

What is Naive Bayes?

A classification method that works on the principles of conditional probability as given by the Bayes' theorem:

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Thomas Bayes 1702 - 1761

Why "Naive"?

Because it assumes that features are independent of each other.

Probabilities - Marginal Probability

- Tweets dataset (12) labelled either: positive (8 in green) or negative (4 in red)
- Scenario A: probability of one event happening, P(A) or P(B)
- P(positive) = N(positive)/N(total) = 8/12 = 0.66
- P(negative) = 1 P(positive) = 0.34

Dataset

Probabilities - Joint Probability

- Scenario B: probability of two (or more) events happening at the same time,
 P(A, B) or P(B, A)
- I.e. Tweets that are positive and contain the word "happy"
- Overall we have 4 tweets containing the word "happy", 2 of which are positive tweets
- P("happy", positive) = P("happy" ∩ positive) = 2/20 = 0.1

Probabilities - Conditional Probability

- Wikipedia: "Conditional probability is a measure of the probability of an event occurring, given that another event has already occurred"
- Scenario C: probability of one (or more) events happening given an occurrence of another event, P(A given B) or P(A | B)
- I.e. Tweets that are positive given it contains the word "happy"
- Use joint probability
- P(positive | "happy") = P(positive \cap "happy")/P("happy") = 2/4 = 0.5

Probabilities - Conditional Probability

• P("happy" | positive) = P("happy" \cap positive)/P(positive) = 2/8 = 0.25

Note:
 P(A | B) != P(B | A), but P(A ∩ B) = P(B ∩ A)

Introducing Bayes' Rule

- We saw that:
 - P("happy" | positive) = P("happy" ∩ positive)/P(positive)
 - P(positive | "happy") = P(positive ∩ "happy")/P("happy")

- Now we can derive Bayes' rule:
 - P(positive | "happy") = P("happy" | positive)*P(positive)/P("happy")

Bayes' Rule

In general:

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

- P(X|Y) => Posterior Probability; Probability of X given Value of Y.
- P(Y|X) => Likelihood of Y given X is True.
- P(X) => Prior Probability; Probability of event X.
- P(Y) => Evidence; Probability of event Y.

Posterior = Likelihood * Prior / Evidence

Bayes' Rule

What is the probability that there is fire given that there is smoke, P(Fire|Smoke)?

- Where:
 - P(Fire) is the Prior,
 - P(Smoke|Fire) is the Likelihood, and
 - P(Smoke) is the evidence:

P(Fire|Smoke) = P(Smoke|Fire) * P(Fire) / P(Smoke)

!!!QUESTION ALERT!!!

What is the probability that the sentence "ML Bootcamp is awesome!" is positive?

Given that:

40% of positive tweets contain the word "awesome", A total of 30% of the tweet contain the word "awesome", and 60% of the total number of tweets are positive

- 1. P(positive | "awesome") = 0.2
- 2. P(positive | "awesome") = 0.8
- 3. P(positive | "awesome") = 0.5
- 4. P(positive | "awesome") = 0.9

• Real-world: $P(C \mid A_1, A_2 ... A_n)$

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes the top expression
- Basically: $P(C \mid A_1A_2...A_n) = P(A_1, A_2, ..., A_n \mid C) * P(C)$

How do we estimate $P(A_1, A_2, ..., A_n \mid C)$?

Assume independence for each A given C:

$$P(A_1, A_2, ..., A_n \mid C) = P(A_1 \mid C) P(A_2 \mid C) ... P(A_n \mid C)$$

We can estimate P(A_i | C)

Under the previous independence assumptions

$$p(C_k \mid x_1, \dots, x_n) = rac{1}{Z} p(C_k) \prod_{i=1}^n p(x_i \mid C_k)$$

 Where Z is the evidence, P(x), and dependent only on x₁, ..., x_n which is a constant if feature variables are known

Naive Bayes Classifier

• With the previous model combined with a decision rule (*maximum a posteriori* or *MAP*) we get our classifier:

$$\hat{y} = \operatorname*{argmax}_{k \in \{1, \ldots, K\}} p(C_k) \prod_{i=1}^r p(x_i \mid C_k)$$

The Zero-Probability Problem!

