

Table 14-21 LTE700-FDD71 #1 Head

			LTE7	'00-FDD71#1	Head			
Ambient Te	emperature:	22.5				Liquid Ter	mperature:	22.3
	Device	SAR	Meas	sured SAR [N/kg]	Repo	orted SAR [\	N/kg]
Mode	orientation	measureme	133372	133297	133222	133372	133297	133222
	Offeritation	nt	М	М	М	М	М	М
		e-up	24.50	24.50	24.50		Scaling factor	
	Measured F	ower [dBm]	22.93	23.00	23.17	1.44	1.41	1.36
		1g SAR			0.272			0.37
	Left Cheek	10g SAR			0.205			0.28
		Deviation			-0.1			-0.10
		1g SAR			0.152			0.21
20MHz	Left Tilt	10g SAR			0.103			0.14
QPSK1RB		Deviation			0.04			0.04
		1g SAR			0.262			0.36
	Right Cheek	10g SAR			0.197			0.27
		Deviation			0.09			0.09
	Right Tilt	1g SAR			0.065			0.09
		10g SAR			0.048			0.07
		Deviation			0.02			0.02
		SAR	Measured SAR [W/kg]			Repo	orted SAR [N/kg]
TRUE	Device	measureme	133372	133297	133222	133372	133297	133222
	orientation	nt	М	н	Н	М	Н	Н
	Tun	e-up	23.50	23.50	23.50		Scaling factor	*
	Measured F	Power [dBm]	21.93	22.05	21.99	1.44	1.40	1.42
		1g SAR		0.193			0.27	
	Left Cheek	10g SAR		0.145			0.20	
		Deviation		0.12			0.12	
		1g SAR		0.101			0.14	
20MHz	Left Tilt	10g SAR		0.076			0.11	
QPSK50%		Deviation		-0.04			-0.04	
RB		1g SAR		0.222			0.31	
	Right Cheek			0.168			0.23	
		Deviation		0.09			0.09	
		1g SAR		0.149			0.21	
	Right Tilt	10g SAR		0.117			0.16	
	Right Hit	Deviation		0.06			0.06	

Table 14-22 LTE700-FDD71 #1 Body

			LTE7	'00-FDD71#1	Body			
Ambient Te	emperature:	22.5				Liquid Ter	mperature:	22.3
	ъ.	SAR	Meas	sured SAR [W/kg]	Rep	orted SAR [V	V/kg]
Mode	Device	measureme	133372	133297	133222	133372	133297	133222
	orientation	nt	М	М	М	М	М	М
	Tun	e-up	24.50	24.50	24.50		Scaling factor	r*
	Measured F	ower [dBm]	22.93	23.00	23.17	1.44	1.41	1.36
		1g SAR			0.28			0.38
	Front	10g SAR			0.217			0.30
		Deviation			0.02			0.02
		1g SAR			0.388			0.53
	Rear	10g SAR			0.295			0.40
201411-		Deviation			-0.2			-0.20
20MHz		1g SAR			0.137			0.19
QPSK1RB	Left edge	10g SAR			0.096			0.13
		Deviation			0.05			0.05
		1g SAR			0.184			0.25
	Right edge	10g SAR			0.13			0.18
		Deviation			0.06			0.06
		1g SAR			0.073			0.10
	Bottom edge	10g SAR			0.044			0.06
		Deviation			0.08			0.08
		SAR	Measured SAR [W/kg]			Rep	orted SAR [V	V/kg]
Mode	Device	measureme	133372	133297	133222	133372	133297	133222
	orientation	nt	М	н	н		-	
	Tun	e-up	23.50	23.50	23.50		Scaling factor	r*
	Measured F	ower [dBm]	21.93	22.05	21.99	1.44	1.40	1.42
		1g SAR		0.221			0.31	
	Front	10g SAR		0.17			0.24	
	11.2.2.2	Deviation		0.06			0.06	
		1g SAR		0.297			0.41	
//************************************	Rear	10g SAR		0.226			0.32	
20MHz		Deviation		0.05			0.05	
QPSK50%		1g SAR		0.176			0.25	
RB	Left edge	10g SAR		0.124			0.17	
	tis mi attiti	Deviation		0.09			0.09	
		1g SAR		0.2			0.28	
	Right edge	10g SAR		0.143			0.20	
		Deviation		0.11			0.11	
		1g SAR		0.057	L		0.08	
	Bottom edge	10g SAR		0.034			0.05	
		Deviation		0.04			0.04	

