Mathe-Ergänzungskurs

Linus Yury Schneeberg

2025-2027

Inhaltsverzeichnis

Ι	Q1		2
1	Ree	teelle Zahlenfolgen	
	1.1	Definitionen	2
	1.2	Beweis (rekursive Summenfolge = explizite)	3
	1.3	Satz (Jede konvergente Folge ist beschränkt)	4
	1.4	Satz von Bolzano-Weierstraß (I und II)	4
	1.5	Cauchy-Folgen	6
	1.6	Einschachtelungssatz/Sandwichlemma	7
	1.7	Teilfolgekriterium	8

Teil I

$\mathbf{Q1}$

1 Reelle Zahlenfolgen

1.1 Definitionen

Definition 1.1 (Reelle Zahlenfolge).

 $a\colon \mathbb{N} \to \mathbb{R} \qquad \qquad \textit{heißt reelle Zahlenfolge}.$

$$n \mapsto a(n) = a_n$$

Definition 1.2 (Bildungsvorschrift). Als Bildungsvorschrift bezeichnet man

(a) a(n) = f(n) z.B. $a(n) = n^2$ (explizit)

(b)
$$a(n) = f(a_1, \dots, a_{n-1}, n)$$
 z.B. $a(n+1) = a(n) + a(n-1)$ (rekursiv)

Definition 1.3 (Monotonie). Eine beliebige Folge (a_n) ist...

1. ...monton steigend genau dann, wenn

$$\forall n_1, n_2 \in \mathbb{N} : n_1 > n_2 \implies a_{n_1} \geq a_{n_2}.$$

2. ...monoton fallend genau dann, wenn

$$\forall n_1, n_2 \in \mathbb{N} : n_1 > n_2 \implies a_{n_1} \leq a_{n_2}.$$

3. ...streng monoton steigend genau dann, wenn

$$\forall n_1, n_2 \in \mathbb{N} \colon n_1 > n_2 \implies a_{n_1} > a_{n_2}.$$

4. ...streng monoton fallend genau dann, wenn

$$\forall n_1, n_2 \in \mathbb{N} \colon n_1 > n_2 \implies a_{n_1} < a_{n_2}.$$

Definition 1.4 (Beschränktheit). Eine beliebige Folge (a_n) ist...

1. ...nach unten beschränkt genau dann, wenn

$$\exists a \in \mathbb{R} \colon \forall n \in \mathbb{N} \colon a_n \ge a.$$

2. ...nach oben beschränkt genau dann, wenn

$$\exists b \in \mathbb{R} \colon \forall n \in \mathbb{N} \colon a_n \leq b.$$

3. ...beschränkt genau dann, wenn sie nach oben und nach unten beschränkt ist.

Definition 1.5 (Supremum). Das Supremum einer beliebigen nach oben beschränkten Folge (a_n) ist die kleinste obere Schranke dieser Folge.

Definition 1.6 (Infimum). Analog zum Supremum ist das Infimum einer beliebigen nach unten beschränkten Folge (a_n) die größte untere Schranke dieser Folge.

1.2 Beweis (rekursive Summenfolge = explizite)

Satz 1.1. Seien $a_1(n)$ und $a_2(n)$ Folgen mit den Bildungsforschriften

$$a_1(n) = a_1(n) + (n+1)$$
 $a_2(n) = \sum_{k=0}^{n} k$
 $a_1(0) = 0.$

Dann gilt $\forall n : a_1(n) = a_2(n)$.

Beweis. Der Beweis wird durch vollständige Induktion geführt. Induktionsanfang: Für n=0

$$a_1(0) = 0 (1)$$

$$a_2(0) = \sum_{k=0}^{0} k = 0 (2)$$

$$(1) \wedge (2) \implies a_1(0) = a_2(0)$$

Induktionsschritt: Induktionshypothese: $\exists n : a_1(n) = a_2(n)$ Zu zeigen ist, Ind. Hypot. $\implies a_1(n+1) = a_2(n+1)$

$$a_1(n+1) = a_1(n) + (n+1)$$

= $a_2(n) + (n+1)$ Ind. Hypot.
= $\sum_{k=0}^{n} k + (n+1)$
= $\sum_{k=0}^{n+1} k$
= $a_2(n+1)$

