MFI Pincer Search Trace

A1	A2	A3	A4	A5	A6_	A7	A8	A9
1	0	0	0	1	1	0	1	0
0	1	0	1	0	0	0	1	0
0	0	0	1	1	0	1	0	0
0	1	1	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0
0	1	1	1	0	0	0	0	0
0	1	0	0	0	1	1	0	1
0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	1	0
0	0	1	0	1	0	1	0	0
0	0	1	0	1	0	1	0	0
0	0	0	0	1	1	0	1	0
0	1	0	1 .	0	1	1	0	0
1	0	1	0	1	0	1	0	0
0	1	1	0	0	0	0	l o	1

Pincer-Search Method

```
L_0 := \emptyset; k := 1; C_1 := \{\{i\} \mid i \in I\}; S_0 = \emptyset;
  MFCS := \{\{1,2,...,n\}\}; MFS := \emptyset;
  do until C_k = \emptyset and S_{k-1} = \emptyset
              read database and count supports for C, and MFCS;
              MFS := MFS \cup {frequent itemsets in MFCS};
               S_{i} := \{ \text{infrequent itemsets in } C_{i} \};
              call MFCS-gen algorithm if S_{i} \neq \emptyset;
              call MFS-pruning procedure;
              generate candidates C_{k+1} from C_k; (similar to a priori's generate & prune)
              if any frequent itemset in C, is removed in MFS-pruning procedure
                  call the recovery procedure to recover candidates to C_{t+1};
              call MFCS prune procedure to prune candidates in C_{k+1};
              k := k+1:
  return MFS
  MFCS-gen
  for all itemsets s \in S_{\iota}
             for all itemsets m \in MFCS
               if s is a subset of m
               MFCS := MFCS \setminus \{m\};
              for all items e \in \text{itemset } s
                if m \setminus \{e\} is not a subset of any itemset in MFCS
                          MFCS := MFCS \cup \{m \setminus \{e\}\};
return MFCS
```

```
for all itemsets l \in C_k

for all itemsets m \in MFS

if the first k-1 items in l are also in m

/* suppose m.item_j = l.item_{k-1} */

for i from j+1 to |m|

C_{k+1} := C_{k+1} \cup \{\{l.item_1, l.item_2, ..., l.item_k, m.item_j\}\}
```

MFS-Prune

for all itemsets c in C_k if c is a subset of any itemset is the current MFS delete c from C_k ;

MFCS-Prune

for all itemsets c in C_{k+1} if c is not a subset of any itemset in the current MFCS delete c from C_{k+1} ; **STEP 1:** $L_0 := \emptyset$; k := 1;

$$C_1 := \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}\}\}$$

MFCS := $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 $MFS := \emptyset;$

PASS ONE: Database is read to count the support as follows

$$\{1\} \rightarrow 2, \{2\} \rightarrow 6, \{3\} \rightarrow 6, \{4\} \rightarrow 4, \{5\} \rightarrow 8, \{6\} \rightarrow 5, \{7\} \rightarrow 7, \{8\} \rightarrow 4, \{9\} \rightarrow 2$$

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9\} \rightarrow 0.$$

So MFCS := $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and MFS := \emptyset ;

$$L_1 := \{\{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}\}\}$$

$$S_1 := \{\{1\}, \{9\}\}$$

At this stage we call the MFCS-gen to update MFCS.

For $\{1\}$ in S_1 and for $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ in MFCS, we get the new element in MFCS as $\{2, 3, 4, 5, 6, 7, 8, 9\}$.

For $\{9\}$ in S_1 and for $\{2, 3, 4, 5, 6, 7, 8, 9\}$ in MFCS, we get the new element in MFCS as $\{2, 3, 4, 5, 6, 7, 8\}$.

We generate the candidate itemsets

$$C_2 := \{ \{2,3\}, \{2,4\}, \{2,5\}, \{2,6\}, \{2,7\}, \{2,8\}, \{3,4\}, \{3,5\}, \{3,6\}, \{3,7\}, \{3,8\}, \{3,6\}$$

$$C_2 := \{ \{2,3\}, \{2,4\}, \{2,5\}, \{2,6\}, \{2,7\}, \{2,8\}, \{3,4\}, \{3,5\}, \{3,6\}, \{3,7\}, \{3,8\}, \{4,5\}, \{4,6\}, \{4,7\}, \{4,8\}, \{5,6\}, \{5,7\}, \{5,8\}, \{6,7\}, \{6,8\}, \{7,8\} \}$$

PASS TWO: read the database to count the support of elements in C₂ and MFCS as given below:

$$\{2,3\} \rightarrow 3, \{2,4\} \rightarrow 3, \{2,5\} \rightarrow 0, \{2,6\} \rightarrow 2, \{2,7\} \rightarrow 2, \{2,8\} \rightarrow 1, \{3,4\} \rightarrow 1, \{3,5\} \rightarrow 3, \{3,6\} \rightarrow 0, \{3,7\} \rightarrow 3, \{3,8\} \rightarrow 0, \{4,5\} \rightarrow 1, \{4,6\} \rightarrow 1, \{4,7\} \rightarrow 2, \{4,8\} \rightarrow 1, \{5,6\} \rightarrow 3, \{5,7\} \rightarrow 5, \{5,8\} \rightarrow 2, \{6,7\} \rightarrow 3, \{6,8\} \rightarrow 2, \{7,8\} \rightarrow 0$$

