Problem Set 2

Figure 1: Memory circuit motif. P_1 is induced by external inducer I. Downstream proteins P_2 and P_3 are induced by P_1 , and by each other.

- 1. Use your PS1 model to classify which model/promoter parameters increase, decrease or does nothing to the steady-state mRNA profile as a function of inducer I (low, medium and high). Create a parameter table with the direction of change for each model parameter for I (low, medium and high).
- 2. An extracellular initiator I (mM) induces the expression of protein 1, which in turn induces the expression of downstream proteins P_2 and P_3 . The downstream proteins also induce each other (Fig. 1). Let's explore the dynamics of this circuit in a well-mixed population of E. coli cells with a doubling time of 30 min. Use μ mol gDW⁻¹ as the concentration basis, where 70% of the mass of a cell is water.

Assume: (i) the circuit is encoded on a plasmid present at 200 copies per cell (constant); (ii) use characteristic lengths of \mathcal{L}_X = 1000 nt and \mathcal{L}_T = 333 AA; (iii) the promoter control models follow the Moon/Voigt formulation; (iv) translation operates at the kinetic limit; (v) RNAP and Ribosome levels are constant; (vi) $\mathcal{L}_{X,1}$ = 1200 nt, $\mathcal{L}_{X,2}$ = 2400 nt and $\mathcal{L}_{X,3}$ = 600 nt. Let $\mathcal{L}_{L,i} \simeq (1/3)\mathcal{L}_{X,i}$.

a) Write the material balances around mRNA m_1, m_2 and m_3 , and m_3 , and m_4 , m_2 and m_3 , and m_4 , m_4 and m_4 , m_4 and m_4 , m_5 and m_6 , m_7 , m_8 , and m_8 , and m

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{S}\mathbf{r} \tag{1}$$

where ${\bf x}$ denotes the 6 \times 1 mRNA/protein vector, ${\bf A}$ denote the 6 \times 6 dilution matrix, ${\bf S}$ denotes the 6 \times ${\cal R}$ stoichiometric matrix, and ${\bf r}$ denotes the ${\cal R}\times 1$ reaction rate vector.

- b) Solve (numerically) the system of differential equations for: (i) a functional memory circuit and (ii) a broken circuit in which P_2 does not induce P_3 . Use any differential equation solver you wish, assume $\mathbf{x}(t_o) = \mathbf{0}$. Add inducer I = 10 mM at t = 0 min and withdraw inducer t = 60 min. Stop the simulation at t = 360 min. Use the PS1 promoter parameters for the induction of protein 1, and characteristic values for all other promoter/kinetic parameters. Plot P_j (y-axis) versus time (x-axis, units in min) for both versions of the circuit.
- c) The gene circuit balances have a form that allows for a supercool mathematical discretization trick. A high-fidelity *discrete* approximation of the solution of Eqn (1) at timesteps $k = 0, 1, 2, ..., \mathcal{T}$ (with step-size τ) is given by:

$$\mathbf{x}_{k+1} = \hat{\mathbf{A}}\mathbf{x}_k + \hat{\mathbf{S}}\mathbf{r}_k \tag{2}$$

where:

$$\hat{\mathbf{A}} = \exp \mathbf{A}\tau \tag{3}$$

and:

$$\hat{\mathbf{S}} = \mathbf{A}^{-1} \left[\hat{\mathbf{A}} - \mathbf{I} \right] \mathbf{S} \tag{4}$$

Compare the discrete solution to the numerical solution from part b) for τ = 0.01 min. Plot P_j (y-axis) versus time (x-axis, units in min) for the numerical and discrete solutions, for the same inducer profile.