Variational inference Scalable solutions

Helge Langseth and Thomas Dyhre Nielsen

Oct. 2018

Introduction

Plan for this weeks

- Day 1: Bayesian networks Definition and inference
 - Definition of Bayesian networks: Syntax and semantics
 - Exact inference
 - Approximate inference using MCMC
- Day 2: Variational inference Introduction and basis
 - Approximate inference through the Kullback-Leibler divergence
 - Variational Bayes
 - The *mean-field* approach to Variational Bayes
- Day 3: Variational Bayes cont'd
 - Solving the VB equations
 - Introducing Exponential families
- Day 4: Scalable Variational Bayes
 - Variational message passing
 - Stochastic gradient ascent
 - Stochastic variational inference
- Day 5: Current approaches and extensions
 - Variational Auto Encoders
 - Black Box variational inference
 - Probabilistic Programming Languages

VB w/ MF: algorithm

Algorithm:

- We have observed X = x, and have access to the full joint p(z, x).
- We posit a *variational family* of distributions $q_j(\cdot | \lambda_j)$, i.e., we choose the distributional form, while wanting to optimize the parameterization λ_j .
- The posterior approximation is assumed to factorize according to the mean-field assumption, and we use the $\mathrm{KL}\left(q(\mathbf{z})||p(\mathbf{z}\,|\,\mathbf{x})\right)$ as our objective.

Algorithm:

Repeat until negligible improvement in terms of $\mathcal{L}\left(q\right)$:

- For each *j*:
 - Calculate $\mathbb{E}_{q_{\neg j}}\left[\log p(\mathbf{z}, \mathbf{x})\right]$ using current estimates for $q_i(\cdot \mid \boldsymbol{\lambda}_i), i \neq j$.
 - Choose λ_j so that $q_j(z_j | \lambda_j) \propto \exp \left(\mathbb{E}_{q_{\neg j}} \left[\log p(\mathbf{z}, \mathbf{x}) \right] \right)$.
- Calculate the new $\mathcal{L}(q)$.

As we realized last time, calculations of $\mathbb{E}_{q_{-j}}[\log p(\mathbf{z},\mathbf{x})]$ and $\mathcal{L}(q)$ are quite tedious – and apparently must be done separately for each model we make.

This harms the applicability of variational inference, even under the quite restrictive mean field assumption.

The Exponential Family

Definition of ExpFam models

Consider a distribution $f_{\mathbf{X}}(\mathbf{x} | \boldsymbol{\theta})$, and assume it can be written as:

$$f_{\mathbf{X}}(\mathbf{x} \mid \boldsymbol{\eta}) = \exp\left(h(\mathbf{x}) + \boldsymbol{\eta}^{\mathsf{T}} \mathbf{t}(\mathbf{x}) - A(\boldsymbol{\eta})\right)$$

Here $h(\mathbf{x})$ is the log base measure, η the natural parameters, $\mathbf{t}(\mathbf{x})$ the sufficient statistics, and $A(\eta)$ the log partition function.

Positives with the Exponential Family:

- It is the only family of distributions with finite-sized sufficient statistics*;
- It is the only family of distributions that has conjugate priors;
- It simplifies the operations of variational inference;
- It has simple mathematical procedures for calculating moments, MLEs, Bayesian posteriors, . . .

Examples

Distributions that are in the ExpFam family of distributions, and therefore have a shared overarching theory include Bernoulli, Gamma, Normal, Poisson, χ^2 , Beta, Dirichlet, Categorical, Multinomial, and Wishart.

^{*} Under certain regularity conditions...

Variational message passing

Referring to the conditioning parameters as parents, consider a conditional distribution in exponential form

$$\log f(x \mid \mathrm{pa}(x)) = h_x(x) + \boldsymbol{\eta}_X(\mathrm{pa}(x))^{\mathsf{T}} \mathbf{t}_x(x) - A_x(\mathrm{pa}(x))$$

Referring to the conditioning parameters as parents, consider a conditional distribution in exponential form

$$\log f(x \mid \mathrm{pa}(x)) = h_x(x) + \boldsymbol{\eta}_X(\mathrm{pa}(x))^{\mathsf{T}} \mathbf{t}_x(x) - A_x(\mathrm{pa}(x))$$

with a child y also in exponential form:

$$\log f(\mathbf{y} \mid x, \operatorname{cp}(x)) = h_{\mathbf{y}}(\mathbf{y}) + \eta_{\mathbf{y}}(x, \operatorname{cp}(x))^{\mathsf{T}} \mathbf{t}_{\mathbf{y}}(\mathbf{y}) - A_{\mathbf{y}}(x, \operatorname{cp}(x))$$

Referring to the conditioning parameters as parents, consider a conditional distribution in exponential form

$$\log f(x \mid \mathrm{pa}(x)) = h_x(x) + \boldsymbol{\eta}_X(\mathrm{pa}(x))^{\mathsf{T}} \mathbf{t}_x(x) - A_x(\mathrm{pa}(x))$$

with a child y also in exponential form:

$$\log f(\mathbf{y} \mid x, \operatorname{cp}(x)) = h_{\mathbf{y}}(\mathbf{y}) + \boldsymbol{\eta}_{\boldsymbol{\eta}}(x, \operatorname{cp}(x))^{\mathsf{T}} \mathbf{t}_{\mathbf{y}}(\mathbf{y}) - A_{\mathbf{y}}(x, \operatorname{cp}(x))$$

Conjugacy

Conjugacy requires that $\log f(x \mid \mathbf{pa}(x))$ and $\log f(y \mid x, \operatorname{cp}(x))$ have the same functional form wrt. x and so the latter can be written as:

$$\log f(\mathbf{y} \mid x, \operatorname{cp}(x)) = \eta_{\mathbf{x}\mathbf{y}}(\mathbf{y}, \operatorname{cp}(x))^{\mathsf{T}} \mathbf{t}_{\mathbf{x}}(x) - A_{\mathbf{x}\mathbf{y}}(\mathbf{y}, \operatorname{cp}(x))$$

Referring to the conditioning parameters as parents, consider a conditional distribution in exponential form

$$\log f(x \mid \mathrm{pa}(x)) = h_x(x) + \boldsymbol{\eta}_X(\mathrm{pa}(x))^{\mathsf{T}} \mathbf{t}_x(x) - A_x(\mathrm{pa}(x))$$

with a child y also in exponential form:

$$\log f(\mathbf{y} \mid x, \operatorname{cp}(x)) = h_{\mathbf{y}}(\mathbf{y}) + \boldsymbol{\eta}_{y}(x, \operatorname{cp}(x))^{\mathsf{T}} \mathbf{t}_{\mathbf{y}}(\mathbf{y}) - A_{y}(x, \operatorname{cp}(x))$$

Conjugacy

Conjugacy requires that $\log f(x \mid \mathbf{pa}(x))$ and $\log f(y \mid x, \operatorname{cp}(x))$ have the same functional form wrt. x and so the latter can be written as:

$$\log f(\mathbf{y} \mid x, \operatorname{cp}(x)) = \boldsymbol{\eta}_{x\mathbf{y}}(\mathbf{y}, \operatorname{cp}(x))^{\mathsf{T}} \mathbf{t}_x(x) - A_{x\mathbf{y}}(\mathbf{y}, \operatorname{cp}(x))$$

- $\log f(y | x, \operatorname{cp}(x))$ is linear in $\mathbf{t}_x(x)$ and $\mathbf{t}_y(y)$ (and in $\mathbf{t}_z(z)$ for any $z \in \operatorname{cp}(x)$).
- $\rightsquigarrow \log f(y \mid x, \operatorname{cp}(x))$ is a multi-linear function

