On the Irreducibility of the Cuboid Polynomial $P_{a,u}(t)$

Valery Asiryan

asiryanvalery@gmail.com

September 29, 2025

Abstract

In this paper we consider the even monic degree-8 cuboid polynomial $P_{a,u}(t)$ with coprime integers $a \neq u > 0$. We prove irreducibility over \mathbb{Z} by excluding all degree-8 splittings. First, any putative 4+4 factorization is shown to force a specific Diophantine constraint which has no integer solutions by a short 2- and 3-adic analysis. Second, every 2+6 factorization either regroups to the forbidden 4+4 case (by evenness and the involution $t \mapsto -t$) or must contain an even quadratic factor; for the latter we use an exact divisor criterion and a discriminant obstruction, which rules it out arithmetically. By the same parity/involution argument, the types 2+2+4, 2+2+2+2, and 3+3+2 also reduce to 4+4 and are therefore impossible. Consequently, $P_{a,u}(t)$ admits no nontrivial factorization in $\mathbb{Z}[t]$.

Keywords Irreducibility over \mathbb{Z} ; even monic polynomials; cuboid (Euler) polynomial $P_{a,u}(t)$; factorization types 4+4, 2+6, 2+2+4, 2+2+2+2, 3+3+2; Diophantine constraints; p-adic valuations (2-adic, 3-adic); discriminant obstruction; Gauss's lemma; parity/involution regrouping.

MSC 2020 Primary: 12E05 (Polynomials: irreducibility). Secondary: 11D72 (Equations in many variables; Diophantine equations), 11S05 (Local and p-adic fields), 11Y05 (Factorization; primality).

1 Problem Statement and Notation

Let $a, u \in \mathbb{Z}_{>0}$ be coprime and $a \neq u$. We consider the even monic polynomial [1, 2, 3]

$$P_{a,u}(t) = t^8 + At^6 + Bt^4 + Ct^2 + D,$$

$$A=6\Delta,\ \Delta:=u^2-a^2\neq 0,\ B=\Delta^2-2a^2u^2,\ C=-a^2u^2A,\ D=a^4u^4.$$

We work in $\mathbb{Z}[t]$. The polynomial $P_{a,u}$ is even, monic, and primitive: $\operatorname{cont}(P_{a,u}) = 1$ [5, 13, 6].

Theorem 1 (Goal). For any coprime $a, u \in \mathbb{Z}_{>0}$ with $a \neq u$, the polynomial $P_{a,u}(t)$ does not factor in $\mathbb{Z}[t]$ as a product of two monic polynomials of degree 4 (the case 4+4).

2 Normal Form of a 4+4 Factorization and the Necessary Condition (*)

Lemma 1 (Gauss + involution). If $P_{a,u} = FG$ with monic $F, G \in \mathbb{Z}[t]$ and deg $F = \deg G = 4$, then, after swapping the factors if necessary, one of the following holds:

- (E) both factors are even: $F = t^4 + pt^2 + q$, $G = t^4 + rt^2 + s$ $(p, q, r, s \in \mathbb{Z})$;
- (C) a conjugate pair: G(t) = F(-t), where $F = t^4 + \alpha t^3 + \beta t^2 + \gamma t + \delta$.

Idea. Primitivity and Gauss's lemma yield primitivity and monicity of the factors [5, 13, 6]. The involution $\tau : t \mapsto -t$ fixes $P_{a,u}$; either both factors are invariant (even), or τ swaps the factors (a conjugate pair). \square

Detailed derivation in case (E)

Let $F = t^4 + pt^2 + q$, $G = t^4 + rt^2 + s$. From $FG = P_{a,u}$ we obtain the system

$$p + r = A, (1)$$

$$pr + q + s = B, (2)$$

$$ps + rq = C, (3)$$

$$qs = D. (4)$$

From (1) we have r = A - p. Introduce

$$M := B + p^2 - Ap.$$

Then (2) and (4) rewrite as

$$q + s = M, \qquad qs = D. \tag{5}$$

Thus q, s are integer roots of the quadratic equation $X^2 - MX + D = 0$. Denote (the discriminant of this quadratic)

$$T^2 := M^2 - 4D$$
 [5, 6].

Then

$$q = \frac{M + \sigma T}{2}, \quad s = \frac{M - \sigma T}{2}, \quad \sigma \in \{\pm 1\}. \tag{6}$$

Substitute (6) into (3). The left-hand side of (3) equals

$$ps + rq = p\frac{M - \sigma T}{2} + (A - p)\frac{M + \sigma T}{2} = \frac{AM + \sigma T(A - 2p)}{2}.$$

Hence from (3) we get

$$\frac{AM + \sigma T(A - 2p)}{2} = C \quad \Longleftrightarrow \quad \sigma T(A - 2p) = 2C - AM. \quad (7)$$

Set

$$X := p - 3\Delta$$
 (that is $p = X + 3\Delta$, $A = 6\Delta$).

What follows is a direct computation.

