## This Page Is Inserted by IFW Operations and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

### IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

# CD40-mediated activation of Ig-C $\gamma$ 1- and Ig-C $\epsilon$ germ-line promoters involves multiple TRAF family proteins

Eugen Leo, Juan M. Zapata and John C. Reed

The Burnham Institute, La Jolla, USA

CD40 plays a critical role in immunoglobulin (Ig) class switching in B cells, but the molecular events involved remain poorly understood. Using CD40 mutants with impairments in their ability to bind selected TNF receptor-associated factor (TRAF) family proteins, we observed that CD40-mediated transcriptional induction of the germ-line Ig-C $\gamma$ 1- and Ig-C $\epsilon$  promoters was markedly reduced by mutations that prevent TRAF2, TRAF3, TRAF5 or TRAF6 binding. Moreover, co-expression of trans-dominant inhibitory forms of TRAF2, 3, 5 or 6 with wild-type CD40 also suppressed induction of these promoters. Overexpression of TRAF2 or TRAF6 was sufficient to induce transcription of the C $_{\rm H}$  promoters through an NF- $_{\rm H}$ 8-dependent mechanism. In contrast, TRAF3 and TRAF5 failed to induce these promoters, implying a more indirect role for these TRAF family members. Altogether, the results demonstrate a non-redundant role for multiple TRAF in the signal transduction pathways by which CD40 induces transcription of germ-line C $_{\rm H}$ 9 promoters. Since C $_{\rm H}$ 9 germ-line transcription represents an obligatory step in Ig class switching in B cells, these findings suggest that interference with the functions of any of these TRAF might provide a means of preventing class switching for therapeutic purposes.

Key words: B lymphocyte / Isotype switching / Antibody / TRAF / Signal transduction

Received 8/7/99
Revised 27/8/99
Accepted 30/8/99

#### 1 Introduction

Upon exposure to T cell-dependent antigens, B cells undergo Ig class switching from membrane-bound IgM or IgD to production of IgG, IgA or IgE. The initial step required for initiation of class switching is expression of the respective unrearranged heavy chain constant region (C<sub>H</sub>) gene, rendering these genes competent for the DNA recombination events responsible for Ig clas switching (reviewed [1]). According to the "accessibility" model for class switching, this change in C<sub>H</sub> expression confers accessibility of the C<sub>H</sub> locus to recombination factors [2, 3].

Targeted gene ablation experiments in mice and hereditary mutants in humans have demonstrated an essential role for CD40 in class switching [4–7]. CD40 is a member of the TNFR family that exerts its signaling capacity

[l 19877]

Abbreviations: TRAF: TNF receptor-associated factors WT: Wild type DN: Dominant negative

0014-2980/99/1212-3908\$17.50+.50/0

through interactions with TNFR family-associated factors (TRAF), namely TRAF2, 3, 5 and 6 (summarized in [8, 9]. Several unique binding motifs for TRAF have been identified within the cytosolic domain of CD40 and mutants have been generated which selectively bind certain TRAF but not others [8–11]. We investigated the influence of these CD40 mutations and the effects of overexpressing different TRAF on transcriptional induction of the Ig-Cγ1- and Ig-Cε germ-line promoters.

#### 2 Results

## 2.1 Correlation of TRAF binding sites in CD40 with induction of the Ig-Cγ1- and Ig-Cε germline promoters

We explored the ability of wild-type (WT) CD40 and various CD40 mutants with selective impairments in TRAF binding (Fig. 1 A) to transactivate luciferase reporter gene plasmids containing the CD40-responsive region (CD40RR) previously identified within the  $Ig\text{-}C\gamma_1$  promoter and the complete  $Ig\text{-}C\epsilon$  germ-line promoter [12, 13]. For these experiments, WT and mutant CD40 expression plasmids were transiently transfected with

