TEST REPORT

Reference No. : WTS19S09065170W002

FCC ID: XUJPROMINI

Applicant.....: Launch Tech Co., Ltd.

Launch Industrial Park, North of Wuhe Rd. Banxuegang, Longgang,

Address Shenzhen, China

Manufacturer: The same as above

Address : The same as above

Product.....: AUTO Smart Diagnostic Tool

Model(s). : X-431 PRO MINI V3.0, X-431 PROS MINI V3.0

Brand Name: LAUNCH

Standards..... : FCC CFR47 Part 15.247:2018

Date of Receipt sample : 2019-09-19

Date of Test : 2019-09-20 to 2019-11-08

Date of Issue..... : 2019-11-11

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Ford Wang / Project Engineer

hilo Zhong / Manager

ved by:

2 Contents

	OOVER RAGE	Page
1 2	COVER PAGECONTENTS	
3	REVISION HISTORY	
4	GENERAL INFORMATION	
•	4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST. 4.4 TEST MODE	
5	TEST SUMMARY	
6	EQUIPMENT USED DURING TEST	9
	 6.1 EQUIPMENTS LIST 6.2 DESCRIPTION OF SUPPORT UNITS 6.3 MEASUREMENT UNCERTAINTY 6.4 TEST EQUIPMENT CALIBRATION 	
7	CONDUCTED EMISSION	11
	 7.1 E.U.T. OPERATION	
8	RADIATED EMISSIONS	
	8.1 EUT OPERATION	
9	CONDUCTED SPURIOUS EMISSIONS	
	9.1 TEST PROCEDURE	
10	BAND EDGE MEASUREMENT	53
	10.1 TEST PRODUCE	54
11	6 DB BANDWIDTH AND 99% BANDWIDTH MEASUREMENT	
	11.1 TEST PROCEDURE:	
12	MAXIMUM PEAK CONDUCTED OUTPUT POWER	
	12.1 TEST PROCEDURE:	
13	DUTY CYCLE	
14	POWER SPECTRAL DENSITY	
	14.1 TEST PROCEDURE:	79
15	ANTENNA REQUIREMENT	
16	RF EXPOSURE	89

17	PHOTOGRAPHS OF TEST SETUP AND EUT.	. 90

Page 3 of 90

Reference No.: WTS19S09065170W002

Reference No.: WTS19S09065170W002 Page 4 of 90

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS19S09065 170W002	2019-09-19	2019-09-20 to 2019-11- 08	2019-11-11	original	-	Valid

Reference No.: WTS19S09065170W002 Page 5 of 90

4 General Information

4.1 General Description of E.U.T.

Product: AUTO Smart Diagnostic Tool

Model(s): X-431 PRO MINI V3.0, X-431 PROS MINI V3.0

Model Description: Only the model name and appearance color are different.

Wi-Fi Specification: 2.4G-802.11b/g/n HT20/n HT40

Bluetooth Version: Bluetooth v4.0 with BLE

Hardware Version: V1.1

Software Version: V1.18

Highest frequency

(Exclude Radio):

Storage Location: Internal Storage

Note: N/A

4.2 Details of E.U.T.

Operation Frequency: WiFi:

802.11b/g/n HT20: 2412~2462MHz 802.11n HT40: 2422~2452MHz

BLE:2402-2480MHz

Max. RF output power: WiFi(2.4G): 22.80dBm

BLE: -1.25dBm

Type of Modulation: WiFi: CCK, OFDM

BLE:GFSK

Antenna installation: WiFi: internal permanent antenna

BLE: internal permanent antenna

Antenna Gain: WiFi(2.4G): 4.48dBi

BLE: 4.48dBi

Ratings: Battery DC 3.8V, 4680mAh

DC 5V, 2.0A, charging from adapter

(Adapter Input: 100-240V~50/60Hz 0.6A Max)

Adapter: Manufacturer: SHENZHEN PENGSHENGYE ELECTRONIC CO.,LTD

Model No.: SAPA05010US

4.3 Channel List

WIFI

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

BT BLE

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

4.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode Mode	Data Rate	Channel	TX/RX
	802.11b	1 Mbps	1/6/11	TX
Maximum Book Output Dower	802.11g	6 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11n HT20	MCS0	1/6/11	TX
	802.11n HT40	MCS0	3/6/9	TX
	802.11b	1 Mbps	1/6/11	TX
Davis On a strat Davisite.	802.11g	6 Mbps	1/6/11	TX
Power Spectral Density	802.11n HT20	MCS0	1/6/11	TX
	802.11n HT40	MCS0	3/6/9	TX
	802.11b	1 Mbps	1/6/11	TX
CdD Donadwidth	802.11g	6 Mbps	1/6/11	TX
6dB Bandwidth	802.11n HT20	MCS0	1/6/11	TX
	802.11n HT40	MCS0	3/6/9	TX
	802.11b	1 Mbps	1/6/11	TX
Dand Edge	802.11g	6 Mbps	1/6/11	TX
Band Edge	802.11n HT20	MCS0	1/6/11	TX
	802.11n HT40	MCS0	3/6/9	TX
	802.11b	1 Mbps	1/6/11	TX
Transmittor Spurious Emissions	802.11g	6 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11n HT20	MCS0	1/6/11	TX
	802.11n HT40	MCS0	3/6/9	TX

