Miscellaneous notes on JIE R&R of SOP_Repeated

Legislative constraint as a function of \boldsymbol{e}

- I thought it would be positive at e=0 and turn negative as e increases
- What does it mean that for some values it's negative at 0, becomes positive, and then goes negative again?
 - For sure I have to be careful in numerical examples

Numerical examples

$$\delta_L = \delta_{ML} = .95$$
 E=.35 E=.4 E=.41 E=.42 E=.45 au^{tw} .074 .0654 e^{tw} .00123 T = 2 .07500 .057407 T = 3 .074716 .070243 .066284 .0570802 T = 4 .074708 .070233 .066275 .0570806 T = 5 .074795 .07033 .06638 .057185 T = 6 .1080 .07492 T = 7 .1081 .057

I have another sheet of notes that conflicts with the first column. It just says " $\delta = .95$ ":

$$\begin{array}{ccc} & & \text{E=.35} \\ \tau^{tw} & .1213 \\ e^{tw} & .006003 \\ T = 3 & .1023044 \\ T = 4 & .1022411 \\ T = 5 & .1022427 \\ T = 6 & .10227 \\ T = 7 & .102305 \end{array}$$

This one just says " $\delta = .99$ ":

This has the note, "This at least works in the direction I thought it would" with " $\delta_L = .94$, $\delta_{ML} = .95$ ":

$$\begin{array}{ccc} & & \text{E=.4} \\ \tau^{tw} & & \\ e^{tw} & & \\ T = 4 & .07464 \\ T = 5 & .07421 \\ T = 6 & .07481 \\ T = 7 & .07492 \end{array}$$

("Really want to know if reducing δ_L — making future term less important — will give me the σ result I've been after; really, no result at all; depends on other parameters.)

Some summaries

- $E = .4, \, \delta_L = .99, \, \delta_{ML} = .95, \, e_{tw} = .00232, \, \tau^{tw} = .08185.$ Optimal $\tau^a = .07494$ at T = 3.
- E=.5, assume I kept $\delta_L=.99$, $\delta_{ML}=.95$. Optimal $\tau^a=.04864$ at T=3.
- E = .4, $\delta_L = \delta_{ML} = .99$, $e_{tw} = .00232$, $\tau^{tw} = .08185$. Optimal $\tau^a = .07470$ at T = 3.
- E = .4, $\delta_L = .99$, $\delta_{ML} = .5$, $e_{tw} = .00232$, $\tau^{tw} = .08185$. Optimal $\tau^a = .07802$ at T = 2.
- E = .4, $\delta_L = .99$, $\delta_{ML} = .75$, $e_{tw} = .00232$, $\tau^{tw} = .08185$. Optimal $\tau^a = .07629$ at T = 3.

Trying to understand what is really going on with constraint in terms of T

- Want to get good intuition for why T can go up as $\sigma \downarrow$.
 - Not obvious that it always does; I think it's possible that the direction of T in response to σ is indeterminant
- I think I need to show effect of σ on \overline{e} first (I have informally that $\sigma \uparrow \Rightarrow \overline{e} \downarrow$)
 - Then, impact of σ on τ^a . Next look to see if net profits at τ^a increase more than those at τ^{tw} , then lobby's future incentives are muted

Result 1. $\frac{d\overline{e}}{d\sigma} > 0$

Proof: Corollary 4 shows that $\frac{d\overline{e}}{d\gamma} < 0$. All that is left is to show that $\frac{d\gamma}{d\sigma} < 0$.

• The derivative of $\gamma = 1 + \frac{1}{\sigma}e^{\sigma}$ w.r.t. σ is

$$\frac{1}{\sigma} \ln \sigma e^{\sigma} + e^{\sigma} \left(-\frac{1}{\sigma^2} \right)$$

Both terms are negative given $\sigma \in (0,1)$ and $e \geq 0$. QED.

