Zadania z gwiazdką - seria I

Termin oddania: 26 kwietnia emailem na: wczerwin@mimuw.edu.pl

1. Rozstrzygnij, czy język

$$L = \{ w \in \{a, b, c\}^* \mid w = uv \text{ oraz } \#_a(u) + \#_b(u) = \#_b(v) + \#_c(v) \}$$

jest regularny.

- **2.** Niech \mathcal{F} to najmniejsza klasa zawierająca wszystkie języki skończone nad wszystkimi skończonymi alfabetami, która jest zamknieta na:
 - skończoną sumę, dopełnienie i konkatenację;
 - skończoną sumę, dopełnienie, konkatenację i rzutowanie.

W obu przypadkach rozstrzygnij, czy klasa \mathcal{F} jest równa językom regularnym. Uwaga: Przez rzutowanie języka $L\subseteq \Sigma^*$ na pewien podalfabet $\Gamma\subseteq \Sigma$ rozumiemy zbiór słów, które powstały ze słów z języka L poprzez usunięcie wszystkich liter z $\Sigma\setminus\Gamma$.

Uwaga~2: Przez zamknięcie na dopełnienie rozumiemy fakt, że jeśli $L\subseteq \Sigma^*$ należy do \mathcal{F} , to również $\Sigma^*\setminus L$ należy do \mathcal{F} . W szczególności dla ustalonego L można stosować tę regułę dla różnych alfabetów Σ takich, że $L\subseteq \Sigma^*$.

- 3. Dla języka $L\subseteq \Sigma^*$ niech jego gęstość to funkcja $g_L:\mathbb{N}\to\mathbb{N}$ taka, że dla każdego $n\in\mathbb{N}$ wartość g(n) to liczba słów długości n należących do L. Rozstrzygnij, czy istnieje język regularny L taki, że jego gęstość g_L jest ponad wielomianowa, ale podwykładnicza, czyli dla każdych c,k>1 zachodzi $f=\Omega(n^k)$, ale $f=o(c^n)$.
- 4. Niedeterministyczny automat jednolicznikowy A nad alfabetem Σ składa się ze zbioru stanów Q, zbioru stanów początkowych $I\subseteq Q$, końcowych $F\subseteq Q$ oraz zbioru tranzycji $\delta\subseteq Q\times\Sigma\times\{-1,0,1\}\times Q$. Konfiguracja automatu A to para ze zbioru $Q\times\mathbb{N}$, czyli innymi słowy automat może przyjmować tylko nieujemne wartości licznika. Bieg automatu po słowie $w=a_1\cdots a_n$ to ciąg konfiguracji $(q_0,c_0),\ldots,(q_n,c_n)$ takich, że dla każdego $i\in\{1,\ldots,n\}$ mamy $(q_{i-1},a_i,c_i-c_{i-1},q_i)\in\delta$ oraz oczywiście $c_i\geqslant 0$. Bieg jest akceptujacy gdy $q_0\in I$, $c_0=0$ oraz $q_n\in F$. Słowo jest akceptowane jeśli istnieje bieg akceptujący po nim, a język automatu L(A) to zbiór wszystkich słów akceptowanych. Zaprojektuj algorytm, który dla danego niedeterministycznego automatu jednolicznikowego A odpowiada na pytanie, czy $L(A)=\Sigma^*$.
- 5. Pokaż, że jeśli zarówno L jak i $\Sigma^*\setminus L$ są rozpoznawane przez pewne niedeterministyczne automaty jednolicznikowe, to wtedy L jest regularny.