Fama-Macbeth回归

(大约可能是DNS污染或者被墙了,图片显示不出来了┭┮﹏┭┮,幸好还有pdf)

一、理论概述

Fama-Macbeth回归是1973年Fama和Macbeth为验证CAPM模型而提出的一种因子统计方法,该模型现如今被广泛用于计量经济学的面板数据分析,而在金融领域在用于多因子模型的回归检验,用于估计各类模型中的因子暴露和因子收益(风险溢价)。

Fama-Macbeth回归是实证资产定价中最常用的方法之一。它的主要用途是炎症因子对资产收益率是否产生系统性影响。与投资组合分析不同的是,Fama-Macbeth回归可以在同时控制多个银子对资产收益率的影响下,考察特定因子对资产收益率产生系统性影响,具体体现在因子是否存在显著的风险溢价。

Fama-Macbeth与传统的截面回归类似,本质上也与是一个两阶段回归,不同的是它用巧妙的方法解决了截面相关性的问题,从而得出更加无偏,相合的估计。

时间序列回归

Fama-Macbeth模型与传统截面回归相同,第一步都是做时间序列回归。在因子分析框架中,时间序列回归是为了获得个股在因子上的暴露。如果模型中的因子是 portfolio returns(即使用投资组合收益率作为因子,例如Fama-French三因子模型中的SMB,HML和市场因子),那么可以通过时间序列回归(time-series regression)来分析 $E[R_i]$ 和 β_i 在截面上的关系。

令 f_t 为因子组合在t期的收益率, R_{it} 为个股i在t期的收益率,用 f_t 对每只股票的 R_{it} 回归,即可得到每只股票的全样本因子暴露 β_i 。

$$R_{it} = \alpha_i + \beta_i f_t + \epsilon_{it}, t = 1, 2, \dots, T, \forall i$$
 (1)

也可滚动计算某个时间段的因子暴露 β_{it} ,体现个股随市场的变化设置时间段长度为period

$$R_{ik} = \alpha_i + \beta_{it} f_k + \epsilon_{ik}, k = t - period, 2, \dots, t, \forall i$$
 (2)

截面回归

传统截面回归的第一步是通过时间序列回归得到个股暴露,这一步与Fama-Macbeth回归相同,而第二步回归体现了传统截面回归和Fama-Macbeth的最大不同。

传统截面回归:

在时序回归中回归式在时间序列上取均值,在 $E[\epsilon]=0$ 的假设下可以得出:

$$E[R_i] = \alpha_i + \beta_i E[f]$$
 (3)

上式正是个股的期望收益与因子暴露在截面上的关系,截距 α_i 为个股的错误定价。

那么便可通过截面回归找到因子的期望收益率E[f],方法是最小化个股定价错误 α_i 的平方和。对个股的的收益在时序上取均值得到个股期望收益 $E[R_i]$,用全样本的个股因子暴露对个股期望收益做无截距回归。

$$E[R_i] = \beta_i \lambda + \alpha_i$$
 (4)

回归残差 α_i 为个股的错误定价, λ 为因子的期望收益率。

截面回归最大的缺陷在于忽略了截面上的残差相关性,使得OLS给出的标准误存在巨大的低估。

Fama-Macbeth回归

与截面回归相同,Fama-Macbeth回归第一步是通过时间序列回归得到因子暴露值,不同的是,第二步中,Fama-Macbeth在每个t上都做了一次无截距截面回归:

$$R_{it} = \beta_i \lambda_t + \alpha_{it}, i = 1, 2, \dots, N, \forall t$$
 (5)

上式中的 β_i 为全样本 β , 当然若使用滚动回归数据, 也可以在不同截面的回归上使用对应时期的 $\beta_{i,t}$ 。

Fama-Macbeth回归相当于在每个t上做一次独立的截面回归,这T次回归的参数取均值作为回归的估计值:

$$\hat{\lambda} = rac{1}{T} \sum_{t=1}^T \hat{\lambda}_t, \hat{lpha}_i = rac{1}{T} \sum_{t=1}^T \hat{lpha}_{it}$$
 (6)

