K.L.N College of Information Technology, Pottapalayam Department of (B.TECH-IT)

Sub.Code & Sub.Name: HX 8001 & Professional Readiness for Innovation, Employability and Entrepreneurship

"Project Report"

"WEB PHISHING DETECTION"

Team ID: PNT2022MID52526

Guided by, Ms.B.K.Hemalatha, HOD(I/c)/ECE, KLNCIT

Submitted by,

- 1.A.Pooja(910719205014)
 - -Team Leader
- 2. A.P.Abirami(910719205002)
- -Team Member
- 3. S.Chelsea Evelyn Christina
- (910719205005) Team Member
- 4. P.Shiny Jaculine Mary

(910719205022) - Team Member

TABLE OF CONTENT

1. INTRODUCTION	3-4
1.1 Project Overview	3
1.2 Purpose	4
2. LITERATURE SURVEY	4-7
2.1 Existing problem	4
2.2 References	5
2.3 Problem Statement Definition	7
3. IDEATION & PROPOSED SOLUTION	8-14
3.1 Empathy Map Canvas	8
3.2 Ideation & Brainstorming	9
3.3 Proposed Solution	11
3.4 Problem Solution fit	12
4. REQUIREMENT ANALYSIS	14-15
4.1 Functional requirement	13
4.2 Non-Functional requirements	14
5. PROJECT DESIGN	16-20
5.1 Data Flow Diagrams	16
5.2 Solution & Technical Architecture	16
5.3 User Stories	17
6. PROJECT PLANNING &	20-21
SCHEDULING	20-21
6.1 Sprint Planning & Estimation	20
6.2 Sprint Delivery Schedule	21
6.3 Reports from JIRA	21
7. CODING & SOLUTIONING (Explain	22-24
the features	22-24
added in the project along with code)	
7.1 Feature 1	22
7.2 Feature 2	23
8. TESTING	24-25
8.1 Test Cases	24

8.2 User Acceptance Testing	24
9. RESULTS	25-31
9.1 Performance Metrics	25
10. ADVANTAGES & DISADVANTAGES	32
11. CONCLUSION	32
12. FUTURE SCOPE	33
13. APPENDIX	33-41
Source Code	41
GitHub & Project Demo Link	41

1.INTRODUCTION

Phishing is a social engineering attack that aims at exploiting the weakness found in system processes as caused by system users. For example, a system can be technically secure enough against password theft, however unaware end users may leak their passwords if an attacker asked them to update their passwords via a given Hypertext Transfer Protocol (HTTP) link, which ultimately threatens the overall security of the system, technical vulnerabilities (e.g. Domain Name System (DNS) cache poisoning) can be used by attackers to construct far more persuading socially-engineered messages (i.e. use of legitimate, but spoofed, domain names can be far more persuading than using different domain names).

1.1 PROJECT OVERVIEW

There are a number of users who purchase products online and make payments through e-banking. There are e-banking websites that ask users to provide sensitive data such as username, password & credit card details, etc., often for malicious reasons. This type of e-banking website is known as a phishing website. Web service is one of the key communications software services for the Internet. Web phishing is one of many security threats to web services on the Internet.

Common threats of web phishing:

- Web phishing aims to steal private information, such as usernames, passwords, and credit card details, by way of impersonating a legitimate entity.
- It will lead to information disclosure and property damage.
- Large organizations may get trapped in different kinds of scams.

This Guided Project mainly focuses on applying a machine-learning algorithm to detect Phishing websites.

In order to detect and predict e-banking phishing websites, we proposed an intelligent, flexible and effective system that is based on using classification algorithms. We implemented classification algorithms and techniques to extract the phishing datasets criteria to classify their legitimacy. The e-banking phishing website can be detected based on some important

characteristics like URL and domain identity, and security and encryption criteria in the final phishing detection rate. Once a user makes a transaction online when he makes payment through an e-banking website our system will use a data mining algorithm to detect whether the e-banking website is a phishing website or not.

1.2 PURPOSE

Various fraudulent websites have been built on the World Wide Web in the previous decade to resemble reputable websites and steal financial assets from users and organizations. This type of online scam is known as phishing, and it has cost the internet community and other stakeholders hundreds of millions of dollars. As a result, robust countermeasures that can identify phishing are required.

These are the challenges to be addressed in this project: a. Reduce the rate of financial theft from users and organizations online. b. Educate Internet Users on the deception of phishers. c. Educate Internet users on the countermeasures of a phishing attack. arious fraudulent websites have been built on the World Wide Web in the previous decade to resemble reputable websites and steal financial assets from users and organizations. This type of online scam is known as phishing, and it has cost the internet community and other stakeholders hundreds of millions of dollars.

