Fo mon month TIV->V in Coen mous niego espirer N 71, bud 390 81,75 b1,10 th 32,170 A B 1,001 98,18 16 lezh 12, 1 1000 . I 80 · Bilance 0,055 Lilezze 31,00 , e 25,28 1 3 m, r 20 32 holes 1:2 com 10 2 50 20 15 ilfusc (2672 n=1 2156 lèm V= 1 1 12/1 1 200 20 1100 Pila 0 +1/2 C) 11/2014 2/41 u, = v. 10, M er cours eleus j. M. i. N 20373 320 22 ple is T* _ans 'Cleinlike 150 Wi <u, Tar) > = Ta, w > = ne wew $= \lambda \langle u, w \rangle = 0$ Tono Opinia W I TET Tole

8-1 TW = T 316-1210 040 04 lim W=n-1! V=W@W+ Duallience 01:5 21,2 38 Stalieu 2010 105 6, 12 July 50 1/2 2 5 05 1 2 1 Tok. TE pli TE p"") c a, EW; le; EW '> < U;, u, 7=0 1 pl } (1, ---, u) where Ishar alla assured in the doing of the last of t effer de moder production 6 h 3 / 2 (0 8 N 2 1 Josh YueV < T(a) 4 > 20; T=T

•

Tip Villallian V [John] 1,51 gelto enouge oggantin $A_{-} = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{n} \end{pmatrix}$ T Se più36 por6 }; € 18 12/12 601) < T(u), u)≥0; 2011N < \(\lambda u, u, \rangle = \rangle \lambda \lambda u, u \rangle > 0 \) · > > 0 /5%; Jest Jest 128 3/07 N りからむ! P(ui) = Thini $T(u_i) = \lambda u_i = P_{(u_i)}^2$ Prison : Coen of word needs of, ren 1827 15 Jol Busilisals eich 2010 170c

[(2) = - sine) [(2) = - sine +] [(3) = - sine

Te rel pioch

V= V, & V_2 & ... & Vm

pinterno pinto pioch pinto pion Vc es

\(\) \

 $\sum_{i=1}^{n} V \in V_{i} \quad \forall i \in V$

ST(v) = (T+T')(T(v)) = P' T(T+T')(v) = T(x(v)) = P'

λ: T(V)

12,200 N° 2 1130 203038

$$(T+T^{-1})(v) = S(v) = \lambda i v$$

$$(T+T^{-1})(v) = \lambda i T v$$

$$(T^{2}+T)(v) = \lambda i T v$$

$$(T^{2}+T)(v) = 0 \quad \text{if } \lambda i = \pm 2 \text{ pt}$$

$$(T+T)^{2}(v) = 0 \quad \text{if } \lambda i = \pm 2 \text{ pt}$$

$$T=\pm v \quad \text{if } (T+T)(v) = 0 \quad \text{pt}$$

$$T|_{V_{i}} = \pm \text{Id} \quad \text{pt}$$

$$V|_{V_{i}} = \pm \text{Id} \quad \text{pt}$$

$$V|_{V$$

10, 61012 N comme 22 N =1013 2, Charge Ties W ine Two IV · V -> iv T(Ta))=T2)= X:Ta)-veW 12 WI DY! V: = WOW 1 121 GRAGE T Is I som in grand as pinend 186 M' 2 831, M' , oin M' · Charje To the We to it 12,0110 61/1900 Nº Le 200 [220] Te-XiT+I=O priged : kW; F Act = +? - >; ++1 2 ~ 1)2 J = 818-5 19160 det A = 1 1) of ostono 6. 60 -4. 182 sh 6,,den 126 1641)2 1278 0,053 A = (a b)

apposit allerdie V -> V il il word ! sast? 1927 (CIR R 184) V -NN13 TTX=TXT P'17N No Ph V & iPun, non, T'V-V pl injoc : 12/6 T(w)=0 Ph ??) Ph T(w)=0 (1) IK-T years (2) $T(v) = \lambda V$ Jh $T(v) = \lambda V$ (3) $T(w) = \lambda_2 w$: $T(v) = \lambda_1 v$ $P(v) = \lambda_1 v$ くり、ツ>=0 いん 入, サ 入2! くTv, Tv)= 〈v, T*Tv)= 〈v, TT*)= = くて*、て*ン T(v) = 0 $\langle = \rangle T(v) = 0$ $|\beta|$ $(T-\lambda I)(T^*\bar{\lambda}I) = TT^* - \lambda T^* \bar{\lambda}T + \lambda \bar{\lambda}I = (2)$ $= T^*T - \overline{\lambda}T - \lambda T^* + \overline{\lambda}\lambda I = (T^* - \overline{\lambda}I)(T - \lambda I).$

