InVitro Fertilization Genetic Algorithm

Airton Bordin Junior

[airtonbjunior@gmail.com]

Metaheurísticas - Prof. Dr. Celso Gonçalves Camilo Junior

Mestrado em Ciência da Computação 2017/2

Universidade Federal de Goiás (UFG) - Instituto de Informática – Novembro/2017

Programação

- Introdução
- Algoritmos genéticos
- InVitro Fertilization Genetic Algorithm
- Referências

Principais diferenças com métodos tradicionais Trabalham com uma codificação do conjunto de parâmetros e não com os próprios parâmetros;

Trabalham com uma população e não com um único ponto;

Utilizam informações de custo ou recompensa e não derivadas ou outro conhecimento auxiliar;

Utilizam regras de transição probabilísticas e não determinísticas.

Algumas saracterísticas

Paralelo: mantém uma população de soluções que podem ser avaliadas simultaneamente;

Global: AGs não usam somente informações locais, logo não necessariamente ficam presos em máximos locais;

Não totalmente aleatório: usam informações da população atual para determinar o próximo estado de busca;

Não afetados por descontinuidades: não usam informações de derivadas nem necessitam informações de seu entorno;

Funções: Lidam com funções discretas e contínuas.

Requisitos implementação de um AG

- Representação das possíveis soluções do problema no formato de código genético;
- · População inicial com diversidade suficiente;
- · Método para medir a qualidade da solução;
- · Critério de escolha das soluções que continuam;
- Procedimento para introduzir algumas alterações periódicas na populãção.

Inicialização da população

- Ponto de partida: representação do problema;
- · Definição da estrutura do cromossomo;
- Depende do tipo de problema a ser tratado;
- Exemplos
 - Vetor de bits;
 - · Vetor de números (inteiros, reais);
 - · Permutação de símbolos, etc.

Inicialização da população

• Exemplo: representação em bits

Inicialização da população

- · Geralmente a inicialização da população é feita de forma randômica;
- · Cada indivíduo gerado é uma possível solução para o problema.

Cálculo aptidão

- · Determinada através da função objetivo;
- Depende do problema a ser tratado;
- · Mede o quão próximo um indivíduo está da solução desejada;
- · A função deve ser escolhida cuidadosamente e embutir o máximo de conhecimento sobre o problema a ser resolvido.

- Tentativa de simular o mecanismo de seleção natural que atua sobre as espécies biológicas;
- Os pais mais capazes geram mais filhos
 - · Porém, os menos aptos também podem gerar descendentes.

- Privilegiar indivíduos com função de avaliação alta, sem desprezar completamente aqueles com função de avaliação extremamente baixa
 - · Até indivíduos com péssima avaliação podem ter características genéticas que sejam favoráveis à criação de um "super indivíduo".

- Privilegiar indivíduos com função de avaliação alta, sem desprezar completamente aqueles com função de avaliação extremamente baixa
 - Até indivíduos com péssima avaliação podem ter características genéticas que sejam favoráveis à criação de um "super indivíduo".

- Método comum: Roleta (Roulette Whell);
- Probabilidade de seleção de um cromossomo é diretamente proporcional à sua aptidão.

Cromossomo	Função x ²	% roleta
000001	1	1.6%
000011	9	14.5%
000100	16	25.8%
000110	36	58%

- Outras formas utilizadas para a seleção
 - Dizimização
 - · Ordena os cromossomos de acordo com o seu valor de aptidão e remove um número fixo de indivíduos que possuem baixo valor de aptidão;
 - Dentre os "sobreviventes", escolhem-se os pais de forma aleatória.

Escolhe randomicamente entre os indivíduos que sobraram (lista ordenada)

Indivíduos com baixa aptidão removidos (nesse caso, n=2)

- Outras formas utilizadas para a seleção
 - Torneio
 - Escolhe-se n (geralmente 2) indivíduos aleatoriamente;
 - · O melhor é selecionado;
 - · Não é proporcional a aptidão.

- Troca de segmentos entre "pares" de cromossomos selecionados para originar os novos indivíduos da geração seguinte;
- Propagar as características positivas dos indivíduos mais aptos da população por meio da troca de segmentos de informações entre os mesmos, originando novos indivíduos.

- · Operador genético predominante;
- Aplicado com taxa de probabilidade maior que a taxa de mutação;
- Tipos de cruzamento muito utilizados:
 - · Cruzamento de ponto único;
 - · Cruzamento de ponto duplo;
 - · Cruzamento de pontos aleatórios.

- Cada indivíduo com n genes possui n-1 pontos de corte;
- Em um indivíduo com codificação binária, cada bit é um gene.

 Ponto único – Um ponto é escolhido e, à partir desse ponto, as informações genéticas dos pais serão trocadas.

 Ponto duplo – Dois pontos são escolhidos e as informações genéticas dos pais serão trocadas.

Pontos aleatórios – Usa uma máscara de bits
bit 0 pega gene de um dos pais e bit 1 o contrário.

