

Goniometrické funkcie v pravouhlom trojuholníku

- o sin uhla je pomer protil'ahlej odvesny tohoto uhla a prepony:
- o cos uhla je pomer pril'ahlej odvesny k tomuto uhlu a prepony:
 - o tg uhla je pomer protiľahlej odvesny ku priľahlej:
 - o cotg je pomer pril'ahlej odvesny ku protil'ahlej:

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$tg\alpha = \frac{a}{b}$$

$$\cot g\alpha = \frac{b}{a}$$

Goniometrické funkcie v pravouhlom trojuholníku

Definície goniometrických funkcií pomocou pravouhlého trojuholníka platia len pre uhly z intervalu (0°, 90°).

Dnes definujeme tieto funkcie pomocou jednotkovej kružnice.

Jednotková kružnica a pravouhlý trojuholník:

Sínus a kosínus uhla a jednotková kružnica:

Page 4

Prevod stupňov na radiány: α= x . 180 / π Prevod radiánov na stupne : $x = \alpha \cdot \pi / 180$

Stupne, radiány

Definície funkcií Sínus a Kosínus:

$$\beta = 26^{\circ}30^{\circ}$$

 $\sin \beta = 0.44619781310981 = y_{N}$

Sínus je funkcia, ktorá každému reálnemu číslu M zobrazenému na jednotkovej kružnici priradí druhú súradnicu (y) bodu M.

$$\beta = 26^{\circ}30'$$
 $\cos \beta = 0.89493436160203 = \chi_{M}$

Kosínus je funkcia, ktorá každému reálnemu číslu M zobrazenému na jednotkovej kružnici priradí prvú súradnicu (x) bodu M.

Sínus, kosínus a jednotková kružnica – dôkaz:

Platí:
$$|OM| = 1$$
 $|OM'| = x_M$
 $|MM'| = y_M$

$$\sin \theta = \frac{|MM'|}{|OM|} = \frac{y_M}{1} = y_M$$

$$\cos \theta = \frac{|OM'|}{|OM|} = \frac{x_M}{1} = x_M$$

Jednotková kružnica a graf funkcie sínus:

Transformácia hodnôt súradníc $y = \sin \beta$ všetkých bodov jednotkovej kružnice na intervale (0, 2 π) do súradnicovej sústavy (animácia):

Generation of the sine function by "wrapping" around a unit circle.

Grafom funkcie y = sin(x) je sinusoida:

Jednotková kružnica a graf funkcie cos:

Transformácia hodnôt súradníc $x = \cos \beta$ všetkých bodov jednotkovej kružnice na intervale $(0, 2\pi)$ do súradnicovej sústavy:

Generation of the cosine function by "wrapping" around a unit circle.

Grafom funkcie y = cos(x) je kosínusoida:

T	The angles or arcs x																
Trigono- metric functions	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	<u>5π</u> 6	π	$\frac{7\pi}{6}$	<u>5π</u> 4	<u>4π</u> 3	<u>3π</u> 2	<u>5π</u> 3	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
COSX	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Ako si to zapamätám

	0	π	π	π	π
	π	6	4	3	2
	0°	30°	45°	60°	90°
sin x	$\sqrt{0}$	$\sqrt{1}$	$\sqrt{2}$	$\sqrt{3}$	$\sqrt{4}$
VIII 11	2	2	2	2	2

	0	π	π	π	π
	π	6	4	3	2
	0°	30°	45°	60°	90°
cos x	$\sqrt{4}$	$\sqrt{3}$	$\sqrt{2}$	$\sqrt{1}$	$\sqrt{0}$
VOD A	2	2	2	2	2

Vlastnosti funkcie $y = \sin x$

- \rightarrow periodická, najm. perióda $p = 2 \pi$, $\sin x = \sin (x + k \cdot 2 \pi)$
- nie je prostá
- \rightarrow nepárna, $\sin(-x) = -\sin x$

- Rastúca na intervaloch $\left\langle -\frac{\pi}{2} + k.2\pi, \frac{\pi}{2} + k.2\pi \right\rangle$

$$\left\langle -\frac{1}{2} + k.2\pi, \frac{3}{2} + k.2\pi \right\rangle$$

▶ Klesajúca na intervaloch
$$\left\langle \frac{\pi}{2} + k.2\pi, \frac{3}{2}\pi + k.2\pi \right\rangle$$

Vlastnosti funkcie $y = \cos x$

- periodická, najm. perióda $p = 2 \pi$, $\cos x = \cos (x + k. 2 \pi)$
- nie je prostá
- \Rightarrow párna, $\cos(-x) = \cos x$
- \rightarrow ohraničená d = -1, h = 1
- \rightarrow minimum v bodoch { $k \otimes Z$; 0 rad + k. 2 π }
- \rightarrow max. v bodoch $\{k \otimes Z; \pi + k. 2 \pi\}$
- Rastúca na intervaloch $\langle \pi + k.2\pi, 2\pi + k.2\pi \rangle$
- ▶ Klesajúca na intervaloch $\langle 0+k.2\pi, \pi+k.2\pi \rangle$

Cvičenia

- **1.** Ktoré z čísel -101; -2 π ; -0,55; 0; 1; $\sqrt{3}$; 0.9π ; 2.10^{10} patria do definičného oboru funkcie:
 - a) $y = \sin x$

všetky uvedené b) $y = \cos x$ čísla všetky uvedené

Cvičenia

2. Ktoré z čísel -2; -0.55; 0; 0.7; 1; $\sqrt{2}$ patria do oboru hodnôt funkcie:

a)
$$y = \sin x$$
 -0,55; 0; 0,7; 1

b)
$$y = \cos x$$
 -0,55; **0**; **0,7**; **1**

Cvičenia

3. Pre ktoré $x \in \langle 0, 2\pi \rangle$ platí:

a)
$$\sin x = 0$$

a)
$$\sin x = 0$$
 $x \in \{0, \pi, 2\pi\}$

b)
$$\cos x = \frac{1}{2}$$

b)
$$\cos x = \frac{1}{2}$$
 $x \in \left\{ \frac{\pi}{3}, \frac{5}{3}\pi \right\}$

4. Porovnajte: a) sin 181° 0

$$\mathbf{d)} \quad \cos \frac{\pi}{4} \quad \boxed{ } \quad \cos \frac{7}{4} \pi$$

e) sin 25° < cos 25°

