### MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

September 8, 2024

### Outline

- Real Analysis Lecture 3
  - Decimal expansions
  - The Triangle Inequality
  - Sets, Relations, Functions

### Outline

- Real Analysis Lecture 3
  - Decimal expansions
  - The Triangle Inequality
  - Sets, Relations, Functions

### A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where  $a_0 \in \mathbb{Z}_+$  and  $0 \le a_k \le 9$  for  $1 \le k \le n$ .

### A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where  $a_0 \in \mathbb{Z}_+$  and  $0 \le a_k \le 9$  for  $1 \le k \le n$ .

#### Notation:

$$a_0.a_1a_2a_3...a_n$$
.

### A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where  $a_0 \in \mathbb{Z}_+$  and  $0 \le a_k \le 9$  for  $1 \le k \le n$ .

#### **Notation:**

$$a_0.a_1a_2a_3...a_n$$
.

Any positive real number x > 0 can be approximated by a finite decimal expansion.

### Theorem (Apostol Theorem 1.20)

For any real x > 0 and  $n \in \mathbb{Z}_+$ , there exists a finite decimal expansion  $r_n = a_0.a_1a_2...a_n$  with

$$r_n \leq x < r_n + \frac{1}{10^n}.$$

### Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \le x\}.$$



### Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \le x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum  $a_0$ .

#### Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \le x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum  $a_0$ .

Then clearly  $x_1 = a - a_0 \in [0, 1)$ .



#### Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum  $a_0$ .

Then clearly  $x_1 = a - a_0 \in [0, 1)$ .

Define  $a_1, a_2, a_3, \ldots$  and  $x_1, x_2, x_3, \ldots$  recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and 
$$x_{k+1} = 10x_k - a_k$$
.



#### Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum  $a_0$ .

Then clearly  $x_1 = a - a_0 \in [0, 1)$ .

Define  $a_1, a_2, a_3, \ldots$  and  $x_1, x_2, x_3, \ldots$  recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and  $x_{k+1} = 10x_k - a_k$ . Then  $0 \le a_k \le 9$  for all  $k \ge 1$ 



#### Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum  $a_0$ .

Then clearly  $x_1 = a - a_0 \in [0, 1)$ .

Define  $a_1, a_2, a_3, \ldots$  and  $x_1, x_2, x_3, \ldots$  recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and  $x_{k+1} = 10x_k - a_k$ . Then  $0 \le a_k \le 9$  for all  $k \ge 1$  and

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \dots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \dots + \frac{a_n+1}{10^n}$$



We say that x > 0 has the decimal expansion  $a_0.a_1a_2a_3...$  and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

We say that x > 0 has the decimal expansion  $a_0.a_1a_2a_3...$  and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all  $n \in \mathbb{Z}_+$ ,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

We say that x > 0 has the decimal expansion  $a_0.a_1a_2a_3...$  and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all  $n \in \mathbb{Z}_+$ ,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

# We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all  $n \in \mathbb{Z}_+$ ,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

Note: this is slightly different than the usual limit meaning, for two good reasons:

we haven't defined limits

We say that x > 0 has the decimal expansion  $a_0.a_1a_2a_3...$  and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all  $n \in \mathbb{Z}_+$ ,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

We say that x > 0 has the decimal expansion  $a_0.a_1a_2a_3...$  and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all  $n \in \mathbb{Z}_+$ ,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

$$1 \neq 0.999999999...$$



We say that x > 0 has the decimal expansion  $a_0.a_1a_2a_3...$  and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all  $n \in \mathbb{Z}_+$ ,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

$$1 \neq 0.99999999...$$

$$1 \nless 0 + \frac{9}{10} + \frac{9}{100} + \dots + \frac{9+1}{100} = 1$$

### Outline

- Real Analysis Lecture 3
  - Decimal expansions
  - The Triangle Inequality
  - Sets, Relations, Functions

### Absolute value

#### The **absolute value** of $x \in \mathbb{R}$ is

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

In particular,

$$0 \le |x|$$

and also

$$-|x| \le x \le |x|.$$

### Problem

Prove Apostol Theorem 1.21 that if  $a \ge 0$ , then  $|x| \le a$  if and only if  $-a \le x \le a$ .

