(0.3)

目次

 $\|x-y\|$ が成立する。

のノルム

レム-定義

0.1実線型空間上のノルム
0.2 Lipschitz 連続 9
0.1 実線型空間上のノルム
ノルムに関する以下の定義や命題は <mark>[?]</mark> に拠る。
定義 ${f 0.1}$ (ノルム)・ V を $\Bbb R$ 上の線型空間とする。 $ \cdot $ を実数の絶対値とする。関数 $\ \cdot\ \colon V o\Bbb R$ が以下の条件を満たすとき, $\ x\ $ を x のノルムという:
(i) (正値性) $\forall x \in V$, $ x \ge 0$ (ii) (一意性) $\forall x \in V$, $[x = 0 \iff x = 0]$ (iii) (同次性) $\forall k \in \mathbb{R}$, $\forall x \in V$, $ kx = k x $ (iv) (三角不等式) $\forall x, \forall y \in V$, $ x + y \le x + y $
ノルムの定義された線型空間をノルム空間という。
命題 0.2 (三角不等式). ノルムは次の性質も満たす:
$\forall x, \forall y \in V, \ x - y \le x - y . \tag{0.1}$
$Proof.$ まず, $\ x\ = \ (x-y) + y\ \le \ x-y\ + \ y\ $ から $\ x\ - \ y\ \le \ x-y\ $ が従う。同様に
$ y = (y-x) + x \le (-1)(x-y) + x = -1 x-y + x = x-y + x $ (0.2)
なので, $\ y\ -\ x\ \leq \ x-y\ $ である。また,絶対値の特徴付け $ a =\max\{a,-a\}$ を用いると, $\max\{\ x\ -\ y\ ,\ y\ -\ x\ \}= \ x\ -\ y\ \leq \ x-y\ $ である。これらにより, $ \ x\ -\ y\ \leq \ x-y\ $

系 0.3. 命題0.2 において、 $y\mapsto -y$ として、元の三角不等式と併せれば、

 $|||x|| - ||y||| \le ||x + y|| \le ||x|| + ||y||$

が従う。

_→-連続性

命題 0.4 (ノルムの連続性). ノルムは連続関数である。

Proof. 示すべきことは以下の通り(定義0.20 も参照):

$$\forall x, \forall y \in V, \ \forall \varepsilon \in \mathbb{R}_{>0}, \ \exists \delta \in \mathbb{R}_{>0}; \ \left[\|x - y\| < \delta \implies |\|x\| - \|y\|| < \varepsilon \right]. \tag{0.4}$$

実際, $\delta := \varepsilon$ と取れば,命題0.2 により,|||x|| - ||y|| | $\leq ||x - y|| < \delta = \varepsilon$ であるから,ノルムは連続関数である。

の同値性

同値関係

定義 0.5 (ノルムの同値性). 以下が成立するとき, V 上の 2 つのノルム $\|\cdot\|$, $\|\cdot\|_1$ が同値であるという:

$$\exists m, \exists M \in \mathbb{R}; \ \Big[0 < m \leq M \ \land \ (\forall x \in V, \ m\|x\|_1 \leq \|x\| \leq M\|x\|_1)\Big]. \tag{0.5}$$

命題 0.6. ノルムの同値性は同値関係である。

Proof. ノルム $\|\cdot\|$, $\|\cdot\|$, が同値であることを $\|\cdot\|$ ~ $\|\cdot\|$, と記すことにする。すなわち、

 $\|\cdot\| \sim \|\cdot\|_1 : \stackrel{\mathrm{def}}{\Longleftrightarrow} \exists m, \exists M \in \mathbb{R}; \ \Big[0 < m \leq M \ \land \ (\forall x \in V, \ m\|x\|_1 \leq \|x\| \leq M\|x\|_1)\Big]. \ (0.6)$

