시험평가계획서 - 줄꼬임구동기 (2)

1. 시험개요

시험 구분 (평가 항목)		성능-줄꼬임 구동기 (내구수명)			
	제품명	스트링 소재			
시험대상	모델명	Dyneema(UHMWPE) 스트링(White, 직경 1.5mm/2.0mm/2.5mm)			
	시험 항목수	1건 총 소요 예상 시간		120 일	
시험항목	시험 방법	첨부 시험 항목 및 절차 참고			
	주요사양	줄꼬임 반복 횟수,부하 하중의	영향성		

2. 시험준비

	민군겸용기술개발사업 / 전용 직구동(Direct Drive) 모터 기반 로봇용 고성능 줄꼬임 구동기(Twisted String Actuacor) 기술 개발					
시험장소	선문대학교 공학관		주소 : 충청남도 아산시 탕정면 선문로 221 번길 7 선문대학교 공학관 223호			221 번길 70,
시험완료일	2025-06-30	시험 시작 예정	일	2024-11-01	시험 완료 예정일	2025-04-30

3. 시험 평가

시험평가의뢰기관	선문대학교-자체평가 <u>(공인인증시험기관)</u>				
	시험평가기관 시험절차/방법 사전 협의 유무 : 유(○), 무()				
시험평가성적서	성적서 발형 : 우편 (), 전자 (〇)				

4. 기타

자체 시험/평가 사유

소재 시험 평가 기관의 부재 : 스트링 소재에 대한 양방향 평가 및 Stroke 를 조절하여 시험을 수행할 수 있는 장비 및 기관의 부재로 인해 자체 제작 장비를 활용하여 시험을 수행함

반복 시험을 통한 시험 결과의 재현성 확보 : 같은 조건의 시험을 5회 이상의 반복시험을 수행하고,이를 바탕으로 장비의 재현성을 분석하며,스트링 소재에 분석의 타당성을 확보함

공인인증시험기관(KTR예정)의 의뢰를 통해 시험 평가 방법 또는 절차에 대한 공인시험서를 의뢰하여 발급예정임

첨부#1. 시험 방법 및 절차

줄꼬임 구동기용 스트링 내구 수명 시험 방법 및 절차

1. 시험 방법 및 평가 환경

= =	시험 항목	시험 방법	적합성 판단 기준		
시험번호	(평가항목)	(측정 방법)	(요구사항)		
1	스트링 직경과 하중 수준에 따른 내구수명 (내구수명)	상온의 조건에서 스트링의 직경에 따라 시료를 분류하고, 15kg, 20kg, 25kg 의 부하를 인가하여, 20% Stroke(50mm)를 이동하는 반복 횟수 측정 하중 수준에 따른 스트링 소재의 파손까지 반복 횟수를 측정	60,000 회 이상 수행이 가능한 하중		
시험환경					

상온 조건에서 모터의 회전을 인가하여 스트링 소재 조건에 따른 내구수명 측정

무게추를 이용하여 스트링의 부하를 설정하고, 스트링 길이의 20% stroke(50mm)를 반복 이동하며 반복 횟수를 측정

부하조건 및 시험 조건에 따른 반복 사이클 수 및 하중조건에 따른 결과 그래프를 추출

2. 시험 절차

시험 번호	1	시험 항목 (성능 지표)	스트링 직경과 하중 수준에 따른 내구수명			
시험 방법 (측정 방법)	스트링 시험 장비(자체제작)를 활용하여, 스트링 소재의 반복 횟수 측정					
적합성 판단 기준	60,0	000 회 이상 수행	병 조건 도출			
시료	Dyneema(UHMWPE) 스트링	반복 시험 횟수	시료(직경) 3 개 X 시험조건(하중) 3 개 X 3 회 = 27 회			
도구	-	시험 예상 시간	120 일			
시험 절차	<시료준비> - 스트링 소재 시편(Dyneema ** - 스트링 소재 시편(Dyneema ** - 스트링 소재 시편(Dyneema ** - 시험기 준비 및 시험 환경, 조건 - 필요에 따라 환경 조건(온도, ** - 부하 하중 인가 - 이동거리를 Stroke 20%(50m** - 시험 수행> - 스트링 시험기를 작동시켜 시한 ** - 스트링 시험기를 작동시켜 시한 ** - 시료의 직경 및 부하 따른 결물 ** - 여러 시편의 평균 값을 산출하 ** - 여러 시편의 평균 값을 산출하 ** - 여러 시편의 평균 값을 산출하 ** - 이러 시편의 평균 값을 찬성하다 ** - 이러 시편 ** - 이러 시편 ** - 이러 시편 ** - 이러 시전 **	선 설정> 습도 등)을 표준(nm)로 설정 편이 파단 될 때 과를 분석 라여 결과 데이터	에 맞게 설정 까지의 반복 이동 횟수를 측정 분석			
기대 결과	60,000회 이상을 달성할 것으로	예상	경의 스트링은 15kg 하중 이하에서는 : 경향을 분석할 수 있는 데이터베이스			
비고						