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999



Figure 1. Effects of CD40 mutants on transactivation of  $IgC\gamma1$ - and  $Ig-C\epsilon$  promoters. (A) TRAF binding characteristics of CD40 mutants is summarized for TRAF2, 3, 5 and 6, based on previous results [8, 9]. (B, C) Murine M12.4.1 B cells cultured in the presence of IL-4 were transiently co-transfected with 3.0 μg pcDNA3 control plasmid ("vector"), or with pcDNA3-human CD40 or various CD40 cytoplasmic domain mutants, as indicated, together with 0.5 μg luciferase reporter plasmids containing the  $Ig-C\gamma1$ -(B) or  $Ig-C\epsilon$  (C) germ-line transcript promoters and 0.5 μg pcMV-β-gal. Human CD40 was selectively activated by adding G28.5 antibody. Relative promoter activity (RLU) was assessed by luciferase assays, normalized for β-gal activity (mean ± SD; n = 4). (ND) not determined. (\*) TRAF5 binds to CD40 only indirectly by heterodimerization with TRAF3 [8, 9]. (\*\*) TRAF6 may bind to CD40ct indirectly through an adapter molecule [9].

the C<sub>H</sub> region reporter plasmids into the B cell line M12.4.1, which is known to support Ig gene transcription [14, 15]. Though the low frequency of M12.4.1 cell transfection precluded direct assessment of expression, these CD40 mutants have been shown previously to be expressed at similar levels on the surface of a variety of highly transfectable cell lines and their altered interactions with TRAF have been confirmed in both lymphoid and non-lymphoid cells [8–11].

WT CD40 induced > 12-fold and > 3-fold increases in the activity of the C $\gamma$ 1 and C $\epsilon$  reporter plasmids, respectively (Fig. 1). In contrast to WT CD40, all CD40 mutants with impaired ability to bind TRAF2, TRAF3, TRAF5 and/or TRAF6 displayed remarkably reduced activity in these assays. The CD40(Q263A) mutant which exhibits selective impairment in TRAF3 binding, for example, displayed only approximately 25  $\pm$  10 % and 30  $\pm$  10 % (n = 3) the activity of WT CD40 at inducing the C $\gamma$ 1- and C $\epsilon$  promoters, respectively (p < 0.01; p = 0.04), providing indirect evidence of a requirement for TRAF3 for optimal CD40-mediated C $\gamma$ 1- and C $\epsilon$  promoter transcription. Similarly, the CD40( $\Delta$ 11aa) mutant that binds TRAF3 normally but exhibits significantly reduced binding to

TRAF2 activated the C $\gamma$ 1- and C $\epsilon$  promoters with only about half the potency of WTCD40 (p=0.03; p=0.06). A CD40 mutant (E235A) failing to associate with TRAF6 [10] also displayed drastic reductions in activation of the C $\gamma$ 1- and C $\epsilon$ -promoters (p=0.02; p=0.05). Point mutations outside known TRAF interaction motifs did not influence activation of C $_{\rm H}$  promoters (i. e. CD40(P227A) and data not shown].

## 2.2 TRAF2 and TRAF6, but not TRAF3 and TRAF5 are independent activators of the Cγ1- and Cε promoters

In transient transfection assays where various TRAF were overexpressed in cells, both TRAF2 and TRAF6 independently activated the C $\gamma$ 1- and C $\epsilon$  germ-line promoters (Fig. 2). Overexpression of TRAF6 resulted in a > 70-fold induction of the C $\gamma$ 1 promoter, whereas TRAF2 induced an approximately 6-fold increase (Fig. 2 A). In contrast, TRAF2 and TRAF6 induced comparable 4-5-fold ihcreases in the transcription of the C $\epsilon$  promoter (Fig. 2 B). TRAF3 and TRAF5 did not activate the Ig-C $_{\rm H}$  reporter genes, suggesting an indirect mechanism for