When an instance in test dataset has a category that was not present during

training.

The Zero-Probability Problem!

- Solution: Laplace smoothing
- Add one to the count for every attribute value-class combination
- Without smoothing:

$$P(A_i = a \mid C = c) = \frac{N_{ac}}{N_c}$$

With smoothing:

$$P(A_i = a \mid C = c) = \frac{N_{ac} + 1}{N_c + N_i}$$

The Zero-Probability Problem!

Vanishing Value Problem!

- Happens when multiplying many very small numbers
- Number get very small and close to zero => numerical underflow
- Can fix by computing the logarithm of the conditional probability

$$\log P(C|A) \sim \log P(A|C) + \log P(A)$$

$$= \sum_{i} \log(A_{i}|C) + \log P(A)$$

Handling Continuous Attributes

- One way is to discretize each continuous attribute and then replace the continuous attribute value with its corresponding discrete interval
- Another way is by assuming a certain form of probability distribution for the continuous variables and estimate the parameters of the distribution using the training data:

$$P(X|Y=c) = \frac{1}{\sqrt{2\pi\sigma_c^2}} e^{\frac{-(x-\mu_c)^2}{2\sigma_c^2}}$$

Naive Bayes Classifiers

- Multinomial Naive Bayes
 - Assumes discrete features
- Bernoulli Naive Bayes
 - Assumes binary features
- Gaussian Naive Bayes
 - Assumes continuous features

Advantages

- Relatively simple to understand and implement
- Fast to train and classify compared to other models
- Can perform better than other models on a small dataset
- Not sensitive to irrelevant features
- Handles both continuous and discrete features
- Can be used for binary or multi-class problems
- Works well with high dimensions

Disadvantages

- Naive! assumes all features are independent
- Treats all attributes equally
- Vanishing value
- Zero probability problem
- Smoothing is an over-head
- Continuous value attribute problem

Trending Applications

- Text classification, i.e.:
 - Spam filtering
 - Sentiment analysis
- Medicine, i.e.:
 - Disease detection based on genome wide data
- Image classification, i.e.:
 - Face recognition

Support Vector Machines

Hayden Fiege E.I.T.

What is SVM?

 A powerful and versatile ML model developed by Vladimir Vapnik and colleagues in the early 90's. SVM can be used for linear and non-linear classification and regression, for outlier detection, for clustering and more.

$$\min_{\beta^{\wedge}, \beta^{\vee}} \frac{1}{2} \sum_{i=1, j=1}^{m} (\beta_{i}^{\wedge} - \beta_{i}^{\vee}) (\beta_{j}^{\wedge} - \beta_{j}^{\vee}) K_{ij} + \sum_{i=1}^{m} (\varepsilon - y^{(i)}) \beta_{i}^{\wedge} + (\varepsilon + y^{(i)}) \beta_{i}^{\vee}$$

$$S.t : \sum_{i=1}^{m} (\beta_{i}^{\wedge} - \beta_{i}^{\vee}) = 0$$

$$0 < \beta_{i}^{\wedge} < C, i = 1, 2, ..., m$$

$$0 < \beta_{i}^{\vee} < C, i = 1, 2, ..., m$$

Linear SVM – Multiple Lines

Linear SVM – Optimal Hyperplane

What is a hyperplane?

