PeaPod - Testing Plan and Hazard Analysis and Critical Control Points (HACCP) Plan

NASA/CSA Deep Space Food Challenge Phase 2

Jayden Lefebvre - Founder, Lead Engineer Port Hope, ON, Canada

Nathan Chareunsouk - Design Lead Toronto, ON, Canada

Navin Vanderwert - Design Engineer

BASc Engineering Science (Anticipated 2024), University of Toronto, Toronto, ON, Canada

Jonas Marshall - Electronics Engineer

BASc Computer Engineering (Anticipated 2024), Queen's University, Kingston, ON, Canada

Primary Contact Email: contact@peapodtech.com

Revision 1.0 PeaPod Technologies Inc. May 31st, 2022

Contents

1	Test	ing Plar	1	2
	1.1	Accepta	ability of Outputs	2
		1.1.1	Testing Procedure	2
		1.1.2	Sample Collection Schedule	2
	1.2	Safety o	of Process and Outputs	
		1.2.1	Testing Procedure	3
		1.2.2	Sample Collection Schedule	4
	1.3	Resourc	ce Outputs	5
		1.3.1	Testing Procedure	5
		1.3.2	Sample Collection Schedule	
	1.4	Reliabil	lity and Stability of Outputs	6
		1.4.1	Testing Procedure	6
		1.4.2	Sample Collection Schedule	
	1.5	Additio	onal Comments	7
	1.6	Materia	als	8
		1.6.1	System	8
		1.6.2	Inputs	19
		1.6.3	Outputs	19
		1.6.4	Maintenance	19
		1.6.5	Cleaning	19
2	Haz	ard Ana	alysis and Critical Control Point (HACCP) Plan	21
	2.1		roduction System Description	21
		2.1.1	Hazard Analysis: Crew Contact (Harvesting, Cleaning, Maintenance)	
		2.1.2	Hazard Analysis: Water Supply	
			Hazard Analysis: Nutrient Supply	
			Hazard Analysis: Seeds	
		2.1.5	Hazard Analysis: Testing	
	2.2	Critical	l Points	
	2.3		rd Test Record	
3	Feed	dback		30

1 Testing Plan

1.1 Acceptability of Outputs

1.1.1 Testing Procedure

Tested via blind studies where participants are divided into two groups and given either control outputs (i.e. established commercial product) or test outputs (i.e. produced by PeaPod). Participants will rate outputs on 4 criteria (appearance, aroma, flavour, and texture) on a 9-point scale.

To simulate acceptability over a long period of time, it will be important to study outputs with consideration for how the subjects will interact with them. This includes varying preparation methods (fresh, cooked, dehydrated, etc.) and preparing combinations of foods both purely with PeaPod outputs and with external foods that would be available in the field.

Blind studies are eminent in consumer testing as they allow researchers to get a completely unbiased dataset. Special care needs to be taken when presenting, preparing, and collecting samples for testing to ensure researchers do not influence results. Ideally, resources will permit a double-blind study where researchers hire an outside entity to conduct the test and return results with generic labels.

The 9-point scale originates from U.S. Army testing, where it was developed using language which has roughly equal psychological distances between points on the scale. While the use of 9 points is otherwise arbitrary, there exists a large history of research validating its analytical use in long-term food production [1].

1382 Characters (Maximum 4000)

1.1.2 Sample Collection Schedule

To test acceptability of a long-term food solution, it is important to test the entire spectrum of output quality at a good-faith approximation of its distribution. This means instead of testing 'good' control outputs against 'good' PeaPod outputs, we will need to test batches of control outputs (at a naturally-arising quality distribution) vs. batches of PeaPod outputs (again, at a quality distribution). This allows for holistic comparison of the technology's performance as well as end user experience as opposed to specific comparison of individual items.

To employ statistical analysis, a sample size of at least n=30 will be collected for each crop, with the collection time dependent on the crop. For initial tests, crops will be collected at a developmental stage roughly equivalent to control crops purchased at a store. For further tests, the crops can be collected at the point PeaPod's analytical tools determine is optimal. Packaging and shipping will be done according to existing best practices, with care to package more than necessary as a factor of safety.

1.2 Safety of Process and Outputs

1.2.1 Testing Procedure

Given the environment in which PeaPod will operate, process safety will be developed on the foundation of prevention. This is because crisis response and containment is severely limited in the confines of space: identification often requires propagation of the threat (i.e. incubation of potential pathogens for colony count), and quarantine is more difficult and loses a larger proportion of food than it does on Earth.

This begins pre-flight, as all materials - especially biological - are sanitized, tested, and packaged in isolation so a breach contaminates as little product as possible. Once everything is installed in the field, the design principles of the entire system take over as methods of prevention. By employing key design principles such as minimal interaction, PeaPod mitigates the introduction of foreign substances and, in turn, the ingress of potential threats. Interaction will only occur at times of harvest and planting, which double as times of cleaning and sanitation.

For testing the UX of the processes, using established space station procedures, subjects will harvest and clean product, clean all surfaces, sanitize all surfaces, and plant surface-sterilized seeds.

As for non-biological threats such as heavy metals or other toxins, careful selection and sourcing of construction materials will eliminate most threats to the system. As a regular maintenance measure, flushing of the water and air supplies through the space station's recycling system will prevent buildup by keeping them up to external standards.

