ANALÍZIS II. Példatár

Többváltozós valós függvények differenciálszámítása.

2008. március

1. fejezet

Feladatok

1.1. Határérték, folytonosság

Határozzuk meg az alábbi függvények értelmezési tartományát!

1.1.
$$f(x,y) = \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}$$

1.2.
$$f(x,y) = \frac{1}{R^2 - x^2 - y^2}$$

1.3.
$$f(x,y) = \ln(xy)$$

1.4.
$$f(x,y) = \text{ctg } \pi(x+y)$$

1.5.
$$f(x,y) = \ln(y^2 - 4x + 8)$$

1.6.
$$f(x,y) = \ln x - \ln \sin y$$

1.7.
$$f(x,y) = \sqrt{1-x^2-y^2}$$

1.8.
$$f(x,y) = \arcsin \frac{y}{x}$$

1.9.
$$f(x,y) = \sqrt{\sin(x^2 + y^2)}$$

1.10.
$$f(x, y, z) = \arccos \frac{z}{\sqrt{x^2 + y^2}}$$

Számítsuk ki az alábbi határértékeket!

$$\boxed{\textbf{1.11.}} \lim_{x \to 2, \ y \to \infty} \frac{2xy - 1}{y + 1}$$

1.12.
$$\lim_{x \to \infty, y \to \infty} \frac{x + y}{x^2 - xy + y^2}$$

Számítsuk ki a $\lim_{x\to a}\lim_{y\to b}f(x,y)$ és a $\lim_{y\to b}\lim_{x\to a}f(x,y)$ ismételt határértékeket az alábbi esetekre:

1.13.
$$f(x,y) = \frac{x^2 + y^2}{x^2 + y^4}, a = b = \infty$$

1.14.
$$f(x,y) = \frac{x^y}{1+x^y}, \ a = \infty, \ b = +0$$

1.15. Mutassuk meg, hogy az

$$f(x,y) = x\sin\frac{1}{y} + y\sin\frac{1}{x}$$

függvény esetén $\lim_{x\to 0} f(x,y)$ létezik, de az ismételt határértékek nem léteznek!

Vizsgáljuk meg az alábbi függvények megadott helyen vett határértékét és ismételt határértékeit az adott pontban!

1.16.
$$f(x,y) = x \cos y, P(0,\infty)$$

1.17.
$$f(x,y) = \frac{xy - x + y}{xy + x + y}, P(0,0)$$

1.18.
$$f(x,y) = \frac{2xy}{x^2 + y^2}, P(0,0)$$

1.2. Parciális deriválás

Számítsuk ki az alábbi függvények x és y szerinti parciális deriváltjait:

1.19.
$$f(x,y) = x^2 - 5xy + 3y^2 - 6x + 7y + 8$$

1.20.
$$f(x,y) = \operatorname{tg}(3x - 5y)$$
 1.21. $f(x,y) = \arcsin \frac{x}{y}$

1.22.
$$f(x,y) = \frac{xy}{x+y}$$
 1.23. $f(x,y) = \sqrt{x^3 - 5x^2y + y^4}$

1.24.
$$f(x,y) = \ln \sqrt{x^7 y^4}$$
 1.25. $f(x,y) = \arcsin \sqrt{xy}$

1.26.
$$f(x,y) = \frac{e^{2x-3y}}{2x-3y}$$
 1.27. $f(x,y) = \arctan \frac{y}{x}$

Számítsuk ki a következő függvények parciális deriváltjainak adott pontbeli értékét!

1.28.
$$f(x,y) = x^2 + 3xy + y^2$$
; $x = 1, y = -2$

1.29.
$$f(x,y) = \arccos \frac{x}{y}$$
; $x = 1, y = 2$

1.30.
$$f(x,y) = \operatorname{tg} xy; x = 2, y = \frac{\pi}{8}$$

1.31.
$$f(x,y) = \ln(3x + y^2)$$
; $x = 2, y = 0$

1.32.
$$f(x,y) = e(\sqrt[3]{x}) + \sqrt[3]{y}$$
; $x = 1, y = 8$

Deriváljuk x és y szerint az alábbi implicit függvényeket:

1.33.
$$x^x y^y z^z = 1$$

1.34.
$$2xz + 6uz + 5z^2 + 12 = 0$$

1.35.
$$(x^2 + y^2 + z^2)^2 = 2(x^2 + 2y^2 + 3z^2)$$

1.36.
$$e^{x+y+2z} = 3x + 7y + 11z$$

1.37.
$$e^{x+y+z} = x + 2y + 3z$$

1.3. Érintősík

Írjuk fel az alábbi felületek érintősíkjainak egyenletét a megadott pontban!