Table 2 Tests Carried Out Under FCC part 15.247

rable 2 rock carried cat officer roc part role r						
Test Items	Mode	Data Rate	Channel	TX/RX		
Maximum Peak Output Power	BT BLE	1 Mbps	0/19/39	TX		
Power Spectral Density	BT BLE	1 Mbps	0/19/39	TX		
6dB Bandwidth	BT BLE	1 Mbps	0/19/39	TX		
Band Edge	BT BLE	1 Mbps	0/19/39	TX		
Transmitter Spurious Emissions	BT BLE	1 Mbps	0/19/39	TX		

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

Reference No.: WTS19S09065170W002 Page 8 of 90

5 Test Summary

Test Items	Test Requirement	Result
	15.247(d)	
Radiated Spurious Emissions	15.205(a)	PASS
	15.209(a)	
Conducted Spurious Emissions	15.247(d)	PASS
Conducted Emissions	15.207(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS

Note: All test were performed that the device transmit continue of the 100% duty cycle.

6 Equipment Used during Test

6.1 Equipments List

Condu	Conducted Emissions Test Site 1#					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	2019-09-12	2020-09-11
2.	LISN	R&S	ENV216	101215	2019-09-12	2020-09-11
3.	Cable	Тор	TYPE16(3.5M)	-	2019-09-12	2020-09-11
Condu	cted Emissions Test	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	2019-09-12	2020-09-11
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2019-09-12	2020-09-11
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2019-09-12	2020-09-11
4.	Cable	LARGE	RF300	-	2019-09-12	2020-09-11
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP	100091	2019-04-29	2020-04-28
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	2019-04-09	2020-04-08
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2019-04-09	2020-04-08
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2019-09-12	2020-09-11
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2019-04-09	2020-04-08
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2019-04-09	2020-04-08
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2019-04-13	2020-04-12
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	2019-04-13	2020-04-12
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2019-04-13	2020-04-12
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2019-04-09	2020-04-08
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	2019-04-13	2020-04-12
4	Cable	HUBER+SUHNER	CBL2	525178	2019-04-13	2020-04-12

RF Coi	RF Conducted Testing						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2019-09-12	2020-09-11	
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2019-09-12	2020-09-11	
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2019-09-12	2020-09-11	

6.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.
1	1	1	1

6.3 Measurement Uncertainty

Parameter	Uncertainty			
Conducted Emission	± 3.64 dB(AC mains 150KHz~30MHz)			
Radiated Spurious Emissions	± 5.08 dB (Bilog antenna 30M~1000MHz)			
Radiated Spurious Emissions	± 5.47 dB (Horn antenna 1000M~25000MHz)			
Radio Frequency	± 1 x 10 ⁻⁷ Hz			
RF Power	± 0.42 dB			
RF Power Density	± 0.7dB			
Conducted Spurious Emissions	± 2.76 dB (9kHz~26500MHz)			
Confidence interval: 95%. Confidence factor:k=2				

6.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS19S09065170W002 Page 11 of 90

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: Frequency (MHz) Limit (dBµV)

Quasi- eak Average

Outside to 56* to 56* F6* Acceptance of the 46*

1 roqueries (ivii iz)	Quasi- eak	Average
0.15 to 0.	66 to 56*	56 to 46*
0.5 to 5	56	46
5 o 30	60	50

7.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in TX transmitting mode, the worst data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Worst Mode: WIFI mode (802.11b mode low channel)

Live line:

Neutral line:

Worst Mode: BLE mode (low channel)

Live line:

9

10

11

12

2.5460

2.5460

4.7619

4.7619

20.14

10.37

18.80

8.90

10.66

10.66

10.80

10.80

30.80

21.03

29.60

19.70

56.00

46.00

56.00

46.00

-25.20

-24.97

-26.40

-26.30

QP

AVG

QP

AVG

Neutral line:

Reference No.: WTS19S09065170W002 Page 16 of 90

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019;

ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

	Field Stre	ngth	Field Strength Limit a	t 3m Measurement Dist
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in TX transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS19S09065170W002 Page 19 of 90

8.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in Z axis,so the worst data were shown as follow.

