CS 3383 Theory of Automata Exam 1 Review

1. Given the following finite automaton and strings, for each string indicate if the string is accepted by the automaton or not (Yes or No).

- (a) ε
- (b) abaa
- (c) abbab
- (d) aaabbbabbsba
- 2. Given the following nondeterministic finite automaton and strings, for each string indicate if the string is accepted by the automaton or not (Yes or No).

- (a) ε
- (b) aaabb
- (c) abb
- (d) aaa

- 3. For each of the following strings, answer Yes of no to the question of whether the string is a member of the language for the regular expression: $a^*(b \cup ba)^*a(b)^*$
 - (a) ε
 - (b) abaa
 - (c) baaba
 - (d) bbbababb
 - (e) baaabb
- 4. Draw a DFA the accepts the language $\{\omega \mid \omega \in (a \cup b)^*, \ \omega \text{ starts with } bb \text{ and ends with an } a.\}$.
- 5. Give a regular expression for the language $\{\omega \mid \omega \in (a \cup b)^*, \ \omega \text{ starts}$ with 2 (or more) of the same character or ends with 2 or more b's (or both). $\}$.
- 6. Let L_1 be the language accepted by the DFA in question 1. Give the DFA for $\overline{L_1}$ (i.e. the complement).
- 7. Given the following DFAs for languages L_1 and L_2 , give the DFA for $L_1 \cap L_2$.

- 8. Using the construction from Kleene's Theorem, give the NFA for the regular expression $((a \cup b)^* \cup b^*a)$ (do EXACTLY as done in class no simplifications).
- 9. Convert the following NFA to a DFA.

- 10. Use the pumping lemma to prove $L = \{a^jb^2j \mid j < 0\}$ is not regular.
- 11. Use the pumping lemma to prove $L = \{a^j b^i \mid i < 2j + 5\}$ is not regular.

12. Given the following GNFA, using the construction from Kleene's Theorem, find the regular expression for the GNFA by removing states q_1 , q_2 , and q_3 in that order.

