Chapter 5: Sets

CS1231S Discrete Structures

Wong Tin Lok

National University of Singapore

3 September 2020

What can one put in the centre?

Answer at https://pollev.com/wtl.

- ► There is no need to log in to pollev.
- Use hyphens (-) for spaces in multi-word answers.

About me

- WONG Tin Lok Lawrence
- Department of Mathematics, Faculty of Science (S17-05-19)
- matwong@nus.edu.sg
- https://blog.nus.edu.sg/
 matwong/
- ▶ definitions → undefinables
- ightharpoonup proofs ightharpoonup (true) unprovables
- necessary truth
 - ightarrow possible truth

What can one put in the centre?

Answer at https://pollev.com/wtl.

- ▶ There is no need to log in to pollev.
- Use hyphens (-) for spaces in multi-word answers.

Practicalities

- ► Lectures: Zoom (Mute yourself when you are not speaking.)
 - Thursday 12:00 2:00pm 1:35pm, with a 5-minute "break" in the middle
 - Friday 3:00 4:00pm 3:45pm
- ► Slides and notes will be posted on LumiNUS (https://luminus.nus.edu.sg) and on the module website (https://www.comp.nus.edu.sg/~cs1231s/).
- ► Try out the questions marked with <a> in the notes. Answers will be provided.
- ▶ In-lecture polls are accessible at https://pollev.com/wtl/.
- ▶ If you have any questions/comments during lectures, then you can unmute yourself and speak, or ask at the CS1231S Telegram Chat, *not* at the Zoom chat.
- Consultation: online
 - preferably immediately after the lectures (or by individual/group appointment)
 - LumiNUS Forum
- Additional resources: search for "discrete mathematics" on the Internet or in the library (catalogue).
- ► Weeks 4–9: sets, functions, induction/recursion, integers, relations proofs

Sets

Why sets?

- ▶ The language of sets is an important part of modern mathematical discourse.
- Sets are interesting mathematical objects.
- For this module, they provide a topic on which we practise writing and understanding proofs.

 Young man, in mathematics you don't understand things.

You just get used to them.

John von Neumann

etc.

Definition 5.1.1

- (1) A *set* is an unordered collection of objects.
- (2) These objects are called the *members* or *elements* of the set.
- (3) Write $x \in A$ for x is an element of A; $x \notin A$ for x is not an element of A; $x, y \in A$ for x, y are elements of A; $x, y \notin A$ for x, y are not elements of A;

Common sets (la	b	le	5	
---------------	--	----	---	----	---	--

 \mathbb{Q}

 \mathbb{Z}^+

 $\mathbb{Z}_{\geq 0}$

Note 5.1.2. Some define $0 \notin \mathbb{N}$. Symbol Meaning Examples Non-examples

M the set of all natural numbers $0, 1, 2, 3, 31 \in \mathbb{N}$ the set of all integers $0, 1, -1, 2, -10 \in \mathbb{Z}$

 $-1, 10, \frac{1}{2}, -\frac{7}{5} \in \mathbb{Q}$ the set of all rational numbers

 $-1, 10, -\frac{3}{2}, \sqrt{2}, \pi \in \mathbb{R} \quad \sqrt{-1}, \sqrt{-10} \notin \mathbb{R}$ the set of all real numbers

 $-1, 10, -\frac{3}{2}, \sqrt{2}, \pi, \sqrt{-1}, \sqrt{-10} \in \mathbb{C}$ the set of all complex numbers

the set of all positive integers $1, 2, 3, 31 \in \mathbb{Z}^+$

the set of all negative integers

the set of all non-negative integers

 \mathbb{Q}^+ , \mathbb{Q}^- , $\mathbb{Q}_{\geq m}$, \mathbb{R}^+ , \mathbb{R}^- , $\mathbb{R}_{\geq m}$, etc. are defined similarly.

