Machine Learning for Official Statistics and SDGs

Regression

Introduction

[LINEAR REGRESSION]

[LINEAR REGRESSION]

Introduction

Multivariate Linear Regression is one of the most popular tool

► Can be used with many variables

wrap-up

[LINEAR REGRESSION]

Introduction

- ► Can be used with many variables
- ► Can be used with both continuous or discrete variables (categories)

wrap-up

[LINEAR REGRESSION]

Introduction

- ► Can be used with many variables
- ► Can be used with both continuous or discrete variables (categories)
- ► Can be a very efficient tool

wrap-up

[LINEAR REGRESSION]

Introduction

- ► Can be used with many variables
- Can be used with both continuous or discrete variables (categories)
- ► Can be a very efficient tool
- ► Has to be well defined, need to verify some hypothesis

[LINEAR REGRESSION]

Introduction

- ► Can be used with many variables
- ► Can be used with both continuous or discrete variables (categories)
- ► Can be a very efficient tool
- ► Has to be well defined, need to verify some hypothesis Expressed as:

$$y = \beta_0 + x'\beta + \varepsilon$$
 $E(\varepsilon|x) = 0$

[LINEAR REGRESSION]

Introduction

Multivariate Linear Regression is one of the most popular tool

- ► Can be used with many variables
- Can be used with both continuous or discrete variables (categories)
- ► Can be a very efficient tool
- ► Has to be well defined, need to verify some hypothesis Expressed as:

$$y = \beta_0 + x'\beta + \varepsilon$$
 $E(\varepsilon|x) = 0$

with possibly many regressors x_i

[LINEAR REGRESSION: CENTERING VARIABLES]

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$
 $E(\varepsilon | x) = 0$

[LINEAR REGRESSION: CENTERING VARIABLES]

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$
 $E(\varepsilon|x) = 0$

 \triangleright β_i is the "*ceteris paribus*" marginal effect of x_i on y.

[LINEAR REGRESSION: CENTERING VARIABLES]

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$
 $E(\varepsilon | x) = 0$

- \triangleright β_i is the "*ceteris paribus*" marginal effect of x_i on y.
- \hookrightarrow when x_i increases by one unit, then y increase by β_i units.

[LINEAR REGRESSION: CENTERING VARIABLES]

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$
 $E(\varepsilon|x) = 0$

- \triangleright β_i is the "*ceteris paribus*" marginal effect of x_i on y.
- \hookrightarrow when x_i increases by one unit, then y increase by β_i units.
- \triangleright β_0 is the mean of y if all x_i are equal to zero

$$\beta_0 = E(y) - \beta_1 E(x_1) - \ldots - \beta_k E(x_k)$$

[LINEAR REGRESSION: CENTERING VARIABLES]

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$
 $E(\varepsilon|x) = 0$

- \triangleright β_i is the "*ceteris paribus*" marginal effect of x_i on y.
- \hookrightarrow when x_i increases by one unit, then y increase by β_i units.
- $ightharpoonup \beta_0$ is the mean of y if all x_i are equal to zero

$$\beta_0 = E(y) - \beta_1 E(x_1) - \ldots - \beta_k E(x_k)$$

► Centering the variables has no effect on the coefficients

$$y = \alpha_0 + \beta_1(x_1 - E(x_1)) + \ldots + \beta_k(x_k - E(x_k)) + \varepsilon \qquad E(\varepsilon | x) = 0$$

[LINEAR REGRESSION: CENTERING VARIABLES]

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$
 $E(\varepsilon|x) = 0$

- \triangleright β_i is the "*ceteris paribus*" marginal effect of x_i on y.
- \hookrightarrow when x_i increases by one unit, then y increase by β_i units.
- $ightharpoonup \beta_0$ is the mean of y if all x_i are equal to zero

$$\beta_0 = E(y) - \beta_1 E(x_1) - \ldots - \beta_k E(x_k)$$

► Centering the variables has no effect on the coefficients

$$y = \alpha_0 + \beta_1(x_1 - E(x_1)) + \ldots + \beta_k(x_k - E(x_k)) + \varepsilon \qquad E(\varepsilon | x) = 0$$

Except: α_0 is the mean of y if all x_j are equal their mean

[LINEAR REGRESSION: SCALING]

We can also scale each variable by its own standard deviation to obtain

$$y = \alpha_0 + \gamma_1 \tilde{x_1} + \ldots + \gamma_k \tilde{x_k} + \varepsilon$$
 $E(\varepsilon|x) = 0$

[LINEAR REGRESSION: SCALING]

