- 定义6.13 设<A, \leq >是偏序结构,并且S \subseteq A, S \neq ϕ , 则
- (1) $\mathbf{b} \in \mathbf{S}$ 的上界 $\Leftrightarrow \mathbf{b} \in \mathbf{A} \land \forall \mathbf{x} (\mathbf{x} \in \mathbf{S} \rightarrow \mathbf{x} \leq \mathbf{b})$
- (2) $\mathbf{b} \in S$ 的下界 $\Leftrightarrow \mathbf{b} \in A \land \forall \mathbf{x} (\mathbf{x} \in S \rightarrow \mathbf{b} \leq \mathbf{x})$
- (3) $\mathbf{b} \in S$ 的最小上界(上确界) $\Leftrightarrow \mathbf{b} \in S$ 的上界,且对S 的任意上界 \mathbf{x} ,都有 $\mathbf{b} \leq \mathbf{x}$ 。
- (4) $\mathbf{b} \in S$ 的最大下界(下确界) $\Leftrightarrow \mathbf{b} \in S$ 的下界,且对S的任意下界 \mathbf{x} ,都有 $\mathbf{x} \leq \mathbf{b}$ 。
- □ S的上界和下界可能不唯一;
- □ S的最小上界和最大下界若存在,则唯一。

例: (A, \leq) : $A = \{1,2,3,6,12,24,36\}$, \leq 为整除关系,如果 x 整除 y ,便有 $x \leq y$. 设 $S = \{2, 3, 6, 12\}$

S的极大元: 12, 极小元: 2,3

最大元: 12 最小元: 无

上界: 12,24,36 下界: 1

最小上界: 12 最大下界: 1

例: (A, \leq) : $A = \{2, 3, 6, 12, 24, 36\}$, \leq 为整除关系,如果 x 整除 y ,便 有 $x \leq y$ 。令 $S = \{6, 12\}$,求S的极大元、极小元、最大元、最小元、上界、下界、最小上界、最大下界。

解: S的极大元是 12; 极小元是6; S的最大元是12; 最小元是6 S的上界有12, 24, 36; 下界有2, 3, 6; S的最小上界是12; 最大下界是 6 S={2, 3, 6, 12, 24} ???

解: S的极大元是 24; 极小元是2,3; S的最大元是24; 无最小元 S的上界和最小上界是24, 无下界。

例: 若 $S=\{x | x \in R \ \text{且}1 < x < 2 \}$, \leq 是R上的小于或等于关系,给出S的极大元、极小元、最大元、最小元、最小上界、最大下界。

解: S无极大元、极小元、最大元、最小元 S的最小上界为2,最大下界为1 定义(良序结构):设有偏序结构<A, \le >,如果A的每一个非空子集都有一个最小元,则称 \le 为良序关系,<A, \le >为良序结构。

□ 良序关系一定是全序关系。(???)

例: <A,≤>:A= {1, 2, 3, 4}, 并设 ≤是A上的小于或等于关系。

<A,≤>是良序。

例: $\langle A, \leq \rangle$: $A = \{2, 3, 6, 12, 24, 36\}$, \leq 为整除关系,如果 x 整除 y ,便有 $x \leq y$. $\langle A, \leq \rangle$ 不是良序。

定理: <N,≤>是良序结构

证明: 任取N的非空子集A,证明A一定有最小元。

任取 $m \in A$, 构造 $S = \{i \mid i \in A \perp i \leq m\}$,则有 $S \subseteq N$,且 $m \in S$.

