Stock Price Prediction

Using Machine Learning models

Problem

We wanted to predict the **Last Traded Price** of the Stock GLAXOSMITH

Solution

We used machine learning **regression** models to predict the stock price of GLAXOSMITH

Implemented the models

Multiple Linear Regression

- ✓ Imported data set
- ✓ Handled missing data: Eliminated rows with 0 (1%)
- ✓ Dataset split: 80% Training & 20% Test
- ✓ Trained MLR model on the training set
- ✓ Predicted test results
- ✓ Evaluated model performance with R² and RMSE score
- ✓ Visualised results with plots

Polynomial Linear Regression

- ✓ Imported data set
- ✓ Handled missing data: Eliminated rows with 0 (1%)
- ✓ Dataset split: 80% Training & 20% Test
- ✓ Trained PLR model on the training set
- ✓ Predicted test results
- ✓ Evaluated model performance with R² and RMSE score
- √ Visualised results with plots

Decision Tree Regression

- ✓ Imported data set
- √ Handled missing data: Eliminated rows with 0 (1%)
- ✓ Dataset split: 80% Training & 20% Test [Manual split]
- ✓ Trained Decision tree model on the training set
- ✓ Predicted test results
- ✓ Evaluated model performance with R² and RMSE score
- √ Visualised results with plots

Implemented the models

Random Forest Regression

- ✓ Imported data set
- ✓ Handled missing data: Eliminated rows with 0 (1%)
- ✓ Dataset split: 80% Training & 20% Test [Manual split]
- ✓ Trained Random forest model on the training set
- ✓ Predicted test results
- ✓ Evaluated model performance with R² and RMSE score
- ✓ Visualised results with plots

Support Vector Regression

- ✓ Imported data set
- √ Handled missing data: Eliminated rows with 0 (1%)
- ✓ Reshape dependent variable y into vector
- ✓ Dataset split: 80% Training & 20% Test
- √ Feature scaling used standard scaler.
- ✓ Trained SVR model on the training set with radial basis function kernel.
- ✓ Predicted test results
- ✓ Evaluated model performance with R² and RMSE score
- ✓ Visualised results with plots

K nearest Neighbour Regression

- ✓ Imported data set
- √ Handled missing data: Eliminated rows with 0 (1%)
- ✓ Dataset split: 80% Training & 20% Tes
- √ Feature scaling used min-max scaler
- ✓ Trained KNN model on the training set
- ✓ Predicted test results
- ✓ Evaluated model performance with R² and RMSE score
- ✓ Visualised results with plots

Multiple Linear Regression

R²Score: 0.99962

RMSE Score: 9.9698

Polynomial Linear Regression

R²Score: -3445515.1010

RMSE Score: 957268.24203

Support Vector Regression

R²Score: 0.9885

RMSE Score: 724.819

Decision Tree Regression

R²Score: 0.9886

RMSE Score: 38.34132

Random Forest Regression

R²Score: 0.9934

RMSE Score: 29.14876

K nearest Neighbour Regression

R²Score: -0.2316

RMSE Score: 398.5962

Conclusion

Successfully predicted the future traded price of the Stock of GLAXOSMITH

Best Results

- 1. Multiple Linear Regression
- 2. Random forest Regression
- 3. Decision tree Regression

Unsatisfactory results

- 1. Polynomial Linear Regression
- 2. K nearest neighbour
- 3. Support vector Regression