

Please write clearly in	clearly in block capitals.			
Centre number	Candidate number			
Surname				
Forename(s)				
Candidate signature				
I declare this is my own work.				

INTERNATIONAL AS FURTHER MATHEMATICS

(9665/FM02) Unit FPSM1 Pure Mathematics, Statistics and Mechanics

Monday 9 January 2023 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- · You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- There are three sections to this paper.
- The maximum mark for this paper is 80. There are 40 marks for **Section A**, 20 marks for **Section B** and 20 marks for **Section C**.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Mark		

Section A

Pure Mathematics

Answer all questions in the spaces provided.

1 A curve passes through the point (1, -1) and satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x + \frac{2x^3}{y} \quad \text{for} \quad y \neq 0$$

Use Euler's step-by-step method with a step length of 0.1 to estimate the value of y when x = 1.2

Give your answer to four decimal places.	

4

Turn over ►

Answer

2 The variables P and Q are related by the equation

Q = aP + b where a and b are constants.

It is given that $P = \frac{1}{x}$ and $Q = \frac{1}{y}$ where $x \neq 0$ and $y \neq 0$

During an experiment the following pairs of values for x and y were obtained.

x	1	2	3	4
y	1.10	0.88	0.83	0.80

2 (a) Complete the table below giving the values of Q to **two** decimal places.

[1 mark]

P	1	0.5	0.33	0.25
Q				

2 (b) On the grid plot Q against P

Draw a line of best fit for the points you have plotted.

[2 marks]

3 The matrix **A** is defined by
$$\mathbf{A} = \begin{bmatrix} 4 & 0 & -3 \\ -2 & 1 & -2 \\ 4 & -2 & 5 \end{bmatrix}$$

The matrix **B** is defined by
$$\mathbf{B} = \begin{bmatrix} k & 6k & 3k \\ 0.5 & 8 & 3.5 \\ 0 & 2 & 1 \end{bmatrix}$$
 where k is a constant.

3 (a) Given that
$$\mathbf{A} + 4\mathbf{B} = \begin{bmatrix} 20k & 24k & 0 \\ 0 & 33 & 12 \\ 4 & 6 & 9 \end{bmatrix}$$
 find the value of k

[, , ,]	[2 marks]

3	(b) (i)	Using your value of k find ${f AB}$	[2 marks]
			[=]
		Answer	
2	(b) (ii)	Hence find the matrix C such that $\begin{bmatrix} 1 & 6 & 3 \\ 2 & 32 & 14 \\ 0 & 8 & 4 \end{bmatrix} = \mathbf{AB}$	
3	(D) (II)	Hence find the matrix \mathbf{C} such that $\mathbf{C} = \mathbf{AB}$	
			[2 marks]
		Answer	
		7 tilowoi	

4 The graph shows part of the curve y = f(x) where $f(x) = \frac{1}{x} - 2x^2 + 4$

The equation f(x) = 0 has three roots α , β and γ

The roots $\ \alpha$ and $\ \beta$ are such that $-2 < \alpha < -1$ and $-1 < \beta < 0$

4 (a) Show that $1 < \gamma < 2$

[2 marks]

4	(b)	By drawing a line on the graph opposite, explain why use of the Newton–Raphson method with an initial value of $x_1 = -1$ does not find the root β	
		[2 marks	s]
4	(c)	Taking $x_1 = -1.3$ as a first approximation to α use the Newton–Raphson method to find a second approximation x_2 to α	
		Give your answer to four decimal places.	
		[4 marks	s]
			_
			_
			_
			_
			_
			_
		Answer	_

Turn over ▶

8

5 The triangle T with vertices A(2, 0), B(5, 1) and C(5, 4) is shown in the diagram.

The matrix $\mathbf{M} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$ is used to transform triangle T

The transformation represented by matrix \mathbf{M} maps ABC onto A'B'C' where A', B' and C' are the vertices of triangle R

The point A' has coordinates (-1, p) where p is a constant.

It is given that p is negative (p < 0)

p

[3 marks]

		$p = \underline{\hspace{1cm}}$
		<u> </u>
5	(a) (ii)	Write down the matrix M giving each element as an exact value.
		[1 mark]
		Answer
_		
5	(a) (III)	Describe fully the transformation represented by the matrix M [3 marks]
		Question 5 continues on the next page

Turn over ▶

5	(b)	The matrix N is defined by $\mathbf{N} = \begin{bmatrix} c & a \\ d & -c \end{bmatrix}$
		The transformation represented by matrix \mathbf{N} maps triangle R onto triangle S
		The point A' is invariant under this transformation.
5	(b) (i)	Find the exact values of c and d [3 marks]
		c = d =

) (D) (I	using answers from pa) ניו transformation which m	rts (a)(ii) and (b)(i), find the matrix representable T onto triangle S	
	uanoremater when m	apo mangio 7 onto mangio C	[2 marks]
	-		
	Ar	nswer	
(b) (i		e transformation which maps triangle T ont	
(b) (i	iii) Describe fully the singl		o triangle <i>S</i> [3 marks]
(b) (i	iii) Describe fully the singl	e transformation which maps triangle $ {\cal T} $ ont	o triangle <i>S</i> [3 marks]
(b) (i	iii) Describe fully the singl	e transformation which maps triangle $ {\cal T} $ ont	o triangle <i>S</i> [3 marks]
(b) (i	iii) Describe fully the singl	e transformation which maps triangle $ {\cal T} $ ont	o triangle <i>S</i> [3 marks]
(b) (i	iii) Describe fully the singl	e transformation which maps triangle $ {\cal T} $ ont	o triangle <i>S</i> [3 marks]
(b) (i	iii) Describe fully the singl	e transformation which maps triangle $ {\cal T} $ ont	o triangle <i>S</i> [3 marks]
(b) (i	iii) Describe fully the singl	e transformation which maps triangle $ {\cal T} $ ont	o triangle <i>S</i> [3 marks]
(b) (i	iii) Describe fully the singl	e transformation which maps triangle $ {\cal T} $ ont	o triangle <i>S</i> [3 marks]
(b) (i	iii) Describe fully the singl	e transformation which maps triangle $ {\cal T} $ ont	o triangle <i>S</i> [3 marks]
(b) (i	iii) Describe fully the singl	e transformation which maps triangle $ {\cal T} $ ont	o triangle <i>S</i> [3 marks]
(b) (i	iii) Describe fully the singl	e transformation which maps triangle $ {\cal T} $ ont	o triangle <i>S</i> [3 marks]