We can also scale each variable by its own standard deviation to obtain

$$y = \alpha_0 + \gamma_1 \tilde{x_1} + \ldots + \gamma_k \tilde{x_k} + \varepsilon$$
 $E(\varepsilon|x) = 0$

where

$$\tilde{x} = \frac{x - E(x)}{\sigma_x}$$

[LINEAR REGRESSION: SCALING]

We can also scale each variable by its own standard deviation to obtain

$$y = \alpha_0 + \gamma_1 \tilde{x_1} + \ldots + \gamma_k \tilde{x_k} + \varepsilon$$
 $E(\varepsilon|x) = 0$

where

$$\tilde{x} = \frac{x - E(x)}{\sigma_x}$$

Now γ_i is the *ceteris paribus* marginal effect of \tilde{x}_i on y.

[LINEAR REGRESSION: SCALING]

We can also scale each variable by its own standard deviation to obtain

$$y = \alpha_0 + \gamma_1 \tilde{x_1} + \ldots + \gamma_k \tilde{x_k} + \varepsilon$$
 $E(\varepsilon|x) = 0$

where

$$\tilde{x} = \frac{x - E(x)}{\sigma_x}$$

- ▶ Now γ_i is the *ceteris paribus* marginal effect of \tilde{x}_i on y.
- \hookrightarrow when \tilde{x}_j increases by one standard deviation, y increases by γ_j units

[LINEAR REGRESSION: SCALING]

We can also scale each variable by its own standard deviation to obtain

$$y = \alpha_0 + \gamma_1 \tilde{x_1} + \ldots + \gamma_k \tilde{x_k} + \varepsilon$$
 $E(\varepsilon|x) = 0$

where

$$\tilde{x} = \frac{x - E(x)}{\sigma_x}$$

- ▶ Now γ_i is the *ceteris paribus* marginal effect of \tilde{x}_i on y.
- \hookrightarrow when \tilde{x}_j increases by one standard deviation, y increases by γ_j units
- ► The goal is to have variables and coefficients that are comparable

► Example on a regression model with few variables

	Est.	S.E.	t val.	p
(Intercept)	4.390	0.136	32.204	0.000
Trans	-0.002	0.001	-1.603	0.110
HighTrans	0.013	0.003	3.945	0.000
Checks	0.008	0.005	1.534	0.126
Years	0.096	0.008	11.579	0.000

Initial regression with original values

► Example on a regression model with few variables

	Est.	S.E.	t val.	р
(Intercept)	5.927	0.039	150.243	0.000
Trans	-0.002	0.001	-1.603	0.110
HighTrans	0.013	0.003	3.945	0.000
Checks	0.008	0.005	1.534	0.126
Years	0.096	0.008	11.579	0.000

Regression with centred variables

► Example on a regression model with few variables

	Est.	S.E.	t val.	p
(Intercept)	5.927	0.039	150.243	0.000
Trans	-0.243	0.152	-1.603	0.110
HighTrans	0.586	0.149	3.945	0.000
Checks	0.074	0.048	1.534	0.126
Years	0.462	0.040	11.579	0.000

Regression with scaled variables

Introduction

► Example on a regression model with few variables The goal is to have *comparable* effects (same range)

Visual regression with scaled variables

Collinearity of regressors is a big issue in regression

► Redundant predictors add more complexity than information

- ► Redundant predictors add more complexity than information
- ► Highly correlated predictors result in unstable estimation

- ► Redundant predictors add more complexity than information
- ► Highly correlated predictors result in unstable estimation
- ► Highly correlated predictors worsen predictability

- ► Redundant predictors add more complexity than information
- ► Highly correlated predictors result in unstable estimation
- ► Highly correlated predictors worsen predictability
- \hookrightarrow Correlation plot

Collinearity of regressors is a big issue in regression

- ► Redundant predictors add more complexity than information
- ► Highly correlated predictors result in unstable estimation
- ► Highly correlated predictors worsen predictability
- \hookrightarrow Correlation plot

Introduction

Which variable should be removed?

Which variable should be removed? **Variance Inflation Factor**

Which variable should be removed?

Variance Inflation Factor

Introduction

► Measure of multi-collinearity between variables

Which variable should be removed?

Variance Inflation Factor

Introduction

- ► Measure of multi-collinearity between variables
- ▶ Measure how much the variance of the coefficient of x_j is inflated due to the presence of other regressors.

Which variable should be removed?

Variance Inflation Factor

Introduction

- ► Measure of multi-collinearity between variables
- ▶ Measure how much the variance of the coefficient of x_j is inflated due to the presence of other regressors.
- ▶ VIF for x_j is calculated by running a regression of x_j on all other regressors, computing the R_i^2 and use the formula:

[PROBLEMS IN LINEAR REGRESSION]

Which variable should be removed?