8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

8.6 Summary of Test Results

Wifi:

Test Frequency: 9KHz~30MHz

Remark: only the worst data (802.11b/g/n Low channel mode) were recorded.

Frequency	Measurement results dBµV @3m	Detector PK/QP	Correct factor dB/m	Extrapolatio n factor dB	Measurement results (calculated) dBµV/m @30m	Limits dBµV/m @30m	Margin dB
(MHz)	Measurement results	Detector	Correct factor	Extrapolatio n factor	Measurement results (calculated)	Limits	Margin
			802.	11b			
6.032	25.31	QP	21.84	40.00	7.15	29.54	-22.39
15.730	24.71	QP	21.35	40.00	6.06	29.54	-23.48
25.680	25.54	QP	20.67	40.00	6.21	29.54	-23.33
			802.	11g			
6.032	24.53	QP	21.84	40.00	6.37	29.54	-23.17
8.051	24.71	QP	21.02	40.00	5.73	29.54	-23.81
26.215	25.06	QP	20.55	40.00	5.61	29.54	-23.93
			802.11n	(HT20)	,		
6.032	25.03	QP	21.84	40.00	6.87	29.54	-22.67
15.730	24.18	QP	21.35	40.00	5.53	29.54	-24.01
25.680	25.10	QP	20.67	40.00	5.77	29.54	-23.77
			802.11n	(HT40)			ı
6.032	25.11	QP	21.84	40.00	6.95	29.54	-22.59
8.051	25.23	QP	21.02	40.00	6.25	29.54	-23.29
26.215	24.57	QP	20.55	40.00	5.12	29.54	-24.42

Test Frequency : 30MHz ~ 18GHz

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11b: Low Channel 2412MHz									
223.45	39.14	QP	357	1.9	Н	-11.62	27.52	46.00	-18.48
223.45	35.77	QP	167	1.3	V	-11.62	24.15	46.00	-21.85
4824.00	49.31	PK	355	1.7	V	-1.06	48.25	74.00	-25.75
4824.00	45.06	Ave	355	1.7	V	-1.06	44.00	54.00	-10.00
7236.00	40.17	PK	315	1.7	Н	1.33	41.50	74.00	-32.50
7236.00	41.73	Ave	315	1.7	Н	1.33	43.06	54.00	-10.94
2326.10	46.96	PK	171	2.0	V	-13.19	33.77	74.00	-40.23
2326.10	39.11	Ave	171	2.0	V	-13.19	25.92	54.00	-28.08
2365.46	42.53	PK	201	1.5	Н	-13.14	29.39	74.00	-44.61
2365.46	37.95	Ave	201	1.5	Н	-13.14	24.81	54.00	-29.19
2496.45	42.61	PK	188	1.0	V	-13.08	29.53	74.00	-44.47
2496.45	38.75	Ave	188	1.0	V	-13.08	25.67	54.00	-28.33

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Compated	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11b: Middle Channel 2437MHz									
223.45	39.76	QP	57	1.2	Н	-11.62	28.14	46.00	-17.86
223.45	35.32	QP	322	2.0	V	-11.62	23.70	46.00	-22.30
4874.00	50.29	PK	8	1.6	V	-0.62	49.67	74.00	-24.33
4874.00	44.13	Ave	8	1.6	V	-0.62	43.51	54.00	-10.49
7311.00	38.99	PK	74	1.1	Н	2.21	41.20	74.00	-32.80
7311.00	42.56	Ave	74	1.1	Н	2.21	44.77	54.00	-9.23
2318.92	45.58	PK	176	1.9	V	-13.19	32.39	74.00	-41.61
2318.92	38.45	Ave	176	1.9	V	-13.19	25.26	54.00	-28.74
2354.37	42.59	PK	233	1.2	Н	-13.14	29.45	74.00	-44.55
2354.37	38.13	Ave	233	1.2	Н	-13.14	24.99	54.00	-29.01
2499.45	44.16	PK	47	1.8	V	-13.08	31.08	74.00	-42.92
2499.45	37.17	Ave	47	1.8	V	-13.08	24.09	54.00	-29.91

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11b: High Channel 2462MHz									
223.45	38.89	QP	253	1.5	Н	-11.62	27.27	46.00	-18.73
223.45	34.76	QP	44	1.6	V	-11.62	23.14	46.00	-22.86
4924.00	49.20	PK	59	1.6	V	-0.24	48.96	74.00	-25.04
4924.00	44.76	Ave	59	1.6	V	-0.24	44.52	54.00	-9.48
7386.00	39.24	PK	95	1.8	Н	2.84	42.08	74.00	-31.92
7386.00	42.54	Ave	95	1.8	Н	2.84	45.38	54.00	-8.62
2311.64	45.62	PK	146	1.8	V	-13.19	32.43	74.00	-41.57
2311.64	39.81	Ave	146	1.8	V	-13.19	26.62	54.00	-27.38
2382.03	44.56	PK	226	1.4	Н	-13.14	31.42	74.00	-42.58
2382.03	38.03	Ave	226	1.4	Н	-13.14	24.89	54.00	-29.11
2485.37	42.97	PK	17	1.9	V	-13.08	29.89	74.00	-44.11
2485.37	37.40	Ave	17	1.9	V	-13.08	24.32	54.00	-29.68