The Conjugate Exponential Family: Example

Assume that X is normal distributed with mean m and precision b:

$$\log f(x \mid m, b) = \underbrace{-\frac{1}{2} \log(2\pi)}_{h(x)} + \underbrace{\begin{bmatrix} b \cdot m \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x \\ x^2 \end{bmatrix}}_{\eta(m, b)^{\mathsf{T}}} - \underbrace{\begin{pmatrix} b \cdot m^2 \\ 2 \end{pmatrix} - \frac{1}{2} \log b}_{A(\eta(m, b))}$$

The Conjugate Exponential Family: Example

Assume that X is normal distributed with mean m and precision b:

$$\log f(x \mid m, b) = \underbrace{-\frac{1}{2} \log(2\pi)}_{h(x)} + \underbrace{\begin{bmatrix} b \cdot m \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x \\ x^2 \end{bmatrix}}_{\boldsymbol{\eta}(m, b)^{\mathsf{T}}} - \underbrace{\begin{pmatrix} b \cdot m^2 \\ 2 \end{pmatrix} - \frac{1}{2} \log b}_{A(\boldsymbol{\eta}(m, b))}$$

Normal prior for mean

We can then express $f(x \mid m, b)$ in terms of m as

$$\log f(x \mid m, b) = -\frac{1}{2} \log(2\pi) + \begin{bmatrix} b \cdot x \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} m \\ m^2 \end{bmatrix} - \left(\frac{b \cdot x^2}{2} - \frac{1}{2} \log b \right)$$

Thus, conjugacy implies that the prior distribution over m is a normal distribution.

The Conjugate Exponential Family: Example

Assume that X is normal distributed with mean m and precision b:

$$\log f(x \mid m, b) = \underbrace{-\frac{1}{2} \log(2\pi)}_{h(x)} + \underbrace{\begin{bmatrix} b \cdot m \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x \\ x^2 \end{bmatrix}}_{\boldsymbol{\eta}(m, b)^{\mathsf{T}}} - \underbrace{\begin{pmatrix} b \cdot m^2 \\ 2 \end{pmatrix} - \frac{1}{2} \log b}_{A(\boldsymbol{\eta}(m, b))}$$

Normal prior for mean

We can then express f(x | m, b) in terms of m as

$$\log f(x \,|\, m,b) = -\frac{1}{2} \log(2\pi) + \begin{bmatrix} b \cdot x \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} m \\ m^2 \end{bmatrix} - \left(\frac{b \cdot x^2}{2} - \frac{1}{2} \log b \right)$$

Thus, conjugacy implies that the prior distribution over m is a normal distribution.

Gamma prior for precision

We can also express f(x | m, b) in terms of b:

$$\log f(x \,|\, m,b) = -\frac{1}{2}\log(2\pi) + \begin{bmatrix} -\frac{1}{2}(x-m)^2 \\ \frac{1}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b \\ \log(b) \end{bmatrix} - 0$$

Thus, implying that b follows a gamma distribution.

Structure of Variational Message Passing

Variational message passing

Variational message passing is a variational-based inference algorithm for Bayesian networks:

- Applies to conjugate-exponential models (can be generalized to non-conjugate models)
- Works by sending local messages between nodes in the graphical model.

Advantage

No need for the tedious model-specific variational derivations that we saw during the last lecture.

VMP basis

Given a Bayesian network that factorizes according to

$$p(x_i, \dots x_n) = \prod_{i=1}^{N} p(x_i \mid pa(x_i))$$

we saw last time that the mean-field approximation for a variable X_j is given by

$$\log q(x_j) = \mathbb{E}\left[\sum_{i=1}^N \log p\left(x_i \mid \operatorname{pa}(x_i)\right)\right] + c$$

$$= \mathbb{E}\left[\log p\left(x_j \mid \operatorname{pa}(x_j)\right)\right] + \mathbb{E}\left[\sum_{\boldsymbol{y} \in \operatorname{ch}(\boldsymbol{x}_j)} \log p\left(\boldsymbol{y} \mid x_j, \operatorname{cp}(x_j)\right)\right] + c'$$

VMP basis

Given a Bayesian network that factorizes according to

$$p(x_i, \dots x_n) = \prod_{i=1}^{N} p(x_i \mid pa(x_i))$$

we saw last time that the mean-field approximation for a variable X_j is given by

$$\log q(x_j) = \mathbb{E} \left[\log p\left(x_j \mid \mathrm{pa}(x_j)\right) \right] + \mathbb{E} \left[\sum_{\boldsymbol{y} \in \mathrm{ch}(\boldsymbol{x}_j)} \log p\left(\boldsymbol{y} \mid x_j, \mathrm{cp}(x_j)\right) \right] + c'$$

Therefore, the only contributions to $q(x_j)$ come from

- X_j 's parents through the term $\mathbb{E}\left[\log p\left(x_j\mid \mathrm{pa}(x_j)\right)\right]$.
- X_j 's children through the term $\mathbb{E}\left[\sum_{y\in\operatorname{ch}(x_i)}\log p\left(y\mid\operatorname{pa}(y)\right)\right]$.
- X_j 's co-parents through the term $\mathbb{E}\left[\sum_{\pmb{y}\in\operatorname{ch}(\pmb{x_i})}\log p\left(\pmb{y}\,|\,x_j,\operatorname{cp}(x_j)\right)\right]$.

This is exactly **the Markov Blanket** for X_j , which we also exploited during Gibbs sampling and our previous VI derivations.

VMP expressed in exponential form

The distributions involved in the mean-field approximation for variable X_j

$$\log q(x_j) = \mathbb{E}\left[\log p\left(x_j \mid \operatorname{pa}(x_j)\right)\right] + \mathbb{E}\left[\sum_{\boldsymbol{y} \in \operatorname{ch}(\boldsymbol{x}_j)} \log p\left(\boldsymbol{y} \mid x_j, \operatorname{cp}(x_j)\right)\right] + c'$$

can be expressed in exponential form:

- $\bullet \log p(x_j \mid \operatorname{pa}(x_j)) = h_{X_j}(x_j) + \boldsymbol{\eta}_{X_j}(\operatorname{pa}(x_j))^\mathsf{T} \mathbf{t}(x_j) A_{X_j}(\boldsymbol{\eta}_{X_j}(\operatorname{pa}(x_j))$
- $\bullet \log p(\mathbf{y} \mid x_j, \operatorname{cp}(x_j)) = h_Y(\mathbf{y}) + \boldsymbol{\eta}_Y(x_j, \operatorname{cp}(x_j))^{\mathsf{T}} \mathbf{t}(\mathbf{y}) A_Y(\boldsymbol{\eta}_Y(x_j, \operatorname{cp}(x_j)))$

VMP expressed in exponential form

The distributions involved in the mean-field approximation for variable X_j

$$\log q(x_j) = \mathbb{E}\left[\log p\left(x_j \mid \operatorname{pa}(x_j)\right)\right] + \mathbb{E}\left[\sum_{\boldsymbol{y} \in \operatorname{ch}(\boldsymbol{x}_j)} \log p\left(\boldsymbol{y} \mid x_j, \operatorname{cp}(x_j)\right)\right] + c'$$

can be expressed in exponential form:

$$\bullet \ \log p(x_j \mid \mathrm{pa}(x_j)) = h_{X_j}(x_j) + \boldsymbol{\eta}_{X_j}(\mathrm{pa}(x_j))^\mathsf{T} \mathbf{t}(x_j) - A_{X_j}(\boldsymbol{\eta}_{X_j}(\mathrm{pa}(x_j))$$

•
$$\log p(\mathbf{y} \mid x_j, \operatorname{cp}(x_j)) = h_Y(\mathbf{y}) + \boldsymbol{\eta}_Y(x_j, \operatorname{cp}(x_j))^\mathsf{T} \mathbf{t}(\mathbf{y}) - A_Y(\boldsymbol{\eta}_Y(x_j, \operatorname{cp}(x_j)))$$

