

第五章 运算方法与运算器(三)

秦磊华 计算机学院

本章主要内容

基于补码数据表示研究运算方法和设计运算器(简)

- 5.3 定点乘法运算
- 5.4 定点除法运算

1.移位操作

2.二进制乘法的手工过程

1010	
<u>× 1011</u>	
1010	(0)
1010	(1)
0000	(2)
+1010	(3)
1101110	

- ◆ 乘法可由加法实现 (!)
- ◆每次加数左移位数不同
- ◆ 每次加数的值要么为0, 要么为X, 取 决于对应的乘数Yn
- ◆需要长度为2n的积寄存器

2.二进制乘法的手工过程

1010
<u>× 1011</u>
1010
1010
0000
+ 1010
1101110

- 1) 乘法可由加法实现(!)
- ◆可直接由前面基于FA设计的运算器来实现吗?
- ◆如何解决?

循环累加

2.二进制乘法的手工过程

2)每次加数左移位数不同

- ◆ 为什么每次加数要左移且位数不同?
- ◆ 如何解决?

运算完成后部分积右移1位, 实现累积右移效果

2.二进制乘法的手工过程

				1 () (1	0
×				1	0	1	1
				1	0	1	0
			1	0	1	0	
		0	0	0	0		
+	1	0	1	0			
	1	1	0	1	1	1	0

2.二进制乘法的手工过程

- 3) 需要长度为2n的积寄存器
 - ♦ 长度为2n的积是逐步形成的
 - ◆长度为2n的积由2部分构成

如何构成?

3.原码一位乘法算法

- (1) 符号单独运算:直接异或
- (2) **绝对值相乘** 仅需考虑数值部分的计算
- (3) n次加法, n 次右移
- (4) 部分积右移包含进位位

3.原码一位乘法算法

解:
$$[X]_{\bar{R}} = 01101$$

 $[Y]_{\bar{R}} = 10011$

- (1) 符号单独运算:直接异或
- (2) 绝对值相乘

仅需考虑数值部分的计算

$$[X]_{\bar{R}} \times [Y]_{\bar{R}} = 1 0010 0111$$

00000		乘数判断位Y _n
+001101		0001 <u>1</u>
001101		
→ 000110	1(?)	1 000 <u>1</u>
+001101		
01 0011	1	
→001001	11	1100 <u>0</u>
+000000		
001001	11	
→ 000100	111	1110 <u>0</u>
+000000		
000100	111	
→0 00010	0111	0111 <u>0</u>
	+001101 001101 000110 +001101 010011 01001 +00000 001001 +000000 001000 +000000	+001101 001101 >0001101 +001101 010011 +000001 001001 +00000 001001 +00000 000100 111

4.原码一位乘法硬件实现

- R₀存放部分积高n位,初值为0
- R₁存放Y、∑其它位(如何载入Y初值)
- 运算结果右移后送寄存器输入!
- \blacksquare 时钟到来, R_0 , R_1 锁存新值
- 状态机控制使能信号停机
- 停机后乘积存放在R₀, R₁中

 $\{\sum, Y\} = \{\sum + Y_n | X|, Y\} / 2$ 逻辑右移

■ 5.3 定点乘法运算

5.补码booth一位乘法

1) 被乘数X符号任意,乘数Y为正

$$\begin{split} [X]_{\frac{1}{2}h} &= X_{0.}X_{1}X_{2}\cdots X_{n} \quad [Y]_{\frac{1}{2}h} = 0_{.}Y_{1}Y_{2}\cdots Y_{n} \\ [X]_{\frac{1}{2}h} \times [Y]_{\frac{1}{2}h} = (2+X) \times Y = (2^{n+1}+X) \times Y \qquad (MOD 2) \\ &= 2^{n+1}Y + XY \\ &= 2 \times 2^{n} \times 0_{.}Y_{1}Y_{2}\cdots Y_{n} + XY \\ &= 2 \cdot (Y_{1}Y_{2}\cdots Y_{n}) + XY \\ &= 2 + XY \qquad (MOD 2) \\ &= [XY]_{\frac{1}{2}h} = [X]_{\frac{1}{2}h} \times Y \qquad (1) \end{split}$$