Variance Inflation Factor

- ► Measure of multi-collinearity between variables
- ▶ Measure how much the variance of the coefficient of x_j is inflated due to the presence of other regressors.
- ▶ VIF for x_j is calculated by running a regression of x_j on all other regressors, computing the R_i^2 and use the formula:

$$VIF_j = \frac{1}{1 - R_i^2}$$

Introduction

[PROBLEMS IN LINEAR REGRESSION]

Which variable should be removed?

Variance Inflation Factor

- ► Measure of multi-collinearity between variables
- ▶ Measure how much the variance of the coefficient of x_j is inflated due to the presence of other regressors.
- ▶ VIF for x_j is calculated by running a regression of x_j on all other regressors, computing the R_j^2 and use the formula:

$$VIF_j = \frac{1}{1 - R_j^2}$$

 $VIF_j = 1$ indicates no collinearity; a $VIF \ge 10$ is considered as large and problematic

2 solutions to multi-colinearity:

2 solutions to multi-colinearity:

► Create new variables from the ones that are collinear

2 solutions to multi-colinearity:

- ► Create new variables from the ones that are collinear
- \hookrightarrow using *e.g.* Principal Components Analysis

2 solutions to multi-colinearity:

- ► Create new variables from the ones that are collinear
- \hookrightarrow using *e.g.* Principal Components Analysis
 - ► Remove some variables

Computing VIFs for all x_j s

Computing VIFs for all x_i s

Introduction

	Est.	S.E.	t val.	p	VIF
(Intercept)	5.93	0.04	150.24	0.00	NA
Trans	-0.24	0.15	-1.60	0.11	14.71
HighTrans	0.59	0.15	3.94	0.00	14.15
Checks	0.07	0.05	1.53	0.13	1.47
Years	0.46	0.04	11.58	0.00	1.02

Computing VIFs for all x_i s

	Est.	S.E.	t val.	p	VIF
(Intercept)	5.93	0.04	150.24	0.00	NA
Trans	-0.24	0.15	-1.60	0.11	14.71
HighTrans	0.59	0.15	3.94	0.00	14.15
Checks	0.07	0.05	1.53	0.13	1.47
Years	0.46	0.04	11.58	0.00	1.02

► *Trans* has the highest VIF

Conclusion:

Conclusion:

Omitting one variable (*Trans:*)

Conclusion:

Introduction

Omitting one variable (*Trans:*)

	Est.	S.E.	t val.	p	VIF
(Intercept)	5.93	0.04	149.79	0.00	NA
HighTrans	0.36	0.05	7.69	0.00	1.40
Checks	0.06	0.05	1.24	0.22	1.41
Years	0.46	0.04	11.63	0.00	1.02

Conclusion:

Omitting one variable (*Trans:*)

	Est.	S.E.	t val.	p	VIF
(Intercept)	5.93	0.04	149.79	0.00	NA
HighTrans	0.36	0.05	7.69	0.00	1.40
Checks	0.06	0.05	1.24	0.22	1.41
Years	0.46	0.04	11.63	0.00	1.02

▶ does not change the fit of the model

Conclusion:

Introduction

Omitting one variable (*Trans:*)

	Est.	S.E.	t val.	p	VIF
(Intercep	t) 5.93	0.04	149.79	0.00	NA
HighTran	ns 0.36	0.05	7.69	0.00	1.40
Checks	0.06	0.05	1.24	0.22	1.41
Years	0.46	0.04	11.63	0.00	1.02

- ▶ does not change the fit of the model
- does not change the coefficients of the uncorrelated regressors

Conclusion:

Introduction

Omitting one variable (*Trans:*)

	Est.	S.E.	t val.	p	VIF
(Intercept)	5.93	0.04	149.79	0.00	NA
HighTrans	0.36	0.05	7.69	0.00	1.40
Checks	0.06	0.05	1.24	0.22	1.41
Years	0.46	0.04	11.63	0.00	1.02

- ▶ does not change the fit of the model
- does not change the coefficients of the uncorrelated regressors
- ► reduces all the *VIF*s

[REAL LIFE EXAMPLE]

In real life, one may have many variables

[REAL LIFE EXAMPLE]

In real life, one may have many variables

Correlation between all numerical variables

[REAL LIFE EXAMPLE]

