Query Optimization for Parametric Knowledge Refinement in Retrieval-Augmented Large Language Models

Youan Cong Cheng Wang Pritom Saha Akash* Kevin Chen-Chuan Chang University of Illinois Urbana-Champaign, USA {youanc2, chengw4, pakash2, kcchang}@illinois.edu

Abstract

We introduce the Extract-Refine-Retrieve-Read (ERRR) framework, a novel approach designed to bridge the pre-retrieval information gap in Retrieval-Augmented Generation (RAG) systems through query optimization tailored to meet the specific knowledge requirements of Large Language Models (LLMs). Unlike conventional query optimization techniques used in RAG, the ERRR framework begins by extracting parametric knowledge from LLMs, followed by using a specialized query optimizer for refining these queries. This process ensures the retrieval of only the most pertinent information essential for generating accurate responses. Moreover, to enhance flexibility and reduce computational costs, we propose a trainable scheme for our pipeline that utilizes a smaller, tunable model as the query optimizer, which is refined through knowledge distillation from a larger teacher model. Our evaluations on various question-answering (QA) datasets and with different retrieval systems show that ERRR consistently outperforms existing baselines, proving to be a versatile and cost-effective module for improving the utility and accuracy of RAG systems.

1 Introduction

In recent years, the field of natural language processing has witnessed remarkable advancements recently, largely attributable to the proliferation of Large Language Models (LLMs). These LLMs, characterized by their extensive scale training on vast corpora, have demonstrated unparalleled capability of understanding human text and producing high-quality responses (Kaplan et al., 2020; Clark et al., 2022). Moreover, they showcase exceptional practicality and scalability across a spectrum of downstream NLP tasks, such as conversational response generation, text summarization, or content recommendation, under only few-shot or zero-shot

settings (Wu et al., 2023). However, despite their potential, a major limitation of these LLMs is their struggle to accurately capture the dynamic nature of information updates. Since LLMs are pre-trained on static corpora of data they face difficulties when dealing with the latest or less commonly known information that falls outside their initial training scope. This limitation leads to generating responses that contain outdated or incorrect information, or in some cases, entirely fictitious content— a problem often termed as "hallucination" (Lee et al., 2018).

In response to this pressing challenge, the concept of Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) has emerged as a promising technique to enhance the functionality and reliability of LLMs. Retrieval augmentation addresses the shortcomings of original LLMs by incorporating external knowledge (i.e., non-parametric knowledge) sources through some information retrieval system and leveraging the in-context learning ability of LLM readers to generate more contextually relevant and accurate responses. For instance, in a conversational setting where a user interacts with an LLM like ChatGPT (Ouyang et al., 2022) to inquire about the latest news events. ChatGPT, being reliant on static pre-training knowledge, may struggle to offer real-time updates in response to the user query. RAG mitigates this information gap by retrieving pertinent news articles or data related to the query from external databases. By augmenting the original user question with retrieved knowledge, the final LLM reader is more likely to generate a contextually relevant answer.

While previous research has underscored the efficacy of retrieval augmentation in mitigating hallucination, it introduces its own set of challenges. One such critical challenge in the RAG systems is the existence of a gap between the information retrievable using the given retriever using original user input queries and the information required for generating optimal responses (Gao et al., 2024). Consider

^{*}Corresponding Author

a scenario where an external document collection comprises three distinct passages labelled Passage A, B, and C, each containing unique knowledge components denoted as knowledge x, y, and z, respectively. Notably, all three passages include keywords related to Knowledge z, which the user seeks to obtain. However, if the user enters a poorly formulated query, there exists a possibility that Passage A or Passage B may be retrieved instead of the ideal source, Passage C, thereby limiting the LLM reader's capacity to derive an optimal response. This disparity is referred to as the pre-retrieval gap in RAG and poses a fundamental obstacle to achieving optimal text generation outcomes.

In the quest to bridge this pre-retrieval information gap (Gao et al., 2024) within the existing RAG systems, the Rewrite-Retrieve-Read (RRR) framework (Ma et al., 2023) introduces a pivotal paradigm shift by incorporating the concept of query rewriting from the realm of traditional information retrieval into the RAG domain. RRR proposes the integration of a specialized Query Rewriter module into the native RAG system to align user queries with both the retriever and the LLM reader, thereby optimizing the retrieval process and narrowing the pre-retrieval gap between user queries and the information sought by the LLM reader, i.e. the LLM that generates the final responses. This query optimization technique has also seen widespread adoption in more recent RAG systems (Zheng et al., 2024; Gao et al., 2024). However, while RRR demonstrates notable advancements, only the original query is passed to the rewrite module, which focuses more on rephrasing queries or expanding the search scope. This framework falls short in tailoring optimization strategies for queries based on the specific needs of the LLM reader, overlooking the need for retrieving the most relevant knowledge essential for accurate generation.

