ITMO

Lab 2 «Simulation components of dynamic systems»

Sergey Lovlin, Galina Demidova, Aleksandr Mamatov Faculty of Control System and Robotics

Objective and Goals

Objective: to study the basic principles of building mathematical models, modelling and analysis of electromechanical systems on the example of DC motor.

Goals:

- Build the dynamic models of the DC motor in different forms: Simscape block, block diagram, transfer function, state space representation;
- Analyze the transient processes of DC motor;
- Draw bode plots.

Initial data

iTMO

Initial data

 R_a - armature resistance

 L_{a} - armature inductance

 Ψ_{rated} - rated flux

 $U_{\it rated}$ - rated voltage

 $T_{\it rated}$ - rated torque

J - inertia of the shaft

iTMO

- Simscape library
- block diagram
- transfer function
- state space model

$$\begin{cases} L_a \cdot \frac{di_a(t)}{dt} = U - R_a \cdot i_a(t) - \Psi \cdot \omega(t) \\ J \cdot \frac{d\omega(t)}{dt} = \Psi \cdot i_a(t) - T_L \end{cases}$$

Preliminary

Create the script with initial data for your variant:

```
U_rated = 48;

Ra = 0.1;

La = 5e-4;

psi = 0.2;

J1 = 0.002;

J2 = 0.02;

J = J1;

T_rated = 15;
```

Preliminary

Open new model, create new Simulink model, tune the solver:

Simscape model

Simscape model

- ▶ Foundation Library
- Utilities
- Battery
- Driveline
- ▼ Electrical
 - Connectors & References
 - Control
 - Electromechanical
 - Asynchronous
 - Brushed Motors

Compound Motor

DC Motor

Simscape model

ITMO

Block diagram model

Build block diagram model based the dynamic model of DC motor:

$$\begin{cases} L_{a} \cdot \frac{di_{a}(t)}{dt} = U - R_{a} \cdot i_{a}(t) - \Psi \cdot \omega(t) \\ J \cdot \frac{d\omega(t)}{dt} = \Psi \cdot i_{a}(t) - T_{L} \end{cases}$$

State space model

Calculate matrices of the state space model:

$$\begin{cases} L_a \cdot \frac{di_a(t)}{dt} = U - R_a \cdot i_a(t) - \Psi \cdot \omega(t) \\ J \cdot \frac{d\omega(t)}{dt} = \Psi \cdot i_a(t) - T_L \end{cases}$$

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \\ y = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u} \end{cases}$$

$$\mathbf{x} = \begin{bmatrix} i_a \\ \mathbf{\omega} \end{bmatrix} \qquad \mathbf{u} = \begin{bmatrix} U \\ T_L \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} U \\ T_L \end{bmatrix}$$

$$y = \omega$$

A. B. C. D - ?

Find state space matrices

State space model

Transfer function

a) Calculate the transfer function from voltage to speed:

$$W_1(p) = \frac{\omega(s)}{U(s)}$$

b) Calculate the transfer function from load torque to speed: $W_2(p) = \frac{\omega(p)}{T_I(p)}$

Simulation

Simulation 1:

%% Simulation

U = U_rated; T L = 0;

With rated voltage and zero load torque

Simulation 2:

%% Simulation

U = 0; T L = T rated;

With zero voltage and rated load torque

Make sure that the speed ω measured from all the models built is the same!

Consider the transfer function from voltage to speed:

$$W_1(p) = \frac{\omega(s)}{U(s)}$$

Using inverse Laplace transform, calculate the transient response function $\omega(t)$ for:

a)
$$U(t) = U_{rated}$$
, $J = J_1$

Answer the question which function is *underdamped?*

b)
$$U(t) = U_{rated}$$
, $J = J_2$


```
14
         % Define time limits
         start time = 0;
15
         stop time = 0.5;
16
         % Define time step
17
         time step = 0.001;
18
         % Define the array of times
19
         t = start time:time step:stop time;
20
         % Define the function
21
         f t = 1 - \exp(-t./0.1); % here should be your own calculated time response
         % Draw the graph of f t
23
         plot(t, f t)
24
         grid on
25
26
```


Draw calculated transient responses and find:

- Rise time from 10% to 90% of final value
- Maximum (percent) overshoot
- Settling time with 5% tolerance

Draw bode plot for the underdamped DC-motor from the task 2.

Calculate *static gain* and *damped natural frequency* of the dynamic system from bode plot.

The code to get bode plot for some transfer function:

```
27
         %%
28
         K = 40;
         wn = 100;
29
         ksi = 0.2;
30
31
32
         W = tf(K*wn^2, [1 \ 2*ksi*wn \ wn^2]);
33
34
          bode(W)
35
          grid on
```

ITMO

The bode plot:

Report content

- Your name and HDU ID
- 2. Your variant and initial data
- 3. Simscape model of DC-motor
- 4. Block diagram model of DC-motor
- 5. Transfer functions of DC-motor
- 6. State space model of DC-motor
- 7. Simulation results for 2 cases
- 8. Calculation of transient response function based on transfer function of DC-motor for two values of inertia
- 9. Graphs of transient responses
- 10. Values of rise time, maximum overshoot and settling time
- 11. Bode plot of underdamped model of DC-motor
- 12. Values of the static gain and damped natural frequency calculated from Bode plots

Deadlines and penalties

7 points - max

Deadline 1: 2025/03/20 – missing the deadline gives you 1-point penalty

Deadline 2: 2025/04/03 – missing the deadline gives you 2-point penalty

Missing the Task 2 gives you 1-point penalty

Missing the Task 3 gives you 1-point penalty

The link for uploading your report:

https://forms.yandex.ru/u/67c86c2fd04688428d49a923/

THANK YOU FOR YOUR TIME!

ITSMOre than a UNIVERSITY