FML Assignment 5

shiva gadila

2023-04-16

```
#Loading the Packages
library(cluster)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
      filter, lag
##
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(dendextend)
##
## -----
## Welcome to dendextend version 1.17.1
## Type citation('dendextend') for how to cite the package.
##
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
##
## Suggestions and bug-reports can be submitted at:
https://github.com/talgalili/dendextend/issues
## You may ask questions at stackoverflow, use the r and dendextend tags:
##
    https://stackoverflow.com/questions/tagged/dendextend
##
## To suppress this message use:
suppressPackageStartupMessages(library(dendextend))
## -----
## Attaching package: 'dendextend'
```

```
## The following object is masked from 'package:stats':
##
##
       cutree
library(knitr)
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at
https://goo.gl/ve3WBa
library(readr)
#Importing the dataset
Cereals<- read.csv("~/Downloads/Cereals.csv")</pre>
head(Cereals)
##
                           name mfr type calories protein fat sodium fiber
carbo
## 1
                      100%_Bran
                                   Ν
                                        C
                                                 70
                                                          4
                                                              1
                                                                    130
                                                                         10.0
5.0
## 2
              100% Natural Bran
                                   0
                                        C
                                                120
                                                          3
                                                              5
                                                                     15
                                                                          2.0
8.0
## 3
                       All-Bran
                                   Κ
                                        C
                                                70
                                                          4
                                                              1
                                                                    260
                                                                          9.0
7.0
## 4 All-Bran_with_Extra_Fiber
                                   Κ
                                        C
                                                 50
                                                          4
                                                              0
                                                                    140
                                                                         14.0
8.0
## 5
                Almond Delight
                                   R
                                        C
                                                110
                                                          2
                                                              2
                                                                    200
                                                                          1.0
14.0
                                                          2
## 6
       Apple_Cinnamon_Cheerios
                                   G
                                        C
                                                              2
                                                                    180
                                                                          1.5
                                                110
10.5
##
     sugars potass vitamins shelf weight cups
                                                   rating
## 1
                          25
                                  3
          6
                280
                                         1 0.33 68.40297
## 2
          8
                135
                           0
                                  3
                                         1 1.00 33.98368
          5
                          25
                                  3
## 3
                320
                                         1 0.33 59.42551
## 4
          0
                330
                          25
                                  3
                                         1 0.50 93.70491
                                  3
## 5
          8
                 NA
                          25
                                         1 0.75 34.38484
                 70
                          25
                                  1
                                         1 0.75 29.50954
## 6
         10
dim(Cereals)
## [1] 77 16
#Omitting the NULL values
Cereals<- na.omit(Cereals)</pre>
dim(Cereals)
## [1] 74 16
head(Cereals)
##
                           name mfr type calories protein fat sodium fiber
carbo
```

```
## 1
                   100% Bran
                              N
                                   C
                                          70
                                                      1
                                                           130
                                                                10.0
5.0
## 2
            100%_Natural_Bran
                                   C
                                          120
                                                   3
                                                       5
                                                            15
                                                                 2.0
                              Q
8.0
## 3
                    All-Bran
                              Κ
                                   C
                                          70
                                                           260
                                                                 9.0
                                                   4
                                                       1
7.0
## 4 All-Bran with Extra Fiber
                              K
                                   C
                                           50
                                                   4
                                                           140
                                                                14.0
8.0
## 6
      Apple Cinnamon Cheerios
                                   C
                                                   2
                                                       2
                              G
                                          110
                                                           180
                                                                 1.5
10.5
## 7
                 Apple_Jacks
                              Κ
                                   C
                                         110
                                                   2
                                                       0
                                                           125
                                                                 1.0
11.0
    sugars potass vitamins shelf weight cups
##
                                           rating
## 1
         6
              280
                       25
                             3
                                    1 0.33 68.40297
## 2
         8
              135
                        0
                             3
                                    1 1.00 33.98368
                             3
## 3
         5
              320
                       25
                                    1 0.33 59.42551
## 4
         0
              330
                       25
                             3
                                    1 0.50 93.70491
## 6
                       25
                             1
                                    1 0.75 29.50954
        10
              70
                       25
                             2
## 7
        14
              30
                                    1 1.00 33.17409
#Creating a dataset with the Numeric Values
df1 <- data.frame(Cereals[,4:16])</pre>
df2 <- na.omit(df1)</pre>
#Normalizing the data
df1<- scale(df1)</pre>
head(df1)
##
      calories
                 protein
                               fat
                                       sodium
                                                   fiber
                                                             carbo
sugars
0.2542051
## 2 0.6537514 0.4522084 3.9728810 -1.7804186 -0.07249167 -1.7292632
0.2046041
0.4836096
## 4 -2.8737823 1.3817478 -0.9932203 -0.2702057 4.87924705 -1.7292632 -
1.6306324
## 6 0.1498180 -0.4773310 0.9932203 0.2130625 -0.27881412 -1.0868662
0.6634132
## 7 0.1498180 -0.4773310 -0.9932203 -0.4514312 -0.48513656 -0.9583868
1.5810314
##
        potass
                vitamins
                             shelf
                                       weight
                                                   cups
                                                           rating
## 1 2.5605229 -0.1818422 0.9419715 -0.2008324 -2.0856582
                                                        1.8549038
## 2 0.5147738 -1.3032024 0.9419715 -0.2008324 0.7567534 -0.5977113
     3.1248675 -0.1818422 0.9419715 -0.2008324 -2.0856582
                                                         1.2151965
## 4 3.2659536 -0.1818422 0.9419715 -0.2008324 -1.3644493 3.6578436
## 6 -0.4022862 -0.1818422 -1.4616799 -0.2008324 -0.3038480 -0.9165248
## 7 -0.9666308 -0.1818422 -0.2598542 -0.2008324 0.7567534 -0.6553998
```

```
#Applying hierarchical clustering using Euclidean distance method.
dist <- dist(df1, method= "euclidean")
Hist_clustering <- hclust(dist, method = "complete")

#Plotting of the dendogram
plot(Hist_clustering, cex = 0.7, hang = -1)</pre>
```

