Unit 12: Forecasting

Jeffrey Woo

Department of Statistics, University of Virginia

Spring 2020

Readings for Unit 12

Textbook chapter 3.4 (skip pages 103 to 106).

Last Unit

- ACF for MA(q)
- ACF for Causal ARMA(p,q)
- Partial Autocorrelation Function

This Unit

- Best linear predictor
- ARMA forecasting

Motivation

In this unit, we explore forecasting: predicting future values of a time series based on observed data.

1 Forecasting for Stationary Processes

2 ARMA Forecasting

Forecasting

In forecasting, the goal is to predict future values of a time series, x_{n+m} , based on the observed data $\mathbf{x} = \{x_n, x_{n-1}, \dots, x_1\}$. In this unit, we assume $\{x_t\}$ is stationary.

Forecasting

The minimum mean square error predictor of x_{n+m} is

$$x_{n+m}^n = \mathsf{E}(x_{n+m}|\mathbf{x}) \tag{1}$$

as the conditional expectation minimizes the mean square error $E[x_{n+m} - g(\mathbf{x})]^2$, where $g(\mathbf{x})$ is a function of the observations.

Forecasting

First, we restrict our attention to predictors that are linear functions of the observations, i.e.

$$x_{n+m}^n = \alpha_0 + \sum_{j=1}^n \alpha_j x_j \tag{2}$$

where $\alpha_0, \alpha_1, \dots, \alpha_n \in \mathbb{R}$. Linear predictors of the form (2) that minimize the mean square prediction error are called _____

Linear prediction depends on on the second-order moments of the process, which can be estimated from the data.

Projection Theorem

Theorem

Let \mathcal{M} be a closed subspace of the Hilbert space \mathcal{H} and let y be an element in \mathcal{H} . Then, y can be uniquely represented as $y = \hat{y} + z$ where $\hat{y} \in \mathcal{M}$ and z is orthogonal to \mathcal{M} . Therefore, for any $w \in \mathcal{M}$,

- $||y w|| \ge ||y \hat{y}||$ and
- < z, w >= 0.

Projection Theorem

Projection Theorem: Linear Prediction

Given
$$1, x_1, x_2, \dots, x_n \in \{X : E(X^2) < \infty\}$$
, choose $\alpha_0, \alpha_1, \dots, \alpha_n \in \mathbb{R}$ so that $U = \alpha_0 + \sum_{j=1}^n \alpha_j x_j$ minimizes $E(x_{n+m} - U)^2$.

Note that:

$$\mathcal{M} = \{U = \alpha_0 + \sum_{j=1}^n \alpha_j x_j : \alpha_j \in \mathbb{R}\} = \bar{sp}\{1, x_1, \cdots, x_n\}$$
 and $y = x_{n+m}$.

Projection Theorem: Linear Prediction

Let x_{n+m}^n denote the best linear predictor, i.e.

$$||x_{n+m}^n - x_{n+m}||^2 \le ||U - x_{n+m}||^2$$

for all $U \in \mathcal{M}$. The projection theorem implies

Projection Theorem: Linear Prediction

- The prediction errors $x_{n+m}^n x_{n+m}$ are orthogonal to the prediction variables $(1, x_1, \dots, x_n)$.
- Orthogonality of prediction error and 1 implies we can from all variables x_{n+m} and x_i .
- Therefore, we typically assume $\mu = 0$ for forecasting.

BLP for Stationary Process

Given x_1, \dots, x_n , the best linear predictor for stationary processes, $x_{n+m}^n = \alpha_0 + \sum_{j=1}^n \alpha_j x_j$, of x_{n+m} , for $m \ge 1$, is found by solving

$$E[(x_{n+m} - x_{n+m}^n)x_k] = 0 \text{ for } k = 0, 1, \dots, n,$$
 (3)

where $x_0 = 1$, for $\alpha_0, \alpha_1, \dots, \alpha_n$. The equations (3) are called the **prediction equations**.

One-Step-Ahead Linear Prediction

Consider one-step-ahead prediction. Given x_1, \dots, x_n , we want to forecast x_{n+1} . The BLP takes the form

$$x_{n+1}^{n} = \phi_{n1}x_n + \phi_{n2}x_{n-1} + \dots + \phi_{nn}x_1.$$
 (4)

Therefore, the prediction equations (3) become

One-Step-Ahead Linear Prediction

In matrix form:

One-Step-Ahead Linear Prediction

The mean square one-step-ahead prediction error is

$$P_{n+1}^{n} = E(x_{n+1} - x_{n+1}^{n})^{2}$$
=
=
=
=
=
=
=
=
(5)

Prediction Intervals

Construct prediction interval:

$$x_{n+1}^n \pm 1.96 \sqrt{P_{n+1}^n}$$
.

for Gaussian processes. The prediction error has distribution $N(0, P_{n+1}^n)$.

1 Forecasting for Stationary Processes

2 ARMA Forecasting

Let's consider an ARMA model that is causal and invertible

$$\phi(B)X_t = \theta(B)w_t,$$

where

$$\phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$$
 and $\theta(B) = 1 + \theta_1 B + \dots + \theta_q B^q$.

