Lecture 6: More on Connectivity

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Vertex cut set and connectivity

- A proper subset S of vertices is a vertex cut set if the graph G-S is disconnected
- The connectivity, $\kappa(G)$, is the minimum size of a vertex set S of G such that G-S is disconnected or has only one vertex
 - The graph is k-connected if $k \le \kappa(G)$
- $\kappa(K^n) := n 1$
- If G is disconnected, $\kappa(G) = 0$
 - \Rightarrow A graph is connected $\Leftrightarrow \kappa(G) \ge 1$
- If G is connected, non-complete graph of order n, then $1 \le \kappa(G) \le n-2$

- For convention, $\kappa(K_1) = 0$
- Example (4.1.3, W) For k-dimensional cube $Q_k = \{0,1\}^k$, $\kappa(Q_k) = k$

Edge-connectivity

- A disconnecting set of edges is a set $F \subseteq E(G)$ such that G F has more than one component
 - A graph is k-edge-connected if every disconnecting set has at least k edges
 - The edge-connectivity of G, written $\lambda(G)$, is the minimum size of a disconnecting set
- Given $S, T \subseteq V(G)$, we write [S, T] for the set of edges having one endpoint in S and the other in T
 - An edge cut is an edge set of the form $[S, S^c]$ where S is a nonempty proper subset of V(G)
- Every edge cut is a disconnecting set, but not vice versa
- Remark (4.1.8, W) Every minimal disconnecting set of edges is an edge cut

Connectivity and edge-connectivity

- Proposition (1.4.2, D) If G is non-trivial, then $\kappa(G) \leq \lambda(G) \leq \delta(G)$
- If $\delta(G) \ge n-2$, then $\kappa(G) = \delta(G)$

• Theorem (4.1.11, W) If G is a 3-regular graph, then $\kappa(G) = \lambda(G)$

Properties of edge cut

- When $\lambda(G) < \delta(G)$, a minimum edge cut cannot isolate a vertex
- Similarly for (any) edge cut
- Proposition (4.1.12, W) If S is a set of vertices in a graph G, then

$$|[S, S^c]| = \sum_{v \in S} d(v) - 2e(G[S])$$

- Corollary (4.1.13, W) If G is a simple graph and $|[S,S^c]|<\delta(G)$, then $|S|>\delta(G)$
 - |S| must be much larger than a single vertex

Blocks

• A block of a graph G is a maximal connected subgraph of G that has no cut-vertex. If G itself is connected and has no cut-vertex, then G is

a block

Example

Proposition (1.2.14, W)

An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G

• Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G

- An edge is block
 ⇔ it is a bridge
- The blocks of a tree are its edges
- If a block has more than two vertices, then it is 2-connected
 - The blocks of a loopless graph are its isolated vertices, bridges, and its maximal 2-connected subgraphs

Intersection of two blocks

- Proposition (4.1.19, W) Two blocks in a graph share at most one vertex
 - When two blocks share a vertex, it must be a cut-vertex
- Every edge is a subgraph with no cut-vertex and hence is in a block.
 Thus blocks in a graph decompose the edge set

Block-cutpoint graph

• The block-cutpoint graph of a graph G is a bipartite graph H in which one partite set consists of the cut-vertices of G, and the other has a vertex b_i for each block B_i of G. We include vb_i as an edge of $H \Leftrightarrow v \in B_i$

• (Ex34, S4.1, W) When G is connected, its block-cutpoint graph is a tree

Depth-first search (DFS)

Depth-first search

• Lemma (4.1.22, W) If T is a spanning tree of a connected graph grown by DFS from u, then every edge of G not in T consists of two vertices v, w such that v lies on the u, w-path in T

Finding blocks by DFS

- Input: A connected graph G
- Idea: Build a DFS tree T of G, discarding portions of T as blocks are identified. Maintain one vertex called ACTIVE
- Initialization: Pick a root $x \in V(H)$; make x ACTIVE; set $T = \{x\}$
- **Iteration**: Let v denote the current active vertex
 - If v has an unexplored incident edge vw, then
 - If $w \notin V(T)$, then add vw to T, mark vw explored, make w ACTIVE
 - If $w \in V(T)$, then w is an ancestor of v; mark vw explored
 - If v has no more unexplored incident edges, then
 - If $v \neq x$ and w is a parent of v, make w ACTIVE. If no vertex in the current subtree T' rooted at v has an explored edge to an ancestor above w, then $V(T') \cup \{w\}$ is the vertex set of a block; record this information and delete V(T')
 - if v = x, terminate

Example

Strong orientation

- Theorem (2.5, L) Let G be a finite connected graph without bridges.
 Then G admits a strong orientation, i.e. an orientation that is a strongly connected digraph
 - A directed graph is strongly connected if for every pair of vertices (v, w), there is a directed path from v to w
 - The blocks of a <u>loopless</u> graph are its isolated vertices, bridges, and its maximal 2-connected subgraphs

2-Connected Graphs

2-connected graphs

- Two paths from u to v are internally disjoint if they have no common internal vertex
- Theorem (4.2.2, W; Whitney 1932) A graph G having at least three vertices is 2-connected \iff for each pair $u, v \in V(G)$ there exist internally disjoint u, v-paths in G

Equivalent definitions for 2-connected graphs

• Lemma (4.2.3, W; Expansion Lemma) If G is a k-connected graph, and G' is obtained from G by adding a new vertex g with at least g neighbors in g, then g' is g-connected

- Theorem (4.2.4, W) For a graph G with at least three vertices, TFAE
 - *G* is connected and has no cut-vertex
 - For all $x, y \in V(G)$, there are internally disjoint x, y-paths
 - For all $x, y \in V(G)$, there is a cycle through x and y
 - $\delta(G) \ge 1$ and every pair of edges in G lies on a common cycle

Ear decomposition

- An ear of a graph G is a maximal path whose internal vertices have degree 2 in G
- An ear decomposition of G is a decomposition P_0, \dots, P_k such that P_0 is a cycle and P_i for $i \geq 1$ is an ear of $P_0 \cup \dots \cup P_i$
- Theorem (4.2.8, W)
 A graph is 2-connected ⇔ it has an ear decomposition.

