CHEM2201: Section 1

Alex Ganose

January 5, 2013

Contents

1	Oxi	dation and Reduction Reactions	3		
	1.1	Example Reactions	4		
2	Enc	ols and Enolates	6		
	2.1	Example Reactions	6		
3	Ald	lol Reaciton	8		
	3.1	Unsymmetrical Ketones	9		
	3.2	Electrophiles	11		
	3.3	Other Reactions	11		
4	Cor	njugate Addition Reactions	13		
	4.1	Nucleophiles for Conjugate Addition	13		
	4.2	The Robinson Annelation	16		
5	Ret	Retrosynthetic Analysis			
	5.1	Terminology	17		
	5.2	Useful Reactions	17		
6	Spe	ectroscopy	19		
	6.1	Summary of IR Frequencies	19		
	6.2	¹ H NMR	20		
		6.2.1 Summary of Chemical Shifts			
		6.2.2 J Couplings	21		
	6.3	¹³ C, ¹⁹ F, ³¹ P NMR Spectroscopy	21		
		6.3.1 Summary of positions in ¹³ C NMR	22		
	6.4	Double Bond Equivalents	22		

1 Oxidation and Reduction Reactions

Alcohol to Carboxylic Acid

Use:

- \bullet KMnO₄
- CrO_3
- Na₂Cr₂O₇

Alcohol to Aldehyde

$$R \frown OH \longrightarrow R \bigcirc O$$

Use:

• PCC

 ${\bf Aldehyde\ to\ Alcohol}\ (+\ {\bf Ketones\ and\ C=O\ of\ higher\ reactivity})$

Use:

- $\bullet \ \mathrm{NaBH}_4$
- LiAlH₄

Ester to Alcohol and RCONHR to $\mathrm{RCH}_2\mathrm{NHR}$

$$\stackrel{\mathsf{O}}{\underset{\mathsf{B}}{\longleftarrow}} \stackrel{\mathsf{O}}{\longrightarrow} \mathsf{R} \stackrel{\mathsf{O}}{\longrightarrow} \mathsf{R}$$

Use:

 \bullet LiAlH₄

Carboxylic Acid to Alcohol

Use:

- $\bullet \ \, \mathrm{LiAlH}_{4}$
- BH_3THF

 $\rm RCH{=}NR^1$ to $\rm RCH_2NHR^1$

$$R \nearrow N$$
 $\stackrel{R}{\longrightarrow}$ $R \nearrow N$ $\stackrel{R}{\mapsto}$ H

Use:

• NaCNBH₃

The basic principles of addition to C=O groups are:

- How reactive is the C=O group
- How reactive is the nucleophile
- Which is more reactive, the starting material or the product (Example 3)
- Will an unreactive C=O need activation (e.g. H⁺)? If the nucleophile is unreactive?
- Can H₂O be eliminated.

1.1 Example Reactions

1. Reduction of aldehyde with $NaBH_4$

Good electrophile
$$\begin{array}{c} O \\ R \\ H \\ H \end{array}$$
 $\begin{array}{c} O \\ R \\ H \end{array}$ $\begin{array}{c} O \\ H \\ H \end{array}$

No further reactions can take place as there are no leaving groups

This reaction will not take place with esters as the electrophile is not sufficiently reactive. Instead use ${\rm LiAlH_4}$

2. Carboxylic acid from acid chloride with NaOH

Cl is a good leaving group therefore there is a further reaction

3. Ester with a grignard reagent

Poor electrophile

4. Addition of water

Poor electrophile and poor nucleophile therefore the C=O group is activated by adding water.

5. Elimination of H_2O

$$H_3C-OH$$
 H_3C-OH
 H_3C-OH

Reasonable electrophile and a poor nucleophile therefore activation of C=O required.

6. Elimination of H₂O using methylamine

Reasonable electrophile and poor nucleophile therefore activation of C=O required.