14.2 Full SAR

Test Band	Channel	Frequency	Tune-Up	Measured Power	Test Position	Measured 10g SAR	Measured 1g SAR	Reported 10g SAR	Reported 1g SAR	Power Drift	Figure
GSM850	251	848.8 MHz	32.5	31.54	Right Cheek	0.13	0.168	0.16	0.21	0.2	<u>Fig A. 1</u>
GSM850	251	848.8 MHz	28.5	27.49	Rear	0.215	0.386	0.27	0.49	-0.05	<u>Fig A. 2</u>
PCS1900	810	1909.8 MHz	30.3	29.44	Right Cheek	0.153	0.265	0.19	0.32	-0.11	Fig A.3
PCS1900	810	1909.8 MHz	25	24.07	Bottom edge	0.211	0.424	0.26	0.53	-0.03	Fig A. 4
WCDMA1900-BII	9262	1852.4 MHz	24	23.37	Right Cheek	0.301	0.515	0.35	0.60	0.01	Fig A. 5
WCDMA1900-BII	9262	1852.4 MHz	24	23.37	Front	0.434	0.719	0.50	0.83	0.09	<u>Fig A. 6</u>
WCDMA1700-BIV	1513	1752.6 MHz	24	23.88	Left Cheek	0.214	0.348	0.22	0.36	-0.04	<u>Fig A. 7</u>
WCDMA1700-BIV	1412	1732.4 MHz	24	23.94	Front	0. 595	0.987	0.60	1.00	0.06	<u>Fig A. 8</u>
WCDMA850-BV	4233	846.6 MHz	24	23.44	Right Cheek	0.172	0.222	0.20	0.25	0.14	Fig A. 9
WCDMA850-BV	4233	846.6 MHz	24	23.44	Rear	0.181	0.328	0.21	0.37	0.03	Fig A. 10
LTE1900-FDD2	19100	1900 MHz	24	23.44	Right Cheek	0.27	0.465	0.31	0.53	0.13	Fig A. 11
LTE1900-FDD2	19100	1900 MHz	24	23.44	Rear	0.365	0.689	0.42	0.78	0.08	Fig A. 12
LTE850-FDD5	20600	844 MHz	24.5	23.47	Right Cheek	0.186	0.243	0.24	0.31	0.11	Fig A. 13
LTE850-FDD5	20600	844 MHz	24.5	23.47	Rear	0.193	0.348	0.24	0.44	-0.04	Fig A. 14
LTE700-FDD12	23060	704 MHz	24.5	23.50	Right Cheek	0.161	0.203	0.20	0.26	0.19	Fig A. 15
LTE700-FDD12	23060	704 MHz	24.5	23.50	Rear	0.309	0.4	0.39	0.50	0.04	Fig A. 16
LTE750-FDD13	23230	782 MHz	24	22.92	Left Cheek	0.103	0.131	0.13	0.17	0.16	Fig A. 17
LTE750-FDD13	23230	782 MHz	24	22.92	Rear	0.162	0.296	0.21	0.38	0.06	Fig A. 18
LTE1700-FDD66	132322	782 MHz	24	23. 23	Left Cheek	0.188	0.303	0.22	0.36	-0.01	Fig A. 19
LTE1700-FDD66	132072	782 MHz	24	23.01	Rear	0.378	0.688	0.47	0.86	0.03	Fig A. 20
LTE700-FDD71	133222	782 MHz	24.5	23.17	Left Cheek	0.205	0.272	0.28	0.37	-0.1	Fig A. 21
LTE700-FDD71	133222	782 MHz	24.5	23. 17	Rear	0. 295	0.388	0.40	0.53	-0.2	Fig A. 22

14.3 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 802.11b DSSS using the <u>initial test position</u> procedure.

