Homework for Math 351-003

Team Homework: Due Monday, April 8

- 1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are differentiable functions. Suppose also that f(0) = g(0) and that $f'(x) \leq g'(x)$ for all $x \geq 0$. Prove that $f(x) \leq g(x)$ for all $x \geq 0$.
 - a) Prove that if f is continuous on [a,b], f is differentiable on (a,b), and f'(x)=0 if a < x < b, then f is constant on [a,b] (i.e. there exists $c \in \mathbf{R}$ so that f(x)=c for all $x \in [a,b]$.)
 - b) Suppose that f and g are function which are both continuous on [a, b] and differentiable on (a, b). Prove that if f'(x) = g'(x) for all $x \in (a, b)$, then there exists $c \in \mathbb{R}$ for that f(x) = g(x) + c for all $x \in (a, b)$.
- 2. a) Suppose S is a non-empty bounded set in \mathbb{R} and that $c \geq 0$. We define the set cS as follows:

$$cS = \{cs | s \in S\}$$

Prove that $\sup(cS) = c \sup(S)$. Notice that one may similarly prove that $\inf(cS) = c \inf(S)$ (but you don't need to write down a proof of this).

b) Suppose $f:[a,b]\to\mathbb{R}$ is a bounded function. Prove that if $c\geq 0$, then

$$U(cf, P) = cU(f, P)$$
 and $L(cf, P) = cL(f, P)$

for any partition P of [a, b].

- c) Prove that if $f:[a,b]\to\mathbb{R}$ is a bounded function and $c\geq 0$, then U(cf)=cU(f) and L(cf)=cL(f).
- d) Prove that if f is integrable and $c \geq 0$, then cf is integrable and

$$\int_{a}^{b} cf(x) \ dx = c \int_{a}^{b} f \ dx.$$

- 3. Suppose that $f:[a,b] \to \mathbb{R}$ is bounded on [a,b].
 - a) Prove that U(-f) = -L(f) and L(-f) = -U(f). Hint: You may use the fact that if S is a nonempty subset of \mathbb{R} , then inf $S = -\sup(-S)$. You do not need to justify this fact.)
 - b) Prove that if f is integrable on [a, b], then -f is integrable on [a, b] and

$$\int_a^b -f(x) \ dx = -\int_a^b f(x) \ dx.$$

c) Conclude that if $c \in \mathbb{R}$ and f is integrable on [a,b], then cf is integrable on [a,b] and

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$