This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/82, 9/02, 5/10, G01N 33/50

(11) International Publication Number: A2

WO 99/55889

(43) International Publication Date:

4 November 1999 (04.11.99)

(21) International Application Number:

PCT/US99/08789

(22) International Filing Date:

22 April 1999 (22.04.99)

(30) Priority Data:

60/083.042

24 April 1998 (24.04.98)

US

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): CAHOON, Rebecca, E. [US/US]; 2331 West 18th Street, Wilmington, DE 19806 (US). HITZ, William, D. [US/US]; 404 Hillside Road, Wilmington, DE 19807 (US). SHEN, Jennie, Bih-Jien [US/US]; 15 Bromley Court, Wilmington, DE 19810 (US). WILLIAMS, Mark, E. [US/US]; 37 Country Hills Drive, Newark, DE 19711 (US).
- (74) Agent: MAJARIAN, William, R.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AE, AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

SEO ID NO:27 DPDIVLPGN-

Without international search report and to be republished upon receipt of that report.

(54) Title: CAROTENOID BIOSYNTHESIS ENZYMES

(57) Abstract

This invention relates to an isolated nucleic acid fragment encoding a carotenoid biosynthetic enzyme. The invention also relates to the construction of a chimeric gene encoding all or a portion of the carotenoid biosynthetic enzyme, in sense or antisense orientation, wherein expression of the chimeric gene results in production of altered levels of the carotenoid biosynthetic enzyme in a transformed host cell.

DEG IN MO: 11	DEGITALE
SEQ ID NO:28	MAIILVRAASPGLSAADSISHQ-GTLQCSTLLKTKRPAARRWMPCSLLGLHPWRAGRP
SEG ID NO:02	eeeeervlgwgligdaydrogevcaeyaktfylgtqlntperrkaveaiyvw-crrt
SEQ ID NO:14	HSGVLLHVSCGPKENIKSL-VSFSCRSSSGGER-TOKRFSGISFAS
022 20 2011	1 60
	•
	
SEQ ID NO:27	
SEQ ID NO:28	spavysslpvnpageavvsseckvydvvlkga-allkrglrtpvldarpgindmp
SEQ ID NO:02	DELVDGPHASYITPTALDRWEKKLEDLFEGRPYDNYDAALSDTVSKFPVDIQPFKDNVQG
SEQ ID NO:14	GTSAFSSAVAATETSRSSEERVYEVVLKQA-ALVKEHKRGTKIALDLDKDVEADFH
	61 120
	**
SEQ ID NO:27	LGLLSEAYDRCGEVCAHYAKTEYL-GTMIMTPDRRRATHATYVWCRRTDELVDGPHAS
	-RNGL-KEAYDROGEICEEYAKTFYL-GTMLMTEERRAINAIYVWCRRTDELVDGPHAM
SEQ ID NO:28	MRLOLMKSRYMTFDELYLYCYYVAGTOLMTPERRKAVWAIYVWCRRTDELVDGPWAS
8EQ ID MO:02	
8EQ ID NO:14	-NVDLLNAAYDRCGEVCAEYANTFYL-GTQLNTAERRKAIWAIYVWCRRTDELVDGPSAS
	121 180
	** ***** ** * * *** ** ***** * * ***** ** *** ** **
SEO ID NO:27	HITPOALDRWEARLEDIFNGRPFDNLDAALSDTVSRFPVDIQPFRDNVEGRENDLWKSRY
SEQ ID NO:28	YITPTALDRHEKRLEDLFTGRPYDHLDAALSDTISRFPIDIQPFRDHIEGHRSDLRKTRY
	YITPTALDRMEKRLEDLPEGRPYDNYDAALSDTVSKFPVDIQPFKDNVQGNRLDLMKSRY
SEQ ID NO:02	
SEQ ID NO:14	HITPGALDRWEGRLSDVFEGRPYDHYDAALSHTVSKYPVDIQPFKDMIEGHRVDLRKSRY
	181 240
	***** ********** ** **** * * ** * ******
SEQ ID NO:27	nnfoelylycyyvagtygimbypingiapeskattesvynaalalgianolthilrovge
SEQ ID NO: 28	NNFDELYHYCYYVAGTVGLMSVPVNGIATESKATTESVYEAALALGIANQLTHILRDVGE
SEQ ID NO:02	MTFDELYLYCYYVAGTVGLMTVPVMGIAPDSKASTESVYMAALALGIAHQLTMILRDVGE
880 ID NO:14	NEFDELYLYCYYVAGTVGLMSVPVNGIAPESHASSESIYNAALALGIANQLTNILRDVGE
SEG IN MOLITA	
	241 300
	****** *** ******* *** ** ** ** ** ** *
SEQ ID NO:27	Darrgrvylpodelagaglsdedifagrvtdkwrifnkkolorarkffdeakkgvtelss
SEQ ID NO:28	Darrgriylpodelagaglsdedifkgvvthrwrhfhkrqikrarhffeaergvhelso
SEQ ID NO:02	DARRGRIYLPLDELAQAGLTEEDIFRGKVTGKWRRFMKGQIQRARLFFDEAEKGVTHLDS
SEQ ID NO:14	DARRGRYYLPODELAOAGLS DODI FRGRYTDKWRKFNKGQI KRARNFFDEAERGVAELMS
454 15 10.11	301 360

	ASRMPVLASLLLYRKILDEIEAMDYMMFTRRAYVSKPRKLLTLPIAYARSLVPPKSTSCP
SEQ ID NO:27	ASRWPVLASLLIKKILDSI SKIDIKRI I KKALI VAKTAMILI I KALIKASI I MAGAZI MAGAZI MAGAZI I MAGAZI I M
SEQ ID NO:28	ASRMPVWASLLLYRQILDEIEANDYNHFTERAYVCKGKKLLALPVAYGKSLLLPCS
SEQ ID NO:02	ASRWPVLASLWLYRQILDAIEAMDYNWFTKRAYVGKAKKLLSLPLAYARAAVAP
SEQ ID NO:14	ASRWPVWASILLYRQILDSIEANDYNNFTKRAYVCKVKKLLSLPTAYGFSLLGPOKFTKM
	361 420
	**-
SEQ ID NO:27	LAKT
SEQ 10 NO:28	LRHGOT
SEQ ID NO:02	
SEQ ID NO:14	VRR.
	421 426

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					_		·
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	. LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
Cυ	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE

CAROTENOID BIOSYNTHESIS ENZYMES

This application claims the benefit of U.S. Provisional Application No. 60/083,042, filed April 24, 1998.

FIELD OF THE INVENTION

This invention is in the field of plant molecular biology. More specifically, this invention pertains to nucleic acid fragments encoding enzymes of the carotenoid biosynthesis pathway in plants and seeds.

5

10

15

20

25

30

35

BACKGROUND OF THE INVENTION

Plant carotenoids are orange and red lipid-soluble pigments found embedded in the membranes of chloroplasts and chromoplasts. In leaves and immature fruits the color is masked by chlorophyll but in later stages of development these pigments contribute to the bright color of flowers and fruits. Carotenoids protect against photoxidation processes and harvest light for photosynthesis. The carotenoid biosynthesis pathway leads to the production of abscisic acid with intermediaries useful in the agricultural and food industries as well as products thought to be involved in cancer prevention. (Bartley, G. E., and Scolnik, P. A. (1995) *Plant Cell* 7:1027-1038).

Phytoene synthase carries out the first step in the carotenoid biosynthetic pathway converting geranylgeranyl diphosphate to phytoene. There are two different phytoene synthases in tomato with different expression patterns: one is expressed at higher levels in mature fruits while the other one is expressed at higher levels in leaves (Bartley, G. E., Scolnik, P.A. (1993) *J. Biol Chem. 268*:25718-25721). It has been speculated that in corn at least two different alleles of phytoene synthase should be present but only one has been identified to date (Buckner, B. et al. (1996) *Genetics 143*:479-488).

In the next step of the carotenoid biosynthesis pathway, phytoene desaturase transforms phytoene into phytofluene. After another desaturation step, the enzyme zeta-carotene desaturase (carotene 7, 8 desaturase; EC 1.134.99.30) converts the lightly colored zeta-carotene to neurosporene which is further desaturated into lycopene. Lycopene may have one of two different fates: through the action of lycopene epsilon cyclase it may become alpha carotene, or it may be transformed into beta carotene by lycopene cyclase. Beta-carotene dehydroxylase converts beta-carotene into zeaxanthin. Zeaxanthin epoxidase transforms zeaxanthin into violxanthin and eventually abscisic acid. The genes encoding this chloroplast-imported protein have been identified in *N. plumbaginifolia*, pepper and tomato. Zeaxanthin epoxidase appears to also be involved in protection from environmental stress (Corinne A. et al. (1998) *Plant Phys. 118*:1021-1028) and uses FAD as a cofactor (Buch, K. et al. (1995) *FEBS Lett. 376*:45-48).

Zeaxanthin is the bright orange product highly prized as a pigmenting agent for animal feed which makes the meat fat, skin, and egg yolks a dark yellow (Scott, M. L. et al. (1968) *Poultry Sci.* 47:863-872). Gram per gram, zeaxanthin is one of the best pigmenting

compounds because it is highly absorbable. Yellow corn, which produces one of the best ratios of lutein to zeaxanthin contains in average 20 to 25 mg of xanthophyll per kg while marigold petals yield 6,000 to 10,000 mg/kg.

SUMMARY OF THE INVENTION

The instant invention relates to isolated nucleic acid fragments encoding carotenoid biosynthetic enzymes. Specifically, this invention concerns an isolated nucleic acid fragment encoding a phytoene synthase or a zeaxanthin epoxidase. In addition, this invention relates to a nucleic acid fragment that is complementary to the nucleic acid fragment encoding phytoene synthase or zeaxanthin epoxidase.

5

10

15

20

25

30

35

An additional embodiment of the instant invention pertains to a polypeptide encoding all or a substantial portion of a carotenoid biosynthetic enzyme selected from the group consisting of phytoene synthase and zeaxanthin epoxidase.

In another embodiment, the instant invention relates to a chimeric gene encoding a phytoene synthase or a zeaxanthin epoxidase, or to a chimeric gene that comprises a nucleic acid fragment that is complementary to a nucleic acid fragment encoding a phytoene synthase or a zeaxanthin epoxidase, operably linked to suitable regulatory sequences, wherein expression of the chimeric gene results in production of levels of the encoded protein in a transformed host cell that is altered (i.e., increased or decreased) from the level produced in an untransformed host cell.

In a further embodiment, the instant invention concerns a transformed host cell comprising in its genome a chimeric gene encoding a phytoene synthase or a zeaxanthin epoxidase, operably linked to suitable regulatory sequences. Expression of the chimeric gene results in production of altered levels of the encoded protein in the transformed host cell. The transformed host cell can be of eukaryotic or prokaryotic origin, and include cells derived from higher plants and microorganisms. The invention also includes transformed plants that arise from transformed host cells of higher plants, and seeds derived from such transformed plants.

An additional embodiment of the instant invention concerns a method of altering the level of expression of a phytoene synthase or a zeaxanthin epoxidase in a transformed host cell comprising: a) transforming a host cell with a chimeric gene comprising a nucleic acid fragment encoding a phytoene synthase or a zeaxanthin epoxidase; and b) growing the transformed host cell under conditions that are suitable for expression of the chimeric gene wherein expression of the chimeric gene results in production of altered levels of phytoene synthase or zeaxanthin epoxidase in the transformed host cell.

An addition embodiment of the instant invention concerns a method for obtaining a nucleic acid fragment encoding all or a substantial portion of an amino acid sequence encoding a phytoene synthase or a zeaxanthin epoxidase.

A further embodiment of the instant invention is a method for evaluating at least one compound for its ability to inhibit the activity of a phytoene synthase or a zeaxanthin

epoxidase, the method comprising the steps of: (a) transforming a host cell with a chimeric gene comprising a nucleic acid fragment encoding a phytoene synthase or a zeaxanthin epoxidase, operably linked to suitable regulatory sequences; (b) growing the transformed host cell under conditions that are suitable for expression of the chimeric gene wherein expression of the chimeric gene results in production of phytoene synthase or zeaxanthin epoxidase in the transformed host cell; (c) optionally purifying the phytoene synthase or the zeaxanthin epoxidase expressed by the transformed host cell; (d) treating the phytoene synthase or the zeaxanthin epoxidase with a compound to be tested; and (e) comparing the activity of the phytoene synthase or the zeaxanthin epoxidase that has been treated with a test compound to the activity of an untreated phytoene synthase or zeaxanthin epoxidase, thereby selecting compounds with potential for inhibitory activity.

5

10

15

20

25

30

35

BRIEF DESCRIPTION OF THE DRAWING AND SEQUENCE DESCRIPTIONS

The invention can be more fully understood from the following detailed description and the accompanying drawing and Sequence Listing which form a part of this application.

Figure 1 depicts the amino acid sequence alignment between the phytoene synthase from corn contig assembled of clones csi1.pk0034.d8 and p0008.cb3ld95rb (SEQ ID NO:2), soybean clone sl2.pk0045.b10 (SEQ ID NO:14), Lycopersicon esculentum (NCBI gi Accession No. 585747, SEQ ID NO:27) and Zea mays (NCBI gi Accession No. 1346883, SEQ ID NO:28). Amino acids which are conserved among all sequences are indicated with an asterisk (*). Dashes are used by the program to maximize alignment of the sequences.

The following sequence descriptions and Sequence Listing attached hereto comply with the rules governing nucleotide and/or amino acid sequence disclosures in patent applications as set forth in 37 C.F.R. §1.821-1.825.

SEQ ID NO:1 is the nucleotide sequence comprising the contig assembled from the entire cDNA insert in clone csi1.pk0034.d8 and a portion of the cDNA insert in clone p0008.cb3ld95rb encoding an entire corn phytoene synthase 2.

SEQ ID NO:2 is the deduced amino acid sequence of an entire corn phytoene synthase 2 derived from the nucleotide sequence of SEQ ID NO:1.

SEQ ID NO:3 is the nucleotide sequence comprising the contig assembled from a portion of the cDNA insert in clones p0121.cfrmo87r, p0091.cmarc67r and p0005.cbmej22r encoding almost half a corn phytoene synthase.

SEQ ID NO:4 is the deduced amino acid sequence of almost half a corn phytoene synthase derived from the nucleotide sequence of SEQ ID NO:3.

SEQ ID NO:5 is the nucleotide sequence comprising the contig assembled from a portion of the cDNA insert in clones rds1c.pk005.15, rlr6.pk0028.g3 and rds2c.pk007.f16 encoding the N-terminal 40% of a rice phytoene synthase.

SEQ ID NO:6 is the deduced amino acid sequence of the N-terminal 40% of a rice phytoene synthase derived from the nucleotide sequence of SEQ ID NO:5.

SEQ ID NO:7 is the nucleotide sequence comprising the contig assembled from a portion of the cDNA insert in clones rl0n.pk109.j7 and rl0n.pk120.p4 encoding a portion of a rice phytoene synthase 2.

SEQ ID NO:8 is the deduced amino acid sequence of a portion of a rice phytoene synthase 2 derived from the nucleotide sequence of SEQ ID NO:7.

5

10

15

20

25

30

35

SEQ ID NO:9 is the nucleotide sequence comprising the contig assembled from the entire cDNA insert in clone rl0.pk0005.e5 and a portion of the cDNA insert in clones rca1n.pk001.18 and rlm1n.pk001.a4 encoding the C-terminal two thirds of a rice phytoene synthase.

SEQ ID NO:10 is the deduced amino acid sequence of the C-terminal two thirds of a rice phytoene synthase derived from the nucleotide sequence of SEQ ID NO:9.

SEQ ID NO:11 is the nucleotide sequence comprising the entire cDNA insert in clone sl1.pk0029.h5 encoding the C-terminal two thirds of a soybean phytoene synthase 2.

SEQ ID NO:12 is the deduced amino acid sequence of the C-terminal two thirds of a soybean phytoene synthase 2 derived from the nucleotide sequence of SEQ ID NO:11.

SEQ ID NO:13 is the nucleotide sequence comprising the entire cDNA insert in clone sl2.pk0045.b10 encoding an entire soybean phytoene synthase.

SEQ ID NO:14 is the deduced amino acid sequence of an entire soybean phytoene synthase derived from the nucleotide sequence of SEQ ID NO:13.

SEQ ID NO:15 is the nucleotide sequence comprising the entire cDNA insert in clone wr1.pk0139.g3 encoding the C-terminal two thirds of a wheat phytoene synthase 2.

SEQ ID NO:16 is the deduced amino acid sequence of the C-terminal two thirds of a wheat phytoene synthase 2 derived from the nucleotide sequence of SEQ ID NO:15.

SEQ ID NO:17 is the nucleotide sequence comprising the contig assembled from the entire cDNA insert in clone cbn2.pk0051.e8 and a portion of the cDNA insert in clones p0031.ccmaj44r and p0097.cqrag63r encoding a portion of a corn zeaxanthin epoxidase.

SEQ ID NO:18 is the deduced amino acid sequence of a portion of a corn zeaxanthin epoxidase derived from the nucleotide sequence of SEQ ID NO:17.

SEQ ID NO:19 is the nucleotide sequence comprising the contig assembled from the entire cDNA insert in clone cr1n.pk0033.d8 and a portion of the cDNA insert in clones p0110.cgsmp01r, p0012.cglae05r and p0088.clrim55r encoding the C-terminal half of a corn zeazanthin epoxidase.

SEQ ID NO:20 is the deduced amino acid sequence of the C-terminal half of a corn zeazanthin epoxidase derived from the nucleotide sequence of SEQ ID NO:19.

SEQ ID NO:21 is the nucleotide sequence comprising the entire cDNA insert in clone sl1.pk0015.c4 encoding a portion of a soybean zeaxanthin epoxidase.

SEQ ID NO:22 is the deduced amino acid sequence of a portion of a soybean zeaxanthin epoxidase derived from the nucleotide sequence of SEQ ID NO:21.

SEQ ID NO:23 is the nucleotide sequence comprising the 5'-terminal portion of the cDNA insert in clone sl2.pk0109.b6 encoding the N-terminal three quarters of a soybean zeaxanthin epoxidase.

SEQ ID NO:24 is the deduced amino acid sequence of the N-terminal three quarters of a soybean zeaxanthin epoxidase. derived from the nucleotide sequence of SEQ ID NO:23.

5

10

15

20

25

30

35

SEQ ID NO:25 is the nucleotide sequence comprising the 3'-terminal portion of the cDNA insert in clone sl2.pk0109.b6 encoding the C-terminal fifth of a soybean zeaxanthin epoxidase.

SEQ ID NO:26 is the deduced amino acid sequence of the C-terminal fifth of a soybean zeaxanthin epoxidase derived from the nucleotide sequence of SEQ ID NO:25.

SEQ ID NO:27 is the amino acid sequence of a *Lycopersicon esculentum* phytoene synthase, NCBI gi Accession No. 585747.

SEQ ID NO:28 is the amino acid sequence of a *Cucumis melo* phytoene synthase, NCBI gi Accession No. 1346882.

The Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the IUPAC-IUBMB standards described in *Nucleic Acids Research 13*:3021-3030 (1985) and in the *Biochemical Journal 219 (No. 2)*:345-373 (1984) which are herein incorporated by reference. The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. §1.822.

DETAILED DESCRIPTION OF THE INVENTION

In the context of this disclosure, a number of terms shall be utilized. As used herein, an "isolated nucleic acid fragment" is a polymer of RNA or DNA that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases. An isolated nucleic acid fragment in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA or synthetic DNA. As used herein, "contig" refers to an assemblage of overlapping nucleic acid sequences to form one contiguous nucleotide sequence. For example, several DNA sequences can be compared and aligned to identify common or overlapping regions. The individual sequences can then be assembled into a single contiguous nucleotide sequence.

