TD 8 – Séries entières

1. À TRAVAILLER EN CLASSE

Exercice 1. Calculer le rayon de convergence des séries entières de la forme $\sum a_n z^n$ lorsque la suite a_n est donnée par :

1.
$$a_n = \frac{1}{n\pi^n}$$
;

4.
$$a_n = \frac{n^n}{n!}$$
;

7.
$$a_n = \frac{z^{n^2}}{9^n}$$
;

10.
$$a_n = n^{\ln n}$$
;

2.
$$a_n = \frac{n^2 \log n}{2^{3n}}$$

5.
$$a_n = \frac{z^n}{9^n}$$
;

8.
$$a_n = n^{\sqrt{n}}$$
;

11.
$$\begin{cases} 2^p, & \text{si } n = 2p \\ 0, & \text{si } n = 2p \end{cases}$$

1.
$$a_n = \frac{1}{n\pi^n}$$
; 4. $a_n = \frac{n^n}{n!}$;
2. $a_n = \frac{n^2 \log n}{2^{3n}}$; 5. $a_n = \frac{z^n}{9^n}$;
3. $a_n = \frac{1}{n^{\alpha}}$, $\alpha \in \mathbb{R}$; 6. $a_n = \frac{z^{2n}}{9^n}$;

6.
$$a_n = \frac{z^{2n}}{9^n}$$

9.
$$a_n = n^n$$
;

11.
$$\begin{cases} 2^p, \text{ si } n = 2p\\ 0, \text{ si } n \text{ est impair} \end{cases}$$

Exercice 2. En se ramenant à des séries entières bien connues, calculer le rayon de convergence et la somme des séries entières suivantes :

$$a) \sum \frac{(n+2)^2}{(n+2)!} x^n \ (n \ge 1);$$

$$b) \sum \frac{\sin(n\alpha)}{n!} x^n \quad (n \ge 0).$$

Exercice 3. Pour tout $x \neq 1$, posons $f(x) = \frac{e^x}{1-x}$.

- 1. Montrer que f est développable en série entière au voisinage de 0. On note $f(x) = \sum_{n=0}^{\infty} a_n x^n$ ce développement et R le rayon de convergence de $(\sum a_n x^n)$.
- 2. Montrer que $R \ge 1$ et que $f(x) = \sum_{n=0}^{\infty} a_n x^n$ pour tout $x \in]-1,1[$.
- 3. En calculant un produit de séries, montrer que $a_n = \sum_{k=0}^n \frac{1}{k!}$.
- 4. En raisonnant par l'absurde, montrer que R=1.

Exercice 4. A l'aide des théorèmes d'interversion, calculer le rayon de convergence et la somme des séries entières suivantes:

$$1) \sum n^2 x^n \quad (n \ge 0)$$

2)
$$\sum \frac{(-1)^n}{2n-1} x^{2n} \quad (n \ge 1)$$

$$3) \sum \frac{x^n}{1+2+\dots+n} \quad (n \ge 1)$$

Exercice 5 (produit terme à terme). Soit $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence R et R'. Montrer que le rayon de convergence de la série $\sum (a_n b_n) z^n$ est au moins égal à RR'.

Exercice 6. On considère la série entière :

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

où les coefficients a_n sont définis par récurrence par $a_0 = 1$, $a_1 = 3$ et :

$$\forall n \ge 2 \qquad a_n = 3a_{n-1} - 2a_{n-2} .$$

- 1. Montrer que $|a_n| \le 4^n$ pour tout entier $n \ge 0$.
- 2. En déduire que le rayon de convergence R de f(z) vérifie $R \geq \frac{1}{4}$.
- 3. Montrer l'égalité suivante, pour tout complexe z tel que |z| < R:

$$f(z)(1 - 3z + 2z^2) = 1.$$

4. Décomposer en éléments simples la fraction $1/(1-3z+2z^2)$. En déduire une expression pour les coefficients a_n et la valeur de R.

Exercice 7. Par produit et composition de séries entières connues, donner le développement en série entière des fonctions suivantes : 1) e^{x^2-2x} en 1;

1)
$$e^{x^2-2x}$$
 en 1;

2)
$$\frac{1}{(x-1)(x-2)}$$
 en 0;

3)
$$e^x \cos x \text{ en } 0$$
;

4)
$$\frac{1}{(1+x^2)(1-x)}$$
 en 0.