Chemical Hazards

As part of PeaPod's design principle regarding prevention, all sourcing of parts and resources has been done with inherent, chemical threats in mind (lead-free solder and electronic components, food-safe fittings and parts for aeroponics, etc.). As a result, the default construction of the unit poses no threat for chemicals or other toxins to enter the biological system or its surroundings.

The other source of potential threats is during crew interaction steps when they harvest, clean, sanitize, and plant. To protect against hazards, PeaPod's maintenance steps follow carefully designed HACCP protocols and use food-safe cleansers and sanitizers.

Biological Hazards

There are no biological hazards inherent to the PeaPod system. Plant species selection should be performed carefully to ensure safety according to mission requirements.

Aerobic Plate Count (APC) testing to be done with the Conventional Plate Count Method outlined by the FDA [2]. This is selected over the Spiral Plate Method as it is inexpensive and uses many household materials. The goal of APC testing is to indicate the bacterial population in food-adjacent sections of the design. Results to be compared against STD-3001 to ensure a maximum of 3000 colony forming units/square ft. Colony forming units appear as distinct "blobs" of bacteria on a growth material, indicating the relative abundance of viable bacteria on a given surface.

Food Outputs

APC testing conducted on samples as outlined for biological hazards to ensure bacterial population

below 20 000 CFU/g per STD-3001. *Enterobacteriaceae* have a population limit of 100 CFU/g per STD-3001, and can be tested via a rapid test such as the MicroSnap EB. Similarly, testing for salmonella will be performed using a rapid detection kit to ensure a population of 0 CFU/g. Finally, testing for yeasts and molds will be performed with a testing kit to to ensure a population count below 1000 CFU/g.

Given the wide use cases for crops (raw/dried, cut/whole, fresh/preserved) it will be important to conduct tests on each use case to see if results remain acceptable. For example, higher surface area crops are intrinsically more susceptible to bacterial growth per gram. So, crops prior to testing will be processed in the same way they would be before consumption in order to validate realistic operating conditions.

By-Product Outputs By-product outputs fall into two cateogries, air exhaust and inedible matter. Air will be filtered and dehumidified to ambient levels by the gas exchange system, ensuring it is safe for the local environment. Inedible matter will be tested in the same way as food outputs to ensure threats are not present in the system at all. Further threats would arise in the processing of by-products should they be used as a nutrient source in successive cycles. If this process is implemented, new testing procedures will be developed for it. Otherwise, threats are mitigated by disposal in the same manner as other biological substances such as human waste.

4036 Characters (Maximum 4000)

1.2.2 Sample Collection Schedule

Safety testing will be conducted in tandem with collection of samples for acceptability, with key metrics being measured as successive rounds of crops are collected. Beyond number and size of samples, it will be critical to follow operating procedures as closely as possible. This is because of its two-fold interaction with crop quality and safety. The only deviation will be the measuring of metrics such as CFU count, as this is safe to do on Earth conditions.

Regardless of test results, crop collection will continue to see if the design's mitigation strategies are effective. For example, if Harvest 2 has allowable but present levels of *Enterobacteriaceae*, it is important to see if it persists to Harvests 3 and 4 or if standard cleaning procedures manage to eliminate it.

Then, over the course of 30 or so harvests, the presence of hazards can be charted as a function of harvest number and cleaning cycles, allowing patterns to emerge and weaknesses to be found for long-duration missions. Testing for these hazards will be in line with the list above: bacteria via APC, organic residue via ATP testing, and chemical hazards via water supply analysis. Water supply testing is straightforward, with an abundance of commercial test strips available to identify any given substance.

1.3 Resource Outputs

1.3.1 Testing Procedure

Personally testing nutritional makeup of outputs is far beyond the resources and scope of this project. Instead, a variety of outputs will be produced and shipped to an external, ISO-17025 certified lab such as SGS Canada for testing.

While this is useful for validation on Earth, it fails to address the issue of analysis at time of harvest. To tackle this, PeaPod will use data collected on Earth-bound trials in combination with lab analysis and existing datasets to develop a way of predicting crop quality during the growing process. By applying algorithmic prediction, we can optimize resource output efficiency by, for example, marking crops that show early signs of failure for replacement. This helps maximize the output to input ratio by cutting losses earlier and with less labour cost than people would be able to.

826 Characters (Maximum 4000)

1.3.2 Sample Collection Schedule

The number of days required for sample collection is entirely dependent on what sample is being produced. For one-time growth products, such as carrots or lettuce, the days required is exactly the time to harvest of the plant. Size of collection is dependent on how many units are run at the same time. For plants that produce products multiple times, such as beans or tomatoes, samples should be collected after each production cycle. This means the time required to collect n samples is $C + n^*X$, where C is the initial growth period of the plant and X the time between harvests. It is important to collect multiple subsequent harvests in order to see the relationship between this and produce quality.

Packaging and shipping will be done according to freight standards of the carrier being used, such as [3].

1.4 Reliability and Stability of Outputs

1.4.1 Testing Procedure

PeaPod's outputs are fresh produce, and as such are intended for consumption as soon as possible after harvest and preparation. Any product not immediately consumed post preparation should be stored in an airtight package and kept below 12.5°C to prolong shelf life and maintain acceptability. Certain products of PeaPod have the possibility of being dehydrated to further increase their shelf life.

