Refine Myself by Teaching Myself - FRSKD

2015104236 황 채 은

Confusion Matrix

		실제 정답		
		True False		
분류	True	True Positive	False Positive	
분류 결과	False	False Negative	True Negative	

- True Positive(TP) : 실제 True인 정답을 True라고 예측 (정답)
- False Positive(FP) : 실제 False인 정답을 True라고 예측 (오답)
- False Negative(FN) : 실제 True인 정답을 False라고 예측 (오답)
- True Negative(TN) : 실제 False인 정답을 False라고 예측 (정답)

Precision, Recall, Accuracy

		실제 정답		
		True False		
분류	True	True Positive	False Positive	
결과	False	False Negative	True Negative	

- Prcecision : 정밀도 = $\frac{TP}{TP+FP}$, True로 분류된 것 중에 실제 True 인 비율

- Recall : 재현율 = $\frac{TP}{TP+FN}$, 실제 True인 것 중에 True라고 예측한 것의 비율

- Accuracy : 정확도 = $\frac{TP+TN}{TP+FN+FP+TN'}$, 가장 직관적으로 모델의 성능을 평가할 수 있는 기준

• AP : Average Precision. 물체 검출 알고리즘 성능을 평가하는 기준이 되며, Precision-recall 그래프에서 그래프 선 아래쪽의 면적으로 계산된다.

Precision-recall 그래프(= PR Curve)

• F1 score : Precision과 Recall의 조화평균

$$(F1\text{-}score) = 2 \times \frac{1}{\frac{1}{Precision} + \frac{1}{Recall}} = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

- 산술평균보다 좀 더 덜 치우친 평균을 구할 수 있음!

- ROC Curve : Receiver Operating Characteristic Curve.
 - X축 : Fallout = $\frac{FP}{TN+FP}$, 실제 False인 것 중에 True라고 예측한 비율
 - Y축 : Recall = $\frac{TP}{TP+FN}$

ROC Curve 그래프

Curve가 왼쪽 위 모서리에 가까울수록 모델의 성능이 좋다고 평가한다.

극,Recall이 크고Fall-out이 작은모형이 좋은 모형(y=x 그래프보다상단에 위치)

- AUC : Area Under Curve. ROC 그래프 아래의 면적값을 의미.
 - 최댓값은 1
 - 좋은 모델일수록 1에 가까운 값이 나온다.(Fall-out에 비해 Recall값이 클수록)

ROC Curve 그래프

Refine Myself

스스로를 다듬는다

by Teaching Myself

스스로를 가르침으로써

Abstract - 本록

Knowledge Distillation : 지식 증류

지식을 증류시켜 전달함으로써 모델의 크기는 줄이되, 중요한 정보는 남긴다

Abstract - 초록

• Self Knowledge Distillation : 자가 지식 증류

데이터 증강 기반 접근법

보조 네트워크 기반 접근법

Abstract - 本록

데이터 증강 기반 접근법

- 증강 과정에서 지역 정보 소실
- 다양한 비전 작업에의 적용 가능성이 낮음
- 정교한 특징 맵을 받지 못함

보조 네트워크 기반 접근법

• 제안 ▶새로운 자기 지식 증류 방법 필요

자기 지식 증류를 통한 특징 개선

(FRSKD, Feature Refinement via Self-Knowledge Distillation)

Abstract - 초록

자기 지식 증류를 통한 특징 개선

(FRSKD, Feature Refinement via Self-Knowledge Distillation)

- 자체 지식 증류를 위해 소프트 라벨과 형상도 증류 모두 활용 가능
- 지역 정보의 보존을 강조하는 분류 및 의미 분할에 적용 가능
- 다양한 곳에서 입증된 효과
- 공개된 코드 (https://github.com/MingiJi/FRSKD)

• 장치에서의 제한된 자원 ▶ 모델의 압축이 중요

지식 증류

지식 증류

Soft Label

Penultimate layer outputs

Feature-maps

셋 중에 하나를 교사 네트워크로부터 받아 ____ 지식 활용

- Soft Label : Task는 신경망의 마지막 softmax 레이어를 통해 각 클 래스의 확률값을 낸다.
 - i번째 클래스에 대한 확률값 (q_i)

