

Algorithmically Generated Plants

- Kristina Mkrtchyan -

INTRODUCTION

A brief overview of fractals, L-systems, and how we can generate more realistic plant life.

FRACTALS

Fractals more closely relate to natural objects like snowflakes, plants, or the coastline of

Britain.

Coined in 1975 by Benoit Mandelbrot.

Fractals are a *self-similar* subset of Euclidean space.

Defined as a rough-edged figure whose dimension is some noninteger.

REFERENCES

- 1. Przemyslaw Prusinkiewicz, et al. *The Algorithmic Beauty of Plants*. New York, Ny Springer New York, 1990.
- 2. http://algorithmicbotany.org
- 3. https://en.wikipedia.org/wiki/Hilbert_curve
- 4. https://en.wikipedia.org/wiki/Coastline_paradox5. https://en.wikipedia.org/wiki/Coastline_paradox5. https://en.wikipedia.org/wiki/Coastline_paradox5. https://en.wikipedia.org/wiki/Coastline_paradox
- 6. https://en.wikipedia.org/wiki/Barnsley_fern
- 7. https://en.wikipedia.org/wiki/Affine_transformation

L-SYSTEMS

Figure 1. Modified image of a 2nd order Hilbert Curve as interpreted by a Turtle

Lindenmeyer Systems, or L-Systems, were developed in 1968 for the explicit purpose of studying plant morphology and development.

A type of formal grammar, L-Systems are comprised of production rules that can be used to generate unique strings or models.

The following is an L-System that generates a Hilbert Curve:

$$\omega$$
: L
 p_1 : $L \rightarrow +RF - LFL - FR + p_2$: $R \rightarrow -LF + RFR + FL - p_3$

The recursive nature of L-systems allows for *self-similarity*. Whatever is generated will look natural as a result and increasing levels of recursion will result in what looks like growth.

Growth itself is determined by a function which describes the number of symbols in a string in terms of its derivation length.

To prevent artificial regularity, probability is introduced.

Stochastic L-Systems allow the plant more variation and can be used in an evolutionary context by randomizing either the Turtle interpretation or by modifying the L-System and affecting its topology and geometry.

Figure 2. Example of plants generated using Stochastic L-Systems

Context-sensitive L-Systems can be used in order to better simulate a plant's growth as is dependent on its flow of nutrients or hormones.

Figure 3. Examples of branching structures

RESULTS

Figure 4. Development of *Mycelis muralis* taken from Pusinkiewicz & Lindermayer's *The Algorithmic Beauty of Plants (1990)*

Figure 5. Flower field