Hierarchical Ensemble Methods for Ontology-based Prediction in Computational Biology

AnacletoLAB

Computational Biology and Bioinformatics

Marco Notaro

https://marconotaro.github.io

Bioinformatics vs Computational Biology

- **Computational Biology**: is the study of Biology using computational techniques. The main goal of a computational biologist is to make new insights about Biology and living system. Then **Computational Biology** is about **Science**.
- **Bioinformatics**: is about the creation of new algorithms able to solve problems. The main goal of a bioinformatician is to build tools that can work on biological, medical and pharmaceutical data. Then **Bioinformatics** is about **Computer Science**.

How byte is the human genome?

Things to know:

- DNA is composed of 4 different bases: Adenine (A); Thymine (T),
 Cytosine (C), Guanine (G)
- DNA has a twisted-ladder double helix shape: A=>T and C=>G
- human genome (haploid): 3e+09 base pair

Solution (in a perfect word): ≈ 715 megabyte

- 2 bits foreach base pair
 - 4 different base pair possibilities: AT; TA; CG; GC;
 - 4 different bits possibilities: 00; 11; 10; 01;

1 bytes (8 bits) represents 4 DNA base pairs;

3e+09 base pair / 4 DNA base pairs * 1 bytes = 7.5e+08 bytes

7.5e+08 bytes / 2^20 megabyte ≈ 715 megabyte

Solution (in a real word): ≈ 200 gigabyte

- generation of short "reads" and "align" them => coverage;
- for example, a whole genome sequenced at 30x coverage means that, on average, each base on the genome was covered by 30 sequencing reads;
- output file stores not only letters, but also a lot of other info (eg quality);

Outline

Prediction of:

- Protein Function (applications in Molecular Biology);
- Human gene-abnormal phenotype associations (applications in Medicine);

Complex Classification or Ranking Problem

Issues:

- multi-class: hundreds of thousands of functional classes to predict;
- multi-label: an instance (i.e. gene/protein) may be annotated to more than one class at the same time;
- **classes are unbalanced**: small number of 'positives' annotations and a large number of 'negatives' annotations;
- dependencies among labels: functional classes are hierarchically related;
- **different level of reliability**: each annotation is labeled with an *evidence code* that indicates how the annotation to a particular term is supported;
 - IPI/IGI: Inferred from Physical/Genetic Interaction (Experimental Evidence);
 - ISS: Inferred from Sequence Similarity (Computational Analysis Evidence)
 - TAS: Traceable Author Statement (annotation made on the basis of a statement made by the authors in the reference cited)
 - ... and much more. Full set of available evidence codes at **GO website**;

Problems of great interest in the Scientific Community

Critical Assessment of Function Annotation (CAFA3) gathering the main international research groups interested:

- Protein Function Prediction;
- Prediction of Gene-Abnormal Phenotype Association;

An ontology is an high-level representation of a domain of knowledge that describes concepts and semantic relationships between them in a form of Directed Acyclic Graph (DAG).

- **Human Phenotype Ontology** (HPO): provides a standardized categorization of the abnormalities associated to human diseases;
- Gene Ontology (GO): describes the function of genes and gene products;
- **Disease Ontology** (DO): describes the classification of human diseases organized by etiology;
- Chemical Entities of Biological Interest (ChEBI): structured dictionary of molecular entities focused on 'samall' chemical compound;
- MErged Disease voCabulary (MEDIC): map the flat list of OMIM disease terms into the hierarchical nature of the MeSH vocabulary;
- **Anatomical Ontologies**: structured controlled vocabulary of the anatomy and development of the Zebrafish (ZFO), Xenopus (XAO), Mouse (MA);

More at OBO Foundry (Open Biological and Biomedical Ontologies): http://www.obofoundry.org/

OBO-EDIT (http://oboedit.org/): open source ontology editor

Problem: Hierarchical prediction of Abnormal Phenotype associated to human diseases

Problem: Hierarchical Prediction of Protein Functions

Human Phenotype Ontology

(HPO) (Köhler et al., 2017)

Link: http://human-phenotype-ontology.github.io/

What is: standardized categorization of the phenotypic abnormalities associated to human diseases

: all relationships in the HPO are **is-a** relationships, i.e. simple class-subclass relationships

HPO (release: 2019-04-15)

Tot. Number of Nodes: 14,407

Tot. Number of Edges: 18,249

Gene Ontology (1)

Gene Ontology (GO) (Ashburner et al., 2000)

Link: http://www.geneontology.org/

What is: three *disjoint* structured ontologies that describe gene products in terms of their association with BP, MF and CC in a species-independent manner.

