Prof. Dr. Rupert Lasser WS 2000/01

Prof. Dr. A. Leutbecher

Dr. R. Girgensohn

Wiederholungsklausur

zur Analysis I

Hinweise: 1) Es sind keine elektronischen Hilfsmittel zugelassen.

- 2) Die Aufgaben können in beliebiger Reihenfolge bearbeitet werden. Vorangehende Ergebnisse dürfen benutzt werden, auch wenn sie noch nicht bewiesen sind.
- 3) Die Antworten sind stets ausreichend zu begründen.
- 1. Es seien $a \ge 0$ und $b \ge 0$.
 - a) Folgern Sie aus dem binomischen Satz: Für alle $n \in \mathbb{N}$ gilt $a^n + b^n \le (a+b)^n$.
 - b) Beweisen Sie durch vollständige Induktion und mit Hilfe der Aussage aus a): Für alle natürlichen Zahlen $n \ge 2$ gilt $(a+b)^n \le a^n + n a b (a+b)^{n-2} + b^n$.
- **2.** Es sei $z \in \mathbb{C}$. Bestimmen Sie den Grenzwert $\lim_{n \to \infty} \frac{n + z^n}{n z^n}$ in Abhängigkeit von z.

Hinweise: 1) Unterscheiden Sie die Fälle |z| > 1 und $|z| \le 1$.

2) Hier und in den folgenden Aufgaben können Sie ohne Beweis die Aussage verwenden:

Für reelle Zahlen s > 1 gilt $\lim_{n \to \infty} \frac{n}{s^n} = 0$.

- **3.** a) Untersuchen Sie, ob die Reihe $\sum_{n=1}^{\infty} \frac{n^n}{2^{(n^2)}}$ konvergent ist.
 - b) Zeigen Sie mit dem Leibniz-Kriterium, daß die Reihe $\sum_{n=0}^{\infty} \ln \left(1 + \frac{(-1)^n}{2n+1}\right)$ konvergiert.
- **4.** a) Bestimmen Sie den Konvergenzradius R der Potenzreihe $f(z) = \sum_{n=0}^{\infty} \frac{n+1}{n!} z^n$ $(z \in \mathbb{C}).$
 - b) Begründen Sie, daß für |z| < R die Gleichung $f(z) = \sum_{n=0}^{\infty} \frac{n}{n!} z^n + \sum_{n=0}^{\infty} \frac{1}{n!} z^n$ gilt.
 - c) Stellen Sie f(z) für |z| < R als explizite Funktion dar.
- **5.** Die Funktion $f:[0,1] \to \mathbb{R}$ sei definiert durch $f(x) = \begin{cases} \left[\frac{1}{x}\right]^{-1}, & x \neq 0, \\ 0, & x = 0. \end{cases}$
 - a) Zeigen Sie: Für alle $x \in]0,1[$ gilt $x \leq f(x) \leq \frac{x}{1-x}.$
 - b) Zeigen Sie: Die Funktion f ist im Punkt $x_0 = 0$ stetig.
 - c) Geben Sie einen Punkt $x_1 \in]0,1[$ an, in dem die Funktion f unstetig ist. Beweisen Sie die Unstetigkeit in diesem Punkt.

Zur Erinnerung: Für $y \in \mathbb{R}$ ist $[y] := \max\{k \in \mathbb{Z} : k \le y\}.$

6. Berechnen Sie, ohne die Regel von l'Hospital zu benutzen, die Grenzwerte

a)
$$\lim_{\substack{z \to 0 \\ z \neq 0}} \frac{z - \sin(z)}{z^3}$$
, b) $\lim_{x \to 0+} \frac{\ln(x - \sin(x))}{\ln(x)}$.