Esercizio 1. Prove that the following are equivalent

- 1. *T* has weak elimination of imaginaries;
- 2. for $A \in \mathcal{U}^{eq}$, there is a smallest algebraically closed set $A \subseteq \mathcal{U}$ such that $A \in dcl^{eq}A$;
- 3. for $a, b \in \mathcal{U}$, if $A \in \operatorname{dcl^{eq}}(a) \cap \operatorname{dcl^{eq}}(b)$ then $A \in \operatorname{dcl^{eq}}(\operatorname{acl} a \cap \operatorname{acl} b)$.

Esercizio 2. Let M be a graph. A star in M is a subgraph whose edges all share a common vertex. We say that a coloring of the edges of M is locally finite if there is a k such that every star has at most k colors. Assum M has the property that for every finite $A \subseteq M$ there is a $c \in M$ such that $A \subseteq r(c, \mathcal{U})$. (This holds in particular when M is a random graph.) Prove that for every locally finite coloring of the edges M has an infinite monochromatic complete subgraph.