현대자동차 버추얼이노베이션리서치랩

인공지능 기반 설계 이론 및 사례 연구

13차) Stage 1: Generative Design

2020년 11월

강남우

기계시스템학부 숙명여자대학교

1. Topology Optimization

2. Generative Design

위상최적화 (Topology Optimization)

- Objective: Minimize Compliance (=Maximize Stiffness)
- Design Variables: Density
- Constraint: Volume Fraction

❖ Beam 예제 (88line code)

Fig. 1 The design domain, boundary conditions, and external load for the optimization of a symmetric MBB beam.

Fig. 2 The design domain with 12 elements.

Optimization Problem

the total compliance (strain energy) is the summation of element-wise compliance

$$\min_{\mathbf{x}} c(\mathbf{x}) = \mathbf{U}^{\mathrm{T}} \mathbf{K} \mathbf{U} = \sum_{e=1}^{N} E_e(x_e) \mathbf{u}_e^{\mathrm{T}} \mathbf{k}_0 \mathbf{u}_e$$

subject to:
$$V(\mathbf{x})/V_0 = f$$

$$KU = F$$

0 < x < 1

- *c* :compliance (=strain energy)
- **U**: global displacement
- F: force vectors
- **K**: global stiffness matrix
- u_e: element displacement vector,
- \mathbf{k}_0 : element stiffness matrix for an element with unit Young's modulus
- x: vector of design variables (i.e. the element densities)
- *N*: number of elements used to discretize the design domain
- $V(\mathbf{x})$: material volume
- V_0 : design domain volume
- *f* : volume fraction

Fig. 2 The design domain with 12 elements.

Modified SIMP approach

$$E_e(x_e) = E_{\min} + x_e^p(E_0 - E_{\min}), \quad x_e \in [0, 1]$$

- x_e : density
- E_{ρ} : Young's modulus
- E_0 : stiffness of the material
- E_{min} : very small stiffness assigned to void regions
- p: penalization factor (typically p = 3) introduced to ensure black-and-white solutions.

Optimality criteria method (OC)

$$x_e^{\text{new}} = \begin{cases} \max(0, x_e - m) & \text{if } x_e B_e^{\eta} \le \max(0, x_e - m) \\ \min(1, x_e + m) & \text{if } x_e B_e^{\eta} \ge \min(1, x_e + m) \\ x_e B_e^{\eta} & \text{otherwise} \end{cases}$$

- *m*: positive move limit
- η (= 1/2): numerical damping coefficient

Optimality condition
$$B_e = \frac{-\frac{\partial c}{\partial x_e}}{\lambda \frac{\partial V}{\partial x_e}} \qquad \text{Lagrangian multiplier λ must be constraint is satisfied}$$

Lagrangian multiplier λ must be chosen so that

Sensitivities of the objective function

$$\begin{aligned} & \underset{\mathbf{x}}{\text{min:}} \quad c(\mathbf{x}) = \mathbf{U}^{\text{T}} \mathbf{K} \mathbf{U} = \sum_{e=1}^{N} E_e(x_e) \mathbf{u}_e^{\text{T}} \mathbf{k}_0 \mathbf{u}_e & E_e(x_e) = E_{\min} + x_e^p (E_0 - E_{\min}) \\ & \text{subject to:} \quad V(\mathbf{x}) / V_0 = f \\ & \mathbf{K} \mathbf{U} = \mathbf{F} \\ & \mathbf{0} < \mathbf{x} < \mathbf{1} \end{aligned}$$

$$\frac{\partial c}{\partial x_e} = -px_e^{p-1}(E_0 - E_{\min})\mathbf{u}_e^{\mathrm{T}}\mathbf{k}_0\mathbf{u}$$
$$\frac{\partial V}{\partial x_e} = 1$$

Assumption: each element has unit volume

Reduced Gradient Method

$$rac{df}{d\mathbf{x}} = rac{\partial f}{\partial \mathbf{x}} - rac{\partial f}{\partial \mathbf{u}} (rac{\partial \mathbf{h}}{\partial \mathbf{u}})^{-1} rac{\partial \mathbf{h}}{\partial \mathbf{x}},$$

$$rac{df}{d\mathbf{x}} = -\mathbf{u}^T rac{\partial \mathbf{K}}{\partial \mathbf{x}} \mathbf{u}$$