Computing M.

$$M = B + p^{2} - Ap = (\Delta^{2} - 2a^{2}u^{2}) + (X + 3\Delta)^{2} - 6\Delta(X + 3\Delta)$$
$$= (\Delta^{2} - 2a^{2}u^{2}) + (X^{2} + 6\Delta X + 9\Delta^{2}) - 6\Delta X - 18\Delta^{2}$$
$$= X^{2} - 8\Delta^{2} - 2a^{2}u^{2}.$$

Computing 2C - AM. Since $C = -a^2u^2A = -6\Delta a^2u^2$, we have

$$2C = -12\Delta a^2 u^2$$
, $AM = 6\Delta (X^2 - 8\Delta^2 - 2a^2 u^2)$.

Therefore,

$$2C - AM = -12\Delta a^2 u^2 - 6\Delta (X^2 - 8\Delta^2 - 2a^2 u^2) = -6\Delta X^2 + 48\Delta^3.$$

Thus (7) becomes

$$\sigma\,T\left(A-2p\right) = \sigma\,T\left(6\Delta - 2X - 6\Delta\right) = -2\sigma XT = 2C - AM = -6\Delta X^2 + 48\Delta^3.$$

Divide by -2 to obtain the fundamental relation

$$\sigma T X = 3\Delta (X^2 - 8\Delta^2). \tag{8}$$

Computing T^2 . By definition,

$$T^{2} = M^{2} - 4D = (X^{2} - 8\Delta^{2} - 2a^{2}u^{2})^{2} - 4a^{4}u^{4}$$
$$= (X^{2} - 8\Delta^{2})^{2} - 4a^{2}u^{2}(X^{2} - 8\Delta^{2}) = (X^{2} - 8\Delta^{2})(X^{2} - 8\Delta^{2} - 4a^{2}u^{2}).$$

Deriving the starred equation. Square (8) and substitute the expression for T^2 :

$$T^2 X^2 = 9\Delta^2 (X^2 - 8\Delta^2)^2.$$

Since $X^2 \neq 8\Delta^2$ (see below), we can cancel $(X^2 - 8\Delta^2)$ and obtain

$$(X^2 - 8\Delta^2 - 4a^2u^2)X^2 = 9\Delta^2(X^2 - 8\Delta^2).$$

Moving everything to the left and grouping, we arrive at the Diophantine equation

$$(X^2 - 8\Delta^2)(X^2 - 9\Delta^2) = 4a^2u^2X^2 \tag{*}$$

(see the remark below on the legitimacy of cancellation).

Remark 1 (Legitimacy of cancellation and a consequence). If $X^2=8\Delta^2$, then comparing the 2-adic valuations yields $2\nu_2(X)=3+2\nu_2(\Delta)$, which is impossible (the left-hand side is even, the right-hand side is odd). Hence for $\Delta \neq 0$ the equality $X^2=8\Delta^2$ has no integer solutions, and cancellation by the factor $X^2-8\Delta^2$ is valid [8, 10, 9]. Consequently, (1)–(4) imply (*). The converse, in general, is not claimed: in addition one needs that $T^2=M^2-4D$ be a perfect square and $q=\frac{M\pm T}{2}\in\mathbb{Z}$.

Case (C): conjugate pair — the same outcome

Here $F = t^4 + \alpha t^3 + \beta t^2 + \gamma t + \delta$, G(t) = F(-t). From $F(t)F(-t) = P_{a,u}(t)$ we get

$$2\beta - \alpha^2 = A,\tag{9}$$

$$\beta^2 + 2\delta - 2\alpha\gamma = B,\tag{10}$$

$$2\beta\delta - \gamma^2 - \alpha^2\delta = C, (11)$$

$$\delta^2 = D. \tag{12}$$

Setting $X := \alpha - 3\Delta$ and eliminating γ from the second and third relations leads to an analogue of (8) and the same formula for T^2 ; in the end we again obtain (\star) .

Theorem 2 (Necessary condition for 4+4). If $P_{a,u}(t)$ factors in $\mathbb{Z}[t]$ as a product of two monic polynomials of degree 4, then there exists $X \in \mathbb{Z}$ satisfying (\star) [1, 2].

3 Key Lemma: $gcd(X, \Delta) = 1$

Lemma 2. If $X \in \mathbb{Z}$ satisfies (\star) , then $gcd(X, \Delta) = 1$.

Proof. Suppose, to the contrary, that a prime p divides both X and Δ [7, 9, 10, 11, 12]. Write

$$X = p^{x} X_{0}, \quad \Delta = p^{d} \Delta_{0}, \quad x, d \ge 1, \quad \gcd(X_{0}, p) = \gcd(\Delta_{0}, p) = 1.$$

Case $p \geq 3$. As usual:

$$X^{2} - 8\Delta^{2} = p^{2x} (X_{0}^{2} - 8p^{2(d-x)}\Delta_{0}^{2}),$$

$$X^{2} - 9\Delta^{2} = p^{2x} (X_{0}^{2} - 9p^{2(d-x)}\Delta_{0}^{2}).$$

If d > x, both brackets are $\not\equiv 0 \pmod{p}$, and $\nu_p(\text{LHS}) = 4x$. The right-hand side has $\nu_p(\text{RHS}) = 2x + \nu_p(4a^2u^2) = 2x$ (since $\gcd(a, u) = 1 \Rightarrow p \nmid au$). Contradiction. If d = x, the two brackets cannot both be divisible by p (otherwise $\Delta_0^2 \equiv 0$), hence $\nu_p(\text{LHS}) \geq 4x + 1 > 2x = \nu_p(\text{RHS})$. Contradiction [9, 11].

