BAYESIAN LEARNING - LECTURE 1

LECTURE 1: LIKELIHOOD. BAYESICS. BERNOULLI

MATTIAS VILLANI

DEPARTMENT OF STATISTICS
STOCKHOLM UNIVERSITY
AND
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
LINKÖPING UNIVERSITY

COURSE OVERVIEW

- Course webpage is here. courseinfo.en.shtml
- Course **syllabus** is **here**.
- Modes of teaching:
 - Lectures (Mattias Villani and Per Sidén)
 - Mathematical exercises (Per Sidén)
 - · Computer labs (Mattias Villani and Per Sidén)

■ Modules:

- The Bayesics, single- and multiparameter models
- · Regression and Classification models
- · Advanced models and Posterior Approximation methods
- · Model Inference, Model evaluation and Variable Selection

Examination

- · Lab reports
- · Computer exam

LECTURE OVERVIEW

■ The likelihood function

- **■** Bayesian inference
- **■** Bernoulli model

2 | 19

THE LIKELIHOOD FUNCTION - BERNOULLI TRIALS

■ Bernoulli trials:

$$X_1,...,X_n|\theta \stackrel{\text{iid}}{\sim} Bern(\theta).$$

■ **Likelihood** from $s = \sum_{i=1}^{n} x_i$ successes and f = n - s failures.

$$p(x_1,...,x_n|\theta) = p(x_1|\theta)\cdots p(x_n|\theta) = \theta^{s}(1-\theta)^{f}$$

- Maximum likelihood estimator $\hat{\theta}$ maximizes $p(x_1,...,x_n|\theta)$.
- Given the data $x_1, ..., x_n$, plot $p(x_1, ..., x_n | \theta)$ as a function of θ .

THE LIKELIHOOD FUNCTION

Say it out loud:

The likelihood function is the probability of the observed data considered as a function of the parameter.

- The symbol $p(x_1,...,x_n|\theta)$ plays two different roles:
- Probability distribution for the data.
 - The data $\mathbf{x} = (x_1, ..., x_n)$ are random.
 - θ is fixed.
- Likelihood function for the parameter
 - The data $\mathbf{x} = (x_1, ..., x_n)$ are fixed.
 - $p(x_1,...,x_n|\theta)$ is function of θ .

PROBABILITIES FROM THE LIKELIHOOD!!

PROBABILITIES FROM THE LIKELIHOOD!!

UNCERTAINTY AND SUBJECTIVE PROBABILITY

- $Pr(\theta < 0.6 | data)$ only makes sense if θ is random.
- But θ may be a fixed natural constant?
- **Bayesian:** doesn't matter if θ is fixed or random.
- Do **You** know the value of θ or not?
- \blacksquare $p(\theta)$ reflects Your knowledge/uncertainty about θ .
- Subjective probability.
- The statement $\Pr(\text{10th decimal of } \pi = 9) = \text{0.1 makes sense.}$

7 | 1

BAYESIAN LEARNING

- **Bayesian learning** about a model parameter θ :
 - state your **prior** knowledge as a probability distribution $p(\theta)$.
 - collect data x and form the likelihood function $p(x|\theta)$.
 - **combine** prior knowledge $p(\theta)$ with data information $p(\mathbf{x}|\theta)$.
- **How to combine** the two sources of information?

Bayes' theorem

LEARNING FROM DATA - BAYES' THEOREM

- How to **update** from **prior** $p(\theta)$ to **posterior** $p(\theta|Data)$?
- Bayes' theorem for events A and B

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}.$$

 \blacksquare Bayes' Theorem for a model parameter θ

$$p(\theta|Data) = \frac{p(Data|\theta)p(\theta)}{p(Data)}.$$

- It is the prior $p(\theta)$ that takes us from $p(Data|\theta)$ to $p(\theta|Data)$.
- A probability distribution for θ is extremely useful. **Predictions. Decision making.**
- No prior no posterior no useful inferences no fun.

