Intégration L3 Actuariat Chapitre IV: Intégration

Pierre-Olivier Goffard

Université de Lyon 1 ISFA pierre-olivier.goffard@univ-lyon1.fr

> ISFA October 25, 2018

Soit $(\Omega, \mathscr{A}, \mu)$ un espace mesuré. Nous allons définir l'intégrale d'une fonction $f: \Omega \mapsto \mathbb{R}$ mesurable. On note \mathscr{M} l'ensemble des fonctions mesurables de Ω dans \mathbb{R} .

I. Définition de l'intégrale et propriétés de base

On note \mathcal{M}_+ l'ensemble des fonctions mesurables positives. Soit $f \in \mathcal{M}_+$. On définit l'intégrale de f, notée $\int f d\mu$ ou $\int f(\omega) d\mu$ par

$$\int f d\mu = \sup \sum_{i \in I} \inf \{ f(\omega) ; \omega \in \Omega_i \} \mu(\Omega_i),$$

où le supremum est pris sur l'ensemble des partitions $(\Omega_i)_{i\in I}$ de Ω et I est un ensemble fini d'indice. On note

$$I((\Omega_i)_{i\in I}, f) = \sum_{i\in I} \inf\{f(\omega) : \omega \in \Omega_i\} \mu(\Omega_i)$$

Remarque 1

Soit $(\Omega_i)_{i\in I}$ et $(\Omega_j')_{j\in J}$ deux partitions de Ω . $(\Omega_i\cap\Omega_j')_{(i,j)\in I\times J}$ est encore une partition de Ω telle que $I\left((\Omega_i\cap\Omega_j')_{(i,j)\in I\times J},f\right)\geq I\left((\Omega_i)_{i\in I},f\right)$

II. Intégrale des fonctions étagées positives

Le passage de la mesure d'un ensemble à la mesure d'une fonction (ou intégrale d'une fonction) procède d'une idée simple. Pour $A \subset \Omega$, on attribue la mesure $\mu(A)$ à la fonction indicatrice

$$\mathbb{I}_{A}(\omega) = \begin{cases} 1, & \text{si } \omega \in A \\ 0, & \text{sinon.} \end{cases}$$

Remarque 2

Si $A \in \mathscr{A}$, la fonction indicatrice de A, $f(\omega) = \mathbb{I}_A(\omega)$, $\forall \omega \in \Omega$ est mesurable. En effet, $f^{-1}(\{1\}) = A \in \mathscr{A}$ et $f^{-1}(\{0\}) = A^c \in \mathscr{A}$.

Definition 1 (Intégrale de la fonction indicatrice)

et son intégrale par rapport à μ est définie par

$$\int_{\Omega} \mathbb{I}_{A} d\mu = \int_{\Omega} \mathbb{I}_{A}(\omega) d\mu(\omega) = \mu(A)$$

Plus généralement, si $B \in \mathbb{A}$, l'intégrale de $f = \mathbb{I}_A$ sur B par rapport à μ est définie par

$$\int_{B} \mathbb{I}_{A} d\mu = \int_{O} \mathbb{I}_{B} \mathbb{I}_{A} d\mu = \int_{O} \mathbb{I}_{B}(\omega) \mathbb{I}_{A}(\omega) d\mu(\omega) = \mu(A \cap B).$$

Definition 2 (Fonction étagées)

On appelle fonction étagée une fonction $f: \Omega \mapsto \mathbb{R}$, défine par

$$f(\omega) = \sum_{k=1}^{n} a_{i} \mathbb{I}_{A_{k}}(\omega)$$

où $A_1,A_2,...,A_n$ est une suite d'éléments disjoints de \mathscr{A} , et $a_1,...,a_n$ des coefficients réels. On parle de fonction étagées positive si $a_1,...,a_k \geq 0$. On note \mathscr{E} (resp. \mathscr{E}_+) l'ensemble des fonctions étagées (resp. positives).

Lemme 1

Soit $f \in \mathcal{M}_+$, $A \in \mathcal{A}$ et $\alpha \in \mathbb{R}$ alors

$$\int f + \mathbb{I}_A d\mu = \int f d\mu + \mu(A)$$

preuve:

 $\overline{\text{Soit }(\Omega_i)_{i\in I}}$ une partition quelconque. On note que

$$\inf\{f + \alpha \mathbb{I}_A : \omega \in \Omega_i \cap A\} = \inf\{f : \omega \in \Omega_i \cap A\} + \alpha, \text{ pour tout } i \in I$$

et

$$\inf\{f + \alpha \mathbb{I}_{\Delta} : \omega \in \Omega_i \cap A^c\} = \inf\{f : \omega \in \Omega_i \cap A\}, \text{ pour tout } i \in I$$

On en déduit que

$$\begin{split} I\left((\Omega_{i})_{i \in I}, f + \alpha \mathbb{I}_{A}\right) & \leq I\left[\left\{(\Omega_{i} \cap A)_{i \in I}, (\Omega_{i} \cap A^{c})_{i \in I}\right\}, f + \alpha \mathbb{I}_{A}\right] \\ & = \sum_{i \in I} \inf\{f + \alpha \mathbb{I}_{A} \; ; \; \omega \in \Omega_{i} \cap A\}\mu(\Omega_{i} \cap A) \\ & + \inf\{f + \alpha \mathbb{I}_{A} \; ; \; \omega \in \Omega_{i} \cap A^{c}\}\mu(\Omega_{i} \cap A^{c}) \\ & = I\left[\left\{(\Omega_{i} \cap A)_{i \in I}, (\Omega_{i} \cap A^{c})_{i \in I}\right\}, f\right] + \alpha\mu(A) \\ & = \int f \mathrm{d}\mu + \alpha\mu(A) \end{split}$$

Montrons maintenant que $\int f + \mathbb{I}_A d\mu \ge \int f d\mu + \mu(A)$. Supposons que $\int f d\mu > M$, alors il existe une partition $(\Omega_i)_{i \in I}$ de Ω telle que $I((\Omega_i)_{i \in I}, f) \ge M$. On a alors

$$I[\{(\Omega_{i} \cap A)_{i \in I}, (\Omega_{i} \cap A^{c})_{i \in I}\}, f + \alpha \mathbb{I}_{A}] = I[\{(\Omega_{i} \cap A)_{i \in I}, (\Omega_{i} \cap A^{c})_{i \in I}\}, f] + \alpha \mu(A)$$

$$\geq I((\Omega_{i})_{i \in I}, f) + \alpha \mu(A)$$

$$\geq M + \alpha \mu(A)$$

On choisit alors M aussi proche de $\int f d\mu$ que possible pour conclure la preuve.

