L'algèbre relationnel

HLIN511

Pascal Poncelet
Pascal.Poncelet@umontpellier.fr
http://www.lirmm.fr/~poncelet

Introduction

- Introduit par CODD en 1970
- Traitement de requêtes de lecture et écriture
- Deux principaux types d'opérateurs
 - Opérateurs ensemblistes : UNION, INTERSECTION, DIFFERENCE, PRODUIT CARTESIEN
 - Opérateurs relationnels : SELECTION, PROJECTION, JOINTURE et DIVISION
 - Opérateurs dérivés : renommer, jointure externe, semi-jointure gauche, droite
- Notation: t un tuple d'une relation et t(A) dans R, le sous tuple de R relatif à A

2

- Ensemble d'opérateurs définis sur l'ensemble des relations :
 - le résultat de toute opération algébrique est une relation(propriété de fermeture)

R op Q -> S

- une base formelle pour les requêtes
- utiles pour l'implémentation et l'optimisation des requêtes

Opérateurs ensemblistes

- Pour l'union, l'intersection, la différence les relations doivent être uni compatibles :
 - les relations doivent avoir même degré
 - les attributs associés deux à deux doivent être du même type

UNION

UNION

R U S : ensemble des tuples qui appartiennent soit à R, soit à S, soit à R et $\,$ S :

 $R \cup S = \{t/t \in R \text{ OU } t \in S\}$

- Opérateur commutatif (R1 U R2 = R2 U R1)
- Opérateur associatif : [(R1 ∪ R2) ∪ R3] = [R2 ∪ (R1 ∪ R3)]

Exemple

Pilote1 : ensemble des pilotes habitant PARIS

1 . ensemble des photes habitant 17445		
PILOTE1	PLNUM	ADR
	100	PARIS
	101	PARIS
	120	PARIS
	110	DADIC

Pilote2 : ensemble des pilotes assurant un vol au départ de PARIS de TOULOUSE

PILOTE2

PLNUM	VD
130	TOUL
140	TOUL
150	TOUL
100	TOUL
120	TOUL
130	PARIS
101	PARIS
140	PARIS
110	DADIC

INTERSECTION			
R ∩S : ensemble des tuples qui appartiennent à R et à S : R ∩ S = {t / t ∈ R et t ∈ S} Opérateur commutatif : R1 ∩ R2 = R2 ∩ R1			
• Opérateur associatif : [(R1 ∩ R2) ∩ R3] = [R2 ∩ (R1 ∩ R3)]			
A B			
Avec Dilete1 INTERSECT	Avec Pilote1 INTERSECTION Pilote2		
PILOTE1	PLNUM	VILLE	
INTERSECTION PILOTE2	PLNOM	VILLE	
	101	PARIS	
	110	PARIS	
L'intersection permet de traduire le ET logique			

• R - S : ensemble des tuples qui appartiennent à R sans appartenir à S. Complémentaire de l'intersection : R - S = {t/t ∈ R ET t ∉ S} • Opérateur non commutatif : R1 - R2 ≠ R2 - R1 • Opérateur non associatif [(R1 - R2) - R3] ≠ [R2 - (R1 - R3)] PILOTE1 - PILOTE2 PLNUM ADR 100 PARIS 120 PARIS PILOTE 1 - PILOTE 2 : ensemble des pilotes habitant PARIS et n'assurant pas de vol au départ de PARIS ou TOULOUSE

PRODUIT CARTESIEN					
 R S : ensemble de tous les tuples obtenus par concaténation des tuples de R et de S. Ensemble de paires ordonnées : 					
R \otimes S = {(t (r), t(s)) avec t(r) \in R et t(s) \in S} Opérateur commutatif : R1 \otimes R2 = R2 \otimes R1 Opérateur associatif : [(R1 \otimes R2) \otimes R3] = [R2 \otimes (R1 \otimes R3)]					
	1 (V LS)	-		•	-
PILOTE3 PLNUM ADR 103 NICE		A	VION	AVNOM AIRBLIS	350
106 NICE				CARAV	250
100 NICE	100 NICE				
Produit Cartésien	PLNUM	ADR	AVNOM	CAP	
Cartesien	103	NICE	AIRBUS	350	-
	103	NICE	CARAV	250	
	106	NICE	AIRBUS	350	
106 NICE CARAV 250					