Biological Process (BP) describes a collection of events carried out by one or more molecular functions (lipid metabolic process, Krebs acid cycle, antibiotic response).

Gene Ontology (2)

Molecular function (MF) describes activities that occur at molecular level, such as catalytic or binding activities.

Gene Ontology (3)

Cellular component (CC) ontology describes locations, at the levels of subcellular structures or macromolecular complexes, in which a specific gene product is located (e.g. nucleus, nuclear inner membrane, ribosome, synapse).

Hierarchy-unaware approaches proposed in literature

- sequence based methods: follow "transfer-of-annotation" paradigm (BLAST (Altschul et al. 1990), PANNZER (Holm et al. 2018))
- **network based methods**: transfer annotations by exploiting the "proximity relationships" between connected nodes (GBA (Oliver et al. 2000), RANKS (Valentini et al. 2018))

Drawback:

fail to exploit the inherent hierarchical structure of the annotation space

CS- Flat Approach (2)

Flat Classifier: predict each class separately

Advantage: simplicity → makes prediction just for one class/term

Drawbacks:

a priori loss of information

• neglects the hierarchical structure

Hierarchical Constraint:
positive instance "P"
for a class **implies**positive instance for all
ancestors of that class

A Toy Example: Flat Classification

Hierarchy-aware approaches proposed in literature:

- Kernel-based structured output methods: GOstruct (Sokolov and Benhur 2010) PHENOstruct (Kahanda et al. 2015);
- Hierarchical Ensemble Methods (Guan et al. 2008, Valentini 2014);

Advantage

 improve classification performance by explicitly taking into account the hierarchical relationships between labels

State-of-the-art Hierarchical ensemble methods

- Most ensembles are conceived just for tree-structured taxonomies (Valentini 2011, Cesa-Bianchi et al. 2012, Paes et al. 2012, Hernandez et al. 2013);
- Only a few for DAG-structured taxonomies (Obozinski et al. 2008, Schietgat et al. 2010);
- With DAG-structured taxonomies it is difficult to achieve results comparable with flat methods (Obozinski et al. 2008);
- DAGs are more complex than trees:
 - more parents;
 - more edges;
 - multiple paths;
 - nodes may belong to multiple levels;

CS- Hierarchical Ensemble Algorithms for DAG-structured taxonomy

Just Top-Down Step

TPR-DAG: True Path Rule for DAGs (Notaro et al. 2017)

- 1. Bottom-Up Step
- 2. Top-Down Step

CS- HTD: Hierarchical Top-Down for DAGs

HTD-DAG:

Flat scores \hat{y}_i are hierarchically corrected to \bar{y}_i according to this simple rule:

$$\bar{y}_i := \begin{cases} \hat{y}_i & \text{if } i \in root(G) \\ \min_{j \in par(i)} \bar{y}_j & \text{if } \min_{j \in par(i)} \bar{y}_j < \hat{y}_i \\ \hat{y}_i & \text{otherwise} \end{cases}$$

TPR ensemble for DAGs: double flow of information

CS- Bottom-Up Step (1)

In the bottom-up Step the ensemble decision is modified by averaging the local prediction of a node i with that of its positive children ϕ_i :

$$ar{y}_i := rac{1}{1 + |\phi_i|} (\hat{y}_i + \sum_{j \in \phi_i} ar{y}_j)$$

Different strategies can be used to define the positive ϕ_i of class i:

A. Adaptive Threshold Strategy: maximize ${\mathcal M}$ on training data by internal CV

$$\phi_i := \{ j \in child(i) | \bar{y}_j > t_j^*, t_j^* = \arg\max_t \mathcal{M}(j, t) \}$$

B. Threshold Free Strategy: positive children are those that achieve a score higher than that of their parents

$$\phi_i := \{ j \in child(i) | \bar{y}_j > \hat{y}_i \}$$

TPR-DAG is a family of algorithms

C. Weighted TPR: $w \in [0,1]$ to balance the contribution between node i and that of its positive children

$$\bar{y}_i := w\hat{y}_i + \frac{(1-w)}{|\phi_i|} \sum_{j \in \phi_i} \bar{y}_j$$

