Bandits 2

Chen-Yu Wei

Roadmap

Policy-Based Bandits

- Key challenges: Exploration and Generalization (if there are contexts)
- Algorithms we will discuss:
 - KL-regularized policy updates (PPO, NPG)
 - Policy gradient (REINFORCE)
- We will add a little discussion on "time-varying" reward functions to motivate the algorithm design

The Full-Information MAB

Given: set of actions $\mathcal{A} = \{1, ..., A\}$

For time t = 1, 2, ..., T:

Environment decides the reward of all actions $r_t(1), r_t(2), ..., r_t(A)$ without revealing

The learner chooses an action a_t

Environment reveals the reward $r_t(a)$ of all actions

Regret =
$$\max_{a} \sum_{t=1}^{T} r_{t}(a) - \sum_{t=1}^{T} r_{t}(a_{t})$$

KL-Regularized Policy Updates

$$Y_{\ell} = \begin{bmatrix} Y_{\ell}(1) \\ Y_{\ell}(A) \end{bmatrix} Z = \begin{bmatrix} Z(1) \\ Z(A) \end{bmatrix}$$

$$\pi_{t+1} = \operatorname*{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\}$$

$$= \underset{\pi \in \Delta(\mathcal{A})}{\operatorname{argmax}} \left\{ \sum_{a} \left(\pi(a) - \pi_t(a) \right) r_t(a) - \frac{1}{\eta} \sum_{a} \pi(a) \log \frac{\pi(a)}{\pi_t(a)} \right\}$$

The Improvement of π over π_t on r_t

Distance between π and π_t

Why regularizing the update?

Why KL-Regularized Policy Updates?

1. Maintaining **stability** for adversarial environments

Time	1	2	3	4	5	6	
$R_t(1)$	0.5	0	1	0	1	0	
$R_t(2)$	0	1	0	1	$\begin{bmatrix} 0 \end{bmatrix}$	1	

Follow the leader:
$$a_t = \max_{a \in \mathcal{A}} \left\{ \sum_{i=1}^{t-1} r_i(a) \right\}$$

2. When combining the algorithm with function approximation, the gradient only approximates the **local** reward landscape.

KL-Regularized Policy Updates

Exponential weight updates

$$\pi_{t+1} = \operatorname*{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\} \quad \Longrightarrow \quad \pi_{t+1}(a) = \frac{\pi_t(a) \, e^{\eta r_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) \, e^{\eta r_t(b)}}$$

Solving the optimization

Regret Bound for Exponential Weight Updates

Theorem.

Will be proven in HW2

Assume that $\eta r_t(a) \leq 1$ for all t, a. Then EWU

$$\pi_{t+1} = \operatorname*{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\}$$

ensures for any $a^* \in \mathcal{A}$,

$$\sum_{t=1}^{T} (r_t(a^*) - \langle \pi_t, r_t \rangle) \le \frac{\log A}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{A} \pi_t(a) r_t(a)^2$$

If
$$|r_t(a)| \le 1$$
 and $\eta \le 1 \Rightarrow \sum_{t=1}^{I} (r_t(a^*) - r_t(a_t)) \le \frac{\log A}{\eta} + \eta T \approx \sqrt{(\log A)T}$

Questions and Discussions

- Why do we care about regret against a **fixed** action when the reward function is changing?
 - Environments where reward function is manipulated by an adversary
 - For MDPs, the "long-term reward" changes over time (because the learner's policy in later steps changes over time).
 - A lot of other applications: game theory, constrained optimization, boosting, etc.

Exponential Weight Update ∈ Mirror Ascent

General form of Mirror Ascent:

$$f(\pi) = (\pi, \gamma)$$

$$x_{t+1} = \operatorname*{argmax}_{x \in \Omega} \left\{ \langle x - x_t, r_t \rangle - \frac{1}{\eta} D_{\psi}(x, x_t) \right\}$$

Usually, $r_t = \nabla f_t(x_t)$ for some function f_t that we want to maximize

Bregman divergence with respect to a convex function ψ

$$D_{\psi}(x, y) = \psi(x) - \psi(y) - \langle \nabla \psi(y), x - y \rangle$$

$$\sum \chi(a) \log \frac{1}{\chi(a)}$$

$$P_{\Omega}(x) = \underset{\forall \in \Omega}{\operatorname{argmin}} \|x - y\|_{2}$$

$P_{\alpha}(x) = \underset{\forall \in \Omega}{\operatorname{Argmin}} \|x - y\|_{2}$ $\stackrel{\wedge}{=} \text{Exponential Weight Update} \in \operatorname{Mirror Ascent}$

