PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-155322

(43) Date of publication of application: 08.06.2001

(51)Int.CI.

G11B 5/667 G11B 5/02

(21)Application number: 11-336117

(71)Applicant: HITACHI LTD

(22)Date of filing:

26.11.1999

(72)Inventor: FUTAMOTO MASAAKI

YOSHIDA KAZUYOSHI

HONDA YUKIO

HIRAYAMA YOSHIYUKI KIKUKAWA ATSUSHI

(54) PERPENDICULAR MAGNETIC RECORDING MEDIUM AND MAGNETIC STORAGE DEVICE (57)Abstract:

PROBLEM TO BE SOLVED: To provide a perpendicular magnetic recording medium which is improved so as to be suitable for high-density magnetic recording and a magnetic storage device using this medium.

SOLUTION: The backing magnetic film of a two-layer perpendicular medium is made to have two or more layers so that one of these layers is used as a keeper

layers so that one of these layers is used as a keeper layer 17 for keeping the perpendicular magnetization and the others are used as the layers 13, 15 for increasing the recording efficiency of a recording head by separating the functions of the medium. The generation of noise is reduced by regulating the magnetization direction of soft magnetic film other than the keeper layer to the peripheral direction of a disk.

LEGAL STATUS

[Date of request for examination]

26.11.1999

[Date of sending the examiner's decision of

. 01.07.2003

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-155322 (P2001-155322A)

(43)公開日 平成13年6月8日(2001.6.8)

(51) IntCl.7

識別記号

FΙ

テーマコード(参考)

G11B 5/667

5/02

G 1 1 B 5/667

5 D O O 6

5/02

3 5D091

審査請求 有 請求項の数13 OL (全 13 頁)

(21)出願番号

(22)出顧日

特願平11-336117

平成11年11月26日(1999.11.26)

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72) 発明者 二本 正昭

東京都国分寺市東恋ヶ窪一丁目280番地

株式会社日立製作所中央研究所内

(72)発明者 吉田 和悦

東京都国分寺市東恋ヶ窪一丁目280番地

株式会社日立製作所中央研究所内

(74)代理人 100091096

弁理士 平木 祐輔

最終頁に続く

(54) 【発明の名称】 垂直磁気記録媒体及び磁気記憶装置

(57)【要約】

【課題】 高密度磁気記録に適するように改良された垂 直磁気記録媒体及びこれを用いた磁気記憶装置を提供す る。

【解決手段】 2層垂直媒体の裏打磁性膜を2層以上の多層化とし、垂直磁化を保持するキーパー層17と記録へッドの記録効率を上げるための層13.15に機能分離する。さらにキーパー層以外の軟磁性膜磁化方向ををディスクの周方向に規定することにより、ノイズの発生を低減する。

【特許請求の範囲】

【請求項1】 非磁性基板上に裏打磁性膜を介して垂直磁化膜が設けられた垂直磁気記録媒体において、前記裏打磁性膜は非磁性層で互いに分離された2層以上の軟磁性膜を含んでおり、前記垂直磁化膜に近い側の軟磁性膜が前記垂直磁化膜の垂直磁化を保持する軟磁性キーパー層の役割を果たし、前記基板側に近い軟磁性膜は主として記録へッドの記録を助ける役割を果たす構成とし、記録磁化状態において後者の軟磁性膜の磁化が前者の軟磁性膜の磁化とは異なる方向を持つことを特徴とする垂直磁気記録媒体。

【請求項2】 非磁性基板上に裏打磁性膜を介して垂直 磁化膜が設けられた垂直磁気記録媒体において、前記裏 打磁性膜は非磁性層で互いに分離された3層以上の軟磁 性膜を含んでおり、前記軟磁性膜のうち前記垂直磁化膜 に近い軟磁性膜以外の軟磁性膜は隣接する軟磁性膜に対 して磁化方向が互いに逆平行であることを特徴とする垂 直磁気記録媒体。

【請求項3】 請求項1又は2記載の垂直磁気記録媒体において、前記軟磁性膜のうち前記垂直磁化膜に近い軟磁性膜以外の軟磁性膜は磁化方向がほぼ円板状の基板の周方向を向き磁化が環流していることを特徴とする垂直磁気記録媒体。

【請求項4】 請求項1,2又は3記載の垂直磁気記録 媒体において、前記垂直磁化膜に近い側の軟磁性膜の飽 和磁化強度がそれ以外の軟磁性膜の飽和磁化強度に比べ て相対的に大きいことを特徴とする垂直磁気記録媒体。

【請求項5】 請求項1~4のいずれか1項記載の垂直 磁気記録媒体において、前記垂直磁化膜に近い側の軟磁 性膜の厚さが10nm以上100nm以下であることを 特徴とする垂直磁気記録媒体。

【請求項6】 請求項1~5のいずれか1項記載の垂直 磁気記録媒体において、前記軟磁性膜と前記垂直磁化膜 との間に非磁性層もしくは飽和磁化が50emu/cc 以下である弱磁性層を含む垂直磁気記録媒体。

【請求項7】 請求項1~6のいずれか1項記載の垂直 磁気記録媒体において、前記軟磁性膜と前記基板との間 に非磁性膜、反強磁性膜又は強磁性膜を含むことを特徴 とする垂直磁気記録媒体。

【請求項8】 請求項1~7のいずれか1項記載の垂直 磁気記録媒体において、前記垂直磁化膜はCo合金膜、 Co-Pt合金又はFe-Pt合金からなる多結晶膜、 Co又はCo合金とPt又はPt合金からなる多結晶多 層膜、あるいはCo又はCo合金とPd又はPd合金か らなる多結晶多層膜であることを特徴とする垂直磁気記 段度体

【請求項9】 請求項1~7のいずれか1項記載の垂直 磁気記録媒体において、前記垂直磁化膜が稀土類元素を 含む非晶質膜であることを特徴とする垂直磁気記録媒 体。 【請求項10】 請求項2記載の垂直磁気記録媒体において、磁化が互いに逆平行の軟磁性膜の間に介在する非磁性膜が、B, C, Mg, Al, Si, Ti, V, Cr, Cu, Zr, Nb, Mo, Ru, Hf, Ta, W, Auから選ばれた元素もしくはこれらの元素を主成分とする合金、Si₃N₄, BN, B₄C, NiO, Al \sim $_2$ O₃, SiO₂, CaO, ZrO₂, MgOから選ばれた化合物もしくはこれらの化合物の混晶のいずれかであることを特徴とする垂直磁気記録媒体。