上述方法的巧妙之处在于它把 T 期的回归结果当作 T 个独立的样本。参数的 standard errors 刻画的是样本统计量在不同样本间是如何变化的。在传统的截面回归中,我们只进行一次回归,得到 λ 和 α_i 的一个样本估计。而在Fama-Macbeth截面回归中,把T期样本点独立处理,得到T个 λ 和 α_i 的样本估计。

若使用全样本因子暴露 β_i 进行估计,截面回归和Fama-Macbeth的估计结果相同,当使用滚动窗口进行估计时(Fama and MacBeth (1973)中作者使用了滚动窗口),截面回归和Fama-Macbeth回归会得到完全不同的估计结果。

Fama-Macbeth回归很好的解决了截面相关性的问题,但对于时间序列上的相关性仍然无力。

(用一些更通俗的话来说, Fama-Macbeth回归的两步是:

- 1、估计资产承担风险大小(beta值)。通过对资产收益率的时间序列分析,得到资产承担的风险水平。
- 2、估计风险溢价时间序列以及统计检验。通过在每个时点的资产收益率对得到的beta值进行截面回归,得到因子在每个时刻的风险溢价。对每个时刻的风险溢价进行平均,并检验均值是否显著异于0.)

二、从CAPM到Fama-Macbeth

CAPM: $r_i = r_f + (r_m - r_f) * \beta$

这个公式有三个含义:

- 1、风险与收益的关系是线性的
- 2、 β 是对系统性风险的完全度量
- 3、 $r_m-r_f>0$,在一个风险规避的世界,更高的风险要有更高的收益

要验证CAPM只需要看满不满足上面的三个条件,因此,设定要拟合的模型为:

$$r_i = \gamma_0 + \gamma_1 * eta + \gamma_2 * eta^2 + \gamma_3 * s + \epsilon$$

s是系统性风险, ϵ 为残差项

条件1成立有: $\gamma_2 = 0$

条件2成立有: $\gamma_3 = 0$, 非beta风险不具有系统性影响

条件3成立有: $\gamma_1 = r_m - r_f > 0$

sharpe-lintner capm假定: $\gamma_0 = r_f$

详细的步骤为:

1、用四年1926-1929的月收益率,对个股进行时序回归,计算出beta,排序分组为20组

- 3、之后四年1935-1938,每一个月都进行一次截面回归,那么四年回归48次。每一次截面回归的因子都是用上期获得的因子(不是上个月的因子)。具体来说,他是个这样的结构化数据:

	ri	beta	beta**2	s(e)
1935-01	group1			
	group2			
	group20			
1935-02	group1			
	group2			
	group20			

...使用过去60个月的数据进行时间序列回归,得到因子 (第二步) 后进行截面回归。

然后进行滚动回归,每次都是用过去的60个月跟新beta与s(e)因子。

所以每个时点的截面回归也就20个样本。

到1935-02, 重新滚动分组,从第一步开始,用1930-02~1935-01这60个月的数据进行时间序列回归后得到每组的beta与s(e)

(这里,关于什么是滚动分组: beta是滚动计算的,如果分组里的股票一直不变显然是不太合理哈。因为分组是按照beta分组,是重要保证高beta组的股票的beta始终高。所以分组不能固定,一个股票在上期可能是第一组,下一期可能是第二组。也就是1935-02的分组依据是用四年的月收益率,对个股进行时序回归,计算出beta然后分组)

我们将我们设定的模型加上下标t表示时间,加上p表示组合,因为最后的截面回归就是组合之间的:

$$r_{pt} = \gamma_{0t} + \gamma_{1t}\beta_{p,t-1} + \gamma_{2t}\beta_{p,t-1}^2 + \gamma_{3t}s(\epsilon)_{p,t-1} + u$$

p=1,2,...20

u表示残差, ϵ 是时间序列回归得到的残差。

4、对所有截面回归得到的参数求均值,得到我们对参数的最终估计。第三步界面回归完成后,我们得到了这样的结构化数据:

	gamma0	gamma1	•••
1935-01			
1935-02			
1935-03			

参数 $\gamma_i=rac{1}{T}\sum\gamma_{it}, i=0,1,2,3$,标准差就是直接求标准差,那么t统计量也有了: $t=rac{\bar{\gamma}}{\sqrt{rac{s\gamma}{T}}}$