Renommage

- Opérateur renommer : Changer le nom d'un (ou plusieurs) attribut d'une relation
- Utile avant les jointures (homonymie, synonymie), ou avant les opérations ensemblistes (même nom requis)
- Renommer[PLUM: NEWPLNUM] PILOTE
- Notation
- α [nom_attr1: nouveau_nom_pour_attr1, ...] R

Opérateurs relationnels

- Deux catégories
 - unaires de restriction
 - binaires d'extension
- Les opérateurs de restrictions permettent :
 - soit un découpage horizontal d'une relation (SELECTION)
 - soit un découpage vertical d'une relation (PROJECTION)

SELECTION

- Soit θ un comparateur binaire θ ={<, <=,>, >=, <>}
 applicable à l'attribut (ou à l'ensemble d'attributs)
 A et au tuple c (de la relation R)
- La sélection R(A θ c) est l'ensemble des tuples de R pour lesquels θ est vérifié entre la (les) composante(s) A et le tuple c :

 $R(A \theta c) = \{ t / t \in R ET tA \theta c \}$

13

SELECTION

PILOTE4	PLNUM	PLNOM	ADR
	100	JEAN	PARIS
	101	PIERRE	PARIS
	120	PAUL	PARIS
	130	SERGE	TOUL
	440	14101151	TO

 R
 PLNUM
 PLNOM
 ADR

 130
 SERGE
 TOUL

 140
 MICHEL
 TOUL

R = PILOTE4 (ADR = « TOUL »)

14

SELECTION - Notations

R = PILOTE4 (ADR = « TOUL »)
R = SELECTION(PILOTE4/ADR = « TOUL »)

Notation : $\sigma_Q(R)$ où Q est le critère de la forme : Ai θ Valeur

 $R = \sigma_{ADR= \ll TOUL \gg}(PILOTE4)$

Toutes les notations sont équivalentes mais il ne faut pas les mélanger

SELECTION - remarques

• Il est possible d'utiliser des opérateurs logiques : ET, OU, NON

R = PILOTE4(ADR= < TOUL > ET NOM = < MICHEL >) $R = \sigma_{(ADR= < TOUL > ET NOM = < MICHEL)}(PILOTE4)$

• Pas indispensable pour le moment

16

PROJECTION

- Soit R(A) une relation et un ensemble d'attributs $A_1, ..., A_n$ de R tels que $(A_1, A_2, ..., A_n) \subset A$
- La projection R' (A_1, A_2, \dots, A_n) est la relation obtenue à partir de R (A) en éliminant de R(A) les attributs autres que ceux spécifiés par $A_1, A_2, \dots A_n$

R
$$(A_1, ..., A_n) = \{t(a_1, ..., a_n)\}$$

• Suppression des tuples dupliqués

17

PROJECTION - Notations

R = AVION1 (AVNOM, CAP)
R = PROJECTION(AVION1/AVNOM, CAP)

Notation : $\pi_{A1,A2,...Ap}(R)$

 $R = : \pi_{AVNOM,CAP}(AVION1)$

• Toutes les notations sont équivalentes mais il ne faut pas les mélanger

19

Opérateurs binaires d'extension

- L'opérateur JOIN et DIVISION
- JOIN : permettre de pouvoir relier des relations entre elles – Attention à la sémantique des requêtes
- DIVISION: Opérateur qui permet de sélectionner les tuples d'une relation (dividende) qui satisfont un critère de couverture énoncé via le contenu d'une autre relation (diviseur). Le résultat est une troisième relation, appelée le quotient. Exprime le « tous les »

20

JOIN

- Soient les relations R(A, B₁) et S(B₂, C) avec B₁ et B₂ attributs définis sur le même domaine, soit θ ={=, >, >=, <, <=, <>} applicables aux valeurs des attributs B₁ et B₂
- Le JOIN de R sur B_1 avec S sur B_2 est la relation dont les tuples sont ceux obtenus par concaténation des tuples de R avec ceux de S pour lesquels la relation $\boldsymbol{\theta}$ entre les composantes B_1 et B_2 est vérifiée :

 $R(B_1 \boldsymbol{\theta} B_2) S = \{t/t \in R \otimes S ET t(B_1) \boldsymbol{\theta}(B_2)\}$