QED

1.3 Satz (Jede konvergente Folge ist beschränkt)

Satz 1.2. Sei $(a_n)_{n=1}^{\infty}$ eine konvergente Folge mit dem Grenzwert a. Dann gilt

$$\exists m, M \in \mathbb{R} \colon \forall n \in \mathbb{N} \colon m < a_n < M.$$

Beweis. Da a_n gegen a konvergiert gilt

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \forall n \geq N_{\varepsilon} \colon |a_n - a| < \varepsilon.$$

Da $|a_n - a| < \varepsilon$ in der oberen Aussage äquivalent zu $-x < a_n < x$ ist, gilt auch

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \forall n \geq N_{\varepsilon} \colon -\varepsilon < a_n - a < \varepsilon.$$

Für ein bestimmtes $\varepsilon > 0$ existiert also ein N_{ε} , so dass für alle $n \geq N_{\varepsilon}$ a_n beschränkt ist. Da es nur endlich viele Folgenglieder für $n < N_{\varepsilon}$ gibt, lässt sich eine obere Grenze als $max(\{a_n|n < N_{\varepsilon}\} \cup \{\varepsilon + a\})$ und eine untere Grenze als $min(\{a_n|n < N_{\varepsilon}\} \cup \{-\varepsilon + a\}\})$ berechnen. QED

1.4 Satz von Bolzano-Weierstraß (I und II)

Satz 1.3 (Satz von Bolzano-Weierstraß I). Jede beschränkte Folge hat eine konvergente Teilfolge.

Beweis. $(a_n)_{n=1}^{\infty}$ sei beschränkt durch $m \leq a_n \leq M$ für alle $n \in \mathbb{N}$. Man teile das Intervall [n,M] in zwei Teile bei $\frac{m+M}{2}$.

- 1. Fall: Auf $\frac{m+M}{2}$ liegen unendlich viele Folgeglieder.
- 2. Fall: In $[m, \frac{m+M}{2}[$ liegen unendlich viele Folgeglieder. Dann beginne mit $[m, \frac{m+M}{2}[$ von vorne.
- 3. Fall: In $]\frac{m+M}{2},M]$ liegen undenlich viele Folgeglieder. Dann beginne mit $]\frac{m+M}{2},M]$ von vorne.

Das Verfahren...

- (a) ... bricht mit Eintreten des ersten Falls ab und hat damit eine konvergente Teilfolge.
- (b) ... setzt sich unendlich fort und erzeugt eine Folge von Intervallen mit
 - $I_n \subset I_{n-1}, I_0 = [m; M],$
 - Länge von $I_n = \frac{M-m}{2^n} \stackrel{n \to \infty}{\to} 0$,
 - $\bullet\,$ Jedes Intervall enthält unendlich viele Folgeglieder.

Zu dieser Intervallschachtelung gehört genau eine reelle Zahl. Nimmt man aus jedem Intervall das Folgeglied mit dem kleinsten Index, welches noch nicht vorher ausgewählt wurde, erhält man eine Teilfolge, die gegen diese Zahl konvergiert.

QED

Satz 1.4 (Satz von Bolzano-Weierstraß II). Jede beschränkte und monotone Folge ist konvergent.

Beweis. O.B.d.A (Ohne Beschränkung der Allgemeinheit) sei $(a_n)_{n=1}^{\infty}$ monoton wachsend. Sei \sup das Supremum von (a_n) .

Weil sup das Supremum von (a_n) ist, gilt

$$\forall n \in \mathbb{N}: a_n \leq \sup \land \forall \varepsilon > 0: \exists N_{\varepsilon} \in \mathbb{N}: \sup -\varepsilon < a_{N_{\varepsilon}}.$$

Wir zeigen nun, dass (a_n) gegen sup konvergiert, mit anderen Worten:

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \colon \forall n > N_{\varepsilon} \colon |a_n - \sup| < \varepsilon. \tag{1}$$

Es gilt

$$|a_n - sup| < \varepsilon$$

 $\iff sup - a_n < \varepsilon$ weil $sup > a_n$
 $\iff sup - \varepsilon < a_n$

Aussage (1) ist also wahr genau dann, wenn

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \colon \forall n > N_{\varepsilon} \colon sup - \varepsilon < a_n.$$

