Propositional logic - exercises

Exercise 1.1.

Check the following properties for \downarrow ('nor'), \uparrow ('nand') and \oplus ('xor') connectives using the truth table method.

1. associativity of ' \uparrow ' connective:

$$p \uparrow (q \uparrow r) \equiv (p \uparrow q) \uparrow r$$
;

2. associativity of ' \downarrow ' connective:

$$p \downarrow (q \downarrow r) \equiv (p \downarrow q) \downarrow r$$
;

3. associativity of ' \oplus ' connective:

$$p \oplus (q \oplus r) \equiv (p \oplus q) \oplus r$$
;

4. distribution of ' \uparrow ' connective over ' \downarrow ' connective:

$$p \uparrow (q \downarrow r) \equiv (p \uparrow q) \downarrow (p \uparrow r)$$
;

5. distribution of ' \downarrow ' connective over ' \uparrow ' connective:

$$p \downarrow (q \uparrow r) \equiv (p \downarrow q) \uparrow (p \downarrow r)$$
;

6. De Morgan's laws for ' \downarrow ' and ' \uparrow ':

$$\neg (p \downarrow q) \equiv \neg p \uparrow \neg q$$
 and $\neg (p \uparrow q) \equiv \neg p \downarrow \neg q$;

- 7. $p \uparrow (q \lor r) \equiv (p \uparrow q) \land (p \uparrow r)$ and $p \downarrow (q \land r) \equiv (p \downarrow q) \lor (p \downarrow r)$.
- 8. $p \downarrow (q \uparrow p) \equiv F$ and $p \uparrow (q \downarrow p) \equiv T$;

Exercise 1.2.

Using the truth table method decide what kind of formula (consistent, inconsistent, tautology, contingent) is U_i , $j \in \{1,2,...,8\}$. Write all the models and anti-models of U_j , $j \in \{1,2,...,8\}$.

1.
$$U_1 = q \land \neg p \land r \rightarrow \neg p \lor \neg (q \land r)$$
 2. $U_2 = \neg p \lor \neg (q \land r) \rightarrow q \land \neg p$;

2.
$$U_2 = \neg p \lor \neg (q \land r) \rightarrow q \land \neg p$$
;

3. $U_3 = \neg p \land (\neg q \lor r) \rightarrow q \lor \neg p \lor r$ 4.

$$\begin{array}{ll} & U_4 = \neg (\neg p \vee q) \vee r \rightarrow \neg p \vee (\neg q \vee r) \, ; \\ 5. & U_5 = \neg p \vee (\neg q \vee \neg r) \rightarrow q \wedge \neg p \, ; \\ \end{array} \begin{array}{ll} & G_4 = \neg (\neg p \vee q) \vee r \rightarrow \neg p \vee (\neg q \vee r) \, ; \\ G_5 = \neg p \vee (\neg q \wedge \neg r) \rightarrow q \wedge \neg p \wedge r \, ; \\ \end{array}$$

5.
$$U_5 = \neg p \lor (\neg q \lor \neg r) \rightarrow q \land \neg p$$
:

6.
$$U_6 = \neg p \lor (\neg q \land \neg r) \rightarrow q \land \neg p \land r$$

7
$$II_{-} = p \rightarrow (a \wedge r) \vee a \wedge \neg p$$

7.
$$U_7 = p \rightarrow (q \land r) \lor q \land \neg p$$
; 8. $U_8 = (p \lor q) \land \neg r \rightarrow p \land q \land r$.

Exercise 1.3.

Using the truth table method, check if the following logical consequences hold:

1.
$$p \rightarrow q \models (p \rightarrow r) \rightarrow (p \rightarrow q \land r)$$
; 2. $p \rightarrow q \models (q \rightarrow r) \rightarrow (p \rightarrow r)$;

2.
$$p \rightarrow q \models (q \rightarrow r) \rightarrow (p \rightarrow r)$$

3.
$$p \rightarrow (q \rightarrow r) \models (p \rightarrow q) \rightarrow (p \rightarrow r)$$

3.
$$p \rightarrow (q \rightarrow r) \models (p \rightarrow q) \rightarrow (p \rightarrow r)$$
; 4. $p \rightarrow r \models (q \rightarrow r) \rightarrow ((p \lor q) \rightarrow r)$;

5.
$$p \rightarrow q \models (\neg p \rightarrow q) \rightarrow q$$

6.
$$p \rightarrow q \models (q \rightarrow r) \rightarrow (p \rightarrow q \land r)$$
:

7
$$p \rightarrow a \models (a \rightarrow r) \rightarrow (p \rightarrow a \lor r)$$
.

