Rozwiązywanie równań nieliniowych metodami połowienia, *regula falsi* i siecznych w arytmetyce przedziałowej

Mikołaj Rozwadowski 30 maja 2017

1 Informacje ogólne

1.1 Zastosowanie

Każda z niżej opisanych metod rozwiązuje w arytmetyce przedziałowej równanie f(x) = 0, gdzie f jest dowolną funkcją rzeczywistą. Do znalezienia rozwiązania potrzebny jest początkowy przedział [a, b], który jest potem sukcesywnie zawężany.

1.2 Sposób wczytania funkcji

Wymagana przez każdą metodę funkcja f jest przekazywana jako wskaźnik do obiektu klasy Function. Można samemu napisać podklasę realizującą jakąkolwiek funkcję albo posłużyć się klasą SOFunction, która umożliwia załadowanie jej z biblioteki dynamicznej .so pod systemami operacyjnymi z rodziny GNU/Linux. Sposób utworzenia i skompilowania kompatybilnej biblioteki opisany jest na stronie projektu w serwisie GitHub.

1.3 Identyfikatory nielokalne

W pliku nagłówkowym common. h znajdują się deklaracje pomocniczych funkcji i stałych, z których korzystają wszystkie metody:

Function

klasa udostępniająca metodę interval evaluate(interval x).

WRONG_INTERVAL

stała o wartości liczbowej 1; jest to wyjątek, którym funkcja sygnalizuje, że w podanym przedziale początkowym lewy koniec jest większy lub równy od prawego końca,

NO_REAL_ROOTS

stała o wartości liczbowej 2; jest to wyjątek, którym funkcja sygnalizuje niespełnienie warunku $f(a) \cdot f(b) < 0$,

check_interval

pomocnicza funkcja, która sprawdza warunki dla przedziału początkowego, a niespełnienie ich sygnalizuje zgłoszeniem jednego z powyższych wyjątków,

sgn

pomocnicza funkcja wyznaczająca znak przedziału, przy czym jeśli porównanie nie jest jednoznaczne, to przyjmowany jest znak 0.

2 Metoda połowienia przedziału

2.1 Zastosowanie

Funkcja Bisection znajduje wartość pierwiastka równania f(x) = 0 metodą połowienia przedziału w arytmetyce przedziałowej.

2.2 Opis metody

Metoda połowienia wykorzystuje własność Darboux, która mówi, że jeśli dana jest funkcja ciągła f i przedział rzeczywisty [a,b] takie, że $f(a)=y_a$ i $f(b)=y_b$, to funkcja ta przyjmuje w przedziale (a,b) wszystkie wartości pośrednie między y_a a y_b . W szczególności oznacza to, że jeśli taka funkcja ma na końcach przedziału różne znaki, to istnieje tam miejsce zerowe, czyli punkt $x_0 \in (a,b)$, dla którego $f(x_0)=0$.

Algorytm rozpoczyna pracę z danym przedziałem [a,b], o którym wiadomo, że $f(a) \cdot f(b) < 0$. W każdej iteracji następuje wyznaczenie środka przedziału $m = \frac{a+b}{2}$ i podział go na dwie połowy [a,m] i [m,b]. Jeżeli

 $f(a) \cdot f(m) < 0$, to przeszukiwanie jest kontynuowane w przedziale [a, m], w przeciwnym razie [m, b].

Pętla powtarza się aż do momentu, w którym środek przedziału m będzie miejscem zerowym funkcji. Ponieważ w praktyce może to jednak nie nastąpić, do przerwania algorytmu dojdzie też, gdy szerokość przedziału będzie mniejsza niż zadana tolerancja ϵ lub po wykonaniu określonej liczby iteracji. W takim wypadku wynikiem będzie najwęższy uzyskany przedział zawierający pierwiastek.

2.3 Wywołanie funkcji

Bisection(a, b, func, tolerance, iterations, reached)

2.4 Dane

a, b

lewy i prawy koniec przedziału zawierającego pierwiastek,

func

funkcja, której miesce zerowe należy znależć,

tolerance

największa akceptowalna szerokość przedziału wynikowego,

iterations

maksymalna liczba iteracji.

2.5 Wyniki

Bisection(a, b, func, tolerance, iterations, reached) przedział zawierający miejsce zerowe

2.6 Inne parametry

reached

określa, czy w iterations iteracjach udało się zmieścić w wymaganej tolerancji.

