XXX Fonctions de deux variables

31 août 2021

On se place dans \mathbb{R}^2 muni de sa norme euclidienne canonique.

1 Fonctions numériques à deux variables

1.1 Petite topologie du plan

Définition 1.1.1 (boules).

Soit $a \in \mathbb{R}^2$ et r > 0.

On appelle boule ouverte de centre a et de rayon r l'ensemble

$$B(a,r) = \left\{ x \in \mathbb{R}^2 \mid ||a - x|| < r \right\}.$$

On appelle boule fermée de centre a et de rayon r l'ensemble

$$\overline{B}(a,r) = \left\{ x \in \mathbb{R}^2 \mid ||a - x|| \leqslant r \right\}.$$

On appelle $sph\`ere$ de centre a et de rayon r l'ensemble

$$\overline{S}(a,r) = \left\{ \left. x \in \mathbb{R}^2 \; \right| \; \|a - x\| = r \; \right\}.$$

Remarque 1.1.2.

La boule fermée s'obtient en ajoutant à la boule ouverte la sphère qui la délimite.

Définition 1.1.3 (ouverts du plan).

Une partie A du plan est dite ouverte si

$$\forall a \in A, \exists r > 0, B(a,r) \subset A.$$

Exemple 1.1.4 (exemples fondamentaux).

Sont des parties ouvertes du plan : le plan, \emptyset , toute boule ouverte, un produit d'intervalles ouverts.

Proposition 1.1.5 (voir figure 1).

Soit $A \subset \mathbb{R}$ un ouvert, soit $(x_0, y_0) \in A$. Alors, il existe deux intervalles ouverts I et J tels que

$$-x_0 \in I ; -y_0 \in J ; -I \times J \subset A.$$

Figure 1 – Un ouvert A, contenant un disque, contenant un rectangle.

Démonstration.

Il existe r > 0 tel que le $B((x_0, y_0), r) \subset A$. En posant

$$I = \left] x_0 - \frac{r}{\sqrt{2}}; x_0 + \frac{r}{\sqrt{2}} \right[$$

$$J = \left] y_0 - \frac{r}{\sqrt{2}}; y_0 + \frac{r}{\sqrt{2}} \right[$$

on vérifie aisément que $I \times J \subset B((x_0, y_0), r)$, I et J étant bien des intervalles ouverts contenant respectivement x_0 et y_0 .

1.2 Représentation d'une fonction de deux variables

Dans cette partie, on considère un ouvert A de \mathbb{R}^2 et une fonction $f:A\to\mathbb{R}$.

Rappel 1.2.1.

Le graphe de f est

$$\Gamma = \{ (a, f(a)) \mid a \in A \}.$$

Remarque 1.2.2.

Le graphe de f est formellement une partie de $\mathbb{R}^2 \times \mathbb{R}$, que l'on identifie à \mathbb{R}^3 . On considère donc que le graphe de f est

$$\{ (x, y, f(x, y)) \mid (x, y) \in A \}.$$

FIGURE 2 – Représentation de $f:(x,y) \mapsto (x^2 + y)e^{-(x^2+y^2)}$.

Ainsi, le graphe de f se représente comme une « nappe » au dessus de la partie A, f(x, y) désignant l'altitude du point d'abscisse x et d'ordonnée y (voir figure 2).

1.3 Continuité

Dans cette partie, on considère un ouvert A de \mathbb{R}^2 et une fonction $f:A\to\mathbb{R}$.

Définition 1.3.1.

Soit $a \in A$, la fonction f est continue en a si

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall x \in A,$$

$$\|x - a\| \leqslant \alpha \Rightarrow |f(x) - f(a)| \leqslant \varepsilon.$$

La fonction f est continue sur A si elle est continue en tout point a de A.

Proposition 1.3.2 (opérations).

Soit $f, g: A \to \mathbb{R}$ deux fonctions continues sur A.

- 1. Si $\lambda, \mu \in \mathbb{R}$, alors $\lambda f + \mu g$ est continue sur A.
- 2. Les fonctions fg, |f|, min(f,g) et max(f,g) sont continues sur A.

