Modeling V2

April 28, 2024

```
[386]: from IPython.display import display, HTML
       display(HTML("<style>.container { width:100% !important; }</style>"))
      <IPython.core.display.HTML object>
[387]: import pandas as pd
       import matplotlib.pyplot as plt
       import seaborn as sns
       import numpy as np
       import scipy
       import sklearn
       import os
       from sklearn.model_selection import train_test_split
[388]: def convert_to_categorical(time_str):
           hour = int(time_str.split(':')[0])
           if 0 <= hour < 3:</pre>
               return 'Late Night'
           elif 3 <= hour < 6:</pre>
               return 'Early Morning'
           elif 6 <= hour < 9:</pre>
               return 'Morning'
           elif 9 <= hour < 12:</pre>
               return 'Late Morning'
           elif 12 <= hour < 15:
               return 'Noon'
           elif 15 <= hour < 18:
               return 'Afternoon'
           elif 18 <= hour < 21:
               return 'Evening'
           else:
               return 'Night'
[389]: data = pd.read_csv("./SYR_ORIGIN_WEATHER_IMPUTED.csv")
[390]: data.head()
```

```
[390]:
         Carrier Code Date (MM/DD/YYYY) Origin Airport Scheduled Arrival Time
                   B6
                              2010-01-01
                                                                            00:01
       0
                                                     JFK
                                                                            08:55
       1
                   B6
                              2010-01-01
                                                     JFK.
       2
                   MQ
                              2010-01-01
                                                     ORD
                                                                            11:20
       3
                    9E
                                                     DTW
                                                                            11:44
                              2010-01-01
       4
                   В6
                              2010-01-01
                                                     JFK
                                                                            11:52
          Scheduled Elapsed Time (Minutes) FLIGHT_STATUS month
                                                                    day
                                                                         season WeekDay
       0
                                          76
                                                      LATE
                                                                 1
                                                                      1
                                                                         winter Friday
                                          75
                                                      LATE
       1
                                                                 1
                                                                      1
                                                                         winter Friday
       2
                                         100
                                                    ONTIME
                                                                      1 winter Friday
                                                                 1
       3
                                          84
                                                      LATE
                                                                 1
                                                                      1 winter Friday
       4
                                          71
                                                      LATE
                                                                 1
                                                                      1 winter Friday
                           SYR_wind_speed SYR_ceiling_height
          ... SYR_wind_type
       0
                                       17.4
                                                     741.370199
                         N
       1
                         С
                                        0.0
                                                     548.800000
       2
                         С
                                        0.0
                                                     841.400000
       3
                         С
                                        0.0
                                                    1006.000000
                         С
                                                    1006.000000
       4
                                        0.0
          SYR_ceiling_det_code SYR_celing_CAVOK SYR_visibility_dist
                                                                  6110.0
       0
                              Μ
                                                 N
                              М
                                                 N
                                                                  2414.0
       1
       2
                              Μ
                                                 N
                                                                  3138.4
       3
                                                 N
                                                                  3138.4
                              Μ
       4
                              Μ
                                                 N
                                                                  3138.4
         SYR_visibility_variability
                                      SYR_air_temparature
                                                            SYR_dew_point_temparature
       0
                                                      -4.8
                                                                                  -24.0
                                   N
                                                     -17.0
                                                                                  -28.8
       1
       2
                                   N
                                                     -19.4
                                                                                  -29.6
       3
                                   N
                                                     -19.8
                                                                                  -29.2
       4
                                   N
                                                     -19.8
                                                                                  -29.2
         SYR_sea_level_pressure
       0
                    10154.572817
       1
                    10132.352069
       2
                    10129.796558
       3
                    10129.482076
                    10129.482076
       [5 rows x 40 columns]
[391]: tmp = data[['latitude', 'longitude', 'elevation',
               'wind_direction', 'wind_speed', 'ceiling_height','visibility_dist',u

¬'air_temparature', 'dew_point_temparature',
```

'sea_level_pressure']]

```
[392]: sns.heatmap(tmp.corr(), annot=True, cmap='coolwarm', fmt=".2f", linewidths=.5,
         \rightarrow vmin=-1, vmax=1)
```

[392]: <Axes: >


```
[393]: data['SCHED_ARRV_TIME_CAT'] = data['Scheduled Arrival Time'].
        →apply(convert_to_categorical)
[394]: data.shape
[394]: (113671, 41)
[395]:
      data.columns
[395]: Index(['Carrier Code', 'Date (MM/DD/YYYY)', 'Origin Airport',
```

```
'UNIX_TIMESTAMP', 'latitude', 'longitude', 'elevation',
             'wind_direction', 'wind_type', 'wind_speed', 'ceiling_height',
             'ceiling_det_code', 'celing_CAVOK', 'visibility_dist',
             'visibility_variability', 'air_temparature', 'dew_point_temparature',
             'sea_level_pressure', 'SYR_latitude', 'SYR_longitude', 'SYR_elevation',
             'SYR_wind_direction', 'SYR_wind_type', 'SYR_wind_speed',
             'SYR_ceiling_height', 'SYR_ceiling_det_code', 'SYR_celing_CAVOK',
             'SYR_visibility_dist', 'SYR_visibility_variability',
             'SYR_air_temparature', 'SYR_dew_point_temparature',
             'SYR_sea_level_pressure', 'SCHED_ARRV_TIME_CAT'],
            dtype='object')
[396]: | # data = data[data['Origin Airport'].isin(['JFK', 'ORD', 'MCO'])]
[397]: data.shape
[397]: (113671, 41)
[398]: | df = data.drop(columns=['Date (MM/DD/YYYY)', 'Scheduled Arrival Time', 'day', |
       ⇔'UNIX_DATE','UNIX_TIMESTAMP',
                              'longitude', 'dew_point_temparature', u
       'SYR_longitude',
              'SYR_wind_type','SYR_ceiling_height', 'SYR_ceiling_det_code',

¬'SYR_celing_CAVOK', 'SYR_visibility_variability',

¬'SYR_dew_point_temparature', 'SYR_latitude', 'SYR_elevation'])
[399]: df.isna().sum()
[399]: Carrier Code
                                         0
      Origin Airport
                                         0
      Scheduled Elapsed Time (Minutes)
                                         0
      FLIGHT STATUS
                                         0
      month
                                         0
      season
                                         0
      WeekDay
                                         0
      latitude
                                         0
      elevation
                                         0
      wind_direction
                                         0
                                         0
      wind_speed
      visibility_dist
                                         0
                                         0
      air_temparature
      sea_level_pressure
                                         0
                                         0
      SYR_wind_direction
                                         0
      SYR_wind_speed
```

'FLIGHT STATUS', 'month', 'day', 'season', 'WeekDay', 'UNIX DATE',

```
SYR_visibility_dist
                                            0
                                            0
       SYR_air_temparature
       SYR_sea_level_pressure
                                            0
       SCHED_ARRV_TIME_CAT
       dtype: int64
[400]: df.shape
[400]: (113671, 20)
[401]: df['SYR_sea_level_pressure'] = df['SYR_sea_level_pressure'].

¬fillna(df['SYR_sea_level_pressure'].mean())
[402]: df.isna().sum()
[402]: Carrier Code
                                            0
       Origin Airport
                                            0
       Scheduled Elapsed Time (Minutes)
                                            0
       FLIGHT_STATUS
                                            0
       month
                                            0
       season
                                            0
       WeekDay
                                            0
       latitude
                                            0
       elevation
                                            0
       wind_direction
                                            0
       wind_speed
                                            0
       visibility_dist
                                            0
       air_temparature
                                            0
       sea_level_pressure
       SYR_wind_direction
                                            0
       SYR_wind_speed
                                            0
       SYR_visibility_dist
                                            0
       SYR_air_temparature
                                            0
       SYR_sea_level_pressure
                                            0
       SCHED_ARRV_TIME_CAT
       dtype: int64
[403]: def mps_to_mph(speed_mps):
           return (speed_mps/10.0) * 2.23694
       def meters_to_miles(distance_meters):
           return distance_meters * 0.000621371
       def celsius_to_fahrenheit(temperature_celsius):
           return (temperature_celsius/10.0) * 9/5 + 32
       def hectopascal_to_mb(v):
           return v/10.0
```

```
[404]: df.tail()
                                            Scheduled Elapsed Time (Minutes)
[404]:
              Carrier Code Origin Airport
                        DL
                                       DTW
                                                                            83
       113666
                         WN
                                                                            70
       113667
                                       BWI
                                       DFW
       113668
                         AA
                                                                           181
       113669
                        UA
                                       DEN
                                                                           198
       113670
                        UA
                                       EWR.
                                                                            74
              FLIGHT_STATUS month season WeekDay latitude
                                                                 elevation
       113666
                       EARLY
                                 12 winter
                                              Sunday
                                                      42.23113
                                                                     191.9
                                    winter
                                              Sunday
                                                                      42.0
       113667
                       LATE
                                 12
                                                      39.17329
       113668
                      ONTIME
                                 12 winter
                                              Sunday
                                                      32.56500
                                                                     213.4
                                 12 winter
                                              Sunday
       113669
                      ONTIME
                                                      39.84657
                                                                    1647.2
                                             Sunday 40.68275
       113670
                       EARLY
                                 12 winter
                                                                       1.9
               wind_direction
                                wind_speed
                                            visibility_dist
                                                              air_temparature
                   240.000000
                                      20.4
                                                     13143.4
                                                                          34.8
       113666
       113667
                   243.746270
                                      23.6
                                                     16074.4
                                                                          88.6
       113668
                   199.866450
                                      10.4
                                                     16093.0
                                                                         184.0
       113669
                   191.233489
                                      19.4
                                                     16074.4
                                                                          42.0
                                      34.0
                                                                          67.0
       113670
                   286.000000
                                                     16074.4
                                                         SYR_wind_speed
                                    SYR_wind_direction
               sea_level_pressure
       113666
                      10126.074551
                                                  226.0
                                                                    25.8
                                                                    25.8
       113667
                      10154.400000
                                                  226.0
                      10167.225662
                                                  226.0
                                                                    25.8
       113668
       113669
                      10192.400000
                                                  226.0
                                                                    25.8
                      10155.536842
       113670
                                                  226.0
                                                                    25.8
               SYR_visibility_dist
                                     SYR air temparature
                                                           SYR_sea_level_pressure
       113666
                            15030.8
                                                    -17.0
                                                                      10154.321162
       113667
                            15030.8
                                                    -17.0
                                                                      10154.321162
       113668
                            15030.8
                                                    -17.0
                                                                      10154.321162
                                                                      10154.321162
       113669
                            15030.8
                                                    -17.0
       113670
                            15030.8
                                                    -17.0
                                                                      10154.321162
              SCHED_ARRV_TIME_CAT
       113666
                             Night
       113667
                             Night
       113668
                             Night
                             Night
       113669
       113670
                             Night
[405]: | df['SYR_wind_speed'] = df['SYR_wind_speed'].apply(mps_to_mph)
       df['wind_speed'] = df['wind_speed'].apply(mps_to_mph)
       df['visibility_dist'] = df['visibility_dist'].apply(meters_to_miles)
```

```
[406]: df[df.season=='spring'].head(50)
```

[406]:		Carrier Code	Origin Airport	Scheduled Elapsed 7	Time (Minutes)	\
	1666	В6	JFK		80	
	1667	9E	DTW		87	
	1668	00	ORD		106	
	1669	В6	JFK		84	
	1670	OH	JFK		94	
	1671	MQ	ORD		105	
	1672	В6	JFK		78	
	1673	EV	ATL		137	
	1674	XE	CLE		63	
	1675	YV	IAD		75	
	1676	XE	ORD		100	
	1677	В6	MCO		160	
	1678	EV	ATL		130	
	1679	9E	DTW		87	
	1680	OH	CVG		96	
	1681	В6	JFK		88	
	1682	XE	CLE		65	
	1683	OH	JFK		92	
	1684	EV	ATL		133	
	1685	XE	EWR		69	
	1686	MQ	ORD		105	
	1687	XE	IAD		76	
	1688	US	CLT		114	
	1689	OH	DTW		83	
	1690	YV	ORD		100	
	1691	XE	CLE		65	
	1692	OH	JFK		115	
	1693	В6	MCO		159	
	1694	MQ	ORD		105	
	1695	US	PHL		72	
	1696	XE	EWR		72	
	1697	OH	DTW		87	
	1698	EV	ATL		132	
	1699	В6	JFK		80	
	1700	9E	DTW		87	
	1701	00	ORD		106	

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715	B6 OH 9E MQ B6 EV YV XE B6 EV 9E OH B6		JFK JFK DTW ORD JFK ATL IAD ORD MCO ATL DTW CVG JFK CLE			1 1 1 1	84 94 83 05 78 37 75 00 60 30 87 96 88 65
	FLIGHT_STATUS	month	season	WeekDay	latitude	elevation	\
1666	EARLY	3	spring	Monday	40.63915	3.4	
1667	ONTIME	3	spring	Monday	42.23130	192.3	
1668	EARLY	3	spring	Monday	41.96019	201.8	
1669	EARLY	3	spring	Monday	40.63915	3.4	
1670	LATE	3	spring	Monday	40.63915	3.4	
1671	LATE	3	spring	Monday	41.96019	201.8	
1672	ONTIME	3	spring	Monday	40.63915	3.4	
1673	EARLY	3	spring	Monday	33.63010	307.8	
1674	ONTIME	3	spring	Monday	41.40570	238.0	
1675	LATE	3	spring	Monday	38.93486	88.4	
1676	LATE	3	spring	Monday	41.96019	201.8	
1677	LATE	3	spring	Monday	28.43390	27.4	
1678	LATE	3	spring	Monday	33.63010	307.8	
1679	LATE	3	spring	Monday		192.3	
1680	ONTIME	3	spring	Monday	39.04440	269.1	
1681	EARLY	3	spring	Monday	40.63915	3.4	
1682	LATE	3	spring	Monday		238.0	
1683	EARLY	3	spring	Monday	40.63915	3.4	
1684	LATE	3	spring	Monday		307.8	
1685	LATE	3	spring	Monday		2.1	
1686	ONTIME	3	spring	Monday	41.96019	201.8	
1687	LATE	3	spring	Monday		88.4	
1688	LATE	3	spring	Monday		221.9	
1689	ONTIME	3	spring	Monday		192.3	
1690	EARLY	3	spring	Monday		201.8	
1691	LATE	3	spring	Monday		238.0	
1692	LATE	3	spring	Monday		3.4	
1693	EARLY	3	spring	Monday	28.43390	27.4	
1694	LATE	3	spring	Monday	41.96019	201.8	
1695	EARLY	3	spring	Monday	39.87327	3.0	
1696	LATE	3	spring	Monday	40.68250	2.1	