To mitigate the need for long duration food storage, growth cycles should be staggered to periodically supply fresh produce when astronauts are ready to eat.

558 Characters (Maximum 4000)

1.4.2 Sample Collection Schedule

Collection time is not a critical variable for this test, however safe storage time is. To quantify it, a variety of outputs can be compared to their control equivalents to identify any disparities in shelf life—be it raw, dehydrated and cooled, or airtight and cooled.

The number of cycles necessary to complete testing will be equivalent to the number of items tested. Each of these three storage methods should be tested for a variety of plant species and yield types over a number of trials to minimize randomness.

Criteria for shelf life will include acceptability as a function of time, quantity/existence of bacteria, and the relationship between crew time and quality of output.

1.5 Additional Comments

1.6 Materials

As of May 31st, any false or absent entries are as a result of design and/or prototype incompleteness.

1.6.1 System

For a 4x3 extended topology with two control modules:

- 2x Control Module, each comprises:
 - 1x Automation (Tables 17, 2)
 - 1x Aeroponics Supply (Tables 10, 9)
- 12x Housing, each comprises:
 - 1x Housing Shell (Tables 3, 4)
 - 1x Grow Tray, each with:
 - * 1x Grow Tray Frame (Tables ??, 6)
 - * 1x Aeroponics Watering System (Tables 11)
 - 1x Lighting Tray (Tables 7, 8)

Automation

Part	Description	Quantity	Supplier	Part Number
Motherboard PCB	2 Layers, HASL Finish (Lead-Free)	1	JLCPCB	-

Table 1: Automation subsystem parts.

Part Number	Manufacturer	Description	Quantity
A000005	Arduino	Arduino Nano ATMega328	1
S404GSEJ6-U3000-3	Delkin Devices, Inc.	4GB MicroSD	1
61304021121	Würth Elektronik	Male Header Pins 40POS	1
SC0510	Raspberry Pi	Raspberry Pi Zero 2 W	1
DMN2005K-7	Diodes Incorporated	MOSFET N-CH 20V 300mA	2
RC0603FR-0710KL	YAGEO	Res 10K Ohm 1/10W	5
4484	Adafruit Industries LLC	1.3" TFT Screen	1
5055670271	Molex	Molex Micro-Lock PLUS 2pos	2
5055670471	Molex	Molex Micro-Lock PLUS 4pos	5
5055670871	Molex	Molex Micro-Lock PLUS 8pos	3
5055670681	Molex	Molex Micro-Lock PLUS 6pos	3

Table 2: Automation system electronic components.

Housing

Shell

Part	Description	Quantity	Supplier	Part Number
Control Module Housing	5-Sided Enclosure	1	Protocase	-
Frame Front X	20x20mm, Cut to 500mm	2	McMaster-Carr	5537T101
Frame Door Y	20x20mm, Cut to 500mm	2	McMaster-Carr	5537T101
Frame Rear X	20x20mm, Cut to 460mm	2	McMaster-Carr	5537T101
Frame Door X	20x20mm, Cut to 460mm	2	McMaster-Carr	5537T101
Frame Rear Y	20x40mm, Cut to 460mm	2	McMaster-Carr	5537T111
Frame Front Y	20x20mm, Cut to 460mm	2	McMaster-Carr	5537T101
Frame Z	20x20mm, Cut to 460mm	4	McMaster-Carr	5537T101
Foam Insulation	GPS, 4' x 8' x 1"	1	Home Depot	1001211234
Reflective Laminate	27" x 12' x 0.002"	1	McMaster-Carr	7538T11
Adhesive	LePage PL300 Foamboard	2	Home Depot	1000403469
Door Hinges	Plastic, Black	2	McMaster-Carr	5537T85
Feet Bumpers	Adhesive-Back	4	McMaster-Carr	95495K24
M5x0.8 10mm Bolts	Alloy Steel, Socket Head Cap	44	McMaster-Carr	91290A224
M5 T-Nuts	Zinc-Plated Steel	44	McMaster-Carr	5537T651

Table 3: Housing shell parts.

Part	Quantity	Materials	Process
L Bracket	8	PETG Filament	3D Printing
T Bracket	4	PETG Filament	3D Printing
Feet	4	PETG Filament	3D Printing

Table 4: Housing shell fabricated parts.

Grow Tray

Part	Description	Quantity	Supplier	Part Number
Tray X	20x20mm, Cut to 440mm	2	McMaster-Carr	5537T101
Tray Z	20x20mm, Cut to 400mm	3	McMaster-Carr	5537T101
Nozzle Arm	20x20mm, Cut to 150mm	2	McMaster-Carr	5537T101
M5x0.8 10mm Bolts	Alloy Steel, Socket Head Cap	25	McMaster-Carr	91290A224
M5x0.8 16mm Bolts	Alloy Steel, Socket Head Cap	20	McMaster-Carr	91290A232
M4x0.7 16mm Bolts	Alloy Steel, Socket Head Cap	12	McMaster-Carr	91290A154
M4x0.7 Hex Nuts	High-Strength Steel	12	McMaster-Carr	94166A110
M5 T-Nuts	Zinc-Plated Steel	35	McMaster-Carr	5537T651
M5x0.8 Hex Nuts	Alloy Steel	2	McMaster-Carr	94166A120
Grow Cup	2" Diameter	16	Amazon	

Table 5: Grow tray frame parts.

