КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

ФАКУЛЬТЕТ КОМП'ЮТЕРНИХ НАУК ТА КІБЕРНЕТИКИ

Кафедра обчислювальної математики

«ЗАТВЕРДЖУЮ» Заступник-декана

Опена КАШПУР

1 " celan 2 2022 por

РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

МАТЕМАТИЧНИЙ АНАЛІЗ

для студентів

галузь знань спеціальність освітній рівень освітня програма вид дисципліни

12 Інформаційні технології 122 Комп'ютерні науки бакалавр

бакалавр Інформатика обов'язкова

> Форма навчання Навчальний рік

денна 2022 / 2023

Семестри

1, 2

Кількість кредитів ECTS Мова викладання, навчання 13 (6, 7)

.

та оцінювання

українська

Форма заключного контролю

іспити

Викладачі: Анікушин А.В., Молодцов О.І., Гуляницький А.Л., Рубльов Б.В., Аджубей Л.Т., Затула Д.В., Гуляницький А.А., Вовк В.С.

Пролонговано: на 20²³/20

на 20 /20

Факулутет комп' отерних

ypos .

20²³ p.

Розробник: **Андрій АНІКУШИН**, кандидат фіз.-мат. наук, доцент кафедри обчислювальної математики

«ЗАТВЕРДЖУЮ»

Зав. кафедри обчислювальної математики

Сергій ЛЯШКО

Протокол № 1

від «30» серпня 2022 року

1. Мета дисципліни.

Отримати фундаментальні знання з математичного аналізу та виробити відповідні навички, що ϵ основою вивчення інших математичних курсів та дозволять студентам розв'язувати важливі практичні та теоретичні задачі з різних галузей математики та суміжних дисциплін, розуміти теоретичні основи комп'ютерних наук, а також закладуть основи фундаментальної математичної підготовки, яка очікується від випускників класичних університетів.

2. Попередні вимоги до опанування або вибору навчальної дисципліни.

- 1) Знати зміст шкільного курсу математики, алгебри та початків аналізу, геометрії.
- 2) Вміти розв'язувати задачі в межах шкільного курсу математики, алгебри та початків аналізу, геометрії.

3. Анотація навчальної дисципліни.

Курс математичного аналізу складається з таких розділів: вступ, границя числової послідовності, границя та неперервність функції, похідна, інтеграл Ньютона-Лейбніца, інтеграл Рімана, функції багатьох змінних, ряди.

4. Завдання (навчальні цілі).

Закласти основи фундаментальної фахової підготовки, яка очікується від випускників класичних університетів із спеціальності "Комп'ютерні науки". Зокрема, розвивати:

ЗК11: Здатність приймати обгрунтовані рішення.

СК1: Здатність до математичного формулювання та досліджування неперервних та дискретних математичних моделей, обгрунтовування вибору методів і підходів для розв'язування теоретичних і прикладних задач у галузі комп'ютерних наук, аналізу та інтерпретування.

5. Результати навчання за дисципліною:

	Результат навчання (1.знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність)	Форми (та/або методи і технології) викладання і навчання	Методи оцінювання та пороговий критерій оцінювання (за необхідності)	Відсоток у підсумковій оцінці з дисципліни
Код	Результат навчання			
PH1.1	Знати теоретичні положення	лекції,	контрольні	20
	(означення понять та	консультації,	роботи,	
	формулювання теорем)	практичні	виконання	
	математичного аналізу	заняття,	практичних	
		самостійна	завдань, іспит	
		робота		
PH1.2	Знати обгрунтовування	лекції,	контрольні	20
	(доведення) основних	консультації,	роботи,	
	положень (теорем)	практичні	виконання	
	математичного аналізу	заняття,	практичних	
		самостійна	завдань, іспит	
		робота		
PH2.1	Вміти застосовувати	лекції,	контрольні	20
	теоретичні положення,	консультації,	роботи,	
	прийоми та методи	практичні	опитування,	
	математичного аналізу для	заняття,	виконання	
	розв'язування задач.	самостійна	практичних	

		робота	завдань, іспит	
PH3.1	Розуміти мову	лекції,	контрольні	20
	математичного аналізу.	консультації,	роботи,	
	Вміти коректно	практичні	виконання	
	формулювати твердження та	заняття,	практичних	
	висловлювати свої думки з	самостійна	завдань, іспит	
	математичного аналізу.	робота		
PH4.1	Вміти використовувати	лекції,	виконання	20
	власний час для ефективного	консультації,	практичних	
	вивчення математичного	практичні	завдань, іспит	
	аналізу, дотримуватися	заняття,		
	встановлених термінів під	самостійна		
	час навчання.	робота		

6.Співвідношення результатів навчання дисципліни із програмними результатами навчання

	Результати навчання дисципліни (код)	PH1.1	PH1.2	PH2.1	PH3.1	PH4.1
Програ	мні результати навчання (назва)					
	Використовувати сучасний	+	+	+	+	+
	математичний апарат неперервного та					
приз	дискретного аналізу, лінійної алгебри,					
ПРН2	аналітичної геометрії, в професійній діяльності для розв'язання задач					
	теоретичного та прикладного характеру					
	в процесі проектування та реалізації					
	об'єктів інформатизації.					

7.Схема формування оцінки.

7.1 Форми оцінювання студентів:

Семестрове оцінювання:

Перший семестр:

- 1) Контрольна робота I: PH1.1, PH1.2, PH2.1, PH3.1 10 балів / 6 балів;
- 2) Контрольна робота II: PH1.1, PH1.2, PH2.1, PH3.1 10 балів / 6 балів;
- 3) Контрольна робота III: PH1.1, PH1.2, PH2.1, PH3.1 10 балів / 6 балів;
- 4) Оцінка за практичні заняття: РН2.1, РН3.1, РН4.1 30 балів / 18 балів.