Cluster Dendrogram

dist hclust (*, "complete")

```
#Using Agnes function to perform clustering with single linkage, complete
Linkage average Linkage and Ward.
hierarchical_clustering_single <- agnes(df1, method = "single")
hierarchical_clustering_complete<- agnes(df1, method = "complete")
hierarchical_clustering_average <- agnes(df1, method = "average")
hierarchical_clustering_ward <- agnes(df1, method = "ward")

#Determining the best method
print(hierarchical_clustering_single$ac)

## [1] 0.6067859

print(hierarchical_clustering_complete$ac)

## [1] 0.8353712

print(hierarchical_clustering_average$ac)</pre>
```

```
## [1] 0.7766075

print(hierarchical_clustering_ward$ac)

## [1] 0.9046042

#With a value of 0.9046042, the ward method is superior to the other methods.

#Choosing the number of clusters
pltree(hierarchical_clustering_ward, cex = 0.6, hang = -1, main = "Dendrogram of agnes")
rect.hclust(hierarchical_clustering_ward , k=5, border = 2:7)
```

Dendrogram of agnes


```
df1
agnes (*, "ward")
```

```
df2_5 <- cutree(hierarchical_clustering_ward, k=5)
subGroup <-cutree(hierarchical_clustering_ward,k=5)

df2_5<- as.data.frame(cbind(df2_5,subGroup))
fviz_cluster(list(data=df2_5, cluster = subGroup))</pre>
```

Cluster plot


```
#It is reasoned that 5 groups can be chosen.
#Creating Partitions
set.seed(123)
df_A <- df2[1:55,]
df_B <- df2[51:74,]
#Performing Hierarchial Clustering, considering k = 5.
AG_single <- agnes(scale(df_A), method = "single")
AG_complete <- agnes(scale(df_A), method = "complete")
AG_average <- agnes(scale(df_A), method = "average")
AG_ward <- agnes(scale(df_A), method = "ward")
cbind(single= AG_single$ac , complete=AG_complete$ac , average= AG_average$ac
, ward= AG_ward$ac)
           single complete
##
                              average
## [1,] 0.6564842 0.8120228 0.7449303 0.8808195
pltree(AG_ward, cex = 0.6, hang = -1, main = "Dendogram of Agnes Using Ward")
rect.hclust(AG_ward, k = 5, border = 2:7)
```

Dendogram of Agnes Using Ward

scale(df_A) agnes (*, "ward")

```
cut2 <- cutree(AG_ward, k = 5)</pre>
#Calculating the centroids.
Result <- as.data.frame(cbind(df_A, cut2))</pre>
Result[Result$cut2==1,]
     calories protein fat sodium fiber carbo sugars potass vitamins shelf
##
weight
## 1
           70
                               130
                                      10
                                                           280
                                                                      25
                                                                             3
1
## 3
           70
                               260
                                       9
                                                           320
                         1
                                                                      25
                                                                             3
## 4
                                              8
            50
                               140
                                      14
                                                     0
                                                           330
                                                                      25
                                                                             3
1
             rating cut2
##
     cups
## 1 0.33 68.40297
## 3 0.33 59.42551
                       1
## 4 0.50 93.70491
Centroid1 <- colMeans(Result[Result$cut2==1,])</pre>
Result[Result$cut2==2,]
      calories protein fat sodium fiber carbo sugars potass vitamins shelf
##
weight
```

