Sistemas Digitais 2009/2010

Departamento de Informática, Universidade de Évora

1° Exame

26 de Janeiro de 2010

Observações

- *Duração*: 2h00m (+30m)
- Cálculos: Nas respostas apresente todos os cálculos efectuados
- Potências de 2

$$2^0 = 1$$
 $2^1 = 2$ $2^2 = 4$ $2^3 = 8$ $2^4 = 16$ $2^5 = 32$ $2^6 = 64$ $2^7 = 128$ $2^8 = 256$ $2^9 = 512$ $2^{10} = 1024$ $2^{11} = 2048$

• Tabelas de excitação dos FF

Q*	Q	S	R
0	0	0	-
0	1	1	0
1	0	0	1
1	1	-	0

Q*	Q	D
0	0	0
0	1	1
1	0	0
1	1	1

	Q^*	Q	Т
	0	0	0
	0	1	1
	1	0	1
L	1	1	0

Q*	Q	J	K
0	0	0	-
0	1	1	-
1	0	-	1
1	1	-	0

Grupo 1

Efectue as seguintes operações indicando todos os cálculos:

- 1. Converta o número $37_{(10)}$ para código de complemento para 2 com 7 bits.
- 2. Converta o número $10000110_{(BCD)}$ para binário.
- 3. Converta o número $2451_{(8)}$ para binário.
- 4. Calcule $3134_{(8)} + 1437_{(8)}$.

Grupo 2

Considere uma função booleana de 4 variáveis que assume o valor lógico de A sempre que A+B+C+D seja igual a 2 ou superior a 3 e o valor lógico de C nos restantes casos.

- 1. Apresente a tabela de verdade da função.
- 2. Represente-a na primeira forma canónica.
- 3. Represente-a na forma decimal da forma canónica disjuntiva.
- 4. Simplifique a função.
- 5. Implemente-a só com portas NAND.

Grupo 3

Considere o circuito da figura seguinte.

- 1. Identifique cada um dos circuitos combinatórios MSI representados.
- 2. Simplifique a função F.
- 3. Construa a tabela de transição de estados de F.
- 4. Desenhe o diagrama de transição de estados de F.
- 5. Implemente a função com flip-flops SR (latch).

Grupo 4

Considere o circuito apresentado na figura seguinte suponhando que no instante inicial Q0 = Q1 = Q2 = 0 e Q3 = 1.

1. Qual é o valor de Q0, Q1, Q2 e Q3 após o $3^{\rm o}$ impulso de relógio? Justifique a resposta desenhando o diagrama temporal.

Grupo 5

Pretende-se implementar um sistema síncrono que reconheça uma sequência bits na entrada utilizando flip-flops JK. Existe uma entrada X e uma saída Y que deve ficar activa sempre que à entrada surgirem três 1s consecutivos.

- 1. Desenhe o modelo ASM.
- 2. Escreva a tabela de transição de estados e saídas.
- $3.\$ Obtenha as equações de entrada dos flip-flops e das saídas.
- 4. Implemente o circuito.