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carra ata d	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Lo	w Chann	el 2412 l	ИНz			
223.45	37.75	QP	350	1.1	Н	-11.62	26.13	46.00	-19.87
223.45	34.61	QP	57	1.6	V	-11.62	22.99	46.00	-23.01
4824.00	49.29	PK	91	1.6	V	-1.06	48.23	74.00	-25.77
4824.00	44.04	Ave	91	1.6	V	-1.06	42.98	54.00	-11.02
7236.00	38.96	PK	117	1.7	Н	1.33	40.29	74.00	-33.71
7236.00	43.42	Ave	117	1.7	Н	1.33	44.75	54.00	-9.25
2341.53	45.74	PK	233	1.1	V	-13.19	32.55	74.00	-41.45
2341.53	39.44	Ave	233	1.1	V	-13.19	26.25	54.00	-27.75
2358.15	44.07	PK	153	1.9	Н	-13.14	30.93	74.00	-43.07
2358.15	37.36	Ave	153	1.9	Н	-13.14	24.22	54.00	-29.78
2487.48	44.21	PK	231	1.3	V	-13.08	31.13	74.00	-42.87
2487.48	37.73	Ave	231	1.3	V	-13.08	24.65	54.00	-29.35

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11g: Middle Channel 2437MHz									
223.45	39.09	QP	72	1.3	Н	-11.62	27.47	46.00	-18.53
223.45	35.03	QP	296	1.9	V	-11.62	23.41	46.00	-22.59
4874.00	48.78	PK	107	1.2	V	-0.62	48.16	74.00	-25.84
4874.00	42.99	Ave	107	1.2	V	-0.62	42.37	54.00	-11.63
7311.00	39.37	PK	125	1.9	Н	2.21	41.58	74.00	-32.42
7311.00	42.81	Ave	125	1.9	Н	2.21	45.02	54.00	-8.98
2313.03	46.88	PK	124	1.8	V	-13.19	33.69	74.00	-40.31
2313.03	38.37	Ave	124	1.8	V	-13.19	25.18	54.00	-28.82
2375.79	42.05	PK	236	1.1	Н	-13.14	28.91	74.00	-45.09
2375.79	36.40	Ave	236	1.1	Н	-13.14	23.26	54.00	-30.74
2498.51	44.03	PK	330	1.7	V	-13.08	30.95	74.00	-43.05
2498.51	38.67	Ave	330	1.7	V	-13.08	25.59	54.00	-28.41

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11g: High Channel 2462MHz									
223.45	39.38	QP	265	2.0	Н	-11.62	27.76	46.00	-18.24
223.45	34.72	QP	53	1.1	V	-11.62	23.10	46.00	-22.90
4924.00	49.82	PK	307	1.9	V	-0.24	49.58	74.00	-24.42
4924.00	43.58	Ave	307	1.9	V	-0.24	43.34	54.00	-10.66
7386.00	37.98	PK	105	1.4	Н	2.84	40.82	74.00	-33.18
7386.00	43.84	Ave	105	1.4	Н	2.84	46.68	54.00	-7.32
2320.03	46.50	PK	4	1.6	V	-13.19	33.31	74.00	-40.69
2320.03	37.64	Ave	4	1.6	V	-13.19	24.45	54.00	-29.55
2387.38	44.05	PK	266	1.3	Н	-13.14	30.91	74.00	-43.09
2387.38	37.46	Ave	266	1.3	Н	-13.14	24.32	54.00	-29.68
2498.95	43.93	PK	290	1.6	V	-13.08	30.85	74.00	-43.15
2498.95	38.63	Ave	290	1.6	V	-13.08	25.55	54.00	-28.45

