/////

스타벅스 DT 대기시간 개선

With Simulation Arena

박상욱 | 박종혁 | 박태현 | 장유성 | 이다인 | 조은성

////

- 01. 프로젝트 목적
- 02. 현장조사
- 03. 현재 시스템 설명
- 04. 현재시스템 모델링
- 05. 현재시스템 문제점
- 06. 대안
- 07. 결론

OI 프로젝트 목적

스타벅스 드라이브 스루 주제 선정 배경

드라이브 스루 배경

코로나 19의 여파로 많은 업체들이 매장 봉쇄 및 **수요급감**을 겪음

기업의 전략

감염 위험을 최소화한 '**드라이브-스루**' 택함

결과

코로나 이전에 비해 기업의 매출 200% 이상 증가

맥도날드(McDonald 's)의 드라이브 스루(Drive-thru) 대기 시간이 점점 길어지고 있다. <u>OSR의 드라이브 스</u>로 <u>조사결과에</u> 따르면 2019년에 전체적으로 <u>드라이브 스루 대기시간이 20초 중가</u> 하였으며 스피커로 주문후 주문창구로 이동하는 시간이 평균 255초 인 것으로 나타났다. 맥도날드의 평균 드라이브 스루 시간은 284초로 지난해 보다 11초 증가했다.

문제점

드라이브-스루 **대기시간이 점점 증가**하고 있음.

스타벅스 선택 이유

매장 수를 늘리는 스타벅스 지침때문에 자료수집 용이.

-> 시뮬레이션으로 현모델을 분석하고 여러 대안 강구

스타벅스 드라이브 스루에서 <mark>대기시간 최소화, 최적 방안</mark> 마련

프로젝트의 대안을 통해 발생된 순이익 비교 및 대안 개선.

71 E +1 E	10월		11월				12월	
간트차트	3주	4주	1주	2주	3주	4주	1주	2주
주제 선정 및 팀구성								
자료 수집, 데이터 측정								
시뮬레이션 모델링								
개선 방안 도출 및 보고서 작성								

02 현장조사

02. 현장조사 : 수원 연무동 스타벅스 드라이브 스루 매장

- 2020년 10월 기준 전국 스타벅스 DT매장 280곳 중에서 수원 연무동DT점에 대해 실제로 인터뷰를 통해 발췌된 내용을 바탕하였음.

스타벅스 연무DT점의 운영시스템은 어떠한가요?

매장고객과 드라이브 스루 고객은 각각 1개의 매장창구와 1개의 DT창구에서 개별적으로 주문, 계산, 음료픽업을 합니다. 그러나 음료를 제조하는 공간과 직원은 따로 구분되지 않고 동일합니다.

스타벅스 연무DT점의 운영시간은 어떠한가요?

- 평일 기준 하루 영업시간은 7-22시 이고, 총 4명의 직원이 있습니다.
- 드라이브 스루 피크타임1 : 8-9시 > 피크타임2 : 12-13시 > 피크타임3 : 19-20시
- 매장 고객 피크타임3 : 19-20시 > 피크타임2 : 12-13시 > 피크타임1 : 8-9시
- 피크타임 3시간 동안 방문 고객 수는 드라이브 스루 고객: 90-100대, 매장 고객: 110-120명

02. 현장조사 : 수원 연무동 스타벅스 드라이브 스루 매장

- 2020년 10월 기준 전국 스타벅스 DT매장 280곳 중에서 수원 연무동DT점에 대해 실제로 인터뷰를 통해 발췌된 내용을 바탕하였음.

스타벅스 음료 중 최단시간 음료와 최장시간 음료는 무엇인가요?

최단시간 음료는 '콜드브루'이며 15초 정도 소요되고, 최장시간 음료는 '1/2 디카페인 , 블론드 , 브루드 커피 '로 1.2분이 소요됩니다.

가장 많이 들어오는 주문과 오래 걸렸던 주문은 무엇인가요?

가장 많이 들어오는 주문은 '아이스 아메리카노 2잔'이며 , 가장 오래 걸렸던 주문은 '최장시간 음료 6잔'을 주문 받았을 경우입니다.

드라이브-스루 고객의 대기고객수 및 대기시간을 개선하겠습니다.

03 현재시스템 설명

-> 영업시간동안 고객의 도착시간을 지수분포로 나타냄

- 스타벅스 드라이브 스루 고객과 매장 고객으로 나뉨.

- 수원 연무동 스타벅스의 평일 기준, 가장 바쁜 시간을 출근, 점심, 저녁 총 3등분하여 설정.

8~9시 : EXPO(2)

드라이부 스루(DT) 12~13시: EXPO(3)

19~20시 : EXPO(4)

8~9시: EXPO(2.8)

매장(Customer) 12~13시: EXPO(2.0)

19~20시 : EXPO(1)

03. 현재시스템 설명(2)

- 고객이 주문하고 결제하는 과정은 DT: 1.5분, 매장: 1분으로 각각 설정.

