

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160200103

FCC REPORT

(BLE)

Applicant: YiHang Technologys Co.,Ltd.

Address of Applicant: 4/F, PuSheng Building, GaoXin 6th Road, Hi-Tech District,

Xi'an, Shaanxi, P.R.C

Equipment Under Test (EUT)

Product Name: GSM/WCDMA Multi-mode On-board equipment

Model No.: TREQr-5

Trade mark: OBC

FCC ID: 2AHEC-TREQR-5

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 17 Feb., 2016

Date of Test: 17 Feb., to 09 Mar., 2016

Date of report issued: 09 Mar., 2016

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	09 Mar., 2016	Original

Tested by:

| Compared Date: 09 Mar., 2016
| Test Engineer | Compared Date: 09 Mar., 2016

Reviewed by: Oney Chen Date: 09 Mar., 2016

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	RSION	
3		NTENTS	
4	TES	T SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	DESCRIPTION OF SUPPORT UNITS	7
	5.8	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED OUTPUT POWER	10
	6.3	OCCUPY BANDWIDTH	12
	6.4	POWER SPECTRAL DENSITY	15
	6.5	BAND EDGE	17
	6.5.	1 Conducted Emission Method	17
	6.5.2	2 Radiated Emission Method	19
	6.6	Spurious Emission	24
	6.6.		
	6.6.2	2 Radiated Emission Method	27
7	TES	ST SETUP PHOTO	32
8	EUT	CONSTRUCTIONAL DETAILS	33

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	YiHang Technologys Co.,Ltd.
Address of Applicant:	4/F, PuSheng Building, GaoXin 6th Road, Hi-Tech District, Xi'an, Shaanxi, P.R.C
Manufacturer:	YiHang Technologys Co.,Ltd.
Address of Manufacturer:	4/F, PuSheng Building, GaoXin 6th Road, Hi-Tech District, Xi'an, Shaanxi, P.R.C

5.2 General Description of E.U.T.

Product Name:	GSM/WCDMA Multi-mode On-board equipment
Model No.:	TREQr-5
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.71 dBi
Power supply:	DC 12V

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode	Keep the EUT in continuous transmitting with modulation		

Report No: CCISE160200103

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
GS Japan	Lead-acid battery	55D26R-MFZ	8362810610	N/A

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Rad	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016

Con	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.71 dBi.

6.2 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.56		
Middle	-1.05	30.00	Pass
Highest	-1.72		

Test plot as follows:

Date: 25.FEB.2016 23:09:23 Lowest channel

Date: 25.FEB.2016 23:09:40 Middle channel

Highest channel

6.3 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.714		
Middle	0.702	>500	Pass
Highest	0.714		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.086		
Middle	1.092	N/A	N/A
Highest	1.086		

Test plot as follows:

6dB EBW

Date: 25.FEB.2016 23:05:59

Lowest channel

Date: 25.FEB.2016 23:06:34

Middle channel

Date: 25.FEB.2016 23:07:04

Highest channel

99% OBW

Date: 25.FEB.2016 23:05:33

Lowest channel

Date: 25.FEB.2016 23:04:56

Middle channel

Date: 25.FEB.2016 23:05:17

Highest channel

6.4 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-0.89		
Middle	-1.07	8.00	Pass
Highest	-2.15		

Test plots as follow:

Date: 25.FEB.2016 23:09:02

Lowest channel

Date: 25.FEB.2016 23:08:20

Middle channel

Date: 25.FEB.2016 23:08:42

Highest channel

6.5 Band Edge

6.5.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 4.MAR.2016 17:39:40

Lowest channel

Date: 4.MAR.2016 17:38:47

Highest channel

6.5.2 Radiated Emission Method

Above 1GHz							
Test Frequency Range: 2.3GHz to 2.5GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Results Above 1GHz RMS 1MHz 3MHz Peak RMS 1MHz 3MHz Average RMS 1MHz 3MHz Average RMS 1MHz 3MHz Average RMS 1MHz 3MHz Average State RMS 1MHz 3MHz Average RMS 1MHz 3MHz 4MHz 3MHz 4MHz 3MHz 4MHz 3MHz 4MHz 3MHz 4MHz 4MHz 4MHz 4MHz 4MHz 4MHz 4MHz 4							
Test site: Measurement Distance: 3m							
Frequency Detector RBW VBW Revenue RBW VBW Revenue Peak 1MHz 3MHz Peak RMS 1MHz 3MHz Average Above 1GHz S4.00 Average Above 1GHz S4.00 Average Above 1GHz RBW VBW Revenue RBW RBW REvenue RBW RBW REvenue RBW RBW							
Above 1GHz							
Above 1GHz	mark						
Limit: Frequency Limit (dBuV/m @3m) Re							
Above 1GHz 54.00 Average	mark						
Above IGIZ 74.00 Pool	je Value						
	Value						
the ground at a 3 meter camber. The table was rotated 360 to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-rece antenna, which was mounted on the top of a variable-heigh tower. 3. The antenna height is varied from one meter to four meters the ground to determine the maximum value of the field str. Both horizontal and vertical polarizations of the antenna are make the measurement. 4. For each suspected emission, the EUT was arranged to its case and then the antenna was tuned to heights from 1 memeters and the rota table was turned from 0 degrees to 360 to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lot the limit specified, then testing could be stopped and the period of the EUT would be reported. Otherwise the emissions the have 10 dB margin would be re-tested one by one using period of the EUT would be average method as specified and then reported in sheet.	 The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi- 						
Test setup: Horn Anlenna Tower Ground Reference Plane Test Receiver Controller							
Test Instruments: Refer to section 5.7 for details							
Test mode: Refer to section 5.3 for details							
Test results: Passed							

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Vehicle Module Condition

EUT Model : TREQr-5 Test mode : BLE-L Mode Power Rating : DC 12V

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK :

TUNK			Antenna Factor						
	MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000								

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Vehicle Module EUT : TREQr-5 : BLE-L Mode Model Test mode

Power Rating: DC 12V Environment: Temp:25.5°C Huni:55% Test Engineer: YT

CHEAT	r :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	23.89	23.68	6.63	0.00	54.20	74.00	-19.80	Peak
2	2390.000	11.26	23.68	6.63	0.00	41.57	54.00	-12.43	Average

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Vehicle Module Condition

EUT : TREQr-5 : BLE-H Mode Model Test mode

Power Rating : DC 12V Environment : Temp:25.5°C Huni:55% Test Engineer: YT

REMARK

	Freq		Antenna Factor						
	MHz	dBu∜		<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	2483, 500 2483, 500								

Test channel: Highest

Vertical:

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Vehicle Module Model : TREQr-5

Test mode : BLE-H Mode

Power Rating: DC 12V Environment: Temp:25.5°C Huni:55% Test Engineer: YT

EMARI	K :	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu₹	dB/m	d <u>B</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	24.32	23.70	6.85	0.00	54.87	74.00	-19.13	Peak
2	2483, 500	11.84	23, 70	6, 85	0.00	42.39	54,00	-11.61	Average

6.6 Spurious Emission

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074 section 11					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Lowest channel

Date: 25.FEB.2016 20:46:11

30MHz~25GHz

Date: 25.FEB.2016 20:44:51

Middle channel

30MHz~25GHz

Highest channel

Date: 25.FEB.2016 20:44:09

30MHz~25GHz

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2009						
Test Frequency Range:	9KHz to 25GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Frequency Detector RBW VBW Rema					
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above IGI12	RMS	1MHz	3MHz	Average Value		
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark		
	30MHz-88MHz		40.0		Quasi-peak Value		
	88MHz-216MHz		43.5		Quasi-peak Value		
	216MHz-960MH	lz	46.0		Quasi-peak Value		
	960MHz-1GHz		54.0		Quasi-peak Value		
	Above 1GHz	-	54.0		Average Value		
Test Procedure:	Above 1GHz						

