$12n_{0282} (K12n_{0282})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{13} + 3u^{12} + 9u^{11} + 16u^{10} + 26u^9 + 32u^8 + 33u^7 + 28u^6 + 17u^5 + 9u^4 + u^3 + u^2 + b + 1, \\ u^{15} + 5u^{14} + \dots + 2a + 4, \ u^{16} + 5u^{15} + \dots + 4u + 2 \rangle \\ I_2^u &= \langle u^{11} - 2u^{10} + 5u^9 - 7u^8 + 9u^7 - 11u^6 + 10u^5 - 10u^4 + 6u^3 - 4u^2 + b + 3u - 1, \\ u^{11} + 2u^9 + 2u^8 - u^7 + 4u^6 - 6u^5 + 5u^4 - 8u^3 + 3u^2 + 2a - 2u + 3, \\ u^{12} - 2u^{11} + 6u^{10} - 8u^9 + 13u^8 - 14u^7 + 16u^6 - 15u^5 + 12u^4 - 9u^3 + 6u^2 - 3u + 2 \rangle \\ I_3^u &= \langle -au - u^2 + b + u - 1, \ u^2a + a^2 + 5u^2 + a - 2u + 7, \ u^3 - u^2 + 2u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 34 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{13} + 3u^{12} + \dots + b + 1, \ u^{15} + 5u^{14} + \dots + 2a + 4, \ u^{16} + 5u^{15} + \dots + 4u + 2 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{15} - \frac{5}{2}u^{14} + \dots - \frac{5}{2}u - 2 \\ -u^{13} - 3u^{12} + \dots - u^{2} - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{15} - \frac{3}{2}u^{14} + \dots - u^{2} - \frac{1}{2}u \\ -u^{15} - 4u^{14} + \dots - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{15} + \frac{5}{2}u^{14} + \dots + \frac{1}{2}u + 1 \\ u^{14} + 4u^{13} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{15} + \frac{5}{2}u^{14} + \dots + \frac{1}{2}u + 1 \\ -u^{14} - u^{13} + \dots + u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{15} - \frac{5}{2}u^{14} + \dots - 2u^{2} - \frac{3}{2}u \\ -u^{13} - 3u^{12} + \dots - u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{5}{2}u^{15} - \frac{25}{2}u^{14} + \dots - \frac{15}{2}u - 5 \\ u^{14} - 4u^{13} + \dots - 3u - 5 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$3u^{15} + 14u^{14} + 49u^{13} + 118u^{12} + 232u^{11} + 373u^{10} + 501u^9 + 574u^8 + 544u^7 + 435u^6 + 280u^5 + 141u^4 + 62u^3 + 25u^2 + 20u + 14$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{16} + 11u^{15} + \dots + 12u + 4$
c_2, c_6	$u^{16} - 5u^{15} + \dots - 4u + 2$
<i>c</i> ₃	$u^{16} + 5u^{15} + \dots - 4u + 10$
c_4, c_5, c_{11}	$u^{16} + 13u^{14} + \dots - u + 1$
	$u^{16} + 9u^{15} + \dots + 24u + 8$
<i>c</i> ₈	$u^{16} + u^{15} + \dots - 487u + 889$
c_9, c_{12}	$u^{16} - 2u^{15} + \dots - 17u + 1$
c_{10}	$u^{16} - 17u^{15} + \dots - 52u + 10$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{16} - 9y^{15} + \dots + 632y + 16$
c_2, c_6	$y^{16} + 11y^{15} + \dots + 12y + 4$
<i>c</i> ₃	$y^{16} - 41y^{15} + \dots + 764y + 100$
c_4, c_5, c_{11}	$y^{16} + 26y^{15} + \dots + 7y + 1$
C ₇	$y^{16} + 3y^{15} + \dots + 288y + 64$
