1.7 Introduction to Proofs

Section Summary

- Mathematical Proofs
- Forms of Theorems
- Direct Proofs
- Indirect Proofs
 - Proof of the Contrapositive
 - Proof by Contradiction

Some Terminologies

Theorem: A statement that can be shown to be true.

Proposition: Less important theorem

Proof: A valid argument that establishes the truth of a theorem

Axioms: The underlying assumptions about mathematical structures,

or hypotheses of the theorem to be proved,

or previously proved theorems.

Lemma: A 'helping theorem' or a result which is needed to prove a theorem.

Corollary: A result which follows directly from a theorem.

Conjecture: A statement whose truth value is unknown.

Understanding How Theorems Are Stated

Some typical examples,

- 1. "if x>y, where x and y are positive real numbers, then $x^2>y^2$."

 For all positive real number x and y, if x>y, then $x^2>y^2$.
- 2. "if n is odd, then n^2 is odd."

 For all natural number n, if n is odd, then n^2 is odd.

$$\forall n \ (P(n) \rightarrow Q(n))$$

How to prove?

Method of Proving Theorems

To prove a theorem of the form $\forall x (P(x) \rightarrow Q(x))$

- \Re show that $P(c) \to Q(c)$ is true, where c is an arbitrary element of the domain
- * apply universal generalization.

How to show that a conditional statement $p \rightarrow q$ is true?

Direct Proofs

To establish that $p \rightarrow q$ is true. p may be a conjunction of other hypotheses.

- ✓ assumes the hypotheses are true
- ✓ uses the rules of inference, axioms ,definition, previously proven theorems, and any logical equivalences to establish the truth of the conclusion.

Example 1 Give a direct proof of the theorem "If n is odd, then n^2 is odd."

Proof:

Assume that the hypothesis of this implication is true, namely, suppose that n is odd.

Then n = 2k + 1, where k is an integer.

It follows that

$$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$$

Therefore,

 n^2 is odd (it is 1 more than twice an integer).

Formal Proofs vs. Informal Proofs

Formal proof:

- All steps were supplied
- The rules for each step in the argument were given

Informal proof:

- More than one rule of inference may be used in each step
- Steps may be skipped
- The axioms being assumed and the rules of inference used are not explicity stated

Proof by Contraposition

Using proof by contraposition (a kind of indirect proof) to establish that $p\rightarrow q$ is true.

- \checkmark assumes the conclusion of $p\rightarrow q$ is false ($\neg q$ is true)
- \checkmark uses the rules of inference, axioms ,definition, previously proven theorems, and any logical equivalences to establish the premise p is false.

Note:

- Recall: $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- In order to show that a conjunction of hypotheses is false is suffices to show just one of the hypotheses is false.

Example 2 Theorem: A perfect number is not a prime.

A *perfect* number is one which is the sum of all its divisors except itself. For example, 6 is perfect since 1 + 2 + 3 = 6.

Proof:

We assume the number s is a prime and show it is not perfect.

But the only divisors of a prime are 1 and itself.

Hence the sum of the divisors less than s is 1 which is not equal to s.

Hence *s* cannot be perfect.

Vacuous Proof

Using the method of vacuous proof to establish that $p\rightarrow q$ is true.

 \checkmark Show that p is false

Note:

If one of the hypotheses in p is false then $p \rightarrow q$ is *vacuously* true.

Example 3 If Tom is both handsome and ugly then he feels unhappy. *Solution:*

This is of the form $(p \land \neg p) \rightarrow q$.

The hypotheses form a contradiction.

Hence q follows from the hypotheses vacuously.

Example 4 Show that the proposition P(0) is true, where P(n) is "If n>1, then $n^2>n$ " and the domain consists of all integers.

Trivial proof

Using the method of trivial proof to establish that $p\rightarrow q$ is true.

 \checkmark Show that q is true.

Example 5 If the earth is smaller than moon then the void set is a subset of every set. *Solution:*

The assertion is *trivially* true independent of the truth of p.

