Statistical Computing with R Masters in Data Science 503 (S7) First Batch, SMS, TU, 2021

Shital Bhandary

Associate Professor

Statistics/Bio-statistics, Demography and Public Health Informatics
Patan Academy of Health Sciences, Lalitpur, Nepal
Faculty, Data Analysis and Decision Modeling, MBA, Pokhara University, Nepal

Faculty, FAIMER Fellowship in Health Professions Education, India/USA.

Review Preview (Unit 2, Session 2)

- Manipulating and Tyding data
- Data Transformation
- Data Wrangling
- Data Mining
- Text Mining

What to do after importing data in R: Tidy!

- Once you've imported your data, it is a good idea to **tidy** it. Tidying your data means storing it in a consistent form that matches the semantics of the dataset with the way it is stored.
- In brief, when your data is tidy, each column is a variable, and each row is an observation. Column=Variable=Correct attributes too!
- Tidy data is important because the <u>consistent structure lets you focus</u> <u>your struggle on questions about the data</u>, not fighting to get the data into the right form for different functions.

Exercise: Get this Wikipedia table in R Studio and create a working data.frame with "tidy"!

Hint: Use the "rvest" library (in R Studio) (You can use the shared script too!)

- library(rvest)
- library(dplyr)
- wiki_link <- "https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Nepal"
- wiki_page <- read_html(wiki_link)
- tables <- wiki_page %>% html_table(fill = TRUE) #Check the tables
- covid_table <- wiki_page %>%
 html_nodes("table") %>% .[16] %>%
 html table() %>% .[[1]]

You will get this in R Studio:

Now, "tidy" the covid_table data scrapped from Wikipedia link in R Studio as follows:

- Row 0: Variable names (Spaces between words must have underscores!)
- Row 1: Variable names as data values (need to remove them)
- Row 1 names must be appended to Row 0 with "underscore" a priori
- Columns: Need to have proper attributes for each variable e.g.
 - Date = Date variable
 - Confirmed cases = Number (Integer)
 - Confirmed cases new = Number (Integer) and so on and so forth
 - "+" must be removed from Confirmed Cases New, Recoveries Recoveries, Deaths Deaths, RT PCR tests New variables
 - "%" must be removed from the TPR Total, RR New and CFR Total variables
 - Ref. variable can be dropped (deleted/removed) as it is not useful

We can do as follows: Part 1 (Do this with one of "tidyverse" packages!)

- #Changing column names: Column Underscore Row 1
 names(covid_table) = paste(names(covid_table), covid_table[1,], sep = "_")
- #Removing first row

```
covid_table = covid_table[-1, ]
```

#Removing last column

```
covid_table <- covid_table[,-14]</pre>
```

#Viewing the data

View(covid_table)

#Checking structure of the data

```
str(covid_table)
```

This is what I got:

We can do as follows now: Part 2 (Do this with one of "tidyverse" packages!)

#Renaming the column names with underscore between spaces

```
#Checking column names to do correct coding below
colnames(covid table)
names(covid_table)[names(covid_table) == "Date_Date"] = "Date"
names(covid_table)[names(covid_table) == "Confirmed cases_Total"] = "Confirmed_Cases_Total"
names(covid_table)[names(covid_table) == "Confirmed cases_New"] = "Confirmed_Cases_New"
names(covid_table)[names(covid_table) == "Confirmed cases_Active"] = "Confirmed_Cases_Active"
names(covid_table)[names(covid_table) == "RT-PCR tests_Total"] = "PCR Total"
names(covid_table)[names(covid_table) == "RT-PCR tests_New"] = "PCR_New"
names(covid_table)[names(covid_table) == "TPR_TPR"] = "TPR"
names(covid_table)[names(covid_table) == "RR_RR"] = "RR"
names(covid table)[names(covid table) == "CFR CFR"] = "CFR"
str(covid_table)
```

What has been changed?

```
Console
        Terminal ×
                   Jobs ×
> str(covid_table)
tibble [495 \times 13] (S3: tbl_df/tbl/data.frame)
 $ Date
                       : chr [1:495] "23 Jan" "24 Jan" "25 Jan" "26 Jan" ...
 $ Confirmed_Cases_Total : chr [1:495]
                                    "+1" "0" "0" "0"
 $ Confirmed_Cases_New : chr [1:495]
                                                               Column names
 $ Confirmed_Cases_Active: chr [1:495]
                                    "1" "1" "1" "1"
                                                               have changed as
                                    "0" "0" "0" "0"
 $ Recoveries_Total : chr [1:495]
                                    "0" "0" "0" "0"
 $ Recoveries_New
                  : chr [1:495]
                                                               requested but
 $ Deaths_Total
                      : chr [1:495]
                                    "0" "0" "0" "0"
                                                               their attributes
                                    "0" "0" "0"
 $ Deaths_New
                       : chr [1:495]
                                    : chr [1:495]
 $ PCR_Total
                                                               are STILL "chr"
 $ PCR New
                       : chr [1:495]
                                                               i.e. characters of
 $ TPR
                       : chr [1:495]
                                    "0%" "0%" "0%" "0%"
 $ RR
                       : chr [1:495]
                                                               text!
$ CFR
                       : chr [1:495] "0%" "0%" "0%" "0%"
```

Removing "+" and "%" from certain variables: (Do this with one of "tidyverse" packages!)