2 Enols and Enolates

Formation of an enol using acid + ketone

2.1 Example Reactions

 $Enol + DCl + D_2O$

 $H \longrightarrow D$ exchange takes place at the α -position

Enol + Acid and Br₂

Forms a brominated ketone

Enolate formation using base + ketone

$$\bigcap_{H} \bigcap_{OH} \bigcap_{O} \bigcap_{O} \bigcap_{(A)}$$

Enolate formation from esters

Enolate formation with diketone

Order of stability goes C > B > A

Enolate with ${\rm Br}_2\,+\,{\rm base}$

For compounds with α -H's:

- Central protons are easier to remove as this further delocalises the negative charge.
- The pKa of the base must be no higher than the compound to deprotonate.

3 Aldol Reaciton

In mild or dilute base, results in the self condensation of an aldehyde or ketone.

In presence of conc base a further reaction can take place

Forms a α,β -unsaturated aldehyde

If an unsymmetrical ketone with more than one α -H is used then 2 different products will be formed. However if the material only has 1 way to enolise, then the aldol reaction will only form one product.

Adol reactions can also occur between two different C=O compounds.

$$\stackrel{-}{\downarrow}$$
 $\stackrel{-}{\downarrow}$ $\stackrel{-}$

However other reactions can happen, e.g. it will react with itself and the other starting product may also enolise. NaOH is therefore not an efficient way to form a single product. However it is possible to form a single product by taking into account that:

- \bullet A compound with no $\alpha\textsc{-H}$ cannot enolise
- Aldehydes are more reactive than ketones

Beware however that if you have a molecule with no α -H and it is a ketone reacting with an aldehyde the ketone will be ignored and a single product will be formed by the aldehyde reacting with itself.

Using acetoacetate as a reagent for $\int_{-\infty}^{\infty}$

Crossed aldol product reaction with only one product using LDA to from lithium enolates.

Addition of LDA results in complete conversion to lithium enolate

3.1 Unsymmetrical Ketones

To remove the less sterically hindered protons, a bulky base is used. E.g. LDA $\,$ -78 $\,$ °C. If we need the more sterically hindered enolate, we can do this by acknowledging that this is the more stable enolate and use Me₃SiCl and Et₃N then MeLi. E.g.

 $\mathrm{Et_3N}$ is used as a mild unhindered base that an remove either protons

Aldehydes and LDA will not react to form enolates as H Instead to make an enolate from an aldehyde use cyclohexanamine, H^+ and then LDA.

Formaldehyde is even more reactive than other aldehydes, this makes it impossible to control as an enol. Formaldehyde is therefore not useful for adding a $\mathrm{CH_2-OH}$ group to molecules. To convert

we can't therefore go through:

Instead the Mannich reaction is therefore used:

3.2 Electrophiles

The choice of electrophile for for enolate alkylation is important:

- \bullet Enolate alkylation are $S_{\rm N}2$ reactions
- R-X: X must be a good leaving group
- $\bullet \ \operatorname{Mesylate} > \operatorname{Tosylate} > \operatorname{I} > \operatorname{Br} > \operatorname{Cl}$

Example:

3.3 Other Reactions

Diekman Condensation - Both esters in the same molecule:

Crossed Claisen Reactions - Between 2 esters or one ester and a ketone. The conditions are:

- Need one ester that can't enolise
- This is ester must be a better electrophile

There are only 3 reagents. All are more reactive than simple esters.

Example:

With Claisen you normally end up with a diketone, e.g.

4 Conjugate Addition Reactions

Occurs due to the resonance effects of a α,β -unsaturated carbonyl compounds.

There are two types of conjugate addition:

- (1) 1,4 Conjugate addition, produces the thermodynamic product which is more stable but ΔEa is greater.
- (2) 1,2 Conjugate addition, produces the kinetic product, which is reversible at higher temperatures.

Conjugate addition only occurs with alkenes conjugated to a π electron withdrawing group. For example:

This does **not** occur as there is no way to stabilise the anion

1,4 vs 1,2 addition

- 1,4 addition is favoured by less reactive C=O groups. 1,2 is favoured by more reactive C=O groups.
- Hard nucleophiles (RMgBr, RLi) react at the C=O group. Soft nucleophiles (RS⁻, RCu) perform conjugated addition.
- Steric hindrance at the β carbon favours 1,2-addition, an unhindered β position favours 1,3 addition.