Note1: When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the reported SAR is \leq 0.8 W/kg.

Note2: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

Note3: According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

WLAN2450 #1 Head Fast SAR Ambient Temperature: 22.5 Liquid Temperature: 22.3 Measured SAR [W/kg] Reported SAR [W/kg] Device SAR Rate orientation measurement 11 1 2412 MHz 2462 MHz 2437 MHz Tune up 20.5 20.5 20.5 Scaling factor* Slot Average Power [dBm] 20.18 19.96 20.15 1.08 1.13 1.08 1g Fast SAR 0.436 0.47 10g SAR Left Cheek 0.209 0.22 Deviation -0.01 -0.01 1g Fast SAR 0.355 0.38 802.11b Left Tilt 10g SAR 0.177 0.19 Deviation 0.08 5.5Mbps 0.08 1g Fast SAR 0.263 0.28 10g SAR 0.132 Right Cheek 0.14 Deviation -0.04 -0.04 1g Fast SAR 0.222 0.24 Right Tilt 10g SAR 0.111 0.12

Deviation

-0.06

Table 14-23 WLAN2450 #1 Head Fast SAR

-0.06

Table 14-24 WLAN2450 #1 Head Full SAR

			WLAN2	450 #1 Head F	ull SAR				
Ambient Te	emperature:	22.5				Liquid Ter	mperature:	22.3	
	Device	SAR	Mea	sured SAR [V	V/kg]	Reported SAR [W/kg]			
Rate	orientation		11	6	1	11	6	1	
	onemation	measurement	2462 MHz	2437 MHz	2412 MHz	11	0	•	
	Tur	ie up	20.5	20.5	20.5	:	Scaling factor	*	
	Slot Average	Power [dBm]	20.18	19.96	20.15	1.08	1.13	1.08	
	Left Cheek	1g Full SAR	0.475			0.51			
		10g SAR	0.219			0.24			
		Deviation	-0.01			-0.01			
	Left Tilt	1g Full SAR	0.385			0.41			
802.11b		10g SAR	0.161			0.17			
5.5Mbps		Deviation	0.02			0.02			
		1g Full SAR							
	Right Cheek	10g SAR							
		Deviation							
		1g Full SAR							
	Right Tilt	10g SAR							
	•	Deviation							

Table 14-25 WLAN2450 #1 Body Fast SAR

			WLAN2	450 #1 Body Fa	st SAR				
Ambient To	emperature:	22.5				Liquid Temperature: 22.			
	Device	SAR	Mea	sured SAR [V	V/kg]	Reported SAR [W/kg]			
Rate			11	6	1	44	6	4	
	orientation	measurement	2462 MHz	2437 MHz	2412 MHz	11	6	1	
	Tur	ne up	20.5	20.5	20.5		Scaling factor	1	
	Slot Average	Power [dBm]	20.18	19.96	20.15	1.08	1.13	1.08	
	Front	1g Fast SAR	0.095			0.10			
		10g SAR	0.0526			0.06			
		Deviation	0.01			0.01			
		1g Fast SAR	0.168			0.18			
802.11b	Rear	10g SAR	0.0853			0.09			
5.5Mbps		Deviation	-0.04			-0.04			
		1g Fast SAR	0.116			0.12			
	Top edge	10g SAR	0.0596			0.06			
		Deviation	-0.04			-0.04			
		1g Fast SAR	0.0794			0.09			
	Right edge	10g SAR	0.042			0.05			
		Deviation	0.03			0.03			

Table 14-26 WLAN2450 #1 Body Full SAR

	WLAN2450 #1 Body Full SAR										
Ambient Te	emperature:	22.5				Liquid Ter	mperature:	22.3			
	Device orientation	SAR	Measured SAR [W/kg]			Reported SAR [W/kg]					
Rate		measurement -	11	6	1	11	6	4			
			2462 MHz	2437 MHz	2412 MHz	- 11	0				
	Tune up		20.5	20.5	20.5	:	*				
802.11b	Slot Average Power [dBm]		20.18	19.96	20.15	1.08	1.13	1.08			
5.5Mbps		1g Full SAR	0.181			0.19					
J.JWIDPS	Rear	10g SAR	0.0904			0.10					
		Deviation	-0.04			-0.04					

