ENTRANCE EXAMINATION-2018

M.SC. CHEMISTRY: MATERIALS/IN-ORGANIC/ORGANIC/PHYSICAL)
SET B

ROLL NO.

Signature of Invigilator

Total Marks: 100

Time: 1 Hour 45 Minutes

Instructions to Candidates

- Do not write your name or put any other mark of identification anywhere in the OMR Response Sheet. IF ANY MARK OF IDENTIFICATIONS IS DISCOVERED ANYWHERE IN OMR RESPONSE SHEET, the OMR sheet will be cancelled, and will not be evaluated.
- 2. This Question Booklet contains the cover page and a total of 100 Multiple Choice Questions of 1mark each.
- 3. Space for rough work has been provided at the beginning and end. Available space on each page may also be used for rough work.
- 4. There is negative marking in Multiple Choice Questions. For each wrong answer, 0.25 marks will be deducted.
- 5. USE OF CALCULATOR IS NOT PERMITTED.
- 6. USE/POSSESSION OF ELECTRONIC GADGETS LIKE MOBILE PHONE, iPhone, iPad, pager ETC. is strictly PROHIBITED.
- 7. Candidate should check the serial order of questions at the beginning of the test. If any question is found missing in the serial order, it should be immediately brought to the notice of the Invigilator. No pages should be torn out from this question booklet.
- 8. Answers must be marked in the OMR response sheet which is provided separately. OMR Response sheet must be handed over to the invigilator before you leave the seat.
- The OMR response sheet should not be folded or wrinkled. The folded or wrinkled OMR/response Sheet will not be evaluated.
- 10. Write your Roll Number in the appropriate space (above) and on the OMR Response Sheet. Any other details, if asked for, should be written only in the space provided.
- 11. There are four options to each question marked A, B, C and D. Select one of the most appropriate option and fill up the corresponding oval/circle in the OMR Response Sheet provided to you. The correct procedure for filling up the OMR Response Sheet is mentioned below.
- 12. Use Black or Blue Ball Pen only for filling the ovals/circles in OMR Response Sheet. Darken the selected oval/circle completely. If the correct answer is 'B', the corresponding oval/circle should be completely filled and darkened as shown below.

1.	particle in a one-dimensional box having is	ect formula for the lowest-energy eigenfunction for a nfinite barriers at $x = -L/2$ and $L/2$?
	$(\Delta)\sqrt{\frac{2}{L}}\sin\left(\frac{\pi x}{L}\right)$	(B) $\sqrt{\frac{2}{L}}\cos\left(\frac{\pi x}{L}\right)$
	(C) $\sqrt{\frac{2}{L}} \exp\left(\frac{i\pi x}{L}\right)$	(D) $\sqrt{\frac{2}{L}} \exp\left(\frac{-i\pi x}{L}\right)$
2.	For a single particle-in-a-ring system h momentum, when measured, will equal:	having energy $9h^2/8\pi^2I$ we can say that the angular
	(A) 3h/2π	(B) $\sqrt{12}h/2\pi$
	(C) either $3h/2\pi$ or $-3h/2\pi$	(D) zero
3.	A molecule in a gas undergoes about 1	.0 x 109 collisions in each second. Suppose that one
lis.	(in hertz) of rotational transitions in the mo	activating the molecule rotationally. The width
	(A) 1.59 MHz	(B) 15.9 MHz
3	(e) 159 MHz	(D) None of the above
4.	The rotational structure in the Raman s	pectrum of carbon dioxide (CO ₂), is offset from the
	wavenumber of the incident	radiation by 2.2622
	8.6614 cm ⁻¹ , The rotational constant of	of carbon dioxide is:
	(C) 1.1811 cm ⁻¹	(B) 0.5906 cm ⁻¹ (D) 2.3622 cm ⁻¹
	A contract c	
5.	In a given cell, solution I transmits 42.0 pe	er cent and solution II 85.0 per cent of radiation having a
	certain wavelength, what is the transmit	tance of the same 1 .1 C
7	mixing 35.0 cm ³ of solution I and 55.0 cm (A) 64.6 %	of solution II, if no reaction occurs?
	(C) 35.7 %	(B) 68.3 % (D) 44.7 % (1 - 6 3 .)
_		
6.	$\Delta H_{\text{vap}} = 30 \text{ kJ mol}^{-1} \text{ and } \Delta S_{\text{vap}} = 75 \text{ kJ mo}$	I-1K-1. Find temperature of vapour, at one atmosphere:
	(A) 250 K (C) 350 K	(B) 298 K (D) 400 K TO 75 K J / not of h
		(B) 100 R
7.	0.1 mole of CH ₃ NH ₂ ($K_b = 5 \times 10^{-4}$ M) is	s mixed with 0.08 mole of HCl and diluted to one litre.
	What will be the H concentration in the co	olution?
\	$(A) 8 \times 10^{-2} \text{ M}$ $(C) 1.6 \times 10^{-11} \text{ M}$	(B) $8 \times 10^{-11} \mathrm{M}$
	(C) 1.0 × 10 M Z	$(D) 8 \times 10^{-5} M$
8.	The pH of a salt of weak acid with weak l	base is given by the expression if Kw, (Ka) and Kb are the
	dissociation constants of waters weak acid	and weak base rednestively
	(A) pH = $\frac{1}{2}$ (pK _w + pK _a + pK _b)	(B) $pH = \frac{1}{2} (pK_w - pK_a - pK_b)$
	(C) pH = $\frac{1}{2}$ (pK _w + pK _a - pK _b)	$\frac{(D) pH}{} = \frac{1}{2} \left(pK_a + pK_b - pK_w \right)$
9.	Nicotic	
7.	if it contained 0.1 mole of misself.	sented by HNic. The % dissociation in a solution will be
	if it contained 0.1 mole of nicotinic acid per (A) 1.673	er litre of solution:
	(C) 6.673	(D) 10 VH 2 - (O) 1+ 1
	1 [10]	57.0-9 0.08 124
	0, 1 (6) =	(B) 4 (D) 10 y H = - (or 1+ 1) 5 x (0 - 9 0, 08 11)
M-96		

