Gradual Intersection Types

Pedro Ângelo

December 11, 2017

1 Language Definition

Syntax

```
Types \ T ::= \ Int \mid Bool \mid Dyn \mid T \rightarrow T' \mid T \cap \ldots \cap T
           T' ::= Int \mid Bool \mid Dyn \mid T' \rightarrow T'
Expressions e ::= x \mid \lambda x : T \cdot e \mid e \mid e \mid n \mid true \mid false \mid e + e
                              \mid e:T'\Rightarrow^l T'
                              |e:c\cap\ldots\cap c|
                               | blame_T l
Ground Types G ::= Int \mid Bool \mid Dyn \rightarrow Dyn
Casts \ c ::= c : T' \Rightarrow^{l} T' \ ^{n} \mid blame \ T' \ T' \ ^{l} \ ^{n} \mid \varnothing \ T' \ ^{n} \mid \bot \ T' \ T' \ ^{n}
Values \ v ::= x \mid \lambda x : T \cdot e \mid n \mid true \mid false \mid blame_T \ l
                     |v:G\Rightarrow^l Dyn
                     |v:T_1'\to T_2'\Rightarrow^l T_3'\to T_4'
                      |v:cv_1\cap\ldots\cap cv_n| such that
                       \neg(\forall_{i\in 1..n} \ . \ cv_i = blame \ T' \ T' \ l^m) \ \land
                       \neg(\forall_{i\in 1..n} \ . \ cv_i = \varnothing \ T'^{m}) \land
                       \neg(\exists i \in 1..n \ . \ cv_i = \bot \ T' \ T'^{m})
Cast\ Values\ cv\ ::= cv1\mid cv2
                       cv1 ::= \varnothing \ T'^{-n} : G \Rightarrow^l Dyn^{-n}
                                  | \varnothing T'^n : T_1' \to T_2' \Rightarrow^l T_3' \to T_4'
                                  |cv1:G\Rightarrow^l Dyn^n
                                  |cv2:T_1' \rightarrow T_2' \Rightarrow^l T_3' \rightarrow T_4'
                       cv2 ::= blame T' T' l^n
                                  | \varnothing T' |^n
                                  |\perp T' T' |^n
```

Figure 1: Gradual Intersection System

Figure 2: Gradual Intersection Type System $(\vdash_{\cap G})$

$$rules\ in\ Figure\ 2\ and$$

$$\frac{\Gamma \vdash_{\cap CC} e: T_1 \qquad T_1 \sim T_2}{\Gamma \vdash_{\cap CC} (e: T_1 \Rightarrow^l T_2): T_2}\ \text{T-Cast} \qquad \frac{\Gamma \vdash_{\cap CC} blame_T\ l: T}{\Gamma \vdash_{\cap CC} blame_T\ l: T}\ \text{T-Blame}$$

$$\frac{\Gamma \vdash_{\cap CC} e: T \qquad \vdash_{\cap IC} c_1: T_1 \ \dots \ \vdash_{\cap IC} c_n: T_n}{initial Type(c_1) \cap \dots \cap initial Type(c_n) =_{\cap} T}\ \text{T-IntersectionCast}$$

$$\frac{initial Type(c) = T}{initial Type(c) = T}$$

$$initial Type(c) = T$$

$$initial Type(c) = T$$

Figure 3: Intersection Cast Calculus $(\vdash_{\cap CC})$

 $initialType(blame\ T_I\ T_F\ l^n) = T_I$

 $initialType(\perp T_I T_F^n) = T_I$

$$\begin{array}{c} x: T_1 \cap \ldots \cap T_n \in \Gamma \\ \hline \Gamma \vdash_{\cap CC} e \leadsto e: T \end{array} \text{ Compilation} \\ \\ \frac{x: T_1 \cap \ldots \cap T_n \in \Gamma}{\Gamma \vdash_{\cap CC} x \leadsto x: T_i} \\ \\ \hline \Gamma, x: T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e \leadsto e': T \\ \hline \Gamma \vdash_{\cap CC} (\lambda x: T_1 \cap \ldots \cap T_n \cdot e) \leadsto (\lambda x: T_1 \cap \ldots \cap T_n \cdot e'): T_1 \cap \ldots \cap T_n \to T \\ \\ \Gamma \vdash_{CC} e_1 \leadsto e'_1: PM \qquad PM \rhd T_1 \cap \ldots \cap T_n \to T \\ \hline \Gamma \vdash_{CC} e_2 \leadsto e'_2: T'_1 \cap \ldots \cap T'_n \qquad T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n \\ e''_1 = addCasts(getInstances(PM), \ getInstances(T_1 \cap \ldots \cap T_n \to T), \ e'_1) \\ \hline e''_2 = addCasts(getInstances(T'_1 \cap \ldots \cap T'_n), \ getInstances(T_1 \cap \ldots \cap T_n), \ e'_2) \\ \hline \Gamma \vdash_{CC} e_1 e_2 \leadsto e''_1 e''_2: T \end{array}$$

Figure 4: Compilation to the Cast Calculus

 $e \longrightarrow_{\cap CC} e$ Evaluation

Simulate casts on data types

$$isValue \ v_1: cv_1\cap\ldots\cap cv_n \qquad \exists i\in 1..n \ . isArrowCompatible \ cv_i \\ (cv_1',\ldots,cv_m') = filter \ isArrowCompatible \ (cv_1,\ldots,cv_n) \\ \underbrace{((c_{11},c_{12},r_1),\ldots,(c_{m1},c_{m2},r_m)) = map \ simulateArrow \ (cv_1',\ldots,cv_m')}_{(v_1:cv_1\cap\ldots\cap cv_n) \ v_2 \longrightarrow_{\cap CC}} \\ (v_1:r_1\cap\ldots\cap r_m) \ (v_2:c_{11}^1\cap\ldots\cap c_{m1}^m):c_{12}^1\cap\ldots\cap c_{m2}^m$$
 Simulate \text{Simulate}

$Merge\ casts$

$$isValue \ v : cv_1 \cap \ldots \cap cv_n$$

$$label(cv_1) = m_1 \ldots label(cv_n) = m_n$$

$$v : cv_1 \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2 \longrightarrow_{\cap CC}$$

$$v : (cv_1 : T_1 \Rightarrow^l T_2 \xrightarrow{m_1}) \cap \ldots \cap (cv_n : T_1 \Rightarrow^l T_2 \xrightarrow{m_n})$$
MERGEIC \cap 1

$$isValue\ v: T_1 \Rightarrow^l T_2 \\ \underline{v: c_1' \cap \ldots \cap c_n' = mergeCI(v: T_1 \Rightarrow^l T_2: c_1 \cap \ldots \cap c_n)}_{v: T_1 \Rightarrow^l T_2: c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v: c_1' \cap \ldots \cap c_n'} \text{ MergeCI} \cap$$

$$\frac{isValue\ v:cv_1\cap\ldots\cap cv_n}{v:c'_1\cap\ldots\cap c'_j=mergeII(v:cv_1\cap\ldots\cap cv_n:c_1\cap\ldots\cap c_m)}\\ \frac{v:c'_1\cap\ldots\cap c'_j=mergeII(v:cv_1\cap\ldots\cap cv_n:c_1\cap\ldots\cap c_m)}{v:cv_1\cap\ldots\cap cv_n:c_1\cap\ldots\cap c'_j} \text{ MergeII}\cap$$

$Evaluate\ intersection\ casts$

$$\frac{\neg(\forall i \in 1..n \ . \ isCastValue \ c_i)}{c_1 \longrightarrow_{\cap IC} cv_1 \ ... \ c_n \longrightarrow_{\cap IC} cv_n} \ \text{Evaluate} \cap \\ \frac{c_1 \longrightarrow_{\cap IC} cv_1 \ ... \cap c_n \longrightarrow_{\cap IC} cv_n}{v: c_1 \cap ... \cap cv_n} \ \text{Evaluate} \cap$$

Transition from cast values to values

$$\overline{v:blame} \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n} \ \operatorname{PropagateBlame} \cap \\ \longrightarrow_{\cap CC} blame_{(T_1 \cap \ldots \cap T_n)} \ l_1$$

$$\overline{v: \varnothing \ T_1 \ ^{m_1} \cap \ldots \cap \varnothing \ T_n \ ^{m_n} \longrightarrow_{\cap CC} v} \ \operatorname{RemoveEmpty} \cap \\ \neg (\forall i \in 1..n \ . \ isStuckCast \ cv_i) \\ \exists i \in 1..n \ . \ isStuckCast \ cv_i \\ \underline{(cv_1', \ldots, cv_m') = filter \ (\neg isStuckCast) \ (cv_1, \ldots, cv_n)}} \\ \underline{v: cv_1 \cap \ldots \cap cv_n \longrightarrow_{\cap CC} v: cv_1' \cap \ldots \cap cv_m'} \ \operatorname{RemoveStuck} \cap$$