Part	Quantity	Materials	Process
L Bracket (Grow Tray)	4	PETG Filament	3D Printing
Diagonal Bracket	4	PETG Filament	3D Printing
T Bracket	4	PETG Filament	3D Printing
Tray Hook BL	1	PETG Filament	3D Printing
Tray Hook BR	1	PETG Filament	3D Printing
Tray Hook FL	1	PETG Filament	3D Printing
Tray Hook FR	1	PETG Filament	3D Printing
Grow Plate Quarters	4	210x210x5mm PET Sheet	Table Saw
Grow Plate Washer	1	PETG Filament	3D Printing
Nozzle Mount A	2	PETG Filament	3D Printing
Nozzle Mount B	2	PETG Filament	3D Printing

Table 6: Grow tray fabricated parts.

Lighting Tray

Part	Description	Quantity	Supplier	Part Number
Tray X	20x20mm, Cut to 440mm	2	McMaster-Carr	5537T101
Tray Z	20x20mm, Cut to 400mm	3	McMaster-Carr	5537T101
M5x0.8 10mm Bolts	Alloy Steel, Socket Head Cap	24	McMaster-Carr	91290A224
M5x0.8 16mm Bolts	Alloy Steel, Socket Head Cap	12	McMaster-Carr	91290A232
M4x0.7 16mm Bolts	Alloy Steel, Socket Head Cap	12	McMaster-Carr	91290A154
M4x0.7 Hex Nuts	High-Strength Steel	12	McMaster-Carr	94166A110
M5 T-Nuts	Zinc-Plated Steel	36	McMaster-Carr	5537T651

Table 7: Lighting tray frame components.

Part	Quantity	Materials	Process
L Bracket	4	PETG Filament	3D Printing
T Bracket	2	PETG Filament	3D Printing
Tray Hook BL	1	PETG Filament	3D Printing
Tray Hook BR	1	PETG Filament	3D Printing
Tray Hook FL	1	PETG Filament	3D Printing
Tray Hook FR	1	PETG Filament	3D Printing
Lighting LED Board Mount	5	PETG Filament	3D Printing
Lighting Power Board Mount	1	PETG Filament	3D Printing

Table 8: Lighting tray frame fabricated parts.

Aeroponics

All parts are rated for over 100PSI.

Supply

Part	Description	Quantity	Supplier	Part Number
3/8" ID Tubing	1/2" OD, 10', PET	1	McMaster-Carr	1979T3
1/4" OD Tubing	1/8" ID, 25', PET	1	McMaster-Carr	1979T4
PTFE Tape	1/2" x 21' Roll, White	1	McMaster-Carr	4934A14
SAE #6 Hose Clamp (Pack of 10)	7/32" to 5/8", Steel	1	McMaster-Carr	5415K11
Bonded O-Rings for 1/2 BSPP	Nitrile Rubber and Steel	5	McMaster-Carr	50915K816
Grip-Lock Socket to 1/2 MPT	Zinc-Plated Steel	1	McMaster-Carr	6539K37
Grip-Lock Plug to 1/2 MPT	Zinc-Plated Steel	1	McMaster-Carr	6539K67
Shutoff Valve	Brass, 1/2 FPT	2	McMaster-Carr	47865K23
1/2 MPT to 3/8" Barb	Brass	1	McMaster-Carr	2838N23
Diaphragm Pump	4.1L/min @80PSI	1	Amazon	
3/8 MPT to 3/8" Barb	Aluminum	1	McMaster-Carr	5357K37
1/2 FPT to 3x 3/8 FPT Manifold	Aluminum, Heat Block	1	McMaster-Carr	3491N13
3/8 MPT Manifold Plug	Aluminum	2	McMaster-Carr	3867T364
1/2 MPT to 3/8" Barb	Aluminum	1	McMaster-Carr	5357K38
3/8 MPT to 3/8" Barb	Brass	1	McMaster-Carr	2838N22
3/8 FPT Elbow	Brass	2	McMaster-Carr	50785K37
3/8 MPT to 6 1/4" Push Connect	Solution Manifold	2	McMaster-Carr	5203K956
1/4" Push Connect Tee	Plastic	6	McMaster-Carr	5111K528
1/4" Push Connect Plug	Plastic	6	McMaster-Carr	5111K504
3/8 NPT Right-Angle Tee	Brass	1	McMaster-Carr	50785K223
1/2 FPT to 3/8 MPT Adapter	Brass	1	McMaster-Carr	50785K29
Accumulator Tank	0.75L	1	Amazon	
1/2 FPT to 1/2 M BSPP Adapter	Brass	1	McMaster-Carr	1786N138
1/2 BSPP Tee	Brass	1	McMaster-Carr	9151K272
1/2 BSPP Nipple	Brass	1	McMaster-Carr	9151K375
1/2 F BSPP to 1/2 MPT Adapter	Brass	1	McMaster-Carr	50785K608
1/2 FPT to 1/4" OD Compression	Brass	1	McMaster-Carr	51875K14

Table 9: Aeroponics supply parts.

Part Number	Manufacturer	Description	Quantity
SEN0257	DFRobot	Water Pressure Sensor	1
GE-2158	Amphenol Thermometrics	Water Temperature Sensor	1
996	Adafruit Industries LLC	Solenoid Valve	1
114991171	Seeed Technology Co., Ltd	Water Flow Sensor	1

Table 10: Aeroponics supply electronic components.