1697	EARLY	3	spring	Monday	42.23130	192.3	
1698	ONTIME	3	spring	Monday	33.63010	307.8	
1699	EARLY	3	spring	Tuesday	40.63915	3.4	
1700	LATE	3	spring	Tuesday	42.23130	192.3	
1701	EARLY	3	spring	Tuesday	41.96019	201.8	
1702	ONTIME	3	spring	Tuesday	40.63915	3.4	
1703	EARLY	3	spring	Tuesday	40.63915	3.4	
1704	EARLY	3	spring	Tuesday	42.23130	192.3	
1705	LATE	3	spring	Tuesday	41.96019	201.8	
1706	EARLY	3	spring	Tuesday	40.63915	3.4	
1707	LATE	3	spring	Tuesday	33.63010	307.8	
1708	LATE	3	spring	Tuesday	38.93486	88.4	
1709	EARLY	3	spring	Tuesday	41.96019	201.8	
1710	LATE	3	spring	Tuesday	28.43390	27.4	
1711	LATE	3	spring	Tuesday	33.63010	307.8	
1712	LATE	3	spring	Tuesday	42.23130	192.3	
1713	ONTIME	3	spring	Tuesday	39.04440	269.1	
1714	EARLY	3	spring	Tuesday	40.63915	3.4	
1715	LATE	3	spring	Tuesday	41.40570	238.0	
	${\tt wind_direction}$	wind	_speed	visibilit	y_dist a	ir_temparature	\
1666	210.000000	8.	545111	9.	976609	37.940000	
1667	332.000000	5.	816044	9.	599809	35.456000	
1668	216.000000	9.	439887	9.	999724	33.008000	
1669	304.000000	19.	103468	9.	976609	36.176000	
1670	302.000000	18.	835035		988166	36.392000	
1671	146.000000	9.	663581	9.	999724	31.820000	
1672	304.000000		611341		988166	36.788000	
1673	336.000000		710820		188337	30.560000	
1674	298.000000		368656		588252	34.160000	
1675	288.000000		616342		988166	39.200000	
1676	354.000000		724066		999724	30.488000	
1677	239.243002		684328		588252	47.300000	
1678	184.000000		158208		988166	33.980000	
1679	346.000000		276678		976609	34.232000	
1680	328.000000		487126		199895	34.376000	
1681	320.000000		203691		988166	41.432000	
1682	330.000000		842536		988166	36.104000	
1683	324.000000		651079		988166	42.836000	
1684	117.230769		934514		999724	39.956000	
1685	314.000000		145706		999724	44.204000	
1686	344.000000		008245		999724	31.352000	
1687	306.000000		998244		988166	44.996000	
1688	268.933096		057985		976609	44.168000	
1689	270.000000		500372		988166	38.372000	
1690	264.000000		950260		988166	33.224000	
1691	342.000000	11.	542610	9.	988166	35.996000	

1692	320.000000	24.606340	9.976609	47.984000
1693	148.282259	5.771305	9.988166	68.432000
1694	160.000000	8.947760	9.999724	35.132000
1695	310.000000	21.608840	9.988166	47.408000
1696	304.000000	20.266676	9.988166	47.156000
1697	332.000000	9.439887	9.988166	38.192000
1698	142.841359	1.879030	9.999724	55.184000
1699	324.000000	20.490370	9.976609	44.996000
1700	26.000000	8.276678	9.999724	26.672000
1701	339.166495	6.925095	9.986341	30.143158
1702	326.000000	8.276678	9.976609	36.572000
1703	330.000000	7.381902	9.988166	35.384000
1704	220.000000	5.279178	9.988166	27.248000
1705	350.000000	6.934514	9.999724	30.200000
1706	332.000000	6.934514	9.988166	35.384000
1707	104.000000	16.105968	6.518306	39.632000
1708	320.000000	4.071231	9.988166	36.968000
1709	344.000000	6.487126	9.988166	30.020000
1710	178.000000	15.434886	9.599809	59.972000
1711	20.000000	16.777050	1.850070	36.320000
1712	352.000000	7.829290	9.788209	29.336000
1713	24.000000	10.110969	7.400032	30.884000
1714	63.666667	9.395148	9.988166	43.232000
1715	91.777778	5.484035	8.166803	30.236000
	02111110	0.10100	0.100000	00.1200000
	goo lowel proggs	no CVDin	d direction CVD	rind anod \
1666	sea_level_pressu			_wind_speed \
1666	1003.3800	000	300.0	9.618842
1667	1003.3800 1017.1765	000 569	300.0 298.0	9.618842 8.052984
1667 1668	1003.3800 1017.1765 1021.0279	000 569 984	300.0 298.0 300.0	9.618842 8.052984 8.052984
1667	1003.3800 1017.1765 1021.0279 1003.4600	000 669 084 000	300.0 298.0 300.0 300.0	9.618842 8.052984 8.052984 8.052984
1667 1668	1003.3800 1017.1765 1021.0279	000 669 084 000	300.0 298.0 300.0	9.618842 8.052984 8.052984
1667 1668 1669	1003.3800 1017.1765 1021.0279 1003.4600	000 669 984 000	300.0 298.0 300.0 300.0	9.618842 8.052984 8.052984 8.052984
1667 1668 1669 1670	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800	000 669 984 000 000	300.0 298.0 300.0 300.0 308.0	9.618842 8.052984 8.052984 8.052984 8.724066
1667 1668 1669 1670 1671 1672	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885	000 669 084 000 000 574	300.0 298.0 300.0 300.0 308.0 312.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454
1667 1668 1669 1670 1671 1672 1673	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000	000 669 984 000 000 574 000	300.0 298.0 300.0 300.0 308.0 312.0 312.0 320.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.618842
1667 1668 1669 1670 1671 1672 1673 1674	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599	000 569 984 000 000 574 000 000	300.0 298.0 300.0 300.0 308.0 312.0 312.0 320.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.618842 9.887275
1667 1668 1669 1670 1671 1672 1673 1674 1675	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000	000 669 084 000 000 574 000 000 073	300.0 298.0 300.0 300.0 312.0 312.0 312.0 320.0 324.0 330.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.171454 9.618842 9.887275 10.110969
1667 1668 1669 1670 1671 1672 1673 1674 1675	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000 1022.6355	000 669 984 000 574 000 973 000	300.0 298.0 300.0 300.0 308.0 312.0 312.0 320.0 324.0 330.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.618842 9.887275 10.110969 10.110969
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000 1022.6355 1017.6200	000 669 984 000 000 674 000 073 000 692 000	300.0 298.0 300.0 300.0 308.0 312.0 312.0 320.0 324.0 330.0 330.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.618842 9.887275 10.110969 10.826790
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000 1022.6355 1017.6200 1017.7800	000 669 984 000 574 000 973 000 592 000	300.0 298.0 300.0 300.0 312.0 312.0 320.0 324.0 330.0 336.0 336.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.171454 9.618842 9.887275 10.110969 10.110969 10.826790 10.826790
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000 1022.6355 1017.6200 1017.7800 1019.4200	000 669 984 000 574 000 073 000 592 000 000	300.0 298.0 300.0 300.0 308.0 312.0 312.0 320.0 324.0 330.0 336.0 336.0 336.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.171454 9.618842 9.887275 10.110969 10.110969 10.826790 10.826790 10.826790
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000 1022.6355 1017.6200 1017.7800 1019.4200 1019.5758	000 669 984 000 000 674 000 073 000 692 000 000 000 000	300.0 298.0 300.0 300.0 308.0 312.0 312.0 320.0 324.0 330.0 336.0 336.0 336.0 346.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.618842 9.887275 10.110969 10.110969 10.826790 10.826790 10.826790 12.482125
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000 1022.6355 1017.6200 1017.7800 1019.4200 1019.5758 1004.6400	000 569 984 000 574 000 973 000 592 000 000 000 000 000 000 000	300.0 298.0 300.0 300.0 312.0 312.0 320.0 324.0 330.0 336.0 336.0 336.0 346.0 346.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.171454 9.618842 9.887275 10.110969 10.110969 10.826790 10.826790 10.826790 12.482125 12.482125
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000 1022.6355 1017.6200 1017.7800 1019.4200 1019.5758	000 569 984 000 574 000 973 000 592 000 000 000 000 000 000 000	300.0 298.0 300.0 300.0 308.0 312.0 312.0 320.0 324.0 330.0 336.0 336.0 336.0 346.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.618842 9.887275 10.110969 10.110969 10.826790 10.826790 10.826790 12.482125
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000 1022.6355 1017.6200 1017.7800 1019.4200 1019.5758 1004.6400	000 669 984 000 574 000 073 000 592 000 000 000 000 000 000 000 0	300.0 298.0 300.0 300.0 312.0 312.0 320.0 324.0 330.0 336.0 336.0 336.0 346.0 346.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.171454 9.618842 9.887275 10.110969 10.110969 10.826790 10.826790 10.826790 12.482125 12.482125
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000 1022.6355 1017.6200 1017.7800 1019.4200 1019.5758 1004.6400 1019.6321	000 669 984 000 074 000 073 000 092 000 000 000 045 000 000 000 000	300.0 298.0 300.0 300.0 308.0 312.0 312.0 320.0 324.0 330.0 336.0 336.0 346.0 346.0 350.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.171454 9.618842 9.887275 10.110969 10.110969 10.826790 10.826790 10.826790 12.482125 12.482125
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000 1022.6355 1017.6200 1017.7800 1019.4200 1019.5758 1004.6400 1019.6321 1004.9000	000 669 984 000 000 674 000 000 000 000 000 000 000 0	300.0 298.0 300.0 300.0 308.0 312.0 312.0 320.0 324.0 330.0 336.0 336.0 336.0 346.0 346.0 346.0 346.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.618842 9.887275 10.110969 10.110969 10.826790 10.826790 10.826790 12.482125 12.482125 12.482125
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1680 1681 1682 1683 1684	1003.3800 1017.1765 1021.0279 1003.4600 1003.1800 1021.3885 1003.2200 1017.3000 1017.8599 1013.2000 1022.6355 1017.6200 1017.7800 1019.4200 1019.5758 1004.6400 1019.6321 1004.9000 1017.8000	000 669 984 000 574 000 073 000 592 000 000 000 045 000 000 000 000	300.0 298.0 300.0 300.0 308.0 312.0 312.0 320.0 324.0 330.0 336.0 336.0 336.0 346.0 346.0 350.0 284.0	9.618842 8.052984 8.052984 8.052984 8.724066 9.171454 9.171454 9.618842 9.887275 10.110969 10.110969 10.826790 10.826790 10.826790 12.482125 12.482125 12.482125 13.376901

