Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3201</u>	К работе допущен
Студенты Ткачук С.А. и Чуб Д.О.	Работа выполнена
Преподаватель Шоев В.И.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.01

Исследование распределения случайной величины

1. Цель работы

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени.

2. Задачи, решаемые при выполнении работы

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования

Случайная величина

4. Метод экспериментального исследования

Многократное измерение заданного интервала времени при помощи электронного секундомера

5. Рабочие формулы и исходные данные

Опытное значение плотности вероятности $\rho(t)$ (N - общее количество измерений, Δt - ширина интервала, ΔN - количество результатов, попавших в интервал [$t, t + \Delta t$])

$$\rho(t) = \frac{\Delta N}{N\Delta t} \quad (1)$$

Выборочное значение среднего $\langle t \rangle_N$ (N - общее количество измерений, t_i - значение случайной величины)

$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i$$
 (2)

Выборочное среднеквадратичное отклонение σ_N (N - общее количество измерений, t_i - значение случайной величины, $\langle t \rangle_N$ - выборочное значение среднего)

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$
 (3)

Максимальное значение плотности распределения p_{max} (σ - среднеквадратичное отклонение)

$$p_{max} = \frac{1}{\sigma\sqrt{2\pi}} \quad (4)$$

Плотность нормального распределения p(t) (σ - среднеквадратичное отклонение, $\langle t \rangle$ математическое ожидание)

$$p(t) = \frac{1}{\sigma\sqrt{2\pi}} exp(-\frac{(t-\langle t\rangle)^2}{2\sigma^2})$$
 (5)

Среднеквадратичное отклонение среднего значения $\sigma_{(t)}$ (N - общее количество измерений, t_i значение случайной величины, $\langle t \rangle_N$ - выборочное значение среднего)

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} \quad (6)$$

Ширина доверительного интервала $\varDelta t$ ($t_{\alpha,N}$ - коэффициент Стьюдента для доверительной вероятности α , $\sigma_{(t)}$ - среднеквадратичное отклонение среднего значения)

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} \quad (7)$$

Абсолютная погрешность Δ_x (x - измеряемая величина, $\Delta_{\bar{x}}$ - случайная погрешность, $\Delta_{\nu x}$ инструментальная погрешность)

$$\Delta_x = \sqrt{\Delta_{\bar{x}}^2 + \left(\frac{2}{3}\Delta_{\text{M}x}\right)^2} \quad (8)$$

Случайная погрешность $\Delta_{ar{x}}$ ($t_{lpha,N}$ - коэффициент Стьюдента для доверительной вероятности lpha, $\sigma_{\langle t \rangle}$ среднеквадратичное отклонение среднего значения)

$$\Delta_{\bar{x}} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} \quad (9)$$

Относительная погрешность ε_x (Δ_x - абсолютная погрешность, \bar{x} - истинное значение величины) $\varepsilon_x = \frac{\Delta x}{\bar{x}} \cdot 100\% \qquad \text{(10)}$

$$\varepsilon_x = \frac{\Delta x}{\bar{x}} \cdot 100\%$$
 (10)

6. Измерительные приборы

	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Механический секундомер	Механический	5 c	0.1 c
2	Электронный секундомер	Электронный	5 c	0.01 c

7. Схема установки

Рис. 1: схема установки: 1 - механический секундомер, 2 - электронный секундомер

8. Результаты прямых измерений и их обработки

Мы провели N=100 измерений промежутка времени в 5 секунд и результаты занесли во второй столбец **Таблицы 1**.