10.	Molar heat capacity of water in equilibrium with ice at constant pressure is
	(A) 0 (C) 40.45 kJ K ⁻¹ mol ⁻¹ (D) 75.48 kJ K ⁻¹ mol ⁻¹
11.	Spontaneous adsorption of a gas on solid surface is an exothermic process because (A) ΔH increases for system (C) ΔS decreases for gas (D) ΔG increases for gas
12.	The solubility of the sparingly soluble salt (LxMy) is 'S'. The solubility product (K _{SP}) of this salt
	(C) x ^x y ^y S ^{xy} An azeotropic mixture is a: (B) S ^{x+y} (D) x ^x y ^y S ^{x+y} Atag Fe 2 0 2
13.	An azeotropic mixture is a: (A) constant vapour pressure mixture (C) constant temperature mixture (D) constant boiling mixture
14.	Tyndall effect exhibited by colloidal particles is characteristic of: (A) Kinetic property (C) Magnetic property (D) Electrical property
15.	When equal volumes of following solutions are mixed, precipitation of AgCl ($K_{sp} = 1.8 \times 10^{-10}$ M ²) will occur only with:
	(A) 10^{-4} M [Ag ⁺], 10^{-4} M [Cl ⁻] (C) 10^{-6} M [Ag ⁺], 10^{-6} M [Cl ⁻] (B) 10^{-5} M [Ag ⁺], 10^{-5} M [Cl ⁻] (D) 10^{-10} M [Ag ⁺], 10^{-10} M [Cl ⁻]
16.	The enthalpy and entropy change for a chemical reaction are -2.5 x 10 ⁻³ cal and 7.4 cal deg ⁻¹ respectively. Predict the nature of the reaction at 298K. (A) Reversible (C) Spontaneous (D) Non-spontaneous
17.	Which one of the following solution will have the highest boiling point?
	(A) 1% NaCl in water (C) 1% glucose in water (D) 1% sucrose in water (E) 1% CaCl ₂ in water (D) 1% sucrose in water
18.	
	(A) Reduction of acyl halide with H ₂ /Pd/BaSO ₄
	(B) Reduction of ester with Na/C ₂ H ₅ OH
	(C) Reduction of anhydride with LiAlH ₄
	(D) Reduction of carbonyl compounds with Na/Hg/HCl
	35.5

