Aprendizagem Bayesiana

Francisco Carvalho
DI-UFPE

Métodos Bayesianos

Fornece algoritmos práticos de aprendizagem

- Maria Aprendizagem Bayesiana ingenua
- Maria Aprendizagem de Redes Bayesianas
- □ Combina conhecimento a priori (probabilidade a priori ou incondicional) com dados de observação
- Requer probabilidades à priori

Teorema de Bayes

$$P(h/D) = \frac{P(D/h)P(h)}{P(D)}$$

- P(h): probabilidade a priori da hipótese h
- P(D): probabilidade a priori dos dados de treinamento D
- ≥ P(h/D): probabilidade de h dado D
- ≥ P(D/h): probabilidade de D dado h

Escolha de hipóteses

□ Geralmente deseja-se a hipótese mais provável observados os dados de treinamento

 \bowtie Hipótese de maior probabilidade a posteriori h_{MAP}

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(h/D)$$

$$= \underset{h \in H}{\operatorname{argmax}} \frac{P(D/h)P(h)}{P(D)}$$

$$= \underset{h \in H}{\operatorname{argmax}} P(D/h)P(h)$$

$$h_{ML} = \underset{h_i \in H}{\operatorname{argmax}} P(D/h_i)$$

Aplicação do Teorema de Bayes: Diagnóstico Médico

Seja

M=doença meningite

S= dor de cabeça

•Um Doutor sabe:

P(S/M) = 0.5

P(M)=1/50000

P(S)=1/20

P(M/S)=P(S/M)P(M)

P(S)

=0,5*(1/50000)=0,002

1/20

•A probabilidade de uma pessoa ter meningite dado que ela está com dor de cabeça é 0,02% ou ainda 1 em 5000.

Fórmulas Básicas de Probabilidade

Regra do Produto: Probabilidade de uma conjunção de dois eventos A e B

$$P(A \wedge B) = P(A/B)P(B) = P(B/A)P(A)$$

Regra da Soma: Probabilidade de uma disjunção de dois eventos A e B

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Teorema da Probabilidade Total: Se os eventos $A_1,...,A_n$ são mutuamente exclusivos e formam uma partição do evento certo

$$P(B) = \sum_{i=1}^{n} P(B/A_i)P(A_i)$$

Teorema da Probabilidade Total

$$P(A) = \sum_{k} P(A/B_{k})P(B_{k})$$

Teorema da Multiplicação de Probabilidades

$$P(A_1 \cap \cdots \cap A_n) = P(A_n / A_1 \cap \cdots \cap A_{n-1}) P(A_1 \cap \cdots \cap A_{n-1})$$

$$\downarrow \downarrow$$

$$P(A_1 \cap \cdots \cap A_n) = P(A_n / A_1 \cap \cdots \cap A_{n-1}) \cdots P(A_2 / A_1) P(A_1)$$

Esse resultado permite calcular a probabilidade de ocorrência simultânea de vários eventos a partir das probabilidades condicionais.

Algoritmo de aprendizagem da Probabilidade Máxima à Posteriori - MAP

 Para cada hipótese h ∈ H, calcule a probabilidade a posteriori

$$P(h/D) = \frac{P(D/h)P(h)}{P(D)}$$

2. Escolha a hipótese h_{MAP} de maior probabilidade à posteriori

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(h/D)$$

Classificação mais provável de uma nova instância

- Dada uma nova instância x, qual é a sua classificação mais provável?
 - \bowtie $h_{MAP}(x)$ não é a classificação mais provável

Considere,

- □ Três hipóteses:
 - $P(h_1/D) = 0.4$, $P(h_2/D) = 0.3$ e $P(h_3/D) = 0.3$
- □ Dada uma nova instância x,
 - \boxtimes Suponha: $h_1(x) = +, h_2(x) = -e h_3(x) = -$
- M A classificação mais provável de x: -

