Барицентрические координаты

Пусть фиксирован треугольник ABC. Барицентрическими координатами точки P называется тройка чисел $(x_p:y_p:z_p)$ такая, что точка P является центром масс системы $(A,x_p),(B,y_p),(C,z_p)$. Для фиксированной точки P эти координаты определены с точностью до пропорциональности, то есть их можно домножить на любое ненулевое число, и они останутся барицентрическими координатами той же точки. Будем называть барицентрические координаты точки nopmupoganhumu, если $x_p+y_p+z_p=1$.

Для любой точки плоскости барицентрические координаты существуют — для точки P подойдёт тройка $(S_{PBC}:S_{PAC}:S_{PAB})$, где площади ориентированные.

Три точки на одной прямой

Точки P,Q,R лежат на одной прямой тогда и только тогда, когда барицентрические координаты одной из точек (пусть P) — это линейная комбинация барицентрических координат двух других точек, то есть найдутся такие $\lambda, \mu \in \mathbb{R}$, что

$$(x_p:y_p:z_p) = \lambda(x_q:y_q:z_q) + \mu(x_r:y_r:z_r).$$

Если координаты точек нормированные, то $\mu = 1 - \lambda$ и в этом случае можно выразить отношения: $\overrightarrow{QP}: \overrightarrow{PR} = (1 - \lambda): \lambda.$

Часто (но не всегда) явно искать λ и μ не очень приятно. Чтобы этого не делать, нам потребуется понятие onpedenumens nopsdka 3:

$$\begin{vmatrix} x_p & y_p & z_p \\ x_q & y_q & z_q \\ x_r & y_r & z_r \end{vmatrix} = x_p y_q z_r + x_r y_p z_q + x_q y_r z_p - x_p y_r z_q - x_q y_p z_r - x_r y_q z_p =$$

$$= x_p (y_q z_r - y_r z_q) - y_p (x_q z_r - x_r z_q) + z_p (x_q y_r - x_r y_q).$$

Известный факт про определитель — одна тройка чисел является линейной комбинацией двух других тогда и только тогда, когда определитель равен 0.

Уравнение прямой

Если в определитель вместо координат одной из точек подставить (x:y:z), то получим уравнение прямой, то есть прямая QR задаётся уравнением

$$\begin{vmatrix} x & y & z \\ x_q & y_q & z_q \\ x_r & y_r & z_r \end{vmatrix} = 0 \iff \alpha x + \beta y + \gamma z = 0,$$

где значения α , β , γ можно взять из формулы выше. И обратно, уравнение $\alpha x + \beta y + \gamma z = 0$ задаёт прямую, если хотя бы один из коэффициентов не равен 0. Исключение составляет уравнение x + y + z = 0, которое задаёт бесконечно удалённую прямую.

Доказывать, что три прямые $\alpha_i x + \beta_i y + \gamma_i z = 0$, i = 1, 2, 3 пересекаются в одной точке, можно проверив, что составленный из коэффициентов определитель равен 0:

$$\begin{vmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{vmatrix} = 0.$$

Если у точки пересечения двух прямых сумма координат равна 0, то эта точка бесконечно удалённая, то есть прямые параллельны.

- 1. Найдите барицентрические координаты
 - (a) середины малой дуги BC окружности (ABC);
 - **(б)** середины дуги BAC окружности (ABC);
 - (в) проекции вершины C на биссектрису угла B;
 - (г) точки, изогонально сопряжённой точке с координатами $(x_0:y_0:z_0);$
 - (д) точки пересечения касательных к (ABC) в точках B и C.
- **2.** Окружность с центром I, вписанная в треугольник ABC, касается стороны BC в точке A_1 . Докажите, что точка I лежит на отрезке, соединяющем середины отрезков AA_1 и BC.
- **3.** Окружность с центром I, вписанная в треугольник ABC, касается сторон AB и AC в точках C_1 , B_1 соответственно. Медиана AM треугольника пересекает B_1C_1 в точке P. Докажите, что $IP \perp BC$.
- **4.** Задача 255. Вписанная окружность треугольника ABC касается сторон AB и AC в точках C_1 и B_1 соответственно, вневписанная окружность касается стороны AC и продолжением стороны AB в точках B_2 и C_2 соответственно. Докажите, что прямые B_1C_1 и B_2C_2 , биссектриса угла B и средняя линия, параллельная AB пересекаются в одной точке.
- **5.** В треугольнике ABC биссектрисы BB_1 и CC_1 пересекаются в точке I, X середина B_1C_1, Y точка пересечения касательных к окружности (ABC), проведённых в точках B и C. Докажите, что точки X, I и Y лежат на одной прямой.
- **6.** Пусть DEF серединный треугольник треугольника ABC, точки I_a , I_b , I_c центры вневписанных окружностей. Докажите, что прямые DI_a , EI_b и FI_c пересекаются в одной точке. Найдите координаты этой точки.
- 7. В треугольнике ABC симедианы, проведённые из вершин B и C пересекают стороны AC и AB в точках D и E соответственно. Точки P и Q середины отрезков BD и CE соответственно. Докажите, что $\angle PCB = \angle QBC$.
- 8. Центр I вписанной окружности отразили относительно сторон BC, CA, AB треугольника ABC получили точки X, Y, Z. Докажите, что прямые AX, BY и CZ, пересекаются в точке, которая лежит на прямой, проходящей через I параллельно прямой Эйлера треугольника ABC.