 $0, 1, 2, 3, 31 \in \mathbb{Z}_{\geq 0}$

 $-1, -2, -3, -31 \in \mathbb{Z}^ 0, 1, 12 \notin \mathbb{Z}^-$

 $-1, \frac{1}{2} \notin \mathbb{N}$

 $\frac{1}{2}$, $\sqrt{2} \notin \mathbb{Z}$

 $\sqrt{2}, \pi, \sqrt{-1} \notin \mathbb{Q}$

 $0, -1, -12 \notin \mathbb{Z}^+$

 $-1, -12 \notin \mathbb{Z}_{\geq 0}$

 \mathbb{Z} is for Zahlen.

"Positive" means > 0. "Negative" means < 0.

"Non-negative" means ≥ 0 .

① is for quotients.

Specifying a set by listing out all its elements

Definition 5.1.3 (roster notation)

- (1) The set whose only elements are $x_1, x_2, ..., x_n$ is denoted $\{x_1, x_2, ..., x_n\}$.
- (2) The set whose only elements are $x_1, x_2, x_3, ...$ is denoted $\{x_1, x_2, x_3, ...\}$.

Example 5.1.4

- (1) The only elements of $A = \{1, 5, 6, 3, 3, 3\}$ are 1, 5, 6 and 3. So $6 \in A$ but $7 \notin A$.
- (2) The only elements of $B = \{0, 2, 4, 6, 8, \dots\}$ are the non-negative even integers. So $4 \in B$ but $5 \notin B$.

To check whether an object z is an element of a set $S = \{x_1, x_2, \dots, x_n\}$

If z is in the list x_1, x_2, \dots, x_n , then $z \in S$, else $z \notin S$.

Question

What are the elements of $\{2,3,\dots\}$? All integers $x \ge 2$?

Specifying a set by describing its elements Definition 5.1.5 (set-builder notation)

 $\{\ldots \mid \ldots\}$ for $\{\ldots : \ldots\}$.

Note 5.1.6. Some write

Let U be a set and P(x) is a predicate over U. Then the set of all elements $x \in U$

such that P(x) is true is denoted read as "the set of all x $\{x \in U : P(x)\}.\longleftarrow$ in U such that P(x)"

Example 5.1.7

- (1) The elements of $C = \{x \in \mathbb{Z}_{\geq 0} : x \text{ is even}\}$ are precisely the elements of $\mathbb{Z}_{\geq 0}$ that are even, i.e., the non-negative even integers. So $6 \in C$ but $7 \notin C$.
- (2) The elements of $D = \{x \in \mathbb{Z} : x \text{ is a prime number}\}$ are precisely the elements of \mathbb{Z}

that are prime numbers, i.e., the prime integers. So $7 \in D$ but $9 \not\in D$.

To check whether an object z is an element of $S = \{x \in U : P(x)\}$ If $z \in U$ and P(z) is true, then $z \in S$, else $z \notin S$. Hence $z \notin U$ implies $z \notin S$, and P(z) is false implies $z \notin S$.

Remark 5.1.8. Sometimes people write $\{y^2 : y \text{ is an odd integer}\}$, for example, to mean 'the set of all objects of the form y^2 such that y is an odd integer'.

Equality of sets

Definition 5.1.9

Two sets are equal if and only if they have the same elements, i.e., for all sets A, B,

$$A = B \Leftrightarrow \forall z \ (z \in A \Leftrightarrow z \in B).$$

$$\{1,5,6,3,3,3\} = \{1,5,6,3\} = \{1,3,5,6\}.$$

Slogan 5.1.11. Order and repetition do not matter.

Example 5.1.12

$$\{y^2: y \text{ is an odd integer}\} = \{x \in \mathbb{Z}: x = y^2 \text{ for some odd integer } y\}$$
$$= \{1^2, 3^2, 5^2, \dots\}.$$

Equality of sets

Definition 5.1.9

Two sets are equal if and only if they have the same elements, i.e., for all sets A, B,

$$A = B \Leftrightarrow \forall z \ (z \in A \Leftrightarrow z \in B).$$

Example 5.1.13

$${x \in \mathbb{Z} : x^2 = 1} = {1, -1}.$$

Slogan 5.1.11. Order and repetition do not matter.

