10/559543 IAP9 Rec'd PCT/PTO 02 DEC 2005

1/41

SEQUENCE LISTING

<110>	Alexion Pharmaceuticals, Inc. Rother, Russell P. Faas-Knight, Susan Wu, Dayang Carr, Francis J. Hamilton, Anita	
<120>	DE-IMMUNIZED ANTI-CD3 ANTIBODY	
<130>	106 PCT (1087-59 PCT)	
<140> <141>	PCT/US2004/017219 2004-05-28	
	US 60/475,155 2003-06-02	
<160>	83	
<170>	PatentIn version 3.2	
<210><211><211><212><213>	1 819 DNA murine	
<400>	1	60
	atga atatgcaaat cctctgaatc tacatggtaa atataggttt gtctatacca	
caaaca	gaaa aacatgagat cacagttete tetacagtta etgageacae aggaeeteae	120
catggg	atgg agctgtatca tcctcttctt ggtagcaaca gctacaggta aggggctcac	180
agtagc	aggc ttgaggtctg gacatatata tgggtgacaa tgacatccac tttgcctttc	240
tctcca	cagg tgtccactcc caggtccagc tgcaacagtc tggggctgaa ctcgcaagac	300
ctgggg	cctc agtgaagatg tcctgcaagg cttctggcta cacgtttact aggtacacga	360
tgcact	gggt aaaacagagg cctggacaag gtttggaatg gattggatac attaacccta	420
gccgtg	gata tactaattac aatcagaagt tcaaggacaa ggccacactg actacagaca	480
aatctt	ccag cacagectae atgeaactga geageetgae atetgaggae teegeagtet	540
attact	gtgc aagatattat gatgatcatt actgtctcga ctactggggc caaggcacca	600
ctttga	cagt ctcctcaggt gagtccttac aacctctctc ttctattcag cttaaataga	660
ttttac	tgca tttgttgggg gggaaatgtg tgtatctgaa tttcaggtca tgaaggacta	720
gggaca	cctt gggagtcaga aagggtcatt gggagcccgg gctgatgcag acagacatcc	780
tcagct	ccca gacttcatgg ccagagattt ataggatcc	819

```
<211> 15
<212> PRT
<213> murine
<400> 2
Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr
<210> 3
<211> 617
<212> DNA
<213> murine
<400> 3
                                                                      60
aaqcttatqa atatqcaaat cctctgaatc tacatggtaa atataggttt gtctatacca
caaacagaaa aacatgagat cacagttete tetacagtta etgageacae aggaeeteae
                                                                     120
catgggatgg agctgtatca tcctcttctt ggtagcaaca gctacaggta aggggctcac
                                                                     180
aqtaqcaqqc ttgaggtctg gacatatata tgggtgacaa tgacatccac tttgcctttc
                                                                     240
totocacago totocactoe caaattotte teacceagte tecageaate atototocat
                                                                     300
ctccagggga aaaggtcacc atgacatgca gtgccagctc aagtgtaagt tacatgaact
                                                                     360
ggtaccagca gaagtcaggc acctccccca aaagatggat ttatgacaca tcaaaactgg
                                                                     420
cttctggagt accggctcac ttcaggggca gtgggtctgg gacctcttac tctctcacaa
                                                                     480
tctcagggat ggaagctgaa gatgccgcaa cttattactg ccagcagtgg tcaagtaacc
                                                                     540
cattcacgtt cggatctggt acaaagttgg aaatcaaacg tgagtagaat ttaaactttg
                                                                     600
                                                                     617
cttcctcagt tggatcc
<210> 4
<211> 15
<212> PRT
<213> murine
<400> 4
Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr
<210> 5
<211> 6058
<212> DNA
<213> artificial sequence
<220>
<223> vector
```

