

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE COMPUTAÇÃO

COMP0405 - ESTRUTURA DE DADOS

GRUPO A

Willian Mota Oliveira - 201800017520

Yohan Alexander Dantas de França - 201800017208

Relatório do Projeto Árvores Costuradas

São Cristóvão - SE

Fevereiro de 2020

SUMÁRIO

- 1. Introdução
- 2. **Descrição**
- 3. Aplicação
- 4. Referências bibliográficas
- 5. Implementação em C

1. INTRODUÇÃO

Uma árvore binária de busca é uma estrutura de dados de árvore binária baseada em nós, onde todos os nós da subárvore esquerda possuem um valor numérico inferior ao nó raiz e todos os nós da subárvore direita possuem um valor superior ao nó raiz, já a árvore binária com costura, é uma estrutura de dados derivada da árvore de busca binária, em que os ponteiros nulos são aproveitados para armazenar o endereço do predecessor ou sucessor em in-ordem.

Tipos de árvores binárias encadeadas:

- Encadeamento único: cada nó é encadeado em direção ao predecessor ou sucessor em ordem (esquerda ou direita) significa que todos os ponteiros nulos corretos apontarão para o sucessor da ordem de entrada OU todos os ponteiros nulos esquerdos apontarão para o predecessor da ordem de entrada.
- Encadeamento duplo: cada nó é encadeado para o predecessor em ordem e o sucessor (esquerda e direita) significa que todos os ponteiros nulos corretos apontarão para o sucessor da ordem de entrada E todos os ponteiros nulos esquerdos apontarão para o predecessor da ordem de entrada.

Single Threaded Binary Tree

Double Threaded Binary Tree

2. DESCRIÇÃO

Uma árvore de classificação binária inteira pode ser facilmente percorrida na ordem da chave principal, mas dado apenas um ponteiro para um nó, encontrar o nó que vem a seguir pode ser lento ou impossível. Por exemplo, os nós folha, por definição, não têm descendentes; portanto, nenhum outro nó pode ser alcançado com apenas um ponteiro para um nó folha - é claro que inclui o nó "próximo" desejado. Uma árvore costurada adiciona informações extras em alguns ou em todos os nós, para que o nó "próximo" possa ser encontrado rapidamente. Também pode ser percorrida sem recursão e com o armazenamento extra (proporcional à profundidade da árvore) necessário.

3. APLICAÇÃO

O objetivo da árvore binária é estruturar os dados de forma a permitir o algoritmo de busca binária, e por que precisamos de árvore binária costurada? As árvores binárias têm muito espaço desperdiçado: os nós das folhas têm 2 ponteiros nulos. Podemos usar esses ponteiros para nos ajudar no percorrimento em ordem. A árvore binária costurada torna o percorrimento da árvore mais rápido, pois não precisamos de pilha ou recursão para a travessia.

4.	REFERÊNCIAS BIBLIOGRÁFICAS
•	https://pt.wikipedia.org/wiki/%C3%81rvore_bin%C3%A1ria_com_costura