Ú

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION, MUMBAI

TEACHING AND EXAMINATION SCHEME FOR POST S.S.C. DIPLOMA COURSES

COURSE NAME: DIPLOMA IN INSTRUMENTATION / DIPLOMA IN INSTRUMENTATION CONTROL

COURSE CODE: IS/IC

DURATION OF COURSE: 6 SEMESTERS WITH EFFECT FROM 2012-13

SEMESTER: SIXTH DURATION: 16 WEEKS

PATTERN: FULL TIME-SEMESTER SCHEME: G

				TE	ACHI	NG			EX	AMINA	TION	SCHEM	E			
SR. NO.	SUBJECT TITLE	Abbrev iation	SUB CODE	S	CHEM	ΙE	PAPER	TH	(1)	PR	(4)	OR	(8)	TW	⁷ (9)	SW (17600)
110.		lation	CODE	TH	TU	PR	HRS.	Max	Min	Max	Min	Max	Min	Max	Min	(17000)
1	Management \$	MAN	17601	03			1&1/2	50#*	20							
2	Process Control Systems	PCS	17663	04		02	03	100	40			25@	10			
3	Industrial Automation	IAU	17664	03		04	03	100	40	25#	10			25@	10	
4	Embedded Systems β	ESY	17658	03		02	03	100	40	50#	20			25@	10	
5	Elective (Any One)															50
	Process Automation System	PAS	17665	03		02	03	100	40					25@	10	
	Biomedical Instrumentation	BIN	17666	03		02	03	100	40					25@	10	
6	Simulation Software β	SSO	17807			02								25@	10	
7	Industrial Project β	IPR	17808			04						50#	20	50@	20	
	-	•	TOTAL	16		16		450		75		75		150		50

Student Contact Hours Per Week: 32 Hrs.

THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH.

Total Marks: 800

@- Internal Assessment, # - External Assessment, Wo Theory Examination, \$-Common to all branches, #*- Online Theory Examination,

 β - Common to ET / EJ / EN / EX / IE / DE / EV / IU / ED / EI / MU

Abbreviations: TH-Theory, TU-Tutorial, PR-Practical, OR-Oral, TW-Term Work, SW-Sessional Work.

- > Conduct two class tests each of 25 marks for each theory subject. Sum of the total test marks of all subjects is to be converted out of 50 marks as sessional work (SW).
- > Progressive evaluation is to be done by subject teacher as per the prevailing curriculum implementation and assessment norms.
- Code number for TH, PR, OR and TW are to be given as suffix 1, 4, 8, 9 respectively to the subject code.

Course Name : All Branches of Diploma in Engineering / Technology

Course Code: EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ME/PG/PT/AE/CE/CS/CR/CO/CM/IF/

CW/EE/EP/EU/CH/CT/PS/CD/ED/EI/CV/FE/IU/MH/MI/TX/TC/FG

Semester : Sixth for EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ME/PG/PT/AE/CE/CS/CR/

CO/CM/IF/CW/EE/EP/EU/CH/CT/PS/TX/TC/FG and Seventh for

MH/MI/CD/ED/EI/ CV/FE/IU

Subject Title: Management

Subject Code: 17601

Teaching and Examination Scheme:

Teac	ching Scl	neme			Examinati	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03			1&1/2	50#*				50

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

Management concepts are universal and it is a multidisciplinary subject. They are equally applicable to different types industries like Manufacturing, Service and Trade as well as different kind of business activities like industry, army, school, hospital, retail shops etc. Also, at the end of diploma course polytechnic students are expected to enter in to the Industrial Environment. This environment is altogether different and new to the students. A proper introduction and understanding of management fundamentals is therefore essential for all these students.

Contents of the this subject will enable the students to address various issues related to human resource, finance, materials, legislations etc. by use of basic principles of management. This will ensure that students will play their role effectively to enhance the quality of business output in total.

Objective:

The students will able to:

- 1. Get familiarized with environment related to business processes.
- 2. Know the management aspects of the organisations.
- 3. Understand Role & Responsibilities of a Diploma engineer.
- 4. Understand importance of quality improvement techniques.
- 5. Appreciate need and importance of safety in industries.
- 6. Understand process of Industrial finance and its management.
- 7. Know the latest trends in industrial management.

Learning Structure:

Contents: Theory

Topic and Contents	Hours	Marks
Topic 1: Overview of Business		
Specific Objectives		
State various business types and sectors		
> Describe importance of globalisation		
1.1. Types of Business		
• Service		
Manufacturing		
• Trade		
1.2. Industrial sectors Introduction to	02	04
 Engineering industry 	02	04
 Process industry 		
Textile industry		
Chemical industry		
Agro industry		
IT industry		
 Banking, Insurance, Retail, Hospitality, Health Care 		
1.3 Globalization		
 Introduction 		
 Advantages & disadvantages with respect to India 		
Topic 2: Management Process		
Specific Objectives		
State various management principles		
Describe different management functions		
2.1 What is Management?		
• Evolution		
 Various definitions of management 		
 Concept of management 		
 Levels of management 	08	08
 Administration & management 		
 Scientific management by F.W.Taylor 		
2.2 Principles of Management (14 principles of Henry Fayol)		
2.3 Functions of Management		
• Planning		
 Organizing 		
 Directing 		
 Controlling 		
Decision Making		
Topic 3: Organisational Management		
Specific Objectives		
 Compare different forms of organisation, ownership for a specific 		
business	08	08
Describe types of departmentation		
3.1 Organization :		
• Definition		

• Steps in organization		
3.2 Types of organization		
• Line		
• Line & staff		
• Functional		
• Project		
3.3 Departmentation		
By product		
By process		
By function		
3.4 Principles of Organisation		
Authority & Responsibility		
• Span of Control		
Effective Delegation		
Balance ,stability and flexibility		
Communication		
3.5 Forms of ownership		
Proprietorship		
• Partnership		
• Joint stock		
 Co-operative Society 		
• Govt. Sector		
Topic 4: Industrial Safety and Legislative Acts		
Topic 4. Industrial Safety and Degislative Acts		
Specific Objectives		
Describe types of accidents & safety measures		
 State provisions of industrial acts. 		
4.1 Safety Management		
Causes of accidents		
Types of Industrial Accidents		
 Preventive measures 	08	06
• Safety procedures		
4.2 Industrial Legislation - Necessity of Acts		
Important Definitions & Main Provisions of following acts:		
Indian Factory Act		
Workman Compensation Act		
Minimum Wages Act		
Willimidili Wages Act		
Topic 5: Financial Management (No Numerical)		
1		
Specific Objectives		
Explain functions of financial management		
> State the sources of finance & types of budgets.		
Describe concepts of direct & indirect taxes.	00	00
5.1 Financial Management- Objectives & Functions	08	08
5.2 Capital Generation & Management		
Types of Capitals - Fixed & Working		
 Sources of raising Capital - Features of Short term, Medium Term & 		
Long Term Sources		
5.3 Budgets and accounts		

