

20V, 2A Buck Switching Regulator

General Description

The FP6101 is a buck switching regulator for wide operating voltage application fields. The FP6101 includes a high current P-MOSFET, high precision reference (0.5V) for comparing output voltage with a feedback amplifier, an internal dead-time controller and oscillator for controlling the maximum duty cycle and PWM frequency. It also has power-on programmable soft start time, short circuit PMOS turn-off and auto re-start protection functions.

Features

- ➤ Precision Feedback Reference Voltage: 0.5V (2%)
- Wide Supply Voltage Operating Range: 3.6 to 20V
- > Low Current Consumption: 3mA
- ➤ Internal Fixed Oscillator Frequency: 340KHz (Typ.)
- > Internal Soft-Start Function (SS)
- > Short Circuit Shutdown and Auto Re-start function (ARSCP)
- > Built-in P-MOSFET for 2A Loading Capability
- > Over Current Protection
- > Package: SOP-8L

Typical Application Circuit

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Function Block Diagram

Pin Descriptions

SOP-8L

Name	No.	1/0	Description	
V_{CC}	1	Р	Power Supply (PMOS Source)	
SS / SCP	2	I	Connecting with a Soft-start & ARSCP Timing Capacitor	
IN-	3	I	Error Amplifier Inverting Input	
FB	4	0	Error Amplifier Compensation Output	
GND	5	Р	IC Ground	
GND	6	Р	IC Ground	
LX	7	0	PMOS High Current Output	
LX	8	0	PMOS High Current Output	

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Marking Information

Halogen Free: Halogen free product indicator

Lot Number: Wafer lot number's last two digits

For Example: 132386TB → 86

Mass Production Version: Mass production mask version

Per-Half Month: Production period indicated in half month time unit

For Example: January \rightarrow A (Front Half Month), B (Last Half Month)

February → C (Front Half Month), D (Last Half Month)

Year: Production year's last digit

Ordering Information

Part Number	Operating Temperature	Package	MOQ	Description
FP6101DR-LF	-25°C ~ +85°C	SOP-8L	2500 EA	Tape & Reel

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{CC}				21	V
Output Source Current					3	Α
Error Amplifier Inverting Input			-0.3		1.2	V
Allowable Power Dissipation	P _D	SOP-8L T _A ≦+25°C			650	mW
Junction to Ambient Thermal Resistance	θ_{JA}				+175	°C/W
Junction to Case Thermal Resistance	θ_{JC}				+45	°C / W
Operating Temperature			-25		+85	°C
ECD Cussestibility		HBM (Human Body Mode)	2			KV
ESD Susceptibility		MM (Machine Mode)	200			V
Storage Temperature	Ts	SOP-8L	-55		+125	°C
SOP-8L Lead Temperature		(soldering, 10 sec)			+260	°C

Suggested IR Re-flow Soldering Curve

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	V _{CC}		3.6		20	V
Operating Temperature			-25		85	°C

DC Electrical Characteristics (V_{CC}=6V, T_A = 25°C, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Reference						
Output Voltage	V_{REF}	IN- connected to FB	0.490	0.5	0.510	V
Input Regulation	$\triangle V_{REF}$	V _{CC} =3.6 to 20 V		2	12.5	mV
Output Voltage Change with	△V _{REF} /	T _A = -25 to +25°C		1	2	%
Temperature	V_{REF}	T _A = +25 to +85°C		1	2	%
Soft Start Section (S.S.)						
S.C.P. Source Current	I _{SS}	V _{SS} =0V	-17	-12	-7	μA
Soft Start Threshold Voltage	V_{SST}		0.9	1.0	1.1	V
Short Circuit Protection Sect	ion (S.C.I	P.)	<u> </u>		<u> </u>	
S.C.P. Source Current	I _{SCP}	V _{SCP} = 0V	-17	-12	-7	μA
SCP Re-start / Hold Time	T _{RE} /T _{HOLD}	V _{FB} =0V		1/8		
S.C.P. Threshold Voltage	V _{SCP}	V _{FB} >450mV	1.0	1.15	1.2	V
S.C.P. Threshold Vollage	V _{SB}	V _{FB} <450mV		0.1	0.15	V
Output Section						
Oscillation Frequency	f			340		KHz
Frequency Change with Voltage	Δf / ΔV	V _{CC} =3.6V to 20V		5		%
Frequency Change with Temperature	Δf / ΔΤ	T _A = -25°C to +85°C		5		%
Thermal Shutdown Section						
Thermal Shutdown Temperature				+145		°C
Idle Period Adjustment Section	on					
Maximum Duty Cycle	T_DUTY	V _{IN} =0.2V		90		%
Total Device Section						
Average Supply Current	I _{AVE}			3.8	5	mA
Output Section						
PMOS D-S Voltage	V _{DSS}	V=0.1V		-20		V
PMOS Source Current	I _D			-2		Α
DMOS On Posistance	В	V _{CC} =5.0V,V _{IN} =0V		70	150	mΩ
PMOS On Resistance	R _{DS(ON)}	V _{CC} =10V,V _{IN} =0V		42	90	11122
Output Leakage Current	IL			5		μΑ
Over Current Protection Sect	ion					
PMOS OCP Current	I _{OCP}			3		Α

