

Progettazione delle basi di dati

Progettazione di basi di dati

- ➤ Modello Entità-Relazione
- ➤ Progettazione concettuale
- ➤ Progettazione logica
- **≻**Normalizzazione

Modello Entità-Relazione

Progettazione delle basi di dati

Modello Entità-Relazione

- Ciclo di vita di un sistema informativo
- ➤ Progettazione delle basi di dati
- ➤ Entità e relazioni
- > Attributi
- **≻**Identificatori
- **≻**Generalizzazione
- ➤ Documentazione di schemi E-R
- **≻**UML ed E-R

Progettazione delle basi di dati

Progettazione di basi di dati

- La progettazione di una base di dati è una delle attività del processo di sviluppo di un sistema informativo
 - va inquadrata nel contesto più ampio di ciclo di vita di un sistema informativo

Determinazione dei costi delle diverse alternative e delle priorità di realizzazione delle componenti del sistema

Studio di fattibilità

- Definizione delle proprietà e delle funzionalità del sistema informativo
- Richiede interazione con l'utente
- Produce una descrizione completa, ma informale del sistema da realizzare

- Suddivisa in progettazione dei dati e delle applicazioni
- Produce descrizioni formali

Realizzazione del sistema informativo secondo le caratteristiche definite nella fase di progettazione

- Verifica del corretto funzionamento e della qualità del sistema informativo
- Può portare a modifiche dei requisiti o revisione del progetto

- Operatività del sistema
- Richiede operazioni di gestione e manutenzione

- Realizzazione rapida di una versione semplificata del sistema per valutarne le caratteristiche
- Può portare a modifiche dei requisiti o revisione del progetto

Progettazione delle basi di dati

Progettazione delle basi di dati

Progettazione della base di dati

- La base di dati è un componente importante dell'intero sistema.
- Metodologia di progettazione guidata dai dati
 - la progettazione della base di dati precede quella delle applicazioni che lo utilizzano
 - maggiore attenzione alla fase di progettazione rispetto alle altre fasi

Metodologia di progettazione

- Una metodologia di progettazione consiste in
 - decomposizione dell'attività di progetto in fasi successive e indipendenti
 - strategie da seguire nelle varie fasi e i criteri di scelta delle strategie
 - modelli di riferimento per descrivere i dati di ingresso e uscita delle varie fasi

Proprietà della metodologia

Generalità

 possibilità di utilizzo indipendentemente dal problema e dagli strumenti disponibili

Qualità del risultato

• in termini di correttezza, completezza ed efficienza rispetto alle risorse utilizzate

Facilità di utilizzo

• sia delle strategie che dei modelli di riferimento

Progettazione basata sui dati

- Per le basi di dati, la metodologia si basa sulla separazione delle decisioni
 - cosa rappresentare nella base di dati
 - progettazione concettuale
 - come rappresentarlo
 - progettazione logica e fisica

Specifiche informali della realtà di interesse

- proprietà dell'applicazione
- funzionalità dell'applicazione

Rappresentazione delle specifiche informali sotto forma di schema concettuale

- descrizione formale e completa, che fa riferimento ad un modello concettuale
- indipendenza dagli aspetti implementativi (modello dei dati)
- obiettivo è la rappresentazione del contenuto informativo della base di dati

Traduzione dello schema concettuale nello schema logico

- fa riferimento al modello logico dei dati prescelto
- si usano criteri di ottimizzazione delle operazioni da fare sui dati
- qualità dello schema verificata mediante tecniche formali (normalizzazione)

Specifica dei parametri fisici di memorizzazione dei dati (organizzazione dei file e degli indici)

 produce un modello fisico, che dipende dal DBMS prescelto

Modello Entità-Relazioni

Progettazione delle basi di dati

Il modello E-R (Entity-Relationship)

- È il modello concettuale più diffuso
- Fornisce costrutti per descrivere le specifiche sulla struttura dei dati
 - in modo semplice e comprensibile
 - con un formalismo grafico
 - in modo indipendente dal modello dei dati, che può essere scelto in seguito
- Ne esistono numerose varianti

Costrutti principali del modello E-R

- **≻**Entità
- **≻**Relazioni
- **≻**Attributi
- **≻**Identificatori
- ➤ Generalizzazioni e sottoinsiemi

