2.4. Pivoting

- Reading: Trefethen and Bau (1997), Lecture 21
- The Gaussian factorization and backward substitution fail when $u_{ii} = 0$, i = 1:n
 - The system need not be singular, e.g.,

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right]$$

- The factorization can proceed upon a row interchange* i.e., upon exchanging equations
- Small divisors with finite-precision arithmetic will also cause problems
- Example 1. Consider three-decimal floating-point arithmetic $(\beta = 10, t = 3)$

$$\begin{bmatrix} 1.00 \times 10^{-4} & 1.00 \\ 1.00 & 1.00 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1.00 \\ 2.00 \end{bmatrix}$$

- The exact solution is $x_1 = 10000/9999 = 1.00010 \ x_2 = 9998/9999 = 0.99990$
- Factorization:

$$\mathbf{L} = \begin{bmatrix} 1.00 & 0.00 \\ 1.00 \times 10^4 & 1.00 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1.00 \times 10^{-4} & 1.00 \\ 0.00 & -1.00 \times 10^{4} \end{bmatrix}$$

The need for Pivoting

- Forward substitution

$$\begin{bmatrix} 1.00 & 0.00 \\ 1.00 \times 10^4 & 1.00 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1.00 \\ 2.00 \end{bmatrix}$$

or
$$y_1 = 1.00, y_2 = -1.00 \times 10^4$$

- Backward substitution

$$\begin{bmatrix} 1.00 \times 10^{-4} & 1.00 \\ 0.00 & -1.00 \times 10^{4} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1.00 \\ -1.00 \times 10^{4} \end{bmatrix}$$

- Thus, $x_2 = 1.00$, $x_1 = 0.00$
- This is awful!
- Interchanging rows

$$\begin{bmatrix} 1.00 & 1.00 \\ 0.00 & 1.00 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2.00 \\ 1.00 \end{bmatrix}$$

- The system is in upper triangular form $(l_{21} = 0.00)$, so $x_2 = 1.00$ and $x_1 = 1.00$
 - * This is correct to three digits

Pivoting Strategies

- Row pivoting (partial pivoting): at stage i of the outer loop of the factorization (cf. Section 2.3, p. 5)
 - 1. Find r such that $|a_{ri}| = \max_{i \le k \le n} |a_{ki}|$
 - 2. Interchange rows i and r
- Column pivoting: Proceed as row pivoting but interchange columns
 - Column pivoting requires reordering the unknowns
 - Column pivoting does not work well with direct factorization
- \bullet Complete pivoting: Choose r and c such that
 - 1. Find r, c such that $|a_{rc}| = \max_{i \leq k, l \leq n} |a_{kl}|$
 - 2. Interchange rows i and r and columns i and c
- Complete pivoting is less common than partial pivoting
 - Have to search a larer space
 - Have to reorder unknowns
- Row pivoting is usually adequate
- Row, column, and complete pivoting have $l_{ij} \leq 1, i \neq j$

- The equations and unknowns may be scaled differently
- Example 2. Multiply the first row of Example 1 by 10^5

$$\begin{bmatrix} 1.00 \times 10^1 & 1.00 \times 10^5 \\ 1.00 & 1.00 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1.00 \times 10^5 \\ 2.00 \end{bmatrix}$$

- Row pivoting would choose the first row as a pivot
 - * This yields the result $x_2 = 1.00$ and $x_1 = 0.00$
- There is no general solution to this problem
 - One strategy is to "equilibrate" the matrix
 - * Select all elements to have the same magnitude
- Scaled partial pivoting:
 - Select row pivots relative to the size of the row
 - 1. Before factorization select scale factors

$$s_i = \max_{1 \le j \le n} |a_{ij}|, \qquad i = 1:n$$

2. At stage i of the factorization, select r such that

$$\left| \frac{a_{ri}}{s_r} \right| = \max_{i \le k \le n} \left| \frac{a_{ki}}{s_k} \right|$$

3. Interchange rows k and i

Factorization with Pivoting

- ullet Gaussian elimination with partial pivoting always finds factors ${f L}$ and ${f U}$ of a nonsingular matrix
 - Neglecting roundoff errors
- **Theorem 1**: For any $n \times n$ matrix **A** of rank n, there is a reordering of rows such that

$$\mathbf{PA} = \mathbf{LU} \tag{1}$$

where \mathbf{P} is a permutation matrix that reorders the rows of \mathbf{A}

- A permutation matrix is an identity matrix with its rows or columns interchanged
- Proof: cf. Golub and Van Loan (1996), Section 3.4.4 \square

- It is not necessary to store the permutation matrix or rearrange the rows of **A**
 - Row interchanges can be recorded in a vector **p**
- Example 3. Consider

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 1 & -1 & 1 \\ 2 & 3 & -1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$$

 Compute the scale factors and initialize the interchange vector

$$\mathbf{s} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \qquad \mathbf{p} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

* $p_i = i$, i = 1: n, implies no rows have been interchanged

-i = 1:

- * Scale factor: $|a_{11}/s_1| = 1/2$, $|a_{21}/s_2| = 1/1$, $|a_{31}/s_3| = 2/3$
- * The second row is the pivot

$$\mathbf{s} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \quad \mathbf{A} \Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 1 \\ 2 & 5 & -3 \end{bmatrix}, \quad \mathbf{p} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

