Proyecto 2: El Problema de la Mochila

Emily Sanchez Viviana Vargas

Curso: Investigación de Operaciones II Semestre 2025

September 18, 2025

1 Problema de la Mochila (Knapsack Problem)

El problema de la mochila es un clasico de la optimizacion combinatoria. Se dispone de una mochila con una capacidad maxima W y un conjunto de n objetos. Cada objeto i tiene un peso w_i y un valor v_i . El objetivo es seleccionar los objetos de manera que:

- \bullet La suma total de los pesos no exceda la capacidad W.
- Se maximice el valor total de los objetos elegidos.

1.1 Variantes principales

0/1 Knapsack Cada objeto puede elegirse una sola vez o no elegirse: decision binaria.

Bounded Knapsack Cada objeto puede seleccionarse un numero limitado de veces.

Unbounded Knapsack Se permite una cantidad ilimitada de cada objeto.

1.2 Solucion

0/1 Knapsack Se resuelve comunmente con programacion dinamica. Sea dp[i][w] el valor maximo al considerar los primeros i objetos y capacidad w.

$$dp[i][w] = \begin{cases} dp[i-1][w] & \text{si } w_i > w, \\ \max(dp[i-1][w], v_i + dp[i-1][w - w_i]) & \text{si } w_i \le w. \end{cases}$$

Bounded Knapsack Similar al 0/1 perpuede tener uno o más cantidades por objeto. Es limitado, por lo que no puede ser infinito.

$$dp[i][w] = \max_{0 \le k \le c_i, \ k \ w_i \le w} (dp[i-1][w-kw_i] + kv_i).$$

Unbounded Knapsack Similar al bounded pero permitiendo repeticiones sin limite de cantidades (infinito).

$$dp[w] = \max(dp[w], v_i + dp[w - w_i]).$$

Tipo de problema: 0/1 Knapsack

Capacidad máxima: 12 Número de objetos: 14

Datos del Problema

Objeto	Costo	Valor	Cantidad
A	4.00	15.00	1
В	12.00	21.00	1
С	10.00	11.00	1
D	9.00	5.00	1
E	3.00	15.00	1
F	2.00	7.00	1
G	11.00	8.00	1
Н	8.00	9.00	1
I	7.00	12.00	1
J	3.00	4.00	1
K	4.00	10.00	1
L	5.00	22.00	1
M	9.00	13.00	1
N	1.00	9.00	1

Tabla de Programación Dinámica

Capacidad/Objetos	A	В	С	D	E	F	G	Н	I	J	K	L	M	N
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1														
2	0	0	0	0	0	7	7	7	7	7	7	7	7	9
3					15	15	15	15	15	15	15	15	15	16
4	15	15	15	15	15	15	15	15	15	15	15	15	15	24
5	15	15	15	15	15	22	22	22	22	22	22	22	22	24
6	15	15	15	15	15	22	22	22	22	22	22	22	22	31
7	15	15	15	15	30	30	30	30	30	30	30	30	30	31
8	15	15	15	15	30	30	30	30	30	30	30	37	37	39
9	15	15	15	15	30	37	37	37	37	37	37	37	37	46
10	15	15	15	15	30	37	37	37	37	37	37	44	44	46
11	15	15	15	15	30	37	37	37	37	37	40	44	44	53
12	15	21	21	21	30	37	37	37	37	41	41	52	52	53

Solución Óptima

Valor máximo obtenido: 53 Objetos seleccionados: N, L, F, A

Capacidad utilizada: 12