CLAIMS

A method for generating a halftone from a plurality of pixels,

What is claimed is:

1.

2	comprising:
3	modulating dot density according to pixel intensity;
4	controlling dot cluster size according to pixel intensity; and
5	modulating dot size according to pixel intensity.
1	2. The method of Claim 1, wherein modulating dot density comprises
2	implementing an error diffusion algorithm that is a function, at least indirectly, of
3	pixel intensity.
1	3. The method of Claim 2, further comprising, for at least one pixel,
2	obtaining a dot density factor corresponding to the pixel's intensity, and
3	wherein implementing an error diffusion algorithm comprises implementing an
4	error diffusion algorithm that is a function, at least in part, of the dot density
5	factor.
1	4. The method of Claim 1, further comprising, for at least one pixel,
2	obtaining a cluster factor corresponding to the pixel's intensity and wherein:
3	controlling dot cluster size comprises calculating a threshold value as a
4	function, at least in part, of a dot screen and the cluster factor; and
5	modulating dot density comprises implementing an error diffusion
6	algorithm that is a function, at least indirectly, of the pixel's intensity and the
7	threshold value.
1	5. The method of Claim 4, further comprising obtaining a dot density
2	factor corresponding to the pixel's intensity, and wherein implementing an error
3	diffusion algorithm comprises implementing an error diffusion algorithm that is a
4	function, at least in part, of the dot density factor and the threshold value.

1	6. The method of Claim 2, further comprising obtaining a dot size
2	factor corresponding to the pixel's intensity and wherein:
3	implementing the error diffusion algorithm generates a dot placement
4	indicator; and
5	modulating dot size comprises generating a halftone print code as a
6	function of the dot size factor and the dot placement indicator.
1	7. The method of Claim 1, wherein for each pixel:
2	controlling a size of a dot cluster comprises obtaining a cluster factor
3	corresponding to the pixel's intensity and calculating a threshold v alue as a
4	function of a dot screen and the cluster factor;
5	modulating dot density comprises obtaining a dot density factor
6	corresponding to the pixel's intensity and implementing an error diffusion
7	algorithm that is a function of the dot density factor and the threshold value to
8	generate a dot placement factor; and
9	modulating dot size comprises obtaining a dot size factor corresponding
10	to the intensity value and generating a halftone print code as a function of the
11	dot size factor and the dot placement indicator.
1	8. The method of Claim 7, wherein:
2	obtaining a cluster factor comprises locating a first look-up table entry
3	corresponding to the pixel's intensity and acquiring the cluster factor from that
4	first entry;
5	obtaining a dot density factor comprises locating a second look-up table
6	entry corresponding to the pixel's intensity and acquiring the dot density factor
7	from that second entry; and
8	obtaining a dot size factor comprises locating a third look-up table entry
9	corresponding to the pixel's intensity and acquiring the d ot size factor from that
10	third entry.

1

2

9.

are a single look-up table entry.

The method of Claim 8, wherein the first, second, and third entries

1	10. The method of Claim 7, wherein:
2	obtaining a cluster factor comprises calculating the cluster factor
3	according to the pixel's intensity;
4	obtaining a dot density factor comprises calculating the dot density facto
5	according to the pixel's intensity; and
6	obtaining a dot size factor comprises calculating the dot size factor
7	according to the pixel's intensity.
1	11. A method for generating a halftone from a plurality of pixels,
2	comprising for at least one pixel:
3	obtaining a cluster factor corresponding to the pixel's intensity and
4	calculating a threshold value as a function of a dot screen and the cluster factor
5	obtaining a dot density factor corresponding to the pixel's intensity and
6	implementing an error diffusion algorithm that is a function of the dot density
7	factor and the threshold value to generate a dot placement factor; and
8	obtaining a dot size factor corresponding to the intensity value and
9	generating a halftone print code as a function of the dot size factor and the dot
10	placement indicator.
1	12. A computer readable medium having instructions for:
2	modulating dot density according to pixel intensity;
3	controlling dot cluster size according to pixel intensity; and
4	modulating dot size according to pixel intensity.
1	13. The medium of Claim 12, wherein the instructions for modulating
2	dot density include instructions for implementing an error diffusion algorithm
3	that is a function, at least indirectly, of pixel intensity.
``	
1	14. The medium of Claim 13, having further instructions for obtaining,
2	for at least one of a plurality of pixels, a dot density factor corresponding to the
3	pixel's intensity, and wherein the instructions for implementing an error
4	diffusion algorithm include instructions for implementing an error diffusion

algorithm that is a function, at least in part, of the dot density factor.

