Classification of Sketch for Information Retrieval

Final Presentation

Akshit Kumar (EE14B127) Sachin Agrawal (EE14B104) Advisor: Mahesh Mohan

Indian Institute of Technology, Madras

Table of contents

- 1. Introduction
- 2. Dataset and Data Augmentation
- 3. ResNet-Training and results
- 4. Binary Sketch-A-Net
- 5. Conclusions and scope for future work

Introduction

· Sketches are visually less complex than photographs

- · Sketches are visually less complex than photographs
 - · Photographs have 3 channels,

- · Sketches are visually less complex than photographs
 - Photographs have 3 channels, whereas Sketches are encoded as black-and-white

- Sketches are visually less complex than photographs
 - Photographs have 3 channels, whereas Sketches are encoded as black-and-white
 - Photographs contain visual information throughout the image,

- Sketches are visually less complex than photographs
 - Photographs have 3 channels, whereas Sketches are encoded as black-and-white
 - Photographs contain visual information throughout the image, Sketches are sparse

- · Sketches are visually less complex than photographs
 - Photographs have 3 channels, whereas Sketches are encoded as black-and-white
 - Photographs contain visual information throughout the image, Sketches are sparse
- Sketches and Photographs have different sources of intraclass variation
 - · Sketches vary widely based on artistic style

- · Sketches are visually less complex than photographs
 - Photographs have 3 channels, whereas Sketches are encoded as black-and-white
 - Photographs contain visual information throughout the image, Sketches are sparse
- Sketches and Photographs have different sources of intraclass variation
 - Sketches vary widely based on artistic style

- · Sketches are visually less complex than photographs
 - Photographs have 3 channels, whereas Sketches are encoded as black-and-white
 - Photographs contain visual information throughout the image, Sketches are sparse
- Sketches and Photographs have different sources of intraclass variation
 - · Sketches vary widely based on artistic style

Applications

· A search engine add-on (Aid Google's Image search)

Applications

- · A search engine add-on (Aid Google's Image search)
- · Pictionary: An AI to play pictionary
- Future of human computer interfaces

Applications

- · A search engine add-on (Aid Google's Image search)
- Pictionary: An AI to play pictionary
- Future of human computer interfaces
- · Educational tools

Dataset and Data Augmentation

Dataset and Data Augmentation

- TU Berlin dataset collected using crowd-sourcing of sketches.
- Dataset has 250 classes, and 80 images per class
- Reduce the original image size of 1111 \times 1111 pixels to 128 \times 128 pixels using bilinear interpolation
- Data augmentation using flipped images
- Rotating original and flipped images by 5°, 10° and 15°
- Hence, we obtain 960 images per class

 The first attempts at classifying sketches made use of hand crafted features and SVM classifiers. They were able to achieve accuracy of 56% -Eitz et al.(SIGGRAPH 2012)

- The first attempts at classifying sketches made use of hand crafted features and SVM classifiers. They were able to achieve accuracy of 56% -Eitz et al.(SIGGRAPH 2012)
- Sketch-a-Net that beats humans by Qian et al., 2015 makes use of stroke sequentiality to convert a sketch into a multiple channel image. They also make use of wide filters for learning sparse features. This approach reaches an accuracy of 74.9%.

- The first attempts at classifying sketches made use of hand crafted features and SVM classifiers. They were able to achieve accuracy of 56% -Eitz et al.(SIGGRAPH 2012)
- Sketch-a-Net that beats humans by Qian et al., 2015 makes use
 of stroke sequentiality to convert a sketch into a multiple
 channel image. They also make use of wide filters for learning
 sparse features. This approach reaches an accuracy of 74.9%.
- DeepSketch 2 Seddati et. al, 2016 generates partial sketches from the given dataset. Partial sketches are used to fine-tune the network. The final accuracy achieved is 77%

Vanilla CNN - Sketch-A-Net

- We start with training a vanilla CNN for image classification
- · We use wide filters in the first layer
- This helps us in capturing the sparse features in the sketch
- Architecture inspired from Sketch-a-Net
- · Implementation in Tensorflow
- · We obtain an accuracy of 62% with this approach
- This is better than the 56% presented by Eitz et. al in the initial paper

