

UD02-110

Almacenamento Externo

Introducción

- Características da memoria secundaria
 - Menor velocidade que a memoria principal
 - Mesmo formato de almacenamento que a memoria principal
 - Non volátil
 - Memoria de almacenamento masivo e barato
 - Independente da RAM e da CPU
- Os dispositivos de almacenamento externo poden ser
 - Disco duro
 - Disquetera
 - CD/DVD/Blu Ray
 - Unidade de cinta/ZIP
 - Tarxetas SD/MS/MMC
 - Pendrive
- Non se pode traballar directamente coa información dos discos duros se non que debe transferirse previamente á memoria RAM

Discos Duros

Qué é un disco duro ou HDD (Hard Disk Drive)?

- É un medio de almacenamento secundario (xerarquía de memorias) que permite almacenar e recuperar gran cantidade de información.
- Usa memoria NON volátil e a súa velocidad de acceso é considerablemente máis lenta (10 ms) que a memoria RAM (50ns)
- Usa un medio magnético para o almacenamento e a capacidade máxima actual no mercado dun HDD ronda os 14TB (*Helio*) pero en modelos empresarais e experimentais falanse de capacidades de 30, 60 ou 100TB.
- Os primeiros ordenadores persoais, non tiñan disco duro e cargaban o SO e as aplicacións a través de disquetes. O primeiro disco duro da historia foi o IBM 350 que pesaba unha tonelada e gardaba 5 MB.
- En 1980 o HDD de maior capacidade era de 1 GB e tiña o tamaño dun refrixerador.

(UD02-115 - Evolución Almacenamento Externo)

Partes físicas dun HDD

Partes físicas dun HDD

- Pistas: Están numeradas consecutivamente dende o interior (0), cara a fora
- Tamaño: 3 ½" (mecánicos), de 5 ¼ " (antigos) y 2 ½ " (ssd ou portátiles)
- Cabezas: Leen /escriben a información nos pratos, e hai unha por cada cara dun prato. Flotan a unha distancia moi pequena da superficie sen chegar a tocala
- Eixo: Soporta os pratos e os fai xirar. As velocidades soen ser 5400, 7200, 10000 e 15000 rpm
- Brazo ou impulsor de cabeza: Move as cabezas radialmente ao través dos pratos
- Controladora de disco duro : circuitos integrados que se encargan de xestionar o funcionamento do disco duro: lectura, escritura, movemento do motor, movemento do cabezal, etc. e poden ser: IDE (PATA), SATA, EIDE e SCSI.

Veñen nunha caixa selada herméticamente para illalos do pó do exterior.

Partes lóxicas dun HDD

As partes lóxicas son as divisións imaxinarias que fai o S.O. nun disco

- Pistas: Aneis concéntricos nos que se divide unha cara
- **Sector:** Segmentos direccionables nos que se divide cada pista. Son 15 en discos antiguos e 63 nos actuais. Unidade mínima de lectura/escritura nun disco, usualmente de 512 bytes
- Cilindro: Pistas as que accede simultáneamente o S.O. en cada posición das cabezas
- É máis rápido escribir na mesma pista de varios pratos que encher un prato despóis do outro

Partes lóxicas dun HDD

Cilindros dun disco

Mentres un sector e a unidade máis pequena físicamente direccionable dun disco duro, un cluster é a unidade máis pequena de almacenamento no mesmo. Clúster e sector poden coincidir en moitas ocasións, pero medida que medra o tamaño do disco, o máis habitual é que o aumente o tamaño do cluster, de xeito que o seu número non sexa excesivo e sexa manexable polo SO.

Cables de conexión

Tamaño dos discos duros

Tamaño dos discos duros

Factor de forma	Descripción
5.25"	Unidades ópticas
3.5"	HDD escritorio (o SSHD – Solid State Irbid Disk)
2.5"	HDD portátil o SSD
1.8"	SSD
Tarjeta PCI Express	SSD con SATA express

Características dun HDD

- TMA Tempo medio de acceso ("Average Seek Time"): Tempo medio que tarda a cabeza en acceder aos datos (mudar de cabeza + procurar pista + procurar sector)
- **Velocidade de rotación:** velocidade á que vira o disco duro (RPM). A máis velocidade, máis trasferencia pero máis ruido e máis calor.
- **Tamaño do buffer:** Os discos gardan na caché os datos contiguos, para proporcionar acceso máis rápido (Problema da fragmentación)
- Velocidade de transferencia: Cantidade de datos que un disco pode ler/escribir na parte exterior do disco nun segundo (MB/seg)
- MTBF: Tempo medio entre erros medido en horas
- Tamaño físico: Diámetro dos pratos do disco expresado en polgadas
- Capacidade: Información que se pode almacenar nun disco duro
- Interfaz: Medio utilizado para conectarse ao equipo: IDE, SCSI, SATA e SAS

Xeometría dun HDD

• A **xeometría CHS** dun disco fai referencia o número físico real de cabezas, cilindros e sectores. Coñecendo estes valores pódese calcular a capacidade dun disco:

Capacidade = Cilindros * Cabezas * SectoresPista * TamañoSector

A capacidade máxima vai estar restrinxida a 528MB polas limitacións da BIOS a da especificación ATA. ECHS ou Extended CHS permite acadar os 8GB de capacidade.

