

৯ম - ১০ম শ্রেণি পদার্থ বিজ্ঞান

আলোচ্য বিষয়

অধ্যায় ১৪ – জীবন বাঁচাতে পদার্থবিজ্ঞান

অনলাইন ব্যাচ সম্পর্কিত যেকোনো জিজ্ঞাসায়,

ব্যবহারবিধি

দেখে নাও এই অধ্যায় থেকে কোথায় কোথায় প্রশ্ন এসেছে এবং সৃজনশীল ও বহুনির্বাচনীর গুরুত্ব।

🆈 কুইক টিপস

সহজে মনে রাখার এবং দ্রুত ক্যালকুলেশন করতে সহায়ক হবে।

? বহুনির্বাচনী (MCQ)

বিগত বছর গুলোতে বোর্ড, স্কুল, কলেজ এবং বিশ্ববিদ্যালয়ে আসা বহুনির্বাচনী প্রশ্ন দেখে নাও উত্তরসহ।

🡼 সৃজনশীল (CQ)

পরীক্ষায় আসার মতো গুরুত্বপূর্ণ সৃজনশীল দেখে নাও উত্তরসহ।

통 প্র্যাকটিস

পরীক্ষায় আসার মতো গুরুত্বপূর্ণ সমস্যাগুলো প্র্যাকটিস করে নিজেকে যাচাই করে নাও।

🥜 উত্তরমালা

প্র্যাকটিস সমস্যাগুলোর উত্তরগুলো মিলিয়ে নাও।

🛨 উদাহরণ

টপিক সংক্রান্ত উদাহরণসমূহ।

💈 সূত্রের আলোচনা

সূত্রের ব্যাপারে বিস্তারিত জেনে নাও।

🦰 টাইপ ভিত্তিক সমস্যাবলী

সম্পূর্ণ অধ্যায়ের সুসজ্জিত আলোচনা।

জীবন বাঁচাতে পদার্থবিজ্ঞান

- ✓ জীব পদার্থবিজ্ঞানের ভিত্তি
- ✓ জগদীশচন্দ্র বসু
- ✓ মানব দেহ যন্ত্র
- ✓ এক্সরে
- ✓ আলট্রাসনোগ্রাফি
- ✓ সিটি স্ক্যান
- ✓ এমআরআই
- ✓ এনজিওগ্রাফি
- ✓ এন্ডোস্কোপি
- √ ইসিজি
- √ ইটিটি
- ✓ রোগ নিরাময়ে পদার্থবিজ্ঞান

জীবপদার্থ বিজ্ঞানের ভিত্তি (Background of Biophysics)

বিজ্ঞানের অগ্রগতির ওপর নির্ভর করে পদার্থবিজ্ঞান এবং জীববিজ্ঞানের মাঝে একটি যোগসূত্র গড়ে তোলা হয়েছে। এই বিষয়টিকে বলা হয় জীবপদার্থ বিজ্ঞান (Biophysics)।

জীবপদার্থ বিজ্ঞান জৈবিক জগতের জটিল প্রক্রিয়ার ভেতরে পদার্থবিজ্ঞানের সহজ ও গাণিতিক সূত্রগুলো প্রয়োগ করে জীবনের নানা ধরনের রহস্য অনুসন্ধান করে থাকে অর্থাৎ বলা যায় জীবপদার্থ।

বিজ্ঞানে জগদীশচন্দ্র বসুর অবদান

Contribution of Jogadish Chandra Bose

আচার্য স্যার জগদীশচন্দ্র বসু ছিলেন একজন প্রখ্যাত সফল বিজ্ঞানী | বিজ্ঞানের গুরুত্বপূর্ণ অবদানের জন্য তিনি

আন্তর্জাতিক স্বীকৃতি পেয়েছিলেন। তিনি হাজার 1858 সালের 30 নভেম্বর ময়মনসিংহ জেলায় জন্মগ্রহণ করেন। তবে তার পৈতৃক নিবাস ছিল ঢাকা জেলার বিক্রমপুরের রাঢ়িখাল গ্রামে।

বিজ্ঞানে বসুর অবদান অনেক | তিনি বৈদ্যুতিক তার ছাড়া কিভাবে রেডিও সংকেত পাঠানো যায় সে বিষয়ে প্রচুর গবেষণা করেন | মাইক্রোওয়েভ আবিষ্কারের ক্ষেত্রে তার গুরুত্বপূর্ণ অবদান রয়েছে |

বিদ্যুৎ চুম্বকীয় তরঙ্গদৈর্ঘ্যকে মিলিমিটারে পর্যায়ে নামিয়ে আনতে তিনিই প্রথম সফল হন । যার কারণে (IEEE কতৃর্ক) তাকে রেডিও আবিষ্কারের জনক বলা হয় । শরীরতত্ত্বের উপরও তিনি অনেক গবেষণা করেন । বিজ্ঞান নিয়ে তাঁর লেখা গ্রন্থ গুলি হলো—

- i. অব্যক্ত
- ii. Response in the living and nonliving
 1937 সালের 23 নভেম্বর জ্ঞানতাপস আচার্য স্যার মৃত্যুবরণ করেন।

মানবদেহ এবং যন্ত্ৰ

Human Bodies and Machines

মানবদেহ একটি জৈব যন্ত্রের মত । কেননা আমাদের হৃদপিগু একটি স্বয়ংক্রিয় পাম্প, কিডনি একটি ছাকনি এবং শরীরের হাড় এবং মাংসপেশি মিলে যান্ত্রিক লিভারের মত কাজ করে আবার রেখে ক্যান্সার মতো। তাই মানবদেহ একটি জটিল যন্ত্র।

রোগ নির্ণয় ব্যবহৃত যন্ত্রপাতি

Diagnostic Instruments

এক সময় ছিল যখন রোগ নির্ণয় করার জন্য আধুনিক কোন যন্ত্রপাতি ছিল না । তাই সঠিকভাবে রোগ নির্ণয় করা যেত না । কিন্ত আজ বিজ্ঞানের নানা আবিষ্কার কাজে লাগিয়ে রোগ নির্ণয়ের জন্য অনেক যন্ত্রপাতি আবিষ্কার

করা হয়েছে। এখন সঠিকভাবে রোগ নিরূপণ করা হয়। এমনকি রোগের কারণও জানা সম্ভব হয়েছে। আধুনিক যন্ত্রপাতি ব্যবহারের কারণে আজকের সমাজে মৃত্যুর হার কমে গিয়েছে।

রোগ নির্ণয়ক বিভিন্ন যন্ত্রপাতির আলোচনা

এক্সরে (X-ray)

এক্সরে হলো এক ধরনের তাড়িতটোম্বক বিকিরণ। এক্স-রের তরঙ্গদৈর্ঘ্য সাধারণ আলোর তরঙ্গ দৈর্ঘ্যের চেয়ে অনেক কম। এ রিশ্মি তরঙ্গদৈর্ঘ্য $1 \times 10^{-10} \; \mathrm{m}$ এর কাছাকাছি। $1895 \; \mathrm{m}$ সালে উহলহেলে রন্টজেন এক্সের আবিষ্কার করেন। রঞ্জনরিশ্মির আরেক নাম এক্স-রে। তরঙ্গদৈর্ঘ্য যত ছোট হবে এক্স-রের কোনো পদার্থ ভেদ করার ক্ষমতা তত বেশি হবে। এক্সরে দৃশ্যমান নয়। এক্সরে উচ্চভেদন ক্ষমতা সম্পর।

এক্স-রের গঠন প্রণালী:

এক্সরে নল একটি বায়ুশূন্য কাঁচ নল। কাঁচ নলের দুই প্রান্তে দুইটিটি তড়িৎদ্বার ধারণা থাকে। একটির নাম ক্যাথোড অপরটির নাম আনোড। ক্যাথোডে টাংস্টেন ধাতুর একটি কুগুলী থাকে। একে ফিলামেন্ট বলে। ফিলামেন্টের মধ্য দিয়ে প্রবাহিত তড়িৎ প্রবাহ ক্যাথোডকে উত্তপ্ত করে ফলে ক্যাথোড থেকে ইলেকট্রন মুক্ত হয় এবং বের হয়ে আসে।

ক্যাথোড এবং অ্যানোডের মধ্যে খুব উচ্চ বিভাগ পার্থক্য প্রয়োগ করা হলে ক্যাথোড থেকে ইলেকট্রনগুলো খুব দ্রুতগতিতে ছুটে যায় এবং লক্ষ্যবস্তু অ্যানোডকে আঘাত করে। দ্রুতগতিসম্পন্ন ইলেকট্রন কোনো ধাতুকে (অ্যানোডকে) আঘাত করলে তা থেকে অতি ক্ষুদ্র তরঙ্গ দৈর্ঘ্য এবং উচ্চ ভেদন ক্ষমতাসম্পন্ন একপ্রকার বিকিরণ উৎপন্ন হয়। এই বিকিরণকে এক্সরে বলে।

এক্সরে ব্যবহার:

- স্থানচ্যুত হাড়, হাড়ে ফাটল, ভেঙে যাওয়া হাড় ইত্যাদি খুব সহজে শনাক্ত করা যায়
- দাঁতের ক্যাভিটি এবং অন্যান্য ক্ষয় বের করার জন্য এক্সরে ব্যবহার করা হয়।

- পেটের এক্সরে করে অন্ত্রের প্রতিবন্ধকতা শনাক্ত করা যায়
- এক্সরে দিয়ে পিত্তথলি ও কিডনিতে পাথরের অস্তিত্ব বের করা যায় |
- বুকের এক্সরে করে ফুসফুসের রোগ যেমন- যক্ষ্মা, নিউমোনিয়া, ফুসফুস ক্যান্সার নির্ণয় করা যায় |
- এক্সরে ক্যান্সার কোষকে মেরে ফেলতে পারে তাই এটি রেডিওথেরাপিতে চিকিৎসার জন্য ব্যবহার করা হয়।

আলট্রাসনোগ্রাফি (Ultrasonography)

আল্টাসনোগ্রাফি হলো এমন একটি প্রক্রিয়া যা উচ্চ কম্পাংকের শব্দের প্রতিফলনের উপর নির্ভরশীল। রোগ নির্ণয়ের জন্য যে আলট্রাসনোগ্রাফি ব্যবহার করা হয় সেই শব্দের কম্পাঙ্ক $1-10\ MHz$ (মেগাহার্জ)।

 $(1 \text{ MHz} = 16^6 \text{ HZ})$

আলট্রাসনোগ্রাফি যন্ত্রের ট্রান্সডিউসার নামক একটি স্ফটিককে বৈদ্যুতিক ভাবে উত্তেজিত বা উদ্দীপিত করে উচ্চ কম্পাংকের আলট্রাসনিক উৎপন্ন করা হয়। আল্ট্রাসনিক তরঙ্গগুলোকে একটি সরু বিমে পরিণত করা হয়। তারপর এটি নির্দিষ্ট অঙ্গটির দিকে প্রেরণ করা হয়। সেই অঙ্গের প্রকৃতি অনুযায়ী আল্ট্রাসনিক তরঙ্গ প্রতিফলিত, শোষিত বা সংবাহিত হয়। যখন বিমটি বিভিন্ন ঘনত্বের পেশির (যেমন– মাংসপেশি, রক্ত) বিভেদতলে আপতিত হয় তখন তরঙ্গের একটি অংশ প্রতিধ্বনি হিসেবে পুনরায় ট্রান্সডিউসারে ফিরে আসে। পরে এই প্রতিধ্বনিগুলোকে তড়িৎ সংকেতে রূপান্তরিত করা হয়। এই তড়িৎ সংকেতগুলো একত্রে মনিটরের পর্দায় পরীক্ষণীয় বস্তু বা পেশির একটি বিম্ব গঠন করে।

আল্ট্রাসনোগ্রাফির ব্যবহার:

- আল্ট্রাসনোগ্রাফির সবচেয়ে গুরুত্বপূর্ণ ব্যবহার স্ত্রীরোগ এবং প্রসৃতি বিজ্ঞান |
- জরায়ৣ টিউমার এবং অন্যান্য পেলভিকমাসের উপস্থিতিও শনাক্ত করা যায় ।
- পিত্তপাথর, হৃদযন্ত্রের ক্রটি এবং টিউমার বের করার জন্য আন্ট্রাসনোগ্রাম ব্যবহার করা হয়। হৃদপিগু পরীক্ষা করার জন্য যখন আন্ট্রাসাউন্ড ব্যবহার করা হয় তখন এ পরীক্ষাকে ইকোকার্ডিওগ্রাফি বলা হয়।

সিটি স্ক্যান (CT scan)

সিটি স্ক্যান শব্দটি ইংরেজি Computed Tomography Scan এর সংক্ষিপ্ত রূপ। চিকিৎসাবিজ্ঞানে এটি প্রতিবিশ্ব তৈরি একটি প্রক্রিয়া। যে প্রক্রিয়ায় কোনো দ্বিমাত্রিক বস্তুর কোনো বালি বা অংশের দ্বিমাত্রিক প্রতিবিশ্ব তৈরি করা হয় সেই প্রক্রিয়াকে টমোগ্রাফি বলে। সিটি স্ক্যান একটি বৃহৎ যন্ত্র। এ যন্ত্র এক্সরে ব্যবহৃত হয়। এক্সরে যেখানে শরীরের অভ্যন্তরে কোনো ত্রিমাত্রিক অঙ্গের দ্বিমাত্রিক প্রতিবিশ্ব গঠন করে, সেখানে সিটিস্ক্যান যন্ত্র দ্বারা সৃষ্ট প্রতিবিশ্ব ত্রিমাত্রিক। সিটিস্ক্যান যন্ত্র ডিজিটাল জ্যামিতিক প্রক্রিয়া ব্যবহার করে কোনো বস্তুর অভ্যন্তরের ত্রিমাত্রিক প্রতিবিশ্ব গঠন করে। এ কাজটি কম্পিউটারের মাধ্যমে সম্পন্ন করা হয়।

বৃত্তাকার পথে ঘোরার সময় সিটিস্ক্যান যন্ত্র পরস্পর অনেকগুলো সরু এক্সরে বীম রোগীর শরীরের মধ্যে প্রেরণ করে। সিটিস্ক্যান যন্ত্রে ব্যবহৃত এক্সরে ডিটেক্টরটির সাহায্যে রোগীর দেহের বিভিন্ন ঘনত্বের শত শত স্তর শনাক্ত করা যায়। ডিটেক্টর দ্বারা গৃহীত ডাটা কম্পিউটারে প্রেরন করা হয়। কম্পিউটার পরে শরীরের কোনো অংশের ত্রিমাত্রিক ছবি গঠন করে এবং পর্দায় ডিসপ্লে করে।

সিটি স্ক্যানের ব্যবহার:

- সিটি স্ক্যান এর সাহায্যে শরীরের নরম টিস্যু, রক্তবাহী শিরা বা ধমনী, ফুসফুস, ব্রেন ইত্যাদির ত্রিমাত্রিক ছবি পাওয়া যায় |
- যকৃত, ফুসফুস এবং অগ্নাশয়ের ক্যান্সার শনাক্ত করার কাজে সিটি স্ক্যান ব্যবহৃত হয়।
- টিউমার সনাক্তকরণ, টিউমারের আকার, অবস্থান এবং টিউমারটি পার্শ্ববর্তী অন্য টিস্যুকে কি পরিমান আক্রান্ত করেছে তা নির্ধারণেও
 সাহায্য করে|
- রক্ত সঞ্চালনের সমস্যা, রক্তপাত, ধমনীর ফুলা ইত্যাদিতে সিটি স্ক্যান ব্যবহার করা হয়।

এম আর আই (MRI Magnetic Resource Imaging)

এম আর আই ইংরেজি Magnetic Resource Imaging এর সংক্ষিপ্ত রূপ। MRI যন্ত্রে শক্তিশালী

বিকিরণ ব্যবহৃত হয় না

টোম্বক ক্ষেত্র এবং রেডিও তরঙ্গ ব্যবহার করে শরীরের কোনো স্থানের বা অঙ্গের প্রতিবিম্ব গঠন করা হয়। নিউক্লিয় টোম্বক অনুনাদ বা Nuclear Magnetic Resource এর ভৌত এবং রাসায়নিক নীতির উপর ভিত্তি করে MRI যন্ত্র কাজ করে।
এই নীতি ব্যবহার করে কোনো অনুর প্রকৃতি সম্পর্কে জানা যায়। MRI ব্যথাহীন এবং নিরাপদ রোগ নির্ণয় পদ্ধতি। এ যন্ত্রে কোনো

এম আর আই এর মাধ্যমে প্রাপ্ত প্রতিবিম্বকে পাউরুটির এক একটি ফালির সঙ্গে তুলনা করা যায় বি পদ্ধতিতে অনেকগুলো প্রতিবিম্ব তৈরি করা হয়, যেগুলো শরীরের আক্রান্ত অংশের সকল বৈশিষ্ট্যকে ফুটিয়ে তোলে।

MRI এর কাজ:

- পায়ের গোড়ালির মচকানো এবং পিঠের ব্যথায় MRI ব্যবহার করে আঘাতের তীব্রতার নিরূপণ করা হয় |
- রেইন এবং মেরুরজ্জুর বিস্তৃত প্রতিবিম্ব তৈরীর জন্য MRI অত্যন্ত মূল্যবান পরীক্ষা I

ইসিজি (ECG)

ECG হলো Electrocardiogram শব্দের সংক্ষিপ্ত রূপ। ECG এমন একটি রোগ নির্ণয় পদ্ধতি যার সাহায্যে নিয়মিতভাবে কোনো ব্যক্তির হৃদপিন্ডের বৈদ্যুতিক এবং পেশিজনিত কার্যকলাপ পর্যবেক্ষণ করা যায়। হৃদযন্ত্রে উৎপন্ন বৈদ্যুতিক সংকেত হৃদযন্ত্রের পেশীর মধ্যে ছড়িয়ে পড়ে, ফলে হৃদযন্ত্র সংকুচিত হয়। ECG যন্ত্রের সাহায্যে আমরা হৃদপিন্ডের হৃদস্পদনের হার এবং ছন্দময়তা পরিমাপ করতে পারি।

ECG এর কার্যাবলি:

হুদপিন্ডের একটি সম্পূর্ণ ছবি পাওয়ার জন্য দশটি ইলেকট্রোড ব্যবহার করে বারটি বৈদ্যুতিক সংকেতকে সনাক্ত করা হয়। প্রত্যেকটি হাতে এবং পায়ে একটি করে মোট চারটি বাকি ছয়টি ইলেকট্রোড হুদপিন্ডের প্রাচীর বরাবর স্থাপন করা হয়। প্রত্যেকটি ইলেকট্রোড দ্বারা সংগৃহীত তড়িৎ সংকেতকে রেকর্ড করা হয়। এ রেকর্ড সমূহের মুদ্রিত রূপই হলো Electrocardiogram । প্রত্যেক ইলেকট্রোড থেকে প্রাপ্ত নকশার সাথে স্বাভাবিক নকশার ভিন্নতা

হলে অঙ্গটিকে আক্রান্ত বিবেচনা করা হয়।

যেসব কারণে ECG করা হয়:

সাধারণত কোনো রোগের বাহ্যিক লক্ষণ যেমন- বুকের ধড়ফড়ানিটা, অনিয়মিত ও দ্রুত হৃৎস্পন্দন, বুকে ব্যথা ইত্যাদি কারণে ECG করা হয় । এছাড়াও হৃদপিন্ডের যেসকল অস্বাভাবিক প্রকৃতি ECG এর মাধ্যমে সনাক্ত করা যায় এগুলো হলো—

- হদপিন্ডের অস্বাভাবিক স্পন্দন
- হার্ট অ্যাটাক হয়ে থাকলে
- হৃদপিন্ডের আকার বড় হয়ে থাকলে

এনজিওগ্রাফি (Angiography)/এনজিওগ্রাম

এনজিওগ্রাফি হলো এমন একটি প্রতিবিম্ব তৈরীর পরীক্ষা যেখানে শরীরে রক্তনালীরসমূহ দেখার জন্য এক্সরে করা হয়। এ পরীক্ষার মাধ্যমে রক্তবাহী শিরা বা ধমনিগুলো, ব্লক ও প্রসারিত হয়েছে কিনা তা নির্ণয় করা যায়।

এনজিওগ্রাফির কার্যাবলী:

এনজিওগ্রাম করার সময় চিকিৎসক রোগীর দেহে একটি তরল পদার্থ একটি সরু ও নমনীয় নলের মধ্য দিয়ে প্রবেশ করিয়ে দেয়। তরল পদার্থটিকে ডাই এবং নলটিকে ক্যাথেটার বলে। এই ডাই ব্যবহারের ফলে রক্তবাহী নালীগুলো এক্সরে সাহায্যে দৃশ্যমান হয়। একটি নির্দিষ্ট প্রবেশ বিন্দুর মধ্য দিয়ে ক্যাথেটারটিকে নির্দিষ্ট ধমনী ও শিরার মধ্যে প্রবেশ করানো হয়। এক্ষেত্রে প্রবেশ বিন্দুটি শরীরের যেকোনো স্থানে রক্ত নালিতে হতে পারে।

যেসকল কারণে এনজিওগ্রাম করা হয়:

- হৃদপিন্ডের বাইরের ধমনীতে ব্লকেজ হলে
- কিডনির ধমনীর অবস্থা বুঝার জন্য
- শিরার কোনো সমস্যা হলে

এখানে, যে কৌশলে বা যে প্রক্রিয়ায় এনজিওগ্রাম করার সময় ধমনীর ব্লক মুক্ত করা যায় তাকে এনজিওপ্লাস্টি বলে।

এন্ডোস্কোপি (Endoscopy)

এন্ডোস্কোপি বলতে সাধারণত কোনো বিন্দুর ভেতরকে বোঝায়। এন্ডোস্কোপি যন্ত্রের মাধ্যমে আমরা শরীরের ফাঁকা অঙ্গসমূহের অভ্যন্তরভাগ পরীক্ষা করি।

এন্ডোস্কোপির কার্যাবলী:

এন্ডোস্কোপি যন্ত্রে দুইটি নল থাকে, এদের একটির মধ্য দিয়ে বাইরে থেকে রোগীর শরীরের নির্দিষ্ট অঙ্গে আলো প্রেরণ করা হয়। আলোক তন্তুর ভেতরের দেয়ালে আলোর পূর্ণ অভ্যন্তরীণ প্রতিফলনের মাধ্যমে উজ্জ্বল আলো রোগীর দেহ গহুরে প্রবেশ করে। এই আলোর রোগে আক্রান্ত অঙ্গকে আলোকিত করে। দ্বিতীয় আলোক নলের ভেতর দিয়ে আলোর প্রতিফলন অংশ একইভাবে ফিরে আসে। প্রতিফলিত আলো অভিনেত্র লেন্সের মাধ্যমে চিকিৎসকের চোখে পড়ে, ফলে সবকিছু চিকিৎসক দেখতে পারেন।

যে সব অঙ্গ পরীক্ষার জন্য এন্ডোস্কোপি ব্যবহৃত হয়:

- ফুসফুস এবং বুকের কেন্দ্রীয় বিভাজন অংশ
- পাকস্থলী, ক্ষুদ্রান্ত, বৃহদন্ত্র বা কোলন
- স্ত্রী প্রজনন অঙ্গ
- উদর এবং পেলভিস

- মৃত্রনালীর অভ্যন্তরভাগ
- নাসা গহুর, নাকের চারপাশের সাইনাস

इंग्लिं (ETT)

