REPUBLIQUE DU CAMEROUN

Paix-Travail-patrie

UNIVERSITE DE YAOUNDE I

FACULTE DE MEDECINE ET DES SCIENCES BIOMEDICALES

DEPARTEMENT D'OPHTALMOLOGIE, ORL ET STOMATOLOGIE

REPUBLIC OF CAMEROON

Peace-Work-Fatherland

THE UNIVERSITY OF YAOUNDE I

FACULTY OF MEDICINE AND BIOMEDICAL SCIENCES

DEPARTMENT OF OPHTHALMOLOGY, ENT AND STOMATOLOGY

Evaluation de la stéréo-acuité des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun

Thèse rédigée et soutenue publiquement en vue de l'obtention du Doctorat en Médecine Générale par :

KEYO Rosine Erika

Matricule: 17M115

Directeur

Pr DOHVOMA Viola

Andin

Maître de Conférences Agrégée d'Ophtalmologie **Co-directeur**

Pr EBANA MVOGO Stève Robert

Maître de Conférences Agrégé d'Ophtalmologie

Année académique : 2023-2024

REPUBLIQUE DU CAMEROUN

Paix-Travail-patrie

UNIVERSITE DE YAOUNDE I

FACULTE DE MEDECINE ET DES SCIENCES BIOMEDICALES

DEPARTEMENT D'OPHTALMOLOGIE, ORL ET STOMATOLOGIE

REPUBLIC OF CAMEROON

Peace-Work-Fatherland

THE UNIVERSITY OF YAOUNDE I

FACULTY OF MEDICINE AND BIOMEDICAL SCIENCES

DEPARTMENT OF OPHTHALMOLOGY, ENT AND STOMATOLOGY

Evaluation de la stéréo-acuité des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun

Thèse rédigée et soutenue en vue de l'obtention du Doctorat en Médecine Générale par :

KEYO Rosine Erika

Matricule: 17M115

Date de soutenance : 28/06/2024

Jury de thèse:

Président du jury :

Pr KAGMENI Gilles

Rapporteur:

Pr DOHVOMA Viola Andin

Membre:

Pr KOKI Godefroy

Equipe d'encadrement:

Directeur

Pr DOHVOMA Viola Andin

Maître de Conférences Agrégée d'Ophtalmologie

<u>Co-directeur</u> Pr EBANA MVOGO Stève Robert

> Maître de Conférences Agrégé d'Ophtalmologie

Année académique : 2023-2024

Sommaire

Dédicace	ii
Remerciements	iii
Liste du personnel administratif et académique	v
Serment d'Hippocrate	xvii
Résumé	xviii
Summary	xix
Liste des tableaux	xx
Liste des figures	xxi
Liste des abréviations et sigles	xxii
Chapitre I : introduction	1
Chapitre II : revue de la littérature	4
Chapitre III : méthodologie	19
Chapitre IV : résultats	25
Chapitre V : discussion	33
Conclusion	
Recommandations	40
Références	42
Annexes	xxv

Dédicace

À ma famille

Remerciements

Nous tenons à adresser nos sincères remerciements :

- Au Seigneur Dieu Tout Puissant, sans qui la réalisation de ce travail n'aurait été
 possible;
- Au Pr DOHVOMA Viola Andin, directeur de ce travail, pour vos observations critiques et suggestions qui ont permis d'optimiser la qualité de cette recherche. Pour m'avoir encouragée, dirigée et soutenue dans ce travail à travers votre bienveillance continuelle et le partage des connaissances sur la recherche scientifique. Votre rigueur scientifique, votre disponibilité, vos qualités humaines suscite en moi un profond respect et de l'admiration. Veuillez recevoir cher Maître, l'expression de ma profonde gratitude;
- Au Pr EBANA MVOGO Stève Robert, co-Directeur de ce travail, pour l'accompagnement durant tout ce processus de recherche et le partage continuel de ses connaissances. Merci pour les conseils, les encouragements qui nous ont permis de nous surpasser durant toute cette année;
- Aux honorables membres du jury d'évaluation de ce travail, pour l'honneur que vous nous faites en acceptant d'examiner ce travail de recherche. Vos remarques et suggestions ne feront que parfaire ce travail;
- Au Pr ZE MINKANDE Jacqueline, Doyen de la Faculté de Médecine et des Sciences Biomédicales (FMSB); pour m'avoir donné un exemple de relation administrationétudiante basé sur un véritable compagnonnage à toutes les étapes de la formation;
- Au **personnel enseignant et administratif de la FMSB**, pour votre accompagnement constant ;
- Au **Pr FOUDA Pierre**, Directeur de l'Hôpital Central de Yaoundé (HCY) pour l'autorisation de réaliser cette étude dans l'établissement qu'il dirige ;
- Au **Pr EBANA MVOGO Côme**, chef de service d'Ophtalmologie de l'HCY pour l'admission dans le service et l'encadrement ;
- Aux ophtalmologistes du service d'ophtalmologie de l'HCY: Pr EPEE Emilienne, Dr MVILONGO, Dr AKONO, Dr TALLA, Dr NGUENA pour l'enseignement que nous avons reçu;

- Aux résidents d'Ophtalmologie: Dr DIM BASSI, Dr FADANKA Bruno, Dr EBANA
 Aurore, Dr MANFOR Mercy, Dr MPOUAL Calyssa, Dr ESSENGUE Emmanuel
 pour leur accompagnement continuel durant tout le processus de recherche,
- A mes ainés académiques : Dr EBANDA Guy Roger, Dr NGAMENI Durand pour leur aide continuelle ;
- Au personnel infirmier du service d'Ophtalmologie de l'HCY, pour nos nombreuses et chaleureuses discussions, votre gentillesse et toute l'aide que vous nous avez apportée;
- A mes papas : KEYO Manfred Roger et LAOUMAYE MERHOYE, pour vos sacrifices et votre soutien inconditionnel tout au long du chemin parcouru, pour avoir toujours été là dans les moments qui comptent pour moi;
- A mes mamans: KEYO Martine, Roukatou MERHOYE, TAZE Sylvie pour tout l'amour, le soutien inconditionnel et toute vos prières. Aucune parole ne saurait exprimer tout l'amour que j'ai pour vous.
- A mes frères et sœurs : KEYO Prisca Audrey, MORNADJI Willy, NGUELNDO Serge, KADAMDJE Flore, MBAIKOUBOU Frédéric, DENARE Suzanne, MAIPELE Elsa, MERHOYE Patrick, MERHOYE Cédric, KAI Daisse, pour l'amour et votre présence continuelle à mes côtés.
- A mes amis : **KAPOU Emmanuel Jireh** et **MATIKE Christelle** : aucun mot ne saurait exprimer ma gratitude et ma considération envers vous. Merci pour le soutien, la bienveillance et votre aide inestimable durant tout ce processus.
- A tous mes camarades de promotion, en particulier : ANDELA Xaverie, DJIOGO
 Délivrance, HAMIDOU Abdou Raoufi, AMANI Clémence, FOUOMEKONG
 Nelssa, KODA Zra Markus, KASSER Clément pour votre soutien et votre présence
 à mes côtés.
- A mes camarades : KAMAHA Ashley, KOUMDA Richard, MBOUI Angèle,
 Sharifa HAMADOU, avec qui j'ai partagé cette expérience, merci pour votre présence,
 votre soutient et le réconfort durant toute cette année
- Aux médecins en spécialisation d'Ophtalmologie et ORL, pour votre temps et acceptation qui ont permis la réalisation de ce travail.

Liste du personnel administratif et académique

1. PERSONNEL ADMINISTRATIF

Doyen: Pr NGO UM Esther Juliette épse MEKA

Vice- Doyen chargé de la programmation et du suivi des activités académiques : Pr NTSAMA ESSOMBA Claudine Mireille

Vice- Doyen chargé de la Recherche et de la Coopération : Pr ZEH Odile Fernande

Vice-Doyen chargé de la Scolarité, des Statistiques et du Suivi des Etudiants : Pr NGANOU Chris Nadège épouse GNINDJIO

Chef de la Division des Affaires Académiques, de la Scolarité et de la Recherche : Dr VOUNDI VOUNDI Esther

Chef de la Division Administrative et Financière : Mme ESSONO EFFA Muriel Glawdis

Coordonnateur Général du Cycle de Spécialisation : Pr NJAMNSHI Alfred KONGNYU

Chef de Service Financier : Mme NGAMLI NGOU Mireille Albertine épouse WAH

Chef de Service Adjoint Financier : Mme MANDA BANA Marie Madeleine épouse ENGUENE

Chef de Service de l'Administration Générale et du Personnel : Pr SAMBA Odette NGANO ép. TCHOUAWOU

Chef de Service des Diplômes: Mme ASSAKO Anne DOOBA

Chef de Service Adjoint des Diplômes : Dr NGONO AKAM MARGA Vanina

Chef de Service de la Scolarité et des Statistiques : Mme BIENZA Aline

Chef de Service Adjoint de la Scolarité et des Statistiques : Mme FAGNI MBOUOMBO AMINA épouse ONANA

Chef de Service du Matériel et de la Maintenance : Mme HAWA OUMAROU

Chef de Service Adjoint du Matériel et de la Maintenance : Dr MPONO EMENGUELE Pascale épouse NDONGO

Bibliothécaire en Chef par intérim : Mme FROUISSOU née MAME Marie-Claire

Comptable Matières: M. MOUMEMIE NJOUNDIYIMOUN MAZOU

2. COORDONNATEURS DES CYCLES ET RESPONSABLES DES FILIERES

Coordonnateur Filière Médecine Bucco-dentaire : Pr BENGONDO MESSANGA Charles

Coordonnateur de la Filière Pharmacie : Pr NTSAMA ESSOMBA Claudine

Coordonnateur Filière Internat: Pr ONGOLO ZOGO Pierre

Coordonnateur du Cycle de Spécialisation en Anatomie Pathologique : Pr SANDO Zacharie

Coordonnateur du Cycle de Spécialisation en Anesthésie Réanimation : Pr ZE MINKANDE Jacqueline

Coordonnateur du Cycle de Spécialisation en Chirurgie Générale : Pr NGO NONGA Bernadette

Coordonnateur du Cycle de Spécialisation en Gynécologie et Obstétrique : Pr DOHBIT Julius SAMA

Coordonnateur du Cycle de Spécialisation en Médecine Interne: Pr NGANDEU Madeleine Coordonnateur du Cycle de Spécialisation en Pédiatrie : Pr MAH Evelyn MUNGYEH Coordonnateur du Cycle de Spécialisation en Biologie Clinique : Pr KAMGA FOUAMNO Henri Lucien

Coordonnateur du Cycle de Spécialisation en Radiologie et Imagerie Médicale : Pr ONGOLO ZOGO Pierre

Coordonnateur du Cycle de Spécialisation en Santé Publique : Pr TAKOUGANG Innocent

Coordonnateur de la formation Continue : Pr KASIA Jean Marie

Point focal projet: Pr NGOUPAYO Joseph

Responsable Pédagogique CESSI: Pr ANKOUANE ANDOULO Firmin

3. DIRECTEURS HONORAIRES DU CUSS

Pr MONEKOSSO Gottlieb (1969-1978)

Pr EBEN MOUSSI Emmanuel (1978-1983)

Pr NGU LIFANJI Jacob (1983-1985)

Pr CARTERET Pierre (1985-1993)

4. DOYENS HONORAIRES DE LA FMSB

Pr SOSSO Maurice Aurélien (1993-1999)

Pr NDUMBE Peter (1999-2006)

Pr TETANYE EKOE Bonaventure (2006-2012)

Pr EBANA MVOGO Côme (2012-2015)

5. PERSONNEL ENSEIGNANT

N°	NOMS ET PRENOMS	GRADE	DISCIPLINE		
	DEPARTEMENT DE CHIRURGIE ET SPECIALITES				
1	SOSSO Maurice Aurélien (CD)	P	Chirurgie Générale		
2	DJIENTCHEU Vincent de Paul	P	Neurochirurgie		
3	ESSOMBA Arthur (CD par Intérim)	P	Chirurgie Générale		
4	HANDY EONE Daniel	P	Chirurgie Orthopédique		
5	MOUAFO TAMBO Faustin	P	Chirurgie Pédiatrique		

6	NGO NONGA Bernadette	P	Chirurgie Générale
7	NGOWE NGOWE Marcellin	P	Chirurgie Générale
8	OWONO ETOUNDI Paul	P	Anesthésie-Réanimation
9	ZE MINKANDE Jacqueline	P	Anesthésie-Réanimation
10	BAHEBECK Jean	MCA	Chirurgie Orthopédique
11	BANG GUY Aristide	MCA	Chirurgie Générale
12	BENGONO BENGONO Roddy Stéphan	MCA	Anesthésie-Réanimation
13	FARIKOU Ibrahima	MCA	Chirurgie Orthopédique
14	JEMEA Bonaventure	MCA	Anesthésie-Réanimation
15	BEYIHA Gérard	MC	Anesthésie-Réanimation
16	EYENGA Victor Claude	MC	Chirurgie/Neurochirurgie
17	GUIFO Marc Leroy	MC	Chirurgie Générale
18	NGO YAMBEN Marie Ange	MC	Chirurgie Orthopédique
19	TSIAGADIGI Jean Gustave	MC	Chirurgie Orthopédique
20	BELLO FIGUIM	MA	Neurochirurgie
21	BIWOLE BIWOLE Daniel Claude Patrick	MA	Chirurgie Générale
22	FONKOUE Loïc	MA	Chirurgie Orthopédique
23	KONA NGONDO François Stéphane	MA	Anesthésie-Réanimation
24	MBOUCHE Landry Oriole	MA	Urologie
25	MEKEME MEKEME Junior Barthelemy	MA	Urologie
26	MULUEM Olivier Kennedy	MA	Orthopédie-Traumatologie
27	SAVOM Eric Patrick	MA	Chirurgie Générale
28	AHANDA ASSIGA	CC	Chirurgie Générale
29	AMENGLE Albert Ludovic	CC	Anesthésie-Réanimation
30	BIKONO ATANGANA Ernestine Renée	CC	Neurochirurgie
31	BWELE Georges	CC	Chirurgie Générale
32	EPOUPA NGALLE Frantz Guy	CC	Urologie
33	FOUDA Jean Cédrick	CC	Urologie
34	IROUME Cristella Raïssa BIFOUNA épouse	CC	Anesthésie-Réanimation
34	NTYO'O NKOUMOU		Anconicor-ivealifilation
35	MOHAMADOU GUEMSE Emmanuel	CC	Chirurgie Orthopédique
36	NDIKONTAR KWINJI Raymond	CC	Anesthésie-Réanimation
37	NWAHA MAKON Axel Stéphane	CC	Urologie
L	I .	i .	i