• O sistema LBA (*Logical Block Adressing*) identifica todos os sectores dun disco mediante números consecutivos, sendo éste o método que se está a usar nos discos actuais.

Capacidade = 512 * Nº sectores LBA

O direccionamento en LBA pode ser de 28 bits, para discos de ata 128 GiB (2^28 x 512 b/sector) o de 48 bits, ATA-6, para discos de ata 128 PiB (2^48 x 512 b/sector).

(Ollo co redondeo que se fai nas potencias decimais 1GB=1000MB que resultan nunha diferencia entre a capacidade anunciada e a capacidade real)

Xeometría dun HDD

Exemplos

Configuración discos IDE

- Conéctanse á interfaz IDE da placa mediante un cable plano de 40 pins. Se hai dous conectores na placa, un será o primario e outro o secundario.
- O disco de arranque deberá estar sempre conectado no primario
- Unha interfaz IDE soporta un máximo de dous dispositivos IDE
- Agora xa en decadencia debido o uso maioritario dos SATA.

Configuración discos IDE

Mestre/Esclavo

- Un interfaz IDE soporta dous dispositivos que deben estar identificados como mestre e outro como esclavo. Dita identificación farase cuns jumpers sitos no propio disco.
- O cable usado neste caso ten tres conectores, un para a placa base (azul ou verde) e os outros para o mestre (negro) e o esclavo (gris)

Configuración discos IDE

Mestre/Esclavo

Discos SATA

- Os discos SATA (serial ATA) son o estándar actual en discos duros
- Cada disco ten o seu propio cable e non existe o rol mestre/esclavo
- Ten un conector de datos de 10 mm e 7 fíos a ata 1 metro de longo

Especificación	Velocidad de transferencia	Nombre de interface
SATA Revision 3.x	6 Gb/s	SATA 6 Gb/s
SATA Revision 2.x	3 Gb/s	SATA 3 Gb/s
SATA Revision 1.x	1,5 Gb/s	SATA 1,5 Gb/s

Modos SATA na BIOS

- IDE [Legacy]: Mantén compatibilidade con SOs antigos que non teñan drivers para controladoras SATA, como Windows XP. Nembargantes isto implica que a súa velocidade será a dun IDE.
- AHCI: É o protocolo estándar de comunicacións para SATA, polo que será quen de aproveitar toda a velocidade que ofrece este interfaz. Pode xestionar ata un máximo de 32 dispositivos SATA. Soportada a partir de Windows 7 aínda que neste SO non ven activada de xeito predeterminado.

S.M.A.R.T.

- SMART significa Self Monitoring Analysis and Reporting Technology e é unha tecnoloxía para detectar anomalías nos discos duros, monitorizando parámetros como velocidade dos pratos, sectores defectuosos, erros de calibración, temperatura do disco, etc.
- Detecta a meirande parte de fallos relacionados coa degradación do disco, máis presenta o defecto de que os limiares de detección de erros non veñen estandarizados, e dependen de cada fabricante
- Para que SMART funcione de xeito adecuado é necesario que tanto a BIOS coma o disco duro teñan soporte SMART.

S.M.A.R.T.

Discos SCSI

- Os discos SCSI (Small Computer System Interface) requiren dun controlador extra xa que non soen vir integrados nas placas base
- Pódense conectar ata 7 ou 15 dispositivos (no wide SCSI) a través dun único slot
- Fan menos uso do procesador
- Os seus conectores poden ser moi variados

Discos SAS

- Os discos SAS (Seria Attached SCSI) son a evolución do SCSI de paralelo a serie
- Pódense conectar ata 128 dispositivos
- Comunicación full duplex a 3Gb/s en cada sentido
- Soporta discos SATA

Advanced Format

Conectores e Protocolos

 A medida que medra o tamaño dos discos, faise patente que o tamaño de sector estándar, 512 bytes, estase a quedar pequeno.

 Capacidad
 Total de sectores
 Resolución de sector

 40 MB
 80.000
 0,001%

 400 GB
 800.000.000
 0,0000001%

- A partir do 2011 faise obrigatorio que os discos veñan con AF (Advanced Format) onde o sector pasa a ser de 4KB na vez de 512 b
- Os sistemas Windows 7 e posteriores, xa soportan de xeito nativo Advanced Format

Interfaces dun HDD

	Veloc.Transf.	Notas
IDE	4MB/s	 Non permitía conexión de CD nin DVD Non permitía conectar máis de dúas unidades IDE
EIDE	10MB/s(ATA-2) 133MB/s(ATA-7)	 Permitía conexión de CD e DVD Pódense conectar ata catro unidades IDE
SATA	1,5Gb/s SATA-1 3Gb/s SATA-2 6Gb/s SATA3	 Un cable para cada disco, garantindo acceso concurrente a todos os discos Cable máis fino que mellora a ventilación Usa codificación 8b/10B (20% control, 80%datos) SATA 3 = 6Gb/s = 4,8Gb/s = 600MB/s
SCSI	150MB/s	 Pode xestionar ata 16 dispositivos Uso en entornos profesionais
SAS	3GB/s	 Sustitue o SCSI Mellora a velocidade Permite a desconexión en quente dos dispositivos Ata 16384 dispositivos direccionables

• Un SSD é un dispositivo de almacenamento que usa unha memoria flash non volátil para gardar os datos. Preséntase comercialmente en Decembro do 2009, usando a interfaz SATA III e están construidos en base a semiconductores desbotando as parte móbiles.