ভেতর দিয়ে আলোর প্রতিফলন অংশ একইভাবে ফিরে আসে। প্রতিফলিত আলো অভিনেত্র লেপ্সের মাধ্যমে চিকিৎসকের চোইংরেজি Exercise Tolerance Test এর সংক্ষিপ্ত রূপ হলো ETT. উদ্দীপিত হৃদযন্ত্রের একটি পরীক্ষা হলো ETT. ব্যায়াম অনুশীলণ চলাকালীন হৃদপিন্ডের বৈদ্যুতিক সক্রিয়তা কার্যকলাপ ETT মাধ্যমেই রেকর্ড করা হয়। করোনারী-আর্টারি রোগের রোগ নিরূপণের জন্য এ পরীক্ষাটি খুবই উপকারী। পরীক্ষাটির মাধ্যমে হৃদপিন্ডের করোনারী ধমনীতে সৃষ্ট আংশিক অবরুদ্ধ অবালা শনাক্ত করা হয়ে থাকে।

ETT পরীক্ষাটির কার্যাবলী:

পরীক্ষার সময় রোগীকে একটি স্থির বাই সাইকেল চালাতে বলা হয়। অনুশীলন চলা অবস্থায় চিকিৎসক রোগীর ইসিজি রেকর্ড করেন। পরীক্ষাটির সময় চাকার ঘূর্ণন দ্রুতি এবং তলের ঢাল উপযোজনের মাধ্যমে যান্ত্রিক পীড়নের মাত্রা ক্রমশ বৃদ্ধি করা হয়। ETT পরীক্ষার মাধ্যমে অনুশীলনের সময় রোগী হৃদপিণ্ডে যে সকল পরিবর্তন সংঘটিত হয় চিকিৎসক সেগুলো করতে সফল হন।

রেডিওথেরাপি(Radiotherapy)

রেডিও থেরাপি শব্দটি ইংরেজী Radiation Therapy শব্দটির সংক্ষিপ্ত রূপ। কোনো রোগের চিকিৎসায় তেজব্রিয় বিকিরণের ব্যবহার। এটি মূলত ক্যান্সার রোগের চিকিৎসায় ব্যবহার করা হয়। Radiotherapy এ সাধারণত উচ্চক্ষমতার এক্সরে ব্যবহার করে ক্যান্সার কোষকে ধ্বংস করে। ক্যান্সার কোষের DNA ধ্বংস করে দেয়। টিউমার সার্জারি করার আগে কিংবা পরে রেডিও থেরাপি ব্যবহার করা হয়।

রেডিও থেরাপির কার্যাবলী:

বাইরে থেকে রেডিওথেরাপি করার জন্য সাধারণত একটি লিনিয়ার এক্সেলেটর ব্যবহার করে উচ্চক্ষমতার এক্সরে তৈরি করা হয়। শরীরের যেখানে টিউমারটি থাকে সেদিকে তাক করে তেজব্রুিয় বিম পাঠানো হয়। বিমটি ক্যান্সার কোষকে এবং তার বিভাজন করার ক্ষমতাকেও নষ্ট করে দেয়।

আইসোটোপ এবং এর ব্যবহার (Isotopes and its Uses)

আইসোটোপগুলো হলো একটি নির্দিষ্ট মৌলের রূপভেদ। বিভিন্ন ভর সংখ্যা বিশিষ্ট একই মৌলের পরমাণুকে ঐ মৌলের আইসোটোপ বলে। ISO = একই এবং †ope = স্থান। অর্থাৎ প্রোটন সংখ্যা সমান থাকে কিন্তু নিউট্রনের সংখ্যা ভিন্ন হয়। প্রোটন সংখ্যা এবং নিউট্রন সংখ্যার সমষ্টি হলো কোনো মৌলের ভর সংখ্যা, তাই কোনো মৌলের প্রত্যেকটি আইসোটোপের ভর সংখ্যা ভিন্ন হয়। চিকিৎসাক্ষেত্রে তেজন্ত্রিয় আইসোটোপ ব্যবহার করা হয়। সাধারণত আইসোটোপটি গামা-রে বিকিরণ করে এবং বাইরে থেকেই এই গামা-র শনাক্ত করা যায়। তেজন্ত্রিয় আইসোটোপ দিয়ে শুধু রোগ নির্ণয় নয় রোগ নিরাময়ও করা যায়। যেমন— ^{60}Co একটি গামা-রে বিকিরণকারী আইসোটোপ। এই গামা-রে ক্যান্সার কোষকে ধ্বংস করে। ^{131}I থাইরয়েডের চিকিৎসায় ব্যবহার করা হয়। এছাড়া লিউকোমিয়া নামে রক্তের ক্যান্সারের চিকিৎসায় তেজন্ত্রিয় আইসোটোপ ফসফরাস—32 (^{32}P) যুক্ত ফসফেট ব্যবহার করা হয়। স্তরাং আইসোটোপের ব্যবহার অনেক।

জ্ঞানমূলক ও অনুধাবনমূলক প্রশ্ন:

প্রশ্ন os l ইসিজি কী? [রা. বো. '১৭; ব. বো. '১৫]

সমাধান: ইসিজি এর পূর্ণরূপ হলো ইলেকট্রোকার্ডিওগ্রাম (Electrocardiogram)। এটি এমন একটি রোগ নির্ণয় পদ্ধতি যার সাহায্যে নিয়মিতভাবে কোনো ব্যক্তির হুৎপিণ্ডের বৈদ্যতিক এবং পেশিজনিত কার্যকলাপ পর্যবেক্ষণ করা যায়।

প্রশ্ন ০২। এনজিওগ্রাফি কী?

সমাধান: এনজিওগ্রাফি হলো এমন একটি প্রতিবিম্ব তৈরির পরীক্ষা যেখানে শরীরের রক্তনালীসমূহ দেখার জন্য এক্স-রে ব্যবহার করা হয়।

প্রশ্ন ০৩ I MRI এর পূর্ণরূপ কী?

[ঢা. বো. '১৬]

সমাধান: MRI এর পূর্ণরূপ হলো Magnetic Resonance Imaging.

প্রশ্ন ০৪। ETT এর পূর্ণ অর্থ লিখ।

[ফলিপুর জিলা স্থল, ফরিদপুর; কুমিল্লা জিলা স্থল, কুমিল্লা]

সমাধান: ইটিটি এর পূর্ণরূপ Exercise Tolerence Test I

প্রশ্ন ০৫। CT Scan এর পূর্ণরূপ লিখ।

[ব্রি-বার্ড স্কুল এন্ড কলেজ, সিলেট; মির্জাপুর ক্যাডেট কলেজ]

সমাধান: CT scan এর পূর্ণরূপ হলো Computed Tomography scan.

প্রশ্ন ০৬। কঠিন এক্স-রে কী?

[উদয়ন মাধ্যমিক বিদ্যালয়, বরিশাল]

সমাধান: এক্স-রে যন্ত্রে বেশি বিভব পার্থক্য প্রয়োগ করে যে এক্স-রে পাওয়া যায় তাকে কঠিন এক্স-রে বলে।

প্রশ্ন ০৭ | টমোগ্রাফি কাকে বলে?

সমাধান: যে প্রক্রিয়ায় কোনো ত্রিমাত্রিক বস্তুর কোনো ফালি বা অংশের দ্বিমাত্রিক প্রতিবিম্ব তৈরি করা হয় সে প্রক্রিয়াকে টমোগ্রাফি বলে।

প্রশ্ন ০৮ | এমআরআই যন্ত্র কিসের উপর ভিত্তি করে কাজ করে?

সমাধান: এমআরআই যন্ত্র নিউক্লীয় টোম্বক অনুনাদ বা Nuclear Magnetic Resonance এর ভৌত এবং রাসায়নিক নীতির ওপর ভিত্তি করে কাজ করে।

প্রশ্ন ০৯ | রেডিওথেরাপিতে কোনটির সাহায্যে ক্যান্সার কোষ ধবংস করা হয়?

সমাধান: রেডিওথেরাপিতে উচ্চশক্তি সম্পন্ন এক্স-রে ব্যবহার করে ক্যান্সার কোষ ধ্বংস করা হয়।

প্রশ্ন ১০। ইটিটি এর পূর্ণরূপ কী?

সমাধান: ইটিটি এর পূর্ণরূপ Exercise Tolerence Test.

প্রশ্ন ১১ I CT Scan এর সাহায্যে কি কি রোগ শনাক্ত করা যায়?

[রংপুর জিলা স্কুল, রংপুর]

সমাধান: CT Scan এর সাহায্যে যেসব রোগ সনাক্ত করা যায় সেগুলো হলো-

১. ক্যান্সার

- ২. টিউমার
- ৩. মস্তিষ্কের ভেতরে রক্তপাত
- 8. রক্ত সঞ্চালনে সমস্যা

প্রশ্ন ১২। আইসোটোপগুলো একটি নির্দিষ্ট মৌলের আলাদা প্রকারভেদ ব্যাখ্যা কর।

[উদয়ন মাধ্যমিক বিদ্যালয়, বরিশাল]

সমাধান: বিভিন্ন ভরসংখ্যা বিশিষ্ট একই মৌলের পরমাণুকে ঐ মৌলের আইসোটোপ বলে | আইসোটোপসমূহে প্রোটন সংখ্যা সমান থাকে কিন্তু ভরসংখ্যা ভিন্ন হয় | ভরসংখ্যা হচ্ছে প্রোটন ও নিউট্রন সংখ্যার সমষ্টি | সুতরাং প্রোটন সংখ্যা সমান থেকে ভরসংখ্যা ভিন্ন হয় শুধুমাত্র নিউট্রন সংখ্যার ভিন্নতার কারণে | আবার বিভিন্ন মৌলের প্রোটন সংখ্যা বিভিন্ন হয় অর্থাৎ একই প্রোটন সংখ্যা হতে পারে শুধুমাত্র একই মৌলের রূপভেদের ক্ষেত্রে | তাই আইসোটোপগুলোএকটি নির্দিষ্ট মৌলের রূপভেদ |

প্রশ্ন ১৩। মানবদেহ যন্ত্রের মত কাজ করে- ব্যাখ্যা কর।

[সিলেট ক্যাডেট কলেজ, সিলেট]

সমাধান: মানবদেহকে যন্ত্রের সাথে তুলনা করা হয় কারণ যদিও মানবদেহ আসলে যন্ত্র নয় তবু এটি অনেকাংশে যন্ত্রের ন্যায় আচরণ করে । যন্ত্রের মতো এটিও অনেকগুলো ক্ষুদ্র ক্ষুদ্র অংশ বা অঙ্গ নিয়ে গঠিত; যার একটির অভাবে বা বিকল হয়ে যাওয়ায় সম্পূর্ণ দেহের কর্মকাণ্ড বিদ্বিত হয় । যন্ত্রের প্রত্যেকটি অংশ যেমনিভাবে বিশেষ কাজ সম্পন্ন করে, তেমনিভাবে মানবদেহের প্রত্যেকটি অঙ্গ আলাদা আলাদা কাজে নিয়োজিত । মানবদেহের প্রত্যেকটি অঙ্গ একে অন্যের সাথে আন্তসম্পর্কিত, প্রত্যেকটি অঙ্গ নিজস্ব গতিতে চলে, কিন্তু সবগুলোকাজই সুনির্দিষ্ট এবং এদের মধ্যে পূর্বনির্ধারিত সম্পর্ক রয়েছে । এ কারণেই মানবদেহ মানবসৃষ্ট সবচেয়ে জটিল যন্ত্রের সমতুল্য ।

প্রশ্ন ১৪। কীভাবে জীবপদার্থবিজ্ঞানের সূচনা হয়েছিল? ব্যাখ্যা কর। [মির্জাপুর ক্যাডেট কলেজ, টাঙ্গাইল]

সমাধান: জীববিজ্ঞানের কোনো ব্যবস্থাকে অধ্যয়নের জন্য ভৌত বিজ্ঞানের তত্ত্ব ও পদ্ধতি ব্যবহার করা হলে তাকে জীব-পদার্থবিজ্ঞান বলে। ভৌতবিজ্ঞান ও জীববিজ্ঞানের অগ্রগতির ভিতর দিয়ে এ দুই বিষয়ের মধ্যে পারস্পরিক সম্পর্ক ও সমন্বয় অনেক বৃদ্ধি পেয়েছে। পদার্থবিজ্ঞানের নিয়মগুলোসার্বজনীন হওয়ায় প্রাণিজগতকেও পদার্থবিজ্ঞানের নিয়মে অনেক ক্ষেত্রে ব্যাখ্যা করা সম্ভব হয়েছে। এভাবেই জীবপদার্থবিজ্ঞানের সূচনা হয়েছিল।

প্রশ্ন ১৫। Angiography কেন করা হয়?

