CONSTRUCTIONS ON CATEGORIES

13.1 PRODUCT CATEGORIES

Definition 51 (Product category). The **product category** of two categories C and D, denoted by $C \times D$ is a category having

- pairs $\langle c, d \rangle$ as objects, where $c \in \mathcal{C}$ and $d \in \mathcal{D}$;
- and pairs $\langle f, g \rangle : \langle c, d \rangle \to \langle c', d' \rangle$ as morphisms, where $f : c \to c'$ and $g : d \to d'$ are morphisms in their respective categories.

The identity morphism of any object $\langle c, d \rangle$ is $\langle id_c, id_d \rangle$, and composition is defined componentwise as

$$\langle f', g' \rangle \circ \langle f, g \rangle = \langle f' \circ f, g' \circ g \rangle.$$

We also define **projection functors** $P: \mathcal{C} \times \mathcal{D} \to \mathcal{C}$ and $Q: \mathcal{C} \times \mathcal{D} \to \mathcal{D}$ on arrows as $P\langle f,g \rangle = f$ and $Q\langle f,g \rangle = g$. Note that this definition of product, using these projections, would be the product of two categories on a category of categories with functors as morphisms.

Definition 52 (Product of functors). The **product functor** of two functors $F: \mathcal{C} \to \mathcal{C}'$ and $G: \mathcal{D} \to \mathcal{D}'$ is a functor $F \times G: \mathcal{C} \times \mathcal{D} \to \mathcal{C}' \times \mathcal{D}'$ which can be defined

- on objects as $(F \times G)\langle c, d \rangle = \langle Fc, Gd \rangle$;
- and on arrows as $(F \times G)\langle f, g \rangle = \langle Ff, Gg \rangle$.

It can be seen as the unique functor making the following diagram commute

$$\begin{array}{ccc}
\mathcal{C} & \stackrel{P}{\longleftarrow} & \mathcal{C} \times \mathcal{D} & \stackrel{Q}{\longrightarrow} & \mathcal{D} \\
\downarrow_{F} & & \downarrow_{F \times G} & & \downarrow_{G} \\
\mathcal{C}' & \longleftarrow_{P'} & \mathcal{C}' \times \mathcal{D}' & \longrightarrow_{Q'} & \mathcal{D}'
\end{array}$$

In this sense, the \times operation is itself a functor acting on objects and morphisms of the Cat category of all categories. A **bifunctor** is a functor from a product category;

and it also can be seen as a functor on two variables. As we will show in the following proposition, it is completely determined by the two families of functors that we obtain when we fix any of the elements.

Proposition 7 (Conditions for the existence of bifunctors). *Let* \mathcal{B} , \mathcal{C} , \mathcal{D} *categories with two families of functors*

$$\{L_c \colon \mathcal{B} \to \mathcal{D}\}_{c \in \mathcal{C}}$$
 and $\{M_b \colon \mathcal{C} \to \mathcal{D}\}_{b \in \mathcal{B}}$,

such that $M_b(c) = L_c(b)$ for all b, c. A bifunctor $S: \mathcal{B} \times \mathcal{C} \to \mathcal{D}$ such that $S(-,c) = L_c$ and $S(b,-) = M_b$ for all b, c exists if and only if for every $f: b \to b'$ and $g: c \to c'$,

$$M_{b'}g \circ L_c f = L_{c'}f \circ M_b g.$$

Proof. If the equality holds, the bifunctor can be defined as $S(b,c) = M_b(c) = L_c(b)$ in objects and as $S(f,g) = M_{b'}g \circ L_c f = L_{c'}f \circ M_b g$ on morphisms. This bifunctor preserves identities, as

$$S(\mathrm{id}_b,\mathrm{id}_c)=M_b(\mathrm{id}_c)\circ L_c(\mathrm{id}_b)=\mathrm{id}_{M_b(c)}\circ\mathrm{id}_{L_c(b)}=\mathrm{id},$$

and it preserves composition, as

$$S(f',g') \circ S(f,g) = Mg' \circ Lf' \circ Mg \circ Lf = Mg' \circ Mg \circ Lf' \circ Lf = S(f' \circ f,g' \circ g)$$

for any composable morphisms f, f', g, g'. On the other hand, if a bifunctor exists,

$$M_{b'}(g) \circ L_c(f) = S(\mathrm{id}_{b'}, g) \circ S(f, \mathrm{id}_c) = S(\mathrm{id}_{b'} \circ f, g \circ \mathrm{id}_c)$$

$$= S(f \circ \mathrm{id}_b, \mathrm{id}_{c'} \circ g) = S(f, \mathrm{id}_{c'}) \circ S(\mathrm{id}_b, g)$$

$$= L_{c'}(f) \circ M_b(f).$$

Proposition 8 (Naturality for bifunctors). *Given* S, S' *bifunctors*, $\alpha_{b,c} : S(b,c) \to S'(b,c)$ *is a natural transformation if and only if* $\alpha(b,c)$ *is natural in b for each c and natural in c for each b.*