Special cases of Mirror Ascent:

$$x_{t+1} = \underset{x \in \Omega}{\operatorname{argmax}} \left\{ \langle x - x_t, r_t \rangle - \frac{1}{\eta} D_{\psi}(x, x_t) \right\}$$

$\psi(x)$	$D_{\psi}(x,y)$	Update Rule , ♥\$\frac{\frac{1}{2}}{\frac{1}{2}}	$(x_{\mathcal{E}})$ Ω
$\frac{1}{2} \ x\ _2^2$	$\frac{1}{2} x-y _2^2$	$x_{t+1} = \mathcal{P}_{\Omega}(x_t + \eta r_t)$ (Projected) Gradient Ascent	Any convex set
$\sum_{a} x(a) \log x(a)$ Negative entropy	$\sum_{a} x(a) \log \frac{x(a)}{y(a)}$	$x_{t+1}(a) = \frac{x_t(a)e^{\eta r_t(a)}}{\sum_b x_t(b) e^{\eta r_t(b)}}$	Probability space
$\sum_{a} \log \frac{1}{x(a)}$	$\sum_{a} \left(\frac{x(a)}{y(a)} - \log \frac{x(a)}{y(a)} - 1 \right)$	$\frac{1}{x_{t+1}(a)} = \frac{1}{x_t(a)} - \eta r_t(a) + \gamma_t$	Probability space
$-2\sum_{a}\sqrt{x(a)}$	$\sum_{a} \frac{\left(\sqrt{x(a)} - \sqrt{y(a)}\right)^{2}}{2\sqrt{y(a)}}$	$\frac{1}{\sqrt{x_{t+1}(a)}} = \frac{1}{\sqrt{x_t(a)}} - \eta r_t(a) + \gamma_t$	Probability space
$\frac{1}{2} \ x\ _M^2 = \frac{1}{2} x^{T} M x$	$\frac{1}{2} x-y _M^2$	$x_{t+1} = \mathcal{P}_{\Omega}(x_t + \eta M^{-1}r_t)$	Any convex set

Multi-Armed Bandits

Adversarial Multi-Armed Bandits

Given: set of arms $\mathcal{A} = \{1, ..., A\}$

For time t = 1, 2, ..., T:

Environment decides the reward vector $r_t = (r_t(1), ..., r_t(A))$ (not revealing)

Learner chooses an arm $a_t \in \mathcal{A}$

Learner observes $r_t(a_t)$

Regret =
$$\max_{a \in \mathcal{A}} \sum_{t=1}^{T} r_t(a) - \sum_{t=1}^{T} r_t(a_t)$$

Recall: Exponential Weight Updates

$$\pi_{t+1} = \operatorname*{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\} \qquad \qquad \pi_{t+1}(a) = \frac{\pi_t(a) \ e^{\eta r_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) \ e^{\eta r_t(b)}}$$

$$\pi_{t+1}(a) = \frac{\pi_t(a) e^{\eta r_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) e^{\eta r_t(b)}}$$

Exponential Weight Updates for Bandits?

No longer observable

Only update the arm that we choose?

Exponential Weight Updates for Bandits?

- $\hat{r}_t(a)$ is an "estimator" for $r_t(a)$
- But we can only observe the reward of one arm
- Furthermore, $r_t(a)$ is different in every round (If we do not sample arm a in round t, we'll never be able to estimate $r_t(a)$ in the future)

Unbiased Reward / Gradient Estimator

Ly
$$\mathbb{E}\left[\hat{I}_{t}(a)\right] = I_{t}(a)$$
 by $P_{r}(chosing a)$ $P_{r}(not chosing a)$

$$P_{t}(not chosing a)$$

Weight a sample by the inverse of the probability we observe it

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi_t(a)} \mathbb{I}\{a_t = a\} = \begin{cases} \frac{r_t(a)}{\pi_t(a)} & \text{if } a_t = a \end{cases}$$

$$0 & \text{otherwise}$$

Inverse Propensity Weighting / Inverse Probability Weighting / Importance Weighting

Directly Applying Exponential Weights

$$\pi_1(a) = 1/A$$
 for all a

For t = 1, 2, ..., T:

Sample $a_t \sim \pi_t$, and observe $r_t(a_t)$

Define for all a:

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi_t(a)} \mathbb{I}\{a_t = a\}$$

