Topic THREE

Launching into Machine Learning

Preparation:

- 1. Download launching_into_ml.zip from BrightSpace and save it into:
 - C:\users\your own folder.
- 2. Extract launching into ml.zip

Lab 3_1: Get to know your Data - Improve Data Quality

Lab Intro: Lab intro: Improve the quality of your data | Google Cloud Skills Boost

Lab Demo Video: Lab Demo: Improve the quality of your data | Google Cloud Skills Boost

Lab Link: Improving Data Quality | Google Cloud Skills Boost

Alternative Lab Instructions (on local Jupyter Notebook):

- 1. In the notebook interface, navigate to **launching_into_ml > labs**, and open **improve_data_quality.ipynb**.
- 2. In the notebook interface, click Edit > Clear All Outputs.
- 3. Carefully read through the notebook instructions and **fill in lines marked with #TODO** where you need to complete the code as needed.

Note: Tips

- To run the current cell, click the cell and press **SHIFT+ENTER**. Other cell commands are listed in the notebook UI under **Run**.
- Hints may also be provided for the tasks to guide you along.
- If you need more help, look at the complete solution by navigating launching_into_ml > solutions, and open improve_data_quality.ipynb.

School of Electrical and Electronic Engineering Singapore Polytechnic Machine Learning & AI (ET0732)

Lab 3_2: Introduction to Linear Regression

Lab Intro: Lab intro: Introduction to linear regression | Google Cloud Skills Boost

Lab Demo: Lab Demo: Intro to Linear Regression | Google Cloud Skills Boost

Lab Link: Introduction to Linear Regression | Google Cloud Skills Boost

Alternative Lab Instructions (on local Jupyter Notebook):

- 1. In the notebook interface, navigate to **launching_into_ml > labs** and open **intro_linear_regression.ipynb**.
- 2. In the notebook interface, on the **Edit** menu, click **Clear All Outputs**.
- 3. Carefully read through the notebook instructions and **fill in lines marked with #TODO** where you need to complete the code as needed.

Tip: To run the current cell, click the cell and press SHIFT+ENTER. Other cell commands are listed in the notebook UI under **Run**.

- Hints may also be provided for the tasks to guide you along.
- If you need more help, look at the complete solution by navigating to **launching_into_ml** > **solutions** and opening **intro linear regression.ipynb**.

Lecture Lab 3_1: TensorFlow Playground:

Lecture lab: Introducing the TensorFlow Playground | Google Cloud Skills Boost

A Neural Network Playground (No.1)

Lecture Lab 3_2: TensorFlow Playground Advanced:

Lecture lab: TensorFlow Playground - Advanced | Google Cloud Skills Boost

A Neural Network Playground (No.2)

Lecture Lab 3: Practicing with neural network

Lecture lab: Practicing with neural networks | Google Cloud Skills Boost

A Neural Network Playground (No.3)

ML Applications Case Study

1 Survival Prediction of the Titanic

1.1 Introduction

1.1.1 About This Lab

This experiment is to predict whether passengers on the Titanic can survive based on the Titanic datasets.

1.1.2 Objectives

Upon completion of this task, you will be able to:

- Use the Titanic datasets open to the Internet as the model input data.
- Build, train, and evaluate machine learning models
- Understand the overall process of building a machine learning model.

1.1.3 Datasets and Frameworks

This experiment is based on **train.csv** and **test.csv**. **test.csv** contains the result about whether the passengers can survive. This dataset has no target, that is, no result, and can be used as a real-world dataset. Involved parameters are as follows:

- PassengerId: passenger ID
- Pclass: cabin class (class 1/2/3)
- Name: passenger name
- Sex: gender
- Age: age
- SibSp: number of siblings/number of spouses
- Parch: number of parents/number of children
- Ticket: ticket No.
- Fare: ticket price
- Cabin: cabin No.
- Embarked: port of boarding

