Задачи

Коммутативная алгебра, 2025

(можно приходить за подсказками, они будут даваться щедро)

- (3, 2) **1.** Пусть x нильпотент в кольце A. Покажите, что 1+x обратим. Выведите отсюда, что сумма нильпотента и обратимого элемента обратима. (3 кг., годно в теч. 2 дней)
- (5, 3) **2.** Допустим, что в кольце A всякий идеал $\mathfrak{a} \not\subset \mathcal{N}$ содержит идемпотент, т.е. такой элемент $e \in A$, что $e^2 = e \neq 0$. Докажите, что в кольце A нильрадикал \mathcal{N} совпадает с радикалом Джекобсона \mathcal{R} . (5 кг., годно в теч. 3 дней)
- (5, 3) **3.** Пусть в кольце A всякий элемент x удовлетворяет уравнению $x^n = x$ для некоторого n > 1 (число n зависит от x). Покажите, что любой простой идеал в A максимален.

(5 кг., годно в теч. 3 дней)

- (5,4) 4. Пусть A ненулевое кольцо. Покажите, что множество всех простых идеалов в A содержит хотя бы один минимальный (по включению) элемент. Покажите, что всякий простой идеал содержит минимальный простой идеал. (5 кг., годно в теч. 4 дней)
- (5, 4) **5.** Пусть A кольцо, \mathcal{N} его нильрадикал. Докажите, что следующие условия равносильны:
 - А имеет ровно один простой идеал;
 - Любой элемент A либо обратим, либо нильпотентен;
 - A/\mathcal{N} есть поле.

(5 кг., годно в теч. 4 дней)

- (3, 5) **6.** Придумайте пример такого кольца A и множества $E \subset A$, что $x,y \in E \Longrightarrow xy \in E$, но при этом $A \setminus E$ не простой идеал. (3 кг., годно в теч. **5** дней)
- (7, 6) 7. Покажите, что в локальном кольце нет идемпотентов, кроме 0 и 1. (7 кг., годно в теч. 6 дней)
- (7, 7) **8.** Кольцо A называется *булевым*, если $x^2 = x$ для всех $x \in A$. Покажите, что справедливы следующие утверждения:
 - 2x = 0 для всех $x \in A$;
 - Любой простой идеал $\mathfrak{p} \leqslant A$ максимален, и A/\mathfrak{p} поле из двух элементов.

(7 кг., годно в теч. 7 дней)

- (7, 9) 9. Пусть A некоторое кольцо, X множество всех его простых идеалов. Для каждого подмножества $E \subset A$ обозначим через V(E) множество всех простых идеалов, содержащих E. Докажите следующее:
 - Если \mathfrak{a} идеал, порождённый E, то $V(E)=V(\mathfrak{a})=V(r(\mathfrak{a}));$
 - $V(0) = X, V(1) = \emptyset;$
 - Для всякого семейства $\left\{E_i\right\}_{i\in\mathcal{I}}$, имеем $V(\cup_{i\in\mathcal{I}}E_i)=\cap_{i\in\mathcal{I}}V(E_i)$;
 - $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$, для всех идеалов $\mathfrak{a}, \mathfrak{b} \leqslant A$.

Таким образом, семейство $\{V(E) \mid E \subset A\}$ удовлетворяет аксиомам замкнутых множеств, и определяет в X так называемую топологию Зарисского. Топологическое пространство X называется простым спектром кольца A и обозначается $\mathrm{Spec}(A)$.

(7 кг., годно в теч. **9** дней)

(11, 12) 10. Обозначим через Σ множество всех идеалов в A, полностью состоящих из делителей нуля. Покажите, что в Σ есть хотя бы один максимальный элемент. Покажите, что всякий максимальный элемент в Σ прост. (11 кг., годно в теч. 12 дней)

- (3, 12) **11.** Пусть $0 \to M \stackrel{f}{\to} N \stackrel{g}{\to} L \to 0$ точная последовательность. Докажите, что если M и L конечно порождены, то N также конечно порождено. (3 кг., годно в теч. 12 дней)
- (5, 13) **12.** Пусть A локальное кольцо. Докажите, что A^2 **не** изоморфно A^1 , как A-модуль.

(5 кг., годно в теч. 13 дней)

(7, 13) 13. Пусть A — кольцо, $\mathfrak a$ — такой конечно порождённый (как A-модуль) идеал в A, что $\mathfrak a^2=\mathfrak a$. Докажите, что идеал $\mathfrak a$ порождён единственным идемпотентом.

(7 кг., годно в теч. 13 дней)

(7, 14) 14. Пусть дана следующая коммутативная диаграмма, в которой обе строки точны:

Докажите, что если α_1 , α_3 — изоморфизмы, то α_2 — тоже изоморфизм.

(7 кг., годно в теч. 14 дней)

(3, 15) 15. Докажите, что $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$, если m, n взаимно просты.

(3 кг., годно в теч. 15 дней)

(5, 15) **16.** Покажите, что если M, N- плоские A-модули, то $M\otimes N-$ тоже плоский.

(5 кг., годно в теч. **15** дней)

- (7, 16) **17.** Пусть M конечно порождённый A-модуль, $\varphi: M \to A^n$ сюръективный гомоморфизм. Докажите, что $\ker \varphi$ конечно порождён. (7 кг., годно в теч. **16** дней)
- (11, 17) **18.** Пусть A нётерово кольцо. Докажите, что для всякого идеала $\mathfrak{a} \leqslant A$, семейство $P(\mathfrak{a})$, состоящее из всех простых идеалов, содержащих \mathfrak{a} , имеет не более чем конечное число минимальных (по включению) элементов.

<u>Подсказка</u>: Допустите противное и рассмотрите семейство всех идеалов $\mathfrak{a} \leqslant A$, для которых данное утверждение не выполняется.

(11 кг., годно в теч. 17 дней)

- (11, 17) **19.** При помощи леммы Цорна докажите следующую версию *аксиомы выбора:* для каждого сюръективного отображения $f: X \to Y$ существует его *правое обратное*, то есть такое $g: Y \to X$, что f(g(y)) = y для всех $y \in Y$. (11 кг., годно в теч. 17 дней)
 - (9, 17) **20.** Приведите пример кольца A и его подкольца B, таких, что A нётерово, а B нет.

<u>Подсказка:</u> Рассмотрите поле $\mathbb R$ и кольцо многочленов $\mathbb R[x,y]$. В этом кольце найдите не-нётерово подкольцо.

(9 кг., годно в теч. 17 дней)