本节内容

定点数

补码乘法运算

关注公众号【研途小时】获取后续课程完整更新 !

补码一位乘法

设机器字长为5位(含1位符号位,n=4),x = -0.1101,y = +0.1011,采用 $\frac{Booth算法}{x}$ 求 $x \cdot y$ [x] $_{\stackrel{.}{N}}$ =1.0011,[-x] $_{\stackrel{.}{N}}$ =0.1101,[y] $_{\stackrel{.}{N}}$ =0.1011

原码一位乘法: 进行 n 轮加法、移位

每次加法可能 +0、 $+[|x|]_{原}$

每次移位是"逻辑右移"

符号位不参与运算

朋友, 过两招?

根据当前MQ中的最低 位来确定加什么

MQ中最低位 = 1时,(ACC)+[|x|]_原 MQ中最低位 = 0时,(ACC)+0 补码一位乘法: 进行 n 轮加法、移位,最后再多来一次加法

每次加法可能 +0 、+[x]*、+[-x]*

每次移位是"补码的算数右移"

符号位参与运算

根据当前MQ中的最低位、 辅助位 来确定加什么

辅助位 - MQ中最低位 = 1时, $(ACC)+[x]_*$

辅助位 - MQ中最低位 = 0时, (ACC)+0

辅助位 - MQ中最低位 = -1时,(ACC)+[-x]*

补码一位乘法

设机器字长为5位(含1位符号位,n=4),x = -0.1101,y = +0.1011,采用 $\frac{Booth算法}{x}$ 求 $x \cdot y$ [x] $_{\stackrel{.}{N}}$ =1.0011,[-x] $_{\stackrel{.}{N}}$ =0.1101,[y] $_{\stackrel{.}{N}}$ =0.1011

京世: 769832062

补码一位乘法:

进行n轮加法、移位,最后再多来一次加法

每次加法可能 +0 、+[x]*、+[-x]*

每次移位是"补码的算数右移"

符号位参与运算

根据当前MQ中的最低位、 辅助位来确定加什么

辅助位 - MQ中最低位 = 1时, $(ACC)+[x]_*$

辅助位 - MQ中最低位 = 0时, (ACC)+0

辅助位 - MQ中最低位 = -1时,(ACC)+[-x]*

补码一位乘法 (手算模拟)

设机器字长为5位(含1位符号位,n=4),x=-0.1101,y=+0.1011,采用Booth算法求 $x\cdot y$

 $[x]_{\dot{\gamma}\dot{\gamma}}=11.0011$, $[-x]_{\dot{\gamma}\dot{\gamma}}=00.1101$, $[y]_{\dot{\gamma}\dot{\gamma}}=0.1011$

	(高位部分积)		(低位部分积/乘数)	
		00.0000	0.101	1 0 丢失位
正数 算数 右移	<u>+[-x]_ネ⊦</u>	00.1101		辅助位
		00.1101		1111797 177
	右移	00.0110 -	10.10	<u>1 1</u> 0
	+0	00.0000		
		00.0110		
	右移	00.0011 -	010.1	<u>0 1</u> 10
负数	$+[x]_{ eq h}$	11.0011		
算数		11.0110		
右移	右移	11.1011 -	0010	. <u>1</u> <u>0</u> 110
	$+[-x]_{\dot{\gamma}\dot{\uparrow}}$	00.1101		原符
	· ·	00.1000		号位
最后	右移	00.0100 -	<u>0001</u>	<u>0.¦1</u> 0110
多一	+[x] _补	11.0011		
次加		11.0111	林	$ $ 成 $[x \cdot y]_{\dot{\uparrow}\dot{\uparrow}}$
法				

王道24考研交流群: 769832062

说明

起始情况

 $Y_4Y_5=10$, $Y_5-Y_4=-1$, \emptyset +[-x]

右移部分积和乘数

 $Y_4Y_5=11$, $Y_5-Y_4=0$, $\emptyset +0$

右移部分积和乘数

 $Y_4Y_5=01$, $Y_5-Y_4=1$, \emptyset +[x] \uparrow

右移部分积和乘数

 $Y_4Y_5=10$, $Y_5-Y_4=-1$, \emptyset +[-x]

右移部分积和乘数

 $Y_4Y_5=01$, $Y_5-Y_4=1$,则+[x]於

n轮加法、算数右移,加法规则如下:

辅助位 - MQ中最低位 = 1时, $(ACC)+[x]_{*}$

辅助位 - MQ中最低位 = 0时,(ACC)+0

辅助位 - MQ中最低位 = -1时,(ACC)+[-x]_补

补码的算数右移:

符号位不动,数值位右移,正数右移补0,负数右移补1(符号位是啥就补啥)

注:一般来说,Booth算法的被乘数、部分积采用双符号位补码

 $[x \cdot y]_{\nmid h} = 11.01110001$ $\exists \exists x \cdot y = -0.10001111$

关注公众号【研途小时】获取后续课程完整更新 !

知识点回顾

部分积、被乘数、乘数都可 采用双符号位原码,也可用 单符号位原码(手算时乘数 的符号位可不写)

部分积、被乘数采用双符号 位补码;乘数采用单符号位 补码,并在末位添个0

原码一位乘法:

符号位通过异或确定,数值位由被乘数和乘数的绝对值进行 n 轮加法、移位

每次加法可能 +0 、+[|x|]_原

每次移位是"逻辑右移"

乘数的符号位不参与运算

朋友,过两招?

补码一位乘法(Booth算法):

符号位、数值位都是由被乘数和乘数进行 n 轮加法、移位,最后再多来一次加法

每次加法可能 +0、+[x]*、+[-x]*

每次移位是"补码的算数右移"

乘数的符号位参与运算

MQ中最低位 = 1时,(ACC)+[|x|]_原 MQ中最低位 = 0时,(ACC)+0 辅助位 - MQ中"最低位" = 1时,(ACC)+[x]_补 辅助位 - MQ中"最低位" = 0时,(ACC)+0

辅助位 - MQ中"最低位" = -1时,(ACC)+[-x]*