Exercice 8. A l'aide des théorèmes d'interversion, donner le développement en série entière de

a)
$$\arctan\left(\frac{1-x^2}{1+x^2}\right)$$
 en 0,

b)
$$\ln(x+a)$$
 en 0 avec $a>0$.

Exercice 9 (formule de Cauchy). Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R>0. On pose, pour tout complexe z de module strictement inférieur à R,

$$f(z) = \sum_{n \ge 0} a_n z^n.$$

Soit $r \in]0, R[$. Pour un entier k fixé, on pose $g_n(\theta) = a_n r^n e^{i(n-k)\theta}$ où $\theta \in \mathbb{R}$.

- 1. Montrer que la série de fonctions $\sum g_n$ converge normalement sur \mathbb{R} .
- 2. En déduire que

$$2\pi r^k a_k = \int_0^{2\pi} f(re^{i\theta}) e^{-ik\theta} d\theta.$$

3. Application : on suppose $R = +\infty$ et que f est bornée sur \mathbb{C} . Montrer que f est constante (ce résultat est appelé le théorème de Liouville).

Exercice 10. Montrer que la fonction définie par f(t) = 0 si $t \le 0$ et $f(t) = e^{-\frac{1}{t}}$ si t > 0 est de classe C^{∞} mais pas développable en série entière en 0.

Exercice 11. On considère l'équation différentielle

$$(1+x^2)y'' - 2y = 0. (1.1)$$

1. Soit $f(x) = \sum_{n=0}^{\infty} a_n x^n$ une série entière de rayon de convergence R non nul. Montrer que f est solution de (1.1) si et seulement on si on a

$$a_{n+2} = -\frac{n-2}{n+2}a_n$$
 pour tout $n \in \mathbb{N}$.

- 2. Montrer qu'il existe une unique fonction f solution de (1.1) telle que
 - f est développable en série entière au voisinage de 0,
 - -f(0) = 0 et f'(0) = 1.

Calculer les coefficients et le rayon de convergence de la série entière obtenue.

2. À TRAVAILLER CHEZ SOI: APPLICATIONS DIRECTES DES DÉFINITIONS

Exercice 12 (Rayon de convergence). Soit $\sum a_n z^n$ une série entière de rayon de convergence R strictement positif. En revenant à la définition du rayon de convergence, déterminer les rayons de convergence des séries entières suivantes :

(a)
$$\sum a_{n+1}z^n$$

(b)
$$\sum a_{n-1}z^r$$

$$(c) \sum a_{n+p} z^r$$

$$(d) \sum a_n z^{2r}$$

(a)
$$\sum a_{n+1}z^n$$
 (b) $\sum a_{n-1}z^n$ (c) $\sum a_{n+p}z^n$ (d) $\sum a_nz^{2n}$ (e) $\sum \frac{n^7}{3n^2+9}a_{n+p}z^{2n+1}$

où $p \in \mathbb{Z}$.

Exercice 13 (Calcul du rayon de convergence). Déterminer le rayon de convergence des séries entières

$$(a) \sum_{n\geq 0} n^{-\alpha} z^n, \quad \alpha>0 \quad (b) \sum_{n\geq 1} \frac{1}{n!} z^n \quad (c) \sum_{n\geq 0} \frac{2^n}{n} z^{2n} \quad (d) \sum_{n\geq 0} \frac{P(n)}{Q(n)} z^n \text{ avec } P \text{ et } Q \text{ des polynômes non nuls.}$$

Exercice 14 (Convergence normale). Soit $\sum a_n z^n$ une série entière de rayon de convergence R strictement positif. Montrer la convergence normale de la série sur le disque fermé $\overline{D(0,r)}$ pour tout $r \in]0,R[$. Que peut-on dire de la continuité et de la dérivabilité de la somme de la série sur le disque ouvert D(0,R)? et sur le disque fermé $\overline{D(0,r)}$?

Exercice 15 (Propriétés du développement en série entière). Soit $f: U \to \mathbb{C}$ une fonction définie sur un disque ouvert dans \mathbb{C} et développable en série entière en un point $z_0 \in U$.