4.1 Nucleophiles for Conjugate Addition

a) Thiols

$$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array}$$

b) Amines

Amines such as aniline can perform 2 conjugate addition reactions by displacing the H's. E.g.

c) Nitrile

At high temp (80 °C) 1,4 addition will occur:

At low temp $(5 - 10 \, ^{\circ}\text{C})$ 1,2 addition will occur:

d) Alcohols

Acid catalysed:

Base catalysed:

With acid catalysed there is competition with the conjugate addition and forming an acetal.

e) Organometallic Compounds

Grignard and organolithium reagents can perform 1,2 conjugate addition:

To make them perform 1,4 conjugate addition, react them with cuprates, e.g. CuCl.

Hard reagents:

- Perform 1,2 conjugate addition
- Nucleophiles are small electronegative atoms (O, Cl) or small counter ions (R⁻, Li⁺)
- React with hard electrophile (more explicit charge) by electrostatic interaction.

Soft reagents:

- Perform 1,4 conjugate addition
- Nucleophiles are larger atoms (S, I) or less polarised C metal bonds R-Cu
- React with soft electrophiles under orbital control.

f) Enolates, Enols and Equivalents

Hard enolates such as O Li react via 1,2 conjugate addition.

E.g.

$$\stackrel{\bar{\circ}}{\rightleftharpoons} \stackrel{\bar{\circ}}{\rightleftharpoons} \stackrel{\bar{\rightarrow}}{\rightleftharpoons} \stackrel{\bar{\rightarrow}}{\rightleftharpoons$$

4.2 The Robinson Annelation

The Robinson annelation is the result of a conjugate addition followed by aldol cyclisation. The requirement for a Robinson annelation is a Michael addition of an enolate to an enone that has a second enolisable group on the other side of the ketone.

The first step is the formation of the stable enolate:

The second stage is the formation of a new enolate on the other side of the ketone from the first:

The final stage is the dehydration of the aldol and an E1cB reaction that involves the carbonyl group in a standard aldol reaction. Another enolate must form in the same position as the last.

5 Retrosynthetic Analysis

5.1 Terminology

Target molecule (TM) is the final product.

A synthon is an idealised reagent that shows the desired reactivity for the particular disconnection.

A functional group interconversion is transforming one functional group into another without disconnecting anything. The aim is to make the next disconnection easier.

$$\stackrel{\mathsf{COOH}}{\longrightarrow} \stackrel{\mathsf{CN}}{\longrightarrow}$$

5.2 Useful Reactions

Adding SMe

Reducing ketones + esters

Joining a ring with two carboxylic acids

Hydrogenating $C\equiv N$

$$H_2$$
, Pd/C NH_2

Creating ring with amide and ketone

Mannich Reaction

Another example of a functional group interconversion is

Spectroscopy 6

Summary of IR Frequencies

Single Bonds to Hydrogen

$- sp^3$	C-H	2850 - 2960s
$- sp^2$	C-H	3010 - 3095
- Aldehyde	O=C-H	2700 - 2900
- sp	C-H	3000 sharp
- Nitrile	N-H	$3300 - 3500 \mathrm{m}$
- Free	O-H	$3590-3600s\ sharp$
- Normally H-bonded	O-H	3200 - 3600 s broad
- Strongly H-bonded	O-H	2500 - 3200s broad

Triple Bonds

- Nitriles	RCN	2200 - 2260v
- Alkynes	$RC \equiv CR^1$	2150 - 3095w
	RC≡CH	2100 - 2140w

Double Bonds

- Alkenes	C=C	1620 - 1680v
- Enones	C=C-C=O	1590 - 1640s
- Aromatics, up to 3 of		1600, 1580, 1500v
- Nitro	NO_2	1560, 1350s

Carbonyl Group, C=O

rbonyl Group, C=O		1715 ± 10
- Dialkyl ketone	alkyl	0 (also carboxylic acid is \pm 0)
- Anhydride	OCOR	+35, +110
- Acid chloride	COOCI	+85
- Ester	OCOR	+25
- Aldehyde	H	+15
- Aryl ketone	Ar	-25
- Enone	C=C	-35
- Amide	NH_2	-65

6.2 1 H NMR

Most signals are from $0-12~\mathrm{ppm}$

10 - 12
9 - 10
7 - 9
5 - 7
3 - 5
2 - 3.5
2 – 3
2-3
2-3
0.5 - 1.5

R-OH, R-SH, R-NH $_2$ are hard to predict. Often 0 – 5 ppm with little H bonding. Higher if more H bonding. The more shielded the hydrogen the further upfield it appears (i.e. lower frequency).

