Importar y limpiar datos en R

Programación para el análisis de datos

Departamento de Ciencias Sociales, UCU - Martín Opertti

Segunda mitad de curso

Semana	Clase
2022-10-11	Importar y limpiar datos en R
2022-10-13	Importar y limpiar datos en R
2022-10-18	Estadística descriptiva en R
2022-10-20	Estadística descriptiva en R
2022-10-25	Manipulación de datos en R
2022-10-27	Manipulación de datos en R
2022-11-01	Manipulación de datos en R II
2022-11-03	Visualización de datos en R
2022-11-08	Visualización de datos en R
2022-11-10	Estadística inferencial en R
2022-11-15	Parcial R
2022-11-17	R Markdown + Pauta trabajo final
2022-11-22	Progrmación avanzada
2022-11-24	Taller / Python
2022-11-29	Presentaciones
2022-12-01	Presentaciones y cierre

Directorios de trabajo y proyectos de R (.Rproj)

Directorios de trabajo

• Para abrir en R un archivo guardado en tu computadora, debes especificar en qué carpeta está guardado, para esto hay varias opciones. Primero, puedes fijar un directorio por defecto:

```
# Puedo fijar el directorio de trabajo con la función setwd()
# Fijar la carpeta donde vamos a importar y exportar los archivos:
setwd("micompu/micarpeta")
getwd() # Con está función puedo consultar el directorio
# Ahora, si quiero leer un archivo que esté en "micompu/micarpeta" simplemente
# escribo su nombre dentro de la función, en el lugar del "path".
# Supongamos que tengo dentro de la carpeta "micarpeta" un excel con datos
# de desempleo en Uruguav:
library(readxl)
desempleo_uru <- read_excel("data/desempleo.xlsx")</pre>
head(desempleo uru, 4)
## # A tibble: 4 x 2
## Year tasa
## <dbl> <dbl>
## 1 1990
            8.5
## 2 1991
          8.9
## 3 1992
## 4 1993
            8.3
```

Directorios de trabajo

También podemos no fijar un directorio para la sesión e ir especificando los directorios completos dentro de cada función:

desempleo_uru <- read_excel("micompu/micarpeta/data/desempleo.xlsx")</pre>

- La mejor práctica para que nuestros scripts sean portables y reproducibles, es utilzar R Projects (.Rproj).
- Para crear un .Rproj vamos a File/New Project y ahí nos encontramos con la opción de crear una carpeta para guardar los archivos o utilizar una carpeta ya existente.
- Al crear un proyecto de R se creará un archivo de extensión .Rproj, cuando le damos click se inicia una nueva sesión de R cuyo directorio es por defecto la carpeta en la que está guardado.
- Podemos usar directorios relativos dentro de la carpeta en la que se aloja nuestro .Rproj para importar y exportar datos a y desde R. Esto hace que uno pueda cambiar la carpeta o compartirla y el script correrá de igual manera (a diferencia de si utilizamos setwd())

Dentro de la carpeta del curso que ya crearon creen un proyecto de R. Para eso abran RStudio y desde ahí seleccionen File/New Project y seleccionen la opcion "Existing Directory" y luego seleccionen la carpeta del curso.

Deberían ver en su carpeta algo así:

- Abran el archivo .Rproj y desde ahí usando File/Open File abren los scripts dentro de la carpeta "scripts". Es importante que los abran desde la sesión que inicia el proyecto y no directamente haciendo click en el script.
- Ya estamos listos para empezar!

Dialectos

Supongamos que tengo estos datos:

data

```
# A tibble: 35 x 5
##
##
                 gdp_lcu inflation unemployment presidente
       vear
                    <dbl>
                                            <dbl> <chr>
      <dbl>
                              <dbl>
##
##
       1985 249277574100
                               72.2
                                            NA
                                                  Sanguinetti
##
       1986 271238450500
                               76.4
                                            NA
                                                  Sanguinetti
                                                  Sanguinetti
##
       1987 292918912000
                               63.6
                                            NA
##
       1988 297256857900
                               62.2
                                            NA
                                                  Sanguinetti
                                                  Sanguinetti
##
       1989 300538279400
                               80.4
                                            NA
                                                  Lacalle
##
       1990 301431925100
                              113.
                                            NA
                                             9.01 Lacalle
##
       1991 312099023700
                              102.
##
      1992 336853433700
                               68.5
                                             8.98 Lacalle
                               54.1
                                             8.94 Lacalle
##
       1993 345805469000
##
      1994 370984750100
                               44.7
                                                  Lacalle
  10
                                             9
  # ... with 25 more rows
```

¿Qué quiero hacer con el código debajo?

