

161538635

REC'D 20 FEB 2004

WIPO PCT

P1 1128557

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

February 12, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE.

APPLICATION NUMBER: 60/432,005

FILING DATE: December 10, 2002

RELATED PCT APPLICATION NUMBER: PCT/US03/38950

BEST AVAILABLE COPY

By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

M. Tarver

M. TARVER
Certifying Officer

PRIORITY
DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

J 1129 12/10/02
Please type a plus sign (+) inside this box → +**PROVISIONAL APPLICATION FOR PATENT COVER SHEET**

BOX PROVISIONAL PATENT APPLICATION
COMMISSIONER FOR PATENTS
WASHINGTON, D.C. 20231

PTO THIS IS A REQUEST FOR FILING A PROVISIONAL APPLICATION FOR PATENT UNDER 37 C.F.R. § 1.53(c).

32005 PRO

INVENTOR(S)/APPLICANT(S)

Given Name (first and middle (if any))	Family Name or Surname	Residence (City and Either State or Foreign Country)
Stephen E. Mary Susan	EPSTEIN BURNETT	Rockville, Maryland Fairfax, Virginia

Additional inventors are being named on page 2 attached hereto.

TITLE OF THE INVENTION (280 characters max)**IDENTIFICATION OF GENES INVOLVED IN ANGIOGENESIS, AND DEVELOPMENT OF AN ANGIOGENESIS DIAGNOSTIC CHIP TO IDENTIFY PATIENTS WITH IMPAIRED ANGIOGENESIS****CORRESPONDENCE ADDRESS**

Please Direct All Correspondence To:

<input checked="" type="checkbox"/> Customer No.	26633				
<input type="checkbox"/> Firm Name	Heller Ehrman White & McAuliffe LLP				
Attorney of Record	James Remenick				
Address	Intellectual Property Department 1666 K Street, N.W. Suite 300				
City	Washington	State	DC	Zip Code	20006
Country	U.S.A.	Telephone	202-912-2000	Facsimile	202-912-2020

ENCLOSED APPLICATION PARTS (check all that apply)

<input checked="" type="checkbox"/> Specification	Number of Pages	31	<input checked="" type="checkbox"/> Small Entity Status Claimed As:
<input type="checkbox"/> Drawing(s)	Number of Sheets		<input type="checkbox"/> Independent Inventor
<input type="checkbox"/> Drawing(s)	Number of Sheets		<input type="checkbox"/> Small Business Concern
<input type="checkbox"/> Drawing(s)	Number of Sheets		<input checked="" type="checkbox"/> Nonprofit Organization

METHOD OF PAYMENT OF FILING FEE FOR THIS PROVISIONAL APPLICATION

<input type="checkbox"/> A check in the amount of \$ <u>80.00</u> is enclosed to cover the filing fee.
<input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge the \$ <u>80.00</u> filing fee to Deposit Account No. 08-1641. In the event any variance exists, please charge or credit any such variance to Deposit Account No. 08-1641.

The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

- No.
 Yes, the name of the U.S. Government agency and the Government contract number are: _____

Respectfully submitted,

By

James Remenick

Date December 10, 2002

Telephone 202-912-2000

Registration No. 36,902

**IDENTIFICATION OF GENES INVOLVED IN ANGIOGENESIS, AND
DEVELOPMENT OF AN ANGIOGENESIS DIAGNOSTIC CHIP TO
IDENTIFY PATIENTS WITH IMPAIRED ANGIOGENESIS**

5 **Background of the Invention**

 1. **Field of the Invention**

The invention is directed to the identification and isolation of genetic elements related to angiogenesis and to the creation and use of chips containing isolated genetic elements.

10 **2. Description of the Background**

Coronary artery disease and peripheral vascular disease are diseases that are endemic in Western society. In this disease the arteries that supply blood to the heart muscle or to the legs become narrowed by deposits of fatty, fibrotic, or calcified material on the inside of the artery. The build up of these deposits is called atherosclerosis. Atherosclerosis reduces the blood flow to the muscle of the heart or legs, which starves the muscle of oxygen, leading to either/or angina pectoris (chest pain), myocardial infarction (heart attack), and congestive heart failure, as the disease involves arteries supplying the heart, or pain in the leg (claudication) or leg ulcers if the disease involves arteries supplying the leg.

20 The use of recombinant genes or growth-factors to enhance myocardial collateral blood vessel function may represent a new approach to the treatment of cardiovascular disease. Kornowski, R., et al., "Delivery strategies for therapeutic myocardial angiogenesis", *Circulation* 2000; 101:454-458. Proof of concept has been demonstrated in animal models of myocardial ischemia, and clinical trials are underway. Unger, E.F., et al., "Basic fibroblast growth factor enhances myocardial collateral flow in a canine model", *Am J Physiol* 1994; 266:H1588-1595; Banai, S. et al., "Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs", *Circulation* 1994; 83:2189; Lazarous, D.F., et al., "Effect of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart", *Circulation* 1995; 91:145-153; Lazarous, D.F., et al., "Comparative effects of basic development and the arterial response to injury", *Circulation* 1996; 94:1074-1082; Giordano, F.J., et al., "Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart", *Nature Med* 1996; 2:534-9.

30 Despite the promising hope for therapeutic angiogenesis as a new modality to treat patients with coronary artery disease, there is still a huge gap regarding what specific strategy will optimally promote a clinically relevant therapeutic angiogenic response. Moreover, there are no clinical studies yet reported definitively demonstrating that currently tested angiogenesis strategies cause functionally relevant improvement in blood flow to the affected tissue.

35 **Summary of the Invention**

40 The present invention overcomes the problems and disadvantages associated with current strategies and designs and provides kits, compositions and methods for "angiotyping" individual patients to predict the likelihood of whether a given individual will develop good vs. poor collaterals naturally.

45 Several animal studies suggest that factors may exist that interfere with collateral growth—these include diabetes and hypercholesterolemia. There are subgroups of patients with coronary artery disease who have poor collaterals, and others who have excellent collaterals. Impaired collateral development occurring

in response to arterial obstructive disease, or in response to angiogenesis interventions, is determined to a large extent by genetic factors (such as specific genetic polymorphisms), and/or by epigenetic factors (such as DNA methylation patterns) that alter the expression of genes encoding angiogenesis factors.

5 Because of the marked individual variability that exists in the capacity to develop collaterals, and that such individual variability is based in large part on genetic and epigenetic differences among patients, it would be important to diagnosis whether 1) a given patient is likely to develop good vs. poor collaterals naturally, and 2) a given patient is likely to respond to a specific therapeutic angiogenesis strategy. Because of these individual differences, angiogenesis treatment can ultimately be tailored to the individual patient. Therefore, this invention will allow, through DNA expression profiling using DNA chips or similar technology, diagnostic "angiotyping" of individual patients to predict the likelihood of whether a given individual will develop good vs. poor collaterals naturally, or in response to specific angiogenesis therapy.

10 15

One embodiment of the invention is directed to methods for "angiotyping" individual patients to predict the likelihood of whether a given individual will develop good vs. poor collaterals naturally. Accordingly, this can involve obtaining and providing a list of genes involved in collateral development.

20 Another embodiment of the invention is directed to methods for "angiotyping" individual patients to predict the likelihood of whether a given individual will develop good vs. poor collaterals in response to specific angiogenesis therapy.

25 Another embodiment of the invention is directed to methods for the detection of good vs. poor collaterals, comprising the detection of single nucleotide polymorphisms (SNPs) of an array of genes that have been determined through our experimental studies as being differentially expressed in tissues in which collaterals are developing in response to arterial occlusion. SNPs are detected using microchips or similar technology assaying for all, or most, of the genes determined to play a role in collateral development. The presence of a predisposition to develop poor vs. good collaterals is indicated by the presence of SNPs involving one or more of the genes we have determined are involved in those processes leading to enhanced collateral development.

