ACCQ 205 - Courbes algébriques

1 Corps et extensions de corps

2 Le Nullstellensatz et les fermés de Zariski

Anneaux nothérien

Def. Un idéal *I* d'un anneau *A* est de **type fini** s'il est engendré par un nombre fini d'éléments (équivalent à être de type fini en tant que sous-module de *A*).

Def. Un anneau *A* est dit **noethérien** lorsque tout idéal *I* de *A* est de type fini.

Rem. Un quotient d'un anneau noethérien est noethérien.

Th (de la base de Hilbert). Si A est un anneau noethérien, alors l'anneau A[t] des polynômes à une indéterminée sur A est noethérien.

Cor. Soit k un corps ou un anneau noethérien. Alors l'anneau $k[t_1, \ldots, t_n]$ des polynômes en n indéterminées sur k est un anneau noethérien, et plus généralement toute k-algèbre de type fini (comme k-algèbre) $k[x_1, \ldots, x_n]$ est un anneau noethérien.

Idéaux maximaux d'anneaux de polynômes

Lem. Soit k un corps algébriquement clos et K une extension. On suppose que $h_1, \ldots, h_m \in k[t_1, \ldots, t_n]$ ont un zéro commun dans K (i.e $\exists z_1, \ldots, z_n \in K, \forall i, h_i(z_1, \ldots, z_n = 0)$). Alors ils en ont un dans k.

Not. Soit k un corps et $(x_1, \ldots, x_n) \in k^n$. On note

$$\mathfrak{m}_{(x_1,\ldots,x_n)} := \{ f \in k[t_1,\ldots,t_n] \mid f(x_1,\ldots,x_n) = 0 \} = (t_1-x_1,\ldots,t_n-x_n) .$$

Prop. Soit k un corps algébriquement clos. Les idéaux maximaux de $k[t_1, \ldots, t_n]$ sont exactement les idéaux $\mathfrak{m}_{(x_1, \ldots, x_n)}$. **Prop** (lemme de Zariski). Soit k un corps et K une extension de type fini comme k-algèbre. Alors k est en fait une extension finie.

Le Nullstellensatz

Prop (Nullstellensatz faible). Soient $h_1, \ldots, h_m \in k[t_1, \ldots, t_n]$ avec k algébriquement clos. Si h_1, \ldots, h_m n'engendrent pas l'idéal unité, alors ils ont un zéro commun dans $k : \exists x_1, \ldots, x_n \in k, \forall i, h_i(x_1, \ldots, x_n) = 0$.

Prop (Nullstellensatz fort). Soient $g, h_1, \ldots, h_m \in k[t_1, \ldots, t_n]$ avec k algébriquement clos. Si g s'annule sur tous les zéros commun de h_1, \ldots, h_m alors $\exists l \in \mathbf{N}, g^l \in (h_1, \ldots, h_m)$ (idéal engendré).

Fermés de Zariski

Def. Un idéal $\mathfrak r$ d'un anneau A est dit **radical** lorsque $A/\mathfrak r$ est réduit, i.e $\forall x \in A, \forall n \in \mathbf N, x^n \in \mathfrak r \implies x \in \mathfrak r.$

Un idéal premier, et a fortiori un idéal maximal, est en particulier un idéal radical.

Dans ce qui suit on note k un corps et k^{alg} une clôture algébrique.

Not. Soit
$$\mathscr{F} \subset k[t_1,\ldots,t_n]$$
. On pose $Z(\mathscr{F}) := \{(x_1,\ldots,x_d) \in (k^{\mathrm{alg}})^d \mid \forall f \in \mathscr{F}, f(x_1,\ldots,x_d) = 0\}.$

Def. On appelle **fermé de Zariski** tout ensemble de la forme $Z(\mathscr{F})$ et l'on peut supposer que \mathscr{F} est un idéal radical.

Def. Un fermé de Zariski de la forme $Z(f) = Z(\{f\})$ est appelé une **hypersurface**.

Rem. Le vide, $(k^{alg})^d$ et les singletons sont des fermés de Zariski.

Not. Soit $E \subset (k^{\text{alg}})^d$. On pose $\mathfrak{J}(E) := \{ f \in k[t_1, \dots, t_n] \mid \forall (x_1, \dots, x_d) \in E, f(x_1, \dots, x_d) = 0 \}.$

Rem. $\mathfrak{J}(E)$ est un idéal radical, \mathfrak{J} est décroissant pour l'inclusion et $\mathfrak{J}(E) = \bigcap_{x \in E} \mathfrak{M}_x$ où $\mathfrak{M}_x = \mathfrak{J}(\{x\})$.