¿Qué quiero hacer con el código debajo?

¿Qué quiero hacer con el código debajo?

```
data %>%
  filter(presidente %in% c("Vázquez", "Sanguinetti")) %>%
  select(presidente, gdp_lcu, inflation) %>%
  group_by(presidente) %>%
  summarise_all(mean)
```

R Base

```
## gdp_lcu inflation
## Sanguinetti 344923753631 46.168819
## Vázquez 584455715198 7.416316
```

Data.table

```
## presidente gdp_lcu inflation
## 1: Sanguinetti 344923753631 46.168819
## 2: Vázquez 584455715198 7.416316
```

2 Vázquez 584455715198. 7.42

Dialectos

- Como vimos, en R podemos realizar una misma operación de muchas maneras distintas. Puesto de otra manera, R como lenguaje de programación tiene distintos "dialectos", esto es, paquetes (o conjuntos de paquetes) con sus propias funciones, sintaxis y comunidad de usuarios.
- Para la mayoría de las funciones requeridas para un análisis de datos estándar (importar datos, manipular, modelar y visualizar) existen -de forma muy simplificada- tres grandes dialectos: R Base, tidyverse y data.table.
- Tidyverse es una colección de paquetes diseñados para el análisis de datos. Este conjunto de paquetes comparte una filosofía de diseño, grámatica y estructura de datos.
- Las ventajas de Tidyverse están en su gramática (fácil de leer lo que invita a compartir y replicar), consistencia, alcance y su numerosa y creciente comunidad.

Dialectos (ejemplo)

```
encuesta # Retomemos el data.frame "encuesta"
     edad ideologia voto
##
## 1  18 Izquierda Partido A
## 2  24 Izquierda Partido A
## 3 80
            Derecha Partido C
 # Supongamos que quiero quedarme solo con las variables de edad v voto
encuesta_base <- encuesta[ , c("edad", "voto")] # R Base</pre>
colnames(encuesta base)
## [1] "edad" "voto"
encuesta_dt <- as.data.table(encuesta)[ , .(edad, voto)] # Datatable</pre>
colnames(encuesta dt)
## [1] "edad" "voto"
encuesta_tidy <- select(encuesta, edad, voto) # Tidyverse</pre>
colnames(encuesta_tidy)
## [1] "edad" "voto"
```

Tidyverse cuenta con varios paquetes que sirven para distintos tipos de tareas específicas. Podemos cargar todos los paquetes de forma conjunta:

```
# install.packages("tidyverse")
library(tidyverse)

# install.packages("dplyr")
library(dplyr)
```


La mejor manera de entender los principios de tidyverse es a través del libro del creador de tidyverse (Hadley Wickham) y Garrett Grolemund "R for Data Science de Hadley Wickham" (2018).

Tidyverse: paquetes

Paquetes que Tidyverse carga:

- readr: importar y exportar datos
- dplyr: manipulación de datos
- tidyr: manipulación de datos
- ggplot2: visualización de datos
- purr: programación avanzada
- tibble: estructura de datos
- forcats: factores
- stringr: variables de caracteres

Tidyverse: paquetes

Estos son algunos paquetes (para tareas más específicas) que forman parte del Tidyverse pero se tienen que cargar por separado:

- readxl: importar datos (excel)
- haven: importar (Stata, SPSS, SAS)
- lubridate: manipulación de fechas
- rvest: webscrapping
- glue: combinar data
- tidymodels: modelar datos

Importar y exportar datos

Importar datos

- Hasta ahora trabajamos principalmente con datos ingresados manualmente con las funciones c() y data.frame()
- Normalmente cuando trabajamos con datos solemos utilizar datos ya creados guardados en los formatos de otros programas (ej. Excel, Stata, SPSS)
- Existen varios paquetes que permiten importar y exportar datos desde distintos formatos. Algunos de los más utilizados son readr, haven, readxl y utils

