Chapter 14 (AIAMA)

Probabilistic Reasoning

Sukarna Barua Assistant Professor, CSE, BUET

- Consider the query: P(Burglary|JohnCalls = ture, MaryCalls = true)
- We need to compute: P(B|j,m) [compute for both b and $\neg b$]
- Express in terms of joint distributions [we already know how to compute joint distribution]

$$P(B|j,m) = \frac{P(B,j,m)}{P(j,m)} = \alpha P(B,j,m)$$

where α is the normalizing constant [we can find the value of α later]

- How to compute P(B, j, m)?
- Add all hidden variables to get full joint distribution

$$P(B,j,m) = \sum_{a} \sum_{e} P(B,j,m,a,e) = \sum_{a} \sum_{e} P(j|a) P(m|a) P(a|B,e) P(B) P(e)$$

- Query variable: *B*
- Evidence variables: *J*, *M*
- Hidden variables: *A*, *E*

• Finally, we get the following:

$$P(B|j,m) = \alpha \sum_{a} \sum_{e} P(j|a)P(m|a)P(a|B,e)P(B)P(e)$$

- Compute P(b|j,m) and $P(\neg b|j,m)$ [expression has α]
- Find α [Using the eq. $P(b|j,m) + P(\neg b|j,m) = 1$]

- **Question**: How many operations (multiplications + additions)?
 - Answer: [For each P(B|j,m)] Mult: 16, Sum: 4, Total = 20 operations

Computing using join distribution naively:

$$P(B|j,m) = \alpha \sum_{a} \sum_{e} P(j|a)P(m|a)P(a|B,e)P(B)P(e)$$

- Required operations: 20
- Can we improve?
 - Yes, move sums inside [closest to the factors having the hidden variable]
 - Sums are evaluated early and gets multiplied once [rather than every time during joint calculation]

- Move summations inside: $P(B|j,m) = \alpha \sum_{a} \sum_{e} P(j|a)P(m|a)P(a|B,e)P(B)P(e)$
- Two alternate ways to do it:
 - Option 1: $P(B|j,m) = \alpha P(B) \sum_a P(j|a) P(m|a) \sum_e P(a|B,e) P(e)$
 - Option 2: $P(B|j,m) = \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$
 - Which one is more efficient in terms of operations?

- Which one is more efficient? Assume B = true and compute both.
- Equation 1: $P(B|j,m) = \alpha P(B) \sum_a P(j|a) P(m|a) \sum_e P(a|B,e) P(e)$
 - Required # of multiplications: 9, # of sums = 3, total = 12
- Equation 2: $P(B|j,m) = \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$
 - Required # of multiplications: 11, # of sums = 3, total = 14

■ So order matters! However, finding optimal order is difficult!

Using the CPT data, we calculate:

$$P(b|j,m) = \alpha \times 0.00059224$$

 $P(\neg b|j,m) = \alpha \times 0.0014919$

Hence,

$$P(B|j,m) = \alpha \times (0.00059224, 0.0014919)$$

= (0.284,0.716) [After normalizing as probabilities sum to 1]

■ An evaluation tree is shown for the expression:

$$\alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$$

■ Blank circled nodes represent multiplication [*Notice the repetition of sub-paths*]

- **Problem:** Repeated subexpression evaluation
- The following products are computed twice in two paths of the tree!

$$P(j \mid a)P(m \mid a)$$

$$P(j \mid \neg a)P(m \mid \neg a)$$

- Steps of variable elimination algorithm:
 - Step 1: Compute factors for each node of Bayesian Network and instantiate/restrict evidence variables.
 - Step 2: For some order of variables $(V_1, V_2, ..., V_N)$:
 - \blacksquare (2a) If variable V is a hidden variable, then multiply all the factors of V
 - **■** (2b) Sum-out *V*
 - Step 3: Multiply remaining factors.
 - Step 4: Normalize the final factor to eliminate α .

