

AI value creation by 2030

\$13 trillion

[Source: McKinsey Global Institute.]

(artificial narrow intelligence)

E.g., smart speaker, self-driving car, web search, AI in farming and factories

(artificial general intelligence)

Do anything a human can do

AGENDA

- What is Machine Learning
- What is Data
- What Machine Learning can and cannot do
- Deep Learning

ARTHUR SAMUEL(1959):

 ML is a field of study that gives computers the ability to learn without being explicitly programmed,

MACHINE LEARNING

Supervised Learning

SUPERVISED LEARNING

INPUT(A)	OUTPUT(B)	APPLICATION
Email	Spam(o.1)	Spam filtering
Audio	Text Transcript	Speech Recognition
English	Chinese	Machine Translation
Ad, user info	Click(0/1)	Online Advertising
Image, Radar info	Position of other cars	Self-driving car
Image of phone	Defect(0/1)	Visual Inspection

WHY NOW??? BIG DATA

DATA

image	label
	cat
	not cat
	cat
	not cat

HOW TO COLLECT DATA?

- Manual Labeling
- From Observing behaviours

user ID	time	price (\$)	purchased	
4783	Jan 21 08:15.20	7.95	yes	
3893	March 3 11:30.15	10.00	yes	
8384	June 11 14:15.05	9.50	no	
0931	Aug 2 20:30.55	12.90	yes	

machine	temperature (°C)	pressure (psi)	machine fault	
17987	60	7.65	N	
34672	100	25.50	N	
08542	140	75.50	Y	
98536	165	125.00	Y	

Download from websites/partnerships

DATA IS MEESSY

- Garbage in , garbage out
- Data Problems
 - Incorrect Values
 - Missing Values

MACHINE LEARNING VS DATA SCIENCE

Size of House	#of Bedrooms	Parking Space	Garden	Price
500	I	1	N	10000
600	2	6	Υ	50000
700	I	1	N	12000
1000	4	I	Υ	80000

Machine Learning

Data Science Houses with garden are more expensive

Houses with parking space are 30% more expensive than houses without parking space.

MACHINE LEARNING VS DATA SCIENCE

Machine Learning

Data Science

 "Field of study that gives computers the ability to learn without being explicitly programmed."

Science of extracting knowledge and insights from data

-Arthur Samuel(1959)

DEEP LEARNING

WHAT ML CANAND CANNOT DO?

Anything that can be done with the I second of thought can be automated(probably now or else sooner)

EXAMPLE:-THE SHIRT I HAVE ORDERED IS LOOSE FOR ME. CAN I EXCHANGE IT FOR ONE SMALLER SIZE?

It can figure out that it is the Exchange Request

Input Text ---→ Exchange Request

 But It can't say that:"Congratulations!! You might ave reduced your weight. So, the shirt is loose to you.

X-RAY DAIGNOSIS

Can Do

Diagnose bone fracture from ~100000 labeled images

Cannot Do

 Diagnose bone fracture from 10 images of textbook explaining the same.

STRENGTHS AND WEAKNESSES OF ML

- It works well when:
 - Learning a "simple: concept
 - Lots of data is available

- It won't work when:
- Learning complex concepts from small amount of data
- When asked to perorm on new types of data

Face recognition

30	32	22	12	10	10	12	33	35	30
12	11	12	234	170	176	13	15	12	12
234	222	220	230	200	222	230	234	56	78
190	220	186	112	110	110	112	180	30	32
49	250	250	250	4	2	254	200	44	6
55	250	250	250	3	1	250	245	25	3
189	195	199	150	110	110	182	190	199	55
200	202	218	222	203	200	200	208	215	222
219	215	220	220	222	214	215	210	220	220
220	220	220	220	221	220	221	220	220	222

WORKFLOW OF MACHINE LEARNING PROJECT

STEPS FOR SELF

- I. Collect data
 - Image -→position of other cars
 - 2.. Train Model
 - 3. Deploy Model

WORKFLOW OF DATA SCIENCE PROJECT

- I. Collect data
- 2. Analyze data
 - Iterate many times to get good insights
 - 3. Suggest hypotheses/actions

Deploy changes

Re-analyze new data periodically

CASE STUDY: SMART SPEAKER

- Steps
- I.Trigger word/wake word detection
- 2. Speech Recognition
- 3. Intent Recognition
- 4. Execute song

Audio --→"Hello device(0/1)

Audio----"Play a song"

song

AI PITFALLS

- Expect Ai to solve everything
- Hiring 2-3 ML engineers and depend purely on them
- Expecting Al to work the first time