(9) $\int (x\sin y + y\cos x) d\sigma$, (σ) 是以(1,1),(-1,1) 和(-1,-1) 为顶点的三角形区域; (10) $\iint_{G} z \ln(y + \sqrt{1 + y^2}) d\sigma$, (σ) 是由 $y = 4 - x^2$, y = -3x 和 x = 1 所围成的区域.

4. 把二重积分 $I = \iint f(x,y) dx$ 在直角坐标系中分别以两种不同的次序化为累次积分,其中

(σ)为

(1)
$$|(x,y)|y^2 \le x, x+y \le 2|$$
;

(1) $|(x,y)|y^2 \le x, x+y \le 2|$; (2) $x = \sqrt{y}, y = x-1, y = 0$ 与 y = 1 所围成的区域 5. 交换下列累次积分的顺序:

(1)
$$\int_{-1}^{1} dx \int_{x^{1}+x}^{x+1} f(x,y) dy;$$

$$(2) \int_0^2 \mathrm{d}x \int_{x}^1 f(x,y) \,\mathrm{d}y$$

5. 交換下列累次积分的顺序:
$$(1) \int_{-1}^{1} dx \int_{x^{3}+x}^{x+1} f(x,y) dy;$$

$$(2) \int_{0}^{2} dx \int_{x}^{1} f(x,y) dy;$$

$$(3) \int_{0}^{2} dx \int_{0}^{\pi} f(x,y) dy + \int_{2}^{\pi} dx \int_{0}^{\sqrt{8-x}} f(x,y) dy;$$

$$(4) \int_{0}^{1} dy \int_{0}^{2y} f(x,y) dx + \int_{1}^{3} dy \int_{0}^{2y^{2}} f(x,y) dx.$$

6. 利用极坐标计算下列二重积分:

(1)
$$\int_{(\sigma)} e^{x^2+y^2} d\sigma$$
, $(\sigma) = \{(x,y) \mid a^2 \le x^2 + y^2 \le b^2\}$, $\sharp \Rightarrow 0, b > 0$;

(2)
$$\int_{(\sigma)}^{(\sigma)} \sqrt{x^2 + y^2} d\sigma, (\sigma) = \{(x, y) \mid 2x \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\};$$

(3)
$$\int_{(\sigma)} (x+y)^2 d\sigma, (\sigma) = \{(x,y) \mid (x^2+y^2)^2 \leq 2a(x^2-y^2), a > 0\};$$

(4)
$$\iint_{(\sigma)} \arctan \frac{y}{x} d\sigma, (\sigma)$$
 为圆域 $x^2 + y^2 \le 1$ 在第一象限部分;

(5)
$$\int_{(\sigma)} \sqrt{R^2 - x^2 - y^2} d\sigma$$
, (σ) 为圆域 $x^2 + y^2 \le Rx$ 在第一象限部分;
(6) $\int_{(\sigma)} (x + y)^2 d\sigma$, (σ) 是圆域 $x^2 + y^2 \le a^2$.

(6)
$$\iint_{(\sigma)} (x+y)^2 d\sigma, (\sigma) 是圆域 x^2 + y^2 \leq a^2.$$

7. 把下列累次积分化为极坐标的累次积分,并计算其值:

$$(1) \int_0^2 dx \int_0^{\sqrt{2x-x^2}} (x^2 + y^2) dy;$$

(1)
$$\int_0^2 dx \int_0^{\sqrt{2x-x^2}} (x^2+y^2) dy;$$
 (2) $\int_0^1 dx \int_{1-x}^{\sqrt{1-x^2}} (x^2+y^2)^{-3/2} dy;$

(3)
$$\int_{1}^{2} dy \int_{0}^{y} \frac{x \sqrt{x^{2} + y^{2}}}{y} dx$$
.
8. 求下列各组曲线所围成平面图形44.77

8. 求下列各组曲线所围成平面图形的面积:

(1)
$$xy = a^2, x+y = \frac{5}{2}a \ (a>0);$$

(2)
$$(x^2+y^2)^2 = 2a^2(x^2-y^2), x^2+y^2 = a^2(x^2+y^2) \ge a^2, a>0$$
;
(3) $\rho = a(1+\sin\theta) \ (a \ge 0)$.
9. 求下列各组曲面所用成立体的共和

(3)
$$\rho = a(1+\sin\theta) \ (a \ge 0)$$

9. 求下列各组曲面所围成立体的体积:

(1)
$$z=x^2+y^2$$
, $x+y=4$, $x=0$, $y=0$, $z=0$.

