```
Algorithm Analysis Homework 2 21700034 4971
1. (8 points) Use the master theorem to give tight asymptotic bounds for the following.
  recurrences.
  a. T(h) = T(\frac{\eta}{8}h) + h
                                a=1. b= = f(n)=n
                                noga = no= 1
  b. T(h)=T(9h)+h2
                                 f(n) > nlogo (f(n) ) ( f(n) ) ((1)
  C. T(n) = q. T(n)+n2
                                 \Rightarrow T(n) = \Theta(f(n)) = \Theta(n)
  d. Tan)=3.T(=)+n
 a=1, b= == = f(n)=n== h++
                                       a=9, b=3, f(n)=n2
  n 10 = 1 = (n) = n 1 guate
                                 hlogs 9 = hlogs 32 = h2=> O(12)
 f(n) > n logue /f(n) < (.f(n) ((<1) f(n) = (nlogs9)
                                  => T(n) = (n2/gn)
 => 7(h) = O(f(n)) = O(h2)
 a=3, b=2, f(n)=n
 n lay 23
 f(n) = O(n) 3-8) (E=1)
 => T(n) = O(n00023)
 2. (4 points) Write a recursive algorithm (in pseudo-code) to calculate gcm.n) for m>0 and
   n>o, where
        g(m,n) = {3(m+,n) + g(m,n+) if m>1 and n>1
                                      if m=l or n=l
        g(m.n)
                                                         then
                      m=1
                                             n=1
                     then return 2
               else
                     then return g(m-1,n)+g(m.n-1)
 3. (6 points) Repeat problems. At this time, write a dynamic programing algorithm
     (iterative) instead of recursive one.
        g(m.n)
```

3. (6 points) Repeat problem 2. At this time, write a dynamic programming algorithm Citerative) instead of recursive one.

$$3(m,n)$$
1 for $i \in 2$ to m
2 do $C[i,1] \leftarrow 2i$
3 for $j \in 1$ to m
4 do $C[i,j] \leftarrow 2i$
5 for $i \leftarrow 2$ to m
6 do for $j \in 2$ to m
7 do $C[i,j] \leftarrow C[i-1,j] + C[i,j-1]$;
8 return $C[m,n]$;

4. (3 points) Fill the table below using the dynamic programming algorithm in problem 3.

C[i.j]	J=1	j=2	j=3	j=4
j=1	2	2	2	2
j=2	2 -	14-	-6-	7 8
i=3	2 -	- 6 -	12-	-20
1=4	2 -	- 8 -	→20-	40

5. (2 points) What is time Complexity of algorithm in problem 3.

if
$$m=1 \Rightarrow n = 1, 2, 3, ..., N$$
 ($n>0$) $N-1$
if $n=1 \Rightarrow m=1, 2, 3, ..., N$ ($m>0$) $N-1$ since
if $m>1 \Rightarrow n=1, 2, 3, ..., N$ ($N-1$) $m=1 = 1$
if $n>1 \Rightarrow m=1, 2, 3, ..., N$ ($N-1$) there's only one value (2)
time complexity $=> \Omega(2^n)$

6. (5 points) What is an optimal Huffman Code for the following set of frequencies, based on the first 8 Fibonacci Numbers?

Character	a	Ь	C	d	e	f	3	h
Frequency	- 1	1	2	3	5	8	13	21
hiái , g:		\ <u>'</u>	f:8	⇒10 ⇒110 ⇒1110	Ci 3		11110	
	q:3	6:1 6:1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1				

7. (2 points) (an you generalize your answer in problem 6 to find the optimal code when the frequencies are the first in Fibonacci humbers?

```
8th Number Code = O(h:21) | Numof 1:0

O(h:21) | Numof 1:0

O(h:21) | Numof 1:1

O(h:21) | Numof 1:1

O(h:21) | Numof 1:2

O(h:21) | Numof 1:2

O(h:21) | Numof 1:5

O(h:21) | Numof 1:5

O(h:21) | Numof 1:6

O(h:21) | Numof 1:6

O(h:21) | Numof 1:6

O(h:21) | Numof 1:7
```

the first N Fibonacci numbers => 11111-1