1.38.
$$f(x,y) = 5x^2 - 2xy + 3y^2 + 5x - 6$$
; $(x_0, y_0) = (1, -1)$

1.39.
$$f(x,y) = \arcsin \frac{x}{y}$$
; $(x_0, y_0) = (1, 2)$

1.40.
$$f(x,y) = (x^2 + y^2) \ln(xy); (x_0, y_0) = (2, \frac{1}{2})$$

1.41.
$$f(x,y) = x \operatorname{tg} y - y \operatorname{tg} x$$
; $(x_0, y_0) = (\frac{\pi}{4}, 0)$

- **1.42.** Meghatározandó azon sík egyenlete, amely a P(2,-1,3) ponton halad át, és párhuzamos a $z=\cos(x^2+y^2)$ felület $(x_0,y_0)=(\frac{\sqrt{\pi}}{2},\frac{\sqrt{\pi}}{2})$ koordinátájú pontjához tartozó érintősíkkal.
- **1.43.** Az $f(x,y) = \ln(xy)$ felületnek mely pontjaiban párhuzamos az érintősík az x+y+z=0 síkkal?
- **1.44.** A $z = x^2 2xy + 3y^2 5x + 3y 5$ felület mely pontjaiban vízszintes az érintősík?

1.4. Iránymenti derivált

Meghatározandók az alábbi függvények adott α iránymenti differenciálhányadosai!

1.45.
$$f(x,y) = e^{x+y^2}$$
; $\alpha = 45^{\circ}$

1.46. a.,
$$f(x,y) = y^2 e^x + \cos(x+y)$$
; $\alpha = 135^\circ$

b.,
$$f(x, y) = x \sin y + y \cos x$$
; $\alpha = 120^{\circ}$

1.47.
$$f(x,y) = e^y \ln x - xe^x$$
; $\alpha = 30^\circ$

Számítsuk ki az alábbi függvények adott irány szerinti deriváltjait a megadott pontban!

1.48.
$$f(x,y) = x^3 - 5xy^2 + y^2 - 2x + 1; \ \alpha = 40^\circ, (x_0, y_0) = (1,0)$$

1.49.
$$f(x,y) = \sqrt{x^2 + y^2}$$
; $\alpha = 135^\circ$, $(x_0y_0) = (-5,5)$

1.50.
$$f(x,y) = x^2 + y^2$$
; $\alpha = 60^\circ$, $(x_0, y_0) = (\sqrt{3}, -1)$

1.51.
$$f(x,y) = \sin(xy)$$
; $\alpha = 150^{\circ}$, $(x_0, y_0) = (\frac{1}{4}, \pi)$

1.52.
$$f(x,y) = x^3 + 3xy + y^2$$
; $\alpha = 60^\circ$, $(x_0, y_0) = (1, 1)$

Számítsuk ki az alábbi függvények mind a négy másodrendű parciális deriváltját!

1.53.
$$f(x,y) = \ln \sqrt{x^2 + y^2}$$

1.54.
$$f(x,y) = \sqrt{x^3} + \sqrt{y^3}$$

1.55.
$$f(x,y) = \arctan \frac{x+y}{1-xy}$$

1.56.
$$f(x,y) = y - x \cdot e^y + x$$

1.57.
$$f(x,y) = x \cdot \sin(x+y) + y \cdot \sin(x+y)$$

1.58.
$$f(x,y) = e^{xy}$$

Igazoljuk, hogy a következő függvények harmonikusak, vagyis kielégítik az $f''_{xx} + f''_{yy} = 0$ másodrendű parciális differenciálegyenletet!

1.59.
$$f(x,y) = e^x \cos y$$

1.60.
$$f(x,y) = \arctan \frac{y}{x}$$

1.61.
$$f(x,y) = \frac{x}{x^2 + y^2}$$

1.5. Taylor polinom

Írjuk fel az alábbi kétváltozós függvények P_0 pont körül vett másodrendű Taylor polinomját!

