

Navigation

Control of Mobile Robots: Programming & Simulation Week 7

Jean-Pierre de la Croix ECE Ph.D. Candidate Georgia Inst. of Technology

Overview

- This week we need to answer three questions to achieve navigation through the obstacle course:
 - Is the robot making progress towards the goal?
 - 2. Should the robot follow the wall to the right or the left?
 - 3. If the robot is in state "A" and event "2" becomes true, then to which state should the robot switch?

Implementation

 All parts of this week's programming assignment will be implemented in the supervisor:

```
+simiam/+controller/+quickbot/QBSupervisor.m
```

Let's see it in action!

Progression Towards The Goal

 Robot first attempts to approach the goal while avoiding obstacles as before.

Progression Towards The Goal

 Update progress with set_progress_point and check with progress made event.

Switching to Follow Wall

- When no more progress is made, try to switch to following the wall.
- What should obj.fw direction be?

Switching to Follow Wall

- Is u_fw is between u_ao
 and u gtg?
- Let's use a little bit of linear algebra:

$$\begin{bmatrix} u_{gtg} & u_{ao} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} = u_{fw,l}$$

New Progress

progress_made and~sliding_left, so let'sswitch back to go to_goal.

Finite State Machine

- A few pointers for the navigation FSM:
 - 1. If at goal, then stop.
 - 2. If unsafe, then switch to avoid obstacles.
 - 3. If go_to_goal and ~progress_made, then switch to follow_wall if sliding_left or sliding_right.
 - 4. If progress_made while
 follow_wall and
 ~sliding_left or
 ~sliding_right,
 then switch to go to_goal.

Tips

- Refer to the section for Week 7 in the manual for more details!
- Draw out the FSM on paper, step through it, and then implement and test it.

What's Next?

- The simulator and its documentation will be available outside of this course: http://gritslab.gatech.edu/projects/robot-simulator
- Contribute your improvements, new robots, new sensors, and anything else on GitHub.
- Thank you for your hard work!