このとき関係 ~ が反射律,対称律,推移律を満たすことを示す。

• (反射律) 任意の $\|\cdot\|$ に対し, $\|\cdot\|$ ~ $\|\cdot\|$ が成立することを示す。実際, m=M=1 とすれば,

$$0 < m = 1 \le M = 1 \ \land \ (\forall x \in V, \ 1 \cdot ||x|| \le ||x|| \le 1 \cdot ||x||) \tag{0.7}$$

であるから成立。

(対称律) ||·|| ~ ||·||₁, すなわち

$$\exists m, \exists M \in \mathbb{R}; \ \left[0 < m \le M \ \land \ (\forall x \in V, \ m \|x\|_1 \le \|x\| \le M \|x\|_1) \right] \tag{0.8}$$

のとき, $\|\cdot\|_1 \sim \|\cdot\|$ が成立することを示す。後半の不等式を書き直すと, $\frac{1}{M}\|x\| \leq \|x\|_1 \leq \frac{1}{m}\|x\|$ であり, $0 < m \leq M$ であるから $0 < \frac{1}{M} \leq \frac{1}{m}$ であり, $m' \coloneqq \frac{1}{M}$, $M' \coloneqq \frac{1}{m}$ と取れば確かに $\|\cdot\|_1 \sim \|\cdot\|$ の成立が判る。

• (推移律) 3 つのノルム $\|\cdot\|$, $\|\cdot\|_1$, $\|\cdot\|_2$ に対し, $\|\cdot\| \sim \|\cdot\|_1$ と $\|\cdot\|_1$ ~ $\|\cdot\|_2$ のとき, $\|\cdot\| \sim \|\cdot\|_2$ が成立することを示す。仮定から,

$$\exists m_1, \exists M_2 \in \mathbb{R}; \ \Big[0 < m_1 \leq M_2 \ \land \ (\forall x \in V, \ m_1 \|x\|_1 \leq \|x\| \leq M_1 \|x\|_1) \Big], \ \ (0.9)$$

$$\exists m_2, \exists M_2 \in \mathbb{R}; \ \left[0 < m_2 \le M_2 \land (\forall x \in V, \ m_2 \|x\|_2 \le \|x\|_1 \le M_2 \|x\|_2) \right]$$
 (0.10)

の両方が成立しているから、 $\|x\| \le M_1 \|x\|_1 \le M_1 M_2 \|x\|_2$ 及び、 $\|x\| \ge m_1 \|x\|_1 \ge m_1 m_2 \|x\|_2$ より、 $m_1 m_2 \|x\|_2 \le \|x\| \le M_1 M_2 \|x\|_2$ が従う。これより、 $m \coloneqq m_1 m_2$ 、 $M \coloneqq M_1 M_2$ と取れば $0 < m_1 m_2 \le M_1 M_2$ も成立するので $\|\cdot\| \sim \|\cdot\|_2$ である。

以上により、ノルムの同値性は同値関係である。

記法 0.7 (上添字). \mathbb{R}^n のベクトル x の成分の添字は上に付けて表すことにする。すなわち, $x=(x^0,x^1,\ldots,x^{n-1})$ のように記す。成分の冪を表すわけではないことに注意。ベクトルの添字を $x_0=(x_0^0,x_0^1,\ldots,x_0^{n-1})$, $x_1=(x_1^0,x_1^1,\ldots,x_1^{n-1})$, \ldots のように下に付けて記した場合,複数あるベクトルのいずれかの番号を意味する。

定理 0.8. 線型空間 V が有限次元であれば、V 上の任意の 2 つのノルムは同値である。

 $Proof.\ V$ を有限次元線型空間とし, $n:=\dim V$ とする。V の基底として, $\{e_k\}_{0\leq k\leq n-1}$ を取り固定する。V の元 x を, $x=\sum_{k=0}^{n-1}x^ke_k$ と表したときの成分 $\{x^k\}_{0\leq k\leq n-1}$ を用いて,

$$\|\cdot\| \colon V \to \mathbb{R}; \ x \mapsto \|x\| \coloneqq \max_{0 \le k \le n-1} \{ |x^k| \}$$
 (0.11)