D. DEScendant Classifier ENSemble (DESCENS): to enhance the contribution of the of the most specific nodes we can consider the descendants instead of children

$$\bar{y}_i := \frac{1}{1 + |\Delta_i|} (\hat{y}_i + \sum_{j \in \Delta_i} \bar{y}_j) \qquad \Delta_i = \{ j \in desc(i) | \bar{y}_j > t_j \}$$

E. Descendants- au: au \in [0,1] to balance the contribution between ϕ_i e δ_i

$$\bar{y}_i := \frac{\tau}{1 + |\phi_i|} (\hat{y}_i + \sum_{j \in \phi_i} \bar{y}_j) + \frac{1 - \tau}{1 + |\delta_i|} (\hat{y}_i + \sum_{j \in \delta_i} \bar{y}_j) \qquad \delta_i = \Delta_i \setminus \phi_i$$

CS-TPR-DAG pseudo-code

```
Input:
-G = < V, E >
-V = \{1, 2, \dots, |V|\}
\hat{y} = \langle \hat{y}_1, \hat{y}_2, \dots, \hat{y}_{|V|} \rangle, \quad \hat{y}_i \in [0, 1]
begin algorithm
         A. Compute \forall i \in V the max distance from root(G):
01:
             E' := \{e' | e \in E, e' = -e\}
02:
             G' := < V, E' >
03:
             dist := Bellman.Ford(G', root(G'))
04:
05:
         B. Per-level bottom-up visit of G:
             for each d from \max(dist) to 0 do
06:
                N_d := \{i|dist(i) = d\}
07:
                for each i \in N_d do
08:
09:
                    Select the set \phi_i of "positive" children
10:
                    \bar{y}_i := \frac{1}{1 + |\phi_i|} (\hat{y}_i + \sum_{j \in \phi_i} \bar{y}_j)
11:
                end for
12:
              end for
13:
         C. Per-level top-down visit of G:
14:
             \hat{y} := \bar{y}
             for each d from 1 to \max(dist) do
15:
                N_d := \{i|dist(i) = d\}
16:
                for each i \in N_d do
17:
18:
                    x := \min_{j \in par(i)} \bar{y}_j
                    if (x < \hat{y}_i)
19:
20:
                       \bar{y}_i := x
21:
                    else
22:
                       \bar{y}_i := \hat{y}_i
23:
                end for
24:
              end for
end algorithm
Output:
-\bar{y} = \langle \bar{y}_1, \bar{y}_2, \dots, \bar{y}_{|V|} \rangle
```

Block A. Maximum Distance of each node from the root:

- Bellman-Ford algorithm;
- Topological Sort algorithm.

Block B. Performs a per-level bottomup visit of the graph and updates the flat predictions according to one of the aforementioned strategies. This step *does not assure* the consistency of the predictions.

Block C. Nodes are processed by level from the least to the most specific terms and the bottom-up scores are corrected according to HTD-DAG rule.

Overall TPR-DAG Computational Complexity: O(|V|)

To preserve the consistency of the predictions the levels must be defined according to the maximum distance from the root:

$$\boldsymbol{y}$$
 is consistent $\iff \forall i \in V, j \in parents(i) \Rightarrow y_j \geq y_i$

Partial Order Isotonic Regression (IR) (Barlow and Brunk, 1972)

Input: -G = < V, E > $-V = \{1, 2, \dots, |V|\}$ $-\hat{\boldsymbol{y}} = <\hat{y}_1, \hat{y}_2, \dots, \hat{y}_{|V|} >, \quad \hat{y}_i \in [0, 1]$ begin algorithm $01: \quad \text{A. Isotonic correction:}$ $02: \quad \bar{\boldsymbol{y}} = \left\{ \begin{array}{l} \min_{\bar{\boldsymbol{y}}} \sum_{i \in V} (\hat{y}_i - \bar{y}_i)^2 \\ \forall i, \quad j \in par(i) \Rightarrow \bar{y}_j \geq \bar{y}_i \end{array} \right.$ end algorithm 0utput: $-\bar{\boldsymbol{y}} = <\bar{y}_1, \bar{y}_2, \dots, \bar{y}_{|V|} >$

 IR selects the closest solution (in the sense of the least squared error) to the flat predictions that obeys to the true path rule

IR computational complexity is: $O(|V|^4)$ (Maxwell et al. 1985)

Generalized Pool-Adjacent-Violators (GPAV) (Burdakov et al., 2006):

