UMIR

Raport z projektu "zdjęcia dronów"

Zespół 8:

Kazimierz Roman Artur Romaniuk Karol Duszczyk

Spis treści

1	Dane	2			
	1.1 Dataset	. 2			
	1.2 Data augmentation				
2	Zadanie 1: Uczenie klasyfikatora	2			
3	Zadanie 2: Uczenie sieci głębokiej	2			
	3.1 Przeprowadzić uczenie ostatniej warstwy splotowej wraz z częścią klasyfikującą	. 2			
	3.2 Wytrenować całą sieć dla zadanych danych				
	3.3 Uprościć strukturę sieci wytrenowanej w zadaniu 2c (np. poprzez usunięcie jedne				
	lub więcej końcowych warstw splotowych, usunięcie warstw regularyzujących itp.	.)			
	i ponowić uczenie	. 4			
	3.4 Zanalizować wyniki 2 abc	. 4			
4 Zadanie 3: Wizualizacja					
5 Podsumowanie					

1 Dane

1.1 Dataset

W projekcie użyliśmy zbioru zdjęć *Drone Detection*. Zbiór ten zawiera 4 klasy: 0 - samolot, 1 - dron, 2 - helikopter, 3 - ptak.

1.2 Data augmentation

W każdym zadaniu zastosowano augmentację danych. Zastosowano następujące transformacje:

- Random Rotation obrót o losowy kat z zakresu (-54°, +54°) (factor=0.15)
- Random Translation przesunięcie o losową wartość z zakresu (-10%, +10%) (height_factor=0.1, width_factor=0.1)
- Random Flip losowe odbicie w poziomie lub pionie
- Random Contrast losowa zmiana kontrastu z zakresu (-10%, +10%) (factor=0.1)

2 Zadanie 1: Uczenie klasyfikatora

3 Zadanie 2: Uczenie sieci głębokiej

3.1 Przeprowadzić uczenie ostatniej warstwy splotowej wraz z częścią klasyfikującą

Ostatnią warstwą splotową w sieci EfficientNetB0 jest warstwa top_conv, która jest trzecią warstwą od góry. Z tego powodu zamrożono wszystkie warstwy sieci poza trzema ostatnimi. Jako wagi początkowe zastosowano wagi imagenet. Następnie przeprowadzono uczenie z wykorzystaniem zbioru treningowego. W trakcie uczenia zastosowano optymalizator Adam, funkcję straty sparse categorical crossentropy oraz metrykę accuracy. Przetestowano różne wartości współczynnika uczenia, ostatecznie wybrano wartość 1e-5. Po 40 epokach uczenia osiągnięto na zbiorze testowym accuracy na poziomie 0.74, loss na poziomie 0.66 oraz macierz pomyłek przedstawioną w tabeli 1. Wyniki uczenia w czasie przedstawiono na rysunku 1. Dalsze uczenie nie przynosiło poprawy wyników.

klasa	0	1	2	3
0	32	18	29	49
1	0	229	4	1
2	1	4	105	1
3	4	19	24	76

Tabela 1: Macierz pomyłek dla zadania 2a

Rysunek 1: Wyniki uczenia dla zadania 2a

3.2 Wytrenować całą sieć dla zadanych danych

W tym zadaniu odmrożono wszystkie warstwy EfficientNetB0 i nadano im wagi początkowe imagenet. Następnie przeprowadzono uczenie z wykorzystaniem zbioru treningowego. W trakcie uczenia zastosowano optymalizator Adam, funkcję straty sparse categorical crossentropy oraz metrykę accuracy. Przetestowano różne wartości współczynnika uczenia, ostatecznie wybrano wartość 1e-5. Podczas uczenia zastosowano mechanizm early stopping, który zatrzymywał uczenie jeśli przez 4 epoki nie następowała poprawa wyników. Uczenie zatrzymało się po 22 epokach. Ostatecznie osiągnięto na zbiorze testowym accuracy na poziomie 0.63, loss na poziomie 1.01 oraz macierz pomyłek przedstawioną w tabeli 2. Wyniki uczenia w czasie przedstawiono na rysunku 2.

klasa	0	1	2	3
0	56	17	55	0
1	0	234	0	0
2	22	1	87	1
3	9	36	78	0

Tabela 2: Macierz pomyłek dla zadania 2b z wagami imagenet

Rysunek 2: Wyniki uczenia dla zadania 2b z wagami imagenet

Próbowano także wytrenować całą sieć bez zadanych wag początkowych, jednak w tym przypadku wyniki były dużo gorsze (accuracy na poziomie 0.38). Może to wynikać z faktu, że zbiór treningowy jest stosunkowo mały, a wagi początkowe z imagenet są lepsze niż losowe.

- 3.3 Uprościć strukturę sieci wytrenowanej w zadaniu 2c (np. poprzez usunięcie jednej lub więcej końcowych warstw splotowych, usunięcie warstw regularyzujących itp.) i ponowić uczenie
- 3.4 Zanalizować wyniki 2 abc
- 4 Zadanie 3: Wizualizacja
- 5 Podsumowanie