打造个性化的"智能稻草人"

谢作如 浙江省温州中学 邱奕盛 华东师范大学

摘要: "智能稻草人"是人工智能结合创客的典型作品,也是一款常见的现代智能安防类设备。根据内置A模型的不同,"智能稻草人"可以在多种场景下工作,识别"异常"情况或者目标。本文从收集数据开始,然后选择相应算法、训练模型并真实部署,打造了一个类似稻草人的A应用设备,为中小学生开展A科创活动提供了一个可复制的思路。

关键词: Al科创, 人工智能教育, 开源硬件

中图分类号:G434 文献标识码:A 论文编号:1674-2117 (2022) 17-0067-03

稻草人是农村常见的"安防设备"。因为有"人"的外形,有风时它会摆动手臂并发出声音。农民常常在稻田间扎上一个,用于驱赶麻雀之类的鸟儿,避免其偷食庄稼。

科技在不断发展,稻草人也应与时俱进。在当前的低门槛AI开发工具的支持下,学生完全能够设计出一款"智能稻草人"作品,让"它"从仅仅"外表像人"走向"内心也像人"——通过摄像头,准确判断是否有鸟儿来偷食或者有野猪来破坏,并且能根据不同的情况发出不同的音效来驱逐,同时通过警报通知主人。当然,也可以用稻草人监视是否有小偷来盗取,或者其他的意外情况,只要通电它就能够日夜工作,保护农民财产。

● "智能稻草人"作品的设 计分析

"智能稻草人"和传统稻草人

的本质区别在于前者具备视觉识别 功能,能够区分正常和非正常状态, 从而输出不同的信号。从信息系统 的角度看,"智能稻草人"是一款内 置了AI识别功能,具备基本传感和 控制功能的简易信息系统。

1. "智能稻草人" 的工作流程分析

按照模块化的思想,"智能稻草人"大致分为视觉输入、智能处理和多模态输出三大模块。其中,视觉模块的主要部件是摄像头,多模态输出模块指声效、动作,对应音

响和电机(舵机)之类的执行器,核心功能则在智能处理模块,即对输入的视觉信息(图像)进

行识别,需要涉及AI模型的推理, "智能稻草人"的工作流程如图1 所示。

一般而言,对图像的识别有三种实现方式:第一种是调用现成AI开放平台的网络API,如百度、腾讯、商汤的AI平台的API;第二种是使用本地的AI应用平台API,如OpenCV、MediaPipe;第三种是自己训练模型,进行推理。从工程的角度看,三种方式没有高低之分,只要识别效果好就是好的解决方案。

图1

考虑到稻草人要部署的场景 和识别的图像往往比较个性化,现 成API没有对应的功能,只能选择 自行收集数据训练模型的方式。因 为MMEdu是一个很好的AI模型训 练工具,对学生来说,只要确定好 场景,然后根据需求收集相应的数 据,就能训练出合适的AI模型,技 术难度并不高。

2. "智能稻草人"的功能设计

从原理和功能上看,安防类 器材其实都类似稻草人——实时 监控并自动报警。因而,我们可以将 "智能稻草人"作为现代智能安防 设备的形象通俗的名称。我们设计 的"智能稻草人"应用场景也从农 村移到都市——用于保护城市的白 色墙壁,防止一些调皮的小孩或者 行为不羁的"艺术家"的破坏,即涂 鸦。其核心功能设计如下。

①基本功能:识别要监视的白 色墙壁是否有可疑人群来"涂鸦"。

②根据可疑人群在摄像头前 停留的时间长短,输出不同的语音 提示,并同时保存画面,留下证据。

③在输出语音提示的同时,还 能用挥动"提示牌"的方式,友好地 进行提醒。

3. "智能稻草人"的核心技术

"智能稻草人"采用开源硬件 行空板,编程语言选择了Python, 其涉及的核心技术如下。

(1) 摄像头控制

摄像头控制最好用的库肯 定是OpenCV。OpenCV的全称是 Open Source Computer Vision Library, 是一个跨平台的计算机 视觉处理开源软件库。

(2) 视觉识别模型训练

计算机视觉开发工具选 择了MMEdu。MMEdu源于国 产人工智能视觉算法集成框架 OpenMMLab,是一个"开箱即用" 的深度学习开发工具。初学者通过 简洁的代码即可完成各种SOTA模 型的训练。

(3) 传感器和舵机控制

为了节省算力和能源,在检测 到有人活动时才打开摄像头,就需 要一个能读取红外热释电传感器 信息的Python库,同时,还准备用舵 机发出类似"招手"的可爱动作,可 见,驱动开源硬件的库是不可少的。 Pinpong是一个基于Firmata协议开 发的Python硬件控制库,能够获取 传感器数据,驱动舵机、LED等执 行器,执行特定的动作。