As used herein, "substantially similar" refers to nucleic acid fragments wherein changes in one or more nucleotide bases results in substitution of one or more amino acids, but do not affect the functional properties of the protein encoded by the DNA sequence. "Substantially similar" also refers to nucleic acid fragments wherein changes in one or more nucleotide bases does not affect the ability of the nucleic acid fragment to mediate alteration of gene expression by antisense or co-suppression technology. "Substantially similar" also refers to modifications of the nucleic acid fragments of the instant invention such as deletion or insertion of one or more nucleotides that do not substantially affect the functional properties of the resulting transcript vis-à-vis the ability to mediate alteration of gene

expression by antisense or co-suppression technology or alteration of the functional properties of the resulting protein molecule. It is therefore understood that the invention encompasses more than the specific exemplary sequences.

5

10

15

20

25

30

35

For example, it is well known in the art that antisense suppression and co-suppression of gene expression may be accomplished using nucleic acid fragments representing less than the entire coding region of a gene, and by nucleic acid fragments that do not share 100% sequence identity with the gene to be suppressed. Moreover, alterations in a gene which result in the production of a chemically equivalent amino acid at a given site, but do not effect the functional properties of the encoded protein, are well known in the art. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the protein molecule would also not be expected to alter the activity of the protein. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Moreover, substantially similar nucleic acid fragments may also be characterized by their ability to hybridize, under stringent conditions (0.1X SSC, 0.1% SDS, 65°C), with the nucleic acid fragments disclosed herein.

Substantially similar nucleic acid fragments of the instant invention may also be characterized by the percent similarity of the amino acid sequences that they encode to the amino acid sequences disclosed herein, as determined by algorithms commonly employed by those skilled in this art. Preferred are those nucleic acid fragments whose nucleotide sequences encode amino acid sequences that are 80% similar to the amino acid sequences reported herein. More preferred nucleic acid fragments encode amino acid sequences that are 90% similar to the amino acid sequences reported herein. Most preferred are nucleic acid fragments that encode amino acid sequences that are 95% similar to the amino acid sequences reported herein. Sequence alignments and percent similarity calculations were performed using the Megalign program of the LASARGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignment of the amino acid sequences was performed using the Clustal method of alignment (Higgins, D. G. and Sharp, P. M. (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5.

A "substantial portion" of an amino acid or nucleotide sequence comprises enough of the amino acid sequence of a polypeptide or the nucleotide sequence of a gene to afford putative identification of that polypeptide or gene, either by manual evaluation of the

sequence by one skilled in the art, or by computer-automated sequence comparison and identification using algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul, S. F., et al., (1993) J. Mol. Biol. 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/). In general, a sequence of ten or more contiguous amino acids or thirty or more nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene. Moreover, with respect to nucleotide sequences, gene specific oligonucleotide probes comprising 20-30 contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., in situ hybridization of bacterial colonies or bacteriophage plaques). In addition, short oligonucleotides of 12-15 bases may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers. Accordingly, a "substantial portion" of a nucleotide sequence comprises enough of the sequence to afford specific identification and/or isolation of a nucleic acid fragment comprising the sequence. The instant specification teaches partial or complete amino acid and nucleotide sequences encoding one or more particular plant proteins. The skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art. Accordingly, the instant invention comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above.

10

15

20

25

30

35

"Codon degeneracy" refers to divergence in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide. Accordingly, the instant invention relates to any nucleic acid fragment that encodes all or a substantial portion of the amino acid sequence encoding the phytoene synthase or the zeaxanthin epoxidase proteins as set forth in SEQ ID NOs:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 and 26. The skilled artisan is well aware of the "codon-bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a gene for improved expression in a host cell, it is desirable to design the gene such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell.

"Synthetic genes" can be assembled from oligonucleotide building blocks that are chemically synthesized using procedures known to those skilled in the art. These building blocks are ligated and annealed to form gene segments which are then enzymatically assembled to construct the entire gene. "Chemically synthesized", as related to a sequence of DNA, means that the component nucleotides were assembled *in vitro*. Manual chemical synthesis of DNA may be accomplished using well established procedures, or automated chemical synthesis can be performed using one of a number of commercially available machines. Accordingly, the genes can be tailored for optimal gene expression based on optimization of nucleotide sequence to reflect the codon bias of the host cell. The skilled

artisan appreciates the likelihood of successful gene expression if codon usage is biased towards those codons favored by the host. Determination of preferred codons can be based on a survey of genes derived from the host cell where sequence information is available.

5

10

15

20

25

30

35

"Gene" refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence. "Native gene" refers to a gene as found in nature with its own regulatory sequences. "Chimeric gene" refers any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature.

Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature.

"Endogenous gene" refers to a native gene in its natural location in the genome of an organism. A "foreign" gene refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes. A "transgene" is a gene that has been introduced into the genome by a transformation procedure.

"Coding sequence" refers to a DNA sequence that codes for a specific amino acid sequence. "Regulatory sequences" refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, translation leader sequences, introns, and polyadenylation recognition sequences.

"Promoter" refers to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a promoter sequence. The promoter sequence consists of proximal and more distal upstream elements, the latter elements often referred to as enhancers. Accordingly, an "enhancer" is a DNA sequence which can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. Promoters which cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro and Goldberg, (1989) Biochemistry of Plants 15:1-82. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of different lengths may have identical promoter activity.

The "translation leader sequence" refers to a DNA sequence located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner, R. and Foster, G. D. (1995) *Molecular Biotechnology* 3:225).

5

10

15

20

25

30

35

The "3' non-coding sequences" refer to DNA sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3' end of the mRNA precursor. The use of different 3' non-coding sequences is exemplified by Ingelbrecht et al., (1989) *Plant Cell 1*:671-680.

"RNA transcript" refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from posttranscriptional processing of the primary transcript and is referred to as the mature RNA. "Messenger RNA (mRNA)" refers to the RNA that is without introns and that can be translated into protein by the cell. "cDNA" refers to a double-stranded DNA that is complementary to and derived from mRNA. "Sense" RNA refers to RNA transcript that includes the mRNA and so can be translated into protein by the cell. "Antisense RNA" refers to a RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene (U.S. Pat. No. 5,107,065, incorporated herein by reference). The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence. "Functional RNA" refers to sense RNA, antisense RNA, ribozyme RNA, or other RNA that may not be translated but yet has an effect on cellular processes.

The term "operably linked" refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation.

The term "expression", as used herein, refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the invention. Expression may also refer to translation of mRNA into a polypeptide. "Antisense inhibition" refers to the production of antisense RNA transcripts capable of suppressing the expression of the target protein. "Overexpression" refers to the production of a gene product in transgenic organisms that exceeds levels of production in normal or

non-transformed organisms. "Co-suppression" refers to the production of sense RNA transcripts capable of suppressing the expression of identical or substantially similar foreign or endogenous genes (U.S. Patent No. 5,231,020, incorporated herein by reference).

"Altered levels" refers to the production of gene product(s) in transgenic organisms in amounts or proportions that differ from that of normal or non-transformed organisms.

5

10

15

20

25

30

35

"Mature" protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or propeptides present in the primary translation product have been removed. "Precursor" protein refers to the primary product of translation of mRNA; i.e., with pre- and propeptides still present. Pre- and propeptides may be but are not limited to intracellular localization signals.

A "chloroplast transit peptide" is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the chloroplast or other plastid types present in the cell in which the protein is made. "Chloroplast transit sequence" refers to a nucleotide sequence that encodes a chloroplast transit peptide. A "signal peptide" is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the secretory system (Chrispeels, J. J., (1991) Ann. Rev. Plant Phys. Plant Mol. Biol. 42:21-53). If the protein is to be directed to a vacuole, a vacuolar targeting signal (supra) can further be added, or if to the endoplasmic reticulum, an endoplasmic reticulum retention signal (supra) may be added. If the protein is to be directed to the nucleus, any signal peptide present should be removed and instead a nuclear localization signal included (Raikhel (1992) Plant Phys. 100:1627-1632).

"Transformation" refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" organisms. Examples of methods of plant transformation include Agrobacterium-mediated transformation (De Blaere et al. (1987) *Meth. Enzymol. 143*:277) and particle-accelerated or "gene gun" transformation technology (Klein T. M. et al. (1987) *Nature (London) 327*:70-73; U.S. Patent No. 4,945,050).

Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described more fully in Sambrook, J., Fritsch, E. F. and Maniatis, T. *Molecular Cloning: A Laboratory Manual*; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter "Maniatis").

Nucleic acid fragments encoding at least a portion of several carotenoid biosynthetic enzymes have been isolated and identified by comparison of random plant cDNA sequences to public databases containing nucleotide and protein sequences using the BLAST algorithms well known to those skilled in the art. Table 1 lists the proteins that are described herein, and the designation of the cDNA clones that comprise the nucleic acid fragments encoding these proteins.

TABLE 1
Carotenoid Biosynthetic Enzymes

Enzyme	Clone	Plant
Phytoene Synthase	Contig of: p0008.cb3ld95rb csi1.pk0034.d8	Corn
	Contig of: p0121.cfrmo87r p0091.cmarc67r p0005.cbmej22r	Corn
	Contig of: rds1c.pk005.15 rlr6.pk0028.g3 rds2c.pk007.f16	Rice
	Contig of: rl0n.pk109.j7 rl0n.pk120.p4	Rice
	Contig of: rlm1n.pk001.a4 rca1n.pk001.l8 rl0.pk0005.e5	Rice
	sl1.pk0029.h5	Soybean
	sl2.pk0045.b10	Soybean
	wr1.pk0139.g3	Wheat
Zeaxanthin Epoxidase	contig of: cbn2.pk0051.e8 p0031.ccmaj44r p0097.cqrag63r	Corn
	Contig of: p0110.cgsmp01r p0012.cglae05r p0088.clrim55r cr1n.pk0033.d8	Com
	sl1.pk0015.c4	Soybean
	sl2.pk0109.b6	Soybean

The nucleic acid fragments of the instant invention may be used to isolate cDNAs and genes encoding homologous proteins from the same or other plant species. Isolation of homologous genes using sequence-dependent protocols is well known in the art. Examples of sequence-dependent protocols include, but are not limited to, methods of nucleic acid hybridization, and methods of DNA and RNA amplification as exemplified by various uses of nucleic acid amplification technologies (e.g., polymerase chain reaction, ligase chain reaction).

5

10

For example, genes encoding other phytoene synthases or zeaxanthin epoxidases, either as cDNAs or genomic DNAs, could be isolated directly by using all or a portion of the

instant nucleic acid fragments as DNA hybridization probes to screen libraries from any desired plant employing methodology well known to those skilled in the art. Specific oligonucleotide probes based upon the instant nucleic acid sequences can be designed and synthesized by methods known in the art (Maniatis). Moreover, the entire sequences can be used directly to synthesize DNA probes by methods known to the skilled artisan such as random primer DNA labeling, nick translation, or end-labeling techniques, or RNA probes using available *in vitro* transcription systems. In addition, specific primers can be designed and used to amplify a part or all of the instant sequences. The resulting amplification products can be labeled directly during amplification reactions or labeled after amplification reactions, and used as probes to isolate full length cDNA or genomic fragments under conditions of appropriate stringency.

5

10

15

20

25

30

35

In addition, two short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols to amplify longer nucleic acid fragments encoding homologous genes from DNA or RNA. The polymerase chain reaction may also be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer is derived from the instant nucleic acid fragments, and the sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' end of the mRNA precursor encoding plant genes. Alternatively, the second primer sequence may be based upon sequences derived from the cloning vector. For example, the skilled artisan can follow the RACE protocol (Frohman et al., (1988) Proc. Natl. Acad. Sci. USA 85:8998) to generate cDNAs by using PCR to amplify copies of the region between a single point in the transcript and the 3' or 5' end. Primers oriented in the 3' and 5' directions can be designed from the instant sequences. Using commercially available 3' RACE or 5' RACE systems (BRL), specific 3' or 5' cDNA fragments can be isolated (Ohara et al., (1989) Proc. Natl. Acad. Sci. USA 86:5673; Loh et al., (1989) Science 243:217). Products generated by the 3' and 5' RACE procedures can be combined to generate full-length cDNAs (Frohman, M. A. and Martin, G. R., (1989) Techniques 1:165).

Availability of the instant nucleotide and deduced amino acid sequences facilitates immunological screening of cDNA expression libraries. Synthetic peptides representing portions of the instant amino acid sequences may be synthesized. These peptides can be used to immunize animals to produce polyclonal or monoclonal antibodies with specificity for peptides or proteins comprising the amino acid sequences. These antibodies can be then be used to screen cDNA expression libraries to isolate full-length cDNA clones of interest (Lerner, R. A. (1984) Adv. Immunol. 36:1; Maniatis).

The nucleic acid fragments of the instant invention may be used to create transgenic plants in which the disclosed phytoene synthase or zeaxanthin epoxidase are present at higher or lower levels than normal or in cell types or developmental stages in which they are not normally found. This would have the effect of altering the level of lycopene or zeaxanthin in those cells. Because the nucleotide sequence of corn clone csi1.pk0034.d8 is

so divergent from known phytoene synthase genes it may be possible to overexpress it in transgenic plants without causing co-supression. Co-supression of phytoene synthase in rice may re-direct the carbon flux towards tocopherol biosynthesis to improve the grain eating qualities. Manipulation of the levels of zeaxanthin epoxidase in transgenic corn may result in higher levels of zeaxanthin, an important ingredient in animal feed.

5

10

15

20

25

30

35

Overexpression of the phytoene synthase or the zeaxanthin epoxidase proteins of the instant invention may be accomplished by first constructing a chimeric gene in which the coding region is operably linked to a promoter capable of directing expression of a gene in the desired tissues at the desired stage of development. For reasons of convenience, the chimeric gene may comprise promoter sequences and translation leader sequences derived from the same genes. 3' Non-coding sequences encoding transcription termination signals may also be provided. The instant chimeric gene may also comprise one or more introns in order to facilitate gene expression.

Plasmid vectors comprising the instant chimeric gene can then constructed. The choice of plasmid vector is dependent upon the method that will be used to transform host plants. The skilled artisan is well aware of the genetic elements that must be present on the plasmid vector in order to successfully transform, select and propagate host cells containing the chimeric gene. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al., (1985) EMBO J. 4:2411-2418; De Almeida et al., (1989) Mol. Gen. Genetics 218:78-86), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, Western analysis of protein expression, or phenotypic analysis.

For some applications it may be useful to direct the instant carotenoid biosynthetic enzyme to different cellular compartments, or to facilitate its secretion from the cell. It is thus envisioned that the chimeric gene described above may be further supplemented by altering the coding sequence to encode phytoene synthase or zeaxanthin epoxidase with appropriate intracellular targeting sequences such as transit sequences (Keegstra, K. (1989) Cell 56:247-253), signal sequences or sequences encoding endoplasmic reticulum localization (Chrispeels, J. J., (1991) Ann. Rev. Plant Phys. Plant Mol. Biol. 42:21-53), or nuclear localization signals (Raikhel, N. (1992) Plant Phys. 100:1627-1632) added and/or with targeting sequences that are already present removed. While the references cited give examples of each of these, the list is not exhaustive and more targeting signals of utility may be discovered in the future.

It may also be desirable to reduce or eliminate expression of genes encoding phytoene synthase or zeaxanthin epoxidase in plants for some applications. In order to accomplish this, a chimeric gene designed for co-suppression of the instant carotenoid biosynthetic enzyme can be constructed by linking a gene or gene fragment encoding a phytoene

synthase or a zeaxanthin epoxidase to plant promoter sequences. Alternatively, a chimeric gene designed to express antisense RNA for all or part of the instant nucleic acid fragment can be constructed by linking the gene or gene fragment in reverse orientation to plant promoter sequences. Either the co-suppression or antisense chimeric genes could be introduced into plants via transformation wherein expression of the corresponding endogenous genes are reduced or eliminated.

The instant phytoene synthase or zeaxanthin epoxidase (or portions thereof) may be produced in heterologous host cells, particularly in the cells of microbial hosts, and can be used to prepare antibodies to the these proteins by methods well known to those skilled in the art. The antibodies are useful for detecting phytoene synthase or zeaxanthin epoxidase in situ in cells or in vitro in cell extracts. Preferred heterologous host cells for production of the instant phytoene synthase or zeaxanthin epoxidase are microbial hosts. Microbial expression systems and expression vectors containing regulatory sequences that direct high level expression of foreign proteins are well known to those skilled in the art. Any of these could be used to construct a chimeric gene for production of the instant phytoene synthase or zeaxanthin epoxidase. This chimeric gene could then be introduced into appropriate microorganisms via transformation to provide high level expression of the encoded carotenoid biosynthetic enzyme. An example of a vector for high level expression of the instant phytoene synthase or zeaxanthin epoxidase in a bacterial host is provided (Example 7).

10

15

20

30

35

Additionally, the instant phytoene synthase or zeaxanthin epoxidase can be used as targets to facilitate design and/or identification of inhibitors of those enzymes that may be useful as herbicides. This is desirable because the phytoene synthase or the zeaxanthin epoxidase described herein catalyze various steps in carotenoid biosynthesis. Accordingly, inhibition of the activity of one or more of the enzymes described herein could lead to inhibition plant growth. Thus, the instant phytoene synthase or zeaxanthin epoxidase could be appropriate for new herbicide discovery and design.

All or a substantial portion of the nucleic acid fragments of the instant invention may also be used as probes for genetically and physically mapping the genes that they are a part of, and as markers for traits linked to those genes. Such information may be useful in plant breeding in order to develop lines with desired phenotypes. For example, the instant nucleic acid fragments may be used as restriction fragment length polymorphism (RFLP) markers. Southern blots (Maniatis) of restriction-digested plant genomic DNA may be probed with the nucleic acid fragments of the instant invention. The resulting banding patterns may then be subjected to genetic analyses using computer programs such as MapMaker (Lander et at., (1987) Genomics 1:174-181) in order to construct a genetic map. In addition, the nucleic acid fragments of the instant invention may be used to probe Southern blots containing restriction endonuclease-treated genomic DNAs of a set of individuals representing parent and progeny of a defined genetic cross. Segregation of the DNA polymorphisms is noted

and used to calculate the position of the instant nucleic acid sequence in the genetic map previously obtained using this population (Botstein, D. et al., (1980) Am. J. Hum. Genet. 32:314-331).

5

10

15

20

25

30

35

The production and use of plant gene-derived probes for use in genetic mapping is described in R. Bernatzky, R. and Tanksley, S. D. (1986) *Plant Mol. Biol. Reporter* 4(1):37-41. Numerous publications describe genetic mapping of specific cDNA clones using the methodology outlined above or variations thereof. For example, F2 intercross populations, backcross populations, randomly mated populations, near isogenic lines, and other sets of individuals may be used for mapping. Such methodologies are well known to those skilled in the art.

Nucleic acid probes derived from the instant nucleic acid sequences may also be used for physical mapping (i.e., placement of sequences on physical maps; see Hoheisel, J. D., et al., In: Nonmammalian Genomic Analysis: A Practical Guide, Academic press 1996, pp. 319-346, and references cited therein).

In another embodiment, nucleic acid probes derived from the instant nucleic acid sequences may be used in direct fluorescence in situ hybridization (FISH) mapping (Trask, B. J. (1991) Trends Genet. 7:149-154). Although current methods of FISH mapping favor use of large clones (several to several hundred KB; see Laan, M. et al. (1995) Genome Research 5:13-20), improvements in sensitivity may allow performance of FISH mapping using shorter probes.