Démonstration.

C'est la même chose que pour les fonctions réelles.

Proposition 1.3.3 (composition à gauche).

Soit $f: A \to \mathbb{R}$ une fonction continue sur A, soit $\varphi: \mathbb{R} \to \mathbb{R}$ continue.

Alors, $\varphi \circ f$ est continue sur A.

Démonstration.

C'est la même chose que pour les fonctions réelles.

Proposition 1.3.4 (composition à droite).

Soit A, B deux ouverts de \mathbb{R}^2 , Soit $f: A \to \mathbb{R}$ une fonction continues sur A, soit $u, v: B \to \mathbb{R}$ continues telles que $u(B) \times v(B) \subset A$.

Alors, $(x, y) \mapsto f(u(x, y), v(x, y))$ est continue sur B.

Démonstration.

C'est la même chose que pour les fonctions réelles.

Lemme 1.3.5 (continuité des projections).

Les fonctions $\pi_1:(x,y)\mapsto x$ et $\pi_2:(x,y)\mapsto y$ sont continues sur \mathbb{R}^2 .

Démonstration.

Il suffit de voir que pour tout $a, b \in \mathbb{R}^2$ et pour $i \in \{1, 2\}$,

$$|\pi_i(a) - \pi_i(b)| = |\pi_i(a - b)| \le ||a - b||.$$

Définition 1.3.6.

On appelle fonction polynomiale de deux variables toute fonction $f: \mathbb{R}^2 \to \mathbb{R}$ combinaison linéaire des fonctions de la forme

$$(x,y)\mapsto x^py^q,$$

pour $p, q \in \mathbb{N}$.

Proposition 1.3.7.

Toute fonction polynomiale de deux variables est continue sur \mathbb{R} .

Démonstration.

Il suffit d'utiliser le résultat du lemme 1.3.5, puis la stabilité de l'ensemble des fonctions continues par combinaison linéaire et produit.

2 Introduction au calcul différentiel

Dans cette partie on considère U un ouvert de \mathbb{R}^2 , et f une application de U dans \mathbb{R} .

2.1 Dérivées partielles

Définition 2.1.1.

On dit que la fonction f est dérivable en un point (x_0, y_0) par rapport à sa première variable si la fonction partielle $f_1: x \mapsto f(x, y_0)$ est dérivable en x_0 . On note alors

$$\frac{\partial f}{\partial x}(x_0, y_0) = f_1'(x_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}.$$

La fonction f est dite dérivable par rapport à sa première variable sur U si elle l'est en tout point de U.

De même, On dit que la fonction f est dérivable en un point (x_0, y_0) par rapport à sa deuxième variable si la fonction partielle $f_2 : y \mapsto f(x_0, y)$ est dérivable en y_0 . On note alors

$$\frac{\partial f}{\partial y}(x_0, y_0) = f_2'(y_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}.$$

La fonction f est dite dérivable par rapport à sa deuxième variable sur U si elle l'est en tout point de U.

Remarque 2.1.2.

Le lemme 1.1.5 assure la validité de cette définition, vu le caractère ouvert de U.

Remarque 2.1.3.

La notation $\frac{\partial f}{\partial x}$ signifie la dérivation par rapport à la *première* variable de la fonction f, et est parfois notée $D_1 f$, ou $\partial_1 f$, idem pour la dérivation par rapport à la seconde variable.

Si l'on a noté une fonction $f:(u,v)\mapsto [...]$, on pourra bien entendu écrire $\frac{\partial f}{\partial u}$ pour signifier la dérivation par rapport à la première variable de f, idem pour la dérivation par rapport à la seconde variable.

On évitera absolument de considérer une fonction $f:(y,x)\mapsto [\ldots]$.

On pourra aussi utiliser le symbole $\frac{\partial}{\partial \heartsuit}$ pour signifier la dérivation partielle d'une expression par rapport à la variable \heartsuit , toutes les autres variables étant considérées comme fixées.

Exemple 2.1.4.