- #Removing + from four variables
- covid_table\$Confirmed_Cases_New = gsub('[+]', '', covid_table\$Confirmed_Cases_New)
- covid_table\$Recoveries_New = gsub('[+]', '', covid_table\$Recoveries_New)
- covid_table\$Deaths_New = gsub('[+]', '', covid_table\$Deaths_New)
- covid_table\$PCR_New = gsub('[+]', '', covid_table\$PCR_New)
- #Removing % from three variables
- covid_table\$TPR = gsub('[%]', '', covid_table\$TPR)
- covid_table\$RR = gsub('[%]', '', covid_table\$RR)
- covid_table\$CFR = gsub('[%]', '', covid_table\$CFR)

This is what I got:

•	Date [‡]	Confirmed_Cases_Total	Confirmed_Cases_New	Confirmed_Cases_Active
1	23 Jan	1	1	1
2	24 Jan	1	0	1
3	25 Jan	1	0	1
4	26 Jan	1	0	1
5	27 Jan	1	0	1
6	28 Jan	1	0	1
7	29 Jan	1	0	0
8	30 Jan	1	0	0
9	31 Jan	1	0	0
10	1 Feb	1	0	0
11	2 Feb	1	0	0
12	3 Feb	1	0	0
13	4 Feb	1	0	0
14	5 Feb	1	0	0

Deaths_Total	Deaths_New [‡]	PCR_Total	PCR_New [‡]	TPR [‡]	RR [‡]	CFR [‡]
0	0				0	0
0	0				0	0
0	0				0	0
0	0				0	0
0	0				0	0
0	0	3		33.33	0	0
0	0	4	1	25	100	0
0	0	5	1	20	100	0
0	0	5	0	20	100	0
0	0				100	0
0	0	5		20	100	0
0	0				100	0
0	0	14		7.14	100	0
0	0	14	0	7.14	100	0

Changing attributes of the variables: (Do this with one of "tidyverse" packages!)

- #Converting chr variables as numbers and integers
- covid_table\$Confirmed_Cases_Total = as.integer(covid_table\$Confirmed_Cases_Total)
- covid_table\$Confirmed_Cases_New = as.integer(covid_table\$Confirmed_Cases_New)
- covid_table\$Confirmed_Cases_Active = as.integer(covid_table\$Confirmed_Cases_Active)
- covid_table\$Recoveries_Total = as.integer(covid_table\$Recoveries_Total)
- covid_table\$Recoveries_New = as.integer(covid_table\$Recoveries_New)
- covid_table\$Deaths_Total = as.integer(covid_table\$Deaths_Total)
- covid table\$Deaths New = as.integer(covid table\$Deaths New)
- covid_table\$PCR_Total = as.integer(covid_table\$PCR_Total)
- covid table\$PCR New = as.integer(covid table\$PCR New)
- covid table\$TPR = as.numeric(covid table\$TPR)
- covid_table\$RR = as.numeric(covid_table\$RR)
- covid_table\$CFR = as.numeric(covid_table\$CFR)
- covid table\$Ref = as.character(covid table\$Ref)
- str(covid table)

What changes do you see?

```
Console
         Terminal ×
                   Jobs ×
R 4.1.1 · ~/Work/STCWR 503 MDS SMS TU 2021/Lectures/ 
> str(covid_table)
tibble \lceil 495 \times 13 \rceil (S3: tbl_df/tbl/data.frame)
                         : chr [1:495] "23 Jan" "24 Jan" "25 Jan" "26 Jan" ...
 $ Date
 $ Confirmed_Cases_Total : int [1:495] 1 1 1 1 1 1 1 1 1 1 ...
                                                                      Variable
 $ Confirmed_Cases_New : int [1:495] 1 0 0 0 0 0 0 0 0 0 ...
 $ Confirmed_Cases_Active: int [1:495] 1 1 1 1 1 0 0 0 0 ...
                                                                      attributes
 $ Recoveries_Total : int [1:495] 0 0 0 0 0 1 1 1 1 1 ...
                                                                      have
 $ Recoveries_New : int [1:495] 0 0 0 0 0 0 1 0 0 0 ...
                                                                      changed
 $ Deaths_Total
                        : int [1:495] 0 0 0 0 0 0 0 0 0 0 ...
                                                                      now!
 $ Deaths_New
                         : int [1:495] 0 0 0 0 0 0 0 0 0 0 ...
 $ PCR Total
                        : int [1:495] NA NA NA NA NA 3 4 5 5 NA ...
 $ PCR New
                         : int [1:495] NA NA NA NA NA NA 1 1 0 NA ...
 $ TPR
                         : num [1:495] NA NA NA NA NA ...
 $ RR
                         : num [1:495] 0 0 0 0 0 0 100 100 100 100 ...
 $ CFR
                         : num [1:495] 0 0 0 0 0 0 0 0 0 0 ...
>
```

Transforming data (after importing & tidying):

- Once tidying is done, a common first step is to transform it.
- Transformation includes <u>narrowing in on observations of interest</u> (like all people in one city, or all data from the last year), <u>creating new variables that are functions of existing variables</u> (like computing speed from distance and time), and <u>calculating a set of summary statistics</u> (like counts or means).
- Together, tidying and transforming are called wrangling, because getting your data in a form that's natural to work with often feels like a fight!