可证,若S有最小元a,则a必为A的最小元(请补充)。

因此只需证S有最小元。

下面对|S| 进行数学归纳:

当|S|=1时, $S=\{m\}$,此时m为S的最小元;

假设对任意的 $k \in I_+$,结论成立,即|S|=k时如上构造的S有最小元;

当|S|=k+1时,任取b ∈S,有 $S-\{b\}$ 只有k个元素,因此由归纳假设

S-{b}必有最小元,设为c,则b与c中的最小值必为S的最小元。即

结论对k+1时成立。

因此<N, <> 是良序结构。

例: 判断 < I , \le > < < Q₊ , \le > < < R₊ , \le > 是否为良序结构。

解: (1) < I, <> 不是良序结构: I 无最小元

 $(2) < Q_+, \le >$ 不是良序结构: Q_+ 无最小元

(3) <**R**₊ , ≤ > 不是良序结构: **R**₊无最小元

定理 若 \leq 为集合A上的偏序关系,则 \leq 为A上良序关系的充分必要条件为

- (1)≤为A上的全序关系;
- (2) A 的每个非空子集都有极小元。

证: (必要性) 设 \leq 为A上良序关系,则对任意的 $x,y \in A$, $\{x,y\}$ 有极小元。

若极小元为x,则有 $x \le y$;若极小元为y,则 $y \le x$,所以≤为A上的全序关系。

因为≤为A上良序关系,因此A的每个非空子集都有最小元,即有极小元。

定理 若 \leq 为集合A上的偏序关系,则 \leq 为A上良序关系的充分必要条件为

- (1)≤为A上的全序关系;
- (2) A 的每个非空子集都有极小元。

证:(充分性)设S为A的任意非空子集,且a为S的极小元。下面证明a为S的最小元。

对任意的 $x \in S$, 且 $x\neq a$, 由于 \leq 为A上的全序关系,所以有 $a \leq x$ 或 $x \leq a$ 。

当 $x \le a$ 时,因为a为 极小元,则有x = a,因此必有 $a \le x$ 。从而a为S的最小元。

因此,≤为A上良序关系。

定理 设<A,<>为全序结构,则<A,<>是良序结构的充分必要条件是:不存在 A 中元素的无穷序列

 $a_0, a_1, a_2, \dots,$

使得对每个 $i \in N$,皆有 $a_{i+1} < a_i$ 。即不存在 A 中元素的无穷递降序列。

例: $\langle N, \leq \rangle$ 是良序结构,但 $\langle I, \leq \rangle$ 不是良序结构。

证: (必要性) 反证法。

假设存在 A 中元素的无穷递降序列 a_0 , a_1 , a_2 , ..., 令S 为包含该无穷序列的所有元素的集合,则S为A的非空子集。

显然S无最小元,与A是良序矛盾。

定理 设<A,<>为全序结构,则<A,<>是良序结构的充分必要条件是:不存在 A 中元素的无穷序列

 $a_0, a_1, a_2, \dots,$

使得对每个 $i \in N$,皆有 $a_{i+1} < a_i$ 。即不存在 A 中元素的无穷递降序列。

证: (充分性) 假设<A,<>不是良序结构,则存在一个非空子集S无最小元。

任取 $\mathbf{a}_0 \in \mathbf{S}$,因为 \mathbf{a}_0 不是 \mathbf{S} 的最小元,且<为 \mathbf{A} 上的全序关系,因此必存在 $\mathbf{a}_1 \in \mathbf{S}$,使得 $\mathbf{a}_1 < \mathbf{a}_0$ 。

同理,对任意的 $n \in \mathbb{N}$,如果有 a_0 , a_1 , ..., $a_n \in \mathbb{S}$, 满足 $a_n < a_{n-1} < ... < a_1 < a_0$,因为 a_n 不是最小元且<是全序关系,因此必存在 $a_{n+1} \in \mathbb{S}$,使得 $a_{n+1} < a_n$ 。

由归纳法可得存在一个无穷递降序列a₀, a₁, a₂, ...。

例. 设R为集合A上的二元关系且 $S \subseteq A$. 证明或用反例推翻下述断言: R是A上的偏序(严格偏序、全序、良序),则 $R|_S$ 是S上的偏序(严格偏序、全序、良序),其中 $R|_{S}=\{\langle x,y\rangle\in R|\ x,y\in S\}$ 。