To this end, we propose *Extract-Refine-Retrieve-Read* (ERRR), a simple but effective framework designed for retrieval augmentation systems. The ERRR framework is crafted to bridge the preretrieval information gap through tailored query optimization and aims to resolve the inherent limitations of RRR by enabling retrieval based on the specific information needs of the LLM reader. Specifically, it initiates by extracting parametric knowledge from LLMs and employs a specialized query optimizer that refines user queries. This re-

finement either complements or validates the extracted parametric knowledge, ensuring that only essential information is retrieved for generating accurate responses, and minimizing the retrieval of extraneous information that could degrade the quality of the output.

Additionally, given that many advanced LLMs, such as ChatGPT (Ouyang et al., 2022), function as black-box systems accessible only through inference APIs, our study introduces a trainable ERRR scheme to enhance customizability for different types of queries. This scheme incorporates a smaller, tunable language model as the query optimizer, which not only helps to lower the expenses associated with query optimization for parametric knowledge refinement but also allows for more adaptable customization tailored to each knowledge source.

Our methods undergo thorough evaluation on multiple question-answering (QA) datasets (HotpotQA (Yang et al., 2018), AmbigNQ (Min et al., 2020), PopQA (Mallen et al., 2022)). All frameworks and baselines evaluated are implemented using GPT-3.5-Turbo (Brown et al., 2020) or T5-Large (Raffel et al., 2020) as the query optimizer, with GPT-3.5-Turbo serving as both the final reader and the source of parametric knowledge. Evaluation is conducted on the Brave Web Search Engine ¹ and a local dense retriever, Dense Passage Retrieval (DPR) (Karpukhin et al., 2020), alongside a static open-source Wikipedia corpus. Our evaluations demonstrate that ERRR consistently boosts the performance of retrieval-augmented LLMs across all tested QA datasets and retrieval systems when compared to the RRR framework. Furthermore, the outcomes highlight the adaptability and versatility of ERRR, showcasing its effectiveness across diverse settings and data sources.

In summary, our key contributions are as follows: (i) We propose *Extract-Refine-Retrieve-Read* (ERRR), a retrieval augmentation framework designed to boost the effectiveness of RAG systems by optimizing queries to meet the specific knowledge needs of LLMs. (ii) We reveal that ERRR has a high degree of adaptability across diverse settings and data sources, as well as across various retrieval systems. (iii) We introduce a trainable scheme for ERRR, which not only achieves higher performance but also effectively reduces computational costs.

¹https://brave.com/search/api/

2 Related work

2.1 Retrieval-Augmented Generation

The integration of retrieval modules to access relevant contextual knowledge has played a crucial role in enhancing Large Language Models (LLMs) in recent years. Initially designed for early sequenceto-sequence models, the Retrieval-Augmented Generation (RAG) framework proposed by Piktus et al. (Lewis et al., 2020) has gained substantial traction in the era of LLM. This approach has diversified into a broad array of methods, with ongoing efforts aimed at further augmenting its capabilities. Earlier exploration primarily focused on improving key components, such as upgrading to more powerful pre-trained language models like BERT (Devlin et al., 2019) as readers or employing advanced dense retrievers for retrieval tasks (Karpukhin et al., 2020). These retrievers encode documents and inputs into dense vectors, facilitating retrieval based on the similarity between the input and retrieved passages.

Recent studies have shifted focus beyond merely enhancing the retriever or reader components, emphasizing the refinement of pre-retrieval and postretrieval processes. To address the pre-retrieval gap—the disparity between the information retrievable from original queries and the knowledge required for optimal responses—GenRead (Yu et al., 2023) replaces the retrieval module with a knowledgeable LLM, thereby narrowing the gap between the user query and retrieval process. It prompts the LLM to generate contextual information for the query, using these generated documents as retrieval results to formulate the final answer. Self-ask (Press et al., 2023) proposes an iterative approach using chain-of-thought prompting to generate selfposed questions that refine the response. For the post-retrieval gap—the challenge of creating optimal responses from given information—strategies include document re-ranking or summarization. For instance, PRCA (Yang et al., 2023) trains a contextual adaptor module to summarize retrieved documents with a black-box LLM reader.