38	NYANIT BOB Dorcas	CC	Chirurgie Pédiatrique
39	OUMAROU HAMAN NASSOUROU	CC	Neurochirurgie
40	A DDOVE DETOU Febries Cténhons	AS	Chirurgie Thoracique et
40	ARROYE BETOU Fabrice Stéphane	AS	Cardiovasculaire
41	ELA BELLA Amos Jean-Marie	AS	Chirurgie Thoracique
42	FOLA KOPONG Olivier	AS	Chirurgie
43	FOSSI KAMGA GACELLE	AS	Chirurgie Pédiatrique
44	GOUAG	AS	Anesthésie Réanimation
45	MBELE Richard II	AS	Chirurgie Thoracique
46	MFOUAPON EWANE Hervé Blaise	AS	Neurochirurgie
47	NGOUATNA DJEUMAKOU Serge Rawlings	AS	Anesthésie-Réanimation
10	NYANKOUE MEBOUINZ Ferdinand	AS	Chirurgie Orthopédique et
48	IN Y AINKOUE MEBOUINZ Ferdinand	AS	Traumatologique
	DEPARTEMENT DE MEDECINE	INTERN	NE ET SPECIALITES
49	SINGWE Madeleine épse NGANDEU (CD)	P	Médecine Interne/Rhumatologie
50	ANKOUANE ANDOULO	P	Médecine Interne/ Hépato-Gastro-
30	ANKOUANE ANDOULO		Entérologie
51	ASHUNTANTANG Gloria Enow	P	Médecine Interne/Néphrologie
52	BISSEK Anne Cécile	P	Médecine Interne/Dermatologie
53	KAZE FOLEFACK François	P	Médecine Interne/Néphrologie
54	KUATE TEGUEU Calixte	P	Médecine Interne/Neurologie
55	KOUOTOU Emmanuel Armand	P	Médecine Interne/Dermatologie
56	MBANYA Jean Claude	P	Médecine Interne/Endocrinologie
57	NDJITOYAP NDAM Elie Claude	P	Médecine Interne/ Hépato-Gastro-
	TIBUTIO TITI TIBUTINI EME CIMAGE		Entérologie
58	NDOM Paul	P	Médecine Interne/Oncologie
59	NJAMNSHI Alfred KONGNYU	P	Médecine Interne/Neurologie
60	NJOYA OUDOU	P	Médecine Interne/Gastro-
			Entérologie
61	SOBNGWI Eugène	P	Médecine Interne/Endocrinologie
62	PEFURA YONE Eric Walter	P	Médecine Interne/Pneumologie
63	BOOMBHI Jérôme	MCA	Médecine Interne/Cardiologie

64	FOUDA MENYE Hermine Danielle	MCA	Médecine Interne/Néphrologie
65	HAMADOU BA	MCA	Médecine Interne/Cardiologie
66	MENANGA Alain Patrick	MCA	Médecine Interne/Cardiologie
67	NGANOU Chris Nadège	MCA	Médecine Interne/Cardiologie
68	KOWO Mathurin Pierre	MC	Médecine Interne/ Hépato-Gastro- Entérologie
69	KUATE née MFEUKEU KWA Liliane Claudine	MC	Médecine Interne/Cardiologie
70	NDONGO AMOUGOU Sylvie	MC	Médecine Interne/Cardiologie
71	DEHAYEM YEFOU Mesmin	MA	Médecine Interne/Endocrinologie
72	ESSON MAPOKO Berthe Sabine épouse PAAMBOG	MA	Médecine Interne/Oncologie Médicale
73	ETOA NDZIE épouse ETOGA Martine Claude	MA	Médecine Interne/Endocrinologie
74	MAÏMOUNA MAHAMAT	MA	Médecine Interne/Néphrologie
75	MASSONGO MASSONGO	MA	Médecine Interne/Pneumologie
76	MBONDA CHIMI Paul-Cédric	MA	Médecine Interne/Neurologie
77	NDJITOYAP NDAM Antonin Wilson	MA	Médecine Interne/Gastroentérologie
78	NDOBO épouse KOE Juliette Valérie Danielle	MA	Médecine Interne/Cardiologie
79	NGAH KOMO Elisabeth	MA	Médecine Interne/Pneumologie
80	NGARKA Léonard	MA	Médecine Interne/Neurologie
81	NKORO OMBEDE Grâce Anita	MA	Médecine Interne/Dermatologue
82	OWONO NGABEDE Amalia Ariane	MA	Médecine Interne/Cardiologie Interventionnelle
83	NTSAMA ESSOMBA Marie Josiane épouse EBODE	MA	Médecine Interne/Gériatrie
84	ATENGUENA OBALEMBA Etienne	CC	Médecine Interne/Cancérologie Médicale
85	FOJO TALONGONG Baudelaire	CC	Médecine Interne/Rhumatologie
86	KAMGA OLEN Jean Pierre Olivier	CC	Médecine Interne/Psychiatrie
87	MENDANE MEKOBE Francine épouse EKOBENA	CC	Médecine Interne/Endocrinologie

88	MINTOM MEDJO Pierre Didier	CC	Médecine Interne/Cardiologie
89	NTONE ENYIME Félicien	CC	Médecine Interne/Psychiatrie
90	NZANA Victorine Bandolo épouse	CC	Médecine Interne/Néphrologie
90	FORKWA MBAH		Wiedecine interne/wephilologie
91	ANABA MELINGUI Victor Yves	AS	Médecine Interne/Rhumatologie
92	EBENE MANON Guillaume	AS	Médecine Interne/Cardiologie
93	ELIMBY NGANDE Lionel Patrick Joël	AS	Médecine Interne/Néphrologie
94	KUABAN Alain	AS	Médecine Interne/Pneumologie
95	NKECK Jan René	AS	Médecine Interne
96	NSOUNFON ABDOU WOUOLIYOU	AS	Médecine Interne/Pneumologie
97	NTYO'O NKOUMOU Arnaud Laurel	AS	Médecine Interne/Pneumologie
98	TCHOUANKEU KOUNGA Fabiola	AS	Médecine Interne/Psychiatrie
	DEPARTEMENT D'IMAGERIE N	MEDICAL	E ET RADIOLOGIE
99	ZEH Odile Fernande (CD)	P	Radiologie/Imagerie Médicale
100	GUEGANG GOUJOU. Emilienne	P	Imagerie Médicale/Neuroradiologie
101	MOIFO Boniface	P	Radiologie/Imagerie Médicale
102	ONGOLO ZOGO Pierre	MCA	Radiologie/Imagerie Médicale
103	SAMBA Odette NGANO	MC	Biophysique/Physique Médicale
104	MBEDE Maggy épouse ENDEGUE	MA	Radiologie/Imagerie Médicale
104	MANGA	1417	Radiologic/imagene iviculcate
105	MEKA'H MAPENYA Ruth-Rosine	MA	Radiothérapie
106	NWATSOCK Joseph Francis	CC	Radiologie/Imagerie Médicale
100	TWITISOCIT JOSEPH Transcis		Médecine Nucléaire
107	SEME ENGOUMOU Ambroise Merci	CC	Radiologie/Imagerie Médicale
108	ABO'O MELOM Adèle Tatiana	AS	Radiologie et Imagerie Médicale
	DEPARTEMENT DE GYNEC	OLOGIE	-OBSTETRIQUE
109	NGO UM Esther Juliette épouse MEKA	MCA	Gynécologie Obstétrique
10)	(CD)		Symposing South and
110	FOUMANE Pascal	P	Gynécologie Obstétrique
111	KASIA Jean Marie	P	Gynécologie Obstétrique
112	KEMFANG NGOWA Jean Dupont	P	Gynécologie Obstétrique
113	MBOUDOU Émile	P	Gynécologie Obstétrique
114	MBU ENOW Robinson	P	Gynécologie Obstétrique

115	NKWABONG Elie	P	Gynécologie Obstétrique
116	TEBEU Pierre Marie	P	Gynécologie Obstétrique
117	BELINGA Etienne	MCA	Gynécologie Obstétrique
118	ESSIBEN Félix	MCA	Gynécologie Obstétrique
119	FOUEDJIO Jeanne Hortence	MCA	Gynécologie Obstétrique
120	NOA NDOUA Claude Cyrille	MCA	Gynécologie Obstétrique
121	DOHBIT Julius SAMA	MC	Gynécologie Obstétrique
122	MVE KOH Valère Salomon	MC	Gynécologie Obstétrique
123	METOGO NTSAMA Junie Annick	MA	Gynécologie Obstétrique
124	MBOUA BATOUM Véronique Sophie	CC	Gynécologie Obstétrique
125	MENDOUA Michèle Florence épouse NKODO	CC	Gynécologie Obstétrique
126	NSAHLAI Christiane JIVIR FOMU	CC	Gynécologie Obstétrique
127	NYADA Serge Robert	CC	Gynécologie Obstétrique
128	TOMPEEN Isidore	CC	Gynécologie Obstétrique
129	EBONG Cliford EBONTANE	AS	Gynécologie Obstétrique
130	MPONO EMENGUELE Pascale épouse NDONGO	AS	Gynécologie Obstétrique
131	NGONO AKAM Marga Vanina	AS	Gynécologie Obstétrique
	DEPARTEMENT D'OPHTALMOLOGI	E, D'ORL	LET DE STOMATOLOGIE
132	DJOMOU François (CD)	P	ORL
133	EBANA MVOGO Côme	P	Ophtalmologie
134	ÉPÉE Émilienne épouse ONGUENE	P	Ophtalmologie
135	KAGMENI Gilles	P	Ophtalmologie
136	NDJOLO Alexis	P	ORL
137	NJOCK Richard	P	ORL
138	OMGBWA EBALE André	P	Ophtalmologie
139	BILLONG Yannick	MCA	Ophtalmologie
140	DOHVOMA Andin Viola	MCA	Ophtalmologie
141	EBANA MVOGO Stève Robert	MCA	Ophtalmologie
142	KOKI Godefroy	MCA	Ophtalmologie
143	MINDJA EKO David	MC	ORL/Chirurgie Maxillo-Faciale
144	NGABA Olive	MC	ORL

145	ANDJOCK NKOUO Yves Christian	MA	ORL
146	MEVA'A BIOUELE Roger Christian	MA	ORL-CCF
147	MOSSUS Yannick	MA	ORL-CCF
148	MVILONGO TSIMI épouse BENGONO Caroline	MA	Ophtalmologie
149	NGO NYEKI Adèle-Rose épouse MOUAHA-BELL	MA	ORL-CCF
150	NOMO Arlette Francine	MA	Ophtalmologie
151	AKONO ZOUA épouse ETEME Marie Evodie	CC	Ophtalmologie
152	ASMAOU BOUBA Dalil	CC	ORL
153	ATANGA Léonel Christophe	CC	ORL-CCF
154	BOLA SIAFA Antoine	CC	ORL
155	NANFACK NGOUNE Chantal	CC	Ophtalmologie
	DEPARTEMENT 1	DE PEDI	ATRIE
156	ONGOTSOYI Angèle épouse PONDY (CD)	P	Pédiatrie
157	KOKI NDOMBO Paul	P	Pédiatre
158	ABENA OBAMA Marie Thérèse	P	Pédiatrie
159	CHIABI Andreas	P	Pédiatrie
160	CHELO David	P	Pédiatrie
161	MAH Evelyn	P	Pédiatrie
162	NGUEFACK Séraphin	P	Pédiatrie
163	NGUEFACK épouse DONGMO Félicitée	P	Pédiatrie
164	NGO UM KINJEL Suzanne épse SAP	MCA	Pédiatrie
165	KALLA Ginette Claude épse MBOPI KEOU	MC	Pédiatrie
166	MBASSI AWA Hubert Désiré	MC	Pédiatrie
167	NOUBI Nelly épouse KAMGAING MOTING	MC	Pédiatrie
168	EPEE épouse NGOUE Jeannette	MA	Pédiatrie
169	KAGO TAGUE Daniel Armand	MA	Pédiatrie
170	MEGUIEZE Claude-Audrey	MA	Pédiatrie
171	MEKONE NKWELE Isabelle	MA	Pédiatre

172	TONY NENGOM Jocelyn	MA	Pédiatrie
I	DEPARTEMENT DE MICROBIOLOGIE, F	PARASITO	OLOGIE, HEMATOLOGIE ET
	MALADIES IN	FECTIEUS	SES
173	MBOPI KEOU François-Xavier (CD)	P	Bactériologie/ Virologie
174	ADIOGO Dieudonné	P	Microbiologie/Virologie
175	GONSU née KAMGA Hortense	P	Bactériologie
176	LUMA Henry	P	Bactériologie/ Virologie
177	MBANYA Dora	P	Hématologie
178	OKOMO ASSOUMOU Marie Claire	P	Bactériologie/ Virologie
179	TAYOU TAGNY Claude	P	Microbiologie/Hématologie
180	CHETCHA CHEMEGNI Bernard	MC	Microbiologie/Hématologie
181	LYONGA Emilia ENJEMA	MC	Microbiologie Médicale
182	TOUKAM Michel	MC	Microbiologie
183	NGANDO Laure épouse MOUDOUTE	MA	Parasitologie
184	BEYALA Frédérique	CC	Maladies Infectieuses
185	BOUM II YAP	CC	Microbiologie
186	ESSOMBA Réné Ghislain	CC	Immunologie
187	MEDI SIKE Christiane Ingrid	CC	Maladies infectieuses
188	NGOGANG Marie Paule	CC	Biologie Clinique
189	NDOUMBA NKENGUE Annick épouse MINTYA	CC	Hématologie
190	VOUNDI VOUNDI Esther	CC	Virologie
191	ANGANDJI TIPANE Prisca épouse ELLA	AS	Biologie Clinique /Hématologie
192	Georges MONDINDE IKOMEY	AS	Immunologie
193	MBOUYAP Pretty Rosereine	AS	Virologie
	DEPARTEMENT DE S	SANTE P	UBLIQUE
194	KAMGNO Joseph (CD)	P	Santé Publique /Epidémiologie
195	ESSI Marie José	P	Santé Publique/Anthropologie Médicale
196	TAKOUGANG Innocent	P	Santé Publique
197	BEDIANG Georges Wylfred	MCA	Informatique Médicale/Santé Publique
198	BILLONG Serges Clotaire	MC	Santé Publique