Figure 5: Cast Calculus Semantics $(\longrightarrow_{\cap CC})$

$$\begin{array}{c|c} \hline \vdash_{\cap IC} c:T \text{ Typing} \\ \\ \hline \frac{\vdash_{\cap IG} c:T_1 & T_1 \sim T_2}{\vdash_{\cap IG} (c:T_1 \Rightarrow^l T_2 ^n):T_1} \text{ T-SingleC} & \hline \\ \hline \vdash_{\cap IG} blame \ T_I \ T_F \ l^{-n}:T_F} \text{ T-BlameC} \\ \hline \hline \vdash_{\cap IG} blame \ T_I \ T_F \ l^{-n}:T_F} \text{ T-StuckC} \end{array}$$

Figure 6: Intersection Casts Type System $(\vdash_{\cap IC})$

 $c \longrightarrow_{\cap IC} c$ Evaluation

Push blame and stuck to top level

$$\frac{1}{blame} T_I T_F l_1^{n_1} : T_1 \Rightarrow^{l_2} T_2^{n_2} \longrightarrow_{\cap IC} blame T_I T_2 l_1^{n_1} \text{ PushBlameC}$$

$$\frac{1}{\perp} T_I T_F^{n_1} : T_1 \Rightarrow^{l} T_2^{n_2} \longrightarrow_{\cap IC} \perp T_I T_2^{n_1} \text{ PushStuckC}$$

Evaluate inside casts

$$\frac{\neg (isCastValue\ c) \qquad c \longrightarrow_{\cap IC} c'}{c: T_1 \Rightarrow^l T_2 \stackrel{n}{\longrightarrow}_{\cap IC} c': T_1 \Rightarrow^l T_2 \stackrel{n}{\longrightarrow}} \text{ EvaluateC}$$

Detect success or failure of casts

$$\frac{isCastValue1\ c \lor isEmptyCast\ c}{c:T\Rightarrow^l T\ ^n\longrightarrow_{\cap IC} c}\ \text{IdentityC}$$

$$\frac{isCastValue1\ c \vee isEmptyCast\ c}{c:G\Rightarrow^{l_1}Dyn^{\ n_1}:Dyn\Rightarrow^{l_2}G^{\ n_2}\longrightarrow_{\cap IC}c} \text{ SucceedC}$$

$$\frac{isCastValue1\ c \lor isEmptyCast\ c}{\neg(same\ ground\ G_1\ G_2) \quad initialType(c) = T_I} \frac{\neg(same\ ground\ G_1\ G_2) \quad initialType(c) = T_I}{c:G_1 \Rightarrow^{l_1} Dyn^{n_1}:Dyn \Rightarrow^{l_2} G_2 \stackrel{n_2}{\longrightarrow}_{\cap IC} blame\ T_I\ G_2\ l_2 \stackrel{n_1}{\longrightarrow}} \text{FailC}$$

Mediate the transition between the two disciplines

$$\frac{isCastValue1}{G~is~ground~type~of~T~~\neg(ground~T)}{c:Dyn \Rightarrow^l T^{~n} \xrightarrow{}_{\cap IC} c:Dyn \Rightarrow^l G:G \Rightarrow^l T^{~n}}~\text{ExpandC}$$

 $Trigger\ stuck$

$$\frac{isCastValue1\ c \lor isEmptyCast\ c}{c:T_1 \Rightarrow^l T_2 \xrightarrow{n} \cap_{IC} \bot T_I\ T_2 \xrightarrow{n}}\ \text{TriggerStuckC}$$

Figure 7: Intersection Casts Semantics $(\longrightarrow_{\cap IC})$

 $\llbracket e \rrbracket_e = e \mid \text{Erase identity casts}$

$$[\![x]\!]_e = x$$

$$[\![\lambda x : T \cdot e]\!]_e = \lambda x : T \cdot [\![e]\!]_e$$

$$[\![e_1 \ e_2]\!]_e = [\![e_1]\!]_e \ [\![e_2]\!]_e$$

$$[\![n]\!]_e = n$$

$$[\![true]\!]_e = true$$

$$[\![false]\!]_e = false$$

$$[\![e_1 + e_2]\!]_e = [\![e_1]\!]_e + [\![e_2]\!]_e$$

$$[\![e : T \Rightarrow^l T]\!]_e = [\![e]\!]_e$$

$$[\![e : T_1 \Rightarrow^l T_2]\!]_e = [\![e]\!]_e : T_1 \Rightarrow^l T_2$$

$$[\![e : T_1 \Rightarrow^l T_2]\!]_e = [\![e]\!]_e : T_1 \Rightarrow^l T_2$$

$$[\![e : T_1 \Rightarrow^l T_2]\!]_e = [\![e]\!]_e : T_1 \Rightarrow^l T_2$$

$$[\![e : T_1 \Rightarrow^l T_2]\!]_e = [\![e]\!]_e : T_1 \Rightarrow^l T_2$$

$$[\![e : T_1 \Rightarrow^l T_2]\!]_e = [\![e]\!]_e : T_1 \Rightarrow^l T_2$$

$$[\![e : T_1 \Rightarrow^l T_2]\!]_e = [\![e]\!]_e : T_1 \Rightarrow^l T_2$$

$$[\![e : T_1 \Rightarrow^l T_2]\!]_e = [\![e]\!]_e : T_1 \Rightarrow^l T_2$$

$$[\![e : T_1 \Rightarrow^l T_2]\!]_e = [\![e]\!]_e : T_1 \Rightarrow^l T_2$$

$$[\![e : T_1 \Rightarrow^l T_2]\!]_e = [\![e]\!]_e : T_1 \Rightarrow^l T_2$$

 $[\![c]\!]_c = c$ Erase identity casts

$$[\![c:T\Rightarrow^l T^n]\!]_c = [\![c]\!]_c$$

$$[\![c:T_1\Rightarrow^l T_2^n]\!]_c = [\![c]\!]_c : T_1\Rightarrow^l T_2^n$$

$$[\![blame\ T_I\ T_F\ l^n]\!]_c = blame\ T_I\ T_F\ l^n$$

$$[\![\varnothing\ T^n]\!]_c = \varnothing\ T^n$$

$$[\![\bot\ T_I\ T_F^n]\!]_c = \bot\ T_I\ T_F^n$$

Figure 8: Identity Cast Erasure

2 Proofs

Theorem 1 (Depends on Lemmas 1, 5, 7). Equivalence to the Intersection System for fully static terms

If e is fully static, T is a static type, and $\Gamma \vdash_{\cap CC} e \leadsto e' : T$:

- 1. $\Gamma \vdash_{\cap S} e : T \iff \Gamma \vdash_{\cap G} e : T$
- 2. $e \longrightarrow_{OS} v \iff e' \longrightarrow_{OCC} v$

Proof. (1) First we will prove that if $\vdash_{\cap S} e : T$ then $\vdash_{\cap G} e : T$. We proceed by induction on the length of the derivation tree of $\vdash_{\cap S}$.

Base case:

• e = x. If $\Gamma \vdash_{\cap S} x : T_i$, then $x : T_1 \cap ... \cap T_n \in \Gamma$ such that $T_i \in \{T_1, ..., T_n\}$. Therefore, by rule $\cap E$ of $\vdash_{\cap G} \Gamma \vdash_{\cap G} E : T_i$.

Induction step:

- $e = \lambda x \cdot T_1 \cap \ldots \cap T_n \cdot e'$. There are two possibilities:
 - Using the rule $\to I$. If $\Gamma \vdash_{\cap S} \lambda x \cdot T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e' : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e' : T$. Therefore, by rule $\to I$, $\Gamma \vdash_{\cap G} \lambda x \cdot T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$.
 - Using the rule $\to I'$. If $\Gamma \vdash_{\cap S} \lambda x$. $T_1 \cap \ldots \cap T_n$. $e' : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap S} e' : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap G} e' : T$. Therefore, by rule $\to I'$, $\Gamma \vdash_{\cap G} \lambda x$. $T_1 \cap \ldots \cap T_n$. $e' : T_i \to T$.
- $e = e_1 \ e_2$. If $\Gamma \vdash_{\cap S} e_1 \ e_2 : T$ then $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the definition of \triangleright , $T_1 \cap \ldots \cap T_n \to T \triangleright T_1 \cap \ldots \cap T_n \to T$. By the definition of consistency $(T \sim T), T_1 \cap \ldots \cap T_n \sim T_1 \cap \ldots \cap T_n$. Therefore, by rule $\to E$, $\Gamma \vdash_{\cap G} e_1 \ e_2 : T$.
- e = e. If $\Gamma \vdash_{\cap S} e : T_1 \cap ... \cap T_n$ then $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. Therefore, by rule $\cap E$, $\Gamma \vdash_{\cap G} e : T_1 \cap ... \cap T_n$.