- An organic compound C₃H₆O does not give a precipitate with 2,4-dinitrophenyl hydrazine reagent and does not react with sodium metal. It could be:
 - (A) CH₂=CH-CH₂OH
- 014
- (B) CH₂=CH-OMe
- 0 4 6

- (C) CH3CH2CHO
- MO
- (D) CH₃COCH₃
- (~ CH ~

- 20. OH 1. CHCl₃, KOH P, Here 'P' is
 - (A) OH

HOOC OH

(C) OHC

(D) OH

- 21.
- 0 OH 1. I₂, NaOH 2. H⁺ P, Here 'P' is
 - (C) CI
- (D) COOH
- 22. Correct order of aromatic character for the given compounds is:
 - ()
- S II

СООН

- (N)
- (A) 1 > 11 > 111
- 7 (B) ||>|>||
- (C) ||| > | > ||
- (D) II > III > I
- 23. Which of the following will undergo nitration faster?

(B)

- (D)
- 24. For the electrophilic substitution reaction involving sulfonation, which of the following sequence regarding the rate of reaction is true?
 - (A) $k(\varepsilon_6 H_6) = k(C_6 D_6) = k(C_6 T_6)$
 - (B) $k(C_6H_6) > k(C_6D_6) > k(C_6T_6)$
 - (C) $k(C_6H_6) < k(C_6D_6) < k(C_6T_6)$
 - (D) $k(C_6H_6) < k(C_6D_6) > k(C_6T_6)$

(+)

25.	Which of the	following	will give	Friedel-Crafts reaction
-----	--------------	-----------	-----------	-------------------------

(C) all of these

- NO2

The most basic compound among the following is: 26.

(A) Benzylamine (B) Aniline

(C) p-Nitroaniline

(D) Acetanilide

Nitrobenzene can be prepared from benzene by using a mixture of conc. HNO3 and conc. H2SO4. 27. In the nitrating mixture HNO3 acts as.

(B) Base

(C) Catalyst

(D) Reducing agent

The most acidic compound among the following is: 28.

