

Werkzeuge für den Formenkalkül

Sven Kosub

formlabor @ CODE, 31.01.2020

Formen

Formen sind induktiv definiert:

- Sind f, g Formen, so sind \overline{f} und fg Formen
- Nichts sonst ist eine Form

Rechnen mit Formen:

- ¬¬=
- =
- Somit: Jede Form entspricht einem Zustand

Formen

Formausdrücke sind induktiv definiert:

- Zustand und Variablen x, y, z, x_1, x_2, \dots sind Formausdrücke
- Sind f, g Formausdrücke, so sind \overline{f} und fg Formausdrücke
- Nichts sonst ist ein Formausdruck

Beispiele: $x_1 - x_2 - x_1$, $x_2 - x_1$,

Semantik von Formausdrücken:

- Formausdruck entspricht per se nicht einzelnem Zustand
- Abhängigkeit von Zuständen der Variablen im Formausdruck
- Jede Belegung ergibt einen Zustand

→ Wertetabellen

Wertetabellen

X	У	Z	$ \overline{\overline{x}}\overline{y}\overline{y} z$	f
	\neg			
	\neg			

Gleichungen

$$\overline{x} \overline{y} \overline{y} z = \overline{x} \overline{y} z$$

X	У	Z	=	$\overline{x} \overline{y} z$

Fundamentalgleichungen

Regel	Gleichung	Ref.
Kommutativität	fg = gf	J0*
Position	$ \overline{f} f =$	J1
Transposition	$\left \overline{fh} \overline{gh} \right = \overline{f} \overline{g} h$	J2
Reflexion	$ \overline{f} = f$	C1
Generierung	$\overline{fg}g = \overline{f}g$	C2
Integration		C3
Verdeckung	$ \overline{f} g f=f$	C4
Iteration	$\int ff = f$	C5
Kontraktion	$\boxed{\overline{f} \ \overline{g}} \boxed{\overline{f}} g = f$	C6
Echelon	$\left \overline{f} \right g \left h \right = \overline{fh} \overline{g} h \right $	C7
Modifizierte Transposition	$\overline{f} \overline{gr} \overline{hr} = \overline{f} \overline{g} \overline{h} \overline{f} \overline{r}$	C8
Dualität	$ \overline{f} g\overline{fh} = \overline{f}\overline{g}\overline{fh} $	C9*
Anzahl		11
Ordnung		12

Re-entry

Verdeckung (C4) ergibt:

$$\underbrace{\overline{a} b}_{f_0} = \underbrace{\overline{a} b a b}_{f_1} = \underbrace{\overline{a} b a b a b}_{f_2} = \dots$$

Sequenz $f_0 \rightarrow f_1 \rightarrow f_2 \rightarrow \dots$ entspricht:

-
$$f_n = \overline{f_{n-1} \ a \mid b \mid}$$
 für $n \ge 1$, $f_0 = \overline{a \mid b \mid}$

Rekursion

-
$$f := \overline{f \mid a \mid b \mid}$$

Zuweisung

-
$$f = \overline{a} b$$

Re-entry

Re-entries ermöglichen kompakte semigraphische Beschreibungen dynamischer Systeme

Galerie

Re-entry-Form	System von Zuweisungen	
	$h := \overline{h}$	f := h
,	$h := h \square = \square h (= \square)$	f := h
	$h := \overline{h}$	f := h
	$h := \overline{h} = \overline{h} $	f := h
	h :=	$f := \neg h$
	$ \begin{vmatrix} h_1 := \overline{h_1} \\ h_2 := \overline{h_2 h_1} \end{vmatrix} $	$f:=h_2$

Galerie

Re-entry-Form	System von Zuweisungen		
	$h_1 := \overline{\begin{array}{c} h_1 \ a \end{array} h_2 \ b}$ $h_2 := \overline{\begin{array}{c} h_1 \ a \end{array} h_2 \ b \end{array} c$	$f:=h_2$	
$\begin{bmatrix} a & b \end{bmatrix} c$	$h_1 := \overline{h_1 \ a \ b}$ $h_2 := \overline{b} \ h_1$	$f:=h_1 c h_2$	
a b c	h := a h	$f := \overline{a b h c}$	

