Methylation Sequencing Workflow

Quality Control is important!

- Relies on accurate C > T detection
- Pre-alignment:
 - Base quality
 - Trim adapters
- Right aligner for the job: Bismark, bwa, bsmap, BS-seeker, ...
- Post-alignment:
 - Incomplete conversion? Check non-CpG methylation, should be near 100%
 - Degradation? Check alignment rates and read length
 - PCR bias? Deduplicate (maybe not for RRBS)

- Nf-core pipeline: methylseq (see Thursday)
- Preprocessing + QC
 - 2 aligners: Bismark or bwa-meth/MethylDackel
 - QC: qualimap, preseq and multigc
- Output of this can be used as starting point downstream analysis

MethylKit

R package for downstream analysis of bisulfite data

Can read in Bismark coverage files as input...

Descriptive statistics

Chr Start End Methylation Prop. # mC # C 0.00000 0 chr8 3052997 3052997 1 chr8 3052998 3052998 53.26087 49 43 chr8 3068732 3068732 57.14286 6 3068733 3068733 chr8 100.00000 11 0 chr8 3089948 3089948 100.00000 5 0 chr8 3089984 3089984 100.00000 5 0

- After reading in the data...
- Distribution percentage methylation

- Equivalent to Beta value in array data
- Expect a peak at low and high ends of the distribution

Descriptive statistics

- After reading in the data...
- Coverage distribution

- Experiments that suffer from PCR duplication will have a secondary peak towards the right hand site of the histogram
- Can be used to determine filter cutoff; both very low and very high coverage

Sample Structure

CpG base correlation

Differential analysis

- Again, many choices; usually calculated by comparing the proportion of methylated Cs in a test sample relative to a control
- No replicates: Fisher's Exact Test
- Replicates:
 - Linear regression (limma as for arrays)
 - Logistic regression (works with [0-1] data)
 - Beta-binomial (deals better with count data)
- Regression models can add covariates (batch, age, sex, ...)
- Can also aggregate in regions (see tutorial)

Annotation

- How to interpret the DMR/DMPs?
- Integrate with genome annotation datasets
 - Where in relation to gene/regulatory region
 - Promoter or intron or exon?
- Genomation R package: toolkit for annotation and in bulk visualization of genomic intervals
- Tutorial: basic annotation transcripts and CpG islands
- Requires some knowledge of R (especially the GenomicRanges package)

Remarks...

- Normalization somewhat less important for bisulfite sequencing (Fisher's Exact is sensitive to sequencing depth though)
- Gene enrichment is as difficult as for arrays; not many implemented methods (rGREAT, Goseq).

Dataset

- Small dataset of mouse mammary gland cells
- 4 samples: 2 luminal, 2 basal
- Bismark coverage files

Chr	Start	End	Methylation Prop.	# mC	# C
chr8	3052997	3052997	0.00000	0	1
chr8	3052998	3052998	53.26087	49	43
chr8	3068732	3068732	57.14286	8	6
chr8	3068733	3068733	100.00000	11	0
chr8	3089948	3089948	100.00000	5	0
chr8	3089984	3089984	100.00000	5	0