

Tanzania HCES Analysis and TFNC Training, 11th December 2023

Using Household Consumption and Expenditure Survey Tools To Understand Diets and Sub-National Micronutrient Intake in Malawi

Gareth Osman
Lilongwe University of Agriculture and Natural Resources (LUANAR)

gosman@luanar.ac.mw

Assessment of micronutrient intake and status

✓ Poor quality diets are a main cause of micronutrient deficiencies

HCES in Malawi

"Integrated Household Survey (IHS)"

Implemented 5 in total

- 1) IHS1: 1997/98
- 2) IHS2: 2004/05
- 3) IHS3: 2010/11
- 4) IHS4: 2016/17
- 5) IHS5: 2019/20

THE FIFTH INTEGRATED HOUSEHOLD SURVEY (IHS5) 2020 REPORT

November 2020 Published by National Statistical Office

Ref. microdata.worldbank.org

The Nutritional power of HCES

Food groups

Food composition data

West African Food Composition Table

Table de composition des aliments d'Afrique de l'Ouest

Malawi Government

THE FIFTH INTEGRATED HOUSEHOLD SURVEY (IHS5) 2020 REPORT

November 2020 Published by National Statistical Office

GOVERNMENT OF MALAWI

West African Food Composition Table

Table de composition des aliments d'Afrique de l'Ouest

Muhimbili University of Health and Allied Science (MUHAS), Dar es Salaam - Tanzania

and
Tanzania Food and Nutrition Centre (TFNC)
Dar es Salaam - Tanzania

and

Harvard School of Public Health (HSPH), Boston, USA

TANZANIA FOOD COMPOSITION TABLES

Compiled by: Zohra Lukmanji AND Ellen Hertzmark Nicolas Mlingi, Vincent Assey, Godwin Ndossi, Wafaie Fawzi

November 2008

Base data: Food consumption data

Malawi's Fifth Integrated Household Survey (IHS5)

Time horizon	April 2019 – April 2020

Enumeration areas 717 (x16 households)

Households (N) 11,434

Items on food item list 142

Dietary recall unit Household

Dietary recall period 7 days

Micronutrient Metrics Derived from HCES

Tang et al. (2021)

What useful insights about micronutrients supplied through diet can be derived from HCES?

What useful insights about micronutrients supplied through diet can be derived from HCES

✓ We estimated deficiency risks for 17 micronutrients due to inadequate dietary intakes in Malawi, estimated from household consumption and expenditure survey data (IHS5)

8 Minerals

9 Vitamins

Percentage of households with inadequate apparent intake and micronutrient density for 17 micronutrients, Malawi (n=11,432)

Micronutrient	Inadequate apparent intake	Inadequate nutrient density
	%	%
Vitamin		
Vitamin A	48.4	40.8
Vitamin C	57.8	52.2
Vitamin E	64.1	61.3
Vitamin B-1	21.6	8.7
Vitamin B-2	92.2	99.0
Vitamin B-3	63.3	61.5
Vitamin B-6	39.4	22.1
Vitamin B-9	42.0	28.0
Vitamin B-12	78.3	77.7
Mineral		
Calcium (mg)	80.6	80.8
Copper (µg)	12.4	0.5
Iron (mg)	77.2	74.7
Magnesium (mg)	18.7	3.5
Potassium (mg)	51.7	41.5
Sodium (mg)	5.6	0
Selenium (µg)	54.6	37.9
Zinc (mg)	72.8	73.1

✓ Estimating the prevalence of micronutrient inadequacy

Median apparent consumption of Ca, Fe, Zn, and Se among consumers per adult female equivalent (AFE) per day