と定めると ||・|| はノルムになる。以下 ||・|| がノルムであることを確かめる:

- (i)(正値性)どの k についても $0 \le \left|x^k\right|$ であり, $\|x\| = \max_k \left\{\left|x^k\right|\right\} \ge 0$ であるから成立。
- (ii) (一意性) x=0 のとき,どの k についても $x^k=0$ であるから $\|x\|=\max_k \left\{\left|x^k\right|\right\}=0$ である。また, $\|x\|=0$ のとき,任意の k に対し,絶対値の非負性から $0\leq \left|x^k\right|$ であって, $\left|x^k\right|\leq x=0$ であるから $\left|x^k\right|=0$ である。これより x=0 となる。
- (iii) (同次性) 絶対値の非負性と同次性から, $\|cx\| = \max_{k}\{|cx|\} = |c| \cdot \max_{k}\{\left|x^{k}\right|\} = |c|\|x\|$ が 従う。
- (iv) (三角不等式) 絶対値の三角不等式から,各 k に対して $\left|x^k+y^k\right| \leq \left|x^k\right|+\left|y^k\right|$ であるから 最大値に関してもこの不等号が成り立つので $\|x+y\| \leq \|x\|+\|y\|$ が従う。

以上により式 (0.11) で定められた $\|\cdot\|$ はノルムである。

次に,V 上の勝手なノルム $\|\cdot\|_1$ を取ってきたときに,式 (0.11) で定義した $\|\cdot\|_1$ と $\|\cdot\|$ が同値になってしまうことを示す。V のコンパクト集合 S を $S \coloneqq \{y \in V \colon \|y\| = 1\}$ によって定め,関数 $f\colon S \to \mathbb{R}$ を $f(y) \coloneqq \|y\|_1$ と定める。f の連続性(命題0.4)と S がコンパクト集合であることから,f の値域には最小元 m と最大元 M が存在する。S 上で $y \neq 0$ であり,ノルムの正値性から $0 < m \le M$ である。特に, $\|y\| = 1$ ならば $y \in S$ であり,m の定義から $m \le f(y) \le M$ 及び $f(y) = \|y\|_1$ なので $m \le \|x\|_1 \le M$ が従う。ここで,V 上の一般の $x \neq 0$ に対して $y \coloneqq x/\|x\|$ とすると $\|y\| = \|x/\|x\|\| = \|x\|/\|x\| = 1$ より $y \in S$ であるから $f(y) = \|x/\|x\|\|_1 = \|x\|_1/\|x\|$ であって, $m \le \|x\|_1/\|x\| \le M$ より $m\|x\| \le \|x\|_1 \le M\|x\|$ である。x = 0 についても $\|0\| = \|0\|_1 = 0$ であって, $m\|0\|_1 \le \|0\| \le M\|0\|_1$ は成立するので, $\|\cdot\|_1$ と $\|\cdot\|$ は同値である。

\wtrf@n

有限次元線型空間 V 上で与えられた任意の 2 つのノルム $\|\cdot\|_1$, $\|\cdot\|_2$ はそれぞれ式 (0.11) で定義された $\|\cdot\|_1$ と同値であり,ノルムの同値は同値関係(命題0.6)なので, $\|\cdot\|_1$ と同値である。

0.1.1 実線型空間上のノルム

上ではノルムに関して,一般的な形でやや抽象的に述べた。以降では[?]に基づいて,常微分方程式を実際に扱う際に有用なノルムを具体的に扱う。ここでは有限次元実線型空間 \mathbb{R}^n 上のノルムの例を挙げる。以下では, $x=(x^0,x^1,\ldots,x^{n-1})$ の各成分を実数とし, $|\cdot|$ を実数の絶対値とする。

例 0.9 (Euclid ノルム). 原点からの標準的な距離:

$$||x||_2 \coloneqq \left(\sum_{k=0}^{n-1} |x^k|^2\right)^{\frac{1}{2}}$$
 (0.12)