<400> 5

acgcgttgac	attgattatt	gactagttat	taatagtaat	caattacggg	gtcattagtt	60
catagcccat	atatggagtt	ccgcgttaca	taacttacgg	taaatggccc	cgcctggctg	120
accgcccaac	gacccccgcc	cattgacgtc	aataatgacg	tatgttccca	tagtaacgcc	180
aatagggact	ttccattgac	gtcaatgggt	ggactattta	cggtaaactg	cccacttggc	240
agtacatcaa	gtgtatcata	tgccaagtac	gccccctatt	gacgtcaatg	acggtaaatg	300
gcccgcctgg	cattatgccc	agtacatgac	cttatgggac	tttcctactt	ggcagtacat	360
ctacgtatta	gtcatcgcta	ttaccatggt	gatgcggttt	tggcagtaca	tcaatgggcg	420
tggatagcgg	tttgactcac	ggggatttcc	aagtctccac	cccattgacg	tcaatgggag	480
tttgttttgg	caccaaaatc	aacgggactt	tccaaaatgt	cgtaacaact	ccgccccatt	540
gacgcaaatg	ggcggtaggc	gtgtacggtg	ggaggtctat	ataagcagag	ctcgtttagt	600
gaaccgtcag	aattctgttg	ggctcgcggt	tgattacaaa	ctcttcgcgg	tctttccagt	660
actcttggat	cggaaacccg	teggeeteeg	aacggtactc	cgccaccgag	ggacctgagc	720
gagtccgcat	cgaccggatc	ggaaaacctc	tcgactgttg	gggtgagtac	tccctctcaa	780
aagcgggcat	gacttctgcg	ctaagattgt	cagtttccaa	aaacgaggag	gatttgatat	840
tcacctggcc	cgcggtgatg	cctttgaggg	tggccgcgtc	catctggtca	gaaaagacaa	900
tctttttgtt	gtcaagcttg	aggtgtggca	ggcttgagat	ctggccatac	acttgagtga	960
caatgacatc	cactttgcct	ttctctccac	aggtgtccac	tcccaggtcc	aactgcaggt	1020
cgaccggctt	ggtaccgagc	tcggatccgg	accatcatga	agtggagctg	ggttattctc	1080
ttcctcctgt	cagtaactgc	cggcgtccac	tcccaggttc	aggtccagca	gtctggggct	1140
gagctggcaa	gaccttgggc	ttcagtgaag	ttgtcctgca	aggcttctgg	ctacaatttt	1200
aatagttact	ggatgcagtg	ggtaaaacag	aggcctggac	agggtctgga	atggattggg	1260
gctatttatc	ctggagatgg	tgatactagc	tacactcaga	agttcagggg	caaggccaca	1320
ttgactgcag	ataaatcctc	cagcacagcc	tacatgcaac	tcagcagctt	ggcatctgag	1380
gactctgcgg	tctattactg	tgcaagacgt	acggtaggag	gctactttga	ctactggggc	1440
caaggcacca	ctctcacagt	ctcctcagcc	tccaccaagg	gcccatccgt	cttccccctg	1500
gcgccctgct	ccaggagcac	ctccgagagc	acageegeee	tgggctgcct	ggtcaaggac	1560
tacttccccg	aaccggtgac	ggtgtcgtgg	aactcaggcg	ccctgaccag	cggcgtgcac	1620
accttcccgg	ctgtcctaca	gtcctcagga	ctctactccc	tcagcagcgt	ggtgaccgtg	1680
ccctccagca	gcttgggcac	gaagacctac	acctgcaacg	tagatcacaa	gcccagcaac	1740
accaaggtgg	acaagagagt	tggtgagagg	ccagcacagg	gagggagggt	gtctgctgga	1800