큰 모델(T)

Knowledge

작은 모델(S)

손실함수(L) 을 통해 학습시킴

$$L = \sum_{(x,y)\in\mathbb{D}} L_{KD}(S(x,\theta_S,\tau), T(x,\theta_T,\tau)) + \lambda L_{CE}(\hat{y}_S, y)$$

L = 손실함수

S = Student model

T = Teacher model

(x,y) = 하나의 이미지와 그 레이블

Θ = 모델의 학습 파라미터

 τ = temperature

17

Parameter Shared

Augmentation

(a) Knowledge Distillation

(c) Self-Knowledge Distillation via Auxiliary Classifiers

[다양한 증류 방법 비교]

(b) Self-Knowledge Distillation via Data-augmentation

(d) Feature Refinement via Self-Knowledge Distillation

Self –Knowledge Distillation

데이터 증강 기반 접근법 보조 네트워크 기반 접근법

정교한 지식 생성이 어려움

자기 지식 증류를 통한 특징 개선

(FRSKD, Feature Refinement via Self-Knowledge Distillation)

Soft Label 및 형상도 증류 모두 활용 가능

2. Related Work -관련작업

- Knowledge Distillation(지식 증류)
 - 목표: 사전 훈련된 복잡한 네트워크(교사 네트워크)에 대한 지식을 전달하여 더 단순한 네트워크(학생 네트워크)를 효과적으로 훈련시 키는 것
 - 한계점
 - 1) 지식 증류는 복잡한 교사 모델의 사전 훈련을 필요로 함
 - 2) 교사 네트워크가 변하면 동일한 학생 네트워크라도 다른 성과를 냄

2. Related Work - 관련작업

- Self-Knowledge Distillation(자가지식 증류)
 - : 교사 네트워크 없이 자신의 지식을 활용하여 학생 네트워크 훈련의 효과를 향상시킨다.
 - 1) 일부는 자가지식 증류를 위해 보조 네트워크 활용
 - Ex) BYOT의 분류기 네트워크 도입: 추정값과 실제 감시에 대한 공동 감독으로 훈련
 - Ex) ONE의 추가 분기 활용: 모델 매개변수와 중간 계층의 추정 특징을 다양화
 - 2) 데이터 확대 사용
 - Ex) DDGSD : 다르게 증강된 instance 제공 > 일관된 예측 유도
 - Ex) CSKD : 정규화 목적으로 동일한 클래스에 속하는 다른 instance들의 Logit 사용 > 동일한 클래스에 대해 유사한 결과 예측

제안 : 단일 Instance에서 정교한 기능 맵을 생성하는 셀프 교사 네트워크 작업

2. Related Work -관련작업

Feature Networks

논문에서 제안한 **보조 셀프 교사 네트워크**

- 객체 감지 분야에서 사용되는 Feature Network 에서 개발
- 지식 증류 목적에 다중 스케일 기능을 처리하는 네트워크를 조정
 - ▶ 정교한 특징 맵 생성
- 분류 작업에 적합하도록 BiFPN구조에서 변경된 보조 셀프 교사 네트워크

BiFPN
----->
하향식 및 상향식 네트워크 사용
▶ 효율적 인 네트워크 구조

Feature Refinement Self-Knowledge Distillation (FRSKD)

- Self-Teacher Network
 - 주요 목적 : 분류기 네트워크를 위한 정교한 기능 맵과 소프트 레이블 제공

BiFPN 구조 수정

횡방향 컨볼루션 레이어

$$L_i = Conv(F_i; d_i)$$

- Conv는 출력 치수가 d_i 인 convolution operation

하향식경로 & 상향식 경로

$$P_{i} = Conv(w_{i,1}^{P} \cdot L_{i} + w_{i,2}^{P} \cdot Resize(P_{i+1}); d_{i})$$

$$T_{i} = Conv(w_{i,1}^{T} \cdot L_{i} + w_{i,2}^{T} \cdot P_{i} + w_{i,3}^{T} \cdot Resize(T_{i-1}); d_{i})$$

- \mathcal{P}_i 는 하향식 경로의 i번째 층
- T_i 는 상향식 경로의 i번째 층

3. Method - 방법

Feature Refinement Self-Knowledge Distillation (FRSKD)

