Ray Tracer

1.0

Generated by Doxygen 1.9.1

2 Hierarchical Index 3 2.1 Class Hierarchy 3 3 Class Index 5 3.1 Class List 5 4 Class Documentation 7 4.1 Camera Class Reference 7 4.1.1 Detailed Description 8 4.1.2 Constructor & Destructor Documentation 8 4.1.2.1 Camera() [1/3] 8 4.1.2.2 Camera() [2/3] 9 4.1.2.3 Camera() [3/3] 9 4.1.3 Member Function Documentation 9 4.1.3.1 getFov() 9 4.1.3.2 getPixel() [1/2] 10 4.1.3.3 getPixel() [2/2] 10
3 Class Index 5 3.1 Class List 5 4 Class Documentation 7 4.1 Camera Class Reference 7 4.1.1 Detailed Description 8 4.1.2 Constructor & Destructor Documentation 8 4.1.2.1 Camera() [1/3] 8 4.1.2.2 Camera() [2/3] 9 4.1.2.3 Camera() [3/3] 9 4.1.3 Member Function Documentation 9 4.1.3.1 getFov() 9 4.1.3.2 getPixel() [1/2] 10
3.1 Class List
4 Class Documentation 7 4.1 Camera Class Reference 7 4.1.1 Detailed Description 8 4.1.2 Constructor & Destructor Documentation 8 4.1.2.1 Camera() [1/3] 8 4.1.2.2 Camera() [2/3] 9 4.1.2.3 Camera() [3/3] 9 4.1.3 Member Function Documentation 9 4.1.3.1 getFov() 9 4.1.3.2 getPixel() [1/2] 10
4.1 Camera Class Reference 7 4.1.1 Detailed Description 8 4.1.2 Constructor & Destructor Documentation 8 4.1.2.1 Camera() [1/3] 8 4.1.2.2 Camera() [2/3] 9 4.1.2.3 Camera() [3/3] 9 4.1.3 Member Function Documentation 9 4.1.3.1 getFov() 9 4.1.3.2 getPixel() [1/2] 10
4.1.1 Detailed Description 8 4.1.2 Constructor & Destructor Documentation 8 4.1.2.1 Camera() [1/3] 8 4.1.2.2 Camera() [2/3] 9 4.1.2.3 Camera() [3/3] 9 4.1.3 Member Function Documentation 9 4.1.3.1 getFov() 9 4.1.3.2 getPixel() [1/2] 10
4.1.2 Constructor & Destructor Documentation 8 4.1.2.1 Camera() [1/3] 8 4.1.2.2 Camera() [2/3] 9 4.1.2.3 Camera() [3/3] 9 4.1.3 Member Function Documentation 9 4.1.3.1 getFov() 9 4.1.3.2 getPixel() [1/2] 10
4.1.2.1 Camera() [1/3] 8 4.1.2.2 Camera() [2/3] 9 4.1.2.3 Camera() [3/3] 9 4.1.3 Member Function Documentation 9 4.1.3.1 getFov() 9 4.1.3.2 getPixel() [1/2] 10
4.1.2.2 Camera() [2/3] 9 4.1.2.3 Camera() [3/3] 9 4.1.3 Member Function Documentation 9 4.1.3.1 getFov() 9 4.1.3.2 getPixel() [1/2] 10
4.1.2.3 Camera() [3/3] 9 4.1.3 Member Function Documentation 9 4.1.3.1 getFov() 9 4.1.3.2 getPixel() [1/2] 10
4.1.3 Member Function Documentation 9 4.1.3.1 getFov() 9 4.1.3.2 getPixel() [1/2] 10
4.1.3.1 getFov()
4.1.3.2 getPixel() [1/2]
4.1.3.3 getPixel() 12/21 10
4.1.3.4 getPixels()
4.1.3.5 getPosition()
4.1.3.6 getRay()
4.1.3.7 getResolution()
4.1.3.8 getRotation()
4.1.3.9 getType()
4.1.3.10 operator=() [1/2]
4.1.3.11 operator=() [2/2]
4.1.3.12 setFov()
4.1.3.13 setPixel() [1/2]
4.1.3.14 setPixel() [2/2]
4.1.3.15 setPixels()
4.1.3.16 setPosition()
4.1.3.17 setResolution()
4.1.3.18 setRotation()
4.2 Color Class Reference
4.2.1 Detailed Description
4.2.2 Constructor & Destructor Documentation
4.2.2.1 Color() [1/3]
4.2.2.2 Color() [2/3]
4.2.2.3 Color() [3/3]
4.2.3 Member Function Documentation
4.2.3.1 blend()
4.2.3.2 gammaCorrection()

4.2.3.3 getA()	18
4.2.3.4 getB()	19
4.2.3.5 getG()	19
4.2.3.6 getR()	19
4.2.3.7 lerp()	19
4.2.3.8 mix()	20
4.2.3.9 operator"!=()	20
4.2.3.10 operator*() [1/2]	21
4.2.3.11 operator*() [2/2]	21
4.2.3.12 operator*=() [1/2]	21
4.2.3.13 operator*=() [2/2]	22
4.2.3.14 operator+() [1/2]	
4.2.3.15 operator+() [2/2]	22
4.2.3.16 operator+=() [1/2]	23
4.2.3.17 operator+=() [2/2]	
4.2.3.18 operator-() [1/2]	
4.2.3.19 operator-() [2/2]	
4.2.3.20 operator-=() [1/2]	24
4.2.3.21 operator-=() [2/2]	
4.2.3.22 operator/() [1/2]	
4.2.3.23 operator/() [2/2]	
4.2.3.24 operator/=() [1/2]	
4.2.3.25 operator/=() [2/2]	
4.2.3.26 operator<<<()	
4.2.3.27 operator=() [1/2]	
4.2.3.28 operator=() [2/2]	
4.2.3.29 operator==()	30
4.2.3.30 setA()	30
4.2.3.31 setB()	32
4.2.3.32 setG()	32
4.2.3.33 setR()	32
4.3 Cone Class Reference	33
4.3.1 Detailed Description	34
4.3.2 Constructor & Destructor Documentation	34
4.3.2.1 Cone() [1/3]	34
4.3.2.2 Cone() [2/3]	34
4.3.2.3 Cone() [3/3]	35
4.3.3 Member Function Documentation	35 35
4.3.3.1 getColor()	35 35
4.3.3.3 getHeight()	36
4.3.3.4 getNormal()	36
T.O.O.T gottvormai()	50

4.3.3.5 getPosition()	 . 36
4.3.3.6 getRadius()	 . 36
4.3.3.7 intersect()	 . 37
4.3.3.8 normalize()	 . 37
4.3.3.9 operator=() [1/2]	 . 37
4.3.3.10 operator=() [2/2]	 . 38
4.3.3.11 setDirection()	 . 38
4.3.3.12 setHeight()	 . 38
4.3.3.13 setPosition()	 . 39
4.3.3.14 setRadius()	 . 39
4.4 Config Class Reference	 . 39
4.4.1 Detailed Description	 . 40
4.4.2 Constructor & Destructor Documentation	 . 40
4.4.2.1 Config()	 . 40
4.4.3 Member Function Documentation	 . 40
4.4.3.1 getRaySetting() [1/2]	 . 40
4.4.3.2 getRaySetting() [2/2]	 . 41
4.5 Core Class Reference	 . 42
4.5.1 Detailed Description	 . 42
4.5.2 Constructor & Destructor Documentation	 . 42
4.5.2.1 Core()	 . 43
4.6 Cylinder Class Reference	 . 43
4.6.1 Detailed Description	 . 44
4.6.2 Constructor & Destructor Documentation	 . 44
4.6.2.1 Cylinder() [1/3]	 . 44
4.6.2.2 Cylinder() [2/3]	 . 45
4.6.2.3 Cylinder() [3/3]	 . 45
4.6.3 Member Function Documentation	 . 45
4.6.3.1 getColor()	 . 45
4.6.3.2 getHeight()	 . 46
4.6.3.3 getNormal()	 . 46
4.6.3.4 getPosition()	 . 46
4.6.3.5 getRadius()	 . 46
4.6.3.6 intersect()	 . 47
4.6.3.7 normalize()	 . 47
4.6.3.8 operator=() [1/2]	 . 47
4.6.3.9 operator=() [2/2]	 . 48
4.6.3.10 setColor()	 . 48
4.6.3.11 setHeight()	 . 48
4.6.3.12 setPosition()	 . 49
4.6.3.13 setRadius()	 . 49
4.7 ImagePPM Class Reference	10

50
50
50
51
51
51
51
52
52
52
53
53
53
54
54
54
54
55
55
55
56
56
56
57
57
57
58
58
59
60
60
60
60
61
61
61
61
61
62
62
62
63

4.9.3.9 operator"!=()	. 63
4.9.3.10 operator+()	. 63
4.9.3.11 operator+=()	. 64
4.9.3.12 operator-()	. 64
4.9.3.13 operator-=()	. 64
4.9.3.14 operator=() [1/2]	. 65
4.9.3.15 operator=() [2/2]	. 65
4.9.3.16 operator==()	. 65
4.9.3.17 setAmbient()	. 66
4.9.3.18 setDiffuse()	. 66
4.9.3.19 setDirectionalLights()	. 66
4.9.3.20 setPointLights()	. 66
4.10 Plane Class Reference	. 67
4.10.1 Detailed Description	. 68
4.10.2 Constructor & Destructor Documentation	. 68
4.10.2.1 Plane() [1/3]	. 68
4.10.2.2 Plane() [2/3]	. 68
4.10.2.3 Plane() [3/3]	. 69
4.10.3 Member Function Documentation	. 69
4.10.3.1 getAxis()	. 69
4.10.3.2 getColor()	. 69
4.10.3.3 getNormal()	. 70
4.10.3.4 getPosition()	. 71
4.10.3.5 intersect()	. 71
4.10.3.6 normalize()	. 71
4.10.3.7 operator=() [1/2]	. 72
4.10.3.8 operator=() [2/2]	. 72
4.10.3.9 setAxis()	. 72
4.10.3.10 setColor()	. 73
4.10.3.11 setPosition()	. 73
4.11 Ray Class Reference	. 73
4.11.1 Detailed Description	. 74
4.11.2 Constructor & Destructor Documentation	. 74
4.11.2.1 Ray() [1/3]	. 74
4.11.2.2 Ray() [2/3]	. 76
4.11.2.3 Ray() [3/3]	. 76
4.11.3 Member Function Documentation	. 76
4.11.3.1 getDirection()	. 76
4.11.3.2 getOrigin()	. 77
4.11.3.3 operator=() [1/2]	. 77
4.11.3.4 operator=() [2/2]	. 77
4.11.3.5 setDirection()	. 78

4.11.3.6 setOrigin()	78
4.12 RaySetting Class Reference	78
4.12.1 Detailed Description	79
4.12.2 Member Function Documentation	79
4.12.2.1 getType()	79
4.13 Scene Class Reference	79
4.13.1 Detailed Description	80
4.13.2 Constructor & Destructor Documentation	80
4.13.2.1 Scene() [1/2]	80
4.13.2.2 Scene() [2/2]	81
4.13.3 Member Function Documentation	81
4.13.3.1 addPrimitive()	81
4.13.3.2 getCamera()	81
4.13.3.3 getIprimitives()	81
4.13.3.4 getLight()	82
4.13.3.5 intersect() [1/2]	82
4.13.3.6 intersect() [2/2]	82
4.13.3.7 operator=() [1/2]	83
4.13.3.8 operator=() [2/2]	83
4.13.3.9 putRendering()	83
4.13.3.10 render()	84
4.13.3.11 setCamera()	84
4.13.3.12 setIprimitives()	84
4.13.3.13 setLight()	85
4.13.3.14 trace()	85
4.14 Sphere Class Reference	85
4.14.1 Detailed Description	86
4.14.2 Constructor & Destructor Documentation	86
4.14.2.1 Sphere() [1/3]	87
4.14.2.2 Sphere() [2/3]	87
4.14.2.3 Sphere() [3/3]	87
4.14.3 Member Function Documentation	87
4.14.3.1 getCenter()	87
4.14.3.2 getColor()	88
4.14.3.3 getNormal()	88
4.14.3.4 getRadius()	88
4.14.3.5 intersect()	89
4.14.3.6 normalize()	89
4.14.3.7 operator=() [1/2]	89
4.14.3.8 operator=() [2/2]	90
4.14.3.9 setCenter()	90
4.14.3.10 setRadius()	90