Classificador Bayesiano Ótimo

 \square Um novo exemplo pode ser classificado como $v_j \in V$, a probabilidade de que a classificação correta seja v_j

$$P(v_j/D) = \sum_{h_i \in H} P(v_j/h_i)P(h_i/D)$$

Classificação Bayesiana ótima

$$\underset{v_j \in V}{\operatorname{argmax}} \sum_{h_i \in H} P(v_j/h_i) P(h_i/D)$$

Classificador Bayesiano Ótimo

$$P(h_1/D) = 0.4, P(-/h_1) = 0, P(+/h_1) = 1$$

$$P(h_2/D) = 0.3, P(-/h_1) = 1, P(+/h_1) = 0$$

$$P(h_3/D) = 0.3, P(-/h_3) = 1, P(+/h_1) = 0$$

□ Portanto

$$\sum_{h_i \in H} P(+/h_i) P(h_i/D) = 0.4$$

$$\sum_{h_i \in H} P(-/h_i) P(h_i/D) = 0.6$$

Classificador Bayesiano Ingênuo

- Junto com as árvores de decisão, redes neurais, vizinhos mútuos, um dos métodos de aprendizagem mais práticos
- □ Quando usa-lo
 - Quando disponível um conjunto de treinamento médio ou grande
 - Os atributos que descrevem as instâncias forem condicionalmente independentes dada uma classificação

Aplicações de Sucesso

- □ Diagnóstico

Classificador Bayesiano Ingênuo

- Suponha uma função de classificação $f: X \to V$, onde cada instância x é descrita pelos atributos $\{a_1, ..., a_n\}$
- \boxtimes O valor mais provável de f(x) é

$$v_{MAP} = \underset{v_{j} \in V}{\operatorname{argmax}} P(v_{j}/a_{1}, \dots, a_{n})$$

$$= \underset{v_{j} \in V}{\operatorname{argmax}} \frac{P(a_{1}, \dots, a_{n}/v_{j})P(v_{j})}{P(a_{1}, \dots, a_{n})}$$

$$= \underset{v_{j} \in V}{\operatorname{argmax}} P(a_{1}, \dots, a_{n}/v_{j})P(v_{j})$$

- Suposição Bayesiana Ingênua $P(a_1, \dots, a_n/v_j) = \prod_i P(a_i/v_j)$

$$v_{NB} = \underset{v_{j} \in V}{\operatorname{argmax}} P(v_{j}) \prod_{i} P(a_{i} / v_{j})$$

Algoritmo Bayesiano Ingênuo

- □ Aprendizagem_Bayesiana_Ingênua(exemplos)
 - Para cada v_j
 - \bowtie P'(v_j) \leftarrow estimativa de P(v_j)
 - Para cada valor ai de cada atributo a
 - \bowtie P'(a_i/v_j) \leftarrow estimativa de P(a_i/v_j)
- □ Classificador_Novas_Instancias(x)

$$v_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P'(v_j) \prod_{a_i \in x} P'(a_i / v_j)$$

Classificador bayesiano ingênuo: exemplo

⊠ Dia	Tempo	Temp	. Humic	<u>d.</u>	Vento
Jogan	是是				
⊠D1	Sol G	(uente	Alta	Fraco	Não
⊠D2	50 G	(uente	Alta	Forte	Não
⊠ D3	Coberto	Quen	te Alta	Fraco	Sim
⊠D4	Chuva	Norm	al Alta	Fraco	Sim
	Chuva	Frio	Normal	Fraco	Não
⊠D6	Chuva	Frio	Normal	Forte	Não
⊠ D7	Coberto	Frio	Normal	Forte	Sim
⊠ D8	Sol	Norm	al Alta	Fraco	Não
⊠ D9	Sol	Frio	Normal	Fraco	Sim
⊠D10	Chuva	Norma	al Norma	al Frace	Sim
	an A-ri		The state of		
⊠ D11	Sol	Frio	Alta	Forte	2 ?

