Package 'promethee123'

October 14, 2022

2 promethee123

promethee123

PROMETHEE I, II, and III Methods

Description

The PROMETHEE method is a multti-criteria decision-making method addressing with outranking problems. The method establishes a preference structure between the alternatives, having a preference function for each criterion. IN this context, three variants of the method is carried out: PROMETHEE I (Partial pre-ordering), PROMETHEE II (Total pre-ordering), and PROMETHEE III (pre-ordering by inervals).

Usage

```
promethee123(alternatives, criteria, decision_matrix, min_max,
normalization_function, q_indifference, p_preference, s_curve_change, criteria_weights)
```

Arguments

alternatives The names respective to set of alternatives in evaluation criteria The names respective to set of criteria in evaluation decision_matrix

A matrix where rows correspond to the criteria and columns correspond to alternatives, there is inputed the performance of alternatives in each criterion

min_max A vector with objectives, minimize or maximize, to each criteria.

normalization_function

Numerical description relative to each type of normalization function to each

criterion

q_indifference Indifference threshold p_preference Preference threshold

s_curve_change Threshold of changing in the curve

criteria_weights

Numerical representation of the respective importance for each criterion

Details

- For normalization function we have six types: [1] for USUAL (0 or 1) [2] for U-SHAPE (0 or 1) q [3] for V-SHAPE (x/p or 1) p [4] for LEVEL (0, 0.5 or 1) q , p [5] for V-SHAPE I (0, (x-q)/(p-q) or 1) q , p [6] for GAUSSIAN (0 or 1-e^(-x^2/2*s^2)) s q = indifference parameter p = preference parameter s = parameter to indicate change in the preference curve
- The input of thresholds depends of the type of preference function used;
- The sum of weights must be 1;

promethee 123 3

Value

- Performance in each criterion;
- Global Index of Importance;
- Importance Flows (Positive, Negative, and Net);
- Preference relations in PROMETHEE I;
- Total Outranking in PROMETHEE II;
- Preference relations in PROMETHEE III;
- Graphical representations of PROMETHEE I, II, and III.

Author(s)

Miguel Angelo Lellis Moreira <miguellellis@hotmail.com>, Marcos dos Santos <marcosdossantos_doutorado_uff@yaCarlos Francisco Simoes Gomes <cfsg1@bol.com.br>

References

BRANS, Jean-Pierre; DE SMET, Yves. PROMETHEE methods. In: Multiple criteria decision analysis. Springer, New York, NY, 2016. p. 187-219. DOI: 10.1007/978-1-4939-3094-4_6. https://link.springer.com/chapter/10.1007/978-1-4939-3094-4_6

Examples

Index

promethee 123, $\frac{2}{}$