DATA STRUCTURES & ALGORITHMS

21: ASYMPTOTIC NOTATIONS

(RUNTIME ANALYSIS)

Dr Ram Prasad Krishnamoorthy

Associate Professor School of Computing and Data Science

ram.krish@saiuniversity.edu.in

ASYMPTOTIC NOTATIONS

Characterizing Running Times

- A way to describe behavior of functions *in the limit*.
 - Studying asymptotic efficiency (for large values of n, how algorithms behaves)
- Describes growth of the functions.
- Focus on what's important by abstracting away low-order terms and constant factors.
- How we indicate running times of algorithms.

Way to compare size of functions (notations)

$$O \approx \leq \longrightarrow \text{Big oh of / Order of}$$
 $\Omega \approx \geq \longrightarrow \text{Big omega of}$
 $\Theta \approx = \longrightarrow \text{Theta of}$
 $O \approx \subset \longrightarrow \text{Little oh}$
 $O \approx \supset \longrightarrow \text{Little omega}$

Way to compare size of functions (notations)

O-notation

O-notation characterizes an *upper bound* on the asymptotic behavior of a function: it says that a function grows *no faster* than a certain rate. This rate is based on the highest order term.

For example, $f(n) = 7n^3 + 100n^2 - 20n + 6$ is $O(n^3)$, since the highest order term is $7n^3$, and therefore the function grows no faster than n^3 .

O-notation

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$$
.

$$g(n)$$
 is an *asymptotic upper bound* for $f(n)$.
 If $f(n) \in O(g(n))$, we write $f(n) = O(g(n))$

$$3n + 2 = O(n)$$

 $3n + 2 \le 4n$ for all $n \ge 2$
 $100n + 1 = O(n)$
 $100n + 1 \le 101n$ for all $n \ge 1$
 $10n^2 + 4n + 2 = O(n^2)$
 $10n^2 + 4n + 2 \le 11n^2$ for all $n \ge 5$

$$n^2 + n = O(n^2)$$

$$\lim_{n o \infty} rac{n^2 + n}{n^2}$$
 $\lim_{n o \infty} 1 + rac{1}{n}$

Ω -notation

 Ω -notation characterizes a *lower bound* on the asymptotic behavior of a function: it says that a function grows *at least as fast* as a certain rate. This rate is again based on the highest-order term.

For example, $f(n) = 7n^3 + 100n^2 - 20n + 6$ is $\Omega(n^3)$, since the highest-order term, n^3 , grows at least as fast as n^3 .

Ω -notation

$$\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$$
.

g(n) is an *asymptotic lower bound* for f(n).

Example

$$\sqrt{n} = \Omega(\lg n)$$
, with $c = 1$ and $n_0 = 16$.

Examples of functions in $\Omega(n^2)$:

$$n^2$$
 Also,
 $n^2 + n$ n^3
 $n^2 - n$ $n^{2.00001}$
 $1000n^2 + 1000n$ $n^2 \lg \lg \lg n$
 $1000n^2 - 1000n$ 2^{2^n}

Θ-notation

 Θ -notation characterizes a *tight bound* on the asymptotic behavior of a function: it says that a function grows *precisely* at a certain rate, again based on the highest-order term.

If a function is both O(f(n)) and $\Omega(f(n))$, then a function is $\Theta(f(n))$.

Θ-notation

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$$

g(n) is an asymptotically tight bound for f(n).

Example

$$n^2/2 - 2n = \Theta(n^2)$$
, with $c_1 = 1/4$, $c_2 = 1/2$, and $n_0 = 8$.

o-notation

$$o(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$$
.

Another view, probably easier to use: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.

$$n^{1.9999} = o(n^2)$$

 $n^2/\lg n = o(n^2)$
 $n^2 \neq o(n^2)$ (just like $2 \neq 2$)
 $n^2/1000 \neq o(n^2)$

ω -notation

$$\omega(g(n)) = \{f(n) : \text{ for all constants } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$$
.

Another view, again, probably easier to use: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$.

$$n^{2.0001} = \omega(n^2)$$

$$n^2 \lg n = \omega(n^2)$$

$$n^2 \neq \omega(n^2)$$

Merge Sort

$$T(n) = n + n \log n \rightarrow O(n \log n)$$

Insertion Sort

Best: an + b
$$\rightarrow \square$$
 (n)

Worst:
$$an^2 + bn + c \rightarrow O(n^2)$$

Average: $\Theta(n^2)$

Summary

$$f=\Theta(g)$$
 f grows at the same rate as g $f=O(g)$ f grows no faster than g $f=\Omega(g)$ f grows at least as fast as g $f=o(g)$ f grows slower than g $f=\omega(g)$ f grows faster than g

Types of complexity functions

- 1. Constant time complexity: O(1)
- **2.** Logarithmic time complexity: $O(\log(\log n))$, $O(\sqrt{\log n})$ and $O(\log n)$
- **3.** Linear time complexity: $O(\sqrt{n})$ and O(n)
- **4.** Polynomial time complexity: $O(n^k)$, where k is a constant and is >1
- **5.** Exponential time complexity: $O(a^n)$, where a > 1