Matrix Transformation

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Linear Transformation

Matrix is a linear transformation: map one vector to another vector

$$A \in \mathbb{R}^{m \times n}, \; x \in \mathbb{R}^n, \; y \in \mathbb{R}^m: \qquad y_{m \times 1} = A_{m \times n} x_{n \times 1}$$

$$A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

Input-output

Linear Transformation

Domain, codomain, and range of $T: \mathbb{R}^n \to \mathbb{R}^m$

Linear Transformation

EXAMPLE 1 Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$, and

define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, so that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$$

- a. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.
- b. Find an **x** in \mathbb{R}^2 whose image under T is **b**.
- c. Is there more than one **x** whose image under *T* is **b**?
- d. Determine if \mathbf{c} is in the range of the transformation T.

Linear mapping

A linear transformation (or a linear map) is a function $\mathbf{T}: \mathbf{R}^n \to \mathbf{R}^m$ that satisfies the following properties:

1.
$$\mathbf{T}(\mathbf{x} + \mathbf{y}) = \mathbf{T}(\mathbf{x}) + \mathbf{T}(\mathbf{y})$$

2.
$$\mathbf{T}(a\mathbf{x}) = a\mathbf{T}(\mathbf{x})$$

for any vectors $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$ and any scalar $a \in \mathbf{R}$.

Linear mapping

- Example: which are linear mapping?
 - **zero** map $0: V \to W$
 - identity map $I: V \to V$
 - Let $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$ be the **differentiation** map defined as Tp(z) = p'(z).
 - Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the map given by T(x,y) = (x-2y,3x+y)
 - $T(x) = e^x$
 - $T: \mathbb{F} \to \mathbb{F}$ given by T(x) = x 1

Linear mapping

Theorem

Let (v_1, \ldots, v_n) be a basis of V and (w_1, \ldots, w_n) an arbitrary list of vectors in W. Then there exists a unique linear map

$$T: V \to W$$
 such that $T(v_i) = w_i$.

Example:

If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ projects

points in \mathbb{R}^3 onto the x_1x_2 -plane because

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

Transformation	Image of the Unit Square	Standard Matrix
Projection onto the x_1 -axis		$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	
Projection onto the x_2 -axis	x_2	$\left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]$

The **projection** of a vector $y \in \mathbb{R}^m$ onto the span of $\{x_1, \ldots, x_n\}$ is the vector $v \in \text{span}(\{x_1, \ldots, x_n\})$, such that v is as close as possible to y, as measured by the Euclidean norm $||v - y||_2$.

$$\operatorname{Proj}(y; \{x_1, \dots x_n\}) = \operatorname{argmin}_{v \in \operatorname{span}(\{x_1, \dots, x_n\})} \|y - v\|_2.$$

Suppose that V is a vector space and $P: V \to V$ is a linear transformation.

- a) If $P^2 = P$ then P is called a projection.
- b) If V is an inner product space and $P^2 = P = P^*$ then P is called an orthogonal projection.

We furthermore say that P projects onto range (P).

- Projection of vector v on:
 - Two orthogonal vectors
 - Two non-orthogonal vectors

Rotation

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Reflection

$$R = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$$

Reflection

Transformation	Image of the Unit Square	Standard Matrix
Reflection through the x_1 -axis	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{x_1} x_1$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection through the x_2 -axis	$\begin{bmatrix} x_2 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection through the line $x_2 = x_1$	$x_2 = x_1$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Reflection

Reflection through the line $x_2 = -x_1$

 $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

Reflection through the origin

 $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

Uniform Scaling

$$S = sI = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$$

Non-uniform Scaling

$$S = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

Shearing

Example

Let
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
. The transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$

sheep

A typical shear matrix is of the form

$$S = egin{pmatrix} 1 & 0 & 0 & \lambda & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Fall 2021

Shearing

A shear parallel to the x axis results in $x'=x+\lambda y$ and y'=y. In matrix form:

$$\left(egin{array}{c} x' \ y' \end{array}
ight) = \left(egin{array}{cc} 1 & \lambda \ 0 & 1 \end{array}
ight) \left(egin{array}{c} x \ y \end{array}
ight).$$

