ЛЕКЦИЯ 11.2 НАХОЖДЕНИЕ НАИМЕНЬШЕГО СОБСТВЕННОГО ЧИС-ЛА. МЕТОД ВРАЩЕНИЙ ЯКОБИ РЕШЕНИЯ СИММЕТРИЧНОЙ ПОЛНОЙ ПРОБЛЕМЫ СОБСТВЕННЫХ ЗНАЧЕНИЙ

1. Нахождение наименьшего по модулю собственного числа матрицы

Используя свойства собственных чисел, после вычисления наибольшего по модулю собственного числа можно вычислить и наименьшее. Пусть матрица A знакоопределённая, λ_1 — её максимальное по модулю собственное число, λ_n — минимальное. Напомним, что матрица A называется знакоопределённой, если для всех ненулевых векторов \bar{x} скалярное произведение $(A\bar{x},\bar{x})$ сохраняет знак. Если оно положительно, то матрица A знакоположительна (или просто положительна), если отрицательно — то матрица знакоотрицательна; если неотрицательно, то A неотрицательно определена, а если неположительна, то A неположительно определена. Если $(\lambda_i; \bar{x}_i)$ — собственная пара матрицы A, то

$$\begin{cases} A\bar{x}_i = \lambda_i \bar{x}_i, \\ \lambda_1 E\bar{x}_i = \lambda_1 \bar{x}_i. \end{cases}$$

Вычтя второе равенство из первого, получаем

$$(A - \lambda_1 E)\bar{x}_i = (\lambda_i - \lambda_1)\bar{x}_i. \tag{1}$$

Соотношение (1) означает, что $\lambda_i - \lambda_1$ – собственное число матрицы $A - \lambda_1 E$. Известно, что все собственные числа знакоопределённой матрицы вещественны и имеют одинаковый знак. Поэтому величина $|\lambda_n - \lambda_1|$ является наибольшей среди всех разностей $|\lambda_i - \lambda_1|$, $i=2,\dots,n-1$. Следовательно, $\lambda_n - \lambda_1$ - наибольшее по модулю собственное число матрицы $A - \lambda_1 E$. Пусть $\mu = \lambda_n - \lambda_1$. Тогда наименьшее по модулю собственное число матрицы A будет равно

$$\lambda_n = \mu + \lambda_1$$

Итак, надо вычислить степенным методом наибольшее по модулю собственное число μ матрицы $A - \lambda_1 E$. Тогда $\mu + \lambda_1$ – наименьшее по модулю собственное число матрицы A.

Также наименьшее по модулю собственное число методом обратной матрицы. Пусть матрица A невырожденная, λ – его собственное число. По свойству 5 собственных

значений и векторов (лекция 11.1) $\frac{1}{\lambda}$ является собственным числом матрицы A^{-1} , а её собственный вектор тот же, что у матрицы A. Итак, если вычислено наибольшее по модулю собственное число β_1 матрицы A^{-1} , то число $\frac{1}{\beta_1}$ является наименьшим собственным числом матрицы A.

Пример. Для матрицы

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

методом обратной матрицы вычислим наименьшее по модулю собственное число.

Наибольшее по модулю собственное число матрицы A^{-1} вычислим степенным методом. Расчётные формулы в этом случае следующие:

$$\begin{cases} \bar{x}^{(k)} = A^{-1}\bar{x}^{(k-1)}, \\ \beta_1^{(k)} = \frac{\left(\bar{x}^{(k)}, \bar{x}^{(k-1)}\right)}{\left(\bar{x}^{(k-1)}, \bar{x}^{(k-1)}\right)}, \end{cases}$$

