ARHITECTURA SISTEMELOR DE CALCUL SEMINAR 0x02

NOTIȚE SUPORT SEMINAR

Cristian Rusu

TABELE DE ADEVĂR, EX 1

$$X = A + BC$$

Α	В	С	ВС	X
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

DESENAȚI CIRCUITUL, EX 2

 $X = A + BC + \overline{D}$

DE MORGAN, EX 3

$$X = (\overline{A}\overline{B})(\overline{B} + C)$$

$$= (\overline{A}\overline{B}) + (\overline{B} + C)$$

$$= A\overline{B} + (\overline{B} + C)$$

$$= A\overline{B} + (\overline{B}\overline{C})$$

$$= A\overline{B} + (B\overline{C})$$

$$= A\overline{B} + B\overline{C}$$

DE MORGAN, EX 3

$$X = (\overline{A} + C)(\overline{AB})$$

$$= (\overline{A} + C) + (\overline{AB})$$

$$= (\overline{A} + C) + (AB)$$

$$= (\overline{A}\overline{C}) + (AB)$$

$$= (A\overline{C}) + (AB)$$

$$= A(B + \overline{C})$$

DE MORGAN, EX 3

- !(!A+!B) = AB
- !(!A!B) = A+B
- !(A+B+C) = !A!B!C
- !(ABC) = !A+!B+!C
- !(A+B)!A!B = !A!B
- !(AB)(!A+!B) = !A+!B
- !(A+B)(!A+!B) = !A!B
- !A!B!(AB) = !A!B
- C+!(CB) = 1
- !(AB)(!A+B)(!B+!B) = !A!B

SIMPLIFICĂRI, EX 4

```
(A + C)(AD + A\overline{D}) + AC + C
(A + C)A(D + \overline{D}) + AC + C //distribuim, invers
(A + C)A + AC + C //suma variabila si complement
A((A+C)+C)+C //distribuim, invers
A(A+C)+C //asociem, idempotent
AA + AC + C //distribuim
A + (A + 1)C //idempotent, identitate, factor
A + C //identitate de doua ori
```

SIMPLIFICĂRI, EX 4

$$\bar{A}(A + B) + (B + AA)(A + \bar{B})$$

 $\bar{A}(A + B) + (B + A)(A + \bar{B})$ //AA este A
 $(A + B)(\bar{A} + A + \bar{B})$ // factor A + B
 $(A + B)(1 + \bar{B})$ // variabila sau complement
A + B // 1 sau orice este 1

SIMPLIFICĂRI, EX 4

- a) A+0=A
- b) !Ax0 = 0
- c) A+!A=1
- d) A+A=A
- e) A+AB=A
- $f) \quad A+!AB = A+B$
- g) A(!A+B) = AB
- h) AB+!AB = B
- i) (!A!B+!AB) = !A
- $j) \quad A(A+B+C+...) = A$
- k) subpuncte
 - a) A+B
 - b) 1
 - **c**) 1
- I) A+A!A=A

- m) AB+A!B = A
- n) !A+B!A = !A
- o) (D+!A+B+!C)B = B
- $p) \quad (A+!B)(A+B) = A$
- q) C(C+CD) = C
- r) A(A+AB) = A
- s) !(!A+!A) = A
- $t) \quad !(A+!A) = 0$
- u) D+(D!CBA) = D
- v) !D!(DBCA) = !D
- w) AC+!AB+BC = AC+!AB
- $x) \quad (A+C)(!A+B)(B+C) = AB+!AC$
- y) !A+!B+AB!C = !A+!B+!C
- $(A+B)^2+(A+B)^3+A+3!A+A^3=1$

MUX, două intrări, un semnal s de selecție și o ieșire

I _o	I ₁	s ₀	Y
*	*	0	I_{O}
*	*	1	<i>I</i> ₁

- care este relaţia ieşire-intrare?
 - $Y = I_0 \bar{s}_0 + I_1 s_0$

MUX, două intrări, un semnal s de selecție și o ieșire

- un MUX este un circuit universal, adică poate implementa porți NOT, OR și AND
 - implementați o poartă NOT cu un MUX

