

Mahindra University Hyderabad

École Centrale School of Engineering Minor-II Exam

Program: B. Tech.

Year: II Branch: CM Subject: Functional Analysis (MA2212) Semester: Spring

Start Time: 10:00 AM

Max. Marks: 25

Date: 16/04/2025

Time Duration: 1.5 Hours

Instructions:

1) All questions are compulsory.

2) Complete all parts of a question together; do not split them across different sections of the answer sheet.

Course outcomes (COs)

CO 1: Explain fundamental concepts of metric and normed spaces, including Banach spaces, with relevant examples.

CO 2: Apply the Banach fixed point theorem to solve problems in analysis and understand its significance in appli-

CO 3: Classify and examine bounded linear operators and functionals, and characterize the dual of common Banach spaces.

CO 4: Utilize key results such as the Schwarz inequality, projection theorem, and Riesz representation theorem to analyze Hilbert spaces and related operators.

Q.No.	Questions	Marks	CO	BL	РО	PI
						Code
	(a) Prove that the function $\ \cdot\ _p:\ell^p\to\mathbb{R}$ defined by					
	$ x _p = \left(\sum_{j=1}^{\infty} x_j ^p\right)^{\frac{1}{p}} \forall \ x = (x_1, x_2, \ldots) \in \ell^p$					
	is a norm on ℓ^p for $1 \le p < \infty$.					
	(b) Show that the sequence $x = \left(1, \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{3}}, \dots, \sqrt{\frac{1}{n}}, \dots\right)$ does not belong to ℓ^2 , whereas the sequence $x = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right)$ belongs to ℓ^2 .					
1	(OR)	6	CO1	L3	PO1	1.2.1
	(a) Prove that a metric d induced by a norm on a normed space $(X, \ \cdot\)$ satisfies					
	(i) $d(x+\gamma,y+\gamma)=d(x,y)$ and (ii) $d(\alpha x,\alpha y)= \alpha d(x,y)$					
	for all $x, y, \gamma \in X$ and every scalar α .					
	(b) Show that the space $C[0,1]$ is not complete, hence not Banach, with respect to the norm					
	$ f _1 = \int_0^1 f(t) dt.$					

Q.No.	Questions	Marks	CO	BL	PO	Code
2	 (a) Show that the closed unit ball in the space ℓ¹: \$\bar{B}(0;1) = \Biggl\{x = (x_n)_{n \in \mathbb{N}} \ \ x _1 = \sum_{n=1}^\infty x_n \leq 1\Biggr\}\$ is not compact. (b) Define equivalent norms. If two norms · and · _0 on a vector space X are equivalent, show that \$ x_n - x \to 0 \infty x_n - x _0 \to 0\$ as \$n \to \infty\$. 	7	CO1	L4	PO1	1.2.1
3	State the Banach Fixed Point Theorem. Let $X=[1,\infty)$ be a metric space with the usual metric $d(x,y)= x-y $. Consider the mapping $T:X\to X$ defined by $T(x)=\frac{10}{11}\left(x+\frac{1}{x}\right)\text{for all }x\in X.$ Determine whether T is a contraction mapping. Also, determine whether T has a fixed point. If a fixed point exists, determine how many fixed points T has in X , and justify your answer.	6	CO2	L3	PO1	1.2.1
4	Consider the linear differential operator $D:C^1[0,1]\to C[0,1]$ defined by $(Df)(t)=f'(t), t\in[0,1], f\in C^1[0,1].$ (a) Show that D is not bounded if both $C^1[0,1]$ and $C[0,1]$ are equipped with the supremum norm $\ f\ _{\infty}=\sup_{t\in[0,1]} f(t) .$ (b) Show that D is bounded if $C^1[0,1]$ is equipped with the norm $\ f\ _{1,\infty}:=\sup_{t\in[0,1]} f(t) +\sup_{t\in[0,1]} f'(t) , f\in C^1[0,1],$ while $C[0,1]$ has the usual supremum norm $\ \cdot\ _{\infty}.$ (OR) Define a bounded linear operator. Let \mathbb{R}^n and \mathbb{R}^m be equipped with the Euclidean norm $\ \cdot\ _2$, and let $A\in\mathbb{R}^{m\times n}$ be the matrix $A=\begin{bmatrix}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{m1}&\cdots&a_{mn}\end{bmatrix}$. Consider the linear operator $T_A\colon\mathbb{R}^n\to\mathbb{R}^m$ defined by $T_Ax:Ax$ for $x\in\mathbb{R}^n$. Show that $\ T_Ax\ _2\leq \sqrt{\sum_{i=1}^m\sum_{j=1}^na_{ij}^2\cdot\ x\ _2}.$	6	CO3	L4	PO1	1.2.1