Предиктивная аналитика турбоогенератра

Решение

Решение созадано в рамках работ по переходу на концепцию технического обслуживания по состоянию турбогенартор.

В рамках даной задачи необходимо было решить следующие задачи:

- 1. Создание модели раннего обнаружения отклонений по всем типам дефектов (вибрационные, элетротехнические, температурные типы дефектов)
- 2. Определение причин и классификация дефектов
- 3. Определение остаточного ресурса

Результаты

- Обнаружены 5/6 аномалии, которые были пропущены штатными системами диагностики
- Победа в индустриальном конурсе с зарубежными конкурентами
- Импортонезависимое решение
- Технологическая масштабируемость, микросервисная архитектура на основе docker
- 2+ года исследований по теме, в процессе публикации научная статья в рецензируемые журналы
- Выполнен грант ФСИ по теме "Разработка модели предсказания неисправностей оборудования АЭС" (2018-2020)
- Получено свидетельство № 2019663561 на программу для ЭВМ

Алгоритмы обнаружения аномалий	Доля верных
LSTM, MSCRED, LSTM-AE	5/6
Ensemble of offline changepoint detection methods	4/6
Outlier detection (Isolation forest)	3/6
Control charts (T-squared, T-squared+Q, CUSUM, EWMA)	2/6

- Перечисленные алгоритмы показывают высокие результаты в подобных задачах, что позволяет их использовать в системах диагностики.
- При обучении моделей и разработке алгоритмов используются исторические архивы данных с датчиков и информация о прошлых дефектах

Данные (~240 сигналов)

- технологические параметры;
- электрические параметры турбогенератора;
- виброконтроль турбогенератора;

- теплоконтроль турбогенератора.
- (необходимо) сведения о зарегистрированных аномалиях в исторических данных для разметки

Данные

API

WAICO