Several studies have also proposed significant modifications to the original RAG pipeline, introducing complex systems that include both preretrieval and post-retrieval modules (Rackauckas, 2024), and adapting the pipeline into iterative or recursive frameworks (Yao et al., 2022; Asai et al., 2023). While these advanced systems demonstrate notable performance enhancements, they incur sub-

stantial costs and typically require multiple interactions with LLM. In contrast, our work focuses on refining the single-turn RAG framework, introducing a flexible and trainable module adaptable to existing systems.

2.2 Query Optimization for Retrieval Augmentation

Recent research highlights a significant discrepancy between input queries and LLM readers for RAG systems, especially under the current trend of using off-the-shelf web search tools or blackbox LLMs that are difficult to customize (Ma et al., 2023). Typically, these input queries often originate directly from users or specific datasets, which could be either poorly formulated or adhere to a static query format. To overcome these challenges, an effective approach is to optimize the query in the pre-retrieval phase, thereby improving the quality of retrieved information and response generation. The Rewrite-Retrieve-Read (RRR) framework, for instance, trains a query rewriting module using an LLM to better align retrieval queries with LLM readers (Ma et al., 2023) that generate the final response, as illustrated in Figure 1. Additionally, RRR introduces a trainable scheme that employs reinforcement learning with Proximal Policy Optimization to fine-tune a small open-source model based on feedback from the LLM reader, achieving improved results. HyDE addresses the demand for accurate information retrieval by creating hypothetical documents and encoding them through unsupervised contrastive learning for efficient retrieval operations (Gao et al., 2023). Furthermore, Step-Back Prompting (Zheng et al., 2024) converts original queries into high-level abstract questions, aiding LLMs in generating better responses for complex queries requiring abstract thinking.

While these efforts have markedly improved the performance of original RAG systems by focusing on query optimization, they often overlook the importance of synchronizing queries with the specific knowledge requirements of the LLM reader. Unlike the RRR framework, our approach includes an additional parametric knowledge extraction step to assess the knowledge possessed by the LLM. We then perform retrieval based on optimized queries to refine this parametric knowledge, thereby further enhancing retrieval-augmented LLMs.

Figure 1: Overview of *Extract-Refine-Retrieve-Read* (ERRR). Extract-Refine-Retrieve-Read leverages parametric knowledge of LLMs and utilizes a specialized query optimizer to retrieve the knowledge that better aligns with LLM's needs.

3 Methodology

In this section, we elaborate on the details of Extract-Refine-Retrieve-Read (ERRR), a framework for improving the retrieval-augmented LLMs through query optimization for parametric knowledge refinement. Section 3.1 formally defines the central task addressed by ERRR and introduces its key concepts. The design of the framework is discussed in Section 3.2, where we outline a frozen scheme using a black-box LLM reader and standard web search tools. Additionally, Section 3.3 discusses a trainable scheme of the framework.

3.1 Pre-retrieval Information Gap

A task with retrieval augmentation can be formulated as follows. Given an input query q, a set of theoretical golden documents D that has the accurate information to answer query q, and a ground-truth answer a, we denote:

$$LLM(D, q \mid \theta) = a \tag{1}$$

where LLM denotes an LLM reader and θ denotes the parametric knowledge of the LLM.

However, to obtain the document set D, practical implementations often employ a retrieval function R which retrieves documents R(q) from an

external knowledge base, and thus the output of a retrieval-augmented system is:

$$LLM(R(q), q \mid \theta) \tag{2}$$

An inherent challenge arises due to the difference in the quality and relevance of documents retrieved by R compared to the ideal documents set D:

$$LLM(R(q), q \mid \theta) \neq LLM(D, q \mid \theta)$$
 (3)

The limitation discussed above describes the problem of the pre-retrieval gap in the original RAG pipeline, wherein the set R(q) may not adequately represent the information necessary for generating the true answer a. Therefore, the main objective is to develop a query optimization function f that transforms the initial user query q into one or more optimized queries f(q) such that R(f(q)) better approximates the ideal document set D.

Previous work like RRR (Ma et al., 2023) has demonstrated the effectiveness of such query optimization functions, albeit without considering the influence of θ . To this end, ERRR introduces a more tailored query optimization function f' that utilizes the parametric knowledge θ to perform the

query optimization and retrieve external knowledge that refines θ and better aligns with its needs. This can be formulated as:

$$LLM(R(f'(C,q)), q \mid \theta)$$
 (4)

where

$$C = E(q \mid \theta)$$

and ${\cal E}$ denotes the parametric knowledge extraction function.

