# Cytovance Biologics CHO Titer Experiment Analysis Correlation Matrices and Data Quality Report

Jackson Polk

Summer 2023

DSA 5900-995

4 Credit Hours

Supervisors: Matthew Beattie and Talayeh Razzaghi

Company: Cytovance Biologics

## **Preface:**

I have written most code in R as a "scratchpad". I will go back and re-write in Python once we have verified that these methods are correct.

#### **Literature Review:**

Temperature shift during cell cultivation affects both long and short run production; higher temperatures cultivate quickly but die faster, opposite true for lower temperatures (Xu et. al. 2019). Concludes that temperature is an important factor in cultivation, should be focused on during analysis and modeling.

## **Data Exploration:**

## **Data Quality Reports**

Statistics about each feature/variable can be found here, along with descriptions about missing data.

## CHO-KC

| Variable              | Mean    | Median   | "Skew" | Variance    | # NA | % NA  |
|-----------------------|---------|----------|--------|-------------|------|-------|
| vessel_name           | 13.276  | 13       | 1.021  | 45.808      | 456  | 0.46  |
| production_day        | 6.491   | 6        | 1.082  | 18.092      | 96   | 0.097 |
| do                    | 0.461   | 0.5      | 0.921  | 0.006       | 95   | 0.096 |
| ph_setpoint           | 7       | 7        | 1      | 0           | 95   | 0.096 |
| temp                  | 36.786  | 37       | 0.994  | 0.811       | 95   | 0.096 |
| target_cell_seeding   | 432107  | 3.00E+05 | 1.44   | 64140979605 | 95   | 0.096 |
| feed                  | 1.122   | 0.03     | 37.385 | 2.068       | 212  | 0.214 |
| glucose_trigger_limit | 3.2     | 3        | 1.067  | 0.06        | 94   | 0.095 |
| viable                | 7618971 | 8285000  | 0.92   | 2.43879E+13 | 144  | 0.145 |
| cell_viability        | 94.706  | 98.1     | 0.965  | 131.071     | 144  | 0.145 |
| average_celldiameter  | 17.718  | 17.485   | 1.013  | 3.531       | 198  | 0.2   |
| ph                    | 7.153   | 7.112    | 1.006  | 0.05        | 129  | 0.13  |
| titer_by_octet        | 1569.66 | 1571.187 | 0.999  | 977464.054  | 860  | 0.867 |
| glutamine             | 4.621   | 5.26     | 0.878  | 6.32        | 683  | 0.689 |
| glutamate             | 7.486   | 6.955    | 1.076  | 14.142      | 404  | 0.407 |
| glucose               | 4.778   | 4.785    | 0.999  | 1.531       | 106  | 0.107 |
| lactate               | 1.29    | 1.25     | 1.032  | 0.457       | 114  | 0.115 |
| ammonium              | 4.088   | 3.87     | 1.056  | 3.866       | 162  | 0.163 |
| sodium                | 141.611 | 134.6    | 1.052  | 2103.782    | 143  | 0.144 |
| pottasium             | 4.317   | 4.28     | 1.009  | 3.94        | 142  | 0.143 |
| calcium               | 0.113   | 0.11     | 1.023  | 0           | 142  | 0.143 |
| osmolality            | 534.63  | 512      | 1.044  | 25417.055   | 689  | 0.695 |
| bicarbonate           | 10.262  | 8.6      | 1.193  | 64.813      | 528  | 0.532 |
| air_saturation        | 63.553  | 68.35    | 0.93   | 272.115     | 816  | 0.823 |
| co2_saturation        | 2.525   | 2.3      | 1.098  | 2.91        | 816  | 0.823 |

Fig 1. Numeric Data Quality Report for CHO-KC data. Note: "Skew" is the ratio of Mean to Median, indicating if the data is skewed.

| Factor      | Levels | # NA | % NA  |
|-------------|--------|------|-------|
| vessel_type | 3      | 96   | 0.097 |
| supplement  | 1      | 992  | 1     |
| media       | 2      | 95   | 0.096 |
| feed_type   | 2      | 95   | 0.096 |
| feeding     | 2      | 515  | 0.519 |
| notes       | 26     | 456  | 0.46  |

Fig 2. Analysis of Factor Variables for CHO-KC data.



Fig 3. Correlation Matrix for CHO-KC data.

