SPRAWOZDANIE

PRZEDMIOT: ZOUL

NUMER PROJEKTU: ZOUL projekt 2-2

AUTOR: **DAWID SUDOWSKI**

NR ALBUMU: 283640

SEMETR: 22Z

TEMAT PROJEKTU: Analiza sygnału na wyjściu optycznego połączenia

Problem projektowy:

W projekcie należy wyznaczyć widmo sygnału optycznego na wyjściu odbiornika będącego ostatnim elementem optycznego połączenia oraz transformatę odwrotną Fouriera tego widma dla wskazanych parametrów układu.

Budowa układu:

Rys. 1 Struktura układu optycznego połączenia złożonego z trzech głównych elementów: nadajnika, światłowodu i odbiornika. Każdy z nich opisany jest bezwymiarową znormalizowaną funkcją transmisji zależną od częstości $H_{0,1,2}(\omega)$ oraz parametrem czasu $T_{0,1,2}$.

Schemat z rys. 1 przedstawia badany układ. W nadajniku produkowany jest optyczny impuls o amplitudzie A0. Natomiast $H_0(\omega)$ jest funkcją widmową optycznego impulsu. Nadajnikiem najczęściej jest laser półprzewodnikowy modulowany poprzez zmianę prądu zasilającego lub poprzez zastosowanie zewnętrznego modulatora. Nadajnik produkuje impuls opisany w dziedzinie czasu funkcją P0(t), której widmo Fourierowskie to $S_0(\omega)$. Optyczny impuls na wyjściu z włókna jest iloczynem funkcji widmowej impulsu oraz widma tego światłowodu. Propagację światła przez włókno opisuje się dwiema funkcjami. Pierwsza to D_1 , która opisuje straty i druga będąca funkcją transferu start $H_1(\omega)$. Odbiornikiem jest najczęściej fotodioda lawinowa, której współczynnik zwielokrotnienia zapisuje się jako M, a jej wzmocnienie jako G.

Sygnał na wyjściu optycznego połączenia w funkcji częstości ω . Sygnał wyjściowy układu $S_2(\omega)$ jest wynikiem transmisji impulsu optycznego przez cały układ. Zależy on od poszczególnych elementów układu.

Od nadajnika, czyli lasera który emituje promieniowanie koherentne zwykle o długości fali λ = 1,3 µm z maksymalną mocą wynoszącą P_{0max} = 0,5 mW. Od włókna, którego straty zwykle wynoszą α =3 dB/km. Sygnał ten zależy również od odbiornika, czyli fotodiody charakteryzującej się pewną opornością, wzmocnieniem i współczynnikiem zwielokrotnienia.

W niniejszej analizie, sygnał wyjściowy układu dla uproszczenia został zapisany jako: $S_2(\omega) = H_0(\omega) \cdot H_1(\omega) \cdot H_2(\omega) \, .$

Zakłada się, że nadajnik wytwarza sygnał prostokątny, dlatego funkcję widmową optycznego impulsu można zapisać jako:

$$H_0(\omega) = \frac{\sin(\omega T_0)}{\omega T_0}.$$

T₀ jest znormalizowaną szerokością impulsu. Czas trwania impulsu T związany jest z szybkością transmisji bitów nadajnika R₀:

$$T = \frac{1}{R_0}.$$

Funkcja $H_1(\omega)$ jest znormalizowaną funkcją filtru, w przybliżeniu wyrażona filtrem Gaussowskim dolnoprzepustowym:

$$H_1(\omega) = e^{\frac{-1}{\pi}(\omega I_1)^2},$$

gdzie T₁ jest to parametr włókna związany z pasmem B₁ oraz szybkością transmisji bitów nadajnika R₀:

$$T_1 = \frac{R_0}{2B_1}.$$

Szerokość pasma włókna B₁ jest zależna od długości L₁ i L_C:

$$B_1 = B_L \left(\frac{1}{L_1} + \frac{1}{3L_c} \right),$$

gdzie L_C jest to długość drogi sprzężenia modów, a B_L jest to długość szerokości pasma. Zależność na B_1 jest prawdziwa, gdy długość włókna L_1 zawiera się w przedziale: $0 < L_1 < 3L_C$. Optyczny odbiornik opisany jest funkcją transferu filtru dolno-przepustowego $H_2(\omega)$:

$$H_2(\omega) = \frac{1}{2} \left[1 + \cos(\omega T_2) \right], \quad \text{gdy} \quad \left| \omega \right| \le \frac{2\pi}{T_2},$$

gdzie T₂ jest to parametr odbiornika.

Wykres 1 Porównanie sygnału wyjściowego ${\rm H_0}(\omega)$ z sygnałem wyjściowym ${\rm S_2}(\omega)$

Maksimum sygnału obserwuje się dla ω = 0. Sygnał wyjściowy $S_2(\omega)$ jest sygnałem $H_0(\omega)$, który został przepuszczony przez filtr dolnoprzepustowy. Przez ten fakt, nie będzie to już impuls prostokątny oraz energia sygnału wyjściowego ($S_2(\omega)$) względem energii sygnału wejściowego ($H_0(\omega)$) będzie mniejsza, co oznacza, że $S_2(\omega)$ został stłumiony.

Sygnał wyjściowy $S_2(\omega)$ dla różnych szybkości transmisji bitów R_0 =10, 50, 100, 200 Mbit/s:

Maksimum sygnałów wyjściowych $S_2(\omega)$ dla każdego R_0 występuje dla każdej z charakterystyk dla tej samej częstości znormalizowanej, czyli dla ω = 0.

Czas trwania impulsu T jest związany z R₀ zależnością T = 1/R₀.