4.15 Vector3D Class Reference	 . 9	1
4.15.1 Detailed Description	 . 9	93
4.15.2 Constructor & Destructor Documentation	 . 9	93
4.15.2.1 Vector3D() [1/3]	 . 9	94
4.15.2.2 Vector3D() [2/3]	 . 9	94
4.15.2.3 Vector3D() [3/3]	 . 9	94
4.15.3 Member Function Documentation	 . 9	94
4.15.3.1 angle()	 . 9	95
4.15.3.2 clamp()	 . 9	95
4.15.3.3 cross()	 . 9	95
4.15.3.4 distance()	 . 9	96
4.15.3.5 division()	 . 9	96
4.15.3.6 dot()	 . 9	96
4.15.3.7 getVector()	 . 9	97
4.15.3.8 getX()	 . 9	97
4.15.3.9 getY()	 . 9	97
4.15.3.10 getZ()	 . 9	97
4.15.3.11 length()	 . 9	8
4.15.3.12 lerp()	 . 9	8
4.15.3.13 magnitude()	 . 9	8
4.15.3.14 max()	 . 9	8
4.15.3.15 min()	 . 9	9
4.15.3.16 normalize()	 . 9	9
4.15.3.17 operator"!=()	 . 9	9
4.15.3.18 operator*() [1/2]	 . 10	0
4.15.3.19 operator*() [2/2]	 . 10	0
4.15.3.20 operator*=() [1/2]	 . 10	0
4.15.3.21 operator*=() [2/2]	 . 10)2
4.15.3.22 operator+() [1/2]	 . 10)2
4.15.3.23 operator+() [2/2]	 . 10)2
4.15.3.24 operator+=() [1/2]	 . 10)3
4.15.3.25 operator+=() [2/2]	 . 10)3
4.15.3.26 operator-() [1/3]	 . 10)3
4.15.3.27 operator-() [2/3]	 . 10)4
4.15.3.28 operator-() [3/3]	 . 10)4
4.15.3.29 operator-=() [1/2]	 . 10)4
4.15.3.30 operator-=() [2/2]	 . 10)5
4.15.3.31 operator/() [1/2]	 . 10)5
4.15.3.32 operator/() [2/2]	 . 10)5
4.15.3.33 operator/=() [1/2]	 . 10)6
4.15.3.34 operator/=() [2/2]	 . 10)6
4.15.3.35 operator<()	 . 10)6

Index

4.15.3.36 operator<<()	107
4.15.3.37 operator<=()	107
4.15.3.38 operator=() [1/2]	107
4.15.3.39 operator=() [2/2]	109
4.15.3.40 operator==()	109
4.15.3.41 operator>()	109
4.15.3.42 operator>=()	111
4.15.3.43 produit()	111
4.15.3.44 reflect()	111
4.15.3.45 rotateX()	112
4.15.3.46 rotateY()	112
4.15.3.47 rotateZ()	112
4.15.3.48 setVector()	113
4.15.3.49 setX()	113
4.15.3.50 setY()	113
4.15.3.51 setZ()	113
4.15.3.52 somme()	114
4.15.3.53 squaredLength()	114
4.15.3.54 substract()	114
4.15.3.55 translate()	114
	117

Chapter 1

Raytracer Project

The raytracer project is an implementation of a rendering engine that utilizes the raytracing technique to generate realistic images by simulating the behavior of light. Raytracing is a powerful method used in computer graphics to produce highly realistic renders by tracing the path of light rays through a virtual scene.

This project, implemented in C++, encompasses a raytracing rendering engine that allows for the creation of images by calculating the interactions between light and objects in the scene. It employs optical principles such as reflection, refraction, and light diffusion to simulate the effects of light on object surfaces.

Key features of the project include 3D geometry modeling, application of textures and materials to objects, implementation of light sources, shadow handling, simulation of reflection and refraction phenomena, as well as management of depth of field and motion blur effects. It may also encompass advanced techniques such as global illumination computation and simulation of complex optical phenomena like caustics.

The raytracer project requires a solid understanding of mathematics, including geometry, linear algebra, and vector calculus. It is implemented in C++ to provide a high-performance and flexible environment for developing the raytracing engine.

Ultimately, the raytracing rendering engine produces realistic and compelling images by employing intricate calculations to simulate the behavior of light. It finds applications in numerous fields, such as cinematic animation, visual effects, video games, architectural design, and virtual reality, to create immersive and visually stunning virtual environments.

2 Raytracer Project

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Color	15
Config	39
Core	42
magePPM	49
primitives	56
Cone	33
Cylinder	43
Plane	67
Sphere	85
Ray	73
RaySetting	78
Camera	7
Light	58
Scene	
Vector3D	91

4 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Camera		
0.1	[Camera] The camera is the point of view of the scene It contains the position, the rotation, the field of view and the resolution It also contains the pixels of the camera It inherits from RaySetting	7
Color	[Color] class This class is used to represent a color It is composed of 4 unsigned char (r, g, b, a) and a are between 0 and 255 it's possible to use the color class with sfml or openGL	15
Cone	[Cone] class of the cone primitive (inherits from Iprimitives) This class is used to define the cone	00
Config	primitive and to define the methods that the cone must have (ex: intersect,)	33
	[Config] class of the config This class is used to define the config of the raytracer method factory and thiw class use the libconfig library to parse the config file and to define the methods that the config must have (ex: getRaySetting,)	39
Core		
	[Core] class of the core This class is used to define the core of the raytracer and to define the methods that the core must have (ex: render,)	42
Cylinder		
	[Cylinder] class of the cylinder primitive (inherits from Iprimitives) This class is used to define the cylinder primitive and to define the methods that the cylinder must have (ex: intersect,)	43
ImagePF		
	[ImagePPM] class of the image (PPM format) (P3) (ASCII) (RGB) This class is used to define the image and to define the methods that the image must have (ex: createImage,)	49
Iprimitive		
	[Iprimitives] Abstract class of primitives (used to define the type of the primitive) ex: Sphere, Plane, Cube, This class is used to define the type of the primitive and to define the methods that the primitive must have (ex: intersect, normalize, getNormal,)	56
Light	that the primitive made have (ext. intereses), normalize, get termal,,	-
	[Light] class of the light (inherits from RaySetting) This class is used to define the light and to define the methods that the light must have (ex: addition, subtraction,)	58
Plane		
	[Plane] class of the plane primitive (inherits from Iprimitives) This class is used to define the plane primitive and to define the methods that the plane must have (ex: intersect,)	67

6 Class Index

Ray		
	[Ray] Class of Ray (used to define a ray) A ray is defined by an origin and a direction (ex: (0, 0, 0) and (1, 0, 0)) The ray is used to check if there is an intersection between the ray and the scene (ex: if there is an intersection between the ray and a sphere) The ray is also used to check if there is an intersection between the ray and the light (ex: if there is an intersection between the ray and the light, the point is in the shadow) The ray is also used to check if there is an intersection between the ray and the camera (ex: if there is an intersection between the ray and the camera, the point is visible) The ray is also used to check if there is an intersection between the ray and all the objects in the scene (ex: if there is an intersection between the ray and a sphere, the point is visible)	73
RaySetti		
,	[RaySetting] class it's abstract class of the ray setting This class is used to define Camera and Light	78
Scene		
	[Scene] class of the scene This class is used to define the scene (the camera, the lights and the primitives) and to define the methods that the scene must have (ex: addPrimitive, render,)	79
Sphere		
	[Sphere] class of the sphere primitive (inherits from Iprimitives) This class is used to define the sphere primitive and to define the methods that the sphere must have (ex: intersect,)	85
Vector3E		
	[Vector3D] class of the vector3D This class is used to define the vector3D and to define the methods that the vector3D must have (ex: addition, subtraction,)	91

Chapter 4

Class Documentation

4.1 Camera Class Reference

[Camera] The camera is the point of view of the scene It contains the position, the rotation, the field of view and the resolution It also contains the pixels of the camera It inherits from RaySetting

```
#include <Camera.hpp>
```

Inheritance diagram for Camera:

Public Member Functions

· Camera ()

Default construct a new Camera object.

• Camera (Vector3D position, Vector3D rotation, double fov, sf::Vector2i resolution)

Construct a new Camera object.

• Camera (const Camera &camera)=default

Copy constructor of Camera.

Camera (Camera &camera)=default

Move constructor of Camera.

∼Camera ()=default

Destroy the Camera object.

• Camera & operator= (Camera &camera)=default

Operator = of Camera (copy the Camera)

· Camera & operator= (const Camera &camera)=default

Move operator of Camera (move the Camera)

Vector3D getPosition () const

Get the position of the camera.

· Vector3D getRotation () const

Get the rotation of the camera.

· double getFov () const

Get the Fov of the camera (in degrees)

• sf::Vector2i getResolution () const

Get the Resolution of the camera.

std::vector < Color > getPixels () const

Get the Pixels of the camera (width * height) (r, g, b)

• Color getPixel (int x, int y) const

Get the Pixel of the camera.

· Color getPixel (int index) const

Get the Pixel of the camera.

• void setPosition (Vector3D position)

Set the Position of the camera.

• void setRotation (Vector3D rotation)

Set the Rotation of the camera.

void setFov (double fov)

Set the Fov of the camera.

void setResolution (sf::Vector2i resolution)

Set the Resolution of the camera.

void setPixels (std::vector < Color > pixels)

Set the Pixels of the camera.

void setPixel (int x, int y, Color color)

Set the Pixel of the camera at the index.

void setPixel (int index, Color color)

Set the Pixel of the camera at the index.

• Ray getRay (float x, float y) const

Get the Ray from the camera to the pixel (x, y) on the screen.

std::string getType () override

Get the Type of the object.

4.1.1 Detailed Description

[Camera] The camera is the point of view of the scene It contains the position, the rotation, the field of view and the resolution It also contains the pixels of the camera It inherits from RaySetting

Parameters

_position	position of the camera (x, y, z)	
_rotation	rotation of the camera (in degrees: x, y, z)	
_fov field of view of the camera (in degre		
_resolution	resolution of the camera (width, height)	

4.1.2 Constructor & Destructor Documentation

4.1.2.1 Camera() [1/3]

```
Vector3D rotation,
double fov,
sf::Vector2i resolution )
```

Construct a new Camera object.

Parameters

position	position of the camera (x, y, z)
rotation	rotation of the camera (in degrees: x, y, z)
fov field of view of the camera (in degrees)	
resolution	resolution of the camera (width, height)

4.1.2.2 Camera() [2/3]

Copy constructor of Camera.

Parameters

Camera

4.1.2.3 Camera() [3/3]

Move constructor of Camera.

Parameters

Camera

4.1.3 Member Function Documentation

4.1.3.1 getFov()

```
double Camera::getFov ( ) const
```

Get the Fov of the camera (in degrees)

Returns

double

4.1.3.2 getPixel() [1/2]

Get the Pixel of the camera.

Parameters

index	of the pixel on the screen (width $*y + x$)
-------	--

Returns

Color

4.1.3.3 getPixel() [2/2]

Get the Pixel of the camera.

Parameters

	coordinate of the pixel on the screen (width)
У	coordinate of the pixel on the screen (height)

Returns

Color

4.1.3.4 getPixels()

```
std::vector<Color> Camera::getPixels ( ) const
```

Get the Pixels of the camera (width * height) (r, g, b)

Returns

std::vector<Color>

4.1.3.5 getPosition()

```
Vector3D Camera::getPosition ( ) const
```

Get the position of the camera.

