Feistel Ciphers and DES

Dr. Demetrios Glinos University of Central Florida

CIS3360 - Security in Computing

Readings

- "Computer Security: Principles and Practice", 3rd Edition, by William Stallings and Lawrie Brown
 - Sec. 20.2

For More Information

- There are many online resources on Feistel Ciphers and DES, including:
- Wikipedia page on Feistel Ciphers
 http://en.wikipedia.org/wiki/Feistel_cipher
- Wikipedia page on DES
 http://en.wikipedia.org/wiki/Data_Encryption_Standard

Outline

- Block Cipher Review
- Substitution-Permutation Networks
- Diffusion and Confusion
- Feistel Cipher Structure
- DES and Triple-DES

Block Cipher Review (1)

- Modern symmetric ciphers typically operate on blocks of data
 - Similar to the "blocking" we have seen for
 - Playfair cipher block size is 2
 - Hill cipher block size is size of vector determined by key matrix
 - Other: for example, Program #1 using Vigenere as block cipher
- Block ciphers are widely used
 - Blocks used are typically much larger than classical single or double-character ciphers (8 or 16 bits)
 - Typical block sizes: 64, 128, and 256 bits
- We will examine DES (this lecture) and AES (next lecture) to illustrate modern block cipher design principles

Block Cipher Review (2)

- In a block cipher:
 - Plaintext and ciphertext are processed in blocks of fixed length b (e.g., 128 bits)
 - A plaintext of length n is partitioned into a sequence of m blocks,
 P[0], ..., P[m−1], where n ≤ bm < n + b
- Each message is divided into a sequence of blocks and encrypted or decrypted in terms of its blocks
 - All blocks are the same size
 - Last block may need include some padding (if run out of plaintext)

Substitution-Permutation Networks

- Claude Shannon introduced idea of substitution-permutation (S-P) networks in 1949 paper
- S-P nets form the basis of modern block ciphers
- S-P nets are based on the two primitive cryptographic operations we have studied before:
 - substitution (S-box)
 - permutation (P-box)
- S-P nets provide confusion and diffusion for message and key

Diffusion and Confusion

- Goal of cipher design is to completely obscure statistical properties of original message
- Shannon's idea: combining S & P elements to obtain:
- Diffusion dissipates statistical structure of <u>plaintext</u> over bulk of ciphertext
 - i.e., changing one plaintext bit must affect as many ciphertext bits as possible
- Confusion makes relationship between ciphertext and key as complex as possible
 - i.e., changing one bit of the encryption key must affect as many ciphertext bits as possible

Feistel Cipher Structure

- Developed by Horst Feistel at IBM in early 70s and first implemented in the Lucifer cipher for Lloyd's of London monetary transactions
- Based on concept of *invertible product cipher* (i.e, the ability to reverse a sequence of cryptographic transformations)
- Implements Shannon's S-P net concept
- Involves multiple rounds of encryption/decryption
- Uses the same cipher algorithm for both encryption and decryption
- But uses multiple keys (subkeys), which are different (so, the order matters)

Feistel Cipher Operation

- Each round of encryption involves a substitution step, followed by a permutation step
- Here's how it works:
 - 1. Plaintext input block is first split into 2 halves, labelled right (R) and left (L)
 - 2. In each round:
 - a) R passes through unchanged (and after step (c) below becomes the L half for the next round)
 - b) L goes through a *substitution step* that uses a function (known as the *Feistel function*) that *depends on R and the subkey for the round*
 - c) Then *permute* by swapping halves

Feistel Cipher Computations

Given plaintext block P, we divide it into L_0 and R_0 halves

For Round 1: $L_1 = R_0$

 $R_1 = L_0 \oplus F(R_0, K_1)$

•••

For Round i: $L_i = R_{i-1}$

 $R_{i} = L_{i-1} \oplus F(R_{i-1}, K_{i})$

NOTE 1: we use of the XOR operator \oplus

NOTE 2: F(R,K) is the Feistel function; value depends on current R and K

In other words, for example:

Round 7 uses the L and R produced by Round 6

The L produced by Round 7 is just the R produced by Round 6

The R produced by Round 7 is computed per formula above

Feistel Cipher Round Structure

This is just one block of many \rightarrow

Notes:

- There is a different key for each round (called a "subkey")
- The Feistel function "F" can be any encryption algorithm

source: Fig. 20.1 (annotated)

Feistel Cipher Encryption & Decryption

Data Encryption Standard (DES)

- The most widely used block cipher in world
- Adopted in 1977 by NBS (now NIST) as FIPS (Federal Information Processing Standard) PUB 46
- Based on Lucifer cipher developed by IBM for Lloyds of London (for cash transfers)
- Has been considerable controversy over its security
- Code cracked in 1999 by the Electronics Frontiers Foundation using special hardware
- Following which NIST directed use of "Triple DES"
- Ultimately replaced by AES for Federal use, but Triple DES is still in wide use commercially.

