```
import numpy as np
import pandas as pd
import matplotlib.cm as cm
import matplotlib.pyplot as plt
full matplotlib.pyplotlib.pyplotlib.full matplotlib.pyplotlib.full matplotlib.full matplotlib.full matplotlib.full matplotlib.full matplotlib.full matplotlib.full matplotlib.full matplotlib.full matplotl
```

```
# Visualization
# Individual Plots
plt.hist(data_train["category"])

plt.show()

plt.plot(data_train["adview"])

plt.show()

# Remove videos with adview greater than 20000000 as outlier

data_train = data_train[data_train["adview"] <2000000]</pre>
```



```
# Heatmap
import seaborn as sns
f, ax = plt.subplots(figsize=(10, 8))
corr = data train.corr()
```

10000 12000 14000

4000

6000

8000

2000

- 5 sns.heatmap(corr, mask=np.zeros_like(corr, dtype=np.bool), cmap=sns.diverging_palette
 - square=True, ax=ax,annot=True)
- 7 plt.show()


```
1 # Removing character "F" present in data
```

- data_train=data_train[data_train.views!='F']
- 3 data_train=data_train[data_train.likes!='F']
- 4 data_train=data_train[data_train.dislikes!='F']
- 5 data_train=data_train[data_train.comment!='F']
- 6 data train.head()
- 7 # Assigning each category a number for Category feature
- 8 category={'A': 1,'B':2,'C':3,'D':4,'E':5,'F':6,'G':7,'H':8}
- 9 data_train["category"]=data_train["category"].map(category)
- 10 data_train.head()

11

	vidid	adview	views	likes	dislikes	comment	published	duration	categoi
0	VID_18655	40	1031602	8523	363	1095	2016-09- 14	PT7M37S	
1	VID_14135	2	1707	56	2	6	2016-10- 01	PT9M30S	
2	VID_2187	1	2023	25	0	2	2016-07- 02	PT2M16S	
	\					150	2016-07-	DT 414000	

Convert values to integers for views, likes, comments, dislikes and adview

```
data_train["views"] = pd.to_numeric(data_train["views"])
data_train["comment"] = pd.to_numeric(data_train["comment"])
data_train["likes"] = pd.to_numeric(data_train["likes"])
data_train["dislikes"] = pd.to_numeric(data_train["dislikes"])
data_train["adview"]=pd.to_numeric(data_train["adview"])
column_vidid=data_train['vidid']

# Endoding features like Category, Duration, Vidid
from sklearn.preprocessing import LabelEncoder
data_train['duration']=LabelEncoder().fit_transform(data_train['duration'])
data_train['vidid']=LabelEncoder().fit_transform(data_train['vidid'])
data_train['published']=LabelEncoder().fit_transform(data_train['published'])
data_train.head()
```

	vidid	adview	views	likes	dislikes	comment	published	duration	category
0	5912	40	1031602	8523	363	1095	2168	2925	6
1	2741	2	1707	56	2	6	2185	3040	4
2	8138	1	2023	25	0	2	2094	1863	3
3	9004	6	620860	777	161	153	2119	2546	8
4	122	1	666	1	0	0	2091	1963	4

```
# Convert Time_in_sec for duration
     import datetime
     import time
     def checki(x):
        y = x[2:]
       m = ''
        s = ''
        mm = ''
        P = ['H', 'M', 'S']
        for i in y:
11
12
          if i not in P:
13
             mm+=i
14
          else:
15
                if(i=="H"):
16
                 h = mm
                 mm = ''
17
                elif(i == "M"):
18
19
                 m = mm
                 mm = ''
20
21
                else:
22
                  s = mm
                  mm = ''
23
        if(h==''):
25
           h = '00'
        if(m == ''):
           m = '00'
27
28
        if(s==''):
29
            s='00'
```

```
30
       bp = h+':'+m+':'+s
31
        return bp
    train=pd.read csv("train.csv")
32
    mp = pd.read_csv(path + "train.csv")["duration"]
34
    time = mp.apply(checki)
    def func_sec(time_string):
36
37
        h, m, s = time_string.split(':')
38
        return int(h) * 3600 + int(m) * 60 + int(s)
40
    time1=time.apply(func_sec)
41
    data_train["duration"]=time1
42
    data_train.head()
```

	vidid	adview	views	likes	dislikes	comment	published	duration	category
0	5912	40	1031602	8523	363	1095	2168	457	6
1	2741	2	1707	56	2	6	2185	570	4
2	8138	1	2023	25	0	2	2094	136	3
3	9004	6	620860	777	161	153	2119	262	8
4	122	1	666	1	0	0	2091	31	4

```
1 # Split Data
```