Другий семестр:

- 1) Контрольна робота IV: PH1.1, PH1.2, PH2.1, PH3.1 10 балів / 6 балів;
- 2) Контрольна робота V: PH1.1, PH1.2, PH2.1, PH3.1 10 балів / 6 балів;
- 3) Контрольна робота VI: PH1.1, PH1.2, PH2.1, PH3.1 10 балів / 6 балів;
- 4) Оцінка за практичні заняття: PH2.1, PH3.1, PH4.1 30 балів / 18 балів.

Типові завдання контрольних робіт (див. додаток 1)

- підсумкове оцінювання (у формі іспиту в кожному семестрі):
- максимальна кількість балів які можуть бути отримані студентом: 40;

- результати навчання, які оцінюються: PH1.1, PH1.2, PH2.1, PH3.1; PH4.1;
- форма проведення: письмова робота;
- види завдань: теоретичні питання (5 по 8%, разом 40%), задачі (20% і 40%, разом 60%).

Матеріал, що виноситься на іспит у першому семестрі: див. запитання 1-34.

Матеріал, що виноситься на іспит у другому семестрі: див. запитання 35-84.

Студент допускається до іспиту, якщо в семестрі набрав не менш ніж 20 балів. Для отримання загальної позитивної оцінки з дисципліни оцінка за іспит має бути не менше ніж 24 бали.

Запитання для підготовки до іспиту в першому семестрі

- 1. Поняття множини. Основні операції над множинами.
- 2. Метод математичної індукції.
- 3. Біном Ньютона.
- 4. Бінарні відношення. Поняття відображення. Сюр'єкція, ін'єкція, бієкція.
- 5. Поняття частково упорядкованого простору.
- 6. Супремум й інфімум непорожньої множини точок упорядкованого простору.
- 7. Теорема про топологічну характеризацію верхньої межі.
- 8. Поняття повного упорядкованого простору.
- 9. Повне упорядковане поле.
- 10. Неповнота упорядкованого поля раціональних чисел.
- 11. Дві теореми про ізоморфізм упорядкованих полів.
- 12. Система дійсних чисел. Розширена числова пряма.
- 13. Принцип Архімеда.
- 14. Теорема про щільність множини Q в R.
- 15. Принцип вкладених сегментів Кантора.
- 16. Компакт. Критерій компактності. Теорема Гейне-Бореля-Лебега.
- 17. Поняття числової послідовності.
- 18. Збіжна числова послідовність, єдиність границі.
- 19. Теорема про три послідовності.
- 20. Нескінченно великі послідовністі.
- 21. Символи Ландау. Арифметичні операції над символами Ландау.
- 22. Монотонні послідовності. Теорема Вейєрштрасса про існування границі монотонної обмеженої послідовності.
- 23. Число е. Ірраціональність числа е.
- 24. Стала Ейлера.
- 25. Теорема Штольца.
- 26. Поняття підпослідовністі. Часткові границі послідовності.
- 27. Теорема Больцано-Вейєрштрасса.
- 28. Поняття фундаментальної послідовності. Критерій Коші.
- 29. Гранична точка множини. Ізольована точка.
- 30. Границя функції в точці у розумінні Гейне й Коші. Теорема про еквівалентність.
- 31. Теорема про арифметичні операції над функціями, які мають границю в точці.
- 32. Теорема про границю композиції функцій.
- 33. Умова Коші й критерій існування границі функції в точці.
- 34. Односторонні границі, критерій існування границі функції в точці.
- 35. Перша та друга основні границі.
- 36. Еквівалентні функції.

- 37. Властивості відношення О та о.
- 38. Асимптотичні формули.
- 39. Неперервність функції в точці у розумінні Гейне й Коші.
- 40. Арифметичні операції над неперервними функціями.
- 41. Теорема про неперервність композиції неперервних функцій.
- 42. Елементарні функції, їх неперервність в областях визначення.
- 43. Коливання функції на множині та в точці. Критерій Бера неперервності функції в точці.
- 44. Класифікація точок розриву функції.
- 45. Монотонні функції.
- 46. Властивість стійкості строгих нерівностей для неперервних функцій.
- 47. Теореми про неперервні на компакті функції.
- 48. Теорема Коші про проміжні значення неперервної на сегменті функції.
- 49. Рівномірно неперервні функції. Теорема Кантора.
- 50. Апроксимаційна теорема Вейєрштрасса.
- 51. Яка потужність множини C(R)?
- 52. Диференційовне в точці відображення. Диференціал функції.
- 53. Означення похідної функції.
- 54. Зв'язок між диференційовністю та неперервністю.
- 55. Теорема про похідну композиції.
- 56. Теорема про лінійність операції диференціювання.
- 57. Теореми про похідну добутку двох функцій.
- 58. Теорема про похідну частки двох функцій.
- 59. Теорема про диференційовність оберненої функції.
- 60. Односторонні похідні. Критерій диференційовності функції.
- 61. Таблиця похідних.
- 62. Фізичний та геометричний зміст похідної.
- 63. Диференціал функції та наближені обчислення.
- 64. Інваріантність форми диференціала.
- 65. Теорема Ферма, Ролля та Дарбу.
- 66. Теорема Лагранжа про скінченні прирости й наслідки.
- 67. Критерій монотонності й строгої монотонності.
- 68. Теорема Коші й наслідки.
- 69. Теорема про точки розриву похідної.
- 70. Похідні та диференціали вищих порядків. Формула Лейбніца.
- 71. Похідні функції, заданої параметрично. Обчислення похідних оберненої функції. Обчислення похідних неявно заданої функції.
- 72. Перше правило Лопіталя. Перше правило Лопіталя для границі на нескінченності.
- 73. Друге правило Лопіталя. Алгебраїчне зведення невизначенностей до двох канонічних типів.
- 74. Формули Тейлора та Маклорена із залишковим членом у формі Пеано.
- 75. П'ять основних розвинень за формулою Маклорена.
- 76. Лема про єдиність асимптотичного розвинення.
- 77. Нелокальна формула Тейлора. Формула Тейлора із залишковим членом у формі Коші. Формула Тейлора із залишковим членом у формі Лагранжа.
- 78. Поняття зростання (спадання) функції в точці. Теорема про достатню умову зростання функції в точці.
- 79. Застосування похідної до доведення нерівностей.
- 80. Поняття локальних екстремумів функції. Абсолютні екстремуми функції.
- 81. Достатні умови екстремуму.
- 82. Опуклі множини і опуклі функції. Лема про три точки плошини.
- 83. Теореми Ферма й Лагранжа для односторонніх похідних.
- 84. Теорема про існування й монотонність односторонніх похідних опуклої функції.
- 85. Довести неперервність опуклої функції $(a,b) \to R$.

- 86. Критерій опуклості функції та наслідки з нього.
- 87. Нерівності Ієнсена, Гельдера, Мінковського та Юнг.
- 88. Точки перегину графіка функції.
- 89. Необхідна умова точки перегину графіка функції. Достатні умови точки перегину графіка функції.
- 90. Асимптоти графіка функції.
- 91. Побудова графіків функцій з повним дослідженням.

Запитання для підготовки до іспиту в другому семестрі

- 1. Поняття первісної. Таблиця первісних.
- 2. Первісна в широкому розумінні.
- 3. Інтегрування раціональних функцій.
- 4. Метод Остроградського.
- 5. Інтегрування ірраціональних функцій методом раціоналізації.
- 6. Підстановки Абеля, Ейлера, Чебишева.
- 7. Інтегрування тригонометричних функцій.
- 8. Означення інтеграла Рімана як границі інтегральних сум.
- 9. Верхні й нижні суми Дарбу, їх властивості.
- 10. Верхній й нижній інтеграли Дарбу.
- 11. Теорема про інтегровність функції у розумінні Дарбу, якщо вона інтегровна за Ріманом.
- 12. Теорема про інтегровність функції у розумінні Рімана, якщо вона інтегровна у розумінні Дарбу.
- 13. Критерій інтегровності у розумінні Дарбу.
- 14. Множини лебегової та жорданової міри нуль.
- 15. Критерій Лебега інтегровності функції за Ріманом.
- 16. Критерій вимірності множини за Жорданом.
- 17. Інтегрування по довільній жордановій множині.
- 18. Теорема про інтегровність композиції функцій.
- 19. Теореми про лінійність та адитивність інтеграла.
- 20. Теорема про інтегровність добутку двох інтегровних функцій.
- 21. Теорема про інтегровність модуля інтегровної функції.
- 22. Властивості інтеграла Рімана, виражені нерівностями.
- 23. Перша теорема про середнє.
- 24. Основна теорема інтегрального числення.
- 25. Основна формула інтегрального числення.
- 26. Друга теорема про середнє. Формули Боне.
- 27. Інтеграл Рімана як функція меж інтегрування.
- 28. Заміна змінної в інтегралі Рімана та формула інтегрування частинами.
- 29. Формула Тейлора з залишковим членом в інтегральній формі.
- 30. Адитивна функція проміжка, теорема про її зв'язок з функцією точки.
- 31. Загальна схема застосувань інтеграла в задачах геометрії й фізики.
- 32. Обчислення площі плоских фігур.
- 33. Обчислення довжини дуги.
- 34. Обчислення об'ємів за допомогою інтеграла.
- 35. Лінійний нормований простір.
- 36. Еквівалентні норми.
- 37. Простір зі скалярним добутком. Нерівність Шварца.
- 38. Нормування простору зі скалярним добутком.
- 39. Збіжні послідовності в лінійних нормованих просторах.
- 40. Банахів та гільбертів простори.
- 41. Приклади норм в R^n .

- 42. Збіжність у просторі R^n . Повнота простору R^n .
- 43. Теорема про єдиність границі.
- 44. Точка дотикання. Гранична точка множини, два еквівалентних означення.
- 45. Відкриті та замкнені множини, їх властивості. Область.
- 46. Границя відображення в точці у розумінні Гейне й Коші. Теорема про еквівалентність.
- 47. Неперервні відображення. Властивості неперервних відображень.
- 48. Компактні множини. Теорема про замкненість та обмеженість компактної множини.
- 49. Компактні множини в R^n .
- 50. Властивості відображень, неперервних на компактній множині.
- 51. Рівномірна неперервність. Теорема Кантора про рівномірну неперервність.
- 52. Теорема Банаха-Качіополлі-Пікара про нерухому точку.
- 53. Границя та неперервність відображення $f: \mathbb{R}^n \to \mathbb{R}^m$.
- 54. Лінійний оператор. Норма лінійного оператора, її обчислення. Неперервність обмеженого лінійного оператора.
- 55. Полілінійне відображення, його задання.
- 56. Поняття дотичних в точці відображень. Теорема про єдиність лінійного відображення, дотичного до відображення $x \mapsto f(x) f(x_0)$ у точці x_0 .
- 57. Означення диференційовного відображення одного банахового простору в інший.
- 58. Диференційовне відображення $f: \mathbb{R}^n \to \mathbb{R}$.
- 59. Похідна у напрямі, частинні похідні, градієнт функції, їх властивості.
- 60. Повний диференціал.
- 61. Достатня умова диференційовності функції в точці.
- 62. Диференціювання композиції функцій. Інваріантність форми першого диференціала.
- 63. Частинні похідні та диференціали вищих порядків.
- 64. Теорема Шварца про мішані похідні. Теорема про мішані похідні в загальному випадку.
- 65. Запис диференціала п-го порядку.
- 66. Нелокальна та локальна формули Тейлора.
- 67. Екстремум функції $f: \mathbb{R}^n \to \mathbb{R}$ (означення, необхідні й достатні умови).
- 68. Диференційовне відображення $f: \mathbb{R}^n \to \mathbb{R}^m$. Матриця Якобі та якобіан.
- 69. Теорема про середнє.
- 70. Теорема про існування неперервного неявного відображення.
- 71. Теорема про диференційовність неявного відображення.
- 72. Обернене відображення та його диференційовність. Властивість якобіанів.
- 73. Локальний умовний екстремум. Необхідна умова локального умовного екстремуму (метод множників Лагранжа). Достатні умови локального умовного екстремуму.
- 74. Означення числового ряду.
- 75. Необхідна умова збіжності числового ряду.
- 76. Критерій Коші збіжності ряду.
- 77. Абсолютна збіжність.
- 78. Операції над рядами.
- 79. Ознаки порівняння рядів з додатніми та невід'ємними членами.
- 80. Теорема Коші для ряду з невід'ємними монотонно спадними членами.
- 81. Узагальнений гармонічний ряд, ознака порівняння зі степенем.
- 82. Ознака Коші.
- 83. Ознака д'Аламбера.
- 84. Ознака Куммера.
- 85. Ознака Раабе.
- 86. Ознака Гаусса.
- 87. Тотожність Абеля.
- 88. Теорема про рівнозбіжність рядів, часткові суми яких пов'язані перетворенням Абеля.
- 89. Ознака Абеля.
- 90. Ознака Діріхле.

