Ar/Ar geochronology/thermochronology activities

1. Rearrange the following equation to solve for t:

40
Ar* = 0.1048 40 K ($e^{\lambda t}$ -1)

(40 Ar* is the radiogenic 40 Ar produced by the decay of 40 K. The constant 0.1048 is the branching ratio (most 40 K decays to 40 Ca).

- 2. What is $1/\lambda$ in Ma? $\lambda = 5.543 \times 10^{-10} a^{-1}$
- 3. Calculate the K-Ar age range for each Hawaiian Island: (Use a spreadsheet)

Island	⁴⁰ Ar/ ⁴⁰ K max	⁴⁰ Ar/ ⁴⁰ K min	Age in Ma?
Kauai	3.34 x 10 ⁻⁴	2.22 x 10 ⁻⁴	
W Oahu	2.14 x 10 ⁻⁴	1.60 x 10 ⁻⁴	
East Oahu	1.30 x 10 ⁻⁴	1.50 x 10 ⁻⁴	
W Molokai	1.08 x 10 ⁻⁴		
E Molokai	8.81 x 10 ⁻⁵	7.74 x 10 ⁻⁵	
W Maui	7.68 x 10 ⁻⁵	6.77 x 10 ⁻⁵	
E Maui	4.86 x 10 ⁻⁵		

 $t = 1804.077 \ln \left[(^{40}Ar/0.1048 ^{40}K) + 1 \right]$

- 4. How many 40 K atoms are there for every 39 K?
 - Every ³⁹Ar forms from a ³⁹K
 - ³⁹K (stable; 93.2581%)
 - 40K (radioactive; 0.0117%)
- 5. Which minerals are these?

Formula KAI₃Si₃O₁₀(OH)₂ K(Mg,Fe)₃AlSi₃O₁₀(F,OH)₂

KAlSi₃O₈

$$(K,H_3O)(Al,Mg,Fe)_2(Si,Al)_4O_{10}[(OH)_2,(H_2O)]$$

6. Calculate the following J values:

$$J = \exp(\lambda t) - 1 / R$$
 where $R = {}^{40}Ar^*/{}^{39}Ar$

Standard	t (Ma)	Age ref	R	J?
GA 1550	99.738	Renne et al 2011	0.9361	
GA 1550	99.738	Renne et al 2011	0.6752	
FCT	29.305	Renne et al 2010	1.112	

7. Calculate the ages of the following data:

First, correct 40 Ar, 39 Ar and 36 Ar for blank (background) Correct 40 Ar for atmosphere (40 Ar/ 36 Ar = 278.56) Calculate 40 Ar*/ 39 Ar

Calculate age

 $t=1/\lambda \ln (1 + JR)$

J = 0.008733

Grain	⁴⁰ Ar	³⁹ Ar	³⁶ Ar
1	2.80241	0.10112	0.000069
2	1.64699	0.05999	0.000029
3	4.63017	0.17070	0.000009
4	1.16425	0.04235	0.000049
5	2.54924	0.09347	0.000019
6	1.29521	0.04536	0.000039
7	2.31139	0.08456	0.000049
8	5.03872	0.18459	0.000059
9	2.32016	0.08485	0.000059
10	7.54618	0.28182	0.000039
Blank	0.002958	0.000015	0.000012