MS8-Xany

Bien plus qu'un simple MultiSwitch à 8 sorties pour OpenAVRc

Manuel Utilisateur MultiSwitch MS8-Xany

Copyright OpenAVRc 2018

	able des matieres	
1	CE DOCUMENT	3
	1.1 Versions	3
	1.2 Copyright	3
	1.3 Avertissement	3
	1.4 Contenu	3
2	PRESENTATION DE MS8-XANY	
	2.1 Vue d'ensemble	
	2.2 Résumé des spécifications du décodeur MS8-Xany	
	SCHEMA DU DECODEUR MS8-XANY	
4	REALISATION DU DECODEUR MS8-XANY	
	4.1 Circuit imprimé	7
	4.2 Chargement du Firmware	7
5	UTILISATION	7
	5.1 Connexion au récepteur	
	5.2 Mode standard MultiSwitch/Tout-Ou-Rien	
	5.2.1 Câblage des « utilisations » Tout-Ou-Rien sur les sorties	./
	5.2.2 Sélection de la tension d'alimentation des sorties S1 à S8	
	5.2.3 Diodes de roue libre	٥ ە
	5.4 Mode avancé	
	5.4.1 Utilisation du port série de MS8-Xany	ყ ი
	5.4.2 Les messages de commande de MS8-Xany	
	5.4.3 Exemple de configuration réelle	
	5.4.5 Exemple de comiguration recile	

1 CE DOCUMENT

1.1 Versions

Version	Date	Raison de l'évolution
0.1	20/12/2018	Création

1.2 Copyright

Ce document est Copyright © 2018 OpenAVRc.

1.3 Avertissement

L'équipe **OpenAVRc** n'est aucunement responsable des dommages qui pourraient découler de la mauvaise utilisation ou d'un éventuel dysfonctionnement de l'émetteur **OpenAVRc**, du module décodeur **MS8-Xany** et/ou des logiciels associés.

Il appartient donc à l'utilisateur final d'en mesurer, d'en assumer les risques et de respecter la législation en vigueur selon le pays d'utilisation.

1.4 Contenu

Ce document décrit la réalisation du module décodeur MS8-Xany ainsi que le paramétrage pour son utilisation avec l'émetteur OpenAVRc.

2 PRESENTATION DE MS8-XANY

2.1 Vue d'ensemble

2.2 Résumé des spécifications du décodeur MS8-Xany

Spécification	Valeur / Caractéristique	Note
Alimentation	3.3V à 6.6V	Mettre le cavalier « tension récepteur » sur « = » ou « ↓ » selon la valeur de la tension fournie par le récepteur
Protocole X-Any	- Protocole numérique universel utilisé par OpenAVRc pour les accessoires distants - Contrôle d'intégrité par checksum 8 bits	Contrairement à bon nombre de modules MultiSwitches, X-Any fonctionne avec : - Protocole PPM - Protocoles SPIRfMod - Protocoles MultiMod
8 sorties Tout-Ou-Rien	- Commandées en Tout-Ou-Rien par sortie transistorisée	Sorties configurées en mode « numérique » (MultiSwitch)
Alimentation des sorties	- Interne : tension du récepteur - Externe : tension externe 5 à 24V	Sélectionnable par cavalier (commun aux 8 sorties)
Diode de roue libre	Un cavalier « Diodes » permet de connecter les diodes de roue libre des 8 sorties au + de l'alimentation des sorties	
8 sorties Servo	- Commandées en Tout-Ou-Rien - Positions extrêmes paramétrables - Durée du mouvement entre positions extrêmes paramétrable	 Sorties configurées en mode «Servo» Inversion de la course des servos possible en permuttant les valeurs extrêmes Possibilité d'utiliser la tension du récepteur Possibilité d'utiliser un tension externe (compatible avec les servos)
1 sortie Servo proportionnelle	Commande proportionnelle d'un servo	Détecté en dynamique par MS8-Xany
LED rouge perte de signal	Au bout de 2 secondes sans signal	Non gérée si servo proportionnel utilisé (broche partagée)
Failsafe	- Toutes les sorties passent à 0 en cas de perte de signal RC - Le servo proportionnel conserve sa position courante	Synchrone avec LED rouge perte de signal
Port série TTL	Connecteur pour câble USB/FTDI TTL	Pour configuration à l'aide d'une application type « Terminal série »

3 SCHEMA DU DECODEUR MS8-XANY

4 REALISATION DU DECODEUR MS8-XANY

4.1 Circuit imprimé

TO DO

4.2 Chargement du Firmware

TO DO

5 UTILISATION

5.1 Connexion au récepteur

Avant de connecter MS8-Xany au récepteur, il est impératif de mesurer la tension fournie par le récepteur.