As a result, robust countermeasures that can identify phishing are required. These are the challenges to be addressed in this project: a. Reduce the rate of financial theft from users and organizations online. b. Educate Internet Users on the deception of phishers. c. Educate Internet users on the countermeasures of a phishing attack. To accomplish the project's purpose, the following particular objectives have been established: i. dataset collection and pre-processing; ii. machine-learning model selection and development;

- iii. development of a web-based application for detection;
- iv. Integration of the developed model to a web application.

2.LITERATURE SURVEY:

2.1 Existing Problem

An extensive review was done on existing works of literature and machine learning models on detecting phishing websites to best decide the classification models to solve the problem of detecting phishing websites. Hence, Series of these machine learning classification models such as Decision Tree, Support Vector Machine, XGBooster, Multilayer perceptions, Auto encoder Neural Network and Random Forest was deployed on the dataset to distinguish

between phishing and legitimate URLs. The best model with high training accuracy out of all the deployed models was selected then integrated into a developed web application. Thus, a user can enter a URL link on the web application to predict if it is phishing or legitimate.

2.2 References

Abdelhamid, N., Thabtah F., & Abdel-Jaber, H. Phishing detection: A recent intelligent machine learning comparison based on models' content and features," 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), Beijing, 2017, pp. 72-77, DOI: 10.1109/ISI.2017.8004877.

Anjum N. S., Antesar M. S., & Hossain M.A. (2016). A Literature Review on Phishing Crime, Prevention Review and Investigation of Gaps. Proceedings of the 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), Chengdu, China, 2016, pp. 9-15, DOI: 10.1109/SKIMA.2016.7916190.

Almomani, A., Gupta, B. B., Atawneh, S., Meulenberg, A., & Almomani, E. (2013). A survey of phishing email filtering techniques, Proceedings of IEEE Communications Surveys and Tutorials, vol. 15, no. 4, pp. 2070–2090.

Ashritha, J. R., Chaithra, K., Mangala, K., & Deekshitha, S. (2019). A Review Paper on Detection of Phishing Websites using Machine Learning. Proceedings of International Journal of Engineering Research & Technology (IJERT), 7, 2. Retrieved from www.ijert.org.

Ayush, P. (2019). Workflow of a Machine Learning project. Retrieved from https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94

Camp W. (2001). Formulating and evaluating theoretical frameworks for career and technical education research. Journal of Vocational Education Research, 26(1), 4-25.

DeepAl (n.d.). About clinical psychology. Retrieved from

https://deepai.org/machine-learning-glossary-and-terms/feature-extraction

Engine K., & Christopher K. (2005). Protecting Users Against Phishing Attacks. Proceedings of the Oxford University Press on behalf of The British Computer Society, Oxford University, 0, 2005, Retrieved from: https://sites.cs.ucsb.edu/~chris/research/doc/cj06 phish.pdf

Gandhi, V. (2017). A Theoretical Study on Different ways to identify the Phishing URL and Its Prevention Approaches: presented at International Conference on Cyber Criminology, Digital Forensics and Information Security at DRBCCC Hindu College, Chennai. Retrieved from

https://www.researchgate.net/publication/319006943_A_Theoretical_Study_on_Different_ways_to_Identify_the_Phishing_URL_and_Its_Prevention_Approaches

Gupta, B. B., Tewari, A., Jain, A. K., & Agrawal, D. P. (2016). Fighting against phishing attacks: state of the art and future challenges, Neural Computing and Applications.https://www.imperva.com/learn/application-security/phishing-attack-scam/

Noel, B. (2016). Support Vector Machines: A Simple Explanation. Retrieved from https://www.kdnuggets.com/2016/07/support-vector-machines-simple-explanation.html

Osanloo, A., & Grant, C. (2016). Understanding, selecting, and integrating a theoretical framework in dissertation research: creating the blueprint for your "house". Administrative issues journal: connecting education, practice and research 4(2), 7. Peng, T., Harris, I., & Sawa, I. (2018). Detecting Phishing Attacks Using Natural Language Processing and Machine Learning. Proc. - 12th IEEE Int. Conf. Semant. Comput. ICSC 2018, vol. 2018–Janua, pp. 300–301.

