Refine Search

Search Results -

Terms	Documents
L8 and (solvent recycling)	17

US Pre-Grant Publication Full-Text Database US Patents Full-Text Database US OCR Full-Text Database

Database:

EPO Abstracts Database JPO Abstracts Database Derwent World Patents Index IBM Technical Disclosure Bulletins

Search:

L9			Refine Search
		Ŋ	Reille Gearch
Recall Text 🔷	Clear		Interrupt

Search History

Printable Copy Create Case DATE: Tuesday, March 16, 2004

Set Name side by side	Query	Hit Count	Set Name result set
DB=PGPB	USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YA	ES; OP=AND	
<u>L9</u>	L8 and (solvent recycling)	17	<u>L9</u>
<u>L8</u>	L1 and (supercritical carbon dioxide)	83	<u>L8</u>
<u>L7</u>	L6 and (recycling)	5	<u>L7</u>
<u>L6</u>	15 and DMSO	18	<u>L6</u>
<u>L5</u>	L3 and carbon dioxide	83	<u>L5</u>
<u>L4</u>	L3 and carbondioxide	0	<u>L4</u>
<u>L3</u>	11 and supercritical	102	<u>L3</u>
<u>L2</u>	L1 and acetaminophan	0	<u>L2</u>
L1	RESS	36636	L1

END OF SEARCH HISTORY

Hit List

Clear Generate Collection Print Fwd Refs Bkwd Refs
Generate OACS

Search Results - Record(s) 11 through 17 of 17 returned.

☐ 11. Document ID: US 6596454 B2

Using default format because multiple data bases are involved.

L9: Entry 11 of 17

File: USPT

Jul 22, 2003

US-PAT-NO: 6596454

DOCUMENT-IDENTIFIER: US 6596454 B2

TITLE: Toner and manufacturing method thereof

DATE-ISSUED: July 22, 2003

INVENTOR-INFORMATION:

ZIP CODE STATE COUNTRY CITY NAME Adachi; Katsumi Nara JΡ JΡ Sakuma; Masamitsu Hirakata Toizumi; Kiyoshi Nara JΡ JΡ Kamimura; Taisuke Kitakatsuragi-gun JΡ Iwamatsu; Tadashi Nara Mishima; Kenji Fukuoka JP

US-CL-CURRENT: 430/137.18; 430/137.1

Full Title Citation Front Review Classification Date Reference Claims KWC Draw De

US-PAT-NO: 6406718

DOCUMENT-IDENTIFIER: US 6406718 B1

TITLE: Orthorhombic crystalline form of fluticasone propionate and pharmaceutical compositions thereof

Full Title Citation Front Review Classification Date Reference Claims KWC Draw. De

☐ 13. Document ID: US 6299906 B1

L9: Entry 13 of 17

File: USPT

Oct 9, 2001

Record List Display Page 2 of 3

US-PAT-NO: 6299906

DOCUMENT-IDENTIFIER: US 6299906 B1

** See image for Certificate of Correction **

TITLE: Process for making submicron particles

Full Title Citation Front Review Classification Date Reference Claims KWC Draw Do

US-PAT-NO: 6063138

DOCUMENT-IDENTIFIER: US 6063138 A

TITLE: Method and apparatus for the formation of particles

US-PAT-NO: 5851453

DOCUMENT-IDENTIFIER: US 5851453 A

** See image for Certificate of Correction **

TITLE: Method and apparatus for the formation of particles

Full Title Citation Front Review Classification Date Reference Claims KWC Draw De Claims

US-PAT-NO: 5795594

DOCUMENT-IDENTIFIER: US 5795594 A

TITLE: Salmeterol xinafoate with controlled particle size

Full Title Chation Front Review Classification Date Reference Claims KMC Draw De 17. Document ID: US 3228849 A
L9: Entry 17 of 17 File: USOC Jan 11, 1966

US-PAT-NO: 3228849

DOCUMENT-IDENTIFIER: US 3228849 A

TITLE: Utilization of nuclear fission for chemical reactions

DATE-ISSUED: January 11, 1966

INVENTOR-NAME: FELLOWS ALBERT T

US-CL-CURRENT: 376/323; 12/128C, 204/157.15, 204/157.4, 204/157.44, 204/157.46, 204/157.5, 204/157.6, 204/157.63, 204/157.87, 204/157.9, 204/157.93, 204/157.99, 204/158.14, 204/900, 204/904, 204/905, 376/212, 376/213, 376/324, 376/325, 376/402, 376/411, 376/421, 376/901, 976/DIG.139, 976/DIG.318, 976/DIG.42, 976/DIG.43, 976/DIG.57, 976/DIG.97, 976/DIG.98

Full	Fitle Citation Front Review	Classification	Date	Reference				Claims	KWIC	Draw. De
	1	1	1 -		1 .	312 D.E.	1	Gener	-1- 01	
Clear	Generate Collection	Print	J	wd Refs		3kwd Refs		Gener	ate OF	(03
	Terms					Docume	nts			٠
	L8 and (solvent recycling	g)					:		17	

Display Format: -	Change Format
-------------------	---------------

Previous Page Next Page

Go to Doc#

Hit List

Clear Generate Collection Print Fwd Refs Bkwd Refs
Generate OACS

Search Results - Record(s) 1 through 10 of 17 returned.

☐ 1. Document ID: US 20030194953 A1

Using default format because multiple data bases are involved.

