## Linear Classifiers: The Perceptron

Intro to ML 466/566 Winter 2021

#### Administrivia

Very small change to question 5 on the homework (566 students only)

$$\ell(\boldsymbol{w}) = \begin{cases} \frac{1}{2}(\hat{f}(\boldsymbol{x}) - f(\boldsymbol{x}))^2 + \lambda \sum_{i=1}^p w_i^2, & \text{if } |\hat{f}(\boldsymbol{x}) - f(\boldsymbol{x})| \le \delta \\ \delta |\hat{f}(\boldsymbol{x}) - f(\boldsymbol{x})| - 2 + \lambda \sum_{i=1}^p w_i^2, & \text{otherwise} \end{cases}$$

#### The Perceptron

- Introduces the idea of a linear decision boundary
  - Decision trees are piecewise linear, but non-linear overall
- Introduces the idea of an iterative learning algorithm
  - Very similar to stochastic gradient descent, which is pervasive in ML

#### Bankruptcy example

R is the ratio of earnings to expenses

L is the number of late payments on credit cards over the past year.

We would like to draw a linear separator, and thus get a classifier.



# Classification as Boundary: E.g. Decision Tree Boundary



#### Simple Linear Boundary



What's different here compared to the decision tree?

#### This is a linear decision boundary

Recall the equation of a line:

$$y = b + ax$$
  
 $y - ax - b = 0$   
 $y + ax + b = 0$  (why?)

 That notation is a bit confusing because we often call our data matrix x and our labels y. So instead let's rename the axes

• Multiply both sides by a new weight 
$$cx_1 + cax_2 + cb = 0$$

$$cx_1 + ax_2 + b = 0 \quad (why?)$$
• Here we have L and R instead of  $x_1$  and  $x_2$ 

• a and c control the **slope** of the line, b is offset (also called **the bias**)

#### Linear Hypothesis Class

Line equation (assume 2D first):

$$w_2x_2 + w_1x_1 + b = 0$$

- Fact1: All points  $(x_1, x_2)$  lying on the line make the equation true.
- Fact2: The line separates the plane in two half-planes. I.e. the space is separated into two halves by the line
- Fact3: The points  $(x_1, x_2)$  in one half-plane give us an inequality with respect to 0, which has the same direction for each of the points in the half-plane. E.g. > 0.
  - I.e. all points  $(x_1, x_2)$  on one side of the line will produce a number with the same sign when equation  $w_2x_2 + w_1x_1 + b$  is used
- Fact4: The points  $(x_1, x_2)$  in the other half-plane give us the reverse inequality with respect to 0. E.g. < 0

### Fact 3 proof

$$w_2x_2+w_1x_1+b=0$$



#### Fact 3 proof

$$w_2x_2+w_1x_1+b=0$$
  
We can write it as:  $x_2=-\frac{w_1}{w}x_1-\frac{b}{w}$ 

(p,r) is on the line so:

$$r = -\frac{w_1}{w_2} p - \frac{b}{w_2}$$

For q < r, so we have:  $q < r = -\frac{w_1}{w_2} p - \frac{b}{w_2}$  *i.e.* 

$$w_2 q + w_1 p + b < 0$$
 if  $w_2 > 0$   
 $w_2 q + w_1 p + b > 0$  if  $w_2 < 0$ 

Since (p,q) was an arbitrary point in the half-plane, we say that the same direction of inequality holds for any other point of the half-plane. Fact 4 is similar.



10

This means we can use the equation of the line as a linear classifier!

$$\mathbf{x} = [x_1, \ x_2, \ ..., \ x_m]$$
  $\mathbf{w} = [w_1, \ w_2, \ ..., \ w_m]$ 
Data (row of data matrix)  $\mathbf{w}$  Weights we will learn

$$h(\mathbf{x}, \mathbf{w}, b) = sign(\mathbf{w} \cdot \mathbf{x} + b)$$

"sign" outputs +1 or -1 depending on the sign of wx+b

Then, assign +1 to blue, and -1 to red, or vice versa.



