name: <unnamed>
log: C:\Users\saiomkark\OneDrive - The University of Chicago\AdvStats\PS7\Stat

> a Sai Omkar K PS8.log

log type: text opened on: 8 Dec 2021, 16:48:04

. use "C:\Users\saiomkark\OneDrive - The University of Chicago\AdvStats\PS8\homework 8 > .dta"

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
treated age educ black married	722 722 722 722 722	.4113573 24.52078 10.26731 .800554 .1620499	.4924209 6.625947 1.704774 .3998609 .368752	0 17 3 0	1 55 16 1
hisp work	722 722	.1052632 .7285319	.307105 .4450253	0 0	1 1

. $^{*}1.$ Using the experimental data, test whether the those treated are more likely to w > ork in the year after treatment.

. *A Use the t-test command;

. ttest work, by(treated) unequal level(95) welch

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	425 297	.6964706 .7744108	.022329 .024294	.4603237 .4186752	.6525813 .7265999	.7403599 .8222216
combined	•	.7285319	.0165621	.4450253	.6960161	.7610476
diff		0779402	.0329967		1427288	0131516
diff = Ho: diff =	= mean(0) - = 0	- mean(1)	Wel	ch's degrees	t of freedom	= -2.3621 $=$ 674.454

Ha: diff != 0 Ha: diff < 0 Ha: diff > 0 Pr(T < t) = 0.0092 Pr(|T| > |t|) = 0.0185Pr(T > t) = 0.9908

. *Observed p-value for the t-test with a 95% confidence interval is 0.0185. This valu > e is less than 0.05. So, the Null hypothesis can be rejected and Alternative Hypothe > sis(that the true

> difference in means of work in the year between treated and not treated people is no > t equal to 0) cannot be rejected.

. *B Use the chi-square test; . tabi 230 67 \ 296 129, chi2

	col		
row	1	2	Total
	+		+
1	230	67	297
2	296	129	425
	+		+
Total	526	196	722

Pearson chi2(1) = 5.3699 Pr = 0.020

. *Observed p-value here is 0.020 for this test. As the observed p-value is less than > 0.05, we can reject the Null Hypothesis. And we cannot reject the alternate hypothes > is that probabilit

> y of working in the year is same for treated and not treated is not equal.

. *C Use Fisher's exact test; cci 230 67 296 129, exact

	Exposed	Exposed Unexposed		Proportion exposed	
Cases Controls	230 296	67 129	297 425	0.7744 0.6965	
Total	526	196	722	0.7285	
	Point e	estimate	[95% Conf.	Interval]	
Odds ratio Attr. frac. ex. Attr. frac. pop	.331	96067 15807 57797	1.049635 .047288	2.141541 .5330465	,

1-sided Fisher's exact P = 0.0124 2-sided Fisher's exact P = 0.0218

. *Observed p-value is 0.0218 for the two-tail fisher exact test. As this p-value is l > ess than 0.05, we can reject the Null hypothesis that the probability of work is sam > e for both treated

> and not treated is equal to 1 i.w true odds ratio is equal to 1. Also, we cannot re > ject the Alternate Hypothesis that the probability of work between people with treat > ment and no treate

> ment is not same i.e true odds ratio is not equal to 1.

. *D Why do the p-values on the two-sided test differ? Which should you believe?

. *We observed the following p values

. * t-test : 0.0185 , Chi-square test : 0.02, Fisher exact test : 0.0218

. * As we compare the different tests, Fisher exact test is preferred as its an asympt > otic test and fits for the binary data such as to compare the treated/non treated da > ta. Fisher test al

> so provides an accurate significance level without relying on the assumptions where
> as asymptotic tests make assumptions about the data. When we have extremely large sa
> mple size, then it

> is infeasable to perform Fisher test. In such situations, we can prefer Chi-square > test as the accuracy increases as the sample size increases.

. $^{\star}2$. Using the regression command, test whether the those treated are more likely to > work in the year after treatment.

. *A Regress work against the treatment indicator and test the hypothesis;

. regress work treated

Source	SS	df	MS	Number of obs	=	722
Model Residual	1.062016	1 720	1.062016 .196847539	Prob > F R-squared	=	5.40 0.0205 0.0074 0.0061
Total	142.792244	721	.198047495	Adj R-squared = FROOT MSE = FROOT MSE = FROOT MSE		
work	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
treated _cons	.0779402	.0335553		0.020 .01206 0.000 .65421		.1438181

. *Observed p-value = 0.0205 with a 95% confidence interval is less than 0.05. So, we > can reject the null hypothesis and not the Alternate hypothesis that the true differ > ence in means of w

> ork in year between treated and not treated is not equal to 0.

. *B Regress work against the treatment indicator and all other covariates in the data > set.

