assignment-3

September 14, 2023

Name:- Anmol Vipin Devansh Registration No.:- 21BCE10314 Assignment Number: 3

```
[1]: # import necessary libraries
  import pandas as pd
  import numpy as np
  import seaborn as sns
  import matplotlib.pyplot as plt
  from sklearn.model_selection import train_test_split
  from sklearn.preprocessing import StandardScaler, LabelEncoder
  from sklearn.metrics import classification_report
  from sklearn.cluster import KMeans
  from sklearn.ensemble import RandomForestClassifier
  from sklearn.svm import SVC
```

```
[2]: # Task 1: Load the dataset
     print("Task 1: Load the dataset")
     missing_values = ["", "NA", "N/A", "NaN"]
     penguins_data = pd.read_csv('penguinsize.csv', na_values=missing_values)
     print(penguins_data)
     # Task 2: Univariate Analysis
     print("\n\n\nTask 2: Univariate Analysis")
     sns.set(style="darkgrid")
     plt.figure(figsize=(15, 10))
     # Histograms for numeric attributes
     numeric_attributes = ["culmen_length_mm", "culmen_depth_mm", "

¬"flipper_length_mm", "body_mass_g"]
     for i, col in enumerate(numeric_attributes, 1):
         plt.subplot(2, 4, i)
         sns.histplot(data=penguins_data, x=col, kde=True)
         plt.title(f'Histogram of {col}')
     # Countplots for categorical attributes
     categorical_attributes = ["species", "island", "sex"]
     for i, col in enumerate(categorical_attributes, 1):
```

```
plt.subplot(2, 4, i + 4)
sns.histplot(data=penguins_data, x=col)
plt.title(f'Countplot of {col}')

plt.tight_layout()
plt.show()
```

Task 1: Load the dataset

species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	
Adelie	Torgersen	39.1	18.7	181.0	\
Adelie	Torgersen	39.5	17.4	186.0	
Adelie	Torgersen	40.3	18.0	195.0	
Adelie	Torgersen	NaN	NaN	NaN	
Adelie	Torgersen	36.7	19.3	193.0	
•••	•••	•••	•••	•••	
Gentoo	Biscoe	NaN	NaN	NaN	
Gentoo	Biscoe	46.8	14.3	215.0	
Gentoo	Biscoe	50.4	15.7	222.0	
Gentoo	Biscoe	45.2	14.8	212.0	
Gentoo	Biscoe	49.9	16.1	213.0	
	Adelie Adelie Adelie Adelie Adelie Adelie Gentoo Gentoo Gentoo	Adelie Torgersen Adelie Torgersen Adelie Torgersen Adelie Torgersen Adelie Torgersen Adelie Torgersen Gentoo Biscoe Gentoo Biscoe Gentoo Biscoe Gentoo Biscoe Gentoo Biscoe	Adelie Torgersen 39.1 Adelie Torgersen 39.5 Adelie Torgersen 40.3 Adelie Torgersen NaN Adelie Torgersen 36.7 Gentoo Biscoe NaN Gentoo Biscoe 46.8 Gentoo Biscoe 50.4 Gentoo Biscoe 45.2	Adelie Torgersen 39.1 18.7 Adelie Torgersen 39.5 17.4 Adelie Torgersen 40.3 18.0 Adelie Torgersen NaN NaN Adelie Torgersen 36.7 19.3 Gentoo Biscoe NaN NaN Gentoo Biscoe 46.8 14.3 Gentoo Biscoe 50.4 15.7 Gentoo Biscoe 45.2 14.8	Adelie Torgersen 39.1 18.7 181.0 Adelie Torgersen 39.5 17.4 186.0 Adelie Torgersen 40.3 18.0 195.0 Adelie Torgersen NaN NaN NaN Adelie Torgersen 36.7 19.3 193.0 Gentoo Biscoe NaN NaN NaN Gentoo Biscoe 46.8 14.3 215.0 Gentoo Biscoe 50.4 15.7 222.0 Gentoo Biscoe 45.2 14.8 212.0

	body_mass_g	sex
0	3750.0	MALE
1	3800.0	FEMALE
2	3250.0	FEMALE
3	NaN	NaN
4	3450.0	FEMALE
• •	•••	•••
339	 NaN	 NaN
339 340	 NaN 4850.0	 NaN FEMALE
340	4850.0	FEMALE
340 341	4850.0 5750.0	FEMALE MALE

[344 rows x 7 columns]