Avec $f:(x,y) \mapsto x^2 e^{-x+y^2}$, définie sur \mathbb{R}^2 , on a pour tout $(x,y) \in \mathbb{R}^2$:

$$\frac{\partial f}{\partial x}(x,y) = (2x - x^2)e^{-x+y^2},$$
$$\frac{\partial f}{\partial y}(x,y) = 2x^2ye^{-x+y^2}.$$

Remarque 2.1.5 (21).

Par exemple, la fonction définie par

$$f: (x,y) \mapsto \begin{cases} \frac{xy}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad x = y = 0 \end{cases}$$

admet des dérivées partielles en tout point de \mathbb{R}^2 , mais n'est pas continue.

La dérivabilité par rapport à chacune des variables est élémentaire, la non continuité en 0 découle par exemple du fait que pour tout $x \in \mathbb{R}^*$,

$$f(x,x) = \frac{1}{2}.$$

Il suffit ensuite prendre x suffisamment petit pour nier la continuité de f.

2.2 Fonctions de classe \mathscr{C}^1

Définition 2.2.1.

La fonction f est dite de classe \mathscr{C}^1 sur U si f est dérivable par rapport à ses deux variables sur U et si les deux fonctions $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont continues sur U.

Proposition 2.2.2.

Toute fonction polynomiale de deux variables est de classe \mathscr{C}^1 .

Démonstration.

Une fonction polynomiale de deux variables est dérivable par rapport à chacune de ses variables, et ses dérivées partielles sont polynomiales, donc continues. \Box

Définition 2.2.3 (notation o).

Soit $f, g: U \to \mathbb{R}$, soit $a \in U$.

On dit que f est négligeable devant g au voisinage de a s'il existe une fonction $\varepsilon: U \to \mathbb{R}$ continue en a et vérifiant $\varepsilon(a) = 0$ telle que, pour tout $(x, y) \in U$,

$$f(x,y) = g(x,y)\varepsilon(x,y).$$

On note ceci

$$f(x,y) = o(g(x,y)).$$

Théorème 2.2.4 (DL à l'ordre 1).

Soit $f: U \to \mathbb{R}$ de classe \mathscr{C}^1 sur U, soit $(x_0, y_0) \in U$. Alors

$$f(x_0 + h, y_0 + k) = f(x_0, y_0)$$

$$+ h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0) + o(\|(h, k)\|).$$

Démonstration (hors-programme).

Pour alléger les notations, on note $a = (x_0, y_0)$.

On définit $\varepsilon:U\to\mathbb{R}$ par $\varepsilon(0,0)=0$ et si $(h,k)\neq(0,0)$:

$$\varepsilon(h,k) = \frac{1}{\|(h,k)\|} \left(f(a+(h,k)) - f(a) - h \frac{\partial f}{\partial x}(a) - k \frac{\partial f}{\partial y}(a) \right)$$

On montre que la fonction ε est continue en (0,0). Considérons $\eta>0.$

Soit I et J deux intervalles ouverts vérifiant $I \times J \subset U$, $x_0 \in I$ et $y_0 \in J$. Il existe notamment $\alpha_0 > 0$ tel que, pour tout $u \in U$, si $||a - u|| \le \alpha$, alors $u \in I \times J$.

Pour u = (h, k) suffisamment petit, on a

$$\Delta = \left| f(a+u) - f(a) - h \frac{\partial f}{\partial x}(a) - k \frac{\partial f}{\partial y}(a) \right|$$

$$= \left| f(x_0 + h, y_0 + k) - f(x_0, y_0 + k) - h \frac{\partial f}{\partial x}(a) \right|$$

$$+ f(x_0, y_0 + k) - f(x_0, y_0) - k \frac{\partial f}{\partial y}(a) \right|$$

$$\leq \underbrace{\left| f(x_0 + h, y_0 + k) - f(x_0, y_0 + k) - h \frac{\partial f}{\partial x}(a) \right|}_{\Delta_1}$$

$$+ \underbrace{\left| f(x_0, y_0 + k) - f(x_0, y_0) - k \frac{\partial f}{\partial y}(a) \right|}_{\Delta_2}$$