Update policy:

$$\hat{r}_{t}(a) = \frac{1}{\pi_{t}(a)} \mathbb{I}\{a_{t} = a\}$$

$$\pi_{t+1}(a) = \frac{\pi_{t}(a) \exp(\eta \hat{r}_{t}(a))}{\sum_{a' \in \mathcal{A}} \pi_{t}(a') \exp(\eta \hat{r}_{t}(a'))}$$

$$\pi_{t+1}(a) = \frac{\pi_{t}(a) \exp(\eta \hat{r}_{t}(a))}{\sum_{a' \in \mathcal{A}} \pi_{t}(a') \exp(\eta \hat{r}_{t}(a'))}$$

$$\pi_{t+1}(a) = \frac{\pi_{t}(a) \exp(\eta \hat{r}_{t}(a))}{\sum_{a' \in \mathcal{A}} \pi_{t}(a') \exp(\eta \hat{r}_{t}(a'))}$$

If we choose actual a_t then $\hat{K}(a_t) \ge 0$ While Kt(a) = 0 by $a \ne a_t$

Simple Experiment

- A = 2, T = 1500, $\eta = 1/\sqrt{T}$
- For $t \le 500$, $r_t = [Bernoulli(0.2), Bernoulli(0.8)]$
- For $500 < t \le 1500$, $r_t = [Bernoulli(0.8), Bernoulli(0.2)]$
- code

Recall the Theorem

- +2AT = [ATMA

Does this still hold? Theorem.

Assume that $\eta \hat{r}_t(a) \leq 1$ for all t, a. Then EWU

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))} \mathcal{I}(\sim) \leq A \mathcal{T}$$

ensures for any a^* ,

$$\sum_{t=1}^{T} (\hat{r}_t(a^*) - \langle \pi_t, \hat{r}_t \rangle) \leq \frac{\ln A}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{A} \pi_t(a) \hat{r}_t(a)^2 \qquad \text{in full onto case}$$

Is this still related to regret?

Is this still well-bounded?

$$2 \hat{\mathcal{J}}_{\mathcal{E}}(\alpha) = 0$$

if
$$a_{t}=a$$

$$\leq | Y_{t}(a) \in (0,1)$$
otherwise

•

Solution 1: Adding Extra Exploration

- Idea: use at least η probability to choose each arm
- Instead of sampling a_t according to π_t , use

$$\pi'_t(a) = (1 - A\eta)\pi_t(a) + \eta$$

Then the unbiased reward estimator becomes

$$\hat{r}_{t}(a) = \frac{r_{t}(a)}{\pi'_{t}(a)} \mathbb{I}\{a_{t} = a\} = \frac{r_{t}(a)}{(1 - A\eta)\pi_{t}(a) + \eta} \mathbb{I}\{a_{t} = a\} \leqslant \frac{\chi(\zeta)}{2}$$

$$\frac{2}{\chi(\zeta)} \frac{\chi(\zeta)}{2} \leqslant \frac{$$

Applying Solution 1

 $\pi_1(a) = 1/A$ for all a

For t = 1, 2, ..., T:

Sample a_t from $\pi'_t = (1 - A\eta)\pi_t + A\eta$ uniform(\mathcal{A}), and observe $r_t(a_t)$

Define for all *a*:

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi'_t(a)} \mathbb{I}\{a_t = a\}$$

Update policy:

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))}$$

Solution 1: Adding Extra Exploration

Regret Bound for Solution 1

Theorem. Exponential weights with Solution 1 ensures

$$\max_{a^{\star}} \mathbb{E}\left[\sum_{t=1}^{T} (r_t(a^{\star}) - r_t(a_t))\right] \le O\left(\frac{\ln A}{\eta} + \eta AT\right) \lesssim \sqrt{A + h A}$$

Solution 2: Reward Estimator with a Baseline

• The condition only requires $\eta \hat{r}_t(a) \le 1$. The reward estimator is allowed to be very negative!

The fact that mirror ascent **cannot handle** very positive unbiased reward estimator but **can handle** a negative one is somewhat technical in the proof.

High-level implication: you should not surprise mirror ascent by a very good reward on an action sampled with very low probability.

• Still sample a_t from π_t , but construct the reward estimator as

$$\hat{r}_{t}(a) \neq \underbrace{r_{t}(a) - 1}_{\pi_{t}(a)} \{a_{t} = a\} + 1$$

• Why this resolves the issue?

$$F_{\alpha t} \left(\frac{\gamma_{t}(\alpha) - 1}{\gamma_{t}(\alpha)} \right) = \left(\gamma_{t}(\alpha) - 1 \right) + 1 = \gamma_{t}(\alpha)$$

Applying Solution 2

$$\begin{cases} \widehat{r_{t}(a_{t})} \leq 1 \\ \widehat{r_{t}(a)} = 1 \end{cases} \forall a \neq a_{t}$$

$$\pi_1(a) = 1/A$$
 for all a

For
$$t = 1, 2, ..., T$$
:

Sample a_t from π_t , and observe $r_t(a_t)$

$$\begin{cases} \mathcal{T}_{t+1}(a_t) \leq \mathcal{T}_{t}(a_t) \\ \mathcal{T}_{t+1}(a) \geq \mathcal{T}_{t}(a) \forall a \neq a_t \end{cases}$$

Define for all
$$a$$
:
$$\hat{r}_t(a) = \frac{r_t(a) - 1}{\pi_t(a)} \mathbb{I}\{a_t = a\} + 1 \text{ or equivalently } \hat{r}_t(a) = \frac{r_t(a) - 1}{\pi_t(a)} \mathbb{I}\{a_t = a\}$$

Update policy:

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))} = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a) + c)}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))}$$

Solution 2: Reward Estimator with a Baseline

Regret Bound for Solution 2

Theorem. Exponential weights with Solution 2 ensures

$$\max_{a^*} \mathbb{E}\left[\sum_{t=1}^T (r_t(a^*) - r_t(a_t))\right] \le O\left(\frac{\ln A}{\eta} + \eta AT\right)$$

EXP3 Algorithm

"Exponential weight algorithm for Exploration and Exploitation"

Exponential weights + either of the two solutions

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, Robert Schapire. The Nonstochastic Multiarmed Bandit Problem. 2002.

EXP3-IX

$$\pi_1(a) = 1/A$$
 for all a

For t = 1, 2, ..., T:

Sample a_t from π_t and observe $r_t(a_t)$

Define for all a:

$$\hat{r}_t(a) = \frac{r_t(a) - 1}{\pi_t(a) + \eta} \mathbb{I}\{a_t = a\}$$

Update policy:

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))}$$

EXP3-IX

$$\hat{r}_t(a) = \frac{r_t(a) - 1}{\pi_t(a) + \eta} \mathbb{I}\{a_t = a\}$$

Regret Bound for EXP3-IX

Theorem. EXP3-IX ensures with high probability,

$$\max_{a^{\star}} \sum_{t=1}^{T} (r_t(a^{\star}) - r_t(a_t)) \le \tilde{O}\left(\frac{\ln A}{\eta} + \eta AT\right)$$

Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic bandits. 2015.

The Role of Baseline

$$\hat{r}_t(a) = \frac{r_t(a) - b_t}{\pi_t(a)} \mathbb{I}\{a_t = a\}$$

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))} \quad \text{or} \quad \pi_{t+1} = \underset{\pi \in \Delta(\mathcal{A})}{\operatorname{argmax}} \left\{ \langle \pi, \hat{r}_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\}$$

Larger b_t : More exploratory (tends to decrease the probability of the action just chosen) – needed to detect changes in the environment.

In fixed reward function setting (non-adversarial), we usually set b_t to be close to the recent performance level of the learner itself

- When finding an action better than the learner itself, increase its probability
- Otherwise, decrease its probability

Summary

 Exponential weight update (EWU) is an effective algorithm for full-information setting. It guarantees sublinear regret even when the environment changes over time.

- Extending EWU to bandit with naïve unbiased reward estimator does not work (lack of exploration). Two ways to fix it:
 - Adding extra uniform exploration with probability $\geq A\eta$
 - Adding a baseline in the reward estimator to encourage exploration
- High-probability bounds can be achieved by adding baseline and bias (EXP3-IX).

Review: Exploration Strategies for Bandits

x: context, a: action, r: reward

MAB

CB

Value-based

Mean estimation + EG, BE, IGW

Regression + EG, BE, IGW

(context, action) to reward

Uncertainty as bonus

Policy-based

KL-regularized update with reward estimators (EXP3)

Next

context to action distribution

baseline, bias, uniform exploration

Contextual Bandits

Contextual Bandits

For time t = 1, 2, ..., T:

Environment generates a context $x_t \in \mathcal{X}$

Learner chooses an action $a_t \in \mathcal{A}$

Learner observes $r_t(x_t, a_t)$

KL-Regularized Policy Updates

$$\pi_{t+1} = \underset{\pi \in \Delta(\mathcal{A})}{\operatorname{argmax}} \left\{ \sum_{a} \pi(a) \hat{r}_{t}(a) - \frac{1}{\eta} \sum_{a} \pi(a) \log \frac{\pi(a)}{\pi_{t}(a)} \right\}$$

$$\hat{r}_t(a) = \frac{r_t(a) - b_t}{\pi_t(a)} \mathbb{I}\{a_t = a\}$$

$$\theta_{t+1} = \operatorname{argmax} \left\{ \sum_{a} \pi_{\theta}(a|x_t) \, \hat{r}_t(x_t, a) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x_t) \log \frac{\pi_{\theta}(a|x_t)}{\pi_{\theta_t}(a|x_t)} \right\}$$

$$\hat{r}_t(x_t, a) = \frac{r_t(x_t, a) - b_t(x_t)}{\pi_{\theta_t}(a|x_t)} \, \mathbb{I}\{a_t = a\}$$

