Predicting Poverty in Costa Rica

Sam Blass Metis Classification 23 March 2022

Objective

- Prioritize aid only to most vulnerable households
- Predict vulnerability using household observable attributes (e.g. size, dwelling quality)
- Kaggle competition 2019

Data Overview

Target variable - level of poverty

- 1 = extreme poverty
- 2 = moderate poverty
- 3 = vulnerable households
- 4 = non vulnerable households

Each row corresponds to one individual

Each individual in a household gets the same household ID number

Features (~140)

- Individual: Age, gender, years of education
- Household: Number of household members, quality of dwelling
- Geography: Region of Ecuador located

https://upload.wikimedia.org/wikipedia/commons/thumb/8/89/CRI orthographic.svg/1920px-CRI orthographic.svg.png

Methodology

Exploratory data analysis and feature engineering

- Identify class imbalances
- Explore relationships not otherwise capturable in a model

Define classification metric

Reflects objective of project (prioritize aid by identifying those most in need)

Test and optimize various classification models

- Recommend best performing model
- Train-test-split by household to avoid data leakage (Group Shuffle Split)

Data Prep and Model Setup

Exploratory Data Analysis

- Most households are not vulnerable
- Tuning model may require class balancing

Feature Engineering

 Scale features by geographical area to correct for cost of living

Classification Metric: Recall

- Minimize number of false negatives
- Prioritize category 1 (most vulnerable)
- Weighted average for each recall

Model Testing and Tuning

Model	Hyperparameters to tune
Random Forest	Max number of features, criterion, class weight
Logistic Regression	Regularization

*Max AUC is with unbalanced data

Metric	Max and Min
Recall	Max: 0.345 Min: 0.273
AUC	Max: 0.782 Min: 0.739

Model Testing and Tuning

Model	Hyperparameters to tune
Random Forest	Max number of features, criterion, class weight
Logistic Regression	Regularization

*Max AUC is with unbalanced data

Metric	Max and Min
Recall	Max: 0.345 Min: 0.273
AUC	Max: 0.782 Min: 0.739

Best results with default settings

Default

Feature Importance

- Top two features are number of females in household and dependency rate
- Scaled features are important suggesting scaling relative to geographical area is important

Scaled = relative to geographic area

Conclusions & Future Work

- O1 Data Cleaning

 May improve recall scores
- 02 Hyperparameter tuning
 No improvement in recall
- 03 Feature importance

 Identified which features to examine further
- O4 Target variable subjectivity

 Likely reduces model performance

Thanks

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**