Transfer Learning for Emotion Recognition

Jessica Huynh, Amith Ananthram, Kailash Karthik jyh2127, aa4461, ks3740

Problem Description

- problem: given an utterance, classify its emotion into one of {happiness, sadness, fear/surprise, anger/disgust, neutral}
- approach: transfer learning from larger speaker identification corpus to generate MFCC + pitch based speech embeddings; combine with BERT-based text embeddings; neural classification, LDA/PLDA
- training: VoxCeleb1 and 2, MELD
- test: IEMOCAP

Mapped Emotion	IEMOCAP	MELD Joy	
Happiness	Happiness Excitement		
Sadness	Sadness	Sadness	
Fear/Surprise	Fear Surprise	Fear Surprise	
Anger/Disgust	Anger Disgust Frustration	Anger Disgust	
Neutral	Neutral	Neutral	

Table 1. Emotion Label Mapping

Approach

LDA/PLDA Training

Neural Network Results

LDA/PLDA Results

LDA Input	EER	
MELD Speech xvectors	47.21%	
BERT Text Embeddings	46.23%	
Speech & Text Embeddings	43.05%	

Table 3. EER On All IEMOCAP

Test Sess./LDA Input	Speech	Text	Both
Session 1	40.91%	41.48%	35.49%
Session 2	41.04%	40.95%	34.78%
Session 3	39.86%	41.91%	34.87%
Session 4	39.21%	40.82%	33.71%
Session 5	40.11%	41.46%	34.70%
Weighted Average	40.19%	41.33%	34.69%

Table 4. EER On Fifths Of IEMOCAP

Challenges

- 1. cross-domain evaluation (train on VOX/MELD, evaluate on IEMOCAP)
- 2. partial signal: human annotators used visual cues + audio cues
- 3. imbalanced corpora: not all emotions are represented equally
- 4. context independent combination of text + speech vectors
 - a. we generate context dependent dependings of text and speech separately and combine them

Future Work

- neural network
 - a. reference model
 - i. train speaker identification model with additional layers
 - ii. train speaker identification model with silence frames
 - b. domain adaptation
 - i. include portions of IEMOCAP in re-training (in-progress)
 - c. emotion conversion
 - i. using the emotion detector, train an auto-encoder (in-progress)
- 2. target emotions (experiment with other clusterings)
- 3. model entire conversations for latent emotional state
- 4. LDA/PLDA
 - a. context dependent combinations of speech + text embeddings
 - b. Use embeddings from 8th layer of neural network for LDA/PLDA (in-progress)