Network Flow: Running Time

Max-Flow: Edmonds-Karp Algorithm, Dinitz's Algorithm Max Bipartite Matching: Hopcroft–Karp–Karzanov algorithm

Residual Network Gf

- Given G = (V, E), c, and a flow f
- $G^f = (V, E^f)$ with capacity c^f
- $(u, v) \in E^f$ if one of the followings holds
 - $-(u,v) \in E \text{ and } f(u,v) < c(u,v): c^f(u,v) = c(u,v) f(u,v)$
 - $(v,u) \in E \text{ and } f(v,u) > 0: c^f(u,v) = f(v,u)$

Last Lecture – Ford-Fulkerson Method

- Always terminates for integer/rational capacities
- Not guaranteed to terminate for irrational capacities
- Time complexity for integer capacities: $O(|E| \cdot v(f_{\text{max}}))$
 - not a polynomial time

Does the algorithm always halt?

- How about possibly irrational capacities?
- No, the algorithm do not always halt!

Non-terminating example [edit]

Consider the flow network shown on the right, with source s, sink t, capacities of edges e_1 , e_2 and e_3 respectively 1, $r=(\sqrt{5}-1)/2$ and 1 and the capacity of all other edges some integer $M \geq 2$. The constant r was chosen so, that $r^2 = 1 - r$. We use augmenting paths according to the following table, where $p_1 = \{s, v_4, v_3, v_2, v_1, t\}$, $p_2 = \{s, v_2, v_3, v_4, t\}$ and $p_3 = \{s, v_1, v_2, v_3, t\}$.

Step	Augmenting path	Sent flow	Residual capacities		
			e_1	e_2	e_3
0			$r^0=1$	r	1
1	$\{s,v_2,v_3,t\}$	1	r^0	r^1	0
2	p_1	r^1	r^2	0	r^1
3	p_2	r^1	r^2	r^1	0
4	p_1	r^2	0	r^3	r^2
5	p_3	r^2	r^2	r^3	0

Note that after step 1 as well as after step 5, the residual capacities of edges e_1 , e_2 and e_3 are in the form r^n , r^{n+1} and 0, respectively, for some $n \in \mathbb{N}$. This means that we can use augmenting paths p_1 , p_2 , p_1 and p_3 infinitely many times and residual capacities of these edges will always be in the same form. Total flow in the network after step 5 is $1+2(r^1+r^2)$. If we continue to use augmenting paths as above, the total flow converges to $1+2\sum_{i=1}^{\infty}r^i=3+2r$. However, note that there is a flow of value 2M+1, by sending M units of flow along sv_1t , 1 unit of flow along sv_2v_3t , and M units of flow along sv_4t . Therefore, the algorithm never terminates and the flow does not even converge to the maximum flow. [4]

Another non-terminating example based on the Euclidean algorithm is given by Backman & Huynh (2018), where they also show that the worst case running-time of the Ford-Fulkerson algorithm on a network G(V, E) in ordinal numbers is $\omega^{\Theta(|E|)}$.

Time Complexity?

- Assume all capacities are integers, what is the time complexity?
- Each iteration requires O(|E|) time:
 - O(|E|) is sufficient for finding p, updating f and G^f
- There are at most f_{max} iterations.
- Overall: $O(|E| \cdot f_{max})$
- Can we analyze it better?

Time Complexity?

- Can we analyze it better?
- It depends on how you choose p in each iteration!
- The complexity bound $O(|E| \cdot f_{max})$ is tight if choices of p are not carefully specified!

Method vs Algorithm

- Different choices of augmenting paths p give different implementation of Ford-Fulkerson.
- The description of Ford-Fulkerson Algorithm is incomplete.
- For this reason, it is sometimes called Ford-Fulkerson Method.
- Next Lecture Preview: Edmonds-Karp Algorithm, which implement Ford-Fulkerson Method with time complexity $O(|V| \cdot |E|^2)$.

Edmonds-Karp Algorithm

Edmonds-Karp Algorithm

```
EdmondsKarp(G = (V, E), s, t, c):
```

- 1. initialize f such that $\forall e \in E$: f(e) = 0; initialize $G^f \leftarrow G$;
- 2. while there is an s-t path on G^f :
- 3. find such a path p by BFS;
- 4. find an edge $e \in p$ with minimum capacity b;
- 5. update f that pushes b units of flow along p_i
- 6. update G^f ;
- 7. endwhile
- 8. return f

Why BFS?

