

Faculty of Computing and Information Technology

Department of Computer Science

Spring 2018

CPCS-424 Syllabus

Catalog Description

CPCS-424 Theory Of Computation

Credit: 3 (Theory: 3, Lab: 0, Practical: 0) **Prerequisite:** CPCS-222, CPCS-212

Classification: Elective

The objective of this course is to introduce students, with a background in Sciences, Engineering, or Mathematics, to some of the basic principles pertaining to the modeling and analysis of computational problems and their solutions.

Class Schedule

Meet 50 minutes 3 times/week or 80 minutes 2 times/week Lab/Tutorial 90 minutes 1 times/week

Textbook

Dexter C. Kozen, , "Theory of Computation", Springer Science & Business Media; 1 edition (2006-05-08)

ISBN-13 9781846282973 **ISBN-10** 1846282977

Grade Distribution

Week Assessment Grade %

Topics Coverage Durations

Topics						
Languages, Grammars						
Automata (Machines)	1					
Turing Machines	2					
Variations and Equivalence: Non-Determinism	2					
Finite State Machines, Regular Expressions	2					
Decision Algorithms for Regular Sets and	2					
Undecidability						
Context-Free Languages	2					
Complexity Theory	2					

Last Articulated

Relationship to Student Outcomes

a	b	c	d	e	f	g	h	i	j	k
X								X	X	

Course Learning Outcomes (CLO)

By completion of the course the students should be able to

- 1. Describe languages using Regular Expressions, Finite Automata, Nondeterministic Finite Automata, Mealy Machines, Moore Machines, Context Free Grammars, Pushdown Automata, and Turing Machines ()
- 2. Relate between Regular Languages, Context Free Languages, Recursive Languages, and Recursive-Enumerable (or Computable) Languages ()
- 3. Compute Turing Machines to represent computable functions ()
- 4. Demonstrate a Universal Turing machine to simulate any Turing Machine on any input ()
- 5. Describe compiler generation tools and the ability to use these to create simple compilation/translation programs ()

Coordinator(s)