1687	1014.040000	348.0	12.437386	
1688	1017.340000	348.0	12.437386	
1689	1019.420000	342.0	12.437386	
1690	1023.780000	336.0	12.705819	
1691	1019.680000	326.0	11.497872	
1692	1005.960000	330.0	11.229439	
1693	1014.480000	330.0	11.229439	
1694	1022.882353	330.0	11.229439	
1695	1009.660000	330.0	11.229439	
1696	1006.840000	328.0	10.737312	
1697	1019.520000	326.0	8.947760	
1698	1013.420000	326.0	8.947760	
1699	1008.240000	322.0	7.829290	
1700	1019.314288	280.0	6.934514	
1701	1020.836264	280.0	6.263432	
1702	1011.940000	280.0	6.263432	
1703	1011.940000	288.0	5.368656	
1704	1018.713089	290.0	5.368656	
1705	1019.980000	290.0	5.368656	
1706	1012.060000	290.0	5.368656	
1707	1005.781262	292.0	5.592350	
1708	1014.800000	308.0	5.144962	
1709	1020.180000	308.0	5.144962	
1710	1004.243120	312.0	4.876529	
1711	1005.431706	312.0	4.876529	
1712	1018.237542	312.0	4.876529	
1713	1015.144890	322.0	4.160708	
1714	1013.280000	322.0	4.160708	
1715	1017.519681	318.0	4.608096	
	SYR_visibility_dist	SYR_air_temparature	SYR_sea_level_pressure	\
1666	9.976609	35.600		
1667		33.000	1006.760000	
1007	8.199985	33.692	1006.760000 1008.654677	
1668	8.199985 7.891287			
		33.692	1008.654677	
1668	7.891287	33.692 33.548	1008.654677 1008.678891 1008.678891 1008.953368	
1668 1669	7.891287 7.891287	33.692 33.548 33.548	1008.654677 1008.678891 1008.678891	
1668 1669 1670	7.891287 7.891287 8.091369 8.091369 8.091369	33.692 33.548 33.548 33.224	1008.654677 1008.678891 1008.678891 1008.953368 1009.140395 1009.140395	
1668 1669 1670 1671 1672 1673	7.891287 7.891287 8.091369 8.091369 8.091369 8.939789	33.692 33.548 33.548 33.224 33.224 33.224 33.728	1008.654677 1008.678891 1008.678891 1008.953368 1009.140395 1009.959100	
1668 1669 1670 1671 1672 1673 1674	7.891287 7.891287 8.091369 8.091369 8.091369 8.939789 9.539660	33.692 33.548 33.548 33.224 33.224 33.728 34.124	1008.654677 1008.678891 1008.678891 1008.953368 1009.140395 1009.140395 1009.959100 1010.277330	
1668 1669 1670 1671 1672 1673 1674	7.891287 7.891287 8.091369 8.091369 8.091369 8.939789 9.539660 9.739618	33.692 33.548 33.548 33.224 33.224 33.728 34.124 34.340	1008.654677 1008.678891 1008.678891 1008.953368 1009.140395 1009.959100 1010.277330 1010.457330	
1668 1669 1670 1671 1672 1673 1674 1675 1676	7.891287 7.891287 8.091369 8.091369 8.091369 8.939789 9.539660 9.739618	33.692 33.548 33.548 33.224 33.224 33.728 34.124 34.340 34.340	1008.654677 1008.678891 1008.678891 1008.953368 1009.140395 1009.959100 1010.277330 1010.457330	
1668 1669 1670 1671 1672 1673 1674 1675 1676	7.891287 7.891287 8.091369 8.091369 8.091369 9.539660 9.739618 9.739618 9.999724	33.692 33.548 33.548 33.224 33.224 33.728 34.124 34.340 34.340 34.736	1008.654677 1008.678891 1008.678891 1008.953368 1009.140395 1009.959100 1010.277330 1010.457330 1010.737330	
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677	7.891287 7.891287 8.091369 8.091369 8.091369 8.939789 9.539660 9.739618 9.739618 9.999724	33.692 33.548 33.548 33.224 33.224 33.728 34.124 34.340 34.340 34.736	1008.654677 1008.678891 1008.678891 1008.953368 1009.140395 1009.140395 1009.959100 1010.277330 1010.457330 1010.737330 1010.737330	
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678	7.891287 7.891287 8.091369 8.091369 8.091369 8.939789 9.539660 9.739618 9.739618 9.999724 9.999724	33.692 33.548 33.548 33.224 33.224 33.728 34.124 34.340 34.340 34.736 34.736	1008.654677 1008.678891 1008.678891 1008.953368 1009.140395 1009.959100 1010.277330 1010.457330 1010.737330 1010.737330 1010.737330	
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677	7.891287 7.891287 8.091369 8.091369 8.091369 8.939789 9.539660 9.739618 9.739618 9.999724	33.692 33.548 33.548 33.224 33.224 33.728 34.124 34.340 34.340 34.736	1008.654677 1008.678891 1008.678891 1008.953368 1009.140395 1009.140395 1009.959100 1010.277330 1010.457330 1010.737330 1010.737330	

1682	9.988166	35.708	1011.502695
1683	9.999724	36.104	1011.707290
1684	9.999724	36.104	1011.707290
1685	9.999724	36.032	1011.949045
1686	9.999724	36.032	1011.949045
1687	9.988166	36.104	1012.108737
1688	9.988166	36.104	1012.108737
1689	9.988166	35.816	1012.246885
1690	8.488176	35.816	1012.372678
1691	4.299887	35.204	1012.742059
1692	3.345586	34.484	1013.150324
1693	4.545577	34.160	1013.460653
1694	4.545577	34.160	1013.460653
1695	4.545577	34.160	1013.460653
1696	5.545612	33.908	1013.559273
1697	8.799980	33.872	1014.036243
1698	8.799980	33.872	1014.036243
1699	8.999938	33.872	1014.697623
1700	9.988166	32.000	1014.920000
1701	9.976609	32.000	1014.840000
1702	9.976609	32.000	1014.840000
1703	9.988166	32.216	1014.760000
1704	9.988166	32.216	1014.860000
1705	9.988166	32.216	1014.860000
1706	9.988166	32.216	1014.860000
1707	9.976609	32.216	1014.940000
1708	9.988166	32.432	1015.320000
1709	9.988166	32.432	1015.320000
1710	9.988166	32.612	1015.480000
1711	9.988166	32.612	1015.480000
1712	9.988166	32.612	1015.480000
1713	9.988166	33.620	1015.560000
1714	9.988166	33.620	1015.560000
1715	9.988166	34.412	1015.320000
COHED A	DDU TIME CAT		

SCHED_ARRV_TIME_CAT

	-	· · · · -	
1666		Lat	te Night
1667			Morning
1668		Late	Morning
1669		Late	Morning
1670		Late	Morning
1671		Late	Morning
1672		Late	Morning
1673			Noon
1674			Noon
1675			Noon
1676			Noon