はノルムである。

例 0.10 (一様ノルム). 定理0.8 の証明において式 (0.11) で定義された $\|\cdot\|$ はノルムである。後述するように、p ノルムにおいて $p \to \infty$ の極限で再現されることから、これを $\|\cdot\|_{\infty}$ と書いて ∞ ノルムとも呼ぶ。

定義 0.11 $(p / \nu \Delta)$. p & 1 以上の実数とする。このとき, $x & 0 & p / \nu \Delta ||x||_p & x$

$$\|x\|_p \coloneqq \left(\sum_{k=0}^{n-1} |x^k|^p\right)^{\frac{1}{p}}$$
 (0.13)

で定める。

問 0.1. p ノルムがノルムの条件(定義0.1)を満たしていることを確かめよ。

1 ノルムのことを絶対値ノルムと呼び、絶対値ノルムによって定まる距離を Manhattan 距離と呼ぶ。2 ノルムは Euclid ノルムに一致する。

命題 0.12. $p \to \infty$ の極限で p ノルム $\|\cdot\|_p$ は例0.10 の一様フルム $\|\cdot\|_\infty$ に一致する。

 $Proof.\ x^M$ は x の成分の $x^0, x^1, \ldots, x^{n-1}$ のうち絶対値が最大のものであるとする。このとき, $|x^M|=\|x\|_\infty$ と書ける。定義より,

$$\|x\|_{p} = \left(\sum_{k=0}^{n-1} |x^{k}|^{p}\right)^{\frac{1}{p}}, \quad \|x\|_{\infty} = \max_{0 \le k \le n-1} \{|x^{k}|\} = |x^{M}|$$
 (0.14)

d ノルム

のノルム

ノム-一様

との証明

収束する

\wtrf@n

であるから, 示すべきことは,

$$\left(\sum_{k=0}^{n-1} \left| x^k \right|^p \right)^{\frac{1}{p}} \to \left| x^M \right| \quad (p \to \infty) \tag{0.15}$$

である。まず, $1 のとき,<math>\|x\|_{\infty} \le \|x\|_{p}$ であることを確かめる。これは,

$$0 \le |x^M|^p \le \sum_{k=0}^{n-1} |x^k|^p \tag{0.16}$$

であることと,0 < p のとき, $t \in [0,\infty)$ において $f(t) = t^{\frac{1}{p}}$ が狭義単調増加であること,0 以上 (n-1) 以下の任意の整数 k について $|x^k| \geq 0$ であることから,

$$|x^{M}| = (|x^{M}|^{p})^{\frac{1}{p}} \le \left(\sum_{k=0}^{n-1} |x^{k}|^{p}\right)^{\frac{1}{p}}$$
 (0.17)

より成立。また、0以上 (n-1)以下の任意の整数 k について $0 \le |x^k| \le |x^M|$ であり、

$$0 \le \sum_{k=0}^{n-1} |x^k|^p \le \sum_{k=0}^{n-1} |x^M|^p = n|x^M|^p \tag{0.18}$$

が成立する。更に、n は固定された正整数であるから

$$n^{\frac{1}{p}} \to n^0 = 1 \quad (p \to \infty) \tag{0.19}$$

である。

これらのことから,

$$0 \le \left(\sum_{k=0}^{n-1} \left| x^k \right|^p \right)^{\frac{1}{p}} - \left| x^M \right| \le \left(n \left| x^M \right|^p \right)^{\frac{1}{p}} - \left| x^M \right| \le \left(n^{\frac{1}{p}} - 1 \right) \left| x^M \right| \to 0 \quad (p \to \infty) \quad (0.20)$$

が従い、はさみうちの原理から、

$$\left(\sum_{k=0}^{n-1} \left|x^k\right|^p\right)^{\frac{1}{p}} \to \left|x^M\right| \quad (p \to \infty) \tag{0.21}$$

