Explaining Global Constraints from their Decompositions

Arthur Gontier, Charlotte Truchet, Charles Prud'homme LS2N, IMT Atlantique, Université de Nantes

February 21, 2023

CP model

Model

Variables: x, y, z

Constraints: c1, c2, c3

Domains: D_x, D_y, D_z

Solving

Filtering algorithms

Search Strategies

Conflict Driven Clause Learning

CP CDCL (HaifaCSP)

Lazy Clause Generation (Chuffed)

Pros

Reduce search space (rcpsp)

Help strategies

Proof of failure

From SAT to CP

Boolean variable

Pros

Reduce search space (rcpsp)

Help strategies

Proof of failure

From SAT to CP

Boolean variable + Integer variable

Pros

Reduce search space (rcpsp)

Help strategies

Proof of failure

From SAT to CP

Boolean variable + Integer variable

Boolean clauses

Pros

Reduce search space (rcpsp)

Help strategies

Proof of failure

From SAT to CP

Boolean variable + Integer variable

Boolean clauses + a lot of different global constraints

Problem: Each constraint needs an explanation

Pros

Reduce search space (rcpsp)

Help strategies

Proof of failure

From SAT to CP

Boolean variable + Integer variable

Boolean clauses + a lot of different global constraints

Problem: Each constraint needs an explanation

Generate explanation?

From decomposition to explanation

Table of content

Introduction

- Prom decomposition to Explanation
 - Definitions
 - Example: AtMost
- Conclusion

Section summary

- Introduction
- Prom decomposition to Explanation
 - Definitions
 - Example: AtMost
- Conclusion

Events

Definition (Event and explanation)

An event is a domain reduction written $(X \le t, X \ge t, X \ne t, X = t)$ in the following. It is caused by either propagation or decision.

$$X = t$$

Events

Definition (Event and explanation)

An event is a domain reduction written $(X \le t, X \ge t, X \ne t, X = t)$ in the following. It is caused by either propagation or decision.

Definition (Explanation)

An explanation is a conjunction of events implying an event generated by a constraint propagation. In the following, it is noted:

 $\langle explaining \ events \rangle \rightarrow \langle event \rangle$

Propagation and decision

Explanation

$$\langle N < 4 \rangle \langle X_1 = d \rangle \langle X_2 = d \rangle \langle X_3 = d \rangle \rightarrow \langle X_4 \neq d \rangle$$

GOAL

Find explanation rules for each constraint

Section summary

- Introduction
- Prom decomposition to Explanation
 - Definitions
 - Example: AtMost
- Conclusion

Definition (Reification)

A reified constraint c is associated to a Boolean variable b such that the truth state of b matches the satisfaction state of c.

 $Constraint \iff b$

Definition (Reification)

A reified constraint c is associated to a Boolean variable b such that the truth state of b matches the satisfaction state of c.

$$Constraint \iff b$$

Equality:
$$X_i = t \iff b_{it}$$
 $\forall i \in [\![1,n]\!] \ \forall t \in [\![1,m]\!]$ Inequality: $X_i \geq t \iff b_{it}$ $\forall i \in [\![1,n]\!] \ \forall t \in [\![1,m]\!]$

Definition (Reification)

A reified constraint c is associated to a Boolean variable b such that the truth state of b matches the satisfaction state of c.

$$Constraint \iff b$$

$$\begin{array}{ll} \text{Equality: } X_i = t \iff b_{it} & \forall i \in \llbracket 1, n \rrbracket \ \forall t \in \llbracket 1, m \rrbracket \\ \text{Inequality: } X_i \geq t \iff b_{it} & \forall i \in \llbracket 1, n \rrbracket \ \forall t \in \llbracket 1, m \rrbracket \\ \text{Conjunction: } (\bigwedge_{i \in \llbracket 1, n \rrbracket} b_i) \iff b \\ \\ \text{Disjunction: } (\bigvee_{i \in \llbracket 1, n \rrbracket} b_i) \iff b \end{array}$$

Definition (Reification)

A reified constraint c is associated to a Boolean variable b such that the truth state of b matches the satisfaction state of c.

$$Constraint \iff b$$

$$\begin{array}{lll} \text{Equality: } X_i = t \iff b_{it} & \forall i \in \llbracket 1, n \rrbracket \ \forall t \in \llbracket 1, m \rrbracket \\ \text{Inequality: } X_i \geq t \iff b_{it} & \forall i \in \llbracket 1, n \rrbracket \ \forall t \in \llbracket 1, m \rrbracket \\ \text{Conjunction: } (\bigwedge_{i \in \llbracket 1, n \rrbracket} b_i) \iff b \\ \text{Disjunction: } (\bigvee_{i \in \llbracket 1, n \rrbracket} b_i) \iff b \\ \text{Sum}_{\leq} : \sum_{i \in \llbracket 1, n \rrbracket} b_i \leq c \iff b \\ \end{array}$$

Constraint decomposition

Atmost(t,X,v)

$$\begin{cases} x_i = v \iff b_i, & \forall i \in [1, |X|] \\ \sum_{i \in [1, |X|]} b_i \le t \end{cases}$$