Case p = 2. Write $X = 2^{x}X_{0}$, $\Delta = 2^{d}\Delta_{0}$, $x, d \ge 1$, X_{0} , Δ_{0} odd. Consider three mutually exclusive options:

(B) 2x > 2d.

- If $x \ge d + 2$ (i.e. $2x \ge 2d + 4$), then $\nu_2(X^2 8\Delta^2) = 2d + 3$, $\nu_2(X^2 9\Delta^2) = 2d$, hence $\nu_2(\text{LHS}) = 4d + 3$ (odd), whereas $\nu_2(\text{RHS}) = 2 + \nu_2(a^2u^2) + 2x$ is even. Contradiction.
- If x = d + 1 (i.e. 2x = 2d + 2), then

$$X^{2} - 8\Delta^{2} = 2^{2d} (4X_{0}^{2} - 8\Delta_{0}^{2}) = 2^{2d+2} (X_{0}^{2} - 2\Delta_{0}^{2}),$$

where the bracket is odd; thus $\nu_2(X^2 - 8\Delta^2) = 2d + 2$. Moreover,

$$X^2 - 9\Delta^2 = 2^{2d} \left(4X_0^2 - 9\Delta_0^2 \right),$$

and $4X_0^2 - 9\Delta_0^2 \equiv 4 - 9 \equiv 3 \pmod{8}$ is odd, hence $\nu_2(X^2 - 9\Delta^2) = 2d$. Therefore $\nu_2(\text{LHS}) = (2d+2) + 2d = 4d + 2$.

Since $\nu_2(\Delta) \geq 1$, the numbers a and u have the same parity; with gcd(a, u) = 1 this forces both to be odd. Then $\nu_2(a^2u^2) = 0$ and

$$\nu_2(RHS) = \nu_2(4a^2u^2X^2) = 2 + 0 + 2x = 2 + 2(d+1) = 2d + 4.$$

Comparing, for $d \ge 2$ we have $4d + 2 \ne 2d + 4$ (contradiction), while for d = 1 the valuations coincide and we must compare odd parts. Modulo 8:

$$\frac{X^2-8\Delta^2}{2^4} \cdot \frac{X^2-9\Delta^2}{2^2} = (X_0^2-2\Delta_0^2) \left(4X_0^2-9\Delta_0^2\right) \equiv 7 \cdot 3 \equiv 5 \pmod{8}$$

whereas the odd part of the right-hand side is $X_0^2 \equiv 1 \pmod{8}$. Contradiction. Hence the subcase x = d + 1 is impossible.

(C) 2x = 2d. Then $\nu_2(X^2 - 8\Delta^2) = 2d$ and $\nu_2(X^2 - 9\Delta^2) \ge 2d + 3$ (since $X_0^2 \equiv 1 \pmod{8}$). Thus $\nu_2(\text{LHS}) \ge 4d + 3 \pmod{4}$, whereas $\nu_2(\text{RHS}) = 2 + \nu_2(a^2u^2) + 2x$ is even. Contradiction.

(A) 2x < 2d. Divide (*) by 2^{4x} :

$$\left(X_0^2 - 8 \cdot 2^{2(d-x)} \Delta_0^2\right) \cdot \left(X_0^2 - 9 \cdot 2^{2(d-x)} \Delta_0^2\right) = 4a^2 u^2.$$

Since $2(d-x) \ge 2$, both brackets on the left are odd, so their product is odd, whereas the right-hand side is divisible by 4. Contradiction.

In all cases we get the impossibility $2 \mid \gcd(X, \Delta)$ [8, 10]. The lemma is proved.

Corollary 1. If $2 \mid \Delta$, then $2 \nmid X$. If $3 \mid \Delta$, then $3 \nmid X$.

4 Complete Case Split by Divisibility of au by 3 and by Parity

Set $A_0 := a^2 u^2$ (this is *not* $A = 6\Delta$). We now work solely with equation (\star) [4, 9].

Branch I: $3 \mid au$ — impossible

With gcd(a, u) = 1, exactly one of a, u is divisible by 3, hence $\Delta = u^2 - a^2 \equiv \pm 1 \pmod{3}$, i.e. $3 \nmid \Delta$.

Subcase $3 \nmid X$. Then $X^2 \equiv 1 \pmod{3}$, and $\Delta^2 \equiv 1 \pmod{3}$, therefore

$$X^2 - 8\Delta^2 \equiv 1 - 2 \equiv 2 \pmod{3}, \qquad X^2 - 9\Delta^2 \equiv 1 - 0 \equiv 1 \pmod{3},$$

and $\nu_3(\text{LHS}) = 0$. On the other hand, $\nu_3(\text{RHS}) = \nu_3(4A_0) = 2\nu_3(au) \ge 2$. Contradiction.

Subcase $3 \mid X$. Let $x := \nu_3(X) \ge 1$. Then $\nu_3(X^2 - 8\Delta^2) = 0$ (since $8\Delta^2 \equiv 2 \pmod{3}$), while

$$X^2 - 9\Delta^2 = (X - 3\Delta)(X + 3\Delta),$$

where $\nu_3(X \pm 3\Delta) \ge 1$. Hence $\nu_3(X^2 - 9\Delta^2) \le 3$. Thus $\nu_3(\text{LHS}) \le 3$, while $\nu_3(\text{RHS}) = \nu_3(4A_0) + 2x \ge 2 + 2 = 4$. Contradiction.