#### Problem

Prove Apostol Theorem 1.21 that if  $a \ge 0$ , then  $|x| \le a$  if and only if  $-a \le x \le a$ .

### Solution

If 
$$|x| \le a$$
 then  $-a \le -|x|$ 

#### Problem

Prove Apostol Theorem 1.21 that if  $a \ge 0$ , then  $|x| \le a$  if and only if  $-a \le x \le a$ .

### Solution

If  $|x| \le a$  then  $-a \le -|x|$  and therefore

$$-a \le -|x| \le x \le |x| \le a$$

#### Problem

Prove Apostol Theorem 1.21 that if  $a \ge 0$ , then  $|x| \le a$  if and only if  $-a \le x \le a$ .

### Solution

If  $|x| \le a$  then  $-a \le -|x|$  and therefore

$$-a \le -|x| \le x \le |x| \le a$$

Conversely, if  $-a \le x \le a$  then



#### Problem

Prove Apostol Theorem 1.21 that if  $a \ge 0$ , then  $|x| \le a$  if and only if  $-a \le x \le a$ .

### Solution

If  $|x| \le a$  then  $-a \le -|x|$  and therefore

$$-a \le -|x| \le x \le |x| \le a$$

Conversely, if  $-a \le x \le a$  then

$$x \ge 0 \Rightarrow |x| = x \le a$$

#### Problem

Prove Apostol Theorem 1.21 that if  $a \ge 0$ , then  $|x| \le a$  if and only if  $-a \le x \le a$ .

#### Solution

If  $|x| \le a$  then  $-a \le -|x|$  and therefore

$$-a \le -|x| \le x \le |x| \le a$$

Conversely, if  $-a \le x \le a$  then

$$x \ge 0 \Rightarrow |x| = x \le a$$

$$x \le 0 \Rightarrow |x| = -x \le -(-a) = a$$

### Theorem (Triangle inequality)

For any real numbers  $x, y \in \mathbb{R}$  we have

$$|x+y|\leq |x|+|y|.$$

### Theorem (Triangle inequality)

For any real numbers  $x, y \in \mathbb{R}$  we have

$$|x+y|\leq |x|+|y|.$$

#### Proof.

$$-|x| \le x \le |x|$$
 and  $-|y| \le y \le |y|$ 



### Theorem (Triangle inequality)

For any real numbers  $x, y \in \mathbb{R}$  we have

$$|x+y|\leq |x|+|y|.$$

#### Proof.

$$-|x| \le x \le |x|$$
 and  $-|y| \le y \le |y|$ 

Adding these together, we get

$$-(|x|+|y|) \le x+y \le |x|+|y|$$



### Theorem (Triangle inequality)

For any real numbers  $x, y \in \mathbb{R}$  we have

$$|x+y| \le |x| + |y|.$$

#### Proof.

$$-|x| \le x \le |x|$$
 and  $-|y| \le y \le |y|$ 

Adding these together, we get

$$-(|x|+|y|) \le x+y \le |x|+|y|$$

It follows from the previous theorem that

$$|x+y| \le |x| + |y|$$



# Advanced triangle inequality

### Theorem (Triangle inequality)

For any real numbers  $x_1, x_2, \ldots, x_n \in \mathbb{R}$  we have

$$|x_1 + x_2 + \cdots + x_n| \le |x_1| + |x_2| + \cdots + |x_n|.$$

# Advanced triangle inequality

### Theorem (Triangle inequality)

For any real numbers  $x_1, x_2, \ldots, x_n \in \mathbb{R}$  we have

$$|x_1 + x_2 + \cdots + x_n| \le |x_1| + |x_2| + \cdots + |x_n|.$$

#### Proof.

Induction.



