(27-Sep-2018) Revision Fo,T: pre-paid forward price - forward price $F_{0,T} = (FV)(F_{0,T})$ Synthetic product Pagoff of Forward = [ST -]C Long I forward At meturing -> 1 unit of cussed + \$(-1<) cash At today; portfollo at today to What is your at maturity?

Divided paying stock

At today

At wetning

e-ST unit of stock

Bowow Ke-rT

A

At Metning

I unit of stock

Bowow Ke-rT

A

-\$K

Commodity vs Francial asset (Storage cost) + Expense of owner Production / Dincome of owner Expense of owner => # Fort Income of owner = > 1 Fort Storage cost => 9 Fo,7 Convenience yield \$ \$ For7 Shape of Forward Curve Fo,7 1 1-870 [Financial asset Fort = So C (r-8)T

Introduction to Commodity Forwards (cont'd)

TABLE 6.1

Futures prices for various commodities, March 17, 2011.

Expiration Month	Corn (cents/ bushel)	Soybeans (cents/ bushel)	Gasoline (cents/ gallon)	Oil (Brent) (dollars/ barrel)	Gold (dollars/ ounce)
April	_	_	2.9506	_	1404.20
May	646.50	1335.25	2.9563	114.90	1404.90
June 4	_)—	2.9491	114.65	1405.60
July	653.75	1343.50	2.9361	114.38	_
August		_	2.8172	114.11	1406.90
September	613.00	1321.00	2.8958	113.79	_
October		_	2.7775	113.49	1408.20
November	_	1302.25	2.7522	113.17	_
December	579.25	_	2.6444	112.85	1409.70

Data from CME Group.

Backwardatim Contango Financial assit Storage Cost dividend L) discrete Di La Discrete Ui. La cts F6,7 = FX So SEPVosti (Di) Fort = FV[Soft] PVorti Fo,7 = So C

U: Storage cost per your commodity price

Introduction to Commodity Forwards (cont'd)

TABLE 6.1

Futures prices for various commodities, March 17, 2011.

Expiration Month	Corn (cents/ bushel)	Soybeans (cents/ bushel)	Gasoline (cents/ gallon)	Oil (Brent) (dollars/ barrel)	Gold (dollars/ ounce)
April		_	2.9506	_	1404.20
May	646.50	1335.25	2.9563	114.90	1404.90
June 4		_	2.9491	114.65	1405.60
July	653.75	1343.50	2.9361	114.38	_
August		_	2.8172	114.11	1406.90
September	613.00	1321.00	2.8958	113.79	_
October	_	_	2.7775	113.49	1408.20
November	$\setminus -$	1302.25	2.7522	113.17	_
December	579.25	_	2.6444	112.85	1409.70

Data from CME Group.

Convenience yield: y $F_{0,7} = S_0 e^{(r+u-y)T}$ $F_{0,7} = \left[S_0 + \sum_{n=1}^{\infty} PV_{0,7n}(u_n)\right] e^{(r+y)T}$

Reference (Financial asset)

Fort = Su C (1-8)T

Convenience yield plays the Some role as the divident yield.

"Gold miner" Se = 4 - 4 Fort = Sue (-(Se)) T lease rate $T_{0,7} = S_0 e^{\int_0^7 (Y cs)} - (S_{\ell}(s)) ds$ deterministic Weler stochestin interest rute Assume Sels) is deterministic.

Assume $S_{\ell}(s)$ is determine $-S_0^T S_{\ell}(s) ds$ $F_{0,7} = S_0 e^{-S_0^T S_{\ell}(s)} ds$ P[0,T]

Cost of Carry

= r + u - y

r: borrowed interest

U: Storage cost

y: convenience y/e/el.

Zero-compon yield.

r(o,n) = roco,n]

 $PV_{0,N}(1) = \frac{1}{(1+r(0,N))^n} = P(0,N)$

(rlo,n) Zevo-coyan yield price of N-year
Zero-coupon bond
with face volue = \$1

Bond Basics (cont'd)

 Zero-coupon bonds make a single payment at maturity

TABLE 7.1	Five ways to present equivalent information about default-free interest rates.		
	All rates but those in the last column are effective annual rates.		

Years to Maturity	(1) Zero-Coupon Bond Yield	(2) Zero-Coupon Bond Price	(3) One-Year Implied Forward Rate	(4) Par Coupon	(5) Continuously Compounded Zero Yield
1	6.00%	0.943396	6.00000%	6.00000%	5.82689%
2	6.50	0.881659	7.00236	6.48423	6.29748
3	7.00	0.816298	8.00705	6.95485	6.76586

Column 1 $0.943 = \frac{1}{1+10,1} \Rightarrow r(0,1) = 6\%$ $0.8817 = \frac{1}{1+10,2} \Rightarrow r(0,2) = 6.5\%$

$$\frac{\text{Column 3}}{(1+V_{0}(0,1))^{4}} = \frac{P(0,0)}{P(0,1)} \Rightarrow \text{ri}(0,1) \geq 6\%$$

$$(1+V_{0}(1,2)) = \frac{P(0,1)}{P(0,2)} \Rightarrow V_{0}(1,2) = 7.002\%$$

•

Coupin-paying bond Price = 5 PVosti (C) + PVosti (1) Coupan = 1 2 c (Plosti) + Plosta) "STRIPS" purtfolio of Zero-compon bonds. 2-yr coupon Soul Price = CP(0,1) + CP(0,2) +P(0,2) By a 2-yr coupon bond (C) + Sell a 1-yr zero-corpor sont with face value = C = cp(0,1) + cp(0,2)+p10,2) C P(0,1) = (+1)P(0,2)