Applied Analysis

Kaiwen Fu

October 4, 2023

1

Contents

1	Preliminary	1
2	Vector Space	2
	2.1 Cauchy-Schwarz inequality	
	Metric Space 3.1 Normed Linear Space	3

1 Preliminary

We only consider the notation in the Euclidean space.

$$x \in \mathbb{R}^n, x = (x_1, \dots, x_n)$$

$$A \subset \mathbb{R}^n = \{x \in \mathbb{R}^n : x \in A\}$$
 and $A^c(\mathbb{R}^n \setminus A) = \{x \in \mathbb{R}^n : x \notin A\}$

Given a map, $f: A \to B$

$$E \subset A \to f(E) = \{ f(x) : x \in E \}$$

$$F \subset B \to f^{-1}(F) = \{x \in A : f(x) \in F\}$$

f is said injective (one to one):

$$\forall x, y \in A, f(x) = f(y) \implies x = y$$

f is said surjective (onto):

$$\forall z \in B, \exists x \in A \text{ such that } f(x) = z$$

$$f(A) = B$$
 as sets; $Range(f) = B := f(A)$

¹if you found any typos, please contact:kaiwenfu@uchicago.edu

Given a family $\mathcal{F} = \{A_i\}_{i \in I}$ of subsets of X. indexed by on "index set" I,

$$\bigcup_{i \in I} A_i = \bigcup \mathcal{F} = \{ x \in X : \exists \text{ subsets } i \in I \text{ such that } x \in A_i \}$$

$$\bigcap_{i \in I} A_i = \bigcap \mathcal{F} = \{ x \in X : \forall i \in I \text{ such that } x \in A_i \}$$

 $(A_i)_{i\in\mathbb{N}}$ sequence of subsets of X:

- 1. (A_i) is increasing if $A_i \subset A_i + 1$ for all $i \geq 1$.
- 2. (A_i) is increasing if $A_{i+1} \subset Ai$ for all $i \geq 1$.

Definition.

$$\lim_{i \to \infty} \sup A_i = \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} A_i$$

$$\lim_{i \to \infty} \inf A_i = \bigcup_{j=1}^{\infty} \bigcap_{i=j}^{\infty} A_i$$

Remark. 1. $E_j = \bigcup_{i=j}^{\infty} A_i \longrightarrow (E_j)$ decreasing sequence of sets

2. $F_j = \bigcap_{i=j}^{\infty} A_i \longrightarrow (F_j)$ increasing sequence of sets

3.

 $\lim_{i\to\infty}\sup A_i=\{x\in X:x\ belongs\ to\ infinite\ many\ of\ the\ sets\ A_i\}$

 $\lim_{i\to\infty}\inf A_i=\{x\in X:x\ belongs\ to\ all\ A_i\ beyond\ a\ certain\ index\ i_*\}$

4.

$$\lim_{i\to\infty}\inf A_i\subset \lim_{i\to\infty}\sup A_i$$

Proof. Goal : for all $i \ge 1$, $\exists k \ge 1$ s.t. $x \in A_i$

Let $x \in \lim_{i \to \infty} \inf A_i$ be given, then recalling that $\lim_{i \to \infty} \inf A_i = \bigcup_{j=1}^{\infty} F_j$, then for some j we have that $x \in F_j$

Remark.

$$A = B \iff A \subset B \text{ and } B \subset A$$

2 Vector Space

X is a vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and $A, B \subset X, \alpha \in \mathbb{F}$

$$\longrightarrow \begin{cases} A+B = \{x+y : x \in A, y \in B\} \\ \alpha A = \{\alpha x : x \in A\} \end{cases}$$

2.1 Cauchy-Schwarz inequality.

Let $\alpha, \beta \in \mathbb{R}$

$$\alpha\beta \le \frac{1}{2}\alpha^2 + \frac{1}{2}\beta^2$$

Proof using the fact that $(\alpha - \beta)^2 \ge 0$.

This shows that, for $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$

$$\sum_{i=1}^{n} x_i y_i \le \sum_{i=1}^{n} \frac{1}{2} x_i^2 + \frac{1}{2} y_i^2 = \frac{1}{2} (|\mathbf{x}|^2 + |\mathbf{y}|^2)$$

This holds for $|\mathbf{x}| = |\mathbf{y}| = 1$ and $|\mathbf{x}| = 0$ or $|\mathbf{y} = 0|$.

