```
load("id.mat", "c", 'idx') %0/B o/
ans =
 0x0 empty char array
oc = c
oc = 2x5 cell
     1
                    2
                               3
                                          4
                                                     5
    100x6 table
               100x6 table
                          100x6 table
                                     100x6 table
                                                100x6 table
2
    100x6 table
               100x6 table
                          100x6 table
                                     100x6 table
                                                100x6 table
c = cell(2,10);
d = {'bo', 'ca', 'i', 'tl', 'ld'}
d = 1x5 cell
                        'i'
'bo'
            'ca'
                                     'tl'
                                                 'ld'
for r = 1:2
    for co = 1:5
         c\{r,co\} = oc\{r,co\};
    end
    for co = 6:10
         c\{r,co\} = readtable(['cv/10c/0'] d\{ ...
             co-5} '.data'], 'Filetype', 'text');
         if r == 1
             c\{r,co\}.Ylatitude(:) = c\{r, ...
                  co}.Latitude(1);
              t = c\{r,co\};
             c\{r,co\} = t(2:end,:);
         else
              c{r,co}.Ylatitude(: ...
                 ) = c\{r,co\}.Longitude(1);
              c{r,co}.Properties.VariableNames{ ...
                  end} = 'Ylongitude';
              t = c\{r,co\};
              c\{r,co\} = t(2:end,:);
         end
    end
```

c = 2x10 cell

end С

	1	2	3	4	5	6	7	8
1	100x6 table							
2	100x6 table							

```
% idx = randperm(10)
% save("cv/10c/id.mat","idx","c") % ,"q"
% save("/MATLAB Drive/id.mat","c","-append")
load("cv/10c/id.mat")%0/B o/
whos("-file","cv/10c/id.mat") % 1, 4, 5 & 2
```

```
Bytes Class
Name
          Size
                                                  Attributes
          2x10
С
                                140240
                                       cell
CC
          2x10
                                812240
                                        cell
          2x10
                             207701600
                                        cell
g
idx
          1x10
                                        double
                                    80
ir
          1x1000
                                  8000 double
```

```
cc\{1,1\} = [cc\{1,idx(1)\};c\{1,idx(2)\}]; cc
```

```
cc{1,1} = [cc{1,1};c{1,idx(2)}]; cc
```

cc = 2x10 cell

1 3 4 5 300x6 table [] [] [] [] [] [] [] 2 [] [] [] [] [] [] [] []

```
cc = cell(2,10); ci = [1:10 1:10]
```

cc = 2x10 cell

. .

		1	2	3	4	5	6	7	8
1		800x6 table							
2	2	800x6 table							

Longitude gpr:

```
% cross-validation: % rng('default')
g = cell(2,10);
tic
for r = 1:2
    for co = 1:10
        [r,co]
        tic
        g{r,co} = fitrgp(cc{r,co}, ... % gprMdll
        cc{r,co}.Properties.VariableNames{end}, ...
        'KernelFunction', 'ardsquaredexponential',...
        'FitMethod','sr','PredictMethod', ...
        'fic','Standardize',1,'Sigma',.002);
        toc
    end
end
```

```
ans = 1 \times 2
    1
Elapsed time is 15.386505 seconds.
ans = 1 \times 2
     1
Elapsed time is 13.497323 seconds.
ans = 1 \times 2
    1
            3
Elapsed time is 12.045511 seconds.
ans = 1 \times 2
    1
Elapsed time is 15.039360 seconds.
ans = 1 \times 2
   1
Elapsed time is 14.908062 seconds.
ans = 1 \times 2
    1
            6
Elapsed time is 12.646712 seconds.
ans = 1 \times 2
    1
Elapsed time is 13.631426 seconds.
ans = 1 \times 2
    1
Elapsed time is 8.231451 seconds.
ans = 1 \times 2
Elapsed time is 13.168001 seconds.
ans = 1 \times 2
    1 10
Elapsed time is 12.510986 seconds.
ans = 1 \times 2
     2
           1
```

```
Elapsed time is 10.842872 seconds.
ans = 1 \times 2
Elapsed time is 11.238534 seconds.
ans = 1 \times 2
     2
            3
Elapsed time is 11.260656 seconds.
ans = 1 \times 2
     2
Elapsed time is 13.778317 seconds.
ans = 1 \times 2
     2
Elapsed time is 13.664476 seconds.
ans = 1 \times 2
     2
            6
Elapsed time is 11.150999 seconds.
ans = 1 \times 2
     2
Elapsed time is 11.586683 seconds.
ans = 1 \times 2
     2
            8
Elapsed time is 13.994200 seconds.
ans = 1 \times 2
Elapsed time is 14.668320 seconds.
ans = 1 \times 2
    2
           10
Elapsed time is 13.746053 seconds.
```