KL-Regularized Policy Updates

For t = 1, 2, ..., T:

Receive context x_t

Take action $a_t \sim \pi_{\theta_t}(\cdot|x_t)$ and receive reward $r_t(x_t, a_t)$

Create reward estimator $\hat{r}_t(x_t, a) = \frac{r_t(x_t, a) - b_t(x_t)}{\pi_{\theta_t}(a|x_t)} \mathbb{I}\{a_t = a\}$

Update

$$\theta_{t+1} = \operatorname{argmax} \left\{ \sum_{a} \pi_{\theta}(a|x_t) \, \hat{r}_t(x_t, a) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x_t) \log \frac{\pi_{\theta}(a|x_t)}{\pi_{\theta_t}(a|x_t)} \right\}$$

Proximal Policy Optimization (PPO) for CB

```
For t = 1, 2, ..., T:
```

For i = 1, ..., N:

Receive context x_i

Take action $a_i \sim \pi_{\theta_t}(\cdot|x_i)$ and receive reward $r_i(x_i, a_i)$

Create reward estimator $\hat{r}_i(x_i, a) = \frac{r_i(x_i, a) - b_t(x_i)}{\pi_{\theta_t}(a|x_i)} \mathbb{I}\{a_i = a\}$

For j = 1, ..., M:

one iteration of mirror ascent

For minibatch $\mathcal{B} \subset \{1, 2, ..., N\}$ of size B:

$$\begin{aligned} \theta &\leftarrow \theta + \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathcal{B}} \left(\sum_{a} \pi_{\theta}(a|x_{i}) \, \hat{r}_{i}(x_{i}, a) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x_{i}) \log \frac{\pi_{\theta}(a|x_{i})}{\pi_{\theta_{t}}(a|x_{i})} \right) \\ &= \theta + \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathcal{B}} \left(\frac{\pi_{\theta}(a_{i}|x_{i})}{\pi_{\theta_{t}}(a_{i}|x_{i})} (r_{i}(x_{i}, a_{i}) - b_{t}(x_{i})) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x_{i}) \log \frac{\pi_{\theta}(a|x_{i})}{\pi_{\theta_{t}}(a|x_{i})} \right) \\ \theta_{t+1} &\leftarrow \theta \end{aligned}$$

Proximal Policy Optimization (PPO) for CB

$$\theta \leftarrow \theta + \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathbb{B}} \left(\frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)} (r_i(x_i, a_i) - b_t(x_i)) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x_i) \log \frac{\pi_{\theta}(a|x_i)}{\pi_{\theta_t}(a|x_i)} \right)$$

$$\text{KL} \left(\pi_{\theta}(\cdot |x_i), \pi_{\theta_t}(\cdot |x_i) \right)$$

- May replace $\mathrm{KL}\left(\pi_{\theta}(\cdot \mid x_i), \pi_{\theta_t}(\cdot \mid x_i)\right)$ by $\mathrm{KL}\left(\pi_{\theta_t}(\cdot \mid x_i), \pi_{\theta}(\cdot \mid x_i)\right)$. The latter is easier to construct unbiased estimator.
- Although this term can be calculated exactly, we often use samples to estimate it (so we do not need to sum over a)

Estimating KL by Samples

http://joschu.net/blog/kl-approx.html

Sample
$$a_i \sim \pi_{\theta_t}(\cdot | x_i)$$
 and define $kl_i(\theta_t, \theta) = \frac{\pi_{\theta}(a_i | x_i)}{\pi_{\theta_t}(a_i | x_i)} - 1 - \log \frac{\pi_{\theta}(a_i | x_i)}{\pi_{\theta_t}(a_i | x_i)}$

Then $\mathbb{E}_{a_i \sim \pi_{\theta_t}(\cdot | x_i)}[kl_i(\theta_t, \theta)] = \mathrm{KL}\left(\pi_{\theta_t}(\cdot | x_i), \pi_{\theta}(\cdot | x_i)\right)$

Just need one sample of a_i

Then
$$\mathbb{E}_{a_i \sim \pi_{\theta_t}(\cdot|x_i)}[kl_i(\theta_t, \theta)] = \mathrm{KL}\left(\pi_{\theta_t}(\cdot|x_i), \pi_{\theta}(\cdot|x_i)\right)$$
 Just need one sample of a_i

As we see before, the ways to construct an unbiased estimator are not unique. This is a good one with low variance.

