Results are obtained with h_0^P estimated

ESTIMATED PARAMETERS ON WEDNESDAYS MLE UNDER P (10 YEARS), h_0^P IS ESTIMATED, r IS TAKEN FROM AVERAGE 10 YEARS YIELD									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
ω	2.7792e - 12	4.2727e - 12	6.1272e - 12	7.9468e - 12	3.9016e - 12	5.7386e - 12	4.3243e - 08	9.4971e - 09	6.0201e - 08
std	(1.5438e - 12)	(2.7469e - 12)	(3.5879e - 12)	(7.8701e - 12)	(8.2353e - 12)	(1.1002e - 11)	(6.5325e - 08)	(3.9507e - 08)	(1.1125e - 07)
$rac{lpha}{ ext{std}}$	2.8432e - 06 $(1.7286e - 07)$	3.0108e - 06 $(1.4165e - 07)$	3.3280e - 06 $(6.8689e - 08)$	3.4479e - 06 $(7.2687e - 08)$	3.2260e - 06 $(1.0531e - 07)$	3.8430e - 06 $(4.4526e - 07)$	5.0570e - 06 $(1.9333e - 07)$	4.7246e - 06 $(5.1620e - 07)$	4.2666e - 06 $(6.2466e - 07)$
\mathbf{std}	0.7547 (0.0091)	0.7800 (0.0081)	0.7765 (0.0039)	0.7741 (0.0033)	0.7481 (0.0076)	0.7330 (0.0066)	0.7166 (0.0043)	0.7213 (0.0037)	0.7367 (0.0104)
$rac{\gamma}{\mathbf{std}}$	282.8585 (15.0375)	257.5843 (8.3938)	245.0729 (3.7021)	240.1082 (3.0827)	265.0348 (5.6623)	249.7986 (13.0000)	220.9651 (4.1436)	228.0517 (15.0428)	231.3438 (18.6135)
$\lambda \atop ext{std}$	-1.2113 (0.1966)	-0.4436 (0.1676)	0.3685 (0.4117)	1.0834 (0.1261)	1.1370 (0.1439)	1.1814 (0.1114)	1.0382 (0.1431)	1.3007 (0.1788)	2.3327 (0.6399)
$\begin{array}{c} h_0^P \\ \mathbf{std} \end{array}$	1.8925e - 04 $(1.0676e - 04)$	1.5470e - 04 (9.3188e - 05)	2.9586e - 04 (2.0649e - 04)	1.6269e - 04 $(1.3011e - 04)$	4.8351e - 05 (2.5633e - 05)	4.3975e - 05 (3.5915e - 05)	3.5433e - 05 (3.0087e - 05)	1.2264e - 04 (7.3911 $e - 05$)	1.8069e - 03 $(2.0079e - 03)$
persistency std	0.9813 (0.0010)	0.9795 (0.0008)	0.9764 (0.0014)	0.9728 (0.0007)	0.9746 (0.0008)	0.9707 (0.0029)	0.9633 (0.0016)	0.9646 (0.0029)	0.9614 (0.0063)
logLikValue	3.1120	3.1381	3.1539	3.2156	3.2363	3.2308	3.2015	3.2191	3.2950