Figure 2. Overexpression of TRAF2 or TRAF6 induces Ig-Cγ1- and Ig-Cε promoters. Murine M12.4.1 B cells (A, B) or HEK 293N cells (C) were transiently transfected in 2.5 cm/6-well plates with 3.0 μg pcDNA3 control plasmid ("vector"), or expression plasmids encoding TRAF2, 3, 5 or 6 together with 0.5 μg luciferase reporter plasmids containing the Ig-Cγ1- (A) and Ig-Cε (B) germ-line transcript promoters and 0.5 μg pcMV-βgal, or with (C) 0.2 μg of the NF-xB reporter plasmid pUC13-4xNF-kb-luc and 0.2 μg pcMV-βgal. Relative promoter activation (RLU) was assessed by luciferase assays, and normalized by β-gal activity (mean  $\pm$  SD; n = 3).

their involvement in CD40-mediated promoter activation, unlike TRAF2 and TRAF6. Overexpression of TRAF5 in HEK 293 cells, however, did result in increases in levels of NF-xB activity, similar to those generated by transfection of TRAF2 (Fig. 2 C), verifying function of the TRAF5-encoding plasmid. As expected, TRAF3 overexpression did not induce NF-xB, thus confirming the specificity of these results.

## 2.3 CD40-mediated activation of the Cγ1- and Cε promoters is dependent upon NF-xB activation

Co-transfection of a plasmid encoding a dominant-negative (DN) IxB mutant [16] completely abolished CD40-mediated activation of the C $\gamma$ 1- and C $\epsilon$  promoter constructs (Fig. 3). Overexpression of DN-IxB had the same effect on C $\gamma$ 1- and C $\epsilon$  promoter induction by TRAF2 and TRAF6, suggesting that these TRAF also require the NF-xB pathway for their activation of the germ-line C<sub>H</sub> promoters.

### 2.4 DN TRAF mutants suppress CD40-mediated activation of the $C\gamma1$ and $C\epsilon$ promoters

Deletion of the N-terminal RING domain from TRAF family proteins has been shown to create transdominant inhibitory mutants that interfere with the functions of endogenous TRAF [17, 18]. Co-expression of DN



Figure 3. Inhibitory effect of DN I<sub>k</sub>B on CD40- and TRAF-mediated transactivation of Ig-Cγ1- and Ig-Cε promoters. (A) Murine M12.4.1 B cells were transiently cotransfected with 4 μg pcDNA3 control plasmid ("vector") or 3.0 μg pcDNA3 full-length CD40 and increasing amounts of DN I<sub>k</sub>B (0.1/0.3/0.9 μg), together with 0.5 μg luciferase reporter genes containing either the Ig-Cγ1- (left) or Ig-Cε (right) germ-line promoters and 0.5 μg pCMV-βgal. (B, C) Identical assays were performed using plasmids encoding TRAF2 or TRAF6 in place of CD40. In all cases, the total amount of transfected DNA was normalized by addition of empty pcDNA3. Relative promoter activity was assessed by luciferase assays and normalized by β-Gal activity (RLU) (mean ± SD; n = 4).

mutants of TRAF2, 3, 5 or 6 with WT CD40 in M12.4. cells suppressed CD40-mediated activation of both the C $\gamma 1-$  and C $\epsilon$  promoters (Fig. 4). Though the  $\Delta N-$ TRAF2 protein had only a moderate inhibitory effect, the  $\Delta N-$ TRAF3,  $\Delta N-$ TRAF5, and  $\Delta N-$ TRAF6 mutants almost completely abolished CD40-mediated activation of the C $\gamma 1-$  and C $\epsilon$  promoters. These results imply important roles for all four of these TRAF family proteins in C $_H$  promoter transcription.