agccaggctc	agccctcctg	cctggacgca	ccccggctgt	gcagccccag	cccagggcag	1860
caaggcatgc	cccatctgtc	tcctcacccg	gaggcctctg	accaccccac	tcatgctcag	1920
ggagagggtc	ttctggattt	ttccaccagg	ctcccggcac	cacaggctgg	atgcccctac	1980
cccaggccct	gcgcatacag	ggcaggtgct	gcgctcagac	ctgccaagag	ccatatccgg	2040
gaggaccctg	cccctgacct	aagcccaccc	caaaggccaa	actctccact	ccctcagctc	2100
agacaccttc	tctcctccca	gatctgagta	actcccaatc	ttctctctgc	agagtccaaa	2160
tatggtcccc	catgcccatc	atgcccaggt	aagccaaccc	aggcctcgcc	ctccagctca	2220
aggcgggaca	ggtgccctag	agtagcctgc	atccagggac	aggccccagc	cgggtgctga	2280
cgcatccacc	tccatctctt	cctcagcacc	tgagttcctg	gggggaccat	cagtcttcct	2340
gttcccccca	aaacccaagg	acactctcat	gatctcccgg	acccctgagg	tcacgtgcgt	2400
ggtggtggac	gtgagccagg	aagaccccga	ggtccagttc	aactggtacg	tggatggcgt	2460
ggaggtgcat	aatgccaaga	caaagccgcg	ggaggagcag	ttcaacagca	cgtaccgtgt	2520
ggtcagcgtc	ctcaccgtcc	tgcaccagga	ctggctgaac	ggcaaggagt	acaagtgcaa	2580
ggtctccaac	aaaggcctcc	cgtcctccat	cgagaaaacc	atctccaaag	ccaaaggtgg	2640
gacccacggg	gtgcgagggc	cacacggaca	gaggccagct	cggcccaccc	tctgccctgg	2700
gagtgaccgc	tgtgccaacc	tctgtcccta	cagggcagcc	ccgagagcca	caggtgtaca	2760
ccctgccccc	atcccaggag	gagatgacca	agaaccaggt	cagcctgacc	tgcctggtca	2820
aaggcttcta	ccccagcgac	atcgccgtgg	agtgggagag	caatgggcag	ccggagaaca	2880
actacaagac	cacgcctccc	gtgctggact	ccgacggctc	cttcttcctc	tacagcaggc	2940
taaccgtgga	'caagagcagg	tggcaggagg	ggaatgtctt	ctcatgctcc	gtgatgcatg	3000
aggctctgca	caaccactac	acacagaaga	gcctctccct	gtctctgggt	aaatgagtgc	3060
cagggccggc	aagcccccgc	tccccatcca	tcacactggc	ggccgctcga	gcatgcatct	3120
agaacttgtt	tattgcagct	tataatggtt	acaaataaag	caatagcatc	acaaatttca	3180
caaataaagc	attttttca	ctgcattcta	gttgtggttt	gtccaaactc	atcaatgtat	3240
cttatcatgt	ctggatcgat	cccgccatgg	tatcaacgcc	atatttctat	ttacagtagg	3300
gacctcttcg	ttgtgtaggt	accgctgtat	tcctagggaa	atagtagagg	caccttgaac	3360
tgtctgcatc	agccatatag	cccccgctgt	tcgacttaca	aacacaggca	cagtactgac	3420
aaacccatac	acctcctctg	aaatacccat	agttgctagg	gctgtctccg	aactcattac	3480
accctccaaa	gtcagagctg	taatttcgcc	atcaagggca	gcgagggctt	ctccagataa	3540
aatagcttct	gccgagagtc	ccgtaagggt	agacacttca	gctaatccct	cgatgaggtc	3600

tactagaata	gtcagtgcgg	ctcccatttt	gaaaattcac	ttacttgatc	agcttcagaa	3660
gatggcggag	ggcctccaac	acagtaattt	tcctcccgac	tcttaaaata	gaaaatgtca	3720
agtcagttaa	gcaggaagtg	gactaactga	cgcagctggc	cgtgcgacat	cctcttttaa	3780
ttagttgcta	ggcaacgccc	tccagagggc	gtgtggtttt	gcaagaggaa	gcaaaagcct	3840
ctccacccag	gcctagaatg	tttccaccca	atcattacta	tgacaacagc	tgttttttt	3900
agtattaagc	agaggccggg	gacccctggg	cccgcttact	ctggagaaaa	agaagagg	3960
cattgtagag	gcttccagag	gcaacttgtc	aaaacaggag	tgcttctatt	tctgtcacac	4020
tgtctggccc	tgtcacaagg	tccagcacct	ccataccccc	tttaataagc	agtttgggaa	4080
cgggtgcggg	tcttactccg	cccatcccgc	ccctaactcc	gcccagttcc	gcccattctc	4140
cgccccatgg	ctgactaatt	ttttttattt	atgcagaggc	cgaggccgcc	tcggcctctg	4200
agctattcca	gaagtagtga	ggaggctttt	ttggaggcct	aggcttttgc	aaaaaggagc	4260
tcccagcaaa	aggccaggaa	ccgtaaaaag	gccgccttgc	tggcgttttt	ccataggctc	4320
cgcccccctg	acgagcatca	caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	4380
ggactataaa	gataccaggc	gtttccccct	ggaagctccc	tcgtgcgctc	tcctgttccg	4440
accctgccgc	ttaccggata	cctgtccgcc	tttctccctt	cgggaagcgt	ggcgctttct	4500
caatgctcac	gctgtaggta	tctcagttcg	gtgtaggtcg	ttcgctccaa	gctgggctgt	4560
gtgcacgaac	ccccgttca	gcccgaccgc	tgcgccttat	ccggtaacta	tcgtcttgag	4620
tccaacccgg	taagacacga	cttatcgcca	ctggcagcag	ccactggtaa	caggattagc	4680
agagcgaggt	atgtaggcgg	tgctacagag	ttcttgaagt	ggtggcctaa	ctacggctac	4740
actagaagga	cagtatttgg	tatctgcgct	ctgctgaagc	cagttacctt	cggaaaaaga	4800
gttggtagct	cttgatccgg	caaacaaacc	accgctggta	gcggtggttt	ttttgtttgc	4860
aagcagcaga	ttacgcgcag	aaaaaaagga	tctcaagaag	atcctttgat	cttttctacg	4920
gggtctgacg	ctcagtggaa	cgaaaactca	cgttaaggga	ttttggtcat	gagattatca	4980
aaaaggatct	tcacctagat	ccttttaaat	taaaaatgaa	gttttaaatc	aatctaaagt	5040
atatatgagt	aaacttggtc	tgacagttac	caatgcttaa	tcagtgaggc	acctatctca	5100
gcgatctgtc	tatttcgttc	atccatagtt	gcctgactcc	ccgtcgtgta	gataactacg	5160
atacgggagg	gcttaccatc	tggccccagt	gctgcaatga	taccgcgaga	cccacgctca	5220
ccggctccag	atttatcagc	aataaaccag	ccagccggaa	gggccgagcg	cagaagtggt	5280
cctgcaactt	tatccgcctc	catccagtct	attaattgtt	gccgggaagc	tagagtaagt	5340
agttcgccag	ttaatagttt	gcgcaacgtt	gttgccattg	ctacaggcat	cgtggtgtca	5400

