Approximate coalitional equilibria in the bipolar world

Andrey Golman and Daniil Musatov

Moscow Institute of Physics and Technology

OPTIMA-2018, October 3, 2018

Outline

- A motivating story
- The formal model
- Analysis of stable configurations
- Analysis of approximately stable configurations

A motivating story

- A group of students wish to organize several dance parties. Some of the students prefer Lambada, the others prefer Rock'n'roll
- They could rent a dance hall, the rent price G does not depend on the number of people or music style. There is an unlimited number of dance halls to rent.
- The rent price is divided equally between the listeners.
- If a person listens a non-preferred music, then he or she gets disutility d
- If a group of students rent a hall, they decide the music style by majority voting. If there is a tie, then they may split the time between styles in any proportion
- Will they ever agree?

A bipolar world

4 / 22

The formal model: cost function

- There are L agents x with p(x) = 0 and R agents with p(x) = d
- A coalition partition is a representation $N = S_1 \sqcup \cdots \sqcup S_k$
- Every coalition chooses m(S). If S consists of I agents with p(x) = 0 and r agents with p(x) = d, then

$$m(S) = \begin{cases} 0, & l > r; \\ d, & l < r; \\ any \ m \in [0, d], & l = r \end{cases}$$

- Configuration: $(S_1 \sqcup \cdots \sqcup S_k, m_1, \ldots, m_k), m_i \in m(S_i)$
- The general cost function: $C(x, S, m) = \frac{G}{|S|} + t|p(x) m|$
- The normalized cost function: $C(x, S, m) = \frac{1}{|S|} + |p(x) m|$

The formal model: coalitional stability

- The idea: no group wants to leave their coalition in order to organize their own one
- Formally a configuration $(S_1 \sqcup \cdots \sqcup S_k, m_1, \ldots, m_k)$ is coalitionary stable if there is no pair (S, m) such that $m \in m(S)$, for all $x \in S$

$$C(x, S, m) \leq C(x, S_i, m_i),$$

and for some $x \in S$ the inequality is strict

There could be no stable configuration!

Theorem (Bogomolnaia, Le Breton, Savvateev, Weber, 2007) There exists a bipolar world with no stable configuration!

Proof.

The smallest possible example is L=2, R=3, $d=\frac{19}{60}$. The proof idea is shown on the next slides for L=9, R=14

A bipolar world: union

8 / 22

A bipolar world: federation

A bipolar world: mixed structure

A bipolar world: pseudofederation

A bipolar world: federation again

A bipolar world: stable configurations

Theorem (Savvateev, 2013)

In any bipolar world any stable configuration must be either a union, or a federation, or a mixed structure. (No pseudofederation may be stable!)

A bipolar world: stable configurations

Зоны устойчивости трех базовых видов разбиений

Approximate coalitional stability

Definition

An absolute instability of configuration $(\bigsqcup_i S_i, m_1, \ldots, m_k)$ is minimal ϵ such that no group of agents may form a new jurisdiction and thus reduce costs of all its members by at least ϵ .

$$\min \epsilon : \not\exists S \ \forall x \in S \ C(x, S, m) \leq C(x, S_i, m_i) - \epsilon$$

Definition

A relative instability of configuration $(\bigsqcup_i S_i, m_1, \ldots, m_k)$ is minimal ϵ such that no group of agents may form a new jurisdiction and thus reduce costs of all its members by at least ϵ fraction.

$$\min \epsilon : \exists S \ \forall x \in S \ C(x, S, m) \leq C(x, S_i, m_i)(1 - \epsilon)$$

Instability of a world

Definition

An (absolute, relative) instability of a world W = (L, R, d) is the minimal instability of its configurations.

$$\mathit{min}_{(\bigsqcup_{i}S_{i},m_{1},\ldots,m_{k})}\mathit{max}_{(S',m')}\mathit{min}_{x}[\mathit{C}(x,S_{i},m_{i})-\mathit{C}(x,S',m')]$$

The main question: what is the maximal possible instability? Where is it achieved?

Absolute instability

Theorem (This paper)

There are only three pairs (L, R) with absolute instability greater than 0.01. The maximal values are the following:

L	R	d	Δ
2	3	$\frac{14}{45} \approx 0.311$	$\frac{1}{90} \approx 0.0111$
3	4	$\frac{5}{24} \approx 0.208$	$\frac{1}{48} \approx 0.0208$
4	5	$\frac{7}{40} = 0.175$	$\frac{1}{80} = 0.0125$

Relative instability

Theorem (1)

For every world there is a configuration with least instability with not more than three groups.

Theorem (2)

The maximal possible relative instability does not exceed 6.3%

Relative instability

Theorem

The maximal possible relative instability is between 6.15% and 6.3%

An example:

Configuration	Groups	Δ
Union	(56, 73)	0.066
Federation	(0,73)+(56,0)	0.074
Mixed	(56,56)+(0,9)	0.062
Pseudofederation	(0,69)+(56,4)	0.062

Which type of configuration is the most stable?

Future work

- What is the exact bound on relative instability?
- What happens if there are more than 2 points?

Thank you!

mailto:andrewsgolman@gmail.com
mailto:musatych@gmail.com