• L'opérateur JOIN est équivalent à un produit cartésien suivi d'une

JOIN - Vocabulaire

 $R \; (B_1 \; \boldsymbol{\theta} B_2) \; S = \{t/\; t \in R \; \otimes S \; ET \; t(B_1) \; \boldsymbol{\theta}(B_2)\}$

• Lorsque θ = {=} on parle d'équijointure autrement de thétajointure

 $R(B_1 = B_2) S = \{t/t \in R \otimes S \in Tt(B_1) \theta(B_2)\}$

• Il est possible d'avoir des autojointures

 $R (B_1 \boldsymbol{\theta} B_2) R = \{t/t \in \mathbb{R} \otimes \mathbb{R} ET t(B_1) \boldsymbol{\theta}(B_2)\}$

22

JOIN - Exemple

PILOTE1

PLNUM	PLNOM	ADR
100	JEAN	PARIS
101	PIERRE	PARIS
120	PAUL	PARIS

VOL1

VOLNUM	AVNUM	PLNUM
IT500	110	100
IT501	130	100
IT503	110	100
IT504	110	120
IT506	120	120
IT507	130	110

22

JOIN

JOIN (PILOTE1, VOL1/PLNUM=PLNUM)

• Ensemble des pilotes habitant PARIS en service avec les numéros des vols et des avions correspondants

PLNUM	PLNOM	ADR	VOLNUM	AVNUM	PLNUM
100	JEAN	PARIS	IT500	110	100
100	JEAN	PARIS	IT501	130	100
100	JEAN	PARIS	IT503	110	100
120	PAUL	PARIS	IT504	110	120
120	PAUL	PARIS	IT506	120	120
个					1

JOIN JOIN (PILOTE1, VOL1/ PLNUM>PLNUM) Quels sont les pilotes les pilotes dont le numéro est supérieur à au moins un numéro de pilote dans vol (qui effectue un vol) PLNUM PLNOM ADR VOLNUM AVNUM PLNUM 101 PIERRE PARIS IT500 110 100 101 PIERRE PARIS IT501 130 100 101>100 PIERRE PARIS PIERRE PARIS PAUL PARIS PAUL PARIS IT501 IT500 IT501 IT503 100 120>100 100 100 110 120 > 110 PARIS IT507

• Quels sont les avions dont la capacité est supérieure à celle de l'avion 100 ? → 100 200 100 200 100 200 100 200 101 350 104 150 104 150 105 250 105 250 105 250 105 250 R1 = AVION(AVNUM=100) R3 = JOIN(AVION, R2/CAP >= CAP)

Jointure naturelle

- La jointure naturelle de 2 tables R et S est une table T dont les attributs sont l'union des attributs de R et de S et dont les tuples sont obtenus en concaténant un tuple de R et un tuple de S ayant mêmes valeurs pour les attributs de même nom
- Elimination des attributs doublons
- T = JOIN(R,S)

Jointure externe

- La jointure externe de 2 tables R et S est une table T obtenue par jointure de R et S et ajout des tuples de R et de S ne participant pas à la jointure avec des valeurs nulles pour les attributs de l'autre table s'il n'y a pas de correspondances
- Intérêt : composer des vues sans perte d'information
- T = EXT-JOIN(R,S)

29

Jointure externe EXT-JOIN(PILOTE1,PILOTE2) PILOTE1 PILOTE PILOTE PILOTE2 PILOTE1 PILOTE PILOTE2 PLNUM ADR 101 PIERRE 101 PILOTE 122 LYON PLNUM PLNOM ADR 101 PIERRE 101 PILOTE 122 LYON PLNUM PLNOM ADR 101 PIERRE NICE 120 PAUL NULL 122 NULL LYON

Semi jointure externe

- On distingue:
 - la jointure externe droite (REXT-JOIN) : elle garde seulement les tuples sans correspondant de la table de droite
 - la jointure externe gauche (LEXT-JOIN) : elle garde seulement les tuples sans correspondant dans la table de gauche

31

Jointure externe

REXT-JOIN(PILOTE1, PILOTE2)

PILOTE1

PLNUM	PLNOM	ADR
100	JEAN	PARIS
101	PIERRE	NICE
122	NULL	LYON

JOIN - Notations

RES = PILOTE1 (PLNUM=PLNUM) VOL1
RES = JOIN (PILOTE1, VOL1 / PLNUM = PLNUM)