cgctcgtcgt	ttggtatggc	ttcattcagc	tccggttccc	aacgatcaag	gcgagttaca	5460
tgatccccca	tgttgtgcaa	aaaagcggtt	agctccttcg	gtcctccgat	cgttgtcaga	5520
agtaagttgg	ccgcagtgtt	atcactcatg	gttatggcag	cactgcataa	ttctcttact	5580
gtcatgccat	ccgtaagatg	cttttctgtg	actggtgagt	actcaaccaa	gtcattctga	5640
gaatagtgta	tgcggcgacc	gagttgctct	tgcccggcgt	caatacggga	taataccgcg	5700
ccacatagca	gaactttaaa	agtgctcatc	attggaaaac	gttcttcggg	gcgaaaactc	5760
tcaaggatct	taccgctgtt	gagatccagt	tcgatgtaac	ccactcgtgc	acccaactga	5820
tcttcagcat	cttttacttt	caccagcgtt	tctgggtgag	caaaaacagg	aaggcaaaat	5880
gccgcaaaaa	agggaataag	ggcgacacgg	aaatgttgaa	tactcatact	cttccttttt	5940
caatattatt	gaagcattta	tcagggttat	tgtctcatga	gcggatacat	atttgaatgt	6000
atttagaaaa	ataaacaaat	aggggttccg	cgcacatttc	cccgaaaagt	gccacctg	6058

<211> 235

<212> PRT

<213> human

<400> 6

Met Lys Trp Ser Trp Val Ile Leu Phe Leu Leu Ser Val Thr Ala Gly
1 5 10 15

Val His Ser Gln Val Gln Val Gln Gln Ser Gly Ala Glu Leu Ala Arg 20 25 30

Pro Trp Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Asn Phe 35 40 45

Asn Ser Tyr Trp Met Gln Trp Val Lys Gln Arg Pro Gly Gln Gly Leu 50 55 60

Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asp Gly Asp Thr Ser Tyr Thr 65 70 75 80

Gln Lys Phe Arg Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85 90 95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val 100 105 110

