

ON A FAMILY OF LAGRANGIAN SUBMANIFOLDS IN BIDISKS AND LAGRANGIAN HOFER METRIC

YUSUKE MASATANI

ABSTRACT. We construct a family of uncountably many Lagrangian submanifolds in the standard bidisks such that the Lagrangian Hofer diameter associated to each Lagrangian submanifold is unbounded. We also prove a certain inequality of the Lagrangian Hofer metric which is of the same type as S. Seyfaddini's for the case of the real form of the complex n -ball.

1. INTRODUCTION

For a symplectic manifold (M, ω) , we denote by $\text{Ham}_c(M, \omega)$ the group of all compactly supported Hamiltonian diffeomorphisms on (M, ω) . For a Lagrangian submanifold L of (M, ω) , $\mathcal{L}(L)$ denotes the set of Lagrangian submanifolds which are Hamiltonian isotopic to L . The *Lagrangian Hofer pseudo-metric* d on $\mathcal{L}(L)$ is defined by using the *Hofer norm* $\|\cdot\|$, which is introduced in [Ho90], as follows.

$$d(L_0, L_1) := \inf \{ \|\phi\| \mid \phi(L_0) = L_1, \phi \in \text{Ham}_c(M, \omega) \}.$$

The Hofer norm $\|\phi\|$ is defined by

$$\|\phi\| := \inf \int_0^1 \left(\max_{p \in M} H(t, p) - \min_{p \in M} H(t, p) \right) dt,$$

where the infimum runs over all compactly supported Hamiltonians $H \in C_c^\infty([0, 1] \times M)$ having time-one map ϕ_H^1 equal to ϕ .

Chekanov showed in [Ch00] that this pseudo-metric d is non-degenerate for any closed and connected Lagrangian submanifolds in tame symplectic manifolds. Although our Lagrangian submanifolds are not closed, the same proof as Chekanov's yields that d is also non-degenerate for our cases below.

In [Kh09], Khanevsky proved unboundedness of this metric when the ambient space M is an open unit disk $B^2 := \{z \in \mathbb{C} \mid |z| < 1\} \subset \mathbb{C}$ and the Lagrangian submanifold L is the real form $Re(B^2) := \{z \in B^2 \mid \text{Im } z = 0\}$ of the open unit disk. Seyfaddini generalized Khanevsky's unboundedness result to the case of higher dimensional open unit ball B^{2n} in [Se14].

In this paper, by adopting Seyfaddini's technique, we prove unboundedness of metric spaces $\mathcal{L}(L)$ for a certain continuous family of non-compact Lagrangian submanifolds in bi-disks, which are mutually non-Hamiltonian isotopic.

1.1. Main Result. Let $B^2(r) \subset \mathbb{C}$ be the open disk of radius $r > 0$ equipped with a symplectic structure $2\omega_0$, where ω_0 is the standard symplectic structure on \mathbb{C} so that $\text{vol}(D(r)) = 2\pi r^2$. We denote by B^2 the open unit disk $B^2(1)$. We put $(B^2 \times B^2, \bar{\omega}_0) := (B^2(1) \times B^2(1), 2\omega_0 \oplus 2\omega_0)$ and define Lagrangian submanifolds L_δ by

$$L_\delta := T_\delta \times \text{Re}(B^2) \subset B^2 \times B^2$$

for each $1/2 < \delta \leq 1$. Here

$$T_\delta := \{|z_1|^2 = 1/(2\delta)\} \subset B^2$$

and $\text{Re}(B^2)$ is the real form of B^2 .

We study the Lagrangian Hofer metric spaces $(\mathcal{L}(L_\delta), d)$ in this paper. We obtain the following:

Theorem 1.1. *For any $1/2 < \delta \leq 1$, $(\mathcal{L}(L_\delta), d)$ has an infinite diameter.*

In addition to unboundedness, we prove the following inequality for a subfamily of $\{L_\delta\}$.

Theorem 1.2. *For any $(2 + \sqrt{3})/4 < \delta \leq 1$, there exists a map $\Phi_\delta : C_c^\infty((0, 1)) \rightarrow \mathcal{L}(L_\delta)$ such that*

$$\frac{\|f - g\|_\infty - D_\delta}{C_\delta} \leq d(\Phi_\delta(f), \Phi_\delta(g)) \leq \|f - g\|,$$

where C_δ and D_δ denote positive constants.

In this statement, $C_c^\infty((0, 1))$ denotes the space of compactly supported smooth functions on an open interval $(0, 1)$ and the two norms on $C_c^\infty((0, 1))$ is defined by

$$\|f\|_\infty := \max_{x \in (0, 1)} |f(x)|,$$

and

$$\|f\| := \max_{x \in (0, 1)} f(x) - \min_{x \in (0, 1)} f(x).$$

These norms are equivalent. We note that $\|f\|_\infty = \|f\|$ for any non-negative functions $f \geq 0$.

Remark 1.1. (1) In [Se14], Seyfaddini proved the same type inequality as in Theorem 1.2 for the case of the real form $\text{Re}(B^{2n})$. To prove the inequality, he used a family of quasi-morphisms on $\text{Ham}_c(B^{2n})$ which were constructed as pullbacks of the *single* Calabi quasi-morphism on $\text{Ham}_c(\mathbb{C}P^n)$ in [EP03] via the same family of conformally symplectic embeddings in [BEP04].
(2) On the other hand, to prove Theorem 1.2, we use pullbacks of the *family* of Calabi quasi-morphisms on $\text{Ham}_c(S^2 \times S^2)$ constructed by Fukaya-Oh-Ohta-Ono in [FOOO11b].
(3) As for the condition on δ in Theorem 1.2, see Remark 4.1.

1.2. Acknowledgement. I am deeply grateful to my supervisor, Professor Hiroshi Ohta, for his support and valuable advice.

2. CALABI QUASI-MORPHISMS ON $\text{Ham}_c(B^2 \times B^2, \bar{\omega}_0)$

In [BEP04], Biran-Entov-Polterovich used a family of conformally symplectic embeddings to obtain a continuum of linearly independent Calabi quasi-morphisms on $\text{Ham}_c(B^n, \omega_0)$ as their pullbacks of a quasi-morphism on $\text{Ham}(\mathbb{C}P^n, \omega_{FS})$. In [Se14], Seyfaddini used the same family of conformally symplectic embeddings and constructed a family of quasi-morphisms on $\text{Ham}_c(B^{2n})$ to prove unboundedness of $\mathcal{L}(Re(B^{2n}), d)$.

In this section, we also construct quasi-morphisms on $\text{Ham}_c(B^2 \times B^2)$ associated with Fukaya-Oh-Ohta-Ono's symplectic quasi-morphisms $\mu_{e_\tau}^{\mathfrak{b}(\tau)}$ as in [Se14].

2.1. Calabi quasi-morphisms and symplectic quasi-states. Entov and Polterovich developed a way to construct *Calabi quasi-morphisms* and *symplectic quasi-states* for some closed symplectic manifold (M, ω) in a series of papers [EP03, EP06, EP09]. In this section, we briefly recall several terminologies and a generalization of their construction.

A *quasi-morphism* on a group G is a function $\mu : G \rightarrow \mathbb{R}$ which satisfies the following property: there exists a constant $D \geq 0$ such that

$$|\mu(g_1g_2) - \mu(g_1) - \mu(g_2)| \leq D \text{ for all } g_1, g_2 \in G.$$

The smallest number of such D is called the *defect* of μ and we denote by D_μ . A quasi-morphism μ is called *homogeneous* if $\mu(g^m) = m\mu(g)$ for all $m \in \mathbb{Z}$.

For any proper open subset $U \subset M$, the subgroup $\text{Ham}_U(M, \omega)$ is defined as the set which consists of all elements $\phi \in \text{Ham}(M, \omega)$ generated by a time-dependent Hamiltonian $H_t \in C^\infty(M)$ supported in U . We denote by $\widetilde{\text{Ham}}_U(M, \omega)$ the universal covering space of $\text{Ham}_U(M, \omega)$. The Calabi morphism $\widetilde{\text{Cal}}_U : \widetilde{\text{Ham}}_U(M^{2n}, \omega) \rightarrow \mathbb{R}$ is defined by

$$\widetilde{\text{Cal}}_U(\tilde{\phi}_H) := \int_0^1 dt \int_M H_t \omega^n,$$

where $\phi_H^1 \in \text{Ham}_U(M, \omega)$ and $\tilde{\phi}_H$ is the homotopy class of the Hamiltonian path $\{\phi_H^t\}_{t \in [0,1]}$ with fixed endpoints. If ω is exact on U , $\widetilde{\text{Cal}}_U$ descends to $\text{Cal}_U : \text{Ham}_U(M, \omega) \rightarrow \mathbb{R}$.