(1)
$$z=x^2+y^2$$
, $x+y=4$, $x=0$, $y=0$, $z=0$;
(3) $x^2+y^2=a^2$, $y^2+z^2=a^2$ (a>0).
(2) $z=\sqrt{x^2+y^2}$, $x^2+y^2=2ax$ (a>0), $z=0$;

(3)
$$x^2+y^2=a^2$$
, $y^2+z^2=a^2$ (a>0).

(3) $x^2+y^2=a^2$, $y^2+z^2=a^2$ (a>0). 10. 一金属叶片形如心脏线 $ho = a(1 + \cos \theta)$, 如果它在任一点的密度与原点到该点的距离 d^{\perp} 比,求它的全部质量

(A)

- 1. 设有一母线平行于 z 轴的柱体,它与 zOy 平面的交线为一闭曲线,此闭曲线所围区域为 (σ) ,柱体的顶部和底部分别由曲面 $z=f_2(x,y)$ 与 $z=f_1(x,y)$ 构成.试用二重积分表示此柱体的体积.
 - 2. 试用二重积分的几何意义说明:
 - (1) $\int_{\sigma} k d\sigma = k\sigma, k \in \mathbb{R}$, 为常数, σ 表示区域(σ) 的面积;
 - (2) $\iint_{(\sigma)} \sqrt{R^2 x^2 y^2} d\sigma = \frac{2}{3} \pi R^3, (\sigma)$ 是以原点为中心,半径为 R 的圆;
 - (3) 若积分域关于 y 轴对称,则
 - i) 当 f(x,y) 是 x 的奇函数时,二重积分 $\iint_{(\sigma)} f(x,y) d\sigma = 0$,
 - ii) 当f(x,y)是x的偶函数时,有

$$\iint_{(\sigma)} f(x,y) d\sigma = 2 \iint_{(\sigma,i)} f(x,y) d\sigma,$$

其中 (σ_1) 为 (σ) 在右半平面 $x \ge 0$ 中的部分区域;

(4) 若积分域关于x 轴对称,被积函数f(x,y)分别具有怎样的对称性时有

$$\iint_{(\sigma)} f(x,y) d\sigma = 0, \quad \iint_{(\sigma)} f(x,y) d\sigma = 2 \iint_{(\sigma,i)} f(x,y) d\sigma,$$

其中 (σ_1) 为 (σ) 在上半平面 $y \ge 0$ 中的部分区域

- 3. 计算下列二重积分:
- (1) $\iint_{(\sigma)} x^2 y d\sigma$, (σ) 是由 x = 0, y = 1 与 $x = \sqrt{y}$ 所围成的区域;
- (2) $\iint_{(\sigma)} \frac{x^2}{y^2} d\sigma, (\sigma)$ 是由 xy = 1, y = x 与 x = 2 所围成的区域;
- (3) $\iint_{(\sigma)} xy d\sigma, (\sigma) = \{(x,y) \mid 0 \le y \le x \le 1\};$
- (4) $\iint_{(\sigma)} (x+y)^2 d\sigma$, (σ) 是由 |x|+|y|=1 所围成的区域;
- $(5) \iint_{(\sigma)} \frac{x}{y} \sqrt{1 \sin^2 y} d\sigma, (\sigma) = |(x, y)| \sqrt{y} \le x \le \sqrt{3y}, \frac{\pi}{2} \le y \le 2\pi |;$
- (6) $\iint_{(\sigma)} e^{-y^2} d\sigma, (\sigma) = \{(x,y) \mid 0 \le x \le y \le 1\};$
- (7) $\iint_{(\sigma)} (y + xf(x^2 + y^2)) d\sigma$, (σ) 是由 $y = x^2$ 和 y = 1 所围成的区域;
- $(8) \iint_{(\sigma)} (x^2 + y^2) d\sigma, (\sigma)$ 是正方形区域: $-1 \le x \le 1, -1 \le y \le 1;$

