Computer Physics

Tryggvi Kalman

Summer 2016

Project 1

In this project I calculate the energy spectrum of $H=H_0+\lambda V$ where H_0 is the harmonic oscillator and $V=\hbar\omega(\frac{x}{a})^4$ where $a=\sqrt{\frac{\hbar}{m\omega}}$ is the natural length of the system.

This is achieved by adding the matrices of H_0 and V in the basis of the eigenvectors of H_0 and then truncating the basis. We know the matrix representation of $\frac{x}{a}$ in this basis is

$$\mathbf{x} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 & 0 & \dots \\ 1 & 0 & \sqrt{2} & 0 & \dots \\ 0 & \sqrt{2} & 0 & \sqrt{3} & \dots \\ 0 & 0 & \sqrt{3} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

and the matrix for V is simply $\hbar\omega x^4$. We add this (multiplied by some λ) to

$$H_0 = \hbar\omega \begin{bmatrix} 0.5 & 0 & 0 & 0 & \dots \\ 0 & 1.5 & 0 & 0 & \dots \\ 0 & 0 & 2.5 & 0 & \dots \\ 0 & 0 & 0 & 3.5 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

and then truncate. In our case we used a basis of 128 eigenvectors of H_0 .

The eigenvalues of the resulting matrix are of course the possible values of energy of the system. The following is a graph of the first six eigenvalues as a function of λ .

Project 2

We continue with the harmonic oscillator H_0 but this time we take a look at $H = H_0 + H'(t)$ where $H'(t) = \frac{1}{\sqrt{2}}\hbar\Omega(a^{\dagger} + a)\theta(t)$ where a is the ladder operator and $\theta(t)$ is the Heaviside step function. We again use the energy basis of the harmonic oscillator. Then the matrix for a is

$$\begin{bmatrix} 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & \sqrt{2} & 0 & \dots \\ 0 & 0 & 0 & \sqrt{3} & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

so the matrix for $a^{\dagger} + a$ is

$$\begin{bmatrix} 0 & 1 & 0 & 0 & \dots \\ 1 & 0 & \sqrt{2} & 0 & \dots \\ 0 & \sqrt{2} & 0 & \sqrt{3} & \dots \\ 0 & 0 & \sqrt{3} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Now given some initial state of the density operator ρ , for example the ground state of the harmonic oscillator:

$$\rho = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

we can add these matrices in a truncated basis (here we use a 16 eigenvector basis) and then calculate the time evolution of the system using the Liouvillevon Neumann equation:

$$i\hbar\dot{\rho}(t) = [H(t), \rho(t)]$$
 i.e. $\dot{\rho}(t) = \frac{1}{\hbar}\Lambda[\rho(t)], \Lambda[\rho(t)] = -i[H(t), \rho(t)]$

or, more specifically, using iteration of the following Crank-Nicolson approximation of the Liouville-von Neumann equation:

$$\rho(t_{n+1}) = \rho(t_n) + \frac{\Delta t}{2\hbar} (\Lambda[\rho(t_n)] + \Lambda[\rho(t_{n+1})])$$

for some timegrid where $t_0=0$ and $t_{n+1}=t_n+\Delta t$. Throughout this project we use $\Delta t=0.01~ps$. In the graph below we show the time evolution of the occupation of the five lowest states of our system.

Time evolution of the occupation of states μ_n in a system with damping strength κ = 0 eV Initalial state |0>, Energies: $E_0=\hbar\omega_0=\hbar\Omega=1.0$ meV

Now we find < x > and $< x^2 >$ (actually we'll find $< \frac{x}{a} >$ and $< (\frac{x}{a})^2 >$ where a is the same as in project 1, in all the graphs below where it says x we mean $\frac{x}{a}$) for this same system $H = H_0 + H'(t)$. This is done simply by evaluating the trace of ρx (where x is the same as in project 1) and the trace of ρx^2 . Below is a graph of the expectation values.

Expectation value of x and x^2 in a system with damping strength κ = 0 eV lnitalial state |0>, Energies: E_0 = $\hbar\omega_0$ = $\hbar\Omega$ = 1.0 meV

At this point we add dissipation to the model. The Liovulle-von Neumann equation becomes:

$$i\hbar\dot{\rho}(t)=[H(t),\rho(t)]+i\tfrac{\kappa}{2}\{[a,\rho a^{\dagger}]+[a\rho,a^{\dagger}]\}$$

The only change we have to make in our code is to modify Λ , which now becomes

$$\Lambda[\rho(t)] = -i[H(t), \rho(t)] + \frac{\kappa}{2} \{ [a, \rho(t)a^{\dagger}] + [a\rho(t), a^{\dagger}] \}$$

The following are three graphs of the time evolution of the occupation. The first assumes an initial state of $|0\rangle$ and shows the evolution for two different values of κ . The second is the same except it assumes an initial state of $|1\rangle$ and the third assumes an initial state of $|2\rangle$ and only shows one value of κ .

And finally here are two graphs of the expectation values $<\frac{x}{a}>$ and $<(\frac{x}{a})^2>$ using this new model.