 $k=1,\,2,\,...$. Итерации $eta_1^{(k)}$ вычисляем до совпадения трёх знаков после запятой, получим $eta_1^{(4)}=-1,\!425.$ Тогда наименьшее по модулю собственное число матрицы A равно

$$|\lambda_3| = \frac{1}{1,425} = 0,702.$$

2. Метод вращений Якоби решения симметричной полной проблемы соб-

2.1. Матрица плоских вращений

Теперь изучим один из итерационных методов решения полной проблемы собственных значений для вещественной симметрической матрицы – метод вращений Якоби. Основная операция метода – это вращение векторного пространства. Матрица плоских вращений T^{ij} получается из единичной заменой двух единиц и двух нулей на пересечениях i-х и j-х строк и столбцов числами c, s и -s. Единицы на главной диагонали (в i-й и j-й строках) заменяются числом c, нули вне диагонали (индексы i, j и j, i) заменяются на s и -s. При этом $c^2 + s^2 = 1$, поэтому числа c и s можно интерпретировать как синус и косинус некоторого угла α . Итак, матрица T^{ij} состоит из следующих элементов:

$$(T^{ij})_{ii} = (T^{ij})_{ij} = c, (T^{ij})_{ij} = s, (T^{ij})_{ii} = -s,$$

где $c^2+s^2=1,\ i>j.$ Остальные элементы совпадают с соответствующими у единичной матрицы:

$$T^{ij} = \begin{pmatrix} 1 & \vdots & \vdots & \vdots & 0 \\ \cdots & c & \cdots & -s & \cdots \\ \cdots & \vdots & \vdots & \cdots \\ \cdots & s & \cdots & c & \cdots \\ 0 & \vdots & \vdots & \vdots & 1 \end{pmatrix}.$$

Матрица T^{ij} ортогональна при любых i, j:

$$T^{ij}T^{ij}^T = E,$$

а значит, не вырождена. Этот равенство можно проверить, перемножив матрицы T^{ij} и T^{ij}^T .

Пусть A - вещественная симметрическая матрица, для которой надо решить полную проблему собственных значений. Матрица

$$B = T^{ij}^T A T^{ij}$$

подобна матрице A и, следовательно, имеет тот же набор собственных чисел. Кроме того, она симметрична. Действительно,

$$B^{T} = (T^{ij}{}^{T}A T^{ij})^{T} = T^{ij}{}^{T}A^{T} T^{ij} = T^{ij}{}^{T}A T^{ij} = B.$$

2.2. Алгоритм метода вращений

Метод вращений предполагает построение последовательности матриц $\{B_k\}_{k=0}^\infty$, $B_0=A$, с помощью преобразований подобия вращением векторного пространства. При этом обнуляется максимальный по модулю элемент; но полученные на некотором шаге нулевые элементы на другом шаге могут стать ненулевыми. Фактически строится последовательность матриц

$$B_{0} = A,$$
 $B_{1} = T_{0}^{T} B_{0} T_{0},$
 $B_{2} = T_{1}^{T} B_{1} T_{1},$
 \vdots
 $B_{k+1} = T_{k}^{T} B_{k} T_{k},$
 \vdots

В этой последовательности матрицы T_k – матрицы вращений T^{ij} , в которых i,j – индексы максимального по модулю недиагонального элемента B_k . Каждая следующая матрица подобна предыдущей, значит, имеет те же собственные числа. Все матрицы симметричны (это было доказано выше). Нужно эту последовательность привести к диагональной матрице.

Даже если за конечное число шагов нельзя прийти к диагональной матрице, всё равно её можно получить в пределе: если

$$\lim_{k\to\infty}B_k=\Lambda,$$

где Λ – диагональная матрица, то задача решается предложенным методом. При достижении заданной точности очередную итерационную матрицу B_k считают диагональной с собственными числами матрицы A на диагонали. Надо вывести расчётную формулу (т.е. алгоритм расчёта матрицы вращений на очередном шаге) и оценку погрешности для останова итерационного процесса.