Proposition 1 (Intégrale d'une fonction étagée positive)

Soit $f \in \mathcal{E}_+$, l'intégrale de f par rapport à μ est donnée par

$$\int f d\mu = \sum_{k=1}^{n} a_k \int \mathbb{I}_{A_k} d\mu = \sum_{k=1}^{n} a_k \mu(A_k),$$

L'intégrale de l'intégrale de f sur $B \in \mathcal{A}$ par rapport à μ est donnée par

$$\int_{B} f d\mu = \sum_{k=1}^{n} a_k \int_{B} \mathbb{I}_{A_k} d\mu = \sum_{k=1}^{n} a_k \mu(A_k \cap B),$$

preuve:

Simple application du lemme 1

La resprésentation d'une fonction étagée n'étant pas unique, il est important de s'assurer que pour une même fonction étagée, deux représentations mènent à la même mesure intégrale.

Lemme 2

Soit $f \in \mathcal{E}_+$ admettant deux représentations disjointes telles que

$$f = \sum_{i=1}^p \alpha_i \mathbb{I}_{A_i} = \sum_{i=1}^p \beta_i \mathbb{I}_{B_i}.$$

alors

$$\int f d\mu = \sum_{i=1}^{p} \alpha_i \mu(A_i) = \sum_{i=1}^{p} \beta_i \mu(B_i).$$

preuve:

On pose

$$A_0=\Omega/\bigcup_{i=1}^p A_i,\ B_0=\Omega/\bigcup_{i=1}^q B_j,\ \text{et}\ \alpha_0=\beta_0=0.$$

et on note que

$$A_i = \bigcup_{j=0}^q B_j \cap A_i, \text{ pour } i = 0, ..., p \text{ et } B_j = \bigcup_{i=0}^p B_j \cap A_i, \text{ pour } j = 0, ..., q.$$

On obtient deux nouvelles représentations disjointes pour la fonction considérée avec

$$f = \sum_{i=0}^p \sum_{j=0}^q \alpha_i \mathbb{I}_{A_i \cap B_j} = \sum_{i=0}^p \sum_{j=0}^q \beta_j \mathbb{I}_{A_i \cap B_j}.$$

On constate que dès lors que $A_i \cap B_j \neq \emptyset$ alors $\alpha_i = \beta_j$. On en déduit que

$$\begin{split} \sum_{i=1}^{p} \alpha_{i} \mu(A_{i}) &= \sum_{i=0}^{p} \alpha_{i} \mu(A_{i}) = \sum_{i=0}^{p} \alpha_{i} \mu\left(\bigcup_{j=0}^{q} A_{i} \cap B_{j}\right) = \sum_{i=0}^{p} \sum_{j=0}^{q} \alpha_{i} \mu(A_{i} \cap B_{j}) \\ &= \sum_{i=0}^{p} \sum_{j=0}^{q} \beta_{j} \mu(A_{i} \cap B_{j}) = \sum_{j=0}^{q} \beta_{j} \sum_{i=0}^{p} \mu(A_{i} \cap B_{j}) = \sum_{j=1}^{q} \beta_{i} \mu\left(\bigcup_{i=0}^{p} A_{i} \cap B_{j}\right) \\ &= \sum_{j=1}^{q} \beta_{j} \mu(B_{j}) \end{split}$$

Le lien entre fonctions mesurables positives et étagées se concrétisent avec les résultat suivant. On note \mathcal{M}_+ l'ensemble des fonction mesurables de Ω vers $\overline{\mathbb{R}}_+$.

Theoreme 1

Toute fonction $f \in \mathcal{M}_+$ est limite simple d'une suite croissante de fonction de \mathcal{E}_+ .

preuve: Posons

$$f_n = n \mathbb{I}_{\{f \geq n\}} + \sum_{k=0}^{n2^n-1} \frac{k}{2^n} \mathbb{I}_{\left\{\frac{k}{2^n} \leq f < \frac{k+1}{2^n}\right\}}, \ n \geq 1.$$

Par exemple,

$$f_1 = \mathbb{I}_{\{f \geq 1\}} + \frac{1}{2}\mathbb{I}_{\left\{\frac{1}{2} \leq f < 1\right\}}, \ n \geq 1.$$

et

$$f_2 = 2\mathbb{I}_{\left\{f \geq 2\right\}} + \frac{1}{4}\mathbb{I}_{\left\{\frac{1}{4} \leq f < \frac{1}{2}\right\}} + \frac{1}{2}\mathbb{I}_{\left\{\frac{1}{2} \leq f < \frac{3}{4}\right\}} + \ldots, \ n \geq 1.$$

La suite $(f_n)_{n\geq 1}$ est une suite de fonctions étagées positives.

- qui converge vers f. En effet,
 - Si $\omega \in \{f = +\infty\}$ alors $f(\omega) = +\infty$ et $\lim_{n \to +\infty} f_n = \lim_{n \to +\infty} n = +\infty$
 - Si $\omega \in \{f < +\infty\}$ alors pour $\epsilon > 0$, il existe N tel que $\frac{1}{2N} < \epsilon$ et f(x) < N donc pour $n \ge N$ il existe $k \in \{0,1,\ldots,n2^n-1\}$ pour lequel $\frac{k}{2n} \le f < \frac{k+1}{2n}$. Par suite

$$0 \le f(\omega) - f_n(\omega) = f(\omega) - \frac{k}{2^n} < \frac{1}{2^n} < \frac{1}{2^N} < \epsilon.$$

- qui est croissante, c'est à dire que pour tout $n \in \mathbb{N}$ et tout $\omega \in \Omega$, $f_n(\omega) \le f_{n+1}(\omega)$
 - Si $f_n(\omega) = 0$ alors le résultat est trivial, Si $f_n(\omega) > 0$ alors
 - - Si $\omega \in \{f = \infty\}$ alors $f_n(\omega) = n < n+1 = f_{n+1}(\omega)$

• Si $\omega \in \{\frac{k}{2^n} \le f < \frac{k+1}{2^n}\}$ pour un $k \in \{0, 1, 2, ..., n2^n - 1\}$ alors

$$f_n(\omega) = \frac{k}{2^n} \begin{cases} = f_{n+1}(\omega), & \text{si } \omega \in \left\{\frac{k}{2^n} \le f < \frac{2k+1}{2^{n+1}}\right\} \\ < \frac{2k+1}{2^{k+1}} = f_{n+1}(\omega), & \text{si } \omega \in \left\{\frac{2k+1}{2^{n+1}} \le f < \frac{k+1}{2^n}\right\}. \end{cases}$$

Corollaire 1

Pour une fonction $f: \Omega \mapsto \overline{\mathbb{R}}$, les condtions suivantes sont équivalentes

- (i) f est mesurable
- (ii) f est limite simple de fonction étagées.

preuve:

- $(i)\Rightarrow$ (ii), on a $f=f^+-f^-$. Comme $f^+,f^-\in\mathcal{M}_+$ alors il existe (g_n) et (h_n) des suites croissantes de fonction étagées positives qui converge simplement vers f^+ et f^- . Par suite, $f_n=g_n-h_n, n\in\mathbb{N}$ converge simplement vers f.
- (ii) \Rightarrow (i) f est mesurable comme limite d'une suite de fonction mesurables.

