Evan Wilcox CS1200 Fall 2018Homework 6

Due: Monday 11/26/18

- 1. Let R be the relation on A and B defined by aRb iff a divides b.
 - (a) List the pairs in R.

$$R = \{(2,10), (3,3), (3,15), (3,33), (5,-5), (5,10), (5,15)\}$$

(b) Represent the relation R as a 0,1-matrix.

- 2. R is symmetric but is not reflexive, antisymmetric or transitive.
- 3. (a) R is reflexive, symmetric and transitive but not antisymmetric. R is an equivalence relation but not a well order, partial order or total order.
 - (b) Use python functions to verify your answers.

```
PS C:\Users\Evan\Documents\MST\CS1200\\Hw06> python .\hw06.py
R = [(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)]
Reflexive = True
Symmetric = True
Antisymmetric = False
Transitive = True
Partial Order = False
Well Order = False
Well Order = False
False Relation = True
```

```
A = [0, 1, 2, 3, 4]
R = [(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)]
 def Reflexive(D,R):
                return False
 def Symmetric(R):
       for (a,b) in R:
       if (b,a) not in R:
 def AntiSymmetric(R):
      for (a,b) in R:
          if (a !=b) and ((b,a) in R):
 def Transitive(R):
       for (a,b) in R:
            for (c,d) in R:
                 if (b == c) and ((a,d) not in R):
    return False
 def PartialOrder(D, R):
     return Reflexive(D,R) and AntiSymmetric(R) and Transitive(R)
 def TotalOrder(D, R):
               if (a, b) not in R and (b, a) not in R:
 def WellOrder(R):
 def EquivalenceRel(D, R):
    return Reflexive(D,R) and Symmetric(R) and Transitive(R)
print "R =", R
print "Reflexive =", Reflexive(A,R)
print "Symmetric =", Symmetric(R)
print "AntiSymmetric =", AntiSymmetric(R)
print "AntiSymmetric =", AntiSymmetric(R)
print "Transitive =", Transitive(R)
print "Partial Order =", PartialOrder(A, R)
print "Total Order =", TotalOrder(A, R)
print "Well Order =", WellOrder(R)
print "Equivalence Relation =", EquivalenceRel(A, R)
```

4. (a) Draw the directed graph representing R. If R can be represented by an undirected graph, draw it.

(b) Draw a 0,1-matrix to represent R with the rows and columns labeled.

									E	3										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
2	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
3	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
4	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
5	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
6	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
7	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
8	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
9	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
A^{10}	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
⁷ 11	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
12	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
13	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
14	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
15	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
16	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
17	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
18	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
19	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
20	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1

(c) R is an equivalence relation but not a partial order, total order or well order.

5. (a) Draw a bipartite graph representation of f.

(b) f is not an injection, surjection, or bijection.

(c) Write a Python program to test whether the functions are injections, surjections, or bijections.

```
A = [0, 1, 2, 3, 4, 5]
       R = [(0, 5), (1, 3), (2, 0), (3, 0), (4, 4), (5, 1)]
       def Injection(R):
           Bs = []
for (a, b) in R:
                Bs.append(b)
           for x in Bs:
                if Bs.count(x) > 1:
       def Surjection(A, R):
           Bs = [] for (a, b) in R:
                Bs.append(b)
                if x not in Bs:
       def Bijection(A, R):
           return (Injection(R) and Surjection(A, R))
       print "Injection =", Injection(R)
      print "Surjection =", Surjection(A, R)
print "Bijection =", Bijection(A, R)
PS C:\Users\Evan\Documents\MST\CS1200\HW06> python .\hw06.py
Injection = False
Surjection = False
Bijection = False
```

6. (a) Write the formulas for $g \circ f$ and $f \circ g$.

$$g \circ f = 12n + 9$$

$$f \circ g = 12n + 5$$

(b) Determine whether each of $f,g,g\circ f,f\circ g$ are injections, surjections or bijections.

Function	injection?	surjection?	bijection?
f	Yes	Yes	Yes
g	Yes	Yes	Yes
$g \circ f$	Yes	Yes	Yes
$f \circ g$	Yes	Yes	Yes

(c) Compute $(f \circ g)^{-1}(\{-5, -3, 0, 7, 9, 21, 22, 23, 45\})$ and $(g \circ f)^{-1}(\{-7, 0, 5, 7, 9, 17, 22, 41\})$.

7. Let N be the set of natural numbers and $f: N \to N$ be the function f(n) = 5n + 4.