- \bowtie P(Sim) = 5/10 = 0.5
- \bowtie P(Não) = 5/10 = 0.5
- \bowtie P(Sol/Sim) = 1/5 = 0.2
- \bowtie P(Sol/Não) = 3/5 = 0.6
- \bowtie P(Frio/Sim) = 2/5 = 0.4
- P(Frio/Não) = 2/5 = 0.4
- \bowtie P(Alta/Sim) = 2/5 = 0.4
- \bowtie P(Alta/Não) = 3/5 = 0.6
- \bowtie P(Forte/Sim) = 1/5 = 0.2
- \bowtie P(Forte/Não) = 2/5 = 0.4
- P(Sim)P(Sol/Sim) P(Frio/Sim)
- \bowtie P(Alta/Sim) P(Forte/Sim) = 0.0032
- ∠ P(Não)P(Sol/Não)P(Frio/Não)
- P(Alta/Não) P(Forte/Não) = 0.0288
- $\bowtie \Rightarrow Jogar_Tenis(D11) = Não$

Algoritmo Bayesiano Ingênuo: Dificuldades

Suposição de independência condicional quase sempre violada

$$P(a_1,\dots,a_n/v_j) = \prod_i P(a_i/v_j)$$

- Mas funciona surpreendentemente bem
- \square O que acontece se nenhuma das instancias classificadas como v_j tiver o valor a_i ?

$$P'(a_i/v_j) = 0 \Longrightarrow P'(v_j) \prod_i P'(a_i/v_j) = 0$$

Algoritmo Bayesiano Ingênuo: Dificuldades

$$P'(a_i/v_j) \leftarrow \frac{n_c + m \times p}{n + m}$$

- Número de exemplos para os quais v = v_j
- \bowtie N_c número de exemplos para os quais $v = v_j$ e a = a_i
- \triangle P é a estimativa à priori para P'(a_i/v_j)
- Mé o peso dado à priori (número de exemplos "virtuais")

□ Interesse

- Suposição de independência condicional muito restritiva
- Mas sem esse tipo de suposição em algum nível o problema se torna intratável
- Redes Bayesianas descrevem independência condicional entre subconjuntos de variáveis
 - Permite a combinação do conhecimento a priori sobre a independência entre variáveis com os dados observados

Independência Condicional

X é condicionalmente independente de Y dado Z se a distribuição de probabilidade de X é independente do valor de Y dado o valor de Z

$$(\forall x_i, y_i, z_i)P(X = x_i/Y = y_j, Z = z_k) = P(X = x_i/Z = z_k)$$

 $P(X/Y, Z) = P(X/Z)$

- Exemplo: Trovão é condicionalmente independente de Chuva, dado Relâmpago
 - ∠ P(Trovão/ Chuva, Relâmpago) = P(Trovão/ Relâmpago)
 - Regra do Produto:

$$P(X,Y/Z) = P(X/Y,Z)P(Y/Z)$$
$$= P(X/Z)P(Y/Z)$$

	T,O	Т,¬О	¬Т, О	¬Т, ¬О
FC	0.4	0.1	0.8	0.2
¬FC	0.6	0.9	0.2	0.8

Fogo no Acampamento

- A rede representa um conjunto de asserções de independência condicional
 - Cada nó é condicionalmente independente dos seus não descendentes, dados os seus predecessores imediatos
 - M Grafo acíclico direto

- Representa a distribuição de probabilidade conjunta entre todas as variáveis
 - Exemplo, P(Tempestade, ..., Fogo na Floresta)

$$P(y_1, \dots, y_n) = \prod_{i=1}^{n} P(y_i / \text{Predecessores}(Y_i))$$

- Onde Predecessores(Y_i) significa predecessores imediatos de Y_i no grafo
- \bowtie A distribuição conjunta é definida pelo gafo mais os $P(y_i / Predecessores(Y_i))$

Redes Bayesianas: representação do conhecimento para raciocínio com incerteza

- Representa 3 tipos de conhecimento do domínio:
 - relações de independência entre variáveis aleatórias (graficamente);
 - · probabilidades a priori de algumas variáveis;
 - · probabilidades condicionais entre variáveis dependentes.
- ≥ Permite calcular eficientemente:
 - probabilidades a posteriori de qualquer variável aleatória(inferência);
 - · usando para isso uma definição recursiva do teorema de Bayes.
- □ Conhecimento representado:
 - · pode ser aprendido a partir de exemplos
 - · reutilizando parte dos mecanismos de raciocínio