Now we will prove that if $\vdash_{\cap G} e : T$ then $\vdash_{\cap S} e : T$. We proceed by induction on the length of the derivation tree of $\vdash_{\cap G}$.

Base case:

• e = x. If $\Gamma \vdash_{\cap G} x : T_i$, then $x : T_1 \cap ... \cap T_n \in \Gamma$ such that $T_i \in \{T_1, ..., T_n\}$. Therefore, by rule $\cap E$ of $\vdash_{\cap S}$, $\Gamma \vdash_{\cap S} e : T_i$.

Induction step:

• $e = \lambda x \cdot T_1 \cap \ldots \cap T_n \cdot e'$. There are two possibilities:

- Using the rule $\to I$. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_1 \cap \ldots \cap T_n \to T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e' : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e' : T$. Therefore, by rule $\to I$, $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_1 \cap \ldots \cap T_n \to T$.
- Using the rule $\to I'$. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap G} e' : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap S} e' : T$. Therefore, by rule $\to I'$, $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T$.
- $e = e_1 \ e_2$. If $\Gamma \vdash_{\cap G} e_1 \ e_2 : T$ then $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_1 \cap \ldots \cap T_n \to T$, $\Gamma \vdash_{\cap G} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$. By the definition of \rhd , $PM = T_1 \cap \ldots \cap T_n \to T$, therefore $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$. By Lemma 1, $T'_1 \cap \ldots \cap T'_n = T_1 \cap \ldots \cap T_n$, and therefore $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. Therefore, by rule $\to E$, $\Gamma \vdash_{\cap S} e_1 e_2 : T$.
- e = e. If $\Gamma \vdash_{\cap G} e : T_1 \cap ... \cap T_n$ then $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. Therefore, by rule $\cap E$, $\Gamma \vdash_{\cap S} e : T_1 \cap ... \cap T_n$.
- (2) Since $\Gamma \vdash_{\cap CC} e \leadsto e' : T$ and e is fully static, then by Lemma 5 and by the definition of $\Gamma \vdash_{\cap CC} e \leadsto e' : T$, the expression e equals e', except that e' contains identity casts. Therefore, $\llbracket e' \rrbracket_e = e$. Then, by Lemma 7, if $e \longrightarrow v$ and $e' \longrightarrow_{\cap CC} v'$, then v = v'.

Theorem 2 (Depends on Lemmas 2 and 3). Subject reduction of $\longrightarrow_{\cap CC}$ If $\Gamma \vdash_{\cap CC} e : T$ and $e \longrightarrow_{\cap CC} e'$ then $\Gamma \vdash_{\cap CC} e' : T$.

Proof. We proceed by induction on the length of the derivation tree of $\vdash_{\cap S}$.

Base case:

- e = $v: cv_1 \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2$ and $isValue \ v: cv_1 \cap \ldots \cap cv_n$ and $label(cv_1) = m_1$ and ... and $label(cv_n) = m_n$. If $\Gamma \vdash_{\cap CC} v: cv_1 \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2 : T_2$ then $\vdash_{\cap IC} cv_1 : T_{11}$ and ... and $\vdash_{\cap IC} cv_n : T_{1n}$, $\Gamma \vdash_{\cap CC} v: cv_1 \cap \ldots \cap cv_n : T_{11} \cap \ldots \cap T_{1n}$ and $\Gamma \vdash_{\cap CC} v: I_1 \cap \ldots \cap I_n$, with $I_1 = initialType(cv_1)$ and ... and $I_n = initialType(cv_n)$. As $T_{11} \cap \ldots \cap T_{1n} =_{\cap} T_1$, then $T_{11} = T_1$ and ... and $T_{1n} = T_1$. By rule MergeIC \cap , $v: cv_1 \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2 \longrightarrow_{\cap CC} v: (cv_1 : T_1 \Rightarrow^l T_2 \stackrel{m_1}{\cap} \cap \ldots \cap (cv_n : T_1 \Rightarrow^l T_2 \stackrel{m_n}{\cap})$. By the definition of initialType, $initialType(cv_1) = initialType(cv_1 : T_1 \Rightarrow^l T_2 \stackrel{m_1}{\cap}) = I_1$ and ... and $initialType(cv_n) = initialType(cv_n : T_1 \Rightarrow^l T_2 \stackrel{m_n}{\cap}) = I_n$. Therefore, $\Gamma \vdash_{\cap CC} v: (cv_1 : T_1 \Rightarrow^l T_2 \stackrel{m_1}{\cap}) \cap \ldots \cap (cv_n : T_1 \Rightarrow^l T_2 \stackrel{m_n}{\cap}) : T_2 \cap \ldots \cap T_2$ and $T_2 \cap \ldots \cap T_2 =_{\cap} T_2$. Therefore it is proved.
- $\mathbf{e} = v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n$ and $isValue \ v : T_1 \Rightarrow^l T_2$ and $v : c_1' \cap \ldots \cap c_n' = mergeCI(v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n)$. If $\Gamma \vdash_{\cap CC} v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n : T_1' \cap \ldots \cap T_n'$, with $\vdash_{\cap IC} c_1 : T_1'$ and $initialType(c_1) = T_2$... and $\vdash_{\cap IC} c_n : T_n'$ and $initialType(c_n) = T_2$ and $\Gamma \vdash_{\cap CC} v : T_1$. By the definition of mergeCI, $\Gamma \vdash_{\cap IC} c_1' : T_1'$ and $initialType(c_1') = T_2$ and ... and $\Gamma \vdash_{\cap IC} c_n' : T_n'$ and $initialType(c_n') = T_2$. By rule MergeCI \cap , $v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : c_1' \cap \ldots \cap c_n'$. As $\Gamma \vdash_{\cap IC} v : c_1' \cap \ldots \cap c_n' : T_1' \cap \ldots \cap T_n'$, then it is proved.

- e = $v: c_1 \cap \ldots \cap c_n$ and $\neg (\forall i \in 1..n . isCastValue c_i)$. If $\Gamma \vdash_{\cap CC} v: c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ then $\vdash_{\cap IC} c_1 : T_1$ and ... and $\vdash_{\cap IC} c_n : T_n$, $\Gamma \vdash_{\cap CC} v: I_1 \cap \ldots \cap I_n$, with $I_1 = initialType(c_1)$ and ... and $I_n = initialType(c_n)$. By rule Evaluate \cap , $c_1 \longrightarrow_{\cap IC} cv_1$ and ... and $c_n \longrightarrow_{\cap IC} cv_n$. By Lemmas 2 and 3, $\vdash_{\cap IC} cv_1 : T_1$ and ... and $\vdash_{\cap IC} cv_n : T_n$ and $initialType(cv_1) = I_1$ and ... and $initialType(cv_n) = I_n$. Therefore $\Gamma \vdash_{\cap CC} v: cv_1 \cap \ldots \cap cv_n : T_1 \cap \ldots \cap T_n$.
- e = v : $blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n}$. If $\Gamma \vdash_{\cap CC} v$: $blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n} : T_1 \cap \ldots \cap T_n \ and \ by \ rule$ PropagateBlame $\cap v$: $blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n} \longrightarrow_{\cap CC} blame_{(T_1 \cap \ldots \cap T_n)} \ l_1$, and $\Gamma \vdash_{\cap CC} blame_{(T_1 \cap \ldots \cap T_n)} \ l_1 : T_1 \cap \ldots \cap T_n$, then it is proved.
- $e = v : \varnothing T_1 \stackrel{m_1}{\cap} \ldots \cap \varnothing T_n \stackrel{m_n}{\cap}$. If $\Gamma \vdash_{\cap CC} v : \varnothing T_1 \stackrel{m_1}{\cap} \ldots \cap \varnothing T_n \stackrel{m_n}{\cap} : T_1 \cap \ldots \cap T_n$, then $\vdash_{\cap IC} \varnothing T_1 \stackrel{m_1}{\cap} : T_1$ and $initialType(\varnothing T_1 \stackrel{m_1}{\cap}) = T_1$ and \ldots and $\vdash_{\cap IC} \varnothing T_n \stackrel{m_n}{\cap} : T_n$ and $initialType(\varnothing T_n \stackrel{m_n}{\cap}) = T_n$ and $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_n$. By rule RemoveEmpty \cap , $v : \varnothing T_1 \stackrel{m_1}{\cap} \ldots \cap \varnothing T_n \stackrel{m_n}{\longrightarrow} \cap CC v$, therefore it is proved.

