Uniqueness of the coordinate independent $Spin(9) \times SU(2)$ state of Matrix Theory

Mariusz Hynek* and Maciej Trzetrzelewski[†]

Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

We explicitly prove, using some nontrivial identities involving gamma matrices, that there can be only one $Spin(9) \times SU(2)$ invariant state which depends only on fermionic variables.

1 Introduction

The explicit construction of the conjectured ground state of the Supermembrane/ M-theory matrix model [1] would certainly bring new ideas into the subject. Although the asymptotic behavior of such state is very well studied [2], not so much is known about the properties of the corresponding wavefunction $\Psi(x)$ near the origin. It is expected that the explicit form of the large x and the small x dependence of $\Psi(x)$ together with some symmetry arguments should fix the entire state uniquely. Following this argument one would like to determine the first few terms of the Taylor expansion of $\Psi(x)$, the problem which was addressed in Ref [3]. Since the wavefunction $\Psi(x)$ must be $Spin(9) \times SU(2)$ invariant [4], the first term of the expansion $\phi := \Psi(0)$

 * e-mail: mariusz.hynek@uj.edu.pl † e-mail: 33lewski@th.if.uj.edu.pl

is the $Spin(9) \times SU(2)$ singlet depending only on the fermionic variables $\theta_{\alpha A}$, $\{\theta_{\alpha A}, \theta_{\beta B}\} = \delta_{AB}\delta_{\alpha\beta}$, $(\alpha = 1, ..., 16, A = 1, 2, 3)$. It turns out that ϕ can be expressed in terms of elements of representations of SO(9), in a simple, closed form [3]. This result agrees with earlier approach [5] where ϕ was constructed using a different method. In both [3] and [5], the uniqueness of ϕ is argued relying on the symbolic computer programme. In this paper we give a paper-pencil prove of the uniqueness of ϕ using some novel intertwining relations and identities involving 16×16 gamma matrices in 9+1 dimensions.

2 The construction of ϕ

For fixed color index A, the sixteen fermions $\theta_{\alpha A}$, give rise to the 256 dimensional Hilbert space H_{256} , correspondingly the total Hilbert space H can be written as $H = H_{256} \otimes H_{256} \otimes H_{256}$. The **256** representation of SO(9) is reducible, **256** = **44** \oplus **84** \oplus **128**, and we find that among the possible tensor products, the relevant ones (i.e. those involving the SO(9) singlet) belong to [3, 6]

$$44 \otimes 44 \otimes 44, \tag{1}$$

$$84 \otimes 84 \otimes 84, \tag{2}$$

$$44 \otimes 84 \otimes 84, 84 \otimes 84 \otimes 44, 84 \otimes 44 \otimes 84, \tag{3}$$

$$44 \otimes 128 \otimes 128, \ 128 \otimes 44 \otimes 128, \ 128 \otimes 128 \otimes 44$$
 (4)

and

$$84 \otimes 128 \otimes 128$$
, $128 \otimes 84 \otimes 128$, $128 \otimes 128 \otimes 84$. (5)

There are in total fourteen SO(9) singlets; 1, 1, 3, 3 and 6 corresponding to (1), (2), (3), (4) and (5) respectively (note the double multiplicity in (5) coming from the fact that $\mathbf{128} \otimes \mathbf{128}$ gives two $\mathbf{84}$'s while $\mathbf{84} \otimes \mathbf{84}$ contains a singlet). An appropriate SU(2) invariant combination of the 14 states yields the desired $Spin(9) \times SU(2)$ singlet.

As shown in [3], among the elements of five representations in (1), (2) and (3) there exists only one such state, explicitly

$$\phi := |||1\rangle + \frac{13}{36} |||1\rangle, \tag{6}$$

$$|||1\rangle:=|su\rangle_1|tu\rangle_2|st\rangle_3,$$

$$|||1\rangle := |suv\rangle_1|tuv\rangle_2|st\rangle_3 + |tuv\rangle_1|st\rangle_2|suv\rangle_3 + |st\rangle_1|suv\rangle_2|tuv\rangle_3,$$

where $|su\rangle_A$ and $|suv\rangle_A$ are the elements of the **44** and the **84** representations, respectively (the elements of (3) do not contribute to ϕ). The main result of this paper is the proof of the fact that in the whole 14 dimensional space of SO(9) singlets, ϕ is a unique $Spin(9) \times SU(2)$ invariant state.

