Finite Fields: Part I

Cunsheng Ding

HKUST, Hong Kong

November 20, 2015

Contents

- Irreducible Polynomials over GF(p)
- 2 The Möbius Function $\mu(n)$
- 3 The Number of Irreducible Polynomials over GF(p)
- 4 Construction of Finite Fields $GF(p^m)$
- Some Properties of Finite Fields $GF(p^m)$

The Objectives of this Lecture

The finite fields we learnt so far

Prime fields $(\mathbb{Z}_p, \oplus_p, \otimes_p)$, where p is any prime. In the future, we will use + and \cdot to mean \oplus_p and \otimes_p , respectively.

Throughout this lecture, GF(p) denotes the finite field $(\mathbb{Z}_p, \oplus_p, \otimes_p)$, where p is any prime. We define $GF(p)^* = GF(p) \setminus \{0\}$.

Our objectives

Our major objectives in this lecture and the next ones are to treat finite fields $GF(p^m)$ with p^m elements. Our approach will be **constructive**, so that it will be easy to understand. To this end, we need to employ irreducible polynomials over GF(p).

Irreducible Polynomials in GF(p)[x]

Recall of definition

A polynomial $f \in GF(p)[x]$ with positive degree is called <u>irreducible</u> over GF(p) if f has only constant divisors a and divisors of the form af, where $a \in GF(p)^*$.

Question 1

- Is there any irreducible polynomial over GF(p) of degree d for any given positive integer m and prime p?
- What is the total number of irreducible polynomials over GF(p) of degree m?
- How to find out an irreducible polynomial over GF(p) of degree m, if it exists?

The Möbius Function $\mu(n)$

Definition 1

The Möbius function μ is the function on $\mathbb N$ defined by

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n \text{ is the product of } k \text{ distinct primes,} \\ 0 & \text{if } n \text{ is divisible by the square of a prime.} \end{cases}$$

Example 2

Some initial terms of the Möbius sequence $(\mu(i))_{i=1}^{\infty}$ is given by

$$(1,-1,-1,0,-1,1,-1,0,0,1,\ldots).$$

The Number of Irreducible Polynomials over GF(p)

Theorem 3

The number $N_p(m)$ of monic irreducible polynomials in $\mathrm{GF}(p)[x]$ of degree m is given by

$$N_p(m) = \frac{1}{m} \sum_{d|m} \mu(m/d) p^d = \frac{1}{m} \sum_{d|m} \mu(d) p^{m/d}.$$

Remarks

- For a proof, see Chapter 3 of Lidl and Niederreiter.
- $N_p(m) \ge \frac{1}{m}(p^m p^{m-1} p^{m-2} \dots p) = \frac{1}{m}\left(p^m \frac{p^m p}{p-1}\right) > 0.$
- For the construction of irreducible polynomials in GF(p)[x] of any degree, see Section 3.3 of Lidl and Niederreiter.
- Tables of monic irreducible polynomials of certain degrees in GF(p)[x] are given in the Appendix of Lidl and Niederreiter.

Examples of Irreducible Polynomials in GF(p)[x]

Example 4

All monic irreducible polynomials of degree 4 in GF(2)[x] are given by

$$x^4 + x^3 + 1$$
, $x^4 + x^3 + x^2 + x + 1$, $x^4 + x + 1$.

Example 5

All monic irreducible polynomials of degree 3 in GF(3)[x] are given by

$$x^3 + 2x + 1$$
, $x^3 + 2x^2 + 2x + 2$, $x^3 + x^2 + x + 2$, $x^3 + 2x + 2$, $x^3 + x^2 + 2$, $x^3 + 2x^2 + x + 1$, $x^3 + x^2 + 2x + 1$, $x^3 + 2x^2 + 1$

Remark

These are computed with the Magma software package using the command AllIrreduciblePolynomials(F, m)

Finite Fields $GF(p^m)$

Existence of an irreducible polynomial of degree m over GF(p)

For any prime p and positive integer m, we are now ready to construct the finite field $GF(p^m)$ with p^m elements.

By Theorem 3, we see that the number $N_p(m)$ of irreducible polynomials of degree m over GF(p) is at least one.

Building materials

p, m and a monic irreducible polynomial p(x) of degree m over GF(p).

The set $GF(p^m)$

 $GF(p^m)$ consists of all polynomials of degree at most m-1 over GF(p).

The Set GF(2³)

Example 6

Let p = 2 and m = 3. Then the set $GF(2^3)$ is composed of the following 8 polynomials:

$$f_0 = 0,$$
 $f_1 = 1,$ $f_2 = x,$ $f_3 = 1 + x,$
 $f_4 = x^2,$ $f_5 = 1 + x^2,$ $f_6 = x + x^2,$ $f_7 = 1 + x + x^2.$

Addition of the Finite Fields $GF(p^m)$

Definition 7

Let

$$f(x) = \sum_{i=0}^{m-1} a_i x^i \in GF(p)[x] \text{ and } g(x) = \sum_{i=0}^{m-1} b_i x^i \in GF(p)[x].$$

Then the addition of f and g is defined by

$$f(x) + g(x) = \sum_{i=0}^{m-1} (a_i + b_i) x^i \in GF(p)[x].$$

Theorem 8

 $(GF(p^m),+)$ is a finite abelian group with the identity 0, i.e., the zero polynomial.