- BFS maintains the distances
 - distance: num of edges, not weighted distance

$$dist = 1 \qquad dist = 2 \qquad dist = 3 \qquad dist = 4$$

$$dist = 0 \qquad dist = 6$$

$$t$$

A path found by an iteration of Edmonds-Karp Algorithm

Examples

Can we choose the green path?

Examples

• We choose the red path!

Why BFS?

- In the residual network G^f , a **new appeared edge** can only go from a vertex at distance t+1 to a vertex at distance t.
- Addition of such edges does not decrease the distance between s and u for every $u \in V$.
- [Key Observation] dist(u) in G^f is non-decreasing.

$$dist \ge 1 \qquad dist \ge 2 \qquad dist \ge 3 \qquad dist \ge 4$$

$$dist \ge 5 \qquad dist \ge 6$$

The updates to the edges in G^f

Examples

We choose the red path!

Weak Monotonicity to Strong Monotonicity

- dist(u) can only be one of $0, 1, 2, ..., |V|, \infty$
 - It can only be increased for |V| + 1 times!
- It's great that BFS buys us distance monotonicity!
- However, weak monotonicity is not enough.
- To make a progress, we need dist(u) **strictly** increases for some $u \in V$, so that we can upper bound the number of iterations.

Counterexample: dist(u) for all vertices remain unchanged after an iteration.

Towards Strong Monotonicity...

- Observation: At least one edge (u, v) on p is saturated, and this edge will be deleted in the next iteration.
- Each iteration will remove an edge from a vertex at distance i to a vertex at distance i + 1.
- Intuitively, we cannot keep removing such edges while keeping the distances of all vertices unchanged.

Towards Strong Monotonicity

- Suppose we are at the (i + 1)-th iteration. f_i is the current flow, and p is the path found in G^{f_i} at the (i + 1)-th iteration.
- We say that an edge (u, v) is critical if the amount of flow pushed along p is $c^{f_i}(u, v)$.
- A critical edge disappears in $G^{f_{i+1}}$.

Towards Strong Monotonicity

- Suppose we are at the (i + 1)-th iteration. f_i is the current flow, and p is the path found in G^{f_i} at the (i + 1)-th iteration.
- We say that an edge (u, v) is **critical** if the amount of flow pushed along p is $c^{f_i}(u, v)$.
- A critical edge disappears in $G^{f_{i+1}}$, but it may reappear in the future...
- We will try to bound the number of times (u, v) becomes critical.

Between two "critical"

A flow along p in G^{f_i} where (u, v) becomes critical

In $G^{f_{i+1}}$, (u, v) disappears, and (v, u) appears.

u v

Before the next time (u, v) becomes critical again, (u, v) must first reappear!

Before (u, v) reappears, the algorithm must have found p going through (v, u).

Between two "critical"

- Distance monotonicity: $dist^{i+j}(v) \ge dist^i(v)$.
- Thus, $dist^{i+j}(u) = dist^{i+j}(v) + 1 \ge dist^{i}(v) + 1 \ge dist^{i}(u) + 2$.
- The distance of u from s increases by 2 between two critical.

Putting Together

- The distance of u from s increases by 2 between two "critical".
- Distance takes value from $\{0, 1, ..., |V|, \infty\}$, and never decrease.
- Thus, each edge can only be critical for O(|V|) times.
- At least 1 edge become critical in one iteration.
- Total number of iterations is $O(|V| \cdot |E|)$.
- Each iteration takes O(|E|) time.
- Overall time complexity for Edmonds-Karp: $O(|V| \cdot |E|^2)$.
- It can handle the issue with irrational numbers!

Can we improve?

- Learn from proof.
- dist[u] is non-decreasing but not strictly increasing.
- Can we try to make some dist strictly increasing?
- What if dist[t] is strictly increasing?
 - O(|V|) rounds increasing.

How to make it?

We want to increase dist[t].

 We should remove all shortest s → t path but not only one.