## 2	120	3	5	15	2.0	8.0	8	135	0	3
1.00	130	3	2	210	2.0	18.0	8	100	25	3
1.33	110	3	2	140	2.0	13.0	7	105	25	3
1.00	110	3	3	140	4.0	10.0	7	160	25	3
1.00	100	2	1	140	2.0	11.0	10	120	25	3
1.00 ## 28	120	3	2	160	5.0	12.0	10	200	25	3
1.25 ## 29 1.33	120	3	0	240	5.0	14.0	12	190	25	3
## 35 1.00	120	3	3	75	3.0	13.0	4	100	25	3
## 42 1.00	100	4	2	150	2.0	12.0	6	95	25	2
## 45 1.00	150	4	3	95	3.0	16.0	11	170	25	3
## 46 1.00	150	4	3	150	3.0	16.0	11	170	25	3
## 47 1.50	160	3	2	150	3.0	17.0	13	160	25	3
## 50 1.33	140	3	2	220	3.0	21.0	7	130	25	3
## 52 1.25	130	3	2	170	1.5	13.5	10	120	25	3
## 53 1.33	120	3	1	200	6.0	11.0	14	260	25	3
## 57 1.00	100	4	1	135	2.0	14.0	6	110	25	3
	cups rating	cut2)							
	1.00 33.98368	2								
	0.75 37.03856		2							
	0.50 40.40021		2							
	0.50 40.44877	2								
	0.75 36.17620		2							
	0.67 40.91705		2							
	0.67 41.01549		2							
## 35 (0.33 45.81172	2								
	0.67 45.32807	2	2							
## 45 3	1.00 37.13686	2	2							
## 46 3	1.00 34.13976	2	2							
## 47 (0.67 30.31335	2	2							
## 50 (0.67 40.69232	2	2							
	0.50 30.45084	2								
	37.84059	2								
	0.50 49.51187	2								
5,										

