

Optimization for Deep Learning: Overfitting

Industrial AI Lab.

Prof. Seungchul Lee

Overfitting

• You want to hire someone, and you evaluate candidates by asking them ten technical yes/no questions.

 Would you feel confident if you interviewed one candidate and he makes a perfect score?

• What about interviewing ten candidates and picking the best? What about interviewing one thousand?

• A simple classification procedure is the "K-nearest neighbors."

Given

$$(x_n, y_n) \in \mathbb{R}^D \times \{1, \dots, C\}, \ n = 1, \dots, N$$

• to predict the y associated to a new x, take the y_n of the closest x_n :

$$n^*(x) = \underset{n}{\operatorname{argmin}} ||x_n - x||$$
 $f^*(x) = y_{n^*(x)}.$

• This recipe corresponds to K=1, and makes the empirical training error zero

• K = 1

Training set

- K = 1
- Too noisy

- K = 1
- With outliers

Training set

- K = 1
- With outliers

Prediction (K=1)

- K = 51
- With outliers

Training set

- K = 52
- With outliers
- Robust and smooth

Errors on Train and Test Datasets

Errors on Train and Test Datasets

Polynomial Regression

Errors on Train and Test Datasets

Overfitting Problem

 One of the most common problem data science professionals face is to avoid overfitting.

• Have you come across a situation where your model performed exceptionally well on train data, but was not able to predict test data.

Issue with Rich Representation

- Low error on input data points, but high error nearby
- Low error on training data, but high error on testing data

Generalization Error

• Fundamental problem: we are optimizing parameters to solve

$$\min_{ heta} \sum_{i=1}^m \ell(y_i, \hat{y}_i) = \min_{ heta} \sum_{i=1}^m \ell(y_i, \Phi heta)$$

- But what we really care about is loss of prediction on new data (x, y)
 - also called generalization error

Divide data into training set, and validation (testing) set

Representational Difficulties

- With many features, prediction function becomes very expressive (model complexity)
 - Choose less expensive function (e.g., lower degree polynomial, fewer RBF centers, larger RBF bandwidth)
 - Keep the magnitude of the parameter small
 - Regularization: penalize large parameters heta

$$\min \|\Phi\theta - y\|_2^2 + \lambda \|\theta\|_2^2$$

 $-\lambda$: regularization parameter, trades off between low loss and small values of θ

Regularization (Shrinkage Methods)

- Often, overfitting associated with very large estimated parameters
- We want to balance
 - how well function fits data
 - magnitude of coefficients

Total cost= measure of fit
$$+\lambda \cdot \text{measure of magnitude of coefficients}$$

$$\Rightarrow \min \|\Phi\theta - y\|_2^2 + \lambda \|\theta\|_2^2 \qquad \min \|\Phi\theta - y\|_2^2 + \lambda \|\theta\|_1$$

$$L_2 \text{ regularization} \qquad \qquad L_1 \text{ regularization}$$

- multi-objective optimization
- $-\lambda$ is a tuning parameter

Different Regularization Techniques in Deep Learning

- L₂ and L₁ regularization
- Data augmentation
 - The simplest way to reduce overfitting is to increase the size of the training data.

Different Regularization Techniques in Deep Learning

Early stopping

— When we see that the performance on the validation set is getting worse, we immediately stop the

training on the model.

Different Regularization Techniques in Deep Learning

Dropout

- This is the one of the most interesting types of regularization techniques.
- It also produces very good results and is consequently the most frequently used regularization technique in the field of deep learning.
- At every iteration, it randomly selects some nodes and removes them.
- It can also be thought of as an ensemble technique in machine learning.
- (will discuss later)

