## **ECUACIONES:**

## RESOLUCIÓN Y APLICACIONES

**GRADO 9** 



## **CONTENIDOS**

- 1 Sección 1: Introducción
- 2 Sección 2: Partes y clases
- 3 Sección 3: Solución de una ecuación
- 4 Sección 4: Propiedades de las igualdades en ecuaciones y consecuencias
- 5 Sección 5: Resolución de una ecuación de grado 1
- 6 Sección 6: Actividad

## **SECCIÓN 1: INTRODUCCIÓN**

## PARA PENSAR!

¿Cuál es el peso de un cubo azul para mantener la balanza en equilibrio?



## PARA PENSAR!

¿Cuál es el peso de un cubo azul para mantener la balanza en equilibrio?



Una forma de resolver: pues ... El lado izquierdo numéricamente <u>debe ser</u> igual al lado derecho.



## DEFINICIÓN: QUÉ ES UNA ECUACIÓN?

4 = 3x o también 3x = 4x =Peso de un cubo azul

- Una ecuación es una expresión que representa una igualdad entre valores conocidos y desconocidos.
- Los valores desconocidos se denomina incógnitas, usualmente representado por letras.
- Las ecuaciones son de uso (muy) frecuente en ciencias y matemáticas.



**Figura:** Por costumbre se usa x para representar la incógnita.



**Figura:** Fórmula de Euler para los poliedros regulares: C + V = A + 2.



**Figura:** Fórmula de Euler para los poliedros regulares: C + V = A + 2.



**Figura:** El efecto fotoeléctrico explicado por Einstein es resumido en la ecuación K = hf - W.



**Figura:** Fórmula de Euler para los poliedros regulares: C + V = A + 2.



**Figura:** El efecto fotoeléctrico explicado por Einstein es resumido en la ecuación K = hf - W.



**Figura:** ...; Hasta la política!



**Figura:** Fórmula de Euler para los poliedros regulares: C + V = A + 2.



**Figura:** El efecto fotoeléctrico explicado por Einstein es resumido en la ecuación K = hf - W.



**Figura:** ... ¡Hasta la política!

El **propósito** de una ecuación es encontrar los valores que satisfacen la igualdad. Tal acción se llama despejar.

## SECCIÓN 2: PARTES Y CLASES

## PARTES Y CLASES

## Ecuación numérica

$$2x + 3 = 8 + 5x$$
  
miembro izg. miembro der

### **Partes**

- Miembros: expresiones algebraicas a la izquierda o derecha del "=".
- 2. Términos: cantidades conectadas por un signo.
- Grado: el indicado por el mayor exponente de la incógnita.

## Ecuación literal

$$E = \frac{L^2}{2mr^2} - \frac{GMm}{r}$$

### Clases

Según su forma y grado:

- Numérica: aparecen una(s) letra(s) cuyo resultado es numérico.
- Literal: aparecen de forma mixta (letras y números) cuyo resultado es una expresión.

## PARTES Y CLASES: EJEMPLOS

## Ejemplo 1

$$5x^3 - 8x^2 + 2x - 2 = 0$$

incógnita x, grado 3, numérica

## Ejemplo 2

$$x = \frac{1}{2}at^2 + vt + s$$

incógnita t, grado 2, literal

## Ejemplo 3

$$3q^{2} - 4q - 5q^{2} + 7q + 2q^{2} = 3q^{3} - 5 - 2q^{3} + 12 - q^{3}$$
$$3q^{2} - 4q - 5q^{2} + 7q + 2q^{2} = 3q^{3} - 5 - 2q^{3} + 12 - q^{3}$$
$$3q = 7$$

incógnita q, grado 1, numérica

## SECCIÓN 3: SOLUCIÓN DE UNA ECUA-

## SECC CIÓN

## SOLUCIÓN DE UNA ECUACIÓN

La solución de una(s) ecuación(es) consiste en hallar el(los) valor(es) numérico(s) de la(s) incógnita(s) que verifican y hacen verdadera la igualdad. En resumen, los miembros de la ecuación deben ser idénticamente iguales.

## Ejemplo inicial: la balanza

$$3x = 4$$
, solución:  $x = \frac{4}{3}$  porque  $3 \times \frac{4}{3} = 4$ 

La solución de una ecuación también es llamada raíz[1].

## SECCIÓN 4: PROPIEDADES DE LAS IGUALDADES EN ECUACIONES Y CON-SECUENCIAS

## **PROPIEDADES**

I. Si a los dos miembros de una ecuación se suma o se resta una cantidad positiva o negativa, la igualdad se mantiene.

## Ejemplo

$$X + 8 = 10$$
,  $X + 8 - 8 = 10 - 8$ ,  $X = 10 - 8 = 2$ 

II. Si a los dos miembros de una ecuación se multiplica o se divide una cantidad positiva o negativa, la igualdad se mantiene.