- accurate solution to IR problem
- computational complexity is: $O(|V|^2)$

CS- ISO-TPR pseudo-code

```
Input:
- G =< V, E >
-V = \{1, 2, \dots, |V|\}
\hat{y} = \langle \hat{y}_1, \hat{y}_2, \dots, \hat{y}_{|V|} \rangle, \quad \hat{y}_i \in [0, 1]
- w = \langle w_1, w_2, \dots, w_{|V|} \rangle, \quad w_i \in [0, 1]
begin algorithm
        A. dist := \forall i \in V \text{ ComputeMaxDist } (G, root(G))
01:
         B. Per-level bottom-up visit of G:
02:
             for each d from max(dist) to 0 do
03:
                N_d := \{i|dist(i) = d\}
04:
                for each i \in N_d do
05:
                    Select the set \phi_i of "positive" children
06:
                    \bar{y}_i := \frac{1}{1+|\phi_i|} (\hat{y}_i + \sum_{j \in \phi_i} \bar{y}_j)
07:
08:
                 end for
09:
              end for
10:
         C. GPAV algorithm
12:
         \hat{y} := \bar{y}
14:
        V = \{1, 2, \dots, |V|\} topologically ordered;
        H := V
14:
        \forall i \in V \text{ set } B_i = \{i\}; \ B_i^- = i^-; \ U_i = \hat{y}_i; \ W_i = w_i;
15:
         for each k from 1 to |V| do
16:
              while exists i \in B_k^- such that U_i > U_k do
17:
                 find j \in B_k^- such that U_i := max\{U_i : i \in B_k^-\}
18:
                H := H \setminus \{j\}
19:
            B_k^- := B_j^- \cup B_k^- \setminus \{j\}
20:
21:
               U_k := (W_k U_K + W_i U_K)/(W_k + W_i)
              B_k := B_k \cup B_i
22:
            W_k := W_k + W_i
23:
               \forall i \in B_k \text{ and } \forall k \in H \text{ set } \bar{y} := U_k
24:
25:
              end while
             \bar{y} := U_k \ \forall i \in B_k \ \text{and} \ \forall k \in H
26:
27:
         end for
end algorithm
Output:
-\bar{y} = \langle \bar{y}_1, \bar{y}_2, \dots, \bar{y}_{|V|} \rangle
```

Block A-B: same of *TPR-DAG*

Consistency of prediction violated

Block C: *GPAV* instead of *HTD-DAG*

Consistency of prediction guaranteed

CS- Operating mode of TPR-DAG algorithm: Toy Example

BIO- Consistency of Predictions: Real Example

CS- Consistency Predictions: Theorems

HTD-DAG provides consistency predictions:

Given a DAG G=< V, E> a level function ψ that assigns to each node its maximum path length from the root and the set of HTD-DAG flat predictions $\hat{y}=<\widehat{y_1},\widehat{y_2},...,\widehat{y_{|V|}}>$ the top-down hierarchical correction of the HTD-DAG algorithm assures that the set of ensemble predictions $\bar{y}=<\overline{y_1},\overline{y_2},...,\overline{y_{|V|}}>$ satisfies the following property:

$$\forall i \in V, j \in par(i) \Rightarrow \overline{y_i} \ge \overline{y_i}$$

TPR-DAG provides consistency predictions:

Given a DAG G=< V, E>, a level function ψ that assigns to each node its maximum path length from the root, a set of predictions $\widetilde{y}=<\widetilde{y_1},\widetilde{y_2},...,\widetilde{y_{|V|}}>$ generated by the bottom-up step of the TPR-DAG algorithm for each class associated to each node $i\in\{1,...,|V|\}$, the top-down step of the TPR-DAG algorithm assures that for the set of ensemble predictions $\overline{y}=<\overline{y_1},\overline{y_2},...,\overline{y_{|V|}}>$ the following property holds:

$$\forall i \in V, j \in par(i) \Rightarrow \overline{y_i} \ge yi$$

CS- Consistency Predictions: Proof

For an arbitrary node $i \in V$ when it is processed by the top-down step of HTD-DAG algorithm, we may have two basic cases:

- 1. $i \in root(G)$. By applying the HTD-DAG rule we set $\overline{y_i} \coloneqq \widehat{y_i}$ and the property $j \in par(i) \Rightarrow \overline{y_j} \ge \overline{y_i}$ trivially holds, since $par(i) = \emptyset$
- 2. $i \notin root(G)$. We may have two cases:
 - 1. $\widehat{y_i} \leq \min_{j \in par(i)} \widehat{y_j}$: In this case the HTD-DAG rule sets $\overline{y_i} \coloneqq \widehat{y_i}$ and hence it holds that $j \in par(i) \Rightarrow \overline{y_j} \geq \overline{y_i}$
 - 2. $\widehat{y_i} > \min_{j \in par(i)} \overline{y_j}$: In this case by applying the HTD-DAG rule we have $\overline{y_i} \coloneqq min_{j \in par(i)} \overline{y_j}$ and hence also in this case the property $j \in par(i) \Rightarrow \overline{y_j} \ge \overline{y_i}$ holds.