Figure 4. Influence of DN TRAF on CD40-mediated transactivation of Ig-Cγ1 and Ig-Cε promoters. (A) Murine M12.4.1 B cells cultured in IL-4-containing medium were transiently cotransfected with 5.25 μg pcDNA3 control plasmid ("vector") or 3 μg pcDNA3-human CD40 and increasing amounts of DN TRAF2, 3, 5, or 6 (0.25 μg/0.75 μg/2.25 μg) plasmids together with 0.5 μg luciferase reporter genes containing the Ig-Cγ1- (A) or Ig-Cε (B) germ-line promoters and 0.5 μg pCMV-β-gal. The human CD40 was selectively activated by using G28.5 antibody. Relative luciferase values were normalized to β-gal (RLU; mean  $\pm$  SD; n = 3). Immunoblotting confirmed production of  $\Delta$ N-TRAF proteins (not shown).

#### 3 Discussion

The data presented here suggest a requirement for all TRAF molecules known to associate with CD40 for optimal induction of Ig-C $\gamma$ 1- and Ig-C $\epsilon$  promoter transcription. Mutations of TRAF binding motifs within the CD40 cytoplasmic tail or overexpression of DN TRAF mutants led to significant decreases in CD40-mediated activation of reporter genes containing germ-line promoters for Ig-C $\gamma$ 1 and Ig-C $\epsilon$ . Previous investigations of the requirements for various TRAF on CD40-mediated NF-xB induction and JNK activation have demonstrated redun-

dancy among TRAF (reviewed in [9]). In contrast, studies of  $C\gamma 1$ - and Ig- $C\epsilon$  promoter induction imply a non-redundant role for several TRAF for transcriptional activation of these promoters involved in Ig gene expression and control of class switch recombination. Requirements for combinations of multiple TRAF may help to ensure Ig lineage-specific induction of Ig promoter transcription.

TRAF2, TRAF5 and TRAF6 are all known to activate NFxB through their ability to bind activators of the lxB kinase complex such as NIK and RIP-2, and MEKK1. Previously, CD40-induced NF-xB/p50-RelA and NF-kB/ p50-Rei-B dimers were shown to be important for transactivating the Ig-Cy1 promoter [12]. In contrast, CD40mediated induction of the Ig-Cs promoter has been associated with NF-xB/p50-RelC dimers, which in combination with active STAT6 induced by IL-4 or IL-13 appear to be essential for transactivation of this C<sub>H</sub> promoter [15]. These differences in Rel protein patterns may depend upon either participation of other co-stimulatory factors besides TRAF or on differences in the types of NF-xB/lxB complexes which specific TRAF preferentially activate. However, while experiments with DN-IxB indicate that NF-xB is necessary for CD40- and TRAFmediated induction of the Cγ1- and Cε promoters, this does not exclude the participation of other types of transcription factors, such as STAT, which are activated by the class switch supporting cytokine IL-4 [19].

In contrast to TRAF2, 5 and 6, the TRAF3 protein does not activate NF-xB directly and may instead rely on NFxB-independent mechanisms for transducing signals. The findings that (1) CD40 mutants which lack TRAF3 binding capability displayed impaired induction of Iq-Cy1- and Ig-C $\epsilon$  promoter transcription and that (2)  $\Delta$ N-TRAF3 overexpression suppressed CD40-mediated induction of C<sub>H</sub> promoters suggests a critical role for TRAF3 in germ-line promoter activation. The modulation of C<sub>H</sub> promoter transactivation by TRAF3, however, may be an indirect consequence of its requirement for recruitment of TRF5 to CD40 receptor complexes via formation of TRAF3/TRAF5 hetero-oligomers [8, 9]. This may also explain why overexpression of TRAF5 by itself was insufficient to transactivate the Ig-Cγ1- and Ig-Cε promoters. Though a recent report suggested that overexpression of TRAF3 may suppress rather than enhance Ig production induced by CD40, the effect of TRAF3 on Ig class switching was not examined [20]. Future studies, particularly experiments exploiting transgenic and gene knockout mice, will help to further elucidate the in vivo importance of specific TRAF family proteins for regulation of Ig class switching in B cells.

