基于 5G 技术的医院网络建设标准 (MEC 分册)

Specification for Hospital Network
Construction Based on 5G Technology
(MEC)

标准起草指导单位:

国家卫生健康委员会

标准牵头起草单位(排名不分先后):

中日友好医院

中国电信集团有限公司

中国联合网络通信集团有限公司

上海联影医疗科技有限公司

中国移动(成都)产业研究院

广东省

广东省第二人民医院

浙江省

浙江省新昌县人民医院

河南省

河南省人民医院

中国信息通信研究院 中国移动通信集团有限公司 华为技术有限公司 北京深睿博联科技有限责任公司 5G 确定性网络产业联盟

中山大学附属第八医院

目录

基于	5G 技术的医院网络建设标准 (MEC 分册)	1
1 \$	范围	5
2 丸	1 范引用文件	6
3 7	·语、定义及缩略语	7
4 2	E于 5G 技术的医院网络架构	8
4. 1	基于 5G 技术的医院应用系统逻辑架构	8
4.2	5G 医疗网总体架构	8
4.3	基于 MEC 的 5G 医疗网	9
4.4	5G 院前覆盖网络架构	11
5 5	G 医疗网院前建设规范(即院外,含 5G 宏站和 5G 智慧杆小微站等)	12
6 5	G 医疗网 MEC 建设规范	13
6. 1	功能规范	13
6.2	性能规范	14
6.3	安全规范	14
6.4	可靠性规范	14
6.5	可维护性规范	15
6.6	环境友好性规范	15
6. 7	可演进性规范	16
7	医院典型应用对 5G 网络的基本要求	16
7. 1	重症监护类	16
7.2	移动医护终端类	17
7.3	动态监测类	17
7.4	信息便民类	17
7. 5	影像远程诊断类	18
7.6	视频交互会诊类	18
7. 7	远程病理类	18
8 5	G 医疗模组通用要求	19

家远程医疗与互联网医学中心 8.1 多模多频段要求 19 8.2 网络接入能力要求 20 8.3 模组的分类方式 20 8.4 模组温度要求 21 8.5 模组通用接口的要求 21 8.6 5G 医疗应用初期,视频类对速率要求高,模组支持速率的要求 23

1 范围

本标准制定了医院5G网络的建设指导原则,5G室内小站的标准已经在第一阶段无线接入网分册中涵盖,因此本分册主要包含MEC的内容。医院5G网络中包含的MEC应满足本标准规定的功能、性能、安全性、可靠性、可维护性、环境友好性、可演进性的要求。本标准同时规定了基于5G网络承载的典型医疗应用场景下,MEC应满足的技术配置指标。

国 家 远 程 医 疗 与 互 联 网 医 学 中 心

2 规范引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 1.1-2009 标准化工作导则 第1部分:标准的结构和编写

GB/T 20000.1-2014 标准化工作指南 第1部分:标准化和相关活动的通用术语

GB/T 20000. 2-2009 标准化工作指南 第2部分: 采用国际标准

GB/T 20000.3-2014 标准化工作指南 第3部分:引用文件卫办发 [2002] 116号 医院信息系统基本功能规范

卫办综函 [2010] 1046号 2010年远程会诊系统建设项目管理方案

卫办综函「2011」102号 2010年远程医疗系统项目技术方案

GB3096-2008 声环境质量标准

ETSI EN 300 019-1-1 Classification of environmental conditions Storage ETSI EN 300 019-1-2 Classification of environmental conditions Transportation

ETSI EN 300 019-1-3 Classification of environmental conditions Stationary use at weatherprotected locations

3 术语、定义及缩略语

下面所列术语、定义和缩略语适用于本规范:

中文全称		英文全称	缩写
第三代合	作伙伴计划	3 rd Generation Partnership Project	3GPP
第五代蜂	窝通信技术	5 th Generation Cellular	5G
		Telecommunication Technologies	
5G无线接	入网	5G Radio Access Network	5G RAN
5G核心网		5G Core	5GC
多接入边	缘计算	Multi-access Edge Computing	MEC
网站地址	转换	Network Address Translation	NAT
核心网用	户面功能	User Plane Function	UPF
数据网络	名	Data Network Name	DNN
网络接入	点名	Access Point Name	APN
数字化室	内系统	Digital Indoor System	DIS
5G基站		gNodeB	gNB
小区		Cell	Cell
用户面		User Plane	UP
控制面		Control Plane	CP
操作维护	功能	Operation and Mantainance	O&M

