Министерство образования и науки Российской Федерации

А. Ю. Коврижных, Е. А. Конончук, Г.Е. Лузина, Ю.А. Меленцова

Практикум по численным методам:

задания для аудиторных занятий и самостоятельной работы студентов Учебное электронное текстовое издание

Пособие предназначено для учебно-методического обеспечения практических занятий для бакалавров, специалистов и магистрантов естественнонаучного профиля Подготовлено: кафедрой вычислительной математики ИМКН.

Екатеринбург 2012

Оглавление

Оглавление	2
ТЕОРИЯ ПОГРЕШНОСТЕЙ (ауд. 4 ч., сам. 3 ч.)	5
Практическое занятие №1. Абсолютная и относительная погрешности	5
Задачи для самостоятельной работы:	6
Практическое занятие №2. Погрешность машинной арифметики. Погрешность функции.	8
Задачи для самостоятельной работы.	9
УЛУЧШЕНИЕ СХОДИМОСТИ ЧИСЛОВОГО РЯДА. (ауд. 2 ч., сам. 3 ч.)	10
Практическое занятие №3. Приближенное вычисление суммы числового ряда	10
Задачи для самостоятельной работы:	11
ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. (ауд. 4ч., сам. 11ч.)	12
Практическое занятие№ 4. Метод половинного деления	12
Задачи для самостоятельной работы.	13
Практическое занятие№ 5. Метод Ньютона, модифицированный метод Ньютона, корд, метод подвижных хорд	
Задачи для самостоятельной работы:	15
Практическое занятие№ 6. Метод простой итерации	15
Задачи для самостоятельной работы:	17
Практическое занятие№7 . Контрольная работа №1	18
Вариант 1	18
Вариант 2	18
Вариант 3	18
Вариант 4	19
Вариант 5	19
Вариант 6	19
- ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ. (ауд. 8 ч., сам. 12ч.)	20
Практическое занятие№8. Точные методы решения системы линейных алгебраиче уравнений.	
Задачи для самостоятельной работы:	20
Практическое занятие №9. Норма. Оценки погрешности при решении системы линейных алгебраических уравнений. Определение нормы матрицы. Аксиомы	
Задачи для самостоятельной работы:	
Практическое занятие №10. Число обусловленности матрицы	
Задачи для самостоятельной работы:	
Практическое занятие№ 11. Итерационные методы решения систем линейных уравнений	
Задачи для самостоятельной работы.	
Практическое занятие №12. Контрольная работа №2	33

Вариант 1	, _
Вариант 2	3
Вариант 3	3
Вариант 4	34
Вариант 5	34
Вариант 6	34
ЧИСЛЕННОЕ РЕШЕНИЕ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. (ауд. 2 ч., сам. 1ч.) 3	35
Практическое занятие№ 13. Метод Ньютона и метод простой итерации решения систем нелинейных уравнений	
Задачи для самостоятельной работы	36
ЧИСЛЕННАЯ ИНТЕРПОЛЯЦИЯ. (ауд. 8 ч., сам. 8ч.)3	36
Практическое занятие №14-15. Интерполяционный многочлен Лагранжа, Ньютона, Эрмита	36
Задачи для самостоятельной работы	38
ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ. (ауд. 2 ч., сам. 1ч.)4	
Практическое занятие №16. Простейшие формулы численного дифференцирования. Выбор оптимального шага4	
Задачи для самостоятельной работы	1
ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ. (ауд. 10 ч., сам. 13ч.)4	1
Практическое занятие №17. Интерполяционные квадратурные формулы и их погрешности	↓1
Задачи для самостоятельной работы4	
Практическое занятие №18. Численное интегрирование. Метод неопределенных коэффициентов. Формулы с кратными узлами	
Задачи для самостоятельной работы4	15
Практическое занятие №19. Составные формулы и их погрешности4	16
Задачи для самостоятельной работы4	17
Практическое занятие №20. Квадратурные формулы Гаусса4	17
Задачи для самостоятельной работы4	19
ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА. (ауд. 12ч., сам. 12ч.)4	19
Практическое занятие №21. Методы, основанные на разложении в ряд Тейлора. Погрешность метода	19
Задачи для самостоятельной работы5	52
Практическое занятие №22 . Устойчивость разностных методов	
Задачи для самостоятельной работы5	
РЕШЕНИЕ КРАЕВОЙ ЗАДАЧИ. (ауд. 10ч., сам. 9ч.)5	
Практическое занятие №23. Метод стрельбы5	
Задачи для самостоятельной работы5	
Практическое занятие №24. Метод разностной прогонки	55

Задачи для самостоятельной работы.	58
ЧИСЛЕННЫЕ МЕТОДЫ В ТЕОРИИ ПРИБЛИЖЕНИЯ ФУНКЦИЙ.(ауд. 4ч., сам. 3ч.).	58
Практическое занятие №25. Интерполяция сплайнами. Кубические сплайны	58
МЕТОД НАИМЕНЬШИХ КВАДРАТОВ. (ауд. 4ч., сам. 3ч.)	59
Практическое занятие №26. МНК - решение линейных систем, приближение функци	
по методу наименьших квадратов.	59
Задачи для самостоятельного решения.	60

ТЕОРИЯ ПОГРЕШНОСТЕЙ (ауд. 4 ч., сам. 3 ч.)

Практическое занятие №1. Абсолютная и относительная погрешности

- 1. Определение абсолютной и относительной погрешности.
- 2. Найти абсолютную погрешность с одной и двумя значащими цифрами, если точное число $\pi=3.1415926...$, $\pi_1^*=3.14$, $\pi_2^*=3.142$.
 - 3. Найти соответствующие относительные погрешности.
 - 4. Формула, связывающая абсолютную и относительную погрешности.
- 5. Абсолютная погрешность при измерении расстояния с помощью линейки равна 1_{мм}. Найти диапазон изменения относительной погрешности при измерении расстояний от 1 до 200 мм.
- 6. Прибор позволяет измерять силу тока с точностью 5 %. Диапазон изменений от 1 до 50 А. Найти диапазон изменения абсолютной погрешности измерений.
 - 7. Понятие верной цифры приближенного числа.
- 8. Подчеркнуть верные цифры приближенного числа $x^*=345.012789$, если $\Delta_1=4, \quad \Delta_2=0.07, \quad \Delta_3=0.0005$.
 - 9. Абсолютная погрешность суммы, разности приближенных чисел.
- 10.Найти относительную погрешность, возникающую при вычислении $x = \sqrt{21} \sqrt{20}$, если в качестве приближенных значений для $\sqrt{21}$, $\sqrt{20}$ берутся $x_1^* = 4.583$, $x_2^* = 4.472$ (все цифры верные). Сравнить с относительной погрешностью исходных данных.
- 11.С каким количеством верных цифр нужно вычислить $\sqrt{11}$, $\sqrt{10}$, чтобы разность $x = \sqrt{11} \sqrt{10}$ имела три верные значащие цифры.
- 12.Найти относительную погрешность, возникающую при вычислении $x = \sqrt{21} \sqrt{20}$ с помощью преобразования $x = \sqrt{21} \sqrt{20} = \frac{21 20}{\sqrt{21} + \sqrt{20}} = \frac{1}{\sqrt{21} + \sqrt{20}}$.

Приближенные значения для $\sqrt{21}$, $\sqrt{20}$ те же. Найти относительную погрешность произведения и частного приближенных чисел.

13.Сторона квадрата равна приблизительно 1 м. С какой точностью ее нужно измерить, чтобы погрешность площади была не больше 1 см²?

Задачи для самостоятельной работы:

- 1. Найти абсолютную погрешность с одной и двумя значащими цифрами, если точное число e=2.718281828..., $e_1^*=2.718$, $e_2^*=2.7182$.
- 2. Подчеркнуть верные цифры приближенного числа $x^*=3145.0162789$, если $\Delta_1=40, \quad \Delta_2=0.0009, \quad \Delta_3=0.0000035$.
- 3. Найти относительную погрешность, возникающую при вычислении $x = \sqrt[3]{11} \sqrt[3]{10}$, если в качестве приближенных значений для $\sqrt[3]{11}, \sqrt[3]{10}$ берутся $x_1^* = 2.224$, $x_2^* = 2.154$ (все цифры верные). Сравнить с относительной погрешностью исходных данных.
- 4. Найти относительную погрешность, возникающую при вычислении $x = \sqrt[3]{11} \sqrt[3]{10} \ \text{с помощью преобразования} \ x = \sqrt[3]{11} \sqrt[3]{10} = \frac{1}{\left(\sqrt[3]{11}\right)^2 + \sqrt[3]{11}\sqrt[3]{10} + \left(\sqrt[3]{10}\right)^2} \ .$

Приближенные значения для $\sqrt[3]{11}$, $\sqrt[3]{10}$ те же. (Использовать информацию об относительной погрешности произведения и частного приближенных чисел).

5. Сторона куба равна приблизительно 1 м. С какой точностью ее нужно измерить, чтобы погрешность объема была не больше 1 дм³?

Пример 1.

Рассмотрим задачу 11. Цифра a_i приближенного числа $x^* = a_n a_{n-1} ... a_1 a_0 ... a_{-1} a_{-2} ... a_{-k}$ называется верной, если абсолютная погрешность Δ_{x^*} не превосходит $0.5 \cdot 10^i$. Пусть в числах x_1^*, x_2^* k верных цифр после запятой. Тогда $\Delta_{x_1^*} \leq 0.5 \cdot 10^{-k}$ и $\Delta_{x_2^*} \leq 0.5 \cdot 10^{-k}$. Так как абсолютная погрешность разности двух приближенных чисел равна сумме абсолютных погрешностей

этих чисел, то $\Delta_{x^*} = 10^{-k}$. Чтобы в числе $x^* = x_1^* - x_2^* = 0.1$... было три верных значащих цифры, необходимо, чтобы $10^{-k} \le 0.5 \cdot 10^{-3}$. Поэтому k = 4, то есть $\sqrt{11}$, $\sqrt{10}$ нужно вычислять с пятью верными знаками $x_1^* = 3.3166$, $x_2^* = 3.1623$. Это гарантирует три верных значащих цифры у результата.

Пример 2.

С какой точностью следует вычислить радиус основания r и высоту h цилиндра, чтобы его объем можно было определить с точностью до 3%?

Объем цилиндра вычисляется по формуле $V = \pi h r^2$. Вспомним, что относительная погрешность произведения равна сумме относительных погрешностей сомножителей. Поэтому $\delta_{V^*} = \delta_{h^*} + 2\delta_{r^*}$. Но так как мы хотим вычислять радиус основания r и высоту h с одинаковой точностью, то $\delta_{h^*} = \delta_{r^*} = \delta$ и $\delta_{V^*} = 3\delta$. Чтобы определить точность в процентах, относительную погрешность умножают на 100. Поэтому $\delta_{V^*} = 3\delta = 0.03$. Следовательно, $\delta = 0.01$.

Таким образом, чтобы вычислить объем цилиндра с точностью до 3%, достаточно вычислить радиус основания r и высоту h цилиндра с точностью до 1%.

Практическое занятие №2. Погрешность машинной арифметики. Погрешность функции.

- 1. Числа с плавающей точкой $x=\pm\left(\frac{d_1}{p}+\frac{d_2}{p^2}+...+\frac{d_t}{p^t}\right)p^{\alpha}$, где целые числа $p,\alpha,d_1,...,d_t$ удовлетворяют неравенствам $0\leq d_i\leq p-1,\ i=1,...,t$, $d_1\neq 0$ и $L\leq \alpha\leq U$ (p основание системы счисления, $m=\frac{d_1}{p}+\frac{d_2}{p^2}+...+\frac{d_t}{p^t}$ мантисса, t разрядность, длина мантиссы, α порядок числа, [L,U] промежуток изменения порядка).
- 2. Найти множество чисел с плавающей точкой, если p=2, t=3, L=-1, U=2. Указать самое маленькое положительное число и самое большое.
 - 3. Найти абсолютную и относительную погрешность в примере 2.
- 4. Можно ли непосредственными вычислениями проверить, что ряд $\sum_{j=1}^{\infty} \frac{1}{j}$ расходится?
 - 5. Неустранимая погрешность функции одной переменной.
- 6. Определить неустранимую погрешность функции $y = \sin \varphi$, если φ измеряется в градусах и абсолютная погрешность аргумента не превышает половины градуса.
- 7. Корни уравнения $x^2 2x + \lg 2 = 0$ нужно найти с четырьмя верными знаками. С каким числом верных цифр надо взять свободный член уравнения?
- 8. Высота h и радиусы оснований r и R усеченного конуса измерены с точностью до 0.5 %. Какова относительная погрешность при вычислении его объема?

Задачи для самостоятельной работы.

- 1. Представить в форме с плавающей точкой (см. пример 2) числа $x_1 = \frac{23}{32}, x_2 = \frac{1}{8}, x_3 = 4, x_4 = \frac{1}{2} + \frac{3}{4}, x_5 = \frac{3}{8} + \frac{5}{4}, x_6 = 3 + \frac{7}{2}, x_7 = \frac{7}{16} \frac{3}{8}, x_8 = \frac{1}{4} \cdot \frac{5}{16}$.
- 2. Верно ли, что всегда число с плавающей точкой, соответствующее числу $\frac{a+b}{2}$, принадлежит [a,b]?
 - 3. Определить неустранимую погрешность функции $y = \cos^3 \varphi$, если φ измеряется в градусах и абсолютная погрешность аргумента не превышает один градус.
- 4. Определить неустранимую погрешность в значении функции $y = \sqrt{arctgx}, x \ge 0.6$, если известно, что x задан с четырьмя верными цифрами после запятой.
- 5. Задано квадратное уравнение $x^2 + ax + b = 0$, коэффициенты которого известны с погрешностями $\Delta_{a^*}, \Delta_{b^*}$. Найти абсолютную погрешность корней уравнения.

Пример 1.

Найти множество чисел с плавающей точкой, если p=3, t=2, L=-1, U=2. Указать самое маленькое положительное число и самое большое.

Так как числа представимы в виде $x=\pm\left(\frac{d_1}{3}+\frac{d_2}{3^2}\right)3^{\alpha}$, то множество значений мантиссы $\frac{1}{3},\frac{2}{3},\frac{4}{9},\frac{7}{9},\frac{5}{9},\frac{8}{9}$. Множество чисел $\frac{3}{27},\frac{4}{27},...,\frac{8}{27},\frac{3}{9},\frac{4}{9},\frac{5}{9},...,\frac{8}{9},1,\frac{4}{3},...,\frac{8}{3},3,4,...,8$. Самое маленькое положительное число — $\frac{1}{9}$. Самое большое положительное число — 8.

Пример 2.

