Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE220

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

> SOLUZIONI TUTORATO 8 (19 MAGGIO 2011) OMOTOPIA E APPLICAZIONI CONTINUE

1. Dimostrare che se $Y \subset \mathbb{R}^n$ è convesso allora, per ogni spazio X, tutte le applicazioni continue $f: X \to Y$ sono tra loro omotope.

Sotto le stesse ipotesi dimostrare, inoltre, che se $A \subset X$ e $f,g: X \to Y$ sono tali che $f(a) = g(a), \forall a \in A,$ allora $f \simeq_{relA} g$.

Solutione:

Siano $f, g: X \to Y$ due applicazioni continue.

Consideriamo l'applicazione $F: X \times [0,1] \to Y$ definita da:

$$F(x,t) = (1-t)f(x) + tq(x)$$

Osserviamo che F è ben definita poichè, essendo Y convesso, $\forall x \in X$ il segmento tra $f(x), g(x) (\in Y)$ è interamente contenuto in Y.

Inoltre F è continua (essendolo f e g) e vale che F(x,0) = f(x) e F(x,1) = g(x). Ne concludiamo che F è un'omotopia tra f e g, da cui f e g sono omotope. La tesi segue dall'arbitrarietà della scelta di f e g.

Inoltre se $A \subset X$ e $f,g: X \to Y$ sono tali che $f(a) = g(a), \forall a \in A$, l'omotopia F definita sopra è tale che $F(a,t) = (1-t)f(a) + tg(a) = f(a), \forall a \in A$, cioè F è un'omotopia relativa ad A tra f e g, da cui $f \simeq_{relA} g$.

2. (a) Considerare il luogo $X \subset \mathbb{R}^2$ definito in coordinate polari da:

$$X = \{(\rho, \vartheta) : 1 \le \rho \le 2\}$$

Dimostrare che è compatto e connesso per archi. Considerare gli archi $a,b:I\to X$ (in coordinate ordinarie):

$$a(s) = (\cos 2\pi s, \sin 2\pi s), \quad b(s) = (2\cos 2\pi s, 2\sin 2\pi s)$$

Dopo aver osservato che sono cappi definire una omotopia tra $a \in b$ in X. E' possibile definire un'equivalenza tra $a \in b$?

Ripetere l'esercizio considerando gli archi c(s) = (1 + s, 0), d(s) = (0, 1 + s).

- (b) Considerare lo spazio quoziente $Y := X/\sim$, dove \sim è la relazione che identifica a(I) a un punto. Dimostrare che il cappio $b': I \to Y$, immagine in Y del cappio b, è equivalente al cappio costante.
- (c) Considerare lo spazio quoziente Z:=X/@ dove @ è la relazione di equivalenza che identifica a(I) a un punto e b(I) a un punto. Dimostrare che le immagini degli archi c e d in Z sono equivalenti.
- (d) Dimostrare che Z è una superficie e classificarla.

Solutione:

(a) Osserviamo che X è la corona circolare chiusa delimitata dalle circonferenze centrate in (0,0) di raggio 1 e 2.

X è compatto perchè chiuso e limitato $(X \subseteq \mathbf{D}^2)$.

Mostriamo che X è connesso per archi.

Siano $p, q \in X$; allora $p = (\rho_1 \cos(\theta_1), \rho_1 \sin(\theta_1))$ e $q = (\rho_2 \cos(\theta_2), \rho_2 \sin(\theta_2))$, $1 \le \rho_1, \rho_2 \le 2$. Un arco tra $p \in q$ è dato da:

$$\alpha(t) = \begin{cases} ((\rho_1 + 3(1 - \rho_1)t)\cos(\theta_1), (\rho_1 + 3(1 - \rho_1)t)\sin(\theta_1)) & 0 \le t \le 1/3\\ (\cos(2\theta_1 - \theta_2 + 3t(\theta_2 - \theta_1)), \sin(2\theta_1 - \theta_2 + 3t(\theta_2 - \theta_1)) & 1/3 \le t \le 2/3\\ ((3 - 2\rho_2 + 3(\rho_2 - 1)t)\cos(\theta_2), (3 - 2\rho_2 + 3(\rho_2 - 1)t)\sin(\theta_2)) & 2/3 \le t \le 1 \end{cases}$$