 Furthermore, every cycle in a 2-connected graph is the initial cycle in some ear decomposition
- Corollary (4.2.6, W) If G is 2-connected, then the graph G' obtained by subdividing an edge of G is 2-connected

(Ex14, S1.1.2, H) $\kappa(G) \geq 2$ implies G has at least one cycle

 P_0

Closed-ear

 A closed ear of a graph G is a cycle C such that all vertices of C except one have degree 2 in G

• A closed-ear decomposition of G is a decomposition P_0, \ldots, P_k such that P_0 is a cycle and P_i for $i \ge 1$ is an (open) ear or a closed ear in $P_0 \cup \cdots \cup P_i$

Closed-ear decomposition

• Theorem (4.2.10, W)

A graph is 2-edge-connected \Leftrightarrow it has a closed-ear decomposition. Every cycle in a 2-edge-connected graph is the initial cycle in some such decomposition

Proposition (1.2.14, W)

An edge e is a bridge $\Leftrightarrow e$ lies on no cycle of G

• Or equivalently, an edge e is not a bridge $\Leftrightarrow e$ lies on a cycle of G

Strong orientation (Revisited)

Theorem (4.2.14, W; Robbins 1939) A graph has a strong orientation

 ⇔ it is 2-edge-connected

k-Connected and k-Edge-Connected graphs

x, *y*-cut

- Given $x, y \in V(G)$, a set $S \subseteq V(G) \{x, y\}$ is an x, y-separator or x, y-cut if G S has no x, y-path
 - Let $\kappa(x, y)$ be the minimum size of an x, y-cut
 - Let $\lambda(x, y)$ be the maximum size of a set of pairwise internally disjoint x, ypaths
 - $\kappa(x,y) \ge \lambda(x,y)$
- For $X, Y \subseteq V(G)$, an X, Y-path is a path having first vertex in X, last vertex in Y, and no other vertex in $X \cup Y$

Example (4.2.16, W)

- $S = \{b, c, z, d\}$
- $\kappa(x,y) = \lambda(x,y) = 4$
- $\kappa(w, z) = \lambda(w, z) = 3$

Menger's Theorem

• Theorem (4.2.17, W; Menger, 1927) If x, y are vertices of a graph G and $xy \notin E(G)$, then $\kappa(x, y) = \lambda(x, y)$

Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let G be a bipartite graph. The maximum size of a matching in G is equal to the minimum size of a vertex cover of its edges

Edge version

- Theorem (4.2.19, W) If x and y are distinct vertices of a graph or digraph G, then the minimum size $\kappa'(x,y)$ of an x, y-disconnecting set of edges equals the maximum number $\lambda'(x,y)$ of pairwise edge-disjoint x, y-paths
- The line graph L(G) of a graph G is the graph whose vertices are the edges of G with $ef \in E(L(G))$ when e = uv and f = vw in G

Back to connectivity

- Theorem (4.2.21, W) $\kappa(G) = \min_{x \neq y \in V(G)} \lambda(x, y), \qquad \lambda(G) = \min_{x \neq y \in V(G)} \lambda'(x, y)$
- Lemma (4.2.20, W) Deletion of an edge reduces connectivity by at most 1

Application of Menger's Theorem

CSDR

- Let $A = A_1, ..., A_m$ and $B = B_1, ..., B_m$ be two family of sets. A common system of distinct representatives (CSDR) is a set of m elements that is both an system of distinct representatives (SDR) for A and an SDR for B
 - Given some family of sets X, a system of distinct representatives for the sets in X is a 'representative' collection of distinct elements from the sets of X $S_1 = \{2, 8\},$

$$S_2 = \{8\},$$

 $S_3 = \{5,7\},$
 $S_4 = \{2,4,8\},$
 $S_5 = \{2,4\}.$

The family $X_1 = \{S_1, S_2, S_3, S_4\}$ does have an SDR, namely $\{2, 8, 7, 4\}$. The family $X_2 = \{S_1, S_2, S_4, S_5\}$ does not have an SDR.

• Theorem(1.52, H) Let $S_1, S_2, ..., S_k$ be a collection of finite, nonempty sets. This collection has SDR \Leftrightarrow for every $t \in [k]$, the union of any t of these sets contains at least t elements

Equivalent condition for CSDR

• Theorem (4.2.25, W; Ford-Fulkerson 1958) Families $\mathbf{A} = \{A_1, \dots, A_m\}$ and $\mathbf{B} = \{B_1, \dots, B_m\}$ have a common system of distinct representatives (CSDR) \iff

$$\left| \left(\bigcup_{i \in I} A_i \right) \cap \left(\bigcup_{j \in J} B_j \right) \right| \ge |I| + |J| - m$$

for every pair $I, J \subseteq [m]$

Summary

• Disconnecting edge set

Shuai Li

https://shuaili8.github.io

Questions?