Centroid2 <- colMeans(Result[Result\$cut2==2,])
Result[Result\$cut2==3,]</pre>

##			ries	prote	in	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf
##	ight 6	C .	110		2	2	180	1.5	10.5	10	70	25	1
1 ##	7		110		2	0	125	1.0	11.0	14	30	25	2
1 ##	9		90		2	1	200	4.0	15.0	6	125	25	1
1 ##	11		120		1	2	220	0.0	12.0	12	35	25	2
1 ##	13		120		1	3	210	0.0	13.0	9	45	25	2
1 ##	15		110		1	1	180	0.0	12.0	13	55	25	2
1	18		110		1	0	90	1.0	13.0	12	20	25	2
1 ##	19		110		1	1	180	0.0	12.0	13	65	25	2
1 ##	25		110		2	1	125	1.0	11.0	13	30	25	2
1 ##	26		110		1	0	200	1.0	14.0	11	25	25	1
1 ##	30		110		1	1	135	0.0	13.0	12	25	25	2
1 ##	31		100		2	0	45	0.0	11.0	15	40	25	1
1 ##	32		110		1	1	280	0.0	15.0	9	45	25	2
1 ##	36		120		1	2	220	1.0	12.0	11	45	25	2
1 ##	37		110		3	1	250	1.5	11.5	10	90	25	1
1 ##	38		110		1	0	180	0.0	14.0	11	35	25	1
	43		110		2	1	180	0.0	12.0	12	55	25	2
	48		100		2	1	220	2.0	15.0	6	90	25	1
1 ##	49		120		2	1	190	0.0	15.0	9	40	25	2
	6	0.75	29.5			3							
		1.00 0.67				3 3							
		0.75				3							
		0.75				3							
##	15	1.00	22.1	3645		3							

```
## 18 1.00 35.78279
                         3
## 19 1.00 22.39651
## 25 1.00 32.20758
                         3
## 26 0.75 31.43597
                         3
## 30 0.75 28.02576
                         3
## 31 0.88 35.25244
                         3
## 32 0.75 23.80404
                         3
## 36 1.00 21.87129
                         3
## 37 0.75 31.07222
                         3
## 38 1.33 28.74241
                         3
## 43 1.00 26.73451
                        3
## 48 1.00 40.10596
                         3
## 49 0.67 29.92429
                         3
Centroid3 <- colMeans(Result[Result$cut2==3,])</pre>
Result[Result$cut2==4,]
      calories protein fat sodium fiber carbo sugars potass vitamins shelf
##
weight
                                                       5
## 10
             90
                      3
                           0
                                210
                                         5
                                              13
                                                            190
                                                                       25
                                                                               3
1.0
                           2
                                         2
                                                       1
                                                                       25
## 12
            110
                      6
                                290
                                              17
                                                            105
                                                                               1
1.0
## 16
                      2
                           0
                                280
                                         0
                                              22
                                                       3
                                                             25
                                                                       25
                                                                               1
            110
1.0
## 17
            100
                      2
                           0
                                290
                                         1
                                              21
                                                       2
                                                             35
                                                                       25
                                                                               1
1.0
## 22
                      2
                           0
                                                       3
                                                                       25
            110
                                220
                                         1
                                              21
                                                             30
                                                                               3
1.0
## 24
            100
                      2
                           0
                                190
                                         1
                                              18
                                                       5
                                                             80
                                                                       25
                                                                               3
1.0
## 27
            100
                      3
                           0
                                  0
                                         3
                                              14
                                                       7
                                                            100
                                                                       25
                                                                               2
1.0
## 33
                      3
                           1
                                              15
                                                       5
                                                                       25
                                                                               3
            100
                                140
                                         3
                                                             85
1.0
## 34
            110
                      3
                           0
                                170
                                         3
                                              17
                                                       3
                                                             90
                                                                       25
                                                                               3
1.0
## 39
            110
                      2
                           1
                                170
                                         1
                                              17
                                                       6
                                                             60
                                                                      100
                                                                               3
1.0
                           1
                                                       9
                                                             95
## 40
            140
                      3
                                170
                                         2
                                              20
                                                                      100
                                                                               3
1.3
                      2
                           1
                                                       3
                                                                       25
                                                                               2
## 41
            110
                                260
                                         0
                                              21
                                                             40
1.0
## 44
            100
                      4
                           1
                                  0
                                         0
                                              16
                                                       3
                                                             95
                                                                       25
                                                                               2
1.0
## 51
            90
                      3
                           0
                                170
                                         3
                                              18
                                                       2
                                                             90
                                                                       25
                                                                               3
1.0
## 54
            100
                      3
                           0
                                320
                                         1
                                              20
                                                       3
                                                             45
                                                                      100
                                                                               3
1.0
## cups rating cut2
```

```
## 10 0.67 53.31381
## 12 1.25 50.76500
                         4
## 16 1.00 41.44502
                         4
## 17 1.00 45.86332
                        4
## 22 1.00 46.89564
                         4
## 24 0.75 44.33086
                         4
## 27 0.80 58.34514
                         4
## 33 0.88 52.07690
                         4
## 34 0.25 53.37101
                         4
## 39 1.00 36.52368
                         4
## 40 0.75 36.47151
                        4
## 41 1.50 39.24111
                        4
                         4
## 44 1.00 54.85092
## 51 1.00 59.64284
                         4
## 54 1.00 41.50354
                         4
Centroid4 <- colMeans(Result[Result$cut2==4,])</pre>
Centroids <- rbind(Centroid1, Centroid2, Centroid3, Centroid4)</pre>
X2 <- as.data.frame(rbind(Centroids[,-14], df_B))</pre>
#Calculating the Distance.
Distance1 <- get_dist(X2)</pre>
Matrix <- as.matrix(Distance1)</pre>
data.frame <- data.frame(data=seq(1,nrow(df_B),1), Clusters =</pre>
rep(0,nrow(df_B)))
for(i in 1:nrow(df_B))
{data.frame[i,2] <- which.min(Matrix[i+4, 1:4])}
data.frame
##
      data Clusters
## 1
         1
                   1
## 2
         2
                   4
         3
                   3
## 3
         4
                   3
## 4
         5
## 5
                   2
         6
                   1
## 6
## 7
         7
                   2
## 8
         8
                   2
         9
## 9
                   3
## 10
        10
                   4
                   2
## 11
        11
## 12
                   2
        12
## 13
        13
                   2
## 14
        14
                   3
## 15
        15
                   4
## 16
        16
                   2
## 17
        17
```

```
## 18
        18
                   2
                   4
## 19
        19
## 20
        20
                   4
## 21
        21
                   3
## 22
        22
                  4
## 23
        23
                   4
## 24
                   3
        24
cbind(df2$SubGroup[51:74], data.frame$Clusters)
##
         [,1]
##
    [1,]
            1
##
    [2,]
            4
            3
##
  [3,]
            3
##
  [4,]
## [5,]
            2
##
   [6,]
            1
##
            2
    [7,]
##
            2
   [8,]
##
            3
   [9,]
## [10,]
            4
            2
## [11,]
## [12,]
            2
            2
## [13,]
            3
## [14,]
## [15,]
            4
            2
## [16,]
            4
## [17,]
## [18,]
            2
## [19,]
            4
## [20,]
            4
## [21,]
            3
            4
## [22,]
## [23,]
            4
## [24,]
            3
table(df2$SubGroup[51:74] == data.frame$Clusters)
## 
#We can deduce that it is somewhat stable.
#Clustering Healthy Cereals.
Healthy_Cereals <- Cereals</pre>
Healthy_Cereals_na <- na.omit(Healthy_Cereals)</pre>
Clusthealthy <- cbind(Healthy_Cereals_na, subGroup)</pre>
Clusthealthy[Clusthealthy$subGroup==1,]
                           name mfr type calories protein fat sodium fiber
##
carbo
```