 $= (T - \lambda I)^* (T - \lambda I).$

 $(T-\lambda I) V = 0 \quad \text{in} \quad TV = \lambda V \quad \text{or} \quad (3)$ $T^* = \overline{\lambda} V \quad |R| \quad (T^* - \overline{\lambda} I) V = 0 \quad |P|$

 $\lambda_{1}\langle v, w \rangle = \langle \lambda_{1}, v, w \rangle = \langle Tv, w \rangle = \langle v, T^{*}w \rangle$ $= \langle v, \overline{\lambda}_{L}w \rangle = \lambda_{L}\langle v, w \rangle$

 $\langle v, w \rangle = 0 \quad \leftarrow \quad \lambda_1 \neq \lambda_2$

ין בענין: ביון לצולצוע אל הוחצ ין

If |V| = |V| is a set of |V| = |V| is a set of |V| = |V| if |V| = |V| is a set of |V| = |V| if |V| = |V| is a set of |V| = |V| in |V| = |V| is a set of |V| = |V| in |

orco 108) Tx to 1838 siens pr 11/2 4, 「一十 ~~~ (これが) W 121 (いいか)つの T som 'Charlin WI בשרבן באבעז <pr 'sk <u,Tw> = <T *,,w> < T *u, w >=0 lim W=n-1 Til. V=W&W トルク いれらり アルルカンタンタンタンパル アルシン トロノ {U21-1, Un} · (Parlylor) 1 000 1 1/2 & 41, 42, ---, 44 } D - 1500811 0310 CND T SIC 2318 pris 7 NIPO JIPHIN (2007 100 1/1 T *= T) TT* = TT' = I = T'.T = T*.T '3 (R FON) _NO PRINTIN - T FAR IDJ PINDOS

IS LEN OLD SUN IN A JOHN SUL DELL SOLL ING. MAS ING.

V were lipser was V. (a+ib)(V,w) = (av-6w, bv+aw) (a

Valw

1365 (u+iv, s+it) = (u,s)+(u,it) + (it, s) + (iv, it) = $\langle u,s \rangle - i \langle v,t \rangle + i \langle v,s \rangle + \langle v,t \rangle =$ [<u,s > + (v,t)] + i [<v,s> - <v,t>] r. v sheede s N. 186 's (5-64 V Le 2 MUNT 151/2 V Checi, Conla Ny whiche of Nod D 20711 50 70 3.53 by 5 € N t & remon promo -u utiv F ejsi f rainz = snian fus Alus AI . Z = U-iV ! יף אורף בים המאשיים של ע ליף אורף בים אות שיים אות שיים יו

-61-

$$\frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{4} = \frac{1}{4} =$$

$$T(u+iv) = T(u) + i(Tv)$$

$$T(u+iv) = T(u) + i(Tv)$$

$$T(u+iv) = T(u) + i(Tv) - T(u) + i(Tv) = T(u+iv)$$

$$T(u+iv) = T(u) + i(Tv) - T(u) + i(Tv) = T(u+iv)$$

$$T+S = T+S \qquad (1)$$

$$T+S = T+S \qquad (2)$$

$$T+S = T+S \qquad (3)$$

$$T+S = T+S \qquad (4)$$

$$T+S = T+S \qquad (5)$$

$$T+S = T+S \qquad (7)$$

$$T+S = T+S \qquad (1)$$

$$T(S(u+iv)) = TS(u) + iTS(v) = (2)$$

$$T(S(u)) + iT(S(v)) = T(S(u) + iS(v)) = T(S(u) + iS(u)) = T(S(u)$$

1000 -1000 T 110 T! V -3 V 10 1000 Nicarly といろいり 千 かしかりかし (いらりはいか) الأو ورح בן בעני לונת לונת לות (סימשינת ואוניצואל לות (51225 しいり しいいりいて アメーナー・ナー・ナー・ 千分二千分三千分二千分 DIPHOL F DICHTIL F MIP. Ton 干干生干*干 一个×。一个×。一个×一个×一个×一个 pr, VEV TA $(T T^*) v = (\widehat{T}^*) v = (\widehat{T}^*T) v = \widehat{T}^*T v$ رجم المالاد محدورط المادرانط Challing ole 2/2/20 7: V-> V : T: V-> V : Coon > 121 7 € 10011 130111 726 × 101 (1) T To 1/0/1/2 726 0102 by > > > E Bung to Bund 20 500 1 V Se PINGOLIA PROJUCIA