[Even though these examples seem silly, both trivial and vacuous proofs are often used in mathematical induction, as we will see in Chapter 5)]

Proof by contradiction

Using the method of proof by contradiction to establish the truth of the 'theorem' p

- \checkmark assumes the conclusion p is false
- \checkmark derives a contradiction, usually of the form $q \land \neg q$ which establishes $\neg p \rightarrow F$.

Example 6 Theorem: There are infinitely many primes.

Proof:

Assume finitely many primes: $p_1, p_2,, p_n$

- •Let $q = p_1 p_2 \cdots p_n + 1$
- •Either q is prime or by the fundamental theorem of arithmetic it is a product of primes.
- •But none of the primes p_i divides q since if $p_i | q$, then p_i divides

$$q - p_1 p_2 \cdots p_n = 1.$$

- •Hence, there is a prime not on the list $p_1, p_2,, p_n$. It is either q, or if q is composite, it is a prime factor of q. This contradicts the assumption that $p_1, p_2,, p_n$ are all the primes.
- •Consequently, there are infinitely many primes.

Note:

The proof of $p \rightarrow q$ by contradiction consists of the following steps:

- 1) Assume p is true and q is false
- 2) Show that $\neg p$ is also true.

Since the statement $p \land (\neg p)$ is always false.

—Contradiction!

Example 7 Show that $s \vee r$ logically follows from the hypotheses

$$p \lor q, p \to r, q \to s$$

solution:	
Step	Reason
1. $\neg (s \lor r)$	Additional hypothesis
2. $\neg s \land \neg r$	Step 1 and De morgan
$3. \neg s$	Simplification using step 2
4. ¬r	Simplification using step 2
5. $p\rightarrow r$	Hypothesis
6. $\neg p$	Modus tollens using steps 4 and 5
7. $q \rightarrow s$	Hypothesis
8. ¬ q	Modus tollens using steps 3 and 7
9. $\neg p \land \neg q$	Conjunction using step 6 and 8
10. $\neg (p \lor q)$	Step 9 and De morgan

Hypothesis

11. $p \vee q$

Proof of Equivalence

- (1) To prove the proposition "p if and only if q"
- (2) To prove that several propositions p_1 , p_2, \ldots, p_n are equivalent

 \checkmark establish the implications $p_1 \rightarrow p_2, ..., p_{n-1} \rightarrow p_n, p_n \rightarrow p_1$

$$[p_1 \leftrightarrow p_2 \leftrightarrow \ldots \leftrightarrow p_n] = [(p_1 \to p_2) \land (p_2 \to p_3) \land \ldots \land (p_n \to p_1)]$$

Mistakes in Proofs

Many mistakes result from the introduction of steps that do not logically follow from those that precede it.

Many incorrect arguments are based on a fallacy called *begging the question* (circular reasoning).

1.8 Proof Methods and Strategy

Section Summary

- Proof by Cases
- Existence Proofs
 - Constructive
 - Nonconstructive
- Disproof by Counterexample
- Nonexistence Proofs
- Uniqueness Proofs
- Proof Strategies
- Proving Universally Quantified Assertions
- Open Problems

Exhaustive Proof and Proof by Cases

Using the method of proof by cases to show that $(p_1 \lor p_2 \lor ... \lor p_n) \to q$ \checkmark establish all implications $p_i \to q$

Note:

1)
$$(p_1 \lor p_2 \lor ... \lor p_n) \rightarrow q \equiv (p_1 \rightarrow q) \land (p_2 \rightarrow q) \land ... \land (p_n \rightarrow q)$$

Each of the implications $p_i \rightarrow q$ is a case.

2) An exhaustive proof is a special type of proof by cases where each case involves checking a single example.

Example 1 Prove that if *n* is an integer not divisible by 3, then $n^2 \equiv 1 \pmod{3}$.

Proof:

P(n): n an integer is not divisible by 3

 $Q(n): n^2 \equiv 1 \pmod{3}$

Then p(n) is equivalent to $p_1(n) \lor p_2(n)$, where $p_1(n)$ is " $n \equiv 1 \pmod 3$ " and $p_2(n)$ is " $n \equiv 2 \pmod 3$ ".