In real life, one may have many variables

Correlation between all numerical variables

→ Automatic selection of regressors

Classic (but still alive) methods based on the variations of RSS

Classic (but still alive) methods based on the variations of RSS

► Automatic Forward selection

Classic (but still alive) methods based on the variations of RSS

► Automatic Forward selection

Introduction

► Automatic Backward selection

Classic (but still alive) methods based on the variations of RSS

- ► Automatic Forward selection
- ► Automatic Backward selection
- ► Stepwise selection

Introduction

Classic (but still alive) methods based on the variations of RSS

- ► Automatic Forward selection
- ► Automatic Backward selection
- ► Stepwise selection

Remark:

Classic (but still alive) methods based on the variations of RSS

- ► Automatic Forward selection
- ► Automatic Backward selection
- ► Stepwise selection

Remark:

► The optimal number of regressors is unknown!

Classic (but still alive) methods based on the variations of RSS

- ► Automatic Forward selection
- ► Automatic Backward selection
- ► Stepwise selection

Remark:

- ► The optimal number of regressors is unknown!
- \hookrightarrow The number of possible combinations with k regressors is 2^k

Classic (but still alive) methods based on the variations of RSS

- ► Automatic Forward selection
- ► Automatic Backward selection
- ► Stepwise selection

Remark:

Introduction

- ► The optimal number of regressors is unknown!
- \hookrightarrow The number of possible combinations with k regressors is 2^k
- ► Compute the optimal nb of regressors before testing which regressors to include with Cross Validation

[APPLICATION ON AN EXAMPLE]

To reduce the computational burden we restrict our choice to 8 variables in the final regression.

[APPLICATION ON AN EXAMPLE]

Introduction

To reduce the computational burden we restrict our choice to 8 variables in the final regression.

Forward selection variables

Visual representation of variables used (Forward)

[APPLICATION ON AN EXAMPLE]

Introduction

To reduce the computational burden we restrict our choice to 8 variables in the final regression.

Backward selection variables

Visual representation of variables used (Backward)

► Forward & Backward selection provide different solutions:

► Forward & Backward selection provide different solutions:

► Forward & Backward selection provide different solutions:

► Great Need for Criteria

From the linear model in matrix form:

$$y = X\beta + \varepsilon$$
,

From the linear model in matrix form:

$$y = X\beta + \varepsilon$$
,

► Consider a partition of X in X_p (p + 1 regressors) and X_r (k - p - 1 regressors)

From the linear model in matrix form:

$$y = X\beta + \varepsilon$$
,

► Consider a partition of X in X_p (p + 1 regressors) and X_r (k - p - 1 regressors)

The goal is to find the "best" p-model

$$y = X_p \beta_p + \varepsilon$$

[AUTOMATIC SELECTION OF REGRESSORS]

From the linear model in matrix form:

$$y = X\beta + \varepsilon,$$

► Consider a partition of X in X_p (p + 1 regressors) and X_r (k - p - 1 regressors)

The goal is to find the "best" p-model

$$y = X_p \beta_p + \varepsilon$$

► "Best" means best in prediction

Introduction

[AUTOMATIC SELECTION OF REGRESSORS]

From the linear model in matrix form:

$$y = X\beta + \varepsilon,$$

► Consider a partition of X in X_p (p + 1 regressors) and X_r (k - p - 1 regressors)

The goal is to find the "best" p-model

$$y = X_p \beta_p + \varepsilon$$

- ▶ "Best" means best in prediction
- *→ Mean Squared Error of Prediction* or MSEP:

$$MSEP = n^{-1}E||y_{new} - X_p \widehat{\beta}_p||^2$$

[AUTOMATIC SELECTION OF REGRESSORS]

$$MSEP = n^{-1}E||y_{new} - X_p \widehat{\beta}_p||^2$$

$$= n^{-1} \left\{ E||y_{new} - X\beta||^2 + E||X\beta - X_p \widehat{\beta}_p||^2 \right\}$$

$$= (1 + (p+1)/n)\sigma^2 + (1/n)\beta'X'M_pX\beta$$

[AUTOMATIC SELECTION OF REGRESSORS]

$$MSEP = n^{-1}E||y_{new} - X_p \widehat{\beta}_p||^2$$

$$= n^{-1} \left\{ E||y_{new} - X\beta||^2 + E||X\beta - X_p \widehat{\beta}_p||^2 \right\}$$

$$= (1 + (p+1)/n)\sigma^2 + (1/n)\beta'X'M_pX\beta$$

► Mallow's
$$\mathbf{Cp} = \frac{RSS_p}{n} + \frac{2(p+1)}{n} \frac{RSS_k}{n-k-1}$$

