TERMIN 3 - zadaci za samostalan rad - rješenja

*

Zadatak 1.

U skupu $\{-2,-1,0,1,2\}$ definisana je relacija ρ sa

$$x\rho y \Leftrightarrow x+y=0.$$

Ispitati osobine relacije ρ .

Rješenje

Ispitujemo redom sljedeće osobine relacije ρ :

(a) refleksivnost

Relacija je refleksivna ako vrijedi

$$(\forall x \in \{-2, -1, 0, 1, 2\}) \ x\rho x \Leftrightarrow x + x = 0.$$

Kontra primjerom pokazujemo da refleksivnost ne važi, jer za x=2 vidimo da $2 \not \! / 2$ jer je $2+2 \neq 0$.

(b) simetričnost

Relacija je simetrična ako vrijedi

$$(\forall x, y \in \{-2, -1, 0, 1, 2\}) \ x\rho y \Rightarrow y\rho x.$$

Kako vrijedi $x\rho y$, imamo da je x+y=0 pa zbog komutativnosti sabiranja važi da je y+x=0, odnosno $y\rho x$, pa je relacija ρ simetrična.

(c) antisimetričnost

Relacija je antisimetrična ako vrijedi

$$(\forall x, y \in \{-2, -1, 0, 1, 2\}) \quad x \rho y \quad \land \quad y \rho x \quad \Rightarrow x = y.$$

Kontra primjerom pokazujemo da antisimetričnost ne važi, jer za x=2 i y=-2 vidimo da

$$2\rho - 2 \wedge -2\rho, 2$$

ali je $2 \neq -2$.

(d) tranzitivnost

Relacija je tranzitivna ako vrijedi

$$\left(\forall x,y,z\in\{-2,-1,0,1,2\}\right)\ x\rho y\ \wedge\ y\rho z\ \Rightarrow\ x\rho z.$$

Kontra primjerom pokazujemo da tranzitivnost ne važi, jer za $x=2,\,y=-2$ i z=2 vidimo da vrijedi

$$2\rho - 2 \wedge -2\rho 2$$

ali ne vrijedi $2\rho 2$ jer je $2+2 \neq 0$.

Dakle, relacija ρ je simetrična, ali nije ni refleksivna, ni antisimetrična, ni tranzitivna.

Zadatak 2.

U skupu $\mathbb R$ definisana je relacija ρ sa

$$x\rho y \Leftrightarrow x^2 - y^2 \le 5.$$

Ispitati osobine relacije ρ .

Rješenje

Ispitujemo redom sljedeće osobine relacije ρ :

(a) refleksivnost

Relacija je refleksivna ako vrijedi

$$(\forall x \in \mathbb{R}) \ x \rho x \Leftrightarrow x^2 - x^2 < 5.$$

Kako je $x^2 - x^2 = 0 \le 5$, relacija ρ je refleksivna.

(b) simetričnost

Relacija je simetrična ako vrijedi

$$(\forall x, y \in \mathbb{R}) \ x \rho y \Rightarrow y \rho x.$$

Kontra primjerom pokazujemo da simetričnost ne važi, jer za x=2 i y=5 vidimo da vrijedi $2\rho 5 \iff 2^2-5^2 \le 5$. Sa druge strane, $5 \not \rho 2$ jer je $5^2-2^2=21>5$.

(c) antisimetričnost

Relacija je antisimetrična ako vrijedi

$$(\forall x, y \in \mathbb{R}) \ x\rho y \land y\rho x \Rightarrow x = y.$$

Kontra primjerom pokazujemo da antisimetričnost ne važi, jer za x=2 i y=1 vidimo da je

$$2\rho 1 \wedge 1\rho 2$$
,

ali je $2 \neq 1$.

(d) tranzitivnost

Relacija je tranzitivna ako vrijedi

$$(\forall x, y, z \in \mathbb{R}) \ x\rho y \land y\rho z \Rightarrow x\rho z.$$

Kontra primjerom pokazujemo da tranzitivnost ne važi, jer za $x=3,\,y=2$ i z=1 vidimo da vrijedi

$$3\rho 2 \wedge 2\rho 1$$

ali ne vrijedi $3\rho 1$ jer je $3^2 - 1^2 = 8 > 5$.

Dakle, relacija ρ je refleksivna, ali nije ni simetrična, ni antisimetrična, ni tranzitivna.

*

K1 09.02.2022. ③

Zadatak 3.

