Total No	o. of Questions : 8]	SEAT No. :
PA-1 4		[Total No. of Pages : 2
	[5926] 104	• • • •
	T.E. (E&TCEngin	0.
	ELECTROMAGNETIC FI	
	(2019 Pattern) (Semeste	er-1) (304182)
	½ Hours]	[Max. Marks : 70
Instructi 1)	ions to the candulates: Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, and	07 or 08
2)	Figures to the right side indicate full marks	
<i>3</i>)	Assume suitable data if necessary.	
<i>4</i>) <i>5</i>)	Use of a calculator is allowed. Neat diagrams must be drawn wherever nec	assary
3)	ived diagrams must be drawn wherever nec	essary.
<i>Q1</i>) a)	Region-1 is semi-infinite space in wh	nich $2x-5y>0$. While for region-2,
~ / /	$2x-5y<0$. Let μ r1=3, μ r2=4, H1'=30 a	
b)	Derive an expression for energy stored	and energy density in electrostatic
	field.	[8]
	OR	
Q2) a)	Derive an expression for the potential	gradient $E=-\nabla V$ [8]
b)	Derive an expression for the capacit	ance of a parallel plate capacitor
	having two dielectric media.	[10]
02)	6.	
Q 3) a)	State and explain displacement current	.
	Explain physical significance of displa	icement current. [8]
		A 0'.'
b)	Calculate displacement current through	
b)	having plates if area 10cm ² separated	by a distance 2 mm connected to
b)		
b)	having plates if area 10cm ² separated	by a distance 2 mm connected to
b) Q4) a)	having plates if area 10cm ² separated 300 V,1 MHZ source.	by a distance 2 mm connected to [8]
	having plates if area 10cm ² separated 300 V,1 MHZ source. OR	by a distance 2 mm connected to [8] ns's law. [8]
Q4) a)	having plates if area 10cm ² separated 300 V,1 MHZ source. OR State and explain faraday's law and le	by a distance 2 mm connected to [8] ns's law. [8]
Q4) a)	having plates if area 10cm ² separated 300 V,1 MHZ source. OR State and explain faraday's law and le	by a distance 2 mm connected to [8] ns's law. [8]
Q4) a)	having plates if area 10cm ² separated 300 V,1 MHZ source. OR State and explain faraday's law and le	by a distance 2 mm connected to [8] ns's law. [8]
Q4) a)	having plates if area 10cm ² separated 300 V,1 MHZ source. OR State and explain faraday's law and le	by a distance 2 mm connected to [8] ns's law. [8]

- **Q5**) a) What is polarization? Explain the different types of polarization in detail with. [10]
 - Derive the wave equation (Helmoltz Equation) for free space in terms of b) electric field intensity. [8]

- Explain the terms Depth of penetration and loss tangent in detail. **Q6**) a) [8]
 - Derive the parameters of propagation constant, phase constant, intrinsic b) impedance, and velocity for free space medium. [10]
- A generator of 1V, 1KHz supplies power to 100 km long transmission line, **Q7**) a) terminated in Zo and having following parameters. $R=10.4\Omega$ /km, L=0.00367 H/km, $G=0.8 \times 10$ -6 mho/km, and $C=0.00835 \times 10$ -6 F\km calculate characteristics impedance, propagation constant, wavelength and velocity?[8]
 - Explain different distortions of transmission lines? What is mean by distortion less line and explain the condition of distortion less lines?

- Explain the secondary constants (Z_0, α, β) of transmission line in detail **Q8**) a) [8]
 - A transmission line has a characteristic impedance 300Ω and terminated b) in a load $Z_1 = 150 + j150\Omega$. Find the following using smith chart.
 - **VSWR** i)
 - ii) Reflection coefficient
 - Jack Commission of the Commiss Input impedance at a distance 0.1λ from the load iii)