. regress work treated age educ black married hisp

Source		SS		df	MS	Νυ	umber of obs	s =	722
	+-					F((6, 715)	=	4.71
Model		5.43080183		6	.905133638	Pr	rob > F	=	0.0001
Residual		137.361442	7	715	.192113905	R-	squared	=	0.0380
	+-					Ac	lj R-squared	d =	0.0300
Total		142.792244	7	721	.198047495	Ro	ot MSE	=	.43831

work	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
treated age educ black married hisp _cons	.0775439	.0332208	2.33	0.020	.0123219	.1427658
	0033748	.0025473	-1.32	0.186	0083758	.0016263
	.0023976	.0097303	0.25	0.805	0167057	.0215009
	1856225	.0563087	-3.30	0.001	2961727	0750724
	.0526475	.0454938	1.16	0.248	0366699	.141965
	0121452	.0742777	-0.16	0.870	1579737	.1336834
	.8961161	.1315736	6.81	0.000	.6377994	1.154433

. * What happens to the R2of the regression equation?

. *We observed a higher adjusted R square value. This means that the additional input > variables are adding value to the model. In univariate regression model , we observe > d a adjused R squa

> re value of 0.0061 where are the adjusted R square value is 0.0300 with the muti var > iate regressin model. This means a better fit of the model.

. *What happens to the treatment indicator? Explain why you see these results. Compare > them to the results in Problem 1.

. *Univariate model

*	work	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
*	treated	.0779402	.0335553	2.32	0.020	.0120623	.1438181

. *Multivariate model

*	work	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
*	treated	.0775439	.0332208	2.33	0.020	.0123219	.1427658

. *As seen above, the treatment indicator Coeff/estimate decreases slightly, but howev > er it can still be considered that the treatment indicator still has majority of inf > luence on the work

> . This slight decrease may be because of the introducing other variables into the e > quation. This is same in the case of Standard error and residual standard error wher > e both decrease du

> e to the introduction of other variables into the regression model.

indicator: 1 if treated, 0 if not treated	work 0	1	Total
0	129	296	425
	30.35	69.65	100.00
1	67 22.56	230 77.44	297
Total	196	526	722
	27.15	72.85	100.00

. *C Derive the Frechet-Hoeffding bounds for the joint distribution.

. * People who benefots from treatment : Bounds of joint distribution are [0.07, 0.30] . * People who loses from the treatment : Bounds of joint distribution are [0.00, 0.23 >]

. *4 4. Consider the following mythical experiment. There are two treatment arms: vacc > ination with the Moderna vaccine (n = 14, 598) and vaccination with the Pfizer vacci > ne (n = 21, 669).

> Suppose 100 of those with the Pfizer vaccine develop Covid and 269 of those with Mod > erna vaccine have Covid.

. *A Test the hypothesis that the vaccines are equally effective against the alternati > ve that they are not.

. *From above information

. * Not affected Affected . *Moderna 14329 269 . *Pfizer 21569 100

. *Fisher exact test

. cci 14329 269 21569 100, exact

	Proportion exposed	Total	Unexposed	Exposed	
	0.9816 0.9954	14598 21669	269 100	14329 21569	Cases Controls
	0.9898	36267	369	35898	Total
	Interval]	[95% Conf.	estimate	Point	
, ,	.3121746 .8058297	.1941703 .6878254	753036 495609	į	Odds ratio Prev. frac. ex. Prev. frac. pop

1-sided Fisher's exact P = 0.0000 2-sided Fisher's exact P = 0.0000

. *Observed p-value 0 for two-tail fisher exact test is less than 0.05. So we can reje > ct the null hypothesis that vaccines are equally effective (or) i.e true odds ratio > is equal to 1)=. A > lso we cannot reject the alternate hypothesis that the vaccines are not equally effe > ctive (or) efficacy is not same for both i.e true odds ratio is not equal to 1. * B These are the actually numbers from the treated observations of the Moderna and > Pfizer clinical trials. Explain why this is not a legitimate experimental trial. . *Two arguments here. One is we do not have data of a person in two cases where in one > case a vaccine is administered and other case where the vaccine is not administered In case, we have > both the data of a person, we can effectively compare the results in both the cases i.e vaccinated state and unvaccinated state. As we do not have the complete data, we cannot construct > a counterfactual which deems these experimental trials cannot be considered legitima > te. Thus, the comparision of efficacies of two vaccines cannot be considered legit. . *Another argument is, because we do not have a treatment and control group. If we we > re to have data of both the treatment and control group, then we can treat this expe > riment triel as le > gitimate. Thus the insights we got from comparison of efficacies of the two vaccines based on only the treatment group data is not legitimate. . log close name: <unnamed> log: C:\Users\saiomkark\OneDrive - The University of Chicago\AdvStats\PS7\Stat > a Sai Omkar K PS8.log log type: text closed on: 8 Dec 2021, 16:48:04 > ------