30 35 40 45

Another embodiment of the invention is directed to methods for the detection of good vs. poor collaterals, comprises the detection of alterations of proteins in the blood, expressed by the array of genes that have been determined through our experimental studies as being differentially expressed in tissues in which collaterals are developing in response to arterial occlusion. Protein levels will be either higher than normal levels, lower than normal levels, or the proteins will be post-translationally modified, such as, but not limited to changes in phosphorylation states. The determination of such protein levels/modifications can be by standard assays of individual proteins (ELISA, etc), or by newer methods, such as proteomic analysis. The presence of a predisposition to develop poor vs. good collaterals is indicated by the presence of lower or higher blood levels of proteins that are encoded by one or more of the genes we have determined are involved in those processes leading to enhanced collateral development.

Another embodiment of the invention is directed to methods for the detection of good vs. poor collaterals, comprises the detection of DNA

methylation patterns involving those genes that have been determined through our experimental studies as being differentially expressed in tissues in which collaterals are developing in response to arterial occlusion. The presence of a predisposition to develop poor vs good collaterals is indicated by the presence of DNA methylation patterns that alter gene expression, resulting in lower or higher blood levels of proteins that are encoded by one or more of the genes we have determined are involved in those processes leading to enhanced collateral development.

5

Another embodiment of the invention is directed to kits suitable for performing genetic microarray analysis for detection, where the kit comprises microchips containing the SNPs of most or all of the genes we have determined are involved in those processes leading to enhanced collateral development. The genes may be selected from the group of genes listed in Table 1. The sample may comprise, lymph, venous or arterial blood, and/or vascular tissue of the individual. In one embodiment the polymorphisms are detected using a genetic microarray. In another embodiment the polymorphisms are detected using quantitative PCR.

10

Another embodiment of the invention is directed to kits for carrying out any of the methods described above.

15

Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

20

Other embodiments and advantages of the invention are set forth, in part, in the following description and, in part, may be obvious from this description, or may be learned from the practice of the invention.

Description of the Figures

25

Table 1 lists the genes whose expression was detectably altered during the development of collaterals.

Description of the Invention

30

As embodied and broadly described herein, the present invention is directed to kits, compositions and methods for angiotyping individual patients to predict the likelihood of whether a given individual will develop good vs. poor collaterals naturally and, in particular, in response to specific angiogenesis therapy. Those genes that have altered expression levels during the development of collaterals have been identified, and the changes in gene expression have been quantified. The relative changes in gene expression at different time points during the collateral development process have been measured, and these measurements allow additional insight into the progress and development of collaterals. Moreover, by measuring changes in gene expression, the risk of whether a given individual will develop good vs. poor collaterals naturally or in response to specific angiogenesis therapy can be determined.

35

Because differential expression of genes is involved in collateral development, changes in the degree of expression, or in the length of time during which they are differentially expressed, lead to different degrees of collateral development. In the context of CAD or PVD, the different degrees of collateral development can cause some individuals to have minimal symptoms in

- association with atherosclerotic arterial obstructive disease, and other individuals to have severe symptoms. Changes in the degree of gene expression, or in the length of time during which the genes are differentially expressed, are caused by polymorphisms either in the gene or in the regulatory components of the gene. Alternatively, these changes can be caused by "epigenetic alterations," such as, but not limited to changes in DNA methylation patterns. This invention, therefore, identifies those genes in which polymorphisms or altered DNA methylation patterns can convey susceptibility to the development of either poor vs good collateral development.
- The identification of genes that are involved in collateral development allows those genes having changed degree or duration of expression, caused in part by polymorphisms of the gene or alterations in DNA methylation patterns, to be used as targets to identify genetic abnormalities conveying altered capacities to develop collaterals. Identification of polymorphisms or alterations in DNA methylation patterns allows prediction of the risk for poor collateral development in patients prior to the performance of angioplasty procedures or the initiation of angiogenesis therapy. This pre-procedure risk prediction will importantly influence how the patient is treated. Some patients deemed to be resistant to the development of collaterals might be offered bypass surgery or angioplasty. Others might forego angiogenesis therapy and be treated aggressively with brachytherapy (intravascular radiation). Accordingly, the present invention provides new and improved methods for "angiotyping" individual patients to predict the likelihood of whether a given individual will develop good vs poor collaterals naturally or in response to specific angiogenesis therapy.
- Moreover, identification of the genes that are abnormally expressed by an individual patient because of either a SNP or an altered DNA methylation pattern, provides new methods for ameliorating or treating the disease by therapy targeted to a specific set or subset of those genes with altered expression. Because different polymorphisms and DNA methylation patterns play a role in the development of collaterals in different patients, the invention allows identification of specific abnormalities that may be characteristic to a specific patient. The invention therefore allows for greater specificity of treatment. A regime that may be efficacious in one patient with a specific polymorphism profile may not be effective in a second patient with a different polymorphism profile. Such profiling also allows treatment to be individualized so that unnecessary side effects of a treatment strategy that would not be effective for a specific patient can be avoided.
- Specifically, approximately five hundred and seventy five genes are identified whose expression changes during the course of collateral development. Since the differential expression of these genes is involved in collateral development, changes in the degree of expression, or in the length of time during which they are differentially expressed, could lead to altered capacity to develop collaterals.
- Changes in the degree of gene expression, or in the length of time during which the genes are differentially expressed, can be caused by polymorphisms in the gene or in the regulatory components of the gene. Such polymorphisms, conveying an increased risk of disease development, have already been identified for several genes associated with several diseases. This invention, therefore, identifies those genes in which polymorphisms can convey susceptibility to poor

vs good collateral development. Similar predictions can derive from altered gene expression caused by altered DNA methylation patterns, which can relate to specific SNPs, or regulate gene expression independently of SNPs. Subsequent reference, therefore, to prediction of good vs poor collateral development, relate to polymorphisms of the genes identified by this invention, or of their regulatory units, or to altered DNA methylation patterns which in turn alter gene expression.

The change in expression of certain of the identified genes is predictive of the capacity to develop poor vs. good collaterals. By identifying 575 genes whose expression changes during collateral development, the inventors recognize that analysis of greater numbers of polymorphisms or DNA methylation patterns of those genes leads to a greater ability to predict the capacity to develop collaterals. In view of the importance that the identified genes may play in collateral development, an ability to manipulate the expression of those genes may be efficacious in the treatment of arterial obstructive disease. Methods to enhance collaterals may include gene therapy to increase the expression of genes down-regulated during collateral development. Treatment may also include methods to decrease the expression of genes up-regulated during collateral development.

Identification of genes involved in collateral development also makes possible an identification of proteins that may effect the development of collaterals. Identification of such proteins makes possible the use of methods to affect their expression or alter their metabolism. Methods to alter the effect of expressed proteins include, but are not limited to, the use of specific antibodies or antibody fragments that bind the identified proteins, specific receptors that bind the identified protein, or other ligands or small molecules that inhibit the identified protein from affecting its physiological target and exerting its metabolic and biologic effects. In addition, those proteins that are down-regulated during the course of collateral development may be supplemented exogenously to ameliorate their decreased synthesis.

Different polymorphisms and DNA methylation patterns may play a role in collateral development in different patients. Accordingly, the present invention makes possible an identification of specific abnormalities that are characteristic of a specific patient ("angiotyping"), which allows for greater specificity of treatment. A regime that may be efficacious in one patient with a specific polymorphism profile may not be effective in a second patient with a different polymorphism profile. Such a profiling also allows treatment to be individualized so that unnecessary side effects of a treatment strategy that would not be effective for a specific patient can be avoided.

Elucidation of Changes in Gene Expression in Collateral Development

The inventors have identified the genes that undergo changes in expression during collateral development. Those genes are listed in Table 1. The inventors have carried out this analysis using nucleic acid array analysis of murine adductor muscles as described in more detail below.

The mouse is a widely accepted model for the human for vascular studies, and results obtained in the mouse are considered highly predictive of results in humans. Accordingly, it is expected that the changes in gene expression in humans during collateral development will be similar to or essentially the same as those observed in the mouse. Exaggerated changes in the degree of expression in these genes, or in the length of time during which the genes are differentially expressed, will predispose to good vs poor collaterals. Such exaggerated changes

are usually caused by polymorphisms in the gene or in the regulatory components of the gene, and therefore the mouse genes identified as being differentially regulated during the angiogenic process will be homologous to the human genes in which such polymorphisms will be found to convey the ability to form good vs. poor collaterals. Moreover, both mouse and human homologues are known for each of the genes described in Table 1, demonstrating further that the results obtained in the mouse studies will be highly predictive of results obtained in humans.