- 1. Montrer que f est dérivable à tout ordre (au sens complexe) en z_0 , et établir une relation entre les coefficients du développement en série entière en z_0 et les dérivées de f en z_0 .
- 2. Dans le cas particulier où $z_0 \in \mathbb{R}$, montrer que la restriction de f à $U \cap \mathbb{R}$ est de classe C^{∞} dans un voisinage de z_0 et qu'elle admet un développement limité à tout ordre en z_0 .

Exercice 16 (Développements en série entière). Pour chacune des fonction suivantes, déterminer son développement en série entière en 0 ainsi que le rayon de convergence.

(a)
$$f_1(z) = \frac{1}{1+z}$$
 (b) $f_2(z) = -\frac{z^2}{(1-z)^3}$ (c) $f_3(x) = \frac{\ln(1+x)}{x}$ (d) $f_4(x) = \arctan(x^2)$ (e) $f_5(z) = \frac{\sinh(z)}{z}$

3. À TRAVAILLER CHEZ SOI : EXERCICES D'ENTRAÎNEMENT

Exercice 17. Soit f la série entière définie par :

$$f(x) = \sum_{n=1}^{\infty} (\log n) x^n.$$

- 1. Déterminer le rayon de convergence R de f. Déterminer si la série converge aux deux bornes -R et R de son intervalle de convergence.
- 2. On pose $a_1 = -1$ et pour $n \ge 2$:

$$a_n = -\log\left(1 - \frac{1}{n}\right) - \frac{1}{n}.$$

- (a) Déterminer un équivalent de a_n quand $n \to \infty$.
- (b) En déduire le rayon de convergence S de la série entière :

$$g(x) = \sum_{n=1}^{\infty} a_n x^n.$$

- (c) Déterminer si g(x) converge aux deux bornes -S et S de son intervalle de convergence.
- 3. Montrer la relation suivante, pour |x| < 1:

$$q(x) = (1-x)f(x) + \log(1-x).$$

4. On rappelle que la suite de terme général $\sum_{k=1}^{N} \frac{1}{k} - \log N$ est convergente, et que la constante d'Euler γ est définie par :

$$\gamma = \lim_{N \to \infty} \Bigl(\sum_{k=1}^{N} \frac{1}{k} - \log N \Bigr).$$

Montrer que $g(1) = -\gamma$.

5. En indiquant clairement les hypothèses utilisées pour l'application d'un théorème du cours, montrer que g est continue en 1. En déduire l'équivalent suivant :

$$f(x) \sim \frac{-\log(1-x)}{1-x}$$
 quand $x \to 1^-$.

Exercice 18. Donner le développement en série entière de

- a) $\frac{1+x}{(1-x)^3}$ en 0 b) $(\cos x)^3$ en 0 c) $\int_0^x \frac{\arctan(t^2)}{t} dt$ en 0.

Exercice 19 (fractions rationnelles). On dit qu'une suite $(a_n)_{n\geq 0}$ vérifie une relation de récurrence linéaire à partir d'un certain rang s'il existe un entier $k \geq 1$, des coefficients $\alpha_0, \ldots, \alpha_{k-1}$, et un rang $r \geq 1$ tel que, pour tout $n \geq r$:

$$a_{n+k} = \sum_{j=0}^{k-1} \alpha_j a_{n+j}$$
.

- 1. Soit f(z) = P(z)/Q(z) une fraction rationelle avec $Q(0) \neq 0$. Montrer que f(z) est développable en série entière, et que les coefficients de son développement vérifient à partir d'un certain rang une relation
- 2. Réciproquement, soit $f(z) = \sum a_n z^n$ une série entière telle que les coefficients $(a_n)_{n>0}$ vérifient une relation de récurrence linéaire à partir d'un certain rang. Montrer que f(z) est une fraction rationnelle.
 - 4. À TRAVAILLER CHEZ SOI : EXERCICES D'APPROFONDISSEMENT

Exercice 20. Calculer le rayon de convergence de la série entière $\sum a_n z^n$ où a_n est le n-ième terme du développement décimal de e.

Exercice 21. Soit a_n une suite réelle convergeant vers a.

