

Computer Vision

Machine learning for pattern recognition

Hansung Kim h.kim@soton.ac.uk

- * Recognising patterns is a large part of computer vision
 - * i.e. recognising text, people, objects, ...
- * Obviously there's a lot of overlap with intelligent algorithms, machine learning and AI.
- * This lecture will cover (recap?) some of the fundamentals of machine learning and introduce how you connect arrays of pixels to machine learning algorithms.

Feature spaces

Key terminology

- * Feature vector: a mathematical vector
 - * just a list of (usually Real) numbers
 - * has a fixed number of elements in it
 - * The number of elements is the dimensionality of the vector
 - * represents a **point** in a **feature space** or equally a **direction** in the feature space
 - * the dimensionality of a feature space is the dimensionality of every vector within it
 - vectors of differing dimensionality can't exist in the same feature space

Simple feature vectors

- * What kind of feature vectors can you extract from this Pikachu image?
 - * No semantic interpretation!

Simple feature vectors

- Dimensions of the image
 - * (256, 274, 3) (Height, width, channel)
- Colour mean
 - * (51, 83, 95) (Blue, Green, Red)
- Mean and Standard Deviation
 - (51, 83, 95)(62.43, 101.17, 114.51)
- Colour histogram
 - * 3 x 256 array or 256³ vector

Distance and similarity

Distances in feature space

- * Feature extractors are often defined so that they produce vectors that are *close* together for *similar* inputs
 - * Closeness of two vectors can be computed in the feature space by measuring a distance between the vectors.

Euclidean distance (L2 distance)

- L2 distance is the most intuitive distance...
 - The straight-line distance between two points
 - * Computed via an extension of Pythagoras theorem to *n* dimensions:

$$D_2(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} = ||p - q|| = \sqrt{(p - q) \cdot (p - q)}$$

L1 distance (aka Taxicab/Manhattan)

 L1 distance is computed along paths parallel to the axes of the space:

$$D_1(p,q) = \sum_{i=1}^{n} |p_i - q_i| = ||p - q||_1$$

Cosine Similarity

- Cosine similarity measures the cosine of the angle between two vectors
 - It is not a distance!

$$cos(\theta) = \frac{p.q}{\|p\| \|q\|} = \frac{\sum_{i=1}^{n} p_i q_i}{\sqrt{\sum_{i=1}^{n} p_i^2} \sqrt{\sum_{i=1}^{n} q_i^2}}$$

- Useful if you don't care about the relative length of the vectors
- * Any example in our previous lectures?

Choosing good feature vector representations for machine-learning

- Choose features which allow to distinguish objects or classes of interest
 - Similar within classes
 - Different between classes
- Keep number of features small
 - Machine-learning can get more difficult as dimensionality of featurespace gets large

Supervised Machine Learning: *Classification*

- * Classification is the process of assigning a class label to an object.
- * A supervised machinelearning algorithm uses a set of pre-labelled *training data* to learn how to assign class labels to vectors (and the corresponding objects).
 - A binary classifier only has two classes
 - * A **multiclass** classifier has many classes.

Cat or Dog?

Linear classifiers

Linear classifiers

Linear classifiers

Linear classifiers work best when the data is linearly separable...

There can be outliers.
False Positive /
False Negative
Which is more important?

No hope for a linear classifier!

Non-linear binary classifiers, such as Kernel Support Vector **Machines** learn nonlinear decision boundaries

Have to be careful... you might lose generality by overfitting

Multiclass classifiers: KNN

Assign class of unknown point based on majority class of *closest K* neighbours in feature space

K: even number is not a good idea. Tie breaker: Random or Nearest

KNN Classification Demo

- KNN interactive demo by Stanford Vision Lab
 - vision.stanford.edu/teaching/cs231n-demos/knn/

KNN Problems

- Computationally expensive if there are:
 - Lots of training examples
 - Many dimensions

Multiclass linear classifiers

- A linear classifier is by definition binary
 - * So, how can we solve multiclass problems with linear classifiers?
 - One versus All (OvA)/One versus Rest (OvR)
 - one classifier per class
 - One versus One (OvO)
 - \star K (K 1) / 2 classifiers
 - * Check the confidences (distances) and choose the highest one.

Unsupervised Machine Learning: *Clustering*

- Clustering aims to group data without any prior knowledge of what the groups should look like or contain.
- In terms of feature vectors, items with similar vectors should be grouped together by a clustering operation.
- * Some clustering operations create overlapping groups; for now we're only interested in disjoint clustering methods that assign an item to a single group.

K-Means Clustering

- * K-Means is a classic featurespace clustering algorithm for grouping data into *K* groups with each group represented by a *centroid*:
 - ⋄ The value of K is chosen
 - K initial cluster centres are chosen
 - Then the following process is performed iteratively until the centroids don't move between iterations:
 - * Each point is assigned to its closest centroid
 - The centroid is recomputed as the mean of all the points assigned to it. If the centroid has no points assigned it is randomly re-initialised to a new point.
 - The final clusters are created by assigning all points to their nearest centroid.

K-Means Clustering Demo

- by Middle East Technical University
 - http://user.ceng.metu.edu.tr/~akifakkus/courses/ceng 574/k-means/

Summary (1)

- Machine learning
 - Standard way of training the pattern recognition system
 - Feature extraction
 - Transforms raw data into feature vectors of some fixed number of elements
 - Distance and similarity measures
 - * Feature vectors can be compared by measuring distance
 - L1 / L2 distance, Cosine similarity (relative direction)

Summary (2)

- Supervised learning: classification
 - Use pre-labelled training data to learn how to assign class labels to vectors
 - * A linear classifier tries to learn a hyperplane that separates the feature space in two (binary classifier)
 - Common linear classifier Support Vector Machine (SVM)
 - Multiclass supervised classification KNN
- Unsupervised machine learning: clustering
 - Learns to group data without prior knowledge of what the groups should look like
 - K-Means algorithm iterative clustering represented by centroids
 - K-Means always converges, but not necessarily to the most optimal solution

Further reading and exercises

Further reading

- * Mark's book (third edition) p.424-429 covers K-nearest-neighbours and some other approaches.
- Wikipedia has good entries for:
 - SVM: https://en.wikipedia.org/wiki/Support-vector machine
 - « KNN: http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
 - K-Means: http://en.wikipedia.org/wiki/K-means_clustering

Practical exercises with OpenCV

- OpenIMAJ tutorials for K-means and KNN
- SVM: https://docs.opencv.org/4.5.5/d1/d73/tutorial introduction to svm.html
- * KNN: https://docs.opencv.org/4.5.5/d5/d26/tutorial_py_knn_understanding.html
- * K-Means: https://docs.opencv.org/4.5.5/d1/d5c/tutorial_py_kmeans_opencv.html

^{*} Acknowledgements: Based on earlier Computer Vision lecture slides by Dr. Jon Hare.