arxiv.org/abs/2505.15778

Soft Thinking: Unlocking the Reasoning Potential of LLMs in Continuous Concept Space

开源代码: github.com/eric-ai-lab/soft-Thinking

Soft Thinking: 一种引入连续空间概念的解码策略

Zhen Zhang^{1*} Xuehai He^{2*} Weixiang Yan¹ Ao Shen⁴ Chenyang Zhao^{3,5} Shuohang Wang⁶ Yelong Shen⁶ Xin Eric Wang^{1,2}

¹University of California, Santa Barbara, ²University of California, Santa Cruz ³University of California, Los Angeles, ⁴Purdue University, ⁵LMSYS Org, ⁶Microsoft zhen_zhang@ucsb.edu, ericxwang@ucsb.edu

本文提出Soft Thinking: 一种无需训练IIm即可在连续概念空间(Continuous Concept Space)中进行解码的策略。

按照论文的说法,soft thinking是对CoT reasoning的改进,我个人观点,本质上soft thinking是一种解码 (decoding)策略,既然是解码策略,那么一般就具有通用性,所以不局限在CoT reasoning,或许这只是一个应用场景吧,也方便做实验。

ok下面说下什么是soft thinking,首先我们回顾下自回归式IIm如何做解码的,在某个step,softmax输出整个词表的概率分布,然后用greedy/各种Sampling得到一个token,再把它作为输入去预测下一个token。本文将softmax得到的概率分布称为概念token(concept token),不greedy/sampling了,直接根据概率分布将整个词表向量线性加权,作者说这个线性加权得到的向量空间就是连续概念空间(continuous concept space),对应上题目了,有了连续的概念了,然后把线性加权后的向量作为输入去预测下一个"token"。再说下第二个创新点cold stop,可以联想下训练模型常用的技巧early stop,既然softmax得到概率分布,那么就可以计算熵(entropy),如果熵小,说明分布很不均匀,表示模型信心很足,如果连续多个step的熵都很小,就强行停止thinking,让IIm去预测答案。

示意图

Figure 2: *Soft Thinking* replaces discrete tokens with soft, abstract *concept tokens*, enabling reasoning in continuous concept space.

部分实验结果

	Accuracy ↑					Generation Length ↓				
	MATH 500	AIME 2024	GSM8K	GPQA Diamond	Avg.	MATH 500	AIME 2024	GSM8K	GPQA Diamond	Avg.
	QwQ-32B [13]									
CoT Thinking	97.66	76.88	96.67	64.17	83.84	4156	12080	1556	8095	6472
CoT Thinking (Greedy)	97.00	80.00	96.57	65.15	84.68 († 0.84)	3827	11086	1536	7417	5967 (\ 7.8%)
Soft Thinking	98.00	83.33	96.81	67.17	86.32 († 2.48)	3644	10627	1391	7213	5719 (\ 11.6%)
	DeepSeek-R1-Distill-Qwen-32B [38]									
CoT Thinking	94.50	72.08	95.61	63.10	81.32	3543	9347	875	6218	4995
CoT Thinking (Greedy)	93.00	63.33	95.30	59.09	77.68 (\psi 3.64)	3651	8050	1048	8395	5286 († 5.8%)
Soft Thinking	95.00	76.66	95.83	64.64	83.03 († 1.71)	3373	6620	785	4722	3875 (↓ 22.4%)
	DeepSeek-R1-Distill-Llama-70B [38]									
CoT Thinking	94.70	70.40	94.82	65.34	81.31	3141	8684	620	5500	4486
CoT Thinking (Greedy)	94.61	73.33	93.60	66.16	81.92 († 0.61)	2877	9457	606	4443	4345 (\ 3.1%)
Soft Thinking	94.80	73.33	94.90	66.66	82.42 († 1.11)	3021	6644	597	4470	3683 (17.9%)

思考

自回归式LLM或者说NLP,是建立在离散语言结构基础上的,相比于连续,似乎离散型就是存在不足,作者能够去探索如何引入连续性是很值得鼓励的。只不过,我个人认为soft Thinking 所做的"用 softmax 分布加权 embedding"这一做法稍微有那么一点点浅显了,现在IIm的词表都很大,十几万的embedding加起来,哪怕再结合下top-p sampling呢?而且连续解码还有一个问题,由于不再输出具体的token,而是概率分布,那么就没有IIm的思考过程了,只能看到IIm输出的答案。

以上仅是我个人观点,不是批评,相比起很多easy task,作者能去啃连续这个硬骨头,已经很值得鼓励了。