The group G is isomorphic to the group labelled by [36, 7] in the Small Groups library. Ordinary character table of $G \cong (C3 \times C3) : C4$:

Trivial source character table of $G \cong$	$(C3 \times C3)$): C4 at p
---	------------------	--------------

Trivial source character table of $G \cong (C3 \times C3) : C4$ at $p = 2$:											
Normalisers N_i			N_1					N_2			N_3
p-subgroups of G up to conjugacy in G			P_1					P_2			P_3
Representatives $n_j \in N_i$	1a	3a	3b	3c	3d	1a	3b	3a	3c	3d	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	4	4	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	4	4	-2	-2	-2	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	4	-2	4	-2	-2	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} $	4	-2	-2	-2	4	0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} $	4	-2	-2	4	-2	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	2	2	2	2	2	2	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	2	2	-1	-1	-1	2	-1	2	-1	-1	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	2	-1	2	-1	-1	2	2	-1	-1	-1	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} $	2	-1	-1	2	-1	2	-1	-1	2	-1	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} $	2	-1	-1	-1	2	2	-1	-1	-1	2	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}}$	1	1	1	1	1	1	1	1	1	1	1
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36)]) \cong \mathbb{C}_2$ $P_3 = Group([(1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36), (1,2,3,6)(4,16,9,24)(5,18,10,26)(7,19,14,11)(8,21,15,13)(12,34,20,36)(17,35,25,31)(22,28,29,33)(23,27,30,32)]) \cong C4$

 $N_1 = Group([(1,2,3,6)(4,16,9,24)(5,18,10,26)(7,19,14,11)(8,21,15,13)(12,34,20,36)(17,35,25,31)(22,28,29,33)(23,27,30,32),(1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36),(1,4,11)(2,7,16)(3,9,19)(5,12,22)(6,14,24)(8,17,27)(10,20,29)(13,23,31)(15,25,32)(18,28,34)(21,30,35)(24,32,36)] \\ = Group([(1,2,3,6)(4,16,9,24)(5,18,10,26)(7,19,14,11)(8,21,15,13)(12,34,20,36)(17,35,25,31)(22,28,29,33)(23,27,30,32),(1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36),(1,4,11)(2,7,16)(3,9,19)(5,12,22)(6,14,24)(8,17,27)(10,20,29)(13,23,31)(15,25,32)(18,28,34)(21,30,35)(24,32,36)] \\ = Group([(1,2,3,6)(4,16,9,24)(5,18,10,26)(7,19,14,11)(8,21,15,13)(12,24,23,36)(17,35,25,31)(22,28,29,33)(23,27,30,32),(13,24,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36),(1,4,11)(2,7,16)(3,9,19)(5,12,23)(14,25,33)(16,27,34)(19,29,35)(24,32,36)]) \\ = Group([(1,2,3,6)(4,16,9,24)(5,18,10,26)(7,19,14,11)(8,21,15,13)(12,24,23,36)(17,35,25,31)(22,28,29,33)(23,27,30,32),(13,24,24,24)(17,25)(18,24,24)(17,24,24)(17,25)(18,24,24)(17,24)(18,24,24)(17,24)(18,24,24)(18,24,24)(18,24$ $N_3 = Group([(1,2,3,6)(4,16,9,24)(5,18,10,26)(7,19,14,11)(8,21,15,13)(12,34,20,36)(17,35,25,31)(22,28,29,33)(23,27,30,32), \\ (1,3)(2,6)(4,9)(5,10)(7,14)(8,15)(11,19)(12,20)(13,21)(16,24)(17,25)(18,26)(22,29)(23,30)(27,32)(28,33)(31,35)(34,36)] \\ \cong C4$

 $2 \quad -1 \quad -1 \quad 0 \quad -1 \quad -1 \quad -1 \quad 2 \quad 2$ 0 2 -1 -1 0 -1 -1 2 2 -1 -1