MLoo1 [Machine Learning Theory + Practical]

Section - 1 [Basics of Machine Learning]

- **❖** Fundamentals of Machine Learning
 - ➤ What is Machine Learning? The way I like to think about it!
 - ➤ Cool Applications of Machine Learning
 - > Types of ML and Their Types
 - > Workflow of basic ML Problem
 - ➤ Main Challenges of Machine Learning
 - > Dividing the data
 - > Two famous problems of Machine learning:-
 - Underfitting
 - Overfitting
 - > Solutions to the Overfitting and Underfitting
 - ➤ Quizzes
- Supervised Learning and Unsupervised Learning In Depth
- ❖ Assignment released

Section - 2 [Linear Regression & Regularization]

- Linear Regression
 - ➤ What is Linear Regression? Visual Understanding
 - > Hypothesis Function Or Prediction Function
 - > Closed Form Solution aka Normal Equation
 - ➤ Coding Normal Equation
 - > Cost Function
 - > Gradient Descent
 - ➤ Assumptions & Pros and Cons of Linear Regression
- Regularized Linear Models
 - ➤ Ridge Regression
 - > Lasso Regression
- Problem Sets Releases

Section - 3 [Logistic Regression & Performance Metrics]

- Logistic Regression
 - > Hypothesis Function
 - > Cost Function
 - ➤ Gradient Descent
 - > Assumptions and Pros and Cons
 - > Problem Sets Releases

Section - 4 [**Support Vector Machine**]

- Support Vector Machines
 - ➤ Linear SVM Classification
 - Hard/Soft Margin Classification
 - ➤ Non-Linear SVM Classification
 - How does it work?
 - Polynomial Kernel [Homogenous & Inhomogeneous]
 - RBF Kernel
 - > Computing SVM Classifier
 - Primal and Dual Problem
 - Sub-Gradient Descent
 - Coordinate Descent
 - > Transductive SVM
 - > SVR
 - Problem Sets releases

Section - 5 [PCA]

- > Review of Linear Transformation & EigenVectors and EigenValues
- > Dimensionality Reduction Need
- ➤ Basic Intuition Behind PCA
- ➤ Algorithm:-
 - Data Preprocessing [Data Standardization]
 - Compute the Covariance Matrix
 - Compute the cumulative energy content for each eigenvector
 - Select a subset of the eigenvectors as basis vectors
 - Projecting Back
- > Pros and Cons
- > Summary
- Problem Sets releases

Section - 6 [Learning Theory]

- ❖ Bias and Variance TradeOff
- **❖** Approx Estimation Error
- Empirical Risk Minimization
- Problem Sets releases

Section - 7 [Decision Trees & Random Forest]

- Decision Trees
 - > Training of Decision Trees
 - > Prediction in Decision Trees
 - ➤ Information Measures:-
 - **■** Entropy
 - **■** Information Gain
 - Gini Impurity
 - > Hyperparameter Tuning
 - > Project Proposal
 - Decision Trees Assignment
- **❖** Ensemble Learning
 - > Ensemble Learning
 - Bagging
 - Random Forest
 - Boosting
 - Gradient Boosting
 - Adaboost
 - XGboost
 - Stacking
 - Cascading
 - ➤ Problem Sets releases [3 problems sets]

Section - 8 [Learning more algorithms and building more projects]

- ➤ Naive Bayes
- > K-Nearest Neighbors

Section - 8 [Unsupervised Learning Algorithms]

- Unsupervised Learning and Clustering Intro and Types
- Cluster Analysis
- Unsupervised Learning Algorithms
 - > K-Means with K-Means ++
 - ➤ Hierarchical Clustering Techniques
 - > Unsupervised Learning Problem set and project releases
 - > K-Means Programming Assignment

Section - 9 [Building Applications]

- > Building Heart Failure Detection System with deployment
- ➤ Building Fake news detection system
- > Building Email Spam Detection System
- ❖ Student projects:-

 \triangleright