Therefore, when $3 \mid au$, equation (\star) has no solutions [4].

Branch II: $3 \nmid au$ — impossible

Here $a^2 \equiv u^2 \equiv 1 \pmod{3}$, hence $\Delta \equiv 0 \pmod{3}$ and, by Corollary 1, $3 \nmid X$.

Sub-branch II.1: both a, u odd. Then $u \pm a$ are even, with one of the sums divisible by 4; hence

$$\nu_2(\Delta) = \nu_2(u-a) + \nu_2(u+a) \ge 3, \qquad \Delta^2 \equiv 0 \text{ (mod 16)}.$$

From $gcd(X, \Delta) = 1$ it follows that $2 \nmid X$, i.e. X is odd. Compare (\star) modulo 16:

$$X^{2} - 8\Delta^{2} \equiv X^{2}, \qquad X^{2} - 9\Delta^{2} \equiv X^{2} \pmod{16}.$$

The left-hand side $\equiv X^4 \equiv 1 \pmod{16}$, while the right-hand side $4A_0X^2 \equiv 4 \pmod{16}$ [8]. Contradiction.

Sub-branch II.2: a, u of opposite parity. Here Δ is odd, while $\nu_2(A_0) \geq 2$. If X is even with $\nu_2(X) = 1$, then $\nu_2(X^2 - 8\Delta^2) = 2$ and $\nu_2(X^2 - 9\Delta^2) = 0$, so $\nu_2(\text{LHS}) = 2$, whereas $\nu_2(\text{RHS}) \geq 6$. Contradiction.

If X is even with $\nu_2(X) \geq 2$, then $\nu_2(X^2 - 8\Delta^2) = 3$ and $\nu_2(X^2 - 9\Delta^2) = 0$, so $\nu_2(\text{LHS}) = 3$, whereas $\nu_2(\text{RHS}) \geq 8$. Contradiction.

If X is odd, then $X^2-8\Delta^2$ is odd, while $X^2-9\Delta^2=(X-3\Delta)(X+3\Delta)$ is a product of two even numbers (one divisible by 2, the other by 4), hence $\nu_2(\text{LHS})$ is odd ≥ 3 , whereas $\nu_2(\text{RHS})=2+\nu_2(A_0)$ is even ≥ 4 . Contradiction [7, 9].

Thus Branch $3 \nmid au$ is impossible.

5 Completion of the Proof

We have shown that equation (\star) has no integer solutions X either when $3 \mid au$ or when $3 \nmid au$. By Theorem 2, any 4+4 factorization yields a solution of (\star) ; since (\star) has no integer solutions, a 4+4 factorization is impossible.

Theorem 3 (Main result). For any coprime integers $a \neq u > 0$, the polynomial $P_{a,u}(t)$ does not factor in $\mathbb{Z}[t]$ as a product of two monic polynomials of degree 4.

6 Excluding a 2+2+4 Factorization

In this section we show that any factorization of degree 8 of the form

$$P_{a,u}(t) = Q_1(t) Q_2(t) H(t), \qquad \deg Q_1 = \deg Q_2 = 2, \ \deg H = 4,$$

necessarily regroups into a factorization of type 4+4, which has already been excluded above. The key facts are: (i) primitivity and monicity of factors (Gauss's lemma), (ii) evenness of $P_{a,u}$ and the involution $t \mapsto -t$ (Lemma 1).

Lemma 3 (Making groups monic). Let $P \in \mathbb{Z}[t]$ be monic and primitive of degree 8, and $P = \prod_{i=1}^k F_i$ a factorization into primitive polynomials with leading coefficients ± 1 . Then for any partition of the factors into two groups, the products over the groups can be made monic by multiplying exactly two factors (one in each group) by (-1).

Proof. The product of the leading coefficients of all F_i equals +1. Hence the products of the leading coefficients over the groups are either (+1, +1) or (-1, -1). In the latter case multiply one factor in each group by (-1) to get leading coefficient +1 in both groups [5, 6].

Lemma 4 (Parity of pairs). If $Q(t) \in \mathbb{Z}[t]$ is quadratic and not even, then in any factorization of the even $P_{a,u}(t)$ the factor Q(t) is accompanied by the conjugate Q(-t), and their product is even:

$$Q(t)Q(-t) \in \mathbb{Z}[t]$$
 even, $\deg(Q(t)Q(-t)) = 4$.

If Q_1, Q_2 are even quadratics, then $Q_1(t)Q_2(t)$ is also even.

Proof. From $P_{a,u}(t) = P_{a,u}(-t)$ and a factorization $P_{a,u} = \prod F_i$ we have $\prod F_i(t) = \prod F_i(-t)$. Comparing the multisets of irreducible factors in $\mathbb{Z}[t]$ (up to units ± 1), each factor not invariant under the involution must be accompanied by its conjugate; their product is invariant, i.e., even. If both quadratics are even, their product is clearly even [5, 13].

Proposition 1. Suppose $P_{a,u}(t) = Q_1(t) Q_2(t) H(t)$, where deg $Q_1 = \deg Q_2 = 2$ and deg H = 4. Then there is a factorization

$$P_{a,u}(t) = G(t) H(t), \qquad G(t) := Q_1(t)Q_2(t),$$

in which G and H can be made monic even polynomials of degree 4.

