- 1) Reescreva os seguintes termos utilizando parênteses explicitamente em volta de cada subtermo.
 - a) *a b c d*
 - b) $\lambda q.\lambda i.q$
 - c) $\lambda x.\lambda y.\lambda z.x z (y z)$
- 2) Para os seguintes termos, digam que variáveis estão livres, e que variáveis estão ligadas (e a que λ !).
 - a) $\lambda s.s z \lambda q.s q$
 - b) $(\lambda s.s z) \lambda q.w \lambda w.w q z s$
 - c) $(\lambda s.s) (\lambda q.q s)$
 - d) $\lambda z.((\lambda s.s q) (\lambda q.q z)) \lambda z.z z$
- 3) Aplique reduções β às expressões abaixo, os reduzindo à forma normal (isto é, a um formato onde não é mais possível aplicar reduções).
 - a) $(\lambda z.z)$ $(\lambda q.q q)$ $(\lambda s.s a)$
 - b) $(\lambda s. \lambda q. s \ q \ q) (\lambda a. a) \ b$
 - c) $(\lambda s. \lambda q. s q q) (\lambda x. x) c$
 - d) $((\lambda s.s \ s) \ (\lambda q.q)) \ (\lambda r.r)$
- *4)* Considere uma versão do cálculo lambda estendido com numerais e operações aritméticas; sendo assim, além da redução β , podemos realizar reduções aritméticas quando ambos os lados de um operador forem numerais (e.g., $1 + 1 \rightarrow 2$). Reduza as expressões abaixo às suas formas normais.
 - a) $(\lambda x.x)$ 5
 - b) $(\lambda x.x + 10) 42$
 - c) $(\lambda f.f(f10))(\lambda x.x + 2)$
 - d) $(\lambda f.f) (\lambda x.x) 51$
- 5) Considerando que:

ONE =
$$\lambda a.\lambda b.a$$
 b
TWO = $\lambda c.\lambda d.c$ (c d)
PLUS = $\lambda m.\lambda n.\lambda f.\lambda x.m$ f (n f x)

...aplique as reduções β à expressão *PLUS TWO ONE* à sua forma normal (dica: são necessárias 6 reduções). Cuidado com os parênteses!