Mis tropiezos con Abraham-Minkowski

W. Luis Mochán Backal

Instituto de Ciencias Físicas, UNAM

Seminario Sotero Prieto Instituto de Física 17 de marzo de 2021

La luz tiene energía

La luz tiene energía

La luz tiene ímpetu

La luz tiene ímpetu

La luz tiene ímpetu angular

Leyes de conservación

$$\frac{d}{dt}$$
(cantidad)_V + flujo_{OV} = fuentes_V

 $\frac{\partial}{\partial t}$ (densidad) + $\nabla \cdot$ (densidad de flujo) = densidad de fuentes

Ejemplo: Conservación de la carga

$$\frac{\partial}{\partial t}\rho + \nabla \cdot \boldsymbol{j} = 0$$

Leyes de conservación

$$\frac{d}{dt}$$
(cantidad)_V + flujo _{∂V} = fuentes_V

 $rac{\partial}{\partial t}$ (densidad) $+
abla \cdot$ (densidad de flujo) = densidad de fuentes

Ejemplo: Conservación de la carga

$$\frac{\partial}{\partial t}\rho + \nabla \cdot \boldsymbol{j} = 0$$

- Densidad de potencia: $P = \mathbf{j} \cdot \mathbf{E} = \text{campo} \rightarrow \text{materia}$
- Fuente de energía: $-\mathbf{j} \cdot \mathbf{E} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial}{\partial t} \mathbf{E} \dots$
- $\frac{\partial}{\partial t}u + \nabla \cdot \mathbf{S} = -\mathbf{j} \cdot \mathbf{E}$
- $u = \frac{1}{8\pi}(E^2 + B^2) = \text{densidad de energía}$
- $S = \frac{c}{4\pi} E \times B =$ (densidad de) flujo de energía
- Nota: j = densidad de corriente total

- Densidad de potencia: $P = \mathbf{j} \cdot \mathbf{E} = \text{campo} \rightarrow \text{materia}$
- Fuente de energía: $-\boldsymbol{j} \cdot \boldsymbol{E} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{B} = \frac{4\pi}{c}\mathbf{j} + \frac{1}{c}\frac{\partial}{\partial t}\mathbf{E}...$
- $\bullet \ \frac{\partial}{\partial t} u + \nabla \cdot \mathbf{S} = -\mathbf{j} \cdot \mathbf{E}$
- $u = \frac{1}{8\pi}(E^2 + B^2) = \text{densidad de energía}$
- $S = \frac{c}{4\pi} E \times B =$ (densidad de) flujo de energía
- Nota: j = densidad de corriente total

- Densidad de potencia: $P = \mathbf{j} \cdot \mathbf{E} = \text{campo} \rightarrow \text{materia}$
- Fuente de energía: $-\boldsymbol{j} \cdot \boldsymbol{E} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \boldsymbol{B} = \frac{4\pi}{c} \boldsymbol{j} + \frac{1}{c} \frac{\partial}{\partial t} \boldsymbol{E} \dots$
- $\frac{\partial}{\partial t}u + \nabla \cdot \mathbf{S} = -\mathbf{j} \cdot \mathbf{E}$
- $u = \frac{1}{8\pi}(E^2 + B^2) = \text{densidad de energía}$
- $S = \frac{c}{4\pi} E \times B =$ (densidad de) flujo de energía
- Nota: j = densidad de corriente total

- Densidad de potencia: $P = \mathbf{j} \cdot \mathbf{E} = \text{campo} \rightarrow \text{materia}$
- Fuente de energía: $-\boldsymbol{j} \cdot \boldsymbol{E} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \boldsymbol{B} = \frac{4\pi}{c} \boldsymbol{j} + \frac{1}{c} \frac{\partial}{\partial t} \boldsymbol{E} \dots$
- $\frac{\partial}{\partial t}u + \nabla \cdot \mathbf{S} = -\mathbf{j} \cdot \mathbf{E}$
- $u = \frac{1}{8\pi}(E^2 + B^2) =$ densidad de energía
- $S = \frac{c}{4\pi} E \times B =$ (densidad de) flujo de energía
- Nota: j = densidad de corriente total

- Densidad de potencia: $P = \mathbf{j} \cdot \mathbf{E} = \text{campo} \rightarrow \text{materia}$
- Fuente de energía: $-\boldsymbol{j} \cdot \boldsymbol{E} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{B} = \frac{4\pi}{c}\mathbf{j} + \frac{1}{c}\frac{\partial}{\partial t}\mathbf{E}...$
- $\frac{\partial}{\partial t}u + \nabla \cdot \mathbf{S} = -\mathbf{j} \cdot \mathbf{E}$
- $u = \frac{1}{8\pi}(E^2 + B^2) =$ densidad de energía
- $\mathbf{S} = \frac{c}{4\pi} \mathbf{E} \times \mathbf{B} =$ (densidad de) flujo de energía
- Nota: j = densidad de corriente total

- Densidad de potencia: $P = \mathbf{j} \cdot \mathbf{E} = \text{campo} \rightarrow \text{materia}$
- Fuente de energía: $-\mathbf{j} \cdot \mathbf{E} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{j} + \frac{1}{c} \frac{\partial}{\partial t} \boldsymbol{D}...$
- $u = \frac{1}{8\pi}(\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B}) = \text{densidad de energía}$
- $S = \frac{c}{4\pi} E \times H =$ (densidad de) flujo de energía
- Nota: j = densidad de corriente externa
- Nota: Válido para paquetes con $\omega \pm \Delta \omega$ en una zona de transparencia y sin dispersión, ϵ , μ reales e ind. de ω .

- Densidad de potencia: $P = \mathbf{j} \cdot \mathbf{E} = \text{campo} \rightarrow \text{materia}$
- Fuente de energía: −j · E = materia → campo
- Ecuaciones de Maxwell: $\nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial}{\partial t} \mathbf{D} \dots$
- $\bullet \ \frac{\partial}{\partial t} u + \nabla \cdot \mathbf{S} = -\mathbf{j} \cdot \mathbf{E}$
- $u = \frac{1}{8\pi}(\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B}) = \text{densidad de energía}$
- $S = \frac{c}{4\pi} E \times H =$ (densidad de) flujo de energía
- Nota: j = densidad de corriente externa
- Nota: Válido para paquetes con $\omega \pm \Delta \omega$ en una zona de transparencia y sin dispersión, ϵ , μ reales e ind. de ω .