Proof. By Lemma 4, the product $G := Q_1Q_2$ is an even polynomial of degree 4 (either "both even" or "a pair Q, Q(-t)"). Since $P_{a,u}$ is even, H is also even (otherwise the product would not be even). Applying Lemma 3 to the groups $\{Q_1, Q_2\}$ and $\{H\}$, by multiplying (-1) to one factor in each group if necessary, we make G and H monic. Thus we get a factorization of type 4+4 [5, 6, 13].

Corollary 2. A 2+2+4 factorization of $P_{a,u}(t)$ is impossible.

Proof. By Proposition 1, any 2+2+4 factorization yields a 4+4 factorization, whose impossibility was proved above (see (\star) and the conclusion of the section excluding 4+4).

7 Excluding a 2+2+2+2 Factorization

We now exclude a complete quadratic factorization.

Proposition 2. If $P_{a,u}(t) = Q_1(t) Q_2(t) Q_3(t) Q_4(t)$ with deg $Q_i = 2$, then there exist pairs

$$G_1(t) := Q_1(t)Q_2(t), \qquad G_2(t) := Q_3(t)Q_4(t),$$

for which we have a factorization

$$P_{a,u}(t) = G_1(t) G_2(t),$$

where G_1 and G_2 can be made monic even polynomials of degree 4.

Proof. Group the factors in pairs. By Lemma 4, each pair either consists of two even quadratics, or contains a conjugate pair Q(t), Q(-t); thus G_1 and G_2 are even of degree four. Applying Lemma 3 to the pairs $\{Q_1, Q_2\}$ and $\{Q_3, Q_4\}$, multiplying by (-1) if necessary, we make G_1, G_2 monic. Hence we obtain a 4+4 factorization.

Corollary 3. A 2+2+2+2 factorization of $P_{a,u}(t)$ is impossible.

Proof. Proposition 2 reduces it to a 4+4 factorization, already ruled out above (see (\star) and the final conclusion about the impossibility of 4+4).

8 Reducing 2+6 to 4+4 Under Structural Conditions

Consider a factorization

$$P_{a,u}(t) = Q(t) H(t), \qquad \deg Q = 2, \ \deg H = 6.$$

Proposition 3 (Sufficient conditions for the reduction $2+6 \rightarrow 4+4$). If in the factorization $P_{a,u} = Q \cdot H$ at least one of the conditions holds:

- (i) the quadratic factor Q is not even;
- (ii) the sextic H has a quadratic (or a pair of linear) factor(s) in $\mathbb{Z}[t]$, then the 2+6 factorization regroups to a 4+4 factorization.

Proof. (i) If Q is not even, then by Lemma 4 in any factorization of the even $P_{a,u}$, the factor Q(t) is accompanied by the conjugate factor Q(-t). Since there are no other factors outside H, we have $Q(-t) \mid H(t)$. Then

$$P_{a,u}(t) = \underbrace{Q(t)Q(-t)}_{\text{deg}=4 \text{ even}} \cdot \underbrace{\frac{H(t)}{Q(-t)}}_{\text{deg}=4},$$

i.e., the case 4+4. Monicity of the groups is achieved by normalization via Lemma 3.

(ii) If $H = R \cdot J$ with deg R = 2, then $P_{a,u} = Q \cdot R \cdot J$ is a 2+2+4 factorization, which by Prop. 1 reduces to 4+4 [14].

Corollary 4 (Excluding a portion of 2+6 factorizations). Since a 4+4 factorization is impossible for $P_{a,u}$, all 2+6 factorizations covered by Proposition 3 are also impossible.

Remark 2 (What is not covered by the reduction). The only "hard" residue of the class 2+6 not reducible to 4+4 purely structurally is: Q is even (necessarily of the form $t^2 + q$), while the even sextic H has no linear/quadratic factors in $\mathbb{Z}[t]$. This remaining case is settled in Section 10.

9 Reducing 2+3+3 to 4+4 Under Structural Conditions

Let

$$P_{a,u}(t) = F(t) F(-t) Q(t), \qquad \deg F = 3, \ \deg Q = 2.$$

Then H(t) := F(t)F(-t) is an even monic polynomial of degree 6, and we are in a special case of the 2+6 scheme: $P_{a,u} = H \cdot Q$.

Proposition 4 (Sufficient conditions for the reduction $3+3+2 \rightarrow 4+4$). If at least one of the following holds:

- (i) the quadratic factor Q is not even;
- (ii) the sextic $H = F \cdot F(-t)$ has a quadratic (or a pair of linear) factor(s) in $\mathbb{Z}[t]$,

then the 3+3+2 factorization regroups to 4+4.

Proof. This is a direct application of Prop. 3 to the factorization $P_{a,u} = H \cdot Q$. In case (i), by Lemma 4 the factor Q(-t) divides the even sextic H, and Q(t)Q(-t) yields a quartic; in case (ii) the presence of a quadratic in H gives $2+2+4 \Rightarrow 4+4$.

Corollary 5 (Excluding a portion of 3+3+2 factorizations). Since 4+4 is excluded, all 3+3+2 factorizations covered by Prop. 4 are impossible.

