EXHIBIT 4

Data-Over-Cable Service Interface Specifications DOCSIS® 3.1

MAC and Upper Layer Protocols Interface Specification

CM-SP-MULPIv3.1-I03-140610

ISSUED

Notice

This DOCSIS specification is the result of a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. for the benefit of the cable industry and its customers. You may download, copy, distribute, and reference the documents herein only for the purpose of developing products or services in accordance with such documents, and educational use. Except as granted by CableLabs in a separate written license agreement, no license is granted to modify the documents herein (except via the Engineering Change process), or to use, copy, modify or distribute the documents for any other purpose.

This document may contain references to other documents not owned or controlled by CableLabs. Use and understanding of this document may require access to such other documents. Designing, manufacturing, distributing, using, selling, or servicing products, or providing services, based on this document may require intellectual property licenses from third parties for technology referenced in this document. To the extent this document contains or refers to documents of third parties, you agree to abide by the terms of any licenses associated with such third party documents, including open source licenses, if any.

© Cable Television Laboratories, Inc., 2013-2014

Data-Over-Cable Service Interface Specifications

DISCLAIMER

This document is furnished on an "AS IS" basis and neither CableLabs nor its members provides any representation or warranty, express or implied, regarding the accuracy, completeness, noninfringement, or fitness for a particular purpose of this document, or any document referenced herein. Any use or reliance on the information or opinion in this document is at the risk of the user, and CableLabs and its members shall not be liable for any damage or injury incurred by any person arising out of the completeness, accuracy, or utility of any information or opinion contained in the document.

CableLabs reserves the right to revise this document for any reason including, but not limited to, changes in laws, regulations, or standards promulgated by various entities, technology advances, or changes in equipment design, manufacturing techniques, or operating procedures described, or referred to, herein.

This document is not to be construed to suggest that any affiliated company modify or change any of its products or procedures, nor does this document represent a commitment by CableLabs or any of its members to purchase any product whether or not it meets the characteristics described in the document. Unless granted in a separate written agreement from CableLabs, nothing contained herein shall be construed to confer any license or right to any intellectual property. This document is not to be construed as an endorsement of any product or company or as the adoption or promulgation of any guidelines, standards, or recommendations.

CM-SP-MULPIv3.1-I03-140610

Document Status Sheet

Document Control Number CM-SP-MULPIv3.1-I03-140610

Document Title MAC and Upper Layer Protocols Interface Specification

Revision History 101 – Released 10/29/13

I02 – Released 03/20/14I03 – Released 06/10/14

Date June 10, 2014

Status Work-in Draft Issued Closed

Progress

Distribution Restrictions Author-Only CL/Member CL/Member/ Public

Vendor

Key to Document Status Codes

Work in Progress An incomplete document, designed to guide discussion and generate feedback that

may include several alternative requirements for consideration.

Draft A document in specification format considered largely complete, but lacking review

by Members and vendors. Drafts are susceptible to substantial change during the

review process.

Issued A generally public document that has undergone Member and Technology Supplier

review, cross-vendor interoperability, and is for Certification testing if applicable.

Issued Specifications are subject to the Engineering Change Process.

Closed A static document, reviewed, tested, validated, and closed to further engineering

change requests to the specification through CableLabs.

Trademarks

CableLabs® is a registered trademark of Cable Television Laboratories, Inc. Other CableLabs marks are listed at http://www.cablelabs.com/certqual/trademarks. All other marks are the property of their respective owners.

1.2.2 DOCSIS Network and System Architecture

The elements that participate in the provisioning of DOCSIS services are shown in Figure 1-1.

Figure 1-1 - The DOCSIS Network

The CM connects to the operator's HFC network and to a home network, bridging packets between them. Many CPE devices can connect to the CM's LAN interfaces, can be embedded with the CM in a single device, or they can be separate standalone devices (as shown in Figure 1-1). CPE devices may use IPv4, IPv6 or both forms of IP addressing. Examples of typical CPE devices are home routers, set-top devices, personal computers, etc.

The CMTS connects the operator's back office and core network with the HFC network. Its main function is to forward packets between these two domains, and optionally forward packets between upstream and downstream channels on the HFC network. The CMTS performs this forwarding with any combination of link-layer (bridging) and network-layer (routing) semantics.

Various applications are used to provide back office configuration and other support to the devices on the DOCSIS network. These applications use IPv4 and/or IPv6 as appropriate to the particular operator's deployment. The following applications include:

Provisioning Systems:

- The DHCP servers provide the CM with initial configuration information, including the device IP address(es), when the CM boots.
- The Configuration File server is used to download configuration files to CMs when they boot. Configuration files are in binary format and permit the configuration of the CM's parameters.
- The Software Download server is used to download software upgrades to the CM.
- The Time Protocol server provides Time Protocol clients, typically CMs, with the current time of day.
- Certificate Revocation server provides certificate status.

Network Management System (NMS):

- The SNMP Manager allows the operator to configure and monitor SNMP Agents, typically the CM and the CMTS.
- The syslog server collects messages pertaining to the operation of devices.
- The IPDR Collector server allows the operator to collect bulk statistics in an efficient manner.

Figure 5-5 - Downstream Convergence Layer Block Diagram

5.2.3 OFDMA Upstream

OFDMA is a new type of upstream channel for DOCSIS 3.1. OFDMA upstream channels can span more spectrum than TDMA or S-CDMA upstream channels. OFDMA upstream channels use LDPC for Forward Error Correction and have other attributes specific to Orthogonal Frequency Division Multiplexing technology. OFDMA channels utilize a framing structure consisting of a number of symbols in time and a number of subcarriers in frequency. Some of the subcarriers are excluded and never used on the channel. Other subcarriers are not used for transporting MAC-layer data but are used for physical layer monitoring. Subcarriers used for transporting MAC-layer data are grouped in sets of 8 (50 kHz subcarrier spacing) or 16 (25 kHz subcarrier spacing) contiguous subcarriers in the frequency dimension and K symbols in the time dimension to create minislots in a frame structure.

On TDMA and S-CDMA upstream channels with Multiple Transmit Channel Mode, the CMTS can create 5 profiles that are used for data transmissions. These profiles define the modulation rate and Reed-Solomon codeword size to be used any time a transmission is made with that profile. With OFDMA upstream channels, the LDPC codeword sizes are fixed. For OFDMA channels, the number of data profiles is expanded to 7 and the profile describes the modulation rate and pilot pattern on a minislot by minislot basis for a frame. Thus, a single OFDMA data profile can use different modulation rates for different minislots within a frame.

For TDMA and S-CDMA upstream channels, a ranging burst uses all of the spectrum defined for the channel and is used to adjust a CM's transmit timing, power, and pre-equalization. With OFDMA upstream channels, ranging uses a subset of the spectrum defined for the channel. In order to properly adjust the CM's transmit pre-equalizer for every non-excluded subcarrier, the CMTS needs to receive a transmission with a known pattern on every non-excluded subcarrier. For OFDMA upstream channels, this known pattern is provided by probing. A probe is a wideband physical-layer signal that the CM sends in response to a special probe bandwidth allocation. Probing is used whenever the CMTS needs to evaluate the CM's transmit pre-equalization.

5.2.4 QoS

This section provides an overview of the QoS protocol mechanisms and their part in providing end-to-end QoS. Some of the Quality of Service related features described in this specification include:

Packet Classification and Flow Identification