Tyr T	yr	Cys 115	Ala	Arg	Arg	Thr	Val 120	Gly	Gly	Tyr	Phe	Asp 125	Tyr	Trp	Gly	,	
Gln G 1	30	Thr	Thr	Leu	Thr	Val 135	Ser	Ser	Ala	Ser	Thr 140	Lys	Gly	Pro	Ser		
Val P 145	he	Pro	Leu	Ala	Pro 150	Cys	Ser	Arg	Ser	Thr 155	Ser	Glu	Ser	Thr	Ala 160		
Ala L	eu	Gly	Cys	Leu 165	Val	Lys	Asp	Tyr	Phe 170	Pro	Glu	Pro	Val	Thr 175	Val		
Ser T	rp	Asn	Ser 180	Gly	Ala	Leu	Thr	Ser 185	Gly	Val	His	Thr	Phe 190	Pro	Ala		
Val L	eu	Gln 195	Ser	Ser	Gly	Leu	Tyr 200	Ser	Leu	Ser	Ser	Val 205	Val	Thr	Val		
Pro S	Ser 210	Ser	Ser	Leu	Gly	Thr 215	Lys	Thr	Tyr	Thr	Cys 220	Asn	Val	Asp	His		
Lys P 225	ro	Ser	Asn	Thr	Lys 230	Val	Asp	Lys	Arg	Val 235							
<211> <212>	<210> 7 <211> 6057 <212> DNA <213> artificial sequence																
<220> <223>		recto	or														
<400> acgcg			attga	attat	t ga	actag	gttat	t taa	atagi	taat	caa	ttac	399	gtcat	tagtt		60
catag	jccc	at a	atato	ggagt	t co	gcgt	taca	a taa	actta	acgg	taaa	atgg	ccc	cgcct	ggctg		120
accgc	cca	ac g	gacco	cccg	cc ca	attga	acgto	c aat	taat	gacg	tate	gttc	cca	tagta	aacgcc		180
aatag	gga	act t	ttcca	attga	ac gt	caat	gggt	gg:	actai	ttta	cgg	taaa	ctg	ccca	cttggc		240
agtac	cato	aa g	gtgta	atcat	ta to	gccaa	agtad	c gc	ccct	tatt	gac	gtca	atg	acggt	aaatg		300
gcccg	gcct	gg (catta	atgco	cc ag	gtaca	atgad	c ct	tatg	ggac	ttt	ccta	ctt	ggca	gtacat		360
ctacg	jtat	ta q	gtcat	cgct	ta ti	acca	atggt	t gai	tgcg	gttt	tgg	cagt	aca	tcaat	gggcg		420
tggat	ago	gg t	tttga	actca	ac g	gggat	ttc	c aag	gtct	ccac	CCC	attg	acg	tcaat	gggag		480
tttgt	ttt	gg d	cacca	aaaat	cc a	acgg	gacti	t tc	caaa	atgt	cgt	aaca	act	ccgc	ccatt		540

gacgcaaatg	ggcggtaggc	gtgtacggtg	ggaggtctat	ataagcagag	ctcgtttagt	600
gaaccgtcag	aattctgttg	ggctcgcggt	tgattacaaa	ctcttcgcgg	tctttccagt	660
actcttggat	cggaaacccg	teggeeteeg	aacggtactc	cgccaccgag	ggacctgagc	720
gagtccgcat	cgaccggatc	ggaaaacctc	tcgactgttg	gggtgagtac	tccctctcaa	780
aagcgggcat	gacttctgcg	ctaagattgt	cagtttccaa	aaacgaggag	gatttgatat	840
tcacctggcc	cgcggtgatg	cctttgaggg	tggccgcgtc	catctggtca	gaaaagacaa	900
tctttttgtt	gtcaagcttg	aggtgtggca	ggcttgagat	ctggccatac	acttgagtga	960
caatgacatc	cactttgcct	ttctctccac	aggtgtccac	tcccaggtcc	aactgcaggt	1020
cgaccggctt	ggtaccgagc	tcggatccgg	accatcatga	agtggagctg	ggttattctc	1080
ttcctcctgt	cagtaactgc	cggcgtccac	tcccaggttc	aggtccagca	gtctggggct	1140
gagctggcaa	gaccttgggc	ttcagtgaag	ttgtcctgca	aggcttctgg	ctacaatttt	1200
aatagttact	ggatgcagtg	ggtaaaacag	aggcctggac	agggtctgga	atggattggg	1260
gctatttatc	ctggagatgg	tgatactagc	tacactcaga	agttcagggg	caaggccaca	1320
ttgactgcag	ataaatcctc	cagcacagcc	tacatgcaac	tcagcagctt	ggcatctgag	1380
gactctgcgg	tctattactg	tgcaagacgt	acggtaggag	gctactttga	ctactggggc	1440
caaggcacca	ctctcacagt	ctcctcagcc	tccaccaagg	gcccatccgt	cttccccctg	1500
gcgccctgct	ccaggagcac	ctccgagagc	acagccgccc	tgggctgcct	ggtcaaggac	1560
tacttccccg	aaccggtgac	ggtgtcgtgg	aactcaggcg	ccctgaccag	cggcgtgcac	1620
accttcccgg	ctgtcctaca	gtcctcagga	ctctactccc	tcagcagcgt	ggtgaccgtg	1680
ccctccagca	acttcggcac	ccagacctac	acctgcaacg	tagatcacaa	gcccagcaac	1740
accaaggtgg	acaagacagt	tggtgagagg	ccagctcagg	gagggagggt	gtctgctgga	1800
agccaggctc	agccctcctg	cctggacgca	ccccggctgt	gcagccccag	cccagggcag	1860
caaggcaggc	cccatctgtc	tcctcacccg	gaggcctctg	cccgccccac	tcatgctcag	1920
ggagagggtc	ttctggcttt	ttccaccagg	ctccaggcag	gcacaggctg	ggtgccccta	1980
ccccaggccc	ttcacacaca	ggggcaggtg	cttggctcag	acctgccaaa	agccatatcc	2040
gggaggaccc	tgcccctgac	ctaagccgac	cccaaaggcc	aaactgtcca	ctccctcagc	2100
tcggacacct	tetetectec	cagatccgag	taactcccaa	tcttctctct	gcagagcgca	2160
aatgttgtgt	cgagtgccca	ccgtgcccag	gtaagccagc	ccaggcctcg	ccctccagct	2220
caaggcggga	caggtgccct	agagtagcct	gcatccaggg	acaggcccca	gctgggtgct	2280
gacacgtcca	cctccatctc	ttcctcagca	ccacctgtgg	caggaccgtc	agtcttcctc	2340