3.2 Extract-Refine-Retrieve-Read

Extract-Refine-Retrieve-Read consists of a fourstep pipeline: Parametric Knowledge Extraction, Query Optimization for Parametric Knowledge Refinement, Retrieval, and Generation, as depicted in Figure 1. Detailed technical implementation for each step, covering the models, prompting techniques and training setup, is provided in Section 4.3.

Parametric Knowledge Extraction Previous studies such as GenRead (Yu et al., 2023) and HyDE (Gao et al., 2023) demonstrate that LLMs may possess substantial parametric knowledge capable of addressing user inquiries, particularly on popular topics. Inspired by the prompting methods outlined in GenRead, our approach involves a direct strategy where we prompt the LLM reader to produce a pseudo-contextual document containing all the background information. We consider these pseudo-contextual documents as a representation of the LLM's abstracted parametric knowledge. Although these documents may contain inaccuracies, they provide essential contextual information related to the original queries.

Query Optimization In this step, we employ an LLM as the query optimizer for parametric knowledge refinement. We prompt the query optimizer to produce one or more optimized queries seeking external knowledge that either validates or supplements the existing parametric knowledge, especially focusing on the validation of time-sensitive information.

Retrieval To illustrate the adaptability of our module across various retrieval systems and data sources, we utilize two types of retrievers: a blackboxed web search tool and a local dense retrieval system, which are then combined with the original query for processing by the LLM reader.

Generation We employ an LLM reader to generate the final answer using both the retrieved documents and the original query. Our prompting strategy involves straightforward instruction followed

by 1-3 few-shot examples for question answering. These examples are consistently used within each dataset but vary across different datasets to maintain control over the task-specific output format from the LLM reader—for instance, the responses are expected to be concise in certain QA tasks, usually only one or a few words.

3.3 Trainable Scheme

Given that many powerful LLMs operate as blackbox systems, significant challenges such as high computational costs, customization limitations, copyright issues, and connectivity problems have arisen. To address these issues, alongside the conventional frozen scheme, we propose a trainable scheme for our pipeline. Specifically, we finetuned a smaller, trainable model utilizing knowledge distillation from a high-performing teacher LLM, leveraging its broadly trained outputs as a good starting point and learning template, and intensively training student models on a distillation dataset of QA questions and generated responses to learn the intricate nuances of query optimization. This streamlined model is then integrated into our pipeline to fulfill the role of query rewriting, originally handled by a frozen LLM.

4 Experiments

4.1 Datasets and Metrics

ERRR is assessed on three open-domain questionanswering (QA) datasets: AmbigQA (Min et al., 2020), PopQA (Mallen et al., 2022), and HotpotQA (Yang et al., 2018). Each dataset serves to test different capabilities of the ERRR framework. (i) The AmbigNQ dataset is the disambiguated variant of the Natural Questions (NQ) dataset, where ambiguous questions from NQ are refined into specific queries with minimal constraints. Consistent with procedures used in RRR, we evaluated ERRR using the first 1000 samples of the test set. (ii) PopQA features simpler questions that focus on less popular knowledge topics compared to other QA tasks. Due to the high similarity in sample distributions, we assessed only the first 997 samples of the test set. (iii) The HotPotQA dataset contains complex questions that require multi-hop reasoning. We conducted evaluations across the entire test set. Following the metric usage for three datasets, our method is evaluated by exact match score EMand F_1 score.

Direct Prompt

Answer the question in the following format, end the answer with '**'. {demonstration} Question: $\{x\}$ Answer:

Reader Prompt for Retrieval Augmentation Generation

Answer the question in the following format, end the answer with '**'. {demonstration} Question: $\{doc\}\ \{x\}$ Answer:

Prompt for RRR Query Rewriter

Think step by step to answer this question, and provide search engine queries for knowledge that you need. Split the queries with ';' and end the queries with '**'. {demonstration} Question: $\{x\}$ Answer:

Prompt for Parametric Knowledge Extraction

Generate a background document from web to answer the given question. $\{x\}$

Prompt for ERRR Query Optimizer

Address the following questions based on the contexts provided. Identify any missing information or areas requiring validation, especially if time-sensitive data is involved. Then, formulate several specific search engine queries to acquire or validate the necessary knowledge. Split the queries with ';' and end the queries with '**'. {demonstration} Context: {Parametric Knowledge} Question: $\{x\}$ Queries:

Table 1: List of Prompts Used.

