Slides	
<u>f</u> <u>Fullscreen</u>	mparametric Regression
s <u>Speaker View</u>	_
o Slide Overview	_
PDF Export Modeples	_
<u>b</u> <u>Toggle</u> <u>Chalkboard</u>	
<u>c</u> <u>Toggle Notes</u> <u>Canvas</u>	_
<u>d</u> <u>Download</u> <u>Drawings</u>	_ =
? Keyboard Help	_
Stochastic Integral Representation	_
Examples	_
Prior Approximation I	_
Truncated Cauchy Process Prior	_
Simulation	_
Kernels	_
Inference via Reversible Jump MCMC	_
MotorCycle Acceleration	_
Mass Spectroscopy	_
Summary	_

Regression

$$Y_1, \ldots, Y_n \sim \mathsf{N}\left(\mu(\mathbf{x}_i, \boldsymbol{\theta}), \sigma\right)$$

 $[a,b] = \mu(\mathbf{x}_i,m{ heta})$ falls in some class of nonlinear functions ansion

$$\mu(\mathbf{x}, oldsymbol{ heta}) = \sum_{j=1}^J eta_j b_j(\mathbf{x})$$

fied set of *basis functions* and $\boldsymbol{\beta} = (\beta_1, \dots, \beta_J)^T$ is a vector of dinates wrt to the basis

ision of $\mu(\mathbf{x})$ about point χ

$$\mu(x) = \sum_{k} \frac{\mu^{(k)}(\chi)}{k!} (x - \chi)^k$$

$$= \sum_{k} \beta_k (x - \chi)^k$$

number of terms to model globally r behavior in regions without data has a "global" impact ions

$$b_j(x,\chi_j) = (x - \chi_j)_+^3$$

sis

$$b_j(x,\chi_j) = \exp\left(rac{(x-\chi_j)^2}{l^2}
ight)$$

ictions χ_j

controls the scale at which the mean function dies out as a the center

nents

ian Kernel g with parameters $oldsymbol{\omega} = (oldsymbol{\chi}, oldsymbol{\Lambda})$

$$=g(oldsymbol{\Lambda}_j^{1/2}(\mathbf{x}-oldsymbol{\chi}_j))=\exp\left\{-rac{1}{2}(\mathbf{x}-oldsymbol{\chi}_j)^Toldsymbol{\Lambda}_j(\mathbf{x}-oldsymbol{\chi}_j)
ight\}$$

Exponential, Double Exponential kernels (can be asymmetric) ling of wavelet families

ned from a generator function g with location and scaling

metric Model

$$\mu(\mathbf{x}_i) = \sum_j^J b_j(\mathbf{x}_i, oldsymbol{\omega}_j)eta_j$$

pasis elements back to our Bayesian regression model about number of basis elements needed other shrinkage priors lents scale as J increases?

ainty in ω (locations and scales)? s $(J, \{\beta_j\}, \{\omega_j\})$ induces a prior on functions! sions

$$\mathbf{x}) = \sum_{j=0}^J b_j(\mathbf{x}, oldsymbol{\omega}_j) eta_j = \sum_{j=0}^J g(oldsymbol{\Lambda}^{1/2}(\mathbf{x} - oldsymbol{\omega}_j)) eta_j$$

easure $\nu(d\beta, d\omega)$

n $J\sim {\sf Poi}(
u_+)$ where $u_+\equiv
u(\mathbb{R} imes {f \Omega})=\iint
u(eta,{m \omega})deta\,d{m \omega}$

1 $eta_j, oldsymbol{\omega}_j \mid J \overset{ ext{iid}}{\sim} \pi(eta, oldsymbol{\omega}) \propto
u(eta, oldsymbol{\omega})$

 $\operatorname{id} q$

at $|\beta_j|$ are absolutely summable

flarge coefficients (in absolute value)

e number of small $\beta_i \in [-\epsilon, \epsilon]$

and Tu (2011) AoS

Example

 $^{\eta}\gamma(\chi)d\beta\,d\chi$

I Representation

$$eta_j(\mathbf{x},oldsymbol{\omega}_j)eta_j = \sum_{j=0}^J g(oldsymbol{\Lambda}^{1/2}(\mathbf{x}-oldsymbol{\omega}_j))eta_j = \int_{oldsymbol{\Omega}} b(\mathbf{x},oldsymbol{\omega})\mathcal{L}(doldsymbol{\omega})$$

ed measure (generalization of Completely Random Measures)

$$\mathcal{L}(doldsymbol{\omega}) = \sum_{j \leq J} eta_j \delta_{oldsymbol{\omega}_j}(doldsymbol{\omega})$$

isson Representation of \mathcal{L} support points (possibly infinite!) ints of discrete measure $\{\boldsymbol{\omega}_j\}$

k of a random measure as stochastic process where $\mathcal L$ assigns a sets $A\in \mathbf \Omega$

$$u(eta, oldsymbol{\omega}) = eta^{-1} e^{-eta \eta} \pi(oldsymbol{\omega}) deta \, doldsymbol{\omega}
onumber
on$$

icients plus non-negative basis functions allows priors on nonwithout transformations

Cauchy process is $\alpha = 1$)

$$u(eta,oldsymbol{\omega}) = c_lpha |eta|^{-(lpha+1)} \ \pi(oldsymbol{\omega}) \qquad 0 < lpha < 2$$

r both the Gamma and α -Stable processes problematic for MCMC!

on I

 ν to obtain a finite expansion:

ipport points $\boldsymbol{\omega}$ with $\boldsymbol{\beta}$ in $[-\epsilon,\epsilon]^c$

r approximation error)

ένν measure $ν_{\epsilon}(\beta, \boldsymbol{\omega}) \equiv ν(\beta, \boldsymbol{\omega}) \mathbf{1}(|\beta| > \epsilon)$

here $u_{\epsilon}^{+} =
u([-\epsilon,\epsilon]^{c},\mathbf{\Omega})$

$$doldsymbol{\omega}) \equiv
u_{\epsilon}(deta,doldsymbol{\omega})/
u_{\epsilon}^{+}$$

) proximation leads to double Pareto distributions for eta

$$\pi(eta_j) = rac{\epsilon}{2\eta} |eta|^{-lpha-1} \mathbf{1}_{|eta|>rac{\epsilon}{\eta}}$$

Process Prior

vy Adaptive Regression Kernels

ersible Jump MCMC

MCMC

points J varies from iteration to iteration : (birth) ng point (death) pints (merge)

) two

nt(s)

eration

tion intervals to Gaussian Process Priors andom scales, locations as dimension of ${\bf x}$ increases imation II

sithub.io/website/

