Week 6: Delete Relaxation

COMP90054 – Al Planning for Autonomy

Key concepts

- Delete relaxation heuristic h^+
- The relationship between h^{max} , h^{add} and h^+

once true -> porever true.

What is the (optimal) delete relaxation heuristic h^+ ?

Relaxing by **ignoring delete lists** "What was once true remains true forever"

Definition (Delete Relaxation). (i) For a STRIPS action a, by a^+ we denote the corresponding delete relaxed action, or short relaxed action, defined by $pre_{a^+} := pre_a$, $add_{a^+} := add_a$, and $del_{a^+} := add_a$

$$P = \langle F, O^+, I, G \rangle$$

Blocks Table Table pickup(A). state 1 state 2. once tre, jorever tre delete relaxation)

$$h(s) = d(s, G1) + d(s, G2)$$

How would it be interpreted in pacman?

Minimum spanning tree: Admissible, Not consistent

Minimum Steiner tree: Admissible, consistent

approximation of ht

What is the relationship between h^{max} , h^{add} and h^+ ? What about h^* ?

h* is the perfect heuristic (the optimal cost from the current state to the goal state)

 h^+ is the **optimal delete relaxation** heuristic (not easy to compute) h^+ is admissible

 h^{max} is an approximation of h^+ h^{max} is admissible. h^{max} is very small. $h^{max} <= h^+ <= h^*$

 h^{add} is an approximation of h^+ h^{add} is not admissible $h^{add} >= h^+$

Definition (h^{add}). Let $\Pi = (F, A, c, I, G)$ be a STRIPS planning task. The additive heuristic h^{add} for Π is the function $h^{\text{add}}(s) := h^{\text{add}}(s, G)$ where $h^{\text{add}}(s, g)$ is the point-wise greatest function that satisfies $h^{\text{add}}(s, g) =$

$$\begin{cases} 0 & g \subseteq s \\ \min_{a \in A, g \in add_a} c(a) + h^{\text{add}}(s, pre_a) & |g| = 1 \\ \sum_{g' \in g} h^{\text{add}}(s, \{g'\}) & |g| > 1 \end{cases}$$

Definition (h^{max}). Let $\Pi = (F, A, c, I, G)$ be a STRIPS planning task. The max heuristic h^{max} for Π is the function $h^{\text{max}}(s) := h^{\text{max}}(s, G)$ where $h^{\text{max}}(s, g)$ is the point-wise greatest function that satisfies $h^{\text{max}}(s, g) =$

$$\begin{cases} 0 & g \subseteq s \\ \min_{a \in A, g \in add_a} c(a) + h^{\max}(s, pre_a) & |g| = 1 \\ \max_{g' \in g} h^{\max}(s, \{g'\}) & |g| > 1 \end{cases}$$

Initial state

I = {on(A, C), onTable(C), onTable(B), clear(A), clear(B), handFree}

Goal state

 $G = \{on(A,B), on(B,C), onTable(C)\}$

Initial State

Goal State

C	earl	(×),	hand	Free,	ho	lding	(×

ABC

	-					_											7			
Iter		c(A)	c(B)	c(C)	hand Free	h(A)	h(B)	h(C)	on(A, A)	on(A,B)	on(A,C)	on(B,A)	on(B,B)	on(B,C)	on(C,A)	on(C,B)	on(C,C)	onT(A)	onT(B)	onT(C)
0		0)(0	∞ (0	∞	∞	∞	∞	∞	0	8	_∞	8	8	8	∞	∞ (0	0
1																				
2																				

I = {on(A, C), onTable(C), onTable(B), clear(A), clear(B), handFree}

A

C(A) = clear(A)
onTable(A) = onT(A)
hold(A) = holding(A)

Table

Table

(state 3)

That is a state of the contact of the contact

Ite	er	c(A)	c(B)	c(C)	hand Free	h(A)	h(B)	h(C)	on(A, A)	on(A,B)	on(A,C)	on(B,A)	on(B,B)	on(B,C)	on(C,A)	on(C,B)	on(C,C)	onT(A)	onT(B)	onT(C)
0		0	0	8	0	8	8	8	8	8	0	8	∞	8	∞	8	∞	∞	0	0
-) ¹		0	0		0 ($\bigcup_{i \in I} (i)$					0								0	0

hadd (clear C) = ? h max (clear C) = ?