A variety of nucleic acid amplification-based methods of genetic and physical mapping may be carried out using the instant nucleic acid sequences. Examples include allele-specific amplification (Kazazian, H. H. (1989) J. Lab. Clin. Med. 114(2):95-96), polymorphism of PCR-amplified fragments (CAPS; Sheffield, V. C. et al. (1993) Genomics 16:325-332), allele-specific ligation (Landegren, U. et al. (1988) Science 241:1077-1080), nucleotide extension reactions (Sokolov, B. P. (1990) Nucleic Acid Res. 18:3671), Radiation Hybrid Mapping (Walter, M. A. et al. (1997) Nature Genetics 7:22-28) and Happy Mapping (Dear, P. H. and Cook, P. R. (1989) Nucleic Acid Res. 17:6795-6807). For these methods, the sequence of a nucleic acid fragment is used to design and produce primer pairs for use in the amplification reaction or in primer extension reactions. The design of such primers is well known to those skilled in the art. In methods employing PCR-based genetic mapping, it may be necessary to identify DNA sequence differences between the parents of the mapping cross in the region corresponding to the instant nucleic acid sequence. This, however, is generally not necessary for mapping methods.

Loss of function mutant phenotypes may be identified for the instant cDNA clones either by targeted gene disruption protocols or by identifying specific mutants for these genes contained in a maize population carrying mutations in all possible genes (Ballinger and Benzer, (1989) *Proc. Natl. Acad. Sci USA* 86:9402; Koes et al., (1995) *Proc. Natl. Acad. Sci USA* 92:8149; Bensen et al., (1995) *Plant Cell* 7:75). The latter approach may be

be used in polymerase chain reaction protocols in conjunction with a mutation tag sequence primer on DNAs prepared from a population of plants in which Mutator transposons or some other mutation-causing DNA element has been introduced (see Bensen, *supra*). The amplification of a specific DNA fragment with these primers indicates the insertion of the mutation tag element in or near the plant gene encoding the phytoene synthase or the zeaxanthin epoxidase. Alternatively, the instant nucleic acid fragment may be used as a hybridization probe against PCR amplification products generated from the mutation population using the mutation tag sequence primer in conjunction with an arbitrary genomic site primer, such as that for a restriction enzyme site-anchored synthetic adaptor. With either method, a plant containing a mutation in the endogenous gene encoding a phytoene synthase or a zeaxanthin epoxidase can be identified and obtained. This mutant plant can then be used to determine or confirm the natural function of the phytoene synthase or the zeaxanthin epoxidase gene product.

5

10

15

20

25

EXAMPLES

The present invention is further defined in the following Examples, in which all parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

EXAMPLE 1

Composition of cDNA Libraries; Isolation and Sequencing of cDNA Clones cDNA libraries representing mRNAs from various corn, rice, soybean and wheat tissues were prepared. The characteristics of the libraries are described below.

<u>TABLE 2</u> cDNA Libraries from Corn, Rice, Soybean and Wheat

Library	Tissue	Clone
cbn2	Corn Developing Kernel Two Days After Pollination	cbn2.pk0051.e8
crln	Corn Root From 7 Day Old Seedlings*	cr1n.pk0033.d8
csi l	Corn Silk	csi1.pk0034.d8
p0005	Corn Immature Ear	p0005.cbmej22r
p0008	Corn Leaf, 3-Weeks-Old	p0008.cb3ld95rb
p0012	Corn Middle 3/4 of the 3rd Leaf Blade and Mid Rib From Green Leaves Treated with Jasmonic Acid (1 mg/ml in 0.02% Tween 20) for 24 Hours Before Collection	p0012.cglae05r
p0031	Corn Shoot Culture	p0031.ccmaj44r

Library	Tissue	Clone
p0088	Corn Leaf From Mutant Plant** Prior to Genetic Lesion Formation	p0088.clrim55r
p0091	Corn Roots 2 and 3 Days After Germination, Pooled	p0091.cmarc67r
p0097	Corn V9 Whorl Section (7 cm) From Plant Infected Four Times With European Corn Borer	p0097.cqrag63r
p0110	Corn (Stages V3/V4) Leaf Tissue Minus Midrib Harvested 4 Hours, 24 Hours and 7 Days After Infiltration With Salicylic Acid, Pooled*	p0110.cgsmp01r
p0121	Corn Shank Ear Tissue Collected 5 Days After Pollination*	p0121.cfrmo87r
rcaln	Rice Callus*	rca1n.pk001.18
rds1c	Rice Developing Seeds	rds1c.pk005.15
rds2c	Rice Developing Seeds From Middle of the Plant	rds2c.pk007.f16
rl0	Rice 15 Day Old Leaf	rl0.pk0005.e5
rl0n	Rice 15 Day Old Leaf*	rl0n.pk109.j7
		rl0n.pk120.p4
rlm1n	Rice Leaf 15 Days After Germination Harvested 2-72 Hours Following Infection With <i>Magnaporta grisea</i> (4360-R-62 and 4360-R-67) Normalized at 30 Degrees C for 24 Hours Using 10 Fold Excess Driver	rlm1n.pk001.a4
rls6	Rice Leaf 15 Days After Germination, 6 Hours After Infection of Strain Magaporthe grisea 4360-R-67 (AVR2-YAMO); Susceptible	rlr6.pk0028.g3
sl1	Soybean Two-Week-Old Developing Seedlings	sl1.pk0015.c4
		sl1.pk0029.h5
sl2	Soybean Two-Week-Old Developing Seedlings Treated	sl2.pk0045.b10
	With 2.5 ppm chlorimuron	sl2.pk0109.b6
wr1	Wheat Root From 7 Day Old Seedling	wr1.pk0139.g3

^{*}These libraries were normalized essentially as described in U.S. Patent No. 5,482,845

5

cDNA libraries were prepared in Uni-ZAP™ XR vectors according to the manufacturer's protocol (Stratagene Cloning Systems, La Jolla, CA). Conversion of the Uni-ZAP™ XR libraries into plasmid libraries was accomplished according to the protocol provided by Stratagene. Upon conversion, cDNA inserts were contained in the plasmid vector pBluescript. cDNA inserts from randomly picked bacterial colonies containing recombinant pBluescript plasmids were amplified via polymerase chain reaction using primers specific for vector sequences flanking the inserted cDNA sequences or plasmid DNA was prepared from cultured bacterial cells. Amplified insert DNAs or plasmid DNAs were sequenced in dye-primer sequencing reactions to generate partial cDNA sequences

^{**}Simmons, C. et al. (1998) Mol. Plant Microbe Interact. 11:1110-1118

(expressed sequence tags or "ESTs"; see Adams, M. D. et al., (1991) *Science 252*:1651). The resulting ESTs were analyzed using a Perkin Elmer Model 377 fluorescent sequencer.

EXAMPLE 2

Identification of cDNA Clones

5

10

15

20

25

30

35

ESTs encoding carotenoid biosynthetic enzymes were identified by conducting BLAST (Basic Local Alignment Search Tool; Altschul, S. F., et al., (1993) J. Mol. Biol. 215:403-410; see also www.ncbi.nlm.nih.gov/BLAST/) searches for similarity to sequences contained in the BLAST "nr" database (comprising all non-redundant GenBank CDS translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, the last major release of the SWISS-PROT protein sequence database, EMBL, and DDBJ databases). The cDNA sequences obtained in Example 1 were analyzed for similarity to all publicly available DNA sequences contained in the "nr" database using the BLASTN algorithm provided by the National Center for Biotechnology Information (NCBI). The DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the "nr" database using the BLASTX algorithm (Gish, W. and States, D. J. (1993) Nature Genetics 3:266-272) provided by the NCBI. For convenience, the P-value (probability) of observing a match of a cDNA sequence to a sequence contained in the searched databases merely by chance as calculated by BLAST are reported herein as "pLog" values, which represent the negative of the logarithm of the reported P-value. Accordingly, the greater the pLog value, the greater the likelihood that the cDNA sequence and the BLAST "hit" represent homologous proteins.

EXAMPLE 3

Characterization of cDNA Clones Encoding Phytoene Synthase

The BLASTX search using the EST sequences from clones csi1.pk0034.d8, ssm.pk0011.d9, sl1.pk0069.e4, sl1.pk0029.h5, sl1.pk0073.g10, sl1.pk0031.b8 and wr1.pk0139.g3 revealed similarity of the proteins encoded by the cDNAs to Phytoene Synthase from corn, *Arabidopsis thaliana*, *Lycopersicon esculentum*, *Cucumis melo*, and *Capsicum annum* (GenBank Accession Nos. U32636, L25812, L23424, Z37543, X68017 respectively). Further analysis of the sequences from clones ssm.pk0011.d9 and sl1.pk0069.e4 revealed a significant region of overalp, thus affording the assembly of a contig encoding a portion of a soybean Phytoene Synthase. Likewise, further analysis of the sequences from clones sl1.pk0029.h5 and sl1.pk0073.g10 revealed a significant region of overalp, thus affording the assembly of an additional contig encoding a portion of a soybean Phytoene Synthase. The BLAST results for each of these ESTs and contigs are shown in Table 3:

TABLE 3

BLAST Results for Clones Encoding Polypeptides Homologous to Phytoene Synthase

Clone	Organism	GenBank Accession No.	BLAST pLog Score
csil.pk0034.d8	Maize	U32636	33.00
Contig of: ssm.pk0011.d9 sl1.pk0069.e4	Arabidopsis thaliana	L25812	54.40
Contig of: sl1.pk0029.h5 sl1.pk0073.gl0	Lycopersicon esculentum	L23424	20.00
sl1.pk0031.b8	Cucumis melo	Z37543	50.00
wr1.pk0139.g3	Capsicum annum	X68017	31.70

5

10

15

20

TBLASTN analysis of the proprietary plant EST database indicated that other corn rice and soybean clones besides those mentioned above encoded phytoene synthetase. The BLASTX search using the nucleotide sequences of the contig assembled from a portion of the cDNA insert in clones p0121.cfrmo87r, p0091.cmarc67r and p0005.cbmej22r revealed similarity of the proteins encoded by the cDNAs to phytoene synthase from Capsicum annuum (NCBI gi Accession No. 585749). The BLASTX search using the nucleotide sequences of the contig assembled from a portion of the cDNA insert in clones rds1c.pk005.15, rlr6.pk0028.g3 and rds2c.pk007.f16 and of the contig assembled from the entire cDNA insert in clone rl0.pk0005.e5 and a portion of the cDNA insert in clones rlm1n.pk001.a4 and rca1n.pk001.l8 revealed similarity of the proteins encoded by the cDNAs to phytoene synthase from Zea mays (NCBI gi Accession No. 1346883). The BLASTX search using the nucleotide sequences from the contig assembled of a portion of the cDNA insert in clones rl0n.pk109.j7 and rl0n.pk120.p4 revealed similarity of the proteins encoded by the cDNAs to phytoene synthase 2 from Lycopersicon esculentum (NCBI gi Accession No. 585747). BLASTX search using the nucleotide sequences from the entire cDNA insert in clone sl2.pk0045.b10 revealed similarity of the proteins encoded by the cDNAs to phytoene synthase from Narcissus pseudonarcissus (NCBI gi Accession No. 1709885). The BLAST results for each of these sequences are shown in Table 4:

TABLE 4

BLAST Results for Clones Encoding Polypeptides Homologous to Phytoene Synthase

Clone	Organism	NCBI gi Accession No.	BLAST pLog Score
Contig of: p0121.cfrmo87r p0091.cmarc67r p0005.cbmej22r	Capsicum annuum	585749	89.22
Contig of: rds1c.pk005.15 rlr6.pk0028.g3 rds2c.pk007.f16	Zea mays	1346883	54.22
Contig of: rl0n.pk109.j7 rl0n.pk120.p4	Lycopersicon esculentum	585747	54.30
Contig of: rlm1n.pk001.a4 rca1n.pk001.18 rl0.pk0005.e5	Zea mays	1346883	132.0
sl2.pk0045.b10	Narcissus pseudonarcissus	1709885	176.0

The sequence of the entire cDNA insert in clone csi1.pk0034.d8 was determined and a 5 contig assembled with this sequence and a portion of the cDNA insert from clone p0008.cb3ld95rb. The sequence of this contig is shown in SEQ ID NO:1; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:2. The amino acid sequence set forth in SEQ ID NO:2 was evaluated by BLASTP, yielding a pLog value of 132.0 versus the Lycopersicon esculentum phytoene synthase 2 sequence (NCBI gi Accession No. 585747; 10 SEQ ID NO:27). The sequence of the contig assembled of a portion of the cDNA insert from clones p0121.cfrmo87r, p0091.cmarc67r and p0005.cbmej22r is shown in SEQ ID NO:3; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:4. The sequence of the contig assembled of a portion of the cDNA insert from clones rds1c.pk005.15, rlr6.pk0028.g3 and rds2c.pk007.f16 is shown in SEQ ID NO:5; the deduced 15 amino acid sequence of this cDNA is shown in SEQ ID NO:6. The sequence of the contig asssembled of a portion of the cDNA insert from clones rl0n.pk109.j7 and rl0n.pk120.p4 is shown in SEQ ID NO:7; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:8. The sequence of the contig assembled from the entire cDNA insert in clone rl0.pk0005.e5 and a portion of the cDNA insert from clones rlm1n.pk001.a4 and 20 rca1n.pk001.18 is shown in SEQ ID NO:9; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:10. The sequence of the entire cDNA insert in clone sl1.pk0029.h5 was determined and is shown in SEQ ID NO:11; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:12. The EST sequences from clones ssm.pk0011.d9, sl1.pk0069.e4 and sl1.pk0073.g10 are included in the sequence from the entire cDNA insert 25

in clone sl1.pk0029.h5. The amino acid sequence set forth in SEQ ID NO:12 was evaluated by BLASTP, yielding a pLog value of 114.0 versus the Cucumis melo sequence (NCBI gi Accession No. 1346882). The sequence of the entire cDNA insert in clone sl2.pk0045.b10 was determined and is shown in SEQ ID NO:13; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:14. The EST sequences from clone sl1.pk0031.b8 is included in the sequence of the entire cDNA insert from clone sl2.pk0045.b10. The amino acid sequence set forth in SEQ ID NO:14 was evaluated by BLASTP, yielding a pLog value of 153.0 versus the Cucumis melo sequence. The sequence of the entire cDNA insert in clone wrl.pk0139.g3 was determined and is shown in SEQ ID NO:15; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:16. The amino acid sequence set forth in SEQ ID NO:16 was evaluated by BLASTP, yielding a pLog value of 118.0 versus the Lycopersicon esculentum sequence. Figure 1 presents an alignment of the amino acid sequences set forth in SEQ ID NOs:2 and 14 with the Lycopersicon esculentum sequence (SEQ ID NO:27) and the Cucumis melo sequence (SEQ ID NO:28). The data in Table 5 presents a calculation of the percent similarity of the amino acid sequences set forth in SEQ ID NOs:2 and 14 with the Lycopersicon esculentum sequence (SEQ ID NO:27) and the Cucumis melo sequence (SEQ ID NO:28).

10

15

20

TABLE 5

Percent Similarity of Amino Acid Sequences Deduced From the Nucleotide Sequences of cDNA Clones Encoding Polypeptides Homologous to Phytoene Synthase

	Percent Similarity to		
Clone	SEQ ID NO.	1346882	585747
Contig of: p0008.cb3ld95rb csi1.pk0034.d8	2	57.0	78.1
Contig of: p0121.cfrmo87r p0091.cmarc67r p0005.cbmej22r	4	70.4	74.2
Contig of: rds1c.pk005.15 rlr6.pk0028.g3 rds2c.pk007.f16	6	47.6	32.3
Contig of: rl0n.pk109.j7 rl0n.pk120.p4	8	82.4	82.4

		Percent Similarity to	
Clone	SEQ ID NO.	1346882	585747
Contig of: rlm1n.pk001.a4 rca1n.pk001.l8 rl0.pk0005.e5	10	77.0	77.8
l1.pk0029.h5	12	77.1	78.7
sl2.pk0045.b10	14	66.8	78.4
wrl.pk0139.g3	16	78.7	81.1

Sequence alignments and percent similarity calculations were performed using the Megalign program of the LASARGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignment of the amino acid sequences was performed using the Clustal method of alignment (Higgins, D.G. and Sharp, P.M. (1989) *CABIOS*. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10).

Sequence alignments and BLAST scores and probabilities indicate that the instant nucleic acid fragments encode entire or nearly entire corn and soybean phytoene synthase and portions of corn, rice, soybean and wheat phytoene synthase isozymes. These sequences represent the first rice, soybean and wheat sequences encoding phytoene synthase, an entire corn variant which is 55.7% similar to the corn sequences available in the art (NCBI gi Accession Nos. 1346883 and 1098665) and a portion of a corn variant which is 72.0% similar to the art sequences.

5

10

15

20

25

EXAMPLE 4

Characterization of cDNA Clones Encoding Zeaxanthin Epoxidase

The BLASTX search using the nucleotide sequences from clones cbn2.pk0051.e8 and cr1n.pk0033.d8, and the EST sequences from clone sl1.pk0015.c4 revealed similarity of the proteins encoded by the cDNAs to Zeaxanthin Epoxidase from *Lycopersicon esculentum* and *Nicotiana plumbaginifolia* (GenBank Accession Nos. Z83835 and X95732, respectively). The BLAST results for each of these sequences are shown in Table 6:

TABLE 6

BLASTn Results for Clones Encoding Polypeptides Homologous to Zeaxanthin Epoxidase

10 E001101111 - F	, , , , , , , , , , , , , , , , , , , ,	
Organism	GenBank Accession No.	BLAST pLog Score
Lycopersicon esculentum	Z83835	45.52
Nicotiana plumbaginifolia	X95732	65.70
Lycopersicon esculentum	Z83835	8.30
	Lycopersicon esculentum Nicotiana plumbaginifolia	Organism GenBank Accession No. Lycopersicon esculentum Z83835 Nicotiana plumbaginifolia X95732

TBLASTN analysis of the proprietary plant EST database indicated that another soybean clone besides sl1.pk0015.c4 also encoded zeaxanthin epoxidase. The BLASTX search using the EST sequences from the 5'terminal and 3'terminal portions of the cDNA insert in clone sl2.pk0109.b6 revealed similarity of the proteins encoded by the cDNAs to zeaxanthin epoxidase from *Prunus armeniaca* (NCBI gi Accession No. 3264757), with pLog values of >254 and 41.70, respectively.

The sequence of the entire cDNA insert in clone cbn2.pk0051.e8 was determined and a contig assembled with this sequence and a portion of the cDNA insert from clones p0031.ccmaj44r and p0097.cqrag63r. The nucleotide sequence of this contig is shown in SEQ ID NO:17; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:18. The sequence of the entire cDNA insert in clone cr1n.pk0033.d8 was determined and a contig assembled with this sequence and a portion of the cDNA insert from clones p0110.cgsmp01r, p0012.cglae05r and p0088.clrim55r. The nucleotide sequence of this contig is shown in SEQ ID NO:19; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:20. The sequence of the entire cDNA insert in clone s11.pk0015.c4 was determined and is shown in SEQ ID NO:21; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:22. The sequence of the 5'terminus of the cDNA insert in clone s12.pk0109.b6 was determined and is shown in SEQ ID NO:23; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:24. The sequence of the 3'terminus of the cDNA insert in clone s12.pk0109.b6 was determined and is shown in SEQ ID NO:25; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:25; the deduced amino acid sequence of this cDNA is shown in SEQ ID NO:26.