Similarly, a shear parallel to the y axis has x'=x and $y'=y+\lambda x$. In matrix form:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Difference Matrix

$$D_{(n-1)\times n} = egin{bmatrix} -1 & 1 & 0 & 0 & \cdots & 0 \ 0 & -1 & 1 & 0 & \cdots & 0 \ dots & \ddots & \ddots & & dots \ 0 & 0 & \cdots & -1 & 1 & 0 \ 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

$$D: \mathbb{R}^n \longrightarrow \mathbb{R}^{n-1} \quad \Longrightarrow \quad D \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

Example

$$\begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 3 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 - 0 \\ 3 - (-1) \\ 2 - 3 \\ 5 - 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \\ -1 \\ 3 \end{bmatrix}$$

Selectors

an $m \times n$ selector matrix: each row is a unit vector (transposed)

$$A = \begin{bmatrix} e_{k_1}^T \\ \vdots \\ e_{k_m}^T \end{bmatrix}$$

multiplying by A selects entries of x:

$$Ax = (x_{k_1}, x_{k_2}, \dots, x_{k_m})$$

$$A:\mathbb{R}^n \to \mathbb{R}^m \quad \Longrightarrow \quad A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_{k_1} \\ x_{k_2} \\ \vdots \\ x_{k_-} \end{bmatrix}$$

Selectors

Example
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 & 1 \\ 0 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

- Selecting first and last elements of vector:
- Reversing the elements of vector:

Slicing

Keeping m elements from r to s (m=s-r+1)

$$\begin{bmatrix} \mathbf{0}_{m\times(r-1)} & I_{m\times m} & \mathbf{0}_{m\times(n-s)} \end{bmatrix}$$

Example: Slicing two first and one last

elements:

$$egin{bmatrix} -1 \ 2 \ 0 \ -3 \ 5 \end{bmatrix} = egin{bmatrix} 0 \ -3 \end{bmatrix}$$

Down Sampling

 Down sampling with k: selecting one sample in every k samples

Example: k=2?

Applications

Rotation matrix

(i)
$$\sin 2A = 2 \sin A \cos A$$

(ii) $\cos 2A = \cos^2 A - \sin^2 A$

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \implies R^n = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^n = \begin{bmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{bmatrix}$$

Adjacency matrix

$$A^{2} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Multiple Transformation

$$= x_{n \times 1} \xrightarrow{A_{n \times n}} y_{m \times 1} \xrightarrow{B_{p \times m}} z_{p \times 0} \implies \begin{cases} y = Ax \\ z = By \end{cases} \implies z = B(Ax) = BAx$$

- Example
 - Difference Matrix

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x \end{bmatrix} \xrightarrow[A \to X]{D} y = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ x_4 - x_3 \\ x_5 - x_4 \end{bmatrix} \xrightarrow[A \to X]{D} z = \begin{bmatrix} x_3 - x_2 - (x_2 - x_1) \\ x_4 - x_3 - (x_3 - x_2) \\ x_5 - x_4 - (x_4 - x_3) \end{bmatrix} = \begin{bmatrix} x_3 - 2x_2 + x_1 \\ x_4 - 2x_3 + x_2 \\ x_5 - 2x_4 + x_3 \end{bmatrix}$$

$$x \longrightarrow z \begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}_{3 \times 5}$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}_{3\times 4} \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 10 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

Multiple Transformation

Example

Rotation

$$\begin{aligned} & x \\ & y \end{aligned} \quad R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \\ & x \\ & x \rightarrow z \end{aligned} \quad z = R_{\delta + \theta} x \end{aligned} \quad \begin{bmatrix} \cos(\delta + \theta) & -\sin(\delta + \theta) \\ \sin(\delta + \theta) & \cos(\delta + \theta) \end{bmatrix} \\ & x \rightarrow y \rightarrow z \end{aligned} \quad \begin{cases} y = R_{\theta} x \\ z = R_{\delta} y \end{aligned} \quad \Rightarrow z = R_{\delta} R_{\theta} x \end{aligned} \quad \begin{bmatrix} \cos \delta & -\sin \delta \\ \sin \delta & \cos \delta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \\ & = \begin{bmatrix} \cos \delta \cos \theta - \sin \delta \sin \theta & -\cos \delta \sin \theta - \sin \delta \cos \theta \\ \sin \delta \cos \theta + \cos \delta \sin \theta & -\sin \delta \sin \theta + \cos \delta \cos \theta \end{bmatrix} \\ & = \begin{bmatrix} \cos(\delta + \theta) & -\sin(\delta + \theta) \\ \sin(\delta + \theta) & \cos(\delta + \theta) \end{bmatrix} \end{aligned}$$

Invertible Linear Transformations

Definition:

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

$$T(S(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

Invertible Linear Transformations

Theorem:

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function satisfying

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

$$T(S(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

Mapping

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n .