【請求項11】 請求項1~10のいずれか1項記載の垂直磁気記録媒体において、前記垂直磁化膜に近い軟磁性膜が飽和磁化強度が1T以上のFe-Si-B, Fe-B-C, Fe-B-C-Si, Fe-Ta-C, Fe-Si-Al, Fe-Co-C, Co-Nb-Zr, Co-Mo-Zr, Co-Nb-Hf, Co-Ta-Hf, Co-W-Hf合金であることを特徴とする垂直磁気記録媒体。

【請求項12】 垂直磁気記録媒体を用いた磁気記憶装置において、前記垂直磁気記録媒体として請求項1~1 1のいずれか1項記載の垂直磁気記録媒体を用い、当該垂直磁気記録媒体の垂直磁化膜に近い軟磁性膜の飽和磁化(Bs。)と厚さ(t)、磁気記録における最短のビット長(Bmin)と垂直磁化膜の平均の飽和磁化(Ms)との間に、0.5Bmin·Ms≦Bs。・tの関係が成立し、しかもt<100nmであることを特徴とする磁気記憶装置。

【請求項13】 垂直磁気記録媒体を用いた磁気記憶装置において、前記垂直磁気記録媒体として請求項1~1 1のいずれか1項記載の垂直磁気記録媒体を用い、当該垂直磁気記録媒体のm番目の軟磁性膜の飽和磁化(Bs。)と厚さ(T_a)、記録に用いるヘッド磁極材料の飽和磁化(Bs_h)とトラック幅(Tw)との間に、 $0.16Bs_h \cdot Tw \leq \Sigma (Bs_a \cdot T_a) \leq Bs_h \cdot Tw$ の関係が成立することを特徴とする磁気記憶装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高密度磁気記録に 適する垂直磁気記録媒体及びこれを用いた磁気記憶装置 に関する。

[0002]

【従来の技術】現在実用化されている磁気ディスク装置は、面内磁気記録方式を採用している。ディスク基板面と平行な方向に磁化し易い面内磁気記録媒体に基板と平行な面内磁区を高密度に形成することが技術課題となっている。この方式で面記録密度、特に線記録密度を伸ばすためには、面内磁気記録媒体の保磁力を向上するとともに記録磁性膜の厚さを低減することが必要である。保磁力が4k〇eを超えると、磁気ヘッドによる記録が困難になり、また磁性膜の厚さがCo合金系磁性膜では1

5 n m以下になると熱揺らぎのために記録磁化強度が時間の経過につれて減少する問題が発生する。面内記録方式は、隣接する記録ビットの磁化が互いに向あっており境界に幅をもった磁化遷移領域が形成されるという本質的な問題があるため、主として前記の理由が原因で40 Gb/i n²以上の面記録密度を実現するためには、技術的な困難が予想されている。

【0003】垂直磁気記録方式は薄膜媒体の膜面に垂直 に磁化を形成する方式で、記録原理や媒体ノイズの発現 機構が従来の面内磁気記録媒体の場合とは異なる。垂直 磁気記録方式は隣接する磁化が逆平行になるために、本 質的に高密度磁気記録に適した方式として注目され、垂 直磁気記録に適した媒体の構造などが提案されている。 垂直磁気記録方式には単層の垂直磁化膜を用いる方式と 垂直磁化膜に裏打磁性膜を設ける方式がある。裏打磁性 膜を持つ2層垂直磁気記録媒体を用いる技術は、例えば IEEE Transaction on Magnetics, Vol.MAG-20, No.5, S eptember 1984.pp.657-662, "Perpendicular Magnetic Recording-Evolution and Future"に記述されてい る。この方式の垂直磁気記録媒体とじては、パーマロイ などの軟磁性膜層からなる裏打層上にCo-Cr合金か らなる垂直磁化膜を設けた媒体が検討されている。 [0004]

【発明が解決しようとする課題】2層垂直磁気記録媒体を用いる垂直磁気記録方式により40Gb/in²以上の高密度磁気記録が可能な磁気記憶装置を実用化するためには、媒体ノイズの低減、記録磁化からの磁気信号強度の確保及び記録ヘッドの記録効率の向上が不可欠である。

【0005】媒体ノイズは、垂直磁化膜と裏打磁性膜の 双方から発生しており、特に裏打磁性膜から発生するス パイク状のノイズが問題となっていた。このようなノイ ズの例は、例えばIEEE Transaction on Magnetics, Vo 1.MAG-20, No.5. September 1984, pp.663-668, "Cruc ial Points in Perpendicular Recording" に記述され ている。このような問題に対して、裏打磁性膜の下部に 面内磁化膜を形成する方法が、例えば日本応用磁気学会 誌、Vol.21, Supplement No.S1, pp.104-108, "3層垂 直媒体の高S/N化及び記録信号の安定性"に見られる ように提案されているが、40Gb/in²以上の高密 度磁気記録が可能な磁気記憶装置を実用化するためには 必ずしも十分ではなかった。

【0006】記録磁化からの磁気信号強度を確保する点では、2層垂直磁気記録媒体は裏打ち軟磁性膜を持たない単層垂直磁気記録媒体に比べてほほ2倍の信号強度が得られる特徴があるが、前述のように裏打ち軟磁性層に固有なスパイク状ノイズが伴う問題点があった。2層垂直媒体と単磁極型の記録へッドを組み合わせた磁気記録系では、記録へッドの記録効率をあげるために、記録へッドから漏洩する磁束のヘッドへの速やかな回帰を促す

必要がある。このため裏打ち軟磁性膜の厚さは記録用の 垂直磁化膜の厚さに比べて少なくとも数倍以上が必要と されていた。

【0007】本発明の目的は、2層垂直磁気記録媒体と 単磁極型記録へッドからなる磁気記録系の特徴である、 (1)高密度磁気記録性、(2)記録磁化信号強度の確 保、(3)記録ヘッド効率を確保して、従来からの大き な問題となっていた裏打ち磁性膜に固有のノイズを防ぐ 方法を提供することにより、40Gb/in²以上の高 速、高密度記録密度を実現するための垂直磁気記録媒体 を提供し、高密度記録再生装置の実現を容易ならしめる ことにある。

[0008]

【課題を解決するための手段】低ノイズ特性、記録へッドの高記録効率性、記録ビットからの高信号出力性を持つ垂直磁気記録媒体を実現するために本発明では、非磁性基板上に裏打磁性膜を介して垂直磁化膜が設けられた垂直磁気記録媒体において、裏打磁性膜が少なくとも非磁性層で互いに分割された2層以上の軟磁性膜を含んでおり、垂直磁化膜に近い側の軟磁性膜が垂直磁化を保持する軟磁性キーパー層の役割を担い、基板側に近い軟磁性膜の磁化は前記軟磁性キーパー層とは独立の方向を持つことを特徴とする垂直磁気記録媒体で構成されていることを特徴とする。