 Types of Budgets Fixed & Variable Budget - Concept Production Budget - Sample format Labour Budget - Sample format Profit & Loss Account & Balance Sheet - Meaning, sample format, meaning of different terms involved. 5.4 Meaning & Examples of : Excise Tax Service Tax 		
Income TaxValue Added TaxCustom Duty		
 Topic 6: Materials Management (No Numerical) Specific Objectives Describe concept of inventory, ABC analysis & EOQ. Describe purchase functions & procedures State features of ERP & MRP 6.1. Inventory Concept, its classification, functions of inventory 6.2 ABC Analysis - Necessity & Steps 6.3 Economic Order Quantity Concept, graphical representation, determination of EOQ 6.4 Standard steps in Purchasing 6.5 Modern Techniques of Material Management Material Resource Planning (MRP) - Functions of MRP, Input to MRP, Benefits of MRP Enterprise Resource Planning (ERP) - Concept, list of modules, advantages & disadvantages of ERP 	08	08
 Specific Objectives ➤ State Principles of Quality Management ➤ Describe Modern Technique & Systems of Quality Management 7.1 Meaning of Quality Quality Management System - Activities, Benefits Quality Control - Objectives, Functions, Advantages Quality Circle - Concept, Characteristics & Objectives Quality Assurance - Concept, Quality Assurance System 7.2 Meaning of Total Quality and TQM Components of TQM - Concept, Elements of TQM, Benefits 7.3 Modern Technique & Systems of Quality Management like Kaizen,5'S',6 Sigma 7.4 ISO 9001:2000 - Benefits, Main clauses. 	06	08
Total	48	50

Learning Resources:

Books:

Sr. No	Author	Name of Book	Publisher
01	Dr. O.P. Khanna	Industrial Engineering & Management	Dhanpat Rai & Sons New Delhi
02	Banga & Sharma	Industrial Engineering & Management	Khanna Publication
03	Dr. S.C. Saksena	Business Administration & Management	Sahitya Bhavan Agra
04	W.H. Newman E. Kirby Warren Andrew R. McGill	The process of Management	Prentice- Hall

E Source:

- nptel.iitm.ac.in
- http://iete-elan.ac.in/subjects/amIndustrialMgmt.htm

Course Name : Diploma in Instrumentation / Diploma in Instrumentation Control

Course Code : IS/IC

Semester : Sixth for IS/IC

Subject Title : Process Control System

Subject Code : 17663

Teaching and Examination Scheme:

Tea	ching Sc	heme				Examination	on Scheme	
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
04		02	03	100		25@		125

NOTE:

> Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.

> Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

Process control system deals with the control of industrial processes where raw materials are procured, separated or purified to get the useful output product.

This subject deals with the arrangement of processing units such as heat exchanger, evaporators, boilers, dryers, distillation column etc. Using different instrumentation system, process variable involved in the above process are controlled.

The role of instrumentation engineers include the understanding of different control schemes such as feedback, feed forward, ratio, adaptive etc. and the selection of the appropriate controllers & control scheme for the process.

General Objectives:

The student will be able to:

- 1. Know about Process Control systems in industry.
- 2. Understand P & I diagram for different processes.
- 3. Understand control valves, controllers & DCS system.
- 4. Understand and differentiate between different advanced control schemes.
- 5. Understand different unit operations in industry.

Learning Structure:

Contents Theory:

Topic and Contents	Hours	Marks
Topic 1: Process Control System Specific Objectives: ➤ Develop control system for process ➤ Construct P & I diagram for process ➤ Discriminate human aided & automatic process control Contents: • Process Control: Process control principle-Process, Human aided control, Automatic control, Block diagram of process control system, Identification of elements, Benefits. • P & ID symbols: Diagram & their examples.	06	12
Topic 2: Control Valves Specific Objectives: Define control valve for process Differentiate different flow characteristics Select & specify the control valve Identify valve positioners 2.1 [16] Control valve: principles & construction, Flow characteristics, Control valve selection & sizing, noise-Cavitations & flashing, remedies Different types control valve (Ball valve, Globe valve, Butterfly valve, Solenoid Valve): Construction & working, 2.2 [08] Valve positioners-Definition, Necessity, types	16	24
Topic 3: Advance Control System Specific Objectives: Select advance control system for suitable process Classify different advance control system Different types of Advance control system (Block/schematic diagrams and Examples) Feed forward control-comparison with feedback control Cascade control Ratio control Selective control Adaptive control Split range control	08	08

Topic 4: Unit Operations		
Specific Objectives:		
Know different processes in Industry		
Select control system for processes		
Differentiate between different processes		
4.1 Different Unit Operations: (diagrams, principle and types) [12]		
Heat exchanger process		
Evaporation process	14	20
Boiler process		_*
Drying process		
Distillation column		
Batch process / continuous process		
4.2. [08]		
 Use of feedback, feed forward & cascade control scheme for above processes 		
Topic 5: Project Engineering		
Specific Objectives:		
 Specify Scope of Process Engineering 		
 Prepare Project Document 		
	08	12
Contents:		
Basic Engineering- Control Loop designing, Documentation, IO listing, Instrument Index Sheet, Data Sheet		
Drawing of P & I Diagrams for Boiler Instrumentation or any other		
Unit Operation		
Topic 6: Distributed Control System		
Specific Objectives:		
Select/Specify DCS system for process control application		
Know different process displays		
6.1		
• DCS: History of development, Architecture of DCS-Bock diagram,	12	24
Hierarchies of DCS, Process displays (Object, graphic, group, alarm,	12	24
event & trend display), Selection criteria of DCS system, advantages		
of DCS system		
6.2		
Communication Methods-Mod bus, Profibus, Control net, Ethernet		
Application of DCS in Cement & Thermal power industry		
(Explanation with block diagrams).		
Total	64	100

Practical:

Skills to be developed:

Intellectual Skills:

- 1. Selection of appropriate control system
- 2. Use of ISA standards
- 3. Specifying control scheme for process
- 4. Calculation of I/O for process

Motor Skills:

- 1. Drawing skills
- 2. Connection of inputs to DCS system

List of Practicals:

