

PRESENTED BY:RASHMITA KARAK
MOULI KRISHNA REDDY DANTU
DS28 BATCH - UPGRAD

# >:< PROBLEM STATEMENT



X EDUCATION COMPANY SELLS ONLINE COURSES TO INDUSTRY PROFESSIONALS.



ALTHOUGH THERE ARE NUMEROUS LEADS, CONVERSION RATE IS ONLY 30%.



CEO OF THE COMPANY WANTS AN INCREASE IN THE CONVERSION RATE TO 80%.





## GOAL OF THE CASE STUDY











## ANALYSIS APPROACH

DURING THE ENTIRE PROCESS, WE FOLLOW THE BELOW STEPS IN AN DETAILED WAY: -

- UNDERSTAND THE DATA WHERE WE CHECK THE BASIC INFORMATION ABOUT THE DATASET.
  - CLEAN THE DATA REMOVING OF THE UNWANTED AND UNIMPORTANT FEATURES

    SO THAT

IT IS EASIER TO ANALYSE THE DEPENDENT VARIABLES.

- VISUALISATION OF THE DATASET USING DIFFERENT PLOTS WE CHECK THE
  DEPENDENCY OF ALL THE RELEVANT CATEGORIES WITH THE TARGET VARIABLE.
- MODEL BUILDING AND EVALUATION CONSITING OF MODEL BUILDING AND CHECKING IF THE BUILT MODEL IS ACCURATE.
- CONCLUSION FROM ANALYSIS FINAL PREDICTIONS FROM THE ANALYSIS HENCE EVALUATING WHICH FEATURES HAVE MOST EFFECT ON THE TARGET VARIABLE.



#### DATASET DESCRIPTION

lead\_score.head()

|   | Prospect ID                                      | Lead<br>Number | Lead<br>Origin                | Lead<br>Source    | Do<br>Not<br>Email | Do<br>Not<br>Call | Converted | TotalVisits | Total<br>Time<br>Spent<br>on<br>Website | Page<br>Views<br>Per<br>Visit | <br>Get<br>updates<br>on DM<br>Content | Lead<br>Profile   | City   | Asymmetrique<br>Activity Index | Asymmetr<br>Profile II |
|---|--------------------------------------------------|----------------|-------------------------------|-------------------|--------------------|-------------------|-----------|-------------|-----------------------------------------|-------------------------------|----------------------------------------|-------------------|--------|--------------------------------|------------------------|
| 0 | 7927b2df-<br>8bba-4d29-<br>b9a2-<br>b6e0beafe620 | 660737         | API                           | Olark<br>Chat     | No                 | No                | 0         | 0.0         | 0                                       | 0.0                           | <br>No                                 | Select            | Select | 02.Medium                      | 02.Me                  |
| 1 | 2a272436-<br>5132-4136-<br>86fa-<br>dcc88c88f482 | 660728         | API                           | Organic<br>Search | No                 | No                | 0         | 5.0         | 674                                     | 2.5                           | <br>No                                 | Select            | Select | 02.Medium                      | 02.Me                  |
| 2 | 8cc8c611-<br>a219-4f35-<br>ad23-<br>fdfd2656bd8a | 660727         | Landing<br>Page<br>Submission | Direct<br>Traffic | No                 | No                | 1         | 2.0         | 1532                                    | 2.0                           | <br>No                                 | Potential<br>Lead | Mumbai | 02.Medium                      | 01.                    |

In [6]: #checking total rows and cols in dataset
lead\_score.shape

Out[6]: (9240, 37)

## DESCRIPTION OF THE DATASET





lead\_score.describe()

|       | Lead Number   | Converted   | TotalVisits | Total Time Spent on Website | Page Views Per Visit | Asymmetrique Activity Score | Asymmetrique Profile Score |
|-------|---------------|-------------|-------------|-----------------------------|----------------------|-----------------------------|----------------------------|
| count | 9240.000000   | 9240.000000 | 9103.000000 | 9240.000000                 | 9103.000000          | 5022.000000                 | 5022.000000                |
| mean  | 617188.435606 | 0.385390    | 3.445238    | 487.698268                  | 2.362820             | 14.306252                   | 16.344883                  |
| std   | 23405.995698  | 0.486714    | 4.854853    | 548.021466                  | 2.161418             | 1.386694                    | 1.811395                   |
| min   | 579533.000000 | 0.000000    | 0.000000    | 0.000000                    | 0.000000             | 7.000000                    | 11.000000                  |
| 25%   | 596484.500000 | 0.000000    | 1.000000    | 12.000000                   | 1.000000             | 14.000000                   | 15.000000                  |
| 50%   | 615479.000000 | 0.000000    | 3.000000    | 248.000000                  | 2.000000             | 14.000000                   | 16.000000                  |
| 75%   | 637387.250000 | 1.000000    | 5.000000    | 936.000000                  | 3.000000             | 15.000000                   | 18.000000                  |
| max   | 660737.000000 | 1.000000    | 251.000000  | 2272.000000                 | 55.000000            | 18.000000                   | 20.000000                  |







#### EXPLORATORY DATA ANALYSIS

AFTER CONVERTING IRRELEVANT DATA TO RESPECTIVE VALUES, WE CHECK ACCORDING TO CATEGORIES. CHECKING VALUE COUNTS OF COUNTRY COLUMN.



## AS WE CAN SEE THE NUMBER OF VALUES FOR INDIA ARE QUITE HIGH (NEARLY 97% OF THE DATA), THIS COLUMN CAN BE DROPPED. PLOTTING SPREAD OF CITY COLUMN AFTER REPLACING NAN VALUES







### PLOTTING SPREAD OF SPECIALIZATION COLUMN







## VISUALIZING COUNT OF VARIABLE BASED ON CONVERTED VALUE



- WORKING PROFESSIONALS GOING FOR THE COURSE HAVE HIGH CHANCES OF JOINING IT.
- UNEMPLOYED LEAD \_SCORE ARE THE MOST IN TERMS OF ABSOLUTE NUMBERS.