Filtering

In order to ensure existence of solutions to the topology optimization problem and to avoid the formation of checkerboard patterns

• Sensitivity filtering

$$\frac{\widehat{\partial c}}{\partial x_e} = \frac{1}{\max(\gamma, x_e) \sum_{i \in N_e} H_{ei}} \sum_{i \in N_e} H_{ei} x_i \frac{\partial c}{\partial x_i}$$

$$H_{ei} = \max(0, r_{\min} - \Delta(e, i))$$

Density filtering

$$\frac{\partial \psi}{\partial x_j} = \sum_{e \in N_j} \frac{\partial \psi}{\partial \tilde{x}_e} \frac{\partial \tilde{x}_e}{\partial x_j} = \sum_{e \in N_j} \frac{1}{\sum_{i \in N_e} H_{ei}} H_{je} \frac{\partial \psi}{\partial \tilde{x}_e} \qquad \tilde{x}_e = \frac{1}{\sum_{i \in N_e} H_{ei}} \sum_{i \in N_e} H_{ei} x_i$$

min:
$$c(\mathbf{x}) = \mathbf{U}^{\mathrm{T}} \mathbf{K} \mathbf{U} = \sum_{e=1}^{N} E_e(x_e) \mathbf{u}_e^{\mathrm{T}} \mathbf{k}_0 \mathbf{u}_e$$
 #DOF=1,2
Node #1 \rightarrow
subject to: $V(\mathbf{x})/V_0 = f$ Node #2 \rightarrow
 $\mathbf{K} \mathbf{U} = \mathbf{F}$
 $\mathbf{0} \le \mathbf{x} \le \mathbf{1}$

 $E_e(x_e) = E_{\min} + x_e^p (E_0 - E_{\min})$

top88(nelx,nely,volfrac,penal,rmin,ft)

- nelx and nely: the number of elements in the horizontal and vertical direction, respectively
- volfrac: the prescribed volume fraction f,
- penal: the penalization power p
- rmin: the filter radius rmin (divided by the element size) $H_{ei} = \max{(0, r_{\min} \Delta(e, i))}$
- ft: specifies whether sensitivity filtering (ft = 1) or density filtering (ft = 2) should be used

top88(60,20,0.5,3,1.5,1)


```
8888 AN 88 LINE TOPOLOGY OPTIMIZATION CODE Nov, 2010 8888
    function top88 (nelx,nely,volfrac,penal,rmin,ft)
    %% MATERIAL PROPERTIES
    E0 = 1;
 4
 5
   Emin = 1e-9;
 6
   nu = 0.3;
    %% PREPARE FINITE ELEMENT ANALYSIS
8
    A11 = [12 \ 3 \ -6 \ -3; \ 3 \ 12 \ 3 \ 0; \ -6 \ 3 \ 12 \ -3; \ -3 \ 0 \ -3 \ 12];
    A12 = [-6 -3 \ 0 \ 3; -3 -6 -3 -6; \ 0 -3 -6 \ 3; \ 3 -6 \ 3 -6];
10
    B11 = [-4 \ 3 \ -2 \ 9; \ 3 \ -4 \ -9 \ 4; \ -2 \ -9 \ -4 \ -3; \ 9 \ 4 \ -3 \ -4];
11
    B12 = [2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 2];
12
    KE = 1/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
13
    nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
    edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
14
15
    edofMat = repmat(edofVec, 1, 8) + repmat([0\ 1\ 2*nely+[2\ 3\ 0\ 1]\ -2\ -1], nelx*nely, 1);
    iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
16
    jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
17
18
    % DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
                                                    Boundary Condition & Load Vectors
19
    F = sparse(2,1,-1,2*(nely+1)*(nelx+1),1);
20
    U = zeros(2*(nely+1)*(nelx+1),1);
21
    fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);
22
    alldofs = [1:2*(nely+1)*(nelx+1)];
    freedofs = setdiff(alldofs,fixeddofs);
23
```

```
%% PREPARE FILTER
25
    iH = ones (nelx*nely*(2*(ceil(rmin)-1)+1)^2,1);
26 jH = ones(size(iH));
27
    sH = zeros(size(iH));
28 k = 0;
  ∃for i1 = 1:nelx
30
   for j1 = 1:nely
31
        e1 = (i1-1)*nely+j1;
32
        for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
33
          for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
34
            e2 = (i2-1)*nelv+j2;
35
            k = k+1;
36
            iH(k) = e1;
37
            jH(k) = e2;
38
            sH(k) = max(0, rmin-sqrt((i1-i2)^2+(j1-j2)^2));
39
          end
40
        end
41
      end
42
    end
43
    H = sparse(iH, jH, sH);
44 Hs = sum(H, 2);
```