Watering System

Part	Description	Quantity	Supplier	Part Number
1/4" Compression Quick-Disconnect	Plastic	2	McMaster-Carr	5012K122
1/4" Push Connect 1/8 MPT Inline Tee	Plastic and Brass	1	McMaster-Carr	51235K147
1/4" Push Connect to 1/8 MPT Elbow	Plastic and Brass	1	McMaster-Carr	51235K127
1/8 FPT Straight Coupling	Brass	2	McMaster-Carr	50785K91
80-Degree Full-Cone Misting Nozzle	Brass, 1/8 MPT	2	McMaster-Carr	3178K75
Dyneema Composite	1.43oz, 0.5x1.5yd	3	Ripstop by the Roll	
Dyneema Pressure-Sensitive Adhesive	1/2" x 15'	3	Ripstop by the Roll	
Drawstring	Nylon Cord, 25'	1	McMaster-Carr	3696T38
Drawstring Lock	Slide-Release	1	McMaster-Carr	3734T4

Table 11: Grow tray watering system parts.

Dosage Pump

Part	Description	Quantity	Supplier	Part Number
M4x0.7 16mm Bolts	Alloy Steel, Socket Head Cap	4	McMaster-Carr	91290A154
M4x0.7 4mm Bolts	18-8 Stainless, Socket Head Cap	2	McMaster-Carr	91292A023
Nylon Washer	Lubricated, 15mm x 28mm	2	McMaster-Carr	91545A510
Ball Bearing	Sealed, Stainless Steel	3	McMaster-Carr	6138K65
3/16" OD Tubing	1/16" ID, 10', Tygon PVC	1	McMaster-Carr	6516T62

Table 12: Dosage pump parts.

Part	Quantity	Materials	Process
Pump Body Lower	1	PETG	3D Printing
Pump Body Upper	1	PETG	3D Printing
Pump Roller Lower	1	PETG	3D Printing
Pump Roller Upper	1	PETG	3D Printing

Table 13: Dosage pump fabricated parts.

Part Number	Manufacturer	Description	Quantity
918	Adafruit	12V Geared Stepper Motor	1

Table 14: Dosage pump electronic components.

Thermoregulation

Leaf-Zone Heat Pump

Incomplete. Missing: heat sink.

Part Number	Manufacturer	Description	Quantity
CP854345H	CUI Devices	77W Peltier, 8.5A	1
2857	Adafruit Industries LLC	Humidity & Temperature Sensor	2
FAD1-12025CBHW12	Qualtek	12VDC Axial Fan	2

Table 15: Leaf-zone heat pump electronic components.

Root-Zone Heat Pump

Incomplete. Missing: heat sinks.

Part Number	Manufacturer	Description	Quantity
CP854345H	CUI Devices	77W Peltier, 8.5A	1
FAD1-12025CBHW12	Qualtek	12VDC Axial Fan	1

Table 16: Root-zone/aeroponics heat pump electronic components.

Driver Board

Part	Description	Quantity	Supplier	Part Number
Thermoelectric Driver PCB	2 Layers, HASL Finish (Lead-Free)	1	JLCPCB	-

Table 17: Thermoelectric driver parts.

Part Number	Manufacturer	Description	Quantity
2N6388G	onsemi	NPN Darlington 80V 10A	1
LM324N	Texas Instruments	OPAMP 4-circuit	1
0436450200	Molex	Molex Micro-Fit 2pos	1
0436500201	Molex	Molex Micro-Fit 2pos	1
0462355002	Molex	20-24AWG Crimp	2
G5LE-14 DC3	Omron Electronics Inc	Relay SPDT 10A 3V	2
MMBT2222A-7-F	Diodes Incorporated	NPN 40V 0.6A	4
5055670681	Molex	Molex Micro-Lock PLUS 6pos	1
KLDX-0202-A-LT	Kycon, Inc.	Barrel Jack	1
KLDX-PA-0202-A-LT	Kycon, Inc.	Barrel Jack	1
RC0402JR-0710KL	YAGEO	Res 10k Ohm 5% 1/16W	5
CL05A104KA5NNNC	Samsung Electro-Mechanics	Cap Cer 0.1uF 25V X5R	1
RC0402JR-071KL	YAGEO	Res 1k Ohm 5% 1/16W	4
RC0402FR-071M6L	YAGEO	Res 1.6M Ohm 1% 1/16W	1
RNCP0805FTD20R0	Stackpole Electronics Inc	Res 20 Ohm 1% 1/4W	2
RC0402FR-07100KL	YAGEO	Res 100k Ohm 1% 1/16W	1
RC0402FR-07200KL	YAGEO	Res 200k Ohm 1% 1/16W	1

Table 18: Thermoelectric driver electronic components.

Humidification

Incomplete. Missing: Humidification driver PCB, driver components, piezoelectric mesh nebulizer disc, water tank.

Dehumidification

Incomplete. Missing: Housing parts, shutters and servos, cartridge parts.

Part Number	Manufacturer	Description	Quantity
FAD1-12025CBHW12	Qualtek	12VDC Axial Fan	2
1334	Adafruit Industries LLC	Color Sensor	1

Table 19: Dehumidification electronic components.

