Για την επόμενη φορά (Δευτέρα 07/04/2025)...

Θεωρία και Εφαρμογές

- 1) Ξαναβλέπω 3.1 Εξισώσεις Α΄ βαθμού τις **παραμετρικές** (με λ)
- 2) Ξαναβλέπω θεωρία 3.2 Η εξίσωση x^v = α
- 3) Βλέπω εφαρμογές που κάναμε το Σάββατο 05/04/2025
- 4) Κολλάω στον τοίχο τις αφίσες που μου έφερε ο θεότρελος

<u>Ασκήσεις</u>

- 1) 3.1 Όλες όσες υπάρουν στο αρχείο παρακάτω
- 2) 3.2 Όλες όσες υπάρουν στο αρχείο παρακάτω
- 3) 3.3 Όλες όσες υπάρουν στο αρχείο παρακάτω

^{*} Η θεωρία και οι ασκήσεις είναι συγκεντρωμένες και σε αυτό το αρχείο! ΔΕΣ ΤΑ!!!!

ΘΕΩΡΙΑ 3.1

3.1 ΕΞΣΩΣΗΣ 1ου BAΘMOY

$H \in \Xi (\sigma \omega \sigma) = 0$

Έστω ότι έχουμε μια εξίσωση της μορφής $\alpha x + \beta = 0$ την οποία θέλουμε να επιλύσουμε. Οι συντελεστές α και β της εξίσωσης $\alpha x + \beta = 0$ μπορεί να είναι συγκεκριμένοι αριθμοί, αλλά μπορεί και να εκφράζονται με τη βοήθεια γραμμάτων. Σ' αυτές τις περιπτώσεις:

- τα γράμματα ονομάζονται παράμετροι,
- η εξίσωση παραμετρική, και
- η εργασία που κάνουμε για την εύρεση του πλήθους των λύσεών της ονομάζεται διερεύνηση.

Η επίλυση της εξίσωσης $\alpha x + \beta = 0$ οποιοιδήποτε και αv είναι οι συντελεστές αv και αv και αv είναι οι συντελεστές αv και αv εξής:

$$\alpha x + \beta = 0 \iff \alpha x = -\beta$$
 (1)

Διακρίνουμε τις περιπτώσεις:

1η περίπτωση: Αν $\alpha \neq 0$, τότε από την εξίσωση (1) έχουμε:

$$\alpha x = -\beta \iff x = -\frac{\beta}{\alpha}$$

δηλαδή η εξίσωση έχει μοναδική λύση.

2η περίπτωση: Αν $\alpha = 0$ τότε η εξίσωση (1) γίνεται:

$$0 \cdot x = -\beta$$

Έτσι έχουμε τις περιπτώσεις:

- ho αν ho = ho τότε η εξίσωση έχει τη μορφή $0 \cdot x = 0$ και αληθεύει για κάθε πραγματικό αριθμό χ, είναι δηλαδή ταυτότητα (ή αόριστη).

ΠΑΡΑΤΗΡΗΣΗ: Η λύση της εξίσωσης $\alpha x + \beta = 0$ και γενικά κάθε εξίσωσης, λέγεται και **ρίζα** αυτής.

--- (SOS) ----

Mια εξίσωση της μορφής $\alpha x + \beta = 0$

- είτε θα έχει μία λύση \rightarrow x = -β/α (μοναδική λύση)
- \rightarrow 0x = 0 (ταυτότητα) \rightarrow 0x=-β (αδύνατη) είτε θα έχει άπειρες λύσεις
- είτε δε θα έχει καμία λύση.

ΘΕΩΡΙΑ 3.2

3.2 $H = \Sigma \Omega \Sigma H x^{\vee} = \alpha$

Για μια εξίσωση της μορφής $x^{\nu} = \alpha$ έχουμε τις εξής περιπτώσεις:

• Αν ν άρτιος και $\alpha > 0$ τότε η εξίσωση $x^{\nu} = \alpha$ έχει δύο λύσεις:

$$x^{\nu} = \alpha \iff x = \sqrt[\nu]{a} \quad \acute{\eta} \quad x = \sqrt[+\nu]{a}$$

- Av ν άρτιος και $\alpha < 0$ τότε η εξίσωση $x^{\nu} = \alpha$ είναι αδύνατη.
- Αν ν περιττός και $\alpha > 0$ τότε η εξίσωση $x^{\nu} = \alpha$ έχει μία λύση:

$$x^{\nu} = \alpha \iff x = \sqrt[\nu]{a}$$

• Αν ν περιττός και $\alpha > 0$ τότε η εξίσωση $x^{\nu} = \alpha$ έχει μία λύση:

$$x^{\nu} = \alpha \iff x = -\frac{\nu}{\sqrt{|a|}}$$

Δηλαδή, συμπεραίνουμε ότι:

▶ Αν ο ν είναι **άρτιος**, τότε η εξίσωση $x^{\nu} = \alpha^{\nu}$, με $\nu \in \mathbb{N}^*$, έχει δύο λύσεις:

$$x^{\nu} = \alpha^{\nu} \iff x = a \quad \acute{\eta} \quad x = -a$$

▶ Αν ο ν είναι **περιττός**, τότε η εξίσωση $x^{\nu} = \alpha^{\nu}$, με $\nu \in \mathbb{N}^*$, έχει μία λύση:

$$x^{\nu} = \alpha^{\nu} \iff x = a$$

ΘΕΩΡΙΑ 3.3

.... µпλа, µпλа, µпλааа...