toc

Elapsed time is 13.749040 seconds.

```
g % fprintf('kfoldLoss = %e's, kfoldLoss( ...
```

g = 2x10 cell

1 2 3 4 6 7 8 1 1x1 1x1 1x1 1x1 1x1 1x1 1x1 1x1 RegressionG RegressionG RegressionG RegressionG RegressionG RegressionG RegressionG RegressionG 1x1 1x1 1x1 1x1 1x1 1x1 1x1 1x1 RegressionG RegressionG RegressionG RegressionG RegressionG RegressionG RegressionG RegressionG

```
% cvgprMdl)); ypred = kfoldPredict(cvgprMdl);
```

```
% tic
% save("cv/10c/id.mat","g","-append")
% save("cv/10c/id.mat","cc","-append")
% toc
load("cv/10c/id.mat")%O/B o/ , 'g', 'idx'
% load("cv/10c/id.mat", 'c')%O/B o/ , 'g', 'idx'
whos("-file","cv/10c/id.mat")
```

```
Name
            Size
                                 Bytes Class
                                                   Attributes
            2x10
                                140240
                                        cell
  CC
            2x10
                                812240
                                        cell
            2x10
                             207701600
                                        cell
  idx
            1x10
                                    80
                                        double
ci = [9 \ 10 \ 1:10-1]
```

ci = 1×11 9 10 1 2 3 4 5 6 7 8 9

```
addpath('/MATLAB Drive/Sim');
tr = 201; d1km = zeros(tr-1, 10); d2km = d1km;
```

ypredlo'% elo = lo(1)-ypredlo(1)

```
% ci
for co = 1:10
    for i = 1:tr-1
        [dlkm(i, co), d2km(i, co)] = lldistkm( ...
        [ct{1,idx(ci(co))}.Ylatitude(i) ...
        ct{2,idx(ci(co))}.Ylongitude(i)], ...
        [p(i,1,co) p(i,2,co)]);
    end
end
```

```
% d1km(1:5,:)
col = 10
```

```
col = 10
```

```
m = zeros(2, col);
for co = 1:col
    m(1, co) = min(dlkm(:, co)*1000);
    m(2, co) = max(dlkm(:, co)*1000);
end
```

```
f = 10; fi = 1;
```

```
figure()
% plot(sort(cc{1,co}.Ylatitude(:)))
r = 1; t = cc\{r,co\}; plot(t(:, end).Variables/fi);
xlabel('$x$','interpreter','latex'); axis tight
axe()
hold on;
plot(predict(g\{r,co\},t(:, 1:end-1 ...
    ).Variables)/fi) % ypred
% plot(predict(gt{r,co},t(:, 1:end-1 ...
% ).Variables)/f)
t = c\{r, idx(ci(co))\}; k = t(:, end). Variables/fi;
% l = k*ones(1, 4);plot(l(:));
hold off; grid on; % xline(I)
legend({'data','predictions1' ...
    % ,'predictions2' ...
    }, ...
    'Location', 'Best', 'interpreter', 'latex')
title('Latitude','interpreter','latex')
```



```
figure()
% plot(sort(cc{1,co}.Ylatitude(:)))
r = 1; co = 5; ci = [5 1:5-1];
t = ct\{r, idx(ci(co))\};
plot(t(:, end).Variables/fi,'--');
xlabel('$x$','interpreter','latex'); axis tight
axe()
hold on;
plot(p(:, r, co));
% t = cc{r, co}; s = 101:200;
% plot(predict(g{r,co},t(s, 1:end-1 ...
% ).Variables)/fi)
% plot(predict(gt{r,co},t(s, 1:end-1 ...
    % ).Variables)/f)
hold off; grid on; % xline(I)
% legend({'data','predictions1','p2','p3'}, ...
legend({'data','predictions1' ...
    % ,'p2' ...
    }, ...
    'Location', 'Best', 'interpreter', 'latex')
title('Latitude','interpreter','latex')
```



```
figure()
% plot(sort(cc{1,co}.Ylatitude(:)))
r = 2; t = ct\{r, idx(ci(co))\};
plot(t(:, end).Variables/fi,'--');
xlabel('$x$','interpreter','latex'); axis tight
axe()
hold on;
plot(p(:, r, co));
% plot(predict(g\{r,co\},t(:, 1:end-1 ...
     ).Variables)/fi)
% plot(predict(gt{r,co},t(:, 1:end-1 ...
     ).Variables)/f)
hold off; grid on; % xline(I)
legend({'data','predictions1' ...
    % ,'p2' ...
    }, ...
    'Location', 'Best', 'interpreter', 'latex')
title('Longitude','interpreter','latex')
```



```
fa = 1; cel = {ct, fa, idx, ci};
```