Part	Description	Quantity	Supplier	Part Number
Indicating Desiccant	Silica Gel, 6%, Blue to Pink, 1lb	1	McMaster-Carr	2181K93
Air Filter	PET, MERV 13, 0.3 micron, 10" x 10"	2	McMaster-Carr	3881T101

Table 20: Dehumidification parts.

Gas Composition Regulation and Exchange

Incomplete. Missing: Housing parts, shutters and servos.

Part Number	Manufacturer	Description	Quantity
FAD1-12025CBHW12	Qualtek	12VDC Axial Fan	2

Table 21: Gas exchange electronic components.

Part	Description	Quantity	Supplier	Part Number
Air Filter	PET, MERV 13, 0.3 micron, 10" x 10"	2	McMaster-Carr	3881T101

Table 22: Gas exchange parts.

Lighting

Part Number	Name	Description	Quantity
0451110600	Molex	MicroLock PLUS Cable 6pos 50mm	2
0451110605	Molex	MicroLock PLUS Cable 6pos 450mm	4

Table 23: Lighting subsystem cables.

Part	Description	Quantity	Supplier	Part Number
Lighting LED PCB	2 Layers, HASL Finish (Lead-Free)"	5	JLCPCB	-
Lighting Driver PCB	2 Layers, HASL Finish (Lead-Free)"	1	JLCPCB	-

Table 24: Lighting subsystem PCBs.

Driver Board

Part Number	Manufacturer	Description	Quantity
LDD-500HS	MEAN WELL USA Inc.	0-500mA Constant-Current LED Driver	5
5055670681	Molex	Micro-Lock PLUS 6pos	3
KLDX-PA-0202-A-LT	"Kycon, Inc."	Barrel Plug	1
KLDX-0202-A-LT	"Kycon, Inc."	Barrel Jack	1
RC0402JR-0710KL	YAGEO	Res 10k Ohm 1/16W	5

Table 25: LED driver electronic components.

LED Board

Incomplete. Missing: UV LEDs.

Part Number	Manufacturer	Description	Quantity
XPGDRY-L1-0000-00501	CreeLED, Inc.	Royal Blue LED (451nm)	3
XPGDWT-01-0000-00ME2	CreeLED, Inc.	Cool White LED (5700K)	3
XPGDWT-H1-0000-00GE8	CreeLED, Inc.	Warm White LED (2700K)	3
XPGDPR-L1-0000-00F01	CreeLED, Inc.	Photo Red LED (645nm)	3
XPEBFR-L1-0000-00701	CreeLED, Inc.	Infrared LED (730nm)	3
5055670681	Molex	Molex Micro-Lock PLUS 6pos	2

Table 26: LED board electronic components.

1.6.2 Inputs

Supply Inputs

• *Water*: reverse-osmosis, ambient

• *Power*: 120V 60Hz AC¹

• Network: ethernet or wireless, optional

• Air Intake: cabin air, filtered

Consumable Inputs

• *Nutrient/pH Adjusment Solutions*: powder form, vacuum-sealed pouches, specific compound makeup is variable to suit mission requirements

• Desiccant Cartridge: recharged

• Seeds: cleaned and disinfected, vacuum-sealed

1.6.3 Outputs

Food Outputs

All food outputs are plant matter (leaves, fruits, roots, seeds, etc. dependent on species/preparation method). Species selection is variable to suit mission requirements.

By-Products & Waste

• Air Exhaust: filtered, vented to onboard dehumidification and recirculation

• Seeds/Clones: harvested, cleaned, and stored for replanting

• Inedible Plant Matter: disposed of

1.6.4 Maintenance

Spare Components

Spares for each component (parts, fabricated parts, assembled PCBs) should be included.

Tools

For part replacement, a basic hand tool set (hex keys, screwdrivers, adjustable wrench, pipe wrench, utility knife) should be included. For automation debugging, a USB keyboard and mouse should be included. For all electronics, basic rework tools (soldering iron, lead-free solder, wire strippers, etc.) can be included.

1.6.5 Cleaning

Soaps

Single-use sterile polyester wipes soaked in a dilute solution of food-safe mild soap (such as SunSmile Fruit & Vegetable Rinse from Sunrider [4]) and used.

Disinfectants

Single-use sterile polyester wipes soaked in a dilute solution of food-safe disinfectant (such as those used currently on the ISS, see below) are used.

¹The power supply can be altered to suit a variety of power inputs (i.e. DC)

Compound	Composition
Octyl Decyl Dimethyl Ammonium Chloride	0.0399%
Dioctyl Dimethyl Ammonium Chloride	0.01995%
Didecyl Dimethyl Ammonium Chloride	0.01995%
Alkyl Dimethyl Benzyl Ammonium Chloride	50% C14, 40% C12, 10% C16
Dimethyl Benzyl Ammonium Chloride	0.0532%

Table 27: Disinfectant solution compound breakdown [5].

2 Hazard Analysis and Critical Control Point (HACCP) Plan

2.1 Food Production System Description

Figure 1: System overview.

