

Fig. 1

Applicant(s): Farb et al.

CELLULAR PHYSIOLOGY WORKSTATION FOR
AUTOMATED DATA ACQUISITION AND PERFUSION
CONTROL

2/20

Fig. 2

3/20

Fig. 3

4/20

Fig. 4

Fig. 5

6/20

Fig. 6

7/20

Fig. 7A

Fig. 7B

Fig. 7C

8/20

	VALUE	ERROR
E _{max}	1.03	0.0221
K	5.27e-07	3.49e-08
n	1.1	0.0822
Chisq	0.000653	NA
R	0.999	NA

Fig. 8

9/20

$y = E_{max}/(1 + (K/x)^n)$		
	VALUE	ERROR
E _{max}	0.842	0.121
K	4.56e-05	1.23e-05
n	2.43	1.59
Chisq	0.00652	NA
R	0.942	NA

$y = E_{max}/(1 + (K/x)^n)$		
	VALUE	ERROR
E _{max}	0.596	0.0668
K	4.45e-05	1.1e-05
n	1.6	0.595
Chisq	0.0109	NA
R	0.976	NA

Fig. 9

10/20

Fig. 10

11/20

$y = E_{max}/(1 + (K/x)^n)$			
	VALUE	ERROR	
E _{max}	1.03	0.0137	
K	5.21e-07	2.16e-08	
n	1.07	0.047	
Chisq	0.000229	NA	
R	1	NA	

$y = E_{max}/(1 + (K/x)^n)$			
	VALUE	ERROR	
E _{max}	0.656	0.00751	
K	5.68e-07	1.91e-08	
n	1.2	0.0511	
Chisq	8.41e-05	NA	
R	1	NA	

$y = E_{max}/(1 + (K/x)^n)$			
	VALUE	ERROR	
E _{max}	0.792	0.0544	
K	7.85e-07	1.8e-07	
n	0.836	0.124	
Chisq	0.000966	NA	
R	0.998	NA	

Fig. 11

12/20

Fig. 12

13/20

Fig. 13

14/20**Fig. 14**

15/20

16/20

Fig. 16

17/20

Fig. 17

Fig. 18

Fig. 19A

Fig. 19B

19/20

Fig. 20

Applicant(s): Farb et al.

CELLULAR PHYSIOLOGY WORKSTATION FOR
AUTOMATED DATA ACQUISITION AND PERFUSION
CONTROL**20/20**

Application Valves										
1	2	3	4	5	6	7	8	9	10	11
10										
10										
20										
30										
40										
50										
60										
70										
80										
90										
100										

Prepulse Clamp Voltage	Test Clamp Voltage	Wash Clamp Voltage	Resting Clamp Voltage
100	100	100	100
90	90	90	90
80	80	80	80
70	70	70	70
60	60	60	60
50	50	50	50
40	40	40	40
30	30	30	30
20	20	20	20
10	10	10	10
0	0	0	0

Prepulse Valve	15
Prepulse Valve	15

Washout Valve	16
Washout Valve	16

Resting Valve	0
Resting Valve	0

Valve Timing	Prepulse	Application	Washout
0 5 10 15 20 25 30 35 40 45 50 55 60	14.25	23.89	46.50

Clamp Voltage Timing	Prepulse	Application	Washout
0 5 10 15 20 25 30 35 40 45 50 55 60	14.25	23.89	46.50

Recipe Step Number	4
Recipe Step Number	4

Go To Last Step	Delete This Step	Insert a New Step	Go To Next Step
X			

Total Step Duration	560 Sec
Total Step Duration	560 Sec

FIG. 21