章 多元函数积分学及其服用

(9)
$$\int_{(\sigma)} (x\sin y + y\cos x) d\sigma$$
, (σ) 是以(1,1), $(-1,1)$ 和 $(-1,-1)$ 为顶点的三角形区域;

$$(10) \iint_{(\sigma)} x \ln(y + \sqrt{1 + y^2}) d\sigma, (\sigma)$$
 是由 $y = 4 - x^2, y = -3x$ 和 $x = 1$ 所围成的区域.

4. 把二重积分 $I = \iint f(x,y) d\sigma$ 在直角坐标系中分别以两种不同的次序化为累次积分,其中 (0)为 (1) $|(x,y)|y^2 \le x, x+y \le 2|$; (2) $x = \sqrt{y}, y = x-1, y = 0$ 与 y = 1 所围成的区域

(1)
$$|(x,y)|y^2 \le x, x+y \le 2|$$
;

(2)
$$x = \sqrt{y}$$
, $y = x - 1$, $y = 0$ 与 $y = 1$ 所围成的 $y = 1$

5. 交换下列累次积分的顺序:

(1)
$$\int_{-1}^{1} dx \int_{x^{1}+x}^{x+1} f(x,y) dy;$$

$$(2) \int_0^2 \mathrm{d}x \int_x^1 f(x,y) \,\mathrm{d}y$$

$$(1) \int_{-1}^{1} dx \int_{x,+x}^{x+1} f(x,y) dy; \qquad (2) \int_{0}^{2} dx \int_{x}^{1} f(x,y) dy;$$

$$(3) \int_{0}^{2} dx \int_{0}^{x} f(x,y) dy + \int_{2}^{\pi} dx \int_{0}^{\sqrt{8-x^{2}}} f(x,y) dy; \qquad (4) \int_{0}^{1} dy \int_{0}^{2y} f(x,y) dx + \int_{1}^{3} dy \int_{0}^{2y^{2}} f(x,y) dx.$$

6. 利用极坐标计算下列二重积分:

(1)
$$\iint_{(\sigma)} e^{x^2+y^2} d\sigma$$
, $(\sigma) = \{(x,y) \mid a^2 \le x^2 + y^2 \le b^2\}$,其中 $a > 0, b > 0$;

(2)
$$\int_{(\sigma)} \sqrt{x^2 + y^2} d\sigma, (\sigma) = \{(x,y) \mid 2x \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\};$$

(3)
$$\int_{(\sigma)} (x+y)^2 d\sigma, (\sigma) = \{(x,y) \mid (x^2+y^2)^2 \le 2a(x^2-y^2), a > 0\};$$

(5)
$$\int_{(\sigma)} \sqrt{R^2 - x^2 - y^2} d\sigma, (\sigma)$$
 为圆域 $x^2 + y^2 \le Rx$ 在第一象限部分;
(6)
$$\int_{(\sigma)} (x + y)^2 d\sigma, (\sigma)$$
 月間は $x^2 + y^2 \le Rx$ 在第一象限部分;

(6)
$$\int_{(\sigma)} (x+y)^2 d\sigma$$
, (σ) 是圆域 $x^2+y^2 \leq a^2$.