To generate an explanation rule we need:

A rule for each event of the decomposition language

A rewriting algorithm

Rewriting rules

Equality:

$$\langle x_i = t \rangle \xrightarrow{R_{=}} \langle b_{it} \rangle$$

$$\langle b_{it} \rangle \xrightarrow{R_{=}} \langle x_i = t \rangle$$

$$\langle x_i \neq t \rangle \xrightarrow{R_{\neq}} \langle \neg b_{it} \rangle$$

$$\langle \neg b_{it} \rangle \xrightarrow{R_{\neq}} \langle x_i \neq t \rangle$$

Inequality:

$$\langle x_i \leq t \rangle \xrightarrow{R_{\leq}} \langle b_{it} \rangle$$

$$\langle b_{it} \rangle \xrightarrow{R_{\leq}} \langle x_i \leq t \rangle$$

$$\langle x_i > t \rangle \xrightarrow{R_{>}} \langle \neg b_{it} \rangle$$

$$\langle \neg b_{it} \rangle \xrightarrow{R_{>}} \langle x_i > t \rangle$$

Rewriting rules

$$Sum \qquad And \qquad Or$$

$$\langle b_i \rangle \xrightarrow{R_{\Sigma}^1} \langle \neg b \rangle \langle \neg b_j \rangle_{\forall j \neq i} \qquad \langle b_i \rangle \xrightarrow{R_{\wedge}^1} \langle b_i \rangle \qquad \langle b_i \rangle \xrightarrow{R_{\vee}^1} \langle b \rangle \langle \neg b_j \rangle_{\forall j \neq i}$$

$$\langle \neg b_i \rangle \xrightarrow{R_{\Sigma}^2} \langle b \rangle \langle b_j \rangle_{\forall j \neq i} \qquad \langle \neg b_i \rangle \xrightarrow{R_{\wedge}^2} \langle \neg b \rangle \langle b_j \rangle_{\forall j \neq i} \qquad \langle \neg b_i \rangle \xrightarrow{R_{\vee}^2} \langle \neg b \rangle$$

$$\langle b \rangle \xrightarrow{R_{\Sigma}^3} \langle \neg b_i \rangle_{\forall i} \qquad \langle b \rangle \xrightarrow{R_{\wedge}^3} \langle b_i \rangle_{\forall i} \qquad \langle b \rangle \xrightarrow{R_{\vee}^4} \langle \neg b_i \rangle_{\exists i}$$

$$\langle \neg b \rangle \xrightarrow{R_{\Sigma}^4} \langle b_i \rangle_{\forall i} \qquad \langle \neg b \rangle \xrightarrow{R_{\wedge}^4} \langle \neg b_i \rangle_{\exists i} \qquad \langle \neg b \rangle \xrightarrow{R_{\vee}^4} \langle \neg b_i \rangle_{\forall i}$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

$$X_i = t$$

$$x_i = v \iff b_i$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

$$X_i = t$$

$$x_i = v \iff b_i$$

Possible rules

$$\langle x_i = t \rangle \xrightarrow{R_{=}} \langle b_i \rangle$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

$$X_i = t$$

$$x_i = v \iff b_i$$

Possible rules

$$\langle x_i = t \rangle \xrightarrow{R_{=}} \langle b_i \rangle$$

Formula

 b_i

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

$$\sum_{i} b_{i} \le t$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

$$\begin{aligned}
x_i &= v \iff b \\
\sum_i b_i &\leq t
\end{aligned}$$

Possible rules

$$\langle b_{it} \rangle \xrightarrow{R_{=}} \langle x_i = t \rangle$$

$$\langle b_i \rangle \xrightarrow{R^1_{\Sigma}} \langle \neg b \rangle \langle \neg b_j \rangle_{\forall j \neq i}$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

$$= v \iff b$$

$$\sum_{i} b_{i} \le t$$

Possible rules

$$\langle b_{it} \rangle \xrightarrow{R_{=}} \langle x_i = t \rangle$$

$$\langle b_i \rangle \xrightarrow{R_{\Sigma}^1} \langle \neg b \rangle \langle \neg b_j \rangle_{\forall j \neq i}$$

Formula

$$\bot \land \neg b_j \quad \forall j \neq i$$

Explanation

$$\langle \perp \rangle \to \langle X_i = v \rangle$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

$$X_i \neq v$$

$$x_i = v \iff b_i$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

Constraints with term: $X_i \neq v$

$$x_i = v \iff b_i$$

Possible rules

$$\langle x_i \neq t \rangle \xrightarrow{R_{\neq}} \langle \neg b_i \rangle$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