4.000	37
1677	Noon
1678	Noon
1679	Noon
1680	Afternoon
1681	Afternoon
1682	Afternoon
1683	Afternoon
1684	Afternoon
1685	Afternoon
1686	Afternoon
1687	Evening
1688	Evening
1689	Evening
1690	Evening
1691	_
	Evening
1692	Night
1693	Night
1694	Night
1695	Night
1696	Night
1697	Night
1698	Night
1699	Late Night
1700	Morning
1701	Late Morning
1702	Late Morning
1703	Late Morning
1704	Late Morning
1705	Late Morning
	•
1706	Late Morning
1707	Noon
1708	Noon
1709	Noon
1710	Noon
1711	Noon
1712	Noon
1713	Afternoon
1714	Afternoon
1715	Afternoon
2, 10	001110011
[]:	
[]:	
. 1.	
[]:	
r 1.	
г э.	
[]:	

```
[]:
  []:
  []:
  []:
[407]: from sklearn.base import BaseEstimator, TransformerMixin
       from sklearn.preprocessing import OneHotEncoder
       class MultiColumnOneHotEncoder(BaseEstimator, TransformerMixin):
           def __init__(self, columns=None):
               self.columns = columns
               self.encoder = None
           def fit(self, X, y=None):
               self.encoder = OneHotEncoder(sparse_output=False, drop='first')
               self.encoder.fit(X[self.columns])
               return self
           def transform(self, X):
               X_encoded = X.copy()
               encoded_data = self.encoder.transform(X[self.columns])
               encoded_df = pd.DataFrame(encoded_data, columns=self.encoder.

¬get_feature_names_out(self.columns), index=X.index)
               # Drop the original columns
               X_encoded = X_encoded.drop(columns=self.columns)
               # Concatenate the encoded DataFrame with the original DataFrame,
        ⇔preserving the index
               X_encoded = pd.concat([X_encoded, encoded_df], axis=1)
               return X_encoded
           def fit_transform(self, X, y=None):
               self.fit(X)
               return self.transform(X)
[408]: sample = df.head()
[409]: | # sample.head().drop(columns=['FLIGHT_STATUS']).to_csv("sample_input.csv",_
        \rightarrow i.n.d.e.x = Fa.l.s.e.
[410]: encoder = MultiColumnOneHotEncoder(columns=['Carrier Code', 'Originu
        ⇔Airport', 'season', 'SCHED_ARRV_TIME_CAT', 'month', 'WeekDay']) ...
        →#, 'wind_type', 'ceiling_det_code', 'celing_CAVOK', 'visibility_variability'
```

```
[411]: encoded_data = encoder.fit_transform(df.drop(columns=['FLIGHT_STATUS']))
[412]: encoded_data.head()
[412]:
          Scheduled Elapsed Time (Minutes) latitude elevation wind direction \
                                         76 40.63915
                                                              3.4
                                                                       102.428571
       1
                                         75 40.63915
                                                              3.4
                                                                       110.503072
                                                            201.8
       2
                                        100 41.96019
                                                                       292.000000
       3
                                         84 42.23130
                                                            192.3
                                                                       270.000000
       4
                                         71 40.63915
                                                              3.4
                                                                       159.721841
          wind_speed visibility_dist
                                        air_temparature
                                                         sea_level_pressure \
                                                                 1018.725782
            3.221194
                             6.966812
                                                 33.944
       0
            0.000000
                             5.400087
                                                 33.368
                                                                 1015.367354
       1
       2
            9.395148
                             9.999724
                                                  7.808
                                                                 1024.780000
       3
         12.392648
                             6.599830
                                                 23.000
                                                                 1018.248971
            0.000000
                                                 33.224
                                                                 1014.594175
                             4.794250
          SYR_wind_direction SYR_wind_speed ... month_9
                                                           month_10
                                                                      month_11 \
       0
                  106.000000
                                     3.892276
                                                       0.0
                                                                 0.0
                                                                           0.0
       1
                  103.912190
                                     0.000000
                                                      0.0
                                                                 0.0
                                                                           0.0
       2
                  132.389021
                                     0.000000
                                                      0.0
                                                                 0.0
                                                                           0.0
       3
                  144.543770
                                     0.000000
                                                       0.0
                                                                 0.0
                                                                           0.0
                  144.543770
                                     0.000000 ...
                                                       0.0
                                                                 0.0
                                                                           0.0
          month_12 WeekDay_Monday WeekDay_Saturday WeekDay_Sunday
               0.0
       0
                                0.0
                                                  0.0
                                                                   0.0
                                0.0
                                                  0.0
       1
               0.0
                                                                   0.0
       2
               0.0
                                0.0
                                                  0.0
                                                                   0.0
       3
               0.0
                                0.0
                                                  0.0
                                                                   0.0
               0.0
                                0.0
                                                  0.0
                                                                   0.0
          WeekDay_Thursday
                            WeekDay_Tuesday
                                              WeekDay_Wednesday
       0
                       0.0
                                         0.0
                                                             0.0
                       0.0
                                         0.0
                                                             0.0
       1
       2
                       0.0
                                         0.0
                                                             0.0
       3
                       0.0
                                         0.0
                                                             0.0
                       0.0
                                         0.0
                                                             0.0
       [5 rows x 83 columns]
[413]: trainX, testX, trainY, testY = train_test_split(
           encoded_data,
           df['FLIGHT_STATUS'],
           test_size=0.2,
           random_state=947,
           stratify=df['FLIGHT_STATUS']
```

```
[414]: | from sklearn.preprocessing import StandardScaler
      scaler = StandardScaler()
      enc_trainX = pd.DataFrame(scaler.fit_transform(trainX), index=trainX.index,_
       enc_testX = pd.DataFrame(scaler.transform(testX), index=testX.index,__
        ⇔columns=testX.columns)
[415]: from sklearn.tree import DecisionTreeClassifier
      from sklearn.preprocessing import LabelEncoder
      from sklearn.linear_model import LogisticRegression
      from sklearn.metrics import accuracy_score, classification_report
      def fit_and_evaluate(model, trainX, trainY, testX, testY):
          # Convert string labels to integers
          label_encoder = LabelEncoder()
          trainY_encoded = label_encoder.fit_transform(trainY)
          testY_encoded = label_encoder.transform(testY)
          model.fit(trainX, trainY encoded)
          testY_pred = model.predict(testX)
          accuracy = accuracy_score(testY_encoded, testY_pred)
          report = classification_report(testY_encoded, testY_pred, output_dict=True)
          results = {'accuracy': accuracy, 'classification_report': report}
          return results
      # Update other classification functions similarly...
      # Random Forest
      from sklearn.ensemble import RandomForestClassifier
      def random_forest_classification(trainX, trainY, testX, testY, __
       model = RandomForestClassifier(n estimators=n estimators,
       ⇔criterion=criterion, max_depth=max_depth)
          return fit_and_evaluate(model, trainX, trainY, testX, testY)
      # Support Vector Machines (SVM)
      from sklearn.svm import SVC
      def svm_classification(trainX, trainY, testX, testY, kernel='rbf', C=1.0):
          model = SVC(kernel=kernel, C=C)
          return fit_and_evaluate(model, trainX, trainY, testX, testY)
      # K-Nearest Neighbors (KNN)
```

```
from sklearn.neighbors import KNeighborsClassifier
def knn classification(trainX, trainY, testX, testY, n_neighbors=5):
   model = KNeighborsClassifier(n_neighbors=n_neighbors)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# Gradient Boosting Machines (GBM)
from sklearn.ensemble import GradientBoostingClassifier
def gbm_classification(trainX, trainY, testX, testY, n_estimators=100,_
 →learning_rate=0.1, max_depth=3):
   model = GradientBoostingClassifier(n_estimators=n_estimators,__
 ⇒learning_rate=learning_rate, max_depth=max_depth)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# Naive Bayes
from sklearn.naive_bayes import GaussianNB
def naive_bayes_classification(trainX, trainY, testX, testY):
   model = GaussianNB()
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# AdaBoost
from sklearn.ensemble import AdaBoostClassifier
def adaboost_classification(trainX, trainY, testX, testY, n_estimators=50,_
 →learning rate=1.0):
   model = AdaBoostClassifier(n_estimators=n_estimators,__
 →learning_rate=learning_rate)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# XGBoost
from xgboost import XGBClassifier
def xgboost_classification(trainX, trainY, testX, testY, n_estimators=100,_
 →learning_rate=0.1, max_depth=3):
   model = XGBClassifier(n_estimators=n_estimators,__
 Glearning_rate=learning_rate, max_depth=max_depth)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
def logistic_regression_classification(trainX, trainY, testX, testY, __
 →penalty='12', C=1.0, max_iter=1000, solver='lbfgs'):
   target_names = trainY.unique() if isinstance(trainY, pd.Series) else testY.
 →unique()
    # Initialize and train the Logistic Regression model
```

```
model = LogisticRegression(penalty=penalty, C=C, max_iter=max_iter,_
 ⇔solver=solver, verbose=1 if max_iter > 300 else 0)
    model.fit(trainX, trainY)
    # Predict on the testing set
    testY pred = model.predict(testX)
    # Calculate accuracy score
    accuracy = accuracy_score(testY, testY_pred)
    # Generate classification report
    report = classification_report(testY, testY_pred,__

¬target_names=target_names, output_dict=True)
    results = {
        'accuracy': accuracy,
        'classification_report': report
    }
    return results
def decision_tree_classification(trainX, trainY, testX, testY, __

criterion='gini', max_depth=None):
    # Get unique target names
    target_names = trainY.unique() if isinstance(trainY, pd.Series) else testY.
 →unique()
    # Initialize and train the Decision Tree model
    model = DecisionTreeClassifier(criterion=criterion,__
 →max_depth=max_depth,min_samples_split=5)
    model.fit(trainX, trainY)
    # Predict on the testing set
    testY_pred = model.predict(testX)
    # Calculate accuracy score
    accuracy = accuracy_score(testY, testY_pred)
    # Generate classification report
    report = classification_report(testY, testY_pred,__

¬target_names=target_names, output_dict=True)
    results = {
        'accuracy': accuracy,
        'classification_report': report
```

```
}
          return results
[416]: | # logistic_regression_classification(enc_trainX, trainY, enc_testX, testY, u
        ⇔solver='saga', max_iter=1500, C=50)
[417]: | # decision tree classification(enc trainX, trainY, enc testX, testY, ___
        →max_depth=11, criterion='entropy')
[418]: # random_forest_classification(enc_trainX, trainY, enc_testX, testY)
[419]: # knn classification(enc trainX, trainY, enc testX, testY)
[420]: # qbm classification(enc trainX, trainY, enc testX, testY)
[421]: # naive_bayes_classification(enc_trainX, trainY, enc_testX, testY)
[422]: # adaboost classification(enc trainX, trainY, enc testX, testY)
[423]: | # xqboost_classification(enc_trainX, trainY, enc_testX, testY)
[424]: from sklearn.model_selection import GridSearchCV, KFold
      def hyperparameter_tuning(model, param_grid, trainX, trainY, cv=5):
          label encoder = LabelEncoder()
          trainY_encoded = label_encoder.fit_transform(trainY)
          # Initialize K-Fold cross-validator
          kf = KFold(n_splits=cv, shuffle=True, random_state=42)
          # Perform grid search
          grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=kf,_
        ⇒scoring='accuracy', verbose=3, n_jobs=10, )
          grid search.fit(trainX, trainY encoded)
          return grid_search
[425]: params = {'colsample_bytree': 0.7, 'gamma': 0.1, 'learning_rate': 0.1, u
       # param_grid = {
             'n_estimators': [100, 200], # Number of boosting rounds
             'max_depth': [3, 5, 7, 11], # Maximum tree depth
             'learning_rate': [0.01, 0.1, 0.3], # Step size shrinkage
             'subsample': [0.7, 0.9], # Subsample ratio of the training instances
             'colsample_bytree': [0.7, 0.9], # Subsample \ ratio \ of \ columns \ when_{f U}
        →constructing each tree
```

```
'qamma': [0, 0.1], # Minimum loss reduction required to make a further
       ⇒partition on a leaf node of the tree
            'reg_lambda': [1, 1.5, 2] # L2 regularization term on weights
      # }
      # model = XGBClassifier(**params)
      # # best model = hyperparameter tuning(model, param grid, enc trainX, trainY)
      # fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
      # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[426]: params = {'bootstrap': False, 'criterion': 'entropy', 'max_depth': None,

¬'max_features': 'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 2,
□
       param_grid = {
          'n_estimators': [50, 100, 200],
          'max_depth': [None, 10, 20],
          'min_samples_split': [2, 5, 10],
          'min_samples_leaf': [1, 2, 4],
          'max_features': ['auto', 'sqrt'],
          'bootstrap': [True, False],
          'criterion': ['gini', 'entropy']
      }
      # model = RandomForestClassifier(**params)
      # fit and evaluate(model, enc trainX, trainY, enc testX, testY)
      # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
      # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[427]: params = {'algorithm': 'SAMME.R', 'learning_rate': 1.0, 'n_estimators': 200}
      param grid = {
          'n_estimators': [50, 100, 200], # Number of estimators
          'learning rate': [0.01, 0.1, 1.0], # Learning rate
          'algorithm': ['SAMME', 'SAMME.R'], # Algorithm
      }
      # model = AdaBoostClassifier(**params)
      # fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
      # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
      # # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[428]: params = {'ccp_alpha': 0.07, 'criterion': 'gini', 'max_depth': None, __
       ⇔'splitter': 'best'}
```

```
param_grid = {
          'criterion': ['gini', 'entropy'], # Split criterion
          'splitter': ['best', 'random'], # Strategy to choose split at each node
          'max_depth': [None, 1, 3, 5], # Max depth of the tree
          'min_samples_split': [2, 5, 10], # Min samples required to split a node
          'min_samples_leaf': [1, 2, 4], # Min samples required at each leaf node
          'max_features': ['sqrt', 'log2'], # Max features to consider for split
          'ccp_alpha': [0.07,0.01]
      }
      # model = DecisionTreeClassifier(**params)
      # fit and evaluate(model, enc trainX, trainY, enc testX, testY)
      # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
      # # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[429]: | # {'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}
      gbm_params = {
          'learning_rate': [0.01, 0.05, 0.1], # Learning rate
          'n_estimators': [50, 100, 200], # Number of boosting stages
          'max_depth': [3, 4, 5], # Maximum depth of the individual trees
      # model = GradientBoostingClassifier()
      # best_model = hyperparameter_tuning(model, gbm_params, enc_trainX, trainY)
      # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[430]: \%\time
      from sklearn.ensemble import VotingClassifier
      lr = LogisticRegression(penalty='12', C=50, max_iter=1500, solver='saga')
      ada = AdaBoostClassifier(**{'algorithm': 'SAMME.R', 'learning_rate': 1.0, ___
       gbm = GradientBoostingClassifier(**{'learning_rate': 0.1, 'max_depth': 5,__
       rf = RandomForestClassifier(** {'bootstrap': False, 'criterion': 'entropy', |

¬'max_depth': None, 'max features': 'sqrt', 'min_samples_leaf': 4,□
       xgb = XGBClassifier(**{'colsample_bytree': 0.7, 'gamma': 0.1, 'learning_rate':
       Gold, 'max_depth': 7, 'n_estimators': 200, 'reg_lambda': 1.5, 'subsample': 0.
       →9},objective='multi:softprob')
      # res = fit and evaluate(model, enc trainX, trainY, enc testX, testY)
```

```
votingCLF = VotingClassifier(
           estimators=[
               ('rf', rf),
               ('ada', ada),
               ('xgb', xgb),
               ('lr', lr),
               ('gbm', gbm)
           ],
           voting='soft',
           weights=[4,5,7,2,6]
       # fit_and_evaluate(votingCLF, enc_trainX, trainY, enc_testX, testY)
      CPU times: user 0 ns, sys: 86 μs, total: 86 μs
      Wall time: 88.2 µs
[435]: INPUT = encoded_data
       TARGET=df['FLIGHT_STATUS']
       label_encoder = LabelEncoder()
       TARGET_ENCODED = label_encoder.fit_transform(TARGET)
[436]: from sklearn.preprocessing import StandardScaler
       scaler = StandardScaler()
       enc_trainX = pd.DataFrame(scaler.fit_transform(encoded_data),__
        ⇒index=encoded data.index, columns=encoded data.columns)
[437]: \%time
       votingCLF.fit(enc_trainX, TARGET_ENCODED)
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/ensemble/_weight_boosting.py:519: FutureWarning: The SAMME.R
      algorithm (the default) is deprecated and will be removed in 1.6. Use the SAMME
      algorithm to circumvent this warning.
        warnings.warn(
      CPU times: user 7min 33s, sys: 2.1 s, total: 7min 35s
      Wall time: 6min 53s
[437]: VotingClassifier(estimators=[('rf',
                                     RandomForestClassifier(bootstrap=False,
                                                             criterion='entropy',
                                                             min_samples_leaf=4,
                                                             n_estimators=200)),
                                    ('ada', AdaBoostClassifier(n_estimators=200)),
                                    ('xgb',
                                     XGBClassifier(base_score=None, booster=None,
                                                    callbacks=None,
                                                    colsample_bylevel=None,
```

```
colsample_bytree=0.7, device=None,
                                                    early_stopping_rounds=None,
                                                    max_delta_step=None, max_depth=7,
                                                    max_leaves=None,
                                                    min_child_weight=None, missing=nan,
                                                    monotone_constraints=None,
                                                    multi strategy=None,
                                                    n_estimators=200, n_jobs=None,
                                                    num_parallel_tree=None,
                                                    objective='multi:softprob', ...)),
                                    ('lr',
                                     LogisticRegression(C=50, max_iter=1500,
                                                         solver='saga')),
                                     ('gbm',
                                     GradientBoostingClassifier(max_depth=5,
                                                                 n_estimators=200))],
                        voting='soft', weights=[4, 5, 7, 2, 6])
  []:
  []:
[438]:
       enc_trainX.shape
[438]: (113671, 83)
      initi_first_task = pd.read_csv("./sample_input_first_task.csv")
[439]:
[440]: initial_first_task_data = scaler.transform(encoder.transform(initi_first_task))
[441]: initial_first_task_data.shape
[441]: (12, 83)
[442]: votingCLF.predict(initial_first_task_data)
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but RandomForestClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but AdaBoostClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
```

colsample_bynode=None,

```
packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but LogisticRegression was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but GradientBoostingClassifier was fitted with feature names
        warnings.warn(
[442]: array([0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1])
[443]: label_encoder.inverse_transform(votingCLF.predict(initial_first_task_data))
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but RandomForestClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but AdaBoostClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but LogisticRegression was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but GradientBoostingClassifier was fitted with feature names
        warnings.warn(
[443]: array(['EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'LATE', 'EARLY',
              'EARLY', 'LATE', 'EARLY', 'EARLY', 'LATE'], dtype=object)
 []:
[444]: | initi_first_task = pd.read_csv("./final_input_first.csv")
[445]: initial_first_task_data = scaler.transform(encoder.transform(initi_first_task))
[446]: initial_first_task_data.shape
[446]: (12, 83)
[447]: votingCLF.predict(initial_first_task_data)
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but RandomForestClassifier was fitted with feature names
        warnings.warn(
```

```
/home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but AdaBoostClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but LogisticRegression was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but GradientBoostingClassifier was fitted with feature names
        warnings.warn(
[447]: array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1])
[448]: label_encoder.inverse_transform(votingCLF.predict(initial_first_task_data))
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but RandomForestClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but AdaBoostClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but LogisticRegression was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but GradientBoostingClassifier was fitted with feature names
        warnings.warn(
[448]: array(['EARLY', 'EARLY', 'LATE', 'EARLY', 'EARLY', 'EARLY', 'EARLY',
              'EARLY', 'EARLY', 'EARLY', 'LATE'], dtype=object)
 []:
 []:
 []:
 []:
 []:
```

1 2nd Model

```
[449]: data1 = pd.read_csv("./SYR_ORIGIN_1HOP.csv")
       data2 = pd.read_csv("./SYR_ORIGIN_2HOP.csv")
       data3 = pd.read_csv("./SYR_ORIGIN_3HOP.csv")
[450]: data1['SCHED_ARRV_TIME_CAT'] = data1['Scheduled Arrival Time'].
        →apply(convert_to_categorical)
       data2['SCHED_ARRV_TIME_CAT'] = data2['Scheduled Arrival Time'].
        →apply(convert_to_categorical)
       data3['SCHED_ARRV_TIME_CAT'] = data3['Scheduled Arrival Time'].
        →apply(convert_to_categorical)
[451]: data1['SYR_sea_level_pressure'] = data1['SYR_sea_level_pressure'].

¬fillna(data1['SYR_sea_level_pressure'].mean())
       data2['SYR_sea_level_pressure'] = data2['SYR_sea_level_pressure'].

¬fillna(data2['SYR_sea_level_pressure'].mean())
       data3['SYR sea level pressure'] = data3['SYR sea level pressure'].

¬fillna(data3['SYR_sea_level_pressure'].mean())
[452]: def convert(df):
           df['SYR wind speed'] = df['SYR wind speed'].apply(mps to mph)
           df['wind_speed'] = df['wind_speed'].apply(mps_to_mph)
           df['visibility dist'] = df['visibility dist'].apply(meters to miles)
           df['SYR_visibility_dist'] = df['SYR_visibility_dist'].apply(meters_to_miles)
           df['air_temparature'] = df['air_temparature'].apply(celsius_to_fahrenheit)
           df['SYR_air_temparature'] = df['SYR_air_temparature'].
        →apply(celsius_to_fahrenheit)
           df['sea_level_pressure'] = df['sea_level_pressure'].apply(hectopascal_to_mb)
           df['SYR_sea_level_pressure'] = df['SYR_sea_level_pressure'].
        →apply(hectopascal_to_mb)
           return df
[453]: data1 = convert(data1)
       data2 = convert(data2)
       data3 = convert(data3)
[454]: data1.shape
[454]: (113671, 42)
[455]: data2.shape
[455]: (227342, 42)
[456]: data3.shape
```

```
[456]: (341013, 42)
[457]: cols_to_drop = ['Date (MM/DD/YYYY)', 'Scheduled Arrival Time', 'day', |
       ⇔'UNIX_DATE','UNIX_TIMESTAMP',
                             'longitude', 'dew_point_temparature', u

¬'wind_type','ceiling_height', 'ceiling_det_code',

       'SYR_longitude',
              'SYR_wind_type', 'SYR_ceiling_height', 'SYR_ceiling_det_code', __

¬'SYR_dew_point_temparature','SYR_latitude','SYR_elevation']

[458]: df1 = data1.drop(columns=cols_to_drop)
      df2 = data2.drop(columns=cols_to_drop)
      df3 = data3.drop(columns=cols_to_drop)
[459]: df1.shape, df2.shape, df3.shape
[459]: ((113671, 21), (227342, 21), (341013, 21))
[460]: from sklearn.base import BaseEstimator, TransformerMixin
      from sklearn.preprocessing import OneHotEncoder
      class MultiColumnOneHotEncoder(BaseEstimator, TransformerMixin):
          def __init__(self, columns=None):
              self.columns = columns
              self.encoder = None
          def fit(self, X, y=None):
              self.encoder = OneHotEncoder(sparse output=False, drop='first')
              self.encoder.fit(X[self.columns])
              return self
          def transform(self, X):
              X_encoded = X.copy()
              encoded_data = self.encoder.transform(X[self.columns])
              encoded_df = pd.DataFrame(encoded_data, columns=self.encoder.

get_feature_names_out(self.columns), index=X.index)
              # Drop the original columns
              X_encoded = X_encoded.drop(columns=self.columns)
              # Concatenate the encoded DataFrame with the original DataFrame, __
        ⇔preserving the index
              X_encoded = pd.concat([X_encoded, encoded_df], axis=1)
              return X_encoded
```

```
def fit_transform(self, X, y=None):
    self.fit(X)
    return self.transform(X)
```