#### 4 Materials and methods

#### 4.1 Plasmids

Plasmids have been described elsewhere [9, 12, 13] which contain cDNA encompassing the complete open reading frames of CD40 (pcDNA3-CD40/mutants), huTRAF2-[pcDNA3-HA-TRAF2 and pcDNA3-HA-TRAF2 (residues 248-501)], huTRAF3b [pcDNA3-HA-TRAF3b, pcDNA3-HA-TRAF3b (residues 355-587)], huTRAF-5 (pMKIT-HA-TRAF5) and muTRAF5 (pcDNA3-FLAG-TRAF5 (residues 294-558)], huTRAF6 [pcDNA3-mýc-TRAF6 and pcDNA3-myc-TRAF6 (residues 301-530)], the promoter-containing reporter gene plasmids pUC13-4xNF-xB-Luc (containing four tandem HIV-NF-xB response elements and the minimal fos promoter) and pFL-CD40RR-Luc (containing the mouse minimal fos-promoter and the -99 to -43 CD40-responsive element of the germ-line Cγ1 promoter), and pFL-163ε-Luc (containing mouse minimal fos-promoter and the -163 to + 53 CD40-responsive element of the germ-line Cε promoter).

#### 4.2 Cell culture and transfections

293N cells were obtained from American Type Culture Collection (ATCC; Rockville, MD) and cultured in DMEM-high glucose media (Gibco-BRL) supplemented with 10 % FBS (Hyclone), 1 mM L-glutamine and antibiotics. The murine B cell line M12.4.1 [21] was maintained in RPMI (Gibco-BRL) containing the same additives plus 1 mM sodium pyruvate, MEM essential amino acids (Gibco-BRL) and 50 nM 2-ME.

#### 4.3 Reporter gene asssay

For Ig class switch reporter gene assays, M12.4.1 cells were seeded at  $4\times10^5$ – $5\times10^5$  cells/mI in 6-weil plates and transfected with various expression plasmids by lipofection (Lipofectamine Plus, Gibco), then stimulated 12 h later with G28.5 anti-human CD40 Ab (ATCC, 10  $\mu$ g/mI) and murine IL-4 (Genzyme, 10 000 U/mI) for 12–18 h. Cell lysates were then evaluated for luciferase and  $\beta$ -galactosidase ( $\beta$ -gal) activity.

For NF-xB reporter gene assays, 293N cells were transfected using SuperFect (Qiagen) with 1  $\mu$ g (total) plasmid DNA at 60–80 % confluency in 12-well plates. After 1.5 days, cells were lysed in 0.1 ml Promega-lysis buffer. Lysates were measured for luciferase activity using a luminometer (EG&G Berthold) and Promega luciferase kits, normalizing relative to  $\beta$ -gal.

Acknowledgements: We thank J. Stavnezer, I. Verma, W. Force, H. Nakano, C. Ware and T. Watts for reagents, C. Fux and S. Fuess for technical assistance, and E. Smith and S. Farrar for manuscript preparation. This work was supported by the National Institutes of Health (CA-69381). E. L. was supported by a training grant from Deutsche For-

schungsgemeinschaft (DFG, LE-818), Juan Zapata was supported by a fellowship from the Lymphoma Research Foundation of America.