- 1. Calculer le rayon de convergence de $f(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$.
- 2. Calcular $\lim_{t \to +\infty} e^{-t} f(t)$.

Exercice 22 (série entière s'annulant sur une portion de droite autour de 0). Soit $f(z) = \sum a_n z^n$ une série entière de rayon de convergence non nul. On suppose qu'il existe un nombre complexe α de module 1 tel que, pour tout réel t assez petit, on a $f(t\alpha) = 0$. Montrer que f = 0.

Exercice 23 (inverse d'une fonction). Soit f une fonction développable en série entière, de rayon de convergence R > 0 et telle que $f(0) \neq 0$. On s'intéresse au développement en série entière de la fonction 1/f.

- 1. Montrer que la fonction 1/f est définie dans un disque $D(0, \eta_1)$ avec $\eta_1 > 0$.
- 2. Soit $(a_n)_{n\geq 0}$ la suite des coefficients du développement de f. Montrer que si la fonction 1/f est développable en série entière, les coefficients $(b_n)_{n>0}$ de son développement vérifient :

$$b_0 = -\frac{1}{a_0},$$
 $\forall k > 0$ $b_k = -\frac{1}{a_0}(b_0a_k + b_1a_{k-1} + \dots + b_{k-1}a_1).$

Il est assez difficile de montrer, et on admettra que $g(z) = \sum_{n \geq 0} b_n z_n$, avec $(b_n)_{n \geq 0}$ définis comme ci-dessus, est une série entière de rayon de convergence non nul et vérifiant f(z)g(z) = 1 dans un disque $D(0, \eta_2)$ avec $\eta_2 > 0$.

Exercice 24. Montrer que $\int_0^{+\infty} e^{-xt^2} S(t) dt$ converge lorsque x > 1 avec $S(t) = \sum_{n \ge 0} \frac{a_n}{n!} t^{2n+1}$, où $\forall n \in \mathbb{N}, |a_n| \leq 1.$

Exercice 25. Soit a_n une suite complexe convergeant vers a. On pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.

- 1. Montrer que si la série $\sum a_n$ est absolument convergente, alors $\lim_{x\to 1^-} f(x) = \sum_{n=0}^{\infty} a_n$.
- 2. Montrer que $f(x) = \frac{\sum_{n=0}^{+\infty} s_n x^n}{\sum_{n=0}^{+\infty} x^n}$ avec $s_n = \sum_{k=0}^{n} a_k$, et en déduire une autre démonstration du résultat.

Exercice 26 (combinatoire). Pour tout entier $n \geq 0$, on pose :

$$d_n = \operatorname{card}\{(n_1, n_2) \in \mathbb{N} \times \mathbb{N} : 2n_1 + 3n_2 = n\}.$$

Exprimer d_n en fonction de n.

Indication: on pourra développer en série entière $1/(1-z^2)(1-z^3)$ de deux façons différentes.

Exercice 27. Pour quelles valeurs de $a \in \mathbb{R}$ existe-t-il une fonction f non nulle développable en série entière au point 0, telle que f'(x) = f(ax)? Préciser le rayon de convergence de la série entière obtenue.

Exercice 28. Soit f et g les fonctions de \mathbb{R} dans \mathbb{R} définies par

$$f(x) = e^{\frac{x^2}{2}} \int_0^x e^{-\frac{t^2}{2}} dt$$
 et $g(x) = e^{-\frac{x^2}{2}}$.

- 1. Montrer que f est développable en série entière en 0 et que le rayon de convergence de la série entière ainsi obtenue est infini.
- 2. Montrer que f est solution de l'équation différentielle y' xy = 1. En déduire le développement en série entière de f en 0.
- 3. Développer g en série entière sur \mathbb{R} . En déduire une expression de $\int_0^1 g(t)dt$ sous forme de somme d'une série numérique.
- 4. En écrivant f(1) de deux manières, démontrer l'égalité :

$$\sum_{n=0}^{+\infty} \frac{1}{1 \times 3 \times \dots \times (2n+1)} = \sqrt{e} \sum_{n=0}^{+\infty} \frac{(-1)^n}{2 \times 4 \times \dots \times 2n \times (2n+1)}.$$