The data in Table 7 presents a calculation of the percent similarity of the amino acid sequences set forth in SEQ ID NOs:18, 20, 22, 24 and 26 and the *Lycopersicon esculentum* and *Prunus armeniaca* sequences.

25

20

10

15

TABLE 7

Percent Similarity of Amino Acid Sequences Deduced From the Nucleotide Sequences of cDNA Clones Encoding Polypeptides Homologous to Zeaxanthin Epoxidase

		Percent Ide	entity to
Clone	SEQ ID NO.	1772985	3264757
Contig of: cbn2.pk0051.e8 p0031.ccmaj44r p0097.cqrag63r	18	55.1	56.6
Contig of: p0110.cgsmp01r p0012.cglae05r p0088.clrim55r cr1n.pk0033.d8	20	66.5	64.9
sl1.pk0015.c4	22	51.9	51.9
5'end of sl2.pk0109.b6	24	66.1	72.7
3'end of sl2.pk0109.b6	26		

Sequence alignments and percent similarity calculations were performed using the Megalign program of the LASARGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Multiple alignment of the amino acid sequences was performed using the Clustal method of alignment (Higgins, D. G. and Sharp, P. M. (1989) *CABIOS*. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10).

5

10

Sequence alignments and BLAST scores and probabilities indicate that the instant nucleic acid fragments encode entire or nearly entire soybean zeaxanthin epoxidase and portions of corn and soybean zeaxanthin epoxidase isozymes. These sequences represent the first corn and soybean sequences encoding zeaxanthin epoxidase.

EXAMPLE 5

Expression of Chimeric Genes in Monocot Cells

A chimeric gene comprising a cDNA encoding a carotenoid biosynthetic enzyme in sense orientation with respect to the maize 27 kD zein promoter that is located 5' to the cDNA fragment, and the 10 kD zein 3' end that is located 3' to the cDNA fragment, can be 15 constructed. The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites (Nco I or Sma I) can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the digested vector pML103 as described below. Amplification is then performed in a standard PCR. The amplified DNA is then digested 20 with restriction enzymes Nco I and SmaI and fractionated on an agarose gel. The appropriate band can be isolated from the gel and combined with a 4.9 kb Nco I-Sma I fragment of the plasmid pML103. Plasmid pML103 has been deposited under the terms of the Budapest Treaty at ATCC (American Type Culture Collection, 10801 University Blvd., Manassas, VA 20110-2209), and bears accession number ATCC 97366. The DNA segment 25 from pML103 contains a 1.05 kb Sal I-Nco I promoter fragment of the maize 27 kD zein gene and a 0.96 kb Sma I-Sal I fragment from the 3' end of the maize 10 kD zein gene in the vector pGem9Zf(+) (Promega). Vector and insert DNA can be ligated at 15°C overnight, essentially as described (Maniatis). The ligated DNA may then be used to transform E. coli XL1-Blue (Epicurian Coli XL-1 Blue™; Stratagene). Bacterial transformants can be 30 screened by restriction enzyme digestion of plasmid DNA and limited nucleotide sequence analysis using the dideoxy chain termination method (Sequenase™ DNA Sequencing Kit; U.S. Biochemical). The resulting plasmid construct would comprise a chimeric gene encoding, in the 5' to 3' direction, the maize 27 kD zein promoter, a cDNA fragment encoding a carotenoid biosynthetic enzyme, and the 10 kD zein 3' region. 35

The chimeric gene described above can then be introduced into corn cells by the following procedure. Immature corn embryos can be dissected from developing caryopses derived from crosses of the inbred corn lines H99 and LH132. The embryos are isolated 10 to 11 days after pollination when they are 1.0 to 1.5 mm long. The embryos are then placed

with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al., (1975) Sci. Sin. Peking 18:659-668). The embryos are kept in the dark at 27°C. Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembryoids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos. The embryogenic callus isolated from the primary explant can be cultured on N6 medium and sub-cultured on this medium every 2 to 3 weeks.

The plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker. This plasmid contains the *Pat* gene (see European Patent Publication 0 242 236) which encodes phosphinothricin acetyl transferase (PAT). The enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin. The *pat* gene in p35S/Ac is under the control of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) *Nature* 313:810-812) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of *Agrobacterium tumefaciens*.

10

15

20

25

30

35

The particle bombardment method (Klein T. M. et al., (1987) *Nature* 327:70-73) may be used to transfer genes to the callus culture cells. According to this method, gold particles (1 μm in diameter) are coated with DNA using the following technique. Ten μg of plasmid DNAs are added to 50 μL of a suspension of gold particles (60 mg per mL). Calcium chloride (50 μL of a 2.5 M solution) and spermidine free base (20 μL of a 1.0 M solution) are added to the particles. The suspension is vortexed during the addition of these solutions. After 10 minutes, the tubes are briefly centrifuged (5 sec at 15,000 rpm) and the supernatant removed. The particles are resuspended in 200 μL of absolute ethanol, centrifuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 μL of ethanol. An aliquot (5 μL) of the DNA-coated gold particles can be placed in the center of a KaptonTM flying disc (Bio-Rad Labs). The particles are then accelerated into the corn tissue with a BiolisticTM PDS-1000/He (Bio-Rad Instruments, Hercules CA), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.

For bombardment, the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium. The tissue is arranged as a thin lawn and covered a circular area of about 5 cm in diameter. The petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen. The air in the chamber is then evacuated to a vacuum of 28 inches of Hg. The macrocarrier is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.

Seven days after bombardment the tissue can be transferred to N6 medium that contains gluphosinate (2 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium. After an additional 2 weeks the tissue can be transferred to fresh N6 medium containing gluphosinate. After 6 weeks, areas of about 1 cm in diameter

of actively growing callus can be identified on some of the plates containing the glufosinatesupplemented medium. These calli may continue to grow when sub-cultured on the selective medium.

Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al., (1990) *Bio/Technology* 8:833-839).

5

10

15

20

25

30

EXAMPLE 6

Expression of Chimeric Genes in Dicot Cells

A seed-specific expression cassette composed of the promoter and transcription terminator from the gene encoding the β subunit of the seed storage protein phaseolin from the bean *Phaseolus vulgaris* (Doyle et al. (1986) *J. Biol. Chem. 26*1:9228-9238) can be used for expression of the instant carotenoid biosynthetic enzyme in transformed soybean. The phaseolin cassette includes about 500 nucleotides upstream (5') from the translation initiation codon and about 1650 nucleotides downstream (3') from the translation stop codon of phaseolin. Between the 5' and 3' regions are the unique restriction endonuclease sites Nco I (which includes the ATG translation initiation codon), Sma I, Kpn I and Xba I. The entire cassette is flanked by Hind III sites.

The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the expression vector. Amplification is then performed as described above, and the isolated fragment is inserted into a pUC18 vector carrying the seed expression cassette.

Soybean embroys may then be transformed with the expression vector comprising sequences encoding a carotenoid biosynthetic enzyme. To induce somatic embryos, cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26°C on an appropriate agar medium for 6-10 weeks. Somatic embryos which produce secondary embryos are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiplied as early, globular staged embryos, the suspensions are maintained as described below.

Soybean embryogenic suspension cultures can maintained in 35 mL liquid media on a rotary shaker, 150 rpm, at 26°C with florescent lights on a 16:8 hour day/night schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 mL of liquid medium.

Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein T. M. et al. (1987) *Nature* (London) 327:70-73, U.S.

Patent No. 4,945,050). A DuPont Biolistic™ PDS1000/HE instrument (helium retrofit) can be used for these transformations.

A selectable marker gene which can be used to facilitate soybean transformation is a chimeric gene composed of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) Nature 313:810-812), the hygromycin phosphotransferase gene from plasmid pJR225 (from E. coli; Gritz et al.(1983) Gene 25:179-188) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens. The seed expression cassette comprising the phaseolin 5' region, the fragment encoding the carotenoid biosynthetic enzyme and the phaseolin 3' region can be isolated as a restriction fragment. This fragment can then be inserted into a unique restriction site of the vector carrying the marker gene.

5

10

15

20

25

30·

35

To 50 μ L of a 60 mg/mL 1 μ m gold particle suspension is added (in order): 5 μ L DNA (1 μ g/ μ L), 20 μ l spermidine (0.1 M), and 50 μ L CaCl₂ (2.5 M). The particle preparation is then agitated for three minutes, spun in a microfuge for 10 seconds and the supernatant removed. The DNA-coated particles are then washed once in 400 μ L 70% ethanol and resuspended in 40 μ L of anhydrous ethanol. The DNA/particle suspension can be sonicated three times for one second each. Five μ L of the DNA-coated gold particles are then loaded on each macro carrier disk.

Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60x15 mm petri dish and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5-10 plates of tissue are normally bombarded. Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury. The tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.

Five to seven days post bombardment, the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly. Seven to eight weeks post bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.

EXAMPLE 7

Expression of Chimeric Genes in Microbial Cells

The cDNAs encoding the instant carotenoid biosynthetic enzymes can be inserted into the T7 E. coli expression vector pBT430. This vector is a derivative of pET-3a (Rosenberg et al. (1987) Gene 56:125-135) which employs the bacteriophage T7 RNA polymerase/T7

PCT/US99/08789 WO 99/55889

promoter system. Plasmid pBT430 was constructed by first destroying the EcoR I and Hind III sites in pET-3a at their original positions. An oligonucleotide adaptor containing EcoR I and Hind III sites was inserted at the BamH I site of pET-3a. This created pET-3aM with additional unique cloning sites for insertion of genes into the expression vector. Then, the Nde I site at the position of translation initiation was converted to an Nco I site using oligonucleotide-directed mutagenesis. The DNA sequence of pET-3aM in this region, 5'-CATATGG, was converted to 5'-CCCATGG in pBT430.

5

10

15

25

30

35

Plasmid DNA containing a cDNA may be appropriately digested to release a nucleic acid fragment encoding the protein. This fragment may then be purified on a 1% NuSieve GTG™ low melting agarose gel (FMC). Buffer and agarose contain 10 µg/ml ethidium bromide for visualization of the DNA fragment. The fragment can then be purified from the agarose gel by digestion with GELase™ (Epicentre Technologies) according to the manufacturer's instructions, ethanol precipitated, dried and resuspended in 20 µL of water. Appropriate oligonucleotide adapters may be ligated to the fragment using T4 DNA ligase (New England Biolabs, Beverly, MA). The fragment containing the ligated adapters can be purified from the excess adapters using low melting agarose as described above. The vector pBT430 is digested, dephosphorylated with alkaline phosphatase (NEB) and deproteinized with phenol/chloroform as described above. The prepared vector pBT430 and fragment can then be ligated at 16°C for 15 hours followed by transformation into DH5 electrocompetent cells (GIBCO BRL). Transformants can be selected on agar plates containing LB media and 20 100 μg/mL ampicillin. Transformants containing the gene encoding the carotenoid biosynthetic enzyme are then screened for the correct orientation with respect to the T7 promoter by restriction enzyme analysis.

For high level expression, a plasmid clone with the cDNA insert in the correct orientation relative to the T7 promoter can be transformed into E. coli strain BL21(DE3) (Studier et al. (1986) J. Mol. Biol. 189:113-130). Cultures are grown in LB medium containing ampicillin (100 mg/L) at 25°C. At an optical density at 600 nm of approximately 1, IPTG (isopropylthio-β-galactoside, the inducer) can be added to a final concentration of 0.4 mM and incubation can be continued for 3 h at 25°. Cells are then harvested by centrifugation and re-suspended in 50 µL of 50 mM Tris-HCl at pH 8.0 containing 0.1 mM DTT and 0.2 mM phenyl methylsulfonyl fluoride. A small amount of 1 mm glass beads can be added and the mixture sonicated 3 times for about 5 seconds each time with a microprobe sonicator. The mixture is centrifuged and the protein concentration of the supernatant determined. One µg of protein from the soluble fraction of the culture can be separated by SDS-polyacrylamide gel electrophoresis. Gels can be observed for protein bands migrating at the expected molecular weight.

EXAMPLE 8

Evaluating Compounds for Their Ability to Inhibit the Activity of Carotenoid Biosynthetic Enzymes

5

10

15

20

25

30

35

The carotenoid biosynthetic enzymes described herein may be produced using any number of methods known to those skilled in the art. Such methods include, but are not limited to, expression in bacteria as described in Example 7, or expression in eukaryotic cell culture, *in planta*, and using viral expression systems in suitably infected organisms or cell lines. The instant carotenoid biosynthetic enzymes may be expressed either as mature forms of the proteins as observed *in vivo* or as fusion proteins by covalent attachment to a variety of enzymes, proteins or affinity tags. Common fusion protein partners include glutathione S-transferase ("GST"), thioredoxin ("Trx"), maltose binding protein, and C- and/or N-terminal hexahistidine polypeptide ("(His)6"). The fusion proteins may be engineered with a protease recognition site at the fusion point so that fusion partners can be separated by protease digestion to yield intact mature enzyme. Examples of such proteases include thrombin, enterokinase and factor Xa. However, any protease can be used which specifically cleaves the peptide connecting the fusion protein and the enzyme.

Purification of the instant carotenoid biosynthetic enzymes, if desired, may utilize any number of separation technologies familiar to those skilled in the art of protein purification. Examples of such methods include, but are not limited to, homogenization, filtration, centrifugation, heat denaturation, ammonium sulfate precipitation, desalting, pH precipitation, ion exchange chromatography, hydrophobic interaction chromatography and affinity chromatography, wherein the affinity ligand represents a substrate, substrate analog or inhibitor. When the carotenoid biosynthetic enzymes are expressed as fusion proteins, the purification protocol may include the use of an affinity resin which is specific for the fusion protein tag attached to the expressed enzyme or an affinity resin containing ligands which are specific for the enzyme. For example, a carotenoid biosynthetic enzyme may be expressed as a fusion protein coupled to the C-terminus of thioredoxin. In addition, a (His)6 peptide may be engineered into the N-terminus of the fused thioredoxin moiety to afford additional opportunities for affinity purification. Other suitable affinity resins could be synthesized by linking the appropriate ligands to any suitable resin such as Sepharose-4B. In an alternate embodiment, a thioredoxin fusion protein may be eluted using dithiothreitol; however, elution may be accomplished using other reagents which interact to displace the thioredoxin from the resin. These reagents include β -mercaptoethanol or other reduced thiol. The eluted fusion protein may be subjected to further purification by traditional means as stated above, if desired. Proteolytic cleavage of the thioredoxin fusion protein and the enzyme may be accomplished after the fusion protein is purified or while the protein is still bound to the ThioBond™ affinity resin or other resin.

Crude, partially purified or purified enzyme, either alone or as a fusion protein, may be utilized in assays for the evaluation of compounds for their ability to inhibit enzymatic

activation of the carotenoid biosynthetic enzymes disclosed herein. Assays may be conducted under well known experimental conditions which permit optimal enzymatic activity. For example, assays for phytoene synthase are presented by Neudert U. et al. (1998) *Biochim. Biophys. Acta 1392*:51-58. Assays for zeaxanthin epoxidase are presented by Bouvier F. et al. (1996) *J. Biol. Chem. 271*:28861-28867).

5

CLAIMS

What is claimed is:

1. An isolated nucleic acid fragment encoding all or a substantial portion of a phytoene synthase comprising a member selected from the group consisting of:

5

(a) an isolated nucleic acid fragment encoding all or a substantial portion of the amino acid sequence set forth in a member selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16;

10

(b) an isolated nucleic acid fragment that is substantially similar to an isolated nucleic acid fragment encoding all or a substantial portion of the amino acid sequence set forth in a member selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16; and

15

20

25

- (c) an isolated nucleic acid fragment that is complementary to (a) or (b).
- 2. The isolated nucleic acid fragment of Claim 1 wherein the nucleotide sequence of the fragment comprises all or a portion of the sequence set forth in a member selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13 and SEQ ID NO:15.

3. A chimeric gene comprising the nucleic acid fragment of Claim 1 operably linked to suitable regulatory sequences.

4. A transformed host cell comprising the chimeric gene of Claim 3.

5. A phytoene synthase polypeptide comprising all or a substantial portion of the amino acid sequence set forth in a member selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16.

6. An isolated nucleic acid fragment encoding all or a substantial portion of a zeaxanthin epoxidase comprising a member selected from the group consisting of:

30

 an isolated nucleic acid fragment encoding all or a substantial portion of the amino acid sequence set forth in a member selected from the group consisting of SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 and SEQ ID NO:26;

35

- (b) an isolated nucleic acid fragment that is substantially similar to an isolated nucleic acid fragment encoding all or a substantial portion of the amino acid sequence set forth in a member selected from the group consisting of SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 and SEQ ID NO:26; and
- (c) an isolated nucleic acid fragment that is complementary to (a) or (b).

7. The isolated nucleic acid fragment of Claim 6 wherein the nucleotide sequence of the fragment comprises all or a portion of the sequence set forth in a member selected from the group consisting of SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23 and SEQ ID NO:25.

8. A chimeric gene comprising the nucleic acid fragment of Claim 6 operably linked to suitable regulatory sequences.

5

10

15

20

25

30

35

- 9. A transformed host cell comprising the chimeric gene of Claim 8.
- 10. A zeaxanthin epoxidase polypeptide comprising all or a substantial portion of the amino acid sequence set forth in a member selected from the group consisting of SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 and SEQ ID NO:26.
- 11. A method of altering the level of expression of a carotenoid biosynthetic enzyme in a host cell comprising:
 - (a) transforming a host cell with the chimeric gene of any of Claims 3 and 8; and
 - (b) growing the transformed host cell produced in step (a) under conditions that are suitable for expression of the chimeric gene

wherein expression of the chimeric gene results in production of altered levels of a carotenoid biosynthetic enzyme in the transformed host cell.

- 12. A method of obtaining a nucleic acid fragment encoding all or a substantial portion of the amino acid sequence encoding a carotenoid biosynthetic enzyme comprising:
 - (a) probing a cDNA or genomic library with the nucleic acid fragment of any of Claims 1 and 6;
 - (b) identifying a DNA clone that hybridizes with the nucleic acid fragment of any of Claims 1 and 6;
 - (c) isolating the DNA clone identified in step (b); and
 - (d) sequencing the cDNA or genomic fragment that comprises the clone isolated in step (c)

wherein the sequenced nucleic acid fragment encodes all or a substantial portion of the amino acid sequence encoding a carotenoid biosynthetic enzyme.

- 13. A method of obtaining a nucleic acid fragment encoding a substantial portion of an amino acid sequence encoding a carotenoid biosynthetic enzyme comprising:
 - (a) synthesizing an oligonucleotide primer corresponding to a portion of the sequence set forth in any of SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 and 25; and
 - (b) amplifying a cDNA insert present in a cloning vector using the oligonucleotide primer of step (a) and a primer representing sequences of the cloning vector

wherein the amplified nucleic acid fragment encodes a substantial portion of an amino acid sequence encoding a carotenoid biosynthetic enzyme.

- 14. The product of the method of Claim 12.
- 15. The product of the method of Claim 13.

5

10

15

16. A method for evaluating at least one compound for its ability to inhibit the activity of a carotenoid biosynthetic enzyme, the method comprising the steps of:

 (a) transforming a host cell with a chimeric gene comprising a nucleic acid fragment encoding a carotenoid biosynthetic enzyme, operably linked to suitable regulatory sequences;

- (b) growing the transformed host cell under conditions that are suitable for expression of the chimeric gene wherein expression of the chimeric gene results in production of the carotenoid biosynthetic enzyme encoded by the operably linked nucleic acid fragment in the transformed host cell;
- (c) optionally purifying the carotenoid biosynthetic enzyme expressed by the transformed host cell;
- (d) treating the carotenoid biosynthetic enzyme with a compound to be tested; and
- (e) comparing the activity of the carotenoid biosynthetic enzyme that has been treated with a test compound to the activity of an untreated carotenoid biosynthetic enzyme,
- 20 thereby selecting compounds with potential for inhibitory activity.