国 家 远 程 医 疗 与 互 联 网 医 学 中 心

4 基于 5G 技术的医院网络架构

4.1 基于 5G 技术的医院应用系统逻辑架构

基于 5G 技术的医院应用系统总体逻辑架构如图 1 所示:

图 1: 基于 5G 技术的医院应用系统逻辑架构

医疗行业涉及的 5G 基础能力是大带宽和低时延, MEC 和切片是 5G 医疗的增强能力, 其中医院医疗应用系统根据业务需要可部署在 MEC 平台上。5G 医疗网按医院的真实医疗功能需求可分类如下:

- 5G 无线接入:属医院基本需求,替代 WiFi,实现移动性、大带宽和低时延
- 5G 无线接入+MEC 本地分流:除实现高质量无线接入外,还做到医院数据本地分流到医院内系统,实现公网用户可正常访问外网而医疗数据不出医院
- 5G 无线接入+MEC 本地分流+MEC 平台:除实现医院本地分流外,部分医院有边缘计算平台需求,AI、PACS 等应用系统部署在 MEC 平台上
- 基于切片的 5G 医疗专网:以 MEC 和切片为基础,实现公网与专网业务隔离、提供可承诺 SLA

4.25G 医疗网总体架构

◆ 院内医疗网

通常采用"5G数字化室分+MEC"解决方案。采用全数字化室分技术建设的室分

网络,可解决室内信号弱覆盖问题,为用户提供最佳的用户体验; MEC 是院内医疗网的业务锚点,提供业务分流、网络位置感知和能力开放等大带宽、低时延和安全可靠的联接能力,同时提供医疗应用系统平台的计算能力。

◆ 院间远程医疗网

由 VPN 专线和院内医疗网组成院间远程医疗网。VPN 专线是指基于公用有线网络上采用隧道、加密等技术建立医院之间远程互通的虚拟有线专网,或者基于运营商网络提供的专线。

◆ 院前应急救援医疗网

医疗救护车等院外急救设备通过运营商 5G 院前接入到院内医疗网或者医疗应用平台,组成应急救援医疗网。5G 院前是指功率比较大的蜂窝网基站,一般部署在铁塔上,覆盖半径比较大,从几百米到几公里不等。急救病人进入医院后,相关的急救设备会无缝地切换到院内医疗网。

5G 医疗网总体架构如图 2 所示:

图 2: 5G 医疗网总体架构

4.3 基于 MEC 的 5G 医疗网

MEC 是 CT 联接和 IT 计算融合的产物,作为运营商网络边缘节点设备,包括 UPF、MEP、医疗应用、虚拟化层及硬件等,在靠近终端用户侧的边缘节点开展业务,降低终端的成本和管理复杂度,提升用户的体验。MEC 包含的部件由单厂家或多厂家提供,可以部署在医院机房,或者靠近医院的运营商机房。

UPF: 5GC 网络用户面网元,主要支持医院业务数据和普通移动数据的路由和转发、数据和业务识别、动作和策略执行等。

MEP: 部署在边缘 MEC 节点的 MEC 平台,提供给部署在 MEP 上的医疗应用系统的平台能力;

国 家 远 程 医 疗 与 互 联 网 医 学 中 心

APP: 运行在边缘计算平台上,并被 MEPM 管理生命周期的医疗应用系统,提供给移动用户可以访问的边缘业务;

虚拟化基础设施: 支持虚机及容器功能的虚拟层, 为上层的业务网元及 APP 提供运行环境。

MEC 系统架构如图 3 所示:

图 3: MEC 系统架构

MEC 可以提供如下能力:

- ①联接能力:大带宽,低时延,以及平台给医疗应用提供精确用户位置能力、带宽管理能力等
- ②计算能力: AI 能力、图像渲染能力等
- ③安全能力:要求数据不出医院,防攻击等
- 需要部署 MEC 的医院应用如表 1 所示:

表 1 基于 MEC 的应用场景

序号	类别	医院应用场景	MEC 的使用价值
1	院内医疗	重症监护类	123
2		移动医护终端类	3
3		动态监测类	13
4		信息便民类	3

国 家 远 程 医 疗 与 互 联 网 <u>医 学 中 心</u>

5	院间医疗	影像远程诊断类	123
6		视频交互会诊类	123
7		远程病理类	13

可以部署科室级、医院级、医疗体级三级 MEC, 如图 4 所示:

图 4: MEC 部署位置

按建设模式可分为三类:

- 单体医院独占一套 MEC, 整体部署在医院机房或运营商机房
- 单体医院独占一套 MEC, MEC 中的 UPF 部署在运营商机房, MEP 部署在医院 机房
- 医联体/医共体、总院/分院、区域(区县/市州)共用一套 MEC,整体部署 在运营商机房

4.45G 院前覆盖网络架构

院外(院前)的5G网络覆盖依赖于移动运营商公网,一般的业务基于eMBB网络即可实现,如果急救场景下对网络带宽、时延和可靠性有较高要求的情况,需结合切片的功能,依托不同的业务等级定制网络需求。 院外5G覆盖网络架构如图5所示:

图 5: 院外 5G 覆盖网络架构

5 5G 医疗网院前建设规范(即院外,含 5G 宏站和 5G 智慧杆小微站等)

医院 5G 无线接入网络中涉及院前医疗的部分,依托运营商 5G 公网建设规范(涵盖 5G 宏站和 5G 智慧杆小微站等),进而遵从其功能规范、性能规范、安全规范、可靠性规范、可维护性规范、环境友好性规范和可演进性规范等即可。

为确保城区和乡镇居民的院前医疗急救,优先确保 5G 网络建设覆盖城区、乡镇和主要城乡道路,进而提升 5G 应急救援/5G 救护车对广大城乡居民的普遍 5G 救护服务保障;后续,再进一步将 5G 救援/救护扩展到主要行政村及乡村道路。

针对医院的 5G 医疗专网,需要端到端的安全接入和信息传输保障:

- 基于无线侧业务隔离方案的专用5G无线接入网络
- 医院终端使用独立SIM卡

- 承载网基于 FlexE 实现业务隔离
- 基于业务诉求的动态 SLA 保障/弹性切片网络架构
- 院前急救专网和医院内网构建一个安全局域网,确保院前急救数据畅通、 安全的在急救专网和医院内网之间运行

6 5G 医疗网 MEC 建设规范

6.1 功能规范

MEC 应具备如下功能:

- 1. UPF 支持医院数据分流功能:
 - 1) 支持从医疗终端、医院移动办公终端到医疗应用系统的数据分发。
 - 2) 支持普通手机用户到互联网的数据分发。
- 2. 具备医疗应用系统平台的能力:
 - 1) 医疗应用系统的生命周期管理功能: 医疗部分应用系统可部署在 MEC 平台上, 比如 PACS 影像系统、AI 软件等, 支持医疗应用的生命周期管理功能。
 - 2) 安全管理功能: MEC 应提供安全管理功能。该安全管理功能应满足以下 要求:
 - a) MEC 应提供医疗应用系统认证和鉴权服务:
 - b) MEC 应提供组网安全防护能力,包括 ACL 过滤、端口防护、DDOS 攻击等。
 - c) MEC 应保证数据的安全。包括数据加密、数据隔离、数据防篡改、数据访问控制、数据防泄漏等。
 - 3) 支持网络能力的开放:用户精确位置、带宽管理能力等联接能力被医疗应用系统调用
 - 4) 提供计算能力:编解码转换、加解密、AI等计算能力被医疗应用系统 调用
 - 5) NAT 功能: MEC 应提供 NAT 功能,可以将分流用户的源地址按分配的医院专网地址池进行转换。隐藏了内部网络结构,通过终端与医院服务端构建 L2-LAN 专线,方便医院应用对终端的操控管理。

6.2 性能规范

MEC 应满足以下性能规范要求:

- 1. 医院内接入 MEC 的同时在线会话数: 不低于 1 万;
- 2. 系统吞吐量: 不低于 10Gbps;
- 3. MEC 平台支持 APP 应用: 支持部署在一套 MEC 平台上的 APP 系统应用数量不低于 10:

6.3 安全规范

MEC 应满足以下安全规范要求:

