Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Constraint-Based Clustering
- Outlier Analysis
- 8. Summary

April 26, 2010

Data Acquisition and Processing

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

April 26, 2010

Data Acquisition and Processing

Clustering Applications: Some Examples

- <u>Marketing:</u> Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- <u>Land use:</u> Identification of areas of similar land use in an earth observation database
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning:</u> Identifying groups of houses according to their house type, value, and geographical location

April 26, 2010

Data Acquisition and Processing

3

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters with
 - high intra-class similarity
 - low <u>inter-class</u> similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns

April 26, 2010

Data Acquisition and Processing

Measure the Quality of Clustering

- Dissimilarity/Similarity metric
 - Similarity is expressed in terms of a distance function, typically metric: d(i, j)
 - The definitions of distance functions are usually rather different for interval-scaled, Boolean, categorical, ordinal ratio, and vector variables
 - Weights should be associated with different variables based on applications and data semantics
- Quality of clustering:
 - There is usually a separate "quality" function that measures the "goodness" of a cluster
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective

April 26, 2010

Data Acquisition and Processing

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Ability to handle dynamic data
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- Incorporation of user-specified constraints
- Interpretability and usability

April 26, 2010

Data Acquisition and Processing

Data Structures

- Data matrix
 - (two modes)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

- Dissimilarity matrix
 - (one mode)

$$\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

April 26, 2010

Data Acquisition and Processing

Type of data in clustering analysis

- Interval-scaled variables
- Binary variables
- Nominal and ordinal
- Vector objects

April 26, 2010

Data Acquisition and Processing

Distance Measures for Different Kinds of Data

- Numerical (interval)-based:
 - Minkowski Distance
 - Special cases: Euclidean (L₂-norm),
 Manhattan (L₁-norm)
- Binary variables:
 - symmetric vs. asymmetric (Jaccard coeff.)
- Nominal variables: # of mismatches
- Ordinal variables: treated like interval-based
- Vectors: cosine measure

April 26, 2010

Data Acquisition and Processing

Interval-valued variables

- Standardize data
 - Calculate the mean absolute deviation:

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf}).$$

Calculate the standardized measurement (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

 Using mean absolute deviation is more robust than using standard deviation

April 26, 2010

Data Acquisition and Processing

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: Minkowski distance:

$$d(i,j) = \sqrt[q]{(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + ... + |x_{i_p} - x_{j_p}|^q)}$$
 where $i = (x_{i_1}, x_{i_2}, ..., x_{i_p})$ and $j = (x_{j_1}, x_{j_2}, ..., x_{j_p})$ are two p -dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

April 26, 2010

Data Acquisition and Processing

11

Similarity and Dissimilarity Between Objects

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

- Properties
 - $d(i,j) \ge 0$
 - d(i,i)=0
 - $\bullet d(i,j) = d(j,i)$
 - $\bullet \ d(i,j) \leq d(i,k) + d(k,j)$

April 26, 2010

Data Acquisition and Processing

Binary Variables

		1	0	sum
A contingency table for binary Object:	1	а	b	a+b
data Object i	0	c	d	c+d
SL	ит	a+c	b+d	p

- Distance measure for symmetric binary variables:
- $d(i, j) = \frac{b+c}{a+b+c+d}$

Object j

- Distance measure for asymmetric binary variables:
- $d(i, j) = \frac{b+c}{a+b+c}$
- Jaccard coefficient (similarity measure for asymmetric binary variables):

$$sim_{Jaccard}(i, j) = \frac{a}{a+b+c}$$

April 26, 2010

Data Acquisition and Processing

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- gender is a symmetric attribute
- the remaining attributes are asymmetric binary
- let the values Y and P be set to 1, and the value N be set to 0

$$d (jack , mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d (jack , jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d (jim , mary) = \frac{1+2}{1+1+2} = 0.75$$

April 26, 2010

Data Acquisition and Processing

Nominal Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

April 26, 2010

Data Acquisition and Processing

15

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank

$$r_{if} \in \{1, ..., M_f\}$$

 map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$$

 compute the dissimilarity using methods for intervalscaled variables

April 26, 2010

Data Acquisition and Processing

Vector Objects

- Vector objects: keywords in documents
- Broad applications: information retrieval, biologic taxonomy, etc.
- Cosine measure

$$s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{|\vec{X}||\vec{Y}|},$$

 $\vec{X^t}$ is a transposition of vector $\vec{X}, \ |\vec{X}|$ is the Euclidean normal of vector $\vec{X},$