Nº	Результаты прямых изм	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
1	<i>t_i, c</i> 4,60	-0,40	0,16
2	5,00	0,00	0,00
3	4,78	-0,22	0,05
4	5,00	0,00	0,00
5	4,87	-0,13	0,02
6	5,07	0,07	0,02
7	5,15	0,07	0,00
8	4,78	-0,22	0,02
9			
10	5,00	0,00	0,00
11	4,93	-0,07	0,00
	5,12	0,12	0,01
12	4,81	-0,19	0,04
13	5,16	0,16	0,03
14	5,06	0,06	0,00
15	5,03	0,03	0,00
16	5,16	0,16	0,03
17	4,94	-0,06	0,00
18	4,97	-0,03	0,00
19	5,00	0,00	0,00
20	4,90	-0,10	0,01
21	4,78	-0,22	0,05
22	4,97	-0,03	0,00
23	4,93	-0,07	0,00
24	4,81	-0,19	0,04
25	5,03	0,03	0,00
26	4,90	-0,10	0,01
27	4,66	-0,34	0,12
28	5,00	0,00	0,00
29	5,00	0,00	0,00
30	5,09	0,09	0,01
31	5,19	0,19	0,04
32	4,78	-0,22	0,05
33	5,13	0,13	0,02
34	5,09	0,09	0,01
35	5,12	0,12	0,01
36	5,03	0,03	0,00
37	5,03	0,03	0,00
38	4,93	-0,07	0,00
39	4,91	-0,09	0,01
40	5,44	0,44	0,19
41	4,91	-0,09	0,01
42	5,03	0,03	0,00
43	4,94	-0,06	0,00
44	4,96	-0,04	0,00
45	4,96	-0,04	0,00
46	5,00	0,00	0,00
47	5,13	0,13	0,02
48	4,88	-0,12	0,01
49	4,66	-0,34	0,12
50	5,00	0,00	0,00

51	5,32	0,32	0,10
52	5,09	0,09	0,10
53	5,00	0,00	0,00
54	5,06	0,06	0,00
55			
	5,13	0,13	0,02
56	4,94	-0,06	0,00
57	5,00	0,00	0,00
58	5,00	0,00	0,00
59	4,78	-0,22	0,05
60	5,00	0,00	0,00
61	5,00	0,00	0,00
62	5,03	0,03	0,00
63	4,90	-0,10	0,01
64	5,13	0,13	0,02
65	5,00	0,00	0,00
66 67	5,09 4,82	0,09	0,01
67	4,82	-0,18	0,03
68	4,93	-0,07	0,00
69	5,03	0,03	0,00
70	5,10	0,10	0,01
71 72	4,81	-0,19	0,04
72	5,12	0,12	0,01
73	5,04	0,04	0,00
74	4,97	-0,03	0,00
75	5,06	0,06	0,00
76 77	5,03	0,03	0,00
77	4,97	-0,03	0,00
78	4,97	-0,03	0,00
79	5,10	0,10	0,01
80	5,25	0,25	0,06
81	4,97	-0,03	0,00
82	4,90	-0,10	0,01
83	5,03	0,03	0,00
84	5,12	0,12	0,01
85 86	5,12	0,12	0,01
86	5,13	0,13	0,02
87	4,97	-0,03	0,00
88	4,81	-0,19	0,04
89	5,12	0,12	0,01
90	4,91	-0,09	0,01
91	5,13	0,13	0,02
92	5,06	0,06	0,00
93	5,03	0,03	0,00
94	5,12	0,12	0,01
95 96	4,81	-0,19	0,04
	5,16	0,16	0,03
97	5,16	0,16	0,03
98	5,07	0,07	0,00
99	5,09	0,09	0,01
100	5,00	0,00	0,00
	$\langle t \rangle_N = 5 c$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0 \ c$	$\sigma_N = 0.13 c$ $\rho_{max} = 3.07 c^{-1}$

Среди полученных результатов найдем минимальный t_{min} и максимальный t_{max} :

$$t_{min} = 4,60 \text{ c}; \ t_{max} = 5,44 \text{ c}$$

Промежуток $[t_{min}, t_{max}]$ разобьем на m равных интервалов Δt . m должно быть целым, близким к \sqrt{N} (N - полное число измерений). У нас N равно 100, значит m возьмем равным 10, а $\Delta t = \frac{t_{max} - t_{min}}{1000} = \frac{5,44-4,60}{1000} = 0,084$

Границы выбранных интервалов занесем в первый столбец Таблицы 2.