L9: Entry 1 of 17

File: PGPB

Oct 16, 2003

PGPUB-DOCUMENT-NUMBER: 20030194953

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030194953 A1

TITLE: Methods, apparatus and slurries for chemical mechanical planarization

PUBLICATION-DATE: October 16, 2003

INVENTOR-INFORMATION:

NAME

CITY

STATE

COUNTRY RULE-47

McClain, James B.

Raleigh

NC

US

DeSimone, Joseph M.

Chapel Hill

NC

US

US-CL-CURRENT: 451/41

Full Titl	e Citation Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KWIC	Draw, De
,										
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	Dogument ID:	TIC 20	020021704	A 1						

☐ 2. Document ID: US 20030031784 A1

L9: Entry 2 of 17

File: PGPB

Feb 13, 2003

PGPUB-DOCUMENT-NUMBER: 20030031784

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030031784 A1

TITLE: Method for collecting and encapsulating fine particles

PUBLICATION-DATE: February 13, 2003

INVENTOR-INFORMATION:

NAME

CITY

STATE

COUNTRY

RULE-47

Perrut, Michel

Nancy

FR

US-CL-CURRENT: 427/212; 118/400, 427/213.3

Full | Title | Citation | Front | Review | Classification | Date | Reference | Sequences | Attachments | Claims | KMC | Draw. De

☐ 3. Document ID: US 20020189454 A1

L9: Entry 3 of 17

File: PGPB

Dec 19, 2002

PGPUB-DOCUMENT-NUMBER: 20020189454

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020189454 A1

TITLE: Method for capturing fine particles by percolation in a bed of granules

PUBLICATION-DATE: December 19, 2002

INVENTOR-INFORMATION:

NAME

CITY

STATE

COUNTRY

RULE-47

Perrut, Michel

Nancy

FR

US-CL-CURRENT: 95/274; 55/512

F	ull	Title	Citati	ion	Front	Review	Clas	sification	n Date	Reference	Sequences	Attachments	Claims	KWIC	Draw, De
	*********	***********	***********	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***********	***************************************	***************************************	*****			·····		·*************************************	***************************************	***************************************
			_												

☐ 4. Document ID: US 20020073511 A1

L9: Entry 4 of 17

File: PGPB

Jun 20, 2002

PGPUB-DOCUMENT-NUMBER: 20020073511

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020073511 A1

TITLE: Method and apparatus for the formation of particles

PUBLICATION-DATE: June 20, 2002

INVENTOR-INFORMATION:

NAME

CITY

STATE

COUNTRY

RULE-47

Hanna, Mazen H.

Bradford

GB

York, Peter

Ilkley

GB

US-CL-CURRENT: 23/295R; 127/31, 423/659

Full Title Citation Front Review Classification	Date Reference Sequences	Attachments Claims KWIC Draw. De
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
T 5 D 110 00000055202	A 1	
☐ 5. Document ID: US 20020055323 A	41	
L9: Entry 5 of 17	File: PGPB	May 9, 2002

PGPUB-DOCUMENT-NUMBER: 20020055323

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020055323 A1

Page 3 of 5

Record List Display

TITLE: Methods, apparatus and slurries for chemical mechanical planarization

PUBLICATION-DATE: May 9, 2002

INVENTOR-INFORMATION:

NAME

CITY

STATE

COUNTRY

RULE-47

McClain, James B.

Raleigh

NC

US

DeSimone, Joseph M.

Chapel Hill

NC

US

US-CL-CURRENT: 451/41

Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KWIC	Draw, De
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,	····								

☐ 6. Document ID: US 20020045347 A1

L9: Entry 6 of 17

File: PGPB

Apr 18, 2002

PGPUB-DOCUMENT-NUMBER: 20020045347

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020045347 A1

TITLE: Divided pressure vessel apparatus for carbon dioxide based systems and

methods of using same

PUBLICATION-DATE: April 18, 2002

INVENTOR-INFORMATION:

NAME

CITY

STATE

COUNTRY RULE-47

Worm, Steven L.
DeYoung, James P.

Raleigh Durham NC

US US

McClain, James B.

Raleigh

Wake Forest

NC NC

US US

Brainard, David E.

NC

US-CL-CURRENT: 438/689

Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KWIC	Draw, De
							•					
						***************************************					~~~~	

☐ 7. Document ID: US 20020010982 A1

L9: Entry 7 of 17

File: PGPB

Jan 31, 2002

PGPUB-DOCUMENT-NUMBER: 20020010982

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020010982 A1

TITLE: METHOD AND APPARATUS FOR THE FORMATION OF PARTICLES

PUBLICATION-DATE: January 31, 2002

INVENTOR-INFORMATION:

Page 4 of 5

Record List Display

NAME

CITY

STATE

COUNTRY

RULE-47

HANNA, MAZAN

ALLERTON

GB

YORK, PETER

ILKLEY

GB

US-CL-CURRENT: 23/300; 23/295R, 423/659

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KMC Draw. De

□ 8. Document ID: US 20010055561 A1

L9: Entry 8 of 17

File: PGPB

Dec 27, 2001

PGPUB-DOCUMENT-NUMBER: 20010055561

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20010055561 A1

TITLE: Material processing by repeated solvent expansion-contraction

PUBLICATION-DATE: December 27, 2001

INVENTOR-INFORMATION:

NAME

CITY

STATE

RULE-47

Saim, Said

New Milford

CT

US

COUNTRY

Horhota, Stephen

Brookfield

CT

US

Bochniak, David Joseph

Ridgefield

CT

US

US-CL-CURRENT: 423/658.5

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KMC Draw De

☐ 9. Document ID: US 20010036586 A1

L9: Entry 9 of 17

File: PGPB

Nov 1, 2001

PGPUB-DOCUMENT-NUMBER: 20010036586

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20010036586 A1

TITLE: Toner and manufacturing method thereof

PUBLICATION-DATE: November 1, 2001

INVENTOR-INFORMATION:

