Associative Proc.

Activity Report

Alejandro Juárez Lora, December 4, 2023

Two stage opamp

Figure 9.23 Simple implementation of a two-stage op amp.

Computing Overdrive voltages

Figure 9.23 Simple implementation of a two-stage op amp.

Voltage at inner branch

Nov = Novs | + Vx + Vapi + Vapa

With Vx = 0.1 Npp = 0.1 · 1.4 = 0.14

Vapi + Noval + Vapa = 1.8 V - 0.14

Vinbranch = 1.66 V

Asigning $V_{opq} = (0.2) \cdot [.66 = 0.33V]$ $V_{ops} = (0.55) \cdot [.66 = 0.415]$ $V_{op} = (0.25) \cdot [.66 = 0.3]$

Computing Overdrive voltages

Figure 9.23 Simple implementation of a two-stage op amp.

Voltage at outer branch

$$V_{dd} - V_{5S} = V_{ODS} + V_{OVH} + V_{DD7}$$

$$- (V_{ODS} + V_{OD7} = V_{DD} - V_{5S} - V_{OVH})$$
Setting $V_{OVH} = 0.5 V_{PP} = 1.4 V$

$$V_{OPS} + V_{OD7} = 1.8 - 0 - 1.4 = 0.9$$
Assigning

 $|V_{0D5}| = (Y_4) \cdot 0.4 = 0.1V$ $V_{0D7} = (34) \cdot 0.4 = 0.3V$

Computing Bias voltages

Figure 9.23 Simple implementation of a two-stage op amp.

Assigning currents

Figure 9.23 Simple implementation of a two-stage op amp.

Getting the available cumat Isograf = b mb = 5.5 mA
Asigning bias current equally = tadget = 69.4 NA

Computing Sizes

Figure 9.23 Simple implementation of a two-stage op amp.

$$V_{1} = V_{2} = V_{3} = V_{4} = V_{4$$

$$V_n$$
 ($\infty = 265e^{-6}$

Figure 9.23 Simple implementation of a two-stage op amp.

Designing the current mirror

Designing the current mirror

The VISS ISS =
$$\frac{(w/L)_0}{(w/L)_{10}}$$
 Iref = $\frac{Vdd}{R_1}$

When $\frac{Vd}{R_1}$ $\frac{Vd}{R_2}$ $\frac{Vd}{R_1}$ $\frac{Vd}{R_2}$ $\frac{Vd}{R_2}$ $\frac{Vd}{R_1}$ $\frac{Vd}{R_2}$ \frac