<i>c</i> ₈	$y^{16} + 109y^{15} + \dots - 11168313y + 790321$
c_9, c_{12}	$y^{16} + 34y^{15} + \dots - 47y + 1$
c_{10}	$y^{16} - 49y^{15} + \dots + 36y + 100$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.478305 + 1.028310I		
a = 0.050929 + 0.582193I	-0.64871 - 3.08703I	2.33099 + 0.59290I
b = 0.623036 + 0.226095I		
u = -0.478305 - 1.028310I		
a = 0.050929 - 0.582193I	-0.64871 + 3.08703I	2.33099 - 0.59290I
b = 0.623036 - 0.226095I		
u = -1.136630 + 0.036859I		
a = 0.25201 - 1.80758I	-19.1158 - 4.5602I	1.43322 + 1.94202I
b = 0.21982 - 2.06384I		
u = -1.136630 - 0.036859I		
a = 0.25201 + 1.80758I	-19.1158 + 4.5602I	1.43322 - 1.94202I
b = 0.21982 + 2.06384I		
u = 0.065300 + 1.174500I		
a = 0.511213 + 0.476614I	-3.55568 - 0.83919I	-1.52217 + 2.21836I
b = 0.526402 - 0.631543I		
u = 0.065300 - 1.174500I		
a = 0.511213 - 0.476614I	-3.55568 + 0.83919I	-1.52217 - 2.21836I
b = 0.526402 + 0.631543I		
u = 0.284247 + 1.175830I		
a = -0.458912 - 0.456538I	-1.92269 + 4.32175I	-1.05745 - 3.72733I
b = -0.406366 + 0.669372I		
u = 0.284247 - 1.175830I		
a = -0.458912 + 0.456538I	-1.92269 - 4.32175I	-1.05745 + 3.72733I
b = -0.406366 - 0.669372I		
u = -0.462160 + 0.504593I		
a = -0.810441 - 0.051513I	0.900558 - 0.884001I	7.79246 + 5.53646I
b = -0.400547 + 0.385135I		
u = -0.462160 - 0.504593I		
a = -0.810441 + 0.051513I	0.900558 + 0.884001I	7.79246 - 5.53646I
b = -0.400547 - 0.385135I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.59084 + 1.38518I		
a = 1.216170 - 0.591623I	16.1808 - 1.5728I	-0.910122 + 0.801977I
b = -0.10095 - 2.03417I		
u = -0.59084 - 1.38518I		
a = 1.216170 + 0.591623I	16.1808 + 1.5728I	-0.910122 - 0.801977I
b = -0.10095 + 2.03417I		
u = 0.364622 + 0.333050I		
a = -0.375430 - 0.860631I	0.56988 - 1.44730I	4.97392 + 6.26939I
b = -0.149743 + 0.438842I		
u = 0.364622 - 0.333050I		
a = -0.375430 + 0.860631I	0.56988 + 1.44730I	4.97392 - 6.26939I
b = -0.149743 - 0.438842I		
u = -0.54623 + 1.41233I		
a = -1.38554 + 0.31520I	15.8163 - 10.5372I	-1.04085 + 4.44511I
b = -0.31165 + 2.12901I		
u = -0.54623 - 1.41233I		
a = -1.38554 - 0.31520I	15.8163 + 10.5372I	-1.04085 - 4.44511I
b = -0.31165 - 2.12901I		

$$II. \\ I_2^u = \langle u^{11} - 2u^{10} + \dots + b - 1, \ u^{11} + 2u^9 + \dots + 2a + 3, \ u^{12} - 2u^{11} + \dots - 3u + 2 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{11} - u^{9} + \dots + u - \frac{3}{2} \\ -u^{11} + 2u^{10} + \dots - 3u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{10} - 2u^{9} + 5u^{8} - 6u^{7} + 8u^{6} - 8u^{5} + 8u^{4} - 7u^{3} + 4u^{2} - u + 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{11} - u^{9} + \dots + \frac{1}{2}u^{2} - \frac{1}{2} \\ -u^{11} + 2u^{10} + \dots - 3u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{11} - u^{9} + \dots + \frac{1}{2}u^{2} - \frac{1}{2} \\ -u^{11} + 3u^{10} + \dots - 5u + 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{11} - 2u^{10} + 5u^{9} - 6u^{8} + 8u^{7} - 8u^{6} + 8u^{5} - 7u^{4} + 4u^{3} - 2u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{11} + u^{9} + \dots - \frac{1}{2}u^{2} + \frac{1}{2} \\ u^{11} - 3u^{10} + \dots + 3u - 3 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$u^{11} - 5u^{10} + 10u^9 - 21u^8 + 24u^7 - 31u^6 + 28u^5 - 25u^4 + 22u^3 - 12u^2 + 8u - 4$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_1	$u^{12} - 8u^{11} + \dots - 15u + 4$	
c_2	$u^{12} - 2u^{11} + \dots - 3u + 2$	
c_3	$u^{12} + 2u^{11} - 2u^9 + 6u^8 + 10u^7 + 5u^6 + 2u^5 + 11u^4 + u^3 + 4u^2 + 5u + 10u^4 + 10u$	⊢ 2
c_4, c_{11}	$u^{12} + 8u^{10} + \dots - 2u + 1$	
<i>C</i> ₅	$u^{12} + 8u^{10} + \dots + 2u + 1$	
<i>c</i> ₆	$u^{12} + 2u^{11} + \dots + 3u + 2$	
C ₇	$u^{12} + 2u^{11} + \dots + 2u + 1$	
<i>c</i> ₈	$u^{12} + 5u^{11} + \dots - 7u^2 + 1$	
<i>c</i> ₉	$u^{12} - 2u^{11} + \dots - 2u + 1$	
c_{10}	$u^{12} + 14u^{11} + \dots + 495u + 80$	
c_{12}	$u^{12} + 2u^{11} + \dots + 2u + 1$	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{12} - 4y^{11} + \dots + 15y + 16$
c_2, c_6	$y^{12} + 8y^{11} + \dots + 15y + 4$
<i>c</i> 3	$y^{12} - 4y^{11} + \dots - 9y + 4$
c_4, c_5, c_{11}	$y^{12} + 16y^{11} + \dots + 2y + 1$
C ₇	$y^{12} + 4y^{11} + \dots + 8y + 1$
<i>C</i> ₈	$y^{12} - 13y^{11} + \dots - 14y + 1$
c_9, c_{12}	$y^{12} + 8y^{11} + \dots + 4y + 1$
c_{10}	$y^{12} - 8y^{11} + \dots + 3615y + 6400$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.249672 + 0.959195I		
a = -1.68135 - 0.45806I	-7.94302 + 1.00045I	-2.72933 - 0.10711I
b = 0.01959 - 1.72711I		
u = 0.249672 - 0.959195I		
a = -1.68135 + 0.45806I	-7.94302 - 1.00045I	-2.72933 + 0.10711I
b = 0.01959 + 1.72711I		
u = -0.429646 + 0.953539I		
a = -0.073134 - 0.459239I	-0.45876 - 4.18304I	4.58234 + 6.10453I
b = 0.469324 + 0.127574I		
u = -0.429646 - 0.953539I		
a = -0.073134 + 0.459239I	-0.45876 + 4.18304I	4.58234 - 6.10453I
b = 0.469324 - 0.127574I		
u = 0.839161 + 0.302874I		
a = 0.461054 + 1.306310I	-2.36446 - 1.00466I	2.85304 + 0.63873I
b = -0.008748 + 1.235850I		
u = 0.839161 - 0.302874I		
a = 0.461054 - 1.306310I	-2.36446 + 1.00466I	2.85304 - 0.63873I
b = -0.008748 - 1.235850I		
u = -0.484489 + 0.716111I		
a = 0.556723 - 0.092910I	0.268555 + 0.420031I	1.039574 + 0.824157I
b = -0.203192 + 0.443689I		
u = -0.484489 - 0.716111I		
a = 0.556723 + 0.092910I	0.268555 - 0.420031I	1.039574 - 0.824157I
b = -0.203192 - 0.443689I		