# Higher-dimensional triangle inequality

### Theorem (Cauchy-Schwartz Inequality (Apostol Theorem 1.23))

If  $x_1, \ldots, x_n$  and  $y_1, \ldots, y_n$  are real numbers, then

$$\left(\sum_{k=1}^n x_k y_k\right)^2 \le \left(\sum_{k=1}^n x_k^2\right) \left(\sum_{k=1}^n y_k^2\right)$$

If  $y_k$  isn't always zero, then equality holds if and only if there exists  $t \in \mathbb{R}$  with  $x_k = ty_k$  for all k.

# Higher-dimensional triangle inequality

### Theorem (Cauchy-Schwartz Inequality (Apostol Theorem 1.23))

If  $x_1, \ldots, x_n$  and  $y_1, \ldots, y_n$  are real numbers, then

$$\left(\sum_{k=1}^n x_k y_k\right)^2 \le \left(\sum_{k=1}^n x_k^2\right) \left(\sum_{k=1}^n y_k^2\right)$$

If  $y_k$  isn't always zero, then equality holds if and only if there exists  $t \in \mathbb{R}$  with  $x_k = ty_k$  for all k.

Vector version:

$$(\vec{x}\cdot\vec{y})^2 \leq |\vec{x}|^2 |\vec{y}|^2.$$



$$\sum_{k=1}^{n} (x_k + ty_k)^2 \ge 0, \text{ with equality iff all terms zero}$$

$$\sum_{k=1}^{n} (x_k + ty_k)^2 \ge 0, \quad \text{with equality iff all terms zero}$$

$$\sum_{k=1}^{n} x_k^2 + 2t \sum_{k=1}^{n} x_k y_k + t^2 \sum_{k=1}^{n} y_k^2 \ge 0$$

$$\sum_{k=1}^{n} (x_k + ty_k)^2 \ge 0, \text{ with equality iff all terms zero}$$

$$\sum_{k=1}^{n} x_k^2 + 2t \sum_{k=1}^{n} x_k y_k + t^2 \sum_{k=1}^{n} y_k^2 \ge 0$$

Take 
$$t = -(\sum_{k=1}^{n} x_{k} y_{k}) / (\sum_{k=1}^{n} y_{k}^{2})$$
:



$$\sum_{k=1}^{n} (x_k + ty_k)^2 \ge 0, \text{ with equality iff all terms zero}$$

$$\sum_{k=1}^{n} x_k^2 + 2t \sum_{k=1}^{n} x_k y_k + t^2 \sum_{k=1}^{n} y_k^2 \ge 0$$

Take 
$$t = -\left(\sum_{k=1}^{n} x_{k} y_{k}\right) / \left(\sum_{k=1}^{n} y_{k}^{2}\right)$$
:

$$\sum_{k=1}^{n} x_k^2 - \frac{\left(\sum_{k=1}^{n} x_k y_k\right)^2}{\left(\sum_{k=1}^{n} y_k^2\right)} \ge 0.$$



## Theorem (Minkowski inequality)

For any real numbers  $x_1, x_2, \dots, x_n \in \mathbb{R}$  and  $y_1, y_2, \dots, y_n \in \mathbb{R}$  we have

$$\left(\sum_{k=1}^{n}(x_k+y_k)^2\right)^{1/2} \leq \left(\sum_{k=1}^{n}x_k^2\right)^{1/2} + \left(\sum_{k=1}^{n}y_k^2\right)^{1/2}$$

## Theorem (Minkowski inequality)

For any real numbers  $x_1, x_2, \ldots, x_n \in \mathbb{R}$  and  $y_1, y_2, \ldots, y_n \in \mathbb{R}$  we have

$$\left(\sum_{k=1}^{n}(x_k+y_k)^2\right)^{1/2} \leq \left(\sum_{k=1}^{n}x_k^2\right)^{1/2} + \left(\sum_{k=1}^{n}y_k^2\right)^{1/2}$$

Vector version:

$$|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|.$$

## Theorem (Minkowski inequality)

For any real numbers  $x_1, x_2, \ldots, x_n \in \mathbb{R}$  and  $y_1, y_2, \ldots, y_n \in \mathbb{R}$  we have

$$\left(\sum_{k=1}^{n}(x_k+y_k)^2\right)^{1/2} \leq \left(\sum_{k=1}^{n}x_k^2\right)^{1/2} + \left(\sum_{k=1}^{n}y_k^2\right)^{1/2}$$

Vector version:

$$|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|.$$

A higher dimensional triangle inequality!