7 R'ent & 1,101/1 706 M Ph 12) birge 6,010 500 12 0,05 {5110015 m} ; 1,10/h 704 110 Tu pe 1.11 V 2 M Se J パルハリケックル のルマ {モノノー・・モル}! デ Cu · Ju Se profit pholythe enow アップンル 子 な いっか アモ XEIR PUL! 2000万 epo Z=utiv Z #0 EV デェニカモ - (U+iv) = Tu+iTv= Au+ Xiv 14 Colle usid reside 1/20 Tu = Au , Tv = AV Ta 150/11 pre 1 181 0 + V MU " ish observes v ple ker S= { E = V | S = = 0 } ker S = { v & V | Sv = 0 } unoja V termoner in Spankers ! Rer S 121 (31 St

- 654

Spanker S = Ker S Span herschers no sho in Z=u+iv+kers in S(utiv) = Su + i Sv =0 4, v & kers sup, Su=Sv=0 pr Z & Span (kers) Purlyleralle Goo and S=T-AI nad PI'm Vinhal V= Ren T- XI Nor ν = ke-(T-λ]) = ke-(T-λ]) = Span (ker (T- XI)) = Span Vx Vy SC Ten oras Vy Torra par T Z: = MAZ; P"] 1=: < m [st (2) 7 = M.Z; $\frac{1}{I(u+iv)} = \frac{1}{I(u+iv)} = \frac{1}{I(u+iv)} = \frac{1}{I(u+iv)}$ ū (u-iv)= Î(u+iv) chine 丁克··· 江克·

7 1,36: 211 1'es yall vezil No Z: 181 7 076 186 ZE VIII NI, 13 Punijisalik olea hor ja 豆= 豆り、そ、アリス・ツルツル ~180 Z= Z1,2,= Z1, Z; V= = Span { =, , -. = } T: V-V R FEN 'NCYII SMN V : CDEN Ofin Birth, The Thubir Milas A soio Mesistendi 3, on 2, wor 1, 11, 11, 20 2015 2016 ه و درد د Tep"eγη p","3/4 p1276 - λ;

しゃ"exx p","a)k p)コカー 入: B:=(-6: a:), a:, b: ER

(EN) DI 125/1 PIESSON 1 1212 15/25 15/25 JiPany R Joh T : MAN : T: V-V July 1 10 Pt 21 PANI C 564 7 11 810,030 316,14 23 Lxy2 , Bushizzall 0,03 1 2/8 האליים השייבים לשרך היולני) ל. 12 JUN 1 5 1841/1841, 0,00 121 10,000 34/4 . ングッタルラ 21, --, Wh} וב לב א בייט אוריצינורניף אוון לורום אני ל עול עוון לורום איני ל על בייט אוריצינורניף אוון לורום א TR 1,10/1 200 M & R DI (1010) V 2 POOD INS, Shi F to your prosh ואנ על ביי אלפיפונימשאי בנהלב (N 20,0 14 (N 20,0 N 20,0 N 20,0 N)) $\overline{2}_{j} = u_{j} - iv_{j}$ $\overline{2}_{j} = u_{j} + iv_{j}$ $\frac{1}{2}$. Pronu Proscill US. 18. 4. 47 2082 (Ten Span { uj, v; } = Span { Z; , Z; } | 10 N1 2 8NI /291 Uj = 25 + 25 V: = 方(()

(u:, V: > = 0

 $\langle u_i, u_j \rangle = \langle v_i, v_j \rangle = \langle u_i, v_j \rangle = 0$ (2) $\| u_i \| = \| v_i \| = \frac{1}{\sqrt{2}}$