Таблица 2: Данные для построения гистограммы

таолица 2. данные для построения гистограммы					
Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, c^{-1}	t, c	ρ , c^{-1}	
4,600	3	0.26	4.64	0.07	
4,684	3	0,36	4,64	0,07	
4,684	0	0,00	4,73	0,36	
4,768	U				
4,768	11	1,31	4,81	1,06	
4,852	11	1,51	4,01		
4,852	13	1,55	4,89	2,15	
4,936	13				
4,936	27	3,21	4,98	3,03	
5,020	27	3,21	4,30	3,03	
5,020	24	2,86	5,06	2,76	
5,104	24	2,80	3,00	2,70	
5,104	18	2,14	5,15	1,58	
5,188	10	2,14	3,13	1,50	
5,188	2	0,24	5,23	0,64	
5,272	2	0,24	3,23	0,04	
5,272	1	0,12	5,31	0,18	
5,356		0,12	3,31	0,10	
5,356	1	0,12	5,40	0,03	
5,440		U, 12	5,40	0,03	

Для каждого интервала посчитаем число результатов из **Таблицы 1** ΔN , попавших в этот интервал, и занесем полученные значения во второй столбец **Таблицы 2**.

Затем вычислим опытное значение плотности вероятности по формуле (1) и занесем в третий столбец **Таблицы 2**.

Согласно полученным значениям плотности вероятности построим гистограмму:

Рис. 1: Гистограмма распредления случайной величины

9. Расчет результатов косвенных измерений

По данным **таблицы 1** вычисляем выборочное значение среднего $\langle t \rangle_N$ по формуле (2):

$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i = \frac{1}{100} \sum_{i=1}^{100} t_i = 5 c$$

По данным **таблицы 1** вычисляем выборочное среднеквадратичное отклонение σ_N по формуле (3):

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{99} \sum_{i=1}^{100} (t_i - 5)^2} = 0.13 c$$

Запишем полученные результаты в таблицу 1.

Вычислим максимальное значение плотности распределения ρ_{max} , соответствующее $t = \langle t \rangle$, по формуле (4), и запишем в **таблицу 1**:

$$p_{max} = \frac{1}{\sigma\sqrt{2\pi}} = \frac{1}{0.13 \cdot \sqrt{2 \cdot 3.14}} = 3.07 c^{-1}$$

Найдем значения t, соответствующие серединам выбранных ранее интервалов, занесем их в четвертый столбец **Таблицы 2**. Для этих значений, используя в качестве $\langle t \rangle$ и σ параметры $\langle t \rangle_N = 5$ с и $\sigma_N = 0.13$ c, вычисляем по формуле (5):

$$p(t) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(t-\langle t \rangle)^2}{2\sigma^2}\right) = \frac{1}{0.13 \cdot \sqrt{2 \cdot 3.14}} exp\left(-\frac{(t-5)^2}{2 \cdot 0.13^2}\right)$$

Занесем эти значения в пятый столбец **Таблицы 2**. Нанесем точки, соответствующие полученным значениям p(t), на график с гистограммой, и проведем плавную кривую:

Рис. 2: Гистограмма распределения случайной величины и график нормального распределения

Таблица 3: Стандартные доверительные интервалы

	Интер	ервал, с 		ΔN	מ
	ОТ	до	ΔIV	\overline{N}	Ρ
$\langle t \rangle_N \pm \sigma_N$	4,87	5,13	77	0,77	0,683
$\langle t \rangle_N \pm 2\sigma_N$	4,74	5,26	95	0,95	0,954
$\langle t \rangle_N \pm 3\sigma_N$	4,61	5,39	98	0,98	0,997