1	15. The medium of Claim 12, having further instructions for obtaining,
2	for at least one of a plurality of pixels, a cluster factor corresponding to the
3	pixel's intensity and wherein:
4	the instructions for controlling dot cluster size include instructions for
5	calculating a threshold value as a function, at least in part, of a dot screen and
6	the cluster factor; and
7	the instructions for modulating dot density include instructions for
8	implementing an error diffusion algorithm that is a function, at least indirectly, of
9	the pixel's intensity and the threshold value.
1	16. The medium of Claim 15, having further instructions for obtaining a
2	dot density factor corresponding to the pixel's intensity, and wher ein the
3	instructions for implementing an error diffusion algorithm include instructions for
4	implementing an error diffusion algorithm that is a function, at least in part, of
5	the dot density factor and the threshold value.
1	17. The medium of Claim 13, having further instructions for obtaining,
2	for at least one of a plurality of pixels, a dot size factor corresponding to the
3	pixel's intensity and wherein the instructions for:
4	implementing the error diffusion algorithm generates a dot placement
5	indicator; and
6	modulating dot size include instructions for generating a halftone print
7	code as a function of the dot size factor and the dot placement indicator.
1	18. The medium of Claim 12, wherein the instructions for:
2	controlling a size of a dot cluster include instructions for obtaining, for at
3	least one of a plurality of pixels, a cluster factor corresponding to the pixel's
4	intensity and calculating a threshold value as a function of a dot screen and the
5	cluster factor;
6	modulating dot density include instructions for obtaining a dot density

factor corresponding to the pixel's intensity and implementing an error diffusion

1	algorithm that is a function of the dot density factor and the threshold value to
2	generate a dot placement factor; and
3	modulating dot size include instructions for obtaining a dot size factor
4	corresponding to the intensity value and generating a halftone print code as a
5	function of the dot size factor and the dot placement indicator.
1	19. The medium of Claim 18, wherein the instructions for:
2	obtaining a cluster factor include instructions for locating a first look-up
3	table entry corresponding to the pixel's inten sity and acquiring the cluster factor
4	from that first entry;
5	obtaining a dot density factor include instructions for locating a second
6	look-up table entry corresponding to the pixel's intensity and acquir ing the dot
7	density factor from that second entry; and
8	obtaining a dot size factor include instructions for locating a third look-up
9	table entry corresponding to the pixel's inten sity and acquiring the dot size
10	factor from that third entry.
1	20. The medium of claim 19, wherein the first, second, and third
2	entries are a single look-up table entry.
1	21. The medium of Claim 18, wherein the instructions for:
2	obtaining a cluster factor include instructions for calculating the cluster
3	factor according to the pixel's intensity;
4	obtaining a dot density factor include instructions for calculating the dot
5	density factor according to the pixel's intens ity; and
6	obtaining a dot size factor include instructions for calculating the dot size
7	factor according to the pixel's intensity.
1	22. A computer readable medium having instructions for:
2	for at least one of a plurality of pixels, obtaining a cluster factor
3	corresponding to the pixel's intensity and calculating a threshold v alue as a
1	function of a dot screen and the cluster factor:

obtaining a dot density factor corresponding to the pixel's intensity and	
implementing an error diffusion algorithm that is a function of the dot density	
factor and the threshold value to generate a dot placement factor; and	
obtaining a dot size factor corresponding to the intensity value and	
generating a halftone print code as a function of the dot size factor and the dot	
placement indicator.	

23. A halftoning system, comprising:

a placement control operable to modulate a dot density according to pixel intensity and to control a size of a dot cluster according to pixel intensity; and a size control operable to modulate a dot size according to pixel intensity.

- 24. The system of Claim 23, wherein the placement control is operable to modulate a dot density by implementing an error diffusion algorithm that is a function, at least indirectly, of pixel intensity.
- 25. The system of Claim 24, further comprising a look-up table of dot density factors and a look-up table control operable to acquire a dot density factor from the look-up table, the acquired dot density factor corresponding to a given pixel's intensity, and wherein the placement control is operable to implement an error diffusion algorithm that is a function, at least in part, of the dot density factor.
 - 26. The system of Claim 23, further comprising a look-up table of cluster factors and a look-up table control operable to acquire a cluster factor from the look-up table, the acquired cluster factor corresponding to a given pixel's intensity, and wherein the placement control is operable to calculate a threshold value as a function, at least in part, of a dot screen and the cluster factor and to implement the error diffusion algorithm that is a function, at least indirectly, of the pixel's intensity and the threshold value.
- 27. The system of Claim 26, further comprising a look-up table of dot density factors and wherein the look-up table control is operable to acquire a dot

