Title

D. Zack Garza

Tuesday 29th September, 2020

Contents

1 Tuesday, September 29

1

1 | Tuesday, September 29

Questions to look at for next Tuesday:

Exercise 1.1 (?).

Show that the 3 natural coordinate charts on \mathbb{CP}^2 given by e.g. $\varphi_{U_0}([z_0:z_1:z_2])=\left[\frac{z_1}{z_0},\frac{z_2}{z_0}\right]$ yield a smooth atlas.

Exercise 1.2 (?).

Consider the map

$$\pi: \mathbb{CP}^2 \to \mathbb{R}^2$$

$$[z_0: z_1: z_2] \mapsto \left[\frac{|z|_1^2}{|z|_0^2 + |z|_1^2 + |z|_2^2}, \frac{|z|_2^2}{|z|_0^2 + |z|_1^2 + |z|_2^2} \right].$$

Show that π is smooth and $\operatorname{im} \pi = \{p_1, p_2 \geq 0, p_1 + p_2 \leq 1\}.$

Figure 1: O

Exercise 1.3 (?).

Show that

- If $[p_1, p_2] \in T^{\circ}$ is in the interior of the above triangle, then $\pi^{-1}(p_1, p_2) \cong S^1 \times S^1$ is diffeomorphic to a torus.
- If the point is on an edge, the fiber is diffeomorphic to S^1 ,
- If the point is on a vertex, the fiber is a single point.

Exercise 1.4 (?).

Find a vector field V on some maximal subset of \mathbb{CP}^2 such that $D\pi(V) = p_1 \partial_{p_1} + p_2 \partial_{p_2}$ (the radial vector field).

I.e., for all $q \in \mathbb{CP}^2$, we have a map

$$D_1\pi: T_1\mathbb{CP}^2 \to T_{\pi(q)}\mathbb{R}^2$$

and $V(q) \in T_q \mathbb{CP}^2$, so we want $D_q \pi(V(q)) = p_1 \partial_{p_1} + p_2 \partial_{p_2}$.

Note that there will be a problem defining V on the fiber over the hypotenuse of T.

Theorem 1.1 (Collar Neighborhood).

For all manifolds with boundary X, there exists an open neighborhood N of ∂X which is diffeomorphic to $(-\varepsilon, 0] \times \partial X$.

Proof strategy: construct a vector field pointing outward and flow it backward. Construct by forming local vector fields on open sets, then patch together using a partition of unity.

Definition 1.1.1 (Partition of Unity).

- A collection $\{\varphi_i: M \to \mathbb{R} \mid i \in I\}$ such that

 1. $\{\operatorname{supp}\varphi_i\}$ is locally finite, i.e. for all p, we have $\left|\left\{i \mid p \in \operatorname{supp}(\varphi_i)\right\}\right| < \infty$.

 2. $\varphi(p) \geq 0$ for all $p \in X$ 3. For all $p \in X$, the sum $\sum_{i \in I} \varphi_i(p) = 1$.