Определить неустранимую погрешность в значении функции $y = \sqrt{arctg\,\frac{\sqrt{3}}{3}}, \text{ если } x = \frac{\sqrt{3}}{3} = 0.5773502691... \quad x^* = 0.578, \quad \Delta_{x^*} \leq 0.0007 \quad \text{(две верные цифры)}.$

По определению неустранимой погрешности функции y=f(x) для абсолютной погрешности Δ_{y^*} имеем $\Delta_{y^*}=\left|f'(x^*)\right|\Delta_{x^*}$ Так как

$$f'(x) = \frac{1}{2\sqrt{arctgx}} \frac{1}{1+x^2},$$

$$f'(0.578) \leq \frac{1}{2\sqrt{arctg\,\frac{\sqrt{3}}{3}}}\frac{1}{1+0.578^2} = \frac{1}{\sqrt{\frac{2\pi}{3}}}\frac{1}{1.334084} \leq \frac{1}{1.447\cdot 1.334} \leq 0.5181 \,\text{ и } \Delta_{\boldsymbol{y}^*} \leq 0.0004 \,.$$

Итак, у результата $y^* = 0.7239$ три верных цифры.

УЛУЧШЕНИЕ СХОДИМОСТИ ЧИСЛОВОГО РЯДА. (ауд. 2 ч., сам. 3 ч.)

Практическое занятие №3. Приближенное вычисление суммы числового ряда.

- 1. Определение числового ряда.
- 2. Определение сходимости числового ряда.
- 3. Остаточный член ряда.
- 4. Приближенное вычисление суммы ряда.
- 5. Ряды с положительными, монотонно убывающими членами a_n . Интегральная оценка остаточного члена. Ее вывод.
- 6. Для ряда $S = \sum_{n=1}^{\infty} \frac{n+1}{n(n^2+0.35)}$ оценить погрешность при замене суммы этого ряда частичной суммой S_{100} .
- 7. Записать формулу для вычисления суммы этого ряда с заданной степенью точности $\varepsilon = 10^{-6}$. Оценить количество N членов ряда, которые нужно сложить, чтобы погрешность метода не превосходила $\varepsilon = 10^{-6}$.
 - 8. Найти неустранимую погрешность суммы S_N .

- 9. Улучшение сходимости ряда с общим членом вида $a_n = \frac{p(n)}{q(n)}$, где p(n), q(n)— многочлены и степень q(n) не меньше, чем 2+степень p(n), методом Куммера.
- 10. Улучшить сходимость ряда $S = \sum_{n=1}^{\infty} \frac{n+1}{n(n^2+0.35)}$, используя эталонный ряд $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} = 1.6449340668...$. Оценив количество M членов улучшенного ряда, записать формулу для вычисления суммы S исходного ряда с заданной точностью $\varepsilon = 10^{-6}$.
- 11.Еще раз улучшить сходимость ряда, используя эталонный ряд $\sum_{n=1}^{\infty} \frac{1}{n^3} = 1.2020569032.... \ \, И \, \,$ вновь, оценив количество K членов улучшенного ряда, записать формулу для вычисления суммы S исходного ряда с заданной точностью $\varepsilon = 10^{-6}$.

Задачи для самостоятельной работы:

- 1. Для ряда $S = \sum_{n=1}^{\infty} \frac{n+1}{n^2(n^2+1)}$ оценить погрешность при замене суммы этого ряда частичной суммой S_{1000} .
- 2. Записать формулу для вычисления суммы этого ряда с заданной степенью точности $\varepsilon = 10^{-5}$. Оценить количество N членов ряда, которые нужно сложить, чтобы погрешность метода не превосходила $\varepsilon = 10^{-5}$.
- 3. Улучшить сходимость ряда $S = \sum_{n=1}^{\infty} \frac{n+1}{n^2(n^2+1)}$, используя эталонный ряд $\sum_{n=1}^{\infty} \frac{1}{n^3} = 1.2020569032...$. Оценив количество M членов улучшенного ряда, записать формулу для вычисления суммы S исходного ряда с заданной точностью $\varepsilon = 10^{-5}$.
- 4. Еще раз улучшить сходимость ряда, используя эталонный ряд $\sum_{n=1}^{\infty}\frac{1}{n^4}=\frac{\pi^4}{90}=1.0823232337..... И вновь, оценив количество <math>K$ членов улучшенного

ряда, записать формулу для вычисления суммы S исходного ряда с заданной точностью $\varepsilon = 10^{-5}$.

Пример.

Пусть требуется улучшить сходимость ряда $S = \sum_{n=1}^{\infty} \frac{n+1}{n(n^2+0.35)}$. Поскольку

общий член ряда при $n \to \infty$ ведет себя, как $\frac{1}{n^2}$, используем эталонный ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} = 1.6449340668.... \text{ Так как } \lim_{n \to \infty} \frac{\frac{n+1}{n(n^2+0.35)}}{\frac{1}{n^2}} = 1, \text{ то вычтем из исходного}$$

ряда $\sum_{n=1}^{\infty} \frac{1}{n^2}$ и добавим его сумму $\frac{\pi^2}{6}$.

Получим
$$S = \frac{\pi^2}{6} + \sum_{n=1}^{\infty} \left(\frac{n+1}{n(n^2+0.35)} - \frac{1}{n^2} \right) = \frac{\pi^2}{6} + \sum_{n=1}^{\infty} \frac{n-0.35}{n^2(n^2+0.35)}$$
. Теперь

приближенно нужно вычислять ряд $\sum_{n=1}^{\infty} \frac{n-0.35}{n^2(n^2+0.35)}$ и для него оценивать количество членов, сложение которых гарантирует заданную точность.

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. (ауд. 4ч., сам. 11ч.)

Практическое занятие№ 4. Метод половинного деления.

- 1. Постановка задачи решения нелинейного уравнения f(x)=0.
- 2. Задача отделения корней, способы ее решения.
- 3. Уточнение корня.
- 4. Метод половинного деления решения нелинейного уравнения и его погрешность.
- 5. Скорость сходимости метода половинного деления.
- 6. Геометрическая интерпретация метода половинного деления

Пример 1.

Отделить корни уравнения $x^2 e^x$ - $\pi = 0$.

 $f'(x)=x(x+2)e^x$; f'(x)=0 при x=0, x=-2. f(x) непрерывна, промежутки монотонности

-∞	-2	0	+∞
-	-	-	+

Следовательно, существует единственный корень на $(0, +\infty)$. f(1) < 0 , f(2) > 0, значит, корень лежит на [1, 2]

Пример 2.

Отделить корни уравнения x^2 -sinx-1=0.

Заменим уравнение эквивалентным ему уравнением x^2 - 1= sinx. Изобразим примерно графики левой и правой частей на $(-\pi, \pi)$ (см. puc.1).

Рис. 1

Видно, что уравнение имеет два корня: на (-1, 0) и на (1, 2).

Задачи для самостоятельной работы.

- 1) Отделить корни уравнения $x^3 x^2 9x + 9 = 0$
- 2) Отделить корни уравнения $x^2 e^{-x/2} = 0$.
- 3) Оценить количество итераций, которое потребуется для нахождения с точностью $\varepsilon=10^{-2}$ методом половинного деления корней следующих уравнений:
 - a) tg(1.9x) 2.8x = 0;
 - b) ln(8x) = 9x 3;
 - c) sin(2,2x) x = 0;

4) Выполнить два шага метода половинного деления для нахождения с точностью $\varepsilon=10^{-2}$ корней следующих уравнений:

a)
$$e^{-0.8x} - 4x = 0$$
;

b)
$$0.89x^3 - 2.8x^2 - 3.7x + 11.2 = 0$$

Практическое занятие№ 5. Метод Ньютона, модифицированный метод Ньютона, метод хорд, метод подвижных хорд.

- 1. Метод Ньютона решения нелинейных уравнений, его скорость сходимости и геометрическая интерпретация.
- 2. Модифицированный метод Ньютона, решения нелинейных уравнений, его скорость сходимости и геометрическая интерпретация.
- 3. Метод хорд решения нелинейных уравнений, его скорость сходимости и геометрическая интерпретация.
- 4. Метод подвижных хорд решения нелинейных уравнений, его скорость сходимости и геометрическая интерпретация.
- 5. Вопрос выбора начальной точки.
- 6. Теорема о достаточных условиях сходимости методов.

Пример.

Рассмотрим вычисление \sqrt{a} как задачу решения уравнения

$$x^2 - a = 0$$

в области x>0 . Напишем для вычисления корня этого уравнения итерационную последовательность по методу Ньютона. Найдем с ее помощью $\sqrt{2}$.

Рекуррентная формула метода Ньютона для нашего уравнения принимает вид

$$x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right).$$

Она определяет монотонно убывающую последовательность, сходящуюся к \sqrt{a} сверху.

Выберем для вычисления $\sqrt{2} \ x_0 = 2$. Тогда получим:

$$x_1 = 1,5;$$

 $x_2 = 1,41666;$
 $x_3 = 1,414216;$ и т.д.

Третья итерация определяет $\sqrt{2}$ с точностью 0.000002.

Задачи для самостоятельной работы:

- 1) Методом Ньютона найти второе приближение к корню для уравнения $x^3 x^2 9x + 9 = 0$ на отрезке [0,5; 2].
- 2) Методом Ньютона найти второе приближение к корню для уравнения $x^3 x + 1 = 0$ на отрезке [-2; -1].
- 3) Построить метод Ньютона для вычисления 1/a, a > 0, так, чтобы расчетная формула не содержала операций деления. Найти область сходимости (для выбора x_0).
- 4) Построить метод Ньютона для вычисления a^5 , a > 0. Найти область сходимости (для выбора x_0).
- 5) Методом хорд найти третье приближение x_3 к корню уравнения $x^3 x + 1 = 0$, если известно, что корень лежит на отрезке [-2; -1].
- 6) Методом хорд найти второе приближение к корню для уравнения $x^3 x^2 9x + 9 = 0$ на отрезке [0,5; 2].
- 7) Рассматривается уравнение $\sin(x) = 0$ на $\left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$. Почему не для всякого x_0 метод Ньютона сходится? Найти все те x_0 , для которых метод Ньютона сходится.
- 8) Привести пример функции, для которой зацикливается метод Ньютона.
- 9) Как оценить погрешность приближения x_n при решении уравнения f(x) = 0, если значения функции вычисляются с абсолютной погрешностью A_f ? Предполагается, что $|f'(x)| \ge m > 0$.

Практическое занятие№ 6. Метод простой итерации.

- 1. Метод простых итераций решения нелинейных уравнений.
- 2. Скорость сходимости метода простых итераций.

- 3. Геометрическая интерпретация метода.
- 4. Критерий сходимости метода простых итераций.

Пример.

Представить уравнение $x^3 - x + 1 = 0$ в виде, допускающем применение метода простых итераций.

Решение: Сначала нужно отделить корни, т.е. найти такой отрезок [*a*; *b*], на котором существует единственный корень. Преобразуем уравнение к равносильному виду: $x^3 = x - 1$ и найдем точки пересечения графиков $y = x^3$ и y = x - 1 (см. рис.2).

Рис. 2

Очевидно, корень уравнения $\xi \in [-2; -1]$.

Чтобы можно было применять метод простых итераций, преобразуем исходное уравнение к виду $x = \varphi(x)$. Для сходимости метода простых итераций необходимо обеспечить выполнение условия $|\varphi'(x)| \le q < 1$ на [a;b].

Запишем исходное уравнение сначала в виде: $x = x^3 + 1$. Легко показать, что функция $\varphi(x) = x^3 + 1$ не удовлетворяет условию сходимости, поскольку $\varphi'(x) = 3x^2$, убывает на [-2; -1] и $\varphi'(-1) = 3 > 1$. Поэтому воспользуемся другим преобразованием.

$$x=\sqrt[3]{x-1}$$
. $\varphi(x)=\sqrt[3]{x-1}$. $\varphi'(x)=\frac{1}{3(x-1)^{2/3}}$. Легко проверить, что $|\varphi'(x)|<1$ на $[-2;-1]$, , т.е. выполняются достаточные условия сходимости метода простых итераций.

Расчетная формула метода простых итераций: $x_{n+1} = \varphi(x_n)$. Зададим начальное приближение $x_0 = -1$.

$$x_1 = \varphi(x_0) = \sqrt[3]{-1-1} \approx -1,2599.$$

 $x_2 = \varphi(x_1) = \sqrt[3]{-1,2599-1} \approx -1,3123.$

Задачи для самостоятельной работы:

1) Рассматривается уравнение $x^3 + x = 1000$. Какой из следующих методов:

$$x_{n+1}=1000-x_n^3, \qquad x_{n+1}=\frac{1000}{x_n^2}-\frac{1}{x_n}, \qquad x_{n+1}=(1000-x_n)^{1/3}$$
 сходится?

- 2) Выяснить, сходится ли метод простых итераций для уравнения x + ln(x) = 0, если итерационный процесс имеет вид $x_{n+1} = -ln(x_n)$.
- 3) Пусть ξ корень уравнения $x = \varphi(x)$, и функция $\varphi(x)$ имеет непрерывную производную на [a, b]. Выполнить следующие задания:
 - а) Доказать, что условие $|\phi'(\xi)| < 1$ является достаточным для сходимости метода простых итераций, если x_0 принадлежит достаточно малой окрестности точки ξ ;
 - b) Условие $|\phi'(\xi)| \le 1$ является необходимым;
 - с) Показать на примерах (графически), что метод простых итераций при $|\phi'(\xi)| = 1$ может как сходиться, так и расходиться;
 - d) Показать, что условие $|\varphi'(x)| \le q < 1$ на [a; b] не гарантирует сходимости на [a; b] метода простых итераций;
 - е) Какие дополнительные к d) условия будут гарантировать сходимость;
 - f) Пусть q в d) известно, и все x_n лежат в отрезке [a; b]. Как найти число итераций для достижения требуемой точности?
- 4) Для уравнения x = sin2x исследовать сходимость метода простых итераций в окрестности наименьшего положительного корня.
- 5) Для уравнения x = cos2x исследовать сходимость метода простых итераций в окрестности наименьшего положительного корня.
- 6) Применить метод простых итераций для решения уравнения sinx = 2x 0.5.

- 7) Выяснить, сходится ли метод простых итераций в окрестности наименьшего положительного корня уравнения $x = 0.1 + x^3$.
- 8) Выяснить, сходится ли метод простых итераций в окрестности наименьшего положительного корня уравнения $x = (1 + x)^{1/2}$.
- 9) Представить метод Ньютона как метод простых итераций. Подсчитать $\phi'(\xi)$.
- 10) Представить метод хорд как метод простых итераций. Подсчитать $\varphi'(\xi)$. Доказать, что $\varphi'(\xi)$ стремится к нулю при $x_0 \to \xi$.

Практическое занятие№7. Контрольная работа №1

Вариант 1

1. Для вычисления наибольшего из корней уравнения

$$x^3 + 3x^2 - 1 = 0$$

построить сходящийся итерационный процесс вида

$$x_n+1=\varphi(x_n)$$

2. Найти первое приближение к одному из корней уравнения

$$x^3 - x + 1 = 0$$

по методу Ньютона.