Estrutura de uma rede bayesiana

- ∠ Cada variável aleatória (VA) é representada por um nó da rede
- ∠ Cada nó (VA) recebe conexões dos nós que têm influência direta (seus pais) sobre ele. (Tarefa fácil para o especialista)
- □ Cada nó possui uma tabela de Probabilidades Condicionais que quantifica a influência dos seus pais sobre ele. (Difícil para o especialista)
- □ O grafo é acíclico

Construção (manual) de uma rede bayesiana

- Escolher variáveis relevantes que descrevam o domínio;
- Escolher uma ordem para as variáveis;
- Enquanto tiver variáveis sobrando:
 - · pegar uma variável e adicionar um nó na rede para ela;
 - criar links dos nós anteriormente inseridos que satisfaçam a independência condicional;
 - · definir a tabela de probabilidade condicional para a variável.

Exemplo simples de rede bayesiana (cont.)

Decomposição da Probabilidade Conjunta

$$P(x_1, x_2,..., x_n) = P(x_1) \times P(x_2 | x_1) \times P(x_3 | x_1, x_2)$$

Essa decomposição deixa clara a necessidade de a rede bayesiana ser um grafo acíclico

Tipos de conhecimento

- Refletem a direção conhecida de causalidade no mundo: para algumas propriedades do mundo percepções são geradas.
- ex, P(DorDeDente | Cárie), P(Mary Calls | Alarme)

□ Diagnóstico

- Infere a presença de propriedades escondidas diretamente da percepção.
- Produzem conclusões fracas.
- ex, P(Ca'rie | Dor De Dente), P(Alarme | Mary Calls)

Ordenar nós de uma rede bayesiana

- Ma Algoritmo de construção apresentado especifica a ordem
- Raízes sempre causais, folhas sem influência causal sobre nenhuma outra variável
- - · concisão da rede
 - eficiência computacional (pior caso volta a distribuição de probabilidade conjunta)

Exemplo de rede bayesiana não puramente causal

- ∨ Vamos usar o exemplo do alarme com a seguinte ordem de inserção dos nós:
 - · MaryCalls, JohnCalls, Alarme, Roubo e Terremoto.

Exemplo de rede bayesiana não puramente causal (cont.)

□ Problemas:

- · A figura possui duas conexões a mais;
- · julgamento não natural e difícil das probabilidades;
- □ Tendo uma rede puramente causal, teríamos um número menor de conexões
- □ Podemos piorar ainda mais a nossa configuração da rede, seguindo a seguinte ordem de criação:
 - · MaryCalls, JohnCalls, Terremoto, Roubo e Alarme.

Exemplo de rede bayesiana não puramente causal (cont.)

Versatilidade das redes bayesianas

- Redes Bayesianas oferecem 4 tipos de inferência:
 - · Causal (da causa para o efeito)
 - P(JohnCalls/Roubo) = 0,86

- · Diagnóstico (do efeito para a causa)
 - P(Roubo/JohnCalls) = 0,016

Versatilidade das redes bayesianas

- Intercausal (entre causas com um efeito comum)
 - P(Roubo/Alarme) = 0,376
 - P(Roubo/Alarme \Terremoto) = 0,373

- · Mista (combinando duas ou mais das de cima)
 - P(Alarme/JohnCalls ∧¬Terremoto) = 0,03
 - Este é um uso simultâneo de inferência causal e diagnóstico.