PPO with KL Estimator

For t = 1, 2, ..., T:

For i = 1, ..., N:

$$kl_i(\theta_t, \theta) = \frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)} - 1 - \log \frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)}$$

Receive context x_i

Take action $a_i \sim \pi_{\theta_t}(\cdot|x_i)$ and receive reward $r_i(x_i, a_i)$

Create reward estimator $\hat{r}_i(x_i, a) = \frac{r_i(x_i, a) - b_t(x_i)}{\pi_{\theta_t}(a|x_i)} \mathbb{I}\{a_i = a\}$

For j = 1, ..., M:

For minibatch $\mathcal{B} \subset \{1, 2, ..., N\}$ of size B:

$$\theta \leftarrow \theta + \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathcal{B}} \left(\frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)} (r_i(x_i, a_i) - b_t(x_i)) - \frac{1}{\eta} k l_i(\theta_t, \theta) \right)$$

$$\theta_{t+1} \leftarrow \theta$$

Summary: PPO

- PPO-CB can be viewed as an extension of EXP3 to contextual bandits. The central idea is KL-regularized policy updates
- Common techniques: baselines, avoiding overly positive reward estimator.
 These techniques prevent over exploitation
- PPO additional uses batching, reversed KL divergence, and KL estimators for computational efficiency

NPG and **PG**

Natural Policy Gradient

(PPO)
$$\theta_{t+1} = \underset{\theta}{\operatorname{argmax}} \ \mathbb{E}_{x} \left[\sum_{a} \left(\pi_{\theta}(a|x) - \pi_{\theta_{t}}(a|x) \right) \hat{r}_{t}(x,a) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x) \log \frac{\pi_{\theta}(a|x)}{\pi_{\theta_{t}}(a|x)} \right] \right]$$

 η close to zero

(NPG)
$$\theta_{t+1} = \theta_t + \eta F_t^{-1} \mathbb{E}_x \left[\sum_{a} \nabla_{\theta} \pi_{\theta}(a|x) \, \hat{r}_t(x,a) \right]_{\theta = \theta_t}$$

where
$$F_{\theta_t} = \mathbb{E}_x \mathbb{E}_{a \sim \pi_{\theta_t}(\cdot|x)} \left[\left(\nabla_{\theta} \log \pi_{\theta}(a|x) \right) \left(\nabla_{\theta} \log \pi_{\theta}(a|x) \right)^{\mathsf{T}} \right] \Big|_{\theta = \theta_t}$$
 Fisher information matrix

Natural Policy Gradient (w/o context + full-info)

(PPO)
$$\theta_{t+1} = \underset{\theta}{\operatorname{argmax}} \sum_{a} \left(\pi_{\theta}(a) - \pi_{\theta_t}(a) \right) r_t(a) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a) \log \frac{\pi_{\theta}(a)}{\pi_{\theta_t}(a)}$$

 η close to zero

(NPG)
$$\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \left. \sum_{a} \nabla_{\theta} \pi_{\theta}(a) \, r_t(a) \right|_{\theta = \theta_t}$$

where
$$F_{\theta_t} = \mathbb{E}_{a \sim \pi_{\theta_t}} [(\nabla_{\theta} \log \pi_{\theta}(a))(\nabla_{\theta} \log \pi_{\theta}(a))^{\mathsf{T}}]\Big|_{\theta = \theta_t}$$

Fisher information matrix

Proof Sketch

$$f(\theta) \approx f(\theta_t) + (\theta - \theta_t)^{\mathsf{T}} [\nabla_{\theta} f(\theta)]_{\theta = \theta_t} + \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} [\nabla_{\theta}^2 f(\theta)]_{\theta = \theta_t} (\theta - \theta_t)$$

PPO

$$\theta_{t+1} = \operatorname*{argmax}_{\theta} \left\{ \left\langle \pi_{\theta} - \pi_{\theta_t}, r_t \right\rangle \right. \left. - \frac{1}{\eta} \left. \mathrm{KL}(\pi_{\theta}, \pi_{\theta_t}) \right\}$$

$$\langle \pi_{\theta} - \pi_{\theta_t}, r_t \rangle = \sum_{a} \left(\pi_{\theta}(a) - \pi_{\theta_t}(a) \right) r_t(a)$$

$$\approx (\theta - \theta_t)^{\mathsf{T}} \sum_{a} [\nabla_{\theta} \pi_{\theta}(a)]_{\theta = \theta_t} r_t(a)$$