- 1. Identify the elements of Process Control System in laboratory.
- 2. Observe cut section of various valves, draw the sketches and understand the functioning.
- 3. Plot different control valve characteristics by using trainer setup.
- 4. Calculate Cv for valve sizing.
- 5. Understand the concept of measurement and control of temperature with proportional controller.
- 6. Understand the concept of measurement and control of temperature with PID controller.
- 7. Understand the concept of PID controller tuning by process reaction curve method.
- 8. Understand the working of cascade control/feedback control using trainer set up.
- 9. Draw and understand the control scheme for Boiler Instrumentation/Heat Exchanger using P & ID symbol.
- 10. Industrial visit to process industry to observe DCS system and study DCS simulation software

List of Laboratory Equipment:

- 1. Cut Sections of different Control valves
- 2. Control Valve characteristics trainer set-up
- 3. CV Calculation Trainer Set-up.
- 4. PID Controller Trainer Set-up.
- 5. Cascade or Feed forward Control trainer Set-up.
- 6. DCS Trainer Set-up or Simulation Software.

List of Assignments:

Visit a process industry and write a report on it.

Learning Resources:

Books:

Sr. No.	Author	Title	Publisher
1	S. K. Singh	Industrial Instrumentation & Control	Mc Graw Hill
2	C. D. Johnson	Process Control Instrumentation Technology	Prentice Hall of India
3	Beta Liptak	Process Control	Chilton Book Company
4	Andrew Williams	Process Control	Gulf Publication
5	George Stepunopolis	Chemical Process Control	Prentice Hall of India
6	Krishnakant	Computer based industrial Control	Prentice Hall of India

Websites:

http://www.engr.uconn.edu/~ewebhk/buttons/data/control/ch1.pdf http://www.pc-education.mcmaster.ca/Instrumentation/go_inst.htm wikipedia.org/wiki/Instrumentation Course Name : Diploma in Instrumentation / Diploma in Instrumentation Control

Course Code : IS/IC/IE/IU

Semester : Sixth for IS/IC/IE and Seventh for IU

Subject Title : Industrial Automation

Subject Code : 17664

Teaching and Examination Scheme:

Tea	ching Sc	heme				Examination	on Scheme	
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		04	03	100	25#	1	25@	150

NOTE:

> Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.

> Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

The subject is classified under applied technology group. It teaches the students Programmable Logic Controller (PLC) system used in automation industries for application such as pick and place, welding, spray painting, cutting, drilling, transportation of the objects etc.

This subject will explore what a PLC is , operation, usage, Instructions, hardware selection and configuration, applications, introductory programming examples and exercises and some troubleshooting hints of PLC system.

General Objectives:

The student will be able to:

- 1. Know the new advanced system used in industrial as well as at domestic level.
- 2. Identify and understand different parts of PLC and different languages used in PLC.
- 3. Select PLC hardware configuration for given application.
- 4. Prepare a Ladder logic Program for a given applications.

Learning Structure:

Theory:

Topic 1: Introduction to Automation Specific Objectives: > Understand the need of automation in industries > Understand different automation tools. Contents: 1.1 Automation – Definition, Need, Benefits, Different tools for automation [04 Marks] Topics 2: PLC Fundamentals > Know about basics of PLC. > Understand functions diff. parts of PLC. > Understand working of diff. specialty modules. 2.1 Evolution of PLC in automation, difference between relay control and PLC Control. [02 Marks] 2.2 Block diagram and description of different parts: [10 Marks]	arks
 ➤ Understand the need of automation in industries ➤ Understand different automation tools. Contents: 1.1 Automation – Definition, Need, Benefits, Different tools for automation [04 Marks] Topics 2: PLC Fundamentals ➤ Know about basics of PLC. ➤ Understand functions diff. parts of PLC. ➤ Understand working of diff. specialty modules. 2.1 Evolution of PLC in automation, difference between relay control and PLC Control. [02 Marks] 	
Topics 2: PLC Fundamentals ➤ Know about basics of PLC. ➤ Understand functions diff. parts of PLC. ➤ Understand working of diff. specialty modules. 2.1 Evolution of PLC in automation, difference between relay control and PLC Control. [02 Marks])4
 Understand functions diff. parts of PLC. Understand working of diff. specialty modules. 2.1 Evolution of PLC in automation, difference between relay control and PLC Control. [02 Marks] 	
 CPU - Function, scanning cycle, speed of execution. Power supply- function, Block diagram. 	
	16
2.3 [04 Marks]	
 Specialty I/O modules: communication module, high speed encoder, RTD input module, stepper motor control module, thermocouple module. Redundancy in PLC modules. 	

Tonic	s 3: PLC Hardware		
_	Understand the details of diff. I/O modules of PLC.		
	Understand their wiring connections.		
	Select a proper type of module for specific application.		
	belove a proper type or mount for specific approximation.		
3.1	[10 Marks]		
•	Discrete input modules:		
	> AC input modules - block diagram, description, typical wiring		
	details, specifications.		
	> DC input modules - block diagram, description, typical wiring		
	details, sinking and sourcing concept & specifications.		
•	Analog input modules- block diagram, description, typical	10	22
	interfacing of input devices & specifications.	10	
3.2	[12 Marks]		
•	Discrete output modules:		
	➤ AC output modules - block diagram, description, typical wiring,		
	and specifications.		
	> DC output modules - block diagram, description, typical wiring		
	details, sinking and sourcing connections & specifications.		
	Relay and Isolated o/p modules. (Only Description)		
•	Analog output modules- block diagram, description, typical wiring		
	details & specifications.		
•	I/O module selection criterion.		
Tonic	s 4: PLC Instruction Set		
	Get familiar with the instruction set of PLC system.		
	Understand the I/O addressing of PLC.		
4.1	[04 Marks]		
•	I/O addressing of PLC.		
•	Relay type instructions - NO, NC, One shot, Latch, and Unlatch.		
4.2	[08 Marks]		
•	Timer instructions - On delay timer, off delay timer, Retentive timer,		
	and Timer reset.	1.0	22
•	Counter instructions - up counter, down counter, high speed counter,	10	22
	counter reset.		
4.3	[04 Marks]		
•	Comparison instructions – Equal, Not equal, Greater, Greater than		
	equal, Less, Less than equal.		
•	Data handling instructions – Move, Masked Move, and Limit test.		
•	Logical instructions – AND, OR, EX-OR, NOT.		
4.4	[06 Marks]		
•	Miscellaneous instructions – Sequencer instructions, scale with		
	parameter, subroutine and PID instructions.		
Topic	5: PLC Programming and Applications		
_			
	Understand different programming languages of PLC		
	Develop programming skills using simple programming examples.	12	24
	Prepare ladder program for different industrial applications.	12	∠ '1
5.1	[04 Marks]		
•	Different PLC programming languages (only introduction) - FBD,		
	Instruction list, structured text, sequential function chart, and ladder		