Pamela (2021). Phishing attacks. Retrieved from https://www.khanacademy.org/computing/computers-andinternet/xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:cyber-attacks/a/phishing-attacks

Rami, M. M., Fadi, T., & Lee, M. (2015). Phishing Websites Features. Retrieved from

https://eprints.hud.ac.uk/id/eprint/24330/6/MohammadPhishing14July2015.pdf

Rishikesh, M., & Irfan, S. (2018a). Phishing Website Detection using Machine Learning Algorithms. International Journal of Computer Applications, 23, 45. doi:10.5120/ijca2018918026

Rishikesh, M., & Irfan, S. (2018b). Phishing Website Detection using Machine Learning Algorithms. International Journal of Computer Applications, 23, 45-46. doi:10.5120/ijca2018918026

Rahul, S. (2017). How the decision tree algorithm works. Retrieved from https://dataaspirant.com/how-decision-tree-algorithm-works/

Rishikesh, M., & Irfan, S. (2018c). Phishing Website Detection using Machine Learning Algorithms. International Journal of Computer Applications, 23, 46-47. doi:10.5120/ijca2018918026

Saimadhu, P. (2017). How the random forest algorithm works in machine learning. Retrieved from https://dataaspirant.com/random-forest-algorithm-machine-learing/

2.3 Problem Statement Definition

Internet has dominated the world by dragging half of the world's population exponentially into the cyber world. With the booming of internet transactions, cybercrimes rapidly increased and with anonymity presented by the internet. Hackers attempt to trap the end-users through various forms such as phishing, SQL injection, malware, man-in-the-middle, domain name system tunnelling, ransomware, web trojan, and so on. Among all these attacks, phishing reports to be the most deceiving attack.

3.IDEATION& PROPOSED SOLUTION

3.1 Empathy Map

3.2 Ideation& Brainstorming

BRAINSTROMING

P.Shiny Jaculine Mary

A.P.Abirami

Low detection accuracy

High false alarm No comprehensive blacklist Scamming people for money

Harmful ransomware

Stealing sensitive details

Suspicious activity in the page

Inefficient in responding

User Vulnerability Affects the performance of the affected system

Spread malicious code onto recipients' computers.

Convince you to willingly send money or valuables

A.Pooja

Leading to information leakage and blackmail.

Protecting password by using combination of special characters, alphanumeric.

Always filter email.

Attacker sends a fraudulent message. It tricks a person into revealing sensitive information.

S.Chelsea Evelyn Christina

As of 2020 phishing is by far the most common attack.

Do not trust the mail that says spam. Check before entering passwords in 3rd party sites. Check if the URL contains any suspicious characters,it coul be a phishhing site

Phishing attacks have become increasingly sophisticated.

Prevention of phishing can be done by using user training and public awareness. Phishing allows to view a persons details while navigating each site without their knowledge.

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Idea / Solution description	This study explores data science and machine learning models that use datasets obtained from open-source platforms to analyze website links and distinguish between phishing and legitimate URL links
2.	Novelty / Uniqueness	The model will be integrated into a web application, allowing a user to predict if a URL link is legitimate or phishing. This online application is compatible with a variety of browsers enhance better results in the identification and prevention of phishing attacks.
3.	Social Impact / Customer Satisfaction	By using our phishing detection, both the organisation and their customers can be safe and can avoid identity theft, data stealing etc
4.	Business Model (Revenue Model)	Phishing could often gain a foothold in corporate or governmental networks as a part of larger attacks, such Threats lead to severe financial losses in addition to declining market share,reputation and consumer trust.
5.	Scalability of the Solution	The proposed model focuses on identifying the phishing attack based on checking phishing websites features, Blacklist and WHOIS database. A few selected features can be used to differentiate between legitimate and spoofed web pages. These selected features are many such as URLs, domain identity, security & encryption, source code, page style and contents, web address bar and social human factor. This paper presents a proposal for scalable detection and isolation of phishing and deployment of the machine learning algorithms.

3.4 Problem Solution fit

Customer Segment	Anyone who uses web browser, surfs the internet, Organisation Individuals.
Problems	 Breach of privacy Loss of data,reputation Identity theft Victim to malware,ransomeware
Triggers	 site is blocked ,phishing site tigger warning displayed
Emotions	BEFORE: Constant fear of losing their data and insecure of privacy breach AFTER: Feeling Protected and safe.
Available Solution	 Blacklist Anti-spam software Firewall
Customer Constraints	No adequate knowledge,constrain at implementing of resources and need of internet access
Behaviour Channels of Behaviour	What to do and not to do Online- Tend to lose their data online phishing site. Offline- By learning via books and other resources.
Problem root cause	IT's difficult for someon to determine if the site is legit or not.
Our Solution	To implement Machine learning (Decision tree algorithm).

4.REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub- Task)
FR-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	Website Analyze&Preprocessing	Our system should be able to load air quality data and preprocess data. It should be able to analyze the air quality data
FR-4	Prediction	It should be able to group data based on hidden patterns. It should be able to assign a label based on its data groups.
FR-5	Classification	It should be able to split data into trainset and testset. • It should be able to train model using trainset. It must validate trained model using testset.
FR-6	Result	It should be able to display the trained model accuracy. It should be able to accurately predict the air quality on unseen data.