Constraints with term: $X_i \neq v$

$$x_i = v \iff b_i$$

Possible rules

$$\langle x_i \neq t \rangle \xrightarrow{R_{\neq}} \langle \neg b_i \rangle$$

Formula

 $\neg b_i$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

Constraints with term: $\neg b_i$

$$\sum_i b_i \leq t$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

Constraints with term: $\neg b_i$

$$x_i = v \iff b$$
 $\sum_i b_i \leq t$

Possible rules

$$\langle \neg b_{it} \rangle \xrightarrow{R_{\neq}} \langle x_i \neq t \rangle$$

$$\langle \neg b_i \rangle \xrightarrow{R_{\Sigma}^2} \langle b \rangle \langle b_j \rangle_{\forall j \neq i}$$

$$\langle \neg b_i \rangle \xrightarrow{R_{\Sigma}^2} \langle b \rangle \langle b_j \rangle_{\forall j \neq i}$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

Constraints with term: $\neg b_i$

$$x_i = v \iff b_i$$

$$\sum_i b_i \le t$$

Possible rules

$$\langle \neg b_{it} \rangle \xrightarrow{R_{\neq}} \langle x_i \neq t \rangle$$

$$\langle \neg b_i \rangle \xrightarrow{R_{\Sigma}^2} \langle b \rangle \langle b_j \rangle_{\forall j \neq i}$$

Formula

$$\top \wedge b_j \quad \forall j \neq i$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

Constraints with term: b_j

$$x_i = v \iff b_i$$

$$\sum_i b_i \le t$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

Constraints with term: b_i

$$x_i = v \iff b_i$$

$$\sum_i b_i \le t$$

Possible rules

$$\langle x_i = t \rangle \xrightarrow{R_{=}} \langle b_i \rangle$$

$$\langle x_i = t \rangle \xrightarrow{R_{=}} \langle b_i \rangle$$

$$\langle b_i \rangle \xrightarrow{R_{\Sigma}^1} \langle \neg b \rangle \langle \neg b_j \rangle_{\forall j \neq i}$$

Example: AtMost=
$$\begin{cases} x_i = v \iff b_i \\ \sum_i b_i \le t \end{cases}$$

Constraints with term: b_i

$$x_i = v \iff b_i$$

$$\sum_i b_i \le t$$

Possible rules

$$\langle x_i = t \rangle \xrightarrow{R_{-}} \langle b_i \rangle$$

Formula

$$\top \wedge X_j = v \quad \forall j \neq i$$

Explanation

$$\langle X_i = v \rangle_{\forall i \neq i} \to \langle X_i \neq v \rangle$$

Results

Two new explained constraints in Chuffed

Count

Increasing

instance	explanation	nodes	fails	backjumps	time (ms)
	chuffed	10487	9717	639	393
league	default	51383	51067	187	2641
(model15-4-3)	generated	4501	4038	330	189
	chuffed	3724887	3616895	107972	179025
oocsp	default	3951358	3875074	76263	219893
(racks_030_mii8)	generated	3807940	3713037	94882	186959
	chuffed	71044	54342	16367	4432
oc-rooster	default	792690	774296	18055	24617
(4s-23d)	generated	82421	62145	19939	5530

Table: Three example instances comparing chuffed, the default explanation and the generated explanations.

Section summary

- Introduction
- From decomposition to Explanation
 - Definitions
 - Example: AtMost
- Conclusion

Conclusion

In this talk:

- A simple decomposition language
- A rewriting rule algorithm to generate an explanation
- An implementation in Chuffed

Conclusion

In this talk:

- A simple decomposition language
- A rewriting rule algorithm to generate an explanation
- An implementation in Chuffed

Future work:

- Expand the decomposition language (rule learning?)
- aglorithmically global constraints decompositions?
- What to do when there is more than one decompositions?

Thanks!

Algorithms: Index modification and propagation

Definition (Index modification)

 $i \diamond i', \diamond \in \{=, \neq, \geq, \leq\}$: a relation between two indexes $i \diamond n, \diamond \in \{+, -\}, n \in \mathbb{N}$: a modification by an integer $i \in D$: a belonging to a set D $\exists i$ and $\forall i$: a way to introduce indexes

Index propagation in the graph

index_propagate: propagate the index as described in the equation
index_update: synchronise the graph index with the equation one

Example $b_{i(t-d_i)}$

index_propagate: $(i,t) \rightarrow (i,t-d_i)$ index_update: $(i,t) \rightarrow (i,t+d_i)$

CDCL applyed to CP (Veksler & Strichman)

CSP-Analyze-Conflict

```
1 cl \leftarrow Explain(conflict-node)
2 pred←Predecessors(conflict-node)
₃ front←Relvant(pred,cl)
4 while ¬ Stop-criterion-met(front) do
       curr-node←Last-node(front)
       front←front⊂ curr-node
       expl \leftarrow Explain(curr-node)
       cl \leftarrow Resolve(cl, expl, var(lit(curr-node)))
       pred←Predecessors(curr-node)
       front \leftarrow Distinct(Relvant(front \cup pred, cl))
10
11 add-clause-to-database(cl)
```

Generated rule: Choco

Instance	explainless	generated explain	Chuffed
rcpsp-02	0.076s	0.071s	0.041s
	86 Nodes	124 Nodes	125 Nodes
	83 Fails	0 Fails	1 Fails
rcpsp-03	0.095s	0.072s	0.040s
	62 Nodes	62 Nodes	62 Nodes
	61 Fails	0 Fails	0 Fails
rcpsp-04	>1h	>1h	885.184s
			4049049 Nodes
			3153463 Fails
rcpsp-05	>3m	0.409s	0.159s
	6870746 Nodes	1224 Nodes	2271 Nodes
	6870673 Fails	78 Fails	102 Fails