- Densidad de potencia: $P = \mathbf{j} \cdot \mathbf{E} = \text{campo} \rightarrow \text{materia}$
- Fuente de energía: −j · E = materia → campo
- Ecuaciones de Maxwell: $\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{j} + \frac{1}{c} \frac{\partial}{\partial t} \boldsymbol{D} \dots$
- $u = \frac{1}{8\pi} (\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B}) = \text{densidad de energía}$
- $S = \frac{c}{4\pi} E \times H =$ (densidad de) flujo de energía
- Nota: j = densidad de corriente externa
- Nota: Válido para paquetes con $\omega \pm \Delta \omega$ en una zona de transparencia y sin dispersión, ϵ , μ reales e ind. de ω .

- Densidad de potencia: $P = \mathbf{j} \cdot \mathbf{E} = \text{campo} \rightarrow \text{materia}$
- Fuente de energía: $-\boldsymbol{j} \cdot \boldsymbol{E} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{j} + \frac{1}{c} \frac{\partial}{\partial t} \boldsymbol{D} \dots$
- $\frac{\partial}{\partial t}u + \nabla \cdot \mathbf{S} = -\mathbf{j} \cdot \mathbf{E}$
- $u = \frac{1}{8\pi} (\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B}) = \text{densidad de energía}$
- $\mathbf{S} = \frac{c}{4\pi} \mathbf{E} \times \mathbf{H} =$ (densidad de) flujo de energía
- Nota: j = densidad de corriente externa
- Nota: Válido para paquetes con $\omega \pm \Delta \omega$ en una zona de transparencia y sin dispersión, ϵ , μ reales e ind. de ω .

- Densidad de potencia: $P = \mathbf{j} \cdot \mathbf{E} = \text{campo} \rightarrow \text{materia}$
- Fuente de energía: $-\boldsymbol{j} \cdot \boldsymbol{E} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{j} + \frac{1}{c} \frac{\partial}{\partial t} \boldsymbol{D} \dots$
- $\bullet \ \frac{\partial}{\partial t}u + \nabla \cdot \mathbf{S} = -\mathbf{j} \cdot \mathbf{E}$
- $u = \frac{1}{8\pi} (\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B}) = \text{densidad de energía}$
- $\mathbf{S} = \frac{c}{4\pi} \mathbf{E} \times \mathbf{H} = \text{(densidad de) flujo de energía}$
- Nota: j = densidad de corriente externa
- Nota: Válido para paquetes con $\omega \pm \Delta \omega$ en una zona de transparencia y sin dispersión, ϵ , μ reales e ind. de ω .

- Densidad de potencia: $P = \mathbf{j} \cdot \mathbf{E} = \text{campo} \rightarrow \text{materia}$
- Fuente de energía: −j · E = materia → campo
- Ecuaciones de Maxwell: $\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{j} + \frac{1}{c} \frac{\partial}{\partial t} \boldsymbol{D} \dots$
- $\bullet \ \frac{\partial}{\partial t}u + \nabla \cdot \mathbf{S} = -\mathbf{j} \cdot \mathbf{E}$
- $u = \frac{1}{8\pi} (\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B}) = \text{densidad de energía}$
- $\mathbf{S} = \frac{c}{4\pi} \mathbf{E} \times \mathbf{H} = \text{(densidad de) flujo de energía}$
- Nota: **j** = densidad de corriente *externa*
- Nota: Válido para paquetes con $\omega \pm \Delta \omega$ en una zona de transparencia y sin dispersión, ϵ , μ reales e ind. de ω .

- Densidad de fuerza: $\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = \text{campo} \rightarrow \text{materia}$
- Fuente de ímpetu: $-\mathbf{f} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{B} = \frac{4\pi}{c}\mathbf{j} + \frac{1}{c}\frac{\partial}{\partial t}\mathbf{E}...$
- $\frac{\partial}{\partial t}\mathbf{g} + \nabla \cdot (-\mathbf{T}) = -\mathbf{f}$
- $g = \frac{1}{4\pi c} \mathbf{E} \times B = \text{densidad de impetu}$
- $T_{ij} = \frac{1}{4\pi} (E_i E_j + B_i B_j \frac{1}{2} (E^2 + B^2) \delta_{ij}) =$ -(densidad de) flujo de ímpetu
- Nota: *j* = densidad de corriente *total*

- Densidad de fuerza: $\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = \text{campo} \rightarrow \text{materia}$
- Fuente de ímpetu: $-\mathbf{f} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{B} = \frac{4\pi}{c}\mathbf{j} + \frac{1}{c}\frac{\partial}{\partial t}\mathbf{E}...$
- $\bullet \ \frac{\partial}{\partial t} \boldsymbol{g} + \nabla \cdot (-\boldsymbol{T}) = -\boldsymbol{f}$
- $g = \frac{1}{4\pi c} \mathbf{E} \times B = \text{densidad de impetu}$
- $T_{ij} = \frac{1}{4\pi} (E_i E_j + B_i B_j \frac{1}{2} (E^2 + B^2) \delta_{ij}) =$ -(densidad de) flujo de ímpetu
- Nota: *j* = densidad de corriente *total*

- Densidad de fuerza: $\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = \text{campo} \rightarrow \text{materia}$
- Fuente de ímpetu: $-\mathbf{f} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{B} = \frac{4\pi}{c}\mathbf{j} + \frac{1}{c}\frac{\partial}{\partial t}\mathbf{E}...$
- $\bullet \ \frac{\partial}{\partial t} \boldsymbol{g} + \nabla \cdot (-\boldsymbol{T}) = -\boldsymbol{f}$
- $g = \frac{1}{4\pi c} \mathbf{E} \times B = \text{densidad de impetu}$
- $T_{ij} = \frac{1}{4\pi} (E_i E_j + B_i B_j \frac{1}{2} (E^2 + B^2) \delta_{ij}) =$ -(densidad de) flujo de ímpetu
- Nota: **j** = densidad de corriente *total*

- Densidad de fuerza: $\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = \text{campo} \rightarrow \text{materia}$
- Fuente de ímpetu: $-\mathbf{f} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{B} = \frac{4\pi}{c}\mathbf{j} + \frac{1}{c}\frac{\partial}{\partial t}\mathbf{E}...$
- $ullet rac{\partial}{\partial t}oldsymbol{g} +
 abla \cdot (-oldsymbol{T}) = -oldsymbol{f}$
- $g = \frac{1}{4\pi c} \mathbf{E} \times B = \text{densidad de ímpetu}$
- $T_{ij} = \frac{1}{4\pi}(E_iE_j + B_iB_j \frac{1}{2}(E^2 + B^2)\delta_{ij}) =$ -(densidad de) flujo de ímpetu
- Nota: **j** = densidad de corriente *total*

