

Digital control devices

KON-C2004 Mechatronics Basics Raine Viitala 26.11.2024

Overview

Real-time computing
Programmable logic controllers (PLC)
Other computing devices
Digital communication

Mechatronic machine -

Other systems and machines

Real-time computing

Real-time

Guaranteed response in specified time frame

Hard realtime

- Delayed result leads to system failure

Firm

- Delayed result is useless but some delays are tolerated

Soft realtime

- Delay reduces the usefulness of the result

Hard real time

Safety critical functions

- Anti-lock braking etc.
- Fly-by-wire

Firm real time

- Control algorithms
 - o Performance and stability

Weekly exercises

solutions must be submitted in MyCourses before 10:00. Late submisissions are not accepted.

Soft real-time

Video playback, audio synthesizer

Real time # high performance

Control system point of view

Control algorithm often relies on constant update interval Too long delay -> unstable system

- remember exercise!

Sampling rate

- Time between two updates of the control signal

Delay

- Time from input sampling to output

Microcontroller real-time operation

Interrupt based scheduling

Possible tasks

- Reading sensor input
- Control algorithm
- User interface
- Bus communication

Real-time operating system

Definition: "A real-time behavior of a software system requires that each process or task execution must satisfy bounded responsetime constraints or risk severe consequences, including failure."

http://www.ni.com/white-paper/14238/en/

Real-time operating systems

FreeRTOS

- Microcontrollers

Real-Time Linux

Simulink Real-Time with Speedgoat RT target computer and Labview Real-Time

- Measurement and prototyping on PCs and FPGAs

"Standard" Windows with real-time kernel extension (RTX)

PLCS Programmable Logic Controllers

The traditional logic controller: Electromechanical relays

Still used for example in railway interlocking systems Robust, long lifespan Expensive special relays

NOT

The better way: Programmable Logic Controller (PLC)

Resistant to

- Electromagnetic interference
- Dust, vibration, heat resistant

Modular

Off-the-shelf

Easy and simple to set up

- In comparison to a microcontroller system

DIN rail mounting Higher voltage, better protected IO

http://i01.i.aliimg.com/img/pb/629/105/478/478105629_223.jpg

PLC vs microcontroller

PLC

- Encased protected from environment
- IO is protected? from high voltage, outputs more current – does not break the whole device – often based on relays
- Modular add more io
- Programmed with IEC 61131-3
 languages doable by an electrician
- Easily replaceable
- Expensive (not very)

Microcontroller

- Unprotected prototyping board
- For example 0-5 V low current I/O
- Programmed with low level language, for example C
- Extensions with communication bus and additional code
- Very cheap

PLC vs PC

PLC

- Program once, run forever
- Dedicated system
- Cheaper
- Programmable by electrician
- Limited user interface (buttons, maybe a screen)
- Built-in inputs

PC

- Lots of computing power
- Often regular software updates
- Display, flexible UI
- Inputs with extension cards

PLC programming

Programmed typically with a PC (Ethernet, serial bus etc.) Programming languages: IEC 61131-3

- Ladder diagram (LD), graphical
- Function block diagram (FBD), graphical
- Structured text (ST), textual
- Instruction list (IL), textual
- Sequential function chart (SFC), has elements to organize programs for sequential and parallel control processing.

Ladder diagram

Similar to relay schematics
Understandable to electricians without any programming skills
By far the most used PLC language
Also operators for

- Mathematical operators
- Analog operators
- Timer operators etc.

http://www.plcmanual.com/plc-programming

plemanual com

Function block diagram

http://infosys.beckhoff.com/english.php?content=../content/1033/tc3_plc_intro/html/Function_Block_Diagram_FBD.htm&id=

Structured text

A bit like C or Pascal Familiar expressions

- *If, while, for, function calls*

```
PROGRAM main
VAR

i:INT;
END_VAR

i:=0;
REPEAT

i:=i+1;
UNTILi>=10;
END_REPEAT;
END_PROGRAM
```

http://www.thelearningpit.com/hj/plcs18.asp

Instruction list

A bit like Assembly

```
0
   BLK
         %C8
   LDF
         %I0.1
   R
   LD
         %I0.2
   AND
         %M0
   CU
   OUT BLK
   LD
         D
   AND
         %M1
   ST
         %Q0.4
   END BLK
10
```

http://4.bp.blogspot.com/-V67KQWGCQC4/T30JnZx7sal/AAAAAAAAAACM/BygizcA-ASI/s1600/untitled.JPG

Ladder vs FBD vs IL

Soft PLC

Example: Beckhoff industrial PCs

http://beckhoff.com/

Other computing devices

System on a chip (SoC)