- Consider the following expression: P(B|j,m).
 - Query variable: *B*
 - Evidence variable: *J*, *M*
 - Hidden variable: *A*, *E*
- We will use variable elimination algorithm to calculate

- Query: P(B|j,m).
- Joint probability expression of BN:

$$P(B, E, A, J, M) = P(B)P(E)P(A|B, E)P(J|A)P(M|A)$$

- **Step 1**: Compute all the factors of BN.
- The BN has five factors [note the joint probability expression]:
 - $f_1(B) = P(B)$
 - $\bullet f_2(E) = P(E)$
 - $f_3(A, B, E) = P(A|B, E)$
 - $\bullet f_4(J,A) = P(J|A)$
 - $\bullet f_5(M,A) = P(M|A)$

Variable Elimination Algorithm: Compute Factors

• Query: P(B|j,m).

■ **Step 1a**: Compute all the factors of BN. [don't restrict evidences now]

$$f_1(B) = P(B)$$

Т	0.001
F	0.999

$$f_2(E) = P(E)$$

T	0.002
F	0.998

$$f_3(A, B, E) = P(A|B, E)$$

Т	T	T	0.95
Т	T	F	0.94
Т	F	T	0.29
Т	F	F	0.001
F	T	T	0.05
F	T	F	0.06
F	F	T	0.71
F	F	F	0.999

$$f_4(J,A) = P(J|A)$$

Т	T	0.90
Т	F	0.05
F	T	0.10
F	F	0.95

$$f_5(M,A) = P(M|A)$$

T	T	0.70
T	F	0.01
F	T	0.30
F	F	0.99

Variable Elimination Algorithm: Restrict Factors

- Query: P(B|j,m).
- **Step 1b**: Instantiate/restrict evidence variables in all factors [*j and m*].
 - Restrict *J* to true in $f_4(J, A)$. [Keep only rows where J = true]
 - Note that *J* is removed from factor expression.

$$f_4(J,A) = P(J|A)$$

T	T	0.90
T	F	0.05
F	Т	0.10
F	F	0.95

$$f_4(A)$$

Т	0.90
F	0.05

Variable Elimination Algorithm: Restrict Factors

• Query: P(B|j,m).

■ **Step 1b**: Instantiate/restrict evidence variables in all factors. [*j and m*].

■ Restrict *M* to true in $f_5(M, A)$. [Keep only rows where M = true]

 $f_5(M,A) = P(M|A)$

Т	Т	0.70
T	F	0.01
F	T	0.30
F	F	0.99

 $f_5(A)$

Variable Elimination Algorithm: Multiply Factors

- Query: P(B|j,m).
- **Step 2**: Select every variable *V* (in any order) which is hidden [Here, *A* and *E*]
 - Multiply all factors of *V* and then sum-out the variable.
 - Suppose we select in this order: E, A.
 - First we select E
 - Multiple all factors having E and get a new factor: $f_6(A, B, E) = f_2(E) \times f_3(A, B, E)$
 - Sum-out *E* and get a new factor: $f_7(A, B) = \sum_E f_6(A, B, E)$
 - Note that after summing-out, *E* is removed from factor-argument.

■ Step 2a: Multiple all factors having E and get a new factor:

$$f_6(A, B, E) = f_2(E) \times f_3(A, B, E)$$

- Factor multiplication is a point-wise multiplication of elements in two factors:
 - Multiply rows which have matching values of the variables.
 - Number of rows in the new factor 2^N where N is number of total variables in the new factor:
 - Multiplying $f_1(A, B)$ and $f_2(B, C)$ will give us $f_3(A, B, C)$ which will have 8 rows.

• For variable *E*:

■ **Step 2a**: Multiple all factors having E and get a new factor:

■ **Multiply**: $f_6(A, B, E) = f_2(E) \times f_3(A, B, E)$

$$f_2(E) = P(E)$$

$$f_3(A,B,E) = P(A|B,E)$$

f l	<i>(</i> 1	D	\mathbf{r}
f_6	(д,	D,	L)

Т	0.002
F	0.998

T	T	0.95
T	F	0.94
F	T	0.29
F	F	0.001
T	T	0.05
T	F	0.06
F	T	0.71
F	F	0.999
	T F T T	T F F T T T T F F T

T	T	0.0019
T	F	0.93812
F	T	0.00058
F	F	0.000998
T	T	0.0001
T	F	0.05988
F	T	0.00142
FC	F	0.997002
	F T	F F T T F

- For variable E:
 - **Step 2b**: Sum-out resulting factor for E and get a new factor:
 - Sum-out E: $f_7(A,B) = \sum_E f_6(A,B,E)$ [sum corresponding rows that have T and F for E]

$$f_6(A, B, E)$$

Т	Т	Т	0.0019
Т	Т	F	0.93812
Т	F	Т	0.00058
Т	F	F	0.000998
F	T	Т	0.0001
F	T	F	0.05988
F	F	Т	0.00142
F	F	F	0.997002

Т	T	0.94002
Т	F	0.001578
F	T	0.05998
F	F	0.998422

• For variable A:

■ **Step 2a**: Multiple all factors having A and get a new factor:

■ **Multiply**: $f_8(A, B) = f_4(A) \times f_5(A) \times f_7(A, B)$

 $f_4(A)$

T	0.90
F	0.05

$$f_4(A) \times f_5(A)$$

()	,	, , (,	
				\neg

Γ	0.63	\
F	0.0005	-

£	<i>(</i> 1	D)
17	(А,	D)

Т	T	0.94002
Т	F	0.001578
F	Т	0.05998
F	F	0.998422

£	(A	D)
J 8	(A,	DJ

T	T	0.592213
T	F	0.00099414
F	T	0.00002999
F	F	0.000499211

Т	0.70
F	0.01

 $f_5(A)$

- For variable A:
 - **Step 2b**: Sum-out resulting factor for E and get a new factor:
 - Sum-out A: $f_9(B) = \sum_A f_8(A, B)$ [sum corresponding rows that have T and F for E]

 $f_8(A,B)$

Т	Т	0.592213
T	F	0.00099414
F	T	0.00002999
F	F	0.000499211

 $f_9(B)$

Т	0.59224299
F	0.001493351

Bayesian Network: Multiply Remaining Factors

• Query: P(B|j,m).

■ Step 3: Multiply remaining factors: $f_{10}(B) = f_1(B) \times f_9(B)$

Bayesian Network: Normalize Result

• Query: P(B|j,m).

• Step 4: Normalize the final factor to eliminate α .

$f_{10}(B)$			$f_{11}(B)$	
Т	0.000592	=>	Т	0.284172
F	0.001492		F	0.715828

■ **Answer**: $P(b|m,j) = 0.284, P(\neg b|m,j) = 0.716$

- Algorithm pseudocode [RN book]
 - Note: Step 1 (initialization) is missing in the pseudocode [it is implied in the MAKE-FACTOR function which is not a good approach!]

```
function ELIMINATION-ASK(X, \mathbf{e}, bn) returns a distribution over X inputs: X, the query variable \mathbf{e}, observed values for variables \mathbf{E} bn, a Bayesian network specifying joint distribution \mathbf{P}(X_1, \dots, X_n) factors \leftarrow [] for each var in \mathsf{ORDER}(bn.\mathsf{VARS}) do factors \leftarrow [MAKE-FACTOR(var, \mathbf{e})|factors] if var is a hidden variable then factors \leftarrow \mathsf{SUM-OUT}(var, factors) return \mathsf{NORMALIZE}(\mathsf{POINTWISE-PRODUCT}(factors))
```

Bayesian Network: Irrelevant Variable

- Consider the query: P(JohnCalls | Burglary = true)
- Incorporating all hidden variables of the Bayesian Network, we get:

$$P(J|b) = \alpha P(J,b) = \alpha \sum_{e} \sum_{a} \sum_{m} P(j,m,a,b,e) = \sum_{e} \sum_{a} \sum_{m} P(J|a) P(m|a) P(a|b,e) P(b) P(e)$$

Bayesian Network: Irrelevant Variable

• A simple rearrangement of the expression would yield us:

$$\mathbf{P}(J \mid b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \sum_{m} P(m \mid a) .$$

- Note that the inner term $\sum_m P(m|a)$ will evaluate to 1. So it is eliminated from the expression entirely [Irrelevant variable]
- Variable elimination algorithm will automatically sum-out m from the expression!
 - Why? [At some point, m will be considered as a hidden variable and the summation over m will eliminate it]

Bayesian Network: Irrelevant Variable

- In general, we can remove any leaf node that is not a query variable or an evidence variable.
- After removal of initial leaves, there may be some more leaf nodes, and these too may be irrelevant and removed [continue this process].
- Every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query.