- Densidad de fuerza: $\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = \text{campo} \rightarrow \text{materia}$
- Fuente de ímpetu: $-\mathbf{f} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{B} = \frac{4\pi}{c}\mathbf{j} + \frac{1}{c}\frac{\partial}{\partial t}\mathbf{E}...$
- $\frac{\partial}{\partial t} \boldsymbol{g} + \nabla \cdot (-\boldsymbol{T}) = -\boldsymbol{f}$
- $g = \frac{1}{4\pi c} \mathbf{E} \times B = \text{densidad de impetu}$
- $T_{ij} = \frac{1}{4\pi}(E_iE_j + B_iB_j \frac{1}{2}(E^2 + B^2)\delta_{ij}) =$ -(densidad de) flujo de ímpetu
- Nota: **j** = densidad de corriente total

- Densidad de torca: $\tau = \mathbf{r} \times \mathbf{f} = \mathsf{campo} \to \mathsf{materia}$.
- Fuente de ímpetu angular: $-\tau = -\mathbf{r} \times f = \text{materia} \rightarrow \text{campo}.$
- $\frac{\partial}{\partial t}\ell + \nabla \cdot (-\mathbf{M}) = -\mathbf{\tau}$
- $\ell = r \times g =$ densidad de ímpetu angular
- $M = r \times T = -$ densidad de flujo de ímpetu angular
- se cumple gracias a que T es simétrico.

- Densidad de torca: $\tau = \mathbf{r} \times f = \text{campo} \rightarrow \text{materia}$.
- Fuente de ímpetu angular:

$$- au = - extbf{\emph{r}} imes extit{\emph{f}} = ext{materia} o ext{campo}.$$

- $\frac{\partial}{\partial t}\ell + \nabla \cdot (-M) = -\tau$
- $\ell = r \times g =$ densidad de ímpetu angular
- $M = r \times T = -$ densidad de flujo de ímpetu angular
- se cumple gracias a que **T** es simétrico.

- Densidad de torca: $\tau = \mathbf{r} \times f = \text{campo} \rightarrow \text{materia}$.
- Fuente de ímpetu angular: $-\tau = -\mathbf{r} \times f = \text{materia} \rightarrow \text{campo}.$
- $\frac{\partial}{\partial t}\ell + \nabla \cdot (-\mathbf{M}) = -\mathbf{\tau}$
- $\ell = r \times g =$ densidad de ímpetu angular
- $\mathbf{M} = \mathbf{r} \times \mathbf{T} = \text{-densidad de flujo de ímpetu angular}$
- se cumple gracias a que T es simétrico.

- Densidad de torca: $\tau = \mathbf{r} \times \mathbf{f} = \mathsf{campo} \to \mathsf{materia}$.
- Fuente de ímpetu angular: $-\tau = -\mathbf{r} \times f = \text{materia} \rightarrow \text{campo}.$
- $\bullet \ \frac{\partial}{\partial t} \boldsymbol{\ell} + \nabla \cdot (-\boldsymbol{M}) = -\boldsymbol{\tau}$
- $\ell = r \times g =$ densidad de ímpetu angular
- $\mathbf{M} = \mathbf{r} \times \mathbf{T} = \text{-densidad de flujo de ímpetu angular}$
- se cumple gracias a que *T* es *simétrico*.

Conservación del cuadriímpetu

$$\bullet \ \partial_{\mu} T^{\mu\nu} = -f^{\nu}$$

$$\bullet$$
 $(f^{\nu}) = (\mathcal{P}/c \mid f)$

$$(T^{\mu\nu}) = \left(egin{array}{c|c} u & S/c \\ \hline gc & -T \end{array}
ight)$$
 $= \left(egin{array}{c|c} densidad imes c & flujo \end{array}
ight) = \left(egin{array}{c|c} energía/c \\ \hline fupetu \end{array}
ight)$

Conservación del cuadriímpetu

$$\bullet \ \partial_{\mu} T^{\mu\nu} = -f^{\nu}$$

$$\bullet$$
 $(f^{\nu}) = (\mathcal{P}/c \mid \mathbf{f})$

•

$$egin{aligned} (\mathcal{T}^{\mu
u}) &= \left(egin{array}{c|c} u & S/c \ gc & -T \end{array}
ight) \ &= \left(egin{array}{c|c} ext{densidad} imes c & flujo \end{array}
ight) = \left(egin{array}{c|c} ext{energía}/c \ ext{fmpetu} \end{array}
ight) \end{aligned}$$

- Se cumple pues $T^{\mu\nu}$ es simétrico.
- Simetría ante rotaciones en el espacio pues T es simétrico.
- Simetría ante 'rotaciones' en el espacio-tiempo, i.e., ante transformaciones de Lorentz, pues gc = S/c.

- Se cumple pues $T^{\mu\nu}$ es simétrico.
- Simetría ante rotaciones en el espacio pues T es simétrico.
- Simetría ante 'rotaciones' en el espacio-tiempo, i.e., ante transformaciones de Lorentz, pues gc = S/c.

- Se cumple pues $T^{\mu\nu}$ es simétrico.
- Simetría ante rotaciones en el espacio pues T es simétrico.
- Simetría ante 'rotaciones' en el espacio-tiempo, i.e., ante transformaciones de Lorentz, pues gc = S/c.

Conservación del ímpetu en materiales

- Densidad de fuerza: $\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = \text{campo} \rightarrow \text{materia}$
- Fuente de ímpetu: $-\mathbf{f} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial}{\partial t} \mathbf{D}...$
- $\frac{\partial}{\partial t} \mathbf{g}_M + \nabla \cdot (-\mathbf{T}) = -\mathbf{f}$
- $g_M = \frac{1}{4\pi c} D \times B =$ densidad de ímpetu
- $T_{ij} = \frac{1}{4\pi}(E_iD_j + H_iB_j \frac{1}{2}(\boldsymbol{E}\cdot\boldsymbol{D} + \boldsymbol{H}\cdot\boldsymbol{B})\delta_{ij}) =$ -(densidad de) flujo de ímpetu
- Nota: *i* = densidad de corriente *externa*
- Nota: Válido en sistemas homogéneos, transparentes y sin dispersión.