1.1 START 1 HOP

```
[461]: encoder = MultiColumnOneHotEncoder(columns=['Carrier Code', 'Origin,
        →Airport','season', 'SCHED_ARRV_TIME_CAT', 'month', 'WeekDay','PREV_STAT']) \( \)
        →#, 'wind_type', 'ceiling_det_code', 'celing_CAVOK', 'visibility_variability'
[462]:
       encoded_data = encoder.fit_transform(df1.drop(columns=['FLIGHT_STATUS']))
[463]:
       encoded_data.head()
[463]:
          Scheduled Elapsed Time (Minutes)
                                             latitude elevation wind direction
                                         76 40.63915
                                                               3.4
                                                                        102.428571
       1
                                         75 40.63915
                                                               3.4
                                                                        110.503072
       2
                                         100 41.96019
                                                             201.8
                                                                        292.000000
       3
                                         84 42.23130
                                                             192.3
                                                                        270.000000
       4
                                         71 40.63915
                                                               3.4
                                                                        159.721841
          wind_speed visibility_dist air_temparature sea_level_pressure
            3.221194
       0
                              6.966812
                                                  33.944
                                                                  1018.725782
            0.000000
                              5.400087
                                                  33.368
       1
                                                                  1015.367354
                                                  7.808
       2
            9.395148
                              9.999724
                                                                  1024.780000
       3
           12.392648
                              6.599830
                                                  23.000
                                                                  1018.248971
       4
                                                  33.224
                                                                  1014.594175
            0.000000
                              4.794250
          SYR_wind_direction SYR_wind_speed ... month_11 month_12
                                                        0.0
       0
                  106.000000
                                     3.892276
                                                                   0.0
                                               ...
       1
                  103.912190
                                     0.000000
                                                        0.0
                                                                   0.0
       2
                  132.389021
                                     0.000000 ...
                                                        0.0
                                                                   0.0
       3
                  144.543770
                                     0.000000
                                                        0.0
                                                                   0.0
       4
                  144.543770
                                     0.000000
                                                        0.0
                                                                   0.0
          WeekDay_Monday
                           WeekDay_Saturday
                                             WeekDay_Sunday
                                                              WeekDay_Thursday \
                     0.0
                                        0.0
                                                                            0.0
       0
                                                         0.0
                      0.0
                                        0.0
                                                         0.0
                                                                            0.0
       1
       2
                     0.0
                                         0.0
                                                         0.0
                                                                            0.0
       3
                      0.0
                                         0.0
                                                         0.0
                                                                            0.0
                      0.0
                                         0.0
                                                                            0.0
                                                         0.0
          WeekDay_Tuesday
                                               PREV_STAT_LATE
                                                                 PREV_STAT_ONTIME
                            WeekDay_Wednesday
       0
                       0.0
                                           0.0
                                                           0.0
                                                                              1.0
       1
                       0.0
                                           0.0
                                                           1.0
                                                                              0.0
       2
                       0.0
                                           0.0
                                                           1.0
                                                                              0.0
       3
                       0.0
                                           0.0
                                                           0.0
                                                                              1.0
```

```
0.0
                                   0.0
                                                    1.0
      4
                                                                           0.0
      [5 rows x 85 columns]
[464]: df1.shape
[464]: (113671, 21)
[465]: trainX, testX, trainY, testY = train_test_split(
           encoded_data,
          df1['FLIGHT STATUS'],
          test_size=0.2,
          random_state=947,
          stratify=df1['FLIGHT_STATUS']
[466]: from sklearn.preprocessing import StandardScaler
      scaler = StandardScaler()
      enc_trainX = pd.DataFrame(scaler.fit_transform(trainX), index=trainX.index,_
        ⇔columns=trainX.columns)
      enc_testX = pd.DataFrame(scaler.transform(testX), index=testX.index,_
        ⇔columns=testX.columns)
[467]: from sklearn.tree import DecisionTreeClassifier
      from sklearn.preprocessing import LabelEncoder
      from sklearn.linear_model import LogisticRegression
      from sklearn.metrics import accuracy_score, classification_report
      def fit_and_evaluate(model, trainX, trainY, testX, testY):
           # Convert string labels to integers
          label_encoder = LabelEncoder()
          trainY_encoded = label_encoder.fit_transform(trainY)
          testY_encoded = label_encoder.transform(testY)
          model.fit(trainX, trainY_encoded)
          testY_pred = model.predict(testX)
          accuracy = accuracy_score(testY_encoded, testY_pred)
          report = classification_report(testY_encoded, testY_pred, output_dict=True)
          results = {'accuracy': accuracy, 'classification_report': report}
          return results
      # Update other classification functions similarly...
       # Random Forest
      from sklearn.ensemble import RandomForestClassifier
```

```
def random_forest_classification(trainX, trainY, testX, testY,__
 model = RandomForestClassifier(n_estimators=n_estimators,__
 ⇔criterion=criterion, max_depth=max_depth)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# Support Vector Machines (SVM)
from sklearn.svm import SVC
def svm_classification(trainX, trainY, testX, testY, kernel='rbf', C=1.0):
   model = SVC(kernel=kernel, C=C)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# K-Nearest Neighbors (KNN)
from sklearn.neighbors import KNeighborsClassifier
def knn_classification(trainX, trainY, testX, testY, n_neighbors=5):
   model = KNeighborsClassifier(n_neighbors=n_neighbors)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# Gradient Boosting Machines (GBM)
from sklearn.ensemble import GradientBoostingClassifier
def gbm_classification(trainX, trainY, testX, testY, n_estimators=100,_
 →learning_rate=0.1, max_depth=3):
   model = GradientBoostingClassifier(n_estimators=n_estimators,__
 Glearning_rate=learning_rate, max_depth=max_depth)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# Naive Bayes
from sklearn.naive_bayes import GaussianNB
def naive_bayes_classification(trainX, trainY, testX, testY):
   model = GaussianNB()
   return fit and evaluate(model, trainX, trainY, testX, testY)
# AdaBoost
from sklearn.ensemble import AdaBoostClassifier
def adaboost_classification(trainX, trainY, testX, testY, n_estimators=50,_u
 →learning_rate=1.0):
   model = AdaBoostClassifier(n_estimators=n_estimators,__
 →learning_rate=learning_rate)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# XGBoost
```

```
from xgboost import XGBClassifier
def xgboost_classification(trainX, trainY, testX, testY, n_estimators=100,__
 →learning_rate=0.1, max_depth=3):
   model = XGBClassifier(n_estimators=n_estimators,__
 →learning_rate=learning_rate, max_depth=max_depth)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
def logistic_regression_classification(trainX, trainY, testX, testY, ___
 Genalty='12', C=1.0, max_iter=1000, solver='lbfgs'):
   target_names = trainY.unique() if isinstance(trainY, pd.Series) else testY.
 →unique()
    # Initialize and train the Logistic Regression model
   model = LogisticRegression(penalty=penalty, C=C, max_iter=max_iter,_
 ⇒solver=solver, verbose=1 if max_iter > 300 else 0)
   model.fit(trainX, trainY)
    # Predict on the testing set
   testY_pred = model.predict(testX)
   # Calculate accuracy score
   accuracy = accuracy_score(testY, testY_pred)
   # Generate classification report
   report = classification_report(testY, testY_pred,_
 →target_names=target_names, output_dict=True)
   results = {
        'accuracy': accuracy,
        'classification_report': report
   }
   return results
def decision_tree_classification(trainX, trainY, testX, testY, __
 ⇔criterion='gini', max_depth=None):
    # Get unique target names
   target_names = trainY.unique() if isinstance(trainY, pd.Series) else testY.
 →unique()
    # Initialize and train the Decision Tree model
   model = DecisionTreeClassifier(criterion=criterion,__
 →max_depth=max_depth,min_samples_split=5)
   model.fit(trainX, trainY)
```

```
# Predict on the testing set
           testY_pred = model.predict(testX)
           # Calculate accuracy score
           accuracy = accuracy_score(testY, testY_pred)
           # Generate classification report
           report = classification report(testY, testY pred,
        starget_names=target_names, output_dict=True)
           results = {
                'accuracy': accuracy,
                'classification_report': report
           }
           return results
      logistic regression classification(enc trainX,
                                                  trainY,
                                                           enc testX.
                                                                        testY.
                                                                                 solver='saga',
      \max iter=1500, C=50)
      decision_tree_classification(enc_trainX, trainY, enc_testX, testY, max_depth=11, crite-
      rion='entropy')
      random_forest_classification(enc_trainX, trainY, enc_testX, testY)
      knn_classification(enc_trainX, trainY, enc_testX, testY)
      gbm classification(enc trainX, trainY, enc testX, testY)
      naive_bayes_classification(enc_trainX, trainY, enc_testX, testY)
      adaboost_classification(enc_trainX, trainY, enc_testX, testY)
      xgboost classification(enc trainX, trainY, enc testX, testY)
[468]: from sklearn.model selection import GridSearchCV, KFold
       def hyperparameter_tuning(model, param_grid, trainX, trainY, cv=5):
           label encoder = LabelEncoder()
           trainY_encoded = label_encoder.fit_transform(trainY)
           # Initialize K-Fold cross-validator
           kf = KFold(n_splits=cv, shuffle=True, random_state=42)
           # Perform grid search
           grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=kf,_
        ⇒scoring='accuracy', verbose=3, n_jobs=10, )
           grid_search.fit(trainX, trainY_encoded)
           return grid_search
```

```
[469]: params = {'colsample_bytree': 0.7, 'gamma': 0.1, 'learning_rate': 0.1, \( \)
       # param_grid = {
            'n_estimators': [100, 200], # Number of boosting rounds
            'max_depth': [3, 5, 7, 11], # Maximum tree depth
            'learning_rate': [0.01, 0.1, 0.3], # Step size shrinkage
      #
            'subsample': [0.7, 0.9], # Subsample ratio of the training instances
            'colsample_bytree': [0.7, 0.9], # Subsample ratio of columns when_
       ⇔constructing each tree
            'qamma': [0, 0.1], # Minimum loss reduction required to make a further
       →partition on a leaf node of the tree
            'req_lambda': [1, 1.5, 2] # L2 regularization term on weights
      # }
      # model = XGBClassifier(**params)
      # # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
      # fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
      # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[470]: params = {'bootstrap': False, 'criterion': 'entropy', 'max_depth': None,
       →'max_features': 'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 2,
       param_grid = {
          'n_estimators': [50, 100, 200],
          'max_depth': [None, 10, 20],
          'min_samples_split': [2, 5, 10],
          'min_samples_leaf': [1, 2, 4],
          'max features': ['auto', 'sqrt'],
          'bootstrap': [True, False],
          'criterion': ['gini', 'entropy']
      # model = RandomForestClassifier(**params)
      # fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
      # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
      # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[471]: params = {'algorithm': 'SAMME.R', 'learning_rate': 1.0, 'n_estimators': 200}
      param_grid = {
          'n_estimators': [50, 100, 200], # Number of estimators
          'learning_rate': [0.01, 0.1, 1.0], # Learning rate
          'algorithm': ['SAMME', 'SAMME.R'], # Algorithm
      }
      # model = AdaBoostClassifier(**params)
```

```
# fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
      # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
      # # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[472]: params = {'ccp_alpha': 0.07, 'criterion': 'gini', 'max_depth': None,

¬'splitter': 'best'}

      param_grid = {
          'criterion': ['gini', 'entropy'], # Split criterion
          'splitter': ['best', 'random'], # Strategy to choose split at each node
          'max_depth': [None, 1, 3, 5], # Max depth of the tree
          'min_samples_split': [2, 5, 10], # Min samples required to split a node
          'min_samples_leaf': [1, 2, 4], # Min samples required at each leaf node
          'max_features': ['sqrt', 'log2'], # Max features to consider for split
          'ccp_alpha':[0.07,0.01]
      }
      # model = DecisionTreeClassifier(**params)
      # fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
      # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
      # # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[473]: gbm_params = {
          'learning_rate': [0.01, 0.05, 0.1], # Learning rate
          'n_estimators': [50, 100, 200], # Number of boosting stages
          'max_depth': [3, 4, 5], # Maximum depth of the individual trees
      # model = GradientBoostingClassifier()
      # best_model = hyperparameter_tuning(model, qbm_params, enc_trainX, trainY)
      # # Print best parameters and best score
      # print("Best parameters found: ", best model.best params )
      # print("Best accuracy score found: ", best_model.best_score_)
[474]: enc_trainX.shape
[474]: (90936, 85)
[480]: | %%time
      from sklearn.ensemble import VotingClassifier
      lr = LogisticRegression(penalty='12', C=50, max_iter=1500, solver='saga')
```

```
ada = AdaBoostClassifier(**{'algorithm': 'SAMME.R', 'learning_rate': 1.0, __

¬'n_estimators': 200})
      gbm = GradientBoostingClassifier(**{'learning_rate': 0.1, 'max_depth': 5,__
       rf = RandomForestClassifier(** {'bootstrap': False, 'criterion': 'entropy', __

¬'max_depth': None, 'max_features': 'sqrt', 'min_samples_leaf': 4,

       ⇔'min_samples_split': 2, 'n_estimators': 200})
      xgb = XGBClassifier(**{'colsample_bytree': 0.7, 'gamma': 0.1, 'learning_rate':
       ⇔0.1, 'max_depth': 7, 'n_estimators': 200, 'reg_lambda': 1.5, 'subsample': 0.
       # res = fit and evaluate(model, enc trainX, trainY, enc testX, testY)
      votingCLF = VotingClassifier(
          estimators=[
              ('rf', rf),
              ('ada', ada),
              ('xgb', xgb),
              ('lr', lr),
              ('gbm', gbm)
          ],
          voting='soft',
          weights=[4,5,7,2,6]
      # fit_and_evaluate(votingCLF, enc_trainX, trainY, enc_testX, testY)
      CPU times: user 87 μs, sys: 0 ns, total: 87 μs
      Wall time: 89.4 µs
 []:
[481]: final = pd.read_csv("./sample_input_2nd_task.csv")
[477]: final_data = scaler.transform(encoder.transform(final))
[478]: final_data.shape
[478]: (33, 85)
[479]: votingCLF.predict(final_data)
       AttributeError
                                                Traceback (most recent call last)
       Cell In[479], line 1
       ---> 1 votingCLF.predict(final_data)
```

```
→py:383, in VotingClassifier.predict(self, X)
           381 check_is_fitted(self)
           382 if self.voting == "soft":
                   maj = np.argmax(self.predict_proba(X), axis=1)
       --> 383
           385 else: # 'hard' voting
                   predictions = self. predict(X)
       File ~/anaconda3/envs/mldl/lib/python3.9/site-packages/sklearn/ensemble/_voting
         →py:424, in VotingClassifier.predict_proba(self, X)
           410 """Compute probabilities of possible outcomes for samples in X.
           411
           412 Parameters
           (...)
           420
                   Weighted average probability for each class per sample.
           421 """
           422 check_is_fitted(self)
           423 avg = np.average(
       --> 424
                   self._collect_probas(X), axis=0, weights=self._weights_not_none
           425 )
           426 return avg
       File ~/anaconda3/envs/mldl/lib/python3.9/site-packages/sklearn/ensemble/_voting
         →py:399, in VotingClassifier._collect_probas(self, X)
           397 def _collect_probas(self, X):
                    """Collect results from clf.predict calls."""
           398
                   return np.asarray([clf.predict proba(X) for clf in self.estimators])
       --> 399
       AttributeError: 'VotingClassifier' object has no attribute 'estimators_'
[280]: label encoder = LabelEncoder()
      trainY_encoded = label_encoder.fit_transform(trainY)
[281]: label_encoder.inverse_transform(votingCLF.predict(final_data))
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but RandomForestClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but AdaBoostClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but LogisticRegression was fitted with feature names
        warnings.warn(
```