ttccccccaa	aacccaagga	caccctcatg	atctcccgga	cccctgaggt	cacgtgcgtg	2400
gtggtggacg	tgagccagga	agaccccgag	gtccagttca	actggtacgt	ggatggcgtg	2460
gaggtgcata	atgccaagac	aaagccgcgg	gaggagcagt	tcaacagcac	gtaccgtgtg	2520
gtcagcgtcc	tcaccgtcct	gcaccaggac	tggctgaacg	gcaaggagta	caagtgcaag	2580
gtctccaaca	aaggcctccc	gtcctccatc	gagaaaacca	tctccaaagc	caaaggtggg	2640
acccacgggg	tgcgagggcc	acacggacag	aggccagctc	ggcccaccct	ctgccctggg	2700
agtgaccgct	gtgccaacct	ctgtccctac	agggcagccc	cgagagccac	aggtgtacac	2760
cctgccccca	tcccaggagg	agatgaccaa	gaaccaggtc	agcctgacct	gcctggtcaa	2820
aggcttctac	cccagcgaca	tcgccgtgga	gtgggagagc	aatgggcagc	cggagaacaa	2880
ctacaagacc	acgcctcccg	tgctggactc	cgacggctcc	ttcttcctct	acagcaggct	2940
aaccgtggac	aagagcaggt	ggcaggaggg	gaatgtcttc	tcatgctccg	tgatgcatga	3000
ggctctgcac	aaccactaca	cacagaagag	cctctccctg	tctctgggta	aatgagtgcc	3060
agggccggca	agcccccgct	ccccatccat	cacactggcg	gccgctcgag	catgcatcta	3120
gaacttgttt	attgcagctt	ataatggtta	caaataaagc	aatagcatca	caaatttcac	3180
aaataaagca	ttttttcac	tgcattctag	ttgtggtttg	tccaaactca	tcaatgtatc	3240
ttatcatgtc	tggatcgatc	ccgccatggt	atcaacgcca	tatttctatt	tacagtaggg	3300
acctcttcgt	tgtgtaggta	ccgctgtatt	cctagggaaa	tagtagaggc	accttgaact	3360
gtctgcatca	gccatatagc	ccccgctgtt	cgacttacaa	acacaggcac	agtactgaca	3420
aacccataca	cctcctctga	aatacccata	gttgctaggg	ctgtctccga	actcattaca	3480
ccctccaaag	tcagagctgt	aatttcgcca	tcaagggcag	cgagggcttc	tccagataaa	3540
atagcttctg	ccgagagtcc	cgtaagggta	gacacttcag	ctaatccctc	gatgaggtct	3600
actagaatag	tcagtgcggc	tcccattttg	aaaattcact	tacttgatca	gcttcagaag	3660
atggcggagg	gcctccaaca	cagtaatttt	cctcccgact	cttaaaatag	aaaatgtcaa	3720
gtcagttaag	caggaagtgg	actaactgac	gcagctggcc	gtgcgacatc	ctcttttaat	3780
tagttgctag	gcaacgccct	ccagagggcg	tgtggttttg	caagaggaag	caaaagcctc	3840
tccacccagg	cctagaatgt	ttccacccaa	tcattactat	gacaacagct	gtttttttta	3900
gtattaagca	gaggccgggg	acccctgggc	ccgcttactc	tggagaaaaa	gaagagaggc	3960
attgtagagg	cttccagagg	caacttgtca	aaacaggact	gcttctattt	ctgtcacact	4020
gtctggccct	gtcacaaggt	ccagcacctc	cataccccct	ttaataagca	gtttgggaac	4080
gggtgcgggt	cttactccgc	ccatcccgcc	cctaactccg	cccagttccg	cccattctcc	4140