Conservación del ímpetu en materiales

- Densidad de fuerza: $\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = \text{campo} \rightarrow \text{materia}$
- Fuente de ímpetu: $-\mathbf{f} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial}{\partial t} \mathbf{D} \dots$
- $\bullet \ \frac{\partial}{\partial t} \mathbf{g}_M + \nabla \cdot (-\mathbf{T}) = -\mathbf{f}$
- $g_M = \frac{1}{4\pi c} D \times B =$ densidad de ímpetu
- $T_{ij} = \frac{1}{4\pi}(E_iD_j + H_iB_j \frac{1}{2}(\boldsymbol{E}\cdot\boldsymbol{D} + \boldsymbol{H}\cdot\boldsymbol{B})\delta_{ij}) =$ -(densidad de) flujo de ímpetu
- Nota: j = densidad de corriente externa
- Nota: Válido en sistemas homogéneos, transparentes y sin dispersión.

Conservación del ímpetu en materiales

- Densidad de fuerza: $\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = \text{campo} \rightarrow \text{materia}$
- Fuente de ímpetu: $-\mathbf{f} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial}{\partial t} \mathbf{D} \dots$
- $\bullet \ \frac{\partial}{\partial t} \mathbf{g}_M + \nabla \cdot (-\mathbf{T}) = -\mathbf{f}$
- $g_M = \frac{1}{4\pi c} D \times B =$ densidad de ímpetu
- $T_{ij} = \frac{1}{4\pi}(E_iD_j + H_iB_j \frac{1}{2}(\boldsymbol{E}\cdot\boldsymbol{D} + \boldsymbol{H}\cdot\boldsymbol{B})\delta_{ij}) =$ -(densidad de) flujo de ímpetu
- Nota: j = densidad de corriente externa
- Nota: Válido en sistemas homogéneos, transparentes y sin dispersión.

Conservación del ímpetu en materiales

- Densidad de fuerza: $\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = \text{campo} \rightarrow \text{materia}$
- Fuente de ímpetu: $-\mathbf{f} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial}{\partial t} \mathbf{D} \dots$
- $\bullet \ \ \frac{\partial}{\partial t} \boldsymbol{g}_{M} + \nabla \cdot (-\boldsymbol{T}) = -\boldsymbol{f}$
- $g_M = \frac{1}{4\pi c} \mathbf{D} \times \mathbf{B} = \text{densidad de ímpetu}$
- $T_{ij} = \frac{1}{4\pi} (E_i D_j + H_i B_j \frac{1}{2} (\boldsymbol{E} \cdot \boldsymbol{D} + \boldsymbol{H} \cdot \boldsymbol{B}) \delta_{ij}) =$ -(densidad de) flujo de ímpetu
- Nota: j = densidad de corriente externa
- Nota: Válido en sistemas homogéneos, transparentes y sin dispersión.

Conservación del ímpetu en materiales

- Densidad de fuerza: $\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = \text{campo} \rightarrow \text{materia}$
- Fuente de ímpetu: $-\mathbf{f} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial}{\partial t} \mathbf{D} \dots$
- $\bullet \ \ \tfrac{\partial}{\partial t} \boldsymbol{g}_{M} + \nabla \cdot (-\boldsymbol{T}) = -\boldsymbol{f}$
- $g_M = \frac{1}{4\pi c} \mathbf{D} \times \mathbf{B} = \text{densidad de ímpetu}$
- $T_{ij} = \frac{1}{4\pi} (E_i D_j + H_i B_j \frac{1}{2} (\boldsymbol{E} \cdot \boldsymbol{D} + \boldsymbol{H} \cdot \boldsymbol{B}) \delta_{ij}) =$ -(densidad de) flujo de ímpetu
- Nota: **j** = densidad de corriente *externa*
- Nota: Válido en sistemas homogéneos, transparentes y sin dispersión.

Conservación del ímpetu en materiales

- Densidad de fuerza: $\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \mathbf{j} \times \mathbf{B} = \text{campo} \rightarrow \text{materia}$
- Fuente de ímpetu: $-\mathbf{f} = \text{materia} \rightarrow \text{campo}$
- Ecuaciones de Maxwell: $\nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial}{\partial t} \mathbf{D} \dots$
- $\bullet \ \ \tfrac{\partial}{\partial t} \boldsymbol{g}_{M} + \nabla \cdot (-\boldsymbol{T}) = -\boldsymbol{f}$
- $g_M = \frac{1}{4\pi c} \mathbf{D} \times \mathbf{B} = \text{densidad de ímpetu}$
- $T_{ij} = \frac{1}{4\pi} (E_i D_j + H_i B_j \frac{1}{2} (\boldsymbol{E} \cdot \boldsymbol{D} + \boldsymbol{H} \cdot \boldsymbol{B}) \delta_{ij}) =$ -(densidad de) flujo de ímpetu
- Nota: j = densidad de corriente externa
- Nota: Válido en sistemas homogéneos, transparentes y sin dispersión.

•
$$S = \frac{c}{4\pi} E \times H$$

$$ullet$$
 $oldsymbol{g}_{M}=rac{1}{4\pi c}oldsymbol{D} imesoldsymbol{B}$

- ¡No cumplen con la simetría del cuadritensor de esfuerzos: $g_M c \neq S/c!$
- Solución: restaurar la armonía del universo cambiando $m{g}_M
 ightarrow m{g}_A = rac{1}{4\pi c} m{E} imes m{H}$
- ¿Cuál es la buena, g_M o g_A ?

•
$$\boldsymbol{S} = \frac{c}{4\pi} \boldsymbol{E} \times \boldsymbol{H}$$

•
$$g_M = \frac{1}{4\pi c} D \times B$$

- ¡No cumplen con la simetría del cuadritensor de esfuerzos: $g_M c \neq S/c!$
- Solución: restaurar la armonía del universo cambiando $m{g}_M
 ightarrow m{g}_A = rac{1}{4\pi c} m{E} imes m{H}$
- ¿Cuál es la buena, g_M o g_A ?

•
$$S = \frac{c}{4\pi} E \times H$$

•
$$g_M = \frac{1}{4\pi c} D \times B$$

- ¡No cumplen con la simetría del cuadritensor de esfuerzos: $g_M c \neq S/c!$
- Solución: restaurar la armonía del universo cambiando $m{g}_M o m{g}_A = rac{1}{4\pi c} m{E} imes m{H}$
- ¿Cuál es la buena, g_M o g_A ?

•
$$S = \frac{c}{4\pi} E \times H$$

- $g_M = \frac{1}{4\pi c} D \times B$
- ¡No cumplen con la simetría del cuadritensor de esfuerzos: $g_M c \neq S/c!$
- Solución: restaurar la armonía del universo cambiando $m{g}_M o m{g}_A = rac{1}{4\pi c} m{E} imes m{H}$
- ¿Cuál es la buena, g_M o g_A ?