## 1	1	00%_Bran	N	С	70		4	1	130	16)			
5 ## 3 7		All-Bran	K	С	70		4	1	260	9)			
	l-Bran_with_Ext	ra_Fiber	K	С	50		4	0	140	14	ŀ			
## su	gars potass vit							_						
## 1	6 280	25	3			40297		1						
## 3 ## 4	5 320 0 330	25 25	3			.42551 .70491		1 1						
Clusthealthy[Clusthealthy\$subGroup==2,]														
## name mfr type calories protein fat														
sodium				_										
## 2 15		100%	_Natu	ral_Brar	ı Q	С		120	3	3	5			
## 8				Basic_4	G	С		130	3	3	2			
210 ## 14				Clusters	G	С		110	3	3	2			
140														
## 20 140		Crack	klin'_	Oat_Brar	ı K	С		110	3	3	3			
## 23		Crispy_Wh	neat_&	_Raisins	G	С		100	2	<u>)</u>	1			
140														
	ruit_&_Fibre_Da	tes,_Walr	nuts,_	and_Oats	F P	C		120	3	3	2			
160						_			_		_			
## 29			Fruit	ful_Brar	ı K	С		120	3	3	0			
240		C 4		D	_	_		420	_		_			
## 35		Great	_Grai	ns_Pecar	ı P	С		120	3	5	3			
75 ## 40		Just_Righ	nt Eru	it & Nut	: K	С		140	3	ł	1			
170		Just_INIgi	1C_1 1	IC_Q_NUC		C		140	_	,	_			
## 42				Life	. Q	С		100	4	ļ	2			
150					• •						_			
## 45	Muesli_Rai	sins,_Dat	es,_&	_Almonds	R	С		150	4	Ļ	3			
95														
## 46	Muesli_Rais	ins,_Peac	ches,_	&_Pecans	R	C		150	۷	ŀ	3			
150														
## 47		Mueslix	Cris	py_Blend	l K	С		160	3	3	2			
150					17	_		4.40	_		_			
## 50 220	NUT	ri-Grain_	_A1mon	a-kaisir	ı K	С		140	3	5	2			
## 52		Oatmeal	l Rais	in_Crisp	G	С		130	3	ł	2			
170		oucilicus	KGIS	111_C; 13p	, ,	Č		150	_	•	_			
## 53		Post_Nat	Rai	sin Brar	ı P	С		120	3	3	1			
200		_	_	_										
## 57		Quake	er_Oat	_Squares	Q	С		100	2	ļ.	1			
135														
## 59			Rai	sin_Brar	ı K	С		120	3	3	1			

210 ## 60				Ra	isir	n Nut 1	Bran		G C		100	3	2
140							c						_
## 71				Tota	1_Ra	aisin_	Bran		G C		140	3	1
190 ##	fihan	canho	cuanc	notacc	vi+	amine	chol.	£ ,	weight	cunc	rating	cuhí	Englin
## 2	2.0	8.0	Sugar S	135	VΙ	.a113		3	_	-	33.98368		11 Oup
## 8	2.0	18.0	8	100		25		3			37.03856		2
## 14	2.0	13.0	7	105		25	:	3	1.00	0.50	40.40021		2
## 20	4.0	10.0	7	160		25		3			40.44877		2
## 23	2.0	11.0	10	120		25		3			36.17620		2
## 28	5.0	12.0	10	200		25		3 3			40.91705		2
## 29 ## 35	5.0 3.0	14.0 13.0	12 4	190 100		25 25		3 3			41.01549 45.81172		2 2
## 40	2.0	20.0	9	95		100		3			36.47151		2
## 42	2.0	12.0	6	95		25		2			45.32807		2
## 45	3.0	16.0	11	170		25	:	3			37.13686		2
## 46	3.0	16.0	11	170		25		3			34.13976		2
## 47	3.0	17.0	13	160		25		3			30.31335		2
## 50	3.0	21.0	7	130		25		3			40.69232		2
## 52	1.5	13.5	10	120		25		3			30.45084		2
## 53 ## 57	6.0 2.0	11.0 14.0	14 6	260 110		25 25		3 3			37.84059 49.51187		2 2
## 59	5.0	14.0	12	240		25		<i>3</i>			39.25920		2
## 60	2.5	10.5	8	140		25		3			39.70340		2
## 71	4.0	15.0	14	230		100		3			28.59278		2
Clusth	nealthy	y[Clust	thealthy	y\$subGr	oup=	=3,]							
##				name m	fr t	ype c	alori	es	prote	in fat	t sodium	fiber	•
carbo	A 7 .	c:		•	_	-	4.	4.0		,	100	4 .	_
## 6 10.5	Abbīe	_C1nnar	non_Che	erios	G	С	1.	10		2 2	2 180	1.5	•
## 7			Apple 3	lacks	K	С	1.	10		2 (125	1.6	7
11.0			,,pp_c	Jucks		J				_ `			
## 11		(Cap'n'Cı	runch	Q	C	13	20		1 2	2 220	0.6	9
12.0													
## 13	Cin	namon_	Toast_Cı	runch	G	С	1	20		1 3	3 210	0.6	9
13.0			C [c c -	_	•	4.	10			100	0 (
## 15 12.0			Cocoa_l	utts	G	С	1.	10		1 :	l 180	0.6	9
## 18			Corn_	_Pops	K	С	1:	10		1 (90	1.6)
13.0 ## 19		C	ount_Cho	acula	G	С	1.	10		1 :	l 180	0.6	2
12.0		C	June_Cile	CUIA	G	C	1.	ΤĄ			100	0.6	,
## 25 11.0			Froot_I	Loops	K	С	1:	10		2	1 125	1.6)
## 26		Fro	osted_F	lakes	K	С	1:	10		1 (200	1.6)
14.0 ## 30		Eni	uity_Pel	nhlac	Р	С	1.	10		1 :	l 135	0.6	a
ππ 3 0		FIT	ит су_ге	OTC2	Г	C	1.	ΤĐ		1 .	133	0.0	,