The genes for which SNPs are identified in a give patient, or altered DNA methylation patterns, that are associated with collateral development, also serve as the target for therapeutic interventions—those genes upregulated during the collateral development can be targeted by therapy designed to decrease gene expression or function of the proteins encoded by these genes; those genes down-regulated during collateral development can be targeted by therapy designed to increase gene expression or function of the proteins encoded by these genes.

Changes in gene expression in the mouse ischemic hindlimb during experimentally induced collateral development have been studied, a model commonly accepted as a reasonable animal model simulating collateral development as it occurs in humans. Sample and control mouse hindlimb tissues were obtained, RNA was prepared from the tissues, labeled cRNA generated from it and analyzed using an Affymetrix GeneChip® mouse Genome. Sample and control tissues were compared and those genes that experienced significant changes in gene expression were identified. For the purposes of this study, a two fold increase or decrease in gene expression was deemed significant, although the skilled worker will recognize that under certain circumstances smaller changes in gene expression may also be significant. Corresponding human genes for each of the genes determined to have a significant change in expression were identified.

Although about 575 genes have been shown to have altered expression in collateral development (Table 1), it is possible to reliably predict good vs poor collateral development by analyzing a subset of a few of these genes. In other embodiments, at least five, ten, fifteen, twenty or fifty genes may be studied or, if desired, all or most of the genes listed in Table 1 can be studied. These genes can also be analyzed for polymorphisms or altered DNA methylation patterns that alter gene expression. All of the genes can be analyzed initially, but reliable predictions can be made by analyzing a subset of these genes that contains a few members. In other embodiments, at least five, ten, fifteen, twenty or fifty genes may be studied or, if desired, all or most of the genes listed in Table 1 can be studied, for example, using sequencing, short tandem repeat association studies, single nucleotide polymorphism association studies, etc. In each case, however, it generally is more convenient to study gene expression or polymorphisms in a smaller subset of the genes.

By measuring changes in expression of a set of genes (by blood protein analysis), or by identification of polymorphisms or DNA methylation patterns influencing expression of sets of genes, rather than of a single gene, the present invention provides increased statistical confidence that the changes observed are predictive of poor vs. good collateral development, such as by providing reliable risk profiling of an individual. Thus, a change in expression of a single gene, or a single gene polymorphism, may not increase susceptibility to good vs poor collateral development sufficiently to cross the diagnosis threshold. On the other

hand, coordinated changes in expression of multiple specified genes, due the presence of multiple polymorphisms and/or DNA methylation patterns, is much more likely increase the likelihood of poor vs. good collateral development. This is analogous to the situation of an individual have only one risk factor predisposing to atherosclerosis (elevated cholesterol). Risk is increased markedly as the number of risk factors increase (elevated cholesterol plus hypertension, obesity, smoking, diabetes, etc).

Identification of polymorphisms or alterations in DNA methylation patterns allows prediction of the risk for poor collateral development in patients prior to the performance of angioplasty procedures or the initiation of angiogenesis therapy. This pre-procedure risk prediction will importantly influence how the patient is treated. Some patients deemed to be resistant to the development of collaterals might be offered bypass surgery or angioplasty. Others might forego angiogenesis therapy and be treated aggressively with brachytherapy (intravascular radiation). Accordingly, the present invention provides new and improved methods for "angiotyping" individual patients to predict the likelihood of whether a given individual will develop good vs poor collaterals naturally or in response to specific angiogenesis therapy.

Dysregulation of Multiple Genes that Increase Susceptibility to Poor vs Good Collateral Development

Gene polymorphisms and altered DNA methylation patterns that lead to biologically important alterations in the expression of genes that are differentially expressed during collateral development can be measured directly in patient samples. These samples comprise DNA that is most conveniently obtained from peripheral blood. The present inventors used nucleic acid array methods to identify the complete set of genes that exhibit significantly changed expression during the course of the healing response to acute vascular injury. However, other methods for measuring changes in gene expression are well known in the art. For example, levels of proteins can be measured in tissue sample isolates using quantitative immunoassays such as the ELISA. Kits for measuring levels of many proteins using ELISA methods are commercially available from suppliers such as R&D Systems (Minneapolis, MN) and ELISA methods also can be developed using well known techniques. See for example Antibodies: A Laboratory Manual (Harlow and Lane Eds. Cold Spring Harbor Press). Antibodies for use in such ELISA methods either are commercially available or may be prepared using well known methods.

Other methods of quantitative analysis of multiple proteins include, for example, proteomics technologies such as isotope coded affinity tag reagents, MALDI TOF/TOF tandem mass spectrometry, and 2D-gel/mass spectrometry technologies. These technologies are commercially available from, for example, Large Scale Proteomics Inc. (Germantown MD) and Oxford Glycosystems (Oxford UK).

Alternatively, quantitative mRNA amplification methods, such as quantitative RT-PCR, can be used to measure changes in gene expression at the message level. Systems for carrying out these methods also are commercially available, for example the TaqMan system (Roche Molecular System, Alameda, CA) and the Light Cycler system (Roche Diagnostics, Indianapolis, IN). Methods for devising appropriate primers for use in RT-PCR and related methods are well

known in the art. In particular, a number of software packages are commercially available for devising PCR primer sequences.

5 Nucleic acid arrays offer are a particularly attractive method for studying the expression of multiple genes. In particular, arrays provide a method of simultaneously assaying expression of a large number of genes. Such methods are now well known in the art and commercial systems are available from, for example, Affymetrix (Santa Clara, CA), Incyte (Palo Alto, CA), Research Genetics (Huntsville, AL) and Agilent (Palo Alto, CA). See also US Patent Nos. 5,445,934, 5,700,637, 6,080,585, 6,261,776 which are hereby incorporated by reference in their entirety.

10 Changes in the degree of gene expression, or in the length of time during which the genes are differentially expressed, can be caused by polymorphisms in the gene or in the regulatory components of the gene. Such polymorphisms, conveying an increased risk of disease development, have already been identified 15 for genes associated with several diseases. The present invention, therefore, identifies those genes in which polymorphisms or altered DNA methylation patterns can convey susceptibility to poor vs good collateral development. It is one object of this invention to identify such polymorphisms by developing a DNA 20 microarray chip containing all those SNPs affecting those genes we have identified as playing a role in collateral development (For example, by using the Affymetrix GeneChip system).

25 Methods for identifying polymorphisms in genes are well known in the art. See, for example, United States Patent Nos. 6,235,480 and 6,268,146, which are hereby incorporated by reference. Once polymorphisms are identified, methods for detecting specific polymorphisms in a gene using nucleic acid arrays are also well known in the art

30 Thus, in one embodiment, the invention provides methods where SNPs or altered DNA methylation patterns are identified for at least three genes selected from the genes shown in Table 1. In other embodiments of the invention SNPs or altered DNA methylation patterns are determined of at least five genes to determine the likelihood of good vs poor collateral development. In yet further 35 embodiments the number of genes assayed is ten. In yet other embodiments the number of genes assayed is 20 or at least about 20. In still yet other embodiments the number of genes assayed is 50 or at least about 50. Regardless of the number of genes in the subset of analyzed genes, selected from the genes shown in Table 1, the aggregate number of polymorphisms or DNA methylation patterns can then provide an estimate of good vs poor collateral development. The more biologically significant polymorphisms are present, the greater the risk. As more 40 polymorphisms of the genes listed in Table 1 are identified, even more powerful risk profiling will be possible. Thus, in other embodiments of the invention the expression of at least five genes or at least about five genes is assayed to determine the capacity of collateral development. In yet further embodiments the number of genes assayed is ten. In yet other embodiments the number of genes assayed is 20 or at least about 20. In still yet other embodiments the number of 45 genes assayed is 50 or at least about 50.