2.1.1 Hazard Analysis: Crew Contact (Harvesting, Cleaning, Maintenance)

Source		Crew contact with system during harvesting, cleaning, and mainte-
		nance
Identification	n	Pathogens (bacteria, fungi, viruses) transferred from crew to system
	Severity	Transfer of biological pathogens onto system surfaces has the poten-
Evaluation		tial to infect crops, posing a hazard to crew health during harvesting
		and ingestion.
	Likelihood	Fungi and viruses are of very low probability, as they cannot live
		on surfaces. Human gut bacteria (i.e. E. coli) is of low probability,
		as crew sanitation procedures are well-established.
	CCP?	The HACCP team determines that the risks of cross-contamination
		or infection are very low. Crew sanitation practices (especially prior
		to system interaction), practices that minimize system interaction,
		and sanitizing food outputs prior to consumption are adequate to
		control this potential hazard.

Table 28: Hazard analysis: pathogens transferred from crew to system.

Source		Crew contact with system during harvesting, cleaning, and mainte-
		nance
Identification	n	Pathogens (bacteria, fungi, viruses) transferred from system to crew
	Severity	Biological pathogens present in system materials have the potential
Evaluation		to infect crew during interaction.
	Likelihood	All pathogens are of moderate probability, as they can be present
		in infected seeds (and thus food products at the time of ingestion).
		However, there are no known instances of plant-borne pathogens
		infecting humans. Bacteria can also be present on all surfaces.
	CCP?	The HACCP team determines that the risks of infection are low.
		However, for the sake of maximizing yield acceptability and consis-
		tency, care should be taken in seed sanitization. This, along with
		system sanitation practices (both pre-flight and during harvest) and
		practices that minimize system interaction, are adequate to control
		this potential hazard.

Table 29: Hazard analysis: pathogens transferred from system to crew.

Source		Crew contact with system during harvesting, cleaning, and mainte-
		nance
Identification	on	Chemical hazards to crew (i.e. heavy metals, process chemicals)
		introduced by system
	Severity	Heavy metals (i.e. lead) and chemicals introduced during manufac-
Evaluation		turing pose a threat to crew health, either during system interaction
		or food product ingestion. In addition, process chemicals (i.e. acidic/
		basic solutions) can pose a hazard either through physical contact
		or accidental ingestion.
	Likelihood	Heavy metals are of low probability, but may be present in trace
		amounts in components (i.e. plumbing, electronics) and thus may
		come either in direct physical contact with crew(i.e. during mainte-
		nance) or be present in food products (i.e. uptake via water supply).
	CCP?	The HACCP team determines that the risks of heavy metal ingestion
		are low. All electronics, circuit boards, solder, plumbing fittings,
		are certified lead-free. All soldered surfaces are cleaned of flux
		residue. In addition, the aeroponic system is flushed of all process
		chemicals prior to crew interaction. Practices that include cleaning
		system surfaces after manufacturing, wearing gloves during han-
		dling and interaction, and cleaning food outputs of residue prior to
		consumption, are adequate to control this potential hazard.

Table 30: Hazard analysis: chemical hazards to system introduced by crew.

Source		Crew contact with system during harvesting, cleaning, and mainte-
		nance
Identification	on	Chemical hazards to system (i.e. disinfectants) introduced by crew
	Severity	Chemicals can remain on system surfaces, and may be present in
Evaluation		food product, posing a hazard either through physical contact with
		surfaces or through ingestion.
	Likelihood	Disinfectants are of moderate probability. In addition, process chem-
		icals used during maintenance (i.e. descaling agents for the aero-
		ponics system) may be present on food product surfaces (i.e. root
		vegetables).
	CCP?	The HACCP team determines that the risks of chemical ingestion
		are low. Disinfectants are food-safe and dilute. In addition, the
		aeroponic system is flushed of all process chemicals prior to crew
		interaction. Practices that include wearing gloves during handling
		and interaction, wiping surfaces and food products with pure water
		prior to physical contact and ingestion, and practices that minimize
		system interaction are adequate to control this potential hazard.

Table 31: Hazard analysis: chemical hazards to crew introduced by system.

2.1.2 Hazard Analysis: Water Supply

Source		Water supply as a medium for accumulation and distribution of
		hazards
Identification	n	Chemical hazards (i.e. heavy metals, process chemicals) build up in
		water supply and transfer to produce and, in turn, crew
	Severity	Heavy metals (i.e. lead) and chemicals introduced during manufac-
Evaluation		turing and process pose a threat to crew health when ingested via
		food products. In addition, buildup can compromise other systems
		(i.e. flow rate) and reduce resistance to other threats.
	Likelihood	Heavy metals are of low probability, but may be present in trace
		amounts in water supply and components (i.e. plumbing) and thus
		may be present in water supply for periods of time. However,
		regular flushing and cleansing of the supply will provide an upper
		bound on possible concentrations both in the supply and in any
		given produce.
	CCP?	The HACCP team determines that the risks of chemical accumula-
		tion are low. All plumbing fittings are certified lead-free. In addition,
		the aeroponic system is flushed of all process chemicals prior to crew
		interaction. Existing water supply standards for space missions are
		adequate to control this potential hazard.

Table 32: Hazard analysis: chemical hazards in water system.

Source		Water supply as a medium for accumulation and distribution of
		hazards
Identification	n	Bacteria present in water supply thrive, transfer to produce and, in
		turn, crew
	Severity	Bacteria in/on produce, surfaces, or suspended in mist can infect
Evaluation		crew.
	Likelihood	Probability of human-borne bacteria (i.e. <i>E. coli</i>) is unlikely given
		stringent crew sanitation procedures. Other sources are infected
		seeds, however there are no known instances of plant-borne
		pathogens infecting humans.
	CCP?	The HACCP team determines that the risks of bacteria accumula-
		tion are low. Practices that include cleaning system surfaces after
		interaction, wearing gloves during handling, and flushing the water
		system regularly are adequate to control this potential hazard.

