

Dominando Big Data com o uso de Plataformas Gratuitas (nível intermediário)

Aula 2

Bem-vindo! – Agenda da aula 2

- ✓ Desafio Lending Club
- ✓ Introdução ao Machine Learning
- ✓Intervalo (20 min)
- ✓ Tutorial de preparação de dados

Exercício prático:

Faça a extração do dataset do Lending Club

- Spray
- Estrutura RECORD
- Declaração DATASET

Introdução ao Machine Learning

O que é Machine Learning?

- "O estudo científico de algoritmos e modelos estatísticos que sistemas de computador usam para realizar uma tarefa específica sem usar instruções explícitas, baseando-se em padrões e inferência"
- Supervisionado quando apresentamos ao algoritmo dados de entrada e as respectivas saídas

 Não supervisionado - quando apresentamos somente os dados de entrada e o algoritmo descobre as saídas

 Por reforço, profundo, etc - o algoritmo utiliza tentativa e erro para encontrar uma solução para o problema, múltiplas camadas de aprendizado com dados complexos (imagens, vídeo, áudio), etc

Terminologia de ML

Exemplo de aprendizado supervisionado:

Dada uma amostra de registros:

```
Record1: Field1, Field2, Field3, ..., FieldM
Record2: Field1, Field2, Field3, ..., FieldM
...
RecordN: Field1, Field2, Field3, ..., FieldM
```

Variáveis "Independentes"

E um conjunto de valores a serem determinados,

```
Record1: TargetValue
Record2: TargetValue
...

RecordN: TargetValue
```

Aprenda a predizer valores para novas amostras.

Exemplo prático de ML

Dado o conjunto de dados sobre árvores em uma floresta:

Altura	Diâmetro	Altitude	Pluviosidade	Idade
50	8	5000	12	80
56	9	4400	10	75
72	12	6500	18	60
47	10	5200	14	53

 Obtenha um modelo que determine a idade de uma árvore (variável dependente) a partir da sua altura, diâmetro, altura e pluviosidade do local (variáveis independentes).

Fluxo de aprendizagem de máquina

Aprendizado de máquina no HPCC Systems

•Bundle validado, suportado e otimizado para desempenho na plataforma (https://hpccsystems.com/download/free-modules/machine-learning-library)

- Processo de instalação:
 - Fácil e independente da versão da plataforma
 - ecl bundle install https://github.com/hpcc-systems/<nome>.git

- Curso online:
 - https://learn.lexisnexis.com/Activity/2553

Bundle de ML

• Base:

- ML_Core: Machine Learning Core (https://github.com/hpcc-systems/ML Core.git)
- PBblas: Paralell Block Basic Linear Algebra Subsystem (https://github.com/hpcc-systems/PBblas.git)

Algoritmos supervisionados

- LinearRegression: OLS (https://github.com/hpcc-systems/LinearRegression.git)
- LogisticRegression: binomial/multinomial (https://github.com/hpcc-systems/LogisticRegression.git)
- GLM: General Linear Model (https://github.com/hpcc-systems/GLM.git)
- SVM: Support Vector Machines (https://github.com/hpcc-systems/SupportVectorMachines.git)
- LearningTrees: Árvores de decisão (https://github.com/hpcc-systems/LearningTrees.git)

Bundle de ML (cont.)

- Algoritmos não-supervisionados
 - K-Means: clusterização de Big Data (https://github.com/hpcc-systems/KMeans.git)
 - DBSCAN: Scalable Paralell Density-Based Spatial Clustering of Applications with Noise (https://github.com/hpcc-systems/dbscan.git)
 - TextVectors: Vetorização de palavras, frases e sentenças (https://github.com/hpcc-systems/TextVectors.git)
- Aprendizagem profunda
 - GNN: Generalized Neural Network (https://github.com/hpcc-systems/GNN.git)

Tutorial de prepação de dados

1. Definição do problema

"Dado um conjunto de atributos de uma propriedade (localização, metragem, ano de construção), como predizer o seu valor?"