Importar datos desde distintos formatos

Distintas funciones nos sirven para importar datos a R desde distintos formatos. Veamos algunos ejemplos:

```
# Con la función read_csv() del paquete readr importamos archivos .csv
library(tidyverse)
gapminder_csv <- read_csv("data/gapminder.csv")

# Con la función read_excel() del paquete readxl importamos archivos excel
library(readxl)
gapminder_excel <- read_excel("data/gapminder.xlsx")

# Vemos que los dataframes son iguales, tienen la mismas filas y columnas
dim(gapminder_csv)

## [1] 1704 6

dim(gapminder_excel)

## [1] 1704 6</pre>
```

Importar datos desde paquetes

Algunos paquetes incluyen datos, por ejemplo, gapminder. En la documentación del paquete se encuentra el nombre de los datos. Con una simple asignación los podemos cargar

```
library(gapminder)

data_gapminder <- gapminder
head(data_gapminder)</pre>
```

```
## # A tibble: 6 x 6
    country continent
                          year lifeExp
                                           pop gdpPercap
##
  <fct>
            <fct>
                         <int>
                                 <dbl>
                                         <int>
                                                   <dbl>
##
                                                   779.
  1 Afghanistan Asia
                          1952 28.8 8425333
## 2 Afghanistan Asia
                          1957 30.3 9240934
                                                   821.
## 3 Afghanistan Asia
                          1962 32.0 10267083
                                                   853.
## 4 Afghanistan Asia
                          1967 34.0 11537966
                                                   836.
## 5 Afghanistan Asia
                                                   740.
                          1972 36.1 13079460
## 6 Afghanistan Asia
                                                   786.
                          1977
                                 38.4 14880372
```

Importar datos en otros formatos

También es posible importar datos guardados en los formatos de otros softwares estadísticos como SPSS o Stata. Para esto usaremos el paquete haven.

```
library(haven)
# SPSS
gapminder_spss <- read_spss("data/gapminder.sav")
# STATA
gapminder_stata <- read_stata("data/gapminder.dta")</pre>
```

O podríamos llamar a la función y paquete dado que generalmente solo utilizamos una función de los paquetes que cargan datos (depende del caso obviamente)

```
# SPSS
gapminder_spss <- haven::read_spss("data/gapminder.sav")
# STATA
gapminder_stata <- haven::read_stata("data/gapminder.dta")</pre>
```

Importar datos en formato R

R también cuenta con sus propios formatos de almacenamiento de datos (.rds y .Rdata o .rda). Este enfoque es poco práctico si queremos usar los datos almacenados en otro programa, pero muy útil si solamente usaremos R dado que mantiene la información tal cual estaba en R (por ej. tipos de variables o atributos):

Exportar datos

- También podemos guardar archivos desde R en otros formatos.
- Con readr podemos exportar archivos en formato .csv
- Con writexl podemos exportar directamente un excel.
- Con haven podemos exportar achivos en formato .dta (Stata) y .sav (SPSS)

```
# Guardar .csv
library(gapminder)
data_gapminder <- gapminder
write_excel_csv(data_gapminder, here::here("resultados/gapminder.csv"))
# Guardar excel
library(writexl)
write_xlsx(data_gapminder, here::here("resultados/gapminder.xlsx"))
# Guardar .dta (Stata)
library(haven)
write_dta(data_gapminder, here::here("resultados/gapminder.dta"))
# Guardar .sav (SPSS)
write_sav(data_gapminder, here::here("resultados/gapminder.sav"))
# Guardar .sas (SAS)
write_sas(data_gapminder, here::here("resultados/gapminder.sas"))</pre>
```

Argumentos

Argumentos a tener en cuenta:

- Nombre de columnas: a veces debemos especificar si queremos que la primera fila de nuestros datos sean el nombre de las variables
- Nombre de filas: de igual manera, a veces podemos especificar si queremos que la primera columna sea el nombre de las filas (sirve para identificadores de caso por ej.)
- Etiquetas de variables: cuando los datos que queremos importar tienen etiquetas (pasa mucho en encuestas) podemos cargarlas como etiquetas o cargar solamente la etiqueta como cadena o factores. Ver capítulo 4 de Urdinez, F. & Labrin, A. (Eds.) (2020)
- **Append:** algunas funciones permiten agregar filas debajo de un archivo (esto es muy útil para ir actualizando bases de datos)

En la carpeta data encontrarán un archivo excel llamado "urudata_sheets", deben leer la segunda hoja del archivo

