

Project No.: E-GC1.1-2016/035 (e-MOC no.)

Project Title: Revamping Structure Packing of EO stripper column

Location: E-GC

Proposal for:

- □ **Gate 1 (+/-50%)**; Approval to develop and select conceptual design
- ☐ Gate 2 (+/-30%); Approval to define and develop Basic Design and/or Front End Engineering & Design (FEED)

Gate 3 (+/-10%); Approval to perform Detailed Engineering, Procurement, and Construction

Revise Budget; Approval for additional budget as scope and/or schedual change

Project Engineer: Mr. Thepchan Promtong <DEB-PLE-PEN/6706>

Process Engineer: Mr. Karn Phongprot <E-GC-TE/7141>

Objective of Today

Project request PIC to endorse **Gate 1** (±10%)

Project budget: 47.5 MTHB

Investment type: Operational Excellence

Benefit: **31.43** M THB/Year

IRR: **62.29** %

Payback: **1.51** Year

J-Factor: N/A

Project Schedule: 1 September 2016 – 30 April 2017 (EPC)

Propose to use budget by September 2016.

Agenda

- 1. Background
- 2. Proposal
- 3. Cost estimate
- 4. Benefit and Project justification
- 5. Project schedule
- 6. Project cash flow
- 7. Risk & Key success factor

EO stripper column | T-310

- Y2006 2014, EO separation in EO stripper column had been achieved by valve tray.
- 2014, TOCGC had capacity expansion II project. Valve tray has been revamped by replacing structure packing (MellapakPlus252.Y) in order to improve capacity and separation efficiency.
- During the commissioning, it was found that the <u>EO separation cannot be</u> <u>achieved as design</u> as indicated from EO breakthrough at the column bottom while <u>steam consumption for stripping was greater than design</u>.

The most likely possible cause is <u>vapor maldistribution</u> in the bottom section which are suspected from a close distance between reboiler return inlet nozzle and bottom of structure packing bed. <u>Poor vapor distribution resulted in loss number of theoretical stage (NTS) and consequently loss separation efficiency. (Refer to MOM with Sulzer and SD on Jun 16th, 2016)
</u>

3. Vapor Maldistribution

- There are two huge 34" vapor inlet (R and J) below the bottom last bed.
 - Furthermore, these inlet nozzles are very close to the bottom of the bed.

- Due to the 2 points above, vapor maldistribution might occur causing the packing efficiency to be poor.
- 6. Instead of using existing packing model of MellapakPlus 252.Y, SD proposed to use a denser packing type of MellapakPlus 352.Y for both Bed#2 and Bed#1 as the operating pressure drop across the column at this moment is lower that the design case. Denser packing can be considered.

Actual operating pressure drop = 0.40 bar Design pressure drop (allowable) = 0.70 bar

Benefit: By using a denser packing, it will compensate the loss of NTS of removing few layers of packing due to the installation of the chimney tray.

SCIENTIFIC DESIGN COMPANY, INC.

A SABIC - Clariant Partnership Company

SD Project 80014-14 February 24, 2016

Action Item 5 - T-310 Process Simulation Study

We run process simulations of the operating and analytical data of December 22 2015 to evaluate the performance and determine the overall efficiency of the structured packing. We also compare the data and the results of the simulations against the process design conditions of the PFD. The results of the process simulation cases studies are summarized in the Table below.

As shown in the Table the overall efficiency of the structured packing was calculated to be in the range of 79 - 90% of the design PFD efficiency. It is estimated that the lower efficiency is equivalent to about 8 tons/h additional steam consumption rate or about 115 - 116% of the expected steam of the design efficiency.

SULZER

Simulation Result

- Sulzer try to do the match back simulation based on the operating data provided by Samsung.
- Found that in actual case, NTS is only 4.

Simulation Result

In order to meet the design specification of ≤ 12wt% ppm of EO in the Lean Cycle Water, the NTS required will be 6.

8

T-310 Troubleshooting | June 16, 2016 |

SULZER

Sulzer recommendation

Quote:

"However in your case, the packed bed height for M352.Y shall be reduced due to the inclusion of chimney tray. The estimated NTS improvement is approx. 20% based on HETP comparison. Consequently, based on a theoretical basis, the estimated expected reduction in steam consumption is approx. 5% ~ 8% for every 10% improvement in NTS."

