p16.wxmx 1 / 3

Practical 16

Figure 1:

16. Locate the zeros and poles of $g(z) = \frac{\pi \cot(\pi z)}{z^2}$ and determine their order. Also justify that $\text{Res}(g, 0) = -\pi^2/3$.

1

→ load(coma);

coma v.1.84, (Wilhelm Haager, 2017-02-24)

(%01)

/usr/share/maxima/5.43.2/share/contrib/coma/coma.mac

→ g(s):=%pi·cot(%pi·s)/s^2;

(%02) g(s):=
$$\frac{\pi \cot (\pi s)}{s^2}$$

 \rightarrow zeros(g(s));

(%o3) **[]**

 \rightarrow poles(g(s));

(%o4) **[]**

 $g(s) = \pi \cos(\pi s)/s^2 \sin(\pi s)$. $\pi \cos(0) = \pi$ and $s^2 \sin(\pi s)$ has a zero of order 3 at s = 0. $\Rightarrow g(s)$ has a pole of order 3 at 0.

 \rightarrow residue(g(s), s, 0);

$$(\%05) - \frac{\pi^2}{3}$$

2

Figure 2:

Find Res
$$[g, 0]$$
 if $g(z) = \frac{3}{2z + z^2 - z^3}$.

p16.wxmx 2 / 3

$$\rightarrow$$
 f(s):=3/(2·s+s^2-s^3);

(%012)
$$f(s) := \frac{3}{2 s + s^2 - s^3}$$

→ zeros(f(s));

(%o13) **[]**

→ poles(f(s));

→ poles_and_zeros(f(s));

(%o16)

$$\rightarrow$$
 residue(f(s), s, 0);

$$(\%018) \frac{3}{2}$$

$$\rightarrow$$
 residue(f(s), s, -1);

$$\rightarrow$$
 residue(f(s), s, 2);

$$(\%020) - \frac{1}{2}$$

3

Exercise

p16.wxmx 3 / 3

Figure 3:

1. Find Res[f, 0] for

(a)
$$f(z) = z^{-1} \exp z$$
.

(b)
$$f(z) = z^{-3} \cosh 4z$$
.

(c)
$$f(z) = \csc z$$
.

(d)
$$f(z) = \frac{z^2 + 4z + 5}{z^2 + z}$$
.

(e)
$$f(z) = \cot z$$
.