MATLAB

```
%% INITIALIZE ITERATION
46 x = repmat(volfrac, nely, nelx);
    xPhys = x;
    loop = 0;
     change = 1;
     %% START ITERATION
    ₩hile change > 0.01
52
       loop = loop + 1;
53
       %% FE-ANALYSIS
54
       sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)),64*nelx*nely,1);
55
       K = \text{sparse}(iK, jK, sK); K = (K+K')/2;
56
       U(freedofs) = K(freedofs, freedofs) \F(freedofs);
57
       %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
                                                                                             \frac{\partial c}{\partial x_e} = -px_e^{p-1}(E_0 - E_{\min})\mathbf{u}_e^{\mathrm{T}}\mathbf{k}_0\mathbf{u}
58
       ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),nely,nelx);
59
       c = sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce));
60
       dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce;
61
       dv = ones(nely,nelx);
62
       %% FILTERING/MODIFICATION OF SENSITIVITIES
63 B
       if ft == 1
          dc(:) = H*(x(:).*dc(:))./Hs./max(1e-3,x(:));
64
65
       elseif ft == 2
66
          dc(:) = H*(dc(:)./Hs);
67
         dv(:) = H*(dv(:)./Hs);
68
       end
       %% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
70
       11 = 0; 12 = 1e9; move = 0.2;
                                                                                       x_e^{\text{new}} = \begin{cases} \max(0, x_e - m) & \text{if } x_e B_e^{\eta} \le \max(0, x_e - m) \\ \min(1, x_e + m) & \text{if } x_e B_e^{\eta} \ge \min(1, x_e - m) \end{cases}
71 自
       while (12-11)/(11+12) > 1e-3
72
          lmid = 0.5*(12+11);
73
         xnew = max(0, max(x-move, min(1, min(x+move, x.*sqrt(-dc./dv/lmid))))); x_a B_1^{\eta}
                                                                                                               otherwise
74
          if ft == 1
75
            xPhys = xnew;
76
          elseif ft == 2
77
            xPhys(:) = (H*xnew(:))./Hs;
78
          end
79
          if sum(xPhys(:)) > volfrac*nelx*nely, 11 = lmid; else 12 = lmid; end
       end
81
       change = max(abs(xnew(:)-x(:)));
```


82

x = xnew;

```
83
84 PRINT RESULTS
84 printf(' It::%5i Obj::%11.4f Vol::%7.3f ch::%7.3f\n',loop,c, ...
85 mean(xPhys(:)),change);
86 PLOT DENSITIES
87 colormap(gray); imagesc(1-xPhys); caxis([0 1]); axis equal; axis off; drawnow;
```


1. Topology Optimization

2. Generative Design

What is Generative Design?

Topology Optimization

- Objective: Minimize Compliance
- Design Variables: Density
- Constraint: Volume Fraction

What if we vary

Parameters of Problem Definition
in Topology Optimization?

What is Generative Design?

	Generative Design	Topology Optimization	Parametric Design
Objective	Explore feasible design sets (thousands of designs)	Find the <i>optimal design</i>	Explore design sets
Method	Vary parameters of <i>problem definition</i> in Topology Optimization	Optimize material layout within given design space	Vary parameters of geometry directly

Data-driven Generative Design

Wheel Generation based on Reference Designs

Topology Optimization

Reference Design

Similarity weight λ

Force ratio

= Normal / Shear

Output Purce ratio

Design

Data-driven Generative Design

Wheel Generation based on Reference Designs

Topology Optimization

Fig. 2 Design domain and boundary conditions of a 2D wheel design

$$\frac{\partial}{\partial \mathbf{x}} (\lambda \|\mathbf{x}^* - \mathbf{x}\|_1) \cong -\lambda \mathbf{x}^*$$
$$x^* = 1 \to -\lambda$$
$$x^* = 0 \to 0$$

What Questions Do You Have?

nwkang@sm.ac.kr

www.smartdesignlab.org