#### Proof.

By the triangle inequality:



#### Proof.

By the triangle inequality:

$$\begin{split} \sum_{k=1}^{n} (x_k + y_k)^2 &\leq \sum_{k=1}^{n} (|x_k| + |y_k|)|x_k + y_k| \\ &= \sum_{k=1}^{n} |x_k| \cdot |x_k + y_k| + \sum_{k=1}^{n} |y_k| \cdot |x_k + y_k| \end{split}$$



#### Proof.

By the triangle inequality:

$$\begin{split} \sum_{k=1}^{n} (x_k + y_k)^2 &\leq \sum_{k=1}^{n} (|x_k| + |y_k|)|x_k + y_k| \\ &= \sum_{k=1}^{n} |x_k| \cdot |x_k + y_k| + \sum_{k=1}^{n} |y_k| \cdot |x_k + y_k| \end{split}$$

Now applying the Cauchy-Schwartz inequality:



#### Proof.

By the triangle inequality:

$$\begin{split} \sum_{k=1}^{n} (x_k + y_k)^2 &\leq \sum_{k=1}^{n} (|x_k| + |y_k|)|x_k + y_k| \\ &= \sum_{k=1}^{n} |x_k| \cdot |x_k + y_k| + \sum_{k=1}^{n} |y_k| \cdot |x_k + y_k| \end{split}$$

Now applying the Cauchy-Schwartz inequality:

$$\leq \left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{1/2} \left(\sum_{k=1}^{n} |x_{k} + y_{k}|^{2}\right)^{1/2} + \left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{1/2} \left(\sum_{k=1}^{n} |x_{k} + y_{k}|^{2}\right)^{1/2}$$

$$= \left[\left(\sum_{k=1}^{n} |x_{k}|^{2}\right)^{1/2} + \left(\sum_{k=1}^{n} |y_{k}|^{2}\right)^{1/2}\right] \left(\sum_{k=1}^{n} |x_{k} + y_{k}|^{2}\right)^{1/2}$$

#### Proof.

By the triangle inequality:

$$\begin{split} \sum_{k=1}^{n} (x_k + y_k)^2 &\leq \sum_{k=1}^{n} (|x_k| + |y_k|)|x_k + y_k| \\ &= \sum_{k=1}^{n} |x_k| \cdot |x_k + y_k| + \sum_{k=1}^{n} |y_k| \cdot |x_k + y_k| \end{split}$$

Now applying the Cauchy-Schwartz inequality:

$$\leq \left( \sum_{k=1}^{n} |x_k|^2 \right)^{1/2} \left( \sum_{k=1}^{n} |x_k + y_k|^2 \right)^{1/2} + \left( \sum_{k=1}^{n} |y_k|^2 \right)^{1/2} \left( \sum_{k=1}^{n} |x_k + y_k|^2 \right)^{1/2}$$

$$= \left[ \left( \sum_{k=1}^{n} |x_k|^2 \right)^{1/2} + \left( \sum_{k=1}^{n} |y_k|^2 \right)^{1/2} \right] \left( \sum_{k=1}^{n} |x_k + y_k|^2 \right)^{1/2}$$



## Outline

- Real Analysis Lecture 3
  - Decimal expansions
  - The Triangle Inequality
  - Sets, Relations, Functions

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

in practice, this is a bad definition (Russell's Paradox)

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

## Examples:

 $\bullet$   $\mathbb{R}$ ,  $\mathbb{Z}_+$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$ 

