М 3 в е н а	+ Преобразование Лапласа L{y}(s)	Передаточная функция W(s)	Переходная функция h(t)	Весовая функция, k(t)	АЧФ+АЧХ, A(w)	ΦЧΧ, φ(ω)	ЛАЧ Φ (Л Φ Ч X), L (ω), Φ (ω)	Реакция на вход вида а * e ^{-bt}	АФЧХ
1	kx(t), Y(s) = kX(s)	k	k * 1(t)	$k * \delta(t)$	k	0	$20 \lg(k)$,0	$\frac{ak}{2}e^{-bt}$	k
2	$kx(t - \tau),$ $Y(s) = ke^{-cs}X(s)$	$k * e^{-cs}$	$k * \theta(t - c)$	$k * \delta(t - c)$	k	<i>c</i> ωτ	$20 \lg(k)$, $c\omega t$	$\begin{vmatrix} ake^{b(c-t)}\theta(c) \\ \theta(t-c) \end{vmatrix}$	$k(cos(c\omega t) - i * sin(c\omega t))$
3	$k \int_{0}^{t} x(t) dt + y0,$ $ksY(s) = X(s)$	<u>k</u> s	kt	k	$\frac{k}{\omega}$	$-\frac{\pi}{2}$	$20lg(k) - 20lg(\omega), \frac{\pi}{2}$	$\frac{ak}{b}(1-e^{-bt})$	$-i\frac{k}{\omega}$
4	$k \frac{dx}{dt},$ $Y(s) = k * s * X(s)$	k * s	<i>k</i> * δ(<i>t</i>)	k * δ'(t)	kω	$\frac{\pi}{2}$	$20 \lg(k\omega), \frac{\pi}{2}$	0	ikω
5	$T \frac{dy}{dt} + y = kx,$ $TsY(s) + Y(s) =$ $= kX(s)$	$\frac{k}{1+Ts}$	$k(1-e^{\frac{-t}{T}})$	$\frac{k^*e^{\frac{-t}{T}}}{T}$	$\frac{k}{\sqrt{1+T^2\omega^2}}$	$- \operatorname{arctg}(\omega T)$	$20lgk - 10lg(1 + T^{2}\omega^{2}),$ $- arctg(\omega T)$	$\frac{ak(e^{-bt}-e^{\frac{-t}{T}})}{1-bT}$	$\frac{k}{1+iT\omega}$
6	y = k(x(t) + + Tx'(t)), Y(s) = kX(s) + + kTsX(s)	k(Ts+1)	$k(1 + T * \delta(t))$	$k * T * \delta'(t)$	$k\sqrt{\left(1+T^2\omega^2\right)}$	$arctg(\omega T)$	$20lgk + 10lg(1 + T^{2}w^{2}),$ $arctg(\omega T)$	0	$k(1 + iT\omega)$
7	$T^{2}y''(t) + y(t) = kx(t),$ $T^{2}s^{2}Y(s) + y(s) = kX(s)$	$\frac{k}{T^2s^2+1}$	$k(1-cos(\frac{t}{T}))$	$\frac{k^* sin\left(\frac{t}{T}\right)}{T}$	$\frac{k}{\sqrt{1-T^2\omega^2}}$	$0, \omega < 0, \\ -\pi, \omega > 0$	$20lgk - 10lg(1 - T^2\omega^2)$ $0, \ \omega < 0,$ $-\pi, \omega > 0$	$\frac{ak}{b^2T^2+1} (e^{-bt} + bT * sin(\frac{t}{T}) - cos(\frac{t}{T}))$	$\frac{k}{1-T^2\omega^2}$
8	$T^{2}y''(t) + 2\sigma Ty'(t) +$ $+ y(t) = kx(t),,$ $T^{2}s^{2}Y(s) +$ $2\sigma TsY(s) +$	$\frac{k}{T^2s^2+2^*\sigma^*Ts+1}$	$k - ke^{\frac{-\sigma t}{T}}(cos(\frac{\sqrt{1-\sigma^2}}{T}t)$	$\frac{k}{T\sqrt{1-\sigma^2}}e^{\frac{-\sigma t}{T}}$	$\frac{k}{\sqrt{\left(1-T^2\omega^2\right)^2+\left(2T\sigma\omega\right)^2}}$	$- \operatorname{arct} g(\frac{2T\sigma\omega}{1-T^2\omega^2}),$ $\omega \leq \frac{1}{T}$ $- \pi - \operatorname{arct} g(\frac{2T\sigma\omega}{1-T^2\omega^2}),$	$20lg \frac{k}{\sqrt{(1-T^2\omega^2)^2+(2T\sigma\omega)^2}} - arctg(\frac{2T\sigma\omega}{1-T^2\omega^2}),$	$\frac{ake^{-bt}}{\sqrt{1-\sigma^2(b^2T^2+2\sigma bT+1)}}$ $(\sqrt{1-\sigma^2}+e^{\frac{(b-\sigma)t}{T}}$	$\frac{k}{-T^2\omega^2+2*\sigma^*Ti\omega+}$

	+Y(s) = kX(s)		$-rac{k\sigma}{\sqrt{1-\sigma^2}}sin(rac{\sqrt{1-\sigma^2}}{T}t))$	$sin(\frac{\sqrt{1-\sigma^2}}{T}t)$		$\omega > \frac{1}{T}$	1-1 ω	$(bT - \sigma)sin(\frac{\sqrt{1-\sigma^2}t}{T}) + \sqrt{1-\sigma^2}cos(\frac{\sqrt{1-\sigma^2}t}{T}))$	
9	$T^{2}y''(t) + 2\sigma Ty'(t) +$ $+ y(t) = kx(t),,$ $T^{2}s^{2}Y(s) +$ $2\sigma TsY(s) +$ $+Y(s) = kX(s)$	$\frac{k}{\left(T_1s+1\right)\left(T_2s+1\right)}$	$k + \frac{k(-T_1 e^{\frac{-t}{T_1}} + T_2 e^{\frac{-t}{T_2}})}{T_1 - T_2}$	$\frac{k(e^{\frac{-t}{T_1}} - e^{\frac{-t}{T_2}})}{T_1 - T_2}$	$\frac{k}{\sqrt{(1+T_1^2\omega^2)(1+T_1^2\omega^2)}}$		$20lg \frac{k}{\sqrt{(1+T_1^2\omega^2)(1+T_1^2\omega^2)}}$ $-(arctg(\omega T_1) - arctg(\omega T_2)$	$\frac{-\iota}{T}$ $\frac{-\iota}{T}$	$\frac{k}{(T_1 i\omega + 1)(T_2 i\omega + 1)}$