Comme $f(\cdot, y_0 + k)$ est dérivable sur I, par le théorème des accroissements finis, il existe t_1 entre x_0 et $x_0 + h$ vérifiant

$$f(x_0 + h, y_0 + k) - f(x_0, y_0 + k) = h \frac{\partial f}{\partial x}(t_1, y_0 + k).$$

On a donc

$$\Delta_1 = |h| \left| \frac{\partial f}{\partial x}(t_1, y_0 + k) - \frac{\partial f}{\partial x}(x_0, y_0) \right|.$$

Comme $\frac{\partial f}{\partial x}$ est continue en $a = (x_0, y_0)$, il existe $\alpha_1 > 0$ tel que pour tout $(h, k) \in \mathbb{R}^2$, si $||(h, k)|| \leq \alpha_1$, alors

$$\left| \frac{\partial f}{\partial x}(t_1, y_0 + k) - \frac{\partial f}{\partial x}(x_0, y_0) \right| \leq \eta,$$

ce qui donne $|\Delta_1| \leq \eta ||(h,k)||$.

On procède de même pour Δ_2 , et il existe donc $\alpha_2 > 0$ tel que pour tout $(h, k) \in \mathbb{R}^2$, si $||(h, k)|| \leq \alpha_2$, alors $||\Delta_1|| \leq \eta ||(h, k)||$.

Ainsi, pour tout $(h,k) \in \mathbb{R}^2$, si $\|(h,k)\| \le \min(\alpha_0, \alpha_1, \alpha_2)$, alors $|\varepsilon(h,k)| \le 2\eta$, ce qui est bien le résultat demandé.

Remarque 2.2.5 (plan tangent).

Sous les mêmes hypothèses,

$$z - f(x_0, y_0) = (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_0)$$

est l'équation d'un plan, appelé plan tangent au graphe de f en (x_0, y_0) .

Corollaire 2.2.6.

Si $f: U \to \mathbb{R}$ est de classe \mathscr{C}^1 , alors f est continue.

FIGURE 3 – Champ de vecteurs de ∇f , pour f: $(x,y)\mapsto (x^2+y)\mathrm{e}^{-(x^2+y^2)}.$

Définition 2.2.7 (gradient).

Soit $f: U \to \mathbb{R}$ de classe \mathscr{C}^1 sur U, soit $(x_0, y_0) \in U$. On définit le gradient de f en (x_0, y_0) comme le vecteur

$$\nabla f(x_0,y_0) = \left(\frac{\partial f}{\partial x}(x_0,y_0), \frac{\partial f}{\partial y}(x_0,y_0)\right).$$

Remarque 2.2.8.

Le théorème 2.2.4 s'écrit alors ainsi, avec $a = (x_0, y_0)$:

$$f(a+u) \underset{u \to (0,0)}{=} f(a) + \langle \nabla f(a), u \rangle + o(\|u\|).$$

Exemple 2.2.9.

Le champ de vecteur de l'exemple du début du chapitre est tracé dans la figure 3.

2.3 Dérivées directionnelles

Définition 2.3.1 (dérivée selon un vecteur). Soit $a \in U$, soit $v \in \mathbb{R}^2 \setminus (0,0)$, soit $f: U \to \mathbb{R}$. La fonction f est dite dérivable selon le vecteur v en a si la fonction $t \mapsto f(a+tv)$ est dérivable en 0. La dérivée de cette fonction en 0 est alors appelée dérivée de f selon v en a, et est notée $D_v f(a)$:

$$D_v f(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}.$$

Remarque 2.3.2.

En notant (e_1, e_2) la base canonique de \mathbb{R}^2 , on a sous réserve d'existence :

$$\frac{\partial f}{\partial x}(a) = D_{e_1} f(a),$$

$$\frac{\partial f}{\partial y}(a) = D_{e_2} f(a).$$

Remarque 2.3.3.

Si ||v|| = 1, $D_v f(a)$ est la pente de la droite tangente au graphe de f en a et dirigée par v.

Théorème 2.3.4.

Si f est de classe \mathscr{C}^1 en $a \in U$, alors f admet des dérivées selon tous les vecteurs en a, et pour tout $v \in \mathbb{R}^2 \setminus (0,0)$:

$$D_v f(a) = \langle \nabla f(a), v \rangle.$$

Remarque 2.3.5.

