Assignment 2

COMP - 551

Student ID: 260880458

Mohd Safwan Ahmad

See data files DS1test, DS1val, DS1train for the data set

a.

w0 27.141267048146638

b.

Accuracy = 0.96 Precision = 0.9532019704433498 Recall = 0.9675 F Measure = 0.9602977667493796

a.

F-Measure

GDA	0.9602977667493796
KNN	
K=1	0.5541561712846349
K=2	0.6219151036525172
K=3	0.5358024691358024
K=4	0.6047966631908237
K=5	0.5608856088560885
K=6	0.5608856088560885
K=7	0.5503685503685504
K=8	0.6065217391304347
K=9	0.5724725943970768
K=10	0.6102449888641426

GDA Performs better than the KNN for this example.

K implies the number of nearest k points to x (data point in test set) in the training set based on which we classify the test data point.

K = 2 works best in this case – Because this means that the algorithm is classifying based on the closest 2 points for this algorithm and its working best for this example.

b.

for k value = 2
Accuracy = 0.52125
Precision = 0.5138662316476346
Recall = 0.7875
F Measure = 0.6219151036525172

See data files DS2test, DS2val, DS2train for the data set

1.a.

Accuracy = 0.49875 Precision 0.4986737400530504 Recall = 0.47 F Measure = 0.4839124839124839

1.b.

w0 -0.055699759777591396

F-Measure

GDA	0.4839124839124839
KNN	
K=1	0.5263157894736842
K=2	0.5737538148524923
K=3	0.5271122320302648
K=4	0.5932203389830508
K=5	0.527363184079602

2.

KNN is performs better than GDA for this example.

K = 4 works best in this case — Because this means that the algorithm is classifying based on the closest 4 points for this algorithm and its working best for this example.

3.

for k value = 4
Accuracy = 0.52
Precision = 0.5147058823529411
Recall = 0.7
F Measure = 0.5932203389830508

For DS1, the GDA performed way better, generally, and better than the KNN. That is because GDA assumes data coming from a Gaussian distribution and that was exactly how the data was generated.

However, for DS2 though the data was still coming from Gaussian distribution, but it was a mix of 3 Gaussians with different means – thus it was not ideal for GDA hence not as good a performance.

Since KNN doesn't assume anything about the data, it performed almost similar for both DS1 and DS2