Part I Syllabus - Fundamental Underlying Layers

ate	Subject	File
Veek 1: /Jan/2023 1/Jan/2023	Introduction: course logistics and Internet history	M1-L1-Introduction.pptx
	Layered Network Architecture	First part of M1-L2-Network Layer & Physical Resilience.pptx

Second part of M1-L2-Network Layer &

Physical Resilience.pptx

M1-L3-DLL-Flow Control.pptx

M1-L4-DLL-Error Control.pptx

M1-L5-LAN-Introduction.pptx

First part of M1-L7-LAN-Ethernet.pptx

Second part of M1-L7-LAN-Ethernet.pptx

M1-L6-LAN-MAC.pptx

M1-L8-LAN-WLAN.pptx

M1-L10-Paradigms.pptx

M1-L10-Paradigms.pptx

M1-L9-Mobile.pptx

Physical Layer: Network Resilience

Data link layer – Flow control

Data link layer – Error control

Local area network – MAC

Local area network – Ethernet

Local area network – WLAN

E-learning for Network paradigms

Mobile Access Networks

Network paradigms

Local area network – Ethernet Evolutions

Local area network – Introduction

Da

W 9/.

Week 2.

Week 3:

Week 4:

Week 5:

Week 6:

Week 7:

16/Jan/2023

18/Jan/2023

25/Jan/2023

30/Jan/2023

01/Feb/2023

06/Feb/2023 08/Feb/2023

13/Feb/2023

15/Feb/2023

20/Feb/2023

22/Feb/2023

Additional Materials

- The related content talked today in https://eclass.teicrete.gr/modules/document/file.php/TP326/%CE%98 https://eclass.teicrete.gr/modules/document/file.php/TP326/%CE%98 https://eclass.teicrete.gr/modules/document/file.php/TP326/%CE%98 https://eclass.teicrete.gr/modules/document/file.php/TP326/%CE%98 https://ecbas.teicrete.gr/modules/document/file.php/TP326/%CE%98 <a href="https://ecbas.teicrete.gr/modules/document/file.gr/modules/document/file.gr/modules/document/file.gr/modules/document/file.gr/modules/document/file.gr/modules/document/file.gr/modules/document/file.gr/modules/document/file.gr/modules/document/file.gr/modules/documen
 - WiFi: 802.11 Wireless LANs: Page 526 Page 546
 - Cellular Internet Access: Page 547 Page 555
 - Mobility Management: Principles: Page 555 Page 564
- You can also find other video materials about
 - 802.11 WiFI https://www.youtube.com/watch?v=t3FVP5wuG4g
 - Wireless Communication https://www.youtube.com/watch?v=8T7orRAQgic&list=PLCyR4nKNLRkFTER9ohRBnbR FK0pWe0Qtf&index=1&t=61s

Mobile Access

@ MAZK ANDERSON, WWW.ANDERTOONS.COM

ANDERSON

"The best part is there's no roaming charges!"

SC2008/CZ3006/CE3005 Computer Network

Lecture 9
Mobile Access Networks:
From 1G to 5G

(Not Examinable)

Contents

Wireless Link Standards

- 802.11 (Wi-Fi)
- Cellular (1G to 5G)
- 802.15 (e.g., ZigBee)
- 802.16 (WiMax)

Cellular Networks

- Network architecture
- MAC protocols
- 1G to 5G

Mobility handling

- Mobility vocabulary
- Indirect routing
- Direct routing

Wireless Link Standards

Cellular Networks: 16 to 56

Boost of Mobiles

Estimated number of mobile-cellular subscriptions, Internet users and fixed-telephone subscriptions, 2005-2013 (Billions)

* Data for 2012 and 2013 are preliminary estimates.

Cellular Network Architecture

Interconnection of Cellular Networks

different cellular networks, operated by different providers

Cellular Network: The First Hop

- Two techniques for sharing mobile-to-BS radio spectrum
 - Combined
 FDMA/TDMA: divide
 spectrum in
 frequency channels,
 divide each channel
 into time slots
 - CDMA: code division multiple access

Handover and Roaming

- Handover: transfer a call or data session from one cell to another within the same cellular network
 - Handled by Mobile Switching Center (MSC), no charge
- Roaming: the mobile moves from its home cellular network to a foreign network