Which actions can we take to make **clear(C)** True?

x,y ESA,B,C}

Define Operators

Which actions can we take to make **clear(C)** True?

putdown(C) stack(C, A) stack(C, B) unstack(A, C) unstack(B, C) stack(C, C)

unstack(C, C)

. unstack (x,C)

- · putdown (C)
 · stack (C, y)

pickup(x)

- Prec: onTable(x), clear(x), handFree
- Add: holding(x)
 - Del: onTable(x), clear(x), handFree

unstack(x, y)

- Prec: on(x, y), clear(x), handFree
- Add: holding(x), clear(y)
- Del: on(x, y), clear(x), handFree

putdown(x)

- Prec: holding(x)
- Add: clear(x) on Table(x), hand Free
- Del: holding(x)

stack(x, y)

- Prec: holding(x), clear(y)
- _____ Add: clear(x)) on(x,y), handFree
 - Del: clear(y), holding(x)

	Iter	c(A)	c(B)	c(C)	hand	h(A)	h(B)	h(C)	on(A, A)	on(A,B)	on(A,C)	on(B,A)	on(B,B)	on(B,C)	on(C,A)	on(C,B)	on(C,C)	onT(A)	onT(B)	onT(C)
					Free															
⊢																				
7	0	0	0	∞	0	∞	∞	∞	∞	∞	0	∞	0	0						
	1	0	0	?	0						0								0	0

$$h^{max}$$
 = action cost + max (heuristic of preconditions)

hadd (stack (C,A))

= 1 + holding(C) + clear (A)

= 1 + ∞

h max (stack (C,A))

= 1 + max (holding (C), clear (A))

= 1 + max (holding (C), clear (A))

= action cost + **sum**(heuristic of preconditions) -

putdown(C)
stack(C, A)
stack(C, B)
unstack(A, C)
unstack(B, C)
stack(C, C)
unstack(C, C)

unstack(x, y)

- Prec: on(x, y), clear(x), handFree
- Add: holding(x), clear(y)
- Del: on(x, y), clear(x), handFree

putdown(x)

- Prec: holding(x)
- Add: clear(x), onTable(x), handFree
- Del: holding(x)

stack(x, y)

- Prec: holding(x), clear(y)
- Add: clear(x), on(x,y), handFree
- Del: clear(y), holding(x)

Iter	c(A)	c(B)	c(C)	hand Free	h(A)	h(B)	h(C)	on(A, A)	on(A,B)	on(A,C)	on(B,A)	on(B,B)	on(B,C)	on(C,A)	on(C,B)	on(C,C)	onT(A)	onT(B)	onT(C)
0	0	0	∞	0	∞	8	∞	8	8	0	8	∞	∞	∞	8	8	∞	0	0
1	0	0	?	0						0								0	0

```
• putdown(C) = 1 + hold(C) = 1 + \infty = \infty 

1 + hold(C) = \infty
  stack(C, A) = 1 + hold(C) + clear(A) = 1 + \infty + 0 = \infty
1 + max(hold(C), clear(A)) = 1 + \infty = \infty
stack(C, B) = 1 + \text{hold}(C) + \text{clear}(B) = 1 + \infty + 0 = \infty
                   1 + max(hold(C), clear(B)) = 1 + \infty = \infty
  unstack(A, C) = 1 + on(A, C) + clear(A) + handFree = <math>1 + 0 + 0 + 0 = 1
                       1 + \max(on(A, C), clear(A), handFree) = 1
  unstack(B, C) = 1 + on(B, C) + clear(B) + handFree = <math>1 + \infty + 0 + 0 = \infty
                       1 + max(on(B, C), clear(B), handFree ) = \infty
  stack(C, C) = 1 + hold(C) + clear(C) = 1 + \infty + \infty = \infty
                   1 + \max(\text{hold}(C), \text{clear}(C)) = 1 + \infty = \infty
  unstack(C, C) = 1 + on(C, C) + clear(C) + handFree = 1 + \infty + \infty + 0 = \infty <
                   1 + max(on(C, C), clear(C), handFree) = 1 + \infty = \infty
                                                                               Thao Le
```

unstack(x, y)

