Analysis of Optically Controlled Microwave/Millimeter Wave Device Structures

(NASA-TM-87246) ANALYSIS OF OPTICALLY CONTROLLED MICROWAVE/MILLIMETER WAVE DEVICE STRUCTURES (NASA) 17 p HC A02/MF A01

N86-24907

CSCL 09C

Unclas G3/33 43071

Rainee N. Simons and Kul B. Bhasin Lewis Research Center Cleveland, Ohio

Prepared for the International Microwave Symposium sponsored by the Institute of Electrical and Electronics Engineers Baltimore, Maryland, June 2-4, 1986

ANALYSIS OF OPTICALLY CONTROLLED MICROWAVE/MILLIMETER WAVE DEVICE STRUCTURES

Rainee N. Simons* and Kul B. Bhasin National Aeronautics and Space Administration Lewis Research Center Cleveland. Ohio

SUMMARY

The light-induced voltage and the change in the source-to-drain channel current under optical illumination higher than the semiconductor bandgap for GaAs MESFET, InP MESFEI, Alo.3Gao.7As/GaAs high electron mobility transistor (HEM1) and GaAs permeable base transistor (PBT) were analytically obtained. The GaAs PBI and GaAs MESFEI have much higher sensitivity than InP MESFEI. The Alo.3Gao.7As/GaAs HEMT is observed to have the highest sensitivity. Variation in device parasitics due to optical illumination and its effect on the cutoff frequencies f_1 and $f_{\rm max}$ are also investigated.

INTRODUCTION

Direct optical control of microwave devices in GaAs monolithic microwave integrated circuits (MMIC's) can result in better switching, amplitude and phase control in amplifiers, and frequency control in oscillators (ref. 1). Furthermore, it allows use of optical fiber technology for the interconnecting MMIC's, thereby reducing cross talk and electromagnetic interference. It also enhances efficiency and speed of operation (ref. 2).

Several authors have experimentally investigated the effect of light on the dc characteristics of GaAs metal semiconductor field effect transistor (MESFEI) (refs. 3 and 4) and its effect on the S-parameters (ref. 5). The optical absorption coefficient and energy bandgap of III-V compound semiconductors can be tailored to a particular wavelength by adjusting the mole fraction (x) of its constituents (ref. 6). Besides, the III-V compound semiconductor devices can be integrated with other MMIC components on a single semi-insulating GaAs or InP substrate (ref. 7). These offer further advantages for direct optical control of microwave devices.

We investigated the effect of light on several III-V compound semiconductor devices, such as, GaAs MESFE1, InP MESFE1, $Al_xGa_{1-x}As/GaAs$ high electron mobility transistor (HEM1), and GaAs Permeable Base Transistor (PB1). The computed results illustrate (a) the light-induced voltage as a function of the incident optical power density, (b) the change in the drain current, with change in optical power density, as a function of the drain to source voltage, and (c) the variation in the device parasitics due to optical illumination and its effect on the cutoff frequencies f_T and f_{max} .

LIGHT INDUCED VOLTAGE

The operation of these microwave devices as photodetectors and amplifiers depend on the photogeneration of electron-hole pairs in their active layer.

^{*}NRC-NASA Research Associate.

Figure 1 illustrates several techniques for the direct optical control of microwave solid-state devices. In these techniques light from a laser or a light-emitting diode (LED) (ref. 14) or an optical waveguide (ref. 15) is made to strike the active layer of the device. The incident optical power increases the concentration of the minority carriers, for example, the holes in an n-type channel. This increase in hole concentration Δp is proportional to the incident optical power $P_{\mbox{\scriptsize opt}}$, the wavelength of the incident light λ , the optical absorption coefficient of the semiconductor α , the thickness of the active layer d, and the minority carrier life time τ . Expressed mathematically, Δp is (refs. 8 and 9)

$$\Delta p = \frac{\tau}{d} \begin{bmatrix} \frac{P}{\text{opt}} \lambda \\ hc \end{bmatrix} \left(1 - e^{-\alpha d} \right)$$
 (1)

where h is Planck's constant (6.62617x10-34 J sec) and c is the speed of light in vacuum (2.99792x108 m/sec). The quantity inside the square brackets represents the number of photons of wavelength λ falling on unit area per second.