Generated rule: Choco

Instance	ovalaialess	generated evaluin	Chuffed
	explainless	generated explain	Chulled
rcpsp-06	0.151s	0.329s	0.140s
	186 Nodes	445 Nodes	446 Nodes
	177 Fails	0 Fails	1 Fails
rcpsp-07	0.708s	0.680s	0.259s
	305 Nodes	422 Nodes	422 Nodes
	296 Fails	0 Fails	0 Fails
rcpsp-08	>1h	>1h	>1h
rcpsp-09	0.722s	0.535s	0.268s
	577 Nodes	1832 Nodes	2275 Nodes
	546 Fails	10 Fails	15 Fails

AllDifferent($\{X_1, \ldots, X_n\}$)

$$X_i = t \iff b_{it} \qquad \forall i \in [1, n] \forall t \in [1, m]$$
$$\sum_{i \in [1, n]} b_{it} \le 1 \qquad \forall t \in [1, m]$$

$$\frac{X_{i'} = t, \ \forall i', \ i' \neq i, \ i' \in [[1, n]], \ i \in [[1, n]]}{X_i \neq t}$$

$\mathsf{AllEqual}(\{X_1,\ldots,X_n\})$

$$X_{i} \geq t \iff b_{it} \qquad \forall i \in \llbracket 1, n \rrbracket \forall t \in \llbracket 1, m \rrbracket$$

$$\bigwedge_{i \in \llbracket 1, n \rrbracket} b_{it} \iff b1_{t} \qquad \forall t \in \llbracket 1, m \rrbracket$$

$$\bigwedge_{i \in \llbracket 1, n \rrbracket} \neg b_{it} \iff b2_{t} \qquad \forall t \in \llbracket 1, m \rrbracket$$

$$(b1_{t} \lor b2_{t}) \qquad \forall t \in \llbracket 1, m \rrbracket$$

$$\frac{X_{i} \geq t}{X_{i} \geq t}$$

$$\frac{X_{i} \geq t}{X_{i'} < t, \ \forall i', \ i' \neq i, \ i' \in \llbracket 1, n \rrbracket, \ i \in \llbracket 1, n \rrbracket}$$

$$X_{i} \geq t$$

$$X_{i'} \geq t, \ \forall i', \ i' \neq i, \ i' \in \llbracket 1, n \rrbracket, \ i \in \llbracket 1, n \rrbracket}$$

$$X_{i} < t$$

$$X_{i} < t, \ \exists i, \ i \in \llbracket 1, n \rrbracket$$

$\mathsf{NValue}(N, \{X_1, \dots, X_n\})$

$$X_i = t \iff b_{it} \qquad \forall i \in \llbracket 1, n \rrbracket \forall t \in \llbracket 1, m \rrbracket$$

$$\bigvee_{i \in \llbracket 1, n \rrbracket} b_{it} \iff b2t \qquad \forall t \in \llbracket 1, m \rrbracket$$

$$\sum_{t \in \llbracket 1, m \rrbracket} b2t = p \iff b3p \qquad \forall t \in \llbracket 1, m \rrbracket \forall p \in \llbracket 1, n \rrbracket$$

$$N = p \iff b3p \qquad \forall p \in \llbracket 1, n \rrbracket$$

$$\underbrace{X_i \neq t, \ \forall i, \ i \in \llbracket 1, n \rrbracket, \ \forall t, \ t \in \llbracket 1, m \rrbracket, \ N = p, \ \forall p, \ p \in \llbracket 1, n \rrbracket}_{X_i = t}$$

$$\underbrace{X_{i'} \neq t, \ \forall i', \ i' \neq i, \ i' \in \llbracket 1, n \rrbracket, \ i \in \llbracket 1, n \rrbracket}_{X_i = t} \qquad N = p, \ \forall p, \ p \in \llbracket 1, n \rrbracket}_{X_i = t}$$

$$\underbrace{X_{i} = t, \ \exists i, \ i \in \llbracket 1, n \rrbracket, \ \forall t, \ t \in \llbracket 1, m \rrbracket, \ N = p, \ \forall p, \ p \in \llbracket 1, n \rrbracket}_{X_i \neq t}$$

$$\underbrace{X_i = t, \ \exists i, \ i \in \llbracket 1, m \rrbracket, \ \forall i, \ i \in \llbracket 1, n$$

$$\frac{X_i = t, \ \exists i, \ i \in \llbracket 1, n \rrbracket, \ \forall t, \ t \in \llbracket 1, m \rrbracket, \ \forall i, \ i \in \llbracket 1, n \rrbracket}{N \neq p}$$

N = p

$$\frac{X_i \neq t, \ \forall i, \ i \in \llbracket 1, n \rrbracket, \ \forall t, \ t \in \llbracket 1, m \rrbracket, \ \forall i, \ i \in \llbracket 1, n \rrbracket}{N \neq p}$$