propertyid	house_numb	house_ni pred	ir street	streett	postdir	apt	city	state	zip	total_value	assessed_value	year_acquired	land_square_foot	living_square_fee	ebedrooms	full_bath
828195	144		MCKIERNAN	DR			WALNUT CREEK	CA	94597	62614	52614	2006	20418	2485	3	2
1144455	281		CENTER	ST			BALTIMORE	MD	21136	105500	10550	2007	4807	1368	0	0
1494347	483		NEWTON	RD			FLAGSTAFF	AZ	86011	2220	2220	0	5654	1011	3	1
1910847	802		HATCHERY	СТ			WOODLAND	WA	98674	356000	356000	0	6094	0	2	1
4267562	5007	E	ROY ROGERS	RD			TROY	MI	48085	327253	327253	2007	3484	0	3	0
4888602	7607		PEBBLESTONE	DR		000009	KERNVILLE	CA	93238	732179	732179	2010	19597	6132	6	6
48725	4		LONG	AVE			SUNRISE	FL	33323	271000	271000	2008	6880	2392	4	2
83528	6		TRILLUM	LN			WAYLAND	MA	02193	79889	79889	2007	7657	1657	4	1
94604	7		PARMENTER	AVE			PLYMOUTH	MN	55441	23800	23800	2005	19994	1754	3	2
220326	17		TIMBER	RD			LOS ANGELES	CA	90063	89000	39000	2008	7840	954	3	1
994609	212		FREYER	DR	NE		PHILOMONT	VA	20131	59800	59800	2009	11199	1241	3	0
1836173	724		EASTER	ST			ALLENTOWN	PA	18102	191600	191600	0	9100	2534	4	2
2910797	1903		SADDLE BROOK	DR			CLIO	CA	96106	61610	51610	2007	0	0	0	0
3083959	2158		RIVERSIDE	DR			UPPER MORELA	PA	19006	90300	ð	0	0	1235	3	2
3952189	4040		GRAND VIEW	BLVD		000054	RIO LINDA	CA	95673	0	ð	0	2700720	0	0	0
4186238	4726		LAS PALMAS	СТ			WAELDER	TX	78959	18816	18816	2009	2159	1320	0	0
4597143	6213		WILSON	RD			ZOLFO SPRINGS	FL	33890	72600	ð	0	8496	0	3	1
4624905	6321		STONEWALL	LN			PATERSON	NJ	07514	139880	139880	2008	10454	1391	4	2
92326	7		KNOLLCREST	DR			NARANJA	FL	33032	76214	76214	2008	4800	930	2	0
1792852	704		ERIN	DR			TRABUCO	CA	92678	28010	28010	2007	5200	0	3	1
1843977	728	S	ARLINGTON HE	. RD			BLOOMING GRO	TX	76626	130400	130400	2007	36154	1629	3	1
4214872	4821		MYRTLE OAK	DR		000025	SAN RERNARDT	CΔ	92376	22250	.	2007	93654	а	a	a

2. Extração dos dados

Estrutura RECORD e declaração DATASET

```
EXPORT File Property := MODULE
     EXPORT Layout := RECORD
                                                      EXPORT MLProp := RECORD
          INTEGER8 propertyid;
                                                                UNSIGNED8 PropertyID;
          STRING5 streettype;
                                                                UNSIGNED3 zip;
                                                                                                      //categorica
          STRING40
                        city;
                                                                UNSIGNED4 assessed value;
          STRING2
                        state;
                                                                UNSIGNED2 year acquired;
          STRING5
                        zip;
                                                                UNSIGNED4 land square footage;
          UNSIGNED4 total value;
                                                                UNSIGNED4 living square feet;
                        assessed value;
          UNSIGNED4
                                                                UNSIGNED2 bedrooms;
                        year acquired;
          UNSIGNED2
                                                                UNSIGNED2 full baths;
                        land square footage;
          UNSIGNED4
                                                                UNSIGNED2 half baths;
                        living square feet;
          UNSIGNED4
                                                                UNSIGNED2 year built;
                        bedrooms;
          UNSIGNED2
                                                                UNSIGNED4 total value;
                                                                                            //Variavel dependente
          UNSIGNED2
                        full baths;
                                                           END;
                        half baths;
          UNSIGNED2
                        year built;
          UNSIGNED2
    END;
    EXPORT File := DATASET('~online::hmw::AdvECL::property',Layout,THOR);
END;
```

