

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

ONS Cambridge Com

٠.	
* '	
4	
4	
4	
Ø	
μ	
0	
ω	
4	
. :	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS (SYLLABUS D)

4024/21

Paper 2

May/June 2012

2 hours 30 minutes

Candidates answer on the Question Paper.

Additional Materials:

Geometrical instruments

Electronic calculator

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Section B

Answer any four questions.

If working is needed for any question it must be shown in the space below that question.

Omission of essential working will result in loss of marks.

You are expected to use an electronic calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

This document consists of 24 printed pages.

Section A [52 marks]

Answer all questions in this section.

1 (a) The sets A, B and C are shown in the Venn diagram.

 $\mathscr{E} = \{ x : x \text{ is an integer, } 1 \le x \le 18 \}$

 $A = \{ x : x \text{ is an even number } \}$

 $B = \{ x : x \text{ is a multiple of 5 } \}$

(i) Find $n(A \cup B)$.

Answer	•••••	Г1	1
$\alpha nswer$		11	ı

(ii) (a) Given that $A \cap B' \cap C' = \{2, 6, 14, 18\}$, list the members of C.

(b) Describe the set *C* in words.

Answer $C = \{ x : x \text{ is } \dots \} [1]$

www.PapaCambridge.com **(b)** A school offers piano lessons and flute lessons to a group of 50 children. Of these children, 28 attend piano lessons 17 attend flute lessons 12 attend neither piano lessons nor flute lessons.

By drawing a Venn diagram, or otherwise, find the number of children who attend only the piano lessons.

Anguan	$\Gamma \gamma 1$
Answer	 121

2	(a)	Sunil needs to hire a digger from Monday to Thursday one week and on Monday and Tuesday the following week. The Hire company charges \$48 each time the digger is hired plus \$13 per day. He has two options. Option 1: Hire the digger for four days, return it and then hire it again for two days.
		Option 1: Hire the digger for four days, return it and then hire it again for two days.
		Option 2: Hire it continuously from the first Monday to the second Tuesday.
		Which is the cheaper option and by how much?
		Answer Option is cheaper by \$[2]
	(b)	Tina invests some money in an account that earns simple interest at 3% per year. At the end of one year the investment is worth \$2781.
		How much money did she invest?
		Answer \$[2]

			2	2
3	(a)	Factorise	$9x^{2}$ –	$64v^{2}$

	my
	* Palas
	ambridge.
Answer	[1] Jae. Com

(b) The product of three numbers 4, x and (x + 3) is 55.

Form an equation in x and solve it to find the possible values of x.

(c) (i) Given that $\frac{x-1}{3} - \frac{5}{x+2} = 1$ show that $x^2 - 2x - 23 = 0$.

[2]

(ii) Solve $x^2 - 2x - 23 = 0$. Give your answers correct to one decimal place.

The entrance to a zoo has this sign above it. 4

(a) The letter Z has rotational symmetry order 2 and DE is perpendicular to FE and CD. CD = 35 cm, FE = 50 cm, DE = 10 cm and BC = 81 cm.The perpendicular distance between BC and GF is 10 cm.

Calculate the area of the letter Z.

Answer cm² [3]

		The state of the s	
		7	
(b)		shaded area of one letter O is 1206 cm ² . radius of the unshaded inner circle is 15 cm.	3
	Calo	culate the radius of the outer circle.	-
		Answer cm [3]	
(c)		sign above the exit of the zoo is geometrically similar to the one above the entrance. radius of the inner circle of the letter O on the sign above the exit is 10cm.	
	(i)	The length of the base of the letter Z on the sign above the entrance is 50 cm.	
		Calculate the length of the base of the letter Z on the sign above the exit.	
		Answer cm [1]	
	(ii)	The area of the sign above the entrance is $A \text{ cm}^2$. The area of the sign above the exit is $kA \text{ cm}^2$.	
		Write down the value of k as a fraction in its simplest form.	

Answer[2]

A, B, C and D are points on the circumference of a circle, centre O. EF is the tangent to the circle at D and is parallel to BC. $A\hat{B}C = 86^{\circ}$ and $C\hat{D}F = 58^{\circ}$.

(a) Find $O\hat{D}C$.

Answer[1]

(b) Explain why $O\hat{C}B = 26^{\circ}$.