5.补码booth一位乘法

2) 被乘数[X]符号任意,乘数[Y]为负数

$$[X]_{\stackrel{}{A}} = X_{0.}X_{1}X_{2}\cdots X_{n}$$
 $[Y]_{\stackrel{}{A}} = 1.Y_{1}Y_{2}\cdots Y_{n}$ $[Y]_{\stackrel{}{A}} = 2 + Y$ \longrightarrow $Y = [Y]_{\stackrel{}{A}} - 2$ $Y = [Y]_{\stackrel{}{A}} - 2 = 1 + 0.Y_{1}Y_{2}\cdots Y_{n} - 2 = 0.Y_{1}Y_{2}\cdots Y_{n} - 1$ $[X \times Y]_{\stackrel{}{A}} = [X \times (0.Y_{1}Y_{2}\cdots Y_{n} - 1)]_{\stackrel{}{A}}$ $= [X \times 0.Y_{1}Y_{2}\cdots Y_{n} - X]_{\stackrel{}{A}}$ $= [X \times 0.Y_{1}Y_{2}\cdots Y_{n}]_{\stackrel{}{A}} - [X]_{\stackrel{}{A}}$ $= [X]_{\stackrel{}{A}} \times 0.Y_{1}Y_{2}\cdots Y_{n} - [X]_{\stackrel{}{A}}$ $= [X]_{\stackrel{}{A}} \times 0.Y_{1}Y_{2}\cdots Y_{n} - Y_{0}[X]_{\stackrel{}{A}}$ 当 Y为正数时, $Y_{0} = 0$,因此,该式也包含了1)

■ 5.3 定点乘法运算

5.补码booth一位乘法

$$\begin{split} [X\times Y]_{\frac{1}{2}h} &= [X]_{\frac{1}{2}h} \times 0.Y_{1}Y_{2} \cdots Y_{n} - Y_{0}[X]_{\frac{1}{2}h} \\ &= [X]_{\frac{1}{2}h} \times (-Y_{0} + 0.Y_{1}Y_{2} \cdots Y_{n}) \\ &= [X]_{\frac{1}{2}h} \times (-Y_{0} + Y_{1}2^{-1} + Y_{2}2^{-2} + \cdots Y_{n} 2^{-n}) \\ &= [X]_{\frac{1}{2}h} \times [-Y_{0} + (Y_{1} - Y_{1}2^{-1}) + (Y_{2}2^{-1} - Y_{2}2^{-2}) + \cdots (Y_{n}2^{-n+1} - Y_{n}2^{-n})] \\ &= [X]_{\frac{1}{2}h} \times [(Y_{1} - Y_{0}) + (Y_{2} - Y_{1})2^{-1} + (Y_{3} - Y_{2})2^{-2} + \cdots (0 - Y_{n})2^{-n}] \\ &= [X]_{\frac{1}{2}h} \times [(Y_{1} - Y_{0}) + (Y_{2} - Y_{1})2^{-1} + (Y_{3} - Y_{2})2^{-2} + \cdots (0 - Y_{n})2^{-n}] \\ &\downarrow Y_{n+1} = 0 \end{split}$$

5.补码booth一位乘法

- 加法次数:n+1次
- 算术右移次数为n次
- 一符号位参与运算

5.补码booth一位乘法

$$[X]_{k} \times [Y]_{k} = 1 110 11001$$

				School of Computer Science & Tech
∑= 0	00	0000		乘数判断位Y _n Y _{n+1}
	+11	0011		1110 <u>10</u>
	11	0011		
	→11	1001	1	1 111 <u>01</u>
	+00	1101		
	00	0110	1	
	→00	0011	01	01 11 <u>10</u>
	+11	0011		
	11	0110	01	
	→11	1011	001	001 1 <u>11</u>
	+00	0000		
	11	1011	001	
	→11	1101	1001	1001 <u>11</u>
	+00	0000		
	11	1101	1001	

6.补码booth一位乘法硬件实现

7.阵列乘法器

5

5.3 定点乘法运算

7.阵列乘法器

- ◆ 阵列?
- ◆实现右边乘法需要什么阵列?

П

5.3 定点乘法运算

7.阵列乘法器

1) 与门阵列

$$1 \times 1 = 1 = 1 \bullet 1$$

$$1 \times 0 = 0 = 1 \cdot 0$$

$$0 \times 1 = 0 = 0 \cdot 1$$

$$0 \times 0 = 0 = 0 \bullet 0$$

7.阵列乘法器

■ 5.3 定点乘法运算

- 7.阵列乘法器
 - 1) 与门阵列
 - 2) 还需要什么阵列?