Due to conjugacy, we can rewrite $\log p(y | x_j, \operatorname{cp}(x_j))$ in terms of $\operatorname{\mathbf{t}}(x_j)$:

$$\log p(\mathbf{y} \mid x_j, \operatorname{cp}(x_j)) = \boldsymbol{\eta}_{X_j, Y}(\mathbf{y}, \operatorname{cp}(x_j))^\mathsf{T} \mathbf{t}(x_j) - A_{X_j, Y}(\boldsymbol{\eta}_{X_j, Y}(\mathbf{y}, \operatorname{cp}(x_j))$$

Thus, we end up with:

$$\log q(x_j) = \mathbb{E}\left[h_{X_j}(x_j) + \boldsymbol{\eta}_{X_j}(\operatorname{pa}(x_j))^{\mathsf{T}}\mathbf{t}(x_j) - A_{X_j}(\boldsymbol{\eta}_{X_j}(\operatorname{pa}(x_j)))\right]$$

$$+ \mathbb{E}\left[\sum_{\boldsymbol{Y} \in \operatorname{ch}(\boldsymbol{x}_j)} \boldsymbol{\eta}_{X_j,Y}(\boldsymbol{Y},\operatorname{cp}(x_j))^{\mathsf{T}}\mathbf{t}(x_j) - A_{X_j,Y}(\boldsymbol{\eta}_{X_j,Y}(\boldsymbol{Y},\operatorname{cp}(x_j)))\right] + c'$$

VMP expressed in exponential form

The distributions involved in the mean-field approximation for variable X_j

$$\log q(x_j) = \mathbb{E}\left[\log p\left(x_j \mid \operatorname{pa}(x_j)\right)\right] + \mathbb{E}\left[\sum_{\boldsymbol{y} \in \operatorname{ch}(\boldsymbol{x}_j)} \log p\left(\boldsymbol{y} \mid x_j, \operatorname{cp}(x_j)\right)\right] + c'$$

can be expressed in exponential form:

- $\bullet \log p(x_j \mid \operatorname{pa}(x_j)) = h_{X_j}(x_j) + \boldsymbol{\eta}_{X_j}(\operatorname{pa}(x_j))^{\mathsf{T}} \mathbf{t}(x_j) A_{X_j}(\boldsymbol{\eta}_{X_j}(\operatorname{pa}(x_j)))$
- $\bullet \log p(\mathbf{y} \mid x_j, \operatorname{cp}(x_j)) = h_Y(\mathbf{y}) + \eta_Y(x_j, \operatorname{cp}(x_j))^{\mathsf{T}} \mathbf{t}(\mathbf{y}) A_Y(\eta_Y(x_j, \operatorname{cp}(x_j)))$

Due to conjugacy, we can rewrite $\log p(y \mid x_j, \operatorname{cp}(x_j))$ in terms of $\operatorname{\mathbf{t}}(x_j)$:

$$\log p(\mathbf{y} \mid x_j, \operatorname{cp}(x_j)) = \boldsymbol{\eta}_{X_j, Y}(\mathbf{y}, \operatorname{cp}(x_j))^{\mathsf{T}} \mathbf{t}(x_j) - A_{X_j, Y}(\boldsymbol{\eta}_{X_j, Y}(\mathbf{y}, \operatorname{cp}(x_j))$$

Rearranging and absorbing into constant \emph{c} gives:

$$\log q(x_j) = \left[\mathbb{E}(\boldsymbol{\eta}_{X_j}(\mathrm{pa}(x_j))) + \sum_{\boldsymbol{Y} \in \mathrm{ch}(\boldsymbol{x}_j)} \mathbb{E}(\boldsymbol{\eta}_{X_j,Y}(\boldsymbol{Y},\mathrm{cp}(x_j))) \right]^{\mathsf{T}} \mathbf{t}(x_j) + h_{X_j}(x_j) + c$$

Calculating the expectations in VMP

We have:

$$\log q(x_j) = \left[\mathbb{E}(\boldsymbol{\eta}_{X_j}(\mathrm{pa}(\boldsymbol{x}_j))) + \sum_{\boldsymbol{Y} \in \mathrm{ch}(\boldsymbol{x}_j)} \mathbb{E}(\boldsymbol{\eta}_{X_j,Y}(\boldsymbol{Y},\mathrm{cp}(\boldsymbol{x}_j))) \right]^{\mathsf{T}} \mathbf{t}(x_j) + h_{X_j}(x_j) + c$$

As seen before, both $\eta_{X_j}(\mathrm{pa}(x_j))$ and each $\eta_{X_j,Y}(y,\mathrm{cp}(x_j)))$ are multi-linear functions of the natural statistics vectors of their dependent variables, hence:

$$\begin{split} &\mathbb{E}(\boldsymbol{\eta}_{X_j}(\operatorname{pa}(x_j))) = \tilde{\boldsymbol{\eta}}_{X_j}(\{\mathbb{E}(\mathbf{t}(X_i))\}_{X_i \in \operatorname{pa}(X_j)}) \\ &\mathbb{E}(\boldsymbol{\eta}_{X_jY}(\mathbf{y},\operatorname{cp}(x_j))) = \tilde{\boldsymbol{\eta}}_{X_j,Y}(\mathbb{E}(\mathbf{t}(\mathbf{Y})),\{\mathbb{E}(\mathbf{t}(X_i))\}_{X_i \in \operatorname{cp}(X_j)}). \end{split}$$

Calculating the expectations in VMP

We have:

$$\log q(x_j) = \left[\mathbb{E}(\boldsymbol{\eta}_{X_j}(\mathrm{pa}(x_j))) + \sum_{\boldsymbol{Y} \in \mathrm{ch}(\boldsymbol{x}_j)} \mathbb{E}(\boldsymbol{\eta}_{X_j,Y}(\boldsymbol{Y},\mathrm{cp}(x_j))) \right]^{\mathsf{T}} \mathbf{t}(x_j) + h_{X_j}(x_j) + c$$

As seen before, both $\eta_{X_j}(\mathrm{pa}(x_j))$ and each $\eta_{X_j,Y}(y,\mathrm{cp}(x_j)))$ are multi-linear functions of the natural statistics vectors of their dependent variables, hence:

$$\begin{split} &\mathbb{E}(\boldsymbol{\eta}_{X_j}(\operatorname{pa}(x_j))) = \tilde{\boldsymbol{\eta}}_{X_j}(\{\mathbb{E}(\mathbf{t}(X_i))\}_{X_i \in \operatorname{pa}(X_j)}) \\ &\mathbb{E}(\boldsymbol{\eta}_{X_jY}(\mathbf{y},\operatorname{cp}(x_j))) = \tilde{\boldsymbol{\eta}}_{X_j,Y}(\mathbb{E}(\mathbf{t}(\mathbf{Y})),\{\mathbb{E}(\mathbf{t}(X_i))\}_{X_i \in \operatorname{cp}(X_j)}). \end{split}$$

The expectations over the individual natural statistics can be found using the log-normalizer trick:

$$\nabla A_X(\boldsymbol{\eta}) = \mathbb{E}(\mathbf{t}(X)).$$

Calculating the expectations in VMP

We have:

$$\log q(x_j) = \left[\mathbb{E}(\boldsymbol{\eta}_{X_j}(\mathrm{pa}(\boldsymbol{x}_j))) + \sum_{\boldsymbol{Y} \in \mathrm{ch}(\boldsymbol{x}_j)} \mathbb{E}(\boldsymbol{\eta}_{X_j,Y}(\boldsymbol{Y},\mathrm{cp}(\boldsymbol{x}_j))) \right]^{\mathsf{T}} \mathbf{t}(x_j) + h_{X_j}(x_j) + c$$