Feature Refinement Self-Knowledge Distillation (FRSKD)

• Self-Feature Distillation : 자기 형상 증류

$$\mathcal{L}_F(T, F; \theta_c, \theta_t) = \sum_{i=1}^n ||\phi(T_i) - \phi(F_i)||_2$$

- $\mathcal{L}_{\mathcal{F}}$ = 형상 증류 손실
- ϕ = combination of channel-wise pooling function with \mathcal{L}_2 normalization
- θ_c = 분류기 네트워크의 parameter

$$\begin{split} &\mathcal{L}_{KD}(\boldsymbol{x}; \boldsymbol{\theta}_{c}, \boldsymbol{\theta}_{t}, K) \\ &= D_{KL}(\operatorname{softmax}(\frac{f_{c}(\boldsymbol{x}; \boldsymbol{\theta}_{c})}{K}) || \operatorname{softmax}(\frac{f_{t}(\boldsymbol{x}; \boldsymbol{\theta}_{t})}{K}) \end{split}$$

- \Re_c = 분류기 네트워크
- \mathcal{K} = 온도 스케일링 매개 변수

손실함수 : 통합하여 최적화

Feature Refinement Self-Knowledge Distillation (FRSKD)

최적화된 목표 함수

$$\mathcal{L}_{FRSKD}(\boldsymbol{x}, y; \theta_c, \theta_t, K)$$

$$= \mathcal{L}_{CE}(\boldsymbol{x}, y; \theta_c) + \mathcal{L}_{CE}(\boldsymbol{x}, y; \theta_t)$$

$$+ \alpha \cdot \mathcal{L}_{KD}(\boldsymbol{x}; \theta_c, \theta_t, K) + \beta \cdot \mathcal{L}_F(T, F; \theta_c, \theta_t)$$

-
$$\alpha$$
와 β = 초모수

소프트 라벨 전용 증류(FRSKD\F) 활용

정제된 Feature map 및 소프트 라벨 증류(FRSKD)를 이용한 LF RSKD 최적화

자체 지식 증류법 SLASD+를 이용한 데이터 확대 첨부

- 6가지 자체 증류 방법: 7개의 기준선 생성
 - ONE[43]은 소프트 라벨로 추가 분지에 대한 앙상블 예측을 이용한다.
 - DDGSD[32]는 단일 인스턴스의 서로 다른 왜곡 버전을 생성하고 DDGSD 트레인은 왜곡 데이터에 대한 일관된 예측을 산출한다.
 - BYOT[39]는 중간 레이어의 출력을 활용하는 보조 분류기를 적용하고, BYOT는 예측 로짓 또는 형상 지도와 같은 네트워크 자체로부터의 신호와 지상 실측 라벨에 의해 보조 분류 기를 훈련시킨다.
 - SAD [10]은 네트워크 자체에서 레이어별 주의 증류에 의한 차선 감지에 초점을 맞춘다.
 - CS-KD[35]는 소프트 라벨과 동일한 등급 내의 다른 인스턴스 예측을 활용하여 동일한 등급에 대해 일관된 예측을 강제한다.
 - SLA-SD [18]는 라벨 증대를 활용하여 원래의 분류 작업과 자체 감독 작업을 공동으로 수 행하는 네트워크를 훈련시킨다. SLA-SD는 집계된 예측을 소프트 레이블로 활용합니다.

Methods	CIFA	R100	TinyImageNet		
1,10th ods	WRN-16-2	ResNet18	WRN-16-2	ResNet18	
Baseline	70.42 ± 0.08	73.80±0.60	51.05±0.20	54.60±0.33	
ONE	73.01 ± 0.23	76.67 ± 0.66	$52.10\pm{\scriptstyle 0.20}$	57.53 ± 0.39	
DDGSD	71.96 ± 0.05	76.61 ± 0.47	51.07 ± 0.24	56.46 ± 0.24	
BYOT	70.22 ± 0.26	76.68 ± 0.07	50.33 ± 0.03	56.61 ± 0.30	
SAD	70.31 ± 0.45	74.65 ± 0.33	51.26 ± 0.39	54.45 ± 0.06	
CS-KD	71.79 ± 0.68	77.19 ± 0.05	50.08 ± 0.18	56.46 ± 0.10	
SLA-SD	73.00 ± 0.45	77.52 ± 0.30	50.77 ± 0.33	58.48 ± 0.44	
FRSKD\F	73.12±0.06	77.64±0.12	52.91±0.30	59.50±0.15	
FRSKD	73.27 ± 0.45	$77.71\pm_{0.14}$	53.08 ± 0.33	59.61 ± 0.31	
FRSKD+SLA	75.43 ± 0.21	82.04±0.16	51.83 ± 0.37	63.58±0.04	