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of *at most one* **x** in \mathbb{R}^n .

Onto (surjective) Transformations

Definition (Onto transformations). A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if, for every vector b in \mathbb{R}^m , the equation T(x) = b has at least one solution x in \mathbb{R}^n .

Here are some equivalent ways of saying that *T* is onto:

- The range of *T* is equal to the codomain of *T*.
- Every vector in the codomain is the output of some input vector.

Onto Transformations

Here are some equivalent ways of saying that T is not onto:

- The range of *T* is smaller than the codomain of *T*.
- There exists a vector b in \mathbf{R}^m such that the equation T(x) = b does not have a solution.
- There is a vector in the codomain that is not the output of any input vector.

Onto Transformations

Theorem (Onto matrix transformations). Let A be an $m \times n$ matrix, and let T(x) = Ax be the associated matrix transformation. The following statements are equivalent:

- 1. T is onto.
- 2. T(x) = b has at least one solution for every b in \mathbb{R}^m .
- 3. Ax = b is consistent for every b in \mathbb{R}^m .
- 4. The columns of A span \mathbb{R}^m .
- 5. A has a pivot in every row.
- 6. The range of T has dimension m.

Onto Transformations

Tall matrices do not have onto transformations. If $T : \mathbb{R}^n \to \mathbb{R}^m$ is an onto matrix transformation, what can we say about the relative sizes of n and m?

The matrix associated to T has n columns and m rows. Each row and each column can only contain one pivot, so in order for A to have a pivot in every row, it must have at least as many columns as rows: $m \le n$.

This says that, for instance, \mathbf{R}^2 is "too small" to admit an onto linear transformation to \mathbf{R}^3 .

Note that there exist wide matrices that are not onto: for example,

$$\begin{pmatrix}
1 & -1 & 2 \\
-2 & 2 & -4
\end{pmatrix}$$

does not have a pivot in every row.

Example

Let T be the linear transformation whose standard matrix is

$$A = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Does T map \mathbb{R}^4 onto \mathbb{R}^3 ? Is T a one-to-one mapping?

One-to-One (injective) Linear Transformation

THEOREM

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

One-to-One Linear Transformation

- Let T: ℝ" → ℝ" be a linear transformation, and let A be the standard matrix for T. Then:
 - a. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m :
 - b. T is one-to-one if and only if the columns of A are linearly independent.

Example

Let $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$. Show that T is a one-to-one linear transformation. Does T map \mathbb{R}^2 onto \mathbb{R}^3 ?

Definition (One-to-one transformations). A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is *one-to-one* if, for every vector b in \mathbb{R}^m , the equation T(x) = b has at most one solution x in \mathbb{R}^n .

Remark. >

Here are some equivalent ways of saying that *T* is one-to-one:

- For every vector b in \mathbb{R}^m , the equation T(x) = b has zero or one solution x in \mathbb{R}^n .
- Different inputs of *T* have different outputs.
- If T(u) = T(v) then u = v.

Here are some equivalent ways of saying that *T* is *not* one-to-one:

- There exists some vector b in \mathbf{R}^m such that the equation T(x) = b has more than one solution x in \mathbf{R}^n .
- There are two different inputs of *T* with the same output.
- There exist vectors u, v such that $u \neq v$ but T(u) = T(v).

Theorem (One-to-one matrix transformations). Let A be an $m \times n$ matrix, and let T(x) = Ax be the associated matrix transformation. The following statements are equivalent:

- 1. T is one-to-one.
- 2. For every b in \mathbb{R}^m , the equation T(x) = b has at most one solution.
- 3. For every b in \mathbb{R}^m , the equation Ax = b has a unique solution or is inconsistent.
- 4. Ax = 0 has only the trivial solution.
- 5. The columns of A are linearly independent.
- 6. A has a pivot in every column.
- 7. The range of T has dimension n.

Wide matrices do not have one-to-one transformations. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a one-to-one matrix transformation, what can we say about the relative sizes of n and m?

The matrix associated to T has n columns and m rows. Each row and each column can only contain one pivot, so in order for A to have a pivot in every column, it must have at least as many rows as columns: $n \le m$.

This says that, for instance, \mathbb{R}^3 is "too big" to admit a one-to-one linear transformation into \mathbb{R}^2 .

