Московский физико-технический институт (госудраственный университет)

Лабораторная работа по электричеству

Резонанс напряжений в последовательном контуре [3.2.2]

Талашкевич Даниил Александрович Группа Б01-009

Долгопрудный 2021

Содержание

1	Аннотация								
	1.1	1.1 Теоретическое вступление и модель							
		1.1.1 Вынужденные колебания							
		1.1.2 Резонанс							
	1.2	Экспериментальная установка							
2	Xo	д работы							
	2.1	Закон Ома в цепи переменного тока							
	2.2	Резонанс напряжений							
3	Обр	работка результатов							
4	Вывод								
5	Литература								

1 Аннотация

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, получение амплитудно частотных и фазово-частотных характеристик, определение основных па раметров контура.

В работе используются: генератор сигналов, источник напряжения, нагрузкой которого является последовательный колебательный контур с переменной ёмкостью, двухканальный осциллограф, цифровые вольтметры.

1.1 Теоретическое вступление и модель

1.1.1 Вынужденные колебания

Для схемы, изображенной ниже запишем правило Кирхгофа:

$$\ddot{U}_C + 2\gamma \dot{U}_C + \omega_0^2 U_C = \omega_0^2 \mathcal{E}_0 \cos(\omega t + \varphi_0)$$

Решая данное дифференциальное уравнение получаем:

$$egin{align} oldsymbol{U}_C(t) &= oldsymbol{U}_{C0} e^{i\omega t} \ oldsymbol{U}_{C0} &= rac{\mathcal{E}_0}{i\omega CZ}, \quad Z = R + i\left(\omega L - rac{1}{\omega C}
ight) \ oldsymbol{I}_0 &= rac{\mathcal{E}_0}{Z}, \quad oldsymbol{U}_{R0} &= rac{R\mathcal{E}_0}{Z}, \quad oldsymbol{U}_{L0} = i\omega Lrac{\mathcal{E}_0}{Z} \ . \end{split}$$

Т.е. закон Ома можно переписать в следующем виде:

$$m{I}_0 = rac{\mathcal{E}_0}{Z}, \quad m{U}_{R0} = Z_R m{I}_0, \quad m{U}_{C0} = Z_C m{I}_0, \quad m{U}_{L0} = Z_L m{I}_0,$$
где

$$Z_R = R$$
, $Z_L = i\omega L$, $Z_C = \frac{1}{i\omega C}$

Импедансы контура и его отдельных элементов – комплексные числа – могут быть представлены в показательной форме:

$$Z = Z_0 e^{i\psi}$$

где $Z_0=|Z|-$ модуль комплексного числа, $\psi=\arg Z$ – его аргумент (фаза). Для импеданса рассматриваемого последовательного контура при этом находим

$$Z_0 = \sqrt{(\operatorname{Re} Z)^2 + (\operatorname{Im} Z)^2} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = \frac{R}{\cos \psi_I}$$
$$\operatorname{tg} \psi_I = \frac{\operatorname{Im} Z}{\operatorname{Re} Z} = \frac{\omega L - \frac{1}{\omega C}}{R}$$

Отсюда получаем выражения для действительной части тока и средней мощности активных потерь в контуре:

$$I(t) = \frac{\mathcal{E}_0}{R} \cos \psi_I \cos (\omega t + \varphi_0 - \psi_I)$$
$$P = \langle I^2 R \rangle = \frac{\mathcal{E}_0^2}{2R} \cos^2 \psi_I,$$

где угловые скобки означают усреднение по периоду колебаний.

1.1.2 Резонанс

Для исследования вынужденных колебаний и резонанса запишем вещественные части решений дифференциального уравнение, положив для сокращения записи равной нулю начальную фазу: $\varphi_0 = 0$. В результате приходим к уравнениям

$$I(t) = \frac{U_R(t)}{R} = I_\omega \cos(\omega t - \psi_I), \quad I_\omega = \frac{\mathcal{E}_0}{Z_0}$$

$$Z_0 = R\sqrt{1 + \left[\frac{\rho}{R}\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right]^2}, \quad \psi_I = \operatorname{arctg}\left[\frac{\rho}{R}\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right]$$

$$U_C(t) = U_{C\omega}\cos(\omega t - \psi_C), \quad U_{C\omega} = \mathcal{E}_0 \frac{\rho}{Z_0} \frac{\omega_0}{\omega}, \quad \psi_C = \psi_I + \pi/2,$$

$$U_L(t) = U_{L\omega}\cos(\omega t - \psi_L), \quad U_{L\omega} = \mathcal{E}_0 \frac{\rho}{Z_0} \frac{\omega}{\omega_0}, \quad \psi_L = \psi_I - \pi/2.$$

2) Поведение системы носит резонансный характер: при $\omega=\omega_0$, когда мнимая часть импеданса контура ${\rm Im}\,Z=0$ и соответственно

$$\omega_0 L = \frac{1}{\omega_0 C} = \rho$$
, Im $Z = 0$, $Z_0 = R$, $\psi_I = 0$