A subset $X \subset M$ is called *displaceable* if there exists a $\phi \in \text{Ham}(M, \omega)$ such that $\phi(X) \cap \overline{X} = \emptyset$.

Definition 2.1 ([EP03]). A function $\mu : \widetilde{\text{Ham}}(M, \omega) \rightarrow \mathbb{R}$ is called a homogeneous Calabi quasi-morphism if μ is homogeneous quasi-morphism and satisfies

- (Calabi property) If $\tilde{\phi} \in \widetilde{\text{Ham}}_U(M, \omega)$ and U is a displaceable open subset of M , then

$$(2.1) \quad \mu(\tilde{\phi}) = \widetilde{\text{Cal}}_U(\tilde{\phi}),$$

where we regard $\tilde{\phi}$ as an element in $\widetilde{\text{Ham}}(M, \omega)$.

For each non-zero element of quantum (co)homology $a \in QH(M)$, the *spectral invariant* $\rho(\cdot; a) : C^\infty([0, 1] \times M) \rightarrow \mathbb{R}$ is defined in terms of Hamiltonian Floer theory (see [Oh97], [Sc00], [Vi92] for the earlier constructions and [Oh05] for the general non-exact case).

In [FOOO11b], Fukaya-Oh-Ohta-Ono deformed spectral invariants and obtained $\rho^b(\cdot; a)$ by using an even degree cocycle $b \in H^{even}(M, \Lambda_0)$, where a is an element of *bulk-deformed quantum cohomology* $QH_b(M, \Lambda)$ (see also [Us11] for a similar deformation of spectral invariants). Here coefficient ring Λ_0 , which is called *universal Novikov ring*, and its quotient field Λ are defined by

$$\begin{aligned} \Lambda_0 &:= \left\{ \sum_{i=0}^{\infty} a_i T^{\lambda_i} \mid a_i \in \mathbb{C}, \lambda_i \in \mathbb{R}_{\geq 0}, \lim_{i \rightarrow \infty} \lambda_i = +\infty \right\}, \\ \Lambda &:= \left\{ \sum_{i=0}^{\infty} a_i T^{\lambda_i} \mid a_i \in \mathbb{C}, \lambda_i \in \mathbb{R}, \lim_{i \rightarrow \infty} \lambda_i = +\infty \right\} \cong \Lambda_0[T^{-1}]. \end{aligned}$$

Every element $\tilde{\phi} \in \widetilde{\text{Ham}}(M, \omega)$ is generated by some time-dependent Hamiltonian H which is *normalized* in the sense $\int_M H_t \omega^n = 0$ for any $t \in [0, 1]$. The spectral invariant $\rho^b(\cdot; a)$ has the homotopy invariance property: if F, G are normalized Hamiltonians and $\tilde{\phi}_F = \tilde{\phi}_G$, then $\rho^b(F; a) = \rho^b(G; a)$ (see Theorem 7.7 in [FOOO11b]). Hence, the spectral invariant descends to $\rho^b(\cdot; a) : \widetilde{\text{Ham}}(M, \omega) \rightarrow \mathbb{R}$ as follows:

$$\rho^b(\tilde{\phi}_H; a) := \rho^b(\underline{H}; a) \quad \text{for any } H \in C^\infty([0, 1] \times M),$$

where we denote by \underline{H} the normalization of H :

$$\underline{H}_t := H_t - \frac{1}{\text{vol}(M)} \int_{M^{2n}} H_t \omega^n, \quad \text{vol}(M) := \int_{M^{2n}} \omega^n.$$

By using this (bulk-deformed) spectral invariant $\rho^b(\cdot; a)$, as in a series of papers [EP03, EP06, EP09], they constructed a function $\mu_e^b : \widetilde{\text{Ham}}(M, \omega) \rightarrow \mathbb{R}$ by

$$\mu_e^b(\tilde{\phi}) := \text{vol}(M) \lim_{m \rightarrow +\infty} \frac{\rho^b(\tilde{\phi}^m; e)}{m},$$

where $e \in QH_b(M, \Lambda)$ is an idempotent.

The following theorem is the generalization of Theorem 3.1 in [EP03].

Theorem 2.1 (Theorem 16.3 in [FOOO11b]). . Suppose that there exists a ring isomorphism

$$QH_b(M, \Lambda) \cong \Lambda \times Q$$

and $e \in QH_b(M, \Lambda)$ is the idempotent corresponding to the unit of the first factor of the right hand side. Then the function

$$\mu_e^b : \widetilde{\text{Ham}}(M, \omega) \rightarrow \mathbb{R}$$

is a homogeneous Calabi quasi-morphism.

From standard properties of spectral invariants (Theorem 7.8 in [FOOO11b]), μ_e^b has two additional properties (Theorem 14.1 in [FOOO11b]):

- (1) (Lipschitz continuity) There exists a constant $C \geq 0$ such that for any $\tilde{\psi}, \tilde{\phi} \in \widetilde{\text{Ham}}(M, \omega)$,

$$|\mu_e^b(\tilde{\psi}) - \mu_e^b(\tilde{\phi})| \leq C\|\tilde{\psi}\tilde{\phi}^{-1}\|.$$

- (2) (Symplectic invariance) For all $\psi \in \text{Symp}_0(M, \omega)$,

$$\mu_e^b(\tilde{\phi}) = \mu_e^b(\psi \circ \tilde{\phi} \circ \psi^{-1}).$$

Here $C \leq \text{vol}(M)$ is easily proved as in Proposition 3.5 of [EP03].

On the other hand, *symplectic quasi-states* are also constructed by using (bulk deformed) spectral invariants. Let $C^0(M)$ be the set of continuous functions on M .

Definition 2.2 (Section 3 in [EP06]). A functional $\zeta : C^0(M) \rightarrow \mathbb{R}$ is called symplectic quasi-state if ζ satisfies the following:

- (1) (Normalization) $\zeta(1) = 1$.
- (2) (Monotonicity) $\zeta(F_1) \leq \zeta(F_2)$ for any $F_1 \leq F_2$.
- (3) (Homogeneity) $\zeta(\lambda F) = \lambda \zeta(F)$ for any $\lambda \in \mathbb{R}$.
- (4) (Strong quasi-additivity) If smooth functions F and G are Poisson commutative: $\{F, G\} = 0$, then $\zeta(F + G) = \zeta(F) + \zeta(G)$.
- (5) (Vanishing) If $\text{supp } F$ is displaceable, then $\zeta(F) = 0$.
- (6) (Symplectic invariance) $\zeta(F) = \zeta(F \circ \psi)$ for any $\psi \in \text{Symp}_0(M, \omega)$.

By using the bulk deformed spectral invariant $\rho^b(\cdot; e)$, a functional $\zeta_e^b : C^\infty(M) \rightarrow \mathbb{R}$ is defined by

$$\zeta_e^b(H) := - \lim_{m \rightarrow +\infty} \frac{\rho^b(mH; e)}{m}.$$

This functional ζ_e^b extends to a functional on $C^0(M)$ as follows. We recall the relation between ζ_e^b and μ_e^b (see Section 14 [FOOO11b]). For any $H \in C^\infty([0, 1] \times M)$, by the *shift property* of spectral invariant, we have

$$(2.2) \quad \rho^b(\tilde{\phi}_H; e) = \rho^b(H; e) + \frac{1}{\text{vol}(M)} \text{Cal}_M(H),$$

where $\text{Cal}_M(H)$ is defined by

$$\text{Cal}_M(H) := \int_0^1 dt \int_{M^{2n}} H_t \omega^n.$$

Since $(\tilde{\phi}_H)^m = \tilde{\phi}_{mH}$ for any autonomous Hamiltonian H , the following relation is obtained from (2.2)

$$\zeta_e^b(H) = \frac{1}{\text{vol}(M)} \left(-\mu_e^b(\tilde{\phi}_H^1) + \text{Cal}_M(H) \right).$$

By the Lipschitz continuity of μ_e^b , we can extend ζ_e^b to a functional on $C^0(M)$. From the same argument in Section 6 in [EP06], this functional

$\zeta_e^{\mathfrak{b}} : C^0(M) \rightarrow \mathbb{R}$ becomes a symplectic quasi-state if one takes an idempotent e from a field factor of $QH_{\mathfrak{b}}(M, \Lambda)$ as in Theorem 2.1.