Laut Definition des Supremums (1.5) gilt $\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \sup -\varepsilon < a_{N_{\varepsilon}}$. Weil (a_n) monoton wachsend ist, gilt auch $\forall n > N_{\varepsilon} \colon a_{N_{\varepsilon}} \leq a_n$. Daraus folgt, dass (1) wahr ist und (a_n) gegen \sup konvergiert. QED

1.5 Cauchy-Folgen

Definition 1.7. Eine Folge $(a_n)_{n=1}^{\infty}$ heißt Cauchy-Folge (altmodisch auch Fundamentalfolge), wenn gilt:

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \forall m, n \in \mathbb{N} \colon m, n \geq N_{\varepsilon} \implies |a_m - a_n| < \varepsilon$$

Lemma 1.5.

$$\forall x, y \in \mathbb{R} \colon |x+y| \le |x| + |y|$$

Beweis. Seien $x, y \in \mathbb{R}$ und beliebig, aber fest. Da ein beliebiges $a \in \mathbb{R}$ entweder positiv (a = |a|) oder negativ (a = -|a|) ist (und -a auch) gilt:

$$a \le |a| \land -a \le |a| \tag{1}$$

Für x + y müssen zwei Fälle überprüft werden:

1. Fall: $x + y \ge 0$

$$|x+y| = x+y$$
(1) $\implies x+y \le |x|+|y|$

2. Fall: $x_y < 0$

$$|x+y| = -x - y$$

$$(1) \implies -x - y \le |x| + |y|$$

QED

Satz 1.6. In den reellen Zahlen (in jeder topologisch abgeschlossenen Menge mit Abstandsbegriff) sind Konvergenz und Cauchy-Eigenschaft äquivalent.

Beweis. (\Longrightarrow) Sei $(a_n)_{n=1}^{\infty}$ konvergent gegen a. Zu zeigen ist, dass (a_n) eine Cauchy-Folge ist:

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \forall m, n \in \mathbb{N} \colon m, n \geq N_{\varepsilon} \implies |a_m - a_n| < \varepsilon$$

Wir wissen, dass (a_n) gegen a konvergiert. Es gilt also

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \colon \forall n > N_{\varepsilon} \colon |a_n - a| < \varepsilon.$$

Weil die Aussage für alle ε (also auch für $\frac{\varepsilon}{2}$) gilt, finden wir auch ein N_{ε} und ein M_{ε} , so dass gilt

$$\forall \varepsilon > 0 \colon \forall n > N_{\varepsilon}, m > M_{\varepsilon} \colon |a_n - a| + |a_m - a| < \varepsilon.$$

Laut Lemma 1.5 gilt also auch

$$\forall \varepsilon > 0 : \forall n > N_{\varepsilon}, m > M_{\varepsilon} : |a_m - a + a - a_n| \le |a_n - a| + |a_m - a| < \varepsilon.$$

Das impliziert

$$\forall \varepsilon > 0 \colon \forall n > N_{\varepsilon}, m > M_{\varepsilon} \colon |a_m - a_n| < \varepsilon.$$

Das ist äquivalent zur Definition der Cauchy-Folge, weil man ein K_{ε} bestimmen kann, welches größer oder gleich N_{ε} und M_{ε} ist. Man wähle also $K_{\varepsilon} := \max\{N_{\varepsilon}, M_{\varepsilon}\}$. Dann gilt

$$\forall \varepsilon > 0 \colon \forall n, m > K_{\varepsilon} \colon |a_m - a_n| < \varepsilon.$$

Damit ist (a_n) eine Cauchy-Folge.

 (\Leftarrow) Sei (b_n) eine Cauchy-Folge. Dann gilt

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \forall m, n \geq N_{\varepsilon} \colon |b_m - b_n| < \varepsilon.$$

Weil diese Aussage für <u>alle</u> $m, n \geq N_{\varepsilon}$ gilt, gilt sie auch für $n = N_{\varepsilon}, m \geq N_{\varepsilon}$. Das bedeutet, dass alle b_m nicht weiter von $b_{N_{\varepsilon}}$ entfernt sind als ε . Oder auch

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \forall m \geq N_{\varepsilon} \colon |b_m - b_{N_{\varepsilon}}| < \varepsilon.$$

