Vektorer i 3D - en kort introduktion

Matematik A

Vibenshus Gymnasium

Repetition af gamle formler om vektorer samt introduktion til vektorer i 3D

Betragt de følgende sider som en formelsamling. Jeg vil gennemgå simple regneeksempler på brugen af formlerne i starten af undervisningen.

Det rumlige koordinatsystem

Ved konvention benytter vi et $h \not o jreh \mathring{a}ndet$ koordinatsystem, når vi beskæftiger os med rumlige kartetiske koordinater. Retningen af koordinatsystemets akser kan huskes ud fra følgende billeder.

Punkter og stedvektorer

Et punkt i rummet angives med x-, y- og z-koordinater

$$A = (A_x, A_y, A_z)$$
.

En stedvektor til et punkt skrives som

$$\overrightarrow{OA} = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} .$$

En vektor mellem to punkter

Betragt punkterne

$$A = (A_x, A_y, A_z) \text{ og } B = (B_x, B_y, B_z).$$

Vektoren fra A til B skrives som:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} B_x \\ B_y \\ B_z \end{pmatrix} - \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \begin{pmatrix} B_x - A_x \\ B_y - A_y \\ B_z - A_z \end{pmatrix}.$$

Længden af tredimensionel vektor

For vektoren

$$\vec{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$

findes længden på følgende måde:

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$
.

Enhedsvektoren

En enhedsvektor er en vektor, som har længden 1. For vektoren

$$\vec{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$

kan man finde enhedsvektoren, der har samme retning som \vec{a} , på følgende måde:

$$\overrightarrow{e_a} = \begin{pmatrix} \frac{a_x}{|\overrightarrow{a}|} \\ \frac{a_y}{|\overrightarrow{a}|} \\ \frac{a_z}{|\overrightarrow{a}|} \end{pmatrix} = \frac{1}{|\overrightarrow{a}|} \cdot \overrightarrow{a} .$$

Prikprodukt mellem to vektorer

For vektorerne

$$\vec{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \text{ og } \vec{b} = \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$

er prikproduktet mellem dem defineret som

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z.$$

Vinklen mellem to vektorer

For vektorerne

$$\vec{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \text{ og } \vec{b} = \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$

kan vinklen mellem dem findes på følgende måde:

$$\cos(v) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}.$$

Projektion af en vektor på en anden vektor

For vektorerne

$$\vec{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \text{ og } \vec{b} = \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$

kan projektionen af \vec{a} på \vec{b} findes på følgende måde:

$$\overrightarrow{a_b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\overrightarrow{b} \cdot \overrightarrow{b}} \cdot \overrightarrow{b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2} \cdot \overrightarrow{b} = \frac{a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z}{b_x^2 + b_y^2 + b_z^2} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} .$$

Simple opgaver

Brug nu selv formlerne for beregninger på vektorer i 3 dimensioner til at besvare de tre følgende opgaver. Der er en facitliste til sidst (med et tvist).

Opgave 1

Betragt punkterne

$$A = (2, 5, 7) \text{ og } B = (-3, 4, 8).$$

Vektorerne \overrightarrow{OA} og \overrightarrow{OB} betegner henholdsvis *sted*-vektorerne til punkterne A og B.

- 1. Beregn koordinaterne til \overrightarrow{OA} .
- 2. Beregn koordinaterne til \overrightarrow{OB} .
- 3. Beregn koordinaterne til vektorerne \overrightarrow{AB} og \overrightarrow{BA} .
- 4. Beregn længden af vektor \overrightarrow{AB} .

Opgave 2

Betragt vektorerne

$$\vec{a} = \begin{pmatrix} 2\\3\\5 \end{pmatrix} \text{ og } \vec{b} = \begin{pmatrix} 4\\-6\\-1 \end{pmatrix}.$$

- 1. Beregn koordinaterne til enhedsvektoreren $\overrightarrow{e_a}$.
- 2. Beregn koordinaterne til enhedsvektoreren $\overrightarrow{e_b}$.
- 3. Beregn vinklen mellem \vec{a} og \vec{b} .

Opgave 3

Betragt vektorerne

$$\vec{a} = \begin{pmatrix} -4\\6\\9 \end{pmatrix} \text{ og } \vec{b} = \begin{pmatrix} 5\\-7\\2 \end{pmatrix}.$$

5

1. Bestem vha beregninger projektionerne $\overrightarrow{a_b}$ og $\overrightarrow{b_a}$.

Facitliste

Opgave 1

1.
$$\overrightarrow{OA} = \begin{pmatrix} 10\\101\\111 \end{pmatrix}$$
, 2. $\overrightarrow{OB} = \begin{pmatrix} -11\\100\\1000 \end{pmatrix}$, 3. $\overrightarrow{AB} = \begin{pmatrix} -101\\-1\\1 \end{pmatrix}$ og $\overrightarrow{BA} = \begin{pmatrix} 101\\1\\-1 \end{pmatrix}$.

Opgave 2

1.
$$\overrightarrow{e_a} = \begin{pmatrix} 0.324 \\ 0.487 \\ 0.811 \end{pmatrix}$$
, 2. $\overrightarrow{e_b} = \begin{pmatrix} 0.549 \\ -0.824 \\ -0.137 \end{pmatrix}$, 3. $v = 109.52^{\circ}$.

Opgave 3

1.
$$\overrightarrow{a_b} = \begin{pmatrix} -2.821 \\ 3.949 \\ -1.128 \end{pmatrix}$$
 og $\overrightarrow{b_a} = \begin{pmatrix} 1.323 \\ -1.985 \\ -2.977 \end{pmatrix}$.

Beviser

Længden af en vektor i 3 dimensioner

Hvorfor beregnes længden af \vec{a} som $|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$ og ikke som $|\vec{a}| = \sqrt[3]{a_x^3 + a_y^3 + a_z^3}$, når nu det foregår i 3 dimensioner? Dette vil jeg bevise for jer rimeligt hurtigt på tavlen.

Enhedsvektoren

Jeg vil også vise en udledning af formlen for bestemmelse af koordinaterne til en enhedsvektor.