In this paper, we define *superheavy subsets* as follows.

Definition 2.3. Let ζ be a symplectic quasi-state on (M, ω) . A closed subset $X \subset M$ is called ζ -superheavy if for all $H \in C^0(M)$

$$\min_X H \leq \zeta(H) \leq \max_X H.$$

It is immediately proved that any ζ -superheavy subsets must intersect each other and non-displaceable (see [EP09] for details).

2.2. Brief review of FOOO's results. In [FOOO12], Fukaya-Oh-Ohta-Ono computed the full *potential function*, which is a “generating function of open-closed Gromov-Witten invariant”, of some Lagrangian tori in $S^2 \times S^2$ and they proved superheaviness of these tori in [FOOO11b]. In this section, we briefly describe the construction of their superheavy tori.

Let $F_2(0)$ be a symplectic toric orbifold whose moment polytope P is given by

$$P := \{(u_1, u_2) \in \mathbb{R}^2 \mid 0 \leq u_1 \leq 2, 0 \leq u_2 \leq 1 - \frac{1}{2}u_1\}.$$

We denote by $\pi : F_2(0) \rightarrow P$ the moment map, and denote by $L(u)$ a Lagrangian torus fiber over an interior point $u \in \text{Int}(P)$. Then $F_2(0)$ has one singular point which corresponds to the point $(0, 1)$ in P . They constructed a symplectic manifold $\hat{F}_2(0)$ which is symplectomorphic to $(S^2 \times S^2, \frac{1}{2}\omega_{std} \oplus \frac{1}{2}\omega_{std})$, by replacing a neighborhood of the singularity with a cotangent disk bundle of S^2 (for details, see Section 4 [FOOO12]). Under the smoothing, Lagrangian torus fiber $L(u)$ is sent to a Lagrangian torus in $S^2 \times S^2$. In particular, we denote by T_τ ($0 < \tau \leq \frac{1}{2}$) this torus corresponding to $L((\tau, 1-\tau)) \subset F_2(0)$.

For these Lagrangian tori $T_\tau \subset S^2 \times S^2$, they obtained the following.

Theorem 2.2 (Fukaya-Oh-Ohta-Ono [FOOO11b]). *For any $0 < \tau \leq 1/2$, there exist an element $\mathfrak{b}(\tau) \in H^{even}(M, \Lambda_0)$ and idempotents e_τ and e_τ^0 , each of which is an idempotent of a field factor of $QH_{\mathfrak{b}(\tau)}(S^2 \times S^2; \Lambda)$ such that*

- (1) T_τ is $\mu_{e_\tau}^{\mathfrak{b}(\tau)}$ -superheavy and $T_{\frac{1}{2}}$ is $\mu_{e_\tau^0}^{\mathfrak{b}(\tau)}$ -superheavy.
- (2) $S_{eq}^1 \times S_{eq}^1$ is $\mu_e^{\mathfrak{b}(\tau)}$ -superheavy for any idempotent e of a field factor of $QH_{\mathfrak{b}(\tau)}(S^2 \times S^2; \Lambda)$. In particular,

$$\psi(T_\tau) \cap (S_{eq}^1 \times S_{eq}^1) \neq \emptyset$$

for any symplectic diffeomorphism ψ on $S^2 \times S^2$.

Here $\mu_{e_\tau}^{\mathfrak{b}(\tau)}$ and $\mu_{e_\tau^0}^{\mathfrak{b}(\tau)}$ denote homogeneous Calabi quasi-morphisms associated to the idempotents $e_\tau, e_\tau^0 \in QH_{\mathfrak{b}(\tau)}(S^2 \times S^2; \Lambda)$ respectively (see Theorem 2.1).

Remark 2.1. (1) In [FOOO11b], (1) is Theorem 23.4 (2), and (2) is Theorem 1.13.

- (2) The notion of μ_e^b -superheavy is defined in Definition 18.5 of [FOOO11b] and they remark as Remark 18.6 that μ_e^b -superheavyness implies ζ_e^b -superheavyness. In this paper, we need only to use ζ_e^b -superheavyness.
- (3) The quasi-morphisms $\mu_{e_\tau}^{b(\tau)}$ and $\mu_{e_\tau^0}^{b(\tau)}$ descend to homogeneous Calabi quasi-morphisms on $\text{Ham}(S^2 \times S^2)$ as in [EP03].

Hereafter, we use only above homogeneous Calabi quasi-morphisms

$$\mu_{e_\tau}^{b(\tau)} : \text{Ham}(S^2 \times S^2) \rightarrow \mathbb{R}$$

with $0 < \tau < 1/2$ and denote them by μ^τ .

2.3. Pullback of the quasi-morphism μ^τ . To obtain quasi-morphisms on $\text{Ham}_c(B^2 \times B^2, \bar{\omega}_0)$, we define a conformally symplectic embedding $\Theta_\delta : B^2 \times B^2 \hookrightarrow S^2 \times S^2$ for each Lagrangian submanifold $L_\delta \subset B^2 \times B^2$.

For each $1/2 < \delta \leq 1$, we define a conformally symplectic embedding $\theta_\delta : (B^2, 2\omega_0) \hookrightarrow (S^2, \frac{1}{2}\omega_{std}) \cong (\mathbb{C}P^1, \omega_{FS})$ by

$$\theta_\delta(z) := [\sqrt{1 - \delta|z|^2} : \sqrt{\delta}z],$$

where we identify the projective space with a unit sphere by using a stereographic projection with respect to $(1, 0, 0) \in S^2 \subset \mathbb{R}^3$ after regarding the plane $\{v = (v_1, v_2, v_3) \in \mathbb{R}^3 \mid v_1 = 0\}$ as the complex plane \mathbb{C} . We note that $\theta_\delta^*(\frac{1}{2}\omega_{std}) = \delta\omega_0$ and the image of θ_δ is $\{v \in S^2 \mid v_1 < 2\delta - 1\}$. Moreover, by the map θ_δ , the circle $T_\delta \subset B^2$ is mapped onto the equator $S_0^1 := \{v \in S^2 \mid v_1 = 0\}$ and the real form $\text{Re}(B^2)$ is mapped into the equator $S_{eq}^1 := \{v \in \mathbb{R}^3 \mid v_3 = 0\} \subset S^2$.

Using this conformally symplectic embedding, we define $\Theta_\delta : B^2 \times B^2 \hookrightarrow S^2 \times S^2$ by

$$(2.3) \quad \Theta_\delta := \theta_\delta \times \theta_\delta : (B^2 \times B^2, \bar{\omega}_0) \hookrightarrow (S^2 \times S^2, \bar{\omega}_{std})$$

where $\bar{\omega}_{std}$ denotes the symplectic structure $\frac{1}{2}\omega_{std} \oplus \frac{1}{2}\omega_{std}$ on $S^2 \times S^2$. This is a conformally symplectic embedding for each $1/2 < \delta \leq 1$. Indeed, it is obvious

$$\Theta_\delta^* \bar{\omega}_{std} = \delta \bar{\omega}_0.$$

For a time-dependent Hamiltonian F on $B^2 \times B^2$, we define a Hamiltonian $F \circ \Theta_\delta^{-1}$ on $S^2 \times S^2$ by

$$F \circ \Theta_\delta^{-1}(x) := \begin{cases} F(t, \Theta_\delta^{-1}(x)) & (x \in \text{Im}(\Theta_\delta)) \\ 0 & (x \notin \text{Im}(\Theta_\delta)). \end{cases}$$

Since Θ_δ is a conformally symplectic embedding, we obtain

$$\phi_{\delta F \circ \Theta_\delta^{-1}}^1 = \Theta_\delta \phi_F^1 \Theta_\delta^{-1}.$$

Thus, $\Theta_\delta \phi \Theta_\delta^{-1}$ is a Hamiltonian diffeomorphism on $S^2 \times S^2$ for any $\phi \in \text{Ham}_c(B^2 \times B^2, \bar{\omega}_0)$.