7.阵列乘法器

1) 与门阵列

2) FA阵列

3) 能缓解循环累加乘 法带来的性能损失吗?

|| 5.3 定点乘法运算

7.阵列乘法器 $-\mathbf{x}_{4}\mathbf{Y}_{0}$ $-\mathbf{x}_{3}\mathbf{Y}_{0}$ $\mathbf{x}_2\mathbf{Y}_0$ $-\mathbf{x}_{1}\mathbf{Y}_{0}$ $\mathbf{X}_{0}\mathbf{Y}_{0}$ ◆n*(n-1)个全加器 X_4Y_1 X_3Y_1 X_2Y_1 X_1Y_1 X_0Y_1 ◆总延时为多少? ◆还能优化吗? X_3Y_2 X_4Y_2 $\mathbf{X}_2\mathbf{Y}_2$ X_1Y_2 X_0Y_2 FA X_4Y_3 X_3Y_3 $\mathbf{X}_{2}\mathbf{Y}_{3}$ $\mathbf{X}_1\mathbf{Y}_3$ X_0Y_3 X_1Y_4 X_4Y_4 X_3Y_4 X_2Y_4 X_0Y_4 p₉ p₈ **p**₇ **p**₆ p_5 p_4 p_3 p_1 p_0 p_2

■ 5.3 定点乘法运算

\prod

5.3 定点乘法运算

 X_4Y_0 X_3Y_0 $\mathbf{X}_{2}\mathbf{Y}_{0}$ $\mathbf{X}_{1}\mathbf{Y}_{0}$ X_0Y_0 7.阵列乘法器 X₄Y₁ ◆n*(n-1)个全加器 ◆总延时为多少? X_4Y_2 X_4Y_3 p₉ **p**₇ p_5 p₈ p_6 p_4 p_3 p_2 p_1 \mathbf{p}_{0}

7.阵列乘法器

(原码阵列乘法器)

7.阵列乘法器

(补码阵列乘法器)

7.阵列乘法器

硬件成本相同:n*(n-1)个全加器,性能(7n-5):(4n+1),还能继续优化?

|| 5.3 定点乘法运算

8.高级语言中的整数乘法及溢出判断

高级语言中两个n位整数相乘得到的结果通常也是一个n位整数,结果只取 2n位乘积中的低n位。

```
int mul(int x, int y)
{
   int z=x*y;
   return z;
}
```

如何判断Z是否溢出?

https://www.csdn.net/tags/MtTaMg4sNTE4MjM4LWJsb2cO0O0O.html

8.高级语言中的整数乘法及溢出判断

https://www.csdn.net/tags/MtTaMg4sNTE4MjM4LWJsb2cO0O0O.html

```
/* Determine whether arguments can be multiplied without overflow. */
int tmul_ok(int x, int y)
{undefined
#if 0
int p = x * y;
return !x || p/x==y;
#endif
return umul_ok(x, y); /* 直接调用 */
}
```


- 9.汇编语言中的整数乘法及溢出判断
- ◆硬件不判溢出,仅保留2n位乘积,供软件使用
- ◆程序不判断溢出,编译器也不生成用于溢出处理的代码,会发生整数溢出问题。
- ◆乘法指令的操作数长度为n,而乘积长度为2n:

IA-32:

16位乘积结果存放在AX (8*8)

32位乘积结果存放在DX-AX (16*16)

64位乘积或EDX-EAX (32*32)

MIPS: 32位带符号整数相乘, 64位乘积置于两个32位内部寄存器Hi和Lo中, 可根据Hi寄存器中的每一位是否等于Lo寄存器中的第一位来进行溢出判断.

10.高级语言中的变量与常量乘法

- ◆按照前述运算方法,整数乘法运算比移位和加法等运算所用时间长很多(!)
- ◆编译器在处理变量与常数相乘,如20*X时,往往以移位、加法和减法的组合运算来代替乘法运算。

x*20转换为(x<<4)+(x<<2)

- 一次乘法转换成了一次移4位、一次移2位和1次加法 x*15转换为(x<<4) x
- ◆移位加减组合运算和直接相乘结果一样(包括溢出)
- ◆是否优化取决于组合运算周期数是否小于乘法开销

5.4 定点除法运算

1.手工除法

- ♦除法可由减法实现
- ◆ Y每次右移次数不等
- ◆要判断两数是否够减(?)