2.2 Distance between points:

$$d(x,y) = |x - y| = (\sum_{i=1}^{n} (x_i - y_i)^2)^{1/2}$$

and the triangle inequality for $x, y, z \in \mathbb{R}^n$ is

$$|x - z| \le |x - y| + |y - z|$$

3 Metric Space

Definition. A <u>Metric Space</u> (X, ρ) consists of X nonempty set, $\rho : X \times X \to [0, \infty)$ such that

- 1. $\rho(x,y) = \rho(y,x) \quad \forall x,y \in X$
- 2. $\rho(x,y) = 0 \iff x = y \quad \forall x,y \in X$, and
- 3. $\rho(x,z) \le \rho(x,y) + \rho(y,z) \quad \forall x,y,z \in X$

Remark. (X, ρ) metric space, $Y \subset X \implies (Y, \rho|_{Y \times Y})$ is also a metric space

Definition. (X, ρ) metric space, $A \subset X$

$$diam A := \sup_{x,y \in A} \rho(x,y) \quad \text{if } A \neq \phi \quad (diam \phi := 0)$$

A is <u>bounded</u> if $diam A \leq \infty$ (i.e, equaivalently, A is bounded \iff for all $y \in X$, the set $\{\rho(x,y) : x \in A\}$ is a bounded subset of \mathbb{R})

Example. 1. $\mathbb{R}, \mathbb{C}, \mathbb{R}^n, \mathbb{C}^n$

- 2. $a, b \in \mathbb{R}, C([a, b]) := \{f : [a, b] \to \mathbb{R} | f \text{ is continuous on } [a, b] \}$ with $\rho(f, g) = \max_{x \in [a, b]} |f(x) g(x)|$ for $f, g \in C([a, b])$ by the Extreme Value Theorem
- 3. $A = \{a_1, \dots, a_k\}, [n] = \{1, 2, \dots, n\}$ $X = A^{[n]} = \{\sigma : [n] \to A\} = \{(\sigma(1), \dots, \sigma(n)) : \sigma(i) \in A \text{ for } i = 1, \dots, n\}$

$$\rho(\sigma,\omega):=\#\{i:\sigma(i)\neq\omega(i)\}$$

4. $(X, \rho_x), (Y, \rho_y)$ is a metric space

$$X \times Y = \{(u, w) : u \in X, w \in Y\}$$
 is a metric space with product metric

$$\rho(u,v) = \rho_x(u_v, v_x) + \rho_y(u_y, v_y)$$

where
$$u = (u_x, u_y) \in X \times Y, v = (v_x, v_y) \in X \times Y$$

3.1 Normed Linear Space

Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

Definition. Let E be a vector space over \mathbb{F} . We say E is a Normed Linear Space if $\exists ||\cdot|| : E \to [0,\infty)$ such that

- 1. $||x|| = 0 \iff x = 0 \in E \quad \forall x \in E$
- 2. $||\alpha x|| = |\alpha|||x|| \quad \forall x \in E, \alpha \in \mathbb{F}$, and
- 3. $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in E$

Remark. E is a Normed Linear Space \implies E is a metric space with metric $\rho(x,y) := ||x-y||$ for $x,y \in E$.

Remark. E is a n.l.s, $(x_n)_{n\geq 1}$ seq in E. If $x_n \to x$ in E for some $x \in E$, then $\lim_{n\to\infty} ||x_n|| = ||x||$, i.e $||\cdot||$ is continuous on E. (Idea: $||x_n|| - ||x_n - x|| \leq ||x|| \leq ||x_n|| + ||x_n - x||$)

Definition. if a n.l.s E is 'complete' with respect to the above metric, it is said to be a **Banach Space**.

Example. $1 \le p < \infty$

$$\ell^p(N^*) := \{(x_1, \dots, x_n, \dots) : x_i \in \mathbb{R} \quad \forall i, (\sum_{i=1}^{\infty} |x_i|^p)^{1/p} < \infty \}$$

$$||x||_p := (\sum_{i=1}^{\infty} |x_i|^p)^{1/p}$$

 $\ell^p(N^*)$ is a n.l.s with norm $||\cdot||_p$

Lemma 3.1.1. $\alpha, \beta \geq 0, \alpha + \beta = 1 \implies \text{for all } \zeta, \eta > 0, \zeta^{\alpha} \eta^{\beta} \leq \alpha \zeta + \beta \eta.$

Proof. if $\alpha = 0, \beta = 1$, it is obvious. Similarly for $\alpha = 1, \beta = 1$. So, we may assume $0 < \alpha < 1$ and $0 < \beta < 1$.