$$F_{\theta_t} = \left[\nabla_{\theta}^2 \, \operatorname{KL} \! \left(\pi_{\theta}, \pi_{\theta_t} \right) \right]_{\theta = \theta_t} \quad \text{(exercise)}$$

$$F_{\theta_t} = \left[\nabla_{\theta}^2 \; \mathrm{KL} \big(\pi_{\theta}, \pi_{\theta_t} \big) \right]_{\theta = \theta_t} \; \text{(exercise)}$$

$$\mathrm{KL} \big(\pi_{\theta}, \pi_{\theta_t} \big) \approx \frac{1}{2} \; (\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t)$$

$$\begin{aligned} \theta_{t+1} &\approx \operatorname*{argmax}_{\theta} \left\{ (\theta - \theta_t)^{\mathsf{T}} g_t \right. - \frac{1}{2\eta} \left. (\theta - \theta_t)^{\mathsf{T}} F_{\theta_t} (\theta - \theta_t) \right\} \\ &= \theta_t + \eta F_{\theta_t}^{-1} g_t \quad \mathsf{NPG} \end{aligned}$$

NPG vs. PG

NPG

$$\theta_{t+1} = \theta_t + \eta F_t^{-1} \sum_{a} \nabla_{\theta} \pi_{\theta}(a) r_t(a) \bigg|_{\theta = \theta_t}$$

(Vanilla) PG

$$\theta_{t+1} = \theta_t + \eta \left. \sum_{a} \nabla_{\theta} \pi_{\theta}(a) \, r_t(a) \right|_{\theta = \theta_t}$$

NPG vs. PG

NPG

PG

$$\theta_{t+1} = \theta_t + \eta F_t^{-1} \sum_{a} \nabla_{\theta} \pi_{\theta}(a) r_t(a) \bigg|_{\theta = \theta_t} \qquad \theta_{t+1} = \theta_t + \eta \sum_{a} \nabla_{\theta} \pi_{\theta}(a) r_t(a) \bigg|_{\theta = \theta_t}$$

$$\theta_{t+1} = \operatorname*{argmax}_{\theta} \left\langle \pi_{\theta} - \pi_{\theta_t}, r_t \right\rangle - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta}, \pi_{\theta_t})$$

$$\theta_{t+1} = \underset{\theta}{\operatorname{argmax}} \langle \pi_{\theta} - \pi_{\theta_t}, r_t \rangle - \frac{1}{2\eta} \|\theta - \theta_t\|^2$$

Example: NPG vs. PG with softmax policy

Consider multi-armed bandits with **softmax policy** $\pi_{\theta}(a) = \frac{e^{\theta(a)}}{\sum_{a'} e^{\theta(a')}}$ parameterized by $\theta(1), \theta(2), ..., \theta(A)$

NPG (= Exponential Weight, without requiring $\eta \approx 0$ assumption)

For
$$t = 1,2,...$$

$$\theta_{t+1}(a) \leftarrow \theta_t(a) + \eta r_t(a)$$

Check the equivalence (exercise)

NPG can also be written as $\theta_{t+1}(a) \leftarrow \theta_t(a) + \eta \tilde{r}_t(a)$

$$\tilde{r}_t(a) = r_t(a) - \sum_{a'} \pi_{\theta_t}(a') r_t(a')$$

PG

For
$$k = 1, 2, ...$$

$$\theta_{t+1}(a) \leftarrow \theta_t(a) + \eta \pi_{\theta_t}(a) \tilde{r}_t(a)$$

NPG (EW) vs. PG

EW: $\theta_{t+1}(a) \leftarrow \theta_t(a) + \eta \tilde{r}_t(a)$

PG: $\theta_{t+1}(a) \leftarrow \theta_t(a) + \eta \pi_{\theta_t}(a) \tilde{r}_t(a)$

Reward = [Ber(0.6), Ber(0.4)]

Initial policy $\pi = [0.0001, 0.9999]$

Plot total reward in 1000 rounds

https://math.stackexchange.com/questions/2285282/relating-condition-number-of-hessian-to-the-rate-of-convergence

NPG and PG with bandit feedback

$$\theta_{t+1} = \theta_t + \eta F_t^{-1} \sum_{a} \nabla_{\theta} \pi_{\theta}(a) \hat{r}_t(a) \bigg|_{\theta = \theta_t} \theta_t + \eta \sum_{a} \nabla_{\theta} \pi_{\theta}(a) \hat{r}_t(a) \bigg|_{\theta = \theta_t}$$

$$\theta_{t+1} = \theta_t + \eta \sum_{a} \nabla_{\theta} \pi_{\theta}(a) \hat{r}_t(a)$$

$$\theta_{t+1} = \theta_t + \eta \sum_{a} \nabla_{\theta} \pi_{\theta}(a) \hat{r}_t(a)$$