Пусть A - исходная симметричная матрица, B - матрица, получающаяся после одного итерационного шага; \tilde{A}, \tilde{B} - двумерные подматрицы этих матриц для фиксированных i,j:

$$\tilde{A} = \begin{pmatrix} a_{ii} & a_{ij} \\ a_{ij} & a_{jj} \end{pmatrix}, \tilde{B} = \begin{pmatrix} b_{ii} & b_{ij} \\ b_{ij} & b_{jj} \end{pmatrix}, \tilde{T} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix},$$

 $ilde{T}$ – подматрица матрицы вращений T^{ij} этого шага. Формула $B=T^TAT$, по которой вычисляется очередная итерация, верна и для подматриц $ilde{A}, \, ilde{B}$:

$$\tilde{B} = \tilde{T}^T \tilde{A} \tilde{T}.$$

Вычислим \tilde{B} :

$$\tilde{B} = \tilde{T}^T \tilde{A} \, \tilde{T} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \begin{pmatrix} a_{ii} & a_{ij} \\ a_{ij} & a_{jj} \end{pmatrix} \begin{pmatrix} c & -s \\ s & c \end{pmatrix} = \\ = \begin{pmatrix} c^2 a_{ii} + 2cs a_{ij} + s^2 a_{jj} & c^2 a_{ij} - cs a_{ii} + cs a_{jj} - s^2 a_{ij} \\ c^2 a_{ij} - cs a_{ii} + cs a_{jj} - s^2 a_{ij} & c^2 a_{jj} - 2cs a_{ij} + s^2 a_{ii} \end{pmatrix}.$$

Получаем симметричную матрицу. Далее приравниваем к нулю недиагональные элементы:

$$(c^2 - s^2)a_{ij} - cs(a_{ii} - a_{jj}) = 0.$$

Из последнего равенства получаем выражение, связывающее c и s:

$$\frac{cs}{c^2 - s^2} = \frac{a_{ij}}{a_{ii} - a_{jj}}. (2)$$

Теперь вспомним о тригонометрической интерпретации c и s (см. п. 2.1):

$$\begin{cases}
c = \cos \alpha, \\
s = \sin \alpha.
\end{cases}$$
(3)

Подставляем $\cos \alpha$ и $\sin \alpha$ в (2):

$$\frac{cs}{c^2 - s^2} = \frac{\cos \alpha \sin \alpha}{\cos^2 \alpha - \sin^2 \alpha} = \frac{a_{ij}}{a_{ii} - a_{jj}} \Rightarrow \frac{2 \cos \alpha \sin \alpha}{\cos^2 \alpha - \sin^2 \alpha} = \frac{2a_{ij}}{a_{ii} - a_{jj}} \Rightarrow$$

$$\Rightarrow \operatorname{tg} 2\alpha = \frac{2a_{ij}}{a_{ii} - a_{jj}},$$

где

$$\alpha \in \left(-\frac{\pi}{4}; \frac{\pi}{4}\right].$$

Получаем уравнение, из которого можно определить угол α в указанном полуинтервале.

Итак, итерационный шаг метода вращений описывается следующим образом. Пусть на k-м шаге вычислена матрица B_k . Находим её максимальный недиагональный элемент b_k^{ij} . Решаем уравнение

$$tg2\alpha = \frac{2b_k^{ij}}{b_k^{ii} - b_k^{jj}}$$

и находим угол поворота α , где

$$\alpha \in \left(-\frac{\pi}{4}; \frac{\pi}{4}\right].$$

По формулам (3) определяем c и s; составляем матрицу T_k плоских вращений так, как было описано в п. 2.1 (т.е. заменяем в единичной матрице единицы на главной диагонали (в i-й и j-й строках) числом $c = \cos \alpha$, нули вне диагонали (индексы i,j и j,i) - числами $s = \sin \alpha$ и – $s = -\sin \alpha$). Наконец, вычисляем очередную (k+1)-ю итерацию по формуле

$$B_{k+1} = T_k^T B_k T_k. (4)$$

Таким образом, на каждом шаге обнуляются максимальные по модулю недиагональные элементы, и последовательность матриц стремится к диагональной.

