

排序
一、排序的基本积分为类,
1. 排房的 稳定性
假没.Ki=kj (15i Sn, [S] En, i夫i)且在排序前的序列中
ri 领先于ri l即 icj)。如果排序后ri的领先于ri, 网络所肠排
序为法是稳定的)反之,若可能使得排序后侧序列中的绿光了了,则
科·莫不稳定.
2. 内书电声的和序
的排污:在排序整个过程中,待排序的所有记录全部被放置在内存中。
外排序:由于排序的记录数数,不能同时放置在内存电,整个排序过程需要在内外存之间多次交换数据才能进行。
切时间性能 内排序中:比较和移物
关键字比较点数;
记录我动作数。
(2)新助空间
13)算法的复杂性
内排序分为 插入排序, 交换排序、选择排序、川洲排序
3、村時用到的结构和函数:
DIVITION IN NOTICE TO THE PROPERTY OF THE PROP

二、冒色排作法

最基本的.

```
/* 对顺序表L作交换排序(冒泡排序初级版) */
void BubbleSort0(SqList *L)
{
    int i,j;
    for(i=1;i<L->length;i++)
    {
        for(j=i+1;j<=L->length;j++)
        {
            if(L->r[i]>L->r[j])
            {
                  swap(L,i,j); /* 交换L->r[i]与L->r[j]的值
            }
        }
    }
}
```

效争低

正家的冒泡排序

改进

```
/* 对顺序表L作改进冒泡算法 */
void BubbleSort2(SqList *L)
    int i,j;
                                      /* flag用来作为标记 */
    Status flag=TRUE;
                                      -/* 若flag为TRUE则有数据交换,否则退出循环 */
    for(i=1;i<L->length && flag;i++) -
                                      /* 初始为 FALSE */
        flag=FALSE;
        for(j=L->length-1;j>=i;j-)
             if(L->r[j]>L->r[j+1])
                                      /* 交换L->r[j]与L->r[j+1]的值 */
                 swap(L, j, j+1);
                swap(L,); THY
                                                     Uflag为TRUE */
        }
     }
```

三、简单选择科诗

简单选择排序法(Simple Selection Sort)就是通过n-i次关键字间的比较,从

比较: 加力次

Oln2)

回、直接插入排除

直接插入排序(Straight Insertion Sort)的基本操作是将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增1的有序表。

顾名思义,从名称上也可以知道它是一种插入排序的方法。我们来看直接插入排序 法的代码。

 $O(n^2)$

五、希尔科特

基本有序:小的关键与基本在前面,大的基本在后面。

希系排序:将相距某个"增量"的记录组成一个子序列,

这样才能保障于序列内分别进行插入排序后得到的是基本有序而不是局部有序

```
希外外库算法
    void ShellSort(SqList *L)
                                             /* 对顺序表L作希尔排序 */
    {
       int i, j, k=0;
       int increment=L->length;
           increment=increment/3+1;
                                             /* 增量序列 */
           for(i=increment+1;i<=L->length;i++)
 8
9
                                             /* 需将L->r[i]插入有序增量子表 */
               if (L->r[i]<L->r[i-increment])
10
11
                                             /* 暂存在L->r[0] */
                  L - > r[0] = L - > r[i];
12
                  for(j=i-increment;j>0 && L->r[0]<L->r[j];j-=increment)
                      L->r[j+increment]=L->r[j]; /* 记录后移, 查找插入位置 */
                  L->r[j+increment]=L->r[0]; /* 插入 */
16
17
18
       while(increment>1);
19
20
     增量序到为 dlta[k]=2t-k+1-1 (bék stellogz(n+1) ] 对
        B扩展杂度为OLn2)
     △份不稳定
2、堆排海
  性排序的怕是完全又对《结点值》在我的值、大贩炮
                                                       小顶堆
                                结点值人左右孩子值。
 堆排序代码
                       /* 对顺序表L进行堆排序 */
   void HeapSort(SqList *L)
     for(i=L->length/2; i>0; i-- /* 把L中的r构建成一个大顶堆 */
        HeapAdjust(L,i,L->length);
      for(i=L->length;i>1;i--)
                       /* 将堆顶记录和当前未经排序子序列最后一记录交换 */
 8
        swap(L,1,i);
        HeapAdjust(L,1,i-1);
                       /* 将L->r[1..i-1]重新调整为大顶堆 */
 10
      对有孩子的结点进行操作
```

```
建怕函数:
   void HeapAdjust(SqList *L, int s, int m)
   { /* 本函数调整L->r[s]的关键字,使L->r[s..m]成为一个大顶堆 */
3
       int temp, j;
4
       temp=L->r[s];
       for(j=2*s;j<=m;j*=2)
5
                              /* 沿关键字较大的孩子结点向下筛选 */
6
           if(j<m && L->r[j]<L->r[j+1])
                              /* j为关键字中较大的记录的下标 */
           if(temp>=L->r[j])
9
                              /* rc应插入在位置s上 */
               break;
10
           L->r[s]=L->r[j];
12
           s=j;
13
                              /* 插入 */
14
       L->r[s]=temp;
  调整位置
      for(i=L->length; i>1; i--)
         swap(L,1,i);
                            /* 将堆顶记录和当前未经排序子序列最后一记录交换 */
                            /* 将L->r[1..i-1]重新调整为大顶堆 */
         HeapAdjust(L,1,i-1);
10
   口复杂度
                   O Unlegn)
       社会 数少和情况
七川并持江
 1. 递归
             "净初始序到者作 n个有序的长度为 的子序到
        两两归产,得到上几/2」个长度为2或的有序数到,....
  /* 对顺序表L作归并排序 */
  void MergeSort(SqList *L)
     MSort(L->r,L->r,1,L->length);
   void MSort(int SR[],int TR1[],int s, int t)
      int TR2 [MAXSIZE+1];
      if(s==t)
         TR1[s]=SR[s];
      else
      {
                             /* 将SR[s..t]平分为SR[s..m]和SR[m+1..t] */
         m=(s+t)/2;
                             /* 递归地将SR[s..m]归并为有序的TR2[s..m] */
         MSort(SR, TR2, s, m);
                             /* 递归地将SR[m+1..t]归并为有序的TR2[m+1..t] */
         MSort(SR,TR2,m+1,t);
                             /* 将TR2 [s..m]和TR2 [m+1..t] 归井到TR1 [s..t] */
         Merge(TR2,TR1,s,m,t);
```