Proof

- 1. (⇒)
 - 1.1. Take any $z \in \{x \in \mathbb{Z} : x^2 = 1\}$.
 - 1.2. Then $z \in \mathbb{Z}$ and $z^2 = 1$.
 - 1.3. So $z^2 1 = (z 1)(z + 1) = 0$
 - 1.4. : z-1=0 or z+1=0
 - 1.5. \therefore z=1 or z=-1.
 - 1.6. This means $z \in \{1, -1\}$.
- 2. (⇐) ...

Equality of sets

Definition 5.1.9

Two sets are equal if and only if they have the same elements, i.e., for all sets A, B,

$$A = B \Leftrightarrow \forall z (z \in A \Leftrightarrow z \in B).$$

Example 5.1.13

$${x \in \mathbb{Z} : x^2 = 1} = {1, -1}.$$

Proof

- 1. (⇒) ...
- 2. (⇐)
 - 2.1. Take any $z \in \{1, -1\}$.
 - 2.2. Then z = 1 or z = -1.
 - 2.3. In either case, we have $z \in \mathbb{Z}$ and $z^2 = 1$.
 - 2.4. So $z \in \{x \in \mathbb{Z} : x^2 = 1\}$.

Slogan 5.1.11. Order and repetition do not matter.

The empty set

Theorem 5.1.14

There exists a unique set with no element, i.e.,

- there is a set with no element; and
- ▶ for all sets A, B, if both A and B have no element, then A = B. (uniqueness part)

Proof

- 2. (uniqueness part)
 - 2.1. Let A, B be sets with no element.

1. (existence part) The set {} has no element.

2.2. Then trivially,

$$\forall z \ (z \in A \Rightarrow z \in B) \quad \text{and} \quad \forall z \ (z \in B \Rightarrow z \in A)$$

because the antecedents are never true.

2.3. So A = B.

Definition 5.1.15

The set with no element is called the *empty set*. It is denoted by Ø.

(existence part)

Definition. For all sets A, B,

 $A = B \Leftrightarrow \forall z \ (z \in A \Leftrightarrow z \in B).$

Definition 5.1.16 Call A a subset of B, and write $A \subseteq B$, if

Inclusion of sets

(1)

 $\forall z \ (z \in A \Rightarrow z \in B).$

Let A, B be sets.

Definition. For all sets A, B,

 $A = B \Leftrightarrow \forall z \ (z \in A \Leftrightarrow z \in B).$

Alternatively, we may say that B includes A, and write $B \supset A$ in this case.

Example 5.1.17 and Example 5.1.20

(1) $\{1,5,2\} \subseteq \{5,2,1,4\}$ but $\{1,5,2\} \not\subseteq \{2,1,4\}$.

(2) $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$. All these inclusions are proper.

Remark 5.1.18

 $A \not\subseteq B \Leftrightarrow \exists z \ (z \in A \text{ and } z \not\in B);$ $A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A$:

(2)(3) $\emptyset \subseteq A$ and $A \subseteq A$.

Definition 5.1.19 Call A a proper subset of B, write $A \subseteq B$, if $A \subseteq B$ and $A \neq B$. In this case, we may say that the inclusion of A in B is proper or strict.

Membership vs inclusion

Note 5.1.21

Sets can be elements of sets.

(2) The set $B = \{\{1\}, \{2\}, \{3\}\}$ has exactly 3 elements, namely $\{1\}, \{2\}$, and $\{3\}$. So

- Example 5.1.22
- (1) The set $A = \{\emptyset\}$ has exactly 1 element, namely the empty set. So A is not empty.
 - $\{3\} \in B$, but $3 \notin B$.
 - How can one use a set to represent the square above?
 - If one only wants to represent the connectivity between the points, then use $\{\{a,b\},\{b,c\},\{c,d\},\{d,a\}\}.$
 - If one also wants to represent the positions of the lines, then use $\{(x,0): x \in [0,1]\} \cup \{(1,x): x \in [0,1]\} \cup \{(x,1): x \in [0,1]\} \cup \{(0,x): x \in [0,1]\}.$
 - Note 5.1.23

Membership and inclusion can be different.

polley

Definition 5.2.1

The set of all subsets of A, denoted $\mathcal{P}(A)$, is called the *power set* of A.