Induction step:

• e =

Lemma 1. Consistency reduces to equality when comparing static types If T_1 and T_2 are static types then $T_1 = T_2 \iff T_1 \sim T_2$.

Proof. We proceed by structural induction on T.

Base cases:

- $T_1 = Int$.
 - If $T_1 = T_2$, then by the definition of \sim , $T_1 \sim T_2$.
 - If $T_1 \sim T_2$, then by the definition of \sim , $T_1 = T_2$.
- $T_1 = Bool$.
 - If $T_1 = T_2$, then by the definition of \sim , $T_1 \sim T_2$.
 - If $T_1 \sim T_2$, then by the definition of \sim , $T_1 = T_2$.
- $T_1 = Dyn$. This case is not considered due to the assumption that T_1 is a static type.

- $T_1 = T_{11} \to T_{12}$.
 - If $T_1=T_2$, then $\exists T_{21},T_{22}$. $T_2=T_{21}\to T_{22}$ and $T_{11}=T_{21}$ and $T_{12}=T_{22}$. By the induction hypothesis, $T_{11}\sim T_{21}$ and $T_{12}\sim T_{22}$. Therefore, by the definition of \sim , $T_1\sim T_2$.

- If $T_1 \sim T_2$, then $\exists T_{21}, T_{22}$. $T_2 = T_{21} \to T_{22}$ and $T_{11} = T_{21}$ and $T_{12} = T_{22}$. By the induction hypothesis, $T_{11} = T_{21}$ and $T_{12} = T_{22}$. Therefore, by the definition of $= T_1 = T_2$.
- $T_1 = T_{11} \cap \ldots \cap T_{1n}$.
 - If $T_1 = T_2$, then $\exists T_{21}, \ldots, T_{2n}$. $T_2 = T_{21} \cap \ldots \cap T_{2n}$ and $T_{11} = T_{21}$ and ... and $T_{1n} = T_{2n}$. By the induction hypothesis, $T_{11} \sim T_{21}$ and ... and $T_{1n} \sim T_{2n}$. Therefore, by the definition of \sim , $T_1 \sim T_2$.
 - If $T_1 \sim T_2$, then $\exists T_{21}, \ldots, T_{2n}$. $T_2 = T_{21} \cap \ldots \cap T_{2n}$ and $T_{11} \sim T_{21}$ and ... and $T_{1n} \sim T_{2n}$. By the induction hypothesis, $T_{11} = T_{21}$ and ... and $T_{1n} = T_{2n}$. Therefore, by the definition of =, $T_1 = T_2$.

Lemma 2. Subject reduction of $\longrightarrow_{\cap IC}$ If $\vdash_{\cap IC} c: T$ for some T and $c \longrightarrow_{\cap IC} c'$ then $\vdash_{\cap IC} c': T$.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap IC}$.

Base cases:

- c = blame T_I T_F l_1 n_1 : $T_1 \Rightarrow^{l_2} T_2$ n_2 . $\vdash_{\cap IC}$ blame T_I T_F l_1 n_1 : $T_1 \Rightarrow^{l_2} T_2$ n_2 : T_2 and by rule PushBlameC, blame T_I T_F l_1 n_1 : $T_1 \Rightarrow^{l_2} T_2$ $^{n_2} \longrightarrow_{\cap IC}$ blame T_I T_2 l_1 n_1 . As $\vdash_{\cap IC}$ blame T_I T_2 l_1 n_1 : T_2 , then it is proved.
- c = $\bot T_I T_F^{n_1} : T_1 \Rightarrow^l T_2^{n_2}$. $\vdash_{\cap IC} \bot T_I T_F^{n_1} : T_1 \Rightarrow^l T_2^{n_2} : T_2$ and by rule PushStuckC, $\bot T_I T_F^{h} e n_1 : T_1 \Rightarrow^l T_2^{n_2} \longrightarrow_{\cap IC} \bot T_I T_2^{n_1}$. As $\vdash_{\cap IC} \bot T_I T_2^{n_1} : T_2$, then it is proved.
- $c = c' : T \Rightarrow^l T^n$ and $isCastValue1 \ c' \lor isEmptyCast \ c'$. If $\vdash_{\cap IC} c' : T \Rightarrow^l T^n : T$, then $\vdash_{\cap IC} c' : T$. By rule IdentityC, $c' : T \Rightarrow^l T^n \longrightarrow_{\cap IC} c'$. Therefore it is proved.
- c = c' : G \Rightarrow^{l_1} Dyn n_1 : Dyn \Rightarrow^{l_2} G n_2 and isCastValue1 c' \vee isEmptyCast c'. If $\vdash_{\cap IC}$ c' : G \Rightarrow^{l_1} Dyn n_1 : Dyn \Rightarrow^{l_2} G n_2 : G, then $\vdash_{\cap IC}$ c' : G. By rule SucceedC, c' : G \Rightarrow^{l_1} Dyn n_1 : Dyn \Rightarrow^{l_2} G $^{n_2} \longrightarrow_{\cap IC}$ c'. Therefore it is proved.
- c = c' : $G_1 \Rightarrow^{l_1} Dyn^{n_1}$: $Dyn \Rightarrow^{l_2} G_2^{n_2}$ and isCastValue1 c' $\lor isEmptyCast$ c' and $\neg(same\ ground\ G_1\ G_2)$ and $initialType(c') = T_I$. If $\vdash_{\cap IC} c'$: $G_1 \Rightarrow^{l_1} Dyn^{n_1}$: $Dyn \Rightarrow^{l_2} G_2^{n_2}$: G_2 , and by rule FailC, c' : $G_1 \Rightarrow^{l_1} Dyn^{n_1}$: $Dyn \Rightarrow^{l_2} G_2^{n_2} \longrightarrow_{\cap IC} blame\ T_I\ G_2\ l_2^{n_1}$ and $\vdash_{\cap IC} blame\ T_I\ G_2\ l_2^{n_1}$: G_2 , it is proved.
- c = c' : $T \Rightarrow^l Dyn^n$ and isCastValue1 c' \vee isEmptyCast c' and G is ground type of T and $\neg(ground\ T)$. If $\vdash_{\cap IC} c' : T \Rightarrow^l Dyn^n : Dyn$ then $\vdash_{\cap IC} c' : T$. By rule GroundC, $c' : T \Rightarrow^l Dyn^n \longrightarrow_{\cap IC} c' : T \Rightarrow^l G^n : G \Rightarrow^l Dyn^n$. As $\vdash_{\cap IC} c' : T \Rightarrow^l G^n : G \Rightarrow^l Dyn^n : Dyn$, it is proved.

- c = c' : Dyn $\Rightarrow^l T^n$ and isCastValue1 c' \vee isEmptyCast c' and G is ground type of T and \neg (ground T). If $\vdash_{\cap IC} c' : Dyn \Rightarrow^l T^n : T$ then $\vdash_{\cap IC} c' : Dyn$. By rule ExpandC, c' : Dyn $\Rightarrow^l T^n \longrightarrow_{\cap IC} c' : Dyn \Rightarrow^l G^n : G \Rightarrow^l T^n$. As $\vdash_{\cap IC} c' : Dyn \Rightarrow^l G^n : G \Rightarrow^l T^n : T$, it is proved.
- c = c' : $T_1 \Rightarrow^l T_2$ and is CastValue1 c' \vee is EmptyCast c' and initialType(c) = T_I . If $\vdash_{\cap IC} c'$: $T_1 \Rightarrow^l T_2$: T_2 , and by rule TriggerStuckC, c' : $T_1 \Rightarrow^l T_2$ and $T_2 = T_1$. Then $\vdash_{\cap IC} \bot T_1$ is $T_2 = T_2$.

Induction step:

• c = c': $T_1 \Rightarrow^l T_2$ n and $\neg (isCastValue\ c)$. If $\vdash_{\cap IC} c': T_1 \Rightarrow^l T_2$ n : T_2 then $\vdash_{\cap IC} c': T_1$. By rule EvaluateC, $c' \longrightarrow_{\cap IC} c''$. By the induction hypothesis, $\vdash_{\cap IC} c'': T_1$. By rule EvaluateC, $c': T_1 \Rightarrow^l T_2$ n $\longrightarrow_{\cap IC} c'': T_1 \Rightarrow^l T_2$ n. As $\vdash_{\cap IC} c'': T_1 \Rightarrow^l T_2$ n : T_2 it is proved.