R

29. The type of isomerism observed in urea molecule is:

(A) Chain

(B) Position

(C) Geometrical

(D) Functional

30. Number of possible 3D-isomers of glucose are:

(A)4

(B) 10

(C) 16

(D) 32

31. Which of the following compounds is optically active?

(A) 1-Bromobutane

(B) 1-Bromo-2-methylpropane

(C) 2-Bromobutane

(D) 2-Bromo-2-methylpropane

(A) Cyclohexane is in 'boat' form (B) Cyclohexane is less dense than water

(C) Cyclohexane is in 'chair' form (D) Cyclohexane is in 'crown' form

33. For the given reaction products A and B are, respectively:

OMe and H2 N

34. Mutarotation involves:

(A) Racemisation (C) Diastereomerisation (B) Conformational inversion

(D) Optical resolution

How many isomers are there of octahedral [CrCl₂(OH₂)₄]⁺ and octahedral [CoCl₂(en)₂]⁺?

```
(A) 2 for [CrGl_2(OH_2)_4]^+; 2 for [C\delta Cl_2(en)_2]^+
            (B) 2 for [CrCl<sub>2</sub>(OH<sub>2</sub>)<sub>4</sub>]<sup>+</sup>; 3 for [CoCl<sub>2</sub>(en)<sub>2</sub>]<sup>+</sup>
(C) 3 for [CrCl<sub>2</sub>(OH<sub>2</sub>)<sub>4</sub>]<sup>+</sup>; 3 for [CoCl<sub>2</sub>(en)<sub>2</sub>]<sup>+</sup>
          (D) 3 for [CrCl<sub>2</sub>(OH<sub>2</sub>)<sub>4</sub>]*; 2 for [CoCl<sub>2</sub>(en)<sub>2</sub>]*
            For which pair of complexes is the order of values of \Delta_{oct} correct?
           (A) [Fe(CN)_6]^{4-} > [Fe(CN)_6]^{3-}

(B) [Rh(NH_3)_6]^{3+} > [Co(NH_3)_6]^{3+}

(C) [Cr(OH_2)_6]^{2+} > [Cr(OH_2)_6]^{3+}
           (D) [CrF_6]^{3-} > [Cr(CN)_6]^{3-}
           Which one of the following is expected to exhibit a Jahn-Teller distortion?
 37.
           (A) [Mn(OH_2)_6]^{3+}
           (B) [Mn(CN)<sub>6</sub>]
          JET [Fe(CN)6]2
          4(D) [Cr(OH<sub>2</sub>)<sub>6</sub>]<sup>3+</sup>
           The Y3+ ion is:
38.
         (A) hard, and favours ligands with N- and/or O-donor atoms
           (B) hard, and favours ligands with S- and/or P-donor atoms
           (C) soft, and favours ligands with S- and/or P-donor atoms
           (D) soft, and favours ligands with N- and/or O-donor atoms
          The reactions of [PtCl<sub>4</sub>]<sup>2-</sup> with NH<sub>3</sub> (reaction I) and of [PtCl<sub>4</sub>]<sup>2-</sup> with [NO<sub>2</sub>]<sup>-</sup> followed by NH<sub>3</sub>
39.
           (reaction II) are ways of preparing:
          (A) l: trans-[PtCl_2(NH_3)_2] ; ll: trans-[PtCl_2(NH_3)(NO_2)]
          (B) I: cis-[PtCl_2(NH_3)_2]; II: trans-[PtCl_2(NH_3)(NO_2)]^{-1}
          (C) I: cis-[PtCl<sub>2</sub>(NH<sub>3</sub>)<sub>2</sub>]
                                                   ; II: cis-[PtCl<sub>2</sub>(NH<sub>3</sub>)(NO<sub>2</sub>)]
        (D) 1: trans-[PtCl_2(NH_3)_2]; II: cis-[PtCl_2(NH_3)(NO_2)]
40.
          The ground state term symbol for Eu<sup>3+</sup> is:
          (A) 7F0
          (B) _{7}F^{6}
          (C) _{3}F^{0}
          (D) <sub>3</sub>F<sup>6</sup>
          Lanthanoid hydrides of formula LnH2:
41.
          (A) contain the lanthanoid metal in oxidation state +2
          (B) are electrically conducting materials
          (C) possess 3-dimensional covalent structures
          (D) are mixed valence Ln(I)/Ln(III) compounds
          Which of the following series contains only paramagnetic metal ions?
     (A) La<sup>3+</sup>, Ce<sup>3+</sup>, Sm<sup>3+</sup>

(B) Sm<sup>3+</sup>, Ho<sup>3+</sup>, Lu<sup>3+</sup>

(C) Ce<sup>3+</sup>, Eu<sup>3+</sup>, Yb<sup>3+</sup>

(D) La<sup>3+</sup>, Gd<sup>3+</sup>, Eu<sup>3+</sup>
```

35.

	8	
43.	Within the HSAB principle, a hard acid:	
45.	(A) has a low charge density	
	(B) shows a preference for soft bases	
	· (C)	
	(D) shows a preference for donor atoms of low electronegativity	
44.	For the substitution of one H_2O ligand in $[Al(OH_2)_6]^{3+}$ by F, $log K_1 = 6.10$ at 298 K. The value of	ıſ
	ΔG_0 for this process is:	- 198
	(A) -34.8 kJ mol ⁻¹	
	(B) -15+kJ mol ⁻¹	
	(C) +34.8 kJ mol ⁻¹	
	(D) +15.1 kJ mol ⁻¹	
45.	Which of the following equilibria has the largest value of binding constant (K)?	
43.	(Hb= haemoglobin)	
	(A) $Hb + O_2 = Hb(O_2)$ (B) $Hb(O_2) + O_2 = Hb(O_2)_2$ (C) $Hb(O_2)_2 + O_2 = Hb(O_2)_3$ (D) $Hb(O_2)_3 + O_2 = Hb(O_2)_4$	
	(B) $Hb(O_2) + O_2 = Hb(O_2)_2$ (C) $Hb(O_1) + O_2 = Hb(O_2)_2$	
	(C) $Hb(O_2)_2 + O_2 = Hb(O_2)_3$ (D) $Hb(O_2)_3 + O_2 = Hb(O_2)_4$	
	(b) $110(O_2)_3 + O_2 - 110(O_2)_4$	
46.	Which of the following is tri-functional Siloxane?	
	(A) Dimethyl silicon chloride	
	(B) Trimethyl silicon chloride	
	(C) Tetramethyl silicon chloride	
	(D) Momethyl silicon chloride	
47.	Which of the following statements about fluorosulfonic acid, HSO ₃ F, is incorrect?	
ч7.	(A) HSO ₃ F has a high dielectric constant	
	(B) A mixture of HSO ₃ F and SbF ₅ behaves as a superacid	
	LC) HSO ₃ F is less viscous than H ₂ SO ₄	
	(D) HSO ₃ F cannot be handled in glass apparatus	
48.	[Cr(CN) ₆] ³⁻ is expected to be:	
	(A) paramagnetic with $\mu_{\rm eff} \approx 3.87 \ \mu B$	
	(B) diamagnetic	
	(C) paramagnetic with $\mu_{eff} < 3.87 \mu B$	
	(D) paramagnetic with $\mu_{eff} > 3.87 \mu B$	
49.	Which of the protein activates Ca ²⁺ pump?	
	(A) Troponin C	
	(B) Calmodulin	
	(C) Actin	