13.0 ## 31		Gol	lden_Crisp	Р	С	100	a 2	0	45	0.0	
11.0		001	racii_ci 13p	•		100	2	U	73	0.0	
## 32		Golde	en_Grahams	G	С	116	a 1	1	280	0.0	
15.0		00140	u. aa	Ū	J		_	_	200	•••	
## 36		Honev G	Graham_Ohs	Q	С	126	a 1	2	220	1.0	
12.0				·							
## 37	Нс	oney Nut	_Cheerios	G	С	116	9 3	1	250	1.5	
11.5		1_	_								
## 38		H	Honey-comb	Р	C	116	9 1	0	180	0.0	
14.0			-								
## 43		Luc	ky_Charms	G	C	110	2	1	180	0.0	
12.0											
## 48	Mult	ti-Grair	n_Cheerios	G	C	100	2	1	220	2.0	
15.0											
## 49		Nut&Hor	ney_Crunch	K	C	126	2	1	190	0.0	
15.0											
## 67			Smacks	K	C	116	2	1	70	1.0	
9.0				_	_		_	_	4.40		
## 74			Trix	G	С	116	3 1	1	140	0.0	
13.0	L Ila a			_	_	11/	2	4	200	1 0	
## 77 16.0	wne	eaties_r	Honey_Gold	G	С	116	2	1	200	1.0	
ID. 10											
	cuganc	notacc	vitamine	cholf	woight	cunc	nating	cubG	noun		
##	_	-	vitamins		_	-	_	subG	_		
## ## 6	10	70	25	1	1	0.75	29.50954	subGı	3		
## ## 6 ## 7	10 14	70 30	25 25	1 2	1 1	0.75 1.00	29.50954 33.17409	subG	3		
## 6 ## 7 ## 11	10 14 12	70 30 35	25 25 25	1 2 2	1 1 1	0.75 1.00 0.75	29.50954 33.17409 18.04285	subG	3 3 3		
## 6 ## 7 ## 11 ## 13	10 14 12 9	70 30 35 45	25 25 25 25	1 2 2 2	1 1 1 1	0.75 1.00 0.75 0.75	29.50954 33.17409 18.04285 19.82357	subG	3 3 3 3		
## 6 ## 7 ## 11 ## 13	10 14 12 9 13	70 30 35 45 55	25 25 25 25 25	1 2 2 2 2	1 1 1 1	0.75 1.00 0.75 0.75 1.00	29.50954 33.17409 18.04285 19.82357 22.73645	subG	3 3 3 3 3		
## 6 ## 7 ## 11 ## 13 ## 15 ## 18	10 14 12 9 13 12	70 30 35 45 55 20	25 25 25 25 25 25	1 2 2 2 2 2	1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279	subG	3 3 3 3 3		
## 6 ## 7 ## 11 ## 13 ## 15 ## 18	10 14 12 9 13 12 13	70 30 35 45 55 20 65	25 25 25 25 25 25 25	1 2 2 2 2 2 2	1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651	subG	3 3 3 3 3 3		
## 6 ## 7 ## 11 ## 13 ## 15 ## 18 ## 19 ## 25	10 14 12 9 13 12 13	70 30 35 45 55 20 65 30	25 25 25 25 25 25 25 25	1 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758	subGi	3 3 3 3 3 3 3		
## 6 ## 7 ## 11 ## 13 ## 15 ## 18 ## 19 ## 25	10 14 12 9 13 12 13 13	70 30 35 45 55 20 65	25 25 25 25 25 25 25 25 25	1 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 1.00 0.75	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758 31.43597	subGi	3 3 3 3 3 3 3 3		
## 6 ## 7 ## 11 ## 13 ## 15 ## 18 ## 19 ## 25 ## 26	10 14 12 9 13 12 13	70 30 35 45 55 20 65 30 25	25 25 25 25 25 25 25 25 25 25	1 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.75	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758	subG	3 3 3 3 3 3 3		
## 6 ## 7 ## 11 ## 13 ## 15 ## 18 ## 19 ## 25 ## 26 ## 30	10 14 12 9 13 12 13 13 11	70 30 35 45 55 20 65 30 25 25	25 25 25 25 25 25 25 25 25	1 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.75	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758 31.43597 28.02576	subG	3 3 3 3 3 3 3 3 3		
## 6 ## 7 ## 11 ## 13 ## 15 ## 19 ## 25 ## 26 ## 30 ## 31	10 14 12 9 13 12 13 13 11 12	70 30 35 45 55 20 65 30 25 25 40	25 25 25 25 25 25 25 25 25 25 25	1 2 2 2 2 2 2 2 1 2	1 1 1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.75 0.88 0.75	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758 31.43597 28.02576 35.25244	subG	3 3 3 3 3 3 3 3 3		
## 6 ## 7 ## 11 ## 13 ## 15 ## 19 ## 25 ## 26 ## 30 ## 31 ## 32	10 14 12 9 13 12 13 11 12 15 9	70 30 35 45 55 20 65 30 25 25 40 45	25 25 25 25 25 25 25 25 25 25 25	1 2 2 2 2 2 2 2 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.75 0.88 0.75 1.00	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758 31.43597 28.02576 35.25244 23.80404	subG	3 3 3 3 3 3 3 3 3 3 3		
## 6 ## 7 ## 11 ## 13 ## 15 ## 18 ## 25 ## 