(c) Find (i) $A\hat{D}C$,	9	www.PapaCambridge.com
(ii) $A\hat{D}E$,	Answer .	[1]
(iii) $A\hat{O}D$,	Answer .	[1]
(iv) BÂO.	Answer .	[1]
	Answer	r11

6

Triangle R has vertices (-2, -1), (2, 1) and (4, -1).

(a) The gradients of the sides of triangle R are 0, -1 and k. Find k.

Answer[1]

(b) One of the inequalities that defines the shaded region is $x + y \le 3$. Write down the other two inequalities that define this region.

Answer

(c)	Tria	ngle R is mapped onto triangle P by a reflection	in the line	y = -2.	Can
	Dra	w and label triangle P.		`	Milde
(d)		ngle R is mapped onto triangle Q by a stretch what transformation maps the vertex $(2, 1)$ onto $(4, 1)$		variant line is the <i>y</i> -axis.	Cambridge Com
	(i)	For this stretch, state the scale factor.			
	(ii)	Find the coordinates of the vertex $(4, -1)$ when		formed by this stretch.	.[1]
				·	
			A 10 G1 U 010	()	[1]
	(iii)	Find the area of triangle Q .	Answer	()	[1]
			Answer	units ²	[2]

(a) (i) Find $A\hat{O}B$.

Answer	 [1]	l

www.PapaCambridge.com

(ii) Explain why AO = BC.

Answer[1]

(b)
$$\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}.$$

G is the point on AB such that AG : GB is 1 : 3. H is the midpoint of BC.

Express, as simply as possible, in terms of **a** and **b**,

(i) \overrightarrow{AB} ,

Answer[1]

(ii) \overrightarrow{FB} ,

Answer[1]

(iii) \overrightarrow{OG} ,	13
(iv) \overrightarrow{OH} ,	Answer[2]
(v) \overrightarrow{GH} .	Answer[1]

Answer[2]

Section B [48 marks]

		Section B [48 marks] Answer four questions in this section. Each question in this section carries 12 marks.	
		14	
		Section B [48 marks]	ot
		Answer four questions in this section.	
		Each question in this section carries 12 marks.	E.CO.
8	(a)		13
		(i) Write down the bearing of A from B.	
		Answer[1]	_
		(ii) Of the three towns, A is the furthest north.	

North

Using a scale of 1cm to 10km, construct a scale drawing to show the positions of the

three towns.

[3] (iii) Measure the bearing of *B* from *C*.

(b) JKLM is a quadrilateral with KL = 7 cm and $K\hat{L}M = 72^{\circ}$. N is the point on LM such that KLN is a sector of a circle, centre L.

Calculate the area of the sector *KLN*.

Answer	cm ²	[2]
--------	-----------------	-----

Calculate the perimeter of the sector *KLN*.

(iii) On the diagram, construct the locus of points inside the quadrilateral JKLM which are

> I $5 \,\mathrm{cm}$ from JM,

equidistant from JK and KL. II

(iv) The point *P* is inside JKLM, less than $5 \,\mathrm{cm}$ from JM, nearer to KL than JK, less than $7 \, \text{cm}$ from L.

Shade the region containing the possible positions of P.

[1]

[2]

	of 80 music sults are summa				sing last week.	WWW. PapaCan	Bh
Time (<i>m</i> minutes)	$0 < m \le 20$	$20 < m \le 40$	$40 < m \le 60$	$60 < m \le 80$	$80 < m \le 100$	$100 < m \le 120$	bridge co.
Frequency	6	15	29	18	9	3	177
(a) Cal	lculate an estim	nate of the mean	n.				

4	•	r 🔿 -
Answer	 minutes	13
1111011101	 IIIIIII	ľ

(b) Complete the cumulative frequency table below.

Time (<i>m</i> minutes)	m = 0	<i>m</i> ≤ 20	<i>m</i> ≤ 40	<i>m</i> ≤ 60	<i>m</i> ≤ 80	<i>m</i> ≤ 100	<i>m</i> ≤ 120
Cumulative frequency	0	6	21				80

[1]

(c) For this part of the question use the graph paper opposite.

Using a scale of 1 cm to represent 10 minutes, draw a horizontal m-axis for $0 \le m \le 120$. Using a scale of 2 cm to represent 10 students, draw a vertical axis for cumulative frequency from 0 to 80.

