Réseaux sociaux : des enjeux pour les informaticiens

Octobre 2016 Colin de la Higuera

Transparent prise de notes

Ce dessin indique que le transparent résume un point particulier et peut être recopié utilement

Point de départ : un grand bouleversement

- Facebook est né en 2004. 1,6 Milliards d'utilisateurs actifs quotidiens
- Twitter est né en 2006. 500 millions de tweets par jour

Les réseaux sociaux

Les réseaux sociaux (les exemples connus)

- Facebook (200 millions d'utilisateurs (mars 09), 57 en décembre 2007), Juillet 2013 250 Milliards de dollars
- 1,6 Milliard d'utilisateurs par mois (mars 2016)(wikipedia)
- 620 millions d'utilisateurs, dont la moitié se connecte au moins une fois par jour, et passe 55 minutes (en moyenne) par jour sur le site. Il y a 1 milliard de contenus mis en ligne par jour (vidéos, statuts, photos, articles.. (Wikipedia, en 2011)
- Myspace (230 millions en 2008) En juin 2011, Rupert Murdoch cède Myspace à Specific Media pour 35 millions de dollars (soit 16 fois moins que le prix d'acquisition de 2005)

- Viadeo (45 millions d'inscrits), repli de Chine, perte de 23 millions d'euros en 2015
- LinkedIn (Mars 2016, LinkedIn a plus de 433 million de comptes, don't plus de 106 million actifs
- Twitter (500 millions en février 2012, 310 millions actifs par moisselon wikipedia)

D'autres exemples

- L'ONU
- Toute société dans laquelle on étudie les relations entre les individus ou les éléments
- Les membre de blablacars
- Les utilisateurs d'Amazon
- Les participants à un MOOC

Une idée de base

• L'effet du petit monde est l'hypothèse que la longueur de la chaîne des connaissances sociales requise pour lier une personne, arbitrairement choisie à n'importe qu'elle autre sur <u>Terre</u> est généralement courte.

Réf: wikipedia

• Le <u>concept</u> a engendré l'expression célèbre des "six degrés de séparation" après l'expérience du petit monde de 1967, réalisée par le psychologue Stanley Milgram. Il a constaté que deux citoyens aléatoirement choisis Etats-Unis sont reliés par, tout au plus, six connaissances, et en tout temps.

Sur Internet?

 Environ quatre degrés de séparation sont suffisants pour connecter n'importe quelle personne à une autre par un réseau social (par « le » réseau social)

Un autre réseau (a?)social

- Hatebook is an anti-social utility that disconnects you from the things YOU HATE.
- Everybody loves to HATE—
- The enemies of your enemies are your friends find them here»

Carte des haines...

ma-residence.fr®

Suivez la vie de votre immeuble + d'infos

Echangez avec vos voisins + d'infos

Inscrivez-vous gratuitement sur le site de votre immeuble

Indiquez l'adresse de votre immeuble

S'inscrire

Réseaux sociaux et internet

- Les réseaux sociaux sont objets d'étude des sociologues depuis longtemps
- L'effet du petit monde : on trouve toujours une chaîne courte entre deux individus
- Réseaux sociaux et internet : enjeux sociétaux et économiques colossaux

Les 12 transparents suivants :

twitter: <a>@AntonioCasilli

www: casilli.fr

1) Internet n'est pas le triomphe de la solitude

1992 Robin Dunbar

2000 Peter Killworth

2010 Matthew Salganik

229

THE AVERAGE NUMBER OF FRIENDS A PERSON HAS ON FACEBOOK

2) Internet est un monde de plus en plus « petit »

1969 : six degrés de séparation

2012 : quatre degrés de séparation

Degrees of Separation on Facebook

Transitivity

3) Internet est un monde de plus en plus « glocal »

MODÉLISATION ET SIMULATION

(1)

Un réseau social (symbolique)

Licence Certains droits réservés par neil cummings

La simulation comme outil

Si on sait générer automatiquement des graphes qui ont les propriétés voulues, on peut inférer le fonctionnement réel du système!

Le modèle mathématique

- Les graphes sont utilisés pour représenter un réseau social
- La simulation permet de vérifier la validité d'un modèle

Deux exemples de questions réseaux-graphes

- X a 3 amis qui ne se connaissent pas entre eux
- Y a 3 amis qui se connaissent entre eux
- Qui va joindre le réseau?

Théories contradictoires

 Argument de la théorie de l'information : les amis non connectés donnent un support indépendant

 Argumentaire du capital social : il y a un avantage (sécurité, confiance) à avoir des amis qui se connaissent entre eux

Le capital social gagne!

Des applications de la théorie des graphes dans l'analyse des réseaux sociaux

- Les graphes permettent d'étudier, par des propriétés de théorie des graphes, les réseaux sociaux
- Différents concepts : connexité, chemins, cliques, coupes du graphe, flux...

Pourquoi utiliser des graphes ?

- Peuvent être adaptés à de nombreuses situations
- En modélisation, des objets essentiels

Graphes et chimie

Graphes de Delaunay

40

- The <u>Treponema pallidum</u> protein interactome.[30]
- http://en.wikipedia.org/wiki/Interactome

Les graphes

- Les graphes permettent de modéliser :
 - des images
 - des molécules
 - des systèmes complexes
 - des réseaux sociaux
 - des sites web
 - ...

LES GRAPHES

Les graphes

Un graphe non orienté, (*V,E*), avec *V* un ensemble de sommets (*vertex*), et *E* un ensemble d'arêtes (*edge*).

Un graphe orienté est un G=(V,A) où V est un ensemble de sommets et A est un ensemble d'arcs.

Un problème particulier

- L'isomorphisme de graphes
- Deux graphes sont isomorphes si ce sont les mêmes graphes au dessin près
- Exemple

Isomorphes?

