2023 GNSS-IR Short Course – EarthScope Consortium

GNSS Interferometric Reflectometry: Basic Theory

Felipe Geremia-Nievinski (PhD)

Federal University of Rio Grande do Sul

felipe.nievinski@ufrgs.br

https://orcid.org/0000-0002-3325-1987

Summary

- 1) Context
- 2) Principles
- 3) Geometry
- 4) Physics
- 5) Fitting

Geremia-Nievinski (2022) "Low-Cost Ground-Based GNSS Reflectometry", In: *Encyclopedia of Geodesy*, https://doi.org/10.1007/978-3-319-02370-0 175-1 Also available from: https://www.researchgate.net/publication/365173903

GNSS orbital constellations

Inclination ~ 55 deg.

Altitude ~ 20,000 km

System	2002	2008	2020
GPS	24 satellites	31 satellites	~31 satellites
Galileo		2 satellites	~27 satellites
Compass		1 satellite	~35 satellites
GLONASS	8 satellites	16 satellites	~24 satellites
Total	32 satellites	50 satellites	~120 satellites

GNSS satellite sky tracks

elevation angle (0-90 deg) azimuth (0-360 deg.)

polar hole

rising/setting satellites

GNSS radio waves

Multiple independent carriers

Carrier wavelength ~ 20 cm (L band)

Polarization: right-handed (RHCP)

GNSS atmospheric remote sensing

Ground-based (integrated GNSS met.)

Space-based (radio occultation or limb sounding)

GNSS Reflectometry

Dual channel: up/down (direct/reflection)

Space-borne

Airborne

GNSS Interferometric Reflectometry

Ground-based

Related radar sensors

Radar altimetry (monostatic, vertical)

Radar interferometry (bistatic, imaging)

Radar signals being transmitted and recieved in the SRTM mission (image not to scale).

GNSS-R is a type of bistatic radar (non-imaging)

Signal-to-noise ratio (SNR)

- Interference pattern
 - Constructive/destructive
 - Superposition of direct and reflected radio waves

$$SNR \propto P_c = P_d + P_r + 2P_d^{0.5}P_r^{0.5}\cos\phi_i$$

= $P_d(1 + P_i + 2P_i^{0.5}\cos\phi_i)$

Interferometric delay and phase

 Reflection minus direct propagation distance

$$D_i = \tau = 2H \sin e$$

- Maximum: 2H @zenith
- Minimum: zero @horz.
- Non-geometric phase ϕ_X
 - Surface + Antenna
- Total:

$$\phi_i = kD_i + \phi_X + \cdots$$
$$k = 2\pi/\lambda$$

Interferometric power

 Reflection power over direct power

$$P_i = P_r/P_d$$

- Maximum 1 @horz.
- Minimum zero @zen.

Driven by antenna gain & phase patterns. Also by surface roughness & material.

Reflector height

Random roughness

Loss of coherence due to height fluctuations

$$\sigma_{D_i} = 2\sigma_H \sin e$$

Surface material

Function of complex permittivity (real and imaginary). Affects both amplitude and phase.

Specular reflection points

R = h/tan(e)

Geometric Optics

- Thin "rays"
- Direct and reflection
- Snell's law

Fresnel zones

- Physical Optics
 - Ellipses
 - Ray "thickness"
 - Surface wavelets
 - Clearance requirements
 - Gradual tapering
 - (Otherwise, diffraction)

SNR data fitting

total = trend + oscillations:

$$S = \bar{S} + s$$

$$\overline{S} = c_0 + c_1 k_z + c_2 k_z^2 + \cdots$$

$$s = A\cos\left(\widehat{H}k_z + \varphi\right)$$

$$k_z = 4\pi\lambda^{-1}\sin e = 2k\sin e$$

altimetry retrieval:

$$H = (\lambda/2)^*N/$$

Spectral analysis

Nyquist frequency

(Roesler & Larson, 2018)

https://doi.org/10.1007/s10291-018-0744-8

Empirical—physical model matching

$$\overline{S} \approx P_d (1 + P_i) N_0^{-1}, \ s \approx 2 P_d P_i^{0.5} N_0^{-1} \cos \phi_i$$

$$c_1 \approx \mathrm{E}\{S/k_z\}, \ c_0 \approx \mathrm{E}\{S - c_1 k_z\}$$

$$A \approx (2 \mathrm{Var}\{s - \overline{s}\})^{0.5} \approx \mathrm{E}\{2 P_d P_i^{0.5} N_0^{-1}\}$$

$$\widehat{H} \approx \mathrm{E}\{\partial \phi_i / \partial k_z\}, \ \varphi \approx \mathrm{E}\{\phi_i - \widehat{H} k_z\}$$

$$\widehat{H} \approx H + \mathrm{E}\{\partial \phi_X / \partial k_z + \cdots\}$$

Altimetry retrieval will be primarily geometric height plus small non-geometric terms

2023 GNSS-IR Short Course – EarthScope Consortium

GNSS Interferometric Reflectometry: Basic Theory

Felipe Geremia-Nievinski (PhD)

Federal University of Rio Grande do Sul

felipe.nievinski@ufrgs.br

https://orcid.org/0000-0002-3325-1987