The skilled artisan will recognize that, due to the heterogeneous nature of collateral development, not all individuals with poor collateral development will exhibit altered expression of every last one of the genes listed in Table 1. Thus, it is possible that one, a few, or many genes will not exhibit significantly altered

expression (and therefore will contain no biologically important polymorphisms or altered DNA methylation patterns), and that different individuals will exhibit different combinations; yet, the coordinated changes induced by the polymorphisms in the expression of the totality of genes are highly predictive of the presence of prediction of poor vs good collateral development.

In general, where the expression of only a relatively small number of genes is studied, changes in expression in most or all of the genes can be observed to provide a reliable diagnosis of good vs poor collateral development. For example, where only three genes are measured, all three genes can show relevant changes in expression to permit a reliable diagnosis impaired collateral development. Where five genes are studied, changes in at least four genes typically will provide a reliable diagnosis. Where ten genes are measured, a reliable diagnosis is obtained where changes in at least seven genes are observed. Where more than 10 genes are measured, changes in 90%, 80%, 70%, 60% or 50% of the measured genes are predictive of impaired collateral development. As these percentages decrease, the reliability of the diagnosis also decreases, but the skilled worker will recognize that when a coordinated change in expression of 20 or 30 genes of the genes listed in Table 1 is observed this is highly predictive of poor vs good collateral development. In general, as the number of genes increases, it is possible to provide a reliable diagnosis by observing coordinated changes in expression in a relatively smaller subset of the genes studied.

Tissues Sampled to Determine Altered Gene Expression and the Presence of Polymorphisms that Cause Biologically Important Alterations in Relevant Gene Expression

Although any sample containing nucleic acid would be appropriate for this purpose, the simplest tissue to sample is peripheral venous or arterial blood. However, tissue may be used, such as vascular tissue, in particular arterial vascular tissue or venous vascular tissue.

Methods of Studying Gene Polymorphisms, DNA methylation patterns, and protein levels of the Genes Listed in Table 1

Polymorphisms can be identified by several methods including restriction enzyme digestion, sequencing, short tandem repeat association studies, single nucleotide polymorphism association studies, etc. These methods are well-known in the art.

Gene expression can also be studied at the protein level. Gene polymorphisms are detected reliably with tissue derived from any source, including peripheral blood; blood protein levels can serve as a source of identifying altered gene expression.

RNA Expression

Methods of isolating RNA from tissue are well known in the art. See, for example, Sambrook *et al. Molecular Cloning: A Laboratory Manual (Third Edition)* Cold Spring Harbor Press, 2001. Commercial reagents also are available for isolating RNA.

Briefly, for example, cells or tissue are lysed and the lysed cells centrifuged to remove the nuclear pellet. The supernatant is then recovered and the nucleic acid extracted using phenol/chloroform extraction followed by ethanol precipitation. This provides total RNA, which can be quantified by measurement of optical density at 260-280 nM.

mRNA can be isolated from total RNA by exploiting the "PolyA" tail of mRNA by use of several commercially available kits. QIAGEN mRNA Midi kit (Cat. No. 70042); Promega PolyATtract® mRNA Isolation Systems (Cat. No. Z5200). The QIAGEN kit provides a spin column using Oligotex Resin designed for the isolation of poly A mRNA and yields essentially pure mRNA from total RNA within 30 minutes. The Promega system uses a biotinylated oligo dT probe to hybridize to the mRNA poly A tail and requires about 45 minutes to isolate pure mRNA.

mRNA can also be isolated by using the cesium chloride cushion gradient method. Briefly the flash frozen tissue is homogenized in Guanethedium isothiocyanate, layered over a cushion of cesium chloride and ultracentrifuged for 24 hours to obtain the total RNA.

Genetic Microarray Analysis

Microarray technology is an extremely powerful method for assaying the expression of multiple genes in a single sample of mRNA. For example, Gene Chip® technology commercially available from Affymetrix Inc. (Santa Clara, Ca) uses a chip that is plated with probes for over thousands of known genes and expressed sequence tags (ESTs). Biotinylated cRNA (linearly amplified RNA) is prepared and hybridized to the probes on the chip. Complementary sequences are then visualized and the intensity of the signal is commensurate with the number of copies of mRNA expressed by the gene.

Protein Expression

Gene expression may also be studied at the protein level. Target tissue is first isolated and then total protein is extracted by well known methods. Quantitative analysis is achieved, for example, using ELISA methods employing a pair of antibodies specific to the target protein.

A subset of the proteins listed in Table 1 are soluble or secreted. In such instances the proteins may be found in the blood, plasma or lymph and an analysis of those proteins may be afforded by any of those methods described for the analysis of proteins in such tissues. This provides a minimally invasive means of obtaining patient samples for estimate of risk of developing restenosis or of atherosclerosis. Methods for identifying secreted proteins are known in the art.

The emerging technology of proteomics can supply a powerful analytic tool to assay for changes in large numbers of proteins.

The following examples are offered to illustrate embodiments of the present invention, but should not be viewed as limiting the scope of the invention.

Examples

Microarray Analysis of the Mouse Hindlimb

Isolation of RNA

Mice underwent femoral artery ligation and extirpation. A control group was treated by sham surgery. Mouse adductor muscles after surgery and sham surgery were collected and flash frozen. Pooled muscles (30-50mg) were crushed into powder using a mortar and pestle (collected with liquid nitrogen) and then homogenized in 2.5 ml of guanidinium isothiocyanate. Total RNA was extracted using ultracentrifugation on cesium chloride cushion gradient for 24 hours at 4°C. See Sambrook et al *supra*.

Target Preparation and DNA Microarray Hybridizations

For the first strand cDNA synthesis reaction, 5.0-8.0 µg of total RNA was incubated at 70°C for 10 minutes with T7-(dT) 24 primer, then placed on ice. For

the temperature adjustment step, 5X first stand cDNA buffer, 0.1 M DTT, and 10 mM dNTP mix was added and the reaction incubated for 1 hour at 42°C. SII reverse transcriptase was added, and the reaction incubated for 1 hour at 42°C. With the first strand synthesis completed, 5X second strand reaction buffer, 10 mM dATP, dCTP, dGTP, dTTP, DNA Ligase, DNA Polymerase I, and RNaseH were added to the reaction tube. Samples were then incubated at 16 °. Following the addition of 0.5M EDTA, cDNA was cleaned using phase lock gels-phenol/chloroform extraction, followed by ethanol precipitation.

10 Synthesis of Biotin-Labeled cRNA (*In vitro* transcription)

The synthesis of biotin-labeled cRNA was completed using the ENZO BioArray RNA transcript labeling kit from (ENZO Biochem, Inc., New York, NY) according to the manufacturers protocol. To set up the reaction 1 µg of cDNA, 10X HY reaction buffer, 10X Biotin labeled ribonucleotides, 10X DTT, 10X RNase inhibitor mix and 20X T7 RNA polymerase were incubated at 37°C for 4-5 hours. RNeasy spin columns from QIAGEN were used to purify the labeled RNA, followed by ethanol precipitation and quantification.

15 Fragmentation of cRNA for Target Preparation

20 5X fragmentation buffer (200 mM Tris-acetate, pH 8.1, 500 mM KOAc, 150 mM Mg)Ac) was added to the cRNA. Samples were incubated at 94°C for 35 minutes, then placed on ice. Fragmented cRNA was stored at -70°C.

25 Target Hybridization

Hybridization cocktail was prepared as follows: fragmented cRNA (15 µg adjusted), control oligonucleotide B2 (Affymetrix), 20X eukaryotic hybridization controls (Affymetrix), herring sperm DNA, acetylated BSA, and 2X hybridization buffer (Affymetrix) were combined, and heated to 99°C for five minutes. Hybridization cocktail was then centrifuged at maximum speed for five minutes to remove any insoluble materials from the mixture. Following centrifugation, cocktail was heated at 45°C for five minutes. The clarified hybridization cocktail was then added to the Affymetrix probe array cartridge that had been pre-wet with 1X hybridization buffer. The probe array was then placed in a 45°C rotisserie box oven set at 60 rpm and hybridized for 16 hours.

30 Washing, Staining and Scanning Probe Arrays

35 The GeneChip® Fluidics Station 400 was used to wash and stain the array. This instrument was run using GeneChip® software. Briefly, arrays were washed for 10 cycles with non-stringent wash buffer at 25°C, followed by 4 cycles of washing with stringent wash buffer at 50°C. The array was then stained for 10 minutes with Phycoerythrin-streptavidin at 25°C. The array was then washed for 10 cycles with non-stringent wash buffer at 25°C. The probe array was then stained again with phycoerythrin-streptavidin for 10 minutes at 25°C, and then washed for 15 cycles with non-stringent wash buffer at 30°C. Hybridization signals are detected by placing the probe array in an HP Gene Array™ Scanner, which operated using GeneChip® software.

40 Data Analysis

45 Data analysis was performed using GeneChip® software (version 3.3) using the manufacturer's instructions. Lockhart, D.J. *et al.*, Nat. Biotechnol. 14:1675-80 (1996). Briefly, each gene was represented and queried by 1-3 probe sets on the chip. Each probe set comprises 16 perfect match (PM) and 16 mismatch (MM) 25 nucleotide base probes. The mismatch has a single base change in the middle of the 25 base pair probe. The hybridization signal from the

- PM and the MM probes were compared and this allowed for a measure of signal intensity that is specific and eliminated the nonspecific cross hybridization from the data of the two control chips. Intensity differences as well as ratios of intensity of each probe pair are used to make a "present" or "absent" call. The controls were used as baseline and the experimental GeneChip® assay values compared to the base line to derive four matrixes which were used to determine the difference calls that indicate whether the transcription level of a particular gene is changed.
- 5 Iterative comparisons were performed using a spreadsheet analysis (Microsoft Excel). Each experimental data set at a particular time point (n=2) and the difference in expression between the controls and experimental was determined for each gene. Genes with a consistent difference call across all four pairwise comparisons were extracted for further analysis.
- 10 GeneSpring® Analysis
- 15 The data from each GeneChip® assay was fed into the GeneSpring® software and clustering of genes based on their temporal expression profile was analyzed. Correlation coefficients of 0.97 or greater were taken as a cutoff to create gene-clusters with significant expression homology.
- 20 Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All references cited herein, including all U.S. and foreign patents and patent applications, are specifically and entirely hereby incorporated herein by reference. It is intended that the specification and examples be considered exemplary only, with the true scope and spirit of the invention indicated by the following claims.
- 25

Claims:

- 5 1. A method for the detection of good vs poor collateral development in a mammal, comprising assaying in a sample obtained from said mammal the presence of at least three SNPs or altered DNA methylation patterns of the genes involved in collateral development, as listed in Table 1.
- 10 2. The method of claim 1 wherein the presence of good vs poor collateral development is indicated by the presence of at least three SNPs or altered protein or DNA methylation patterns in said sample.
- 15 3. The method of claim 1 wherein the presence of good vs poor collateral development is indicated by the presence of at least five SNPs or altered protein or DNA methylation patterns in said sample.
- 20 4. The method of claim 1 wherein the presence of good vs poor collateral development is indicated by the presence of at least 10 SNPs or altered protein or DNA methylation patterns.
- 25 5. The method of claim 1 wherein the presence of good vs poor collateral development is indicated by the presence of at least 20 SNPs or altered protein or DNA methylation patterns in said sample.
- 30 6. The method of any of claims 1-5 wherein said genes are selected from the group consisting of the genes listed in Table 1.
- 35 7. The method of claim 1 wherein the assay comprises a genetic microarray.
- 40 8. The method of claim 1 wherein the assay comprises quantitative PCR.
- 45 9. The method of claim 1 wherein the assay comprises DNA methylation patterns.
- 50 10. The method of claims 1-9 wherein the level of gene expression is determined by assaying the level of protein expression in a sample.
- 55 11. The method of claim 1 wherein detection is carried out using a kit suitable for performing PCR and wherein said kit comprises primers specific for the amplification of DNA or RNA sequences identified by the genes in Table 1.
- 60 12. The method of claim 1 wherein detection is carried out using a gene microarray kit with a chip containing SNPs of the genes depicted in Table 1 and therefore suitable for identifying the presence of SNPs in those genes involved in collateral development and identified in Table 1.
- 65 13. A method to estimate the risk of developing good vs poor collateral development comprising detecting the presence of biologically important

polymorphisms, and/or altered protein levels or DNA methylation patterns in at least three genes in a sample obtained from said individual.

5 14. The method of claim 13 further comprising detecting the presence of biologically important polymorphisms, and/or altered protein levels or DNA methylation patterns in a plurality of genes in a sample obtained from said individual.

10 15. The method of claim 13 further comprising detecting the presence of biologically important polymorphisms in at least five or ten genes in a sample obtained from said individual.

15 16. The method of claim 13 further comprising detecting the presence of biologically important polymorphisms, and/or altered protein levels or DNA methylation patterns in at least fifty genes in a sample obtained from said individual.

20 17. The method of claims 13-16 wherein said polymorphisms, and/or altered protein levels or DNA methylation patterns are selected from the group consisting of the genes listed in Table 1.

25 18. The method of claim 13 wherein said polymorphisms are detected with a genetic microarray.

25 19. The method of claim 13 wherein said polymorphisms are detected with quantitative PCR.

30 20. The method of claims 13-19 wherein detection is carried out with a kit suitable for detecting biologically significant polymorphisms of the genes in Table 1.

Abstract

The invention is directed to methods for "angiotyping" individual patients to predict the likelihood of whether a given individual will develop good vs. poor collaterals naturally. Accordingly, this can involve obtaining and providing a list of genes involved in collateral development. In particular, "angiotyping" individual patients can be used to predict the likelihood of whether a given individual will develop good vs. poor collaterals in response to specific angiogenesis therapy. From an array of genes that have been determined through experimental studies as being differentially expressed in tissues in which collaterals are developing in response to arterial occlusion, single nucleotide polymorphisms (SNPs), or other epigenetic changes, such as DNA methylation patterns, can be identified. SNPs and DNA methylation patterns are detected using microchips or similar technology assaying for all, or most, of the genes determined to play a role in collateral development. The presence of a predisposition to develop poor vs. good collaterals is indicated by the presence of SNPs, and/or alterations in DNA methylation patterns involving one or more of the genes.

TABLE 1

Gene	Genebank #	Product
Fos	V00727	FB1 osteosarcoma oncogene
Timp	V00755	
Rrad	AF084466	Ras-like GTP-binding protein Rad
Scya7	X70058	cytokine
Snk	M96163	
Gp49b	U05265	gp49B2; gp49B1
Tcf10-pending	AW121127	
Krox-24	M28845	Zinc finger protein
H373b	X13605	H3 histone, family 3B
Emp1	X98471	epithelial membrane protein-1
Afp	AF041847	cardiac ankyrin repeat protein MCARP
THBS1	M62470	thrombospondin
Soyez2	M19681	platelet-derived growth factor-inducible protein
Argpt14	AI326963	
gp49	M65027	cell surface antigen
rg	D10837	lysyl oxidase
Cdkn1a	AW048937	cyclin-dependent kinase inhibitor 1A (P21)
Litaf-pending	AI852632	
mts1	M36579	
Lgals3	X16834	
Cmkbr5	AV370035	
c-myc	L00039	myelocytomatosis oncogene
Mnk2	Y11092	map kinase interacting kinase
Saa3	X03505	SAA3
Cyr61	M32490	cysteine rich protein 61
pgM	D45889	PG M core protein
Cish3	U88328	suppressor of cytokine signalling-3
C5arR	S46665	C5a anaphylatoxin receptor
M12	K02236	
Zip36	X14678	Zinc finger protein 36
Scyra9	U49513	macrophage inflammatory protein-1 gamma
Spp1	X13986	secreted phosphoprotein 1
Atf3	U19118	LRG-21
Cd14	X13333	leucine-rich preprotein (AA -15 to 351)
Pde8a	X60664	rod phosphodiesterase alpha subunit
Mmp3	X666402	stromelysin-1

TABLE 1

2

Lgmn.	AJ009990	legumain
C87222	AI836322	
Csf1r	X06368	colony stimulating factor 1 receptor
Cmkbr2	U56819	mcp-1 receptor
Lzm, Lzp, Lys	M21050	lysozyme M
Tdag	U44088	TDAG51
Cyp1b1	X78445	cytochrome P450EF B1
Sifn4	AF099977	schlafen4
E161	X61450	E161
Runx2	AV245229	
Tnc	X56304	precursor tenascin protein
Il17r	U31993	interleukin 17 receptor
S100a10	M16465	calcium binding protein A11 (calgizzarin)
Gro1	J04596	GRO1 oncogene
Pira3	U96684	PIRA3
Irgb2	M31039	complement receptor C3 beta-subunit
Ev12	M34896	ectropic viral integration site 2
Cish3	AV374868	
Hmox1	X56824	haem oxygenase
Col3a1	AA655199	
Ugdh	AF061017	UDP-glucose dehydrogenase
Tyrobp	AF024637	DAP12
2610024P12Rik	AW124113	
Mit1	V00835	Metallothionein-1
Ywhag	AF058799	14-3-3 protein gamma
Cd68	X68273	macrosialin
L2p-s	X51547	lysosome structural
Fegr2b	M31312	Fc receptor, IgG low affinity IIb
Crp2, SmLim	D88792	double LIM protein-1
OTS-8	M73748	glycoprotein 38
TSC-36	M91380	TGF-beta-inducible protein
Mpg-1	L20315	MIPS1 protein
Lcn2	X81627	lipocalin
Fkbp10	L07063	FKBP65 binding protein
Col3a1	AV234303	
Anxa1	AV003419	

TABLE 1

Gfp2	AB016780	Glutamine-fructose-6-phosphate amidotransferase 2
spi2eb4	M64086	spi2 proteinase inhibitor
Thbd	X14432	thrombomodulin
5730470C09Rik	AA738776	
MRP8	M83218	intracellular calcium-binding protein
2310057H16Rik	AW215736	
Man1a	U04299	mannosyl-oligosaccharide alpha-1,2-mannosidase
Oaz1	AV212241	
Adam19	AA726223	
D15Wsu122e	AW123921	
Mlp	X61399	MARCKS-like protein
Sat	L10244	spermidine/spermine N1-acetyltransferase
Col3a1	X52046	type III collagen
mPHLL2	AB003433	photolyase/blue-light receptor homolog2
	AW047237	
	AI843046	
	AA797604	
Angptl4	M22531	complement component 1, q subcomponent, beta polypeptide
C1qb	D00466	apolipoprotein
Apoe	AJ131395	collagen type XIV
Col14a1	AA614971	
Mail-pending	L39879	ferritin L-subunit
Ftl, Ftl-1	U16818	UDP glucuronosyltransferase
Ugt1a6	X58861	complement subcomponent C1Q A-chain precursor
C1qa	AJ223208	cathepsin S
Ctss	AI849082	
1600023E10Rik	AA596710	
2510002C2TRik	L02918	procollagen type V alpha 2
Co5a-2	AB023418	monocyte chemoattractant protein-2 (MCP-2) precursor
Scyab	AI842259	
AI035637	D13664	osteoblast specific factor 2 precursor
osf2	U08210	tropoelastin
Eln	U21110	mammary gland factor
Stat5b	X66295	C1q C chain
C1qc	M12289	
Myh8	X04663	tubulin, beta 5
Tubb5	M33960	plasminogen activator inhibitor
PAI-1		

TABLE 1

metalloelastase	M82831	metalloelastase
Vcl	L18880	vinculin
Sfp2	U88867	secreted frizzled related protein sFRP-2
Bmik, Hck-1	J03023	hemopoietic cell kinase
Atp1b2	X16645	ATPase, Na+/K+ transporting, beta 2 polypeptide
Sipi	AF002719	secretory leukoprotease inhibitor
Tgff	X89749	mTGF protein
Cibas	AJ001261	NIPSNAP2 protein
Fgffp	U04204	aldose reductase-related protein
Anxa4	U72941	annexin IV
Gadd45a	U00937	GADD45 protein
Myf6	X59060	myogenic factor 6 (herculin)
Ext1	X96639	exostoses (multiple) 1
Mrc1	Z11974	macrophage mannose receptor precursor
Ikra	M27960	interleukin 4 receptor, alpha
Rrm2	M14223	ribonucleotide reductase M2
Npn3	Z31362	
Col5a1	AB009993	collagen a1(V)
Cyba	M31775	
Abbb1ip-pending	AF010199	guanidinoacetate methyltransferase
Abca1	AF020313	proline-rich protein 48
Crnkar4	X75926	ABC transporter
Cdk7	Z80112	CXCR-4
2310031E04Rik	X74146	protein kinase
Ifnar2	AW230891	
Tuba6	Y09864	soluble type I interferon receptor subunit
Fcgr1	M13441	tubulin alpha 6
Ifi204	M31314	Fc receptor, IgG, high affinity I
Pfc	M74123	
Scyb14	X12905	properdin (AA 5 - 441)
Capg	AW120786	
Myo5a	X54511	Myc basic motif homologue-1
beta 1	X57377	myosin heavy chain
Myla	L48687	voltage-dependent Na+ channel beta-1 subunit
2410045D21Rik	M19436	myosin light chain
Msn	A1573601	
	A1839417	

TABLE 1

<i>Sparc</i>	X04017	secreted acidic cysteine rich glycoprotein
1300002F13Rik	AI853531	
8430417G17Rik	AI225296	
Ddah2	AF004106	dimeethylarginine dimethylaminohydrolase 2
<i>Beta Ig-h3</i>	L19932	p68(beta Ig-h3)
D5Wsu111e	AA790307	
<i>Gstm3</i>	J03953	
A12	L22977	X-linked lymphocyte-regulated 3b
<i>Cebpb</i>	M61007	alpha-1-acid glycoprotein
AW549277	AI841076	
<i>fip</i>	AI845802	
1810027D10Rik	M16238	fibrinogen-like protein
<i>Eln</i>	AI504305	
<i>Btg2</i>	AA919594	
<i>Col6a2</i>	M64292	B-cell translocation gene 2, anti-proliferative
<i>Peg3</i>	Z18272	collagen alpha 2 chain type VI
<i>Arxa2</i>	AV353105	
<i>Cebpd</i>	M14044	calpastatin heavy chain
<i>Apod</i>	X61800	C /EBP delta
<i>Pmp</i>	X82648	apolipoprotein D
<i>Ctsl</i>	U35374	purine nucleoside phosphorylase
<i>Glik</i>	X06086	cathepsin L
II112	AV217354	
<i>Cd48</i>	X59769	type II interleukin-1 receptor
2900055D03Rik	X53526	BCMV antigen
1110032A03Rik	AI839395	
<i>MRP14</i>	AI851206	
<i>Fosb</i>	M83219	intracellular calcium-binding protein
C33, Cd82, KA11	X14897	FBX osteosarcoma oncogene B
<i>Tnfsf1b</i>	D14883	C33R2/A4
061001104Rik	X87128	p75 TNF receptor
<i>Tubb2</i>	AI787183	
<i>Pstip1p2</i>	M28739	
<i>Shc1</i>	Y18101	macrophage actin-associated tyrosine-phosphorylated protein
<i>THBS2</i>	AI050321	
<i>Acbx</i>	L07803	thrombospondin 2
	J04181	melanoma X-actin

TABLE 1

Hp	M96827	haptoglobin
Hipk3	AF077660	homeodomain-interacting protein kinase 3
Fxyd5	U72680	ion channel homolog RIC
Bgn	X53928	biglycan (PGI)
Fbn-1	L29454	fibrillin
oxyR	L35599	Y-box binding protein
Hspa2, HSP90AA2	AI839289	
Lbp	M20567	heat shock protein
C3ar1	X99347	LPS-binding protein
Col1a2	U77461	anaphylatoxin C3a receptor
Cldn5	X58251	pro-alpha-2(I) collagen
Pva	U82758	lung-specific membrane protein
Lcp2	X59382	parvalbumin
Ampd3	U20159	SLP-76
Col1a1	D88894	AMP deaminase 3
Peg3	U03419	alpha-1 type I procollagen
Ier3	AW120874	
Nfe2l1	X67644	
Epcs21-pending	AF015881	nuclear factor erythroid-related factor 1
Madh1	AI853172	
Eif4ebp2	U58992	mSmad1
Macs	U75530	PHAS-II
Colfa1	M60474	myristoylated alanine-rich C-kinase substrate
	X66405	collagen alpha1 type VI-precursor
Fn1	AI019679	
Kit1-10	IM18194	
Grib10	V00830	
	AF022072	adapter protein
C76746	X58796	H19 fetal liver mRNA
Ensa	C76746	
helix-loop-helix protein Id2	AJ005985	alpha-endosulfine
Prkar2a	AF077861	inhibitor of DNA binding 2
Cish	J02935	
2510015F01Rik	U06119	cathepsin H prepropeptide
Txn	AW060556	
Bmp1	X77585	thioredoxin
	AA518586	

TABLE 1

Clast1	AB031386	Clast1
Pbx3	X83601	pentaxin related gene
Lxn	D88769	latexin
Cyba	AW046124	
Maged2	AI851574	
2310042E05Rik	AI839731	
Top1	X70956	topoisomerase 1
Rnf13	AF037205	RING zinc finger protein
1300002F13Rik	AA189811	
Sox4	AW212475	
AI413331	AW124153	
JNK2, Prkm9, p54aaSAPK	AA796989	
Tclex1	AB005664	JNK2
Lyt111, enstatin-2	M25825	t-complex testis expressed 1
D15Ertd781e	AB017202	enstatin-2
Serpinf1	AI528219	
MS1	AF036164	pigment epithelium-derived factor
Srst	L26479	elongation factor-1 alpha
Col18a1	N28179	
Drajb9	X67863	simple repeat sequence-containing transcript
1200003O06Rik	L22545	alpha 1(XVII) collagen
AV558171	AW120711	
Gus-s	AI315650	
Smx2	AW120868	
Pfk1	M19279	beta-glucuronidase structural
Ifi30	AI842754	
9130211I03Rik	AF033655	Pfaffe-1
fisp-12	AI844520	
Tgfb2	AA711915	
Pitp	M70642	FISP-12 protein
Cd53	X57413	transforming growth factor-beta2 precursor
Ncam	U28960	plasma phospholipid transfer protein
Tnp1	X97227	CD53 antigen
S100a11	X15052	neural cell adhesion molecule NCAM-180
Adn	X12521	transition protein 1 (during histone to protamine replacement)
	U41341	endothelial monocyte-activating polypeptide
	U77630	adrenomedullin precursor

TABLE 1

Tif1	Z21858	pS2m
Ctsk	AI849721	
Mapkapk2	AJ006033	cathepsin K
Cpo	X76850	MAP kinase-activated protein kinase 2
1600017F22Rik	D16333	coproporphyrinogen oxidase
cyp C	AV268207	
Klkbp	M74227	cyclophilin C
Pi0d3	X61597	kallikrein-binding protein
edr	AI840146	
3110004L20Rik	AW123347	
2310038G18Rik	AJ007909	erythroid differentiation regulator
6530405F5Rik	AI851313	
Rbp1	AA002843	
Nfii3	AI64072	
A173274	X60367	cellular retinol binding protein I
Gzma	U83148	NFIL3/E4BP4 transcription factor
Myod1	AI642389	
Lama4	M13226	granzyme A
Ig V/heavy-PCG-4	M18779	myogenic differentiation 1
Wsb1	U691176	laminin alpha 4 chain
Tm7sf1	X82692	
1110004C05Rik	AF033186	WSB-1
Sap30-pending	AI060729	
AI046135	AW125390	
R75394	AF075136	Sin3-associated protein
Aca1	AI842065	
Gtp-pending	AI852238	
Fap	M12347	alpha-actin
Osmr	AI842825	
AW122239	Y10007	fibroblast activation protein
Numb	AB015978	oncostatin M receptor beta
Dab2	AW122239	
Actb	AV377244	
Atp6nl	U18869	p67; p96; p93
1500001M20Rik	M12481	
	U13836	vacuolar adenosine triphosphatase subunit Ac116
	AV3222862	

TABLE 1

Bgn	AV166064
Il6st	X62646
6330407G11Rik	gp130
Al593759	
Gapd	AV341723
2310010N19Rik	M32599 glyceraldehyde-3-phosphate dehydrogenase
CD106, VCAM-1, Vcam-1	AV335997
Capn6	M84487 vascular cell adhesion molecule-1
Peg1/MEST	AI747133
Mptp	AF017994 Peg1/MEST protein
Evi2	M80739 protein tyrosine phosphatase, non-receptor type 2
Laptm5	M34896 ectotropic viral integration site 2
sprouty4	AV356071
Eif1a	AB019280 sprouty-4
Nucb2	AI132207
5830413E08Rik	AI849939
si478	AJ222586 precursor NEFA protein
Pik3r1	AB025408 sid478p
Ier2	U50413 phosphoinositide 3-kinase p85alpha
1300003H02Rik	M59821 growth factor-inducible protein
shm	AW123556
Abcc1a	AI641895
Arhc	AF022908 multidrug resistance protein
Mkm1	X80638 p21RhoC
Inr	AW125438
A1428538	Z32675 hairless protein
Tieg	AW048730
Col15a1	AF064088 transcription factor G1F
Ttf	AF011450 type XV collagen
COL9A1L, D6S228E	AW122985
alpha-1 gap junction	AB000636 collagen a1 XIX chain
3110003A17Rik	M63801 connexin 43
D7Erttd304e	AA833425
Grb2	AI157475
Nramp	U07617 Grb2 adaptor protein
TXNRD1	L13732 integral membrane protein
	AB027565 thioredoxin reductase 1

TABLE 1

1810003P21Rik	AI844626
2810417H13Rik	AI122538
PLA2	M72394
Ntfap5-pending	AW121179
Ftpic	M14343
Mx1	M21038
C80305	AI848825
Ppicap	X67809
4922501H04Rik	peptidylprolyl isomerase C-associated protein
Ifi204	AI836718
CMI-2	M31419
ST2L	L47600
Acinus-pending	cardiac troponin T
Ifi204	D13695
Cstb	ST2L protein precursor
Rpl3	AI839299
Rgs2	M31419
Ankrd2	interferon-activatable protein
Ato2a1	U59807
14-3-3 zeta	cystatin B
Eif4ebp1	D49733
Tmsb10	Y00225
TLR6	J1 protein
Apobec1	U67187
2670318G08Rik	G protein signalling regulator RGS2
Isir	AJ011118
Bcat2	X67140
Klf2-4	skkeletal muscle and cardiac protein
Mch6, ICE-LAP6, Caspase-9	D83037
Lgl	mouse fast skeletal muscle SR calcium ATPase
1110034C02Rik	14-3-3 zeta
AI415285	U28656
Dixin, Dixin1, Dixin-1,	PHAS-I
Ctsc	AB020808
Mknk2	TLR6
2810411G23Rik	U22262
	apolipoprotein B mRNA editing component 1
	AA982595
	AB024538
	ISLR
	AF031467
	branched-chain amino acid aminotransferase
	X03491
	keratin complex 2, basic, gene 4
	AB019600
	caspase9
	M34597
	immunoglobulin lambda-chain
	AI837104
	AW049806
	AB029448
	Dixin-1
	U74683
	dipeptidyl peptidase I precursor
	AI845732
	AI854343