Naći inverznu funkciju za $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x.$

Rješenje

Kako je $f^{-1}\left(f(x)\right)=x$ i f(x)=x, zaključujemo da je $f^{-1}(x)=x,\ f^{-1}:\mathbb{R}\to\mathbb{R}.$

Zadatak 4.

Neka su $f:\mathbb{Z}\to\mathbb{Z}$ i $g:\mathbb{Z}\to\mathbb{Z}$ preslikavanja definisana na sljedeći način:

$$f(x) = x^2 - 9 i g(x) = x + 3.$$

Ispitati injektivnost i sirjektivnost preslikavanja $f \circ g$.

Rješenje

Preslikavanje $f \circ g$ definišemo kao:

$$f \circ g : \mathbb{Z} \to \mathbb{Z}, \ (f \circ g)(x) = (x+3)^2 - 9 = x^2 + 6x.$$

Primijetimo da navedeno preslikavanje ima dvije nule definisane u skupu Z:

$$x^{2} + 6x = 0$$

$$\Leftrightarrow x(x+6) = 0$$

$$\Leftrightarrow x_{1} = 0 \lor x_{2} = -6$$

Odavde zaključujemo da za dvije različite vrijednosti $x_1 = 0, x_2 = -6 \in \mathbb{Z}$ vrijedi $f(x_1) = f(x_2) = 0$, pa smo ovim pronašli kontra primjer na osnovu kog zaključujemo da injektivnost ne vrijedi.

Kako je preslikavanje $f\circ g$ kvadratna funkcija ona ima svoj ekstrem. Primijetimo da je

$$(f \circ q)(x) = (x+3)^2 - 9 > -9$$

pa je kodomen preslikavanja $f \circ g$ podskup skupa $[-9, +\infty)$.

Dakle, ako uzmemo proizvoljno $y \in \mathbb{Z}$ takvo da je y < -9, dobićemo da ne postoji $x \in \mathbb{Z}$ takvo da je $(f \circ g)(x) = y$. Neka je

$$y = -10 = (f \circ g)(x) = x^2 + 6x.$$

Odavde je

$$x^{2} + 6x + 10 = 0$$

$$\Leftrightarrow x_{1,2} = \frac{-6 \pm \sqrt{6^{2} - 4 \cdot 1 \cdot 10}}{2} = \frac{-6 \pm 2i}{2} = -3 \pm i \notin \mathbb{Z}.$$

Ovim smo pronašli kontra primjer na osnovu kog zaključujemo da preslikavanje $f\circ g$ nije ni sirjekcija.

Zadatak 5.

Odrediti domen D i ispitati sirjektivnost funkcije $f:D\to\mathbb{R}$

$$f(x) = \frac{1 - \ln x}{1 + \ln x}.$$

Rješenje

Pri određivanju domena, uzimamo u obzir dva uslova:

(a)
$$1 + \ln x \neq 0 \implies \ln x \neq -1 \implies x \neq e^{-1}$$
,

(b)
$$x > 0$$
.

Iz prethodnih uslova zaključujemo da je domen

$$D = (0, e^{-1}) \cup (e^{-1}, +\infty).$$

Da bi funkcija f bila surjektivna, potrebno je da važi

$$(\forall y \in \mathbb{R}) \ (\exists x \in D) \ y = f(x).$$

Odavde je

$$y = \frac{1 - \ln x}{1 + \ln x}$$

$$\Leftrightarrow \quad y \cdot (1 + \ln x) = 1 - \ln x$$

$$\Leftrightarrow \quad y + y \cdot \ln x - 1 + \ln x = 0$$

$$\Leftrightarrow \quad \ln x \cdot (1 + y) = 1 - y$$

$$\Leftrightarrow \quad \ln x = \frac{1 - y}{1 + y}$$

$$\Leftrightarrow \quad x = e^{\frac{1 - y}{1 + y}}$$

Primijetimo da je $y=-1\in\mathbb{R}$. Međutim, za y=-1 vidimo da ne postoji $x\in D$ takvo da je y=f(x) pa funkcija f nije sirjektivna.

Zadatak 6.