26 ## 30 ## 31 ## 32 ## 36	10 14 12 9 13 12 13 11 12 15 9	70 30 35 45 55 20 65 30 25 25 40 45	25 25 25 25 25 25 25 25 25 25 25 25	1 2 2 2 2 2 2 1 2 1 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.75 0.88 0.75 1.00 0.75	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758 31.43597 28.02576 35.25244 23.80404 21.87129	subG	3 3 3 3 3 3 3 3 3 3 3 3		
## 6 ## 7 ## 11 ## 13 ## 15 ## 18 ## 25 ## 26 ## 30 ## 31 ## 32 ## 36 ## 37	10 14 12 9 13 12 13 11 12 15 9 11	70 30 35 45 55 20 65 30 25 25 40 45 45 90	25 25 25 25 25 25 25 25 25 25 25 25 25	1 2 2 2 2 2 2 1 2 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.75 0.88 0.75 1.00 0.75	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758 31.43597 28.02576 35.25244 23.80404 21.87129 31.07222	subG	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
## 6 ## 7 ## 11 ## 15 ## 18 ## 25 ## 26 ## 30 ## 31 ## 32 ## 36 ## 37 ## 38	10 14 12 9 13 12 13 11 12 15 9 11 10 11	70 30 35 45 55 20 65 30 25 25 40 45 90 35	25 25 25 25 25 25 25 25 25 25 25 25 25	1 2 2 2 2 2 1 2 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.88 0.75 1.00 0.75	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758 31.43597 28.02576 35.25244 23.80404 21.87129 31.07222 28.74241	subGi	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
## 6 ## 7 ## 11 ## 13 ## 15 ## 19 ## 25 ## 26 ## 30 ## 31 ## 32 ## 36 ## 37 ## 38 ## 43	10 14 12 9 13 12 13 11 12 15 9 11 10 11	70 30 35 45 55 20 65 30 25 25 40 45 45 90 35	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 2 2 2 2 2 1 2 1 2 1 2 1 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.75 0.75 1.00 0.75 1.33 1.00	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758 31.43597 28.02576 35.25244 23.80404 21.87129 31.07222 28.74241 26.73451	subG	. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
## ## 6 ## 7 ## 11 ## 13 ## 15 ## 25 ## 26 ## 30 ## 31 ## 32 ## 36 ## 37 ## 48 ## 49 ## 67	10 14 12 9 13 12 13 11 12 15 9 11 10 11 12 6 9	70 30 35 45 55 20 65 30 25 40 45 45 90 35 55 90 40 40	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 2 2 2 2 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 0.75 0.88 0.75 1.00 0.75 1.33 1.00 0.67 0.75	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758 31.43597 28.02576 35.25244 23.80404 21.87129 31.07222 28.74241 26.73451 40.10596 29.92429 31.23005	subG	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
## ## 6 ## 7 ## 11 ## 13 ## 15 ## 25 ## 26 ## 30 ## 31 ## 32 ## 36 ## 37 ## 48 ## 49 ## 67 ## 74	10 14 12 9 13 12 13 11 12 15 9 11 10 11 12 6	70 30 35 45 55 20 65 30 25 40 45 49 35 55 90 40	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 2 2 2 2 2 1 2 1 2 1 2 1 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 0.75 0.88 0.75 1.00 0.75 1.33 1.00 0.67 0.75	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758 31.43597 28.02576 35.25244 23.80404 21.87129 31.07222 28.74241 26.73451 40.10596 29.92429	subG	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
## ## 6 ## 7 ## 11 ## 13 ## 15 ## 25 ## 26 ## 30 ## 31 ## 32 ## 36 ## 37 ## 48 ## 49 ## 67	10 14 12 9 13 12 13 11 12 15 9 11 10 11 12 6 9	70 30 35 45 55 20 65 30 25 40 45 45 90 35 55 90 40 40	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1 2 2 2 2 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.75 1.00 0.75 0.75 1.00 1.00 0.75 0.88 0.75 1.00 0.75 1.33 1.00 0.67 0.75 1.00	29.50954 33.17409 18.04285 19.82357 22.73645 35.78279 22.39651 32.20758 31.43597 28.02576 35.25244 23.80404 21.87129 31.07222 28.74241 26.73451 40.10596 29.92429 31.23005	subGi	. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		