Etiquetas

Etiquetas cuando importamos datos

- Cuando importamos datos que tienen etiquetas (por ejemplo de formatos como Stata o SPSS) debemos tener cuidado con cómo manejar estas etiquetas
- Por ejemplo, supongamos que queremos leer los datos de una encuesta con dos variables, guardada en formato Stata (.dta), con el paquete haven:

 Por defecto se leen como variables de tipo double (numérica) con etiquetas como atributos

Etiquetas cuando importamos datos

Si queremos quedarnos directamente coon las etiquetas, podemos utilizar la funcion as_factor:

Factores

Factores

- Otro tipo de variables en R son los factores (factors), utilizados para representar data categórica. Estos suelen confundirse con las variables de caracteres pero tienen algunas diferencias.
- Normalmente los factores son utilizados para las variables de caracteres con un número de valores posibles fijo y cierto orden (opcional)
- A R le gusta transformar las variables de caracteres en factores al importarlas (si usamos R Base particularmente).
- El paquete forcats (dentro del Tidyverse) ayuda a manejar variables de caracteres y factores:
 - fct_relevel() cambia manualmente el orden de los niveles
 - fct_reoder() cambia el orden de los niveles de acuerdo a otra variable
 - fct_infreq() reordena un factor por la frecuencia de sus valores
 - fct_lump() collapsa los valores menos frecuentes en otra categoría "other". Es muy útil para preparar datos para tablas y gráficos

Transformar factores

```
# Podemos chequear y coercionar factores
data_gapminder <- gapminder
is.factor(data gapminder$continent) # Chequeo si es factor
## [1] TRUE
levels(data_gapminder$continent) # Chequeo los niveles
## [1] "Africa" "Americas" "Asia"
                                         "Europe"
                                                    "Oceania"
# Transformo a caracter
data_gapminder$continent <- as.character(data_gapminder$continent)</pre>
class(data_gapminder$continent)
## [1] "character"
# De vuelta a factor
data_gapminder$continent <- as.factor(data_gapminder$continent)</pre>
class(data_gapminder$continent)
## [1] "factor"
```

Crear y ordenar factores

```
# Para crear un factor usamos la función factor()
paises_mercosur <- factor(c("Argentina", "Brasil", "Paraguay", "Uruguay"))

## paises_mercosur
## Argentina Brasil Paraguay Uruguay
## 1 1 1 1

# La función fct_relevel() nos permite reordenar los niveles del factor
paises_mercosur <- fct_relevel(paises_mercosur, "Uruguay")
table(paises_mercosur)

## paises_mercosur
## Uruguay Argentina Brasil Paraguay
## 1 1 1 1</pre>
```

Dataframes

Dataframes: tibbles

- La mayoría de los análisis de datos convencionales contienen dataframes. Cuando usamos los paquetes del tidyverse, generalmente trabajamos con "tibbles", que es muy similar a un dataframe pero con pequeños cambios.
- Una de las principales diferencias es la forma en que se imprimen los datos.
- La mayoría de las funciones del Tidyverse devuelven un tibble.

```
data_gapminder <- (gapminder)
class(data_gapminder) # Ya es un tibble

## [1] "tbl_df" "tbl" "data.frame"

data_gapminder <- as.data.frame(data_gapminder)
class(data_gapminder) # Ahora solamente dataframe

## [1] "data.frame"</pre>
```

Dataframes: imprimir dataframe

print(data_gapminder)

#######################################	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	Afghanistan Albania	Asia Asia Asia Asia Asia Asia Asia Asia	1952 1967 1962 1967 1977 1982 1987 1992 2007 1952 1967 1962 1977 1982 1987 1997 2002 2007 1952 1997 2002	28.80100 30.33200 31.99700 34.02000 36.08800 38.43800 39.85400 40.82200 41.67400 41.76300 42.12900 43.82800 55.23000 59.28000 64.82000 64.82000 67.69000 67.69000 70.42000 72.00000 71.58100 72.95000 75.65100 76.42300 43.07700 45.68500	pop 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 25268405 31889923 1282697 1476505 1728137 1984060 2263554 2509048 2780097 3075321 3326498 3428038 3428038 3508512 3600523 9279525 10270856 11000948	gdpPercap 779.4453 820.8530 853.1007 836.1971 739.9811 786.1134 978.0114 852.3959 649.3414 635.3414 726.7341 974.5803 1601.0561 1942.2842 2312.8890 2760.1969 3313.4222 3533.0039 3630.8807 3738.9327 2497.4379 3193.0546 4604.2117 5937.0295 2449.0082 3013.9760 2550.8169
##	26	Algeria	Africa	1957	45.68500		
	27 28	Algeria Algeria			48.30300 51.40700	11000948 12760499	2550.8169 3246.9918
	29	Algeria			54.51800	14760787	4182.663843/