13

14

}


```
八块建排序
将待排记录分割成社之约两部分其中部分的关键字均此分部分
对两部缩模排斥上一个使整个引起原序
  八翼注.
  /* 对顺序表L作快速排序 */
  void QuickSort(SqList *L)
     QSort(L,1,L->length);
  /* 对顺序表L中的子序列L->r[low..high]作快速排序 */
  void QSort(SqList *L, int low, int high)
     int pivot;
     if(low<high)
         /* 将L->r[low..high]-分为二,算出枢轴值pivot */
        pivot=Partition(L, low, high);
                           /* 对低子表递归排序 */
        QSort(L, low, pivot-1);
                           /* 对高子表递归排序 */
        QSort(L,pivot+1,high);
   Partition() 函数. 选取一个系统字 放在一个"合适的"位署
       杉为瓜钩
     int Partition(SqList *L, int low, int high)
     {/* 交换顺序表L中子表的记录,使枢轴记录到位,并返回其所在位置,此时在它之前(后)均不大(小)于它
         int pivotkey;
   5
        pivotkey=L->r[low];
                            /* 用子表的第一个记录作枢轴记录 */
        while(low<high)
                        /* 从表的两端交替地向中间扫描 */
            while(low<high&&L->r[high]>=pivotkey)
  8
               high--;
  9
            swap(L,low,high); /* 将比枢轴记录小的记录交换到低端 */
  10
            while(low<high&&L->r[low]<=pivotkey)
  11
            swap(L,low,high); /* 将比枢轴记录大的记录交换到高端 */
  12
  13
  14
                           /* 返回枢轴所在位置 */
        return low;
  15
  16
                                        I langth=9。第4行,我们将L.r[lov
     时限复杂度Oln logn)
      应问复杂度、DLlegn)
```

```
2代化·加州化选取和基础中的国定取第一条键字为 pivotley 不合理。
条闸 三数取中
int pivotkey:
int · m · = · low · + · (high · - · low) · / · 2; · - - /* 计算数组中间的元素的下标 */
if (L->r[low]>L->r[high])
                                /* 交换左端与右端数据,保证左端较小 */
    swap(L, low, high);
if (L->r[m]>L->r[high])
                                /* 交换中间与右端数据,保证中间较小 */
    swap(L, high, m);
if (L->r[m]>L->r[low])
                                /* 交换中间与左端数据,保证左端较小 */
    swap(L,m,low);
/* 此时L.r[low]已经为整个序列左、中、右三个关键字的中间值 */
                                /* 用子表的第一个记录作枢轴记录 */
pivotkey=L->r[low];
```

12)抗水不分量的交换。

```
/* 快速排序优化算法 */
int Partition1(SqList *L,int low,int high)
   int pivotkey:
   int m = low + (high - low) / 2; /* 计算数组中间的元素的下标 */
   if (L->r[low]>L->r[high])
                              /* 交换左端与右端数据, 保证左端较小 */
      swap(L, low, high);
   if (L->r[m]>L->r[high])
                              /* 交换中间与右端数据,保证中间较小 */
      swap(L,high,m);
   if (L->r[m]>L->r[low])
                              /* 交换中间与左端数据, 保证左端较小 */
      swap(L,m,low);
                              /* 用子表的第一个记录作枢轴记录 */
   pivotkey=L->r[low];
                              -/* 将枢轴关键字备份到L->r[0] */
   L->r[0]=pivotkey;
                              /* 从表的两端交替地向中间扫描 */
   while(low<high)
      while(low-high&&L->r[high] >= pivotkey)
          high-;
      L->r[low]=L->r[high];
                             一/* 采用替换而不是交换的方式进行操作 */
      while(low<high&&L->r[low]<=pivotkey)
          low++:
      L->r[high]=L->r[low];
                           /* 采用替换而不是交换的方式进行操作 */
                               /* 将枢轴数值替换回L.r[low] */
  L->r[low]=L->r[0];
                               /* 返回枢轴所在位置 */
   return low;
```

(3)伏化小数组时的排序方案。

山外状化塞泊持续作

九為结

排序方法	平均情况	最好情况	最坏情况	辅助空间	稳定性
冒泡排序	$O(n^2)$	O(n)	$O(n^2)$	O(1)	稳定
简单选择排序	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(1)	稳定
直接插入排序	$O(n^2)$	O(n)	$O(n^2)$	O(1)	稳定
希尔排序	$O(n\log n) \sim O(n^2)$	$O(n^{1.3})$	$O(n^2)$	O(1)	不稳定
堆排序	$O(n\log n)$	$O(n\log n)$	$O(n\log n)$	O(1)	不稳定
归并排序	$O(n\log n)$	$O(n\log n)$	$O(n\log n)$	O(n)	稳定
快速排序	$O(n\log n)$	$O(n\log n)$	$O(n^2)$	$O(\log n) \sim O(n)$	不稳定