であり、これは式 (0.15) の成立を意味している。

以降,有限次元線型空間のノルムは例0.10 の一様ノルムであるとする。

記法 0.13. 以下では簡単のために、n-1以下の非負整数の集合を、

$$\mathbf{N}_n := \{ j : j \in \mathbb{N} \land 0 \le j \le n - 1 \}$$

$$(0.22)$$

と書く。

下の整数

\wtrf@n

の不等式

命題 0.14. $I \in \mathbb{R}$ 上の閉区間であるとする。 $f: I \to \mathbb{R}^n$ を連続なベクトル値関数とするとき、

$$\left\| \int_{I} dt \, f(t) \right\| \le \int_{I} dt \, \|f(t)\| \tag{0.23}$$

が成立する。

Proof. I 上可積分な $g: I \to \mathbb{R}$ と絶対値に関する以下の不等式:

$$\left| \int_{I} dt \, g(t) \right| \le \int_{I} dt \, |g(t)| \tag{0.24}$$

を用いる。

$$\forall j \in \mathbf{N}_n, \, \forall t \in I, \, f^j(t) \le |f^j(t)| \le ||f(t)|| \tag{0.25}$$

であるから,

$$\forall j \in \mathbf{N}_n, \ \int_I dt \, f^j(t) \le \int_I dt \, \left| f^j(t) \right| \le \int_I dt \, \|f(t)\| \tag{0.26}$$

である。ここで、式 (D.24) の不等式から、

$$\left| \int_{I} dt \, f^{j}(t) \right| \leq \int_{I} dt \, |f^{j}(t)| \leq \int_{I} dt \, ||f(t)|| \tag{0.27}$$

であるから,

$$\left\| \int_{I} dt \, f(t) \right\| = \max_{0 \le j \le n-1} \left\{ \left| \int_{I} dt \, f^{j}(t) \right| \right\} \le \int_{I} dt \, \|f(t)\|$$
 (0.28)

定義 0.15 (作用素ノルム). 線型作用素 $A: \mathbb{R}^n \to \mathbb{R}^n$ に対して, ||A|| を,

$$||A|| := \sup_{\|x\|=1} \{||Ax||\} \tag{0.29}$$

で定める。

素ノルム

ム具体形

以降, A を線型作用素とし、その (j,k) 成分を a_k^j と書く。

命題 0.16.

$$||A|| = \max_{0 \le j \le n-1} \left\{ \sum_{k=0}^{n-1} \left| a_k^j \right| \right\}$$
 (0.30)

 $Proof. \ \|x\|=1$ のとき, x の各成分の絶対値は 1 以下である。このとき, Ax の第 j 成分 $(Ax)_j$ に関して,

$$\left| (Ax)_j \right| = \left| \sum_{k=0}^{n-1} a_k^j x^k \right| \le \sum_{k=0}^{n-1} \left| a_k^j \right| \left| x^k \right| \le \sum_{k=0}^{n-1} \left| a_k^j \right| \tag{0.31}$$

となり、1つ目の等号成立は、

$$\left[\forall k \in \mathbf{N}_n, \ a_k^j x^k \ge 0\right] \ \lor \ \left[\forall k \in \mathbf{N}_n, \ a_k^j x^k \le 0\right]$$

$$(0.32)$$

のとき,すなわち $a_k^j x^k$ が全て同符号のときである。2 つ目の等号成立は,x の各成分の絶対値が 1 に等しい場合であり,この 2 つの条件は同時に満たすことができる。実際,各 k について, $a_k^j \ge 0$ なら $x^k = 1$ とし, $a_k^j < 0$ なら $x^k = -1$ と定めれば,いずれの等号も成立する。これより,

$$||A|| = \max_{0 \le j \le n-1} \left\{ \sum_{k=0}^{n-1} \left| a_k^j \right| \right\}$$
 (0.33)

角不等式

$$\forall x \in \mathbb{R}^n, \ \|Ax\| \le \|A\| \|x\| \tag{0.34}$$

Proof. 各 k について $|x^k| \le ||x||$ であるから,Ax の第 j 成分について,

$$\left| (Ax)_j \right| = \left| \sum_{k=0}^{n-1} a_k^j x^k \right| \le \sum_{k=0}^{n-1} \left| a_k^j \right| \left| x^k \right| \le \left(\sum_{k=0}^{n-1} \left| a_k^j \right| \right) \cdot \|x\|$$
 (0.35)