4.2 Baselines and Proposed Frameworks

We evaluated 7 baselines and proposed frameworks, as detailed below: (i) Direct: Directly calling GPT-3.5-Turbo to answer questions. (ii) **RAG**: The classic Retrieval-Augmented Generation framework (Lewis et al., 2020). The original user queries are used for retrieval and fed directly to the LLM reader to generate output. (iii) ReAct: A modified RAG framework that intertwines the reasoning and acting capabilities of LLMs to create a more cohesive and effective approach (Yao et al., 2022). This framework can iteratively perform reasoning prompts and actions, such as information retrieval, serving as our comparison baseline. (iv) Frozen RRR: Rewrite-Retrieve-Read framework (Ma et al., 2023) with a frozen configuration. It employs GPT-3.5-Turbo to rewrite the query and retrieve relevant documents based on these rewritten queries. Then the original query and retrieved documents are used for reading. This serves as our baseline for comparison. (v) **Trainable RRR**: Trainable rewrite-retrieve-read framework, initiating with a supervised fine-tuned T5-large model. It then applies reinforcement learning to better align the retriever and rewriter using Proximal Policy Optimization (PPO). This serves as our baseline for comparison. (vi) Frozen ERRR: Extract-Refine-Retrieve-Read framework with a frozen configuration, as described in Section 3.2. (vii) Trainable ERRR: Trainable Extract-Refine-Retrieve-Read framework, as described in Section 3.3.

These frameworks are evaluated using a web

search tool or a local retriever with a static corpus, as described in Section 3.2. Due to resource limitations, some frameworks were not evaluated under the local dense retriever setting.

4.3 Implementation Details

For all baselines, we utilized GPT-3.5-Turbo as the primary LLM and adhered to their implementation from the original paper. Notably, for the Trainable RRR, we employed the supervised finetuned T5 model checkpoint as the base model. This checkpoint, open-sourced by the original authors, has been warmed up and fine-tuned on multiple datasets to function as the query rewriter. Then we replicated their reinforcement learning process since we replaced the original search tool with the Brave Search Engine. These trainings were conducted on the first 1000 data points for each dataset evaluated, with The training parameters set as follows: a learning rate of 2e-5, 3 epochs, and a batch size of 8.

For our proposed methods ERRR, in addition to the settings mentioned in Section 3.2, the following sections outline technical details:

Parametric Knowledge Extraction To perform parametric knowledge extraction, we use the same prompts from the GenRead paper and choose the top prompt that is most likely to produce pseudocontextual documents. We outline these extraction prompts in Table 1.

Query Optimization Our specific prompt structure is detailed in Table 1, where demonstration

	AmbigQA		PopQA		HotPotQA	
Methods	EM	F1	EM	F1	EM	F1
Direct	0.391	0.4996	0.392	0.4289	0.311	0.4178
RAG	0.473	0.5842	0.425	0.4704	0.329	0.4424
ReAct	0.477	0.5787	0.451	0.4917	0.344*	0.4649*
Frozen RRR	0.452	0.5577	0.445	0.4904	0.337	0.4567
Trainable RRR	0.460	0.5577	0.389	0.4238	0.337	0.4548
Frozen ERRR	0.4815	0.5823	0.480	0.5256	0.369	0.4941
Trainable ERRR	0.4975	0.5988	0.485	0.5309	0.372	0.4989

Table 2: The retrieval system in the above methods is Brave Search API. "Frozen" indicates the rewriter or the query optimizer is GPT-3.5-Turbo, while "Trainable" refers to the rewriter or the query optimizer is a supervised fine-tuned T5 model. Trainable RRR is also trained using proximal policy optimization (PPO) following the original paper. '*' indicates that it is evaluated on 500 random questions drawn from HotPotQA due to resource limitation.

consists of 2 manually crafted examples. These examples are consistently used across all tests and primarily serve as one or few-shot examples for the query optimizer.

For our web search engine, we opt for the Brave Search Engine, which, although it may provide slightly lower quality results compared to major competitors like Google or Bing, offers a significantly more cost-effective API. This search API retrieves website snippets, simulating a typical user experience of entering a query in a search engine, pressing Enter, and reviewing the top results at a glance. For local retrieval, we utilize WikiDPR, a specialized subset of Wikipedia collections tailored for the Dense Passage Retrieval (DPR) model (Karpukhin et al., 2020). This database consists of 21 million passages from Dec. 20, 2018, each limited to 100 words, along with their 768-dimensional embedded vectors. The retrieval process involves converting a query into a DPR embedding and finding the top k vectors with the closest L2 distances. For both systems, we retrieve the top 5 results, concatenate them with the original query, and feed them to the LLM reader.