Проверим, насколько точно выполняется в наших опытах соотношение между приближенными значениями вероятностей $P_{\sigma}\approx 0.683, P_{2\sigma}\approx 0.954, P_{3\sigma}\approx 0.997$ и долями $\frac{\Delta N_{\sigma}}{N}, \frac{\Delta N_{2\sigma}}{N}, \frac{\Delta N_{3\sigma}}{N}$. Для этого вычислим границы интервалов $[\langle t \rangle_N - \sigma_N, \langle t \rangle_N + \sigma_N], [\langle t \rangle_N - 2\sigma_N, \langle t \rangle_N + 2\sigma_N], [\langle t \rangle_N - 3\sigma_N, \langle t \rangle_N + 3\sigma_N]$:

$$\langle t \rangle_N - \sigma_N = 4,87, \langle t \rangle_N + \sigma_N = 5,13$$

 $\langle t \rangle_N - 2\sigma_N = 4,74, \langle t \rangle_N + 2\sigma_N = 5,26$
 $\langle t \rangle_N - 3\sigma_N = 4,61, \langle t \rangle_N + 3\sigma_N = 5,39$

Занесем полученные значения во 2-й и 3-й столбцы Таблицы 3.

По данным **Таблицы 1** подсчитаем количество ΔN измерений, попадающих в каждый из этих интервалов, и отношение $\frac{\Delta N}{N}$ этого количества к общему числу измерений, и занесем в **Таблицу 3**. Сравним их с соответствующими нормальному распределению значениями P вероятности $P_{\sigma}\approx 0.683, P_{2\sigma}\approx 0.954, P_{3\sigma}\approx 0.997$. Можно заметить, что полученные значения приближенно равны значениям, соответствующим нормальному распределению, что показывает универсальность стандартных значений вероятности.

Рассчитаем среднеквадратичное отклонение среднего значения по формуле (6):

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{100 \cdot 99} \cdot 1.8} = 0.013$$

Найдем табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha=0.95$:

$$t_{0.95,100} = 1,984$$

Найдем ширину доверительного интервала для измеряемого в работе промежутка времени по формуле (7):

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = t_{0.95,100} \cdot \sigma_{\langle t \rangle} = 1,984 \cdot 0,013 = 0,026$$

Запишем доверительный интервал $[\langle t \rangle - \Delta t, \langle t \rangle + \Delta t]$: [4,974; 5,026]

10. Расчет погрешностей измерений

Погрешность определения промежутка времени t связана со случайными отклонениями (время реакции) и погрешностью приборов. Поэтому для ее нахождения нужно вычислить абсолютную погрешность с учетом случайной погрешности $\Delta_{\bar{x}}$ и инструментальной погрешности Δ_{ux} . Вычислим случайную погрешность по формуле (9):

$$\Delta_{\bar{x}} = t_{\alpha,N} \cdot \sigma_{(t)} = 1,984 \cdot 0,013 = 0,026 \text{ c}$$

Инструментальная погрешность равна 0.11 с (погрешность механического секундомера и электронного), тогда по формуле (8):

$$\Delta_x = \sqrt{0.026^2 + \left(\frac{2 \cdot 0.11}{3}\right)^2} \approx 0.078 \text{ c}$$

Вычислим относительную погрешность по формуле (10):

$$\varepsilon_x = \frac{\Delta x}{\bar{x}} \cdot 100\% = \frac{0,078}{5} \cdot 100\% = 1,56\%$$

11. Окончательные результаты.

Конечный результат измерений с учетом погрешности имеет вид:

$$t = (5 \pm 0.078) c;$$
 $\varepsilon_r = 1.56\%;$ $\alpha = 0.95.$

12. Выводы и анализ результатов работы.

В ходе работы мы исследовали распределение случайной величины. Было проделано большое количество измерений (100), на их основе были построены гистограмма и график нормального распределения, которые почти полностью совпадают. Также мы получили небольшой доверительный интервал, что показывает большую точность исследований из-за множества проделанных измерений. Отсюда делаем вывод, что чем больше измерений мы проводим, тем точнее конечный результат и доверительный интервал меньше.