Machine Learning EDS

Tutorial: Week 2

Janneke van Brummelen

Vrije Universiteit Amsterdam

Period 3.4 2023/2024

This tutorial

1. Short recap of this week's material

2. A small quiz

3. Discuss Problems 1, 2.1 and 3 of Problem set 2

This week:

- We formalized the learning problem:
 - We imposed that $D_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ with $(X_i, Y_i) \sim P$ and independent over i.
 - Predictors $f: \mathcal{X} \to \mathcal{Y}$
 - Cost functions $c: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
 - Generalization error/risk: $\mathcal{R}_P^c(f) = \mathbb{E}[c(f(X), Y)|D_n]$
- We discussed ideal prediction:
 - Bayes risk: $\mathcal{R}_P^* = \inf_{f \in \mathcal{F}} \mathcal{R}_P^c(f)$
 - Bayes predictors/target functions: any $f^* \in \mathcal{F}$ for which $\mathcal{R}_P^c(f^*) = \mathcal{R}_P^*$
 - Excess risk: $\ell(f^*, f) = \mathcal{R}_P^c(f) \mathcal{R}_P^*$
 - We derived Bayes risk and Bayes predictors for two fundamental frameworks:
 - Regression with quadratic cost
 - Classification with 0-1 loss

- 1 Short quiz
- 2 Problem 1
- 3 Problem 2.1
- 4 Problem 3

Quiz: question 1

Say you are trying to predict a variable of interest based on 10 different categorical variables. What kind of supervised machine learning problem are you facing?

- A Classification problem
- B Regression problem
- We cannot say based on the provided information

Quiz: question 2

Is the following statement true or false?

"A predictor $f \in \mathcal{F}$ with strictly positive excess risk, $\ell(f^*, f) > 0$, cannot be a Bayes predictor"

True

False

Quiz: question 3

Is the following statement true or false?

"If there is a deterministic relationship between X and Y, i.e. if there exists a function $g: \mathcal{X} \to \mathcal{Y}$ such that g(X) = Y a.s., then Bayes risk is equal to zero."

True

False

- 1 Short quiz
- 2 Problem 1
- 3 Problem 2.1
- 4 Problem 3

Problem 1: Die roll experiment

Consider two 6-face dice, die 1 and die 2:

- Die 1: 3 blue faces, 3 red faces
- Die 2: 5 blue faces, 1 red face

First choose a die at random, say die 1 with probability $p \in [0, 1]$, and then roll the selected die. The color appearing on the upward face is recorded.

Denote by $X \in \{1,2\}$ the selected die, and $Y \in \{0,1\}$ the outcome of rolling the die, say Y = 1 for blue, Y = 0 for red.

Let us study the problem of predicting the outcome Y given X.

Problem 1: Die roll experiment

- 1.1 Is this a regression or a classification problem? Why?
- 1.2 Show that $\eta(X) = \mathbb{P}(Y = 1|X)$, where $\eta(X) = \mathbb{E}[Y|X]$.
- 1.3 For the 0-1 cost function, what is the general form (expressed in terms of η) of Bayes predictors and Bayes risk in this framework?
- 1.4 Derive η and Bayes predictors explicitly, and then show that Bayes risk is equal to $\mathcal{R}_P^* = \frac{1}{6} + \frac{p}{3}$.
- 1.5 Intuitively, why is Bayes risk an increasing function of p?

- 1 Short quiz
- 2 Problem 1
- 3 Problem 2.1
- 4 Problem 3

Problem 2

Consider the regression framework with $\mathcal{Y}=\mathbb{R}$. Let $F_{Y|X}(\cdot|x)$ be the conditional distribution function of Y|X=x. In this exercise, we assume the existence of the conditional PDF $f_{Y|X=x}(\cdot|x)$.

Problem 2.1

- 2.1 For the absolute value cost c(y, y') = |y y'| for $y, y' \in \mathcal{Y}$, let us show that $f^* : x \mapsto \text{med}(Y|X = x)$ is a Bayes predictor, where med(Y|X = x) stands for the median of the distribution of Y given X = x:
 - (a) Fix $x \in \mathcal{X}$, and consider the function $r_x : a \mapsto r_x(a) = \mathbb{E}\Big[|a-Y|\Big|X=x\Big]$. Show that for any $a \in \mathbb{R}$, $r_x'(a) = 2\mathbb{P}(Y \le a|X=x) 1$ and $r_x''(a) = 2f_{Y|X=x}(a)$.
 - (b) Show that r_x admits a global minimum at $a_x^* = \text{med}(Y|X=x)$.
 - (c) Deduce that $\mathbb{E}\Big[|f^*(X)-Y|\Big] \leq \mathbb{E}\Big[|f(X)-Y|\Big]$ for any predictor $f \in \mathcal{F}$ and conclude that $f^*: x \mapsto \operatorname{med}(Y|X=x)$ is a Bayes predictor.