1.62.
$$f(x,y) = \sqrt{x^2 + y^2}$$
; $P_0(1,3)$

1.63.
$$f(x,y) = e^{-(x^2+y^2)}$$
; $P_0(1,\frac{1}{2})$

1.64.
$$f(x,y) = 2x^2 - xy - y^2 - 6x - 3y + 5$$
; $P_0(1,-2)$

1.65.
$$f(x,y) = x^y$$
; $P_0(1,1)$

1.6. Szélsőérték magasabb dimenzióban

Vizsgáljuk meg, hogy az alábbi függvényeknek hol lehet lokális szélsőértéke, van-e, s ha létezik, maximum, vagy minimum!

1.66.
$$f(x,y) = x^2 + y^2$$

1.67.
$$f(x,y) = x^2 + xy + y^2 + 3x - y + 5$$

1.68.
$$f(x,y) = x^3 + 3xy + y^3$$

1.69.
$$f(x,y) = (x+1)^2 + 4(y-3)^2$$

1.70.
$$f(x,y) = x^2 - 3xy + y^2 - 1$$

1.71.
$$f(x,y) = 4x^2 + 2xy - 5y^2 + 2$$

1.72.
$$f(x,y) = x^2y^3(6-x-y)$$

1.73.
$$f(x,y) = x^4 + y^4 - x^2 - 2xy - y^2$$

1.74. Az $f(x,y) = \sin x + \sin y - \sin(x+y)$ függvényt tekintjük az

$$\{(x,y) \in [0,2\pi] \times [0,2\pi]\}$$

négyszögben.

1.75.
$$f(x,y) = (x^2 + 2y^2)e^{-(x^2+y^2)}, (x,y) \in \mathbb{R}^2.$$

- 1.76. Egy bádogkanna egymásra helyezett hengerből és kúpból áll. Térfogata V. Milyennek válasszuk a méreteket, hogy elkészítéséhez a legkevesebb bádogot használjuk?
- 1.77. 12-t osszuk három részre úgy, hogy a három szám szorzata maximális legyen!
- 1.78. Egy derékszögű hasáb egy csúcsába összefutó éleinek összege 45cm. Hogyan kell az éleket megválasztani, hogy a hasáb térfogata maximális legyen?
- **1.79.** Egy R sugarú körből maximális területű háromszöget kell kivágni. Mekkorák a háromszög oldalai?
- 1.80. 18-at osszuk fel három részre úgy, hogy az első rész négyzetének, a második köbének, és a harmadiknak a szorzata maximális legyen!

1.7. Feltételes szélsőérték

Határozzuk meg az adott kétváltozós függvényeknek előírt feltételek mellett vett feltételes szélsőértékeit!

1.81.
$$f(x,y) = xy$$
, feltétel: $x + y - 1 = 0$.

1.82.
$$f(x,y) = x^2 + y^2$$
, feltétel: $\frac{x}{a} + \frac{y}{b} = 1$.

1.83.
$$f(x,y) = x^2 - y^2$$
, feltétel: $3x + 2y + 5 = 0$.

1.84.
$$f(x,y) = \cos^2 x + \cos^2 y$$
, feltétel: $x - y = \frac{\pi}{4}$.

2. fejezet

Megoldások

1.1. Határérték, folytonosság

1.1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$$

- **1.2.** A sík összes pontjai, az $x^2 + y^2 = R^2$ kör pontjai kivételével.
- 1.3. Az első, és harmadik síknegyed pontjai, az x és y tengely pontjai azonban nem.
- 1.4. A sík összes pontjai, kivéve azokat a pontokat, melyre x + y = n, ahol n egész szám.
- **1.5.** $y^2 > 4x 8$.
- **1.6.** x > 0 és $2n\pi < y < 2(n+1)\pi$, (n egész szám).
- **1.7.** $x^2 + y^2 \le 1$ kör.
- **1.8.** $|x| \ge |y|$, de $x \ne 0$.
- **1.9.** A $2k\pi \le x^2 + y^2 \le (2k+1)\pi$, (k=0,1,2...).
- **1.10.** Az $x^2 + y^2 z^2 = 0$ kúp külseje, belevéve a határt is a kúp csúcsát kivéve.
- **1.11.** Minden véges $y \neq 0$ -ra

$$\frac{2xy-1}{y+1} = \frac{2x - \frac{1}{y}}{1 + \frac{1}{y}},$$

és így ha $x\to 2$ és $y\to \infty,$ akkor $f(x,y)\to 4.$

- **1.12.** $\lim f(x,y) = 0.$
- 1.13.