【0009】2層垂直磁気記録媒体における裏打磁性膜 の役割は、(1)垂直磁化膜に記録された磁化を安定化 させるとともに媒体表面から漏洩する磁化強度を増大さ せる、(2)記録ヘッドの記録効率を増大させる、こと にある。本発明者は実験及び考察により、裏打ち軟磁性 膜を特定の構成で多層化することにより、上記特徴を生 かしつつ従来の問題点を克服できることを見い出した。 【0010】図1及び図2を参照しながら、本発明によ る垂直磁気記録媒体の構造と作用について説明する。図 1は本発明による垂直磁気記録媒体の断面模式図、図2 は軟磁性膜の磁化方向を示すそのA-A断面模式図及び B-B断面模式図である。本発明では、裏打ち軟磁性膜 の基本構造として、垂直磁化膜に記録された磁化を安定 化させるとともに媒体表面から漏洩する磁化強度を増大 させる役割を持った軟磁性膜17と、この磁性膜に加え て記録ヘッドの記録効率を特に向上するために設ける軟 磁性膜13,15が互いに非磁性層16で分離されてい る構造を採用する。図1には、後者の役割を果たす軟磁 性膜が2層の場合を示した。

【0011】2層垂直媒体に固有なスパイク状のノイズは、裏打ち軟磁性膜に入る磁壁に関連して発生することが知られている。本発明では、図2に示すように、裏打ち軟磁性膜の主要部分を占める軟磁性膜13,15の磁化方向20,21を互いに逆平行とさせ、しかも基板11が円板状である場合には、磁化の方向を円板基板の周方向に揃える。周方向に磁化の向きを設定することによ

り、ノイズの原因となる磁壁の発生を抑制できることになる。なお、図1に示すように、非磁性層14を介して接する軟磁性膜13,15は磁気エネルギー的に互いに逆平行になるように磁気結合する特徴がある。磁性膜を2層以上に多層化した場合も、互いに逆平行になる関係が成立し易い。基板11と最初の軟磁性膜13の間に、通常付着強化層12を設けるのが望ましい。この層12をさらに多層化して、軟磁性膜の磁化の方向を固定するための反強磁性膜や強磁性膜を含ませることにより、さらに望ましい実用上の効果が得られる。

【0012】軟磁性膜の磁化方向を円板状の基板の周方向に規定するためには、薄膜の形成プロセスもしくは形成後に円板状の基板の周方向に回転する磁場を印加すれば良い。このためには、例えば電気伝導線をディスクの中心部にあけられた孔に直角に貫通させた配置としておき、これに電流を通すとその周囲に同心円状の磁場が発生する現象を利用すれば良い。

【0013】さらに、これらの軟磁性膜13,15の上 に非磁性膜16を介して、垂直磁化膜18に記録された 磁化を安定化させるとともに媒体表面から漏洩する磁化 強度を増大させる役割を持った軟磁性膜17を設ける。 この軟磁性膜17は、記録ヘッドで磁気記録する際に は、上記の軟磁性膜と同様に記録効率を上げる働きをす るが、さらに垂直磁化膜18に形成された磁区の下部 に、図1に示すように記録磁化状態に応じた閉磁路を形 成し、記録磁化を安定化させる。この軟磁性膜17は垂 直磁化膜18に形成された隣接する磁区が底部で磁気的 に連続した馬蹄形磁石を形成することにより、媒体表面 の磁化強度を増幅させる。この役割を果たす軟磁性膜1 7の厚さは、従来から知られていた軟磁性膜のように厚 い必要はない。また、この軟磁性膜17と垂直磁化膜1 8の間に垂直磁化膜の結晶成長制御用の膜を設けても良 い。ただ、2層垂直磁化膜の特徴を生かすためには、結 晶成長制御用の膜の厚さは、磁気記録の最短ビット長さ よりも小さく設定する等の配慮が必要である。さらに磁 気記録特性を劣化させないためには、この膜は飽和磁化 が50emu/cc以下の弱磁性材料もしくは非磁性材 料であることが望ましい。

【0014】本発明者の実験と考察によれば、媒体表面の磁化強度を増幅させてしかもスパイク状のノイズが顕著にならない条件は、垂直磁化膜の下に設ける軟磁性膜の飽和磁化をBs。、厚さをtとすると、目的とする磁気記録の線記録密度に依存することが分かった。磁気記録における最短のビット長をBmin、垂直磁化膜の平均の飽和磁化をMsとすると、0.5Bmin・Ms≦Bs。・tの範囲が必要である。例えば、最大線記録密度を500kFCI(kiloFlux Change per Inch)、垂直磁化膜の平均の飽和磁化を0.4T、軟磁性膜の飽和磁化を1Tとすると、その厚さtは、10nm≦tとなる。Bs。・tが0.5Bmin·Msよりも小さく

なると、前述の効果が薄れて、媒体表面の磁化強度が低減して単層垂直磁気記録媒体の場合と殆ど同様になる。また、もの最大の値は記録密度や軟磁性膜の飽和磁化の大きさにはあまり依存せず、ほぼ100mm以上になると軟磁性膜の厚さが大きくなり、軟磁性膜に入る垂直磁化情報とは無関係な磁区が形成されやすく、スパイク状ノイズの発生源となるので望ましくなくなる。また、膜厚を低減させて出力増幅の効果を発揮させるためには、飽和磁化Bs。の大きい軟磁性材料を用いるほうが良く、基板側に設けるヘッドの記録効率を助ける役割をする軟磁性膜の飽和磁化より、大きい飽和磁化の材料を用いるのが効果的である。

【0015】また、垂直磁化膜の近くに設ける軟磁性膜も含めて、m番目の軟磁性膜の厚さを T_a 、軟磁性膜の飽和磁化を Bs_a とすると、記録用の Λ ッド磁極材料の飽和磁化(Bs_h)とトラック幅(Tw)を考慮すると、 $0.16Bs_h\cdot Tw \le \Sigma (Bs_a\cdot T_a)$ であることが望ましい。 $0.16Bs_h\cdot Tw > \Sigma (Bs_a\cdot T_a)$ となると、記録 Λ ッドの記録効率が低下する、記録減磁が顕著になる、などの問題が発生する。また、軟磁性膜の総厚は厚い方が記録効率は向上するが、膜厚が厚いことに伴って発生する媒体表面の起伏増大等が顕在化するので、 Σ ($Bs_a\cdot T_a$) $\le Bs_h\cdot Tw$ であることが望ましい。