6.2.1 Summary of Chemical Shifts

Methyl Groups

- CH_3 - C	10 - 12
- CH_3 - C = C	9 - 10
- $\mathrm{CH_3}\mathrm{-Ar}$	7 - 9
- CH_3 - CO - R	5 - 7
- CH_3 -O-R	3 - 5
- CH_3 -N	2 - 3.5

Protons Attached to Unsaturated Linkages

- Ar-CHO	9.7 - 10.5
- RCHO	9.4 - 10.0
- H-CO-O	8.0 - 8.2
- Aromatic	$6.0 - 9.0$ (usually ≈ 7)
- C=CH-CO	5.8 - 6.7
- C=CH	4.5 - 6.0
- C≡C−H	1.8 - 3.1

6.2.2 J Couplings

Methyl Groups

- Open chain single bond 7 Hz

- Trans alkene 12-18 Hz (typically 16 Hz) - Cis alkene 7-11 Hz (typically 10 HZ)

 $\begin{array}{lll} \text{- Ortho} & 6 - 9 \; \text{Hz} \\ \text{- Meta} & 1 - 3 \; \text{Hz} \\ \text{- Para} & 0 - 1 \; \text{Hz} \\ \text{- Cyclohexane} & 10 - 12 \; \text{Hz} \\ \text{- H}_{ax} \; \text{H}_{eq} & 3 - 5 \; \text{Hz} \\ \text{- H}_{eq} \; \text{H}_{eq} & 3 - 4 \; \text{Hz} \\ \end{array}$

If D₂O is added and a signal disappears, it means they acidic protons e.g. OH, NH₂, etc.

If the coupling is to inequivalent protons, coupling constants may not be the same and double doublets are observed. The major coupling always comes first.

Long range coupling occurs. H_A is split into a doublet with H_B and H_B is further split into a triplet by H_C forming a double triplet (or dt for short).

6.3 ¹³C, ¹⁹F, ³¹P NMR Spectroscopy

If ¹⁹F or ³¹P are present in a sample, coupling can be seen in ¹H NMR spectra.

The number of resonances in 13 C spectra indicates the number of distinct 13 environments in the molecule. The usual solvent is CDCl₃ and a peak can be seen sometimes at 77 ppm.

Because the ¹³C nucleus is is isotopically rare, it is unlikely that two adjacent carbon atoms will be ¹³C therefore ¹³C-¹³C are not observed. However ¹³C does strongly couple to any protons attached. These couplings are normally removed by irradiating the ¹H nuclei during ¹³ acquisition, resulting in a ¹H Decoupled ¹³ spectrum.

6.3.1 Summary of positions in ¹³C NMR

Methyl Groups: CH_3-X where the table below shows X

- CH_3 7.3 Hz

- $\mathrm{CH_2CH_3}$ 15.4 Hz (typically 16 Hz) - Phenyl 21.4 Hz (typically 10 HZ)

 $50.2~\mathrm{Hz}$

Monosubstituted Alkanes: CH_3-CH_2-X

- Phenyl 34.3 Hz

- Cl
 - Cl
 - OH
 53.7 Hz (typically 16 Hz)
 - 64.0 Hz (typically 16 Hz)

Alkenes $R-CH=CH_2$

- OH

- base value 123.3 - $\mathrm{OH_3}$ +294 +13.8

Aromatics

- base value 128.5 - C1 +31.4 - C2 -14.4 - C3 +1.0 - C4 -7.7

6.4 Double Bond Equivalents

Double bond equivalents (DBE) is the number of double bonds and rings.

$$\mathbf{C_a}\mathbf{H_b}\mathbf{O_c}\mathbf{N_d} \qquad DBE = \frac{(2a+2)-(b-d))}{2}$$

22