- 음료 제조 시간 분포 – 삼각 분포 이용

최소값:제조 시간이 가장 짧은 콜드브루 1잔 = 0.25분

최빈값: 주문 빈도가 가장 많은 아메리카노 2잔= 1.2분

최대값: 주문량과 제조 시간이 가장 긴 프라푸치노 6잔= 7분

=> TRAI(0.25,1.2,7)

- 음료를 픽업하여 빠져나가는 시간은 30초로 설정.

04 현재시스템 모델링

	드라이브	.스루 고객의 대기	시간 (분)	매장고객의 대기시간 (분)			총 서비스한 고객 수
	평균	최소	최대	평균	최소	최대	
기존 모델	6.0398분	2.8993분	10.3331분	5.3342분	1.8909분	12.9750분	182명

04. 현재시스템 모델링 : 고객도착과정

04. 현재시스템 모델링 : 음료 제조과정

05. 대안

1. DT 고객만 담당하는 직원을 배정

• DRIVE •

콜드 브루 Cold brew

₩4,900

2. 메뉴 간소화

3. 대안1과 대안2를 결합

// 음료 제조 및 제공하는 과정 //

개선 방향 : 드라이브 스루 고객의 음료만 제조하는 직원을 새로 고용함 Staff5 → 매장이 busy 하더라도 드라이브 스루 고객만 응대하는 직원

05. 대안1 _ DT 고객만 담당하는 직원 1명 추가 고용

[Process 모듈]

- → DT PROCESS 의 Plus DT Set : { Staff5, Staff1, Staff2, Staff3, Staff4 }
- → CUSTOMER PROCESS 의 Base Set : { Staff1, Staff2, Staff3, Staff4 }

(※ 이 때 Staff5는 <u>드라이브 스루만 전문으로 담당</u>하는 직원이기 때문에, Plus DT Set 집합의 처음에 위치시킨 후 POR을 사용함)

[대안1 시뮬레이션 수정내용]

05. 대안1 _ DT 고객만 담당하는 직원 1명 추가 고용

드라이브 스루만 담당하는 직원 1명 추가

대기시간을 줄이기 위하여 대안1에서는 드라이브 스루 담당 직원 1명을 추가하였다. 이를 Staff5로 설정하였고, 이 직원은 매장이 busy 하더라도 드라이브 스루 고객만 상대하는 직원이다.

Plus DT Set 집합 처음에 Staff5를 배치하고 POR을 사용하여 이를 구현. 그 결과, 평균 대기 시간이 드라이브 스루는 0.5073분, 매장은 0.5673분 감소하였고 고객의 수 또한 19명 증가하는 효과를 가져왔다.

평균 대기시간 감소

드라이브 스루 : 0.5073분↓

매장 고객: 0.5673분↓

	드라이브 스루 고객의 대기시간			매	총 서비스한 고객 수		
	평균	최소	최대	평균	최소	최대	(=Number Out)
기존 모델	6.0398분	2.8993분	10.3331분	5.3342분	1.8909분	12.9750분	182명
대안1	5.5325분	2.3909분	9.2773분	4.7669분	1.8453분	9.9455분	201명

// 음료 제조 및 제공하는 과정 //

개선방향 : 제조시간이 오래 걸리고, 선호도도 낮은 메뉴 제거 [<mark>메뉴 간소화</mark>]

- → 기존 메뉴 최장시간 음료 : 1/2 디카페인 , 블론드 , 브루드 커피
- → 기존 메뉴 최장시간 음료 6잔 제조 시간 : 1.17분 X 6잔 = 7분

// 음료 제조 및 제공하는 과정 //

현재 시스템에서 제조시간이 오래 걸리고, 선호도도 낮은 메뉴를 제거함

- → 대안2 (간소화된 메뉴) 의 최장시간 음료 : 카페 모카
- → 대안2 최장시간 음료 6잔 제조 시간 : 1분 X 6잔 = 6분

(드라이브 스루의 메뉴를 간소화하여 최대 제조 시간이 1분 감소함)

05. 대안2 _ 메뉴 간소화

[Process 모듈]

→ 드라이브 스루의 메뉴 간소화로

DT PROCESS 의 제조시간 : 삼각분포의 최대값을 7분 → 6분으로 변경

[대안2 시뮬레이션 수정내용]

05. 대안2 _ 메뉴 간소화

메뉴 간소화 음료 제조시간 단축

대기시간을 줄이기 위하여 대안2에서는 기존 메뉴 중 제조시간이 오래 걸리고 판매량이 낮은 음료를 DT 전용 메뉴에서 제외시켰다. 따라서 음 료 제조시간 TRIA(최소 제조시간, 최빈 제조시간, 최대 제조시간) 에서 최대 제조시간은 7분에서 6분으로 줄어들었고, 이에 따라 평균 음료 제조 시간이 줄어들었다.

그 결과, 평균 대기 시간이 드라이브 스루는 0.9661분, 매장은 2.3669분 증가하였지만 총 서비스한 고객의 수가 24명 증가하는 효과를 가져왔다.

