Congruential Number Theory Reid Barton Black & Blue, June 26, 2003

Tools

The main tool in solving problems involving congruencies is an understanding of the structure of the ring $\mathbb{Z}/m\mathbb{Z}$, which we denote by \mathbb{Z}_m for convenience. We use \mathbb{Z}_m^* for the group of units in \mathbb{Z}_m (residues relatively prime to m).

- By the Chinese Remainder Theorem, the ring \mathbb{Z}_m is the direct sum of the rings \mathbb{Z}_{p^k} over prime powers p^k appearing in the prime factorization of m.
- Primitive roots exist in \mathbb{Z}_{p^k} for p an odd prime, so the group $\mathbb{Z}_{p^k}^*$ is isomorphic to the additive group $\mathbb{Z}_{\varphi(p^k)}$.
- Let a be a unit in \mathbb{Z}_{p^k} and let d be its order modulo p^k . Then $a^t \equiv 1 \pmod{p^k}$ iff d divides t. In particular, d divides $\varphi(p^k) = p^{k-1}(p-1)$.
- Let p an odd prime and $k \ge 1$. For integers a, b not divisible by $p, a \equiv b \pmod{p^k}$ iff $a^p \equiv b^p \pmod{p^{k+1}}$.

Other related facts: quadratic reciprocity and Dirichlet's Theorem.

Warm-ups

- 1. Find all positive integers m such that \mathbb{Z}_m has a primitive root.
- 2. (a) Find the smallest integer n with the following property: if p is an odd prime and a is a primitive root modulo p^n , then a is a primitive root modulo every power of p.
 - (b) Show that 2 is a primitive root modulo 3^k and 5^k for every positive integer k.
- 3. (a) Let $\Phi_m(x)$ denote the m^{th} cyclotomic polynomial. Show that for any positive integer n, all prime factors of $\Phi_m(n)$ relatively prime to m are congruent to 1 modulo m. (For example, if m=4, this says that n^2+1 has no prime factor congruent to 3 modulo 4.)
 - (b) Deduce the following special case of Dirichlet's Theorem: For any positive integer m, there are infinitely many primes congruent to 1 modulo m.
- 4. Determine whether there exist positive integers $n_1, n_2, \ldots, n_k > 1$ such that $n_1 \mid 2^{n_2} 1, n_2 \mid 2^{n_3} 1, \ldots, n_{k-1} \mid 2^{n_k} 1, n_k \mid 2^{n_1} 1$.
- 5. (Ireland 96) If p is a prime, show that $2^p + 3^p$ cannot be a perfect power.
- 6. (MOP 02 Homework) Given an odd prime p, find all functions $f: \mathbb{Z} \to \mathbb{Z}$ satisfying the following two conditions:
 - f(m) = f(n) for all $m, n \in \mathbb{Z}$ such that $m \equiv n \pmod{p}$;
 - f(mn) = f(m)f(n) for all $m, n \in \mathbb{Z}$.

Problems

1. (MOP 00) Find the number of zeros at the end of the number

$$4^{5^6} + 6^{5^4}$$
.

- 2. (Putnam 97/B5) Define $a_1 = 2$, $a_n = 2^{a_{n-1}}$ for $n \ge 2$. Prove that $a_{n-1} \equiv a_n \pmod{n}$.
- 3. (Putnam 99/A6) Define the sequence $\{a_i\}_{i>1}$ by

$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 24$, $a_n = \frac{6a_{n-1}^2 a_{n-3} - 8a_{n-1}a_{n-2}^2}{a_{n-2}a_{n-3}}$.

Show that a_n is divisible by n for each n.

- 4. (IMO 99/4) Find all pairs of positive integers (n, p) such that
 - p is a prime number,
 - $n \leq 2p$, and
 - n^{p-1} divides $(p-1)^n + 1$.
- 5. (APMO 97/2) Find an integer n, $100 \le n \le 1997$, such that n divides $2^n + 2$.
- 6. (IMO 90/3) Find all positive integers n such that n^2 divides $2^n + 1$.
- 7. (Putnam 94/B6) For each nonnegative integer i define $n_i = 101i + 100 \cdot 2^i$. If $0 \le a, b, c, d \le 99$ and $n_a + n_b \equiv n_c + n_d \pmod{10100}$, show that $\{a, b\} = \{c, d\}$.
- 8. (MOP 95?) If a positive integer n is a square mod p for every prime p, must n be a square number?
- 9. (Bulgaria 96) Find all pairs of primes (p,q) such that $pq \mid (5^p 2^p)(5^q 2^q)$.
- 10. (Romania 96) Find all pairs of primes (p,q) such that $\alpha^{3pq} \equiv \alpha \pmod{3pq}$ for any integer α .
- 11. (Russia 96) Suppose that p is a odd prime, n > 1 is an odd number, and x, y, k are positive integers such that $x^n + y^n = p^k$. Prove that n is a power of p.
- 12. (Russia 96) Find all integers k such that there exist an integer n > 1 and relatively prime integers x, y such that $x^n + y^n = 3^k$.
- 13. (IMO 00/5) Does there exist a positive integer n such that n divides $2^n + 1$ and n has exactly 2000 prime factors?
- 14. (Russia 00) Do there exist pairwise relatively prime integers a, b, c > 1 such that $a \mid 2^b + 1, b \mid 2^c + 1$, and $c \mid 2^a + 1$?
- 15. (MOP 98) Let p be a prime congruent to 3 mod 4, and let a, b, c, d be integers such that

$$a^{2p} + b^{2p} + c^{2p} = d^{2p}$$
.

Show that p divides abc.

16. Find all ordered triples of primes (p, q, r) such that

$$p \mid q^r + 1, \qquad q \mid r^p + 1, \qquad r \mid p^q + 1.$$