COMP6237 Data Mining

Document Filtering

Jonathon Hare jsh2@ecs.soton.ac.uk

Introduction

- Supervised ML Classification
- Spam filtering
- Naïve Bayes' Spam Filtering
- Fisher's method
- Feature Engineering

Classification 101 (recap)

Cat or Dog

- Classification is the process of assigning a class label to an object (typically represented by a vector in a feature space).
- A supervised machinelearning algorithm uses a set of pre-labelled training data to learn how to assign class labels to vectors (and the corresponding objects).
- A binary classifier only has two classes
- A multiclass classifier has many classes.

Linear classifiers

Linear classifiers

Linear classifiers

Linear
classifiers
work best
when the data
is linearly
separable...

No hope for a linear classifier!

Non-linear binary classifiers, such as Kernel **Support Vector Machines** learn nonlinear decision boundaries

Have to be careful... you might lose generality by overfitting

Use
regularisation
to penalise
models
becoming to
complex

Multiclass classifiers: KNN

Multiclass linear classifiers

- A linear classifier is by definition binary
 - So, how can we solve multiclass problems with linear classifiers?
 - One versus All (OvA)/One versus Rest (OvR)
 - one classifier per class
 - One versus One (OvO)
 - K (K 1) / 2 classifiers

Problem statement: Filtering Spam

- Assume we want to build a spam/ham classifier for emails (or other documents)
 - We need a classifier that can be easily updated online
 - Probabilistic approaches to classification are a natural fit...

Early (rule-based) spam filters

- In the early days of ubiquitous email spam started to become a problem
 - Early spam detection systems were hand-coded
 - ...Using rules e.g.:
 - Emails that over-used capital letters were likely to be spam.
 - Certain terms were strong indicators:
 - Viagra & similar pharmaceutical products!
 - Overly colourful or garish colours in embedded html
 - emails consisting of just an embedded picture

Early (rule-based) spam filters

- Unfortunately, this had a few problems...
 - parents sending emails in all uppercase
 - the spammers getting smart & adapting their strategies to circumvent the rules encoded in the software
 - lack of personalisation
 - what the user actually wanted to receive emails about drugs or mail-order brides!?
- Solution: use machine learning to build classifiers that suit the user

Initial features: bag of words

- We'll start by considering a simple bag of word representation
 - Simple tokenisation: split on non-letters
 - Simple pre-processing: convert to lower case
 - Don't count; just record presence/absence of a term
 - We'll refer to each term as a feature

Better/more complex features are available - coming up later!

Counting features

- Given a set of labelled training documents (spam/ham)
 - create a table of how many times a document containing a feature has occurred in each category:

	money	viagra	dad	mom	dinner	mail	
SPAM	1	15	0	2	1	8	
HAM	0	0	3	3	8	2	

 create a table of how many documents fall into each category:

SPAM	25
HAM	72

Conditional probability of a feature given a category

- What is the probability that a feature occurs in a given category?
 - p(f|c) = n(docs with feature in category) / n(docs in category)
 - This is a conditional probability
 - read p(f|c) as probability of f given c
 - examples:
 - p(viagra|SPAM) = 15/25 = 0.6
 - · i.e. there is a 60% chance a spam doc contains viagra
 - p(mail|HAM) = 2/72 = 0.027

SPAM	25		
HAM	72		

	money	viagra	dad	mom	dinner	mail	
SPAM	1	15	0	2	1	8	
HAM	0	0	3	3	8	2	

Smoothing probability estimates

- Consider p(money HAM)
 - probability is 0
 - So money should never be expected to appear in HAM documents?
 - Need a better way to estimate the conditional p(f|c) that accounts for infrequently seen features (or more formally insufficient sample size)

SPAM	25		
HAM	72		

	money	viagra	dad	mom	dinner	mail	
SPAM	1	15	0	2	1	8	
HAM	0	0	3	3	8	2	

Starting with a reasonable guess

- Introduce an assumed probability
 - A starting point when you have little evidence
 - Might choose based on some external evidence of knowledge
- Produce a weighted estimate for the conditional probability based on the assumed and the raw computed probability - e.g.:

 $p_w(f|c)=(weight * assumed + count * p_{raw}(f|c))/(count + weight)$

where count is the number of times f occurs across all categories

Why is this valid?

Computing the probability of a document

- Want to compute conditional probability of an entire document rather than a single word
- Going to make a naïve simplifying assumption
 - All features are independent of each other
 - This is clearly not actually going to be true certain words are almost certainly likely to appear together...
 - But in practice it doesn't seem to matter & will still work even if technically incorrect!
 - Does mean that we can't use the computed probability directly however
 - will need to compare probabilities and pick most likely

Computing the probability of a document

 The Naïve assumption allows us to express the document conditional as the product of the conditional feature probabilities:

$$p(d|c) = \prod_{f \in d} p(f|c)$$

- Often referred to as the likelihood of the document given category
- It's clear that p(d|c) isn't actually useful by itself
 - We really want to be able to compute the probability of a class given a document p(c|d)
 - (aka the posterior)

Bayes' Theorem

Bayes' Theorem

- So: p(c|d) = p(d|c) * p(c) / p(d)
 - p(c) is the probability that a randomly selected document will be in category c
 - Often referred to as the prior of c
 - can be estimated empirically: the number of documents in category c divided by the total number of documents
 - or just set assuming all classes are equally probable
 - p(d) is actually irrelevant if we only care about the magnitude of the probabilities as it's the same for all categories