Now for the result on τ^a . Differentiating the lobby's condition with respect to σ , we have

$$\frac{\partial \Pi}{\partial \tau^a} \frac{\mathrm{d} \tau^a}{\mathrm{d} \gamma} \frac{\mathrm{d} \gamma}{\mathrm{d} \sigma} + \frac{\partial \Pi}{\partial \overline{e}} \frac{\mathrm{d} \overline{e}}{\mathrm{d} \gamma} \frac{\mathrm{d} \gamma}{\mathrm{d} \sigma} + \frac{\partial \Pi}{\partial \gamma} \frac{\mathrm{d} \gamma}{\mathrm{d} \sigma} = 0$$

$$\frac{\mathrm{d}\tau^a}{\mathrm{d}\gamma}\frac{\mathrm{d}\gamma}{\mathrm{d}\sigma} = \left[-\frac{\frac{\partial\Pi}{\partial\bar{e}}\frac{\mathrm{d}\bar{e}}{\mathrm{d}\gamma} + \frac{\partial\Pi}{\partial\gamma}}{\frac{\partial\Pi}{\partial\tau^a}} \right] \frac{\mathrm{d}\gamma}{\mathrm{d}\sigma} \tag{1}$$

We know from Corollary 5 that $\frac{d\tau^a}{d\gamma}$ is positive, and we've just shown that $\frac{d\gamma}{d\sigma}$ is negative. Thus $\frac{d\tau^a}{d\sigma} < 0$.

Write constraint:

$$\overline{e}(\tau^a) - \pi(\tau^b(\overline{e}(\tau^a))) + \pi(\tau^a) - e_a - \frac{\delta_{\mathcal{L}} + \delta_{\mathcal{L}}^{T+1}}{1 - \delta_{\mathcal{L}}} \left[\pi(\tau^{tw}) - e_{tw} - \pi(\tau^a) + e_a \right] = 0$$

For now, assume this has an interior solution so calculus works.

First, what does T do to $\overline{e}(\tau^a)$?

By the Implicit Function Theorem:

$$\frac{\mathrm{d}\overline{e}}{\mathrm{d}T} = -\frac{\frac{\partial\Omega}{\partial\overline{T}}}{\frac{\partial\Omega}{\partial\overline{e}}} = \frac{-\frac{\delta_{\mathrm{ML}}^{T+1}\ln\delta_{\mathrm{ML}}}{1-\delta_{\mathrm{ML}}} \left[W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau^a}) - W_{\mathrm{ML}}(\gamma(\overline{e}), \boldsymbol{\tau^{tw}}) \right]}{\frac{\delta_{\mathrm{ML}}-\delta_{\mathrm{ML}}^{T+1}}{1-\delta_{\mathrm{ML}}} \frac{\partial\gamma}{\partial\overline{e}} \left[\pi(\tau^a) - \pi(\tau^{tw}) \right] - \frac{\partial\gamma}{\partial\overline{e}} \left[\pi(\tau^b(\overline{e})) - \pi(\tau^a) \right]} > 0$$
(2)

So if $T \uparrow$ then $\overline{e} \uparrow$.

Now, want to know about effect of T on τ^a .

$$\frac{\partial \Pi}{\partial \tau^a} \frac{\mathrm{d}\tau^a}{\mathrm{d}T} + \frac{\partial \Pi}{\partial \overline{e}} \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} + \frac{\partial \Pi}{\partial T} = 0$$

Because $\frac{\partial \Pi}{\partial T} = \frac{\ln \delta_{\rm L} \delta_{\rm L}^{T+1}}{1-\delta_{\rm L}} [\pi(\tau^{tw}) - e_{tw} - \pi(\tau^a) + e_a]$, we are looking for

$$\frac{\mathrm{d}\tau^{a}}{\mathrm{d}T} = -\frac{\frac{\partial\Pi}{\partial\overline{e}}\frac{\mathrm{d}\overline{e}}{\mathrm{d}T} + \frac{\partial\Pi}{\partial T}}{\frac{\partial\Pi}{\partial\tau^{a}}} = \frac{-\left(1 - \frac{\mathrm{d}\pi}{\mathrm{d}\overline{e}}\right) \cdot \frac{\mathrm{d}\overline{e}}{\mathrm{d}T} - \frac{\ln\delta_{\mathrm{L}}\delta_{\mathrm{L}}^{T+1}}{1 - \delta_{\mathrm{L}}}\left[\pi(\tau^{tw}) - e_{tw} - \pi(\tau^{a}) + e_{a}\right]}{\left(1 + \frac{\delta_{\mathrm{L}} - \delta_{\mathrm{L}}^{T+1}}{1 - \delta_{\mathrm{L}}}\right) \left[\frac{\partial\pi(\tau^{a})}{\partial\tau^{a}} - \frac{\partial e_{a}}{\partial\tau^{a}}\right]} \tag{3}$$