解: (1) 设R是A上的偏序,则R是自反的、反对称的、传递的。下面证明 $R|_s$ 也是自反、反对称和传递的。

自反性:对任意 $x \in S$,因为R是自反的,因此 $< x, x > \in R$,得 < x,

 $x > \in \mathbb{R}|_{S}$ 。因此 $\mathbb{R}|_{S}$ 是自反的。

反对称性:对任意 $< x, y>, < y, x> \in \mathbb{R}|_S$,有 $< x, y>, < y, x> \in \mathbb{R}$.由R是反对称的,得x=y,因此 $\mathbb{R}|_S$ 也是反对称的。

传递性: 对任意<x, y>, < y, $z> \in R|_S$, 有<x, y>, < y, $z> \in R$ 。因为R是传递的,因此<x, $z> \in R$ 。由x, $z \in S$,得

 $\langle x, z \rangle \in \mathbb{R}|_{S}$,得 $\mathbb{R}|_{S}$ 是传递的。

故R|s是偏序。

例. 设R为集合A上的二元关系且 $S \subseteq A$. 证明或用反例推翻下述断言: R是A上的偏序(严格偏序、全序、良序),则 $R|_S$ 是S上的偏序(严格偏序、全序、良序),其中 $R|_{S}=\{\langle x,y\rangle\in R|\ x,y\in S\}$ 。

解: (2) 设R是A上的严格偏序,则R是反自反的、反对称的、传递的。

由(1) 知R|s也是反对称和传递的。

下面证明R|s是反自反的。

反证法: 若存在 $x \in S$ 且< x, $x > \in R|_S$, 则< x, $x > \in R$, 与R为反自反关系矛盾。

因此 $\langle x, x \rangle \notin \mathbb{R}|_{S}$, 得 $\mathbb{R}|_{S}$ 是反自反的。

因此R|s是严格偏序。

例.证明:

- (1) 偏序关系的逆关系仍然是偏序关系;
- (2) 全序关系的逆关系仍然是全序关系;
- (3) 良序关系的逆关系 未必是良序关系。
- 证: (1) 设R是集合A上的偏序关系,则R是自反、反对称和传递的,得R-1是自反、反对称和传递的。因此R-仍是偏序关系。
- (2)设R是集合A上的全序关系,由(1) 知R是偏序关系。对任意的 $x, y \in A$,因为R是A上的全序,则有 $\langle x, y \rangle \in R$,得 $\langle y, x \rangle \in R^{-1}$ 。因此 R^{-1} 是全序。
- (3) 反例: <N, ≤>。

2.4 等价关系与划分

重点:

- 1. 等价关系、等价类
- 2. 等价关系与划分的关系

定义(相容关系)如果集合A上的关系R是自反和对称

的,则称 R 为 A 上的相容关系。若xRy, 则称x和y相

容; 否则称x和y不相容。

例. 设A={6, 14, 19, 105, 145, 203}, 并取 R={ $\langle x, y \rangle | x, y$ \in A且(x, y)>1}, 其中(x, y)表示x和y最大公因子。

R是A上的相容关系。

6 14 19 105 145 203

_	1	1	\cap	1	0	0
						_
	1	1	0	1	0	1
	0	0	1	0	0	0
	1	1	0	1	1	1
	0	0	0	1	1	0
	0	1	0	1	0	1

定理. 设R为集合A上的二元关系,则R为A上的相容关系,当且仅当r(R)=s(R)=R.