- 91. Ознака Лейбніца. Оцінка абсолютної похибки при заміні суми ряду Лейбніца його частковою сумою.
- 92. Групування членів ряду. Теорема про перестановку членів абсолютно збіжного ряду.
- 93. Поняття безумовно збіжного ряду.
- 94. Теорема Рімана.
- 95. Поточкова збіжність функціональної послідовності й функціонального ряду.
- 96. Рівномірна норма, її властивості.
- 97. Рівномірна збіжність функціональної послідовності й функціонального ряду.
- 98. Рівномірно фундаментальна послідовність.
- 99. Критерій Коші рівномірної збіжності функціональної послідовності та функціонального ряду.
- 100. Нормальна збіжність функціонального ряду. Теорема про рівномірну збіжність нормально збіжного функціонального ряду.
- 101. Мажорантна ознака Вейєрштрасса рівномірної збіжності функціонального ряду.
- 102. Функціональні властивості рівномірної границі функціональної послідовності та суми рівномірно збіжного функціонального ряду.
- 103. Теорема Діні.
- 104. Теорема про почленний граничний перехід під знаком суми функціонального ряду.
- 105. Теорема про рівномірну рівнозбіжність функціональних рядів, часткові суми яких пов'язані перетворенням Абеля.
- 106. Теорема Абеля.
- 107. Теорема Діріхле.
- 108. Степеневий ряд, радіус збіжності степеневого ряду.
- 109. Теорема про нормальну збіжність степеневого ряду на сегменті, який лежить строго всередині інтервалу збіжності.
- 110. Формула Коші-Адамара.
- 111. Теореми про почление інтегрування та диференціювання степеневого ряду.
- 112. Критерій розвинення функції в ряд Тейлора.
- 113. Достатня умова розвинення функції в ряд Тейлора.
- 114. П'ять основних розвинень.

Умови допуску студентів до підсумкового іспиту: не менше 36 балів за семестрове оцінювання.

Умови отримання загальної позитивної оцінки з дисципліни: не менше 24 балів на підсумковому іспиті.

7.2 Організація оцінювання:

Терміни проведення семестрового та підсумкового оцінювання: Перший семестр:

- 1) Контрольна робота I перша половина семестру.
- 2) Контрольна робота II друга половина семестру.
- 3) Контрольна робота III наприкінці семестру.
- 4) Оцінка за практичні заняття наприкінці семестру.

Другий семестр:

- 1) Контрольна робота IV перша половина семестру.
- 2) Контрольна робота V друга половина семестру.
- 3) Контрольна робота VI наприкінці семестру.
- 4) Оцінка за практичні заняття наприкінці семестру.

У випадку порушення студентами під час проведення семестрового оцінювання принципів академічної доброчесності, за відповідну роботу виставляється оцінка –10 балів.

7.3 Шкала відповідності оцінок

Відмінно / Excellent	90-100
Добре / Good	75-89
Задовільно /Satisfactory	60-74
Незадовільно / Fail	0-59

8. Структура навчальної дисципліни. Тематичний план лекційних, практичних та самостійних занять

_			Кількість го	гь годин	
п/п		лекції	практичні	самостійна робота	
	Частина 1. Границя чи	слової пос.	лідовності		
1	Задачі математичного аналізу	2	2	4	
2	Множина дійсних чисел	2	2	6	
3	Границя числової послідовності	2	2	6	
4	Порядкові та арифметичні властивості границі числової послідовності	4	2	4	
5	Границя монотонної послідовності	2	2	8	
6	Критерій Коші та теорема Штольца	2	2	8	
	Контрольна робота I		2		
	Частина 2. Границя та н	еперервні	сть функції		
7	Неперервність функції	2	2	6	
8	Властивості неперервних функцій	2	2	6	
9	Границя функції в точці	2	2	6	
10	Властивості границі функції в точці	2	2	6	
11	Рівномірно неперервні функції	2	2	4	
	Контрольна робота II		2		
	Частина 3. Дифере	нційне чис	лення		
12	Похідна функції та її властивості	4	4	6	
13	Основні теореми диференціального числення	2	2	8	
14	Похідні та диференціали вищих порядків	2	2	4	
15	Опуклі функції	2	2	4	
16	Застосування похідної до дослідження властивостей функції та побудови її графіка	2	2	8	
	Контрольна робота III		2		
	Всього	42	42	94	

Загальний обсяг 180 год., в тому числі:

Лекції – 42 *год*.

Практичні $-42 \, cod$.

Консультації – 2 год.

Самостійна робота – 94 год.