All components of a computer on one chip

- Microprocessor
- Memories
- Peripherals
 - Graphics and audio prosessors
 - Wireless transmitters
 - Battery management

Relatively low energy consumption Used in cell phones and tablets

Example: Neo research platform for autonomous driving

Affordable hardware

- Oneplus 3 cell phone
 - Powerful SoC
 - Camera
 - GPS
- CAN bus communication with car

Open source software

- Stripped Android
- Neural network

Single board computers

Raspberry Pi 3 – 35 \$

- Broadcom BCM2837 SoC with 1.2 GHz processor, 1 GB RAM
- GPU, HDMI out
- Ethernet, Bluetooth, GPIO, MicroSD

CHIP - 9 \$

- 1 GHz Allwinner R8 SoC, 512 MB RAM
- USB, composite video, Wifi, Bluetooth, GPIO
- 4 GB onboard flash memory
- Battery management

4 GB NAND

TRRS A/V

Female

Realtek RTL8723BS WiFi & Bluetooth module

Computing modules

Raspberry Pi 3 - 30 \$

- Same SoC as in Raspberry Pi 3
 - 1,2 GHz, 1GB RAM
- 4 GB flash memory
- SODIMM connector

Intel Edison – 50 \$

- 500 MHz Atom, 512 MB RAM
- Integrated microcontroller
- 4 GB flash
- Wifi, Bluetooth, 40 GPIO
- *Linux*, *Arduino*, *C/C++*, *Python*...

Graphics processors

CPU – a 1-8 cores, **GPU** – thousands of cores

- Efficient parallel processing
- Non-regressive simulations, machine learning, neural networks

Fast floating point value calculations

- Signal and image processing

FPGA – field programmable gate array

Hardware implementation, no software

- Programmatically reconfigurable logic circuit

Parallel processing
Very fast response time (<µs)
High performance per watt
Hardware Description Language

https://www.adafruit.com/products/1553

Digital communication

Parallel vs serial communication

Parallel

- Bits transmitted simultaneously in parallel wires

Serial

- Bits sequentially in the same line

http://en.wikipedia.org/wiki/Parallel_communication

Serial and parallel buses

Serial

- USB (Universal Serial Bus)
- Ethernet
- PCI-e, SATA
- *RS-232*
- *I*²*C*, *SPI*
- CAN, Profibus, Fieldbus foundation, AS-interface

Parallel

- PCI
- SCSI
- IDE
- Printer port

RS-232

RX RX TX TX GND GND

Also known as "Serial bus" Voltage level 3-15 V

- *Negative* = 1
- Positive = 0
- *Also TTL (0-5 V)*

< 0.5 Mbit/s

Field buses

AS-Interface
Modbus
Foundation Fieldbus
Profibus/Profinet
Interbus
EtherCAT

Example: EtherCAT bus

Fast, precise, scalable: system-integrated measurement technology

http://beckhoff.com/

Industrial wireless communication

"Generic RF"

- <1 *GHz*

Bluetooth

- 2,4-2,5 GHz

Wifi

- 2,4-5 GHz

IEEE 802.15.4

- 2,4 GHz
- Wireless HART Zigbee, ISA100.11a

http://www.iestcfa.org/presentations/sies11/keynote_Svensson.pdf

5G

RFID

Summary

Real-time computing is required for most control systems Microcontrollers are for embedded systems and hobby stuff PLC is the multipurpose logic tool of industry

- Robust, simple

There is no universal digital communication standard in the industry, instead several competing standards

What is the future of wireless industrial communication?

Mechatronic machine -

Other systems and machines

Exam 12.12.2024 12.00-16.00

The exam is arranged locally

- Exam tasks will be published in MyCourses very similar to exercises.
- All material can be used, except generative AI.
- MyCourses exam page "Exam 12.12.2024" will have detailed instructions. Please read them before the exam starts.
- You must go to a certain computer classroom depending on the first letter of your last name
 - Y430, U256 or U257 (Undergraduate center) distribution will be published in MyCo.
 - The gatekeeper password to open the exam tasks in MyCourses will be delivered in the computer classroom.
 - The password is visible, and the gatekeeper is active 12.00-13.00 -> you must join within that time.
 - Entering the classroom is possible before 12.00 and 12.15-13.00.
- No communication allowed between the students
- No chatGPT or other generative Al allowed
 - We will monitor the computer screens with a specified exam software in the classrooms.
 - The students will be monitored with exam attendants walking around in the classroom

The end

Give feedback!

In your feedback, please consider your answers from the **learning** viewpoint, not the convenience.