FIGURE

SLLGLHPWEAGRP WAIYVW-CRRT SFAS60		** * *********************************	*** ** * * * * * * * * * * * * * * * *
DFDIVLFGN	ARPQDMDMP SPAVYSSLPVNPAGEAVVSSEQKVYDVVLKQA-ALLKRQLRTPVLDARPQDMDMP DELVDGPNASYITPTALDRWEKRLEDLFEGRPYDMYDAALSDTVSKFPVDIQPFKDMVQG GTSAFSSAVAATETSRSSEERVYEVVLKQA-ALVKEHKRGTKIALDLDKDVEADFN 120	* * * * * * * * * * * * * * * * * * *	** **** ** * * * * * * * * * * * * * *
NO:27 NO:28 NO:02	NO:27 NO:28 NO:02 NO:14	NO:27 NO:28 NO:02 NO:14	NO:27 NO:28 NO:02 NO:14
O O O O O O O O O O O O O O O O O O O	S S S S S S S S S S S S S S S S S S S	S S S S S S S S S S S S S S S S S S S	S S E O O E O O E O O E O O E O O E O O E O O E O O E O O E O O E O E O O E O

L--AKT LRNGQT

SEQ ID NO:27 SEQ ID NO:28 SEQ ID NO:02 SEQ ID NO:14

FIGURE 1 (CONTINUED)

SEQ ID NO:27 SEQ ID NO:28 SEQ ID NO:02 SEQ ID NO:14 SEQ ID NO:27 SEQ ID NO:28 SEQ ID NO:27 SEQ ID NO:28 SEQ ID NO:28 SEQ ID NO:28 SEQ ID NO:28	**** *********************************	***** *** *** *** *** **	***** *** *** *** *** ****** *** * *** *
EQ 1D	NO:27	NO:27	NO:27
	NO:28	NO:28	NO:28
	NO:02	NO:02	NO:02
	NO:14	NO:14	NO:14
	0000		0000
	0000		9000

SEQUENCE LISTING

```
E. I. DU PONT DE NEMOURS AND COMPANY
      CAROTENOID BIOSYNTHESIS ENZYMES
<120>
<130> BB-1115-B
<140>
<141>
       60/083,042
<150>
       APRIL 24, 1998
<151>
<160>
       MICROSOFT OFFICE 97
<170>
<210>
<211>
       1448
<212>
       DNA
<213> Zea mays
<400> 1
cggaggaaga ggaggaggag agggtcctcg gctggggcct cctcggcgac gcctacgacc
getgeggega ggtetgegee gagtaegeea agaeetttta eeteggeaeg eageteatga
                                                                    120
ctcctgagcg gcgcaaagcc gtctgggcga tctacgtgtg gtgcagaaga actgacgagc
                                                                    180
tagtggaegg teceaacgeg tectacatea egeegaeege tetegaeege tgggagaage
                                                                    240
ggctggagga tetetttgag ggccgcccgt acgacatgta cgacgccgcg eteteggaca
                                                                    300
ccgtgtccaa gttccccgtc gatatccagc cgttcaaaga catggtccaa ggaatgaggc
tggacctgtg gaagtcgagg tacatgacct tcgacgagct ctacctctac tgctactacg
 tegeeggeae geageteatg acteetgage ggegeaaage egtetgggeg atetaegtgt
                                                                    480
 ggtgcagaag aactgacgag ctagtggacg gtcccaacgc gtcctacatc acgccgaccg
                                                                    540
 ctctcgaccg ctgggagaag cggctggagg atctctttga gggccgcccg tacgacatgt
                                                                    600
 acgacgoogo gototoggac actgtgtoca agttocoogt ogatatocag cogttoaaag
                                                                    660
 acatggtcca aggaatgagg ctggacctgt ggaagtcgag gtacatgacc ttcgacgagc
                                                                    720
 tctacctcta ctgctactac gtcgccggca ccgtcggcct catgacggtg cctgtcatgg
 gcatcgctcc cgactccaag gcctcgaccg agagcgtgta caatgctgct ctggctctcg
                                                                    840
 gcatcgctaa ccagctgacg aatattctca gagacgtggg cgaagatgcg aggagggga
                                                                    900
 gaatatacct tccgttggac gagcttgcgc aggcaggtct cacggaagag gacatattca
 gagggaaagt gaccggcaag tggaggaggt tcatgaaggg ccagatccag cgtgccaggc 1020
 tettetttga tgaggeggag aagggegtea eecatetega etetgetage agatggeegg 1080
 tgctcgcgtc tctgtggctg tacaggcaga tccttgatgc cattgaggca aacgactaca 1140
 acaacttcac caagcgtgcg tacgtcggca aggccaagaa gctgctgtcg ttaccgcttg 1200
 catatgcaag ggctgcggtt gcaccatgaa ccatccgtag atcacatctt tttttcttt 1260
 tettttecaa acceaecttg ttttgeecca ecetteettt tttttttgta tataateage 1320
 ttcagctgcc tgcatggcat aagccttgcc tgttcagggt gattccatgt ccctaaatac 1380
 tcaatcagct cttgttacaa ggaatggaga attagaattc gagaagcgta aaaaaaaaa 1440
 aaaaaaa
 <210>
        2
 <211>
        408
 <212>
        PRT
 <213>
        Zea mays
 <400>
 Glu Glu Glu Glu Glu Arg Val Leu Gly Trp Gly Leu Leu Gly Asp
 Ala Tyr Asp Arg Cys Gly Glu Val Cys Ala Glu Tyr Ala Lys Thr Phe
                                  25
```

Tyr Leu Gly Thr Gln Leu Met Thr Pro Glu Arg Arg Lys Ala Val Trp 35 40 45

- Ala Ile Tyr Val Trp Cys Arg Arg Thr Asp Glu Leu Val Asp Gly Pro
- Asn Ala Ser Tyr Ile Thr Pro Thr Ala Leu Asp Arg Trp Glu Lys Arg
 65 70 75 80
- Leu Glu Asp Leu Phe Glu Gly Arg Pro Tyr Asp Met Tyr Asp Ala Ala 85 90 95
- Leu Ser Asp Thr Val Ser Lys Phe Pro Val Asp Ile Gln Pro Phe Lys
- Asp Met Val Gln Gly.Met Arg Leu Asp Leu Trp Lys Ser Arg Tyr Met 115 120 125
- Thr Phe Asp Glu Leu Tyr Leu Tyr Cys Tyr Tyr Val Ala Gly Thr Gln
 130 140
- Leu Met Thr Pro Glu Arg Arg Lys Ala Val Trp Ala Ile Tyr Val Trp 145 150 155 160
- Cys Arg Arg Thr Asp Glu Leu Val Asp Gly Pro Asn Ala Ser Tyr Ile 165 170 175
- Thr Pro Thr Ala Leu Asp Arg Trp Glu Lys Arg Leu Glu Asp Leu Phe 180 185 190
- Glu Gly Arg Pro Tyr Asp Met Tyr Asp Ala Ala Leu Ser Asp Thr Val 195 200 205
- Ser Lys Phe Pro Val Asp Ile Gln Pro Phe Lys Asp Met Val Gln Gly 210 215 220
- Met Arg Leu Asp Leu Trp Lys Ser Arg Tyr Met Thr Phe Asp Glu Leu 225 230 240
- Tyr Leu Tyr Cys Tyr Tyr Val Ala Gly Thr Val Gly Leu Met Thr Val 245 250 255
- Pro Val Met Gly Ile Ala Pro Asp Ser Lys Ala Ser Thr Glu Ser Val 260 265 270
- Tyr Asn Ala Ala Leu Ala Leu Gly Ile Ala Asn Gln Leu Thr Asn Ile 275 280 285
- Leu Arg Asp Val Gly Glu Asp Ala Arg Arg Gly Arg Ile Tyr Leu Pro 290 295 300
- Leu Asp Glu Leu Ala Gln Ala Gly Leu Thr Glu Glu Asp Ile Phe Arg 305 310 315 320
- Gly Lys Val Thr Gly Lys Trp Arg Arg Phe Met Lys Gly Gln Ile Gln 325 330 335
- Arg Ala Arg Leu Phe Phe Asp Glu Ala Glu Lys Gly Val Thr His Leu 340 345 350

```
Asp Ser Ala Ser Arg Trp Pro Val Leu Ala Ser Leu Trp Leu Tyr Arg
                            360
Gln Ile Leu Asp Ala Ile Glu Ala Asn Asp Tyr Asn Asn Phe Thr Lys
Arg Ala Tyr Val Gly Lys Ala Lys Lys Leu Leu Ser Leu Pro Leu Ala
                    390
Tyr Ala Arg Ala Ala Val Ala Pro
                405
<210>
       3
       888
<211>
<212>
       DNA
<213>
       Zea mays
<220>
<221>
       unsure
       (5)
<222>
<220>
<221>
       unsure
<222>
        (10)
<220>
<221>
        unsure
<222>
        (18)
<220>
 <221>
        unsure
 <222>
        (225)
 <220>
 <221>
        unsure
 <222>
        (725)
 <220>
        unsure
 <221>
 <222>
        (809)
 <220>
 <221>
        unsure
 <222>
        (836)
 <220>
 <221>
        unsure
 <222>
        (862)
 ggaangggtn gatacagntt gtatggcttg acggttgacg ataatgacgc tctgagaata 60
 ccagagcgga tttaagtttc taaactaacg ctaggacggt gaaagtggta gatacagttt 120
 gtatggettg acggttgacg ataatgacga gggaagggat gacactgatt gatcgctgac 180
 gtgggtgttc tatctccgcg cacgcgcgct cctgttcagt gtggngcagg agaacggacg 240
 agetegtgga eggeeceaac gegteecaca teteggeget ggegetggac eggtgggagt 300
 cgcggctgga ggacatette gecggccggc cgtacgacat getegacgcc gecetgtecg 360
 acaccgtcgc caggttcccc gtcgacatcc agccgttcag ggacatgatc gaggggatgc 420
 gcatggacct gaagaagtcc cggtacagga gcttcgacga gctgtacctc tactgctact 480
 acgtggccgg caccgtgggg ctgatgagcg tcccggtgat gggcatctcg ccggcgtcca 540
 gggcggccac cgagacggtg tacaaggggg cgctggcgt gggcctggcg aaccagctca 600
 ccaacatect cagggacgte ggegaggacg ccaggagggg acggatetac etecegcaag 660
```

acgagetgga gatggegggg eteteegaeg eegaaegtee tggaegggee gegteaaega 720 acgantggaa gggcttcatg aagggccaga ttcgcgaagg ccaaaacctt cttcaaggca 780 agccggaagg aaagcgccaa cgaagctcna accaaggaga gccgattgcc ggtgtngtct 840 tototgotoc ttgtaccggc anatoctoga acgaaatcga aggocaac <210> <211> 186 <212> PRT Zea mays <213> <220> <221> UNSURE <222> (3) <220> <221> UNSURE <222> (169)Val Trp Xaa Arg Arg Thr Asp Glu Leu Val Asp Gly Pro Asn Ala Ser His Ile Ser Ala Leu Ala Leu Asp Arg Trp Glu Ser Arg Leu Glu Asp Ile Phe Ala Gly Arg Pro Tyr Asp Met Leu Asp Ala Ala Leu Ser Asp Thr Val Ala Arg Phe Pro Val Asp Ile Gln Pro Phe Arg Asp Met Ile Glu Gly Met Arg Met Asp Leu Lys Lys Ser Arg Tyr Arg Ser Phe Asp Glu Leu Tyr Leu Tyr Cys Tyr Tyr Val Ala Gly Thr Val Gly Leu Met Ser Val Pro Val Met Gly Ile Ser Pro Ala Ser Arg Ala Ala Thr Glu Thr Val Tyr Lys Gly Ala Leu Ala Leu Gly Leu Ala Asn Gln Leu Thr 120 Asn Ile Leu Arg Asp Val Gly Glu Asp Ala Arg Arg Gly Arg Ile Tyr Leu Pro Gln Asp Glu Leu Glu Met Ala Gly Leu Ser Asp Ala Glu Arg Pro Gly Arg Ala Ala Ser Thr Asn Xaa Trp Lys Gly Phe Met Lys Gly Gln Ile Arg Glu Gly Gln Asn Leu Leu Gln 180 <210> 5 766 <211> <212> DNA <213> Oryza sativa

```
<220>
<221> unsure
      (658)
<222>
<400> 5
cgcagactct cgactttgtc actagcatca ttgcttgatg atcgatgctg agctgcaacc 60
aagcaccage atateette etteatteet teetggtget ggtagaagaa gaacaageta 120
gctagagtga taagagctag ctaccttgca gatcgatctc cggccagcga ttgatcccat 180
ccagtataat aatggcggcc atcacgctcc tacgttcagc gtctcttccg ggcctctccg 240
acgecetege eegggacget getgeegtee aacatgtetg etecteetae etgeecaaca 300
acaaggagaa gaagagggag gtggatcete tgetegetea agtaegeetg eettggegte 360
gaccetgeec egggegagat tgeeeggace tegeeggtgt acteeageet cacegteace 420
cctgctggag aggccgtcat ctcctcggag cagaaggtgt acgacgtcgt cctcaagcag 480
gcagcattgc tcaaacgcca cctgcgccca caaccacaca ccattcccat cgttcccaag 540
gacctggacc tgccaagaaa cggcctcaag caggcctatc atcgctgcgg agagatctgc 600
gaggagtatg ccaagacctt ttaccttgga actatgctca tgacggagga ccgacggngc 660
gccatatggg ccatctatgt gtggtgtagg agggcaaatg agettgtaga tggaccaaat 720
gcctcgcaca tcacaacgtc aagcctggac ggtggggaaa agaggt
<210>
<211> 164
<212> PRT
<213> Oryza sativa
<220>
<221> UNSURE
<222>
       (129)
<400> 6
Met Ser Ala Pro Pro Thr Cys Pro Thr Thr Arg Arg Arg Gly Arg
Trp Ile Leu Cys Ser Leu Lys Tyr Ala Cys Leu Gly Val Asp Pro Ala
Pro Gly Glu Ile Ala Arg Thr Ser Pro Val Tyr Ser Ser Leu Thr Val
 Thr Pro Ala Gly Glu Ala Val Ile Ser Ser Glu Gln Lys Val Tyr Asp
 Val Val Leu Lys Gln Ala Ala Leu Leu Lys Arg His Leu Arg Pro Gln
 Pro His Thr Ile Pro Ile Val Pro Lys Asp Leu Asp Leu Pro Arg Asn
 Gly Leu Lys Gln Ala Tyr His Arg Cys Gly Glu Ile Cys Glu Glu Tyr
 Ala Lys Thr Phe Tyr Leu Gly Thr Met Leu Met Thr Glu Asp Arg Arg
 Xaa Ala Ile Trp Ala Ile Tyr Val Trp Cys Arg Arg Ala Asn Glu Leu
                         135
 Val Asp Gly Pro Asn Ala Ser His Ile Thr Thr Ser Ser Leu Asp Gly
                                         155
                     150
 Gly Glu Lys Arg
```

```
<210>
<211>
       476
      DNA
<212>
<213> Oryza sativa
<220>
<221>
      unsure
<222>
<220>
<221>
       unsure
<222>
       (275)
<220>
<221>
       unsure
<222>
       (453)
<220>
<221>
       unsure
<222>
       (459)
<400> 7
cttacatgta agctcgtgcc gaattcngca cgagcttaca ccctaactct tcttacatta 60
caccaaaggc acttgatcga tgggagaaga gattagaaga tetettegaa ggcaggccat 120
atgatatgta tgatgcagcc ctctcggaca cagtgtcaaa gtttccagta gatatccagc 180
cattcaaaga catgattgaa ggaatgaggc ttgacctgtg gaaatcaagg tataggagct 240
ttgatgaget ctacetetae tgetactaeg ttgetggeae ggttggtete atgacagtae 300
cggtgatggg gattgcccc gactcgaagg cctcaacccg agagcgtgta caacgctgcg 360
ctagetnett gggategeca acceagetga egaaatatte teaagangae gttaggecaa 420
agaacccaag ggaggggaa agaatctaac centecaant ggggatgaaa ttggga
<210> 8
 <211> 108
 <212> PRT
 <213> Oryza sativa
 <400> 8
 Pro Asn Ser Ser Tyr Ile Thr Pro Lys Ala Leu Asp Arg Trp Glu Lys
 Arg Leu Glu Asp Leu Phe Glu Gly Arg Pro Tyr Asp Met Tyr Asp Ala
 Ala Leu Ser Asp Thr Val Ser Lys Phe Pro Val Asp Ile Gln Pro Phe
 Lys Asp Met Ile Glu Gly Met Arg Leu Asp Leu Trp Lys Ser Arg Tyr
 Arg Ser Phe Asp Glu Leu Tyr Leu Tyr Cys Tyr Tyr Val Ala Gly Thr
 Val Gly Leu Met Thr Val Pro Val Met Gly Ile Ala Pro Asp Ser Lys
 Ala Gln Pro Glu Ser Val Tyr Asn Ala Ala Leu Ala
 <210>
        9
 <211> 1060
```