A variant: Tanimoto coefficient

$$s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{\vec{X}^t \cdot \vec{X} + \vec{Y}^t \cdot \vec{Y} - \vec{X}^t \cdot \vec{Y}},$$

April 26, 2010

Data Acquisition and Processing

17

Major Clustering Approaches (I)

- Partitioning approach:
 - Construct various partitions and then evaluate them by some criterion,
 e.g., minimizing the sum of square errors
 - Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSACN, OPTICS, DenClue

April 26, 2010

Data Acquisition and Processing

Major Clustering Approaches (II)

- Grid-based approach:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE
- Model-based:
 - A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - Typical methods: EM, SOM, COBWEB
- Frequent pattern-based:
 - Based on the analysis of frequent patterns
 - Typical methods: pCluster
- <u>User-guided or constraint-based</u>:
 - Clustering by considering user-specified or application-specific constraints
 - Typical methods: COD (obstacles), constrained clustering

April 26, 2010

Data Acquisition and Processing

19

Calculation of Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = min(t_{ip}, t_{iq})$
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = max(t_{ip}, t_{iq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = avg(t_{ip}, t_{iq})$
- Centroid: distance between the centroids of two clusters, i.e., $dis(K_i, K_j) = dis(C_i, C_j)$
- Medoid: distance between the medoids of two clusters, i.e., $dis(K_i, K_i) = dis(M_i, M_i)$
 - Medoid: one chosen, centrally located object in the cluster

April 26, 2010

Data Acquisition and Processing

Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "middle" of a cluster

$$C_m = \frac{\sum_{i=1}^{N} (t_{ip})}{N}$$

Radius: square root of average distance from any point of the cluster to its centroid

$$R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}}$$

 Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$D_{m} = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^{2}}{N(N-1)}}$$

April 26, 2010

Data Acquisition and Processing

21

Partitioning Algorithms: Basic Concept

 <u>Partitioning method:</u> Construct a partition of a database D of n objects into a set of k clusters, s.t., min sum of squared distance

$$\sum_{m=1}^{k} \sum_{t_{mi} \in Km} (C_m - t_{mi})^2$$

- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - *k-means*: Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids): Each cluster is represented by one of the objects in the cluster

April 26, 2010

Data Acquisition and Processing

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into *k* nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when no more new assignment

April 26, 2010

Data Acquisition and Processing

Comments on the K-Means Method

- Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n</p>
- <u>Comment:</u> Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms
- Weakness
 - Applicable only when *mean* is defined, then what about categorical data?
 - Need to specify *k*, the *number* of clusters, in advance
 - Unable to handle noisy data and outliers

April 26, 2010

Data Acquisition and Processing

25

Variations of the K-Means Method

- A few variants of the *k-means* which differ in
 - Selection of the initial *k* means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters

April 26, 2010

Data Acquisition and Processing

What Is the Problem of the K-Means Method?

- The k-means algorithm is sensitive to outliers!
 - An object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

April 26, 2010

Data Acquisition and Processing

The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- **CLARA**
- CLARANS: Randomized sampling

April 26, 2010

Data Acquisition and Processing

CLARA (Clustering Large Applications)

- *CLARA* (built in 1990)
 - Built in statistical analysis packages, such as S+
- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output
- Strength: deals with larger data sets than PAM
- Weakness:
 - Efficiency depends on the sample size
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

April 26, 2010

Data Acquisition and Processing

29

CLARANS ("Randomized" CLARA)

- CLARANS (A Clustering Algorithm based on Randomized Search)
- CLARANS draws sample of neighbors dynamically
- The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of k medoids
- If the local optimum is found, *CLARANS* starts with new randomly selected node in search for a new local optimum
- It is more efficient and scalable than both PAM and CLARA
- Focusing techniques may further improve its performance

April 26, 2010

Data Acquisition and Processing

Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition

AGNES (Agglomerative Nesting)

- Introduced in 1990
- Implemented in statistical analysis packages, e.g., Splus
- Use the Single-Link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

