HW 5.7 Key

A)

1. Let $\,X\,$ and $\,Y\,$ be discrete random variables with joint probability mass function given by the table below. Find Cor[X,Y].

			X						
		1		2	4				
Y	2	0.22		0.05	0.04	0.	0.31		
	4	0.02		0.09	0.58	0.0	90		
		0.24		0.14	0.6	2			
0.7419	B)	0.7196	C)	0.7642	D)	0.7864		E)	0.8087

Using 1-var stats:
$$E[x] = 3$$
 $\sigma_x = 1.3115$ $E[Y] = 3.38$ $\sigma_y = 0.9250$

$$E[XY] = 2(0.22) + 4(0.05 + 0.02) + 8(0.04 + 0.09) + 16(0.58)$$

= 11.04

$$Cov[X,Y] = 11.04 - 3(3.38) = 0.9$$

 $Cor[X,Y] = \frac{0.9}{(1315Y0.9250)} = [0.7419]$

- 2. Let $\, X \,$ and $\, Y \,$ be continuous random variables with joint probability density function given by $f(x,y) = \frac{1}{105}(x+y)$ on the region given by $0 \le x \le 3$, $0 \le y \le 7$. Find Cov[X,Y].
- B) -0.1164 C) -0.1286
- D) -0.1347
- E) -0.1409

$$E[X] = \frac{1}{105} \int_{0}^{3} \int_{0}^{7} (x^{2} + xy) dy dx = \frac{1}{105} \int_{0}^{3} [x^{2}y + \frac{1}{2}xy^{2}]_{0}^{7} dx$$
$$= \frac{1}{105} \int_{0}^{3} [7x^{2} + 24.5x] dx = \frac{1}{105} [\frac{7}{3}x^{3} + 12.25x^{2}]_{0}^{3} = 1.65$$

$$E[Y] = \frac{1}{105} \int_{0}^{3} \int_{0}^{3} (xy + y^{2}) dy dx = \frac{1}{105} \int_{0}^{3} \left[\frac{1}{2} x y^{2} + \frac{1}{3} y^{3} \right]_{0}^{3} dx$$

$$= \frac{1}{105} \int_{0}^{3} \left[24.5 x + \frac{343}{3} \right] dx = \frac{1}{105} \left[12.25 x^{2} + \frac{343}{3} x \right]_{0}^{3} = 4.3167$$

$$E[XY] = \frac{1}{105} \int_{0}^{3} \int_{0}^{3} (x^{2}y + xy^{2}) dy dx = \frac{1}{105} \int_{0}^{3} \left[\frac{1}{2} x^{2}y^{2} + \frac{1}{3} xy^{2} \right]_{0}^{3} dx$$

$$= \frac{1}{105} \int_{0}^{3} \left[24.5 x^{2} + \frac{343}{3} x \right] dx = \frac{1}{105} \left[\frac{24.5}{3} x^{3} + \frac{343}{6} x^{2} \right]_{0}^{3} = 7$$

3. Let $\, X \,$ and $\, Y \,$ be continuous random variables that are uniformly distributed on the region given by $0 \le y \le 7x \le 3$ Find Cov[X, Y].

- B) 2.3940
- C) 2.6460
- D) 2.7720

Area =
$$\frac{1}{2}(3.6)(25.2) = 45.36$$
 $f(x,y) = \frac{1}{45.36}$

$$E[x] = \frac{1}{45.36} \int_{0}^{3.6} \int_{0}^{7x} x \, dy \, dx = \frac{1}{45.36} \int_{0}^{3.6} \frac{7}{10} x^{2} \, dx = 2.4$$

$$E[XY] = \frac{1}{45.36} \int_{0}^{3.6} \int_{0}^{7x} xy \, dy \, dx = \frac{1}{45.36} \int_{0}^{3.6} \left[\frac{1}{2} xy^{2} \right]_{0}^{7x} \, dx$$

$$= \frac{1}{45.36} \int_{0}^{3.6} (24.5 x^{3}) \, dx = \frac{1}{45.36} \left[6.125 x^{4} \right]_{0}^{3.6} = 22.68$$

4. Let $\,X\,$ and $\,Y\,$ be exponentially distributed random variables with means of 6 and 24, respectively. Assume that $\rho_{X,Y} = 0.54$. Find E[XY].

- C) 63.59
- D) 68.89
- E) 71.54

$$E[x] = 6 \Rightarrow \lambda_x = \frac{1}{6} \Rightarrow \sigma_x = 6$$

$$E[Y] = 24 \Rightarrow \lambda_Y = \frac{1}{24} \Rightarrow \sigma_Y = 24$$

$$E[XY] = Cov[X,Y] + E[X]E[Y] = 221.76$$

Let X and Y be discrete random variables with probability mass function given by $f(x,y) = \frac{50x + y^2}{520}$, for all positive integers X and Y satisfying $x + y \le 4$. Given that $E[X] = \frac{79}{40}$ and $E[Y] = \frac{199}{130}$, find Cov[X,Y].

$$E[XY] = \frac{1}{520} \left[1 (50+1) + 2 (50+4) + 3 (50+9) + 2 (100+1) + 4 (100+4) + 3 (150+1) \right]$$

$$=\frac{1407}{520}$$

$$C_{\text{ev}}[X,Y] = \frac{1407}{520} - \frac{79}{40} \frac{199}{130} = -0.3175$$