1.2 Procedure

1.2.1 Importing Related Libraries

import pandas as pd import numpy as np import random as rnd

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC, LinearSVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.linear_model import Perceptron

from sklearn.linear_model import SGDClassifier

from sklearn.tree import DecisionTreeClassifier

1.2.2 Importing Datasets

Step 1 Read data.

```
train_df = pd.read_csv('./train.csv')
test_df = pd.read_csv('./test.csv')
combine = [train_df, test_df]
```

Step 2 View data.

print(train_df.columns.values)

```
['PassengerId' 'Survived' 'Pclass' 'Name' 'Sex' 'Age' 'SibSp' 'Parch' 'Ticket' 'Fare' 'Cabin' 'Embarked']
```

The first five rows of data are displayed.

train_df.head()

	Passengerid	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

School of Electrical and Electronic Engineering Singapore Polytechnic Machine Learning & AI (ET0732)

The last five rows of data are displayed.

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	NaN	Q

The data overview helps check whether some data is missing and what the data type is.

train_df.info()
test_df.info()

<cla< th=""><th colspan="10"><class 'pandas.="" core.="" dataframe'="" frame.=""></class></th></cla<>	<class 'pandas.="" core.="" dataframe'="" frame.=""></class>									
	RangeIndex: 891 entries, 0 to 890									
Data	. columns (tot	al 12 columns):								
#	Column	Non-Null Count	Dtype							
0	PassengerId	891 non-nu11	int64							
1	Survived	891 non-nu11	int64							
2	Pclass	891 non-nu11	int64 object							
3	Name	891 non-nu11	object							
4	Sex	891 non-nu11	object							
5	Age	714 non-nu11	float64							
		891 non-nu11								
		891 non-nul1								
8		891 non-nu11	-							
9		891 non-nu11								
		204 non-nu11								
		889 non-nu11								
), int64(5), obj	ect(5)							
	ry usage: 83.									
	_	re. frame. DataFra								
		ntries, 0 to 417								
		al 11 columns):								
#	Column	Non-Null Count	Dtype							
0	PassengerId	418 non-nu11	int64							
1	Pclass	418 non-nu11	int64							
		418 non-nu11								
		418 non-nu11								
		332 non-nu11								
		418 non-nu11								
		418 non-nu11								
		418 non-nul1								
		417 non-nu11								
		91 non-null								
		418 non-nu11								
), int64(4), obj								
	memory usage: 36.0+ KB									

The related numeric-type information of the data helps check the average value and other statistics.

School of Electrical and Electronic Engineering Singapore Polytechnic Machine Learning & AI (ET0732)

train_df.describe()

	Danas and d	0	Dalasa		Oile Oil	Barrata	F
	Passengerid	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

The character-type information helps check the number of types, the type with the maximum value, and the frequency.

train_df.describe(include=['O'])

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	Vovk, Mr. Janko	male	CA. 2343	B96 B98	S
freq	1	577	7	4	644

Step 3 Check the survival probability corresponding to each feature based on statistics.

train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Survived', ascending=False)

	Pclass	Survived
0	1	0.629630
1	2	0.472826
2	3	0.242363

The intuitive data shows that passengers in class 1 cabins are more likely to survive.

 $train_df[["SibSp", "Survived"]]. group by (['SibSp'], as_index=False). mean (). sort_values (by='Survived', ascending=False)$

School of Electrical and Electronic Engineering Singapore Polytechnic Machine Learning & AI (ET0732)

	SibSp	Survived
1	1	0.535885
2	2	0.464286
0	0	0.345395
3	3	0.250000
4	4	0.166667
5	5	0.000000
6	8	0.000000

The survival probability can be directly determined by the number of siblings.

 $train_df[["Sex", "Survived"]].groupby(['Sex'], as_index=False).mean().sort_values(by='Survived', ascending=False)$

0 female 0.7420381 male 0.188908
1 male 0.188908

When the survival probability is determined by gender, an obvious imbalance occurs.

