

Pipeline Systolic Reconfigurable Fixed-Point Accelerator

文章计划

Background

- 如上图,脉动阵列的Psum长度会随着多次累加的长度而上升(对数上升),其使得加法器的一个input及output长度的增加,从而增加了Logic-Level,增加延时。
- 混合精度加速器的基础W/X带宽为2bit,而log2(256)=8。对于低精度脉动阵列而言,这部分增加的延时对乘加速度有很大影响。

Background

- 以2bit*2bit为基本MAC单元的阵列,当阵列宽度达到N=256时,加法的Logic-Level(延时)是**乘法**的3倍。
- 若对MAC采取分段式运行4-states Pipeline,则能提高4倍的运行速度。

Architecture of PE

2 states:

1 states:

3 states:

[t+1]states:

 $X_{\text{in}} \xrightarrow{Y_{\text{in}2}} \cdots \xrightarrow{Y_{\text{in}\lceil t\rceil}} X_{\text{out}}$

- 左图是多级pipeline的设计
- PE内部的pipeline长度依据 y_{in}的长度积累
- 阵列中第n排PE的架构相同 ,每当log2(n)为整数时, psum位宽+1。
- 位宽没增加a+b bit,新增 1state的pipeline
- 乘法器-加法器的寄存器为 a+b bit
- 加法器-加法器的寄存器为 1bit
 - 从2states开始,每增加一级pipeline,其边际成本=1bit寄存器

3

Pipeline + Systolic

如图,以3-states PE,脉动长度=4为例

- X_{in1} X_{in4}分别在clk0 clk3输入给PE1 PE4。
- y_{in1},y_{in1}分别在clk1,clk2输入给PE1。
- X_{in}一个clk后与PE内部的权重W相乘后生成的乘积X*W
- 乘积与y_{in1} 相加的C_{out1}与y_{in2}相加
- 在某些情况(n为2的指数)下, C_{out1}与y_{in2}相加会产生C_{out2}
- y₁, y₂在PE中流动,相隔1clk,分别
- Cout2在clk7时从PE4输出

PE Array

- 增设了pipeline的脉动阵列的 输入&控制行为与传统脉动 阵列相同。
- 由于增设了pipeline,输出数据为多段数据,相邻数据段相隔1clk延迟输出。

Architecture of Reconfigurable Accelerator

- 加速器采用TPU架构,采用先脉动再移位的思想。在加速器层次进行多精度可重构设计。
- 每层阵列的精度为2bit*2bit, 共16层阵列。可支持2-8bit混合精度数据进行矩阵乘法计算。
- 阵列模块后接累加模块&移位模块。累加也采用pipeline加法。

Evaluation and Comparison

PE Comparison	(1) Bit fusion (2) Bit serial
Accelerator Comparison	(1) TPU (2) Eyeriss
Evaluation	Vgg / Alexnet
Evaluation	(1) Power(2) Area(3) Latency/speed(4) Performance (Gops)/Efficiency (Gops/W) (Mixed precision)

投稿相关信息

时间	周俊卓	满昌海	罗君益
3.29-4.11			
4.12-4.25			
4.26-5.16	多层PE阵列多	らって 4大 1 世 7争	
5.17-5.23	加速器总线接口设计	测试模型训练&转化	SoC系统搭建
5.24-6.6	加速器SoC整	立 李亚达初八	
6.7-6.20	FPGA	文章理论部分	
6.21-7.26			

	abstract deadline	deadline	length
ASPDAC	2021.7.26	2021.7.26	8 pages
DATE	2021.9.14	2021.9.21	6 pages