As seen before, both $\eta_{X_j}(\mathrm{pa}(x_j))$ and each $\eta_{X_j,Y}(y,\mathrm{cp}(x_j)))$ are multi-linear functions of the natural statistics vectors of their dependent variables, hence:

$$\begin{split} &\mathbb{E}(\boldsymbol{\eta}_{X_j}(\operatorname{pa}(x_j))) = \tilde{\boldsymbol{\eta}}_{X_j}(\{\mathbb{E}(\mathbf{t}(X_i))\}_{X_i \in \operatorname{pa}(X_j)}) \\ &\mathbb{E}(\boldsymbol{\eta}_{X_jY}(\mathbf{y},\operatorname{cp}(x_j))) = \tilde{\boldsymbol{\eta}}_{X_j,Y}(\mathbb{E}(\mathbf{t}(\mathbf{Y})),\{\mathbb{E}(\mathbf{t}(X_i))\}_{X_i \in \operatorname{cp}(X_j)}). \end{split}$$

The expectations over the individual natural statistics can be found using the log-normalizer trick:

$$\nabla A_X(\boldsymbol{\eta}) = \mathbb{E}(\mathbf{t}(X)).$$

New natural parameter vector and implied message passing scheme

$$\boldsymbol{\eta}_{X_j}^* = \tilde{\boldsymbol{\eta}}_{X_j} (\overbrace{\{\mathbb{E}(\mathbf{t}(X_i))\}_{X_i \in \mathrm{pa}(X_j)}}^{\mathrm{Messages from parents: } \mathbf{m}_{X_i \to X_j}}) + \sum_{\substack{\boldsymbol{Y} \in \mathrm{ch}(X_j) \\ \mathbf{Messages from children: } \mathbf{m}_{Y \to X_j}} \tilde{\boldsymbol{\eta}}_{X_j,Y} (\mathbb{E}(\mathbf{t}(\underline{\boldsymbol{Y}})), \{\mathbb{E}(\mathbf{t}(X_i))\}_{X_i \in \mathrm{cp}(X_j)})$$

VMP algorithm

VMP algorithm

- Initialize each variational distribution $q(x_i)$ by its moment vector $\mathbb{E}(\mathbf{t}(x_i))$.
- 2 For each variable X_i :
 - Retrieve messages from all parents and children.
 - 2 Computed new natural parameter vector $\eta_{x_i}^*$.
 - **3** Computed new moment parameters $\mathbb{E}(\mathbf{t}(x_i))$.
- Oalculate ELBO if needed (not described here!)
- Repeat from step 1 unless termination criteria reached.

Model specification

$$\log p(\gamma \mid \alpha, \beta) = \begin{bmatrix} -\beta \\ \alpha - 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_1$$

$$\log p(\mu \mid m, b) = \begin{bmatrix} b \cdot m \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_2$$

$$\log p(x_i \mid \mu, \gamma) = \begin{bmatrix} \gamma \mu \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_i \\ x_i^2 \end{bmatrix} + c_3$$

$$= \begin{bmatrix} \gamma x_i \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_4$$

$$= \begin{bmatrix} -\frac{1}{2}x_i^2 + x_i\mu - \frac{1}{2}\mu_i^2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_5$$

Model specification

 $\log p(\gamma \mid \alpha, \beta) = \begin{bmatrix} -\beta \\ \alpha - 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_1$

$$(\mu)$$
 (γ)

Updating $q(\mu)$

Calc. message from co-parent (γ):

$$\mathbf{m}_{\gamma o x_i} = egin{bmatrix} \mathbb{E}(\gamma) \\ \mathbb{E}(\log(\gamma)) \end{bmatrix}$$

$$\log p(\mu \mid m, b) = \begin{bmatrix} b \cdot m \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_2$$

$$\log p(x_i \mid \mu, \gamma) = \begin{bmatrix} \gamma \mu \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_i \\ x_i^2 \end{bmatrix} + c_3$$

$$= \begin{bmatrix} \gamma x_i \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_4$$

$$= \begin{bmatrix} -\frac{1}{2}x_i^2 + x_i\mu - \frac{1}{2}\mu_i^2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_5$$

Model specification

$$\begin{split} \log p(\gamma \mid \alpha, \beta) &= \begin{bmatrix} -\beta \\ \alpha - 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_1 \\ \log p(\mu \mid m, b) &= \begin{bmatrix} b \cdot m \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_2 \\ \log p(x_i \mid \mu, \gamma) &= \begin{bmatrix} \gamma \mu \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_i \\ x_i^2 \end{bmatrix} + c_3 \\ &= \begin{bmatrix} \gamma x_i \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_4 \\ &= \begin{bmatrix} -\frac{1}{2} x_i^2 + x_i \mu - \frac{1}{2} \mu_i^2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_5 \end{split}$$

Updating $q(\mu)$

• Calc. message from co-parent (γ) :

$$\mathbf{m}_{\gamma \to x_i} = \begin{bmatrix} \mathbb{E}(\gamma) \\ \mathbb{E}(\log(\gamma)) \end{bmatrix}$$

② Send messages from all x_i :

$$\mathbf{m}_{x_i \to \mu} = \begin{bmatrix} \mathbb{E}(\gamma) x_i \\ -\frac{1}{2} \, \mathbb{E}(\gamma) \end{bmatrix}$$

Model specification

$$\log p(\gamma \mid \alpha, \beta) = \begin{bmatrix} -\beta \\ \alpha - 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_1$$

$$\log p(\mu \mid m, b) = \begin{bmatrix} b \cdot m \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_2 \qquad \text{3} \quad \mathsf{Updat}$$

$$\log p(x_i \mid \mu, \gamma) = \begin{bmatrix} \gamma \mu \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_i \\ x_i^2 \end{bmatrix} + c_3$$

$$= \begin{bmatrix} \gamma x_i \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_4$$

$$= \begin{bmatrix} -\frac{1}{2}x_i^2 + x_i\mu - \frac{1}{2}\mu_i^2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_5$$

Updating $q(\mu)$

• Calc. message from co-parent (γ) :

$$\mathbf{m}_{\gamma o x_i} = egin{bmatrix} \mathbb{E}(\gamma) \\ \mathbb{E}(\log(\gamma)) \end{bmatrix}$$

2 Send messages from all x_i :

$$\mathbf{m}_{x_i \to \mu} = \begin{bmatrix} \mathbb{E}(\gamma) x_i \\ -\frac{1}{2} \, \mathbb{E}(\gamma) \end{bmatrix}$$

1 Update natural parameter of $q(\mu)$:

$$oldsymbol{\eta}_{\mu}^{*} = egin{bmatrix} b \cdot m \ -rac{b}{2} \end{bmatrix} + \sum_{i=1}^{N} \mathbf{m}_{x_{i}
ightarrow \mu}$$

Model specification

Updating $q(\gamma)$

Calc. message from co-parent (μ):

$$\mathbf{m}_{\mu o x_i} = egin{bmatrix} \mathbb{E}(\mu) \ \mathbb{E}(\mu^2) \end{bmatrix}$$

(based on updated parameters.)

$$\log p(\gamma \mid \alpha, \beta) = \begin{bmatrix} -\beta \\ \alpha - 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_1$$

$$\log p(\mu \mid m, b) = \begin{bmatrix} b \cdot m \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_2$$

$$\log p(x_i \mid \mu, \gamma) = \begin{bmatrix} \gamma \mu \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_i \\ x_i^2 \end{bmatrix} + c_3$$

$$= \begin{bmatrix} \gamma x_i \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_4$$

$$= \begin{bmatrix} -\frac{1}{2}x_i^2 + x_i\mu - \frac{1}{2}\mu_i^2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_5$$

Model specification

$$\log p(\gamma \mid \alpha, \beta) = \begin{bmatrix} -\beta \\ \alpha - 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_1$$

$$\log p(\mu \mid m, b) = \begin{bmatrix} b \cdot m \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_2$$

$$\log p(x_i \mid \mu, \gamma) = \begin{bmatrix} \gamma \mu \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_i \\ x_i^2 \end{bmatrix} + c_3$$

$$= \begin{bmatrix} \gamma x_i \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_4$$

$$= \begin{bmatrix} -\frac{1}{2}x_i^2 + x_i\mu - \frac{1}{2}\mu_i^2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_5$$

$\mathbf{Updating}\;q(\gamma)$

• Calc. message from co-parent (μ):

$$\mathbf{m}_{\mu o x_i} = egin{bmatrix} \mathbb{E}(\mu) \ \mathbb{E}(\mu^2) \end{bmatrix}$$

(based on updated parameters.)