П

III. Intégrale des fonctions mesurables et théorèmes de convergence L'introduction des fonctions étagées permet de donner une définition alternative à l'intégrale d'une fonction $f \in \mathcal{M}_+$.

Definition 3 (Par les fonctions étagées positives)

L'intégrale d'une fonction $f \in \mathcal{M}_+$ par rapport à μ sur $B \subset \Omega$ est définie par

$$\int_{B} f d\mu = \sup \left\{ \int_{B} g d\mu \; ; \; g \in \mathcal{E}^{+} \; , \; g \leq f \right\}$$

Cette définition permet de démontrer aisément les propriétés de l'intégrale des fonctions mesurables.

Definition 4 (μ -presque partout)

Une propriété \mathscr{P} relative aux points de Ω est vérifiée μ -presque partout (μ -p.p.) si il existe $A \subset \Omega$ de mesure nulle tel que $\forall x \in \Omega/A \mathscr{P}(x)$ soit vérifiée.

Proposition 2

Soit $f,g \in \mathcal{M}_+$ et $A,B \subset \Omega$

- (i) Si $f \le g$ alors $0 \le \int_B f d\mu \le \int_B g d\mu$
- (ii) Si $A \subset B$ et $f \ge 0$, alors $\int_A f d\mu \ge \int_B f d\mu$
- (iii) Pour $c \ge 0$, on a $\int_B cf d\mu = c \int_B f d\mu$
- (iv) Si f = 0 alors $\int_{B} f d\mu = 0$
- (v) $Si \mu(B) = 0$ alors $\int_B f d\mu = 0$
- (vi) Si $f \ge 0$ alors $\int_B f d\mu \ge 0$
- (vii) Si $f \ge 0$ et $\int_B f d\mu = 0$, alors $\mathbb{I}_B f = 0$ μ -p.p.

Preuve:

Pour les assertions (i)-(vi), on vérifie les propriétés sur les fonctions étagées avant de passer au supremum pour les fonctions mesurables positives. Par exemple, pour (iii), si $f = \sum_{k=1}^{n} a_k \mathbb{I}_{A_k}$ alors

$$\int_{B} cf d\mu = \int_{B} \sum_{k=1}^{n} ca_{k} \mathbb{I}_{A_{k}} d\mu = \sum_{k=1}^{n} ca_{k} \mu(A_{k} \cap B) = c \sum_{k=1}^{n} a_{k} \mu(A_{k} \cap B) = c \int_{B} f d\mu.$$

Pour (vii), quitte à remplacer f par $f\mathbb{I}_B$, on peut montrer le résultat pour $B=\Omega$. Considérons la suite croissante d'évènements

$$A_n = \{\omega \in \Omega ; f(\omega) \ge 1/n\}, n \ge 1.$$

On vérifie que $\mathbb{I}_{A_n} \le n^{-1}f$, puis par application de (i) et (iii), il vient

$$\mu(A_n) = \int \mathbb{I}_{A_n} \mathrm{d}\mu < n^{-1} \int f \mathrm{d}\mu = 0.$$

Par suite,

$$\mu\big(\{f>0\}\big)=\mu\big(\cup_{n\in\mathbb{N}}A_n\big)=\lim_{n\to\infty}\mu\big(A_n\big)=0.$$

Comme $f \ge 0$ alors on en déduit que f = 0 μ -p.p.

Theoreme 2 (Beppo Lévi)

 $Si\ (f_n)_{n\in\mathbb{N}}$ est une suite croissante de fonctions mesurables positives convergeant simplement $(\mu$ -p.p.) vers f alors

$$\lim_{n\to+\infty}\int f_n d\mu = \int f d\mu.$$

preuve:

On montre d'abord une forme faible de ce théorème, soit $f \in \mathcal{E}^+$ et $(E_n)_{n \in \mathbb{N}}$ une suite croissante d'évènements de \mathbb{A} réunion notée E. On a

$$\lim_{n\to\infty}\int\mathbb{I}_{E_n}f\mathrm{d}\mu=\int\mathbb{I}_Ef\mathrm{d}\mu.$$

Comme $f \in \mathcal{E}^+$ alors f admet une représésentation disjointe $f = \sum_{i=1}^k a_i \mathbb{I}_{A_i}$ et

$$\int f \mathbb{I}_{E_n} d\mu = \int \sum_{i=1}^k a_i \mathbb{I}_{A_i \cap E_n} d\mu = \sum_{i=1}^k a_i \int \mathbb{I}_{A_i \cap E_n} d\mu = \sum_{i=1}^k a_i \mu(A_i \cap E_n) d\mu$$

Comme $(A_i \cap E_n)_{n \in \mathbb{N}}$ est une suite croissante d'évènements alors $\mu(A_i \cap E_n) \underset{n \to +\infty}{\longrightarrow} \mu(A_i \cap E)$. On a finalement

$$\int f \mathbb{I}_{E_n} d\mu \underset{n \to +\infty}{\longrightarrow} \sum_{i=1}^k \mu(A_i \cap E) = \int f \mathbb{I}_E d\mu$$