Hyper plane equation $\rightarrow w \cdot x + b = 0$

Linear SVM

Max Margin

Max Margin

SVM objective function

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

Regularization term:

- Maximize the margin
- Imposes a preference over the hypothesis space and pushes for better generalization
- Can be replaced with other regularization terms which impose other preferences

Empirical Loss:

- Hinge loss
- Penalizes weight vectors that make mistakes
- Can be replaced with other loss functions which impose other preferences

A hyper-parameter that controls the tradeoff between a large margin and a small hinge-loss

C hyperparameter

Large C: Lower bias, high variance i.e. More prone to over fitting

Small C: Higher bias, low variance i.e. More prone to under fitting

How do we separate the data with SVM?

Non-linear SVM

Non-linear SVM

Kernel Trick

- It is a scientific term with the name trick in it (Exciting!)
- Provides mapping for linear learning algorithms to work on non-linear data
- The function must meet the definition provided in Mercers theorem to be a Kernel Function
- The functions employ mathematical tricks that allow the functions to operate in a higher-dimension without ever computing the coordinates of the data in that space

Some of the Kernel Types

- polynomial: $(\gamma\langle x,x'\rangle+r)^d$, where d is specified by parameter degree, r by coefø.
- rbf: $\exp(-\gamma ||x-x'||^2)$, where γ is specified by parameter gamma, must be greater than 0.
- sigmoid $\tanh(\gamma\langle x,x'\rangle+r)$, where r is specified by coef0.

Other kernels: String kernel, chi-square kernel, histogram intersection kernel, etc.

Main Types of Kernels

Radial Basis Function (RBF) Kernel

 $RBF: e^{-\gamma ||x-y||^2}$

Image source: http://www.cs.toronto.edu/~duvenaud/cookbook/index.html

Radial Basis Function (RBF) Kernel

Radial Basis Function (RBF) Kernel

Polynomial Kernel

Polynomial Kernel

$$d = 2 d = 3 d = 5$$

Multi-class SVM

Multi-class SVM

One versus one

Application of SVM

Thursday, August 7, 2014

WITHOUT TEARS SERIES | www.diggdata.in

Support Vector Regression (SVR)

- Works by changing the objective function
- We want to fit as many points on the street as possible
- Scikit-learn's sklearn.svm.SVR class is used for linear and non-linear SVM Regression
- Some of our inputs are kernel type, C, epsilon, and gamma for RBF, Polynomial, and Sigmoid kernels
- SVR does not scale well to large data sets

SVR

SVR

Advantages

- Easy to implement and understand and provides powerful base-line predictions
- Few hyperparameters and therefore hyperparameter tuning
- Memory efficient
- Kernel Tricks
- Versatile in:
 - Types of data
 - Number of dimensions
 - Number of classes

Disadvantages

- Mapping the data to a higher dimension could lead to overfitting the model
- Results are dependent on our choice for the C parameter
- Choosing the correct kernel function for high dimensional data and data regularization are very crucial steps
- Performs poorly on very noisy or very large data sets
- Required balanced data

Trending Applications

- General
 - Facial detection
 - Text and Hypertext Categorization
 - Handwriting classification
- Medical
 - Cancer Classification
 - Protein remote homology detection

Questions?

K-Nearest Neighbors

What is K-Nearest Neighbors?

Basic idea: "If it walks like a duck, quacks like a duck, then it's probably a duck!"

Laziness of K-NN!

https://slideplayer-com.cdn.ampproject.org/c/s/slideplayer.com/amp/9533188/

K-Nearest Neighbors

- Classification: k-nearest neighbors common class
- Regression: k-nearest neighbors average value

K-Nearest Neighbors

- K-NN requires:
 - Sample records
 - Distance metric
 - Value of k
 - Weights of neighbors
- To classify a new record:
 - Compute distances
 - Identify k nearest records
 - Use common class or average value of k nearest records

Distance Functions

Various functions could be used, most commonly used in K-NN are:

- Minkowsky (for continuous variables)
- Euclidean (for continuous variables)
- Manhattan (for continuous variables)
- Hamming (for discrete variables)

Minkowski, Manhattan and Euclidean Functions

- Used for continuous variables
- Computes distance between two points, A and B in a feature space with k dimensions: $A = (x_1, x_2,...,x_k)$, $B = (y_1, y_2,...,y_k)$

Simple Example with Euclidean

Customer	Age	Loan	Default
John	25	40000	N
Smith	35	60000 80000 20000 120000 18000 95000 62000 100000 220000 150000	N N N N Y Y Y
Alex	45		
Jade	20 35 52 23 40 60 48 33		
Kate			
Mark			
Anil			
Pat			
George			
Jim			
Jack			
Andrew	48	142000	?