2.3. Сходимость и оценка погрешности

Теперь надо доказать сходимость и оценить погрешность. Все матрицы B_k симметричны. Рассмотрим матрицу VB_k недиагональных элементов матрицы B_k . Она получается

заменой в B_k диагональных элементов нулями. Нам известно, что b_k^{ij} - наибольший по модулю недиагональный элемент матриц B_k и VB_k (их два на самом деле, они симметричны относительно главной диагонали); B_{k+1} получается из B_k обнулением двух равных недиагональных элементов $b_k^{ij} = b_k^{ji}$. Недиагональные элементы вне строк и столбцов i,j совпадают.

Используем при доказательстве и оценке евклидову норму матрицы:

$$||B_k|| = \sqrt{\sum_{i,j=1}^n (b_k^{ij})^2}.$$

Надо доказать, что

$$||VB_k||^2 \xrightarrow[k\to\infty]{} 0.$$

В силу того, что элементы b_k^{ij} = b_k^{ji} — наибольшие по модулю из недиагональных, квадрат b_k^{ij} не меньше среднего квадрата недиагональных элементов, т.е. верно неравенство

 $(n^2-n$ – число недиагональных элементов). Далее, поскольку B_{k+1} получается из B_k обнулением двух равных недиагональных элементов $b_k^{ij} = b_k^{ji}$ и заменой элементов строк и столбцов i,j, квадраты норм VB_k и VB_{k+1} связаны соотношением

$$||VB_{k+1}||^2 = ||VB_k||^2 - 2(b_k^{ij})^2, (6)$$

которое можно проверить непосредственным вычислением B_{k+1}^{ls} , $l, s \notin \{i; j\}$. Из (6) выражаем квадрат b_k^{ij} и подставляем в (5):

$$\left(b_k^{ij}\right)^2 = \frac{\|VB_k\|^2 - \|VB_{k+1}\|^2}{2} \Rightarrow \|VB_k\|^2 - \|VB_{k+1}\|^2 \ge \frac{2}{n^2 - n} \|VB_k\|^2 \Rightarrow \|VB_{k+1}\|^2 \le \left(1 - \frac{2}{n^2 - n}\right) \|VB_k\|^2.$$

Получаем неравенство, связывающее квадраты норм матриц VB_{k+1} и VB_k . Применяем его последовательно к VB_k , VB_{k-1} и т.д.:

$$||VB_{k}||^{2} \le \left(1 - \frac{2}{n^{2} - n}\right) ||VB_{k-1}||^{2} \le \dots \le \left(1 - \frac{2}{n^{2} - n}\right)^{k} ||VB_{0}||^{2} =$$

$$= \left(1 - \frac{2}{n^{2} - n}\right)^{k} ||VA||^{2}.$$
(7)

Матрица $VB_0 = VA$ – матрица недиагональных элементов исходной матрицы A. Получили оценку квадрата нормы VB_k , т.е. суммы квадратов недиагональных элементов матрицы B_k . Поскольку

$$0 < 1 - \frac{2}{n^2 - n} < 1$$

при n>2, то величина в скобках в (7) положительна и меньше единицы при n>2, её положительная степень стремится к нулю, а значит, в силу оценки (7) квадрат нормы VB_k также стремится к нулю:

$$\left(1 - \frac{2}{n^2 - n}\right)^k \|VA\|^2 \underset{k \to \infty}{\longrightarrow} 0 \Rightarrow \|VB_k\|^2 \underset{k \to \infty}{\longrightarrow} 0.$$

Итак, доказано, что процесс преобразований вращения приводит к тому, что недиагональные элементы уменьшаются, стремясь в совокупности к нулю. Критерием останова итерационного процесса может служить условие

$$||VB_k||^2 \le \varepsilon$$
,

где $\epsilon > 0$ – заданная точность. Тогда полученная матрица B_k диагональная в пределах заданной точности, и на её диагонали – собственные числа исходной матрицы A.