Returns

Vector3D

4.1.3.6 getRay()

```
Ray Camera::getRay ( \label{eq:float} \mbox{float } x, \\ \mbox{float } y \mbox{) const}
```

Get the Ray from the camera to the pixel (x, y) on the screen.

Parameters

X	coordinate of the pixel on the screen (width)
У	coordinate of the pixel on the screen (height)

Returns

Ray

4.1.3.7 getResolution()

```
sf::Vector2i Camera::getResolution ( ) const
```

Get the Resolution of the camera.

Returns

```
sf::Vector2i (width = x, height = y)
```

4.1.3.8 getRotation()

```
Vector3D Camera::getRotation ( ) const
```

Get the rotation of the camera.

Returns

Vector3D (in degrees)

4.1.3.9 getType()

```
std::string Camera::getType ( ) [inline], [override], [virtual]
```

Get the Type of the object.

Returns

"Camera"

Implements RaySetting.

4.1.3.10 operator=() [1/2]

Operator = of Camera (copy the Camera)

Parameters

Camera The Camera to copy

Returns

Camera&

4.1.3.11 operator=() [2/2]

Move operator of Camera (move the Camera)

Parameters

Camera The Camera to move

Returns

Camera&

4.1.3.12 setFov()

Set the Fov of the camera.

Parameters

```
fov (in degrees)
```

4.1.3.13 setPixel() [1/2]

Set the Pixel of the camera at the index.

Parameters

index	of the pixel in the vector
color	of the pixel

4.1.3.14 setPixel() [2/2]

```
void Camera::setPixel (
          int x,
          int y,
          Color color )
```

Set the Pixel of the camera at the index.

Parameters

X	(wigth)
у	(height)
color	of the pixel

4.1.3.15 setPixels()

Set the Pixels of the camera.

Parameters

pixels

4.1.3.16 setPosition()

Set the Position of the camera.

Parameters

position

4.1.3.17 setResolution()

Set the Resolution of the camera.

Parameters

resolution (width, height)

4.1.3.18 setRotation()

Set the Rotation of the camera.

Parameters

rotation

The documentation for this class was generated from the following file:

inc/Camera.hpp

4.2 Color Class Reference

[Color] class This class is used to represent a color It is composed of 4 unsigned char (r, g, b, a) and a are between 0 and 255 it's possible to use the color class with sfml or openGL

```
#include <Color.hpp>
```

Public Member Functions

• Color ()=default

Defaultc construct a new Color object.

• Color (unsigned char r, unsigned char g, unsigned char b, unsigned char a=255)

Construct a new Color object.

• Color (const Color &other)=default

Copy construct a new Color object.

· Color (Color &&other)=default

move construct a new Color object

∼Color ()=default

Destroy the Color object.

Color & operator= (const Color & other)=default

[operator=] copy assignment operator

• Color & operator= (Color &&other)=default

[operator=] move assignment operator

Color & operator+ (const Color & other)

[operator+] add two colors

Color & operator- (const Color & other)

[operator-] substract two colors

Color & operator* (const Color & other)

[operator*] multiply two colors

Color & operator/ (const Color & other)

[operator/] divide two colors

Color & operator+ (const double scalar)

[operator+] add a scalar to a color

Color & operator- (const double scalar)

[operator-] substract a scalar to a color

Color & operator* (const double scalar)

[operator*] multiply a scalar to a color

Color & operator/ (const double scalar)

[operator/] divide a scalar to a color

• Color & operator+= (const Color &other)

[operator+=] add two colors

Color & operator-= (const Color & other)

[operator-=] substract two colors

Color & operator*= (const Color & other)

[operator*=] multiply two colors

Color & operator/= (const Color & other)

[operator/=] divide two colors

Color & operator+= (const double scalar)

[operator+=] add a scalar to a color

Color & operator-= (const double scalar)

[operator-=] substract a scalar to a color

Color & operator*= (const double scalar)

[operator*=] multiply a scalar to a color

• Color & operator/= (const double scalar)

[operator/=] divide a scalar to a color

• bool operator== (const Color &other) const

compare two colors

• bool operator!= (const Color &other) const

compare two colors

std::ostream & operator<< (std::ostream &os)

print a color

• unsigned char getR () const

Getter for the red value.

• unsigned char getG () const

Getter for the green value.

• unsigned char getB () const

Getter for the blue value.

• unsigned char getA () const

Getter for the alpha value.

void setR (unsigned char r)

Setter for the red value.

void setG (unsigned char g)

Setter for the green value.

void setB (unsigned char b)

Setter for the blue value.

• void setA (unsigned char a)

Setter for the alpha value.

• void gammaCorrection (double gamma)

Apply gamma correction to a color.

• Color blend (const Color &other)

blend two colors

Static Public Member Functions

• static Color mix (const Color &color1, const Color &color2, double factor)

Mix two colors.

static Color lerp (const Color &color1, const Color &color2, double factor)

Linear interpolation between two colors.

4.2.1 Detailed Description

[Color] class This class is used to represent a color It is composed of 4 unsigned char (r, g, b, a) and a are between 0 and 255 it's possible to use the color class with sfml or openGL

Attention

: the color is stored in RGBA format

Parameters

r	red
g	green
b	blue
а	alpha

4.2.2 Constructor & Destructor Documentation

4.2.2.1 Color() [1/3]

```
Color::Color (
         unsigned char r,
         unsigned char g,
         unsigned char b,
         unsigned char a = 255 ) [inline]
```

Construct a new Color object.

Parameters

r	
g	
b	
а	

4.2.2.2 Color() [2/3]

Copy construct a new Color object.

Parameters

other

4.2.2.3 Color() [3/3]

move construct a new Color object

Parameters

other

4.2.3 Member Function Documentation

4.2.3.1 blend()

blend two colors

Parameters

other

Returns

the blended Color

4.2.3.2 gammaCorrection()

Apply gamma correction to a color.

Parameters

gamma (gamma > 0)

4.2.3.3 getA()

unsigned char Color::getA () const

Getter for the alpha value.

Returns

unsigned char

4.2.3.4 getB()

```
unsigned char Color::getB ( ) const
```

Getter for the blue value.

Returns

unsigned char

4.2.3.5 getG()

```
unsigned char Color::getG ( ) const
```

Getter for the green value.

Returns

unsigned char

4.2.3.6 getR()

```
unsigned char Color::getR ( ) const
```

Getter for the red value.

Returns

unsigned char

4.2.3.7 lerp()

Linear interpolation between two colors.

Parameters

color1	
color2	
factor	

Returns

Color the interpolated color

4.2.3.8 mix()

Mix two colors.

Parameters

color1	
color2	
factor	

Returns

Color

4.2.3.9 operator"!=()

compare two colors

Parameters

other

Returns

bool: true if the colors are different, false otherwise

4.2.3.10 operator*() [1/2]

[operator*] multiply two colors

Parameters

other

Returns

Color

4.2.3.11 operator*() [2/2]

[operator*] multiply a scalar to a color

Parameters

scalar

Returns

Color

4.2.3.12 operator*=() [1/2]

[operator*=] multiply two colors

Parameters

other

Returns

Color

4.2.3.13 operator*=() [2/2]

[operator*=] multiply a scalar to a color

Parameters

scalar

Returns

Color

4.2.3.14 operator+() [1/2]

[operator+] add two colors

Parameters

other

Returns

Color

4.2.3.15 operator+() [2/2]

[operator+] add a scalar to a color

Parameters

scalar

Color

4.2.3.16 operator+=() [1/2]

[operator+=] add two colors

Parameters

other

Returns

Color

4.2.3.17 operator+=() [2/2]

[operator+=] add a scalar to a color

Parameters

scalar

Returns

Color

4.2.3.18 operator-() [1/2]

[operator-] substract two colors

D					
Pa	ra	m	ല	aı	r۹

other

Returns

Color

4.2.3.19 operator-() [2/2]

[operator-] substract a scalar to a color

Parameters

scalar

Returns

Color

4.2.3.20 operator-=() [1/2]

[operator-=] substract two colors

Parameters

other

Returns

Color

4.2.3.21 operator-=() [2/2]

[operator-=] substract a scalar to a color

Da			_ 1		
Pа	ra	m	eı	re	rs

scalar

Returns

Color

4.2.3.22 operator/() [1/2]

[operator/] divide two colors

Parameters

other

Returns

Color

4.2.3.23 operator/() [2/2]

[operator/] divide a scalar to a color

Parameters

scalar

Returns

Color

4.2.3.24 operator/=() [1/2]

4.2 Color Class Reference 27

[operator/=] divide two colors

Do					
Pа	ra	m	eı	re.	rs

other

Returns

Color

4.2.3.25 operator/=() [2/2]

[operator/=] divide a scalar to a color

Parameters

scalar

Returns

Color

4.2.3.26 operator << ()

```
std::ostream& Color::operator<< (
    std::ostream & os )</pre>
```

print a color

Parameters

os the output stream

Returns

std::ostream

4.2.3.27 operator=() [1/2]

4.2 Color Class Reference 29

[operator=] move assignment operator

Da			_ 1		
Pа	ra	m	eı	re	rs

other

Returns

Color

4.2.3.28 operator=() [2/2]

[operator=] copy assignment operator

Parameters

other

Returns

Color

4.2.3.29 operator==()

compare two colors

Parameters

other

Returns

bool: true if the colors are the same, false otherwise

4.2.3.30 setA()

```
void Color::setA ( \mbox{unsigned char $a$} \ )
```

4.2 Color Class Reference 31

Setter for the alpha value.

_					
Pa	ra	m	Рĺ	ÌΑ	rς

а

4.2.3.31 setB()

Setter for the blue value.

Parameters

b

4.2.3.32 setG()

```
void Color::setG ( \label{eq:color} \mbox{unsigned char } g \mbox{ )}
```

Setter for the green value.

Parameters

g

4.2.3.33 setR()

Setter for the red value.

Parameters

r

The documentation for this class was generated from the following file:

• inc/Color.hpp

4.3 Cone Class Reference 33

4.3 Cone Class Reference

[Cone] class of the cone primitive (inherits from Iprimitives) This class is used to define the cone primitive and to define the methods that the cone must have (ex: intersect, ...)

#include <Cone.hpp>

Inheritance diagram for Cone:

Public Member Functions

• Cone ()

default construct a new Cone object

Cone (const Vector3D &position, const Vector3D &direction, float radius, float height, Color color)

Construct a new Cone object.

Cone (const Cone &other)=default

Copy construct a new Cone object.

Cone (Cone &&other)=default

Move construct a new Cone object.

Destroy the Cone object.

Cone & operator= (const Cone & other)=default

Copy assignment operator.

Cone & operator= (Cone &&other)=default

Move assignment operator.

· Vector3D getPosition () const

Get the Position object.

Vector3D getDirection () const

Get the Direction object.

• float getRadius () const

Get the Radius object.

• float getHeight () const

Get the Height object.

void setPosition (const Vector3D &position)

Set the Position object.

void setDirection (const Vector3D &direction)

Set the Direction object.

· void setRadius (float radius)

Set the Radius object.

void setHeight (float height)

Set the Height object.

· bool intersect (const Ray &ray, float &t) const override

method to know if a ray intersect the cone

• Vector3D normalize () const override

method to normalize the cone

Vector3D getNormal (const Vector3D &intersection) const override

Get the Normal object.

· const Color & getColor () const override

Get the Color object.

4.3.1 Detailed Description

[Cone] class of the cone primitive (inherits from Iprimitives) This class is used to define the cone primitive and to define the methods that the cone must have (ex: intersect, ...)

Parameters

_position	the position of the cone (Vector3D)
_direction	the direction of the cone (Vector3D)
_radius	the radius of the cone (float)
_height	the height of the cone (float)
_color	the color of the cone (Color)

4.3.2 Constructor & Destructor Documentation

4.3.2.1 Cone() [1/3]

Construct a new Cone object.