Introduction

[AUTOMATIC SELECTION OF REGRESSORS]

$$MSEP = n^{-1}E||y_{new} - X_p \widehat{\beta}_p||^2$$

$$= n^{-1} \left\{ E||y_{new} - X\beta||^2 + E||X\beta - X_p \widehat{\beta}_p||^2 \right\}$$

$$= (1 + (p+1)/n)\sigma^2 + (1/n)\beta'X'M_pX\beta$$

- ► Mallow's $\mathbf{Cp} = \frac{RSS_p}{n} + \frac{2(p+1)}{n} \frac{RSS_k}{n-k-1}$
- ► Akaike Information Criterion (**AIC**) $\propto C_p$ for linear regression

Introduction

[AUTOMATIC SELECTION OF REGRESSORS]

$$MSEP = n^{-1}E||y_{new} - X_p \widehat{\beta}_p||^2$$

$$= n^{-1} \left\{ E||y_{new} - X\beta||^2 + E||X\beta - X_p \widehat{\beta}_p||^2 \right\}$$

$$= (1 + (p+1)/n)\sigma^2 + (1/n)\beta'X'M_pX\beta$$

- ► Mallow's $\mathbf{Cp} = \frac{RSS_p}{n} + \frac{2(p+1)}{n} \frac{RSS_k}{n-k-1}$
- ► Akaike Information Criterion (**AIC**) $\propto C_p$ for linear regression
- ► Bayesian Information Criterion (**BIC**):

$$BIC \propto \frac{RSS_p}{n} + \frac{(p+1)\log n}{n} \frac{RSS_k}{n-k-1}$$

Selection using Mallow's C_p (\rightarrow 8 variables)

Selection using Mallow's C_p (\rightarrow 8 variables)

Selection using BIC (\rightarrow 6 variables)

Selection using BIC (\rightarrow 6 variables)

[CROSS VALIDATION]

Now we can use cross Validation on all models

Now we can use cross Validation on all models

Now we can use cross Validation on all models

▶ The model selected with C_p is doing the best job

Now we can use cross Validation on all models

- ▶ The model selected with C_p is doing the best job
- \hookrightarrow Technical issue:

Introduction

Now we can use cross Validation on all models

- ▶ The model selected with C_p is doing the best job
- → Technical issue:

When using CV with stepwise selection different p-models are selected for each K-fold

Now we can use cross Validation on all models

- \blacktriangleright The model selected with C_n is doing the best job
- \hookrightarrow Technical issue:

When using CV with stepwise selection different p-models are selected for each K-fold

► Modern methods are available...

[QUIZ TIME]

[QUIZ TIME]

► In linear regression, scaling allows to compare coefficients and to measure variable importance.

- ► In linear regression, scaling allows to compare coefficients and to measure variable importance.
- ► Multi-collinearity should be investigated beforehand.

- ► In linear regression, scaling allows to compare coefficients and to measure variable importance.
- ► Multi-collinearity should be investigated beforehand.
- ightharpoonup Mallows C_p is a simple method to select regressors

- ► In linear regression, scaling allows to compare coefficients and to measure variable importance.
- ► Multi-collinearity should be investigated beforehand.
- ightharpoonup Mallows C_p is a simple method to select regressors
- ► Stepwise methods with CV have three drawbacks:

- ► In linear regression, scaling allows to compare coefficients and to measure variable importance.
- ► Multi-collinearity should be investigated beforehand.
- ightharpoonup Mallows C_v is a simple method to select regressors
- ► Stepwise methods with CV have three drawbacks:
 - ► they do not necessarily select the "best" model

- ► In linear regression, scaling allows to compare coefficients and to measure variable importance.
- ► Multi-collinearity should be investigated beforehand.
- ightharpoonup Mallows C_p is a simple method to select regressors
- ► Stepwise methods with CV have three drawbacks:
 - ► they do not necessarily select the "best" model
 - the choice of variables can be sensitive to the number of repetitions

- ► In linear regression, scaling allows to compare coefficients and to measure variable importance.
- ► Multi-collinearity should be investigated beforehand.
- ightharpoonup Mallows C_p is a simple method to select regressors
- ► Stepwise methods with CV have three drawbacks:
 - ► they do not necessarily select the "best" model
 - the choice of variables can be sensitive to the number of repetitions
 - ► Variable selection/elimination is done variable by variable (no interactions)

- ► In linear regression, scaling allows to compare coefficients and to measure variable importance.
- ► Multi-collinearity should be investigated beforehand.
- ightharpoonup Mallows C_p is a simple method to select regressors
- ► Stepwise methods with CV have three drawbacks:
 - ► they do not necessarily select the "best" model
 - the choice of variables can be sensitive to the number of repetitions
 - ► Variable selection/elimination is done variable by variable (no interactions)
- ► Other (modern) methods exist