Вариант 2

1. Выяснить, сходится ли метод простой итерации для вычисления корня уравнения $x + \ln(x) = 0$, если итерационный процесс имеет вид

$$x_n + 1 = -\ln(x_n)$$

2. Найти второе приближение к корню уравнения

$$x^3 - x + 2 = 0$$

по методу хорд.

Вариант 3

- 1. Выяснить, сходится ли метод простой итерации для уравнения x + ln(x)
- = 0, если итерационный процесс имеет вид

$$\mathbf{x}_{n+1} = e^{x_n}$$

2. Найти третье приближение к корню уравнения

$$x^3 - x + 3 = 0$$

по методу подвижных хорд.

Вариант 4

- 1. Выяснить, сходится ли метод простой итерации для уравнения $x + \ln(x) =$
- 0, если итерационный процесс имеет вид $x_{n+1} = (x_n + e^{-x_n})/2$
- 2. Найти второе приближение к корню уравнения

$$x^3 - x + 5 = 0$$

по методу хорд.

Вариант 5

1.Определить область начальных приближений x_0 , для которых итерационный процесс

$$x_{n+1} = (x_n^3 + 1)/20$$

сходится.

2. Найти первое приближение к корню уравнения

$$x^3 - x + 4 = 0$$

по модифицированному методу Ньютона.

Вариант 6

1. Для вычисления наименьшего из корней уравнения

$$x^3 + 3x^2 - 1 = 0$$

построить сходящийся итерационный процесс вида

$$x_{n+1} \!\!=\!\! \phi(x_n)$$

2. Найти первое приближение к корню уравнения

$$x^3 - x + 6 = 0$$

по методу Ньютона.

ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ. (ауд. 8 ч., сам. 12ч.)

Практическое занятие№8. Точные методы решения системы линейных алгебраических уравнений.

- 1. Система линейных алгебраических уравнений. Условие существования и единственности решения.
 - 2. Метод Крамера. Метод Гаусса.
 - 3. Решить систему, используя компактную схему Гаусса.

$$\begin{cases} 2x_1 + 4x_2 + 5x_3 = 5 \\ x_1 + 4x_2 + 0.5x_3 = 8.5 \\ 2x_1 + 3x_2 + 9x_3 = -1 \end{cases}$$

- 4. Недостатки компактной схемы Гаусса.
- 5. Применить компактную схемы Гаусса к системе $\begin{cases} 0.01x_1 + 10x_2 = 10 \\ 2x_1 + x_2 = 3 \end{cases}$ с округлениями на втором и третьем знаке после запятой.
 - 6. Метод Гаусса с выбором главного элемента.
- 7. Решить систему $\begin{cases} 0.01x_1 + 10x_2 = 10 \\ 2x_1 + x_2 = 3 \end{cases}$ методом Гаусса и методом Гаусса с выбором главного элемента.
- 8. Пользуясь компактной схемой Гаусса, получить метод прогонки для трехдиагональной системы. Оценить число операций.
- 9. Неустранимая погрешность при решении системы линейных алгебраических уравнений.
- 10.Найти неустранимую погрешность при решении системы $\begin{cases} 2x_1 + 4x_2 + 5x_3 = 5 \\ x_1 + 4x_2 + 0.5x_3 = 8.5 \text{, если все исходные данные имеют погрешность } 0.05. \\ 2x_1 + 3x_2 + 9x_3 = -1 \end{cases}$

Задачи для самостоятельной работы:

1. Сравнить число арифметических действий при решении системы методом Крамера и методом Гаусса.

- 2. Найти число операций при решении системы *n*-го порядка по компактной схеме Гаусса.
- 3. Применить компактную схемы Гаусса к системе $\begin{cases} 0.01x_1 + 10x_2 = 10 \\ 2x_1 + x_2 = 3 \end{cases}$, если «машина» имеет мантиссу с двумя, тремя, четырьмя десятичными знаками.
- 4. Пользуясь компактной схемой Гаусса, получить метод прогонки для пятидиагональной системы. Оценить число операций.
 - 5. Решить систему $\begin{cases} 2x_1 + 3x_2 x_3 = 0 \\ 3x_1 + 4.5x_2 2x_3 = 0.5 \ , & \text{используя компактную схему} \\ x_1 + 2x_2 5x_3 = 5 \end{cases}$

Гаусса и метод Гаусса с выбором главного элемента.

6. Найти неустранимую погрешность при решении системы $\begin{cases} 2x_1 + 3x_2 - x_3 = 0 \\ 3x_1 + 4.5x_2 - 2x_3 = 0.5 \text{ , если все исходные данные имеют погрешность } 0.01. \\ x_1 + 2x_2 - 5x_3 = 5 \end{cases}$

Пример 1.

Рассмотрим задачу 10.

Пусть ΔA — матрица погрешностей элементов матрицы A исходной системы, Δb — вектор погрешностей правых частей системы, Δx — вектор погрешностей решений системы, возникающих из за погрешностей исходных данных. Известно, что

$$A\Delta x = \Delta b - \Delta A \cdot x$$
.

По условию
$$\Delta A = \begin{pmatrix} 0.05 & 0.05 & 0.05 \\ 0.05 & 0.05 & 0.05 \\ 0.05 & 0.05 & 0.05 \end{pmatrix}$$
, $\Delta b = \begin{pmatrix} 0.05 \\ 0.05 \\ 0.05 \end{pmatrix}$, решение системы найдено —

$$x = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
. Выпишем систему $A\Delta x = \Delta b - \Delta A \cdot x$ и решим ее по компактной схеме

Гаусса

$$\begin{cases} 2\Delta x_1 + 4\Delta x_2 + 5\Delta x_3 = 0.05 - 2 \cdot 0.05 \\ \Delta x_1 + 4\Delta x_2 + 0.5\Delta x_3 = 0.05 - 2 \cdot 0.05 \\ 2\Delta x_1 + 3\Delta x_2 + 9\Delta x_3 = 0.05 - 2 \cdot 0.05 \end{cases} \begin{cases} 2\Delta x_1 + 4\Delta x_2 + 5\Delta x_3 = -0.05 \\ \Delta x_1 + 4\Delta x_2 + 0.5\Delta x_3 = -0.05 \\ 2\Delta x_1 + 3\Delta x_2 + 9\Delta x_3 = -0.05 \end{cases}$$

$$\begin{pmatrix} 2 & | \underline{2} & 2.5 & -0.025 \\ 1 & 2 & | \underline{-1} & -0.0125 \\ 2 & -1 & 3 & | -\frac{0.0125}{3} = -0.00417 \end{pmatrix} \quad \Delta x_3 = -0.0042, \ \Delta x_2 = -0.0167, \ \Delta x_1 = 0.0184$$

Пример 2.

Пользуясь компактной схемой Гаусса, получить метод прогонки для пятидиагональной системы.

Рассмотрим систему с пятидиагональной матрицей

$$\begin{pmatrix} \gamma_1 & \delta_1 & \mu_1 & 0 & 0 & \dots & v_1 \\ \beta_2 & \gamma_2 & \delta_2 & \mu_2 & 0 & \dots & v_2 \\ \alpha_3 & \beta_3 & \gamma_3 & \delta_3 & \mu_3 & \dots & v_3 \\ 0 & \alpha_4 & \beta_4 & \gamma_4 & \delta_4 & \dots & v_4 \\ 0 & 0 & \alpha_5 & \beta_5 & \gamma_5 & \dots & v_5 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \dots & v_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \\ \vdots \\ \delta_n \end{pmatrix}$$

Выпишем матрицу системы, введя дополнительные обозначения A_i, B_i, C_i, D_i, F_i , получаемую по компактной схеме Гаусса.

$$\begin{pmatrix} A_1 & C_1 & D_1 & 0 & 0 & \dots & F_1 \\ B_2 & A_2 & C_2 & D_2 & 0 & \dots & F_2 \\ \alpha_3 & B_3 & A_3 & C_3 & D_3 & \dots & F_3 \\ 0 & \alpha_4 & B_4 & A_4 & C_4 & \dots & F_4 \\ 0 & 0 & \alpha_5 & B_5 & A_5 & \dots & F_5 \\ 0 & 0 & 0 & \alpha_6 & B_6 & \dots & F_6 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix}, \ \text{где } A_1 = \gamma_1, \quad C_1 = \frac{\delta_1}{\gamma_1}, \quad D_1 = \frac{\mu_1}{\gamma_1}, \quad F_1 = \frac{\nu_1}{\gamma_1},$$

$$\begin{split} B_2 &= \beta_2, \quad A_2 = \gamma_2 - B_2 C_1, \quad C_2 = \frac{\delta_2 - B_2 D_1}{A_2}, \quad D_2 = \frac{\mu_2}{A_2}, \quad F_2 = \frac{v_2 - B_2 F_1}{A_2}, \\ B_3 &= \beta_3 - \alpha_3 C_1, \quad A_3 = \gamma_3 - B_3 C_2 - \alpha_3 D_1, \quad C_3 = \frac{\delta_3 - B_3 D_2}{A_3}, \quad D_3 = \frac{\mu_3}{A_3}, \quad F_3 = \frac{v_3 - \alpha_3 F_1 - B_3 F_2}{A_3}. \end{split}$$

Заметим закономерность:

$$B_{i} = \beta_{i} - \alpha_{i}C_{i-2}, A_{i} = \gamma_{i} - B_{i}C_{i-1} - \alpha_{i}D_{i-2}, C_{i} = \frac{\delta_{i} - B_{i}D_{i-1}}{A_{i}}, D_{i} = \frac{\mu_{i}}{A_{i}}, F_{i} = \frac{\nu_{i} - \alpha_{i}F_{i-2} - B_{i}F_{i-1}}{A_{i}}, i = 3...., n-2.$$

$$\begin{split} B_{n-1} &= \beta_{n-1} - \alpha_{n-1} C_{n-3}, \quad A_{n-1} &= \gamma_{n-1} - B_{n-1} C_{n-2} - \alpha_{n-1} D_{n-3}, \quad C_{n-1} &= \frac{\delta_{n-1} - B_{n-1} D_{n-2}}{A_{n-1}}, \\ F_{n-1} &= \frac{\nu_{n-1} - \alpha_{n-1} F_{n-3} - B_{n-1} F_{n-2}}{A_{n-1}} \end{split}$$

$$B_n = \beta_n - \alpha_n C_n, \quad A_n = \gamma_n - B_n C_{n-1} - \alpha_n D_{n-2}, \quad F_n = \frac{V_n - \alpha_n F_{n-2} - B_n F_{n-1}}{A_n}.$$

Обратный ход:

$$x_n = F_n$$
, $x_{n-1} = F_{n-1} - x_n C_{n-1}$, $x_i = F_i - x_{i+1} C_i - x_{i+2} D_i$, $i = n-2,...,1$.

Теперь мы видим, что

$$x_n = F_n$$
, $x_{n-1} = F_{n-1} - x_n C_{n-1}$, $x_i = F_i - x_{i+1} C_i - x_{i+2} D_i$, $i = n-2,...,1$, где

$$C_1 = \frac{\delta_1}{\gamma_1}, \quad D_1 = \frac{\mu_1}{\gamma_1}, \quad F_1 = \frac{\nu_1}{\gamma_1},$$

$$C_2 = \frac{\delta_2 - \beta_2 D_1}{\gamma_2 - \beta_2 C_1}, \quad D_2 = \frac{\mu_2}{\gamma_2 - \beta_2 C_1}, \quad F_2 = \frac{\nu_2 - \beta_2 F_1}{\gamma_2 - \beta_2 C_1},$$

$$\begin{split} C_{i} &= \frac{\delta_{i} - \left(\beta_{i} - \alpha_{i}C_{i-2}\right)D_{i-1}}{\gamma_{i} - \left(\beta_{i} - \alpha_{i}C_{i-2}\right)C_{i-1} - \alpha_{i}D_{i-2}}, \quad D_{i} = \frac{\mu_{i}}{\gamma_{i} - \left(\beta_{i} - \alpha_{i}C_{i-2}\right)C_{i-1} - \alpha_{i}D_{i-2}}, \\ F_{i} &= \frac{v_{i} - \alpha_{i}F_{i-2} - \left(\beta_{i} - \alpha_{i}C_{i-2}\right)F_{i-1}}{\gamma_{i} - \left(\beta_{i} - \alpha_{i}C_{i-2}\right)C_{i-1} - \alpha_{i}D_{i-2}}, \quad i = 3, \dots, n - 2 \end{split}$$

$$C_{n-1} &= \frac{\delta_{n-1} - \left(\beta_{n-1} - \alpha_{n-1}C_{n-3}\right)D_{n-2}}{\gamma_{n-1} - \left(\beta_{n-1} - \alpha_{n-1}C_{n-3}\right)C_{n-2} - \alpha_{n-1}D_{n-3}}, \quad F_{n-1} &= \frac{v_{n-1} - \alpha_{n-1}F_{n-3} - \left(\beta_{n-1} - \alpha_{n-1}C_{n-3}\right)F_{n-2}}{\gamma_{n-1} - \left(\beta_{n-1} - \alpha_{n-1}C_{n-3}\right)C_{n-2} - \alpha_{n-1}D_{n-3}}, \\ F_{n} &= \frac{v_{n} - \alpha_{n}F_{n-2} - \left(\beta_{n} - \alpha_{n}C_{n}\right)F_{n-1}}{\gamma_{n} - \left(\beta_{n} - \alpha_{n}C_{n}\right)C_{n-1} - \alpha_{n}D_{n-2}}. \end{split}$$

Практическое занятие №9. Норма. Оценки погрешности при решении системы линейных алгебраических уравнений. Определение нормы матрицы. Аксиомы.

- 1. Норма вектора.
- 2. Подчиненная норма матрицы.

3. Найти нормы
$$\|A\|_1$$
, $\|A\|_{\infty}$ для матрицы $A = \begin{pmatrix} -5 & 0 & 3 \\ 4 & -2 & 1 \\ 3 & -1 & 1 \end{pmatrix}$.

- 4. Найти норму $\|A\|_2$ для матрицы $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$.
- 5. Доказать, что для подчиненной нормы справедливы неравенства $||Ax|| \le ||A|||x||$, $||AB|| \le ||A|||B||$.
- 6. Доказать следующие свойства собственных значений $\lambda(A)$ невырожденной матрицы A:
 - а. A симметрическая, $\lambda(A)$ действительное.
 - b. A —положительно определенная, $\lambda(A)$ положительно.
 - с. $(\lambda(A))^2$ собственное значение матрицы A^2 .
 - d. Пусть $\mu(A^2)$ собственное значение матрицы A^2 , тогда либо $\sqrt{\mu(A^2)}$, либо $-\sqrt{\mu(A^2)}$ является собственным значением матрицы A.
 - е. Пусть $\lambda(A)$ собственное значение матрицы A, тогда $\frac{1}{\lambda(A)}$ собственное значение матрицы A^{-1} .
- 7. Пусть $\rho(A) = \max_{\lambda} |\lambda(A)|$. Доказать, что
 - a. $\rho(A) \leq ||A||$.
 - b. $\rho(A) \ge \frac{1}{\|A^{-1}\|}$.
 - с. Если A симметрическая, $\rho(A) = ||A||_2$
- 8. Найти норму $\|A\|_2$ для матрицы $A = \begin{pmatrix} 1 & -1 \\ -1 & -2 \end{pmatrix}$.
- 9. Найти норму $\|A\|_2$ для матрицы $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 2 & 3 \\ 0 & 3 & 1 \end{pmatrix}$.
- 10. Пусть величина $\frac{\|\Delta x\|}{\|x\|}$ мала. Означает ли это, что для всех координат x_i величины $\frac{|\Delta x_i|}{|x_i|}$ малы? Верно ли обратное утверждение?