We define a family of quasi-morphisms $\mu_\delta^\tau : \text{Ham}_c(B^2 \times B^2, \bar{\omega}_0) \rightarrow \mathbb{R}$ by

$$(2.4) \quad \mu_\delta^\tau(\phi) := \frac{\delta^{-1}}{\text{vol}(S^2 \times S^2)} (-\mu^\tau(\Theta_\delta \phi \Theta_\delta^{-1}) + \text{Cal}_{\Theta_\delta(B^2 \times B^2)}(\Theta_\delta \phi \Theta_\delta^{-1})),$$

where μ^τ are Fukaya-Oh-Ohta-Ono's quasi-morphisms in Section 2.2 and $\text{Cal}_{\Theta_\delta(B^2 \times B^2)}$ is the Calabi morphism on $\text{Ham}_{\Theta_\delta(B^2 \times B^2)}(S^2 \times S^2, \bar{\omega}_{std})$ in Section 2.1. The symplectic structure $\bar{\omega}_{std}$ is exact on $\Theta_\delta(B^2 \times B^2)$, hence the right hand side of (2.4) does not depend on the choice of the Hamiltonian generating ϕ . Moreover, by the definition, it turns out that μ_δ^τ are quasi-morphisms.

To obtain another expression of μ_δ^τ , we define $\zeta^\tau : C^\infty([0, 1] \times S^2 \times S^2) \rightarrow \mathbb{R}$ as the following :

$$\zeta^\tau(H) := - \lim_{n \rightarrow \infty} \frac{\rho^{b(\tau)}(H^{\#n}; e_\tau)}{n},$$

where we denote by $H_1 \# H_2$ the concatenation of two Hamiltonian H_1 and H_2 :

$$H_1 \# H_2(t, x) := \begin{cases} \chi'(t) H_1(\chi(t), x) & 0 \leq t \leq 1/2 \\ \chi'(t - 1/2) H_2(\chi(t), x) & 1/2 \leq t \leq 1 \end{cases}$$

for a smooth function $\chi : [0, 1/2] \rightarrow [0, 1]$ with $\chi' \geq 0$ and $\chi \equiv 0$ near $t = 0$, $\chi \equiv 1$ near $t = 1/2$. Note that this definition is independent of the function χ since the spectral invariant $\rho^{b(\tau)}$ has homotopy invariance property.

By the definition and (2.2), one can check that

$$(2.5) \quad \zeta^\tau(H) = \frac{1}{\text{vol}(S^2 \times S^2)} (-\mu^\tau(\phi_H^1) + \text{Cal}_{S^2 \times S^2}(H))$$

for any time-dependent Hamiltonian H and the restriction of ζ^τ to autonomous Hamiltonians corresponds to the bulk-deformed quasi-state $\zeta_{e_\tau}^{b(\tau)}$ which is associated to $\mu^\tau = \mu_{e_\tau}^{b(\tau)}$.

Therefore, by (2.4) and (2.5), we obtain the following expression of μ_δ^τ .

Lemma 2.1.

$$\mu_\delta^\tau(\phi_F^1) = \delta^{-1} \zeta^\tau(\delta F \circ \Theta_\delta^{-1}).$$

3. PROPERTIES OF QUASI-MORPHISMS μ_δ^τ ON $\text{Ham}_c(B^2 \times B^2, \bar{\omega}_0)$

In this section, we prove some properties of the quasi-morphisms μ_δ^τ by following procedures in [Se14]. Since Proposition 3.1 and Proposition 3.2 are proved by using only standard properties of Calabi quasi-morphisms, two proofs are the same as in [Se14]. However the proof of Proposition 3.3 depends on some properties of Lagrangian submanifolds and ambient spaces, thus we need to modify the proof slightly for our Lagrangian submanifolds $L_\delta \subset B^2 \times B^2$.

Proposition 3.1. *For any $0 < \tau < 1/2$ and $1/2 < \delta \leq 1$, we have*

- (1) $|\mu_\delta^\tau(\phi)| \leq C_\delta \|\phi\|$, where C_δ is a positive constant.

(2) If a time-dependent Hamiltonian H_t on $B^2 \times B^2$ is supported in a displaceable subset for any time $t \in [0, 1]$ then we have

$$\mu_\delta^\tau(\phi_H^1) = 0.$$

Proof. Let ϕ_F^1 be an element in $\text{Ham}_c(B^2 \times B^2, \bar{\omega}_0)$. Since the quasi-morphisms μ^τ have Lipschitz continuity property with respect to the Hofer norm on $\text{Ham}(S^2 \times S^2, \bar{\omega}_{std})$ and $\Theta_\delta \phi_F^1 \Theta_\delta^{-1} = \phi_{\delta F \circ \Theta_\delta}^1$, we obtain

$$|\mu^\tau(\Theta_\delta \phi_F^1 \Theta_\delta^{-1})| \leq \text{vol}(S^2 \times S^2) \|\phi_{\delta F \circ \Theta_\delta}^1\|.$$

By the definition of the Hofer norm, it turns out that

$$\|\phi_{\delta F \circ \Theta_\delta}^1\| \leq \delta \|\phi_F^1\|.$$

Hence, we have

$$|\mu^\tau(\Theta_\delta \phi_F^1 \Theta_\delta^{-1})| \leq \delta \text{vol}(S^2 \times S^2) \|\phi_F^1\|.$$

On the other hand, an easily calculation shows that

$$\text{Cal}_{\Theta_\delta(B^2 \times B^2)}(\Theta_\delta \phi_F^1 \Theta_\delta^{-1}) = \delta^3 \int_0^1 dt \int_{B^2 \times B^2} F(t, x) \bar{\omega}_0^2.$$

As a result, we can obtain the following:

$$|\text{Cal}_{\Theta_\delta(B^2 \times B^2)}(\Theta_\delta \phi_F^1 \Theta_\delta^{-1})| \leq \delta^3 \text{vol}(B^2 \times B^2) \|\phi_F^1\|.$$

Consequently, it turns out that

$$\begin{aligned} |\mu_\delta^\tau(\phi)| &\leq \frac{\delta^{-1}}{\text{vol}(S^2 \times S^2)} \left(|\mu^\tau(\Theta_\delta \phi \Theta_\delta^{-1})| + |\text{Cal}_{\Theta_\delta(B^2 \times B^2)}(\Theta_\delta \phi \Theta_\delta^{-1})| \right) \\ &\leq (1 + \delta^2) \|\phi\|. \end{aligned}$$

Thus (1) is proved.

The property (2) follows immediately from Calabi-property of μ^τ . Indeed, two terms in the definition of μ_δ^τ are canceled each other. \square

Let $X \subset S^2 \times S^2$ be a $\zeta_{e_\tau}^{b(\tau)}$ -superheavy subset. By definition, we have

$$\min_X H \leq \zeta_{e_\tau}^{b(\tau)}(H) \leq \max_X H$$

for all autonomous Hamiltonians H on $S^2 \times S^2$. One can obtain the same inequality for $\zeta^\tau : C^\infty([0, 1] \times S^2 \times S^2) \rightarrow \mathbb{R}$ if a closed subset $X \subset S^2 \times S^2$ is $\zeta_{e_\tau}^{b(\tau)}$ -superheavy. More precisely, for all time-dependent Hamiltonians H on $S^2 \times S^2$, we have

$$(3.1) \quad \min_{[0,1] \times X} H \leq \zeta^\tau(H) \leq \max_{[0,1] \times X} H.$$

This is easily proved as mentioned in [Se14] without the detail. Indeed, we can take two autonomous Hamiltonians H_{\min}, H_{\max} for any time-dependent Hamiltonian H such that $H_{\min} \equiv \min_{[0,1] \times X} H$, $H_{\max} \equiv \max_{[0,1] \times X} H$ on

X and $H_{\min} \leq H \leq H_{\max}$ on $S^2 \times S^2$. By applying the anti¹-monotonicity property of $\rho^{b(\tau)}$ (i.e. $H \leq K \Rightarrow \rho^{b(\tau)}(H; e_\tau) \geq \rho^{b(\tau)}(K; e_\tau)$, see Theorem 9.1 in [FOOO11b]) and the fact $H \leq K$ implies $H^{\#n} \leq K^{\#n}$ to above Hamiltonians H_{\min}, H, H_{\max} , we can obtain (3.1) immediately.

From Lemma 2.1 and this inequality (3.1), we obtain the following.

Proposition 3.2. *Suppose a closed subset $X \subset S^2 \times S^2$ is $\zeta_{e_\tau}^{b(\tau)}$ -superheavy and F is any compactly supported time-dependent Hamiltonian on the bi-disks $B^2 \times B^2$ such that $F \circ \Theta_\delta^{-1}|_X \equiv c$, then*

$$\mu_\delta^\tau(\phi_F^1) = c.$$

Proposition 3.3 is the most important to obtain unboundedness of $(\mathcal{L}(L_\delta), d)$. In [Kh09], Khanevsky proved the similar property and obtained the unboundedness for the case where the ambient space is two-dimensional open ball. In [Se14], by a different proof, Seyfaddini also obtained the similar property for $(\mathcal{L}(Re(B^{2n})), d)$.