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- $\bullet$   $\mathbb{R}$ ,  $\mathbb{Z}_+$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$
- $(1,5], (0,\infty)$

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- $\bullet$   $\mathbb{R}$ ,  $\mathbb{Z}_+$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$
- $(1,5], (0,\infty)$
- empty set Ø

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- $\bullet$   $\mathbb{R}$ ,  $\mathbb{Z}_+$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$
- $(1,5], (0,\infty)$
- empty set Ø
- $\{\heartsuit, \mathsf{Fall}, \{\varnothing\}\}$

Intuitively, a **set** *A* is a "collection of things" which we call the **elements** of *A*.

- in practice, this is a bad definition (Russell's Paradox)
- true set formulation: Zermelo-Frankel Axioms

- $\bullet$   $\mathbb{R}$ ,  $\mathbb{Z}_+$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$
- $(1,5], (0,\infty)$
- empty set Ø
- {♡, Fall, {∅}}
- $\{n \in \mathbb{Z} : n \text{ is prime}\}$

In the true minimalistic philosophy of mathematics, we want everything to be a set.

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

ordered pairs

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

ordered pairs

$$(a,b) = \{a, \{a,b\}\}$$

In the true minimalistic philosophy of mathematics, we want everything to be a set.

integers

$$0=\varnothing, 1=\{\varnothing\}, 2=\{\varnothing, \{\varnothing\}\}, \dots$$

ordered pairs

$$(a,b) = \{a, \{a,b\}\}$$

even relations and functions are sets!

#### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

#### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

$$(a,b) = (c,d)$$
 if and only if  $\{a,\{a,b\}\} = \{c,\{c,d\}\}$ 

#### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

$$(a,b) = (c,d)$$
 if and only if  $\{a, \{a,b\}\} = \{c, \{c,d\}\}$   
Clearly, if  $a = c$  and  $b = d$ , then  $\{a, \{a,b\}\} = \{c, \{c,d\}\}$ 

#### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

$$(a,b) = (c,d)$$
 if and only if  $\{a,\{a,b\}\} = \{c,\{c,d\}\}$   
Clearly, if  $a = c$  and  $b = d$ , then  $\{a,\{a,b\}\} = \{c,\{c,d\}\}$   
The tough part is the opposite direction!



#### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

$$(a,b)=(c,d)$$
 if and only if  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$   
Clearly, if  $a=c$  and  $b=d$ , then  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$   
The tough part is the opposite direction!  
Suppose  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ .



#### **Problem**

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

$$(a,b)=(c,d)$$
 if and only if  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$   
Clearly, if  $a=c$  and  $b=d$ , then  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$   
The tough part is the opposite direction!  
Suppose  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ .  
Two possible cases:



#### **Problem**

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

$$(a,b)=(c,d)$$
 if and only if  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$   
Clearly, if  $a=c$  and  $b=d$ , then  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$   
The tough part is the opposite direction!  
Suppose  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ .  
Two possible cases:

Case I: 
$$a = c$$
 and  $\{a, b\} = \{c, d\}$   
Case II:  $a = \{c, d\}$  and  $\{a, b\} = c$ 

#### **Problem**

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

### Solution

(a,b)=(c,d) if and only if  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ Clearly, if a=c and b=d, then  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ The tough part is the opposite direction! Suppose  $\{a,\{a,b\}\}=\{c,\{c,d\}\}$ . Two possible cases:

Case I: 
$$a = c$$
 and  $\{a, b\} = \{c, d\}$ 

Case II: 
$$a = \{c, d\}$$
 and  $\{a, b\} = c$ 

### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

Case I: 
$$a = c$$
 and  $\{a, b\} = \{c, d\}$ 



### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

Case I: 
$$a = c$$
 and  $\{a, b\} = \{c, d\}$ 

Since 
$$\{a, b\} = \{c, d\}$$
, we know  $b \in \{c, d\}$ .



#### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

Case I: 
$$a = c$$
 and  $\{a, b\} = \{c, d\}$ 

Since 
$$\{a, b\} = \{c, d\}$$
, we know  $b \in \{c, d\}$ .