U skupu $\mathbb C$ data je relacija

$$z_1 \rho z_2 \Leftrightarrow \operatorname{Re}(z_1) = \operatorname{Re}(z_2).$$

Dokazati da je ρ relacija ekvivalencije i odrediti $C_{2e^{\frac{i\pi}{3}}}.$

Rješenje

Da bi relacija bila relacija ekvivalencije, mora da bude refleksivna, simetrična i tranzitivna, pa ispitujemo:

(a) refleksivnost

Relacija je refleksivna ako vrijedi

$$(\forall z \in \mathbb{C}) \ z\rho z \Leftrightarrow \operatorname{Re}(z) = \operatorname{Re}(z).$$

Prethodna jednakost očigledno vrijedi.

(b) simetričnost

Relacija je simetrična ako vrijedi

$$(\forall z_1, z_2 \in \mathbb{C}) \quad z_1 \rho z_2 \quad \Rightarrow \quad z_2 \rho z_1.$$

Kako vrijedi $z_1 \rho z_2$, imamo da je $\operatorname{Re}(z_1) = \operatorname{Re}(z_2)$ tj. $\operatorname{Re}(z_2) = \operatorname{Re}(z_1)$, odnosno $z_2 \rho z_1$, pa je relacija ρ simetrična.

(c) tranzitivnost

Relacija je tranzitivna ako vrijedi

$$(\forall z_1, z_2, z_3 \in \mathbb{C}) \quad z_1 \rho z_2 \quad \wedge \quad z_2 \rho z_3 \quad \Rightarrow \quad z_1 \rho z_3.$$

Imamo da je $\operatorname{Re}(z_1) = \operatorname{Re}(z_2)$ i $\operatorname{Re}(z_2) = \operatorname{Re}(z_3)$ pa je $\operatorname{Re}(z_1) = \operatorname{Re}(z_2) = \operatorname{Re}(z_3)$ odakle zaključujemo da je $z_1 \rho z_3$ čime je tranzitivnost dokazana.

Ovim smo pokazali da je ρ relacija ekvivalencije.

Odredimo sada klasu ekvivalencije $C_{2e^{\frac{i\pi}{3}}}.$ Vrijedi:

$$\begin{split} C_{2e^{\frac{i\pi}{3}}} &= \left\{z \in \mathbb{C} : 2e^{\frac{i\pi}{3}}\rho z\right\} \\ &= \left\{z \in \mathbb{C} : \operatorname{Re}\left(2e^{\frac{i\pi}{3}}\right) = \operatorname{Re}(z)\right\} \\ &= \left\{z \in \mathbb{C} : \operatorname{Re}\left(2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)\right) = \operatorname{Re}(z)\right\} \\ &= \left\{z \in \mathbb{C} : 2\cos\frac{\pi}{3} = \operatorname{Re}(z)\right\} \\ &= \left\{z \in \mathbb{C} : \operatorname{Re}(z) = 1\right\} \\ &= \left\{1 + yi, \ y \in \mathbb{R}\right\}. \end{split}$$

Dakle, u klasi kompleksnog broja $2e^{\frac{i\pi}{3}}$ se nalaze svi kompleksni brojevi z čiji je realni dio jednak 1.

* * *

Zadatak 7.

Neka je preslikavanje

$$f: A \to B, A, B \subseteq \mathbb{R}$$

dato izrazom

$$f(x) = -\sqrt{1 - x^2}.$$

Odrediti najveće moguće skupove A i B tako da preslikavanje f bude:

- (a) injektivno,
- (b) sirjektivno,
- (c) bijektivno.

Rješenje

Odredimo prvo domen A_0 i kodomen B_0 preslikavanja f bez restrikcija.

Funkcija f je definisana ako i samo ako je $1-x^2 \ge 0$ odakle zaključujemo da je $A_0 = [-1, 1]$.

Za $x \in [-1,1]$ imamo da je $x^2 \in [0,1]$ pa je $1-x^2 \in [0,1]$, odnosno $\sqrt{1-x^2} \in [0,1]$ pa je $f(x)=-\sqrt{1-x^2} \in [-1,0]$. Odavde je $B_0=[-1,0]$. Na narednoj slici prikazan je grafik funkcije $f(x)=-\sqrt{1-x^2}$.

(a) Odredimo skupove A i B tako da preslikavanje f bude injektivno.

Funkcija f je injekcija ako i samo ako vrijedi

$$(\forall x_1, x_2 \in A) \ f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$$

Imamo da vrijedi

$$-\sqrt{1-x_1^2} = -\sqrt{1-x_2^2} \implies 1-x_1^2 - 1 - x_2^2 \implies x_1^2 = x_2^2 (x_1 - x_2)(x_1 + x_2) = 0.$$

Odavde zaključujemo da je $x_1 = x_2 \ \lor \ x_1 = -x_2$. Dakle, ako postoje $x_1, x_2 \in A$ takvi da je $x_1 = -x_2$, funkcija f neće biti injektivna. Stoga, potrebno je suziti domen tako da x_1 i x_2 ne budu istog znaka. Odavde je $A \subseteq \mathbb{R}^+$ ili $A \subseteq \mathbb{R}^-$.