Example 5.2.2 and Example 5.2.5

(3) $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$

- (1) $\mathcal{P}(\varnothing) = \{\varnothing\}.$ $|\varnothing| = 0 \text{ and } |\mathcal{P}(\varnothing)| = 1 = 2^0.$
- (2) $\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}.$ $|\{1\}| = 1 \text{ and } |\mathcal{P}(\{1\})| = 2 = 2^1.$
- Definition 5.2.3

 $|\{1,2\}| = 2$ and $|\mathcal{P}(\{1,2\})| = 4 = 2^2$.

- (1) A set is *finite* if it has finitely many (distinct) elements. It is *infinite* if it is not finite.
- (2) Suppose A is a finite set. The *cardinality* of A, or the *size* of A, is the number of (distinct) elements in A. It is denoted by |A|.
- (3) Sets of size 1 are called *singletons*.

Theorem 5.2.4

Suppose A is a finite set. Then $|\mathcal{P}(A)| = 2^{|A|}$.

Ordered pairs and Cartesian products

Definition 5.2.6

An ordered pair is an expression of the form (x, y). Let (x, y) and (x', y') be ordered pairs. Then (x, y) = (x', y') if and only if

$$x = x'$$
 and $y = y'$.

Example 5.2.7

(1) $(1,2) \neq (2,1)$, although $\{1,2\} = \{2,1\}$. (2) $(3,0.5) = (\sqrt{9},\frac{1}{2})$.

Definition 5.2.8

Let A, B be sets. The *Cartesian product* of A and B, denoted $A \times B$, is defined to be $\{(x, y) : x \in A \text{ and } y \in B\}.$

read as "A cross B"

Example 5.2.9
$$\{a, b\} \times \{1, 2, 3\} = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}.$$

Note 5.2.10

 $|\{a,b\} \times \{1,2,3\}| = 6 = 2 \times 3 = |\{a,b\}| \times |\{1,2,3\}|.$

Ordered *n*-tuples and Cartesian products Definition 5.2.11

An ordered n-tuple is an expression of the form (x_1, x_2, \dots, x_n) . Let (x_1, x_2, \dots, x_n)

Let $n \in \{x \in \mathbb{Z} : x \geqslant 2\}$.

and (x_1, x_2, \dots, x_n) be ordered *n*-tuples. Then $(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n)$ if and only if $x_1 = x_1'$ and $x_2 = x_2'$ and ... and $x_n = x_n'$

Example 5.2.12 (1) $(1,2,5) \neq (2,1,5)$, although $\{1,2,5\} = \{2,1,5\}$.

(2)
$$(3, (-2)^2, 0.5, 0) = (\sqrt{9}, 4, \frac{1}{2}, 0)$$

Definition 5.2.13

Let A_1, A_2, \ldots, A_n be sets. The *Cartesian product* of A_1, A_2, \ldots, A_n , denoted

 $A_1 \times A_2 \times \ldots \times A_n$, is defined to be

 $\{(x_1, x_2, \dots, x_n) : x_1 \in A_1 \text{ and } x_2 \in A_2 \text{ and } \dots \text{ and } x_n \in A_n\}.$

If A is a set, then $A^n = A \times A \times ... \times A$. *n*-many A's

Example 5.2.14 $\{0,1\} \times \{0,1\} \times \{x,y\} = \{(0,0,x),(0,0,y),(0,1,x),(0,1,y),(1,0,x),(1,0,y),(1,1,x),(1,1,y),(1,$

Boolean operations

Definition 5.3.1

- (1) The *union* of A and B, denoted $A \cup B$, is defined by read as 'A union B' $A \cup B = \{x : x \in A \text{ or } x \in B\}$.
- (2) The *intersection* of A and B, denoted $A \cap B$, is defined by

$$(\text{read as '} A \text{ intersect } B') \longrightarrow A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

(3) The *complement* of B in A, denoted A - B or $A \setminus B$, is defined by read as 'A minus B' $\longrightarrow A \setminus B = \{x : x \in A \text{ and } x \notin B\}$.