- 不够减,商上0,
- 够减,商上1,求余数
- ■除数左移一位
- 继续按规则上商直至所需位数

∥ 5.4 定点除法运算

2.计算机中除法对手工除法的改进

1)对手工算法的改进

- ◆判断两数的大小用减法实现,若差>0,则够除;反之不够除;
- ◆将手工每次右移除数,改为左移被除数;
- ◆最后的余数需要右移(2)中左移的次数.

5.4 定点除法运算

3.原码恢复余数法除法

◆法则:

设 $[X]_{\bar{p}}=X_fX_1X_2X_3\cdots X_n$, $[Y]_{\bar{p}}=Y_fY_1Y_2Y_3\cdots Y_n$,用原码一位除法求 $Q=Q_0Q_1Q_2Q_3\cdots Q_n=X/Y$

则:
$$Q_f = X_f \oplus Y_f$$

$$[Q]_{原} = (X_f \oplus Y_f) + (0X_1X_2X_3 \cdots X_n/0Y_1Y_2Y_3 \cdots Y_n)$$

◆最后的余数需要右移(2)中左移的次数.

3.原码恢复余数法除法

试商通过X-Y进行

- ◆ 试商结果 > 0时, 商上1;
- ♦ 试商的结果 < 0 时 ? ?,

恢复余数!

即执行+Y,显然,此时不能上商

3.原码恢复余数法除法

$$[|X|]_{2h} = 01001$$

$$[|Y|]_{\begin{subarray}{c} \line \end{subarray}} = 01011$$

$$[-|Y|]_{\stackrel{h}{=}} = 10101$$

Q=11101 R=
$$00001*2^{-4}$$

 $0\oplus 1=1$

被除数/余数R	上商位Q _n (?)	说明
001001		X-Y试商
[-Y] + 110101		
111110	0	R<0,商 上 0,
+ 001011		
001001		
← 01 0010		R=2R , -Y试商
[-Y] + 110101		
000111	01	$R>0,Q_n=1$
$\leftarrow 001110$		R=2R , -Y试商
[-Y] + 110101		D>0 0 -1
000011 ← 000110	011	$R>0, Q_n=1$
[-Y] + 110101		R=2R,-Y试商
		P<0 0 -0
111011 + 001011	0110	R<0,Q _n =0, +Y 恢复余数
000110 ← 001100		
[-Y] + 110101		
000001	01101	R>0,Q _n =1

3.原码恢复余数法除法

- ◆需要进行恢复余数的操作
- ◆恢复余数的操作次数不确定,影响除法速度和控制。
- ◆实际应用通常采用不恢复余数除法/加减交替法。

4.原码加减交替法除法

◆设某次除法运算余数为R_i>0,将R_i左移一位,然后减除数试商:

◆若结果小于0,则商上0,并恢复余数:

$$(2R_i - Y) + Y = 2R_i$$

◆ 再左移并试商:

$$2*2R_i - Y = 4R_i - Y$$
 (1)

◆ 若2R_i-Y <0 ,商上0,不恢复余数,而是直接左移一位并加Y:

$$2*(2R_i - Y) + Y = 4R_i - Y$$
 (2)

4.原码加减交替法除法

例已知 X=1001, Y= -1011 用原码一位除法求 X ÷ Y

解:[X]_原= 01001

[Y]_原= 11011

 $[|X|]_{?} = 01001$

 $[|Y|]_{k} = 01011$

 $[-|Y|]_{\nmid h} = 10101$

 $Q=11101 R= 0.0001*2^{-4}$

被除数/余数R	上商位Q _n (?)	说明
001001		X-Y试商
[-Y] + 110101		
111110	0	R<0, 商上 0,
← 11 1100	J	R=2R+Y
[Y] + 001011		
000111	01	$R>0,Q_n=1$
← 001110		R=2R-Y
[-Y] + 110101		
000011	0.1.1	$R>0, Q_n=1$
← 000110	011	R=2R-Y
[-Y] + 110101		
111011	0110	R<0,商 上 0,
← 110110	0110	R=2R+Y
[Y] + 001011		
000001	01101	$R>0, Q_n=1$

4.原码加减交替法除法(电路)