- density factor from the dot density look-up table, the acquired dot density factor corresponding to a given pixel's intensity, and wherein the placement control is operable to implement the error diffusion algorithm that is a function, at least in part, of the dot density factor and the threshold value.
 - 28. The system of Claim 24:

further comprising a look-up table of dot size factors and a look-up table control operable to acquire a dot size factor from the look-up table, the acquired dot size factor corresponding to a given pixel's intensity;

wherein the placement control is operable to implement the error diffusion algorithm to generate a dot placement indicator; and

wherein the size control is operable to modulate a dot size by generating a halftone print code as a function of the dot size factor and the dot placement indicator.

29. The system of Claim 23, wherein:

the placement control is operable to control a size of a dot cluster by calculating a threshold value as a function of a dot screen and a cluster factor corresponding to a given pixel's intensity and to modulate a dot density by implementing an error diffusion algorithm that is a function of the threshold value and a dot density factor corresponding to the pixel's intensity in order to generate a dot placement factor; and

the size control is operable to modulate a dot size by generating a halftone print code that is a function of the dot placement indicator and a dot size factor corresponding to the pixel's inten sity.

- 30. The system of Claim 29, further comprising:
- 2 a dot cluster look up table;
- 3 a dot density look-up table;
- 4 a dot size look-up table;
 - a look-up table control operable to acquire a cluster factor from the dot cluster look-up table, to acquire a dot density factor from the dot density look-up table, to acquire a dot size factor from the dot size look-up table, the look-up

1	table control operable to acquire each factor from a look-up table entry
2	corresponding to a given pixel's intensity.
1	31. The system of Claim 30 wherein the dot cluster look-up table, the
2	dot density look-up table, and the dot size look-up table are a single look-up
3	table.
1	32. The system of Claim 29, wherein:
2	the placement control is operable to generate the cluster factor and the
3	dot density factor according to the pixel's intensity; and
4	the size control is operable to generate a dot size factor according to the
5	pixel's intensity.
1	33. A halftoning system, comprising:
2	a look-up table control operable to obtain a cluster factor corresponding
3	to the intensity of a given pixel, a dot density factor corresponding to the
4	pixel's intensity, and a dot size factor corresponding to the pixel's intensity;
5	a placement control operable to calculate a threshold value as a function
6	of a dot screen and the cluster factor, and to implement an error diffusion
7	algorithm that is a function of the dot density factor and the threshold value in
8	order to generate a dot placement factor; and
9	a size control operable to generate a halftone print code as a function of
10	the dot size factor and the dot placement indicator.
1	34. The system of Claim 32, wherein the look-up table control, the
2	placement control, and the size control are programs executed by an image
3	forming device having a print engine operable to produce a halftone according to
4	the halftone print code.
1	35. An image forming device, comprising:
2	a print engine operable to receive halftone print code and to produce a

3

printed halftone;

1	a first look-up table having a plurality of entries, each entry corresponding
2	to a pixel intensity and containing a cluster factor corresponding to that pixel
3	intensity;
4	a second look-up table having a plurality of entries, each entry
5	corresponding to a pixel intensity and containing a dot density factor
6	corresponding to that pixel intensity;
7	a third look-up table having a plurality of entries, each entry
8	corresponding to a pixel intensity and containing a dot size factor corresponding
9	to that pixel intensity;
10	a look up table control operable, using a known pixel intensity, to acquire
11	corresponding cluster, dot density, and dot size factors from the first, second,
12	and third look-up tables;
13	a placement control operable to calculate a threshold value as a function
14	of a dot screen and an obtained cluster factor and to implement an error
15	diffusion algorithm that is a function of an obtained dot density factor and the
16	threshold value in order to generate a dot placement factor; and
17	a size control operable to generate and send a halftone print code to the
18	print engine, the halftone print code being generated as a function of an
19	obtained dot size factor and the dot placement indicator.
1	36. A system for generating a halftone from a plurality of pixels,
2	comprising:
3	a means for modulating dot density according to pixel intensity;
4	a means for controlling a size of a dot cluster according to pixel intensity;
5	and

a means for modulating dot size according to pixel intensity.