Population Househol ds (n)		Calcium (mg)	Iron (mg)	Selenium (µg)	Zinc (mg)					
	· · ·		Median/AFE/d							
National (total)	11,432	434.0	17.0	42.0	7.3					
Administrative region										
North	2176	461.8	16.9	45.1	7.1					
Central	3951	340.3	14.3	36.4	6.3					
South	5305	521.7	20.0	47.4	8.2					
Residence & socioe household expenditu	•	n (SEP) by quintile o	f total annual							
Rural	9342	421.9	17.1	41.0	7.2					
Lowest SEP	1869	232.9	11.2	24.3	4.6					
Lower Middle SEP	1869	329.1	15.0	34.5	6.3					
Middle SEP	1868	405.6	18.2	42.3	7.6					
Higher Middle SEP	1868	508.3	20.8	52.3	9.0					
Highest SEP	1868	750.1	27.4	75.5	12.1					
Urban	2090	498.7	16.5	47.2	7.6					
Lowest SEP	418	289.0	11.8	29.8	5.2					
Lower Middle SEP	419	419.0	14.6	40.4	6.5					
Middle SEP	418	500.4	16.2	49.1	7.4					
Upper Middle SEP	417	594.0	19.5	57.4	8.9					
Highest SEP	418	843.0	25.9	80.4	12.2					

✓ Estimating nutrient intake levels e.g., Zinc in mg/day/AFE

✓ Identify spatial variation in the populations that are potentially at risk due to inadequate diets

- ✓ Identify key food sources of nutrients
- ✓ Dietary diversity/patterns

What useful insights about micronutrients supplied through diet can be derived from HCES

✓ Modelling the potential contribution of biofortified crop interventions in Malawi

tified Crop Varieties Released (R) or in Testing (T) by Cou

	HIB	IPM	ZIM	ZIR	ZIW	ABP	VAC	VAM	OSP	IZC	IZP	IZL	ZIS
				7				Т	R				1
		T					T	Т					1
		Т						Т	R				
	R					R			R				
		0			1	T	R	R					12
		8		2 1	- 8		T						1
		0			1		Т						
		0				Т	т		В				1
	R					R	R	R					
					т			T			8		
		T			- 3	- 2			Т				1
		9	т		T		Т	Т	R		Т	R	
		1			- 8		Т						
		T				1	Т			4			
		Т					R	R	R				
1		0				T	Т						
	T	Т	9 6		- 9		Т	т			Т		
							T	T					
		т	()	T					R			- 1	
	T	T			- 0		Т	R	R				
		T	10		- 8			R	Т				Т
									Т			Т	
							Т	Т	R				
		R	3				т	Т	т		§		
		Т	т			Т		R		T	1		т
	R	8				Т		R	B		т		
		т		T	- 8		т	Т	Т				
		8					R	T			9		
		6			- 8	-		Т	В				
		т			- 8			T	Т				Т
					- 1		Т		,		9		
	R	т	5 %			T	Т	R	R		0		
		т						Т					
	,	т											
	R	т				Т	т	Т	R		т		Т
1		т			т		т	R	R				

	<u> </u>	
HIB = Iron Beans	ABP = Vit. A Banana/Plantain	IZC = Iron
IPM = Iron Pearl Millet	VAC = Vit. A Cassava	IZP = Iron
200020000000000000000000000000000000000	VAM = Vit. A Maize	IZL = Iron
ZIM = Zinc Maize ZIR = Zinc Rice	OSP = Vit. A Orange Sweet Potato	ZIS = Zinc
ZIW = Zinc Wheat	Source: HarvestPlus, International Potato C	enter (2019)

Asia	HIB	IPM	ZIM	ZIR	ZIW	ABP	VAC	VAM	OSP	IZ
Afghanistan					т					
Bangladesh				R	R				R	
Bhutan					т					
Cambodia				T						
China				T	т			т	А	
East Timor									R	
India		R		R	R			т	A	Ħ
Indonesia				R					А	
Lebanon										
Myanmar				T						
Nepal					Т			т		
Pakistan					R			т		
Philippines					Т					
South Korea									R	
Syria										

LatAm/Caribbean	HIB	IPM	ZIM	ZIR	ZIW	ABP	VAC	VAM	OSP	IZ
Bolivia	R		R		R	,				
Brazil	R			Т	Т		R	R	R	R
Colombia	R	0	R	T			Т	т	R	
El Salvador	R	150 11	Т	R						
Guatemala	R	.,	R	T			Т		R	
Haiti	Т		Т	Т				Т	T	
Honduras	R		R						Т	
Mexico			т		R			Т		
Nicaragua	R		R	T					R	
Panama	R			Т	Т		Т	т	R	
Peru									R	

Base data: Food consumption data

Malawi's Fifth Integrated Household Survey (IHS5)