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{M}_+$ une suite croissante de fonctions convergeant simplement vers f. Nous savons que cette limite est bornée par $\int f \mathrm{d}\mu$. Définissons

$$g = \sum_{i \in I} \inf\{f(\omega) \; ; \; \omega \in \Omega_i\} \mathbb{I}_{\Omega_i},$$

où $(\Omega_i)_{il}$ forme une partition de Ω . g est une fonction étagée positive. Soit

$$E_n = \{f_n \ge \alpha g\}, n \in \mathbb{N},$$

avec $\alpha \in [0,1]$. $(E_n)_{n \in N}$ est une suite croissante d'éléments de \mathscr{A} . Si $g(\omega) = 0$ alors $\omega \in E$, sinon, comme $\lim f_n = f \ge \alpha g$ alors on peut trouver n assez garnd tel que $\omega \in E_n$. Finalement $\bigcup_{n \in N} E_n = \Omega$, et donc en vertu de la forme faible du théorème il vient

$$\lim\int \mathbb{I}_{E_n}\alpha g\mathrm{d}\mu=\int\alpha g\mathrm{d}\mu.$$

On a

$$f_n \geq f_n \mathbb{I}_{E_n} \geq \mathbb{I}_{E_n} \alpha g \mathrm{d} \mu$$

d'où

$$\lim \int f_n \mathrm{d}\mu \ge \lim \int \mathbb{I}_{E_n} \alpha g \mathrm{d}\mu = \int \alpha g \mathrm{d}\mu$$

Soit

$$\lim \int f_n \mathrm{d}\mu \ge \alpha I((\Omega_i)_{i \in I}, f)$$

La preuve se termine en faisant tendre α vers 1.

Remarque 3

La convergence des fonction étagées et le théorème de Beppo Lévi permettent de passer de l'intégrale des fonctions étagées positives à l'intégrale des fonction mesurable positives.

Corollaire 2 (Intégrale d'une série de fonctions)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de \mathcal{M}_+ et soit $f = \sum_{n\in\mathbb{N}} f_n$. Alors

$$\int f d\mu = \sum_{n \in \mathbb{N}} \int f_n d\mu.$$

Lorsque f prend des valeurs négatives alors on écrit f comme différence de fonctions positives avec

$$f = f^{+} - f^{-}$$
, où $f^{+}(\omega) = \max(f(\omega), 0)$ et $f^{-}(\omega) = \max(-f(\omega), 0)$

Definition 5 (Fonction intégrable)

Si $\int f^+ d\mu < \infty$ et $\int f^- d\mu < \infty$ alors f est intégrable et on peut définir

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu.$$

On note \mathcal{L}^1 l'ensemble des fonctions intégrables.

Proposition 3 (Linéarité de l'intégrale des fonctions de \mathscr{L}^1)

Soient $f,g \in \mathcal{M}$ et $\alpha \in \mathbb{R}$. On a

$$\int (f + \alpha g) d\mu = \int f d\mu + \alpha \int g d\mu.$$

De plus, si $f \le g$ alors $\int f d\mu \le \int g d\mu$.

preuve:

On suppose dans un premier temps f et g positives et $\alpha>0$. Soientt $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites croissantes de fonctions étagées positives de limites f et g. On a, pour tout $n\in\mathbb{N}$,

$$\int f_n + \alpha g_n d\mu = \int f_n d\mu + \alpha \int g_n d\mu$$

puis

$$\int f + \alpha g d\mu = \int f d\mu + \alpha \int g d\mu,$$

en appliquant trois fois le théorème de Beppo Lévi.

Dans le cas où f et g sont intégrables alors on définit $h = f + \alpha g$. On note que si $\alpha > 0$ alors

$$\begin{split} & h^+ - h^- = f^+ - f^- + \alpha g^+ - \alpha g^- \\ \Leftrightarrow & h^+ + f^- + \alpha g^- = h^- + f^+ + \alpha g^+ \\ \Leftrightarrow & \int h^+ \mathrm{d}\mu + \int f^- \mathrm{d}\mu + \alpha \int g^- \mathrm{d}\mu = \int h^- \mathrm{d}\mu + \int f^+ \mathrm{d}\mu + \alpha \int g^+ \mathrm{d}\mu \\ \Leftrightarrow & \int h \mathrm{d}\mu = \int f \mathrm{d}\mu + \alpha \int g \mathrm{d}\mu \end{split}$$

Si α < 0 alors $h^+ - h^- = f^+ - f^- - (-\alpha)g^+ + (-\alpha)g^-$ et on effectue le même raisonnement.

On suppose que $f \le g$ alors $g - f \ge 0$ et $\int g d\mu \ge \int f d\mu$ par application de la Proposition 2 (vi).

Ш

Exemple 1 (Masse de Dirac et mesure de comptage)

Soit C la mesure de comptage sur $(\Omega, \mathscr{P}(\Omega))$ et δ_X la mesure de Dirac associée au singleton $\{x\}$. On a

$$\int f d\delta_X = f(x)$$

et

$$\int f dC = \sum_{x \in \Omega} f(x)$$

où cette somme peut valoir ∞ , f est intégrable à la condition que $\sum_{x \in \Omega} f(x) < +\infty$.

Exemple 2 (Intégration par rapport à la somme de deux mesures)

Soit μ, ν deux mesures sur (Ω, \mathscr{A}) et f une fonction mesurables telle que $\int |f| \mathrm{d}\mu < \infty$ et $\int |f| \mathrm{d}\nu < \infty$ alors

$$\int f d(\mu + \nu) = \int f d\mu + \int f d\nu.$$

Exemple 3 (Intégration par rapport à la mesure de Lebesgue)

Soit λ la mesure de Lebesgue et $f : \mathbb{R} \mapsto \mathbb{R}$ une fonction mesurable.

• Si f est continue par morceaux sur un intervalle compact [a, b], alors

$$\int_{[a,b]} f(\omega) d\lambda(\omega) = \int_a^b f(t) dt$$

② Si f est continue par morceaux sur un intervalle semi-ouvert [a,b[(avec potentiellement $b=\infty$), et que $\int_a^b |f(t)| dt < \infty$ alors

$$\int_{[a,b[} f(\omega) d\lambda(\omega) = \int_{a}^{b} f(t) dt$$

L'intégrale de Lebesgue d'une fonction continue par morceaux coincide avec l'intégrale de Riemann.