νε ε Γος ν. μ.ν. γ. ωμνη ζεγι ζωι,...,ωμ, μι,νι,,... μηνη ζ Σεγι

145/44 101 416814 6 1 (64 1166, 66) 165 166, 64 166, 66 166, 6

 $Tw_i = \lambda_i w_i$ $Tz_i = M_i z_i$ I^{2M_2}

b; ≠0 M; = a; + i b; 'on'wole

 $\frac{1}{1}(u_{i}+iv_{i}) = (a_{i}-ib_{i})(u_{i}+iv_{i}) = 3h$ $a_{i}u_{i}+b_{i}v_{i} + i(-b_{i}u_{i}+a_{i}v_{i}) = 3h$ $\frac{1}{1}(u_{i}+iv_{i}) = (a_{i}-ib_{i})(u_{i}+iv_{i}) = 3h$ $\frac{1}{1}(u_{i}+iv_{i}) = (a_{i}-ib_{i})(u_{i}+iv_{i})(u_{i}+iv_{i}) = 3h$ $\frac{1}{1}(u_{i}+iv_{i}) = (a_{i}-ib_{i})(u_{i}+iv_{i})(u_{i}+iv_{i})(u_{i}+iv_{i}) = 3h$ $\frac{1}{1}(u_{i}+iv_{i})(u_{$

VZ 2 500 121101

 $Tu_{i} = u_{i}u_{i} + b_{i}v_{i}$ $Tv_{i} = -b_{i}u_{i} + u_{i}v_{i}$ $B_{i} = \begin{pmatrix} u_{i} & b_{i} \\ -b_{i} & u_{i} \end{pmatrix}$ $B_{i} = \begin{pmatrix} u_{i} & b_{i} \\ -b_{i} & u_{i} \end{pmatrix}$ $B_{i} = a_{i}u_{i} + a_{i}v_{i}$ $B_{i} = a_{i}u_{i}$ $B_{i} = a_{i}u_{i} + a_{i}v_{i}$ $B_{i} = a_{i}u_{i} + a_{i}v_{i}$ $B_{i} = a_{i}u_{i}$ B_{i

T!V-0V ! 'enn' 'oleghi 200 V ple ion8

Ozo prosin 'sile prosin 'ozo

Noralola S oleghi - O ! prosin S prosin S

T = SO

270

 $\frac{7}{6} = \frac{1}{3} \frac{1}{3} \frac{1}{16} = \frac{1}{3} \frac{1}{3$

(r; 0) (cos 6; cin 6;) (- sin 6; sin 6;)

- sin Op cos ba NOTE: NA I DE DORA ELO MESISION TIVOV Merstruß 2 N var Sivia آ رمام دما \bigcirc

λ: = ±1 '

21/2/2 12 2/1/27

1310Ull 8234

lim V L 00 0 17

3 3 3 19 1. 2 21 9 15 Johns

q: VxV -> K

φ (au, + bu, ν) = af(u, ν) + b f(u, ν)
(1)

P(u, av,+ bv,) = a P(u,v,) + bP(u,v,) (2)

V 3'4,42,1,12 ; a,6 € 14 555

din-1 K childing & hope : I'marks

りぶかりつ 小 ディレース

Φ(u, v) = P(w) + F(v) € V

$$\varphi(u,v) = u^{t}Av$$

dim V = h e f^{0} in Q_{f}^{1} e f^{0} f^{0}

 $\begin{cases}
q_{i,j-i,d_{i}} \\
q_{i,j-i,d_{i}}
\end{cases} = \begin{cases}
e_{i,e_{i}} \\
e_{i,e_{i}}
\end{cases} = \begin{cases}
e_{i,$

$$(\sum_{ij} \alpha_{ij} f_{ij})(e_{s}, e_{t}) = \sum_{ij} \alpha_{ij} f_{ij}(e_{s}, e_{t}) =$$

$$\sum_{ij} \alpha_{ij} f_{i}(e_{s}) f_{j}(e_{t}) =$$

$$\sum_{ij} \alpha_{ij} f_{ij} f_{ij} = \alpha_{st} = f(e_{s}, e_{t})$$

$$Span \{f_{ij}\} = B(V)$$

$$B(V) \Rightarrow A_{ij} f_{ij} \Rightarrow A_{ij} f_{ij} = 0$$

$$\sum_{ij} \alpha_{ij} f_{ij} = 0$$

$$O = O(e_{s}, e_{t}) = (\sum_{ij} \alpha_{ij} f_{ij})(e_{s}, e_{t}) = 3f_{t}$$

 $= Q_{st}$ $| \leq s, t \leq u \quad \text{ Filt } Q_{s,t} = 0 \quad | A |$

Triple of July fe B(A) V.C., en } '2' . V 50 v"î cev€ V ple u = a,e,+a,e,+...+anen, V= b,e,+b,e,+...+bnen f(u,v) = f(a,e,+...+a,e,,b,e,+...+b,e,) = a, b, f(e,e,) + a, b, f(e,e,) + - - + a, b, f(e,e) = Zaib; f(ei,e;) 12 / skeppers 158

f(ei,e;)