RULE-47 COUNTRY STATE NAME CITY

JΡ Nara-shi Adachi, Katsumi

JΡ Hirakata-shi Sakuma, Masamitsu JP

Toizumi, Kiyoshi Nara-shi JP Kamimura, Taisuke Kitakatsuragi-gun

JΡ Iwamatsu, Tadashi Nara-shi

US-CL-CURRENT: 430/110.1; 430/137.1, 430/137.18

US-PAT-NO: 6623355

DOCUMENT-IDENTIFIER: US 6623355 B2

TITLE: Methods, apparatus and slurries for chemical mechanical planarization

Full Title Citation Front Revi	ew Classification	Date Reference		Claims KWMC Di	rawu De
					
Clear Generate Collection	on Print	Fwd Refs	Bkwd Refs	Generate OACS	
Terms			Documents		
L8 and (solvent recycl	ling)			17	

Display Format: - Change Format

Previous Page Next Page Go to Doc#

L	Hits	Search Text	DB	Time stamp
Number				
1	512	(427/213).CCLS.	USPAT;	2004/03/16
			US-PGPUB	11:47
2	205	(264/7).CCLS.	USPAT;	2004/03/16
_			US-PGPUB	11:49
3	280	(564/192).CCLS.	USPAT;	2004/03/16
	200	(4,,	US-PGPUB	11:49

3/16/04 11:50:24 AM

Page 1

L	Hits	Search Text	DB	Time stamp
Number				
1	1083	(210/768,774).CCLS.	USPAT;	2004/03/16
			US-PGPUB	12:04

Page 1

process); PROC (Process); USES (Uses)
 (supercrit., solvent; in coating of fine
 particles in circulating fluidized beds by rapid expansion of
 supercrit. solns.)

RN 124-38-9 HCAPLUS

CN Carbon dioxide (8CI, 9CI) (CA INDEX NAME)

o = c = 0

L97 ANSWER 25 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1996:616340 HCAPLUS

DN 125:277764

TI Studying Activity Coefficients of Probe Solutes in Selected Liquid Polymer Coatings Using Solid Phase Microextraction

AU Zhang, Zhouyao; Pawliszyn, Janusz

CS Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Can.

SO Journal of Physical Chemistry (1996), 100(44), 17648-17654 CODEN: JPCHAX; ISSN: 0022-3654

PB American Chemical Society

DT Journal

LA English

The study of solute-polymeric liquid solvent interaction AB contributes to the understanding of the fundamental principles of chromatog. since liquid polymers are often used as stationary phases in gas chromatog. (GC) and high-performance liquid chromatog. (HPLC). The knowledge of how a polymeric stationary phase interacts with different types of compds. helps researchers to select and synthesize the right phase for successful separation of mixts. in a time-efficient manner. The development of a simple, cost effective, and time-efficient method for studying solute-solvent interaction can aid significantly the ever-expanding applications of chromatog. this work, a new approach, solid phase microextn. (SPME), is used for investigations of activity coeffs. of the McReynolds probe solutes in selected liquid polymers. The probe solutes are absorbed by an immobilized liquid polymer phase coated on the outside surface of a fused silica fiber, and quantitated by a GC technique using a com. available GC column. The research in this study shows that activity coeffs. measured by SPME are equivalent to those by the commonly used GC method. This new method eliminates the need to prepare a GC column using the polymer of interest as in the GC method and, thus, significantly simplifies the whole measuring process. It also allows convenient investigation of the prepared coating by other surface and spectroscopic techniques.

L97 ANSWER 26 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1996:122671 HCAPLUS

DN 124:274772

TI Crystallization of phenanthrene from toluene with carbon dioxide by the GAS process

AU Berends, Edwin M.; Bruinsma, Odolf S. L.; de Graauw, Jan; van Rosmalen, Gerda M.

CS Lab. Process Equipment, Delft Univ. Technol., Delft, 2628 CA, Neth.

SO AICHE Journal (1996), 42(2), 431-9 CODEN: AICEAC; ISSN: 0001-1541

PB American Institute of Chemical Engineers

DT Journal

LA English

AB The crystallization of phenanthrene from toluene with CO2 as the antisolvent gas is described. In the GAS

process, a pressurized gas is dissolved into a liquid solvent, where it causes a volumetric expansion and lowers the solubility of the solute. Theor. models are presented for the liquid-phase expansion and the solubility as a function of pressure and temperature. The Nyvlt theory for batch crystallization is adapted to predict the pressure profile in the crystallizer needed to maintain a constant supersatn. and growth rate. Generation of seeds is accomplished via a pressure pulse at the saturation pressure. The average particle

size of the phenanthrene could be varied from 160 to 540 μm . Creation of seeds doubles the particle size and reduces the coefficient of variation significantly. The residual amount of toluene in the **crystals** without treatment is .apprx.70 ppm. The particles are agglomerates of phenanthrene **crystals**.

IT 124-38-9, Carbon dioxide, uses
RL: NUU (Other use, unclassified); USES (Uses)

(crystallization of phenanthrene from toluene by gas antisolvent process using)

RN 124-38-9 HCAPLUS

CN Carbon dioxide (8CI, 9CI) (CA INDEX NAME)

o = c = 0

L97 ANSWER 27 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1996:4915 HCAPLUS

DN 124:156296

TI An exact lattice model of complex solutions: chemical potentials depend on solute and solvent shape

AU Krukowski, Anton E.; Chan, Hue Sun; Dill, Ken A.

