Agora que sabemos treinar modelos de aprendizagem de máquina, como sabemos se um modelo é bom em resolver uma tarefa?

Como comparar modelos?

Agora que sabemos treinar modelos de aprendizagem de máquina, como sabemos se um modelo é bom em resolver uma

tarefa?

Como comparar modelos?

No fim das contas, queremos saber quão bem nossos modelos generalizam o que aprenderam quando vêem novos dados

No fim das contas, queremos saber quão bem nossos modelos generalizam o que aprenderam quando vêem novos dados

Conjunto de teste

Classificação

Como vimos antes, um problema binário contém apenas duas classes: positiva e negativa

Quando perguntamos a um classificador binário qual é a classe de um indivíduo, temos quatro resultados possíveis:

Verdadeiro positivo (TP)

Positivo identificado como positivo

Quando perguntamos a um classificador binário qual é a classe de um indivíduo, temos quatro resultados possíveis:

Falso positivo (FP) (erro tipo I)

Negativo identificado como positivo

Quando perguntamos a um classificador binário qual é a classe de um indivíduo, temos quatro resultados possíveis:

Verdadeiro negativo (TN)

Negativo identificado como negativo

Quando perguntamos a um classificador binário qual é a classe de um indivíduo, temos quatro resultados possíveis:

Falso negativo (FN) (erro tipo II)

Positivo identificado como negativo

Acurácia

Os valores de TP, FP, TN e FN podem ser usados para calcular medidas de performance, como a Acurácia

$$Acc=rac{TP+TN}{TP+FP+TN+FN}$$

$$Acc = \frac{93+99}{93+1+99+7}$$

$$Acc = \frac{192}{200} = 0,96$$

Precisão

Entre as minhas predições positivas, quantos indivíduos são realmente positivos?

$$egin{aligned} Prec = rac{TP}{TP+FP} \ Prec = rac{93}{93+1} \ Prec = rac{93}{94} = 0,99 \end{aligned}$$

Cobertura, revocação, sensibilidade (recall)

Entre os meus indivíduos positivos, quantos eu identifiquei corretamente?

$$Rec = rac{TP}{TP+FN}$$
 $Rec = rac{93}{93+7}$
 $Rec = rac{93}{100} = 0,93$

Muitas outras medidas

		True condition				
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	$= \frac{LR+}{LR-}$	2 · Precision · Recall Precision + Recall

O sonho da matriz de confusão perfeita

Isso pode acontecer em treinamento, mas é muito improvável em teste e costuma indicar sobreajuste (overfitting)

O classificador mentiroso

Se um classificador binário hipotético sempre errar, é possível inverter suas predições e sempre acertar

Neste exemplo, temos alta acurácia: só erramos 60 elementos de 1070

$$egin{aligned} Acc &= rac{TP + TN}{TP + FP + TN + FN} \ Acc &= rac{10 + 1000}{10 + 20 + 1000 + 40} \ Acc &= rac{1010}{1070} \ Acc &= 0,94 \end{aligned}$$

Vamos calcular a precisão e a cobertura (recall), para avaliar o desempenho em relação à classe positiva

$$egin{aligned} Prec &= rac{TP}{TP+FP} \ Prec &= rac{10}{10+20} = 0,\!33 \ Rec &= rac{TP}{TP+FN} \ Rec &= rac{10}{10+40} = 0,\!2 \end{aligned}$$

Apesar da alta acurácia, o classificador tem péssimo desempenho para a classe positiva

$$egin{aligned} Prec &= rac{TP}{TP+FP} \ Prec &= rac{10}{10+20} = 0,\!33 \ Rec &= rac{TP}{TP+FN} \ Rec &= rac{10}{10+40} = 0,\!2 \end{aligned}$$

Na verdade, um classificador que apenas chute que todos os elementos são negativos tem maior acurácia

$$egin{aligned} Acc &= rac{TP+TN}{TP+FP+TN+FN} \ Acc &= rac{1020}{1070} \ Acc &= 0,95 \end{aligned}$$

Portanto, é extremamente importante não **confiar cegamente** no resultado de acurácia do seu classificador, principalmente se uma classe for bem maior do que outra

Uma boa regra é ter em mente as proporções das classes no conjunto de dados: você deve esperar que seu classificador tenha acurácia pelo menos maior do que a proporção da maior classe

Essas condições de ajuste podem ser detectadas se compararmos as acurácias ou matrizes de confusão de treinamento e de teste