199	NGUEFACK TSAGUE	MC	Santé Publique /Biostatistiques
200	EYEBE EYEBE Serge Bertrand	CC	Santé Publique/Epidémiologie
201	KEMBE ASSAH Félix	CC	Epidémiologie
202	KWEDI JIPPE Anne Sylvie	CC	Epidémiologie
203	MOSSUS Tatiana née ETOUNOU AKONO	CC	Expert en Promotion de la Santé
204	NJOUMEMI ZAKARIAOU	CC	Santé Publique/Economie de la Santé
205	ABBA-KABIR Haamit-Mahamat	AS	Pharmacien
206	AMANI ADIDJA	AS	Santé Publique
207	ESSO ENDALLE Lovet Linda Augustine Julia	AS	Santé Publique
208	MBA MAADJHOU Berjauline Camille	AS	Santé Publique/Epidémiologie
200	WIDA WAADITIOO Berjaunile Calline	AS	Nutritionnelle
DEI	PARTEMENT DES SCIENCES MORPHOL	OGIQUE	S-ANATOMIE PATHOLOGIQUE
209	MENDIMI NKODO Joseph (CD)	MC	Anatomie Pathologie
210	SANDO Zacharie	P	Anatomie Pathologie
211	BISSOU MAHOP Josue	MC	Médecine de Sport
212	KABEYENE OKONO Angèle Clarisse	MC	Histologie/Embryologie
213	AKABA Désiré	MC	Anatomie Humaine
214	NSEME ETOUCKEY Georges Eric	MC	Médecine Légale
215	NGONGANG Gilbert FranK Olivier	MA	Médecine Légale
216	MENDOUGA MENYE Coralie Reine Bertine épse KOUOTOU	CC	Anatomopathologie
217	ESSAME Eric Fabrice	AS	Anatomopathologie
	DEPARTEMENT I	DE BIOCI	HIMIE
218	NDONGO EMBOLA épse TORIMIRO Judith (CD)	P	Biologie Moléculaire
219	PIEME Constant Anatole	P	Biochimie
220	AMA MOOR Vicky Joceline	P	Biologie Clinique/Biochimie
221	EUSTACE BONGHAN BERINYUY	CC	Biochimie
222	GUEWO FOKENG Magellan	CC	Biochimie
223	MBONO SAMBA ELOUMBA Esther Astrid	AS	Biochimie
DEPARTEMENT DE PHYSIOLOGIE			

224	ETOUNDI NGOA Laurent Serges (CD)	P	Physiologie
225	ASSOMO NDEMBA Peguy Brice	MC	Physiologie
226	AZABJI KENFACK Marcel	CC	Physiologie
227	DZUDIE TAMDJA Anastase	CC	Physiologie
228	EBELL'A DALLE Ernest Remy Hervé	CC	Physiologie humaine
Ι	DEPARTEMENT DE PHARMACOLOGIE	ET DE N	MEDECINE TRADITIONNELLE
229	NGONO MBALLA Rose ABONDO (CD)	MC	Pharmaco-thérapeutique africaine
230	NDIKUM Valentine	CC	Pharmacologie
231	ONDOUA NGUELE Marc Olivier	AS	Pharmacologie
	DEPARTEMENT DE CHIRURGIE BU	JCCALE	E, MAXILLO-FACIALE ET
	PARODONT	OLOGI	E
232	BENGONDO MESSANGA Charles (CD)	P	Stomatologie
233	EDOUMA BOHIMBO Jacques Gérard	MA	Stomatologie et Chirurgie
234	LOWE NANTCHOUANG Jacqueline	СС	Odontologie Pédiatrique
254	Michèle épouse ABISSEGUE		Odomologie i caladique
235	MBEDE NGA MVONDO Rose	CC	Médecine Bucco-dentaire
236	MENGONG épouse MONEBOULOU	CC	Odontologie Pédiatrique
250	Hortense		Odomologie i ediamique
237	NDJOH Jules Julien	CC	Chirurgien Dentiste
238	NOKAM TAGUEMNE M.E.	CC	Médecine Dentaire
239	GAMGNE GUIADEM Catherine M	AS	Chirurgie Dentaire
240	KWEDI Karl Guy Grégoire	AS	Chirurgie Bucco-Dentaire
241	NIBEYE Yannick Carine Brice	AS	Bactériologie
242	NKOLO TOLO Francis Daniel	AS	Chirurgie Bucco-Dentaire
	DEPARTEMENT DE PHARMACOGNOS	SIE ET C	CHIMIE PHARMACEUTIQUE
243	NTSAMA ESSOMBA Claudine (CD)	P	Pharmacognosie /Chimie
213	TOTAL ESSONIBIT CHARACTER (CD)		pharmaceutique
244	NGAMENI Bathélémy	P	Phytochimie/ Chimie Organique
245	NGOUPAYO Joseph	P	Phytochimie/Pharmacognosie
246	GUEDJE Nicole Marie	MC	Ethnopharmacologie/Biologie
210	COLDUL INCOIC MILLIO	IVIC	végétale
247	BAYAGA Hervé Narcisse	AS	Pharmacie
DEPARTEMENT DE PHARMACOTOXICOLOGIE ET PHARMACOCINETIQUE			

248	ZINGUE Stéphane (CD)	MC	
249	FOKUNANG Charles	P	Biologie Moléculaire
250	TEMBE Estella épse FOKUNANG	MC	Pharmacologie Clinique
251	ANGO Yves Patrick	AS	Chimie des substances naturelles
252	NENE AHIDJO épouse NJITUNG TEM	AS	Neuropharmacologie
	DEPARTEMENT DE PHARMACIE	GALENIO	QUE ET LEGISLATION
	PHARMACI	EUTIQUE	
253	NNANGA NGA Emmanuel (CD)	P	Pharmacie Galénique
254	MBOLE Jeanne Mauricette épse MVONDO M.	CC	Management de la qualité, Contrôle qualité des produits de santé et des aliments
255	NYANGONO NDONGO Martin	CC	Pharmacie
256	SOPPO LOBE Charlotte Vanessa	CC	Contrôle qualité médicaments
257	ABA'A Marthe Dereine	AS	Analyse du Médicament
258	FOUMANE MANIEPI NGOUOPIHO Jacqueline Saurelle	AS	Pharmacologie
259	MINYEM NGOMBI Aude Périne épouse AFUH	AS	Réglementation Pharmaceutique

P= Professeur

MCA= Maître de Conférences Agrégé

MC= Maître de Conférences

MA= Maître Assistant

CC = Chargé de Cours

AS = Assistant

Serment d'Hippocrate

Résumé

Introduction: la vision stéréoscopique, composante essentielle de la vision binoculaire, repose sur des mécanismes cérébraux qui permettent de percevoir la profondeur et d'évaluer les distances à partir des images planes captées par chaque œil. Cette fonction est cruciale pour la réalisation de tâches nécessitant une perception précise de la profondeur et une bonne coordination œil-main, notamment en microchirurgie. Elle est très utile dans des spécialités telle que l'Ophtalmologie et l'Oto-Rhino-Laryngologie (ORL). Une altération de la vision stéréoscopique peut donc impacter significativement les performances de ces praticiens.

Objectif : évaluer la stéréo-acuité des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun.

Méthodologie : Une étude transversale descriptive a été réalisée sur une période de quatre mois (Février à Mai 2024) au service d'Ophtalmologie de l'Hôpital Central de Yaoundé (HCY). Après obtention de la clairance éthique et du consentement éclairé des participants, un échantillonnage consécutif a été réalisé. Les variables étudiées comprenaient le sexe, l'âge, la spécialité, l'antécédent personnelle de strabisme, l'acuité visuelle de loin, le type d'erreurs de réfraction et la stéréo-acuité. La stéréo-acuité a été mesurée à l'aide du test Titmus Fly, une stéréo-acuité inférieure ou égale à 40 secondes d'arc étant considérée comme normale. L'analyse des données a été effectuée à l'aide du logiciel IBM SPSS version 26.0. Les tests du Chi² et de Fisher ont été utilisé pour rechercher des associations entre les différentes variables. Une valeur de p inférieure à 0,05 était considérée comme significative.

Résultats : il y'avait au total 60 participants. La moyenne d'âge était de 30,2 ± 3,5 ans, avec des extrêmes allant de 24 à 38 ans. Le sexe-ratio (H/F) était de 0,4. La population d'étude était constituée de 33 médecins en spécialisation d'ORL (55%) et de 27 médecins en spécialisation d'Ophtalmologie (45%). L'erreur de réfraction la plus retrouvé était l'astigmatisme hypermétropique, soit 33,3% des cas. Un antécédent personnel de strabisme a été retrouvée chez 3,3%. La stéréo-acuité médiane était de 25 secondes d'arc avec un intervalle interquartile allant de 25 à 40 secondes d'arc. La stéréo-acuité était anormale chez 23,3% des participants. La myopie était associée à une stéréo-acuité anormale.

Conclusion : Quatorze participants (23, 3%) avaient une stéréo-acuité anormale. Il est important pour chaque médecin aspirant à une spécialisation réalisant de la microchirurgie de connaître sa stéréo-acuité avant le choix de sa spécialité.

Mots clés: stéréo-acuité, myopie, astigmatisme hypermétropique.

Summary

Introduction: stereoscopic vision, an essential component of binocular vision, relies on brain mechanisms that allow us to perceive depth and estimate distances from the flat images captured by each eye. This ability is crucial for performing tasks that require accurate depth perception and good hand-eye coordination, particularly in microsurgery. This is very useful in specialties like Ophthalmology and Ear Nose and Throat (ENT). An impairment in stereoscopic vision can significantly impact the performance of practitioners in these specialties.

Objective: evaluate the stereoscopic acuity of Ophthalmology and ENT residents in Cameroon.

Methodology: a descriptive cross-sectional study was conducted over a four-month period (February to May 2024) at the ophthalmology department of the Yaoundé Central Hospital (HCY). After obtaining ethical clearance and informed consent from participants, a consecutive non-exhaustive sampling was performed. The variables studied included sex, age, specialty, personal history of strabismus, distance visual acuity, type of refractive errors, and stereoscopic acuity. Stereoscopic acuity was measured using the Titmus Fly test, with an acuity of less than 40 seconds of arc considered normal. Data analysis was performed using IBM SPSS version 26.0. Chi-square and Fisher's exact tests were used to examine associations between different variables. A p-value less than 0.05 was considered significant.

Results: the study included a total of 60 participants. The mean age was 30.2 ± 3.5 years, with extremes ranging from 24 to 38 years. The sex ratio (M/F) was 0.4. The study population consisted of 33 ENT residents (55%) and 27 ophthalmology residents (45%). The most common refractive error was hypermetropic astigmatism, observed in 33.3% of participants. A personal history of strabismus was reported in 3.3% of participants. The median stereoacuity of the participants was 25 seconds of arc, with an interquartile range of 25 to 40 seconds of arc. Abnormal stereo acuity was observed in 23.3% of participants. A significant association was found between myopia and abnormal stereo acuity.

Conclusion: fourteen participants (23.3%) had abnormal stereoscopic acuity. These findings highlight the importance for each physician to be aware of their stereoscopic acuity before choosing a specialty that requires precise stereoscopic vision

Keywords: stereoscopic acuity, myopia, hypermetropic astigmatism.

Liste des tableaux

Tableau I : répartition de la population en fonction de la spécialité	27
Tableau II : répartition des participants en fonction des antécédents	28
Tableau IV: répartition en fonction de la position des reflets cornéens	29
Tableau V : répartition en fonction du type d'erreurs de réfraction	30
Tableau VI : répartition de la population en fonction de la stéréo-acuité	30
Tableau VII : association entre les données sociodémographiques et une stéréo-acuité	
anormale	31
Tableau VIII : association entre les données cliniques et une stéréo-acuité anormale	31

Liste des figures

Figure 1 : coupe sagittale de l'œil	5
Figure 2 : représentation axiale du système visuel : œil jusqu'au cortex visuel primaire	8
Figure 3 : échelle des E de Snellen	9
Figure 4: planche d'optotypes de Monoyer	10
Figure 5 :planche d'Ishihara	11
Figure 6: test de Farnsworth 28	11
Figure 7 : champ visuel normal en périmétrie statique	12
Figure 8 : périmétrie statique automatisée explorant les 30° centraux	12
Figure 9 : test de la sensibilité au contraste Pelli-Robson	13
Figure 10 : test de la vision stéréoscopique Titmus	16
Figure 11 : diagramme de flux d'inclusion des participants	26
Figure 12 : répartition des participants en fonction de l'âge	27
Figure 13 : répartition des participants en fonction du sexe et de la spécialité	28
Figure 14 : répartition de la population en fonction de l'acuité visuelle de loin	29

Liste des abréviations et sigles

AV: acuité visuelle

AVL: acuité visuelle de loin

AVL A/C : acuité visuelle de loin avec correction AVL S/C : acuité visuelle de loin sans correction

AVP : acuité visuelle de près

CIER : Comité Institutionnel d'Ethique et de la Recherche FMSB : Faculté de Médecine et des Sciences Biomédicale

HCY: Hôpital Central de Yaoundé

HTA : Hypertension artérielle PIO : pression intra-oculaire

OD : œil droit OG : œil gauche

ORL: Oto-Rhino-Laryngologie

SPSS: Statistical Package for the Social Sciences

UYI : Université de Yaoundé I

Chapitre I. Introduction

I.1. Justification du sujet

La vision stéréoscopique, est le résultat de mécanismes cérébraux complexes, qui permettent de percevoir la profondeur et d'évaluer les distances à partir des images planes captées par chaque œil [1]. Elle représente la troisième dimension de la vision binoculaire, selon la classification de Worth, après la perception simultanée et la fusion, qui constituent respectivement le premier et le deuxième degré [2]. La vision binoculaire, est un phénomène qui permet au système nerveux central de percevoir et de fusionner simultanément les images provenant de chaque œil lorsqu'ils regardent un même objet [2].

