Devoir à la maison n^o 12

Problème 1 —

Partie I – Un espace vectoriel

On note E l'ensemble des applications 1-périodiques de $\mathbb R$ dans $\mathbb C$. Pour $k\in\mathbb Z$, on note e_k l'application définie par

$$\forall x \in \mathbb{R}, e_k(x) = e^{2ik\pi x}$$

Pour $n \in \mathbb{N}$, on pose $E_n = \mathrm{vect}\,((e_k)_{-n \leqslant k \leqslant n})$.

- 1. Vérifier que $e_k \in E$ pour tout $k \in \mathbb{Z}$.
- 2. Montrer que E est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{R}}$.
- $\textbf{3.} \quad \textbf{a.} \ \mathrm{Soit} \ (k,l) \in \mathbb{Z}^2. \ \mathrm{Calculer} \ \int_0^1 e_k(x) e_{-l}(x) \ dx.$

b. Soit $n \in \mathbb{N}$. Montrer que la famille $(e_k)_{-n \leqslant k \leqslant n}$ est libre.

4. Soit $n \in \mathbb{N}$. Donner la dimension de E_n .

Partie II - Un endomorphisme

Pour $f \in \mathbb{C}^{\mathbb{R}}$, on définit l'application $T(f) \in \mathbb{C}^{\mathbb{R}}$ par

$$\forall x \in \mathbb{R}, \ T(f)(x) = \frac{1}{2} \left(f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) \right)$$

- 1. Montrer que T est un endomorphisme de $\mathbb{C}^{\mathbb{R}}$.
- 2. Montrer que E est stable par T.
- 3. Soit $k \in \mathbb{Z}$. Calculer $T(e_k)$. On discutera suivant la parité de k.
- **4.** Soit $n \in \mathbb{N}$. Montrer que E_n est stable par T. On note alors T_n l'endomorphisme induit par T sur E_n .
- **5.** Soit $n \in \mathbb{N}$. Déterminer les dimensions respectives de Ker T_n et Im T_n en fonction de n. On discutera suivant la parité de n.

Partie III – Deux projecteurs

1. Soit $n \in \mathbb{N}$. Justifier qu'il existe un unique endomorphisme S_n de E_n tel que

$$\forall k \in [\![-n,n]\!], \; S_n(e_k) = \begin{cases} e_{2k} & \mathrm{si} \; |2k| \leqslant n \\ 0 & \mathrm{sinon} \end{cases}$$

- 2. Soit $n \in \mathbb{N}$. On pose $P_n = S_n \circ T_n$. Montrer que P_n est un projecteur et préciser $\mathrm{Im}(P_n)$ et $\mathrm{Ker}(P_n)$.
- $\textbf{3.} \ \mathrm{Soit} \ n \in \mathbb{N}. \ \mathrm{On \ pose} \ Q_n = T_n \circ S_n. \ \mathrm{Montrer \ que} \ Q_n \ \mathrm{est \ un \ projecteur \ et \ préciser} \ \mathrm{Im}(Q_n) \ \mathrm{et \ Ker}(Q_n).$