Visualization

NICOLAS LE HIR

nicolaslehir@gmail.com

1 DISTANCES

Distances in two dimensions

Two points M_1 and M_2 in the 2D space with coordinates (x_1, y_1) , and (x_2, y_2) , respectively.

Ĺ2

$$d(M_1, M_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \tag{1}$$

Lı

$$d(M_1, M_2) = |x_1 - x_2| + |y_1 - y_2|$$
 (2)

 $L\infty$

$$d(M_1, M_2) = \max(|x_1 - x_2|, |y_1 - y_2|)$$
(3)

weighted L1

$$d(M_1, M_2) = \alpha_1 |x_1 - x_2| + \alpha_2 |y_1 - y_2| \tag{4}$$

Distances in three dimensions

Two points M_1 and M_2 in the 3D space with coordinates (x_1, y_1, z_1) , and (x_2, y_2, z_2) , respectively.

L₂

$$d(M_1, M_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
 (5)

 L_1

$$d(M_1, M_2) = |x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|$$
(6)

 $L\infty$

$$d(M_1, M_2) = \max(|x_1 - x_2|, |y_1 - y_2|, |z_1 - z_2|)$$
(7)

weighted L₁

$$d(M_1, M_2) = \alpha_1 |x_1 - x_2| + \alpha_2 |y_1 - y_2| + \alpha_3 |z_1 - z_2|$$
(8)

2 **LIKELIHOOD**

- Observations : $(x_1, ..., x_n)$
- Model : p (for instance a normal law)
- Parameters : θ (for instance (μ, σ) , the mean and the standard deviation of the normal law)

$$L(\theta) = p(x_1, \dots, x_n | \theta)$$
(9)

Exercise 5 2.1

Here p is a parameter (that of a Bernoulli law), not to be mixed with the letter p that stands for a model of a probability distribution.

$$L(p) = p \times (1 - p) \tag{10}$$

$$L(p) = p - p^2 \tag{11}$$

$$L'(p) = 1 - 2p \tag{12}$$

L'(p)=0 if and only if $p=\frac{1}{2}$ Studying the variations of L as a function of p, we see that the maximum is at $p = \frac{1}{2}$.

DERIVATIVE

 $f: x \to f(x)$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (13)

$$g: x \to 3x$$

$$\forall \in \mathbb{R}, x, g'(x) = 3$$

$$h: x \to x^2$$

$$h' = ?$$

EXPECTED VALUE

X constant random variable : $X = \alpha$

$$\sum_{i=1}^{n} p_{i} x_{i} = \sum_{i=1}^{n} p_{i} \alpha = \alpha \sum_{i=1}^{n} p_{i}$$
 (14)

K-MEANS 5

- Datapoints $(x_1, ..., x_n)$
- Centroids (c_1, \ldots, c_n) (one centroid per point, however the number of different centroids is smaller than the number of datapoints)

The inertia I is given by:

$$I = \sum_{i=1}^{n} d(x_i, c_i)^2$$
 (15)

Entropy of certain distribution.

$$H = 0 \tag{16}$$

Entropy of uniform distribution with n values:

$$H = -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n}$$

$$= -n \times \frac{1}{n} \times \log \frac{1}{n}$$

$$= \log n$$
(17)

7 COMPLEXITY

Let n be the size of the problem.

Polynomial complexity:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + n$$
 (18)

Exponential complexity:

$$k^n$$
 (19)

avec k > 1

8 EXERCISE 2 (TIDE LEVEL)

Hypothèse:

L: tide level in meters

t: time in hours

A: amplitude

 ϕ : phase

f: frequence (Hz = s^{-1})jn

 $\lambda = \frac{1}{f}$: periode en secondes

 $\omega = 2\pi f$: pulsation (radian par seconde)

$$L = A\sin(\omega t + \phi) + c \tag{20}$$

error E:

$$\sum_{\text{samples}} (\text{prediction} - \text{truth})^2 \tag{21}$$