ME4252 Nanomaterials for Energy Engineering

Nanostructured Solar Cells

Palani Balaya mpepb@nus.edu.sg 6516 7644

© Palani Balaya, NUS

Dye-sensitized Solar Cell

Nanostructured Solar Cell

- Dye molecule
 - electron hole pair splits because radiation interacts with the dye
 - the electron shifts over to the electric conductor and the hole shifts to the hole conductor

Design of Dye-sensitized Solar Cells

- Conducting electrode conducting glass support coated with conducting oxide.
- Nano structured dyesensitized TiO₂ film
- Liquid electrolyte
- Counter electrode coated with conducting oxide with small amount of Pt

Working Principle of DSC

- 1. Photoexciton of dye
- 2. Injection of e-into CB of TiO₂
- 3. Transport of e-working electrode
- 4. Regeneration of oxidized dye by donation from electrolyte
- 5. Regeneration of electrolyte

© Palani Balaya, NUS

Dye sensitized nanocrystals achieve quantitative conversion of photons into electric current

The incident photon to electrical current conversion efficiency (external quantum efficiency) can reach close to 100 %

$$\eta = \eta_{abs} * \Phi_{inj} * \eta_{coll}$$

A key question is how electrons are quantitively collected from the disordered network of nanoparticles.

Role of nanoparticles in DSSC

© Palani Balaya, NUS

A dye sensitized nanocrystalline film generates over 1000 times more photocurrent than a single crystal electrode

Electrochemical junctions

As $\Phi_{\text{ele}} > \Phi_{\text{n}}$, upon contact electrons flow from n-semiconductor into electrolyte until the Fermi level equalize, establishing a positive space charge layer in the n-semiconductor and an electric field at the interface which drives charge separation

Under illumination, electrons will be transferred to the semiconductor surface, resulting in the semiconductor gaining a *negative charge and the* electrolyte a *positive charge*, so providing a photovoltage

Fig. Band profile of electrochemical junction (a) before & (b) after contact

The oxidized species move away from semiconductor to electrolyte and recovers an electron at the counter electrode and regenerate the reduced form

Advantage:

The field is established spontaneously upon wetting the semiconductor surface **Disadvantage**

In many material systems, the semiconductor surface is prone to react chemically with the electrolyte under illumination

© Palani Balaya, NUS

Dye sensitized solar cell in dark and upon illumination

Show the energy level diagram for a DSC when it is in dark. Draw the corresponding energy level diagram when the cell is illuminated with light. Indicate the direction of electron movement with arrows.

Ruthenium complexes are widely used as sensitizers due to their extraordinary performance and excellent stability

Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. J. American Chemical Society (1993), 115(14), 6382-90.

Photo-induced interfacial charge separation occurs within femtoseconds

Dynamic Competition

© Palani Balaya, NUS

Impedance studies of mesoscpic solar cells

Nyquist impedance plot for a 11.2 % cell reveals electron diffusion and interfacial back reaction dynamics

13

Transport resistance/Ohm

106 106 107 (A) 15°C(A) 15°C(A) 30°C(A) 48°C(A) 48°C(A) 20°C(B) 102 103 104 (A) Potential (V)

Key circuit parameters for cell operation derived

© Palani Balaya, NUS

Potential (V)

Schematics of structure of bifuctional (a) and multifunctional (b) photoanodes

Photovoltaic performance

Photovoltaic performance

Eletrode:15 µm MT+ 4 µm SL

© Palani Balaya, NUS

Nyquist plots: charge transfer & transport

 $\rm R_S$: Series resistance ; $\rm R_{rec}$: Charge recombination resistance $_{\odot}$ Palani Balaya, NUS

PV performance under different illuminations

How does a dye-sensitized solar cell work?

- Light with high enough energy excites electrons in dye molecules
- Excited electrons infused into semiconducting TiO₂, transported out of cell
- Positive "holes" left in dye molecules
- Separation of excited electrons and "holes" creates a voltage

Source: http://www.compadre.org/portal/items/detail.cfm?ID=12726

Dye sensitized solar cells separate light absorption from carrier transport

Design of solid state dye-sensitized solar