- (C) Actin (D) Tropomyosin

For high spin and low spin d⁶ octahedral complex ML₆, the generally observed spin allowed transitions are 50.

- (A) two and one
 - (B) zero and one
 - (C) one and two
 - (D) two and two

2018

		9	
51.	Acetic acid in benzene solution forms of	limer due to intermolecular H-bo	nding. For this case Von't
	Holl factor is:		cuse van t
	(A) <i>i</i> = 1 (C) T < 1	(B) $i > 1$ (D) inclusive	
(, ,	
52.	90% of a first-order reaction comple	tes in 90 minutes. 50% of the	reaction will be over in
	approximately.		₽. >~
,	(A) 50 minutes (C) 27 minutes	(B) 54 minutes (D) 62 minutes	200
1			57
53.	Time for completion of 75% of a reac	tion is thrice the time for comp	letion of 50% of the same
	reaction. Trence, the order of the reaction	on is:	same same
	(A) 0 (C) 2	(B) L	
	•	<i>(</i> -/-3	
54.	A cell reaction is spontaneous if:		402
	$(A) E_{cell} > 0$	(B) ΔG ≤θ	(,
	(C) K > 1	(D) all of these	4202.
55.	Under which of the following condition	ns. He has the highest ontro	in the
55.	(A) H ₂ at 25 °C at 1 atm	(B) He at STP	mole? (A =)
	(C) H ₂ at 100 K at 1 atm	(D) H ₂ at 0 K at 1 atm	1+7
56.	If the heat of formation of C.H. (N 11 O (N - 1 GO ()	and (HT)
50.	If the heat of formation of C ₆ H ₆ (A		$-X_{1}$, $-X_{2}$ and $-X_{3}$ calories
	respectively, then heat of combustion of		
	(A) X ₁ -X ₂ -X ₃	$(B)X_1-6X_2-3X_3$	26H6 - X1
	(C) $X_1 + X_2 + X_3$	(-) 11 5112 5213	120 -1
57.	Conjugate base of HO ₂ is:	02	
	(A) O ₂ (superoxide ion)	(B) H ₂ O ₂	(0 - 4)
	(C) O ₂ ² (peroxide ion)		Hc \$627 (02+4,0
58.	'v' moles of land 101		
56.	'x' moles of lead acetate and 0.1 mo		
	solution of pH = 5.04 . The value of 'x	'will be if pK_a of	fCH ₃ COOH is 4.74:
	(A) 0.2 mole	(B) 0.05 mole	™
	(C) 0.1 mole	(D) 0.02 mole	
59.	A solution containing 1 mole per lit	re each of Cu(NO ₂), AgNO ₃ ,	Hg(NO ₃) ₂ and Mg(NO ₃) ₂ is
	being electrolyzed by using inert ele	estrodes. The values of the stand	dard exidation potentials in
	volts are $Ag/Ag^+ = -0.8$; $Hg/Hg^{2+} = -0.8$	$0.70 \text{ GeV}/\text{GeV}^{2+} = 0.24 \text{ Mg/Mg}^{2+}$	= 2.37 The order in which
	metals will be formed at the cathode v	0.79; Cu/Cu = -0.54; Mg/Mg	2.57. 1.10 0.10.
	(A) Ag, Cu, Hg, Mg	00100 00100 10 <u>-000</u>	
	(C) Ag, Hg, Cu	(B) Ag, Hg, Cu, Mg	7.0
		11 cu, 11g, 11g,	111.70.17
	(A) A)	0,8) (H8,	178 6 FO, +3T40
		11 + 0,) A. L+ M. 2.72
u.	۲	C 176	9/4
₩-2	20		2018
			0.342000