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Since the writing computer programs is extremely straightforward, it is simpler to discover and address the imperfections and to roll out the improvements in the undertaking
NFR-2	Security	High level of security is ensured.
NFR-3	Reliability	It enlists the different permutations and combinations a system can be reused in many other applications which gives better prediction, as well as gives a new approach to prediction techniques.
NFR-4	Performance	The user interface allows the user to interact with the system at a very comfortable level with no hassles.
NFR-5	Availability	To depict how much an item, gadget, administration, or condition is open by however many individuals as would be prudent.
NFR-6	Scalability	low data transfer capacity and substantial number of clients

5.PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

Technical Architecture

SOLUTION ARCHITECTURE:

5.3 User Stories

User Type	Functional	User	User Story /	Acceptance	Priority	Release
	Requireme	Story	Task	criteria		
	nt (Epic)	Number				
Customer	Registration	USN-1	As a user, I	I can access	High	Sprint-1
(Mobile			can register	my account /		
user)			for the	dashboard		
			application by			
			entering my			
			email,			
			password, and			
			confirming my			
			password.			
		USN-2	As a user, I will	I can receive	High	Sprint-1
			receive	confirmation		
			confirmation	email & click		
			email once I	confirm		
			have			
			registered for			
			the application			
		USN-3	As a user, I	I can register	Low	Sprint-2
			can register	& access the		
			for the	dashboard		
			application	with		
			through	Facebook		
			Facebook	Login		

	Login	USN-4	As a user, I can register for the application through Gmail As a user, I can log into the application by entering email & password	Access my information any time from the cloud. Login anywhere with my information.	Medium High	Sprint-1 Sprint-1
	Dashboard					
Customer (Web user)	User Input	USN-1	As a user i can input the particular URL in the required field .	I can access the website without any problem.	High	Sprint-1
Customer Care Executive	Extraction	USN-1	After i compare in case if none found on comparison then we can extract feature using heuristic and visual similarity approach.	As a user i can have comparison between websites for security.	Medium	Sprint-1
Administrat	Processing & Prediction	USN-1	Here the Model will predict the URL websites using Machine Learning algorithms such as Logistic Regression,sv m.	In this i can have correct prediction on the particular algorithms.	Medium	Sprint-1

Classificati	USN-2	Here I will	In this i will	Medium	Sprint-1
on		send all the	find the		
		model output	correct		
		to classifier in	classifier for		
		order to	producing		
		produce final	the result		
		result.			
Detection	USN-3	After the	I can	High	Sprint-1
		extraction	determine		
		purpose the	whether the		
		model will be	website is		
		able to	from secure		
		categorize it	website or		
		from other	not.		
		safe website			
		through data			
		mining			
		classification			
		technique			
		through ML.			
End result	USN-4	I can access,	I can view the	High	Sprint-1
		verify my	final output		
		results.	given to me		
			by the		
			administrato		
			r.		

6.PROJECT PLANNING&SCHEDULING

6.1 Sprint planning & Estimation

Sprint	Functional Requireme nt (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Homepa ge	USN-1	As a user, I can enter by just entering the site's URL or clicking	2	Medium	A.P.Abirami A.Pooja

			the site's link			
Sprint-1		USN-2	As a user, I will receive information and pieces of Phishing scams and prevention.	1	Low	A.P.Abirami
Sprint-4	Result	USN-3	As a user, I will know the site's legitimacy.	2	Low	A.Pooja Shiny jaculine
Sprint-2	Prediction	USN-4	As a user, I can just sit and watch the site predicting the URI	2	Medium	Chelsea
Sprint-3	Training The Model on IBM	USN-5	TASK- To make access and prediction	1	High	Shiny jaculine mary
Sprint-3	Deploying Model in IBM cloud	USN-6	TASK- Deploying the model on cloud and running it to predict the site's.	2	High	A.P.Abirami A.Pooja

6.2 Sprint Delivery Schedule

Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 Reports from JIRA

7.CODING&SOLUTIONING

7.1 Feature 1

i. Supervised Models:

Supervised feature selection refers to the method which uses the output label class for feature selection. They use the target variables to identify the variables which can increase the efficiency of the model.

ii. Unsupervised Models:

Unsupervised Feature selection refers to the method which does not

need the output label class for feature selection. We use them for unlabeled data. shows the flow of the feature selection model.

7.2 Feature 2

i. Using the IP Address

If an IP address is used as an alternative to the domain name in the URL, such as "http://125.98.3.123/fake.html", users can be sure that someone is trying to steal their personal information. Sometimes, the IP address is even transformed into hexadecimal code as shown in the following link "http://0x58.0xCC.0xCA.0x62/2/paypal.ca/index.html".