- 1. 基础设施安全: 应支持物理安全保护机制(如: 防拆、防盗、防恶意断电、防篡改等,设备断电/重启、链路网口断开等问题发生后应触发告警);应支持为硬件 WAN 口、LAN 口、串口等进行安全访问控制;应支持内置的安全功能;使用虚拟机或容器部署 UPF、MEP 以及 MEC APP 等时,应支持资源的安全隔离、镜像和镜像仓库的完整性和机密性保护等;支持 MEC 节点级容灾满足可靠性的要求。
- 2. 医院应用系统安全: 应支持对访问进行认证和授权; 应支持敏感数据安全保护, 防止非授权访问、篡改等。
- 3. 安全管理: 应支持对其使用的操作系统、中间件、数据库以及 web 管理接口进行安全加固,满足安全基线的要求; 应支持使用标准格式的证书, 支持证书有效期管理、证书失效前预警; 应支持流量过载控制; 应支持使用安全工具对 MEC 平台进行扫描, 保证不存在高危漏洞以及未使用、不必要的端口和服务等。

6.4 可靠性规范

MEC 应满足以下可靠性规范要求:

- 1. 系统关键软件、硬件应有一定的备份措施,进行 N+1 或 1+1 冗余备份。保证系统的不间断运行,系统应具有软件、硬件故障在线恢复的能力。
- 2. 当实际承担业务量达到标称容量的 150%时,设备处理能力不低于标称容量的 90%。
- 3. MEC 需要达到 99. 9997%及以上的电信级可靠性。可靠性和可用性指标要求 如表 2:

表 2 设备可靠性和可用性指标列表

典型配置系统高可用度 HA	≥99. 9997%
---------------	------------

平均故障间隔时间 MTBF	≥150000h
平均故障修复时间 MTTR	≤0.5h
主备板倒换成功率	≥95%

6.5 可维护性规范

MEC 应具备即插即用的能力, 简化运维:

- 1. 简化部署,上电即用,减少施工布线时间,提高业务上线效率;
- 2. 考虑内置集成交换减少节点间连线和配置;
- 3. 部署拆装方便,可随着业务迁移变更部署位置;

6.6 环境友好性规范

MEC 应满足如下工程规范要求:

1. 机房温、湿度要求:

设备应在以下温、湿度条件下正常工作,见表3:

 设备及机房名称
 温度(℃)
 相对湿度(%)③

 长期条件①
 短期条件②
 长期条件
 短期条件

 MEC
 15~30
 0~45
 40~65
 20~90

表 3 机房温、湿度条件要求列表

注:

- ①MEC 设备正常工作环境下,温、湿度的测量点指在地板以上 2m 和在设备前 0.4m 处测量的数值 (机架前后没有保护板时测量)。为保证 MEC设备能正常工作,机房设计时要求按严格的温、湿度条件进行。这时其测量点位置与上述略有不同,即在地板以上 1.5m 和在设备前方 0.4m 处测量的数值。
 - ②短期工作条件是指连续不超过 48h 和每年累计不超过 15 天。
 - ③对于相对湿度较低的环境(特别是20%以下),应采用抗静电地板。

2. 防尘要求

设备应能在满足下述清洁度的机房里正常运行:

1) 直径>5μm 灰尘的浓度≤3×10⁴ 粒/m3

灰尘粒子为非导电、导磁性和非腐蚀性的。

3. 抗电磁干扰的能力

设备在受到频率在 0.01~10000MHz 范围内, 电场强度为 140dBμV/m 的外界 电磁干扰时, 本身不出现故障和性能的下降。在交流、直流电源线对和信

号线受到表 4 所示 (频率范围为 0.01~100MHz) 的外界电磁干扰电流时,设备应不出现故障和性能的下降。

表 4 外界电磁干扰电流列表

频率(MHz)	最大导线电流(dB μVA)	
0.01~0.8	-21.05logf+67.9	
0.8~100	70	
注:		
1 f 为频率,以 MHz 为单位。		
2 dB μA 表示以微安(μA)为参考单位的分贝数。		

6.7 可演进性规范

MEC 应满足如下可演进性要求:

- 1. 支持弹性扩容:支持通过软件方式扩充容量。
- 2. 支持长期演进:
 - 1) 支持一次性施工满足后期扩容、调整不增加新的基建工作。
 - 2) 平滑支持后续版本的演进。

7 医院典型应用对 5G 网络的基本要求

本章规定基于5G网络承载的典型医疗应用场景下, 医院5G无线接入网络应满足的技术配置指标。

7.1 重症监护类

重症监护类应用是指对患者的实时监控、监护互动、床旁互动等多种重症监护业务,业务过程中的数据通过5G信息化网络传输。对医院5G信息化网络要求如下:

重症监护类			
代表性场景		急危重症监护与会诊等(特点:多源数据,复	
		杂数据集成)	
典型数据		4K 视频,图像(GB级),体征数据	
网络技术配置要求 (单场景单设备)	上行速率	>20Mbps	
	下行速率	>5Mbps	
	网络时延	<100ms	
	可靠性要求	99. 999%	
	网络抖动要求	<20ms	

7.2 移动医护终端类

移动医护终端类应用主要满足医护人员通过移动终端进行查阅、处理诊疗业务。过程中业务数据通过5G信息化网络传输。对医院5G信息化网络要求如下:

移动医护终端类		
代表性场景		医护查房,移动护理等
典型数据		影像图像(GB级),病历数据
网络技术配置要求 (单场景单设备)	上行速率	>2Mbps
	下行速率	>20Mbps
	网络时延	<100ms
	可靠性要求	99. 999%
	网络抖动要求	<20ms

7.3 动态监测类

动态监护类是指通过医疗监护设备对患者生理指征、病情变化进行数据实时监测与采集。采集数据通过5G信息化网络传输。对医院5G信息化网络要求如下:

动态监测类		
代表性场景		动态心电图等
典型数据		心电数据
	上行速率	>10Mbps
网络技术配置要求 (单场景单设备)	下行速率	>10Mbps
	网络时延	<200ms
	可靠性要求	99. 999%
	网络抖动要求	<20ms

7.4 信息便民类

信息便民类应用是指患者及家属通过移动终端进行就诊预约、信息查询、缴费、导航等服务。过程中业务数据通过5G信息化网络传输。对医院5G信息化网络要求如下:

信息便民类			
代表性场景		患者通过 APP 在线预约、查询检查报告、缴	
		费、导航等	
典型数据		影像图像(GB级),病历数据	
	上行速率	>2Mbps	
网络壮士町里面北	下行速率	>20Mbps	
网络技术配置要求	网络时延	<100ms	
(单场景单设备)	可靠性要求	99. 999%	
	网络抖动要求	<20ms	

7.5 影像远程诊断类

影像远程诊断是指由邀请方通过远程医疗协作平台,提出申请并提供患者临床病历资料和影像资料,包括医学影像设备采集的图像数据及部分视频数据,通过5G信息化网络传输,受邀方获取患者影像资料后出具诊断结论。对医院5G信息化网络要求如下:

影像远程诊断类		
代表性场景		放射影像远程诊断和远程示教等
典型数据		4K 视频、高清影像图像(GB 级)、VR/AR 等
网络技术配置要求 (单场景单设备)	上行速率	>50Mbps
	下行速率	>80Mbps
	网络时延	<80ms
	可靠性要求	99. 999%
	网络抖动要求	<20ms

7.6 视频交互会诊类

视频交互会诊类应用是指由远端医疗专家通过5G信息化网络传输视频,指导基层医生对患者开展检查和诊断的一种医疗咨询服务。对医院5G信息化网络要求如下:

视频交互会诊类				
代表性场景		远程会诊、床旁会诊和多学科会诊等		
典型数据		4K 视频,图像(GB 级)		
	上行速率	>20Mbps		
网络技术配置要求	下行速率	>20Mbps		
(单场景单设备)	网络时延	<100ms		
(早切京早设备)	可靠性要求	99. 999%		
	网络抖动要求	<20ms		

7.7 远程病理类

远程病理诊断是指医疗机构之间通过远程医疗协作平台进行病理的诊断,过程中业务数据通过5G信息化网络传输。对医院5G信息化网络要求如下:

远程病理类				
代表性场景		常规病理远程会诊, 快速冰冻术中会诊		
典型数据		4K 视频, 病理图像 (GB 级)		
并发	率	>50%		
网络技术配置要求 上行速率		>50Mbps		
(单场景单设备) 下行速率		>80Mbps		

国 家 远 程 医 疗 与 互 联 网 <u>医 学 中 心</u>

网络时延	<80ms
可靠性要求	99. 999%
网络抖动要求	<20ms

8 5G 医疗模组通用要求

8.1 多模多频段要求

5G 通用模组至少需支持 5G/4G 双模, 5G 需支持 NSA/SA。

模组使用频段应符合国家无线电管理部门的相关规定。UE 应支持的 NR 工作频段如下表。

表 5 G 通用模组工作频段

工作频段	上行工作频段	下行工作频段	双工方式	等级
n41	2496 MHz - 2690 MHz	2496 MHz - 2690 MHz	TDD	必选
n78	3300 MHz - 3800 MHz	3300 MHz - 3800 MHz	TDD	必选
n79	4400 MHz - 5000 MHz	4400 MHz - 5000 MHz	TDD	必选

