1. Page 2, (see note0101.pdf at https://github.com/SorensenD/SLGDS) for more details on the subject)

CHANGE: "This requires equating the expected proportion of genotypes shared identical by descent, given a pedigree, with the observed phenotypic correlation between relatives."

TO: "This requires equating the expected proportion of the genome shared identical by descent, given a pedigree, with the observed phenotypic correlation between relatives."

2. Page 258, eqn. (6.1), CHANGE second line to (brackets missing):

$$E_{y_0x} [MSE (f (x))] = E_{y_0x} [(y_0 - f (x))^2]$$

$$= E_x [E_{y_0|x} [(y_0 - f (x))^2 | x]]$$

$$= E_x [Var (y_0|x) + (E (y_0|x) - f (x))^2], \qquad (6.1)$$

- 3. Page 259, below eqn. (6.7), CHANGE: "that is in the best linear approximation ..." TO: "that is the best linear approximation ..."
- 4. Page 270, eqn. (6.31),

CHANGE: the left hand side of the first line:

$$\operatorname{Var}\left(y_0 - \widehat{y}_0 | x_0\right)$$

TO:

$$\operatorname{Var}\left[\left(y_{0}-\widehat{y}_{0}\right)|x_{0}\right]$$

(brackets missing)

5. Page 277, CHANGE:

$$E_{y_v y} (MSE_v) = Var (y_{v,i}|x_i) + bias^2 + \frac{1}{N} Var (\hat{f}(x_i)|x_i)$$

and

$$E_{y_v y} (MSE_t) = E_{y_v y} (MSE_v) - \frac{2}{N} \sum_{i} Cov \left(y_i, \hat{f}(x_i)\right)$$

TO:

$$E_{y_v y} (MSE_v) = Var (y_{v,i}|x_i) + bias^2 + \frac{1}{N} Var (\hat{f}(x_i)|x_i)$$

and when covariates in training and validating data take the same values,

$$E_{y_v y} \left(MSE_t \right) = E_{y_v y} \left(MSE_v \right) - \frac{2}{N} \sum_i Cov \left(y_i, \hat{f} \left(x_i \right) \right)$$

6. Page 286, below eqn. (6.66),

CHANGE: "and from (6.65)"

TO: "and from (6.65) when covariates in training and validating data take the same values,"

(see note0603.pdf for elaborations on the subject).

7. Top of page 393, eqn. (9.30),

CHANGE:

An unbiased estimator of incidence (given n, sen, spe and bounded between 0 and 1) is

$$\frac{\Pr(\widehat{Y} = 1) - (1 - spe)}{sen + spe - 1} = \frac{T - n(1 - spe)}{n(sen + spe - 1)}.$$
 (9.30)

TO: An unbiased estimator of prevalence (given n, sen, spe and bounded between 0 and 1) is

$$\frac{\widehat{\Pr}\left(\widehat{Y}=1\right) - (1 - spe)}{sen + spe - 1} = \frac{T - n\left(1 - spe\right)}{n(sen + spe - 1)}.$$
(9.30)

(change "incidence" for "prevalence" and "hat" missing on the biased estimator of prevalence; see note0901.pdf for further details).

8. Page 675,

CHANGE: "Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex **trits**: from polygenic to omnigenic. Cell 169:1177–1186"

TO: "Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–1186"