MODELING

Value function Q-factor Optimality equation

Diego Klabjan
Professor, Industrial Engineering and Management Sciences

Outline

- Transition function
- Policies in depth
- Value function
- Q-factor
- Various forms of optimality equations
- Model-free vs model-based

TRANSITION FUNCTION AND POLICIES

Characteristics of Reinforcement Learning

- What makes reinforcement learning different from other machine learning paradigms?
 - There is no supervisor
 - Reward signal
 - Feedback can be delayed delayed, not instantaneous
 - Lead time after placing an order
 - Time really matters
 - Sequential non i.i.d data
 - Agent's actions affect the subsequent data it receives
 - Customer demand depends on inventory

Sequential Decision Making

- Goal
 - Select actions to maximize total future reward
- Actions may have long term consequences
- It may be better to sacrifice immediate reward to gain long-term reward
 - Myopic actions not optimal
- Examples
 - A financial investment
 - May take months to yield P&L
 - Guiding a drone
 - Should prevent a crash happening in several minutes
 - Games
 - Only at the end you know the reward

Agent and Environment

Agent and Environment

- At each step t the agent
 - Executes action a_t
 - Receives observation O_t
 - Receives scalar reward r_t
- The environment
 - Executes action a_t
 - Receives observation O_{t+1}
- t increments

Agent and Environment

- Drone navigation
 - Action = one-hot encoding of direction to follow
 - Observation = position in the space, distance and shapes to obstacles
 - Reward combination of
 - Distance to final destination
 - Penalty for crashing
- Environment = drone
 - Execute action (move drone)
 - Gather next observation

- Portfolio management
 - Action = Number of units to buy/sell of each security in portfolio
 - Observation
 - Current positions
 - Number of units
 - Cash on hand
 - Reward
 - Profit and loss upon sell
- Environment = broker
 - Execute trades
 - Record new portfolio status

History and State

The history is the sequence of observations, actions, rewards

$$H_t = O_0, r_0, a_0, \dots, a_{t-1}, O_t, r_t$$

- What happens next depends on the history
 - The agent selects actions
 - The environment selects observations
- State is the information used to determine what happens next
- State a function of the history

$$s_t = f(H_t)$$

History and State

- Why do we need previous actions?
 - Action executed in the past but consequences in the future
- Why do we need previous observations (exogenous unpredicted)?
 - In reward we predict P&L
 - Forecasting methodology depends on previous realizations
- Why do we need previous rewards?
 - Reward might depend on them
 - For tax purposes
- Why state a function of history?
 - Encoding sequences with RNN
 - Encoding images with CNN

Agent State

- Agent state s_t is the agent's internal representation
 - Whatever information the agent uses to pick the next action
 - Or/and to calculate reward
- Information used by reinforcement learning algorithms

Rewards

- Reward r_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward
- All goals described by the maximization of expected cumulative reward

Examples of Rewards

- P&L in portfolio optimization
- Profit in inventory management
- Drone: positive for following a trajectory, negative for crashing
- Robot walking: positive to move forward, negative to fall
- Positive for winning a game, negative for losing the game
- Playing basketball: positive for scoring, negative for opponent scoring
- Shortest path: distance of traversed arc

State

- Information state contains all useful information from the history
 - Markov state
- State s_t is Markov if and only if

$$\mathbb{P}[s_{t+1} \mid s_t] = \mathbb{P}[s_{t+1} \mid s_0, ..., s_t]$$

- "The future is independent of the past given the present"
- The history H_t is Markov
 - The state is a sufficient statistic of the future

State Space

- State space S
 - Set of all possible states
- Discrete or continuous
 - Usually discrete and finite
 - Continuous
 - Discretize
- Challenge
 - In practice extremely high cardinality

- Inventory management: 0, 1, 2, 3, ...
 - 3 SKU's
 - $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
- Drone: All possible x,y,z coordinates
 - Continuous but discretized in practice
- Tic-tac-toe: $\{-1,0,1\}^9$