对于NSA模组,应支持如下EN-DC工作频段组合:

表 6 EN-DC工作频段组合

EN-DC组合
DC_1A_n78A
DC_3A_n78A
DC_5A_n78A
DC_8A_n78A
DC_1A-3A_n78A
DC_3C_n78A
DC_1A_3C_n78A
DC_3A_n41A
DC_39A_n41A
DC_40A_n41A
DC_8A_n41A
DC_3A_n79A
DC_39A_n79A
DC_8A_n79A

注: 4G 频段应满足《LTE 数字蜂窝移动通信网终端设备技术要求(第四阶段)》。

表 7 5G 通用模组对 4G 工作频段需求

VI				
网络模式	工作频段	上行工作频段	下行工作频段	等级
TD-LTE	Band 34	2010-2025MHz	2010-2025MHz	必选
ID-LIE	Band 39	1880-1920MHz	1880-1920MHz	必选

国 家 远 程 医 疗 与 互 联 网 <u>医 学 中 心</u>

	Band 40	2300-2400MHz	2300-2400MHz	必选
	Band 41	2496-2690MHz	2496-2690MHz	必选
	Band 3	1710-1785MHz	1805-1880MHz	必选
	Band 7	2500-2570MHz	2620-2690MHz	必选
	Band 8	880-915MHz	925-960MHz	必选
LTE FDD	Band 1	1920-1980MHz	2110-2170MHz	必选
LIE FDD	Band 4	1710-1755MHz	2110-2155MHz	可选
	Band 12	699-716MHz	729-746MHz	可选
	Band 17	704-716MHz	734-746MHz	可选
	Band 20	832-862MHz	791-821MHz	可选

8.2 网络接入能力要求

需支持具备在 SA/NSA 组网模式下的接入及业务能力。

表8 网络接入能力要求

组网模式	描述	等级
5G SA	Option 2	必选
5G NSA	Option3x	必选

8.3 模组的分类方式

本标准除了明确5G通用模组支持的通信制式及工作频段外,还从封装方式、尺寸型号及大小、供电电压类型、I/O通信电压类型、适用范围(民用级、工业级)及定位支持七个维度进行定义,如图5-2所示。模组厚度应小于等于2.8mm。

1) 封装方式

主要划分为LGA和M.2两大类,

具体编码: L(LGA)、M(M.2)

2) 尺寸大小

尺寸大小为: 模组长度*模组宽度 (mm*mm)

3) 供电电压类型

供电电压类型目前分类如下: 常规型、低电压型,

具体编码: A (常规型: 3.3-4.2V)、B (低电压型3.1-4.4V)

4) I/0通信电压类型,分类如下:

具体编码: A (2.8-3V)、B (1.8V)

5) 适用范围

具体编码: A(民用级)、B(工业级)

6) 定位支持

支持 GNSS 功能

国 家 远 程 医 疗 与 互 联 网 医 学 中 心

8.4 模组温度要求

如下是对模组的要求:

- 1) 模组应能在-45~95℃的范围内存储。
- 2) 对用于消费级应用的模组应能在-20℃~+70℃范围内正常工作;
- 3) 对用于工业级应用的模组应能在-40℃~+85℃范围内性能无损;

8.5 模组通用接口的要求

表 9 模组通用接口的要求

接口名称	接口名称	接口说明	接口特性	要求
VBAT	电源接口	外接直流电源	I	必选
VRTC	电源接口	模组时钟供电输入	I	必选
VDD_EXT	电源接口	标准电压输出接口	0	必选
USIM_DET		USIM DETECT 信号	Ι	必选
USIM_RST		USIM RESET 信号	0	必选
USIM_CLK	SIM 接口	USIM CLK 信号	0	必选
USIM_DATA		USIM DATA 信号	1/0	必选
USIM_VDD		USIM 供电输出	0	必选
5G_ANTO		5G 天线 0	I/0	必选
5G_ANT1		5G 天线 1	I/0	必选
5G_ANT2		5G 天线 2	I/0	必选
5G_ANT3		5G 天线 3	I/0	必选
4G_ANTO/5G_A NT4		4G 天线 0/5G 天线 4	I/0	推荐
4G_ANT1/5G_A NT5	射频接口	4G 天线 1/5G 天线 5	I/0	推荐
4G_ANT2/5G_A NT6		4G 天线 2/5G 天线 6	1/0	可选
4G_ANT3/5G_A NT7		4G 天线 3/5G 天线 7	1/0	可选
WIFI_ANTO		WIFI 天线 0	I/0	可选
WIFI_ANT1		WIFI 天线 1	I/0	可选

