AMENDMENTS TO THE CLAIMS:

Please amend Claim 7 as follows:

1 - 6. (Cancelled)

- 7. (Currently Amended) An amphiphilic block polymer comprising:
- (a) a hydrophilic block segment having a repeating unit structure represented by the general formula (4):

$$\begin{array}{c} -(CH_{2}CH)-\\ \\ [[l]]\\ \hline O(AO)_{m}B(D)_{n}(COOR)_{p} \end{array} \tag{4}$$

$$\begin{array}{c|c}
-(CH_2CH)-\\
& \\
O(AO)_mB(D)_n(COOR)
\end{array} (4)$$

wherein:

A represents a linear alkylene group of 1 to 15 carbon atoms;

m represents 0 or 1;

B represents a single bond or an alkylene group of 1 to 20 carbon atoms;

each D represents independently an aromatic ring structure in which at least one hydrogen atom attached to the ring is displaced by a fluorine atom;

n represents an integer of 1 to 10; and

p represents 1; and

R represents an alkyl group or an aromatic ring structure, and

- (b) a hydrophobic block segment.
- 8. (Previously Presented) The amphiphilic block polymer according to claim 7, further comprising another hydrophilic block segment.

9-13. (Cancelled)

- 14. (Previously Presented) The amphiphilic block polymer according to claim 7, wherein four hydrogen atoms attached to the aromatic ring structure represented by D in the general formula (4) are each displaced by fluorine atoms.
- 15. (Previously Presented) The amphiphilic block polymer according to claim 7, wherein the hydrophobic block segment has a repeating unit structure represented by the general formula (8):

$$\begin{array}{c|c} \hline (-CH_2 - CH) \\ \hline \\ OR^1 \end{array} \tag{8}$$

wherein:

 R^1 is selected from the group consisting of a linear, branched, or cyclic alkyl groups of 1 to 18 carbon atoms, -Ph, -Pyr, -Ph-Ph, -Ph-Pyr, -(CH(R^5)-CH(R^6)-O) $_p$ -R 7 , and -(CH $_2$) $_m$ -(O) $_n$ -R 7 , and hydrogen atom(s) in the aromatic ring may be replaced by linear or

branched alkyl group(s) of 1 to 4 carbon atoms, and carbon atom(s) in the aromatic ring may be replaced by nitrogen atom(s), wherein:

```
p represents an integer of 1 to 18;
m represents an integer of 1 to 36;
```

n represents 0 or 1;

each of R⁵ and R⁶ represents independently a hydrogen atom or -CH₃; and

R⁷ is selected from the group consisting of a hydrogen atom, a linear, branched, or cyclic alkyl group of 1 to 18 carbon atoms, -Ph, -Pyr, -Ph-Ph, -Ph-Pyr, -CHO, -CH₂CHO, -CO-CH=CH₂, -CO-C(CH₃)=CH₂ and CH₂COOR₈, and when R⁷ is other than a hydrogen atom, hydrogen atom(s) attached to carbon atom(s) in R⁷ may be replaced by a linear or branched alkyl group of 1 to 4 carbon atoms, -F, -Cl, or -Br, and carbon atom(s) in the aromatic ring may be replaced by nitrogen atom(s), wherein:

R⁸ represents a hydrogen atom or an alkyl group of 1 to 5 carbon atoms;

Ph represents a phenyl group; and

Pyr represents a pyridyl group.