LABORATORIO DI CALCOLO II - APPELLO 22/07/2009 COMPITO 1

COGNOME		NOME	
MATR	FIRMA		

Creare una cartella dal nome **cognome_nome_matricola** nella vostra home directory: mkdir **cognome_nome_matricola**

Svolgere l'esercizio in tale cartella e, al termine dello svolgimento, copiare l'intera cartella in /home/comune/lab2_lug09_compito1 con i comandi:

cp -r **cognome_nome_matricola** /home/comune/lab2_lug09_compito1 La cartella deve contenere tutto il necessario per eseguire delle macro di ROOT o compilare ed eseguire un programma dando i comandi:

make compito

./compito

ed un file di testo soluzione.txt contente le risposte alle domande nel testo e le eventuali istruzioni per eseguire il programma/macro.

Un protone (m_p =1.67×10⁻²⁷ kg, q_p =1.60×10⁻¹⁹ C) si muove in un campo elettrico variabile, secondo l'equazione del moto:

$$\frac{d^2x}{dt^2} = -\frac{q_p}{m_p} E_0 \sin(kx - \omega t)$$

con $E_0=10^7$ V/m, k=10 m⁻¹, $\omega=10^9$ Hz.

- 1. Facendo un grafico della velocità in funzione del tempo, per una durata di almeno 10⁻⁷ s:
 - a. Si verifichi che nel caso di condizioni iniziali x(0)=0, $v(0)=10^8$ m/s, il protone si muove di moto rettilineo uniforme.
 - b. Si verifichi che per $v(0)\approx 10^8$ m/s, la velocità effettua delle oscillazioni attorno a questo valore con ampiezza pari a $v(0)-10^8$ m/s.
- 2. Considerando il valore iniziale della velocità di 1.1×10^8 m/s, indicare di quanto l'ampiezza di oscillazione stimata numericamente differisce dal valore atteso (punto 1b) in funzione del passo di integrazione tra 10^{-11} s e 10^{-10} s (a intervalli di 10^{-11} s).
- 3. Ripetere il punto 1 per E_0 =- 10^7 V/m: il risultato di 1a è ancora corretto, mentre per 1b cambia il punto di mezzo dell'oscillazione: fornire oltre all'ampiezza misurata anche il punto medio dell'oscillazione per v(0) 0.9× 10^8 m/s e 1.1× 10^8 m/s

Soluzione

Nel grafico viene indicato la velocità in funzione del tempo per per i valori iniziali $v(0)=10^8$ m/s (linea tratteggiata) a $v(0)=1.1\times10^8$ m/s (linea continua), che verificano il comportamento descritto nel punto 1 dell'esercizio:

Utilizzando il metodo di Runge-Kutta costruito durante il corso, la differenza tra l'ampiezza di oscillazione osservata e quella attesa è dell'ordine di quale m/s. Per i passi di integrazione richiesti, questa non dipende significativamente dal valore del passo.

Il grafico seguente mostra il comportamento per il segno opposto del campo elettrico, in cui $v(0)=10^8$ m/s è un punto fisso del moto, ma instabile, per cui a valori iniziali diversi corrispondono oscillazioni diverse:

LABORATORIO DI CALCOLO II - APPELLO 22/07/2009 COMPITO 2

COGNOME		NOME_	NOME
MATR	FIRMA		

Creare una cartella dal nome **cognome_nome_matricola** nella vostra home directory: mkdir **cognome_nome_matricola**

Svolgere l'esercizio in tale cartella e, al termine dello svolgimento, copiare l'intera cartella in /home/comune/lab2_lug09_compito2 con i comandi:

cp -r **cognome_nome_matricola** /home/comune/lab2_lug09_compito2 La cartella deve contenere tutto il necessario per eseguire delle macro di ROOT o compilare ed eseguire un programma dando i comandi:

make compito

./compito

ed un file di testo soluzione.txt contente le risposte alle domande nel testo e le eventuali istruzioni per eseguire il programma/macro.

Un protone (m_p =1.67×10⁻²⁷ kg, q_p =1.60×10⁻¹⁹ C) si muove in un campo elettrico variabile, secondo l'equazione del moto:

$$\frac{d^2x}{dt^2} = -\frac{q_p}{m_p} E_0 \sin\left(\frac{2\pi}{\lambda}x - 2\pi ft\right)$$

con $E_0=10^7$ V/m, $\lambda=20$ cm, $f=5\times10^8$ Hz.

- 1. Facendo un grafico della velocità in funzione del tempo, per una durata di almeno 10^{-7} s, si verifichi che nel caso di condizioni iniziali x(0)=0, $v(0)=10^8$ m/s, il protone si muove di moto rettilineo uniforme.
- 2. Cambiando il valore iniziale di x(0), la velocità effettua delle oscillazioni attorno al valore di equilibrio di 10^8 m/s. Variare il valore iniziale della posizione da 0 a 20 cm, a passi di 1 cm: per ognuno dei valori iniziali fornire l'ampiezza delle oscillazioni (metà della differenza tra velocità minima e velocità massima) e la differenza tra la velocità media (valor medio di velocità massima e minima) ed il valore di equilibrio di 10^8 m/s.
- 3. Mettere in grafico i numeri trovati al punto 2.