Si la tension disponible entre les broches – et + du connecteur 3 points de la voie utilisée est :

- Inférieure à 5.7V, placer le cavalier « tension récepteur » sur « = »
- 2. Supérieure à 5,7V, placer le cavalier « tension récepteur » sur « ↓ »

5.2 Mode standard MultiSwitch/Tout-Ou-Rien

MultiSwitch, c'est le mode par défaut après chargement du Firmware : le mode commutation Tout-Ou-Rien des 8 sorties **S1** à **S8**. Il n'y a donc rien à configurer pour fonctionner en mode MultiSwitch.

5.2.1 Câblage des « utilisations » Tout-Ou-Rien sur les sorties

Le MS8-Xany s'utilise alors comme un module MultiSwitch standard :

- Les « utilisations » (ex : un lampe) se branchent sur les sorties S1 à S8 entre les broches « S » et « + », la rangée 8 points de « - » en bord de carte n'est pas utilisée dans ce cas.

5.2.2 Sélection de la tension d'alimentation des sorties S1 à S8

Il est possible d'alimenter les sorties **S1** à **S8** (fourniture du +) à partir de :

- 1. La tension du +VRx fournie par le récepteur (Attention à la consommation sur les sorties!)
 - → Cavalier de sélection alimentation sur « VRx »
- 2. Une tension externe **VExt** (de **5V** à **24V**) appliquée sur le connecteur 2 points en bas à droite de la carte
 - → Cavalier de sélection alimentation sur « VExt »

5.2.3 Diodes de roue libre

Si les « utilisations » connectées sur les sorties sont selfiques (ex :relais), il faut connecter les diodes internes de roue libre sinon il y a risque de détruire l'ULN2308.

5.3 Configuration X-Any côté émetteur OpenAVRc

Reportez vous au manuel d'OpenAVRc pour configurer l'instance X-Any avec les paramètres suivants :

- 1. Le N° de voie doit correspondre au N° de voie sur laquelle le décodeur MS8-Xany sera connecté sur le récepteur
- 2. Le nombre de répétition sera en premier lieu réglé sur 3 (dès que ça fonctionnera, il sera possible de réduire cette valeur afin d'atteindre la réactivité maximale autorisée par votre ensemble HF).
- 3. Configurer « Sw. » sur Sw.8 : cela va transmettre l'état de 8 contacts
- 4. Si le servo proportionnel sera utilisé sur MS8-Xany, cocher « Pot. », cela va ajouter la transmission de la valeur du potentiomètre.

5.4 Mode avancé

Le décodeur MS8-Xany dispose d'un accès pour les configurations avancées : un port série TTL.

Pour l'utiliser, il est nécessaire de déconnecter l'entrée RC de MS8-Xany afin de ne pas perturber le fonctionnement de l'accès série.

C'est cet accès série qui va permettre l'utilisation de servos connectés au sorties S1 à S8.

Dans ce cas, la tension « + » de sortie devra impérativement être compatible des servos!

5.4.1 Utilisation du port série de MS8-Xany

Pour accéder au port série de MS8-Xany, il faut un câble USB/Série TTL par exemple de type « FTDI ».

Les points nécessaires sur le câble USB/Série TTL sont :

- GND,
- +5V
- TX
- RX

Le câble USB/Série TTL doit être capable de fournir le +5V pour alimenter MS8-Xany car pendant la configuration avancée, MS8-Xany doit être déconnecté du récepteur.