Remark 3 (The remaining case). If Q is even, and $H = F \cdot F(-t)$ has no linear/quadratic factors in $\mathbb{Z}[t]$ (i.e., is either irreducible as an even sextic, or is a product of two irreducible cubics), then there is no structural reduction to 4+4; this case needs a separate analysis.

10 Excluding a 2+6 Factorization: a Direct Criterion and a Discriminant Argument

Recall the notation

$$P_{a,u}(t) = t^8 + At^6 + Bt^4 + Ct^2 + D,$$
 $A = 6\Delta,$ $\Delta := u^2 - a^2 \neq 0,$ $B = \Delta^2 - 2A_0,$ $C = -A_0A,$ $D = A_0^2,$ $A_0 := a^2u^2.$

Thus $P_{a,u}$ is even, monic, primitive in $\mathbb{Z}[t]$ and admits the representation

$$P_{a,u}(t) = Q(t^2), \qquad Q(x) := x^4 + Ax^3 + Bx^2 + Cx + D \in \mathbb{Z}[x].$$
 (13)

We show that a factorization of type 2+6 is impossible.

Step 0: Structural split of the class 2+6

Suppose

$$P_{a,u}(t) = Q_2(t) \cdot H_6(t), \qquad \deg Q_2 = 2, \ \deg H_6 = 6.$$

By evenness of $P_{a,u}$ and the involution $t \mapsto -t$, we have (cf. Lemma 4 and Prop. 3 in the previous sections):

• If Q_2 is not even, then necessarily $Q_2(-t) \mid H_6(t)$ and $P_{a,u}(t) = \underbrace{Q_2(t)Q_2(-t)}_{\text{deg}=4, \text{ even}} \cdot \underbrace{\frac{H_6(t)}{Q_2(-t)}}_{\text{deg}=4}$, i.e. the factorization regroups to the case 4+4,

which has already been excluded.

• Hence the only residue to analyze is the even quadratic

$$Q_2(t) = t^2 + q, \qquad q \in \mathbb{Z}.$$

We now rule out this last possibility by a direct necessary and sufficient condition plus a discriminant computation.

Step 1: Criterion for an even quadratic divisor

Lemma 5 (Even quadratic divisor criterion). For $q \in \mathbb{Z}$ we have

where Q is as in (13). In other words,

$$(t^2+q) \mid P_{a,u}(t) \iff q^4 - Aq^3 + Bq^2 - Cq + D = 0.$$

Proof. Divide Q(x) by x + q in $\mathbb{Z}[x]$: Q(x) = (x + q)R(x) + S with $R \in \mathbb{Z}[x]$ and a constant remainder S = Q(-q). Substituting $x = t^2$ and using (13) gives

$$P_{a,u}(t) = Q(t^2) = (t^2 + q) R(t^2) + S.$$

Thus
$$(t^2 + q) \mid P_{a,u}$$
 if and only if $S = 0$, i.e. $Q(-q) = 0$.

Remark 4. The case q = 0 is automatically impossible: if $t^2 \mid P_{a,u}(t)$, then the constant term must vanish, but $D = A_0^2 = a^4 u^4 > 0$.

Step 2: A discriminant obstruction

We rewrite the equality Q(-q)=0 from Lemma 5 as a quadratic equation in the unknown $A_0=a^2u^2$ while Δ and q are regarded as fixed integers. Using $A=6\Delta$, $B=\Delta^2-2A_0$, $C=-A_0A=-6\Delta A_0$, $D=A_0^2$, we compute

$$\begin{split} Q(-q) &= q^4 - Aq^3 + Bq^2 - Cq + D \\ &= q^4 - 6\Delta q^3 + (\Delta^2 - 2A_0)q^2 + 6\Delta A_0 q + A_0^2 \\ &= \underbrace{A_0^2}_{\text{guadratic in } A_0} + \underbrace{(6\Delta q - 2q^2)}_{=:b} A_0 + \underbrace{(\Delta^2 q^2 - 6\Delta q^3 + q^4)}_{=:c}. \end{split}$$

Thus Q(-q) = 0 is the quadratic equation in A_0 :

$$A_0^2 + b A_0 + c = 0,$$
 $b = 6\Delta q - 2q^2,$ $c = \Delta^2 q^2 - 6\Delta q^3 + q^4.$

Its discriminant with respect to A_0 equals

Disc_{A₀} =
$$b^2 - 4c = (6\Delta q - 2q^2)^2 - 4(\Delta^2 q^2 - 6\Delta q^3 + q^4)$$

= $(36\Delta^2 q^2 - 24\Delta q^3 + 4q^4) - (4\Delta^2 q^2 - 24\Delta q^3 + 4q^4)$
= $32\Delta^2 q^2$.

Proposition 5 (Irrationality of the would-be roots). If $\Delta \neq 0$ and $q \neq 0$, then $\operatorname{Disc}_{A_0} = 32 \Delta^2 q^2$ is not a perfect square in \mathbb{Z} .

Proof. We have $\nu_2(\operatorname{Disc}_{A_0}) = \nu_2(32) + 2\nu_2(\Delta q) = 5 + 2\nu_2(\Delta q)$, which is odd for all $\Delta q \neq 0$. A perfect square in \mathbb{Z} must have even 2-adic valuation. Hence $\operatorname{Disc}_{A_0}$ is not a square in \mathbb{Z} .