60.	E'red (standard reduction electrode	potentials) of different half-cells are given:
	$\tilde{E}^{\circ}_{\text{Cu}}^{2+}_{/\text{Cu}} = 0.34 \text{ V};$	$E_{Zn}^{2+} = -0.76 \text{ V}$ 0.76 - 2.37
	$E_{Ag/Ag}^{\circ} = 0.80 \text{ V}; A$	$E^{\circ}_{Mg}^{2+}/Mg = -2.37 \text{ V}$
	In which cell is ∆G° is most no	
	(A) $Z_n \mid Z_n^{2^+}(1M) \mid Mg^{2^+}(1M)$ (C) $C_n \mid C_n^{2^+}(1M) \mid Ag^+(1M) \mid$	$ Mg \qquad (B) Zn Zn^{2+} (1M) Ag^{+} (1M) Ag $ $ Ag \qquad (D) Ag Ag^{+} (1M) Mg^{2+} (1M) Mg $ $ Position by: $
61.	A catalyst accelerates the rate of re	eaction by:
	(A) decreasing energy of activatio (B) increasing Arrhenius constant (C) increasing both energy of activation (D) decreasing both energy of activation	ration and Arrhenius constant
62.	Which of the following can act as	a protective colloid?
	(A) silica gel (C) oil-in-water emulsion	(B) gelatin (D) all of these
63.	The class of voids that can existing	g in any close-packed structures are:
	(A) trigonal, tetrahedral (C) tetrahedral, octahedral	(B) trigonal, octahedral (D) only octahedral
64.	An electron trapped in an anion va (A) n-type conductor (C) insulator	(B) p-type conductor (D) F-eentre
65.	The ratio between the root mean so	quare speeds of H_2 at 50 K and O_2 at 800 K, is:
	(A) ¼ (C) 2	(B) 1 VD)4 (A) 49)
66.	The r.m.s. velocity of hydrogen is of the gas then.	$\sqrt{7}$ times the r.m.s. velocity of nitrogen. If T is the temperature
	$(A) T(H_2) = T(N_2)$	(B) $T(H_2) > T(N_2)$
	(C) $T(H_2) < T(N_2)$	(D) $T(H_2) = \sqrt{7} T(N_2)$
67.	Which of the fall and a discourse	CI 0
01.	Which of the following is a natural (A) Starch (B) Rubber	
68.	The reason for normalizing a wave	function ψ is:
	 (A) to guarantee that ψ is square-in (B) to make ψ*ψ equal to the prob (C) to make ψ an eigenfunction for (D) to make ψ satisfy the boundary 	ability distribution function for the particle. the Hamiltonian operator.
69,	Which of the following is not a cor	idensation polymer?
		(D) PTFE
M-26	3	2018

Total number of carbonyl groups present in the final product of the following reaction sequence 70. are:

- (A) 6
- (B) 8
- (C) 2
- (D) 4

Which of the following will give aldol? 71.

- (A) Formaldehyde
 - (C) Crotonaldehyde

(B) Pivaldehyde (D) Benzaldehyde

The IUPAC name of C₆H₅COCl is: 72.

- (A) Benzoyl chloride
- (C) Benzene chloro ketone

(B) Benzene carbonyl chloride

The reaction of cyclooctyne with HgSO4 in presence of aq. H2SO4 gives: 73.

When 1-Bromo-3-chlorocyclobutane is treated with two equivalents of Na, in the presence of 74. ether, it will produced.