【0016】本発明で用いる垂直磁化膜として、従来から知られているすべての種類の垂直磁化膜を用いることができる。すなわち、垂直磁化膜として、Co合金、Co一Pt合金、FeーPt合金からなっている多結晶膜、あるいはCo,Co合金とPt,Pt合金からなる多結晶多層膜、あるいはCo,Co合金とPd,Pd合金からなる多結晶多層膜などが可能である。また、稀土類元素を含む非晶質膜からなる垂直磁化膜を用いることができる。

【0017】軟磁性材料としては、Fe基のFe-N i, Fe-Si, Fe-Al, Fe-Al-Si, Fe -Cr系合金、Ni基のNi-Fe, Ni-Mn系合 金、Co基のCo-Nb, Co-Zr, Co-Fe系合 金あるいはMO·Fe₃O₄ (M=Fe, Mn, Ni, C o, Mg, Zn, Cd)で表されるソフトフェライトを 用いることができる。特に垂直磁化膜の近くに設ける軟 磁性膜としては、飽和磁化が1 丁以上と大きくてしかも 非晶質もしくは微結晶となるFe基合金のFe-Ta-C, Fe-Si-Al, Fe-Co-C, Fe-Si-B, Fe-B-C, Fe-B-C-Si合金、及びCo 基合金のCo-Nb-Zr, Co-Mo-Zr, Co-Ta-Zr, Co-W-Zr, Co-Nb-Hf, Co -Mo-Hf, Co-Ta-Hf, Co-W-Hfが適 当である。この材料が非晶質もしくは微結晶の場合、そ の上に形成する垂直磁化膜の結晶粒も微細化しやすく、 しかも強い垂直磁気異方性を付与させるために好適であ

る。

【0018】軟磁性膜の間を分離する非磁性材料としては、B, C, Mg, Al, Si, Ti, V, Cr, Cu, Zr, Nb, Mo, Ru, Hf, Ta, W, Auから選ばれた元素もしくはこれらの元素を主成分とする合金、Si $_3$ N $_4$, BN, B $_4$ C, NiO, Al $_2$ O $_3$, SiO $_2$, CaO, ZrO $_2$, MgOから選ばれた化合物もしくはこれらの化合物の混晶のいずれかを用いることができる。磁気記録の高周波記録特性を改善するたためには、非磁性材料として電気抵抗の高いB, C, Si, Si $_3$ N $_4$, BN, B $_4$ C, NiO, Al $_2$ O $_3$, SiO $_2$, CaOから選ばれた材料もしくはこれらいずれかの材料を主成分とする混晶材料が適当である。

[0019]

【発明の実施の形態】以下、図面を参照して本発明を実施例により詳細に説明する。

[実施例1]直径2.5インチのガラス基板を用いて、 直流マグネトロンスパッタ法によって、図1の模式図に 示す断面構造を持つ磁気記録媒体を作製した。基板11 上に、反強磁性材料のFe-50at%Mn膜12を5 Onm厚、軟磁性層13としてCo-5at%Nb-5 at%乙r膜を50nm厚、非磁性材料層14としてC u膜を3nm, 再び軟磁性膜15としてCo-5at% Nb-5at%Zr膜を50nm厚、非磁性膜16とし てC膜を10nm厚、軟磁性膜17として飽和磁化が 1.6TのFe-8at%Si-10at%B膜を30 nmの厚さ形成し、その上に垂直磁化膜18としてCo -20t%Cr-8at%Pt-3at%B膜を25n m、保護膜19としてカーボン膜を5nmの厚さ、この 順序で形成した。スパッタのArガス圧力を3mTor r、スパッタパワー20W/cm²、基板温度250℃ の条件で形成した。同様な条件で、垂直磁化膜18の直 下に設けた軟磁性膜17をFe-10at%B-2at %C. Fe-8at%B-2at%C-4at%Si,Fe-5at%Ta-3at%C, Fe-9at%Si -5at%Al-lat%Ni, Co-5at%Fe-4at%C, Co-6at%Fe-4at%B-10a t%Si合金とした以外は前記と同様な垂直媒体を作製 した。

【0020】比較試料1として、厚さ300nmのNi-20at%Feパーマロイの単層からなる裏打磁性膜をガラス基板上に形成し、Co-20t%Cr-8at%Pt-3at%B膜を25nm、保護膜19としてカーボン膜を5nmの厚さとした試料を同様のスパッタ条件で作成した。比較試料2として、比較試料1において軟磁性膜と基板の間に反強磁性材料のFe-50at%Mn膜を形成した垂直磁気記録媒体を作成した。

【0021】作製した垂直磁気記録媒体の軟磁性膜にディスク周方向に磁化を付与するために、磁場中熱処理を行った。試料を真空熱処理装置に導入し、ディスク面に対して直角となるようにディスク中心部の孔に電気導線を通した。電気導線に通電することによって、ディスクの周方向に回転する磁場を形成しつつ、試料の温度を250℃から室温まで冷却することによって磁場中熱処理を行った。カー効果顕微鏡によって軟磁性膜の磁化の方向を観察したところ、比較試料も含めて磁化の方向は大略図2に示すようにほぼディスクの周方向に揃っていることを確認した。

【0022】ついで、これらの試料の記録再生特性を記 録再生分離型の磁気ヘッドを用いて評価した。単磁極型 記録ヘッドのFe-Ni合金磁極のトラック幅は0.5 2μm、再生用の巨大磁気抵抗効果型 (GMR) ヘッド のトラック幅は $0.4\mu m$ 、シールド間隔は 0.08μ m、測定時のスペーシングは0.02 μmとした。40 OkFCIの磁気記録を行なった場合の媒体のS/N は、比較試科1のS/Nに対する相対値として測定し た。記録分解能は孤立波出力の半分となる線記録密度D 50として、記録磁化強度は比較試料1に対する相対出力 として400kFCIの記録信号出力を測定した。ま た、スパイク状のノイズの発生頻度を測定し、1トラッ ク1周あたり1個以上検出された場合を×、ディスクの 記録面をシークしてスパイク状ノイズが1個以上検出さ れた場合を△、スパイク状ノイズが全く検出されなかっ た場合を◎として評価した。これらの結果を表1に示