The light-induced voltage V_{lit} is expressed as (refs. 8 and 9)

$$V_{\text{lit}} = \frac{KT}{q} \ln \left(\frac{p + \Delta p}{p} \right)$$
 (2)

where K is Boltzmann's constant $(1.38066 \times 10^{-23} \text{ J/K})$, 1 is the absolute temperature, q is the electronic charge $(1.60218 \times 10^{-19} \text{ C})$, and p is the equilibrium minority carrier concentration in the active layer (e.g., holes in an n-type channel) and is given by (ref. 8)

$$p = \frac{n_1^2}{n} \tag{3}$$

where n_1 is the intrinsic carrier concentration (1.79x10⁶/cm³) and n is the carrier concentration.

EFFECT OF LIGHT ON DRAIN CHARACTERISTICS

The drain current $\, l_d \,$ as a function of the applied gate bias voltage $\, V_{gs} \,$ and the drain to source voltage $\, V_{ds} \,$ for a MESFEI is expressed as (refs. 8 and 9)

$$I_{d} = \frac{qmnwd}{p} \left\{ V_{ds} - \frac{2}{3} \frac{1}{V_{p}^{1/2}} \left[(V_{ds} + V_{b} - V_{gs})^{3/2} - (V_{b} - V_{gs})^{3/2} \right] \right\}$$
 (4)

where μ is the electron mobility (5300 cm² V sec), W and Ω are the gate width and length, respectively, V_b is the built-in Schottky barrier voltage, and V_p is the pinch-off voltage required to completely deplete the active layer, such that

$$V_{p} = \frac{qnd^{2}}{2\epsilon_{0}\epsilon_{r}}$$
 (5)

In equation (5) ϵ_0 is the permittivity in vacuum (8.85418x10⁻¹² F/mt), and ϵ_r is the relative permittivity of the active layer. Illuminating the MESFET is equivalent to forward biasing the gate of the MESFET by a voltage source equal to V_{11t} . The net voltage at the gate is therefore a superposition of the gate bias V_{qs} and V_{11t} .

The drain current I_{ds} for a depletion-mode (normally ON) HEMT is expressed as (ref. 10)

$$1_{d} = (37.8v_{gs} - 158v_{gs}^{2} - 360v_{gs}^{3} + 18.5) \quad tan^{-1} \left(\frac{v_{ds}}{0.07 + 0.1 v_{gs}} + 0.25 v_{ds} \right)$$
(6)

For an enhancement-mode (normally off) HEMT, it is expressed as (ref. 10)

$$I_d = (49.8V_{gs} - 13.64) \tan^{-1} \left(\frac{V_{ds}}{0.143 V_{gs}} + 0.5V_{ds} \right)$$
 (7)

The net voltage at the gate is a superposition of V_{qs} and V_{lit} .

COMPUTED RESULTS

The thickness of the active layer, the gate width and length, and the doping density are presented in figure 2 for GaAs MESFEI, InP MESFEI, Alo.3Gao.7As/GaAs HEMI, and GaAs PBI. The properties of the semiconductors used in the fabrication of these microwave devices is presented in table I. The computed light-induced voltage using equation (2) is presented in figure 3 as a function of the incident optical power density for the devices shown in figure 2. The light-induced voltage increases linearly with the incident optical power. Besides, at a fixed incident optical power density the Alo.3Gao.7As/GaAs HEMI had the highest sensitivity, and the InP MESFET the lowest sensitivity. The sensitivity of GaAs PBI and GaAs MESFET were almost identical and fall midway between those of HEMI and InP MESFET.

The drain current for a GaAs MESFEI computed using equation (4) is illustrated in figure 4 for several optical power density and gate-to-source dc bias. In these computations the gate metallization was assumed to be gold, which is perfectly transparent to light. In practice, however, this is not true. This limitation can be overcome if the gate metallization is indium tin oxide. Indium tin oxide (ITO) is transparent to visible light (ref. 11) and forms a good Schottky contact with GaAs (ref. 12). The computed drain characteristics for a GaAs MESFEI with an indium tin oxide gate is shown in figure 5. In figure 6 the ratio of the saturation drain current with and without illumination as a function of the gate-to-source voltage at a fixed incident optical power density for a GaAs MESFEI is shown. This figure shows that the optical gain of a normally off FEI is maximum if the gate-to-source bias is such that the FEI is in pinch-off condition.

The drain current characteristics for a InP MESFET with a Au/(n) InP Schottky gate computed using equation (4) is shown in figure 7.