Dinic's Algorithm (Dinitz's Algorithm)

- Proposed by Yefim Dinitz (Soviet→ Israeli), in1970.
 - Independent on Edmonds-Karp (1972).
- Updated by Shimon Even (Israeli). and Alon Itai (Israeli).
- Even gave lectures on "Dinic's algorithm", mispronouncing the name of the author while popularizing it.
- Time complexity: $O(|V|^2 \cdot |E|)$
 - Edmonds-Karp: $O(|V| \cdot |E|^2)$

- Build a level graph:
 - Vertices at Level *i* are at distance *i*.
 - Only edges go from a level to the next level are kept.
 - Can be done in O(|E|) time using a similar idea to BFS.

- Find a blocking flow on the level graph:
 - Push flow on multiple s-t paths.
 - Each s-t path must contain a critical edge!

- Find a blocking flow on the level graph:
 - Push flow on multiple s-t paths.
 - Each s-t path must contain a critical edge!

not a blocking flow: path s-a-b-t contains no critical edge

Dinic's Algorithm – Overview

- Initialize f to be the empty flow and $G^f = G$.
- Iteratively do the followings until $dist(t) = \infty$:
 - Construct the level graph G_L^f for G^f .
 - Find a blocking flow on G_L^f .
 - Update f and G^f .

Questions Remain

- 1. How many iterations do we need before termination?
- 2. How do we find a blocking flow?

How to find a block flow?

- Find a blocking flow on the level graph:
 - Push flow on multiple s-t paths.
 - Each s-t path must contain a critical edge!

not a blocking flow: path s-a-b-t contains no critical edge

Finding a blocking flow in a level graph...

Iteratively do the followings, until no path from s to t:

- Run a frontward DFS.
- Two possibilities:
 - End up at t: in this case, we update f (by pushing flow along the path) and remove the critical edge
 - End up at a dead-end, a vertex v with no out-going edges in G_L^f : in this case, we remove all the incoming edges of v

Finding a blocking flow in a level graph...

- At least one edge is removed after each search.
 - Total number of searches: O(|E|)
- Each search takes at most |V| steps.
- Time complexity for each iteration of Dinic's algorithm: $O(|V| \cdot |E|)$.

Questions Remain

- 1. How do we find a blocking flow?
- 2. How many iterations do we need before termination?

Simple yet important observations

- In the level graph $G_L^{f_i}$ at every iteration i, every s-t path has length ${\rm dist}^i(t)$.
- Every shortest s-t path in G^{f_i} also appears in $G_L^{f_i}$.

Distance Monotonicity

• After one iteration, a new edge (u, v) appearing in $G^{f_{i+1}}$ (but not in G^{f_i}) must be "backward": $\operatorname{dist}^i(u) = \operatorname{dist}^i(v) + 1$.

Distance Monotonicity

- After one iteration, a new edge (u, v) appearing in $G^{f_{i+1}}$ (but not in G^{f_i}) must satisfy $\operatorname{dist}^i(u) = \operatorname{dist}^i(v) + 1$.
- Such additions of edges cannot reduce the distance for any vertex!
- We again have that dist(u) is non-decreasing!
- Can we have strong monotonicity?

- All the paths in G_L^{fi} with length $\operatorname{dist}^i(t)$ are "blocked" after the i-th iteration.
- Thus, a path in the (i + 1)-th iteration must use some edges that are not in G_L^{fi} .

- This new edge may be a "backward" edge whose reverse was a critical edge in the previous iteration.
- In this case, dist(t) is increased by at least 2.

- Or it may be an edge in G^{f_i} , but not in $G_L^{f_i}$.
- In this case, dist(t) is increased by at least 1.

- In both cases: $dist^{i+1}(t) > dist^{i}(t)$
- Let's prove it rigorously then...

Proving $dist^{i+1}(t) > dist^{i}(t)$

- Consider an arbitrary s-t path p in $G_L^{f_{i+1}}$ with length $\operatorname{dist}^{i+1}(t)$.
- We have $\operatorname{dist}^{i+1}(t) \ge \operatorname{dist}^{i}(t)$ by monotonicity.
- Suppose for the sake of contraction that $dist^{i+1}(t) = dist^{i}(t)$.
- Case 1: all edges in p also appear in G_L^{fi}
- Then p is a shortest path containing no critical edges in $\mathcal{G}_L^{f_i}$
- Contracting to the definition of blocking flow!