TABLE 1

S100a13	X99921	S100 calcium-binding protein A13
Dscr1	AI846152	
ADFP	M93275	adipose differentiation related protein
Hif1a	Y09085	hypoxia-inducible factor one alpha
Sic16a2	AF045692	X-linked PEST-containing transporter
AA575098	AA575098	
Hif1a	AF003695	hypoxia-inducible factor 1 alpha
Efp, Zfp147	D63902	estrogen-responsive finger protein
Rcal	D13003	reticulocalbin
Ogn	AA647799	
3110046C13Rik	A1172819	
AU043077	AA212964	
A1596360	AI596360	
1810049E02Rik	AA763937	
1110064N10Rik	X05546	
1110036C17Rik	AW124599	
grg	AW123191	
1200007D18Rik	L12140	amino-terminal enhancer of split
1200012G08Rik	AA815795	
murine CD63	AA880988	
Vps16	D16432	murine homologue of CD63/ME491
4632435C11Rik	AI847040	
Cof6a1	AF017639	carboxypeptidase X2
Krt2-16	AV010209	
GTPCH, GTP-CH	AV085755	
C77137	L09737	GTP cyclohydrolase I
AA589446	C77137	
Kr, Krm1, MarB	AI849075	
Xin	L36435	basic domain/leucine zipper transcription factor
Dnajc3	AF051945	Xin
Sipi	U28423	p58
Surf5	AV090497	
11190002H23Rik	AV264321	
Cma1, Mcp-5, MMCP-5	AI854358	
Dnajc3	M68898	chymase 1
1110025H08Rik	U28423	p58
	AV360058	

TABLE 1

12

G610008L05RIK	AV380793
D7Nsu105e	AA388099
Apaf1	AF073881
	myotubularin homologous protein 3
	apoptotic protease activating factor 1
P3, DXS253Eh, DXSmhG28	AF064071
J04761	AW125241
J04761	M90365
p50, WP34, pp52, Lsp-1	pakoglobin
TMEFF2	D49691
A1853222	AB0117270
A1132321	transmembrane protein with EGF-like and two follistatin-like domains 2
Adcy7	AW124544
AA407055	U12919
	adenylyl cyclase type VII
Ednra	AI550305
Dbx1	AI837786
Alco1	AI180687
Pros1	U38252
Diep1	FX-induced thymoma transcript
A1181838	Y00516
Mmp14	aldolase 1, A isoform
	L27439
	protein S
	U96963
	p140mDia
	AV316991
	AF022432
	matrix metalloproteinase-14
A1b	AI847033
Usf2	U23778
D730045A05RIK	X77602
C76222	U69488
Fos12	AI846773
Pim1	X83971
Midi-pending	AA764261
1700017B05RIK	AW124785
Sod3	AW049360
Gnb1	U38261
Psmr5	U29055
Peg3	AW048997
AU021460	AF038939
Igfbp3	A1131895
2310021G01RIk	AI842277
	AI606257

TABLE 1

Akap12		AB020886	SSeCKS
CDK2		AJ223733	cyclin-dependent kinase 2
Ap3s2		U91933	AP-3 complex sigma3B subunit
Uck2-pending		A1850362	
Fbln1		X70853	BM-90/fibulin
Zfp106		X60676	heat shock protein
MD1, MD-1		AF060245	zinc finger protein 106
1200017E04Rik		AB007599	lymphocyte antigen 86
G6, Clcp		AW048159	
Ppp4c		AF109905	Hsc70; smRNP; G7A; NG23; MuTS homolog; CLCP; NG24; NG25; NG26
Airh2		AF088911	protein phosphatase X
Rab7-ps1		AJ130975	Ariadne-2 protein (ARI2)
3230402M22Rik		Y13361	
Alp6a2		AW122364	
Co16a3		AW123765	
B220, CD45, Cd45, Ly-5, T200, CD45R, Lyt-4		AF064749	type VI collagen alpha 3 subunit
MSGP-2		M23158	protein tyrosine phosphatase, receptor type, C
		AA397054	
		D14077	sulfated glycoprotein-2
AI482343		AA710439	
Cdkn1c		AW123850	
C1r		U22399	p57KIP2
epithelin		AI132565	acrogranin precursor
Lipo 1		D16195	lipocortin I
C10		M69260	small inducible cytokine A6
Trfstrfa		M58004	X57796
EGFR		X04653	55kDa tumor necrosis factor receptor
Lum		L06864	epidermal growth factor receptor
Cpt1a		AF013262	lumican
Ly6		AF017175	carnitine palmitoyltransferase I
Pdk4		X04653	lymphocyte antigen 6 complex
Sifm2		AJ001418	pyruvate dehydrogenase kinase-like protein
Col9e3		AF099973	schafen2
Gadd45g		AB022316	semaphorin W
HB-EGF		AW212495	
		AF055638	growth arrest and DNA-damage-inducible 45 gamma
		L07264	heparin-binding EGF-like growth factor precursor

TABLE 1

14

Lor	U091189	Iloricrin
tPA, t-PA	J03520	plasminogen activator, tissue
Ppp1r5	U89924	protein phosphatase 1 binding protein PTG
Hsp70-3	M12571	68 kDa heat shock protein
A1d	U23781	A1-d protein
Npn1	Z31360	
Psmnd4	AF013099	multifunctional chain-binding protein
Fkbp5	U16959	FKBP51
Pitrl	Y17808	A6 related protein
Igfbp4	X76066	insulin-like growth factor binding protein 4
Ry.3	X83934	ryanodine receptor type 3
LOC10027012Rik	AV212271	
LOC55989	AF053232	SIK similar protein
Mglap	D00613	MGP precursor
4921531N22Rik	AI196645	
Nrkbia	AI841493	
Capn3	U57524	I kappa B alpha
Car2	X92523	calpain
Ces3	M25944	
Grim19 pending	AV226939	
Cyp2e1	AI854527	
adrenodoxin	X01026	
Ckm2	L29123	iron-sulfur protein
D16Bwg1543e	AV250974	
Lipe	AI573367	
Acp30	U69543	hormone-sensitive lipase
Cycts	U49915	adipoQ
	X01756	cytochrome c
myosin light chain 2	AI118905	
J chain	M91602	myosin light chain 2
Aqp4	M90766	joining chain
Retn	U88623	aquaporin-4
Temb	AA718169	
Mips7	M88694	thioether S-methyltransferase
Igk-V28	AI848784	
H2afy	M18237	
	AA646966	

TABLE 1

TIMP-3	U26437	tissue inhibitor of metalloproteinases-3
AW047450	AW047450	
Clicn3	AF029347	chloride channel protein 3
Fmo1	D16215	flavin-containing monooxygenase
2900062L11Rik	A1839718	
mid. shi, Hmbr	A1852124	
Cdo1	M11533	myelin basic protein
Amd2	A1854020	
	Z23077	S-adenosylmethionine decarboxylase
Stat1	U06924	Stat1
Rasd1	AF009246	ras-related protein
Aqp4	U48398	mercurial-insensitive water channel 2
MLP, CRP3, MMLP	D88791	muscle LIM protein
Cd1d1	M63695	CD1.1
Mapbpip-pending	A1844560	
Adsl	AA606587	
AK13-pending	A1854743	
Fasn	X13135	fatty acid synthase (838 AA)
AA959601	AW125299	
Gstz1	AW060750	
Thrsp	X95279	Spot14
Ldh2	X51905	lactate dehydrogenase 2, B chain
A1848390	AW045204	
Amd2	Z23077	S-adenosylmethionine decarboxylase
Enpp2	AW122933	
Apobec2	AW124988	
Myhcb	AJ223362	slow myosin heavy chain-beta
2310032D16Rik	AW125284	
1110007M04Rik	AA693236	
5730469M10Rik	A1850090	
Gdm1	D50430	glycerol-3-phosphate dehydrogenase
Myh11	D85923	myosin
	AW047232	
0610042C05Rik	AW048828	
	AW047643	
261010P18Rik	AW123099	

TABLE 1

AAAT, ASCT2	L42115	insulin-activated amino acid transporter
1110004O20Rik	AA733664	
	AW060921	
AW060987	AI197161	
Prkb1	AI841606	
Ms4a2	X98848	6-phosphofructo-2-kinase /fructose 2,6-bisphosphatase
Sicca15	AA797389	
lipp-pending	AA986782	
C80633	AA914345	
Tncc	AI853240	
2610042L04Rik	M29793	tropomodulin C, cardiac/slow skeletal
0610011L04Rik	AI853444	
	AI849271	
AA420417	AI851321	
2310061N23Rik	AW123788	
Bet1	AI1588110	
Gdc1	AF007552	Bet1p homolog
MLC1s, MLC1v	M255558	glycerophosphate dehydrogenase 1, cytoplasmic adult
Tpm5	X12972	
Mips25	U04541	alpha-tropomyosin slow
	C77227	

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant:

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.