- (D)

78. The most appropriate sequence of reactions for carrying out the following conversion

- (A) (i) Peracid; (ii) H+; (iii) Zn / dil. HCl
- (B) (i) Alkaline KMnO₄; (ii) H⁺; (iii) Zn / dil. HCl
- J(C) (i) Alkaline KMnO₄; (ii) NaIO₄; (iii) N₂H₄ / KOH
- (D) (i) O₃ / Me₂S; (ii) NaOEt; (iii) N₂H₄ / KOH

76. Which of the following is an example of basic dye? (A) Alizarine (B) Indigo

- (C) Malachite
- (D) Orange-I

		0 (coō
77.	The pH of the solution containing following	ng zwitterion H ₃ N	— _H species is:
	(A) 7 (B) 9 (C)	4	(D) 0
78.	One letter code for 'Lysine' amino acid is: (A) L (B) K (C)) Y
79.	Among the given dienes, which of the following (A) 1> > (B) > (C) > >		
80.	The major product 'A' formed in the following $ \frac{1. \text{ CH}_2\text{N}_2, \text{ Et}_2\text{O}}{2. \text{ MeMgCI, Et}_2\text{O}} \text{ A} $ (A) (B) OMe (C) Me	reaction sequence is: (D) Me	
81.		n proceeds via:) Free-radical chain re)) Addition reaction	action
82.	In DNA the percentage of guanine is 23, what v (A) 27 (B) 23 (C	will be the percentage (2) 46 (2)	of thymine?
83.	For the following reaction sequence what will be A 90% B 50% C 90% D (A) 90% (B) 59.5%		ge of D? D) 50%
84.			orbital of the same type on an
85.			falls in the visible region?
86.		e process of attaching B) H D) Na	g the first electron the most

2018

87.	In an MO diagram for the formation of H ₂ O in which the z axis bisects the H-O-H angle:
	 (A) the O 2pz atomic orbital interacts with an in-phase combination of H 1s atomic orbitals (B) the O 2pz atomic orbital interacts with an out-of-phase combination of H 1s atomic orbitals
	(C) the O 2p, atomic orbital is non-bonding
	(D) the O 2s atomic orbital is non-bonding
88.	An X ₂ molecule lies so that the X nuclei are on the z axis. The bonding MO formed by the overlap of two 2p _x orbitals contains: (A) no nodal planes (B) one nodal plane (C) a nodal plane between the nuclei (D) two nodal planes
89.	Which of the following statements is true about an XY_2 lattice? (A) The coordination number of X_2^{n+} is twice that of Y^{n-} (B) The coordination number of X_2^{n+} is half that of Y^{n-} (C) The unit cell contains twice as many X_2^{n+} ions as Y^{n-} (D) The coordination environments of X_2^{n+} and Y^{n-} are the same
90.	The coordination numbers of Ti(IV) and O^2 in rutile are, respectively: (A) 6 and 3 (B) 3 and 6 (C) 2 and 4 (D) 4 and 2 (D)
91.	Which of the following statements is incorrect about oxalic acid ($H_2C_2O_4$) for which $K_{a(1)} = 5.9 \text{ x}$ 10^{-2} M and $K_{a(2)} = 6.4 \text{ x } 10^{-5} \text{ M}$?
	(A) The observation that $K_{a(1)} > K_{a(2)}$ is general for dibasic acids
	(B) Both H ₂ C ₂ O ₄ and its conjugate base behave as weak acids
	$(C) pK_{a(1)} > pK_{a(2)}$
	(D) Oxalic acid forms salts including Na ₂ C ₂ O ₄ , MgC ₂ O ₄ and KHC ₂ O ₄
92.	In neutral aqueous solution, E° for the Mn³+/Mn²+ couple is +1.54 V. At pH 14, E° for the Mn(OH)₃/Mn(OH)₂ couple is +0.15 V. Which of the following statements is incorrect? (A) At pH 14, Mn(II) and Mn(III) both precipitate from aqueous solution as hydroxides (B) Mn(III) is less stable with respect to reduction to Mn(II) at pH 14 than at pH 7 (C) The Mn(OH)₃/Mn(OH)₂ couple refers to an equilibrium involving Mn(III) and Mn(II) (D) At pH 7, Mn³+(aq) is a relatively strong oxidizing agent
93.	The enthalpy change for the dissociation: $M_2(g) \rightarrow 2M(g)$ is:
	(A) more positive for Li ₂ than for K ₂ (B) more positive for Rb ₂ than for K ₂ (C) more positive for Na ₂ than for Li ₂ (D) more positive for Cs ₂ than for K ₂
94.	BeF ₂ dissolves in water to give $[Be(OH_2)n]^{2+}$ where: (A) $n=2$ (B) $n=3$ (C) $n=4$ (D) $n=6$

