UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE ELÉCTRICA-ELECTRÓNICA

LABORATORIO DE CIRCUITOS ELÉCTRICOS I INFORME No. 2

LEYES DE KIRCHHOFF

Estudiante:

Caballero Burgoa, Carlos Eduardo.

Carrera:

Ing. Electromecánica.

Docente:

Ing. Marco Antonio Vallejo Camacho.

Grupo: 3E.

Fecha de entrega: 16 de Abril del 2024.

Cálculos previos 1.

Pre-informe

Re 5 Rat Rz

1) Demuestre les ecusciones de divisor de volteje y de corriente.

Divisor de voltage: + R1 R2

Por les de voltages de Kirchhoff: $V_T = V_1 + V_2$ $V_T = IRE$ IRE = IR1+ IR2

$$V_{1} = IR_{1} = \frac{V_{T}}{R_{E}} R_{1} = \frac{R_{1}}{R_{1} + R_{2}} V_{T}$$

$$V_{2} = IR_{2} = \frac{V_{T}}{R_{e}} R_{2} = \frac{R_{2}}{R_{1} + R_{2}} V_{T}$$

Por ley de corrientes de Kirchhoff:
$$S_{T} = I_{1} + I_{2}$$
 $J_{T} = \frac{V}{R_{E}}$ $\frac{V}{R_{E}} = \frac{V}{R_{1}} + \frac{V}{R_{2}}$ $\frac{V}{R_{E}} = \frac{V}{R_{1}} + \frac{1}{R_{2}} \rightarrow R_{E} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$ $I_{1} = \frac{V}{R_{1}} = \frac{I_{T}R_{E}}{R_{1}} = \frac{R_{1}R_{2}}{R_{1} + R_{2}} \left(\frac{I_{T}}{R_{1}}\right) = \frac{R_{2}}{R_{1} + R_{2}} I_{T}$ $I_{2} = \frac{V}{R_{2}} = \frac{I_{T}R_{E}}{R_{2}} = \frac{R_{1}R_{2}}{R_{1} + R_{2}} \left(\frac{I_{T}}{R_{2}}\right) = \frac{R_{1}}{R_{1} + R_{2}} I_{T}$

2) Resuelus el circuito de la figura. Encuentre los valores II, Iz e I3, ademés de V1, V2 y V3. Verifique la LCK con los resultados obtenidos y registrelos en la tabla.

$$V_1 = I_1 R_1 = 51.429 [V]$$
 $V_2 = I_2 R_2 = 68.571 [V]$
 $V_3 = I_3 R_3 = 68.571 [V]$
 $V_3 = V_4 + V_2 = 120 [V]$

LCK
$$I_7 = I_2 + I_3$$

 $0.206 = 0.137 + 0.069$
 $0.206 = 0.206 \checkmark$

3) Realice la simulación del circuito de la figura y registre los resultados en la tabla.

$$I_{1} = 0.206 \text{ [A]} \qquad V_{1} = 51.4 \text{ [V]}$$

$$I_{2} = 0.137 \text{ [A]} \qquad V_{2} = 68.6 \text{ [V]}$$

$$I_{3} = 0.0686 \text{ [A]} \qquad V_{3} = 68.6 \text{ [V]}$$

$$V_{5} = V_{1} + V_{2} = 120 \text{ [V]}$$

2. Simulación

Se utilizó el software Quite Universal Circuit Simulator. para simular el circuito, este puede verse en la figura (1).

Figura 1: Simulación de circuito.

3. Tablas y mediciones

En la figura (2), se adjunta la hoja de resultados provista en la guía de laboratorio, rellenada con la información teórica, simulada y las mediciones realizadas en laboratorio.

PRÁCTICA 2	MARTES	14:57 Hora	3E e	09 104124 Fecha	J / 24 Gestión	Mercan Constitution
		CARLOS EDUDROO				
Apellido(s)			Nombr	re(s)		VoBo Docente Laboratorio

V	Resultado	250 Ω	500 Ω	1 kΩ	↓↓ KIRCHHOFF ↓↓
	TEÓRICO	1, = 205.714	I ₂ = 137,143	I ₃ = 68.571	1, = 205. 7(4)
	SIMULACIÓN	1,= 206	12 = 137	I ₃ = 68.6	I, = 205.6
120 V	TEÓRICO	v. = 51.429	V2 = 68.571	V, = 68,571	V _s = 120 = V ₁ + V ₂
	SIMULACIÓN	V,= 51.4	V2 = 68.6	V3 = 68.6	$V_{s} = 120$ = $V_{1} + V_{2}$

Tabla 2.1. Resultados de Pre-informe

Ÿ.	R ₂₅₀₀ = 257	R ₅₀₀₀ = 521	R1K0 = 1046	↓↓ KIRCHHOFF ↓↓
120.4	1,= 0.20	12= 133.7	13 = 66.9	$l_1 = 200.6$ $= l_2 + l_3$
	V1 = 50.8	V2 = 69.8	V3 = 69.7	$V_6 = 120.6$ = $V_1 + V_2$