相容关系的简化关系矩阵与简化关系图

设R为非空有限集 $A=\{x_1,x_2,...,x_n\}$ 上的相容关系。

- □ 关系矩阵M_R:
 - 主对角线上全为1
 - 对称矩阵
 - 只需知道M_R对角线以下的元素

相容关系的简化关系矩阵与简化关系图

- □ 关系图G_R:
 - 每个结点有自环
 - 任意两个不同结点间不会仅有单向边
 - 去掉自环,并把每对反向边改为一条无向边

定义(等价关系)如果集合A上的关系R是自反、对称、传递的,则称R为A上的等价关系。

如果 $x, y \in A$, 且xRy, 则称x = y, 记为 $x \approx_R y$, 常简记为 $x \approx y$ 。

例. 下面列举的都是等价关系:

- (1) 实数集R上的普通的相等关系;
- (2) 集合A的幂集P(A) 上的集合相等关系;
- (3) 平面上的直线的集合上的直线间的平行关系;
- (4) 中国城市居民中,人们同住在一个城市内的关系。

例. 设R是集合A= $\{1,2,3,4,5,6,7\}$ 上的关系,

 $R = \{\langle x, y \rangle | x \in A \land y \in A \land 3 | (x-y) \}$ (模3同余 关系)

证明 R是一个等价关系,并画出其关系图。

其关系图如右图所示:

可见 R的确是 A 上自反、 对称、传递的关系,故 R 是 A 上的等价关系。

模3同余关系的关系图

例: 设集合 X 是整数集合 I 的任意子集,证明: X上的 模m 同余关系 是 等价关系。

证明. 自反性: 对于任意 $x \in X$,显然 $x \equiv x \pmod{m}$ 。

对称性: 对于任意 $x, y \in X$, 若 $x \equiv y \pmod{m}$, 则存在 $k \in I$,使得 x - y = k * m,故 y - x = (-k) * m,因此 $y \equiv x \pmod{m}$ 。

传递性: 对于任意 $x, y, z \in X$, 若 $x \equiv y \pmod{m}$, $y \equiv z \pmod{m}$, 则存在 $k, n \in I$ 使得 x - y = k*m, y - z = n*m,于是有 x - z = (k+n)*m,因此 $x \equiv z \pmod{m}$ 综上所述,模m同余关系是等价关系。

定理. 如果R为集合A上的二元关系,则R为A上的等价 关系之充要条件为r(R)=s(R)=t(R)=R。

□ R为A上的等价关系当且仅当R的自反、对称和传 递闭包都是R自身。

定理. 如果R为集合A上的二元关系,则tsr(R), trs(R)和rts(R)都是A上的等价关系。

证明. 由以下定理即可证明:

定理:设二元关系 $\mathbf{R} \subseteq \mathbf{A}^2$,则

- (1) 若 R 是自反的,则 s(R) 和 t(R) 也是自反的;
- (2) 若 R 是对称的,则 r(R) 和 t(R) 也是对称的;
- (3) 若 R 是传递的,则 r(R) 也是传递的

等价关系的简化关系图与简化关系矩阵 无向图的几个概念:

- □ 子图:如果图 G_1 的每个结点和每条边都分别为图 G_2 的结点和边,称 G_1 为 G_2 的子图;
- □ 连通图: 若对图G的任意两个不同的结点a和b, 皆有G的有限个结点,如 \mathbf{u}_0 =a, \mathbf{u}_1 , ..., \mathbf{u}_{n-1} , \mathbf{u}_n =b, 使得对每个i∈{1, ..., n}, 皆有一条连接 \mathbf{u}_i 与 \mathbf{u}_{i+1} 的边,就称G为连通的。
- □ 分支: 图G的最大连通子图称为G的分支。
- □ 完全图: 若图G的任意两个不同的结点,都有一条 连接它们的边,就称G为完全图。

连通图

完全图

定理. 若R为非空有限集A上的二元关系,则R 为A上的等价关系之充要条件为R有简化关系图,且其每个分支都是完全图。

证明:(必要性)设R为A上的等价关系,则R 是自反的和

对称的,因此R有简化关系图。 设G'是G_R的一个分支,对G'中任意两个结点a, b,则存在有限个不同的结点a=u₀, u₁,..., u_{n-1}, u_n=b,使得对每个 i, 1≤ i ≤n-1,有一条连接u_i, u_{i+1}的边,即<u_i, u_{i+1}>∈R。 又由R是传递的,可得<a, b> ∈R, 即G'中存在一条 a到b