Le développement de la vision stéréoscopique est un processus crucial qui débute vers l'âge de quatre mois et se poursuit jusqu'à l'âge de sept ans. Durant cette période, les connexions neuronales responsables de cette fonction se mettent en place progressivement. Après sept ans, ces connexions étant stabilisées, il devient beaucoup plus difficile, voire impossible, de récupérer une vision stéréoscopique normale si elle a été altérée[3]. Des études menées au Cameroun en 2017 sur des enfants âgés de trois à cinq ans ont confirmé cette évolution. L'acuité stéréoscopique, mesurée en secondes d'arc, s'affine progressivement entre ces âges, atteignant les valeurs observées chez les adultes. Les résultats montrent que la valeur médiane de l'acuité stéréoscopique était de 120 secondes d'arc à trois ans et de 60 secondes d'arc à cinq ans [4].

Les prérequis pour le développement d'une bonne vision binoculaire sont : une bonne acuité visuelle de chaque œil et un alignement constant de ceux-ci. C'est pourquoi les patients atteints de pathologies altérant ces fonctions, comme le strabisme, l'amblyopie présentent souvent une vision stéréoscopique compromise [5,6]. Le principal avantage de la vision stéréoscopique est qu'elle fournit une image tridimensionnelle des objets. Chaque œil voit une image légèrement différente, et le cerveau combine ces deux images pour créer une perception de profondeur. Cette capacité est particulièrement utile pour les tâches nécessitant une perception précise de la profondeur, comme attraper un ballon, conduire une voiture ou réaliser des travaux de précision.

Une stéréo-acuité anormale serait associée à une mauvaise qualité de vision et à de mauvaises performances au travail, particulièrement dans des tâches nécessitant une coordination œil-main [7]. Les professions telles que l'aviation exigent de bonnes fonctions visuelles, en particulier une bonne vision binoculaire [8]. En outre, une bonne vision stéréoscopique est également très importante pour des médecins réalisant de la microchirurgie comme les ophtalmologistes, les ORL [9]. Selon *The Royal College of Ophthalmologists*, une

bonne vision stéréoscopique est considérée comme un avantage majeur pour les ophtalmologistes lors des interventions chirurgicales [10]. Il est donc crucial pour chaque médecin aspirant à une spécialisation de connaître sa stéréo-acuité avant le choix d'une spécialisation.

Une étude a été menée au Népal, auprès des étudiants de premier cycle d'une faculté de médecine afin de connaitre leur stéréo-acuité moyenne [1]. A notre connaissance, peu d'études ont été menées sur la question en Afrique, notamment au Cameroun. C'est dans cette optique que nous avons évalué la vision stéréoscopique des médecins en spécialisation d'Ophtalmologie et d'ORL à la Faculté de Médecine et des Sciences Biomédicales (FMSB) de l'Université de Yaoundé 1 (UY1).

I.2. Question de recherche

Quel est le niveau de stéréo-acuité des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun ?

I.3. Objectifs de recherche

I.3.1. Objectif général

Evaluer la vision stéréoscopique des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun.

I.3.2. Objectifs spécifiques

- 1. Décrire les caractéristiques sociodémographiques et cliniques de la population d'étude.
- 2. Etudier la stéréo-acuité des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun.
- 3. Rechercher les facteurs associés à la stéréo-acuité anormale.

Chapitre II. Revue de la littérature

II.1. Rappel des connaissances

II.1.1. Anatomie de l'œil

L'œil est un organe sphérique situé dans l'orbite et responsable de la fonction visuelle. En moyenne, sa longueur axiale est de 24mm, son poids est de 7g et son volume de 6,5cm3. Il contient 3 milieux transparents : l'humeur aqueuse, le cristallin et l'humeur vitrée. On le divise en deux segments : le segment antérieur (jusqu'au cristallin) et le segment postérieur (en arrière du cristallin). Le segment antérieur est divisé en deux chambres : la chambre antérieure en avant de l'iris et la chambre postérieure en arrière de l'iris [11].

II.1.1.1. Le globe oculaire

On définit classiquement un contenant formé de trois enveloppes ou membranes et un contenu (figure 1) :

Figure 1: coupe sagittale de l'œil (ELAINE N. MARIEB, 9e édition)

a. Le contenant

Le globe oculaire est constitué de trois enveloppes : la sclérotique (enveloppe externe), l'uvée (enveloppe intermédiaire) et la rétine (enveloppe interne).

L'enveloppe externe est la sclérotique qui est une membrane blanche et opaque résistante occupant les 4/5 de la surface du globe, sa structure est tendineuse et acellulaire, son épaisseur varie de 1 à 2 mm. Son principal rôle est de maintenir la forme, le tonus et l'intégrité du globe oculaire. Elle est traversée en arrière par le nerf optique et latéralement par les vaisseaux et les nerfs, elle est recouverte par la conjonctive dans sa partie antérieure. Du coté antérieur, cette sclérotique est remplacée par la cornée qui est le premier élément réfractif de l'œil comptant pour les 2/3 du dioptre oculaire. Son épaisseur est de 530 µm environ. Elle est très innervée donc très sensible, elle est transparente et doit le rester pour assurer une bonne vision. Elle est composée de cinq couches différentes : l'épithélium cornéen, la membrane de Bowman, le stroma, la membrane de Descemet et l'endothélium La frontière sclérotique-cornée s'appelle le limbe [11].

L'enveloppe intermédiaire ou vasculaire est formée de trois couches : la choroïde, le corps ciliaire et l'iris. La choroïde est la membrane nourricière de l'œil. Elle est composée de nombreuses cellules pigmentées et d'éléments vasculo-nerveux. Le corps ciliaire est le segment intermédiaire de l'uvée, il est constitué de deux structures : le muscle ciliaire qui a un rôle dans l'accommodation et les procès ciliaires ayant un rôle dans la sécrétion d'humeur aqueuse. L'iris est la partie la plus antérieure de l'uvée, faisant suite au corps ciliaire. C'est une membrane pigmentée, circulaire et contractile, bombant vers l'avant et perforée en son centre d'un orifice : la pupille. La contraction et la dilatation de la pupille sont contrôlées par deux muscles antagonistes : le muscle sphincter pupillaire et le muscle dilatateur pupillaire permettant d'adapter la vision à la lumière ambiante. L'iris délimite la chambre antérieure de la chambre postérieure [12].

L'enveloppe interne est la rétine, organe sensible de la vision, qui recouvre toute la face interne de la choroïde. Sa principale fonction est la phototransduction. Elle est en contact en avant avec l'humeur vitrée et en arrière avec la choroïde. Il existe trois zones particulières : la macula (zone centrale de la rétine), la fovéa (dépression centrale de la macula, caractérisé par une densité importante des cônes où l'acuité visuelle est à son maximum), la papille optique (zone d'émergence du nerf optique dépourvue de photorécepteurs) [11].

b. Le contenu

L'humeur aqueuse est un liquide transparent et fluide, il remplit la chambre antérieure, délimitée par la cornée en avant et l'iris en arrière. Sécrétée en permanence par les procès ciliaires, l'humeur aqueuse est évacuée au niveau de l'angle iridocornéen à travers le trabéculum dans le canal de Schlemm qui rejoint la circulation générale ; une gêne à son évacuation

provoque une élévation de la pression intraoculaire (valeur normale: inférieure à 22 mmHg) [12].

Le cristallin est la lentille biconvexe de l'œil constituant le deuxième élément réfractif de l'œil après la cornée. Il est situé en arrière de l'iris et rattaché aux procès ciliaires par son ligament suspenseur, la zonule. Il est composé : d'un noyau, d'un cortex, d'une capsule antérieure et postérieure. Il est transparent sans vascularisation ni innervation. Le cristallin est capable de modifier sa puissance refractive grâce aux zonules sous l'effet du muscle ciliaire: rôle dans le phénomène d'accommodation [11].

L'humeur vitrée est un gel transparent, entouré d'une fine membrane, la hyaloïde, qui remplit les 4/5e de la cavité oculaire et tapisse par sa face postérieure (hyaloïde postérieure) la face interne de la rétine [12].

II.1.1.2. Annexes

a- Muscles oculomoteurs

L'œil peut être mobilisé dans différentes directions grâce à six muscles striés : droit supérieur, droit inférieur, droit médial, droit latéral, oblique supérieur et oblique inférieur. Le nerf moteur oculaire commun ou nerf III innerve les muscles droit supérieur, droit médial, droit inférieur, oblique inférieur, il assure de plus le reflexe photomoteur et l'acomodation, ainsi que le muscle releveur de la paupière supérieure. Le nerf pathétique ou nerf IV innerve le muscle oblique supérieur. Le nerf moteur oculaire externe ou nerf VI innerve le muscle droit externe [12].

b- Paupières

Les paupières, formées par une charpente fibreuse rigide (le tarse) et un muscle (l'orbiculaire), qui permet l'occlusion palpébrale sous la dépendance du nerf facial ; le clignement physiologique permet l'étalement du film lacrymal à la surface de la cornée[12].

c- Conjonctives

La conjonctive qui recouvre la face interne des paupières (conjonctive palpébrale ou tarsale) et la portion antérieure du globe (conjonctive palpébrale) jusqu'au limbe sclérocornéen [12].

d- Voies lacrymales

Le film lacrymal qui assure l'humidification permanante de la cornée; il est sécrété par la glande lacrymale principale, située de chaque côté à la partie supéro-externe de l'orbite, et par des glandes lacrymales accessoires situées dans les paupières et la conjonctive ; il est évacué par

les voies lacrymales qui communiquent avec les fosses nasales par le canal lacrymonasal. Une diminution de sécrétion lacrymale par une atteinte pathologique des glandes lacrymales peut être responsable d'un syndrome sec, mis en évidence par le test de Schirmer et le break-up time; une obstruction des voies lacrymales peut entraîner l'apparition d'un larmoiement [12].

II.1.1.3. Voies optiques

Les voies optiques permettent la transmission du signal nerveux aux centres corticaux de la vision. Le signal nerveux traverse les différentes structures des voies optiques qui sont: le nerf optique dont l'extrémité antérieure est visible au fond d'œil, le chiasma optique au niveau de la selle turcique, les bandelettes optiques contenant les fibres qui proviennent des deux hémirétines qui regardent dans la même direction, les corps genouillés externes, les radiations optiques constituées du troisième neurone des voies optiques (figure 2).

Toute atteinte des voies optiques entraînera une amputation du champ visuel. Par exemple une atteinte du nerf optique entrainera une cécité monoculaire, une atteinte chiasmatique entrainera une hémianopsie bitemporale, une atteinte des bandelettes optiques causera une hémianopsie latérale homonyme.

Figure 2: représentation axiale du système visuel : œil jusqu'au cortex visuel primaire (figure tirée de Purves 2005)

II.1.2. Fonctions visuelles

II.1.2.1. Acuité visuelle

L'acuité visuelle se refère au pouvoir de discrimination le plus fin au contraste maximal entre un test et son fond. Elle se mésure à l'aide d'optotypes [13].

Pour la mésure de l'AVL il existes plusieurs échelles, notamment : EDTRS qui exprime l'AV en log MAR, E de Raskin, anneau de Landolt, E de Snellen (figure 3), monoyer qui exprime l'AV en 1/10^e (figure 4). Pour la mésure de l'AVP il existe different échelles telles que : l'échelle de Parinaud [14].

Les facteurs pouvant influencer l'AV sont : diamètre pupillaire, refraction, accomodation, transparence des milieux, topographie rétinienne fovéolaire périphérique, mouvement oculaire, vision binoculaire, age [14].

Figure 3: échelle des E de Snellen (Référentiels des collèges. Ophtalmologie. 4e édition) [12]

Figure 4: planche d'optotypes de Monoyer (Référentiels des collèges. Ophtalmologie. 4e édition) [12]

II.1.2.2. Vision des couleurs

L'étude de la vision des couleurs est une aide au diagnostic de certaines affections rétinniennes et des neuropathies optiques ; elle est aussi un élément essentiel de la surveillance des traitements susceptibles de provoquer une rétinopathie (antipaludéens de synthèse) ou une neuropathie optique médicamenteuse (principalement antituberculeux : éthambutol et isoniazide) [12].

Il est utile d'effectuer un bilan de la vision des couleurs à la recherche d'une dyschromatopsie dans deux circonstances :

Pour dépister une anomalie congénitale, comme le daltonisme. On utilise des planches colorées (tables pseudo-isochromatiques dont la plus connue est celle d'Ishihara) dont le motif et le fond, constitués de couleurs complémentaires, sont indiscernables pour un sujet atteint de dyschromatopsie congénitale : ainsi, un sujet daltonnien ne verra pas les dessins de planches dont le motif et le fond sont constitués de vert et de rouge (figure 5).

En présence d'une affection oculaire acquise, on utilise habituellement le test de Farnsworth (figure 6) où l'on demande au patient de classer des pastilles colorées ; les dyschromatopsies acquises se traduisent habituellement par une vision altérée et une confusion de deux couleurs complémentaires : bleu et jaune (dans certaines affections rétiniennes) ou rouge et vert (au cours des neuropathies optiques) [12].

Figure 5:Planche d'Ishihara identique vue en A par un sujet normal, en B par un sujet daltonien (Référentiels des collèges. Ophtalmologie. 4º édition) [12]

Figure 6: test de Farnsworth 28 (Référentiels des collèges. Ophtalmologie. 4º édition) [12]

II.1.2.3. Champ visuel

Le champ visuel est la portion de l'espace vu par l'œil regardant droit devant lui et immobile. L'examen du champ visuel (ou périmétrie) étudie la sensibilité à la lumière à l'intérieur de cet espace en appréciant la perception par le sujet examiné de tests lumineux d'intensité et de taille variables. Il existe deux principales méthodes d'examen du champ visuel : la périmétrie cinétique et la périmétrie statique [12].