11. Оценка для относительной ошибки решения системы линейных алгебраических уравнений в случае, когда погрешность имеют только правые части системы. Число обусловленности *cond(A)* матрицы *A*.

Задачи для самостоятельной работы:

- 1. Найти нормы $\|A\|_1$, $\|A\|_\infty$ для матрицы $A = \begin{pmatrix} 5 & -10 & 3 \\ -4 & -3 & 7 \\ 3 & -1 & -2 \end{pmatrix}$.
- 2. Найти норму $\|A\|_2$ для матрицы $A = \begin{pmatrix} 5 & -2 \\ -1 & 2 \end{pmatrix}$.
- 3. Пусть $\|x\|_T = \|Tx\|$, где T невырожденная матрица. Доказать, что $\|A\|_T = \|TAT^{-1}\|$
- 4. Найти норму $\|A\|_2$ для матрицы $A = \begin{pmatrix} 5 & 1 \\ 1 & -2 \end{pmatrix}$.
- 5. Найти норму $\|A\|_2$ для матрицы $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 3 & 5 \end{pmatrix}$.

Пример 1.

Найти нормы
$$\|A\|_1$$
 для матрицы $A = \begin{pmatrix} -5 & 0 & 4 \\ 1 & -2 & 2 \\ 3 & -3 & 1 \end{pmatrix}$.

Норма $\|A\|_1 = \max_{1 \le j \le n} \sum_{i=1}^n \left| a_{ij} \right|$. Поэтому фиксируем j и находим сумму модулей элементов j-го столбца. Получим числа 9,5,7. Норма $\|A\|_1$ равна максимальному из них., то есть $\|A\|_1 = 9$.

Пример 2.

Найти норму
$$\|A\|_2$$
 для матрицы $A = \begin{pmatrix} 1 & 0 \\ -4 & 3 \end{pmatrix}$.

Норма $\|A\|_2 = \sqrt{\max \lambda(A^TA)}$. $A^T = \begin{pmatrix} 1 & -4 \\ 0 & 3 \end{pmatrix}$, $A^TA = \begin{pmatrix} 17 & -12 \\ -12 & 9 \end{pmatrix}$. Чтобы найти собственные значения матрицы A^TA , запишем определитель матрицы $A^TA - \lambda E$ и приравняем его нулю. Получим характеристическое уравнение $\lambda^2 - 26\lambda + 9 = 0$. Откуда $\lambda_{1,2} = 13 \pm \sqrt{160}$. Поэтому норма $\|A\|_2 = 13 + \sqrt{160} \approx 25.65$ Пример 3.

Рассмотрим пример 8с. Запишем $\|A\|_2$. $\|A\|_2 = \sqrt{\max \lambda(A^TA)}$. Так как A — симметрическая, $A^TA = A^2$. Поэтому $\|A\|_2 = \sqrt{\max \lambda(A^2)}$. Знаем, что если $\lambda(A^2)$ — собственное значение матрицы A^2 , то либо $\sqrt{\lambda(A^2)}$, либо $-\sqrt{\lambda(A^2)}$ является собственным значением матрицы A, то есть для любого собственного значения $\lambda(A^2)$ найдется такое собственное значение $\lambda(A)$, что $\lambda(A^2) = \lambda(A)^2$. Поэтому $\|A\|_2 = \sqrt{\max(\lambda(A)^2)} = \max\sqrt{\lambda(A)^2} = \max|\lambda(A)| = \rho(A)$.

Практическое занятие №10. Число обусловленности матрицы.

- 1. Найти число обусловленности $cond_1(A)$ и $cond_{\infty}(A)$ для $A = \begin{pmatrix} 4 & -2 \\ -1 & 1 \end{pmatrix}$.
- 2. Доказать, что $cond_2(A) = \sqrt{\frac{\max \lambda(A^T A)}{\min \lambda(A^T A)}}$
- 3. Найти число обусловленности $cond_2(A)$ для $A = \begin{pmatrix} 4 & -2 \\ -1 & 1 \end{pmatrix}$.
- 4. Доказать, что для симметрической, положительно определенной матрицы $A \quad cond_2(A) = \frac{\max \lambda(A)}{\min \lambda(A)} \,. \quad \text{Что изменится в формуле, если отказаться от требования положительной определенности матрицы <math>A$?
- 5. Найти число обусловленности $cond_2(A)$ для $A = \begin{pmatrix} 4 & -2 \\ -2 & 3 \end{pmatrix}$.
- 6. Рассмотреть пример, разобранный на лекции: сравнить погрешности решений двух систем $A_1x = b$ и $A_2x = b$, если матрицы A_1 и A_2 заданы

точно, а правая часть с абсолютной погрешностью Δb , $|\Delta b_i| < \varepsilon$. Сравнить число обусловленности матриц A_1 и A_2 — $cond_2(A_1)$ и $cond_2(A_2)$. $A_1 = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, \ A_2 = \begin{pmatrix} 0.2 & 1 \\ 0 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$

- 7. В матрице B размерности $n \times n$ на главной диагонали стоят единицы, а ниже диагонали (-1), а вектор правой части $b = (-1,-1,...,-1,1)^T$. Выяснить, как влияет на решение этой системы возмущение правой части $\Delta b = (0,0,...,0,\varepsilon)$. Найти определитель B, $\|B\|_1$, оценить снизу $cond_1(B)$.
- 8. Пусть A симметрическая, положительно определенная матрица. Доказать, что $cond_2(A + \alpha E)$ есть монотонно убывающая функция от α при $\alpha > 0$.
- 9. Пусть $A = \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix}$. Найти зависимость числа обусловленности от ν , рассматривая $\|A\|_2$.

Задачи для самостоятельной работы:

- 1. Найти число обусловленности $cond_1(A)$, $cond_{\infty}(A)$ и $cond_2(A)$ для $A = \begin{pmatrix} 3 & -5 \\ 1 & -1 \end{pmatrix}$
- 2. Найти число обусловленности $cond_2(A)$ для $A = \begin{pmatrix} -6 & 1 \\ 1 & 3 \end{pmatrix}$.
- 3. Найти число обусловленности $cond_2(A)$ для $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 3 & 5 \end{pmatrix}$
- 4. Показать, что у ортогональной матрицы $cond_2(A) = 1$.
- 5. Можно ли подобрать ортогональную матрицу B так, чтобы $cond_2(BA) < cond_2(A)$?
- 6. В матрице A размерности $n \times n$ на главной диагонали стоят единицы, а выше диагонали (-1), а вектор правой части $b = (-1,-1,...,-1,1)^T$. Выяснить,

как влияет на решение этой системы возмущение правой части $\Delta b = (0,0,...,0,\varepsilon)^T \ . \ \ \text{Найти определитель } A \ , \ \left\|A\right\|_1, \ \text{оценить снизу } \ cond_1(A) \ .$

7. Пусть $A = \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix}$. Найти зависимость числа обусловленности от ν , рассматривая $\|A\|_1$.

Пример 1.

Найти число обусловленности $cond_1(A)$ для матрицы $A = \begin{pmatrix} 3 & -5 \\ -1 & -2 \end{pmatrix}$.

Найдем обратную матрицу A^{-1} . $A^{-1} = -\frac{1}{11} \begin{pmatrix} -2 & 5 \\ 1 & 3 \end{pmatrix}$. Так как $\operatorname{cond}_1(A) = \|A\|_1 \|A^{-1}\|_1$, $\|A\|_1 = 7 \text{ и } \|A^{-1}\|_1 = \frac{8}{11}, \text{ то } \operatorname{cond}_1(A) = \frac{56}{11} \approx 5.$

Пример 2.

Найти число обусловленности $cond_2(A)$ для $A = \begin{pmatrix} 3 & -5 \\ -1 & -2 \end{pmatrix}$.

Норма

$$||A||_2 = \sqrt{\max \lambda(A^T A)}.$$

Норма

$$\|A^{-1}\|_{2} = \sqrt{\max \lambda((A^{-1})^{T}A^{-1})} = \sqrt{\max \lambda((AA^{T})^{-1})} = \sqrt{\max \frac{1}{\lambda(AA^{T})}} = \sqrt{\frac{1}{\min \lambda(AA^{T})}}$$
. Ho take

как $\lambda(A^TA) = \lambda(AA^T)$, достаточно найти собственные значения матрицы $A^TA = \begin{pmatrix} 10 & -13 \\ -13 & 29 \end{pmatrix}$. Характеристическое уравнение $\lambda^2 - 39\lambda + 121 = 0$. Откуда

$$\lambda_{1,2} = \frac{39 \pm \sqrt{1037}}{2} \cdot cond_2(A) = \sqrt{\frac{39 + \sqrt{1037}}{39 - \sqrt{1037}}} = \frac{39 + \sqrt{1037}}{22} \approx \frac{71.16}{22} = 3.23$$

Пример 3.

Найти число обусловленности $cond_2(A)$ для $A = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$.

Так как матрица Асимметрическая, то $cond_2(A) = \frac{\max \left| \lambda(A) \right|}{\min \left| \lambda(A) \right|} = \frac{3}{2}$.

Пример 4.

Рассмотрим пример 8. Пусть $\lambda(A)$ собственное значение матрицы A. Тогда $Ah = \lambda(A)h$. Отсюда $(A + \alpha E)h = (\lambda(A) + \alpha)h$. Следовательно,

 $\lambda(A + \alpha E) = \lambda(A) + \alpha$. По условию A симметрическая, положительно определенная матрица и $\alpha > 0$. Поэтому $((A + \alpha E)x, x) = (Ax, x) + \alpha(x, x) > 0$, то есть $A + \alpha E$ — симметрическая, положительно определенная матрица. Следовательно, $cond_2(A + \alpha E) = \frac{\max \lambda(A) + \alpha}{\min \lambda(A) + \alpha}$. Производная равна $\frac{\min \lambda(A) - \max \lambda(A)}{(\min \lambda(A) + \alpha)^2} \le 0$.

Практическое занятие№ 11. Итерационные методы решения систем линейных уравнений.

- 1. Метод простой итерации.
- 2. Критерий сходимости.
- 3. Метод Якоби, достаточные условия сходимости.
- 4. Метод Гаусса Зейделя, достаточные условия сходимости.
- 5. Геометрическая интерпретация методов Якоби и Гаусса Зейделя.
- 6. Пример1.

Исследовать сходимость метода Якоби для системы трех линейных уравнений с тремя неизвестными и в случае сходимости получить для нее приближенное решение этим методом.

Рассмотрим систему линейных уравнений:

$$\begin{cases}
4x_1 - x_2 + x_3 = 7 \\
4x_1 - 8x_2 + x_3 = -21 \\
-2x_1 + x_2 + 5x_3 = 15
\end{cases}$$

(Точное решение x^* = (2, 4, 3)).

Имеет место диагональное преобладание (достаточное условие сходимости метода Якоби), поэтому метод сходится для любого начального приближения.

Итерационный процесс имеет вид:

$$\begin{cases} x_1^{(k+1)} = \frac{7 + x_2^{(k)} - x_3^{(k)}}{4} \\ x_2^{(k+1)} = \frac{21 + 4x_1^{(k)} + x_3^{(k)}}{8} \\ x_3^{(k+1)} = \frac{15 + 2x_1^{(k)} - x_2^{(k)}}{5} \end{cases}$$

Подставим $x^{(0)} = (1, 2, 2)$ в правую часть каждого уравнения, чтобы получить новые значения:

$$\begin{cases} x_1^{(1)} = \frac{7 + x_2^{(0)} - x_3^{(0)}}{4} = \frac{7 + 2 - 2}{4} = 1.75 \\ x_2^{(1)} = \frac{21 + 4x_1^{(0)} + x_3^{(0)}}{8} = \frac{21 + 4 \cdot 1 + 2}{8} = 3.375 \\ x_3^{(1)} = \frac{15 + 2x_1^{(0)} - x_2^{(0)}}{5} = \frac{15 + 2 \cdot 1 - 2}{5} = 3 \end{cases}$$

Полученные результаты поместим в таблицу:

k	$X_1^{(k)}$	$X_2^{(k)}$	$X_3^{(k)}$
0	1.0	2.0	2.0
1	1.75	3.375	3.0
2	1.84375	3.875	3.025
3	1.9625	3.925	2.9625
4	1.990625	3.9765625	3.0
5	1.99414063	3.9953125	3.0009375
		•••	•••
15	1.99999993	3.99999985	3.0009375

Видно, что 15 – я итерация дает достаточно точный результат.

7. Пример2.

Применим к этой системе метод Гаусса — Зейделя. Итерационный процесс будет иметь вид:

$$\begin{cases} x_1^{(k+1)} = \frac{7 + x_2^{(k)} - x_3^{(k)}}{4} \\ x_2^{(k+1)} = \frac{21 + 4x_1^{(k+1)} + x_3^{(k)}}{8} \\ x_3^{(k+1)} = \frac{15 + 2x_1^{(k+1)} - x_2^{(k+1)}}{5} \end{cases}$$

Результаты заносим в таблицу:

k	$X_1^{(k)}$	$X_2^{(k)}$	$X_3^{(k)}$
0	1.0	2.0	2.0
1	1.75	3.75	2.95
2	1.95	3.96875	2.98625
3	1.995625	3.99609375	2.99903125
	•••	•••	•••
8	1.99999983	3.99999988	2.99999996

Высокая точность получена уже на 8 -й итерации.

Задачи для самостоятельной работы.

- 1. Доказать, что неравенства |tr(B)| < n, $|\det(B)| < 1$ являются необходимыми условиями сходимости метода простой итерации.
- 2. Для системы

$$2x_1 - x_2 + x_3 = -3$$

$$3x_1 + 5x_2 - 2x_3 = 1$$

$$x_1 - 4x_2 + 10x_3 = 0$$

исследовать сходимость следующих методов:

$$a$$
) метода $x^{k+1} = (E - HA) \cdot x^k + Hb$, $H = E$;

- b) метода Якоби;
- с) метода Гаусса Зейделя
- 3. Пусть ||B|| < 1. Доказать, что:

a)
$$(E-B)^{-1} = \sum_{k=0}^{\infty} B^k$$
;

b)
$$||(E - B)^{-1}|| \le \frac{1}{1 - ||B||};$$

c)
$$cond(E-B) \le \frac{1+\|B\|}{1-\|B\|}$$
.