d

```
[d11m, ~] = dis(cel, p);
% [d21m, d22m] = dis(cel, pt);
```

```
[m(2),I] = max(d1km(:)*1000);
```

```
t = table([m(1),i]', [m(2),I]','VariableNames', ...
{ 'Min','Max'},'RowNames',{'Distance(m)';...
'Position'});t
```

t = 2x2 table

	Min	Max
1 Distance(m)	547.3978	682.8956
2 Position	200	200

D table:

```
[~, t1] = dtl(d11m); t1
```

t1 = 5x4 table

	Min	lm	Max	IM
1	547.4000	37	682.9000	200
2	512.3300	197	650.5400	100
3	98.0900	94	263.5200	200
4	141.2100	117	217.4500	100
5	64.9900	136	166.9700	17

```
% [~, t2] = dtl(d21m); t2
```

```
% table('Min, 'm')
% sympref('FloatingPointOutput',true);
```

```
k = t.Row; k{:}
```

```
ans =
'Distance(m)'
ans =
'Position'
```

```
k = c\{1, 1\}
writetable(k(:, 1: ...
             end-1). Variables, ['' ...
    'cv/7.txt'],['' ...
    'Delimiter'],',','WriteVariableNames', ...
    true) % . Nr.
writetable(t,['' ...
    'cv/7t.txt'],['' ...
    'Delimiter'],',','WriteRowNames',true, ...
    'WriteVariableNames', true) % . Nr.
latex(sym([(1:5)' m']))
[c{1,idx(5)}.Ylatitude(1:5)...
    c{2,idx(5)}.Ylongitude(1:5)
ans = 5 \times 2
  47.6430 -122.1401
  47.6430 -122.1401
  47.6430 -122.1401
  47.6430 -122.1401
  47.6430 -122.1401
k = zeros(5,2);
for co = 1:5
    k(co, :) = [c\{1, co\}.Ylatitude(5) c\{2, ...
         co}.Ylongitude(5)];
end
k
k = 5 \times 2
  47.6425 -122.1407
  47.6413 -122.1416
  47.6407 -122.1384
  47.6464 -122.1384
  47.6430 -122.1401
ci = [5 \ 1:5-1]
ci = 1x5
    5
          1
               2
                    3
                          4
for co = 1:5
    [cc{1,co}.Ylatitude(1:100:end)...
    cc{2,co}.Ylongitude(1:100:end);c{1, ...}
         idx(ci(co))}.Ylatitude(5) ...
    c{2,idx(ci(co))}.Ylongitude(5);p(5,1,co) p(...
```

```
5, 2,co)]
end
```

```
ans = 6x2
  47.6407 -122.1384
   47.6430 -122.1401
   47.6425 -122.1407
   47.6413 -122.1416
   47.6464 -122.1384
   47.6440 -122.1396
ans = 6 \times 2
  47.6430 -122.1401
   47.6425 -122.1407
   47.6413 -122.1416
   47.6464 -122.1384
   47.6407 -122.1384
   47.6408 -122.1422
ans = 6 \times 2
   47.6425 -122.1407
   47.6413 -122.1416
   47.6464 -122.1384
   47.6407 -122.1384
   47.6430 -122.1401
   47.6435 -122.1400
ans = 6 \times 2
  47.6413 -122.1416
   47.6464 -122.1384
   47.6407 -122.1384
   47.6430 -122.1401
   47.6425 -122.1407
   47.6427 -122.1407
ans = 6 \times 2
   47.6464 -122.1384
   47.6407 -122.1384
   47.6430 -122.1401
   47.6425 -122.1407
   47.6413 -122.1416
   47.6428 -122.1402
figure();
plot(tllts(:, ...
     1:end-1). Variables);
% .Partition.tes
axis tight % [0 1050 0 30]
xlabel('x')
ylabel('y')
hold on;
plot(ypredlo);%ypred(cvgprMdl));
hold off;
grid on
legend({'data','predictions'}, ...
```

```
[s,d] = cellfun(@size,cel{1})
```