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Compated	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11n20: L	ow Chanı	nel 2412	2MHz			
223.45	40.07	QP	86	1.9	Н	-11.62	28.45	46.00	-17.55
223.45	35.62	QP	246	1.7	V	-11.62	24.00	46.00	-22.00
4824.00	49.77	PK	140	1.4	V	-1.06	48.71	74.00	-25.29
4824.00	43.66	Ave	140	1.4	V	-1.06	42.60	54.00	-11.40
7236.00	37.50	PK	134	1.2	Н	1.33	38.83	74.00	-35.17
7236.00	43.28	Ave	134	1.2	Н	1.33	44.61	54.00	-9.39
2324.57	46.36	PK	238	1.6	V	-13.19	33.17	74.00	-40.83
2324.57	39.87	Ave	238	1.6	V	-13.19	26.68	54.00	-27.32
2370.93	43.46	PK	87	1.6	Н	-13.14	30.32	74.00	-43.68
2370.93	37.57	Ave	87	1.6	Н	-13.14	24.43	54.00	-29.57
2487.87	42.40	PK	67	1.4	V	-13.08	29.32	74.00	-44.68
2487.87	38.03	Ave	67	1.4	V	-13.08	24.95	54.00	-29.05

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB) (dE	(dBµV/m)	(dBµV/m)	(dB)
11n20: Middle Channel 2437MHz									
223.45	39.66	QP	129	1.7	Н	-11.62	28.04	46.00	-17.96
223.45	34.79	QP	319	1.6	V	-11.62	23.17	46.00	-22.83
4874.00	48.41	PK	132	1.7	V	-0.62	47.79	74.00	-26.21
4874.00	43.13	Ave	132	1.7	V	-0.62	42.51	54.00	-11.49
7311.00	36.52	PK	340	1.1	Н	2.21	38.73	74.00	-35.27
7311.00	41.99	Ave	340	1.1	Н	2.21	44.20	54.00	-9.80
2349.25	45.62	PK	180	1.4	V	-13.19	32.43	74.00	-41.57
2349.25	39.01	Ave	180	1.4	V	-13.19	25.82	54.00	-28.18
2351.52	44.53	PK	12	1.2	Н	-13.14	31.39	74.00	-42.61
2351.52	38.37	Ave	12	1.2	Н	-13.14	25.23	54.00	-28.77
2484.32	44.07	PK	78	1.2	V	-13.08	30.99	74.00	-43.01
2484.32	37.09	Ave	78	1.2	V	-13.08	24.01	54.00	-29.99

Frequency	Receiver	Datastan	Turn	RX An	tenna	Corrected	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11n20: High Channel 2462MHz									
223.45	40.65	QP	45	1.1	Н	-11.62	29.03	46.00	-16.97
223.45	34.34	QP	298	1.3	V	-11.62	22.72	46.00	-23.28
4924.00	49.62	PK	192	1.0	V	-0.24	49.38	74.00	-24.62
4924.00	43.47	Ave	192	1.0	V	-0.24	43.23	54.00	-10.77
7386.00	36.32	PK	289	1.6	Н	2.84	39.16	74.00	-34.84
7386.00	42.88	Ave	289	1.6	Н	2.84	45.72	54.00	-8.28
2343.88	45.17	PK	307	1.2	V	-13.19	31.98	74.00	-42.02
2343.88	39.14	Ave	307	1.2	V	-13.19	25.95	54.00	-28.05
2388.26	43.20	PK	236	1.4	Н	-13.14	30.06	74.00	-43.94
2388.26	38.63	Ave	236	1.4	Н	-13.14	25.49	54.00	-28.51
2494.32	42.83	PK	326	1.1	V	-13.08	29.75	74.00	-44.25
2494.32	37.60	Ave	326	1.1	V	-13.08	24.52	54.00	-29.48

F	Receiver	I)etector	Turn	RX An	tenna	Corrected	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11n40: Low Channel 2422MHz									
223.45	40.58	QP	329	2.0	Н	-11.62	28.96	46.00	-17.04
223.45	34.06	QP	127	1.0	V	-11.62	22.44	46.00	-23.56
4844.00	48.23	PK	308	1.0	V	-1.06	47.17	74.00	-26.83
4844.00	40.84	Ave	308	1.0	V	-1.06	39.78	54.00	-14.22
7266.00	33.53	PK	357	1.8	Н	1.33	34.86	74.00	-39.14
7266.00	41.79	Ave	357	1.8	Н	1.33	43.12	54.00	-10.88
2328.06	45.24	PK	175	1.1	V	-13.19	32.05	74.00	-41.95
2328.06	39.69	Ave	175	1.1	V	-13.19	26.50	54.00	-27.50
2364.26	44.67	PK	125	1.5	Н	-13.14	31.53	74.00	-42.47
2364.26	38.25	Ave	125	1.5	Н	-13.14	25.11	54.00	-28.89
2494.17	43.80	PK	20	1.6	V	-13.08	30.72	74.00	-43.28
2494.17	36.55	Ave	20	1.6	V	-13.08	23.47	54.00	-30.53