が成立して,

$$\forall x \in \mathbb{R}^n, \ \|Ax\| \le \|A\| \|x\| \tag{0.36}$$

命題 0.18. $A, B \in \mathbb{R}^n$ から \mathbb{R}^n への任意の線型作用素とする。このとき、

$$||A + B|| < ||A|| + ||B||, ||AB|| < ||A|||B||$$

$$(0.37)$$

が成立する。

Proof.~A, B o (j,k) 成分をそれぞれ a_k^j, b_k^j とする。まず、

$$\sum_{k=0}^{n-1} \left| a_k^j + b_k^j \right| \le \sum_{k=0}^{n-1} \left| a_k^j \right| + \sum_{k=0}^{n-1} \left| b_k^j \right| \tag{0.38}$$

であるから,

$$\max_{0 \leq j \leq n-1} \left\{ \sum_{k=0}^{n-1} \left| a_k^j + b_k^j \right| \right\} \leq \max_{0 \leq j \leq n-1} \left\{ \sum_{k=0}^{n-1} \left| a_k^j \right| \right\} + \max_{0 \leq j \leq n-1} \left\{ \sum_{k=0}^{n-1} \left| b_k^j \right| \right\} \tag{0.39}$$

であり、 $||A + B|| \le ||A|| + ||B||$ である。

П

次に、mは、

$$\forall \ell \in \mathbf{N}_n, \ \sum_{k=0}^{n-1} \left| b_k^{\ell} \right| \le \sum_{k=0}^{n-1} \left| b_k^{m} \right| \tag{0.40}$$

を満たす、すなわち ||B|| を与える行の添字とする。このとき、

$$\sum_{k=0}^{n-1} \left| \sum_{\ell=0}^{n-1} a_{\ell}^{j} b_{k}^{\ell} \right| \leq \sum_{k=0}^{n-1} \left(\sum_{\ell=0}^{n-1} \left| a_{\ell}^{j} \right| \left| b_{k}^{\ell} \right| \right) = \sum_{\ell=0}^{n-1} \left(\left| a_{\ell}^{j} \right| \sum_{k=0}^{n-1} \left| b_{k}^{\ell} \right| \right) \leq \left(\sum_{\ell=0}^{n-1} \left| a_{\ell}^{j} \right| \right) \left(\sum_{k=0}^{n-1} \left| b_{k}^{m} \right| \right) \quad (0.41)$$

より.

はノルム

ムーその 1

ムーその 2

$$\max_{0 \leq j \leq n-1} \left\{ \sum_{k=0}^{n-1} \left| \sum_{\ell=0}^{n-1} a_{\ell}^{j} b_{k}^{\ell} \right| \right\} \leq \max_{0 \leq j \leq n-1} \left\{ \sum_{\ell=0}^{n-1} \left| a_{\ell}^{j} \right| \right\} \cdot \max_{0 \leq m \leq n-1} \left\{ \sum_{k=0}^{n-1} \left| b_{k}^{m} \right| \right\} \tag{0.42}$$

が従うので、||AB|| < ||A||||B|| である。

 $\det \mathbf{p}_{\mathbf{q}} = \mathbf{p}_{\mathbf{q}} \mathbf{p}_{\mathbf{q}$

prop: 実/**Medi: 作期表VM-定義的不等式** Proof. 及び、命題(),18 定義(),1 の 4 条件を順に確かめる。

- (i) (正値性) 命題0.16 から,各項にある絶対値は非負なので, $\|A\| \ge 0$ である。 (ii) (一意性) 命題0.16 から, $\|A\| = 0$ だとすれば,絶対値の非負性から,どの j に関しても $\sum_{k=0}^{n-1}\left|a_k^j\right|=0$ であり、これが成立するためには全ての (j,k) に関して $A_{jk}=0$ でなければならず、このとき A=O(零行列)である。 prop: 実ノルム-作用素ノルム具体形 (iii)(同次性)命題0.16 から、

$$||cA|| = \max_{0 \le j \le n-1} \left\{ \sum_{k=0}^{n-1} |c| \left| a_k^j \right| \right\} = |c| \cdot \max_{0 \le j \le n-1} \left\{ \sum_{k=0}^{n-1} \left| a_k^j \right| \right\} = |c| ||A||.$$
 (0.43)