амплитуды тока и напряжения на сопротивлении R достигают максимальных значений:

$$I_{\omega_0} = \mathcal{E}_0/R, \quad U_{R\omega_0} = RI_{\omega_0} = \mathcal{E}_0$$

$$I_{\omega} = \frac{\mathcal{E}_0/R}{\sqrt{1 + (\tau \Delta \omega)^2}}, U_{C\omega} = \frac{Q\mathcal{E}_0 \omega_0/\omega}{\sqrt{1 + (\tau \Delta \omega)^2}}, U_{L\omega} = \frac{Q\mathcal{E}_0 \omega/\omega_0}{\sqrt{1 + (\tau \Delta \omega)^2}}$$

В резонансе, когда для высокодобротного контура $\omega = \omega_0, \Delta \omega = 0$, выражения для амплитуд тока и напряжений на ёмкости и индуктивности, фазовых сдвигов ψ и их производных по частоте

 $\psi' = d\psi/d\omega$ принимают вид

$$I_{\omega}(\omega_{0}) = \frac{\mathcal{E}_{0}}{R}, \quad \psi_{I}(\omega_{0}) = 0$$

$$U_{C\omega}(\omega_{0}) = Q\mathcal{E}_{0}, \quad \psi_{C}(\omega_{0}) = \frac{\pi}{2}$$

$$U_{L\omega}(\omega_{0}) = Q\mathcal{E}_{0}, \quad \psi_{L}(\omega_{0}) = -\frac{\pi}{2}$$

$$\psi'_{I}(\omega_{0}) = \psi'_{L}(\omega_{0}) = \psi'_{C}(\omega_{0}) = \tau$$

Для параллельного контура можно получить выражения для аналогичных величин:

$$I_C(t) = QI_0 \frac{\omega}{\omega_0} \frac{\cos(\omega t - \psi_C)}{\sqrt{1 + (\tau \Delta \omega)^2}}, \quad \psi_C = \arctan(\tau \Delta \omega) - \frac{\pi}{2} + \frac{1}{Q}$$

$$I_L(t) = QI_0 \frac{\omega_0}{\omega} \frac{\cos(\omega t - \psi_L)}{\sqrt{1 + (\tau \Delta \omega)^2}}, \quad \psi_L = \arctan(\tau \Delta \omega) + \frac{\pi}{2}$$

$$U(t) = Q\rho I_0 \frac{\cos(\omega t - \psi_U)}{\sqrt{1 + (\tau \Delta \omega)^2}}, \quad \psi_U = \arctan(\tau \Delta \omega) + \frac{\omega_0}{\omega} \frac{1}{Q}$$

При резонансе, когда в принятом выше приближении $\omega = \omega_0$, $\Delta \omega = 0$, амплитуды токов в ветвях контура, напряжения на нём, фазовые сдвиги ψ и их производные по циклической частоте $\psi' = d\psi/d\omega$ принимают вид

$$I_{C\omega}(\omega_0) = QI_0, \quad \psi_C(\omega_0) = -\frac{\pi}{2} + \frac{1}{Q}$$

$$I_{L\omega}(\omega_0) = QI_0, \quad \psi_L(\omega_0) = \frac{\pi}{2}$$

$$U_{\omega}(\omega_0) = Q^2RI_0, \quad \psi_U(\omega_0) = \frac{1}{Q}$$

$$\psi'_C(\omega_0) = \psi'_L(\omega_0) = \psi'_U(\omega_0) = \tau$$

1.2 Экспериментальная установка

В данной работе изучаются резонансные явления в последовательном колебательном контуре (резонанс напряжений). Схема экспериментального стенда показана на рис. 1. Синусоидальный сигнал от генератора поступает на вход управляемого напряжсением источника напрялсения (см., например, [3]), собранного на операционном усилителе, питание которого осуществляется встроенным блоком-выпрямителем от сети $\sim 220~\mathrm{B}$ (цепь питания на схеме не показана). Источник напряжсения (источник с нулевым внутренним сопротивлением) обеспечивает с высокой точностью постоянство амплитуды сигнала $\mathcal{E} = \mathcal{E}_0 \cos{(\omega t + \varphi_0)}$ на меняющейся по величине нагрузке - последовательном колебательном контуре, изображённом на рис. 1 в виде эквивалентной схемы.

Источник напряжения, колебательный контур и блок питания заключены в отдельный корпус, отмеченный на рисунке штриховой линией. На корпусе имеются коаксиальные разъёмы «Вход», « U_1 » и « U_2 », а также переключатель магазина ёмкостей C_n с указателем номера $n=1,2,\ldots 7$. Величины ёмкостей C_n указаны на установке. Напряжение $\mathcal E$ на контуре через разъём « U_1 » попадает одновременно на канал 1 осциллографа и вход 1-го цифрового вольтметра. Напряжение на конденсаторе U_C подаётся через разъём « U_2 » одновременно на канал 2 осциллографа и вход 2-го цифрового вольтметра.

Рис. 1. Схема экспериментального стенда

2 Ход работы

2.1 Закон Ома в цепи переменного тока

Подготовив установку, выставив пределы всех измерительных приборов и выкрутив ручку регулятора напряжения в положение напряжения $\approx 127B$, можем проступать к снятию данных.