¿ Abraham o Minkowski?

¿Abraham o Minkowski?

¿Abraham o Minkowski?

¿Abraham o Minkowski?

¿Abraham o Minkowski?

Crítica

- La fuerza está dada por el tensor de esfuerzos, no por la densidad de ímpetu.
- La ley de conservación debe definir correctamente el ímpetu.
- Se requiere simetría de T^{μν} para tener simetría frente a transformaciones de Lorentz, pero en presencia de un material estático ¡no debemos esperarla! Material estático≠material en movimiento.
- De Broglie $\mathbf{p} = \hbar k = \hbar \omega n/c$ (Minkowski), vs. $\mathbf{p} = \hbar k/n^2 = \hbar \omega/nc$ (Abraham).

- Ímpetu en el vacío $\boldsymbol{p}_{v}=\hbar \boldsymbol{q}$.
- Împetu a lo largo de la superficie
 p_{||} conservado.
- Ley de Snell: Vector de onda a lo largo de la superficie conservado q_{||} = k_{||}.
- Simetría (isotropía): Ímpetu a lo largo de k.
- \rightarrow en material $\boldsymbol{p}_m = \hbar \boldsymbol{k}$ (de Broglie, Minkowski).

- Ímpetu en el vacío $\mathbf{p}_{v} = \hbar \mathbf{q}$.
- Ímpetu a lo largo de la superficie *p*_{||} conservado.
- Ley de Snell: Vector de onda a lo largo de la superficie conservado q_{||} = k_{||}.
- Simetría (isotropía): Ímpetu a lo largo de k.
- \rightarrow en material $\boldsymbol{p}_m = \hbar \boldsymbol{k}$ (de Broglie, Minkowski).

- Ímpetu en el vacío $\boldsymbol{p}_{v}=\hbar \boldsymbol{q}$.
- Ímpetu a lo largo de la superficie
 p_{||} conservado.
- Ley de Snell: Vector de onda a lo largo de la superficie conservado $q_{\parallel} = k_{\parallel}$.
- Simetría (isotropía): Ímpetu a lo largo de k.
- \rightarrow en material $\boldsymbol{p}_m = \hbar \boldsymbol{k}$ (de Broglie, Minkowski).

- Ímpetu en el vacío $\boldsymbol{p}_{v}=\hbar \boldsymbol{q}$.
- Ímpetu a lo largo de la superficie p_{||} conservado.
- Ley de Snell: Vector de onda a lo largo de la superficie conservado q_{||} = k_{||}.
- Simetría (isotropía): Ímpetu a lo largo de k.
- \rightarrow en material $\boldsymbol{p}_m = \hbar \boldsymbol{k}$ (de Broglie, Minkowski).

- Ímpetu en el vacío $\boldsymbol{p}_{v}=\hbar \boldsymbol{q}$.
- Ímpetu a lo largo de la superficie p_{||} conservado.
- Ley de Snell: Vector de onda a lo largo de la superficie conservado $q_{\parallel} = k_{\parallel}$.
- Simetría (isotropía): Ímpetu a lo largo de k.
- \rightarrow en material $\mathbf{p}_m = \hbar \mathbf{k}$ (de Broglie, Minkowski).

- Velocidad fuente V = -p/M.
- Tiempo de recorrido $t = L/c_f$.
- Desplazamiento fuente d = pL/Mc_f.
- Masa relativista $M_r = U/c^2$.
- Desplazamiento del centro de masa: $(-Md + \Delta ML)/M_t = 0$ ssi. $p = Uc_f/c^2$, $p = \hbar \omega/nc = \hbar k/n^2$, $g = u/nc \rightarrow$ Abraham.

- Velocidad fuente V = -p/M.
- Tiempo de recorrido $t = L/c_f$.
- Desplazamiento fuente $d = pL/Mc_f$.
- Masa relativista $M_r = U/c^2$.
- Desplazamiento del centro de masa: $(-Md + \Delta ML)/M_t = 0$ ssi. $p = Uc_f/c^2$, $p = \hbar \omega/nc = \hbar k/n^2$, $g = u/nc \rightarrow$ Abraham.

- Velocidad fuente V = -p/M.
- Tiempo de recorrido $t = L/c_f$.
- Desplazamiento fuente $d = pL/Mc_f$.
- Masa relativista $M_r = U/c^2$.
- Desplazamiento del centro de masa: $(-Md + \Delta ML)/M_t = 0$ ssi. $p = Uc_f/c^2$, $p = \hbar \omega/nc = \hbar k/n^2$, $g = u/nc \rightarrow$ Abraham.

- Velocidad fuente V = -p/M.
- Tiempo de recorrido $t = L/c_f$.
- Desplazamiento fuente $d = pL/Mc_f$.
- Masa relativista $M_r = U/c^2$.
- Desplazamiento del centro de masa: $(-Md + \Delta ML)/M_t = 0$ ssi. $p = Uc_f/c^2$, $p = \hbar \omega/nc = \hbar k/n^2$, $g = u/nc \rightarrow$ Abraham.

Generalización

- Estos últimos argumentos se pueden aplicar a todo tipo de ondas, no solo ondas electromagnéticas.
- ¿Podríamos entender y resolver la controversia A-M estudiando primero ondas de otros tipos?

- Campo u(x, t), $x \rightarrow x + u(x, t)$
- Densidad $\rho = \rho_0 + \rho_1 + \dots$
- $\rho_1 = -\partial u/\partial x$.
- $P = P_0 + P_1$
- $P_1 = \frac{\partial P}{\partial \rho}\Big|_{\rho_0} \rho_1$.
- Mov. isentrópico. $P\rho^{-\gamma} = \text{cte.}.$
- $P_1 = -\gamma P_0 \frac{\partial u}{\partial x}$

- Densidad de fuerza: $f = -\partial P/\partial x$.
- Segunda ley: $\rho_0 \frac{\partial^2}{\partial t^2} u = f$.
- Ec. de onda: $\rho_0 \frac{\partial^2}{\partial t^2} u = \gamma P_0 \frac{\partial^2}{\partial x^2} u$
- Velocidad del sonido $c_s^2 = \gamma P_0/\rho_0$.

