Examen de calcul différentiel ISIMA première année, 20 juin 2012.

1 Exercice

On se donne le jeu de données suivant, pour i = 0, 1, 2:

- Déterminer la base de Lagrange associée aux points x₀, x₁ et x₂.
- En déduire le polynôme d'interpolation de Lagrange P associé aux trois points (xi, yi).
- Retrouver l'expression du polynôme P par l'algorithme de Newton.
- Déterminer le polynôme d'interpolation de Lagrange associé aux points (x_i, y_i), 0 ≤ i ≤ 2 et (x₃, y₃) = (1,0), en appliquant la méthode de Newton.

2 Exercice

(Méthode de Simpson 3/8.) Pour $f \in C^0([-1,1]; \mathbb{R})$, on pose :

$$I(f) = \int_{-1}^{1} f(x) dx$$
, et $J(f) = w_0 f(-1) + w_1 f(-\frac{1}{3}) + w_2 f(\frac{1}{3}) + w_3 f(1)$.

- 1. Calculer les w_i pour que I(f) = J(f) quand f est un polynôme de degré ≤ 3 .
- 2. Montrer que la formule est fausse pour les polynômes de degré 4.
- 3. Pour $f(x)=\sqrt{x+1}$, calculer I(f) et J(f). On donne $\sqrt{2}\simeq 1.41$, $\sqrt{\frac{2}{3}}\simeq 0.82$, $\frac{1}{\sqrt{3}}\simeq 0.58$.

3 Exercice

Soit l'équation différentielle du second ordre :

$$y''(x) - 2y'(x) - 8y(x) = -8$$
, pour $x \in [0, T]$,

avec y(0) = 0 et y'(0) = 2, et T > 0.

- 1. Ecrire cette équation sous la forme d'un système différentiel de deux équations d'ordre 1.
- 2. Appliquer la méthode d'Euler explicite pour résoudre numériquement ce système. Application : prendre T=0.2 et un pas h=0.1 et calculer une approximation de y(T).
- 3. Mêmes questions avec la méthode de Runge Kutta d'ordre 2, où on se limitera à T=0.1, toujours avec h=0.1.

4 Exercice

Soit la courbe
$$\vec{r}$$
: $[a,b] \to \mathbb{R}^3$, où $a < b$, définie par $\vec{r}(t) = \begin{pmatrix} x(t) = e^t \\ y(t) = e^{-t} \\ z(t) = \sqrt{2} t \end{pmatrix}$.

On note s un paramètre intrinsèque de la courbe, et on note \vec{q} la courbe définie par $\vec{q}(s) = \vec{r}(t)$ quand s = s(t).

- 1. Calculer s'(t) (on rappelle que $\operatorname{ch} t = \frac{e^t + e^{-t}}{2}$ et que $\operatorname{ch}' t = \operatorname{sh} t$).
- 2. Calculer $\vec{q}'(s(t))$ en fonction de $\vec{r}'(t)$.
- 3. Calculer $\vec{q}''(s(t))$ en fonction de $\vec{r}'(t)$ et de $\vec{r}''(t)$. On ne demande de calculer ni $||\vec{q}''(s)||$ ni $\vec{n}(s)$.
- 4. Calculer $\vec{q}'(s) \wedge \vec{q}''(s)$ en fonction de t: on pourra se servir de $\vec{q}'(s(t))$ est parallèle à $\vec{r}'(t)$.
- 5. Calculer $||\vec{q}'(s) \wedge \vec{q}''(s)||$ et en déduire $\vec{b}(s)$ quand s = s(t).
- 6. Calculer $\vec{b}'(s)$ et en déduire la torsion (le signe de la torsion sera donné par comparaison