'Location', 'Best');

title('Altitude')

```
s = 2 \times 10
     200 200 200
  200
                    200
                        200
                             200
                                   200
                                        200
                                            200
                    200
      200 200
                         200
  200
               200
                              200
                                   200
                                        200
                                            200
d = 2 \times 10
  6 6 6 6 6 6 6
6 6 6 6 6 6
                                       6
                                            6
                                        6
```

```
max(size(cel{1}{1}))
```

ans = 200

```
out = max([s,d])

out = 1x20
```

```
% ir = randperm(1000)
ad = "cv/10c/id.mat";
% save(ad, "gn", "-append") % ir
load(ad, 'c') % for tc
whos("-file",ad)
```

Name	Size	Bytes	Class	Attributes
C	2x10	140240	cell	
CC	2x10	812240	cell	
g	2x10	207701600	cell	
gn	2x2	24022200	cell	
gs	2x2	24022200	cell	
gt	2x2	24022200	cell	
idx	1x10	80	double	
ir	1x1000	8000	double	

tc

Ν

```
tc = cell(2,2);

for r = 1:2

tc{r,1} = c{r,1};

for k = 2:10

tc{r,1} = [tc{r,1};

c{r,k}];
```

```
end
t = tc{r,1}; tc{r,1} = t(ir(1:700),:);
tc{r,2} = t(ir(701:end),:);
end
tc
```

tc = 2x2 cell

	1	2
1	700x6 table	300x6 table
2	700x6 table	300x6 table

$tc{1, 1}$

ans = 700x6 table

	Altitude	Latitude	Longitude	PixeIX	PixelY	Ylatitude
1	227.4353	47.6375	-122.1402	274	199	47.6419
2	250.3317	47.6375	-122.1402	236	198	47.6430
3	234.4431	47.6375	-122.1402	190	212	47.6413
4	246.9782	47.6375	-122.1402	236	197	47.6430
5	260.2131	47.6375	-122.1402	208	180	47.6464
6	260.2131	47.6375	-122.1402	246	205	47.6427
7	272.9416	47.6375	-122.1402	236	214	47.6425
8	245.8882	47.6375	-122.1402	246	199	47.6427
9	261.1761	47.6375	-122.1402	190	227	47.6413
10	239.1385	47.6375	-122.1402	290	175	47.6464
11	240.1866	47.6375	-122.1402	274	206	47.6419
12	252.2577	47.6375	-122.1402	309	208	47.6421
13	259.6269	47.6375	-122.1402	128	243	47.6407
14	271.4343	47.6375	-122.1402	290	183	47.6464

$tc{2, 1}$

ans = 700x6 table

	Altitude	Latitude	Longitude	PixelX	PixelY	Ylongitude
1	227.4353	47.6375	-122.1402	274	199	-122.1397
2	250.3317	47.6375	-122.1402	236	198	-122.1401
3	234.4431	47.6375	-122.1402	190	212	-122.1416
4	246.9782	47.6375	-122.1402	236	197	-122.1401
5	260.2131	47.6375	-122.1402	208	180	-122.1426

