Quiz 3

October 29, 2013

Name:	NetID:
Question 1. (1 point) Suppose we have an unbiased linear classifier $f_{\mathbf{W}}$ with weight vector \mathbf{w} such that $ \mathbf{w} = 1$. Then, for a sample instance (\mathbf{x}, y) , the value $y(\mathbf{x} \cdot \mathbf{w})$ is called the	
Oops two correct answers!	
(a) Functional margin of \mathbf{x}	(c) Geometric margin of \mathbf{x}
(b) Fundamental margin of \mathbf{x}	(d) Mistake bound of \mathbf{x}
Question 2. (1 point) Consider a solution to the dual version of the SVM optimization problem in which $0 \le \alpha_i < C$, for some i . Which of the following is always true?	
(a) $\xi_i > 0$	(c) \mathbf{x}_i is a support vector
(b) $\xi_i = 0$	(d) None of the above
Question 3. (1 point) Consider training a soft-margin SVM classifier on a sample set $S = \{(\mathbf{x}_1, y_1),, (\mathbf{x}_n, y_n)\}$ such that $max_i(\mathbf{x}_i) = 1$. We want to estimate the generalization error of our classifier by computing its n -fold leave-one-out error. Will leaving out an instance \mathbf{x}_i with $\alpha_i = 0$ and $\xi_i = 0$ result in an error?	
(a) Always	(c) Never
(b) Sometimes	(d) Insufficient information
Question 4. (1 point) Which of the following is not an example of a discriminative learning algorithm?	
(a) k -Nearest Neighbors - [arguably generative]	
(b) Support Vector Machine (SVM)	
(c) Multivariate Naïve Bayes - [definitely generative]	
(d) TDIDT (Decision Tree)	