Grundlagen der Informatik

Prof. Dr. J. Schmidt Fakultät für Informatik

GDI – WS 2018/19
Zahlendarstellung – Konvertierung von Zahlen

Leitfrage 2.2

Kapitel 2: Zahlendarstellung

 Wie können Zahlen zwischen den verschiedenen Darstellungsformen konvertiert werden?

Direkte Methode (1)

Kapitel 2: Zahlendarstellung

Einfachster Fall: kleine Zahlen

Verwendung von Tabellen

Dezimal	Dual	Oktal	Hexadezimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4 5	100	4	4
	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Direkte Methode (2)

- Konvertieren zwischen Dezimalsystem und Dualsystem
 - Division der umzuwandelnden Dezimalzahl durch die größte Potenz von 2, die kleiner oder gleich ist als diese Dezimalzahl und Schreiben einer 1 an die erste (höchstwertige) Binärstelle
 - Division des Ergebnisses durch die nächste kleinere Potenz von 2 (Resultat, 0 oder 1, gibt die nächste Binärstelle an)
 - Analoges weiteres Vorgehen bis nach der Division durch
 20 = 1 das Verfahren abbricht

Direkte Methode (3)

Kapitel 2: Zahlendarstellung

Dezimalzahl 116 ist in binärer Schreibweise anzugeben

Ergebnis: 111 0100₍₂₎ bzw. (111 0100)₂

Direkte Methode (4)

Kapitel 2: Zahlendarstellung

- Konvertieren zwischen Dualsystem und Oktalsystem
 - Um eine im Dualsystem dargestellte Zahl ins Oktalsystem zu konvertieren, bildet man von rechts beginnend so genannte Dualtriaden (Dreiergruppen)

Dualzahl	110	111	001	110	010
Oktalzahl	6	7	1	6	2

 Bei der Umwandlung einer Oktalzahl in ihre Dualdarstellung geht man den umgekehrten Weg

```
      Oktalzahl
      3
      2
      1
      5

      Dualzahl
      011
      010
      001
      101
```

Direkte Methode (5)

Kapitel 2: Zahlendarstellung

- Konvertieren zwischen Dualsystem und Hexadezimalsystem
 - Um eine im Dualsystem dargestellte Zahl ins Hexadezimalsystem zu konvertieren, bildet man von rechts beginnend so genannte Dualtetraden (Vierergruppen)

```
      Dualzahl
      1 0111 0101 1101

      Hexzahl
      7 5 D

      Triade: 1 011 101 011 101 Oktal: 1 3 5 3 5
```

■ ... und Umwandlung Hex → Dual: umgekehrter Weg

```
        Hexzahl
        A
        D
        A

        Dualzahl
        1010
        1101
        1010

Triade: 101 011 011 010 Oktal: 5 3 3 3 2
```

Aufgaben

Kapitel 2: Zahlendarstellung

 Konvertieren Sie die Zahl (2E4)₁₆ sowohl in das Dualsystem als auch in das Dezimalsystem

 Konvertieren Sie die Zahl (753)₈ sowohl in das Dualsystem als auch in das Hexadezimalsystem

 Konvertieren Sie die Zahl (1101011111111111010)₂ sowohl in das Oktalsystem als auch in das Hexadezimalsystem

Horner- Schema und Restwertmethode

Kapitel 2: Zahlendarstellung

Eine in einem Positionssystem mit der Basis B dargestellte natürliche Zahl $n = \sum_{i=0}^{N} b_i \cdot B^i$

lässt sich mit Hilfe des Horner- Schemas wie folgt darstellen:

$$n = (\cdots(((b_N \cdot B + b_{N-1}) \cdot B + b_{N-2}) \cdot B + b_{N-3}) \cdot B + \cdots + b_1) \cdot B + b_0$$