gccccatggc	tgactaattt	tttttattta	tgcagaggcc	gaggccgcct	cggcctctga	4200
gctattccag	aagtagtgag	gaggcttttt	tggaggccta	ggcttttgca	aaaaggagct	4260
cccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgtttttc	cataggctcc	4320
gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	4380
gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	cctgttccga	4440
ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	gcgctttctc	4500
aatgctcacg	ctgtaggtat	ctcagttcgg	tgtaggtcgt	tcgctccaag	ctgggctgtg	4560
tgcacgaacc	ccccgttcag	cccgaccgct	gcgccttatc	cggtaactat	cgtcttgagt	4620
ccaacccggt	aagacacgac	ttatcgccac	tggcagcagc	cactggtaac	aggattagca	4680
gagcgaggta	tgtaggcggt	gctacagagt	tcttgaagtg	gtggcctaac	tacggctaca	4740
ctagaaggac	agtatttggt	atctgcgctc	tgctgaagcc	agttaccttc	ggaaaaagag	4800
ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	cggtggtttt	tttgtttgca	4860
agcagcagat	tacgcgcaga	aaaaaaggat	ctcaagaaga	tcctttgatc	ttttctacgg	4920
ggtctgacgc	tcagtggaac	gaaaactcac	gttaagggat	tttggtcatg	agattatcaa	4980
aaaggatctt	cacctagatc	cttttaaatt	aaaaatgaag	ttttaaatca	atctaaagta	5040
tatatgagta	aacttggtct	gacagttacc	aatgcttaat	cagtgaggca	cctatctcag	5100
cgatctgtct	atttcgttca	tccatagttg	cctgactccc	cgtcgtgtag	ataactacga	5160
tacgggaggg	cttaccatct	ggccccagtg	ctgcaatgat	accgcgagac	ccacgeteae	5220
cggctccaga	tttatcagca	ataaaccagc	cagccggaag	ggccgagcgc	agaagtggtc	5280
ctgcaacttt	atccgcctcc	atccagtcta	ttaattgttg	ccgggaagct	agagtaagta	5340
gttcgccagt	taatagtttg	cgcaacgttg	ttgccattgc	tacaggcatc	gtggtgtcac	5400
gctcgtcgtt	tggtatggct	tcattcagct	ccggttccca	acgatcaagg	cgagttacat	5460
gatcccccat	gttgtgcaaa	aaagcggtta	gctccttcgg	tcctccgatc	gttgtcagaa	5520
gtaagttggc	cgcagtgtta	tcactcatgg	ttatggcagc	actgcataat	tctcttactg	5580
tcatgccatc	cgtaagatgc	ttttctgtga	ctggtgagta	ctcaaccaag	tcattctgag	5640
aatagtgtat	gcggcgaccg	agttgctctt	gcccggcgtc	aatacgggat	aataccgcgc	5700
cacatagcag	aactttaaaa	gtgctcatca	ttggaaaacg	ttcttcgggg	cgaaaactct	5760
caaggatctt	accgctgttg	agatccagtt	cgatgtaacc	cactcgtgca	cccaactgat	5820
cttcagcatc	ttttactttc	accagcgttt	ctgggtgagc	aaaaacagga	aggcaaaatg	5880
ccgcaaaaaa	gggaataagg	gcgacacgga	aatgttgaat	actcatactc	ttcctttttc	5940

aatattattq aaqcatttat cagggttatt gtctcatgag cggatacata tttgaatgta 6000 tttagaaaaa taaacaaata ggggttccgc gcacatttcc ccgaaaagtg ccacctg 6057

