This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

DOTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

FIG. 1

FIG. 3

Sights on at 500 yards. Sights are 3.00 inches above bore. Angle of Departure = 0.21 deg. (Firing angle = 0 deg.)

500	1000	1500	2000	2500
0.0	-180	-665	- 1662	-3370
0.0	-17.2	-42.4	- 79.4	-128.7
4.50	900	1450	1950	2450
6.5	-151	-598	-1533	-3163
4.1	-15.1	-39.4	-75.1	-123.3 -
400	900	1400	1900	2400
	-124	-535	-1411	2965
	-13.2	-36.5	-70.9	118.0
350	850	1350	1850	2350
14.4	-101	-477	-1295	-2774
3.9	-11.3	-33.8	-66.9	-112.8
300	800	1300	1800	2300
16.0	-79.7	-424	-1187	-2592
5.1	-9.5	-31.1	-63.0	-107.6
250	750	1250	1750	2250
16.1	-61.0	-374	-1085	-2418
6.2	-7.8	-28.6	-59.2	-102.6
200	700	1200	1700	2200
14.8	-44.6	-328	-989	-2252
7.1	-6.1	-26.1	-55.6	-97.8
150	650	1150	1650	2150
12.2	-30.5	-286	-899	-2093
7.8	-4.5	-23.7	-52.1	-93.0
100	600	1100	•	2100
8.3	-18.4	-247		-1942
8.0	-2.9	-21.5		-88.3
3.3 6.2	550 -8.2 -1.4	1050 -212 -19.3		, ,
e (yds)	(yds)	(yds)		Range (yds)
(in.)	(in.)	(in.)		Traj. (in.)
(MOA)	(MOA)	(MOA)		Traj. (MOA)
Range	Range	Range	Range	Ronge
Traj.	Traj.	Traj.	Troj.	Troj.
Traj.	Traj.	Traj.	Troj.	Troj.

FIG. 5

L
Ü
W
I
Ś
×
$\overset{\sim}{\mathcal{X}}$
9
7

			•	
	RANGE LIVE FIRE VALUES YARDS			
DATE	BALLISTIC LIVE LIVE FIRE FIRE INCHES			
	BALLISTIC TABLE TRAJECTORY INCHES			
	GRID INCHES OF ANGLE COVERAGE			
WORKSHEET	RANGE			
		T	1 2	
L COEFF A STP OF FORM	ALTITUDE TEMPERATURE ATMOSPHERIC PRESSURE	157	15105	
CALIBER BULLET TYPE OF BULLET BULLET WEIGHT EFFCTIVE BAL COEFF BAL COEFF COEFF A STP COEFFICIENT OF FORM	ALTITUDE TEMPERATURE ATMOSPHERIC			

F/G. 6

DATE.

WORKSHEET

50 Cal BMG

CALIBER BULLET -

RANGE	LIVE FIRE VALUES YARDS	
	DIFFERENCE	1 - 0.2 +1.0 + 1.2 0 - 3.3 +1.5 + 4.7 +0.3 +5.11 -8.5 +5.0 -0 +2.0 -18.0 -1.5 -18.0 -1.5 -16.0 -1.75 -16.0 -1.75 -16.0 -1.75
	BALLISTIC TABLE TRAJECTORY DIFFERENCE VALUES INCHES	+8.3 +14.8 +16 +11.2 0-18.4 30.5 -61 - 79.7 101.0 -151 180 - 212 247 - 286 328 - 374 424 - 477 -535 - 598 -738 - 665 -738 - 816 -899
	GRID INCHES OF ANGLE COVERAGE	15-7.5 10-7.5 151-3 56.25 8 06.25 8 330-4 422.5 525-5 1020
WOANSHELL	RANGE	300 200 - 20
* · -		1
750gr -F 0.750 	SURE 30.0 IN	100 100 110 100 100 100 100 100 100 100
EFECTIVE BAL COEFF— BAL. COEFF A STP— COEFFICIENT OF FORM ALTITUDE	TEMPERATURE PRESSURE 30.0 IN.	51051

