

Quotient inductive-inductive types

Ambrus Kaposi (ELTE) j.w.w. András Kovács (ELTE) & Thorsten Altenkirch (Nottingham)

Conference on Software Technology and Cyber Security (STCS) 22 February 2019

INVESTING IN YOUR FUTURE

Overview

Inductive types by examples Universal inductive type

Indexed inductive types by examples Universal indexed inductive type

Quotient inductive types (QITs) by examples UNIVERSAL QIT

Inductive types

are specified by their constructors.

E.g.

Bool : Type

 $\mathsf{true} \, : \mathsf{Bool}$

false : Bool

means

 $\mathsf{Bool} = \{\mathsf{true},\,\mathsf{false}\}.$

 \mathbb{N} : Type zero : \mathbb{N}

 $\operatorname{\mathsf{suc}} : \mathbb{N} \to \mathbb{N}$

means

 $\mathbb{N} = \{\mathsf{zero},\,\mathsf{suc}\,\mathsf{zero},\,\mathsf{suc}\,(\mathsf{suc}\,\mathsf{zero}),\,\mathsf{suc}\,(\mathsf{suc}\,(\mathsf{suc}\,\mathsf{zero})),\,\dots\},$

usually written

$$\mathbb{N} = \{0, 1, 2, \dots\}.$$

Exp : Type

 $\mathsf{const}: \mathbb{N} \to \mathsf{Exp}$

 $\mathsf{plus} \; : \mathsf{Exp} \to \mathsf{Exp} \to \mathsf{Exp}$

 $\mathsf{mul} \ : \mathsf{Exp} \to \mathsf{Exp} \to \mathsf{Exp}$

means

$$\mathsf{Exp} = \left\{ \begin{array}{c|cccc} \mathsf{const} & \mathsf{plus} & \mathsf{const} & \mathsf{const} \\ & \mathsf{,} & & & & & & \\ \mathsf{zero} & \mathsf{const} & \mathsf{const} & \mathsf{suc} & \mathsf{zero} \\ & & & & & & & \\ \mathsf{zero} & \mathsf{const} & \mathsf{const} & \mathsf{suc} & \mathsf{zero} \\ & & & & & & \\ \mathsf{zero} & \mathsf{zero} & \mathsf{zero} & \mathsf{zero} \end{array} \right\}.$$

```
\begin{array}{l} \mathsf{Exp} & : \mathsf{Type} \\ \mathsf{const} : \mathbb{N} \to \mathsf{Exp} \\ \mathsf{plus} & : \mathsf{Exp} \to \mathsf{Exp} \to \mathsf{Exp} \\ \mathsf{mul} & : \mathsf{Exp} \to \mathsf{Exp} \to \mathsf{Exp} \end{array}
```

written in a linear notation as

```
\begin{split} \mathsf{Exp} &= \\ &\Big\{\mathsf{const}\,\mathsf{zero}, \\ &\quad \mathsf{mul}\,\big(\mathsf{plus}\,(\mathsf{const}\,(\mathsf{suc}\,\mathsf{zero}))\,(\mathsf{const}\,(\mathsf{suc}\,\mathsf{zero}))\big)\,\big(\mathsf{const}\,(\mathsf{suc}\,\mathsf{zero})\big), \\ &\quad \mathsf{plus}\,\big(\mathsf{const}\,(\mathsf{suc}\,\mathsf{zero})\big)\,(\mathsf{const}\,\mathsf{zero}),\,\dots\Big\}. \end{split}
```

$$\mathbb{N}'$$
: Type suc: $\mathbb{N}' o \mathbb{N}'$

means

$$\mathbb{N}' = \{\}.$$

Why inductive? We can do induction!

On Bool:
$$(P : \mathsf{Bool} \to \mathsf{Type}) \to P \mathsf{true} \to P \mathsf{false} \to (b : \mathsf{Bool}) \to P b$$

On
$$\mathbb{N}$$
: $(P : \mathbb{N} \to \mathsf{Type}) \to P \mathsf{zero} \to ((n : \mathbb{N}) \to P \mathsf{n} \to P (\mathsf{suc} \, n)) \to (n : \mathbb{N}) \to P \mathsf{n}$

On Exp:
$$(P : \mathsf{Exp} \to \mathsf{Type}) \to ((n : \mathbb{N}) \to P(\mathsf{const}\, n)) \to ((e\,e' : \mathsf{Exp}) \to P\,e \to P\,e' \to P(\mathsf{plus}\, e\,e')) \to ((e\,e' : \mathsf{Exp}) \to P\,e \to P\,e' \to P(\mathsf{mul}\, e\,e')) \to (e : \mathsf{Exp}) \to P\,e$$

Not an inductive type

$$\begin{array}{l} \mathsf{Neg} : \mathsf{Type} \\ \mathsf{con} \ : (\mathsf{Neg} \to \bot) \to \mathsf{Neg} \end{array}$$