Proof. If α is natural, in particular, we can use the identities to prove that it must be natural in its two components

If both components of α are natural, the naturality of the natural transformation follows from the composition of these two squares

$$S(b,c) \xrightarrow{lpha_{b,c}} S'(b,c) \ S\langle f, \mathrm{id}_c
angle igg| \qquad \qquad \downarrow S'\langle f, \mathrm{id}_c
angle \ S(b',c) \xrightarrow{lpha_{b',c}} S'(b',c) \ S\langle \mathrm{id}_{b'},g
angle igg| \qquad \qquad \downarrow S'\langle \mathrm{id}_{b'},g
angle \ S(b',c') \xrightarrow{lpha_{b',c'}} S'(b',c')$$

where each square is commutative by the naturality of each component of α .

13.2 OPPOSITE CATEGORIES AND CONTRAVARIANT FUNCTORS

Definition 53 (Opposite category). The **opposite category** C^{op} of a category C is a category with the same objects as C but with all its arrows reversed. That is, for each morphism $f: A \to B$, there exists a morphism $f^{op}: B \to A$ in C^{op} . Composition is defined as

$$f^{op} \circ g^{op} = (g \circ f)^{op},$$

exactly when the composite $g \circ f$ is defined in C.

Reversing all the arrows is a process that directly translates every property of the category into its *dual* property. A morphism f is a monomorphism if and only if f^{op} is an epimorphism; a terminal object in \mathcal{C} is an initial object in \mathcal{C}^{op} and a right inverse becomes a left inverse on the opposite category. This process is also an *involution*, where $(f^{op})^{op}$ can be seen as f and $(\mathcal{C}^{op})^{op}$ is trivially isomorphic to \mathcal{C} .

Definition 54 (Contravariant functor). A **contravariant** functor from \mathcal{C} to \mathcal{D} is a functor from the opposite category, that is, $F \colon \mathcal{C}^{op} \to \mathcal{D}$. Non-contravariant functors are often called **covariant** functors, to emphasize the difference.

Example 16 (Hom functors). In a locally small category C, the **Hom-functor** is the bifunctor

hom:
$$\mathcal{C}^{op} \times \mathcal{C} \to \mathsf{Set}$$
.

defined as hom(a,b) for any two objects $a,b \in C$. Given $f: a \to a'$ and $g: b \to b'$, this functor is defined on any $p \in hom(a,b)$ as

$$hom(f,g)(p) = f \circ p \circ g \in hom(a',b').$$

Partial applications of the functors give rise to

• hom(a, -), a covariant functor for any fixed $a \in C$. Given $g: b \to b'$,

$$hom(a, f) : hom(a, b) \rightarrow hom(a, b')$$

is defined as the postcomposition with g, that we write as $-\circ g$.

• hom(-,b), a contravariant functor for any fixed $b \in \mathcal{C}$. Given $f: a \to a'$,

$$hom(f,b): hom(a',b) \rightarrow hom(a,b)$$

is defined as the precomposition with f, that we write as $f \circ -$.

This kind of functor, contravariant on the first variable and covariant on the second is usually called a **profunctor**.

13.3 FUNCTOR CATEGORIES

Definition 55 (Functor category). Given two categories \mathcal{B}, \mathcal{C} , the **functor category** $\mathcal{B}^{\mathcal{C}}$ has all functors $\mathcal{C} \to \mathcal{B}$ as objects and natural transformations between them as morphisms.

If we consider the category of small categories Cat, there is a profunctor -: $Cat^{op} \times Cat \rightarrow Cat$ sending any two categories to their functor category.

In [LSo9], multiple examples of usual mathematical constructions in terms of functor categories can be found. Graphs, for instance, can be seen as functors; and graphs homomorphisms as the natural transformations between them.

Example 17 (Graphs as functors). We consider the category given by two objects and two non-identity morphisms,

usually called $\downarrow\downarrow$. To define a functor from this category to Set amounts to choose two sets E, V (not necessarily different) called the set of *edges* and the set of *vertices*; and two functions $s, t: E \to V$, called *source* and *target*. That is, our usual definition of directed multigraph,

$$E \xrightarrow{s} V$$

can be seen as an object in the category $\mathsf{Set}^{\downarrow\downarrow}$. Note how a natural transformation between two graphs (E,V) and (E',V') is a pair of morphisms $\alpha_E \colon E \to E'$ and $\alpha_V \colon V \to V'$ such that $s \circ \alpha_E = \alpha_V \circ s$ and $t \circ \alpha_E = \alpha_V \circ t$. This provides a convenient notion of graph homomorphism: a pair of morphisms preserving the incidence of edges. We can call Graph to this functor category.

Example 18 (Dynamical systems as functors). A set endowed with an endomorphism (S, α) can be regarded as a *dynamical system* in an informal way. Each state of the

system is represented by an element of the set and and the transition function is represented by the endomorphism. That is, if we start at an initial state $s \in S$ and the transition function is given by $\alpha \colon S \to S$, the evolution of the system will be given by

$$s$$
, $\alpha(s)$, $\alpha(\alpha(s))$, ...

and we could say that it evolves discretely over time, being $\alpha^t(s)$ the state of the system at the instant t.