Proposition 3.3. *If two Hamiltonian diffeomorphisms $\phi, \psi \in \text{Ham}_c(B^2 \times B^2, \bar{\omega}_0)$ satisfy*

$$\phi(L_\delta) = \psi(L_\delta),$$

then we have

$$|\mu_\delta^\tau(\phi) - \mu_\delta^\tau(\psi)| \leq \frac{D_{\mu^\tau}}{\delta \text{vol}(S^2 \times S^2)} \text{ for all } \frac{1}{2} < \delta \leq 1, 0 < \tau < \frac{1}{2},$$

where D_{μ^τ} denotes the defect of μ^τ .

We prove this proposition by slightly modifying Seyfaddini's proof.

Proof. Throughout the proof, we fix δ, τ with $1/2 < \delta \leq 1, 0 < \tau < 1/2$, respectively. From the definition of μ_δ^τ and its homogeneity we obtain that

$$\begin{aligned} & |\mu_\delta^\tau(\phi^{-1}\psi) + \mu_\delta^\tau(\phi) - \mu_\delta^\tau(\psi)| \\ &= |\mu_\delta^\tau(\phi^{-1}\psi) - \mu_\delta^\tau(\phi^{-1}) - \mu_\delta^\tau(\psi)| \\ &= \frac{1}{\delta \text{vol}(S^2 \times S^2)} |\mu^\tau(\Theta_\delta \phi^{-1}\psi \Theta_\delta^{-1}) - \mu^\tau(\Theta_\delta \phi^{-1}\Theta_\delta^{-1}) - \mu^\tau(\Theta_\delta \psi \Theta_\delta^{-1})| \\ &\leq \frac{D_{\mu^\tau}}{\delta \text{vol}(S^2 \times S^2)}. \end{aligned}$$

Consequently, it is sufficient to prove the proposition that $\mu_\delta^\tau(\phi)$ vanishes for Hamiltonian diffeomorphisms ϕ satisfying $\phi(L_\delta) = L_\delta$.

Now we take any Hamiltonian $F \in C_c^\infty([0, 1] \times (B^2 \times B^2))$ and assume the Hamiltonian diffeomorphism ϕ_F^1 preserves the Lagrangian submanifold L_δ .

For $0 < s \leq 1$, we define a diffeomorphism $a_s : B^2 \times B^2(s) \rightarrow B^2 \times B^2$ by

$$a_s(z_1, z_2) := (z_1, \frac{z_2}{s}).$$

¹Fukaya-Oh-Ohta-Ono used different sign conventions from [EP03, EP06, EP09] (see Remark 4.17 in [FOOO11b]).

Using this map, we define a compactly supported symplectic diffeomorphism ψ_s for each $0 < s \leq 1$:

$$\psi_s := \begin{cases} a_s^{-1} \phi_F^1 a_s & |z_2| \leq s \\ id & |z_2| \geq s \end{cases}.$$

As compactly supported cohomology group $H_c^1(B^2 \times B^2; \mathbb{R}) = 0$ and $\bar{\omega}_0$ is exact on $B^2 \times B^2$, any isotopy of compactly supported Symplectic diffeomorphisms on $(B^2 \times B^2, \bar{\omega}_0)$ is a compactly supported Hamiltonian isotopy. Thus, for each $0 < s \leq 1$, we can take a time-dependent Hamiltonian $F^s \in C_c^\infty([0, 1] \times B^2 \times B^2)$ such that $\psi_s = \phi_{F^s}^1$.

This Hamiltonian diffeomorphisms ψ_s have the following properties:

- (1) $\psi_1 = \phi_{F^1}^1 = \phi_F^1$,
- (2) ψ_s preserves L_δ for each $0 < s \leq 1$,
- (3) There exists a compact subset K_s in B^2 such that F^s is supported in $K_s \times B^2(s) \subset B^2 \times B^2$ for each $0 < s \leq 1$.

Hereafter we fix sufficiently small $\epsilon > 0$ such that $K_\epsilon \times B^2(\epsilon)$ is displaceable inside the bi-disks $B^2 \times B^2$. By Proposition 3.1 (2), it follows that

$$(3.2) \quad \mu_\delta^\tau(\psi_\epsilon) = 0.$$

We take a time-dependent Hamiltonian $H \in C_c^\infty([0, 1] \times B^2 \times B^2)$ so that $\phi_H^t := \psi_\epsilon^{-1} \psi_{t(1-\epsilon)+\epsilon}$ for $0 \leq t \leq 1$. In particular, we have the time-one map $\phi_H^1 = \psi_\epsilon^{-1} \phi_F^1$ by the above property (1).

We note that Hamiltonian vector field X_{H_t} is tangent to the Lagrangian submanifold L_δ since ϕ_H^t preserves L_δ . Consequently, for each $t \in [0, 1]$, $H_t = H(t, \cdot)$ is constant on L_δ . Because of this and non-compactness of L_δ , the restriction of H_t to L_δ is 0 for all $t \in [0, 1]$. Since $L_\delta = T_\delta \times Re(B^2)$ is mapped into $S_0^1 \times S_{eq}^1$ by Θ_δ , hence $H \circ \Theta_\delta^{-1}$ vanishes on a torus $S_0^1 \times S_{eq}^1$. On the other hand $S_0^1 \times S_{eq}^1$ is $\zeta_{e_\tau}^{b(\tau)}$ -superheavy by Fukaya-Oh-Ohta-Ono's result (Theorem 2.2), therefore we have

$$(3.3) \quad \mu_\delta^\tau(\phi_H^1) = 0.$$

Here we used Proposition 3.2.

As a consequence of these two equalities (3.2), (3.3) and quasi-additivity of μ_δ^τ , it follows that

$$|\mu_\delta^\tau(\phi_F^1)| = |\mu_\delta^\tau(\phi_F^1) - \mu_\delta^\tau(\psi_\epsilon) - \mu_\delta^\tau(\phi_H^1)| \leq \frac{D_{\mu^\tau}}{\delta \text{vol}(S^2 \times S^2)}.$$

Because $(\phi_F^1)^n$ preserves L_δ for any $n \in \mathbb{N}$, we can apply the same argument to $(\phi_F^1)^n$ and obtain $|\mu_\delta^\tau((\phi_F^1)^n)| \leq \delta^{-1} \text{vol}(S^2 \times S^2)^{-1} D_{\mu^\tau}$. Since μ_δ^τ is a homogeneous quasi-morphism, we have

$$\mu_\delta^\tau(\phi_F^1) = 0.$$

□

By applying Proposition 3.1 (1) and Proposition 3.3, we obtain the following.

Proposition 3.4. *For any $\phi \in \text{Ham}_c(B^2 \times B^2, \bar{\omega}_0)$ and any $\frac{1}{2} < \delta \leq 1$, $0 < \tau < \frac{1}{2}$, the following inequality holds.*

$$\frac{\mu_\delta^\tau(\phi) - \delta^{-1} \text{vol}(S^2 \times S^2)^{-1} D_{\mu^\tau}}{C_\delta} \leq d(L_\delta, \phi(L_\delta)),$$

where D_{μ^τ} is as above.