Clusthealthy[Clusthealthy\$subGroup==4,]

name mfr type calories protein fat sodium fiber carbo

## 15	9	Bran_Chex		R	С	90	2	1	200	4
	10	Bran_Flakes	;	Р	С	90	3	0	210	5
##	12	Cheerios	;	G	С	110	6	2	290	2
17 ##	16	Corn_Chex	Ž.	R	С	110	2	0	280	0
22 ##	17	Corn_Flakes	;	K	С	100	2	0	290	1
21 ##	22	Crispix	Ž.	K	С	110	2	0	220	1
21 ##	24	Double_Chex	ζ	R	С	100	2	0	190	1
18 ##	33	Grape_Nuts_Flakes	;	Р	С	100	3	1	140	3
15 ##	34	Grape-Nuts	;	Р	С	110	3	0	170	3
17 ##	39	Just_Right_CrunchyNuggets	;	K	С	110	2	1	170	1
17 ##	41	Kix	ζ	G	С	110	2	1	260	0
21 ##	51	Nutri-grain_Wheat		K	С	90	3	0	170	3
18 ##	54	Product_19)	K	С	100	3	0	320	1
20 ##	62	Rice Chex	ζ.	R	С	110	1	0	240	0
23 ##	63	- Rice Krispies	;	K	С	110	2	0	290	0
22 ##	68	 Special K		K	С	110	6	0	230	1
16 ##		Total_Corn_Flakes			С	110	2	1	200	0
21 ##		Total_Whole_Grain			С	100	3	1	200	3
16 ##		Triples			С	110	2	1	250	0
21 ##		Wheat Chex			С	100	3	1	230	3
17		_								
## 17	76	Wheaties			С	100	3	1	200	3
## ##	0	sugars potass vitamins shel 6 125 25				rating 49.12025	subGro			
##		5 190 25	1 3			53.31381		4 4		
##		1 105 25	1			50.76500		4		
##		3 25 25	1			41.44502		4		
##		2 35 25	1			45.86332		4		
##		3 30 25	3			46.89564		4		
##	24	5 80 25	3	1	0.75	44.33086		4		

```
## 33
           5
                 85
                          25
                                  3
                                         1 0.88 52.07690
                                                                 4
## 34
           3
                 90
                          25
                                  3
                                         1 0.25 53.37101
## 39
           6
                 60
                         100
                                  3
                                         1 1.00 36.52368
                                                                 4
                                                                 4
## 41
           3
                 40
                          25
                                  2
                                         1 1.50 39.24111
## 51
           2
                 90
                          25
                                  3
                                         1 1.00 59.64284
                                                                 4
## 54
           3
                 45
                          100
                                  3
                                         1 1.00 41.50354
                                                                 4
           2
                                                                 4
## 62
                 30
                          25
                                  1
                                         1 1.13 41.99893
## 63
           3
                 35
                          25
                                  1
                                         1 1.00 40.56016
                                                                 4
           3
                                                                 4
## 68
                 55
                          25
                                  1
                                         1 1.00 53.13132
## 70
           3
                                                                 4
                 35
                         100
                                  3
                                         1 1.00 38.83975
           3
                110
                         100
                                  3
                                         1 1.00 46.65884
                                                                 4
## 72
           3
                                                                 4
## 73
                 60
                          25
                                  3
                                         1 0.75 39.10617
## 75
           3
                          25
                                         1 0.67 49.78744
                115
                                  1
                                                                 4
## 76
           3
                110
                          25
                                  1
                                         1 1.00 51.59219
                                                                 4
#Mean ratings to determine the best cluster.
mean(Clusthealthy[Clusthealthy$subGroup==1,"rating"])
## [1] 73.84446
mean(Clusthealthy[Clusthealthy$subGroup==2,"rating"])
## [1] 38.26161
mean(Clusthealthy[Clusthealthy$subGroup==3,"rating"])
## [1] 28.84825
mean(Clusthealthy[Clusthealthy$subGroup==4,"rating"])
## [1] 46.46513
#It tends to be reasoned that group 1 can be choosen as it has the most
noteworthy worth. Consequently, cluster 1 is a healthy cluster.
```