② Send messages from all x_i :

$$\mathbf{m}_{x_i \to \gamma} = \begin{bmatrix} -\frac{1}{2}x_i^2 + x_i \mathbb{E}(\mu) - \frac{1}{2}\mathbb{E}(\mu^2) \\ \frac{1}{2} \end{bmatrix}$$

Model specification

$$\log p(\gamma \mid \alpha, \beta) = \begin{bmatrix} -\beta \\ \alpha - 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_1$$

$$\log p(\mu \mid m, b) = \begin{bmatrix} b \cdot m \\ -\frac{b}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_2$$

$$\log p(x_i \mid \mu, \gamma) = \begin{bmatrix} \gamma \mu \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_i \\ x_i^2 \end{bmatrix} + c_3$$

$$= \begin{bmatrix} \gamma x_i \\ -\frac{\gamma}{2} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mu \\ \mu^2 \end{bmatrix} + c_4$$

$$= \begin{bmatrix} -\frac{1}{2}x_i^2 + x_i\mu - \frac{1}{2}\mu_i^2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \gamma \\ \log(\gamma) \end{bmatrix} + c_5$$

Updating $q(\gamma)$

• Calc. message from co-parent (μ) :

$$\mathbf{m}_{\mu o x_i} = egin{bmatrix} \mathbb{E}(\mu) \ \mathbb{E}(\mu^2) \end{bmatrix}$$

(based on updated parameters.)

② Send messages from all x_i :

$$\mathbf{m}_{x_i \to \gamma} = \begin{bmatrix} -\frac{1}{2}x_i^2 + x_i \mathbb{E}(\mu) - \frac{1}{2}\mathbb{E}(\mu^2) \\ \frac{1}{2} \end{bmatrix}$$

③ Update natural parameter of $q(\gamma)$:

$$\eta_{\gamma}^* = \begin{bmatrix} -\beta \\ \alpha - 1 \end{bmatrix} + \sum_{i=1}^N \mathbf{m}_{x_i \to \gamma}$$

Code task: Implement VMP in the model defined on the previous slide

- We will implement VMP in this model, writing source-code that heavily relies on the specific model at hand:
 - Only Gaussian and Gamma distributed variables.
 - A Gaussian can only have another Gaussian as child $(\mu \to x_i)$.
 - The parent of a Gaussian can be Gaussian $(\mu \to x_i)$ or Gamma distributed $(\gamma \to x_i)$.
- We have already looked at translations from moment parameters to natural parameters. Now we need the translation also going the other way.
- Most of the "supporting code" is already made available to you; start from students_VMP.ipynb.

Data

Four data points sampled from a normal distribution with mean 5 and variance 1.

Data

Data

Data

Data

Data

Four data points sampled from a normal distribution with mean 5 and variance 1.

Posteriors

Data

Four data points sampled from a normal distribution with mean 5 and variance 1.

Posteriors

Stochastic Variational Inference

Setup

Model of interest

- ullet heta are *global* hidden variables, using lpha as (hyper-)parameters.
- ullet \mathbf{Z}_i is a vector of latent variables *local* to \mathbf{X}_i
 - Z_i describes the internal structure of X_i (like in a factor analysis model).
 - Notice that $\{\mathbf{X}_i, \mathbf{Z}_i\} \perp \!\!\! \perp \{\mathbf{X}_j, \mathbf{Z}_j\} \mid \boldsymbol{\theta} \text{ for } i \neq j.$
- All distributions belong to the (conjugate) Exponential Family.
- \mathbf{X}_i is observed, hence we have a data-set $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.

Setup

Model of interest

- ullet are *global* hidden variables, using lpha as (hyper-)parameters.
- ullet \mathbf{Z}_i is a vector of latent variables *local* to \mathbf{X}_i
 - \mathbf{Z}_i describes the internal structure of \mathbf{X}_i (like in a factor analysis model).
 - Notice that $\{\mathbf{X}_i, \mathbf{Z}_i\} \perp \!\!\! \perp \{\mathbf{X}_j, \mathbf{Z}_j\} \, | \, \boldsymbol{\theta} \text{ for } i \neq j.$

• \mathbf{X}_i is observed, hence we have a data-set $\mathcal{D} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$.

$\alpha \rightarrow \theta$ $Z_i \rightarrow X_i$ i = 1: N

Example of use:

- $oldsymbol{\theta}$ represents *topics* for text document and which words are used for each topic.
- X_i is a text document represented by a bag-of-words.
- ullet \mathbf{Z}_i encodes which topics \mathbf{X}_i discusses.

Goals:

- Infer the local latent representation Z_i for each observation \mathbf{x}_i
- Infer the global representation θ . Typically this is the most important goal.

VMP for this model

Algorithm

- Initialize all variational parameters randomly.
- 2 Repeat
 - (a) For each local variational parameter-vector $\eta_{\mathbf{z}_j}$:

$$oldsymbol{\eta}_{\mathbf{z}_j} \leftarrow ilde{oldsymbol{\eta}}_{z_j}(\mathbf{m}_{oldsymbol{ heta}
ightarrow \mathbf{z}_j}) + \mathbf{m}_{x_i
ightarrow z_i}.$$

(b) Update the variational parameters for global parameter θ :

$$oldsymbol{\eta_{oldsymbol{ heta}}} \leftarrow oldsymbol{\eta_{oldsymbol{ heta}}}(lpha) + \sum_{i=1}^{N} (\mathbf{m_{\mathbf{z}_i
ightarrow heta}} + \mathbf{m_{\mathbf{x}_i
ightarrow heta}}).$$

3 Until we converge wrt. $\mathcal{L}(q)$.

Computational problem:

- In the first iteration, each $\eta_{\mathbf{z}_i}$ is using the random initialization of η_{θ} .
 - ullet This may jeopardize the results of η_{z_i} , and thus waste computation.
 - We do N local updates using η_θ.
 - If *N* is large this can be a considerable loss of computational time.
- In turn, η_{θ} will be updated based on poorly adjusted η_{z_i} values, and the whole process converges slowly.

The VMP message received at θ

Recall the VMP architecture

 $\eta_{ heta}$ is updates according to

$$\boldsymbol{\eta_{\theta}(\alpha)} + \sum_{i=1}^{N} (\mathbf{m_{z_i \to \theta}} + \mathbf{m_{x_i \to \theta}})$$

Opportunity for speed-up through parallelization

• If we distribute the dataset $\mathcal{D} = \{\mathbf{x}_i, \dots, \mathbf{x}_N\}$ on several computational nodes, the node using data-partition \mathcal{D}_j will calculate

$$\sum_{i: \mathbf{x}_i \in \mathcal{D}_j} (\mathbf{m}_{\mathbf{z}_i \rightarrow \boldsymbol{\theta}} + \mathbf{m}_{\mathbf{x}_i \rightarrow \boldsymbol{\theta}})$$

- In a map-reduce organization, the master-node sums the messages from the slaves, updates η_{θ} , and distributes the θ -message back to the slaves.
- Each slave updates its local latent variables $\{ oldsymbol{\eta}_{\mathbf{Z}_i} \}_{i: \mathbf{x}_i \in \mathcal{D}_j}.$

Speed-up without parallelization

"Crazy" idea: Subsampling:

Instead of distributing the dataset we just **subsample** a dataset ("minibatch") from \mathcal{D} , say a single observation \mathbf{x}_i and use that subsample to update λ_{θ} :