CS Dep. Pharmaceutical Chem., Univ. California San Francisco, San Francisco, CA, 94143-1204, USA

SO Journal of Chemical Physics (1995), 103(24), 10675-88 CODEN: JCPSA6; ISSN: 0021-9606

PB American Institute of Physics

DT Journal

LA English

For the theor. modeling of phys. transformations such as boiling, AB freezing, glassification, or mixing, it is necessary to know how the partition function of a system depends on its d. Many current treatments rely either on low d. expansions or they apply to very simple and sym. mol. shapes, like spheres or rods. Here the authors develop an exact anal. lattice theory of materials and mixts. that applies to arbitrarily complex mol. shapes over the full range of densities from gas to crystal. The approach is to compute partition functions for small nos. of shapes and to explore the dependence on d. by varying the volume of the system. Recently a question has been raised about whether entropies of dissoln. are better treated using classical solvation theories or Flory-Huggins theory. The authors explore this for a range of mol. sizes and shapes, from lattice squares and cubes, to rods, polymers, crosses, and other shapes. Beyond low densities, the entropic component of the chemical potential depends on shape due to the different degrees to which mols. "interfere" with each other. It was found that neither Flory-Huggins nor classical solvation theories is correct for all shapes. Mols. that are "articulated" are remarkably well treated by Flory-Huggins theory, over all densities, but globular mols. are qual. and quant. different, and are better treated by the classical chemical potential, consistent with expts. of Shinoda and Hildebrand. These results confirm that the Flory-Huggins theory differs from classical theory not because of mol. size differences per se; it accounts for the coupling between translations and conformational steric interference.

- ANSWER 28 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN L97
- 1995:26711 HCAPLUS AN
- 122:107766 DN
- Solute deposition in a porous polymer matrix from rapid TIexpansion of a supercritical solution
- ΑU
- Bertucco, A.; Guarise, G. B.; Pallado, P.; Corain, B. Istituto di Impianti Chimici, Universita di Padova, Padua, 35131, Italy CS
- Chemical and Biochemical Engineering Quarterly (1994), 8(1), 11-16 SO CODEN: CBEQEZ; ISSN: 0352-9568
- DТ Journal
- English LA
- The rapid expansion of a supercrit. solution in a porous AB polymer matrix is carried out to obtain the deposition of the solute inside the structure. The sudden pressure reduction results in a strong supersatn., so that the formation of small solid particles can be The deposition of ferrocene crystallites on poly(N,N-dimethylacrylamide) is studied using CO2 at temps. between 323-353 K and pressures from 18 to 22 MPa. A math. model is developed to represent the expansion of a real gas through the exit nozzle. Simulated and exptl. profiles for pressure and temperature are in agreement, so that the amount of precipitated solute and the phys. state of the solvent can be predicted.
- ANSWER 29 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN L97
- 1994:587124 HCAPLUS AN
- 121:187124 DN
- Precipitation of poly(L-lactic acid) and composite poly(L-lactic ΤI acid) -pyrene particles by rapid expansion of supercritical solutions
- Tom, Jean W.; Debenedetti, Pablo G.; Jerome, Robert ΑU
- Dep. Chem. Eng., Princeton Univ., Princeton, NJ, 08544, USA CS
- Journal of Supercritical Fluids (1994), 7(1), 9-29 SO CODEN: JSFLEH; ISSN: 0896-8446
- Journal DT
- English
- LΑ The rapid expansion of supercrit. solns. (RESS) was AΒ explored as a novel route to the formation of microparticles and microspheres useful in controlled drug delivery applications. Poly(L-lactic acid) was dissolved in supercrit. CO2 with CHC1F2 as a cosolvent and precipitated by RESS. polymers solubility and its mol. weight in solution were found to depend on processing time because of sample polydispersity. The morphol. of the precipitate (microparticles, microspheres, agglomerates, or dendrites) was examined as a function of the type of the expansion device (orifices or capillaries), pre-expansion temperature, and solvent composition Dendrites were the most common morphol. when using orifices. Microspheres formation using capillaries occurred with low preexpansion temps. and low length-to-diameter ratio. A one-dimensional fluid mech. model of the solvent's expansion in a capillary indicates that microspheres were formed preferentially when the fluid's exit d. was high, suggesting that substantial precipitation occurred outside the capillary. In the first comprehensive study of the effects of process conditions on the composite powders formed by RESS copptn., pyrene (a nonpolymeric fluorescent solute) was copptd. with poly(L-lactic acid) from supercrit. CO2-CHClF2 solns. Fluorescence and transmission microscopy allowed the observation of pyrene in the coppt. These expts. showed clearly the uniform incorporation of pyrene microparticles within polymer microspheres, and thus, the feasibility of RESS as a technique for the copptn. of composite
- 124-38-9, Carbon dioxide, properties RL: PRP (Properties)

particles with multiple substances.

(solvent; composite particles for controlled drug release copptn. by rapid expansion of supercrit. solns.)