13/20

Hint for 2.1(a)

Hint: Recall that for $\varphi(x) = \int_{A(x)}^{B(x)} g(x, t) dt$ (assuming all functions are differentiable),

$$\varphi'(x) = \int_{A(x)}^{B(x)} \frac{\partial g(x,t)}{\partial x} dt + B'(x)g(x,B(x)) - A'(x)g(x,A(x))$$

This rule cannot be applied immediately to improper integrals. To be able to apply the rule, you could split the integrals

$$\int_{a}^{\infty} y f_{Y|X}(y|x) \ dy = \int_{a}^{M} y f_{Y|X}(y|x) \ dy + \int_{M}^{\infty} y f_{Y|X}(y|x) \ dy.$$

Problem 2.2

2.2 Derive a Bayes predictor when *c* is the asymmetric absolute value cost:

$$c(y,y') = c_{-}(y'-y)\mathbb{1}_{y < y'} + c_{+}(y-y')\mathbb{1}_{y \ge y'}$$
 for $y,y' \in \mathcal{Y}$, with $c_{-}, c_{+} \ge 0$, $c_{-} + c_{+} > 0$.

How does it relate to the Bayes predictor of the previous question?

I will skip the derivations because almost the same as 2.1, but do try it yourself!

Problem 2.2: final answer

When using the same approach as for Problem 2.1, you will find that the following predictor is a Bayes predictor:

$$f^*: x \mapsto F_{Y|X=x}^{-1}(q^*) \quad ext{ with } \quad q^*:=rac{c_-}{c_-+c_+}\,,$$

where $F_{Y|X=x}^{-1}(q)$ denotes the *q*-quantile of the distribution of *Y* conditional on X=x.

In other words, for any $q \in [0, 1]$:

$$F_{Y|X=x}^{-1}(q) = a \iff F_{Y|X=x}(a) = \mathbb{P}(Y \le a|X=x) = q$$

(or equivalently if
$$\mathbb{P}(Y > a | X = x) = 1 - q$$
)

- 1 Short quiz
- 2 Problem 1
- 3 Problem 2.1
- 4 Problem 3

Problem 3

Let $\mu_0, \mu_1 \in \mathbb{R}^d$ two vectors and Σ_0, Σ_1 two symmetric positive definite matrices of size d. Let Y be a random variable such that $\mathbb{P}(Y=1)=1-\mathbb{P}(Y=0)=p\in[0,1]$, and let X be a random variable such that $X|Y=i\sim \mathcal{N}(\mu_i,\Sigma_i)$, for $i\in\{0,1\}$. We consider the classification problem of predicting Y given X with the 0-1 cost.

- 1. Recall the general form of Bayes classifiers in this framework (expressed in terms of η).
- 2. Show that $\eta(x) > 1/2 \iff \frac{\mathbb{P}(Y=1|X=x)}{\mathbb{P}(Y=0|X=x)} > 1$.
- 3. For i = 0, 1, derive an expression of $\mathbb{P}(Y = i | X = x)$ in terms of $N_i(x)$ (the pdf of a multivariate normal with mean μ_i and variance Σ_i), $f_X(x)$ and p.

Problem 3

4. Show that a Bayes classifier can be expressed as

$$f^*: x \in \mathbb{R}^d \mapsto \mathbb{1}_{x^\top Ax + b^\top x + c > 0},$$

for some matrix A, vector b and constant c, depending on $\mu_0, \mu_1, \Sigma_0, \Sigma_1$ and p.

Hint: Use the pdf of the multivariate normal distribution.

5. What is the geometric form of the decision boundary for this classifier? What if $\Sigma_0 = \Sigma_1$?

Problem 3(e)

The decision boundary $x^{\top}Ax + b^{\top}x + c = 0$ is the equation of a quadric surface.

For instance, for d=2, it can take the following forms (conic sections):