Notation : RES = R S \bowtie

 $\mathsf{RES} = \mathsf{PILOTE1} \bigotimes_{\mathsf{PLNUM}} \mathsf{VOL1}$

JOIN - Notations

Jointure naturelle
RES = JOIN (PILOTE1,VOL1)

Notation : RES =

RES = PILOTE1 VOL1

Jointure externe
RES = EXT-JOIN (PILOTE1, VOL1)

Notation sigma : RES = R ⋈ S

b\

DIVISION

- Utiliser souvent pour exprimer le « tous les »
- Division d'une relation binaire par une relation unaire

 $R(A_1/A_2) S = \{t/t \in R[B] \text{ ET } (\{t\} \bigotimes S) \subseteq R\}$ $avec \ R(B,A_1) \text{ et } S(A_2)$

• La division de R par S est le sous-ensemble des éléments de R(B) dont le produit cartésien avec S est inclus dans R

35

DIVISION • Avions conduits par tous les pilotes : VOL1/PIL ? Représente VOL1 (PLNUM /PLNUM) PIL vol.1 AVNUM PLNUM /PLNUM /PLN

_			_	_
	11	I C I	17 N	N
	ı v	ורו		ı١

 Chaque fois que l'on aura « pour tous les x », il suffira de mettre l'attribut x dans le diviseur. Le dividende binaire doit contenir alors le même attribut (sur lequel porte la division) et l'attribut du résultat recherché

37

DIVISION

• Quels sont les noms des pilotes qui conduisent tous les avions de la compagnie ?

PILOTE1 = PILOTE (PLNUM, PLNOM)

PILOTE2 = VOL1 (AVNUM / AVNUM) AV1 <division pour avoir les numéros des pilotes qui conduisent tous les avions>

PILOTE3 = PILOTE1 (PLNUM=PLNUM)PILOTE2 < join pour avoir les noms>

RES = PILOTE3(PLNOM)

38

CE QU'IL FAUT RETENIR

- L'ALGEBRE RELATIONNELLE EST COMPLETE
 - Les cinq (sept) opérations de base permettent de formaliser sous forme d'expressions toutes les questions que l'on peut poser avec la logique du premier ordre (sans fonction)
 - Le résultat de l'application d'un opérateur donne une relation
 - Possibilité d'impliquer les opérateurs directement
- NOM ET PRENOM DES BUVEURS DE VOLNAY 1988

PROJECTION (NOM,PRENOM, SELECTION(CRU="VOLNAY" ET MILL =1988, JOIN(VINS,ABUS,BUVEURS)))

Equivalences

• Intersection :

 $R \cap S = R - (R - S) = S - (S - R)$ ou $R \cap S = (R \cup S) - ((R - S) \cup (S - R))$

• Jointure naturelle :

Soient R (X,Y) et S (Y,Z) R \mathbf{M} S = π [X,Y,Z] σ [Y = Y'] (R × α [Y : Y']S)

• Thêta jointure :

Soient R (X,Y) et S (U,V) R \bowtie_p S = σ_p (R × S)

• Division :

Soient R (X,Y) et S (Y) R/S = π [X] R - π [X] ((π [X]R) \times S) - R)

40

ARBRE DE REQUETES

 Pour chaque requête un arbre de requête est créé. Il permet notamment de faire de l'optimisation de requêtes

Liste des noms des pilotes Parisiens :

ARBRE DE REQUETES

- Intuitivement une requête est coûteuse : remonter les opérations de sélection et de sélection
- Une jointure est un produit cartésien suivi d'une sélection !

Complexité	
• Sélection : σ [condition] R	
Au plus: balayer la relation et tester la condition sur chaque tuple Complexité= card (R) Taille du résultat : [0 : card (R)]	
• Projection : π [A,, A _i] R	
 Balayer la relation + élimination des doublons Complexité = card (R). O si inclut dans une sélection Taille du résultat : [1 : card (R)] 	
Jointure (naturelle ou thêta) entre R et S Balayer R et pour chaque tuple de R faire : Balayer S et comparer chaque tuple de S avec celui de R	
Complexité = card (R) x card (S) Taille du résultat : [0 : card (R) x card (S)]	
	J
	7
• Des questions ?	
. /	