Inferência em Redes Bayesianas

- Como inferir as probabilidades dos valores de uma ou mais variáveis na rede, à partir das probabilidades dos valores das outras variáveis
 - A rede Bayesiana contém toda a informação necessária para essa inferência
 - Quando se trata de apenas uma variável, a inferência é trivial
 - ⋈ No caso geral, o problema é NP hard
- Na prática, pode-se alcançar-la de várias formas
 - Métodos exatos de inferência funcionam bem para algumas estruturas de rede
 - Métodos de tipo Monte Carlo "simulam" a rede aleatoriamente para obter soluções aproximadas

Aprendizado em redes bayesianas

□ 4 problemas de aprendizagem:

- · Estrutura conhecida, completamente observável
 - as tabelas de probabilidade condicionada podem ser estimadas usando o conjunto de exemplos com classificador ingênuo? de Bayes
- · Estrutura desconhecida, completamente observável
 - o problema é construir a topologia da rede. Busca no espaço de estruturas.
- · Estrutura conhecida, variáveis escondidas
 - caso parecido com aprendizado em redes neurais
- · Estrutura desconhecida, variáveis escondidas
 - não se conhece algoritmos para este tipo de problema

Exemplo da tarefa de aprendizagem

Aprender probabilidades com estrutura fixa

- □ Tarefa de aprendizagem
 - · Dados:
 - relações de independência entre variáveis aleatórias (estrutura)
 - probabilidades a priori das variáveis "de entrada"
 - probabilidades a posteriori de variáveis "de saída"
 - · Calcular:
 - probabilidades condicionais das variáveis dependentes
- □ 2 algoritmos principais:
 - gradiente ascendente de P(D|Hi) muito parecido com aprendizagem de pesos em redes neurais
 - · algoritmo EM (Estimação Média)
 - · ambos iterativos e sujeito a encontrar mínimo local

Aprendizagem de Redes Bayesianas

- - A estrutura da rede pode ser conhecida ou desconhecida
 - O conjunto de treinamento pode fornecer valores para todas as variáveis da rede ou para somente algumas
- Se a estrutura é conhecida e todas as variáveis observadas
 - Então é tão fácil como treinar um classificador Bayesiano ingênuo

Aprendizagem de Redes Bayesianas

- Suponha a estrutura conhecida e variáveis parcialmente observáveis
 - Exemplo, observa-se fogo na Floresta, Tempestade, Ônibus de turismo, mas não Raio, Fogo no Acampamento
 - Problema similar o treinamento de uma rede neural com variáveis ocultas
 - Aprende-se a tabela de probabilidades condicionais de cada nó usando o algoritmo do gradiente ascendente
 - Sistema converge para a rede h que maximiza localmente P(D/h)

Gradiente Ascendente p/ Redes Bayesianas

- Seja w_{ijk} uma entrada na tabela de probabilidade condicional para a variável Y_i na rede
- \bowtie $W_{ijk} = P(Y_i = y_{ij}/Predecessores(Y_i) = lista u_{ik} de valores)$
- \boxtimes Exemplo, se Y_i = Fogo no Acampamento, então u_{ik} pode ser { Tempestade = T, $\hat{O}nibus de Turismo = F$ }
- Marie Aplicar o gradiente ascendente repetidamente
 - 1. Atualizar todos os w_{ijk} usando os dados de treinamento D

$$\mathbf{w}_{ijk} \leftarrow \mathbf{w}_{ijk} + \eta \sum_{d \in D} \frac{P_h(y_{ij}, u_{ik}/d)}{\mathbf{w}_{ijk}}$$

2. Normalizar os w_{ijk} para assegurar

$$\sum_{i} w_{ijk} = 1 \qquad e \qquad 0 \le w_{ijk} \le 1$$

Aprendizagem em Redes Bayesianas

- ○ O algoritmo EM também pode ser usado. Repetir:
 - 1. Calcule as probabilidades das variáveis não observadas, supondo h verdadeira
 - 2. Calcule novo w_{ijk} que maximize E[In P(D/h)], onde D agora inclui tanto as variáveis observadas como as probabilidades calculadas das não observadas
- □ Quando a estrutura é desconhecida