- **1** Initialize all variational parameters randomly to λ .
- Repeat forever
 - (a) Select one x_i randomly from \mathcal{D} .
 - (b) Update η_{z_i} :

$$\boldsymbol{\eta}_{\mathbf{z}_i} \leftarrow \tilde{\boldsymbol{\eta}}_{z_i}(\mathbf{m}_{\boldsymbol{\theta} \rightarrow \mathbf{z}_i}) + \mathbf{m}_{\mathbf{x}_i \rightarrow \mathbf{z}_i}$$

(c) Update the variational parameters for θ :

$$oldsymbol{\eta}_{oldsymbol{ heta}} \leftarrow oldsymbol{\eta}_{oldsymbol{ heta}}(oldsymbol{lpha}) + \mathbf{m}_{\mathbf{z}_i
ightarrow oldsymbol{ heta}} + \mathbf{m}_{\mathbf{x}_i
ightarrow oldsymbol{ heta}}$$

Speed-up without parallelization

"Crazy" idea: Subsampling:

Instead of distributing the dataset we just **subsample** a dataset ("minibatch") from \mathcal{D} , say a single observation \mathbf{x}_i and use that subsample to update λ_{θ} :

- **1** Initialize all variational parameters randomly to λ .
- Repeat forever
 - (a) Select one x_i randomly from \mathcal{D} .
 - (b) Update $\eta_{\mathbf{z}_i}$:

$$\boldsymbol{\eta}_{\mathbf{z}_i} \leftarrow \tilde{\boldsymbol{\eta}}_{z_i}(\mathbf{m}_{\boldsymbol{\theta} \rightarrow \mathbf{z}_i}) + \mathbf{m}_{\mathbf{x}_i \rightarrow \mathbf{z}_i}$$

(c) Update the variational parameters for θ :

$$oldsymbol{\eta}_{oldsymbol{ heta}} \leftarrow oldsymbol{\eta}_{oldsymbol{ heta}}(lpha) + \mathbf{m}_{\mathbf{z}_i
ightarrow oldsymbol{ heta}} + \mathbf{m}_{\mathbf{x}_i
ightarrow oldsymbol{ heta}}$$

Bad news – and some good:

Bad news: This does not work!

However, the **good news** is that we can fix it!

Stochastic Gradient Ascent

A small side-step: Gradient Ascent

Gradient ascent algorithm for maximizing a function $f(\lambda)$:

- Initialize $\lambda^{(0)}$ randomly.
- 2 For t = 1, ...:

$$\boldsymbol{\lambda}^{(t+1)} \leftarrow \boldsymbol{\lambda}^{(t)} + \rho \cdot \nabla_{\boldsymbol{\lambda}} f\left(\boldsymbol{\lambda}^{(t)}\right)$$

 $\pmb{\lambda}^{(t)}$ converges to a (local) optimum of $f(\cdot)$ if:

- f is "sufficiently nice";
- The learning-rate ρ is "sufficiently small".

Why do we talk about this ???

- Remember that we maximize ELBO by coordinate ascent in distribution space (as we are fitting distributions for each Z_j one at the time).
- The idea is now to get tools for doing this using an different optimization technique.

... and Stochastic Gradient Ascent

Stochastic gradient ascent algorithm for maximizing a function $f(\lambda)$:

If we have access to $g(\lambda)$ – an **unbiased estimate** of the gradient – it still works!

- Initialize all variational parameters randomly to $\lambda^{(0)}$.
- **②** For t = 1, ...:

$$\boldsymbol{\lambda}^{(t)} \leftarrow \boldsymbol{\lambda}^{(t-1)} + \rho_t \cdot \mathbf{g} \left(\boldsymbol{\lambda}^{(t-1)} \right)$$

 λ_t converges to a (local) optimum of $f(\cdot)$ if:

- f is "sufficiently nice";
- ullet $\mathbf{g}(oldsymbol{\lambda})$ is a random variable with $\mathbb{E}[\mathbf{g}(oldsymbol{\lambda})] = \nabla_{oldsymbol{\lambda}} f(oldsymbol{\lambda})$ and finite variance.
- The learning-rates $\{\rho_t\}$ is a Robbins-Monro sequence:
 - $\sum_t \rho_t = \infty$
 - $\sum_{t} \rho_t^2 < \infty$

Natural gradients

The (Euclidian) gradient points in the direction of the solution of

$$rg \max_{\mathrm{d} oldsymbol{\lambda}} f(oldsymbol{\lambda} + \mathrm{d} oldsymbol{\lambda})$$
 subject to $||\mathrm{d} oldsymbol{\lambda}||_2 < \epsilon$

- This, however, fails to recognize that we work with probability distributions:
 - The distributions $\mathcal{N}(\mu=0,\tau=10^{-6})$ and $\mathcal{N}(\mu=10,\tau=10^{-6})$ are "close" as both are virtually uniform on \mathbb{R} , but have distance 10 parameter space.
 - $\mathcal{N}(\mu=0,\tau=10^6)$ and $\mathcal{N}(\mu=1,\tau=10^6)$ are "separated", even though their distance in λ -space is only 1.

Natural gradients

The (Euclidian) gradient points in the direction of the solution of

$$rg \max_{\mathrm{d} oldsymbol{\lambda}} f(oldsymbol{\lambda} + \mathrm{d} oldsymbol{\lambda})$$
 subject to $||\mathrm{d} oldsymbol{\lambda}||_2 < \epsilon$

- This, however, fails to recognize that we work with probability distributions:
 - The distributions $\mathcal{N}(\mu = 0, \tau = 10^{-6})$ and $\mathcal{N}(\mu = 10, \tau = 10^{-6})$ are "close" as both are virtually uniform on \mathbb{R} , but have distance 10 parameter space.
 - $\mathcal{N}(\mu=0,\tau=10^6)$ and $\mathcal{N}(\mu=1,\tau=10^6)$ are "separated", even though their distance in λ -space is only 1.

Natural gradients

- Natural gradients take the information geometry into account.
- The natural gradients are found by pre-multiplying with the inverse Fisher matrix:

$$\tilde{\nabla}_{\lambda} f(\lambda) = \mathbf{H}_{\lambda}^{-1} \nabla_{\lambda} f(\lambda)$$

where \mathbf{H}_{λ} is defined as $\mathbf{H}_{\lambda} = -\mathbb{E}_{X} \left[\nabla_{\lambda}^{2} \log f(X \,|\, \lambda) \,|\, \lambda \right].$

Natural gradients

The (Euclidian) gradient points in the direction of the solution of

$$rg \max_{\mathrm{d} oldsymbol{\lambda}} f(oldsymbol{\lambda} + \mathrm{d} oldsymbol{\lambda})$$
 subject to $||\mathrm{d} oldsymbol{\lambda}||_2 < \epsilon$

- This, however, fails to recognize that we work with probability distributions:
 - The distributions $\mathcal{N}(\mu = 0, \tau = 10^{-6})$ and $\mathcal{N}(\mu = 10, \tau = 10^{-6})$ are "close" as both are virtually uniform on \mathbb{R} , but have distance 10 parameter space.
 - $\mathcal{N}(\mu=0,\tau=10^6)$ and $\mathcal{N}(\mu=1,\tau=10^6)$ are "separated", even though their distance in λ -space is only 1.

Natural gradients

- Natural gradients take the information geometry into account.
- The natural gradients are found by pre-multiplying with the inverse Fisher matrix:

$$\tilde{\nabla}_{\lambda} f(\lambda) = \mathbf{H}_{\lambda}^{-1} \nabla_{\lambda} f(\lambda)$$

where \mathbf{H}_{λ} is defined as $\mathbf{H}_{\lambda} = -\mathbb{E}_{X} \left[\nabla_{\lambda}^{2} \log f(X \mid \lambda) \mid \lambda \right]$.

• The same operation can obviously also be done in a sub-sample setting, with the same H_{λ} – since H_{λ} is data-independent.

Code Task: Maximum Likelihood in a simple Gaussian model

We are looking for the ML estimators for them mean μ and precision τ in a simple Gaussian model.