Proving $dist^{i+1}(t) > dist^{i}(t)$

- Case 2: p contains an edge (u, v) that is not in $G_L^{f_i}$
- If (u, v) was not in G^{f_i} , then (v, u) was critical in the last iteration. We have $\operatorname{dist}^i(u) = \operatorname{dist}^i(v) + 1$.
- If (u, v) was in G^{f_i} but not $G_L^{f_i}$, by the definition of level graph, we have $\operatorname{dist}^i(u) \geq \operatorname{dist}^i(v)$.
- In both cases above, $\operatorname{dist}^{i}(u) \geq \operatorname{dist}^{i}(v)$.
- We have $\operatorname{dist}^{i+1}(u) \ge \operatorname{dist}^{i}(u)$ by monotonicity,
- and we have $\operatorname{dist}^{i+1}(v,t) \ge \operatorname{dist}^{i}(v,t)$. (why?)

Proving $dist^{i+1}(t) > dist^{i}(t)$

- Case 2: p contains an edge (u, v) that is not in G_L^{fi}
- Fact i: $\operatorname{dist}^{i}(u) \ge \operatorname{dist}^{i}(v)$.
- Fact ii: $\operatorname{dist}^{i+1}(u) \ge \operatorname{dist}^{i}(u)$.
- Fact iii: $\operatorname{dist}^{i+1}(v,t) \ge \operatorname{dist}^{i}(v,t)$.

Putting together:

$$\operatorname{dist}^{i+1}(t) = \operatorname{dist}^{i+1}(u) + 1 + \operatorname{dist}^{i+1}(v,t)$$

$$\geq \operatorname{dist}^{i}(u) + 1 + \operatorname{dist}^{i}(v,t)$$

$$\geq \operatorname{dist}^{i}(v) + 1 + \operatorname{dist}^{i}(v,t)$$

$$\geq \operatorname{dist}^{i}(t) + 1$$

(Fact ii and iii)
(Fact i)
(triangle inequality)

Putting Together...

- dist(t) is increased by at least 1 after each iteration.
- dist(t) takes value from $\{0, 1, ..., |V|, \infty\}$, so it can be increased for at most O(|V|) times.
- Total number of iterations is at most O(|V|).

Other Algorithms for Max-Flow

- Improvements to Dinic's algorithm:
 - [Malhotra, Kumar & Maheshwari, 1978]: $O(|V|^3)$
 - Dynamic tree: $O(|V| \cdot |E| \cdot \log |V|)$
- Push-relabel algorithm [Goldberg & Tarjan, 1988]
 - $-O(|V|^2|E|)$, later improved to $O(|V|^3)$, $O(|V|^2\sqrt{|E|})$, $O(|V||E|\log\frac{|V|^2}{|E|})$
- [King, Rao & Tarjan, 1994] and [Orlin, 2013]: $O(|V| \cdot |E|)$
- Interior-point-method-based algorithms:
 - [Kathuria, Liu & Sidford, 2020] $|E|^{\frac{4}{3}+o(1)}U^{\frac{1}{3}}$
 - [BLNPSSSW, 2020] [BLLSSSW, 2021] $\tilde{O}\left(\left(|E| + |V|^{\frac{3}{2}}\right) \log U\right)$
 - [Gao, Liu & Peng, 2021] $\tilde{O}\left(|E|^{\frac{3}{2}-\frac{1}{328}}\log U\right)$

Questions Remain

- 1. How do we find a blocking flow?
- 2. How many iterations do we need before termination?

Overall Time Complexity for Dinic's Algorithm

- Each iteration: $O(|V| \cdot |E|)$.
- We need at most O(|V|) iterations.
- Overall time complexity for Dinic's algorithm: $O(|V|^2 \cdot |E|)$.

Hopcroft-Karp-Karzanov algorithm

- Find a maximum bipartite matching in $O(|E| \cdot \sqrt{|V|})$ time.
- Proposed independently by Hopcroft-Karp and Karzanov.
- Can be viewed as a special case of Dinic's algorithm.

Conversion to Max-Flow Problem

Set the capacity to 1 for all edges.

Conversion to Max-Flow Problem

Dinic's algorithm runs in $O\left(|E| \cdot \sqrt{|V|}\right)$ time for this special case.