Proof. We take any $\psi \in \text{Ham}_c(B^2 \times B^2, \bar{\omega}_0)$ satisfying $\phi(L_\delta) = \psi(L_\delta)$. From Proposition 3.3, we obtain the following inequality.

$$|\mu_\delta^\tau(\phi) - \mu_\delta^\tau(\psi)| \leq \frac{D_{\mu^\tau}}{\delta \text{vol}(S^2 \times S^2)}.$$

By using Proposition 3.1 (1), we have

$$|\mu_\delta^\tau(\phi)| - \frac{D_{\mu^\tau}}{\delta \text{vol}(S^2 \times S^2)} \leq |\mu_\delta^\tau(\psi)| \leq C_\delta \|\psi\|.$$

Therefore, by definition of the metric d , we obtain the following inequality:

$$|\mu_\delta^\tau(\phi)| - \frac{D_{\mu^\tau}}{\delta \text{vol}(S^2 \times S^2)} \leq C_\delta \cdot d(L_\delta, \psi(L_\delta)).$$

□

4. CONSTRUCTION OF $\Phi_\delta : C_c^\infty((0, 1)) \rightarrow \mathcal{L}(L_\delta)$

4.1. Locations of FOOO's superheavy tori. To construct a mapping $\Phi_\delta : C_c^\infty((0, 1)) \rightarrow \mathcal{L}(L_\delta)$ in Theorem 1.2, we describe the locations of Fukaya-Oh-Ohta-Ono's Lagrangian superheavy tori by following Oakley-Usher's result. Let us recall their description. In [OU13], they constructed a symplectic toric orbifold \mathcal{O} which is isomorphic to $F_2(0)$ as symplectic toric orbifolds by gluing $S^2 \times S^2 \setminus \bar{\Delta}$ to $B^4/\{\pm 1\}$. Here $\bar{\Delta}$ denotes anti-diagonal of $S^2 \times S^2$ and B^4 is a four dimensional open ball. The moment map $\pi : \mathcal{O} \rightarrow \mathbb{R}^2$, which has the same moment polytope P of $F_2(0)$ in Section 2.2, is expressed on $S^2 \times S^2 \setminus \bar{\Delta}$ by

$$\pi(v, w) = \left(\frac{1}{2}|v + w| + \frac{1}{2}(v + w) \cdot e_1, 1 - \frac{1}{2}|v + w| \right) \in \mathbb{R}^2$$

for $(v, w) \in S^2 \times S^2 \setminus \bar{\Delta}$ and $e_1 := (1, 0, 0)$. Therefore one can consider a torus fiber $L(u) \subset F_2(0)$ as $\pi^{-1}(u) \subset S^2 \times S^2 \setminus \bar{\Delta}$ for any interior point u in the moment polytope.

By replacing $B^4/\{\pm 1\}$ by the unit disk cotangent bundle $D_1^* S^2$, they obtained a smoothing $\Pi : \hat{\mathcal{O}} \rightarrow \mathcal{O}$ which maps the zero-section of $D_1^* S^2$ to the singularity of \mathcal{O} and whose restriction to $S^2 \times S^2 \setminus \bar{\Delta}$ is the identity mapping. Moreover they gave an explicit symplectic morphism $\hat{\mathcal{O}} \xrightarrow{\sim} S^2 \times S^2$ which is the identity mapping on $S^2 \times S^2 \setminus \bar{\Delta}$. Hence above tori $\pi^{-1}(u)$ are invariant under the smoothing and the symplectic morphism $\hat{\mathcal{O}} \xrightarrow{\sim} S^2 \times S^2$.

Using this construction, Oakley-Usher proved that the Entov-Polterovich's exotic monotone torus in [EP09] is Hamiltonian isotopic to the Fukaya-Oh-Ohta-Ono's torus over $(1/2, 1/2)$ (for details, see the proof of Proposition 2.1 [OU13]).

Proposition 4.1 (Oakley-Usher [OU13]). *Fukaya-Oh-Ohta-Ono's superheavy Lagrangian tori T_τ can be expressed as*

$$T_\tau = \left\{ (v, w) \in S^2 \times S^2 \mid \frac{1}{2}|v + w| + \frac{1}{2}(v + w) \cdot e_1 = \tau, \ 1 - \frac{1}{2}|v + w| = 1 - \tau \right\},$$

where the parameter τ is in $(0, 1/2]$. In particular, the Lagrangian torus $T_{1/2}$ is Entov-Polterovich's exotic monotone torus.

The following corollary is proved by an easily calculation.

Corollary 4.1. *The image of i -th projection $\text{pr}_i : S^2 \times S^2 \rightarrow S^2$ ($i = 1, 2$) is*

$$(4.1) \quad \text{pr}_i(T_\tau) = \left\{ v \in S^2 \mid |v \cdot e_i| \leq \sqrt{1 - \tau^2} \right\},$$

where τ is $0 < \tau \leq 1/2$.

By this corollary and the definition of the conformally symplectic embedding $\Theta_\delta : B^2 \times B^2 \hookrightarrow S^2 \times S^2$. We have the following.

Corollary 4.2. *For any $(2 + \sqrt{3})/4 < \delta \leq 1$ there exists a sufficiently small $\varepsilon_\delta > 0$ such that*

$$\bigcup_{\tau \in I_\delta} T_\tau \subset \Theta_\delta(B^2 \times B^2), \quad I_\delta := [1/2 - \varepsilon_\delta, 1/2].$$

Remark 4.1. The condition $(2 + \sqrt{3})/4 < \delta \leq 1$ in Theorem 1.2 guarantees that the image of Θ_δ contains a continuous subfamily of superheavy tori $T_\tau \subset S^2 \times S^2$ as in Corollary 4.2. However, for any $1/2 < \delta \leq 1$, it is likely that there exist $\phi_\delta \in \text{Ham}(S^2 \times S^2)$ such that the image of Θ_δ contains $\cup_{\tau \in I'_\delta} \phi_\delta(T_\tau)$ for some open interval $I'_\delta \subset (0, 1/2]$. In this case, we can show Theorem 1.2 under the weaker assumption $1/2 < \delta \leq 1$.

4.2. Construction of Φ_δ . We fix δ with $(2 + \sqrt{3})/4 < \delta \leq 1$ and consider the interval $I_\delta = [1/2 - \varepsilon_\delta, 1/2]$ in Corollary 4.2. We take a segment J_δ in the moment polytope $P = \pi(\mathcal{O}) \subset \mathbb{R}^2$ defined by

$$J_\delta := \{(\tau, 1 - \tau) \mid \tau \in \text{Int}(I_\delta)\} \subset \text{Int}(P).$$

We denote by $B^2(u_0; \sqrt{2}\varepsilon_\delta)$ the open disk of which center is $u_0 := (1/2, 1/2) \in \text{Int}(P)$ and radius is $\sqrt{2}\varepsilon_\delta$. We may take and fix a sufficiently small $\varepsilon_\delta > 0$ so that the open disk $B^2(u_0; \sqrt{2}\varepsilon_\delta)$ is contained in P and moreover the inverse image of $B^2(u_0; \sqrt{2}\varepsilon_\delta)$ under $\tilde{\pi} := \pi \circ \Pi : \hat{O} \rightarrow P$ is contained in the image of $\Theta_\delta : B^2 \times B^2 \rightarrow S^2 \times S^2$.

We identify J_δ with an open interval $(0, 1)$ and will define a map Φ_δ on $C_c^\infty(J_\delta)$. First, we extend a function $f \in C_c^\infty(J_\delta)$ to the function f_{B^2} on the

open disk $B^2(u_0; \sqrt{2}\varepsilon_\delta)$ which is constant along the circle centered at u_0 . More explicitly, we define $f_{B^2} : B^2(u_0; \sqrt{2}\varepsilon_\delta) \rightarrow \mathbb{R}$ by

$$f_{B^2}(u) := f((|u - u_0|/\sqrt{2}, 1 - |u - u_0|/\sqrt{2})), \quad u \in B^2(u_0; \sqrt{2}\varepsilon_\delta) \subset \text{Int}(P).$$

We define $\tilde{f} \in C_c^\infty(B^2 \times B^2)$ for $f \in C_c^\infty(J_\delta)$ as the pull-back:

$$(4.2) \quad \tilde{f} := \Theta_\delta^* \tilde{\pi}^* f_{B^2}.$$

By the construction, the restriction of \tilde{f} on $\Theta_\delta^{-1}(T_\tau)$ is constantly equal to $f(\tau)$ for all $1/2 - \varepsilon_\delta < \tau < 1/2$.

Definition 4.1. For any $(2 + \sqrt{3})/4 < \delta \leq 1$, we define $\Phi_\delta : C_c^\infty((0, 1)) \rightarrow \mathcal{L}(L_\delta)$ by the following expression:

$$\Phi_\delta(f) := \phi_{\tilde{f}}^1(L_\delta),$$

where we regard f as an element in $C_c^\infty(J_\delta)$.

For the proof of Theorem 1.2, we prove the next lemma.

Lemma 4.1. *For any $f, g \in C_c^\infty((1/2 - \varepsilon_\delta, 1/2))$ there exists a constant $1/2 - \varepsilon_\delta < \tau' < 1/2$ such that*

$$|\mu_\delta^{\tau'}(\phi_{\tilde{f}-\tilde{g}}^1)| = \|f - g\|_\infty,$$

where δ is $(2 + \sqrt{3})/4 < \delta \leq 1$.

