Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

I SEMESTER B.TECH. (ALL BRANCHES) END SEMESTER EXAMINATIONS, DEC 2019

SUBJECT: MECHANICS OF SOLIDS [CIE 1051]

REVISED CREDIT SYSTEM

(/12/2019)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.

Q. No		M	CO
1A.	Locate the resultant of coplanar non-concurrent force system shown in figure with respect to 'A'. 40 kN 50 kN 60 kN 20 kN 3.5 m 3.5 m 3.5 m 30 kN	4	1
1B.	Two cables tied together at C are loaded with a weight W = 190 N as shown in figure. Determine the tension in the cable AC and BC to maintain equilibrium. 12 mm 30 mm A	2	2
1C.	Two blocks A and B are resting against a wall and the floor as shown in figure. Find the minimum value of horizontal force P applied to the resist the motion of the block A. Given coefficient of friction between all contact surfaces is 0.2.		2

CIE 1051 Page 1 of 1

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

 $W_A = 500N$ $W_{\rm B} = 1000 N$ 60^{0} A steel bar 400 mm in length elongates by 10 mm under axial tensile load of 360 kN. Considering Poisson's ratio as 0.3 and Modulus of Elasticity = 2 x 10⁵ N/mm². Find original diameter and final diameter of bar. 3 2A. P = 360 kN P = 360 kN L = 400 mm Determine the second moment of area with respect to given reference axis AB for the shaded region. 20 mm 50 mm 3 5 2B. 30 mm 12.5 mm 25 mm 12.5 mm With a neat sketch distinguish between space diagram and free body diagram. 2 2 2C. A two meter long steel bar is having uniform diameter of 40 mm for a length of 1 m, in the next 0.5 m its diameter gradually reduces to 20 mm and for remaining 0.5 m length diameter remains 20 mm 4 4 3A. uniform as shown in the figure. If a load of 150 kN is applied at the ends, find the stress in each section and total extension of the bar. Take E = 200

CIE 1051 Page 2 of 1

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

CIE 1051 Page 3 of 1

Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

find the stress in each segment and change in length of segment AB. Consider $E_{br} = 85$ GPa; $\alpha_{br} = 20 \times 10^{-6}$ /°C and $E_{st} = 210$ GPa, $\alpha_{st} = 11 \times 10^{-6}$ /°C.

B

C

A

Brass

Steel

40 mm

Explain the following terms with a suitable sketch wherever necessary:

i) Temperature stress ii) Temperature strain

CIE 1051 Page 4 of 1