Table 1 : CIFAR-100과 TinyImageNet의 성능 비교

실험은 세 번 반복 / 마지막 실험의 정확도에 대한 평균과 표준편차 보고 성능이 가장 좋은 모델은 **굵은체** / 차선 모델은 <u>밑줄</u>

Methods	CUB200	MIT67	Dogs	Stanford40
Baseline	51.72±1.17	55.00 ± 0.97	63.38 ± 0.04	42.97±0.66
ONE	54.71 ± 0.42	56.77 ± 0.76	65.39 ± 0.59	45.35 ± 0.53
DDGSD	58.49 ± 0.55	59.00 ± 0.77	69.00 ± 0.28	$45.81\pm_{1.79}$
BYOT	58.66 ± 0.51	58.41 ± 0.71	68.82 ± 0.15	$48.51\pm_{1.02}$
SAD	52.76 ± 0.57	54.48 ± 1.30	63.17 ± 0.56	43.52 ± 0.06
CS-KD	64.34 ± 0.08	57.36 ± 0.37	68.91 ± 0.40	47.23 ± 0.22
SLA-SD	56.17 ± 0.71	61.57 ± 1.06	67.30 ± 0.21	54.07 ± 0.38
FRSKD\F	62.29 ± 1.65	61.32 ± 0.67	69.48 ± 0.84	53.16±0.44
FRSKD	$65.39\pm_{0.13}$	61.74 ± 0.67	70.77 ± 0.20	56.00 ± 1.19
FRSKD+SLA	$\overline{67.80\pm_{1.24}}$	66.04±0.31	72.48±0.34	61.96±0.57

Table 2: FGVR에 대한 성능 비교

실험은 세 번 반복 / 마지막 실험의 정확도에 대한 평균과 표준편차 보고 성능이 가장 좋은 모델은 **굵은체** / 차선 모델은 <u>밑줄</u>

Model	Method	Top-1	Top-5
ResNet18	Baseline	69.76	89.08
	FRSKD	70.17	89.78
ResNet34	Baseline	73.31	91.42
	FRSKD	73.75	92.11

Table 3 : ImageNet의 성능 비교

성능이 가장 좋은 모델은 굵은체

• 의미론적인 부분

Model	Method	mIOU
EfficientDet-d0	Baseline FRSKD	79.07 80.55
EfficientDet-d1	Baseline FRSKD	81.95 83.88

Table 4 : 의미론적 세분화 작업에 대한 성능 비교

성능이 가장 좋은 모델은 굵은체

FRSKD가 자체 교사 네트워크의 자가 지식 증류를 활용하여 모델의 성능을 향상시키고 있음을 보여줌

4. Experiments -추가분석

Method	CIFAR-100	TinyImageNet	CUB200	MIT67	Dogs	Stanford40
Baseline	73.80 ± 0.60	54.60 ± 0.33	51.72±1.17	55.00 ± 0.97	63.38 ± 0.04	42.97 ± 0.66
Fit+SKD	77.03 ± 0.05	59.06 ± 0.20	$61.05\pm_{1.05}$	57.69 ± 0.28	67.50 ± 0.32	$51.66\pm_{1.32}$
OD+SKD	77.12 ± 0.09	59.14 ± 0.20	57.44 ± 0.92	54.83 ± 2.63	66.51 ± 0.87	49.09 ± 0.47
FRSKD	77.71 ± 0.14	59.61 ± 0.31	65.39 ± 0.13	61.74 ± 0.67	70.77 ± 0.20	56.00 ±1.19