Konačno, $A_{max} = [-1, 0]$ ili $A_{max} = [0, 1]$ i $B_{max} = [-1, 0]$.

(b) Odredimo skupove A i B tako da preslikavanje f bude sirjektivno.

Funkcija f je sirjekcija ako i samo ako vrijedi

$$(\forall y \in B) \ (\exists x \in A) \ y = f(x).$$

Imamo da vrijedi

$$y = -\sqrt{1 - x^2}, \ y < 0 \ \Rightarrow \ y^2 = 1 - x^2 \ \Rightarrow \ x^2 = 1 - y^2 \ \Rightarrow \ x = \pm \sqrt{1 - y^2}.$$

Odavde zaključujemo da za svako $y \in [-1, 0]$ postoji $x \in [-1, 1]$ takvo da je y = f(x).

Konačno, $A_{max} = [-1, 1]$ i $B_{max} = [-1, 0]$.

(c) Odredimo skupove A i B tako da preslikavanje f bude bijektivno.

Funkcija je bijekcija ako i samo ako je injekcija i sirjekcija.

Dakle, $A_{max} = [-1, 0]$ ili $A_{max} = [0, 1]$ i $B_{max} = [-1, 0]$.

Zadatak 8.

U skupu \mathbb{R}^2 definisana je relacija ρ sa

$$(x,y)\rho(a,b) \Leftrightarrow \frac{(x-1)^2}{16} + \frac{(y-1)^2}{25} = \frac{(a-1)^2}{16} + \frac{(b-1)^2}{25}.$$

Ispitati da li je ρ relacija ekvivalencije. Ukoliko jeste, odrediti $C_{(1,1)}, C_{(5,1)}$ i dati geometrijsku interpretaciju relacije ρ .

Rješenje

Da bi relacija bila relacija ekvivalencije, mora da bude refleksivna, simetrična i tranzitivna, pa ispitujemo:

(a) refleksivnost

Relacija je refleksivna ako vrijedi

$$(\forall (x,y) \in \mathbb{R}^2)$$
 $(x,y)\rho(x,y) \Leftrightarrow \frac{(x-1)^2}{16} + \frac{(y-1)^2}{25} = \frac{(x-1)^2}{16} + \frac{(y-1)^2}{25}.$

Prethodna jednakost očigledno vrijedi.

(b) simetričnost

Relacija je simetrična ako vrijedi

$$(\forall (x,y), (a,b) \in \mathbb{R}^2)$$
 $(x,y)\rho(a,b) \Rightarrow (a,b)\rho(x,y)$

Kako vrijedi $(x, y)\rho(a, b)$, imamo da je

$$\frac{(x-1)^2}{16} + \frac{(y-1)^2}{25} = \frac{(a-1)^2}{16} + \frac{(b-1)^2}{25} \implies \frac{(a-1)^2}{16} + \frac{(b-1)^2}{25} = \frac{(x-1)^2}{16} + \frac{(y-1)^2}{25},$$

odnosno $(a,b)\rho(x,y)$, pa je relacija ρ simetrična.

(c) tranzitivnost

Relacija je tranzitivna ako vrijedi

$$\left(\forall (x,y), (a,b), (c,d) \in \mathbb{R}^2\right) (x,y)\rho(a,b) \wedge (a,b)\rho(c,d) \Rightarrow (x,y)\rho(c,d)$$

Imamo da je

$$\frac{(x-1)^2}{16} + \frac{(y-1)^2}{25} = \frac{(a-1)^2}{16} + \frac{(b-1)^2}{25} \ \land \ \frac{(a-1)^2}{16} + \frac{(b-1)^2}{25} = \frac{(c-1)^2}{16} + \frac{(d-1)^2}{25}$$

odakle je

$$\frac{(x-1)^2}{16} + \frac{(y-1)^2}{25} = \frac{(c-1)^2}{16} + \frac{(d-1)^2}{25}.$$

Sada zaključujemo da je $(x, y)\rho(c, d)$ čime je tranzitivnost dokazana.