▶ Problems when many variables are available:

- ▶ Problems when many variables are available:
 - ► Multi-collinearity

- ▶ Problems when many variables are available:
 - ► Multi-collinearity
 - ► Model complexity

wrap-up

[PENALIZATION METHODS]

- ▶ Problems when many variables are available:
 - ► Multi-collinearity
 - ► Model complexity
 - ► High variance of the estimator

- ▶ Problems when many variables are available:
 - ► Multi-collinearity
 - Model complexity
 - ► High variance of the estimator

wrap-up

[PENALIZATION METHODS]

- ► Problems when many variables are available:
 - ► Multi-collinearity
 - Model complexity
 - High variance of the estimator
- → Methods "penalizing" model complexity (over fitting)
- ► Have intensionally a **higher bias** and a **lower variance**

- ▶ Problems when many variables are available:
 - ► Multi-collinearity
 - ► Model complexity
 - ► High variance of the estimator
- → Methods "penalizing" model complexity (over fitting)
- ► Have intensionally a **higher bias** and a **lower variance**
- Solutions of a penalized least-squares problem

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i'\beta)^2 + \lambda \cdot J(\beta_1, \dots, \beta_k)$$

Introduction

- ▶ Problems when many variables are available:
 - ► Multi-collinearity
 - ► Model complexity
 - ► High variance of the estimator
- → Methods "penalizing" model complexity (over fitting)
- ► Have intensionally a **higher bias** and a **lower variance**
- ► Solutions of a penalized least-squares problem

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i'\beta)^2 + \lambda \cdot J(\beta_1, \dots, \beta_k)$$

 λ is a *hyper parameter*, $J(\cdot)$ is the penalization function

[PENALIZATION METHODS]

Introduction

- ▶ Problems when many variables are available:
 - ► Multi-collinearity
 - ► Model complexity
 - ► High variance of the estimator
- → Methods "penalizing" model complexity (over fitting)
- ► Have intensionally a **higher bias** and a **lower variance**
- ► Solutions of a penalized least-squares problem

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i'\beta)^2 + \lambda \cdot J(\beta_1, \dots, \beta_k)$$

 λ is a *hyper parameter*, $J(\cdot)$ is the penalization function NB: If $\lambda = 0$ the regression is just the classic OLS estimator

[PENALIZATION METHODS: RIDGE REGRESSION]

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda \frac{\|\beta\|^2}{2}$$

[PENALIZATION METHODS: RIDGE REGRESSION]

Ridge regression is the solution of:

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda \frac{\|\beta\|^2}{2}$$

► Ridge regression shrinks parameters towards zero and thus avoids too large parameters

[PENALIZATION METHODS: RIDGE REGRESSION]

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda \frac{\|\beta\|^2}{2}$$

- ► Ridge regression shrinks parameters towards zero and thus avoids too large parameters
- ► The solution is biased intensionally to reduce variance

[PENALIZATION METHODS: RIDGE REGRESSION]

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda \frac{\|\beta\|^2}{2}$$

- ► Ridge regression shrinks parameters towards zero and thus avoids too large parameters
- ▶ The solution is biased intensionally to reduce variance
- ► **Penalization** methods prevent these problems by "penalizing" model complexity

[PENALIZATION METHODS: RIDGE REGRESSION]

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda \frac{\|\beta\|^2}{2}$$

- Ridge regression shrinks parameters towards zero and thus avoids too large parameters
- ► The solution is biased intensionally to reduce variance
- ► **Penalization** methods prevent these problems by "penalizing" model complexity
- ► It is important to **center and scale** each of the x to ensure the comparability of β s

[PENALIZATION METHODS: RIDGE REGRESSION]

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda \frac{\|\beta\|^2}{2}$$

[PENALIZATION METHODS: RIDGE REGRESSION]

Ridge regression is the solution of:

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda \frac{\|\beta\|^2}{2}$$

► The solution (ridge estimator) is $\widehat{\beta_R} = \left(\frac{X'X}{n} + \lambda I\right)^{-1} \frac{X'y}{n}$

[PENALIZATION METHODS: RIDGE REGRESSION]

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda \frac{\|\beta\|^2}{2}$$

- ► The solution (ridge estimator) is $\widehat{\beta_R} = \left(\frac{X'X}{n} + \lambda I\right)^{-1} \frac{X'y}{n}$
- ► To compare with OLS estimator $\widehat{\beta_{OLS}} = \left(\frac{X'X}{n}\right)^{-1} \frac{X'y}{n}$