Parameters

position	
direction	
radius	
height	
color	

4.3.2.2 Cone() [2/3]

Copy construct a new Cone object.

Parameters

other

4.3 Cone Class Reference 35

4.3.2.3 Cone() [3/3]

Move construct a new Cone object.

Parameters

other

4.3.3 Member Function Documentation

4.3.3.1 getColor()

```
const Color& Cone::getColor ( ) const [override], [virtual]
```

Get the Color object.

Returns

const Color

Implements Iprimitives.

4.3.3.2 getDirection()

```
Vector3D Cone::getDirection ( ) const
```

Get the Direction object.

Returns

Vector3D

4.3.3.3 getHeight()

```
float Cone::getHeight ( ) const
```

Get the Height object.

Returns

float

4.3.3.4 getNormal()

Get the Normal object.

Parameters

intersection

Returns

Vector3D

Implements Iprimitives.

4.3.3.5 getPosition()

```
Vector3D Cone::getPosition ( ) const
```

Get the Position object.

Returns

Vector3D

4.3.3.6 getRadius()

```
float Cone::getRadius ( ) const
```

Get the Radius object.

Returns

float (radius)

4.3 Cone Class Reference 37

4.3.3.7 intersect()

method to know if a ray intersect the cone

Parameters

ray	to test
t	the distance between the ray origin and the intersection (if there is an intersection)

Returns

true false if the ray intersect the cone

Implements Iprimitives.

4.3.3.8 normalize()

```
Vector3D Cone::normalize ( ) const [override], [virtual]
```

method to normalize the cone

Returns

Vector3D

Implements Iprimitives.

4.3.3.9 operator=() [1/2]

Move assignment operator.

Parameters

```
other the cone to move
```

Returns

Cone

4.3.3.10 operator=() [2/2]

Copy assignment operator.

Parameters

other the cone to copy

Returns

Cone

4.3.3.11 setDirection()

Set the Direction object.

Parameters

direction

4.3.3.12 setHeight()

Set the Height object.

Parameters

height

4.3.3.13 setPosition()

Set the Position object.

Parameters

position

4.3.3.14 setRadius()

Set the Radius object.

Parameters

radius

The documentation for this class was generated from the following file:

· inc/Cone.hpp

4.4 Config Class Reference

[Config] class of the config This class is used to define the config of the raytracer method factory and thiw class use the libconfig library to parse the config file and to define the methods that the config must have (ex: getRaySetting, ...)

```
#include <Config.hpp>
```

Public Member Functions

• Config (const char *path)

Construct a new Config object.

∼Config ()=default

Destroy the Config object.

RaySetting * getRaySetting (const std::string name)

Get the Ray Setting object by name (ex: "Camera", "Light")

std::vector< Iprimitives * > * getRaySetting ()

Get the Ray Setting object (ex: "Iprimitives")

4.4.1 Detailed Description

[Config] class of the config This class is used to define the config of the raytracer method factory and thiw class use the libconfig library to parse the config file and to define the methods that the config must have (ex: getRaySetting, ...)

Attention

the config file must be in the format of the libconfig library and install the libconfig library

Parameters

4.4.2 Constructor & Destructor Documentation

4.4.2.1 Config()

Construct a new Config object.

Parameters

path	name of the config file

4.4.3 Member Function Documentation

4.4.3.1 getRaySetting() [1/2]

```
\verb|std::vector<Iprimitives| *>* Config::getRaySetting ()| |
```

Get the Ray Setting object (ex: "Iprimitives")

Returns

std::vector<Iprimitives *>*

4.4.3.2 getRaySetting() [2/2]

Get the Ray Setting object by name (ex: "Camera", "Light")

Parameters

name of the ray setting

Returns

RaySetting*

The documentation for this class was generated from the following file:

· inc/Config.hpp

4.5 Core Class Reference

[Core] class of the core This class is used to define the core of the raytracer and to define the methods that the core must have (ex: render, ...)

```
#include <Core.hpp>
```

Public Member Functions

• Core (const char *path)

Construct a new Core object.

• ~Core ()

Destroy the Core object.

4.5.1 Detailed Description

[Core] class of the core This class is used to define the core of the raytracer and to define the methods that the core must have (ex: render, ...)

Parameters

_config	the config of the raytracer (Config)
_camera	the camera of the raytracer (Camera)
_light	the light of the raytracer (Light)
_image	the image of the raytracer (ImagePPM)
_scene	the scene of the raytracer (Scene)
_primitives	the primitives of the raytracer (std::vector <iprimitives *="">)</iprimitives>

4.5.2 Constructor & Destructor Documentation

4.5.2.1 Core()

Construct a new Core object.

Parameters

```
path the path of the config file
```

The documentation for this class was generated from the following file:

· inc/Core.hpp

4.6 Cylinder Class Reference

[Cylinder] class of the cylinder primitive (inherits from Iprimitives) This class is used to define the cylinder primitive and to define the methods that the cylinder must have (ex: intersect, ...)

```
#include <Cylinder.hpp>
```

Inheritance diagram for Cylinder:

Public Member Functions

• Cylinder ()

Defaultc onstruct a new Cylinder object.

Cylinder (const Vector3D &position, const Vector3D &direction, float radius, float height, Color color)

Construct a new Cylinder object.

• Cylinder (const Cylinder &other)=default

Copy construct a new Cylinder object.

• Cylinder (Cylinder &&other)=default

Move construct a new Cylinder object.

• ∼Cylinder ()=default

Destroy the Cylinder object.

• Cylinder & operator= (const Cylinder &other)=default

Copy assignment operator.

• Cylinder & operator= (Cylinder &&other)=default

Move assignment operator.

· Vector3D getPosition () const

Get the Position value.

float getRadius () const

Get the Radius value.

• float getHeight () const

Get the Height value.

• const Color & getColor () const override

Get the Color value.

• void setPosition (const Vector3D &position)

Set the Position value.

void setRadius (float radius)

Set the Radius value.

• void setHeight (float height)

Set the Height value.

void setColor (const Color &color)

Set the Color value.

· bool intersect (const Ray &ray, float &t) const override

method to know if a ray intersects the cylinder

Vector3D getNormal (const Vector3D &intersection) const override

method to get the normal of the cylinder at a given point

• Vector3D normalize () const override

method to normalize the cylinder

4.6.1 Detailed Description

[Cylinder] class of the cylinder primitive (inherits from Iprimitives) This class is used to define the cylinder primitive and to define the methods that the cylinder must have (ex: intersect, ...)

Parameters

_position	the position of the cylinder (Vector3D)
_radius	the radius of the cylinder (float)
_height	the height of the cylinder (float)
_color	the color of the cylinder (Color)

4.6.2 Constructor & Destructor Documentation

4.6.2.1 Cylinder() [1/3]

Construct a new Cylinder object.

Parameters

position	of the cylinder (Vector3D)
direction	of the cylinder (Vector3D)
radius	of the cylinder (float)
height	of the cylinder (float)
color	of the cylinder (Color)

4.6.2.2 Cylinder() [2/3]

Copy construct a new Cylinder object.

Parameters

Ulliel LO COPY	other	to copy
----------------	-------	---------

4.6.2.3 Cylinder() [3/3]

Move construct a new Cylinder object.

Parameters

other to move

4.6.3 Member Function Documentation

4.6.3.1 getColor()

```
\begin{tabular}{ll} \beg
```

Returns

const Color&

Implements Iprimitives.

4.6.3.2 getHeight()

```
float Cylinder::getHeight ( ) const
```

Get the Height value.

Returns

float

4.6.3.3 getNormal()

method to get the normal of the cylinder at a given point

Parameters

intersection the point where we want the normal (Vector3D)

Returns

Vector3D the normal of the cylinder at the given point

Implements Iprimitives.

4.6.3.4 getPosition()

```
Vector3D Cylinder::getPosition ( ) const
```

Get the Position value.

Returns

Vector3D

4.6.3.5 getRadius()

```
float Cylinder::getRadius ( ) const
```

Get the Radius value.

Returns

float

4.6.3.6 intersect()

method to know if a ray intersects the cylinder

Parameters

ray	to test (Ray)
t	the distance between the ray origin and the intersection (float) (if there is one)

Returns

true false if the ray intersects the cylinder or not (bool)

Implements Iprimitives.

4.6.3.7 normalize()

```
Vector3D Cylinder::normalize ( ) const [override], [virtual]
```

method to normalize the cylinder

Returns

Vector3D the normalized cylinder

Implements Iprimitives.

4.6.3.8 operator=() [1/2]

Copy assignment operator.

Parameters

```
other to copy
```

Returns

Cylinder

4.6.3.9 operator=() [2/2]

Move assignment operator.

Parameters

Returns

Cylinder

4.6.3.10 setColor()

Set the Color value.

Parameters

color

4.6.3.11 setHeight()

Set the Height value.

Parameters

height

4.6.3.12 setPosition()

Set the Position value.

Parameters

position

4.6.3.13 setRadius()

Set the Radius value.

Parameters

radius

The documentation for this class was generated from the following file:

• inc/Cylinder.hpp

4.7 ImagePPM Class Reference

[ImagePPM] class of the image (PPM format) (P3) (ASCII) (RGB) This class is used to define the image and to define the methods that the image must have (ex: createImage, ...)

```
#include <ImagePPM.hpp>
```

Public Member Functions

• ImagePPM ()

Default construct a new Image PP.

• ImagePPM (int width, int height)

Construct a new Image PPM.

• ImagePPM (const ImagePPM ©)=default

Copy construct a new Image PPM.

ImagePPM (ImagePPM &&other)=default

Construct a new Image PPM.

• \sim ImagePPM ()=default

Destroy the Image PPM.

• ImagePPM & operator= (const ImagePPM ©)=default

Copy a ImagePPM.

• ImagePPM & operator= (ImagePPM &&other)=default

Move a ImagePPM.

void createlmage (const char *path)

Create a Image object when the raytracer is finished.

• void setSize (int width, int height)

Set the Size value.

• void setWidth (int width)

Set the Width value.

void setHeight (int height)

Set the Height value.

void setPixels (std::vector < Color * > pixels)

Set the Pixels value.

void setPixel (int x, int y, Color *color)

Set the Pixel value.

void setPixel (int index, Color *color)

Set the Pixel value.

• int getWidth () const

Get the Width value.

• int getHeight () const

Get the Height value.

std::vector < Color * > getPixels () const

Get the Pixels value.

• Color * getPixel (int x, int y) const

Get the Pixel value.

Color * getPixel (int index) const

Get the Pixel value.

4.7.1 Detailed Description

[ImagePPM] class of the image (PPM format) (P3) (ASCII) (RGB) This class is used to define the image and to define the methods that the image must have (ex: createImage, ...)

Parameters

_width	the width of the image (the number of columns)
_height	the height of the image (the number of lines)
_pixels	the pixels of the image (vector of Color)

4.7.2 Constructor & Destructor Documentation

4.7.2.1 ImagePPM() [1/3]

Construct a new Image PPM.

Parameters

width	of the image
height	of the image

4.7.2.2 **ImagePPM()** [2/3]

Copy construct a new Image PPM.

Parameters

сору

4.7.2.3 **ImagePPM()** [3/3]

Construct a new Image PPM.

Parameters

other

4.7.3 Member Function Documentation

4.7.3.1 createlmage()

Create a Image object when the raytracer is finished.

Parameters

path	of the image to create
------	------------------------

4.7.3.2 getHeight()

```
int ImagePPM::getHeight ( ) const
```

Get the Height value.

Returns

int

4.7.3.3 getPixel() [1/2]

Get the Pixel value.

Parameters

index of the pixel

Returns

Color*

4.7.3.4 getPixel() [2/2]

Get the Pixel value.

Parameters

Х	position of the pixel
V	position of the pixel

Returns

Color*

4.7.3.5 getPixels()

```
std::vector<Color *> ImagePPM::getPixels ( ) const
```

Get the Pixels value.