Συνοψίζοντας,

Από την διακρίνουσα $\Delta = \beta^2 - 4\alpha \gamma$ προκύπτουν:

• Όταν $\Delta>0$, η εξίσωση έχει **δύο ρίζες άνισες,** τις και οι οποίες εν συντομία γράφονται:

$$x_{1,2} = \frac{-\beta \pm \sqrt{\Delta}}{2\alpha}$$

• Όταν $\Delta = 0$, η εξίσωση έχει μία (διπλή) ρίζα, τη:

$$x = \frac{-\beta}{2\alpha}$$

• Όταν $\Delta < 0$, η εξίσωση δεν έχει πραγματικές ρίζες, δηλαδή είναι **αδύνατη** στο $\mathbb R$

Στον παρακάτω πίνακα φαίνεται η συνθήκη που πρέπει να ικανοποιεί η διακρίνουσα Δ της εξίσωσης $\alpha x^2 + \beta x + \gamma = 0$, με $\alpha \neq 0$, ανάλογα με το πλήθος των ριζών της.

Η εξίσωση	αν και μόνο αν: $\Delta>0$ $\Delta=0$ $\Delta<0$	
έχει δύο άνισες (και πραγματικές) ρίζες		
έχει μία διπλή ρίζα		
είναι αδύνατη (στο R)		
έχει πραγματικές ρίζες	$\Delta \geq 0$	

ΑΣΚΗΣΕΙΣ 3.1

- → Πρώτα θεωρία, μετά εφαρμογές, μετά ασκήσεις!
- 9.4 Για τις διάφορες τιμές του λ να λύσετε τις εξισώσεις:

a)
$$\lambda x - 3\lambda = \lambda^2 - 3x$$
 B) $\lambda x + 1 = \lambda^2 - x$

$$\beta) \lambda x + 1 = \lambda^2 - x$$

$$\gamma \left(\frac{\lambda}{4}\right)^{2}(x+1) - \frac{\lambda}{4} = x$$

$$\delta) 4 - \lambda(\lambda - 2x) = -\lambda^{2}x$$

$$\delta) \ 4 - \lambda(\lambda - 2x) = -\lambda^2 x$$

9.7 Να λύσετε την εξίσωση:

$$\frac{x(y-1)}{2} = \frac{y(x+1)}{3} - 1$$

- α) με άγνωστο τον x,
- β) με άγνωστο τον y.
- * Σαν να σου λέει την μία θεωρείς άγνωστο το χ και παραμετρο το y, και την άλλη άγνωστο το у και παραμετρο το χ

ΑΣΚΗΣΕΙΣ 3.2

- → Πρώτα θεωρία, μετά εφαρμογές, μετά ασκήσεις!
- 11.11 Να λύσετε τις εξισώσεις:

a)
$$4^{12}x^4 - 8^9x = 0$$

a)
$$4^{12}x^4 - 8^9x = 0$$
 B) $(64x)^6 - 16^{10}x^2 = 0$

$$\gamma) 27^5 x^4 + 9^6 x = 0$$

$$\gamma$$
) $27^5x^4 + 9^6x = 0$ δ) $6^3x^6 + 27^2x^3 = 0$

$$\underline{\Pi.\chi.}$$
 a) $4^{12}x^4 - 8^9x = 0$ <==> $(2^2)^{12}x^4 - (2^3)^9x = 0$ <==> $2^{24}x^4 - 2^{27}x = 0$ <=> $2^{24}x(x^3 - 2^3) = 0$ <=> $2^{24}x(x^3 - 2^3) = 0$ <=> $2^{24}x(x^3 - 2^3) = 0$ <=> $2^{24}x = 0$ $\hat{\eta}$ $\hat{\chi}^3 = 2^3 < 0$ ×=0 $\hat{\eta}$ x=2

ΑΣΚΗΣΕΙΣ 3.3

→ Πρώτα θεωρία, μετά εφαρμογές, μετά ασκήσεις!

12.15 Να λύσετε τις εξισώσεις:

a)
$$x^2 + 2x - 3 = 0$$

$$\beta) \ \ x^2 - 4x + 4 = 0$$

12.16 Να λύσετε τις εξισώσεις:

a)
$$x^2 - 16 = 0$$

a)
$$x^2 - 16 = 0$$
 B) $2x^2 - 18 = 0$

12.18 Να λύσετε τις εξισώσεις:

a)
$$x^2 + (\sqrt{3} + 1)x + \sqrt{3} = 0$$

$$\beta) 2x^2 + (2 - \sqrt{3})x - \sqrt{3} = 0$$

12.20 Να λύσετε τις εξισώσεις:

a)
$$(x^2 + 4x)(x^2 - 7x + 6) = 0$$

$$\beta) (3x^2 - 48)(-x^2 - 4x + 32) = 0$$

12.23 Να λύσετε τις επόμενες εξισώσεις:

a)
$$-\frac{(x+1)(x-1)}{2} = \frac{2-x}{3} - \frac{(x-4)^2 + 5}{6}$$

12.26 Να λύσετε τις εξισώσεις:

$$\alpha) x^2 - (2\alpha + 3\beta)x + 6\alpha\beta = 0$$

$$\beta) - x^2 + (2\alpha + \beta)x - \alpha(\alpha + \beta) = 0$$

12.27 Για τις διάφορες τιμές του λ να λύσετε τις εξισώσεις:

a)
$$\lambda x^2 - (\lambda - 2)x - 2 = 0$$

β)
$$(\lambda - 2)x^2 - 2(\lambda + 1)x + \lambda + 4 = 0$$

* Δες εφαρμογές για τις 12.27 / 12.28

12.28 Να βρείτε το πλήθος των ριζών των εξισώσεων:

a)
$$x^2 + (\alpha - 2)x - \alpha = 0$$