

the recipe

 ODO^{-}

the recipe

$$A = QDQ^{-1}$$

Let A be an $n \times n$ matrix. To diagonalize A:

- 1. Find the eigenvalues of $oldsymbol{A}$ using the characteristic polynomial.
- 2. For each eigenvalue λ of A, compute the basis B_{λ} for the λ —eigenspace.
- 3. If there are fewer than n total vectors in all of the eigenspace bases B_{λ} , then the matrix is not diagonalizable.
- 4. Otherwise, the *n* vectors $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, ..., $\overrightarrow{v_n}$ in the eigenspace bases are linearly independent, and

where λ_i is the eigenvalue for $\overrightarrow{v_i}$.

diagonalization

example

Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
. The characteristic polynomial of A is $f(\lambda) = (\lambda - 1)^2$ so the eigenvalue of A is 1.

For $\lambda = 1$, solve $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda I)\vec{v} = 0$:

$$A - \lambda I = \begin{bmatrix} 1 - 1 & 1 \\ 0 & 1 - 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 which gives equation
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

From the first row: $0x + 1y = 0 \implies y = 0$ and there is no restriction on x so let x = t (a free variable). The eigenvector is a 1-eigenspace:

$$\vec{v} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t \\ 0 \end{bmatrix} = t \begin{bmatrix} 1 \\ 0 \end{bmatrix} \implies \text{Basis: } \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$

The 1-eigenspace is exactly the x-axis, so all of the eigenvectors of A lie on the x-axis. It follows that A does not admit two linearly independent eigenvectors, so by the diagonalization theorem, it is not diagonalizable.