Using your axes draw a smooth cumulative frequency curve to illustrate the information.

[3]

- (d) Use your graph to estimate
 - (i) the median,

Answer minutes [1]

(ii) the interquartile range,

Answer minutes [2]

the probability that a student, chosen at random, practised for **more than** 75 minutes. (iii)

> $\Gamma \cap I$ 1 20 00 00

10

A cuboid has a square cross-section, shown shaded in the diagram.

The length of the cuboid is x cm.

The sum of the length of the cuboid and one of the sides of the square is 10 cm.

(a) Show that the volume of the cuboid, y cm³, is given by $y = x^3 - 20x^2 + 100x$.

[2]

www.PapaCambridge.com

(b) The table shows some values of x and the corresponding values of y for

$$y = x^3 - 20x^2 + 100x.$$

х	1	2	3	4	5	6	7	8	9
у	81	128	147	144	125	96			9

(i) Complete the table.

- [1]
- (ii) On the grid opposite, plot the graph of $y = x^3 20x^2 + 100x$ for $1 \le x \le 9$. [3]
- (c) Use your graph to find
 - (i) the maximum volume of the cuboid,

Answer cm³ [1]

(ii) the possible values of x when the volume of the cuboid is $120 \,\mathrm{cm}^3$.

го

(d) [The volume of a sphere = $\frac{4}{3} \pi r^3$]

For this part of the question take π as 3.

A sphere has a radius of $\frac{1}{2}x$ cm.

By drawing a suitable graph on the grid, estimate the value of x when the sphere and the cuboid have the same volume.

11

A vertical mast, AB, is 15 m tall and is attached to the top of a building at B. The top of the mast is attached to the roof of the building at E using a wire. $A\hat{B}E = 90^{\circ}$ and BE = 11 m.

(a) (i) Calculate AE.

Answer	m	[2]	
Answei		141	

www.PapaCambridge.com

(ii) D is a point on the ground such that AD = 60.5 m and BD = 50 m. Calculate $A\hat{D}B$.

r a

(b)

The top of the mast is also attached to the roof of the building at F using a wire. $F\hat{B}E = 75^{\circ}$, $B\hat{E}F = 55^{\circ}$ and $A\hat{B}F = 90^{\circ}$.

(i)	Calculate	RÊF.
(1)	Carculate	DIL

Answer	 [1]	l

www.PapaCambridge.com

(ii) Calculate FB.

Answer m [3]

(iii) Calculate the angle of depression of F from the top of the mast.

Answer[2]

Find

(i)
$$A + 2B$$
,

(ii)
$$A^{-1}$$
.

Answer
$$\left(\begin{array}{c} \end{array}\right)$$
 [2]

Answer (1)

www.PapaCambridge.com

(b) Mark and Luke spend three days training for a cycling event.

Mark cycles at an average speed of 24 km/h on the first two days and 26 km/h on the the day.

Luke cycles at an average speed of 25 km/h on the first day, 24 km/h on the second day and 27 km/h on the third day.

They each cycle for 1 hour on the first day and increase their cycling time by $\frac{1}{2}$ hour each day.

This information is represented by the matrices P and Q below.

$$\mathbf{P} = \begin{pmatrix} 24 & 24 & 26 \\ 25 & 24 & 27 \end{pmatrix} \qquad \mathbf{Q} = \begin{pmatrix} 1 \\ m \\ n \end{pmatrix}$$

(i)) F	ind	m	and	n
(1,	, 1	mu	III	anu	n.

(ii) Find PQ.

(iii) Calculate the difference between the numbers in the matrix **PQ** and explain what this number represents.

Please turn over for the rest of this question

The travel graph represents Sahid's journey to and from a football match. He travels from home straight to the football stadium and watches the match. On his way home he stops at a café.

(i)	How many	minutes	does Sahid	spend a	at the	football	stadium?
-----	----------	---------	------------	---------	--------	----------	----------

Answer minutes [1]

What is his speed, in kilometres per hour, on his journey to the football stadium?

Answerkm/h [1]

What is the distance between the football stadium and the café? (iii)

Answerkm [1]

Between which two places does he travel the fastest?

.....[1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.