#### 5 References

- 1 Stavenezer, J., Immunoglobulin class switching. Curr. Opin. Immunol. 1996. 8: 199–205.
- 2 Snapper, C. M., Marcu, K. B. and Zelazowski, P., The immunoglobulin class switch: beyond "accessibility". Immunity 1997. 6: 217–223.
- 3 Stavnezer-Nordgren, J. and Sirlin, S., Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. *EMBO J.* 1986. 5: 95–102.
- 4 Xu, J., Foy, T. M., Laman, J. D., Elliott, E. A., Dunn, J. J., Waldschmidt, T. J., Elsemore, J., Noelle, R. J. and Flavell, R. A., Mice deficient for the CD40 ligand. *Immunity* 1994. 1: 423–431.
- 5 Farrington, M., Grosmaire, L., Nonoyama, S., Fischer, S., Hollenbaugh, D., Ledbetter, J., Noelle, R., Aruffo, A. and Ochs, H., CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. *Proc. Natl. Acad. Sci. USA* 1994. 91: 1099–1103.
- 6 Korthauer, U., Graf, D., Mages, H., Briere, F., Padayachee, M., Malcolm, S., Ugazio, A., Notarangelo, L., Levinsky, R. and Kroczek, R., Defective expression of T cell CD40 ligand causes X-linked immunodeficiency with Hyper-IgM. *Nature* 1993. 361: 539–541.
- 7 Kawabe, T., Naka, T., Yoshida, K., Tanaka, T., Fujiwara, H., Suematsu, S., Yoshida, N., Kishimoto, T. and Kikutani, H., The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. *Immunity* 1994. 1: 167–178.
- 8 Pullen, S., Miller, H., Everdeen, D., Dang, T., Crute, J. and Kehry, M., CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: Regulation of CD40 signaling through multiple TRAF binding site and TRAF hetero-oligomerization. *Biochemistry* 1998. 37: 11830–11845.
- 9 Leo, E., Welsh, K., Matsuzawa, S., Zapata, J. M., Kitada, S., Mitchell, R., Ely, K. and Reed, J. C., Differential requirements for TRAF-family proteins in CD40mediated induction of NF-xB and JNK activation. *J. Biol. Chem.* 1999. 274: 22414–22274.
- 10 Tsukamoto, N., Kobayashi, N., Azuma, S., Yamamoto, T. and Inoue, J.-I., Two differently regulated nuclear factor xB activation pathways triggered by the cytoplasmic tail of CD40. *Proc. Natl. Acad. Sci. USA* 1999. 96: 1234–1239.

- 11 Lee, H., Dempsey, P., Parks, T., Zhu, X., Baltimore, D. and Cheng, G., Specificities of CD40 signaling: Involvement of TRAF2 in CD40-induced NF-xB activation and intercellular adhesion molecule-1 up-regulation. *Proc. Natl. Acad. Sci. USA* 1999. 96: 1421–1426.
- 12 Lin, S. and Stavnezer, J., Activation of NF-kappaB/Rel by CD40 engagement induces the mouse germ line immunoglobulin Cγ1 promoter. Mol. Cell. Biol. 1996. 16: 4591–4603.
- 13 Delphin, S. and Stavnezer, J., Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germ-line ε-promoter: regulation by NF-IL-4, a C/EBP family member and NF-kappa B/p50. J. Exp. Med. 1995. 181: 181–192.
- 14 Lin, S., Wortis, H. and Stavnezer, J., The ability of CD40L, but not lipopolysaccharide, to initiate immunoglobulin switching to immunoglobulin G1 is explained by differential induction of Nf-xB/Rel proteins. *Mol. Cell. Biol.* 1998. 18: 5523–5532.
- 15 Iciek, L., Delphin, S. and Stavnezer, J., CD40 cross-linking induces Igε-germline transcripts in B cells via activation of NF-kappaB: synergy with IL-4 induction. J. Immunol. 1997. 158: 4769–4779.
- 16 Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. and Verma, I. M., Suppression of TNF-α-induced apoptosis by NF-xB. Science 1996. 274: 787–789.