$\mathsf{AtLeastNValue}(N, \{X_1, \dots, X_n\})$

 $X_i = t \iff b_{it}$

$$\begin{split} \bigvee_{i \in [\![1,n]\!]} b_{it} \iff b2_t & \forall t \in [\![1,m]\!] \\ \sum_{t \in [\![1,n]\!]} b2_t \geq p \iff b3_p & \forall t \in [\![1,m]\!] \\ N \geq p \iff b3_p & \forall t \in [\![1,m]\!] \\ \underbrace{X_i \neq t', \ \forall i, \ i \in [\![1,n]\!], \ \forall i, \ i \in [\![1,n]\!], \ \forall t', \ t' \neq t, \ t' \in [\![1,m]\!], \ t \in [\![1,m]\!] \quad N \geq p, \ \forall p, \ p \in [\![1,n]\!]} \\ \underbrace{X_i = t} \\ \underbrace{X_{i'} \neq t, \ \forall i', \ i' \neq i, \ i' \in [\![1,n]\!], \ i \in [\![1,n]\!], \ i \in [\![1,n]\!]}_{X_i = t} \\ \underbrace{X_i = t', \ \exists i, \ i \in [\![1,n]\!], \ \forall i, \ i \in [\![1,n]\!], \ \forall t' \in [\![1,m]\!], \ t \in [\![1,m]\!], \ \forall i, \ i \in [\![1,n]\!], \ N < p, \ p \in [\![1,n]\!]}_{N < p} \\ \underbrace{X_i \neq t, \ \forall i, \ i \in [\![1,n]\!], \ \forall i, \ i \in [\![1,n]\!], \ \forall i, \ t \in [\![1,m]\!], \ \forall i, \ i \in [\![1,n]\!], \ N < p}_{N < p} \end{split}$$

 $\forall i \in [1, n] \forall t \in [1, m]$

AtMostNValue(N, { X_1 , ..., X_n })

 $X_i = t \iff b_{it}$

$$\bigvee_{i \in \llbracket 1,n \rrbracket} b_{it} \iff b2_{t} \qquad \forall t \in \llbracket 1,m \rrbracket$$

$$\sum_{t \in \llbracket 1,n \rrbracket} b2_{t}
$$N \geq p \iff b3_{p} \qquad \forall t \in \llbracket 1,m \rrbracket$$

$$X_{i} \neq t', \ \forall i, \ i \in \llbracket 1,n \rrbracket, \ \forall i, \ i \in \llbracket 1,n \rrbracket, \ \forall t', \ t' \neq t, \ t' \in \llbracket 1,m \rrbracket, \ t \in \llbracket 1,m \rrbracket \qquad N \geq p, \ \forall p, \ p \in \llbracket 1,n \rrbracket$$

$$X_{i} = t \qquad \qquad \frac{X_{i'} \neq t, \ \forall i', \ i' \neq i, \ i' \in \llbracket 1,n \rrbracket, \ i \in \llbracket 1,n \rrbracket}{X_{i} = t} \qquad X_{i} = t$$

$$X_{i} = t', \ \exists i, \ i \in \llbracket 1,n \rrbracket, \ \forall i, \ i \in \llbracket 1,n \rrbracket, \ \forall t', \ t' \neq t, \ t' \in \llbracket 1,m \rrbracket, \ t \in \llbracket 1,m \rrbracket \qquad N < p, \ \forall p, \ p \in \llbracket 1,n \rrbracket$$

$$X_{i} \neq t \qquad \qquad X_{i} \neq t$$

$$X_{i} = t, \ \exists i, \ i \in \llbracket 1,n \rrbracket, \ \forall i, \ i \in \llbracket 1,n \rrbracket, \ \forall i, \ t \in \llbracket 1,m \rrbracket, \ \forall i, \ i \in \llbracket 1,n \rrbracket$$

$$N \geq p \qquad \qquad X_{i} \neq t, \ \forall i, \ i \in \llbracket 1,n \rrbracket, \ \forall i, \ i \in \llbracket 1,n \rrbracket, \ \forall i, \ i \in \llbracket 1,n \rrbracket$$$$

 $\forall i \in [1, n] \forall t \in [1, m]$

N < p

Cumulative $(\{X_1, ..., X_n\}, \{d_1, ..., d_n\}, c)$

$$X_{i} \geq t \iff b_{it} \qquad \forall i \in [1, n] \forall t \in [1, m]$$

$$(b_{i(t-d_{i})} \land \neg b_{it}) \iff b2_{it} \qquad \forall i \in [1, n] \forall t \in [1, m]$$

$$\sum_{i \in [1, n]} b2_{it} \leq c \qquad \forall t \in [1, m]$$

$$X_i \ge t', \ t' = t - d_i \quad X_{i'} < t, \ \forall i' \ne i, \ i' \in [[1, n]]$$

$$\frac{X_{i'} \ge t', \ t' = t - d_{i'}, \ \forall i' \ne i, \ i' \in [[1, n]]}{X_i \ge t}$$

$$X_{i} < t', \ t' = t + d_{i} \quad X_{i'} < t', \ t' = t + d_{i}, \ \forall i' \neq i, \ i' \in [[1, n]]$$

$$\frac{X_{i'} \geq t'', \ t'' = t' - d_{i'}, \ t' = t + d_{i}, \ \forall i' \neq i, \ i' \in [[1, n]]}{X_{i} < t}$$