Returns

std::vector<Color *>

4.7.3.6 getWidth()

```
int ImagePPM::getWidth ( ) const
```

Get the Width value.

Returns

int

4.7.3.7 operator=() [1/2]

Copy a ImagePPM.

Parameters

сору

Returns

ImagePPM

4.7.3.8 operator=() [2/2]

Move a ImagePPM.

Parameters

other

Returns

ImagePPM

4.7.3.9 setHeight()

Set the Height value.

Parameters

height of the image

4.7.3.10 setPixel() [1/2]

Set the Pixel value.

Parameters

index	of the pixel
color	of the pixel

4.7.3.11 setPixel() [2/2]

```
int y,
Color * color )
```

Set the Pixel value.

Parameters

X	position of the pixel	
у	position of the pixel	
color	of the pixel	

4.7.3.12 setPixels()

```
void ImagePPM::setPixels (
          std::vector< Color * > pixels )
```

Set the Pixels value.

Parameters

4.7.3.13 setSize()

Set the Size value.

Parameters

width	of the image
height	of the image

4.7.3.14 setWidth()

Set the Width value.

Parameters

The documentation for this class was generated from the following file:

inc/ImagePPM.hpp

4.8 Iprimitives Class Reference

[lprimitives] Abstract class of primitives (used to define the type of the primitive) ex: Sphere, Plane, Cube, ... This class is used to define the type of the primitive and to define the methods that the primitive must have (ex: intersect, normalize, getNormal, ...)

```
#include <Iprimitives.hpp>
```

Inheritance diagram for Iprimitives:

Public Member Functions

virtual ∼Iprimitives ()=default

Destroy the Iprimitives (virtual because it's an abstract class)

virtual bool intersect (const Ray &ray, float &t) const =0

Check if there is an intersection between the ray and the scene.

• virtual Vector3D normalize () const =0

Normalize the vector to a length of 1 for the calculations of the intersection point and the normal.

virtual Vector3D getNormal (const Vector3D &intersection) const =0

Get the Normal of the primitive at the intersection point.

• virtual const Color & getColor () const =0

Get the Color of the primitive.

4.8.1 Detailed Description

[lprimitives] Abstract class of primitives (used to define the type of the primitive) ex: Sphere, Plane, Cube, ... This class is used to define the type of the primitive and to define the methods that the primitive must have (ex: intersect, normalize, getNormal, ...)

4.8.2 Member Function Documentation

4.8.2.1 getColor()

```
virtual const Color& Iprimitives::getColor ( ) const [pure virtual]
```

Get the Color of the primitive.

Returns

const Color&

Implemented in Sphere, Plane, Cylinder, and Cone.

4.8.2.2 getNormal()

Get the Normal of the primitive at the intersection point.

Parameters

intersection

Returns

Vector3D

Implemented in Sphere, Plane, Cylinder, and Cone.

4.8.2.3 intersect()

```
virtual bool Iprimitives::intersect (  {\rm const~Ray~\&~} ray, \\ {\rm float~\&~} t~)~{\rm const~[pure~virtual]}
```

Check if there is an intersection between the ray and the scene.

Parameters

ray	to check the intersection with the scene	
t	the distance between the ray and the intersection point (if there is one)	

Returns

true false if there is an intersection

Implemented in Sphere, Plane, Cylinder, and Cone.

4.8.2.4 normalize()

```
virtual Vector3D Iprimitives::normalize ( ) const [pure virtual]
```

Normalize the vector to a length of 1 for the calculations of the intersection point and the normal.

Returns

Vector3D

Implemented in Sphere, Plane, Cylinder, and Cone.

The documentation for this class was generated from the following file:

· inc/lprimitives.hpp

4.9 Light Class Reference

[Light] class of the light (inherits from RaySetting) This class is used to define the light and to define the methods that the light must have (ex: addition, subtraction, ...)

```
#include <Light.hpp>
```

Inheritance diagram for Light:

Public Member Functions

• Light ()=default

Default construct a new Light object.

Light (double ambient, double diffuse, const std::vector< Vector3D > &pointLights, const std::vector< Vector3D > &directionalLights)

Construct a new Light object.

· Light (const Light &other)=default

Copy construct a new Light object.

Light (Light &&other)=default

Move construct a new Light object.

~Light ()=default

Destroy the Light object.

Light & operator= (const Light & other)=default

Copy a Light object.

• Light & operator= (Light &&other)=default

Move a Light object.

• Light & operator+= (const Light &other)

addition of two lights

• Light & operator-= (const Light &other)

subtraction of two lights

Light operator+ (const Light &other) const

addition of two lights

• Light operator- (const Light &other) const

subtraction of two lights

• bool operator== (const Light &other) const

compare two lights

• bool operator!= (const Light &other) const

compare two lights

• double getAmbient () const

Get the Ambient value.

· double getDiffuse () const

Get the Diffuse value.

const std::vector< Vector3D > & getPointLights () const

Get the Point Lights.

const std::vector< Vector3D > & getDirectionalLights () const

Get the Directional Lights.

void setAmbient (double ambient)

Set the Ambient value.

• void setDiffuse (double diffuse)

Set the Diffuse value.

void setPointLights (const std::vector< Vector3D > &pointLights)

Set the Point Lights.

void setDirectionalLights (const std::vector< Vector3D > &directionalLights)

Set the Directional Lights.

void addPointLight (const Vector3D &pointLight)

Add new point light source.

void addDirectionalLight (const Vector3D &directionalLight)

Add new directional light source.

· void clear ()

Clear the light.

• Color getColor (const Vector3D &point, const Vector3D &normal, Color &color) const

Get the Color of a point with the light settings.

• std::string getType () override

Get the Type object.

4.9.1 Detailed Description

[Light] class of the light (inherits from RaySetting) This class is used to define the light and to define the methods that the light must have (ex: addition, subtraction, ...)

Parameters

_ambient	the ambient light (0.0 - 1.0)
_diffuse	the diffuse light (0.0 - 1.0)
Gen e Giet bigbt sygen	the point light sources (Vector3D)
_directionalLights	the directional light sources (Vector3D)

4.9.2 Constructor & Destructor Documentation

4.9.2.1 Light() [1/3]

Construct a new Light object.

Parameters

ambient	light (0.0 - 1.0)
diffuse	light (0.0 - 1.0)
pointLights	sources
directionalLights	sources

4.9.2.2 Light() [2/3]

Copy construct a new Light object.

Parameters

other

4.9.2.3 Light() [3/3]

Move construct a new Light object.

Parameters

other

4.9.3 Member Function Documentation

4.9.3.1 addDirectionalLight()

Add new directional light source.

Parameters

directionalLight

4.9.3.2 addPointLight()

Add new point light source.

Parameters

pointLight

4.9.3.3 getAmbient()

```
double Light::getAmbient ( ) const
```

Get the Ambient value.

Returns

double

4.9.3.4 getColor()

Get the Color of a point with the light settings.

Parameters

point	of the object
normal	of the object
color	of the object

Returns

Color of the object

4.9.3.5 getDiffuse()

```
double Light::getDiffuse ( ) const
```

Get the Diffuse value.

Returns

double

4.9.3.6 getDirectionalLights()

```
const std::vector<Vector3D>& Light::getDirectionalLights ( ) const
```

Get the Directional Lights.

Returns

const std::vector<Vector3D>&

4.9.3.7 getPointLights()

```
\verb|const| std::vector<|Vector3D>& Light::getPointLights () | const| \\
```

Get the Point Lights.

Returns

const std::vector<Vector3D>&

4.9.3.8 getType()

```
std::string Light::getType ( ) [inline], [override], [virtual]
```

Get the Type object.

Returns

std::string

Implements RaySetting.

4.9.3.9 operator"!=()

compare two lights

Parameters

other

Returns

true false if the two lights are not the same or not

4.9.3.10 operator+()

addition of two lights

Parameters

other

Returns

Light

4.9.3.11 operator+=()

addition of two lights

Parameters

other

Returns

Light&

4.9.3.12 operator-()

subtraction of two lights

Parameters

other

Returns

Light

4.9.3.13 operator-=()

subtraction of two lights

Parameters

other

Returns

Light&

4.9.3.14 operator=() [1/2]

Copy a Light object.

Parameters

other

Returns

Light&

4.9.3.15 operator=() [2/2]

Move a Light object.

Parameters

other

Returns

Light&

4.9.3.16 operator==()

compare two lights

Parameters

other

Returns

true false if the two lights are the same or not

4.9.3.17 setAmbient()

Set the Ambient value.

Parameters

ambient

4.9.3.18 setDiffuse()

Set the Diffuse value.

Parameters

diffuse

4.9.3.19 setDirectionalLights()

Set the Directional Lights.

Parameters

directionalLights

4.9.3.20 setPointLights()

4.10 Plane Class Reference 67

Set the Point Lights.

Parameters

pointLights

The documentation for this class was generated from the following file:

· inc/Light.hpp

4.10 Plane Class Reference

[Plane] class of the plane primitive (inherits from Iprimitives) This class is used to define the plane primitive and to define the methods that the plane must have (ex: intersect, ...)

```
#include <Plane.hpp>
```

Inheritance diagram for Plane:

Public Member Functions

• Plane ()=default

Default construct a new Plane object.

• Plane (const int &axis, const double &position, const Color &color)

Construct a new Plane object.

• Plane (const Plane &other)=default

Copy construct a new Plane object.

• Plane (Plane &&other)=default

Move construct a new Plane object.

• ∼Plane ()=default

Destroy the Plane object.

• Plane & operator= (const Plane &other)=default

Copy assignment operator.

• Plane & operator= (Plane &&other)=default

Move assignment operator.

• int getAxis () const

Get the Axis value.

double getPosition () const

Get the Position value.

• const Color & getColor () const override

Get the Color value.

void setAxis (const int &axis)

Set the Axis value.

• void setPosition (const double &position)

Set the Position value.

void setColor (const Color &color)

Set the Color value.

• bool intersect (const Ray &ray, float &t) const override

method to check if a ray intersect with the plane

• Vector3D normalize () const override

method to get the normal of the plane

Vector3D getNormal (const Vector3D &point) const override

Get the Normal object at a given point.

4.10.1 Detailed Description

[Plane] class of the plane primitive (inherits from Iprimitives) This class is used to define the plane primitive and to define the methods that the plane must have (ex: intersect, ...)

Parameters

_axis	the axis of the plane $(0 = x, 1 = y, 2 = z)$	
_position	the position of the plane on the axis (double)	
_color	the color of the plane (Color)	

4.10.2 Constructor & Destructor Documentation

4.10.2.1 Plane() [1/3]

Construct a new Plane object.

Parameters

axis	of the plane $(0 = x, 1 = y, 2 = z)$
position	of the plane on the axis
color	of the plane

4.10.2.2 Plane() [2/3]

```
Plane::Plane (
```

```
const Plane & other ) [default]
```

Copy construct a new Plane object.

Parameters

other

4.10.2.3 Plane() [3/3]

Move construct a new Plane object.

Parameters

other

4.10.3 Member Function Documentation

4.10.3.1 getAxis()

```
int Plane::getAxis ( ) const
```

Get the Axis value.

Returns

int

4.10.3.2 getColor()

```
const Color& Plane::getColor ( ) const [override], [virtual]
```

Get the Color value.

Returns

const Color&

Implements Iprimitives.

4.10.3.3 getNormal()

Get the Normal object at a given point.

4.10 Plane Class Reference

Parameters

point	to get the normal from
-------	------------------------

Returns

Vector3D

Implements Iprimitives.

4.10.3.4 getPosition()

```
double Plane::getPosition ( ) const
```

Get the Position value.

Returns

double

4.10.3.5 intersect()

method to check if a ray intersect with the plane

Parameters

ray	to hnow if it intersect with the plane
t	the intersection point if there is one

Returns

true false if there is an intersection or not

Implements Iprimitives.

4.10.3.6 normalize()

```
Vector3D Plane::normalize ( ) const [override], [virtual]
```

method to get the normal of the plane

Returns

Vector3D

Implements Iprimitives.