# <u>CHO-S</u>

| Variable              | Mean    | Median   | "Skew" | Variance    | # NA | % NA  |
|-----------------------|---------|----------|--------|-------------|------|-------|
| production_day        | 5.612   | 5        | 1.122  | 14.806      | 92   | 0.078 |
| do                    | 0.366   | 0.3      | 1.219  | 0.01        | 531  | 0.45  |
| ph_setpoint           | 7.071   | 7        | 1.01   | 0.009       | 507  | 0.43  |
| temp                  | 35.477  | 37       | 0.959  | 5.122       | 95   | 0.081 |
| target_cell_seeding   | 1652217 | 1.00E+06 | 1.652  | 1.4255E+12  | 75   | 0.064 |
| feed                  | 1.915   | 3        | 0.638  | 1.772       | 114  | 0.097 |
| glucose_trigger_limit | 4.196   | 4.5      | 0.932  | 0.357       | 114  | 0.097 |
| viable                | 8797862 | 9130000  | 0.964  | 2.16664E+13 | 114  | 0.097 |
| cell_viability        | 92.123  | 96.4     | 0.956  | 138.319     | 105  | 0.089 |
| average_celldiameter  | 14.966  | 14.3     | 1.047  | 3.808       | 113  | 0.096 |
| ph                    | 7.109   | 7.063    | 1.006  | 0.071       | 388  | 0.329 |
| titer_by_octet        | 2088.93 | 1401.746 | 1.49   | 4820087.294 | 632  | 0.536 |
| glutamine             | 2.998   | 1.54     | 1.947  | 8.556       | 700  | 0.593 |
| glutamate             | 5.287   | 4.735    | 1.117  | 5.825       | 370  | 0.314 |
| glucose               | 5.036   | 4.64     | 1.085  | 8.703       | 295  | 0.25  |
| lactate               | 0.953   | 0.75     | 1.271  | 0.754       | 361  | 0.306 |
| ammonium              | 7.116   | 5.9      | 1.206  | 26.184      | 364  | 0.308 |
| sodium                | 105.363 | 102      | 1.033  | 637.184     | 359  | 0.304 |
| pottasium             | 3.652   | 3.51     | 1.04   | 2.007       | 359  | 0.304 |
| calcium               | 0.074   | 0.07     | 1.052  | 0.001       | 358  | 0.303 |
| osmolality            | 351.216 | 312.5    | 1.124  | 11058.669   | 642  | 0.544 |
| bicarbonate           | 9.22    | 6.4      | 1.441  | 46.065      | 482  | 0.408 |
| air_saturation        | 41.064  | 42.7     | 0.962  | 446.566     | 799  | 0.677 |
| co2_saturation        | 3.636   | 3.5      | 1.039  | 1.071       | 799  | 0.677 |

Fig 4. Numeric Data Quality Report for CHO-S data. Note: "Skew" is the ratio of Mean to Median, indicating if the data is skewed.

| Factor      | Levels | # NA | % NA  |
|-------------|--------|------|-------|
| vessel_type | 3      | 0    | 0     |
| vessel_name | 27     | 440  | 0.373 |
| supplement  | 9      | 740  | 0.627 |
| media       | 2      | 0    | 0     |
| feed_type   | 3      | 0    | 0     |
| feeding     | 2      | 216  | 0.183 |
| notes       | 33     | 580  | 0.492 |

Fig 5. Analysis of Factor Variables for CHO-S data.

Notice that "vessel\_name" appears in this dataset, but not in the CHO-KC data.



Fig 6. Correlation Matrix for CHO-S data.

## Other Data Visualizations



Fig 7. Histogram of Titer from CHO-KC and CHO-S. CHO-KC displayed left, CHO-S right.



Fig 8. Titer by Temperature. Temperature appears discontinuous.

Although temperature has been suggested to be an important variable in cultivation (Xu et. al., 2019), there is little evidence that Cytovance intentionally manipulated temperature.

## **Algorithm Proposal:**

My initial plan is an online, semi-supervised regression model evaluated using root mean-squared error. The use of a regression model assumes that the exact value of titer is needed, rather than a range. The online model is necessitated by the manufacturing process being continuous, it would be helpful to train the model on new data as it comes in. The semi-supervised learning is due to the sparsely-labelled dataset. Finally, the RMSE method will allow proper weighting of outlier predictions.

## Addendum

I have been suggested to use reinforcement learning by Dr. Beattie.

## Citations

Xu, J., Tang, P., Yongky, A., Drew, B., Borys, M. C., Liu, S., & Li, Z. J. (2019). Systematic development of temperature shift strategies for Chinese hamster ovary cells based on short duration cultures and kinetic modeling. mAbs, 11(1), 191–204. https://doi.org/10.1080/19420862.2018.1525262