BAYES' THEOREM FOR MEDICAL DIAGNOSIS

- A = {Very rare disease}, B ={Positive medical test}.
- $p(A) = 0.0001. \ p(B|A) = 0.9. \ p(B|A^c) = 0.05.$
- Probability of being sick when test is positive:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)} = \frac{p(B|A)p(A)}{p(B|A)p(A) + p(B|A^c)p(A^c)} \approx 0.0018.$$

- Probably not sick, but 18 times more probable now.
- Morale: If you want p(A|B) then p(B|A) does not tell the whole story. The prior probability p(A) is also very important.

"You can't enjoy the Bayesian omelette without breaking the Bayesian eggs"

Leonard Jimmie Savage

THE NORMALIZING CONSTANT IS NOT IMPORTANT

Bayes theorem

$$p(\theta|\textit{Data}) = \frac{p(\textit{Data}|\theta)p(\theta)}{p(\textit{Data})} = \frac{p(\textit{Data}|\theta)p(\theta)}{\int_{\theta} p(\textit{Data}|\theta)p(\theta)d\theta}.$$

- The integral $p(Data) = \int_{\theta} p(Data|\theta)p(\theta)d\theta$ can make you cry.
- **p**(Data) is just a constant so that $p(\theta|Data)$ integrates to one.
- **Example:** $\mathbf{x} \sim N(\mu, \sigma^2)$

$$p(x) = (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right].$$

■ We may write

$$p(x) | \propto \exp \left[-\frac{1}{2\sigma^2} (x - \mu)^2 \right].$$

GREAT THEOREMS MAKE GREAT TATTOOS

■ All you need to know:

$$p(\theta|Data) \propto p(Data|\theta)p(\theta)$$

or

Posterior ∝ Likelihood · Prior

BERNOULLI TRIALS - BETA PRIOR

Model

$$x_1,...,x_n|\theta \stackrel{iid}{\sim} \mathrm{Bern}(\theta)$$

■ Prior

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \text{ for } 0 \le \theta \le 1.$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta)p(\theta)$$
$$\propto \theta^{s}(1-\theta)^{f}\theta^{\alpha-1}(1-\theta)^{\beta-1}$$
$$= \theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}.$$

- Posterior is proportional to the $Beta(\alpha + s, \beta + f)$ density.
- The prior-to-posterior mapping:

$$\theta \sim \operatorname{Beta}(\alpha, \beta) \stackrel{\mathsf{x_1, ..., x_n}}{\Longrightarrow} \theta | \mathsf{x_1, ..., x_n} \sim \operatorname{Beta}(\alpha + \mathsf{s}, \beta + f)$$

BERNOULLI EXAMPLE: SPAM EMAILS

- George has gone through his collection of 4601 e-mails.
- He classified 1813 of them to be spam.
- Let $x_i = 1$ if i:th email is spam.
- Model: $x_i | \theta \stackrel{iid}{\sim} \operatorname{Bern}(\theta)$
- Prior: $\theta \sim \text{Beta}(\alpha, \beta)$.
- Posterior

$$\theta | \mathbf{x} \sim \text{Beta}(\alpha + 1813, \beta + 2788)$$

14 | 19

SPAM DATA (N=10): PRIOR SENSITIVITY

SPAM DATA (N=100): PRIOR SENSITIVITY

SPAM DATA (N=4601): PRIOR SENSITIVITY

SPAM DATA: POSTERIOR CONVERGENCE

THREE SHADES OF BINARY - A SINGLE SHADE OF BAYES

■ Bernoulli trials with order: $X_1 = 1, X_2 = 0, ..., X_4 = 1, ..., X_n = 1$

$$p(\mathbf{x}|\theta) = \theta^{s}(1-\theta)^{f}$$

■ Bernoulli trials without order. *n* fixed, *s* random.

$$p(s|\theta) = \binom{n}{s} \theta^{s} (1 - \theta)^{f}$$

■ **Negative binomial sampling**: sample until you get s successes. s fixed, n random.

$$p(n|\theta) = \binom{n-1}{s-1} \theta^{s} (1-\theta)^{f}$$

- The **posterior distribution is the same** in all three cases.
- Bayesian inference respects the likelihood principle.