A = (a;) 3'2000 Fr [2000] $\alpha_{ij} = f(e_i, e_j)$

21/19,2000 05300 -0155,1 y 3,2040 {e,,--,e,} 0'0 pr 'of to

12 18 PIC)

$$f(u,v) = \sum_{\alpha \in \mathcal{C}_{i}} f(e,e,s) = \frac{1}{2} \left(\frac{b_{\alpha}}{b_{\alpha}} \right) \left(\frac{b_{\alpha}}{b_{\alpha}} \right) \left(\frac{b_{\alpha}}{b_{\alpha}} \right) = \frac{1}{2} \left(\frac{b_{\alpha}}{b_{\alpha}} \right) \left(\frac{b_{\alpha}}{b_{\alpha}} \right) \left(\frac{b_{\alpha}}{b_{\alpha}} \right) \left(\frac{b_{\alpha}}{b_{\alpha}} \right) = \frac{1}{2} \left(\frac{b_{\alpha}}{b_{\alpha}} \right) = \frac{1}{2} \left(\frac{b_{\alpha}}{b_{\alpha}} \right) \left(\frac{b_{\alpha}}{b_{\alpha}$$

ue Ave

1264 = Due. 24/211 b

(6, 0,055 23,700 32,070 1/2 B=bfyb 32,040 1/6 6 0,055 f 21,24,00 1/6 6 0,055 f 21,24,00 1/6 6 0,055 f 21,040

ue = Pue, , Ve = Pve, uet = Upt pt 12/1 fair) = ut A Ve = u. Pt A P Vc. f -21. 23.,90 33,20 121 B=PtAP R'o C' 0'67) Ley Y'B ry, 64 ,25 = 33353 ~ N''7 " NO 016 C/2 318 127" N =38 5 7, b 02,00 3, 54 B = PTAP

degenerate silver d'isc roule A = dem V mis

Et of 2/2/6/6,0 -0,262 ; 5.2352 1275 Kase sen V miljil sna n blid of robusy 2,152 Vv∈V $f(v_iv) = 0$ 10,4 150, 200 p 2010 P 2010 C 0 = f(u+v, a+v) = f(u,u) + f(u,v) + f(v,v) 1 (v,u) = - f (u,v) K EUN N EU & 2375 4、VEV 「ぷ 」 」がかっ f (u,v) = -f(v,u) 7,200 Be 2,22 15.2,2 12/Jen N 3353 25 1, 3263 1.5 1+1+0 0 11.75.5

$$f(u,v) = -f(v,u)$$

$$f(u,v) = -f(v,v)$$

$$f(v,v) = -f(v,v)$$

$$4(v_{i}v) + f(v_{i}v) = 0 \qquad (+1 = 0) = 300 \qquad pole$$

$$4(v_{i}v) + f(v_{i}v) = 0 \qquad (+1)$$

$$2(f(v_{i}v)) = 0 \qquad (-1)$$

$$2(f(v_{i}v)) = 0 \qquad (-1)$$

$$10 \qquad 10 \qquad 10$$

K & hyris 141 +0 11/2 5 . 2 11/1 ne St. Lie 2018 $n \cdot d = 0$ NOOD: 10 t 1912 HANSER CHURS 10, 10 K 235 201 N 10 W -35°1 f 12 V Fc {e,,-,e,} 002 32562 g. 40 60 100 100 5325

し

05127 030Co 18 f = 0 p/2 1000 /c ile climV = 1 0/c f(k,u, k,u) = k, k, f(u,u) = 0 f=0 /21 (+0 ; gim />1 , 0 ,2 () Light 0 p a, a, EV P'1"7 & #0 : 27/1.1 $f(u, u_1) \neq 0$ 13 miles (2) 121 Jes 2814 121 of (u, u2) = 1 f(u2, u,) = -1 10 mile 12 mile 12 miles 100/ Uz = ku, f(u, uz) = f(u, ku,) = kf(u, u,) = 0 U = Span (4, 42) 1/21

net rought ge pro) n te t & willing on segon "> {u, u, } $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ f(a, u,)=0! f(a, u,)=-1, f(a, u,)=1 u E U اد ا عاد u = 64, + 64, f(u, u,) = f(au,+ lu, H)=-6 ste f(u, u2) = f(au, bu, u2) = a V 2 W CV $W = \{ w \in V \mid f(w,u_1) = f(w,u_2) = 0 \}$ निर्मा त्रिति पर भरपह W ? Wi wi with WLAWZEW 's'C RWEW 126 WEW 210 1201

