Sistemas de Informações Geográficas

Jean Carlo Pitz, Dafani de Figueiredo

Curso de Agronomia, Segunda Fase, 2001 Centro de Ciências Agrárias (CCA) Universidade Federal de Santa Catarina (UFSC), Brasil torolocopitz@hotmail.com, dafanidefigueiredo@bol.com.br

Resumo

Este artigo tem por objetivo demonstrar a grande utilidade dos Sistemas de Informações Geográficas na agronomia moderna, citará conceito, funcionamento do software e do hardware, além de citar aplicações práticas na agronomia.

Palavras-chave: Sistemas de Informações Geográficas, SIG's, Geoprocessamento

Introdução

A modernização da agricultura exige maior disponibilidade de informações, decisões mais rápidas e controle total sobre o que está ocorrendo no campo. O avanço da tecnologia e da ciência nos propiciou novas ferramentas, equipamentos de alta precisão e tecnologia como, satélites, Sistema de Posicionamento Global (GPS), radares fotografias aéreas, que nos fornecem informações instantâneas e preciosas. Neste sentido a adoção de Sistemas de Informações Geográficas fundamentais para uma rápida e precisa interpretação destas informações.

Tal sistema era inicialmente apenas utilizado para a elaboração de mapas, mas atualmente é utilizado na agricultura, controle florestal, gestão de bacias, meio ambiente, geologia, dentre outros.

Conceito

Um Sistema de Informação Geográfica é um sistema de informação baseado em computador que permite captar, modelar, manipular, recuperar, consultar, analisar e apresentar soluções com dados geograficamente referenciados, dados estes que estão armazenados em um banco de dados.

À consulta destes dados pode ser *espacial* ou por *atributos*.

Em geral a consulta de dados *espaciais*, geralmente responde a questões que têm a ver com a geografia do dado, portanto, os atributos descritos contidos no banco de dados não tem

propriedades que fazem vizinhança com a fazenda São Pedro".

Consulta por *atributos*, é relacionada com valores descritivos do dado armazenado. Exemplo, "mostre quais fazendas tem mais de 30 empregados, e mais de 1.000 hectares".

Um Sistema de Informação Geográfica é composto por dois componentes, o *software* e o *hardware*.

Software

O pacote de *software* utilizado para processar dados geográficos é composto por cinco subsistemas, são eles: *interface*, define como o sistema é controlado e operado; *entrada de dados*, converte dados capturados em forma digital compatível; *visualização e plotagem*, apresentam resultados em uma variedade de formas como mapas, imagens e tabelas; *transformação*, *consulta e análise espacial*, provê métodos para processamento de imagens e técnicas para consulta e análise espacial; e *gerência de dados espaciais*, organiza, armazena e recupera dados.

Hardware

Os componentes do hardware são apresentados na figura 1. O computador, ou Unidade Central de Processamento (UCP) é ligado à unidade de armazenamento, que contém dados e programas utilizados pelo sistema. A mesa digitadora é usada para converter dados analógicos (mapas e documentos) em dados digitais. A unidade de fita magnética ou disco ótico é utilizado

processados. Todos os periféricos

Fig 1.1 – Componentes do hardware

(mesas digitadora, unidade de disco, impressora e outros dispositivos ligados ao computador) são controlados através de um terminal de vídeo, que também poder ser usado para exibir os dados processados.

Aplicações Práticas na Agronomia

As ferramentas dos Sistemas de Informações Geográficas podem ser úteis na resolução de problemas enfrentados, ou para promover a modernização e adequação à legislação ambiental. Veja alguns exemplos:

· Agricultura Moderna

Mapeamento de nutrientes — a base para a identificação de problemas de baixa produtividade pode estar em mapas de distribuição de nutrientes, os quais são utilizados para correção de solo e correlação com mapas de produtividade. Estudos de distribuição de nutrientes do solo podem também ser úteis para o entendimento de fenômenos como doenças, perda de produtividade, morte ou não adaptação de espécies. O mapeamento pode ser realizado a partir de amostras de solos e conseqüente interpolação de dados nos Sistemas de Informações Geográficas.

Doenças e pragas (Fig. 2)

Localização e cadastro de informações em Banco de Dados — através de monitoramento aéreo ou terrestre, pode-se localizar focos de ocorrência e registrá-los quanto a sua localização e atributos como: área afetada, tipo de dano, data, etc. Estas informações servem de base para estudos de causas e efeitos, bem como, para o planejamento do combate.

Distribuição de danos – de acordo com o padrão e o tipo de distribuição de doenças e pragas, pode-se utilizar os dados coletados sobre localização e caracterização de focos para geração de superfícies interpoladas destes dados. Estas superfícies podem caracterizar a distribuição da doença ou praga, facilitando o monitoramento e minimizando os custos, bem como auxiliando o planejamento do controle e disseminação da doença.

Correlação de possíveis causas — utilizando-se a distribuição de focos ou superfícies interpoladas de distribuição pode-se realizar análises de sobreposição com possíveis causas. Por exemplo, pode-se tentar correlacionar a distribuição de uma doença com o tipo de solo.

Comparação dose aplicada x infestação – utilizando-se ainda a distribuição de focos, pode-se relacionar a ocorrência de uma doença ou praga com a dose ou manejo adotado, tentando com isto, determinar doses ou procedimentos adequados para o controle.

Controle fito-sanitário - mapeamento de ocorrências de doenças em culturas ou rebanhos e acompanhamento da evolução da doença como técnica de prevenção.

Fig 2 – O mapa demonstra focos de doença e áreas sucessíveis a doenças (verde)

Mecanização agrícola (Fig. 3)

Mapeamento de áreas mecanizáveis - o processo de aquisição de máquinas e planejamento da mecanização agrícola, pode se utilizar de mapas de áreas mecanizáveis. Estes mapas são gerados utilizando-se o mapa de declividade, o qual é dividido em classes de acerdo com o interesso de dividido em classes de acerdo com o interesso de

confrontado com dados dos Sistemas de Informações Geográficas.

Fig. 3 – Mapa de declividade do solo, áreas de grande declive são impróprias para a mecanização.

Meio Ambiente

Alocação de áreas de preservação permanente - utilizando-se os recursos de análise de distância, pode-se delimitar áreas de preservação em torno de rios e nascentes, bem como identificar regiões com alta declividade, de acordo com a legislação ambiental vigente.

Planejamento

Planejamento do uso da terra - planejar a ocupação de uma área, decidir o local para

instalação de reservas, realizar o zoneamento ambiental, escolher o melhor local para a instalação de uma unidade de produção, todas estas tarefas envolvem muitas variáveis e na maioria das vezes é muito difícil ter uma visão abrangente do problema para tomar a decisão correta. Os Sistemas de Informações Geográficas podem auxiliar a decisão, pois dispõe de ferramentas que integram informações de várias naturezas.

Referências Bibliográficas

- L. T. Hara, "Técnicas de Apresentação de Dados Geográficos", Tese de mestrado, INPE, agosto de 1997.
- http://www.trngeo.com/
- http://www.palm.com.br/geosphera/
- http://www.ciagri.usp.br/~ppap/
- http://www.decide-geo.com.br/