As shown in the preceding figure, most young passengers died.

```
grid = sns.FacetGrid(train_df, col='Survived', row='Pclass', aspect=1.6)
grid.map(plt.hist, 'Age', alpha=.5, bins=20)
grid.add_legend();
```

School of Electrical and Electronic Engineering Singapore Polytechnic Machine Learning & AI (ET0732)

The following figure shows the survival probability determined based on the cabin and age.

1.2.3 Preprocessing Data

As the datasets have missing values, combine the datasets, and fill the missing values with data.

Step 1 Combine the datasets.

data=pd.concat([train_df,test_df],ignore_index=True)

Step 2 Check for missing values.

data.isnull().sum()	lata.isnull().sum()				
PassengerId	0				
Survived	418				
Pclass	0				
Name	0				
Sex	0				
Age	263				
SibSp	0				
Parch	0				
Ticket	0				
Fare	1				
Cabin	1014				
Embarked	2				
dtype: int64					

Step 3 Fill the missing values with data.

Process the datasets by using different methods as required. For example, fill the **Fare** and **Embarked** parameters having few missing values with the mode.

data['Embarked'].fillna(str(data['Embarked'].mode()[o]),inplace=True)
data['Fare'].fillna(int(data['Fare'].mode()[o]),inplace=True)

Use the average age value.

data['Age'].fillna(data['Age'].mean(),inplace=True)

Delete less significant data. Before this, assign a value to Target first.

Target=data['Survived']
data=data.drop(['Cabin','Name','Ticket','Survived'],axis=1)

Check whether missing values still exist.

data.isnull().sum()

Step 4 Convert data.

Convert some character-type data into numeric-type data for model input. To do so, check the number of types first.

data['Sex'].value_counts()

male 843 female 466

Name: Sex, dtype: int64

Use the search function to obtain each character-type value and replace it with a numeric-type value.

data['Sex']=data['Sex'].replace(['male','female'],[o,1])
data['Embarked']=data['Embarked'].replace(['S','C','Q'],[o,1,2])

test.csv cannot be used as a training test set as it does not contain **Target**. **train.csv** contains 891 pieces of data (with **Target**), which need to be extracted.

X=data[:891] y=Target[:891]

1.2.4 Building a Model

This section describes how to build a model. To build a model, split the training set and test set.

Step 1 Split the dataset.

from sklearn.model_selection import train_test_split train_x,test_x,train_y,test_y=train_test_split(X,y)

Step 2 Train a model.

School of Electrical and Electronic Engineering Singapore Polytechnic Machine Learning & AI (ET0732)

The logistic regression algorithm, random forest algorithm, and AdaBoost are used for training.

```
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn import ensemble
model1=LogisticRegression()
model1.fit(X,y)
print('logR',model1.score(X,y))
model2=RandomForestClassifier()
model2.fit(X,y)
print('RFC',mode2l.score(X,y))
model3=ensemble.AdaBoostClassifier()
model3.fit(X,y)
print('AdaBoost',model3.score(X,y))
```

logR 0.7488789237668162 RFC 0.8071748878923767 AdaBoost 0.7757847533632287

As shown above, the random forest algorithm has a good effect.

Step 3 Predict data.

model3.predict(data[891:])

```
array([0., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 1., 0., 1., 1., 0.,
      0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 0., 0., 0., 0., 0., 1., 1.,
      1., 0., 1., 1., 0., 0., 0., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0.,
      1., 1., 1., 0., 1., 1., 1., 1., 0., 1., 0., 1., 1., 0., 0., 0., 0.,
      0.,\ 1.,\ 1.,\ 1.,\ 1.,\ 1.,\ 0.,\ 1.,\ 0.,\ 1.,\ 0.,\ 0.,\ 0.,\ 1.,\ 0.,\ 1.,\ 0.,
      0., 0., 1., 0., 0., 1., 1., 0., 0., 0., 1., 0., 1., 0., 1., 0., 0.,
      1., 0., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0., 1., 1., 0., 1., 1.,
      0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1., 0., 1., 0., 1.,
      0., 0., 0., 0., 1., 0., 0., 1., 0., 1., 1., 0., 1., 1., 1., 1., 1.,
      0., 1., 1., 0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 0., 1., 0., 1.,
      0., 1., 0., 1., 1., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0.,
      1., 1., 1., 1., 1., 0., 0., 0., 1., 0., 1., 1., 1., 0., 1., 0., 0.,
      0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 0., 1., 0., 1., 0.,
      1., 1., 0., 1., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 1., 0.,
      0., 1., 1., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 1., 0.,
      0., 1., 0., 1., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
```