- Prec: on(x, y), clear(x), handFree
- Add: holding(x), clear(y)
- Del: on(x, y), clear(x), handFree

putdown(x)

- Prec: holding(x)
- Add: clear(x), onTable(x), handFree
- Del: holding(x)

stack(x, y)

- Prec: holding(x), clear(y)
- Add: clear(x), on(x,y), handFree
- Del: clear(y), holding(x) 13

Iter	c(A)	c(B)	c(C)	hand Free	h(A)	h(B)	h(C)	on(A, A)	on(A,B)	on(A,C)	on(B,A)	on(B,B)	on(B,C)	on(C,A)	on(C,B)	on(C,C)	onT(A)	onT(B)	onT(C)
0	0	0	8	0	8	∞	8	8	∞	0	8	8	8	∞	8	8	8	0	0
1	0	0 (1/1	0						0								0	0

```
putdown(C) = \infty

stack(C, A) = \infty

stack(C, B) = \infty

unstack(A, C) = 1

unstack(B, C) = \infty

stack(C, C) = \infty

unstack(C, C) = \infty
```

min(putdown(C), stack(C, A), stack(C, B), stack(C, C), unstack(A, C), unstack(B, C), unstack(C, C)) = 1

Iter	c(A)	c(B)	c(C)	hand Free	h(A)	h(B)	h(C)	on(A, A)	on(A,B)	on(A,C)	on(B,A)	on(B,B)	on(B,C)	on(C,A)	on(C,B)	on(C,C)	onT(A)	onT(B)	onT(C)
0	0	0	8	0	× ×	∞	∞	8	∞	0	8	8	8	8	∞	∞	∞	0	0
1	0	0	1	0					0	0								0	0
)													

Summary

- 1. Find all actions that make the predicate become True
- 2. Calculate h^{add} and h^{max} of all actions

 h^{add} = action cost + **sum**(heuristic of preconditions) h^{max} = action cost + **max**(heuristic of preconditions)

3. Get the minimum heuristic value

Definition (h^{add}). Let $\Pi = (F, A, c, I, G)$ be a STRIPS planning task. The additive heuristic h^{add} for Π is the function $h^{\text{add}}(s) := h^{\text{add}}(s, G)$ where $h^{\text{add}}(s, g)$ is the point-wise greatest function that satisfies $h^{\text{add}}(s, g) =$

$$\begin{cases} 0 & g \subseteq s \\ \min_{a \in A, g \in add_a} c(a) + h^{\mathsf{add}}(s, pre_a) & |g| = 1 \\ \sum_{g' \in g} h^{\mathsf{add}}(s, \{g'\}) & |g| > 1 \end{cases}$$

Definition (h^{max}). Let $\Pi = (F, A, c, I, G)$ be a STRIPS planning task. The max heuristic h^{max} for Π is the function $h^{\text{max}}(s) := h^{\text{max}}(s, G)$ where $h^{\text{max}}(s, g)$ is the point-wise greatest function that satisfies $h^{\text{max}}(s, g) =$

$$\begin{cases} 0 & g \subseteq s \\ \min_{a \in A, g \in add_a} c(a) + h^{\max}(s, pre_a) & |g| = 1 \\ \max_{g' \in g} h^{\max}(s, \{g'\}) & |g| > 1 \end{cases}$$

Iter	c(A)	c(B)	c(C)	hand	h(A)	h(B)	h(C)	on(A, A)	on(A,B)	on(A,C)	on(B,A)	on(B,B)	on(B,C)	on(C,A)	on(C,B)	on(C,C)	onT(A)	onT(B)	onT(C)
				Free															
0	0	0	∞	0	∞	∞	8	8	∞	0	8	∞	8	8	8	8	8	0	0
1	0	0	1	0	1	1	8	8	∞	0	8	8	8	8	∞	8	8	0	0
2													?						
<u> </u>																			

pickup(x)

Prec: onTable(x), clear(x), handFree

Add: holding(x)

Del: onTable(x), clear(x), handFree

unstack(x, y)