Underfitting mostrará desempenhos de treinamento e teste parecidos e ruins

Sobre-ajuste aparecerá como um desempenho de treinamento muito bom (às vezes perfeito) acompanhado de desempenho de teste péssimo

Ajuste apropriado aparece como desempenhos de treinamento e teste parecidos e razoáveis/bons

Over/underfitting em regressão

Fronteira de decisão

Classificadores binários probabilísticos decidem suas predições com base na seguinte regra:

$$\text{Predição} = \begin{cases} +, \text{ se P}(Y = + | X = x) > P(Y = - | X = x) \\ -, \text{ se P}(Y = + | X = x) \le P(Y = - | X = x) \end{cases}$$

Essencialmente, isso quer dizer que o indivíduo será positivo se

$$P(Y = + | X = x) > 0.5$$

Fronteira de decisão

Dessa forma, 0,5 define um limiar, formando uma fronteira de decisão, como podemos ver na imagem abaixo

Fronteira de decisão

Essa fronteira de decisão pode ser movida para obter valores quantidades diferentes de Verdadeiros/Falsos positivos

Curva ROC

As diferentes taxas de verdadeiros/falsos positivos de acordo com os limiares podem ser visualizadas usando a curva ROC

Curva ROC

Idealmente, queremos selecionar um limiar com a maior taxa de verdadeiros positivos e a menor taxa de falsos positivos

O mais próximo possível daqui

Aqui, o limiar ótimo é 0,47

Área embaixo da curva ROC

A área embaixo da curva ROC (AUC ou AUROC) indica quão bom é o desempenho do classificador independente do limiar Um classificador aleatório tem AUC = 0.5

Classificação multiclasse

Em um problema multiclasse, temos verdadeiros/falsos de cada classe, ficando com uma matriz de confusão como segue:

$$egin{aligned} Acc &= rac{16 + 21 + 14}{16 + 21 + 14 + 2 + 1} \ Acc &= rac{51}{54} \ Acc &= 0,94 \end{aligned}$$

Regressão

Avaliação de modelos de regressão

Na avaliação de regressão, estamos interessados em predições numéricas

Assim, o que nos interessa é o quão distantes estamos de um bom ajuste

Avaliação de modelos de regressão

Na avaliação de regressão, estamos interessados em predições numéricas

Assim, o que nos interessa é o quão distantes estamos de um bom ajuste

Avaliação de modelos de regressão

Essas distâncias são comumente calculadas usando duas medidas:

Erro quadrático médio:

$$MSE(\hat{f}\,) = rac{1}{n} \sum_{i=1}^n (y_i - \hat{f}\,(x_i))^2$$

Erro absoluto médio:

$$MAE(\hat{f}\,) = rac{1}{n} \sum_{i=1}^{n} \left| y_i - \hat{f}\left(x_i
ight)
ight|$$

Exemplo

i	y_i	$\hat{f}\left(x_{i} ight)$	$\left(y_i - \hat{f}\left(x_i ight) ight)^2$	$\left y_i - \hat{f}\left(x_i ight) ight $
1	1	1,2	0,04	0,2
2	-1	-0,2	0,64	0,8
3	2	1,9	0,01	0,1
4	0	0,1	0,01	0,1
5	3	3	0	0
6	-2	-1,9	0,01	0,1

$$MSE(\hat{f}\,) = rac{1}{n} \sum_{i=1}^n \left(y_i - \hat{f}\,(x_i)
ight)^2 \ MSE(\hat{f}\,) = rac{0.04 + 0.64 + 0.01 + 0.01 + 0.01 + 0.01}{6} \ MSE(\hat{f}\,) = 0.12 \ MAE(\hat{f}\,) = rac{1}{n} \sum_{i=1}^n \left|y_i - \hat{f}\,(x_i)
ight| \ MAE(\hat{f}\,) = rac{0.2 + 0.8 + 0.1 + 0.1 + 0 + 0.1}{6} \ MAE(\hat{f}\,) = 0.22$$

Aí você treinou seus modelos usando o conjunto de treinamento e agora quer testá-los. Se você não tem um conjunto de teste, como proceder?

E se você tiver um conjunto de teste à disposição, será que um treino e um teste são suficientes para decidir o melhor modelo para seu problema?

chamo a policia ou procuro junto com ele?