$$\lim_{x \to \infty} \lim_{y \to \infty} f(x, y) = 0, \qquad \lim_{y \to \infty} \lim_{x \to \infty} f(x, y) = 1.$$

1.14.

$$\lim_{x \to \infty} \lim_{y \to \infty} f(x, y) = \frac{1}{2}, \qquad \lim_{y \to \infty} \lim_{x \to \infty} f(x, y) = 1.$$

1.15. Mivel

$$|f(x,y)| = |x\sin\frac{1}{y} + y\sin\frac{1}{x}| \le |x\sin\frac{1}{y}| + |y\sin\frac{1}{x}| \le |x| + |y|$$

ezért

$$\lim_{x \to 0y \to 0} f(x, y) = 0.$$

Az ismételt határértékek azonban nem léteznek, ugyanis a

$$\lim_{y \to 0} (x \sin \frac{1}{y})$$

határérték nem létezik, s így sem a $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$ sem a másik ismételt határérték nem létezik.

1.16. Mivel $|\cos y| \le 1$, tehát korlátos, és $\lim_{x\to 0} x = 0$ és

$$\lim_{x \to 0} x \cdot \cos y = 0.$$

Mivel $\lim_{y\to\infty} x \cdot \cos y$ nem létezik, ezért a

$$\lim_{x \to y \to \infty} \lim_{y \to \infty} x \cdot \cos y$$

határérték sem létezik, viszont

$$\lim_{y \to \infty} \lim_{x \to 0} x \cdot \cos y = \lim_{y \to \infty} 0 = 0.$$

1.17. Mivel $\lim_{x\to 0} f(x,y) = 1$, ha $y \neq 0$, ezért

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = 1.$$

Hasonlóan $\lim_{x\to 0} \lim_{y\to 0} f(x,y) = -1$.

A $\lim_{x\to 0y\to 0} f(x,y)$ határérték nem létezik, ugyanis a függvénynek más a határértéke, ha az x tengely mentén, vagy ha az y tengely mentén tartunk az origóhoz.

1.18. Bár teljesül, hogy

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{y \to 0} \lim_{x \to 0} f(x, y) = 0,$$

mégis a

$$\lim_{x \to 0y \to 0} f(x, y)$$

határérték nem létezik. Ugyanis az $x = t \cdot \cos \alpha$, $y = t \cdot \sin \alpha$ félegyenesek mentén

$$f(t\cos\alpha, t\sin\alpha) = \frac{2 \cdot \sin\alpha \cdot \cos\alpha}{\cos^2\alpha + \sin^2\alpha} = \sin 2\alpha,$$

 α -tól függő állandó. Ezért egy α irányszögű egyenes mentén a határérték is sin 2α , és ez α -val együtt változik. A fenti határérték α -tól függően más és más értékű.

1.2. Parciális deriválás

1.19.
$$f'_x(x,y) = 2x - 5y - 6$$
 és $f'_y(x,y) = -5x + 6y + 7$.

1.20.
$$f'_x(x,y) = \frac{3}{\cos^2(3x - 5y)}$$
 és $f'_y(x,y) = \frac{-5}{\cos^2(3x - 5y)}$.

1.21.
$$f'_x(x,y) = \frac{1}{\sqrt{y^2 - x^2}}$$
 és $f'_y(x,y) = \frac{-x}{y\sqrt{y^2 - x^2}}$.

1.22.
$$f'_x(x,y) = (\frac{y}{x+y})^2$$
 és $f'_y(x,y) = (\frac{x}{x+y})^2$.

1.23.
$$f'_x(x,y) = \frac{3x^2 - 10xy}{2\sqrt{x^3 - 5x^2y + y^4}}$$
 és $f'_y(x,y) = \frac{-5x^2 + 4y^3}{2\sqrt{x^3 - 5x^2y + y^4}}$.

1.24.
$$f'_x(x,y) = \frac{7}{2x}$$
 és $f'_y(x,y) = \frac{2}{y}$.

