Name:

Recitation Instructor, Day, Time:

TRADITIONAL MATH 100 - Exam 3 - Summer 2017

Directions: You will find 15 problems listed below. No notes/books/friends are allowed. Graphing calculator models above the level of a TI-84 plus are not allowed. You have one hour to complete this exam.

Page 2 20 pts.		

1. (7 points) Find $f^{-1}(x)$ when f(x) = 2x - 9.

2. (7 points) Given $g(x) = 5x^2 - 2x$ and h(x) = x + 4, find g(h(x)).

3. (6 points) Expand completely using properties of logarithms (you may assume all variables to be positive): $\log (wz^3x\sqrt{y})$

4. (8 points) Solve the following rational equation: $\frac{7}{x+3} = \frac{4}{5x-1}$

5. (6 points) Solve and check: $x+1=\sqrt{6x+1}$

6. (6 points) Simplify i^{257} .

7. (6 points) Condense into a single logarithmic expression using the properties of logarithms (you may assume that x is positive): $\ln(x) + \frac{1}{4}$

8. (5 points) Solve the inequality by graphing: $\sqrt{x-3} \ge 1$

9. (9 points) Fill in the blank:

(a)
$$\log_2\left(\frac{1}{32}\right) =$$

(b)
$$\log_9(729) =$$

(c)
$$\log_a(a^4) =$$

10. (8 points) Given that x=-2 is one zero of $p(x)=x^3+8$, find all the other zeros, real or complex, of p(x).

11. (6 points) Find the domain of the function $g(x) = \sqrt{x^2 + 7x}$.

12. (6 points) Solve the rational inequality $\frac{x+2}{x-7} \geq 0$, remembering to check endpoints.

13. (6 points) Simplify and write in standard a+bi form: (3-4i)(6+7i)

14. (6 points) Find the domain of the function $f(x) = \log(3x + 8)$.

15. (8 points) Consider the rational function $r(x) = \frac{x^2 - 7x}{x^2 - 10x + 24}$. Answer the following questions.

- (a) What is the domain of r(x)?
- (b) What are the zeros of r(x)?
- (c) What are the poles (vertical asymptotes) of r(x)?
- $(\ensuremath{\mathbf{d}})$ Does r(x) have a horizontal asymptote? If so, what is it?