Def-n. Let 6 be a (finite) group and HCG a subgroup.
The set of elements gH:= 2gh/heH; is called a left coset.
Of He in 6. KMK. G= UgH (set theoretically). Example 6=2+, H=57. The left cosets are j+57+, jelly 23h.
In this case the set of left cosets 6/H=2/57+ is a group.
This is true if HCG is hormal: gHg-1=H + geG. (MSP) Hidden subgroup problem: let f: G -> S be a function satisfying flah) = f(g) 2= > heH (some unknown subgroup). The goal is to find H. In case & is a finite abelian group, the solution can be obtained using Shor's algorithm. It will be convenient to interpret the DFT in terms of characters of &, these are homomorphisms X: 6 -> Co, where Co=Class is a group under multiplication and $\chi(gh) = \chi(g)\chi(h) \forall g, he G.$ Properties: 1. It get is of finite order, i.e. Fretzo with grzid, then $\chi(gr) = \chi(id) = 1$ giving $\chi(gr) = (e^{\frac{2\pi i}{r}})^s$ for some set. $\chi(gr) = \chi(id) = 1$ In particular, $|\chi(gr)| = 1$.

2. If f is finite, then the image of X is contained in S'CC+ (the unit circle). 3. The characters form a group under paint wise multipli-cation. It is called the dual group of 6 and will be then ted by fr Example. G=ZN, let X: G-> C* be a character. Mined by its value at 1. Moreover, $X(1+-P1) = X^{N}(1) = 1$, so $X(1) = W^{S}$ for some 0555N-1 (as before $w = e^{2\pi i N}$). Let's denote such a diaracter by X_{S} , then $G' = LX_{O}, ..., X_{N-1}$. With $X_{S} \cdot X_{j} = X_{S} \cdot p_{j} \pmod{N}$ as $\chi_s.\chi_{j(k)} = \chi_{s(k)}\chi_{j(k)} = w^{sk}w^{jk} = w^{sk}w^{jk} = w^{sk}w^{jk}$ Notice that there is an isomorphism $G \simeq G$ (via $S \rightarrow K_S$). Furthermore, the discrete Fourier thansform for Ξ_V can be can (informally) be written as military to written as Ruk. Similarly for any finite abelian 6, we have 6=6 via 9+3 xg $F_{N}(\partial_{K}) = \chi_{K}$. Recall that we defined the Fourier transform as a map

from (CG) (functions on 6 with values in () to itself. The physical interpretation of 5's and X's is as functions of precise position and momenta, respectively.

Next was a finite
abelian group & and a finite set S.
O Start with a state 10101 > 10151 > and apply 1000 Da
Next we sketch an absorption for solving HSP for a finite abelian group 6 and afinite set S. ① Start with a state 10 ¹⁶¹ >10 ¹⁵¹ > and apply H ⁰¹⁶¹ ® Id ⁰¹⁵¹ to get the generic state $\frac{1}{164} \sum_{g \in G} 1g > 10^{151} > 1g > 1g > 1f(g) > and$
1161 geb 1100 1 5 10 > 1 f(g) > and
2) Apply the cracle of f to obtain the 2 19>1f(g)> and
measure the count register. The outcome will be some
measure the second register. The outcome will be some sts and the state vector turns into
$\perp 5 ah\rangle, f(a) = 5$
$\frac{1}{\sqrt{ H }} \sum_{h \in H} ah\rangle, f(a) = S:$
$L \geq L \geq \chi_{ab}(a) a\rangle = \frac{1}{2} \sum \chi_{ab}(a$
3) Apply the DFV to come up with THING SEE Xah (9) 19> = THING LANGE Xah (9) 19> = THING LANGE XALING XALI
$=$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$
JIHIIBI COCO CACO CACO CACO CACO CACO CACO CAC
TIHI & EHT 1000 /1+= [X / Kalh/=1
Lemma. $\sum_{h \in \mathcal{H}} \chi_h(g) = \int_{0}^{\infty} \mathcal{H} , \chi_g \in \mathcal{H}^{\perp}$ Here $\mathcal{H}^{\perp} = \int_{0}^{\infty} \chi_g \chi_g $
WEH (Ca) CIMINCE
Proof. $\sum_{h \in H} \chi_h(g) \geq \sum_{h \in H} \chi_g(h)$, so if $\chi_g \in H^{\perp}$ the statement follows.
helf helf of h
(coordinate-wise for G= Hyx_xHy)
(COOK MININIA CONTINUA OF CALLA

