INVENTORS NAME: Leonard Forbes et al. DOCKET NO.: 1303.020US1

1/18

(PRIOR ART)

FIG. 1C (PRIOR ART)

FIG. 2

INVENTORS NAME: Leonard Forbes et al. DOCKET NO.: 1303.020US1

NTORS NAME: Leonard Forbes et al. DOCKET NO.: 1303.020US1 INVENTORS NAME:

NTORS NAME: Leonard Forbes et al. , DOCKET NO.: 1303.020US1 INVENTORS NAME:

9/18

INVENTORS NAME: NTORS NAME: Leonard Forbes et al. , DOCKET NO.: 1303.020US1

FIG. 6B

BARRIERS

INVENTORS NAME: Leonard Forbes et al.

, DOCKET NO .: 1303.020US1

FIG. 6D

FIG. 7B

INVENTORS NAME: Leonard Forbes et al. DOCKET NO.: 1303.020US1

	VACUUM LEVEL					
W (eV) WORK FUNCTION			ELEC	$\mathcal{X}(eV)$ IRON AFFII	NITY	-
Al ~ 4.1eV Pt ~ 5.3eV	φο					_
·		FIG.	8			
	$\mathbf{E}_{\!\mathrm{G}}$	ϵ_{r}	€∞	χ	φ _o (Pt)	$\varphi_{o}\left(Al\right)$
Conventional Insulators						
SiO ₂	~ 8 eV	4	2.25	0.9 eV		3.2 eV
Si_3N_4	~ 5 eV	7.5	3.8			2.4 eV
Metal Oxides						
Al_2O_3	7.6 eV	9 to 11	3.4			~ 2 eV
NiO						
Transition Metal Oxides						
Ta ₂ O ₅	4.65 - 4.85		4.8	3.3	2.0	0.8 eV
TiO ₂	6.8	30 80	7.8	3.9	est. 1.2 eV	
ZrO_2	5 - 7.8	18.5 25	4.8	2.5		1.4
Nb ₂ O ₅	3.1	35-50				
Y_2O_3	6		4.4			2.3
Gd_2O_3						
Perovskite Oxides						
SrBi ₂ Ta ₂ O ₃	4.1		5.3	3.3	2.0	$0.8\mathrm{eV}$
SrTiO ₃	3.3		6.1	3.9	1.4	0.2 eV
PbTiO ₃	3.4		6.25	3.5	1.8	0.6 eV
PbZrO ₃	3.7		4.8		est. 1.4 eV	0.2 eV

FIG. 9

INVENTORS NAME: Leonard Forbes et al. , DOCKET NO.: 1303.020US1

Metal	Osygen Solub.**, at. %	Oxide Stability Range***	Semicond. Type	Structure Temp.	Transform Temp., °C
Ta	0.8	TaO _{4.7-50}	n	Orthorhom.	t.p. 1350
Ti	28	${ m TiO_{3\ 82-5.0}}$	n	Rutile	m.p. 1920
Zr	29	ZrO _{3 66-5.0}	n	Monoclinic	t.p. 1170
Nb	2.3	$Nb_2O_{486-5.0}$	n	Monoclinic	m.p. 1495
Al	v. small	Al ₂ O _{2.999-3.0}	n	Corundum	m.p. 2050
Pb	v. small	PbO	(p)	Orthorhom.	m.p. 885
Si	v. small	SiO_2	n or p	Tetra. (Cyst.)	m.p. 1713

FIG. 10

Metal	From C-V	Work Function, eV From Photoresponse	From Vacuum
Cs		- I I I I I I I I I I I I I I I I I I I	2.2
Eu			2.5
Sm			2.7
Li			2.9
Ca			3.0
Al	4.1	4.1	4.25
Cu	4.7	4.7	4.25
Au	5.0	5.0	4.8
Ag	5.1	5.05	4.3
Ti			4.3
Mo			4.7
Rh			5.1
Ir			5.3
Pt			5.8
Se			5.9

FIG. 11

BARRIERS

INVENTORS NAME: Leonard Forbes et al. , DOCKET NO.: 1303.020US1

BARRIERS

INVENTORS NAME: Leonard Forbes et al. DOCKET NO.: 1303.020US1