7. 把下列累次积分化为极坐标的累次积分,并计算其值:

(1)
$$\int_0^2 dx \int_0^{\sqrt{2x-x^2}} (x^2 + y^2) dy$$
;

(1)
$$\int_0^1 dx \int_0^{\sqrt{1-x^2}} (x^2 + y^2) dy;$$
 (2) $\int_0^1 dx \int_{1-x}^{\sqrt{1-x^2}} (x^2 + y^2)^{-3/2} dy;$

(3)
$$\int_{1}^{2} dy \int_{0}^{y} \frac{x \sqrt{x^{2} + y^{2}}}{y} dx$$
.
8. 求下列各组曲线所用成平面图形体

8. 求下列各组曲线所围成平面图形的面积:

(1)
$$xy = a^2, x+y = \frac{5}{2}a \ (a>0)$$
;

(2)
$$(x^2+y^2)^2 = 2a^2(x^2-y^2), x^2+y^2 = a^2(x^2+y^2) \ge a^2, a>0$$
;
(3) $\rho = a(1+\sin\theta) (a \ge 0)$.
9. 求下列各组曲面所围成立体的体和

(3)
$$\rho = a(1+\sin\theta) \ (a \ge 0)$$

9. 求下列各组曲面所围成立体的体积:

(1)
$$z=x^2+y^2, x+y=4, x=0, y=0, z=0;$$

(1)
$$z=x^2+y^2$$
, $x+y=4$, $x=0$, $y=0$, $z=0$;
(3) $x^2+y^2=a^2$, $y^2+z^2=a^2$ (a>0).
(2) $z=\sqrt{x^2+y^2}$, $x^2+y^2=2ax$ (a>0), $z=0$;

(3)
$$x^2+y^2=a^2, y^2+z^2=a^2 (a>0).$$

(3) $x^2+y^2=a^2$, $y^2+z^2=a^2$ (a>0). 10. 一金属叶片形如心脏线 $ho=a(1+\cos heta)$,如果它在任一点的密度与原点到该点的距离heta比,求它的全部质量.

- 11. 以半径为 4 cm 的铜球的直径为中心轴,钻通一个半径为 1 cm 的圆孔,问损失掉的铜的体积是多少?
- 12. 在一个形状为旋转抛物面 $z=x^2+y^2$ 的容器中,盛有 8π cm 3 的水,今再灌入 120π cm 3 的水,向液面将升高多少?
 - 13. 利用适当的变换计算下列二重积分:

$$(1) \iint_{(\sigma)} \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} d\sigma, (\sigma) = \left\{ (x, y) \left| \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \right\}, \sharp \oplus a > 0, b > 0; \right\}$$

- (2) $\iint_{(\sigma)} e^{y/y+x} d\sigma$, (σ) 是以(0,0),(1,0) 和(0,1) 为顶点的三角形内部;
 - (3) $\int_{(\sigma)} xy d\sigma$, (σ) 由曲线 xy = 1, xy = 2, y = x, y = 4x (x > 0, y > 0) 所围成.
 - 14. 求下列曲线所围成的平面图形的面积:
 - (1) $(x-y)^2+x^2=a^2$ (a>0);
 - (2) $x+y=a, x+y=b, y=\alpha x, y=\beta x \ (0< a< b, 0< \alpha < \beta);$
 - (3) $xy = a^2$, $xy = 2a^2$, y = x, y = 2x (x > 0, y > 0);
 - (4) $y^2 = 2px$, $y^2 = 2qx$, $x^2 = 2ry$, $x^2 = 2sy$ (0<p<q,0<r<s).

X (B)

1. 计算下列二重积分:

$$(1) \iint_{(\sigma)} \sqrt{|y-x^2|} d\sigma, (\sigma) = \{(x,y) \mid |x| \leq 1, 0 \leq y \leq 2\};$$

(2)
$$\iint_{(\sigma)} (x+y) d\sigma, (\sigma) = \{(x,y) | x^2 + y^2 \le x + y\};$$

(3)
$$\int_{\sigma} y^2 d\sigma, (\sigma) \, \mathcal{L}_x \, \mathbf{n} = \mathbf{n} =$$

2. 计算累次积分

$$\int_{1/2}^{1/2} dy \int_{1/2}^{\sqrt{y}} e^{y/x} dx + \int_{1/2}^{1} dy \int_{y}^{\sqrt{y}} e^{y/x} dx.$$

