Initializing qubits with |00
angle

Adding Y gates changes the current state to |01
angle with a phase angle of π /2

Dirac Notation: $(Y|0\rangle)|0\rangle$

Adding H gate changes the current state to 1/ $\sqrt{2}$ ($|01\rangle$ + $|11\rangle$) with phase angle π /2

Dirac Notation: $|0\rangle$ (H $|1\rangle$)

Initialize qubits with $|01\rangle$

Adding CNOT gate has no change in the curcuit

Apply X gate changes the current state to $|11\rangle$

Dirac notation: $(X|0\rangle)|1\rangle$

Applying another CNOT gate changes the current state to $\left|01\right\rangle$

Dirac notation: CX|11
angle

1 of 5 2022-01-20, 9:01 p.m.

```
In [1]:
    from qiskit import QuantumCircuit

    circ = QuantumCircuit(2)
    circ.y(0)
    circ.i(1)
    circ.barrier()
    circ.i(0)
    circ.i(0)
    circ.measure_all()
    circ.draw('mpl')
```

Out[1]:


```
In [2]:
    circ1 = QuantumCircuit(2)
    circ1.x(1)
    circ1.barrier()
    circ1.cx(0,1)
    circ1.barrier()
    circ1.x(0)
    circ1.i(1)
    circ1.barrier()
    circ1.cx(0,1)
    circ1.cx(0,1)
    circ1.cx(0,1)
    circ1.draw('mpl')
```

Out[2]:


```
In [10]:
    from qiskit.visualization import plot_bloch_vector
    %matplotlib inline
    plot_bloch_vector([0,0,1])
```

2 of 5 2022-01-20, 9:01 p.m.

Out[10]:


```
In [11]: plot_bloch_vector([0,0,-1])
```

Out[11]:


```
In [17]: plot_bloch_vector([1,0,0])
```

3 of 5

In [18]: plot_bloch_vector([-1,0,0])

Out[18]:


```
In [19]: plot_bloch_vector([0,-1,0])
```

4 of 5 2022-01-20, 9:01 p.m.

In [20]: plot_bloch_vector([0,1,0])

Out[20]:

In []:

5 of 5