소프트웨어공학개론 (3724)

2013학년도 제 1학기

테스팅예제

소프트웨어공학개론 - 오유수

요구사항

○ 요구사항

신용카드사의 멤버쉽 종류와 사용 금액에 따른 적립금 퍼센트를 보여준다. 적립금 퍼센트의 산정표는 [표 8-13]과 같다. 멤버쉽 종류와 사용금액이 주어지면 그에 해당하는 적립금 퍼센트를 출력한다. 예를 들어 어느 고객의 멤버쉽 등급이 VIP이고 카드 사용금액이 100만 원 이하 일 경우 적립금 퍼센트는 10%임을 보여준다.

■ 표 8-13 적립금 퍼센트 산정표

사용금액 등급	일반	VIP	VVIP
5만원 이하	5%	5%	5%
20만원 이하	5%	7%	10%
100만원 이하	7%	10%	15%
100만원 초과	10%	15%	20%

블랙박스 테스팅-신택스 테스팅

- 입력 데이터가 미리 정의한 유형에 적합한지 검증
 - 입력 데이터를 어떠한 유형으로 정의하여 검증할지를 고려해야 함
- 다음 그림은 입력 데이터가 사용금액 일 경우 적합조건 을 자연수, 부적합 조건을 특수기호, 문자 혹은 공백 등으로 분류하고, 이에 따라 입력 유형을 정의한 것임

	입력변수	적합조건	부적	합조건
	사용금액	자연수	특별수호,	문자, 공백 등
No	적합/부적합	입력유형	입력값	예상출력값
1	적합	자연수	50,000	정상
2	부적합	0	0	경고창
3	부적합	음수	-1,000	경고창
4	부적합	소수	1.2785	경고창
5	부적합	문자	abcdefg	경고창
6	부적합	특수기호	#@*&	경고창
			,	

블랙박스테스팅-_{동등 분할}

- 입력 도메인을 비슷한 특징의 동등 그룹으로 분류하고 각 그룹의 대표값을 통해 검증
 - 입력값을 어떻게 동등 그룹으로 분류할지를 고려해야 함
- 사용금액의 입력값을 요구사항에 나타난 범위에 다라 동등 그룹으로 분류
 - 적합조건:
 - 0<사용금액<=50,000
 - 50,000<사용금액<200,000
 - 200,000<사용금액<=1,000,000
 - 1,000,000<사용금액
 - 부적합조건:
 - 0>사용금액

50	,000	200,000	1,000,00	0,000		
0< IP <= 50,000	50,000 < IP <= 20	200,000 < 1	P <= 1,000,000	1,000,000 < IP		
테스트 케이스	1	2	3	4		
입력값(금액)	5,000	100,000	800,000	3,000,000		
입력값 (등급)	일반	일반	일반	일반		
금액 범위	5 만원 이하	20 만원 이하	100 만원 이하	100만원 초괴		
예상 결과값	5%	5%	7%	10%		
실제 결과값	5%	5%	7%	10%		

● 그림 8-16 동등 분할 예제

블랙박스테스팅-경계값분석

- 경계값을 기준으로 입력값을 선정
 - 다른 결과값이 예상되는 입력값의 경계값 및 경계 전후값을 고려해야 함
- 검증 입력값
 - 경계값: 0원, 50,000원, 200,000원, 1,000,000원
 - 경계 전후값: -1원, 1원, -49,999원, 50,001원, 199,999원, 200,001원, 999,999원, 1,000,001원

테스트 케이스	1	2	3	4	5	6	7	8	9
입력값(금액)	-1	0	1	49,999	50,000	50,001	199,999	200,000	
입력값(등급)	일반	일반	일반	일반	일반	일반	일반	일반	
금액 범위	초과	정상	정상	정상	정상	정상	정상	정상	
예상 출력값	경고창	5%	5%	5%	5%	5%	5%	5%	0.08
실제 출력값	경고창	5%	5%	5%	5%	5%	5%	5%	