4. Пусть x — точное решение системы $x = B \cdot x + c$. Доказать, что для погрешности метода $x^{(k+1)} = B \cdot x^{(k)} + c$ при ||B|| < 1 справедливо неравенство:

$$||x - x^{(k)}|| \le ||B||^k ||x^{(0)}|| + \frac{||c|| ||B||^k}{1 - ||B||}$$

- 5. Для элементов матрицы $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ системы Ax = b получить необходимые и достаточные условия сходимости методов Якоби и Гаусса Зейделя .
- 6. Решение системы Ax = b двух уравнений на плоскости x_1 , x_2 есть точка пересечения прямых, задаваемых уравнениями этой системы.

Изобразить графически несколько первых итераций методов Якоби и Гаусса – Зейделя.

Показать, как влияет на сходимость:

- а) выбор начальной точки;
- b) перестановка уравнений;
- c) уменьшение угла α между прямыми.
- 7. Показать, что метод последовательной релаксации можно представить в виде

$$x^{(k+1)} = B \cdot x^{(k)} + c$$
, где $B = (D + \tau L)^{-1}[(1 - \tau)D - \tau B]$.

Доказать, что:

- a) $det(B) = 1 \tau$;
- b) неравенство $0 < \tau < 2$ является необходимым условием сходимости этого метода.
- 8. Доказать, что метод $x^{(k+1)} = x^{(k)} \tau (A x^{(k)} b)$ сходится при $\tau = \frac{1}{\|A\|}$.

Практическое занятие №12. Контрольная работа №2

Вариант 1

1. Методом Гаусса решить систему уравнений

$$5x_1+0x_2+x_3=11$$

$$2x_1+6x_2-2x_3=8$$

$$-3x_1+2x_2+10x_3=6$$

2. Пусть в системе Ax=b матрица A — симметрическая положительно определенная (A>0). Доказать сходимость при $\tau>0$ метода

$$x^{(k+1)} = x^{(k)} - \tau (Ax^{(k+1)} - b).$$

Вариант 2

1. Методом Гаусса с выбором главного элемента по строке решить систему уравнений

$$1x_1+3x_2+3x_3=16$$

$$2x_1+1x_2+4x_3=16$$

$$3x_1+2x_2-1x_3=10$$

2.Преобразовать систему

$$2x_1+2x_2+10x_3=14$$

 $10x_1+1x_2-1x_3=12$
 $2x_1+10x_2+x_3=13$

так, чтобы сходился метод Якоби. Оценить количество итераций, обеспечивающее точность ε =0,001 , если x^0 совпадает со столбцом свободных членов .

Вариант 3

1. Методом Гаусса с выбором главного элемента по столбцу решить систему уравнений

$$-3x_1+2,099x_2+6x_3=3,901$$

 $10x_1-7x_2+0x_3=7$
 $5x_1-1x_2-+5x_3=6$

2. Дана матрица

$$A = \begin{bmatrix} 6 & 13 & -17 \\ 13 & 29 & -38 \\ -17 & -38 & 50 \end{bmatrix}.$$

Собственные числа $\lambda(A)$ приближенно равны: λ_1 =0,0588, λ_2 =0,2007, λ_3 =84,74. Найти cond₂(A).

Вариант 4

1. Методом Гаусса решить систему уравнений

$$2x_1+1x_2+4x_3=16$$

 $3x_1+2x_2-1x_3=10$
 $1x_1+3x_2+3x_3=16$

2. Исследовать сходимость метода Гаусса – Зейделя для системы

$$\begin{cases} 3x_1 - 2x_2 + x_3 = 0 \\ -4x_1 + 6x_2 = 1 \\ x_1 + 3x_3 = -1 \end{cases}$$

Вариант 5

1. Методом Гаусса с выбором главного элемента по столбцу решить систему уравнений

$$2x_1+6x_2-2x_3=8$$

 $-3x_1+2x_2+10x_3=6$
 $5x_1+0x_2+x_3=11$

2. Исследовать сходимость метода Якоби для системы Ах=b, если

$$\mathbf{A} = \begin{bmatrix} 2.0 & -0.2 & 0.3 & 0.4 \\ 0.3 & -3.0 & 1.0 & -1.4 \\ 0.4 & 0.8 & 4.0 & 2.4 \\ -0.5 & 1.2 & -2.5 & -5.0 \end{bmatrix}.$$

Вариант 6

1. Методом Гаусса с выбором главного элемента по строке решить систему уравнений

$$2x_1+6x_2-2x_3=8$$

 $5x_1+0x_2+x_3=11$
 $-3x_1+2x_2+10x_3=6$

2. Для системы x = Bx + c, где

$$\mathbf{B} = \begin{bmatrix} 0.0 & 0.1 & -0.2 & 0.3 \\ -0.1 & 0.0 & 0.1 & -0.2 \\ -0.1 & -0.15 & 0.0 & 0.05 \\ -0.15 & -0.1 & -0.05 & 0.0 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 0.0 \\ 0.5 \\ -0.5 \\ 0.75 \end{bmatrix}$$

вычислить количество итераций, необходимых для достижения точности 10^{-4} для $\|\cdot\|_1$, x^0 =c.

ЧИСЛЕННОЕ РЕШЕНИЕ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.

(ауд. 2 ч., сам. 1ч.)

Практическое занятие№ 13. Метод Ньютона и метод простой итерации решения систем нелинейных уравнений.

- 1. Постановка задачи решения систем нелинейных уравнений.
- 2. Метод Ньютона решения систем нелинейных уравнений.
- 3. Условие сходимости метода Ньютона.
- 4. Метод простых итераций решения систем нелинейных уравнений.
- 5. Условие сходимости метода простых итераций.

Пример.

Найти два приближения по методу Ньютона для решения системы $\begin{cases} y(x-1)-1=0\\ x^2-y^2-1=0 \end{cases}$ с известным начальным приближением $x_0=2\\ y_0=1$

Решение.

Здесь
$$F(x) = \begin{pmatrix} y(x-1) - 1 \\ x^2 - y^2 - 1 \end{pmatrix}, J(x) = \begin{pmatrix} y & x - 1 \\ 2x & -2y \end{pmatrix}.$$

Первый шаг:

$$x^{(0)} = {2 \choose 1}, \Delta x^{(0)} = {x_1 - 2 \choose y_1 - 1}, J(x^{(0)}) = {1 \choose 4}, T(x^{(0)}) = {0 \choose 2},$$
 ${1 \choose 4}, {1 \choose 4}, {x_1 - 2 \choose y_1 - 1} = -{0 \choose 2},$
 ${x_1 + y_1 = 3 \choose 4x_1 - 2y_1 = 4}.$ Отсюда $x^{(1)} = {5/3 \choose 4/3}.$

Второй шаг.

$$\Delta x^{(1)} = \begin{pmatrix} x_2 - 5/3 \\ y_2 - 4/3 \end{pmatrix}, J(x^{(1)}) = \begin{pmatrix} 4/3 & 2/3 \\ 10/3 & -8/3 \end{pmatrix}, F(x^{(1)}) = \begin{pmatrix} -1/9 \\ 0 \end{pmatrix}.$$

$$\begin{pmatrix} 4/3 & 2/3 \\ 10/3 & -8/3 \end{pmatrix} \begin{pmatrix} x_2 - 5/3 \\ y_2 - 4/3 \end{pmatrix} = -\begin{pmatrix} -1/9 \\ 0 \end{pmatrix},$$

$$\begin{cases} 4x_2 + 2y_2 = 29/3 \\ 10x_2 - 8y_2 = 6 \end{cases}. \text{ Отсюда } x^{(2)} = \begin{pmatrix} 1,7179 \\ 1,3974 \end{pmatrix}.$$

Задачи для самостоятельной работы.

- 1) Выяснить, сходится ли метод простых итераций для системы $\begin{cases} x = cosy \\ y = sinx \end{cases}$
- 2) В каких случаях нельзя применять метод Ньютона?
- 3) Найти два приближения по методу Ньютона для решения системы $\begin{cases} 2x^3-y^2-1=0\\ xy^3-y-4=0 \end{cases} \text{ с известным начальным приближением } \begin{cases} x_0=1,2\\ y_0=1,5 \end{cases}$
- 4) Методом простых итераций решить систему уравнений с точностью $\varepsilon = 10^{-2}$:

$$\begin{cases} \cos(x-1) + y = 0.5 \\ x - \cos y = 3 \end{cases}$$

5) Обратная матрица X для A является решением уравнения $X^{-1} - A = 0$. Имея для X приближение $X^{(n)}$, найти методом Ньютона $X^{(n+1)}$.

ЧИСЛЕННАЯ ИНТЕРПОЛЯЦИЯ. (ауд. 8 ч., сам. 8ч.)

Практическое занятие №14-15. Интерполяционный многочлен Лагранжа, Ньютона, Эрмита.

- 1. Постановка задачи.
- 2. Определение интерполяционного многочлена.
- 3. Интерполяционный многочлен Лагранжа.
- 4. Линейная и квадратичная интерполяции.
- 5. Погрешность интерполяции.

Пример1. Построить интерполяционный многочлен Лагранжа по следующим данным: x_0 =100, y_0 =10; x_1 =121, y_1 =11 ($y=\sqrt{x}$), найти его значение в точке x=110,25 и оценить погрешность интерполяции.

При n = 1 имеем:

$$L_1(x) = f_0 \frac{x - x_1}{x_0 - x_1} + f_1 \frac{x - x_0}{x_1 - x_0} = 10 \frac{x - 121}{-21} + 11 \frac{x - 100}{21}$$
. $L_1(110,25) = \frac{107,5 + 112,75}{21} \approx 10,48$

(сравните с точным значением $\sqrt{110,25} = 10,5$)

$$R_1(x) = \frac{f''(\xi)}{2!} \omega_1(x) = -\frac{1}{8\xi\sqrt{\xi}}(x-100)(x-121) \ \left|R_1(x)\right| \leq \frac{1}{8000} \left(\frac{21}{2}\right)^2 \leq 0,014 \qquad \text{ДЛЯ} \qquad X \qquad \text{ИЗ}$$

отрезка [100; 121].

- 6. Разделенные разности и их свойства.
- 7. Интерполяционный многочлен в форме Ньютона, его погрешность.
- 8. Производные от разделенной разности.
- 9. Интерполяционный многочлен Эрмита.

Пример2. Дана таблица значений некоторой функции:

X	-0,5	0	0.5	1	2
У	1	0	-0.7	-0.2	0.8

Построить таблицу разделенных разностей и интерполяционный многочлен в форме Ньютона.

Строим таблицу разделенных разностей:

x_i	f_i	$f(x_i; x_{i+1})$	$f(x_i; x_{i+1}; x_{i+2})$	$f(x_i; x_{i+1}; x_{i+2}; x_{i+3})$	$f(x_i; x_{i+1}; x_{i+2}; x_{i+3}; x_{i+4})$
-0.5	1	-2	0,6	1,2	-0,96
0	0	-1,4	2,4	-1,2	
0,5	-0,7	1	0		
1	-0,2	1			
2	0,8				

Выделенные значения (первая строка таблицы) будут коэффициентами многочлена в форме Ньютона:

$$L_4(x) = 1 - 2(x + 0.5) + 0.6(x + 0.5)x + 1.2(x + 0.5)x(x - 0.5) + 0.96(x + 0.5)x(x - 0.5)(x - 1).$$

Пример 2.

Построить интерполяционный многочлен Эрмита по данным:

$$x_o = -1$$
, $f_0 = 1$, $f'_0 = -1$,
 $x_1 = 0$, $f_1 = 0$, $f'_1 = 0$, $f''_1 = 2$
 $x_2 = 1$, $f_2 = 1$, $f'_0 = 0$.

Выписать остаточный член.

Имеем кратные узлы: x_0 , x_1 — кратность 2; x_2 — кратность 3, следовательно, строим многочлен 6 — й степени.

$$f(x_0; x_0) = -1$$
; $f(x_1; x_1) = 0$; $f(x_1; x_1; x_1) = 1$; $f(x_2; x_2) = 1$

Построим таблицу разделенных разностей:

-1	1	-1	0	1	-1	0.5	-0.5
-1	1	-1	1	0	0	-0.5	
0	0	0	1	0	-1		
0	0	0	1	-1			
0	0	1	0				
1	1	1					
1	1						

Интерполяционный многочлен Эрмита:

$$H_6(x) = 1 - 1(x+1) + 0(x+1)^2 + 1(x+1)^2(x-0) - 1(x+1)^2(x)^2 + 0.5(x+1)^2(x)^3 - 0.5(x+1)^2(x)^3(x-1)$$

$$R_6(x) = f(x; x_0; x_0; x_1; x_1; x_1; x_2; x_2) (x+1)^2 (x)^3 (x-1)^2$$

Задачи для самостоятельной работы.

1.Построить интерполяционный многочлен Лагранжа по следующим данным($y = \sqrt{x}$):

$$x_0=100, y_0=10; x_1=121, y_1=11, x_2=144, y_2=12,$$

найти его значение в точке x = 110,25 и оценить погрешность интерполяции, используя узлы:

a)
$$x_1, x_2$$
; 6) x_0, x_1, x_2 ;

2. Выписать интерполяционный многочлен Лагранжа для функции f(x), значения которой заданы таблицей:

i	0	1	2	3
x_i	0	0,1	0,3	0,5
f_i	-0,5	0	0,2	1

- 3. Значения lg(x) для $1 \le x \le 10$ приведены в пятизначной таблице (шаг по x = 0,001). Допустима ли линейная интерполяция по этой таблице.
- 4. С какой точностью можно извлечь корень кубический из 1300, интерполируя функцию $y = \sqrt[3]{x}$ по узлам 10^3 , 11^3 , 12^3 ?
- 5. Зная значения cosx при $x=0, \pi/4, \pi/3, \pi/2$ найти cosx при $x=\pi/6,$ и оценить погрешность.
- 6. Зная значения sinx при $x=0, \pi/6, \pi/3, \pi/2$ найти sinx при $x=\pi/4$ и оценить погрешность.
- 7. Построить интерполяционный многочлен и оценить погрешность по данным:

X	$\cos(x)$
0,29	0,9582
0,30	0,9553
0,31	0,9523

- 8. Построить интерполяционный многочлен и оценить погрешность для функции y = sinx и узлов $x_0 = 0$, $x_1 = \pi/6$, если:
- a)х0 двукратный узел, х1 —однократный узел; b)х0 однократный узел, х1 двукратный.
- 9. Построить интерполяционный многочлен для функции f(x) по следующим данным:

i	x_i	f_i	f'_i	f " $_i$
0	-1	0	-2	
1	0	1	0	-4
2	1	0	2	

10. Построить интерполяционный многочлен для функции f(x) по следующим данным:

i	x_i	f_i	f'_i	f'' _i
0	-1	15	-14	-2
1	0	4	-7	
2	2	18	2	

ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ. (ауд. 2 ч., сам. 1ч.)