Fraguens	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected Amplitude	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor		Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11n40: Middle Channel 2437MHz									
223.45	40.68	QP	114	1.0	Н	-11.62	29.06	46.00	-16.94
223.45	34.28	QP	297	1.9	V	-11.62	22.66	46.00	-23.34
4874.00	48.12	PK	224	1.4	V	-0.62	47.50	74.00	-26.50
4874.00	39.89	Ave	224	1.4	V	-0.62	39.27	54.00	-14.73
7311.00	33.95	PK	208	1.6	Н	2.21	36.16	74.00	-37.84
7311.00	42.43	Ave	208	1.6	Н	2.21	44.64	54.00	-9.36
2327.90	45.37	PK	327	1.5	V	-13.19	32.18	74.00	-41.82
2327.90	38.24	Ave	327	1.5	V	-13.19	25.05	54.00	-28.95
2358.98	44.41	PK	159	1.9	Н	-13.14	31.27	74.00	-42.73
2358.98	36.17	Ave	159	1.9	Н	-13.14	23.03	54.00	-30.97
2495.40	43.16	PK	80	1.5	V	-13.08	30.08	74.00	-43.92
2495.40	36.52	Ave	80	1.5	V	-13.08	23.44	54.00	-30.56

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	11n40: High Channel 2452MHz								
223.45	40.26	QP	359	1.3	Н	-11.62	28.64	46.00	-17.36
223.45	33.88	QP	139	1.5	V	-11.62	22.26	46.00	-23.74
4904.00	48.67	PK	19	1.2	V	-0.24	48.43	74.00	-25.57
4904.00	39.64	Ave	19	1.2	V	-0.24	39.40	54.00	-14.60
7356.00	33.25	PK	127	1.3	Н	2.84	36.09	74.00	-37.91
7356.00	42.50	Ave	127	1.3	Н	2.84	45.34	54.00	-8.66
2346.56	46.15	PK	44	1.2	V	-13.19	32.96	74.00	-41.04
2346.56	38.64	Ave	44	1.2	V	-13.19	25.45	54.00	-28.55
2366.82	42.69	PK	306	1.4	Н	-13.14	29.55	74.00	-44.45
2366.82	36.42	Ave	306	1.4	Н	-13.14	23.28	54.00	-30.72
2488.40	44.20	PK	347	1.7	V	-13.08	31.12	74.00	-42.88
2488.40	38.43	Ave	347	1.7	V	-13.08	25.35	54.00	-28.65

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

BT BLE: Test Frequency: 9KHz~26MHz

Remark: only the worst data (GFSK modulation Low channel mode) were recorded.

Frequency	Measurement results dBµV @3m	Detector PK/QP	Correct factor dB/m	Extrapolatio n factor dB	Measurement results (calculated) dBµV/m @30m	Limits dBµV/m @30m	Margi n dB
(MHz)	Measurement results	Detector	Correct factor	Extrapolatio n factor	Measurement results (calculated)	Limits	Margi n
6.032	25.30	QP	21.84	40.00	7.14	29.54	-22.40
15.730	24.88	QP	21.35	40.00	6.23	29.54	-23.31
25.680	24.16	QP	20.67	40.00	4.83	29.54	-24.71

Test Frequency: 26MHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

	Receiver	Detector	Turn	RX An	tenna	Corrected Factor	Corrected Amplitude	Limit	Margin	
Frequency	Reading		table Angle	Height	Polar					
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	GFSK Low Channel 2402MHz									
269.33	34.72	QP	166	1.8	Н	-13.35	21.37	46.00	-24.63	
269.33	40.55	QP	345	1.9	V	-13.35	27.20	46.00	-18.80	
4804.00	45.55	PK	282	1.9	V	-1.06	44.49	74.00	-29.51	
4804.00	42.32	Ave	282	1.9	V	-1.06	41.26	54.00	-12.74	
7206.00	45.01	PK	97	1.8	Н	1.33	46.34	74.00	-27.66	
7206.00	36.10	Ave	97	1.8	Н	1.33	37.43	54.00	-16.57	
2319.39	45.12	PK	53	1.4	V	-13.19	31.93	74.00	-42.07	
2319.39	37.68	Ave	53	1.4	V	-13.19	24.49	54.00	-29.51	
2364.93	44.99	PK	254	1.8	Н	-13.14	31.85	74.00	-42.15	
2364.93	37.46	Ave	254	1.8	Н	-13.14	24.32	54.00	-29.68	
2484.47	42.87	PK	256	1.7	V	-13.08	29.79	74.00	-44.21	
2484.47	37.34	Ave	256	1.7	V	-13.08	24.26	54.00	-29.74	