La périmétrie cinétique est réalisé à l'aide de l'appareil de Goldmann; on projette sur une coupole un point lumineux de taille et d'intensité lumineuse données et on déplace ce point de la périphérie vers le centre jusqu'à ce qu'il soit perçu par le patient; cette manœuvre est répétée sur différents méridiens sur 360°. En répétant cet examen avec des tests de taille et d'intensité

lumineuse décroissantes, on peut ainsi tracer des lignes grossièrement concentriques, ou isoptères, correspondant à des zones de sensibilité lumineuse différente. L'examen est réalisé pour chacun des deux yeux séparément, avec correction optique en cas de trouble de la réfraction [12].

Figure 7: champ visuel normal en périmétrie statique (Référentiels des collèges. Ophtalmologie. 4^e édition) [12]

Lors de la périmétrie statique, on présente un test lumineux fixe, dont on augmente l'intensité jusqu'à ce qu'il soit perçu par le sujet. C'est une méthode d'examen plus précise, qui explore de façon fine le champ visuel central ; elle est ainsi particulièrement indiquée dans la pathologie du nerf optique et au cours du glaucome : c'est la méthode de choix dans le dépistage et la surveillance du glaucome chronique [12].

Figure 8: Périmétrie statique automatisée explorant les 30° centraux (Référentiels des collèges. Ophtalmologie. 4e édition) [12]

II.1.2.4. Sensibilité au contraste lumineux

La sensibilité au contraste lumineux est une fonction qui exprime les capacités du système visuel à détecter les différences de luminance sur des éléments de dimensions variées, créant un contraste entre deux zones adjacentes [15]. C'est une mesure très importante de la fonction visuelle, en particulier dans des situations de faible luminosité, de brouillard ou d'éblouissement, dans lesquelles le contraste entre les objets et leur arrière-plan est souvent plus faible. La conduite de nuit est un exemple d'activité qui exige une bonne sensibilité au contraste pour des raisons de sécurité. Cette sensibilité au contraste varie avec l'âge, dans de nombreux états pathologiques tels que la dégénérescence liée à l'âge, le glaucome, la rétinopathie pigmentaire, les affections démyélinisantes (SEP), le diabète, certaines neuropathies iatrogènes et dans l'amblyopie fonctionnelle.

L'appareil le plus couramment utilisé pour tester la sensibilité au contraste est l'échelle de sensibilité au contraste Pelli-Robson (figure 9). De même qu'une échelle d'acuité visuelle standard, l'échelle Pelli-Robson se compose de lignes horizontales composées de lettres majuscules. Au lieu de présenter des lettres de plus en plus petites sur chaque ligne successive, c'est le contraste des lettres (par rapport au fond du graphique) qui diminue à chaque ligne.

Figure 9: test de la sensibilité au contraste Pelli-Robson (ResearchGate)

II.1.2.5. Vision binoculaire

La vision binoculaire se developpe dans les six premiers mois de la vie extra-utérine. Elle nécessite que chaque œil ait une acuité visuelle satisfaisante témoignant d'une normalité oculaire, des voies visuelles et des structures visuelles corticales. Elle impose également un bon équilibre oculomoteur, permettant un alignement des objets perçus sur des points rétiniens correspondants.

Les pré-réquis d'une bonne vision binoculaire sont : la transparence des milieux, une acuité visuelle satisfaisante, la présence d'une hémidécussation des voies optiques au niveau du chiasma, permettant la superposition de points correspondants au niveau des hémirétines nasale d'un œil et temporale de l'autre ; enfin, il faut une intégrité du cortex visuel, permettant l'intégration binoculaire sans phénomène de neutralisation. Les facteurs moteurs assurent le bon alignement des globes, qui doivent bénéficier d'une complète liberté de mouvement, sans phénomènes de rétraction musculaire ni de synéchies conjonctivales. De plus, la position des globes doit pouvoir être maintenue dans toutes les positions sans décalage, impliquant un tonus musculaire normal [2].

L'acuité visuelle binoculaire est meilleure que l'acuité visuelle monoculaire grâce à la superposition de l'hémirétine nasale d'un œil sur l'hémirétine temporale de l'œil controlatéral. De plus, une vision binoculaire, même rudimentaire, permet la présence d'un champ visuel binoculaire. Chez l'homme, ce dernier comporte une zone de superposition ou de chevauchement du champ visuel de chaque œil de l'ordre de 120°. L'étendue du champ visuel binoculaire est supérieure à celle du champ visuel de chaque œil. L'existence d'une zone de chevauchement du champ visuel de chaque œil permet de compenser les défauts visuels apparaissant au niveau de l'un ou de l'autre œil et diminue les conséquences de pathologies cécitantes. Les scotomes sont ainsi masqués et la capacité visuelle résiduelle en cas d'affection bilatérale correspond à celle de l'œil le moins atteint [2].

Selon la classification de Worth, la vision silmultanée ; la fusion et la vision stéréoscopique représente les trois dégrés de la vision binoculaire [2].

Vision stéréoscopique

La vision stéréoscopique se réfère à la capacité dont dispose le système visuel pour percevoir le relief et la profondeur à l'aide de la vision binoculaire. Elle permet donc de voir le monde en trois dimensions [2]. Elle est possible grâce à la juxtaposition des yeux dans un même plan frontal. L'écart moyen de 6,5 cm entre les deux yeux implique que chaque œil observe le même

objet sous un angle différent, et transmet au cerveau des images décalées horizontalement. La sensation tridimensionnelle est élaborée par le cortex visuel en fusionnant ces images décalées. Plus la disparité horizontale est grande, plus l'impression de relief est importante, alors qu'un décalage vertical ne produit pas d'effet stéréoscopique [16]. La vision stéréoscopique est quantifiée en termes d'acuité stéréoscopique (stéréo-acuité), qui correspond à la disparité horizontale minimale nécessaire pour produire un effet stéréoscopique. Une stéréo-acuité de 15 à 30 secondes d'arc est considérée comme excellente[16]. L'analyse de cette fonction peut être réalisée en dissociant strictement les 2 yeux, soit par des verres polarisés soit par des tests vert/rouge. Certains tests comportent des dessins identiques et décalés, les 2 images obtenues permettant en se combinant de donner l'illusion stéréoscopique. D'autres tests utilisent le principe des points aléatoires dont seule la perception binoculaire permet l'interprétation [17].

La stéréo-acuité peut être mesuré par plusieurs tests, notamment : le Titmus Fly test, TNO, test de Lang, Randot test.

Le test Titmus utilise des filtres polarisés pour séparer les images destinées à chaque œil. La plus grosse image, une mouche, teste la vision stéréoscopique grossière, à un seuil de 3000'' (secondes d'arc). Les patients réagissent en tentant de saisir les ailes de la mouche, qui apparaissent en relief. Il est particulièrement utile pour les jeunes enfants qui peuvent avoir des difficultés à comprendre les instructions. Les autres images ont des seuils progressivement dégressifs, de 400'' à 20'', notamment la série d'animaux ou de figures, à partir de laquelle un animal ou une figure apparaissant à l'avant est sélectionné, facilite le test des jeunes enfants dont le système visuel n'est pas complètement développé. Et pour terminer, les motifs en cercle fournissent une séquence finement graduée [16,18].

La fiabilité du test de Titmus est limitée par le fait qu'il existe des indices monoculaires permettant de donner une réponse correcte sans voir l'image en relief [16].

Figure 10: test de la vision stéréoscopique Titmus

II.2. Etat de connaissance sur la question

II.2.1. En Asie

En 2021, Pragatti et *al.* ont mené une étude transversale descriptive auprès de 80 étudiants de premier cycle d'une faculté de médecine au Népal et les étudiants en sciences infirmières. Le but étant de connaître la stéréo-acuité moyenne de ces étudiants à l'aide du test de la mouche Titmus. La stéréo-acuité moyenne était de $62,63 \pm 46,56$ secondes d'arc. Environ 41 (51,2 %) des participants à l'étude présentaient une stéréopsie normale, limite (> 40 et \leq 120), observée chez 35 (43,8 %) des participants à l'étude, tandis que seulement 4 (5%) présentaient une stéréopsie réduite (\geq 120 secondes d'arc). Cette étude a montré que la stéréo-acuité moyenne parmi les étudiants de premier cycle en médecine et en sciences infirmières se situait dans une fourchette inférieure à la normale [1].

En 2017, Deepa et *al.* ont mené une étude transversale auprès des étudiants du premier cycle de médecine en Inde. Le but était de déterminer les niveaux de stéréo-acuité chez les étudiants et les comparer aux heures d'utilisation de la technologie numérique. Le nombre de participants étaient de 246. La stéréopsie a été mesurée à l'aide la mire du test Random Dot 2 Stereo acuity. Les niveaux de stéréo-acuité ont été classés en normal (20 secondes d'arc ou mieux), limite (25 secondes d'arc à 40 secondes d'arc) et stéréopsie réduite (50 secondes d'arc à 400 secondes d'arc). La stéréopsie était normale chez 13,1% de la population, limite chez 44,3% et réduite chez 42,6% (105). Sur les 105 étudiants présentant des niveaux d'acuité stéréo réduits, 17,6 % présentaient une stéréopsie aussi faible que 100 à 200 secondes d'arc. Une corrélation entre les

niveaux de stéréo-acuité et les heures d'utilisation de la technologie numérique a été retrouvée [19].

En 2019, Potluri at *al.* ont mené une étude transversale prospective sur la stéréo-acuité et les facteurs associés chez les écoliers âgés de 7 à 14 ans en Inde. Le but étant d'estimer la prévalence de la stéréo-acuité inférieure à la normale chez les écoliers et à évaluer les facteurs qui y sont associés. Un total de 2376 écoliers sans amblyopie ni strabisme manifeste ont été dépistés par le test de la mouche mésange, le tableau de Snellen, des tests d'hétérophorie, un examen du segment antérieur et une fondoscopie. Les enfants présentant un strabisme manifeste, une amblyopie et des antécédents de traumatisme oculaire ou de chirurgie, ainsi que les enfants borgnes ont été exclus. La réfraction cycloplégique a été réalisée chez les enfants présentant des erreurs de réfraction non corrigées ou sous-corrigées, et la stéréo-acuité a été réévaluée avec une correction des lunettes. Une stéréo-acuité normale était présente chez 93,18% des participants. La stéré-acuité anormale était associée de manière significative à : une erreur de réfraction unilatérale, une erreur de réfraction bilatérale, l'anisométropie, l'hypermétropie et la myopie [20].

II.2.2. En Europe

En 2014, Nibourg et *al.* ont mené une étude expérimentale sur 77 étudiants en médecine au Pays-Bas, repartis en stéréo-suffisant (perception de la profondeur ≤ 240 secondes d'arc) et stéréo-déficient (≥ 480 secondes d'arc). Ils ont effectué une tâche d'enfilage de perles (une simulation d'essai chirurgical) sous un microscope opératoire ou une tâche sur un simulateur de chirurgie de la cataracte. Les sujets stéréo-suffisants ont également effectué la tâche d'enfilage de perles dans des conditions artificielles de stéréo-déficience (vision binoculaire et monoculaire). Le but étant de déterminer dans quelle mesure la perception stéréoscopique dela profondeur influence l'exécution de tâches exécutées sous un microscope opératoire. Les sujets stéréo-suffisants ont effectué les deux tâches plus rapidement que les sujets stéréo- déficients et les sujets artificiellement stéréo-déficients. De plus, une analyse au sein du groupea établi que les sujets stéréo-suffisants étaient plus rapides dans la tâche d'enfilage de perles avec une vision stéréoscopique que dans des conditions artificielles de stéréo-déficience avec une vision binoculaire.

En 2019, Burgess et *al.* ont menés une étude sur 50 étudiants inscrits à la faculté de médecine de Dundee en Ecosse. Les participants ont été évalués pour leur niveau de stéréopsie à l'aide du TNO avant de suivre un module d'orientation sur un simulateur chirurgical ophtalmique. Ils

devaient ensuite répéter une tâche quatre fois. Les niveaux de performance automatisés et objectifs ont été enregistrés et analysés. Le but était d'établir le niveau exact de déficience de la stéréopsie auquel se produit une baisse statistique des performances chirurgicales. Une différence statistiquement significative a été découverte dans la performance chirurgicale des participants ayant une stéréo-acuité inférieure à 120 seconde d'arc par rapport à ceux ayant une stéréo-acuité de 120 seconde d'arc[21].

II.2.3. En Afrique

En 2019, Tilahun et *al.* ont menés une étude transversale descriptive à l'Université de Gondar, dans le Sud-Ouest de l'Ethiopie avec pour but d'évaluer le niveau de stéréopsie, la proportion de stéréopsie médiocre, et les facteurs influant la stéréopsie chez les adultes présentant une erreur de réfraction. Cent cinquante-trois adultes atteint d'erreur de réfraction ont été recruté. La stéréo-acuité a été mesurée à l'aide du stéréo test TNO. Avant correction de l'erreur de réfraction, une mauvaise stéréopsie était observée chez 46,4 % des participants, tandis qu'après correction, elle tombait à 39,8 %. L'âge, l'acuité visuelle la mieux corrigée, les types d'erreur de réfraction étaient significativement associés à la stéréopsie après correction [22].

En 2017, Epee E et *al.* ont menés une étude transversale et descriptive dans l'arrondissement de Yaoundé II au Cameroun avec pour but d'établir le profil de l'acuité stéréoscopique des écoliers âgés de 3 à 5 ans. La vision stéréoscopique a été évaluée au moyen du stéréotest TNO. 365 enfants ont été examiné. Parmi ces derniers, 10,4 % avaient une vision stéréoscopique anormale. La stéréo-acuité continue de s'affiner entre 3 et 5 ans pour atteindre les valeurs seuils de l'adulte [4].

Chapitre III. Méthodologie

III.1. Type d'étude

Nous avons réalisé une étude transversale descriptive.

III.2. Période et durée d'étude

Notre étude s'est déroulée sur une période de 4 mois, allant de Février à Mai 2024.

III.3. Site d'étude

Nous avons mené cette étude au sein du service d'Ophtalmologie de l'Hôpital Central de Yaoundé (HCY).