Convention and terminology 5.3.2

When working in a particular context, one usually works within a set that contains all the objects one may talk about. Such a set is called a *universal set*.

Definition 5.3.3

In a context where U is the universal set (so that implicitly $U \supseteq B$), the *complement* of B, denoted \overline{B} or B^c , is defined by $\overline{B} = U \setminus B$.

Example 5.3.4 on Boolean operations

For all sets
$$A, B$$
,
$$A \cup B = \{x : (x \in A) \lor (x \in B)\},$$

$$A \cap B = \{x : (x \in A) \land (x \in B)\},$$

$$A \setminus B = \{x : (x \in A) \land (x \notin B)\},$$

$$\overline{B} = \{x \in U : x \notin B\}, \text{ in a context where } U \text{ is the universal set.}$$
 Let $A = \{x \in \mathbb{Z} : x \leqslant 10\} \text{ and } B = \{x \in \mathbb{Z} : 5 \leqslant x \leqslant 15\}.$ Then
$$A \cup B = \{x \in \mathbb{Z} : (x \leqslant 10) \lor (5 \leqslant x \leqslant 15)\} = \{x \in \mathbb{Z} : x \leqslant 15\};$$

$$A \cap B = \{x \in \mathbb{Z} : (x \leqslant 10) \land (5 \leqslant x \leqslant 15)\} = \{x \in \mathbb{Z} : 5 \leqslant x \leqslant 10\};$$

$$A \setminus B = \{x \in \mathbb{Z} : (x \leqslant 10) \land \sim (5 \leqslant x \leqslant 15)\} = \{x \in \mathbb{Z} : x < 5\};$$

$$\overline{B} = \{x \in \mathbb{Z} : \sim (5 \leqslant x \leqslant 15)\} = \{x \in \mathbb{Z} : (x < 5) \lor (x > 15)\},$$

in a context where $\ensuremath{\mathbb{Z}}$ is the universal set. To show the first equation, one shows

$$\forall x \in \mathbb{Z} \ \big((x \leqslant 10) \lor (5 \leqslant x \leqslant 15) \Leftrightarrow (x \leqslant 15) \big),$$

etc.

For all set A, B, C in a context where U is the universal set, the following hold. **Identity Laws** $A \cup \emptyset = A$ $A \cap II = A$ Universal Bound Laws $A \cup U = U$ $A \cap \emptyset = \emptyset$

 $A \cup A = A$ $\overline{(\overline{A})} = A$ Double Complement Law

 $(A \cup B) \cup C = A \cup (B \cup C)$

 $A \cup B = B \cup A$

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Set identities (Theorem 5.3.5)

Idempotent Laws

Commutative Laws

Associative Laws

Distributive Laws

De Morgan's Laws Absorption Laws

Complement Laws

Set Difference Law

 $A \cup (A \cap B) = A$

 $A \cup \overline{A} = U$

 $\overline{\varnothing} = U$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $A \setminus B = A \cap \overline{B}$

 $A \cap (A \cup B) = A$

 $\overline{II} = \emptyset$

 $A \cap \overline{A} = \emptyset$

 $A \cap A = A$

 $A \cap B = B \cap A$

 $(A \cap B) \cap C = A \cap (B \cap C)$

 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Venn diagrams

One of De Morgan's Laws. Work in the universal set U. For all sets A,B, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

In the left diagram, hatch the regions representing A and B with \square and \square respectively. In the right diagram, hatch the regions representing \overline{A} and \overline{B} with \square and \square respectively.

Then the \square region represents $\overline{A \cup B}$ on the left diagram, and the \boxtimes region represents $\overline{A} \cap \overline{B}$ on the right diagram. Since these regions occupy the same region in the respective diagrams, we infer that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Note 5.3.6. This argument depends on the fact that each possibility for membership in A and B is represented by a region in the diagram.