Rule: IF{If The Domain Part has an IP Address → Phishing
Otherwise → Legitimate

(2) Long URL to Hide the Suspicious Part

i.Phishers can use a long URL to hide the doubtful part in the address bar. For example:

http://federmacedoadv.com.br/3f/aze/ab51e2e319e51502f416dbe46b773a 5e/?cmd=_home&dispatch=11004d58f5b74f8dc1e7c2e8dd4105e8110

04d58f5b74f8dc1e7c2 e8dd4105e8@phishing.website.html

To ensure the accuracy of our study, we calculated the length of URLs in the dataset and produced an average URL length. The results showed that if the length of the URL is greater than or equal to 54 characters then the URL is classified as phishing. By reviewing our dataset, we were able to find 1220 URL lengths equals 54 or more which constitute 48.8% of the total dataset size.

ii. Presence of @ symbol in URL: If @ symbol is present in URL then the feature is set to 1 else set to 0. Phishers add special symbol @ in the URL leads the browser to ignore everything preceding the "@" symbol and the real address often follows the "@" symbol .

iii. The number of dots in Hostname: Phishing URLs have many dots in URL. For example, http://shop.fun.amazon.phishing.com, in this URL phishing.com is an actual domain name, whereas the use of the "amazon" word is to trick users to click on it. The average number of dots in benign URLs is 3. If the number of dots in URLs is more than 3 then the feature is set to 1 else to 0.

8.TESTING

8.1 Test Cases

	Testcase ID	Feature Type	Companen t	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Comments	TC for Automation(Y/N)	BUG	Executed By
ı	oginPage_TC_OO 1	Functional	Home Page	Verify user is able to see the Landing Page when usercan type the URL in the box		LEnter URL and dick go 2.Type the URL 3.Verify whether it is processing or not.	https://phishing- shield.herokuapp.com/	Should Display the Webpage	Workingas expected	Pass		N		A.P.Abirami
ı	oginPage_TC_OO 2	U	Home Page	Verify the UI elements is Responsive		1.Enter URL and dick go 2. Type or copy paste the URL 3. Check whether the button is responsive or not 4. Reload and Text Simultaneously		Should Walt for Response and then gets Acknowledge	Working as expected	Pass		N		A.Pooja
ı	oginPage_TC_OO 3	Functional	Home page	Verify whether the link is legitimate or not		LEnter URL and dick go 2. Type or copy paste the URL 3. Check the website is legitimate or not 4. Observe the results	https://phisking- shield.herokuapp.com/	User should observe whether the website is legitimate or not.	Working as expected	Pass		N		A.P.Abirami
ı	oginPage_TC_OO 4	Functional	Home Page	Verify user is able to access the legitimate website or not		LEnter URL and dick go 2. Type or copy paste the URL 3. Check the website is legitimate or not 4. Continue if the website is legitimate or be cautious if it is not be gittimate.	https://phishing- shield.herokuapp.com/	Application should show that Safe Webpage or Unsafe.	Working as expected	Pass		N		A.P.Abirami
L	oginPago_TC_OO S	Functional	Home Page	Testing the website with multiple URLs		LEnter LRIL { https://phishing- shield.herokuspp.com/pand dick go 2. Type or copy paste the LRIL to test 3. Check the website is legitimate or not 4. Continue if the website is secure or be cautious if it is not secure		User can able to identify the websites whether it is secure or not	Working as expected	Pass		N		A.P.Abirami

8.2 User Acceptance Testing

1.Defect Analysis

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	10	2	4	20	36
Not Reproduced	0	0	1	0	1
Skipped	0	0	0	0	0
Won't Fix	0	0	2	1	3
Totals	23	9	12	25	6 0

2.Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fa il	Pa ss
Print Engine	10	0	0	10
Client Application	50	0	0	50
Security	5	0	0	4
Outsource Shipping	3	0	0	3
Exception Reporting	10	0	0	9
Final Report Output	10	0	0	10
Version Control	4	0	0	4

9.RESULTS

9.1 Performance Metrics

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: Logistic Regression MAE - 0.26142017186793304 MSE - 0.5228403437358661 RMSE - 0.7230769971004928 R2 score 2.888673182487615	Attached Below
		Classification Model: Decision Tree Classifier Confusion Matrix - array([[61, 249], [26, 1875]]) Accuracy Score- 0.8756218905472637 Classification Report - refer screenshot	
2.	Tune the Model	Hyperparameter Tuning - Validation Method -	Attached Below

1.METRICS:

REGRESSION MODEL: LOGISTIC REGRESSION

Logistic regression is basically a supervised classification algorithm. In a classification problem, the target variable(or output), y, can take only discrete values for a given set of features(or inputs), X.

