

Opracowanie publikacji Danila Gorodocky'ego i Tiziano Villa'y sumatory modularne

Łukasz Wdowiak 264026 Damian Jabłoński 264025

Prowadzący: dr inż. Piotr Patronik Grupa: K03-47a, Pon 15:15-16:55 TN

Wydział Informatyki i Telekomunikacji Informatyka Techniczna IV semestr

Spis treści

Ĺ	Cele projektu	2
2	Przebieg projektu	2
3	Algorytmy	2
	3.1 Modulo dla dowolnych X i P - bit po bicie	2
	3.1.1 Opis algorytmu	2
	3.1.2 Implementacja algorytmu	:

- 1 Cele projektu
- 2 Przebieg projektu
- 3 Algorytmy
- 3.1 Modulo dla dowolnych X i P bit po bicie

3.1.1 Opis algorytmu

W artykule autorzy zaproponowali sposób obliczania oparty na następującej reprezentacji:

$$X = P \cdot Q + R = \tag{1}$$

$$= P \cdot 2^{\delta} \cdot q_{\delta} + P \cdot 2^{\delta - 1} \cdot q_{\delta - 1} + \ldots + P \cdot 2^{0} \cdot q_{0} + R \tag{2}$$

 $X(\bmod P)=R$, gdzie $X=(x_\psi,x_{\psi-1},\ldots,x_1)$ i δ jest określona nierównościa $P\cdot 2^\delta<2^\psi-1\leq P\cdot 2^{\delta+1}$.

Na przykład, $X=(x_{10},x_{9},\ldots,x_{1})$ i P=21, przy $\delta=5$. Wynosi:

$$\begin{split} X &= 21 \cdot Q + R = \\ &= 21 \cdot 2^5 \cdot q_5 + 21 \cdot 2^4 \cdot q_4 + 21 \cdot 2^3 \cdot q_3 + \\ &+ 21 \cdot 2^2 \cdot q_2 + 21 \cdot 2^1 \cdot q_1 + 21 \cdot 2^0 \cdot q_0 + R. \end{split}$$

Każdy kolejny iloczyn częściowy jest wejściem kolejnego bloku obliczeniowego. R jest wynikiem szóstego bloku oraz resztą z dzielenia przez 21. Jeśli chcemy policzyć $X(\bmod P)=R$, gdzie X=888, a P=21, to:

$$X_5 \ge 21 \cdot 2^5$$
, $888 \ge 672$, $X_4 = 888 - 21 \cdot 2^5 = 216$;
 $X_4 < 21 \cdot 2^4$, $216 < 336$, $X_3 = 216$;
 $X_3 \ge 21 \cdot 2^3$, $216 \ge 168$, $X_2 = 216 - 21 \cdot 2^3 = 48$;
 $X_2 < 21 \cdot 2^2$, $48 < 84$, $X_1 = 48$;
 $X_1 \ge 21 \cdot 2^1$, $48 \ge 42$, $X_0 = 48 - 21 \cdot 2^1 = 6$;
 $X_0 < 21 \cdot 2^0$, $6 < 21$, $R = 6$.

W pierwszym kroku porównujemy X z $21 \cdot 2^5$. Następnie odejmujemy $21 \cdot 2^5$ od X i otrzymujemy $X_4 = 216$. W kolejnym kroku porównujemy X_4 z $21 \cdot 2^4$ i otrzymujemy $X_3 = 216$. Następnie odejmujemy $21 \cdot 2^3$ od X_3 i otrzymujemy $X_3 = 48$. W kolejnym kroku porównujemy X_2 z $21 \cdot 2^2$ i

otrzymujemy $X_1 = 48$. Następnie odejmujemy $21 \cdot 2^1$ od X_1 i otrzymujemy $X_0 = 6$. W kolejnym kroku porównujemy X_0 z $21 \cdot 2^0$ i otrzymujemy R = 6. Jak widać powyżej jest to prosta operacja odejmowania i porównywania, która jest wykonywana w pętli.

3.1.2 Implementacja algorytmu

Algorytm został zaimplementowany za pomocą trzech funkcji.

- calc_length oblicza długość binarną liczby 'number' poprzez przesuwanie jej bitów w prawo i zliczanie ilości przejść, zwracając ostateczną długość.
- **get_delta** funkcja obliczająca δ na podstawie parametrów l i P, sprawdzając warunek związanym z potęgami dwójki.
- $\operatorname{mod_bit_by_bit}$ funkcja obliczająca resztę z dzielenia w pętli obliczane są kolejne wartości X. Jeżeli $X_i \geq P \cdot 2^i$, to $X_{i-1} = X_i P \cdot 2^i$, w przeciwnym wypadku $X_{i-1} = X_i$. Pętla kończy się, gdy wartość δ wynosi 0 ,a funkcja zwraca R jako reszte z dzielenia.

Literatura

[1]