An toàn mạng máy tính

Chương 5. Công nghệ mạng riêng ảo

I. Giới thiệu chung

- Mang rieng do Virtual Private Network
- VPN là phương pháp đảm bảo an toàn truy cập từ xa bằng phương pháp thiết lập kênh kết nối riêng (private) trên môi trường mạng công cộng (Internet).

I. Giới thiệu chung

- "Mang riêng ảo":
 - "Mạng riêng": Chỉ có công ty thiết lập nên nó mới sử dụng được.
 - "Åo": Kênh truyền riêng trên mạng Internet

Kết nối VPN

I. Giới thiệu chung

- Thành phần mạng VPN:
 - LAN chính tại trụ sở chính
 - LAN phụ tại chi nhánh
 - Người dùng từ xa, Home network
 - □ Khách hàng, đối tác
 - □ Đường truyền Internet
 - Máy chủ VPN

I. Giới thiệu chung

- Ưu điểm:
 - Chi phí thấp
 - Tăng cường tính bảo mật cho hệ thống
 - Tính mở rộng và linh động
 - Giảm chi phí vận hành và quản lý

I. Yêu cầu an toàn

- Bảo mật:
 - Thực thi giải pháp phòng thủ
 - ☐ Xác thực
 - Mã hóa dữ liệu
 - Quản lý khóa

I. Yêu cầu an toàn

- Sẵn sàng và tin cậy:
 - Khả năng định tuyến
 - Dư thừa các đường truy cập
 - □ Thiết bị dự phòng khi có lỗi phát sinh

2. Phân loại mạng VPN

- Mạng VPN có 2 loại hình:
 - □ VPN Client-to-Site
 - □ VPN Site-to-Site

VPN Client-to-Site

VPN Client-to-Site

VPN Client-to-Site

- VPN Remote Access
- Cung cấp dịch vụ truy cập từ xa cho người dùng
- Cho phép người dùng truy cập tới tài nguyên nội bộ khi đã kết nối
- Yêu cầu: Người dùng cần có tài khoản truy cập VPN để xác thực.
- Đường kết nối Internet vào máy chủ dịch vụ
 VPN

VPN Site-to-Site

VPN Site-to-Site

Kết nối mạng ở các nơi khác nhau tạo thành một hệ thống mạng thống nhất.

Các giao thức bảo mật trong VPN

- Giao thức điểm nối điểm: PPTP
- Giao thức bảo mật lớp 2: L2TP
- Giao thức bảo mật tầng IP: IPSec
- Giao thức bảo mật tầng ứng dụng: SSL/TLS
- Giao thức xác thực: RADIUS

Giao thức PPTP

- Giao thức tạo đường hầm điểm nối điểm (PPTP
 - Point to Point Tunneling Protocol):
 - Giao thức cơ bản dưa vào PPP.
 - PPP payload được mã hóa sử dụng giao thức MPPE. Sử dụng RSA, RC4 với khóa phiên có độ dài lớn nhất 128 bít.
 - Lỗ hổng trong giao thức xác thực MSCHAP-v2
 - Tuy nhiên giao thức này có tốc độ mã hóa nhanh.
 - Hệ điều hành hỗ trợ: Windows, Mac OSX, Linux, iOS, Android.

Giao thức PPTP

No.	Time	Source	Destination	Protocol Le	
	1 0.00000	000 fe80::f9bb:1841	:36fff02::1:2	DHCPV6	150 Solicit XID: 0xc44295 CI
	2 8.45306	000 192.168.1.20	192.168.1.1	PPP Con	111 Compressed data
	3 8.45387	300 192.168.1.1	192.168.1.20	PPP Con	115 Compressed data
	4 8.54803	300 192.168.1.20	192.168.1.1	GRE	60 Encapsulated PPP
	5 9.46926	300 192.168.1.20	192.168.1.1	PPP Con	111 Compressed data
	6 9.47014	700 192.168.1.1	192.168.1.20	PPP Con	115 Compressed data
	7 9.57792	800 192.168.1.20	192.168.1.1	GRE	60 Encapsulated PPP
	8 10.4834	860 192.168.1.20	192.168.1.1	PPP Con	111 Compressed data
	9 10.4844	640192.168.1.1	192.168.1.20	PPP Con	115 Compressed data
	10 10.5921	200 192.168.1.20	192.168.1.1	GRE	60 Encapsulated PPP
	11 11.4817	260 192.168.1.20	192.168.1.1	PPP Con	111 Compressed data
	12 11.4827	690 192.168.1.1	192.168.1.20	PPP Con	115 Compressed data
·	13 11.5902	690 192.168.1.20	192.168.1.1	GRE	60 Encapsulated PPP

Giao thức L2TP

- Giao thức đường hầm lớp 2 (L2TP Layer 2 Tunneling Protocol):
 - Giao thức mã hóa nâng cao
 - L2TP payload được má hóa thông qua 3DES, AES
 - Thường kết hợp với giao thức IPSec
 - Hệ điều hành hỗ trợ: Windows, Mac OSX, Linux, iOS, Android

■ Giới thiệu:

- □ IPSec (Internet Protocol Security): Nó có quan hệ tới một số bộ giao thức (AH, ESP, và một số chuẩn khác) được phát triển bởi Internet Engineering Task Force (IETF).
- Mục đích chính của việc phát triển IPSec là cung cấp một cơ cấu bảo mật ở tầng 3 (Network layer) của mô hình OSI.