Therefore 
$$b = c$$
 or  $b = d$ .

If 
$$b = d$$
, we're done!



#### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

Case I: 
$$a = c$$
 and  $\{a, b\} = \{c, d\}$ 

Since 
$$\{a, b\} = \{c, d\}$$
, we know  $b \in \{c, d\}$ .

Therefore 
$$b = c$$
 or  $b = d$ .

If 
$$b = d$$
, we're done! ... so assume instead that  $b = c$ 



#### **Problem**

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

### Solution

Case I: 
$$a = c$$
 and  $\{a, b\} = \{c, d\}$ 

Since  $\{a, b\} = \{c, d\}$ , we know  $b \in \{c, d\}$ .

Therefore b = c or b = d.

If b = d, we're done! ... so assume instead that b = c

Then a = c implies a = b.



#### **Problem**

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

### Solution

Case I: 
$$a = c$$
 and  $\{a, b\} = \{c, d\}$ 

Since  $\{a, b\} = \{c, d\}$ , we know  $b \in \{c, d\}$ .

Therefore b = c or b = d.

If b = d, we're done! ... so assume instead that b = c

Then a = c implies a = b.

Therefore  $\{c, d\} = \{a, b\} = \{a, a\} = \{a\}.$ 



#### **Problem**

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

### Solution

Case I: 
$$a = c$$
 and  $\{a, b\} = \{c, d\}$ 

Since  $\{a, b\} = \{c, d\}$ , we know  $b \in \{c, d\}$ .

Therefore b = c or b = d.

If b = d, we're done! ... so assume instead that b = c

Then a = c implies a = b.

Therefore  $\{c, d\} = \{a, b\} = \{a, a\} = \{a\}.$ 

It follows that d = c = b = a.



#### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

Case II: 
$$a = \{c, d\}$$
 and  $\{a, b\} = c$ 

#### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

### Solution

Case II: 
$$a = \{c, d\}$$
 and  $\{a, b\} = c$ 

This would imply that  $c \in a$  and  $a \in c$ .

#### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

### Solution

Case II: 
$$a = \{c, d\}$$
 and  $\{a, b\} = c$ 

This would imply that  $c \in a$  and  $a \in c$ .

This can be shown to contradict the ZF Axioms of Set Theory.

### Problem

Prove that for ordered pairs (a, b) and (c, d) that

$$(a,b)=(c,d)$$
 if and only if  $a=c$  and  $b=d$ 

### Solution

Case II: 
$$a = \{c, d\}$$
 and  $\{a, b\} = c$ 

This would imply that  $c \in a$  and  $a \in c$ .

This can be shown to contradict the ZF Axioms of Set Theory. Specifically the regularity axiom for the set  $\{a, c\}...$ 

## The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation**  $\mathcal{R}$  from A to B is a subset of  $A \times B$ .

The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation**  $\mathcal{R}$  from A to B is a subset of  $A \times B$ .

NOTATION: aRb means  $(a,b) \in R$ .

The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation**  $\mathcal{R}$  from A to B is a subset of  $A \times B$ .

NOTATION: aRb means  $(a,b) \in R$ .

Domain and codomain:

The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation**  $\mathcal{R}$  from A to B is a subset of  $A \times B$ .

NOTATION: aRb means  $(a,b) \in R$ .

Domain and codomain:

$$dom(\mathcal{R}) = \{a \in A : \exists b \in B, \ a\mathcal{R}b\}$$
$$codom(\mathcal{R}) = \{b \in B : \exists a \in A, \ a\mathcal{R}b\}$$

The **Cartesian product** of *A* and *B* is

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

A **relation**  $\mathcal{R}$  from A to B is a subset of  $A \times B$ .

NOTATION: aRb means  $(a,b) \in R$ .