MUX, două intrări, un semnal s de selecție și o ieșire

I _o	I ₁	$s_0(A)$	Y
1	0	0	I_0
1	0	1	I ₁

- un MUX este un circuit universal, adică poate implementa porți NOT, OR și AND
 - implementaţi o poartă NOT cu un MUX: Y = NOT A
 - $Y = I_0 \bar{s}_0 + I_1 s_0 = 1 \bar{A} + 0 A = \bar{A}$

MUX, două intrări, un semnal s de selecție și o ieșire

I ₀	I ₁ (B)	s ₀ (A)	Y
0	В	0	$I_{0}(0)$
0	В	1	<i>I</i> ₁ (B)

- un MUX este un circuit universal, adică poate implementa porți NOT, OR și AND
 - implementaţi o poartă AND cu un MUX: Y = A AND B
 - $Y = I_0 \bar{s}_0 + I_1 s_0 = 0 \bar{A} + B A = A B$

MUX, două intrări, un semnal s de selecție și o ieșire

I ₀ (B)	I ₁	s ₀ (A)	Y
В	1	0	I_0 (B)
В	1	1	$I_{1}(1)$

- un MUX este un circuit universal, adică poate implementa porți NOT, OR și AND
 - implementaţi o poartă OR cu un MUX: Y = A OR B
 - $Y = I_0 \bar{s}_0 + I_1 s_0 = B \bar{A} + 1A = A + B \bar{A} = A + B \text{ [vezi ex. 4 f)]}$

Y = S ? foo(A) : bar(B)

I ₀ foo(X)	l ₁ bar(Y)	S	Υ
*	*	0	<i>I</i> ₁
*	*	1	I_{O}

- care e diferența cu un limbaj de programare?
 - indiferent de valoarea lui S, se execută foo(A) şi bar(B)
 - doar că la ieșire vedem doar una dintre funcții (cea selectată de S)

vrem să accesăm un element al unui vector x_i

- ce putem la intrări?
- ce este semnalul s?

vrem să accesăm x_i

- ce putem la intrări? punem vectorul x
- ce este semnalul s? punem index-ul i
- care este dimensiunea intrării? N
- care este dimensiunea lui s? ceil(log₂ N)

s ₀ (i)	Υ
000	$I_0(x_0)$
001	$I_1(x_1)$
010	$I_2(x_2)$
011	$I_3(x_3)$
100	$I_4(x_4)$
101	$I_5(x_5)$
110	$I_6(x_6)$
111	$I_7(x_7)$

- un MUX cu 4 intrări
 - automat ştim că semnalul s are doi biţi

avem la dispoziție un MUX cu 2 intrări

- un MUX cu 4 intrări
 - automat știm că semnalul s are doi biți

N - 1

DEPLASĂRI, EX 7 A

numarul nostru x este

deplasare normală cu 2 la dreapta >>

echivalent cu o împărțire la 2²

deplasare aritmetică cu 2 la dreapta >>_a

echivalent cu o împărțire la 22

deplasare circulară cu 2 la dreapta >>_c

Toate deplasările pot fi definite pentru orice bază numerică, nu doar 2. De exemplu: în baza 10 avem 754 << 2 = 475 pentru deplasare circular la stânga și 754 << 2 = 400 pentru deplasare normală la stânga (pe 3 cifre)

DEPLASĂRI, EX 7 B

deplasare a unui numar x cu d poziții la dreapta

DEPLASĂRI, EX 7 C

- presupunem că x este pe 32 de biţi
- deplasarea d este pe 5 biţi: d₄d₃d₂d₁d₀

SECVENȚIAL, EX 10

SECVENȚIAL, EX 10

COUNTER 2 BIȚI, EX 12

•
$$q_0^{(t+1)} = !INC \times q_0^{(t)} + INC \times !q_0^{(t)}, q_1^{(t+1)} = !INC \times q_1^{(t)} + INC \times (q_1^{(t)} \otimes q_0^{(t)})$$

q ₁ ^(t)	q ₀ ^(t)	q ₁ ^(t+1)	$q_0^{(t+1)}$
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

aici INC e pe post de semnal Enable

COUNTER 2 BIŢI, EX 12

counter cod Gray

q ₂ ^(t)	q ₁ ^(t)	$q_0^{(t)}$	q ₂ ^(t+1)	q ₁ ^(t+1)	q ₀ ^(t+1)
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	1