The drain current characteristics for depletion— and enhancement-mode $Al_{0.3}Ga_{0.7}As/GaAs$ HEMT's computed using equations (6) and (7) are shown in figures 8 and 9, respectively.

The change in the gate to source capacitance C_{gs} , with and without illumination, as a function of the gate-to-source bias for a GaAs MESFET (HFEI-1000-01) is presented in reference 13. There, C_{gs} is observed to increase with illumination by as much as 30 percent. The increase in C_{gs} tends to lower the unity current gain frequency f_{T} and the unity maximum available gain frequency f_{max} . However, this change in C_{gs} is exploited in optically tuning FEI oscillators.

CONCLUSIONS

Light-induced voltages as a function of the incident optical power density for GaAs MESFE1, InP MESFET, $Al_{0.3}Ga_{0.7}As/GaAs$ HEM1 and GaAs PB1 were obtained. The drain current characteristics for these devices for various incident optical power ensities were also obtained. The effect of light on the parasitics was qualitatively estimated.

The GaAs MESFET and PBT have much higher sensitivity to light than InP MESFET. However, the Al $_{0.3}$ Ga $_{0.7}$ As/GaAs HEM1 has the highest sensitivity. The change in the drain current with illumination was significant. The increase in $c_{\rm qs}$ with illumination tended to lower $f_{\rm T}$ and $f_{\rm max}$.

REFERENCES

- 1. R.G. Hunsperger, "Optical Control of Microwave Devices," <u>Integrated Optical</u> <u>Circuit Engineering II</u>, SPIE vol. 578, S. Sriram, ed., Bellingham: SPIE, pp. 40-45:Sept. 1985.
- 2. J. Austin and J.R. Forrest, "Design Concepts for Active Phased-Array Modules," <u>IEEE Proc.</u>, <u>Part F; Communications</u>, <u>Radar and Signal Processing</u>. Vol. 127, pp. 290-300:Aug. 1980.
- 3. A.A.A. DeSalles, "Optical Control of GaAs MESFEl's," <u>IEEE Trans. Microwave Theory Tech.</u> Vol. Mll-31, pp. 812-820:Oct. 1983.
- 4. J.L. Gautier, D. Pasquet, and P. Pouvil, "Optical Effects on the Static and Dynamic Characteristics of a GaAs MESFEl," <u>IEEE Trans. Microwave Theory Tech.</u> Vol. MTI-33, pp. 819-822:Sept. 1985.
- 5. H. Mizuno, "Microwave Characteristics of an Optically Controlled GaAs MESFET," <u>IEEE Trans. Microwave Theory Tech.</u> Vol. MTI-31, pp. 596-600:Jul. 1983.
- 6. B. Monemar, K.K. Shih, and G.D. Petit, "Some Optical Properties of the Al Ga X As_Alloy System," <u>J. Appl. Phys.</u> Vol. 47, pp. 2604 2613: June 1976.
- 7. K.B. Bhasin, G.E. Ponchak, and T.J. Kascak, "Monolithic Optical Integrated Control Circuitry for GaAs MMIC-Based Phased Arrays," NASA 1M 8/183, 1985.

- 8. S.M. Sze, <u>Physics of Semiconductor Devices</u>, 2nd Ed., New York: Wiley-Interscience:1981.
- 9. G.J. Chaturvedi, R.K. Purohit, and B.L. Sharma, "Optical Effect on GaAs MESFETs," Infrared Phys. Vol. 23, pp. 65-68:1983.
- 10. M.T. Abuelma'atti, "Modeling DC Characteristics of HEMTs," <u>Electron. Lett.</u> Vol. 21, pp. 69-70:Jan. 1985.
- 11. K.L. Chopra, S. Major, and D.K. Pandya, "Transparent Conductors A Status Review, Thin Solid Films, vol. 102, pp. 1-46:1983.
- 12. D.G. Parker, "Use of Transparent Indium Tin Oxide to Form a Highly Efficient 20 GHz Schottky Barrier Photodiode," <u>Electron Lett.</u> Vol. 21, p. 778:Aug. 1985.
- 13. H.J. Sun, R.J. Gutmann, and J.M. Borrego, "Optical Tuning in GaAs MESFET Oscillators," <u>1981 IEEE MTT-S International Microwave Symposium Digest</u>, J.E. Rave, Ed., New York: IEEE, pp. 40-42:1981.
- 14. F.J. Moncrief, "LEDs Replace Varactors for Tuning GaAs FETs," <u>Microwaves</u>, vol. 18, no. 1, pp. 12-13:Jan. 1979.
- J.C. Gammel and J.M. Ballantyne, "An Integrated Photoconductive Detector and Waveguide Structure," <u>Appl. Phys. Lett.</u> Vol. 36, pp. 149-151, Jan. 1980.

