4. Logical Equivalences

Example 4.1. Using a truth table, verify each of the following laws from The Table of Logical Equivalences:

 $\diamond \quad p \wedge \mathbf{T} \equiv p \tag{Identity Law}$

 $\diamond \quad p \lor \mathbf{F} \equiv p \tag{Identity Law}$

 $\diamond \quad p \lor \mathbf{T} \equiv \mathbf{T}$ (Domination Law)

 $\diamond \quad p \wedge \mathbf{F} \equiv \mathbf{F}$ (Domination Law)

 $\diamond \quad p \lor \neg p \equiv \mathbf{T}$ (Negation Law)

 $p \wedge \neg p \equiv \mathbf{F} \tag{Negation Law}$

Identity Laws:	p p/T p/T ↔ p	φΛT ≡ Φ
	TTT	pΛT≡p because pΛT⇔p is a tautology.
	FIFIT	paterp is a tautology.
	p pVF pVT \rightarrow p	PVT=p
	T T T	because
	FIFIT	pVT -p is a tautology.
Domination Laws:	p pVT pVT↔ T	PVT≡ T
	 	because
	FITITION	pvT T is a tautology.
	p p ∧ F p ∧ F ↔ F	$\varphi \land F \equiv F$
	TFT	PΛF≡F because
	FFFT	p∧F↔F is a tautology.
Negation Laws:	-p -pV7p -pV7p↔ T	$\rho = T$
		p√7p≡T because
	+ + + + + + + + + + + + + + + + + + + +	pV-p -> T is a tautology.
	$p \mid p \land \neg p \mid p \land \neg p \leftrightarrow F$	
	TIF	pΛF≡F because
	FFT	p∧F↔F is a tautology.

^{*} These notes are solely for the personal use of students registered in MAT1348.

The Table of Logical Equivalences

P→Q isTW	her
Pis For Q is	Т

2 ways to think about

out of P/7P exactly one is T and other is F.

,	1.	$P \to Q \equiv \neg P \vee Q$	Implication Law
	2.	$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$ $P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$	Biconditional Laws
	4. 5.	$P \vee \neg P \equiv \mathbf{T}$ $P \wedge \neg P \equiv \mathbf{F}$	Negation Laws
	6. 7.	$P \vee \mathbf{F} \equiv P$ $P \wedge \mathbf{T} \equiv P$	Identity Laws
	8. 9.	$P \lor \mathbf{T} \equiv \mathbf{T}$ $P \land \mathbf{F} \equiv \mathbf{F}$	Domination Laws
	10. 11.	$P \lor P \equiv P$ $P \land P \equiv P$	Idempotent Laws
	12.	$\neg\neg P \equiv P$	Double Negation Law
	13. 14.	$P \lor Q \equiv Q \lor P$ $P \land Q \equiv Q \land P$	Commutative Laws
	15. 16.	$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$ $(P \land Q) \land R \equiv P \land (Q \land R)$	Associative Laws
	17. 18.	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$	Distributive Laws
	19. 20.	$\neg (P \land Q) \equiv \neg P \lor \neg Q$ $\neg (P \lor Q) \equiv \neg P \land \neg Q$	De Morgan's Laws

a bit like factoring

a way to switch Λ/V with 77

HOW TO USE THE LAWS IN THE TABLE OF LOGICAL EQUIVALENCES

Example 4.2. Prove $(x \wedge y) \vee (x \wedge \neg y) \vee (\neg x \wedge y) \equiv x \vee y$

$$(x \wedge y) \vee (x \wedge \neg y) \vee (\neg x \wedge y) \equiv [x \wedge (y \vee \neg y)] \vee (\neg x \wedge y)$$
 (distributive law)

$$= [X \wedge T] \vee (IX \wedge Y)$$
 (negation law)

$$\equiv (x) \vee (\neg x \wedge y)$$
 (identity law)

$$\equiv (XV7X) \land (XVY)$$
 (distributive law)

$$= T \Lambda(X \vee Y)$$
 (negation law)

$$\equiv xvy$$
 (identity law)