2 California Housing Price Forecast

2.1 Introduction

2.1.1 About This Lab

This experiment uses a dataset with a small sample quantity. The dataset includes the open-source California housing price data provided by scikit-learn. The California housing price forecast project is a simple regression model. By using this model, you can understand the basic usage and data processing methods of the machine learning library **sklearn**.

2.1.2 Objectives

Upon completion of this task, you will be able to:

- Use the California housing price dataset open to the Internet as the model input data.
- Build, train, and evaluate machine learning models
- Understand the overall process of building a machine learning model.
- Master the application of machine learning model training, grid search, and evaluation indicators.
- Master the application of related APIs.

2.1.3 Experiment Dataset and Framework

This experiment is based on the California housing price dataset, which contains 20640 samples with 8 features. Each data record contains detailed information about the house and its surroundings. LSTAT: % lower status of the population

The target is to obtain the median value of owner-occupied homes in the unit of \$1000.

The **sklearn** framework is used to provide the Boston housing price data and functions such as dataset splitting, standardization, and evaluation, and integrate various common machine learning algorithms. In addition, XGBoost optimized from gradient boosted decision tree (GBDT) is used as the integral algorithm.

2.2 Procedure

2.2.1 Introducing the Dependency

Code:

#Prevent unnecessary warnings. import warnings warnings ("ignore")

School of Electrical and Electronic Engineering Singapore Polytechnic Machine Learning & AI (ET0732)

#Introduce the basic package of data science. import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st import seaborn as sns ##Set attributes to prevent garbled characters in Chinese. mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False #Introduce machine learning, preprocessing, model selection, and evaluation indicators. from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.metrics import r2_score #Import the Boston dataset used this time. from sklearn.datasets import fetch_california_housing #Introduce algorithms. from sklearn.linear_model import RidgeCV, LassoCV, LinearRegression, ElasticNet #Compared with SVC, it is the regression form of SVM. from sklearn.svm import SVR

#Integrate algorithms.

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor

2.2.2 Loading the Dataset, Viewing Data Attributes, and Visualizing Data

Step 1 Load the California housing price dataset and display related attributes.

Code:

#Load the Boston house price dataset.

cali = fetch_california_housing()

#x features, and y labels.

x = cali.data
y = cali.target

#Display related attributes.

print('Feature column name')

print(cali.feature_names)

print("Sample data volume: %d, number of features: %d"% x.shape)

print("Target sample data volume: %d"% y.shape[o])

Output:

Feature column name

School of Electrical and Electronic Engineering Singapore Polytechnic

Machine Learning & AI (ET0732)

['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup', 'Latitude', 'Longitude']

Sample data volume: 20640, number of features: 8

Target sample data volume: 20640

Step 2 Convert the data into the data frame format

Code:

x = pd.DataFrame(cali.data, columns=cali.feature_names) x.head()

Output:

	Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	- 122.25

Figure 2-1 Information about the first five samples

Step 3 Visualize the label distribution.