1.25.
$$f'_x(x,y) = \frac{\sqrt{y}}{2\sqrt{x(1-xy)}}$$
 és $f'_y(x,y) = \frac{\sqrt{y}}{2\sqrt{x(1-xy)}}$.

1.26.
$$f'_x(x,y) = \frac{2 \cdot e^{2x-3y}(2x-3y-1)}{(2x-3y)^2}$$
 és $f'_y(x,y) = \frac{-3 \cdot e^{2x-3y}(2x-3y-1)}{(2x-3y)^2}$.

1.27.
$$f'_x(x,y) = \frac{-y}{x^2 + y^2}$$
 és $f'_y(x,y) = \frac{x}{x^2 + y^2}$.

1.28.
$$f'_x(1,-2) = -4$$
 és $f'_y(1,-2) = -1$.

1.29.
$$f'_x(1,2) = -\frac{1}{\sqrt{3}} = -0.5777$$
 és $f'_y(1,2) = \frac{1}{2\sqrt{3}} = 0.289$.

1.30.
$$f'_x(2, \frac{\pi}{8}) = \frac{\pi}{4} = 0,785 \text{ és } f'_y(2, \frac{\pi}{8}) = 4.$$

1.31.
$$f'_x(2,0) = \frac{1}{2}$$
 és $f'_y(2,0) = 0$.

1.32.
$$f'_x(1,8) = \frac{e}{3} = 0,906 \text{ és } f'_y(1,8) = \frac{e}{12} = 0,227.$$

1.33.
$$f'_x(x,y) = -\frac{1+\ln x}{1+\ln z}$$
 és $f'_y(x,y) = -\frac{1+\ln y}{1+\ln z}$.

1.34.
$$f'_x(x,y) = -\frac{z}{x+3y+5z}$$
 és $f'_y(x,y) = -\frac{3z}{x+3y+5z}$.

1.35.
$$f'_x(x,y) = -\frac{x(x^2+y^2+z^2-1)}{z(x^2+y^2+z^2-3)}$$
 és $f'_y(x,y) = -\frac{y(x^2+y^2+z^2-2)}{z(x^2+y^2+z^2-3)}$.

1.36.
$$f'_x(x,y) = -\frac{e^{x+y+2z}-3}{2e^{x+y+2z}-11}$$
 és $f'_y(x,y) = -\frac{e^{x+y+2z}-7}{2e^{x+y+2z}-11}$.

1.37.
$$f'_x(x,y) = -\frac{e^{x+y+z}-1}{e^{x+y+z}-3}$$
 és $f'_y(x,y) = -\frac{e^{x+y+z}-2}{e^{x+y+z}-3}$.

1.3. Érintősík

1.38.
$$17x - 8y - z = 16$$

1.39.
$$2x - y - 2\sqrt{3}z + \frac{\pi}{\sqrt{3}} = 0$$

1.40.
$$17x + 68y - 8z = 68$$

1.41.
$$z - (\frac{\pi}{4} - 1)y = 0$$

1.42.
$$\sqrt{\pi}x + \sqrt{\pi}y - (\sqrt{\pi} + 3) = 0$$

1.43.
$$x = y = -1$$

1.44.
$$x = 3$$
, $y = \frac{1}{2}$

1.4. Iránymenti derivált

1.45.
$$f'_{\alpha}(x,y) = \sqrt{2} \cdot e^{x+y^2} (\frac{1}{2} + y)$$

1.46. a.,
$$f'_{\alpha}(x,y) = -\sqrt{2} \cdot y \cdot e^{x} (1 - \frac{y}{2})$$

b., $f'_{\alpha}(x,y) = \frac{1}{2} (y \cdot \sin x - \sin y) + \frac{\sqrt{3}}{2} (x \cdot \cos y + \cos x)$

1.47.
$$f'_{\alpha}(x,y) = \frac{\sqrt{3}}{2} \left[\frac{1}{x} \cdot e^y - (x+1)e^x \right] + \frac{1}{2} \cdot e^y \cdot \ln x$$

1.48.
$$f'_{\alpha}(1,0) = \cos 40^{\circ} = 0,766$$

1.49.
$$f'_{\alpha}(-5,5) = 1$$

1.50.
$$f'_{\alpha}(3,-1)=0$$

1.51.
$$f'_{\alpha}(\frac{1}{4},\pi) = \frac{\sqrt{2}}{16} - \frac{\pi\sqrt{6}}{4} = -1,835$$

