

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Департамент математического и компьютерного моделирования

ОТЧЕТ

к лабораторной работе №1 по дисциплине «Математическое моделирование»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр. Б9120-01.03.02миопд <u>Крюков Н.В.</u> (ΦMO) (nodnucb)

«<u>31</u>» октября <u>2022</u> г.

Владивосток 2022 г.

Содержание

Введение	3
Задача о температуре нагревательного прибора	3
Постановка задачи	3
Выбор переменных	3
Выбор законов и зависимостей	4
Формулировка математической модели	4
Решение	7
Код программы	7
Тестирование	8
Заключение	10

Введение

В данной лабораторной работе я буду решать задания, используя программы компьютерной математики. Оформлять решенные задачи буду в среде компьютерной верстки «Т_ЕХ», затем конвертировать в документ формата PDF.

Задача о температуре нагревательного прибора

Постановка задачи

Внезапно возникла потребность. Стало необходимо узнать, как изменяется температура умного нагревательного прибора при условии всех теплопотерь. Сам накревательный прибор может отключать часть своих нагревательных элементов при приближении к нужной температуре.

Выбор переменных

Множество нагревательных приборов и необходимых условий можно охарактеризовать конкретными параметрами

- 1. массой m=1 килограмм;
- 2. количеством нагревательных элементов в нагревательном приборе $n=10~{
 m mir}$
- 3. мощностью p = 3000 Bt;
- 4. материалом прибора железо;

- 5. удельной теплоёмкостью материала $c = 460 \, \frac{\text{Дж}}{\text{кг} \cdot \text{c}};$
- 6. коэффициентом конвективного теплообмена $k = 25 \frac{\text{Bt}}{\text{M}^2 \cdot \text{K}};$
- 7. площадью поверхности нагревательного прибора $S=0.01~{\rm m}^2;$
- 8. температурой атмосферы $T_a = 300 \text{ K};$
- 9. температурой, до которой необходимо нагреть нагревательный прибор $T_R = 600 \; \mathrm{K}.$

Также понадобится:

Постоянная Стефана-Больцмана
$$\mathfrak{S} = 5.67 \cdot 10^{-8} \; \frac{\mathrm{Br}}{\mathrm{M}^2 \cdot \mathrm{K}^4}.$$

Выбор законов и зависимостей

Для того, чтобы построить график изменения температуры, необходимо узнать, за счёт чего температура увеличивается и за счёт чего она может уменьшаться. При увеличении или уменьшении температуры количество тепла нагревательного прибора также увеличивается или уменьшается – Q=cmT или же $\Delta Q=cm\Delta T$.

Уменьшение температуры может происходить по нескольким причинам: конвекция и тепловое излучение. Формула конвективного теплообмена – $kS(T-T_a)\Delta t$. Формула теплового излучения – $S\mathfrak{S}(T^4-T_a^4)\Delta t$. Переобозачим суммарные потери как $L(T)\cdot \Delta t$.

Увеличение количества тепла происходит за счёт мощности на единицу времени $P \cdot \Delta t$. Предположим, что часть нагревательных элементов может отключаться, тогда домножим предыдущую формулу на некий коэффициент H, который будет меняться с изменениями температуры – $P \cdot \Delta t \cdot H$.

Формулировка математической модели

Узнаем сколько тепла получает и отдаёт нагревательный прибор

$$Q = P \cdot \Delta t \cdot H - L(T) \cdot \Delta t$$

Подставим формулу количества тепла нагревательного элемента:

$$cm\Delta T = P \cdot \Delta t \cdot H - L(T) \cdot \Delta t \tag{1}$$

Найдём функцию H

Чтобы нагревательный прибор поддерживал нужную температуру, необходимо узнать, сколько нагревательных элементов должно работать при необходимой температуре: Разделим теплопотери на мощность отдельно взятого нагревательного элемента:

$$\frac{L\left(T_{R}\right)}{\frac{P}{n}} = \frac{n \cdot L\left(T_{R}\right)}{P}$$

