МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №5 по дисциплине «Машинное обучение»

Тема: Кластеризация (к-средних, иерархическая)

Студент гр. 6307	 Новиков Б.М.
Преподаватель	 Жангиров Т.Р.

ЗАГРУЗКА ДАННЫХ

1. Загрузка данных в датафрейм

Выведем 5 первых строк:

	0	1	2	3	4
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

K-MEANS

1. Проведем кластеризацию методом k-средних

```
k_means = KMeans(init='k-means++', n_clusters=3, n_init=15)
k_means.fit(no_labeled_data)
```

2. Получим центры кластеров и определим наблюдения в какой кластер попали

```
k_means_cluster_centers = k_means.cluster_centers_
k_means_labels = pairwise_distances_argmin(no_labeled_data, k_means_cluster_centers)
```

```
[[6.85 3.07368421 5.74210526 2.07105263]
[5.006 3.418 1.464 0.244 ]
[5.9016129 2.7483871 4.39354839 1.43387097]]
```

3. Построим результаты классификации для признаков попарно

Как влияет значение параметра n_init? Количество запусков алгоритма с разными сидами для центроида. 4. Уменьшить размерность данных до 2, используя метод главных компонент и нарисуйте карту для всей области значений, на которой каждый кластер занимает определенную область со своим цветом.

reduced_data = PCA(n_components=2).fit_transform(no_labeled_data)

kmeans = KMeans(init='k-means++', n_clusters=3, n_init=15)
kmeans.fit(reduced_data)

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross

5. Исследуем работу алгоритма k-средних при различных параметрах init. k_means = KMeans(init='k-means++', n_clusters=10) k_means.fit(no_labeled_data)

При параметре init k-means++ k_means.inertia_: 26.171482323232333

for i in range(3):

k_means = KMeans(init='random', n_clusters=10)
k_means.fit(no_labeled_data)

При параметре init random k_means.inertia_ (3 запуска):

26.382150394101185

26.93803227732022

26.37322510822512

```
6. Определить наилучшее количество методом локтя. inertia_values = [] range_of_n = range(3, 50)

for n in range_of_n:
    k_means = KMeans(init='k-means++', n_clusters=n)
    k_means.fit(no_labeled_data)
    inertia_values.append(k_means.inertia_)

plt.xlabel("No of clusters")
plt.ylabel("Inertia")
plt.plot(range_of_n, inertia_values)

plt.show()
```


Как видно по графику, 12 кластеров — наилучшее количество

7. Проведем кластеризацию, используя пакетную кластеризацию k-средних. В чем отличие от обычного метода k-средних. Постройте диаграмму рассеяния, на которой будут выделены точки, которые для разных методов попали в разные кластеры.

На данном графике точки, которые попали в другой кластер, выделены цветом magenta.

ИЕРАРХИЧЕСКАЯ КЛАСТЕРИЗАЦИЯ

1. Проведем иерархическую кластеризацию на тех же данных

```
hier = AgglomerativeClustering(n_clusters=3, linkage='average')
hier = hier.fit(no_labeled_data)
hier_labels = hier.labels_
```

2. Отобразим результаты кластеризации

В чем отличие от метода k-средних?

3. Проведем исследование для различного размера кластеров (2-5)

4. Нарисуем дендограмму до уровня 6

5. Сгенерируем случайные данные в виде двух колец

```
data1 = np.zeros([250,2])

for i in range(250):
    r = random.uniform(1, 3)
    a = random.uniform(0, 2*math.pi)
    data1[i,0] = r*math.sin(a)
    data1[i,1] = r*math.cos(a)
    data2 = np.zeros([500,2])

for i in range(500):
    r = random.uniform(5, 9)
    a = random.uniform(0, 2*math.pi)
    data2[i,0] = r*math.sin(a)
    data2[i,1] = r*math.cos(a)
```

data = np.vstack((data1, data2))

6. Проведем иерархическую кластеризацию

hier = AgglomerativeClustering(n_clusters=2, linkage='ward')
hier = hier.fit(data)
hier_labels = hier.labels_

7. Выведем полученные результаты

8. Исследуем кластеризацию при всех параметрах linkage. Отобразим и обоснуем полученные рез-ты. Для каких случаев какой тип связи будет работать лучше всего.

Параметры: 'ward', 'complete', 'average', 'single'

минимизирует дисперсию объединенных кластеров

средняя дистанция каждого наблюдения множества

максимальная дистанция между всеми наблюдениями двух множества

минимальная дистанция между всеми наблюдениями двух множеств