Math 132.5. Worksheet 4

Paul Hacking

November 30, 2018

- (1) S07Q1b Starting with the Maclaurin series for e^x , find a power series expansion for xe^{-x^2} .
- (2) S18Q2 What function does the power series $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{5^{n+1}}$ represent?
- (3) S07Q7. Express $\frac{1}{1+x^3}$ as a power series in x. Use your answer to compute the indefinite integral $\int \frac{1}{1+x^3} dx$ (either use summation notation or give at least the first 5 terms of the series).
- (4) S17Q3 Given that the Maclaurin series for $\sin x$ is $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$, find the Maclaurin series for $f(x) = \frac{\sin(5x)}{x}$.
- (5) F16Q8a Find the power series expansion for $f(x) = \ln(1+3x^2)$ centered at x = 0. Express your final answer in summation notation and simplify completely.
- (6) S08Q6 Starting with the Maclaurin series expansion of e^x , express the function e^{-x^2} as a power series (use summation notation). Use your answer to compute the indefinite integral $\int \frac{e^{-x^2}-1}{x} dx$ as a power series.
- (7) F17Q7b Find the Taylor series for $f(x) = \frac{1}{x}$ centered at x = 3. Express your final answer in summation notation and simplify completely.
- (8) S17Q7b Find the power series expansion for $f(x) = \frac{2x^3}{3+9x^9}$ centered at x = 0, and use the power series to evaluate the indefinite integral $\int \frac{2x^3}{3+9x^9} dx$.
- (9) F16Q8b Find the Taylor series for $f(x) = \frac{1}{x^2}$ centered at x = 7. Express your final answer in summation notation and simplify completely.

- (10) F06Q8 Given that the Maclaurin series for $\sin x$ is $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$, find the Maclaurin series for $g(x) = \sin(x^2)$. Use your answer to compute the indefinite integral $\int \sin(x^2) dx$ as a power series (use summation notation).
- (11) F06Q6b Find the coefficient of x^4 in the Taylor series for $\ln(\cos x)$ about x=0.