Para discutir na aula TP de 14 outubro 2020

1.Tamanho dum buraco negro. Desenvolver uma estimativa de ordem de grandeza de raio do horizonte de eventos dum buraco negro com massa igual ao Sol. (O horizonte de eventos é a fronteira teórica ao redor de um buraco negro a partir da qual a força da gravidade é tão forte que, nada, nem mesmo a luz, pode escapar pois a sua velocidade é inferior à velocidade de escape do buraco).

Os variáveis relevantes neste problema são, o raio de horizonte R, a massa do buraco negro vezes o constante universal gravítico GM (pois é isso que indica a grandeza da força gravítica) e a velocidade da luz. As unidades destes variáveis são:

$$[R] \sim D$$

$$[GM] \sim forca*(distancia)^2/massa \sim \frac{D^3}{T^2}$$
 $[c] \sim D/T$

E a combinação adimensional que podemos formar é

$$\frac{GM}{Rc^2} \Rightarrow R = \text{Constante} \frac{GM}{c^2}$$

Cálculos mais sofisticados indicam que o constante se varia entre 1-2 dependente do valor de monmento angular do buraco negro. Assumindo que a constante é 1, com os valores $G = 6,67x10^{-11}$ m³/kg/s², Msol =2x10³0 kg e c = 3x108 m/s, a estimativa do tamanho do horizonte de eventos é $R\sim1,5$ km.

Se o vosso professor (que tem uma massa de 75 kg) colapsou num buraco negro qual seria o tamanho de seu horizonte de eventos?

O tamanho varia linearmente com a massa

$$R_{prof} = R_{sol} \left(\frac{M_{prof}}{M_{sol}} \right) \sim 6x10^{-26} m$$

2. Terceira lei de Kepler. Considere uma órbita circular com raio r, á volta do Sol. Na base de análise de dimensões demonstrar que o período desta orbita, T, varia com o raio de acordo com a terceira lei de Kepler: $T \propto 1/r^{3/2}$.

Os variáveis relevantes neste problema são, o raio de órbita r, a massa do do Sol vezes o constante universal gravítico GM (pois é isso que indica a grandeza da força gravítica) e o período T. As unidades destes variáveis são:

$$[r] \sim D$$

$$[GM] \sim forca*(distancia)^2/massa \sim \frac{D^3}{T^2}$$

$$[T] \sim T$$

E a combinação adimensional que podemos formar com estas variáveis é

$$GM \frac{T^2}{r^3} = \text{Constante} \implies T \sim r^{3/2}$$

3. A Terra como uma esfera achatada. Uma vez que a terra se torna à volta de seu eixo, o raio polar é ligeiramente menor do que o raio equatorial. Estimar a diferença $\Delta R = R_{eq} - R_{pol}$, construindo dois grupos adimensionais dos parâmetros, $\Delta R, g, R$ (o raio médio da Terra) e v a velocidade rotacional da Terra no equador. Advinha uma relação razoável entre estes dois grupos e assim estimar o valor de ΔR (valor atual é $\Delta R \approx 21.4 km$).

Uma possibilidade para os dois grupos adimensionais é

$$\frac{\Delta R}{R}$$
 $\frac{gR}{v^2}$

Assim esperamos que $\frac{\Delta R}{R} = f\left(\frac{gR}{v^2}\right)$ onde f é uma função desconhecida.

Fisicamente esperamos que quanto maior a velocidade maior será ΔR . Também quanto maior a aceleração gravítica, menor será ΔR .

Assim é razoável esperar que

$$\frac{\Delta R}{R} \approx \frac{\text{v}^2}{gR} \Rightarrow \Delta R \approx \frac{\text{v}^2}{g}$$

A velocidade da rotação da terra no equador é aproximadamente

$$v \approx 2\pi R_{Terra} / (1 \text{ dia}) \approx \frac{2\pi (6, 4x10^6 m)}{1 dia (24h / dia) (3600 s / h)} \approx 465 m / s$$

6

$$\Delta R \approx \frac{\mathrm{V}^2}{g} \approx \frac{\left(465m/s\right)^2}{9.8m/s^2} \approx 22.1km.$$