

毕业设计任务书

课题名称_基于 RS485 的智能电路监测系统设计与应用				
细胞水	酒 人川			
课题来源_企业生产实际				
二级学院	定(系)_	自动化学院		
专业	<u></u>	应用电子技术		
班 级	ž	电子 18		
姓名	7 1			
学 号	<u>.</u>			
指导教师	j			

起讫时间: <u>2020</u>年 <u>11</u>月 <u>30</u>日~<u>2021</u>年 <u>01</u>月 <u>24</u>日 (共<u>8</u>周)

1、设计依据

电池应用的普及,使得电池安全使用的日益提高。针对这种实际需求,结合学生实际掌握知识和技能,进一步拓展和加强学生实际应用能力。

现电池监测技术基于单机比较常见,多机联网还是比较少,虽然技术比较成熟,但是价格比较高。面对这种情况,本课题提出硬件资源比较少,运行比较可靠的 RS485 为通信方式,连接多个从机和多个主机,实现低成本联网。为了保证系统准确性和通用,电流和电压采集由硬件和软件相结合方式实现。

2、任务要求

本课题是进一步地巩固前期课程,结合模拟信号检测技术和通信技术,设计一个具有通信功能的电池电压、电流监测系统。

主要内容:

- 1)、制作硬件测试平台(设计主要功能不能使用集成模块);
- 2)、完成 PCB 设计工作;
- 3)、 RS485 通信距离 3 米, 无需隔离, 通信速率 1Mbps;
- 4)、电压监测精度: DC ± 0.1V (0~5V), 电流监测精度: DC ± 0.01A (0~1A);
- 5)、本地监控端实时显示电压电流等参数,通过 RS485 远程显示电压电流等参数;
- 6)、至少需要获取 3 分钟的电压电流等状态数据,必须使用实验数据绘制相应的曲线,说明测量性能。

3、毕业设计进度计划

起讫日期	工作内容	备注
第一周	课题内容分析,资料收集。	收集相应的微处理器平台、PTC、接口电路资料, 以及相类似的方案比较。
第二周	课题不同方案的审核比较,最终确立相应的方案。	必须从多个方案中,根据难易程度,经济性,维护性、自身实际情况等方面来确定。
第三周	系统核心部分实现分析、并进行原理图绘制。	核心部分可以是控制单 元、显示设定单元、时 钟系统、网路等。
第四周	设计方案。	因方案不同,核心部分 也会有所不同。核心部 分可以是控制单元、显 示设定单元、时钟单元 等的硬件、测试软件设 计。
第五、六周	联合调试,程序接口调试,与其它单元程序进行测试。	联调应根据方案不同, 包含硬件系统的联调和 软件系统的联调。应侧 重硬件调试、使用测试 软件,配合硬件调试。 本阶段可能会检测出系 统的不稳定性,可能还 会导致部分重新设计才 能达到设计参数。
第七周	系统改进、完善,资料整理、论文撰写。	按要求准备资料答辩。 本着执着、负责任的态
第八周	论文答辩	度。写出能够反映毕业 设计期间所完成的任务 和水平。