$\mathsf{Element}(I, \{X_1, \dots, X_n\}, V)$

$$X_{i} = t \iff b_{it}^{X} \qquad \forall i \in \llbracket 1, n \rrbracket \forall t \in \llbracket 1, m \rrbracket$$

$$I = i \iff b_{i}^{I} \qquad \forall i \in \llbracket 1, n \rrbracket$$

$$V = t \iff b_{t}^{V} \qquad \forall t \in \llbracket 1, m \rrbracket$$

$$\neg b_{t}^{V} \land \neg b_{i}^{I} \land b_{it}^{X} \qquad \forall i \in \llbracket 1, n \rrbracket \forall t \in \llbracket 1, m \rrbracket$$

$$b_{t}^{V} \land \neg b_{i}^{I} \land \neg b_{it}^{X} \qquad \forall i \in \llbracket 1, n \rrbracket \forall t \in \llbracket 1, m \rrbracket$$

$$I = i \qquad V = t$$

$$X_{i} = t$$

$$I = i \qquad V \neq t$$

$$X_{i} \neq t$$

$$X_{i} \neq t, \forall t, t \in \llbracket 1, m \rrbracket \qquad V = t, \forall t, t \in \llbracket 1, m \rrbracket$$

$$I \neq i$$

$$X_{i} = t, \forall t, t \in \llbracket 1, m \rrbracket \qquad V \neq t, \forall t, t \in \llbracket 1, m \rrbracket$$

$$I \neq i$$

$$X_{i} = t, \forall i, i \in \llbracket 1, n \rrbracket \qquad I = i, \forall i, i \in \llbracket 1, n \rrbracket$$

$\mathsf{Gcc}(\{X_1,\ldots,X_n\},V,O)$

 $X_i = t \iff b_{it}$

$$O_{t} = p \iff b2_{tp} \qquad \forall t \in \llbracket 1, m \rrbracket \forall p \in \llbracket 1, n \rrbracket$$

$$\sum_{i \in \llbracket 1, n \rrbracket} b_{it} \geq p \iff b2_{tp} \qquad \forall t \in \llbracket 1, m \rrbracket \forall p \in \llbracket 1, n \rrbracket$$

$$\frac{X_{i'} \neq t, \ \forall i', \ i' \neq i, \ i' \in \llbracket 1, n \rrbracket, \ i \in \llbracket 1, n \rrbracket \quad O_{t} \geq p, \ \forall p, \ p \in \llbracket 1, n \rrbracket}{X_{i} = t}$$

$$\frac{X_{i'} = t, \ \forall i', \ i' \neq i, \ i' \in \llbracket 1, n \rrbracket, \ i \in \llbracket 1, n \rrbracket \quad O_{t} < p, \ \forall p, \ p \in \llbracket 1, n \rrbracket}{X_{i} \neq t}$$

$$X_{i} = t, \ \forall i, \ i \in \llbracket 1, n \rrbracket, \ \forall i, \ i \in \llbracket 1, n \rrbracket$$

 $\begin{aligned} O_t &\geq p \\ \underline{X_i \neq t, \ \forall i, \ i \in \llbracket 1, n \rrbracket, \ \forall i, \ i \in \llbracket 1, n \rrbracket} \\ O_t &$

 $\forall i \in [1, n] \forall t \in [1, m]$

Increasing $(\{X_1,\ldots,X_n\})$

$$X_{i} \geq t \iff b_{it} \qquad \forall i \in [1, n] \forall t \in [1, m]$$

$$(\neg b_{(i-1)t} \lor b_{it}) \qquad \forall i \in [2, n] \forall t \in [1, m]$$

$$\frac{X_{i'} \geq t, \ i' = i - 1}{X_{i} \geq t}$$

$$\frac{X_{i'} < t, \ i' = i + 1}{X_{i} < t}$$

Decreasing($\{X_1,\ldots,X_n\}$)

$$X_{i} \geq t \iff b_{it} \qquad \forall i \in [1, n] \forall t \in [1, m]$$

$$(b_{(i-1)t} \vee \neg b_{it}) \qquad \forall i \in [2, n] \forall t \in [1, m]$$

$$\frac{X_{i'} \geq t, \ i' = i + 1}{X_{i} \geq t}$$

$$\frac{X_{i'} < t, \ i' = i - 1}{X_{i} < t}$$

$\mathsf{Among}(c, \{X_1, \dots, X_n\}, D_4)$

$$X_{i} = t \iff b_{it} \qquad \forall i \in [1, n] \forall t \in [1, m]$$

$$\bigvee_{t \in D_{4}} b_{it} \iff b2_{i} \qquad \forall i \in [1, n]$$

$$\sum_{i \in [1, n]} b2_{i} = c$$

$$\frac{X_i \neq t, \ \forall t, \ t \in D_4, \ \forall i, \ i \in \llbracket 1, n \rrbracket}{X_i = t}$$

$$\frac{X_i \neq t', \ \forall t', \ t' \neq t, \ t' \in D_4, \ t \in D_4}{X_i = t}$$

$$\frac{X_i = t, \ \exists t, \ t \in D_4, \ \forall i, \ i \in \llbracket 1, n \rrbracket}{X_i \neq t}$$