N.B.: per x(0)=10 cm l'ampiezza di oscillazione deve risultare vicina a 0.

Soluzione

A titolo di esempio, in figura è riportato l'andamento di v(t) per x(0)=0 (linea tratteggiata), 3 cm, 6cm e 9 cm (curve con ampiezza di oscillazione crescente):

Si noti come sia ampiezza che periodo dell'oscillazione dipendono dal valore iniziale.

I dati ottenuto nel punto 2 sono riportati nel grafico:

Per x(0)=10 cm, la velocità 10^8 m/s è di nuovo un punto fisso, per cui le oscillazioni hanno piccola ampiezza, ma è un punto instabile, per cui, a seconda del passo di integrazione usato, errori di arrotondamento possono finire con il sommarsi sistematicamente, risultando in un valore medio di v(t) leggermente diverso da 0.

LABORATORIO DI CALCOLO II - APPELLO 22/07/2009 COMPITO 3

COGNOME		NOME_	NOME
MATR	FIRMA		

Creare una cartella dal nome **cognome_nome_matricola** nella vostra home directory: mkdir **cognome_nome_matricola**

Svolgere l'esercizio in tale cartella e, al termine dello svolgimento, copiare l'intera cartella in /home/comune/lab2_lug09_compito3 con i comandi:

cp -r **cognome_nome_matricola** /home/comune/lab2_lug09_compito3 La cartella deve contenere tutto il necessario per eseguire delle macro di ROOT o compilare ed eseguire un programma dando i comandi:

make compito

./compito

ed un file di testo soluzione.txt contente le risposte alle domande nel testo e le eventuali istruzioni per eseguire il programma/macro.

Un elettrone (m_e =9.1×10⁻³¹ kg, q_e =-1.60×10⁻¹⁹ C) si muove in un campo elettrico variabile, secondo l'equazione del moto:

$$\frac{d^2x}{dt^2} = \frac{q_e}{m_e} E_0 \sin\left(\frac{2\pi}{\lambda}x - 2\pi ft\right)$$

con $E_0=10^4$ V/m, $\lambda=10$ cm, $f=10^9$ Hz.

- 1. Facendo un grafico della velocità in funzione del tempo, per una durata di almeno 10⁻⁷ s:
 - a. Si verifichi che nel caso di condizioni iniziali x(0)=0, $v(0)=10^8$ m/s, l'elettrone si muove di moto rettilineo uniforme.
 - b. Si verifichi che per $v(0)\approx 10^8$ m/s, la velocità effettua delle oscillazioni attorno a questo valore con ampiezza pari a $v(0)-10^8$ m/s.
- 2. Considerando il valore iniziale della velocità di 1.1×10⁸ m/s, indicare di quanto l'ampiezza di oscillazione stimata numericamente differisce dal valore atteso (punto 1b) in funzione del passo di integrazione tra 10⁻¹¹ s e 10⁻¹⁰ s (a intervalli di 10⁻¹¹ s).
- 3. Ripetere il punto 1 per E_0 =- 10^4 V/m: il risultato di 1a è ancora corretto, mentre per 1b cambia il punto di mezzo dell'oscillazione: fornire oltre all'ampiezza misurata anche il punto medio dell'oscillazione per v(0) pari a 0.9×10^8 m/s e 1.1×10^8 m/s

Soluzione

Nel grafico viene indicato la velocità in funzione del tempo per per i valori iniziali $v(0)=10^8$ m/s (linea tratteggiata) a $v(0)=1.1\times10^8$ m/s (linea continua), che verificano il comportamento descritto nel punto 1 dell'esercizio:

Utilizzando il metodo di Runge-Kutta costruito durante il corso, la differenza tra l'ampiezza di oscillazione calcolata numericamente e quella attesa è dell'ordine di una decina di m/s. Per i passi di integrazione richiesti, questa non dipende significativamente dal valore del passo.

Il grafico seguente mostra il comportamento per il segno opposto del campo elettrico, in cui $v(0)=10^8$ m/s è un punto fisso del moto, ma instabile, per cui a valori iniziali diversi corrispondono oscillazioni diverse. Essendo un punto instabile, può capitare di riscontrare il fenomeno della curva tratteggiata per valore iniziale $v(0)=10^8$ m/s: la velocità rimane costante, ma ad un certo punto un errore di arrotondamento la sposta di un poco dal valore di equilibrio. Questo spostamento risulta poi amplificato dall'evoluzione successiva.

