NAVODIT CHANDRA

navoditchandra0708@gmail.com | (+91) 9453001199 | linkedin.com/in/navoditchandra/ | navoditc.github.io/

EDUCATION

Carnegie Mellon University (CMU)

Pittsburgh, USA

Master of Science | GPA: 3.97/4.00 Dec 2022 Relevant Coursework: Machine Learning & Artificial Intelligence, Deep Learning, Computer Vision, Trustworthy AI Autonomy,

Numerical Methods, Linear Control Systems, Robot Dynamics & Analysis

Indian Institute of Technology (IIT) Kanpur

Kanpur, India

Bachelor of Technology | GPA: 9.1/10.0

May 2021

SKILLS

Programming Languages: *Proficient*: Python, C++, *Basic*: SQL, Java, HTML

Libraries: PyTorch, TensorFlow, Keras, OpenCV, Gym, NumPy, Pandas, Matplotlib, Scikit-learn

Software and Tools: Linux (Ubuntu), CARLA, MATLAB, MAPLE, Arduino, Git, Latex

RESEARCH EXPERIENCE

Carnegie Mellon University

Pittsburgh, USA

Graduate Researcher, Mechanical and Artificial Intelligence Lab

May 2022 - Dec 2022

- Generated a dataset consisting of RGB images and LIDAR point cloud in autopilot mode on CARLA simulator
- Refined **image** and **point cloud** feature maps processed by ResNet neural network architecture by introducing **Convolutional Block Attention Module**
- Improved **Driving Score** evaluation metric by **9.5%** by implementing **Additive Attention** for computation of alignment scores in transformer block used to combine intermediate image and LiDAR feature maps
- Experimented model performance in simulation by replacing Self-Attention module with Cross-Attention module

Indian Institute of Technology Kanpur

Kanpur, India

Students-Undergraduate Research Graduate Excellence Fellow, Energy Conservation & Storage Lab

May 2019 - July 2019

Studied effects of gas velocity, operating current, surface wettability and capillary number on a PEM Fuel Cell operation by means of a parametric study

RELEVANT PROJECTS

Identification of Abnormal Breasts as Potential Cancers using Machine Learning (CMU)

Oct 2021 - Dec 2021

- Applied feature engineering leveraging shallow machine learning algorithms in a joint effort with 2 colleagues to estimate minimum number of features to predict whether tumors were malignant or benign
- Achieved an implementation time of 4.61 ms and an accuracy of 100% using a single feature with the K-Nearest Neighbor algorithm found to be best at making predictions

Prediction of House Price Residual Error (CMU)

Nov 2021 - Nov 2021

Loaded and visualized real world dataset, performed data cleaning, applied non-linear regression models and implemented k-fold cross validation to prevent overfitting

End to End Learning for Self-Driving Cars (CMU)

Feb 2022 - Apr 2022

- Predicted steering angle of a self-driving car from images captured by it by developing an end-to-end learning pipeline
- Accomplished reasonably good performance on training and testing tracks by executing CNN and CNN-LSTM neural network topologies in a team of 2

Modeling & Study of Adversarial Attacks Arising from Deceiving Perception in Car Autopilot (CMU) Feb 2022 - Apr 2022

- Collaborated in a team of 3 and simulated a **real-life incident** of tricking a self-driving car to misidentify **moon** as a yellow traffic light deploying a targeted adversarial attack algorithm
- Executed PGD algorithm to trick autopilot system and carried out adversarial training as an effective adversarial defensive technique to avert such safety-critical scenarios

Seven Segment Digit Recognition using Computer Vision (CMU)

Mar 2022 - Apr 2022

- Collaborated with 2 colleagues and developed an **algorithm** to take readings from electronic devices making use of seven-segment display
- Enhanced accuracy by 7.8% and speeded up process of taking readings by 10.4 times in comparison to average computer typists by utilizing image processing operations and computer vision techniques

Depth Estimation leveraging Stereo Vision and Generation of 3D Point Cloud (CMU)

Mar 2022 - Apr 2022

- Found depth of each pixel from disparity map produced by a pair of parallel stereo images to calculate distance of objects present
- Generated a **3D point cloud** for visualization and verification of correctness of **scaling ratio** used to find depth

Controllers for Unmanned Ground Vehicle

Nov 2021 - Dec 2021

Designed longitudinal PID and lateral PID, full state feedback and optimal controllers in Python and simulated the path followed by vehicle on Webots simulator