【0023】 【表1】

試 料							
	50ar%Mn∭ 50nm)	基板側 軟磁性膜	垂直磁化膜図 放磁性膜(膜厚)	スパイク ノイズ	S/N (相対值)	分解能 D50(kFCI)	磁化強症 (相対値)
1	有	Co-Sar%Nb-Sar%Zr 2圈(50nmx2)	Fe-8er%Si-10at%B (30nm)	Ф	1.31	295	1.5
2	有	阿上	Fe-10ar%B-2ar%C (30nm)	0	1.30	290	1.3
3	有	同上	Fe-8at%B-2at%C-4at%Si (30nm)	Φ	1.33	310	1.4
4	有	岡上	Fe-Sat%Ts-3et%C (30nm)	0	1.29	285	. 1.5
5	有	岡上	Fe-9at%Si-5at%Al-lat%Ni (30am)	0	1.33	325	1.5
6	有	同上	Co-Sar%Fe-4ar%C (30nm)	©	1.31	298	1.3
7	有	周上	Co-6at%Fe-4at%B-10at%Si (30mm)	©	1.34	314	1.4
比較試達	きなし	Ni-20at%Pe单层]棋 (300am)	×	1.0	240	1.0
比较级	有	Ni-20ar%Fe 口層	II (300um)	. Д	1.15	245	1.1

【0024】本実施例の磁気記録媒体は、比較例に比べて特にスパイク状ノイズの発生が低減しており、しかも S/N、記録分解能、再生出力も向上しており、高密度 磁気記録媒体として望ましいことがわかった。本実施例で作製した磁気記録媒体を用いて、再生素子として GM Rへッドを用いた 2.5インチの磁気記憶装置を作製した。面記録密度 40Gb/i n²の条件でエラーレート 10-9が確保でき、超高密度記録再生装置として動作することを確認した。

【0025】[実施例2]直径2.5インチのシリコン 基板を用いて、マグネトロンスパッタ法によって、図3 に示す断面構造を持つ垂直磁気記録媒体を作製した。基 板31上に、薄膜の付着力強化用の非磁性膜32として Cr膜を10nm、ついで軟磁性膜33としてFe-5 Oat%Co膜10nmと非磁性34としてRu膜3n mの組み合わせを10組積層した。この上にFe-50 at%Co膜35を10nm積層した後、非磁性膜36 としてAl2O3膜を5nmの厚さ形成した。さらに軟磁 性膜37としてFe-5at%Ta-12at%C膜 (飽和磁化: 1.6T)を50nm厚、垂直磁化膜の結 晶成長制御用膜38としてTi-5at%Cr膜を10 nm、垂直磁化膜39としてCo-20at%Cr-8 at%Pt-3at%B膜(飽和磁化: 0.4T)を2 5 nm、保護膜4 Oとしてカーボン膜を5 nmの厚さ形 成した。スパッタのArガス圧力を3mTorr、スパ ッタパワー10W/cm²、基板温度310℃の条件で 垂直磁気記録媒体を作製した。同様な条件で、垂直磁化 膜の近くに設けたFe-4at%Ta-3at%Si-2at%B軟磁性膜37の厚さを $0\sim300$ nmの間で変化させた以外は上記と同様な構成の試料を作製した。

【0026】作製した垂直磁気記録媒体の軟磁性膜にディスク周方向に磁化を付与するために、磁場中熱処理を行った。試料を真空熱処理装置に導入し、ディスク面に対して直角となるようにディスク中心部の孔に電気導線を通した。電気導線に交流を通電することによって、ディスクの周方向に交互に回転する磁場を形成しつつ、試料の温度を250℃から室温まで冷却することによって磁場中熱処理を行った。カー効果顕微鏡によって軟磁性膜の磁化の方向をディスク周辺部の断面で観察したところ、軟磁性膜の磁化は非磁性層を介して互いに逆平行でしかも磁化は円板状のディスクのほぼ周方向に揃っていることを確認した。

【0027】また比較試料として、直径2.5インチのシリコン基板に垂直磁化膜の結晶成長制御用膜38としてTi-5at%Cr膜を10nm、垂直磁化膜39としてCo-20at%Cr-8at%Pt-3at%B膜(飽和磁化:0.4T)を25nm、保護膜40としてカーボン膜を5nmの厚さ形成した、単層垂直磁気記録媒体を作製した。

【0028】軟磁性膜を持つ垂直磁気記録媒体の記録再生特性を記録再生分離型の磁気ヘッドを用いて行なった。単磁極型記録ヘッドのFe-Ni合金磁極のトラック幅は0.52μm、再生用の巨大磁気抵抗効果型(GMR)ヘッドのトラック幅は0.4μm、シールド間隔

は0.08 μm、測定時のスペーシングは0.15 μm とした。また、比較試料の単層垂直磁気記録媒体の磁気 記録には、トラック幅0.52μmの薄膜リングヘッド を前記と同様のスペーシング条件で用いた。単層垂直媒 体の再生出力検出には、巨大磁気抵抗効果型(GMR) ヘッド(トラック幅0.4μm、シールド間隔0.08 μm)をスペーシング0.15μmの条件で用いた。2 50kFCI及び500kFCIの磁気記録を行なった 場合の再生出力を測定し、単層垂直媒体の再生出力と相 対比較した。また、軟磁性膜を持つ垂直磁気記録媒体の スパイク状ノイズの検出頻度を測定した。この測定で は、ディスクサンプルのトラック1周当りのスパイクノ イズのカウント数を測った。磁気ヘッドの位置をディス ク上で1µmピッチで半径方向に移動させつつ、10ト ラックあたりのスパイクノイズの数として測定した。な お、単層垂直媒体では、このスパイク状ノイズは全く検 出されなかった。これらの測定結果を図4と図5に示

【0029】記録信号の再生出力と軟磁性膜の膜厚の関係は、図4に示すように、軟磁性膜厚が増大するほど再生出力も増大する傾向が認められた。線記録密度が500kFCIの場合は膜厚が6nm以上で、また250kFCIの場合は膜厚が12nm以上の時、単層垂直媒体のそれぞれの記録信号に比べて1.25倍以上の出力になり、軟磁性下地膜による顕著な効果が認められた。一方、スパイクノイズの発生頻度は、図5に示すように、軟磁性膜厚が100nm以上になると10トラック周あたりの発生頻度が1個以上となることが確認された。

【0030】すなわち、磁気記録における最短のビット長をBmin、垂直磁化膜の平均の飽和磁化をMsとすると、単層垂直磁化膜に記録した場合よりも1.25倍以上大きな再生出力を得るためには、0.5Bmin・Ms \le Bs $_a$ ·tの範囲が必要であり、また軟磁性膜の膜厚がほぼ100nm以上になるとスパイク状ノイズの発生が顕著になることが確認された。

【0031】また、本実施例で作製した磁気記録媒体を用いて、再生素子としてGMRへッドを用いた2.54ンチの磁気記憶装置を作製した。最大線記録密度500 kBPI (Bit per Inch)、トラック密度80 kTPI (Track per Inch) からなる面記録密度40 Gb/i n 2 の条件でエラーレート 10^{-9} が確保でき、超高密度記録再生装置として動作することを確認した。