Chiaramente a e b sono cappi poichè a(0) = (1,0) = a(1) e b(0) = (2,0) = b(1). Consideriamo l'applicazione $F_1: I \times I \to X$ definita da

$$F_1(s,t) = ((t+1)\cos(2\pi s), (t+1)\sin(2\pi s))$$

Mostriamo che F è un'omotopia tra a e b:

- F_1 è ben definita, cioè $F_1(s,t) \in X \, \forall \, (s,t) \in I \times I$; infatti si ha: $||F_1(s,t)|| = \sqrt{(t+1)^2} = |t+1| = (t+1)$. Essendo $t \in [0,1]$ si ha $1 \leq ||F_1(s,t)|| \leq 2$, cioè $F_1(s,t) \in X$, $\forall (s,t) \in I \times I$.
- F_1 è chiaramente continua.
- $F_1(s,0) = (\cos(2\pi s), \sin(2\pi s)) = a(s) e F_1(s,1) = (2\cos(2\pi s), 2\sin(2\pi s)) = b(s).$

Non è possibile definire un'equivalenza tra a e b poichè $a(0) = (1,0) \neq (2,0) = b(0)$.

E' facile verificare che un'omotopia tra c e d è data dall'applicazione $F_2:I\times I\to X$ definita da

$$F_2(s,t) = \left((s+1)\cos\left(\frac{\pi t}{2}\right), (t+1)\sin\left(\frac{\pi t}{2}\right) \right)$$

Anche per c e d non è possibile definire un'equivalenza poichè $c(0)=(1,0)\neq(0,1)=d(0)$.

- (b) Dall'esercizio 7 del tutorato 3 sappiamo che $Y \cong \mathbf{D}^2 = \{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\| \leq 1\}$. Siano $\phi: Y \to \mathbf{D}^2$ un omeomorfismo. Sia $b'' = \phi(b')$ l'immagine di b' in \mathbf{D}^2 e $\alpha(t) := c_{b''(0)}(t) = b''(0)$ il cappio costante di base b''(0). Essendo \mathbf{D}^2 convesso, per l'esercizio 1, b'' e α sono omotopi; sia $F: I \times I \to \mathbf{D}^2$ un'omotopia tra b'' e α . Mostriamo allora che $G:=\phi^{-1}\circ F: I\times I \to Y$ è un'omotopia tra b' e il cappio costante $\beta(t):=c_{b'(0)}(t)=b'(0)$ (osserviamo che $\beta(t)=b'(0)=\phi^{-1}(b''(0))=\phi^{-1}(\alpha(t))$).
 - G è ben definita, cioè $G(s,t) \in Y \, \forall \, (s,t) \in I \times I$; infatti $G(s,t) = \phi^{-1} \circ F(s,t) \in \phi^{-1} \circ F(I \times I) \subseteq \phi^{-1}(\mathbf{D}^2) = Y$.
 - \bullet G è continua perchè composizione di applicazioni continue.
 - $G(s,0) = \phi^{-1} \circ F(s,0) = \phi^{-1}(b''(s)) = b'(s) e G(s,1) = \phi^{-1} \circ F(s,1) = \phi^{-1}(\alpha(s)) = \beta(s).$

Inoltre, essendo b' e α cappi di stessa base b'(0), concludiamo che b' e α sono equivalenti.