ENTITA

Entità

- Rappresenta classi di oggetti del mondo reale (persone, cose, eventi, ...), che hanno
 - proprietà comuni
 - esistenza autonoma
- Esempi: dipendente, studente, articolo
- Un'occorrenza di un'entità è un oggetto della classe che l'entità rappresenta

Esempi di Entità

STUDENTE

CORSO

Relazione

- Rappresenta un legame logico tra due o più entità
- Esempi: esame tra studente e corso, residenza tra persona e comune
- Da non confondere con la relazione del modello relazionale
 - a volte indicata con il termine associazione

Esempi di relazioni

Occorrenze di una relazione

- Un'occorrenza di una relazione è una n-upla (coppia nel caso di relazione binaria) costituita da occorrenze di entità, una per ciascuna delle entità coinvolte
- Non vi possono essere n-uple identiche

- Sono specificate per ogni entità che partecipa ad una relazione
- Descrivono numero minimo e massimo di occorrenze di una relazione a cui può partecipare una occorrenza di un'entità
 - minimo assume i valori
 - 0 (partecipazione opzionale)
 - 1 (partecipazione obbligatoria)
 - massimo varia tra
 - 1 (al più una occorrenza)
 - N (numero arbitrario di occorrenze)

• Corrispondenza 1 a 1

Corrispondenza 1 a N (molti)

• Corrispondenza N a N (molti a molti)

Limite di una relazione binaria

 Non è possibile che uno studente sostenga lo stesso esame più di una volta.

Relazione ternaria

• Uno studente può sostenere lo stesso esame più di una volta in momenti diversi.

• Esempio di istanza della relazione ESAME

$$s_1$$
 c_1 t_1 s_1 c_1 t_2

Cardinalità delle relazioni ternarie

Osservazioni

- Le cardinalità minime raramente sono 1 per tutte le entità coinvolte in una relazione
- Le cardinalità massime di una relazione n-aria sono (praticamente) sempre N
 - se la partecipazione di un'entità E ha cardinalità massima 1, è possibile eliminare la relazione n-aria e legare l'entità E con le altre mediante relazioni binarie

- Relazione di un'entità con se stessa
- Se la relazione non è simmetrica, occorre definire i due ruoli dell'entità

• Un sottoposto potrebbe avere più superiori

Attributo

- Descrive una proprietà elementare di un'entità o di una relazione
- Esempi
 - cognome, nome, matricola sono attributi che descrivono l'entità studente
 - voto è un attributo che descrive la relazione esame
- Ogni attributo è caratterizzato dal dominio
 l'insieme dei valori ammissibili per l'attributo

Esempi di attributi

Esempi di attributi

Attributi composti

- Raggruppamento di attributi affini per significato o per uso
- Esempio

Cardinalità di un attributo

- Può essere specificata per gli attributi di entità o relazioni
- Descrive numero minimo e massimo di valori dell'attributo associati ad una occorrenza di un'entità o di una relazione
 - se è omessa corrisponde ad (1,1)
 - minima 0 corrisponde ad attributo che ammette il valore nullo
 - massima N corrisponde ad attributo che può assumere più di un valore per la stessa occorrenza (attributo multivalore)

Identificatore

- È specificato per ogni entità
- Descrive i concetti (attributi e/o entità) dello schema che permettono di individuare in modo univoco le occorrenze delle entità
 - ogni entità deve avere almeno un identificatore
 - può esistere più di un identificatore appropriato per un'entità
- L'identificatore può essere
 - interno o esterno
 - semplice o composto

Identificatore interno

Semplice

• costituito da un solo attributo

Composto

• costituito da più attributi

Identificatore esterno

- L'entità che non dispone internamente di attributi sufficienti per definire un identificatore è denominata entità debole
- L'entità debole deve partecipare con cardinalità (1,1) in ognuna delle relazioni che forniscono parte dell'identificatore

Osservazioni

- Un identificatore esterno può coinvolgere un'entità che è a sua volta identificata esternamente
 - non si devono generare cicli di identificazione

Osservazioni

• Le relazioni non hanno identificatori

Generalizzazione

Descrive un collegamento logico tra un'entità E, e una o più entità E_1 , E_2 ,..., E_n , in cui E comprende come casi particolari E_1 , E_2 ,..., E_n