#### One small change (notational simplicity)

$$h(\mathbf{x}, \mathbf{w}, b) = \operatorname{sign}\left(\left(\sum_{i=1}^{m} w_i x_i\right) + b\right) \qquad h(\mathbf{x}, \mathbf{w}) = \operatorname{sign}\left(\left(\sum_{i=1}^{m} w_i x_i\right) + w_0\right)$$

 $w_0 = b$ 

$$\mathbf{x} = [1, x_1, ..., x_m]$$

$$\mathbf{x} = [1, x_1, ..., x_m]$$
  $\mathbf{w} = [w_0, w_1, ..., w_m]$ 

$$h(\mathbf{x}, \mathbf{w}) = \operatorname{sign}\left(\sum_{i=0}^{m} w_i x_i\right)$$
$$= \operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$$
$$= \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

#### Now we have to learn!

$$h(\mathbf{x}, \mathbf{w}) = \operatorname{sign}\left(\sum_{i=0}^{m} w_i x_i\right)$$
$$= \operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$$
$$= \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

• What is our **w**?

#### Learning Algorithm

$$h(\mathbf{x}, \mathbf{w}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$$

Start with random w's

Training tuples (1... n)

 $\mathbf{x}^1, y^1$ 

 $\mathbf{x}^2, y^2$ 

• • •

 $\mathbf{x}^n, y^n$ 

#### Learning Algorithm

Work through the training tuples (1... n)

For each misclassified training tuple

i.e. 
$$sign(\mathbf{w}^T\mathbf{x}^k) \neq y^k$$

Update w:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \eta \cdot y^k \cdot \mathbf{x}^k$$

 $\eta$  is the *learning rate* 

Why is this a good update rule?

You will show this on your homework!

It can be shown that if the data is **linearly** separable, and we repeat this procedure many times, we will get a line that separates the training tuples.

#### The learning rate

- "Learning rate" is a term you will see often
- It governs how quickly parameters change during learning
- Set it too small and it will take a very long time to converge
- Set it too large and the algorithm will actually diverge (i.e. make more and more errors)

#### Linearly Separable



Some intuition behind the perceptron learning algorithm

Recall the dot product

$$A \cdot B = \sum_{i} A_{i}B_{i}$$
$$= ||A|| * ||B|| * cos(\theta)$$

- ||A|| and ||B|| can only be positive
- $cos(\theta)$  is negative when the angle is between ½ pi and 3/2 pi
  - that is, when the angle is obtuse
  - so we want obtuse when y = -1, acute otherwise
- Note that we want  $\mathbf{w}^T \mathbf{x}^* \mathbf{y} > 0$ , which is not true when  $\operatorname{sign}(\mathbf{w}^T \mathbf{x}^k) \neq y^k$

#### Sign of dot product and misclassification









#### The Perceptron

• This learning update rule is so simple it can be coded in excel!

#### The Perceptron

This learning update rule is so simple it can be coded in excel!

#### • Caveats:

- If linearly separable, this algorithm will learn "a" line that separates the classes. The order of the data will effect which separating line it will learn
- If not linearly separable, this algorithm will never terminate

#### Margin for different separators



#### The Perceptron

- A perceptron is actually a very simple neural network
  - Here "sign" is the *activation* function
    - Step function with step point n=0
  - There are other kinds of activation functions (we will talk more about this later)



#### Activation functions



https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

#### The Perceptron

- You may run into the term multilayer perceptron
  - Several layers of perceptrons chained together
  - Each layer consists of multiple perceptrons, each with their own learned w

• The output of the activation function becomes the input to the next layer of perceptrons  $_{\mathrm{Bias}}$ 



#### Take home messages

- Perceptrons: the simplest NN
- Perceptron learning alg
  - So simple we can code it in excel!
  - Guaranteed to converge when data in lin. Separable

- Some fun history (won't be on your exam)
  - https://web.csulb.edu/~cwallis/artificialn/History.htm