EE 210 Assignment #12 Assigned: 31.3.21

- 1. In a simple BJT Class-B push-pull output stage, as discussed in class, $V_{CC} = -V_{EE} = 12 \text{ V}$, $R_L = 1 \text{ k}\Omega$, and $V_{CE}(\text{sat}) = 0.2 \text{ V}$. Assume that there is sufficient sinusoidal input voltage available at V_i to drive V_0 to its limit of clipping. Calculate the maximum average power that can be delivered to R_L just before clipping occurs, the corresponding power conversion efficiency, and the maximum instantaneous device power dissipation. Neglect crossover distortion.
- 2. Consider the bipolar Class-AB push-pull output stage, as discussed in class, with $V_{CC} = -V_{EE}$ = 15 V, $I_Q = 200~\mu A$, $\beta_F(pnp) = 50$, $\beta_F(npn) = 200$, and for all devices $V_{BE}(on) = 0.7$ V, $V_{CE}(sat) = 0.2$ V, and $I_S = 10^{-14}$ A.
 - a) Calculate the maximum positive and negative limits of V_0 for $R_L=10~k\Omega,~1~k\Omega,~and~200~\Omega.$
 - b) Calculate the maximum average power that can be delivered to R_L (= 1 k Ω) before clipping occurs, and the corresponding power conversion efficiency (for the output devices only). Also, calculate the peak instantaneous power dissipation in each output device. Assume sinusoidal signals.
- 3. The CMOS Class-AB push-pull output stage, as shown in Fig.1, should be able to deliver a maximum undistorted peak-to-peak swing of the output voltage V_0 of ± 3 V, with $R_L = 1$ k Ω , and $V_{DD} = -V_{SS} = 5$ V. Choose the value of the bias voltage V_B such that a bias current of 10 μA flows through M_3 . The idling (i.e., standby) current flowing through M_1 and M_2 should be 100 μA . Set $(W/L)_3 = (W/L)_6 = 100$. Design the aspect ratios (i.e., W/L) of M_1 , M_2 , M_4 , and M_5 . Neglect body effect and channel length modulation effect. Device data: $V_{TN0} = 0.7$ V, $V_{TP0} = -1$ V, $K_N' = 60$ $\mu A/V^2$, and $K_P' = 30$ $\mu A/V^2$.
- 4. A simple RC-coupled amplifier is shown in Fig.2. The biasing circuit is omitted for simplicity, and it is assumed that the transistor is biased with some dc collector current I_C . Show that the low-frequency transfer function $A_v(s)$, taking both C_B and C_E into account, is given by

$$A_{v}(s) = \frac{v_{0}}{v_{i}}(s) = A_{v0} \frac{(s/\omega_{B})(1+s/z_{1})}{1+a_{1}s+a_{2}s^{2}}$$

where $A_{v0} = -g_m R_C$, $\omega_B = 1/(r_\pi C_B)$, $z_1 = 1/(R_E C_E)$, $a_1 = [R_E C_E + \{R_S + r_\pi + (\beta + 1)R_E\}C_B]$, and $a_2 = R_E C_E (R_S + r_\pi)C_B$. Now, assume that $I_C = 1$ mA, $R_S = 1$ k Ω , $R_C = 2$ k Ω , $R_E = 500$ Ω , $C_B = 10$ μF , and $C_E = 100$ μF . Determine the locations of all the poles and zeros of the system. Also, for the given data, evaluate the lower cutoff frequency f_L of the circuit using the IVTC technique, and compare the result with that obtained from the exact analysis.

- 5. Consider Prob.8 (HA#9). Assuming $C_1 = C_3 = 10 \ \mu\text{F}$, $C_2 = C_4 = 100 \ \mu\text{F}$, and $C_5 = 20 \ \mu\text{F}$, determine the lower cutoff frequency f_L of the circuit. Hence, determine the lowest frequency square wave input that would show no more than 10% tilt at the output.
- 6. The transistor used in the circuit of Fig.3 has $\beta = 200$. For parts (c)-(e), use the IVTC technique.
 - a) Determine the quiescent values of the dc collector current and the output voltage. Neglect the base current.
 - b) Compute the midband voltage gain (v_0/v_s) of the circuit.
 - c) Assuming that C_E can be made arbitrarily large, determine C_B so that the circuit has a lower cutoff frequency f_L of 20 Hz.
 - d) Assuming that C_B can be made arbitrarily large, determine C_E to give $f_L = 20$ Hz.
 - e) Calculate the values of C_B and C_E , such that the circuit has $f_L = 20$ Hz, and the total capacitance requirement is minimized.
- 7. Consider Prob.5 (HA#9). [The values of R_B and R_C have already been calculated in that problem.]
 - a) Select the values of C_1 , C_2 , and C_3 such that the amplifier has a lower cutoff frequency f_L of 20 Hz, and the total capacitance used by the circuit is minimum.
 - b) Given that i_s is a 200 Hz square wave, determine the percent tilt at the output.
 - c) What is the lowest-frequency square wave that exhibits no more than 2% tilt at the output?

