Transport Layer Study-Ready Notes

Compiled by Andrew Photinakis

October 17, 2025

Contents

1	Introduction to Transport Layer Services	2
2	Transport Layer Overview 2.1 Learning Objectives	2
3	Transport Services and Protocols 3.1 Core Functions	
4	Transport vs. Network Layer Services 4.1 Household Analogy	
5	Transport Layer Actions 5.1 Sender Operations	
6	Internet Transport Protocols 6.1 TCP: Transmission Control Protocol	
7	Study Aids 7.1 Key Concepts	

1 Introduction to Transport Layer Services

- Transport layer provides logical communication between application processes running on different hosts
- Key services include:
 - Multiplexing and demultiplexing
 - Connectionless transport: UDP
 - Principles of reliable data transfer
 - Connection-oriented transport: TCP
 - Principles of congestion control
 - TCP congestion control
 - Evolution of transport-layer functionality

[Summary: The transport layer enables communication between application processes across networks, providing essential services like multiplexing, reliable data transfer, and congestion control through protocols like TCP and UDP.]

2 Transport Layer Overview

2.1 Learning Objectives

- Understand principles behind transport layer services:
 - Multiplexing and demultiplexing
 - Reliable data transfer
 - Flow control
 - Congestion control
- Learn about Internet transport layer protocols:
 - UDP: connectionless transport
 - TCP: connection-oriented reliable transport
 - TCP congestion control

3 Transport Services and Protocols

3.1 Core Functions

• Provides **logical communication** between application processes running on different hosts

- Transport protocols actions in end systems:
 - Sender: breaks application messages into segments, passes to network layer
 - Receiver: reassembles segments into messages, passes to application layer
- Two transport protocols available to Internet applications:
 - TCP (Transmission Control Protocol)
 - **UDP** (User Datagram Protocol)

3.2 Network Architecture Context

Figure 1: Transport layer in network protocol stack

[Summary: Transport protocols operate at end systems, segmenting application messages for transmission and reassembling them upon receipt, with TCP and UDP as the primary Internet protocols.]

4 Transport vs. Network Layer Services

4.1 Household Analogy

- Hosts = houses
- Processes = kids
- Application messages = letters in envelopes
- 12 kids in Ann's house sending letters to 12 kids in Bill's house

4.2 Layer Responsibilities

- Network layer: logical communication between hosts
- Transport layer: logical communication between processes
- Transport layer relies on and enhances network layer services

Network Layer	Transport Layer
Host-to-host communication	Process-to-process communication
Logical communication between hosts	Logical communication between processes
Provides basic datagram delivery	Enhances delivery with reliability, order-
	ing, etc.

Table 1: Comparison of Network vs. Transport Layer Services

[Mnemonic: "Houses Host, Kids Process" - Network layer connects houses (hosts), Transport layer connects kids (processes) within houses.]

5 Transport Layer Actions

5.1 Sender Operations

- 1. Receives application-layer message
- 2. Determines segment header field values
- 3. Creates segment with header and payload
- 4. Passes segment to IP (network layer)

Figure 2: Sender-side transport layer processing

5.2 Receiver Operations

- 1. Receives segment from IP (network layer)
- 2. Checks header values for correctness
- 3. Extracts application-layer message from segment
- 4. Demultiplexes message up to application via appropriate socket

Figure 3: Receiver-side transport layer processing

[Summary: The transport layer segments application data at the sender and reassembles it at the receiver, handling header processing and message demultiplexing to the correct application process.]

6 Internet Transport Protocols

6.1 TCP: Transmission Control Protocol

- Reliable, in-order delivery: Ensures all data arrives correctly and in sequence
- Congestion control: Prevents network overload by adjusting transmission rate
- Flow control: Prevents overwhelming the receiver
- Connection setup: Requires establishment of connection before data transfer

6.2 UDP: User Datagram Protocol

- Unreliable, unordered delivery: No guarantees on delivery or ordering
- No-frills extension of "best-effort" IP: Minimal overhead beyond IP
- Services not available:
 - Delay guarantees
 - Bandwidth guarantees

[Concept Map: Transport Layer \to TCP (reliable, connection-oriented, flow/congestion control) vs UDP (unreliable, connectionless, minimal overhead) \to Applications choose based on reliability vs performance needs.]

TCP Features	UDP Features
Connection-oriented	Connectionless
Reliable delivery	Best-effort delivery
In-order delivery	No ordering guarantees
Flow control	No flow control
Congestion control	No congestion control
Higher overhead	Lower overhead
Use cases: Web, email, file transfer	Use cases: DNS, VoIP, streaming

Table 2: Comparison of TCP vs. UDP Protocols

7 Study Aids

7.1 Key Concepts

- Understand the difference between network layer (host-to-host) and transport layer (process-to-process) communication
- Memorize the characteristics and use cases for TCP vs UDP
- Be able to describe the segmentation process at sender and reassembly at receiver
- Know the household analogy for understanding layer responsibilities

7.2 Practice Questions

- 1. Compare and contrast the services provided by TCP and UDP. When would you choose one over the other?
- 2. Describe the process of **multiplexing and demultiplexing** at the transport layer. How does the transport layer ensure messages reach the correct application process?
- 3. Explain the **household analogy** for understanding the difference between network and transport layer services.
- 4. What are the key **transport layer actions** performed by the sender and receiver during data transmission?
- 5. Why is **congestion control** an important transport layer function, and which protocol provides it?

[Mnemonic: "TCP: Reliable Connection, UDP: Unreliable Datagram" - TCP establishes reliable connections while UDP sends unreliable datagrams.]