- Prec: on(x, y), clear(x), handFree

Add: holding(x), clear(y)

- Del: on(x, y), clear(x), handFree

putdown(x)

Prec: holding(x)

Add: clear(x), onTable(x), handFree

Del: holding(x)

stack(x, y)

Prec: holding(x), clear(y)

- Add: clear(x), on(x)), handFree

- Del: clear(y), holding(x)

Stack (B,C)

Iter	c(A)	c(B)	c(C)	hand Free	h(A)	h(B)	h(C)	on(A, A)	on(A,B)	on(A,C)	on(B,A)	on(B,B)	on(B,C)	on(C,A)	on(C,B)	on(C,C)	onT(A)	onT(B)	onT(C)
0	0	0	∞	0	∞	∞	8	8	∞	0	8	8	∞	∞	∞	∞	∞	0	0
1	0	0		0	1 (1	∞	8	∞	0	8	8	∞	∞	∞	8	8	0	0
2													?						
													2/2						

 h^{add} = action cost + **sum**(heuristic of preconditions)

 h^{max} = action cost + max(heuristic of preconditions)

$$stack(B,C) = 1 + hold(B) + c(C) = 1 + 1 + 1 = 3$$

$$stack(B,C) = 1 + max(hold(B), c(C)) = 1 + 1 = 2$$

stack(x, y)

- Prec: holding(x), clear(y)
- Add: clear(x), on(x,y), handFree
- Del: clear(y), holding(x)

Iter	c(A)	c(B)	c(C)	hand	h(A)	h(B)	h(C)	on(A, A)	on(A,B)	on(A,C)	on(B,A)	on(B,B)	on(B,C)	on(C,A)	on(C,B)	on(C,C)	onT(A)	onT(B)	onT(C)
				Free															
0	0	0	∞	0	8	8	8	8	8	0	8	8	_∞	∞	8	8	_∞	0	0
1	0	0	1	0	1	1	8	8	∞	0	8	8	_∞	8	8	8	_∞	0	0
2	0	0	1	0	1	1	2	2	2	0	2	2	3/2	8	8	∞	2	0	0

 h^{add}/h^{max}

Iter	c(A)	c(B)	c(C)	hand Free	h(A)	h(B)	h(C)	on(A, A)	on(A,B)	on(A,C)	on(B,A)	on(B,B)	on(B,C)	on(C,A)	on(C,B)	on(C,C)	onT(A)	onT(B)	onT(C)
0	0	0	∞	0	∞	∞	∞	∞	∞	0	_∞	∞	_∞	_∞	∞	∞	_∞	0	0
1	0	0	1	0	1	1	8	8	8	0	8	_∞	∞	× ×	8	_∞	8	0	0
2	0	0	1	0	1	1	2	2	2	0	2	2	3/2	∞	8	∞	2	0	0
3	0	0	1	0	1	1	2	2	2	0	2	2	3/2	3	3	4/3	2	0	0
4	0	0	1	0	1	1	2	2	2	0	2	2	3/2	3	3	4/3	2	0	0

 h^{add}/h^{max}

stop when converge (2 rows have the same values)

STOP

Iter	c(A)	c(B)	c(C)	hand Free	h(A)	h(B)	h(C)	on(A, A)	on(A,B)	on(A,C)	on(B,A)	on(B,B)	on(B,C)	on(C,A)	on(C,B)	on(C,C)	onT(A)	onT(B)	onT(C)
0	0	0	∞	0	∞	∞	8	8	_∞	0	∞	∞	_∞	∞	8	8	∞	0	0
1	0	0	1	0	1	1	8	8	∞	0	8	8	œ	8	8	8	8	0	0
2	0	0	1	0	1	1	2	2	2	0	2	2	3/2	8	8	8	2	0	0
3	0	0	1	0	1	1	2	2	2	0	2	2	3/2	3	3	4/3	2	0	0
4	0	0	1	0	1	1	2	2	2	0	2	2	3/2	3	3	4/3	2	0	0

$$h^{add}/h^{max}$$
 G = {on(A,B), on(B,C), onTable(C)}

$$h^{add}(s0) = 2 + 3 + 0 = 5$$

 $h^{max}(s0) = \max(2, 2, 0) = 2$