的边,故每个分支都是完全图。

定理. 若R为非空有限集A上的二元关系,则R 为A上的等价关系之充要条件为R有简化关系图,且其每个分支都是完全图。

证明: (充分性) 设R有简化关系图,则R是自反的和对称的,下面证明R是传递的。

对任意 $\langle x, y \rangle$, $\langle y, z \rangle \in \mathbb{R}$, 即 G_R 中有连接x与y以及连接y与z的边,因此x, y, z位于同一个分支中。

又因为每个分支都是完全图,所以存在x到z的边,即< x, $z > \epsilon R$ 。

因此R是传递的,得R为A上的等价关系。

定理. 若R为非空有限集A上的二元关系,则R 为A上的等价关系之充要条件为

- (1) M_R的对角线上的元素全为1; 自反
- (2) M_R是对称矩阵; 且 对称
- (3) M_R可以经过有限次把行与行及相应的列与列对调, 化为主对角型分块矩阵,且对角线上每个子块都 是全1方阵。

2	1	2	3	4	5
1	a11	a12	a13	a14	a15
2	a21	a22	a23	a24	a25
3	a31	a32	a33	a34	a35
4	a41	a42	a43	a44	a45
5	a51	a52	a53	a54	a15

	1	4	3	2	5
1	a11	a14	a13	a12	a15
4	a41	a44	a43	a42	a45
3	a31	a34	a33	a32	a35
2	a21	a24	a23	a22	a25
5	a51	a54	a53	a52	a15

a11	a12	a13	a14	a15
a41	a42	a43	a44	a45
a31	a32	a33	a34	a35
a21	a22	a23	a24	a25
a51	a52	a53	a54	a15

- □交换两行和相应的两列, 关系R没有发生变化
- □主对角型分块矩阵的每 个全为1的子块对应一 个分支(最大连通子图)

1	0	1	0	1	0	
0	1	0	1	0	0	A HA MA FA
1	0	1	0	1	0	交换第2,5行
0	1	0	1	0	0	交换第2,5列
1	0	~	0	1	0	
0	0	0	0	0	1	
	1 0 1 0 1	1 0 0 1 1 0 0 1 1 0 0 0 0	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0	1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0	1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1

	1	~	~	0	0	0
	←	~	~	0	0	0
,	~	~	~	0	0	0
	0	0	0	~	~	0
	0	0	0	~	~	0
	0	0	0	0	0	1

R是A上的等价关系 R的关系图G_R是什么样? 定义(等价类)设 R 是集合A上的等价关系。对于每个 $x \in A$,A中与 x 有关系R的元素的集合 称为 x关于R的等价类,简称为 x 的等价类,记作 $[x]_R$,

即: $[x]_R = \{ y \mid y \in A \land x R y \}$,

显然, $[x]_R \subseteq A$

- □ 因为R是自反的,因此对每个 $x \in A$,有 $x \in [x]_R$
- □ 因为R是对称的,因此对任意 $x, y \in A$, $\frac{x}{x} \in R$, $\frac{x}{y} \in R$, $\frac{y}{x} = [y]_R$

例. 集合A={1,2,3,4,5,6,7}R, A中各元素的等价类如下: $[1]_R = [4]_R = [7]_R = \{1,4,7\}$ $[2]_R = [5]_R = \{2,5\}$ $[3]_R = [6]_R = \{3,6\}$

