ای نام تو بهترین سرآغاز

وزارت علوم، تحقيقات و فنأوري

حفاظت و رله ع رله ها جرباد زیاد

مدرس: نبى اله رمضاني

ان کاربرد رله های جریان زیاد در حفاظت خطوط توزیع

ب – رله های کاهشی

TMS: Time Multiplier Setting TDS: Time Dial Setting

PS: Plug Setting

• اطلاعات مورد نیاز برای حفاظت شبکههاش شعاعی

- ١. نمایش تک خطی شبکه + سطح اتصال کوتاه
 - ۲. نمایش امپدانسی شبکه
- ۳. حداکثر و حداقل جریان اتصال کوتاه عبوری از خطوط
 - ۴. نوع اتصال کوتاه مورد بررسی
 - ۵. حداکثر جریان بار شبکه در نقاط مختلف
- ۶. جریان های بار گذرا (راه اندازی موتورها جریان هجومی ترانسفورماتورها و ...)
 - ۷. مشخصه ۲۲
 - ۸. مشخصات رله های موجود در انبار

اربرد رله های جریان زیاد در حفاظت خطوط توزیع این کاربرد راه های جریان زیاد در حفاظت خطوط توزیع

ب – رله های کاهشی

–تنظیم جریانی – زمانی (Current-Time Grading)

Δt_D	Δt_I	موارد
•/1	•/1	۱-زمان عملکرد مربوط به رله اصلی
• / • \(\Delta \)	٠/٠۵	۲– زمان تخلیه انرژی در رله پشتیبان (over shoot)
•/1	•/1	۳–زمان برای اطمینان
	\cdot / \ t_A	۴–خطای CT
$0.1 \ t_A$ + $0.1 t_B$	$0.075t_A$ + $0.075t_B$	۵-خطای مشخصه (زمانی) رله
$0.25 + 0.2t_A$	$0.25 + 0.25 t_A$	جمع کل

 $\Delta t = 0.4 \text{ Sec}$ $\Delta t = 0.3 \text{ Sec}$

ره ا محاسیات هما

- محاسبات هماهنگی رله ها از دورترین رله به منبع تغذیه شروع می شود.
- هماهنگی به ازای حداکثر جریان اتصال کوتاه سه فاز عبوری از رله پیشرو (مگر در مورد رله های دو سوی ترانسفورماتور مثلث/ستاره) انجام می پذیرد.
 - فاصله زمانی حداقل میان مشخصه رله ها رعایت شود.

ب – رله های کاهشی

مثال: تنظیمات رله های حفاظتی را در شبکه شعاعی زیر انجام دهید. رله ها استاندارد هستند.

	$I_{L SS}$ (A)	I_{LTr} (A)	$I_{LLL}(A)$	n_{CT}
A	-	-	12600	300/5
В	165	825(.5 sec)	5750	150/5
C	95	475(.5 sec)	2880	100/5
D	80	400(.5 sec)	750	-

TMS=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

ب - رله های کاهشی

مثال: تنظیمات رله های حفاظتی را در شبکه شعاعی زیر انجام دهید. رله ها استاندارد هستند.

$$\frac{5}{150} \times (80 + 95) \le I_{setBS}$$
 5.83 $\le I_{setBS}$ $I_{setBS} = 1.5 \times 5 = 7.5 A_{-1}$

$$5.83 \le I_{setBS}$$

$$I_{setBS} = 1.5 \times 5 = 7.5 A$$

$$I_{setBP} = \frac{150}{5} \times 7.5 = 225A$$

$$t_B = \frac{0.14 \, TMS_B}{\left(\frac{I}{I_{-1.7}}\right)^{0.02} - 1} > 0.5 \text{ sec}$$
 $t_B = \frac{0.14 \, TMS_B}{\left(\frac{875}{225}\right)^{0.02} - 1} > 0.5 \text{ sec}$ $TMS_B > 0.1$

۳–هماهنگی بین رله B و رله C

$$\frac{5}{300} \times (80 + 95 + 165) \le I_{setAS}$$
 \longrightarrow $5.7 \le I_{setAS}$ \longrightarrow $I_{setAS} = 1.5 \times 5 = 7.5 A$

$$I_{setAS} = 1.5 \times 5 = 7.5 A$$

$$I_{setAP} = \frac{300}{5} \times 7.5 = 450A$$

$$t_A = \frac{0.14 \, TMS_A}{\left(\frac{I}{I_{\text{out}}A}\right)^{0.02} - 1} > 0.5 \text{ sec}$$
 $t_A = \frac{0.14 \, TMS_A}{\left(\frac{1700}{450}\right)^{0.02} - 1} > 0.5 \text{ sec}$ $TMS_A > 0.1$

۳–هماهنگی بین رله B و رله C

با آرزوی سلامتی، بهروزی و موفقیت