Лабораторная работа №1 по курсу дискретного анализа: Сортировки за линейное время

Выполнил студент группы М8О-212Б-22 МАИ Юрков Евгений.

Условие

Вариант: 7-1

Требуется разработать программу, осуществляющую ввод пар «ключ-значение», их упорядочивание по возрастанию ключа указанным алгоритмом сортировки за линейное время и вывод отсортированной последовательности. Вариант задания определяется типом ключа (и соответствующим ему методом сортировки) и типом значения: Поразрядная сортировка.

Тип ключа: автомобильные номера в формате А 999 BC (используются буквы латинского алфавита).

Тип значения: строки фиксированной длины 64 символа, во входных данных могут встретиться строки меньшей длины, при этом строка дополняется до 64-х нулевыми символами, которые не выводятся на экран.

Метод решения

Для поразрядной сортировки строки происходит сортировка подсчетом массива пар ключ-значение. По очереди в функцию сортировки подсчетом передается сортируемый индекс от большего к меньшему (от 7 до 0, так как строки фиксированной длины). Для сортировки подсчетом создается массив counter содержащий количество повторений каждого символа на позиции і. Далее происходит расстановка ключей вместе с соответствующими им значениями в отсортированном порядке в новом массиве result. На последнем шаге происходит перемещение информации в исходный массив.

Описание программы

Данные хранятся в структуре std::pair<std::string, std::string>. Программа состоит из следующих функций:

- void __count_sort(std::vector<std::pair<std::string, std::string> >& arr, uint index) - функция осуществляющая сортировку подсчетом индекса index в массиве arr.
- 2. void radix_sort(std::vector<std::pair<std::string, std::string> >& arr) функция поразрядной сортировки для строки, сортирует значения строк в массиве передавая индексы в функцию сортировки подсчетом.
- 3. std::pair<std::string, std::string> parse(const std::string& str) преобразует введенную строку в структуру ключ-значение.
- 4. int main().

Дневник отладки

- Сначала не были учтены пустые введенные строки и ключи без значений.
- Для преодоления ML во всех присваиваниях строк и массивов в функции сортировки подсчетом был использован std::move().
- Сначала использовалась поразрядная сортировка для чисел, но для преодоления TL функция сортировки была переписана специально для сортировки строк длины 8.
- Для сокращения времени перебора массива **counter** его размер был сокращен с 256 до ('Z' '0' + 1) (теперь в нем храняться счетчики только тех символов, которые могут использоваться).

Рис. 1: График зависимости времени работы программы от количества введенных данных

Тест производительности

Сложность написанного алогоритма O(n). Для построения графика (Рис. 1) использовались тесты с 1 - 1000 строками данных. Из графика видно, что количество входных данных слабо влияет на время работы программы.

Выводы

Поразрядная сортировка важна для эффективной обработки больших объемов данных, когда необходимо быстро выполнить сортировку. Она позволяют обеспечить линейную сложность алгоритма относительно количества элементов в массиве, что делает ее особенно полезной для больших и расширяющихся наборов данных. Однако этот метод сортировки неприменим для сложных структур данных, в этом он уступает сортировкам за $O(n \log n)$, для которых достаточно определить операцию сравнения элементов.