приложение 4

АЛГОРИТМЫ ИМИТАЦИИ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

В таблице приводятся алгоритмы имитации некоторых случайных величин, часто применяемых при решении задач моделирования. Алгоритм имитации гауссовского распределения рассмотрен в п.3.3.3. Остальные алгоритмы получены на основе метода обратных функций.

Распределение	Алгоритм имитации	Примечание
Экспоненци- альное	$X = -\frac{1}{\lambda} \ln R$	λ =1/ \overline{X} , где \overline{X} - математическое ожидание
Гауссовское (нормальное)	$X = m + \sigma \sqrt{2} (\sum_{i=1}^{6} R_i - 3)$	m — математическое ожидание, σ - стандартное отклонение
Равномерное	X = a + (b - a)R	а и b — границы воз- можных значений ве- личины
Треугольное	$X = \begin{cases} a + \sqrt{R(b-a)(c-a)}, & 0 \le R < (c-a)/(b-a) \\ b - \sqrt{(1-R)(b-a)(b-c)}, & (c-a)/(b-a) \le R < 1 \end{cases}$	а и b – границы возможных значений величины, с – мода (точка максимума плотности распределения) случайной величины
Эрланга <i>k</i> -го порядка	$X = -\frac{1}{k\lambda} \sum_{i=1}^{k} R_i$	λ – параметр распре- деления