Lemma 3. Initial type preservation of $\longrightarrow_{\cap IC}$ If initialType(c) = T for some T and $c \longrightarrow_{\cap IC} c'$ then initialType(c') = T. Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap IC}$.

Base cases:

- c = blame T_I T_F l_1 n_1 : $T_1 \Rightarrow^{l_2} T_2$ n_2 . By the definition of initial Type, initial Type (blame T_I T_F l_1 n_1 : $T_1 \Rightarrow^{l_2} T_2$ n_2) = T_I . By rule PushBlame C, blame T_I T_F l_1 n_1 : $T_1 \Rightarrow^{l_2} T_2$ $^{n_2} \longrightarrow_{\cap IC}$ blame T_I T_2 l_1 n_1 . Since initial Type (blame T_I T_2 l_1 n_1) = T_I , it is proved.
- c = $\bot T_I T_F^{n_1} : T_1 \Rightarrow^l T_2^{n_2}$. By the definition of initial Type, initial Type ($\bot T_I T_F^{n_1} : T_1 \Rightarrow^l T_2^{n_2}$) = T_I . By rule PushStuckC, $\bot T_I T_F^{n_1} : T_1 \Rightarrow^l T_2^{n_2} \longrightarrow_{\cap IC} \bot T_I T_2^{n_1}$. Since initial Type ($\bot T_I T_2^{n_1}$) = T_I , it is proved.

- $c = c' : T \Rightarrow^l T^n$ and $isCastValue1 \ c' \lor isEmptyCast \ c'$. By the definitions of initialType, $initialType(c' : T \Rightarrow^l T^n) = initialType(c')$. By rule IdentityC, $c' : T \Rightarrow^l T^n \longrightarrow_{\cap IC} c'$. Therefore it is proved.
- c = c' : $G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2}$ and isCastValue1 c' $\lor isEmptyCast$ c'. By the definition of initialType, initialType(c' : $G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2}$) = initialType(c'). By rule SucceedC, c' : $G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2} \longrightarrow_{\cap IC}$ c'. Therefore it is proved.
- c = c' : $G_1 \Rightarrow^{l_1} Dyn^{n_1}$: $Dyn \Rightarrow^{l_2} G_2^{n_2}$ and isCastValue1 c' $\lor isEmptyCast$ c' and $\neg(same\ ground\ G_1\ G_2)$ and $initialType(c') = T_I$. By the definition of initialType, initialType(c' : $G_1 \Rightarrow^{l_1} Dyn^{n_1}$: $Dyn \Rightarrow^{l_2} G_2^{n_2}$) = T_I . By rule FailC, c' : $G_1 \Rightarrow^{l_1} Dyn^{n_1}$: $Dyn \Rightarrow^{l_2} G_2^{n_2} \longrightarrow_{\cap IC} blame\ T_I\ G_2\ l_2^{n_1}$. Since $initialType(blame\ T_I\ G_2\ l_2^{n_1}) = T_I$, it is proved.
- $c = c' : T \Rightarrow^l Dyn^n$ and $isCastValue1 \ c' \lor isEmptyCast \ c'$ and G is ground type of T and $\neg(ground\ T)$. By the definition of initialType, $initialType(c' : T \Rightarrow^l Dyn^n) = initialType(c')$. By rule GroundC, $c' : T \Rightarrow^l Dyn^n \longrightarrow_{\cap IC} c' : T \Rightarrow^l G^n : G \Rightarrow^l Dyn^n$. Since $initialType(c' : T \Rightarrow^l G^n : G \Rightarrow^l Dyn^n) = initialType(c')$, it is proved.

- c = c' : $Dyn \Rightarrow^l T^n$ and isCastValue1 c' \vee isEmptyCast c' and G is ground type of T and $\neg(ground\ T)$. By the definition of initialType, $initialType(c': Dyn \Rightarrow^l T^n) = initialType(c')$. By rule ExpandC, c' : $Dyn \Rightarrow^l T^n \longrightarrow_{\cap IC} c': Dyn \Rightarrow^l G^n: G \Rightarrow^l T^n$. Since $initialType(c': Dyn \Rightarrow^l G^n: G \Rightarrow^l T^n) = initialType(c')$, it is proved.
- c = c' : $T_1 \Rightarrow^l T_2$ n and isCastValue1 c' \vee isEmptyCast c' and $initialType(c') = T_I$. By the definition of initialType, $initialType(c') : T_1 \Rightarrow^l T_2$ n) = T_I . By rule TriggerStuckC, $c' : T_1 \Rightarrow^l T_2$ n $\longrightarrow_{\cap IC} \bot T_I T_2$ n. Since $initialType(\bot T_I T_2$ n) = T_I , it is proved.

Induction step:

• $c = c' : T_1 \Rightarrow^l T_2$ and $\neg (isCastValue\ c')$. By the definition of initialType, $initialType(c') : T_1 \Rightarrow^l T_2$ and $\neg (isCastValue\ c')$. By rule EvaluateC, $c' \longrightarrow_{\cap IC} c''$. By the induction hypothesis, initialType(c'') = initialType(c'). By rule EvaluateC, $c' : T_1 \Rightarrow^l T_2$ and $\neg (isCastValue\ c') = initialType(c'') = initialType(c')$. Since $initialType(c'') : T_1 \Rightarrow^l T_2$ and $initialType(c'') : T_1 \Rightarrow^l T_2$ and initialType(c'') :

Lemma 4. Expressions annotated with only static types type with static types If e is annotated with only static types then:

- 1. $\Gamma \vdash_{\cap G} e : T$, for some static T.
- 2. $\Gamma \vdash_{\cap CC} e \leadsto e' : T$, for some static T.

Proof. (1) We proceed by induction on the length of the derivation tree of $\vdash_{\cap G}$.

Base cases:

• e = x. If $\Gamma \vdash_{\cap G} x : T_i$, then there is a binding $x : T' \in \Gamma$, such that $T_i \subseteq T'$. Therefore, there must have been at some point in the typing derivation, the application of the rules $(\to I)$ or $(\to I')$. If e is annotated with only static types, then both rules introduze the binding x : T' in Γ , such that T' is a static type. Therefore, T_i is also a static type.

- e = $\lambda x: T_1 \cap \ldots \cap T_n$. e'. There are two possibilities:
 - Using the rule $\to I$. If e is annotated with only static types, then $T_1 \cap \ldots \cap T_n$ is a static type. By rule $(\to I)$, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$. By the induction hypothesis, T is a static type. Therefore $T_1 \cap \ldots \cap T_n \to T$ is a static type.
 - Using the rule $\to I'$. If e is annotated with only static types, then $T_1 \cap \ldots \cap T_n$ is a static type. By rule $(\to I')$, $\Gamma, x : T_i \vdash_{\cap G} e : T$. Since $T_1 \cap \ldots \cap T_n$ is a static type, then so is T_i . By the induction hypothesis, T is a static type, therefore so is $T_i \to T$.
- $e = e_1 \ e_2$. If e is annotated with only static types, then so are e_1 and e_2 . By the induction hypothesis, PM is a static type. By the definition of \triangleright , $T_1 \cap \ldots \cap T_n \to T$ is also a static type. Therefore, T is a static type.

- e = e. If e annotated with only static types, then by the induction hypothesis, $T_1
 ldots T_n$ are static types. Therefore $T_1
 ldots
 ldots T_n$ is a static type.
- (2) We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e \leadsto e \cdot T$

Base cases:

• e = x. If $\Gamma \vdash_{\cap CC} x \leadsto x : T_i$, then there is a binding $x : T' \in \Gamma$, such that $T_i \subseteq T'$. Therefore, there must have been at some point in the typing derivation, the application of the rule for the term $\lambda x : T_1 \cap \ldots \cap T_n \cdot e'$. If e is annotated with only static types, then the rule introduzes the binding x : T' in Γ , such that T' is a static type. Therefore, T_i is also a static type.

Induction step:

- $e = \lambda x : T_1 \cap \ldots \cap T_n$. e'. If e is annotated with only static types, then $T_1 \cap \ldots \cap T_n$ is a static type. By the induction hypothesis, T is a static type. Therefore $T_1 \cap \ldots \cap T_n \to T$ is a static type.
- $e = e_1 \ e_2$. If e is annotated with only static types, then so are e_1 and e_2 . By the induction hypothesis, PM is a static type. By the definition of \triangleright , $T_1 \cap \ldots \cap T_n \to T$ is also a static type. Therefore, T is a static type.

Lemma 5 (Depends on Lemmas 1 and 4). Static program compilation only adds identity casts

If e is annotated with only static types and $\Gamma \vdash_{\cap CC} e \leadsto e' : T$, then any casts e' contains are identity casts.