Generation Although different prompting strategies may influence the performance of the question-answering task, this aspect is not the primary focus of our study, so we adhere to the same answer prompts used in the RRR (Ma et al., 2023) framework. The prompts we used are detailed in Table 1.

Trainable Scheme For Trainable ERRR, we employ T5-Large (Raffel et al., 2020), an open-source model with 770 million parameters, as the query optimizer. We fine-tune this student model using knowledge distillation from GPT-3.5-Turbo.

The distillation dataset was assembled by selecting questions from training sets of each QA dataset, with GPT-3.5-Turbo generating the responses under identical settings utilized in the frozen scheme. We also devised a short eliciting prompt, "Rewrite better search queries to acquire or validate the knowledge needed for the question:", serving as an instruction prefix to guide T5 to adapt to the task. To ensure optimal task-specific outcomes, separate T5 models were trained with 3 epochs for each QA dataset, with a learning rate of 1e-4 and a batch size of 4.

4.4 Result

The experimental results across three datasets and two different retrieval tools are presented in Table 2 and Table 3. The Frozen ERRR framework outperforms all the baseline methods—Direct, Frozen RRR, and Trainable RRR—regardless of the retrieval system. This underscores the effectiveness of addressing the pre-retrieval gap and demonstrates adaptability across different retrieval systems and data sources. Additionally, to our surprise, the Trainable ERRR framework further outperforms all other baselines and even its teacher model across all three datasets. We attribute this superior performance to the distillation process, which not only allows the student model to learn from the teacher model's insights but also to generalize more effectively. In this case, the student model compresses the teacher's knowledge, potentially learning to focus on critical features and patterns while discarding less relevant information. This compression likely leads to such performance, enabling the model to adapt more proficiently to specific optimization tasks.

Nevertheless, the impact of the ERRR frame-

	Amb	AmbigQA		PopQA		HotPotQA	
Methods	EM	F1	EM	F1	EM	F1	
Direct	0.391	0.4996	0.392	0.4289	0.311	0.4178	
Frozen RRR	0.438	0.5373	0.378	0.4517	0.289	0.3926	
Trainable RRR	0.414	0.5203	0.365	0.4242	0.282	0.3764	
Frozen ERRR	0.448	0.5473	0.419	0.4685	0.337	0.4482	
Trainable ERRR	0.4595	0.5577	0.426	0.4694	0.338	0.4499	

Table 3: Evaluations with WikiDPR as local retrievers. The other setting is the same as Table 2. Due to resource limitations, some baselines were not fully evaluated under this setting.

	Frozen ERRR	Trainable ERRR	ReAct	Self-RAG
Cost	\$0.62	\$0.53	\$1.05	\$1.65
Latency	148s	140s	202s	270s

Table 4: The total cost and total latency of each method that is evaluated on 200 randomly drawn data points from HotPotQA.

work is more noticeable on web search retrieval systems, as evidenced by the degree of performance enhancement between web search and dense retrievers detailed in Table 2 and Table 3. Moreover, the results reveal that both Frozen RRR and Trainable RRR underperform the direct method in the PopQA and HotPotQA datasets when using a dense retriever. This underperformance is attributed to the low quality of the results retrieved from the static corpus, which only includes Wikipedia passages with limited length and knowledge span. Additionally, the low quality of retrieval contributes to the retrieval of more irrelevant documents, which subsequently distracts the Large Language Model (LLM) from correctly answering questions. However, such distraction does not cause ERRR to underperform baseline methods. This suggests that the query optimizer mainly optimizes queries to align with the LLM's informational needs, thereby reducing the likelihood of retrieving too many irrelevant passages. This is particularly beneficial when operating with a document collection of suboptimal quality. A relevant case study can be found in Appendix A.