File ~/anaconda3/envs/mldl/lib/python3.9/site-packages/sklearn/ensemble/_voting

```
packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but GradientBoostingClassifier was fitted with feature names
        warnings.warn(
[281]: array(['LATE', 'LATE', 'EARLY', 'EARLY', 'EARLY', 'EARLY',
              'EARLY', 'EARLY', 'EARLY', 'LATE', 'EARLY', 'EARLY',
              'EARLY', 'LATE', 'LATE', 'EARLY', 'EARLY', 'EARLY',
              'EARLY', 'EARLY', 'EARLY', 'LATE', 'LATE', 'LATE', 'EARLY',
              'EARLY', 'EARLY', 'EARLY', 'EARLY'], dtype=object)
 []:
 []:
 []:
 []:
 []:
 []:
           START 2 HOP
[491]: encoder = MultiColumnOneHotEncoder(columns=['Carrier Code', 'Originu
        →Airport', 'season', 'SCHED_ARRV_TIME_CAT', 'month', 'WeekDay', 'PREV_STAT']) \( \)
        #, 'wind type', 'ceiling_det_code', 'celing_CAVOK', 'visibility_variability'
[492]:
      encoded_data = encoder.fit_transform(df2.drop(columns=['FLIGHT_STATUS']))
[493]:
      encoded_data.head()
[493]:
         Scheduled Elapsed Time (Minutes)
                                           latitude
                                                      elevation
                                                                wind_direction
                                       76 40.63915
                                                            3.4
                                                                     102.428571
      0
      1
                                       76 40.63915
                                                            3.4
                                                                     102.428571
      2
                                       75 40.63915
                                                            3.4
                                                                     110.503072
      3
                                       75
                                           40.63915
                                                            3.4
                                                                     110.503072
      4
                                       100 41.96019
                                                          201.8
                                                                     292.000000
         wind_speed visibility_dist
                                      air_temparature sea_level_pressure
      0
           3.221194
                             6.966812
                                                33.944
                                                               1018.725782
           3.221194
                             6.966812
                                                33.944
                                                               1018.725782
      1
      2
           0.000000
                            5.400087
                                                33.368
                                                               1015.367354
      3
           0.000000
                            5.400087
                                                33.368
                                                               1015.367354
           9.395148
                            9.999724
                                                7.808
                                                               1024.780000
```

/home/numan947/anaconda3/envs/mldl/lib/python3.9/site-

```
SYR_wind_direction SYR_wind_speed ... month_11 month_12 \
       0
                  106.000000
                                     3.892276
                                                        0.0
                                                                  0.0
                                                        0.0
                                                                  0.0
       1
                  106.000000
                                     3.892276 ...
       2
                                                        0.0
                                                                  0.0
                  103.912190
                                     0.000000 ...
       3
                  103.912190
                                     0.000000 ...
                                                        0.0
                                                                  0.0
                  132.389021
                                     0.000000 ...
                                                        0.0
                                                                  0.0
                          WeekDay_Saturday WeekDay_Sunday WeekDay_Thursday \
          WeekDay_Monday
       0
                     0.0
                                        0.0
                                                        0.0
                                                                           0.0
       1
                     0.0
                                        0.0
                                                        0.0
                                                                           0.0
       2
                     0.0
                                        0.0
                                                        0.0
                                                                           0.0
       3
                     0.0
                                        0.0
                                                        0.0
                                                                           0.0
                     0.0
                                        0.0
                                                         0.0
                                                                           0.0
          WeekDay_Tuesday WeekDay_Wednesday PREV_STAT_LATE
                                                                PREV_STAT_ONTIME
       0
                      0.0
                                          0.0
                                                           0.0
                                                                             1.0
                      0.0
                                          0.0
                                                           0.0
                                                                             1.0
       1
       2
                      0.0
                                          0.0
                                                           1.0
                                                                             0.0
       3
                                          0.0
                                                           0.0
                      0.0
                                                                             1.0
                      0.0
                                          0.0
                                                           1.0
                                                                             0.0
       [5 rows x 85 columns]
[494]: encoded_data.shape
[494]: (227342, 85)
[495]: trainX, testX, trainY, testY = train_test_split(
           encoded_data,
           df2['FLIGHT_STATUS'],
           test_size=0.2,
           random_state=947,
           stratify=df2['FLIGHT_STATUS']
       )
[496]: from sklearn.preprocessing import StandardScaler
       scaler = StandardScaler()
       enc_trainX = pd.DataFrame(scaler.fit_transform(trainX), index=trainX.index,_
        ⇔columns=trainX.columns)
       enc_testX = pd.DataFrame(scaler.transform(testX), index=testX.index,__
        ⇔columns=testX.columns)
[497]: from sklearn.tree import DecisionTreeClassifier
       from sklearn.preprocessing import LabelEncoder
       from sklearn.linear_model import LogisticRegression
       from sklearn.metrics import accuracy_score, classification_report
```

```
def fit_and_evaluate(model, trainX, trainY, testX, testY):
   # Convert string labels to integers
   label_encoder = LabelEncoder()
   trainY_encoded = label_encoder.fit_transform(trainY)
   testY_encoded = label_encoder.transform(testY)
   model.fit(trainX, trainY_encoded)
   testY_pred = model.predict(testX)
   accuracy = accuracy_score(testY_encoded, testY_pred)
   report = classification_report(testY_encoded, testY_pred, output_dict=True)
   results = {'accuracy': accuracy, 'classification_report': report}
   return results
# Update other classification functions similarly...
# Random Forest
from sklearn.ensemble import RandomForestClassifier
def random_forest_classification(trainX, trainY, testX, testY, __
 model = RandomForestClassifier(n estimators=n estimators,
 ⇔criterion=criterion, max_depth=max_depth)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# Support Vector Machines (SVM)
from sklearn.svm import SVC
def svm_classification(trainX, trainY, testX, testY, kernel='rbf', C=1.0):
   model = SVC(kernel=kernel, C=C)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# K-Nearest Neighbors (KNN)
from sklearn.neighbors import KNeighborsClassifier
def knn classification(trainX, trainY, testX, testY, n_neighbors=5):
   model = KNeighborsClassifier(n_neighbors=n_neighbors)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# Gradient Boosting Machines (GBM)
from sklearn.ensemble import GradientBoostingClassifier
def gbm_classification(trainX, trainY, testX, testY, n_estimators=100,_
 →learning_rate=0.1, max_depth=3):
   model = GradientBoostingClassifier(n_estimators=n_estimators,_
 →learning_rate=learning_rate, max_depth=max_depth)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
```

```
# Naive Bayes
from sklearn.naive_bayes import GaussianNB
def naive_bayes_classification(trainX, trainY, testX, testY):
   model = GaussianNB()
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# AdaBoost
from sklearn.ensemble import AdaBoostClassifier
def adaboost_classification(trainX, trainY, testX, testY, n_estimators=50,_
 →learning_rate=1.0):
   model = AdaBoostClassifier(n_estimators=n_estimators,__
 ⇒learning_rate=learning_rate)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# XGBoost
from xgboost import XGBClassifier
def xgboost_classification(trainX, trainY, testX, testY, n_estimators=100, u
 →learning_rate=0.1, max_depth=3):
   model = XGBClassifier(n estimators=n estimators,
 Glearning_rate=learning_rate, max_depth=max_depth)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
def logistic_regression_classification(trainX, trainY, testX, testY, ___
 →penalty='12', C=1.0, max_iter=1000, solver='lbfgs'):
   target_names = trainY.unique() if isinstance(trainY, pd.Series) else testY.

unique()
    # Initialize and train the Logistic Regression model
   model = LogisticRegression(penalty=penalty, C=C, max_iter=max_iter,_u
 ⇒solver=solver, verbose=1 if max_iter > 300 else 0)
   model.fit(trainX, trainY)
    # Predict on the testing set
   testY_pred = model.predict(testX)
   # Calculate accuracy score
   accuracy = accuracy_score(testY, testY_pred)
   # Generate classification report
   report = classification_report(testY, testY_pred,__

¬target_names=target_names, output_dict=True)
```

```
'accuracy': accuracy,
               'classification_report': report
           return results
       def decision_tree_classification(trainX, trainY, testX, testY, __
        ⇔criterion='gini', max_depth=None):
           # Get unique target names
           target_names = trainY.unique() if isinstance(trainY, pd.Series) else testY.

unique()
           # Initialize and train the Decision Tree model
           model = DecisionTreeClassifier(criterion=criterion,

max_depth=max_depth,min_samples_split=5)
           model.fit(trainX, trainY)
           # Predict on the testing set
           testY_pred = model.predict(testX)
           # Calculate accuracy score
           accuracy = accuracy_score(testY, testY_pred)
           # Generate classification report
           report = classification_report(testY, testY_pred,__

¬target_names=target_names, output_dict=True)
           results = {
               'accuracy': accuracy,
               'classification_report': report
           }
           return results
[498]: | # logistic regression_classification(enc_trainX, trainY, enc_testX, testY,__
        \rightarrowsolver='saga', max_iter=1500, C=50)
[499]: | # decision_tree_classification(enc_trainX, trainY, enc_testX, testY,__
        →max_depth=11, criterion='entropy')
[500]: | # random_forest_classification(enc_trainX, trainY, enc_testX, testY)
[501]: | # knn_classification(enc_trainX, trainY, enc_testX, testY)
[502]: | # gbm_classification(enc_trainX, trainY, enc_testX, testY)
```