By identity casts, we mean casts of the form $e: T \Rightarrow^l T$ for some T and casts $e: c_1 \cap \ldots \cap c_n$ such that $c_1 = \varnothing T_1^{0}: T_1 \Rightarrow T_1^{0}$ and \ldots and $c_n = \varnothing T_n^{0}: T_n \Rightarrow T_n^{0}$ for some T_1, \ldots, T_n .

Proof. We proceed by structural induction on e.

Base cases:

• e = x. As $\Gamma \vdash_{\cap CC} x \rightsquigarrow x : T_i$, and x doesn't have any casts, then it is proved.

- $e = \lambda x : T_1 \cap \ldots \cap T_n$. e'. By rule, $\Gamma \vdash_{\cap CC} e' \leadsto e'' : T$. By the induction hypothesis, e'' either doesn't contain casts or contains only identity casts. By rule, $\Gamma \vdash_{\cap CC} (\lambda x : T_1 \cap \ldots \cap T_n : e') \leadsto (\lambda x : T_1 \cap \ldots \cap T_n : e'') : T_1 \cap \ldots \cap T_n \to T$. As the rule doesn't introduze new casts, then it is proved.
- e = e_1 e_2 . By rule, $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : PM$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T'_1 \cap \ldots \cap T'_n$. By the induction hypothesis, both e'_1 as well as e'_2 either only have identity casts or no casts at all. By Lemma 4, PM and $T'_1 \cap \ldots \cap T'_n$

are static types. Therefore, by the definition of \triangleright , $PM = T'_1 \cap \ldots \cap T'_n \to T$ and by Lemma 1, $T'_1 \cap \ldots \cap T'_n = T_1 \cap \ldots \cap T_n$. Therefore by the definition of getInstances and addCasts, only identity casts are introduzed.

Lemma 6. Elimination of identity casts in c

For any cast c, such that $\vdash_{\cap IC} c: T_F$, initial $Type(c) = T_I$ and $c \longrightarrow_{\cap IC} cv$:

- 1. $\vdash_{\cap IC} \llbracket c \rrbracket_c : T_F \text{ and } initial Type(\llbracket c \rrbracket_c) = T_I.$
- 2. $[c]_c \longrightarrow_{\cap IC} cv$.

Proof. (1) We proceed by structural induction on c.

Base cases:

- $c = \varnothing T^n$. As $\vdash_{\cap IC} \varnothing T^n : T$, $initialType(\varnothing T^n) = T$ and $\llbracket c \rrbracket_c = \varnothing T^n$, then $\vdash_{\cap IC} \llbracket c \rrbracket_c : T$ and $initialType(\llbracket c \rrbracket_c) = T$.
- $c = blame T_I T_F l^n$. As $\vdash_{\cap IC} blame T_I T_F l^n : T_F$, $initial Type(blame T_I T_F l^n) = T_I$ and $\llbracket c \rrbracket_c = blame T_I T_F l^n$, then $\vdash_{\cap IC} \llbracket c \rrbracket_c : T_F$ and $initial Type(\llbracket c \rrbracket_c) = T_I$.
- $c = \perp T_I T_F^n$. As $\vdash_{\cap IC} \perp T_I T_F^n : T_F$, $initialType(\perp T_I T_F^n) = T_I$ and $\llbracket c \rrbracket_c = \perp T_I T_F^n$, then $\vdash_{\cap IC} \llbracket c \rrbracket_c : T_F$ and $initialType(\llbracket c \rrbracket_c) = T_I$.

Induction step:

- $c = c' : T_1 \Rightarrow^l T_2$ ⁿ. There are two cases:
 - $T_1 \neq T_2$. As $\vdash_{\cap IC} c' : T_1 \Rightarrow^l T_2^n : T_2$ and $initialType(c' : T_1 \Rightarrow^l T_2^n) = initialType(c')$, then $\vdash_{\cap IC} c' : T_1$. By the induction hypothesis, $\vdash_{\cap IC} \llbracket c' \rrbracket_c : T_1$ and $initialType(\llbracket c' \rrbracket_c) = initialType(c')$. With $\llbracket c \rrbracket_c = \llbracket c' \rrbracket_c : T_1 \Rightarrow^l T_2^n$, $\vdash_{\cap IC} \llbracket c \rrbracket_c : T_2$ and $initialType(\llbracket c \rrbracket_c) = initialType(\llbracket c' \rrbracket_c) = initialType(c') = initialType(c)$.
 - $\begin{array}{l} -T_1=T_2. \text{ As } \vdash_{\cap IC} c':T_1\Rightarrow^l T_1 \ ^n:T_1 \text{ and } initial Type(c':T_1\Rightarrow^l T_1 \ ^n)=initial Type(c') \text{ then } \vdash_{\cap IC} c':T_1. \text{ By the induction hypothesis, } \vdash_{\cap IC} \llbracket c' \rrbracket_c:T_1 \text{ and } initial Type(\llbracket c' \rrbracket_c)=initial Type(c'). \text{ With } \llbracket c \rrbracket_c=\llbracket c' \rrbracket_c, \vdash_{\cap IC} \llbracket c \rrbracket_c:T_1 \text{ and } initial Type(\llbracket c \rrbracket_c)=initial Type(\llbracket c' \rrbracket_c)=initial Type(c')=initial Type(c). \end{array}$
- (2) We proceed by structural induction on c.

Base cases:

- $c = blame T_I T_F l_1^{n_1} : T_1 \Rightarrow^{l_2} T_2^{n_2}$. There are two cases:
 - $-T_1 \neq T_2$. As $\llbracket c \rrbracket_c = blame \ T_I \ T_F \ l_1^{n_1} : T_1 \Rightarrow^{l_2} T_2^{n_2}$ and by rule PushBlameC, $blame \ T_I \ T_F \ l_1^{n_1} : T_1 \Rightarrow^{l_2} T_2^{n_2} \longrightarrow_{\cap IC} blame \ T_I \ T_2 \ l_1^{n_1}$ it is proved.
 - $-T_1=T_2$. If $T_1=T_2$, then by rules T-SingleC and T-BlameC, $T_F=T_1$. Therefore, $c=blame\ T_I\ T_1\ l_1^{n_1}:T_1\Rightarrow^{l_2}T_1^{n_2}$. By rule Push-BlameC, $blame\ T_I\ T_1\ l_1^{n_1}:T_1\Rightarrow^{l_2}T_1^{n_2}\longrightarrow_{\cap IC}blame\ T_I\ T_1\ l_1^{n_1}$. Since $[\![c]\!]_c=blame\ T_I\ T_1\ l_1^{n_1}$, and it is already a value, it is proved.