	Altitude	Latitude	Longitude	PixelX	PixelY	Ylongitude
6	260.2131	47.6375	-122.1402	246	205	-122.1404
7	272.9416	47.6375	-122.1402	236	214	-122.1407
8	245.8882	47.6375	-122.1402	246	199	-122.1404
9	261.1761	47.6375	-122.1402	190	227	-122.1416
10	239.1385	47.6375	-122.1402	290	175	-122.1384
11	240.1866	47.6375	-122.1402	274	206	-122.1397
12	252.2577	47.6375	-122.1402	309	208	-122.1387
13	259.6269	47.6375	-122.1402	128	243	-122.1426
14	271.4343	47.6375	-122.1402	290	183	-122.1384

nt = cell(2,2);for r = 1:2 $nt\{r,1\} = c\{r,1\};$ for k = 2:10 $nt\{r,1\} = [nt\{r,1\};$ c{r,k}]; end $t = nt\{r,1\};$ if r == 1 n = t; sh = 60; % 70;kh = t(:, 1).Variables;ka = t(:, 2). Variables; snr = 55; % sh o = t(:, 3).Variables; so = snr+20; %-20+20n(:,1).Variables =awgn(kh,sh,'measured'); % nt(:,1).Variables = ntla(:, 1).Variables; n(:,2).Variables=awgn(ka,snr,'measured'); % nt(:,2).Variables = ntla(:, 2).Variables; n(:,3).Variables = awgn(o,so,'measured'); end t(:,1:3).Variables = n(:, 1:3).Variables; $nt\{r,1\} = t(ir(1:700),:);$ $nt{r,2} = t(ir(701:end),:);$ end nt

nt = 2x2 cell

	1	2
1	700x6 table	300x6 table
2	700x6 table	300x6 table

Latitude gpr:

```
% rng('default')
gs = cell(2,2); tic
for r = 1:2
    gs{r,1} = fitrgp(tc{r,1}, ... % gprMdll1
    tc{r,1}.Properties.VariableNames{end},...
    'Sigma',.002);
gs{r,2} = fitrgp(tc{r,1}, ... % gprMdll2
    tc{r,1}.Properties.VariableNames{end}, ...
    'KernelFunction', 'ardsquaredexponential',...
    'FitMethod','sr','PredictMethod', ...
    'fic','Standardize',1,'Sigma',.002);
end
toc
gs
```

Modelling precision

```
co = 1; tc{1,co}.Ylatitude(:) = tc{1,...
co}.Ylatitude(:)*10;
tc{2,co}.Ylongitude(:) = tc{2,...
co}.Ylongitude(:)*10;
```

Latitude gpr:

```
% rng('default')
gt = cell(2,2); tic
for r = 1:2
    gt{r,1} = fitrgp(tc{r,1}, ... % gprMdll1
    tc{r,1}.Properties.VariableNames{end},...
    'Sigma',.002);
    gt{r,2} = fitrgp(tc{r,1}, ... % gprMdll2
    tc{r,1}.Properties.VariableNames{end}, ...
    'KernelFunction', 'ardsquaredexponential',...
    'FitMethod','sr','PredictMethod', ...
    'fic','Standardize',1,'Sigma',.002);
end
toc
```

Elapsed time is 17.916169 seconds.

gt

	1	2
2	1x1 RegressionG P	1x1 RegressionG P

```
load(ad, 'gt') % /10
```

```
pt = zeros(300,2,2);
for r = 1:2
    for co = 1:2
        t = tc{r,2};
    pt(:,r, co) = predict(gt{r,co},t(:, 1: ...
        end-1).Variables);
    end
end
```