Lemme 3 (Lemme de Fatou)

Soit
$$(f_n)_{n\in\mathbb{N}}\in\mathcal{M}_+$$
, on a

$$\int \underbrace{\lim_{n \to +\infty}} f_n d\mu \leq \underbrace{\lim_{n \to +\infty}} \int f_n d\mu.$$

preuve:

On pose $g_n = \inf_{k \ge n} f_k$, pour $n \in \mathbb{N}$, ce qui définit une suite croissante de fonctions positives dont la limite est $\lim_{n \to +\infty} f_n$, on a

$$f_n \ge g_n \Rightarrow \int f_n \mathrm{d}\mu \ge \int g_n \mathrm{d}\mu$$

d'où

$$\underline{\lim}_{n \to +\infty} \int f_n d\mu \ge \underline{\lim}_{n \to +\infty} \int g_n d\mu$$

puis par le théorème de Beppo Lévi, il vient

$$\underline{\lim_{n\to+\infty}} \int g_n d\mu = \lim \int g_n d\mu = \int \underline{\lim_{n\to+\infty}} f_n d\mu.$$

Remarque 4

Soit

$$f_n(x) = \mathbb{I}_{[n,n+1]}$$
, pour $n \ge 0$,

alors $\underline{\lim}_{n \to +\infty} f_n = 0$ et $\int f_n(x) d\lambda(x) = 1$ donc

$$0 = \int \underbrace{\lim_{n \to +\infty}} f_n d\lambda < \underbrace{\lim_{n \to +\infty}} \int f_n d\lambda = 1.$$

Exemple 4

Soit

$$f_n(x) = n\sin^2\left(\frac{\sqrt{x}}{n^{1/3}}\right)$$
, pour $n \ge 0$ et $x \in]0,1[$

On a $\lim_{n \to +\infty} f_n = +\infty$ puis

$$+\infty = \int \underline{\lim}_{n \to +\infty} f_n d\lambda < \underline{\lim}_{n \to +\infty} \int f_n d\lambda$$

puis $\lim \int f_n d\mu = \infty$

Theoreme 3 (Théorème de convergence dominée)

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{M}$ convergeant presque partout vers f, et telle qu'il existe une fonction $g\in\mathcal{L}^1$ vérifiant $|f_n|\leq g$, pour tout $n\in\mathbb{N}$ alors

$$\lim_{n\to+\infty}\int f_n d\mu = \int f d\mu.$$

preuve:

Les fonctions f_n sont intégrables car dominées par g. Par suite, les fonctions $g+f_n$ et $g-f_n$ sont intégrables et positives: On peut leur appliquer le lemme de Fatou, ce qui donne

$$\int \underbrace{\lim_{n \to +\infty}} (g + f_n) \mathrm{d}\mu \leq \underbrace{\lim_{n \to +\infty}} \int (g + f_n) \mathrm{d}\mu \Leftrightarrow \int g \mathrm{d}\mu + \int \underbrace{\lim_{n \to +\infty}} f_n \mathrm{d}\mu \leq \int g \mathrm{d}\mu + \underbrace{\lim_{n \to +\infty}} \int f_n \mathrm{d}\mu.$$

d'une part et

$$\int \underbrace{\lim_{n \to +\infty}} (g - f_n) \mathrm{d}\mu \leq \underbrace{\lim_{n \to +\infty}} \int (g - f_n) \mathrm{d}\mu \Leftrightarrow \int g \mathrm{d}\mu - \int \underbrace{\lim_{n \to +\infty}} f_n \mathrm{d}\mu \leq \int g \mathrm{d}\mu + \underbrace{\lim_{n \to +\infty}} \left(- \int f_n \mathrm{d}\mu \right).$$

d'autre part. On en déduit que

$$\int f \mathrm{d} \mu \leq \varliminf_{n \to +\infty} \int f_n \mathrm{d} \mu \text{ et } \int f \mathrm{d} \mu \geq \varlimsup_{n \to +\infty} \int f_n \mathrm{d} \mu$$

puis

$$\int f_n d\mu \rightarrow \int f d\mu$$
.

Exemple 5

Soit

$$f_n(x) = \frac{\sin^n(x)}{x^2}$$
, pour $n \in \mathbb{N}$ et $x \in]1, +\infty[$.

On a $|f_n(x)| \le g(x) = \frac{1}{x^2}$ intégrable. Soit $N = \pi/2 + \pi \mathbb{N}$, pour $x \in]1, +\infty[/N \text{ on a } \lim_{n \to +\infty} f_n(x) = 0$, comme N est de mesure nulle alors on a convergence de (f_n) vers 0 λ presque partout. Puis par application du théorème de convergence dominée, on a

$$\lim_{n\to+\infty}\int_{]1,+\infty[}f_n\mathrm{d}\lambda=\int_{]1,+\infty[}\lim_{n\to+\infty}f_n\mathrm{d}\lambda=0.$$

IV. Mesures à densité

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré, et $f: \Omega \mapsto \mathbb{R}_+$ une fonction mesurable positive. L'application $v: \mathcal{A} \mapsto \overline{\mathbb{R}}_+$ définie par

$$v(A) = \int_A f d\mu,$$

est une mesure sur \mathcal{A} .

Definition 6 (Mesure à densité)

v est une mesure à densité par rapport à μ de densité f.

Definition 7 (Mesure absolument continue/étrangère)

Soit μ, ν deux mesures sur (Ω, \mathcal{A}) .

1 v est absolument continue par rapport à μ , $v << \mu$, si

$$\forall A \in \mathcal{A}, \ \mu(A) = 0 \Rightarrow \nu(A) = 0$$

2 v et μ ont étrangères, $v \perp \mu$,

$$\exists A \in \mathscr{A} \text{ tel que } \mu(A) = 0 \text{ et } \nu(A^c) = 0.$$

Soient μ et ν deux mesures σ -finie sur (Ω, \mathcal{A})

Proposition 4 (Décomposition de Lebesgue)

Il existe une unique décomposition

$$v = v_{ac} + v_{\perp}$$

dans laquelle v_{ac} est absolument continue par rapport à μ et v_{\perp} est étrangère à μ .

Theoreme 4 (Radon-Nikodym)

Si $v << \mu$, alors il existe une unique fonction mesurable positive f (à égalité μ p.p. près) telle que

$$v(A) = \int_A f \, d\mu$$

f est appelée dérivée de Radon-Nikodym et parfois notée $\frac{dv}{d\mu}$.

preuve:

On va se contenter de montrer l'unicité, qui se limite à montrer que si f et g sont toutes deux des densités de v par rapport à μ alors f=g μ -presque partout. Posons $A=\{\omega\in\Omega\;;\;f(\omega)\geq g(\omega)\}$, on a

$$\int |f - g| d\mu = \int_{A} |f - g| d\mu + \int_{A^{c}} |f - g| d\mu = \int_{A} (f - g) d\mu - \int_{A^{c}} f - g d\mu$$
$$= v(A) - v(A^{c}) + v(A^{c}) = 0.$$

On en déduit que |f - g| = 0 μ -p.p. puis f = g.