Domain and codomain:

$$dom(\mathcal{R}) = \{ a \in A : \exists b \in B, \ a\mathcal{R}b \}$$
$$codom(\mathcal{R}) = \{ b \in B : \exists a \in A, \ a\mathcal{R}b \}$$

A relation  $\mathcal{R}$  from A to A is called a **relation on** A. A relation on A is

A relation  $\mathcal{R}$  from A to A is called a **relation on** A. A relation on A is

• **reflexive** if aRa for all  $a \in A$ 

A relation  $\mathcal{R}$  from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all  $a \in A$
- **symmetric** if aRb implies bRa for all  $a, b \in A$

A relation  $\mathcal{R}$  from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all  $a \in A$
- **symmetric** if aRb implies bRa for all  $a, b \in A$
- transitive if aRb and bRc implies aRc for all  $a, b, c \in A$

A relation  $\mathcal{R}$  from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all  $a \in A$
- **symmetric** if aRb implies bRa for all  $a, b \in A$
- **transitive** if aRb and bRc implies aRc for all  $a, b, c \in A$

An **equivalence relation** satisfies all three properties.

A relation  $\mathcal{R}$  from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all  $a \in A$
- **symmetric** if aRb implies bRa for all  $a, b \in A$
- **transitive** if aRb and bRc implies aRc for all  $a, b, c \in A$

An **equivalence relation** satisfies all three properties. Examples:

A relation  $\mathcal{R}$  from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all  $a \in A$
- **symmetric** if aRb implies bRa for all  $a, b \in A$
- **transitive** if aRb and bRc implies aRc for all  $a, b, c \in A$

An **equivalence relation** satisfies all three properties. Examples:

A relation  $\mathcal{R}$  from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all  $a \in A$
- **symmetric** if aRb implies bRa for all  $a, b \in A$
- transitive if aRb and bRc implies aRc for all  $a, b, c \in A$

An **equivalence relation** satisfies all three properties.

## Examples:

• < =  $\{(x, y) : y - x \in (0, \infty)\}$  is transitive but not reflexive or symmetric on  $\mathbb{R}$ 

A relation  $\mathcal{R}$  from A to A is called a **relation on** A. A relation on A is

- **reflexive** if aRa for all  $a \in A$
- **symmetric** if aRb implies bRa for all  $a, b \in A$
- transitive if aRb and bRc implies aRc for all  $a, b, c \in A$

An **equivalence relation** satisfies all three properties.

## Examples:

- < =  $\{(x, y) : y x \in (0, \infty)\}$  is transitive but not reflexive or symmetric on  $\mathbb R$
- $\leq$  = { $(x, y) : y x \in [0, \infty)$ } is reflexive and transitive but not symmetric on  $\mathbb{R}$

### Problem

Give an example of a relation on  $\mathbb{R}$  which is symmetric and transitive but not reflexive.

### Problem

Give an example of a relation on  $\mathbb{R}$  which is reflexive and symmetric but not transitive.

A **function** from A to B is a relation  $\mathcal{R}$  from A to B with the property

A **function** from A to B is a relation  $\mathcal{R}$  from A to B with the property

aRb and aRc implies b = c.

A **function** from A to B is a relation  $\mathcal{R}$  from A to B with the property

$$aRb$$
 and  $aRc$  implies  $b = c$ .

If a relation R is a function, we usually use a symbol like f.

**NOTATION:**  $f: A \rightarrow B$  means f is a function from A to B

NOTATION: f(a) = b means  $(a, b) \in f$ .

The set

$$img(f) = \{f(a) : a \in A\}$$

is called the range or image of f



A **function** from A to B is a relation  $\mathcal{R}$  from A to B with the property

$$aRb$$
 and  $aRc$  implies  $b = c$ .

If a relation R is a function, we usually use a symbol like f.

NOTATION: 
$$f(a) = b$$
 means  $(a, b) \in f$ .

The set

$$img(f) = \{f(a) : a \in A\}$$

is called the range or image of f



A **function** from A to B is a relation  $\mathcal{R}$  from A to B with the property

aRb and aRc implies b = c.

