Task 5: Network Traffic Analysis Report

Introduction and Objective

The primary objective of this task was to gain practical, hands-on experience in packet capture and protocol analysis. Using the free, industry-standard tool 'Wireshark', I captured live network traffic from my active interface, analyzed the data, and identified at least three distinct network protocols. This process is foundational to network troubleshooting and security monitoring.

ICMP TRAFFIC CAPTURING (Example)

No.	Time	Source	Destination	Protocol	Length Info	
1398	19.194996	172.16.4.139	72.163.4.185	ICMP	74 Echo (ping) request	id=0x0001, seq=1/256, ttl=128 (reply in 1440)
1440	19.526914	72.163.4.185	172.16.4.139	ICMP	74 Echo (ping) reply	id=0x0001, seq=1/256, ttl=41 (request in 1398)
1492	20.209980	172.16.4.139	72.163.4.185	ICMP	74 Echo (ping) request	id=0x0001, seq=2/512, ttl=128 (reply in 1514)
1514	20.540155	72.163.4.185	172.16.4.139	ICMP	74 Echo (ping) reply	id=0x0001, seq=2/512, ttl=41 (request in 1492)
1560	21.236866	172.16.4.139	72.163.4.185	ICMP	74 Echo (ping) request	id=0x0001, seq=3/768, ttl=128 (reply in 1606)
1606	21.566356	72.163.4.185	172.16.4.139	ICMP	74 Echo (ping) reply	id=0x0001, seq=3/768, ttl=41 (request in 1560)
→ 1678	22.249879	172.16.4.139	72.163.4.185	ICMP	74 Echo (ping) request	id=0x0001, seq=4/1024, ttl=128 (reply in 1707)
- 1707	22.569104	72.163.4.185	172.16.4.139	ICMP	74 Echo (ping) reply	id=0x0001, seq=4/1024, ttl=41 (request in 1678)
1752	23.263394	172.16.4.139	72.163.4.185	ICMP	74 Echo (ping) request	id=0x0001, seq=5/1280, ttl=128 (reply in 1770)
1770	23.582927	72.163.4.185	172.16.4.139	ICMP	74 Echo (ping) reply	id=0x0001, seq=5/1280, ttl=41 (request in 1752)
1822	24.275359	172.16.4.139	72.163.4.185	ICMP	74 Echo (ping) request	id=0x0001, seq=6/1536, ttl=128 (reply in 1847)
1847	24.607754	72.163.4.185	172.16.4.139	ICMP	74 Echo (ping) reply	id=0x0001, seq=6/1536, ttl=41 (request in 1822)
1893	25.290343	172.16.4.139	72.163.4.185	ICMP	74 Echo (ping) request	id=0x0001, seq=7/1792, ttl=128 (reply in 1917)
1917	25.623019	72.163.4.185	172.16.4.139	ICMP	74 Echo (ping) reply	id=0x0001, seq=7/1792, ttl=41 (request in 1893)
1967	26.300453	172.16.4.139	72.163.4.185	ICMP	74 Echo (ping) request	id=0x0001, seq=8/2048, ttl=128 (reply in 2017)
2017	26.637390	72.163.4.185	172.16.4.139	ICMP	74 Echo (ping) reply	id=0x0001, seq=8/2048, ttl=41 (request in 1967)
2061	27.314714	172.16.4.139	72.163.4.185	ICMP	74 Echo (ping) request	id=0x0001, seq=9/2304, ttl=128 (reply in 2102)
2102	27.659396	72.163.4.185	172.16.4.139	ICMP	74 Echo (ping) reply	id=0x0001, seq=9/2304, ttl=41 (request in 2061)
2157	28.334166	172.16.4.139	72.163.4.185	ICMP	74 Echo (ping) request	id=0x0001, seq=10/2560, ttl=128 (reply in 2171)
2171	28.665154	72.163.4.185	172.16.4.139	ICMP	74 Echo (ping) reply	id=0x0001, seq=10/2560, ttl=41 (request in 2157)
2199	29.349145	172.16.4.139	72.163.4.185	ICMP	74 Echo (ping) request	id=0x0001, seq=11/2816, ttl=128 (reply in 2228)
2220	20 (75222	72 462 4 405	472 46 4 430	TOUR	74 5 1 / 1 \ 1	110 0004 44/2045 117 44 / 1 1 2400)

Packet Capture Details

Tool Used: Wireshark (Version: [Insert Wireshark Version])

Network Interface: Wifi

Traffic Generation Method: Pinging (ICMP Traffic) **Capture Duration:** 60 seconds (Stopped manually)

Delieverable: "capture.pcap"

Capture Steps Summary

- 1. Installed Wireshark and supporting libraries.
- 2. Selected the active network interface and initiated capture.
- 3. Generated a mix of traffic (ping/browse).
- 4. Stopped the capture and saved the output as a .pcap file.
- 5. Applied **display filters** to isolate and examine individual protocols.

Protocol Identification and Analysis

The analysis was performed by applying various display filters to the captured traffic. The following three core protocols were successfully identified and analyzed:

Protocol 1: Domain Name System (DNS)

Brief Description: DNS is the protocol responsible for translating human-readable domain names (like www.cisco.com) into numerical IP addresses for routing and connection.

