Course	18EEO301T	Course	SUSTAINABLE ENERGY		0	Open Elective	L	Т	Р	С
Code		Name		Category			3	0	0	3

Pre-requisite	NIL	Co-requisite	NIL	Progressive NIL
Courses		Courses		Courses
Course Offering I	Department	Electrical and Electronics Engineering	Data Book / Codes/Standards	NIL

Course L	Course Learning Rationale (CLR): The purpose of learning this course is to:				ng		
CLR-1:	Enrich the students on the	basics of solar energy	1	2	3		
CLR-2:	Develop the knowledge in wind energy conversion system.						
CLR-3:	Understand the energy generation by biomass.						
CLR-4:							
CLR-5:	Acquire knowledge in fuel cell and its types.						
CLR-6:	Apply the concepts of renewable energy in industrial applications.						
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	evel of Thinking	Expected	Expected		
CLO-1:	Obtain in depth knowledge	on solar applications.	2	80	75		
CLO-2:	Explain the concepts of wind energy conversion systems and their control.		3	80	75		
CLO-3:	: Summarize the biomass technologies and calculate the power conversion of biomass digestion.				75		
CLO-4:	: Interpret the environmental impacts of ocean and tidal energy				75		
CLO-5:	Summarize the working principle of fuels cells and its types.				75		
CLO-6:	Infer the knowledge about various types of renewable energy systems				75		

	Program Learning Outcomes (PLO)													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modem Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
Н	М	М	-	-	-	L	-	-	-	-	-	Н	М	-
Н	М	М	-	-	-	L	-	-	-	-	-	Н	М	-
Н	М	-	-	-	-	L	-	-	-	-	-	Н	М	-
Н	М	-	-	-	-	L	-	-	-	-	-	Н	М	-
Н	М	-	-	-	-	L	-	-	-	-	-	Н	М	-
Н	М	М	-	-	-	L	-	-	-	-	-	Н	М	-

Durati	on (hour)	9	9	9	9	9	
S-1	SLO-1	Solar radiation	Wind energy conversion	Biogas	Ocean thermal energy conversion	Fuel Cell	
	SLO-2	Beam and diffuse radiation, solar constant, earth	Principles of Wind energy conversion	Energy from Biomass	Principle of OTEC	Basics of Fuel cell	
S-2	SLO-1	Sun angles,	Nature of the wind	Types of biomass	Lambert law of absorption	Components of fuel cells	
	SLO-2	Calculation of angle of incidence	Factors influencing wind	Photosynthesis	OTEC power plant	Difference between batteries and fuel cell	
S-3	SLO-1	Attenuation and measurement of solar radiation	Wind data and energy estimation- wind speed monitoring,	Factors affecting digestion system	Open loop system for ocean energy conversion	Types of fuel cells	
	SLO-2	Local solar time, derived solar angles, sunrise, sunset and day length.	Site selection	Classification of biogas plants	Closed loop system for ocean energy conversion	Ionic conductivity of fuel cell	
S-4	SLO-1	Flat plate collectors, concentrating collectors	Power in the wind	Advantages and disadvantages of biogas plants	Single basin	Electronic conductivity in fuel cell	
	SLO-2	Solar air heaters, types, solar driers	Betz limit	Factors affecting bio digestion	dual basin ocean energy conversion system	Principle of working of fuel cell	
S-5	SLO-1	Storage of solar energy, thermal storage,	Components of a wind energy conversion system	Biomass as Renewable Energy Source	Major problems and operational experience Tidal energy	Performance characteristics of fuel cells	
	SLO-2	Solar pond , solar water heaters	Torque on wind	Cofiring	Site selection of tidal power plant	Selection of fuel cells	
S-6	SLO-1	Solar distillation,	Wind thrust calculations	Dry Process	Tide ,Spring tide	Fuel cell stack,	

			Repowering concept			
	SLO-2	Solar Pond	Horizontal Axis Wind Turbine(HAWT design consideration)	Photosynthesis	Neap tide, Tidal range .	fuel cell power plant
S-7	SLO-1	Solar heating & cooling of buildings,	Tip Speed Ratio	Energy forming	Types of Tidal power plant	Cross section of typical PEM fuel cell.
	SLO-2	Solar still, solar cooker	Solidity	Pyrolysis	Advantages and disadvantages of tidal power plant	Storage methods for fuel cells.
S-8	SLO-1	Photo voltaic. Types of PV cells ,	Types of generators and power converters in WECS.	Types of Biomass Fuels	Wave Energy	Challenges and trends in fuel cell
	SLO-2	Characteristics and working principles of PV.	Control schemes for power converters.	Biomass power plant	Wave Characteristics	Efficiency of fuel cell
S-9	SLO-1	Maximum power point tracking methods	Introduction to grid integration of WECS	Biomass cogeneration	Different wave energy convertors ,Saltor Duck ,	Applications of fuel cell.
	SLO-2	Net metering concepts.	Issues in grid integration	Digester design	Oscillating water column and dolphin types	Advantages and disadvantages of fuel cell.

Learning 1 Resources 2	I. Rai ,G.D.,Non Conventional sources of Energy, Khanna Publishers ,5th Edition 2016. 2. Khan. B.H, "Non-Conventional Energy Resources", The McGraw Hills,2nd Edition, 2016	3. O'Hayre, R.P., S. Cha, W. Colella, F.B.Prinz, Fuel Cell Fundamentals, Wiley, NY (2006). 4. https://onlinecourses-archive.nptel.ac.in/.
---------------------------	--	---

Learning Ass	sessment										
	Bloom's		Continuous Learning Assessment (50% weightage)								
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 1 (10%)		CLA – 2 (15%)		CLA – 1 (10%)	
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40%	-	40%	-	40%	-	40%	-	40%	-
	Understand										
Level 2	Apply	40%	-	40%	-	40%	-	40%	-	40%	-
	Analyze										
Level 3	Evaluate	20%	-	20%	-	20%	-	20%	-	20%	-
	Create										
	Total	100	0 %	100	0 %	10	0 %	10	0 %	10	0 %

#CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er.P.Velumani, TANJEDCO , velumaniyazhini@gmail.com	1. Dr.P.DhamodHaran, IIITM, damodharan@iiitdm.ac.in	1. Dr.K.Saravanan, SRM IST
2.Er.R.Ramanavasu,BAVINI,BARC, rramanavasu@igcar.gov.in	2. Dr.S.Kumaravel , NIT Calicut,kumaravel_s@nitc.ac.in	2. Dr.R.Sridhar, SRM IST