Tarea 1 Álgebra Moderna I

31 de Enero de 2020

Esta es una tarea de 100 puntos. Cada ejercicio tiene marcado su valor. Si la respuesta es correcta y completa tendrás el total de puntos. En caso de estar incompleto o incorrecto, se asignará los puntos proporcionales a la parte correcta de la respuesta.

Ejercicio 1. (60 puntos)

- a) Sea $\alpha = (i_0 i_1 \cdots i_{r-1})$ un r-ciclo. Para cualquier $k, j \geq 0$, pruebe que $\alpha^k(i_j) = i_{k+j}$.
- b) Pruebe que si α es un r-ciclo, entonces $\alpha^r = 1$, pero que $\alpha^k \neq 1$ para cualquier entero positivo k < r.
- c) Si $\alpha = \beta_1 \beta_2 \cdots \beta_m$ es un producto de r_i -ciclos β_i disjuntos, entonces el mas pequeño entero positivo l con $\alpha^l = 1$ es el mínimo común múltiplo de $\{r_1, r_2, \ldots, r_m\}$.

Solución:

a) Sean $k, j \geq 0$

$$\alpha^{k}(i_{j}) = \underbrace{\alpha \circ \cdots \circ \alpha(i_{j})}_{k-veces}$$

$$= \underbrace{\alpha \circ \cdots \circ \alpha(i_{j+1})}_{(k-1)-veces}$$

$$\vdots$$

$$= \alpha(i_{j+(k-1)})$$

$$= i_{j+k}.$$

$$(1)$$

b) Primero vamos a mostrar que $\alpha^r = 1$. Sea $s \in S_n$, si $s = i_k$ para algún $k = 0, \dots r - 1$, aplicamos el ejercicio anterior varias veces

$$\alpha^{r}(s) = \alpha^{r}(i_{k})$$

$$= \alpha^{r}(\alpha^{k}(i_{0}))$$

$$= \alpha^{r+k}(i_{0})$$

$$= \alpha^{k}(\alpha^{r}(i_{0}))$$

$$= \alpha^{k}(\alpha(i_{r-1}))$$

$$= \alpha^{k}(i_{0})$$

$$= i_{k}$$

$$= s.$$

$$(2)$$

Si $s \neq i_k$ para todo $k = 0, \dots, r - 1$, entonces

$$\alpha^{r}(s) = \underbrace{\alpha \circ \cdots \circ \alpha(s)}_{r-veces}$$

$$= \underbrace{\alpha \circ \cdots \circ \alpha(s)}_{(r-1)-veces}$$

$$\vdots$$

$$= \alpha(s)$$

$$= \alpha(s)$$

Así $\alpha = 1$. Ahora vamos a mostrar que si k < r entonces $\alpha^k \neq 1$.

Notemos que $\alpha^k(i_0) = i_k$, y como $\alpha = (i_0 \cdots i_k \cdots i_{r-1})$ (aquí usamos que k < r)tenemos que $i_0 \neq i_k$ por definición de ciclo. Así $\alpha^k \neq 1$.

c) Sea $t = mcm\{r_1, \dots, r_m\}$, vamos a mostrar que $t \ge l$ y $t \le l$. Notemos que $\beta_i^t = 1$ para todo $i = 0, \dots, m$, en efecto, por hipótesis t es múltiplo de r_i , es decir, existe $n \in \mathbb{Z}$ tal que $t = r_i n$, luego

$$\beta_i^t = \beta_i^{r_i n} = \underbrace{\beta_i^{r_i} \cdots \beta_i^{r_i}}_{n-veces} = 1 \cdots 1 = 1.$$

Así $\alpha^t = (\beta_1\beta_2\cdots\beta_m)^t = \beta_1^t\beta_2^t\cdots\beta_m^t = 1\cdots 1 = 1$ en la segunda igualdad usamos que los ciclos son disjuntos. Puesto que l es el mínimo con la propiedad $\alpha^l = 1$ obtenemos que $t \geq l$. Resta probar que $t \leq l$, para ello basta probar que l es múltiplo de r_i para todo $i = 0, \cdots m$.

Notemos que $\beta_i^l=1$, esto se sigue del ejercicio 1.7. y la siguiente igualdad

$$\beta_1^l \beta_2^l \cdots \beta_m^l = 1.$$

De inciso b) deducimos que l es necesariamente un múltiplo de r_i .

Ejercicio 2. (40 puntos) Sea p un primo y sea $\alpha \in S_n$. Si $\alpha^p = 1$, entonces o bien $\alpha = 1$, α es un p-ciclo, o α es un producto de p-ciclos disjuntos. En particular, si $\alpha^2 = 1$, entonces o bien $\alpha = 1$, α es una transposición o α es un producto de transposiciones disjuntas.

Solución: α se puede escribir como un producto de ciclos disjuntos(teorema demostrado en clase)digamos $\alpha = \beta_1 \beta_2 \cdots \beta_m$, utilizando la hipótesis $\alpha^p = 1$ y y que los ciclos β_i son disjuntos obtenemos que $\beta_1^p \beta_2^p \cdots \beta_m^p = 1$

En la demostración de c) mostramos que p es necesariamente un múltiplo de r_i para todo $i=0,\cdots,m$. Como p es primo obtenemos que β_i es necesariamente es un p-ciclo o un 1-ciclo. Por lo tanto o bien α es la identidad, α es un p-ciclo o un producto de p-ciclos.