[ঢাকা রেসিডেনসিয়াল মডেল কলেজ, ঢাকা]

সমাধান: Angiography করার কারণগুলোহলো—

- ১. হৎপিণ্ডের বাইরে ধমনীতে ব্লকেজ হলে l
- ২. ধমনী প্রসারিত হলে**।**
- ৩. কিডনীর ধমনীর অবস্থা বুঝার জন্য |
- 8. শিরার কোনো সমস্যা হলে l

প্রশ্ন ১৬। অভ্যন্তরীণ রেডিওথেরাপি কীভাবে দেওয়া হয়?

[সিলেট মডেল স্কুল এন্ড কলেজ, সিলেট]

সমাধান: অভ্যন্তরীণ রেডিওথেরাপির ক্ষেত্রে রোগীকে শরীরের ভেতর থেকে রেডিওথেরাপি দেওয়া হয় | এ প্রক্রিয়ায় রোগী তেজব্রিয় তরল | পদার্থ পানীয় হিসেবে গ্রহণ করে অথবা ইনজেকশনের মাধ্যমে রোগীর দেহে তেজব্রিয় তরল পদার্থ প্রবেশ করিয়ে দেওয়া হয় | যেমন— রক্ত ক্যান্সারের ক্ষেত্রে এ তরল পদার্থে তেজব্রিয় ফসফরাস, থাইরয়েড ক্যান্সারের ক্ষেত্রে এ তরল পদার্থে তেজব্রিয় ফসফরাস, থাইরয়েড ক্যান্সারের ক্ষেত্রে তেজব্রিয় আয়োডিন ব্যবহার করা হয় | এ প্রক্রিয়াকে ব্রাকিথেরাপি বলে |

প্রশ্ন ১৭| ইটিটি আসলে অনুশীলনরত অবস্থায় রোগীর ইসিজি পরীক্ষা– ব্যাখ্যা কর|

সমাধান: উদ্দীপিত হত্যন্ত্রের একটি পরীক্ষা হলোইটিটি। এর পূর্ণরূপ হচ্ছে Exercise Tolerance Test ব্যয়াম বা অনুশীলন চলাকালীন হুংপিণ্ডের বৈদ্যুতিক সক্রিয়তা বা কার্যকলাপ ইটিটি পরীক্ষার মাধ্যমে রেকর্ড করা হয়। আবার ইসিজি এমন একটি রোগ নির্ণয় পদ্ধতি যার সাহায্যে নিয়মিতভাবে কোনো ব্যক্তির হুংপিণ্ডের বৈদ্যুতিক এবং পেশিজনিত কার্যকলাপ নিয়ন্ত্রিত করা যায়। অতএব ইটিটি আসলে অনুশীলনরত অবস্থায় রোগীর ইসিজি পরীক্ষা।

প্রশ্ন ১৮ | এনজিওগ্রাফি এবং এনজিওপ্লাস্টের পার্থক্য ব্যাখ্যা কর |

সমাধান: এনজিওগ্রাফি হলোএমন একটি প্রতিবিশ্ব তৈরির প্রক্রিয়া। যেখানে শরীরের রক্তনালিকাসমূহ দেখার জন্য এক্সরে ব্যবহার করা হয়। যার মাধ্যমে শিরা বা ধমনী সরু, ব্লক ও প্রসারিত হচ্ছে কিনা তা নির্ণয় করা যায়। অন্যদিকে এনজিওগ্রাম করার সময় ধমনীর ব্লক মুক্ত করার প্রক্রিয়া হলোএনজিওপ্লাস্টি। এর মাধ্যমে ডাক্তারগণ সার্জারীর সাহায্যে ছাড়াই রক্তনালির ব্লকের চিকিৎসা করে থাকেন।

প্রশ্ন ১৯। আচার্য স্যার জগদীশচন্দ্র বসুর শিক্ষা জীবন সম্বন্ধে সংক্ষেপে লেখ।

সমাধান: জগদীশচন্দ্র বসু ময়মনসিংহে জন্মগ্রহণ করেন। পিতা ভগবানচন্দ্র বসু ফরিদপুর জেলার একজন ডেপুটি ম্যাজিস্ট্রেট ছিলেন। তাই প্রথমে ফরিদপুরের গ্রামীণ বিদ্যালয়ে মাতৃভাষায় লেখাপড়া শুরু করেন। পরে কলকাতার হেয়ার স্কুল ও সেন্ট জেভিয়ার স্কুল ও কলেজে তার ছাত্রজীবন অতিবাহিত হয়। ১৮৮০ সালে বি.এ. পাস করার পর ঐ বছরই তিনি উচ্চ শিক্ষার জন্য ইংল্যান্ডে যান। ইংল্যান্ডে তার শিক্ষা জীবন ছিল ১৮৮০—১৮৮৪ সাল পর্যন্ত। ঐ সময়ে তিনি ক্যান্ত্রিজ বিশ্ববিদ্যালয় থেকে পদার্থবিজ্ঞানে অনার্সসহ বিএ এবং লগুন বিশ্ববিদ্যালয় থেকে বিএসসি ডিগ্রি অর্জন করেন।

প্রশ্ন ২০। এক্স-রে এর চারটি ব্যবহার লেখ।

সমাধান: নিচে এক্স-রের চারটি ব্যবহার উল্লেখ করা হলো-

- ১. স্থানচ্যুত হাড়, হাড়ে ফাটল, ভেঙে যাওয়া হাড় ইত্যাদি এক্সরের সাহায্যে খুব সহজেই শনাক্ত করা যায় |
- ২. মুখমগুলের যেকোনো ধরনের রোগ নির্ণয়ে এক্স-রের ব্যবহার অনেক যেমন— দাঁতের গোড়ায় ঘা এবং ক্ষয় নির্ণয়ে এক্স-রে ব্যবহৃত হয়।
- ৩. পেটের এক্স-রের সাহায্যে অস্ত্রের প্রতিবন্ধকতা শনাক্ত করা যায়
- ৪. এক্স-রের সাহায্যে পিত্তথলি ও কিডনির পাথরকে শনাক্ত করা যায়

প্রশ্ন ২১ | আইসোটোপ কী? চিকিৎসাক্ষেত্রে এটি কী কাজে লাগে?

সমাধান: বিভিন্ন ভরসংখ্যা বিশিষ্ট একই মৌলের পরমাণুকে ঐ মৌলের আইসোটোপ বলে | চিকিৎসাক্ষেত্রে রোগ নির্ণয় এবং রোগ নিরাময় উভয়ক্ষেত্রেই তেজস্ক্রিয় আইসোটোপের গুরুত্ব রয়েছে | যেমন—

- ১. শরীরের কোনো স্থানের বা অঙ্গের ক্ষতিকর ক্যান্সার ও টিউমারের উপস্থিতি তেজস্ক্রিয় আইসোটোপের সাহায্যে শনাক্ত করা যায় |
- ২. ক্যান্সার চিকিৎসায় কোবাল্ট 60 আইসোটোপ থেকে নির্গত গামা রশ্মি ব্যবহৃত হয় |
- ৩. অপারেশনের যন্ত্রপাতি জীবাণুমুক্তকরণে উক্ত গামা রশ্মি ব্যবহার করা হয়।
- ৪. থাইরয়েড গ্রন্থি বা গ্ল্যান্ডের অস্বাভাবিক বৃদ্ধি জনিত রোগের চিকিৎসায় আয়োডিন–131 ব্যবহৃত হয়|
- ৫. রোগ নির্ণয়ের জন্য পরমাণু চিকিৎসায় টেকনিশিয়াম-99 m নামক তেজস্ক্রিয় আইসোপ ব্যবহৃত হয় |
- ৬. টেকনিশিয়াম-99 m এর সাহায্যে ব্রেন, লিভার, প্লীহা এবং হাড়ের ইমেজিং বা স্ক্যানিং করা হয় |
- ৭. শ্বেত কণিকা বৃদ্ধির ফলে রক্তাল্পতা রোগের চিকিৎসায় ফসফরাস–32 এর ফসফেট ব্যবহৃত হয়|
- ৮. কৃষি ক্ষেত্রে, খাদ্য সংরক্ষণে কীটপতঙ্গ দমনে এবং শিল্পক্ষেত্রে তেজস্ক্রিয় আইসোটোপের ব্যাপক ব্যবহার রয়েছে। অতএব উপরোক্ত আলোচনা থেকে বুঝা যায় যে, তেজস্ক্রিয় আইসোটোপের ব্যবহার চিকিৎসা বিজ্ঞানে গুরুত্বপূর্ণ ভূমিকা পালন করছে।

🦏 সৃজনশীল (CQ)

প্রশ্ন ০১ | সভ্যতার বিকাশে বিশ্বের বহু বিজ্ঞানী অবদান রেখেছেন | যাদের অনেককেই আমরা চিনি | তেমনি বাঙালি জাতির জন্য অহংকারের বিষয় যে, এখানে আন্তর্জাতিক স্বীকৃতি প্রাপ্ত একজন বিজ্ঞানীর জন্ম হয়েছিল | যিনি একাধারে পদার্থবিজ্ঞানী ও জীববিজ্ঞানী হিসেবে পরিচিত | বসু পরিবারের ঐ বিজ্ঞানী রেডিও আবিষ্কারেও বিশেষ অবদান রাখেন |

- (ক) উদ্দীপকে উল্লিখিত বিজ্ঞানীর নাম কী?
- (খ) কি কি কারণে চিকিৎসকগণ এনজিওগ্রাম করার পরামর্শ দেন?
- (গ) রেডিও আবিষ্কারে উক্ত বিজ্ঞানীর অবদান ব্যাখ্যা কর|
- (ঘ) উদ্দীপকে উল্লেখিত ব্যক্তি কিভাবে একজন বিজ্ঞানী হিসেবে আন্তর্জাতিক স্বীকৃতি লাভ করেন তা বিশ্লেষণ কর।

সমাধান:

- (ক) উদ্দীপকে উল্লিখিত বিজ্ঞানীর নাম আচার্য স্যার জগদীশচন্দ্র বসু |
- (খ) নিম্নের কারণগুলোর ক্ষেত্রে চিকিৎসকগণ এনজিওগ্রাম করার পরামর্শ দেন–
- ১. হৃৎপিণ্ডের বাইরে ধমনীতে ব্লকেজ হলে,
- ২. ধমনী প্রসারিত হলে.
- ৩. কিডনীর ধমনীর অবস্থা ব্ঝার জন্য এবং
- 8. শিরার কোনো সমস্যা হলে |
- (গ) উদ্দীপক থেকে পাই আচার্য স্যার জগদীশচন্দ্র বসু একাধারে একজন পদার্থবিজ্ঞানী ও জীববিজ্ঞানী ছিলেন। রেডিও আবিষ্কারে তিনি বিশেষ অবদান রাখেন।