Galerie

System von Zuweisungen

$$h_1 := h_8 \ a \ h_1$$
 $h_2 := h_8 \ a \ h_6 \ h_2$
 $h_3 \ \text{nicht rekursiv}$
 $h_4 := h_8 \ a \ h_6 \ h_1 \ h_8 \ h_4$
 $h_5 := h_8 \ a \ h_6 \ h_1 \ h_8 \ a \ h_5$
 $h_6 := h_8 \ a \ h_6 \ h_1 \ h_8 \ a \ h_2$
 $h_7 \ \text{nicht rekursiv}$
 $h_8 := h_8 \ a \ h_6 \ h_1 \ h_8 \ a \ h_2 \ h_5 \ h_4$

Projekt A: Formale Analyse

Stabile Formen

Stabile Form beschreibt Fixpunkte (steady states, Gleichgewichte) von Re-entry-Formen

- a b erfüllt $f = \overline{f a b}$
- \overline{b} erfüllt ebenfalls $f = \overline{f \mid a \mid b}$
- ab und b sind stabile Formen für ab
- a besitzt Fixpunkte, aber keine stabile Form

f	а	f a		f
			+	
			-	
			-	

Normale Formen

- Jede Tiefe ist genau einmal besetzt

Normale Formen mit einem Re-entry

- Jede Tiefe ist genau einmal besetzt
- Eine Unterscheidung wird genau einmal wiedereingeführt

$$H_n^{i,j} =_{\text{def}} \begin{array}{c} \hline \\ x_n \\ x_{n-1} \\ \hline \end{array} \begin{array}{c} x_j \\ \dots \\ x_j \\ \end{array} \begin{array}{c} x_i \\ x_1 \\ x_0 \\ \end{array}$$

$$H_3^{2,3} = \boxed{\boxed{a} \ b} \ c \ d, \qquad H_3^{2,2} = \boxed{\boxed{a} \ b} \ c \ d, \qquad H_3^{2,1} = \boxed{\boxed{a} \ b} \ c \ d, \qquad H_3^{2,0} = \boxed{\boxed{a} \ b} \ c \ d$$

Normale Formen mit einem Re-entry: Stabilitätsanalyse

Theorem

Für $i \le j$ besitzt $H_n^{i,j}$ genau dann eine stabile Form, wenn j-i+1 gerade ist.

Lösungsmenge für $H_n^{1,n} = \overline{x_n | \dots | x_1} | x_0$ und gerades n:

$$A \times_n \times_1 \times_1 \times_0$$
 mit beliebigem Formausdruck $A \times A$

- Beispiellösungen für a b: a b, a b = b, b a b, c a b, ...

Normale Formen mit einem Re-entry: Stabilitätsanalyse

Theorem

Für $i \le j$ besitzt $H_n^{i,j}$ genau dann eine stabile Form, wenn j-i+1 gerade ist.

Weitere Lösungen für $H_n^{1,n} = \overline{|x_n| \dots |x_j| \dots |$

Beispiellösung für

Normale Formen mit einem Re-entry: Stabilitätsanalyse

Theorem

Für $i \le j$ besitzt $H_n^{i,j}$ genau dann eine stabile Form, wenn j-i+1 gerade ist.

$$A'x_j \ldots x_i \ldots x_n x_0$$

 $A'x_i \ldots x_n x_n x_0$ mit Formausdruck $A' = \text{oder } A' \text{ stabil für } x_n \ldots x_1$

Projekt B: Tools

Follow Tools for the Laws of Form (Project):

https://github.com/users/synoptiker/projects

Follow GSB (LaTeX Repository):

https://github.com/synoptiker/GSB