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Error Amplifier Section							
Input Bias Current	I _B		-1.0	-0.2	1.0	μΑ	
Voltage Gain	Av			100		V/V	
Frequency Bandwidth	BW	Av=0 dB		6	2	MHz	
Output voltage Swing Positive	V _{POS}	V _{IN-} =0.3V	0.78	0.87		V	
Output voltage Swing Negative	V_{NEG}	V _{IN-} =0.7V		0.05	0.2	V	
Output Source Current	I _{SOURCE}	V _{FR} =500mV		-45	-30	μA	
Output Sink Current	I _{SINK}	VFB-300IIIV	30	45		μA	

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Typical Operating Characteristics

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Timing Waveform

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Website: http://www.feeling-tech.com.tw

Function Description

Voltage Reference

FP6101 includes a 1.25V reference generator. This reference voltage is divided by a resistive divider to provide a 0.5V precision reference voltage for the non-inverting terminal of error amplifier and a 1.0V threshold voltage for the SCP comparator.

Error Amplifier

The error amplifier compares a sample of the DC-DC converter output voltage with the 0.5V reference (V_{REF}) to generate an error signal for the PWM comparator. Output voltage of the DC-DC converter is setting by the external resistor divider with following equation (see figure 1):

$$V_{OUT} = \left(1 + \frac{R_1}{R_2}\right) \times V_{REF}$$

Figure 1 Error Amplifier with Feedback Resistor Divider

Oscillator

The fixed PWM frequency is generated by an internal RC oscillator. Its typical value is 340KHz.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Soft Start/ Short-circuit protection (S.S. / S.C.P.)

The Soft Start function works after power on. The interval of Soft Start time is determined by a capacitor connected to SCP pin (pin 2). After Soft Start function finished, the internal Soft Start clamp voltage is setting high, but external SCP pin is discharged to low. Thus FP6101 turns on short circuit detection / protection function.

The Soft Start time is:

$$Tss(Sec) = 0.07 \times C_{SCP}(in \,\mu F)$$

When a heavy loading or short circuit condition make output voltage to drop too much, the error amplifier output (FB pin) will rise to very high. Once FB pin voltage exceeds V_{POS} (typ. 1.0V), the short circuit protection function is triggered. The output switching MOS will be turned off. The SCP capacitor will be charged until its potential exceeds SCP threshold voltage (typ. 1.2V) and then discharged to low.

The time of short circuit protection is:

$$T_{RE}(Sec) = \frac{V \times C_{SCP}}{I} = \frac{\left(V_{TH} - V_{SS-Start}\right) \times C_{SCP}}{Isource} = 0.09 \times C_{SCP}(in \, \mu F)$$

Restart timing of short circuit protection is:

$$T_{HOLD}(Sec) = 8 \times T_{RE}(Sec)$$

Thermal Protection

When a heavy loading makes chip internal temperature exceeds 145°C, the thermal protection function is triggered. The FP6101 turns off its output and starts Short Circuit Protection function. After the IC is cooled down to its internal temperature below 145°C, it will turn on the output and execute Soft-Start function again.

Over Current Protection

When FP6101 senses driver current over 3A, it will initiate OCP function and enters ARSCP function. After current drops below 3A, FP6101 turns on the output and continues PWM operation.

Typical Application

FP6101 Basic DC-DC Regulator Circuit

For example:

The V_{IN} power supply is 12V and the V_{OUT} is designed for 3.3V / 2A solution.

The output voltage equation is:

$$V_{OUT} = \left(1 + \frac{R_1}{R_2}\right) \times V_{REF} = \left(1 + \frac{56K\Omega}{10K\Omega}\right) \times 0.5V = 3.30V$$

Package Outline

Symbols	Min. (mm)	Max. (mm)	
Α	1.346	1.752	
A1	0.101	0.254	
A2	1.092	1.498	
D	4.800	4.978	
E	3.810	3.987	
Н	5.791	6.197	
L	0.406	1.270	
θ°	0°	8°	

Note:

- 1. Package dimensions are in compliance with JEDEC Outline: MS-012 AA.
- 2. Dimension "D" does not include molding flash, protrusions or gate burrs.
- 3. Dimension "E" does not include inter-lead flash, or protrusions.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.