3 The uniqueness

Apart from the five SO(9) singlets considered in [3]

$$S_1 := |su\rangle_1 |tu\rangle_2 |st\rangle_3,\tag{7}$$

$$S_2 := \epsilon^{stupqrabc} |stu\rangle_1 |pqr\rangle_2 |abc\rangle_3, \tag{8}$$

$$S_3 := |suv\rangle_1 |tuv\rangle_2 |st\rangle_3, \quad S_4 := |tuv\rangle_1 |st\rangle_2 |suv\rangle_3,$$

$$S_5 := |st\rangle_1 |suv\rangle_2 |tuv\rangle_3 \tag{9}$$

corresponding to (1), (2) and (3) respectively, there are 9 additional ones involving the **128** representation. Our choice is

$$S_6:=|s\alpha\rangle_1|t\alpha\rangle_2|st\rangle_3, \quad S_7:=|s\alpha\rangle_1|st\rangle_2|t\alpha\rangle_3,$$

$$S_8 := |st\rangle_1 |s\alpha\rangle_2 |t\alpha\rangle_3,\tag{10}$$

$$S_9 := \gamma_{\alpha\beta}^s |u\alpha\rangle_1 |v\beta\rangle_2 |suv\rangle_3, \quad S_{10} := \gamma_{\alpha\beta}^s |u\alpha\rangle_1 |suv\rangle_2 |v\beta\rangle_3,$$

$$S_{11} := \gamma_{\alpha\beta}^s |suv\rangle_1 |u\alpha\rangle_2 |v\beta\rangle_3,\tag{11}$$

$$S_{12} := \gamma_{\alpha\beta}^{suv} |t\alpha\rangle_1 |t\beta\rangle_2 |suv\rangle_3, \quad S_{13} := \gamma_{\alpha\beta}^{suv} |t\alpha\rangle_1 |suv\rangle_2 |t\beta\rangle_3,$$

$$S_{14} := \gamma_{\alpha\beta}^{suv} |suv\rangle_1 |t\alpha\rangle_2 |t\beta\rangle_3, \tag{12}$$

(although the states in (11) and (12) have the same representation content, they are linearly independent since there does not exist an identity such as $\delta^{rt}\gamma^{suv}_{\alpha\beta} \propto \delta^{tu}\delta^{rv}\gamma^{s}_{\alpha\beta}$).

The SU(2) invariance of the linear combination $\tilde{\phi}:=\sum_i a_i S_i$, $a_i\in\mathbb{C}$, implies that $J_A\tilde{\phi}=0,\ A=1,2,3$ where J_A are the SU(2) generators $J_A=\frac{1}{2}\epsilon_{ABC}\theta_{\alpha B}\theta_{\alpha C}$. Let us take A=3 and denote the matrix representation of J_3 by J_{ij} , i.e. $J_3S_i=\sum_j J_{ji}S_j$. The SU(2) invariance is now equivalent to the matrix equation

$$\sum_{i} a_i J_{ji} = 0, \tag{13}$$

hence a uniqueness of ϕ is equivalent to the existence of a unique eigenvector of matrix J corresponding to the zero eigenvalue. The first 5 rows of the matrix J_{ij} can be determined from [3]

$$J_3S_1 = \frac{13}{4}S_6, \quad J_3S_2 = -\frac{3456}{5}S_9 + \frac{972}{5}S_{12}, \quad J_3S_3 = -9S_6,$$
$$J_3S_4 = \frac{13i}{\sqrt{2}}S_9 - \frac{23i}{\sqrt{2}}S_{12}, \quad J_3S_5 = -\frac{13i}{\sqrt{2}}S_9 + \frac{23i}{\sqrt{2}}S_{12}.$$

In deriving the above result it is essential to take advantage of the intertwining relations

$$2\theta_{\alpha A}|st\rangle_A = \gamma_{\alpha\beta}^s|t\beta\rangle_A + \gamma_{\alpha\beta}^t|s\beta\rangle_A,\tag{14}$$

$$\theta_{\alpha A}|stu\rangle_A = \frac{i}{\sqrt{2}} \left(\gamma_{\alpha\beta}^{st} |u\beta\rangle_A + \gamma_{\alpha\beta}^{us} |t\beta\rangle_A + \gamma_{\alpha\beta}^{tu} |s\beta\rangle_A \right), \quad (15)$$

note however that, because of the appearance of the **128** in (10), (11) and (12), the evaluation of J_{ij} for j > 5 requires one more relation, namely ¹

$$\theta_{\alpha,A}|t\beta\rangle_A = \frac{1}{2}\gamma^{\mu}_{\alpha\beta}|ut\rangle_A - \frac{i}{36\sqrt{2}}\gamma^{tsuv}_{\alpha\beta}|suv\rangle_A - \frac{i}{6\sqrt{2}}\gamma^{uv}_{\alpha\beta}|uvt\rangle_A. \quad (16)$$