- 2 Y_train = pd.DataFrame(data = data_train.iloc[:, 1].values, columns = ['target'])
- 3 data_train=data_train.drop(["adview"],axis=1)
- 4 data_train=data_train.drop(["vidid"],axis=1)
- 5 data_train.head()

	views	likes	dislikes	comment	published	duration	category
0	1031602	8523	363	1095	2168	457	6
1	1707	56	2	6	2185	570	4
2	2023	25	0	2	2094	136	3
3	620860	777	161	153	2119	262	8
4	666	1	0	0	2091	31	4

- 1 from sklearn.model_selection import train_test_split
- 2 X_train, X_test, y_train, y_test = train_test_split(data_train, Y_train, test_size=0.
- 3 X train.shape
- 4 # Normalise Data
- 5 from sklearn.preprocessing import MinMaxScaler
- 6 scaler = MinMaxScaler()
- 7 X_train=scaler.fit_transform(X_train)
- 8 X_test=scaler.fit_transform(X_test)
- 9 X_train.mean()

0.1739096800320488

```
# Evaluation Metrics
   from sklearn import metrics
   def print_error(X_test, y_test, model_name):
       prediction = model name.predict(X test)
       print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, prediction))
       print('Mean Squared Error:', metrics.mean_squared_error(y_test, prediction))
       print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, pred
   # Linear Regression
   from sklearn import linear_model
   linear regression = linear model.LinearRegression()
   linear_regression.fit(X_train, y_train)
   print_error(X_test,y_test, linear_regression)
   Mean Absolute Error: 3707.378005824532
   Mean Squared Error: 835663131.1210337
   Root Mean Squared Error: 28907.83857573986
   # Support Vector Regressor
   from sklearn.svm import SVR
   supportvector_regressor = SVR()
4
   supportvector_regressor.fit(X_train,y_train)
   print_error(X_test,y_test, linear_regression)
   /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:760: DataConversion
     y = column_or_1d(y, warn=True)
   Mean Absolute Error: 3707.378005824532
   Mean Squared Error: 835663131.1210337
   Root Mean Squared Error: 28907.83857573986
   # Decision Tree Regressor
   from sklearn.tree import DecisionTreeRegressor
   decision tree = DecisionTreeRegressor()
   decision_tree.fit(X_train, y_train)
   print error(X test, y test, decision tree)
   Mean Absolute Error: 2683.9286202185795
   Mean Squared Error: 897836055.1950136
   Root Mean Squared Error: 29963.91254818058
   # Random Forest Regressor
   from sklearn.ensemble import RandomForestRegressor
   n = 400
4
   max depth = 50
   min_samples_split= 30
   min samples leaf= 3
   random_forest = RandomForestRegressor(n_estimators = n_estimators, max_depth = max_de
8
   random_forest.fit(X_train,y_train)
```

print_error(x_test,y_test, random_torest)

```
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:8: DataConversionWarning
   Mean Absolute Error: 3416.1310291756986
   Mean Squared Error: 742092301.0656787
   Root Mean Squared Error: 27241.371130427313
   # Artificial Neural Network
   import keras
   from keras.layers import Dense
   ann = keras.models.Sequential([
                       Dense(6, activation="relu",
                       input_shape=X_train.shape[1:]),
                       Dense(6,activation="relu"),
                       Dense(1)
                        ])
10
   optimizer=keras.optimizers.Adam()
11
   loss=keras.losses.mean squared error
12
   ann.compile(optimizer=optimizer,loss=loss,metrics=["mean_squared_error"])
13
   history=ann.fit(X_train,y_train,epochs=100)
   ann.summary()
14
15
   print_error(X_test,y_test,ann)
16
   Epoch 1/100
   366/366 [=============== ] - 17s 3ms/step - loss: 469571112.9589 - m
   Epoch 2/100
   366/366 [======================= ] - 1s 3ms/step - loss: 703724705.7231 - me
   Epoch 3/100
   366/366 [================= ] - 1s 3ms/step - loss: 1227204391.2371 - m
   Epoch 4/100
   Epoch 5/100
   366/366 [================== ] - 1s 3ms/step - loss: 661635794.7248 - me
   Epoch 6/100
   366/366 [================ ] - 1s 3ms/step - loss: 532626680.9373 - me
   Epoch 7/100
   Epoch 8/100
   Epoch 9/100
   Epoch 10/100
   Epoch 11/100
   Epoch 12/100
   Epoch 13/100
   Epoch 14/100
   366/366 [====================== ] - 1s 3ms/step - loss: 761525071.2071 - me
   Epoch 15/100
   Epoch 16/100
   366/366 [================= ] - 1s 3ms/step - loss: 1686341799.4114 - m
```

```
Epoch 17/100
  Epoch 18/100
  Epoch 19/100
  366/366 [================== ] - 1s 3ms/step - loss: 1045351705.5082 - m
  Epoch 20/100
  Epoch 21/100
  Epoch 22/100
  Epoch 23/100
  366/366 [================= ] - 1s 3ms/step - loss: 1071861235.8072 - m
  Epoch 24/100
  Epoch 25/100
  Epoch 26/100
  Epoch 27/100
  Epoch 28/100
  Epoch 29/100
                                              •
  #Saving Scikitlearn models
  import joblib
  joblib.dump(decision_tree, "decisiontree_youtubeadviewpred.pkl")
  # Saving Keras Artificial Neural Network model
  ann.save("ann_youtubeadviewpred.h5")
  import numpy as np
  import pandas as pd
  import matplotlib.cm as cm
  import matplotlib.pyplot as plt
  # Importing data
  data_test = pd.read_csv("test.csv")
  data_test.head()
  data_test.shape
  (8764, 8)
  # Removing character "F" present in data
  data test=data test[data test.views!='F']
  data_test=data_test[data_test.likes!='F']
  data test=data test[data test.dislikes!='F']
  data test=data test[data test.comment!='F']
  data test.head()
  # Assigning each category a number for Category feature
  category={'A': 1, 'B':2, 'C':3, 'D':4, 'E':5, 'F':6, 'G':7, 'H':8}
8
```