Actions

- A action space
- Usually discrete and finite
 - If continuous, discretize
- $a_t \in \mathcal{A}$
- Goal of RL: find a_t for each time t
- Depends on state
 - $a_t = a_t(s_t)$

- Inventory
 - $\mathcal{A} = \{0, 1, 2, ..., M\}$
- Drone
 - A = {stay, up, down, left, right, ...}
 - 27 options
- Tic-tac-toe
 - $\mathcal{A} = \{1, 2, ..., 9\}$

Markov Chains

- s_{t+1} depends on s_t
- Key to identify $p(s_{t+1}|s_t)$
- Inventory
 - $p(s_{t+1} = 10 | s_t = 5)$??
 - Ordered 5, demand = 0
 - Ordered 8, demand = 3

- Markov chains P
- Transition matrix in RL
 - P^a
- Every action function gives a transition function

$$p(s_{t+1}|s_t,a_t)$$

If we know action, we can calculate the transition probability

•
$$p(s_{t+1} = 10 | s_t = 5, a_t = 8) = p(D = 3)$$

Transitions

Policy

- Permissible family of action functions
 - Denoted by π
 - Policy again function of state
- Restrict action functions
 - Computational tractability
 - Business and operational requirements
 - Order only 0 or Q
- Policy usually parametric π_{θ}
 - Goal to find best set of parameters

$$\pi_{\theta}(s_t) = \theta \cdot s_t$$

Better: neural network

Stochastic Policies

- Flip a coin based on certain probability to select an action
- Find probability distribution over all possible actions
- Drone
 - 27 dimensional probability vector
 - Neural networks
 - Input state vector
 - Output 27 dimensional probability
 - Obtained through softmax
- Continuous actions
 - Normal distribution with mean and standard deviations depending on state

Stochastic Policies

- Deterministic/pure policy special stochastic policy
- Stochastic policies more general
- Algorithmically much better to handle
 - Continuous in parameters
 - Differentiable in parametes
- Can be mathematically shown
 - Given a stochastic policy there is a deterministic policy of the same reward
- On the paper stochastic policies do not yield anything new

- Find policy that maximizes total reward
- $\max_{\pi} E[\sum_{t=0}^{T} \gamma^t \cdot r(s_t, a_t)]$
- Looking for a function
- Future reward is discounted
 - Future money is discounted
- $0 \le \gamma < 1$
 - Well defined also for $T = \infty$

$$s_0, \pi(s_0), r_0, s_1, \pi(s_1), r_1, s_2, \pi(s_2), r_2, s_3, \pi(s_3), r_3, \dots$$

Infinite case

- Drop *t*
 - Everything else the same
- s, a, r(s,a), and p(s'|s,a) define Markov decision process
 - Infinite version of Markov chains with actions

- $\tau = s_0, a_0, s_1, a_1, s_2, a_2, s_3, a_3, \dots$
 - Trajectory, sample path, episode

$$p_{\theta}(\tau) = p_{\theta}(s_0, a_0, \dots, s_T, a_T) = p(s_0) \prod_{t=0}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

- Policy/actions parametric with respect to θ
- Inventory
 - P(10,3; 5,7; 1,0; 0,10) = p(state = 10) π_{θ} (3|10) p(D=8) π_{θ} (7|5) p(D=11) π_{θ} (1|0) p(D=1) π_{θ} (10|0)

(state, action) representation

- Markov chain with expended states
 - State = (state, action)

$$\theta^* = \arg \max_{\theta} E_{T \sim p_{\theta}(T)} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

$$= \arg \max_{\theta} \sum_{t=0}^{T} E_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} [r(s_t, a_t)]$$

- Each sample path has probability
 - Distribution over sample paths
- Expectation over all sample paths

Robot in a Room

		+1
		-1
START		

actions: UP, DOWN, LEFT, RIGHT

- Reward +1 at [4,3], -1 at [4,2]
- Reward -0.04 for each step
 - Reward does not depend on action and state