After some algebra (see the next section for the details) we find that

$$J_{3}S_{6} = 4S_{1} + \frac{5}{9}S_{3}, \quad J_{3}S_{7} = \frac{1}{2}S_{8} - \frac{4i}{3\sqrt{2}}S_{11} - \frac{5i}{36\sqrt{2}}S_{14},$$

$$J_{3}S_{8} = \frac{1}{2}S_{7} - \frac{4i}{3\sqrt{2}}S_{10} - \frac{5i}{36\sqrt{2}}S_{13}, \quad J_{3}S_{9} = \frac{1}{162}S_{2} - \frac{8i}{3\sqrt{2}}S_{4} - \frac{8i}{3\sqrt{2}}S_{5},$$

$$J_{3}S_{10} = \frac{7}{6}S_{11} - \frac{1}{18}S_{14}, \quad J_{3}S_{11} = \frac{7}{6}S_{10} - \frac{1}{18}S_{13},$$

$$J_{3}S_{12} = -\frac{11}{162}S_{2} + \frac{8i}{3\sqrt{2}}S_{4} + \frac{8i}{3\sqrt{2}}S_{5},$$

$$J_{3}S_{13} = -\frac{126i}{\sqrt{2}}S_{8} - 62S_{11}, \quad J_{3}S_{14} = -\frac{126i}{\sqrt{2}}S_{7} - 62S_{10},$$

¹Eqn. (16) was also known to J.Hoppe and D. Lundholm.

hence

The matrix J can be easily diagonalized and we find that its kernel is two dimensional spanned by vectors $S_1 + \frac{13}{36}S_3$ and $S_4 + S_5$. Since the singlet must be invariant with respect to any permutation of the color index A, the only possibility is the cyclically invariant combination given by (6).

3.1 Detailed calculation

Below we present the evaluation of $J_3 = \theta_{\alpha 1}\theta_{\alpha 2}$ acting on S_i , i > 5 focusing on most important parts of the calculation.

For i = 6 the state $J_3S_6 = \theta_{\alpha 1}\theta_{\alpha 2}|s\beta\rangle|t\beta\rangle|st\rangle$ consists of 9 terms (c.p. (16)), explicitly

$$\begin{split} \frac{1}{4}Tr(\gamma^{u}\gamma^{u_{1}})|us\rangle|u_{1}t\rangle|st\rangle &= 4S_{1}, \quad -\frac{i}{72\sqrt{2}}Tr(\gamma^{u}\gamma^{tpqr})|us\rangle|pqr\rangle|st\rangle = 0, \\ -\frac{i}{12\sqrt{2}}Tr(\gamma^{u}\gamma^{pq})|us\rangle|pqt\rangle|st\rangle &= 0, \quad -\frac{i}{72\sqrt{2}}Tr(\gamma^{spqr}\gamma^{u})|pqr\rangle|ut\rangle|st\rangle = 0, \\ -\frac{1}{2592}Tr(\gamma^{spqr}\gamma^{tp_{1}q_{1}r_{1}})|pqr\rangle|p_{1}q_{1}r_{1}\rangle|st\rangle &= \frac{1}{9}S_{3}, \\ \frac{1}{432}Tr(\gamma^{spqr}\gamma^{p_{1}q_{1}})|pqr\rangle|p_{1}q_{1}t\rangle|st\rangle &= 0, \\ -\frac{i}{12\sqrt{2}}Tr(\gamma^{pq}\gamma^{u})|pqs\rangle|ut\rangle|st\rangle &= 0, \\ -\frac{1}{432}Tr(\gamma^{pq}\gamma^{tp_{1}q_{1}r_{1}})|pqs\rangle|p_{1}q_{1}r_{1}\rangle|st\rangle &= 0, \end{split}$$