№	Номер і назва теми	Кількісьть годин			
п/п		лекції	практичні	самостійна робота	
	Частина 4. Первісна та інто	еграл Ньют	гона-Лейбніца		
1	Первісна. Елементарні методи інтегрування	2	2	4	
2	Інтегрування раціональних функцій	2	4	8	
3	Інтегрування ірраціональних функцій методом раціоналізації	2	4	8	
4	Інтегрування тригонометричних функцій та їх раціональних комбінацій	2	4	8	
	Частина 5. Інто	еграл Рімаі	на		
5	Інтеграли Рімана та Дарбу	2	2	4	
6	Критерій інтегровності за Ріманом та найпростіші властивості інтеграла Рімана	2	2	4	
7	Властивості інтеграла Рімана	2	2	6	
8	Застосування інтеграла Рімана	2	2	8	
	Контрольна робота IV		2		
	Частина 6. Функції	багатьох з	мінних		
9	Функції багатьох змінних	2	2	4	
10	Границя та неперервність функції багатьох змінних	2	2	6	
11	Похідна і диференціал функції багатьох змінних	2	2	6	
12	Похідні та диференціали вищих порядків	2	2	6	
13	Екстремуми функцій багатьох змінних	2	2	6	
14	Неявні відображення	2	2	4	
15	Умовні екстремуми функцій багатьох змінних	2	2	6	
	Контрольна робота V		2		
	Частина	7. Ряди			
16	Ряди з невід'ємними членами	2	4	6	
17	Ряди з членами довільного знаку	2	4	4	
18	Функціональні послідовності і ряди	2	2	6	
19	Властивості рівномірно збіжних функціональних послідовностей і рядів. Степеневі ряди	2	4	6	
				4	
	Контрольна робота VI		2		
	Всього	38	56	120	

Загальний обсяг 210 год., в тому числі:

Лекції – 38 *год*.

Практичні — $56 \ 200$.

Консультації – 2 год.

Самостійна робота – 114 год.

Під час самостійної роботи здобувачі вивчають лекційний матеріал та виконують задачі і вправи для засвоєння теми лекційного заняття.

9. Рекомендовані джерела:

Основні

- 1. Рубльов Б.В. Математичний аналіз. Теорія послідовностей. Київ, КНУ, 2010 95 с.
- 2. Підкуйко С.І. Математичний аналіз. Львів, Галицька Видавнича Спілка, 2004 530 с.
- 3. Александрович І.М. та ін. Вступ до математичного аналізу. Збірник задач. Київ "Київський університет". 2018. 239 с.
- 4. Ляшко І.І., Ємельянов В.Ф., Боярчук О.К Математичний аналіз. 2 частини Київ, Вища школа, 1 частина 1992 495 с, 2 частина 1993 375 с.
- 5. Александрович І.М., Молодцов О.І., Номіровський Д.А та інші Математичний аналіз. Топологія дійсної прямої. Київ, КНУ, 2010 103 с.
- 6. Ляшко С.І., Александрович І.М., Молодцов О.І. та інші Невласні інтеграли. Інтеграли, залежні від параметра. Київ, КНУ, 2010 151 с.

Додаток 1. Типові завдання контрольних робіт

Модульна контрольна №1: Вступ до аналізу, границя послідовності. Варіант – 1

"And you'll no longer burn To be brothers in arms..." Mark Knopfler

Уважно прочитайте завдання, та оберіть один з можливих варіантів відповіді: А: "достатньо щоб виконувалися обидва твердження 1) і 2) одночасно, але виконання лише одного з них недостатньо", В: "достатньо, щоб виконувалося твердження 1), але недостатньо виконання лише твердження 2)", С: "достатньо, щоб виконувалося твердження 2), але недостатньо виконання лише твердження 1)", D: "достатньо, щоб виконувалося хоча б одне з тверджень 1) або 2)", Е: "виконання навіть обох тверджень 1) і 2) одночасно не достатньо", F: "твердження задачі є правильним навіть якщо жодне з 1) і 2) не виконується "

1) Нехай $x, y \in \mathbb{R}$, причому x < y. За яких умов можна гарантувати, що $\exists z \in \mathbb{Q} : x < z < y$?

1. $x, y \in \mathbb{Q}$,

- 2. $\forall \varepsilon > 0$: $x^2 < y + \varepsilon$.
- 2) Нехай $\{x_n\}$ послідовність дійсних чисел. За яких умов можна гарантувати, що послідовність $\{x_n\}$ є обмеженою?

 $1.\exists \lim_{n\to\infty} x_n \in \mathbb{R},$ 2. послідовність $\{|x_n|\}$ є обмеженою згори. 3) За яких умов можна гарантувати, що послідовність $\{x_n\}$ є збіжною в \mathbb{R} ?

 $1.\{x_n\}$ — монотонна і обмежена згори,

- 2. $\{x_n\}$ фундаментальна.
- 4) Нехай задано функцію $f:A\to B$, де A та B скінченні множини. $S\subseteq D(f)$. За яких умов можна гарантувати, що $|S|\le |f(S)|$?

1.f — ін'єктивне відображення,

- 2. f бієктивне відображення.
- 5) Нехай $A, B \subseteq \mathbb{R}$ і $a = \sup A, b = \sup B$. За яких умов можна гарантувати, що a < b?

1. $A \subseteq B$,

- 2. c < b, де c деяка мажоранта множини A.
- 6) Нехай $\{a_n\},\{b_n\}$ послідовності дійсних чисел. За яких умов можна гарантувати, що послідовність $\{a_nb_n\}$ є збіжною в \mathbb{R}^2

1. $b_n = O(1)$,

2.
$$a_n = o(1)$$
, а $\{b_n\}$ – монотонна.

- 7) Нехай $\{a_n\}$ послідовність дійсних чисел. За яких умов можна гарантувати, що існує *розбіжна* підпослідовність $\{a_{n_k}\}$?
 - 1. послідовність $\{a_n\}$ має хоча б дві різні часткові 2. $\{a_n\}$ не є монотонною. границі.
 - 8) Нехай $\{a_n\},\{b_n\}$ — послідовності натуральних чисел. За яких умов можна гарантувати, що $\left(\frac{a_n+1}{a_n}\right)^{b_n} \to e$?