Практическое занятие №16. Простейшие формулы численного дифференцирования. Выбор оптимального шага.

- 1. Постановка задачи.
- 2. Построение простейших формул численного дифференцирования. Их погрешности.
- 3. Выбор оптимального шага.

Пример.

Дана пятизначная таблица функции sin(x). Шаг таблицы равен 10^{-3} . Каким следует выбрать шаг при дифференцировании на середину и какова полная погрешность?

Решение.

Воспользуемся формулой: $f'(x_I) = \frac{f_2 - f_0}{2h} - h^2 \frac{f'''(\xi)}{6}$. Полная погрешность $A_f = \frac{2\alpha}{2h} + h^2 \frac{M_3}{6}$.

Из условия минимизации A_f получаем: $-\frac{\alpha}{h^2} + h \frac{M_3}{3} = 0$, отсюда, $h = \sqrt[3]{\frac{3\alpha}{M_3}}$, где α – погрешность значения табличной функции, а $|f'''(x)| \leq M_3$.

Получим:
$$h = \sqrt[3]{\frac{1.5 \cdot 10^{-5}}{1}} = \sqrt[3]{\frac{15 \cdot 10^{-6}}{1}} \approx 2.5 \cdot 10^{-2} = 0.025.$$

Тогда $A_f \approx 2,04 \cdot 10^{-4} < 0.5 \cdot 10^{-3}$ и в результате имеем 3 верных знака после запятой.

Задачи для самостоятельной работы.

- 1. В условиях рассмотренной задачи определить оптимальный шаг при дифференцировании в узле, полную погрешность и количество верных знаков после запятой в результате.
- 2. Пусть аргумент в предыдущей задаче взят из отрезка $[\frac{\pi}{3}; \frac{\pi}{2}]$. За счет более точной оценки M_3 улучшить результат задачи.
- 3. Выписать формулы численного дифференцирования с погрешностью для первых и вторых производных, если:
 - а. x_0 двукратный узел, x_I однократный узел;
 - b. x_0 и x_1 двукратные узлы.
- 4. Найти оптимальный шаг численного дифференцирования по трем равноотстоящим узлам.

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ. (ауд. 10 ч., сам. 13ч.)

Практическое занятие №17. Интерполяционные квадратурные формулы и их погрешности.

- 1. Формулы прямоугольников. Геометрическая интерпретация.
- 2. Вывод погрешности для формулы левых прямоугольников по определению.
- 3. Интерполяционные квадратурные формулы и их погрешность.
- 4. Вывод формулы трапеций и ее погрешности.
- 5. Интегралы с весом.
- 6. Для интеграла $\int_0^1 \sqrt{x} f(x) dx$ с весом $p(x) = \sqrt{x}$ получить интерполяционную квадратурную формулу по узлу $x_0 = 0$ и найти ее погрешность.
- 7. Для интеграла $\int_0^1 \sqrt{x} f(x) dx$ с весом $p(x) = \sqrt{x}$ получить интерполяционную квадратурную формулу по узлам $x_0 = 0$, $x_1 = 1$ и найти ее погрешность.

- 8. Алгебраическая степень точности квадратурной формулы.
- 9. Найти алгебраическую степень точности формулы $\int_{-1}^{1} f(x) dx \approx f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right).$ Указать порядок погрешности.

Пример1.

Для интеграла $\int_0^1 e^x f(x) dx$ с весом $p(x) = e^x$ получить интерполяционную квадратурную формулу по узлам $x_0 = 0$, $x_1 = 1$ и найти ее погрешность.

Заменим функцию f(x) интерполяционным многочленом, построенным по узлам $x_0=0,\,x_1=1.$ Получим $f(x)\approx f(0)(1-x)+f(1)x$. Подставим интерполяционный многочлен под интеграл. $\int_0^1 e^x f(x) dx \approx \int_0^1 e^x \Big(f(0)(1-x) + f(1)x \Big) dx .$ Вычислим интеграл $\int_0^1 e^x dx = e-1.$ Воспользовавшись формулой интегрирования по частям, получим, что $\int_0^1 x e^x dx = \Big(x e^x - e^x\Big)_0^1 = 1.$ Теперь можем выписать квадратурную формулу $\int_0^1 e^x f(x) dx \approx \Big(e-2\Big) f(0) + f(1).$

Чтобы найти погрешность квадратурной формулы R[f], запишем погрешность интерполирования $R_1 = f(x,0,1)x(x-1)$, где f(x,0,1) — разделенная разность, построенная по узлам $x_0 = 0$, $x_1 = 1$. Тогда $R[f] = \int\limits_0^1 e^x R_1 dx = \int\limits_0^1 e^x f(x,0,1)x(x-1) dx$. Воспользовавшись теоремой о среднем и свойством разделенной разности $f(x_0,x_1,x_2) = \frac{f''(\xi)}{2}$, получим $R[f] = f(c,0,1) \int\limits_0^1 e^x x(x-1) dx = \frac{f''(\xi)}{2} \int\limits_0^1 e^x x(x-1) dx$. Вычислим интеграл

 $\int_{0}^{1} x^{2} e^{x} dx = \left(x^{2} e^{x} - 2\left(x e^{x} - e^{x}\right)\right)\Big|_{0}^{1} = e - 2$. Подставим найденные значения интегралов и найдем $R[f] = \frac{f''(\xi)}{2}(e - 3)$.

Пример2.

Найдем алгебраическую степень точности квадратурной формулы $\int\limits_0^1 e^x f(x) dx \approx \big(e-2\big) f(0) + f(1) \, .$

Вспомним, что алгебраическую степень точности квадратурной формулы равна N, если формула точна для всех многочленов степени не выше N и существует многочлен степени N+1, для которого формула не точна. Так как интерполяционный многочленом, построенный по двум узлам, совпадает с f(x), если f(x) это многочлен нулевой или первой степени, то проверку нужно начинать с многочлена второй степени, а именно $f(x) = x^2$.

Подставим x^2 в левую часть квадратурной формулы. Получим $\int_0^1 e^x x^2 dx = e - 3$.

В правой части, так как f(0) = 0, f(1) = 1, получим 1. Таким образом, алгебраическая степень точности рассматриваемой квадратурной формулы равна 1.

Задачи для самостоятельной работы.

- 1. Для интеграла $\int_0^1 \sqrt{x} f(x) dx$ с весом $p(x) = \sqrt{x}$ получить интерполяционную квадратурную формулу по узлу $x_0 = 1$ и найти ее погрешность. Указать алгебраическую степень точности формулы.
- 2. Для интеграла $\int_0^1 \sqrt{x} f(x) dx$ с весом $p(x) = \sqrt{x}$ получить интерполяционную квадратурную формулу по узлу $x_0 = 0.6$ и найти ее погрешность. Указать алгебраическую степень точности формулы.

3. Для интеграла $\int_0^1 \sqrt{x} f(x) dx$ с весом $p(x) = \sqrt{x}$ получить интерполяционную квадратурную формулу по узлам $x_0 = 0, x_1 = 0.5, x_2 = 1$. Найти алгебраическую степень точности формулы.

Практическое занятие №18. Численное интегрирование. Метод неопределенных коэффициентов. Формулы с кратными узлами.

- 1. Алгебраическая степень точности формулы средних прямоугольников. Вывод погрешности для формулы средних прямоугольников. Сравнить с погрешностью формулы трапеций.
- 2. Метод неопределенных коэффициентов.
- 3. Методом неопределенных коэффициентов вывести формулу «трех восьмых». Найти ее алгебраическую степень точности.
- 4. Формулы с кратными узлами и их погрешности.
- 5. Построить интерполяционную квадратурную формулу и найти ее погрешность для интеграла $\int_{a}^{b} f(x)dx$, а двукратный узел.
- 6. Построить интерполяционную квадратурную формулу и найти ее погрешность для интеграла $\int_a^b f(x)dx$, а двукратный узел, b однократный.

Пример1.

Для интеграла $\int_{-1}^{1} f(x)dx$ методом неопределенных коэффициентов построить интерполяционную квадратурную формулу с трехкратным узлом x_0 =0.

Так как узел $x_0=0$ является трехкратным, то интерполяционный многочлен зависит от f(0), f'(0), f''(0), поэтому квадратурная формула

имеет вид $\int_{-1}^{1} f(x)dx \approx A_1 f(0) + A_2 f'(0) + A_3 f''(0)$. Чтобы найти неизвестные коэффициенты, нужно потребовать, чтобы она была точной для f(x) = 1, f(x) = x, $f(x) = x^2$. При f(x) = 1 имеем $2 = A_1$, при f(x) = x имеем $0 = A_2$, при $f(x) = x^2$ имеем $\int_{-1}^{1} x^2 dx = \frac{x^3}{3} \Big|_{-1}^{1} = \frac{2}{3} = 2A_3$. Поэтому $\int_{-1}^{1} f(x) dx \approx 2f(0) + \frac{1}{3} f''(0)$.

Пример2.

Для квадратурной формулы $\int_{-1}^{1} f(x)dx \approx 2f(0) + \frac{1}{3}f''(0)$ найти алгебраическую степень точности и погрешность R[f].

По построению формулы она точна для многочленов степени ≤ 2 . Проверим, будет ли формула точной для $f(x) = x^3$. Получим 0 = 0, т. е. $N \geq 3$. А будет ли формула точной для $f(x) = x^4$? Получим $\frac{2}{5} \neq 0$. Итак, N = 3.

Обозначим $P_3=f(0)+f'(0)x+\frac{f''(0)}{2}x^2+\frac{f'''(0)}{6}x^3$. Очевидно, $S[f]=S[P_3]$. Для погрешности R[f] имеем $R[f]=I[f]-S[f]=I[f]-S[P_3]=I[f]-I[P_3]$. Последнее равенство получается потому, что квадратурная формула точна для многочленов степени 3, следовательно, $S[P_3]=I[P_3]$. Итак, $R[f]=I[f-P_3]=I[R_3]=\int_{a}^{b}f(x,x_0,x_0,x_0,x_0)(x-x_0)^4dx=\int_{a}^{1}f(x,0,0,0,0)x^4dx=\frac{f^{(4)}(\eta)}{60}$.

Задачи для самостоятельной работы.

- 1. Подобрать узлы x_0, x_1, x_2 и вес A квадратурной формулы $\int_{-1}^1 f(x) dx \approx A [f(x_0) + f(x_1) + f(x_0)]$ так, чтобы она имела наиболее высокую алгебраическую степень точности.
- 2. Построить интерполяционную квадратурную формулу и найти ее погрешность для интеграла $\int_{a}^{b} f(x)dx$, если b двукратный узел.

- 3. Построить интерполяционную квадратурную формулу и найти ее погрешность для интеграла $\int_a^b f(x)dx$, если а однократный узел, b двукратный.
- 4. Построить интерполяционную квадратурную формулу и найти ее погрешность для интеграла $\int_a^b f(x)dx$, если а двукратный узел и b двукратный узел (формула Эйлера).

Практическое занятие №19. Составные формулы и их погрешности.

- 1. Вывод формулы Эйлера.
- 2. Составная формула левых прямоугольников, ее погрешность. Геометрическая интерпретация формулы.
- 3. Составная формула Эйлера, ее погрешность.
- 4. Формула Симпсона, ее погрешность. Составная формула Симпсона, ее погрешность.
- 5. Какой шаг интегрирования h следует взять, чтобы вычислить интеграл $\int_0^4 \frac{dx}{2+x} \ \ c \ \$ заданной точностью $\varepsilon = 10^{-2}, 10^{-4}, 10^{-8} \ \$ по составным формулам трапеций и Симпсона.
- 6. Оценка погрешности по Рунге.

Пример1.

Какой шаг интегрирования h следует взять, чтобы вычислить интеграл $\int\limits_0^1 \frac{dx}{1+5x} \ {\rm c} \ {\rm заданной} \ {\rm точностью} \ \ \varepsilon = 10^{-4} \ {\rm пo} \ {\rm составной} \ {\rm формуле} \ {\rm трапеций}.$

Погрешность составной формулы трапеций оценивается сверху величиной $\frac{\left|f^{''}(\xi)\right|}{12}(b-a)h^2$, где $a<\xi< b$. Найдем $f^{''}(x)$. $f^{''}(x)=\frac{50}{\left(1+5x\right)^3}$. В нашем примере $\frac{\left|f^{''}(\xi)\right|}{12}(b-a)h^2\leq \frac{50}{12}h^2\leq 10^{-4}$. Отсюда $h\leq \frac{10^{-2}}{5}\sqrt{6}\leq 0.005$.

Пример2.

Какой шаг интегрирования h следует взять, чтобы вычислить интеграл $\int\limits_0^1 \frac{dx}{1+5x} \ {\rm c} \ {\rm заданной} \ {\rm точностью} \ \ \varepsilon = 10^{-4} \ {\rm пo} \ {\rm составной} \ {\rm формуле} \ \ {\rm Симпсона}.$

Погрешность составной формулы Симпсона оценивается сверху величиной $\frac{\left|f^{(4)}(\xi)\right|}{2880}(b-a)h^4$, где $a<\xi< b$. Найдем $f^{(4)}(x)$. $f^{(4)}(x)=\frac{15000}{\left(1+5x\right)^5}$. В нашем примере $\frac{\left|f^{(4)}(\xi)\right|}{2880}(b-a)h^4\leq \frac{15000}{2880}h^4\leq 10^{-4}$. Отсюда $h\leq 10^{-1}\cdot \sqrt[4]{0.192}\approx 0.066$.

Задачи для самостоятельной работы.

- 1. Получить формулу Эйлера-Грегори.
- 2. Какой шаг интегрирования h следует взять, чтобы вычислить интеграл $\int\limits_0^1 e^{-\frac{x^2}{2}} dx$ c заданной точностью $\varepsilon = 10^{-2}, 10^{-4}, 10^{-8}$ по составным формулам трапеций, средних прямоугольников и Симпсона.

Практическое занятие №20. Квадратурные формулы Гаусса.

- 1. Квадратурные формулы Гаусса.
- 2. Построить для интеграла $\int_{-1}^{1} f(x)dx$ квадратурную формулу Гаусса с одним узлом.
- 3. Построить для интеграла $\int_{-1}^{1} f(x)dx$ квадратурную формулу Гаусса с тремя узлами.

Пример1.