Contrary to popular belief, logistic regression is a regression model. The model builds a regression model to predict the probability that a given data entry belongs to the category numbered as "1". Just like Linear regression assumes that the data follows a linear function, Logistic regression models the data using the sigmoid function.


```
Working with Logistic Regression model

| Solid Structure | Solid
```

EVALUATION METRICS:

Here are some evaluation metrics used for regression they are,

R2 Score:

A low value would show a low level of correlation, meaning a regression model that is not valid, but not in all cases. The r2 score varies between 0 and 100%. It is closely related to the MSE, but not the same.

Mean Square Error(MSE)

Mean square error (MSE) is the average of the square of the errors. The larger the number the larger the error. Error in this case means the difference between the observed values y1, y2, y3, ... and the predicted ones pred(y1), pred(y2), pred(y3), ... We square each difference (pred(yn) - yn)) ** 2 so that negative and positive values do not cancel each other out.

Root Mean Square Error (RMSE)

RMSE is the standard deviation of the residuals (prediction errors). Residuals are a measure of how far from the regression line data points are; RMSE is a measure of how spread

out these residuals are. In other words, it tells you how concentrated the data is around the line of best fit. Root mean square error is commonly used in climatology, forecasting, and regression analysis to verify experimental results.

Mean Absolute Error(MAE)

Comparison of two observations where $X_1 = 2$ and $X_2 = 6$

x axis= true value ; y axis= prediction

Mean Absolute Error is a model evaluation metric used with regression models. The
mean absolute error of a model with respect to a test set is the mean of the absolute
values of the individual prediction errors on over all instances in test set. Each prediction
error is the difference between the true value and the predicted value for the instance.

mae= \sum ni=1abs(yi- λ (xi))n

CLASSIFICATION MODEL: DECISION TREE CLASSIFIER

- Decision Tree is a Supervised learning technique that can be used for both classification and Regression problems, but mostly it is preferred for solving Classification problems.
 It is a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome.
- In a Decision tree, there are two nodes, which are the Decision Node and Leaf Node.
 Decision nodes are used to make any decision and have multiple branches, whereas
 Leaf nodes are the output of those decisions and do not contain any further branches.
- The decisions or the test are performed on the basis of features of the given dataset.

```
building the Decision Tree Classifier model

[44] # Decision Tree model
    from sklearn.tree import DecisionTreeClassifier
    # instantiate the model
    tree = DecisionTreeClassifier(max_depth = 5)
    # fit the model
    tree.fit(x_train, y_train)
    DecisionTreeClassifier(max_depth=5)

[45] #prediction on test data
    pred2=tree.predict(x_test)
    pred2
    array([1, 1, 1, ..., 1, 1, 1])
```

EVALUATION METRICS:

Some of the evaluation metrics is as follows

Confusion matrix

Confusion Matrix is a performance measurement for machine learning classification. Accuracy score

• Classification report

Precision: It is calculated with respect to the predicted values.

Recall: It is calculated with respect to the actual values in dataset.

F1-score: It is the harmonic mean of precision and recall.

Support: It is the total entries of each class in the actual dataset.

2.TUNE THE MODEL: DECISION TREE CLASSIFIER

HYPERPARAMETER TUNING:

10.ADVANTAGES & DISADVANTAGES

ADVANTAGES:

- i. Will be able to differentiate between phishing(0) and legitimate(1) URLs.
- ii. It Will help reduce phishing data breaches for an organization
- iii. It Will be helpful to individuals and organizations iv. It is easy to use.

SAFETY: No data loss occurs in this system.

QUALITY: The project is developed with the help of Anaconda Navigator software which meets the requirement of the user, the project is checked whether the phases individually have a served its purpose.

DISADVANTAGES:

- Need of internet to search
- Need feed continously
- only applicable for detecting URLs.

11.CONCLUSION

Phishing has becoming a serious network security problem, causing financial loss of billions of dollars to both consumers and e-commerce companies. Phishing attacks can be detected through a combination of customer reportage, bounce monitoring, image use monitoring, honey pots and other techniques. Email authentication technologies such as Sender-ID and cryptographic signing, when widely deployed, have the potential to prevent phishing emails from reaching users. Personally identifiable information should be included in all email communications. Systems allowing the user to enter or select customized text and imagery are particularly promising. Anti-phishing toolbars are promising tools for identifying phishing sites and heightening security when a potential phishing site is detected. By IPDCM it includes the detection of phishing websites through ensemble classifiers and categorizing the phishing websites according to the various streams as online payments, Banking etc.

