D16

In [1]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\19_nuclear_explosions.csv")
 df

Out[2]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Lc
0	USA	Alamogordo	DOE	32.54	
1	USA	Hiroshima	DOE	34.23	
2	USA	Nagasaki	DOE	32.45	
3	USA	Bikini	DOE	11.35	
4	USA	Bikini	DOE	11.35	
2041	CHINA	Lop Nor	HFS	41.69	
2042	INDIA	Pokhran	HFS	27.07	
2043	INDIA	Pokhran	NRD	27.07	
2044	PAKIST	Chagai	HFS	28.90	
2045	PAKIST	Kharan	HFS	28.49	

2046 rows × 16 columns

In [4]: df.head(10)

Out[4]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longi
0	USA	Alamogordo	DOE	32.54	-1C
1	USA	Hiroshima	DOE	34.23	13
2	USA	Nagasaki	DOE	32.45	12
3	USA	Bikini	DOE	11.35	16
4	USA	Bikini	DOE	11.35	16
5	USA	Enewetak	DOE	11.30	16
6	USA	Enewetak	DOE	11.30	16
7	USA	Enewetak	DOE	11.30	16
8	USSR	Semi Kazakh	DOE	48.00	7
9	USA	Nts	DOE	37.00	-11
4					+

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2046 entries, 0 to 2045
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	WEAPON SOURCE COUNTRY	2046 non-null	object
1	WEAPON DEPLOYMENT LOCATION	2046 non-null	object
2	Data.Source	2046 non-null	object
3	Location.Cordinates.Latitude	2046 non-null	float64
4	Location.Cordinates.Longitude	2046 non-null	float64
5	Data.Magnitude.Body	2046 non-null	float64
6	Data.Magnitude.Surface	2046 non-null	float64
7	Location.Cordinates.Depth	2046 non-null	float64
8	Data.Yeild.Lower	2046 non-null	float64
9	Data.Yeild.Upper	2046 non-null	float64
10	Data.Purpose	2046 non-null	object
11	Data.Name	2046 non-null	object
12	Data.Type	2046 non-null	object
13	Date.Day	2046 non-null	int64
14	Date.Month	2046 non-null	int64
15	Date.Year	2046 non-null	int64

dtypes: float64(7), int64(3), object(6)

memory usage: 255.9+ KB

In [6]: df.describe()

Out[6]:

	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Data.Magnitude.Body	Data.Μaς
count	2046.000000	2046.000000	2046.000000	
mean	35.462429	-36.015037	2.145406	
std	23.352702	100.829355	2.625453	
min	-49.500000	-169.320000	0.000000	
25%	37.000000	-116.051500	0.000000	
50%	37.100000	-116.000000	0.000000	
75%	49.870000	78.000000	5.100000	
max	75.100000	179.220000	7.400000	
4				•

```
In [7]: df.columns
```

In [8]: | sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x2436244e640>

In [10]: | sns.distplot(df['Date.Year'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='Date.Year', ylabel='Density'>


```
In [12]: sns.heatmap(df1.corr())
```

Out[12]: <AxesSubplot:>

- In [14]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
- In [15]: from sklearn.linear_model import LinearRegression
 lr=LinearRegression()
 lr.fit(x_train,y_train)
- Out[15]: LinearRegression()
- In [16]: print(lr.intercept_)

1967.653018546527

```
In [17]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[17]:

	Co-efficient
Location.Cordinates.Latitude	-0.091582
Location.Cordinates.Longitude	-0.010558
Data.Magnitude.Body	1.932421
Data.Magnitude.Surface	0.957819
Location.Cordinates.Depth	0.041197
Data.Yeild.Lower	-0.000271
Data.Yeild.Upper	-0.000103
Date.Day	0.029454
Date.Month	0.182038

```
In [18]: prediction=lr.predict(x_test)
   plt.scatter(y_test,prediction)
```

Out[18]: <matplotlib.collections.PathCollection at 0x243718ee520>


```
In [19]: print(lr.score(x_test,y_test))
```

0.3472606195002841

```
In [20]: from sklearn.linear_model import Ridge,Lasso
```

```
In [21]: rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[21]: Ridge(alpha=10)

```
In [22]: rr.score(x_test,y_test)
```

Out[22]: 0.3472047118567615

```
In [23]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[23]: Lasso(alpha=10)
In [24]: |la.score(x_test,y_test)
Out[24]: 0.16353714885324178
In [25]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[25]: ElasticNet()
In [26]: print(en.coef_)
         [-8.55972104e-02 -9.34348943e-03 1.79558295e+00 5.48591959e-01
           3.82436434e-02 -3.43338055e-04 -6.52431655e-05 2.49480195e-02
           1.21896798e-01]
In [27]: | print(en.intercept )
         1968.452512060371
In [28]:
         print(en.predict(x train))
         [1965.08286525 1970.99518333 1965.03989087 ... 1978.00406435 1971.01375701
          1966.98028248]
In [29]: |print(en.score(x_train,y_train))
         0.312630759683329
In [30]: from sklearn import metrics
In [31]: |print("Mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
         Mean Absolytre Error: 6.546865470822468
In [32]: print("Mean Square Error:", metrics.mean_squared_error(y_test, prediction))
         Mean Square Error: 67.84926289562725
In [33]: print("Root Mean Square Error:",np.sqrt(metrics.mean_absolute_error(y_test,pre
         Root Mean Square Error: 2.558684324183518
In [34]: import pickle
```

```
In [35]: file="prediction"
  pickle.dump(lr,open(file,'wb'))
In []:
```