N/10

```
for co = 1:2
    for i = 1:300
        [dlkm(i, co), d2km(i, co)] = ...
        lldistkm(...
        [tc{1,2}.Ylatitude(i...
        ) tc{2,2}.Ylongitude(i...
        )], [pt(i,1,co) pt(i,2,co)]/10);
    end
end
dlkm = dlkm*1000; d2km = d2km*1000; % m
```

```
% addpath('/MATLAB Drive/Sim');
% % tr = 400; co = 2;
% % tr = 100; co = 1;
% dlkm = zeros(300, 1); d2km = dlkm;
% % save("id.mat","g5","-append")
% p = zeros(300,2,2);
% for r = 1:2
% for co = 1:2
% t = tc{r,2};
p(:,r, co) = predict(gs{r,co},t(:, 1: ...
% end-1).Variables);
% end
% end
```

nt

```
co = 1; nt{1,co}.Ylatitude(:) = nt{1,...
co}.Ylatitude(:)*10;
```

```
nt{2,co}.Ylongitude(:) = nt{2,...
co}.Ylongitude(:)*10;
```

gpr:

```
% c
gn = cell(2,2); tic
for r = 1:2
    gn{r,1} = fitrgp(nt{r,1}, ... % gprMdll1
    nt{r,1}.Properties.VariableNames{end},...
    'Sigma',.002);
    gn{r,2} = fitrgp(nt{r,1}, ... % gprMdll2
    nt{r,1}.Properties.VariableNames{end}, ...
    'KernelFunction', 'ardsquaredexponential',...
    'FitMethod','sr','PredictMethod', ...
    'fic','Standardize',1,'Sigma',.002);
end
toc
```

Elapsed time is 21.504730 seconds.

gn

gn	=	2x2 cell	
		1	2
1		1x1 RegressionG P	1x1 RegressionG P
2		1x1 RegressionG P	1x1 RegressionG P

```
load(ad, 'gn')
```

```
pt = zeros(300,2,2);
for r = 1:2
    for co = 1:2
        t = nt{r,2};
    pt(:,r, co) = predict(gn{r,co},t(:, 1: ...
        end-1).Variables);
    end
end
```