RN 124-38-9 HCAPLUS

CN Carbon dioxide (8CI, 9CI) (CA INDEX NAME)

o = c = 0

L97 ANSWER 30 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1994:194464 HCAPLUS

DN 120:194464

TI Relative supersaturation ratio and separation factor in crystallization with high pressure CO2

AU Chang, Chiehming J.; Liou, Yuchung; Lan, Wen Jen

CS Dep. Chem. Eng., Natl. Chung-Hsing Univ., Taichung, 400, Taiwan

SO Canadian Journal of Chemical Engineering (1994), 72(1), 56-63 CODEN: CJCEA7; ISSN: 0008-4034

DT Journal

LA English

AB Crystallization in the presence of high-pressure gas as antisolvent could be applied for the recovery of valuable compds. from liquid solution A study of separation behavior is presented here for a mixture

of anthracene and anthraquinone in cyclohexanone expanded with a gaseous antisolvent, CO2. The pressure range

was 0.1-12 MPa; the temperature was either 292 or 313 K. Separation factors

were

obtained from the measured salted-out yields and the supersatn. of each solute could be also obtained for this pressure-tuning crystallization The separation factor varied almost linearly with relative supersatn. ratio in the crystallization of anthracene-anthraquinone from cyclohexanone and CO2.

IT 124-38-9, Carbon dioxide, uses

RL: USES (Uses)

(in pressure-induced **crystallization** of anthracene and anthraquinone from cyclohexanone)

RN 124-38-9 HCAPLUS

CN Carbon dioxide (8CI, 9CI) (CA INDEX NAME)

o = c = 0

L97 ANSWER 31 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1994:94354 HCAPLUS

DN 120:94354

TI Sample introduction in capillary **supercritical** fluid chromatography using sequential density gradient focusing and **solvent** venting

AU Liu, Zaiyou; Farnsworth, Paul B.; Lee, Milton L.

CS Dep. Chem., Brigham Young Univ., Provo, UT, 84602, USA

SO Journal of Microcolumn Separations (1991), 3(5), 435-42 CODEN: JMSEEJ; ISSN: 1040-7685

DT Journal

LA English

AB A technique was developed for large volume sample introduction in capillary supercrit. fluid chromatog. A 20-cm length of 200-µm i.d. capillary tubing was used as precolumn. The precolumn temperature could be easily controlled by passing an elec. current through an elec. conductive paint coated on its outer surface. During injection, the same

solvent was vented from the precolumn with CO2 (gas) at 32 atm, while the precolumn was kept at room temperature Solutes were transferred onto the head of the anal. column as a narrow band by d. gradient focusing, which was established with (a) a temperature gradient along the precolumn, (b) a rapid expansion of CO2 from supercrit. fluid to gas, and (c) a temperature difference between the precolumn and the anal. column. injection approach minimized solute mass discrimination and could be easily performed.

- ANSWER 32 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN L97
- ΑN 1994:33310 HCAPLUS
- DN 120:33310
- Purification of polycyclic aromatic compounds using salting-out separation ΤI in high-pressure carbon dioxide
- Chang, Chiehming J.; Liou, Yuchung ΑU
- Dep. Chem. Eng., Yuan Ze Inst. Technol., Taoyuan, 320, Taiwan CS
- SO Journal of Chemical Engineering of Japan (1993), 26(5), 517-22 CODEN: JCEJAQ; ISSN: 0021-9592
- DTJournal
- LΑ English
- AB Gas antisolvent crystallization has the potential for application in the recovery of valuable compds. from solution, and in the separation of solid-solid mixts. Exptl. data are presented for a mixture of anthracene and anthraquinone dissolved in cyclohexanone which was expanded by a gaseous antisolvent, CO2
- The pressure range is 0.1-12 MPa, and the temperature 291-313 K. relation of salted-out yield and normalized feed concentration gives an important

parameter, the min. solubility, from which supersatn. can be defined for gas antisolvent crystallization Effects of initial feed concns. of solid solutes, temperature, and pressure on the separation of anthracene and anthraquinone have also been studied.

- TT 124-38-9, Carbon dioxide, uses
 - RL: USES (Uses)

(high-pressure, crystallization of polycyclic aromatic compds. using)

- RN 124-38-9 HCAPLUS
- Carbon dioxide (8CI, 9CI) (CA INDEX NAME) CN

0 = c = 0

```
ANSWER 33 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN
1.97
```

- 1993:452405 HCAPLUS AN
- DN119:52405
- TT Manufacture of coated fine particles, especially, lanthanum oxide-coated silica particles
- Kitagawa, Kazuo; Yamamoto, Seiichi; Moritoki, Masato TN
- PΑ Kobe Steel Ltd, Japan
- SO Jpn. Kokai Tokkyo Koho, 8 pp. CODEN: JKXXAF
- DT Patent
- LA Japanese
- FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
ΡI	JP 05057166	A2	19930309	JP 1991-246861	19910831
PRAI	JP 1991-246861		19910831		

The process comprises dissoln. of a 1st solute (e.g., SiO2) and AΒ 2nd solute (e.g., La203) in 1st and 2nd solvents (e.g., both water) to form 1st and 2nd systems at supercrit. or

antisolvents causing limited process capacity. The different mechanisms of precipitation depend on whether the antisolvent

```
is a compressed, supercrit., or liquefied gas.
    ANSWER 23 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN
L97
     1997:7897 HCAPLUS
AN
     126:62342
DN
    Microparticle formation of HMX by supercritical carbon
```

dioxide antisolvent recrystallization

Cai, Jianguo; Sun, Zhaohui; Ma, Hongxi; Liao, Xiaochun; Zhou, Zhanyun ΑU Chem. Eng. Res. Center, ECU ST, Shanghai, 200237, Peop. Rep. China CS