- (c) Sia $\pi: X \to Z$ l'applicazione quoziente e siano $c'(t) := \pi(c(t))$ e $d'(t) := \pi(d(t))$. E' facile verificare che l'applicazione $H := \pi \circ F_2 : I \times I \to Z$, dove F_2 è l'applicazione definita nel punto (a), è un'omotopia tra c' e d'. Inoltre, poichè si ha $c'(0) = \pi(c(0)) = \pi(d(0)) = d'(0)$ e $c'(1) = \pi(c(1)) = \pi(d(1)) = d'(1)$, possiamo concludere che c' e d' sono equivalenti.
- (d) Z è omeomorfo a S^2 , essendo il quoziente di $Y\cong \mathbf{D}^2$ ottenuto identificando S^1 a un punto.
- 3. Sia $f: S^n \to S^n$ l'applicazione antipodale, ossia $f(\mathbf{x}) = -\mathbf{x}$. Dimostrare che, se n è dispari, allora f è omotopa all'identità.

Solutione:

Sia n=2k-1; consideriamo l'applicazione $F:S^n\times I\to S^n$ definita da:

 $F(\mathbf{x},t) = (x_1 \cos(\pi t) + x_2 \sin(\pi t), x_2 \cos(\pi t) - x_1 \sin(\pi t), \dots, x_{2k-1} \cos(\pi t) + x_{2k} \sin(\pi t), x_{2k} \cos(\pi t) - x_{2k-1} \sin(\pi t)),$

$$\operatorname{con} \mathbf{x} = (x_1, \dots, x_{2k}) \in S^n.$$

Dimostriamo che F è un'omotopia tra f e l'identità:

- F è ben definita, cioè $F(\mathbf{x},t) \in S^n \, \forall \, (\mathbf{x},t) \in S^n \times I$; infatti si ha: $\|F(\mathbf{x},t)\| = \sqrt{x_1^2 + x_2^2 + \dots + x_{2k}^2} = \|\mathbf{x}\| = 1$ poiché $\mathbf{x} \in S^n$.
- \bullet F è chiaramente continua.
- $F(\mathbf{x},0) = (x_1,\ldots,x_{2k}) = id_{S^n}(\mathbf{x}) \in F(\mathbf{x},1) = (-x_1,\ldots,-x_{2k}) = -\mathbf{x} = f(\mathbf{x}).$
- 4. Si mostri che un disco aperto centrato nell'origine e privato dell'origine è omotopicamente equivalente ad una circonferenza. E' anche omeomorfo ad una circonferenza?

$\underline{Soluzione} :$

Diamo preliminarmente la definizione di spazi omotopicamente equivalenti.

Due spazi topologici X e Y si dicono omotopicamente equivalenti se esistono applicazioni continue $f: X \to Y$ e $g: Y \to X$ tali che $g \circ f \simeq id_X$ e $f \circ g \simeq id_Y$.

Siano $S_{\frac{1}{2}}$ la circonferenza centrata nell'origine e di raggio $\frac{1}{2}$ e $B:=D_1\setminus\{(0,0)\}$ il disco aperto unitario privato dell'origine.

Per dimostrare che $S_{\frac{1}{2}}$ e B sono omotopicamente equivalenti dobbiamo, quindi, trovare due funzioni continue $f:B\to S_{\frac{1}{2}}$ e $g:S_{\frac{1}{2}}\to B$ tali che $f\circ g\simeq id_B$ e che $g\circ f\simeq id_{S_{\frac{1}{2}}}$.

Definiamo f e g nel modo seguente:

$$f(\mathbf{x}) = \frac{\mathbf{x}}{2 \|\mathbf{x}\|}$$
 e $g(\mathbf{x}) = \mathbf{x}$ con $\mathbf{x} = (x_1, x_2)$

E' ovvio che $f\circ g\simeq id_{S_{\frac{1}{2}}}$ (vale in particolare $f\circ g=id_{S_{\frac{1}{2}}}$). Mostriamo invece $g\circ f\simeq id_B$. Sia $F(\mathbf{x},t):B\times I\to B$ l'applicazione definita da:

$$F(\mathbf{x},t) = t\mathbf{x} + (1-t)\frac{\mathbf{x}}{2\|\mathbf{x}\|}$$

Dimostriamo che F è un'omotopia; infatti:

• F è ben definita, cioè $F(\mathbf{x},t) \in B \,\forall \, (\mathbf{x},t) \in B \,\times I$; infatti: $\|F(\mathbf{x},t)\| = \left\|t\mathbf{x} + (1-t)\frac{\mathbf{x}}{2\|\mathbf{x}\|}\right\| \leq \left\|\frac{x(1+t(2\|\mathbf{x}\|-1))}{2\|\mathbf{x}\|}\right\| \leq \frac{1}{2}(1+t(2\|\mathbf{x}\|-1)) < < \frac{1}{2}(1+(2-1)) = 1$ poiché $\mathbf{x} \in B$ (ovvero $0 < \|\mathbf{x}\| < 1$) e $t \in I$ (ovvero $0 \leq t \leq 1$).

Abbiamo così mostrato che $F(\mathbf{x},t) \in D_1 \,\forall \, (\mathbf{x},t) \in B \times I$. Resta da far vedere che $F(\mathbf{x},t) \neq (0,0) \,\forall \, (\mathbf{x},t) \in B \times I$. Supponiamo si abbia $F(\mathbf{x},t) = (0,0) \Rightarrow \mathbf{x} \left(t + \frac{(1-t)}{2\|\mathbf{x}\|}\right) = (0,0) \stackrel{\mathbf{x} \neq (0,0)}{\Rightarrow} t + \frac{(1-t)}{2\|\mathbf{x}\|} = 0 \Rightarrow 2 \,\|\mathbf{x}\| \,t + 1 - t = 0 \stackrel{\|\mathbf{x}\| < 1}{\Rightarrow} t = -\frac{1}{2\|\mathbf{x}\| - 1} < 0$: assurdo perchè $t \in I$.

- F è continua in quanto $\|\mathbf{x}\| \neq 0$.
- $F(\mathbf{x},0) = \frac{\mathbf{x}}{2||\mathbf{x}||} = (g \circ f)(\mathbf{x}) \in F(\mathbf{x},1) = \mathbf{x} = id_B.$

Ciaramente $S_{\frac{1}{2}}$ e B non possono essere omeomorfi poiché la circonferenza è un compatto in \mathbb{R}^2 (chiuso e limitato) mentre B non lo è (in particolare non è chiuso).

5. Mostrare che ogni sottospazio stellato di \mathbb{R}^n è contraibile.

Solutione:

Un sottoinsieme A di \mathbb{R}^n si dice stellato rispetto ad un suo punto \mathbf{x}_0 se, per ogni \mathbf{x} in A, il segmento

$$[\mathbf{x}_0, \mathbf{x}] = \{(1 - t)\mathbf{x}_0 + t\mathbf{x} \mid 0 \le t \le 1\}$$

è contenuto in A.

Inoltre, uno spazio topologico si dice contraibile se è omotopicamente equivalente ad un punto.

Quindi, considerando le applicazioni continue $f: A \to \{\mathbf{x}_0\} \in g: \{\mathbf{x}_0\} \to A$ definite da

$$f(\mathbf{x}) = \mathbf{x}_0, \, \forall \mathbf{x} = (x_1, \dots, x_n) \in A, \quad \text{e } g(\mathbf{x}_0) = \mathbf{x}_0$$

abbiamo che $f\circ g=id_{\{\mathbf{x}_0\}}$, mentre $g\circ f\simeq id_A$ tramite l'omotopia $F:A\times I\to A$ con $F(\mathbf{x},t) = t\mathbf{x} + (1-t)\mathbf{x}_0$ (l'ipotesi che A è stellato garantisce che F sia ben definita, essendo il segmento $[\mathbf{x}_0, \mathbf{x}] \subseteq A \ \forall \mathbf{x} \in A$). Segue la tesi.

6. Sia X uno spazio topologico e siano α, β, γ cappi di base x_0 tali che $\alpha * (\beta * \gamma) = (\alpha * \beta) * \gamma$. Provare che se X è di Hausdorff allora α, β, γ sono costanti.