u = 0.581682 + 1.140840I		
a = 1.010720 + 0.383459I	-4.83530 + 6.22925I	0.60260 - 5.56850I
b = 0.150456 + 1.376120I		
u = 0.581682 - 1.140840I		
a = 1.010720 - 0.383459I	-4.83530 - 6.22925I	0.60260 + 5.56850I
b = 0.150456 - 1.376120I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.243620 + 1.359490I		
a = -1.024010 + 0.130899I	-7.69609 + 2.59197I	-0.34822 - 1.94419I
b = -0.42743 - 1.36024I		
u = 0.243620 - 1.359490I		
a = -1.024010 - 0.130899I	-7.69609 - 2.59197I	-0.34822 + 1.94419I
b = -0.42743 + 1.36024I		

$$III. \\ I_3^u = \langle -au - u^2 + b + u - 1, \ u^2a + a^2 + 5u^2 + a - 2u + 7, \ u^3 - u^2 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u\\u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u^{2} + 1\\u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a\\au + u^{2} - u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2}a - au + 3u^{2} + a - 3u + 5\\3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -au - u^{2} + a - 1\\-au + a - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -au - u^{2} + a - 1\\au \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u + 2\\u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -au - u^{2} + a - u - 1\\au - u^{2} + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2}a - 3au - u^{2} + a - u - 1\\-u^{2}a + au - u^{2} + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^2 4u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^3 + 3u^2 + 2u - 1)^2$
c_2, c_6	$(u^3 + u^2 + 2u + 1)^2$
<i>c</i> ₃	$(u^3 - u^2 + 1)^2$
c_4, c_5, c_{11}	$u^6 - u^5 + 8u^4 - 2u^3 + 24u^2 + 23$
	$(u-1)^6$
<i>C</i> ₈	$u^6 - 5u^5 - 6u^4 + 30u^3 + 78u^2 + 70u + 23$
c_9,c_{12}	$u^6 + 5u^5 + 18u^4 + 28u^3 + 42u^2 + 30u + 25$
c_{10}	$(u^3 + 5u^2 + 10u + 7)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^3 - 5y^2 + 10y - 1)^2$
c_2, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
<i>c</i> ₃	$(y^3 - y^2 + 2y - 1)^2$
c_4, c_5, c_{11}	$y^6 + 15y^5 + 108y^4 + 426y^3 + 944y^2 + 1104y + 529$
	$(y-1)^6$
<i>c</i> ₈	$y^6 - 37y^5 + 492y^4 - 1090y^3 + 1608y^2 - 1312y + 529$
c_9, c_{12}	$y^6 + 11y^5 + 128y^4 + 478y^3 + 984y^2 + 1200y + 625$
c_{10}	$(y^3 - 5y^2 + 30y - 49)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -1.007880 - 0.138006I	-9.60386 + 2.82812I	-5.50976 - 2.97945I
b = -0.91382 - 2.09199I		
u = 0.215080 + 1.307140I		
a = 1.67024 - 0.42427I	-9.60386 + 2.82812I	-5.50976 - 2.97945I
b = 0.036382 + 1.347130I		
u = 0.215080 - 1.307140I		
a = -1.007880 + 0.138006I	-9.60386 - 2.82812I	-5.50976 + 2.97945I
b = -0.91382 + 2.09199I		
u = 0.215080 - 1.307140I		
a = 1.67024 + 0.42427I	-9.60386 - 2.82812I	-5.50976 + 2.97945I
