

MOSFET – Power, Single N-Channel, SO8-FL

30 V, 462 A, 0.58 m Ω

NTMFS0D55N03CG

Features

- Wide SOA to Improve Inrush Current Management
- Advanced Package (5x6mm) with Excellent Thermal Conduction
- Ultra Low R_{DS(on)} to Improve System Efficiency
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Hot Swap Application
- Power Load Switch
- Battery Management and Protection

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Symbol	Parameter			Value	Unit
V_{DSS}	Drain-to-Source Voltage			30	V
V_{GS}	Gate-to-Source Volta	age		±20	V
I _D	Continuous Drain Current R _{B.IC}		T _C = 25°C	462	Α
	(Note 3)	Steady State	T _C =100°C	326	
P _D	Power Dissipation $R_{\theta JC}$ (Note 3)	State	T _C = 25°C	199	W
I _D	Continuous Drain Current R _{AJA}		T _A = 25°C	65	Α
	(Notes 1, 3)	Steady	T _A = 100°C	46	
P _D	Power Dissipation $R_{\theta JA}$ (Notes 1, 3)	State	T _A = 25°C	3.9	W
I _D	Continuous Drain Current R _{B.IA}		T _A = 25°C	35	Α
	(Notes 2, 3)	Steady	T _A = 100°C	25	
P _D	Power Dissipation $R_{\theta JA}$ (Notes 2, 3)	State	T _A = 25°C	1.1	W
I _{DM}	Pulsed Drain Current	$T_A = 25^\circ$	'C, t _p = 10 μs	900	Α
I _S	Source Current (Body Diode)			166	Α
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy ($I_L = 45.5 A_{pk}$)			1346	mJ
T _J , T _{STG}	Operating Junction and Storage Temperature Range			-55 to +175	°C
TL	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{(BR})DSS	R _{DS(ON)} MAX	I _D MAX
30) V	0.58 m Ω @ 10 V	462 A

N-CHANNEL MOSFET

MARKING DIAGRAM

A = Assembly Location

Y = Year W = Work Week

ZZ = Lot Traceabililty

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State (Note 1)	0.75	
$R_{ heta JA}$	Junction-to-Ambient - Steady State (Note 1)	38	°C/W
$R_{ heta JA}$	Junction-to-Ambient - Steady State (Note 2)	133	

- 1. Surface–mounted on FR4 board using 1 in^2 pad, 2 oz Cu pad.
- 2. Surface-mounted on FR4 board using minimum pad, 2 oz Cu pad.
- 3. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Cond	Test Condition		Тур	Max	Unit
OFF CHARA	CTERISTICS			•			
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	V _{GS} = 0 V, I _D :	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		-	-	V
V _{(BR)DSS} /	Drain-to-Source Breakdown Voltage Temperature Coefficient	I _D = 250 μA. re	I _D = 250 μA. ref to 25°C		12	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V,	T _J = 25°C	_	-	1.0	μΑ
		V _{DS} = 30 V	T _J = 125°C	-	-	100	
I _{GSS}	Gate-to-Source Leakage Current	V _{DS} = 0 V, V _G	_S = 20 V			100	nA
ON CHARAC	CTERISTICS (Note 4)						
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D}$	= 330 μΑ	1.3	-	2.2	V
V _{GS(TH)} /T _J	Threshold Temperature Coefficient	I _D = 330 μA. re	ef to 25°C	-	-5	-	mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I	_D = 30 A	-	0.5	0.58	mΩ
9FS	Forward Transconductance	V _{DS} = 3 V, I _E	V _{DS} = 3 V, I _D = 30 A		108	-	S
R _G	Gate Resistance	T _A = 25°C		-	0.4	3.0	Ω
CHARGES A	AND CAPACITANCES						
C _{ISS}	Input Capacitance		V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz		14500	18500	pF
C _{OSS}	Output Capacitance	V _{GS} = 0 V, V _{DS} = 1			6430	8359	
C _{RSS}	Reverse Transfer Capacitance				120	222	
Q _{G(TOT)}	Total Gate Charge				173	224.9	
Q _{G(TH)}	Threshold Gate Charge		451/1 00 4	15.4	22	28.6	1
Q _{GS}	Gate-to-Source Charge	$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$	$V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V}; I_D = 30 \text{ A}$		39	50.7	nC
Q_{GD}	Gate-to-Drain Charge				11	20.5	
SWITCHING	CHARACTERISTICS (Note 5)	•		•			
t _{d(ON)}	Turn-On Delay Time			-	30	_	
t _r	Rise Time	V _{GS} = 10 V. V _F	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 30 A, R_{G} = 3.0 Ω		13	_	
t _{d(OFF)}	Turn-Off Delay Time				98	_	ns
t _f	Fall Time			_	20	_	
DRAIN-SOL	IRCE DIODE CHARACTERISTICS						
V _{SD}	Forward Diode Voltage	V _{GS} = 0 V,	T _J = 25°C	-	0.75	1.2	
		I _S = 30 A	T _J = 125°C	_	0.62	-	V
t _{RR}	Reverse Recovery Time	V _{GS} = 0 V, dIS/dt	= 100 A/us.	_	104	-	ns
Q _{RR}	Reverse Recovery Charge	$V_{DS} = 15 \text{ V}, I_{S} = 30 \text{ A}$		_	177	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 4. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

Figure 7. Capacitance Variation

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

Figure 11. Safe Operating Area

Figure 12. Maximum Drain Current vs. Time in Avalanche

TYPICAL CHARACTERISTICS (contimued)

Figure 13. Junction-to-Case Transient Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMFS0D55N03CGT1G	0D55NG	DFN5 (Pb-Free)	1,500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

// 0.10 C

△ 0.10 C

DFN5, 4.90 x 5.90 x 1.00, 1.27P CASE 506EZ **ISSUE B**

DATE 16 SEP 2024

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

TOP VIEW

SCALED 2:1

DETAIL "A"

MILLIMETERS						
DIM	MIN	NOM	MAX			
А	0.90	1.00	1.10			
Α1	0.00		0.05			
b	0.33	0.41	0.51			
С	0.23	0.28	0.33			
D	5.00	5.15	5.30			
D1	4.70	4.90	5.10			
D2	3.80	4.00	4.20			
Е	6.00	6.15	6.30			
E1	5.70	5.90	6.10			
E2	3.45	3.80	3.85			
е	1	.27 BSC)			
G	0.51	0.575	0.71			
k	1.10	1.20	1.40			
L	0.51	0.575	0.71			
L1	0.125 REF					
М	3.00	3.40	3.80			
Θ	0.		12°			

GENERIC MARKING DIAGRAM*

XXXXXX	= Specific Device Code
Α	= Assembly Location

Υ = Year W = Work Week 77 = Lot Traceability

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON24855H	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5, 4.90 x 5.90 x 1.00, 1.27P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales