Veritabanı Yönetim Sistemleri (335)

Dr. Öğr. Üyesi Ahmet Arif AYDIN

L9-

İlişkisel Veri Modeli

(Relational Data Model)

GÜZ -2022

Sorular

- ER Model
 - Ternary relationship, aggregation
 - composition, has-a
 - ER model neden önemlidir?
- UML(Unified Modeling Language) nedir ?
 - UML'in kullanım alanları nelerdir?
 - UML diagram çeşitleri nelerdir ? (Yapısal, Davranışsal)
 - UML Diagramlar: Activity, Class, Sequence, ..,

Sorular-2

- Nesne Tabanlı Programlama Kavramları
 - Abstraction (soyutlama)
 - Encapsulation (kapsülleme)
 - Information hiding (bilgi gizleme)
 - Inheritance (kalıtım)
 - Polymorphism (çok biçimlilik)

İlişkisel Veri Modeli

1970'de Edgar Codd

- IBM's San Jose Research Lab
- İlişkisel veri modeli (relational data model) kavramını ortaya çıkarmıştır
- 1981 tarihinde ACM's Turing ödülünü almıştır.

İlişkisel Veri Modeli

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for Large Shared Data Banks

E. F. Codd IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from having to know how the data is organized in the machine (the internal representation). A prompting service which supplies such information is not a satisfactory solution. Activities of users at terminals and most application programs should remain unaffected when the internal representation of data is changed and even when some aspects of the external representation are changed. Changes in data representation will often be needed as a result of changes in query, update, and report traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users with tree-structured files or slightly more general network models of the data. In Section 1, inadequacies of these models are discussed. A model based on n-ary relations, a normal form for data base relations, and the concept of a universal data sublanguage are introduced. In Section 2, certain operations on relations (other than logical inference) are discussed and applied to the problems of redundancy and consistency in the user's model.

KEY WORDS AND PHRASES: data bank, data base, data structure, data organization, hierarchies of data, networks of data, relations, derivability, redundancy, consistency, composition, join, retrieval language, predicate calculus, security, data integrity

The relational view (or model) of data described in Section 1 appears to be superior in several respects to the graph or network model [3, 4] presently in vogue for non-inferential systems. It provides a means of describing data with its natural structure only—that is, without superimposing any additional structure for machine representation purposes. Accordingly, it provides a basis for a high level data language which will yield maximal independence between programs on the one hand and machine representation and organization of data on the other.

A further advantage of the relational view is that it forms a sound basis for treating derivability, redundancy, and consistency of relations—these are discussed in Section 2. The network model, on the other hand, has spawned a number of confusions, not the least of which is mistaking the derivation of connections for the derivation of relations (see remarks in Section 2 on the "connection trap").

Finally, the relational view permits a clearer evaluation of the scope and logical limitations of present formatted data systems, and also the relative merits (from a logical standpoint) of competing representations of data within a single system. Examples of this clearer perspective are cited in various parts of this paper. Implementations of systems to support the relational model are not discussed.

1.2. Data Dependencies in Present Systems

The provision of data description tables in recently developed information systems represents a major advance toward the goal of data independence [5, 6, 7]. Such tables facilitate changing certain characteristics of the data representation stored in a data bank. However, the variety of data representation characteristics which can be changed

Günümüzde bir çok veritabanı yönetim sistemi ilişkisel veri modelini kullanmaktadır.

□ inc	lude se	econda	ary dat	abase m	odels				143 systems in r	anking, No	vembe	r 2020					
	Rank	K						_		S	core						
Nov 2020	Oct 2020	No. 2019	•	MS				Da	tabase Model	Nov 2020	Oct 2020	Nov 2019					
1.	1.	1		acle 🖽				Rela	ational, Multi-model 🛐	1345.00	-23.77	+8.93					
2.	2.	2	. My :	SQL 🖽				Rela	ational, Multi-model 🛐	1241.64	-14.74	-24.64					
3.	3.	3	. Mic	rosoft S	QL Server 🔠			Rela	ational, Multi-model 🛐	1037.64	-5.48	-44.27					
4.	4.	4	. Pos	tgreSQL	=			Rela	ational, Multi-model 🛐	555.06	+12.66	+63.99					
5.	5.	5	. IBN	1 Db2 🖽				Rela	ational, Multi-model 🔃	161.62	-0.28	-10.98					
6.		□ inc	lude s	econdar	y database mode	els				152 syst	ems ir	ranking, (Octobe	r 2021			
7.			Rank	C								S	core				
8.		Oct	Sep	Oct	DBMS				Data	base Mo	del	Oct		Oct			
9.		2 021 1.	2021	2020	Oracle 😝				Relatio	onal, Multi-m	odel 🛐	1270.35	2021	2020 -98.42			
10.		2.	2.	2.	MySQL 🖽					onal, Multi-m		1219.77					
11.		3.	3.	3.	Microsoft SQL	Server	E3			nal, Multi-m		970.61					
12.		4.	4.	4.	PostgreSQL [E86 07					
13.		5.	5.	5.	IBM Db2	□inc	lude se	condar	y database models				162 sv	stems in	ranking, C	ctobe	r 2022
14.		6.	6.	6.	SQLite 🟥		Rank						102 0,	5001115 111		core	. 2022
15.		7.	7.	7.	Microsoft Acce	Oct	Sep	Oct	DBMS			Data	base M	odel		Sep	Oct
16.		8.	8.	8.	MariaDB 🖽	2022	2022	2021								2022	
17.		9.	9.	1 0.	Hive 🖽	1.	1.	1.	Oracle 🖽			Relatio	nal, Multi	-model 👔	1236.37	-1.88	-33.98
18.	1	10.	10.	1 1.	Microsoft Azur	2.	2.	2.	MySQL 🖽			Relatio	nal, Multi	-model 🔞	1205.38	-7.09	-14.39
19.	•	11.	11.	4 9.	Teradata 🖽	3.	3.	3.	Microsoft SQL Serv	er 🖽		Relatio	nal, Multi	-model 🛐	924.68	-1.62	-45.93
20.		12.	1 4.	1 37.	Snowflake 🖽	4.	4.	4.	PostgreSQL 🖪			Relatio	nal, Multi	-model 🛐	622.72	+2.26	+35.75
21.		13.	4 12.	13.	SAP HANA 🖽	5.	5.	5.	IBM Db2				nal, Multi		149.66		
22.		14.	4 13.	14.	FileMaker								•	model W			
		15.	15.	J 12.	SAP Adaptive	6.	6.	↑ 7.	Microsoft Access			Relatio			138.17		
		16.	16.	4 15.	Google BigQue	7.	7.	4 6.	SQLite 🚹			Relatio			137.80		
		17.	17.		Firebird	8.	8.	8.	MariaDB 🖽			Relatio	nal, Multi	-model 🔞	109.31	-0.85	+6.71
		18.	18.	J 16.	Amazon Redsl	9.	9.	1 2.	Snowflake 🖽			Relatio	nal		106.72	+3.22	+48.46
		19.	19.	4 17.	Informix	10.	10.	10.	Microsoft Azure SQ	L Database		Relatio	nal, Multi	-model 🔞	84.96	+0.54	+5.24
		20.	20.	20.	Spark SQL 🖽	11.	11.	4 9.	Hive			Relatio	nal		80.60	+2.17	-4.14
						12.	12.		Teradata			Relatio	nal, Multi	-model 🛐	66.07		-3.76
								-					,		00.07		

https://db-engines.com/en/ranking/relational+dbms

ER modelde tanımlanan <u>varlık setleri</u> ilişkisel modelde birer tablo olarak modellenir.

ER diagramında bulunan ilişki setlerinden <mark>sadece many-to-many</mark> olanlar ilişkisel modelde tabloya dönüştürülür

Relational Model Terms

- Tablo relation olarak adlandırılır.
- Tablola satırlar ve sütunlar dan oluşan iki boyutlu bir yapıdır.
- Her bir satır ER varlık setinde bulunan bir varlığı temsil eder.
- Her bir satır benzersiz olarak tanımlanamalıdır.
- Tablo yapısı kavramsal (logical) bir gösterimdir.
- Network ve hiyerarşik modellere göre kullanımı ve yönetimi daha kolaydır.

<u>Avantajlar</u>

- Tablolar verinin yapısının daha kolay bir biçimde anlaşılmasını sağlar.
- Tablo yapısı veri üzerinde gerçekleştirilecek sorgulamaları kolaylaştırır.
- Tablolar arasında ilişkiler oluşturma imkanı sağlar.
- Tablolar arasındaki ilişkiler ve kolon tipleri ve kısıtlamalar ile verinin tutarlılığı korunur.

İlişkisel tabloların yapısı hakkında bilgi veren gösterim biçimi şema olarak adlandırılır.

```
öğrenci (öğrencino: integer,
isim: varchar,
kullanıcıadı: varchar,
yaş: integer,
ortalama:float)
```

ögrenci varlık setinin (tablo) **şeması**

İlişkisel tabloların yapısı hakkında bilgi veren gösterim biçimi şema olarak adlandırılır.

```
öğrenci (öğrencino: integer,
isim: varchar,
kullanıcıadı: varchar,
yaş: integer,
ortalama:float)
```

ögrenci varlık setinin (tablo) **şeması**

Şema

- tablo adı (öğrenci)
- her bir satırdaki sütun sayısı (5)
- her bir sütuna kaydedilecek verinin tipi
- sütun sırası !!!

bilgilerini sağlamaktadır.

kolonlar (nitelikler, alan)

öğrencino	isim	kullanıcıadı	yaş	ortalama
17532	Eymen	Eymen234	19	3.2
17327	Mustafa	m.4417	18	4
17347	Kemal	Kml45	17	3.7
17236	Cemil	Cm3418	18	2.9
16458	Hayri	Hayri95	19	3.8

İlişkisel veri modelinde bütün <mark>satırlar (row, tuple)</mark>

- aynı sırada olan alanları bulundurur
- <u>bir öğrencinin</u> bilgilerini içermelidir
- unique olmak zorundadır
- aynı şemayı içermek zorundadır.
- ögrenci tablosunda 5 satır bulunmakta ve her bir satır da 5 sütundan oluşmaktadır.

kolonlar (nitelikler, alan)

öğrencino	isim	kullanıcıadı	yaş	ortalama
17532	Eymen	Eymen234	19	3.2
17327	Mustafa	m.4417	18	4
17347	Kemal	Kml45	17	3.7
17236	Cemil	Cm3418	18	2.9
16458	Hayri	Hayri95	19	3.8

- Öğrenci tablosunun
 - o derecesi (degree of relation) kolon sayıdır 5
 - o satır sayısı (cardinality) 5 dir
 - Kaydedilen verinin tipi sadece bir alan için değiştirilemez. (alter komutu ile hepsi değiştirilebilir)
- Bir veritabanında bulunan tablo isimleri unique olmalıdır
- Alter komutu ile yeni kolon eklenebilir

Bütünlük kısıtlamaları bir veritabanında depolanan <u>verilerin tutarlılığını (consistency)</u>
 <u>ve doğruluğunu (veracity) sağlar</u>

 Tabloların tasarımı yapılırken ve oluşturulurken tanımlanan özellikler tablonun bütünlük kısıtlamalarını belirler.

 Veritabanı oluşturulan tabloların kısıtlama ve şartlarına uygun olan verileri tablolarda depolar.

Öğrenci tablosunun kısıtlamaları:

- isim alanı sadece rakamlardan oluşamaz
- yaş sütununda integer tipinde sayı bulunması gerekmektedir (karakter bulunamaz)
- bilgileri depolanan her bir öğrencinin
 öğrencino alanı unique olmak zorundadır.

kolonlar (nitelikler, alan)

öğrencino	isim	kullanıcıadı	yaş	ortalama
17532	Eymen	Eymen234	19	3.2
17327	Mustafa	m.4417	18	4
17347	Kemal	Kml45	17	3.7
17236	Cemil	Cm3418	18	2.9
16458	Hayri	Hayri95	19	3.8

öğrenci (öğrencino:integer, isim:varchar(20), kullanıcıadı: varchar(20), yaş:integer, ortalama: floαt)

Bir varlık seti içerisinde (bir tabloda) bulunan nesneleri (satır) ve özelliklerini (kolonlar) diğer varlıklardan ayırt etmemizi sağlayan nitelik anahtar (key) olarak tanımlanır.

Anahtarlar tabloların ilişkilendirilmesini sağlar

kolonlar (nitelikler, alan)

öğrencino	isim	kullanıcıadı	yaş	ortalama
17532	Eymen	Eymen234	19	3.2
17327	Mustafa	m.4417	18	4
17347	Kemal	Kml45	17	3.7
17236	Cemil	Cm3418	18	2.9
16458	Hayri	Hayri95	19	3.8

satır (kayıt, tuple)

Anahtar seçimi

- verinin tutarlılığı,
- veriye <u>etkili bir biçimde erişim</u>
- *verinin sistematik bir biçimde depolanması* açısından çok önemlidir.

satır (kayıt, tuple)

kolonlar (nitelikler, alan)

öğrencino	isim	kullanıcıadı	yaş	ortalama
17532	Eymen	Eymen234	19	3.2
17327	Mustafa	m.4417	18	4
17347	Kemal	Kml45	17	3.7
17236	Cemil	Cm3418	18	2.9
16458	Hayri	Hayri95	19	3.8

İlişkisel Veri Modeli: Birincil Anahtar (Primary Key)

primary key

Öğrenci Tablosu

öğrencino	isim	kullanıcıadı	yaş	ortalama
17532	Eymen	Eymen234	19	3.2
17327	Mustafa	m.4417	18	4
17347	Kemal	Kml45	17	3.7
17236	Cemil	Cm3418	18	2.9
16458	Hayri	Hayri95	19	3.8

- Tablo tasarımında birincil anahtar (primary key) seçilmesi çok önemlidir.
- Öğrenci tablosunun öğrencino alanı primary key olarak tanımlanabilir
- Bu seçim ile birlikte tabloya kaydedilecek her bir satırın benzersiz (unique) olması sağlanır.

İlişkisel Veri Modeli: Birincil Anahtar (Primary Key)

primary key

Öğrenci Tablosu

öğrencino	isim	kullanıcıadı	yaş	ortalama
17532	Eymen	Eymen234	19	3.2
17327	Mustafa	m.4417	18	4
17347	Kemal	Kml45	17	3.7
17236	Cemil	Cm3418	18	2.9
16458	Hayri	Hayri95	19	3.8

Primary key de olması gereken özellikler:

- NULL değer içermemelidir
- · Kayıt işleminden sonra değişmemelidir
- Boyutu mümkün olduğu kadar <u>az olmalıdır</u>
- Şifrelenmiş değer içermemelidir.

İlişkisel Veri Modeli: İkincil Anahtar (Foreign Key)

Bir tablodaki alanın (primary key) başka bir tablodaki bir alanla ilişkilendirilmesiyle yabancı anahtar (foreign key) oluşturulur.

Alınan Dersler Tablosu

foreign key

öğrencino	derskodu	kredi	notu
17532	BL44	4	85
17327	MK25	3	73
17532	BL13	3	94
17236	T121	2	45
16458	KM32	1	52

İlişkisel Veri Modeli: İkincil Anahtar (Foreign Key)

Öğrenci Tablosu primary key							
öğrencino	isim	kullanıcıadı	yaş	ortalama			
17532	Eymen	Eymen234	19	3.2			
17327	Mustafa	m.4417	18	4			
17347	Kemal	Kml45	17	3.7			
17236	Cemil	Cm3418	18	2.9			
16458	Hayri	Hayri95	19	3.8			

Alınan	Dersler Tablosu
foreign key	

öğrencino	derskodu	kredi	notu	
17532	BL44	4	85	-
17327	MK25	3	73	
17532	BL13	3	94	-
17236	T121	2	45	
16458	KM32	1	52	

- Alınan Dersler tablosunun öğrencino alanı Öğrenci tablosunun öğrencino alanı ile ilişkilendirilip foreign key olarak tanımlanmıştır
- 17532 nolu öğrencinin farklı derslere ait iki adet kaydı bulunmaktadır

İlişkisel Veri Modeli: İkincil Anahtar (Foreign Key)

Öğrenci Tablosu							
öğrencino	isim	kullanıcıadı	yaş	ortalama			
17532	Eymen	Eymen234	19	3.2			
17327	Mustafa	m.4417	18	4			
17347	Kemal	Kml45	17	3.7			
17236	Cemil	Cm3418	18	2.9			
16458	Hayri	Hayri95	19	3.8			

Alınan	Dersler	Tablosu
oreign key		

öğrencino	derskodu	kredi	notu	
17532	BL44	4	85	•
17327	MK25	3	73	
17532	BL13	3	94	-
17236	T121	2	45	
16458	KM32	1	52	

- Alınan Dersler tablosuna öğrenci tablosundan <u>bulunmayan</u> bir kaydı <u>ekleyemezsiniz</u>
- Alınan Dersler tablosunda kaydı bulunan bir öğrenciyi <u>Öğrenci tablosundan silemezsiniz</u>
- Bu kısıtlamalara ek olarak SQL dilini kullanarak tabloları oluştururken ek kısıtlamalar eklenebilir (yaş > 17)

İlişkisel Veri Modeli: Birleşik Anahtar (Composit Key)

ProductVendor table

Birden fazla alanın bir araya getirilerek oluşturulan birincil anahtara composit key denir.

?

Akademik Personel tablosunu oluşturalım

Akademik Personel varlık setinin ER diagram gösterimi

Akademik Personel varlık setinin ER diagram gösterimi

Akademik personel

(tcno:integer,

isim:varchar(20),

d.tarihi:varchar(20)

,adres: varchar)

Akademik Personel varlık setinin ER diagram gösterimi

Akademik personel

(tcno:integer,

isim:varchar(20),

d.tarihi:varchar(20)

,adres: varchar)

<u>tcno</u>	isim	d.tarihi	adres
335427	Mustafa	03.03.1993	Malatya
•	•	•	•

Akademik Personel tablosu

?

Yandaki ER modelin şemasını oluşturalım

?

İlişkisel (relational) model

Dinlediğiniz için

Teşekkürler...

İyi çalışmalar...