Frequency	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected			
	Reading		table Angle	Height	Polar Factor	Amplitude	Limit	Margin		
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	GFSK Middle Channel 2440MHz									
269.33	36.06	QP	183	1.4	Н	-13.35	22.71	46.00	-23.29	
269.33	40.12	QP	291	2.0	V	-13.35	26.77	46.00	-19.23	
4880.00	43.46	PK	188	1.8	V	-0.62	42.84	74.00	-31.16	
4880.00	41.78	Ave	188	1.8	V	-0.62	41.16	54.00	-12.84	
7320.00	45.95	PK	112	2.0	Н	2.21	48.16	74.00	-25.84	
7320.00	37.14	Ave	112	2.0	Н	2.21	39.35	54.00	-14.65	
2319.95	45.25	PK	183	1.1	V	-13.19	32.06	74.00	-41.94	
2319.95	37.15	Ave	183	1.1	V	-13.19	23.96	54.00	-30.04	
2360.36	42.00	PK	326	1.2	Н	-13.14	28.86	74.00	-45.14	
2360.36	36.26	Ave	326	1.2	Н	-13.14	23.12	54.00	-30.88	
2488.42	44.08	PK	74	1.4	V	-13.08	31.00	74.00	-43.00	
2488.42	36.69	Ave	74	1.4	V	-13.08	23.61	54.00	-30.39	

Frequency Receiver Reading	Receiver		Turn	RX An	tenna	Corrected	Corrected		
	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK High Channel 2480MHz									
269.33	36.69	QP	134	2.0	Н	-13.35	23.34	46.00	-22.66
269.33	38.46	QP	265	1.2	V	-13.35	25.11	46.00	-20.89
4960.00	43.11	PK	190	1.3	V	-0.24	42.87	74.00	-31.13
4960.00	42.75	Ave	190	1.3	V	-0.24	42.51	54.00	-11.49
7440.00	45.40	PK	56	1.4	Н	2.84	48.24	74.00	-25.76
7440.00	36.29	Ave	56	1.4	Н	2.84	39.13	54.00	-14.87
2343.48	46.01	PK	14	1.9	V	-13.19	32.82	74.00	-41.18
2343.48	38.66	Ave	14	1.9	V	-13.19	25.47	54.00	-28.53
2374.74	44.11	PK	341	1.2	Н	-13.14	30.97	74.00	-43.03
2374.74	37.82	Ave	341	1.2	Н	-13.14	24.68	54.00	-29.32
2488.81	44.32	PK	15	1.6	V	-13.08	31.24	74.00	-42.76
2488.81	38.44	Ave	15	1.6	V	-13.08	25.36	54.00	-28.64

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS19S09065170W002 Page 36 of 90

9 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019;

ANSI C63.10:2013

Test Result: PASS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

9.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:
 - a) Set instrument center frequency to DTS channel center frequency.
 - b) Set the span to _ 1.5 times the DTS bandwidth.
 - c) Set the RBW = 100 kHz.
 - d) Set the VBW $_$ [3 \times RBW].
 - e) Detector = peak.
 - f) Sweep time = auto couple.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
 - i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

9.2 Test Result

9KHz - 30MHz

802.11b

Low Channel

802.11g

-70 dBm

-80 dBm

Start 9.0 kHz

802.11n HT20

Stop 30.0 MHz

802.11n HT40

BLE

Above 30MHz

802.11b

Date: 24.SEP.2019 03:54:59

Date: 24.SEP.2019 03:57:29

Date: 24.SEP.2019 03:58:41

Date: 24.SEP.2019 04:01:06

Date: 24.SEP.2019 04:04:10

Date: 24.SEP.2019 04:05:09

802.11n HT20

Date: 24.SEP.2019 04:06:58

Date: 24.SEP.2019 04:08:34

Date: 24.SEP.2019 04:10:33

802.11n HT40

Date: 24.SEP.2019 04:12:28

Date: 24.SEP.2019 04:14:50

Date: 24.SEP.2019 04:16:29

BLE

Date: 24.SEP.2019 04:40:26

Date: 24.SEP.2019 04:42:56

Date: 24.SEP.2019 04:45:25

Reference No.: WTS19S09065170W002 Page 53 of 90

10 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019;

ANSI C63.10:2013

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band which

the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least

highest level of the desired power, based on either an RF conducted or a radiated

20 dB below that in the 100 kHz bandwidth within the band that contains the

measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power

limits based on the use of RMS averaging over a time interval, as permitted under

paragraph (b)(3) of this section, the attenuation required under this paragraph $% \left(a_{1}\right) =a_{1}\left(a_{2}\right) +a_{3}\left(a_{4}\right) +a_{4}\left(a_{4$

shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in

restricted bands, as defined in §15.205(a), must also comply with the radiated

§15.209(a) is not required. In addition, radiated emissions which fall in the

emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

10.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

10.2 Test Result

Test result plots shown as follows:

Reference No.: WTS19S09065170W002 Page 59 of 90

11 6 dB Bandwidth and 99% Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019;