Jeśli początkowy przedział [a,b] nie będzie spełniać wymagań, to funkcja wyrzuci wyjątek (zob. 1.3). Również za pomocą wyjątku odrzucone zostanie podanie liczby iteracji mniejszej lub równej 0.

2.7 Typy parametrów

interval a, interval b, Function* func, long double tolerance, int
iterations, bool& reached

2.8 Identyfikatory nielokalne

Oprócz wymienionych w punkcie 1.3 plik źródłowy definiuje następujące identyfikatory nielokalne:

NOT_ENOUGH_ITERATIONS

stała o wartości liczbowej 3; jest to wyjątek, którym funkcja sygnalizuje, że parametr iterations nie jest liczbą dodatnią.

2.9 Kod źródłowy

```
interval Bisection(interval a, interval b, Function *func,
       long double tolerance, int iterations, bool &reached) {
        check_interval(a, b, func);
        if (iterations < 1) {
            throw NOT_ENOUGH_ITERATIONS;
        }
        interval x, y, right, left, mid;
10
        x = hull(a, b);
11
        long double midpoint;
12
       reached = false;
13
14
       for (int i = 0; i < iterations; i++) {
15
            midpoint = median(x);
16
            left = interval(lower(x), midpoint);
17
            mid = interval(midpoint);
18
            right = interval(midpoint, upper(x));
19
```

```
20
              y = func->evaluate(mid);
21
22
              if (singleton(y) && cereq(y, 0.01)) {
^{23}
                   reached = true;
24
                   return mid;
^{25}
              }
26
^{27}
              if (width(x) < tolerance) {</pre>
28
                   reached = true;
29
                   break;
30
              }
31
32
              if (zero_in(func->evaluate(left))) {
33
                   x = left;
34
              } else {
35
                   x = right;
36
              }
37
         }
38
39
         return x;
40
    }
41
```

2.10 Przykłady

Równanie	a	b	x_0
$x^2 - 2 = 0$	1	2	$[1.4142135623730950,\ 1.4142135623730951]$
$xe^{\sqrt{x+1}} - 1 = 0$	-1	1	$[3.17347582146508266,\ 3.17347582146508323]$
$\sin x \cdot (\sin x + \frac{1}{2}) - \frac{1}{2} = 0$	[0.4, 0.5]	1	$[5.2359877559829801 \text{e-}01,\ 5.2359877559829809 \text{e-}01]$

We wszystkich przykładach przyjęto liczbę iteracji = 60 i $\epsilon = 10^{-16}$.

3 Metoda regula falsi

3.1 Zastosowanie

Funkcja Regula Falsi znajduje wartość pierwiastka równania f(x) = 0 metodą regula falsi w arytmetyce przedziałowej.

3.2 Opis metody

Metoda regula falsi opiera się na założeniu, że każdą funkcję można w odpowiednio małym zakresie argumentów traktować jak funkcję liniową. Choć z matematycznego punktu widzenia jest to nieprawda (stąd nazwa – regula falsi to po łacinie fałszywa zasada albo fałszywa prosta), to obliczanie kolejnych miejsc zerowych tak, jakby funkcja rzeczywiście była na tym odcinku liniowa, daje coraz lepsze przybliżenia prawdziwego pierwiastka.

W każdej iteracji algorytmu wyznaczany jest punkt przecięcia prostej przechodzącej przez punkty (a, f(a)) i (b, f(b)) z osią X:

$$x = b - f(b) \cdot \frac{b - a}{f(b) - f(a)},$$

a następnie uzyskany punkt zastępuje lewy lub prawy koniec przedziału początkowego. Pętla trwa dopóki spełniony jest warunek a>x>b.

3.3 Wywołanie funkcji

RegulaFalsi(a, b, func)

3.4 Dane

a, b

lewy i prawy koniec przedziału zawierającego pierwiastek,

func

funkcja, której miesce zerowe należy znależć.

3.5 Wyniki

RegulaFalsi(a, b, func) przedział zawierający miejsce zerowe

3.6 Inne parametry

Brak. Jeśli początkowy przedział [a, b] nie będzie spełniać wymagań, to funkcja wyrzuci wyjątek (zob. 1.3).

3.7 Typy parametrów

interval a, interval b, Function* func

3.8 Identyfikatory nielokalne

Brak, nie licząc wymienionych w punkcie 1.3.