We need to predict Andrew default status by using Euclidean distance

https://towards datascience.com/a-simple-introduction-to-k-nearest-neighbors-algorithm-b3519ed98e

Simple Example with Euclidean

Customer	Age	Loan	Default	Euclidean distance	Minimum Euclidean Distance
John	25	40000	N	1,02,000.00	
Smith	35	60000	N	82,000.00	
Alex	45	80000	N	62,000.00	5
Jade	20	20000	N	1,22,000.00	
Kate	35	120000	N	22,000.00	2
Mark	52	18000	N	1,24,000.00	
Anil	23	95000	Y	47,000.01	4
Pat	40	62000	Υ	80,000.00	
George	60	100000	Y	42,000.00	3
Jim	48	220000	Υ	78,000.00	
Jack	33	150000	Y	8,000.01	1
Andrew	48	142000	?		

Let assume K = 5

Find minimum euclidean distance and rank in order (ascending)

In this case, 5 minimum euclidean distance. With k=5, there are two Default = N and three Default = Y out of five closest neighbors.

We can say Andrew default stauts is 'Y' (Yes)

https://towardsdatascience.com/a-simple-introduction-to-k-nearest-neighbors-algorithm-b3519ed98e

Hamming Distance Function

- Used for categorical variables
- Computes the number of instances in which corresponding symbols are different in two strings of equal length
- Number of attributes where x, x' differ

$$D(x,x') = \sum_{d} \mathbf{1}_{x_d \neq x'_d}$$

Choosing Best K

- No single value of K that will work with every dataset!
- Usually in binary classification, an odd value for K tends to work better than an even value
- Generally, increasing K makes it more precise; tends to smooth out decision boundaries, which will avoid overfitting at the cost of resolution
- We can inspect the data to choose an optimal K value, but usually we perform cross-validation to determine good K value

Choosing Best K

1-nearest neighbours

20-nearest neighbours

Cross-Validation

Most commonly used is k-fold cross-validation

https://scikit-learn.org/stable/modules/cross_validation.html

!!!QUESTION ALERT!!!

In the graph below which is the best value of K to pick for our K-NN algorithm?

$$2-K = 25$$

$$3-K = 48$$

$$4-K = 32$$

Weights of Neighbors

This can be either:

- Uniform: where each point in the neighborhood is weighted equally towards the decision of the classification
- **Distance**: where points are weighted by the inverse of their distance. Closer points will have greater influence than points that are further away

Weighted vs Uniform

 $https://scikit-learn.org/stable/modules/neighbors.html \verb|#class| if ication$

Advantages

- No training overhead therefore time efficient
- Very easy to implement as calculations only include the distance between different points
- As there is no training period thus new data can be added at any time since it won't affect the model
- Normalizing the data can dramatically improve the model accuracy
- Handles multi-class cases

Disadvantages

- Very expensive to calculate distances when dataset is large
- Minimal training but expensive testing
- Need to determine the value of K (number of nearest neighbors)
- Doesn't work well in high dimensional datasets
- Sensitive to noisy and missing data
- Could produce different distance measures from the same training data
 computed before and after normalization/standardization
 - computed before and after normalization/standardization
- Standardizing features is a drawback

Trending Applications

- Usually in search applications when looking for similar items; i.e. document concept search
- Very popular in recommendation systems
- Used in medical sector, i.e. finding diabetics ratio