• Densidad lagrangiana: $\mathcal{L} = \frac{1}{2}\rho_0 \left(\frac{\partial u}{\partial t}\right)^2 - \frac{1}{2}\gamma P_0 \left(\frac{\partial u}{\partial x}\right)^2.$

• Densidad hamiltoniana:
$$\mathcal{H} = \frac{1}{2}\rho_0 \left(\frac{\partial u}{\partial t}\right)^2 + \frac{1}{2}\gamma P_0 \left(\frac{\partial u}{\partial v}\right)^2.$$

- Pulso moviéndose a la derecha, $\frac{\partial}{\partial t} = -c_s \frac{\partial}{\partial x}$
- Energía: $U = A \int dx \rho_0 \left(\frac{\partial u}{\partial t}\right)^2$.

• Densidad de ímpetu: $g = \rho V =$ $\rho_0 V_0 + \rho_0 V_1 + \rho_1 V_1 =$ $\rho_0 V_0 + \rho_0 V_1 + \rho_1 V_1 =$

- Impetu total:
- ¡Minkowski!

- Densidad lagrangiana: $\mathcal{L} = \frac{1}{2}\rho_0 \left(\frac{\partial u}{\partial t}\right)^2 \frac{1}{2}\gamma P_0 \left(\frac{\partial u}{\partial x}\right)^2.$
- Densidad hamiltoniana: $\mathcal{H} = \frac{1}{2}\rho_0 \left(\frac{\partial u}{\partial t}\right)^2 + \frac{1}{2}\gamma P_0 \left(\frac{\partial u}{\partial x}\right)^2.$
- Pulso moviéndose a la derecha, $\frac{\partial}{\partial t} = -c_s \frac{\partial}{\partial x}$
- Energía: $U = A \int dx \rho_0 \left(\frac{\partial u}{\partial t}\right)^2$.

- Densidad de ímpetu: $g = \rho V =$ $\rho_0 V_0 + \rho_0 V_1 + \rho_1 V_1 =$ $-\rho_0 \frac{\partial u}{\partial u} \frac{\partial u}{\partial u}$
- Ímpetu total: $p = A \int dxg = \frac{U}{G_s}$.
- ¡Minkowski!

- Densidad lagrangiana: $\mathcal{L} = \frac{1}{2}\rho_0 \left(\frac{\partial u}{\partial t}\right)^2 \frac{1}{2}\gamma P_0 \left(\frac{\partial u}{\partial x}\right)^2.$
- Densidad hamiltoniana: $\mathcal{H} = \frac{1}{2}\rho_0 \left(\frac{\partial u}{\partial t}\right)^2 + \frac{1}{2}\gamma P_0 \left(\frac{\partial u}{\partial x}\right)^2.$
- Pulso moviéndose a la derecha, $\frac{\partial}{\partial t} = -c_s \frac{\partial}{\partial v}$
- Energía: $U = A \int dx \rho_0 \left(\frac{\partial u}{\partial t}\right)^2$.

- Densidad de ímpetu: $g = \rho V =$ $\rho_0 V_0 + \rho_0 V_1 + \rho_1 V_1 =$ $-\rho_0 \frac{\partial V}{\partial V} \frac{\partial V}{\partial V}$
- Ímpetu total: $p = A \int dxg = \frac{U}{c_s}$.
- ¡Minkowski!

- Densidad lagrangiana: $\mathcal{L} = \frac{1}{2}\rho_0 \left(\frac{\partial u}{\partial t}\right)^2 \frac{1}{2}\gamma P_0 \left(\frac{\partial u}{\partial x}\right)^2.$
- Densidad hamiltoniana: $\mathcal{H} = \frac{1}{2}\rho_0 \left(\frac{\partial u}{\partial t}\right)^2 + \frac{1}{2}\gamma P_0 \left(\frac{\partial u}{\partial x}\right)^2.$
- Pulso moviéndose a la derecha, $\frac{\partial}{\partial t} = -c_s \frac{\partial}{\partial v}$
- Energía: $U = A \int dx \rho_0 \left(\frac{\partial u}{\partial t}\right)^2$.

Densidad de ímpetu:

$$g = \rho \mathbf{V} = \rho_0 \mathbf{V}_0 + \rho_0 \mathbf{V}_1 + \rho_1 \mathbf{V}_1 = -\rho_0 \frac{\partial u}{\partial x} \frac{\partial u}{\partial t}$$

- Impetu total: $p = A \int dxg = \frac{U}{C_0}$.
- ¡Minkowski!

- Densidad lagrangiana: $\mathcal{L} = \frac{1}{2}\rho_0 \left(\frac{\partial u}{\partial t}\right)^2 \frac{1}{2}\gamma P_0 \left(\frac{\partial u}{\partial x}\right)^2.$
- Densidad hamiltoniana: $\mathcal{H} = \frac{1}{2}\rho_0 \left(\frac{\partial u}{\partial t}\right)^2 + \frac{1}{2}\gamma P_0 \left(\frac{\partial u}{\partial x}\right)^2.$
- Pulso moviéndose a la derecha, $\frac{\partial}{\partial t} = -c_s \frac{\partial}{\partial v}$
- Energía: $U = A \int dx \rho_0 \left(\frac{\partial u}{\partial t}\right)^2$.

Densidad de ímpetu:

$$g = \rho \mathbf{V} = \\ \rho_0 V_0 + \rho_0 V_1 + \rho_1 \mathbf{V}_1 = \\ -\rho_0 \frac{\partial u}{\partial \mathbf{x}} \frac{\partial u}{\partial t}$$

- Ímpetu total: $p = A \int dxg = \frac{U}{c_0}$.
- ¡Minkowski!

Sonido 1D. ¿Y Abraham?

- ¿Por qué falla el argumento pro-Abraham?
- g = ρν se puede interpretar como densidad de ímpetu mecánico, pero ¡también se puede interpretar como flujo de masa!
- La masa que atraviesa una superficie es $\Delta M = A \int dt g$.
- Para un pulso, $\int dt \dots = \frac{1}{c_s} \int dx \dots$
- $\Delta M = \frac{U}{c_s^2}.$

Sonido 1D. ¿Y Abraham?

- ¿Por qué falla el argumento pro-Abraham?
- g = ρν se puede interpretar como densidad de ímpetu mecánico, pero ¡también se puede interpretar como flujo de masa!
- La masa que atraviesa una superficie es $\Delta M = A \int dt g$.
- Para un pulso, $\int dt \dots = \frac{1}{c_s} \int dx \dots$

Sonido 1D. ¿Y Abraham?