1. $a_n, b_n \to +\infty$,

- 2. $a_n = b_n$.
- 9) Нехай $\{x_n\}$ послідовність. Позначимо $A_n=\{x_n,x_{n+1},x_{n+2},...\}$. За яких умов можна гарантувати, що кожна з множин A_n не має максимального елементу?
 - 1. A_1 не має максимального елементу.
- 2. послідовність $\{x_n\}$ збігається до $+\infty$.
- 10) Нехай $\{x_n\}$ обмежена послідовність. Позначимо $A_n = \{x_n, x_{n+1}, x_{n+2}, ...\}$. За яких умов можна гарантувати, що з послідовності $\{x_n\}$ можна обрати монотонно $necna\partial ny$ підпослідовність?
 - 1. кожна з множин A_n має максимальний елемент, 2. якась з множин A_n не має максимального елементу.
 - 11) Знайти прообраз множини A при відображенні $\cos x:[0;4\pi]\to\mathbb{R},$ якщо 1) $A=[\frac{1}{2};1];$ 2) A=[-1;0).
 - 12) Обчислити границю послідовності $x_n = \sqrt{n^4 + 3n^2 + 1} \sqrt{n^4 + 1}$ при $n \to \infty$.

"Make it real not fantasy" Scorpions

Уважно прочитайте завдання, та оберіть один з можливих варіантів відповіді: А: "достатньо щоб виконувалися обидва твердження 1) і 2) одночасно, але виконання лише одного з них недостатньо", В: "достатньо, щоб виконувалося твердження 1), але недостатньо виконання лише твердження 2)", С: "достатньо, щоб виконувалося твердження 2), але недостатньо виконання лише твердження 1)", D: "достатньо, щоб виконувалося хоча б одне з тверджень 1) або 2)", Е: "виконання навіть обох тверджень 1) і 2) одночасно не достатньо", F: "твердження задачі є правильним навіть якщо жодне з 1) і 2) не виконується".

- 1) Нехай $A \subset \mathbb{R}$. За яких умов можна гарантувати, що точка x_0 є точкою дотику множини A?
 - 1. існує послідовність попарно різних точок з A, що \quad 2. $x_0 \in A.$ збігається до $x_0,$
- 2) Нехай $x_0 \in D'_f$. За яких умов можна гарантувати, що існує скінченна границя функції f в точці x_0 ?
 - 1. $\forall x_n \in D_f : x_n \to x_0 \Rightarrow f(x_n) \to a \in \mathbb{R}$,
- 2. $f(x_0 0) = f(x_0 + 0)$.
- 3) Нехай $x_0 \in (D_f \cap D_g)'$. За яких умов можна гарантувати, що існує границя функції $\frac{f}{g}$ в точці x_0 ?
 - 1. $g(x_0) \neq 0$,

- 2. існують границі f та g при $x \to x_0$.
- 4) Нехай $\alpha, \beta \geq 0$. За яких додаткових умов можна знайти границю $\lim_{x\to 0} 4x + x^2 o(x^\beta) + o(x^\alpha)$?
 - 1. $\alpha \geq 1$,

- 2. $\beta > 1$.
- 5) Нехай $x_0 \in D_f$. За яких умов можна гарантувати, що функція f буде неперервною в точці x_0 ?
 - 1. $\forall x_n \in D_f : x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$,
- 2. x_0 ізольована точка множини D_f .
- 6) Нехай $K \subset \mathbb{R}$. За яких умов можна гарантувати, що множина $K \in \text{компактом}$?
 - 1. K замкнена,

- 2. K обмежена.
- 7) Нехай f деяка функція з областю визначення $D_f = [a, b]$. За яких умов можна гарантувати, що у функції f існує значення рівне 4?
 - 1. f(a) < 4 < f(b),

- $2.\ f\in C([a,b]).$
- 8) Множина A покрита множинами $I_1, I_2, ...,$ тобто $A \subset \cup_{j=1}^{\infty} I_j$. За яких умов можна гарантовано видалити одну з цих множин I_j так, щоб решта все ще покривали множину A?
 - 1. A = [0, 3],

- $2. I_i$ є інтервалами.
- 9) Нехай f функція і $A\subset D_f$. За яких умов можна гарантувати, що f є рівномірно неперервною на множині A?
 - 1. f є рівномірно неперервною на D_f ,
- 2. $\forall x_n, y_n \in A : x_n y_n \to 0 \Rightarrow f(x_n) f(y_n) \to 0.$
- 10) Нехай f,g — деякі додатні функції. За яких умов можна гарантувати, що $f\equiv g$ (функції еквівалентні) при $x\to x_0$?
 - 1. $f-g \to 0, x \to x_0,$

- 2. $\frac{f}{g} \to 1$, $x \to x_0$.
- 11) Використовуючи асимптотичні формули знайдіть границю функції $\frac{\ln(2+x)-\ln 2\cos x}{\sqrt[3]{1+x}-1}$ при $x\to 0$.
- 12) Дослідити на неперервність функцію $f(x) = \arctan \frac{1}{x-3}$ та визначити тип точок розриву.

"I've been waiting for a girl like you
To come into my life
I've been waiting for a girl like you
A love that will survive..."
Foreigner

Уважно прочитайте завдання, та оберіть один з можливих варіантів відповіді: А: "достатньо щоб виконувалися обидва твердження 1) і 2) одночасно, але виконання лише одного з них недостатньо", В: "достатньо, щоб виконувалося твердження 1), але недостатньо виконання лише твердження 2)", С: "достатньо, щоб виконувалося твердження 2), але недостатньо виконання лише твердження 1)", D: "достатньо, щоб виконувалося хоча б одне з тверджень 1) або 2)", Е: "виконання навіть обох тверджень 1) і 2) одночасно не достатньо", F: "твердження задачі є правильним навіть якщо жодне з 1) і 2) не виконується".