55

Dataframes: imprimir tibble

```
data_gapminder <- as_tibble(data_gapminder) # Pasamos nuevamente a tibble</pre>
class(data_gapminder)
## [1] "tbl df"
                    "tbl"
                                  "data.frame"
print(data_gapminder)
## # A tibble: 1,704 x 6
                                                pop gdpPercap
                              vear lifeExp
##
      country
                  continent
##
     <fct>
                  <fct>
                                     <dbl>
                                              <int>
                                                         <dbl>
                             <int>
   1 Afghanistan Asia
                                                          779.
                              1952
                                      28.8
                                            8425333
   2 Afghanistan Asia
                              1957
                                                          821.
                                      30.3
                                            9240934
   3 Afghanistan Asia
                              1962
                                      32.0 10267083
                                                          853.
   4 Afghanistan Asia
                              1967
                                      34.0 11537966
                                                          836.
   5 Afghanistan Asia
                              1972
                                                          740.
                                      36.1 13079460
##
   6 Afghanistan Asia
                              1977
                                      38.4 14880372
                                                          786.
   7 Afghanistan Asia
                              1982
                                                          978.
                                      39.9 12881816
                              1987
                                                          852.
   8 Afghanistan Asia
                                      40.8 13867957
   9 Afghanistan Asia
                              1992
                                      41.7 16317921
                                                          649.
## 10 Afghanistan Asia
                              1997
                                      41.8 22227415
                                                          635.
## # ... with 1,694 more rows
```

Tidy dataset

• Hay muchas formas de estructurar un conjunto de datos. El enfoque tidy sugiere que cada variable sea una columna y cada observación sea una fila, por lo que cada valor tiene su propia celda:

Wichkham & Grolemund (2018)

Nombres de variables

Muchas veces los usamos datos que no están documentados de manera uniforme o apropiada, por ejemplo, con nombres dispares y propensos a errores en las columnas.

Janitor es un paquete orientado al estilo Tidyverse (aunque no pertenece) que facilita algunas funciones para limpiar y explorar datos.

```
COLORES NombresCompletos edad_NUMERICA
## 1
       Verde
                     María S.
                                          32
## 2
        Roio
                      Juan F.
                                          23
                     Pedro A.
                                          24
## 3
        Azul
     colores nombres_completos edad_numerica
## 1
       Verde
                      María S.
                                           32
## 2
       Roio
                     Juan F.
                                           23
                                           24
## 3
        Azul
                      Pedro A.
```

Explorar datos

```
dim(data_gapminder) # Número de filas y columnas
## [1] 1704
names(data_gapminder) # Nombre de variables
## [1] "country" "continent" "year"
                                         "lifeExp"
                                                     "gog"
                                                                 "gdpPercap"
head(data_gapminder, 3) # Imprime primeras filas (3 en este caso)
## # A tibble: 3 x 6
    country continent year lifeExp
                                            pop gdpPercap
    <fct>
                                 <dbl>
                                                    <dbl>
                <fct>
                          <int>
                                          <int>
## 1 Afghanistan Asia
                           1952
                                  28.8 8425333
                                                    779.
## 2 Afghanistan Asia
                          1957
                                  30.3 9240934
                                                     821.
## 3 Afghanistan Asia
                           1962
                                  32.0 10267083
                                                     853.
```

