PDA and CFG conversions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017

CFGs and PDAs

 ${\cal L}$ has a context-free grammar if and only if it is accepted by some pushdown automaton.

Will first convert CFG to PDA

Convention

A sequence of transitions like

will be abbreviated as

replace a by bcd on stack

Converting a CFG to a PDA

Idea: Use PDA to simulate derivations

$$A \to {\rm O}A{\rm 1}$$

Example:

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

Rules:

$A \rightarrow B$ $B \rightarrow \#$

- 1. Write the start symbol A onto the stack
- 2. Rewrite variable on top of stack (in reverse) according to production

PDA control		stack	input
write start variable	$\varepsilon, \varepsilon/A$	A	00#11
replace by production in reverse	$arepsilon, A/{\bf 1}A{\bf 0}$	\$1A0	00#11

Converting a CFG to a PDA

Idea: Use PDA to simulate derivations

 $A \to \mathrm{O}A\mathrm{1}$

Example:

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

 $B o {\it \#}$

 $A \rightarrow B$

Rules:

- 1. Write the start symbol \boldsymbol{A} onto the stack
- 2. Rewrite variable on top of stack (in reverse) according to production
- 3. Pop top terminal if it matches input

PDA control		stack	input
write start variable	$\varepsilon, \varepsilon/A$	\$A	00#11
replace by production in reverse	$\varepsilon, A/{\rm 1}A{\rm 0}$	\$1A0	00#11
pop terminal and match	0,0/arepsilon	\$1A	0#11
replace by production in reverse	$\varepsilon, A/{\rm 1}A{\rm 0}$	\$11A0	0#11
	:		
	•		

Converting a CFG to a PDA

General CFG to PDA conversion

From PDAs to CFGs

Simplified pushdown automaton:

- Has a single accepting state
- Empties its stack before accepting
- Each transition is either a push, or a pop, but not both

Simplifying the PDA

Single accepting state

Empties its stack before accepting

 ε , a/ ε for every stack symbol a

Simplifying the PDA

Each transition either pushes or pops, but not both

Simplified PDA to CFG

For every pair (q,r) of states in PDA, introduce variable $A_{\it qr}$ in CFG

Intention: A_{qr} generates all strings that allow the PDA to go from q to r (with empty stack both at q and at r)

Simplified PDA to CFG

PDA	CFG
\overline{q}	$A_{qq} \to \varepsilon$
	$A_{pr} o A_{pq} A_{qr}$
$ \underbrace{p} \xrightarrow{a, \varepsilon/x} q $	$A_{ps} ightarrow {\sf a} A_{qr} {\sf b}$
r $b, x/\varepsilon$ s	$\mathbf{a} = \varepsilon \text{ or } \mathbf{b} = \varepsilon$ allowed

Start variable: A_{pq} (initial state p, accepting state q)

Example: Simplified PDA to CFG

productions:

Example: Simplified PDA to CFG

productions:

$$A_{02} \to A_{01}A_{12}$$

$$A_{01} \to A_{01}A_{11}$$

$$A_{12} \rightarrow A_{11}A_{12}$$

$$A_{11} \to A_{11}A_{11}$$

$$A_{11} \to 0 A_{11}$$
1

$$A_{11} \to 1A_{11}$$
0

$$A_{02} \rightarrow A_{11}$$

$$A_{00} \to \varepsilon$$
, $A_{11} \to \varepsilon$, $A_{22} \to \varepsilon$

variables: $A_{00}, A_{11}, A_{22}, \\ A_{01}, A_{02}, A_{12}$

start variable: A_{02}

Example: Simplified PDA to CFG

variables: $A_{00}, A_{11}, A_{22},$ A_{01}, A_{02}, A_{12}

start variable: A_{02}

productions:

$$A_{02} \to A_{01}A_{12}$$

$$A_{01} \to A_{01}A_{11}$$

$$A_{12} \to A_{11}A_{12}$$

$$A_{11} \to A_{11}A_{11}$$

$$A_{11} \rightarrow \mathtt{0} A_{11} \mathtt{1}$$

$$A_{11} \to 1A_{11}$$
0

$$A_{02} \rightarrow A_{11}$$

$$A_{00} \to \varepsilon$$
, $A_{11} \to \varepsilon$,

$$A_{00} \to \varepsilon$$
, $A_{11} \to \varepsilon$, $A_{22} \to \varepsilon$

