2= { log P(ge/ xe) = 2 19 [Pt (1-Pt) 1-yt] = = [gelg le + (1-ge) / (1-fe)] 12 = 2 (Fe du; + (1-ge) d(1-ge)] = Z [41 2P2 - (1-92) dP2] - (1-92) dWi] = Z [(- 1-91) - JP4] Jw: = J9(3, 7) . 2x: = g'(2. x2) . x. ? ye - 1-ye - ye(1-fe)-(1-ye)fe
Pt 1-fe Pe(1-fe) 2 yr-Jept-Petyepe - ye-Pe.
Pell-Pe) Pell-Pe) · Ju: = 2 ge-Pt . g'(w. xi) . xit.

2.

and there are Ckinds of Y. girl

:: $L = \sum_{i}^{n} \log \left(\frac{\prod_{i=1}^{n} (e^{i\vec{k} \cdot \vec{k}})^{n}}{\sum_{i}^{n} e^{i\vec{k} \cdot \vec{k}}} \right)$

(a) $\mathcal{E}_{N} = x_{N} - x_{2}$ $f'(x) = x_{N} - x_{2}$ $= x_{N}$ $f'(x) = x_{N} - x_{2}$ $= x_{N}$ $f'(x) = x_{N} - x_{2}$ $= x_{N}$ $f'(x) = x_{N}$ $= x_{N}$ $f'(x) = x_{N}$ $= x_{N}$ $= x_{N}$ $f'(x) = x_{N}$ $= x_{N$

(3) we can see from part (a). En $\times \times \times \times$.

if $|(1-nd)| \ge 0$, then it converges.

as for f''(x): $f''(x) = \vee \cdot$ when $1-nx = 0 \Rightarrow n = \frac{1}{2}$, it anverge fast.

i. In the unit of the converge of the

(4) $\xi_{n+1} = \chi_{n+1} - \chi_{n+1}$ = $\chi_{n} - \eta f'(\chi_{n}) + \beta(\chi_{n} - \chi_{n+1}) - \chi_{n+1}$ = $(1 - \eta \alpha) (\chi_{n} - \chi_{n+1}) + \beta(\chi_{n} - \chi_{n+1})$ = $(1 - \eta \alpha) \xi_{n} + \beta((\chi_{n} - \chi_{n+1}) - (\chi_{n+1} - \chi_{n+1}))$ = $(1 - \eta \alpha) \xi_{n} + \beta((\chi_{n} - \chi_{n+1}) - (\chi_{n+1} - \chi_{n+1}))$ = $(1 - \eta \alpha) \xi_{n} + \beta((\chi_{n} - \chi_{n+1}) - (\chi_{n+1} - \chi_{n+1}))$ = $(1 - \eta \alpha) \xi_{n} + \beta((\chi_{n} - \chi_{n+1}) - (\chi_{n+1} - \chi_{n+1}))$

(d)
$$\lambda = 1$$
, $\gamma = \frac{4}{9}$, $\beta = \frac{4}{9}$
 $\xi_{n+1} = (1 - \lambda \gamma + 13) \xi_n - \beta \xi_{n-1}$
 $= \frac{4}{9} \xi_n - \frac{4}{9} \xi_{n-1}$
 $= \frac{2}{3} \xi_n - \frac{4}{9} \xi_{n-1}$
Assume $\xi_n = \lambda^n \xi_0$.

$$\lambda^{n+1} \mathcal{E}_0 = \frac{2}{3} \lambda^n \mathcal{E}_0 - \frac{1}{9} \lambda^{n+1} \mathcal{E}_0$$

$$\lambda^2 - 6\lambda^+ l = 0$$

$$\lambda = \frac{1}{3}$$

$$\mathcal{E}_n = \frac{1}{3} \mathcal{E}_0$$

And:
as for $y = \frac{4}{9}$, y = 0, $E_n = (\frac{5}{9})^n E_{\nu}$, which faster.

