Stochastic Processes, Long Quiz, 2025 Fall

Solution and Grading

•	Duration: 60 minutes
•	Weight: 10% of final grade
•	Closed material, No calculator
•	Name:
•	Student ID:
•	E-mail:@seoultech.ac.kr

- Write legibly.
- $\bullet\,$ Justification is necessary unless stated otherwise.

#1. State the definition of memoryless property by providing a mathematical expression. [5pts]

For a random variable X, X is memoryless if P(X>s+t|X>t)=P(X>s) for all $s,t\geq 0.$

Difficulty: Medium Amount of work: 50% #2. Let $X \sim exp(\lambda)$. Find $\mathbb{E}X^2$.[5pts]

$$\mathbb{E}X^{2} = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} dx = \lambda \int_{0}^{\infty} x^{2} e^{-\lambda x} dx$$

$$= \lambda \left(x^{2} \cdot \frac{-1}{\lambda} e^{-\lambda x} \Big|_{0}^{\infty} - \int_{0}^{\infty} 2x \cdot \frac{-1}{\lambda} e^{-\lambda x} dx \right)$$

$$= \lambda \left((0 - 0) + \frac{2}{\lambda} \int_{0}^{\infty} x e^{-\lambda x} dx \right)$$

$$= 2 \int_{0}^{\infty} x e^{-\lambda x} dx$$

$$= 2 \left[x \cdot \frac{-1}{\lambda} e^{-\lambda x} \Big|_{0}^{\infty} - \int_{0}^{\infty} \frac{-1}{\lambda} e^{-\lambda x} dx \right]$$

$$= 2 \left[\infty \cdot \frac{-1}{\lambda} e^{-\lambda x} - \left(0 \cdot \frac{-1}{\lambda} e^{-\lambda x} \right) + \frac{1}{\lambda} \left[\frac{-1}{\lambda} e^{-\lambda x} \right]_{0}^{\infty} \right]$$

$$= 2 \left[0 - 0 + \frac{1}{\lambda} \left[\frac{-1}{\lambda} e^{-\lambda x} + \frac{1}{\lambda} e^{-\lambda x} \right] \right]$$

$$= 2 \cdot \frac{1}{\lambda} \left(0 + \frac{1}{\lambda} \right) = \frac{2}{\lambda^{2}}$$

$$(1)$$

Difficulty: Medium Amount of work: 50%