Network Flous
« Start of network = source & end = sink. « Capacity of arc = no. reat to it. « Saturated arcs are at fait capacity.
· Easewell ares are at fall capacity.
· Maximum-flow minimum-cut theorem: O States that the flow through any network cannot exceed the volve of any cut o mascimum flow = value of minimum cut
o marriage of any cat
minimam cut
"Add super sinks and super sources to questions containing multiple sinks and sources. These should have a
Sensible apacity and emoved after finding a musimum flow
on capa and to replace the nocle.
of For relevants with minimum flows, the vicient of any cut, is now the som of the upper capacities from & to I minus the sum of the lover capacities of S.
from 8 to 7 minus the sum of the lover
Capacitios Jam Y 60 S.

0

c) Flow augmenting paths

SBCT with capacity 1
SBCDT with capacity 1
SABCDT with capacity 1

This gives a maximum total flow of 10. The flow is shown on this diagram, along with the saturated arcs.

A 3 C 4 4 1 2 Y 0 1 2

Diagrams showing the flow augmenting paths can be very messy. Try to keep yours as tidy as possible and always list the flow augmenting paths you have used

Cuts

A cut partitions the vertices into two sets, one containing the source and one containing the sink.

The capacity of a cut is the total of all the cut edges with direction going from source to sink

Find the capacity of the cuts shown on the directed network:

Note that only three cuts have been shown here, but there are many more cuts in this network.

 C_1 is the cut $\{S\}$, $\{A, B, C, D, T\}$

It has capacity 5 + 6 = 11

 \mathbb{C}_2 is the cut $\{S, B\}, \{A, C, D, T\}$

It has capacity 5 + 0 + 3 + 4 = 12

 C_3 is the cut $\{S, A, B\}, \{C, D, T\}$

It has capacity 3 + 3 + 4 = 10

Note that we do not add the capacity of arc AB as it is directed from the sink side of the cut to the source side

Maximum flow- minimum cut theorem.

The theorem states that the maximum flow in a directed network is equal to the capacity of the minimum cut. In the example above the cut C_2 is the minimum cut and it has a value 10. This confirms that the flow of 10 found in (c) above is the maximum flow.

Networks with many sources and sinks

If there is more than one source $(S_1 \text{ and } S_2 \text{ on})$ the diagram or sink $(T_1 \text{ and } T_2 \text{ on the diagram})$ you must introduce *supersource* (S) and/or *supersink* (T).

 SS_1 must have a capacity 5 + 4 = 9

 SS_2 must have capacity 4 + 6 = 10

 T_1T must have capacity 4 + 4 = 8

 T_2T must have capacity 8 + 5 = 13