除了以上的几个工具,其实还 需要语音合成库,如Pyttsx3。这 是一个Python的文字转语音库, 支持英文和中文等多种语言,可以 调节语速、语调等。如果想同时驱 动其他的智能设备,如电灯,那么

还需要物联网MQTT的 库,如siot。

● 特定数据集的收 集和整理

收集数据是最核心 的工作。数据收集方式其 实很多,如找一个摄像头 软件,保存摄像头的画面,也可以使 用OpenCV编写一个代码来保存图 片,类似摄像头抓图工具。当然,使用 数码相机或者手机直接拍照也是可 以的,只不过图片容量会比较大,造 成数据集也会很多,还要找个工具 批量转换。一般来说,摄像头的画 面用1028*720就差不多了。

MMEdu的图像分类模块采 用的数据集为ImagesNet格式,按 照规范分出训练集、验证集和测试 集即可。收集数据的工作其实也不 难,就是把图片分为两类,一类为正 常的画面,即没有可疑的人在"涂 鸦"的画面,另一类则相反,画面中 有人在做"涂鸦"的动作,或者准备 做"涂鸦"动作(如图2)。

如果想识别出画面中的"人", 则需要使用目标检测的方法,数 据集中的每一张照片都要做好 标注,相对来说工作量比较大。而 OpenInnoLab平台提供的数据集标 注工具,使用起来则比较方便,下页 图3所示是在OpenInnoLab中标注 数据集。

■ AI模型训练和推理

虽然MMEdu训练模型的代 码很简单,但总有人对编写代码有

正常的画面

异常的画面

图2

图3

参考代码: 红外人体传感器唤醒摄像头拍照 import cv2 from pinpong.board import Board,Pin Board().begin() a = Pin(Pin.D27,Pin.IN) # 红外热释电传感器接在D27 cap = cv2.VideoCapture(0) # 打开摄像头 while True: if a.read_digital() == 0: ret, frame = cap.read() # 读摄像头 cv2.imwrite("temp.jpg",frame) print(fname + "已经保存!")

图5

图4

一种天然的恐惧。因此, MMEdu团 队准备了一个EasyTrain的小工具, 你可以在图形化界面中正确选择 算法,填写路径以及必要的参数, 然后自动生成代码并训练,即可训 练出一个好模型,图4所示就是用 EasyTrain的训练模型。

EasyTrain还能生成可以直 接使用的推理代码。考虑到行空板 的性能不是很高,做图片分类勉强 可行,而做目标检测则有些难度, 需要将推理模块部署为网络API 服务供行空板调用,即将图片推理 放在服务器上,行空板端只要把图 片发送过去就能返回识别结果。

EasyTrain也提供了 使用Flask模块生成 网络API的Demo代 码,也能够直接使用。

"智能稻草 人"作品的部署

在电脑上完成 训练后,要把算法部 署到"智能稻草人" 上。利用行空板作为 主控板,把经过模 型训练生成的权重

文件拷贝到行空板上,并写一段简 单的推理代码,就完成了AI部分算 法的迁移部署。当然,学生可以在 EasyTrain生成的推理代码上修 改,实现同样的效果。

接着,增加红外人体传感器唤 醒摄像头拍照的功能——当画面中 出现可疑人员在"涂鸦"时,驱动舵 机挥手并语音警告。这些功能都很 简单,只需要简单的循环和判断就 可以实现(如图5)。

为了减少误报的可能性,我们 采用计时器功能,计算如果有人出 现在画面中静止的时间超过一定时 间(如3~5秒)才挥手和报警,并将 图片留存以供日后"取证"。限于篇 幅,具体的代码不在文中提供。

功能部署完成了,外观的布置 自然也少不了,笔者为电子套装制作 了一个可爱的外壳,两个腮红和大 大的眼睛,让"智能稻草人"不那么 冷冰冰,而人情味十足。

笔者还希望增加一些更加有 用的功能,如:增加环境传感器的 数据监测,结合图像,记录在日志; 增加物联网设备的"联动"等。

结语

"智能稻草人"还可以应用于 其他场景,如危险河道的"游泳" 监 视、景区栏杆的跨越提示、车位被 恶意侵占等,甚至还可以做成鲁迅 先生笔下的捕鸟工具。你希望自己 设计的"智能稻草人"用于什么场 景,解决什么问题,那就去收集相 关的图像数据,设计出属于自己的 个性化的"智能稻草人"作品。e