$\underset{\text{Solid State Physics}}{\text{PHYS}} \, 5243$

Sheena Murphy \bullet Spring 2015 \bullet University of Oklahoma

Last Revision: April 5, 2015

Contents

Chapter 8 - Semiconductor Crystals	ii
Band Gap	ii
Equations of Motion	i
Holes	iii
Effective mass	iii

Chapter 8 - Semiconductor Crystals

Semiconductor: 10^{-2} - 10^{9} ohm-cm at RT

Insulator: 10^{14} ohm at T=0K

Intrinsic temperature range: Range of temperature where the electrical properties are not affected by impurities in the crystal.

Band Gap

Intrinsic conductivity σ and intrinsic carrier concentration n are controlled by $\frac{E_g}{k_BT}$. $\frac{E_g}{k_BT} >> 1 \Rightarrow n, \sigma << 1, \frac{E_g}{k_BT} << 1 \Rightarrow n, \sigma >> 1$.

Direct band gap:

$$\mathbf{k}(photon) = \mathbf{k}_c ??$$

 $\Rightarrow E_q = \hbar \omega$

Indirect band gap:

 $\mathbf{k}(photon) = \mathbf{k}_c + \mathbf{K} \approx 0$

Emitted phonon: $\mathbf{K} = -\mathbf{k}_g \Rightarrow \hbar\omega = E_g + \hbar\Omega$ Absorbed phonon: $\mathbf{K} = \mathbf{k}_g \Rightarrow \hbar\omega = E_g - \hbar\Omega$

Equations of Motion

The motion of a wavefunction in an applied electric field. Wavepacket made up of wavefunctions assembled near a wavevector k. The group velocity is:

$$v_g = \frac{d\omega}{dk} \tag{1}$$

The frequency associated with a wavefunction of energy ϵ is $\omega = \frac{\epsilon}{\hbar}$ Therefore:

$$v_g = \frac{1}{\hbar} \frac{d\epsilon}{dk} \tag{2}$$

$$\mathbf{v} = \frac{1}{\hbar} \nabla_{\mathbf{k}} \epsilon(\mathbf{k}) \tag{3}$$

This can be used to show that an external force on an electron can be related to the change in wave vector:

$$\hbar \frac{d\mathbf{k}}{dt} = \mathbf{F} \tag{4}$$

The force term includes the Lorentz force so:

$$\hbar \frac{d\mathbf{k}}{dt} = -e\mathbf{v} \times \mathbf{B} \tag{5}$$

exchanging for the group velocity we have:

$$\hbar \frac{d\mathbf{k}}{dt} = -e \frac{1}{\hbar^2} \nabla_{\mathbf{k}} \epsilon(\mathbf{k}) \times \mathbf{B}$$
 (6)

Which shows that electrons move along constant energy surfaces normal to the direction of the $\bf B$ field in $\bf k$ space.

Holes

- 1) $\mathbf{k}_h = -\mathbf{k}_e$
- 2) $\epsilon_h(\mathbf{k}_h) = -\epsilon_e(\mathbf{k}_e)$
- 3) $\mathbf{v}_h = -\mathbf{v}_e$
- 4) $m_h = -m_e$
- 5) $\hbar \frac{d\mathbf{k}_e}{dt} = e(\mathbf{E} + \frac{1}{c}\mathbf{v}_h \times \mathbf{B})$

Effective mass

With the free electron we notice the reciprocal effect mass $\frac{1}{m^*}$ determines the curvature of the band $\frac{d\epsilon}{d\mathbf{k}}$ if we remember that:

$$\epsilon = \frac{\hbar^2 \mathbf{k}^2}{2m^*} \tag{7}$$