【0032】[実施例3] 直径2.5インチのガラス基板を用いて、マグネトロンスパッタ法によって、図6に示す断面構造を持つ垂直磁気記録媒体を作製した。ガラス製基板61上に、非磁性Cr層62を10nm厚、強磁性Co-21at%Cr-12at%Pt-2at%Ta層63を15nm厚、軟磁性Co-6at%Nb-3at%Zr膜64を150nm厚、非磁性Si-15at%B膜65を8nm厚、軟磁性Fe-4at%Si

-3at%A1膜66を40nm厚、非磁性Si膜67を5nm厚、非磁性Co-35at%Cr-15at%Ru膜68を5nm厚、垂直磁化膜Co-21at%Cr-12at%Pt-2at%Ta膜69を20nm厚、垂直磁化膜Co-17at%Cr-16at%Pt膜70を2nm厚、保護膜としてカーボン膜71を4nmの厚さ、順次形成して垂直磁気記録媒体を作製した。ここで基板に近い側に設けた軟磁性膜の飽和磁化強度は1T、垂直磁化膜に近い側に設けた軟磁性膜の飽和磁化強度は1T、垂直磁化膜に近い側に設けた軟磁性膜の飽和磁化強度は1.4Tであり、後者の飽和磁化値が大きくなるように設定した。

【0033】また、前記の軟磁性Fe-4at%Si-3at%Al膜66の代わりに、いずれも飽和磁化が1.1T以上である、Co-5at%Nb-2at%Zr膜、Co-4at%Mo-3at%Zr膜、Co-4at%Mo-3at%Zr膜、Co-4at%Nb-3at%Hf膜、Co-4at%Nb-3at%Hf膜、Co-3at%Hf膜、Co-3at%Mo-3at%Hf膜、Co-3at%Mo-3at%Hf膜、Co-3at%Mo-3at%Hf膜を設けた以外は同様の構造を持つ垂直磁気記録媒体を作製した。

【0034】さらに、図6における積層垂直磁化膜69、70の代わりにCo-50at%Pt単層膜(膜厚:20nm)、Fe-50at%Pt単層膜(膜厚:20nm)、{(Co:2nm)/(Pt:1nm)}10多層膜、{(Co-16at%Cr-4at%Ta:2nm)/(Pt:1nm)}10多層膜、{(Co-20at%Cr-6at%B:2nm)/(Pd:1nm)}10多層膜、非晶質Tb-12at%Fe-15at%Co垂直磁化膜(膜厚:25nm)を設けた以外は同様の構造の垂直磁気記録媒体を作製した。多層膜の表示において、例えば{(Co:2nm)/(Pt:1nm)}10多層膜は、2nm厚のCo膜と1nm厚のPt膜の組み合わせを合計10組積層した構造であることを示す。

【0035】作製した垂直磁気記録媒体の軟磁性膜にディスク周方向に磁化を付与するために、磁場中熱処理を行った。試料を真空熱処理装置に導入し、ディスク面に対して直角となるようにディスク中心部の孔に電気導線を通した。電気導線に直流を通電することによって、ディスクの周方向に右回りに回転する磁場を形成しつつ、試料の温度を300℃から室温まで冷却することによって磁場中熱処理を行った。カー効果顕微鏡によって軟磁性膜の磁化の方向をディスク周辺部の断面で観察したところ、軟磁性膜の磁化は円板状のディスクのほぼ周方向右回りに揃っていることを確認した。

【0036】比較例として、基板61上に、非磁性Cr層62を10nm厚、強磁性Co-21at%Cr-12at%Pt-2at%Ta層63を15nm厚、軟磁性Co-6at%Nb-3at%Zr膜64を200n

m厚形成後、直接に非磁性Si膜67を5nm厚、非磁性Co-35at%Cr-15at%Ru膜68を5nm厚、垂直磁化膜Co-21at%Cr-12at%Pt-2at%Ta膜69を20nm厚、垂直磁化膜Co-17at%Cr-16at%Pt膜70を2nm厚、保護膜としてカーボン膜71を4nmの厚さ、順次形成して垂直磁気記録媒体を作製した。

【0037】続いて、これらの試料の記録再生特性を記録再生分離型の磁気ヘッドを用いて評価した。単磁極型記録ヘッドのFe-Ni合金磁極のトラック幅は0.52μm、再生用の巨大磁気抵抗効果型(GMR)ヘッドのトラック幅は0.4μm、シールド間隔は0.08μm、測定時のスペーシングは0.02μmとした。400kFCIの磁気記録を行った場合の媒体のS/Nは、

比較試料のS/Nに対する相対値として測定した。記録分解能は孤立波出力の半分となる線記録密度 D_{50} として、記録磁化強度は比較試料に対する相対出力として400kFCIの記録信号出力を測定した。また、スパイク状のノイズの発生頻度を測定し、1トラック1周あたり1個以上検出された場合を \times 、0.1以上1未満を0、0.1未満を0として評価した。これらの結果を、以下の表2に示す。なお、表2において、例えば $\{(Co:2nm)/(Pt:1nm)\}_{10}$ は、2nm厚の00 以と1nm厚の01 を繰り返し01 租積層した多層膜であることを示している。

[0038]