L'isomorphisme de graphes

- Deux graphes sont isomorphes si on peut réétiqueter les sommets de l'un pour obtenir l'autre
- Vérifier si deux graphes sont isomorphes est un problème difficile

Exemple de graphe-réseau social

- On veut représenter les interactions d'un réseau social de 5 membres qui se font confiance ou pas.
- On sait que
 - Alfred fait confiance à Bea
 - Bea fait confiance à Alfred, Charles et Didier
 - Charles fait confiance à Alfred
 - Didier fait confiance à Erwan et lui-même
 - Erwan fait confiance à Bea

Notations

- Le groupe est noté E
- Les membres sont notés a,b,c,d,e
- Donc E={a,b,c,d,e}

Fait_confiance

est une relation.

- Elle est composée de paires*
- Fait_confiance= {(a,b), (b,a),(b,c),(b,d),(c,a),(d,d),(d,e),(e,b)}
- On notera (b,c)∈Fait_confiance

- On notera aussi
- (a,b)∈Fait_confiance pour indiquer qu'Alfred a confiance en Bea
- (x,b)∈Fait_confiance pour indiquer que quelqu'un (inconnu) a confiance en Bea
- $\{x \in E : (x,b) \in Fait_confiance\}$ pour l'ensemble des gens qui ont confiance en Bea
- $\{x \in E : (a,x) \in Fait_confiance\}$ pour l'ensemble des gens en qui Alfred a confiance

On définira avantageusement fait_confiance par une table

Fait_confiance= {(a,b),(b,a),(b,c), (b,d),(c,a),(d,d), (d,e),(e,b)}

>	α	b	С	d	е
	F	V	F	F	F
	V	F	V	V	F
	V	F	F	F	F
	F	F	F	V	V
	F	V	F	F	F

La table correspond à un autre objet mathématique : la matrice

	а	b	С	d	e
a		V			
b	V		V	٧	
С	V				
d				V	V
e		V			

0	1	0	0	0
1	0	1	1	0
1	0	0	0	0
0	0	0	1	1
0	1	0	0	0

Lien entre table et graphe

	а	b	С	d	e
а		V			
b	V		V	V	
С	V				
d				V	V
e		V			

Une relation

est un ensemble de paires

- Elle peut* être représentée par une table, par une matrice ou par un graphe
- Les trois représentations sont équivalentes, mais dans chaque cas un vocabulaire adapté sera utilisé

6 Un langage pour parler des relations

- Les gens en qui on a confiance
- Les personnes qui ont le plus confiance
- Les personnes qui ont des relations de confiance réciproque

Que veut-on?

- Un langage non ambigu
- Un langage (assez) simple
- Un langage (assez) expressif
- Un langage pouvant être interprété par une machine

Soit la logique des prédicats

La logique du premier ordre

- On pourra utiliser les opérateurs
- ^ (et), ∨ (ou), ¬ (non)
- Les quantificateurs
 - Quelque soit ∀
 - Il existe ∃
- L'appartenance ∈ ∉
- L'implication ⇒

(A2) On pourra définir des ensembles par des formules du premier ordre

- $\{x \in A : \forall y \in A (x,y) \in R\}$
- $\{x \in A : \exists y \in A \ (x,y) \in R\}$
- $\{x \in A : (x,y) \in \mathbb{R} \Rightarrow (y,x) \in \mathbb{R}\}$

Notation usuelle

- L'ensemble dans lequel on choisit x
- $\bullet \ \{x \in A : P(x)\}$

La propriété sur x qui doit être vérifiée

 Si le premier quantificateur de la propriété est ∀ la propriété est universelle. Si c'est ∃ la propriété est dite existentielle.

Exemple (suite)

```
\{x \in E : (x,b) \in Fait\_confiance\}
l'ensemble des gens qui ont confiance en Bea
```

```
\{x \in E : (b,x) \in Fait\_confiance\}
l'ensemble des gens en qui Bea a confiance
```

```
\{x \in E : (x,b) \in Fait\_confiance \land (b,x) \in Fait\_confiance\}
```

l'ensemble des gens en qui Bea a confiance et qui ont confiance en Bea

Solution graphique

	а	Ь	С	d	e
а		V			
b	V		V	V	
С	V				
d				V	V
e		V			

Exemple (suite)

```
\{x \in E : \exists y \in E (x,y) \in Fait\_confiance \land (y,x) \in Fait\_confiance \}
```

L'ensemble des personnes qui ont confiance en quelqu'un qui a confiance en eux

Solution {a, b, d}

	а	b	С	d	e
а		V			
Ь	٧		V	V	
С	V				
d				V	V
e		V			

Exemple (suite)

 $\{x \in E : |\{y \in E : (y,x) \in Fait_confiance\}| \ge 2\}$

L'ensemble des personnes qui ont au moins deux personnes qui leur font confiance

Remarque : |A| est le cardinal de l'ensemble A

Solution={a,b,d}

	а	b	С	d	e
а		V			
Ь	٧		٧	V	
С	V				
d				V	V
e		V			

(A1) Exemple (suite)

```
\{x \in E : (b,x) \in Fait\_confiance \Rightarrow (c,x) \in Fait\_confiance \}
```

Les personnes en qui, si Bea a confiance, alors Charles aussi

Solution={a,b,d,e}

La logique du premier ordre

- Permet de définir des propriétés
- Repose sur le calcul booléen
- Les quantificateurs permettent de dire si la propriété s'applique à tous ou à au moins un élément

Autres exemples

- Les gens qui ont confiance en exactement deux personnes
- Un groupe le plus grand possible tel que tout le monde a confiance en tout le monde
- Les personnes en qui les gens ont le plus confiance