Les exercices sont indépendants.

Il sera tenu compte de la rigueur et de la clarté de la rédaction.

Exercice 1

a) Soit $(\alpha_i)_{1 \le i \le 4} \in \mathbb{R}^4$. Montrer qu'il existe un seul polynôme $p \in \mathbb{P}_3$ vérifiant les égalités :

$$p(0) = \alpha_1, p'(0) = \alpha_2, p(1) = \alpha_3, p'(1) = \alpha_4.$$
 (1)

b) Calculer les quatre polynômes p_1, p_2, p_3, p_4 de \mathbb{P}_3 vérifiant les relations (1) avec respectivement $(\alpha_i)_{1 \leq i \leq 4}$ égal à (1,0,0,0), (0,1,0,0), (0,0,1,0) et (0,0,0,1). Montrer que le polynôme p de la question a) s'écrit comme une combinaison linéaire des $(p_i)_{1 \leq i \leq 4}$:

$$p = \sum_{i=1}^{4} \alpha_i p_i.$$

c) Soit f une fonction de classe \mathcal{C}^4 ([0,1]) et soit p_f le polynôme de la question a) avec $\alpha_1 = f(0)$, $\alpha_2 = f'(0)$, $\alpha_3 = f(1)$ et $\alpha_4 = f'(1)$. Montrer que pour chaque point $x \in]0,1[$, il existe un point $\xi_x \in]0,1[$ tel que

$$f(x) - p_f(x) = \frac{\pi(x)}{4} f^{(4)}(\xi_x),$$

avec $\pi(x) = x^2(x-1)^2$.

d) On approche l'intégrale d'une fonction f à l'aide de la formule de quadrature

$$\int_{0}^{1} f(x) dx \sim \int_{0}^{1} p_{f}(x) dx.$$

Montrer que cette formule est exacte pour les polynômes de \mathbb{P}_3 . Calculer les poids

$$w_i = \int_0^1 p_i(x) \, \mathrm{d}x$$

pour $1 \le i \le 4$ et en déduire une formule explicite de la formule de quadrature.

Exercice 2

On considère la formule de quadrature suivante :

$$\int_{-1}^{1} f(x) \, dx \approx k f(x_1) + f(x_2).$$

- a) Donner la valeur de k et les valeurs possibles pour x_1 et x_2 pour que la formule soit exacte pour les éléments de la base canonique de \mathbb{P}_2 .
- b) Quel est l'ordre maximal de la méthode?

Exercice 3

Calculer le polynôme p_2 d'interpolation de Lagrange de $f(x) = \frac{x^2 - 1}{x^2 + 1}$ aux points -1,0,1 et tracer sur un même graphe f et p_2 .

Exercice 4 (Scilab)

On considère une équation de la forme f(x) = 0, où f est l'application de \mathbb{R} dans \mathbb{R} définie par $f(x) = x^3 - 2x - 5$.

- a) Démontrer que l'équation f(x) = 0 admet une unique solution x^* et qu'elle vérifie $1 < x^* < 3$.
- b) Ecrire une fonction scilab de la forme

```
function [valeur,derivee] = f(x)
...
endfunction
```

qui renvoie la valeur de f(x) (dans le réel valeur), et la valeur de f'(x) (dans le réel derivee.)

c) Ecrire une fonction scilab de la forme

```
function [sol,nbiter] = newton(f,x0,tol,itermax)
...
endfunction
```

qui met en œuvre la méthode de Newton pour la fonction f passée en argument, avec comme points de départ $x_0 = a$.

Le critère d'arrêt sera $|x_{n+1} - x_n| < \text{tol} * |x_n|$. Si le nombre d'itérations dépasse itermax, la fonction doit afficher un message d'erreur "la methode ne converge pas".