Huadong Ligong Daxue Xuebao (1996), 22(5), 512-517 SO CODEN: HLIXEV

PBHuadong Ligong Daxue Xuebao Bianjibu

Journal DT

TI

Chinese LA

The recrystn. ratio of 1, 3, 5, 7-tetranitro-1, 3, 5, AB 7-tetraazacyclooctane (HMX) in acetone, cyclohexanone, and dimethylsulfoxide solution using supercrit. carbon dioxide antisolvent (GAS) was compared. By using GAS process in acetone solution, microparticles of $\beta\textsc{-HMX}$ within 2 .apprx. 13 μm can be obtained. Effects of pressure, temperature, initial feed concentration of HMX solute, expansion speed of solution and growth of crystal on the GAS process have been studied. Under all exptl. pressures of 8.0 .apprx. 12.0 MPa tested, lower test temperature and lower concentration of feed solution were preferable for

obtaining β -HMX and microparticles.

IT124-38-9, Carbon dioxide, uses

RL: NUU (Other use, unclassified); TEM (Technical or engineered material use); USES (Uses)

(microparticle formation of HMX by supercrit. carbon dioxide antisolvent recrystn.)

RN 124-38-9 HCAPLUS

Carbon dioxide (8CI, 9CI) (CA INDEX NAME) CN

o = c = o

```
ANSWER 24 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN
     1996:711759 HCAPLUS
AN
DN
     125:332821
     Fine particle coating in a circulating fluidized bed by rapid
TΤ
     expansion of supercritical fluid solutions
     Tsutsumi, Atsushi; Nakata, Mitsutoshi; Mineo, Tomoko; Yoshida, Kunio
ΑU
     Dep. Chem. System Engineering, Univ. Tokyo, Tokyo, 113, Japan
CS
     Kagaku Kogaku Ronbunshu (1996), 22(6), 1379-1383
SO
     CODEN: KKRBAW; ISSN: 0386-216X
     Kagaku Kogaku Kyokai
PB
```

DTJournal Japanese LA

AΒ Fine particle coating by rapid expansion of supercrit. CO2 solns. of paraffins was performed in a circulating fluidized bed (50 mm i.d.) with an internal nozzle at the center of the riser. Microspheroidal catalyst particles (average particle size 56 μ m) were used as the core particles. The coating mass and coating rates were measured by a sampling method. effects of gas flow rate and solute concentration on coating rate and coating efficiency were examined

124-38-9, Carbon dioxide, processes RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical

```
kumar - 09 / 774232
        W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE,
            DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG,
            KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX,
            NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT,
            UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES,
            FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI,
            CM, GA, GN, ML, MR, NE, SN, TD, TG
                                         AU 1998-81182
    AU 9881182
                      A1
                           19990104
                                                          19980619
                           20000412
                                         EP 1998-930901
                                                          19980619
    EP 991455
                      Α1
        R: BE, CH, DE, ES, FR, GB, IT, LI, NL
    JP 2002505617
                                         JP 1999-503993
                      T2
                           20020219
                                                          19980619
                      Α
PRAI GB 1997-12945
                           19970620
    GB 1997-17344
                      A
                           19970816
                      W
    WO 1998-GB1800
                           19980619
    A process is disclosed for precipitation of a solute from a
AΒ
    Dense Fluid Solvent. A solution of the solute in a Dense
    Fluid Solvent is expanded under conditions such that
    the Dense Fluid Solvent passes from the Dense Fluid
    Solvent region of its phase diagram into a 2-phase region of its
    phase diagram to cause precipitation of the solute from the
    solution Apparatus for performing the process is also disclosed.
RETABLE
  Referenced Author
                      |Year |
                             VOL
                                   PG
                                          Referenced Work
                                                               Referenced
                       (RPY) (RVL) (RPG)
                                               (RWK)
         (RAU)
                                                              File
British Nuclear Fuels P | 1996
                                         EP 0692289 A
                                                             HCAPLUS
                                         EP 0384969 A
Hewlett Packard Co
                       1990
                                                              HCAPLUS
Jacques, L
                       1991
                                         US 5011819 A
                                                             HCAPLUS
                       1988
                                         US 4770780 A
                                                             HCAPLUS
Moses, J
Richard, S
                       1988
                                         US 4734451 A
                                                             HCAPLUS
    ANSWER 20 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN
L97
AN
    1998:686542 HCAPLUS
```

DN 129:262158

TIFractional crystallization by gas antisolvent technique: theory and experiments

Bertucco, Alberto; Lora, Michele; Kikic, Ireneo ΑU

CS Istituto di Impianti Chimici, Universita di Padova, Padova PD, I-35131,

AIChE Journal (1998), 44(10), 2149-2158 SO CODEN: AICEAC; ISSN: 0001-1541

PB American Institute of Chemical Engineers

DT Journal

LA English

The efficacy of CO2 as an antisolvent was studied AB exptl. for the precipitation of naphthalene and phenanthrene from their solns. in toluene at 298 and 310 K. Phenanthrene was salted out of solution at every condition investigated, whereas naphthalene was never segregated as a solid phase. These behaviors are explained by a model representing the composition of the phases and supersatn. of the solution as functions of pressure. Based on results from ternary systems, expts. were performed with the quaternary system CO2 -toluene-naphthalenephenanthrene: starting from an equimolar solution of the two solids in toluene, phenanthrene with a purity higher than 98.5% can be collected in the precipitation cell, while naphthalene with .apprx.13% of phenanthrene is recovered from the liquid phase after expansion. The simulation of the process was able to account for the exptl. evidence. Although the solutes used do not have a practical application, a general method is outlined to exploit the possibility of using the supercrit. antisolvent technique for separation