- In which reaction does the cluster core undergo a significant change in shape?
 - (A) $B_{10}H_{14} + C_2H_2 \rightarrow 1, 2 C_2B_{10}H_{12} + 2H_2$
 - (B) $Cs_2[B_6H_6] + HC1 \rightarrow Cs[B_6H_7] + CsC1$
 - (C) $B_5H_9 + KH \rightarrow K[B_5H_8] + H_2$
 - (D) $B_4H_{10} + CO \rightarrow 1-B_4H_8(CO) + H_2$
- Which of the following statements is incorrect? 96.
 - (A) GeO2 dissolves in basic aqueous solution to give [Ge(OH)6]2-
 - (B) A C₈₀ molecule has I_h symmetry \smile
 - (C) Pb(NO3)2 and PbO2 are both water soluble
 - (D) 119 Sn is an NMR active nucleus
- Which reaction is unlikely to work? 97.
 - (A) $A_{S}E_{7} + SbF_{5} \rightarrow [A_{S}F_{2}]^{+} + [SbF_{6}]^{-}$
 - $AlCl_3 + SbCl_5 \rightarrow [SbCl_4] + + [AlCl_4] -$
 - (C) $SbCl_5 + 5HF \rightarrow SbF_5 + 5HCl \propto$
 - (D) $2SbCl_3 + Cl_2 + 4CsCl \rightarrow 4Cs^{\dagger} + [SbCl_6]^{-} + [SbCl_6]^{3-} \ll$
- The following data are for solutions at pH 0:

$$[S_2O_8]^2 + 2e^* \Leftrightarrow 2[SO_4]^2$$

$$E^{o} = +2.01 \text{ V}$$

$$[Cr_2O_7]^2 + 14H^+ + 6e^- \Leftrightarrow 2Cr^{3+} + 7H_2O$$

$$; E^{o} = +1.33 \text{ V}$$

$$[Cr_2O_7]^2 + 14H^+ + 6e^- \Leftrightarrow 2Cr^{3+} + 7H_2O$$

 $[MnO_4]^2 + 8H^+ + 5e^- \Leftrightarrow Mn^{2+} + 4H_2O$

$$; E^{o} = +1.51 \text{ V}$$

From the data, you can deduce that, at pH 0:

(B)
$$[S_2O_8]^{2-}$$
 will reduce $[MnO_4]^{-}$

(A)
$$[S_2O_8]^2$$
 will oxidize Cr^{3+} (B) $[S_2O_8]^2$ will reduce $[MnO_4]^-$ (C) $[SO_4]^-$ will be oxidized by $[Cr_2O_7]^{2-}$ (D) $[S_2O_8]^2$ will reduce $[Cr_2O_7]^{2-}$

- Which of the following correctly describes the trends in values of Pauling electronegativities (χ_P) 99. and ionic radii (r_{ion})?___
 - (A) χ_P : F < Cl < Br < l;

$$r_{ion}$$
: $F < Cl < Br < I$

- $\langle B \rangle \chi_P : F > Cl > Br > l;$
- r_{ion} : F < Cl < Br < I
- (C) χ_P : F < Cl < Br < l;
- r_{ion} : F > Cl > Br > 1.
- (D) χ_P : F > C1 > Br > 1;
- r_{ion} : F > Cl > Br > I
- 100. Which statement about FXeOSO₂F is incorrect?
 - (A) The environment about the Xe centre is linear
 - (B) The oxidation state of Xe is +2
 - (C) FXeOSO₂F is an ionic salt
 - (D) FXeOSO₂F can be prepared by treating XeF₂ with fluorosulfonic acid