4.10.3.7 operator=() [1/2]

Copy assignment operator.

Parameters

other

Returns

Plane&

4.10.3.8 operator=() [2/2]

Move assignment operator.

Parameters

other

Returns

Plane&

4.10.3.9 setAxis()

Set the Axis value.

Parameters

axis

4.10.3.10 setColor()

Set the Color value.

Parameters

color

4.10.3.11 setPosition()

Set the Position value.

Parameters

position

The documentation for this class was generated from the following file:

inc/Plane.hpp

4.11 Ray Class Reference

[Ray] Class of Ray (used to define a ray) A ray is defined by an origin and a direction (ex: (0, 0, 0) and (1, 0, 0)) The ray is used to check if there is an intersection between the ray and the scene (ex: if there is an intersection between the ray and a sphere) The ray is also used to check if there is an intersection between the ray and the light (ex: if there is an intersection between the ray and the light, the point is in the shadow) The ray is also used to check if there is an intersection between the ray and the camera (ex: if there is an intersection between the ray and the camera, the point is visible) The ray is also used to check if there is an intersection between the ray and all the objects in the scene (ex: if there is an intersection between the ray and a sphere, the point is visible)

```
#include <Ray.hpp>
```

Public Member Functions

• Ray ()

Default constructor of Ray (create a ray with origin (0, 0, 0) and direction (0, 0, 0) (null vector))

Ray (const Vector3D & origin, const Vector3D & direction)

Construct a new Ray object.

• Ray (const Ray &other)=default

Copy constructor of Ray.

• Ray (Ray &&other)

Move constructor of Ray.

∼Ray ()=default

Destroy the Ray object.

• Ray & operator= (const Ray &other)=default

Move operator of Ray.

• Ray & operator= (Ray &&other)

Move operator of Ray.

const Vector3D & getOrigin () const

Get the Origin value.

· const Vector3D & getDirection () const

Get the Direction value.

void setOrigin (const Vector3D &origin)

Set the Origin value.

void setDirection (const Vector3D & direction)

Set the Direction value.

4.11.1 Detailed Description

[Ray] Class of Ray (used to define a ray) A ray is defined by an origin and a direction (ex: (0, 0, 0) and (1, 0, 0)) The ray is used to check if there is an intersection between the ray and the scene (ex: if there is an intersection between the ray and a sphere) The ray is also used to check if there is an intersection between the ray and the light (ex: if there is an intersection between the ray and the light, the point is in the shadow) The ray is also used to check if there is an intersection between the ray and the camera (ex: if there is an intersection between the ray and the camera, the point is visible) The ray is also used to check if there is an intersection between the ray and all the objects in the scene (ex: if there is an intersection between the ray and a sphere, the point is visible)

Parameters

_origin	the origin of the ray (ex: (0, 0, 0)) (Vector3D)
_direction	the direction of the ray (ex: (1, 0, 0)) (Vector3D) (must be normalized)

4.11.2 Constructor & Destructor Documentation

4.11.2.1 Ray() [1/3]

Construct a new Ray object.

Parameters

origin	of the ray	
direction	of the ray	

4.11.2.2 Ray() [2/3]

Copy constructor of Ray.

Parameters

other

4.11.2.3 Ray() [3/3]

Move constructor of Ray.

Parameters

other

4.11.3 Member Function Documentation

4.11.3.1 getDirection()

```
const Vector3D& Ray::getDirection ( ) const
```

Get the Direction value.

Returns

const Vector3D&

4.11.3.2 getOrigin()

```
const Vector3D& Ray::getOrigin ( ) const
```

Get the Origin value.

Returns

const Vector3D&

4.11.3.3 operator=() [1/2]

Move operator of Ray.

Parameters

other

Returns

Ray&

4.11.3.4 operator=() [2/2]

Move operator of Ray.

Parameters

other

Returns

Ray&

4.11.3.5 setDirection()

Set the Direction value.

Parameters

direction

4.11.3.6 setOrigin()

Set the Origin value.

Parameters

origin

The documentation for this class was generated from the following file:

· inc/Ray.hpp

4.12 RaySetting Class Reference

[RaySetting] class it's abstract class of the ray setting This class is used to define Camera and Light

```
#include <RaySetting.hpp>
```

Inheritance diagram for RaySetting:

Public Member Functions

virtual ∼RaySetting ()=default

Destroy the RaySetting object (it's virtual because it's abstract class)

• virtual std::string getType ()=0

Get the Type object.

4.12.1 Detailed Description

[RaySetting] class it's abstract class of the ray setting This class is used to define Camera and Light

4.12.2 Member Function Documentation

4.12.2.1 getType()

```
virtual std::string RaySetting::getType ( ) [pure virtual]
```

Get the Type object.

Returns

std::string

Implemented in Light, and Camera.

The documentation for this class was generated from the following file:

inc/RaySetting.hpp

4.13 Scene Class Reference

[Scene] class of the scene This class is used to define the scene (the camera, the lights and the primitives) and to define the methods that the scene must have (ex: addPrimitive, render, ...)

```
#include <Scene.hpp>
```

Public Member Functions

• Scene ()=default

Construct a new Scene object.

• Scene (const Scene &scene)=default

Copy construct a new Scene object.

Scene (Scene &scene)=default

Move construct a new Scene object.

∼Scene ()=default

Destroy the Scene object.

• Scene & operator= (Scene &scene)=default

Copy assignment operator.

Scene & operator= (const Scene &scene)=default

Move assignment operator.

Camera getCamera () const

Get the Camera object.

· Light getLight () const

Get the Light object.

• std::vector< |primitives * > * get|primitives () const

Get the Iprimitives object.

void setCamera (Camera camera)

Set the Camera object.

void setLight (Light light)

Set the Light object.

void setIprimitives (std::vector< Iprimitives * > *iprimitives)

Set the Iprimitives object.

• void addPrimitive (Iprimitives *primitive)

Add new primitive to the scene.

• bool intersect (const Ray &ray, Vector3D &intersection) const

Method for all primitives in the scene.

· bool intersect (const Ray &ray, Vector3D &intersection, Vector3D &noraml, Color &color) const

Method for all primitives in the scene.

· Color trace (const Ray &ray, int depth) const

trace method for all primitives in the scene

· void render (ImagePPM &image) const

Render the scene.

void putRendering (int x, int y, int width, int height) const

Put the rendering of the scene.

4.13.1 Detailed Description

[Scene] class of the scene This class is used to define the scene (the camera, the lights and the primitives) and to define the methods that the scene must have (ex: addPrimitive, render, ...)

Parameters

_camera	the camera of the scene
_light	the light of the scene
_iprimitives	the primitives of the scene

4.13.2 Constructor & Destructor Documentation

4.13.2.1 Scene() [1/2]

Copy construct a new Scene object.

Parameters

scene

4.13.2.2 Scene() [2/2]

Move construct a new Scene object.

Parameters

scene

4.13.3 Member Function Documentation

4.13.3.1 addPrimitive()

Add new primitive to the scene.

Parameters

primitive

4.13.3.2 getCamera()

```
Camera Scene::getCamera ( ) const
```

Get the Camera object.

Returns

Camera

4.13.3.3 getIprimitives()

```
std::vector<Iprimitives *>* Scene::getIprimitives ( ) const
```

Get the Iprimitives object.

Returns

std::vector<Iprimitives *>

4.13.3.4 getLight()

```
Light Scene::getLight ( ) const
```

Get the Light object.

Returns

Light

4.13.3.5 intersect() [1/2]

Method for all primitives in the scene.

Parameters

ray	to intersect with the scene
intersection	point if there is one

Returns

true false if there is an intersection or not

4.13.3.6 intersect() [2/2]

Method for all primitives in the scene.

Parameters

ray	to intersect with the scene
intersection	point if there is one
normal	of the primitive at the intersection point if there is one
color	of the primitive at the intersection point if there is one

Returns

true false if there is an intersection or not

4.13.3.7 operator=() [1/2]

Move assignment operator.

Parameters

scene

Returns

Scene&

4.13.3.8 operator=() [2/2]

Copy assignment operator.

Parameters

scene

Returns

Scene&

4.13.3.9 putRendering()

Put the rendering of the scene.

Parameters

X	coordinate of the pixel
У	coordinate of the pixel
width	the pixel
height	of the pixel

4.13.3.10 render()

Render the scene.

Parameters

imag	je	to render (the image	will be	modified in	this method)
------	----	-------------	-----------	---------	-------------	--------------

4.13.3.11 setCamera()

Set the Camera object.

Parameters

camera

4.13.3.12 setIprimitives()

```
void Scene::setIprimitives (
          std::vector< Iprimitives * > * iprimitives )
```

Set the **Iprimitives** object.

Parameters

iprimitives

4.13.3.13 setLight()

Set the Light object.

Parameters

light

4.13.3.14 trace()

trace method for all primitives in the scene

Parameters

ray	to trace with the scene (from the camera)
depth	of the ray (for reflection)

Returns

Color at this pixel (the color of the primitive)

The documentation for this class was generated from the following file:

· inc/Scene.hpp

4.14 Sphere Class Reference

[Sphere] class of the sphere primitive (inherits from Iprimitives) This class is used to define the sphere primitive and to define the methods that the sphere must have (ex: intersect, ...)

```
#include <Sphere.hpp>
```

Inheritance diagram for Sphere:

Public Member Functions

• Sphere ()

Default construct a new Sphere object.

Sphere (const Vector3D ¢er, const double &radius, Color color)

Construct a new Sphere object.

• Sphere (const Sphere &other)=default

Copy construt a new Sphere object.

• Sphere (Sphere &&other)=default

Move construct a new Sphere object.

• ∼Sphere ()=default

Destroy the Sphere object.

• Sphere & operator= (const Sphere &other)=default

Copy assignment operator.

• Sphere & operator= (Sphere &&other)=default

Move assignment operator.

const Vector3D & getCenter () const

Get the Center of the sphere.

· const double & getRadius () const

Get the Radius of the sphere.

void setCenter (const Vector3D ¢er)

Set the Center of the sphere.

void setRadius (const double &radius)

Set the Radius of the sphere.

• const Color & getColor () const override

Get the Color of the sphere.

bool intersect (const Ray &ray, float &t) const override

method to intersect a ray with a sphere (if there is an intersection) and to get the intersection point

• Vector3D normalize () const override

method to normalize the sphere

Vector3D getNormal (const Vector3D &point) const override

method to get the normal of the sphere at a given point

4.14.1 Detailed Description

[Sphere] class of the sphere primitive (inherits from Iprimitives) This class is used to define the sphere primitive and to define the methods that the sphere must have (ex: intersect, ...)

Parameters

_center	the center of the sphere (Vector3D)
_radius	the radius of the sphere (double)
_color	the color of the sphere (Color)

4.14.2 Constructor & Destructor Documentation

4.14.2.1 Sphere() [1/3]

Construct a new Sphere object.

Parameters

center	
radius	
color	

4.14.2.2 Sphere() [2/3]

Copy construt a new Sphere object.

Parameters

other

4.14.2.3 Sphere() [3/3]

Move construct a new Sphere object.

Parameters

other

4.14.3 Member Function Documentation

4.14.3.1 getCenter()

```
\verb|const Vector3D& Sphere::getCenter ( ) const|\\
```

Get the Center of the sphere.

Returns

const Vector3D&

4.14.3.2 getColor()

```
const Color& Sphere::getColor ( ) const [inline], [override], [virtual]
```

Get the Color of the sphere.

Returns

const Color&

Implements Iprimitives.

4.14.3.3 getNormal()

method to get the normal of the sphere at a given point

Parameters

point

Returns

Vector3D

Implements Iprimitives.

4.14.3.4 getRadius()

```
const double& Sphere::getRadius ( ) const
```

Get the Radius of the sphere.