Z **Wykresu 2** można zaobserwować zwiększanie się zajmowanego pasma przez widmo sygnału optycznego na wyjściu odbiornika $S_2(\omega)$ wraz ze spadkiem szybkości transmisji bitów przez nadajnik R_0 . Im większe jest R_0 , tym mniejszy jest czas impulsu a światłowód posiada cechy filtru dolnoprzepustowego, co powoduje, że zmniejsza się pasmo przepustowe układu, a zwiększa pasmo zaporowe.

Z charakterystyk można wywnioskować, że częstotliwość graniczna badanego układu zmniejsza się wraz ze wzrostem wartości R_0 (szybkość transmisji bitów). Obserwuje się także osłabienie poziomu sygnału wyjściowego $S_2(\omega)$ w dziedzinie częstotliwości, czyli oznacza to stłumienie sygnału $s_2(t)$ w dziedzinie czasu.

Transformata odwrotna Fouriera s₂(t) dla różnych szybkości transmisji bitów R_o=10, 50, 100, 200 Mbit/s:

Maksimum każdego z obserwowanych sygnałów w dziedzinie czasu przypada dla tej samej chwili czasu t = 0 i wraz z jego upływem wartości sygnałów zanikają do wartości zerowej.

Z **Wykresu 3** obserwuje się zmniejszoną wartość maksymalną sygnału wyjściowego $s_2(t)$, która przypada dla chwili czasowej t=0 wraz ze wzrostem szybkości transmisji bitów nadajnika R_0 .

Kolejną obserwacją jest zauważenie, że wraz ze wzrostem szybkości transmisji bitów R_0 , łagodniej opada zbocze sygnału s_2 . Jest to związane z wpływem światłowodu, który ma charakter filtru dolnoprzepustowego, co dla sygnału prostokątnego, który posiada wiele składowych szybkozmiennych oznacza ich wytłumienie. Im większa jest wartość R_0 , tym wolniej zanika sygnał, to oznacza, że jest bardziej rozmyty.

Czas trwania impulsu T zależny od wartości R₀ i jest opisany zależnością T = 1/R₀. Im impuls trwa krócej, tym dla szerszego pasma częstotliwości występuje jego widmo. Przez fakt użycia światłowodu jako elementu łączącego nadajnik z odbiornikiem na propagację sygnału ma wpływ dyspersja chromatyczna. Dyspersja chromatyczna jest to zależność współczynnika załamania światła włókna światłowodowego od długości fali (częstotliwości), co oznacza zależność prędkości propagacji sygnału w światłowodzie od długości fali. Składowe sygnału prostokątnego propagują z różnymi prędkościami, co z punktu widzenia transmisji oznacza, że sygnał wyjściowy jest dłuższy niż na wejściu oraz ma niższą moc maksymalną w porównaniu do mocy generowanej przez nadajnik.

Wykres 4

Sygnał wyjściowy $S_2(\omega)$ dla różnych długości włókna $L_1 = 10,\, 15,\, 20,\, 25 \; \mathrm{km} ;$

Maksimum obserwowanych charakterystyk przypada dla wartości ω=0.

Wraz ze wzrostem długości włókna L_1 wzrasta tłumienie w paśmie zaporowym światłowodu jako filtra dolnoprzepustowego. Im wyższa częstotliwość sygnału tym silniej wraz ze wzrostem długości włókna L_1 będzie ona tłumiona. Oznacza to spadek częstotliwości granicznej wraz ze wzrostem L_1 .

Wykres 5
Transformata odwrotna Fouriera s₂(t) dla różnych długości włókna

Obserwowane sygnały z *Wykresu* 5 przyjmują wartość maksymalną dla czasu *t*=0, a wraz z upływem czasu zanikają do zera.

Obserwuje się także silniejsze tłumienie maksymalnej wartości sygnału wyjściowego s₂, wraz ze wzrostem długości włókna L₂. Oznacza to spadek mocy sygnału wraz ze wzrostem L₁.

Za obserwowane zjawiska wraz ze wzrostem długości L₁ odpowiada dyspersja oraz inne efekty (m.in. szumy termiczne, rozpraszanie na zaburzeniach struktury materiału) opisane przez parametr tłumienności światłowodu. Parametr tłumienności zwyczajowo do ręcznych obliczeń przyjmuje się jako 0,3 dB/km.

Wykres 6

Sygnał wyjściowy $\,{\rm S}_2(\omega)\,$ dla różnych długości pasma $\,{\rm B_L}$ =100, 500, 1000 MHzkm:

Maksimum obserwowanych widm występuje dla wartości znormalizowanej ω = 0. Szerokość pasma włókna jest proporcjonalna do długości pasma B_L. Obserwuje się zależność silniejszego tłumienia sygnałów wraz ze skracaniem się długości pasma B_L. Skracanie pasma B_L powoduje zwiększanie się pasma zaporowego układu i zmniejszanie się pasma przepustowego układu. To znaczy, że częstotliwość graniczna układu maleje wraz ze spadkiem B_L.

Wykres 7

Transformata odwrotna Fouriera s₂(t) dla różnych długości pasma B_L=100, 500, 1000 MHzkm:

Obserwowane sygnały w dziedzinie czasu przyjmują wartość maksymalną dla chwili czasowej t = 0. Wraz z upływem czasu ich wartości spadają do zera.

Na podstawie wykresów można zaobserwować zależność silniejszego tłumienia maksymalnej wartości sygnału wyjściowego $s_2(t)$ wraz ze spadkiem długości szerokości pasma B_L . To znaczy, że im mniejsza jest wartość długości pasma B_L , tym mniejszą moc maksymalną ma sygnał $s_2(t)$.

Zmniejszanie się wartości B_L zwiększa długość zbocza, co oznacza, że im mniejsze jest B_L, tym silniej rozmyty jest sygnał na wyjściu badanego układu.