PG (REINFORCE) for contextual bandits

For t = 1, 2, ..., T:

Receive context x_t

Take action $a_t \sim \pi_{\theta_t}(\cdot|x_t)$ and receive reward $r_t(x_t, a_t)$

Update

$$\theta_{t+1} \leftarrow \theta_t + \eta \left[\nabla_{\theta} \log \pi_{\theta}(a_t | x_t) \right]_{\theta = \theta_t} \left(r_t(x_t, a_t) - b_t(x_t) \right)$$

Or simply written as

$$\theta \leftarrow \theta + \eta \nabla_{\theta} \log \pi_{\theta}(a_t|x_t)(r_t(x_t, a_t) - b_t(x_t))$$

Coming from inverse propensity weighting / importance weighting

Verify (again) that reward offset does not affect the algorithm

Natural Policy Gradient

```
For t=1,2,...,T:
   Receive context x_t
   Take action a_t \sim \pi_{\theta_t}(\cdot|x_t) and receive reward r_t(x_t,a_t)

Update
   \theta_{t+1} \leftarrow \theta_t + \eta F_{\theta_t}^{-1} \left[ \nabla_{\theta} \log \pi_{\theta}(a_t|x_t) \right]_{\theta=\theta_t} \left( r_t(x_t,a_t) - b_t(x_t) \right)
```

A naïve calculation of $F_{\theta_t}^{-1}$ will take $O(d^3)$ time

Sample-Based NPG*

A naïve calculation of $F_{\theta_t}^{-1}$ will take $O(d^3)$ time

But we can actually view $h_t \coloneqq F_{\theta_t}^{-1} g_t$ as a solution of a linear regression problem

$$\theta_{t+1} = \theta_t + \eta F_{\theta_t}^{-1} \mathbb{E}_{a \sim \pi_{\theta_t}} [(\nabla_{\theta} \log \pi_{\theta_t}(a)) r_t(a)]$$

where
$$F_{\theta_t} = \mathbb{E}_{a \sim \pi_{\theta_t}} \left[\left(\nabla_{\theta} \log \pi_{\theta_t}(a) \right) \left(\nabla_{\theta} \log \pi_{\theta_t}(a) \right)^{\mathsf{T}} \right]$$

$$h_t = \left(\mathbb{E}_{a \sim \pi_{\theta_t}} [\phi_t(a)\phi_t(a)]\right)^{-1} \mathbb{E}_{a \sim \pi_{\theta_t}} [\phi_t(a)r_t(a)]$$

$$= \underset{h}{\operatorname{argmin}} \mathbb{E}_{a \sim \pi_{\theta_t}} [(\phi_t(a)^{\mathsf{T}}h - r_t(a))^2]$$

$$\phi_t(a) = \nabla_\theta \log \pi_{\theta_t}(a)$$

Summary: Policy Learning in Bandits

PG	PPO / NPG		
$\theta_{t+1} = \operatorname*{argmax}_{\theta} \left\langle \pi_{\theta} - \pi_{\theta_t}, \hat{r}_t \right\rangle - \frac{1}{2\eta} \ \theta - \theta_t\ ^2$	$\theta_{t+1} = \underset{\theta}{\operatorname{argmax}} \langle \pi_{\theta} - \pi_{\theta_t}, \hat{r}_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta}, \pi_{\theta_t})$		
$ heta \leftarrow heta + \eta abla_{ heta} \langle \pi_{ heta}, \hat{r}_{t} angle$	$\theta \leftarrow \theta + \eta F_{\theta}^{-1} \nabla_{\theta} \langle \pi_{\theta}, \hat{r}_{t} \rangle$		
$\hat{r}_t(a) = \frac{r_t(a) - b_t}{\pi_{\theta_t}(a)} \mathbb{I}\{a = a\}$ $\theta \leftarrow \theta + \eta \nabla_{\theta} \log \pi_{\theta}(a_t) \left(r_t(a_t) - b_t \right)$	$\theta \leftarrow \theta + \eta F_{\theta}^{-1} \nabla_{\theta} \log \pi_{\theta}(a_t) \left(r_t(a_t) - b_t \right)$		

$$F_{\theta} = \mathbb{E}_{a \sim \pi_{\theta}} [(\nabla_{\theta} \log \pi_{\theta}(a))(\nabla_{\theta} \log \pi_{\theta}(a))^{\mathsf{T}}]$$