

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Engenharia de Software AP2 1° semestre de 2011.

Nome -

Assinatura -

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular.
- 2. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 3. Você pode usar lápis para responder as questões.
- 4. Ao final da prova devolva as folhas de questões e as de respostas.
- 5. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.
- 1) O que significa uma relação de uso entre módulos no projeto de software? Qual é a importância destas relações de uso na melhoria do projeto? (valor: 2,0 pontos; máximo: 10 linhas)

A relação de uso é uma associação direcionada entre dois módulos componentes do código-fonte de um sistema de software, que ocorre quando um módulo depende do outro para cumprir seus objetivos. A dependência pode ocorrer pelo uso de uma rotina, uma variável ou um tipo definido no segundo módulo. O conjunto de relações de uso dos módulos de um sistema forma um grafo e se este grafo não for reduzido a uma árvore, poderemos ter um sistema onde "nada funcione até que tudo funcione". Sendo assim, a organização dos módulos em árvores facilita os testes e a manutenção do sistema.

2) Dizemos que um projeto de software deve ser gerenciado em cinco grandes etapas: inicialização, planejamento, execução, controle e fechamento. Explique o papel de cada uma destas etapas no gerenciamento de projetos de software. (valor: 2,0 pontos; máximo: 15 linhas)

A **iniciação** representa o reconhecimento pela alta administração da empresa sobre o início de um projeto. O **planejamento** envolve a definição, revisão e manutenção de uma organização de trabalho para a realização do projeto.

A execução consiste na coordenação das pessoas e recursos necessários para a execução do plano.

O **controle** envolve a monitoração e medição do progresso para garantir que os objetivos do projeto serão atingidos.

Finalmente, o **fechamento** consiste na homologação e encerramento das atividades do projeto.

3) O que representa a métrica <u>Complexidade Ciclomática</u> (*McCabe*)? Que artefato de software (dê um exemplo) pode ser utilizado para observá-la e como ela pode ser obtida ou calculada? (valor: 2,0 pontos)

A métrica fornece uma medida quantitativa da complexidade lógica de um programa. No contexto do teste estrutural, seu valor define o número de caminhos independentes e nos fornece o número máximo de casos de teste que garantem que todos os comandos tenham sido executados pelo menos 1 vez. Um exemplo de artefato de software que ela pode ser observada e no grafo de fluxo de programa.

Pode ser obtida através da identificação do número de regiões do grafo de fluxo

V(G)=E-N+2

E: número de arcos

N: número de nós

ou. V(G) = P + 1

P: número de nós predicados (decisões)

Exemplo de um grafo de programa:

```
Programa Identifier.c [Função Main]
                                                                          Grafo de Fluxo de Controle
/* 01 */ (
/* 01 */
                  char achar,
/* 01 */
                  int length, valid id,
/* 01 */
                  length = 0.
/* 01 */
                  printf ("Identificador. ");
/* 01 ×/
                  achar = fgetc (stdin);
/* 01 */
                  valid id = valid s(achar);
/* 01 */
                  if (valid id)
/* 02 */
                                    length = 1;
J* 03 *J
                  achar = fgetc (stdin);
J* 04 */
                  while (achar != "n")
/* OS */
                  1
/* 05 */
                                    if (!(valid_f(achar)))
/* 06 */
                                                      valid id = 0,
/* 07 */
                                    length++;
/* 07 */
                                    achar = fgetc (stdin);
/* 07 */
/* 08 */
                  if (valid id && (length >= 1) && (length < 6)}
/* 09 */
                                    printf ("Valido\n"),
/* 10 */
                  else
/* 10 */
                                    printf ("Invalido\n"),
/* 11 */ }
```

4) Defina os casos de teste para estes requisitos usando a <u>técnica de análise de valor limite</u> (Valor 2 pontos):

Em uma indústria química o controle da temperatura e pressão de um determinado processo depende de dois fatores: a temperatura de ebulição do produto sendo processado e de um coeficiente Z. As entradas

do programa de controle são a temperatura de ebulição do produto em graus Celsius limitada ao intervalo [80;210] e o coeficiente Z limitado ao intervalo [0.2;2.5]. O sistema de controle deve suspender o processo se a temperatura ou a pressão atingirem valores críticos.

O cálculo do valor crítico da temperatura é obtido pela fórmula: tk = te*2.

O valor crítico da pressão pela fórmula:

pk = tk * Z, quando te for menor que 105;

pk = te * Z nos demais casos.

Onde, tk=temperatura crítica, te=temperatura de ebulição, pk=pressão crítica.

Como este software foi construído visando *testabilidade*, é possível entrar com um terceiro e quarto valores correspondentes à temperatura e a pressão em um dado instante. Nesse caso, o software efetua os cálculos e imprime uma mensagem sinalizando se interromperia ou não o processo.

te: {79, 80, 104, 105, 210, 211); Z: {0.1, 0.2, 1.2 (intermediário), 2.5, 2.6}

te	Z	tk	pk	ti	pi	Resultado Esperado
79	0.1	-	ı	ı	-	Valores inválidos
80	0.2	160	32	159	31	Continuar Processo
104	1.2	208	229.6	208	220	Suspender Processo
105	1.2	210	126	100	126	Suspender Processo
210	2.5	420	525	421	526	Suspender Processo
211	2.6	422	ı	ı	-	Valores inválidos

- 5) Defina <u>defeito</u> e <u>falha</u> e indique quais técnicas podem ser usadas para identificar cada um deles. (10 linhas, valor 2 pontos).
 - Defeito:
 - O Deficiência mecânica ou algorítmica que se ativada pode levar a uma falha.
 - Falha:
 - O Evento notável onde o sistema viola suas especificações.

Defeitos são encontrados por inspeção do software. Falhas são reveladas pelos testes.