Time horizon	April 2019 – April 2020
	. ф
Enumeration areas	717 (x16 Households)
Households(N)	11434
Itama on food itam list	1.10
Items on food item list	142
Dietary recall unit	Household
	11000011010
Dietary recall period	7 days
Dietary recall period	7 days

Food group	Food item
Roots/tubers/plantains	White sweet potato
	Orange sweet potato
Cooked foods from vendors	Boiled sweet potato
	Roasted sweet potato

Biofortification scenarios

Scenario	Description	Scenario analysis
1. No biofortification		
2. Status quo		
3. Intermediate scenario		
4. Improved biofortification		

Intermediate scenario: Design an illustrative "switching" scenario

Distribution of sweet potato sources, Malawi (n=11,432)

FOOD ITEM	#HH CONSUMING PURCHASED FOOD	#HH CONSUMING GIFTED FOOD	#HH CONSUMING OWN PRODUCED FOOD	TOTAL #HH	% PURCHASED % GIFTED % OWNPRODUCED		
White sweet potato	2326	500	568	3394	69 15 17		
Orange sweet potato	1253	287	310	1850	68 16 17		
Roasted sweet potatoes	77	0	0	77	100		
Boiled sweet potatoes	52	0	0	52	100		

✓ Identifying sources of food items

- ✓ Comparing coverage of biofortified/fortified food vehicles
- ✓ Within-country variation

Coverage of sweet potatoes by district

✓ Predicting the contributions of nutrition interventions e.g. biofortified crop

Vitamin A inadequacy by subpopulation

0-19%	20-39%	40-59%	60	-79%	80-100	%			
	utrient densit	ty							
Population	Househol ds (n)	No biofortifi cation	Status quo	Interme diate improve d biofort.	Improve d biofortifi cation	No biofortifi cation	Status quo	Intermediate improved biofort.	Improved biofortification
National (total)	11,432	53.7	47.1	40.9	35.4	48.2	41.1	33.6	29.1
Residence & so	cioeconomic po	sition (SEP) by quii	ntile of tota	al annual h	ousehold	expenditu	ire per capita	
Rural	9342	59.8	52.4	47.2	39.7	54.0	46.3	39.4	33.0
Lowest SEP	1869	91.8	86.0	85.8	73.7	64.6	59.3	56.7	48.3
Lower Middle SEP	e 1869	81.4	71.4	63.2	54.0	61.1	53.3	44.1	38.6
Middle SEP	1868	65.7	55.5	45.8	38.4	55.9	47.4	38.6	32.3
Higher Midd SEP	le 1868	45.2	37.2	28.4	24.7	51.0	41.9	31.9	27.3
Highest SEF	P 1868	15.0	12.0	9.6	7.7	37.6	29.7	25.0	18.6
Urban	2090	26.4	23.3	18.5	16.1	22.1	17.6	12.7	11.4
Lowest SEP	418	75.1	68.7	68.7	49.8	45.2	38.3	38.3	27.5
Lower Middle SEP	e 419	33.4	28.4	26.0	18.6	25.1	19.3	18.9	12.2
Middle SEP	418	16.7	14.4	9.6	8.4	20.8	16.5	10.5	8.9
Upper Middle SEP	e 417	5.8	4.3	3.1	3.1	12.0	8.6	6.2	5.8
Highest SEF	P 418	1.0	0.7	0.7	0.7	7.4	5.3	2.9	2.6

✓ Identifying differences in apparent intake and Micronutrient density in urban and rural residences and between SEPs

✓ Seasonal variation in diet

Tang, K., K.P. Adams, E.L. Ferguson, M. Woldt, A.A. Kalimbira, Blessings Likoswe, Jennifer Yourkavitch, et al. 2021. "Modeling Food Fortification Contributions to Micronutrient Requirements in Malawi Using Household Consumption and Expenditure Surveys." 1508(1):105–122 *Annals of the N.Y. Academies of Science*. https://doi.org/10.1111/nyas.14697

Conclusion

- ✓ HCES data provide valuable insights into the diets of populations, capturing aspects of sub-national geographic, socioeconomic and seasonal fluctuations in inadequacy.
- ✓ Estimates of dietary micronutrient supplies derived from HCES food consumption data can be used to explore and inform evidence-based nutrition interventions and policies.

AHSANTE SANA!