 $u = f(v_{1}u_{2})u_{1} - f(v_{1}u_{1})u_{2}$ w = V - u

 u_{2} ; u_{3} to v_{3} / v_{6} ? v_{1} ? v_{6} v_{7} ? v_{6} v_{7} ? v_{7} v_{7} ? $v_{$

f(v, u,) f(u, u,) - f(v, u,) f(u, u,) =

f(v, u,)

f(u, u, v) = f(v, u, u, v) = 0 f(u, u, v) = f(u, u, v) = 0 f(u, u, v) = f(v, u, v) = 0

1581 {(w,az) = {(v-a,az) = f(v, uz) - f(v, uz) = 0 Coline W W = V rollury right is riller mayber 34'41 2 31°7 34'44 16'0 W E 07 12/16 Ge, 23/21/20 W & { 43,-..,4, } = 107 1) 1/2 von h f 1/2 0/600 10.N

as also as the second of the s

f(n'n) = f(n'n) $y_{0} \downarrow_{0} \downarrow_{0} \qquad y_{0} \downarrow_{0} \qquad y_{0$

 $f(x,y) = x^{t}Ay - (x^{t}Ay)^{t} = y^{t}A^{t}x$ $f(x,y) = x^{t}Ay - (x^{t}Ay)^{t} = y^{t}A^{t}x$ $f(x,y) = x^{t}Ay - (x^{t}Ay)^{t} = y^{t}A^{t}x$ $f(x,y) = f(x,y) = f(x,y) = f(x,y) = y^{t}Ax$ $f(x,y) = f(x,y) = f(x,y) = f(x,y) = y^{t}Ax$ $f(x,y) = f(x,y) = f(x,y) = f(x,y) = y^{t}Ax$ $f(x,y) = f(x,y) = f(x,y) = f(x,y) = y^{t}Ax$ $f(x,y) = f(x,y) = f(x,y) = f(x,y) = y^{t}Ax$ $f(x,y) = f(x,y) = f(x,y) = f(x,y) = y^{t}Ax$ $f(x,y) = f(x,y) = f(x,y) = f(x,y) = y^{t}Ax$ $f(x,y) = f(x,y) = f(x,y) = f(x,y) = y^{t}Ax$ $f(x,y) = f(x,y) = f(x,y) = f(x,y) = y^{t}Ax$ $f(x,y) = f(x,y) = f(x,y) = f(x,y) = y^{t}Ax$ $f(x,y) = f(x,y) = f(x,y) = f(x,y) = f(x,y) = y^{t}Ax$ f(x,y) = f(x,y

11. CHE 31. CN A DI 1200 1 A DISLE 1110

-1. Ore mysel is misser of inte : Coom Eligno edo K sas ren R Le V5 1,5c (char K #2) 2 1511 K = 8 = { V1, --, VL} 0'07 2,710 yr 3,200 meg. 1.50 dim V=1 16 f=0 p/c : 200/2 ישל ישל limV>1 ! \$ \$0 'sr'50 15'5 158 q(v) = f(v, v) = 140) 1 sle g(v) = f(v, v) = 0

chark #2 q(u+v)-q(u) - q(v) = f(u+v, u+v) = f(u,u) - f(v,v) = fan, + fan, + fan, + fan, - fa 2 f (v,u) 7015 V [2 g(v) = 0 De / 28 V > 4, V [7] d = 0 cy, rev pin brist 15,2 12g f(v, v,) + 0 U = spa {V,} $W = \{ v \in V \mid f(v, v) = 0 \}$ shor we Ac っつかる

V=U\W : nje C

LEUNW 51 1 2 u EW ! u = RV, 138 0-f(ku, kv,)= k f(v, v.) +0 ت ماده u=6 vills k=0 $W = V - \frac{f(v, v)}{f(v, v, v)} v,$ ردماه $f(v, w) = f(v, v) - \frac{f(v, v)}{f(v, v)} f(v, v) = 0$ V = u+w 1591 W EW 158 . V = U & W W to riche shirt or of W P") offajles / 21 dinW= n-1; · i+j, f(xi,/j)=0 ep. W & {v2,--, vn} j=2,--, h Sol f(Vi,Vj)=0;

Д