$\mathsf{Roots}(\{X_1,\ldots,X_n\},I,V)$

$$X_{i} = t \iff b_{it} \qquad \forall it$$

$$\sum_{t \in V} b_{it} = 1 \qquad \forall i \in I$$

$$\sum_{t \in D \setminus V} b_{it} = 1 \qquad \forall i \in [1, n] \setminus I$$

$$\begin{aligned} & \frac{X_i \neq t, \ \forall t, \ t \in D_5}{X_i = t} \\ & \frac{X_i \neq t, \ \forall t, \ t \in D_6}{X_i = t} \\ & \frac{X_i = t}{X_i \neq t} \\ & \frac{X_i \neq t}{X_i \neq t} \end{aligned}$$

$\mathsf{Range}(\{X_1,\ldots,X_n\},I,V)$

$$X_{i} = t \iff b_{it} \qquad \forall it$$

$$\sum_{i \in I} b_{it} \ge 1 \qquad \forall t \in V$$

$$\sum_{t \in V} b_{it} = 1 \qquad \forall i \in I$$

$$\frac{X_{i} \ne t', \ \forall t', \ t' \ne t, \ t' \in D_{5}, \ t \in D_{5}}{X_{i} = t}$$

$$\frac{X_{i} \ne t, \ \forall t, \ t \in D_{6}}{X_{i} = t}$$

$$\frac{X_{i} = t, \ \forall t, \ t \in D_{6}}{X_{i} \ne t}$$

 $I = D_5$ and $V = D_6$

(ロ) (레) (토) (토) (토) (의 (이)

- X_i : Start time of the *i*th task
- d_i : Duration of the *i*th task
- c: Resource capacity

- X_i : Start time of the *i*th task
- d_i : Duration of the ith task
- c: Resource capacity

Cumulative
$$(\{X_1,\ldots,X_n\},\{d_1,\ldots,d_n\},c)\iff (1)\land (2)\land (3)$$

$$X_i \ge t \iff b_{it} \qquad \forall i \in [1, n] \forall t \in [1, m]$$
 (1)

$$(b_{i(t-d_i)} \wedge \neg b_{it}) \iff b2_{it} \qquad \forall i \in [1, n] \forall t \in [1, m]$$
 (2)

$$\sum_{i \in \llbracket 1, n \rrbracket} b 2_{it} \le c \qquad \forall t \in \llbracket 1, m \rrbracket \tag{3}$$

Generated event: lower bound update

 $X_i \ge t$

Generated event: lower bound update

$$X_i \ge t$$

Constraints with this event

$$X_i \ge t \iff b_{it}$$

Generated event: lower bound update

$$X_i \ge t$$

Constraints with this event

$$X_i \ge t \iff b_{it}$$

Possible rules

$$\langle X_i \ge t \rangle \xrightarrow{R_{\ge}} \langle b_{it} \rangle$$

Generated event: lower bound update

$$X_i \ge t$$

Constraints with this event

$$X_i \ge t \iff b_{it}$$

Possible rules

$$\langle X_i \ge t \rangle \xrightarrow{R_{\ge}} \langle b_{it} \rangle$$

Implication graph

$$X_i \ge t \leftarrow R_{\ge}$$
 b_{it}

Constraints with this event

$$X_i \ge t \iff b_{it}$$

$$(b_{i(t-d_i)} \wedge \neg b_{it}) \iff b2_{it}$$

Constraints with this event

$$X_i \ge t \iff b_{it}$$
$$(b_{i(t-d_i)} \land \neg b_{it}) \iff b_{it}$$

$$egin{aligned} \langle b_{it}
angle & \stackrel{R_{\geq}}{\longrightarrow} \langle X_i \geq t
angle \\ & \langle b_i
angle & \stackrel{R^1_{\wedge}}{\longrightarrow} \langle b
angle \\ & \langle \neg b_i
angle & \stackrel{R^2_{\wedge}}{\longrightarrow} \langle \neg b
angle \langle b_j
angle \forall j \neq i \end{aligned}$$