[PENALIZATION METHODS: RIDGE REGRESSION]

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda \frac{\|\beta\|^2}{2}$$

- ► The solution (ridge estimator) is $\widehat{\beta_R} = \left(\frac{X'X}{n} + \lambda I\right)^{-1} \frac{X'y}{n}$
- ► To compare with OLS estimator $\widehat{\beta_{OLS}} = \left(\frac{X'X}{n}\right)^{-1} \frac{X'y}{n}$
- \hookrightarrow When there is collinearity, X'X cannot be inverted, while if $\lambda > 0$ the matrix $(X'X + \lambda I)$ is invertible

How to choose λ ?

How to choose λ ?

▶ We compute the (CV-averaged) *RMSE* for many values of λ

How to choose λ ?

▶ We compute the (CV-averaged) *RMSE* for many values of λ

How to choose λ ?

Introduction

• We compute the (CV-averaged) *RMSE* for many values of λ

Remark: λ *is typically small, and we usually select it on the log scale.*

Ridge regression with optimal λ^*

Ridge regression with optimal λ^*

► Variance inflation factor (VIF) for this model

Ridge regression with optimal λ^*

Introduction

► Variance inflation factor (VIF) for this model

[PENALIZATION METHODS: LASSO]

LASSO or Least Absolute Shrinkage and Selection Operator, is another common penalization method, is the solution of:

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda |\beta| \qquad |\beta| = \sum_{i=1}^{k} |\beta_i|$$

[PENALIZATION METHODS: LASSO]

LASSO or Least Absolute Shrinkage and Selection Operator, is another common penalization method, is the solution of:

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda |\beta| \qquad |\beta| = \sum_{i=1}^{k} |\beta_i|$$

 \hookrightarrow If $\lambda = 0$, we obtain OLS. If $\lambda = \infty$, all parameters are zero.

[PENALIZATION METHODS: LASSO]

LASSO or Least Absolute Shrinkage and Selection Operator, is another common penalization method, is the solution of:

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda |\beta| \qquad |\beta| = \sum_{i=1}^{k} |\beta_i|$$

- \hookrightarrow If $\lambda = 0$, we obtain OLS. If $\lambda = \infty$, all parameters are zero.
- ▶ Lasso does automatic variable selection: if λ is large enough, the solution put some parameters to zero

[PENALIZATION METHODS: LASSO]

LASSO or *Least Absolute Shrinkage and Selection Operator*, is another common penalization method, is the solution of:

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda |\beta| \qquad |\beta| = \sum_{j=1}^{k} |\beta_j|$$

- \hookrightarrow If $\lambda = 0$, we obtain OLS. If $\lambda = \infty$, all parameters are zero.
- ▶ Lasso does automatic variable selection: if λ is large enough, the solution put some parameters to zero
- ► It is important to **center and scale** each of the x to ensure the comparability of β s

We compute the (CV-averaged) *RMSE* for many values of λ

We compute the (CV-averaged) *RMSE* for many values of λ

Introduction

We compute the (CV-averaged) *RMSE* for many values of λ

Remark: λ *is typically small, and we usually select it on the log scale.*

Regression with optimal λ^* for LASSO

Regression with optimal λ^* for LASSO

► Variance inflation factor (VIF) for this model

Regression with optimal λ^* for LASSO

► Variance inflation factor (VIF) for this model

000000000000

Elastic Net combines both Lasso and Ridge regression:

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} \left(y_i - \beta_0 - x_i' \beta \right)^2 + \lambda \left((1-\alpha) \frac{\|\beta\|^2}{2} + \alpha |\beta| \right)$$

Penalization Methods

000000000000

Elastic Net combines both Lasso and Ridge regression:

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} \left(y_i - \beta_0 - x_i' \beta \right)^2 + \lambda \left((1 - \alpha) \frac{\|\beta\|^2}{2} + \alpha |\beta| \right)$$

• If $\alpha = 1$ we have the Lasso estimator, if $\alpha = 0$, the Ridge regression.