Proving set identities using truth tables

One of De Morgan's Laws. Work in the universal set
$$U$$
. For all sets A,B , $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proof #1

The rows in the following table list all the possibilities for an element $x \in U$:

$x \in A$	$x \in B$	$x \in A \cup B$	$x \in \overline{A \cup B}$	$x \in \overline{A}$	$x \in \overline{B}$	$x \in \overline{A} \cap \overline{B}$
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	T

Since the columns under " $x \in \overline{A \cup B}$ " and " $x \in \overline{A} \cap \overline{B}$ " are the same, for any $x \in U$,

$$x \in \overline{A \cup B} \quad \Leftrightarrow \quad x \in \overline{A} \cap \overline{B}$$

no matter in which case we are. So $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proving set identities directly

One of De Morgan's Laws. Work in the universal set
$$U$$
. For all sets A,B , $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proof #2

- 1. Let $z \in U$.
- 2. 2.1. Then $z \in \overline{A \cup B}$
 - 2.2. \Leftrightarrow $z \notin A \cup B$
 - 2.3. $\Leftrightarrow \sim ((z \in A) \lor (z \in B))$
 - 2.4. \Leftrightarrow $(z \notin A) \land (z \notin B)$
 - 2.5. \Leftrightarrow $(z \in \overline{A}) \land (z \in \overline{B})$
 - 2.6. \Leftrightarrow $z \in \overline{A} \cap \overline{B}$

by the definition of $\overline{\cdot}$;

by the definition of \cup ;

by De Morgan's Laws for propositions;

by the definition of $\overline{\cdot}$;

by the definition of \cap .

Applications of the set identities

Fix a universal set U. The following are true for all sets A, B, C.

Identity Law $A \cap U = A$.

Distributive Law $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Complement Law $A \cup \overline{A} = U$.

Set Difference Law $A \setminus B = A \cap \overline{B}$.

Example 5.3.7

Fix a universal set U. Show that $(A \cap B) \cup (A \setminus B) = A$ for all sets A, B.

Proof

1.	$(A \cap B) \cup (A \setminus B) = (A \cap B) \cup (A \cap \overline{B})$
2.	$=A\cap (B\cup \overline{B})$
3.	$=A\cap U$
4.	= A

by the Set Difference Law; by the Distributive Law; by the Complement Law; by the Identity Law.

Example 5.3.8: Is the following true?

$$(A \setminus B) \cup (B \setminus C) = A \setminus C \text{ for all sets } A, B, C.$$

No. For a counterexample, let $A=C=\varnothing$ and $B=\{1\}$. Then $(A\setminus B)\cup (B\setminus C)=\varnothing\cup \{1\}=\{1\}\neq\varnothing=A\setminus C.$

Cardinality of a union

Definition 5.3.9

- (1) Two sets A, B are disjoint if $A \cap B = \emptyset$.
- (2) Sets A_1, A_2, \ldots, A_n are *pairwise disjoint* or *mutually disjoint* if $A_i \cap A_j = \emptyset$ for all distinct $i, j \in \{1, 2, \ldots, n\}$.

В

Example 5.3.10

The sets $A = \{1, 3, 5\}$ and $B = \{2, 4\}$ are (pairwise) disjoint. Note $|A \cup B| = |\{1, 2, 3, 4, 5\}| = 5 = 3 + 2 = |A| + |B|$.

Theorem 5.3.11

- (1) Let A, B be disjoint finite sets. Then $|A \cup B| = |A| + |B|$.
- (2) Let A_1, A_2, \ldots, A_n be pairwise disjoint finite sets. Then $|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|$.

Proof

Count the elements set by set. Every element in the union is counted exactly once because the sets are (pairwise) disjoint.

Theorem 5.3.12 (Inclusion–Exclusion Principle). For all finite sets $A, B, |A \cup B| = |A| + |B| - |A \cap B|$.

Sets

What we saw

- membership, inclusion, and equality of sets
- power sets and Cartesian products
- union, intersections, complements
- set identities and their proofs
- Venn diagrams
- cardinalities of finite sets

Questions

- ► Are sets simply propositions in disguise?
- Are there any other set operations?
- ▶ Why do we work with a universal set?

Next

functions

Search for "Russell's Paradox".