The top-down step of the algorithm visits each node exactly one time, at the end of this step the property $j \in par(i) \Rightarrow \overline{y_i} \geq \overline{y_i}$ holds for each node $i \in V$

BIO- Correctness of Predictions: Real Example (1)

Hierarchical Ensemble Methods (HEMs) improve upon flat predictions by reducing the number of FN and FP.

BIO- Correctness of Predictions: Real Example (2)

Software Implementation

- HEMs are packaged in the R library **HEMDAG**, which is publicly available both under <u>CRAN</u> and <u>BIOCONDA</u> repository under the <u>GNU General Public</u> <u>License</u>, <u>version 3 (GPL-3.0)</u> and it is available for *Unix*, *Windows* and *Mac* operating system;
- <u>HEMDAG tutorial</u> (created by using <u>SPHINX</u>) explains step-by-step how to use HEDMAG;
- HEMDAG can be safely applied both to DAG and tree-structure taxonomies;
- OBO::parser Perl Module to handle GO and HPO obo file (under development);

CS- Application to HPO (1)

HEMs vs. **PHENOstruct**, state-of-the-art joint-kernel structured output approach (*Kahanda et al. 2015*)

Precision-Recall curves and AUPRC box-blot across **2444 HPO terms**: HEMs significantly improve PHENOstruct in according to Wilcoxon Sum Rank test ($\alpha = 10^{-9}$) (Notaro et. al 2017)

HTD: <u>12 min</u>

TPR-W: **3 hours** (tuning of *w* parameter by 5cv)

PHENOstruct: 18 hours

List of possible "candidate" genes for novel annotations: unannotated genes but predicted to be annotated by our HEMs

Gene Symbol	HPO Term	AUROC	Depth	Distance from Leaves	Evidence
XRCC2	Clubbing of Toes	1.000	9	0	HPO March 2017 Release
LIPE	Insulin-Resistant Diabetes Mellitus	0.9934	6	0	HPO March 2017 Release
IGF2	Neoplasm of the Adrenal Gland	0.9781	5	0	HPO March 2017 Release
ECHS1	Abnormality of Fatty-Acid Metabolism	0.9753	4	0	Chika et al. 2015
CFB	Systemic Lupus Erythematosus	0.9967	5	0	Grossman et al. 2016
TGFBR3	Emphysema	0.9785	5	0	Hersh et al. 2009
BARD1	Nephroblastoma aka Wilms Tumor	0.9615	8	0	Fu et al. 2017
MSH3	Breast Carcinoma	0.9723	5	0	Miao et al. 2015
CAD	Abnormality of Pyrimidine Metabolism	0.9951	4	0	Bobby et al. 2015
COX10	Abnormal Mitochondria in Muscle Tissue	0.9967	6	0	Pitceathly et al. 2013

Inclusion of the novel annotations in the next HPO release

Goal:

- HEM provide consistent predictions with respect the underlying GO ontology
- show that proposed HEM can improve upon flat predictions independently of the choice of the base learner.
 - we chose a range as broad as possible of flat classifier, ranging from linear classifiers (svm), to neural networks (mlp), to ensemble of learning machines (random forest) and to gradient boosting algorithms

Experiments:

- predict the protein function of 6 different model organisms (D. melanogaster, C.elegans, G.gallus, D.rerio, M. musculus, H. sapiens) by using the Gene Ontology (GO);
- intensive task: overall we considered over than **100 thousands** of **proteins** and more than **15 thousands** of functional **GO terms**

CS- Application to GO (2)

AUPRC boxplot across 760 GO (MF) terms – **Homo Sapiens**

- pvalue $< 10^{-6} \rightarrow \star\star\star$;
- pvalue $< 10^{-3} \rightarrow \star\star;$
- pvalue $< 10^{-2} \rightarrow \star$;
- pvalue $\geq 10^{-2} \rightarrow$ the difference is not statistically significant (ns);