GNSS_ANT		GNSS 天线	I	可选
PCIE_CLK_REQ		PCIe 时钟请求信号	0	
PCIE_HOST_RS		DOI 毛里花里	0	-
Т		PCIe 重置信号	0	
PCIE_HOST_WA		PCIe 唤醒信号	Ι	
KE	DOT	1010 人程 日 V	1	- N. 14
PCIE_CLK_P	PCIe	PCIe 参考时钟信号	0	必选
PCIE_CLK_M		PCIe 参考时钟信号	0	
PCIE_TX_P		PCIE_数据发送信号	0	
PCIE_TX_M		PCIE_数据发送信号	0	
PCIE_RX_P		PCIE_数据接收信号	Ι]
PCIE_RX_M		PCIE_数据接收信号	Ι	
GPI0	数据通信接口	通用输入输出接口	I/0	必选
I2C_SCL	数据通信接	双向时钟线	I/0	工业
I2C_SDA	口	双向数据线	I/0	可选
SPI_CS		SPI 接口片选信号	0	
SPI_MISO	an i	SPI 接口 MISO 信号	Ι	-T \4
SPI_MOSI	SPI	SPI 接口 MOSI 信号	0	可选
SPI_SCLK		SPI 接口 SCLK 信号	0	
USB_VBUS		USB 插入检测信号; 有效电压范 围: 4.5V~5.25V	I	
USB DN	USB	USB 高速差分信号负极	I/0	- 可选
USB DP	СОБ	USB 高速差分信号正极	I/0	1 20
USB ID		USB 的 ID 检测信号	I	1
PWRKEY	控制及状态 接口	电源开关,用于模组上电/下电	I	必选
STATUS	控制及状态 接口	模组当前工作状态指示	0	必选
FLIGHTMODE	控制及状态 接口	模组飞行模式控制	I	必选
NETLIGHT	控制及状态 接口	模组网络状态指示	0	必选
RESET_N	控制及状态 接口	用于模组复位, 低电平使能。	Ι	必选
WAKEUP_IN	控制及状态	用于外部设备唤醒 5G 基本型通 用模组	I	以 4
WAKEUP_OUT	接口	用于 5G 基本型通用模组唤醒外 部设备	0	- 必选
ADC	AD 转换接 口	AD 转换	1/0	可选

PCM_SYNC		PCM 同步信号	0	
PCM_DIN	PCM 音频	PCM 输入数据	Ι	可选
PCM_DOUT	PUM 百 //贝	PCM 输出数据	0	7
PCM_CLK		PCM 时钟	Ι	
I2S_WS		I2S 字选信号	0	
I2S_DIN		I2S 输入数据	Ι	
I2S_DOUT	I2S 音频	I2S 输出数据	0	可选
I2S_CLK		I2S 时钟	0	
I2S_MCLK		I2S 系统时钟	0	

8.65G 医疗应用初期,视频类对速率要求高,模组支持速率的要求

表 10 SA 模式模组理论峰值速率

速率	网络配置	理论峰值速率
下行速率	带宽 100MHz, 下行四流, 下行 256 QAM	1.485Gbps
上行速率	带宽 100MHz,上行双流,上行 256QAM	2.3Gbps
	支持超级上行、SUL、SRS 天线轮发	

表 11 NSA 模式模组理论峰值速率

速率	制式	网络配置	理论峰值速率
下行速率	NR	带宽 100MHz, 下行四流, 下行 256QAM	1.635Gbps
	LTE	带宽 20MHz, 下行双流, 下行 64QAM	
上行速率	NR	带宽 100MHz,上行双流,上行 256QAM	240Mbps
	LTE	带宽 20MHz,上行单流,上行 16QAM	
		支持超级上行、SUL、SRS 天线轮发	

(全文结束)