Returns

const double&

4.14.3.5 intersect()

method to intersect a ray with a sphere (if there is an intersection) and to get the intersection point

Parameters

ray	to intersect with the scene
intersection	point if there is one

Returns

true false if there is an intersection or not

Implements Iprimitives.

4.14.3.6 normalize()

```
Vector3D Sphere::normalize ( ) const [inline], [override], [virtual]
```

method to normalize the sphere

Returns

Vector3D

Implements Iprimitives.

4.14.3.7 operator=() [1/2]

Copy assignment operator.

Parameters

other

Returns

Sphere&

4.14.3.8 operator=() [2/2]

Move assignment operator.

Parameters

other

Returns

Sphere&

4.14.3.9 setCenter()

Set the Center of the sphere.

Parameters

center

4.14.3.10 setRadius()

Set the Radius of the sphere.

Parameters

radius

The documentation for this class was generated from the following file:

• inc/Sphere.hpp

4.15 Vector3D Class Reference

[Vector3D] class of the vector3D This class is used to define the vector3D and to define the methods that the vector3D must have (ex: addition, subtraction, ...)

```
#include <Vector3D.hpp>
```

Public Member Functions

• Vector3D (double x=0, double y=0, double z=0)

Construct a new Vector3D object.

Vector3D (const Vector3D &other)=default

Construct a new Vector3D object.

Vector3D (Vector3D &&other)=default

Construct a new Vector3D object.

∼Vector3D ()=default

Destroy the Vector3D object.

Vector3D & operator= (const Vector3D & other)=default

Copy assignment operator.

Vector3D & operator= (Vector3D &&other)=default

Move assignment operator.

Vector3D operator+ (const Vector3D & other) const

Add two vectors.

Vector3D operator- (const Vector3D & other) const

Substract two vectors.

Vector3D operator* (const Vector3D &other) const

Multiply two vectors.

Vector3D operator/ (const Vector3D & other) const

Divide two vectors.

Vector3D & operator+= (const Vector3D & other)

Add two vectors.

Vector3D & operator= (const Vector3D & other)

Substract two vectors.

Vector3D & operator*= (const Vector3D & other)

Multiply two vectors.

Vector3D & operator/= (const Vector3D & other)

Divide two vectors.

Vector3D operator+ (double scalar) const

Add a scalar to a vector.

• Vector3D operator- (double scalar) const

Substract a scalar to a vector.

Vector3D operator* (double scalar) const

Multiply a scalar to a vector.

• Vector3D operator/ (double scalar) const

Divide a scalar to a vector.

Vector3D & operator+= (double scalar)

Add a scalar to a vector.

Vector3D & operator-= (double scalar)

Substract a scalar to a vector.

Vector3D & operator*= (double scalar)

Multiply a scalar to a vector.

Vector3D & operator/= (double scalar)

Divide a scalar to a vector.

• Vector3D operator- () const

Negate a vector.

bool operator== (const Vector3D & other) const

Compare two vectors.

bool operator!= (const Vector3D &other) const

Compare two vectors.

bool operator< (const Vector3D & other) const

Compare two vectors.

bool operator<= (const Vector3D &other) const

Compare two vectors.

• bool operator> (const Vector3D &other) const

Compare two vectors.

• bool operator>= (const Vector3D &other) const

Compare two vectors.

• std::ostream & operator<< (std::ostream &os) const

Overload for std::ostream.

std::vector< double > getVector () const

Get the Vector object.

• double getX () const

Get the X object.

· double getY () const

Get the Y object.

• double getZ () const

Get the Z object.

• void setVector (double x, double y, double z)

Set the Vector object.

void setX (double x)

Set X in the vector.

void setY (double y)

Set Y in the vector.

• void setZ (double z)

Set Z in the vector.

• void translate (const Vector3D &v)

translate the vector with another vector

• void rotateX (double angle)

rotate the vector on the x axis

void rotateY (double angle)

rotate the vector on the y axis

void rotateZ (double angle)

rotate the vector on the z axis

Vector3D normalize () const

normalize the vector

Vector3D cross (const Vector3D &v) const

calculate the cross product of two vectors

float dot (const Vector3D & other) const

calculate the dot product of two vectors

• double length () const

calculate the length of the vector

Vector3D squaredLength () const

calculate the squared length of the vector (faster than length)

Vector3D reflect (const Vector3D &normal) const

calculate the reflection vector of this vector

• Vector3D magnitude () const

calculate the magnitude vector of this vector

Vector3D lerp (const Vector3D &v, float t) const

linear interpolation between two vectors

• float distance (const Vector3D &v) const

calculate the distance between two vectors

• float angle (const Vector3D &v) const

calculate the angle between two vectors

• Vector3D min (const Vector3D &v) const

return the minimum values between two vectors

Vector3D max (const Vector3D &v) const

return the maximum values between two vectors

Vector3D clamp (const Vector3D &min, const Vector3D &max)

clamp the values of the vector between min and max

• float somme () const

calculate the sum of the vector

• float substract () const

calculate the substraction of the vector

• float produit () const

calculate the product of the vector

· float division () const

calculate the division of the vector

4.15.1 Detailed Description

[Vector3D] class of the vector3D This class is used to define the vector3D and to define the methods that the vector3D must have (ex: addition, subtraction, ...)

Parameters

\leftarrow	the x coordinate
_←	
Χ	
\leftarrow	the y coordinate
_←	
У	
\leftarrow	the z coordinate
_←	
Z	

4.15.2 Constructor & Destructor Documentation

4.15.2.1 Vector3D() [1/3]

```
Vector3D::Vector3D (  \mbox{double } x = 0, \\ \mbox{double } y = 0, \\ \mbox{double } z = 0 \mbox{) [inline]}
```

Construct a new Vector3D object.

Parameters

Х	coordinate
у	coordinate
Z	coordinate

4.15.2.2 Vector3D() [2/3]

Construct a new Vector3D object.

Parameters

other

4.15.2.3 Vector3D() [3/3]

Construct a new Vector3D object.

Parameters

other

4.15.3 Member Function Documentation

4.15.3.1 angle()

calculate the angle between two vectors

Parameters

Returns

float

4.15.3.2 clamp()

clamp the values of the vector between min and max

Parameters

Returns

Vector3D

4.15.3.3 cross()

calculate the cross product of two vectors

Parameters

Returns

Vector3D

4.15.3.4 distance()

calculate the distance between two vectors

Parameters

Returns

float

4.15.3.5 division()

```
float Vector3D::division ( ) const
```

calculate the division of the vector

Returns

float

4.15.3.6 dot()

calculate the dot product of two vectors

Parameters

other

```
4.15 Vector3D Class Reference
Returns
     float
4.15.3.7 getVector()
std::vector<double> Vector3D::getVector ( ) const
Get the Vector object.
Returns
     std::vector<double>
4.15.3.8 getX()
double Vector3D::getX ( ) const
Get the X object.
Returns
     double
4.15.3.9 getY()
double Vector3D::getY ( ) const
Get the Y object.
Returns
     double
4.15.3.10 getZ()
double Vector3D::getZ ( ) const
```

Returns

Get the Z object.

double

4.15.3.11 length()

```
double Vector3D::length ( ) const
```

calculate the length of the vector

Returns

double

4.15.3.12 lerp()

linear interpolation between two vectors

Parameters

V	other vector to interpolate with this one
t	interpolation value between 0.0f and 1.0f

Returns

Vector3D

4.15.3.13 magnitude()

```
Vector3D Vector3D::magnitude ( ) const
```

calculate the magnitude vector of this vector

Returns

Vector3D

4.15.3.14 max()

return the maximum values between two vectors

Pa	ra	m	ρi	ŀΔ	re
гα	ıa			LC	ıə

1/	
v	

Returns

Vector3D

4.15.3.15 min()

return the minimum values between two vectors

Parameters

Returns

Vector3D

4.15.3.16 normalize()

```
Vector3D Vector3D::normalize ( ) const
```

normalize the vector

Returns

Vector3D

4.15.3.17 operator"!=()

Compare two vectors.

Da			_ 1		
Pа	ra	m	eı	re	rs

other

Returns

true false if the two vectors are different or not

4.15.3.18 operator*() [1/2]

Multiply two vectors.

Parameters

other

Returns

Vector3D

4.15.3.19 operator*() [2/2]

Multiply a scalar to a vector.

Parameters

scalar

Returns

Vector3D

4.15.3.20 operator*=() [1/2]

Multiply two vectors.

_					
Pa	ra	m	Рĺ	ÌΑ	rς

other

Returns

Vector3D&

4.15.3.21 operator*=() [2/2]

Multiply a scalar to a vector.

Parameters

scalar

Returns

Vector3D&

4.15.3.22 operator+() [1/2]

Add two vectors.

Parameters

other

Returns

Vector3D

4.15.3.23 operator+() [2/2]

Add a scalar to a vector.

Parameters scalar Returns Vector3D 4.15.3.24 operator+=() [1/2] Vector3D& Vector3D::operator+= (const Vector3D & other) Add two vectors. **Parameters** other Returns Vector3D& 4.15.3.25 operator+=() [2/2] Vector3D& Vector3D::operator+= (double *scalar*) Add a scalar to a vector. **Parameters** scalar Returns Vector3D& 4.15.3.26 operator-() [1/3] Vector3D Vector3D::operator- () const

Negate a vector.

Returns

Vector3D

4.15.3.27 operator-() [2/3]

Substract two vectors.

Parameters

other

Returns

Vector3D

4.15.3.28 operator-() [3/3]

Substract a scalar to a vector.

Parameters

scalar

Returns

Vector3D

4.15.3.29 operator-=() [1/2]

Substract two vectors.

Paramete	rs
other	

Returns

Vector3D&

4.15.3.30 operator-=() [2/2]

Substract a scalar to a vector.

Parameters

scalar

Returns

Vector3D&

4.15.3.31 operator/() [1/2]

Divide two vectors.

Parameters

other

Returns

Vector3D

4.15.3.32 operator/() [2/2]

Divide a scalar to a vector.

Do					
Pа	ra	m	eı	re.	rs

scalar

Returns

Vector3D

4.15.3.33 operator/=() [1/2]

Divide two vectors.

Parameters

other

Returns

Vector3D&

4.15.3.34 operator/=() [2/2]

Divide a scalar to a vector.

Parameters

scalar

Returns

Vector3D&

4.15.3.35 operator<()

Compare two vectors.

Parameters

other

Returns

true false if the first vector is smaller than the second or not

4.15.3.36 operator<<()

Overload for std::ostream.

Parameters

os is the stream to write in

Returns

std::ostream&

4.15.3.37 operator<=()

Compare two vectors.

Parameters

other

Returns

true false if the first vector is smaller or equal than the second or not

4.15.3.38 operator=() [1/2]

Copy assignment operator.

Parameters

other

Returns

Vector3D&

4.15.3.39 operator=() [2/2]

Move assignment operator.

Parameters

other

Returns

Vector3D&

4.15.3.40 operator==()

Compare two vectors.

Parameters

other

Returns

true false if the two vectors are equal or not

4.15.3.41 operator>()

Compare two vectors.

Parameters

other

Returns

true | false if the first vector is greater than the second or not

4.15.3.42 operator>=()

Compare two vectors.

Parameters

other

Returns

true false if the first vector is greater or equal than the second or not

4.15.3.43 produit()

```
float Vector3D::produit ( ) const
```

calculate the product of the vector

Returns

float

4.15.3.44 reflect()

calculate the reflection vector of this vector

Par	ame	1Pre	2

normal

Returns

Vector3D

4.15.3.45 rotateX()

rotate the vector on the x axis

Parameters

angle

4.15.3.46 rotateY()

rotate the vector on the y axis

Parameters

angle

4.15.3.47 rotateZ()

rotate the vector on the z axis

Parameters

angle

4.15.3.48 setVector()

Set the Vector object.

Parameters

Χ	
У	
Z	

4.15.3.49 setX()

```
void Vector3D::setX ( double x )
```

Set X in the vector.

Parameters

Х

4.15.3.50 setY()

Set Y in the vector.