logic.		
[08 Marks]		
Simple programming examples using ladder programming language		
based on relay, timer, counter, logical, comparison, Data handling and	d	
miscellaneous instruction.		
[12 Marks]		
 Application development based on description such as- 		
Motor sequence control.		
Traffic light control.		
➤ Elevator control.		
➤ Tank level control.		
Reactor control.		
Conveyor system.		
Stepper motor control. (Any specific application can be		
considered in each above area to develop a ladder program)		
Speed Control of AC/ DC Motor using Programmable Drives		
Topics 6: Installation and Troubleshooting		
To understand installation details of PLC system.		
To troubleshoot the PLC system for different faults.		
6.1 [06 Marks]	06	12
PLC installation- enclosures, rack, master control relay, grounding,		
noise suppression, maintenance guidelines.		
6.2 [06 Marks]		
PLC troubleshooting- input and output troubleshooting using module	:	
LED status, troubleshooting of ladder program.		
Tot	al 48	100

Practical:

Skills to be developed:

Intellectual Skills:

- 1. To understand PLC structure.
- 2. To interpret the results from observations and calculations.
- 3. Logical thinking
- 4. Software development
- 5. Programming using ladder language

Motor Skills:

- 1. Proper handling of instruments.
- 2. Measuring physical quantities accurately.
- 3. Observational Skills

List of Practical:

- 1. Verify functions of logic gates by using PLC.
- 2. Ladder program for Start stop logic using two inputs.
- 3. Ladder program for push to start and push to stop. (Use single Push Button)
- 4. Ladder program for blinking of LED's.
- 5. Write and verify ladder program for sequential ON-Off control of Lamps.
- 6. Write and verify ladder program for sequential control of DC motors.
- 7. Write and verify ladder program for stepper motor.

- 8. Use of Timers for Traffic Control.
- 9. Use of counters for pulse counting using limit switch/ proximity sensor.
- 10. Interfacing of thermocouple/RTD as an analog sensor with PLC.
- 11. Design of temperature On-Off control loop using PLC.
- 12. Use of PID control for Temperature control loop.
- 13. Use of sequencer instructions for stepper motor control.
- 14. Development of ladder program for washing system.
- 15. Development of ladder program for automated parking system.
- 16. Design of PLC based application using conveyor system.
- 17. Design of PLC based application using Elevator system.
- 18. Development of ladder program for security Gate to record entry and exit of employee and visitors
- 19. Speed Control of AC/DC Motor using Programmable drives

List of Laboratory equipment:

- Programmable Logic controllers from standard vendors.
- IEC 1131-3 compatible programming software.
- Limit switches, proximity switches, push buttons, Relays, Lamps.
- Single phase motor, 24V-DC motor, solenoid Valve, Fan, Heater.
- Setup for actual working processes (No simulation)
 - a) Temperature control loop b) conveyor system

List of Assignments:

• Simple and Application programming examples from Chapter 5.

Learning Resources:

Books:

Sr. No.	Author	Author Title	
1	Gary Dunning	Intro. To Programmable logic control	Cenage Learning
2	F.D. Petruzella	Programmable logic controllers (Third edition)	Tata- McGraw-Hill
3	NIIT	Programmable Logic control principles and applications.	
4	John Hackworth and Federic Hackworth	Programmable logic controllers	Pearson education
5	Jon Stenerson	Jon Stenerson Industrial automation and process control	
6	V. R. Jadhav	Programmable logic controllers	Khanna Publishers

Websites:

- www.learningpit.com for download of trial version of PLC simulation software.
- www.plctutor.com for PLC tutorials.

Course Name : Electronics Engineering Group

Course Code : ET/EN/EX/EJ/IE/IS/IC/DE/EV/MU/IU/ED/EI

Semester : Sixth for ET/EN/EX/EJ/IE/IS/IC/DE/EV/MU and Seventh for IU/ED/EI

Subject Title : Embedded System

Subject Code : 17658

Teaching and Examination Scheme:

Teac	hing Scl	neme	Examination Scheme					
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100	50#		25@	175

NOTE:

> Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.

> Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

In the age of computer we are surrounded by the Embedded System - at home, office, colleges, canteen, toys, cell phones, transit, aerospace technology, military application. Out of millions of processor manufactured every year, nearly 95% processors are used in Embedded System. The Embedded Systems design is with or without OS. Most of them are Real Time Embedded Systems.

Due to such tremendous growth of Embedded Systems in recent years, one needs to be familiar with its design aspects, characteristics. Also the knowledge and programming of Real Time Embedded System is must. This subject is the advanced part of the subject Microcontroller.

General Objectives:

- 1. Differentiate and decide the architectures of processors for application.
- 2. Define communication media.
- 3. Design and development of small Embedded Systems.
- 4. Development of software.
- 5. Understand architecture of RTOS.

Learning Structure:

Application

Theory:

Topic and Contents	Hours	Marks
Topic 1: Architecture of Microprocessor and Microcontroller		
Specific Objectives:		
Study of Architecture of microcontroller 89C51.		
Distinguish Microprocessor and Microcontroller architectures.		
Contents:		
1.1 Architecture of Microcontroller 89C51		
GPR, SFR		
 Address, Data & Control bus generation. 		
 Memory structure (Data and Program memory) 	08	08
 IO Ports, Interrupts, 	08	08
 Timer/Counter, Serial Communication 		
1.2 Block diagram and description of architectures of Processors:		
 Von Neumann 		
 Harvard 		
• RISC		
• CISC		
• DSP		
Multi Core Processor		
Topic 2: Programming Microcontroller 89C51 with 'C'		
Use Integrated Development Tools		
Develop Program logic with 'C'.		
Contents:		
2.1 Software Development Tools: Operation and selection (08 Marks)		
 Integrated Development Environment (IDE): Cross-Complier, 		
Emulator and Flash/OTP Programmer.		
 In-Circuit Emulator (ICE), debugger, JTAG port 		
 Embedded C: Assembly Language V/S Embedded C. 		
 Programming Microcontroller 89C51 with C. 		
 'C' Compiler for Microcontroller 89C51: SPJ Systems, Keil 	12	24
 Program downloading tools: ISP/IAP 		
2.2 Programming with 'C': (16 Marks)		
 Input/output operation. 		
Bit/Byte operations.		
 Arithmetic and Logical operations on data. 		
Time delay routines.		
Timer/Counter operations.		
• Generation of patterns on port lines.		
Serial Communication.		
• Use of Assembly Instruction in 'C' program.		
Topic 3: Communication Protocols		
 Use of communication modes and protocols. 		
Contents:		
 Need of communication interface in embedded system. 		
Serial V/S Parallel Communication, Synchronous V/S Asynchronous	06	16
Communication		
 RS232: DB9-pin functions, MAX 232, MAX 233, Microcontroller 		
8051 connection with RS232 and RS485		
Communication protocols		
	1	1