- 3. 设 $f(x,y) = \begin{cases} 2x, & 0 \le x \le 1, 0 \le y \le 1, \\ 0, &$ 其他, $F(t) = \iint_{x + y \le t} f(x,y) d\sigma,$ 求F(t).
- 4. 计算 $\int_{(\sigma)} x[1+yf(x^2+y^2)]d\sigma$, 其中 (σ) 是由 $y=x^3$, y=1, x=-1 所围成的区域, $f(x^2+y^2)$ 是 (σ) 上的连续函数.
 - 5. 设函数 f(x) 在区间 [0,1] 上连续,并设 $\int_{0}^{1} f(x) dx = A$,求 $\int_{0}^{1} dx \int_{0}^{1} f(x) f(y) dy$.
- 6. 证明 Dirichlet 公式 $\int_0^x dx \int_0^x f(x,y) dy = \int_0^x dy \int_y^x f(x,y) dx \quad (a>0)$, 并由此证明 $\int_0^x dy \int_0^x f(x) dx = \int_0^x (a-x)f(x) dx$, 其中 f 连续.
- 7. 设f(x)在[a,b]上连续,试利用二重积分证明:

$$\left[\int_a^b f(x)\,\mathrm{d}x\right]^2 \leqslant (b-a)\int_a^b f^2(x)\,\mathrm{d}x.$$

- 8. 试求曲线 $(a_1x+b_1y+c_1)^2+(a_2x+b_2y+c_2)^2=1$ $(a_1b_2-a_2b_1\neq 0)$ 所围平面图形的面积
- 8. 试求曲线 $(a_1x+b_1y+c_1)$ $+(u_2x+v_2)$ 9. 求拋物面 $z=1+x^2+y^2$ 的一个切平面,使得它与该拋物面及圆柱面 $(x-1)^2+y^2=1$ 围成的 $(x-1)^2+y^2=1$ 最小,试写出切平面方程并求出最小的体积.
- 10. 设f(t)是连续的奇函数,试利用适当的正交变换证明 $\iint_{\sigma} f(ax + by + c) d\sigma = 0$, 其中 (σ) 美 于直线 ax+by+c=0 对称,且 $a^2+b^2\neq 0$.
- 11. 设有一半径为 R, 高为 H 的圆柱形容器, 盛有 $\frac{2}{3}H$ 高的水, 放在离心机上高速旋转. 因受雇 心力的作用,水面呈抛物面形状,问当水刚要溢出容器时,水面的最低点在何处?
 - 12. 设 a>0, b>0 为常数, (σ) 为椭圆域 $\frac{x^2}{\sigma^2}+\frac{y^2}{b^2} \le 1$,f(t)是连续函数,且 $f(t) \ne 0$,证明:

$$\iint_{(\sigma)} \frac{(b+1)f\left(\frac{x}{a}\right) + (a-1)f\left(\frac{y}{b}\right)}{f\left(\frac{x}{a}\right) + f\left(\frac{y}{b}\right)} d\sigma = \frac{\pi}{2}ab(a+b).$$

13. 设函数 f(t)在[0,+∞)连续,且满足方程

$$f(t) = e^{4\pi t^2} + \iint_{x^2+y^2 \le 4t^2} f\left(\frac{1}{2}\sqrt{x^2+y^2}\right) d\sigma,$$

(A)

1. 设积分域(V):(1) 关于 xOy 平面对称;(2) 关于 yOz 平面对称;(3) 关于 zOx 平面对称.试分别说明被积函数具有什么特性时,三重积分

$$\iiint\limits_{(V)} f(x,y,z) \, \mathrm{d}V = 0, \qquad \iiint\limits_{(V)} f(x,y,z) \, \mathrm{d}V = 2 \iiint\limits_{(V)} f(x,y,z) \, \mathrm{d}V,$$

其中(V')为(V)在对称面一侧的子区域.

2. 设(V)是球体: $x^2+y^2+z^2 \le 4$, (V_1) 是其上半球体,试判断下列各题是否正确? 为什么?