Построить квадратурную формулу Гаусса с одним узлом для интеграла $\int\limits_{-\infty}^{1} \sqrt{x} \, f(x) dx \, .$

Квадратурные формулы Гаусса имеют вид $\int_a^b p(x)f(x)dx \approx \sum_{i=0}^n A_i f(x_i)$. Многочлен $\omega_n(x) = (x-x_0) \cdot ... \cdot (x-x_n)$, построенный по узлам интерполирования $x_0,...,x_n$, ортогонален с весом p(x) всем многочленам степени $\leq n$. Поэтому коэффициенты многочлена $\boldsymbol{\omega_n}$ (\boldsymbol{x}) можно найти, решив систему линейных алгебраических уравнений $\int_a^b p(x)\omega_n(x)x^kdx = 0$, k = 0,...,n. Далее находятся корни многочлена $\omega_n(x)$, т.е. узлы $x_0,...,x_n$. Потом методом неопределенных коэффициентов отыскиваются коэффициенты A_i , i = 0,...,n.

У нас $\omega_0(x) = x - x_0$. Условие ортогональности $\int\limits_0^1 \sqrt{x} (x - x_0) dx = 0$, $\frac{2}{5} - \frac{2}{3} x_0 = 0$. Отсюда $x_0 = \frac{3}{5}$. Квадратурная формула Гаусса имеет вид $\int\limits_0^1 \sqrt{x} f(x) dx \approx A_0 f\left(\frac{3}{5}\right)$. Она точна для многочленов нулевой степени. Поэтому $A_0 = \frac{2}{3}$ и окончательно $\int\limits_0^1 \sqrt{x} f(x) dx \approx \frac{2}{3} f\left(\frac{3}{5}\right)$.

Пример2.

Построить квадратурную формулу Гаусса с двумя узлами для $\int\limits_{0}^{1} \sqrt{x} \, f(x) dx \, .$

У нас $\omega_1(x) = (x - x_0)(x - x_1) = x^2 + b_1 x + b_2$. Условия ортогональности

$$\int\limits_{0}^{1} \sqrt{x}(x^{2}+b_{1}x+b_{2})dx=0$$
 . Получим систему
$$\begin{cases} \frac{2}{5}b_{1}+\frac{2}{3}b_{2}=-\frac{2}{7}\\ \frac{2}{7}b_{1}+\frac{2}{5}b_{2}=-\frac{2}{9} \end{cases}$$
 . Ее решение
$$\frac{2}{7}b_{1}+\frac{2}{5}b_{2}=-\frac{2}{9}$$

$$b_1 = -\frac{10}{9}$$
, $b_2 = \frac{5}{21}$. Таким образом, $\omega_1(x) == x^2 - \frac{10}{9}x + \frac{5}{21}$. Решаем квадратное

уравнение. $x_{1,2} = \frac{5}{9} \pm \frac{2}{9} \sqrt{\frac{10}{7}}$. Квадратурная формула Гаусса имеет вид

$$\int_{0}^{1} \sqrt{x} f(x) dx \approx A_{0} f\left(\frac{5}{9} - \frac{2}{9} \sqrt{\frac{10}{7}}\right) + A_{1} f\left(\frac{5}{9} + \frac{2}{9} \sqrt{\frac{10}{7}}\right).$$
 Она точна для многочленов

нулевой и первой степени. Поэтому $\frac{2}{3} = A_0 + A_1$,

$$\frac{2}{5} = A_0 \left(\frac{5}{9} - \frac{2}{9} \sqrt{\frac{10}{7}} \right) + A_1 \left(\frac{5}{9} + \frac{2}{9} \sqrt{\frac{10}{7}} \right). \text{ Отсюда } A_0 = \left(\frac{1}{3} - \frac{\sqrt{7}}{15\sqrt{10}} \right) \quad A_1 = \left(\frac{1}{3} + \frac{\sqrt{7}}{15\sqrt{10}} \right)$$

. И окончательно квадратурная формула Гаусса имеет вид

$$\int_{0}^{1} \sqrt{x} f(x) dx \approx \left(\frac{1}{3} - \frac{\sqrt{7}}{15\sqrt{10}}\right) f\left(\frac{5}{9} - \frac{2}{9}\sqrt{\frac{10}{7}}\right) + \left(\frac{1}{3} + \frac{\sqrt{7}}{15\sqrt{10}}\right) f\left(\frac{5}{9} + \frac{2}{9}\sqrt{\frac{10}{7}}\right)$$

Задачи для самостоятельной работы.

Построить квадратурную формулу Гаусса с одним и двумя узлами для $\lim_{n \to \infty} x e^{-x} dx \ .$

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА. (ауд. 12ч., сам. 12ч.)

Практическое занятие №21. Методы, основанные на разложении в ряд Тейлора. Погрешность метода.

1. Постановка задачи.

- 2. Методы, основанные на разложении в ряд Тейлора.
- 3. Методы Рунге Кутты.
- 4. Одношаговая погрешность метода.
- 5. Метод неопределенных коэффициентов.

Пример 1.

Дана задача Коши:

$$y' = -\frac{3y}{x+1}, y(0) = 2$$

Найти приближенные значения решения в точках 0,1; 0,2; 0,3 по методу Эйлера с пересчетом и по методу Коши; сравнить с точным решением. Проиллюстрировать графически.

Найдем точное решение этой задачи:

$$\frac{dy}{y} = -3\frac{dx}{x+1}$$
$$y = \frac{2}{(x+1)^3}$$

 $y(0) = y_0 = 2$ для каждого метода.

Вычислим приближенные значения решения по методу Эйлера в точках 0,1; 0,2; 0,3.

$$y(0,1) \approx y_1 = y_0 + hf(x_0, y_0) = 2 + 0.1(-\frac{3 \cdot 2}{0 + 1}) = 1.4$$

$$y(0,2) \approx y_2 = y_1 + hf(x_1, y_1) = 1.4 + 0.1(-\frac{3 \cdot 1.4}{0.1 + 1}) \approx 1.0182$$

$$y(0,3) \approx y_3 = y_2 + hf(x_2, y_2) = 1.0182 + 0.1(-\frac{3 \cdot 1.0182}{0.2 + 1}) \approx 0.7636$$

Вычислим приближенные значения решения по методу Эйлера с пересчетом в точках 0,1; 0,2; 0,3.

$$y(0,1) \approx y_1 = y_0 + h \left[f(x_0, y_0) + f(x_1, y_0 + hf(x_0, y_0)) \right] / 2 = 2 + 0.05(-6 - \frac{3 \cdot 1.4}{0.1 + 1}) \approx 1.5091$$

$$y(0,2) \approx y_2 = y_1 + h \left[f(x_1, y_1) + f(x_2, y_1 + hf(x_1, y_1)) \right] / 2 = \frac{3(1.5091 + \frac{-3 \cdot 1.5091}{0.1 + 1})}{0.2 + 1} \approx 1.1661$$

$$y(0,3) \approx y_3 = y_2 + h \left[f(x_2, y_2) + f(x_3, y_2 + hf(x_2, y_2)) \right] / 2 = \frac{3(1.5091 + \frac{-3 \cdot 1.5091}{0.2 + 1})}{0.2 + 1} \approx 1.1661$$

$$1,1661+0.05(-\frac{3\cdot 1,1661}{0,2+1}-\frac{3(1,1661+\frac{-3\cdot 1,1661}{1,2})}{0,3+1})\approx 0,9194$$

Вычислим приближенные значения решения по методу Коши в тех же точках.

$$y(0,1) \approx y_1 = y_0 + hf(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}f(x_0, y_0)) =$$

$$= 2 + 0,1(-\frac{3(2 + 0,05(-\frac{3 \cdot 2}{0 + 1}))}{0,05 + 1}) \approx 1,5143$$

$$y(0,2) \approx y_2 = y_1 + hf(x_1 + \frac{h}{2}, y_1 + \frac{h}{2}f(x_1, y_1)) =$$

$$= 1,5143 + 0,1(-\frac{3(1,5143 + 0,05(-\frac{3 \cdot 1,5143}{0,1 + 1}))}{0,15 + 1}) \approx 1,1731$$

$$y(0,3) \approx y_3 = y_2 + hf(x_2 + \frac{h}{2}, y_2 + \frac{h}{2}f(x_2, y_2)) =$$

$$= 1,1731 + 0,1(-\frac{3(1,1731 + 0,05(-\frac{3 \cdot 1,1731}{0,2 + 1}))}{0,25 + 1}) \approx 0.926$$

Результаты занесем в таблицу:

X	Точное	Метод Эйлера	Метод Эйлера с пересчетом	Метод Коши
0	2,000	2,000	2,000	2,000
0,1	1,503	1,400	1,509	1,514
0,2	1,157	1,018	1,166	1,173
0,3	0,910	0,764	0,919	0,927

Пример 2. Построить метод вида $y_m = a_1 \ y_{m-1} + a_2 y_{m-2}$,

имеющий максимальную алгебраическую степень точности.

Потребуем, чтобы метод был точен для $y = (x - x_{m-1})^k$, $k = 0, 1, 2, \dots$

$$k = 0$$
; $y \equiv 1$; $\rightarrow 1 = a_1 + a_2$;

$$k=1;\,y=x\text{ - }x_{m\text{--}1};\,h=\text{--}h\,\,a_{2} \longrightarrow a_{2}=\text{--}1;\,a_{1}=2;\,y_{m}\text{=-}2\,\,y_{m\text{--}1}\text{ - }y_{m\text{--}2}$$

$$k = 2$$
; $y = (x - x_{m-1})^2 \rightarrow h^2 \neq -h^2$;

→ алгебраическая степень точности равна 1.

Задачи для самостоятельной работы.

1. Пользуясь разложением в ряд Тейлора, построить методы с одношаговой погрешностью второго и третьего порядка для уравнений:

$$y' = -y^3 + 1$$
; b) $y' = -y^3 + x$; c) $y' = \sin(x) + x^2$.

Представить геометрическую интерпретацию методов:

- а) Эйлера; b) Эйлера с пересчетом; c) Коши.
- 2. Выписать метод Эйлера и метод Эйлера с пересчетом для системы дифференциальных уравнений.
- 3. В каждом из следующих семейств разностных методов:
 - а) явные одношаговые;
 - b) неявные одношаговые;
 - с) неявные двушаговые;
 - d) $y_m = a_1 y_{m-1} + a_2 y_{m-2}$
- 4. найти метод, имеющий максимальную алгебраическую степень точности и указать порядок его точности на одном шаге.
- 5. Найти порядок точности методов:
- 6. $a)y_m = y_{m-2} + 2hf_{m-1};b) y_m = \frac{4}{3}y_{m-1} \frac{1}{3}y_{m-2} + \frac{2}{3}hf_{m};c) y_m = y_{m-1} + h(f_m + f_{m-1})/2;$ $y_m = y_{m-2} + h(f_m + 4f_{m-1} + f_{m-2})/3.$
- 7. Построить метод вида

 $y_{m+1}=a_0y_m+a_1y_{m-1}+h(b_0f_m+b_1f_{m-2})$, имеющий максимальную точность.

- 8. Построить метод вида
- 9. $y_{m+1}=a_0y_m+h(b_{-1}f_{m+1}+b_0fm+b_1f_{m-1})$, имеющий максимальную точность.
- 10.Построить метод вида
- $11.y_{m+1} = a_0 y_m + h(b_0 f_m + b_1 f_{m-1} + b_2 f_{m-2})$, имеющий максимальную точность.

Практическое занятие №22. Устойчивость разностных методов.

- 1. Нуль устойчивость метода.
- 2. Область устойчивости.
- 3. Жесткие системы, А устойчивость

Пример.

Исследовать метод $y_{m+1} = -4y_m + 5y_{m-1} + h(4f_m + 2f_{m-1})$. на нуль – устойчивость.

При h=0 он примет вид:

$$y_{m+1} = -4y_m + 5y_{m-1}$$

Соответствующее характеристическое уравнение:

$$\rho^2 = -4\rho^1 + 5\rho^0$$

имеет корни:

$$\rho_1 = 1
\rho_2 = -5,$$

Следовательно, он не является нуль - устойчивым.

Задачи для самостоятельной работы.

- 1. Исследовать методы из 3,4,5,6,7 на 0-устойчивость.
- 2. Показать, что все явные методы Адамса 0-устойчивы.
- 3. Доказать, что все явные методы Рунге Кутты второго порядка точности имеют одну и ту же область устойчивости.
- 4. Построить однопараметрическое семейство явных 0-устойчивых методов, порядок точности которых на одном шаге равен (h^3) .
- 5. Доказать А- устойчивость метода трапеций.
- 6. Доказать, что метод

$$y_{k+1}=y_k+(k_1+4k_2+k_3)/6$$
, где $k_1=hf(x_k,y_k)$; $k_2=hf(x_k+h/2,y_k+k_1/2)$ $k_3=hf(x_k+h,y_k-k_1+2k_2)$ не является А устойчивым.

7. Доказать, что метод

$$y_{k+1}=y_k+hf(x_k+h/2, y_k-hf(x_{k+1},y_{k+1})/2)$$
 не является А устойчивым.

8. Доказать, что метод

$$y_{k+1}=y_k+(k_1+2k_2+2k_3+k_4)/6$$
, где $k_1=hf(x_k,y_k)$; $k_2=hf(x_k+h/2,y_k+k_1/2)$; $k_3=hf(x_k+h/2,y_k+k_2/2)$ $k_4=hf(x_k+h,y_k+k_3)$ не является А устойчивым.

9. Найти множество действительных значений $h\lambda$ принадлежащих области устойчивости методов:

a)
$$y_{m+1} = y_m + \frac{1}{2}h (3f_m - f_{m-1});b) y_{m+1} = y_m + \frac{1}{12}h (5f_{m+1} + 8f_m - f_{m-1});$$

c) $y_{m+1} = y_{m-1} + 2hf_m ;d) y_{m+1} = y_{m-1} + h(f_{m+1} + 4f_m + f_{m-1})/3;$
e) $y_{m+1} = \frac{4}{3}y_m - \frac{1}{3}y_{m-1} + \frac{2}{3}h f_{m+1}.$

10. Найти множество действительных значений $h\lambda$ принадлежащих области устойчивости метода Рунге — Кутты второго порядка точности.

РЕШЕНИЕ КРАЕВОЙ ЗАДАЧИ. (ауд. 10ч., сам. 9ч.)

Практическое занятие №23. Метод стрельбы.

1. Постановка задачи для уравнения второго порядка. Краевые условия первого, второго и смешанного типа.

- 2. Доказать, что решение краевой задачи y''-y=0, $y(0)=\alpha$, $y(l)=\beta$ существует и единственно.
- 3. Выяснить, когда решение краевой задачи y''-y=0, $y(0)=\alpha$, $y(l)=\beta$ существует и единственно, когда задача не имеет решения и когда имеет неединственное решение.
- 4. Метод стрельбы для уравнения y'' = f(x, y, y') и первых краевых условий.
- 5. Выписать алгоритм решения краевой задачи $y'' = f(x,y,y'), \quad y'(a) \alpha_0 y(a) = \alpha_1, \quad y'(b) + \beta_0 y(b) = \beta_1, \quad \alpha_0 \geq 0, \quad \beta_0 \geq 0 \quad \text{методом}$ стрельбы с применением метода Ньютона.