Diese Aussage sei nicht zu verwechseln mit der Definition der Konvergenz. Der entscheidende Unterschied ist, dass a_{N_ε} kein fester Wert ist. Was allerdings aus dieser Aussage folgt ist, dass (b_m) für $m \geq N_\varepsilon$ beschränkt ist. Die Folge ist auch für alle $m < N_\varepsilon$ beschränkt, weil es nur endlich viele Folgeglieder mit diesem Kriterium gibt. Es lässt sich also eine obere Schranke als $\max{\{b_n|n < N_\varepsilon\}}$ und eine untere Schranke als $\min{\{b_n|n < N_\varepsilon\}}$ berechnen. . . . QED

:

1.6 Einschachtelungssatz/Sandwichlemma

Satz 1.7 (Einschachtelungssatz/Sandwichlemma). Seien $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$ und $(c_n)_{n=1}^{\infty}$ beliebige Folgen mit $\forall n \in \mathbb{N} \colon a_n \leq b_n \leq c_n$ und $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = g$. Dann konvergiert auch (b_n) gegen g.

Beweis. Zu zeigen ist

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \forall n > N_{\varepsilon} \colon |b_n - q| < \varepsilon.$$

Gegeben ist

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon}, M_{\varepsilon} \in \mathbb{N} \colon \forall n > N_{\varepsilon}, m > M_{\varepsilon} \colon |a_n - g| < \varepsilon \land |c_m - g| < \varepsilon.$$

Es existiert also für alle $\varepsilon > 0$ ein N_{ε} und ein M_{ε} , so dass für $K_{\varepsilon} = \max\{N_{\varepsilon}, M_{\varepsilon}\}$ gilt

$$\forall k > K_{\varepsilon} \colon |a_k - g| < \varepsilon \land |c_k - g| < \varepsilon.$$

Das und $\forall n \in \mathbb{N} \colon a_n \leq b_n \leq c_n$ implizieren

$$\forall k > K_{\varepsilon} \colon -\varepsilon < a_k - g \le b_k - g \le c_k - g < \varepsilon$$

$$\Longrightarrow \forall k > K_{\varepsilon} \colon -\varepsilon < b_k - g < \varepsilon$$

$$\Longleftrightarrow \forall k > K_{\varepsilon} \colon |b_k - g| < \varepsilon$$

 (b_n) ist also ebenfalls konvergent gegen g.

QED

1.7 Teilfolgekriterium

Satz 1.8 (Teilfolgekriterium). Eine Folge $(a_n)_{n=1}^{\infty}$ konvergiert genau dann gegen g, wenn jede Teilfolge von (a_n) ebenfalls gegen g konvergiert.

Beweis. (\iff) Wenn jede Teilfolge von (a_n) gegen g konvergiert, konvergiert auch (a_n) gegen g, weil (a_n) eine Teilfolge von (a_n) ist.

 (\Longrightarrow) Indirekter Beweis.

Annahme: Es gibt eine Teilfolge, die nicht gegen g konvergiert. Dann existiert eine streng monoton steigende Folge von natürlichen Zahlen $(n_k)_{k=1}^{\infty}$, so dass die Folge $b_k = a_{n_k}$ eine Teilfolge von (a_n) ist, für die gilt

$$\neg \forall \varepsilon > 0 \colon \exists K_{\varepsilon} \in \mathbb{N} \colon \forall k > K_{\varepsilon} \colon |b_{k} - g| < \varepsilon$$

$$\iff \neg \forall \varepsilon > 0 \colon \exists K_{\varepsilon} \in \mathbb{N} \colon \forall k > K_{\varepsilon} \colon |a_{n_{k}} - g| < \varepsilon$$
(1)

Weil (a_n) gegen g konvergiert, gilt

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \forall m > N_{\varepsilon} \colon |a_m - q| < \varepsilon.$$

Weil $n_m \geq m > N_{\varepsilon}$ (strenge Monotonie von (n_k)), gilt

$$\forall \varepsilon > 0 \colon \exists N_{\varepsilon} \in \mathbb{N} \colon \forall m > N_{\varepsilon} \colon |a_{n_m} - g| < \varepsilon,$$

was im Widerspruch zu (1) steht.

QED