Sumário de Redes Bayesianas

- O impacto do conhecimento a priori (quando correto) é a redução da amostra de dados necessários
- - Passar de variáveis Booleanas para variáveis numéricas
 - Distribuições em vez de tabelas
 - ∠ógica de primeira ordem no lugar de proposicional
 - Métodos de inferência mais efetivos

Expectation Maximization (EM)

- □ Quando usar:

 - Aprendizagem não supervisionada (Clustering, os grupos são desconhecidos)
 - Aprendizagem Supervisionada (alguns valores de algumas variáveis não são observados
- - □ Treinamento das redes Bayesianas

 - ⊠ etc

Geração de Dados a partir de k Gaussianas

- - 1. Escolhendo uma das k Gaussianas com probabilidade uniforme
 - Gerando uma instancia aleatoriamente de acordo com essa Gaussiana

EM para a estimação de k médias

- - □ Instancias de x geradas pela mistura de k distribuições Gaussianas
 - Médias desconhecidas <μ₁, ..., μ_k> das k Gaussianas
 - \bowtie Não se sabe que instancia x_i foi gerada por qual Gaussiana
- □ Determine
 - \bowtie Estimativas de Máxima Verossimilhança de $\langle \mu_1, ..., \mu_k \rangle$
- Considere a descrição completa de cada instancia como $y_i = \langle x_i, z_{i1}, z_{i2} \rangle$, onde
 - $extstyle z_{ij}$ é 1 se x_i for gerado pela j-ésima Gaussiana

EM para a estimação de k médias

- \bowtie EM algoritmo: Selecione aleatoriamente uma hipótese inicial h = < μ_1 , μ_2 >
- Passo E: Calcule o valor esperado $E[z_{ij}]$ de cada variável oculta z_{ij} , supondo válida a hipótese atual $h = \langle \mu_1, \mu_2 \rangle$

$$E[z_{ij}] = \frac{p(x = x_i / \mu = \mu_j)}{\sum_{n=1}^{2} p(x = x_i / \mu = \mu_n)} = \frac{exp\left[-\frac{1}{2\sigma^2}(x_i - \mu_j)^2\right]}{\sum_{i=1}^{n} exp\left[-\frac{1}{2\sigma^2}(x_i - \mu_n)^2\right]}$$

EM para a estimação de k médias

Passo M: Calcule a nova hipótese de Máxima Verossimilhança h' = $\langle \mu'_1, \mu'_2 \rangle$, supondo que o valor assumido por cada variável oculta z_{ij} é o valor esperado $E[z_{ij}]$ já calculado. Troque h = $\langle \mu_1, \mu_2 \rangle$ por h' = $\langle \mu'_1, \mu'_2 \rangle$.

$$\mu_{j} \leftarrow \frac{\sum_{i=1}^{m} E[z_{ij}] x_{i}}{\sum_{i=1}^{m} E[z_{ij}]}$$

Exemplo de aplicação bem sucedida de redes bayesianas: PathFinder

- Sistema especialista p/ diagnóstico de doenças nós linfáticos.
 - PathFinder I sistema baseado em regras sem incerteza.
 - · PathFinder II
 - comparando vários métodos de representação da incerteza
 (teoria de crença de Dempster-Shafer, coeficientes de incerteza,etc)
 - modelo bayesiano simplificado (todas as doenças assumidas independentes) melhor de todos (10% de erro)
 - <u>PathFinder III</u> modelo bayesiano melhorado com aquisição mais cuidadosa das probabilidades a priori com especialistas
 - <u>PathFinder IV</u> Redes Bayesianas
 - melhor do que os especialistas cujo conhecimento foi codificado

Bibliografia

- Russel, S, & Norvig, P. (1995). Artificial Intelligence: a Modern Approach (AIMA) Prentice-Hall. Pages 436-458, 588-593
- Marks An Introduction to Baysean Networks
- Mitchell, T. & (1997): Machine Learning, McGraw-Hill. Cap.6
- □ Fayyad et al. (1996): Advances in knowledge discovery and data mining, AAAI Press/MIT Press. Cap.11
- Pearl, J. (1988) Probabilistic Reasoning in Inteligent Systems