/10

```
for co = 1:2
  for i = 1:300
    [dlkm(i, co), d2km(i, co)] = ...
```

Normal

```
% fa = 1; cel = {tc, fa, idx, ci};
% [d11m, d12m] = dis(cel, p);
% save(ad, "ir", "-append") %
```



```
figure; plot(dlkm(:, 1),'-*'); axis tight
xlabel('$Test$ $case$','interpreter','latex')
legend('Geo-location error (m)', ...
'interpreter','latex'); axe(); grid on
% ylabel('Geo-location error (in meters)', ...
% 'interpreter','latex')
% print(fig,'DistG','-djpeg')
% title('distance(Km)')
```

```
figure; plot(d1km(:, 2),'-*');
axis tight; axe(); grid on
xlabel('$Test$ $case$','interpreter','latex')
legend('Geo-location error (m)', ...
'interpreter','latex')
% ylabel('Geo-location error (in meters)', ...
% 'interpreter','latex')
% print(fig,'DistG','-djpeg')
%title('distance(Km)')
```

```
figure; plot(dlkm(:, 1),'-*'); axis tight
xlabel('$Test$ $case$','interpreter','latex')
legend('Geo-location error (m)', ...
'interpreter','latex'); axe(); grid on
% ylabel('Geo-location error (in meters)', ...
% 'interpreter','latex')
% print(fig,'DistG','-djpeg')
%title('distance(Km)')
```



```
figure; plot(dlkm(:, 2),'-*');
axis tight
xlabel('$Test$ $case$','interpreter','latex')
legend('Geo-location error (m)', ...
'interpreter','latex')
% ylabel('Geo-location error (in meters)', ...
% 'interpreter','latex')
% print(fig,'DistG','-djpeg')
grid on; axe() %title('distance(Km)')
```



```
% print(fig,'Ca','-djpeg')
figure; histogram(d1km(:, 1),20)
xlabel('$Distance$','interpreter','latex'); axe()
legend({'$Nr.$'}, 'Location', 'Best', ...
'interpreter', 'latex'); axis tight; grid on
% title(['$SNR = $',num2str(so)], ...
% 'interpreter','latex')
```



```
% print(fig,'Ca','-djpeg')
figure; histogram(d1km(:, 2),20)
xlabel('$Distance$','interpreter','latex'); axe()
grid on
legend({'$Nr.$'}, 'Location', 'Best', ...
'interpreter', 'latex');
% title(['$SNR = $',num2str(so)], ...
% 'interpreter','latex')
axis tight
```



```
figure;
scatter(1:300, tc{1,2}.Altitude(:),'r*');
xlabel('$Test$ $case$','interpreter','latex');axe()
% ylabel('')
grid on; title('Corresponding altitude.', ...
'interpreter','latex'); axis tight
```



```
% kh = cell(2,1);
% for r = 1:2
%         t = tc{r, 2}
%         kh = t(:, 1).Variables;
%         ntla(:, 1).Variables = awgn(kh,sh,
% 'measured');
%         ntl(:, 1).Variables = ntla(:, 1).Variables;
% end
```

```
t = tc{1, 2}; ntla = t; sh = 60; % 70;
```

```
kh = t(:, 1).Variables;
ka = t(:, 2).Variables; snr = 55; % sh
k = t(:, 3).Variables; so = snr+20; % - 20 + 20
```

```
ntla(:, 1).Variables = awgn(kh,sh,'measured');
% ntl(:, 1).Variables = ntla(:, 1).Variables;
ntla(:, 2).Variables = awgn(ka,snr,'measured');
% ntl(:, 2).Variables = ntla(:, 2).Variables;
ntla(:, 3).Variables = awgn(k,so,'measured');
```

```
% sh = 60;
figure;
histogram(kh - n(:,1).Variables); axis tight
xlabel('\it Awgn in Altitude','interpreter', ...
    'latex'); grid on
legend({'$Nr.$'}, 'Location','Best', ...
    'interpreter','latex');
title(['$SNR = $',num2str(sh)], ...
    'interpreter','latex'); axe()
```



```
% '$\frac{d}{dx}sin(x)$';
% print(fig,'Ha','-djpeg')
```

```
% snr = 60;
figure;
histogram(ka - n(:,2).Variables); axis tight
xlabel('\it Awgn in Latitude','interpreter', ...
    'latex'); grid on
legend({'$Nr.$'}, 'Location','Best', ...
    'interpreter','latex'); % 'northwest'
title(['$SNR = $',num2str(snr)], ...
    'interpreter','latex'); axe()
```



```
% print(fig,'Hla','-djpeg')
```

```
% so = snr+20;%-10;
figure;
histogram(o - n(:,3).Variables); axis tight
xlabel('\it Awgn in Longitude','interpreter', ...
    'latex'); grid on
legend({'$Nr.$'}, 'Location','Best', ...
    'interpreter', 'latex');
title(['$SNR = $',num2str(so)], ...
    'interpreter','latex'); axe()
```



```
% print(fig,'Ho','-djpeg')
```

```
fprintf(['Drone data, output: Latitude\n' ...
    '8 of ' num2str(length(n(:,1).Variables) ...
) ' rows, 3 of 6 cols']); n(1:8,:)
```

