3.3 kΩ -6+07+(33K)I==0=) I==16mA IE = IB+IC = IB+BIB=(1+B) IB IR=15.84 MA, IC=1.58 MA

Meeting details 🔨

Suppose that a certain npn transistor has $V_{BE} = 0.7 \text{ V}$ for $I_E = 10 \text{ mA}$. Compute V_{BE} for $I_E = 1 \text{ mA}$.

Repeat for $I_E = 1 \mu A$. Assume that $V_T = 26 \text{ mV}$.

مور

Problem

 The transistor in the circuit of Fig. has β = 100 and exhibits a v_{BE} of 0.7 V at i_C = 1 mA. Design the circuit so that a current of 2 mA flows through the collector and a voltage of +5 V appears at the collector.

• In the circuit shown in Fig., the voltage at the emitter was measured and found to be -0.7 V. If $\beta = 50$, find I_E , I_B , I_C , and V_C .

• In the circuit shown in Fig., measurement indicates V_B to be +1.0 V and V_E to be +1.7 V. What are α and β for this transistor? What voltage V_C do you expect at the collector?

Consider the circuit shown in Figure. Transistors Q_1 and Q_2 are identical, both having $I_{ES} = 10^{-14} A$ and $\beta = 100$. Calculate V_{BE} and I_{C2} . Assume that $V_T = 26 \text{mV}$ for both transistors.

Hint: Both transistors are operating in the active region. Because the transistors are identical and have identical values of V_{BE} , their collector currents are equal.

$$I_{B1} + I_{B2} + I_C = 1 mA \quad \& \quad I_C = \beta I_B$$

$$\Rightarrow \quad I_C \left(\frac{2}{\beta} + 1\right) = 1 mA \quad \Rightarrow \quad I_C = \frac{1 mA}{1.02} = 0.98 mA$$

$$I_E = \left(1 + \frac{1}{\beta}\right) I_C = 0.99 mA$$
since
$$I_E \approx I_{ES} \exp\left(\frac{V_{BE}}{V_T}\right) \quad we \quad have$$

$$\therefore V_{BE} = V_T \ln \frac{I_E}{I_{ES}} = 0.026 \times \ln\left(0.99 \times 10^{11}\right) = 0.658 V$$

Find currents and voltages