This structure can be described as a functor from the monoid of natural numbers under addition. Note that any functor $D: \mathbb{N} \to \operatorname{Set}$ has to choose a set, and an image for the $1: \mathbb{N} \to \mathbb{N}$, the only generator of the monoid. The image of any natural number n is determined by the image of 1; if $D(1) = \alpha$, it follows that $D(t) = \alpha^t$, where $\alpha^0 = \operatorname{id}$.

Once the structure has been described as a functor, the homomorphisms preserving this kind of structure can be described as natural transformations. A natural transformation between two functors $D, D' \colon \mathbb{N} \to \mathsf{Set}$ describing two dynamic systems $(S, \alpha), (T, \beta)$ is given by a function $f \colon S \to T$ such that the following diagram commutes

$$\begin{array}{ccc}
S & \xrightarrow{f} & T \\
\alpha^n \downarrow & & \downarrow \beta^n \\
S & \xrightarrow{f} & T
\end{array}$$

that is, $f \circ \alpha = \beta \circ f$. A natural notion of homomorphism has arisen from the categorical interpretation of the structure.

A further generalization is now possible, if we want to consider continuously-evolving dynamical systems, we can define functors from the monoid of real numbers under adition instead of naturals, that is, considering functors $\mathbb{R} \to \mathsf{Set}$. Note that these functors are given by a set S and a family of morphisms $\{\alpha_r\}_{r\in\mathbb{R}}$ such that

$$\alpha_r \circ \alpha_s = \alpha_{r+s} \quad \forall r, s \in \mathbb{R}.$$

This example is described in [LSo₉].

13.4 COMMA CATEGORIES

The idea of functor categories leads us to think about categories whose objects are themselves diagrams on a category. The most relevant examples, which will be useful in our development of categorical logic, are the **comma categories**, and specially the particular case of a **slice category**.

Definition 56 (Comma category). Let C, D, \mathcal{E} be categories with functors $T: \mathcal{E} \to C$ and $S: \mathcal{D} \to C$. The **comma category** $(T \downarrow S)$ has

- morphisms of the form $f: Te \to Sd$ as objects, for $e \in \mathcal{E}, d \in \mathcal{D}$;
- and pairs $\langle k, h \rangle$: $f \to f'$, where k: $e \to e'$ and h: $d \to d'$ such that $f' \circ Tk = Sh \circ f$, as arrows.

Diagramatically, a morphism in this category is a commutative diagram

$$Te \xrightarrow{Tk} Te'$$

$$f \downarrow \qquad \qquad \downarrow f'$$

$$Sd \xrightarrow{Sh} Sd'$$

where the objects of the category are drawn in grey.

Definition 57 (Slice category). A **slice category** is a particular case of a comma category $(T \downarrow S)$ in which T = Id is the identity functor and S is a functor from the terminal category, a category with only one object and its identity morphism.

A functor from the terminal category simply chooses an object of the category. If we call a = S(*), objects of this category are morphisms $f : c \to a$, where $c \in C$; and morphisms are $\langle k \rangle : f \to f'$, where $k : c \to c'$ such that $f' \circ k = f$. Diagramatically a morphism is drawn as

$$c \xrightarrow{Tk} c'$$

$$f \xrightarrow{a} f'$$

This slice category is conventionally written as $(C \downarrow a)$. In general, we write $(T \downarrow a)$ when S is a functor from the terminal category picking an object a; and we write $(C \downarrow S)$ when T is the identity functor.

Definition 58 (Coslice category). **Coslice categories** are the categorical dual of slice categories. It is the particular case of a comma category $(T \downarrow S)$ in which S = Id is the identity functor and T is a functor from the terminal category, a category with only one object and its identity morphism.

If we call a = T(*), objects of this category are morphisms $f: c \to a$, where $c \in C$; and morphisms are $\langle k \rangle : f \to f'$, where $k: c \to c'$ such that $k \circ f' = f$. Diagramatically a morphism is drawn as

$$\begin{array}{c|c}
 & a \\
f' & f \\
c & Sk & c'
\end{array}$$

This slice category is conventionally written as $(a \downarrow C)$. In general, we write $(a \downarrow S)$ when T is a functor from the terminal category picking an object a; and we write $(T \downarrow C)$ when S is the identity functor.

Definition 59 (Arrow category). **Arrow categories** are a particular case of comma categories $(T \downarrow S)$ in which both functors are the identity. They are usually written as $\mathcal{C}^{\rightarrow}$.

Objects in this category are morphisms in C, and morphisms in this category are commutative squares in C. Diagramatically,

$$\begin{array}{ccc}
a & \xrightarrow{k} & b \\
f \downarrow & & \downarrow f' \\
a' & \xrightarrow{h} & b'
\end{array}$$

.