Hence, to show that $p(n) \rightarrow q(n)$ it can be shown that $p_1(n) \rightarrow q(n)$ and $p_2(n) \rightarrow q(n)$.

It is easy to give direct proves of those two implications.

Existence Proofs

Using constructive existence proof to establish the truth of $\exists x P(x)$.

- \checkmark Establish P(c) is true for some c in the domain.
- ✓ Then $\exists x P(x)$ is true by Existential Generalization (EG).

Example 2 Show that there are n consecutive composite positive integers for every positive integer n.

Proof:

 $\forall n \exists x (x+i) \text{ is composite for } i = 1, 2, ..., n$.

Let x = (n + 1)! + 1.

Consider the integers $x + 1, x + 2, \dots, x + n$.

Note that i + 1 divides x + i = (n + 1)! + (i + 1) for i = 1, 2, ..., n.

Hence, n consecutive composite positive integers have been given.

Note that in the solution a number x such that x + i is composite for i = 1, 2, ..., n has been produced.

Hence, this is an example of constructive existence proof.

Existence Proofs

Using nonconstructive existence proof to establish the truth of $\exists x P(x)$.

 \checkmark Assume no c exists which makes P(c) true and derive a contradiction

Example 3 Theorem: There exists an irrational number.

Proof:

Assume there doesn't exist an irrational number. Then all numbers must be rational.

Then the set of all numbers must be countable.

Then the real numbers in the interval [0, 1] is a countable set.

But we have already shown this set is not countable.

Hence, we have a contradiction (The set [0,1] is countable and not countable).

Therefore, there must exist an irrational number.

Uniqueness Proofs

To show that a theorem assert the existence of a unique element with a particular property.

$$\exists x \ (P(x) \land \forall \ y \ (y \neq x \rightarrow \neg P(y)))$$

- ✓ Existence: We show that an element x with the desired property exists.
- \checkmark uniqueness: We show that if y≠x, then y does not have the desired property. Or, we can show that if x and y both have the desired property, then x=y.

Disproof by Counterexample

Using the method of disproof by counterexample to establish that $\neg \forall x P(x)$ is true.

-To construct a c such that P(c) is false.

Recall: $\neg \forall x P(x) \Leftrightarrow \exists x \neg P(x)$

Nonexistence Proofs

To establish that $\neg \exists x P(x)$ is true.

 \checkmark Use a proof by contradiction by assuming there is a c which makes P(c) true .

Recall: $\neg \exists x P(x) \Leftrightarrow \forall x \neg P(x)$

Universally Quantified Assertions

To establish the truth of $\forall x P(x)$.

- \checkmark We assume that x is an arbitrary member of the universe and show P(x) must be true.
- \checkmark Using UG it follows that $\forall x P(x)$.

Example 4 Theorem: For the universe of integers, x is even iff x^2 is even.

Proof:

 $\forall x[x \text{ is even} \leftrightarrow x^2 \text{ is even}].$

Recall that $p \leftrightarrow q$ is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$.

Case 1. sufficiency

Show that if x is even then x^2 is even using a direct proof.

Case 2. necessity

We use an indirect proof.

Assume x is not even and show x^2 is not even.

Proof Strategies

Forward reasoning: Using premises, together with axioms and known theorems to lead to the conclusion.

Backward reasoning: To reason backward to prove a statement q, we find a statement p that we can prove with the property that $p \rightarrow q$.

Proof Strategy in Action

Mathematics text formally present theorems and their proofs.

- as if mathematical facts were carved in stone
- Don't convey the discovery process in mathematics

The discovery process in mathematics:

Begin with exploring concepts and examples, asking questions, formulating conjectures, and attempting to settle these conjecture either by proof or by counterexample.

Additional Proof Methods

- > Later we will see many other proof methods:
 - \checkmark Mathematical induction, which is a useful method for proving statements of the form \forall n P(n), where the domain consists of all positive integers.
 - ✓ Structural induction, which can be used to prove such results about recursively defined sets.
 - ✓ Cantor diagonalization is used to prove results about the size of infinite sets.
 - ✓ Combinatorial proofs use counting arguments.

Homework:

SE: P.91 37; P.108 15

EE: P.96 39; P.114 17