results = {

```
[503]: # naive_bayes_classification(enc_trainX, trainY, enc_testX, testY)
[504]: | # adaboost classification(enc trainX, trainY, enc testX, testY)
[505]: | # xqboost_classification(enc_trainX, trainY, enc_testX, testY)
[506]: from sklearn.model_selection import GridSearchCV, KFold
       def hyperparameter_tuning(model, param_grid, trainX, trainY, cv=5):
          label encoder = LabelEncoder()
          trainY_encoded = label_encoder.fit_transform(trainY)
           # Initialize K-Fold cross-validator
          kf = KFold(n_splits=cv, shuffle=True, random_state=42)
          # Perform grid search
          grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=kf,__
        ⇔scoring='accuracy', verbose=3, n_jobs=10, )
          grid search.fit(trainX, trainY encoded)
          return grid_search
[507]: params = {'colsample_bytree': 0.7, 'gamma': 0.1, 'learning rate': 0.1, |
       -- 'max_depth': 7, 'n_estimators': 200, 'reg_lambda': 1.5, 'subsample': 0.9}
       # param grid = {
             'n_estimators': [100, 200], # Number of boosting rounds
             'max depth': [3, 5, 7, 11], # Maximum tree depth
             'learning_rate': [0.01, 0.1, 0.3], # Step size shrinkage
             'subsample': [0.7, 0.9], # Subsample ratio of the training instances
             'colsample_bytree': [0.7, 0.9], # Subsample ratio of columns when_
        ⇔constructing each tree
             'gamma': [0, 0.1], # Minimum loss reduction required to make a further
       ⇒partition on a leaf node of the tree
             'reg_lambda': [1, 1.5, 2] # L2 regularization term on weights
       # }
       # model = XGBClassifier(**params)
       # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
       # fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
       # Print best parameters and best score
       # print("Best parameters found: ", best_model.best_params_)
       # print("Best accuracy score found: ", best_model.best_score_)
[508]: params = {'bootstrap': False, 'criterion': 'entropy', 'max_depth': None,

¬'max_features': 'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 2,
□

¬'n_estimators': 200}

       param_grid = {
          'n estimators': [50, 100, 200],
           'max_depth': [None, 10, 20],
```

```
'min_samples_split': [2, 5, 10],
           'min_samples_leaf': [1, 2, 4],
           'max_features': ['auto', 'sqrt'],
           'bootstrap': [True, False],
           'criterion': ['gini', 'entropy']
      }
      # model = RandomForestClassifier(**params)
       # fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
       # best model = hyperparameter tuning(model, param grid, enc trainX, trainY)
       # Print best parameters and best score
       # print("Best parameters found: ", best_model.best_params_)
       # print("Best accuracy score found: ", best_model.best_score_)
[509]: params = {'algorithm': 'SAMME.R', 'learning_rate': 1.0, 'n_estimators': 200}
      param_grid = {
           'n_estimators': [50, 100, 200], # Number of estimators
           'learning rate': [0.01, 0.1, 1.0], # Learning rate
           'algorithm': ['SAMME', 'SAMME.R'], # Algorithm
      }
      # model = AdaBoostClassifier(**params)
       # fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
       # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
       # # Print best parameters and best score
       # print("Best parameters found: ", best_model.best_params_)
       # print("Best accuracy score found: ", best_model.best_score_)
[510]: params = {'ccp alpha': 0.07, 'criterion': 'gini', 'max depth': None,

¬'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2,
□
        ⇔'splitter': 'best'}
      param_grid = {
           'criterion': ['gini', 'entropy'], # Split criterion
           'splitter': ['best', 'random'], # Strategy to choose split at each node
           'max_depth': [None, 1, 3, 5], # Max depth of the tree
           'min_samples_split': [2, 5, 10], # Min samples required to split a node
           'min_samples_leaf': [1, 2, 4], # Min samples required at each leaf node
           'max_features': ['sqrt', 'log2'], # Max features to consider for split
           'ccp_alpha': [0.07,0.01]
      }
      # model = DecisionTreeClassifier(**params)
       # fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
       # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
       # # Print best parameters and best score
       # print("Best parameters found: ", best_model.best_params_)
       # print("Best accuracy score found: ", best_model.best_score_)
```

```
[511]: gbm_params = {
           'learning_rate': [0.01, 0.05, 0.1], # Learning rate
           'n_estimators': [50, 100, 200], # Number of boosting stages
           'max_depth': [3, 4, 5], # Maximum depth of the individual trees
      }
      # model = GradientBoostingClassifier()
      # best_model = hyperparameter_tuning(model, gbm_params, enc_trainX, trainY)
      # # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[517]: \%\time
      from sklearn.ensemble import VotingClassifier
      lr = LogisticRegression(penalty='12', C=50, max_iter=1500, solver='saga')
      ada = AdaBoostClassifier(**{'algorithm': 'SAMME.R', 'learning_rate': 1.0,__

¬'n_estimators': 200})
      gbm = GradientBoostingClassifier(**{'learning_rate': 0.1, 'max_depth': 5,__

¬'n_estimators': 200})
      rf = RandomForestClassifier(** {'bootstrap': False, 'criterion': 'entropy', |
       ⇔'max_depth': None, 'max_features': 'sqrt', 'min_samples_leaf': 4,□
       xgb = XGBClassifier(**{'colsample_bytree': 0.7, 'gamma': 0.1, 'learning_rate':
       ⇔0.1, 'max_depth': 7, 'n_estimators': 200, 'reg_lambda': 1.5, 'subsample': 0.
       ⇔9},objective='multi:softprob')
      # res = fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
      votingCLF = VotingClassifier(
          estimators=[
               ('rf', rf),
               ('ada', ada),
              ('xgb', xgb),
               ('lr', lr),
               ('gbm', gbm)
          ],
          voting='soft',
          weights=[4,5,7,2,6]
      # fit_and evaluate(votingCLF, enc_trainX, trainY, enc_testX, testY)
      CPU times: user 111 \mus, sys: 1 \mus, total: 112 \mus
      Wall time: 117 µs
[518]: INPUT = encoded data
      TARGET=df2['FLIGHT STATUS']
```

label_encoder = LabelEncoder()

```
from sklearn.preprocessing import StandardScaler
       scaler = StandardScaler()
       enc_trainX = pd.DataFrame(scaler.fit_transform(encoded_data),__
        →index=encoded_data.index, columns=encoded_data.columns)
[519]: enc_trainX.shape
[519]: (227342, 85)
[520]: \%time
       votingCLF.fit(enc_trainX, TARGET_ENCODED)
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/ensemble/_weight_boosting.py:519: FutureWarning: The SAMME.R
      algorithm (the default) is deprecated and will be removed in 1.6. Use the SAMME
      algorithm to circumvent this warning.
        warnings.warn(
      CPU times: user 14min 18s, sys: 4.07 s, total: 14min 22s
      Wall time: 13min 12s
[520]: VotingClassifier(estimators=[('rf',
                                     RandomForestClassifier(bootstrap=False,
                                                             criterion='entropy',
                                                             min_samples_leaf=4,
                                                             n estimators=200)),
                                     ('ada', AdaBoostClassifier(n_estimators=200)),
                                     ('xgb',
                                     XGBClassifier(base_score=None, booster=None,
                                                    callbacks=None,
                                                    colsample_bylevel=None,
                                                    colsample_bynode=None,
                                                    colsample_bytree=0.7, device=None,
                                                    early_stopping_rounds=None,
                                                    ena...
                                                    max_delta_step=None, max_depth=7,
                                                    max leaves=None,
                                                    min_child_weight=None, missing=nan,
                                                    monotone_constraints=None,
                                                    multi_strategy=None,
                                                    n_estimators=200, n_jobs=None,
                                                    num_parallel_tree=None,
                                                    objective='multi:softprob', ...)),
                                     ('lr',
                                     LogisticRegression(C=50, max_iter=1500,
                                                         solver='saga')),
```

TARGET_ENCODED = label_encoder.fit_transform(TARGET)

```
n_estimators=200))],
                        voting='soft', weights=[4, 5, 7, 2, 6])
[527]: final = pd.read_csv("./sample_input_2nd_task.csv")
[528]: final_data = scaler.transform(encoder.transform(final))
[529]: final_data.shape
[529]: (33, 85)
[530]: votingCLF.predict(final_data)
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but RandomForestClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but AdaBoostClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but LogisticRegression was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but GradientBoostingClassifier was fitted with feature names
        warnings.warn(
[530]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0,
              0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0])
[531]: label_encoder = LabelEncoder()
       trainY_encoded = label_encoder.fit_transform(trainY)
[532]: label_encoder.inverse_transform(votingCLF.predict(final_data))
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but RandomForestClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but AdaBoostClassifier was fitted with feature names
        warnings.warn(
```