Proof. For any $f, g \in C_c^\infty((1/2 - \varepsilon_\delta, 1/2))$, there exists $\tau' \in (1/2 - \varepsilon_\delta, 1/2)$ such that

$$\|f - g\|_\infty = \max |f(x) - g(x)| = |f(\tau') - g(\tau')|.$$

Thus $\mu_\delta^{\tau'}(\phi_{\tilde{f}-\tilde{g}}^1)$ is equal to $\|f - g\|_\infty$ because of (4.2) and Proposition 3.2. \square

5. PROOF OF THEOREM 1.1 AND THEOREM 1.2.

proof of Theorem 1.1. For all $1/2 < \delta \leq 1$, the image of Θ_δ contains the torus $S_0^1 \times S_0^1 \subset (S^2 \times S^2, \bar{\omega}_{std})$. If we take a Hamiltonian $H \in C_c^\infty(B^2 \times B^2)$ for any $h \in \mathbb{R}$ such that $H \equiv h$ on the torus $\Theta_\delta^{-1}(S_0^1 \times S_0^1)$, then we have from Proposition 3.2 and $\zeta_{e^\tau}^{b(\tau)}$ -superheavyness of $S_0^1 \times S_0^1$

$$\mu_\delta^\tau(\phi_H^1) = h,$$

where we fix any $\tau \in (0, \frac{1}{2})$. By applying Proposition 3.4, we obtain

$$\frac{h - \delta^{-1} \text{vol}(S^2 \times S^2)^{-1} D_{\mu^\tau}}{C_\delta} \leq d(L_\delta, \phi(L_\delta)).$$

Since h is an arbitrary constant, Theorem 1.1 is proved. \square

Theorem 1.1 is proved by using a single quasi-morphism μ_δ^τ on $\text{Ham}_c(B^2 \times B^2, \bar{\omega}_0)$.

On the other hand, to prove Theorem 1.2, it is necessary that the image $\Theta_\delta(B^2 \times B^2)$ contains a continuous subfamily of superheavy tori $\phi_\delta(T_\tau) \subset S^2 \times S^2$ for some $\phi_\delta \in \text{Ham}(S^2 \times S^2)$ as mentioned in Remark 4.1.

In this paper, we consider the case $\phi_\delta = id$. Then we need to use the parameter δ of our Lagrangian submanifolds L_δ with $(2 + \sqrt{3})/4 < \delta \leq 1$ as in Corollary 4.2.

proof of Theorem 1.2. First, we will prove the left-hand side inequality. For any $f, g \in C_c^\infty((1/2 - \varepsilon_\delta, 1/2))$, we have $\tilde{f}, \tilde{g} \in C_c^\infty(B^2 \times B^2)$ defined by (4.2). Then we apply Proposition 3.4 to $\phi_{\tilde{g}}^{-1} \circ \phi_{\tilde{f}}^1 \in \text{Ham}_c(B^2 \times B^2, \bar{\omega}_0)$ to obtain

$$(5.1) \quad \frac{|\mu_\delta^\tau(\phi_{\tilde{g}}^{-1} \circ \phi_{\tilde{f}}^1)| - \delta^{-1} \text{vol}(S^2 \times S^2)^{-1} D_{\mu^\tau}}{C_\delta} \leq d(L_\delta, \phi_{\tilde{g}}^{-1} \circ \phi_{\tilde{f}}^1(L_\delta)),$$

where $\phi_{\tilde{g}}^{-1}$ is the inverse of $\phi_{\tilde{g}}^1$. By the construction of autonomous Hamiltonians \tilde{f}, \tilde{g} in (4.2), we find that the Poisson bracket $\{\tilde{f}, \tilde{g}\}_{\bar{\omega}_0}$ vanishes. Thus we have

$$\phi_{\tilde{g}}^{-1} \circ \phi_{\tilde{f}}^1 = \phi_{\tilde{f}-\tilde{g}}^1.$$

Therefore the inequality (5.1) becomes

$$\frac{|\mu_\delta^\tau(\phi_{\tilde{f}-\tilde{g}}^1)| - \delta^{-1} \text{vol}(S^2 \times S^2)^{-1} D_{\mu^\tau}}{C_\delta} \leq d(\phi_{\tilde{g}}^1(L_\delta), \phi_{\tilde{f}}^1(L_\delta)).$$

By Lemma 4.1, we obtain the following inequality:

$$\frac{\|f - g\|_\infty - \delta^{-1} \text{vol}(S^2 \times S^2)^{-1} D_{\mu^{\tau'}}}{C_\delta} \leq d(\Phi_\delta(f), \Phi_\delta(g)),$$

where the constant τ' depends on f and g . We prove the following lemma in Section 6.

Lemma 5.1. *For any bulk-deformation parameter $\tau \in (0, 1/2)$, the defect D_{μ^τ} of quasi-morphisms μ^τ satisfies*

$$D_{\mu^\tau} \leq 12.$$

Therefore, we obtain the left-hand side inequality by putting $D_\delta := \delta^{-1} \text{vol}(S^2 \times S^2)^{-1} \cdot \sup_\tau D_{\mu^\tau}$.

The right-hand side inequality is proved immediately. Indeed, we can estimate as the following:

$$\begin{aligned} d(\Phi_\delta(f), \Phi_\delta(g)) &= d(L_\delta, \phi_{\tilde{g}}^{-1} \phi_{\tilde{f}}^1(L_\delta)) \leq \|\tilde{f} - \tilde{g}\| \\ &= \|f - g\|. \end{aligned}$$

This completes the proof of Theorem 1.2. \square

6. FINITENESS OF D_{μ^τ}

The estimate in Lemma 5.1 can be obtained by almost the same calculation of Proposition 21.7 in [FOOO11b]. For this reason, we only sketch the outline of the calculation and use the same notation used in [FOOO11b].

proof of Lemma 5.1. From Remark 16.8 in [FOOO11b], upper bounds of defects D_{μ^τ} can be taken to be $-12\mathfrak{v}_T(e_\tau)$, where \mathfrak{v}_T is a valuation of bulk-deformed quantum cohomology $QH_{\mathfrak{b}(\tau)}(S^2 \times S^2; \Lambda)$. The proof of Theorem 2.2 (Theorem 23.4 [FOOO11b]) implies that the idempotent $e_\tau \in QH_{\mathfrak{b}(\tau)}(S^2 \times S^2; \Lambda)$ can be taken from one of four idempotents in $QH_{\mathfrak{b}(\tau)}(S^2 \times S^2; \Lambda)$ which decompose quantum cohomology as follows:

$$QH_{\mathfrak{b}(\tau)}(S^2 \times S^2; \Lambda) = \bigoplus_{(\epsilon_1, \epsilon_2) = (\pm 1, \pm 1)} \Lambda \cdot e_{\epsilon_1, \epsilon_2}^\tau.$$

Here the quantum product in $QH_{\mathfrak{b}(\tau)}(S^2 \times S^2)$ respects this splitting (i.e. it is semi-simple).

Hence, to prove Lemma 5.1, we only have to estimate the maximum valuation of $e_{\epsilon_1, \epsilon_2}^\tau$. For this purpose, we regard $S^2 \times S^2$ as the symplectic toric manifold with the moment polytope:

$$P = \{u = (u_1, u_2) \in \mathbb{R}^2 \mid l_i(u) \geq 0, i = 1, \dots, 4\},$$

where

$$l_1 = u_1, \quad l_2 = u_2, \quad l_3 = -u_1 + 1, \quad l_4 = -u_2 + 1.$$

We denote by $\partial_i P := \{l_i(u) = 0\}$ each facets of P and put $D_i := \pi^{-1}(\partial_i P)$, where $\pi : S^2 \times S^2 \rightarrow P \subset \mathbb{R}^2$ is the moment map. In the following, we fix

$$e_0 := PD[S^2 \times S^2], \quad e_1 := PD[D_1], \quad e_2 := PD[D_2], \quad e_3 := PD[D_1 \cap D_2]$$

as basis of $H^*(S^2 \times S^2; \mathbb{C})$ and denote by $L(u_0)$ the Lagrangian torus fiber over $(1/2, 1/2) \in P$.

The element $\mathfrak{b}(\tau)$ in Theorem 2.2 is defined by

$$(6.1) \quad \mathfrak{b}(\tau) := aPD[D_1] + aPD[D_2], \quad a := T^{\frac{1}{2}-\tau}.$$

In our case, since $S^2 \times S^2$ is Fano, the potential function $\mathfrak{PO}_{\mathfrak{b}(\tau)}$ is determined in terms of the moment polytope data. Hence we obtain the following expression as in the proof of Theorem 23.4 [FOOO11b]

$$\mathfrak{PO}_{\mathfrak{b}(\tau)} = e^a y_1 + e^{-a} y_2 + y_1^{-1} T + y_2^{-1} T,$$

where y_1, \dots, y_4 are formal variables and $e^a := \sum_{n=0}^{\infty} a^n / n! \in \Lambda_0$ (see Section 3 in [FOOO11a] and Section 20.4 in [FOOO11b] for the definition of potential functions for toric fibers).