Остальными нагревательными элементами мы можем распоряжаться свободно. Их количество:

$$n - \frac{n \cdot L(T)}{P} = n \cdot \left(1 - \frac{L(T)}{P}\right)$$

Допустим, чем ближе текущая температура к необходимой, тем меньше нагревательных элементов будет работать. Найдём в процентном соотношении количество оставшейся температуры:

$$\frac{T_R - T}{T_R - T_a}$$

Так как значение этого выражения обычно находится на отрезке от 0 до 1, то извлечение корня из этого выражения только увеличит его. Это значит, что обычно будет работать больше нагревательных элементов, но при приближении к нужной температуре их количество будет быстро уменьшаться. Степень корня возьмём такую, что при различных начальных условиях температуры, нагрев происходил примерно за одно и то же время.

$$\left(\frac{T_R - T}{T_R - T_a}\right)^{\frac{T_a}{T_R}}$$

Соберём функцию H

$$H = \left(\frac{T_R - T}{T_R - T_a}\right)^{\frac{T_a}{T_R}} \cdot \left(1 - \frac{L(T)}{P}\right) \cdot n + \frac{n \cdot L(T_R)}{P}$$

Но так как в нашей модели невозможно, чтобы какой-то из нагревательных элементов работал на 0.5 от общей мощности, он либо включен, либо выключен, то округлим значение этого выражения вниз. А так же разделим результат на количество нагревательных элементов, чтобы получить процентное соотношение работающих элементов ко всем.

$$H = \frac{\left\lfloor \left(\frac{T_R - T}{T_R - T_a}\right)^{\frac{T_a}{T_R}} \cdot \left(1 - \frac{L\left(T\right)}{P}\right) \cdot n + \frac{n \cdot L\left(T_R\right)}{P} \right\rfloor}{n}$$

Преобразуем уравнение (1):

$$\frac{\Delta T}{\Delta t} = \frac{P \cdot H - L(T)}{cm} \tag{2}$$

Решение

Уравнение (1) является дифференциальным уравнением температуры по времени. Так как в начальный момент времени t_0 температура равна атмосферной $T = T_a$, то значит эта задача является задачей Коши. Напишем программу для высчитывания графика роста температуры.

Код программы

```
#include <iostream>
#include <fstream>
#include <cmath>
#include <string>
int m = 1;
int p = 3000;
int n = 100;
int c = 460;
int tA = 300;
double k = 25;
double s = 0.01;
const double sigma = 5.7 * pow(10, -8);
int tR = 600;
using std::cin;
using std::cout;
using std::endl;
using std::string;
using std::ofstream;
using std::to_string;
```

```
double losses(double t) {
   return s * (k * (t - tA) + sigma * (pow(t, 4) - pow(tA, 4)));
}
double h(double t) {
   return 1.0 * floor(pow((((tR - t) > 0 ? (tR - t) : 0) * 1.0 / (tR
       - tA)), 1.0 * tA / tR) * (1 - losses(tR) / p) * n + n *
       losses(tR) / p);
}
double f(double t) {
   return (1.0 * (p * h(t) / n - losses(t)) / (c * m));
}
int main() {
   ofstream fout("output.txt");
    string x = "";
    string y = "";
   double t = tA;
    for (int i = 0; i < 100; i++) {</pre>
       cout << i << ^{,} ^{,} << h(t) << ^{,} ^{,} << t << ^{,} ^{,} << f(t) << endl;
       x += to_string(i);
       x += ", ";
       y += to_string(t);
       y += ", ";
       t += (double)f(t);
    }
    cout << " " << n * losses(tR) / p << ', ' << losses(tR);</pre>
    fout << x << endl << y << endl;
    fout.close();
}
```

Тестирование

Проведём серию экспериментов

Для визуализации результатов использовалась библиотека языка Python Первый эксперимент проведём с одним нагревательным элементом:

Рис. 1: График с одним нагревательным элементом

Второй эксперимент будет с пятью нагревательными элементами:

Рис. 2: График с пятью нагревательными элементами Третий – с десятью нагревательными элементами:

Рис. 3: График с десятью нагревательными элементами

Заключение

В ходе работы была написана и протестирована программа для прогнозирования температуры нагревательного прибора с несколькими нагревательными элементами в своей конструкции.