By causality and invertibility, we have

$$x_{n+m} = \sum_{j=0}^{\infty} \psi_j w_{n+m-j}, \quad \psi_0 = 1,$$
 (6)

where $\psi(z) = \frac{\theta(z)}{\phi(z)} = \sum_{j=0}^{\infty} \psi_j z^j$, and

$$w_{n+m} = \sum_{j=0}^{\infty} \pi_j x_{n+m-j}, \quad \pi_0 = 1,$$
 (7)

where $\pi(z) = \frac{\phi(z)}{\theta(z)} = \sum_{j=0}^{\infty} \pi_j z^j$.

Given the past information x_n, x_{n-1}, \ldots , we are interested in predicting x_{n+m} . We use $\widetilde{x}_{n+m} = E(x_{n+m}|x_n, x_{n-1}, \ldots)$, the conditional expectation of x_{n+m} given all the past x_n, x_{n-1}, \ldots , to forecast x_{n+m} .

Note also that

$$E(w_t|x_n, x_{n-1}, ...) = 0$$

for t > n because of causality. For $t \le n$, w_t is determined by x_t, x_{t-1}, \ldots , which are included in x_n, x_{n-1}, \ldots Thus,

$$E(w_t|x_n, x_{n-1}, ...) = w_t.$$

So

$$E(w_t|x_n, x_{n-1}, ...) = \begin{cases} 0, & t > n, \\ w_t, & t \le n. \end{cases}$$
 (8)

Now, we take the infinite AR representation (7) and take the conditional expectation (conditioning on $x_n, x_{n-1}, ...$) on both sides of (7) to get

This leads to

$$\widetilde{x}_{n+m} = -\sum_{j=1}^{m-1} \pi_j \widetilde{x}_{n+m-j} - \sum_{j=m}^{\infty} \pi_j x_{n+m-j}.$$
 (9)

Letting m = 1 in (9), we have

$$\widetilde{x}_{n+1} = -\sum_{j=1}^{\infty} \pi_j x_{n+1-j} = -\sum_{j'=0}^{\infty} \pi_{j'+1} x_{n-j'}.$$

So, start by finding \widetilde{x}_{n+1} and then recursively use (9) to find the later \widetilde{x}_{n+m} . This is called the ______.

Worked Example

We have an AR(2) model $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t$. Suppose we have observations up to the *n*th term, i.e. x_n, x_{n-1}, \dots . So we wish to use the observed data and estimated AR(2) model to forecast the value of x_{n+1} and x_{n+2} . Writing out these two values, we have

$$x_{n+1} = \phi_1 x_n + \phi_2 x_{n-1} + w_{n+1},$$

$$x_{n+2} = \phi_1 x_{n+1} + \phi_2 x_n + w_{n+2}.$$

Worked Example

To forecast x_{n+1} , we use the observed values of x_n and x_{n-1} and replace w_{n+1} by its expected value of 0.

Forecasting x_{n+2} poses a challenge, since it requires the unobserved value of x_{n+1} . We use the forecasted value of x_{n+1} .

Framework in Forecasting

In general, the forecasting procedure for an ARMA(p,q) model is as follows:

- For any w_j with $1 \le j \le n$, use the sample residual at time j.
- For any w_j with j > n, use the expected value of w_j , which is 0.
- For any x_j with $1 \le j \le n$, use the observed value of x_j .
- For any x_j with j > n, use the forecasted value of x_j .

We use the infinite MA representation (6) and write

Therefore, the mean-squared prediction error, or variance of the difference between the forecasted value and the true value at time n+m is

$$P_{n+m}^{n} = E(x_{n+m} - \widetilde{x}_{n+m})^{2} = \sigma_{w}^{2} \sum_{j=0}^{m-1} \psi_{j}^{2},$$
 (10)

and the standard error of the forecast error at time n + m is

$$\sqrt{\hat{\sigma_W^2}} \sum_{j=0}^{m-1} \psi_j^2. \tag{11}$$

Question: Write out the standard error of the forecast error for m = 1 and m = 2.

Notice that as *m* gets larger—i.e. as we predict further into the future, this is ______ but essentially asymptotes. This means that you are getting essentially a constant prediction interval after a certain distance into the future, as if we do not know what was going on previously.

Also, for fixed sample size n, the prediction errors are correlated. For h > 1,

$$E\left\{(x_{n+m}-\widetilde{x}_{n+m})(x_{n+m+h}-\widetilde{x}_{n+m+h})\right\}=\sigma^2\sum_{j=0}^{m-1}\psi_j\psi_{j+k}.$$

Prediction Interval

For Gaussian processes, the 95% prediction interval for x_{n+m} , the future value of the series at time n+m is

$$x_{n+m}^n \pm 1.96 \sqrt{\hat{\sigma_w}^2 \sum_{j=0}^{m-1} \psi_j^2}.$$
 (12)

Worked Example

Question: We have an AR(1) model $x_t = 40 + 0.6x_{t-1} + w_t$. Suppose we have n = 100 observations, $\hat{\sigma_w^2} = 1$ and $x_{100} = 80$. We wish to forecast the values at times 101 and 102.

Worked Example