Code:

sns.distplot(tuple(y), kde=False, fit=st.norm)

Output:

Figure 2-2 Target data distribution

2.2.3 Splitting and Preprocessing the Dataset

Code:

```
#Segment the data.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=28)
#Standardize the dataset.
ss = StandardScaler()
x_train = ss.fit_transform(x_train)
x_test = ss.transform(x_test)
x_train[o:100]
```

Output:

2.2.4 Performing Modeling on the Dataset by Using Various Regression Models

Code:

```
#Set the model name.
names = ['LinerRegression',
   'Ridge',
   'Lasso',
   'Random Forrest',
   'GBDT',
   'ElasticNet'
#Define the model.
# cv is the cross-validation idea here.
models = [LinearRegression(),
    RidgeCV(alphas=(0.001,0.1,1),cv=3),
    LassoCV(alphas=(0.001,0.1,1),cv=5),
    RandomForestRegressor(n_estimators=10),
    GradientBoostingRegressor(n_estimators=30),
    ElasticNet(alpha=0.001, max_iter=10000)]
# Output the R2 scores of all regression models.
#Define the R2 scoring function.
def R2(model,x_train, x_test, y_train, y_test):
   model_fitted = model.fit(x_train,y_train)
   y_pred = model_fitted.predict(x_test)
   score = r2_score(y_test, y_pred)
   return score
#Traverse all models to score.
for name, model in zip(names, models):
   score = R2(model,x_train, x_test, y_train, y_test)
   print("{}: {:.6f}, {:.4f}".format(name,score.mean(),score.std()))
```

School of Electrical and Electronic Engineering Singapore Polytechnic Machine Learning & AI (ET0732)

Output:

```
LinerRegression: 0.625378, 0.0000

Ridge: 0.625379, 0.0000

Lasso: 0.625060, 0.0000

Random Forrest: 0.795704, 0.0000

GBDT: 0.716641, 0.0000

ElasticNet: 0.625223, 0.0000
```

2.2.5 Adjusting Grid Search Hyperparameters

Step 1 Build a model.

Code:

```
'Kernel': kernel function
'C': SVR regularization factor
'gamma': 'rbf', 'poly' and 'sigmoid' kernel function coefficient, which affects the model performance
""

parameters = {
    'kernel': ['linear', 'rbf'],
    'C': [0.1, 0.5,0.9,1,5],
    'gamma': [0.001,0.01,0.1,1]
}

#Use grid search and perform cross validation.
model = GridSearchCV(SVR(), param_grid=parameters, cv=3)
model.fit(x_train, y_train)
```

Output:

```
GridSearchCV(cv=3, estimator=SVR(),

param_grid={'C': [0.1, 0.5, 0.9, 1, 5],

'gamma': [0.001, 0.01, 0.1, 1],

'kernel': ['linear', 'rbf']})
```

Step 2 Obtain the optimal parameters.

Code:

```
print("Optimal parameter list:", model.best_params_)
print("Optimal model:", model.best_estimator_)
print("Optimal R2 value:", model.best_score_)
```

Output:

```
Optimal parameter list: {'C': 5, 'gamma': 1, 'kernel': 'rbf'}
Optimal model: SVR(C=5, gamma=1)
```

School of Electrical and Electronic Engineering Singapore Polytechnic Machine Learning & AI (ET0732)

Optimal R2 value: 0.7515772615928471

Step 3 Visualize the output.

Code:

```
##Perform visualization.
ln_x_test = range(len(x_test))
y_predict = model.predict(x_test)
#Set the canvas.
plt.figure(figsize=(16,8), facecolor='w')
#Draw with a red solid line.
plt.plot (ln_x_test, y_test, 'r-', lw=2, label=u'Value')
#Draw with a green solid line.
plt.plot (ln_x_test, y_predict, 'g-', lw = 3, label=u'Estimated value of the SVR algorithm, R^2 = 0.3f' %
(model.best_score_))
#Display in a diagram.
plt.legend(loc ='upper left')
plt.grid(True)
plt.title(u"Boston Housing Price Forecast (SVM)")
plt.xlim(o, 101)
plt.show()
```

Output:

Figure 2-3 Visualized result

---- End