- 17 Rothe, M., Sarma, V., Dixit, V. M. and Goeddel, D. V., TRAF2-mediated activation of NF-kappaB by TNF receptor 2 and CD40. Science 1995. 269: 32767–32770.
- 18 Dadgostar, H. and Cheng, G., An intact zinc ring finger is required for tumor necrosis factor receptor-associated factor-mediated nuclear factor-xB activation but is dispensable for c-jun N-terminated kinase signaling. J. Biol. Chem. 1998, 273: 1–6.
- 19 Hou, J., Schindler, U., Henzel, W, Ho, T., Brasseur, M. and McKnight, S., An interleukin-4-induced transcription factor: IL-4 Stat. Science 1994. 265: 1701–1706.
- 20 Hostager, B. and Bishop, G., Contrasting roles of TNF receptor-associated factor 2 (TRAF2) and TRAF3 in CD40-activated B lymphocyte differentiation. J. Immunol. 1999. 162: 6307–6311.
- 21 Goldstein, M. and Watts, T., Identification of distinct domains in CD40 involved in B7-1 induction or growth inhibition. J. Immunol. 1996. 157: 2837–2843.

Correspondence: John C. Reed, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA Fax: +1-619 646 3194

e-mail: jreed@burnham-inst.org



Welcome to Horst Ibelgaufts'

## COPE

## Cytokines Online Pathfinder Encyclopaedia

Version 10.3 (July 2003)

10,300+ entries/pages; 19,700+ references; 85,000+ internal hyperlinks

including fully integrated <u>MiniCOPE Dictionaries</u> on Angiogenesis, Apoptosis, Cell lines, Chemokines, CytokineTopics, Hematology, Metalloproteinases, Virokines, Viroceptors, Virulence Factors

Please keep COPE a free service! Place a banner ad.

book logo to announce upcoming event:



COPE page structure | Subdictionaries | This version's new entries

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

REQUEST FOR HELP | COPE Reviews | Server statistics

Created, developed, and maintained by Prof Dr H Ibelgaufts

<u>Contact information</u>

Copyright (C) 1997-2003 by Prof H Ibelgaufts Ultra posse nemo obligatur

### Horst Ibelgaufts' COPE: Cytokines Online Pathfinder Encyclopaedia

**COPE Philippine Universities Library Help Initiative** 



+ Antisense and Nucleic Acid Drug Development + Cloning + Cytokine + Cytokine and Growth Factor Reviews + DNA and Cell Biology + EMBO Journal + European Cytokine Network + Genetic Engineering News + Glycobiology + Human Molecular Genetics + Hybridoma + Immunology Today + International Immunology + Journal of Computational Biology + Journal of Immunological Methods + Journal of Interferon & Cytokine Research + Journal of the National Cancer Institute + Molecular Medicine Today + Nucleic Acids Research + Nucleic Acids Symposium Series + Protein Engineering + Trends in Biochemical Sciences + Trends in Cell Biology, + Trends in Microbiology + Viral Immunology + Your Journal +



COPE HomepagePrevious entry:Next entry:Random entry:CAPCAP-18Placentin

### CAP-1

[ <u>CD40-associated protein-1</u>] CAP-1 binds specifically to the cytosolic domain of <u>CD40</u> but not to <u>FAS antigen</u> (see: <u>APO-1</u>) or the two known receptors of <u>TNF</u>.

The CAP-1 protein contains a C-terminal domain with strong amino acid sequence homology with a unique domain of two putative signal transducing proteins binding to the cytosolic tail of the type 2 receptor for <u>TNF</u>, <u>TRAF-1</u> and <u>TRAF-2</u> (see: <u>TRAF</u>). The N-terminal portion of CAP-1 contains a <u>RING finger</u> motif and three zinc finger-like domains similar to those found in several regulatory proteins that interact with DNA or RNA.

The protein has been renamed <u>TRAF-3</u> (<u>Tumor necrosis factor receptor-associated factor-3</u>) and is known also <u>CRAF-1</u>, <u>CD40-BP</u>, or <u>LAP1</u>.

date of last revision: March 2002

References: Sato T et al A novel member of the TRAF family of putative signal transducing proteins binds to the cytosolic domain of CD40. FEBS Letters 358: 113-8 (1995)

COPE page structure | Subdictionaries | This version's new entries

# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

REQUEST FOR HELP | COPE Reviews | Server statistics

Created, developed, and maintained by Prof Dr H Ibelgaufts