

notations:	
4	}(x̄m, ȳm)\$;=1 x̄meiR", ∀i
-test set	$\left\{ (\overrightarrow{X}_{test}, y^{(i)}) \right\}_{i=1}^{m_{test}} \xrightarrow{\overrightarrow{X}_{test}} \in \mathbb{R}^{n}, \forall i$
- design mat.	for training set and test set
X= X	T $\frac{1}{CR}$, $\frac{1}{X_{test}} = \begin{bmatrix} \frac{1}{X_{test}} \\ \frac{1}{X_{test}} \\ \frac{1}{X_{test}} \end{bmatrix} \frac{m_{rest} \times n}{ctR}$
L Zem	T [mren]
	DER Mess x m, st. D(i,j) = dist (xin, x)
note that n	ve have made it square to make computation
methods:	The sensor of the law or
D(ij) = dist(x	n) $\hat{\chi}$ 0 j ²
= 11 X test	+ 17
$= \ \vec{\mathbf{x}}_{test}^{(i)}\ $ $= (\vec{\mathbf{x}}_{test}^{(i)} -$	$-\overline{x}^{(i)})^{T}(\overline{x}^{(i)}_{pol}-\overline{x}^{(i)})$
$= \ \vec{x}_{test}^{(i)}\ $ $= (\vec{x}_{test}^{(i)})$ $= \vec{x}_{test}^{(i)}$	$ \frac{\vec{x} \vec{y} \vec{y}^{T} (\vec{x}_{per}^{(i)} - \vec{x}^{(j)})}{\vec{x}^{(i)} + \vec{x}^{(j)} \vec{x}^{(j)} - 2 \vec{x}_{rest}^{(i)} \vec{x}^{(j)}} $ Thus
$= \ \vec{x}_{test}^{(i)}\ $ $= (\vec{x}_{test}^{(i)})$ $= \vec{x}_{test}^{(i)}$	$ \frac{\vec{x} \vec{y} \vec{y}^{T} (\vec{x}_{per}^{(i)} - \vec{x}^{(j)})}{\vec{x}^{(i)} + \vec{x}^{(j)} \vec{x}^{(j)} - 2 \vec{x}_{rest}^{(i)} \vec{x}^{(j)}} $ Thus
$= \ \vec{x}_{test}^{(i)}\ $ $= (\vec{x}_{test}^{(i)})$ $= \vec{x}_{test}^{(i)}$	$= \overline{x} \stackrel{(i)}{\sqrt{y}} T \left(\overline{x} \stackrel{(i)}{\sqrt{y}} - \overline{x} \stackrel{(i)}{\sqrt{y}} \right)$ $= \overline{x} \stackrel{(i)}{\sqrt{y}} T \overrightarrow{x} \stackrel{(i)}{\sqrt{y}} - 2 \overrightarrow{x} \stackrel{(i)}{\sqrt{x}} T \xrightarrow{x} \stackrel{(i)}{\sqrt{y}}$ $= \overline{x} \stackrel{(i)}{\sqrt{y}} T \overrightarrow{x} \stackrel{(i)}{\sqrt{y}} - 2 \overrightarrow{x} \stackrel{(i)}{\sqrt{x}} T \xrightarrow{x} \stackrel{(i)}{\sqrt{y}}$
$= \ \vec{x}_{test}^{(i)}\ $ $= (\vec{x}_{test}^{(i)})$ $= \vec{x}_{test}^{(i)}$	$ \frac{\vec{x} \vec{y} \vec{y}^{T} (\vec{x}_{per}^{(i)} - \vec{x}^{(i)})}{\vec{x}^{(i)} + \vec{x}^{(i)} \vec{x}^{(i)} - 2 \vec{x}_{rest}^{(i)} \vec{x}^{(i)})} $ The sum of the

· Compute grad with SVM loss

Sol: Loss function
$$J = \frac{1}{m} \sum_{j=1}^{m} \sum_{j \neq j \neq i} \max(0, s_{j}^{(i)} - s_{y^{(i)}}^{(i)} + i) + \frac{\lambda}{2} \|w\|_{F}^{2}$$

$$\frac{\partial J}{\partial s_{j}^{(i)}} = \frac{1}{m} \frac{\partial}{\partial s_{j}^{(i)}} \max(0, s_{j}^{(i)} - s_{y^{(i)}}^{(i)} + i) \qquad j \neq y^{(i)}$$

$$= \frac{1}{m} 1 \{ s_{j}^{(i)} - s_{y^{(i)}}^{(i)} + i \}$$

$$\frac{\partial J}{\partial S_{g^{(i)}}^{(i)}} = \frac{1}{m} \sum_{j \neq j^{(i)}} \frac{1}{\partial S_{g^{(i)}}^{(i)}} \max(0, S_{j}^{(i)} - S_{g^{(i)}}^{(i)} + 1)$$

$$= - \frac{1}{m} \sum_{j \neq j^{(i)}} \left\{ S_{j}^{(i)} - S_{g^{(i)}}^{(i)} + 1 \right\}$$

Compute grad. WM. softmax loss

Sol:

$$J = -\frac{1}{2} \sum_{j=1}^{\infty} \frac{\exp(S_{j}^{(i)})}{\sum_{j=1}^{\infty} \exp(S_{j}^{(i)})} + \frac{\lambda}{2} \|W\|_{F}^{F}$$

$$= -\frac{1}{2} \sum_{j=1}^{\infty} \frac{1}{2} \exp(S_{j}^{(i)}) + \frac{\lambda}{2} \|W\|_{F}^{F}$$

$$= \frac{1}{2} \frac{1}{2} \exp(S_{j}^{(i)})$$

$$= \frac{1}{2} \frac{1}{2} \exp(S_{j}^{(i)})$$

$$= \frac{1}{2} \exp(S_{j}^{(i)})$$