EPF Lausanne (Cours de CMS	Note		
Ancien Contrôle	de Chimie – N°2	Durée 1 heure Groupe		
NOM :				
PRENOM :		_		
Veuillez répondre à to dans les espaces qui su	•	iquer les réponses sur les lignes et/ou		
	s brutes des composés qui se formen ns non donnée, attention à l'ordre de			
a. Br / Rb	b. Al / sulfat	re		
c. Fe(II) / O	d. H / Mg			
e. hydroxyde / Sn(II)				
	tions chimiques <u>équilibrées</u> entre les	(/3 points)		
a. potassium (K) et s	oufre (S) :			
b. calcium (Ca) et l'e	au:			
c. Na ₂ O(s) et HCl(aq)):			
3 a. Classer les atomes	suivants selon l'ordre croissant de	la première énergie d'ionisation, I_1 : (/2 points)		
Al - B - C - F - N -	Na – Ne – O			
b . Classer les espèces	des ensembles suivants selon l'ordr	re croissant de leur volume :		
		(/ 2 points)		
(i) $F^ N^{3-} - O^{2-}$				
(ii) Br - Cl - K ⁺	- Na ⁺			

- c. Parmi les expressions suivantes pour un atome X, laquelle correspond à la définition exacte de l'énergie de deuxième ionisation ? Souligner la bonne réponse. / 1 point)
- a. $X(g) + e^- \rightarrow X^-(g)$ b. $X^-(g) \rightarrow X(g) + e^-$ c. $X(s) \rightarrow X^+(s) + e^-$

- d. $X(g) \rightarrow X^{+}(g) + e^{-}$ e. $X^{+}(g) + e^{-} \rightarrow X(g)$ d. $X^{+}(g) \rightarrow X^{2+}(g) + e^{-}$

4. Quelles sont les pr	ropriétés magnétiques (para	- ou diamagnétique) du	Fe, du Fe ²⁺ e	t du Fe ³⁺ ?
Justifier les réponses	à l'aide des cases quantique	es et comparer l'intensité	é magnétique	(sans
calculs) des trois espé	èces avec explication.		(/ 4 points)
Fe				
Fe^{2+}				
$\mathrm{Fe^{3+}}$				
Comparaison et expli	cation :			
5. Représenter les esp est l'atome central	pèces suivantes selon la nota) :	ntion de Lewis et leur gé	eométrie (l'ato	ome en gras / 4 points)
N_2H_2	N_2H_4	NCl ₃	C	aCO ₃
a) l'équation chimiqu	est produit à partir de ses de équilibrée de cette réaction molécule de NH ₃ selon la r	on et	tir des atomes	
a) réaction équilibrée	:			
b) réaction selon Lew	vis :			
=	eux conditions nécessaires poss es d'être qualifié comme dip	-	t composée d	au moins / 2 points)

8. Préciser et justifier tous les	types de liaison	pour les molécules sui	vantes. (/ 5 points)
a. HBr :				
b. CaCO ₃ :				
c. Au:				
d. F ₂ :				
e. Na ₂ O :				
9. Les molécules suivantes, pe des orbitales moléculaires et o paramagnétiques et justifier la	de l'ordre de liais			
a. Be ₂	b. O_2^+			
nombre de points :	/36	Note :		