Table 5: FRSKD 형상 증류법에 따른 성능 비교

Fit+SKD의 형상 증류법은 FitNet OD+SKD는 오버홀 증류법 FRSKD는 주의력 전달법

ResNet18은 분류기 네트워크

성능이 가장 좋은 모델은 **굵은체** / 차선 모델은 <u>밑줄</u>

4. Experiments - 추가분석

Figure 3 : 분류기 네트워크와 셀프 교사 네트워크 간의 블록별 주의 맵 비교

34

4. Experiments - 추가분석

Type	#channel	Parameters	FLOPs	CIFAR-100
BiFPN	128	$\times 0.30$	× 0.67	72.64 ± 0.12
BiFPN	256	$\times 0.97$	$\times 2.38$	73.54 ± 0.41
BiFPNc	128	$\times 0.19$	$\times 0.21$	71.70 ± 0.19
BiFPNc	256	$\times 0.59$	$\times 0.68$	73.27 ± 0.45

Table 6: 셀프 교사 네트워크 구조 간의 성능 및 효율성 비교

WRN-16-2는 CIFAR-100의 분류기 네트워크

FRSKD는 분류기 네트워크를 중복하여 사용하는 데이터 증강 기반 자체 지식 증류 방법보다 더 효율적이다.

4. Experiments - 추가분석

Method	CIFAR-100	TinyImageNet	CUB200	MIT67	Dogs	Stanford40
Baseline	73.80 ± 0.60	54.60 ± 0.33	51.72±1.17	55.00 ± 0.97	63.38 ± 0.04	42.97 ± 0.66
FitNet	76.65 ± 0.25	59.38 ± 0.10	58.97 ± 0.07	59.15 ± 0.41	$67.18\pm_{0.10}$	46.64 ± 0.24
ATT	77.16 ± 0.15	59.83 ± 0.28	59.21 ± 0.34	59.33 ± 0.22	67.54 ± 0.18	$47.04\pm_{0.17}$
Overhaul	74.59 ± 0.32	59.50 ± 0.09	58.82 ± 0.12	58.81 ± 0.58	66.43 ± 0.08	47.06 ± 0.26
FRSKD	77.71 ± 0.14	59.61 ± 0.31	65.39 ± 0.13	61.74 ± 0.67	70.77 ± 0.20	56.00 ±1.19

Table 7 : 지식 증류에 대한 성능 비교

ResNet18은 분류기 네트워크

성능이 가장 좋은 모델은 **굵은체** / 차선 모델은 <u>밑줄</u>

4. Experiments -추가분석

Method	CIFAR-100	TinyImageNet	CUB200	MIT67	Dogs	Stanford40
Baseline	73.80 ± 0.60	54.60 ± 0.33	51.72±1.17	55.00 ± 0.97	66.38 ± 0.04	42.97 ± 0.66
Mixup	76.26 ± 0.41	56.28 ± 0.24	57.60 ± 0.42	56.77 ± 1.45	65.96 ± 0.03	47.15 ± 0.60
FRSKD + Mixup	78.74 ± 0.19	$60.30\pm_{0.38}$	67.98 ± 0.58	$62.11\pm_{0.81}$	71.64 ± 0.29	56.50 ± 0.36
CutMix	79.23 ± 0.23	58.97 ± 0.29	$51.54\pm_{1.12}$	60.87 ± 0.30	67.71 ± 0.14	46.90 ± 0.29
FRSKD + CutMix	80.49±0.05	61.92 ± 0.11	65.92 ± 0.59	66.19 ± 0.49	72.81 ± 0.23	55.75 ± 0.43

Table 8: FRSKD를 이용한 데이터 확대 방법의 성능

ResNet18은 분류기 네트워크

성능이 가장 좋은 모델은 **굵은체** / 차선 모델은 <u>밑줄</u>

5. Conclusion

- 하향식 및 상향식 경로를 가진 자가 지식 증류를 위한 특수 신경망 구조를 제시.
 - 이러한 경로를 추가하면, 분류기 네트워크에 정교한 형상 맵과 그 소 프트 레이블을 제공할 것으로 예상.
- FRSKD는 분류 및 의미 분할의 비전 작업에 자가 지식 증류 를 적용할 수 있다.
- 성능은 정량적으로 확인되었으며, 다양한 절제 연구를 통해 작업 매커니즘의 효율성을 보여준다.

THANK YOU!