- Beispiel $(1578)_{10} = ((1 \cdot 10 + 5) \cdot 10 + 7) \cdot 10 + 8$
- Mit Hilfe dieser Darstellung k\u00f6nnen Konvertierungen in das Dezimalsystem einfach durchgef\u00fchrt werden
 - Beispiel $(754)_8 = (7 \cdot 8 + 5) \cdot 8 + 4$ = $(492)_{10}$

Aufgabe

Kapitel 2: Zahlendarstellung

 Konvertieren Sie die Zahl (375)₈ unter Zuhilfenahme des Horner- Schemas in das Dezimalsystem

Restwertmethode (1)

- Konvertierung vom Dezimalsystem in andere Positionssysteme
 - Die fortgesetzte Division einer Dezimalzahl durch die Basis
 - liefert als Divisionsrest die Koeffizienten b_n bis b_0
 - für die Darstellung dieser Zahl zur jeweiligen Basis

Restwertmethode (2)

- Für die Umwandlung einer Dezimalzahl x in ein Zahlensystem mit der Basis B kann folgender Algorithmus verwendet werden:
 - 1. x:B=y Rest z
 - 2. Mache y zum neuen x
 - wenn dieses x ungleich 0 ist, fahre wieder mit Schritt 1 fort,
 - sonst fahre mit Schritt 3 fort
 - 3. Die ermittelten Reste z von unten nach oben nebeneinander geschrieben ergeben die entsprechende umgewandelte Zahl

Restwertmethode (3)

Kapitel 2: Zahlendarstellung

Beispiel

$$\bullet$$
 (43)₁₀ = (?)₂

X_		В	У		<u>Z</u>
43	:	2 =	= 21	Rest	1
21	•	2 =	= 10	Rest	1
10	:	2 =	= 5	Rest	0
5	:	2 =	= 2	Rest	1
2	•	2 =	= 1	Rest	0
1	:	2 =	= 0	Rest	1

Die Reste z von unten nach oben geschrieben liefern die gesuchte Dualzahl.

Ergebnis: (101011)₂

Aufgabe

Kapitel 2: Zahlendarstellung

 Konvertieren Sie die Zahl (10172)₁₀ unter Anwendung der Restwertmethode sowohl in das Dualsystem als auch in das Hexadezimalsystem

```
10172<sub>(10)</sub>
= (2)
= (16)
```

Konvertieren echt gebrochener Zahlen (1)

Kapitel 2: Zahlendarstellung

Eine echt gebrochene Zahl n (n < 1)

$$n = \sum_{i=-M}^{-1} b_i \cdot B^i$$

lässt sich mit Hilfe des Horner- Schemas wie folgt darstellen

$$n = \frac{1}{B} \cdot \left(b_{-1} + \frac{1}{B} \cdot \left(b_{-2} + \frac{1}{B} \cdot \left(b_{-3} + \dots + \frac{1}{B} \cdot \left(b_{-M+1} + \frac{1}{B} \cdot b_{-M} \right) \dots \right) \right)$$

Beispiel

$$0,193_{(10)} = \frac{1}{10} \cdot \left(1 + \frac{1}{10} \cdot \left(9 + \frac{1}{10} \cdot 3 \right) \right)$$

 Auch Verwendung zur Konvertierung von anderen Systemen in das Dezimalsystem

Konvertieren echt gebrochener Zahlen (2)

- Algorithmus zur Umwandlung des Nachkommateils einer Dezimalzahl in ein Zielsystem zur Basis B:
 - x · B = y Überlauf z (z = ganzzahliger Anteil)
 - 2. Mache Nachkommaanteil von y zum neuen x
 - wenn dieses neue x ungleich 0 ist und noch nicht genügend Nachkommastellen ermittelt sind, fahre mit Schritt 1 fort,
 - sonst fahre mit Schritt 3 fort
 - 3. Schreibe die ermittelten Überläufe von oben nach unten nach 0. nebeneinander, um die entsprechende umgewandelte Zahl zu erhalten