【表2】

		媒体为	媒体を構成する磁性膜			記錄再生特殊	
其本	***	軟磁性膜	垂直出化煤		記錄分解能 DSOCECT	S/N (超数個)	スンバクシイズ
-	Co-6at%Nb-3at%Zr (150nm)	#Nb-3at#2r Fe-4at#Si-3at#Al	Co-21at%Cr-12at%Pt-2at%Ta (20nm)	Co-17at%Cr-16at%Pt (Znm)	315	1.43	0
2	Co-6at%Nb-3at%Zr (150nm)	Pe-481%Si-381%Al	Co-50at%Pt (20nm)		275	1.21	0
3	Co-6at%Nb-3at%Zr (150mm)	Fe-4at%Si-3at%Al (40nm)	Fe-Stat%Pt (20nm)		286	1.20	0
4	Co-681%Nb-3a1%Zr (150nm)	Fe-4at%Si-3at%Al (40nm)	{(Co:2nm)/(Pt:1nm)}10		284	1.22	0
\$	Co-6at%Nb-3at%Zr (150mm)	Fc-4at%Si-3at%Al (40nm)	{(Co-16at%Cr-4at%Ta:2nm)(Pt:1nm))10		298	1.26	0
,vo	Co-6at%Nb-3at%Zr (15fhm)	Fc-4at%Si-3at%Al (40nm)	{(Co-20at%Cr-6at%B:2nm)/(Pd:1nm)}10	•	294	1.30	0
7	Co-6at%Nb-3at%Zr (150nm)	Fc-4at%Si-3at%Al (40nm)	Tb-12at%Fe-15at%Cn (25nm)	•	283	1.29	0
x 0	Co-6at%Nb-3at%Zr (15thm)	Co-5at%Nb-2at%Zr (40nm)	Co-21at%Cr-12at%Pr-2at%Ta (200m)	Co-17at%Cr-16at%Pt (2nm)	310	1.41	©
6	Co-6at%Nb-3at%Zr (150mm)	Co-4.5at%Ta-3at%Zr (40nm)	Co-21at%Cr-12at%Pt-2at%Ta (20nm)	Co-17at%Cr-16at%Pt (2nm)	312	1.46	0
10	Co-6at%Nb-3at%Zr (150mm)	Co-4at%Mo-3at%Zr (40nm)	Co-21at%Cr-12at%Pr-2at%Ta (20nm)	Co-17at%Cr-16at%Pt (2nm)	305	1.44	0
=	Co-6at%Nb-3at%Zr (150nm)	Co-4at%W-3at%Zr (40nm)	Co-21at%Cr-12at%Pt-2at%Ta (20nm)	Co-17at%Cr-16at%Pt (2nm)	302	135	0
12	Co-6at%Nb-3at%Zr (150mm)	Co-4at%Nb-3at%Hf (4thm)	Co-21at%Cr-12at%Pt-2at%Ta (20nm)	Co-17at%Cr-16at%Pr (2nm)	311	1.31	0
13 ·	Co-6at%Nb-3at%Zr (150nm)	Co-3.5at%Ta-2at%Hf (40nm)	Co-3.5at%Ta-2at%Hf Co-21at%Cr-12at%Pi-2at%Ta (40nm) (20nm)	Co-17al%Cr-16al%Pr (2nm)	298.	1.29	0
14	Co-6at%Nb-3at%Zr (150nm)	Co-3at%Mo-3at%ilf (40nm)	Co-21at%Cr-12at%Pt-2at%Ta (20nm)	Co-17at%Cr-16at%Pr (2nm)	316	1.30	0
15	Co-6at%Nb-3at%Zr (150nm)	Co-3.2at%W-3at%Hf (40nm)	Co-3.2at%W-3at%Hf Co-21at%Cr-12at%Pt-2at%Ta (40nm)	Co-17at%Cr-16at%Pt (2nm)	321	1.33	0
16 (比較例)	Co-6at%Nb-3at%Zr (200nm)		Co-21at%Cr-12at%Pr-2at%Ta (20nm)	Co-17at%Cr-16at%Pt (2nm)	265	1.0 (基準値)	×

【0039】表2に示されているように、本実施例の磁気記録媒体は、記録分解能とS/Nが大きくてしかも比較試料に比べて軟磁性下地膜から発生しやすいスパイク状ノイズが低減されており、高密度磁気記録媒体として望ましいことがわかった。本実施例で作製した磁気記録媒体を用いて、再生素子として磁気トンネル現象を応用

した高感度再生ヘッドを用いた 2.5 インチの磁気記憶装置を作製した。面記録密度 40 G b / i n^2 の条件で、いずれの試作媒体においてもエラーレート 10^{-8} が確保でき、超高密度記録再生装置として動作することを確認した。

【0040】[実施例4]図7に示す断面構造を持つ垂

直磁気記録媒体を作製した。直径1.8インチのガラス基板72上に厚さ20nmのNiO反強磁性膜73、厚さ100nmのFe-25at%Ni軟磁性膜74、厚さ5nmの Si_3N_4 排磁性膜75、厚さ100nmのCo-6at%Nb-3at%Zr軟磁性膜76、厚さ5nmの SiO_2 非磁性膜77、厚さ20nmのFe-5at%Ta-10at%C軟磁性膜78、厚さ5nmのGe膜79、厚さ20nmのCo-18at%Cr-12at%Pt-1at%Si-3at%B垂直磁化膜80、厚さ5nmのカーボン保護膜81を形成し、垂直磁気記録媒体を作製した。

【0041】さらに、前記 Si_3N_4 非磁性膜74の代わりに非磁性材料膜としてB, C, Mg, A1, Si, Ti, V, Cr, Cu, Zr, Nb, Mo, Ru, Hf, Ta, W, Au, A1-10at%Mg, Si-2at%Ti, Ti-15at%V, Cu-5at%Ag, A

試 料		記録再生特性		
No.	非磁性膜材料	スパイク	S/N(相対值)	
1	Si3N4	6	1.32	
2	В	0	1.31	
3	С	0	1.34	
4	Mg	•	1.29	
5	Al	9	1.35	
6	Si	9	1.36	
7	Ti	9	1.30	
8	v	•	1.28	
9	Cr	0	1.29	
10	Cu	0	1.30	
11	Zr	0	1.32	
12	Nb	•	1.34	
13	Мо	•	1.33	
14	Ru	٥	1.38	
15	Hf	•	1.36	
16	Ta	٥	1.32	
17	w	•	1.29	

【0043】表3に示した実験結果から明らかなように、本発明による垂直磁気記録媒体はスパイクノイズの発生が抑制されるとともに媒体S/Nも比較例に比べて20~40%改善されている。また、本発明による垂直磁気記録媒体と比較例の断面の磁化状態を磁気力顕微鏡及びローレンツ型の電子線顕微鏡で観察した。この結

u-50at%Ag, BN. B, C, NiO, Al $_2O_3$, SiO $_2$, CaO, ZrO $_2$, MgO·CaO, SiO $_2$ ·CaO, E用いた以外は同様の垂直磁気記録媒体を作製した。比較試料として、同様なガラス基板上に直接厚さ200nmの単層のFe-25at%Ni膜を裏打磁性膜として形成し、その上に厚さ5nmのGe膜、厚さ20nmのCo-18at%Cr-12at%Pt-1at%Si-3at%B垂直磁化膜、厚さ5nmのカーボン保護膜を形成した垂直磁気記録媒体を作成した。これらの垂直磁気記録媒体を実地例3と同様に磁場中熱処理を行った。これらの磁気記録媒体の媒体S/N、スパイク状ノイズを実施例1と同様の条件で測定した。結果を表3に示す。

【0042】 【表3】

I.S.	**	記録再生特性		
No.	非磁性膜材料	スパイク ノイズ	S/N (相対値)	
18	Ąu	©	1.31	
19	Al-10at%Mg	@ ·	1.36	
20	Si-2ar%Ti	0	1.36	
21	11-15at%V	0	1.33	
22	Cu-Sat%Ag	9	1.35	
23	Au-50st%Ag	9	1.39	
24	BN	9	1.34	
25	B4C	•	1.37	
26	NiO	9	1.35	
27	AJ2O3	•	1.36	
28	SiO2	•	1.32	
29	CaO	Φ	1.27	
30	ZrO2	•	1.29	
31	MgO · C₄O	٥	1.32	
32	SiO2 • ZrO2	•	1.33	
33	SiO2 · CaO	•	1.30	
比較例	なし	×	(1.0)	