b = 0.036382 - 1.347130I		
u = 0.569840		
a = -0.66236 + 2.65428I	-5.46628	1.01950
b = 0.37744 + 1.51251I		
u = 0.569840		
a = -0.66236 - 2.65428I	-5.46628	1.01950
b = 0.37744 - 1.51251I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1	$((u^{3} + 3u^{2} + 2u - 1)^{2})(u^{12} - 8u^{11} + \dots - 15u + 4)$ $\cdot (u^{16} + 11u^{15} + \dots + 12u + 4)$	
c_2	$((u^{3} + u^{2} + 2u + 1)^{2})(u^{12} - 2u^{11} + \dots - 3u + 2)$ $\cdot (u^{16} - 5u^{15} + \dots - 4u + 2)$	
c_3	$(u^{3} - u^{2} + 1)^{2}$ $\cdot (u^{12} + 2u^{11} - 2u^{9} + 6u^{8} + 10u^{7} + 5u^{6} + 2u^{5} + 11u^{4} + u^{3} + 4u^{2} + (u^{16} + 5u^{15} + \dots - 4u + 10)$	-5u + 2)
c_4, c_{11}		
c_5	$ (u^{6} - u^{5} + 8u^{4} - 2u^{3} + 24u^{2} + 23)(u^{12} + 8u^{10} + \dots + 2u + 1) $ $ \cdot (u^{16} + 13u^{14} + \dots - u + 1) $	
c_6	$((u^3 + u^2 + 2u + 1)^2)(u^{12} + 2u^{11} + \dots + 3u + 2)$ $\cdot (u^{16} - 5u^{15} + \dots - 4u + 2)$	
<i>c</i> ₇	$((u-1)^6)(u^{12} + 2u^{11} + \dots + 2u + 1)(u^{16} + 9u^{15} + \dots + 24u + 8)$	
<i>c</i> ₈	$(u^{6} - 5u^{5} + \dots + 70u + 23)(u^{12} + 5u^{11} + \dots - 7u^{2} + 1)$ $\cdot (u^{16} + u^{15} + \dots - 487u + 889)$	
c_9	$(u^{6} + 5u^{5} + \dots + 30u + 25)(u^{12} - 2u^{11} + \dots - 2u + 1)$ $\cdot (u^{16} - 2u^{15} + \dots - 17u + 1)$	
c_{10}	$((u^{3} + 5u^{2} + 10u + 7)^{2})(u^{12} + 14u^{11} + \dots + 495u + 80)$ $\cdot (u^{16} - 17u^{15} + \dots - 52u + 10)$	
c_{12}	$(u^{6} + 5u^{5} + \dots + 30u + 25)(u^{12} + 2u^{11} + \dots + 2u + 1)$ $\cdot (u^{16} - 2u^{15} + \dots - 17u + 1)$	

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^3 - 5y^2 + 10y - 1)^2)(y^{12} - 4y^{11} + \dots + 15y + 16)$ $\cdot (y^{16} - 9y^{15} + \dots + 632y + 16)$
c_2,c_6	$((y^3 + 3y^2 + 2y - 1)^2)(y^{12} + 8y^{11} + \dots + 15y + 4)$ $\cdot (y^{16} + 11y^{15} + \dots + 12y + 4)$
c_3	$((y^3 - y^2 + 2y - 1)^2)(y^{12} - 4y^{11} + \dots - 9y + 4)$ $\cdot (y^{16} - 41y^{15} + \dots + 764y + 100)$
c_4, c_5, c_{11}	$(y^{6} + 15y^{5} + 108y^{4} + 426y^{3} + 944y^{2} + 1104y + 529)$ $\cdot (y^{12} + 16y^{11} + \dots + 2y + 1)(y^{16} + 26y^{15} + \dots + 7y + 1)$
c_7	$((y-1)^6)(y^{12}+4y^{11}+\cdots+8y+1)(y^{16}+3y^{15}+\cdots+288y+64)$
<i>c</i> ₈	$(y^{6} - 37y^{5} + 492y^{4} - 1090y^{3} + 1608y^{2} - 1312y + 529)$ $\cdot (y^{12} - 13y^{11} + \dots - 14y + 1)$ $\cdot (y^{16} + 109y^{15} + \dots - 11168313y + 790321)$
c_9, c_{12}	$(y^{6} + 11y^{5} + 128y^{4} + 478y^{3} + 984y^{2} + 1200y + 625)$ $\cdot (y^{12} + 8y^{11} + \dots + 4y + 1)(y^{16} + 34y^{15} + \dots - 47y + 1)$
c_{10}	$((y^3 - 5y^2 + 30y - 49)^2)(y^{12} - 8y^{11} + \dots + 3615y + 6400)$ $\cdot (y^{16} - 49y^{15} + \dots + 36y + 100)$