Topic 4: I/O Interfacing ➤ Interface different devices to Microcontroller 89C51. ➤ Develop logic of program to work with different devices. Contents: Interfacing: • Interfacing Keys, LEDs and relay and its programming with 'C'. • Interfacing LCD and its programming with 'C'. • Interfacing ADC and its programming with 'C'. • Interfacing DAC and its programming with 'C'. • Interfacing DAC and its programming with 'C' for generation of different patterns. • Interfacing DC Motor and its programming with 'C'. • Interfacing DC Motor and its programming with 'C'. Topic 5: Embedded System Design ➤ Classify and specify characteristics of embedded system. Contents: • Embedded System: Introduction, block diagram, applications, advantages and disadvantages. • Classification of Embedded System: Small scale, medium scale, sophisticated, stand-alone, reactive/real time (soft and hard real time), Networked, Mobile, Single functioned, Tightly constrained, • Design Metrics/Specifications/Characteristics of Embedded System: Processor power, memory, operating system, Reliability, performance, power consumption, NRE cost, unit cost, size, flexibility, time-to-prototype, time-to-market, maintainability, correctness and safety. Topic 6: Real Time Operating System ➤ Define, understand and classify operating system. ➤ Define, describe and applications of real time operating system.	10	24
 Classify and specify characteristics of embedded system. Embedded System: Introduction, block diagram, applications, advantages and disadvantages. Classification of Embedded System: Small scale, medium scale, sophisticated, stand-alone, reactive/real time (soft and hard real time), Networked, Mobile, Single functioned, Tightly constrained, Design Metrics/Specifications/Characteristics of Embedded System: Processor power, memory, operating system, Reliability, performance, power consumption, NRE cost, unit cost, size, flexibility, time-to-prototype, time-to-market, maintainability, correctness and safety. Topic 6: Real Time Operating System Define, understand and classify operating system. 		
Topic 6: Real Time Operating System ➤ Define, understand and classify operating system.	06	12
Contents: Operating System: Operating System, functions of operating system. Architecture of Real Time Operating System (RTOS). Scheduling architecture. Multitasking. Share data problem. Semaphore. Dead lock. Inter-task Communication.	06	16

Intellectual Skills:

- 1) Use IDE for Microcontroller programming with 'C'.
- 2) Develop Logic of program.
- 3) Write 'C' Program.

Motor Skills:

- 1) Use of IDE for Microcontroller programming.
- 2) Interface Microcontroller Evaluation boards & peripherals.

List of Practical:

- 1. Develop and execute C language program to input and output operation via ports of 8051.
- 2. Develop and execute C language program for arithmetic and logical operations.
- 3. Develop and execute C language program to blink a LED connected on port pin. Use assembly language instructions to generate delay.
- 4. Develop and execute C language program to generate square wave on port of 8051.
- 5. Develop and execute C language program to read the status of key and turn ON/OFF a LED connected to port pins of 8051.
- 6. Develop and execute C language program to ON/OFF a bulb through a relay connected to port pin of 8051.
- 7. Interface 16 x 2 LCD to 8051. Develop and execute C language program to display string on it.
- 8. Interface a 4 x 4 matrix keyboard and 16 x 2 LCD to 8051. Develop and execute C language program to read and display key code on LCD.
- 9. Interface 8 bit ADC and 16 x 2 LCD to 8051. Develop and execute C language program to read and display data of ADC on LCD.
- 10. Interface a 8 bit DAC to 8051. Develop and execute C language program to generate square, ramp and triangular waveforms.
- 11. Interface stepper motor to 8051. Develop and execute C language program to rotate stepper motor with different speed in clockwise and counter clockwise direction.

Learning Resources:

1. Books:

Sr. No.	Author	Title	Publisher
1	Frank Vahid & Tony Givargis	Embedded System Design A Unified Hardware/Software Introduction	Wiley
2	Raj Kamal	Embedded System Architecture, Programming and Design	Tata McGraw Hill
3	Dr K.V.K.K. Prasad	Embedded/Real-Time Systems: Concept, Design & Programming	Dreamtech Press
4	Jean J Labrosse	Micro C/OS-II The Real Time Kernel	CPM Books
5	Mazidi, Mazidi & McKinlay	The 8051 Microcontroller and Embedded System Using Assembly and C	Prentice Hall
6	Ajay V. Deshmukh	Microcontrollers (Theory and Applications)	Tata McGraw Hill

2. Websites:

- 1) http://developer.apple.com/documentation/mac/devices-313.html
- 2) http://en.wikipedia.org/wiki/Integrated development environment.
- 3) http://en.wikipedia.org/wiki/communication protocol.
- 4) http://en.wikipedia.org/wiki/RS-232.
- 5) http://en.wikipedia.org/wiki/Embedded system.
- 6) http://en.wikipedia.org/wiki/Real time operating system.

Course Name : Diploma in Instrumentation / Diploma in Instrumentation Control

Course Code : IS/IC Semester : Sixth

Subject Title : Process Automation System (Elective)

Subject Code : 17665

Teaching and Examination Scheme:

Teaching Scheme						Examination	on Scheme	
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100			25@	125

NOTE:

> Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.

> Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

The technology is changing very fast & it is essential that the subject content should keep pace with it. Contents of this subject are focused on advances in process automation system in general and DCS and SCADA in particular.

The architecture developed for process control over the years includes distributed digital control, distributed SCADA system, multiprocess architecture with network concepts. Beyond this, modern process control system present a wealth of further functions which allows the safe, secure and efficient operation of an automated plant and which deliver significant benefits to the plant owner and operator. For Instrumentation and Electronics students, modern process control system offers a variety of valuable career options, hence the subject Distributed Control System is introduced. Knowledge of PLC and Process control is essential to understand the subject.

General Objectives:

The student will be able to:

- 1. Understand modern process automation system.
- 2. Know the functions of Distributed Control System.
- 3. Develop the system architecture (Hardware and software)
- 4. Understand the use of networking and communication in process automation.