$$-\frac{1}{72}Tr(\gamma^{pq}\gamma^{p_1q_1})|pqs\rangle|p_1q_1t\rangle|st\rangle = \frac{4}{9}S_3,$$

which were evaluated using the following identities

$$Tr(\gamma^u \gamma^{tpqr}) = 0, \quad Tr(\gamma^u \gamma^{pq}) = 0, \quad Tr(\gamma^{spqr} \gamma^u) = 0, \quad Tr(\gamma^{spqr} \gamma^{p_1 q_1}) = 0,$$
$$Tr(\gamma^{spqr} \gamma^{tp_1 q_1 r_1}) = 16 \sum_{\pi \in S_A} sgn(\pi) \delta^{s\pi(t)} \delta^{p\pi(p_1)} \delta^{q\pi(q_1)} \delta^{r\pi(r_1)},$$

$$Tr(\gamma^{pq}\gamma^u) = 0$$
, $Tr(\gamma^{pq}\gamma^{tp_1q_1r_1}) = 0$, $Tr(\gamma^{pq}\gamma^{p_1q_1}) = -16(\delta^{pp_1}\delta^{qq_1} - \delta^{pq_1}\delta^{qp_1})$.

Therefore we have

$$J_3 S_6 = 4S_1 + \frac{5}{9} S_3. (17)$$

For i=7 the state $J_3S_7=\theta_{\alpha 1}\theta_{\alpha 2}|s\beta\rangle|st\rangle|t\beta\rangle$ consists of 6 terms. They are

$$\begin{split} \frac{1}{4} [\gamma^u \gamma^s]_{\beta\beta'} |us\rangle |t\beta'\rangle |t\beta\rangle &= 0, \qquad \frac{1}{4} [\gamma^u \gamma^t]_{\beta\beta'} |us\rangle |s\beta'\rangle |t\beta\rangle = \frac{1}{2} S_8 \\ \frac{i}{72\sqrt{2}} [\gamma^{spqr} \gamma^s]_{\beta\beta'} |pqr\rangle |t\beta'\rangle |t\beta\rangle &= -\frac{i}{12\sqrt{2}} S_{14}, \\ \frac{i}{12\sqrt{2}} [\gamma^{pq} \gamma^s]_{\beta\beta'} |pqs\rangle |t\beta'\rangle |t\beta\rangle &= -\frac{i}{12\sqrt{2}} S_{14}, \\ -\frac{i}{72\sqrt{2}} [\gamma^{spqr} \gamma^t]_{\beta\beta'} |pqr\rangle |s\beta'\rangle |t\beta\rangle &= -\frac{i}{\sqrt{2}} S_{11} + \frac{i}{36\sqrt{2}} S_{14}, \\ -\frac{i}{12\sqrt{2}} [\gamma^{pq} \gamma^t]_{\beta\beta'} |pqs\rangle |s\beta'\rangle |t\beta\rangle &= -\frac{i}{3\sqrt{2}} S_{11} \end{split}$$

where we used the identities

$$\begin{split} \gamma^{spqr}\gamma^s &= -6\gamma^{pqr}, \quad [\gamma^{spqr},\gamma^t] = 2(\delta^{tr}\gamma^{spq} - \delta^{tq}\gamma^{spr} + \delta^{tp}\gamma^{sqr} - \delta^{ts}\gamma^{pqr}) \\ &[\gamma^{pq},\gamma^t] = 2\gamma^p\delta^{qt} - 2\gamma^q\delta^{pt}, \quad \gamma^u\gamma^s = \delta^{us}\mathbf{1} + \gamma^{us} \end{split}$$

the constraint $\sum_s |ss\rangle = 0$ and the Rarita-Schwinger constraint $\gamma^s_{\alpha\beta}|t\beta\rangle = 0$. Therefore we obtain

$$J_3S_7 = \frac{1}{2}S_8 - \frac{4i}{3\sqrt{2}}S_{11} - \frac{5i}{36\sqrt{2}}S_{14} \tag{18}$$

The evaluation of J_3S_8 is analogous to J_3S_7 and we find that

$$J_3 S_8 = \frac{1}{2} S_7 - \frac{4i}{3\sqrt{2}} S_{10} - \frac{5i}{36\sqrt{2}} S_{13} \tag{19}$$

