1 Quasi-Succinct Indexing

1.1 Index Compression

- Instantaneous codes storage of integers is proportional to size of integer
 - smaller numbers use fewer bits
- Gap encoding turns lists of increasing numbers into lists of smaller integers
 - smaller integers being the gaps between successive values

1.2 Brief Overview of Unary-Code

Unary code represents a natural number n as

- n 1's followed by a 0 for n non-negative, or
- n-1 1's followed by a 0 for n strictly positive.

We can exchanges 0's and 1's without loss of generality. The flipped version is often called negated unary code. Example: $5 \rightarrow 111110$ or 000001

1.3 Representation of a Monotone Sequence

Suppose we have the following monotone sequence for $x_i \in \mathbb{N}$:

$$x_0 \le x_1 \le \ldots \le x_{n-1} \le u$$
,

where u is some upper bound.

- We store the sequence in a "high/low bit representation" using two bit-arrays.
 - The lower $l = \max\{0, \lfloor \log \frac{u}{n} \rfloor\}$ bits of each x_i are stored *explicitly* and *contiguously* in a **lower-bits array**.
 - The remaining upper bits are stored as a sequence of *unary code gaps* in an **upper-bits** array.
 - * difference in upper bits = $\lfloor \frac{x_i}{2^l} \rfloor \lfloor \frac{x_{i-1}}{2^l} \rfloor$.
 - * For the sake of completeness, let $x_{-1} = 0$.
- This representation uses at most $2 + \lceil \log \frac{u}{n} \rceil$ bits **per element** meaning that this representation is **quasi-succinct**.

Proof. Each unary encoding uses 1 stop bit, and each other written bit increases the value of the upper bits by 2^l . This cannot happen more than $\left|\frac{x_{n-1}}{2^l}\right|$ times. This leads us to the following:

$$\left| \frac{x_{n-1}}{2^l} \right| \le \left| \frac{u}{2^l} \right| \le \frac{u}{2^l} \le 2n.$$

Unless $\frac{u}{n}$ is a power of 2, we have

$$\left\lceil \log \frac{u}{n} \right\rceil = \left\lfloor \log \frac{u}{n} \right\rfloor + 1.$$

If $\frac{u}{n}$ is a power of 2, then

$$\left\lceil \log \frac{u}{n} \right\rceil = \log \frac{u}{n},$$

but the previous equation is bounded by n instead of 2n. The informational-theoretial limit is

$$\left\lceil \log \binom{u+n}{n} \right\rceil \approx n \log \left(\frac{u+n}{n} \right),$$

so we conclude that this representation is close to succinct.

1.4 Example

Suppose we have a list [5, 8, 8, 15, 32] with u = 36. We compute $l = \lfloor \log \frac{36}{5} \rfloor = 2$. Split the lower l bits of the binary representation of each element of the list.

		5					8					8				:	15				3	32		
+-		-+-		-+	+-		-+-		+	+-		-+-		-+	+-		-+-		+	+-		-+-		-+
-	1	1	01	1	1	10	1	00	1	1	10	1	00	1	1	11	1	11	1	1	1000	1	00	1
+-		-+-		-+	+-		-+-		-+	+-		-+-		-+	+-		-+-		-+	+-		-+-		-+

The lower bits array:

To compute the upper bits array, we find the difference between each of the upper bits and then convert to unary code.

5	8	8	15	32			
				1000 00			
	++		· ++ 	++			
1	I	1	1	I			
V	V	v	V	V			
1	2	2	3	8			

Recall that we choose $x_{-1} = 0$ for simplicity. The upper bits array:

1.5 Recovering x_i

- Perform i unary code reads in the upper-bits array to position p bits
 - The value of the upper bits is exactly p-i
 - Example: To read the upper bits of 15, we perform 4 unary code reads to position 7 of the upper bits array. Thus, the value of the upper bits of 15 is 7 4 = 3.
- Extract lower bits with random access at position il in the lower bits array

1.6 Some Optimizations for Accessing

1.6.1 Forward Pointers

- Choose a quantum q
- Store forward pointers at positions that one would reach after kq unary code reads
 - This is the position immediately after kq-1 bits
- Retrieve x_i by simulatinging $q \left\lfloor \frac{i}{q} \right\rfloor$ reads then $i \mod q$ sequential reads

1.6.2 Skip Pointers

1.7 Quasi-Succinct Bitstream