Learning Structure:

Theory:

Topic and Contents	Hours	Marks
Topic 1: Evolution of Process Automation System		
Specific Objectives:		
Identify process control system.		
Explain the role of PLC, SCADA and DCS.		
Contents:	04	10
 Process Control & Process Automation – Scope and Application 		
Evolution of PLC, Supervisory Control and Data Acquisition		
(SCADA) and Distributed Control System (DCS.)		
Evolution of Process Automation System.		
Topic 2: System Architecture		
> Use of MES, Batch, and Historian.		
Compare Different internationally recognized process automation		
systems.		
Specific Objectives:		
DCS System architecture of a typical process automation system.		
 Study of functions of each block. 	08	16
 Field device management-transmitters, motors, energy monitoring. 		
 Process operation monitoring, process Automation, process control. 		
 Plant –MES, Batch, Historian. 		
• Enterprise- Integration with Enterprise Resource Planning (ERP).		
• Comparative study of any three internationally recognized Process automation systems.		
Topic 3: Field Device Management		
Specific Objectives:		
> Describe intelligent transmitters and Buses.		
 Program for intelligent motor control. 		
> Interface of final control element and DCS		
 Intelligent transmitters – Field buses –HART, foundation fieldbus, 	00	1.6
Profibus PA, Modbus, Asi bus.(Defination, features and applications	08	16
)		
 Intelligent motor control-Modbus, can open, Profibus DP, Device 		
net.(concept)		
 Energy monitoring-Power monitors, intelligent relays. 		
 Final control elements - On-Off valves, control valves, 		
VFD's(interface of these devices with process automation software)		
Topic 4: Controllers and I/O		
Specific Objectives:		
> Select appropriate CPU		
Explain Safety controllers.		4.5
➤ Identify in-rack and remote I/O	04	10
Selection criteria for CPU based on Execution speed, memory, I/O		
Handling Capacity, Networking capabilities, communication.		
 Concept of Hot standby architecture. 		

O.C.AA. II OH		
Safety controllers-SIL		
In-rack and remote I/O		
• Features of Input and output devices used in hazardous areas.		
Topic 5: Control System Networks		
Specific Objectives:		
by differentiate between proprietary and open network		
> Identify different network components.		
Select network components and appropriate topologies.	0.0	4.2
	08	16
Proprietary and open networks		
Profibus, Controlnet, Ethernet TCP/IP, Wireless.		
Ethernet network topologies- Bus, Star and Ring.		
 Network cabling- Copper, co axial, fiber optics. 		
Features and characteristics of all above		
Topic 6: Engineering and Operating Workstations		
Specific Objectives:		
> Draw and explain schematic of PC workstations, servers and		
operating systems		
Interpret process visualization(graphical representation)		
> Identify techniques for data handling.		
Use system diagnostics and security features.		
Program for DCS system		
DCS Programming (Using IEC 1131-3 Compatible Software):		
• Functions of engineering and operating stations.	12	20
DCI 1 1		
Local operator stations for use in safe and hazardous area		
Process visualization(graphic displays)		
Alarm management		
Real time and historical trending.		
• Event logs		
System Diagnostics		
Security levels for Access		
Topic 7: Applications in Process Industry		
Specific Objectives:		
Develop system architecture using system description.		
Continuous process plant - Refinery, petrochemical	04	12
Batch process plant - Food and beverage		
Develop the modular programs for different stages for shows		
Develop the modular programs for different stages for above processes	10	100
Total	48	100

Practical:

Skills to be developed:

Intellectual Skills:

- 1. Understanding the DCS structure.
- 2. Interpretation of results from observations and calculations.
- 3. Development of simple programs for DCS applications.

Motor Skills:

- 1. Configuration of Controller.
- 2. Interconnection of various DCS components.
- 3. Software troubleshooting.

List of Practical:

- 1. Learning of DCS Software (IEC1131-3compatible) architecture Basic functions and utililities.
- 2. Learning of DCS software configuration for programming and communication.
- 3. Temperature control loop using FBD programming.
- 4. Motor Speed control using FBD programming.
- 5. SFC programming for Temperature control loop.
- 6. Instruction listing for Temperature control loop.
- 7. SFC programming for Motor speed control.
- 8. Instruction listing for Motor speed control.
- 9. Exercise on alarm management.
- 10. Exercise on DCS report generation.

List of Assignments:

- 1. Develop system architecture for a given application.
- 2. Study of communication cables, their construction, adapters, and connections techniques for different types of buses.

Learning Resources:

Books:

Sr. No.	Author	Title	Publisher
01		Practical Distributed control system (DCS) for Engineers and technicians.	IDC Technologies. www.idc-online.com
02	Martin Hollender	Collaborative Process Automation Systems	ISA
03	Michal P. Lukas	Distributed Control System.	
04	S. K. Singh	Industrial Instrumentation and Control	РНІ

Websites:

- www.idc-online.com
- http://www.abautomation.in/

List of Laboratory equipment

- IEC 1131- 3 Compatible Software
- Two PLC's, sensors and Transmitters, PC server, Two work Stations
- Temperature Control Loop, VFD, Single phase Motor

Course Name: Diploma in Instrumentation / Diploma in Instrumentation Control

Course Code : IS/IC Semester : Sixth

Subject Title : **Biomedical Instrumentation (Elective)**

Subject Code : 17666

Teaching and Examination Scheme:

Tea	ching Sc	ng Scheme Examination Scheme			on Scheme			
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100			25@	125

NOTE:

> Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.

> Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

The human body generates various types of signals within it, which are indicators of various activities taking place inside the body.

Biomedical Instrumentation will help to understand, interpret the various signals originating in the human body.

The subject provides basic knowledge of human physiology, how signals from the body are picked up, basic building blocks of the instruments that processes these signals which provide vital diagnostic information such as: ECG machine, EEG machine, CAT, X-ray machine, etc.

General Objectives.

The student will be able to:

- 1. Study different organs of human body with neat & labeled diagram.
- 2. Understand the bioelectric signals & measurement of heart, brain & muscle signals for diagnosis.
- 3. Understand the need & working of life support equipments.
- 4. Know about Electrical safety to avoid accidents.

