# 表情识别中期报告

2020010768 无 05 付字辉

注: 以下实验环境均为在 torch1.9.0, cuda=11.1

## 一、运行基准模型

#### 1. 代码结构

├─files

| dataset.py 自定义数据集,用于加载数据
| main.py 训练,验证,测试模型
| model.py 定义模型结构

### 2. 基准模型的结构



#### 3. 运行结果

在全部使用默认参数的情况下的输出结果为:

val accuracy:28.952381134033203%

test accuracy:32.21757125854492%

# 二、实验结果分析

1. 对于不同的 learning\_rate, 在训练集上其 loss 和 accuracy 的变化曲线如下:



只改变 learning\_rate, 其余参数全为默认的情况下的输出结果为:

| learning_rate | val accuracy        | test accuracy       |
|---------------|---------------------|---------------------|
| 0.001         | 17.06122398376465%  | 17.06122398376465%  |
| 0.005         | 22.91156578063965%  | 26.79218864440918%  |
| 0.01          | 28.952381134033203% | 32.21757125854492%  |
| 0.05          | 49.59183883666992%  | 52.23152160644531%  |
| 0.1           | 49.755104064941406% | 53.528587341308594% |

#### 2. 样本的特征分布

加载在 learning\_rate = 0.1 下训练得到的模型,其余超参数均为默认的情况下,在对测试集的预测过程中,选取了如图所在的特征,进行了 PCA 降维分析,降维到 2 维并进行了可视化分析。

```
def forward(self, x):
    x = self.relu(self.conv1(x))
    x = self.max_pooling(x)
    x = self.relu(self.conv2(x))
    x = self.max_pooling(x)
    x = self.conv3(x)
    x = self.GAP(x).squeeze(dim=3).squeeze(dim=2)
    # you can see this x as the feature, and use it to visualize something
    self.feature = x
    x = self.fc1(self.relu(x))
    x = self.fc2(self.relu(x))
    return x
```

看图,发现模型并没有将特征很好地进行分离,仍然混在一起。经过思考之后发现,在特征 提取之后仍然有两层非线性激活函数,导致此时的特征并没有近似的线性可分的性质,之后 的实验会改变模型,再次分析。



## 三、模型优化

接下来考虑使用的办法:

训练数据的使用:数据增强

网络结构的调整:使用 Resnet 的结构,进行实验

损失函数:交叉熵,加入正则化损失等等

训练方式:调整学习率,batch size,优化器换用 adam 等等,加大训练的 epoch 使其完全收敛等。