4
(a).
$$\mathcal{E}_{n} = |X_{n} - X_{n}|$$

$$= |X_{n-1} - \frac{g'(X_{n-1})}{g''(X_{n-1})} - X_{n}|$$

$$= |X_{n-1} - \frac{2K(X_{n-1} - X_{n})}{2K(2K-1) \cdot (X_{n+1} - X_{n})} \times \frac{2K-1}{2K(2K-1) \cdot (X_{n+1} - X_{n})} \times \frac{2K-1}{2K(2K-1) \cdot (X_{n-1} - X_{n})} \times \frac{2K-1}$$

(j). :
$$\xi_{n} \leq \xi_{0}$$

 $\vdots \leq \xi_{n} \leq \xi_{n}$
: $(\frac{2k-2}{2k-1})^{n} \leq \xi_{n}$
: $n \log(\frac{2k-2}{2k-1}) \leq \log(\xi)$
: $n (\frac{2k-2}{2k-1}-1) \leq \log(\xi)$

(C)
$$h(x) = x_0 \log(x_0/x) - x_x + \chi$$
 $h'(x) = x_0 \frac{d}{dx} (\log \frac{x_0}{x}) + 1$
 $= x_0 \cdot \frac{x}{x_0} \cdot \frac{1}{-x^2} + 1$
 $= 1 - \frac{x_0}{x}$
 $h''(x) = -x_0 \cdot -\frac{1}{x^2} = \frac{x_0}{x^2}$
 $\therefore \text{ when } h'(x) = 0, h''(x) > 0, \text{ got the minimum } \vdots$
 $1 - \frac{x_0}{x} = 0, \quad x = x_0$

graph! since the is any number > 0. after pick up sereral number ka = 5, 100, 1000, and get the function plots should like.

284.

(d). Xn+1 = Yn - 9'(xn)

 $= \chi_{n} - \frac{1}{\sqrt{\chi}} - \chi_{n} - \frac{\chi - \chi_{n}}{\chi} \cdot \frac{\chi^{2}}{\chi}$

 $= \chi_{n} - \frac{\chi_{n}(\chi_{n} \chi_{n})}{\chi_{2n}} = \frac{\chi_{n} \chi_{n} - \chi_{n}^{2} + \chi_{n} \chi_{2n}}{\chi_{2n}}$ $= \chi_{n} - \frac{\chi_{n}(\chi_{n} \chi_{n})}{\chi_{2n}} = \frac{\chi_{n} \chi_{n} - \chi_{n}^{2} + \chi_{n} \chi_{2n}}{\chi_{2n}}$ $= \chi_{n} - \frac{\chi_{n}(\chi_{n} \chi_{n})}{\chi_{2n}} = \frac{\chi_{n} \chi_{n} - \chi_{n}^{2} + \chi_{n} \chi_{2n}}{\chi_{2n}}$ $= \chi_{n} - \frac{\chi_{n}(\chi_{n} \chi_{n})}{\chi_{2n}} = \frac{\chi_{n} \chi_{n} - \chi_{n}^{2} + \chi_{n} \chi_{2n}}{\chi_{2n}}$ $= \chi_{n} - \frac{\chi_{n}(\chi_{n} \chi_{n})}{\chi_{2n}} = \frac{\chi_{n} \chi_{n} - \chi_{n}^{2} + \chi_{n} \chi_{2n}}{\chi_{2n}}$ $= \chi_{n} - \frac{\chi_{n}(\chi_{n} \chi_{n})}{\chi_{2n}} = \frac{\chi_{n} \chi_{n} - \chi_{n}^{2} + \chi_{n} \chi_{2n}}{\chi_{2n}}$ $= \chi_{n} - \frac{\chi_{n}(\chi_{n} \chi_{n})}{\chi_{2n}} = \frac{\chi_{n} \chi_{n} - \chi_{n}^{2} + \chi_{n} \chi_{2n}}{\chi_{2n}}$

(1 Xn-1 - X= - (Xn-X=)

-: Xn-1-1 = - (xn-x) = - (n-1) = - (n)

! ln+1=-ln =- (lo)21 1 (lo |<1 =) 0< 8 < 2/4