Recall that

$$f(\mu, \tau) = \sum_{i=1}^{N} \log p(x_i \mid \mu, \tau) = -\frac{N}{2} \log(2\pi) + \frac{N}{2} \log \tau - \frac{\tau}{2} \sum_{i=1}^{N} (x_i - \mu)^2$$

This should give us easy access to both $\nabla_{(\mu,\tau)} f(\mu,\tau)$ as well as the Fisher information matrix $-\mathbb{E}_X \left[\nabla^2_{(\mu,\tau)} \log p(X \mid \mu,\tau) \mid \mu,\tau \right]$.

You are asked to fix calculate_gradient in the file students_ML_via_SGD.ipynb.

Examine the effect of

- Changing the batch-size (all data or just a single observation per step)
- Switching between natural and Euclidian gradients.

Example: ML in a Gaussian model

Example: Maximum log likelihood in a Gaussian model

We have access to N=1000 observations from a Gaussian distribution with unknown mean μ and precision τ . Use $\lambda = [\mu, \tau]^T$.

$$f(\lambda) = \sum_{i=1}^{N} \log p(x_i \mid \lambda) = \frac{N}{2} \log \tau - \frac{N}{2} \log(2\pi) - \frac{\tau}{2} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$\nabla_{\lambda} = \begin{bmatrix} -N\tau\mu + \tau \sum_{i=1}^{N} x_i \\ \frac{N}{2\tau} - \frac{1}{2} \sum_{i=1}^{N} (x_i - \mu)^2 \end{bmatrix}$$
 Cost of calculation: $O(N)$

Example, cont'd

Example: Maximum log likelihood in a Gaussian model

We consider the same maximum likelihood problem, but instead of the gradient based on the full sample, we only have a **mini-batch of a single example** x_t at iteration t:

$$\mathbf{g}(\boldsymbol{\lambda} \mid x_t) = \boldsymbol{N} \cdot \begin{bmatrix} -\tau \mu + \tau x_t \\ \frac{1}{2\tau} - \frac{1}{2} (x_t - \mu)^2 \end{bmatrix}$$

Randomness in \mathbf{g} is a consequence of the random data selection process, and it follows that $\mathbb{E}[\mathbf{g}(\lambda)] = \nabla_{\lambda} f(\lambda)$ because we re-scaled through a multiplication of N.

Example: Maximum log likelihood in a Gaussian model

We consider the same maximum likelihood problem, but instead of the gradient based on the full sample, we only have a **mini-batch of a single example** x_t at iteration t:

$$\mathbf{g}(\boldsymbol{\lambda} \mid x_t) = \boldsymbol{N} \cdot \begin{bmatrix} -\tau \mu + \tau x_t \\ \frac{1}{2\tau} - \frac{1}{2} (x_t - \mu)^2 \end{bmatrix}$$

Randomness in \mathbf{g} is a consequence of the random data selection process, and it follows that $\mathbb{E}[\mathbf{g}(\lambda)] = \nabla_{\lambda} f(\lambda)$ because we re-scaled through a multiplication of N.

Example: Maximum log likelihood in a Gaussian model

We consider the same maximum likelihood problem, but instead of the gradient based on the full sample, we only have a **mini-batch of a single example** x_t at iteration t:

$$\mathbf{g}(\boldsymbol{\lambda} \mid x_t) = N \cdot \begin{bmatrix} -\tau \mu + \tau x_t \\ \frac{1}{2\tau} - \frac{1}{2} (x_t - \mu)^2 \end{bmatrix}$$

Randomness in \mathbf{g} is a consequence of the random data selection process, and it follows that $\mathbb{E}[\mathbf{g}(\boldsymbol{\lambda})] = \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\lambda})$ because we re-scaled through a multiplication of N.

Example: Maximum log likelihood in a Gaussian model

We consider the same maximum likelihood problem. The Fisher information matrix is given by

$$\begin{aligned} \mathbf{H}_{\pmb{\lambda}} &= & -\mathbb{E}_X \left[\nabla_{\pmb{\lambda}}^2 \log p(X \,|\, \pmb{\lambda}) \,|\, \pmb{\lambda} \right] \\ &= & -\mathbb{E}_X \left(\left[\begin{array}{cc} -\tau & X - \mu \\ X - \mu & -\frac{1}{2\tau^2} \end{array} \right] \right) = \left[\begin{array}{cc} \tau & 0 \\ 0 & \frac{1}{2\tau^2} \end{array} \right] \end{aligned}$$

VMP with mini-batching

The Stochastic Variational Inference (SVI) algorithm

- Initialize $\lambda^{(0)}$; Set t=1; Let $\{\rho_t\}_{t=1}^{\infty}$ be a Robbins-Moreno sequence.
- 2 Repeat forever
 - (a) Select a single observation x_i from D.
 - (b) Compute its local variational parameter-vector η_i :

$$\boldsymbol{\eta}_{\mathbf{z}_j} \leftarrow \tilde{\boldsymbol{\eta}}_{z_j}(\mathbf{m}_{\boldsymbol{\theta} \rightarrow \mathbf{z}_j}) + \mathbf{m}_{\mathbf{x}_i \rightarrow \mathbf{z}_i}$$

(c) Update the variational parameters for θ :

$$\boldsymbol{\lambda}_{\boldsymbol{\theta}}^{(t)} \leftarrow (1 - \rho_t) \boldsymbol{\lambda}_{\boldsymbol{\theta}}^{(t-1)} + \rho_t \left(\boldsymbol{\eta}_{\boldsymbol{\theta}}(\boldsymbol{\alpha}) + \boldsymbol{N} \cdot \left(\mathbf{m}_{\mathbf{z}_i \rightarrow \boldsymbol{\theta}} + \mathbf{m}_{\mathbf{x}_i \rightarrow \boldsymbol{\theta}} \right) \right)$$

- (d) $t \leftarrow t + 1$
- The algorithm holds theoretical guarantees of convergence it can be seen as a stochastic gradient ascent algorithm over $\mathcal{L}\left(q\right)$.
- We work in natural parameter space this simplifies the calculations considerably, and improves performance.
- SVI offers **substantive improvements** over VMP on massive data-sets λ_{θ} can often converge before all data is read once.

The last exponential toppings

Remember the definition or the Exponential Family:

$$f_X(x \mid \boldsymbol{\eta}) = \exp\left(h(\mathbf{x}) + \boldsymbol{\eta}^{\mathsf{T}} \mathbf{t}(\mathbf{x}) - A(\boldsymbol{\eta})\right)$$

Maximum likelihood estimator for η from a dataset $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$:

First notice that

$$\log f(\mathcal{D} \,|\, \boldsymbol{\eta}) = \sum_i h(\mathbf{x}_i) + \boldsymbol{\eta}^\mathsf{T} \sum_i \mathbf{t}(\mathbf{x}_i) - N \cdot A(\boldsymbol{\eta}).$$

We thus look for

$$\boldsymbol{\eta}^* = \arg\max_{\boldsymbol{\eta}} \sum_i \boldsymbol{\eta}^\mathsf{T} \mathbf{t}(\mathbf{x}_i) - N \cdot A(\boldsymbol{\eta})$$

• Since $\frac{\mathrm{d}A(\eta)}{\mathrm{d}\eta} = \mathbb{E}\left[\mathbf{t}\left(\mathbf{X}\right)\right]$, it follows that η^* ensures moment matching for $\mathbf{t}(\mathbf{X})$:

$$\mathbb{E}\left[\mathbf{t}\left(\mathbf{X}\right)\right] = \frac{1}{N} \sum_{i} \mathbf{t}(\mathbf{x}_{i})$$

ullet ... and convexity of $A(\eta)$ ensures that this is the unique global optimum.