5.
$$p \rightarrow q \models (\neg p \rightarrow q) \rightarrow q$$
; 6. $p \rightarrow q \models (q \rightarrow r) \rightarrow (p \rightarrow q \land r)$; 7. $p \rightarrow q \models (q \rightarrow r) \rightarrow (p \rightarrow q \lor r)$; 8. $r \rightarrow (q \rightarrow p) \models (r \rightarrow q) \rightarrow (r \rightarrow p)$.

Exercise 1.4.

Prove that the following formulas are tautologies using the truth table method.

- 1. the left-distribution of ' \rightarrow ' over ' \wedge ': $(p \rightarrow (q \land r)) \rightarrow ((p \rightarrow q) \land (p \rightarrow r))$:
- 2. the permutation of the premises law: $(p \rightarrow (q \rightarrow r)) \rightarrow (q \rightarrow (p \rightarrow r))$;
- 3. the reunion of the premises law: $(p \rightarrow (q \rightarrow r)) \rightarrow (p \land q \rightarrow r)$;
- 4. the separation of the premises law: $(p \land q \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$;
- 5. the 'cut' law: $(p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$;

- 6. the left-distribution of 'V' over' \rightarrow ': $p \lor (q \to r) \to ((p \lor q) \to (p \lor r))$;
- 7. the syllogism law: $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$;
- 8. the left-distribution of ' \rightarrow ' over ' \vee ': $(p \rightarrow (q \lor r)) \rightarrow ((p \rightarrow q) \lor (p \rightarrow r))$.

Exercise 1.5.

Transform the formulas U_j , $j \in \{1,2,...,8\}$ into their equivalent conjunctive and disjunctive normal forms. Using one of these forms prove that U_j , $j \in \{1,2,...,8\}$ are valid formulas in propositional logic.

- 1. $U_1 = (p \rightarrow (q \leftrightarrow r)) \rightarrow ((p \rightarrow q) \leftrightarrow (p \rightarrow r));$
- 2. $U_2 = (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$;
- 3. $U_3 = (p \land q \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r));$
- 4. $U_4 = (p \rightarrow (q \lor r)) \rightarrow ((p \rightarrow q) \lor (p \rightarrow r));$
- 5. $U_5 = (p \lor (q \leftrightarrow r)) \rightarrow ((p \lor q) \leftrightarrow (p \lor r));$
- 6. $U_6 = (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r));$
- 7. $U_7 = (p \rightarrow (q \land r)) \rightarrow ((p \rightarrow q) \land (p \rightarrow r))$;
- 8. $U_8 = p \lor (q \rightarrow r) \rightarrow ((p \lor q) \rightarrow (p \lor r))$.

Exercise 1.6.

Using the appropriate normal form write all the models of the following formulas:

- 1. $U_1 = (p \lor q \to r) \to (p \to r) \land q$;
- 2. $U_2 = \neg(\neg p \lor q) \lor r \to \neg p \land \neg(q \land r)$;
- 3. $U_3 = (p \land q \rightarrow r) \rightarrow (p \rightarrow r) \land q$;
- 4. $U_4 = (p \lor q) \land \neg r \to p \land q \land r$;
- 5. $U_5 = p \vee \neg (q \wedge \neg r) \rightarrow p \wedge q \wedge \neg r$;
- 6. $U_6 = (p \lor q \to r) \to (q \to r) \land p$;
- 7. $U_7 = (q \lor r \to p) \to (p \to r) \land q$;
- 8. $U_8 = (q \land r \rightarrow p) \rightarrow (p \rightarrow r) \land q$.

Exercise 1.7.

Using the appropriate normal form, prove that the following formulas are inconsistent:

- 1. $U_1 = (p \rightarrow (q \rightarrow r)) \land \neg ((p \rightarrow q) \rightarrow (p \rightarrow r))$;
- 2. $U_2 = (\neg p \lor q) \land \neg (\neg q \to \neg p)$;
- 3. $U_3 = (p \rightarrow q) \land (p \land q \rightarrow r) \land (p \land \neg r)$;
- 4. $U_4 = (p \rightarrow (q \lor r)) \land (\neg (p \rightarrow q) \land \neg (p \rightarrow r))$;
- 5. $U_5 = p \wedge (q \rightarrow r) \wedge ((p \wedge q) \wedge \neg (p \wedge r))$;
- 6. $U_6 = (p \rightarrow (q \rightarrow r)) \land (p \land q \land \neg r)$;
- 7. $U_7 = (p \rightarrow (q \rightarrow r)) \land \neg (q \rightarrow (p \rightarrow r))$;
- 8. $U_8 = (p \land q \rightarrow r) \land \neg (p \rightarrow (q \rightarrow r))$.

