

Sumário

1. Congruência - continuação

Congruência - continuação

Teorema 3

Se dois ângulos de um triângulo são congruentes, então o triângulo é isósceles.

As figuras abaixo são cópias do mesmo triângulo: uma de frente e outra de verso.

Figura 2: Verso

Olhe agora para os triângulos ABC e ACB:

- ▶ O ângulo \hat{A} do 1° triângulo é congruente ao ângulo \hat{B} do 2;
- ► O ângulo \hat{B} do 1° triângulo é congruente ao ângulo \hat{A} do 2;
- ightharpoonup AB = BA

Pelo teorema 2 (LAL), segue-se que

$$\triangle ABC = \triangle ACB$$
.

lacktriangle O comprimento do lado oposto ao ângulo lpha é igual nos dois triângulos. Portanto,

$$AC = BC$$

e o triângulo é isósceles.

Teorema 4 (Caso LLL)

Se dois triângulos têm três lados respectivamente congruentes, então os triângulos são congruentes.

Hipótese:
$$\begin{cases} AB = DE \\ AC = DF \\ BC = EF \end{cases}$$

Tese: $\triangle ABC = \triangle DEF$

Na semirreta \overrightarrow{BC} , e no semiplano que não contém o ponto A, tracemos um ângulo congruente a \hat{E} , com vértice em B.

No outro lado desse ângulo, marquemos um ponto P de modo que BP = DE.

Ligando P a C, obtemos o triângulo PBC congruente ao triângulo DEF (LAL: BC = EF, $P\hat{B}C = D\hat{E}F \in BP = ED$). Com isso, PC = DF.

- ► Traçando o segmento \overline{AP} , os triângulos PAB e PCA são isósceles.
- Com isso, $B\hat{A}P = B\hat{P}A = P\hat{A}C = A\hat{P}C$. $\hat{D} = \hat{A} = B\hat{P}A + P\hat{A}C = A\hat{P}C = B\hat{A}P + P\hat{A}C = \hat{A}$

Assim,

- ightharpoonup $\triangle PBC = \triangle DEF;$
- ightharpoonup $\triangle PBC = \triangle ABC$ (LAL);
- ► Concluímos que $\triangle DEF = \triangle ABC$.

Mediatriz

Definição 1

Chama-se **mediatriz** de um segmento a reta perpendicular ao mesmo em seu ponto médio.

Teorema 5

Todo ponto da mediatriz de um segmento é equidistante dos extremos desse segmento.

- ma 5. Demonstração
- Seja M o ponto médio de AB.
 Seja P um ponto qualquer da mediatriz de AB diferente de M.
- ► Trace os segmentos *PA* e *PB*.

- ► Concluímos que $\triangle PMA = \triangle PMB$ (LAL: \overline{PM} lado comum, $P\hat{M}A = 90^{\circ} = P\hat{M}B$ e AM = MB).
- ightharpoonup Portanto, PA = PB (lados opostos a ângulos congruentes).

Teorema 6

Se um ponto é equidistante dos extremos de um segmento, então ele pertence a mediatriz do segmento.

Hipótese: PA = PB

Tese: P pertence a mediatriz de

 \overline{AB} .

- ▶ Sejam *M* o ponto médio do segmento \overline{AB} e $P \neq M$ um ponto tal que PA = PB.
- ightharpoonup Tracemos o segmento \overline{PM} .
- ▶ Assim, $\triangle PMA = \triangle PMB$ (LLL)

- ► Os ângulos AMP e BMP são congruentes (ângulos opostos a lados congruentes).
- $ightharpoonup A\hat{M}P + B\hat{M}P = 180^{\circ}.$
- ▶ Portanto, $A\hat{M}P = B\hat{M}P = 90^{\circ}$.

Ângulos Não-Adjacentes

No triângulo abaixo, os ângulos internos \hat{A} e \hat{B} são ditos **não-adjacentes** ao ângulo externo \hat{ACF} .

Teorema 7

Todo ângulo externo de um triângulo é maior que cada um dos ângulos internos que não lhes são adjacentes.

Figura 3: Por exemplo, temos $\rho > \alpha$ e $\rho > \beta$.

- ▶ **Hipótese:** $A\hat{C}F$ é um ângulo externo do $\triangle ABC$.
- ► Tese:
 - 1. $A\hat{C}F > A\hat{B}C$.
 - 2. $\hat{ACF} > \hat{BAC}$.

Seja M o ponto médio do lado \overline{AC} .

Na semirreta \overrightarrow{BM} , marquemos um ponto E tal que BM = ME.

▶ Desta forma, $\triangle AMB = \triangle CME$ (LAL: AM = MC, $A\hat{M}B = C\hat{M}E$ - ângulos opostos pelo vértice - e BM = ME).

Consequentemente, $\hat{A} = M\hat{C}E$ (ângulos opostos a lados congruentes).

► Como $A\hat{C}F = A\hat{C}E + E\hat{C}F = \hat{A} + E\hat{C}F$, segue-se que $A\hat{C}F > \hat{A}$.

Exercício 1

Repita este argumento, em outra figura conveniente, para provar que $A\hat{C}F > A\hat{B}C$.

Corolário 1

Corolário 1

Se um triângulo tem um ângulo reto, então os demais ângulos são agudos.

- ► Hipótese: Ĉ = 90°.
 ► Tese: Â < 90° e B̂ < 90°.

Se $\hat{C} = 90^{\circ}$, então seu ângulo externo é $\hat{\alpha} = 90^{\circ}$.

- Pelo Teorema 7, os ângulos não adjacentes \hat{A} e \hat{B} são menores que $\hat{\alpha}$.
- Portanto,

$$\hat{A} < 90^{\circ}$$

$$\hat{B} < 90^{\circ}$$

Triângulo Retângulo

Definição 2

Um triângulo que possui um ângulo reto é denominado triângulo retângulo.

- O lado oposto ao ângulo reto é chamado hipotenusa.
- Os outros lados são denominados catetos do triângulo.

Corolário 2

Corolário 2

Por um ponto não pertencente a uma reta, passa uma única reta perpendicular a reta dada.

- ▶ Hipótese: $C \notin r$.
- ► **Tese:** Existe uma única reta que passa por *C* e é perpendicular a reta *r*.

Existência:

- ➤ Seja *r* uma reta e *C* um ponto fora dela.
- Trace na reta r um ponto D tal que CD = CB.

Existência:

O triângulo *DCB* é isósceles, logo sua bissetriz é também sua mediana e sua altura (Teorema 2).

Existência:

Assim, a bissetriz de \hat{C} é uma reta perpendicular à reta r que passa por C.

Unicidade:

Suponha, por absurdo, que existam duas retas perpendiculares à reta *r*, que passam por *C*.

Unicidade:

- O triângulo *CFE* possui dois ângulos retos (*CFE* e *CEF*).
- Mas, pelo Corolário 1, se um ângulo for reto os outros devem ser agudos, contradizendo a afirmação acima.