Experiments with Recommending Financial News

RecSysNL meetup

19 November 2019

Anca Dumitrache

@anca_dmtrch

Team:

Feng

Anca

David

Bahadir

Dung

Maya

Li'ao

Philippe

Kimberly

Klaus

Oberon

Manon

Azamat

Domain: Het Financieele Dagblad (FD) is a daily Dutch newspaper focused on business & financial news

hetfinancieeledagblad

Goal: Personalized article recommendations for FD readers

Requirements: Recommended articles have to be recently published (cold start problem)

Context: Google DNI project on news personalization

Working with implicit feedback

Metadata:

Authors
Publication date
Length
Section

Enrichments:

Tags
Word embeddings
Sentiment
Hapax legomena

Metadata:

Authors
Publication date
Length
Section

Enrichments:

Tags
Word embeddings
Sentiment
Hapax legomena

Aggregated reading behavior:

Most read tags
Most read authors
Average read article length
Average read article word embeddings

Metadata:

Tags followed

Train data: clicks from the past

Predict data: clicks from tomorrow

. . .

Train data

...

Train data

RecSysNL meetup 19 November 2019

Features

Article features

encoded: authors, tags

embedded: average & var of word embeddings (FastText)

length-based: number of words, paragraphs, average word length

stylometry: sentiment, hapax

legomena

time: publication timestamp

Features

Article features	User features	User-article features
encoded: authors, tags	encoded: tags followed	set overlap: article & top user tags, article & top user authors
<pre>embedded: average word embeddings (FastText)</pre>	aggregated reading behavior: avg. article word embeddings avg. article length features	
length-based: number of words, paragraphs, average word length		cosine similarity: article & user avg. word embeddings
stylometry: sentiment, hapax legomena		numeric comparison: difference between article & user avg. length, article & user avg. hapax legomena
time: publication timestamp		

RecSysNL meetup 19 November 2019

...

Anca Dumitrache @anca_dmtrch

Research Questions

- 1. What **model**?
- 2. What data?
- 3. What **features**?

Experimental Setup

Data: offline interactions from January 2019 (1-27 Jan train; 28-29 Jan val)

Evaluation metrics: user nDCG (ranking) & MAP (ranking + classification)

1. What model?

Models:

- Gradient Boosted Decision Trees (GBDT)
- GBDT + Logistic Regression

Practical Lessons from Predicting Clicks on Ads at Facebook. He et al. 2014.

Training methods:

- **fit:** train new model every day
- partial fit: re-train previous day's model with today's data, without adding new trees
- partial fit grow: re-train previous day's model with today's data, with new trees

What is GBDT?

- Machine learning model that iteratively constructs an ensemble of weak decision tree learners through gradient boosting.
- At each iteration, a subsample of the training data is drawn at random (without replacement), to fit the model on.

The model captures interactions amongst predictors.

Why GBDT?

- Deals with a heterogeneous mix of continuous, discrete, categorical features
- Feature normalization is not required
- Feature selection is inherently performed during the learning process
- Can easily capture non-linear, non-additive relations

2. What data?

Data recency: How many days in the past should we look?

Data volume: Do we need to train on all the interactions?

Article features	User features	User-article features
encoded: authors, tags	metadata: tags followed	set overlap: article & top user tags, article & top user authors
<pre>embedded: average word embeddings (FastText)</pre>	aggregated reading behavior: avg. word embeddings avg. length features	
length-based: number of words, paragraphs, average word length		cosine similarity: article & user avg. word embeddings
stylometry: sentiment, hapax legomena		numeric comparison: article & user avg. length, article & user
time: publication date		avg. hapax legomena

19 November 2019

hetfinancieeledagblad

GBDT+LR models perform similarly, and not as well as GBDT partial fit grow.

The LR layer is difficult to tune, because the GBDT output is not interpretable.

> Anca Dumitrache @anca dmtrch

2. How many days in the past should we train on?

hetfinancieeledagblad

More data is not always better, because data recency is important.

Relation between number of days & performance is not linear.

3 & 7 days in train is best.

RecSysNL meetup 19 November 2019 Anca Dumitrache @anca_dmtrch

2. Do we need all interactions?

Training on 50% of the user interactions results in average 0.01 decrease in performance.

Anca Dumitrache @anca_dmtrch

3. What features?

→ batch removing of low performing features takes out full chunks from the decision tree.

User-article features are the most important, particularly: user-article author overlap user-article tag overlap

Experiment Conclusions

Simpler model (GBDT) is sometimes better + easier to understand.

Less data (days, user interactions) does not mean worse performance.

Combined user-article features are the most meaningful, but all features contribute a little.

RecSysNL meetup 19 November 2019 Anca Dumitrache @anca_dmtrch

RecSysNL meetup 19 November 2019 Anca Dumitrache @anca_dmtrch

Prediction data

Predictions

How it looks on FD.nl

articles from the past 7 days

Future work

Online testing - currently ongoing

Measuring usefulness (dynamicness, serendipity, diversity) aspects of recommendations & seeing how readers respond to them

Closing the loop: tweaking the model based on how the recommendations are presented to readers

Conclusions

Simpler model (GBDT) is sometimes better + easier to understand.

Less data (days, user interactions) does not mean worse performance.

Combined user-article features are the most meaningful, but all features contribute a little.