(iv) (三角不等式) 命題**(**0.18 から直ちに使う。

問 0.2. \mathbb{R}^n のベクトル x のノルムは例0.10 で述べた一様ノルムとし, \mathbb{R}^n 上の線型作用素 A のノ $\det_{\text{defi:}} \mathbf{E}$ \mathbf{J} \mathbf{J}

$$x = \begin{pmatrix} -1\\3\\-4 \end{pmatrix}, A = \begin{pmatrix} 1 & -1 & 4\\2 & -2 & 3\\-2 & -3 & 0 \end{pmatrix}$$
 (0.44)

とする。このとき、||x|| と ||A|| を計算せよ。

問 0.3. \mathbb{R}^n のベクトルに対して一様ノルムではなく,例0.9 で導入した Euclid ノルム ルムを用いた場 $\det i : \xi / \nu \Delta - \ell \pi \xi / \nu \Delta$ 合、定義0.15 で定義される $\|A\|$ はどのような性質を持つだろうか。例えば、 \mathbb{R}^2 上の一般的な線型 作用素の作用素ノルムを、その成分を用いて具体的に表わせ。(関連:スペクトルノルム)

0.2 Lipschitz 連続 9

0.2 Lipschitz 連続

itz 連続

の連続性

itz 連続

なら連続

m, n を正整数とする。 $A \subseteq \mathbb{R}^m$ とし、 $f: A \to \mathbb{R}^n$ について考える。

定義 0.20 (連続性). f が A 上連続であるとは、

 $\forall \varepsilon \in \mathbb{R}_{>0}, \, \forall x \in A, \, \exists \delta \in \mathbb{R}_{>0}; \, \forall y \in A, \, \left[\|x - y\| < \delta \implies \|f(x) - f(y)\| < \varepsilon \right]$ が成立することである。

定義 0.21 (一様連続性). f が A 上一様連続であるとは,

$$\forall \varepsilon \in \mathbb{R}_{>0}, \ \exists \delta \in \mathbb{R}_{>0}; \ \forall x, \forall y \in A, \ \left[\|x-y\| < \delta \implies \|f(x)-f(y)\| < \varepsilon \right]$$
 が成立することである。

定義 0.22 (Lipschitz 連続). f が A 上 Lipschitz 連続であるとは、

$$\exists L \in \mathbb{R}_{\geq 0}; \, \forall x, \forall y \in A, \, \left[\|f(x) - f(y)\| \le L \|x - y\| \right]$$

$$\tag{0.47}$$

が成立することである。このとき、Lを Lipschitz 定数という。

注意 0.23. Lipschitz 定数は一意的ではない。実際,L が Lipschitz 定数のとき,c>1 を用いると $\|f(x)-f(y)\|\leq L\|x-y\|\leq cL\|x-y\|$ も成立するので, $(L\neq)cL$ も Lipschitz 定数である。上の条件を満たす Lipschitz 定数全体の下限を改めて Lipschitz 定数と呼ぶことにすれば,これは一意である。

-**様連続| 命題 0.24.** A 上 Lipschitz 連続な関数は A 上一様連続である。

Proof. f を A 上 Lipschitz 連続であると仮定し、Lipschitz 定数の一つを L と記す。任意の正数 ε に対して、 $\delta := \varepsilon/(L+1)$ と置けば、 $\delta > 0$ であり、 $\|x-y\| < \delta = \varepsilon/(L+1)$ のとき、 $L\|x-y\| < (L+1)\|x-y\| < \varepsilon$ であり、

$$||f(x) - f(y)|| \le L||x - y|| < (L+1)||x - y|| < \varepsilon \tag{0.48}$$

П

(0.49)