By Proposition 1.2.16 in [FOOO10], the *Jacobian ring* $\text{Jac}(\mathfrak{PO}_{\mathfrak{b}(\tau)}; \Lambda)$ of the potential function $\mathfrak{PO}_{\mathfrak{b}(\tau)}$, which is defined as a certain quotient

ring of the Laurent polynomial $\Lambda[y_1, \dots, y_4, y_1^{-1}, \dots, y_4^{-1}]$ for our case, is decomposed as follows:

$$\text{Jac}(\mathfrak{PO}_{\mathfrak{b}(\tau)}; \Lambda) = \bigoplus_{(\epsilon_1, \epsilon_2) = (\pm 1, \pm 1)} \Lambda \cdot 1_{\epsilon_1, \epsilon_2}^{\tau},$$

where $1_{\epsilon_1, \epsilon_2}^{\tau}$ is the unit on each component. More explicitly, we have

$$1_{\epsilon_1, \epsilon_2}^{\tau} = \frac{1}{4}[1 + \epsilon_1 e^{\frac{a}{2}} y_1 T^{-\frac{1}{2}} + \epsilon_2 e^{-\frac{a}{2}} y_2 T^{-1/2} + \epsilon_1 \epsilon_2 y_1 y_2 T^{-1}].$$

We denote by $e_{\epsilon_1, \epsilon_2}^{\tau}$ the idempotent of $QH_{\mathfrak{b}(\tau)}(S^2 \times S^2; \Lambda)$ which corresponds to $1_{\epsilon_1, \epsilon_2}^{\tau}$ under the *Kodaira-Spencer map*:

$$\mathfrak{ks}_{\mathfrak{b}(\tau)} : QH_{\mathfrak{b}(\tau)}(S^2 \times S^2; \Lambda) \rightarrow \text{Jac}(\mathfrak{PO}_{\mathfrak{b}(\tau)}; \Lambda),$$

which is a ring isomorphism (see Theorem 20.18 in [FOOO11b]). The same calculation as in Remark 1.3.1 [FOOO10] shows that the Kodaira-Spencer map $\mathfrak{ks}_{\mathfrak{b}(\tau)}$ maps the basis of $QH_{\mathfrak{b}(\tau)}(S^2 \times S^2; \Lambda)$ to the following:

$$\mathfrak{ks}_{\mathfrak{b}(\tau)}(e_0) = [1], \mathfrak{ks}_{\mathfrak{b}(\tau)}(e_1) = [e^a y_1], \mathfrak{ks}_{\mathfrak{b}(\tau)}(e_2) = [e^{-a} y_2], \mathfrak{ks}_{\mathfrak{b}(\tau)}(e_3) = [q y_1 y_2].$$

Here $q \in \mathbb{Q}$ is defined as follows (see Definition 6.7 in [FOOO11a]). Let $\beta_1 + \beta_2$ be the element of $H_2(S^2 \times S^2, L(u_0); \mathbb{Z})$ satisfies

$$(\beta_1 + \beta_2) \cap D_i = 1 \quad (i = 1, 2)$$

with Maslov index $\mu_L(\beta_1 + \beta_2) = 4$ and

$$q := ev_{0*}[\mathcal{M}_{1;1}^{\text{main}}(L(u_0), \beta_1 + \beta_2; e_3)] \cap L(u_0),$$

where we denote by $\mathcal{M}_{1;1}^{\text{main}}(L(u_0), \beta_1 + \beta_2; e_3)$ the moduli space of genus zero bordered stable maps in class $\beta_1 + \beta_2$ with one boundary point and one interior point whose image lies in $D_1 \cap D_2$ (see Section 6 of [FOOO11a] for the precise definition of the moduli space).

The classification theorem of holomorphic disks in [CO06] implies $q = \pm 1$ immediately.

By comparing $e_{\epsilon_1, \epsilon_2}^{\tau}$ with $1_{\epsilon_1, \epsilon_2}^{\tau}$, we can obtain for $(\epsilon_1, \epsilon_2) = (\pm 1, \pm 1)$,

$$e_{\epsilon_1, \epsilon_2}^{\tau} = \frac{1}{4}(e_0 + \epsilon_1 e^{-\frac{a}{2}} T^{-\frac{1}{2}} \cdot e_1 + \epsilon_2 e^{\frac{a}{2}} T^{-\frac{1}{2}} \cdot e_2 + \epsilon_1 \epsilon_2 q^{-1} T^{-1} \cdot e_3).$$

Since $a = T^{\frac{1}{2}-\tau}$ and $0 < \tau < 1/2$, we obtain $\mathfrak{v}_T(e_{\epsilon_1, \epsilon_2}^{\tau}) = -1$. This implies Lemma 5.1. \square

REFERENCES

- [BEP04] P. Biran, M. Entov and L. Polterovich. “Calabi quasimorphisms for the symplectic ball.” Commun. Contemp. Math., 6.05 (2004): 793-802.
- [Ch00] Yu. V. Chekanov. “Invariant Finsler metrics on the space of Lagrangian embeddings.” Math. Zeitschrift 234.3 (2000): 605-619.
- [CO06] C. H. Cho, Y. G. Oh, “Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds.” Asian J. Math. 10 (2006): 773-814.

- [EP03] M. Entov and L. Polterovich. “*Calabi quasimorphism and quantum homology.*” International Math. Research Notices 30 (2003): 1635-1676.
- [EP06] M. Entov and L. Polterovich. “*Quasi-states and symplectic intersections.*” Comment. Math. Helv. 81 (2006): 75-99.
- [EP09] M. Entov and L. Polterovich. “*Rigid subsets of symplectic manifolds.*” Compositio Mathematica, 145.03 (2009): 773-826.
- [FOOO10] K. Fukaya, Y. G. Oh, H. Ohta, K. Ono. “*Lagrangian Floer theory and mirror symmetry on compact toric manifolds.*” arXiv:1009.1648v2 (2010).
- [FOOO11a] K. Fukaya, Y. G. Oh, H. Ohta, K. Ono. “*Lagrangian Floer theory on compact toric manifolds II: bulk deformations.*” Selecta Math. 17.3 (2011): 609-711.
- [FOOO11b] K. Fukaya, Y. G. Oh, H. Ohta, K. Ono. “*Spectral invariants with bulk quasi-morphisms and Lagrangian Floer theory.*” arXiv:1105.5123 (2011).
- [FOOO12] K. Fukaya, Y. G. Oh, H. Ohta, K. Ono. “*Toric degeneration and nondisplaceable Lagrangian tori in $S^2 \times S^2$.*” Int. Math. Research Notices, 2012(13): 2942-2993.
- [Ho90] H. Hofer. “*On the topological properties of symplectic maps.*” Proc. Royal Soc. Edinburgh 115.1-2 (1990): 25-38.
- [Kh09] M. Khanevsky. “*Hofer’s metric on the space of diameters.*” J. Topol. and Anal. 1.04 (2009): 407-416.
- [Oh97] Y. G. Oh. “*Symplectic topology as the geometry of action functional. I.*” J. Diff. Geom. 46.3 (1997): 499-577.
- [Oh05] Y. G. Oh. “*Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds.*” The breadth of symplectic and Poisson geom. Birkhäuser Boston(2005): 525-570.
- [OU13] J. Oakley, M. Usher. “*On certain Lagrangian submanifolds of $S^2 \times S^2$ and $\mathbb{C}P^n$.*” arXiv:1311.5152 (2013)
- [Se14] S. Seyfaddini. “*Unboundedness of the Lagrangian Hofer distance in the Euclidean ball.*” Electron. Res. Announc. Math. Sci. 21 (2014): 1-7.
- [Sc00] M. Schwarz. “*On the action spectrum for closed symplectically aspherical manifolds.*” Pacific Journal of Math. 193.2 (2000): 419-461.
- [Us11] M. Usher. “*Deformed Hamiltonian Floer theory, capacity estimate, and Calabi quasimorphisms.*” Geom. Topol. 15 (2011): 1313?1417.
- [Vi92] C. Viterbo. “*Symplectic topology as the geometry of generating functions.*” Mathematische Annalen 292.1 (1992): 685-710.

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, NAGOYA, JAPAN
E-mail address: m10039c@math.nagoya-u.ac.jp