On the other hand, if $Xg \notin H^{\perp}$, then $\exists h' \in H: Xg(h') \neq 1$. Notice that h'H = H (for instance, $h \geq h' \cdot (h') \cdot h)$), hence, $\sum_{h \in H} \chi_{g}(h) = \sum_{h \in H} \chi_{g}(h'h) = \sum_{h \in H} \chi_{g}(h') \chi_{g}(h) = \sum_{h \in H} \chi_{g}(h') \chi_{g}(h') \chi_{g}(h) = \sum_{h \in H} \chi_{g}(h') \chi_{g}(h') \chi_{g}(h') = \sum_$ = Ky(h) > Kg(h) (=) (Kg(h')-1) \(\text{Kg(h)} = 0, \text{ but } \text{Kg(h')} \nt 1, 50 \ \ \chi_{BH} \chi_{g}(N)=0. It follows from the lemma that our current state is 114/161 JEE Xa(q) > Xh(q) /9> = 114/16/ Xa(q) /9> = 114/16/ Xa(q) /9> = = THT . ZxgeHL ...

Finally, we measure the first register and get an element got with $X_g \in H^{\perp}$. This gives a constraint on H, since heH implies $X_g(h) \geq 1$. After repeating the procedure a few times we get enough constraints to find the generators of H.

Pisctete logarithm problem. As we have already observed in the RSA cryptosystem, one heeds a function, which is fast to evaluate given an extrapiece of information (factorization of n=pa in case of RSA) and extremely difficult without it (a very long time is required to find this into with known algorithms). Here is the most frequently outline is called time of examinder. ently used type of examples. Let 6 be a group and ge 6 an element of finite order 7. Choose a number 1< k\$7-1 and take h=gk. The discrete logarithm problem is to find k, given G, g and T. The name comes from the shorthand notation hzgkes Kzloggh. Examples.

0 G=(2/1002th) g=3. As gcd(3,100)=1, we get r=100,503 is a generator. Let h=11, then we held to find k: 3K=11 (mod 100) (=> K=11.3" (mod 100). We use extended Euclid's algorithm to find 3": 100=33.3+1 (=) 1=100-33.3 =) 1=-33.3 (mod 100), giving 3-1=-33=67. and K=11.67=37 (mad 100) Check: 3.37=111=11 (mad 100) (2) G= (7/1471) \() , g=1, h=15. We need to find k: 2k=15 (molt) A straightforward calculation (check) shows that k=5: 2=31=15(17)

State The PLP for multiplicative group Z' with N>>0 is already difficult but can be solved reasonably fast. We will talk about the PLP problem for & different abelian groups, where no reasonably algorithm (classically) is known.

DLP as HSP.

We will show how to paraphrase the discrete logarithm problem as a hidden subgroup problem for an abelian group K. Therefore, the quantum algorithm discussed in the previous lecture is applicable.

Let's take $K=Z_T\times Z_T$, where τ is the order of q and Z_T is the cyclic subgroup generated by q in G. The key observation is that

ga hb = ga 1 - kb = qu-kb depends only on the value of a kb, but not a and b independently. We consider the function

#: K-> # - = < 9>

 $f(k) = f(a_1b) = gah^{-b}(zga-kb).$

Notice that f(k) = f(ks) for any s in the subgroup $K > H = h (d_1 b) \in K | Kd - b = 0 \pmod{7}$.

Induct f(a+1,b+1) = a+k - b-b = a+k - k(b+1) = a-kb + kb = a-kb + b-b = a-kb + a-kb + a-kb = a-kb + a

= ga-kl' = gah-b=f(a,b). Moreover, solving the HSP (finding H) allows to find k as (1,K) EH.