Parameters

У

4.15.3.51 setZ()

```
void Vector3D::setZ ( double z )
```

Set Z in the vector.

Parameters

Z

4.15.3.52 somme()

```
float Vector3D::somme ( ) const
```

calculate the sum of the vector

Returns

float

4.15.3.53 squaredLength()

```
Vector3D Vector3D::squaredLength ( ) const
```

calculate the squared length of the vector (faster than length)

Returns

Vector3D

4.15.3.54 substract()

```
float Vector3D::substract ( ) const
```

calculate the substraction of the vector

Returns

float

4.15.3.55 translate()

translate the vector with another vector

Para	meters
V	

The documentation for this class was generated from the following file:

• inc/Vector3D.hpp

Index

addDirectionalLight	operator/=, 26, 28
Light, 61	operator=, 28, 30
addPointLight	operator==, 30
Light, 61	setA, 30
addPrimitive	setB, 32
Scene, 81	setG, 32
angle	setR, 32
Vector3D, 94	Cone, 33
,	Cone, 34, 35
blend	getColor, 35
Color, 18	getDirection, 35
	getHeight, 35
Camera, 7	getNormal, 36
Camera, 8, 9	getPosition, 36
getFov, 9	getRadius, 36
getPixel, 10	intersect, 36
getPixels, 10	normalize, 37
getPosition, 10	operator=, 37, 38
getRay, 11	setDirection, 38
getResolution, 11	setHeight, 38
getRotation, 11	setPosition, 38
getType, 11	setRadius, 39
operator=, 12	Config, 39
setFov, 12	Config, 40
setPixel, 13	getRaySetting, 40
setPixels, 13	
setPosition, 14	Core, 42
setResolution, 14	Core, 42
setRotation, 14	createlmage
clamp	ImagePPM, 51
Vector3D, 95	Cross
Color, 15	Vector3D, 95
blend, 18	Cylinder, 44, 45
Color, 17	Cylinder, 44, 45
gammaCorrection, 18	getColor, 45
getA, 18	getHeight, 45
getB, 19	getNormal, 46
getG, 19	getPosition, 46
getR, 19	getRadius, 46
lerp, 19	intersect, 46
mix, 20	normalize, 47
operator!=, 20	operator=, 47, 48
operator<<, 28	setColor, 48
operator*, 20, 21	setHeight, 48
operator*=, 21, 22	setPosition, 48
operator+, 22	setRadius, 49
operator+=, 23	diatanaa
operator-, 23, 24	distance
operator-=, 24	Vector3D, 96
operator/, 26	division
operator, 20	Vector3D, 96

dot	getPosition
Vector3D, 96	Camera, 10
	Cone, 36
gammaCorrection	Cylinder, 46
Color, 18	Plane, 71
getA	getR
Color, 18	_
getAmbient	Color, 19
Light, 61	getRadius
getAxis	Cone, 36
-	Cylinder, 46
Plane, 69	Sphere, 88
getB	getRay
Color, 19	Camera, 11
getCamera	getRaySetting
Scene, 81	Config, 40
getCenter	getResolution
Sphere, 87	Camera, 11
getColor	getRotation
Cone, 35	Camera, 11
Cylinder, 45	
Iprimitives, 56	getType
Light, 61	Camera, 11
Plane, 69	Light, 62
	RaySetting, 79
Sphere, 88	getVector
getDiffuse	Vector3D, 97
Light, 62	getWidth
getDirection	ImagePPM, 53
Cone, 35	getX
Ray, 76	Vector3D, 97
getDirectionalLights	getY
Light, 62	Vector3D, 97
getFov	getZ
gen ov	
-	
Camera, 9	Vector3D, 97
Camera, 9 getG	Vector3D, 97
Camera, 9 getG Color, 19	Vector3D, 97 ImagePPM, 49
Camera, 9 getG Color, 19 getHeight	Vector3D, 97 ImagePPM, 49 createImage, 51
Camera, 9 getG Color, 19 getHeight Cone, 35	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54 setPixel, 54
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54 setPixel, 54
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54 setPixels, 54
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54 setPixel, 54 setPixels, 55 setSize, 55
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54 setPixel, 54 setPixels, 55 setSize, 55 setWidth, 55 intersect
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69 Sphere, 88	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54 setPixel, 54 setPixels, 55 setSize, 55 setWidth, 55 intersect Cone, 36
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69 Sphere, 88 getOrigin	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54 setPixels, 54 setPixels, 55 setSize, 55 setWidth, 55 intersect Cone, 36 Cylinder, 46
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69 Sphere, 88 getOrigin Ray, 76	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54 setPixels, 54 setPixels, 55 setSize, 55 setWidth, 55 intersect Cone, 36 Cylinder, 46 Iprimitives, 57
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69 Sphere, 88 getOrigin Ray, 76 getPixel	Vector3D, 97 ImagePPM, 49
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69 Sphere, 88 getOrigin Ray, 76 getPixel Camera, 10	Vector3D, 97 ImagePPM, 49
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69 Sphere, 88 getOrigin Ray, 76 getPixel Camera, 10 ImagePPM, 52	Vector3D, 97 ImagePPM, 49
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69 Sphere, 88 getOrigin Ray, 76 getPixel Camera, 10 ImagePPM, 52 getPixels	Vector3D, 97 ImagePPM, 49
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69 Sphere, 88 getOrigin Ray, 76 getPixel Camera, 10 ImagePPM, 52 getPixels Camera, 10	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54 setPixels, 55 setSize, 55 setSize, 55 setWidth, 55 intersect Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 71 Scene, 82 Sphere, 88 Iprimitives, 56 getColor, 56
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69 Sphere, 88 getOrigin Ray, 76 getPixel Camera, 10 ImagePPM, 52 getPixels Camera, 10 ImagePPM, 53	Vector3D, 97 ImagePPM, 49
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69 Sphere, 88 getOrigin Ray, 76 getPixel Camera, 10 ImagePPM, 52 getPixels Camera, 10	Vector3D, 97 ImagePPM, 49 createImage, 51 getHeight, 52 getPixel, 52 getPixels, 53 getWidth, 53 ImagePPM, 50, 51 operator=, 53 setHeight, 54 setPixels, 55 setSize, 55 setSize, 55 setWidth, 55 intersect Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 71 Scene, 82 Sphere, 88 Iprimitives, 56 getColor, 56
Camera, 9 getG Color, 19 getHeight Cone, 35 Cylinder, 45 ImagePPM, 52 getIprimitives Scene, 81 getLight Scene, 81 getNormal Cone, 36 Cylinder, 46 Iprimitives, 57 Plane, 69 Sphere, 88 getOrigin Ray, 76 getPixel Camera, 10 ImagePPM, 52 getPixels Camera, 10 ImagePPM, 53	Vector3D, 97 ImagePPM, 49

length	operator*
Vector3D, 97	Color, 20, 21
lerp	Vector3D, 100
Color, 19	operator*=
Vector3D, 98	Color, 21, 22
Light, 58	Vector3D, 100, 102
addDirectionalLight, 61	operator+
addPointLight, 61	Color, 22
getAmbient, 61	Light, 63
getColor, 61	Vector3D, 102
getDiffuse, 62	operator+=
getDirectionalLights, 62	Color, 23
getPointLights, 62	Light, 63
getType, 62	Vector3D, 103
Light, 60	operator- Color, 23, 24
operator!=, 63	Light, 64
operator+, 63 operator+=, 63	_
•	Vector3D, 103, 104
operator-, 64 operator-=, 64	operator-= Color, 24
operator=, 65	Light, 64
operator==, 65	Vector3D, 104, 105
setAmbient, 66	operator/
setDiffuse, 66	Color, 26
setDirectionalLights, 66	Vector3D, 105
setPointLights, 66	operator/=
Seti Olitelgitis, 00	Color, 26, 28
magnitude	Vector3D, 106
Vector3D, 98	operator=
max	Camera, 12
Vector3D, 98	Color, 28, 30
min	Cone, 37, 38
Vector3D, 99	Cylinder, 47, 48
mix	ImagePPM, 53
Color, 20	Light, 65
,	Plane, 72
normalize	Ray, 77
Cone, 37	Scene, 83
Cylinder, 47	Sphere, 89, 90
Iprimitives, 58	Vector3D, 107, 109
Plane, 71	operator==
Sphere, 89	Color, 30
Vector3D, 99	Light, 65
	Vector3D, 109
operator!=	, ,
Color, 20	Plane, 67
Light, 63	getAxis, 69
Vector3D, 99	getColor, 69
operator<	getNormal, 69
Vector3D, 106	getPosition, 71
operator<<	intersect, 71
Color, 28	normalize, 71
Vector3D, 107	operator=, 72
operator<=	Plane, 68, 69
Vector3D, 107	setAxis, 72
operator>	setColor, 73
Vector3D, 109	setPosition, 73
operator>=	produit
Vector3D, 111	Vector3D, 111

putRendering	setFov
Scene, 83	Camera, 12
	setG
Ray, 73	Color, 32
getDirection, 76	setHeight
getOrigin, 76	Cone, 38
operator=, 77	Cylinder, 48
Ray, 74, 76	•
setDirection, 77	ImagePPM, 54
	setIprimitives
setOrigin, 78	Scene, 84
RaySetting, 78	setLight
getType, 79	Scene, 84
reflect	setOrigin
Vector3D, 111	Ray, 78
render	setPixel
Scene, 84	Camera, 13
rotateX	ImagePPM, 54
Vector3D, 112	setPixels
rotateY	Camera, 13
Vector3D, 112	ImagePPM, 55
rotateZ	setPointLights
Vector3D, 112	Light, 66
,	setPosition
Scene, 79	
addPrimitive, 81	Camera, 14
getCamera, 81	Cone, 38
getlprimitives, 81	Cylinder, 48
getLight, 81	Plane, 73
intersect, 82	setR
	Color, 32
operator=, 83	setRadius
putRendering, 83	Cone, 39
render, 84	Cylinder, 49
Scene, 80, 81	Sphere, 90
setCamera, 84	setResolution
setIprimitives, 84	Camera, 14
setLight, 84	setRotation
trace, 85	Camera, 14
setA	setSize
Color, 30	ImagePPM, 55
setAmbient	setVector
Light, 66	
setAxis	Vector3D, 113
Plane, 72	setWidth
setB	ImagePPM, 55
Color, 32	setX
setCamera	Vector3D, 113
Scene, 84	setY
setCenter	Vector3D, 113
	setZ
Sphere, 90	Vector3D, 113
setColor	somme
Cylinder, 48	Vector3D, 114
Plane, 73	Sphere, 85
setDiffuse	getCenter, 87
Light, 66	getColor, 88
setDirection	getNormal, 88
Cone, 38	getRadius, 88
Ray, 77	intersect, 88
setDirectionalLights	
Light, 66	normalize, 89
→ -7	

operator=, 89, 90 setCenter, 90 setRadius, 90	translate, 114 Vector3D, 93, 94
Sphere, 86, 87 squaredLength Vector3D, 114 substract Vector3D, 114	
trace	
Scene, 85	
translate Vector3D, 114	
Vector3D, 91 angle, 94 clamp, 95 cross, 95 distance, 96	
division, 96 dot, 96	
getVector, 97 getX, 97 getY, 97	
getZ, 97 length, 97 lerp, 98	
magnitude, 98 max, 98 min, 99	
normalize, 99 operator!=, 99 operator<, 106	
operator<<, 107 operator<=, 107 operator>, 109	
operator>=, 111 operator*, 100	
operator*=, 100, 102 operator+, 102 operator+=, 103	
operator-, 103, 104 operator-=, 104, 105 operator/, 105	
operator/=, 106 operator=, 107, 109 operator==, 109	
produit, 111 reflect, 111 rotateX, 112	
rotateY, 112 rotateZ, 112 setVector, 113	
setX, 113 setY, 113 setZ, 113	
somme, 114 squaredLength, 114 substract, 114	
Substidut, 114	