For i=9 the state $J_3S_9=\theta_{\alpha'1}\theta_{\alpha'2}\gamma^s_{\alpha\beta}|u\alpha\rangle|v\beta\rangle|suv\rangle$ consists of 9 terms. They are

$$\begin{split} \frac{1}{4}Tr(\gamma^{p}\gamma^{q}\gamma^{r})|ps\rangle|rt\rangle|qst\rangle &= 0, \quad -\frac{i}{72\sqrt{2}}Tr(\gamma^{pqrs}\gamma^{t}\gamma^{u})|qrs\rangle|uv\rangle|tpv\rangle = 0, \\ -\frac{i}{12\sqrt{2}}Tr(\gamma^{pq}\gamma^{r}\gamma^{s})|pqt\rangle|su\rangle|rtu\rangle &= -\frac{8i}{3\sqrt{2}}S_{4}, \\ -\frac{i}{72\sqrt{2}}Tr(\gamma^{p}\gamma^{q}\gamma^{rstu})|pv\rangle|stu\rangle|qvr\rangle &= 0, \\ \frac{1}{2592}Tr(\gamma^{pqrs}\gamma^{t}\gamma^{p_{1}q_{1}r_{1}s_{1}})|qrs\rangle|q_{1}r_{1}s_{1}\rangle|tpp_{1}\rangle &= \frac{1}{162}S_{2}, \\ \frac{1}{432}Tr(\gamma^{pp_{1}}\gamma^{q}\gamma^{rstu})|pp_{1}v\rangle|stu\rangle|qvr\rangle &= 0, \\ -\frac{i}{12\sqrt{2}}Tr(\gamma^{r}\gamma^{s}\gamma^{pq})|ru\rangle|pqt\rangle|uts\rangle &= -\frac{8i}{3\sqrt{2}}S_{5}, \\ \frac{1}{432}Tr(\gamma^{pqrs}\gamma^{t}\gamma^{p_{1}q_{1}})|qrs\rangle|p_{1}q_{1}v\rangle|tpv\rangle, \\ \frac{1}{72}Tr(\gamma^{pq}\gamma^{r}\gamma^{st})|pqu\rangle|stv\rangle|ruv\rangle &= 0, \end{split}$$

where we used the identities

$$Tr(\gamma^p \gamma^q \gamma^r) = 0, \quad Tr(\gamma^{pqrs} \gamma^t \gamma^u) = 0,$$

$$Tr(\gamma^{pq} \gamma^r \gamma^s) = Tr(\gamma^p \gamma^q \gamma^{rs}) = -16(\delta^{rp} \delta^{sq} - \delta^{rq} \delta^{sp}),$$

$$Tr(\gamma^p \gamma^q \gamma^{rstu}) = 0, \quad Tr(\gamma^{pqrs} \gamma^t \gamma^{p_1 q_1 r_1 s_1}) = 16\epsilon^{pqrst p_1 q_1 r_1 s_1},$$

$$Tr(\gamma^{pp_1} \gamma^q \gamma^{rstu}) = 0, \quad Tr(\gamma^{pqrs} \gamma^t \gamma^{p_1 q_1}) = 0, \quad Tr(\gamma^{pq} \gamma^r \gamma^{st}) = 0.$$

Therefore we obtain

$$J_3 S_9 = \frac{1}{162} S_2 - \frac{8i}{3\sqrt{2}} S_4 - \frac{8i}{3\sqrt{2}} S_5. \tag{20}$$

For i=10 the state $J_3S_{10}=\theta_{\alpha'1}\theta_{\alpha'2}\gamma_{\alpha\beta}^s|u\alpha\rangle|suv\rangle|v\beta\rangle$ consists of 9 terms. We use the Rarita-Schwinger constraint and

$$\gamma^{ts}\gamma^s = 8\gamma^t, \quad \ \gamma^u\gamma^s = 2\delta^{us}\mathbf{1} + \gamma^{us}, \quad \ \gamma^{tabc} = \gamma^t\gamma^{abc}, t \neq a,b,c$$

to find that they are

$$\frac{i}{2\sqrt{2}} [\gamma^{pq} \gamma^r \gamma^s]_{\alpha\beta} |rq\rangle |t\alpha\rangle |t\beta\rangle = 0, \quad \frac{1}{72} [\gamma^{pq} \gamma^{qstu} \gamma^p]_{\alpha\beta} |stu\rangle |v\alpha\rangle |v\beta\rangle = -\frac{1}{9} S_{14},$$