(1)
$$\iint_{(V)} (x + y + z)^2 dV = 2 \iint_{(V)} (x + y + z)^2 dV;$$

$$(2) \iint_{(V)} xyz dV = 0;$$

(3)
$$\iint_{(V)} 3 dV = 3 \iint_{(V)} dV = 3 \cdot \frac{4}{3} \pi \cdot 8 = 32\pi;$$

(4)
$$\iint_{(V)} 3(x^2 + y^2 + z^2) dV = 3 \iint_{(V)} 4 dV = 12 \cdot \frac{4}{3} \pi \cdot 8 = 128 \pi.$$

3. 仅从积分域考虑,选用你认为最方便的坐标系将三重积分 $I=\iint_{(V)}f(x,y,z)\,\mathrm{d}V$ 化成由三个单积分构成的累次积分,其中积分域(V) 为

- (1) 由平面 $x + \frac{y}{2} + \frac{z}{3} = 1$ 与各坐标面围成的区域;
- (2) 由 $z = \sqrt{4-x^2-y^2}$ 与 $z = \sqrt{x^2+y^2}$ 所围成的区域;

(3)
$$(V) = \{(x,y,z) \mid x^2 + y^2 \le 2x, 0 \le z \le \sqrt{4 - x^2 - y^2}\};$$

(4)
$$(V) = \{(x,y,z) \mid a - \sqrt{a^2 - x^2 - y^2} \le z \le \sqrt{a^2 - x^2 - y^2} \quad (a>0) \}.$$

4. 计算下列三重积分:

- (1) $\iint_{U} e^{z} dV_{y}(V)$ 是由平面 z = 0, y = 1, z = 0, y = x 和 z + y z = 0 所围成的闭区域;
- (2) $\iint y \cos(x+z) dV$, (V) 为由抛物柱面 $y = \sqrt{x}$, 平面 y = 0, z = 0 及 $x+z = \frac{\pi}{2}$ 所围成的闭区域
- (3) $\iint_{(Y)} \frac{e^{z}}{\sqrt{x^{2}+y^{2}}} dV, (V) 为由 z = \sqrt{x^{2}+y^{2}}, z = 1, z = 2$ 所围成的闭区域;
- (4) $\iint_{\mathcal{D}} (x^2 + y^2) dV$, (V) 为由 $x^2 + y^2 = 2z$ 与 z = 2 所围成的闭区域;
- (5) $\iint xy dV$, (V) 为由 $x^2 + y^2 = 1$ 与平面z = 0, z = 1, z = 0, y = 0 所围成的第一卦限内的

区域:

- (6) ∬xydV,(V) 为由 xy = z,x + y = 1 与 z = 0 所围成的闭区域;
- (8) $\iint z dV$, (V) 由 $z = \sqrt{4 x^2 y^2}$ 与 $z = \frac{1}{3}(x^2 + y^2)$ 所围成;
- (9) $\iint_{\mathbb{R}} \frac{1}{1+x^2+\gamma^2} dV, (V) 由 x^2+y^2 = z^2 5z = 1$ 所图成;
- (10) $\iint_{(r)} z^2 dV$, (V) 为两球体 $x^2 + y^2 + z^2 \le R^2 \mid j \mid x^2 + y^2 \mid + z^2 \le 2Rz$ 的公共部分, R > 0;
 - (11) $\iint xyz dV$, (V) 为 $x^2 + y^2 + z^2 = 1$ 位于第一卦限中的闭区域;
 - (12) $\iint \sqrt{1-x^2-y^2-z^2} dV$, (V) 为由不等式 $z^2+y^2+z^2 \le 1$, $z \ge \sqrt{x^2+y^2}$ 所确定的闭区域;
 - (13) $\iint_{\mathbb{R}^2} (x+y) dV$, (V) 由 $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, z = 0, z = x + 2 所围成;
 - $(14) \iint \frac{z \ln(x^2 + y^2 + z^2 + 1)}{x^2 + y^2 + z^2 + 1} dV, (V) = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\};$
 - $(15) \iint_{(V)} z(x^2 + y^2) \, dV, (V) = \{(x, y, z) \mid z \ge \sqrt{x^2 + y^2}, 1 \le x^2 + y^2 + z^2 \le 4\};$
- $(16) \iint_{\mathbb{R}} z dV, (V) = \{(x,y,z) \mid x^2 + y^2 + (z-a)^2 \le a^2, x^2 + y^2 \le z^2 \ (a > 0) \}.$
- 5. 选用适当的坐标系计算下列累次积分:
- (1) $\int_{0}^{1} dz \int_{0}^{\sqrt{1-z^2}} dy \int_{\sqrt{z^2+z^2}}^{1} z^3 dz$; (2) $\int_{-\infty}^{3} dx \int_{-\infty}^{\sqrt{9-x^2-y^2}} dy \int_{-\infty}^{\sqrt{9-x^2-y^2}} z \sqrt{z^2+y^2+z^2} dz$ 6. 求下列立体的体积:

 - (1) 由 $x^2+y^2+z^2=a^2$, $x^2+y^2+z^2=b^2$ 与 $z=\sqrt{x^2+y^2}$ ($z \ge 0$) 所围成的立体(b > a > 0);
 - (2) 由 $z=6-x^2-y^2$ 与 $z=\sqrt{x^2+y^2}$ 所围成的立体;
 - (3) 由 $(x^2+y^2+z^2)^2=a^3z$ (a>0)所围成的立体;
 - (4) 由 $x = \sqrt{y-z^2}$, $\frac{1}{2}\sqrt{y} = x$ 与 y = 1 所图成的立体;

(5) 由
$$z = \frac{xy}{a}$$
, $x^2 + y^2 = ax$ (a>0) 与 $z = 0$ 所围成的立体;

(6) 由
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$$
 ($a > 0, b > 0, c > 0$) 所确定的立体;

(7) 由
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
 与 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>0,b>0,c>0)所围成的立体.

7. 计算 $\iint_{(V)} (x^2 + y^2) dV$,其中(V) 为平面曲线 $\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$,绕z轴旋转一周形成的曲面与平面z = 8 and 的立体.

8. 证明: **抛物面** $z=x^2+y^2+1$ 上任一点处的切平面与曲面 $z=x^2+y^2$ 所围立体的体积恒为一常数值. (B)

1 计算下列三重积分:

$$(1) \iint_{(V)} \frac{1}{\sqrt{x^2 + y^2 + z^2}} dV, (V) = \{(x, y, z) \mid x^2 + y^2 + (z - 1)^2 \le 1, z \ge 1, y \ge 0\};$$

(2)
$$\iint_{(V)} \left| \sqrt{x^2 + y^2 + z^2} - 1 \right| dV$$
, (V) 由 $z = \sqrt{x^2 + y^2}$ 与 $z = 1$ 围成;

(3)
$$\iint\limits_{(V)} \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2}} \, dV, \quad (V) = \left\{ (x, y, z) \left| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right. \\ \left(a > 0, b > 0, c > 0 \right) \right. \right\}.$$

2. 将累次积分 $\int_0^1 dx \int_0^1 dy \int_0^{x^1+y^2} f(x,y,z) dz$ 分别化为先对 x 和先对 y 的累次积分.

3.
$$\Im F(t) = \iint_{(V)} x \ln(1+x^2+y^2+z^2) dV$$
, $(V) \pitchfork x^2+y^2+z^2 \le t^2 = \sqrt{y^2+z^2} \le x \, \Re \mathbb{E}$, $\Re \frac{dF(t)}{dt}$.

4. 设 f 为连续函数 $f(t) = \iint_{(V)} f(x^2 + y^2 + z^2) dV$ 的导数 F'(t) ,其中 $(V) = \{(x, y, z) \mid x^2 + y^2 + z^2 \leq t^2\}$.

5. 设
$$f(x)$$
 连续, $(V) = \{(x,y,z) \mid 0 \le z \le h, x^2 + y^2 \le t^2\}$, $F(t) = \iint_{(V)} [z^2 + f(x^2 + y^2)] dV$,求 $\frac{dF}{dt}$ 和 $\lim_{t \to 0^+} \frac{F(t)}{t^2}$.

6. 计算三重积分
$$\iint_{(V)} (x+y+z)^2 dV$$
,其中 (V) 为椭球体 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$.