Drone data, output: Latitude 8 of 1000 rows, 3 of 6 cols

ans =	8x6	table
-------	-----	-------

	Altitude	Latitude	Longitude	PixelX	PixelY	Ylatitude
1	222.1759	47.5828	-122.1630	236	190	47.6425
2	224.1949	47.6130	-122.1300	236	191	47.6425
3	224.5213	47.7222	-122.1340	236	191	47.6425
4	224.7134	47.5877	-122.1110	236	191	47.6425
5	225.5782	47.7694	-122.1319	236	192	47.6425
6	226.3721	47.5222	-122.1090	236	192	47.6425
7	226.2510	47.7985	-122.1228	236	192	47.6425
8	226.8047	47.6526	-122.1048	236	193	47.6425

```
figure; plot(d1km(:, 1),'-*');
axis tight
xlabel('$Test$ $case$','interpreter','latex')
legend('Geo-location error (m)', ...
'interpreter','latex')
% ylabel('Geo-location error (in meters)', ...
% 'interpreter','latex')
axe()
% print(fig,'DistG','-djpeg')
grid on %title('distance(Km)')
```



```
figure; plot(d1km(:, 2),'-*');
axis tight
xlabel('$Test$ $case$','interpreter','latex')
legend('Geo-location error (m)', ...
'interpreter','latex')
% ylabel('Geo-location error (in meters)', ...
```

```
% 'interpreter','latex')
axe()
% print(fig,'DistG','-djpeg')
grid on %title('distance(Km)')
```



```
figure(); t = nt{2, 2}; scatter(1:300, t(:, ...
    end).Variables);
% tlltr(1:tr-1, "Ylongitude").Ylongitude
axis tight; xlabel('x','interpreter','latex');
% ylabel('y');
hold on;
scatter(1:300, pt(:,2,2)/10); hold off; grid on
legend({'data','predictions'}, ...
    'Location','Best');
title('Longitude','interpreter','latex'); axe()
```



```
figure(); t = nt{1, 2}; scatter(1:300, t(:, ...
    end).Variables);
% tlltr(1:tr-1, "Ylongitude").Ylongitude
axis tight; xlabel('x');
% ylabel('y');
hold on;
scatter(1:300, pt(:,1,2)/10); hold off; grid on
legend({'data','predictions'}, ...
    'Location','Best');
title('Latitude','interpreter','latex'); axe()
```



```
[m, i] = min(d1km);

[M, I] = max(d1km); \{m(1), M(1), m(2), M(2);

i(1), I(1), i(2), I(2)\}'
```

ans = 4x2 cell

	1	2
1	0.1261	35
2	13.3737	54
3	0.0669	242
4	14.6186	54

```
fig = figure; histogram(d1km(:,2))
xlabel('Distance','interpreter','latex')
grid on; legend({'$Nr.$'}, 'Location', 'Best', ...
'interpreter', 'latex'); axis tight
```



```
% find(i==in)

ans = 2x1
    38
    336

% m = [find(i==in),find(I==in)]
```

M2

 $m = 2 \times 2$ 38

194

```
figure(); subplot(2,1,1); t = nt\{1, 2\};
scatter(1:300, sort(t(:, end).Variables));
% plot(tlts(:, ...
     end). Variables);
% tlltr(1:tr-1,"Ylongitude").Ylongitude
axis tight; hold on; [s, in] = sort(pt(:,1,2)/10);
scatter(1:300, s); hold off;
grid on
% legend({'dataA','predA'}, ...
      'Location', 'Best');
title('Latitude/Longitude');
m2 = [find(I(2)==in); find(i(2)==in)];
xline(m2(2), 'g'); xline(m2(1), 'r')
subplot(2,1,2);
t = nt{2, 2}; scatter(1:300, sort(t(:, ...
    end).Variables)); axis tight; xlabel('x')
hold on;
scatter(1:300, sort(pt(:,2,2)/10)); hold off;
grid on
% legend({'dataL','predL'}, ...
      'Location', 'Best');
xline(m2(2), 'g'); xline(m2(1), 'r')
```



```
function [m, t] = dtl(d1m)
    m = zeros(4, 5);
    for co = 1:5
        [m(1, co), m(2, co)] = min(d1m(:, co));
        [m(3, co), m(4, co)] = max(d1m(:, co));
    end
    t = table(round(m(1, :), 2)', m(2, :)', ...
        round(m(3, :), 2)', ...
        m(4, :)','VariableNames',{...
    'Min','Im','Max','IM'});
end
function [d1km, d2km] = dis(cel, p)
    tr = max(size(cel{1}{1}{1}))+1;
    % 100*cel{2}+1;
    idx = cel{3}; % c/c
    ci = cel{4}; l = max(size(cel{1}));
    d1km = zeros(tr-1, 1); d2km = d1km; c = cel{1};
    for co = 1:1
        for i = 1:tr-1
            [d1km(i, co), d2km(i, co)] = ...
                lldistkm(...
                [c{1,idx(ci(co))}.Ylatitude(i...
                ) c{2,idx(ci(co))}.Ylongitude(i...
                )], [p(i,1,co) p(i,2,co)]);
        end
    end
    d1km = d1km*1000; d2km = d2km*1000; % m
end
function axe()
    axes = gca;
    axes.XAxis.TickLabelInterpreter = 'latex';
    axes.YAxis.TickLabelInterpreter = 'latex';
end
```