- 1) Нехай функція f визначена в деякому околі точки $x_0 \in \mathbb{R}$. За яких умов можна гарантувати, що f є диференційовною в точці x_0 ?
 - 1. існує скінченна границя $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$,
- 2. $f \in \text{неперервною в точці } x_0.$
- 2) Нехай F(t)=f(g(t)), де f,g визначені на $\mathbb R$. За яких умов можна гарантувати, що F є диференційовною в точці t_0 ?
 - 1. $q \in \text{диференційовною в точці } t_0$.
- 2. f є диференційовною в точці t_0 .
- 3) Нехай функція f визначена в деякому околі точки $x_0 \in \mathbb{R}$. За яких умов можна гарантувати, що у функції f існує лівостороння похідна в т. x_0 ?
 - 1. для деякої послідовності $x_n\to x_0-0$ існує границя 2. f є диференційовною в т. x_0 . $\lim_{n\to\infty}\frac{f(x_n)-f(x_0)}{x_n-x_0},$
 - 4) Нехай $f \in D((a,b))$ і точка $x_0 \in (a,b) = D_f$. За яких умов можна гарантувати, що $f'(x_0) = 0$?
 - 1. $f \in C([a,b])$,

- 2. f змінює знак при переході через x_0 .
- 5) Нехай функція $f \in C([a,b])$. За яких умов можна гарантувати, що для деякої точки $\xi \in (a,b)$ справедлива рівність $f'(\xi)(a-b) = f(a) f(b)$?

1.
$$f \in D(\{a, b\}),$$
 2. $f \in D((a, b)).$

6) Нехай функція f — деяка функція і $D_f = (a, b)$. За яких умов можна гарантувати, що для деякої точки $x_0 \in (a, b)$ існує лівостороння похідна $f'_n(x_0)$?

1.
$$f \in C(\{x_0\}),$$
 2. $f \in D((a, x_0))$ i ichye $\lim_{x \to x_0 \to 0} f'(x)$.

- 7) Нехай функція $f \in D([a,b])$. За яких умов можна гарантувати, що в точці $x_0 \in (a,b)$ функція f має локальний екстремум?
 - 1. f' змінює знак при переході через точку x_0 , 2. $f'(x_0) = 0$.
- 8) Нехай функція $f \in D([a,b])$. За яких умов можна гарантувати, що в точці $x_0 \in (a,b)$ функція f має локальний екстремум?

1.
$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0),$$
 2. $f^{(n)}(x_0) \neq 0.$

9) Нехай функція $f: \mathbb{R} \to \mathbb{R}$ і $D_f = \mathbb{R}$. За яких умов можна гарантувати, що для довільних $x_0 < x$ існують такі $\xi, \theta \in \mathbb{R}$, що має місце рівність $f(x) - \sum_{k=0}^n \frac{f^k(x_0)}{k!} (x-x_0)^k = \frac{\theta^n}{n!} (x-x_0)^{n+1} f^{(n+1)}(\xi)$?

1.
$$f \in D^{n+1}([x_0;x]),$$
 2. хочаб для однієї точки $\alpha \in \mathbb{R}$: $f^{(n+1)}(\alpha) \neq 0.$

- 10) Маленький сірий вовчок розглянув диференційовну на $\mathbb R$ функцію f і числа a < x. Використавши теорему Лагранжа, він записав $f(x) f(a) = f'(\xi)(x-a)$. Після цього вовчок взяв похідну від обох частин цієї рівності: оскільки a та ξ фіксовані числа, то $(f(x) f(a))' = (f'(\xi)(x-a))' = f'(\xi)(x-a)' = f'(\xi)$. Отже, $f'(x) = f'(\xi)$. Звідси вовчок зробив висновок, що дотичні проведені в точках x і x_0 будуть паралельними і пішов кусати вас за бочок. Прокоментуйте доведення мілашного звірька. Чи правий він? Якщо ні, то які неточності в його міркуваннях ви можете вказати?
 - 11) Дослідити на диференційовність та обчислити похідну функції $f(x) = \begin{cases} \sin x, & x \leq 0; \\ x^2 \cos(x|x-1|), & x > 0. \end{cases}$
 - 12) Обчислити 21-шу похідну функції $y = \frac{1}{3x-1}$ на області визначення.

Модульна контрольна №4: Техніка інтегрування, Варіант 1 1) Обчислити первісну
$$\int \frac{x^4}{1+x^{10}} dx$$
 2) Обчислити первісну $\int (x^2+2x)e^{3x} dx$ 3) Обчислити первісну
$$a) \int \frac{4x^2+4x+8}{(x-1)(x^2+3x+4)} \ dx; \ b) \int \frac{\sin^3 x}{\cos^5 x} \ dx$$

4) Використовуючи заміну змінних звести до інтегралу від раціональної функції

$$\int \frac{\sqrt{x^2 + 2x + 4}}{1 + \sqrt{x^2 + 2x + 4}} dx$$

Модульна контрольна робота з теми "Інтеграл Рімана" Варіант 1

У задачах 1-5 вкажіть, чи є правильним твердження.

Задача 1. Верхня та нижня інтегральні суми Дарбу для неперервної функції завжди є інтегральними сумами Рімана.

Задача 2. Нехай функція f — невід'ємна на проміжку [a,b] і в деяких точках цього проміжку є строго додатною. У вказаних умовах може статися так, що

$$\int_a^b f(s) \ ds = 0.$$

Задача 3. Існують неперервні на [0,1] функції, що не є інтегровними за Ріманом.

Задача 4. Для фіксованої функції f функція

$$F([a,b]) = \int_a^b f(t) dt$$

е адитивною функцією проміжку.

Задача 5. $Hexaŭ\ f \in R([a,b])$. Тоді функція

$$F(x) = \int_{a}^{x} f(u) \ du$$

e диференційовною на (a,b).