Пример1.

Доказать, что задача $\frac{d}{dx}(k(x)y')+q(x)=0$, y'(a)=0, y(b)=0 при $k(x)\neq 0$ имеет единственное решение.

Найдем общее решение уравнения $\frac{d}{dx}(k(x)y')+q(x)=0$. Проинтегрируем его по х. Получим $k(x)y'=-\int\limits_a^x q(x)dx+C_1$. Из условия y'(a)=0 следует, что $C_1=0$. Еще раз интегрируем, поделив обе части уравнения на k(x). Получим $y=-\int\limits_a^x \left(\frac{1}{k(x)}\int\limits_a^x q(x)dx\right)dx+C_2$. Из условия y(b)=0 найдем константу C_2 , которая определяется единственным образом $C_2=\int\limits_a^b \left(\frac{1}{k(x)}\int\limits_a^x q(x)dx\right)dx$. Итак, краевая задача имеет единственное решение.

Пример2.

Выписать алгоритм решения краевой задачи для уравнения y''=f(x,y,y') и вторых краевых условий $y'(a)=\alpha$, $y'(b)=\beta$ методом стрельбы.

Введя еще одну функцию z=y'(x), сведем уравнение y''=f(x,y,y') к системе y'=z . Тогда краевые условия запишутся так $z(a)=\alpha$. $z(b)=\beta$

Рассмотрим задачу Коши $\begin{cases} y'=z \\ z'=f(x,y,z) \end{cases}$, $y(a)=\mu$, где μ является параметром, который надо подобрать так, чтобы выполнялось краевое условие на конце b. Решив задачу Коши, найдем $y(x,\mu)$ и $z(x,\mu)$ и потребуем, чтобы $z(b,\mu)-\beta=0$. Таким образом, решение краевой задачи свелось к многократному решению задачи Коши каким-нибудь численным методом, например, методом Эйлера, и численному решению нелинейного уравнения, например, методом хорд $\mu_{k+1}=\mu_k-\frac{(z(b,\mu_k)-\beta)(\mu_k-\mu_0)}{z(b,\mu_k)-z(b,\mu_0)}$, где μ_0 и μ_1 нужно задать так, чтобы искомый корень μ_1 нелинейного уравнения принадлежал μ_2 0. Отыскав решение задачи Коши при $\mu=\mu_2$ 1, получим приближенное решение поставленной краевой задачи.

Задачи для самостоятельной работы.

- 1. Доказать, что задача $\frac{d}{dx}(k(x)y')+q(x)=0$, y'(a)=y'(b)=0 при q(x)>0 не имеет решения.
- 2. Выписать алгоритм решения краевой задачи $x' = f(t,x,y), \quad y' = g(t,x,y), \quad A_0 x(a) + A_1 y(a) = \alpha, \quad B_0 x(b) + B_1 y(b) = \beta,$ $A_0^2 + A_1^2 \neq 0, \quad B_0^2 + B_1^2 \neq 0 \quad \text{методом стрельбы с применением метода}$ Ньютона.

Практическое занятие №24. Метод разностной прогонки.

- 1. Метод разностной_прогонки для уравнения y'' = p(x)y + q(x) и краевых условий первого типа $y(a) = \alpha$, $y(b) = \beta$. Трехдиагональность матрицы и условие диагонального преобладания.
- 2. Порядок аппроксимации. Погрешность приближенного решения.
- 3. Метод разностной_прогонки для уравнения y'' = p(x)y + q(x) с краевыми условиями смешанного типа $y'(a) = \alpha_0 y(a) + \alpha_1$ $y'(b) = -\beta_0 y(b) + \beta_1$.

- 3.1. Аппроксимация краевых условий с использованием формул численного дифференцирования по двум узлам. Порядок аппроксимации. Погрешность приближенного решения.
- краевых условий 3.2. Аппроксимация c использованием формул численного дифференцирования по двум узлам середину. Приведение матрицы К трехдиагональному Порядок виду. аппроксимации. Погрешность приближенного решения.
- 3.3. Аппроксимация краевых условий c использованием формул численного дифференцирования по трем узлам на середину. Приведение матрицы К трехдиагональному виду. Порядок аппроксимации. Погрешность приближенного решения.

4. Формулы прогонки.

Пример1.

Для краевой задачи y''-2xy'-2y=-4x, y'(0)=y(0), y(1)=1+e построить разностную схему, используя для аппроксимации краевых условий формулу численного дифференцирования по двум узлам.

Разобьем отрезок [0,1] на п равных частей точками $x_0, x_1, ..., x_n$ с шагом $h = \frac{1}{x}$. Рассмотрим уравнение y'' - 2xy' - 2y = -4x в точках x_i и заменим производные формулам дифференцирования ПО численного $y''(x_i) = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + O(h^2),$ $y'(x_i) = \frac{y_{i+1} - y_{i-1}}{2h} + O(h^2).$ Получим $\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}-2x_i\frac{y_{i+1}-y_{i-1}}{2h}-2y_i=-4x_i, i=1,...,n-1$. Запишем (n-1) уравнений линейных алгебраических системы уравнений $\left(\frac{1}{h^2} + x_i \frac{1}{h}\right) y_{i-1} - 2y_i \left(\frac{1}{h^2} + 1\right) + \left(\frac{1}{h^2} - x_i \frac{1}{h}\right) y_{i+1} = -4x_i, \quad i = 1, ..., n-1 \quad \text{ с} \quad \text{ неизвестными}$ $y_0,...,y_n$. Чтобы найти нулевое уравнение системы, в краевом условии заменим производную по формуле $y'(x_0) = \frac{y_1 - y_0}{h} + O(h)$. Получим уравнение $-\left(\frac{1}{h}+1\right)y_0+\frac{1}{h}\,y_1=0$. Последнее уравнение системы найдем из второго краевого условия $y_n=1+e$. Система имеет трехдиагональную матрицу

$$A = \begin{pmatrix} -\left(\frac{1}{h}+1\right) & \frac{1}{h} & 0 & \dots & 0 \\ \left(\frac{1}{h^2}+x_1\frac{1}{h}\right) & -2\left(\frac{1}{h^2}+1\right) & \left(\frac{1}{h^2}-x_1\frac{1}{h}\right) & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \left(\frac{1}{h^2}-x_{n-1}\frac{1}{h}\right) \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix},$$
 обладающую

диагональным преобладанием, если $\frac{1}{h} > |x_i|, i = 1,...n-1$. Порядок аппроксимации построенной разностной схемы O(h).

Пример2.

Для краевой задачи y''-2xy'-2y=-4x, y'(0)=y(0), y(1)=1+e построить разностную схему, используя для аппроксимации краевых условий формулу численного дифференцирования по двум узлам на середину (метод фиктивного узла).

В примере 1 плохой порядок аппроксимации получился из-за замены производной в краевом условии недостаточно точной формулой численного дифференцирования. Воспользуемся формулой с погрешностью $O(h^2)$ $y'(x_0) = \frac{y_1-y_{-1}}{2h} + O(h^2)$. Получим $\frac{y_1-y_{-1}}{2h} - y_0 = 0$. Но y_{-1} нам не известно. Чтобы исключить его, запишем уравнение системы при i=0. $\left(\frac{1}{h^2} + x_0 \frac{1}{h}\right) y_{-1} - 2y_0 \left(\frac{1}{h^2} + 1\right) + \left(\frac{1}{h^2} - x_0 \frac{1}{h}\right) y_1 = -4x_0$. Так как $x_0 = 0$, то $y_{-1} - 2y_0 + y_1 = 0$. После исключения y_{-1} получим нулевое уравнение системы $-y_0 \left(\frac{1}{h} + 1\right) + \frac{y_1}{h} = 0$.

Задачи для самостоятельной работы.

- 1. Построить конечно-разностные аппроксимации для уравнения y'' = r(x)y' + p(x)y + q(x) с краевыми условиями первого типа $y(a) = \alpha$, $y(b) = \beta$. Для полученной линейной системы найти условия диагонального преобладания. Выяснить порядок аппроксимации.
- 2. Построить конечно-разностные аппроксимации для уравнения y'' = r(x)y' + p(x)y + q(x) с краевыми условиями смешанного типа $y'(a) = \alpha_0 y(a) + \alpha_1 \quad y'(b) = -\beta_0 y(b) + \beta_1 \text{. Для полученной линейной системы}$ найти условия диагонального преобладания. Выяснить порядок аппроксимации.

ЧИСЛЕННЫЕ МЕТОДЫ В ТЕОРИИ ПРИБЛИЖЕНИЯ ФУНКЦИЙ.(ауд. 4ч., сам. 3ч.)

Практическое занятие №25. Интерполяция сплайнами. Кубические сплайны.

- 1. Вывести соотношения (2)-(5), приведенные для сплайна $S_3(x)$ из лекционного курса.
- 2. Получить систему относительно величин M_i в случае краевых условий типа I (см. Лекции).
- 3. Получить систему относительно величин M_i в случае краевых условий типа IV (см. Лекции).
- 4. Получить систему относительно величин M_i в случае краевых условий типа III (см. Лекции) для периодического сплайна $S_3(x)$.
- 5. Используя соотношение (2) выразить величины M_i через величины m_i и вывести уравнение (7).
- 6. Получить систему относительно m_i в случае краевых условий типа II, III, IV.

- 7. Построить однозвенные и двухзвенные интерполяционные кубические сплайны $S_{3,1}(x)$ при $x_1-x_0=x_2-x_1=h$ с различными краевыми условиями, используя представление через величины M_i и m_i .
- 8. Построить трехзвенный сплайн с краевыми условиями типа IV.

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ. (ауд. 4ч., сам. 3ч.)

Практическое занятие №26. МНК - решение линейных систем, приближение функции по методу наименьших квадратов.

- 1. МНК решение линейных систем.
- 2. Геометрический смысл метода.
- 3. Нормальная система.
- 4. Постановка задачи приближения функций, заданных таблично.
- 5. Ортогональные многочлены.

Пример 1.

Найти МНК – решение системы

$$x_1+x_2\approx 1$$
 $x_1\approx 1$ $x_2\approx 1$ $A=\begin{bmatrix}1&1\\1&0\\0&1\end{bmatrix};\ h_1=\begin{bmatrix}1\\1\\0\end{bmatrix};\ h_2=\begin{bmatrix}1\\0\\1\end{bmatrix};\ y=\begin{bmatrix}1\\1\\1\end{bmatrix};$ $(h1,h1)=2=(h2,h2);\ (h1,h2)=(h2,h1)=1;\ (h1,y)=2=(h2,y);$ Нормальная система имеет вид: $2\dot{x}_1+x\dot{z}_2=2$ $\dot{x}_1+2\dot{x}_2=2$ Ее решение: $\dot{x}_1=2/3;\ \dot{x}_2=2/3;$

Пример 2.

Сеточная функция задана таблицей.

i	x_i	y_i
1	0	0
2	0,5	0,25
3	1	1

Построить линейную функцию $\Phi(x) = a_1 + a_2 x$, которая даст наилучшее приближение по методу наименьших квадратов.

В рассматриваемом случае имеем: n = 2, m = 1, $\varphi_1(x) = 1$, $\varphi_2(x) = x$.

Здесь
$$(\varphi_1, \varphi_1) = 3$$
; $(\varphi_2, \varphi_2) = 1,25$; $(\varphi_1, \varphi_2) = (\varphi_2, \varphi_1) = 1,5$.

Таким образом, для определения коэффициентов имеем нормальную систему уравнений:

$$3a_1 + 1,5a_2 = 1,25$$

$$1,5a_1 + 1,25a_2 = 1,125$$

B результате ее решения $a_1 = -\frac{1}{12}$, $a_2 = 1$, тогда $\Phi(x) = x - \frac{1}{12}$ получим:

Погрешности в узлах сетки: $\delta_1 \cong -0.08(3)$; $\delta_2 = -0.1(6)$; $\delta_3 = 0.08(3)$; здесь $\delta_i = y_i - \Phi(x_i)$. Проиллюстрируем полученный результат графически.

Задачи для самостоятельного решения.

1) Найти МНК – решение системы

$$x \approx y_1$$

. . .

$$x \approx y_{\rm m}$$

2) Найти МНК – решение систем:

a)
$$x_1 \approx 1$$

 $x_1 \approx 0$

$$x_1 + x_2 \approx 1$$

b)
$$x_1 \approx 0$$

$$x_2 \approx 1$$

$$x_1 + x_2 \approx 1$$

3) Найти МНК – решение системы

 $x_1 \approx y_1$

. . .

$$x_m \approx y_{\rm m}$$

$$x_1 + x_2 + \ldots + x_m \approx z$$

- 4) Измерение углов плоского треугольника привели к значениям: $A \approx 54^05$ '; $B \approx 50^01$ '; $C \approx 76^06$ '. При помощи МНК найти значения этих углов, удовлетворяющих точному равенству: $A + B + C = 180^0$
- 5) Найти линейную функцию, задающую МНК приближение для данных:

x_i	0	1	3	4
y_i	1	2	0	4

- 6) В классе функций $p(x) = c_0 + c_1 x$ найти МНК приближение для функции $y = x^2$, заданной:
 - а) в узлах $x_0 = 0$, $x_1 = 1$;
 - б) в узлах $x_0 = 0$, $x_1 = 0.5$, $x_2 = 1$;
 - в) в узлах $x_0 = 0$, $x_1 = 0.25$, $x_2 = 0.5$, $x_3 = 0.75$, $x_4 = 1$;
 - г) на всем промежутке [0, 1]

Построить графики полученных приближений.

7) В задаче приближения заданной на [0, 1] функции y(x) при помощи функций вида

$$p(x)=c_1\varphi_1(x)+c_2\varphi_2(x)$$
, где $\varphi_1(x)=1$, а $\varphi_2(x)=x-\alpha$ найти как функцию от α :

- а) матрицу G МНК системы
- *b*) определитель G, собственные числа G, число обусловленности $cond(G) = k(\alpha)$.

Доказать, что МНК – приближение не зависит от α Вычислить значения $k(\alpha)$ при $\alpha=0,\,0.5,\,1,\,10,\,100$. Доказать, что $k(\alpha)=O(\alpha^4)$ при больших α .

8) Пусть известны $P_0(x)$, $P_1(x)$ — ортогональные многочлены нулевой и первой степени. Доказать, что многочлены степени второй и выше можно конструировать, используя рекуррентную формулу

$$P_{n+1}(x) = (x - \alpha_n) P_n(x) - \beta_n P_{n-1}(x)$$

Указать правила вычисления α_n и β_n .

9) Построить ортогональную систему многочленов $P_n(x)$ для $n=0,\,1,\,2,\,\ldots$

для узлов

a)
$$x_0 = -2$$
, $x_1 = -1$, $x_2 = 0$, $x_3 = 1$, $x_4 = 2$;

b) для отрезка [-1, 1]