- 5.补码加减交替法除法
 - (1) 符号位参加运算
 - (2)试商方法不同于原码一位除法
 - ◆回顾原码一位除法的试商----减法实现
 - ◆若采用原码试商方法存在的问题(为什么不能直接减来试商)
 - (3)补码一位除法的试商及运算方法
 - ◆被除数与除数同号,被除数减除数;反之加除数,该步不上商;
 - ◆余数与除数同号,商上1,余数左移一位,下次减除数; 反之,商上0,余数左移一位,下次加除数
 - ◆重复上一步,包括符号位在内共执行n + 1次,且最后一步只移商

5.补码加减交替法除法

例: 已知 x = - 0.1001 y = + 0.1101 用补码一位除法求 x/y

解: $[x]_{ih}$ = 1.0111 $[y]_{ih}$ =0.1101 $[-y]_{ih}$ =1.0011

被除数/余数 商 说明

11.0111 被除数与除数异号 被除数加除数

+ [y]_{*} <u>00.1101</u>

00.0100 余数与除数同号,商上1,左移减除数

← 00.1000 1

+ [-y]_补 <u>11.0011</u>

11.1011 余数与除数异号, 商上0, 左移, 加除数

← 11.0110 1.0

+ [y]_{*} <u>00.1101</u>

00.0011 余数与除数同号,商上1,左移 余数减除数

5.补码加减交替法除法

例: 已知 x = - 0.1001 y = + 0.1101 用补码—位除法求 x / y
解: [x]_补= 1.0111 [y]_补=0.1101 [-y]_补=1.0011
被除数/余数 商 说明
00.0011 余数与除数同号,商上1,左移余数减除数

← 00.0110 1.01

+ [-y]_补 <u>11.0011</u>

11.1001

← 11.0010 1.010

+ [y]_ネ 00.1101

11.1111

余数与除数异号, 商上0, 移商

余数与除数异号, 商上0, 左移,加除数

← 1.0100

5.补码加减交替法除法

(4)商的校正

(1)商需要校正的原因

补码一位除法公式是在商的末位恒置"1"的条件下推导的,商为负数时得到的是反码

- (2)商校正方法
 - ◆能除尽时, 若除数 > 0,不校正; 除数 < 0, 商加2 ⁻ⁿ 校正
 - ◆不能除尽时,若商 > 0,不校正;商 < 0,加2⁻ⁿ校正

上例中,不能除尽,且商<0,故需要校正

校正后的商为 1.0100 + 0.0001 = 1.0101

即
$$x/y = -0.1011$$

- 5.补码加减交替法除法
 - (5)余数的校正
 - (1)余数需要校正的原因 不恢复余数法是先比较,后上商
 - (2)余数校正方法
 - ◆若商 > 0, 余数与被除数异号时, 余数加除数进行校正;
 - ◆若商 < 0, 余数与被除数异号时, 余数减除数进行校正。

6.阵列除法器(电路)

(a) 电路

(b) 符号表示

可控制加/减法(CAS)单元

$$S_{i} = X_{i} \oplus (P \oplus Y_{i}) \oplus C_{i}$$

$$C_{i+1} = X_{i} Y_{i} + (X_{i} \oplus (P \oplus Y_{i}) C_{i})$$

♦ P=0时(全加器)

$$S_{i} = X_{i} \oplus Y_{i} \oplus C_{i}$$

$$C_{i+1} = X_{i} Y_{i} + (X_{i} \oplus Y_{i}) C_{i}$$

◆ P=1时(全减 - 还要注意C_i)

$$S_{i} = X_{i} \oplus \overline{Y}_{i} \oplus C_{i}$$

$$C_{i+1} = X_{i} Y_{i} + (X_{i} \oplus \overline{Y}_{i}) C_{i}$$

6.阵列除法器(电路)

$$C_f = Q_n$$

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

6.阵列除法器(电路)

	被除数/余数	商	说明
	11.0111		被除数与除数异号 被除数加除数
+ [y] _补	<u>00.1101</u>		
	00.0100		余数与除数同号,商上1,左移减除数
←	00.1000	1	
+ [-y] _补	<u>11.0011</u>		
	11.1011		余数与除数异号,商上0, 左移,加除数
←	11.0110	1.0	
+ [y] _补	<u>00.1101</u>		
	00.0011		余数与除数同号,商上1,左移余数减除数

|| 5.4 定点除法运算

6.阵列除法器(电路)

- ♦n*n个CAS单元
- **♦**(n*n) ×9T
- ◆如何优化?

第三部分完