Análise de Sobrevivência em Pacientes com Câncer de Pulmão

Ramon Lima de Oliveira Tavares

Universidade Estadual da Paraíba Departamento: CCT - Centro de Ciência e Tecnologia Disciplina: Análise de Sobrevivência

Professor: NS

14 de junho de 2024

Introdução

O câncer de pulmão de pequenas células é uma forma agressiva de câncer com um prognóstico desfavorável. Estudos clínicos mostram que a sobrevivência dos pacientes pode ser influenciada por fatores como o tipo de célula cancerígena, idade e tratamentos administrados. A análise de sobrevivência, usando técnicas como Kaplan-Meier, Nelson-Aalen e modelo de Cox, é essencial para entender o impacto desses fatores na sobrevivência. Este trabalho visa analisar como as características dos pacientes, especialmente o tipo de célula cancerígena e a medida de performance (Karnofsky), afetam o tempo de sobrevivência, buscando trazer indicativos para melhorar os tratamentos e a tomada de decisões clínicas.

Objetivos

- Estimar as funções de sobrevivência e risco para diferentes tipos de células cancerígenas.
- Realizar testes estatísticos para comparar as curvas de sobrevivência entre grupos de tratamento.
- Ajustar um modelo de Cox para investigar a associação entre diversas variáveis (tipo de célula, idade, índice de Karnofsky) e o tempo de sobrevivência.

Metodologia

Utilizaremos abordagens estatísticas de análise de sobrevivência para entender os fatores que influenciam a sobrevivência de pacientes com câncer de pulmão de pequenas células. As etapas incluem:

- Estimativa da Sobrevivência: Usaremos o método de Kaplan-Meier para estimar a função de sobrevivência para diferentes tipos de células cancerígenas.
- Análise do Risco: Utilizaremos o método de Nelson-Aalen para entender como o risco de morte se acumula ao longo do tempo para cada tipo de célula cancerígena.
- Comparação entre Grupos: Faremos uso do teste de log-rank para comparar as curvas de sobrevivência entre os diferentes tipos de células cancerígenas.
- Modelagem Estatística: Ajustaremos um modelo de Cox para investigar a associação entre variáveis como tipo de célula, idade, índice de Karnofsky, e o tempo de sobrevivência dos pacientes.

Resumo estatístico dos grupos por tipos de célula

Tabela: Resumo estatístico dos grupos por tipos de célula

Tipo	Idade Média	Tempo mediano	Tempo mínimo	Tempo máximo
Squamous	59	111	1	999
Smallcell	60	51	2	392
Adeno	57	51	3	186
Large	56	156	12	553

Histograma dos grupos por tipos de célula

Figura: Distribuição dos Tipos de Célula

Resultados do teste Kaplan-Meier

Tabela: Resultados do teste Kaplan-Meier

Tempo	Célula Escamosa	Célula Pequena	Célula Adeno	Célula Grande
1	0.943	0.979	0.964	0.963
8	0.914	0.959	0.926	0.926
991	0.036	0.054	0.054	0.043
999	0.000	0.000	0.000	0.016

Resultados do teste Nelson-Aalen

Tabela: Resultados do teste Nelson-Aalen

Tempo	Célula Escamosa	Célula Pequena	Célula Adeno	Célula Grande
1	0.944	0.979	0.964	0.964
8	0.916	0.959	0.927	0.927
991	0.054	0.055	0.060	0.043
999	0.020	0.016	0.016	0.016

Resultados do teste Nelson-Aalen e Kaplan-Meier

Figura: Distribuição dos Tipos de Célula

Resultado do teste de log-rank

Tabela: Resultado do teste de log-rank.

Grupo	Ν	Observados	Esperados	$(O - E)^2 / E$
Escamosa	35	31	47.7	5.82
Pequena	48	45	30.1	7.37
Adenocarcinoma	27	26	15.7	6.77
Grande	27	26	34.5	2.12

Resultado do teste de log-rank

Figura: Distribuição dos Tipos de Célula

Resultados do Modelo de Cox

Tabela: Resultados do Modelo de Cox

Variável	Coeficiente	Exp(Coef)	Valor-p	Significância
Célula Pequena	0.733	2.082	0.004	**
Célula Adeno	1.199	3.318	< 0.001	***
Célula Grande	0.324	1.383	0.242	
ldade	-0.006	0.994	0.520	
Karnofsky	-0.032	0.968	< 0.001	***

- celltypesmallcell: Risco de morte 2 vezes maior que célula escamosa (p = 0.004).
- celltypeadeno: Risco de morte 3 vezes maior que célula escamosa (p <0.0001).
- Idade: Impacto insignificante no risco de morte (p = 0.520).
- Karnofsky: Diminuição significativa no risco de morte (p <0.0001).

Testes indicam que o modelo é estatisticamente significativo $(p \le 0.0001)$

Resultados do Modelo de Cox (índice de Karnofsky)

Figura: Regressão de Karnofsky

Conclusões

A análise ressaltou a influência significativa do tipo de célula cancerígena e do índice de Karnofsky na sobrevivência de pacientes com câncer de pulmão. Esses resultados destacam a importância desses fatores na predição da sobrevivência e sugerem sua consideração nas estratégias de tratamento. Compreender melhor esses aspectos pode permitir a direção de intervenções e cuidados clínicos de forma mais precisa, potencialmente melhorando os resultados e a qualidade de vida dos pacientes. A combinação de métodos estatísticos avançados com conhecimentos clínicos e biológicos pode proporcionar uma compreensão mais abrangente da doença, impulsionando práticas de tratamento mais eficazes e contribuindo para o avanço da oncologia e o bem-estar dos pacientes com câncer de pulmão.

Referências

- ① D. Kalbfleisch and R.L. Prentice. *The Statistical Analysis of Failure Time Data*. Wiley, New York, 1980.
- ② https: //www.themillerlab.io/posts/survival_analysis/#overview
- 3 E.A. Colosimo and S.R. Giolo. Análise de Sobrevivência Aplicada. Edgard Blucher, São Paulo, 2006.
- M.S. Carvalho et al. Análise de Sobrevida: Teoria e Aplicações em Saúde. Fiocruz, Rio de Janeiro, 2005.
- Material de aula. Análise de Sobrevivência: Teoria e Aplicações em Saúde. Fiocruz.