			sd/mm sd/mm
			0.0134
3			0.01648 0.0156
3	20.000	19.440	0.01440
		19.640	机像共同的作用是什么?
	42727011	ए इंग्रहात है है	(就多)。西村公司到过一起的
			如何湖地同二平均多故?
188.	KIND THAT	5. 有种人共享人	過程平法位的两个最后指引
Ac.t.Xs	化例图彩等,线对是	安部支部海山	艾拉特系统设计数据 当其职此。
	新州平平野山		্বৰি
		- 1 × a	
	TO THE WELL		t.
			and the second s
		***************************************	***************************************
***************************************			991144401444444444
			300000000000000000000000000000000000000

实验目的	英身似英
1、观察等倾于涉现象,加深对等倾于涉及	沟的理解, 公本(6) 小海水
2、了解迈克学涉伐的结构、原理和调	
3. 测量激光的波式.	-
	深有概题是集制 的。
	1. 正位/颜色台上是东河
实验原理。、及为选择原外、MFATELER	八十三年天教院教育科技就会
1. 23克尔逊干涉仪的过路组举成及结构	学供证
G, 40 G2 A 7 747 75	置,所身革和厚度都发生相同
① 丰面印题 的手面玻璃板,其	· G. 称. 分为板, G. 粉水、传板。
S Ma Mi Fo Ma 是两个平面目	家射镜,其中M.固定不动,M2可
G 4	4. dai 19. j.
洗板 补偿板	工善过品等是可位大商给证
中10年度的215 法即的部下 五度用双生工工	村建筑地。 自至加品中
2. 体	4480
当M2与M. 严格垂直时, 经M2与	M. 到到发出的为束在 P. E. 的为我考述
$\delta = 2d \cos \theta$	第10年以外 月 20年 70.7
1 1 2 of C(h) TES 6-12	0月变化而变化,入射角相等的
	在垂直于轴骨方向的都面上叠加
一 一 一 一 一 一 一	
E P	2. (5000
3. 测量激光波长	1 1 000,00
	苏环; 为S=(2k+1)至时为晴环.
每从中心"陷入"或"冒出"一个匠	环, d相友减少或增加至的

设"陷入"成"圆出"环数为N,相应目的改变量为ad,则
ad=N·] 即入=240

若NB知,测得ad可得激热的波长入。

距离

迈克尔迅干涉仪、氦-氖激为发生器

实验步骤与数据记录

- 1,开启激光发生器电源,取下扩束镜.
- 2. 通过粗调测微头移动 M2, 观察使 M1、M2到分光板 G1 的距离求大致相等.

翻记的学好你的结构, 医理论程节方法

加量源光的淡水

- 3. 透过观察屏,从每排液光亮送光点中各自选择一个最亮的光点、1个调节M·后的两颗调节螺钉,使过两个为近重含。
- 4. 放入扩末镜。调节激光发生器的俯仰角及入射角度、使激光窘过扩束器中心。
- 丁、透过观察屏可见大面积红光,再次微调加后方的两颗螺钉,配合调节 相调测微头,直至视路中出现稀疏合适、清晰的圆环,再使圆环中心行动。视场中央.
- 6. 记录M2的初始位置X1,缓慢野动精调测微头,观察连续"强生"或"成公" JO介条纹后,M2的末位置X2,更复以上测量过程3次,测得数据如下:

z/A	od/m	sd/mm	X2/Hom	X./mm	测量次数	
	子络红	0.01584	19.604	20.000	1	
	0.0156	0.01648	15.412	15.000	2	
3、河景源光波	3	0.01440	19.640	20.000	3	

类为指表的= Kon 产成不当方式、专的= 20+112 全日为情况

海水主心"祖义"或"鬼"一个周习、正明在前中的横加争的

海"面入"方"属品"孔数为N"现定人们双容量为dd 则

EN = PS

著NB為 如 養 od 开络 《教学》的 授权人

实验数据处理			
已知有难值入·= 650 p	m , 孔数 N= Jo	ATTERNA	消开业的总型
由测量数据得,入= =			
E = 1	= 30/ 24.2%		
<i></i>			
			会放金头
· *(MIL MANGER	3. 差回过超越	大文统术左约
含金担兰东南州和夏东州亳州	源度到新二个此	急草金 支耐地	(天水系) 英水石
	學歌 的 是 结果国		
引い焼肉は乳を一色差。			
= 2 4 4 5 M X M A A A A A A A A A A A A A A A A A	and the second section of the second section is a second section of the second section of the second section of		
\			通过 通道
	法法内外	千元(读数 , to)	
1. 独参数加等的人意			
	夏,其高松草森		
	建数 从少连		
		光面 罗马克用	2. 好意到起,不
		かな((数数)) なぜ	
			WARM O
	-	ALTER AND	· 蒙洲人(1)
	*		

实验结论	22230000000000000000000000000000000000
通过的观安验,我学生了迈克亚	小千涉食的调整与使用, 弄测得激光
波长为623 nm, 极对误差为4.2%	
	A = 14-14 = 4.
实验讨论	
1、本实验存在的误差以及迈克尔逊。	子涉仪的改进,
①为海舟非严格单色,实面失源全	发射一个非常定但并非理想与色的语性
包含-足的波长范围山入,导致	测量结果的不确定性
	非严格平行,引入额外的别程差。
③反射镜表面存在污渍或微	不平整, 马到被条纹的清晰度和对
- 無帕	
④环境因素干扰:读数,如振之	力或空气状动.
	方,进一步提高入射光的单色性;
	是高效平舟减少杂散之;
采用影像设备辅助读数	()减少读数误差。
371	TO AND THE VIEW RESERVED AND AND AND AND AND AND AND AND AND AN
2、迈克耳逊干涉原理的应用	
①精密长度(後移)测量	
⑤ 河重光的波长	
③测量透明介质的折射率	
	A para -

思	考题	
<u> </u>	迈克耳以:干涉代是和目分光板的反射和透射,把来自同	- 岩源、的老线
	用分底幅法为成两末相干光,以实现完的干涉的一种精	密判学仪器,
62.	主要用于测量长度显微小变化或为的波长。	<u> </u>
	042100 Rt 2 G00.01	\$
<i>2.</i>	礼像板的作用是什么?	
	消除.西京之因通过为地板次数不同而产生的光程差。	
3.	如何调出同心干涉务级?	
	调整干涉位的两个良新镜,使两个镜面严格平行,通	过观察屏, 缓慢
	转动精长调测微头,当出现中心明晴交替变化的圆形务、纹	时即是方、调出
	同心干涉条纹。若条纹不对称,则需重新调本平行度	- 7