Paper Summary Learning in situ: a randomized experiment in video streaming

Sarthak | 2020CS10379

June 2024

Problem Statement

The paper investigates the effectiveness of video-streaming algorithms for adaptive bitrate (ABR) selection and network prediction in real-world settings. It aims to determine the practicality of sophisticated machine-learned ABR algorithms compared to simpler, traditional methods.

Motivation

- Video streaming is the predominant Internet application, making up almost three quarters of all traffic
- Existing ABR algorithms, particularly those using machine learning, often perform well in controlled simulations but struggle in real-world applications due to the complexity and variability of network conditions
- Need to create a learned ABR algorithm that robustly performs well over the wild Internet

Key Idea

To use supervised learning in situ, with data from the real deployment environment, to train a probabilistic predictor of upcoming chunk transmission times. This then informs a classical control policy.

Framework & Methodology

Puffer

It is a Platform for experimenting with Adaptive Bitrate (ABR) algorithms by live-streaming television channels to a diverse user base

- A WebSocket (TLS/TCP) connection is established between the client and the server daemon, which is configured with different TCP congestion control and ABR schemes
- Captures details when a chunk is sent, including time, session ID, size, SSIM index etc.
- Collects client-side information such as buffer size, cumulative rebuffering time, and events like stalling or playback starting
- The relationship between bitrate and quality varies for each chunk, highlighting the importance of using SSIM for QoE instead of just bitrate
- Users are randomly assigned to different ABR or congestion control schemes without their knowledge

Fugu

It is an ABR algorithm that leverages advanced predictive techniques to optimize video streaming quality

Transmission Time Predictor

- It is a neural network that predicts the transmission time of video chunks based on various features
- It is probabilistic, providing a probability distribution of possible transmission times rather than a single prediction
- Trained using supervised learning on past data
- Objective function considers the SSIM of video chunks, aiming to maximize visual quality rather than just bitrate

Model-Based Controller

- Fugu uses a Model Predictive Control (MPC) to make decisions about which video chunks to send
- Probabilistic nature of the TTP allows Fugu to incorporate uncertainty into its decision making process, enhancing robustness

Contributions

- Evaluated various ABR algorithms through a large-scale, randomized controlled trial using a live video-streaming service called Puffer. This involved streaming 38.6 years of video to 63,508 users over a year
- Introduced Fugu, an ABR algorithm combining classical control (MPC) with a probabilistic predictor trained in situ using real deployment data to outperform other schemes
- Highlighted the difficulty of detecting small performance improvements due to the heavy-tailed nature of network behavior and rebuffering variability
- Provided an open platform and dataset for the research community to further investigate and develop ABR algorithms

Strengths

- Testing provided insights into real world performance of existing ABR algorithms
- Fugu being robust and deployable in real world environments
- Open research platform fosters collaboration and transparency

Weaknesses & Limitations

- Findings may be specific to the conditions and user behaviors observed in the Puffer deployment
- Functions somewhat as a black box, underlying reasons for observed performance differences amongst existing ABR algorithms are not clear
- Requires long periods of data collection to achieve statistically significant results, difficult to detect small performance improvements