•
$$q_0^{(t+1)} = !q_2^{(t)}!q_1^{(t)}!q_0^{(t)} + !q_2^{(t)}!q_1^{(t)}q_0^{(t)} + q_2^{(t)}q_1^{(t)}!q_0^{(t)} + q_2^{(t)}q_1^{(t)}q_0^{(t)}$$

= $q_2^{(t)}q_1^{(t)} + !q_2^{(t)}!q_1^{(t)}$

- $q_1^{(t+1)} = ...$
- $q_2^{(t+1)} = ...$

- implementați algoritmul lui Euclid pentru CMMDC folosind un circuit secvențial.
- exemplu: se dau a = 15, b = 6
 - pasul 1: a = 9, b = 6 (a := a b)
 - pasul 2: a = 3, b = 6 (a := a b)
 - pasul 3: a = 6, b = 3 (a,b := b,a)
 - pasul 4: a = 3, b = 3 (a := a b)
 - pasul 5: a = 0, b = 3
 - răspunsul este 3

codul python:

```
def cmmdc(a, b):
    if a == b: return b
    elif a > b: return cmmdc(a-b, b)
    else: return cmmdc(b, a)
```

codul python:

```
def cmmdc(a, b):
    if a == b: return b
    elif a > b: return cmmdc(a-b, b)
    else: return cmmdc(b, a)
```

- avem variabilele a^(t) şi b^(t)
- conform algoritmului de mai sus avem ecuațiile de evoluție
 - facem ceva doar dacă a(t) != 0
 - $p = (a^{(t)} > b^{(t)})$
 - $a^{(t+1)} = p \times (a^{(t)} b^{(t)}) + !p \times b^{(t)}$
 - $b^{(t+1)} = p \times b^{(t)} + !p \times a^{(t)}$

codul python:

def cmmdc(a, b):
 if a == b: return b
 elif a > b: return cmmdc(a-b, b)
 else: return cmmdc(b, a)

$$\begin{aligned} p &= (a^{(t)} > b^{(t)}) \\ a^{(t+1)} &= p \times (a^{(t)} - b^{(t)}) + !p \times b^{(t)} \\ b^{(t+1)} &= p \times b^{(t)} + !p \times a^{(t)} \end{aligned}$$

cum se schimbă a și b?

codul python:

def cmmdc(a, b): if a == b: return b elif a > b: return cmmdc(a-b, b) else: return cmmdc(b, a) $p = (a^{(t)} > b^{(t)})$ $a^{(t+1)} = p \times (a^{(t)} - b^{(t)}) + !p \times b^{(t)}$ $b^{(t+1)} = p \times b^{(t)} + !p \times a^{(t)}$ MUXMUX enable enable, ! = 0

care sunt întrările pentru MUX 1?

codul python:

```
def cmmdc(a, b):
     if a == b: return b
      elif a > b: return cmmdc(a-b, b)
      else: return cmmdc(b, a)
                                                                 p = (a^{(t)} > b^{(t)})
                                                                a^{(t+1)} = p \times (a^{(t)} - b^{(t)}) + !p \times b^{(t)}
                                                                 b^{(t+1)} = p \times b^{(t)} + !p \times a^{(t)}
                                         MUX
                                                                 MUX
                                                           enable
                                 enable
                       ! = 0
```

sub

care sunt întrările pentru MUX 2?

· codul python:

def cmmdc(a, b):

if a == b: return b

elif a > b: return cmmdc(a-b, b)

else: return cmmdc(b, a)

 $p = (a^{(t)} > b^{(t)})$ $a^{(t+1)} = p \times (a^{(t)} - b^{(t)}) + !p \times b^{(t)}$ $b^{(t+1)} = p \times b^{(t)} + !p \times a^{(t)}$