III.3.1. Description du lieu d'étude

L'Hôpital Central de Yaoundé est un hôpital de 2^{ème} catégorie dans la pyramide sanitaire Camerounaise qui se situe dans le 2^{ème} arrondissement de la ville de Yaoundé au quartier Grand Messa. Son service d'Ophtalmologie comporte :

- Un poste d'accueil pour le renseignement, l'enregistrement des patients et la préparation des fiches de consultation.
- Une salle de réfraction où sont réalisées la mesure de l'acuité visuelle, la réfractométrie et la prise de la pression intra oculaire.
- Une salle d'attente
- Une salle de petite chirurgie
- Cinq salles de consultation ayant en tout sept (07) postes de consultation
- Deux salles d'angiographie et de laser
- Une salle d'examens complémentaires (coordimètre de Lancaster, champ visuel et OCT)
- Une lunetterie
- Trois salles d'hospitalisation avec 9 lits
- Une petite pharmacie.

III.3.2. Personnel administratif

Le personnel administratif du service d'Ophtalmologie de l'HCY est constitué d'un chef de service et d'un major.

III.3.3. Personnel médical et paramédical

Le personnel médical et paramédical est composé de sept ophtalmologistes, des résidents en Ophtalmologie en stage rotatif dans le service, sept infirmiers spécialistes en Ophtalmologie, deux infirmiers diplômés d'Etat, une aide-soignante, un agent d'entretien.

III.4. Population d'étude

III.4.1. Population source

La population source était des médecins en cours de spécialisation à la FMSB de l'UYI.

III.4.2. Population cible

La population cible était constituée des médecins en cours de spécialisation d'Ophtalmologie et d'ORL à la FMSB de l'UYI.

III.4.3. Echantillonnage

L'échantillonnage était consécutif.

III.4.4. Critère de sélection

Critère d'inclusion

Dans cette étude les médecins en spécialisation d'Ophtalmologie et ORL ayant donné leur consentement, ont été inclus.

III.5. Procédure

La collecte des données s'est déroulée à l'Hôpital Central de Yaoundé, après obtention de la clairance éthique auprès du Comité institutionnel d'Ethique et de la recherche de la FMSB de l'Université de Yaoundé I et une autorisation de recherche à l'Hôpital Central de Yaoundé.

Les participants en stage dans des hôpitaux de la ville de Yaoundé ont été approchés individuellement par l'enquêteur sur leurs lieux de stage et invité à participer à l'étude. Ceux en stage hors de la ville de Yaoundé ont été invité par contact téléphonique. Chaque participant a reçu la notice d'information et a signé le consentement éclairé. Ils ont été reçus dans un box de consultation dédié à l'examen.

La procédure d'étude variait en fonction de la notion de port de correction optique du participant :

Participants avec correction optique:

- Interrogatoire : après avoir reçu une fiche d'information sur l'étude et donné leur consentement éclairé, les participants ont répondu à un questionnaire portant sur :
 - **Données sociodémographiques** : âge, sexe, spécialité.
 - Antécédents :

Ophtalmologiques : correction optique portée, chirurgie oculaire, traumatisme oculaire, antécédents personnels de strabisme.

Généraux: maladies systémiques (diabète, hypertension).

- Mesure de l'acuité visuelle de loin : le participant a été placé à une distance de 5 mètres dans une ambiance photopique. L'acuité visuelle a été mesurée œil par œil, en commençant par l'œil droit, à l'aide du test de Monoyer. La mesure a été réalisée avec la correction optique en cas d'amétropie. Le participant a été considéré comme ayant réussi une ligne lorsqu'il a pu lire au moins 80% des optotypes. Les résultats ont été enregistrés sur la fiche de collecte correspondante au participant.
- Reflets cornéens: une lampe stylo a été utilisée pour observer la position des reflets cornéens. Le participant a été invité à fixer son regard droit devant. La lampe a été tenue à une distance d'un mètre, à égale distance des deux yeux. L'emplacement du reflet cornéen a été observé sur chaque œil. Un reflet centré dans la pupille indiquait un alignement normal des yeux. Un reflet décentré indiquait une déviation de l'œil.
- Mesure de la stéréo-acuité: le test Titmus Fly a été utilisé pour mesurer la stéréo-acuité. Le participant était placé à une distance de 40 cm du livret, en position verticale.
 Il portait les lunettes polarisées par-dessus sa correction optique. Les lumières de la pièce étaient allumés.
 - Le participant était invité à indiquer s'il voyait les lettres "L" (gauche) et "R" (droit) en même temps, ou si l'une des lettres était plus pâle ou invisible. Si le participant ne voyait pas l'une des lettres, cela indiquait que l'un des yeux ne participait pas au test.
 - Si le participant voyait les deux lettres en même temps, la stéréo-acuité était mesurée en utilisant le test des cercles. Le participant était invité à identifier le cercle qui lui semblait le plus soulevé parmi des groupes de quatre. Le test était effectué de la plaque n° 1 à la plaque n° 10, jusqu'à ce que le participant abandonne ou commette deux erreurs consécutives. Si le participant ratait une plaque mais réussissait la suivante, plus difficile, il était invité à réessayer la plaque ratée pour

déterminer s'il était capable de discriminer les stimuli à ce niveau ou s'il avait simplement deviné la plaque suivante.

- La valeur de la stéréo-acuité était enregistrée sur la fiche de collecte des données.
- Une valeur de stéréo-acuité inférieure ou égale à 40 secondes d'arc était considérée comme normale.

Participants sans correction optique ou AVL < 10/10 avec correction :

Phase 1:

- Interrogatoire : comme décrit précédemment.
- Mesure de l'acuité visuelle de loin : comme décrit précédemment.
- **Reflets cornéens** : comme décrit précédemment.
- Etude de la réfraction : une réfractométrie automatisée (RFMA) était réalisée après cycloplégie. Le tropicamide 0,5% et le cyclopentolate 1% étaient instillés alternativement dans chaque œil toutes les 5 minutes, soit trois gouttes de chaque produit. La RFMA était réalisée 20 minutes après la dernière goutte. Les participants étaient classés en fonction de leur réfraction en hypermétropie, myopie, astigmatisme hypermétropique, astigmatisme myopique et astigmatisme mixte.

Phase 2: (72h après)

• Mesure de la stéréo-acuité : comme décrit précédemment, avec la meilleure correction.

III.6. Variables de l'étude

Les données recueillies ont été consignées sur une fiche technique recensant les caractéristiques suivantes :

- Sociodémographiques : âge, sexe, spécialité.
- Cliniques : antécédents de chirurgie oculaire, histoire personnelle de strabisme, AVL, centrage des reflets cornéens, types de vices de réfraction, stéréo-acuité.

III.7. Analyse statistique des données

Les données ont été saisies et analysées à l'aide du logiciel IBM SPSS (Statistical Package for the Social Sciences) 26.0. Les variables quantitatives ont été exprimées en moyenne et écart-type et les variables qualitatives sous forme d'effectif et de pourcentage. Le test de Chi² a été réalisé pour la recherche d'associations entre les variables. Le seuil de significativité a été fixé à 5%.

III.8. Considérations éthiques et administratives

L'étude a reçu l'approbation du Comité Institutionnel d'Ethique de la Recherche (CIER) de la Faculté de Médecine et des Sciences Biomédicales (FMSB) de l'Université de Yaoundé I (UYI) ainsi que l'autorisation de recherche de l'Hôpital Central de Yaoundé (HCY). Chaque participant a donné son consentement éclairé écrit avant de participer à l'étude. Ce consentement a permis à chaque participant de se retirer de l'étude à tout moment sans aucune conséquence. L'anonymat des participants a été respecté et les résultats de l'étude ont été utilisés exclusivement à des fins scientifiques.

III.9. Définitions opérationnelles des termes

- Stéréo-acuité normale : stéréo-acuité dont la valeur est inférieure ou égale à 40 secondes d'arc
- Stéréo-acuité anormale : stéréo-acuité supérieure à 40 secondes d'arc [1].

III.10. dissémination de l'étude

Les résultats de cette étude ont été présenté publiquement en vue de la soutenance de thèse de doctorat en Médecine Générale. Après amendement du jury et correction, le document final sera déposé à la bibliothèque de la FMSB de l'UYI. Ces résultats feront également l'objet d'une publication dans les journaux scientifiques.

Chapitre IV. Résultats

Figure 11: diagramme de flux des participants

VI.1. Caractéristiques Sociodémographiques

IV.1.1. La spécialité

La majorité des participants étaient des médecins en spécialisation d'ORL, soit 55% (tableau I).

Tableau I répartition de la population en fonction de la spécialité

Spécialité	alité Effectifs (N=60) Pourcentage				
ORL	33	55			
Ophtalmologie	27	45			
Total	60	100			

IV.1.2. L'âge

La moyenne d'âge était de 30.2 ± 3.5 ans avec des extrêmes allant de 24 à 38. La tranche d'âge la plus représentée était celle de [30-35[ans (51,67%) comme nous le montre la figure 12.

Figure 12: répartition des participants en fonction de l'âge

IV.1.2. Le sexe

Le sex-ratio était de 0,4 avec une prédominance féminine dans les deux spécialités, reparti comme le montre la figure 9.

Figure 13: répartition des participants en fonction du sexe et de la spécialité

IV.2. Caractéristiques cliniques de la population d'étude

IV.2.1. Les antécédents

Parmi les participants, 41 (68,33%) étaient porteurs d'une correction optique. L'histoire personnelle de strabisme était présente chez 2 (3,3%) participants. Également, 1 (1,6%) ont un antécédent de chirurgie oculaire (tableau I).

Tableau II: répartition des participants en fonction des antécédents

Antécédents	Effectifs (N=60)	Pourcentages (%)			
Port de correction optique	41	68,3			
Histoire personnelle de strabisme	2	3,3			
Traumatisme oculaire	3	5			
Chirurgie oculaire [@]	1	1,6			
HTA	2	3,3			

[®] Type de chirurgie : Chirurgie réfractive

IV.2.2. L'acuité visuelle de loin

Sur les 120 yeux examinés, 45 (37,5%) avaient une AVL S/C<10/10 et 11 (9,2%) avaient une AVL <10/10 avec leurs corrections optiques (figure 14).

Sans correction optique, la plus petite AVL était de 1/10^e. Après port de correction optique, la plus petite acuité était de 7/10^e.

Figure 14: répartition de la population en fonction de l'acuité visuelle de loin

IV.2.3. Position des reflets cornéens

Les reflets cornéens étaient déviés chez 8,3% de la population (tableau III).

Tableau III: répartition en fonction de la position des reflets cornéens

Position des reflets	Effectifs (N=60)	Pourcentages (%)
cornéens		
Centré	55	91,7
Excentré	5	8,3
Total	60	100

IV.2.4. Les erreurs de réfraction

L'erreur de réfraction la plus retrouvée dans cette population était l'astigmatisme hypermétropique (33,3%), suivie de l'hypermétropie (29,8%) (tableau IV). Aucun participant ne présentait une anisométropie.

Tableau IV: répartition des participants en fonction du type d'erreurs de réfraction

Type d'erreurs de réfraction	Effectifs (n)	Pourcentages (%)			
Astigmatisme hypermétropique	40	33,3			
Hypermétropie	35	29,2			
Astigmatisme myopique	28	23,3			
Myopie	12	10			
Astigmatisme mixte	5	4,2			
Total	120	100%			

IV.3. Stéréo-acuité

La stéréo-acuité médiane des participants est de 25 secondes d'arc, avec un intervalle interquartile allant de 25 à 40 secondes d'arc. Une stéréo-acuité anormale a été retrouvée chez 23,3% des participants. Le tableau nous montre la répartition des participants en fonction de la stéréo-acuité.

Tableau V: répartition de la population en fonction de la stéréo-acuité

Stéréo-acuité	Effectifs (N=60)	Pourcentages (%)
20	9	15
25	23	38,3
32	9	15
40	5	8,3
50	7	11,7
63	3	5
100	2	3,3
160	2	3,3
Total	60	100

IV.4. Facteurs associés à une stéréo-acuité anormale

IV.4.1. Caractéristiques sociodémographiques

Aucune association statistiquement significative n'a été retrouvé entre une stéréo-acuité anormale et les données socio-démographiques (tableau V).

Tableau VI: association entre les données sociodémographiques et une stéréo-acuité anormale

Stéréo-acuité						
Données socio-	Anormale	Normale	Valeur p			
démographiques	n=14(%)	n=46(%)				
Sexe						
Féminin	11 (78,6)	32 (69,6)	0,737			
Masculin	3 (21,4)	14 (30,4)	1			
Age						
< 25 ans	4 (28,6)	0 (0,0)	0,999			
[25-30[ans	2 (14,3)	17 (37,0)	0,689			
[30-35[ans	7 (50,0)	24 (52,2)	0,748			
\geq 35 ans	1 (7,1)	5 (10,9)	1			

V.4.2. Caractéristiques cliniques

Une baisse d'acuité visuelle de loin et la présence de la myopie ont montré des associations statistiquement significatives avec une stéréo-acuité anormale (tableau VI).