End quote:

SULZER NTS Calculation				Column Liqu	uid/Vapor d	ata			
NTS calculation	Original	Case I	Case II	Vout (kg/h)	65,700.00		Lin (kg/h)	1,334,430.00	
NTS Calculation	252Y	352Y + 452Y	352Y	Temp	101		Temp	93	
Top Bed Height (352Y)	7242	7242	7242	Density	1.148	7.242 m	Density	958	
Bottom Bed Height (452Y)	5400	4473	4473	MW	24.45	Bed	Viscos	0.305	cP
Total Bed Hight	12.642	11.715	11.715			2	Seufac ten	59.3	dyne/cm
Chimney Tray		Applied	Applied			352Y			
FF Top bed	1.17	1.17	1.17	V	84,380.00		L	1,353,110.00	
FF Bottom bed	1.42	1.42	1.42	Temp	111.00		Temp	110.00	
HETP/m Top bed	0.36	0.28	0.28	Density	0.85	4.473 m	Density	952	
HETP/m BTM bed	0.38	0.24	0.29	MW	18.20	Bed	Viscos	0.258	cP
NTS top bed	20.12	25.86	25.86			1	Seufac ten	56.8	dyne/cm
NTS btm bed	14.21	18.64	15.42			452Y			
Total NTS	34.33	44.50	41.29	Vin (kh/h)	86,900.00	V	Lout (kg/h)	1,355,630.00	
NTS increment		30%	20%	Temp	112		Temp	111	
				Density	0.859		Density	952	
				MW	18.03		Viscos	0.255	cP
							Seufac ten	56.5	dyne/cm

2.Proposal

Project Objective:

To improve separation efficiency of EO stripper column by replacing higher performance of structure packing and newly install chimney tray to improve vapor distribution.

Scope of Modification:

- Newly install a chimney tray above nozzle R and J (reboiler return nozzle and extraction steam nozzle)
- Revamp current structure packing model of MellapakPlus 252.Y by replacing MellapakPlus 352.Y which has higher NTS at the same height

Problem & Opportunity

Problem Statement:

Low separation efficiency in EO stripper column causes several disadvantages.

- Excessive steam usage by 15 − 16% of design (8 − 10 t/h) | See back-up slide
- Acid intermediate and impurities carryover to cause mechanical damage from corrosion in downstream section are suspected by plant licensor. In addition, improving packing efficiency is one of corrective action from RCA meeting.

ptt இது இது அது இது இது இது இது இது இது இது இது இது இ	rrence	15
Actions	RP	Due date
Upgrade MEG post treatment resin unit (D-640) to handle higher acid and impurities from process.	E-GC-TE	T/A 2017
Material upgrade for Evaporator system from CS to SS by using the Corrosion review of Glycol Evaporation unit (IR.16.00036), section 4 Conclusion and Recommendation.	E-GC-AS	T/A 2017
Apply CFD simulation to identify potential location of erosion in Evaporator section which consider the Schoepentoeter for all evaporators to reduce the flow velocity for inlet column evaporators.	T-TE-PT	T/A 2017
10. Extend structure packing of T-310 from 12.54 m to 14 m to improve efficiency. (SD recommendation)	E-GC-TE	T/A 2017
11. Upgrade DI unit capacity to handle higher impurities in cycle water. (lower UV transmission less than 10%)	E-GC-TE	T/A 2017

• MEG product tends to off spec. as due to lower UV transmission | See back-up slide

Proposed Opportunity and Solution:

- Newly install a chimney tray above nozzle R and J (reboiler return nozzle and extraction steam nozzle)
- Revamp current structure packing model of MellapakPlus 252.Y by replacing MellapakPlus 352.Y which has higher NTS at the same height

Simplify diagram / Plot plan / Drawing

Simplify diagram / Plot plan / Drawing

Simplify diagram / Plot plan / Drawing

Change from $252.Y \rightarrow 352.Y$

352.Y required less NTS to achieve the same flow capacity. NTS improvement is about 20%

Note:

HETP = height equivalent to a theoretical plate

3.Cost estimate

Request budget Gate 3: +/-10%

CO	ST ITEM	DESCRIPTION	TOTAL (THB)	REMARKS
1		ENGINEERING	2,500,000	Licensor process design fee
2		PROCUREMENT	21,190,400	
	2.1	EQUIPMENT	21,190,400	Structure Packing INCL. TAX DUTY 10%
	2.1.1	MECHANICAL	0	
	2.1.2	ELECTRICAL	0	
	2.1.3	INSTRUMENT	0	
	2.2	BULK MATERIALS	0	
	2.2.1	PIPING	0	
	2.2.2	ELECTRICAL	0	
	2.2.3	INSTRUMENT	0	
3		CONSTRUCTION		Lump sum price for installation and mobilization work
	3.1	CIVIL WORK	0	
	3.2	PIPING WORK	0	
	3.3	ELECTRICAL WORK	0	
	3.4	INSTRUMENT WORK	0	
	3.5	PROJECT MANAGEMENT, SUPERVISION AND TAX DUTY	0	
4		COMMISSIONING / RUN-IN & START-UP / WARRANTY	0	
5		OWNER COST	500,000	FAT/Inspection
6		CONTINGENCY (10%)	4,319,040	INCL. FORWARD ESCALATION
		OVERALL PROJECT COST	47,509,440	

Benefit Calculation & Assumption

	Basic Assumptions	
Price Assumption:		
Feed/Product	_	THB/Unit
Utility (steam)	980	THB/Unit
Others (i.e. Land Cost)	_	THB/Unit
Financial:		
Project Life Time / Depreciation	20	Years
Terminal Value @Year 20	5 Time of EBITDA	
Equity	XXX	%
Interest Loan Rate*	5.5	%
WACC	9.39	%
FX Rate	Corporate Assumption	THB/\$
Tax	20	%
CPI	Corporate Assumption	%
Contingency Cost	10	%
Others:		
Operating Days	330	Days/Year
Maintenance	2	% of Investment Cost
Insurance	1	% of Investment Cost