$$\frac{1}{12} [\gamma^{pq} \gamma^{rs} \gamma^p]_{\alpha\beta} |rsq\rangle |v\alpha\rangle |v\beta\rangle = -\frac{1}{3} S_{14}, \quad \frac{i}{2\sqrt{2}} [\gamma^{pq} \gamma^r \gamma^q]_{\alpha\beta} |rs\rangle |s\alpha\rangle |p\beta\rangle = 0,$$

$$\frac{1}{72} [\gamma^{pq} \gamma^{rstu} \gamma^q]_{\alpha\beta} |stu\rangle |r\alpha\rangle |p\beta\rangle = 0, \quad \frac{1}{12} [\gamma^{pq} \gamma^{rs} \gamma^q]_{\alpha\beta} |rst\rangle |t\alpha\rangle |p\beta\rangle = 2S_{11},$$

$$\frac{i}{2\sqrt{2}} [\gamma^{pq} \gamma^r \gamma^s]_{\alpha\beta} |rp\rangle |s\alpha\rangle |q\beta\rangle = 0, \quad \frac{1}{72} [\gamma^{pq} \gamma^{prst} \gamma^u]_{\alpha\beta} |rst\rangle |u\alpha\rangle |q\beta\rangle = \frac{2}{9} S_{14},$$

$$\frac{1}{12} [\gamma^{pq} \gamma^{rs} \gamma^t]_{\alpha\beta} |rsp\rangle |t\alpha\rangle |q\beta\rangle = \frac{1}{6} S_{14} - \frac{5}{6} S_{11}.$$

Therefore we obtain

$$J_3 S_{10} = \frac{7}{6} S_{11} - \frac{1}{18} S_{14}. (21)$$

Evaluation of J_3S_{11} is analogous to J_3S_{10} and we find that

$$J_3 S_{11} = \frac{7}{6} S_{10} - \frac{1}{18} S_{13}. \tag{22}$$

For i=12 the state $J_3S_{12}=\theta_{\alpha'1}\theta_{\alpha'2}\gamma_{\alpha\beta}^{suv}|t\alpha\rangle|t\beta\rangle|suv\rangle$ consists of 9 terms. They are

$$\frac{1}{4}Tr(\gamma^{p}\gamma^{qrs}\gamma^{t})|pa\rangle|ta\rangle|qrs\rangle = 0,$$

$$-\frac{i}{72\sqrt{2}}Tr(\gamma^{pqrs}\gamma^{p_{1}q_{1}r_{1}}\gamma^{u})|qrs\rangle|up\rangle|p_{1}q_{1}r_{1}\rangle = -\frac{16i}{3\sqrt{2}}S_{4},$$

$$-\frac{i}{12\sqrt{2}}Tr(\gamma^{pq}\gamma^{qst}\gamma^{u})|pqt\rangle|tu\rangle|qst\rangle = \frac{8i}{\sqrt{2}}S_{4},$$

$$-\frac{i}{72\sqrt{2}}Tr(\gamma^{p}\gamma^{qrs}\gamma^{tq_{1}r_{1}s_{1}})|pt\rangle|q_{1}r_{1}s_{1}\rangle|qrs\rangle = -\frac{16i}{3\sqrt{2}}S_{5},$$

$$-\frac{1}{2592}Tr(\gamma^{pqrs}\gamma^{tuv}\gamma^{pq_{1}r_{1}s_{1}})|qrs\rangle|q_{1}r_{1}s_{1}\rangle|tuv\rangle = \frac{1}{162}S_{2},$$

$$-\frac{1}{432}Tr(\gamma^{pq}\gamma^{rst}\gamma^{ur_{1}s_{1}t_{1}})|pqu\rangle|r_{1}s_{1}t_{1}\rangle|rst\rangle = -\frac{1}{27}S_{2},$$

$$-\frac{i}{12\sqrt{2}}Tr(\gamma^{p}\gamma^{qrs}\gamma^{tu})|pv\rangle|tuv\rangle|qrs\rangle = \frac{8i}{\sqrt{2}}S_{5},$$

$$-\frac{1}{432}Tr(\gamma^{pqrs}\gamma^{q_{1}r_{1}s_{1}}\gamma^{tu})|qrs\rangle|tup\rangle|q_{1}r_{1}s_{1}\rangle = -\frac{1}{27}S_{2},$$