## Ejemplo

$$3x = 4$$
,  $\frac{3x}{3} = \frac{4}{3}$ ,  $x = \frac{4}{3}$ 

## CONSECUENCIAS: TRANSPOSICIÓN DE TÉRMINOS

De lo anterior se obtiene como consecuencia:

I. Cualquier término puede cambiar de miembro, cambiando el signo.

$$X+8=10 \Rightarrow X=10-8$$

II. Cualquier término que multiplique (divida) la incógnita, cambia de miembro a dividir (a multiplicar).

$$3X = 4$$
  $\Rightarrow$   $X = \frac{4}{3}$ ;  $\frac{y}{8} = 5$   $\Rightarrow$   $y = 5 \cdot 8 = 40$ 

Estas consecuencias sencillas permiten resolver una ecuación [2].

## ECCIÓN 5: RESOLUCIÓN DE UNA

| S |  |
|---|--|
|   |  |

## ECUACIÓN DE GRADO 1

## RESOLUCIÓN DE UNA ECUACIÓN GRADO 1

## Procedimiento para resolver una ec. de grado 1 y una incógnita:

- Realizar operaciones, si las hay (productos, eliminar paréntesis, etc.).
- II) Realizar transposición de términos reuniendo en un miembro las <u>cantidades incógnitas</u> y en el otro las cantidades conocidas (consecuencia I).
- III) Reducir términos semejantes.
- iv) Aislar la incógnita mediante división o multiplicación (consecuencia II).
- v) Verificar la solución reemplazando el valor hallado en la ecuación.

### Resolver la ecuación

$$10X - 90 - 45 + 54X = 8X - 2 + 5 + 10X$$

### Resolver la ecuación

$$10X - 90 - 45 + 54X = 8X - 2 + 5 + 10X$$

paso ii) 
$$10x - 10x - 8x + 54x = -2 + 5 + 90 + 45$$

11

### Resolver la ecuación

$$10x - 90 - 45 + 54x = 8x - 2 + 5 + 10x$$

paso ii)  $10x - 10x - 8x + 54x = -2 + 5 + 90 + 45$ 

paso iii)  $46x = 138$ 

11

### Resolver la ecuación

10
$$x - 90 - 45 + 54x = 8x - 2 + 5 + 10x$$

paso ii) 10 $x - 10x - 8x + 54x = -2 + 5 + 90 + 45$ 

paso iii) 46 $x = 138$ 

paso iv)  $x = \frac{138}{46} = 3$ 

### Resolver la ecuación

10
$$x - 90 - 45 + 54x = 8x - 2 + 5 + 10x$$
  
paso ii) 10 $x - 10x - 8x + 54x = -2 + 5 + 90 + 45$   
paso iii) 46 $x = 138$   
paso iv)  $x = \frac{138}{46} = 3$ 

paso v) 10(3) - 90 - 45 + 54(3) = 8(3) - 2 + 5 + 10(3)

## RESOLUCIÓN DE ECUACIONES DE GRADO 1: MÁS EJEMPLOS

Clasificar y resolver cada ecuación:

1. 
$$7x + 15 = 3(3x - 7)$$

2. 
$$\frac{1}{5}k + \frac{k}{3} - 1 = \frac{k}{2}$$

3. Problema de aplicación. Después de caminar 1500 metros, aún me falta  $\frac{3}{5}$  del camino para llegar al colegio. Hallar la distancia total para ir al colegio.

# THANKS!

## SECCIÓN 6: ACTIVIDAD

## **ACTIVIDAD 3**

Responder en el cuaderno cada ítem propuesto con su debido procedimiento. Tener en cuenta el orden y la escritura. Capturar las fotos y enviarlas al correo mmolinaruu@gmail.com.

- Redactar en el cuaderno las siguientes diapositivas de la presentación-clase **Ecuaciones**:
  - número 9, sobre Consecuencias: transposición de términos.
  - número 10, sobre Resolución de una ecuación grado 1.

La numeración se refiere a la seguida en la presentación, NO a la del programa visualizador de documentos.

- 2. Clasificar y resolver cada ecuación con su verificación.
  - a) -13y + 3y + 8 4y = 29 4y 13
  - b)  $\frac{6}{5}h + \frac{1}{5} = -10 + \frac{2h}{3} + \frac{1}{3}$
  - c) Problema de aplicación. La suma de cuatro números consecutivos es 398. Hallar los números.

### REFERENCIAS



J.A. BALDOR. ALGEBRA. Grupo Editorial Patria, 1983.



JESÚS RAMOS AND LUDWIG ORTIZ. **SUPERMAT 9.** Voluntad, 2000.