- ¿Por qué falla el argumento pro-Abraham?
- g = ρν se puede interpretar como densidad de ímpetu mecánico, pero ¡también se puede interpretar como flujo de masa!
- La masa que atraviesa una superficie es $\Delta M = A \int dt g$.
- Para un pulso, $\int dt \dots = \frac{1}{c_s} \int dx \dots$
- $\Delta M = \frac{U}{c_s^2}.$

Comentarios

- Aunque P₁ promedie a cero en todo punto del espacio, la fuerza sobre el cono de la bocina no promedia a cero.
 ¿Por qué? El cono se mueve hacia adelante y hacia atrás de manera correlacionada con el exceso de presión P₁.
- El flujo de masa y el ímpetu son cuadráticos en los desplazamientos u.
- Una teoría consistente debe entonces considerar no linealidades hasta orden cuadrático.

Cuerda de guitarra

- Tensión T fija.
- Densidad lineal ρ .
- Desplazamiento vertical u(x, t)

- Densidad de fuerza vertical $f_y =$ cambio de pendiente = $T \frac{\partial^2 u}{\partial x^2}$.
- Segunda ley: $\rho \frac{\partial^2 u}{\partial t^2} = T \frac{\partial^2 u}{\partial x^2}$.
- $c_s^2 = \frac{T}{\rho}$.

Cuerda de guitarra

- Densidad lagrangiana: $\mathcal{L} = \frac{1}{2}\rho \left(\frac{\partial u}{\partial t}\right)^2 \frac{1}{2}T \left(\frac{\partial u}{\partial x}\right)^2.$
- Densidad hamiltoniana: $\mathcal{H} = \frac{1}{2}\rho \left(\frac{\partial u}{\partial t}\right)^2 + \frac{1}{2}T \left(\frac{\partial u}{\partial x}\right)^2.$
- Pulso moviéndose a la derecha, $\frac{\partial}{\partial t} = -c_s \frac{\partial}{\partial x}$
- Energía: $U_0 = A \int dx \rho_0 \left(\frac{\partial u}{\partial t}\right)^2$.

- Fuerza horizontal: $F = T(\cos \theta - 1) = -\frac{T}{2} \left(\frac{\partial u}{\partial x}\right)^2$
- Impetu fuente: $p_f = \int dt F = -\frac{U_0}{2G_0}$.
- ¡Ni Abraham ni Minkowsky!

Cuerda de guitarra

- Densidad lagrangiana: $\mathcal{L} = \frac{1}{2}\rho \left(\frac{\partial u}{\partial t}\right)^2 \frac{1}{2}T \left(\frac{\partial u}{\partial x}\right)^2.$
- Densidad hamiltoniana: $\mathcal{H} = \frac{1}{2}\rho \left(\frac{\partial u}{\partial t}\right)^2 + \frac{1}{2}T \left(\frac{\partial u}{\partial x}\right)^2.$
- Pulso moviéndose a la derecha, $\frac{\partial}{\partial t} = -c_s \frac{\partial}{\partial y}$
- Energía: $U_0 = A \int dx \rho_0 \left(\frac{\partial u}{\partial t}\right)^2$.

- Fuerza horizontal: $F = T(\cos \theta - 1) = -\frac{T}{2} \left(\frac{\partial u}{\partial x}\right)^{2}$
- Impetu fuente: $p_f = \int dt F = -\frac{U_0}{2c_s}$.
- ¡Ni Abraham ni Minkowsky!

Cuerda de guitarra

- Densidad lagrangiana: $\mathcal{L} = \frac{1}{2}\rho \left(\frac{\partial u}{\partial t}\right)^2 \frac{1}{2}T \left(\frac{\partial u}{\partial x}\right)^2.$
- Densidad hamiltoniana: $\mathcal{H} = \frac{1}{2}\rho \left(\frac{\partial u}{\partial t}\right)^2 + \frac{1}{2}T \left(\frac{\partial u}{\partial x}\right)^2.$
- Pulso moviéndose a la derecha, $\frac{\partial}{\partial t} = -c_s \frac{\partial}{\partial y}$
- Energía: $U_0 = A \int dx \rho_0 \left(\frac{\partial u}{\partial t}\right)^2$.

- Fuerza horizontal: $F = T(\cos \theta - 1) = -\frac{T}{2} \left(\frac{\partial u}{\partial x}\right)^{2}$
- Impetu fuente: $p_f = \int dt F = -\frac{U_0}{2c_s}$.
- ¡Ni Abraham ni Minkowsky!

Cuerda de guitarra

- Densidad lagrangiana: $\mathcal{L} = \frac{1}{2}\rho \left(\frac{\partial u}{\partial t}\right)^2 \frac{1}{2}T \left(\frac{\partial u}{\partial x}\right)^2.$
- Densidad hamiltoniana: $\mathcal{H} = \frac{1}{2}\rho \left(\frac{\partial u}{\partial t}\right)^2 + \frac{1}{2}T \left(\frac{\partial u}{\partial x}\right)^2.$
- Pulso moviéndose a la derecha, $\frac{\partial}{\partial t} = -c_s \frac{\partial}{\partial y}$
- Energía: $U_0 = A \int dx \rho_0 \left(\frac{\partial u}{\partial t}\right)^2$.

• Fuerza horizontal:

$$F = T(\cos \theta - 1) = -\frac{T}{2} \left(\frac{\partial u}{\partial x}\right)^2$$

- Ímpetu fuente: $p_f = \int dt F = -\frac{U_0}{2c_0}$.
- ¡Ni Abraham ni Minkowsky!

Cuerda de guitarra

- Densidad lagrangiana: $\mathcal{L} = \frac{1}{2}\rho \left(\frac{\partial u}{\partial t}\right)^2 \frac{1}{2}T \left(\frac{\partial u}{\partial x}\right)^2.$
- Densidad hamiltoniana: $\mathcal{H} = \frac{1}{2}\rho \left(\frac{\partial u}{\partial t}\right)^2 + \frac{1}{2}T \left(\frac{\partial u}{\partial x}\right)^2.$
- Pulso moviéndose a la derecha, $\frac{\partial}{\partial t} = -c_s \frac{\partial}{\partial y}$
- Energía: $U_0 = A \int dx \rho_0 \left(\frac{\partial u}{\partial t}\right)^2$.

- Fuerza horizontal: $F = T(\cos \theta - 1) = -\frac{7}{2} \left(\frac{\partial u}{\partial x}\right)^2$
- Ímpetu fuente: $p_f = \int dt F = -\frac{U_0}{2C_c}$.
- ¡Ni Abraham ni Minkowsky!

Solución

• La cuerda es inextensible. Luego $L < L_0$. El excitar la onda hay que caminar hacia la derecha. Al recibirla hay que caminar hacia la derecha. $\Delta L = U_0/2T$.