• Total reward of 5 * 0.04 + 1

- We start with stochastic policy
 - 80% up, 10% right, 10% left
- We reach every state with positive probability
- Need action for every state
- Optimal actions are depicted

- Reward altered to -2
- There are ties

- Reward now -0.01
- Same as reward -0.04

Total Reward for each step: +0.01

- Reward = 0.01
- Encourage long paths
- Infinite total reward
 - Unless it is discounted

Putting it Together

- State and action spaces
- State, action (policy)
- Transition function
- Reward
- Discount factor
- Initial state (or distribution)
- Stochastic policies computationally tractable
 - But not needed on the paper

- Given policy
 - Markov chain
- Transition probabilities can be viewed as tensor
- Another view
 - Markov chain with states (state,action)

VALUE FUNCTION AND Q-FACTOR

- Initial state $E_{s_0 \sim p(s_0)}$
- $\sum_{t=0}^{T} \gamma^t \cdot r(s_t, a_t) = r(s_0, a_0) + \gamma \sum_{t=1}^{T} \gamma^{t-1} \cdot r(s_t, a_t)$
 - Same as original
 - · Start in a different state
- Let $V_t(s_t) = \text{maximum total reward from time } t \text{ to the end given}$ that at time t we are in state s_t
- Value function

Equivalent Expressions for Expectation

- Given s_t and policy π
- $a_t \sim \pi(a_t | s_t)$ sampled action based on policy
- Next state
- Entire process
 - $a_t \sim \pi_\theta(a_t|s_t)$, $s_{t+1} \sim p(s_{t+1}|s_t, a_t)$ sampled next state based on sampled action
 - Equivalently $(s_{t+1}, a_{t+1}) \sim p_{\theta}(s_{t+1}, a_{t+1} | s_t, a_t)$

Optimality Equation

$$V_0(s_0) = \max_{a_0 \in \mathcal{A}} [r(s_0, a_0) + \gamma E_{s_1 \sim p(s_1|s_0, a_0)} V_1(s_1|s_0)]$$

Optimality Equation

$$V_t(s_t) = \max_{a_t \in \mathcal{A}} [r(s_t, a_t) + \gamma E_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} V_{t+1}(s_{t+1}|s_t)]$$

Value of Policy

• Let $V_t^{\pi}(s_t) = \text{total reward of policy } \pi$ from time t to the end given that at time t we are in state s_t

$$\begin{split} V_t^{\pi}(s_t) &= \sum\nolimits_{t'=t}^T \gamma^{t'} E_{(s_{t'}, a_{t'}) \sim p_{\theta}(s_{t'}, a_{t'} \mid s_{t'-1}, a_{t'-1})} [r(s_{t'}, a_{t'}) \mid s_t] \\ V_t^{\pi}(s_t) &= E_{a_t \sim \pi(a_t \mid s_t), s_{t+1} \sim p(s_{t+1} \mid s_t, a_t)} [r(s_t, a_t) + \gamma V_{t+1}^{\pi}(s_{t+1} \mid s_t)] \end{split}$$

• s_{t+1} function of a_t , s_t and stochastic environment

$$V_t^{\pi}(s_t) = E \underset{s_{t+1} \sim p(s_{t+1}|s_t, a_t)}{a_t \sim \pi(a_t|s_t)} [r(s_t, a_t) + \gamma V_t^{\pi}(s_{t+1}|s_t)]$$

Everywhere $\pi = \pi_{\theta}$

Stationarity

- An optimal policy
 - Depends on $t(\pi_t \text{ or } \pi_{\theta_t})$
- Optimal value function depends on t
 - V_t
- In practice for computational tractability
 - Policy does not depend on t
 - Value function and other subsequent functions do not depend on t
 - Our standard assumption