Learning Structure

Theory:

Topic and Contents	Hours	Marks
Topic 1] Fundamentals of Physiology		
Specific Objectives:		
Draw, label and explain the working of man instrument system		
➤ List and explain the problems encountered during measurement of		
important parameters of living system		
> Draw, label, describe functioning of cardiovascular system, nervous		
system, respiratory system and kidneys.		
Contents:		
 Man - instrument system: - components, block diagram & working. 	1.4	2.4
• Cardiovascular system: - structure of heart, cardiovascular	14	24
circulation, electrical conduction system of heart, generation of heart		
sound, importance of cardiac output.		
 Respiratory system: - physiology of respiratory system, mechanism of breathing, lung volumes & capacities. 		
 Nervous system: - structure and functioning of neurone. Structure of 		
brain, functions of cerebrum, cerebellum, pons, mid brain, medulla		
oblongata, thalamus, hypothalamus, Spinal cord. Neuronal		
communication diagram and description.		
• Kidney: - structure, functions & operation.		
Topic 2] Bioelectric Signals & Electrodes		
Specific Objectives:		
State origin of bio electric signal.		
Define action and resting potentials.		
> Draw, label and describe working of various electrodes used in		
biomedical applications.		
Contents:		
 Resting & action potentials with schematic diagrams 		
Electrode electrolyte interface with schematic diagram	10	1.0
 Construction and diagram of various electrodes used for measuring 	12	18
ECG, EEG & EMG - Microelectrodes, surface electrodes (suction cup		
electrode, Disposable electrode, Floating type electrode, Metal Disk		
electrode) & needle electrodes.		
• ECG system: - block diagram, working, leads - unipolar, bipolar,		
typical electrocardiogram and its details, technical specification.		
• EMG system: - define electromyography, block diagram, working,		
and technical specification.		
 EEG: Define electroencephalogram, block diagram working, specification. Waveforms and description of various stages of sleep 		
Topic 3] Measurement of Heart Sound, Blood Pressure, Respiration		
Rate, Blood Flow.		
Specific Objectives:		
Define pressure, flow and state its units.	05	16
Describe the working of sphygmomanometer with the help of		
schematic diagram.		
Draw the diagram and explain the working of spirometer.		
List the methods used for measurement of blood flow.		

Contents:		
Measurement of heart sound using phonocardiograph.		
• Principle of blood pressure measurement, list only the names of direct		
& indirect method of blood pressure measurement. Schematic diagram		
and working of sphygmomanometer.		
Measurement of respiration rate - Spirometer (diagram, construction)		
and working).		
• Measurement of blood flow - plethysmograph, electromagnetic,		
ultrasonic method (diagram, construction and working).		
Topic 4] Life support equipments		
Specific Objectives:		
Define fibrillation of heart.		
> State the need of defibrillator.		
➤ Give classification of peacemakers.		
➤ Write technical specifications of pacemaker, dialysis machine and		
defibrillators.		
Contents:	06	16
• Defibrillator - concept of fibrillation, defibrillation. Types of		
defibrillators, dc defibrillation (diagram, working, output waveforms),		
electrodes used - paddle electrodes, specification of defibrillator.		
Pacemaker: - Concept of Pacemaker. Types of Pacemaker - internal &		
external, working of various pacing modes. Block diagram of		
Pacemaker and its working, specification.		
• Dialysis machine - need, function; block diagram, working,		
specification.		
Topic 5] Imaging systems		
Specific Objectives:		
List the applications of X ray, CT scan and ultrasonography machine		
in biomedical field.		
Describe the working of CT scan machine		
> State the principle of Ultrasonography machine.		
Contents:	0.6	1.0
• X-ray: - principle of X rays, block diagram of X ray machine,	06	18
working, image intensifier schematic diagram and working,		
application of X ray machine, specification of X ray machine.		
• CAT- principle of CT scan, block diagram, working, applications and		
specification.		
Ultrasonography - principle of ultrasonography, its block diagram,		
workings, specification and applications. Various mode (A, B & M		
mode)		
Topic 6] Laboratory equipments & patient safety		
Specific Objectives:		
Enlist the equipments used in the laboratory of a hospital.		
Define micro shock & macro shock.		
State the patient safety precautions.	05	08
. Said the patient surery productions.		00
Contents:		
Laboratory equipment		
• Centrifuge, autoclave, incubator, deionizer - principle of operation,		
- Centuringe, autociave, incubator, deformed - principle of operation,		

applications.		
Patient safety		
Safety:- micro shock & macro shock, effects of leakage current on		
human body, types of leakage current, precaution to minimize electric		
shock hazards & leakage current.		
TOTAL	48	100

Practical:

Skills to be developed

Intellectual Skills:

- 1. Select electrodes, understand placement of electrodes / leads on human body
- 2. Appropriate use of various medical instruments
- 3. Understand & follow patient safety measures

Motor Skills:

- 1. Connect the equipment properly.
- 2. Make accurate measurements.
- 3. Take the output of equipment on recorder.

List of Practicals:

- 1. Study construction details, applications of various electrodes used in measurement of various physiological parameters.
- 2. Plot the electrocardiogram by using ECG machine.
- 3. Plot electromyogram using EMG system.
- 4. Plot phonocardiogram using phonocardiograph.
- 5. Plot spirogram using spirometer.
- 6. Measurement of blood pressure by using sphygmomanometer.
- 7. Study defibrillator. Compare various fibrillation waveforms with normal ECG equipments.waveform.
- 8. Prepare a report on visit to Hospital for various biomedical equipment such as CT scan, Ultrasonography, X-ray machine and laboratory

List of assignments (Compulsory):

Write any four assignments from the list given below:

- 1. With the help of neat and labeled diagram explain: cardiovascular circulation, structure of neuron, structure of nephrone, mechanism of breathing, structure of Kidney.
- 2. State two functions of each: Cerebrum, cerebellum, Medulla oblongata, Spinal cord.

- 3. With the help neat and labeled diagram explain action potential and resting potential.
- 4. With the help of neat and labeled diagram explain the working of phonocardiograph, along with output waveform.
- 5. State various pacing modes used in pacemaker.
- 6. List any eight precautions to minimize electrical shock hazard.
- 7. State two applications of each: Centrifuge, Autoclave, Deionizer, Incubator.

Learning Resources:

Books:

Sr. No.	Author	Title	Publisher	
1	Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer	Biomedical Instrumentation & Measurements	РНІ	
2	R. S. Khandpur	Handbook of Biomedical Instrumentation	Tata McGraw Hill	
3	John G. Webster, Editor	Medical Instrumentation- Application & Design	Wiley India Pvt. Ltd.	
4	Carr Joseph J., Brown J.M	Introduction to Biomedical Equipments Technology	Pearson Education, Delhi	
5	Scott Mathur	Textbook of Biomedical Instrumentation	CBS	
6	Mandeep Singh	Introduction to Biomedical Instrumentation	РНІ	
7	R. Anananatarajan	Biomedical Instrumentation & Measurements	РНІ	

Websites:

en.wikipedia.org/wiki/topic name

List of equipments:

- 1. Electrodes used for measurement of ECG, EEG, EMG.
- 2. ECG machine.
- 3. EMG machine.
- 4. Phonocardiograph machine.
- 5. Respiration rate meter.
- 6. Digital Storage Oscilloscope.