1.52.
$$f'_{\alpha}(1,1) = \sqrt{3}(\sqrt{3} + 2.5) = 7.33$$

1.53.
$$f_{xx}''(x,y) = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$
, $f_{xy}''(x,y) = f_{yx}''(x,y) = \frac{-2xy}{(x^2 + y^2)^2}$, $f_{yy}''(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$

1.54.
$$f''_{xx}(x,y) = \frac{3}{4\sqrt{x}}, f''_{xy}(x,y) = f''_{yx}(x,y) = 0, f''_{yy}(x,y) = \frac{3}{4\sqrt{y}}$$

1.55.
$$f''_{xx}(x,y) = \frac{-2x}{(1+x^2)^2}$$
, $f''_{xy}(x,y) = f''_{yx}(x,y) = 0$, $f''_{yy}(x,y) = \frac{-2y}{(1+x^2)^2}$

1.56.
$$f''_{xx}(x,y) = 0$$
, $f''_{xy}(x,y) = f''_{yx}(x,y) = -e^y$, $f''_{yy}(x,y) = -x \cdot e^y$

1.57.
$$f''_{xx}(x,y) = f''_{xy}(x,y) = f''_{yx}(x,y) = f''_{yy}(x,y) = 2 \cdot \cos(x+y) - (x+y)\sin(x+y)$$

1.58.
$$f_{xx}''(x,y) = y^2 \cdot e^{xy}, f_{xy}''(x,y) = f_{yx}''(x,y) = (1+xy)e^{xy}, f_{yy}''(x,y) = x^2 \cdot e^{xy}$$

1.5. Taylor polinom

1.62.

$$T_2(x,y) = \sqrt{10} + \frac{1}{\sqrt{10}}[(x-1) + 3(y-3)] + \frac{1}{2} \cdot \frac{1}{10\sqrt{10}}[9(x-1)^2 - 6(x-1)(y-3) + (y-3)^2].$$

1.63.

$$T_2(x,y) = e^{-\frac{5}{4}[1-2(x-1)-(y-\frac{1}{2})+(x-1)^2+$$

 $+ 2(x-1)(y-\frac{1}{2}-\frac{1}{2}(y-\frac{1}{2})^2].$

1.64.
$$z = T_2(x, y) = 5 + 2(x - 1)^2 - (x - 1)(y + 2) - (y + 2)^2$$

1.65.
$$T_2(x,y) = 1 + (x-1) + (x+1)(y-1)$$

1.6. Szélsőérték magasabb dimenzióban

- **1.66.** A P(0,0) pontban minimum van.
- **1.67.** A $P(-\frac{7}{3}, \frac{5}{3})$ pontban minimum van.
- **1.68.** A P(-1,-1) pontban maximum van, a P(0,0) pontban nincs szélsőérték.
- **1.69.** A P(-1,3) pontban minimum van.
- 1.70. Nincs szélsőérték.
- 1.71. Nincs szélsőérték.

- 1.72. A P(2,3) pontban maximum van.
- 1.73. A P(1,1) és P(-1,-1) pontokban minimum van, a P(0,0) pontban nincs szélsőérték.
- **1.74.** A $P(\frac{2\pi}{3}, \frac{2\pi}{3})$ pontban maximum van.
- 1.75. A P(0,0) pontban minimum van.
- 1.76.

$$r = \sqrt[3]{\frac{3V}{\pi(\sqrt{5}+3)}} = 0,567\sqrt[3]{V},$$

$$m_{henger} = 0,821\sqrt[3]{V}, \qquad m_{kup} = 0,507\sqrt[3]{V}.$$

- **1.77.** 4, 4, 4
- **1.78.** 15, 15, 15
- **1.79.** $a = \sqrt{3}R$.
- **1.80.** 6, 9, 3

1.7. Feltételes szélsőérték

1.81.
$$x = y = \frac{1}{2}$$
.

1.82.
$$x = \frac{ab^2}{a^2 + b^2}$$
; $y = \frac{a^2b}{a^2 + b^2}$.

1.83.
$$x = -3$$
; $y = 2$.

1.84.
$$x = \frac{\pi}{8} + \frac{k\pi}{2}$$
; $y = -\frac{\pi}{8} + \frac{k\pi}{2}$, $k = \pm 1, \pm 2, ...$