然后就可以进行假设检验了

三、Stata实现

为简单说明Fama-Macbeth两阶段回归的主要步骤,以下用投资组合数据估计一个简单的 CAPM 模型。数据主要使用了[25 Portfolios Formed on Size and Book-to-Market] 中的 25 个投资组合 1926.7-2020.10 期间的月度收益率(RP.csv),和[Fama/French 3 Factors] 中的无风险收益、市场超额收益数据 (Mkt-RF.csv)。

数据说明:仓库中RP.csv中存储的是25个投资组合 1926.7-2020.10 期间的月度收益率,每行代表一个月份,每列代表一个投资组合;Mkt-RF.csv存储的是1926.7-2020.10 期间的无风险收益、市场超额收益数据,每行代表一个月份,Mkt-RF和RF列代表市场超额收益率和无风险收益。

数据预处理:

变量	含义
port_num	投资组合编号,1~25
t	时期,如1936m7格式
rpe	超额收益,投资组合收益-无风险收益

第一阶段:

pass1 1930.1-1938.11: 25*48次时序回归 (1930.1-1934.12->1933.12-1938.11)

估计 $beta_{it}, i=1,2...25$,窗口为五年,每次向后移动一个月

bys port_num: asreg rp mktrf if (t>=ym(1930,1) & t<=ym(1938,12)), wind(t 60) rmse se newey(4)

. list in 46/50

	port_num	t	mktrf	rpe	_rmse	_Nobs	_R2	_adjR2	_b_mktrf	_b_cons	_se_mk~f	_se_cons
46.	1	1938m9	0.01	-0.14	0.16	60	0.42	0.41	1.90	-0.00	0.33	0.01
47.	1	1938m10	0.08	0.12	0.16	60	0.42	0.41	1.91	-0.00	0.33	0.01
48.	1	1938m11	-0.02	-0.04	0.16	60	0.44	0.43	1.97	-0.00	0.38	0.01
49.	1	1938m12	0.04	0.04	0.15	60	0.47	0.46	1.97	0.00	0.38	0.02
50.	2	1934m12	0.00	-0.01	0.22	60	0.48	0.47	1.62	0.03	0.30	0.03

port_num	_b_mktrf	_se_mk~†	_R2	_rmse
1	1.89	0.32	0.48	0.21
2	1.82	0.30	0.52	0.19
3	1.87	0.20	0.72	0.12
4	1.75	0.17	0.70	0.12
5	1.95	0.22	0.65	0.15
6	1.39	0.15	0.66	0.11
7	1.51	0.13	0.77	0.09
8	1.55	0.16	0.79	0.09
9	1.62	0.15	0.80	0.09
10	1.74	0.15	0.75	0.10
11	1.25	0.08	0.81	0.06
12	1.20	0.06	0.90	0.04
13	1.36	0.09	0.92	0.04
14	1.47	0.09	0.86	0.06
15	1.79	0.10	0.89	0.07
16	0.96	0.05	0.92	0.03
17	1.13	0.07	0.94	0.03
18	1.32	0.06	0.93	0.04
19	1.50	0.09	0.91	0.05
20	1.98	0.15	0.86	0.08
21	0.90	0.03	0.97	0.02
22	1.09	0.03	0.98	0.02
23	1.26	0.06	0.95	0.03
24	1.50	0.06	0.92	0.05
25	1.69	0.18	0.78	0.10
Total	1.50	0.13	0.81	0.08

(_b_mkrtf就是beta)

为了截面回归更方便,直接将自变量取滞后项(beta滞后一个月)

在做截面回归之前,先看一下rpe和beta估计值的关系

该图画出了 1935m1 和 1938m1 两个时间节点上投资组合超额收益率 rpe 和上一月 估计值 **Lbeta** 的关系,横轴是 Lbeta,纵轴是 rpe。

接下来使用xtfmb进行第二阶段估计,也可以用asreg fmb,还可以用statsby

. global regvar "rpe Lbeta"

- . *xtfmb
- . xtfmb \$regvar

Fama-MacBeth (Fama-MacBeth (1973) Two-Step procedure				r of obs = time periods = 47) = F = R-squared =	48 0.91 0.3437
rpe	Coef.	Fama-MacBeth Std. Err.	t	P> t	[95% Conf.	Interval]
Lbeta _cons	.0122536 0029518	.0128116 .0131503	0.96 -0.22	0.344 0.823	01352 0294067	.0380272 .0235032