ANSI C63.10:2013

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

11.2 Test Result:

Operation mode	Test Channel	6dB Bandwidth (MHz)	99% Bandwidth (MHz)
TX 11b	Channel 1	10.028	12.743
	Channel 6	10.028	12.615
	Channel 11	10.028	12.551
TX 11g	Channel 1	15.569	16.417
	Channel 6	15.319	16.417
	Channel 11	15.469	16.467
TX 11n HT20	Channel 1	16.868	17.569
	Channel 6	16.760	17.515
	Channel 11	16.901	17.569
TX 11n HT40	Channel 3	35.350	35.898
	Channel 6	35.460	35.898
	Channel 9	35.570	35.898
BLE	Channel 0	0.719	1.084
	Channel 19	0.725	1.084
	Channel 39	0.725	1.084

Test result plot:

Reference No.: WTS19S09065170W002 Page 68 of 90

12 Maximum Peak conducted Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019;

ANSI C63.10:2013

12.1 Test Procedure:

KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019

section 8.3.1.1 (For BLE)

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a)Set the RBW ≥ DTS bandwidth.
- b)Set VBW ≥ 3 RBW.
- c)Set span ≥ 3 x RBW
- d)Sweep time = auto couple.
- e)Detector = peak.
- f)Trace mode = max hold.
- g)Allow trace to fully stabilize.
- h)Use peak marker function to determine the peak amplitude level.

section 8.3.1.2 (For WIFI)

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a)Set the RBW = 1% to 5% of the OBW, not to exceed 1 MHz..
- b)Set the VBW \geq 3 x RBW
- c)Set the span \geq 1.5 x OBW.
- d)Detector = RMS.
- e)Sweep time = auto couple.
- f) trigger = free run..
- g) Number of points in sweep $_$ [2 \times span / RBW]. (This gives bin-to-bin spacing $_$ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- h) Trace average at least 100 traces in power averaging (rms) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

Reference No.: WTS19S09065170W002 Page 69 of 90

12.2 Test Result:

Operation mode	Channel Frequency (MHz)	Maximum Peak Output Power (dBm)	Limit
TX 11b	Low-2412	20.94	1W/30dBm
	Middle-2437	21.69	1W/30dBm
	High-2462	22.80	1W/30dBm
TX 11g	Low-2412	19.11	1W/30dBm
	Middle-2437	19.85	1W/30dBm
	High-2462	21.21	1W/30dBm
TX 11n HT20	Low-2412	18.74	1W/30dBm
	Middle-2437	19.22	1W/30dBm
	High-2462	20.08	1W/30dBm
TX 11n HT40	Low-2422	17.27	1W/30dBm
	Middle-2437	17.65	1W/30dBm
	High-2452	18.38	1W/30dBm
BLE	Low-2402	-1.80	1W/30dBm
	Middle-2440	-1.62	1W/30dBm
	High-2480	-1.25	1W/30dBm

Test Plot

Reference No.: WTS19S09065170W002 Page 78 of 90

13 Duty cycle

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10: 2013

Test Limit: N/A

Test Result: PASS

Remark: EUT transmitting continuously

Reference No.: WTS19S09065170W002 Page 79 of 90

14 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019;

ANSI C63.10:2013

14.1 Test Procedure:

KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019 section 10.2

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

14.2 Test Result:

Operation mode	Channel Frequency (MHz)	Power Spectral (dBm per 3kHz)	Limit
TX 11b	Low-2412	-4.64	8dBm per 3kHz
	Middle-2437	-0.96	8dBm per 3kHz
	High-2462	-0.97	8dBm per 3kHz
TX 11g	Low-2412	-8.82	8dBm per 3kHz
	Middle-2437	-8.50	8dBm per 3kHz
	High-2462	-8.17	8dBm per 3kHz
TX 11n HT20	Low-2412	-10.87	8dBm per 3kHz
	Middle-2437	-9.90	8dBm per 3kHz
	High-2462	-9.25	8dBm per 3kHz
TX 11n HT40	Low-2422	-13.63	8dBm per 3kHz
	Middle-2437	-12.00	8dBm per 3kHz
	High-2452	-12.64	8dBm per 3kHz
BLE	Low-2402	-17.26	8dBm per 3kHz
	Middle-2440	-17.33	8dBm per 3kHz
	High-2480	-17.07	8dBm per 3kHz

15 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an integrated antenna fulfill the requirement of this section.

Reference No.: WTS19S09065170W002 Page 89 of 90

16 RF Exposure

Remark: refer to SAR report: WTS19S09065170W003.

Reference No.: WTS19S09065170W002 Page 90 of 90

17 Photographs of test setup and EUT.

Note: Please refer to appendix: Appendix-X-431 PRO MINI V3.0-Photos.

====End of Report=====