$$-\frac{1}{432}Tr(\gamma^{pqrs}\gamma^{q_{1}r_{1}s_{1}}\gamma^{tu})|qrs\rangle|tup\rangle|q_{1}r_{1}s_{1}\rangle = 0,$$

where we used

$$Tr(\gamma^p \gamma^{qrs} \gamma^t) = 0,$$

$$Tr(\gamma^{pqrs}\gamma^{p_1q_1r_1}\gamma^u) = Tr(\gamma^u\gamma^{p_1q_1r_1}\gamma^{pqrs}) = 16\sum_{\pi \in S_4} sgn(\pi)\delta^{s\pi(u)u}\delta^{p\pi(p_1)}\delta^{q\pi(q_1)}\delta^{r\pi(r_1)},$$

$$Tr(\gamma^{pqrs}\gamma^{tuv}\gamma^{pq_1r_1s_1}) = -48\epsilon^{qrstuvq_1r_1s_1}, \quad Tr(\gamma^{pq}\gamma^{rst}\gamma^{ur_1s_1t_1}) = 16\epsilon^{pqur_1s_1t_1rst},$$
$$Tr(\gamma^{rst}\gamma^{u}\gamma^{pq}) = Tr(\gamma^{rst}\gamma^{pq}\gamma^{u}) = -16\sum_{\pi \in S_2} \delta^{p\pi(r)}\delta^{q\pi(s)}\delta^{u\pi(t)},$$

$$Tr(\gamma^{pqrs}\gamma^{q_1r_1s_1}\gamma^{tu}) = 16\epsilon^{qrstupq_1r_1s_1}, \quad Tr(\gamma^{pq}\gamma^{rst}\gamma^{uv}) = 0.$$

Therefore we obtain

$$J_3 S_{12} = -\frac{11}{162} S_2 + \frac{8i}{3\sqrt{2}} S_4 + \frac{8i}{3\sqrt{2}} S_5.$$
 (23)

For i=13 state $J_3S_9=\theta_{\alpha'1}\theta_{\alpha'2}\gamma^{suv}_{\alpha\beta}|t\alpha\rangle|suv\rangle|t\beta\rangle$ consists of 3 terms. They are

$$\frac{3i}{2\sqrt{2}} [\gamma^{pq} \gamma^r \gamma^{pqu}]_{\alpha\beta} |rt\rangle |u\alpha\rangle |t\beta\rangle = -\frac{126i}{\sqrt{2}} S_8,$$

$$\frac{3}{72} [\gamma^{pq} \gamma^{rstu} \gamma^{pqv}]_{\alpha\beta} |stu\rangle |v\alpha\rangle |r\beta\rangle = 0,$$

$$\frac{3}{12} [\gamma^{pq} \gamma^{rs} \gamma^{pqv}]_{\alpha\beta} |rst\rangle |v\alpha\rangle |t\beta\rangle = -62 S_{11},$$

where we used the R-S constraint and

$$\begin{split} [\gamma^{su},\gamma^v] &= 2\gamma^s\delta^{vt} - 2\gamma^u\delta^{ut}, \quad \gamma^{su}\gamma^{suv} = -56\gamma^v, \\ \gamma^{tabc} &= \gamma^t\gamma^{abc}, t \neq a,b,c, \quad \gamma^{abct} = \gamma^{abc}\gamma^t, t \neq a,b,c, \quad [\gamma^t,\gamma^{suv}] = 2\gamma^{tsuv}, \\ [\gamma^{su},\gamma^{ab}] &= 2(\gamma^{sb}\delta^{ua} - \gamma^{sa}\delta^{ub} + \gamma^{ua}\delta^{sb} - \gamma^{ub}\delta^{sa}). \end{split}$$

Therefore we obtain

$$J_3 S_{13} = -\frac{126i}{\sqrt{2}} S_8 - 62S_{11}. \tag{24}$$

Evaluation of J_3S_{14} is analogous to J_3S_{14}

$$J_3 S_{14} = -\frac{126i}{\sqrt{2}} S_7 - 62S_{10}. \tag{25}$$

4 Outlook

The uniqueness of the $Spin(9) \times SU(2)$ state ϕ , proven in this paper, is a starting point for the unique Fock space representation of the hamiltonian of the full matrix model

$$H = K + V + H_F$$

$$K = -\partial_{As}\partial_{As}, \quad V = \frac{1}{2}(\epsilon_{ABC}x_{Bs}x_{Ct})^2, \quad H_F = if_{CAB}\gamma^s_{\alpha\beta}x_{Cs}\theta_{A\alpha}\theta_{B\beta},$$