Material	Electron mobility µ, cm ² /V sec	Intrinsic carrier concen- tration n ₁ , cm ⁻³	Optical absorption coefficient a, cm ⁻¹	Wave length l, µm	Minority carrier lifetime τ, sec	Relative permit- tivity, €r	Schottky barrier voltage, V _b
GaAs	5300	1 78x10 ⁶	1 00x10 ⁴	0 87	1x10 ⁻⁸	13 1	Gold 0 9
InP Alo 3 ^{Ga} o 7 ^{As}	3300 9000	1 97x10 ⁹ 2 5x10 ³	1 80x10 ⁴ 1 25x10 ⁴	1 06 0 653	1x10 ⁻⁸ 2x10 ⁻⁸	12 55 12 2	Gold 0 5 Gold 1 11

Fig. 1. - Proposed techniques for direct optical control of microwave devices.

Fig. 2. - Material parameters of microwave device structures for direct optical control of monolithic microwave and millimeter-wave integrated circuits.

Fig. 4. - Drain current versus the drain-to-source voltage for GaAs MESFET with Au/(n) GaAs Schottky gate. Illumination wavelength, 0.87 μ m.

Fig. 5. - Drain current versus the drain-to-source voltage for GaAs MESFET with 1TO/(n) GaAs Schottky gate. Illumination wavelength, 0.87 μm .

Fig. 6. - Ratio of drain saturation current with and without illumination versus the gate voltage for a GaAs MESFET with different Schottky gate configurations. The incident optical power level is kept constant.

Fig. 7. - Drain current versus the drain-to-source voltage for InP MESFET with Au/(n) InP Schottky gate. Illumination wavelength, 1.06 μ m; gate bias voltage, V_{gs}, -2.1 V.

Fig. 8. - Drain current versus the drain-to-source voltage of a depletion-mode (normally on) AlGaAs/GaAs HEMT. Gate bias voltage, $V_{\rm gs}$, -0.65 V.

Fig. 9. - Drain current versus the drain-to-source voltage of an enhancement-mode (normally off) AlGaAs HEMT. Gate bias voltage, $\rm V_{gs}$, 0.

1 Report No	2 Government Accession	No 3	Recipient's Catalog No				
NASA TM-87246							
Analysis of Optically Cont	/Millimeter	5 Report Date 6 Performing Organization Code					
Wave Device Structures		506-58-22					
7 Author(s)		8	8 Performing Organization Report No				
Rainee N. Simons and Kul B	. Bhasin		E-2926				
	10	10 Work Unit No					
9 Performing Organization Name and Address		1	Contract or Grant No				
National Aeronautics and S Lewis Research Center Cleveland, Ohio 44135		13 Type of Report and Period Covered					
12 Sponsoring Agency Name and Address			Technical Memorandum				
National Aeronautics and S Washington, D.C. 20546	pace Administrat	ion 14	14 Sponsoring Agency Code				
15 Supplementary Notes			V				
Prepared for the Internati Electrical and Electronics Rainee N. Simons, NRC-NASA	Engineers, Balt	imore, Maryland					
16 Abstract							
The light-induced voltage under optical illumination InP MESFET, Alo.3Gao.7As/G permeable base transistor GaAs MESFET have much high HEMT is observed to have to due to optical illumination fmax are also investigate	higher than the aAs high electron (PBT) were analy er sensitivity the highest sension and its effect	semiconductor n mobility tran tically obtaine han InP MESFET. tivity. Variat	bandgap for Ga sistor (HEMT) d. The GaAs I The Alo.3Ga ion in device	AAS MESFET, and GaAs PBT and p.7As/GaAs parasitics			
17 Key Words (Suggested by Author(s))		18 Distribution Statement					
Microwave devices Optical control GaAs		Unclassified - unlimited STAR Category 33					
19 Security Classif (of this report)	20 Security Classif (of this page	age)	21 No of pages	22 Price*			
Unclassified	Unclassified						

National Aeronautics and Space Administration

Lewis Research Center Cleveland Ohio 44135

Official Business Penalty for Private Use \$300

SECOND CLASS MAIL

ADDRESS CORRECTION REQUESTED

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