DIANA (Divisive Analysis)

- Introduced in 1990
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

Extensions to Hierarchical Clustering

- Major weakness of agglomerative clustering methods
 - do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects
 - can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - BIRCH (1996): uses CF(Clustering Feature)-tree and incrementally adjusts the quality of sub-clusters
 - ROCK (1999): clustering categorical data by neighbor and link analysis
 - <u>CHAMELEON (1999)</u>: hierarchical clustering using dynamic modeling

April 26, 2010

Data Acquisition and Processing

35

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN
 - OPTICS
 - DENCLUE
 - CLIQUE

April 26, 2010

Data Acquisition and Processing

Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods
 - STING (a STatistical Information Grid approach)
 - WaveCluster
 - A multi-resolution clustering approach using wavelet method
 - CLIQUE
 - On high-dimensional data (thus put in the section of clustering high-dimensional data

April 26, 2010

Data Acquisition and Processing

37

Model-Based Clustering

- What is model-based clustering?
 - Attempt to optimize the fit between the given data and some mathematical model
 - Based on the assumption: Data are generated by a mixture of underlying probability distribution
- Typical methods
 - Statistical approach
 - EM (Expectation maximization), AutoClass
 - Machine learning approach
 - COBWEB, CLASSIT
 - Neural network approach
 - SOM (Self-Organizing Feature Map)

April 26, 2010

Data Acquisition and Processing

Why Constraint-Based Cluster Analysis?

- Need user feedback: Users know their applications the best
- Less parameters but more user-desired constraints, e.g., an ATM allocation problem: obstacle & desired clusters

A Classification of Constraints in Cluster Analysis

- Clustering in applications: desirable to have user-guided (i.e., constrained) cluster analysis
- Different constraints in cluster analysis:
 - Constraints on individual objects (do selection first)
 - Cluster on houses worth over \$300K
 - Constraints on distance or similarity functions
 - Weighted functions, obstacles (e.g., rivers, lakes)
 - Constraints on the selection of clustering parameters
 - # of clusters, MinPts, etc.
 - User-specified constraints
 - Contain at least 500 valued customers and 5000 ordinary ones
 - Semi-supervised: giving small training sets as "constraints" or hints

April 26, 2010

Data Acquisition and Processing

What Is Outlier Discovery?

- What are outliers?
 - The set of objects are considerably dissimilar from the remainder of the data
 - Example: Sports: Michael Jordon, Wayne Gretzky, ...
- Problem: Define and find outliers in large data sets
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis

April 26, 2010

Data Acquisition and Processing

41

Outlier Discovery: Statistical Approaches

Data Values

- Assume a model underlying distribution that generates data set (e.g. normal distribution)
- Use discordancy tests depending on
 - data distribution
 - distribution parameter (e.g., mean, variance)
 - number of expected outliers
- Drawbacks
 - most tests are for single attribute
 - In many cases, data distribution may not be known

April 26, 2010

Data Acquisition and Processing

Outlier Discovery: Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution
- Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O
- Algorithms for mining distance-based outliers
 - Index-based algorithm
 - Nested-loop algorithm
 - Cell-based algorithm

April 26, 2010

Data Acquisition and Processing

43

Density-Based Local Outlier Detection

- Distance-based outlier detection is based on global distance distribution
- It encounters difficulties to identify outliers if data is not uniformly distributed
- Ex. C₁ contains 400 loosely distributed points, C₂ has 100 tightly condensed points, 2 outlier points o₁, o₂
- Distance-based method cannot identify o₂ as an outlier
- Need the concept of local outlier

- Local outlier factor (LOF)
 - Assume outlier is not crisp
 - Each point has a LOF

April 26, 2010

Data Acquisition and Processing

Outlier Discovery: Deviation-Based Approach

- Identifies outliers by examining the main characteristics of objects in a group
- Objects that "deviate" from this description are considered outliers
- Seguential exception technique
 - simulates the way in which humans can distinguish unusual objects from among a series of supposedly like objects
- OLAP data cube technique
 - uses data cubes to identify regions of anomalies in large multidimensional data

April 26, 2010

Data Acquisition and Processing

45

Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distance-based or deviation-based approaches
- There are still lots of research issues on cluster analysis

April 26, 2010

Data Acquisition and Processing