Chebyshev's Theorem: A Clear Guide

For Dr. Faisal Bukhari's Probability and Statistics Course (Lecture 20) English + Urdu for Exam Prep

1 Concept: Chebyshev's Theorem

1.1 English Explanation

Chebyshev's Theorem provides a way to estimate probabilities for **any distribution**, even if the shape is unknown. It states:

The **minimum probability** that a value lies within **k standard deviations** (σ) of the mean (μ) is:

$$P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

Key points:

- Works for **non-normal** distributions.
- Estimates the probability range when distribution is **unknown**.
- Larger **k** means higher confidence that data is near the mean.

1.2 Urdu Explanation

Chebyshev's Theorem yeh kehti hai:

Agar kisi random variable ka distribution **pata nahi**, tab bhi hum estimate kar sakte hain ke data kitne standard deviation ke andar hoga:

$$P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

Yani:

- Distribution ka shape pata na ho (normal na ho), phir bhi yeh formula kaam karta hai.
- Bara **k** matlab zyada chance ke data mean ke qareeb hoga.

2 Real-Life Application

Example: A professor says the average GPA is 2.5 with a standard deviation of 0.5 (distribution unknown). What percentage of students have a GPA between 1.5 and 3.5?

1

Solution:

- 1. Mean $\mu = 2.5$, Standard Deviation $\sigma = 0.5$
- 2. Range: 1.5 to 3.5

3.
$$k = \frac{3.5 - 2.5}{0.5} = 2$$

4. Chebyshev's Theorem: $P(\mu - 2\sigma < X < \mu + 2\sigma) \ge 1 - \frac{1}{4} = \frac{3}{4} = 75\%$

Conclusion: At least 75% of students have a GPA between 1.5 and 3.5.

3 Keywords to Recognize Chebyshev Questions

lightgray Keywords in Question	Use Chebyshev's Theorem When
"At least what % lies between"	Distribution unknown
"How much data is withinσ of mean?"	Given μ and σ , range provided
"No info about shape/distribution"	Always use Chebyshev
"P($ X - \mu \ge k\sigma$)" or "outside the range"	Flip to $1-\frac{1}{k^2}$ form
"Estimate lower bound for probability"	Distribution-free formula needed

4 Exam-Style Mini Test (Bukhari Style)

- 1. A variable has $\mu = 10$ and $\sigma = 2$. What is the **minimum probability** that a value lies between 6 and 14?
- 2. A value is more than 4 units away from mean = 5. What is the **maximum probability** this happens? $\sigma = 2$.
- 3. If $\mu = 40$, $\sigma = 5$, how much probability lies **outside** the range 25 to 55?
- 4. A random variable X has unknown distribution, $\mu=20,\,\sigma=4.$ What can you say about the probability of X being between 12 and 28?
- 5. True or False: Chebyshev's Theorem only works for Normal Distributions.

4.1 Answers

1.
$$k = \frac{14-10}{2} = 2 \rightarrow \ge 1 - \frac{1}{4} = 0.75$$
 (75%)

2.
$$P(|X - \mu| \ge 4)$$
, $k = \frac{4}{2} = 2 \rightarrow \le \frac{1}{4} = 0.25$ (25%)

3. Range =
$$\mu \pm 3\sigma = 40 \pm 15 = [25, 55]$$
, $k = 3 \rightarrow \geq 1 - \frac{1}{9} = \frac{8}{9} \approx 0.8889$. Outside: $\leq \frac{1}{9} \approx 0.1111$

2

4.
$$k = \frac{28-20}{4} = 2 \rightarrow \geq 1 - \frac{1}{4} = 0.75$$
 (75%)

5. **False**: Chebyshev works for **all distributions**.

5 Final Revision Tip (Cheat Sheet)

Ready for the next concept? Ask your instructor!

lightgray What to Look For	What to Do
No distribution given	Use Chebyshev
Range given around mean	Use $k = \frac{\text{Range Edge} - \mu}{\sigma}$
Need minimum probability	Use $1 - \frac{1}{k^2}$
Need maximum "outside"	Use $\frac{1}{k^2}$
prob.	, and the second