The proof of Corollary ?? shows that $(1 - \frac{d\pi}{d\overline{e}})$ is positive, and the above result shows that $\frac{d\overline{e}}{dT}$ is positive. The second term is positive since net profits are maximized at e_{tw} and $\delta_L < 1$ so that its log is negative. With the leading negative signs, the numerator has both a negative and a positive part. This is not changed by the denominator, as the arguments given in the proof of Corollary ?? show that the denominator is positive.

(Again, assuming) as $\sigma \uparrow$, $\overline{e} \downarrow$ for a given τ^a .

- So τ^a has to be raised to satisfy lobby's constraint
 - Net profits are greatest at τ^{tw} , so relative gap between net profits at τ^a and τ^{tw} (future) closes faster than that between break profits and trade agreement profits (present)
- How much τ^a adjusts depends on magnitude of $\frac{\delta_{\rm L} + \delta_{\rm L}^{T+1}}{1 \delta_{\rm L}}$
- $\pi(\tau^b(\overline{e}(\tau^a))) \overline{e}(\tau^a)$ is negative, gets less negative when \overline{e} is reduced.
- $\pi(\tau^a) e_a$ is positive, becomes larger as τ^a rises

$$0 \ge -\left[\overline{e}(\tau^a) - \pi(\tau^b(\overline{e}(\tau^a))) + \pi(\tau^a) - e_a\right] + \frac{\delta_{\mathcal{L}} + \delta_{\mathcal{L}}^{T+1}}{1 - \delta_{\mathcal{L}}} \left[\pi(\tau^{tw}) - e_{tw} - \pi(\tau^a) + e_a\right]$$

Where present part of constraint in on left and future part is on right. Remember present part must be negative.

Let $\gamma(e) = 1 + \frac{1}{1-\theta}e^{1-\theta}$. Or $\gamma(e) = 1 + \frac{1}{\sigma}e^{\sigma}$.

- $\frac{\partial \gamma}{\partial e} = e^{\sigma 1} > 0 \ \forall \sigma$
- $\frac{\partial^2 \gamma}{\partial \sigma \partial e} = \ln e \cdot e^{\sigma 1} < 0 \text{ for } e < 1$

i.e. as $\sigma \downarrow$, $\frac{\partial \gamma}{\partial e} \uparrow$.

Can I show that the optimal T can go either way when σ changes? That is, a counterexample to my quasi-result?

- My result says that as lobby gets stronger $(\frac{\partial \gamma}{\partial e} \uparrow$, so $\sigma \downarrow$), T should have to decrease.
- If optimal T increases when σ decreases (i.e. if T is decreasing in σ), this is a counterexample.
 - I think it's possible that both cases can happen depending on other parameters, like δ .

Look at legislature's constraint:

$$\frac{\delta_{\mathrm{ML}} - \delta_{\mathrm{ML}}^{T+1}}{1 - \delta_{\mathrm{ML}}} \left[W_{\mathrm{ML}}(\gamma(e_b), \boldsymbol{\tau^a}) - W_{\mathrm{ML}}(\gamma(e_b), \boldsymbol{\tau^{tw}}) \right] \ge W_{\mathrm{ML}}(\gamma(e_b), \tau^b(e_b), \tau^b(e_b), \tau^{*a}) - W_{\mathrm{ML}}(\gamma(e_b), \boldsymbol{\tau^a})$$

If T is too small, future gap can be smaller than current-period gap. So if T gets too short, can't enforce on legislature.

Note that changing σ changes τ^{tw}

- e_{tw} is solution to $\frac{\partial \pi}{\partial \tau} \frac{\partial \tau}{\partial \gamma} \frac{\partial \gamma}{\partial e} = 1$; or $\frac{\partial \pi}{\partial \tau} \frac{\partial \tau}{\partial \gamma} = \frac{1}{\frac{\partial \gamma}{\partial e}}$
- When $\frac{\partial \gamma}{\partial e} \uparrow$, RHS \downarrow , so LHS must go down.