গবেষণাগারে তিনি কীভাবে দূরবর্তী স্থানে তারের সাহায্য ছাড়া কোনো রেডিও সংকেতকে পাঠানো যায় এ বিষয়ে বিস্তর গবেষণা করেন এবং সফল হন। ১৮৯৫ সালে তিনি ইতিহাসে প্রথম বারের মতো দূরবর্তী স্থানে বিনা তারে রেডিও সংকেত প্রেরণ করে জনসমক্ষে দেখান। মাইক্রোওয়েভ গবেষণার ক্ষেত্রে তার উল্লেখযোগ্য অবদান রয়েছে। তিনিই প্রথম উৎপন্ন তরঙ্গের তরঙ্গ দৈর্ঘ্যকে মিলিমিটার (প্রায় ৫ মিলিমিটার) পর্যায়ে নামিয়ে আনতে সক্ষম হন। তিনিই প্রথম রেডিও সংকেতকে শনাক্ত করার কাজে অর্ধপরিবাহী জংশনের ব্যবহার করেন। এই আবিষ্কার থেকে ব্যবসায়িক সুবিধা নেওয়ার পরিবর্তে তিনি তার আবিষ্কারকে সবার জন্য উন্মুক্ত করে দেন, যেন অন্যরা এই গবেষণাকে আরও সমৃদ্ধ করার সুযোগ পায়। এর ফলে পরবর্তীতে পূর্ণাঙ্গ রেডিও আবিষ্কৃত হয়। অতএব আমরা বলতে পারি যে, রেডিও আবিষ্কারে আচার্য স্যার জগদীশচন্দ্র বসু যে অবদান রাখেন তা অবিস্মারণীয়।

(ঘ) উদ্দীপকে উল্লেখিত ব্যক্তিটি আচার্য স্যার জগদীশচন্দ্র বসু যিনি একজন আন্তর্জাতিক স্বীকৃতিপ্রাপ্ত বিজ্ঞানী। পদার্থবিজ্ঞান ও জীববিজ্ঞানে বিশেষ অবদানের জন্য তিনি আন্তর্জাতিক স্বীকৃতি লাভ করেন।

বিশ্লেষণ: বাংলাদেশের ঢাকা জেলার অন্তর্গত বিক্রমপুরের রাঢ়িখাল নামক গ্রামের এই জগদীশচন্দ্র বসু উপমহাদেশের প্রথম আন্তর্জাতিক স্বীকৃতি প্রাপ্ত বিজ্ঞানী। জগদীশচন্দ্র বসুর জন্ম ময়মনসিংহে হলেও পিতার কর্মস্থল ফরিদপুরের গ্রামীণ বিদ্যালয়ে মাতৃভাষায় তার লেখাপড়া আরম্ভ হয়। ১৮৮০ সালে বি.এ. পাস করে তিনি উচ্চ শিক্ষার জন্য ইংল্যান্ডে পাড়ি জমান। এরপর ক্যান্ত্রিজ বিশ্ববিদ্যালয় থেকে পাদার্থবিজ্ঞানে অনার্সসহ বি.এ. এবং লন্ডন বিশ্ববিদ্যালয় থেকে বি.এস. সি. ডিগ্রি অর্জন করার পর ১৮৮৫ সালে তিনি প্রেসিডেন্সি কলেজে অধ্যাপনা শুরু করেন এবং পাশাপাশি সেখানে গবেষণার কাজ করেন, যদিও সেখানে গবেষণার জন্য তেমন সুযোগ ছিল না। গবেষণাগারে তিনি কিভাবে দূরবর্তী স্থানে তারের সাহায্য ছাড়া কোনো রেডিও সংকেতকে পাঠানো যায় এ

বিষয়ে বিস্তর গবেষণা করেন যা রেডিও আবিষ্কারে বিশেষ ভূমিকা রাখে। পরবর্তীকালে তিনি উদ্ভিদ শারীরতত্বের ওপর অনেকগুলো গুরত্বপূর্ণ ও উল্লেখযোগ্য আবিষ্কার করেন। এগুলোর মধ্যে উদ্ভিদের বৃদ্ধি রেকর্ড করার জন্য ক্লেক্ষোগ্রাফ আবিষ্কার, অতি সীমিত মাত্রায় নড়াচড়া এবং কিভাবে উদ্ভিদ বিভিন্ন উদ্দীপকের প্রতি সাড়া দেয় তা উল্লেখযোগ্য। জীবপদার্থবিজ্ঞানে তার উল্লেখযোগ্য অবদান হলো উদ্ভিদ কিভাবে উদ্দীপকের প্রতি সাড়া দেয়। এর পরিবহনের প্রকৃতি নিয়ে। আগে ধারণা করা হতো বিভিন্ন উদ্দীপনায় উদ্ভিদের সাড়া দেওয়ার প্রকৃতি রাসায়নিক কিন্তু তিনি দেখাতে সমর্থন হন যে এর প্রকৃতি বৈদ্যুতিক। উদ্ভিদ শারীরতত্ত্ব নিয়ে গবেষণার জন্য তিনি কলকাতায় বসু বিজ্ঞান মন্দির প্রতিষ্ঠা করেন। তার বাংলা ভাষায় রচিত রচনাবলি 'অব্যক্ত' নামক গ্রন্থে সংকলিত হয়েছে। উপরোক্ত অবদানের জন্য তিনি একজন আন্তর্জাতিক স্বীকৃতিপ্রাপ্ত বিজ্ঞানীতে পরিণত হন।

প্রশ্ন ০২। নিচের চিত্রটি লক্ষ কর।

- (ক) জীবপদার্থবিজ্ঞান কী?
- (খ) জীবপদার্থবিজ্ঞানের চ্যালেঞ্জ কী? ব্যাখ্যা কর।
- (গ) চিত্রের A ও B এর তুলনামূলক ব্যাখ্যা দাও I
- (ঘ) উদ্দীপকের চিত্র A কে যন্ত্র বলা যায় কি-না যুক্তিসহ বিশ্লেষণ কর।

সমাধান:

- (ক) জীবপদার্থবিজ্ঞান হলো এমন এক বিজ্ঞান যা বিজ্ঞানের অনেকগুলোশাখার ওপর ভিত্তি করে প্রতিষ্ঠিত এবং যাতে জীববিজ্ঞানের কোনো ব্যবস্থাকে অধ্যয়নের জন্য ভৌত বিজ্ঞানের তত্ত্ব ও পদ্ধতি ব্যবহার করা হয়।
- (খ) জীবপদার্থবিজ্ঞানের মূল ভিত্তি হলো জড়জগতের পাশাপাশি প্রাণী জগতকে পদার্থবিজ্ঞানের নিয়মে ব্যাখ্যা করা যায়। তাই জীবপদার্থবিজ্ঞানের চ্যালেঞ্জ হলো জীবনের নানা জটিলতাকে পদার্থবিজ্ঞানের সহজ নিয়মের ভিত্তিতে কিভাবে ব্যাখ্যা করা যায়। গণিত এবং পদার্থবিজ্ঞান ব্যবহার করে জীবনের নানাবিধ রহস্য অনুসন্ধান ও

বিভিন্ন ঘটনা বিশ্লেষণের মাধ্যমে এর গভীরে প্রবেশ করার মাধ্যম হলো জীবপদাথবিজ্ঞান যা জীববিজ্ঞান ও পদার্থবিজ্ঞানের মধ্যে সেতুবন্ধনস্বরূপ

(গ) চিত্রের A ও B হচ্ছে যথাক্রমে মানবদেহ ও একটি যন্ত্র। যদিও মানবদেহ একটি জটিল যন্ত্রের সমতুল্য তথাপি যন্ত্রের সাথে মানবদেহের কিছু তুলনামূলক পার্থক্য রয়েছে। কারণ মানবদেহ এমন কিছু কাজ করতে পারে যা B যন্ত্রের পক্ষে করা সম্ভব নয়। এজন্য মাঝে মানবদেহকে মানবসৃষ্ট জটিল যন্ত্রের চেয়েও বিসায়কররূপে দেখা যায়। মানুষের দেহ একটি মাত্র কোষ থেকে উৎপত্তি লাভ করে। সময়ের পরিবর্তনের সাথে সাথে এই একটি কোষই পূর্ণাঙ্গ মানবদেহে পরিণত হয়। যা লক্ষকোটি কোষ দ্বারা গঠিত কিন্তু কোনো যন্ত্রেরই এমনটি ঘটে না। অতএব B যন্ত্রের যন্ত্রেরই ক্ষেত্রে এরূপ ঘটে না। কখনো কখনো শরীরের একটি মাত্র অংশ বিফল হলে সমগ্র মানবদেহের কর্মকাণ্ড বন্ধ হয়ে যায়। যেমন হৎপিণ্ডের ক্রিয়া থেমে গেলে শরীরের অন্যান্য সকল অঙ্গাণুগুলোর কর্মকাণ্ডও বন্ধ হয়ে যায় এবং খুব দ্রুত মন্তিক্ষের ক্রিয়া ও থেমে যায় যা B যন্ত্রের ক্ষেত্রে ঘটে না। মানবদেহ ইচ্ছামতো নড়াচড়া, কাজ শুরু করা, শেষ করা ইত্যাদি করতে সক্ষম হলেও B যত্রের পক্ষে তা সম্ভব নয়। কারণ B যন্ত্রটিকে চালনা করলেই কেবল সে কাজ করে। এছাড়াও মানবদেহ ও মানব সৃষ্ট যন্ত্রের মধ্যে অনেক পার্থক্য বিদ্যমান।

(ঘ) উদ্দীপকের A চিত্রটি একটি মানবদেহ যাকে যন্ত্র বলা যায়।

যুক্তিসহ বিশ্লেষণ: প্রাত্যহিক জীবনের বিভিন্ন প্রয়োজনে আমরা নানা ধরনের যন্ত্র ব্যবহার করি। যেমন- অটোমোবাইল, রেফ্রিজারেটর, টেলিভিশন, বাষ্পীয় ইঞ্জিন, অন্তর্গহন ইঞ্জিন ইত্যাদি। মানবদেহও অনেকাংশে যন্ত্রের ন্যায় আচরণ করে। যন্ত্রের মতো এটিও অনেকগুলোক্ষুদ্র ক্ষুদ্র অংশ বা অঙ্গ নিয়ে গঠিত; যার একটির অভাবে বা বিকল হয়ে গেলে সম্পূর্ণ দেহের কর্মকাণ্ড বিঘ্লিত হয়। যন্ত্রের প্রত্যেকটি অংশ যেমনিভাবে বিশেষ কাজ সম্পন্ন করে, তেমনিভাবে মানবদেহের প্রত্যেকটি অঙ্গ আলাদা আলাদা কাজে নিয়োজিত। মানবদেহের প্রত্যেকটি অঙ্গ একে অন্যের সাথে আন্তঃসম্পর্কিত, ও প্রত্যেকটি অঙ্গ নিজস্ব গতিতে চলে, কিন্তু সবগুলোর কাজই সুনির্দিষ্ট এবং এদের মধ্যে পূর্বনির্ধারিত সম্পর্ক রয়েছে। মানবদেহের এমন অংশগুলোর মধ্যে রয়েছে হৃদযন্ত্র, বৃক্ক, ফুসফুস, যকৃত ইত্যাদি। যন্ত্র দ্বারা কাজ করার জন্য শক্তির প্রয়োজন হয়। যেমন আমরা পেট্রোল, ডিজেল, সিএনজি ইত্যাদি জ্বালানি ব্যবহার করে রাসায়নিক শক্তিকে যান্ত্রিক শক্তিতে রূপান্তর করে।

অতএব উপরোক্ত আলোচনার পরিপ্রেক্ষিতে আমরা বলতে পারি মানবদেহ একটি যন্ত্রের অনুরূপ বিভিন্ন কার্যাবলি সম্পাদন করে তাই মানবদেহকে একটি যন্ত্র বলে আখ্যায়িত করা যায়।

প্রশ্ন ০৩ | রোকেয়া বেগম সন্তানের মা হবেন | চেক আপের জন্য একদিন তিনি ডাক্তারের কাছে যান | ভূণের সঠিক অবস্থান ও আকার জানার জন্য ডাক্তার তাকে আন্টাসনোগ্রাফি করাতে বললেন |

- (ক) ইকোকার্ডিওগ্রাফি কী?
- (খ) কী কী কারণে চিকিৎসকগণ এনজিওগ্রাম করার পরামর্শ দেন?
- (গ) উদ্দীপকে উল্লিখিত বিষয় সম্পর্কে স্পষ্ট ধারণা লাভে আল্টাসনোগ্রাফির ভূমিকা বর্ণনা কর।
- (ঘ) রোকেয়া বেগমকে দেওয়া পরীক্ষাটি অন্য কোনো চিকিৎসা প্রযুক্তির মাধ্যমে করা যাবে কি? উত্তরের সপক্ষে যুক্তি উপস্থাপন কর।