- 1. Connecter le câble USB/Série TTL sur sur le port USB d'un PC pour le côté USB
- 2. Sur le PC, ouvrir un Terminal série, par exemple, PuTTY, TeraTerm, HyperTerminal, GtkTerm, ou encore CoolTerm avec les paramètres suivants : 19200 bauds, 8 bits de données, 1 bit de stop, pas de parité.
 - Selon le Terminal série, il peut être nécessaire d'activer les retours à la ligne automatique sur réception de CR/LF pour avoir un bon affichage.
- 3. Connecter le câble USB/Série TTL sur le connecteur 6 points de MS8-Xany pour le côté TTL, ceci va alimenter MS8-Xany (vérifier qu'il n'y a pas trop de gros consommateurs branchés sur les sorties, puisque c'est l'USB du PC qui fournit l'alimentation +5V)
- 4. Dans les 3 secondes après le branchement sur MS8-Xany, appuyer sur la touche « Entrée » de votre clavier, le message « MS8 VX.Y » doit apparaître sur le Terminal série comme illustré ci-dessous. Si ce n'est pas le cas, débrancher le câble USB/Série TTL sur le connecteur 6 points de MS8-Xany et recommencer à l'étape 3 ci-dessus.

5.4.2 Les messages de commande de MS8-Xany

La liste des messages supportés par MS8-Xany est donnée dans la table suivante :

$\leftarrow \textbf{Commande} \textit{I} \rightarrow \textbf{R\'eponse}$	Action	Remarque
← Enter → MS8 Vx.y	Si envoyée pendant les 3 secondes après la mise sous tension, passe en mode Terminal	Si échec et 3 secondes écoulées, débrancher puis rebrancher le connecteur 6 points du câble USB/Série TTL
← S0? → S0=Step4us	Retourne le nombre de pas de 4µs Step4us (valeur entre 0 et 255) à ajouter à 988 pour avoir la largeur d'impulsion en µs pour le servo proportionnel	Largeur d'impulsion(us) = 988 + (Step4us x 4)
← S0=Step4us → S0	Définit le nombre de pas Step4us de 4 μs (valeur entre 0 et 255) à ajouter à 988 pour avoir la largeur d'impulsion en μs pour le servo proportionnel	Renvoie ERR, si valeur non comprise entre 0 et 255
← Sx? → Sx=D:E ou → Sx=S;Pos0;Pos1;Dur:C	Si x est compris entre 1 et 8, retourne la configuration de la sortie N°x ainsi que l'état « C » de la Commande courante associée (0 ou 1) - Si la sortie est configurée en sortie numérique MultiSwitch, la réponse est : Sx=D:C D=Digital (Numérique) - Si la sortie est configurée en sortie Servo, la réponse est : Sx=S;Pos0;Pos1;Dur:C avec Pos0=la position en μs pour une commande à 0, Pos1=la position en μs pour une commande à 1, et Dur=la durée du mouvement du servo entre Pos0 et Pos1	Renvoie ERR, si - Valeur x non comprise entre 0 et 8 - Pos0 ou Pos1 < 600 - Pos0 ou Pos1 > 2400 Exemple de réponses : S1=1000;2000;5000:0 S2=2300;600;8500:1
← Sx=D → Sx	Définit la sortie x comme étant de type numérique (Digitale)	
← Sx=S;Pos0;Pos1;Dur → Sx	Définit la sortie x comme étant de type Servo avec une position à Pos0 μs pour une commande à 0, une position à Pos1 μs pour une commande à 1, et une durée de mouvement à Dur ms	La valeur « Dur » en ms est recalculée en interne par MS8- Xany en tenant compte des différentes résolutions/limitations et peut être différente à la relecture.
← Sx=C → Sx	Si x est compris entre 1 et 8, « C » définit la Commande (0 ou 1) pour la sortie x, que celle-ci soit de type Digitale ou Servo	Très pratique pour les tests par l'accès série sans RC.
← Q	Quitte le mode Terminal : MS8- Xany peut être connecté au	Ne pas oublier de déconnecter le câble USB/Série TTL !

récepteur

5.4.3 Exemple de configuration réelle

Dans l'exemple ci-dessous :

- La largeur d'impulsion courante pour le servo connecté sur la voie proportionnelle vaut : [988 + (212 x 4)] = 1836 μs
- Les sorties 1, 2, 3 et 8 sont de type Servo, leurs commandes valent respectivement 0, 0, 1 et 1
- Les sorties 4, 5, 6 et 7 sont de type Digital (MultiSwitch), leurs commandes valent respectivement 0, 1, 0 et 1

Le servo connecté à la sortie N°1 va de 600 μ s à 2300 μ s (environ 180°) en 8,5 secondes si la commande vaut 1, et de 2300 μ s à 600 μ s (environ 180°) en 8,5 secondes si la commande vaut 0.