Course Name : Electronics Engineering Group

Course Code : ET/EN/EX/EJ/IE/IS/IC/DE/EV/MU/IU/ED/EI

Semester : Sixth for ET/EN/EX/EJ/IE/IS/IC/DE/EV/MU and Seventh for IU/ED/EI

Subject Title : Simulation Software

Subject Code : 17807

Teaching and Examination Scheme:

Teac	ching Scl	neme	Examination Scheme					
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
		02					25@	25

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

Recent development in technology has put a lot of emphasis on awareness of analytical tools available in the market. The ready to use library functions available in different simulation software enable the user to design circuits without knowing the complex mathematical details. Under this subject students will be taught softwares like Labview & MATLAB which are commonly used by electronics engineers, worldwide.

General Objectives:

Students will be able to:

- 1. Learn the use of various library functions available in the software.
- 2. Construct given circuit diagram using these library functions.
- 3. Study the working of the circuit for various inputs.

Learning Structure:

List of Experiments

- 1. Verify simple mathematical operations of all elements in row/column vector. Using MATLAB
 - a. Sum
 - b. Mean
 - c. Length
 - d. Max
 - e. Min
 - f. Prod
 - g. Sign
 - h. Round
 - i. Sort
 - j. Fix
- 2. Use commands to
 - a. convert centigrade to Fahrenheit
 - b. Given the radius of circle. Find the circumference & its area
- 3. Calculate the output for all the eight conditions of A,B,C

- 4. Use of commands to
 - a. Find the determinant, inverse & transpose of the given 2X2 matrix
 - b. Evaluate the following expression

$$Y = 1 + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{3}$$

5. Calculate the natural frequency of oscillators for the given RLC circuit. Assume L=0.01mH, R=100 Ω & C varying from 0.1 to 0.5 in steps of 0.1 μ F using following equation

$$F = \sqrt{\frac{1}{4C} - \frac{R^2}{4C^2}}$$

6. A series R-L-C circuit connected across 100V peak, 50 Hz supply, consists of R=10 Ω , L=0.2H, C=100 μ F. Write a MATLAB script to determine the resonant frequency & current at resonance

[hint:
$$f = \frac{1}{2\pi\sqrt{RC}}$$
; $I = \frac{V}{R}$; $Vrms = \frac{Vpp}{\sqrt{2}}$]

- 7. Connect three sine wave sources of given amplitude and frequency but with a phase shift of 0, $2\pi/3$,and $2\pi/3$ to a 3X1 multiplexer and observe the waveforms on scope. Also, de multiplex these waveforms and observe on the scope.
- 8. Create a VI that produces a sine wave with a specified frequency and displays the data on a Waveform chart until stopped by the user.

- 9. Simulation of amplitude and frequency modulation
- 10. Design a low pass filter with R= 1 K Ω and C = 0.1 μ F and calculate the cut off frequency.

Course Specific Simulation Programs (using either Matlab / Labview / Open source free downloadable software)

For Instrumentation Course

- 1. Observe step & impulse response of first & second order system & calculate time response parameters- t_d , t_r , t_p , M_p , t_s , e_{ss}
- 2. Characteristics equation of a system is given by S⁵+2S⁴+4S³+8S²+3^S+1 Check their stability with routh Hurwitz criterion
- 3. Observe the characteristics of linear, equal percentage and quick opening control valves

For Electronics and Industrial Electronics Course

- 1. Simulation of R-L-C series circuit
- 2. Single phase half wave phase controlled converter
- 3. Observe step & impulse response of first & second order system

For Medical Electronics Course

- 1. Calculate Body Mass Index, given the height and weight
- 2. Given the Heart Rate and display whether the person is having trachicardia and bradicardia
- 3. Design a scope for patient monitoring with at least four different parameters and observe the waveform by changing these parameters.

For EJ/ET/EX/EV Courses

- 1. Simulation of Sampling theorem
- 2. Simulation of Amplitude shift keying
- 3. Simulation of TDM

Course Name: Electronics Engineering Group

Course Code : ET/EN/EJ/IE/IS/IC/DE/EV/MU/IU/ED/EI

Semester : Sixth for ET/EN/EX/EJ/IE/IS/IC/DE/EV/MU and Seventh for IU/ED/EI

Subject Title : Industrial Project

Subject Code : 17808

Teaching and Examination Scheme:

Tea	ching Sc	heme		Examination Scheme				
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
		04		1	1	50#	50@	100

Rationale:

Diploma holder need to be capable of doing self-Study throughout their life as the technology is developing with fast rate. Student will be able to find out various sources of technical information and develop self-study techniques to prepare a project and write a project report.

This subject is intended to teach students to understand facts, concepts and techniques of electrical equipments, its repairs, fault finding and testing, estimation of cost and procurement of material, fabrication and manufacturing of various items used in electrical field. This will help the students to acquire skills and attitudes so as to discharge the function of supervisor in industry and can start his own small-scale enterprise.

Objectives:

The students will be able to,

- 1. Work in Groups, Plan the work, and Coordinate the work.
- 2. Develop leadership qualities.
- 3. Analyse the different types of Case studies.
- 4. Develop Innovative ideas.
- 5. Develop basic technical Skills by hands on experience.
- 6. Write project report.
- 7. Develop skills to use latest technology in Electronics field.

Contents:

During fifth semester students will collect information, analyse the information and select the project. They will also prepare the List of the components required, PCB design, Testing

Procedure, Design of the Cabinet or Box or Board as the case may be. They will also prepare a synopsis of the project.

So at sixth semester they have to execute the project. A tentative Schedule is proposed below:

Proposed Schedule:	Weeks
Procuring components, component testing and circuit testing	02
PCB making and onboard testing	06
Trouble shooting and cabinet making	04
Documentation	04

References: Books/Magazines:

Name of the Magazines

- 1. Industrial Automation
- 2. Electronics for You
- 3. Electronics Projects
- 4. Computer World
- 5. Chip
- 6. Any Journal Related to Electronics/Computer/Information Technology

Website:

Using any search engine, such as http://www.google.co.in/ the relevant information can be searched on the Internet.