F1G. 7

FIG. 84 FIG. 8B	7:me Sec. 5.000 5.000 5.000 5.110 5.110 5.225 5.284 5.284 5.284 6.604 6.604 6.673 6.673 6.673 6.673 6.673 7.444 6.896 6.896 6.966 7.292 7.29
20 71 50 F.t.	7, mph 7,
BMG Form STP	0.00 0.00 0.00 0.05
AMAX Match .50 Ingalls' table) Bullet Caliber Coefficient of Bal. Coeff at Altitude	
750 Gr d using	Mx. 076. 0.0.0 1.0.0 1 1.0.0 1 1.0.
Hunting Shack (Calculated 750 grains 0.429 0.750 m.p.h.	30.00 in. Momentum Momentum 1b sec. 9.3247 9.1130 8.9040 8.6976 7.5278 7.7146 7.5278 7.3442 7.1637 6.9864 6.9864 5.9864 5.98609 5.5319
ight Density Bal. Coeff	ty Energy ff-lb. 13054.6 12468.5 11903.1 11357.7 10833.0 10329.2 9381.1 8935.5 9845.5 9508.0 7705.0 7728.3 6967.3 6967.3 6570.5 5380.5 5380.5 5380.5 5380.5 5380.5
8A Bullet Weigh Sectional D Effective B	0 S
F/G.	800 950 950 950 950 950 950 950 950 950 9

, ער) (י ס	`	ω	Q)		> ₹	_	α	\sim	ı vr) ヾ	י ס	`	φ	U	,	_	1	(*)) U	١ (O	w	U) /	۰ د	V	'')	ч	, (O	ų,	5.00.5	٥	
77.4	4.77	29.1	30.8	32.5	34 3	36.0	20.7	38.0	40.0	420	0.4.	4. 7.	46.1	48.2	504	. 60	77.7	54.9	57.3	506	2.00	0.70	64.5	029	3 C Y	0.0 0.0	1.7/	74./	77.3	, ,	79.9	82.6	854	, 0	00.	
	594.J	439.7	488.7	5413	0.70x	0.00	658.3	723.2	7926	866.0	0.00	940.0	1031.1	1121.4	12177	7.7.7.	1320.3	1429.2	1544.7	15660	6.0001	1/95.9	1931.9	20750	7.0.00	C.C777	2383.3	2548.7	27219	0.000	2902.8	3091.8	2000	2,03.0	3434.7	
1 1	ν.	4.	•	: c	ų o	റ്	Κ.	Ś	· (c	; u	o t	Ÿ.	o	-	٠,	~·	i	C		io	ri e	\sim	~	` ~	3 0	<i>.</i>	Ś	•	: a	a (Ś	₩	; ·	401.7	o	
	٧.	~	٠.	٠,	٠,	~	٠.:	~	٠ _		٠.	·~	10		٠,	<:	\sim		: ~	~ ·	·.	m		: ı	$\dot{\circ}$	~ ∶	mi	1	٠,		10	: ^	<u>٠</u> .	1195.0	*	
	388	248	1 + 2 +		6/6	849	723		~ (487	370	262	161		400 104	974	69	210	2 0	740	681	620	777		508	459	411	772	200 100	3	280	7 2	747	3.2062	169	•
-	ά	į ų	į:	\mathcal{Z}_{i}	\sim	₹.	S	5 6	j	Ö	7	ď	ع ز	į,	6	7	7	۲,	\lesssim 1	7.	34	1	3	ġ	ã.	36	7	: ?	ξ.	5	7	: i	ઝ	1543.4	8))
1	1618	0/0/	0/0/	1535	1495	1456	2 7 7 0	0/4/	1387	1346	1312	1080	000	1749	1220	1193	1160	6011	1146	1125	1105	1007	/00/	1070	1054	1030	7007	+70/	1011	800	900	300	974	963	952	400
1	000	200	130	1200	1250	1 300	700	1350	1400	1450	1500	0001	0001	1600	1650	1 700	00/1	00/	1800	1850	1000		1950	2000	2050	0000	200	7.00	2200	2250	2000	2200	2350	2400	27.50	200

Fig. 10

Fig. 11

Fig. 12

FIG 13

FIG 14

FIG 15

FIG. 17A

FIG. 17B

+

FIG. 17C

FIG. 18A

FIG. 18B

FIG. 18C

FIG. 18D

FIG. 18E

+

FIG. 18F

FIG. 18G

FIG. 19A

FIG. 19B

+

FIG. 19C

4

FIG. 20

FIG. 24

H-3

FIG. 27

H-11

H-12

H-13

FIG. 31

H-14

H-15

H-19

H-25

H-39

H-45

Reticle can be used in 1st or 2nd plane.

FIG. 40

FIG. 42

Overview

Electronic Target Acquisition Device

A = Objective lens

B = Additional lenses (one or more)

FIG. 43a = Full focal length (long length tube)

FIG. 43b & FIG. 43c = Mirrors or prisms to reduce scope length