	According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below										
Frequency Test Position Actual duty maximum duty Reported Scaled reported						Figure					
MHz	Ch.	rest rosidon	factor	factor	SAR(1g)(W/kg)	SAR(1g)(W/kg)	rigure				
2462 MHz 11 Left Cheek 100.00% 100% 0.51 0.51 Fig.A.23											

	According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below										
Frequ	iency	Test Position	,	maximum duty	Reported SAR(1g)(W/kg)	Scaled reported SAR(1g)(W/kg)	Figure				
MHz	Ch.		factor	factor	SAR(Ig)(W/kg)	SAR(Ig)(W/kg)					
2462 MHz	2462 MHz 11 Rear 100.00% 100% 0.19 0.19 Fig.A.24										

SAR is not required for OFDM because the 802.11b adjusted SAR $\, \leqslant \,$ 1.2 W/kg.

Picture 14.1 Duty factor plot CH11

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Mode	СН	Freq	Test Poisition	Original SAR (W/kg)	First Repeated SAR(W/kg)	The Ratio
WCDMA1700-BIV	1412	1732.4 MHz	Front	0.987	0.986	1.00

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.1	weasurement on	CCIta	inty for 1401	mai OAIT i	CSIS	(00011	1112	, OI 12,		
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system				_					
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	80
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
			Test	sample related	ì			•		
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phant	tom and set-uj	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

17

18

19

20

Phantom uncertainty

Liquid conductivity

Liquid conductivity

permittivity

(target)

(meas.)

Liquid

В

В

A

В

4.0

5.0

2.06

5.0

(Combined standard uncertainty	$u_c^{'} =$	$=\sqrt{\sum_{i=1}^{21}c_i^2u_i^2}$					9.55	9.43	257
_	inded uncertainty fidence interval of	1	$u_e = 2u_c$					19.1	18.9	
16.2	Measurement U	ncerta	ainty for No	ormal SAR	Tests	(3~6	GHz)	1	1	1
No.	Error Description	Type	Uncertainty	1	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system		1	1		1	1	1	1	1
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	1					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞

Phantom and set-up

R

R

N

R

 $\sqrt{3}$

 $\sqrt{3}$

1

 $\sqrt{3}$

1

0.64

0.64

0.6

1

0.43

0.43

0.49

2.3

1.8

1.32

1.7

2.3

1.2

0.89

1.4

 ∞

 ∞

43

	(target)									
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	inded uncertainty fidence interval of	1	$u_e = 2u_c$					21.4	21.1	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
110.	Entir Description	Турс	value	Distribution	וען.	1g	10g	Unc.	Unc.	of	
			varue	Distribution		18	10g	(1g)	(10g)	freedo	
								(1g)	(10g)	m	
Meas	Measurement system										
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8	
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8	
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
14	Fast SAR z- Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8	
			Test	sample related	l						
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5	
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	
			Phant	tom and set-uj	p						
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	

19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c' =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
Expanded uncertainty (confidence interval of 95 %)		ı	$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Mea	Measurement system										
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8	
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8	
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
14	Fast SAR z- Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	80	
	Test sample related										
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	

©Copyright. All rights reserved by CTTL.