The improvement introduced by HEMs strongly depends on the predictions made by the underlying flat classifier;

Paired Wilcoxon Sum Rank Test: Flat vs HEMs

CS- Application to GO (3)

D. rerio GO-BP: 1182

C. elegans

GO-CC: 221

CS- Application to GO (4)

Homo Sapiens

BP terms: 3460

MF terms: 760

CC terms: 541

Mus Musculus

BP terms: 3899

MF terms: 511

CC terms: 445

Drosphila Melanogaster

BP terms: 2244

MF terms: 327

CC terms: 348

$$HeatmapCell[i,j] = \frac{\overline{AUPRC}_{hier_j} - \overline{AUPRC}_{flat_i}}{max\left(\overline{AUPRC}_{hier_j}, \overline{AUPRC}_{flat_i}\right)}$$

CS- Application to GO (5)

Organism: Danio Rerio
Compared precision at different recall levels averaged across 89 GO-CC terms

Svm (parallel) + HEMs: 45 seconds

GOstruct: 9 hours

Methodological Results

- HEMs are "highly modular" in the sense that they adopt a "two-step" learning strategy: flat predictions + hierarchical correction;
- HEMs are characterized either by a single or a double step:
 - 1. Bottom-Up step:
 - A. Improve sensitivity of the predictions;
 - B. Bottom-up predictions are inconsistent with the hierarchy of the classes;
 - 2. Top-Down step:
 - A. Improve precision of the predictions;
 - B. Remove hierarchical violations;
- **HEMs** predictions always respect the *True Path Rule* (i.e. consistent with hierarchy of classes)
- **HEMs**: improves flat scores but it cannot of course guarantee the correctness of all the predictions (when e.g. the flat predictions are too bad HEMDAG fails in recovering FP or FN)
- **HEMDAG** is specifically designed for DAG-structured taxonomies, but can be safely applied to tree-structured taxonomies, since trees are DAGs;

Experimental Results

Prediction of HPO terms

2. Prediction of GO terms

- competitive with state-of-the-art results and at lower computational complexity cost;
- predictions of novel gene-abnormal phenotype associations;
- HEMs algorithms systematically improve flat methods;

flexible tool that can be used to virtually improve any flat learning method

References (1)

International Peer Reviewed Journal

- 1. M. Notaro, M. Schubach, P. Robinson, and G. Valentini, *Prediction of Human Phenotype Ontology terms by means of Hierarchical Ensemble methods*, BMC Bioinformatics, 18(1):449, 2017. Note: awarded by the International Medical Informatics Association (IMIA) as one of the five best "Knowledge Representation and Management" papers of 2017 in the field of Medical Informatics
- **2. M.Notaro**, M. Frasca, A. Petrini, G. Valentini, HEMDAG: a scalable and flexible state-of-the-art tool outperforming flat learning predictions (note: manuscript in preparation)

Poster Presentation at International Conference

2. M. Notaro, M. Schubach, P. Robinson, and G. Valentini, *Predicting new relationships between genes and Human Phenotype Ontology terms*, ISMB 2018: 26th International conference on intelligent systems for molecular biology, 6-10 July, Chicago, United States, 2018

References (2)

Proceedings of International Conferences and Peer-Reviewed Book Chapters

- **3. M. Notaro**, M. Schubach, P.N. Robinson, G. Valentini, *Ensembling Descendant Term Classifiers to Improve Gene Abnormal Phenotype Predictions*, In Massimo Bartoletti, Annalisa Barla, Andrea Bracciali, Gunnar W. Klau, Leif Peterson, Alberto Policriti, and Roberto Tagliaferri, editors, *Computational Intelligence Methods for Bioinformatics and Biostatistics*, pages 70–80, Cham, 2019. Springer International Publishing
- 4. P.N. Robinson, M.Frasca, S. Köhler, **M. Notaro**, M. Re, G. Valentini, *A Hierarchical Ensemble Method for DAG-Structured Taxonomies*, Lecture Notes in Computer Science, vol. 9132, pp. 15–26. Berlin: Springer, 2015
- 5. G. Valentini, S. Köhler, M. Re, **M. Notaro**, P.N. Robinson, *Prediction of Human Gene-Phenotype Associations by Exploiting the Hierarchical Structure of the Human Phenotype Ontology*, Lecture Notes in Computer Science, vol. 9043, pp. 66–77. Cham: Springer, 2015.