模3同余关系的关系图

- 定理 设 R 是非空集合A上的等价关系,则有:
- (1) 对于每个 $x \in A$, $x \in [x]_R$, 即 $[x]_R$ 是A的非空子集。
- $(2)[x]_R = [y]_R$ 当且仅当 x R y。
- (3) 若 $x, y \in A$ 且 $x \overline{R} y$,则 $[x]_R \cap [y]_R = \emptyset$ 。
- $(4) \cup_{\mathbf{x} \in \mathbf{A}} [\mathbf{x}]_{\mathbf{R}} = \mathbf{A}.$
- 证明: (1) 因 R 自反,任取 $x \in A$ 均有 x R x,故 $x \in [x]$ $x \in A$ 以 $x \in [x]$ 以 $x \in$
- (2) (必要性) 设 $[x]_R = [y]_R$, 因为 $y \in [y]_R$,

所以 $y \in [x]_R$,由 $[x]_R$ 的定义,可得 x R y。

(充分性) 设 x R y, 任取 $z \in [y]_R$, 则有 y R z。

因 R 传递, 故 x R z, 因此 z \in [x]_R, 故 [y]_R \subseteq [x]_R。

因 R对称,所以有 y R x,同理可证: $[x]_R \subseteq [y]_R$ 。

因此, $[x]_R = [y]_R$

- 定理 设 R 是非空集合A上的等价关系,则有:
- (1) 对于每个 $x \in A$, $x \in [x]_R$, 即 $[x]_R$ 是A的非空子集。
- $(2)[x]_R=[y]_R$ 当且仅当 xRy。
- (3) 若 $x, y \in A$ 且 $x \overline{R} y$,则 $[x]_R \cap [y]_R = \emptyset$ 。
- $(4) \cup_{\mathbf{x} \in \mathbf{A}} [\mathbf{x}]_{\mathbf{R}} = \mathbf{A}.$
- (3) 假设 $[x]_R \cap [y]_R \neq \emptyset$,则∃z使z∈ $[x]_R$ 且z∈ $[y]_R$,即xRz,yRz。
- 因 R是对称的,故 z R y。 又因 R是传递的,所以有 x R
- y,这与 $x \overline{R} y$ 的题设矛盾!因此, $[x]_R \cap [y]_R \neq \emptyset$ 。
- (4) 任取 $x \in A$,则 $[x]_R \subseteq A$ 。 所以有 $\bigcup_{x \in A} [x]_R \subseteq A$ 。
- 任取 $z \in A$,有 $z \in [z]_R$, $[z]_R \subseteq \bigcup_{x \in A} [x]_R$,故有
- $\mathbf{z} \in \bigcup_{\mathbf{x} \in A} [\mathbf{x}]_R$.
- 因此, $A \subseteq \bigcup_{x \in A} [x]_R$,所以 $\bigcup_{x \in A} [x]_R = A$ 。

定义(划分). 设A为任意集合且 $C \subseteq P(A)$ 。如果C满足:

- (1) 若S ∈ C,则S $\neq \phi$;
- (2) $\bigcup C=A$;
- (3) 若 S_1 , $S_2 \in P(A)$, 且 $S_1 \cap S_2 \neq \emptyset$,则 $S_1 = S_2$ 。 则称C为A的一个划分。

```
例: 设A = {a,b,c}, 给定下列A的子集的集合: B = { {a}, {b,c} } \sqrt{ } C = { {a,b,c} } \sqrt{ } D = { {a}, {b}, {c} } \sqrt{ } E = { {a,b}, {b,c} } \sqrt{ } F = { {a}, {c} } \sqrt{ } G = { \varnothing, {a}, {b}, {c} } \sqrt{ } 问: 这些集合中哪些是A上的划分?
```

M

定理. 若R为集合A上的等价关系,则 $\mathbb{C}_{\mathbb{R}} = \{[x]_{\mathbb{R}} \mid x \in A\}$ 为A的一个划分。

例. 集合A= {1, 2, 3, 4, 5, 6, 7} 上的关系模3同余关系

R, A中各元素的等价类如下:

$$[1]_R = [4]_R = [7]_R = \{1, 4, 7\},$$

$$[2]_{R} = [5]_{R} = \{2, 5\}$$

$$[3]_R = [6]_R = \{3, 6\}$$

则{ {1, 4, 7}, {2, 5}, {3, 6}} 构成A的一个划分。

定理. 若R为集合A上的等价关系,则 $\mathbb{C}_{\mathbb{R}} = \{[x]_{\mathbb{R}} \mid x \in A\}$ 为A的一个划分。