- Vantaxes:
 - Arranque máis rápido
 - Latencia cen veces máis rápida que os discos mecánicos
 - Maior rapidez de lectura/escritura
 - Menor consumo de enerxía
 - Menos peso e tamaño
 - Menos ruído
 - Máis resistente a golpes e vibracións
- Desvantaxes:
 - Maior custe por GB
 - Menor velocidade en operacións secuenciais
 - Menor tempo de vida fiable
- Desvantaxes superadas
 - Degradación do rendemento
 - Menor velocidade en operacións secuenciais
 - Capacidade

- Vantaxes:
 - Arranque máis rápido
 - Latencia cen veces máis rápida que os discos mecánicos
 - Maior rapidez de lectura/escritura
 - Menor consumo de enerxía
 - Menos peso e tamaño
 - Menos ruído
 - Máis resistente a golpes e vibracións
- Desvantaxes:
 - Maior custe por GB
 - Menor velocidade en operacións secuenciais
 - Menor tempo de vida fiable
- Desvantaxes superadas
 - Degradación do rendemento
 - Menor velocidade en operacións secuenciais
 - Capacidade

Tecnoloxía de Fabricación

Tipos de SSD	Descrición	Vixencia
SLC Single Level Cell	1 bit por celda Os máis caros e os primeiros que sairon	Obsoletos
MLC Multi Level Cell	2 bits por celda (mayor capacidade) Menor durabilidade por borrados e W	Servidores
TLC Triple Level Cell	3 bits por celda (mayor capacidade) Menor duración suavizada con tecnoloxía	Escritorio

Actualmente xa está dispoñible a tecnoloxía QLC, que usan 4 bits por celda

Conectores e Protocolos

- Un disco SSD pode usar diferentes tipos de conectores: SATA, PCIex4, SATA Express ou M.2.
 Existen, ademáis, dous protocolos configurables dende a BIOS, AHCI (deseñada para discos mecánicos) e NVME (pensada para unidades de estado sólido)
- Un disco SSD con conexión SATA terá como máximo a velocidade do SATA-3 de 600MB/s.

Conectores e Protocolos

• Un disco SSD con conexión PCIe x4 (PCI-SSD), usará NVME como interfaz de comunicación e terá unha velocidade máxima de 4GB/s (4 x PCIe = 1GB/s). As que usan conexión PCIe x8 terán un ancho de banda teórico de ata 7BG/s.

Conectores e Protocolos

• Un disco SSD con conexión M.2, terá unha interfaz NVME e internamente conectarase a un PCIe x4, polo que o seu rendemento será similar o PCI-SSD.

Conectores e Protocolos

- Un disco SSD con conexión SATA Express (2 SATA + 1 de control) terá a velocidade equivalente a dous SATA menos o ancho usado para control que resulta en 1GB/s
- Este conector quedou obsoleto en beneficio de M.2 e PCI-SSD

HDD vd SSD

Velocidades

Interfaz	MB/s	Mbps
USB 1.0	1,5	12
USB 2.0	60	480
ATA-7 (IDE)	133	1.064
SATA 1 / SATA-150	150	1.200
SATA 2 / SATA-300	300	2.400
SATA 3 / SATA-600	600	4.800
USB 3.0	625	5.000
USB 3.1	1250	10.000
NVMe (SSD con conector M.2)	4.000	32.000

HDD vd SSD

Diferencias

TIPO	HDD	SSD	
Rapidez	Normal	Alta	
Capacidad	Alta	Normal	
Precio	Bajo	Alto	
Consumo	Alto	Bajo	-
Fabricación	Partes mecánicas	Flash NAND	-
Tamaño más habitual	500 Gbytes y 1 Tbyte	120 y 240 Gbytes	-
Uso principal	Almacenamiento de archivos	Sistema operativo	
THE RESERVE TO SERVE			

HDD vd SSD

Diferencias

Discos Híbridos

$$SSHD = HDD + SSD$$

 Combinan nunha mesma carcasa un disco duro clásico e unha memoria flash NAND, que fai de caché mellorando os tempos de transferencia e procura

- Nos SSHD os pratos poden descansar sen consumir enerxía nin xerar calor
- Maís fiabilidade que un disco mecánico convencional
- Maior rendemento que un disco mecánico convencional
- Máis caros que un disco mecánico convencional