Tableau VII: association entre les données cliniques et une stéréo-acuité anormale

	Stéréo-	acuité	
Dannéag alinianag	Anormale	Normale	Voloven
Données cliniques	n=14(%)	n=46(%)	Valeur p
Histoire personnelle de	2 (14, 3)	0 (0,0)	0,999
strabisme	2 (11, 5)	0 (0,0)	0,222
Histoire familiale de	2(14.2)	1 (2 2)	0,112
strabisme	2(14,3)	1 (2,2)	0,112
Traumatisme oculaire	0 (0,0)	3 (6,5)	0,999
Hypertension artérielle	1 (7,1)	1 (2,2)	0,415
AVL			
AVL S/C OD <10/10	10(71,4)	13(28,3)	0,004
AVL S/C OG <10/10	9(64,3)	13(28,3)	0,016
AVL A/C OD<10/10	TL A/C OD<10/10 4(28,6) 2(4,3)		0,016

AVL A/C OG<10/10	3(21,4)	2(4,3)	0,064
Erreur de réfraction OD			
Astigmatisme	2 (21 4)	17 (27 0)	1
hypermétropique	3 (21,4)	17 (37,0)	1
Astigmatisme mixte	1(7,1)	3 (6,5)	0,628
Astigmatisme myopique	6 (42,9)	8 (17,4)	0,080
Hypermétropie	0 (0,0)	16 (34,8)	0,998
Myopie	4 (28,6)	2 (4,3)	0,023
Erreur de réfraction OG			
Astigmatisme	4 (29.6)	16 (24.9)	1
hypermétropique	4 (28,6)	16 (34,8)	1
Astigmatisme mixte	0(0,0)	1 (2,2)	1,000
Astigmatisme myopique	6 (42,9)	8 (17,4)	0,158
Hypermétropie	0 (0,0)	19 (41,3)	0,998
Myopie	4 (28,6)	2 (4,3)	0,044

Chapitre V. Discussion

V.1. Caractéristiques sociodémographiques

V.1.1. L'âge

L'âge moyen de la population étudiée était de $30,2\pm3,5$ ans. La tranche d'âge la plus représentée était celle de 30 à 35 ans, représentant 51,67% de l'échantillon. Cette moyenne est comparable à celle observée par Gietzelt et al. en Allemagne en 2020, qui ont rapporté une moyenne de $30,5\pm5,5$ ans [23]. Ces résultats se rapprochent également de ceux obtenus par Waquar et al., dans leur étude ayant pour but de déterminer l'effet de la perte aiguë de stéréopsie sur les performances chirurgicales intraoculaires simulées chez des jeunes médecins sans expérience en chirurgie ophtalmologique. Ils avaient trouvé une moyenne d'âge de 31 ± 9 ans [24].

V.2.2. Le sexe

La population d'étude était composée de 71,67% de femmes. Ce résultat est en accord avec les données du recensement camerounais de 2019 [25], qui indiquent une prédominance féminine au sein de la population. Cette proportion est également comparable aux 75% de femmes observées par Gietzelt et al [23]. Par ailleurs, Massongo et al. ont constaté une prédominance féminine de 60,5% dans leur étude portant sur des étudiants de 5e et 6e année dans quatre facultés de médecine au Cameroun [26].

V.2.3. La spécialité

La population d'étude était majoritairement constituée de médecins en spécialisation d'ORL, soit 55%. Cette prédominance s'expliquerait par le fait que plus de 20% des médecins en spécialisation d'Ophtalmologie étaient en stage hors de la ville de Yaoundé durant la période de recrutement.

V.3. Caractéristiques cliniques

Concernant les antécédents, 3,33% des participants avaient un antécédent personnel de strabisme. Ces résultats se rapprochent de ceux observés par Pragati et al dans leur étude sur la stéréo-acuité des étudiants de premier cycle en médecine et en soins infirmiers au Népal en 2021. Ils avaient constaté que 2,5% des participants avaient une histoire personnelle de strabisme [1]. Le strabisme précoce peut empêcher le développement normal des neurones sensoriels binoculaires du cortex visuel. En conséquence, il peut avoir un impact négatif significatif sur la stéréo-acuité [6].

L'erreur de réfraction la plus représentée était l'astigmatisme hypermétropique, suivi de l'hypermétropie. Dohvoma et *al.* avaient constaté une prévalence d'amétropie hypermétropique (51% d'hypermétropie et 19,3% d'astigmatisme hypermétropique) dans le même hôpital en 2015 [27].

L'anisométropie, caractérisée par une différence significative de puissance réfractive entre les deux yeux, engendre une défocalisation de l'image rétinienne dans l'œil le plus amétrope. Cette défocalisation se traduit par une image rétinienne de moindre qualité, avec une taille, une clarté et un contraste réduits. La durée de cette défocalisation peut être intermittente ou permanente, ce qui signifie que le signal visuel provenant de l'œil le plus amétrope ne peut pas être synchronisé avec celui de l'autre œil [28].

V.4. Stéréo-acuité

La stéréo-acuité médiane des participants est de 25 secondes d'arc, avec un intervalle interquartile allant de 25 à 40 secondes d'arc. Une stéréo-acuité anormale était observée chez 23,3% des participants. Ces résultats diffèrent de ceux observés par Gietzelt et al., qui avaient constaté une stéréo-acuité anormale chez 13% des participants [23]. Cette différence pourrait être due à la taille réduite de leur échantillon (16 participants) et au fait que les patients présentant un strabisme étaient exclus de leur étude. Cependant, nos résultats diffèrent également de ceux de Pragati et al., qui avaient constaté une stéréo-acuité réduite chez 58,8% des participants [1].

Burgess et *al.* avaient découvert une différence significative des performances chirurgicales des participants ayant une stéréo-acuité supérieure à 120 secondes d'arc, par rapport à ceux ayant une stéréo-acuité inférieure à 120 secondes d'arc [21]. Ceci pourrait permettre de mener des études supplémentaires sur la question afin de formuler des recommandations sur les normes de stéréo-acuité requises pour commencer une formation en microchirurgie.

V.5. FACTEURS ASSOCIÉS À UNE STÉRÉO-ACUITÉ ANORMALE

V.5.1. Caractéristiques sociodémographiques

V.5.1.1. Age

Aucune association statistiquement significative entre l'âge et une stéréo-acuité anormale n'a été établie. Cela pourrait s'expliquer par le fait que cette population était principalement constituée de jeunes adultes. Epée et *al.*, dans leur étude sur le profil de l'acuité stéréoscopique des écoliers âgés de 3 à 5 ans, avaient montré que la valeur médiane de l'acuité stéréoscopique

variait selon l'âge. Elle était de 120 secondes d'arc à trois ans et de 60 secondes d'arc à cinq ans [4]. Les résultats de Wright et *al.* sur la stéréopsie et le vieillissement ont montré que la prévalence d'une stéréopsie anormale augmentait avec l'âge [29]. De plus, Zaroff et *al.* avaient démontré qu'une détérioration plus marquée de la stéréo-acuité se produisait après l'âge de 60 ans [30].

V.5.1.2. Sexe

Le sexe n'était pas associé à une stéréo-acuité anormale dans cette étude. Ces résultats sont en accord avec ceux de Shular et *al.* dans leur étude sur les différences entre les sexes dans la perception visuelle à l'aide de la stéréopsie [31].

V.5.2. Caractéristiques cliniques

En raison du faible nombre de participants ayant un antécédent de chirurgie oculaire, nous n'avons pas pu rechercher d'association entre cette variable et une stéréo-acuité anormale. Cependant, Ghanavati et *al.*, dans leur étude sur la stéréo-acuité après kératectomie photoréfractive dans la myopie en Iran, en 2016 avaient montré que, la stéréo-acuité pouvait être anormale après la chirurgie [32]. Selon Faure et *al.*, une chirurgie réfractive cornéenne bilatérale peut entraîner des modifications positives ou négatives de certaines fonctions visuelles [33].

Bien que notre étude n'ait pas révélé de corrélation significative entre le strabisme et une stéréoacuité anormale, il est important de noter que la présence de strabisme n'exclut pas nécessairement une vision stéréoscopique normale. En effet, certains types de strabisme, tels que le strabisme précoce intermittent, le strabisme tardif intermittent ou devenant constant, le strabisme accommodatif et le strabisme latents, peuvent être associés à une vision binoculaire normale, et par conséquent, à une vision stéréoscopique normale [34].

Une association significative a été établie entre la myopie et une stéréo-acuité anormale. Cela s'explique par le fait que, la myopie conduit à une image floue rétinienne, ce qui rend impossible la fusion de ces images. Ces résultats sont en accord avec ceux de Potluri et *al.* dans leur étude sur la stéréo-acuité et les facteurs associés chez des écoliers âgés de 7 à 14 ans, qui avaient constaté une association statistiquement significative entre une stéréo-acuité inférieure à la normale et la myopie (p < 0,05) [20]. De plus, la myopie est souvent associée à une acuité visuelle basse. Par conséquent, une association statistiquement significative a été établie entre une acuité visuelle basse et une stéréo-acuité anormale dans notre étude. Ces résultats sont en accord avec ceux de Da-dong Guo et *al.*, qui avaient également montré qu'une acuité visuelle

corrigée basse était associée à une stéréo-acuité plus faible [7]. Selon Lee et al. dans leur étude sur la relation entre la stéréopsie et l'acuité visuelle après un traitement d'occlusion pour l'amblyopie, il existe une relation significative entre la baisse d'acuité visuelle et la stéréopsie [35].

Conclusion

Les médecins en spécialisation d'Ophtalmologie et d'ORL à la FMSB de l'UYI sont majoritairement de sexe féminin, avec une moyenne d'âge de 30.2 ± 3.5 ans. L'astigmatisme hypermétropique était l'erreur réfractive la plus fréquente.

La stéréo-acuité médiane des participants est de 25 secondes d'arc, avec un intervalle interquartile allant de 25 à 40 secondes d'arc et 23,3% avaient une stéréo-acuité anormale.

Une association significative existe entre la myopie et une stéréo-acuité anormale.

Recommandations

Aux termes de ce travail de recherche, nous formulons humblement ces recommandations :

- Aux médecins en spécialisation d'Ophtalmologie ou ORL ayant une stéréo-acuité anormale : de s'orienter vers le volet médical et le volet macrochirurgical de leurs spécialités
- Aux médecins aspirant à une spécialisation : d'évaluer leurs stéréo-acuités avant le choix d'une spécialité
- Aux chercheurs : De mener des recherches sur la vision stéréoscopique, dans d'autres spécialités et d'évaluer l'impact de la stéréo-acuité sur les performances microchirurgicales des médecins.
- À la Faculté de Médecine et des Sciences Biomédicales (FMSB) de l'Université de Yaoundé I (UYI) : de recommander un test de vision stéréoscopique dans le processus d'admission en spécialisation pour les médecins qui pratiquent la microchirurgie. Cela permettrait d'identifier les candidats ayant une stéréo-acuité insuffisante et de les orienter vers des spécialités qui ne nécessitent pas une vision stéréoscopique optimale. Ceci pour une meilleure offre de soins aux malades.

Références

- 1. Adhikari PG, Shah S, Bhatta N, Mandal P, Paudel BS, Pokhrel A, et al. Stereoacuity among Undergraduate Medical and Nursing Students at a Tertiary Care Hospital: A Descriptive Cross-sectional Study. (JNMA) J Nepal Med Assoc. 2022; 60(245):54-8.
- 2. C. Orssaud. Vision binoculaire. EMC (ELSEVIER SAS, Paris), Ophtalmologie,21-545-A-25, 2020.
- 3. Marfil Reguero D, Porcar CA, Boronat F, Campos E. Computer vision-based system for early diagnosis of stereoscopic vision alterations. Inform Health Soc Care. 2023;48(2):165-80.
- 4. Epee E, Dohvoma V, Ebana S, Koki G, Bege M, Mvilongo T C, et al. Profile of Stereoscopic Acuity of School Children Aged Three to Five Years in the Yaounde 2 Sub-Division. Health Sci Dis.2017;18(2 Suppl).
- 5. Portela-Camino JA. Advances in Research in Binocular Vision. J Optom. 2021;14(3):227-8.
- 6. Institut des neurosciences, Université de Newcastle. Vision stereo et strabisme. Eye. 2015;29(2):214-24.
- 7. Guo D dong, Wu J feng, Hu Y yuan, Sun W, Lv T liang, Jiang W jun, et al. Stereoacuity and Related Factors: The Shandong Children Eye Study. PLoS ONE. 2016.11(7):e0157829.
- 8. Benhaim A, Khoury E, Pantel M, Boilard F, Wallerstein A, Giasson C et al. Normes d'acuité visuelle. Sûreté du Québec. 2020
- 9. Wong NWK, Stokes J, Foss AJE, McGraw PV. Should there be a visual standard for ophthalmologists and other surgeons? Postgrad Med J. 2010;86(1016):354-8.
- 10. The Royal College of Ophthalmologists. Opthalmologists TRC of. Entering OST. [en ligne]. Disponible sur: https://curriculum.rcophth.ac.uk/curriculum/ost/entering-ost/
- 11. Benarous A, Le TL. IKB Ophtalmologie. Éd. 2018. Paris : VG éditions ; 2018. Chapitre 1. Anatomie de l'œil. p 5-16
- 12. Angioi K, Aptel F, Arndt C, Audot I, Baillif S, Baudouin C et al. Les Référentiels des Collèges. Ophtalmologie. 4e édition. Paris: Elsevier MASSO; 2021. 400 p
- 13. Zanlonghi X. Sensibilité au contraste: Etude comparative des appareillages actuels. Coup d'œil. 2009:32(7): 20-72.
- 14. Syndicat National des Ophtalmologistes de France. L'œil et la vision [en ligne]. 2011 [cité 21 mai 2024]. Disponible sur: https://www.snof.org/encyclopedie/loeil-et-la-vision
- 15. Corbé C. La vision [en ligne]. 2004 [cité 14 juin 2024]. Disponible sur: http://www.j3ea.org/10.1051/bib-j3ea:2004601
- 16. Kaeser PF, Klainguti G. Vision stéréoscopique. Rev Med Suisse. 2012; 324(2):100-3.
- 17. Formation Nantaise et Recherche en Ophtalmologie. Vision enfant : développement, acuité, stéréoscopie, vision des couleurs, champ visuel. [cité 10 juin 2024]. Disponible sur:http://fnro.net/larefraction/Documents/VisEnfant/VisEnfant_Developt/VisEnfant_Developt.html
- 18. Canadian Association of Optometrists. Instructions pour le test stéréoscopique de Titmus.pdf. [Cité 10 juin 2024]. Disponible sur :