No. I18Z60479-SEM03 Page 72 of 179

16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
	Phantom and set-up									
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c' =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
Expanded uncertainty (confidence interval of 95 %)		ı	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 24, 2018	One year	
02	Power meter	NRVD	102083	Nevember 01, 2017	One year	
03	Power sensor	NRV-Z5	100542	November 01, 2017	One year	
04	Signal Generator	E4438C	MY49071430	January 2,2018	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	E5515C	MY50263375	January 23, 2018	One year	
07	BTS	CMW500	149646	October 31, 2017	One year	
08	E-field Probe	SPEAG EX3DV4	7464	September 12,2017	One year	
09	DAE	SPEAG DAE4	1525	October 2, 2017	One year	
10	Dipole Validation Kit	SPEAG D750V3	1017	July 19, 2017	One year	
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 19, 2017	One year	
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 21, 2017	One year	
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 26, 2017	One year	
14	Dipole Validation Kit	SPEAG D2450V2	853	July 21, 2017	One year	

^{***}END OF REPORT BODY***

ANNEX A Graph Results

GSM850 CH251 Right Cheek

Date: 4/23/2018

Electronics: DAE4 Sn1525 Medium: Head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.905 \text{ mho/m}$; $\epsilon r = 41.08$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 0.179 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.993 V/m; Power Drift = 0.2 dB

Peak SAR (extrapolated) = 0.205 W/kg

SAR(1 g) = 0.168 W/kg; SAR(10 g) = 0.13 W/kg

Maximum value of SAR (measured) = 0.175 W/kg

Fig A.1

GSM850 CH251 Rear

Date: 4/23/2018

Electronics: DAE4 Sn1525 Medium: Head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 54.27$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.479 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.56 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.675 W/kg

SAR(1 g) = 0.386 W/kg; SAR(10 g) = 0.215 W/kg

Maximum value of SAR (measured) = 0.432 W/kg

Fig A.2

PCS1900 CH810 Right Cheek

Date: 4/25/2018

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1909.8 MHz; $\sigma = 1.438 \text{ mho/m}$; $\epsilon r = 39.98$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1909.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.312 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.723 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.438 W/kg

SAR(1 g) = 0.265 W/kg; SAR(10 g) = 0.153 W/kg

Maximum value of SAR (measured) = 0.293 W/kg

Fig A.3

PCS1900 CH810 Bottom edge

Date: 4/25/2018

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1909.8 MHz; $\sigma = 1.52 \text{ mho/m}$; $\epsilon r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1909.8 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.499 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.96 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.774 W/kg

SAR(1 g) = 0.424 W/kg; SAR(10 g) = 0.211 W/kg

Maximum value of SAR (measured) = 0.492 W/kg

Fig A.4

WCDMA1900-BII CH9262 Right Cheek

Date: 4/25/2018

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.382$ mho/m; $\epsilon r = 40.05$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.6 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.12 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.835 W/kg

SAR(1 g) = 0.515 W/kg; SAR(10 g) = 0.301 W/kg

Maximum value of SAR (measured) = 0.564 W/kg

Fig A.5

WCDMA1900-BII CH9262 Front

Date: 4/25/2018

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.464$ mho/m; $\epsilon r = 53.17$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.873 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.69 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.719 W/kg; SAR(10 g) = 0.434 W/kg

Maximum value of SAR (measured) = 0.78 W/kg

Fig A.6

WCDMA1700-BIV CH1513 Left Cheek

Date: 4/24/2018

Electronics: DAE4 Sn1525 Medium: Head 1750 MHz

Medium parameters used: f = 1752.6 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon r = 40.82$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.70,8.70,8.70)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.424 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.642 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.553 W/kg

SAR(1 g) = 0.348 W/kg; SAR(10 g) = 0.214 W/kg

Maximum value of SAR (measured) = 0.379 W/kg

Fig A.7

WCDMA1700-BIV CH1412 Front

Date: 4/24/2018

Electronics: DAE4 Sn1525 Medium: Head 1750 MHz

Medium parameters used: f = 1732.4 MHz; $\sigma = 1.468 \text{ mho/m}$; $\epsilon r = 52.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1732.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.60,8.60,8.60)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.2 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.548 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.987 W/kg; SAR(10 g) = 0.595 W/kg

Maximum value of SAR (measured) = 1.07 W/kg

Fig A.8

WCDMA850-BV_CH4233 Right Cheek

Date: 4/23/2018

Electronics: DAE4 Sn1525 Medium: Head 835 MHz

Medium parameters used: f = 846.6 MHz; $\sigma = 0.903 \text{ mho/m}$; $\epsilon r = 41.09$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.242 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.783 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.27 W/kg

