EE206 2020 Spring

通信原理习题课

Digital Assignment 4

Homework #D4

Fig. 1

• D4.1

Consider the baseband transceiver in Fig. 1, where g(t) and h(t) are given by Fig. 2,

- (a) Please sketch the PSD of noise in y(t).
- (b) What is the signal power in y(T)? What is the noise power in y(T)? What is the SNR of y(T)?
- (c) If h(t) is given by Fig. 3, what is your answer of question (b)?
- (d) Compare the SNR of question (b) and (c), which impulse response h(t) is better for receiver?

Solution:

$$x(t) = ag(t) + w(t)$$

signal

noise

$$y(t) = x(t) \otimes h(t) = (ag(t) + w(t)) \otimes h(t) = ag(t) \otimes h(t) + w(t) \otimes h(t)$$

 $g(t)\otimes h(t)$

a) PSD of noise in $y(t) = \frac{N_0|H(f)|^2}{2}$

Signal power =
$$|ag(t) \otimes h(t)|_{t=T}|^2 = |g_0(T)|^2$$

- 1

Signal power = $2^2 = 4$

Noise power =
$$E(n^2(T)) = \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 df = \frac{N_0}{2} \int_{0}^{2} |h(t)|^2 dt = N_0$$

 $SNR = \frac{4}{N_0}$

c)
$$y(T) = ag(t) \otimes h(t)|_{t=T} + w(t) \otimes h(t)|_{t=T} = g_0(T) + n(T)$$

Signal power =
$$|ag(t) \otimes h(t)|_{t=T}|^2 = |g_0(T)|^2$$

Signal power =
$$1^2 = 1$$

Noise power =
$$E(n^2(T)) = \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 df = \frac{N_0}{2} \int_0^1 |h(t)|^2 dt = \frac{N_0}{2}$$

$$SNR = \frac{1}{\frac{N_0}{2}} = \frac{2}{N_0}$$

d)

$$SNR_b > SNR_c$$

The impulse response h(t) in b is better