Ovim smo pokazali da je ρ relacija ekvivalencije.

Odredimo sada klasu ekvivalencije $C_{(1,1)}$. Vrijedi:

$$C_{(1,1)} = \left\{ (x,y) \in \mathbb{R}^2 : (1,1)\rho(x,y) \right\}$$

$$= \left\{ (x,y) \in \mathbb{R}^2 : \frac{(1-1)^2}{16} + \frac{(1-1)^2}{25} = \frac{(x-1)^2}{16} + \frac{(y-1)^2}{25} \right\}$$

$$= \left\{ (x,y) \in \mathbb{R}^2 : \frac{(x-1)^2}{16} + \frac{(y-1)^2}{25} = 0 \right\}$$

$$= \left\{ (1,1) \right\}.$$

Odredimo i klasu ekvivalencije $C_{(5,1)}$. Vrijedi:

$$C_{(5,1)} = \left\{ (x,y) \in \mathbb{R}^2 : (5,1)\rho(x,y) \right\}$$

$$= \left\{ (x,y) \in \mathbb{R}^2 : \frac{(5-1)^2}{16} + \frac{(1-1)^2}{25} = \frac{(x-1)^2}{16} + \frac{(y-1)^2}{25} \right\}$$

$$= \left\{ (x,y) \in \mathbb{R}^2 : \frac{(x-1)^2}{16} + \frac{(y-1)^2}{25} = 1 \right\}.$$

Geometrijski, klase su elipse sa žižom u tački (1,1), te poluprečnicima dužine 4 i 5. Klase $C_{(1,1)}$ i $C_{(5,1)}$ su prikazane na narednoj slici.

* * * *

Zadatak 9.

Funkcija $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definisana je sa

$$f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}.$$

Ispitati bijektivnost funkcije f i odrediti f^{-1} ukoliko postoji.

Rješenje

<u>Prvi način</u>:

Uzmimo smjenu

$$t = x + \frac{1}{x}.$$

Kako je

$$t^2 = \left(x + \frac{1}{x}\right)^2 = x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2}$$

imamo da je

$$x^2 + \frac{1}{x^2} = t^2 - 2$$

pa je preslikavanje f definisano sa

$$f(t) = t^2 - 2.$$

Prethodno preslikavanje nije ni injektivno, jer je npr.

$$f(-1) = f(1) = -1 \gg -1 = 1$$

ni sirjektivno, jer npr. za $y=-3\in\mathbb{R}$ ne postoji $x\in\mathbb{R}\setminus\{0\}$ takvo da je

$$x^2 - 2 = -3 \implies x^2 = -1 \implies x = \pm i \notin \mathbb{R} \setminus \{0\}.$$

Samim tim, preslikavanje f nije bijektivno pa ne postoji ni inverzno preslikavanje f^{-1} .

Drugi način:

Primijetimo da je

$$f\left(1+\frac{1}{1}\right)=f(2)=1^2+\frac{1}{1^2}=2 \ \land \ f\left(-1+\frac{1}{(-1)}\right)=f(-2)=(-1)^2+\frac{1}{(-1)^2}=2.$$

Dakle f(2) = f(-2) pa preslikavanje f nije injektivno pa samim tim ni bijektivno ni invertibilno.

Na sličan način možemo pokazati da preslikavanje nije ni sirjektivno.

Zadatak 10.

Neka je $S=(-4,-2)\subset\mathbb{R}$ i ρ relacija na skupu S koja je definisana na sljedeći način:

$$(x,y) \in \rho \iff \frac{y-x}{2} \ge \frac{1}{2x+2y}.$$

Ispitati refleksivnost, simetričnost, antisimetričnost i tranzitivnost relacije ρ .

Rješenje

U startu vidimo da se nakon množenja početne nejednakosti sa 2 relacija svodi na:

$$x\rho y \Leftrightarrow y-x \ge \frac{1}{x+y}.$$

Ispitujemo redom sljedeće osobine relacije ρ :

(a) refleksivnost

Relacija je refleksivna ako vrijedi

$$\left(\forall x \in (-4, -2)\right) \quad x\rho x \quad \Leftrightarrow \quad x - x \ge \frac{1}{x + x} \quad \Leftrightarrow \quad 0 \ge \frac{1}{2x} \quad \Leftrightarrow \quad x < 0$$

Kako je $x \in (-4, -2)$, vrijedi x < 0 pa je samim tim relacija ρ refleksivna.