SAR(1 g) = 0.222 W/kg; SAR(10 g) = 0.172 W/kg

Maximum value of SAR (measured) = 0.231 W/kg

Fig A.9

WCDMA850-BV CH4233 Rear

Date: 4/23/2018

Electronics: DAE4 Sn1525 Medium: Head 835 MHz

Medium parameters used: f = 846.6 MHz; $\sigma = 0.988 \text{ mho/m}$; $\epsilon r = 54.28$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.401 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.16 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.58 W/kg

SAR(1 g) = 0.328 W/kg; SAR(10 g) = 0.181 W/kg

Maximum value of SAR (measured) = 0.366 W/kg

Fig A.10

LTE1900-FDD2 CH19100 Right Cheek

Date: 4/25/2018

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.428 \text{ mho/m}$; $\epsilon r = 39.99$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.554 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.593 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.763 W/kg

SAR(1 g) = 0.465 W/kg; SAR(10 g) = 0.27 W/kg

Maximum value of SAR (measured) = 0.516 W/kg

Fig A.11

LTE1900-FDD2 CH19100 Rear

Date: 4/25/2018

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ mho/m}$; $\epsilon r = 53.11$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.859 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.41 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.689 W/kg; SAR(10 g) = 0.365 W/kg

Maximum value of SAR (measured) = 0.762 W/kg

Fig A.12

LTE850-FDD5 CH20600 Right Cheek

Date: 4/23/2018

Electronics: DAE4 Sn1525 Medium: Head 835 MHz

Medium parameters used: f = 844 MHz; $\sigma = 0.901$ mho/m; $\epsilon r = 41.09$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.269 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.356 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.301 W/kg

SAR(1 g) = 0.243 W/kg; SAR(10 g) = 0.186 W/kg

Maximum value of SAR (measured) = 0.254 W/kg

Fig A.13

LTE850-FDD5 CH20600 Rear

Date: 4/23/2018

Electronics: DAE4 Sn1525 Medium: Head 835 MHz

Medium parameters used: f = 844 MHz; $\sigma = 0.986$ mho/m; $\epsilon r = 54.28$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.434 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.05 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.612 W/kg

SAR(1 g) = 0.348 W/kg; SAR(10 g) = 0.193 W/kgMaximum value of SAR (measured) = 0.386 W/kg

Fig A.14

LTE700-FDD12 CH23060 Right Cheek

Date: 4/22/2018

Electronics: DAE4 Sn1525 Medium: Head 750 MHz

Medium parameters used: f = 704 MHz; $\sigma = 0.844$ mho/m; $\epsilon r = 41.41$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD12 704 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.57,10.57,10.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.221 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.405 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.241 W/kg

SAR(1 g) = 0.203 W/kg; SAR(10 g) = 0.161 W/kg

Maximum value of SAR (measured) = 0.211 W/kg

Fig A.15

LTE700-FDD12 CH23060 Rear

Date: 4/22/2018

Electronics: DAE4 Sn1525 Medium: Head 750 MHz

Medium parameters used: f = 704 MHz; $\sigma = 0.911$ mho/m; $\epsilon r = 56.01$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD12 704 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.63,10.63,10.63)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.439 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.03 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.493 W/kg

SAR(1 g) = 0.4 W/kg; SAR(10 g) = 0.309 W/kg

Maximum value of SAR (measured) = 0.417 W/kg

Fig A.16

LTE750-FDD13 CH23230 Left Cheek

Date: 4/22/2018

Electronics: DAE4 Sn1525 Medium: Head 750 MHz

Medium parameters used: f = 782 MHz; $\sigma = 0.918$ mho/m; $\epsilon r = 41.31$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.57,10.57,10.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.141 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.408 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.158 W/kg

SAR(1 g) = 0.131 W/kg; SAR(10 g) = 0.103 W/kg

Maximum value of SAR (measured) = 0.137 W/kg

Fig A.17