- https://opto.ca/sites/default/files/resources/documents/Test%20stereoscopique%20de%20 Titmus.pdf
- 19. Deepa BMS, Valarmathi A, Benita S. Assessment of stereo acuity levels using random dot stereo acuity chart in college students. J Fam Med Prim Care.2019;8(12):3850-3.
- 20. Potluri RK, Akella SV, Mallidi R, Uppala NR, Jujjavarapu RP. Study on stereoacuity and associated factors in school children aged 7 to 14 years. Indian J Ophthalmol. 2022; 70(1):233-7.
- 21. Burgess S, Kousha O, Khalil M, Gilmour C, MacEwen CJ, Gillan SN. Impact of stereoacuity on simulated cataract surgery ability. Eye. 2021;35(11):3116-22.
- 22. Tilahun MM, Hussen MS, Mersha GA, Eticha BL. Stereoacuity Among Patients with Refractive Error at University of Gondar, Northwest Ethiopia. Clin Optom. 2021;13:221-6.
- 23. Gietzelt C, Datta R, Busshoff J, Bruns T, Wahba R, Hedergott A. The influence of stereoscopic vision on surgical performance in minimal invasive surgery—a substudy of the IDOSP-Study (Influence of 3D- vs. 4 K-Display Systems on Surgical Performance in minimal invasive surgery). Langenbecks Arch Surg. 2022; 407(7):3069-78.
- 24. Waqar S, Williams O, Park J, Modi N, Kersey T, Sleep T. Can virtual reality simulation help to determine the importance of stereopsis in intraocular surgery? Br J Ophthalmol.2012;96(5):742-6.
- 25. Institut National de la Statistiques. Annuaire Statistique du Cameroun. Edition 2019
- 26. Bitchong Ekono, C., Massongo, M., Ngah Komo, ME, Azoumbou Mefant, T., Awana, P., Koné, S., Ze, J., Mouaha Tchuilen, B., & Afane Ze, E. (2020). Connaissances d'un Groupe d'Étudiants Camerounais de Deuxième Cycle de Médecine G.
- 27. Dohvoma VA, Epée E, Ebana Mvogo SR, Lietcheu NS, Ebana Mvogo C. Correlation between Hertel exophthalmometric value and refraction in young Cameroonian adults aged 20 to 40 years. Clin Ophthalmol Auckl NZ. 2016;10:1447-51.
- 28. Khan N, Zaka-ur-Rab S, Ashraf M, Mishra A. Comparison of stereoacuity in patients of anisometropia, isometropia and emmetropia. Indian J Ophthalmol. déc 2022; 70(12):4405-9.
- 29. Wright LA, Wormald RP. Stereopsis and ageing. Eye Lond Engl. 1992;6 (Pt 5):473-6.
- 30. Zaroff CM, Knutelska M, Frumkes TE. Variation in stereoacuity: normative description, fixation disparity, and the roles of aging and gender. Invest Ophthalmol Vis Sci. 2003;44(2):891-900.
- 31. Shular CF, Arruda JE, Greenier KD, Pratt M. Sex Differences in Visual Perception Using Stereopsis. Psi Chi J Psychol Res. 2005;10(4):139-44.
- 32. Zarei-Ghanavati S, Gharaee H, Eslampour A, Ehsaei A, Abrishami M. Stereoacuity after photorefractive keratectomy in myopia. J Curr Ophthalmol. 2016; 28(1):17-20.
- 33. SFO-online Société Française d'Ophtalmologie. Chirurgie réfractive cornéenne et fonctions binoculaires. [en ligne]. Disponible sur: https://www.sfo-online.fr/session/media/chirurgie-refractive-corneenne-et-fonctions-binoculaires
- 34. SFO Société Française d'Ophtalmologie. Strabisme [en ligne]. [cité 13 juin 2024]. Disponible sur: https://www.em-consulte.com/em/SFO/2013/html/file 100021.html

35.	Lee SY, Isenberg SJ. The relationship between stereopsis and visual acuity after occlusion therapy for amblyopia. Ophthalmology.2003;110(11):2088-92.

Annexes

Annexe 1: accord de principe

REPUBLIQUE DU CAMEROUN Paix-Travail-Patrie

MINISTERE DE LA SANTE PUBLIQUE

SECRETARIAT GENERAL

DIRECTION DE L' HOPITAL CENTRAL DE YAOUNDE

SECRETARIAT MEDICAL

N° 050/21/ AP/MINSANTE/SG/DHCY/CM/SM

REPUBLIC OF CAMEROUN Peace-Work-Fatherland

MINISTRY OF PUBLIC HEALTH

GENERAL SECRETARY

DIRECTORATE OF CENTRAL HOSPITAL OF YAOUNDE

MEDICAL SECRETARY

Yaoundé, le 3 787 2824

ACCORD DE PRINCIPE

Je soussigné Professeur FOUDA Pierre Joseph, Directeur de l'Hôpital Central de Yaoundé, marque mon Accord de Principe à Madame KEYO Rosine Erika, étudiante en 7ème année de Médecine générale à la Faculté de Médecine et des Sciences Biomédicales de l'Université de Yaoundé, sous le thème « EVALUATION DE LA STEREO-ACUITE CHEZ LES MEDECINS EN SPECIALISATION D'OPHTALMOLOGIE ET ORL A LA FACULTE DE MEDECINE ET DES SCEINECES BIOMEDICALES DE L'UNIVERSITE DE YAOAUNDE I » à l'Hôpital Central de Yaoundé, sous la direction du professeur DOHVOMA Viola Andin.

Ampliations .

- Conseiller Médical;
- Chef service concerné;
- Intéressée ;
- Chrono/Archives.

Annexe 2: fiche d'information

Madame, Monsieur,

Je suis KEYO Rosine Erika, 7ème année d'études médicales à la Faculté de Médecine et des Sciences Biomédicales de l'Université de Yaoundé I. Dans le cadre de ma thèse, en vue de l'obtention d'un doctorat en médecine générale, je mène une étude intitulée «Evaluation de la stéréo-acuité des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun ». L'objectif étant d'évaluer la vision stéréoscopique chez les médecins en spécialisation d'ophtalmologie et d'ORL.

La vision stéréoscopique est le résultat de mécanismes cérébraux permettant de voir en trois dimensions à partir des deux images planes perçues par chaque œil. Le principal avantage de la vision stéréoscopique est qu'elle fournit une image tridimensionnelle du monde. En effet, chaque œil voit une image légèrement différente et le cerveau combine ces deux images pour créer une image tridimensionnelle. Ceci est particulièrement utile pour les tâches qui nécessitent une perception de la profondeur, notamment en médecine, pour des spécialités réalisant de la microchirurgie comme l'ophtalmologie et l'ORL.

C'est dans cet optique que, nous aimerions vous voir participer à cette étude. Nous souhaitons ainsi que vous nous permettez de vous interroger, de vous examiner notamment mesurer l'acuité visuelle de loin, évaluer les reflets cornéens, réaliser une réfractométrie sous cycloplégie et enfin mesurer la stéréo-acuité.

Le test de la vision stéréoscopique ne comporte aucun risque.

L'autorisation de mener cette étude a été délivrée par le comité d'éthique de l'UY1. Après avoir procédé à votre identification, on vous attribuera un code, et vous passerez dans l'anonymat. Toutes les informations recueillies à votre sujet seront confidentielles. Votre nom n'apparaîtra donc dans aucun des fichiers d'étude, ni dans les résultats. Bien entendu, vous êtes libres d'accepter ou de refuser de participer à cette étude. Vous serez également libre de vous retirer de cette étude sans la moindre contrainte.

Directeur: Pr DOHVOMA Viola Andin

Maitre de Conférences Agrégé d'Ophtalmologie

Co-directeur: Pr EBANA MVOGO Steve Robert

Maitre de Conférences Agrégé d'Ophtalmologie

Enquêteur : KEYO Rosine Erika

7^e année d'études médicales à la Faculté de Médecine et des Sciences Biomédicales de l'Université de Yaoundé I. Tel : (+237) 695823144 Email : rosinekeyo@gmail.com

Evaluation de la stéréo-acuité des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun

Annexe 3 : formulaire de consentement éclairé

Je soussigné, Mr /Mme / Mlle

Avoir été invité(e) à participer au travail de recherche intitulé **«: Evaluation de la stéréo-acuité des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun ».** Cette étude est menée par Mlle **KEYO Rosine Erika**, étudiante en 7^{ème} année de Médecine Générale à la Faculté de Médecine et des Sciences Biomédicales de l'Université de Yaoundé I (FMSB/UYI). Tel: 695823144 Email: rosinekeyo@gmail.com, sous la supervision du **Pr DOHVOMA Viola** (Maitre de Conférence Agrégé d'Ophtalmologie) et du **Pr EBANA Steve** (Maitre de Conférence Agrégé d'Ophtalmologie).

- ➤ J'ai bien lu et compris la notice d'information relative à cette étude qui m'a été expliquée.
- > J'ai bien compris le but et les objectifs de cette étude
- > J'ai eu l'opportunité de poser les questions et d'avoir reçu toutes les réponses
- Les risques et bénéfices m'ont été présentés et expliqués
- > J'ai bien compris que je suis libre d'accepter ou de refuser d'y participer
- Mon consentement ne décharge pas les investigateurs de la recherche de leurs responsabilités, je conserve tous mes droits garantis par la loi.
- J'accepte librement de participer à cette étude dans les conditions précisées dans la notice de l'information, c'est-à-dire :
 - De répondre aux questions de l'enquête
 - De communiquer les informations médicales
 - D'effectuer le test d'évaluation de la vision stéréoscopique
- ➤ Je donne mon accord pour que les données collectées pour cette étude soient utilisées dans les études ultérieures à des fins strictement scientifiques.

T	٠,	T 7	1 /	1					
H 211	a	·v	aniinde	10					
1 an	а	_ 1	aoundé,	10	 •	 	٠	٠	٠

Participant

Annexe 4 : fiche technique

Evaluation de la stéréo-acuité des médecins spécialisation d'Ophtalmologie et d'ORL au
Cameroun
Date de l'interview :/ Code Participant :
SECTION A: données socio-démographiques
1. Sexe : féminin masculin
2. Age:
3. Spécialité : Ophtalmologie ORL
SECTION B: antécédents personnels
Antécédents Ophtalmologiques
Consultation ophtalmologique antérieure : oui non
Port de correction oculaire : oui non
Traumatisme oculaire : oui non si oui, quel œil ? :
Chirurgie oculaire : oui non si oui, laquelle ? :
Strabisme : oui non
Albinisme : oui non
Antécédents généraux : diabète : oui non non
HTA : oui non
SECTION C: examen ophtalmologique
1. Acuité visuelle de loin sans correction
Œil droit : œil gauche :
2. Acuité visuelle de loin avec correction
Œil droit : œil gauche
3. Reflets cornéens
Œil droit : centré dévié
Si dévié : ésotropie exotropie

Evaluation de la stéréo-acuité des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun

Hypertropie hypotropie
Œil gauche : centré dévié
Si dévié : ésotropie exotropie
Hypertropie hypotropie
4. Réfraction sous cycloplégie
Œil droit : sphère dioptrie
Cylindre: dioptrie
Œil gauche : sphère : dioptrie
Cylindre: dioptrie
5. Erreurs de réfraction
Œil droit : myopie Hypermétropie
Astigmatisme myopique Astigmatisme hypermétropique
Astigmatisme mixte
Œil gauche : Myopie Hypermétropie
Astigmatisme myopique Astigmatisme hypermétropique
Astigmatisme mixte
6. Test de la vision stéréoscopique Titmus
Résultat : secondes d'arc

Annexe 5: photographies

a. Mesure de l'acuité visuelle de loin

b. Réalisation du test de la vision stéréoscopique à l'aide du Titmus test.

TABLE DES MATIERES

Dédicace	ii
Remerciements	iii
Liste du personnel administratif et académique	V
Serment d'Hippocrate	xvii
Résumé	xviii
Summary	xix
Liste des tableaux	xx
Liste des figures	xxi
Liste des abréviations et sigles	xxii
Chapitre I. Introduction	1
I.1. Justification du sujet	2
I.2. Question de recherche	3
I.3. Objectifs de recherche	3
I.3.1. Objectif général	3
I.3.2. Objectifs spécifiques	3
Chapitre II. Revue de la littérature	4
II.1. Rappel des connaissances	5
II.1.1. Anatomie de l'œil	5
II.1.1.1. Le globe oculaire	5
II.1.1.2. Annexes	7
II.1.1.3. Voies optiques	8
II.1.2. Fonctions visuelles	9
II.1.2.1. Acuité visuelle	9
II.1.2.2. Vision des couleurs	10
II.1.2.3. Champ visuel	11
II.1.2.4. Sensibilité au contraste lumineux	13
II.1.2.5. Vision binoculaire	14
II.2. Etat de connaissance sur la question	16
II.2.1. En Asie	16
II.2.2. En Europe	17
II.2.3. En Afrique	
Chapitre III. Méthodologie	19
III.1. Type d'étude	20

Evaluation de la stéréo-acuité des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun

III.2. Période et durée d'étude	20
III.3. Site d'étude	20
III.3.1. Description du lieu d'étude	20
III.3.2. Personnel administratif	20
III.3.3. Personnel médical et paramédical	21
III.4. Population d'étude	21
III.4.1. Population source	21
III.4.2. Population cible	21
III.4.3. Echantillonnage	21
III.4.4. Critère de sélection	21
III.5. Procédure	21
III.6. Variables de l'étude	23
III.7. Analyse statistique des données	23
III.8. Considérations éthiques et administratives	24
III.9. Définitions opérationnelles des termes	24
III.10. Dissémination de l'étude	24
Chapitre IV. Résultats	25
VI.1. Caractéristiques socio-démographiques	27
IV.1.1. La spécialité	27
IV.1.2. L'âge	27
IV.1.2. Le sexe	27
IV.2. Caractéristiques cliniques de la population d'étude	28
IV.2.1. Les antécédents	28
IV.2.2. L'acuité visuelle de loin.	28
IV.2.3. Position des reflets cornéens	29
IV.2.4. Les erreurs de réfraction	29
IV.3. Stéréo-acuité	30
IV.4. Facteurs associés à une stéréo-acuité anormale	30
IV.4.1. Caractéristiques sociodémographiques	30
V.4.2. Caractéristiques cliniques	31
Chapitre V. Discussion	33
V.1. Caractéristiques sociodémographiques	34
V.1.1. L'âge	34
V.2.2. Le sexe	34
V.2.3. La spécialité	34

Evaluation de la stéréo-acuité des médecins en spécialisation d'Ophtalmologie et d'ORL au Cameroun

V.3. Caractéristiques cliniques	34
V.4. Stéréo-acuité	35
V.5. Facteurs associés à une stéréo-acuité anormale	35
V.5.1. Caractéristiques sociodémographiques	35
V.5.1.1. Age	35
V.5.1.2. Sexe	36
V.5.2. Caractéristiques cliniques	36
Conclusion	38
Recommandations	40
Références	42
Annexes	XXV