Bayes' Theorem

Posterior probability \propto Likelihood \times Prior probability

Choosing the best category

- $p(c|d) \propto p(d|c) * p(c)$ can be calculated for all categories
- Simplest solution to assigning a category to a document is to choose the category with the **largest** p(c|d)
 - Maximum a Posteriori (MAP)
 - This assumes that the categories are considered equal
 - In the case of SPAM/HAM this isn't true!
 - cost of misclassifying document as SPAM is considerably higher than misclassifying as HAM

Choosing the best category

- Alternative approach:
 - Compare the ratio of the p(c|d) for the top-two categories against a threshold

• e.g. for HAM/SPAM case:

if (p(SPAM | d)/p(HAM | d) > 3) then SPAM else HAM

Aside: Implementation note - small probabilities

· Warning: attempting to compute

$$p(c|d) \propto p(c) \prod_{f \in d} p(f|c)$$

directly could be a disaster!

- Many of the p(f|c) would be very small
 - leading to floating-point underflow
- Solution take logs:

$$\log(p(c|d)) \propto \log(p(c)) + \sum_{f \in d} \log(p(f|c))$$

Aside: A Bayesian Prior

- Where did $p_w(f|c)=(weight * assumed + count * p_{raw}(f|c))/(count + weight)$ come from?
- Bayesian statistics
 - Assumption that r.v.'s are drawn from probability distributions rather than point samples
 - In this case a we're assuming the HAM/SPAM classification for a feature f is a binomial random variable with a beta distribution prior
- Very important note: Naïve Bayes doesn't necessarily mean a Bayesian approach

Learning to classify text: Fisher's Method

Fisher's method: Overview

- The naïve bayes method used the feature likelihoods to compute a whole document probability
- Fisher's method
 - computes the probability of each category for each feature
 - uses a statistical test to see if the set of combined probabilities is more or less likely than a random set
 - Note: assumes independence of features

Bayes' Theorem: Extended form

Simple form:

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

Law of total probability:

$$P(B) = \sum_{j} P(B \mid A_j) P(A_j)$$

Extended form:

$$P(A_i \mid B) = \frac{P(B \mid A_i) P(A_i)}{\sum_{j} P(B \mid A_j) P(A_j)}$$

Category probabilities

- Want to calculate P(c|f)
 - Bayes' extended form lets us do this, but need P(c) for all c
 - could estimate from data
 - or could make **unbiased estimates** all P(c) equally likely
- For our SPAM/HAM classifier if there is no a priori reason to assume HAM over SPAM:

$$P(c) = P(HAM) = P(SPAM) = 0.5$$

 $P(c \mid f) = P(f \mid c) / (P(f \mid HAM) + P(f \mid SPAM))$

Combining probabilities

• Fishers' method combines k probabilities ("p-values"), $P(c=C|f_k)$, from each test into a single test statistic, X^2 :

$$X_{2k}^2 \sim -2\sum_{i=1}^k \ln(p(c=C|f_i))$$

- If the p-values are independent this X^2 statistic will follow a *chi-squared distribution* in 2k degrees of freedom
- Thus we can compute a combined p-value:

$$p_C = K^{-1}(-2\sum_{i=1}^k \ln(p(c=C|f_i)), 2k) = K^{-1}(-2\ln(\prod_{i=1}^k p(c=C|f_i)), 2k)$$

where K^{-1} is the inverse chi-squared function

Making classifications

- Many possible approaches
 - Popular one:

$$I = (1 + p_{SPAM} - p_{HAM}) / 2$$

I tends to 1 if document is SPAM and to 0 if document is HAM

Improved Text Features

- The simple BOW type features we looked at earlier are OK, but can we do better?
 - Feature engineering

Fields

- Emails have structure:
 - · sender; to; cc
 - title; subject; body
 - etc
- Can we use these to create features?
 - e.g. introduce the sender as a feature...

Virtual features

- SPAM emails might have language features that exhibit certain characteristics
 - THEY MIGHT CONTAIN LOTS OF SHOUTING!!!
- Could engineer a virtual feature to measure this
 - If more than 30% of words are uppercase then record the presence of a *virtual* "uppercase" feature

	money	viagra	dad	mom	dinner	mail	v.Uppercase	
SPAM	1	15	0	2	1	8	5	
HAM	0	0	3	3	8	2	0	

Word Context: N-Grams

- Rather than looking at individual words, could use pairs of words or triplets of words as the base feature
 - More generally called n-grams

ratherthan thanlooking lookingat atindividual individualwords ratherthanlooking thanlookingat lookingatindividual

- Advantages: context capture; names
- Disadvantages: feature explosion

Deeper parsing of text

- Could we more intelligently parse the text to better know what features we should record?
 - Natural Language Processing
 - POS-tagging
 - NE-Extraction

NLP is hard!

- POS tagging
 - State-of-the-art: Close to 97% accuracy for English
 - "He turned off the motorway." vs "He turned off the PC."
- General complete parsing
 - "A man saw a boy with a telescope."
- Robust NLP tends to be shallow

Named Entities

Jim bought 300 shares of Acme Corp. in 2006.

[Jim]_{Person} bought 300 shares of [Acme Corp.]_{Organisation} in [2006]_{Time}.

Could we use this as a basis for better features?

Summary

- Learning models that categorise data is a core part of data mining
 - Many different supervised machine learning techniques could be used
 - For problems like SPAM/HAM probabilistic approaches are attractive
 - Easy to implement & computationally efficient
 - Directly interpretable
 - Online
 - ...but independence assumption of features can be a problem
- · Irrespective of classification technique, choice of features is key