ABSOLÚTNA HODNOTA

Úloha: Na číselnej osi vyznačte:

všetky čísla, ktorých vzdialenosť od 0 je rovná 3

• všetky čísla, ktorých vzdialenosť od (-5) je rovná 2

• všetky čísla, ktorých vzdialenosť od 2 je väčšia alebo rovná 3

• všetky čísla, ktorých vzdialenosť od (-1) je menšia ako 4

• všetky čísla, ktorých vzdialenosť od 6 je rovná (- 3)

• všetky čísla, ktoré sú rovnako vzdialené od čísla (-2) aj od čísla 3

• všetky čísla, ktorých súčet vzdialeností od čísel (-3) a 5 je rovný 0

Geometrický význam absolútnej hodnoty:

Pre $a, b \in \mathbb{R}$ vyjadruje

|a| Tradialus st who a od O na wo. on

|a-b| - vidialenant toll a, b na do si

17-(-2)/

(a) (-2) = 7

Algebraická definícia

Nech α je ľubovoľné reálne číslo. Pre absolútnu hodnotu čísla α platí

$$|a| = \{ \begin{array}{c} 0 \cdot \omega \geq 0 \\ -\omega \cdot \omega \leq 0 \end{array} \right.$$

Doplňte nasledujúce vlastnosti absolútnej hodnoty:

Nech $a, b \in \mathbb{R}$, potom

•
$$(-\alpha)^2 = (-\alpha)^2 + (|-3|)^2 = (-3)^2$$

•
$$|-a| \dots |a|$$
 $\rightarrow \langle -2 \rangle = 2 \langle 2 \rangle = 2$

•
$$|a| ... |a|$$
• $|a| ... |a|$
• $|a| ... |a$

•
$$|a+b| = |a+b| = |a+b| \rightarrow |a+b| = |a$$

•
$$|a-b| \stackrel{\sim}{\longrightarrow} |a|-|b| \rightarrow (-3-7) = \infty$$

•
$$|a+b| = |a| + |b| \rightarrow |a+b| = |a+b|$$

Úlohy

1.
$$60 + |-2| - |(-3)(-4)(-5)| = 60 + 2 - |-60| = 2$$

2. Určte hodnotu výrazu
$$1 + |x - |x|| pre x \in \{-10, -1, 0, 1\}$$

2. Určte hodnotu výrazu
$$1 + |x - |x||$$
 $pre \ x \in \{-10, -1, 0, 1\} = 3$
3. Vypočítajte $\frac{1 - \sqrt{3}}{1 + |2 - \sqrt{3}| + 2|1 - \sqrt{3}|} - \sqrt{3} = \frac{1 - \sqrt{3}}{1 + 2 - \sqrt{3} + 2(-1 + \sqrt{3})} - \sqrt{3} = \frac{1 - \sqrt{3}}{1 + 2 - \sqrt{3} + 2(-1 + \sqrt{3})} = \frac{1 - \sqrt{3}}{1 + 2 - \sqrt{3} + 2(-1 + \sqrt{3})} = \frac{1 - \sqrt{3}}{1 + 2 - \sqrt{3} + 2(-1 + \sqrt{3})} = \frac{1 - \sqrt{3}}{1 + 2 - \sqrt{3} + 2(-1 + \sqrt{3})} = \frac{1 - \sqrt{3}}{1 + 2 - \sqrt{3} + 2(-1 + \sqrt{3})} = \frac{1 - \sqrt{3}}{1 + 2 - \sqrt{3} + 2(-1 + \sqrt{3})} = \frac{1 - \sqrt{3}}{1 + 2 - \sqrt{3} + 2(-1 + \sqrt{3})} = \frac{1 - \sqrt{3}}{1 + 2 - \sqrt{3}} = \frac{1 - \sqrt{3}}{1 +$

4. Znázornite na číselnej osi čísla
$$n$$
, $|n|$, ak je a) $n < 0$ b) $n > 0$. Akú hodnotu má súčet $n + |n|$?

4. Znázornite na číselnej osi čísla
$$n$$
, $|n|$, ak je a) $n < 0$ b) $n > 0$. Akú hodnotu má súčet $n + |n|$?

5. Akú hodnotu má výraz $|5 - x|$ pre $x > 5$? $|5 - x| = 5$

5. Akú hodnotu má výraz
$$|5-x|$$
 pre $x > 5$? $|5-x| = -5+x|$
6. Pre ktoré čísla x nadobúda výraz $|12x|$ hodnotu 6 ? $-x = \frac{h}{2}$ $|x = -\frac{h}{2}|$
7. Pre ktoré čísla x nadobúda výraz $|2x = 1|$ hodnotu 5 ?

7. Pre ktoré čísla
$$y$$
 nadobúda výraz $|2y-1|$ hodnotu 5?

8. Pre $x \in (0, \infty)$ upravte výraz 2x + |2x| = 2x + 2x = 4x

9. Pre $x \in (-\infty; 0)$ upravte výraz $2x + |-x| = 2 \times - \times = \times$ 10. Pre $x \in \mathbb{R}$ upravte výraz (x + 3|x|)(|x| + 3x) x = (x + 3x)(x + 3x) = 4x - 6x x = -4x x

a.
$$x = 1 \ \forall \ x = -1$$

b.
$$-1 < x < 1$$

c.
$$(x < -1) \lor (x > 1)$$

12. Vyznačte na číselnej osi množiny všetkých reálnych čísel, pre ktoré platí

• a.
$$|x-1|=5$$
 -> what is alrahod $1=5$ "

b.
$$|x-1| \ge 2$$
 \Rightarrow $\text{ other: } \forall \text{ thinh. } \delta \land \ge 2$

c.
$$|x-1| < 3$$
 \rightarrow variate of $1 < 3$

13. Ak platí: $y = \frac{1}{x} a |x - 4| < 2$, čo môžeme povedať o hodnotách y?

14. Na číselnej osi vyznačte

a.
$$\{x \in \mathbb{R}; |x+2| < 1\}$$

b.
$$\{x \in \mathbb{R}; |x - 3| \ge 4\}$$

c.
$$\{x \in \mathbb{R}; |x| \le 2\}$$

d.
$$\{x \in \mathbb{R}; |x+5| = 0\}$$

c.
$$\{x \in \mathbb{R}; |x| \le 2\}$$

d. $\{x \in \mathbb{R}; |x+5| = 0\}$
e. $\{x \in \mathbb{R}; |x+\frac{2}{3}| + 5 < 0\}$

f.
$$\{x \in \mathbb{R}; |x+2| = |x-4|\}$$