 $-\mathbf{p}$ records the implicit row interchange

$$-i=2:$$

- * Scale factors: $|a_{12}/s_1| = 0/2$, $|a_{32}/s_3| = 5/3$
- * The third row is the pivot

$$\mathbf{s} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \quad \mathbf{A} \Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 1 \\ 2 & 5 & -3 \end{bmatrix}, \quad \mathbf{p} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

- Construct **P**, **L**, and **U**

- * $p_1 = 2$, so Row 1 of **L** and **U** is Row 2 of **A**
- * $p_2 = 3$, so Row 2 of **L** and **U** is Row 3 of **A**
- * $p_3 = 1$, so Row 3 of **L** and **U** is Row 1 of **A**

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \qquad \mathbf{U} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 5 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

- * From **p**, Row 1 of **P** is Row 2 of the identity matrix
- * Row 2 of **P** is Row 3 of the identity matrix
- * Row 3 of **P** is Row 1 of the identity matrix

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

ullet Check that $\mathbf{PA} = \mathbf{LU}$

$$\mathbf{PA} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 1 & -1 & 1 \\ 2 & 3 & -1 \end{bmatrix} =$$

$$\mathbf{LU} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 5 & -3 \\ 0 & 0 & 1 \end{bmatrix} =$$

• Forward and backward substition.

$$PAx = Pb$$

$$-$$
 Use (1)

$$LUx = Pb$$

• Forward substitution: Ly = Pb

$$-\mathbf{p}_1 = 2$$
, so $y_1 = b_2 = 1$ or $y_1 = 1$

$$-\mathbf{p}_2 = 3$$
, so $2y_1 + y_2 = b_3 = 4$ or $y_2 = 2$

$$-\mathbf{p}_3 = 1$$
, so $y_1 + y_3 = b_1 = 2$ or $y_3 = 1$

• Backward substitution: $\mathbf{U}\mathbf{x} = \mathbf{y}$

$$-\mathbf{p}_3 = 1$$
, so $x_3 = y_3 = 1$ or $x_3 = 1$

$$-\mathbf{p}_2 = 3$$
, so $5x_2 - 3x_3 = y_2 = 2$ or $x_2 = 1$

$$-\mathbf{p}_1 = 2$$
, so $x_1 - x_2 + x_3 = y_1 = 1$ or $x_1 = 1$

LU Factorization

```
function [\mathbf{A}\mathbf{p}] = \text{plufactor}(\mathbf{A})
\% plufactor: Factor the n-by-n matrix A into LU. On return, L - I
% is stored in the lower triangular part of A and U
\% is stored in the upper triangular part. The vector \mathbf{p}
% stores the permuted row indices using scaled partial pivoting.
  [n \ n] = size(\mathbf{A});
%
                           Initialize \mathbf{p} and compute the scale vector \mathbf{s}
  for i = 1; n
     s(i) = norm(A(i,1:n), inf);
     p(i) = i;
  end
                           Loop over the rows
  for i = 1: n - 1
%
                           Find the best pivot row
     colmax = 0;
     for k = i: n
        srow = abs(A(p(k),i))/s(p(k));
        if colmax < srow;
           colmax = srow;
           index = k;
        end
     end
     temp = p(i);
     p(i) = index;
     p(index) = temp;
\%
                           Calculate the i th column of L
     for j = i + 1: n
        for k = 1: i - 1
           A(p(j),i) = A(p(j),i) - A(p(j),k)*A(p(k),i);
        \quad \text{end} \quad
        A(p(j),i) = A(p(j),i)/A(p(i),i);
     end
%
                           Calculate the (i + 1) th row of U
     for j = i+1: n
        for k = 1: i
           A(p(i+1),j) = A(p(i+1),j) - A(p(i+1),k)*A(p(k),j);
        end
     end
  end
```

Forward and Backward Substitution

```
function \mathbf{y} = \operatorname{pforward}(\mathbf{L}, \mathbf{b}, \mathbf{p})
% pforward: Solution of a n-by-n lower triangular system
% \mathbf{L}\mathbf{y} = \mathbf{P}\mathbf{b} by forward substitution. Row permutations have been
% stored in the vector \mathbf{p}.
[\mathbf{n} \ \mathbf{n}] = \operatorname{size}(\mathbf{L});
```

```
y(1) = b(p(1));

for i = 2:n

y(i) = b(p(i)) - dot(L(p(i),1:i-1)', y(1:i-1));

end
```

```
function \mathbf{x} = \text{backward}(\mathbf{U}, \mathbf{y}, \mathbf{p})
% pbackward: Solution of a n-by-n upper triangular system
% \mathbf{U}\mathbf{x} = \mathbf{y} by backward substitution. Row permuations have been
% stored in the vector \mathbf{p}.
```

```
 \begin{split} &[n\ n] = size(\mathbf{U}); \\ &x(n) = y(n)/U(p(n),n); \\ &for\ i = n\ -\ 1:\ -1:\ 1 \\ &x(i) = (y(i)\ -\ dot(U(p(i),i+1:n)',\ x(i+1:n)))/U(p(i),i); \\ &end \end{split}
```

• Note:

- i. No attempt has been made to check for failure
 - **A** is singular if colmax = 0 or $s_i = 0$ for some i
- ii. The MATLAB function *norm* computes vector and matrix norms.