Creating new date variable and getting plot of daily new deaths (narrowing) by this date variable: (Do this with one of "tidyverse" packages!)

- #Changing date variable as date2
- date2 = seq(as.Date('2020-1-23'), by='days', length.out = 495)
- covid_table = cbind(covid_table, date2)

- #Plot
- plot(covid_table\$date2, covid_table\$Deaths_New)
- plot(covid_table\$date2, covid_table\$Deaths_New, ylim = range(0:250))

The two requested plots: Any problem here?

There are unusual "daily deaths" data!

After removing 3 unusual data: Is there any other alternative to this (self-learning)!

covid_table\$date2

Code used to remove 3 unusual data (<u>not</u> <u>recommended for real life problems/projects!</u>): (Do this with one of "tidyverse" packages!)

#Repalce Deaths_New of 24 Feb as 1 in the data

```
covid_table[covid_table$date2=="2021-02-24", "Deaths_New"] = 1
```

• #https://www.france24.com/en/live-news/20210224-nepal-revises-coronavirus-death-toll

```
covid_table[covid_table$date2=="2021-02-26", "Deaths_New"] = 4
```

• #https://thehimalayantimes.com/covid-19/nepal-covid-19-update-112-new-cases-54-recoveries-and-four-fatalities-recorded-on-friday

```
covid_table[covid_table$date2=="2021-03-05", "Deaths_New"] = 0
```

• #https://thehimalayantimes.com/covid-19/nepal-covid-19-update-47-new-cases-62-recoveries-and-no-deaths-recorded-on-saturday

plot(covid_table\$date2, covid_table\$Deaths_New)

Transformation: Summary statistics!

O NULL NULL

```
summary(covid_table$Deaths New)
                                            #Interpretation?
  Min. 1st Qu. Median Mean 3rd Qu. Max.
  0.00 0.00 2.00 14.92 11.00 619.00
summary(covid table$Deaths Total)
                                            #Interpretation?
  Min. 1st Qu. Median Mean 3rd Qu. Max.
                                           NA's
   0.0 0.0 18.0 142.9 149.0 984.0 210
summary(covid table$Deaths CFR)
                                            #Interpretation?

    Length Class Mode
```

Why 0? #What is the PROBLEM!

Once we have finished "data wrangling" i.e. tidying and transformation, we can then do:

- Data Visualization
 - We have already started it for deaths_new variable with date variable!
- Data Modelling
 - Since there are no errors in the deaths_new data and visualization is good, we will do/fit the modelling/a simple time series model now
 - We shall check which "moving average" level if most appropriate for the 495 days of COVID-19 data of Nepal after removing 3 unusual cases
 - We will use "smooth" package for this as it can "automatically" detects the best level of moving average for this data
 - More here: https://forecasting.svetunkov.ru/en/tag/sma/

Simple Moving Average Fit & Forecast for daily deaths data obtained after remove 3 outliers:

Code used for Auto SMA Fit and Forecast:

#Simple Moving Average fit for new deaths data!
 library(smooth)
 sma = sma(covid_table\$Deaths_New, h=14, silent=FALSE)

summary(sma)
forecast(sma)

plot(forecast(sma), main = "SMA(2) Forecast", ylab="Daily deaths")

Data Visualization: "ggplot2" package?

- Visualisation is a fundamentally human activity.
- A good visualisation will show you things that you did not expect, or raise new questions about the data.
- A good visualisation might also hint that you're asking the wrong question, or you need to collect different data.
- Visualisations can surprise you, but don't scale particularly well because they require a human to interpret them.

Models: "modelr" package?

- Models are complementary tools to visualisation.
- Once you have made your questions sufficiently precise, you can use a model to answer them.
- Models are a fundamentally mathematical or computational tool, so they generally scale well.
- Even when they don't, it's usually cheaper to buy more computers than it is to buy more brains!
- But every model makes assumptions, and by its very nature a model cannot question its own assumptions.
- That means a model cannot fundamentally surprise you.

Let us visit this website for Project Work:

- https://documenter.getpostman.com/view/9992373/SzS7PkXr
- And, get this data in R using R Studio to Data Wrangling:
- https://data.askbhunte.com/api/v1/covid/timeline
- https://data.askbhunte.com/api/v1/covid
- https://data.askbhunte.com/api/v1/covid/summary

Hint: Importing "timeline" JSON file in R!

- library(jsonlite)
- url <- 'https://data.askbhunte.com/api/v1/covid/timeline'
- covidtbl <- fromJSON(txt=url, flatten=TRUE)
- colnames(covidtbl)
- summary(covidtbl)

Question/Queries?

Thank you!

@shitalbhandary