Konvertieren echt gebrochener Zahlen (3)

Kapitel 2: Zahlendarstellung

Beispiel

 \bullet (0,34375)₁₀ = (?)₂

X		В	У		<u>Z</u>
0,34375	•	2 =	0,6875	Überlauf	0
0,6875	•	2 =	1,375	Überlauf	1
0,375	•	2 =	0,75	Überlauf	0
0,75	•	2 =	1,5	Überlauf	1
0,5	•	2 =	1,0	Überlauf	1
0,0	•	2 =	0,0	Überlauf	0

Die Überläufe z von oben nach unten geschrieben nach 0. liefern die gesuchte Dualzahl.

Ergebnis: (0,01011)₂

Konvertieren echt gebrochener Zahlen (4)

- Manche gebrochenen Zahlen, die sich exakt im Dezimalsystem darstellen lassen, lassen sich nicht ganz exakt als Dualzahl darstellen
 - Typisches Beispiel $0.1_{(10)} = 0.00110011..._{(2)}$
 - Periodische Ziffernfolge,
 Bitmuster 0011 wiederholt sich
 - Im Rechner treten
 Ungenauigkeiten auf
 - Genauigkeitsverluste bei Umwandlung

```
0,1 \cdot 2 = 0,2
                  Überl.
0,2 \cdot 2 = 0,4
                  Überl.
0,4 \cdot 2 = 0,8
                  Überl.
0,8 \cdot 2 = 1,6
                  Überl.
0,6 \cdot 2 = 1,2
                  Überl.
0,2 \cdot 2 = 0,4
                  Überl.
0,4 \cdot 2 = 0,8
                  Überl.
0.8 \cdot 2 = 1.6
                  Überl.
0,6 \cdot 2 = 1,2
                  Überl.
```

Konvertieren echt gebrochener Zahlen (5)

Kapitel 2: Zahlendarstellung

- Andersherum: Alle gebrochenen Zahlen, die sich im Dualsystem exakt darstellen lassen, lassen sich auch als Dezimalzahl exakt darstellen
- Allgemein: Eine rationale Zahl p/q mit ggT(p, q) = 1 lässt sich zur Basis b exakt darstellen, wenn alle Primfaktoren von q auch Primfaktoren von b sind

Beispiele

```
• 1/3_{(10)} = 0,333333...<sub>(10)</sub>

• 1/3_{(10)} = 0,010101...<sub>(2)</sub>

• 1/3_{(10)} = 0,1<sub>(3)</sub>

• 1/10_{(10)} = 0,1<sub>(10)</sub>

• 1/10_{(10)} = 0,000110011...<sub>(2)</sub>
```

- 3 ist kein Primfaktor von 10
- 3 ist kein Primfaktor von 2
- 3 ist ein Primfaktor von 3
- 2 und 5 sind Primfaktoren von 10
- 5 ist kein Primfaktor von 2

Aufgaben

Kapitel 2: Zahlendarstellung

- Konvertieren Sie folgende Zahlen
 - $(0,375)_{10} = \text{im Dualsystem?}$

• $(0,25)_{10}$ = im Fünfersystem?

• $(0,19)_{10}$ = im Hexadezimalsystem?

Konvertieren unecht gebrochener Zahlen

Kapitel 2: Zahlendarstellung

- Aufteilung der Zahl
 - in ihren ganzzahligen Teil
 - und ihren echt gebrochenen Teil,
 die dann getrennt von einander zu konvertieren sind.
- Beispiel

$$(12,25)_{10} = (1100,01)_{2}$$

ganzzahliger Teil

$$(12)_{10} = (1100)_{2}$$

echt gebrochener Teil

$$(0,25)_{10} = (0,01)_{2}$$

Aufgabe

Kapitel 2: Zahlendarstellung

 Geben Sie die Dezimalzahl 39,6875₍₁₀₎ in binärer sowie in hexadezimaler Form an.