On a donc pour tout $(h,k) \in \mathbb{R}^2$ non nuls:

$$D_{(h,k)}f(a) = h\frac{\partial f}{\partial x}(a) + k\frac{\partial f}{\partial y}(a).$$

Démonstration.

Notons v = (h, k) et $a = (x_0, y_0)$, soit $t \neq 0$. Par le théorème de développement limité à l'ordre 1 de f, qui est de classe \mathscr{C}^1 .

$$f(a+tv) = f(a) + th \frac{\partial f}{\partial x}(a) + tk \frac{\partial f}{\partial y}(a) + o(||tv||)$$

Il existe donc une fonction ε continue en (0,0) et vérifiant $\varepsilon(0,0) = 0$ telle que, pour tous tels a, v, t,

$$f(a+tv) = f(a) + th \frac{\partial f}{\partial x}(a) + tk \frac{\partial f}{\partial y}(a) + |t| \|v\| \varepsilon(|t| \|v\|),$$

ce que l'on écrit

$$f(a+tv) = f(a) + th \frac{\partial f}{\partial x}(a) + tk \frac{\partial f}{\partial y}(a) + o(t).$$

Ainsi, $t \mapsto f(a+tv)$ admet un DL à l'ordre 1 en 0, donc est dérivable en 0, et immédiatement

$$D_{v}f(a) = h\frac{\partial f}{\partial x}(a) + k\frac{\partial f}{\partial y}(a).$$

Remarque 2.3.6.

Par l'inégalité de Cauchy-Schwarz, $\nabla f(a)$ est la direction selon laquelle croît/décroît le plus vite, c'est-à-dire la direction de pente la plus forte.

2.4 Composition, règle de la chaîne

Théorème 2.4.1 (règle de la chaîne).

Soit $f: U \to \mathbb{R}$ de classe \mathscr{C}^1 , soit I un intervalle ouvert de \mathbb{R} et $x, y: I \to \mathbb{R}$ de classe \mathscr{C}^1 telles que $x(I) \times y(I) \subset U$.

Alors, $t \mapsto f(x(t), y(t))$ est de classe \mathscr{C}^1 sur I et pour tout $t \in I$

$$\frac{\mathrm{d}}{\mathrm{d}t}(f(x(t), y(t))) = x'(t)\frac{\partial f}{\partial x}(x(t), y(t)) + y'(t)\frac{\partial f}{\partial y}(x(t), y(t)).$$

Démonstration.

Soit $t_0 \in O$. Notons $a = (x(t_0), y(t_0))$. Pour $t \in I$, on note aussi $\varphi(t) = (x(t), y(t))$.

Comme f est de classe \mathscr{C}^1 , on peut appliquer le théorème de développement limité à l'ordre 1. Il existe donc une fonction ε continue en 0, vérifiant $\varepsilon(0,0)=0$ et telle que pour tout u=(h,k) tel que $a+u\in U$:

$$f(a+u) = f(a) + h \frac{\partial f}{\partial x}(a) + k \frac{\partial f}{\partial y}(a) + ||u|| \varepsilon(||u||).$$

On a donc pour $t \in I$:

$$f(\varphi(t)) = f(a) + (x(t) - x(t_0)) \frac{\partial f}{\partial x}(a)$$

+
$$(y(t) - y(t_0)) \frac{\partial f}{\partial y}(a) + \|\varphi(t) - a\| \varepsilon(\|\varphi(t) - a\|).$$

Comme x et y sont dérivables, on peut écrire des développements limités à l'ordre 1. Il existe donc deux fonctions ε_1 et ε_2 de limite nulle en 0 telles que, pour tout $t \in I$,

$$x(t) - x(t_0) = (t - t_0)x'(t_0) + (t - t_0)\varepsilon_1(t),$$

$$y(t) - y(t_0) = (t - t_0)y'(t_0) + (t - t_0)\varepsilon_2(t).$$

On a donc

$$f(\varphi(t)) = f(a) + (t - t_0) \left(x'(t_0) \frac{\partial f}{\partial x}(a) + y'(t_0) \frac{\partial f}{\partial y}(a) \right) + R(t),$$