Corollary 6 (No integer solution for A_0). For $\Delta \neq 0$ and $q \neq 0$ the quadratic equation $A_0^2 + bA_0 + c = 0$ has no solutions $A_0 \in \mathbb{Z}$.

Proof. The roots are $\frac{-b \pm \sqrt{\mathrm{Disc}_{A_0}}}{2}$; by Proposition 5 the discriminant is not an integer square, hence the roots are irrational.

Step 3: Conclusion for 2+6

Theorem 4 (No 2+6 factorization). Let $a, u \in \mathbb{Z}_{>0}$ be coprime and $a \neq u$ (so $\Delta \neq 0$). Then $P_{a,u}(t)$ does not factor in $\mathbb{Z}[t]$ as a product of a quadratic and a sextic polynomial.

Proof. As noted above, any 2+6 with a non-even quadratic regroups to a 4+4, which is impossible. Thus it remains to exclude an even quadratic $t^2 + q$. By Lemma 5, $(t^2 + q) \mid P_{a,u}$ iff Q(-q) = 0. If q = 0, divisibility by t^2 would force D = 0, which is false. If $q \neq 0$, then by Corollary 6 the equality Q(-q) = 0 has no solutions $A_0 = a^2u^2 \in \mathbb{Z}$. Hence there is no $q \in \mathbb{Z}$ for which $t^2 + q$ divides $P_{a,u}$. Therefore no 2+6 factorization exists.

Remark 5 (What this uses from previous sections). The proof is logically independent of the 4+4 Diophantine analysis, except for the purely structural observation that a non-even quadratic factor forces regrouping into 4+4 (via pairing $Q_2(t)$ with its conjugate $Q_2(-t)$). The "hard" residue (even quadratic $t^2 + q$) is completely settled by Lemma 5 and the discriminant computation.

11 Excluding a 2+3+3 Factorization

In this section we show that a factorization of type 3+3+2 is impossible.

Proposition 6 (Structural reduction of 3+3+2). Assume

$$P_{a,u}(t) = F(t) F(-t) Q(t), \qquad \deg F = 3, \ \deg Q = 2.$$

Then exactly one of the following occurs:

(a) Q is not even, in which case $Q(-t) \mid F(t)F(-t)$ and the factorization regroups as

$$P_{a,u}(t) = \underbrace{Q(t)Q(-t)}_{\text{deg}=4, \text{ even}} \cdot \underbrace{\frac{F(t)F(-t)}{Q(-t)}}_{\text{deg}=4},$$

i.e., into the already excluded case 4+4;

(b) Q is even, hence $Q(t) = t^2 + q$ for some $q \in \mathbb{Z}$.

Proof. This is the standard involution argument (cf. Lemma 4): since $P_{a,u}(t) = P_{a,u}(-t)$, any factor not fixed by $t \mapsto -t$ must be accompanied by its conjugate; with only one quadratic factor present, either it is even, or the conjugate Q(-t) divides F(t)F(-t), yielding (a) and hence 4+4. If Q is even and monic, it must be of the form $t^2 + q$.

Thus, to exclude 3+3+2, it suffices to rule out case (b).

Lemma 6 (Even quadratic divisor criterion revisited). Let $Q(x) = x^4 + Ax^3 + Bx^2 + Cx + D \in \mathbb{Z}[x]$ be as in (13) with $P_{a,u}(t) = Q(t^2)$. Then, for $q \in \mathbb{Z}$,

$$(t^2+q) \mid P_{a,u}(t) \iff Q(-q)=0.$$

In particular, with $A=6\Delta$, $B=\Delta^2-2A_0$, $C=-6\Delta A_0$, $D=A_0^2$ (where $A_0=a^2u^2$, $\Delta=u^2-a^2\neq 0$), the equality Q(-q)=0 is the quadratic equation

$$A_0^2 + (6\Delta q - 2q^2)A_0 + (\Delta^2 q^2 - 6\Delta q^3 + q^4) = 0$$

in the unknown A_0 .

Proof. Identical to Lemma 5: divide Q(x) by x + q in $\mathbb{Z}[x]$ and substitute $x = t^2$.

Proposition 7 (No even quadratic divisor). If $\Delta \neq 0$, then there is no $q \in \mathbb{Z}$ with $(t^2 + q) \mid P_{a,u}(t)$.

Proof. If q=0, divisibility by t^2 would force D=0, but $D=a^4u^4>0$. If $q\neq 0$, the discriminant of the quadratic in A_0 from Lemma 6 equals $\mathrm{Disc}_{A_0}=32\,\Delta^2q^2$, which is not a perfect square in \mathbb{Z} (its 2-adic valuation is $5+2\nu_2(\Delta q)$, hence odd). Therefore the equation has no solution $A_0\in\mathbb{Z}$, i.e., no such q exists.

Theorem 5 (No 3+3+2). For coprime $a, u \in \mathbb{Z}_{>0}$ with $a \neq u$, the polynomial $P_{a,u}(t)$ does not factor in $\mathbb{Z}[t]$ as F(t)F(-t)Q(t) with deg F = 3, deg Q = 2.

Proof. By Proposition 6, either Q is not even, which regroups to 4+4 (already excluded), or $Q(t) = t^2 + q$, which is impossible by Proposition 7.