果、本発明による磁気記録媒体の磁化状態はいずれも図 7の模式図に示した状態が実現されていることを確認し た。これに対し、比較例では特に軟磁性膜に記録磁化情 報とは無関係な磁壁が多く観察された。このような磁壁 の存在が、記録再生特性評価におけるスパイクノイズと して観察されたものと解釈された。

【0044】[実施例5]実地例4と同様に、図7に示 す断面構造を持つ垂直磁気記録媒体を作製した。直径 1.8インチのガラス基板72上に厚さ10nmのFe -50at%Pt強磁性膜73、厚さT,nmのFe-25at%Ni軟磁性膜74、厚さ5nmのCu非磁性 膜75、厚さT₂nmのCo-6at%Nb-3at% 乙r軟磁性膜76、厚さ5nmのSiO,非磁性膜7 7、厚さ20nmのFe-5at%Ta-10at%C軟磁性膜78、厚さ5nmのTi-10at%Cr膜7 9、厚さ20nmのCo-18at%Cr-12at% Pt-1at%Si-3at%B垂直磁化膜80、厚さ 5 nmのカーボン保護膜81を形成した一連の垂直磁気 記録媒体を作製した。ここで、Fe-25at%Ni軟 磁性膜73とCo-6at%Nb-3at%Zr軟磁性 膜75のそれぞれの厚さ $(T_1, T_2 nm)$ を $5nm\sim 2$ 00 n mの範囲で変化させた。

【0045】本実施例で用いた軟磁性膜の飽和磁化の値を測定したところ、Fe-25at%Ni 軟磁性膜とCo-6at%Nb-3at%Zr 軟磁性膜の値は1T、Fe-5at%Ta-10at%C 軟磁性膜の値は1.6Tであった。これらの垂直磁気記録媒体を実地例2E 同様な条件で磁場中熱処理を施し、軟磁性膜の磁化の方向をガラスディスク基板のほぼ周方向に規定した。

【0046】試作した垂直磁気記録媒体の記録再生特性の評価を記録再生分離型の磁気へッドを用いて行なった。磁気へッドとして、以下の4種類を準備した。これら4種類の磁気へッドは磁極材料と磁極のトラック幅が異なるが、再生素子としては巨大磁気抵抗効果型(GMR)へッド素子のトラック幅は0.14 μ m、シールド間隔は0.07 μ mの共通の再生へッドを搭載しているものである。記録用の単磁極へッドの構成を、飽和磁化が1.6 π 0.30 μ m,0.50 μ m,1.0 μ m)とした。磁気記録媒体と磁気へッドのスペーシングを0.02 μ mとして、記録再生特性を測定した。いずれの垂直磁気記録媒体でもスパイク状のノイズは観察されなかった。

【0047】それぞれの記録へッドの媒体への記録効率を評価するために、重ね書き特性(オーバーライト特性:O/W特性)を測定した。O/W特性は、まず媒体に高線記録密度(400kFCI)の信号を重ねて記録したときの高線記録密度信号の残存比率を-dB表示で測定することによって評価した。図8に、Fe-Ni軟磁性膜(T_1 n·m)、Co-Nb-Zr軟磁性膜(T_2 n m)の厚さを同時に5nm~200nmの範囲で変化させた垂直磁気記録媒体の膜厚(T_1 = T_2 0条件で変化)とO/Wの関係を示す。図8の上部には、 Σ (Bsa· T_a) には、垂直磁化膜の近くに設けた厚さ20nmのFe-5

at%Ta-10at%C軟磁性膜の値も積算されている.

【0049】本実施例で試作したFe-Ni 軟磁性膜、Co-Nb-Zr 軟磁性膜、Fe-Ta-C 軟磁性膜の膜厚をそれぞれ50nm, 50nm, 20nmとした垂直磁気記録媒体と記録トラック幅0. $15\mu m$, 再生トラック幅0. $14\mu m$ の録再分離型へッドを組み合わせて、 $80Gb/in^2$ の条件でエラーレートを測定したところ、 10^{-8} 以下の値が得られた。

【発明の効果】本発明によれば、2層垂直磁気記録媒体のノイズ特性と磁気へッドによる記録効率をを改善することができ、この結果、高速で高密度磁気記録が可能な磁気ディスク装置の実現が可能となる、特に、40Gb/in²以上の高密度磁気記録が可能となり、装置の小型化や大容量化が容易になる。

【図面の簡単な説明】

[0050]

【図1】本発明による垂直磁気記録媒体の一例を示す断面模式図。

【図2】 軟磁性膜の磁化方向を説明する断面模式図。

【図3】本発明による垂直磁気記録媒体の他の例を示す 断面模式図。

【図4】磁気記録媒体の評価結果を示す図。

【図5】磁気記録媒体の評価結果を示す図。

【図6】本発明による垂直磁気記録媒体の他の例を示す 断面模式図。

【図7】本発明による垂直磁気記録媒体の他の例を示す 断面模式図。

【図8】磁気記録媒体の評価結果を示す図。 【符号の説明】

11…基板、12…反強磁性材料膜、13…軟磁性膜、14…非磁性材料層、15…軟磁性膜、16…非磁性膜、17…軟磁性膜、18…垂直磁化膜、19…保護膜、20…磁化の向き、21…磁化の向き、31…基板、32…非磁性膜、33…軟磁性膜、34…非磁性

膜、35…軟磁性膜、36…非磁性膜、37…軟磁性 膜、38…垂直磁化膜の結晶成長制御膜、39…垂直磁 化膜、40…保護膜、61…基板、62…非磁性層、6 3…強磁性層、64…軟磁性膜、65…非磁性膜、66 …軟磁性膜、67…非磁性膜、69… 垂直磁化膜、70…垂直磁化膜、71…保護膜、72… 基板、73…反強磁性膜、74…軟磁性膜、75…非磁 性膜、76…軟磁性膜、77…非磁性膜、78…軟磁性 膜、79…非磁性膜、80…垂直磁化膜、81…保護膜

【図8】

【図7】

52 X(Ba_{th}·T_m) 232 2

フロントページの続き

(72)発明者 本多 幸雄 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内

(72)発明者 平山 義幸 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72) 発明者 菊川 敦

9

東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5D006 BB01 BB05 BB07 BB08 CA01 CA03 CA05 CA06 FA09 5D091 AA10 CC11 GG05 HH08