Table 33: Hazard analysis: bacteria grow in water system.

Source		Water as a medium for growth and propagation of algae
Identification	n	Biological hazards (algae) establish in damp, nutrient rich conditions
		(i.e. growth tray)
	Severity	Introduces unnecessary organic material into growth areas, raises
Evaluation		prevelance of other organisms, absorbs nutrients and emits waste
		products.
	Likelihood	Given damp conditions and a plant-optimized light source, algae
		growth is likely. Can be reduced by ensuring GPs are followed
		when harvesting crops such that no organic material is left behind.
	CCP?	The HACCP team determines that the risks of algae growth are
		moderate, given that the conditions present in growth areas are
		inherently suitable for algae. However, regular presence/absence
		testing minimizes risk as a 3 wt% hydrogen peroxide solution is an
		effective countermeasure.

Table 34: Hazard analysis: algae in growth environment.

2.1.3 Hazard Analysis: Nutrient Supply

Source		Nutrient supply as a medium for accumulation and distribution of
		hazards
Identification	n	Bacteria in nutrient supply thrive, transfer to water and, in turn,
		crew
	Severity	Bacteria from nutrient supply can be distributed throughout the
Evaluation		system and infect crew.
	Likelihood	Nutrient supply is kept in pre-sealed packets of individual doses,
		meaning control on earth will eliminate introduction of threats via
		nutrient supply. Once in use, any bacteria will have come from the
		system, so presence in the nutrient supply is non-additive.
	CCP?	The HACCP team determines that the risks of biological threats in
		the nutrient supply are low. Given purity of nutrients, as well as
		proper care in pre-flight steps and standard operating procedures
		when interacting with nutrient supply, enough practices are in place
		to control this hazard.

Table 35: Hazard analysis: pathogens in nutrient supply.

2.1.4 Hazard Analysis: Seeds

Source		Seed supply as a medium for introduction of hazards
Identification		Pathogens (bacteria, fungi, viruses) present in seed supply are in-
		troduced to system
	Severity	Minimal, there are no known occurences of plant-borne pathogens
Evaluation		infecting humans.
	Likelihood	Moderate, however introduction of a pathogen will have occured
		pre-flight. But, they are sanitized and stored in isolated pouches
		which also minimize likelihood of bacteria on their surfaces.
	CCP?	The HACCP team determines that the risks of biological threats
		in the seed supply are low. Given proper care in pre-flight steps
		and standard operating procedures when planting seeds, enough
		practices are in place to control this minimally risky hazard.

Table 36: Hazard analysis: pathogens introduced via seed supply.

2.1.5 Hazard Analysis: Testing

Source		Testing as a method for propagation or introduction of threats
Identification		Chemical hazards (i.e. process chemicals) introduced by testing
		apparatus
	Severity	Minimal, testing substances are either buffer solution in small quan-
Evaluation		tities or trace amounts of indicators on paper strips.
	Likelihood	Minimal, as any testing would be conducted outside of the unit
		using a sample collected by crew contact (see 30, 31).
	CCP?	The HACCP team determines that the risks of testing introducing
		chemical hazards into the system are minimal. This is given the
		mundane, external nature of the substances at play as well as the
		process design of PeaPod which intentionally limits the frequency
		of testing.

Table 37: Hazard analysis: chemical hazards introduced via testing.

Source		Testing as a method for propagation or introduction of threats
Identification		Bacteria propagated by testing apparatus and procedures
	Severity	Severe, can inflate bacterial populations from negligible to signifi-
Evaluation		cant, widespread, systemic threats.
	Likelihood	Minimal, as bacterial testing is limited if not eliminated by the
		process design of PeaPod and the lack of resources in the field.
	CCP?	The HACCP team determines that the risks of testing propagating
		bacterial hazards are minimal. This is given the process design of
		the system which avoids bacterial testing and the stringent system
		controls which are designed for elimination of bacteria in the first
		place.

Table 38: Hazard analysis: bacterial propagation induced via testing.

2.2 Critical Points

No critical points were identified in hazard analysis.

2.3 Standard Test Record

No critical points were identified in hazard analysis.

3 Feedback

No feedback is provided.

References

- [1] "The 9-point hedonic scale." [Online]. Available: https://www.sensorysociety.org/knowledge/sspwiki/Pages/The%209-point%20Hedonic%20Scale.aspx
- [2] L. Maturin and J. T. Peeler, "Bam chapter 3: Aerobic plate count," 2001. [Online]. Available: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count
- [3] "How to ship perishables." [Online]. Available: https://www.fedex.com/en-us/shipping/how-to-ship-perishables.html
- [4] "Sunsmile fruit & vegetable rinse." [Online]. Available: https://home.sunrider.com/corporphan/product/394/SMFRUITEVEGERIN-US
- [5] N. K. Singh, J. M. Wood, F. Karouia, and K. Venkateswaran, "Succession and persistence of microbial communities and antimicrobial resistance genes associated with international space station environmental surfaces," Microbiome, vol. 6, p. 204, 2018.