证明: (1) 对任意的 $[x]_R \in C_R$, 有 $x \in [x]_R$, 因此 $[x]_R$ 非空。

(2) 由于对任意的 $x \in A$, 有 $x \in [x]_R \in C_R$, 得

$$\cup C_{\mathbf{R}} \subseteq \mathbf{A} \subseteq \cup C_{\mathbf{R}},$$

即 $\cup C_R = A$

(3) 任取 $[x]_R$, $[y]_R \in \mathbb{C}_R$, 且 $[x]_R \cap [y]_R \neq \emptyset$, 则存在 $z \in A$,使 得xRz且yRz。下面证明 $[x]_R = [y]_R$ 。

对任意的 $w \in [x]_R$,有wRx。由R的传递性知wRz,得 $w \in [y]_R$,

因此 $[x]_R \subseteq [y]_R$ 。

同理可证 $[y]_R \subseteq [x]_R$ 。得 $[x]_R = [y]_R$ 。

因此CR是A的一个划分。

定义. 设R为集合A上的等价关系。称集合{ $[x]_R | x \in A$ } 为A关于R的商集,并记为A/R, 并称n(A/R)为R的秩。

例. 集合A={1,2,3,4,5,6,7}上的关系模3同余关系R,A中各元素的等价类如下:

$$[1]_R = [4]_R = [7]_R = \{1, 4, 7\}$$

$$[2]_{R} = [5]_{R} = \{2, 5\}$$

$$[3]_R = [6]_R = \{3, 6\}$$

商集 A/R = { {1, 4, 7}, {2, 5}, {3, 6} }, R的秩为3。

м

则 R_C 为A上的等价关系,且A/ R_C =C。

□ C确定的等价关系 就是:

$$\mathbf{R}_{\mathbf{C}} = (\mathbf{C}_1 \times \mathbf{C}_1) \cup (\mathbf{C}_2 \times \mathbf{C}_2) \cup ... \cup (\mathbf{C}_n \times \mathbf{C}_n)$$

定理. 设C为集合A的一个划分。若令 $R_{C}=\{\langle x,y\rangle | \text{存在S} \in C, \text{使} x,y \in S \},$ 则 R_{C} 为A上的等价关系,且A/ $R_{C}=C$ 。

证明. (1) 首先证明: R_C 具有自反性、对称性、传递性。

(自反性) 任取 $x \in A$,由划分的定义可知: 存在 $S \in C$ 使得 $x \in S$, 有 $x R_C x$ 。

(对称性) 设 $x R_C y$, 于是存在 $S \in C$ 使得 $x, y \in S$, 故有 $y R_C x$ 。

(传递性) 设 $x R_C y$, $y R_C z$, 于是存在 $S, T \in C$, 使得 x, $y \in S \perp L y$, $z \in T$.

由于 C 是划分,则由 S 与 T 有公共元 y 可知: $S \cap T \neq \emptyset$,故必有 S = T,因此 $z \in S$,所以x $R_C z$ 。因此, R_C 是 A 上的等价关系。

(2) 下面证明: $A/R_C = C$ 。

先证明 $C \subseteq A / R_C$:

任取 $S \in C$, 存在 $x \in S$, 则必有 $S = [x]_{R^c}$ (why?) 由 $[x]_{R^c} \in A / R_C$, 因此 $S \in A / R_C$ 。 后证明 $A / R_C \subseteq C$:

任取 $[x]_{Rc} \in A / R_{\pi}$,其中 $x \in A$ 。 因 π 为 A 上的一个划分,则必有 $S \in C$,使得 $x \in S$,故必有 $S = [x]_{Rc}$ (why?) 因此, $[x]_{Rc} \in C$ 。