	Metallische Wickelung, Außenring	Außen	Graphit		3-3-100-1	

Beschreibung	Dichtungstyp		Werkstoffe				Kurzzeichen	
	Form	Bauart	Aufbau	Zusätzliche Ringe	Einlage oder Füllstoff	Auflage	CETIM ^a	MPAb
Spiraldichtung mit Graphitfüllstoff, mit Innen- und Außenring, für geringe Flächenpressung		Allgemein	Metallische Wickelung, geringe Flächen- pressung	Innen, Außen	Graphit	-	3-5-102-1	

a CETIM: French Industrial and Mechanical Technical Centre, 4 Rue de la Joneliere, BP 82617, 44326 Nantes Cedex 3, France

b MPA: Materialprüfungsanstalt Universität Stuttgart, Pfaffenwaldring 32, D – 70569 Stuttgart, Germany

Anhang B (informativ)

Veröffentlichte Quellen zuverlässiger Daten

Eine Online-Datenbank der EN 13555 kann unter <u>www.gasketdata.org</u> aufgerufen werden. Diese Datenbank wurde von der Fachhochschule Münster eingerichtet und es wurden nur Daten aufgenommen, von denen bekannt ist, dass sie innerhalb der Anforderungen von EN 13555 erzielt wurden und Gegenstand stichprobenartiger Nachweisprüfungen sind.

Anhang C (informativ)

Darstellung eines Vorberechnungsverfahrens der Dichtungsauswahl

Eine Gruppe von Endanwendern schätzt ein, dass die Anwendung von EN 1591-1 zur Berechnung ihrer Flansche bedeutet, dass eine große Anzahl von Berechnungen auf kontinuierliche Art und Weise durchzuführen wäre und sie würden natürlich erwarten, einen Weg zu finden, mit dem die Notwendigkeit der sich wiederholenden Berechnung vermieden werden kann.

Für Einsatzorte, bei denen nur Flansche nach einer gegebenen Norm angewendet wurden und bei denen das Abdichten für ein einziges vorgegebenes Niveau über den gesamten Einsatzort erforderlich war, schätzen sie ein, dass mit der Durchführung einer Reihe von Vorberechnungen, wobei zugesichert wird, dass nur Dichtungen mit Kennzahlen innerhalb bestimmter Grenzen angewendet werden, die Dichtungen ohne weitere Berechnung ausgewählt werden könnten.

Dementsprechend fanden sie für den Flanschtyp 11 in der letzten Fassung der EN 1092-1 heraus, dass sich eine Leckagerate von 0,1 mg/(s·m) oder niedriger erreichen ließe, wenn eine Dichtung Folgendes aufweist:

- einen $Q_{\min[0,1]}$ -Wert von 25 MPa (Dichtung nach EN 1514-1) oder 50 MPa (Dichtung nach EN 1514-2) oder weniger,
- einen Q_{Smax} -Wert von 100 MPa (Dichtung nach EN 1514-1) oder 300 MPa (Dichtung nach EN 1514-2) oder mehr,
- einen $E_{\rm G}$ -Wert von $E_{\rm G}$ = 20 MPa \cdot $Q_{\rm I}$ + 8 000 MPa (Dichtung nach EN 1514-1) oder $E_{\rm G}$ = 20 MPa \cdot $Q_{\rm I}$ + 10 000 MPa (Dichtung nach EN 1514-2) oder weniger,
- einen P_{QR} -Wert, so dass die folgende Gleichung erfüllt ist: $Q_{SminfL}/Q_A \le P_{QR}$
- und einen $Q_{Smin[0,1]}$ -Wert von 6,6 MPa oder weniger.

ANMERKUNG 1 Weil in EN 13555 keine Werte unterhalb 10 MPa für $Q_{Smin[L]}$ und $Q_{min[L]}$ gemessen wurden, kann nach unten bis zu einem $Q_{Smin[0,1]}$ -Wert von 6,6 MPA extrapoliert werden.

ANMERKUNG 2 Dieses Verfahren kann direkt auf alle in der Normenreihe EN 1514 festgelegten Dichtungen angewendet werden. Auch wenn die notwendige Grundlagenarbeit wiederholt wurde, kann das Verfahren ebenso auf die Reihen EN 12560 oder auf jede andere Maßnorm angewendet werden.

Literaturhinweise

- [1] www.europeansealing.com (on-line reference)
- [2] www.gasketdata.org (on-line reference)