Exercise 1.8.

Write all the anti-models of the following formulas using CNF.

1.
$$U_1 = (q \land r \rightarrow p) \rightarrow (p \rightarrow r) \land q$$
;

2.
$$U_2 = (q \lor r \to p) \to (p \to r) \land q$$
;

3.
$$U_3 = (p \lor q \rightarrow r) \rightarrow (q \rightarrow r) \land p$$
;

4.
$$U_4 = p \lor \neg (q \land \neg r) \rightarrow p \land q \land \neg r$$
;

5.
$$U_5 = p \lor \neg (q \land \neg r) \rightarrow p \land q \land \neg r$$
;

6.
$$U_6 = (p \land q \rightarrow r) \rightarrow (p \rightarrow r) \land q$$
;

7.
$$U_7 = \neg(\neg p \lor q) \lor r \to \neg p \land \neg(q \land r)$$
;

8.
$$U_8 = (p \lor q \to r) \to (p \to r) \land q$$
.

Exercise 1.9.

Using the definition of deduction, prove the following deductions:

1.
$$p \rightarrow q, r \rightarrow t, p \lor r, \neg q \vdash t;$$
 2. $p \rightarrow r, p \lor r \rightarrow q, r \vdash q;$ 3. $q \rightarrow p, t \rightarrow r, q \lor t, \neg p \vdash r;$ 4. $p \lor (q \rightarrow r), p \lor q, \neg p \vdash r;$

3.
$$q \rightarrow p, t \rightarrow r, q \lor t, \neg p \vdash r$$
: 4. $p \lor (q \rightarrow r), p \lor q, \neg p \vdash r$:

5.
$$\neg p \lor \neg q \lor r, q, p \vdash r$$
; 6. $p \to \neg q \lor r, p \land q, p \vdash r$;

7.
$$r \lor (q \to p), r \lor q, \neg r \vdash p$$
; 8. $p \to q, q \to r, r \to t, p \vdash t$.

Exercise 1.10.

Prove the following theorems using the theorem of deduction and its reverse.

1.
$$\vdash p \lor (q \to r) \to ((p \lor q) \to (p \lor r))$$
;

2.
$$\vdash (p \rightarrow (\neg r \rightarrow q)) \rightarrow (r \lor \neg p \lor q)$$
:

3.
$$\vdash (p \rightarrow (q \rightarrow r) \rightarrow (p \land q \rightarrow r))$$
:

4.
$$\vdash (p \land q \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$$
:

5.
$$\vdash (p \rightarrow (q \rightarrow r)) \rightarrow (q \rightarrow (p \rightarrow r))$$
:

6.
$$\vdash (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$
:

7.
$$\vdash (p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$$
:

8.
$$\vdash (p \rightarrow q) \rightarrow ((p \rightarrow r) \rightarrow (p \rightarrow q \land r))$$
.

Exercise 1.11.

Using the theorem of deduction and its reverse prove that:

1.
$$\vdash (p \rightarrow (q \lor r)) \rightarrow ((p \rightarrow q) \lor (p \rightarrow r))$$
:

2.
$$\vdash (p \rightarrow q) \rightarrow ((\neg r \lor p) \rightarrow (r \rightarrow q))$$
:

3.
$$\vdash p \lor (q \to r) \to ((p \lor q) \to (p \lor r))$$
:

4.
$$\vdash (p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow (p \lor q \rightarrow r))$$
:

5.
$$\vdash (p \rightarrow q) \rightarrow ((r \rightarrow t) \rightarrow (p \land r \rightarrow q \land t))$$
:

6.
$$\vdash (p \rightarrow r) \rightarrow ((p \land r \rightarrow q) \rightarrow (p \rightarrow q))$$
:

7.
$$\vdash (\neg q \lor p) \rightarrow ((s \rightarrow q) \rightarrow (s \rightarrow p));$$

8.
$$\vdash (p \rightarrow (q \rightarrow r)) \rightarrow (p \rightarrow (\neg r \rightarrow \neg q))$$