Практическая работа №3

Задание №1

- 1. Сгенерируйте 3 пары выборок заданного объема из разных законов распределения (два нормальных распределения, нормальное и отличное от нормального, два отличных от нормального распределения). Объем и законы распределения выбрать самостоятельно.
- 2. Выдвинуть и проверить на заданном уровне значимости α для каждой пары выборок гипотезы:
 - а. о равенстве двух дисперсий $H: \sigma_1^2 = \sigma_2^2$ при альтернативной $\overline{H}: \sigma_1^2 \neq \sigma_2^2$,
 - b. о равенстве двух выборочных средних $H: m_1 = m_2$ при альтернативной $\overline{H}: m_1 \neq m_2$. Выбор критериев должен быть обусловлен видом распределения исходных выборок (проверить факт нормальности распределения выборок с помощью одного из критериев согласия, например Шапиро-Уилка) и равенством дисперсий (для выбора критерия для проверки гипотез о математических ожиданиях).

Задание №2

- 1. 1000 раз сгенерируйте выборки из нормального и любого отличного от нормального закона распределения для различных N.
- 2. Примените критерии: Anderson-Darling test, Lilliefors test, Kolmogorov-Smirnov test и Shapiro-Wilk test.
- 3. Сравните их мощности.

Задание №3*

- 1. Сгенерировать выборку заданного объема n по нормальному закону распределения $N(m, \sigma)$. Значения выбрать самостоятельно.
- 2. Исследовать применимость t-критерия $(H: m = m_0)$ и χ^2 -критерия при нарушении предположения о нормальности $X = pN(m, \sigma^2) + (1-p)F$. Примечание:
 - а. Закон распределения F выбрать самостоятельно.
 - b. Параметры распределений задать самостоятельно.
 - с. Величину p изменять от 0 до 1 с шагом 0.01.
- 3. Получаемые зависимости между выходными характеристиками и выбранными параметрами представить в графической форме.
- 4. Исследовать поведение указанного критерия при варьировании параметров закона F.