- E, detta entità padre, è una generalizzazione di E₁, E₂,..., E_n
- E₁, E₂,..., E_n , dette entità figlie, sono una specializzazione di E

Generalizzazione: proprietà

- Ogni occorrenza di un'entità figlia è anche un'occorrenza dell'entità padre
- Ogni proprietà dell'entità padre (attributi, identificatori, relazioni, altre generalizzazioni) è anche una proprietà di ogni entità figlia
 - proprietà nota come *ereditarietà*
- Un'entità può essere coinvolta in più generalizzazioni diverse

Generalizzazione: esempio non corretto

Generalizzazione: esempio non corretto

Generalizzazione: esempio non corretto

Generalizzazione: esempio corretto

Generalizzazione: proprietà

- Caratteristiche ortogonali
 - generalizzazione totale se ogni occorrenza dell'entità padre è un'occorrenza di almeno una delle entità figlie, parziale altrimenti
 - esclusiva se ogni occorrenza dell'entità padre è al più un'occorrenza di una delle entità figlie, sovrapposta altrimenti

Generalizzazione: proprietà

- Caratteristiche ortogonali
 - generalizzazione totale se ogni occorrenza dell'entità padre è un'occorrenza di almeno una delle entità figlie, parziale altrimenti
 - *esclusiva* se ogni occorrenza dell'entità padre è al più un'occorrenza di una delle entità figlie, *sovrapposta* altrimenti

Sottoinsieme

- Caso particolare di generalizzazione con una sola entità figlia
 - la generalizzazione è sempre parziale ed esclusiva

Documentazione schemi ER

Progettazione di basi di dati

Documentazione di schemi E-R

Documentazione di schemi E-R

- Dizionario dei dati
 - permette di arricchire lo schema E-R con descrizioni in linguaggio naturale di entità, relazioni e attributi

Dizionario dei dati: esempio

Entità	Descrizione	Attributi	Identificatore
Studente	Studente dell'università	Matricola, Cognome, Nome, Crediti acquisiti, Media voti	Matricola
Docente	Docente dell'università	Codice docente, Dipartimento, Cognome, Nome	Codice docente
Corso	Corsi offerti dall'università	Codice corso, Nome, Crediti	Codice corso
Tempo	Date in cui sono stati sostenuti esami	Data	Data

Dizionario dei dati: esempio

Relazione	Descrizione	Entità coinvolte	Attributi
Esame	Associa uno studente agli esami che ha sostenuto e memorizza il voto conseguito	Studente (0,N), Corso (0,N), Tempo (1,N)	Voto
Titolare	Associa ogni corso al suo docente titolare	Corso (1,1), Docente (0,N)	

Documentazione di schemi E-R

Dizionario dei dati

Permette di arricchire lo schema E-R con descrizioni in linguaggio naturale di entità, relazioni e attributi

Vincoli d'integrità sui dati

Non sempre possono essere indicati esplicitamente in uno schema E-R

Possono essere descritti in linguaggio naturale

Vincoli d'integrità sui dati: esempio

Vincoli d'integrità		
RV1	Il voto di un esame può assumere esclusivamente valori compresi tra 0 e 30	
RV2	Ogni studente non può superare due volte con esito positivo lo stesso esame	
RV3	Uno studente non può sostenere più di tre volte l'esame relativo allo stesso corso nell'arco dello stesso anno accademico	

Documentazione di schemi E-R

Dizionario dei dati

Permette di arricchire lo schema E-R con descrizioni in linguaggio naturale di entità, relazioni e attributi

Vincoli d'integrità sui dati

Non sempre possono essere indicati esplicitamente in uno schema E-R

Possono essere descritti in linguaggio naturale

Regole di derivazione dei dati

Permettono di esplicitare che un concetto dello schema può essere ottenuto (mediante inferenza o calcolo aritmetico) da altri concetti dello schema

Regole di derivazione dei dati: esempio

Regole di derivazione		
RD1	Il numero di crediti acquisiti da uno studente si ottiene sommando il numero di crediti dei corsi per cui lo studente ha superato l'esame	
RD2	La media voti di uno studente di ottiene calcolando la media dei voti degli esami superati dallo studente	

