Задача 4.

Ионное соединение А при нагревании обратимо изомеризуется в вещество В молекулярного строения (реакция 1), причем при 140 °C равновесная смесь содержит 28 % вещества **B**, а при 180 °C – 22 %. Альтернативным способом получения вещества **B** является взаимодействие бинарных соединений С и D (реакция 2). Вещество С является горючей, нерастворимой в воде жидкостью, а вещество **D** бесцветным газом с резким запахом, очень хорошо растворимым в воде. В промышленности вещество В получают взаимодействием веществ Е и F с водой и углекислым газом (реакция 3). Известно, что вещество Е состоит из трех элементов и содержит 50% кальция (по массе), а вещество F представляет собой бесцветный газ с запахом «тухлых яиц». Вещество В реагирует с 1-бромбутаном с образованием ионного соединения G (реакция 4). При кипячении соединения G в водном растворе гидроксида натрия (реакция 5) среди прочих продуктов образуется соединение Н, используемое в качестве удобрения. Соединение Н можно получить напрямую из вещества В при его взаимодействии с водным раствором хлорида ртути (II) (реакция 6). Взаимодействие вещества В с метиловым эфиром ацетоуксусной (3-оксобутановой) кислоты в щелочной среде приводит к образованию ароматического соединения І (реакция 7).

Определите вещества **A–I** и напишите уравнения реакций 1-7. Рассчитайте Δ H $^{\circ}$ реакции 1 (зависимостью энтальпии и энтропии от температуры пренебречь).

<u>Решение:</u>

 $A - NH_4SCN$

 $\mathbf{B} - \mathbf{CS}(\mathbf{NH_2})_2$

 ${\color{red}C-CS_2}$

 $\boldsymbol{D}-NH_3$

 $\boldsymbol{E}-CaCN_2$

 $\boldsymbol{F}-\boldsymbol{H}_2\boldsymbol{S}$

$$\mathbf{G} = \mathbf{H_2N} \stackrel{\mathsf{NH_2}^+}{\longrightarrow} \mathsf{Br}$$
 (допускаются другие резонансные структуры тиурониевой соли)

 $\mathbf{H} - \text{CO}(\text{NH}_2)_2$

Уравнения реакций:

- 1) $NH_4SCN \leftrightarrows CS(NH_2)_2$
- 2) $CS_2 + 2NH_3 = CS(NH_2)_2 + H_2S$ (допускаются варианты с образованием сульфида или гидросульфида аммония)
- 3) $CaCN_2 + H_2S + CO_2 + H_2O = CS(NH_2)_2 + CaCO_3$
- 4) $CS(NH_2)_2 + CH_3CH_2CH_2CH_2Br = [CH_3CH_2CH_2CH_2SC(NH_2)_2]Br$
- 5) $[CH_3CH_2CH_2CH_2SC(NH_2)_2]Br + 2NaOH = CH_3CH_2CH_2CH_2SNa + CO(NH_2)_2 + NaBr + H_2O$ (допускается вариант с написанием меркаптана в качестве серасодержащего продукта)
- 6) $CS(NH_2)_2 + HgCl_2 + H_2O = HgS\downarrow + CO(NH_2)_2 + 2HCl$

$$H_3C$$
 CH_3
 H_2N
 NH_2
 H_3C
 NH_3C
 N

Константа равновесия связана с температурой следующим соотношением:

$$lnK = -\Delta H^{\circ}/RT + \Delta S^{\circ}/R$$

Используя значения константы равновесия при двух разных температурах получаем:

$$\Delta H^{\circ} = RT_1T_2\ln(K_2/K_1)/(T_2-T_1)$$

Переведем температуру в кельвины: $T_1 = 140^{\circ}C = 413$ K, $T_2 = 180^{\circ}C = 453$ K. Соответствующие значения констант равновесия: $K_1 = 0.28/0.72 = 0.389$

$$K_2 = 0.22/0.78 = 0.282$$

Подставим найденные значения констант равновесия в выражение для расчета энтальпии:

$$\Delta H^{\circ} = 8,314*413*453*ln(0,282/0,389)/(453-413) = -12509$$
 Дж/моль = -12,5 кДж/моль.

Критерии оценивания:

Формулы веществ A-I – no 1 баллу (всего 9 баллов)

Уравнения реакций 1-7 – no 1 баллу (всего 7 баллов)

(неуравненные реакции оцениваются половиной баллов)

Расчет энтальпии — 4 балла (из них 1 балл за расчет констант равновесия, 1 балл за верно определенный знак энтальпии, 1 балл за формулу, связывающую энтальпию и константу равновесия) При верном расчете энтальпии балл за константы выставляются автоматически, даже если отдельный расчет констант не производился. Ответ без формул и расчетов — 0 баллов.

Итого 20 баллов.