 $\{2, 3, 4, 5, 6, 7, 8\} \rightarrow 0.$

 $MFS:=\emptyset;$

$$L_2 := \{ \{2,3\}, \{2,4\}, \{3,5\}, \{3,7\}, \{5,6\}, \{5,7\}, \{6,7\} \}$$

$$S_2 := \{ \{2,5\}, \{2,6\}, \{2,7\}, \{2,8\}, \{3,4\}, \{3,6\}, \{3,8\}, \{4,5\}, \{4,6\}, \{4,7\}, \{4,8\}, \{5,8\}, \{6,8\}, \{7,8\} \}$$

For $\{2,5\}$ in S_2 and for $\{2, 3, 4, 5, 6, 7, 8\}$ in MFCS, we get the new elements in MFCS as $\{3, 4, 5, 6, 7, 8\}$ and $\{2, 3, 4, 6, 7, 8\}$

For $\{2,6\}$ in S_2 and for $\{3, 4, 5, 6, 7, 8\}$ in MFCS, since $\{2,6\}$ is not contained in this element of MFCS and hence, no action.

For {2, 3, 4, 6, 7, 8} we get two new elements in MFCS in place of {2, 3, 4, 6, 7, 8} as {3, 4, 6, 7, 8} and {2, 3, 4, 7, 8}. Since {3, 4, 6, 7, 8} is already contained in an element of MFCS, it is excluded from MFCS.

So at this stage MFCS := $\{\{3, 4, 5, 6, 7, 8\}, \{2, 3, 4, 7, 8\}\}$.

For $\{2,7\}$ in S_2 , we get

MFCS := $\{\{3, 4, 5, 6, 7, 8\}, \{2, 3, 4, 8\}\}.$

For $\{2,8\}$ in S,, we get

MFCS := $\{\{3, 4, 5, 6, 7, 8\}, \{2, 3, 4\}\}.$

For $\{3,4\}$ in S_2 , we get

MFCS := $\{\{3, 5, 6, 7, 8\}, \{4, 5, 6, 7, 8\}, \{2, 3\}, \{2, 4\}\}.$

For $\{3,6\}$ in $S_{,,}$ we get

MFCS := $\{\{3, 5, 7, 8\}, \{4, 5, 6, 7, 8\}, \{2, 3\}, \{2, 4\}\}.$

For $\{3,8\}$ in S_2 , we get

MFCS := $\{\{3, 5, 7\}, \{4, 5, 6, 7, 8\}, \{2, 3\}, \{2, 4\}\}.$

For $\{4,5\}$ in S_2 , we get

MFCS := $\{\{3, 5, 7\}, \{5, 6, 7, 8\}, \{4, 6, 7, 8\}, \{2, 3\}, \{2, 4\}\}.$

For $\{4,6\}$ in S_2 , we get

MFCS := $\{\{3, 5, 7\}, \{5, 6, 7, 8\}, \{4, 7, 8\}, \{2, 3\}, \{2, 4\}\}.$

For $\{4,7\}$ in S_2 , we get

MFCS := $\{\{3, 5, 7\}, \{5, 6, 7, 8\}, \{4, 8\}, \{2, 3\}, \{2, 4\}\}.$

For $\{4,8\}$ in S_2 , we get

MFCS := $\{\{3, 5, 7\}, \{5, 6, 7, 8\}, \{2, 3\}, \{2, 4\}\}.$

For $\{5,8\}$ in S_2 , we get

MFCS := $\{\{3, 5, 7\}, \{6, 7, 8\}, \{5, 6, 7\}, \{2, 3\}, \{2, 4\}\}.$

For $\{6,8\}$ in S_2 , we get

MFCS :=
$$\{\{7, 8\}, \{3, 5, 7\}, \{5, 6, 7\}, \{2, 3\}, \{2, 4\}\}.$$

For $\{7,8\}$ in S, we get

MFCS :=
$$\{\{8\}, \{3, 5, 7\}, \{5, 6, 7\}, \{2, 3\}, \{2, 4\}\}.$$

We generate the candidate sets as

$$C_3 := \{\{2, 3, 4\}, \{3, 5, 7\}, \{5, 6, 7\}\}$$

In the pruning stage the itemsets $\{2, 3, 4\}$ are pruned from C_3 and hence,

$$C_3 := \{\{3, 5, 7\}, \{5, 6, 7\}\}\$$

At this stage we make one more pass of the database to count the supports of $\{\{3, 5, 7\}, \{5, 6, 7\}\}.$