시험평가계획서 - 줄꼬임구동기 (3)

1. 시험개요

시험 구분 (평가 항목)		성능-줄꼬임 구동기 (스트링 수명예측 기능)				
	제품명		수명 예측 식			
시험대상	모델명	-				
	시험 항목수	1 건	총 소요 예상 시간	30 일		
시험항목	시험 방법	첨부 시험 항목 및 절차 참고				
	주요사양	줄꼬임 반복 횟수, Stroke 변화령	냥, 온도의 영향성			

2. 시험준비

	민군겸용기술개발사업 / 전용 직구동(Direct Drive) 모터 기반 로봇용 고성능 줄꼬임 구동기(Twisted String Actuacor) 기술 개발					
시험장소	선문대학교 공학관 주			F소 : 충청남도 아산시 탕정면 선문로 221 번길 70 선문대학교 공학관 223호		
시험완료일	2025-06-30	시험 시작 예정	일	2025-03-01	시험 완료 예정일	2025-04-30

3. 시험 평가

시험평가의뢰기관 선문대학교-자체평가(<mark>공인인증시험기관</mark>)				
	시험평가기관 시험절차/방법 사전 협의 유무 : 유(○), 무()			
시험평가성적서	성적서 발형 : 우편 (), 전자 (🔾)			

4. 기타

자체 시험/평가 사유

소재 시험 평가 기관의 부재 : 스트링 소재에 대한 양방향 평가 및 온도 챔버를 구비하여 시험을 수행할 수 있는 장비 및 기관의 부재로 인해 자체 제작 장비를 활용하여 시험을 수행함

공인인증시험기관(KTR 예정)의 의뢰를 통해 수명 예측식의 프로그램 동작에 대한 공인인증 시험서를 의뢰하여, 예측기법의 보유를 정량화함

첨부#1. 시험 방법 및 절차

스트링 소재의 온도에 따른 수명예측 방법 및 절차

1. 시험 방법 및 평가 환경

시험번호	시험 항목 (평가항목)	시험 방법 (측정 방법)	적합성 판단 기준 (요구사항)		
1	온도 조건에 따른 스트링 소재의 수명 예측 (스트링 수명예측 기능)	수명을 예측한 결과를 실험 데이터와 비교분석 수행	실험값		
시청하기					

시험환경 실험 데이터 수집, 다양한 온도 조건에서 샘플의 열화 속도 또는 수명을 측정 수행

온도에 따른 시험 결과 및 데이터 분석 수행

작동 온도를 고려하여 스트링 소재가 온도에 따른 반응 및 신뢰성 저하에 미치는 영향을 예측하고자, 온도에 따른 신뢰성 결과를 분석하여 수행

2. 시험 절차

2. 시험 결사				
시험 번호	1	시험 항목 (성능 지표)	온도 조건에 따른 스트링 예측	! 소재의 수명
	스트링 시험 장비(자체제작)를 분석하고, 이를 토대로 내구 수명			저하 경향을
적합성 판단 기준	수명을 예	측한 결과를 실험	험 데이터와 비교	
시료	LIROS D-Pro SK78 Dyneema 스트링	반복 시험 횟수	-	
도구	-	시험 예상 시간	30 일	
시험 절차	데이터 기록 및 분석 - 도출된 수명예측 수식에 대한 대해 신뢰구간을 계산하여 정 - 모델의 신뢰성을 확보하기 위한 - 온도 변화에 따라 제품의 수 신뢰성 평가 수행 - 기 확보된 데이터를 바탕으로 수식의 타당성 확보 및 검증	행확도를 평가하여 해 전문 기관(ISC :명을 예측하거! 70%의 AI 학습	여 비교 분석 수행 O, ASTM 등)에 검증 요청 나, 열화 과정을 분석하0	ᅧ 온도에 따른
기대 결과	시험 수행에 따른 내구 수명식의	도출		
비고				