# VISUALIZING COUNT OF 'WHAT MATTERS MOST TO YOU IN CHOOSING A COURSE' BASED ON CONVERTED VALUE







#### VISUALIZING COUNT OF 'LEAD SOURCE' BASED ON CONVERTED VALUE



## VISUALIZING COUNT OF 'LAST NOTABLE ACTIVITY' BASED ON CONVERTED VALUE Converted 2500 2000 1500 1500 1000 500 Email Opened Olark Chat Conversation Last Notable Activity

#### CHECKING IF THE % OF DATA THAT HAS CONVERTED VALUES = 1

We found the percentage of data that has converted value equals 38.020.







# SEARCH FOR OUTLIERS/

WE FIND THAT THERE ARE SOME OUTLIERS IN 'TOTAL VISITS' FEATURES.











# OUTLIER TREATMENT: REMOVE TOP & BOTTOM 1% OF THE COLUMN OUTLIER VALUES





## CHECKING SPREAD OF "TOTAL VISITS" VS CONVERTED VARIABLE



#### Inference

- Median for converted and not converted lead\_score are the close.
- Nothing conclusive can be said on the basis of Total Visits



#### CHECKING SPREAD OF "TOTAL TIME SPENT ON WEBSITE" VS CONVERTED VARIABLE

#### INFERENCE

- LEADS SPENDING MORE TIME ON THE WEBSITE ARE MORE LIKELY TO BE CONVERTED.
- WEBSITE SHOULD BE MADE MORE ENGAGING TO MAKE LEAD \_SCORE SPEND MORE TIME.







#### SCALING OF DATA





```
In [107]: #scaling numeric columns
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
num_cols=X_train.select_dtypes(include=['float64', 'int64']).columns
X_train[num_cols] = scaler.fit_transform(X_train[num_cols])
X_train.head()
```

#### Out[107]:

|      | TotalVisits | Total<br>Time<br>Spent on<br>Website | Page<br>Views<br>Per Visit | Lead<br>Origin_Landing<br>Page<br>Submission | Lead<br>Origin_Lead<br>Add Form | Lead<br>Origin_Lead<br>Import | What is your current occupation_Housewife | What is your current occupation_Other | What is your current occupation_Student | What is yo occupation_Un |
|------|-------------|--------------------------------------|----------------------------|----------------------------------------------|---------------------------------|-------------------------------|-------------------------------------------|---------------------------------------|-----------------------------------------|--------------------------|
| 9196 | 0.668862    | 1.848117                             | 1.455819                   | 1                                            | 0                               | 0                             | 0                                         | 0                                     | 0                                       |                          |
| 4696 | -0.030697   | -0.037832                            | 0.399961                   | 1                                            | 0                               | 0                             | 0                                         | 0                                     | 0                                       |                          |
| 3274 | 0.319082    | -0.642138                            | -0.127967                  | 1                                            | 0                               | 0                             | 0                                         | 0                                     | 0                                       |                          |
| 2164 | -0.380477   | -0.154676                            | -0.127967                  | 0                                            | 0                               | 0                             | 0                                         | 0                                     | 0                                       |                          |
| 1667 | 0.319082    | 1.258415                             | -0.481679                  | 0                                            | 0                               | 0                             | 0                                         | 0                                     | 0                                       |                          |

5 rows × 56 columns

#### MODEL BUILDING USING STATS MODEL & RFE

AFTER DROPPING MULTIPLE COLUMNS DUE TO HIGH VIF AND BUILDING THE MODEL 3 TIMES, BELOW IS THE LIST OF PROPERTIES WE CAN OBSERVE :-



## ROC CURVE

We are getting a good value of 0.97 indicating a good predictive model.









# THERE ARE SOME OTHER PROPERTIES THAT ARE REQUIRED TO BE CHECKED. HERE WE WILL CHECK THOSE INFORMATIONS IF THEY ARE FINE.

```
In [142]: # Let's check the overall accuracy.
          metrics.accuracy score(y_train_pred_final.Converted, y_train_pred_final.final_Predicted)
Out[142]: 0.922929631402585
In [143]: confusion2 = metrics.confusion matrix(y train pred final.Converted, y train pred final.final Predicted )
          confusion2
Out[143]: array([[3597, 285],
                 [ 198, 2187]], dtype=int64)
In [144]: TP = confusion2[1,1] # true positive
          TN = confusion2[0,0] # true negatives
          FP = confusion2[0,1] # false positives
          FN = confusion2[1,0] # false negatives
In [145]: # Let's see the sensitivity of our logistic regression model
          TP / float(TP+FN)
Out[145]: 0.9169811320754717
In [146]: # Let us calculate specificity
          TN / float(TN+FP)
Out[146]: 0.9265842349304482
```

## <u>PREDICTION</u>

#### FINAL OBSERVATION:

LET US COMPARE THE VALUES OBTAINED FOR TRAIN & TEST:

#### TRAIN DATA:

**ACCURACY**: 92.29%

SENSITIVITY: 91.70%

SPECIFICITY: 92.66%

#### TEST DATA:

• ACCURACY: 92.78%

SENSITIVITY: 91.98%

SPECIFICITY: 93.26%

THUS WE CAN SEE THAT THIS MODEL PREDICTS THE CONVERSION RATE VERY WELL AND THE CEO WILL SURELY LIKE THIS MODEL BETTER DUE TO HIGH CONVERSION RATE.



# THANKS!