が成立するので一様連続である。

命題 0.25. A 上一様連続な関数は A 上連続である。

 $[\exists a; \forall b, P(a,b)] \implies [\forall b, \exists a; P(a,b)]$

Proof. 一般に, P(a,b) を a, b に関する任意の命題としたとき,

は恒真である。証明木を描いてみると,図だに示すように,式 (0.49) が恒真であることが判る。一様連続性では $\exists \delta$; $\forall x$ の順であるのに対し,連続性では $\forall x$, $\exists \delta$; の順であるから,一様連続なら連続である。

П

なら連続

系 0.26. A 上 Lipschitz 連続な関数は A 上連続である。

Proof. 命題0.24 と命題0.25 から直ちに使う。

itz 連続

命題 0.27. $-\infty < a < b < \infty$ とし、 $I \coloneqq [a,b]$ と定め、 $f \colon I \to \mathbb{R}^n$ は I 上で有界かつ可積分とする。 $F \colon I \to \mathbb{R}^n$ を、

$$F(x) := \int_{a}^{x} dt \, f(t) \tag{0.50}$$

によって定めると、F は I 上 Lipschitz 連続である。

 $Proof. \ x,y \in I$ に対し,

$$F_j(x) - F_j(y) = \int_a^x dt \, f^j(t) - \int_a^y dt \, f^j(t) = \int_u^x dt \, f^j(t)$$
 (0.51)

である。f は I 上で有界であるから,

$$L := \sup_{t \in I} \{ \| f(t) \| \} \ge 0 \tag{0.52}$$

と定めておくと, I 上で常に $\left|f^j(t)\right| \leq L$ であり,式 (0.24) により,

$$|F_j(x) - F_j(y)| = \left| \int_y^x dt \, f^j(t) \right| \le \left| \int_x^y dt \, \left| f^j(t) \right| \le \left| \int_x^y dt \, L \right| = L|x - y| \tag{0.53}$$

である。これより、I上の任意のx, yに関して

$$||F(x) - F(y)|| \le L|x - y| \tag{0.54}$$

が成立するから、F は I 上 Lipschitz 連続である。

itz 連続

命題 0.28. a < b とする。 $f \colon [a,b] \to \mathbb{R}^n$ は [a,b] 上で連続,(a,b) 上で微分可能とし,(a,b) 上で ||f'(t)|| は有限であるとする。このとき,f は [a,b] 上で Lipschitz 連続である。

Proof. (a,b) 上での ||f'(t)|| の有界性から,

$$L := \sup_{t \in (a,b)} \max_{j} \left\{ \left| (f^{j})'(t) \right| \right\} < \infty \tag{0.55}$$

が定まり、 $L \ge 0$ である。f の各成分について、平均値の定理より、

$$\forall j \in \mathbf{N}_n, \forall x, \forall y \in [a, b], \left[x < y \Rightarrow \exists c_j \in (a, b); \left((x < c_j < y) \land \frac{f^j(x) - f^j(y)}{x - y} = (f^j)'(c_j) \right) \right]$$

$$\tag{0.56}$$

が成立する。このような c_i を取ったとき, $(f^j)'(c_i) \leq L$ であるから,

$$||f(x) - f(y)|| = \max_{j} \{ |f^{j}(x) - f^{j}(y)| \} = \max_{j} \{ |(f^{j})'(c_{j})| |x - y| \} \le L|x - y|$$
 (0.57)

\wtrf@n

である。x>y のときにも平均値の定理により適当な定数 \tilde{c}_j の存在が言えるので,式 (0.57) は同様に成立する。x=y のとき, $\|0\|\leq L|0|$ は成立するので式 (0.57) も成立する。これより,[a,b] 上の任意の x,y に関して $\|f(x)-f(y)\|\leq L|x-y|$ の成立が言えた。従って,f は Lipschitz 連続である。