3. Preparação dos dados

Função PROJECT(), RANDOM() e SORT()

```
// Clean the data and assign a random number to each record
CleanFilter := Property.zip <> '' AND Property.assessed value <> 0 AND Property.year acquired <> 0
                AND Property.land square footage <> 0 AND Property.living square feet <> 0
                AND Property.bedrooms <> 0 AND Property.year Built <> 0;
MLPropExt := RECORD(ML Prop)
    UNSIGNED4 rnd; // A random number
END;
EXPORT myDataE := PROJECT (Property (CleanFilter), TRANSFORM (MLPropExt,
                                                             SELF.rnd := RANDOM(),
                                                             SELF.Zip := (UNSIGNED3) LEFT.Zip,
                                                             SELF := LEFT));
// Shuffle your data by sorting on the random field
SHARED myDataES := SORT (myDataE, rnd);
// Treat first 5000 as training data. Transform back to the original format.
EXPORT myTrainData := PROJECT(myDataES[1..5000], ML Prop);
// Treat next 2000 as test data
EXPORT myTestData := PROJECT(myDataES[5001..7000], ML Prop);
HPCC Systems - http://hpccsystems.com
```


4. Conversão e segregação de variáveis

Função ML Core.ToField()

```
IMPORT $;
IMPORT ML Core;
myTrainData := $.Prep01.myTrainData;
myTestData := $.Prep01.myTestData;
//Numeric Field Matrix conversion
ML Core.ToField(myTrainData, myTrainDataNF);
ML Core.ToField(myTestData, myTestDataNF);
EXPORT Convert.02 := MODULE
  EXPORT myIndTrainDataNF := myTrainDataNF(number < 10); //</pre>
  EXPORT myDepTrainDataNF := PROJECT(myTrainDataNF(number = 10),
                                     TRANSFORM (RECORDOF (LEFT),
                                              SELF.number := 1,
                                              SELF := LEFT));
  EXPORT myIndTestDataNF := myTestDataNF(number < 10);</pre>
  EXPORT myDepTestDataNF := PROJECT (myTestDataNF (number = 10),
                                       TRANSFORM (RECORDOF (LEFT),
                                                   SELF.number := 1,
                                                   SELF := LEFT));
END;
```

wi	id	number	value
1	160350	1	20706
1	160350	2	18020
1	160350	3	2007
1	160350	4	4610
1	160350	5	2594
1	160350	6	2
1	160350	7	2
1	160350	8	0
1	160350	9	1916
1	82569	1	60527
1	82569	2	78477
1	82569	3	2007
1	82569	4	6098
1	82569	5	1032
1	82569	6	3
1	82569	7	2
1	82569	8	0
1	82569	9	1992

wi	id	number	value
1	160350	1	185000
1	82569	1	78477
1	2192898	1	79290
1	2223942	1	45511
1	4648854	1	39900
1	2367580	1	108610
1	607178	1	31072
1	1584497	1	88284
1	3615520	1	341400
1	2103806	1	58520
1	2209348	1	87610
1	1298734	1	66175
1	1310023	1	301644
1	2840506	1	94200
1	3600022	1	262700
1	131449	1	16500
1	4649661	1	84000
1	1042629	1	38740
1	1732698	1	197700

Desafio: Lending Club

Exercício prático:

Faça o perfilamento do dataset do Lending Club

Utilize a bilbioteca
 DataPatterns

Até a próxima aula!!!