2.4. Вычисление собственных векторов

Теперь вычислим собственные векторы. Выразим матрицу B_k через матрицы вращений и исходную матрицу A. Для этого применим расчётную формулу (4):

$$B_{k} = T_{k-1}^{T} B_{k-1} T_{k-1} = T_{k-1}^{T} T_{k-2}^{T} B_{k-2} T_{k-2} T_{k-1} = T_{k-1}^{T} T_{k-2}^{T} T_{k-3}^{T} B_{k-3} T_{k-3} T_{k-2} T_{k-1} = \cdots = T_{k-1}^{T} T_{k-2}^{T} \cdots T_{0}^{T} B_{0} T_{0} T_{1} \cdots T_{k-1} = (T_{0} T_{1} \cdots T_{k-1})^{T} A (T_{0} T_{1} \cdots T_{k-1}) = T^{T} A T,$$

где $T=T_0T_1\cdots T_{k-1}$. Последовательно подставляя $B_{k-1},\ B_{k-2}$ и т.д. по формуле (4), получим

$$B_k = T^T A T, (8)$$

T —это произведение всех матриц вращений $T_0T_1\cdots T_{k-1}$. В почти диагональной матрице B_k на главной диагонали стоят собственные числа λ_i матрицы A (на самом деле приближённые). Умножим (8) на i-й единичный координатный вектор \bar{e}_i :

$$B_k \bar{e}_i = T^T A T \bar{e}_i.$$

Произведение $B_k \bar{e}_i$ есть i-столбец матрицы B_k , т.е. $\lambda_i \bar{e}_i$ (в нём все элементы – нули, кроме i-го, равного λ_i), поэтому

$$\lambda_i \bar{e}_i = T^T A T \bar{e}_i. \tag{9}$$

Умножим (9) слева на матрицу T:

$$\lambda_i T \bar{e}_i = T T^T A T \bar{e}_i.$$

Она ортогональная как произведение ортогональных матриц вращений, поэтому $TT^T = E$. Следовательно,

$$\lambda_i T \bar{e}_i = A T \bar{e}_i$$
.

Из последнего равенства делаем вывод, что $T\bar{e}_i$ – собственный вектор матрицы A, соответствующий собственному числу λ_i . А это есть не что иное, как i-столбец матрицы T.

Итак, получается, что собственные векторы A – столбцы матрицы T, равной произведению всех матриц вращений от начального до последнего шага.

Пример. Вычислим собственные числа и векторы матрицы

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 2 \\ 2 & 2 & 1 \end{pmatrix}.$$

Шаг 1. Наибольший недиагональный элемент матрицы A есть $a_{31}=2$. Вычисляем угол поворота

$$\varphi = \frac{1}{2} \operatorname{arctg} \left(2 \frac{a_{31}}{a_{11} - a_{33}} \right) = 0,55357.$$

Строим матрицу вращений

$$T_0 = \begin{pmatrix} c & 0 & -s \\ 0 & 1 & 0 \\ s & 0 & c \end{pmatrix},$$

где $c = \cos \varphi$, $s = \sin \varphi$. Вычисляем следующую итерацию $B_1 = T_0^T A T_0$. Результат показан на рис. 1.

$$B1 \coloneqq T0^{\mathsf{T}} \bullet A \bullet T0 = \begin{bmatrix} 4.2360679775 & 1.90211303259 & 4.440892098501 \bullet 10^{-16} \\ 1.90211303259 & 3 & 1.175570504585 \\ 8.326672684689 \bullet 10^{-17} & 1.175570504585 & -0.2360679775 \end{bmatrix}$$

Рис. 1. Результат шага 1 примера на с. 8

Элементы $b_{31} = b_{13}$ - нулевые.