Packet Details (from capture)
Wireshark Filter Used: DNS

Packet No.: 1338
Frame Size: 69 Bytes
IP Version: IPv4

Source/Destination IP: 172.16.4.139 ---> 172.16.0.1

Protocol Layer: Transport Layer (UDP)
Packet Details Found: DNS Standard query

For other packet details: 'capture.pcap' has given in repository

Protocol 2: Transmission Control Protocol (TCP)

	Time	Source	Destination	Protocol Le	enç 🏲 Info
801	11.815503	172.16.4.139	140.82.114.22	TCP	55 54927 → 443 [ACK] Seq=1 Ack=1 Win=253 Len=1
2362	31.718383	172.16.4.139	140.82.114.22	TCP	55 54928 → 443 [ACK] Seq=1 Ack=1 Win=255 Len=1
2388	32.014628	172.16.4.139	140.82.113.26	TCP	55 54932 → 443 [ACK] Seq=1 Ack=1 Win=252 Len=1
2387	31.992732	140.82.114.22	172.16.4.139	TCP	60 443 → 54928 [RST] Seq=1 Win=0 Len=0
821	12.088834	140.82.114.22	172.16.4.139	TCP	66 443 → 54927 [ACK] Seq=1 Ack=2 Win=83 Len=0 SLE=1 SRE=2
971	14.510162	172.16.4.139	172.16.2.41	TCP	66 54933 → 7680 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_P
972	14.511915	172.16.4.139	172.16.17.153	TCP	66 54934 → 7680 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_P
977	14.513234	172.16.4.139	172.16.17.32	TCP	66 54935 → 7680 [SYN] Seg=0 Win=65535 Len=0 MSS=1460 WS=256 SACK P

Brief Description: TCP is a reliable, **connection-oriented** protocol that ensures data is delivered correctly and in order. It is fundamental for establishing reliable web connections.

Packet Details (from capture)

Wireshark Filter Used: tcp.flags.syn==1 (to find connection initiation)

Example Packet No.: 2362

Frame Size: 55 Bytes

Source/Destination IP: 172.16.4.139 ---> 140.82.114.22

Source/Destination Port: 54928 ---> 443

Protocol Layer: Transport (Layer 4)

Packet Details Found: Flags: Acknowledgement (ACK)

Protocol 3: Dynamic Host Configuration Protocol (DHCP)

	Time	Source	Destination	Protocol Le	ength Info		
3	5 0.419397	172.16.0.1	255.255.255.255	DHCP	350 DHCP Offer	- Transaction	ID 0x37d31bf3
3	6 0.419397	0.0.0.0	255.255.255.255	DHCP	350 DHCP Request	- Transaction	ID 0x4fde5ed6
12	4 1.742975	0.0.0.0	255.255.255.255	DHCP	350 DHCP Request	- Transaction	ID 0xc88d2f98
12	5 1.742975	172.16.0.1	255.255.255.255	DHCP	350 DHCP ACK	- Transaction	ID 0xc88d2f98
39	1 6.455439	0.0.0.0	255.255.255.255	DHCP	342 DHCP Request	- Transaction	ID 0x2097c40e
66	0 9.528920	172.16.0.1	255.255.255.255	DHCP	342 DHCP NAK	- Transaction	ID 0x355c4be5
66	1 9.528920	0.0.0.0	255.255.255.255	DHCP	342 DHCP Request	- Transaction	ID 0x355c4be5
76	4 10.960557	0.0.0.0	255.255.255.255	DHCP	342 DHCP Request	- Transaction	ID 0x355c4be6
93	8 13.933098	172.16.0.1	255.255.255.255	DHCP	347 DHCP Offer	- Transaction	ID 0x4db26017
93	9 13.933098	172.16.0.4	255.255.255.255	DHCP	346 DHCP Offer	- Transaction	ID 0x4db26017
94	0 13.933098	0.0.0.0	255.255.255.255	DHCP	590 DHCP Discover	- Transaction	ID 0x4db26017
102	1 15.366380	0.0.0.0	255.255.255.255	DHCP	352 DHCP Request	- Transaction	ID 0x27eb4c31
108	7 15.980664	0.0.0.0	255.255.255.255	DHCP	590 DHCP Discover	- Transaction	ID 0x4db26017
108	8 15.980664	172.16.0.1	255.255.255.255	DHCP	347 DHCP Offer	- Transaction	ID 0x4db26017
108	9 15.980664	172.16.0.4	255.255.255.255	DHCP	346 DHCP Offer	- Transaction	ID 0x4db26017
ame	35: 350 bytes	on wire (2800 bits),	350 bytes captured (2800 bits)	on interface \Devi	ce\NPF {D230F	AFA-D58C-498C-888B-F46B679665A4},
			(e8:80:88:f7:22:21),				

Brief Description: DHCP is an application layer protocol used for automatically assigning IP addresses and other network configuration parameters (like the subnet mask and default gateway) to devices on a network. It often uses the "DORA" process (Discover, Offer, Request, Acknowledge).

Packet Details (from capture) Wireshark Filter Used: dhcp Example Packet No.: 940

Source/Destination IP: 0.0.0.0 → 255.255.255 (Discover Broadcast)

Protocol Layer: Application (Layer 7) / Transport (UDP)

Packet Details Found: (Message Type: DHCP Discover (Client seeking an IP address))

Protocol 4: Address Resolution Protocol (ARP)

Brief Description: ARP is a protocol used to map an Internet Layer (Layer 3) IP address to a Data Link Layer (Layer 2) physical **MAC address**. This is necessary for local network communication.

Packet Details (from capture) Wireshark Filter Used: arp Example Packet No: 34 Frame Size: 60 Bytes

Source/Destination MAC: *AzureWave* → ff:ff:ff:ff:ff (Broadcast)]

Protocol Layer Data Link (Layer 2)

Packet Details Found: Who has 172.16.20.233? Tell 172.16.18.230

Note: All the Screenshots were taken from capture.pcap file which is already given in repository.