οù

$$R(t) = (t - t_0) \left(\varepsilon_1(t) \frac{\partial f}{\partial x}(a) + \varepsilon_2(t) \frac{\partial f}{\partial y}(a) \right) + \|\varphi(t) - a\| \varepsilon(\|\varphi(t) - a\|).$$

Il suffit de montrer que $R(t)=o(t-t_0)$. Comme f est de classe \mathscr{C}^1 , $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont bornées au voisinage de 1, et comme ε_1 et ε_2 tendent vers 0, on peut écrire que

$$\varepsilon_1(t)\frac{\partial f}{\partial x}(a) + \varepsilon_2(t)\frac{\partial f}{\partial y}(a) = o(1).$$

De plus, comme φ est dérivablea, en généralisant les notations de Landau,

$$\|\varphi(t) - a\| = |t - t_0| \left\| \frac{\varphi(t) - \varphi(t_0)}{t - t_0} \right\|$$
$$= |t - t_0| \times O(1)$$
$$= O(t - t_0)$$

Par composition, on a $\varepsilon(\|\varphi(t) - a\|) = o(1)$, ce qui permet de conclure.

Remarque 2.4.2.

Sous les mêmes hypothèses, notons $\gamma: t \mapsto (x(t), y(t))$. Cette fonction γ est appelée arc de classe \mathscr{C}^1 . La règle de la chaîne donne la dérivée de f suivant l'arc γ , et peut s'écrire comme suit :

$$(f \circ \gamma)'(t) = \langle \nabla f(\gamma(t)), \gamma'(t) \rangle.$$

Définition 2.4.3.

Soit $f: U \to \mathbb{R}$ de classe \mathscr{C}^1 . Si $z \in \mathbb{R}$, on appelle lique de niveau de f d'altitude z la partie

$$\{ a \in \mathbb{R}^2 \mid f(a) = z \}.$$

Exemple 2.4.4.

On a tracé dans la figure 4 les lignes de niveau correspondant à la fonction tracée dans la figure 2.

Exemple 2.4.5.

Vous trouverez dans la figure 5 un exemple de carte IGN, faisant figurer les lignes de niveau du terrain. Avec un peu d'habitude, on arrive très bien à se représenter le terrain!

FIGURE 4 – Lignes de niveau de $f:(x,y) \mapsto (x^2 + y)e^{-(x^2+y^2)}$.

Remarque 2.4.6.

La ligne de niveau d'altitude z est donc $f^{-1}(\{z\})$.

Proposition 2.4.7.

Soit $f: U \to \mathbb{R}$, soit $\gamma: I \to U$ un arc de classe \mathscr{C}^1 tel que $\gamma(I)$ est inclu dans une ligne de niveau de f.

Alors, pour tout $t \in I$, $\nabla f(\gamma(t))$ est orthogonal à $\gamma'(t)$.

Démonstration.

Immédiat, étant donné que pour tout $t \in I : (f \circ \gamma)'(t) = 0$.

Remarque 2.4.8.

La propriété précédente est souvent résumée sous la locution « le gradient de f est orthogonal aux lignes de niveau de f ». En effet, $\gamma'(t)$ dirige la droite tangente à l'arc γ au point $\gamma(t)$ (voir figure 6).

Le théorème des fonctions implicites (hors programme) permet de montrer que, sous certaines hypothèses, les lignes de niveau d'une fonction forment des arcs de classe \mathscr{C}^1 .

Théorème 2.4.9.