Benefit Calculation & Assumption

Benefit are calculated from steam saving by 4.05 ton/h after revamping. Steam cost 980 THB/ton, base on 330 operating days, Steam saving cost is 31.43 MTHB/year | See back-up slide

Benefit Calculation									
Investment	47,509,440	THB							
Benefit	31.43	MTHB/Year							
IRR @ 20 Years	62.29	%							
NPV@ WACC %	178,001,671	MTHB							
Simple Payback	1.51	Years							
EBITDA (Avg.)	N/A	MTHB							
J-Factor:	N/A								

4.Benefit and Project justification

2.2) Growth or Core uplift or Busines	s As Usual (Energy & Reliak	oility) Project Categorization
Total Investment Cost (₿)		47,509,440
Project Starting Year		2016
Project Completion Year		2017
Residual Value (B)		-
Utilities (B/year)		
Labour (B/year)		0.00/
Maintenance (% of total investment cost) Catalyst & Chemicals (B/year)		0.0%
Benefits (B/year)		31,434,480
Profit (B/year)		31,434,480
Simple Payback (Year)		1.51
IRR		62.29%
NPV		178,001,671
Expected benefit calculation		
Current basline steam consumption @100% plant rate	81 ton/h	
NTS improvement by	20% (Refer to Sulzer e	estimation)
Average steam reduction per 10% NTS improvement	5.00% (5% - 8% of stear	m reduction per 10% NTS improvement)
Theoritical Steam reduction after improvement	10%	
Theoritical Steam reduction after improvement	8.1 ton/h	
Success factor	50%	
Steam reduction @ success factor 50%	4.05 ton/h	
Steam cost	980 THB/t	
Operating day	330 day/year	
Operating hour	7920 hr/year	
Annual steam saving	32076 ton/h	
Realized steam cost saving	31,434,480.00 THB/y	

5.Project schedule

Activity	Jul 16	Aug 16	Sep 16	Oct 16	Nov 16	Dec 16	Jan 17	Feb 17	Mar 17	Apr 17
Conclusion of budgetary from Sulzer +-50%	24/6/	2016								
Sulzer provide detail engineering drawing	4/7/	/2016								
SD confirm simulation and issued revised datasheet	1	1/7/2016								
Sulzer give firm price based on SD revised datasheet	•	18/7/201	16							
PIC gate 1	11/	7/2016								
HAZOP Review										
Request budget from TOCGC BOD	\ 6/7	/2016								
Firm budget $\pm 10\%$ to proposed in PIC gate 3			Clarify te	chnical is	ssue and	waiting	firm quot	ation froi	m Sulzer	
PIC gate 3		•	30/8/201	6						
Procurement Committee approval		2 w	eeks							
Issue PO (Critical milestone)			• 15	/9/2016						
Final drawing from Sulzer		1 month	aft <mark>er PC</mark>	15	/10/2016	5				
Drawing approval by client			5	days	20/10/20	16				
Material Production and delivery (CIF LC port)					3.	5 mont	:h		ter than eek of Fe	eb,2017
Turnaround Project (Mar 1 – April 15, 2017)									45 da	У
Dismantle/Installation									24 day	
Mechanical complete								31/	3/2017	
Performance Test									April	17 🔷

6.Project cash flow

Total Budget 47.5 MTHB

Month		Jul-16	Aug-16	Sep-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17
Project Cash Flow				8,857,120.00	10,595,200.00	3,800,000.00	500,000.00	8,038,080.00	-	9,500,000.00	1,900,000.00
SD Design Fee	2,500,000.00			2,500,000.00							
Material cost (include Tax 10%)	21,190,400.00										
Upon order, payment by T/T latest 30 days from date of invoice.	30%			6,357,120.00							
Upon first submission of engineering drawings for approval. L/C to be issued within 4 weeks after order confirmation.	50%				10,595,200.00						
upon readiness of goods. L/C to be issued 2 months before contractual delivery date.	20%							4,238,080.00			
FAT and Inspection	500,000.00						500,000.00				
Installation cost	19,000,000.00										
Payable after award	20%					3,800,000.00					
Payable after mobilization&training	20%							3,800,000.00			
Payable after construction work finish	50%									9,500,000.00	
Payble after submission of document	10%										1,900,000.00
Contingency (10%)	4,269,040.00			·	·			<u> </u>		·	
Total Budgetary	47,459,440.00		•	•	19,452,320.00	•	•	19,438,080.00	•	•	•
					(19 452 320 00)	_	r	(19 438 080 00)			

7. Risk & Key Success factor

- 1. Fast-track for budgetary approval before mid of July 2016
- 2. Process performance guarantee from Licensor
- 3. On time delivery of material due to tight schedule

Thank you