DES Processing

- Uses 16-round Feistel structure
- Encrypts 64-bit data using 56-bit key
- The subkeys for the rounds are generated from the single input encryption key
- Complicated Feistel function consisting of:
 - 1. An expansion permutation ("E-step")
 - XOR'ing with the round key ("key mixing")
 - Then performing a substitution with 8 "S-boxes"
 - 4. And finally a permutation with a "P-box"
- Feistel function result XOR'd with Left half, as usual
- Left and Right results permuted by swapping, as usual

DES Round Structure (simplified)

- splits a 64-bit input block into two 32-bit L & R halves
- as for any Feistel cipher can describe as:

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$$

- Feistel function F takes 32-bit R half and 48-bit subkey:
 - expands R to 48-bits using E-step permutation
 - applies subkey using XOR
 - passes through 8 S-boxes to get 32-bit result
 - finally permutes using 32-bit perm P-box

Figure 2.4 Single Round of DES Algorithm

source: Supplemental Text (annotated)

DES Expansion Permutation (E-step)

- Expands 32-bit Right half to 48 bits
- Performed as follows:
 - 1. Divide 32-bit block into **eight** 4-bit words
 - Add a bit to the left of each 4-bit word that is the last bit of the previous 4-bit word (with wraparound)
 - 3. Add a bit to the right of each 4-bit word that is the first bit of the next 4-bit word (with wraparound)
 - 4. Result is **eight** 6-bit words which are combined into a single 48-bit block

DES Substitution Step

- Takes 48-bit input and returns 32-bit output
- Performed as follows:
 - Divide 48-bit block into eight 6-bit words
 - Each 6-bit word is fed into a separate S-box and produces a 4-bit output
 - Each S-box has 4 rows and 16 columns and contains numbers in the range
 0, 1, 2, ..., 15.
 - First and last bit of 6-bit word index the row
 - The middle 4 bits index the column
 - The result is a 4-bit unsigned binary number

S-boxes S₁ & S₂

S1	CO	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15
RO	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
R1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
R2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
R3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

S2	CO	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15
RO	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
R1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
R2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
R3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

S-Box Example

- To show how S-boxes work, let's just look at 12 bits out of the 48-bit block
 - Suppose we want: the S-Box output for the input FOE₁₆
 - $FOE_{16} = 111100001110_{2}$
 - Input to S₁ = higher order six bits = <u>111100</u>₂
 - So, the row selector = $\frac{10}{2}$ = row 2_{10}
 - And the column selector = 1110_2 = column 14_{10}
 - Thus, the output from $S_1 = 5_{10} = 5_{16}$
 - Input to S₂ = lower order six bits = <u>0</u>0111<u>0</u>₂
 - So, the row selector = $\underline{00}_2$ = row 0_{10}
 - And the column selector = 0111₂ = column 7₁₀
 - Output from $S_2 = 4_{10} = 4_{16}$
- Hence, the combined output of S₁ and S₂ is 54₁₆

We perform similar processing of the next 12 bits through $S_3 \& S_4$, the next 12 bits through $S_5 \& S_6$, and the last 12 bits through $S_7 \& S_8$ to complete the processing for the 48-bit block

DES Permutation Step

- Takes 32-bit input and returns 32-bit output
- A table-lookup <u>fixed</u> permutation of the input bits
- Order is:

```
16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,
2,8,24,14,32,27,3,9,19,13,30,6,22,11,4,25
```

→ First bit of output is 16th input bit, 2nd bit of output is 7th bit of input, etc.

Note: You do NOT need to memorize or write down this permutation order

DES Key Schedule

- Initial key is 56 bits (7 bytes)
 - Can also be 8 bytes, with last bit of each byte used for parity (so only 56 bit are used)
- Before any round keys are generated, the 56 usable bits are permuted using a table called "Permutation Choice 1"
- Thereafter, at the beginning of each round:
 - Split 56-bit key block into two 28-bit halves
 - Circularly left shift each block by 1 or 2 bits (1 bit for rounds 1,2,9, and 16; 2 bits for others)
 - Join the shifted halves together and contract to 48
 bits using "Permutation Choice 2" that selects a fixed
 48-bit subset of the 56 bits in a particular order (this
 is the subkey for the round)
- NOTE: the circularly shifted 28-bit halves are joined and passed on to the next round to generate the next key

source: Supplemental Text (annotated)

What Makes DES Strong

- Substitution step performs diffusion well:
 - On average, changing 1 bit of 64-bit input block changes 34 bits of the ciphertext block
- Key schedule performs confusion well:
 - On average, changing 1 bit of 56-bit encryption key changes 35 bits of the ciphertext block
- Good size key space: $2^{56} \approx 7.2 \times 10^{16} = 72,000,000,000,000,000$
 - Brute force attack at 1,000 keys/microsecond would need about 13 months to test half the keys
 - EFF took 3 days on special hardware
 - If can parallel process 1 million keys at once, can do in about 10 hours
 - This is why we now use 3DES

Triple-DES with Two/Three-Keys

- Single DES is strong, but Triple DES ("3DES") is much stronger
 - at cost of 3 times slower to run
 - The reason: must encrypt 3 times
- but can use 2 keys with E-D-E sequence
 - $C = E_{K1}(D_{K2}(E_{K1}(P)))$ and $P = D_{K1}(E_{K2}(D_{K1}(C)))$
 - NOTE: encrypt & decrypt equivalent in security
 - if K1=K2 then equivalent to single DES
 - key space $\approx 2^{112}$
- can also use Triple-DES with Three-Keys
 - $C = E_{K3}(D_{K2}(E_{K1}(P)))$ and $P = D_{K1}(E_{K2}(D_{K3}(C)))$
 - key space $\approx 2^{168}$
- no current known practical attacks for either version
 - but use AES for applications that need better performane