The need for an instructional module to teach Alloy 6

Panaccione Francesca Pia Padalino Luca Santambrogio Francesco

The importance of the specification languages

ALLOY

One of the most precise and concise specification languages

New version (Alloy 6)

Introduction of linear temporal logic

Expansion of semantics: new symbols and keywords

New visualizer

Problem

◆ Alloy as the other specification languages is challenging to learn due to their formal nature and complex syntax that involve abstract concepts such as predicates, relations, and logical operators

Alloy all over the world

Logic for System course

Brown University

Discrete Mathematics course

Michigan Technological University

Papers on exercises using Alloy for discrete structure or discrete mathematics courses

Formal Methods

University of Iowa

Annual course of Alloy

University of Minho in Portugal

...Yet little has been done about a comprehensive and focused way to teach Alloy 6

Problem

♦ Lack of a **comprehensive** teaching module about Alloy, especially its sixth version, in order to tackle its difficulties in understanding and turn it into a useful tool for Software Engineering students and not only

Solution

STEP 01

Study of the teaching methodologies and strategies

STEP 02

Definition of a teaching module for Alloy 6

Teaching Module

is a significant, highly homogeneous, and unified part of a planned disciplinary program

Definition of learning goals

01

identify the knowledge, skills, and capacities a student should achieve at the end of the module

02

allow the lecturer to think about learning objectives, contents, leargning activities, materials, assessment tools

Use of

multimedia

01

Can attract students' attentions easily

02

Can be delivered easily

03

Flexible and multipurpose

04

Increase students autonomy, peer learning, innovation and creativity skills

Active learning

01

A proactive rather than a reactive approach

02

Teachers and students construct a shared community

)3

Incorporates out-of-classroom projects, problem-based cases, team assignments,

04

Increases students' self-confidence and self-reliance

whatever changes are made in teaching by the teacher or the school achieve an improvement

only what is above the average effect size, i.e., 0.40, produces a consistent improvement in learning

	Below is Hattie's table of effect sizes.				
Influence		Effect Size	Source of Influence		16
Feedback		1.13	Teacher		
Stude	Student's prior cognitive ability		Student		
	Instructional quality		Teacher		
Direct instruction		.82	Teacher		Ш,
	Teacher Style		.42	Teacher	
F	F Questioning		.41	Teacher	
Stuc	Stuc Peer effects		.38	Peers	
	Advance organisers		.37	Teacher	
	Simulation & games		.34	Teacher	
	Computer-assisted instruct	tion	.31	Teacher	
	Testing		.30	Teacher	
	Instructional media			Teacher	
	Affective attributes of students		.24	Student	
	Physical attributes of students		.21	Student	
	Programmed instruction	1	.18	Teacher	
	Audio-visual aids		.16	Teacher	
	Individualisation		.14	Teacher	

Quiz

Active Learning Quiz & Challenge

They allow objective investigation of module progress and enable students to self-assess themselves

Challenge

Aims to model a particularly complex scenario with an unsolved problem that students try to solve using all the background provided by the lecture

STRUCTURE OF OUR TEACHING MODULE

Schedule

Overview of the learning objectives

To understand how Alloy 5 deals with dynamic modeling

To understand which are the **limitations** of the **dynamic modeling** in Alloy 5 and why Alloy needed a **new version**

To understand which are the **new features** introduced in **Alloy 6**

First theoretical lecture (45')

Schedule

DYNAMIC MODELS

Limitations

There are **some limitations** to what we can model in a dynamic system:

- Import a package and try to emulate time without dealing with a real notion of time
- Alloy cannot test that some property is guaranteed to happen in infinite time (liveness)

...WE CAN DO BETTER!

First theoretical lecture (45')

Schedule

Lasso

Schedule

A **video** of theoretical explanation of all **temporal connectives** introduced in the new version of Alloy (with syntax and meaning) with the aid of examples showing their use


```
Sintax: Exp::= un0p expr expr bin0p expr
```


- **❖ Un0p::= always| after| eventually**
- ❖ Bin0p::= until| releases| ;

```
ALWAYS F = true in i iff F = true in k>=i
for each state k
```

ALWAYS F

TEMPORAL CONNECTIVES

Eventually

ALWAYS

```
fact NoResurrection {
always (all p:Person|
p.liveness = Dead
implies always
p.liveness = Dead)}
```


Second theoretical lecture (45')

Schedule

Quizzes about the previous and the flipped lecture content

Quiz
1

Dynamic modeling in Alloy 5 https://forms.office.com/e/9bjmhZTQ0j 5 min.

Second theoretical

Schedule

Number of steps

TIME HORIZON: the possible number of transitions of lasso traces to explore

$$\frac{default}{default}$$
 #steps = 10

for 10 steps

for N steps

for M .. N steps

for 1 .. steps

Second theoretical lecture (45')

complete overview of

Alloy 6

Distributed system

Use of concurrency exploiting mutable signatures and temporal connectives

Mailbox

An homework with the same topics as the other

EXERCISE 2

Interrail: signatures

Extra activities

Our Challenge

Topic: Software defined network

Modality: solo or in a group (suggested)

Improve: team-working, problem-solving

Question to be anserwed

Is the designed teaching module efficient for students?

...A possible future study

...A possible future study

 Which of the two groups delivers the challenge first and which one gives the most appropriate solution?

• Which of the two groups gives the highest number of correct answers in the quizzes?

