备许							
仲 点	1. 输出受输入信号直接控制, 不能定时控制; 输入与 输出是"透明"的, 抗干扰 能力差。 2. 有约束条件。	(07为1期间空翻, 抗干扰性差; 者; 有约束条件。	(P抄1期间空翻, 抗干扰性差;	有约束条件。	主从JK触及器的主触发器在一个时钟周期内最多只能翻样一个时钟周期内最多只能翻接一次, 称为主从JK触发器的"一次翻转"。若CP=J期间, JK发生多次变化,则下降沿到来时输出就与特性方程结果不一致。		
优点	电路简单,是构成各种触发器的基础	CP高电平有效	解决了RS的约束问题 CP高电平有效	OP下降沿有效, 状态变化, 消除 空翻	无约束条件 CP下降沿状态变化,消除空翻	CP 上升沿有效, 无空翻, 无约束条件	(P)边沿有效, 无空翻, 无一次翻转, 无约束条件
状态转换真值表	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CIN S R Q Q Q B B B B B B B B	CP Q^{n+1} 功能 0 Q^{n} 保持 1 D $Q^{n+1} = D$	\$\frac{1}{2}\times \frac{1}{2}\times \frac{1}{2}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	QT S, INNO R, CLEN D QT 04E	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
功能说明	基本RS恤发器又称置0、置1帥发器。两种实现方法: A、由两个或非17交叉连接而成的高电平输入有效型RS触发器: B、由两个与非17交叉连接而成的低电平输入有效型RS触发器: A有效型RS触发器	拴制门+基本RS触发器 只有时钟信号有效时,S和R才起作用。	为解决BS的约束问题,对钟控BS触发器稍作修改,将R端接至G17的输出端,将Sg大D,只有一个输入端	CP = 1 期间,主触发器接收输入信号; CP = 0 期间,主触发器保持。CP 下降沿之前状态不逐,而从触发器接受主触发器状态。因此,主从触发器的状态只能在 CP 下降沿时刻翻转。	引入反馈后,RS自动满足约束条件,主 触发器只发生一次翻转,即获得主从JK 触发器	由两个电平触发型D触发器构成 异步S(或PRN)和R(或CLRN)端的动作 不受CP控制。	主从JK恤发器有"一次翻转JK"的问题,为了弥补这一缺陷,又有了边沿型触发器。
特性方程	$\begin{cases} Q^{n+1} = \overline{S}_D + R_D Q^n \\ S_D + R_D = 1 \end{cases}$ (約束条件)	$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ RS = 0 \end{cases}$	$\begin{cases} Q^{n+1} = D & , CLK = 1 \\ Q^{n+1} = Q^n & , CLK = 0 \end{cases}$	$\begin{cases} Q^{n+1} = Q^{n+1}_m = S + \overline{R}Q^n_m = S + \overline{R}Q^n_m \\ RS = 0 \end{cases}$	$Q^{n+1} = S + \overline{R}Q^n = J\overline{Q}^n + \overline{K}Q^nQ^n$ $= J\overline{Q}^n + \overline{K}Q^n$	$Q^{\mu_1} = D$	$Q^{n+1} = S + \overline{R}Q^n = J\overline{Q}^n + \overline{K}\overline{Q}^n\overline{Q}^n$ $= J\overline{Q}^n + \overline{K}\overline{Q}^n$
电路	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			S C C C C C C C C C C C C C C C C C C C	CP	IPRN PRN CIRN CIRN	1PRN 1 JANA 10 1 GLK 1 IGLK 1
触发器名称	RS触发器	钟控RS触发器	钟控0触发器	主从RS触发器	主从JK触发器	边沿0触发器	边沿JK触发器