Revision Notes on Alcohols, Phenols and Ether:

Alcohols

Preparation of Alcohols:

- By hydrolysis of haloalkanes : R-X+aq. $KOH \rightarrow ROH+KX$
- By reduction of Carbonyl compounds
- By the action of Grignard's Reagent on aldehydes, ketones and esters
- By Aliphatic Primary Amines: RCH₂NH₂ + HNO₂ → RCH₂OH + N₂ + H₂O
- Hydration of alkenes:
- Oxymercuration-demercuration:
- Hydroboration-oxidation:
- Hydroxylation of alkenes:

Physical Properties of Alcohol:

- Lower alcohols are liquid at room temperature while higher ones are solid.
- High boiling point due to presence of intermolecular hydrogen bonding. Order of Boiling Point: primary > secondary > tertiary
- Solubility in water decreases with increase in molecular mass due to decrease in extent of intermolecular hydrogen bonding.

Chemical Properties of Alcohol:

- Alcohol's reaction with metal: ROH + Na→2RO⁺Na⁻ + H₂
- Formation of Halides:
 - \circ 3ROH + P+I2 \rightarrow 3RI + H₃PO₃
 - $\circ ROH + SOCl_2/PCl_2/PCl_5 \rightarrow RCl$
 - \circ ROH+HX \rightarrow RX
 - o ROH+ NaBr,H₂SO₄→R-Br
 - ∘ ROH+ Zn+HCl→R-Cl
 - \circ R₂C-OH alcohol + HCl \rightarrow R₂CCl
- Reaction with HNO₃: R-OH + HO-NO₂→ R-O-NO₂
- Reaction with carboxylic acid (Esterification): R-OH+R'-COOH+H+↔ R'-COOR
- Reaction with Grignard reagent: R'OH + RMgX → RH + R'OMgX
- Reduction of alcohol : $ROH + 2HI + Red P \rightarrow RH + I_2 + H_2O$

- **Dehydration of Alcohol:** Dehydration of alcohols takes place in acidic medium. Intra-molecular dehydration leads to the formation of alkene while inter molecular dehydration which forms ether. Ease of dehydration: $3^{\circ} > 2^{\circ} > 1$
- Satyzeff's Rule: Elimination through b carbon containing minimum b hydrogen
- Oxidation of Alcohol:

$$RCH_2$$
-OH + [O] \rightarrow RCHO \rightarrow RCOOH
RCH₂-OH + [O] +PCC \rightarrow RCHO

Haloform Reaction: Compound containing CH₃CO- group (or compound on oxidation gives CH₃CO – group) which is attached with a C or H, in presence of halogen and mild alkali gives haloform CH₃-CH₂-COCH₂-CH₃, CH₃-CO-Cl, CH₃COOH will not respond to haloform reaction wile CH₃CH₂OH will respond to haloform Reaction.

Test for Alcohols:

1. Lucas Test:

Alcohols + ZnCl₂ + HCl

- 1° Alcohol: RCH₂OH + ZnCl₂ +HCl → No reaction at room temperature
- 20 Alcohol: R_2 CHOH + Z_1 Cl₂ +HCl \rightarrow R_2 CHCl White turbidity after 5-10 min.
- 30 Alcohol: R_3 CHOH + $ZnCl_2$ +HCl \rightarrow R_3 CHCl white turbidity instantaneously.

2. Victor Meyer Test

Phenols:

Preparation:

В

Physical Properties of Phenols

- Phenol is a colorless, toxic, corrosive, needle shaped solid.
- Phenol soon liquifies due to high hygroscopic nature.
- Phenol is less soluble in water, but readily soluble in organic solvents.
- Simplest phenols, because of hydrogen bonding have quite high boiling points.
- o-nitrophenol is, steam volatile and also is less soluble in water because of intramolecular hydrogen bonding

Chemical Properties of Phenols

a) Formation of Esters

Phenyl esters (RCOOAr) are not formed directly from RCOOH. Instead, acid chlorides or anhydrides are reacted with ArOH in the presence of strong base

$$(CH_3CO)_2O + C_6H_5OH + NaOH \rightarrow CH_3COOC_6H_5 + CH_3COONa + H_2O$$

Phenyl acetate

$$C_6H_5COC1 + C_6H_5OH + NaOH \rightarrow C_6H_5COOC_6H_5 + Na^+C\Gamma + H_2O$$

Phenyl benzoate

 $\textbf{e) Electrophilic Substitution} \textbf{The } \\ -\textbf{OH} \ \text{and even more so the } \\ -\textbf{O(phenoxide)} \ \text{are strongly activating ortho }, \\ \textbf{para - directing} \ \\ \textbf{orthophilic Substitution} \$

Special mild conditions are needed to achieve electrophilic monosubstituion in phenols because their high reactivity favors both polysubstitution and oxidation

B

Ethers:

Physical Properties of Ethers

- Physical state, colour and odour: Dimethyl ether and ethyl methyl ether is gas at ordinary temperature while the other lower homologues of ethers are colourless liquid with characteristic 'ether smell'.
- Dipole nature: Ethers have a tetrahedral geometry i.e., oxygen is sp³ hybridized. The C—O—C angle in ethers is 110°.
 Because of the greater electronegativity of oxygen than carbon, the C—O bonds are slightly polar and are inclined to each other at an angle of 110°, resulting in a net dipole moment.

Structure of Ether

Bond angle of ether is greater than that of tetrahedral bond angle of 109°28'.

Solubility and boiling point: Due to the formation of less degree of hydrogen bonding, ethers have lower boiling point than
their corresponding isomeric alcohols and are slightly soluble in water.

Preparation of Ethers:

a) From alcohols:

Order of dehydration of alcohol leading to formation of ethers: $1^{\circ} > 2^{\circ} > 3^{\circ}$

b) Williamson's synthesis:

$$R-X+Na^+-O-R' \rightarrow R-O-R'+Na^+X^-$$

In case of tertiary substrate elimination occurs giving alkenes.

From alkenes:.

From Grignard reagent: Treating a - halo ethers with suitable Grignard reagents.

On standing in contact with air, most aliphatic ethers are converted slowly into unstable peroxides. The presence of peroxides is indicated by formation of a red colour when the ether is shaken with an aqueous solution of ferrous ammonium sulfate and potassium thiocyanate

?

i) Reaction with acid chlorides and anhydrides:		
j) Electrophilic substitution reactions		

Expoxides or Oxiranes:

Preparation

a) Oxidation of ethylene :