PCT/US99/08789 WO 99/55889

180

240

300

360

480

540

600

660

720

900

960

```
<212>
      DNA
<213> Oryza sativa
<220>
<221>
      unsure
<222>
      (2)
<220>
<221>
      unsure
<222>
      (275)
<400> 9
gnacatcaca ccgtcagccc tgggaccggt gggagaagag gcttgatgat ctcttcaccg
gacgccccta cgacatgctt gatgctgcac tttctgatac catctccaag tttcctatag
                                                                  120
atattcagcc tttcagggac atgatagaag ggatgcggtc agacctcaga aagactagat
acaagaactt cgacgagctc tacatgtact gctactatgt tgctggaact gtggggctaa
tgagtgttcc tgtgatgggt attgcacccg agtcnaaggc aacaactgaa agtgtgtaca
gtgctgcttt ggctctcggg aatgcaaacc agctcacaaa tatactccgt gacgttggag
aggacgcgag aagagggagg atatatttac cacaagatga acttgcagag gcaaggctct
ctgatgagga catcttcaat ggcgttgtga ctaacaaatg gagaagcttc atgaagagac
agatcaagag agctaggatg ttttttgagg aggcagagag aggggtgacc gagctcagcc
aggcaagccg gtggccggtc tgggcgtctc tgttgttata ccggcaaatc cttgacgaga
tagaagcaaa cgattacaac aacttcacaa agagggcgta cgttgggaag gcgaagaaat
tgctagcgct tccagttgca tatggtagat cattgctgat gccctactca ctgagaaata
gccagaagta ggaggcggga agaggagata aagggaagat gatgagcagg ttaggcttag
ataggaaaaa tcagacagca tctgccttcc gattaatgtt gaggaaatta tattattgtg
tgtatcatac atagcatgta tagggaaaat gctgcaggca ggcaggcagg ctaggtgatg
gttgaatatt teetteacat catgtatgta tateetteet tgatgetaca geacatatgt
atgtatgact ctgaagaaag agcaacctgt atagtagcta accggctatg gcctatgtat 1020
                                                                 1060
10
<210>
<211>
       242
       PRT
<212>
<213> Oryza sativa
<400> 10
Thr Ser His Arg Gln Pro Trp Asp Arg Trp Glu Lys Arg Leu Asp Asp
Leu Phe Thr Gly Arg Pro Tyr Asp Met Leu Asp Ala Ala Leu Ser Asp
 Thr Ile Ser Lys Phe Pro Ile Asp Ile Gln Pro Phe Arg Asp Met Ile
 Glu Gly Met Arg Ser Asp Leu Arg Lys Thr Arg Tyr Lys Asn Phe Asp
 Glu Leu Tyr Met Tyr Cys Tyr Tyr Val Ala Gly Thr Val Gly Leu Met
 Ser Val Pro Val Met Gly Ile Ala Pro Glu Ser Lys Ala Thr Thr Glu
 Ser Val Tyr Ser Ala Ala Leu Ala Leu Gly Asn Ala Asn Gln Leu Thr
                                105
 Asn Ile Leu Arg Asp Val Gly Glu Asp Ala Arg Arg Gly Arg Ile Tyr
                             120
```

```
Leu Pro Gln Asp Glu Leu Ala Glu Ala Arg Leu Ser Asp Glu Asp Ile
    130
Phe Asn Gly Val Val Thr Asn Lys Trp Arg Ser Phe Met Lys Arg Gln
                                        155
                    150
Ile Lys Arg Ala Arg Met Phe Phe Glu Glu Ala Glu Arg Gly Val Thr
                165
Glu Leu Ser Gln Ala Ser Arg Trp Pro Val Trp Ala Ser Leu Leu
Tyr Arg Gln Ile Leu Asp Glu Ile Glu Ala Asn Asp Tyr Asn Asn Phe
                            200
Thr Lys Arg Ala Tyr Val Gly Lys Ala Lys Lys Leu Leu Ala Leu Pro
Val Ala Tyr Gly Arg Ser Leu Leu Met Pro Tyr Ser Leu Arg Asn Ser
                    230
Gln Lys
<210>
       11
 <211>
        992
 <212>
       DNA
 <213> Glycine max
 <220>
 <221>
        unsure
 <222>
        (14)
 <220>
 <221>
        unsure
        (23)
 <222>
 <400> 11
 catttctatc gtgnatatgg ctnacatcga cctcaacgac cactttgcct aggtgggaat 60
 caaaattgga agaacttttc caaggtcgtc catttgatat gcttgatgct gctttatcag 120
 atacagttgc caaattccct gttgatatcc agccatttaa agatatgata gaaggaatga 180
 gactggatct taagaagcca agatacagaa actttgatga actatatctt tactgttact 240
 atgttgctgg gacagttggt ataatgagtg ttccaatcat gggcatttca ccaaattccc 300
 aagccacaac agagagtgta tacaatgctg ccttggccct aggcattgca aatcagctaa 360
 ccaacatact cagagatgtt ggagaggatg ccagcagagg aagagtgtat cttccacaag 420
 atgagttggc tcaagcaggg ctttccgatg aagacatttt tgctggtaag gtgacagaca 480
 agtggaggaa cttcatgaag agccaaatta aaagggcaag aatgttttt gatgaggcag 540
 aaaagggagt gacggagctt aatgaagcta gcagatggcc tgtatgggcg tctttgctat 600
 tgtatcgcca aatattggac gagatagaag ctaatgatta caacaatttc actagaaggg 660
 cttatgtgag caaagccaag aagttacttt ctttgccagc tgcatatgct agatctatgg 720
 ttcctccatc aaaaaagtta tcttctgtaa tgaagacata aatcgagcac cttatggcat 780
 totgtagaaa aatggataag gaggaccaca gaaaatggaa aggcacaatt tgtatatgat 840
 aaaacaaggc atgatattag tcaatattgg attttgatat tcatatttcc ccgtattttt 900
 ttacataaaa aaagtttgga ctaatatttt gttactttag agttaatttt gatgcgagtt 960
 atgaattatt tgaactgaaa aaaaaaaaa aa
        12
 <210>
  <211>
        252
  <212>
        PRT
  <213> Glycine max
```

PCT/US99/08789

WO 99/55889 <220> UNSURE <221> (4) <222> <400> 12 Phe Leu Ser Xaa Ile Trp Leu Thr Ser Thr Ser Thr Thr Thr Leu Pro Arg Trp Glu Ser Lys Leu Glu Glu Leu Phe Gln Gly Arg Pro Phe Asp Met Leu Asp Ala Ala Leu Ser Asp Thr Val Ala Lys Phe Pro Val Asp Ile Gln Pro Phe Lys Asp Met Ile Glu Gly Met Arg Leu Asp Leu Lys Lys Pro Arg Tyr Arg Asn Phe Asp Glu Leu Tyr Leu Tyr Cys Tyr Tyr Val Ala Gly Thr Val Gly Ile Met Ser Val Pro Ile Met Gly Ile Ser Pro Asn Ser Gln Ala Thr Thr Glu Ser Val Tyr Asn Ala Ala Leu Ala 105 Leu Gly Ile Ala Asn Gln Leu Thr Asn Ile Leu Arg Asp Val Gly Glu 115 Asp Ala Ser Arg Gly Arg Val Tyr Leu Pro Gln Asp Glu Leu Ala Gln Ala Gly Leu Ser Asp Glu Asp Ile Phe Ala Gly Lys Val Thr Asp Lys 155 150 Trp Arg Asn Phe Met Lys Ser Gln Ile Lys Arg Ala Arg Met Phe Phe 170 Asp Glu Ala Glu Lys Gly Val Thr Glu Leu Asn Glu Ala Ser Arg Trp Pro Val Trp Ala Ser Leu Leu Leu Tyr Arg Gln Ile Leu Asp Glu Ile Glu Ala Asn Asp Tyr Asn Asn Phe Thr Arg Arg Ala Tyr Val Ser Lys 215 Ala Lys Lys Leu Leu Ser Leu Pro Ala Ala Tyr Ala Arg Ser Met Val Pro Pro Ser Lys Lys Leu Ser Ser Val Met Lys Thr 245

- <210> 13
- <211> 1397
- <212> DNA
- <213> Glycine max
- <400> 13 gttttgctaa cacaagtata cactcattct caaaaggttt tcatccaatt tctttccctc tetttteatt ggtgtgeact tteacttgtg gagetgeate aactgeagtg gaaattgtge 120

```
tttgttcttg agatgtctgg tgttcttctt tgggtgagtt gtggacccaa agagaacatc
aactccttgg tgagtttttc atgcaggagt agtagtggtg gtgaaagaac acaaaagaga
ttttctggaa tcagttttgc tagtggtact tctgcttttt caagtgcagt ggcagctact
gagacticaa gatetteaga ggagagggte tatgaagtgg ttetgaagea ageagetttg
graaaagaac acaaaagggg tacaaaaata gctttggatt tggacaaaga tgttgaggct
gatttcaaca atgtggatct gttgaatgcg gcttatgatc ggtgtggtga agtttgtgct
                                                                   480
gagtatgcca agacatttta cttaggcaca caattgatga ctgcagagcg ccgaaaagca
atttgggcaa tttatgtgtg gtgcagaaga actgatgagc tagtggatgg cccaaatgct
                                                                   600
tcacacatca cccctggggc cttggacagg tgggagcaac gattgagtga tgtttttgaa
                                                                   660
ggtcgaccct atgatatgta tgatgctgcc ctctcacata ctgtctcaaa gtacccggtt
gatattcagc ccttcaagga catgatcgaa gggatgaggg tggacctgag aaagtcaaga
tacaataact ttgatgagct ctacctttac tgctactatg ttgctgggac agtaggcctt
atgagtgtcc cagtaatggg gatagcacca gaatcaaatg cttcatcaga gagcatttat 900
aatgctgcat tggctctagg cattgcaaat caacttacca acatacttag agatgttgga
gaagatgcta gaagaggaag agtatatctc ccacaagatg aattggcaca agctggcctt 1020
tcagatgatg acattttccg cggaagagtt acagacaaat ggcggaaatt catgaaggga 1080
caaataaaga gggcgaggat gttttttgat gaggcagaga gaggggttgc agagctcaac 1140
tcagctagca ggtggcctgt gtgggcatca ttgttgttgt ataggcaaat attagattcc 1200
attgaagcca atgattataa taacttcaca aaaagggcat atgtaggaaa agtaaagaaa 1260
ctcttgtcac tacctactgc ctatggtttt tcacttctag gccctcagaa gtttaccaaa 1320
atggttagga ggtaactgtt atacaatgtg tgatactttt gagttacaac tgtatacatc 1380
tcaagttaaa aaaaaaa
 <210>
       14
        400
 <211>
 <212>
        PRT
```

<212> :N1

<213> Glycine max

Asn Ser Leu Val Ser Phe Ser Cys Arg Ser Ser Ser Gly Gly Glu Arg 20 25 30

Thr Gln Lys Arg Phe Ser Gly Ile Ser Phe Ala Ser Gly Thr Ser Ala 35 40 45

Phe Ser Ser Ala Val Ala Ala Thr Glu Thr Ser Arg Ser Ser Glu Glu
50 60

Arg Val Tyr Glu Val Val Leu Lys Gln Ala Ala Leu Val Lys Glu His 65 70 75 80

Lys Arg Gly Thr Lys Ile Ala Leu Asp Leu Asp Lys Asp Val Glu Ala 85 90 95

Asp Phe Asn Asn Val Asp Leu Leu Asn Ala Ala Tyr Asp Arg Cys Gly
100 105 110

Glu Val Cys Ala Glu Tyr Ala Lys Thr Phe Tyr Leu Gly Thr Gln Leu 115 120 125

Met Thr Ala Glu Arg Arg Lys Ala Ile Trp Ala Ile Tyr Val Trp Cys 130 135 140

Arg Arg Thr Asp Glu Leu Val Asp Gly Pro Asn Ala Ser His Ile Thr 145 150 155 160

Pro Gly Ala Leu Asp Arg Trp Glu Gln Arg Leu Ser Asp Val Phe Glu 165 170 175

Gly	Arg	Pro	Tyr 180	Asp	Met	Tyr	Asp	Ala 185	Ala	Leu	Ser	His	Thr 190	Val	Ser	
Lys	Tyr	Pro 195	Val	Asp	Ile	Gln	Pro 200	Phe	Lys	Asp	Met	Ile 205	Glu	Gly	Met	
Arg	Val 210	Asp	Leu	Arg	Lys	Ser 215	Arg	Tyr	Asn	Asn	Phe 220	Asp	Glu	Leu	Tyr	
Leu 225	Tyr	Cys	Tyr	Tyr	Val 230	Ala	Gly	Thr	Val	Gly 235	Leu	Met	Ser	Val	Pro 240	
Val	Met	Gly	Ile	Ala 245	Pro	Glu	Ser	Asn	Ala 250	Ser	Ser	Glu	Ser	Ile 255	Tyr	
Asn	Ala	Ala	Leu 260		Leu	Gly	Ile	Ala 265	Asn	Gln	Leu	Thr	Asn 270	Ile	Leu	
Arg	Asp	Val 275	Gly	Glu	Asp	Ala	Arg 280		Gly	Arg	Val	Туг 285	Leu	Pro	Gln	
Asp	Glu 290		Ala	Gln	Ala	Gly 295		Ser	Asp	Asp	Asp 300		Phe	Arg	Gly	
Arg 305		Thr	Asp	Lys	Trp 310	Arg	Lys	Phe	Met	Lys 315		Gln	Ile	Lys	Arg 320	
Ala	Arg	Met	Phe	Phe 325		Glu	Ala	Glu	Arg 330		Val	Ala	Glu	Leu 335	Asn	
Ser	Ala	Ser	Arg 340		Pro	Val	Trp	Ala 345		Leu	Leu	Leu	Tyr 350		Gln	
Ile	Leu	Asp 355		Ile	Glu	Ala	Asn 360		Tyr	Asn	Asn	Phe 365		Lys	Arg	
Ala	Tyr 370		Gly	Lys	Val	Lys 375		Leu	Leu	Ser	Leu 380		Thr	Ala	Tyr	
Gly 385		Ser	Leu	Leu	Gly 390		Gln	Lys	Phe	Thr 395		Met	Val	Arg	Arg 400	
<21 <21 <21 <21	.1>	15 1021 DNA Trit		n aes	stivu	ım		,								
cgg gcg tat gad ctc ggg aga aga ctc gtc	geteg cgate catga ctace gatte catte aggga ctte cetge	yatc ycag attg atct ycca acc aaag attg	ggtg ccct aagg actg cgga acca ttcc tgac acga cgct	gggagggggggggggggggggggggggggggggggggg	yaa gaa gaa gaa gaa gaa gaa gaa gaa gaa	agat acaq geteq geteq aaca atgaa gaag gtaca	ttaga gegte getge ceage atcet aggae ggegt	and garden and the control of the co	itete igtti iggaaa etgte agage gagae cate cete	ccaa ccaa atcga cgtgt cgtac gggt gaag tctac ggac	y aag a ttg a ggt c tca c aca g gag g aca g cca g cca g cca g cca	ggccg gatat atag atga aag gaag caaa cccg atcg	gece ggae eggt eege aete aaga eeagag	atat gcca cttt acca acta agga gga gcga caga	gcccaag cgatatg attcaga cgacgag ggtgatg ggccctt aaggggg catattc cgccagg atggccg cgactac	60 120 180 240 300 360 420 480 540 600 660 720

gegtaegega gggeggetet etegeeatga geaaageaat eeegtagate agatgttttt 780 tettetett titetetet titigteetgt eaceetacaa tgattittgt tiggetgitgt 840 atatacteag etatatgitt geeataegee egeegggta titiaggicaa gggaeegaeg 900 tegggeeeg etgtaetgaa gietgaaaca etigtigita eeacacagig gagaateaaa 960 atigeteeag tigaatgaag aagaaacaaa eactetitet teetaaaaaa aaaaaaaaaa 1020 a

<210> 16

<211> 248

<212> PRT

<213> Triticum aestivum

<400> 16
Thr Arg Arg Thr Asp Glu Leu Val Asp Gly Pro Asn Ser Ser Tyr Ile

Thr Pro Lys Ala Leu Asp Arg Trp Glu Lys Arg Leu Glu Asp Leu Phe 20 25 30

Glu Gly Arg Pro Tyr Asp Met Tyr Asp Ala Ala Leu Ser Asp Thr Ala 35 40 45

Ser Lys Phe Pro Ile Asp Ile Gln Pro Phe Arg Asp Met Ile Glu Gly
50 55 60

Met Arg Leu Asp Leu Trp Lys Ser Arg Tyr Arg Thr Phe Asp Glu Leu 65 70 75 80

'Tyr Leu Tyr Cys Tyr Tyr Val Ala Gly Thr Val Gly Leu Met Thr Val 85 90 95

Pro Val Met Gly Ile Ala Pro Asp Ser Lys Ala Ser Ala Glu Ser Val 100 105 110

Tyr Asn Ala Ala Leu Ala Leu Gly Ile Ala Asn Gln Leu Thr Asn Ile 115 120 125

Leu Arg Asp Val Gly Glu Asp Ser Arg Arg Gly Arg Ile Tyr Leu Pro 130 135 140

Leu Asp Glu Leu Ala Gln Ala Gly Leu Thr Glu Glu Asp Ile Phe Arg 145 150 155 160

Gly Lys Val Thr Asp Lys Trp Arg Arg Phe Met Lys Gly Gln Ile Gln 165 170 175

Arg Ala Arg Leu Phe Phe Asp Glu Ala Glu Lys Gly Val Met His Leu 180 185 190

Asp Ser Ala Ser Arg Trp Pro Val Leu Ala Ser Leu Trp Leu Tyr Arg 195 200 205

Gln Ile Leu Asp Ala Ile Glu Ala Asn Asp Tyr Asn Asn Phe Thr Lys 210 215 220

Arg Ala Tyr Val Gly Lys Ala Lys Lys Phe Leu Ser Leu Pro Ala Ala 225 230 230 235 240

Tyr Ala Arg Ala Ala Leu Ser Pro 245

```
<210> 17
<211> 722
<212> DNA
<213> Zea mays
<220>
<221> unsure
<222>
      (324)
<220>
<221> unsure
<222> (525)
<220>
<221> unsure
<222> (532)
<220>
<221> unsure
<222> (534)
<220>
<221> unsure
<222> (539)
<220>
<221> unsure
<222> (554)
<220>
<221> unsure
<222>
       (585)
<220>
 <221>
       unsure
<222>
       (613)
 <220>
 <221>
       unsure
 <222>
       (635)
 <220>
 <221> unsure
 <222>
       (642)
 <220>
 <221> unsure
 <222> (645)
 <220>
 <221>
        unsure
 <222>
       (651)
 <220>
 <221> unsure
 <222>
       (669)
 <220>
 <221> unsure
 <222> (675)..(676)
```

```
<220>
<221>
      unsure
      (719)
<222>
<400> 17
geogtegacg ecgeegegge egacgaggte atggacgeeg getgegteae ggggggacege 60
gtcaacggca tcgttgacgg cgtttctggc tcctggtaca tcaagtttga tacgtttact 120
cetgeagetg ageggggget eceggteaca agggteatta geegeatgae getgeaacag 180
atcettgete gageagttgg egatgaeget atattgaatg gaageeatgt agtegatttt 240
acagatgatg gcagtaaggt tactgccata ttggaggacg gtaggatatt tgaaggtgac 300
cttttggttg gtgccgatgg aatntggtca aaggtgagga agacactatt cgggcactca 360
gatgccacct attcaggtta catctgcaat tccagtgtag cagattttgt gccacctgat 420
ategatacag ttgggtaceg agtatttctt ggccacaaac agtacttcgt ctcttcggat 480
greggrand graduation atggracget tracacate aagangering the transcript 540
cctgaaatgg caanaaagaa aaaattgctt gagatattcg acggntgggt ggataatgtt 600
aatgatttga tanatgcaac tgaggaagaa gcagntette gnegngatat ntaeggegge 660
ccacctaanc gatgnnattg gggggaaagg ccgggcacct tgcttgggga tctggccang 720
<210>
       18
<211>
       121
       PRT
<212>
<213> Zea mays
<220>
<221> UNSURE
<222>
       (95)
<400> 18
Gly Cys Val Thr Gly Asp Arg Val Asn Gly Ile Val Asp Gly Val Ser
Gly Ser Trp Tyr Ile Lys Phe Asp Thr Phe Thr Pro Ala Ala Glu Arg
 Gly Leu Pro Val Thr Arg Val Ile Ser Arg Met Thr Leu Gln Gln Ile
 Leu Ala Arg Ala Val Gly Asp Asp Ala Ile Leu Asn Gly Ser His Val
 Val Asp Phe Thr Asp Asp Gly Ser Lys Val Thr Ala Ile Leu Glu Asp
                      70
 Gly Arg Ile Phe Glu Gly Asp Leu Leu Val Gly Ala Asp Gly Xaa Trp
                                      90
 Ser Lys Val Arg Lys Thr Leu Phe Gly His Ser Asp Ala Thr Tyr Ser
                                 105
 Gly Tyr Ile Cys Asn Ser Ser Val Ala
                             120
         115
 <210>
        19
 <211>
        1246
 <212>
        DNA
 <213>
        Zea mays
 <220>
 <221>
        unsure
 <222>
       (367)
```