সমাধান:

- (ক) হৎপিণ্ড পরীক্ষা করার সময় যখন আন্ট্রাসাউন্ড ব্যবহার করা হয় তখন আন্ট্রাসনোগ্রাফিকে ইকোকার্ডিওগ্রাফি বলে**।**
- (খ) নিম্নের কারণগুলোর ক্ষেত্রে চিকিৎসকগণ এনজিওগ্রাম করার পরামর্শ দেন-
- ১. হৎপিণ্ডের বাইরে ধমনীতে ব্লকেজ হলে,
- ২. ধমনী প্রসারিত হলে,
- ৩. কিডনীর ধমনীর অবস্থা বুঝার জন্য এবং
- 8. শিরার কোনো সমস্যা হলে |
- (গ) আন্ট্রাসনোগ্রাফি করানোর ফলে ডাক্তার ভূণ সম্পর্কে সঠিক ধারণা পায়। আল্টাসনোগ্রাফি হলো এমন একটি প্রক্রিয়া যা উচ্চ কম্পাঙ্কের শব্দের প্রতিফলনের উপর নির্ভরগীল। রোগ নির্ণয়ের জন্য ব্যবহৃত। আল্টাসনোগ্রাফিতে শব্দের কম্পাঙ্ক 1-10 মেগাহার্টজ হয়ে থাকে। এই যন্ত্রের ট্রান্সডিউসার নামক একটি স্ফটিককে বৈদ্যুতিকভাবে উত্তেজিত করে উচ্চ কম্পাঙ্কের আল্টাসনিক তরঙ্গ উৎপন্ন করা হয় এবং তরঙ্গগুলোকে একটি সরু বীম এ পরিণত করা হয়। পরে এ বীমটিকে যে অঙ্গের প্রতিবিশ্ব রেকর্ড করতে হবে তার দিকে প্রেরণ করা হয় এবং নির্দেশিত তলের প্রকৃতি অনুযায়ী বীমটি প্রতিফলিত, শোষিত বা সংবাহিত হয়। যখন বীমটি বিভিন্ন ঘনত্বের পেশির বিভেদতলে আপতিত হয় তখন তরঙ্গের একটি অংশ প্রতিধ্বনি হিসেবে পুণরায় ট্রান্সডিউসারে ফিরে আসে। পরে এই প্রতিধ্বনিগুলোকে তড়িং সংকেতে রূপান্তরিত করা হয়। এই তড়িং সংকেতগুলোএকত্রে মনিটরের পর্দায় পরীক্ষণীয় বস্তু বা পেশির একটি প্রতিবিশ্ব গঠন করে। যার ফলে ভূণের আকার ও সঠিক অবস্থান সম্পর্কে নিশ্চিত হওয়া যায়। অতএব, ভুণ সম্পর্কে স্পষ্ট ধারণা লাভে আন্ট্রাসনোগ্রাফি মুখ্য ভূমিকা পালন করে।

(ঘ) রোকেয়া বেগমের পরীক্ষাটি অন্য চিকিৎসা পদ্ধতি এমআরআই এর মাধ্যমেও করা যাবে|

উত্তরের সপক্ষে যুক্তি: উদ্দীপক থেকে পাই, রোকেয়া বেগম মা হতে চলেছেন। তাই নিয়মিত পরীক্ষার অংশ হিসেবে ভুণের আকার ও সঠিক অবস্থান সম্পর্কে নিশ্চিত হওয়ার জন্য তিনি আন্ট্রাসনোগ্রাফি পরীক্ষাটি করান। আল্টাসনোগ্রাফি ছাড়াও শরীরের যেকোনো অঙ্গপ্রত্যঙ্গ যেমন— ভূণের অবস্থান ও সঠিক আকার ব্রিমাত্রিকভাবে দেখার জন্য এমআরআই করানো যায়। যদিও এই পরীক্ষাটি সিটিস্ক্যানের মাধ্যমেও করা যেত। তবে তিনি গর্ভবতী বলে এমআরআই 'ই তার জন্য উত্তম পরীক্ষা। কারণ সিটিস্ক্যান পরীক্ষা ব্যবহত 'ডাই' এলার্জিজনিত সমস্যার সৃষ্টি করতে পারে। অপরদিকে এমআরআই একটি ব্যথামুক্ত নিরাপদ রোগ নির্ণয় পদ্ধতি। এ যন্ত্রে এক্স-রে বা অন্য কোনো ধরনের বিকিরণ ব্যবহার করা হয় না। এতে শক্তিশালী চৌম্বকক্ষেত্র এবং রেডিও তরঙ্গ ব্যবহার করে শরীরের কোনো স্থানের বা অঙ্গের বিস্তৃত প্রতিবিম্ব গঠন করা হয়। নিউক্লিয় চৌম্বক অনুনাদ এর ভৌত ও রাসায়নিক নীতির উপর ভিত্তি করে এমআরআই কাজ করে। শরীরের যে অংশের এমআরআই স্ক্যান করা হয় সেখান থেকে প্রাপ্ত সংকেতকে একটি কম্পিউটারের সাহায্যে পরবর্তিত করে সে অংশের অত্যন্ত স্পষ্ট প্রতিবিম্ব গঠন করা হয়। প্রত্যেকটি প্রতিবিম্ব শরীরের কোনো স্থানের এক একটি ফালি বা ফ্লাইসের মতো কাজ করে। এভাবে অনেকগুলোপ্রতিবিম্ব গঠন করা হয়, যেগুলো শরীরের ঐ অংশের বৈশিষ্ট্যকে ফুর্টিয়ে তোলে। ফলে ঐ অংশটি স্পেষ্ট দেখতে পাওয়া যায়।

অতএব, বলা যায় যে, রোকেয়া বেগম আল্টাসনোগ্রাফি ছাড়াও এমআরআই এর মাধ্যমে ভ্রণের আকার ও সঠিক অবস্থান সম্পর্কে নিশ্চিত হতে পারেন।

প্রশ্ন ০৪। মির্জা সাহেব মাথা ব্যথাসহ মস্তিষ্কের কিছু সমস্যায় ভুগছেন। অবশেষে ডাক্তারদের শরণাপন্ন হলে ডাক্তার তাকে CT Scan করাতে বলেন।

- (क) CT Scan এর পূর্ণরূপ লেখ।
- (খ) এক্স-রে এর চারটি ব্যবহার লেখ।
- (গ) রোগ নির্ণয়ে উদ্দীপকের যন্ত্রটির প্রয়োগ ব্যাখ্যা কর
- (ঘ) আলোচিত যন্ত্রটির সাথে এক্স-রে এর পার্থক্য আছে কি? উত্তরের পক্ষে যুক্তি দাও**।**

সমাধান:

- (ক) CT Scan এর পূর্ণরূপ হলো Computed Tomography Scan.
- (খ) নিচে এক্স-রের চারটি ব্যবহার উল্লেখ করা হলো-

- ১. স্থানচ্যুত হাড়, হাড়ে ফাটল, ভেঙে যাওয়া হাড় ইত্যাদি এক্সেরর সাহায্যে খুব সহজেই শনাক্ত করা যায় |
- ২. মুখমন্ডলের যেকোনো ধরনের রোগ নির্ণয়ে এক্স-রের ব্যবহার অনেক যেমন— দাঁতের গোড়ায় ঘা এবং ক্ষয় নির্ণয়ে এক্স-রে ব্যবহৃত হয়।
- ৩. পেটের এক্স-রের সাহায্যে অস্ত্রের প্রতিবন্ধকতা শনাক্ত করা যায়
- ৪. এক্স-রের সাহায্যে পিত্তথলি ও কিডনির পাথরকে শনাক্ত করা যায়।

(গ) উদ্দীপকের যন্ত্রটি হচ্ছে সিটিস্ক্যান যন্ত্র |

রোগ নির্ণয়ে যন্ত্রটির প্রয়োগ: সিটিস্ক্যানের সাহায্যে শরীরের নরম টিস্যু, রক্তবাহী শিরা বা ধমনী, ফুসফুস, ব্রেন ইত্যাদির গ্রিমাত্রিক ছবি পাওয়া যায় । যকৃত, ফুসফুস এবং অগ্ন্যাশয়ের ক্যান্সার শনাক্ত করার কাজে সিটিস্ক্যান ব্যবহৃত হয় । সিটিস্ক্যানের প্রতিবিম্ব চিকিৎসককে টিউমার শনাক্তকরণ, টিউমারের আকার, অবস্থান এবং টিউমারটি পার্শ্ববর্তী অন্য টিস্যুকে কী পরিমাণ আক্রান্ত করেছে তা নির্ধারণেও সাহায্য করে । মাথার সিটিস্ক্যানের সাহায্যে মস্তিষ্কের ভেতরে কোনো ধরনের রক্তপাত, ধমনীর ফুলা এবং টিউমারের উপস্থিতি সম্পর্কে জানা যায় । সিটিস্ক্যানের দ্বারা রক্ত সঞ্চালনে সমস্যা আছে কি-না তাও জানা যায় । তাই উপরোক্ত সমস্যাগুলোর ক্ষেত্রে যন্ত্রটির ব্যবহার উল্লেখযোগ্য ।

্বি) আলোচিত যন্ত্রটি অর্থাৎ সিটিস্ক্যানের সাথে এক্স-রের পার্থক্য রয়েছে। এক্স-রে শরীরের অভ্যন্তরের কোনো ত্রিমাত্রিক অঙ্গের দ্বিমাত্রিক প্রতিবিম্ব গঠন করে আর যন্ত্রটি ত্রিমাত্রিক প্রতিবিম্ব সৃষ্টি করে।

উত্তরের পক্ষে যুক্তি: একটি ঘূর্ণন অক্ষের সাপেক্ষে অনেকগুলো দ্বিমাত্রিক এক্স-রে প্রতিবিদ্ধ নেওয়ার পর এগুলোকে একত্রিত করে ত্রিমাত্রিক প্রতিবিদ্ধ গঠন করা হয়। এ কাজটি কম্পিউটার ব্যবহারের মাধ্যমে সম্পন্ন করা হয়। বৃত্তাকার পথে ঘুরার সময় সিটিস্ক্যান যন্ত্র পরপর অনেকগুলোসক এক্স-রে বীম রোগীর শরীরের মধ্য দিয়ে প্রেরণ করে। অথচ এক্স-রে করার সময় রোগীর দেহে শুধুমাত্র একবার এক্সরে বীমটি অতিক্রম করে। ফলে এক্স-রের তুলনায় সিটিস্ক্যানের চিত্র অনেক নিখুঁত এবং বিস্তত হয়। সিটিস্ক্যান যন্ত্রে ব্যবহৃত এক্স-রে ডিটেকটরটির সাহায্যে রোগীর দেহের বিভিন্ন ঘনত্বের শত শত স্তর শনাক্ত করা যায়। ডিটেকটর দ্বারা সংগৃহীত ডাটা কম্পিউটারে প্রেরণ করা হয়। কম্পিউটার পরে শরীরের কোনো অংশের ত্রিমাত্রিক ছবি গঠন করে এবং পর্দায় প্রদর্শন করে। যা উত্তরের যৌক্তিকতা প্রমাণ করে।

প্রশ্ন ০৫ | মি. রহমান সাহেব কিছুদিন যাবৎ হৃদরোগে ভুগছেন | এক সূর্যয় তিনি ডাক্তারের শরণাপন্ন হলেন | তিনি ডাক্তারকে সমস্ত কথা খুলে বললেন | ডাক্তার তাকে প্রথম (i) ECG পরীক্ষা করতে বললেন | পরবর্তীতে অবস্থা বুঝে (ii) ETT পরীক্ষাটিও করতে বললেন |

