IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Currently Amended): A flat-type antenna apparatus which has a radiating conductor and a reference conductor disposed opposite to each other and performs feeding between said radiating conductor and said reference conductor at a position offset from the center of said radiating conductor center, said antenna comprising:

an insulative material layer which has relative magnetic permeability greater than 1 and is placed in a gap between said a radiating conductor and said reference conductor; and a short-circuiting conductor which is disposed at a position to suppress unintended excitation and enables electric conduction between said radiating conductor and said reference conductor.

Claim 2 (Currently Amended): A flat-type antenna apparatus which has a radiating conductor and a reference conductor disposed opposite to each other and performs feeding between said radiating conductor and said reference conductor at a position offset from the center of said radiating conductor center, said antenna comprising:

an intermediate layer comprising a plurality of layers such as an insulative material layer and an empty layer in a gap between said a radiating conductor and said reference conductor, wherein said insulative material layer has relative permittivity and relative magnetic permeability both greater than 1.

Claim 3 (Currently Amended): The antenna apparatus according to claim 1 or 2, wherein said insulative material layer comprises hexagonal ferrite.

Claim 4 (Original): The antenna apparatus according to claim 3, wherein said insulative material layer is made of an oxide magnetic material comprising a Y-type ferrite compound represented by general formula Ba₂Me¹₂Fe₁₂O₂₂ (where Me¹ is appropriately selected from one or more of Ni²⁺, Zn²⁺, Mn²⁺, Mg²⁺, Cu²⁺, Fe²⁺, and Co²⁺ to adjust composition).

Claim 5 (Original): The antenna apparatus according to claim 3, wherein said insulative material layer is made of an oxide magnetic material comprising a Z-type ferrite compound represented by general formula Ba₃Me¹₂Fe₂₄O₄₁ (where Me¹ is appropriately selected from one or more of Ni²⁺, Zn²⁺, Mn²⁺, Mg²⁺, Cu²⁺, Fe²⁺, and Co²⁺ to adjust composition).

Claim 6 (Original): The antenna apparatus according to claim 3, wherein said insulative material layer is made of an oxide magnetic material comprising an M-type ferrite compound represented by general formula BaMe²_xFe_(12-x)O₁₉ (where Me² is appropriately selected from one or more of Al³⁺, Cr³⁺, Sc³⁺, and In³⁺ to adjust composition, or is a mixture of the same amount of (Ti⁴⁺, Sn⁴⁺, Zn⁴⁺) and Me¹).

Claim 7 (Currently Amended): The antenna apparatus according to claims 4 through 6, wherein said insulative material layer is made of said oxide magnetic materials as pulverized materials and is complexed with resin to form a resin complex.

Claim 8 (New): The antenna apparatus according to claim 2, wherein said insulative material layer comprises hexagonal ferrite.