[PENALIZATION METHODS: ELASTIC NET]

Elastic Net combines both Lasso and Ridge regression:

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i' \beta)^2 + \lambda \left((1 - \alpha) \frac{\|\beta\|^2}{2} + \alpha |\beta| \right)$$

- If $\alpha = 1$ we have the Lasso estimator, if $\alpha = 0$, the Ridge regression.
- ▶ Through α we balance variable selection (Lasso) and coefficient reduction (Ridge)

[ELASTIC NET IN PRACTICE]

Compute the (CV-averaged) *RMSE* on a grid of (λ , α)

[ELASTIC NET IN PRACTICE]

Introduction

Compute the (CV-averaged) *RMSE* on a grid of (λ , α)

[ELASTIC NET IN PRACTICE]

Compute the (CV-averaged) *RMSE* on a grid of (λ , α)

 \hookrightarrow Optimal value: $\alpha^* = 1 \& \lambda = 0.008 \hookrightarrow$ Lasso estimator.

[ELASTIC NET IN PRACTICE]

Compute the (CV-averaged) *RMSE* on a grid of (λ , α)

- \hookrightarrow Optimal value: $\alpha^* = 1 \& \lambda = 0.008 \hookrightarrow \text{Lasso estimator}$.
 - ► Elastic net *encompass* both Ridge and Lasso estimators.

[ELASTIC NET IN PRACTICE]

Elastic net with optimal λ^* and α^* is LASSO since $\alpha^* = 1!$

[ELASTIC NET IN PRACTICE]

Elastic net with optimal λ^* and α^* is LASSO since $\alpha^* = 1!$

► Variance inflation factor (VIF) for Elastic net

[ELASTIC NET IN PRACTICE]

Introduction

Elastic net with optimal λ^* and α^* is LASSO since $\alpha^* = 1!$

► Variance inflation factor (VIF) for Elastic net

In Machine Learning, focus on prediction (RMSE)

In Machine Learning, focus on prediction (RMSE)

► Cross-Validation performance (RMSE):

Introduction

In Machine Learning, focus on prediction (RMSE)

► Cross-Validation performance (RMSE):

Introduction

In Machine Learning, focus on prediction (RMSE)

► Cross-Validation performance (RMSE):

► LASSO is probably the best (lower RMSE)

Introduction

In Machine Learning, focus on prediction (RMSE)

► Cross-Validation performance (RMSE):

- ► LASSO is probably the best (lower RMSE)
- ► Model selected by Mallow's C_p (8 regressors) is almost as good!

[QUIZ TIME]

[QUIZ TIME]

► Penalized least-squares methods can be used with multicollinearity or with a large number of regressors.

Introduction

- ► Penalized least-squares methods can be used with multicollinearity or with a large number of regressors.
- ► All solutions of a *penalized least-squares problem*

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i'\beta)^2 + \lambda \cdot J_{\alpha}(\beta_1, \dots, \beta_k)$$

Introduction

- ► Penalized least-squares methods can be used with multicollinearity or with a large number of regressors.
- ► All solutions of a penalized least-squares problem

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i'\beta)^2 + \lambda \cdot J_{\alpha}(\beta_1, \dots, \beta_k)$$

Introduction

- ► Penalized least-squares methods can be used with multicollinearity or with a large number of regressors.
- ► All solutions of a penalized least-squares problem

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i'\beta)^2 + \lambda \cdot J_{\alpha}(\beta_1, \dots, \beta_k)$$

 λ is a *hyperparameter*, $J_{\alpha}(\cdot)$ is the penalization function

▶ It is important to **center and scale** each of the x to ensure the comparability of β s

Introduction

- ► Penalized least-squares methods can be used with multicollinearity or with a large number of regressors.
- ► All solutions of a penalized least-squares problem

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i'\beta)^2 + \lambda \cdot J_{\alpha}(\beta_1, \dots, \beta_k)$$

- ► It is important to **center and scale** each of the x to ensure the comparability of β s
- ▶ Selection of *hyper parameters* is based on CV and RMSE

Introduction

- ► Penalized least-squares methods can be used with multicollinearity or with a large number of regressors.
- ► All solutions of a penalized least-squares problem

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i'\beta)^2 + \lambda \cdot J_{\alpha}(\beta_1, \dots, \beta_k)$$

- ▶ It is important to **center and scale** each of the x to ensure the comparability of β s
- ► Selection of *hyper parameters* is based on CV and RMSE
- ► The elastic net "encompass" both Ridge and Lasso estimators.

Introduction

- ► Penalized least-squares methods can be used with multicollinearity or with a large number of regressors.
- ► All solutions of a *penalized least-squares problem*

$$\min_{\beta} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - x_i'\beta)^2 + \lambda \cdot J_{\alpha}(\beta_1, \dots, \beta_k)$$

- ► It is important to **center and scale** each of the x to ensure the comparability of β s
- ► Selection of *hyper parameters* is based on CV and RMSE
- ► The elastic net "encompass" both Ridge and Lasso estimators.
- ▶ Penalization methods are very popular in practice