Note that there exist tall matrices that are not one-to-one: for example,

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

does not have a pivot in every column.

Comparison

A is an $m \times n$ matrix, and $T: \mathbf{R}^n \to \mathbf{R}^m$ is the matrix transformation T(x) = Ax

T is one-to-one

T(x) = b has at most one solution for every b.

The columns of *A* are linearly independent.

A has a pivot in every column.

The range of T has dimension n.

T is onto

T(x) = b has at least one solution for every b.

The columns of A span \mathbf{R}^m .

A has a pivot in every row.

The range of T has dimension m.

One-to-one and onto

One-to-one is the same as onto for square matrices. We observed in the previous example that a square matrix has a pivot in every row if and only if it has a pivot in every column. Therefore, a matrix transformation T from \mathbb{R}^n to itself is one-to-one if and only if it is onto: in this case, the two notions are equivalent.

Conversely, by this <u>note</u> and this <u>note</u>, if a matrix transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is both one-to-one and onto, then m = n.

Note that in general, a transformation T is both one-to-one and onto if and only if T(x) = b has exactly one solution for all b in \mathbf{R}^m .

Bijective

- one-to-one and onto
- if and only if every possible image is mapped to by exactly one argument

Conclusion

On to

surjective

→B injective C injective-only bijective noninjective surjective-only general

One-to-One

non-surjective

Machine Learning Application

The central problem in machine learning and deep learning is to meaningfully transform data: in other words, to learn useful representations of the input data at hand — representations that get us closer to the expected output.

Inner Product

- $< Ax, y > = < x, A^Ty >$
 - What about symmetric matrix?
- Show that unitary matrix preserves inner product. < Ux, Uy > = < x, y >

Introduction to change of basis

- $\blacksquare B = \{v_1, ..., v_n\}$ are basis of R^n
- $C[a]_B = a$
- $C = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$

Change of Basis

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $\mathcal{C} \leftarrow \mathcal{B}$ such that

$$[\mathbf{x}]_{\mathcal{C}} = {}_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{x}]_{\mathcal{B}} \tag{4}$$

The columns of $\mathcal{C} \subset \mathcal{B}$ are the \mathcal{C} -coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$${}_{\mathcal{C}} \stackrel{P}{\leftarrow} \mathcal{B} = \begin{bmatrix} [\mathbf{b}_1]_{\mathcal{C}} & [\mathbf{b}_2]_{\mathcal{C}} & \cdots & [\mathbf{b}_n]_{\mathcal{C}} \end{bmatrix}$$
 (5)

$$({}_{\mathcal{C}} \stackrel{P}{\leftarrow} {}_{\mathcal{B}})^{-1} = {}_{\mathcal{B}} \stackrel{P}{\leftarrow} {}_{\mathcal{C}}$$

Change of Basis

Example

Let
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $\mathbf{c}_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$, the bases for \mathbb{R}^2 given by $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$.

- a. Find the change-of-coordinates matrix from C to B.
- b. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .
- Final Review!

$$P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}, \quad P_{\mathcal{C}}[\mathbf{x}]_{\mathcal{C}} = \mathbf{x}, \quad \text{and} \quad [\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x}$$

$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1}\mathbf{x} = P_{\mathcal{C}}^{-1}P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Matrix Representation of Linear Function

The matrix [F(a)) ··· I(a) is called the matrix representation of linear function (transformation) I which is denoted by [I] a:

What is the relation between [II] and [II] a?

Transformation with Change of Basis

$$\blacksquare B = \{v_1, ..., v_n\}$$
 are basis of R^n

$$C = [v_1 \quad v_2 \quad \dots \quad v_n]$$

$$[T(x)]_B = C^{-1}AC[x]_B$$

Change of Basis

Example

We have $B = \{x^3, x^2, x, 1\}$ and $B' = \{x^2, x, 1\}$ are bases for $P_3(x)$ and $P_2(x)$, respectively.

Since
$$\begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix}$$
 the vector representation of
$$a_3x^3 + a_2x^2 + a_1x + a_0 \in P_3(x), \text{ we have}$$

$$\begin{bmatrix} \frac{d}{dt} \\ \frac{1}{dt} \end{bmatrix}_{\{B,B'\}} = \begin{bmatrix} \frac{d}{dt}(x^3) & \frac{d}{dt}(x^2) & \frac{d}{dt}(x) & \frac{d}{dt}(1) \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$