1

Assignment

11.9.2 - 11

EE23BTECH11034 - Prabhat Kukunuri

OUESTION

Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that $\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0$

Solution

Symbol	Value	Description
Syllibol		
x(n)	$(x(0) + nd) \times u(n)$	n^{th} term of an A.P
<i>x</i> (0)	<i>x</i> (0)	1 st term of the A.P
d	d	Common difference
u(n)	unit step function	u(n) = 0 (n < 0)
		$u(n) = 1 \ (n \ge 0)$
y(n)	$\sum_{k=0}^{n} x(k)$	Sum of n terms of an
		AP
а	y(p-1)	Sum of p terms of
		the AP
b	y(q-1)	Sum of q terms of
		the AP
c	y(r-1)	Sum of r terms of the
		AP

TABLE 0 Variable description

$$x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$
 (1)

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
 (2)

$$X(z) = \sum_{n = -\infty}^{\infty} (x(0) + nd)u(n)z^{-n}$$
 (3)

$$u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} U(z) = \frac{1}{1 - z^{-1}}, |z| > 1$$
 (4)

$$X(z) = \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}$$
 (5)

$$y(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} Y(z)$$

$$Y(z) = \sum_{n=0}^{\infty} y(n)z^{-n}$$
 (7)

$$y(n) = x(n) * u(n)$$
(8)

$$Y(z) = X(z) U(z)$$
(9)

$$Y(z) = \left(\frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}\right) \left(\frac{1}{1 - z^{-1}}\right) \tag{10}$$

$$n^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1} + z^{-2}}{(1 - z^{-1})^3}$$
 (11)

By performing Z transform on Y(z)

$$y(n) = x(0)(n+1)u(n) + d\left(\frac{n(n+1)}{2}\right)u(n)$$
 (12)

$$y(n) = \frac{n+1}{2} (2x(0) + nd)$$
 (13)

$$a = \frac{p}{2}(2x(0) + (p-1)d) \quad (14)$$

$$b = \frac{q}{2}(2x(0) + (q-1)d) \quad (15)$$

$$c = \frac{r}{2}(2x(0) + (r-1)d) \quad (16)$$

Back substituting values into the term $\frac{a}{p}(q-r)$ it can be rewritten as $\frac{p}{2} \times \frac{1}{p}(q-r)(2x+(p-1)d)$ On further simplification it can be rewritten as

$$\frac{(q-r)}{2}(2x(0) - d + pd) \tag{17}$$

Assuming 2x(0) - d as a constant k

$$\frac{a}{p}(q-r) = \frac{(q-r)}{2}(k+pd)$$
 (18)

$$\frac{(q-r)}{2}(k+pd) = \frac{kq + pqd - rk - prd}{2} \tag{19}$$

$$\frac{(r-p)}{2}(k+qd) = \frac{kr + qrd - pk - pqd}{2}$$
 (20)

$$\frac{(p-q)}{2}(k+rd) = \frac{kp + prd - qk - qrd}{2}$$
 (21)

5) Upon on addition of (19),(20) and(21) the total sum adds up to 0.