Proposition 5

Soit g une fonction mesurable, on a

$$\int |g| dv = \int |g| f d\mu.$$

Si cette quantité est finie alors

$$\int g dv = \int g f d\mu.$$

preuve:

П

 $\overline{\text{Pour } g} = \mathbb{I}_A$, avec $A \in \mathcal{A}$, on a

$$\int \mathbb{I}_A d\nu = \nu(A) = \int_A f d\mu.$$

La propriété est vérifié pour les fonction étagées positives par linéarité puis pour les fonction mesurables positives par application du théorème de convergence monotone. Si g est mesurable et intégrable alors on écrit $g=g^+-g^-$ puis

$$\int g \, \mathrm{d} v = \int (g^+ - g^-) \, \mathrm{d} v = \int g^+ \, \mathrm{d} v - \int g^- \, \mathrm{d} v = \int g^+ f \, \mathrm{d} \mu - \int g^- f \, \mathrm{d} \mu = \int g f \, \mathrm{d} \mu.$$

V. Intégration par rapport à une mesure image

On rappelle que si f est une application mesurable de $(\Omega, \mathscr{A}, \mu)$ dans (E, \mathscr{B}) , on note μ^f la mesure sur \mathscr{B} définie par $\mu^f(B) = \mu[f^{-1}(B)]$. Le théorème suivant est une forme abstraite de la formule de changement de variable

Theoreme 5 (Théorème de transfert)

Soit $\phi: E \mapsto \mathbb{R}$ mesurable (borélienne), si ϕ est à valeurs positives alors

$$\int_{E} \phi d\mu^f = \int_{\Omega} \phi \circ f d\mu.$$

si ϕ est à valeurs quelconques alors ϕ est μ^f -intégrable si et seulement si $\phi \circ f$ est μ -intégrable, et dans ce cas, l'identité est encore vérifiée.

preuve:

Soit $\phi = \mathbb{I}_B$, pour $B \in \mathcal{B}$ alors on a

$$\begin{split} \int_E \mathbb{I}_B \mathrm{d} \mu^f &= \mu^f(B) = \mu \Big[f^{-1}(B) \Big] \\ &= \mu \big[\{ \omega \in \Omega \ ; \ f(\omega) \in B \} \big] = \int \mathbb{I}_B \circ f \mathrm{d} \mu. \end{split}$$

La propriété étant vérifiée pour \mathbb{I}_B alors elle est vérifiée pour les fonctions étagées positives par linéarité de l'intégrale. Pour ϕ mesurable positive, on définit une suite croissante de fonctions $(\phi_n)_{n\in\mathbb{N}}$ étagées positives convergeant vers ϕ . La suite

 $(\phi_n \circ f)_{n \in \mathbb{N}}$ une suite croissante, de fonction étagées positives qui convergent vers $\phi \circ f$. Par application du théorème de Beppo Lévy, il vient

$$\int \phi \mathrm{d} \mu^f = \lim \int \phi_n \mathrm{d} \mu^f = \lim \int \phi_n \circ f \mathrm{d} \mu = \int \phi \circ f \mathrm{d} \mu.$$

Pour le cas ϕ mesurable, on observe que

$$\int |\phi| \mathrm{d}\mu^f = \int |\phi| \circ f \mathrm{d}\mu = \int |\phi \circ f| \mathrm{d}\mu,$$

donc ϕ est μ^f -intégrable si et seulement si $\phi \circ f$ est μ -intégrable et dans ce cas

$$\begin{split} \int \phi \mathrm{d} \mu^f &= \int \phi^+ - \phi^- \mathrm{d} \mu^f = \int \phi^+ \mathrm{d} \mu^f - \int \phi^- \mathrm{d} \mu^f \\ &= \int \phi^+ \circ f \mathrm{d} \mu - \int \phi^- \circ f \mathrm{d} \mu = \int \phi \circ f \mathrm{d} \mu. \end{split}$$

10140121212121212

29/43

VI. Intégrale dépendant d'un paramètre

Soit $(\Omega, \mathscr{A}, \mu)$ un espace mesuré et $f: \Omega \times T \mapsto \mathbb{R}$ une fonction de deux variables, où T est un intervalle de \mathbb{R} . On suppose que, $\forall t \in T \ \omega \mapsto f(\omega, t)$ est mesurable par rapport à \mathscr{A} et intégrable par rapport à μ .

Proposition 6 (Continuité de l'intégrale)

Si $t\mapsto f(\omega,t)$ est continue μ -presque partout et qu'il existe une fonction g intégrable par rapport à μ telle que

$$|f(\omega,t)| \le g(\omega), \ \forall t \in T.$$

Alors

$$F(t) = \int_{\Omega} f(\omega, t) d\mu(\omega)$$

est continue sur T.

<u>preuve</u>: Comme T est un espace métrique, la continuité est caractérisée par le comportement des suites. F(t) est continue si pour toute suite $(t_n)_{n\in\mathbb{N}}$ convergeant vers t, $F(t_n)$ converge vers F(t). La suite de fonction $(f(\omega,t_n))_{n\in\mathbb{N}}$ converge vers $f(\omega,t)$ par continuité de $t\mapsto f(\omega,t)$ puis comme $|f(\omega,t_n)|\leq g(\omega)$ alors $(F(t_n))_{n\in\mathbb{N}}$ converge vers F(t) en vertu du théorème de convergence dominée.

Proposition 7 (Dérivabilité de l'intégrale)

Si $t \mapsto f(\omega,t)$ est dérivable par rapport à t μ -presque partout et qu'il existe une fonction g intégrable par rapport à μ telle que

$$\left|\frac{\partial f}{\partial t}(\omega,t)\right| \leq g(\omega), \ \forall t \in \mathcal{T}.$$

Alors

$$F(t) = \int_{\Omega} f(\omega, t) d\mu(\omega)$$

définit une fonction dérivable sur T, avec

$$F'(t) = \int_{\Omega} \frac{\partial f}{\partial t}(\omega, t) d\mu(\omega).$$

preuve:

Il s'agit de montrer que pour toute suite $(t_n)_{n\in\mathbb{N}}$ convergeant vers t, on a

$$\lim_{n \to +\infty} \frac{F(t_n) - F(t)}{t_n - t} = \int_{\Omega} \frac{\partial f}{\partial t} (\omega, t) d\mu(\omega).$$