- (ক) CT Scan কি?
- (খ) অভ্যন্তরীণ রেডিওথেরাপি কীভাবে দেওয়া হয়?
- (গ) উদ্দীপকের (i) নং পরীক্ষা কীভাবে করানো হয়? তা বর্ণনা কর।

অতিরিক্ত চাপ প্রয়োগ করা হয়। পরীক্ষাটির মাধ্যমে হুৎপিণ্ডের করোনারি

(ঘ) আধুনিক চিকিৎসাশাস্ত্রে (ii) নং পরীক্ষাটি গুরুত্বপূর্ণ ভূমিকা রাখে- ব্যাখ্যা কর।

সমাধান:

- (ক) যে প্রক্রিয়ায় কোনো ত্রিমাত্রিক বস্তুর কোনো ফালি বা অংশের দ্বিমাত্রিক প্রতিবিম্ব তৈরি হয় সে প্রক্রিয়াকে CT Scan বলে I
- (খ) অভ্যন্তরীণ রেডিওথেরাপির ক্ষেত্রে রোগীকে শরীরের ভেতর থেকে রেডিওথেরাপি দেওয়া হয়। এ প্রক্রিয়ায় রোগী তেজস্ক্রিয় তরল পদার্থ পানীয় হিসেবে গ্রহণ করে অথবা ইনজেকশনের মাধ্যমে রোগীর দেহে তেজস্ক্রিয় তরল পদার্থ প্রবেশ করিয়ে দেওয়া হয়। যেমন— রক্ত ক্যান্সারের ক্ষেত্রে এ তরল পদার্থে তেজস্ক্রিয় ফসফরাস, থাইরয়েড ক্যান্সারের ক্ষেত্রে তেজস্ক্রিয় আয়োডিন ব্যবহার করা হয়। এ প্রক্রিয়াকে ব্রাকিথেরাপি বলে।
- (গ) উদ্দীপকের (i) নং প্রক্রিয়াটি ইসিজি যা চিকিত্স বিজ্ঞানের বৈপ্লবিক পরিবর্তন এনেছে। বর্তমানে প্রায় প্রত্যেকটি হাসপাতালেই আমরা এই পদ্ধতির ব্যবহার দেখতে পাই। বিশেষ করে হৎপিণ্ডের সমস্যা জনিত কারণে এ পদ্ধতি বেশি প্রয়োগ করা হয়ে থাকে। কারণ এ পদ্ধতির মাধ্যমে হৎপিণ্ডের স্পন্দনের হার এবং ছন্দময়তা পরিমাপ করা যায়। হৎপিণ্ডের মধ্যে রক্ত প্রবাহের প্রমাণও এ পদ্ধতি ব্যবহার করে পাওয়া যায়।
- শরীরের বিভিন্ন স্থানে তড়িদদ্বার বা ইলেকট্রোড সমূহ স্থাপন করা হয় যা হৃদযন্ত্রের বিভিন্ন দিক থেকে আগত বৈদ্যুতিক সংকেতগুলকে শনাক্ত করে। হৃৎপিণ্ডের একটি সম্পূর্ণ ছবি পাওয়ার জন দশটি ইলেকট্রোড ব্যবহার করে বারোটি বৈদ্যুতিক সংকেতকে শনাক্ত করা হয়। প্রত্যেকটি হাতে এবং পায়ে একটি করে মোট চারটি এবং বাকী ছয়টি ইলেকট্রোড হৃৎপিণ্ডের প্রাচীর বরাবর স্থাপন করা হয়। প্রত্যেকটি ইলেকট্রোড দ্বারা সংগৃহীত তড়িৎ সংকেতকে রেকর্ড করা হয়। এ রেকর্ডসমূহের মুদ্রিত রূপই হলোইলেকট্রোকার্ডিওগ্রাম।
- (ঘ) উদ্দীপকে উল্লেখিত (ii) পরীক্ষাটি হচ্ছে ইটিটি পরীক্ষা। ইংরেজ Exercise Tolerence Test এর সংক্ষিপ্ত রূপ হলো

 ETT বা ইটিটি। ব্যায়াম বা অনুশীলন চলাকালীন হুৎপিণ্ডের বৈদ্যুতিক সক্রিয়তা বা কার্যকলাপ যেমন—

 স্পন্দনের হার, ছন্দময়তা প্রভৃতি ইটিটি পরীক্ষার মাধ্যমে রেকর্ড করা হয়। এটি আসলে অনুশীলনরত অবস্থায় রোগীর ইসিজি পরীক্ষা।

 করোনারী আটারি রোগের রোগ নিরূপণের জন্য এ পরীক্ষাটি খুবই উপকারী। এ পরীক্ষার সময় হদযন্ত্রের ওপর অনুশীলনের মাধ্যমে

ধমনীতে সৃষ্ট আংশিক অবরুদ্ধ অবস্থা শনাক্ত করা হয়ে থাকে | সাধারণত বিশ্রামে থাকা অবস্থায় রোগীর দেহে এ ধরনের অস্বাভাবিক অবস্থা শনাক্ত করা সম্ভব হয়ে ওঠে না | এ পরীক্ষার মাধ্যমে রোগীকে সাইকেল চালিয়ে বা অনবরত হেঁটে অনুশীলন করতে হয় যার ফলে রোগীর হৃদযন্ত্রে সংগঠিত পরিবর্তনগুলো ডাক্তার শনাক্ত করে তার চিকিৎসা প্রদান করে | তাই বলা যায় চিকিৎসা শাস্ত্রে (ii) নং পরীক্ষাটি গরুত্বপূর্ণ ভূমিকা রাখে |

🕜 বহুনির্বাচনী (MCQ)

021	यागिक्षरमध्य । नशस्म	4)1 4)1 441 484

(ক) জড় জগৎ (খ) প্রাণিজগৎ

(গ) মৎস্য জগৎ ও প্রাণিজগৎ উত্তর: ঘ

ব্যাখ্যা: পদার্থবিজ্ঞানের নিয়মগুলো সার্বজনীন। ফলে শুধু জড়জগৎ নয় প্রাণিজগতকেও পদার্থবিজ্ঞানের নিয়মে ব্যাখ্যা করা সম্ভব। এটাই জীব পদার্থবিজ্ঞানের ভিত্তি।

০২ | বিজ্ঞানের কোন দুটি শাখার মধ্যে মিল খুঁজে পাওয়া গেছে?

(ক) জীববিজ্ঞান ও ভৌতবিজ্ঞান

(খ) রসায়ন ও পদার্থবিজ্ঞান

(গ) জড় বিজ্ঞান ও জীববিজ্ঞান

(ঘ) প্রাণিবিজ্ঞান ও ভৌত বিজ্ঞান

উত্তর: ক

ব্যাখ্যা: প্রাণিদেহকে অনেক দিক থেকে যন্ত্রের সঙ্গে তুলনা করা যায় এবং প্রাণিদেহের অনেক আচরণকে ভৌত নিয়ম দ্বারা ব্যাখ্যা করা সম্ভব। তাই ভৌত বিজ্ঞান ও জীববিজ্ঞান এর মধ্যে মিল খুঁজে পাওয়া যায়।

০৩ | বসু মন্দির প্রতিষ্ঠা কোন বিষয়ের উপর গবেষণার নিমিত্তে তৈরি হয়েছিল?

(ক) শরীর তত্ত্ব

(খ) জীববিজ্ঞান

(গ) পদার্থবিজ্ঞান

(ঘ) রসায়ন

উত্তর: ক

০৪| জগদীশ চন্দ্র বসু রেডিও সংকেতকে শনাক্ত করার জন্য কী ব্যবহার করেছিলেন?

(ক) অর্ধপরিবাহী জংশন

(খ) ট্রায়োড

(গ) অ্যামিটার

(ঘ) ক্রোস্কোগ্রাফ

উত্তর: ক

০৫ | জগদীশচন্দ্র বসু প্রথম রেডিও সংকেত শনাক্ত করার কাজে কী ব্যবহার করেন?

(ক) অর্ধ পরিবাহী জংশন

(খ) অর্ধ পরিবাহী ডায়োড

(গ) পূর্ণ পরিবাহী জংশন

(ঘ) পূর্ণ পরিবাহী ডায়োড

উত্তর: ক

০৬ | একটি পূর্ণাঙ্গ মানবদেহ কয়টি কোষ দ্বারা গঠিত?

(ক) হাজার কোটি (খ) লক্ষ কোটি

(গ) লক্ষ মিলিয়ন

(ঘ) লক্ষ বিলিয়ন

উত্তর: খ

০৭ হৎপিণ্ড রক্ত সঞ্চালনের জন্য কোন ধরনের সিগন্যাল ব্যবহার করে?									
(ক) ইলেকট্রনিক সিগন্যাল	(খ) বৈদু	(খ) বৈদ্যুতিক							
(গ) রাসায়নিক		(ঘ) জৈবিক		উত্তর: খ					
০৮ বৃক্ক একটি বিশেষ ধরনের—									
(ক) শ্বসন যন্ত্র	(খ) ব্যাপন যন্ত্র	(গ) ছাঁকন যন্ত্ৰ	(ঘ) প্রস্কেদন যন্ত্র	উত্তর: গ					
ব্যাখ্যা: বৃক্ক একটি ছাঁকন যন্ত্ৰ যেটি রক্ত থেকে নাইট্রোজেন বর্জ্য সরিয়ে সেটিকে পরিশোধন করে।									
০৯ এক্স-রে টিউবে ভোল্টেজ প্রায় কত ভোল্ট?									
(ক) 50 হাজার	(খ) 100 হাজার	(গ) 150 হাজার	(ঘ) 200 হাজার	উত্তর: খ					
১০। বিজ্ঞানী রন্টজেন কত সালে এক্সরে আবিষ্কার করেন?									
(ক) 1860 সালে (খ) 18	70 সালে (গ) 1875 সালে	(ঘ) 1885 সালে উ	ত্তর: ঘ						
ব্যাখ্যা: 1885 সালে উইলহেলোম রন্টজেন উচ্চ শক্তিসম্পন্ন এক ধরনের রশ্মি ব্যবহার করেন, যেটি শরীরের মাংসপেশি ভেদ করে গিয়ে ফটোগ্রাফি প্লেটে ছবি তুলতে পারে। এই রশ্মির প্রকৃতি তখন জানা ছিল না বলে তার নাম দেওয়া হয়েছিল এক্স-রে।									
১১ ফিলামেন্ট কোথায় থাকে (ক) অ্যানোডে	? (খ) তড়িৎ উৎসে (গ) ক্যা	থোডে (ঘ) ব্যট	ারিতে উত্তর: '	গ					
ব্যাখ্যা: এক্স-রে নল একটি বায়ুশূন্য কাচনল। এ কাচনলের দু'প্রান্তে দুটি তড়িদদ্বার থাকে। এদের একটি ক্যাথোড এবং অপরটি অ্যানোড। ক্যাথোডে টাংস্টেন ধাতুর একটি কুগুলী থাকে, একে ফিলামেন্ট বলে।									
১২ গর্ভবতী মহিলাদের কোথায় এক্স-রে করার ক্ষেত্রে সীমাবদ্ধতা আবস্থ?									
(ক) মেলভিক অঞ্চল	(খ) পেলভিক অঞ্চল	(গ) শ্বাসনালী	(ঘ) পেসিফিক অঞ্চল	উত্তর: খ					
ব্যাখ্যা: এক্স-রে নেওয়ার সময় রোগীকে সীসা নির্মিত এপ্রোন দ্বারা যথাসম্ভব আচ্ছাদিত করে নিতে হয় । অতি জরুরি না হলে গর্ভবতী মহিলাদের উদর এবং পেলভিক অঞ্চলের এক্স-রে করা উচিত নয় ।									
১৩ মস্তিঙ্কের রক্তক্ষরণ কোনটির মাধ্যমে শনাক্ত করা যায়?									
(ক) ইটিটি	(খ) ইজিজি	(গ) সিটিস্ক্যান	(ঘ) এক্স-রে	উত্তর: গ					
১৪। নিচের কোন রোগ নির্ণয় পদ্ধতিটি ব্যথাহীন এবং নিরাপদ?									
(ক) আলট্রাসনোগ্রাফি	(খ) সিটিস্ক্যান	(গ) এমআরআই	(ঘ) ইসিজি	উত্তর: গ					