124-38-9, Carbon dioxide, uses RL: NUU (Other use, unclassified); USES (Uses) (fractional crystallization by gas antisolvent technique)

RN 124-38-9 HCAPLUS

CN Carbon dioxide (8CI, 9CI) (CA INDEX NAME)

o = c = o

RETABLE						
Referenced Author	Year	VOL	PG	Referenced Work	Referenced	
(RAU)	(RPY)	(RVL)	(RPG)	(RWK)	File	
=======================================	+=====	+=====	+=====	+======================================	+=======	
Catchpole, O	1996	İ		Proc Int Symp on Hig		
Chang, C	1994	72	56	Can J Chem Eng	HCAPLUS	
Dixon, D	1991	37	1441	AIChE J	HCAPLUS	
Foster, N	1997			Proc 4th Int Symp on		
Gallagher, P	1989			Supercritical Fluid		
Hong, S	1992	74	133	Fluid Phase Equil	HCAPLUS	
Kikic, I	1997	36	5507	Ind Eng Chem Res	HCAPLUS	
Kikic, I	1997			Proc Int Symp on Sup		
Liang, M	1994			Proc Int Symp on Sup		
Liu, G	1996	35	4626	Ind Eng Chem Res	HCAPLUS	
McHugh, M	1993			Supercritical Fluid		
Nagahama, K	1997			Proc Int Symp on Sup		
Shishikura, A	1994	42	1993		HCAPLUS	
Shishikura, A	1992	5	303	J Supercrit Fluids	HCAPLUS	
Shishikura, A	1991			Proc Int Symp on Sup		
Yeo, S	1993	41	341	Biotechnol and Bioen	HCAPLUS	

```
L97 ANSWER 21 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN
```

AN 1998:7381 HCAPLUS

DN 128:116698

TI Supercritical crystallization: designed crystallization? Rapid expansion of supercritical solutions (RESS) and gas antisolvent (GAS) and principal applications

AU Sanz Pastor, A. I.; Cocero, Alonso, M. J.

CS Dpto. Ingenieria Quimica, Universidad de Valladolid, Spain

SO Ingenieria Quimica (Madrid) (1997), 29(339), 183-190 CODEN: INQUDI; ISSN: 0210-2064

PB Ingenieria Quimica, S.A.

DT Journal; General Review

LA Spanish

AB The review, with 36 refs., covers methods of supercrit. fluid crystallization and discusses their possible uses in the pharmaceutical and polymer industries. Supercrit. crystallization methods can produce products with redefined particle sizes, narrow size distribution, absence of solvent occlusions, and residence times of seconds. In the RESS process (rapid expansion of supercrit. solns.), a solute dissolved in a supercrit. fluid ppts. to produce a sharp reduction in pressure and a following decline in solubility The GAS (gas antisolvent) process uses a pressurized gas, under critical or quasi-critical (pressure and temperature close to the critical point) conditions,

soluble in organic solvent and insol. in the solute, such that dissoln. provokes a volumetric expansion which reduces the solubility of the solute; the supercrit. fluid acts as an antisolvent, causing precipitation of solute.

RETABLE

Referenced Author	Year	VOL	PG	Referenced Work	Referenced
(RAU)	(RPY)	(RVL)	(RPG)	(RWK)	File

is used as antisolvent for the solute initially solubilized in a conventional solvent. Upon mixing by adding compressed carbon dioxide to the initial solution in a vessel, the solution is expanded, thus reducing its solvent power, and the solute ppts. Numerous exptl. investigations have proved the attractiveness of these processes in terms of product quality; however, the understanding of their fundamentals and of the effects of individual process parameters is still very limited. The development of applications of the GAS recrystn. technol. requires that the gap between exptl. evidence and theor. understanding is filled.

IT 124-38-9, Carbon dioxide, uses

RL: NUU (Other use, unclassified); USES (Uses) (supercrit.; in gas antisolvent

recrystn. of specialty chems.)

RN 124-38-9 HCAPLUS

CN Carbon dioxide (8CI, 9CI) (CA INDEX NAME)