$% (x_{Ny})V(x_{N-1}y)V(x_{N-1}y) \equiv x_{N-1}y$

Example 4.3. Prove that $(a \land \neg b) \land (\neg a \lor b)$ is a contradiction Note contradiction $\equiv \vdash$

$$(an + b) \wedge (+a \vee b) \equiv a \wedge (+b \wedge (+a \vee b))$$
 (associative law)

$$\equiv a \Lambda [(\neg b \Lambda \neg a) V(\neg b \Lambda b)]$$
 (distributive law)

$$\equiv a \Lambda \left[(7b \Lambda 7a) \vee F \right]$$
 (negation law)

$$\equiv a \wedge [\neg b \wedge \neg a]$$
 (identity law)

$$\equiv a \wedge (7a \wedge 7b)$$
 (commutative law)
 $\equiv (a \wedge 7a) \wedge 7b$ (associative law)
 $\equiv F \wedge 7b$ (negation law)

= F (domination law)

 $(an + b) \land (a + b) \equiv F$ so $(an + b) \land (a + b)$ is a contradiction.

Example 4.4. Find a DNF for $(p \rightarrow q) \lor (\neg (p \lor q) \land r)$

$$(P \rightarrow q)V(T(pVq)\Lambda r) \equiv (TpVq)V(T(pVq)\Lambda r)$$
 (implication law)
$$\equiv TpVqV(T(pVq)\Lambda r)$$
 (associative law)
$$\equiv TpVqV((Tp\Lambda Tq)\Lambda r)$$
 (De Morgan's law)
$$\equiv TpVqV(Tp\Lambda Tq\Lambda r)$$
 (associative law)
$$conjunctive conjunctive clause clause clause clause$$

*• $(p \rightarrow q)V(\tau(pvq)\Lambda r) \equiv \tau p V q V(\tau p \Lambda \tau q \Lambda r)$ and this is in DNF since it's a disjunction of conjunctive clauses.

Example 4.5. Find a compound proposition that is logically equivalent to $X \wedge Y$ that uses only the logical connectives \rightarrow and \neg .

$$X \wedge Y \equiv 77(X \wedge Y)$$
 (double negation law)
 $\equiv 7(7 \times V + Y)$ (De Morgan's law)
 $\equiv 7(X \rightarrow 7Y)$ (implication law)

Thus, we found a proposition $\Im(X\to 7Y)$ such that $X\wedge Y \equiv \Im(X\to 7Y)$ and $\Im(X\to 7Y)$ uses only the logical connectives \to and \Im .

Example 4.6. Find a compound proposition that is logically equivalent to $p \to (q \lor r)$ that uses only the logical connectives \neg and \land .

$$P \rightarrow (q V r) \equiv \tau_p V(q V r)$$
 (implication law)
$$\equiv \tau_1 \left[\tau_p V(q V r)\right] \text{ (double negation)}$$

$$\equiv \tau_1 \left[\tau_p \Lambda \tau(q V r)\right] \text{ (De Morgan's law)}$$

$$\equiv \tau_1 \left[\tau_p \Lambda \tau(q V r)\right] \text{ (double negation law)}$$

$$\equiv \tau_1 \left[\tau_p \Lambda (\tau_q \Lambda \tau_r)\right] \text{ (De Morgan's law)}$$

Thus, $P \rightarrow (q V r) \equiv \neg [p \land (\neg q \land \neg r)]$ and $\neg [p \land (\neg q \land \neg r)]$ uses only the logical connectives \neg and \land .

*A collection of logical connectives is called <u>functionally complete</u> if every compound proposition is logically equivalent to a compound proposition involving only these logical connectives.

Exercise ? Show that $\{-7,\rightarrow\}$ is functionally complete.

STUDY GUIDE

Important terms and concepts:

- DNF (atoms, literals, conjunctive clauses)
 how to find DNF from a truth table
- ♦ The Laws from the Table of Logical Equivalences

Exercises

Sup.Ex. §1 # 7c (using the Laws)

Sup.Ex. §2 # 1, 2, 3, 4, 5, 7, 8, 11, 15

Rosen §1.3 # 7, 11, and using the Laws: # 22, 23, 24, 25, 26, 27, 28, 29, 30

**For each of the following, find a compound proposition that uses only the connectives \neg and \rightarrow

i. $p \lor q$ ii. $p \land q$ iii. $p \oplus q$ iv. $p \leftrightarrow q$

Rosen §1.3 optional: # 44, 45, 46, 47, 48, 49, 50, 51, 52