3.9 Kod źródłowy

```
interval RegulaFalsi(interval a, interval b, Function *func) {
        check_interval(a, b, func);
4
        interval fa, fb, fx, x;
        int sign_fa, sign_fx;
        fa = func->evaluate(a);
        fb = func->evaluate(b);
10
        sign_fa = sgn(fa);
11
        x = b - fb * (b - a) / (fb - fa);
13
        while (upper(a) < lower(x) && upper(x) < lower(b)) {</pre>
14
             fx = func->evaluate(x);
15
             sign_fx = sgn(fx);
16
17
             if (sign_fa == sign_fx) {
18
                 a = x;
19
                 fa = fx;
^{20}
             } else if (sign_fa == -sign_fx) {
21
                 b = x;
^{22}
                 fb = fx;
23
             } else {
24
                 break;
25
             }
26
             if (zero_in(fb - fa)) {
^{28}
                 break;
29
             }
30
```

3.10 Przykłady

Równanie	a	b	x_0
$x^2 - 2 = 0$	1	2	[1.4142135623730950, 1.4142135623734952]
$x^2 - 2 = 0$	0.3	[1.5, 1.6]	[2.999999999999999999999999999999999999
$\sin x \cdot (\sin x + \frac{1}{2}) - \frac{1}{2} = 0$	0.1	1	[5.2359877559652552e-01, 1]

4 Metoda siecznych

4.1 Zastosowanie

Funkcja Secant znajduje wartość pierwiastka równania f(x) = 0 metodą siecznych w arytmetyce przedziałowej.

4.2 Opis metody

Podobnie jak regula falsi, metoda siecznych również opiera się na interpolacji liniowej. Algorytm konstruuje zbieżny do dokładnej wartości pierwiastka ciąg przybliżeń (x_i) według rekurencyjnego wzoru:

$$x_i = x_{i-1} - f(x_{i-1}) \frac{x_{i-1} - x_{i-2}}{f(x_{i-1}) - f(x_{i-2})}.$$

Pierwsze przybliżenia wyznaczane są na podstawie końców przedziału początkowego jako: $x_1 = a + h$, $x_2 = b - h$, $h = 0,179372 \cdot (b - a)$, przy czym jeśli nie jest spełniony warunek $|f(x_1)| \geq |f(x_2)|$, to wartości te są na początku zamieniane miejscami.

4.3 Wywołanie funkcji

Secant(a, b, func)

4.4 Dane

a, b lewy i prawy koniec przedziału zawierającego pierwiastek,

func

funkcja, której miesce zerowe należy znależć.

4.5 Wyniki

```
Secant(a, b, func)
przedział zawierający miejsce zerowe
```

4.6 Inne parametry

Brak. Jeśli początkowy przedział [a, b] nie będzie spełniać wymagań, to funkcja wyrzuci wyjątek (zob. 1.3).

4.7 Typy parametrów

interval a, interval b, Function* func

4.8 Identyfikatory nielokalne

Brak, nie licząc wymienionych w punkcie 1.3.

4.9 Kod źródłowy

```
interval Secant(interval a, interval b, Function *func) {
6
        check_interval(a, b, func);
        interval fa, fb, h, x, fx;
9
        h = (b - a) * 0.1793721;
10
        a += h;
11
        b = h;
12
        fa = func->evaluate(a);
13
        fb = func->evaluate(b);
14
15
        if (cerlt(abs(fa), abs(fb))) {
16
```

```
std::swap(a, b);
17
              std::swap(fa, fb);
18
         }
19
^{20}
         while (true) {
^{21}
              if (zero_in(fa - fb)) {
^{22}
                  break;
23
              }
^{24}
25
              x = b + fb * (b - a) / (fa - fb);
26
              fx = func->evaluate(x);
27
              if (overlap(a, x) || overlap(b, x) || (singleton(fx)
28
                  && zero_in(fx))) {
                  break;
29
              }
30
31
              fa = fb;
^{32}
              fb = fx;
33
              a = b;
              b = x;
35
         }
36
37
         return hull(x, hull(a, b));
^{38}
    }
39
```

4.10 Przykłady

Równanie	a	b	x_0
$x^2 - 2 = 0$	1	2	[1.4142135623730950, 1.4142135623734952]
$xe^{\sqrt{x+1}} - 1 = 0$	-1	1	[3.1734757786211827e-01, 3.1734758214652323e-01]
$xe^{\sqrt{x+1}} - 1 = 0$	[-0.5, -0.4]	[0.2, 0.4]	$[-3.92376800000000000e-01,\ 1.2677667075395474]$

5 Bibliografia

• A. Marciniak, D. Gregulec, J. Kaczmarek: *Podstawowe procedury numeryczne w języku Turbo Pascal.* NAKOM, Poznań, 2000 r.