Chep 5 Permutation groups
Recall D3, the group of symmetries of the A (stept) (stept) (stept)
e = (ABC) (fixish)
$B \qquad C^2 = (ABC)$
S_3 (ABC)
JUME , JOHN JABCY
rothy $\frac{2\pi}{3}$ $S_2 = (A CB)$ rudians doubline. $S_3 = (CBA)$.
These are examples of permutation notation
arrowating to each symmetry of D
ansociating to each symmetry of Δ the persultation of the vertices of Δ
induced by that symmetry.
Del Given a set X. a permutation
IT I X is a mapping Hawetron
$\pi: X \longrightarrow X$
that is bijective, il. <u>surjective</u> and
injectie, onto and 1-1.
onto: YyeX I nex T(n)=y

$= \left\{ \begin{array}{ll} + \chi_{1} \chi_{1} \in X & \left(\pi(\chi_{1}) = 11 (\chi_{2}) \right) \\ \Longrightarrow \chi_{1} = \chi_{2} \end{array} \right\}$
For a set X=
we have the "symmetric group of X".
$S_X = \{ \pi : \pi \text{ is a perintation } \{ X \} $
is a group under the operation of
composation.
For fruite sels, we use numerals for labels.
$ie = \{1, 2, 3,, n\}$
and write Sn for the Symmetric
of this set, ie group of all fermions
of The n objects, under gue of. It
composition.
thoorems. I Sn is a group, of order
Proof From Hieory of functions, if TI, TIZESN, il two permitations
I TI, The Sn, il two permitations

i.e.l-1 and outo. So ThotzeSn e esn as the identity mapping is a permutation. Function composition is always in the usual sense.

If TT & Sn, then the wrese mapping

TT-1: X -> X, rill also be bijective. So TT ESn and TOTT = TTOTT = e. We use "two line permutation notation" for elements of Sn, forties, $TT = \begin{pmatrix} 1 & 2 & 3 & \dots & (N-1) & N \\ T(1) & T(2) & T(3) & \dots & T(N) \end{pmatrix} \text{ values.}$ How many of these are there? Bijertire andition means in the second once and only once

once this is arrighed (n-1) choices for $\pi(z)$ once both arrighed (n-2) choices for $\pi(x)$ in the desires for $\pi(x-1)$ Choices for $\pi(x-1)$ Choice for $\pi(x)$	n! factorial ways of doing this.
Practice with notation	Sigma tau mu
Example 5.2 Consider o	7, 7, µ 6 55
C= (12345)	Claim Zid, o, T, MZ
7= (32945)	form a subgroup
$\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$	S5.
$\frac{7}{5} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 5 \end{pmatrix}$	5 \ 4 \ = M.

V

eloment not mentioned in The cycle notation ju. This allows us to write or as composition operator o=(162354)(7) = (162354) lemm to Ex 5.2

leturn to $E \times 5.2$ $6 = (12345) = (45) \in S_5.$ 7 = (32145) = (13) M = (12345) = (13)(45) = (45)(13) = (54)(31)

M: (2) 7 2 EX5.6 Composing cycles can be done fairly efficiently "on the page" "in your mind" o=(1352) 7=(256) Consider = (3561)=(1356)Composition in other order $\gamma = (2136)(5) = (2136)$ 402

5 4 3

If two cycles TI, Tz are non-trivially. disjoint, i.e. they operate son disjoint sets of objects, then they uil commute.

This to The

Expressing permetations as products of disjoint uples is the preferred notation.

A transposition is a 2-cycle and wherehighy any cycle can be expressed as a wood as a product $\begin{array}{cccc}
\alpha_1 \rightarrow \alpha_2 \\
\alpha_n & \nu \\
\kappa & & \\
\end{array}$ of transpositions (a, a, ..., an) (a, a3) (a, a2) $= (a_{1},a_{n})(a_{1},a_{n-1}),$

In Sn, each permutation is

inherently odd or even recordingly as The it recurres an odd Leven number of transpositions to express it. An n-uyele can be written as a composition of n-1 transpositions. so an n-uyle is { odd if n is even if n is odd an myskeut subgroup Leads to d Sn odd. even An. 1d=(12)(21)=, emplg the Alternating group An is the subgroup of Sn workship of all

= T_{m_1} T_{m_1-1} T_{m_2} T_{m_3} T_{m_4} T_{m_4} Mi transpositions So by Prop 3.30 An is a subscroup of Sn. Ar Br b onto Pf het MEBn, ie. Minodd, SO $M = T_1...T_m$) Ti are transpossitions Covider o met transpositions

80 o n E An. Henre λ_r is sujertire.