Шаг 2. Наибольший недиагональный элемент матрицы B_1 есть b_{21} . Вычисляем

$$\varphi = \frac{1}{2} \operatorname{arctg} \left(2 \frac{a_{21}}{a_{11} - a_{22}} \right) = 0,62832.$$

Строим матрицу

$$T_1 = \begin{pmatrix} c & -s & 0 \\ s & c & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Вычисляем $B_2 = T_1^T B_1 T_1$. Результат на рис. 2.

$$B2 \coloneqq T1^{\mathrm{T}} \cdot B1 \cdot T1 = \begin{bmatrix} 5.61803398875 & 0 & 0.690983005625 \\ 1.110223024625 \cdot 10^{-16} & 1.61803398875 & 0.951056516295 \\ 0.690983005625 & 0.951056516295 & -0.2360679775 \end{bmatrix}$$

Рис. 2. Результат шага 2 примера на с. 8

Шаг 3. Аналогично вычисляем $B_3 = T_2^T B_2 T_2$ (рис. 3).

$$B3 \coloneqq T2^{\mathsf{T}} \cdot B2 \cdot T2 = \begin{bmatrix} 5.61803398875 & 0.268501943559 & 0.636682197307 \\ 0.268501943559 & 2.019114031729 & -1.110223024625 \cdot 10^{-16} \\ 0.636682197307 & 1.387778780781 \cdot 10^{-16} & -0.637148020479 \end{bmatrix}$$

Рис. 3. Результат шага 3 примера на с. 8

Шаг 4. Аналогично вычисляем $B_4 = T_3^T B_3 T_3$ (рис. 4).

$$B4 \coloneqq T3^{\mathrm{T}} \cdot B3 \cdot T3 = \begin{bmatrix} 5.682180710283 & 0.267149466563 & -1.110223024625 \cdot 10^{-16} \\ 0.267149466563 & 2.019114031729 & -0.026915724221 \\ -2.498001805407 \cdot 10^{-16} & -0.026915724221 & -0.701294742012 \end{bmatrix}$$

Рис. 4. Результат шага 4 примера на с. 8

Шаг 5. Аналогично вычисляем $B_5 = T_4^T B_4 T_4$ (рис. 5).

$$B5 \coloneqq T4^{\mathsf{T}} \cdot B4 \cdot T4 = \begin{bmatrix} 5.701561526327 & 5.551115123126 \cdot 10^{-17} & -0.001947529135 \\ 2.775557561563 \cdot 10^{-17} & 1.999733215685 & -0.026845173507 \\ -0.001947529135 & -0.026845173507 & -0.701294742012 \end{bmatrix}$$

Рис. 5. Результат шага 5 примера на с. 8

Шаг 6. Аналогично вычисляем $B_6 = T_5^T B_5 T_5$ (рис. 6).

$$B6 \coloneqq T5^{\mathsf{T}} \cdot B5 \cdot T5 = \begin{bmatrix} 5.701561526327 & 0.000019353377 & -0.001947432971 \\ 0.000019353377 & 2.000000000101 & -3.469446951954 \cdot 10^{-18} \\ -0.001947432971 & 2.593411596585 \cdot 10^{-16} & -0.701561526428 \end{bmatrix}$$

Рис. 6. Результат шага 6 примера на с. 8

С точностью $0{,}002$ матрицу B_6 можно считать диагональной. Собственные числа – диагональные элементы $5{,}702$, $2{,}000$, $-0{,}702$.

Вычислим собственные векторы. Для этого считаем матрицу $T=T_0T_1\dots T_5$. Собственные векторы – в столбцах полученной матрицы (рис. 7).

$$T0 \cdot T1 \cdot T2 \cdot T3 \cdot T4 \cdot T5 = \begin{bmatrix} 0.60580560699 & -0.707103612407 & -0.364697200237 \\ 0.605798212867 & 0.707109949947 & -0.364697194907 \\ 0.515759722959 & 0.0000002693387 & 0.856733277144 \end{bmatrix}$$

Рис. 7. Матрица собственных векторов примера на с. 8