PCT/US99/08789 WO 99/55889

240

300

540

720

```
<400> 19
aagaaagagg agctcggaca angcagagcg ccatcgttcg gtttccttgc tgaattcccg
atogotogot ogotogaaaa gaaagaagot agottttago atggotattg aggatggtta
ccagctggct gtagagctag agaatgcctg gcaagagagt gtcaaaactg aaactcctat
agacatagtt teeteettga ggegetacga gaaagagaga aggetgegtg ttgetattat
acatggactg gcaagaatgg cagcaatcat ggctaccacc tatagaccgt acttgggtgt
tggtctaggg cctttatcgt ttttgaccaa gttgcggata ccacaccctg gaagagtcgg
tggcagnttc ttcatcaagt atggaatgcc tacgatgttg agctgggtgc ttggtggcaa
cagetcaaaa etagaaggaa gaettttaag etgeegaett tetgacaagg caaatgacca 480
getttateaa tggtttgagg atgatgaege aetggaagaa getatgggtg gagaatggta
cotcatogoa acaagtgaag gaaactgcaa tagottgcag cocattcatt taattaggga
tgagcagagg tcactctttg ttggaagccg gtcagatcct aatgattcag cttcttccct
atcattgtcc tctccacaga tatcagaaag acatgctact atcacatgca agaataaagc
tttctatctg actgatctcg gaagcgaaca tggtacctgg attaccgaca atgaaggtag
acgttaccgc gtgccaccaa acttcccagt tcgtttccat ccctccgatg tcattgagtt 840
tggttccgat aagaaggcta tgttccgggt gaaggtgctg aacacgctcc cgtatgaatc
tgcaagaagt gggaatcggc agcaacagca agtccttcag gcagcatgaa tggagacact 960
ggctaccacc actatcatca gccacactgt actgtacagc atccggtaaa gacacaacac 1020
tgcatcacgg aaaggataca ctcgttctcg aatatttgtc gtctgctagt tcaattttaa 1080
actaaaacgt gacaaatgaa aaaacgaagg aagtagaaga tatgtcaaaa cacatgcaat 1140
ttttgcatcc atgaagatgc caaacaggat cttgaatact agcacctagc ggattgaaat 1200
aatgaagttg cagttctgcg tgaactggat tgtacgatag ggatag
<210>
<211>
       315
       PRT
<212>
       Zea mays
<213>
<220>
 <221>
        UNSURE
 <222>
        (7)
 <220>
       UNSURE
 <221>
 <222>
        (122)
 <400> 20
 Arg Lys Arg Ser Ser Asp Xaa Ala Glu Arg His Arg Ser Val Ser Leu
 Leu Asn Ser Arg Ser Leu Ala Arg Ser Lys Arg Lys Lys Leu Ala Phe
 Ser Met Ala Ile Glu Asp Gly Tyr Gln Leu Ala Val Glu Leu Glu Asn
 Ala Trp Gln Glu Ser Val Lys Thr Glu Thr Pro Ile Asp Ile Val Ser
 Ser Leu Arg Arg Tyr Glu Lys Glu Arg Arg Leu Arg Val Ala Ile Ile
 His Gly Leu Ala Arg Met Ala Ala Ile Met Ala Thr Thr Tyr Arg Pro
                                      90
 Tyr Leu Gly Val Gly Leu Gly Pro Leu Ser Phe Leu Thr Lys Leu Arg
                                 105
 Ile Pro His Pro Gly Arg Val Gly Gly Xaa Phe Phe Ile Lys Tyr Gly
```

```
Met Pro Thr Met Leu Ser Trp Val Leu Gly Gly Asn Ser Ser Lys Leu
                                            140
                        135
Glu Gly Arg Leu Leu Ser Cys Arg Leu Ser Asp Lys Ala Asn Asp Gln
                    150
Leu Tyr Gln Trp Phe Glu Asp Asp Asp Ala Leu Glu Glu Ala Met Gly
Gly Glu Trp Tyr Leu Ile Ala Thr Ser Glu Gly Asn Cys Asn Ser Leu
                                185
Gln Pro Ile His Leu Ile Arg Asp Glu Gln Arg Ser Leu Phe Val Gly
                            200
Ser Arg Ser Asp Pro Asn Asp Ser Ala Ser Ser Leu Ser Leu Ser Ser
                        215
Pro Gln Ile Ser Glu Arg His Ala Thr Ile Thr Cys Lys Asn Lys Ala
                                        235
 Phe Tyr Leu Thr Asp Leu Gly Ser Glu His Gly Thr Trp Ile Thr Asp
                                     250
 Asn Glu Gly Arg Arg Tyr Arg Val Pro Pro Asn Phe Pro Val Arg Phe
                                 265
 His Pro Ser Asp Val Ile Glu Phe Gly Ser Asp Lys Lys Ala Met Phe
                             280
 Arg Val Lys Val Leu Asn Thr Leu Pro Tyr Glu Ser Ala Arg Ser Gly
     290
 Asn Arg Gln Gln Gln Val Leu Gln Ala Ala
                     310
 305
 <210>
        21
 <211>
        926
        DNA
 <212>
 <213>
        Glycine max
 <400> 21
 gcacgagcat gatggtgata ttttaatagg agcagatgga atatggtcag aagtgcgttc 60
 aaaactcttt gggcagcaag aagcaaatta ctcgggtttc acatgctaca gtggattaac 120
 aagctatgtg cccccatata ttgataccgt tgggtatcgg gtgttcttgg gcttgaacca 180
 gtactttgtt gcttcagatg ttggccatgg gaagatgcag tggtatgctt tccatgggga 240
 acccccttca agtgaccctt tcccagaagg taagaagaag aggcttttgg atctctttgg 300
 taattggtgc gatgaagtga ttgcactcat atcagaaaca ccagaacata tgattataca 360
 gagggatata tatgacagag acatgatcaa cacttgggga attgggagag tgactttgtt 420
 aggtgatgca gcacatccaa tgcaaccaaa tcttggtcaa ggagggtgta tggcaataga 480
 ggattgttac caactgatac ttgagctaga caaggttgct aaacatggct ctgacgggtc 540
 tgaagttatc tcagctctta gaagatatga gaagaaaaga atcccccgag ttagggtgtt 600
 acacacaget ageaggatgg categeaaat gttagteaae taeeggeett atattgaatt 660
 taaattttgg cctctatcaa atgtaacaac tatgcagata aagcaccctg gcattcatgt 720
 ageteaagee etttteaagt teaettttee acaatttgtt aettggatga ttgetggeea 780
 tgggttgtgg tgaacactca tgcaacttga aaataaaaag ggctcaacaa ttttaacatg 840
 atggtagtta aaagttaatt ttattgggct atgtaggaac ttttctttcg gaataaacgt 900
 gccataattt aaaaaaaaaa aaaaaa
```

PCT/US99/08789 WO 99/55889

<210> 22

<211> 263

<212> PRT

<213> Glycine max

<400> 22

His Glu His Asp Gly Asp Ile Leu Ile Gly Ala Asp Gly Ile Trp Ser

Glu Val Arg Ser Lys Leu Phe Gly Gln Gln Glu Ala Asn Tyr Ser Gly

Phe Thr Cys Tyr Ser Gly Leu Thr Ser Tyr Val Pro Pro Tyr Ile Asp

Thr Val Gly Tyr Arg Val Phe Leu Gly Leu Asn Gln Tyr Phe Val Ala

Ser Asp Val Gly His Gly Lys Met Gln Trp Tyr Ala Phe His Gly Glu 65 70 75 80

Pro Pro Ser Ser Asp Pro Phe Pro Glu Gly Lys Lys Arg Leu Leu

Asp Leu Phe Gly Asn Trp Cys Asp Glu Val Ile Ala Leu Ile Ser Glu

Thr Pro Glu His Met Ile Ile Gln Arg Asp Ile Tyr Asp Arg Asp Met 120

Ile Asn Thr Trp Gly Ile Gly Arg Val Thr Leu Leu Gly Asp Ala Ala 135

His Pro Met Gln Pro Asn Leu Gly Gln Gly Gly Cys Met Ala Ile Glu

Asp Cys Tyr Gln Leu Ile Leu Glu Leu Asp Lys Val Ala Lys His Gly

Ser Asp Gly Ser Glu Val Ile Ser Ala Leu Arg Arg Tyr Glu Lys Lys 185

Arg Ile Pro Arg Val Arg Val Leu His Thr Ala Ser Arg Met Ala Ser 195

Gln Met Leu Val Asn Tyr Arg Pro Tyr Ile Glu Phe Lys Phe Trp Pro

Leu Ser Asn Val Thr Thr Met Gln Ile Lys His Pro Gly Ile His Val 230

Ala Gln Ala Leu Phe Lys Phe Thr Phe Pro Gln Phe Val Thr Trp Met 255

Ile Ala Gly His Gly Leu Trp 260

<210> 23

<211> 1528

DNA <212>

<213> Glycine max

PCT/US99/08789 WO 99/55889

60

180

420

540

600

780

840

900

```
<400> 23
cacaaaacac acacacat attotcacac aaactgcaac catggctact accttatgtt
acaattetet taaceettea acaacegttt teteaagaae eeatttetea gtteeettga
ataaagagct tccactggat gcttcacctt ttgttgttgg ctataactgt ggtgtaggat
gcagaacaag gaagcaaagg aagaaagtga tgcatgtgaa gtgtgcagtg gtggaggctc
caccaggtgt ttcaccctca gcaaaagatg ggaatgggaa ccaccccttc cgaagaagca
gcttcgtata cttgtggctg gtggagggat tggagggttg gtttttgctt tgggctgcaa
agagaaaggg gtttgaggtg atggtgtttg agaaggactt gagtgctata agaggggagg
gacagtatag gggtccaatt cagattcaga gcaatgcttt ggctgctttg gaagctattg
attcagaggt tgctgatgaa gttatgagag ttggttgcat cactggtgat agaatcaatg
gacttgtaga tggggtttct ggttcttggt acgtcaagtt tgatacattc actcctgcag
tggaacgtgg gcttcctgtc acaagagtta ttagtcgaat ggttttacaa gagatccttg
ctcgcgcagt tgggggaagat atcattatga atgccagtaa tgttgttaat tttgtggatg
atggaaacaa ggtaacagta gagctagaga atggtcagaa atatgaagga gatgtcttgg
ttggagcgga tggaatatgg tccaaggtga ggaagcagtt atttgggete acagaagctg
tttactctgg ttatacttgt tatactggca ttgcagattt tgtgcctgct gacattgaaa
ctgttggata ccgagtattc ttgggacaca aacaatactt tgtatcttca gatgttggtg 960
cgggaaagat gcaatggtat gcatttcaca aagaaactcc cggtggggtt gatgagccca 1020
acggaaaaaa ggaaaggttg cttaggatat ttgagggctg gtgtgaaagt gctgtagatc 1080
tgatacttgc cacagaagaa gaagcaattc taagacgaga catatatgac aggataccaa 1140
cattgacatg gggaaagggt cgcgtgactt tgcttggtga ttccgtccat gccatgcagc 1200
caaatatggg ccaaggaggg tgcatggcta ttgaggacag ttatcaactt gcatgggagt 1260
tggagaatgc atgggaacaa agtattaaat cagggagtcc aattgacatt gattcttccc 1320
taaggagcta cgagagagaa agaagactac gagttgccat tattcatgga atggctagaa 1380
 tggcggctct catggcttcc acttacaagg catatctggg tgttggtctt ggccctttag 1440
 aatttttgac taagtttegt ataccacate etggaagagt tggaggaagg ttttttgttg 1500
 acatcatgat gccttctatg ttgatgtt
 <210> 24
 <211> 495
 <212> PRT
 <213> Glycine max
 Met Ala Thr Thr Leu Cys Tyr Asn Ser Leu Asn Pro Ser Thr Thr Val
 Phe Ser Arg Thr His Phe Ser Val Pro Leu Asn Lys Glu Leu Pro Leu
 Asp Ala Ser Pro Phe Val Val Gly Tyr Asn Cys Gly Val Gly Cys Arg
 Thr Arg Lys Gln Arg Lys Lys Val Met His Val Lys Cys Ala Val Val
 Glu Ala Pro Pro Gly Val Ser Pro Ser Ala Lys Asp Gly Asn Gly Asn
 His Pro Phe Arg Arg Ser Ser Phe Val Tyr Leu Trp Leu Val Glu Gly
 Leu Glu Gly Trp Phe Leu Leu Trp Ala Ala Lys Arg Lys Gly Phe Glu
  Val Met Val Phe Glu Lys Asp Leu Ser Ala Ile Arg Gly Glu Gly Gln
  Tyr Arg Gly Pro Ile Gln Ile Gln Ser Asn Ala Leu Ala Ala Leu Glu
```

130

140

Ala Ile Asp Ser Glu Val Ala Asp Glu Val Met Arg Val Gly Cys Ile 145 Thr Gly Asp Arg Ile Asn Gly Leu Val Asp Gly Val Ser Gly Ser Trp 165 Thr Gly Asp Arg Ile Asn Gly Leu Val Asp Gly Val Ser Gly Ser Trp

- Tyr Val Lys Phe Asp Thr Phe Thr Pro Ala Val Glu Arg Gly Leu Pro 180 185 190
- Val Thr Arg Val Ile Ser Arg Met Val Leu Gln Glu Ile Leu Ala Arg 195 200 205
- Ala Val Gly Glu Asp Ile Ile Met Asn Ala Ser Asn Val Val Asn Phe 210 215 220
- Val Asp Asp Gly Asn Lys Val Thr Val Glu Leu Glu Asn Gly Gln Lys 225 230 235 240
- Tyr Glu Gly Asp Val Leu Val Gly Ala Asp Gly Ile Trp Ser Lys Val 245 250 250
- Arg Lys Gln Leu Phe Gly Leu Thr Glu Ala Val Tyr Ser Gly Tyr Thr 260 265 270
- Cys Tyr Thr Gly Ile Ala Asp Phe Val Pro Ala Asp Ile Glu Thr Val 275 280 285
- Gly Tyr Arg Val Phe Leu Gly His Lys Gln Tyr Phe Val Ser Ser Asp
- Val Gly Ala Gly Lys Met Gln Trp Tyr Ala Phe His Lys Glu Thr Pro
- Gly Gly Val Asp Glu Pro Asn Gly Lys Lys Glu Arg Leu Leu Arg Ile 325 330 335
- Phe Glu Gly Trp Cys Glu Ser Ala Val Asp Leu Ile Leu Ala Thr Glu 340 345 350
- Glu Glu Ala Ile Leu Arg Arg Asp Ile Tyr Asp Arg Ile Pro Thr Leu 355 360 365
- Thr Trp Gly Lys Gly Arg Val Thr Leu Leu Gly Asp Ser Val His Ala 370 375 380
- Met Gln Pro Asn Met Gly Gln Gly Gly Cys Met Ala Ile Glu Asp Ser 385 390 395
- Tyr Gln Leu Ala Trp Glu Leu Glu Asn Ala Trp Glu Gln Ser Ile Lys 405 410 415
- Ser Gly Ser Pro Ile Asp Ile Asp Ser Ser Leu Arg Ser Tyr Glu Arg 420 425 430
- Glu Arg Arg Leu Arg Val Ala Ile Ile His Gly Met Ala Arg Met Ala 435 440 445
- Ala Leu Met Ala Ser Thr Tyr Lys Ala Tyr Leu Gly Val Gly Leu Gly 450 455 460

```
Pro Leu Glu Phe Leu Thr Lys Phe Arg Ile Pro His Pro Gly Arg Val
Gly Gly Arg Phe Phe Val Asp Ile Met Met Pro Ser Met Leu Met
                485
<210>
       25
<211>
       686
      DNA
<212>
<213> Glycine max
<400> 25
aacaagatgg aacaggtctt tcaaagccta tatctttaag tcgaaatgag atgaaaccct 60
tcataatcgg gagtgcacca atgcaagata attcaggcag ttcagttaca atttcttcac 120
cacaggtttc tccaacgcat gctcgaatta actataagga tggtgccttc ttcttgattg 180
atttacggag tgagcatggc acctggatca ttgacaacga aggaaagcag taccgggtac 240
ctcctaatta tcctgctcgc atccgtccat ctgatgttat tcagtttggt tctgagaagg 300
tttcgttccg tgttaaggtg acaagctctg ttccaagagt ctcagaaaat gaaagcacac 360
tagctttgca gggagtatga ctgattctgc tcaattgcaa tttgtaagtt atggaaaaat 420
tatacagcac aaatttgcta ttgtatagta ctatctgcat tgttttaggg tgggggtatta 480
taccacagto tagtoattta agatotgata tgttacatgo otatatggao atttaagagg 540
gactcttggg tataaatttg ttactccact ccaatacttt ttgtgtatga catttgtaat 600
ttgttagagt tagatttata acatgacaca cataaacttg cacgtgatta aaaaaaaaa 660
aaaaaaaaaa aaaaaaaaa aaaaaa
       26
<210>
 <211> 125
 <212> PRT
 <213>
       Glycine max
 <400> 26
 Gln Asp Gly Thr Gly Leu Ser Lys Pro Ile Ser Leu Ser Arg Asn Glu
 Met Lys Pro Phe Ile Ile Gly Ser Ala Pro Met Gln Asp Asn Ser Gly
 Ser Ser Val Thr Ile Ser Ser Pro Gln Val Ser Pro Thr His Ala Arg
 Ile Asn Tyr Lys Asp Gly Ala Phe Phe Leu Ile Asp Leu Arg Ser Glu
                          55
 His Gly Thr Trp Ile Ile Asp Asn Glu Gly Lys Gln Tyr Arg Val Pro
 Pro Asn Tyr Pro Ala Arg Ile Arg Pro Ser Asp Val Ile Gln Phe Gly
 Ser Glu Lys Val Ser Phe Arg Val Lys Val Thr Ser Ser Val Pro Arg
                                 105
 Val Ser Glu Asn Glu Ser Thr Leu Ala Leu Gln Gly Val
                             120
         115
        27
 <210>
 <211>
        310
 <212>
 <213> Lycopersicon esculentum
```

<400 Asp 1	> Pro	27 Asp	Ile	Val 5	Leu	Pro	Gly	Asn	Leu 10	Gly	Leu	Leu	Ser	Glu 15	Ala
Tyr	Asp	Arg	Cys 20	Gly	Glu	Val	Cys	Ala 25	Glu	Tyr	Ala	Lys	Thr 30	Phe	Tyr

- Leu Gly Thr Met Leu Met Thr Pro Asp Arg Arg Arg Ala Ile Trp Ala 35 40 45
- Ile Tyr Val Trp Cys Arg Arg Thr Asp Glu Leu Val Asp Gly Pro Asn 50 55 60
- Ala Ser His Ile Thr Pro Gln Ala Leu Asp Arg Trp Glu Ala Arg Leu 65 70 75 80
- Glu Asp Ile Phe Asn Gly Arg Pro Phe Asp Met Leu Asp Ala Ala Leu 85 90 95
- Ser Asp Thr Val Ser Arg Phe Pro Val Asp Ile Gln Pro Phe Arg Asp 100 105 110
- Met Val Glu Gly Met Arg Met Asp Leu Trp Lys Ser Arg Tyr Asn Asn 115 120 125
- Phe Asp Glu Leu Tyr Leu Tyr Cys Tyr Tyr Val Ala Gly Thr Val Gly 130 135 140
- Leu Met Ser Val Pro Ile Met Gly Ile Ala Pro Glu Ser Lys Ala Thr 145 150 155 160
- Thr Glu Ser Val Tyr Asn Ala Ala Leu Ala Leu Gly Ile Ala Asn Gln 165 170 175
- Leu Thr Asn Ile Leu Arg Asp Val Gly Glu Asp Ala Arg Arg Gly Arg 180 185 190
- Val Tyr Leu Pro Gln Asp Glu Leu Ala Gln Ala Gly Leu Ser Asp Glu 195 200 205
- Asp Ile Phe Ala Gly Lys Val Thr Asp Lys Trp Arg Ile Phe Met Lys 210 215 220
- Lys Gln Ile Gln Arg Ala Arg Lys Phe Phe Asp Glu Ala Glu Lys Gly 225 230 235 240
- Val Thr Glu Leu Ser Ser Ala Ser Arg Trp Pro Val Leu Ala Ser Leu 245 250 250
- Leu Leu Tyr Arg Lys Ile Leu Asp Glu Ile Glu Ala Asn Asp Tyr Asn 260 265 270
- Asn Phe Thr Arg Arg Ala Tyr Val Ser Lys Pro Lys Lys Leu Leu Thr 275 280 285
- Leu Pro Ile Ala Tyr Ala Arg Ser Leu Val Pro Pro Lys Ser Thr Ser 290 295 300
- Cys Pro Leu Ala Lys Thr 305 310