Constraints with this event

$$X_i \geq t \iff b_{it}$$
 $(b_{i(t-d_i)} \land \lnot b_{it}) \iff b2_{it}$

Possible rules

$$egin{aligned} \langle b_{it}
angle & \stackrel{R_{\geq}}{\longrightarrow} \langle X_i \geq t
angle \\ & \langle b_i
angle & \stackrel{R^1_{\wedge}}{\longrightarrow} \langle b
angle \\ & \langle \neg b_i
angle & \stackrel{R^2_{\wedge}}{\longrightarrow} \langle \neg b
angle \langle b_j
angle \forall j
eq i \end{aligned}$$

$$(b_{i(t-d_i)} \land \neg b_{it}) \iff b2_{it}$$

$$\sum_{i \in [1,n]} b2_{it} \le c$$

Constraints with this event

$$(b_{i(t-d_i)} \land \neg b_{it}) \iff b2_{it}$$

$$\sum_{i \in [\![1,n]\!]} b2_{it} \le c$$

$$\langle b \rangle \xrightarrow{R_{\wedge}^3} \langle b_i \rangle_{\forall i}$$

Constraints with this event

$$(b_{i(t-d_i)} \wedge \neg b_{it}) \iff b2_{it}$$

$$\sum_{i \in \llbracket 1, n \rrbracket} b2_{it} \le c$$

Possible rules

$$\langle b \rangle \xrightarrow{R_{\wedge}^3} \langle b_i \rangle_{\forall i}$$

$$X_i \ge t \stackrel{R_{\ge}}{\longleftarrow} b_{it} \stackrel{R_{\wedge}^1}{\longleftarrow} b2_{i(t+d_i)} \stackrel{?}{\longleftarrow} ?$$

Constraints with this event

$$X_i \ge t \iff b_{it}$$
$$(b_{i(t-d_i)} \land \neg b_{it}) \iff b2_{it}$$

$$\frac{\frac{b_{it}}{X_i \ge t} [R_{\ge}]}{\frac{b}{b_i} [R_{\wedge}^1]} \frac{\neg b \quad b_j \ \forall j \ne i}{\neg b_i} [R_{\wedge}^2]$$

Constraints with this event

$$X_i \ge t \iff b_{it}$$
$$(b_{i(t-d_i)} \land \neg b_{it}) \iff b2_{it}$$

Possible rules

$$\frac{b_{it}}{X_i \ge t} [R_{\ge}]$$

$$\frac{b}{b_i} [R_{\wedge}^1] \frac{\neg b \quad b_j \ \forall j \ne i}{\neg b_i} [R_{\wedge}^2]$$

$$X_i \ge t \iff b_{it}$$

$$(b_{i(t-d_i)} \wedge \neg b_{it}) \iff b2_{it}$$

Constraints with this event

$$X_i \ge t \iff b_{it}$$

$$(b_{i(t-d_i)} \wedge \neg b_{it}) \iff b2_{it}$$

$$\frac{b_{it}}{X_i \ge t} [R_\ge]$$

$$\frac{b}{b_i}[R^1_{\wedge}] \quad \frac{\neg b \quad b_j \ \forall j \neq i}{\neg b_i}[R^2_{\wedge}]$$

Constraints with this event

$$X_i \ge t \iff b_{it}$$

$$(b_{i(t-d_i)} \wedge \neg b_{it}) \iff b2_{it}$$

Possible rules

$$\frac{b_{it}}{X_i \ge t} [R_\ge]$$

$$\frac{b}{b_i}[R_{\wedge}^1] \ \frac{\neg b \ b_j \ \forall j \neq i}{\neg b_i}[R_{\wedge}^2]$$

$$(b_{i(t-d_i)} \land \neg b_{it}) \iff b2_{it}$$

$$\sum_{i \in \llbracket 1, n \rrbracket} b2_{it} \le c$$

Constraints with this event

$$(b_{i(t-d_i)} \land \neg b_{it}) \iff b2_{it}$$

$$\sum_{i \in \llbracket 1, n \rrbracket} b2_{it} \le c$$

$$\frac{\neg b_i \ \exists i}{\neg b} [R^4_{\wedge}]$$

$$\frac{b \ b_j \ \forall j \neq i}{\neg b_i} [R_{sum}^{inf2}]$$

Constraints with this event

$$(b_{i(t-d_i)} \wedge \neg b_{it}) \iff b2_{it}$$

$$\sum_{i \in \llbracket 1,n \rrbracket} b2_{it} \le c$$

Possible rules

$$\frac{b \ b_j \ \forall j \neq i}{\neg b_i} [R_{\wedge}^4]$$

Figure: Lower bound modification event explanation

Figure: Lower bound modification event explanation

Generated rule: LATEX

Red events: Variables saturating time t Blue events: Ensure Domain coherence

$$\frac{X_i \ge t - d_i \quad X_{i'} \ge t - d_{i'} \quad X_{i'} < t \quad \forall i' \ne i, \ i' \in \llbracket 1, n \rrbracket}{X_i \ge t}$$

Generated rule: LATEX

Red events: Variables saturating time t Blue events: Ensure Domain coherence

$$\frac{X_i \ge t - d_i \quad X_{i'} \ge t - d_{i'} \quad X_{i'} < t \quad \forall i' \ne i, \ i' \in \llbracket 1, n \rrbracket}{X_i \ge t}$$

$$\frac{X_i < t + d_i \quad X_{i'} \ge t + d_i - d_{i'} \quad X_{i'} < t + d_i \quad \forall i' \ne i, \ i' \in \llbracket 1, n \rrbracket}{X_i < t}$$