Task 2: Univariate Analysis


```
[3]: # Task 3: Bivariate Analysis
     print("Task 3: Bivariate Analysis\n\n\n")
     # numeric_attributes are "culmen_length_mm", "culmen_depth_mm", "
     →"flipper_length_mm", "body_mass_g"
     # (species vs. numeric attributes)
     plt.figure(figsize=(15, 15))
     for i, col in enumerate(numeric_attributes, 1):
         plt.subplot(3, 4, i)
         sns.boxplot(data=penguins_data, x="species", y=col)
         plt.title(f'Boxplot of {col} vs. Species')
     # (island vs. numeric attributes)
     for i, col in enumerate(numeric_attributes, 1):
         plt.subplot(3, 4, i + 4)
         sns.boxplot(data=penguins_data, x="island", y=col)
         plt.title(f'Boxplot of {col} vs. Island')
     # (sex vs. numeric_attributes)
     for i, col in enumerate(numeric_attributes, 1):
         plt.subplot(3, 4, i + 8)
         sns.boxplot(data=penguins_data, x="sex", y=col)
         plt.title(f'Boxplot of {col} vs. Sex')
```

```
plt.tight_layout()
plt.show()
```

Task 3: Bivariate Analysis


```
[4]: # Task 4: Multivariate Analysis
print("Task 4: Multivariate Analysis\n\n\n\n")
plt.figure(figsize=(5, 5))
```

```
sns.pairplot(data=penguins_data, hue="species", diag_kind="kde")
plt.show()
sns.pairplot(data=penguins_data, hue="island", diag_kind="kde")
plt.show()
sns.pairplot(data=penguins_data, hue="sex", diag_kind="kde")
plt.show()
```

Task 4: Multivariate Analysis

<Figure size 500x500 with 0 Axes>


```
[5]: # Task 5: Descriptive Statistics
print("Task 5: Descriptive statistics of dataset:\n\n\n\n")
descriptive_stats = penguins_data.describe()
print(descriptive_stats)
```

Task 5: Descriptive statistics of dataset:

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000

```
75% 48.500000 18.700000 213.000000 4750.000000 max 59.600000 21.500000 231.000000 6300.000000
```

```
[6]: # Task 6: Handle Missing Values

print("Task 6: Handle Missing Values\n\n\n\n")

missing_values = penguins_data.isnull().sum()

# drop rows with missing value

print("Dataset after dropping rows with missing values")

penguins_data.dropna()

# Load the dataset (replace 'your_dataset.csv' with the actual file path)
```

Task 6: Handle Missing Values

Dataset after dropping rows with missing values

[6]:		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm
	0	Adelie	Torgersen	39.1	18.7	181.0 \
	1	Adelie	Torgersen	39.5	17.4	186.0
	2	Adelie	Torgersen	40.3	18.0	195.0
	4	Adelie	Torgersen	36.7	19.3	193.0
	5	Adelie	Torgersen	39.3	20.6	190.0
		•••	•••	•••	•••	•••
	338	Gentoo	Biscoe	47.2	13.7	214.0
	340	Gentoo	Biscoe	46.8	14.3	215.0
	341	Gentoo	Biscoe	50.4	15.7	222.0
	342	Gentoo	Biscoe	45.2	14.8	212.0
	343	Gentoo	Biscoe	49.9	16.1	213.0
		bodv ma	ss_g se	x		
	0	-	50.0 MAL			
	1		00.0 FEMAL			
	2		50.0 FEMAL			
	4	34	50.0 FEMAL	E		
	5	36	50.0 MAL	E		
			•••			
	338	49	25.0 FEMAL	E		
	340		50.0 FEMAL			
	341		50.0 MAL			
	342		00.0 FEMAL			
	343		OO.O MAL			