Conversion to Max-Flow Problem

- Integrality theorem also holds for Dinic's algorithm:
 - The flow output by Dinic's algorithm in our case is integral.
- We aim to show Dinic's algorithm runs in $O\left(|E| \cdot \sqrt{|V|}\right)$ time.
- Step 1: Finding a blocking flow in a level graph takes O(|E|) time.
- Step 2: Number of iterations is at most $2\sqrt{|V|}$.

Iteratively do the followings, until no path from s to t:

- Perform DFS from s
- If we reach t, delete all edges on the s-t path (why can we do this?) and start over from s.
- If we ever go backward, delete the edge just travelled. (why can we do this?)

An s-t path is found, remove all edges from the path.

Start over...

We have to go backward now; delete the edge just travelled.

Again, we have to go backward; delete the edge just travelled.

Again, we have to go backward; delete the edge just travelled.

Again, we have to go backward; delete the edge just travelled.

Find another s-t path; delete all edges on the path

We are done!

S

We have obtained a blocking flow!

Time complexity: O(|E|)

Each edge is visited at most once.

Step 2: Number of iterations is at most $2\sqrt{|V|}$.

- If the algorithm terminates within $\sqrt{|V|}$ iterations, we are already done!
- Otherwise, let f be the flow after $\sqrt{|V|}$ iterations.
- Claim: the maximum flow in G^f has value at most $\sqrt{|V|}$.
- If the claim is true, we can stop after another $\sqrt{|V|}$ rounds.

Observation on G^f

- In each iteration, for each $v \in V \setminus \{s, t\}$, either its in-degree is 1, or its out-degree is 1.
- Proof. By Induction...
- At the beginning, this is clearly true.

Observation on G^f

- In each iteration, for each $v \in V \setminus \{s, t\}$, either its in-degree is 1, or its out-degree is 1.
- Proof. At the beginning, this is clearly true.
- For each iteration, the amount of flow going through ν is either 0 or 1.
- If it is 0, v's in-degree and out-degree are unchanged.
- Otherwise, exactly one in-edge and one out-edge are flipped; the property is still maintained.

Let us check!

The maximum flow in G^f has value at most $\sqrt{|V|}$

- Integrality Theorem: there exists a maximum integral flow f' in G^f .
- f' consists of vertex-disjoint paths with flow 1!

The maximum flow in G^f has value at most $\sqrt{|V|}$

- Max-flow on G^f , f', is integral and consists of edge-disjoint paths.
- By our analysis to Dinic's algorithm, $\operatorname{dist}^{G^f}(s,t) \geq \sqrt{|V|}$.
- Each path in f' has length at least $\sqrt{|V|}$.
- There are at most $\frac{|V|}{\sqrt{|V|}} = \sqrt{|V|}$ paths in f' by vertex-disjointness.
- $v(f') \leq \sqrt{|V|}$

Step 2: Number of iterations is at most $2\sqrt{|V|}$.

- If the algorithm terminates within $\sqrt{|V|}$ iterations, we are already done!
- Otherwise, let f be the flow after $\sqrt{|V|}$ iterations.
- Claim: the maximum flow in G^f has value at most $\sqrt{|V|}$.
- Each iteration increase the value of flow by at least 1.
- Thus, the algorithm will terminate within at most another $\sqrt{|V|}$ iterations.
- Total number of iterations: $2\sqrt{|V|}$.

Putting Together...

• Step 1: Finding a blocking flow in a level graph takes O(|E|) time.

• Step 2: Number of iterations is at most $2\sqrt{|V|}$.

• Overall time complexity: $O(|E| \cdot \sqrt{|V|})$

Today's Lecture

Maximum Flow Problem:

- Edmonds-Karp Algorithm
 - Implement Ford-Fulkerson method by BFS
 - $O(|V| \cdot |E|^2)$
- Dinic's Algorithm
 - Push flow on multiple paths at one iteration
 - Level graph and blocking flow
 - $O(|V|^2 \cdot |E|)$

Maximum Bipartite Matching Problem:

- Hopcroft–Karp–Karzanov algorithm
 - Apply Dinic's algorithm
 - $O\left(|E| \cdot \sqrt{|V|}\right)$