On pose $f_n(\omega) = \frac{f(\omega,t_n) - f(\omega,t)}{t_n - t}$, qui est une suite de fonctions mesurables convergeant vers $\frac{\partial f}{\partial t}(\omega,t)$ qui est donc mesurable. De plus, le théorème des accroissements finis entraine l'inégalité

$$|f_n(\omega)| \leq g(\omega).$$

L'application du théorème de convergence dominée sur la suite $(f_n)_{n\in\mathbb{N}}$ donne

$$\lim_{n \to +\infty} \frac{F(t_n) - F(t)}{t_n - t} = \int_{\Omega} f_n(\omega) d\mu(\omega) \to \int_{\Omega} \frac{\partial f}{\partial t}(\omega, t) d\mu(\omega)$$

Exemple 6 (La fonction Gamma)

On note Γ la fonction définie par

$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt, \ x \in]0, +\infty[$$

On pose

$$H_n = \sum_{k=1}^n \frac{1}{k}, \ n \ge 1.$$

- lacktriangle Vérifier que Γ est bien définie.
- 2 Démontrer que la fonction Γ est dérivable sur $]0,+\infty[$, avec

$$\Gamma'(x) = \int_0^{+\infty} e^{-t} t^{x-1} \log(t) dt.$$

Montrer que la suite

$$u_n = H_n - \log(n), n \ge 1$$

admet une limite lorsque n tend vers l'infini. On notera γ cette limite, auusi appelé constante d'Euler.

montrer que

$$H_n = \int_0^1 \frac{1 - (1 - v)^n}{v} dv, \ n \ge 1.$$

⑤ En déduire que, pour tout $n \ge 1$,

$$\frac{H_{n+1}}{n+1} = -\int_0^1 (1-v)^n \log(v) dv.$$

- **6** Etablir que pour tout $t \ge 0$, $1 t \le e^{-t}$.
- On pose $I_n = \int_0^n (1 \frac{t}{n})^n \log(t) dt$. Montrer que

$$\lim I_n = \int_0^{+\infty} e^{-t} \log(t) dt.$$

Montrer que $\gamma = -\Gamma'(1)$.

Hint: On pourra montrer que $I_n = \frac{n}{n+1}(\log(n) - H_{n+1})$.

VII. Intégrale en dimension supérieure à 1

1. Tribu et mesures produits

Soient $(\Omega_1, \mathcal{A}_1)$ et $(\Omega_2, \mathcal{A}_2)$ deux espaces mesurables.

Definition 8 (Tribu produit)

La tribu produit associée à $\Omega_1 \times \Omega_2$ est la tribu engendrée par les ensembles

$$A_1 \times A_2$$
 avec $A_1 \in \mathcal{A}_1$ et $A_2 \in \mathcal{A}_2$,

notée $\mathcal{A}_1 \otimes \mathcal{A}_2$.

Remarque 5

Les applications projections

$$\pi_1:(x,y)\mapsto x \text{ de }\Omega_1\times\Omega_2 \text{ dans }\Omega_1,$$

et

$$\pi_2:(x,y)\mapsto y \text{ de } \Omega_1\times\Omega_2 \text{ dans } \Omega_2,$$

sont mesurables. En effet, $\forall A_1 \in \mathcal{A}_1$ on a $\pi_1^{-1}(A_1) = A_1 \times \Omega_2 \in \mathcal{A}_1 \otimes \mathcal{A}_2$

Proposition 8

Si
$$\mathcal{A}_1 = \sigma((A_{1,i})_{i \in I} \text{ et } \mathcal{A}_2 = \sigma((A_{2,j})_{j \in J}) \text{ alors}$$

$$\mathcal{A}_1\otimes\mathcal{A}_2=\sigma((A_{1,i}\times A_{2,j})).$$

On a également $\mathscr{B}(\mathbb{R}^d) = \mathscr{B}(\mathbb{R})^{\otimes d}$.

Soient $(\Omega_1, \mathscr{A}_1, \mu_1)$ et $(\Omega_2, \mathscr{A}_2, \mu_2)$ deux espaces mesurés. Soit la tribu produit $\mathscr{A} = \mathscr{A}_1 \otimes \mathscr{A}_2$. Pour $A \in \mathscr{A}$, les sections

$$A_{\omega_1} = \{\omega_2 \in \Omega_2 \ ; \ (\omega_1, \omega_2) \in A\} \text{ et } A_{\omega_2} = \{\omega_1 \in \Omega_1 \ ; \ (\omega_1, \omega_2) \in A\}$$

sont mesurables (i.e. $A_{\omega_1} \in \mathcal{A}_2$ et $A_{\omega_2} \in \mathcal{A}_1$).

Theoreme 6 (Tribu produit)

Si μ_1 et μ_2 sont σ -finies. Il existe une unique mesure m sur $(\Omega_1 \times \Omega_2, \mathscr{A}_1 \otimes \mathscr{A}_2)$ telle que

$$m(A_1 \times A_2) = \mu_1(A_1)m_2(A_2)$$
, pour tout $A_1 \in \mathcal{A}_1$ et $A_2 \in \mathcal{A}_2$,

notée $m = \mu_1 \otimes \mu_2$.

preuve: Admis

П

Si $A = A_1 \times A_2$ alors

$$A_{\omega_2} = \begin{cases} A_1 & \text{si } \omega_2 \in A_2 \\ \emptyset & \text{si } \omega_2 \notin A_2 \end{cases}$$

et par suite

$$\mu_1(A_{\omega_2}) = \mu(A_1)\mathbb{I}_{A_2}(\omega_2) = \begin{cases} \mu(A_1) & \text{si } \omega_2 \in A_2, \\ 0 & \text{si } \omega_2 \notin A_2. \end{cases}$$

On peut faire les mêmes remarques pour A_{ω_2} et on en déduit que

$$\begin{split} m(A) &=& \int_{\Omega_2} \mu_1(A_{\omega_2}) \mathrm{d} \mu_2 = \int_{\Omega_1} \mu_2(A_{\omega_1}) \mathrm{d} \mu_1 \\ &=& \int_{\Omega_1} \int_{\Omega_2} \mathbb{I}_A(\omega_1, \omega_2) \mathrm{d} \mu_2 \mathrm{d} \mu_1 = \int_{\Omega_2} \int_{\Omega_1} \mathbb{I}_A(\omega_1, \omega_2) \mathrm{d} \mu_1 \mathrm{d} \mu_2 \end{split}$$

On peut donc inter-changer l'ordre d'intégration pour les fonctions indicatrices, l'objet des théorémes suivant est de changer l'ordre d'intégration pour des fonctions mesurables.

2. Théorème de Fubini et Tonelli

Theoreme 7 (Tonelli)

Soit $f: \Omega_1 \times \Omega_2 \mapsto \overline{\mathbb{R}}^+$ mesurable.

