Аффинная плоскость

Всюду в этом листке по умолчанию предполагается, что характеристика основного поля \Bbbk отлична от 2, т. е. $2 \stackrel{\text{def}}{=} 1 + 1 \neq 0$ в \Bbbk . Во всех задачах кроме первой можно считать, что $\Bbbk = \mathbb{Q}$ есть поле рациональных чисел.

- Γ Л1 \diamond 1. Сколько прямых на аффинной плоскости над конечным полем из q чисел?
- **ГЛ1\diamond2.** Коллинеарны ли на аффинной плоскости \mathbb{k}^2
 - **а)** пересечение боковых сторон, пересечение диагоналей и середины оснований произвольной трапеции
 - **б)** середины диагоналей и середина отрезка с концами в точках пересечения боковых сторон произвольного четырёхугольника?
- **ГЛ1 \diamond 3.** Дана замкнутая ломаная с нечётным числом вершин. Обозначим через s_1, s_2, \ldots, s_m середины её последовательных сторон, через x_0 произвольную точку, а через x_i результат центрально симметричного отражения точки x_{i-1} относительно точки s_i , где $i=1,\,2,\,\ldots,\,m$. Всегда ли середина отрезка $[x_0,x_m]$ является вершиной данной ломаной?
- **ГЛ1 > 4** (**группирование масс**). Пусть набор точек p_i с весами μ_i и набор точек q_j с весами ν_j имеют барицентры c_p и c_q соответственно, причём все три суммы $\sum \mu_i$, $\sum \nu_j$ и $\sum \mu_i + \sum \nu_j$ ненулевые. Совпадает ли барицентр объединения этих наборов с барицентром пары точек c_p и c_q , взятых с весами $\sum \mu_i$ и $\sum \nu_j$?
- **ГЛ1 >5 (теорема Чевы).** На проходящих через три неколлинеарные точки a,b,c прямых (bc), (ac) и (ab) отмечены точки $a_1=\alpha_bb+\alpha_cc$, $b_1=\beta_aa+\beta_cc$, $c_1=\gamma_aa+\gamma_bb$. Покажите, что в точки a,b,c можно поместить веса α,β,γ так, чтобы центр тяжести точек a и b оказался в точке c_1 , центр тяжести точек b и c— в точке a_1 , а центр тяжести точек c и a— в точке b_1 , если и только если $(\alpha_b:\alpha_c)\cdot(\beta_c:\beta_a)\cdot(\gamma_a:\gamma_b)=1$. Выведите из этого необходимое и достаточное условие прохождения прямых $(aa_1),(bb_1),(cc_1)$ через одну точку.
- **ГЛ1 \diamond6 (теорема Менелая).** Покажите, что лежащие на прямых (bc), (ca) и (ab) точки a_1 , b_1 и c_1 коллинеарны если и только если $(\overrightarrow{a_1b}:\overrightarrow{a_1c})\cdot(\overrightarrow{b_1c}:\overrightarrow{b_1a})\cdot(\overrightarrow{c_1a}:\overrightarrow{c_1b})=1$.
- **ГЛ1\diamond7.** Верно ли, что на аффинной плоскости \mathbb{R}^2
 - а) два выпуклых четырёхугольника переводятся друг в друга аффинным преобразованием если и только если у них одинаковы отношения, в которых соответственные друг другу диагонали делятся точкой своего пересечения
 - **б)** две трапеции переводятся друг в друга аффинным преобразованием если и только если у них одинаковые отношения оснований
 - **в***) пятиугольник переводится аффинным преобразованием в правильный пятиугольник если и только если какие-то четыре его диагонали параллельны противолежащим им сторонам?
- **ГЛ1\diamond8***. Каждая сторона выпуклого четырёхугольника в \mathbb{R}^2 разделена на три равные части и соответственные точки деления на противоположных сторонах соединены так, что четырёхугольник разбивается на девять меньших четырёхугольников. Найдите отношение площади среднего из них к площади исходного четырёхугольника.
- **ГЛ1 \diamond9*.** Векторы $v_1, v_2, \ldots, v_n \in \mathbb{R}^2$ идут из центра правильного n-угольника в его вершины, однако занумерованы случайно. Может ли удвоенная площадь этого n-угольника оказаться меньше суммы $\det(v_1, v_2) + \det(v_2, v_3) + \cdots + \det(v_{n-1}, v_n) + \det(v_n, v_1)$?

¹Объединение совпадающих точек заключается в сложении их весов.

No	дата	кто принял	подпись
1			
2a			
б			
3			
4			
5			
6			
7a			
б			
В			
8			
9			