('gbm',

GradientBoostingClassifier(max_depth=5,

```
/home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but LogisticRegression was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but GradientBoostingClassifier was fitted with feature names
       warnings.warn(
[532]: array(['EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY',
             'EARLY', 'EARLY', 'EARLY', 'EARLY', 'LATE', 'EARLY', 'EARLY',
             'EARLY', 'LATE', 'LATE', 'EARLY', 'EARLY', 'EARLY',
             'EARLY', 'EARLY', 'EARLY', 'LATE', 'LATE', 'EARLY',
             'EARLY', 'EARLY', 'EARLY', 'EARLY'], dtype=object)
[533]: final = pd.read_csv("./final_input_second.csv")
[534]: final_data = scaler.transform(encoder.transform(final))
[535]: final_data.shape
[535]: (33, 85)
[536]: votingCLF.predict(final_data)
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but RandomForestClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but AdaBoostClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but LogisticRegression was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but GradientBoostingClassifier was fitted with feature names
        warnings.warn(
0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1])
[537]: label_encoder = LabelEncoder()
      trainY_encoded = label_encoder.fit_transform(trainY)
```

```
[538]: label_encoder.inverse_transform(votingCLF.predict(final_data))
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but RandomForestClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but AdaBoostClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but LogisticRegression was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but GradientBoostingClassifier was fitted with feature names
        warnings.warn(
[538]: array(['EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY',
              'LATE', 'LATE', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY',
              'EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY',
              'EARLY', 'EARLY', 'LATE', 'EARLY', 'EARLY', 'EARLY', 'EARLY',
              'EARLY', 'EARLY', 'LATE', 'LATE', 'LATE'], dtype=object)
 []:
 []:
 []:
 []:
 []:
 []:
 []:
           START 3 HOP
      1.3
[310]: encoder = MultiColumnOneHotEncoder(columns=['Carrier Code', 'Originu
        Airport', 'season', 'SCHED_ARRV_TIME_CAT', 'month', 'WeekDay', 'PREV_STAT'])
        →#, 'wind_type', 'ceiling_det_code', 'celing_CAVOK', 'visibility_variability'
[311]: encoded_data = encoder.fit_transform(df3.drop(columns=['FLIGHT_STATUS']))
```

```
[312]: encoded_data.head()
[312]:
          Scheduled Elapsed Time (Minutes)
                                             latitude elevation wind_direction \
       0
                                         76 40.63915
                                                              3.4
                                                                        102.428571
       1
                                         76 40.63915
                                                              3.4
                                                                        102.428571
       2
                                         76 40.63915
                                                              3.4
                                                                        102.428571
       3
                                         75 40.63915
                                                              3.4
                                                                        110.503072
       4
                                             40.63915
                                                              3.4
                                                                        110.503072
          wind_speed visibility_dist
                                        air_temparature sea_level_pressure
            3.221194
                              6.966812
       0
                                                  33.944
                                                                 1018.725782
            3.221194
                                                  33.944
       1
                              6.966812
                                                                  1018.725782
       2
            3.221194
                              6.966812
                                                  33.944
                                                                  1018.725782
            0.000000
                                                  33.368
       3
                              5.400087
                                                                  1015.367354
            0.000000
                              5.400087
                                                  33.368
                                                                  1015.367354
          SYR_wind_direction SYR_wind_speed ... month_11 month_12 \
                                     3.892276
       0
                   106.00000
                                               •••
                                                        0.0
                                                                   0.0
       1
                   106.00000
                                     3.892276
                                                        0.0
                                                                   0.0
       2
                   106.00000
                                     3.892276
                                                        0.0
                                                                   0.0
       3
                   103.91219
                                     0.000000
                                                        0.0
                                                                   0.0
       4
                   103.91219
                                     0.000000
                                                                   0.0
                                                        0.0
          WeekDay_Monday WeekDay_Saturday WeekDay_Sunday
                                                              WeekDay_Thursday \
       0
                     0.0
                                        0.0
                                                         0.0
                                                                            0.0
                     0.0
                                        0.0
                                                         0.0
                                                                            0.0
       1
       2
                     0.0
                                        0.0
                                                         0.0
                                                                            0.0
       3
                     0.0
                                        0.0
                                                         0.0
                                                                            0.0
                     0.0
                                        0.0
                                                                            0.0
       4
                                                         0.0
          WeekDay_Tuesday
                           WeekDay_Wednesday PREV_STAT_LATE PREV_STAT_ONTIME
       0
                      0.0
                                          0.0
                                                           0.0
                                                                              1.0
                      0.0
                                                           0.0
       1
                                          0.0
                                                                              1.0
       2
                      0.0
                                          0.0
                                                           0.0
                                                                              1.0
       3
                                          0.0
                                                           1.0
                       0.0
                                                                              0.0
       4
                       0.0
                                          0.0
                                                           0.0
                                                                              1.0
       [5 rows x 85 columns]
[313]: encoded_data.shape
[313]: (341013, 85)
[314]: trainX, testX, trainY, testY = train_test_split(
           encoded_data,
           df3['FLIGHT STATUS'],
           test_size=0.2,
```

```
random_state=947,
           stratify=df3['FLIGHT_STATUS']
       )
[315]: from sklearn.preprocessing import StandardScaler
       scaler = StandardScaler()
       enc_trainX = pd.DataFrame(scaler.fit_transform(trainX), index=trainX.index,_
       ⇔columns=trainX.columns)
       enc_testX = pd.DataFrame(scaler.transform(testX), index=testX.index,_u
        ⇔columns=testX.columns)
[316]: from sklearn.tree import DecisionTreeClassifier
       from sklearn.preprocessing import LabelEncoder
       from sklearn.linear_model import LogisticRegression
       from sklearn.metrics import accuracy_score, classification_report
       def fit_and_evaluate(model, trainX, trainY, testX, testY):
           # Convert string labels to integers
           label_encoder = LabelEncoder()
           trainY_encoded = label_encoder.fit_transform(trainY)
           testY_encoded = label_encoder.transform(testY)
           model.fit(trainX, trainY encoded)
           testY_pred = model.predict(testX)
           accuracy = accuracy score(testY encoded, testY pred)
           report = classification_report(testY_encoded, testY_pred, output_dict=True)
           results = {'accuracy': accuracy, 'classification_report': report}
           return results
       # Update other classification functions similarly...
       # Random Forest
       from sklearn.ensemble import RandomForestClassifier
       def random forest classification(trainX, trainY, testX, testY, ...

¬n_estimators=100, criterion='gini', max_depth=None):
           model = RandomForestClassifier(n_estimators=n_estimators,__
        ⇔criterion=criterion, max_depth=max_depth)
           return fit_and_evaluate(model, trainX, trainY, testX, testY)
       # Support Vector Machines (SVM)
       from sklearn.svm import SVC
       def svm_classification(trainX, trainY, testX, testY, kernel='rbf', C=1.0):
           model = SVC(kernel=kernel, C=C)
           return fit_and_evaluate(model, trainX, trainY, testX, testY)
```

```
# K-Nearest Neighbors (KNN)
from sklearn.neighbors import KNeighborsClassifier
def knn classification(trainX, trainY, testX, testY, n_neighbors=5):
   model = KNeighborsClassifier(n_neighbors=n_neighbors)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# Gradient Boosting Machines (GBM)
from sklearn.ensemble import GradientBoostingClassifier
def gbm_classification(trainX, trainY, testX, testY, n_estimators=100,_
 →learning_rate=0.1, max_depth=3):
   model = GradientBoostingClassifier(n_estimators=n_estimators,__
 →learning_rate=learning_rate, max_depth=max_depth)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# Naive Bayes
from sklearn.naive_bayes import GaussianNB
def naive_bayes_classification(trainX, trainY, testX, testY):
   model = GaussianNB()
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# AdaBoost
from sklearn.ensemble import AdaBoostClassifier
def adaboost_classification(trainX, trainY, testX, testY, n_estimators=50,_
 →learning_rate=1.0):
   model = AdaBoostClassifier(n_estimators=n_estimators,__
 →learning_rate=learning_rate)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
# XGBoost
from xgboost import XGBClassifier
def xgboost_classification(trainX, trainY, testX, testY, n_estimators=100,_
 -learning_rate=0.1, max_depth=3):
   model = XGBClassifier(n_estimators=n_estimators,__
 →learning_rate=learning_rate, max_depth=max_depth)
   return fit_and_evaluate(model, trainX, trainY, testX, testY)
def logistic regression classification(trainX, trainY, testX, testY,,,
 →penalty='12', C=1.0, max_iter=1000, solver='lbfgs'):
   target_names = trainY.unique() if isinstance(trainY, pd.Series) else testY.

unique()
```

```
# Initialize and train the Logistic Regression model
   model = LogisticRegression(penalty=penalty, C=C, max_iter=max_iter,__
 ⇒solver=solver, verbose=1 if max_iter > 300 else 0)
   model.fit(trainX, trainY)
   # Predict on the testing set
   testY_pred = model.predict(testX)
   # Calculate accuracy score
   accuracy = accuracy_score(testY, testY_pred)
   # Generate classification report
   report = classification_report(testY, testY_pred,_
 →target_names=target_names, output_dict=True)
   results = {
       'accuracy': accuracy,
        'classification_report': report
   }
   return results
def decision_tree_classification(trainX, trainY, testX, testY, __
 ⇔criterion='gini', max_depth=None):
   # Get unique target names
   target_names = trainY.unique() if isinstance(trainY, pd.Series) else testY.

unique()
   # Initialize and train the Decision Tree model
   model = DecisionTreeClassifier(criterion=criterion,__

max_depth=max_depth,min_samples_split=5)
   model.fit(trainX, trainY)
   # Predict on the testing set
   testY_pred = model.predict(testX)
   # Calculate accuracy score
   accuracy = accuracy_score(testY, testY_pred)
   # Generate classification report
   report = classification_report(testY, testY_pred,__
 results = {
```

```
'accuracy': accuracy,
               'classification_report': report
           }
           return results
[317]: | # logistic_regression_classification(enc_trainX, trainY, enc_testX, testY, u
        \hookrightarrowsolver='saga', max_iter=1500, C=50)
[318]: | # decision_tree_classification(enc_trainX, trainY, enc_testX, testY, __
        →max depth=11, criterion='entropy')
[319]: # random forest_classification(enc_trainX, trainY, enc_testX, testY)
[320]: # knn classification(enc trainX, trainY, enc testX, testY)
[321]: # qbm classification(enc trainX, trainY, enc testX, testY)
[322]: # naive bayes classification(enc trainX, trainY, enc testX, testY)
[323]: | # adaboost_classification(enc_trainX, trainY, enc_testX, testY)
[324]: | # xqboost classification(enc trainX, trainY, enc testX, testY)
[325]: from sklearn.model_selection import GridSearchCV, KFold
       def hyperparameter_tuning(model, param_grid, trainX, trainY, cv=5):
           label_encoder = LabelEncoder()
           trainY_encoded = label_encoder.fit_transform(trainY)
           # Initialize K-Fold cross-validator
           kf = KFold(n_splits=cv, shuffle=True, random_state=42)
           # Perform grid search
           grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=kf,_u
        ⇒scoring='accuracy', verbose=3, n_jobs=10, )
           grid_search.fit(trainX, trainY_encoded)
           return grid_search
[326]: params = {'colsample_bytree': 0.7, 'gamma': 0.1, 'learning_rate': 0.1, |
        → 'max_depth': 7, 'n_estimators': 200, 'reg_lambda': 1.5, 'subsample': 0.9}
       # param_grid = {
             'n_estimators': [100, 200], # Number of boosting rounds
             'max_depth': [3, 5, 7, 11], # Maximum tree depth
             'learning_rate': [0.01, 0.1, 0.3], # Step size shrinkage
             'subsample': [0.7, 0.9], # Subsample ratio of the training instances
       #
             'colsample_bytree': [0.7, 0.9], # Subsample \ ratio \ of \ columns \ when_{f U}
        ⇔constructing each tree
```

```
'qamma': [0, 0.1], # Minimum loss reduction required to make a further
       ⇒partition on a leaf node of the tree
            'reg_lambda': [1, 1.5, 2] # L2 regularization term on weights
      # }
      # model = XGBClassifier(**params)
      # best model = hyperparameter tuning(model, param grid, enc trainX, trainY)
      # fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
      # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[327]: params = {'bootstrap': False, 'criterion': 'entropy', 'max_depth': None,

¬'max_features': 'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 2,
□
       param_grid = {
          'n_estimators': [50, 100, 200],
          'max_depth': [None, 10, 20],
          'min_samples_split': [2, 5, 10],
          'min_samples_leaf': [1, 2, 4],
          'max_features': ['auto', 'sqrt'],
          'bootstrap': [True, False],
          'criterion': ['gini', 'entropy']
      }
      # model = RandomForestClassifier(**params)
      # fit and evaluate(model, enc trainX, trainY, enc testX, testY)
      # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
      # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[328]: params = {'algorithm': 'SAMME.R', 'learning_rate': 1.0, 'n_estimators': 200}
      param grid = {
          'n_estimators': [50, 100, 200], # Number of estimators
          'learning rate': [0.01, 0.1, 1.0], # Learning rate
          'algorithm': ['SAMME', 'SAMME.R'], # Algorithm
      }
      # model = AdaBoostClassifier(**params)
      # fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
      # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
      # # Print best parameters and best score
      # print("Best parameters found: ", best_model.best_params_)
      # print("Best accuracy score found: ", best_model.best_score_)
[329]: params = {'ccp_alpha': 0.07, 'criterion': 'gini', 'max_depth': None, __
       ⇔'splitter': 'best'}
```

```
param_grid = {
           'criterion': ['gini', 'entropy'], # Split criterion
           'splitter': ['best', 'random'], # Strategy to choose split at each node
           'max_depth': [None, 1, 3, 5], # Max depth of the tree
           'min_samples_split': [2, 5, 10], # Min samples required to split a node
           'min_samples_leaf': [1, 2, 4], # Min samples required at each leaf node
           'max_features': ['sqrt', 'log2'], # Max features to consider for split
           'ccp_alpha': [0.07,0.01]
      }
      # model = DecisionTreeClassifier(**params)
      # fit and evaluate(model, enc trainX, trainY, enc testX, testY)
       # best_model = hyperparameter_tuning(model, param_grid, enc_trainX, trainY)
       # # Print best parameters and best score
       # print("Best parameters found: ", best_model.best_params_)
       # print("Best accuracy score found: ", best_model.best_score_)
[330]: gbm_params = {
           'learning_rate': [0.01, 0.05, 0.1], # Learning rate
           'n_estimators': [50, 100, 200], # Number of boosting stages
           'max_depth': [3, 4, 5], # Maximum depth of the individual trees
      }
      # model = GradientBoostingClassifier()
       # best_model = hyperparameter_tuning(model, gbm_params, enc_trainX, trainY)
       # # Print best parameters and best score
       # print("Best parameters found: ", best_model.best_params_)
       # print("Best accuracy score found: ", best_model.best_score_)
[331]: %%time
      from sklearn.ensemble import VotingClassifier
      lr = LogisticRegression(penalty='12', C=50, max_iter=1500, solver='saga')
      ada = AdaBoostClassifier(**{'algorithm': 'SAMME.R', 'learning_rate': 1.0, __
       gbm = GradientBoostingClassifier(**{'learning_rate': 0.1, 'max_depth': 5,__

¬'n_estimators': 200})
      rf = RandomForestClassifier(** {'bootstrap': False, 'criterion': 'entropy', |
       ⇔'max_depth': None, 'max_features': 'sqrt', 'min_samples_leaf': 4,□
       ⇔'min_samples_split': 2, 'n_estimators': 200})
      xgb = XGBClassifier(**{'colsample_bytree': 0.7, 'gamma': 0.1, 'learning_rate':
       40.1, 'max_depth': 7, 'n_estimators': 200, 'reg_lambda': 1.5, 'subsample': 0.

¬9},objective='multi:softprob')
      # res = fit_and_evaluate(model, enc_trainX, trainY, enc_testX, testY)
      votingCLF = VotingClassifier(
```

```
estimators=[
               ('rf', rf),
               ('ada', ada),
               ('xgb', xgb),
               ('lr', lr),
               ('gbm', gbm)
           ],
           voting='soft',
           weights=[4,5,7,2,6]
       fit_and_evaluate(votingCLF, enc_trainX, trainY, enc_testX, testY)
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/ensemble/_weight_boosting.py:519: FutureWarning: The SAMME.R
      algorithm (the default) is deprecated and will be removed in 1.6. Use the SAMME
      algorithm to circumvent this warning.
        warnings.warn(
      CPU times: user 18min 21s, sys: 1.58 s, total: 18min 22s
      Wall time: 16min 38s
[331]: {'accuracy': 0.667111417386332,
        'classification_report': {'0': {'precision': 0.6275531067731314,
          'recall': 0.9302577845839715,
          'f1-score': 0.7494955466731785,
          'support': 31344.0},
         '1': {'precision': 0.705195563339171,
          'recall': 0.5903049257232212,
          'f1-score': 0.6426557429377028,
          'support': 20464.0},
         '2': {'precision': 0.924295010845987,
          'recall': 0.2598963098505642,
          'f1-score': 0.40571292549393,
          'support': 16395.0},
         'accuracy': 0.667111417386332,
         'macro avg': {'precision': 0.7523478936527631,
          'recall': 0.5934863400525856,
          'f1-score': 0.5992880717016037,
          'support': 68203.0},
         'weighted avg': {'precision': 0.7221817704454317,
          'recall': 0.667111417386332,
          'f1-score': 0.6347984539078082,
          'support': 68203.0}}}
[332]: final = pd.read_csv("./sample_input_2nd_task.csv")
[333]: final_data = scaler.transform(encoder.transform(final))
```

```
[334]: final_data.shape
[334]: (33, 85)
[335]: votingCLF.predict(final_data)
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but RandomForestClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but AdaBoostClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but LogisticRegression was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but GradientBoostingClassifier was fitted with feature names
        warnings.warn(
[335]: array([0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0,
              0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0])
[336]: label_encoder = LabelEncoder()
       trainY_encoded = label_encoder.fit_transform(trainY)
[337]: |label_encoder.inverse_transform(votingCLF.predict(final_data))
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but RandomForestClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but AdaBoostClassifier was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but LogisticRegression was fitted with feature names
        warnings.warn(
      /home/numan947/anaconda3/envs/mldl/lib/python3.9/site-
      packages/sklearn/base.py:493: UserWarning: X does not have valid feature names,
      but GradientBoostingClassifier was fitted with feature names
        warnings.warn(
```

```
[337]: array(['EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'EARLY',
             'EARLY', 'EARLY', 'LATE', 'LATE', 'LATE', 'EARLY', 'EARLY',
             'EARLY', 'LATE', 'LATE', 'EARLY', 'EARLY', 'EARLY',
             'EARLY', 'EARLY', 'EARLY', 'LATE', 'LATE', 'LATE', 'EARLY',
             'EARLY', 'EARLY', 'EARLY', 'EARLY'], dtype=object)
 []:
 []:
 []:
 []:
 []:
 []:
 []:
 []:
 []:
  []:
 []:
 []:
 []:
 []:
 []:
 []:
 []:
 []:
 []:
 []:
 []:
```

[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	