Указатель на положение сердечника установили на отметку $x=5\pm 1$ мм и, перемещая сердечник шагами по 2 мм, снимаем зависимость тока I, напряжения U_R, U_L, U_{R+L} , а так же мощности P_L от координаты сердечника x.

Полученные результаты представлены в таблице.

	x, MM	U_R, B	U_{R+L}, B	U_L, B	I, дел	I, A	P_L , дел	P_L , BT
1	5	73	112	73	34	85	42	10.5
2	7	78	110	65	36	90	38	9.5
3	9	81	109	61	37	92.5	36	9
4	11	84	108	56	37.5	93.75	34	8.5
5	13	85	107	52	39.5	98.75	32	8
6	15	87	107	50	40	100	31	7.75
7	17	89	107	47	41	102.5	30	7.5

Таблица 1: Показания приборов от положения сердечника

Так же для снятия и обработки результатов пригодилась таблица с характеристиками приборов.

Амперметр $-2.5 \ A$
Вольтметры $-150 \ B$
Bаттметр $-25 B$
Переключатель катушки напряжений — $100 \ B$
Штепсель токовой катушки $I-0.25 \ A$
$R_1 - 98 \text{ Om}$

Таблица 2: Характеристики установки

2.2 Резонанс напряжений

Подготовим установку вместе с измерительными приборами. Установив сердечник в среднее положение ($x \approx 12$ мм), подбираем значение ёмкости так, чтобы наблюдать резонанс тока по изменению эллипса на экране 90.

При резонанс измерим показания $I, U_{C,pes}, U_{\sum,pes}$ и по полученным данным оценим добротность контура по формуле (10).

x, MM	C , мк Φ	I, A	U_C, B	$U_{\Sigma} B$	Q	$R_{\mathrm{доп}}$
12	55.2	410	242	41	5.902	5.6

Таблица 3: Показания приборов при резонансе

Для резонансного положения сердечника измерим омическое сопротивление витков каткушки с помощью мультиметра GDM, а затем – L, r_L с помощью измерителя LCR на частотах 50 Γ ц и 1 к Γ ц.

3 Обработка результатов

• По результатам измерений P_L и I найдем значение r_L по следующей формуле $P_L = I^2 r_L$. Теперь по следующей формуле

$$U_L = I\sqrt{r_L^2 + (\Omega L)^2} \tag{1}$$

вычислим $L \ (\Omega = 50 \ \Gamma_{\rm H})$.

Для 50 Гц	
L, мН	159, 42
r_L , O_M	3,696
Для 1 КГц	
L, мН	141,58
r _L , O _M	52,97

Таблица 4: Данные с мультиметра GDM и LCR измерителя

r_L , Om	x, MM	L , Γ H
1,45	5	0,01718
1,17	7	0,01444
1,05	9	0,01319
0,97	11	0,01195
0,82	13	0,01053
0,78	15	0,01
0,71	17	0,00917

Результаты вычислений заносим в таблицу:

Построим графики зависимостей L и r_L от положения сердечника и по полученной аппроксимации зависимости определем по ним значения L и r_L , соответствующие резонансному положению сердечника.

• Рассчитаем активное сопротивление катушки r_L через ток и напряжение на контуре, используя следующие соотношения:

$$R_{\Sigma} = R_1 + r_L$$

$$U_{\Sigma, \text{ pe3}} = I_{\text{ pe3}} R_{\Sigma}, \quad U_{C, \text{ pe3}} = \frac{I_{\text{ pe3}}}{\Omega C}$$

Тогда получаем

$$r_L = \frac{U_{\Sigma, \text{ pe3}}}{U_{C, \text{ pe3}} \cdot \Omega C} - R_1 = 1,16 \text{ Om}$$

Так же рассчитаем L и r_L через добротность Q при помощи следующих соотношений

$$\omega_0 L = \frac{1}{\omega_0 C}$$

$$Q = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}}$$

$$R_{\Sigma} = R_1 + r_L$$

$$Q = \frac{U_{C, \text{ pe3}}}{U_{\Sigma, \text{ pe3}}}$$

Отсюда получаем $L = 120, 32; r_L = 1,08 \text{ Om.}$

• Сведем результаты измерений в таблицу:

	Омметр	LCR	График	$f\left(I,U_{\Sigma}\right)_{\mathrm{pes}}$	f(Q)
r_L , Om	2,170	3,70	0,88	1,16	1,08
L , м Γ н	_	159,42	111,47	_	120,32

Таблица 5: Данные с мультиметра *GDM* и *LCR* измерителя

4 Вывод

При выполнении данной лабораторной работы было получено, что разные методы дают величины одного порядка, различающиеся в пределах прогрешност между собой. Однако не все они попадают в пределах погрешности с действительной величиной. Причиной этого может являться эффект, при котором катушка и конденсатор имеют ненулевую действительную часть импиданса, в связи с чем происходят потери еще и на этих элементах и теоретическая зависимость будет иметь другой характер.

5 Литература

1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна - М.: МФТИ, 2007. - 280 с.