[334 rows x 7 columns]

```
[15]: #Task 7: Find the outliers and replace them outliers
      import pandas as pd
      import numpy as np
      # Load your dataset into a DataFrame
      penguins_data = pd.read_csv('penguinsize.csv')
      # Define a function to replace outliers using the IQR method
      def replace outliers igr(df, column name, multiplier=1.5):
          Q1 = df[column_name].quantile(0.25)
          Q3 = df[column name].quantile(0.75)
          IQR = Q3 - Q1
          lower_bound = Q1 - multiplier * IQR
          upper_bound = Q3 + multiplier * IQR
          df[column_name] = np.where(df[column_name] < lower_bound, lower_bound, __</pre>

df [column_name])
          df[column_name] = np.where(df[column_name] > upper_bound, upper_bound,

df[column name])
      # Specify the columns to check for outliers
      columns_to_check = ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', u
       # Replace outliers in the specified columns
      for column in columns to check:
          replace_outliers_iqr(penguins_data, column)
      # Display the data after replacing outliers
      print("Data After Replacing Outliers:")
      print(penguins_data.head())
     Data After Replacing Outliers:
                   island culmen_length_mm culmen_depth_mm flipper_length_mm
       species
     O Adelie Torgersen
                                        39.1
                                                         18.7
                                                                           181.0
                                        39.5
                                                         17.4
                                                                           186.0
     1 Adelie Torgersen
                                       40.3
     2 Adelie Torgersen
                                                         18.0
                                                                           195.0
     3 Adelie Torgersen
                                        {\tt NaN}
                                                         {\tt NaN}
                                                                             NaN
     4 Adelie Torgersen
                                       36.7
                                                         19.3
                                                                           193.0
        body_mass_g
                        sex
     0
             3750.0
                       MALE
     1
             3800.0 FEMALE
     2
             3250.0 FEMALE
     3
                {\tt NaN}
                        NaN
     4
             3450.0 FEMALE
```

```
[8]: #Task 8: Check the correlation of independent variables with the target
     import pandas as pd
     # Load your dataset into a DataFrame
     df = pd.read_csv('penguinsize.csv')
     # Define the target variable and numerical features of interest
     target_variable = 'body_mass_g' # Replace with your actual target variable
     numerical_features = ['culmen_length_mm', 'culmen_depth_mm', |
     →'flipper_length_mm'] # Replace with your actual numerical features
     # Calculate Pearson correlation coefficients
     correlations = penguins_data[numerical_features].corrwith(df[target_variable])
     # Print the correlations
     print("Correlation with the target variable:")
     print(correlations)
    Correlation with the target variable:
    culmen_length_mm
                        0.595110
    culmen_depth_mm
                       -0.471916
    flipper_length_mm 0.871202
    dtype: float64
[9]: #Task 9: Check for Categorical columns and perform encoding
     import pandas as pd
     from sklearn.preprocessing import LabelEncoder
     # Load your dataset into a DataFrame
     penguins_data = pd.read_csv('penguinsize.csv')
     # Identify categorical columns
     categorical_columns = penguins_data.select_dtypes(include=['object',_

¬'category']).columns.tolist()
     # Perform encoding based on the type of categorical variable
     for column in categorical_columns:
         unique_values = penguins_data[column].nunique()
         # If the number of unique values is low (indicating ordinal categorical), __
      ⇔use label encoding
         if unique values <= 10:</pre>
             label_encoder = LabelEncoder()
             penguins_data[column] = label_encoder.
      →fit_transform(penguins_data[column])
         else:
```

```
# Use one-hot encoding for nominal categorical variables
              penguins_data = pd.get_dummies(penguins_data, columns=[column],__

drop_first=True)

      # Display the data after encoding
      print(penguins data)
                   island culmen_length_mm culmen_depth_mm flipper_length_mm
           species
     0
                 0
                         2
                                          39.1
                                                            18.7
                                                                               181.0 \
                 0
                          2
                                          39.5
                                                            17.4
     1
                                                                               186.0
                 0
                          2
                                          40.3
                                                            18.0
     2
                                                                               195.0
     3
                 0
                          2
                                           {\tt NaN}
                                                             {\tt NaN}
                                                                                 {\tt NaN}
                 0
     4
                          2
                                          36.7
                                                            19.3
                                                                               193.0
     339
                 2
                          0
                                           {\tt NaN}
                                                             {\tt NaN}
                                                                                 NaN
     340
                 2
                                          46.8
                                                            14.3
                                                                               215.0
                          0
     341
                 2
                          0
                                         50.4
                                                            15.7
                                                                               222.0
                 2
                          0
                                         45.2
                                                            14.8