- $c = \perp T_I T_F^{n_1} : T_1 \Rightarrow^l T_2^{n_2}$. There are two cases:
 - $-T_1 \neq T_2$. As $[\![c]\!]_c = \perp T_I T_F^{n_1} : T_1 \Rightarrow^l T_2^{n_2}$ and by rule Push-StuckC, $\perp T_I T_F^{n_1} : T_1 \Rightarrow^l T_2^{n_2} \longrightarrow_{\cap IC} \perp T_I T_2^{n_1}$ it is proved.
 - $T_1 = T_2$. If $T_1 = T_2$, then by rules T-SingleC and T-StuckC, $T_F = T_1$. Therefore, $c = \bot T_I T_1^{n_1} : T_1 \Rightarrow^l T_1^{n_2}$. By rule PushStuckC, $\bot T_I T_1^{n_1} : T_1 \Rightarrow^l T_1^{n_2} \longrightarrow_{\cap IC} \bot T_I T_1^{n_1}$. Since $\llbracket c \rrbracket_c = \bot T_I T_1^{n_1}$, and it is already a value, it is proved.
- c = c' : $T \Rightarrow^l T$ n and isCastValue1 $c' \lor isEmptyCast$ c'. By rule IdentityC, c' : $T \Rightarrow^l T$ $^n \longrightarrow_{\cap IC} c'$. As c' is a value, it doesn't contain identity casts, therefore $[\![c]\!]_c = c'$. As $[\![c]\!]_c$ is already a value, it reduces to itself, therefore it is proved.
- c = c' : $G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2}$ and isCastValue1 c' $\lor isEmptyCast$ c'. By rule SucceedC, $c' : G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2} \longrightarrow_{\cap IC} c'$. As c' is already a value, then it doesn't contain identity casts, so $[\![c]\!]_c = c' : G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2}$. Therefore, $[\![c]\!]_c \longrightarrow_{\cap IC} c'$.
- c = c' : $G_1 \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G_2^{n_2}$ and isCastValue1 c' $\lor isEmptyCast$ c' and $\neg(same\ ground\ G_1\ G_2)$ and $initialType(c') = T_I$. By rule FailC, $c' : G_1 \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G_2^{n_2} \longrightarrow_{\cap IC} blame\ T_I\ G_2\ l_2^{n_1}$. As c' is already a value, then it doesn't contain identity casts, so $[\![c]\!]_c = c' : G_1 \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G_2^{n_2}$. Therefore, $[\![c]\!]_c \longrightarrow_{\cap IC} blame\ T_I\ G_2\ l_2^{n_1}$.
- c = c' : $T \Rightarrow^l Dyn^n$ and isCastValue1 c' \vee isEmptyCast c' and G is ground type of T and $\neg (ground\ T)$. By rule GroundC, c' : $T \Rightarrow^l Dyn^n \longrightarrow_{\cap IC} c'$: $T \Rightarrow^l G$: $G \Rightarrow^l Dyn^n$. As c' is a value, it doesn't contain identity casts, therefore $[\![c]\!]_c = c'$: $T \Rightarrow^l Dyn^n$. Therefore $[\![c]\!]_c \longrightarrow_{\cap IC} c'$: $T \Rightarrow^l G$: $G \Rightarrow^l Dyn^n$.
- $c = c' : Dyn \Rightarrow^l T^n$ and $isCastValue1 \ c' \lor isEmptyCast \ c'$ and G is ground type of T and $\neg (ground \ T)$. By rule ExpandC, $c' : Dyn \Rightarrow^l T^n \longrightarrow_{\cap IC} c' : Dyn \Rightarrow^l G : G \Rightarrow^l T^n$. As c' is a value, it doesn't contain identity casts, therefore $[\![c]\!]_c = c' : Dyn \Rightarrow^l T^n$. Therefore $[\![c]\!]_c \longrightarrow_{\cap IC} c' : Dyn \Rightarrow^l G : G \Rightarrow^l T^n$.
- c = c' : $T_1 \Rightarrow^l T_2$ n and isCastValue1 c' \vee isEmptyCast c' and $initialType(c') = T_I$. By rule TriggerStuckC, c' : $T_1 \Rightarrow^l T_2$ n $\longrightarrow_{\cap IC} \bot T_I T_2$ n. As $T_1 \neq T_2$ and c' is a value, then $[\![c]\!]_c = c'$: $T_1 \Rightarrow^l T_2$ n. Therefore, $[\![c]\!]_c \longrightarrow_{\cap IC} \bot T_I T_2$ n.

- $c = c' : T_1 \Rightarrow^l T_2$ and $\neg (isCastValuec')$. There are two cases:
 - $-T_1 \neq T_2$. By rule EvaluateC, $c' \longrightarrow_{\cap IC} c''$. By the induction hypothesis, $\llbracket c' \rrbracket_c \longrightarrow_{\cap IC} c''$. As $\llbracket c \rrbracket_c$ equals $\llbracket c' \rrbracket_c : T_1 \Rightarrow^l T_2$, then by rule EvaluateC, $\llbracket c \rrbracket_c \longrightarrow_{\cap IC} c'' : T_1 \Rightarrow T_2$.
 - $-T_1=T_2$. By the induction hypothesis, as $c'\longrightarrow_{\cap IC}cv'$, then $[\![c']\!]_c\longrightarrow_{\cap IC}cv'$. By rule EvaluateC, $c':T_1\Rightarrow^lT_1^n\longrightarrow_{\cap IC}cv':T_1\Rightarrow^lT_1^n$. However, as $cv':T_1\Rightarrow^lT_1^n$ is not a value, the rule

IdentityC must be applied, therefore $c': T_1 \Rightarrow^l T_1 \xrightarrow{n} \longrightarrow_{\cap IC} cv'$. As $[\![c]\!]_c \longrightarrow_{\cap IC} cv'$, then it is proved.

Lemma 7 (Depends on Lemma 6). Elimination of identity casts in e For any expression e, such that $\Gamma \vdash_{\cap CC} e : T$, and $e \longrightarrow_{\cap CC} v$:

- 1. $\Gamma \vdash_{\cap CC} \llbracket e \rrbracket_e : T$.
- $2. \ \llbracket e \rrbracket_e \longrightarrow_{\cap CC} v.$

Proof. (1) We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e : T$.

Base cases:

- e = x. As x doesn't contain casts, then $[e]_e = x$. Therefore it is proved.
- e = n. As n doesn't contain casts, then $[e]_e = n$. Therefore it is proved.
- e = true. As true doesn't contain casts, then $[\![e]\!]_e = true$. Therefore it is proved.
- e = false. As false doesn't contain casts, then $[e]_e = false$. Therefore it is proved.
- e = $blame_T l$. As blameTl doesn't contain casts, then $[\![e]\!]_e = blameTl$. Therefore it is proved.

- $e = \lambda x : T_1 \cap \ldots \cap T_n \cdot e'$. There are two possibilities:
 - Using the rule $\to I$. If $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e' : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} [\![e']\!]_e : T$. As $[\![e]\!]_e = \lambda x : T_1 \cap \ldots \cap T_n \cdot [\![e']\!]_e$, then $\Gamma \vdash_{\cap CC} [\![e]\!]_e : T_1 \cap \ldots \cap T_n \to T$.
 - Using the rule $\to I'$. If $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap CC} e' : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap CC} \llbracket e' \rrbracket_e : T$. As $\llbracket e \rrbracket_e = \lambda x : T_1 \cap \ldots \cap T_n \cdot \llbracket e' \rrbracket_e$, then $\Gamma \vdash_{\cap CC} \llbracket e \rrbracket_e : T_i \to T$.
- $e = e_1 \ e_2$. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T$, then $\Gamma \vdash_{\cap CC} e_1 : PM$, $PM \rhd T_1 \cap \ldots \cap T_n \rightarrow T$, $\Gamma \vdash_{\cap CC} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} \llbracket e_1 \rrbracket_e : PM$ and $\Gamma \vdash_{\cap CC} \llbracket e_2 \rrbracket_e : T'_1 \cap \ldots \cap T'_n$. As $\llbracket e \rrbracket_e = \llbracket e_1 \rrbracket_e \ \llbracket e_2 \rrbracket_e$, therefore $\Gamma \vdash_{\cap CC} \llbracket e \rrbracket_e : T$.
- e = e. If $\Gamma \vdash_{\cap CC} e : T_1 \cap ... \cap T_n$, then $\Gamma \vdash_{\cap CC} e : T_1$ and ... and $\Gamma \vdash_{\cap CC} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} \llbracket e \rrbracket_e : T_1$ and ... and $\Gamma \vdash_{\cap CC} \llbracket e \rrbracket_e : T_n$. Therefore $\Gamma \vdash_{\cap CC} \llbracket e \rrbracket_e : T_1 \cap ... \cap T_n$.
- $e = e' : T_1 \Rightarrow^l T_2$. There are two possibilities:

- $T_1 \neq T_2$. If $\Gamma \vdash_{\cap CC} e' : T_1 \Rightarrow^l T_2 : T_2$, then $\Gamma \vdash_{\cap CC} e' : T_1$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} \llbracket e' \rrbracket_e : T_1$. As $\llbracket e \rrbracket_e = \llbracket e' \rrbracket_e : T_1 \Rightarrow^l T_2$, then $\Gamma \vdash_{\cap CC} \llbracket e \rrbracket_e : T_2$.
- $T_1 = T_2$. If $\Gamma \vdash_{\cap CC} e' : T_1 \Rightarrow^l T_1 : T_1$, then $\Gamma \vdash_{\cap CC} e' : T_1$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} \llbracket e' \rrbracket_e : T_1$. As $\llbracket e \rrbracket_e = \llbracket e' \rrbracket_e : T_1 \Rightarrow^l T_1$, then $\Gamma \vdash_{\cap CC} \llbracket e \rrbracket_e : T_1$.
- e = e' : $c_1 \cap \ldots \cap c_n$. If $\Gamma \vdash_{\cap CC} e'$: $c_1 \cap \ldots \cap c_n$: $T_1 \cap \ldots \cap T_n$, then $\Gamma \vdash_{\cap CC} e'$: T, $\vdash_{\cap IC} c_1$: T_1 and \ldots and $\vdash_{\cap IC} c_n$: T_n and $initialType(c_1) \cap \ldots \cap initialType(c_n) =_{\cap} T$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} \llbracket e' \rrbracket_e$: T. We now have 2 possibilities:
 - $\begin{array}{l} -\neg (\forall i\in 1..n\ .\ is EmptyCast\ \llbracket c_i\rrbracket_c)\colon \text{For all casts }c_i, \text{ with }i\in 1..n,\\ \text{that don't contain identity casts, then }\llbracket c_i\rrbracket_c=c_i, \text{ therefore }\vdash_{\cap IC} \llbracket c_i\rrbracket_c:T_i \text{ and } initialType(\llbracket c_i\rrbracket_c)=initialType(c_i). \text{ For the remaining casts, by Lemma }6, \vdash_{\cap IC} \llbracket c_i\rrbracket_c:T_i \text{ and } initialType(\llbracket c_i\rrbracket_c)=initialType(c_i). \text{ Therefore, with }\llbracket e\rrbracket_e=\llbracket e'\rrbracket_e:\llbracket c_1\rrbracket_c\cap\ldots\cap\llbracket c_n\rrbracket_c,\\ \Gamma\vdash_{\cap CC} \llbracket e\rrbracket_e:T_1\cap\ldots\cap T_n. \end{array}$
 - $\forall i \in 1..n$. $isEmptyCast \llbracket c_i \rrbracket_c$: As all casts are empty casts, then for all casts $\llbracket c_i \rrbracket_c$, by Lemma 6 and by rule T-EmptyC, $\vdash_{\cap IC} \llbracket c_i \rrbracket_c : T_i$ and $initialType(\llbracket c_i \rrbracket_c) = T_i$. Therefore $\llbracket e \rrbracket_e = \llbracket e' \rrbracket_e$. We now have two possibilities:
 - * If T is not an intersection type, then $T_1 = \ldots = T_n = T$ and by idempotence of \cap , we have that $\Gamma \vdash_{\cap CC} \llbracket e \rrbracket_e : T_1 \cap \ldots \cap T_n$.
 - * If T is an intersection type, then $T = T_1 \cap ... \cap T_n$. Therefore $\Gamma \vdash_{\cap CC} \llbracket e \rrbracket_e : T_1 \cap ... \cap T_n$.
- (2) We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap CC}$.

Base cases:

- e = $v_1 : cv_1 \cap ... \cap cv_n$ and $isValue(v_1 : cv_1 \cap ... \cap cv_n)$ and $\exists i \in 1..n$. $isArrowCompatible\ cv_i$. As $v_1 : cv_1 \cap ... \cap cv_n$ is a value, then it doesn't contain identity casts. Therefore $\llbracket e \rrbracket_e = e$.
- $e = v : cv_1 \cap ... \cap cv_n : T_1 \Rightarrow^l T_2$ and $isValue\ v : cv_1 \cap ... \cap cv_n$ and $label(cv_1) = m_1$ and ... and $label(cv_n) = m_n$. There are 2 possibilities:
 - If $T_1 \neq T_2$ and as $v : cv_1 \cap ... \cap cv_n$ doesn't contain identity casts, then $\llbracket e \rrbracket_e = e$, therefore it is proved.
 - If $T_1 = T_2$ and as $v : cv_1 \cap \ldots \cap cv_n$ doesn't contain identity casts, then $\llbracket e \rrbracket_e = v : cv_1 \cap \ldots \cap cv_n$. By rule MergeIC∩, $v : cv_1 \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2 \longrightarrow_{\cap CC} v : cv_1 : T_1 \Rightarrow^l T_2 \stackrel{m_1}{} \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2 \stackrel{m_n}{}$. By rule Evaluate∩, $v : cv_1 : T_1 \Rightarrow^l T_2 \stackrel{m_1}{} \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2 \stackrel{m_n}{} \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$, with $cv_1 : T_1 \Rightarrow^l T_2 \stackrel{m_1}{} \longrightarrow_{\cap IC} cv_1$ and ... and $cv_n : T_1 \Rightarrow^l T_2 \stackrel{m_n}{} \longrightarrow_{\cap IC} cv_n$ by rule IdentityC. As $\llbracket e \rrbracket_e$ is already a value, it is proved.
- e = $v: T_1 \Rightarrow^l T_2: c_1 \cap \ldots \cap c_n$ and $isValue\ v: T_1 \Rightarrow^l T_2$ and $v: c_1' \cap \ldots \cap c_n' = mergeCI(v: T_1 \Rightarrow^l T_2: c_1 \cap \ldots \cap c_n)$. There are 2 possibilities:

- $-v:T_1\Rightarrow^l T_2:c_1\cap\ldots\cap c_n$ doesn't contain identity casts, then $\llbracket e\rrbracket_e=e,$ therefore it is proved.
- $-v:T_1\Rightarrow^l T_2:c_1\cap\ldots\cap c_n$ contain identity casts. By rule MergeCI \cap , $v:T_1\Rightarrow^l T_2:c_1\cap\ldots\cap c_n\longrightarrow_{\cap CC}v:c_1'\cap\ldots\cap c_n'$. By rule Evaluate \cap , $v:T_1\Rightarrow^l T_2:c_1'\cap\ldots\cap c_n'\longrightarrow_{\cap CC}v:c_1'\cap\ldots\cap c_n'$. With $c_1'\longrightarrow_{\cap IC}c_1'$ and \ldots and $c_n'\longrightarrow_{\cap IC}c_n'$. For all casts c_i that don't contain identity casts, then $[\![c_i]\!]_c=c_i$, therefore for those casts, the property is proved. For all casts c_i that contain identity casts, mergeCI will generate casts c_i' that will evaluate to c_i' . By Lemma 6, casts $[\![c_i]\!]_c$ will generate casts c_i' that will evaluate to c_i' , therefore it is proved.
- $e = v : cv_1 \cap \ldots \cap cv_n : c_1 \cap \ldots \cap c_m$ and $isValue\ v : cv_1 \cap \ldots \cap cv_n$ and $v : c'_1 \cap \ldots \cap c'_j = mergeII(v : cv_1 \cap \ldots \cap cv_n : c_1 \cap \ldots \cap c_m)$. There are 2 possibilities:
 - $-v: cv_1 \cap \ldots \cap cv_n: c_1 \cap \ldots \cap c_m$ doesn't contain identity casts, then $[e]_e = e$, therefore it is proved.
 - $-v: cv_1 \cap \ldots \cap cv_n: c_1 \cap \ldots \cap c_m$ contain identity casts. By rule MergeII \cap , $v: cv_1 \cap \ldots \cap cv_n: c_1 \cap \ldots \cap c_m \longrightarrow_{\cap CC} v: c'_1 \cap \ldots \cap c'_j$. By rule Evaluate \cap , $v: c'_1 \cap \ldots \cap c'_j \longrightarrow_{\cap CC} v': cv'_1 \cap \ldots \cap cv'_j$, with $c'_1 \longrightarrow_{\cap IC} cv'_1$ and \ldots and $c'_j \longrightarrow_{\cap IC} cv'_j$. For all casts cv_i and c_i that will be joined into c'_i by function mergeII, and that don't contain identity casts, then $[c'_i]_c = c'_i$, therefore for those casts, the property is proved. For all casts cv_i and c_i that will be joined into c'_i by function mergeII, and that contain identity casts, $c'_i \longrightarrow_{\cap IC} cv'_i$ and by Lemma 6, $[c'_i]_c \longrightarrow_{\cap IC} cv'_i$, therefore it is proved.
- $\mathbf{e} = v : c_1 \cap \ldots \cap c_n$ and $\neg (\forall i \in 1...n . isCastValue c_i)$. By rule Evaluate \cap , $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$, with $c_1 \longrightarrow_{\cap IC} cv_1$ and \ldots and $c_n \longrightarrow_{\cap IC} cv_n$. With $\llbracket e \rrbracket_e = v : \llbracket c_1 \rrbracket_e \cap \ldots \cap \llbracket c_n \rrbracket_e$, by Lemma 6, $\llbracket c_1 \rrbracket_e \longrightarrow_{\cap IC} cv_1$ and \ldots and $\llbracket c_n \rrbracket_e \longrightarrow_{\cap IC} cv_n$. Therefore, by rule Evaluate \cap , $v : \llbracket c_1 \rrbracket_e \cap \ldots \cap \llbracket c_n \rrbracket_e \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$.
- $e = v : blame \ I_1 \ F_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ I_n \ F_n \ l_n \ ^{m_n}$. As $\llbracket e \rrbracket_e = e$, then it is proved.
- $e = v : \varnothing T_1 \xrightarrow{m_1} \cap \ldots \cap \varnothing T_n \xrightarrow{m_n}$. As $[e]_e = e$, then it is proved.
- $e = v : cv_1 \cap ... \cap cv_n$ and $\neg (\forall i \in 1..n . isStuck c_i)$ and $\exists i \in 1..n . isStuck c_i$. As $\llbracket e \rrbracket_e = e$, then it is proved.

Induction step:

• e =

19