THIS DOCUMENT WAS CREATED IN SPRING, 2019 BY A GROUP OF TUTORS TO PREPARE FOR A REVIEW SESSION, AND MAY NOT ACCURATELY REPRESENT THE MATERIAL TAUGHT IN LATER COURSE OFFERINGS

SOLUTIONS:

1. *O(NlogN)*

2.

Data Structure	Remove	Find	Insert	Find Min	Find Max
Balanced BST	O(logN)	O(logN)	O(logN)	O(logN)	O(logN)
BST (Not necessarily balanced)	O(N)	O(N)	O(N)	O(N)	O(N)
Singly Linked List in ascending order (stores the head and tail)	O(N)	O(N)	O(N)	O(1)	O(1)
Unsorted Singly Linked List (stores the head and tail)	O(N)	O(N)	*at tail O(1)	O(N)	O(N)
Sorted Array in ascending order, using binary search	O(N)	O(logN)	O(N)	O(1)	O(1)
Unsorted Array	O(N)	O(N)	O(N)	O(N)	O(N)

No, 38 cannot be in the right subtree of 56.

Preorder: 56, 48, 17, 12, 52, 57, 64 Postorder: 12, 17, 52, 48, 64, 57, 56 Inorder: 12, 17, 48, 52, 56, 57, 64