Tabla 2.2. Tabla Leyes de Kirchhoff

N°	POS-Rx	Vo	1 h
1	GO FO	100.5 =v.	0
2	G1 F0	93.3	Ø.13
3	G1 F25	92.2	Ø.23
4	G1 F50	90.9	0.36
5	G1 F75	39.5	0.55
6	G2 F0	88.2	9.72
7	G2 F25	87.9	0.82
8	G2 F50	87.1	ø.95
9	G2 F75	86.2	1.12
10	G3 F0	85.2	1.28
11	G3 F25	84.6	1.37
12	G3 F50	84.0	1.49

Tabla 2.3. Tabla Curva Característica Voltaje-Corriente de Vs

Figura 2: Tabla de resultados.

4. Cuestionario

1. Aplicando las leyes de *Kirchhoff* demuestre la resistencia equivalente: (a) serie, y (b) paralelo:

■ (a)

Por ley de tensiones de *Kirchhoff* se sabe que:

$$V_{AB} = V_1 + V_2 + V_3 + \dots + V_N$$

Usando la ley de Ohm (V = IR):

$$I_{AB}R_{AB} = I_1R_1 + I_2R_2 + I_3R_3 + \dots + I_NR_N$$

Sabiendo que la corriente en la conexiones en serie no varia:

$$IR_{AB} = IR_1 + IR_2 + IR_3 + \dots + IR_N$$

 $IR_{AB} = I(R_1 + R_2 + R_3 + \dots + R_N)$

Por tanto:

$$R_{AB} = R_1 + R_2 + R_3 + \dots + R_N = \sum_{n=1}^{N} R_n$$

• (b)

Por ley de corrientes de Kirchhoff se sabe que:

$$I_{CD} = I_1 + I_2 + I_3 + \cdots + I_N$$

Usando la ley de Ohm (I = V/R):

$$\frac{V_{CD}}{R_{CD}} = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots + \frac{V_N}{R_N}$$

Sabiendo que el voltaje en las conexiones en paralelo no varia:

$$\frac{V}{R_{CD}} = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3} + \dots + \frac{V}{R_N}$$
$$\frac{V}{R_{CD}} = V\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}\right)$$

Por tanto:

$$\frac{1}{R_{CD}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N} = \sum_{n=1}^{N} \frac{1}{R_n}$$

2. (a) Aplicando la regresión lineal y los valores obtenidos y registrados en la tabla, construya la ecuación de la curva característica voltaje-corriente de la fuente V_s ; (b) ¿que significado tienen los coeficientes "A" y "B" entregados por la regresión lineal?; (c) grafique la curva voltaje-corriente para V_s .

Respuesta:

(a) Se calcula la recta de mejor ajuste por el método de los mínimos cuadrados, resultando los siguientes valores:

$$A = (95.49 \pm 1.02)[V]; 1.06 \%$$

 $B = (-8.45 \pm 1.14)[\Omega]; 13.46 \%$

Siendo su coeficiente de correlación (r):

$$r = -0.9201$$

(b) Considerando que el modelo de ajuste es:

$$V_0 = V_s - R_s I_0$$

A representa el valor V_s es decir, el voltaje medido en las terminales de la fuente en circuito abierto, sin carga.

B representa el valor de R_s , es decir, la resistencia interna de la fuente de tensión.

Resultado	
$V_s = (95.49 \pm 1.02)[V]; 1.06\%$	
$R_s = (8.45 \pm 1.14)[\Omega]; 13.46\%$	

A partir de los datos obtenidos se genera la gráfica de la Figura 3.

Figura 3: Gráfica de corriente vs voltaje.

3. (a) ¿Cual es el voltaje de regulación para una fuente ideal?; (b) ¿cual es el voltaje de regulación de la fuente V_s empleada en esta practica de laboratorio?

Considerando:

$$\%_{\rm regulación} = \frac{V_{SL} - V_{FL}}{V_{FL}} \, 100 \, \%$$

Donde:

• V_{SL} : Voltaje sin carga.

• V_{FL} : Voltaje con carga completa.

(a) En una fuente ideal:

$$V_{SL} = 100[V]$$

$$V_{FL} = 100[V]$$

Por tanto:

$$\%_{\rm regulación} = \frac{100-100}{100}\,100 = 0\,\%$$

(b) En la fuente medida:

$$V_{SL} = 100.5[V]$$

$$V_{FL} = 84.0[V]$$

Por tanto:

$$\%_{\rm regulación} = \frac{100.5 - 84.0}{84.0}\,100 = 19.64\,\%$$

5. Conclusiones

Se demostró que tanto la ley de corrientes, como la ley de tensiones de $\mathit{Kirchhoff}$ se cumplen de modo experimental.

También se pudo apreciar la caída de voltaje respecto a la cantidad de corriente eléctrica que fluye en un circuito, pudiendo apreciarse claramente la curva característica voltaje-corriente.