ECE 313 FINAL PRESENTATION

Hrishikesh Deshpande (hd11)

Karthik Appana (kappana2)

Siddharth Gummadapu (sg97)

TASKS 1 & 2

- Generated PMFs, PDFs, and CDFs for respiratory rate samples (sizes 70, 1000, 30,000) and observed reduced fluctuations with larger sizes (hd11).
- Real patient data showed greater deviation from normality (RMSE of **0.9798**) than simulated data (RMSE of **0.2468**) and had a narrower right-skewed range (kappana2).
- Alarms were created using heart, pulse, and respiratory rate thresholds from empirical and normalized distributions (sg97).
- Normalized alarms had a lower error probability (**0.0160**) compared to empirical (**0.0327**), showing better detection performance (hd11).

TASK 3

- Constructed conditional PMFs and likelihood matrices for each of 9 patients (sg97).
- Calculated prior probabilities P(H0) and P(H1) for each patient's training data (sg97).
- Built ML and MAP decision vectors from likelihoods and priors (kappana2).
- Used false alarm and miss detection rates to compute overall error probabilities (kappana2).

TASK 3 - PATIENT DECISIONS (HD11)

- Patient 1 (ML): Features 1 & 3 chosen due to both low error and high impact (0.0325 error).
- **Patient 4 (ML):** Features 2 & 5 chosen because feature 5 had lowest error and feature 2 provided strong signal correlation (**0.0332 error**).
- Patient 5 (MAP): Features 1 & 3 are the combined best from lowest-error and highest-impact pairs (0.0256 error).

TASK 4

- Constructed joint likelihood matrices **P(X,Y|H0)** and **P(X,Y|H1)** for selected feature pairs (sg97):
 - Patient 1: Features 0 & 2
 - Patient 4: Features 1 & 4
 - Patient 5: Features 0 & 2
- Created joint ML and MAP decision rules using likelihood ratios and class priors (sg97).
- Generated predicted alarms for each patient and compared to golden labels (hd11).
- Error probabilities were computed for each method and patient (hd11).

Patient	Method	P(FA)	P(MD)	P(E)
Patient	ML	3.98%	0.14%	2.06%
1	MAP	0.42%	1.33%	0.45%
Patient	ML	3.78%	0%	1.89%
4	MAP	3.78%	0%	3.78%
Patient	ML	3.28%	0.07%	1.67%
5	MAP	0.35%	0.07%	0.35%

TASK 4

- MAP rule outperformed ML in Patients 1 and 5 with lower total error (hd11):
 - Patient 1: MAP (0.45%) vs. ML (2.06%)
 - **Patient 5:** MAP (0.35%) vs. ML (1.67%)
- Patient 4 showed worse MAP performance, likely due to skewed priors misaligning with feature distribution (kappana2).
- Average Errors (kappana2):
 - ML Average Error: 1.87%
 - MAP Average Error: 1.53%
- MAP models are more sensitive to prior distribution assumptions but can dramatically reduce false alarms and misses when aligned well (kappana2).

BONUS TASK

- Built and evaluated **Logistic Regression** and **Neural Network** classifiers for alarm prediction (kappana2).
- Compared these to the **MAP Rule** from Task 4 using the same test set across all models (kappana2).
- Tested both models with (hd11):
 - T_ML (0.5) standard threshold
 - T_MAP threshold with class priors

	Model	Threshold	P(False Alarm)	P(Miss Detection)	P(Error)
0	Logistic Regression	τML (0.5)	0.000086	0.010249	0.005168
1	Logistic Regression	τΜΑΡ	0.000000	0.010249	0.005124
2	Neural Network	τML (0.5)	0.000000	0.010249	0.005124
3	Neural Network	τΜΑΡ	0.000000	0.010249	0.005124
4	MAP Rule (Task 4)	τΜΑΡ	0.015174	0.004652	0.015265

BONUS TASK

- Both Logistic Regression and Neural Network significantly outperformed the MAP rule from Task 3 in total error rate (sg97).
- The MAP Rule had the lowest miss detection rate (0.46%) but suffered from a high false alarm rate (1.52%) (sg97).
- Neural Network and MAP Rule delivered the lowest total error (**0.51245**%) with zero false alarms (hd11).
- Incorporating priors via MAP Rule improved all models' decision boundaries without hurting recall (hd11).

QUESTIONS?