Proof.

It is straightforward and left as an exercise.

Definition 9

Let $\pi(x) \in \mathrm{GF}(p)[x]$ be a monic irreducible polynomial of degree m over $\mathrm{GF}(p)$, and let

$$f(x) = \sum_{i=0}^{m-1} a_i x^i \in GF(p)[x] \text{ and } g(x) = \sum_{i=0}^{m-1} b_i x^i \in GF(p)[x].$$

Then the multiplication of f and g is defined by

$$f(x) \cdot g(x) = f(x)g(x) \bmod \pi(x),$$

where f(x)g(x) is the ordinary multiplication of two polynomials.

Remark

The multiplication \cdot depends on the irreducible polynomial $\pi(x)$.

Example 10

Let p=2 and m=3, and let the monic irreducible polynomial $\pi(x)=x^3+x+1\in \mathrm{GF}(2)[x]$. Then the set $\mathrm{GF}(2^3)$ is composed of the following 8 polynomials:

$$\begin{array}{lll} f_0=0, & f_1=1, & f_2=x, & f_3=1+x, \\ f_4=x^2, & f_5=1+x^2, & f_6=x+x^2, & f_7=1+x+x^2. \end{array}$$

By definition

$$f_6 \cdot f_7 = f_6 f_7 \mod \pi(x) = (x^4 + x) \mod x^3 + x + 1 = x^2,$$

 $f_7 \cdot f_7 = f_7 f_7 \mod \pi(x) = (x^4 + x + 1) \mod x^3 + x + 1 = 1 + x.$

Proposition 11

Let $\pi(x)$ be a monic irreducible polynomial over $\mathrm{GF}(p)$ of degree m. Let $f\in\mathrm{GF}(p^m)$ and $f\neq 0$. Then there is an element $g\in\mathrm{GF}(p^m)$ such that $f\cdot g=1$. This polynomial g is called the multiplicative inverse of f modulo π .

Proof.

Since $\pi(x)$ is irreducible and $f \neq 0$ with degree at most m-1, $\gcd(f,\pi)=1$. By Theorem 21 in the previous lecture and with the Extended Eulidean Algorithm, one can find two polynomials $u(x) \in \mathrm{GF}(p)[x]$ and $v(x) \in \mathrm{GF}(p)[x]$ such that

$$1=\gcd(f,\pi)=uf+v\pi.$$

It then follows that $uf \mod \pi = 1$. Hence, $g = u \mod \pi$ is the desired polynomial.

Theorem 12

Let $GF(p^m)^* = GF(p^m) \setminus \{0\}$. Then $(GF(p^m)^*, \cdot)$ is a finite abelian group with identity 1.

Proof.

Since $\pi(x)$ is irreducible, $\mathrm{GF}(p^m)^*$ is closed under the binary operation \cdot . It is obvious that 1 is the identity. By Proposition 11, every element $f \in \mathrm{GF}(p^m)^*$ has its inverse. The binary operation \cdot is commutative, as the ordinary multiplication for polynomials over $\mathrm{GF}(p)$ is so. The desired conclusion then follows.

Finite Field $(GF(p^m), +, \cdot)$

Theorem 13

Let $\pi(x) \in GF(p)[x]$ be any irreducible polynomial over GF(p) with degree m. Then $(GF(p^m),+,\cdot)$ is a finite field with p^m elements.

Proof.

By the definitions of the binary operations + and \cdot , the distribution laws hold. It then follows from Theorems 8 and 12 that $(GF(p^m),+,\cdot)$ is a finite field with p^m elements.

Characteristics of Fields

Definition 14

Let $\mathbb F$ be a field. If there exists a positive integer n such that na=0 for all $a\in\mathbb F$, such least n is called the <u>characteristic</u> of $\mathbb F$. If there is no such n, we say that $\mathbb F$ has characteristic 0.

Example 15

- The field $(\mathbb{Q},+,\cdot)$ of rational numbers has characteristic 0.
- ullet The field $(\mathbb{R},+,\cdot)$ of real numbers has characteristic 0.
- The field $(\mathbb{C},+,\cdot)$ of complex numbers has characteristic 0.

Characteristics of Fields

Theorem 16

The finite field $GF(p^m)$ has characteristic p.

Proof.

By definition, $GF(p) \subseteq GF(p^m)$. The smallest positive integer n such that na = 0 for all $a \in GF(p)$ is equal to p, as $(GF(p), \oplus_p)$ is cyclic. On the other hand, by definition, pf = 0 for all $f \in GF(p^m)$. The desired conclusion then follows.

Properties of Finite Fields

Theorem 17

Let \mathbb{F} be any field with characteristic p. Then $(a+b)^{p^n}=a^{p^n}+b^{p^n}$ for all $a,b\in\mathbb{F}$ and $n\in\mathbb{N}$.

Proof.

For all integers *i* with $1 \le i \le p-1$, we have

$$\binom{p}{i} = \frac{p(p-1)\cdots(p-i+1)}{1\cdot 2\cdots i} \equiv 0 \pmod{p}.$$

Then by the binomial theorem,

$$(a+b)^p = a^p + {p \choose 1}a^{p-1}b + \cdots + {p \choose p-1}ab^{p-1} + b^p = a^p + b^p.$$

The desired conclusion follows the induction on *n*.