0 = c = 0

RETABLE					
Referenced Author	Year	VOL	PG	Referenced Work	Referenced
(RAU)	(RPY)	(RVL)	(RPG)	(RWK)	File
=======================================	+=====	+=====	+=====	+======================================	+========
Alessi, P	1996	35	4718	Ind Eng Chem Res	HCAPLUS
Aniedobe, N	1997	30	2792	Macromol	HCAPLUS
Beckmann, W	1997	69	349	Chem Ing Tech	HCAPLUS
Benedetti, L	1997	53	232	Biotechnol Bioeng	HCAPLUS
Berends, E	1996	42	431	AIChE J	HCAPLUS
Bertucco, A	1998	44	2149	AIChE J	HCAPLUS
Bodmeier, R	1995	12	1211	Pharm Res	HCAPLUS
Bungert, B	1997	139	349	Fluid Phase Equilibr	HCAPLUS
Bungert, B	1998	37	3208	Ind Eng Chem Res	HCAPLUS
Catchpole, O	1996	12	309	Process Technology P	HCAPLUS
Chang, C	1989	35	1876	AIChE J	HCAPLUS
Chang, C	1990	36	939	AIChE J	HCAPLUS
Chang, C	1991	7	275	Biotechnol Progress	HCAPLUS
Chang, C	1994	72	56	Can J Chem Eng	HCAPLUS
Chang, C	1993	26	517	J Chem Eng Japan	HCAPLUS
Debenedetti, P	1990	36	1289	AIChE J	HCAPLUS
Debenedetti, P	1993	82	311	Fluid Phase Equilibr	HCAPLUS
Debenedetti, P	1993	24	27	J Controlled Rel	HCAPLUS
Dixon, D	1991	37	1441	AIChE J	HCAPLUS
Dixon, D	1993	39	127	AIChE J	HCAPLUS
Dixon, D	1993	50	1929	J Appl Polymer Sci	HCAPLUS
Domingo, C	1996	166	989	J Cryst Growth	HCAPLUS
Domingo, C	1997	10	39	J Supercrit Fluids	HCAPLUS
Falk, R	1997	44	77	J Controlled Rel	HCAPLUS
Falk, R	1998	15	1233	Pharm Res	HCAPLUS
Furuta, S	1995	148	197	J Cryst Growth	HCAPLUS
Gallagher, P	1989	406	334	ACS Symp Ser	HCAPLUS
Gallagher, P	1991	284	96	AIChE Symp Ser	
Gallagher, P	1992	5	130	J Supercrit Fluids	HCAPLUS
Griscik, G	1995	155	112	J Cryst Growth	HCAPLUS
Gromov, D	1998	108	4647	J Chem Phys	HCAPLUS
Gupta, P	1991	17	129	J Controlled Rel	
Jianguo, C	1996	4	257	Chin J Chem Eng	
Kikic, I	1997	36	5507	Ind Eng Chem Res	HCAPLUS
Kim, J	1996	12	650	Biotechnol Progress	HCAPLUS
Kitamura, M	1997	178	378	J Cryst Growth	HCAPLUS
Knutson, B	1996	77	89	Drugs and the pharma	
MIGCOUIT, D	1000	, ,	U 2	prays and the pharma	TICHELION

o = c = o

RETABLE					
Referenced Author	Year	VOL	PG	Referenced Work	Referenced
(RAU)	(RPY)	(RVL)	(RPG)	(RWK)	File
=======================================	+====-	- -====-	+======	, +==============	+========
Bertucco, A	1998	44	2149	AIChE J	HCAPLUS
Bungert, B	1997	69	298	Chem Ing Tech	HCAPLUS
Bungert, B	1998	37	3208	Ind Eng Chem Res	HCAPLUS
Chang, C	1991	7	275	Biotechnol Prog	HCAPLUS
Chang, C	1994	72	56	Can J Chem Eng	HCAPLUS
Chang, C	1995	40	850	J Chem Eng Data	HCAPLUS
Chang, C	1993	26	517	J Chem Eng Jpn	HCAPLUS
Dixon, D	1991	37	1441	AIChE J	HCAPLUS
Foster, N	1997		27	The 4th Internationa	
Gallagher, P	1989	406	334	ACS Symposium Series	HCAPLUS
Griffith, A	1999	38	411	Polym Plast Technol	HCAPLUS
Jianguo, C	1996	4	257	Chin J Chem Eng	
Kordikowski, A	1995	8	205	J Supercrit Fluids	HCAPLUS
Liou, Y	1992	27	1277	Sep Sci Technol	HCAPLUS
Regtop, H	1990			WO 9014337	HCAPLUS
Regtop, H	1994			US 5310936	HCAPLUS
Regtop, H	1995			US 5466824	HCAPLUS
Reverchon, E	1999	15	1	J Supercrit Fluids	HCAPLUS
Savage, P	1995	41	1723	AIChE J	HCAPLUS
Shishikura, A	1994	42	1993	J Agric Food Chem	HCAPLUS
Shishikura, A	1997		51	The 4th Internationa	
Sorenson, R	1989			Progress in Medicina	
Subramaniam, B	1986	25	1	Ind Eng Chem Process	HCAPLUS
Tai, C	1998	44	989	AIChE J	HCAPLUS
Thiering, R	2000	75	29	J Chem Technol Biote	HCAPLUS
Weder, J	1999	38	1736	Inorg Chem	HCAPLUS

L97 ANSWER 18 OF 44 HCAPLUS COPYRIGHT 2004 ACS on STN

1999:698745 HCAPLUS AN

DN 132:266692

ΤI Gas antisolvent recrystallization of specialty chemicals

ΑU Muhrer, Gerhard; Mazzotti, Marco

CS Institut fur Verfahrenstechnik, ETH Zurich, Zurich, CH-8092, Switz. International Symposium on Industrial Crystallization, 14th, Cambridge, SO United Kingdom, Sept. 12-16, 1999 (1999), 330-339 Publisher: Institution

of Chemical Engineers, Rugby, UK. CODEN: 68IRAJ

DTConference; General Review; (computer optical disk)

LA

A review with 84 refs. The need for the manufacturing of micron or sub-micron particles with narrow size distributions is gaining more and more importance in the production of specialty chems. and pharmaceuticals. In the last case microparticles are often intended for controlled drug release applications. There is therefore an increasing interest in developing technologies which, contrary to conventional techniques, allow microparticles with controlled particle size distribution and product quality to be produced under mild and inert conditions. . fluid technol., particularly when using carbon dioxide , offers promising possibilities for tackling this challenge, e.g., through the Rapid Expansion of Supercrit. Solns., Precipitation with Compressed Antisolvent, and GAS (

Gas Anti-Solvent) techniques. In particular,

GAS recrystn. exploits the low solubility of pharmaceutical

compds. in supercrit. carbon dioxide, which