Vanilla CNN Architecture

Layer	Туре	Filter size	Filter Num	Stride	Output Size
	Input	-	-	-	225 × 225
L1	Conv	15 × 15	64	3	71 × 71
	ReLU	-	-	-	71 × 71
	MaxPool	3 × 3	-	2	35×35
L2	Conv	5 × 5	128	1	31 × 31
	ReLU	-	-	-	31 × 31
	MaxPool	3 × 3	-	2	15 × 15
L3	Conv	3 × 3	256	1	15 × 15
	ReLU	-	-	-	15 × 15
L4	Conv	3 × 3	256	1	15 × 15
	ReLU	-	-	-	15 × 15
L5	Conv	3 × 3	256	1	15 × 15
	ReLU	-	-	-	15 × 15
	MaxPool	3 × 3	-	2	7 × 7
L6	Conv	1×1	512	1	1 × 1
	ReLU	-	-	-	1×1
	Dropout(0.50)	-	-	-	1×1
L7	Conv	1×1	512	1	1 × 1
	ReLU	-	-	-	1×1
	Dropout(0.50)	-	-	-	1×1
L8	Conv	1 × 1	250	1	1 × 1

ResNet-Training and results

Training on ResNet

- State of the art for image classification
- Use wide filters to learn sparse features in the image
- Current architecture consists of 25 layers

Training on ResNet - Architecture

Layer	Output Size
Input	128 × 128 × 1
7 × 7 conv, 64, /2	64 × 64 × 64
3 × 3 residual unit, 64	$64 \times 64 \times 64$
3 × 3 residual unit, 64	
3 × 3 residual unit, 64	
3×3 residual unit, 128, /2	32 × 32 × 128
3 × 3 residual unit, 128	
3 × 3 residual unit, 128	
3×3 residual unit, 256, /2	16 × 16 × 256
3 × 3 residual unit, 256	
3 × 3 residual unit, 256	
3×3 residual unit, 512, /2	8 × 8 × 512
3 × 3 residual unit, 512	
3 × 3 residual unit, 512	
8 × 8 Average Pooling	512
Fully Connected, 250	250

Training on ResNet - Details

	w/o Data Augmentation	w/ Data Augmentation
Training Time(CPU)	N.A	∼ 3 days
Training Time(GPU)	~ 2.5 hours	∼ 7.5 hours
Learning Rate	1e – 3	1e – 3
Training Images	24000 (48 × 2 × 250)	72000 (48 × 6 × 250)
Validation Images	4000 (16 × 250)	4000 (16 × 250)
Test Images	4000 (16 × 250)	4000 (16 × 250)
Test Accuracy	66.2 %	62.9 %

Training on ResNet - Training Plots

Figure 1: Training and Validation Plots

• 3 Most Accurately Classified Classes

Rollerblades	1.000	
Nose	1.000	
Zebra	0.9375	

• 3 Least Accurately Classified Classes

Dragon	0.1875	
Seagull	0.125	
Panda	0.0625	

Possible Reasons for Misclassification

Possible Reasons for Misclassification

Seagull

Possible Reasons for Misclassification

Possible Reasons for Misclassification

- · No difference in drawing these varieties of birds
- · Misclassified 5 times as pigeon and 3 times as standing bird

Possible Reasons for Misclassification

· Intraclass Variation and Interclass Overlap (Eg. Panda)

- · Large variation in posing and color and artistic talent
- · Classified as Teddy Bear one-third of the times

Training on ResNet - Limitation

- Test Accuracy below human performance (\sim 73%)
- Training requires GPUs and is time expensive
- Cannot be used for light-weight applications such as search engine aid

Binary Sketch-A-Net

How to speed-up our network?

- XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks by Rastegari et. al.
- · They proposed two networks.
- The first network made use of binary filters to perform convolution operations
- The second made use of binary filters as well as binarized the input to these filters
- We implement a binary sketch-a-net to optimize memory and computation efficiency

Binary Sketch-a-Net

- 58× faster convolution
- 32× memory saving
- We implement a binary sketch-a-net to optimize on computational efficiency

Binary Sketch-a-Net

$$I*W\approx (I\oplus B)\alpha$$

Where:

- *I* is the input
- W is the normal filter
- B is the filter consisting of $\{-1, 1\}$
- \cdot α is a positive number

Results from Binary Sketch-A-Net

- We obtained a top 1 accuracy level of 58.65%.
- We also obtain a top 5 accuracy level of 82.11%.
- · This is lower than state of the art results.
- However, we achieved considerable memory savings and speed up.
- Our weights storage reduced from 32.7 MB to 1.82 MB. This is equivalent to $18 \times$ memory savings.
- We also attained a $2 \times$ speedup.

Summary

Architecture	Accuracy	Advantage
Vanilla Sketch-A-Net	62%	State of the Art Network
ResNet	66.2%	Improved Accuracy
Binary Sketch-A-Net	58.65%	Computational Efficiency

Conclusions and scope for future work

- We explored a ResNet, which gave us comparatively better accuracy
- We also explored a binary Sketch Net, which was computationally superior.
- One interesting experiment would be implementing a binary ResNet for sketch classification
- We were unable to get any interesting results from RNNs, but we still feel that this line of work needs to be explored further.

Thank You