Soit U, V deux ouverts de \mathbb{R}^2 , soit $f: U \to \mathbb{R}$ de

classe \mathscr{C}^1 , soit $\varphi,\psi:V\to\mathbb{R}$ de classe \mathscr{C}^1 telles que $\varphi(V)\times\psi(V)\subset U.$

Soit

$$g: \left\{ \begin{array}{ccc} V & \longrightarrow & \mathbb{R} \\ (u,v) & \longmapsto & f(\varphi(u,v),\psi(u,v)) \end{array} \right. .$$

Alors, g est de classe \mathscr{C}^1 sur V et pour tout $(u,v)\in V$:

$$\begin{split} \frac{\partial g}{\partial u}(u,v) &= \frac{\partial f}{\partial x}(\varphi(u,v),\psi(u,v)) \frac{\partial \varphi}{\partial u}(u,v) \\ &\quad + \frac{\partial f}{\partial y}(\varphi(u,v),\psi(u,v)) \frac{\partial \psi}{\partial u}(u,v) \\ \frac{\partial g}{\partial v}(u,v) &= \frac{\partial f}{\partial x}(\varphi(u,v),\psi(u,v)) \frac{\partial \varphi}{\partial v}(u,v) \\ &\quad + \frac{\partial f}{\partial y}(\varphi(u,v),\psi(u,v)) \frac{\partial \psi}{\partial v}(u,v) \end{split}$$

Remarque 2.4.10 (à la physicienne).

Les formules précédentes sont quelque peu difficiles à retenir. En notant x la fonction φ et y la fonction ψ , en notant t = (u, v) et a(t) = (x(t), y(t)), on a alors

$$\frac{\partial (f\circ a)}{\partial u}(t) = \frac{\partial f}{\partial x}(a(t))\frac{\partial x}{\partial u}(t) + \frac{\partial f}{\partial u}(a(t))\frac{\partial y}{\partial u}(t),$$

ce que l'on peut (abusivement) écrire

$$\frac{\partial (f \circ a)}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}.$$

2.5 Recherche d'extrema

Définition 2.5.1 (extremum global). Soit $a \in U$.

- 1. On dit que a est le lieu d'un maximum global de f si $\forall u \in U, f(u) \leq f(a)$.
- 2. On dit que a est le lieu d'un minimum global de f si $\forall u \in U$, $f(u) \ge f(a)$.
- 3. On dit que a est le lieu d'un extremum global de f si c'est le lieu d'un minimum ou d'un maximum global de f.

FIGURE 5 – Exemple de carte IGN (source : géoportail).

FIGURE 6 – Champ de vecteurs de ∇f , et lignes de niveau de f.

Remarque 2.5.2.

On dit aussi que f admet un maximum global en a (idem pour minimum et extremum).

Définition 2.5.3 (extremum local).

Soit $a \in U$.

1. On dit que a est le lieu d'un $maximum\ local$ de f s'il existe r>0 tel que

$$\forall u \in U, \|a - u\| \leqslant r \to f(u) \leqslant f(a).$$

2. On dit que a est le lieu d'un $minimum\ local$ de f s'il existe r>0 tel que

$$\forall u \in U, \|a - u\| \leqslant r \to f(u) \geqslant f(a).$$

3. On dit que a est le lieu d'un extremum local de f si c'est le lieu d'un minimum ou d'un maximum local de f.

Remarque 2.5.4.

On dit aussi que f admet un maximum local en a (idem pour minimum et extremum).

Remarque 2.5.5.

Tout extremum global est aussi un extremum local, la réciproque étant bien évidemment fausse.

Définition 2.5.6 (point critique).

Soit $f:U\to\mathbb{R}$, un point critique de f est un point $a\in U$ vérifiant

$$\nabla f(a) = (0, 0).$$

Théorème 2.5.7 (condition du premier ordre). Soit $U \subset \mathbb{R}^2$ un ouvert, soit $f: U \to \mathbb{R}$ de classe \mathscr{C}^1 , soit $a \in U$.

Si f admet un extremum local en a, alors a est un point critique de f.

Démonstration.

Notons $a=(x_0,y_0)$. Les deux fonctions partielles de f en a admettent chacune un extremum local en x_0/y_0 , intérieur à leur ensemble de définition. Elles y admettent donc chacune un point critique, donc les dérivées partielles de f sont nulles en a, d'où le résultat. \square

Remarque 2.5.8.

Il est ici primordial que U soit un ouvert.

Ce théorème ne donne qu'une condition $n\acute{e}ces$ saire pour qu'un point soit un extremum local (et a fortiori global) d'une fonction.