Remark 6. This argument is logically independent of the Diophantine condition for 4+4 except for the purely structural regrouping in the non-even quadratic case. The genuinely remaining case $Q(t) = t^2 + q$ is killed by the discriminant computation from §10, hence the whole class 3+3+2 is excluded.

12 Irreducibility in Full

Theorem 6 (Irreducibility). For any coprime integers $a \neq u > 0$, the polynomial $P_{a,u}(t)$ is irreducible in $\mathbb{Z}[t]$.

Proof. All degree-8 splittings are excluded as follows.

- (i) The case 4+4 is impossible by Theorem 2 and the analysis of equation (\star) (from Lemma 1 to Corollary 1 and the subsequent 2-/3-adic split).
- (ii) The types 2+2+4 and 2+2+2+2 regroup to 4+4 by Lemma 4 and Lemma 3, hence are impossible (Propositions 1 and 2 with Corollaries 2 and 3).
- (iii) Any factorization with odd-degree factors must come in conjugate pairs F(t)F(-t) by evenness; thus patterns with linear/cubic factors reduce to either 3+3+2 or 1+1+6, both of which regroup to 4+4 by Lemma 4 (see Proposition 4 and Corollary 5).
- (iv) The remaining 2+6 case is ruled out in Section 10: a non-even quadratic forces a 4+4, while an even quadratic $t^2 + q$ cannot divide $P_{a,u}(t)$ by the exact divisor criterion Q(-q) = 0 and the discriminant obstruction $\text{Disc}_{A_0} = 32\Delta^2 q^2$ (Theorem 4).

Therefore no nontrivial factorization in $\mathbb{Z}[t]$ exists. Since $P_{a,u}(t)$ is monic and primitive, irreducibility over \mathbb{Z} follows.

Conclusions

We have shown that for any coprime integers $a \neq u > 0$ the even cuboid polynomial $P_{a,u}(t)$ admits no factorization of type 4+4 in $\mathbb{Z}[t]$. The key step is the reduction of a potential factorization to the Diophantine condition $(X^2 - 8\Delta^2)(X^2 - 9\Delta^2) = 4a^2u^2X^2$, from which, using 2- and 3-adic estimates and the lemma $gcd(X, \Delta) = 1$, the absence of integer solutions follows. From the 4+4 prohibition we immediately obtain the impossibility of factorizations 2+2+4 and 2+2+2+2 (by regrouping even factors and conjugate pairs). Moreover, any factorization of types 2+6 and 3+3+2 that structurally reduces to 4+4 (a non-even quadratic or the presence of a quadratic/linear divisor in the sextic) is also excluded. Thus, a strict 4+4 ban is proved and a wide class of its immediate consequences for degree-8 factorizations is obtained [1, 2, 3].

Finally, we close the remaining 2+6 case that does *not* structurally reduce to 4+4: if an even quadratic t^2+q divides $P_{a,u}(t)$, then (with $P_{a,u}(t)=Q(t^2)$, $Q(x)=x^4+Ax^3+Bx^2+Cx+D$) one must have the exact divisor condition Q(-q)=0. Viewing this as a quadratic equation in $A_0=a^2u^2$ (with fixed $\Delta=u^2-a^2\neq 0$ and $q\neq 0$) yields the discriminant $\mathrm{Disc}_{A_0}=32\,\Delta^2q^2$, which is never a perfect square in \mathbb{Z} ; hence such a 2+6 factorization is impossible.

Together with the previous sections this excludes not only 4+4 but also all possible regroupings (2+2+4, 2+2+2+2, and 3+3+2) as well as the

genuine 2+6 case. Altogether, $P_{a,u}(t)$ admits no nontrivial factorization in $\mathbb{Z}[t]$, establishing irreducibility in full.

References

- [1] R. Sharipov, Perfect Cuboids and Irreducible Polynomials, arXiv:1108.5348 [math.NT], 2011.
- [2] R. Sharipov, A note on a perfect Euler cuboid, arXiv:1104.1716 [math.NT], 2011.
- [3] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004.
- [4] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford University Press, 2008.
- [5] D. S. Dummit, R. M. Foote, Abstract Algebra, 3rd ed., Wiley, 2004.
- [6] S. Lang, Algebra, Rev. 3rd ed., Springer, 2002.
- [7] J. Neukirch, Algebraic Number Theory, Springer, 1999.
- [8] J. P. Serre, A Course in Arithmetic, Springer GTM 7, 1973.
- [9] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Springer GTM 84, 1990.
- [10] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed., Springer GTM 58, 1984.
- [11] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer, 2004.
- [12] D. A. Marcus, Number Fields, Springer GTM 1977 (reprints).
- [13] K. Conrad, Gauss's Lemma and Unique Factorization in \mathbb{Z} and F[T], Lecture notes, Univ. of Connecticut, c. 2010–2014.
- [14] K. Conrad, Eisenstein's Criterion, Lecture notes, c. 2010–2014.
- [15] I. Stewart, D. Tall, Algebraic Number Theory and Fermat's Last Theorem, 3rd ed., A K Peters, 2002.
- [16] M. R. Murty, J. Esmonde, Problems in Algebraic Number Theory, 2nd ed., Springer GTM 190, 2005.