Primeiro, precisamos lembrar que os conjuntos que usamos para treinar e testar nossos modelos são **amostras** e não a **população inteira**

Além disso, raramente podemos garantir que as amostras foram obtidas seguindo processos estatisticamente corretos

Para tomarmos decisões com significância estatística, precisamos usar nossas amostras de forma que possamos extrair o máximo de informação

A seguir, veremos estratégias que nos ajudam simular quão bem um modelo de aprendizagem de máquina é capaz de generalizar seu aprendizado na prática

Usada para avaliar a capacidade do modelo de reagir corretamente a dados que não foram usados para treiná-lo

Pode ajudar a detectar problemas como over/underfitting e seleção enviesada de amostras

Seu funcionamento é simples: divide-se o conjunto em k subconjuntos (folds) e, a cada rodada, usa-se um subconjunto para teste (validação) e os outros para treino

Esse processo faz com que os conjuntos de treinamento e validação sejam disjuntos

	Total dataset						
Experiment 1	Validation	Training	Training	Training	Training		
Experiment 2							
Experiment 3							
Experiment 4							
Experiment 5							

```
import numpy as np
from sklearn.model_selection import KFold
from sklearn.tree import DecisionTreeClassifier
accuracies = []
kf = KFold(n_splits=2)
for train_index, test_index in kf.split(X):
      X \text{ train}, X \text{ test} = X[\text{train index}], X[\text{test index}]
      y train, y_test = y[train_index], y[test_index]
      dt = DecisionTreeClassifier()
      dt.fit(X_train, y_train)
      acc = dt.score(X_test, y_test)
      accuracies.append(acc)
print(np.mean(accuracies), np.std(accuracies))
```


Em problemas de classificação, é interessante manter as freqüências das classes em cada conjunto de treinamento/teste

Na validação cruzada tradicional, isso não é garantido

Validação cruzada estratificada

Para isso, deve-se usar a validação cruzada estratificada

```
import numpy as np
from sklearn.model selection import StratifiedKFold
from sklearn.tree import DecisionTreeClassifier
accuracies = []
skf = StratifiedKFold(n_splits=5)
for train_index, test_index in skf.split(X, y):
     X train, X test = X[train index], X[test index]
     y_train, y_test = y[train_index], y[test_index]
     dt = DecisionTreeClassifier().fit(X_train, y_train)
accuracies.append(dt.score(X_test, y_test))
print(np.mean(accuracies), np.std(accuracies))
```

Leave-one-out

Às vezes o conjunto de dados que temos à disposição é tão pequeno que não conseguimos dividi-lo em subconjuntos de maneira satisfatória

Nesses casos, usamos um tipo de validação cruzada em que cada elemento é um subconjunto

Leave-one-out

A cada rodada do Leave-one-out (deixe um de fora), separamos um indivíduo para teste e treinamos com todos os outros

Isso permite que ainda tenhamos dados suficientes para treinar o modelo

Holdout

Indicado para a situação inversa à do *Leave-one-out*: Temos **dados demais** para executar diversas rodadas de validação cruzada

Neste caso, selecionamos uma amostra aleatória de com p% dos dados (por exemplo 70%) para treinamento

Os dados restantes são usados para teste (por exemplo 30%)

Holdout

Holdout não é ideal, pois só avalia o desempenho do algoritmo usando uma possível combinação dos objetos, que já são obtidos de uma amostra

Uma possível solução é obter diversas subamostras a partir dos dados (random subsampling)

"A competição que tou participando no *kaggle* disponibiliza um conjunto de treinamento e um de teste. Preciso fazer validação cruzada?"

"A competição que tou participando no *kaggle* disponibiliza um conjunto de treinamento e um de teste. Preciso fazer validação cruzada?"

- Não, só se você quiser ganhar. Nesse caso, recomenda-se realizar validação cruzada usando o conjunto de treinamento, para selecionar o melhor modelo. Com o modelo selecionado, treina-se usando o conjunto de treinamento inteiro e aí sim, usa-se o conjunto de teste.

"Meu modelo tem diferentes (hiper)parâmetros e seus valores influenciam bastante o desempenho. Devo escolhê-los usando o resultado da validação cruzada?"

"Meu modelo tem diferentes (hiper)parâmetros e seus valores influenciam bastante o desempenho. Devo escolhê-los usando o resultado da validação cruzada?"

- Não. Isso é equivalente a otimizar em tempo de teste. O correto é fazer uma validação cruzada interna em cada conjunto de treinamento ou separar um dos *folds* para teste, um para validação e o resto para treinamento.

O fim justifica os memes. -Albert Einstein