1.1)

η	a=0.5	a=1	a=2	a=5
.001	>1000	>1000	>1000	990
.01	760	414	223	97
.03	252	137	73	31
.1	65	40	21	8
.3	24	12	5	8
1	6	1	DT	Div
3	6	div	Div	div
Fastest	2	1	0.5	0.25
Divergence threshold	4	2	1	0.5

1.2)

Como se pode observar, quanto mais pequeno fôr o η , mais interações o algoritmo fará, sendo que é preciso ter cuidado para não ter um η pequeno demais. Por outro lado, um η demasiado grande leva a que o algoritmo não converja. Além disso é importante referir, que o η deve ser escolhido de acordo com o parâmetro a. É também imporante que o valor de η seja inferior a $\frac{2}{a}$ que corresponde ao divergence threshold (neste caso $-x^{(t)}=x^{(t+1)}$):

1.3)

Tal como foi visto na aula de problemas, o valor de η que faz o algoritmo convergir mais rapidamente é $\eta=\frac{1}{a}$, pois:

Não. Basta o $x^{(0)}$ corresponder a um ponto estácionário (máximo, mínimo ou ponto de sela) e o algoritmo não vai ficar preso (não irá avançar). Isto deve-se a que nestes pontos, o declive (gradiente em \mathbb{R}^1) corresponde a 0 e por isso:

2.1)

η	a=2	a=20
.01	448	563
.03	143	186
.1	43	DT
.3	13	Div
1	DT	Div
3	Div	Div
Fastest	0.6	0.095
Divergence threshold	1	0.1

2.2)

Tal como acontece em \mathbb{R}^1 com a parábola algo semelhante ocorre em \mathbb{R}^2 para o paraboloíde.

Como se pode observar, com η que não seja exagerado pequeno que hajam muitas iterações, ou grande demais que o algoritmo divirja, consegue-se chegar ao mínimo da função dada, sendo que este η deverá ser maior para α maior. Outra coisa importante frisar, é que devido a no algoritmo de *gradient descent*, a cada iteração, o próximo x será sempre um ponto localizado num plano que tem a mesma direção que o gradiente, para o a=20, demorará mais iterações a convergir pois o gradiente não está tão direcionado, para o mínimo da função.

2.3)

Não, porque ao aumentar a em \mathbb{R}^1 não se está a dificultar a tarefa de convergir (tendo em conta que se escolheu um bom valor de η) enquanto que neste caso, ao aumentar a largura do vale (a) tal tarefa é dificultada pois o algoritmo aproxima-se cada vez mais lentamente do centro devido à direção do gradiente. Assim quanto maior for a maior será o número mínimo de iterações para funções \mathbb{R}^2 . Apenas é possível chegar ao mínimo da função numa iteração, quando a = 1 pois o gradiente irá apontar para o ponto mínimo da função.

3.1)

η	$\alpha = 0$	$\alpha = .5$	$\alpha = .7$	$\alpha = .9$	$\alpha = .95$
.003	>1000	>1000	>1000	>1000	>1000
.01	563	558	552	516	448
.03	186	181	178	115	172
.1	DT	48	35	91	122
.3	Div	DT	29	83	92
1	Div	Div	div	92	146
3	Div	div	Div	div	147
10	div	div	div	div	Div
Divergence threshold	.1	.3	.567	1.9	3.9

3.2)

Como podemos observar quanto maior o α menor será a influência do η , isto é claramente observado para $\alpha=0.95$. Além disso, podemos observar que ao aumentar o α para η suficientemente pequeno, permite o algoritmo convergir mais facilmente. Também se nota que α tem relativamente pouca influência no número de iterações.

4.1)

N. of	α	$\eta \rightarrow$	-20%	-10%	Best ($\eta =$	+10%	+20%
tests					0.015)		
≈ 12	0.23	N. of iterations	667	499	25	DIv	Div
		\rightarrow					

4.2)

É difícil de encontrar valores que resultem em poucas iterações porque os parâmetros são bastante sensíveis, como se pôde observar para uma variação de 10% causa que o algoritmo divirja ou que o número de iterações aumente substancialmente. Em relação ao α este não deve ser muito grande, para que o algoritmo não tenha muita inércia.

4.3)

η	$\alpha = 0$	$\alpha = .5$	$\alpha = .7$	$\alpha = .9$	$\alpha = .95$	$\alpha = .99$
.001	596	298	236	140	198	167
.01	565	287	221	190	200	165
.1	769	389	214	183	172	152
1	729	396	233	160	137	173
10	672	383	239	173	124	133

4.4)

	N. of tests	η	α	N. of iterations
	20	-10%		>1000
Without adaptative steps		Best ($\eta = 0.0034$)	0.3	127
		+10%		Div
Mith adaptive	9	-10%		262
With adaptive		Best ($\eta = .001$)	0.99	209
step sizes		+10%		363

4.5)

Podemos ver que o valor do eta não tem grande influência no caso do passo adaptativo pois neste caso as variações de $\pm~10\%$ não irão afetar o resultado de forma drástica apenas um ligeiro aumento no número de iterações. Neste caso o valor inicial do step não terá grande influencia pois este vai sofrer alterações ao longo do correr do algoritmo. Com passo fixo podemos ver que uma pequena variação de eta vai gerar resultados não satisfatórios.

Em relação à convergência com e sem o *momentum term* pode-se compreender que a existência deste termo inercial facilita a convergência do método, sendo que quando se inclui este termo alguns dos etas fazem com que o algoritmo passe a convergir ao invés de divergirem.