평균 대기시간 증가

드라이브 스루 : 0.9661분 ↑ 매장 고객 : 2.3669분 ↑

	드라이브 스루 고객의 대기시간			매	총 서비스한 고객 수		
	평균	최소	최대	평균	최소	최대	(=Number Out)
기존 모델	5.4123분	2.9863분	9.1847분	4.7561분	1.8909분	9.8450분	182명
대안 2	6.3784분	2.3801분	12.0379분	7.1230분	2.3141분	15.0942분	206명

// 음료 제조 및 제공하는 과정 //

대안3 = 대안1 + 대안2

대안1

드라이브 스루 담당 직원 1명(Staff5)이 증원됨

→ DT PROCESS 의 Plus DT Set : { Staff5, Staff1, Staff2, Staff3, Staff4 }

대안2

메뉴 간소화 – 드라이브 스루 음료 제조 최대 시간 7분 → 6분 으로 단축

→ DT PROCESS 의 제조시간 : TRIA (0.25, 1.2, 6분) 으로 변경

05. 대안3 _ 드라이브 스루 담당 직원 추가 + 메뉴 간소화

드라이브 스루 전담 직원 증원 + 메뉴 간소화

대기시간을 줄이기 위하여 대안3에서는 대안1인 '드라이브 스루 전담 직원 1명 증원'과 대안2인 '메뉴 간소화를 통한 음료 최대 제조시간 감소'를 결합해 시뮬레이션을 해보았다.

그 결과, 평균 대기 시간이 드라이브 스루는 0.7197분, 매장은 0.5949분 감소했고, 총 서비스한 고객의 수는 33명 증가하는 효과를 가져왔다.

평균 대기시간 감소

드라이브 스루 : 0.7197분↓ 매장 고객 : 0.5949분↓

	DT 고객의 대기시간			매	총 서비스한 고객 수		
	평균	최소	최대	평균	최소	최대	(=Number Out)
기존 모델	6.0398분	2.8993분	10.3331분	5.3342분	1.8909분	12.9750분	182명
대안 3	5.3201분	2.5114분	11.6147분	4.7393분	1.9332분	11.4037분	215명

05. 대안 정리 _ 금액(이익) 비교

	드라이브스루 고객의 대기시간			매	총 서비스한 고객 수		
	평균	최소	최대	평균	최소	최대	
기존 모델	6.0398분	2.8993분	10.3331분	5.3342분	1.8909분	12.9750분	182명
대안1	6.0713분	2.8993분	11.8126분	6.7332분	1.8453분	15.2211분	201명
대안2	6.3784분	2.3801분	12.0379분	7.1230분	2.3141분	15.0942분	206명
대안3	5.3201분	2.5114분	11.6147분	4.7393분	1.9332분	11.4037분	215명

	총 서비스한 고객 수	예상 피크타임 매출
기존 모델	182명	₩17,100 x 182 = ₩3,112,200
대안1	201명	₩17,100 x 201 = ₩3,437,100
대안2	206명	₩17,100 x 206 = ₩3,522,600
대안3	215명	₩17,100 x 215 = ₩3,676,500

₩17,100 = 고객 1명에 대한 기대 수익 <mark>삼각분포의 평균</mark>을 이용하여 계산하였다.

최소 : 아메리카노 1잔, 최빈 : 아메리카노 2잔

최대 금액 : 프라푸치노 6잔(= ₩6,500 X 6)

(4,100 + 8,200 + 39,000) /3 = 17,100

대안 3의 예상 일일 매출이 가장 크지만 직원을 추가로 1명 고용했기 때문에 직원 1명의 임금을 계산을 해주어야 한다.

3시간 동안 추가 고용한 직원에 대한 임금은 ₩8,590 x 3시간 = ₩25,770 이므로 이것을 고려하면 대안 3의 매출은 ₩3,650,730 이다.

여전히 대안3의 매출이 가장 크고 대기시간도 대안2에 비해 작으므로 최종적으로 대안 3를 선택하였다. (2020년 최저시급 적용)

07. 대안3 _ 시뮬레이션 영상

08. 결론

- 문제점 정리 : 스타벅스 드라이브 스루를 이용하는 고객들이 차에서 대기하는 시간이 늘어나 불만이 증가한다.

- <u>결과</u> 3가지의 대안 중 대안3이 <u>드라이브 스루 전담 직원 한 명 늘리기 & 메뉴 간소화 채택</u>
- 2
 한계

 현재 스타벅스 드라이브 스루 경우, 먼저 온 차량이 음료를 받고 나가기 전까지 뒤에 온

 차량은 나갈 수 없음.
 하지만 현재 시뮬레이션에서는 구현되고 있어 완성도가 떨어짐.
- 향후 개선점.- 앞서 언급된 한계점에 대해서 수정과 발전이 필요함.- 모델링 된 시뮬레이션의 결과의 오차를 줄여 나가야함.