If a relation R is a function, we usually use a symbol like f.

**NOTATION:**  $f: A \rightarrow B$  means f is a function from A to B

NOTATION: f(a) = b means  $(a, b) \in f$ .

A **function** from A to B is a relation  $\mathcal{R}$  from A to B with the property

$$aRb$$
 and  $aRc$  implies  $b = c$ .

If a relation  $\mathcal{R}$  is a function, we usually use a symbol like f.

**NOTATION:**  $f: A \rightarrow B$  means f is a function from A to B

NOTATION: f(a) = b means  $(a, b) \in f$ .

The set

$$img(f) = \{f(a) : a \in A\}$$

is called the range or image of f



### Problem

Determine all the equivalence relations on  $\mathbb R$  which are also functions.

### Challenge!

#### Problem

Determine all the equivalence relations on  $\mathbb R$  which are also functions.

#### Solution

 $f = \mathcal{R}$  must be reflexive, so  $x\mathcal{R}x$  for all x

### Challenge!

#### Problem

Determine all the equivalence relations on  $\mathbb{R}$  which are also functions.

#### Solution

 $f = \mathcal{R}$  must be reflexive, so  $x\mathcal{R}x$  for all x. This means f(x) = x for all x.

### Challenge!

#### Problem

Determine all the equivalence relations on  $\mathbb{R}$  which are also functions.

#### Solution

 $f = \mathcal{R}$  must be reflexive, so  $x\mathcal{R}x$  for all x

This means f(x) = x for all x.

Thus the only function which is an equivalence relation is the identity function

$$f(x) = x$$
.



A function f from A to B is called **one-to-one** or **injective** if

A function f from A to B is called **one-to-one** or **injective** if

$$f(x) = f(y)$$
 implies  $x = y$  for all  $x, y \in A$ .

A function f from A to B is called **one-to-one** or **injective** if

$$f(x) = f(y)$$
 implies  $x = y$  for all  $x, y \in A$ .

It is called **onto** or **surjective** if img(f) = B, or equivalently

for all 
$$b \in B$$
 there exists  $a \in A$  with  $f(a) = b$ .

A function f from A to B is called **one-to-one** or **injective** if

$$f(x) = f(y)$$
 implies  $x = y$  for all  $x, y \in A$ .

It is called **onto** or **surjective** if img(f) = B, or equivalently

for all 
$$b \in B$$
 there exists  $a \in A$  with  $f(a) = b$ .

If it satisfies both properties, it is called **bijective**.

The **converse** of a relation  $\mathcal{R}$  from A to B is the relation

The **converse** of a relation  $\mathcal{R}$  from A to B is the relation

$$\check{\mathcal{R}} = \{(b, a) \in \mathcal{B} \times \mathcal{A} : a\mathcal{R}b\}.$$

The **converse** of a relation  $\mathcal{R}$  from A to B is the relation

$$\check{\mathcal{R}} = \{(b, a) \in B \times A : a\mathcal{R}b\}.$$

If f is function, then  $\check{f}$  may or not be a function.

The **converse** of a relation  $\mathcal{R}$  from A to B is the relation

$$\check{\mathcal{R}} = \{(b, a) \in \mathcal{B} \times \mathcal{A} : a\mathcal{R}b\}.$$

If f is function, then  $\check{f}$  may or not be a function. If it is, we call it the **inverse** of f.

The composition of  $f: A \rightarrow B$  and  $g: B \rightarrow C$  is the function

The composition of  $f: A \rightarrow B$  and  $g: B \rightarrow C$  is the function

$$g \circ f : A \rightarrow C$$

The composition of  $f: A \rightarrow B$  and  $g: B \rightarrow C$  is the function

$$g \circ f : A \rightarrow C$$

with domain A and codomain C defined by

The composition of  $f : A \rightarrow B$  and  $g : B \rightarrow C$  is the function

$$g \circ f : A \rightarrow C$$

with domain A and codomain C defined by

$$(g\circ f)(x)=g(f(x)).$$