12.FUTURE SCOPE

In future if we get structured dataset of phishing we can perform phishing detection much more faster than any other technique. In future we can use a combination of any other two or more classifier to get maximum accuracy. We also plan to explore various phishing techniques that uses Lexical features, Network based features, Content based features, Webpage based features and HTML and JavaScript features of web pages which can improve the performance of the system. In particular, we extract features from URLs and pass it through the various classifiers.

13.APPENDIX

SOURCE CODE

phishing_notebook

In [1]:

#importing libs

import pandas as pd

import numpy as np

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import confusion_matrix,accuracy_score

In [2]:

#import dataset

ds=pd.read_csv("dataset_website.csv")

ds.head()

Out[2]:

ut 2 :									
		index	having_IPhaving_IP_Address	URLURL_Length	Shortining_Service	having_At_Symbol	double_slash_redirecting	Prefix_Suffix	having_Sub_Domain SSI
	0	1	-1	1	1	1	-1	-1	-1
	1	2	1	1	1	1	1	-1	0
	2	3	1	0	1	1	1	-1	-1
	3	4	1	0	1	1	1	-1	-1
	4	5	1	0	-1	1	1	-1	1

5 rows × 32 columns

In [3]:

#null values

ds.info()

ds.isnull().any()#no null values

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 11055 entries, 0 to 11054

Data columns (total 32 columns):

Column Non-Null Count Dtype

--- -----

0 index 11055 non-null int64

1 having_IPhaving_IP_Address 11055 non-null int64

2 URLURL_Length 11055 non-null int64

3 Shortining_Service 11055 non-null int64

4 having_At_Symbol 11055 non-null int64

5 double_slash_redirecting 11055 non-null int64

6 Prefix_Suffix 11055 non-null int64

7 having_Sub_Domain 11055 non-null int64

8 SSLfinal_State 11055 non-null int64

9 Domain_registeration_length 11055 non-null int64

10 Favicon 11055 non-null int64

11 port 11055 non-null int64

12 HTTPS_token 11055 non-null int64

13 Request_URL 11055 non-null int64

14 URL_of_Anchor 11055 non-null int64

15 Links_in_tags 11055 non-null int64

16 SFH 11055 non-null int64

17 Submitting_to_email 11055 non-null int64

18 Abnormal URL 11055 non-null int64

19 Redirect 11055 non-null int64

20 on_mouseover 11055 non-null int64

21 RightClick 11055 non-null int64

22 popUpWidnow 11055 non-null int64

23 Iframe 11055 non-null int64

24 age_of_domain 11055 non-null int64

25 DNSRecord 11055 non-null int64

26 web_traffic 11055 non-null int64

27 Page_Rank 11055 non-null int64

28 Google_Index 11055 non-null int64

29 Links_pointing_to_page 11055 non-null int64

30 Statistical_report 11055 non-null int64

31 Result 11055 non-null int64

dtypes: int64(32)

memory usage: 2.7 MB

Out[3]:

index False

having_IPhaving_IP_Address False

URLURL_Length False
Shortining_Service False
having_At_Symbol False
double_slash_redirecting False

Prefix_Suffix False

having_Sub_Domain False

SSLfinal_State False

Domain_registeration_length False

Favicon False port False

HTTPS_token False
Request_URL False
URL_of_Anchor False
Links_in_tags False
SFH False

Submitting_to_email False
Abnormal_URL False

Redirect False
on_mouseover False
RightClick False
popUpWidnow False
Iframe False

age_of_domain False

DNSRecord False

web_traffic False

Page_Rank False

Google_Index False

Links_pointing_to_page False Statistical_report False

Result False

dtype: bool

In [4]:

#split data independent and dependent

```
#remove index coln in independent dataset
x=ds.iloc[:,1:31].values
y=ds.iloc[:,-1].values
print(x,y)
[[-1 1 1 ... 1 1 -1]
[1 1 1 ... 1 1 1]
[1 0 1 ... 1 0 -1]
[1-1 1... 1 0 1]
[-1 -1 1 ... 1 1 1]
[-1 -1 1 ... -1 1 -1]] [-1 -1 -1 ... -1 -1 -1]
                                                                                                   In [5]:
#splitting data into train and test
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
                                                                                                   In [6]:
Χ
                                                                                                 Out[6]:
array([[-1, 1, 1, ..., 1, 1, -1],
    [1, 1, 1, ..., 1, 1, 1],
    [1, 0, 1, ..., 1, 0, -1],
    [1,-1, 1, ..., 1, 0, 1],
    [-1, -1, 1, ..., 1, 1, 1],
    [-1, -1, 1, ..., -1, 1, -1]], dtype=int64)
                                                                                                   In [7]:
у
                                                                                                  Out[7]:
array([-1, -1, -1, ..., -1, -1], dtype=int64)
                                                                                                   In [8]:
# Creating a Decision Tree model
from sklearn.tree import DecisionTreeClassifier
DecisionT=DecisionTreeClassifier()
DecisionT.fit(x_train,y_train)
                                                                                                 Out[8]:
DecisionTreeClassifier()
                                                                                                   In [9]:
y_pred5=DecisionT.predict(x_test)
```

from sklearn.metrics import accuracy_score dec_tree=accuracy_score(y_test,y_pred5) print(dec_tree) 0.9647218453188603