Turn over ▶

Section B

Statistics

Answer all questions in the spaces provided.

6	The discrete ran	dom variable λ	X has pr	obability gener	ating function
---	------------------	------------------------	----------	-----------------	----------------

$$G_X(t) = (0.2 + 0.8t)^3$$

			()	
6	(a)	Using differentiation find $E(X)$		[4 marks]
			Answer	
6	(b)	Find $P(X \ge 2)$		
				[1 mark]
			Answer	

5

7		The probability that Imran is late for school on a randomly chosen day is p	ou
		The discrete random variable X represents the number of days up to and including the first day Imran is late for school.	
		The variance of X is 3.75	
7	(a)	Find the value of p [3 marks]	
		p =	
7	(b)	Find the mean of X	
	(-)	[1 mark]	
		Answer	
7	(c)	Find the probability that the first day Imran is late for school is during the next 5 days. [2 marks]	
		Answer	

The discrete random variable X has a uniform distribution and takes values 1, 2, 3,, 7	
The discrete random variable Y has a uniform distribution and takes values	
1, 2, 3,, 10	
Find $E(4X-3Y)$ [4 marks	s]
	- -
	_
	_
Answer	- - -
	_
Answer	- - -
Given that $Var(X+Y) = 10$ find the value of the correlation between X and Y , giving your answer to three decimal places.	- - -
Given that $Var(X+Y) = 10$ find the value of the correlation between X and Y , giving your answer to three decimal places.	- - 8] - -
Given that $Var(X+Y) = 10$ find the value of the correlation between X and Y , giving your answer to three decimal places.	- - - - -
Given that $Var(X+Y) = 10$ find the value of the correlation between X and Y , giving your answer to three decimal places.	- - - - -
Given that $Var(X+Y) = 10$ find the value of the correlation between X and Y , giving your answer to three decimal places.	- - - - -
Given that $Var(X+Y) = 10$ find the value of the correlation between X and Y , giving your answer to three decimal places.	- - - - - -
Given that $Var(X+Y) = 10$ find the value of the correlation between X and Y , giving your answer to three decimal places.	- - - - - - - - - -
Given that $Var(X+Y) = 10$ find the value of the correlation between X and Y , giving your answer to three decimal places.	- - - - - - -

Section C

Mechanics

	Answer all questions in the spaces provided.
9	A student is creating a model for the magnitude of the air resistance force, F newtons, acting on a sphere as it moves at a speed of v m s ⁻¹
	The student assumes that
	$F = k v^n$
	where k and n are constants.
	Find the dimensions of k in terms of n [3 marks]
	Annuar
	Answer

A disc of mass 0.3 kg is sliding at a speed of 6 m s⁻¹ on a smooth horizontal surface when it collides with a vertical wall that is perpendicular to its path.

The disc rebounds at a speed of 4 m s⁻¹ after the collision with the wall.

10 (a) Calculate the magnitude of the impulse exerted by the wall on the disc.

[2 marks]

Answer _____

10 (b) The graph shows how the magnitude of the force exerted by the wall on the disc varies with time.

The disc is in contact with the wall for T seconds.

Find the value of T

[2 marks]

T =

4

11	Hannah and Rachel start jogging at the same time from different positions and move with
	constant velocities on a horizontal field.

The table shows their initial position vectors and constant velocities.

	Initial Position Vector (m)	Constant Velocity (m s ⁻¹)
Hannah	−20i + 450 j	2i-0.5j
Rachel	80i+150j	i+Uj

U is a constant.

Find the value of $\,U\,$

Hannah and Rachel meet at a position on the field and then stop.

[4 marks]

12	Two spheres, P and Q , of the same radius are at rest on a smooth horizontal table.
	A vertical wall is perpendicular to the straight line through the centres of P and Q
	Sphere Q is closer to the wall than sphere P
	The spheres are set into motion so that they both move directly towards the wall.
	Sphere P has mass 0.3 kg and initially moves with speed 2 m s ⁻¹
	Sphere $$ Q has mass 0.5 kg and initially moves with speed 7 m s $^{-1}$
	$ \begin{array}{ccc} & 2 \text{ m s}^{-1} & & 7 \text{ m s}^{-1} \\ \hline & & & & & & & \\ & & & & & & & \\ & & & &$
	The coefficient of restitution between each sphere and the wall is 0.8
	The coefficient of restitution between the two spheres is 0.5
12 (a)	Find the magnitude of the impulse on <i>P</i> when the spheres collide, giving your answer to three significant figures.
	[7 marks]

	Do not outside
	bo
Answer	
NATI (I) (I	
When the spheres collide, they are in contact for 0.075 seconds.	
Find the magnitude of the average force exerted by one sphere on the other during the collision.	ie
[2 ma	rks]
	_
Answer	
END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

