

آکادمی هوشمصنوعی هـوسـم | howsam.org

دوره رایستان آموزش بایتورچ رگرسیون خطی با بایتورچ

آنچه دیدید...

- ◄ دو قابلیت مهم پایتورچ که تازهکارها باید یاد بگیرند:
- ◄ محاسبات تنسوری (مانند نامپای)، البته با مزیت استفاده از GPU
 - ◄ ساخت شبکههای عصبی عمیق و آموزش مبتنی بر Autograd

آنچه خواهید دید...

◄ درک فرآیند آموزش و ارزیابی شبکههای عصبی

فهرست مطالب

- (Linear Regression) رگرسیون خطی
 - ◄ داده آموزش (ورودی و هدف)
 - مدل <
 - 🗖 تابع اتلاف
 - 🗖 الگوریتم بهینهسازی
 - ◄ فرآيند آموزش مدل
 - ارزیابی مدل آموزشدیده

رگرسیون خطی Linear Regression

رگرسیون خطی Linear Regression

تخمین رابطه بین ورودی (x) و خروجی پیوسته (y) با یک تابع خطی

فهرست مطالب

- 🖊 رگرسیون خطی (Linear Regression)
 - ◄ داده آموزش (ورودی و هدف)
 - مدل <
 - 🗖 تابع اتلاف
 - الگوریتم بهینهسازی
 - ◄ فرآيند آموزش مدل
 - ارزیابی مدل آموزشدیده

داده

میزان حقوق براساس تجربه کاری

	Experience Years	Salary	
1	1.1	39343	
2	1.2	42774	
3	1.3	46205	
4	1.5	37731	
5	2	43525	
36	9	105582	
37	9.5	116969	
38	9.6	112635	
39	10.3	122391	
40	10.5	121872	

	Experience Years	Salary	
1	1.1	39343	
2	1.2	42774	
3	1.3	46205	
4	1.5	37731	
5	2	43525	
36	9	105582	
37	9.5	116969	
38	9.6	112635	
39	10.3	122391	
40	10.5	121872	

$$\mathbf{X} = \begin{bmatrix} 1.1 \\ 1.2 \\ ... \\ 10.3 \\ 10.5 \end{bmatrix}_{40 \times 1} \quad \mathbf{y} = \begin{bmatrix} 39343 \\ 42774 \\ ... \\ 122391 \\ 121872 \end{bmatrix}_{40 \times 1}$$

مدل

مدل

مدل رگرسیون خطی

فهرست مطالب

- 🖊 رگرسیون خطی (Linear Regression)
 - ◄ داده آموزش (ورودی و هدف)
 - ◄ مدل
 - ◄ آموزش مدل
 - 🗖 تابع اتلاف
 - الگوريتم بهينهسازي
 - ◄ فرآيند آموزش مدل
 - ارزیابی مدل آموزشدیده

تفورس

Train

$$h(\theta) = \frac{\theta_1 x + \theta_0}{\kappa}$$

- تخمین مقادیر بهینه پارامترهای مدل
- ◄ دو روش رایج تعیین مقادیر بهینه پارامترها:
 - ✓ بهینهسازی (Optimization)
 - (Closed Form) حل بسته

آموزش مدل رگرسیون خطی با بهینهسازی

تابع اتلاف

تابع اتلاف

Mean Squared Error

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$

تابع اتلاف

Mean Squared Error

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$

بهینهسازی

بهينهسازي

بهينهسازي

$f(\theta) = 0.1 \, \theta^2$ 0.5 -2 4 -4 -0.5 -1.5

بهینهسازی: گرادیان کاهشی

گرادیان

$$L = \frac{1}{n} \sum_{i=1}^{n} (\theta_1 x_i + \theta_o - y_i)^2 \qquad \frac{\partial L}{\partial \theta_0} = ? \qquad \frac{\partial L}{\partial \theta_1} = ?$$

$$\frac{\partial L}{\partial \theta_{i}} = \frac{1}{n} \sum_{i=1}^{n} \forall x_{i} (\theta_{i} x_{i} + \theta_{i} - y_{i})$$

$$\frac{\partial L}{\partial \theta_{i}} = \frac{1}{n} \sum_{i=1}^{n} \forall x_{i} (y_{i} - y_{i})$$

$$\frac{\partial L}{\partial \theta_{i}} = \frac{1}{n} \sum_{i=1}^{n} \alpha_{i} (y_{i} - y_{i})$$

فرآیند آموزش مدل

آموزش مدل رگرسیون خطی با بهینهسازی

دیاگرام آموزش

(*x,y***) فراخوانی دیتاست**

 η و $\{\theta_0, \theta_1\}$ و اولیه پارامترها $\{\theta_0, \theta_1\}$

» برای *N* بار تکرار کن:

با x خروجی \hat{y} را محاسبه کن.

» اتلاف را محاسبه کن.

» گرادیان پارامترها را حساب کن.

» پارامترها را آپدیت کن.

» برو به ابتدای حلقه

» پایان

فهرست مطالب

- 🖊 رگرسیون خطی (Linear Regression)
 - ◄ داده آموزش (ورودی و هدف)
 - ◄ مدل
 - ◄ آموزش مدل
 - ◄ تابع اتلاف
 - الگوريتم بهينهسازي
 - ◄ فرآيند آموزش مدل
 - ◄ ارزیابی مدل آموزشدیده

ارزیابی

ارزیابی Evaluation/Test

ارزیابی مدل آموزشدیده روی دادههای جدید

دیاگرام ارزیابی

Start

Load Test Dataset {X, y}

Load Trained Model

$$\hat{y}_i = \theta_1 x_i + \theta_0; i = 1 \dots n$$

$$\mathcal{M} = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$

End

معیارهای ارزیابی

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_{p_i} - y_{t_i})^2$$

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |y_{p_i} - y_{t_i}|$$

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_{p_i} - y_{t_i})^2}$$

$$R^{2} = 1 - \frac{\sum_{i} (y_{t_{i}} - y_{p_{i}})^{2}}{\sum_{i} (y_{t_{i}} - \overline{y_{t}})^{2}}$$

مطالعه بيشتر

- 🧸 گرادیان کاهشی 🌐
- 🥏 رگرسیون خطی 🌐