Roaming

1G: analog, 3 decades ago

3G: up to 14Mbps **4G:** up to 300Mbps

Last decade

2G/2.5G: 50-384kbps, 2 decades ago

5G: up to 430Mbps using sub-6GHz up to 10Gbps using >24GHz

From 2019

- 2G systems: voice channels
 - IS-136 TMDA: combined FDMA/TDMA (North America)
 - GSM (global system for mobile communications): combined FDMA/TDMA
 - Most widely deployed
 - IS-95 CDMA: code division multiple access

Don't drown in a bowl of alphabet soup: use this for reference only

- 2.5G systems: voice and data channels
 - 2G extensions: for those who can't wait for 3G
 - General packet radio service (GPRS)
 - Evolved from GSM
 - Data sent on multiple channels (if available)
 - Enhanced data rates for global evolution (EDGE)
 - Also evolved from GSM, using enhanced modulation
 - Data rates up to 384kbps
 - CDMA-2000 (phase 1)
 - Data rates up to 144kbps
 - Evolved from IS-95

2G (voice) Network Architecture

2.5G (Voice+Data) Network Architecture

data network operates in parallel

Serving GPRS Support Node (SGSN)

Gateway GPRS Support Node (GGSN)

3G systems: voice + data

- Universal Mobile Telecommunications Service (UMTS)
- CDMA in TDMA slots
- Data service: up to 14 Mbps

4G systems: data

- All-IP network: voice in data packets
- New wireless access technologies: OFDM, MIMO, etc
- Data rate: up to 300 Mbps

- 5G systems: massive data
 - Microwaves (4G) + millimeter waves (high bandwidth)

Mobility (Roaming) Handling

What Is Mobility?

Spectrum of mobility, from the network perspective:

Mobility: Vocabulary

home network: permanent

"home" of mobile (e.g., 128.119.40/24)

home agent: entity that will perform mobility functions on behalf of mobile, when mobile is remote

wide area network

Permanent address:

address in home network, can always be used to reach mobile e.g., 128.119.40.186

Mobility: Vocabulary

Mobility: Approaches

- Let routing handle it: routers advertise permanent address of mobile-nodes-inresidence via usual routing table exchange
 - Routing tables indicate where each mobile located
 - No changes to end-systems
- Let end-systems handle it:
 - Indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - Direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: Approaches

- Let routing handle it routers advertise permanent add not obile-nodes-in-residence via scalable to millions of mobiles are each mobile located
 Routing tables mobiles are each mobile located
 No changes to endergreems
- Let end-systems handle it:
 - Indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - Direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: Registration

• End result:

- Foreign agent knows about mobile
- Home agent knows location of mobile

Mobility via Indirect Routing

Indirect Routing: Comments

Mobile uses two addresses

- Permanent address: used by correspondent (hence mobile location is transparent to correspondent)
- Care-of-address (Foreign address): used by home agent to forward datagrams to mobile
- Triangle routing: correspondent-home network-mobile

Inefficient when correspondent & mobile are in same network

Indirect Routing: Moving Between Networks

- Suppose mobile user moves to another network
 - Register with new foreign agent
 - New foreign agent registers with home agent
 - Home agent update care-of-address for mobile
 - Packets continue to be forwarded to mobile (but with new care-of-address)
- Mobility, changing foreign networks
 - Transparent: ongoing connections can be maintained!

Mobility via Direct Routing

Mobility via Direct Routing: Comments

- Overcome triangle routing problem
- Non-transparent to correspondent: correspondent must get care-of-address from home agent
 - What if mobile changes visited network?

Accommodating Mobility with Direct Routing

- Anchor foreign agent: FA in first visited network
- Data always routed first to anchor FA
- When mobile moves: new FA arranges to have data forwarded from old FA (chaining)

Handling Mobility in Cellular Networks

- Home network: network of cellular provider you subscribe to (e.g., SingTel, M1)
 - Home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- Visited network: network in which mobile currently resides
 - Visitor location register (VLR): database with entry for each user currently in network
 - Could be home network

GSM: Indirect Routing to Mobile

Wireless, Mobility: Impact on Higher Layer Protocols

Logically, impact should be minimal ...

- Best effort service model remains unchanged
- Higher layers can (and do) run over wireless, mobile

... but performance-wise

- Packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
- Delay impairments for real-time traffic
- Limited bandwidth of wireless links

Learning Objectives

Wireless Link Standards

Read the characteristics of the standards

Cellular Networks

- Understand the network architecture
- Understand the key features of 1G to 5G

Mobility (roaming) handling

- Read mobility vocabulary
- Understand indirect and direct routing