data_test.head()

10

data_test["category"]=data_test["category"].map(category)

	vidid	views	likes	dislikes	comment	published	duration	category
0	VID_1054	440238	6153	218	1377	2017-02-18	PT7M29S	2
1	VID_18629	1040132	8171	340	1047	2016-06-28	PT6M29S	6
2	VID_13967	28534	31	11	1	2014-03-10	PT37M54S	4
3	VID_19442	1316715	2284	250	274	2010-06-05	PT9M55S	7
4	VID_770	1893173	2519	225	116	2016-09-03	PT3M8S	2

- 1 # Convert values to integers for views, likes, comments, dislikes and adview
- 2 data_test["views"] = pd.to_numeric(data_test["views"])
- 3 data_test["comment"] = pd.to_numeric(data_test["comment"])
- 4 data_test["likes"] = pd.to_numeric(data_test["likes"])
- 5 data_test["dislikes"] = pd.to_numeric(data_test["dislikes"])
- 6 column_vidid=data_test['vidid']
- 1 # Endoding features like Category, Duration, Vidid
- 2 from sklearn.preprocessing import LabelEncoder
- data_test['duration']=LabelEncoder().fit_transform(data_test['duration'])
- 4 data_test['vidid']=LabelEncoder().fit_transform(data_test['vidid'])
- 5 data_test['published']=LabelEncoder().fit_transform(data_test['published'])
- 6 data_test.head()

vidid	views	likes	dislikes	comment	published	duration	category
231	440238	6153	218	1377	2053	2115	2
3444	1040132	8171	340	1047	1825	2055	6
1593	28534	31	11	1	1009	1506	4
3775	1316715	2284	250	274	116	2265	7
7644	1893173	2519	225	116	1892	1625	2
	231 3444 1593 3775	231 440238 3444 1040132 1593 28534	231 440238 6153 3444 1040132 8171 1593 28534 31 3775 1316715 2284	231 440238 6153 218 3444 1040132 8171 340 1593 28534 31 11 3775 1316715 2284 250	231 440238 6153 218 1377 3444 1040132 8171 340 1047 1593 28534 31 11 1 3775 1316715 2284 250 274	231 440238 6153 218 1377 2053 3444 1040132 8171 340 1047 1825 1593 28534 31 11 1 1009 3775 1316715 2284 250 274 116	231 440238 6153 218 1377 2053 2115 3444 1040132 8171 340 1047 1825 2055 1593 28534 31 11 1 1009 1506 3775 1316715 2284 250 274 116 2265

```
# Convert Time_in_sec for duration
     import datetime
     import time
     def checki(x):
        y = x[2:]
       m = ''
        S = ''
       mm = ''
10
        P = ['H','M','S']
        for i in y:
11
12
          if i not in P:
13
             mm+=i
14
          else:
15
                if(i=="H"):
16
                 h = mm
                 mm = ''
17
18
                elif(i == "M"):
```

```
mm = ''
20
21
                else:
22
                  s = mm
                  mm = ''
23
24
        if(h==''):
25
           h = '00'
        if(m == ''):
           m = '00'
27
28
        if(s==''):
            s='00'
        bp = h+':'+m+':'+s
30
        return bp
32
    train=pd.read_csv("test.csv")
    mp = pd.read_csv("test.csv")["duration"]
34
    time = mp.apply(checki)
    def func sec(time string):
        h, m, s = time_string.split(':')
38
        return int(h) * 3600 + int(m) * 60 + int(s)
40
    time1=time.apply(func_sec)
41
42
    data_test["duration"]=time1
43
    data_test.head()
```