У задачах 6—9 уважно прочитайте завдання, та оберіть один з можливих варіантів відповіді:

 А: достатньо щоб виконувалися обидва твердження 1) і 2) одночасно, але виконання лише одного з них недостатньо;

В: достатньо, щоб виконувалося твердження 1), але недостатньо виконання лише твердження 2);

С: достатньо, щоб виконувалося твердження 2), але недостатньо виконання лише твердження 1);

D: достатньо, щоб виконувалося хоча б одне з тверджень 1) або 2);

Е: виконання навіть обох тверджень 1) і 2) одночасно не достатньо;

F: твердження задачі є правильним навіть якщо жодне з 1) і 2) не виконується.

Задача 6. Нехай E_f , E_g , E_{f+g} — множини точок розриву функцій f, g, f+g, відповідно. За яких умов можна гарантувати, що

$$E_{f+g} \subseteq E_f \cup E_g$$
?

Задача 7. За яких умов можна гарантувати, що множина $S \subset \mathbb{R}$ не мае лебегової міри нуль ?

- 1. $\mathbb{R} \setminus S$ мае лебегову міру нуль,
- 2. $(0; \frac{1}{100}) \subset S$.

Задача 8. За яких умов можна гарантувати, що функція f є інтегровною за Ріманом на проміжку [a,b]?

- 1. f e неперервною на проміжку [a,b] , 2. f e інтегровною за Ньютоном-Лейбніцем на проміжку [a,b].

Задача 9. За яких умов можна гарантувати, що функція f є інтегровною за Ньютоном-Лейбніцем на проміжку [a,b]?

- 1. f e неперервною на проміжку [a,b] , 2. f e інтегровною за Ріманом на проміжку [a,b].

У наступній задачі уважно прочитайте завдання та дайте відповідь:

Задача 10. Дати означення зовнішньої міри (у контексті міри Лебега).

Розв'язати наступні задачі та записати пояснення:

Задача 11. Пояснити, чи буде множина

$$A = \left\{ \frac{n^2}{n! + 1} : \ n \in \mathbb{N} \right\}$$

мати лебегову міру нуль.

Задача 12. Обчислити інтеграл

$$\int_0^\infty x^9 e^{-6x} \ dx.$$

Останній в житті модуль з математичного аналізу Варіант 1

Teacher leave them kids alone Hey! Teacher! Leave them kids alone! Roger Waters

У задачах 1-5 вкажіть, чи є правильним твердження.

Задача 1. Усі норми в \mathbb{R}^n є еквівалентними.

Задача 2. Для диференційовної функції $f: \mathbb{R}^n \to \mathbb{R}$ завжди справедливе співвідношення

$$df = f'_{x_1} dx_1 + f'_{x_2} dx_2 + \dots + f'_{x_n} dx_n.$$

Задача 3. Для існування неявної функції z(x,y), що задається рівнянням F(x,y,z) = 0, необхідно щоб $F'_z \neq 0$.

Задача 4. Якщо відомі всі частинні похідні диференційовної функції в точці, то можна однохначно обчислити всі похідні за напрямом в цій точці.

Задача 5. Якщо другий диференціал функції є строго додатно визначеною квадратичною формою, то функція має у відповідній точці локальний мінімум.

У задачах 6–9 уважно прочитайте завдання, та оберіть один з можливих варіантів відповіді:

- А: достатньо щоб виконувалися обидва твердження 1) і 2) одночасно, але виконання лише одного з них недостатньо;
- В: достатньо, щоб виконувалося твердження 1), але недостатньо виконання лише твердження 2);
- С: достатньо, щоб виконувалося твердження 2), але недостатньо виконання лише твердження 1);
- D: достатньо, щоб виконувалося хоча б одне з тверджень 1) або 2);
- Е: виконання навіть обох тверджень 1) і 2) одночасно не достатньо;
- F: твердження задачі є правильним навіть якщо жодне з 1) і 2) не виконується.

Задача 6. Нехай задано диференційовну функцію $f: \mathbb{R}^d \to \mathbb{R}$. При яких умовах можна стверджувати, що всі частинні похідні функції f у точці x_0 рівні нулю ?

- 1. функція f має локальний екстремум у точці x_0
- 2. функція $f \in \partial s$ ічі диференційовною у точці x_0 і її другий диференціал ϵ знакосталою квадратичною формою

Задача 7. Нехай задано функцію $f: \mathbb{R}^d \to \mathbb{R}$. При яких умовах можна гарантувати, що похідна функції f у точці x_0 у напрямку вектору є обчислюється за формулою $\frac{\partial f}{\partial e}(x_0) = \langle \operatorname{grad} f|_{x_0}, e \rangle$?

- 1. вектор е задовольняе умові ||e|| = 1
- 2. існують всі частинні похідні функції f у точці x_0

Задача 8. Нехай задано двічі диференційовну функцію $f: \mathbb{R}^d \to \mathbb{R}$. Відомо, що $g(x_0) = 0$. При яких умовах можна стверджувати, що f має у точці x_0 локальний умовний екстремум при умові g(x) = 0 ?

- 1. функція f має строгий локальний екстремум у точці x_0 .
- 2. x_0 є стаціонарною точкою функції Лагранжа $L = f + \lambda g$ (при деякому λ)

Задача 9. Нехай задано диференційовну функцію $f: \mathbb{R}^d \to \mathbb{R}$. При яких умовах можна стверджувати, що

$$\frac{\partial^2 f(M)}{\partial x \partial y} = \frac{\partial^2 f(M)}{\partial y \partial x}?$$

- 1. функція f є двічі диференційовною у точці M
- 2. $\frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x} \in C(\{M\})$

Розв'язати наступні задачі та записати пояснення:

Задача 10. Обчислити похідні $z_x', z_y', \ de\ z(x,y)$ — неявно задана функція

$$\sin(z) + yz + x = 0.$$

Задача 11. Дослідити на локальний екстремум функцію

$$f(x,y) = x^2 + 3xy + y^2.$$