The induction principle:

elimNeg :
$$(P : \mathsf{Neg} \to \mathsf{Type}) \to ((f : \mathsf{Neg} \to \bot) \to P(\mathsf{con}\,f)) \to (n : \mathsf{Neg}) \to P\,n$$

Now we can do something bad:

```
\begin{array}{ll} \mathsf{probl} & : \mathsf{Neg} \to \bot := \lambda \mathit{n}.\mathsf{elimNeg} \left( \lambda\_.\mathsf{Neg} \to \bot \right) \left( \lambda \mathit{f}.\mathit{f} \right) \mathit{n} \, \mathit{n} \\ \mathsf{PROBL} : \bot & := \mathsf{probl} \left( \mathsf{con} \, \mathsf{probl} \right) \end{array}
```

What is a generic definition?

We have \bot , \top , + and \times types.

Universal inductive type (Martin-Löf, 1984): for every

 $S: \mathsf{Type}$ and $P: S \to \mathsf{Type}$

there is an inductive type

W : Type sup :
$$(s : S) \rightarrow (Ps \rightarrow W) \rightarrow W$$

E.g. \mathbb{N} is given by

$$S := \top + \top$$
 $P (\mathsf{inl}\,\mathsf{tt}) := \bot$ $P (\mathsf{inr}\,\mathsf{tt}) := \top.$

An indexed inductive type

```
Vec: \mathbb{N} \to \mathsf{Type}
         nil: Vec zero
        cons : (n : \mathbb{N}) \to \mathsf{Bool} \to \mathsf{Vec}\, n \to \mathsf{Vec}\, (\mathsf{suc}\, n)
means
Vec zero
             = \{\mathsf{nil}\}
Vec (suc zero) = \{cons zero true nil, cons zero false nil\}
. . .
```

An indexed inductive type

```
Vec: \mathbb{N} \to \mathsf{Type}
           nil: Vec zero
           cons : (n : \mathbb{N}) \to \mathsf{Bool} \to \mathsf{Vec}\, n \to \mathsf{Vec}\, (\mathsf{suc}\, n)
usually written as
Vec zero
                = \{[]\}
Vec (suc zero) = \{[true], [false]\}
Vec(suc(suczero)) = \{[true, true], [true, false], [false, true], \dots \}
. . .
```

A mutual inductive type

Cmd : Type Block : Type skip : Cmd

 $\mathsf{ifelse} \quad : \mathsf{Exp} \to \mathsf{Block} \to \mathsf{Block} \to \mathsf{Cmd}$

 $\mathsf{assign} \ : \mathbb{N} \to \mathsf{Exp} \to \mathsf{Cmd}$

 $\mathsf{single} \quad \mathsf{:} \; \mathsf{Cmd} \to \mathsf{Block}$

 $\mathsf{semicol} : \mathsf{Cmd} \to \mathsf{Block} \to \mathsf{Block}$

BNF definitions are usually mutual inductive types.

Universal indexed/mutual inductive type

Mutual inductive types can be reduced to indexed ones.

 $\mathsf{Cmd},\,\mathsf{Block} \qquad \mathsf{becomes} \qquad \mathsf{CmdOrBlock}:\mathsf{Bool} \to \mathsf{Type}$

Altenkirch-Ghani-Hancock-McBride, 2015: for every

$$S: \mathsf{Type}$$
 and $P: S \to \mathsf{Type}$ and $out: S \to I$ and $in: (s:S) \to Ps \to I$

there is the indexed inductive type

$$W: I \rightarrow \mathsf{Type}$$
 $\sup : (s:S)((p:Ps) \rightarrow \mathsf{W}(\mathsf{ins}\,\mathsf{p})) \rightarrow \mathsf{W}(\mathsf{out}\,\mathsf{s})$

Integers

```
\mathbb{Z}: Type pair : \mathbb{N} \to \mathbb{N} \to \mathbb{Z} quot : (a \, b \, a' \, b' : \mathbb{N}) \to a + b' = a' + b \to \mathsf{pair} \, a \, b = \mathsf{pair} \, a' \, b' means
```

Quotients

Given A: Type, $R:A\to A\to \mathsf{Type}$, the quotient type is

A/R: Type

 $[-]: A \rightarrow A/R$

 $\mathsf{quot} : (\mathsf{a}\,\mathsf{a}' : \mathsf{A}) \to \mathsf{R}\,\mathsf{a}\,\mathsf{a}' \to [\mathsf{a}] = [\mathsf{a}']$