(b) simetričnost

Relacija je simetrična ako vrijedi

$$(\forall x, y \in (-4, -2)) \ x\rho y \Rightarrow y\rho x.$$

Kako je $x\rho y$, imamo da je

$$y - x \ge \frac{1}{x + y}.$$

Međutim, to ne implicira da vrijedi

$$x - y \ge \frac{1}{y + x} \iff y \rho x.$$

Uzmimo da je $x = -\frac{7}{2} \in S$ i $y = -\frac{5}{2} \in S$. Tada je

$$\left(-\frac{7}{2}\right)\rho\left(-\frac{5}{2}\right) \Leftrightarrow -\frac{5}{2} - \left(-\frac{7}{2}\right) \ge \frac{1}{\left(-\frac{5}{2} - \frac{7}{2}\right)} \Leftrightarrow 1 \ge \frac{-1}{6}.$$

Međutim, sa druge strane ne vrijedi

$$\left(-\frac{5}{2}\right)\rho\left(-\frac{7}{2}\right) \Leftrightarrow -\frac{7}{2} - \left(-\frac{5}{2}\right) \ge \frac{1}{\left(-\frac{7}{2} - \frac{5}{2}\right)} \Leftrightarrow -1 \ge \frac{-1}{6}.$$

Ovim smo pronašli kontra primjer i dokazali da simetričnost ne vrijedi.

(c) antisimetričnost

Relacija je antisimetrična ako vrijedi

$$(\forall x, y \in (-4, -2))$$
 $x \rho y \land y \rho x \Rightarrow x = y.$

Dakle, imamo da vrijedi

$$y-x \ge \frac{1}{x+y} \wedge x-y \ge \frac{1}{y+x}.$$

Kontra primjerom pokazujemo da antisimetričnost ne važi, jer za $x=-\frac{17}{8}\in S$ i $y=-\frac{18}{8}\in S$ vidimo da je

$$\left(-\frac{17}{8}\right)\rho\left(-\frac{18}{8}\right) \;\; \Leftrightarrow \;\; -\frac{18}{8} - \left(-\frac{17}{8}\right) \geq \frac{1}{\left(-\frac{17}{9} - \frac{18}{9}\right)} \;\; \Leftrightarrow \;\; \frac{-1}{8} \geq \frac{-8}{35}$$

i

$$\left(-\frac{18}{8}\right)\rho\left(-\frac{17}{8}\right) \;\; \Leftrightarrow \;\; -\frac{17}{8}-\left(-\frac{18}{8}\right) \geq \frac{1}{\left(-\frac{18}{9}-\frac{17}{9}\right)} \;\; \Leftrightarrow \;\; \frac{1}{8} \geq \frac{-8}{35},$$

ali kako je $-\frac{17}{8} \neq -\frac{18}{8}$, zaključujemo da antisimetričnost ne vrijedi.

(d) tranzitivnost

Relacija je tranzitivna ako vrijedi

$$(\forall x, y, z \in (-4, -2))$$
 $x \rho y \wedge y \rho z \Rightarrow x \rho z$

Kontra primjerom pokazujemo da antisimetričnost ne važi, jer za $x=-\frac{17}{8}\in S,\,y=-\frac{18}{8}\in S$ i $z=-\frac{19}{8}\in S$ vidimo da je

$$\left(-\frac{17}{8}\right)\rho\left(-\frac{18}{8}\right) \iff -\frac{18}{8} - \left(-\frac{17}{8}\right) \ge \frac{1}{\left(-\frac{17}{8} - \frac{18}{8}\right)} \iff \frac{-1}{8} \ge \frac{-8}{35}$$

i

$$\left(-\frac{18}{8}\right)\rho\left(-\frac{19}{8}\right) \iff -\frac{19}{8} - \left(-\frac{18}{8}\right) \ge \frac{1}{\left(-\frac{18}{8} - \frac{19}{8}\right)} \iff \frac{-1}{8} \ge \frac{-8}{37}.$$

Međutim

$$\left(-\frac{17}{8}\right) \not \rho \left(-\frac{19}{8}\right) \Leftrightarrow -\frac{19}{8} - \left(-\frac{17}{8}\right) \not \geq \frac{1}{\left(-\frac{17}{8} - \frac{19}{8}\right)} \Leftrightarrow \frac{-2}{8} \not \geq \frac{-8}{36}.$$

Dakle, relacija ρ je refleksivna, ali nije ni simetrična, ni antisimetrična, ni tranzitivna.