Some nice features

Remember the definition or the Exponential Family:

$$f_X(x \mid \boldsymbol{\eta}) = \exp\left(h(\mathbf{x}) + \boldsymbol{\eta}^{\mathsf{T}} \mathbf{t}(\mathbf{x}) - A(\boldsymbol{\eta})\right)$$

Maximum likelihood estimator for η from a dataset $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$:

- ullet Example: The multivariate Gaussian has $t(X) = [\mathbf{X}, \mathbf{X}\mathbf{X}^{\mathsf{T}}].$
- $\bullet \ \ \text{Remember that} \ \mathbb{E}\left[\mathbf{t}\left(\mathbf{X}\right)\right] = \left[\mathbb{E}(\mathbf{X}), \mathbb{E}(\mathbf{X}\mathbf{X}^{\mathsf{T}})\right] = \left[-\frac{1}{2}\boldsymbol{\eta}_{2}^{-1}\boldsymbol{\eta}_{1}, -\frac{1}{2}\boldsymbol{\eta}_{2}^{-1}\right].$
- This gives us

$$oldsymbol{\eta}_1^* = \left(\sum_i \mathbf{x}_i
ight) \cdot \left(\sum_i \mathbf{x}_i \mathbf{x}_i^\mathsf{T}
ight)^{-1} \ ext{and} \ oldsymbol{\eta}_2^* = -rac{N}{2} \left(\sum_i \mathbf{x}_i \mathbf{x}_i^\mathsf{T}
ight)^{-1}.$$

• While harder to interpret than the moment parameter MLEs,

$$oldsymbol{\mu}^* = rac{1}{N} \sum_i \mathbf{x}_i ext{ and } oldsymbol{\Sigma}^* = rac{1}{N} \sum_i \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}},$$

the natural parameter MLEs are found with a unifying theory.

Conjugacy in exponential family models (Another view)

Conjugacy plays a crucial role in Bayesian inference:

- Assume we observe variables $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ from the model $f(\mathbf{x} \mid \boldsymbol{\eta})$.
- Prior knowledge about η is encoded in $f(\eta | \nu)$, we seek the posterior $f(\eta | \mathcal{D}, \nu) \propto f(\eta | \nu) \prod_i f(\mathbf{x}_i | \eta)$.
- $f(\eta \mid \nu)$ is a conjugate for $f(\mathbf{x} \mid \eta)$ if $f(\eta \mid \mathcal{D}, \nu)$ has the same form as $f(\eta \mid \nu)$ when both are seen as functions of η .
- Then inference amounts to "updating" ν to a new value, defined by ν and \mathcal{D} .

Examples:

- Prior Multinomial + Multinomial likelihood .
- Prior Beta(p) + Likelihood Bernoulli($x \mid p$) also for Binomial for fixed n.
- Prior Normal(μ) + Likelihood Normal($x \mid \mu$) with mean μ and known variance.
- Prior Gamma(τ) + Likelihood Normal($x \mid \tau$) with known mean and variance τ^{-1} .

Conjugacy in exponential family models (Another view)

Conjugacy plays a crucial role in Bayesian inference:

- Assume we observe variables $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ from the model $f(\mathbf{x} \mid \boldsymbol{\eta})$.
- Prior knowledge about η is encoded in $f(\eta | \nu)$, we seek the posterior $f(\eta | \mathcal{D}, \nu) \propto f(\eta | \nu) \prod_i f(\mathbf{x}_i | \eta)$.
- $f(\eta \mid \nu)$ is a conjugate for $f(\mathbf{x} \mid \eta)$ if $f(\eta \mid \mathcal{D}, \nu)$ has the same form as $f(\eta \mid \nu)$ when both are seen as functions of η .
- Then inference amounts to "updating" ν to a new value, defined by ν and \mathcal{D} .

The Exponential Family:

- Assume a likelihood-model $f_x(\mathbf{x} \mid \boldsymbol{\eta}) = \exp \left(h(\mathbf{x}) + \boldsymbol{\eta}^\mathsf{T} \mathbf{t}(\mathbf{x}) A_x(\boldsymbol{\eta}) \right)$.
- Then the conjugate prior is $f_{\eta}(\eta \mid \tau, \nu) = \exp \left(h_{\eta}(\eta) + \tau^{\mathsf{T}} \eta \nu A_{x}(\eta) A_{\eta}(\tau)\right)$.
- Notice how the prior is not in ExpFam form; can be done by setting

$$\tilde{\boldsymbol{ au}} = [{oldsymbol{ au}}^{\mathsf{T}}, -
u]^{\mathsf{T}}, \ \tilde{\mathbf{t}}_{\eta}({oldsymbol{\eta}}) = [{oldsymbol{\eta}}^{\mathsf{T}}, A_x({oldsymbol{\eta}})]^{\mathsf{T}}, \ \tilde{A}_{\eta}(\tilde{oldsymbol{ au}}) = A_{\eta}({oldsymbol{ au}}).$$

from which we obtain $f_{\eta}(\boldsymbol{\eta} \,|\, \tilde{\boldsymbol{\tau}}) = \exp\Big(h_{\eta}(\boldsymbol{\eta}) + \tilde{\boldsymbol{\tau}}^{\mathsf{T}} \tilde{\mathbf{t}}_{\eta}(\boldsymbol{\eta}) - \tilde{A}_{\eta}(\tilde{\boldsymbol{\tau}})\Big).$

→ specific form can be exploited during, e.g., SVI for calculating the gradients.

Posteriors in the conjugate exponential family

Model formulation

Assume a likelihood-model $f_x(\mathbf{x} \mid \boldsymbol{\eta}) = \exp\left(h_x(\mathbf{x}) + \boldsymbol{\eta}^\mathsf{T} \mathbf{t}(\mathbf{x}) - A_x(\boldsymbol{\eta})\right)$, from which we have observed the dataset $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.

The prior is $f_{\eta}(\boldsymbol{\eta} \mid \boldsymbol{\tau}, \nu) = \exp \left(h_{\eta}(\boldsymbol{\eta}) + \boldsymbol{\tau}^{\mathsf{T}} \boldsymbol{\eta} - \nu A_{x}(\boldsymbol{\eta}) - A_{\eta}(\boldsymbol{\tau})\right)$.

$$\begin{split} \log f_{\eta}(\boldsymbol{\eta} \mid \mathcal{D}, \boldsymbol{\tau}, \boldsymbol{\nu}) & \propto & \log f_{x}(\mathcal{D} \mid \boldsymbol{\eta}) + \log f_{\eta}(\boldsymbol{\eta} \mid \boldsymbol{\tau}, \boldsymbol{\nu}) \\ & = & \sum_{i} h_{x}(\mathbf{x}_{i}) + \boldsymbol{\eta}^{\mathsf{T}} \sum_{i} \mathbf{t}(\mathbf{x}_{i}) - N \cdot A_{x}(\boldsymbol{\eta}) \\ & + & h_{\eta}(\boldsymbol{\eta}) + \boldsymbol{\tau}^{\mathsf{T}} \boldsymbol{\eta} - \boldsymbol{\nu} \cdot A_{x}(\boldsymbol{\eta}) - A_{\eta}(\boldsymbol{\tau}) \\ & \propto & h_{\eta}(\boldsymbol{\eta}) + \boldsymbol{\eta}^{\mathsf{T}} \left\{ \boldsymbol{\tau} + \sum_{i} \mathbf{t}(\mathbf{x}_{i}) \right\} - \{N + \boldsymbol{\nu}\} \cdot A_{x}(\boldsymbol{\eta}) - A_{\eta}(\boldsymbol{\tau}) \\ \log f_{\eta}(\boldsymbol{\eta} \mid \mathcal{D}, \boldsymbol{\tau}, \boldsymbol{\nu}) & = & \log f_{x}(\boldsymbol{\eta} \mid \boldsymbol{\tau} + \sum_{i} \mathbf{t}(\mathbf{x}_{i}), \boldsymbol{\nu} + N) \end{split}$$

Interpretation:

Posterior is found directly by collecting the summed sufficient statistics and no. observations. This **always** works for **every** conjugate exponential family.