• $\omega_2 \mapsto f(\omega_1, \omega_2)$ est mesurable pour tout $\omega_1 \in \Omega_1$ et la fonction

$$\omega_1 \mapsto \int_{\Omega_2} f(\omega_1, \omega_2) d\mu_2(\omega_2)$$

est mesurable et positive.

• $\omega_1 \mapsto f(\omega_1, \omega_2)$ est mesurable pour tout $\omega_2 \in \Omega_2$

$$\omega_2 \mapsto \int_{\Omega_1} f(\omega_1, \omega_2) d\mu_1(\omega_1)$$

est mesurable et positive.

Enfin, on a les égalités

$$\begin{split} \int f d(\mu_1 \otimes \mu_2) &= \int_{\Omega_2} \left(\int_{\Omega_1} f(\omega_1, \omega_2) d\mu_1(\omega_1) \right) d\mu_2(\omega_2) \\ &= \int_{\Omega_1} \left(\int_{\Omega_2} f(\omega_1, \omega_2) d\mu_2(\omega_2) \right) d\mu_1(\omega_1). \end{split}$$

Theoreme 8 (Fubini)

Soit $f: \Omega_1 \times \Omega_2 \mapsto \mathbb{R}$ mesurable. Si

$$\int |f|d(\mu_1\otimes\mu_2)<\infty,$$

alors

$$\begin{split} \int f d(\mu_1 \otimes \mu_2) &= \int_{\Omega_2} \left(\int_{\Omega_1} f(\omega_1, \omega_2) d\mu_1(\omega_1) \right) d\mu_2(\omega_2) \\ &= \int_{\Omega_1} \left(\int_{\Omega_2} f(\omega_1, \omega_2) d\mu_2(\omega_2) \right) d\mu_1(\omega_1). \end{split}$$

3. Changement de variables

Soient O et O' deux ouverts de \mathbb{R}^d et $\phi:O\mapsto O'$ un C1-difféomorphisme (application bijective, différentiable et de réciproque différentiable). On note

$$\phi(x) = (\phi_1(x), ..., \phi_d(x)), \text{ pour } x = (x_1, ..., x_d).$$

La matrice jacobienne de ϕ est définie par

$$D_{X}\phi = \begin{pmatrix} \frac{\partial \phi_{1}}{\partial x_{1}}(x) & \dots & \frac{\partial \phi_{1}}{\partial x_{d}}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial \phi_{d}}{\partial x_{1}}(x) & \dots & \frac{\partial \phi_{d}}{\partial x_{d}}(x) \end{pmatrix}, \text{ pour } x \in O,$$

son déterminant det $D_X \phi$ est appelé jacobien.

Theoreme 9

Soit $f: O' \rightarrow \mathbb{R}$, mesurable, alors

f est intégrable $\Leftrightarrow f \circ \phi(.) \times$ est intégrable

et dans ce cas

$$\int_{O'} f(y) d\lambda(y) = \int_{O} f(\phi(x)) \times |\det D_x \phi| d\lambda(x).$$

Exemple 7 (Intégrale de Gauss)

Soit

$$f(x,y) = \exp\left(-\frac{x^2 + y^2}{2}\right),\,$$

on a

$$\int_{\mathbb{R}^2} f(x,y) d(\lambda \otimes \lambda)(x,y) = I^2,$$

avec $I = \int_{\mathbb{R}} e^{-x^2/2} d\lambda(x)$. On effectue le changement de variable en coordonnées polaires $\phi: (r, \theta) \mapsto (r\cos\theta, r\sin\theta)$ avec

$$\det D_{r,\theta} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r$$

Par application de la formule de changement de variable il vient

$$I^{2} = \int_{\mathbb{R}_{+} \times [0.2\pi]} r e^{-r^{2}/2} d(\lambda \otimes \lambda)(r,\theta) = 2\pi \int_{\mathbb{R}_{+}} r e^{-r^{2}/2} d\lambda(r) = 2\pi$$

puis $I = \sqrt{2\pi}$.

VIII. Intégrale d'une fonction à valeur complexe

Soient $(\Omega, \mathcal{A}, \mu)$ un espace mesuré et $f: \Omega \mapsto \mathbb{C}$ une fonction à valeurs complexe, on a

$$f(\omega) = \Re(f)(\omega) + i\Im(f)(\omega), \ \omega \in \Omega.$$

où les parties réelles et imaginaires de f sont des applications de Ω dans $\mathbb R$. On remarque que l'espace mesurable $(\mathscr C,\mathscr B(\mathscr C))$ est de même nature que $(\mathbb R^2,\mathscr B(\mathbb R)^{\otimes 2})$.

Definition 9

- **1** If est mesurable Ssi $\Re(f)$ et $\Im(f)$ sont mesurables.
- ② f est dite intégrable Ssi $\Re(f)$ et $\Im(f)$ sont intégrables et

$$\int f d\mu = \int \Re(f) d\mu + i \int \Im(f) d\mu.$$

Le module de f est défini par

$$|f| = \sqrt{\Re(f)^2 + \Im(f)^2}.$$

Proposition 9

|f| est intégrable Ssi $\Re(f)$ et $\Im(f)$ sont intégrables.

La plupart des théorèmes énoncés pour les fonctions réelles sont valides pour les fonctions à valeur complexe, on les démontre en considérant séparément la partie imaginaire et la partie réelle.

Theoreme 10 (Convergence dominée pour les fonctions à valeurs complexes)

Soit $(f_n)_n \in \mathbb{N}$ une suite de fonctions mesurables complexes convergeant presque partout vers f, et telle qu'il existe g intégrable vérifiant, pour tout n, $|f_n| \leq g$ alors

$$\int f_n d\mu \to \int f d\mu.$$

preuve:

Comme $|\Re(f_n)| \le |f_n| \le g$, on applique alors le théorème de convergence dominée à $(\Re(f_n))_n$. Idem pour $(\Im(f_n))_n$

Bibliographie

Mes notes se basent sur les ouvrages suivants [1, 3, 2, 4]

Philippe Barbe and Michel Ledoux.

Probabilité.

L'Editeur: EDP Sciences, 2007.

Thierry Gallouët and Raphaèle Herbin.

Mesure, intégration, probabilités.

Ellipses, https://cel.archives-ouvertes.fr/file/index/docid/637007/filename/mes-int-pro.pdf, 2013.

Jacques Gapaillard.

Intégration pour la licence: cours avec exercices corrigés.

Masson, 1997.

Olivier Garet and Aline Kurtzmann.

De l'intégration aux probabilités, volume 470.

Ellipses, 2011.