Cauchy Real numbers

```
\mathbb{R}
             : Type
             : \mathbb{O}_+ \to \mathbb{R} \to \mathbb{R} \to \mathsf{Type}
       : \mathbb{O} \to \mathbb{R}
rat
           : (f: \mathbb{Q}_+ \to \mathbb{R}) \to ((\delta \epsilon: \mathbb{Q}_+) \to \mathsf{P}(\delta + \epsilon)(f \delta)(f \epsilon)) \to \mathbb{R}
lim
             : (u v : \mathbb{R}) \to ((\epsilon : \mathbb{Q}_+) \to \mathsf{P} \epsilon u v) \to u = v
eq
ratrat : (q r : \mathbb{Q})(\epsilon : \mathbb{Q}_+)(-\epsilon < q - r < \epsilon) \rightarrow \mathsf{P} \, \epsilon \, (\mathsf{rat} \, q) \, (\mathsf{rat} \, r)
ratlim: P(\epsilon - \delta) (rat q) (g(\delta) \rightarrow P(\epsilon) (rat g) (\lim g)
limrat : P(\epsilon - \delta) (f \delta) (rat r) \rightarrow P \epsilon (lim f) (rat r)
\lim \lim P(\epsilon - \delta - \eta) (f \delta) (g \eta) \rightarrow P \epsilon (\lim f) (\lim g)
trunc : (\xi \zeta : P \epsilon u v) \rightarrow \xi = \zeta
(Homotopy Type Theory book, 2013)
```

Partiality monad for non-terminating programs

Algebraic syntax for a programming language

```
Τv
                   : Type
Tm
                   : Ty \rightarrow Type
Bool, Nat : Ty
true, false : Tm Bool
if-then-else- : Tm Bool \rightarrow Tm A \rightarrow Tm A \rightarrow Tm A \rightarrow
                   : \mathbb{N} \to \mathsf{Tm}\,\mathsf{Nat}
num
isZero
                   : Tm Nat \rightarrow Tm Bool
                   : if true then t else t'=t
if \beta_1
                   : if false then t else t'=t'
if \beta_2
                   : isZero(num 0) = true
isZero\beta_1
                   : isZero (num (1+n)) = false
isZero\beta_2
```

(Altenkirch–Kaposi, 2016)

A domain-specific language for QIT signatures

$$\frac{\Gamma \vdash A}{\vdash \Gamma, x : A} \qquad \frac{(x : A) \in \Gamma}{\Gamma \vdash x : A} \qquad \frac{\vdash \Gamma}{\Gamma \vdash U} \qquad \frac{\Gamma \vdash a : U}{\Gamma \vdash \underline{a}}$$

$$\frac{\Gamma \vdash a : U \qquad \Gamma, x : \underline{a} \vdash B}{\Gamma \vdash (x : a) \Rightarrow B} \qquad \frac{\Gamma \vdash t : (x : a) \Rightarrow B \qquad \Gamma \vdash u : \underline{a}}{\Gamma \vdash t @ u : B[x \mapsto u]}$$

$$\frac{\Gamma \vdash u : \underline{a} \qquad \Gamma \vdash v : \underline{a}}{\Gamma \vdash u = v} \qquad \cdots$$

A signature is a context Γ , e.g.

$$(\cdot, N : \mathsf{U}, \mathsf{zero} : \underline{\mathsf{N}}, \mathsf{suc} : \mathsf{N} \Rightarrow \underline{\mathsf{N}})$$

 $(\cdot, \ \textit{Ty} : U, \ \textit{Tm} : \textit{Ty} \Rightarrow U, \ \textit{Bool} : \underline{\textit{Ty}}, \ \textit{true} : \underline{\textit{Tm} @ \textit{Bool}}, \dots)$

This is a QIT itself

```
Con
                          : Type
Τv
                          : Con \rightarrow Type
                          : Con \rightarrow Type
Var
                          : (\Gamma : \mathsf{Con}) \to \mathsf{Ty} \, \Gamma \to \mathsf{Type}
Tm
                          : Con
(-, -: -) : (\Gamma : \mathsf{Con}) \to \mathsf{Var}\,\Gamma \to \mathsf{Ty}\,\Gamma \to \mathsf{Con}
U
             : Ту Г
                          : \mathsf{Tm}\,\mathsf{\Gamma}\,\mathsf{U}\to\mathsf{Ty}\,\mathsf{\Gamma}
(-:-) \Rightarrow -: \operatorname{Var} \Gamma \to (a:\operatorname{Tm} \Gamma \cup U) \to \operatorname{Ty} (\Gamma, x:a) \to \operatorname{Ty} \Gamma
                : \mathsf{Tm}\,\Gamma\,((x:a)\Rightarrow B)\to (u:\mathsf{Tm}\,\Gamma\,a)\to
- @ -
                             \mathsf{Tm}\,\Gamma(B[x\mapsto u])
```

Results

- A generic definition of signatures for QITs which includes all the known examples
- Description of the induction principle
 - Kaposi–Kovács, FSCD 2018
- ▶ If the universal QIT exists, then all of them exist
 - Kaposi–Kovács–Altenkirch, POPL 2019
- Existence of the universal QIT
 - People proved this in different settings, e.g. Brunerie
 - Part without quotients <u>done</u> (by Ambroise Lafont), full version further work

THANK YOU FOR YOUR ATTENTION!

INVESTING IN YOUR FUTURE