4.5 Cost and Latency

Given our method's emphasis on a conventional single-turn pipeline, it demonstrates superior performance in terms of cost and latency when compared to certain advanced and iterative RAG frameworks. To underscore the cost-efficiency and flexibility of our approach, we conducted a comparative analysis with ReAct (Yao et al., 2022) and Self-

RAG (Asai et al., 2023). This experiment was carried out on 200 randomly selected questions from HotPotQA. The results presented in Table 4 highlight that while still maintaining commendable performance, Frozen ERRR exhibits significantly lower costs, faster processing times, and greater efficiency than other iterative frameworks. Moreover, Trainable ERRR has the potential to further reduce costs, particularly for large datasets, by leveraging an already fine-tuned query optimizer, thereby saving on an additional LLM call to GPT-3.5-Turbo.

5 Conclusion

In this paper, we present Extract-Refine-Retrieve-Read (ERRR) framework for Retrieval-Augmented Generation (RAG) systems. The ERRR framework is designed to optimize queries, aligning them closely with the specific informational needs of large language models (LLMs) to enhance retrieval augmentation effectiveness. Our experimental results demonstrate that our method surpasses both the naive LLM and native query rewriting framework Rewrite-Retrieve-Read on benchmark datasets such as AmbigQA (Min et al., 2020), PopQA (Mallen et al., 2022) and HotPotQA (Yang et al., 2018), utilizing both web search tools and a dense retriever with local static corpus. It demonstrated ERRR's remarkable adaptability across a variety of settings, data sources, and retrieval systems. This flexibility ensures that ERRR can be effectively implemented in diverse operational environments, making it a potential and adaptable component for inclusion in more advanced RAG

systems. Additionally, we have developed and implemented a trainable scheme for the ERRR framework. This approach is both cost-effective and efficient as it relies on only a fine-tuned T5 model trained on a moderately sized dataset and surpasses the performance of the frozen GPT-3.5-Turbo.

6 Limitation

We acknowledge that we recognize the existence of more sophisticated Retrieval-Augmented Generation (RAG) approaches such as Self-RAG(Asai et al., 2023) and CRAG(Yan et al., 2024). These advanced systems typically require iterative invocations of the entire pipeline to refine their answers, resulting in exceptionally high computational demands. Due to computational constraints within our study, we focused solely on scenarios that operate in a single-turn manner, wherein each module is invoked only once.

Additionally, our model does not employ any reinforcement learning techniques to enhance the performance of the supervised fine-tuned model. This decision was driven by resource limitations and observed sub-optimal performance when training with a small portion of the dataset using Proximal Policy Optimization (PPO) (Schulman et al., 2017), which constrained the potential upper limit of our model's performance.

For the future development of this work, while the ERRR framework addresses the pre-retrieval gap problem, future work could extend to methods that bridge the post-retrieval gap or incorporate ERRR into more advanced and modular RAG systems to further enhance performance in question-answering tasks. Furthermore, exploring new Reinforcement Learning (RL) algorithms to improve the query optimizer's performance for specialized tasks is also a possible direction for further exploration.

References

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. 2023. Self-rag: Learning to retrieve, generate, and critique through self-reflection.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. 2022. Unified scaling laws for routed language models. In *International conference on machine learning*, pages 4057–4086. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 2023. Precise zero-shot dense retrieval without relevance labels. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1762–1777, Toronto, Canada. Association for Computational Linguistics.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, and Haofen Wang. 2024. Retrieval-augmented generation for large language models: A survey.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for opendomain question answering. In *Proceedings of the* 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769–6781, Online. Association for Computational Linguistics.

Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fannjiang, and David Sussillo. 2018. Hallucinations in neural machine translation.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks. In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA. Curran Associates Inc.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. 2023. Query rewriting in retrieval-augmented large language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 5303–5315, Singapore. Association for Computational Linguistics.

- Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi. 2022. When not to trust language models: Investigating effectiveness of parametric and non-parametric memories. *arXiv preprint arXiv:2212.10511*.
- Sewon Min, Julian Michael, Hannaneh Hajishirzi, and Luke Zettlemoyer. 2020. Ambigqa: Answering ambiguous open-domain questions. *arXiv preprint arXiv:2004.10645*.
- Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow instructions with human feedback.
- Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. 2023. Measuring and narrowing the compositionality gap in language models.
- Zackary Rackauckas. 2024. Rag-fusion: A new take on retrieval augmented generation. *International Journal on Natural Language Computing*, 13(1):37–47.
- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of machine learning research*, 21(140):1–67.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*.
- Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Derek F Wong, and Lidia S Chao. 2023. A survey on llm-gernerated text detection: Necessity, methods, and future directions. *arXiv preprint arXiv:2310.14724*.
- Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. 2024. Corrective retrieval augmented generation. *arXiv preprint arXiv:2401.15884*.
- Haoyan Yang, Zhitao Li, Yong Zhang, Jianzong Wang, Ning Cheng, Ming Li, and Jing Xiao. 2023. PRCA: Fitting black-box large language models for retrieval question answering via pluggable reward-driven contextual adapter. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 5364–5375, Singapore. Association for Computational Linguistics.
- Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov, and Christopher D Manning. 2018. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. arXiv preprint arXiv:1809.09600.

- Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. 2022. React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*.
- Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu, Michael Zeng, and Meng Jiang. 2023. Generate rather than retrieve: Large language models are strong context generators.
- Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V Le, and Denny Zhou. 2024. Take a step back: Evoking reasoning via abstraction in large language models.

A Case Study

To explicitly and intuitively demonstrate the effectiveness of the ERRR compared to the RRR framework, we present two examples in Table 5 comparing their rewritten queries and final outputs. In the first example, the original question is Stories USA starred which actor and comedian from "The Office"?. The query rewriter in RRR framework produces a simplified query, actor comedian "The Office" Stories USA cast, which merely reformulates the original question for clearer web searching. In contrast, the ERRR not only answers correctly in the Parametric Knowledge Extraction phase but also generates refined queries such as "actor and comedian from "The Office" in Stories USA" and "Steve Carell role in Stories USA", These queries not only attempt to validate the actor name of the The Officebut also attempt to validate the name Steve Carell from the parametric knowledge, enabling the retriever to source better results.

In the second example, the rewritten query from RRR, Pakistani actor writer Islamabad Coke Kahani 2012, rewrites into only a few random keywords from the original question, which fails to facilitate a high-quality search. On the other hand, the first rewritten query from ERRR, Pakistani actor and writer from Islamabad who helped write for Coke Kahani, provides a clearer and more comprehensible query for search possibly inspired by the contextual information from the extracted parametric knowledge. The second rewritten query, Faisal Rehman contributions to Coke Kahani aims to verify the name derived from parametric knowledge, specifically Faisal Rehman. Interestingly, even though the name is incorrect, the information retrieved subsequently clarifies that Faisal Rehman is not the correct actor and writer, which effectively

Example 1

Question: Stories USA starred which actor and comedian from "The Office"? Answer: Steven John Carel RRR rewritten query: "actor comedian "The Office" Stories USA cast"

Output: "Ricky Gervais" (incorrect)

Parametric Knowledge Extraction: Stories USA starred actor and comedian Steve Carell from "The Office." **Steve Carell** is best known for his role as Michael Scott on the hit TV show "The Office," but he has also appeared in a number of films and other television shows. In Stories USA, Carell plays a man who is struggling to come to terms with his past and find his place in the world. The film is a collection of short stories that explore different aspects of the American experience, and Carell's performance is praised for its depth and emotional resonance. Overall, Stories USA is a thought-provoking and engaging film that showcases Carell's talent as both a comedic and dramatic actor.

ERRR rewritten queries: "actor and comedian from "The Office" in Stories USA" "Steve Carell role in Stories USA"

Output: "Steven John Carell" (correct)

Example 2

Question: What Pakistani actor and writer from Islamabad helped write for the 2012 Pakistani comedy drama sitcom, "Coke Kahani"? Answer: Yasir Hussain

RRR rewritten query: "Pakistani actor writer Islamabad Coke Kahani 2012"

Output: "Ali Abbas"(incorrect)

Parametric Knowledge Extraction: One of the Pakistani actors and writers from Islamabad who helped write for the 2012 Pakistani comedy drama sitcom, "Coke Kahani," is **Faisal Rehman**. Faisal Rehman is a talented actor, writer, and director in the Pakistani entertainment industry. He has appeared in numerous television dramas and films, showcasing his versatility and acting skills. In addition to his acting career, Faisal Rehman has also written scripts for various television shows, including "Coke Kahani," which was well-received by audiences for its humor and engaging storyline. ERRR rewritten queries: "Pakistani actor and writer from Islamabad who helped write for Coke Kahani" "Faisal Rehman contributions to Coke Kahani"

Output: "Yasir Hussain"(correct)

Table 5: Case Study from RRR and ERRR framework.

rectifies the LLM's output. Together with the information gathered from the first query, this leads to a correct final answer. This example illustrates that even if the pseudo-contextual document contains inaccuracies, the ERRR framework, by concentrating on the specific needs of the LLM reader, can still retrieve the most useful information for the LLM reader which results in a correct outcome.