블랙박스테스팅-의사결정 테이블

■ 입력, 출력값이 True, False로 결정될 수 있는 모든 경우의 수를 확인

■ 입력값들의 조합이 True, False의 모든 경우 의 수를 포괄할 수 있도 록 구성해야 함

	테스트	케이스	1	2	3	4	5	6	7	8	9	10	11	12
		금액<=50,000	Т	Т	Т	F	F	F	F	F	F	F	F	F
	704	50,000(금액 <=200,000	F	F	F	Т	Т	Т	F	F	F	F	F	F
입력값	금액	200,000(금액 <=1,000,000	F	F	F	F	F	F	т	т	т	F	F	F
		1,000,000(금액	F	F	F	F	F	F	F	F	F	Т	Т	Т
		일반	Т	F	F	Т	F	F	Т	F	F	Т	F	F
	등급	VIP	F	Т	F	F	Т	F	F	Т	F	F	Т	F
		VVIP	F	F	Т	F	F	Т	F	F	Т	F	F	Т
		5%	T	Т	Т	Т	F	F	F	F	F	F	F	F
예상		7%	F	F	F	F	Т	F	Т	F	F	F	F	F
출력값		10%	F	F	F	F	F	Т	F	Т	F	Т	F	F
		15%	F	F	F	F	F	F	F	F	Т	F	Т	F
		20%	F	F	F	F	F	F	F	F	F	F	F	Т

화이트박스테스팅

```
//inputMoney는 사용금액으로 사용자로부터 입력 받음
 //numberRate은 멤버쉽 등급으로 사용자로부터 입력 받음
 int returnRate = 0; //반환할 할인율
 if(inputMoney <= 50000)
   returnRate = 5;
 else if(50000 < inputMoney && inputMoney <= 200000)
   switch(numberRate)
       case 0; //멤버쉽 등급이 일반일 경우
         returnRate = 5;
         break;
       case 1; //멤버쉽 등급이 VIP일 경우
         returnRate = 7;
         break;
       case 2; //멤버쉽 등급이 VVIP일 경우
         returnRate = 10;
         break;
else if(200000 < inputMoney && inputMoney <= 1000000)
   switch(numberRate)
      case 0;
        returnRate = 7;
        break;
      case 1;
        returnRate = 10;
        break;
      case 2;
        returnRate = 15;
        break;
printf("%d", returnRate);
```

● 그림 8-19 적립금 퍼센트 산정 예제의 일부 소스코드

화이트박스테스팅-순서도

화이트박스테스팅-문장커버리지

- 프로그램 내부구조의 문장을 최소한 한 번씩 실행하여 시험하는 방식
 - 최소 한 번씩 실행하기 위한 입력값을 고려해야 함

10	테스트 케이스				
ID	입력값	경로	출력값		
1	(30000, 0)	(1 - 2 - 18)	5		
2	(100000, 0)	(1 - 3 - 4 - 5 - 18)	5		
3	(100000, 1)	(1 - 3 - 4 - 6 - 18)	7		
4	(100000, 2)	(1 - 3 - 4 - 7 - 18)	10		
		•••			

※ 입력값은(사용금액, 멤버쉽등급)이며, 출력값은 적립금 퍼센트이다.

■ 테스트 케이스를 추출하기 위하여 플로우 그래프 작성, 순환복잡도 계산, 독립적인 경로 정의, 테스트 케이스 작성의 단계를 거침

- 플로우 그래프 작성
 - 순서도를 이용하여 8개의 노 드, 10개의 화살표, 3개의 분 기노드, 4개의 구분된 지역 으로 도출

- 순환복잡도 계산
 - 플로우 그래프에서 도출된 노드, 화살표, 분기 노드, 구분된 지역의 수를 순환복잡도 공식에 대입
 - **■** V(G) = 4
 - V(G) = 10 8 + 2 = 4
 - V(G) = 3 + 1 = 4
 - 4개의 독립적인 경로의 수가 계산됨

- 독립적인 경로 정의
 - 순환복잡도에 따라 4개의 독립적인 경로 정의
 - 각 경로들은 서로 중복되지 않게 하기 위해, 각 경로마다 각각 새로운 노드와 화살표를 포함 시킴
 - 이것은 최소한의 독립적인 시험 경로를 제공하는 것으로, 이 밖에 더 많은 경로를 시험할 수 있음
 - 경로 1: 1 2 18
 - 경로 2: 1 3 4 5 18
 - 경로 3: 1 3 4 6 18
 - 경로 4: 1 3 4 7 18

- 테스트 케이스 작성
 - 정의한 경로에 다른 테스트 케이스 작성

		테스트 케이스	Property of the Act
ID	경로	입력값	예상 출력값
1	경로 1	(30000, 0)	5
2	경로 2	(100000, 0)	5
3	경로 3	(100000, 1)	7
4	경로 4	(100000, 2)	10

※ 입력값은(사용금액, 멤버쉽등급)이며, 출력값은 적립금 퍼센트이다.