Optimal Policy

- $V(s_t) = \max_{\pi} V^{\pi}(s_t)$
- RL is about

arg
$$max_{\theta}V^{\pi_{\theta}}(s_o)$$

arg $max_{\theta}E_{s_o\sim p(s_o)}V^{\pi_{\theta}}(s_o)$

- Omitting discounting factor from now on
- Omitting t in V_t and Q_t

Example

• Reward of -1, 4 actions, reward of 0 at corner points

Random policy

0	-14	-20	-22
-14	-18	-22	-20
-20	-22	-18	-14
-22	-20	-14	0

Optimal policy

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

M. Harmon, S. Harmon: Reinforcement Learning: a Tutorial

Q-factor

- $\sum_{t=0}^{T} E_{(s_t,a_t) \sim p_{\theta}(s_t,a_t)}[r(s_t,a_t)]$
- $Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} E_{(s_{t'}, a_{t'}) \sim p_{\theta}(s_{t'}, a_{t'})} [r(s_{t'}, a_{t'})]$

$$Q^{\pi}(s_0, a_0) = r(s_0, a_0) + E_{\substack{a_1 \sim \pi(a_1|s_1) \\ s_1 \sim p(s_1|s_0, a_0)}} [[r(s_1, a_1) + \dots | s_1] | s_0, a_0]$$

$$Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} E_{(s_{t'}, a_{t'}) \sim p_{\theta}(s_{t'}, a_{t'})} r(s_{t'}, a_{t'})$$

Q and V

$$Q(s_t, a_t) = \max_{\pi} Q^{\pi}(s_t, a_t)$$

Recursive definition of Q-factor

$$Q^{\pi}(s_t, a_t) = r(s_t, a_t) + E_{(s_{t+1}, a_{t+1}) \sim p_{\theta}(s_t, a_t)} Q^{\pi}(s_{t+1}, a_{t+1})$$

$$Q(s_t, a_t) = r(s_t, a_t) + \max_{a_{t+1}} E_{s_{t+1} \sim p(s_t, a_t)} Q(s_{t+1}, a_{t+1})$$

Connection

$$V(s_t) = \max_{a_t} Q(s_t, a_t)$$

$$Q(s_t, a_t) = r(s_t, a_t) + E_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} V(s_{t+1})$$

Key Algorithmic Ideas

- Incumbent policy π and we know Q^{π}
 - We are at state s
 - Find $a' = \arg \max_{a} Q^{\pi}(s, a)$
 - Set $\pi(a'|s) = 1$
 - Sample new state $s \sim p(s|s,a')$
 - Caveat: We need to update the Q-factor

Key Algorithmic Ideas

- If $Q^{\pi}(s, a) > V^{\pi}(s)$
 - a is better than average under $\pi(a|s)$
 - Recall $V^{\pi}(s) = E[Q^{\pi}(s, a)]$
- Modify $\pi(a|s)$ to increase probability of a if $Q^{\pi}(s,a) > V^{\pi}(s)$
 - Use gradient
 - How?

MODEL FREE VARIANT

Model-based RL

- State and action spaces are given
- Reward and transition functions are also given
- Can compute best policy
 - Planning
- Use policy in actual deployment (execution)
- Example
 - Inventory problem
 - Drone navigation
 - Or is it?

Model-free RL

- Chess
 - Reward if you lose or win at the end
 - During game no clear notion of reward
 - Next state function also not explicitly given
 - Depends on the move of the opponent
- Applies to all games with lose/win
 - Includes sport
- Robot control
 - Environment not given
- Autonomous driving
 - What is reward?
 - Know that final reward to get to the destination without crash

Model-free RL

- Agent must take action without knowing
 - Immediate reward to be received
 - Next state
- Drone
 - Take action
 - If crash to a wall, receive negative reward
- Observe trajectories
 - Sample path
 - Most commonly called episodes

$$\tau_1 = s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, \dots$$

$$\tau_2 = s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, \dots$$

$$\tau_3 = s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, \dots$$

Model-free RL

- Naïve algorithm
 - Randomly select states and actions
 - Observe reward and transition
 - Have supervised training dataset
 - (s,a); label r
 - (s,a); label s'
 - Use a classifier to model reward and transitions
 - Use model-based RL algorithm
- Not efficient in practice
 - Many algorithms that work directly with episodes
 - Imitation learning when reward not available in episodes