Solución

- Entonces ¡hay un flujo de masa $\Delta M = \rho(L L_0) = \rho U_0/2T = U_0/2c_s^2!$
- Al caminar hacia la derecha, la cuerda hace un trabajo sobre el emisor $\Delta W = T\Delta L = U_0/2$ y un trabajo $-\Delta W$ sobre el receptor.
- Entonces, la energía total transmitida es $U = U_0 \Delta W = U_0/2$ y $p = U_0/2c_s = U/c_s$.
- ¡Se salva Minkowski!

Crítica

- La condición de contorno para una cuerda inextensible es muy irrealista.
- Más razonable considerar una cuerda extensible.
- Pero entonces una onda transversal puede radiar ondas longitudinales, complicando el análisis.

De regreso a EM

De regreso a EM

- Ingredientes:
 - Fuerza e ímpetu sobre el emisor $F_e = -\frac{1}{2}(\frac{1}{\epsilon} + \frac{1}{\mu})u$.
 - Fuerza e ímpetu sobre la superficie $F_s = -\frac{1}{2}(\mu \frac{1}{\mu})u$.
 - Fuerza sobre el interior $f = \frac{n}{2c}(\mu \frac{1}{\epsilon})\frac{\partial u}{\partial t}$
 - Masa relativista U/c^2 .
- Lleva a desplazamiento de la fuente y transferencia convectiva de masa.

Caso dieléctrico $\mu = 1$

- El centro de masa no se mueve al sumar la trasferencia convectiva y la relativista.
- Si identifico el ímpetu total en el interior del material a partir del ímpetu de la fuente, al sumarle el ímpetu mecánico coincide con Minkowski, al restarlo coincide con Abraham.

Caso general

- El centro de masa sí se mueve, ¡a menos que cambie la masa relativista por $U/c^2 \to \mu U/c^2$!
- Nuevo ingrediente: Una magnetización corresponde a una corriente superficial K. El producto K · E es una energía adicional transferida entre el campo y la superficie que (si μ > 1) toma energía al entrar al material y lo devuelve al salir.
- ¡Ese término corrige el exceso de masa relativista transferida y restaura la inmovilidad del centro de masa!
- Aplicaciones: Transferir energía térmica de un lado al otro iluminando, sin que la luz pierda energía. ¡Refrigeradores ópticos!

Caso general

- El centro de masa sí se mueve, ja menos que cambie la masa relativista por $U/c^2 \to \mu U/c^2$!
- Nuevo ingrediente: Una magnetización corresponde a una corriente superficial *K*. El producto *K* · *E* es una energía adicional transferida entre el campo y la superficie que (si μ > 1) toma energía al entrar al material y lo devuelve al salir
- ¡Ese término corrige el exceso de masa relativista transferida y restaura la inmovilidad del centro de masa!
- Aplicaciones: Transferir energía térmica de un lado al otro iluminando, sin que la luz pierda energía. ¡Refrigeradores ópticos!

Caso general

- El centro de masa sí se mueve, ja menos que cambie la masa relativista por $U/c^2 \to \mu U/c^2$!
- Nuevo ingrediente: Una magnetización corresponde a una corriente superficial *K*. El producto *K* · *E* es una energía adicional transferida entre el campo y la superficie que (si μ > 1) toma energía al entrar al material y lo devuelve al salir
- ¡Ese término corrige el exceso de masa relativista transferida y restaura la inmovilidad del centro de masa!
- Aplicaciones: Transferir energía térmica de un lado al otro iluminando, sin que la luz pierda energía. ¡Refrigeradores ópticos!

Problema

Máguina de movimiento perpetuo del segundo tipo

Problema

Máquina de movimiento perpetuo del segundo tipo

Solución

• Flujo no local de energía $\Delta \mathbf{S} = -c\mathbf{E} \times \mathbf{M}$.

Nuevo problema

- Si la superficie no da ni quita energía, ¿da o quita ímpetu?
- Si hay un flujo no local de energía, ¿habrá también un flujo no local de ímpetu?
- ¿Cuánto debe valer la fuerza sobre la superficie para que el centro de masa no se mueva?
- Contribución no local al flujo de ímpetu.
- No corresponde al tensor de esfuerzos en medios.
- Obteniendo el ímpetu total a partir de la fuerza total sobre el emisor y la superficie y restando el ímpetu mecánico, obtengo Abraham.

Nuevo problema

- Si la superficie no da ni quita energía, ¿da o quita ímpetu?
- Si hay un flujo no local de energía, ¿habrá también un flujo no local de ímpetu?
- ¿Cuánto debe valer la fuerza sobre la superficie para que el centro de masa no se mueva?
- $\bullet \ \frac{\Delta F_s}{A} = (\frac{1}{\epsilon} \frac{1}{\epsilon u}) U$
- Contribución no local al flujo de ímpetu.
- No corresponde al tensor de esfuerzos en medios.
- Obteniendo el ímpetu total a partir de la fuerza total sobre el emisor y la superficie y restando el ímpetu mecánico, obtengo Abraham.

Nuevo problema

- Si la superficie no da ni quita energía, ¿da o quita ímpetu?
- Si hay un flujo no local de energía, ¿habrá también un flujo no local de ímpetu?
- ¿Cuánto debe valer la fuerza sobre la superficie para que el centro de masa no se mueva?
- $\bullet \ \frac{\Delta F_s}{A} = (\frac{1}{\epsilon} \frac{1}{\epsilon \mu}) U$
- Contribución no local al flujo de ímpetu.
- No corresponde al tensor de esfuerzos en medios.
- Obteniendo el ímpetu total a partir de la fuerza total sobre el emisor y la superficie y restando el ímpetu mecánico, obtengo Abraham.

Conclusiones

- Hay argumentos no electromagnéticos tanto para la versión de Minkowski como la de Abraham del ímpetu de un campo.
- Estudio de Abraham Minkowski en sonido (ondas longitudinales) y cuerdas de guitarra (ondas trnasversales).
- Las teorías simples son consistentes con Minkowski tras incorporar el flujo de masa y algunas sutilezas.
- Teorías más sofisticadas tienen muchas complicaciones.

Conclusiones

- Los ejemplos previos sugieren incorporar el flujo de masa y de energía en el análisis de Abraham-Minkowski.
- En un descuido termina uno creando máquinas de movimiento perpetuo.
- En materiales magnéticos hay un flujo adicional de energía y de ímpetu.
- (Trabajo aún incompleto).