<210> 28 410 <211> <212> PRT

<213> Zea mays

<400> 28

Met Ala Ile Ile Leu Val Arg Ala Ala Ser Pro Gly Leu Ser Ala Ala

Asp Ser Ile Ser His Gln Gly Thr Leu Gln Cys Ser Thr Leu Leu Lys

Thr Lys Arg Pro Ala Ala Arg Arg Trp Met Pro Cys Ser Leu Leu Gly

Leu His Pro Trp Glu Ala Gly Arg Pro Ser Pro Ala Val Tyr Ser Ser

Leu Pro Val Asn Pro Ala Gly Glu Ala Val Val Ser Ser Glu Gln Lys

Val Tyr Asp Val Val Leu Lys Gln Ala Ala Leu Leu Lys Arg Gln Leu

Arg Thr Pro Val Leu Asp Ala Arg Pro Gln Asp Met Asp Met Pro Arg 105

Asn Gly Leu Lys Glu Ala Tyr Asp Arg Cys Gly Glu Ile Cys Glu Glu

Tyr Ala Lys Thr Phe Tyr Leu Gly Thr Met Leu Met Thr Glu Glu Arg 135

Arg Arg Ala Ile Trp Ala Ile Tyr Val Trp Cys Arg Arg Thr Asp Glu

Leu Val Asp Gly Pro Asn Ala Asn Tyr Ile Thr Pro Thr Ala Leu Asp 170

Arg Trp Glu Lys Arg Leu Glu Asp Leu Phe Thr Gly Arg Pro Tyr Asp

Met Leu Asp Ala Ala Leu Ser Asp Thr Ile Ser Arg Phe Pro Ile Asp 200

Ile Gln Pro Phe Arg Asp Met Ile Glu Gly Met Arg Ser Asp Leu Arg

Lys Thr Arg Tyr Asn Asn Phe Asp Glu Leu Tyr Met Tyr Cys Tyr Tyr 230

Val Ala Gly Thr Val Gly Leu Met Ser Val Pro Val Met Gly Ile Ala

Thr Glu Ser Lys Ala Thr Thr Glu Ser Val Tyr Ser Ala Ala Leu Ala

Leu Gly Ile Ala Asn Gln Leu Thr Asn Ile Leu Arg Asp Val Gly Glu

Asp Ala Arg Arg Gly Arg Ile Tyr Leu Pro Gln Asp Glu Leu Ala Gln 290 295 300

- Ala Gly Leu Ser Asp Glu Asp Ile Phe Lys Gly Val Val Thr Asn Arg 305 310 315 320
- Trp Arg Asn Phe Met Lys Arg Gln Ile Lys Arg Ala Arg Met Phe 325 330 330
- Glu Glu Ala Glu Arg Gly Val Asn Glu Leu Ser Gln Ala Ser Arg Trp 340 345 350
- Pro Val Trp Ala Ser Leu Leu Leu Tyr Arg Gln Ile Leu Asp Glu Ile 355 360 365
- Glu Ala Asn Asp Tyr Asn Asn Phe Thr Lys Arg Ala Tyr Val Gly Lys 370 375 380
- Gly Lys Lys Leu Leu Ala Leu Pro Val Ala Tyr Gly Lys Ser Leu Leu 385 390 395 400
- Leu Pro Cys Ser Leu Arg Asn Gly Gln Thr 405 410

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 6: C12N 15/82, 9/02, 5/10, G01N 33/50 //		(11) International Publication Number: WO 99/55889
A01H 5/00	13	(43) International Publication Date: 4 November 1999 (04.11.99
(21) International Application Number: PCT/US99	0/0878	9	(81) Designated States: AE, AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR
(22) International Filing Date: 22 April 1999 (22	2 .04.9 9	»	LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PI RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZA ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG
(30) Priority Data: 60/083,042 24 April 1998 (24.04.98)	U	s	ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, T TM), European patent (AT, BE, CH, CY, DE, DK, ES, F FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI pate (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NI
(71) Applicant (for all designated States except US): E.1. DU DE NEMOURS AND COMPANY [US/US]; 1007 Street, Wilmington, DE 19898 (US).		et	SN, TD, TG).
(72) Inventors; and (75) Inventors/Applicants (for US only): CAHOON, Rebe [US/US]; 2331 West 18th Street, Wilmington, DE	сса, Г	Б. 16	With international search report. Before the expiration of the time limit for amending the clait and to be republished in the event of the receipt of amendment
(US). HITZ, William, D. [US/US]; 404 Hillside Wilmington, DE 19807 (US). SHEN, Jennie, B [US/US]; 15 Bromley Court, Wilmington, DE 19816 WILLIAMS, Mark, E. [US/US]; 37 Country Hills Newark, DE 19711 (US).	Road Sih-Jie 0 (US	d, n).	(88) Date of publication of the international search report: 6 April 2000 (06.04.0
(74) Agent: MAJARIAN, William, R.; E.I. du Pont de N and Company, Legal Patent Records Center, 1007 Street, Wilmington, DE 19898 (US).	lemour Mark	rs et	
(54) Title: CAROTENOID BIOSYNTHESIS ENZYMES			
(57) Abstract This invention relates to an isolated nucleic acid	SEQ	ID ID	NO:27 DPDIVLPGS
fragment encoding a carotenoid biosynthetic enzyme. The invention also relates to the construction of a			MO:14 HSGVLLWVSCGPKCMIHSL-VSFSCRSSSGGER-TOKRFSGISFAS 60
chimeric gene encoding all or a portion of the carotenoid biosynthetic enzyme, in sense or antisense orientation, wherein expression of the chimeric gene results in	SEQ	ID	NO:28 SPAYSSLPVMPAGEAVVSSECKVYDVVLKQA-ALLIGGLATPVLDARPGINDMP NO:02 DELVOGPNASYLTFTALDAWEIGLEDLFEGRFYDNYDAALSDTVSKFFVDIGPFEGRFYG NO:14 GFSAFSSAVANTETSRSSEERVYEVVLKQA-ALVKEMRGTKIALDLDKDVZADFN 61 120
production of altered levels of the carotenoid biosynthetic enzyme in a transformed host cell.	SEQ SEQ	ID	NO:27LGLLSEATDRCGEVCAEYARTFYL-GTMLMTFDRRAIWAIYWECRTDELVDGFMAS NO:28 -RMGL-MEATDRCGETCERYARTFYL-GTMLMTERRRAIWAIYWECRTDELVDGFMAS NO:20 HALDLMKSRIMTFUELYLYCYYVAJTQLMTFERRIAWAIYWECRTDELVDGFMAS NO:14 -WVDLLMAYDRCGEVCAEYARTFYL-GTQLMTAERRRAIWAIYWCRRTDELVDGFMAS 121 180
	SEQ SEQ	ID ID	NO:27 HITPALDRWEARLEDIFMCRFFUNLDAALSDTVSRFFVDIQFFEDNVEAGRALDWESRY NO:28 YITPFALDRWEEGRLEDIFMCRFYDMLDAALSDTVSRFFVDIQFFEDNVCAGRALDWESRY NO:20 YITFFALDRWEEGRLEDIFMCRFYDMYDAALSDTVSRFFVDIQFFEDNVCAGRALDWESRY NO:14 HITPALDRWEEGRLSDVFEGRFYDMYDAALSHTVSRYFYDIQFFEDNVCAGRALDWESRY 181
	880	ID	NO:27 EMPTELLIKCYTVAGTVGIMSVPINGIAPESKATTESVYMAALAGTAMQLTNILRDVGE NO:28 INFEDLIKTCYTVAGTVGIMSVPINGIATESKATTESVYMAALAGTAMQLTNILRDVGE NO:02 HTFDELIKTCYTVAGTVGIMSVPVNGIAPESKASTESVYMAALAGTAMQLTNILRDVGE NO:14 MRFDELILYCYTVAGTVGIMSVPVNGIAPESKASSESIYMAALALGIANQLTNILRDVGE 241 300
	58Q 988	ID	NO:27 DARGGYYLPQDELAQGGLEDEDIFAGKYTDIGHR FRIGNIQIKAAMFFFERAEKGYTELSS NO:28 DARGGIYLPQDELAQGGLEDEDI FRGVYTHRERFFHERQIKRAAMFFFERAEKGYNELSQ NO:20 DARGGIYLPDELAQGGLEDDI FRGKYTGKWREFHERQIQAALFFDEAEKGYTHLDS NO:14 DARGGYYLPQDELAQAGLEDDDI FRGKYTDKWREFHERQIKRARMFFDEAEKGYTHLDS 301 360
			****** *** *** *** ******** **** * **** **

SEQ ID NO:27 L-ART SEQ ID NO:28 LRNGQT SEQ ID NO:12 -----SEQ ID NO:14 VR-R. 421 426

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	•	•	-				
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	CH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IR	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	ΠL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	, Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		•
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

					,
A CLASS IPC 6	FICATION OF SUBJECT C12N15/82	C12N9/02	C12N5/10	G01N33/50	//A01H5/00
According t	o international Patent Cla	asification (IPC) or to bot	h national classification a	nd IPC	•
B. FIELDS	SEARCHED				
Minimum de IPC 6	ocumentation searched (C12N	dassification system folk	wed by classification sym	bols)	
Documenta	tion searched other than (minimum documentation	to the extent that such do	cuments are included in ti	he fields searched
Electronic d	ata base consulted during	g the international search	n (name of data base and	, where practical, search t	erms used)
	ENTS CONSIDERED TO				
Category °	Citation of document, w	ith indication, where app	ropriate, of the relevant p	asseges	Relevant to claim No.
х	unpublishe EMBL SEQUE 11 Septemb XP00212900 heidelberg	d" NCE DATA LIBR er 1996 (1996 6		gram -	1-3
X	from panic EMBL SEQUE	le (longer th NCE DATA LIBR er 1997 (1997 8 , germany	ARY,	cDNA	1,2
X Furti	ner documents are listed in	n the continuation of box	с. Х	Patent family members	are listed in annex.
*Special ca: "A" docume consid "E" earlier of filing d "L" docume which citation "O" docume other r "P" docume	nt which may throw doubt is cited to establish the pu n or other special reason (ant referring to an oral disc ant referring to an oral disc	ste of the art which is not evance n or after the internations is on priority claim(s) or blication date of another as specified) closure, use, exhibition o sternational filing date bu	T late	ir priority date and not in on itself to understand the prin vention ourment of particular releva annot be considered novel wolve an inventive step who ourment of particular releva annot be considered to linv oourment to combined with	er the international filing date sufflict with the application but or or theory underlying the since; the claimed invention or cannot be considered to the entry of the document is taken alone since; the claimed invention olve an inventive step when the one or more other auch document government is a person skilled the patent family
	notual completion of the in		D	ate of mailing of the interna	stional search report
	February 2000			23 02 00	
······································	European Patent Offi NL - 2280 HV Rijawij	10, Tx. 31 651 epo nl,		Holtorf, S	

C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X -	YAMAMOTO, K. AND SASAKI, T.: "rice cDNA from panicle (between 3cm to 10cm)" EMBL SEQUENCE DATA LIBRARY, 21 September 1997 (1997-09-21), XP002128999 heidelberg, germany accession no. C74590	1,2
X	DATABASE WPI Section Ch, Week 199824 Derwent Publications Ltd., London, GB; Class C06, AN 1998-264853 XP002129005 & JP 10 084966 A (IWATE KEN), 7 April 1998 (1998-04-07) abstract	1-5,11
X	CASTRIGNANO, F. AND GIULIANO, G.: "untitled" SWISSPROT SEQUENCE DATA LIBRARY, 1 January 1998 (1998-01-01), XP002129000 accession no. 022375	. 5
X	BARTLEY, G.E. AND SCOLNIK, P.A.: "cDNA cloning, expression during development, and genome mapping f PSY2, a second tomato gene encoding phytoene synthase" THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 268, no. 34, 1993, pages 25718-25721, XP002112337 cited in the application the whole document	1-4
Χ Υ .	WO 97 46690 A (ZENECA LTD ; DRAKE CAROLINE RACHEL (GB); BIRD COLIN ROGER (GB); SCH) 11 December 1997 (1997-12-11) the whole document	1-5,11
X	WO 96 02650 A (ZENECA LTD ; KARVOUNI ZOI (GR); JOHN ISAAC (GB); TAYLOR JANE (GB);) 1 February 1996 (1996-02-01) example 1	1-5,11
X Y	US 5 705 624 A (KUMAGAI MONTO HIROSHI ET AL) 6 January 1998 (1998-01-06) column 4, lines 54-61; page 5 + 6; example 1; claims	1-5,11, 12,14 13,15
	-/	
	,	

		PC1/03 99/06/09
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X -	BURKHARDT, P.K., ET AL.: "Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis" THE PLANT JOURNAL, vol. 11, no. 5, 1997, pages 1071-1078, XP002087151	1-5,11
X	the whole document & SCHLEDZ, M., ET AL.: "phytoene synthase from Narcissus pseudonarcissus: functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering" EMBL SEQUENCE DATA LIBRARY, 18 April 1995 (1995-04-18), heidelberg, germany accession no. X78814	1-5
x	SANDMANN, G., ET AL.: "a new non-radioactive assay of phytoene desaturase to evaluate bleaching herbicides" ZEITSCHRIFT FÜR NATURFORSCHUNG, vol. 51, no. 7-8, July 1996 (1996-07), pages 534-538, XP002112339 the whole document	16
x	ALBRECHT, M., ET AL.: "biochemical characterization of purified zeta-cartene desaturase from Anabaena PCC 7120 after exposure in Escherichia coli" EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 236, 1996, pages 115-120, XP002112340 the whole document	16
x	BURBIDGE, A., ET AL.: "structure and expression of a cDNA encoding zeaxanthin epoxidase, isolated from a wilt-related tomato (éycopersicon esculentum Mill.) library" JOURNAL OF EXPERIMENTAL BOTANY, vol. 48, no. 314, September 1997 (1997-09), pages 1749-1750, XP000874479	6,7
Y	the whole document/	12

.,	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
χ	BOUVIER, F., ET AL.: "Xanthophyll biosynthesis - cloning, expression, functional reconstruction, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum)" THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 46, 15 November 1996 (1996-11-15), pages 28861-28867, XP002129002 the whole document	6-11
(WO 96 38566 A (AGRONOMIQUE INST NAT RECH ;MARIN ELENA (FR); MARION POLL ANNIE (FR) 5 December 1996 (1996-12-05)	6-11
Y	the whole document	12
X	MARIN E ET AL: "MOLECULAR IDENTIFICATION OF ZEAXANTHIN EPOXIDASE OF NICOTIANA PLUMBAGINIFOLIA, A GENE INVOLVED IN ABSCISIC ACID BIOSYNTHESIS AND CORRESPONDING TO THE ABA LOCUS OF ARABIDOPSIS THALIANA" EMBO JOURNAL, vol. 15, no. 10, 15 May 1996 (1996-05-15), pages 2331-2342, XP002017525 ISSN: 0261-4189 cited in the application	6-11
•	figure 4	12
\	BARTLEY, G.E. AND SCOLNIK, P.A.: "Plant carotenoids: pigments for photoprotection, visual attraction, and human health" THE PLANT CELL, vol. 7, July 1995 (1995-07), pages 1027-1038, XP002112110 page 1027, right column; page 1030, right column; page 1035, Table 1	1-5, 11-16
P,X	FREY, A., ET AL.: "engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression" PLANT MOLECULAR BIOLOGY, vol. 39, 6 April 1999 (1999-04-06), pages 1267-1274, XP002129003 the whole document	6-9,11
P,X _.	MBEGUIE-A-MBEGUIE, D. AND FILS-LYCAON, B.: "molecular cloning and nucleotide sequence of a zeaxanthin epoxidase from apricot fruit" EMBL SEQUENCE DATA LIBRARY, 29 June 1998 (1998-06-29), XP002129004 heidelberg, germany accession no. AF071888	6,7

rational application No.

PCT/US 99/08789

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheets
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: .
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-5,11-16 partially

Isolation of gene sequences representing a maize-specific cDNA encoding Phytoene Synthase; namely SEQIDs 1, furthermore the corresponding deduced amino acid sequences SEQIDs 2.

2. Claims: 1-5,11-16 partially

Isolation of gene sequences representing a maize-specific cDNA encoding Phytoene Synthase; namely SEQIDs 3, furthermore the corresponding deduced amino acid sequences SEQIDs 4.

3. Claims: 1-5,11-16 partially

Isolation of gene sequences representing a rice-specific cDNA encoding Phytoene Synthase; namely SEQIDs 5, furthermore the corresponding deduced amino acid sequences SEQIDs 6.

4. Claims: 1-5,11-16 partially

Isolation of gene sequences representing a rice-specific cDNA encoding Phytoene Synthase; namely SEQIDs 7, furthermore the corresponding deduced amino acid sequences SEQIDs 8.

5. Claims: 1-5,11-16 partially

Isolation of gene sequences representing a rice-specific cDNA encoding Phytoene Synthase; namely SEQIDs 9, furthermore the corresponding deduced amino acid sequences SEQIDs 10.

6. Claims: 1-5,11-16 partially

Isolation of gene sequences representing soybean-specific cDNAs encoding Phytoene Synthase; namely SEQIDs 11 and 13, furthermore the corresponding deduced amino acid sequences SEQIDs 12 and 14.

7. Claims: 1-5,11-16 partially

Isolation of gene sequences representing a wheat-specific cDNA encoding Phytoene Synthase; namely SEQIDs 15,

FURTHER INFORMATION CONTINUED FROM PCT/ISAV 210

furthermore the corresponding deduced amino acid sequences SEQIDs 16.

8. Claims: 6-10,11-16 partially

Isolation of gene sequences representing maize-specific cDNAs encoding Zeaxanthin Epoxidase; namely SEQIDs 17 and 19, furthermore the corresponding deduced amino acid sequences SEQIDs 18 and 20.

9. Claims: 6-10,11-16 partially

Isolation of gene sequences representing soybean-specific cDNAs encoding Zeaxanthin Epoxidase; namely SEQIDs 21,23 and 25, furthermore the corresponding deduced amino acid sequences SEQIDs 22,24 and 26.

Information on patent family members

Patent documen cited in search rep		Publication date	Patent family member(s)	Publication date
JP 10084966	5 A	07-04-1998	NONE	
WO 9746690	Α .	11-12-1997	AU 2967497 A CA 2252366 A EP 0906435 A	05-01-1998 11-12-1997 07-04-1999
WO 9602650	A	01-02-1996	AU 2805395 A CA 2190760 A EP 0771353 A JP 10510140 T	16-02-1996 01-02-1996 07-05-1997 06-10-1998
US 5705624	Α .	06-01-1998	NONE	
WO 9638566	A	05-12-1996	FR 2734838 A AU 6228396 A CA 2223030 A EP 0828836 A	06-12-1996 18-12-1996 05-12-1996 18-03-1998