(ডাই) ঢুকিয়ে দেওয়া হয়।

ব্যাখ্যা: এমআরআই যন্ত্রে এক্সরে বা অন্য কোনো বিকিরণ ব্যবহার করা হয় না । এ যন্ত্রে শক্তিশালী টোম্বকক্ষেত্র এবং রেডিও তরঙ্গ ব্যবহার করে শরীরের কোনো স্থানের বা অঞ্জের বিস্তৃত প্রতিবিম্ব গঠন করা হয় । তাই এমআরআই হলো ব্যথাহীন, এবং নিরাপদ রোগ নির্ণয় পদ্ধতি ।

১৫ সিটিস্ক্যান পরীক্ষ	গয় ডাই ব্যবহৃত হলে কোন গ	পাৰ্শ্ব প্ৰতিক্ৰিয়াটি দেখা দেয়?						
(ক) জ্বর জ্বর অনুভব	া করা	(খ) এলার্জিজনিও	(খ) এলার্জিজনিত সমস্যা					
(গ) বমি বমি ভাব হং	ওয়া	(ঘ) সাইনাসজনি	(ঘ) সাইনাসজনিত সমস্যা					
১৬ ইসিজি এর পূর্ণর	রূপ কী?							
(ক) ইলেক্ট্রোগ্রাফি		(খ) ইলেক্ট্রোকার্ডি	(খ) ইলেক্ট্রোকার্ডিওগ্রাম					
(গ) ইলেক্ট্রোকার্ডিওন	লজ <u>ি</u>	(ঘ) ইলেক্ট্রোকার্ডি	(ঘ) ইলেক্ট্রোকার্ডিওমিক					
১৭ হুৎপিন্ডের সম্পূর্ণ ছবি পাবার জন্য হুৎপিণ্ডের প্রাচীর বরাবর কয়টি ইলেকট্রোড স্থাপন করা হয়?								
(ক) পাঁচটি	(খ) ছয়টি	(গ) সাতটি	(ঘ) আটটি	উত্তর: খ				
১৮ রেডিওথেরাপি'র পূর্ণরূপ কী?								
(ক) Radiation Tolerence Test (খ) Rad ation Therapy								
(গ) Experise T	olerence Test	(ঘ) Ang og	raphy	উত্তর: খ				
১৯ রেডিওথেরাপিতে ক্যান্সার কোষ ধ্বংস করার জন্য কোন রশ্মি ব্যাবহার করা হয়?								
(ক) এক্স রশ্মি	(খ) আলফা রশ্মি	(গ) বিটা রশ্মি	(ঘ) গামা রশ্মি	উত্তর: ক				
ব্যাখ্যা: সাধারণত	রেডিওথেরাপি উচ্চশক্তিসপর	্র এক্সরে ব্যবহার করে ক্যান্সার (কোষ ধ্বংস করে । এটি টিউমা	র কোষের অভ্যন্তরস্থ				
DNA-কে ধ্বংসের মাধ্যমে কোষের সংখ্যাবৃদ্ধি করার ক্ষমতা নষ্ট করে								
২০ কোন রেডিওথে	ারাপিতে রোগী তেজস্ক্রিয় তর	ল পদার্থ পানীয় হিসাবে গ্রহণ ক	લ્લંડ					
(ক) বাহ্যিক	(খ) অভ্যন্তরীণ	(গ) প্রাচীন	(ঘ) আধুনিক	উত্তর: খ				
ব্যাখ্যা: অভ্যন্তরীণ রেডিও থেরাপিতে রোগী তেজস্ক্রিয় তরল পদার্থ পানীয় হিসেবে অথবা ইনজেকশনের মাধ্যমে রোগীর দেহে তেজস্ক্রিয় তরল পদার্থ প্রবেশ করানো হয়।								
২১ শরীরের রক্ত নার্	লিকা দেখার জন্য নিচের কো	নটি ব্যবহৃত হয়?						
(ক) এভোসকোপি	(খ) এনজিওগ্রাফি	(গ) ইসিজি	(ঘ) ইটিটি উত্তর: খ	ī				
ব্যাখ্যা: এক্স-রের	মাধ্যমে শরীরের রক্তনালীগু	লোদেখার জন্য এনজিওগ্রাফি	ব্যবহার করা হয় সাধারণ এ	ক্স-রে করে রক্তনালী				
ভালোভাবে দেখা যায় না বলে এনজিওগ্রাফি করার সময় রক্তনালীতে বিশেষ Contrast Material বা বৈসাদৃশ্য তরল								

২২ | কোবাল্ট – 60 আইসোটোপ থেকে কোন রশ্মি নির্গত হয়?

(ক) আলফা

(খ) বিটা

(গ) গামা (ঘ) অতিবেগুনি

উত্তর: গ

ব্যাখ্যা: কোবাল্ট $-60~(^{60}Co)$ একটি গামা-রে বিকিরণকারী আইসোটোপ। এই আইসোটোপ ব্যবহার করে ক্যান্সার আক্রান্ত কোষকে গামা-রে দিয়ে ধ্বংস করা হয়।

২৩ | আলট্রাসনোগ্রাফিতে-

- ব্যবহৃত শব্দের কম্পাঙ্ক 1-10 মেগাহার্টজ
- সৃষ্ট প্রতিবিশ্ব ত্রিমাত্রিক ii.
- iii. শক্তিশালী চৌম্বকক্ষেত্ৰ ব্যবহৃত হয়

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii (ঘ) i, ii ও iii

উত্তর: ক

ব্যাখ্যা: আল্টাসনোগ্রাফিতে উচ্চ কম্পাঙ্কের শব্দ ব্যবহার করা হয় যার কম্পাঙ্ক 1-10~MHz। সাম্প্রতিক আট্রাসনোগ্রাফিতে 3D ছবি দেখানো হয় **Ⅰ**

২৪ | বুকের ব্যথা পরীক্ষার জন্য প্রযোজ্য-

- এভোসকোপি
- ii. ইসিজি
- রেডিওথেরাপি

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

উত্তর: ক

২৫ | কোবাল্ট বিকিরণ ব্যবহৃত হয়-

- রেডিওথেরাপিতে i.
- ii. ইসিজিতে
- এডোসকোপিতে

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii (গ) ii ও iii (ঘ) i, ii ও iii

উত্তর: ক

ব্যাখ্যা: বাহ্যিক রেডিওথেরাপির ক্ষেত্রে শরীরের বাহির থেকে উচ্চশক্তিসম্পন্ন এক্সরে, কোবাল্টবিকিরণ, ইলেকট্রন বা প্রোটন বীম ব্যবহার করা হয়

২৬| আইসোটোপে–

- i. প্রোটন সংখ্যা সমান
- ii. নিউট্রন সংখ্যা সমান
- iii. ভর সংখ্যা সমান

নিচের কোনটি সঠিক?

(ক) i ও ii খে) i ও iii (গ) ii ও iii (ঘ) i, ii ও iii উত্তর: ক

ব্যাখ্যা: বিভিন্ন ভরসংখ্যা বিশিষ্ট একই মৌলের পরমাণুকে ঐ মৌলের ইসোটোপ বলে । কোনো মৌলের আইসোটোপসমূহে প্রোটনের সংখ্যা সমান থাকে কিন্তু নিউট্রনের সংখ্যা বিভিন্ন হয় । মৌলের নিউক্লিয়াসে অবস্থিত প্রোটন এবং নিউট্রনের সংখ্যাই হলো এর ভরসংখ্যা ।

নিচের তথ্যের আলোকে ২৭ ও ২৮ নং প্রশ্নের উত্তর দাও:

ফারুক সাহেব হুংস্পদ্দনের হার নির্ণয়ে ডাক্তারের শরণাপন্ন হন । ডাক্তার অনুশীলনরত অবস্থায় একটি বৃহৎ যন্ত্রের মাধ্যমে তা নির্ণয় করেন ।

২৭| উদ্দীপকে উল্লিখিত পরীক্ষাটির নাম—

Z [O A TO TO THE THE A THE

(ক) ইসিজি (খ) এনজিওগ্রাফি (গ) ইটিটি

(ঘ) আলট্রাসনোগ্রাফি উত্তর: গ

২৮ | পরীক্ষাটি করার সময় প্রযোজন হয়–

- i. স্থির বাই সাইকেল
- ii. ট্রেডমিল যন্ত্র
- iii. ডিটেকটর

নিচের কোনটি সঠিক?

(ক) i ও ii (খ) i ও iii (গ) ii ও iii (ঘ) i, ii ও iii উত্তর: গ

নিচের আলোকে ২৯-৩১ নং প্রশ্নের উত্তর দাও:

বৃত্তাকার পথে আবর্তনশীল একটি যন্ত্রে অনেকগুলোসরু এক্সরে বীম রোগীর শরীরের মধ্য দিয়ে প্রেরণ করা হয়। এই যন্ত্রে টমোগ্রাফি প্রক্রিয়ায় প্রতিবিম্ব গঠিত হয় না

২৯ | উদ্দীপকে কোন যন্ত্রের কথা বলা হয়েছে?

(ক) এক্সরে (খ) এনজিওগ্রাম (গ) আলট্রাসনোগ্রাম (ঘ) সিটিস্ক্যান উত্তর: ঘ

৩০ | কাদের জন্য এই যন্ত্র ব্যবহারের সীমাবদ্ধতা রয়েছে?

(ক) শিশু (খ) গর্ভবতী মহিলা (গ) বৃদ্ধ (ঘ) এজমা রোগী উত্তর: খ

ব্যাখ্যা: সিটিস্ক্যান করার জন্য যেহেতু এক্স-রে ব্যবহার করা হয় তাই গর্ভবতী মহিলাদের সিটিস্ক্যান করা হয় না

৩১ | যন্ত্রটি দ্বারা সৃষ্ট প্রতিবিদ্ধ—

- (ক) দ্বিমাত্রিক
- (খ) শূন্যমাত্রিক
- (গ) ত্রিমাত্রিক
- (ঘ) একমাত্রিক

উত্তর: গ

৩২ | X-রশির তরঙ্গদৈর্ঘ্য কত?

[ঢাকা রেসিডেনসিয়াল মডেল কলেজ, ঢাকা; গভঃ ল্যাবরেটরি হাই স্কুল, ঢাকা; বগুড়া জিলা স্কুল, বগুড়া]

- $(5) 10^{-17} m$
- (খ) $10^{-10} m$
- (গ) $10^{-16} m$
- (ঘ) $10^{-6}~m$

উত্তর: খ

৩৩| হুৎপিণ্ডের একটি সম্পূর্ণ ছবি পাওয়ার জন্য কয়টি ইলেকট্রোড ব্যবহার করা হয়?

[ভিকারুননিসা নূন স্কুল এন্ড কলেজ, ঢাকা; আইডিয়াল স্কুল অ্যান্ড কলেজ, মতিঝিল, ঢাকা]

- (ক) ৯টি
- (খ) ১০টি
- (গ) ১১টি
- (ঘ) ১২টি

উত্তর: খ

ব্যাখ্যা: : ২ হাতে ২টি, ২ পায়ে ২টি এবং বাকি ছয়টি হৎপিণ্ডের অবস্থান সংলগ্ন বুকে সর্বমোট 10 টি ইলেকট্রোড ব্যবহার করে একটি সম্পূর্ণ ছবি পাওয়া যায়।

৩৪। কোন বিজ্ঞানী একাধারে একজন পদার্থ বিজ্ঞানী ও জীববিজ্ঞান ছিলেন?

[বনানী বিদ্যানিকেতন স্কুল ও কলেজ, ঢাকা]

(ক) নিউটন

(খ) আইনস্টাইন

(গ) অ্যারিস্টটল

(ঘ) জগদীশচন্দ্র বসু

উত্তর: ঘ