Engenharia de características e Regressão polinomial

 Nas aulas anteriores, mostramos como o Escalonamento das Características impacta o desempenho do Método do Gradiente.

- Nas aulas anteriores, mostramos como o Escalonamento das Características impacta o desempenho do Método do Gradiente.
- Entretanto, vale a pena destacar que a escolha de quais características devem compor o modelo também é de fundamental importância.

- Nas aulas anteriores, mostramos como o Escalonamento das Características impacta o desempenho do Método do Gradiente
- Entretanto, vale a pena destacar que a escolha de quais características devem compor o modelo também é de fundamental importância.

Pergunta:

Afinal, quais características são importantes?

- Nas aulas anteriores, mostramos como o Escalonamento das Características impacta o desempenho do Método do Gradiente
- Entretanto, vale a pena destacar que a escolha de quais características devem compor o modelo também
 é de fundamental importância.

Pergunta:

Afinal, quais características são importantes?

Resposta:

A área do Aprendizado de Máquina que busca responder a essa pergunta se chama **Engenharia de Características** (feature engineering), e vamos falar sobre ela nessa aula.

Engenharia de Características

Exemplo:

Buscando prever o preço de casas, por exemplo, podemos tentar um modelo do tipo

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + b$$

onde

 x_1 : Largura do terreno onde a casa está construída

2 : Profundidade do terreno onde a casa está construída

Usando nossa intuição, podemos também criar a característica $x_3=x_1x_2$ (Área do terreno) e incluí-la no modelo, que passa então a ser:

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Engenharia de Características

Engenharia de Características consiste em usar nossa intuição ou conhecimento prévio acerca do problema para criar novas características, transformando ou combinando outras características já definidas anteriormente.

Importante!

A inclusão de novas características relevantes para o problema pode melhorar significativamente a performance do modelo que está sendo treinado.

Regressão Polinomial

Regressão Polinomial

Até o presente momento, focamos em aproximar o comportamento dos nossos dados por meio de **retas**, ou seja, modelos lineares.

Pergunta:

É possível utilizar o Método do Gradiente para ajustar funções polinomiais para os nossos dados?

Regressão Polinomial

Até o presente momento, focamos em aproximar o comportamento dos nossos dados por meio de **retas**, ou seja, modelos lineares

Pergunta:

É possível utilizar o Método do Gradiente para ajustar funções polinomiais para os nossos dados?

Resposta:

Sim! Veremos isso agora, onde combinaremos a **regressão linear múltipla** com a **engenharia de características** para criarmos um novo algoritmo, denominado **Regressão Polinomial**.

Supondo que você tenha o seguinte conjunto de dados para preços de casas.

Pergunta:

Uma reta é capaz de explicar adequadamente esses dados?

Observação:

Para esse conjunto de dados, talvez o mais adequado seja tentar uma função quadrática do tipo

$$f(\overrightarrow{w}, b)(\overrightarrow{x}) = w_1 x + w_2 x^2 + b$$

Pergunta:

Uma parábola parece uma boa ideia?

Observação:

Talvez então uma função cúbica do tipo

$$f(\overrightarrow{w}, b)(\overrightarrow{x}) = w_1 x + w_2 x^2 + w_2 x^3 + b$$

Observação:

Talvez então uma função cúbica do tipo

$$f(\overrightarrow{w},b)(\overrightarrow{x}) = w_1 x + w_2 x^2 + w_2 x^3 + b$$

Observação:

Ao criar características do tipo x^2 , x^3 , ..., o escalonamento de características se torna ainda mais importante:

$$area = 1 - 10^3$$
$$area^2 = 1 - 10^6$$

$$area^3 = 1 - 10^9$$

Uma última hipótese:

Poderíamos também tentar

$$f(\overrightarrow{w}, b)(\overrightarrow{x}) = w_1 x + w_2 \sqrt{x} + b$$

De olho no código!

De olho no código!

Vamos agora ver um exemplo de código onde é realizada a **engenharia de características** para o contexto de **regressão polinomial**.

Acesse o Python Notebook usando o QR code ou o link abaixo:

https://colab.research.google.com/github/xaximpvp2/master/blob/main/codigo_aula8_eng_caracteristicas_e_regressao_polinomial.ipynb

Atividade de aula

Parte 1

Rode todo o código. Certifique-se que você o compreendeu.

Parte 2

 $oxed{1}$ Crie uma nova função alvo que possui pelo menos um termo polinomial de maior ordem (por exemplo, x^4) e modele-a fazendo as modificações necessárias no código.

13/13