Below 1GHz

Horizontal:

Site Condition : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL

EUT : Vehicle Module

Model : TREQr-5
Test mode : BLE Mode
Power Rating : DC 12V

Environment : Temp: 25.5°C Huni: 55% Test Engineer: YT REMARK :

Freq						Limit Line	Over Limit	Remark
MHz	dBu₹	dB/m	dB	<u>dB</u>	dBu√/m	$\overline{dBuV/m}$	dB	
54.071	51.87	13.20	1.34	29.80	36.61	40.00	-3.39	QP
81.497	58.30	6.81	1.72	29.63	37.20	40.00	-2.80	QP
176.269	57.59	9.40	2.70	29.00	40.69	43.50	-2.81	QP
189.739	57.56	9.70	2.79	28.90	41.15	43.50	-2.35	QP
216.783	57.44	11.18	2.85	28.73	42.74	46.00	-3.26	QP
271.325	55.77	12.11	2.86	28.50	42.24	46.00	-3.76	QP
	Freq MHz 54.071 81.497 176.269 189.739 216.783	Read. Freq Level MHz dBuV 54.071 51.87 81.497 58.30 176.269 57.59 189.739 57.56 216.783 57.44	ReadAntenna Freq Level Factor MHz dBuV dB/m 54.071 51.87 13.20 81.497 58.30 6.81 176.269 57.59 9.40 189.739 57.56 9.70 216.783 57.44 11.18	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 54.071 51.87 13.20 1.34 81.497 58.30 6.81 1.72 176.269 57.59 9.40 2.70 189.739 57.56 9.70 2.79 216.783 57.44 11.18 2.85	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 54.071 51.87 13.20 1.34 29.80 81.497 58.30 6.81 1.72 29.63 176.269 57.59 9.40 2.70 29.00 189.739 57.56 9.70 2.79 28.90 216.783 57.44 11.18 2.85 28.73	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 54.071 51.87 13.20 1.34 29.80 36.61 81.497 58.30 6.81 1.72 29.63 37.20 176.269 57.59 9.40 2.70 29.00 40.69 189.739 57.56 9.70 2.79 28.90 41.15 216.783 57.44 11.18 2.85 28.73 42.74	ReadAntenna Cable Preamp Limit	ReadAntenna Cable Preamp Limit Over

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT : Vehicle Module

Model : TREQr-5 Test mode : BLE Mode Power Rating : DC 12V

Environment : Temp:25.5°C Huni:55% Test Engineer: YT

REMARK

Over
Limit Remark
B
-3.60 QP
-3.30 QP
-8.53 QP
-10.15 QP
-12.87 QP
-16.70 QP
0000

Above 1GHz

Test channel:		Lo	Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.67	35.99	10.57	40.24	51.99	74.00	-22.01	Vertical
4804.00	44.65	35.99	10.57	40.24	50.97	74.00	-23.03	Horizontal
Т	Test channel:		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.68	35.99	10.57	40.24	42.00	54.00	-12.00	Vertical
4804.00	34.12	35.99	10.57	40.24	40.44	54.00	-13.56	Horizontal

Test channel:		Middle		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	44.76	36.38	10.66	40.15	51.65	74.00	-22.35	Vertical
4884.00	44.25	36.38	10.66	40.15	51.14	74.00	-22.86	Horizontal
Т	Test channel:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	34.58	36.38	10.66	40.15	41.47	54.00	-12.53	Vertical
4884.00	34.67	36.38	10.66	40.15	41.56	54.00	-12.44	Horizontal

Т	Test channel:		Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	44.37	36.71	10.73	40.03	51.78	74.00	-22.22	Vertical
4960.00	44.50	36.71	10.73	40.03	51.91	74.00	-22.09	Horizontal
Т	Test channel:		Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.26	36.71	10.73	40.03	43.67	54.00	-10.33	Vertical
4960.00	34.68	36.71	10.73	40.03	42.09	54.00	-11.91	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.