In [10]:

import pickle pickle.dump(,open('PhisingWebsite.pkl','wb'))

In [7]: sns.lineplot(data['Result'], data['Statistical_report'])
C:\Users\jm\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args:
 x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key
 word will result in an error or misinterpretation.
 warnings.warn(

Out[7]: <AxesSubplot:xlabel='Result', ylabel='Statistical_report'>

ibm_app.py

```
1 import flask
2 from flask import request, render_template
3 from flask_cors import CORS
4 import requests
5
6 # NOTE: you must manually set API_KEY below using information retrieved from your
   IBM Cloud account.
7 API_KEY = "2ev1GR8SAtWLwWssY0E18Lsh2PnlrqX2baPc6kSY84cf"
8 token_response = requests.post('https://iam.cloud.ibm.com/identity/token',
   data={"apikey":
9 API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
10 mltoken = token_response.json()["access_token"]
11
12 header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
13
14 app=Flask(__name__)
15
16 @app.route('/')
17 @app.route('/web.html')
18 def Home():
19
         return render_template("web.html")
20
21 @app.route('/')
22 @app.route('/About.html')
23
24 def About():
25
       return render_template("About.html")
26
27
```

```
28
     # NOTE: manually define and pass the array(s) of values to be scored in the next line
29 payload_scoring = {"input_data": [{"fields": [array_of_input_fields], "values":
   [array_of_values_to_be_scored, another_array_of_values_to_be_scored]}]}
30
31 response_scoring = requests.post('https://us-
   south.ml.cloud.ibm.com/ml/v4/deployments/2de01c97-1fd7-44b5-aec3-
   f15bb3d28d2e/predictions?version=2022-11-10', json=payload_scoring,
32 headers={'Authorization': 'Bearer' + mltoken})
33 print("Scoring response")
34 print(response_scoring.json())
35 # showing the prediction results in a UI# showing the prediction results in a UI
36 pred=print(predictions['predictions'][0]['values'][0][0])
37 if(pred != 1):
     print("The Website is secure. you are safe....")
39 else:
40
     print("The Website is not Legitimate !!BEWARE!!")
41
42
43
44 if __name__ == "__main__":
45
     app.run(debug=True,port=5500)
```

арр.ру

```
1 import pickle
2 import warnings
3 import numpy as np
4 import pandas as pd
5 from flask import Flask, render_template, request
6 from sklearn import metrics
7 warnings.filterwarnings('ignore')
8 from feature import FeatureExtraction
9 app = Flask(__name__)
10 phishing = pickle.load(open('Phishing_Website.pkl','rb'))
11 @app.route('/')
```

```
12 @app.route('/web.html')
13 def Home():
       return render_template("web.html")
14
15
16
17
18 @app.route("/predict", methods=["GET", "POST"])
19 def index():
    if request.method == "POST":
20
21
22
       url = request.form["url"]
23
       obj = FeatureExtraction(url)
24
       x = np.array(obj.getFeaturesList()).reshape(1,30)
25
26
       y_pred =phishing.predict(x)[0]
27
       #1 is safe
28
       #-1 is unsafe
29
       y_pro_phishing = phishing.predict_proba(x)[0,0]
       y_pro_non_phishing = phishing.predict_proba(x)[0,1]
30
31
       # if(y_pred ==1):
       # pred = "It is {0:.2f} % safe to go ".format(y_pro_phishing*100)
32
33
       return render_template('predict.html',xx =["It is {0:.2f} % Safe to go
   ".format(y_pro_non_phishing*100), "It is {0:.2f} % Unsafe to go
   ".format(y_pro_phishing*100)],url=url)
34
       # else:
35
        # return render_template("predict.html", xx = "Your are on the wrong site. Be
36
37
38 if __name__ == "__main__":
     app.run(debug=True,port=5000)
```

EXECUTION & OUTPUT:

GITHUB&PROJECT DEMO

LINK- <u>IBM-12430-1659451175</u>

https://github.com/IBM-EPBL/IBM-Project-12430-1659451175

PROJECT DEMO LINK

DRIVE-<u>demo link</u>

https://drive.google.com/drive/folders/1YVZtgdDfvjzjTzEBsNo-sea6tqWMExII