Estructura del dataframe

```
## tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 1 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 3 ...
## $ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
## $ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881
## $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
```

```
# Pequeño resumen de las variables:
summary(data_gapminder)
```

```
##
          country
                         continent
                                                      lifeExp
                                         vear
   Afghanistan: 12
                    Africa :624
                                    Min.
##
                                           :1952
                                                   Min. :23.60
   Albania
##
              : 12
                      Americas:300
                                    1st Ou.:1966
                                                   1st Ou.:48.20
##
   Algeria
           : 12
                      Asia :396
                                    Median:1980
                                                   Median :60.71
##
   Angola
           : 12
                      Europe :360
                                    Mean :1980
                                                   Mean :59.47
   Argentina :
                 12
                      Oceania: 24
                                    3rd Qu.:1993
                                                   3rd Ou.:70.85
##
   Australia
##
                 12
                                    Max.
                                           :2007
                                                   Max.
                                                         :82.60
##
   (Other)
              :1632
##
                         gdpPercap
        pop
                       Min. :
   Min.
##
          :6.001e+04
                                 241.2
   1st Qu.:2.794e+06
                       1st Qu.: 1202.1
##
   Median :7.024e+06
                       Median: 3531.8
##
##
   Mean :2.960e+07
                      Mean : 7215.3
   3rd Qu.:1.959e+07
                       3rd Qu.:
                                9325.5
##
##
   Max. :1.319e+09
                       Max.
                             :113523.1
##
```

Una de las funciones más utiles para resumir un dataframe es glimpse() del paquete dplyr o tidyverse. Es particularmente util debido a que permite un vistazo al nombre, tipo y primeros valores de **todos** las variables de un dataframe.

En R Base la función para obtener frecuencias es table() junto con prop.table() y addmargins()

```
# Para obtener una tabla de frecuencias de una variable usamos la función
# table() de R Base
tabla 1 <- table(data gapminder$continent) # Frecuencia simple
tabla 1
##
##
     Africa Americas
                         Asia
                                Europe
                                         Oceania
##
                 300
                          396
                                    360
                                              24
        624
prop.table(tabla_1) # Proporciones
##
       Africa
                Americas
##
                                         Europe
                               Asia
                                                   Oceania
## 0.36619718 0.17605634 0.23239437 0.21126761 0.01408451
addmargins(tabla_1) # Totales
##
##
     Africa Americas
                         Asia
                                Europe
                                         Oceania
                                                      Sum
##
                          396
                                    360
        624
                 300
                                              24
                                                     1704
addmargins(prop.table(tabla_1)) # Proporciones y totales
##
##
       Africa
                Americas
                               Asia
                                         Europe
                                                   Oceania
                                                                   Sum
## 0.36619718 0.17605634 0.23239437 0.21126761 0.01408451 1.00000000
```

Para obtener tablas que cruzen dos variables podemos nuevamente usar table() especificando dos variables.

```
tabla_2 <- table(data_gapminder$continent, data_gapminder$mercosur)</pre>
tabla 2
##
##
     Africa
##
               624
##
     Americas 252
                    48
##
     Asia
               396
                     0
##
     Europe
               360
                     0
##
     Oceania
               24
prop.table(tabla_2)
##
##
                        0
##
     Africa
              0.36619718 0.00000000
##
     Americas 0.14788732 0.02816901
##
     Asia
              0.23239437 0.000000000
##
     Europe
              0.21126761 0.00000000
##
     Oceania 0.01408451 0.00000000
```

```
# Totales por columna o fila
tabla_2 <- table(data_gapminder$continent, data_gapminder$mercosur)</pre>
addmargins(tabla_2, 1) # Total por columna
##
##
##
     Africa
                       0
                624
##
     Americas
               252
                      48
##
     Asia
                396
                       0
##
     Europe
                360
     Oceania
##
                24
                       0
##
     Sum
               1656
                      48
addmargins(tabla_2, 2) # Total por fila
##
##
                     1 Sum
                 0
##
     Africa
              624
                     0 624
##
     Americas 252
                    48 300
##
     Asia
              396
                    0 396
##
     Europe
              360
                     0 360
##
     Oceania
               24
                       24
```

```
# Fditar nombres de columnas
tabla_2 <- table(data_gapminder$continent, data_gapminder$mercosur)</pre>
tabla_2
##
##
                     1
##
     Africa
               624
    Americas 252
##
                    48
##
    Asia
               396
    Europe
##
               360
                     0
##
     Oceania
                24
colnames(tabla_2) <- c("No mercosur", "Mercosur")</pre>
tabla_2
##
##
               No mercosur Mercosur
     Africa
##
                        624
                                    0
##
     Americas
                        252
                                   48
##
     Asia
                       396
                                    0
##
    Europe
                                    0
                        360
     Oceania
##
                         24
                                    0
```