vidid	views	likes	dislikes	comment	published	duration	category
231	440238	6153	218	1377	2053	449	2
3444	1040132	8171	340	1047	1825	389	6
1593	28534	31	11	1	1009	2274	4
3775	1316715	2284	250	274	116	595	7
7644	1893173	2519	225	116	1892	188	2
	231 3444 1593 3775	231 440238 3444 1040132 1593 28534 3775 1316715	231 440238 6153 3444 1040132 8171 1593 28534 31 3775 1316715 2284	231 440238 6153 218 3444 1040132 8171 340 1593 28534 31 11 3775 1316715 2284 250	231 440238 6153 218 1377 3444 1040132 8171 340 1047 1593 28534 31 11 1 3775 1316715 2284 250 274	231 440238 6153 218 1377 2053 3444 1040132 8171 340 1047 1825 1593 28534 31 11 1 1009 3775 1316715 2284 250 274 116	231 440238 6153 218 1377 2053 449 3444 1040132 8171 340 1047 1825 389 1593 28534 31 11 1 1009 2274 3775 1316715 2284 250 274 116 595

```
1 # Split Data
```

- Z_train = pd.DataFrame(data = data_test.iloc[:, 1].values, columns = ['target'])
- 3 data_test=data_test.drop(["vidid"],axis=1)
- 4 data_test.head()

	views	likes	dislikes	comment	published	duration	category
0	440238	6153	218	1377	2053	449	2
1	1040132	8171	340	1047	1825	389	6
2	28534	31	11	1	1009	2274	4
3	1316715	2284	250	274	116	595	7
4	1893173	2519	225	116	1892	188	2

¹ from sklearn.model_selection import train_test_split

X train, X test, y train, y test = train test split(data test, Z train, test size=0.2

```
X train.shape
   # Normalise Data
   from sklearn.preprocessing import MinMaxScaler
   scaler = MinMaxScaler()
   X_train=scaler.fit_transform(X_train)
  X_test=scaler.fit_transform(X_test)
  X_train.mean()
   0.1691684916653104
   # Evaluation Metrics
   from sklearn import metrics
   def print_error(X_test, y_test, model_name):
       prediction = model_name.predict(X_test)
        print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, prediction))
        print('Mean Squared Error:', metrics.mean_squared_error(y_test, prediction))
        print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, pred
   # Decision Tree Regressor
   from sklearn.tree import DecisionTreeRegressor
   decision_tree = DecisionTreeRegressor()
   decision_tree.fit(X_train, y_train)
   print_error(X_test,y_test, decision_tree)
   Mean Absolute Error: 3458894.505263158
   Mean Squared Error: 115794316199804.33
   Root Mean Squared Error: 10760776.747047786
1 #Saving Scikitlearn models
   import joblib
   joblib.dump(decision_tree, "decisiontree_prediction.pkl")
   ['decisiontree_prediction.pkl']
   from sklearn.tree import DecisionTreeRegressor
   regressor = DecisionTreeRegressor()
2
   regressor.fit(X_train, y_train)
   DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None,
                          max_features=None, max_leaf_nodes=None,
                          min_impurity_decrease=0.0, min_impurity_split=None,
                          min_samples_leaf=1, min_samples_split=2,
                          min_weight_fraction_leaf=0.0, presort='deprecated',
                          random state=None, splitter='best')
   y_pred = regressor.predict(X test)
   df=pd.DataFrame({'Predictions':y pred})
   df.head()
2
```

	Predictions
0	265021.0
1	14179.0
2	9682759.0
3	24248747.0
4	425196.0
	علم مستعمدات

1 predictions=df

1 predictions

	Predictions
0	265021.0
1	14179.0
2	9682759.0
3	24248747.0
4	425196.0
•••	
1705	13572428.0
1706	199992.0
1707	6011924.0
1708	5662900.0
1709	1005358.0
1710 rov	ws × 1 columns

predictions.to_csv('predictions.csv', index=False)

1 ! cat predictions.csv

```
Predictions
265021.0
14179.0
9682759.0
24248747.0
425196.0
356072.0
350410.0
4283780.0
800112.0
28556617.0
3046514.0
6947.0
14957150.0
```

```
27112851.0
29390.0
878075.0
45510.0
543526.0
891984.0
203763.0
430245.0
4006843.0
7841531.0
276.0
259759.0
4401353.0
5767561.0
49727.0
5646790.0
44952.0
1385406.0
3725457.0
292963.0
6376460.0
1333017.0
1621910.0
87814.0
1409323.0
2983.0
1368706.0
356503.0
483380.0
11483.0
1568927.0
216077.0
567505.0
16539356.0
1143033.0
185502.0
1504436.0
327481.0
542673.0
740999.0
1339.0
1511094.0
468635.0
166598.0
1718530.0
```

