

CLOUD COMPUTING CONCEPTS with Indranil Gupta (Indy)

SECURITY

Lecture B

BASIC CRYPTOGRAPHY CONCEPTS

BASIC SECURITY TERMINOLOGY

- **Principals**: processes that carry out actions on behalf of users
 - Alice
 - Bob
 - Carol
 - Dave
 - Eve (typically evil)
 - Mallory (typically malicious)
 - Sara (typically server)

KEYS

- Key = sequence of bytes assigned to a user
 - Can be used to "lock" a message, and only this key can be used to "unlock" that locked message

ENCRYPTION

- Message (sequence of bytes) + Key →
 (Encryption) →
 Encoded message (sequence of bytes)
- Encoded Message (sequence of bytes) + Key →
 (Decryption) →
 Original message (sequence of bytes)
- No one can decode an encoded message without the key

Two Cryptography Systems

<u>I. Symmetric Key</u> systems:

- K_A = Alice's key; secret to Alice
- $K_{AB} = Key shared only by Alice and Bob$
- Same key used to both encrypt and decrypt a message
- •E.g., DES (Data Encryption Standard): 56 b key operates on 64 b blocks from the message

Two Cryptography Systems (2)

II. Public-Private Key systems:

- K_{Apriv} = Alice's private key; known only to Alice
- K_{Apub} = Alice's public key; known to *everyone*
- Anything encrypted with $K_{\mbox{\scriptsize Apriv}}$ can be decrypted only with $K_{\mbox{\scriptsize Apub}}$
- Anything encrypted with K_{Apub} can be decrypted only with K_{Apriv}

•RSA and PGP fall into these categories

- RSA = Rivest Shamir Adleman
- PGP = Pretty Good Privacy
- Keys are several 100s or 1000s of b long
- Longer keys => harder for attackers to break
- Public keys maintained via PKI (Public Key Infrastructure)

PUBLIC-PRIVATE KEY CRYPTOGRAPHY

- If Alice wants to send a secret message M that can be read only by Bob
 - Alice encrypts it with Bob's public key
 - $-K_{Bpub}(M)$
 - Bob only one able to decrypt it
 - $-K_{Bpriv}(K_{Bpub}(M)) = M$
 - Symmetric too, i.e., $K_{Apub}(K_{Apriv}(M)) = M$

SHARED/SYMMETRIC VS. PUBLIC/PRIVATE

- Shared keys reveal too much information
 - Hard to revoke permissions from principals
 - E.g., group of principals shares one key
 - → want to remove one principal from group
 - → need everyone in group to change key
- Public/private keys involve costly encryption or decryption
 - At least one of these 2 operations is costly
- Many systems use public/private key system to generate shared key, and use latter on messages

NEXT

• How to use cryptography to implement security mechanisms