Mutação

- Modificações em determinadas propriedades genéticas de forma aleatória;
- Introdução e manutenção da diversidade genética da população;
- · Assim como na natureza, deve acometer uma pequena parcela da população
 - Probabilidade de **0,1**% a **5**% na maior parte dos casos.

Mutação

Mutação aleatória

Mutação

• Mutação por troca

InVitro Fertilization Genetic Algorithm

InVitro Fertilization Module (IVFm)

- Processo utilizado pelo Algoritmo Genético segue um ciclo de processamento
 - · Cada iteração cria uma nova geração de indivíduos
- Em cada geração, novos indivíduos substituem outros existentes;
- Muitos indivíduos descartados contém "material genético" importante para a busca.

- ·Os indivíduos descartados nem sequer passam pelo processo de reprodução;
- •Alguns deles são gerados e descartados sem contribuir para a evolução;
- •A cada geração, informações são perdidas antes mesmo de serem analisadas.

- IVFm recombina os cromossomos da população e de novos indivíduos
 - · Melhorar a exploração da informação
- Executa em um fluxo paralelo ao AG;
 - ·Recebe como entrada uma parte da população e retorna um indivíduo que pode ser melhor
- · Acelerar o processo evolutivo do AG.

- · Ideia geral: recombinação genética de partes do indivíduo como melhor
 - •Se gerar um indivíduo melhor, substitui o melhor atual, caso contrário não há interfência.
- Dois grupos de operadores
 - · Material genético original: AR
 - Material genético alterado: EAR (T/P/N)

- Fluxo geral
 - · Definidos uma vez no início do processo do AG
 - · Divisão do material genético (fenotípico)
 - Genetic Material Division to be exchanged.
 - · Porção da população usada pelo IVFm.
 - · Após receber a população de indivíduos:

• Operador EAR (P/T/N)

· Processo de recombinação

- Experimentos
 - Rastrigin's function

$$f(x) = nA + \sum_{i=1}^{n} (x_i^2 - A\cos(2\pi x_i)); \forall i \in [1..n], x_i \in [-5.12, 5.12]$$

• Experimento 1 - configuração

Experiment 1								
Scenario	GA			IVFm		Function		
1.1	Pop	NuG	SC	DGM	NuIndiv	Variables	A	
	50	34	GO or	4	45	2	10	
			250 G					
1.2	Pop	NuG	SC	DGM	NuIndiv	Variables	A	
	50	34	GO or	4	45	2	50	
			250 G					

• Experimento 2 - configuração

Experiment 2								
Scenario	GA			IVFm		Function		
2.1	Pop	NuG	SC		DGM	NuIndiv	Variables	A
M	30	34	GO 0 250 G	or	2	27	2	10
2.2	Pop	NuG	SC		DGM	NuIndiv	Variables	A
	10	34	GO (250 G	or	2	9	2	10
2.3	Pop	NuG	SC		DGM	NuIndiv	Variables	A
	5	34	GO 0 250 G	or	2	4	2	10

• Experimento 3 - configuração

Experiment 3								
Scenario	GA			IVFm		Function		
3.1	Pop	NuG	SC		DGM	NuIndiv	Variables	A
	50	34	GO	or	4	45	2	10
			250	G				
3.2	Pop	NuG	SC		DGM	NuIndiv	Variables	A
	50	170	GO	or	10	45	10	10
			250	G				

• Experimento 1 - resultados

• Experimento 2 - resultados

• Experimento 3 - resultados

- Operadores mais eficientes/eficazes (ordem)
 - 1. EAR-N
 - 2. EAR-T
 - 3. EAR-P
 - 4. AR
- · Bons resultados do operador EAR-N justificase pela forma de balanceamento da exploração e intensificação do espaço de busca.

Referências

- CAMILO-JR, C. G., YAMANAKA, K. In Vitro Fertilization Genetic Algorithm
- LUCAS, D.C. Algoritmos Genéticos: Uma Introdução
- · CARVALHO, A. P. L. Algoritmos Genéticos
- ROSA, T. O.; LUZ, H. S. Conceitos Básicos de Algoritmos Genéticos: Teoria e Prática
- PACHECO, M. A. C. Algoritmos Genéticos: Princípios E Aplicações
- NETO, S. P Computação Evolutiva: Desvendando os Algoritmos Genéticos
- MIRANDA, M. N. Algoritmos Genéticos: Fundamentos e Aplicações
- · CRUZ, A. J. O. Algoritmos Genéticos
- LIMA, E. S. Algoritmos Genéticos

- PARREIRAS, R. O. Algoritmos Evolucionários e Técnicas de Tomada de Decisão em Análise Multicritério
- MANOEL, H. P. Algoritmos Genéticos
- ZUBEN, F. V. Representação e Operadores Evolutivos
- MONÇÃO, A. C. B. L. Uma Abordagem Evolucionária para o Teste de Instruções SELECT SQL com o uso da Análise de Mutantes