1

Assignment 21

KUSUMA PRIYA EE20MTECH11007

Download codes from

https://github.com/KUSUMAPRIYAPULAVARTY/assignment21

1 QUESTION

Construct a linear operator T with minimal polynomial $x^2(x-1)^2$ and characteristic polynomial $x^3(x-1)^4$. Describe the primary decomposition of the vector space under T and find the projections on the primary components. Find a basis in which the matrix T is in Jordan form. Also find an explicit direct sum decomposition of the space into T cyclic subspaces as in theorem 3 and give the invariant factors.

2 Solution

Statement	Solution		
	Jordan Form		
Given	Linear operator		
	$T: \mathbf{V} \to \mathbf{V}$	(2.0.1)	
	Characteristic polynomial $f(x) = x^3(x-1)^4$	(2.0.2)	
	Minimal polynomial $p(x) = x^2(x-1)^2$	(2.0.3)	
The jordan block corresponding to eigen value 0	$\mathbf{J}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	(2.0.4)	
One of the possible jordan blocks corresponding to eigen value 1	$\mathbf{J}_2 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	(2.0.5)	
	$\mathbf{J} = \begin{pmatrix} \mathbf{J}_1 & 0 \\ 0 & \mathbf{J}_2 \end{pmatrix}$	(2.0.6)	
The jordan form of transformation matrix T	$= \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	(2.0.7)	
Primary Decomposition, Finding the basis			

	If $p(x) = p_1(x)^{r_1} p_2(x)^{r_2}$,	(2.0.8)
According to primary decomposition theorem	$\mathbf{V} = \mathbf{V}_1 + \mathbf{V}_2$	(2.0.9)
	$\mathbf{V}_i = \text{Null space of}(p_i(\mathbf{T}))_i^r$	(2.0.10)
	$p_1(x)^{r_1} = x^2$	(2.0.11)
	$p_2(x)^{r_2} = (x-1)^2$	(2.0.12)
Null space of \mathbf{J}^2	$\mathbf{J}^2 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$	(2.0.13)
	Nullity of $J^2 = 3$	(2.0.14)
	From (2.0.13),the basis for the nullspace is	
	$\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$	(2.0.15)
	$\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	(2.0.16)
Nullspace of $(\mathbf{J} - \mathbf{I})^2$	$ (\mathbf{J} - \mathbf{I})^2 = \begin{pmatrix} 1 & -2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$	(2.0.17)
	From (2.0.17), the basis for the nullspace is	,
	$\{\mathbf{v}_4, \mathbf{v}_5, \mathbf{v}_6, \mathbf{v}_7\}$	(2.0.19)
	$\mathbf{v}_{4} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_{5} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_{6} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v}_{7} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$	(2.0.20)

	T is similar to block diagonal jordan matrix J	in the basis
$\mathbf{T} = \mathbf{J} \tag{2.0.21}$	$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5, \mathbf{v}_6, \mathbf{v}_7\}$	(2.0.22)
	which is the standard ordered basis.	
	Finding the projections	
	1) for $i \in [1, 2]$	
	$\mathbf{E}_{i}(\mathbf{v}) = \begin{cases} \mathbf{v} & \text{for } \mathbf{v} \in \mathbf{V}_{i} \\ 0 & \text{for } \mathbf{v} \notin \mathbf{V}_{i} \end{cases}$	(2.0.23)
The projection matrices	2)	
$\mathbf{E}_1, \mathbf{E}_2$ are such that	$(\mathbf{E}_i)^2 = \mathbf{E}_i$	(2.0.24)
	3)	
	$\mathbf{E}_1 + \mathbf{E}_2 = \mathbf{I}$	(2.0.25)
The projection matrices are	$\mathbf{E}_1 = \begin{pmatrix} \mathbf{I}_3 & 0 \\ 0 & 0 \end{pmatrix}$	(2.0.26)
	$= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$	(2.0.27)
	$\mathbf{E}_2 = \begin{pmatrix} 0 & 0 \\ 0 & \mathbf{I}_4 \end{pmatrix}$	(2.0.28)
	$= \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$	(2.0.29)
	Cyclic Decomposition	
Cyclic decomposition theorem(Theorem 3)	Let T be a linear operator on a finite-dimensional vector \mathbf{W}_0 be a proper T -admissible subspace of \mathbf{V} . There exists $\alpha_1, \alpha_2, \ldots, \alpha_r$ in \mathbf{V} with respective T -annihilators p_1, p_2, \ldots 1)	non zero vectors
	$\mathbf{V} = \mathbf{W}_0 \oplus \mathbf{Z}(\alpha_1; T) \oplus \mathbf{Z}(\alpha_2; T) \oplus$	(2.0.30)
	$\ldots \oplus \mathbf{Z}(lpha_r;T)$	(2.0.31)
	2) p_k divides $p_{k-1}, k = 2, \dots, r$	

	degree of $p_i = k$	(2.0.32)
The T-cyclic subspace	\implies basis of $\mathbf{Z}(\alpha_i; T) =$	(2.0.33)
$\mathbf{Z}(\alpha_i; T)$ is defined as	$\left\{lpha_i, \mathbf{T}lpha_i, \dots, \mathbf{T}^{k-1}lpha_i ight\}$	(2.0.34)
Finding the cyclic subspaces	Let us choose	
	$\mathbf{W}_0 = 0$	(2.0.35)
		(2.0.36)
		(=====)
24 12 42 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	(2.0.38)
$p_1 = x^2(x-1)^2 (2.0.37)$	$\mathbf{T}^2(\mathbf{T} - \mathbf{I})^2 = 0_{7 \times 7}$	(2.0.39)
	$\implies p_1(\mathbf{T})(\alpha_1) = 0$	(2.0.40)
	$\dim(\mathbf{Z}(\alpha_1;T))=4$	(2.0.41)
	Now to chose α_2 we need to chose a vector such that	
$p_2 = x(x-1)^2 (2.0.42)$		
$p_2 - x(x - 1)$ (2.0.42)		
	$\alpha_2 \notin \mathbf{Z}(\alpha_1; T), p_2(\mathbf{T})\alpha_2 = 0$	(2.0.43)
	$p_2 = x(x-1)^2$	(2.0.44)
	$\frac{p_1}{p_2} = x \implies p_2 \text{ divides } p_1$	(2.0.45)
	$p_2 \qquad \qquad p_2(\mathbf{T}) = \mathbf{T}(\mathbf{T} - \mathbf{I})^2 =$	(2.0.46)
	$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	(2.0.47)
	One such vector that satisfies (2.0.43) is	

	$\alpha_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	(2.0.48)	
	$\dim(\mathbf{Z}(\alpha_2;T))=3$	(2.0.49)	
	$\dim \mathbf{Z}(\alpha_1; T) + \dim \mathbf{Z}(\alpha_2; T) = 7$	(2.0.50)	
	$\implies \mathbf{V} = \mathbf{Z}(\alpha_1; T) \oplus \mathbf{Z}(\alpha_2; T)$	(2.0.51)	
is the cyclic decomposition. Invariant Factors			
invariant factors			
Invariant factors are	$p_1 = x^2(x-1)^2$ $p_2 = x(x-1)^2$	(2.0.52)	
	$p_2 = x(x-1)^2$	(2.0.53)	

Table1:Solution