in terms of $Spin(9) \times SU(2)$ invariant basis. To be more specific consider the normalized "vacuum" state

$$|v\rangle := \frac{1}{\|\phi\|} |0\rangle_B \otimes \phi,$$

where $\|\phi\|^2 = 14014/9$ (explicitly checked on the computer) and $|0\rangle_B$ is the bosonic Fock vacuum (in the coordinate representation $\langle x|0\rangle \propto exp(-\frac{1}{2}x_{As}x_{As})$). Such state is also $Spin(9)\times SU(2)$ invariant and gives a possibility to represent H in the $Spin(9)\times SU(2)$ invariant basis obtained by acting with bosonic creation operators a_{As}^{\dagger} and fermionic operators $\theta_{A\alpha}$ on $|v\rangle$.

First step towards this direction can be done by finding the expectation value $\langle v|H|v\rangle$. There is no contribution from H_F since H_F is linear in x_{As} while the contributions from K and V are 27/2 and 54 respectively, implying that

$$\langle v|H|v\rangle = 67.5,$$

a rather large number considering the existence of the (conjectured) zero-energy ground state of the model.

Acknowledgments

We thank J. Hoppe and D. Lundholm for discussions.

References

- [1] W. Taylor, M(atrix) Theory: Matrix Quantum Mechanics as a Fundamental Theory, Rev. Mod. Phys. 73 (2001) 419-462, arXiv:hep-th/0101126,
 - J. Hoppe, *Membranes and Matrix Models*, arXiv:hep-th/0206192.

- [2] J. Fröhlich, J. Hoppe, On Zero-Mass Ground States in Super-Membrane Matrix Models, arXiv:hep-th/9701119;
 - J. Hoppe, On the Construction of Zero Energy States in Supersymmetric Matrix Models, arXiv:hep-th/9709132;
 - M. B. Halpern, C. Schwartz, Asymptotic Search for Ground States of SU(2) Matrix Theory, Int. J. Mod. Phys. A13 (1998) 4367-4408, arXiv:hep-th/9712133;
 - A. Konechny, On Asymptotic Hamiltonian for SU(N) Matrix Theory, JHEP 9810 (1998) 018, arXiv:hep-th/9805046;
 - M. Bordemann, J. Hoppe, R. Suter, Zero Energy States for SU(N): A Simple Exercise in Group Theory?, arXiv:hep-th/9909191;
 - J. Hoppe, Asymptotic Zero Energy States for SU(N greater or equal 3), arXiv:hep-th/9912163;
 - J. Fröhlich, G. M. Graf, D. Hasler, J. Hoppe, S.-T. Yau, Asymptotic form of zero energy wave functions in supersymmetric matrix models, Nucl. Phys. B567 (2000) 231-248, arXiv:hep-th/9904182;
 - J. Hoppe, J. Plefka, *The Asymptotic Groundstate of SU(3) Matrix Theory*, arXiv:hep-th/0002107;
 - D. Hasler, J. Hoppe, Asymptotic Factorisation of the Ground-State for SU(N)-invariant Supersymmetric Matrix-Models, arXiv:hep-th/0206043;
 - V. Bach, J. Hoppe, D. Lundholm, *Dynamical Symmetries in Su*persymmetric Matrix Models, arXiv:hep-th/07060355;
 - J. Hoppe, D. Lundholm, On the Construction of Zero Energy States in Supersymmetric Matrix Models IV, arXiv:0706.0353;
- [3] J. Hoppe, D. Lundholm, M. Trzetrzelewski, Construction of the Zero-Energy State of SU(2)-Matrix Theory: Near the Origin, Nucl. Phys. B817:155-166, 2009 arXiv:0809.5270,
- [4] D. Hasler, J. Hoppe, Zero Energy States of Reduced Super Yang-Mills Theories in d+1=4,6 and 10 dimensions are necessarily Spin(d) invariant, arXiv:hep-th/0211226.
- [5] J. Wosiek, On the SO(9) structure of supersymmetric Yang-Mills quantum mechanics Phys. Lett. B619 (2005) 171-176, arXiv:hep-th/0503236.
- [6] R. Slansky, Group theory for unified model building, Phys. Rep., Vol. 79, Issue 1, p. 1-128 (1981).