Solutione:

Dimostriamo l'asserto per α , la verifica per β e γ sarà analoga.

Per definizione:

$$\alpha*(\beta*\gamma) = \left\{ \begin{array}{ll} \alpha(2t) & 0 \leq t \leq 1/2 \\ \beta(4t-2) & 1/2 \leq t \leq 3/4 \\ \gamma(4t-3) & 3/4 \leq t \leq 1 \end{array} \right.$$

$$(\alpha * \beta) * \gamma = \begin{cases} \alpha(4t) & 0 \le t \le 1/4 \\ \beta(4t-1) & 1/4 \le t \le 1/2 \\ \gamma(2t-1) & 1/2 \le t \le 1 \end{cases}$$

Dalla relazione $\alpha * (\beta * \gamma) = (\alpha * \beta) * \gamma$ otteniamo che $\alpha(4t) = \alpha(2t)$ se $t \leq \frac{1}{4}$. Ponendo quindi 4t = s abbiamo, $\forall 0 < s < 1$,

$$\alpha(s) = \alpha\left(\frac{s}{2}\right) = \alpha\left(\frac{s}{4}\right) = \ldots = \lim_{n \to +\infty} \alpha\left(\frac{s}{2^n}\right) = \alpha(0)$$

Giustifichiamo l'ultima uguaglianza:

sia U un intorno di $\alpha(0)$; per continuità di α in $0, \exists \delta > 0$ tale che se $t \in I_{\delta} := (-\delta, \delta) \Rightarrow$

Ma, allora, una volta fissato δ , $\exists n_{\delta}$ tale che $\forall n > n_{\delta} \quad \frac{s}{2^{n}} \in I_{\delta} \Rightarrow \alpha(\frac{s}{2^{n}}) \in U$. Abbiamo, dunque, dimostrato che $\alpha(0) \in \lim_{n \to +\infty} \alpha(\frac{s}{2^{n}})$; essendo X uno spazio di Hausdorff tale limite è unico e dunque $\lim_{n\to+\infty} \alpha(\frac{s}{2^n}) = \alpha(0)$.

In conclusione $\alpha(s) = \alpha(0), \forall 0 \le s \le 1$, cioè α è costante.

7. Siano X e Y spazi topologici omotopicamente equivalenti. Dimostrare che X è connesso per archi se e solo se Y lo è.

Solutione:

X ed Y sono omotopicamente equivalenti; allora esistono due applicazioni continue $f: X \to Y$ e $g: Y \to X$ tali che $g \circ f \simeq Id_X$ e $f \circ g \simeq Id_Y$.

Dimostriamo che se X è connesso per archi anche Y lo è. La dimostrazione del viceversa sarà analoga.

Siano $y_1, y_2 \in Y \Rightarrow g(y_1), g(y_2) \in X \Rightarrow$ essendo X connesso per archi, $\exists \alpha : I \to X$ tale che $\alpha(0) = g(y_1)$ e $\alpha(1) = g(y_2)$.

Sia ora $F: Y \times I \to Y$ l'omotopia tra $f \circ g \in Id_Y$ ($F(y,0) = f(g(y)) \in F(y,1) = y$). Mostriamo dunque che l'arco $\beta := F(y_1,t)^0 * (f \circ \alpha) * F(y_2,t)$ connette y_1 con y_2 (β è ben

definito poichè $F(y_1,t)^0(1) = F(y_1,t)(0) = f(g(y_1)) = f \circ \alpha(0)$ e $(f \circ \alpha)(1) = f(g(y_2)) = F(y_2,t)(0)$:

- $\beta(0) = F(y_1, t)^0 * (f \circ \alpha) * F(y_2, t)(0) = F(y_1, t)^0(0) = F(y_1, t)(1) = y_1;$
- $\beta(1) = F(y_1, t)^0 * (f \circ \alpha) * F(y_2, t)(1) = F(y_2, t)(1) = y_2.$