                                                                               212.0
     342
                 2
                                          49.9
                                                            16.1
     343
                          0
                                                                               213.0
          body_mass_g sex
     0
                3750.0
                3800.0
     1
     2
                3250.0
     3
                   {\tt NaN}
     4
                3450.0
                           1
     . .
                   ... ...
     339
                   NaN
     340
                4850.0
                           1
     341
                5750.0
     342
                5200.0
                           1
                5400.0
     343
     [344 rows x 7 columns]
[10]: #Task 10: Split the data into dependent and independent variables.
      import pandas as pd
      # Load your dataset into a DataFrame
      penguins_data = pd.read_csv('penguinsize.csv')
      # Define the dependent variable (target) and independent variables (features)
      # Replace 'target_column' with the name of your target variable
      target_column = 'species' # Example target variable name
      # Create a DataFrame for the dependent variable (target)
```

```
y = penguins_data[target_column]
      # Create a DataFrame for the independent variables (features) by dropping the
      ⇔target column
      X = penguins_data.drop(columns=[target_column])
      # Display the data after splitting
      print("Dependent Variable (Target - y):")
      print(y.head())
      print("\nIndependent Variables (Features - X):")
      print(X.head())
     Dependent Variable (Target - y):
     0
          Adelie
     1
          Adelie
     2
          Adelie
     3
          Adelie
     4
          Adelie
     Name: species, dtype: object
     Independent Variables (Features - X):
           island culmen_length_mm culmen_depth_mm flipper_length_mm
     0 Torgersen
                               39.1
                                                 18.7
                                                                   181.0 \
                               39.5
                                                 17.4
     1 Torgersen
                                                                   186.0
     2 Torgersen
                               40.3
                                                 18.0
                                                                   195.0
     3 Torgersen
                                {\tt NaN}
                                                 \mathtt{NaN}
                                                                     NaN
     4 Torgersen
                                                                   193.0
                               36.7
                                                 19.3
        body_mass_g
                        sex
     0
             3750.0
                       MALE
     1
             3800.0 FEMALE
     2
             3250.0 FEMALE
     3
                        NaN
                NaN
             3450.0 FEMALE
[11]: # Task 11: Scaling the Data
      import pandas as pd
      from sklearn.preprocessing import StandardScaler, LabelEncoder
      # Load your dataset into a DataFrame
      penguins_data = pd.read_csv('penguinsize.csv')
      # Identify categorical columns
      categorical_columns = penguins_data.select_dtypes(include=['object',__

¬'category']).columns.tolist()
```

```
# Perform encoding for categorical columns
     label encoders = {}
     for column in categorical_columns:
         le = LabelEncoder()
         penguins_data[column] = le.fit_transform(penguins_data[column])
         label_encoders[column] = le
     # Define the dependent variable (target) and independent variables (features)
     target_column = 'species' # Example target variable name
     # Create a DataFrame for the dependent variable (target)
     y = penguins_data[target_column]
     # Create a DataFrame for the independent variables (features) by dropping the
      ⇒target column
     X = penguins_data.drop(columns=[target_column])
     # Scale only the numeric columns using StandardScaler
     numeric_columns = X.select_dtypes(include=[np.number]).columns.tolist()
     scaler = StandardScaler()
     X[numeric columns] = scaler.fit transform(X[numeric columns])
     # Display the data after all tasks, including scaling
     print("Data After All Tasks:")
     print(penguins_data.head())
     Data After All Tasks:
        species island culmen_length_mm culmen_depth_mm flipper_length_mm
                                    39.1
                                                    18.7
             0
                     2
                                                                      181.0 \
     1
             0
                     2
                                    39.5
                                                    17.4
                                                                     186.0
     2
             0
                     2
                                    40.3
                                                    18.0
                                                                     195.0
                                                                       NaN
     3
             0
                     2
                                    {\tt NaN}
                                                    {\tt NaN}
     4
             0
                     2
                                    36.7
                                                    19.3
                                                                     193.0
       body_mass_g sex
     0
            3750.0
     1
            3800.0
     2
            3250.0
                      1
     3
               \mathtt{NaN}
            3450.0
[12]: #Task 12: Split the data into training and testing
     from sklearn.model_selection import train_test_split
     # Split the data into training and testing sets (adjust the test size as needed)
     →random_state=42)
```

```
# Display the shapes of the resulting sets
      print("X_train shape:", X_train.shape)
      print("X_test shape:", X_test.shape)
      print("y_train shape:", y_train.shape)
      print("y_test shape:", y_test.shape)
     X_train shape: (275, 6)
     X_test shape: (69, 6)
     y_train shape: (275,)
     y_test shape: (69,)
[13]: #Task 13: check the training and testing data shape.
      # Check the shapes of the training and testing data
      print("Training Data Shapes:")
     print("X_train shape:", X_train.shape)
      print("y_train shape:", y_train.shape)
      print("\nTesting Data Shapes:")
      print("X_test shape:", X_test.shape)
      print("y_test shape:", y_test.shape)
     Training Data Shapes:
     X_train shape: (275, 6)
     y_train shape: (275,)
     Testing Data Shapes:
     X_test shape: (69, 6)
     y_test shape: (69,)
```