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
IPSec
Data Link Layer
Physical Layer

Các giao thức con:

- □ AH (Authentication Header): Được sử dụng để xác định nguồn gốc gói tin IP và đảm bảo tính toàn vẹn của nó.
- □ **ESP** (*Encapsulating Security Payload*): được sử dụng để chứng thực và mã hóa gói tin IP (phần payload hoặc cả gói tin)
- □ IKE (Internet Key Exchange): được sử dụng để thiết lập khóa bí mật cho người gửi và người nhận.

- Các chế độ hoạt động của IPsec:
 - □ **Chế độ vận chuyển** (transport mode): Bảo vệ đường truyền kết nối chỉ riêng giữa các Host.

□ Chế độ đường hầm (tunnel mode): Bảo vệ đường truyền kết nối giữa các mạng nội bộ với nhau.

■ Gói tin của AH:

Định dạng gói tin của ESP:

- Các hệ mật sử dụng trong IPSec:
 - ☐ Thuật toán mã hóa: DES, 3DES.
 - □ Toàn ven dữ liệu: MD5, SHA-1
 - □ Xác thực: Kerberos, chứng thư số, khóa chia sẻ.

No.	Time	Source	Destination	Protocol
	1 0.00000	0000 Vmware_b8:c3:80	<pre>Vmware_27:72:af</pre>	ARP
	2 0.00051	L400 Vmware_27:72:af	Vmware_b8:c3:80	ARP
	3 0.28401	1500 192.168.1.20	192.168.1.1	ESP
	4 0.28499	9800 192.168.1.1	192.168.1.20	ESP
	5 1.29857	400 192.168.1.20	192.168.1.1	ESP
	6 1.29969	9800 192.168.1.1	192.168.1.20	ESP
	7 2.2965	5500 192.168.1.20	192.168.1.1	ESP
	8 2.29750	300 192.168.1.1	192.168.1.20	ESP
	9 3.3102	3600 192.168.1.20	192.168.1.1	ESP
	10 3.31109	9600 192.168.1.1	192.168.1.20	ESP
	11 4.32440	300 192.168.1.20	192.168.1.1	ESP
	12 4.32534	400 192.168.1.1	192.168.1.20	ESP
	13 5.33850	300 192.168.1.20	192.168.1.1	ESP

Giao thức VPN SSTP

- Secure Socket Tunneling Protocol (SSTP) is a form of <u>virtual private network</u> (VPN) tunnel that provides a mechanism to transport <u>PPP</u> traffic through an <u>SSL/TLS</u> channel.
- SSL/TLS provides transport-level security with key negotiation, <u>encryption</u> and traffic integrity checking.
- The use of SSL/TLS over <u>TCP</u> port 443 allows SSTP to pass through virtually all <u>firewalls</u> and <u>proxy</u> <u>servers</u> except for authenticated web proxies.

Giao thức VPN SSTP

- SSTP servers must be <u>authenticated</u> during the SSL/TLS phase.
- SSTP clients can optionally be authenticated during the SSL/TLS phase and must be authenticated in the PPP phase.
- The use of PPP allows support for common authentication methods, such as <u>EAP-TLS</u> and <u>MS-CHAP</u>.
- SSTP is available for <u>Linux</u>, <u>BSD</u>, and <u>Windows</u>.

Giao thức VPN SSTP

Filte	r: ip.addr==1	92.168.3.150		Expression	Clear Apply Save	
No.	Time	Source	Destination	Protocol Le	ength Info	_
	41 5.3162	22100 192.168.3.170	192.168.3.150	TLSv1	155 Application Data	
	42 5.3178	36400 192.168.3.150	192.168.3.170	TLSv1	192 Application Data,	Appl
	44 5.5158	35500 192.168.3.170	192.168.3.150	TCP	54 53678 > https [AC	K] S∈ =
	47 6.3171	3500 192.168.3.170	192.168.3.150	TLSv1	155 Application Data	
	48 6.3186	0200 192.168.3.150	192.168.3.170	TLSv1	192 Application Data,	App1
	51 6.5169	3600 192.168.3.170	192.168.3.150	TCP	54 53678 > https [AC	K] Se
	52 6.8401	7000 192.168.3.150	192.168.3.170	TLSv1	192 Application Data,	App1
	56 7.0399	2900 192.168.3.170	192.168.3.150	TCP	54 53678 > https [AC	K] Se
	57 7.0401	2700 192.168.3.170	192.168.3.150	TL5v1	139 Application Data	
	58 7.0914	1600 192.168.3.150	192.168.3.170	TCP	60 https > 53678 [AC	K] Se
	60 7.3181	8200 192.168.3.170	192.168.3.150	TLSV1	155 Application Data	
	61 7.3195	4900 192.168.3.150	192.168.3.170	TLSv1	192 Application Data,	Appl
	63 7.5199	94000 192.168.3.170	192.168.3.150	TCP	54 53678 > https [AC	Kl Se

Giao thức RADIUS