- <210> 8

- <211> 235 <212> PRT <213> human
- <400> 8

Met Lys Trp Ser Trp Val Ile Leu Phe Leu Leu Ser Val Thr Ala Gly 5

Val His Ser Gln Val Gln Val Gln Gln Ser Gly Ala Glu Leu Ala Arg 20

Pro Trp Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Asn Phe 45 35 40

Asn Ser Tyr Trp Met Gln Trp Val Lys Gln Arg Pro Gly Gln Gly Leu 55

Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asp Gly Asp Thr Ser Tyr Thr 75 70

Gln Lys Phe Arg Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85

Thr Ala Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val 105

Tyr Tyr Cys Ala Arg Arg Thr Val Gly Gly Tyr Phe Asp Tyr Trp Gly 120

Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 135

Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala 155

Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 170

Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 185

Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 205 200 195

Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His 215 220

Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val 235 225 230

<210> 9

<211> 2026 <212> DNA

<213> human

<400> 9

ggatcctcta	gattgagctt	tctggggcag	gccaggcctg	accttggctg	ggggcaggga	60
gggggctaag	gtgacgcagg	tggcgccagc	caggtgcaca	cccaatgccc	atgagcccag	120
acactggacc	ctgcatggac	catcgcggat	agacaagaac	cgaggggcct	ctgcgccctg	180
ggcccagctc	tgtcccacac	cgcggtcaca	tggcaccacc	tctcttgcag	cctccaccaa	240
gggcccatcc	gtcttccccc	tggcgccctg	ctccaggagc	acctccgaga	gcacagccgc	300
cctgggctgc	ctggtcaagg	actacttccc	cgaaccggtg	acggtgtcgt	ggaactcagg	360
cgccctgacc	agcggcgtgc	acaccttccc	ggctgtccta	cagtcctcag	gactctactc	420
cctcagcagc	gtggtgaccg	tgccctccag	caacttcggc	acccagacct	acacctgcaa	480
cgtagatcac	aagcccagca	acaccaaggt	ggacaagaca	gttggtgaga	ggccagctca	540
gggagggagg	gtgtctgctg	gaagccaggc	tcagccctcc	tgcctggacg	cacccggct	600
gtgcagcccc	agcccagggc	agcaaggcag	gccccatctg	tctcctcacc	cggaggcctc	660
tgcccgcccc	actcatgctc	agggagaggg	tcttctggct	ttttccacca	ggctccaggg	720
aggcacaggc	tgggtgcccc	taccccaggc	ccttcacaca	caggggcagg	tgcttggctc	780
agacctgcca	aaagccatat	ccgggaggac	cctgcccctg	acctaagccg	accccaaagg	840
ccaaactgtc	cactccctca	gctcggacac	cttctctcct	cccagatccg	agtaactccc	900
aatcttctct	ctgcagagcg	caaatgttgt	gtcgagtgcc	caccgtgccc	aggtaagcca	960
gcccaggcct	cgccctccag	ctcaaggcgg	gacaggtgcc	ctagagtagc	ctgcatccag	1020
ggacaggccc	cagctgggtg	ctgacacgtc	cacctccatc	tetteetcag	caccacctgt	1080
ggcaggaccg	tcagtcttcc	tcttccccc	aaaacccaag	gacaccctca	tgatctcccg	1140
gacccctgag	gtcacgtgcc	tggtggtgga	cgtgagccag	gaagaccccg	aggtccagtt	1200
caactggtac	gtggatggcg	tggaggtgca	taatgccaag	acaaagccgc	gggaggagca	1260

gttcaacagc	acgtaccgtg	tggtcagcgt	cctcaccgtc	ctgcaccagg	actggctgaa	1320
cggcaaggag	tacaagtgca	aggtctccaa	caaaggcctc	ccgtcctcca	tcgagaaaac	1380
catctccaaa	gccaaaggtg	ggacccacgg	ggtgcgaggg	ccacatggac	agaggtcagc	1440
tcggcccacc	ctctgccctg	ggagtgaccg	ctgtgccaac	ctctgtccct	acagggcagc	1500
cccgagagcc	acaggtgtac	accctgcccc	catcccagga	ggagatgacc	aagaaccagg	1560
tcagcctgac	ctgcctggtc	aaaggcttct	accccagcga	catcgccgtg	gagtgggaga	1620
gcaatgggca	gccggagaac	aactacaaga	ccacgcctcc	cgtgctggac	tccgacggct	1680
ccttcttcct	ctacagcagg	ctaaccgtgg	acaagagcag	gtggcaggag	gggaatgtct	1740
tctcatgctc	cgtgatgcat	gaggctctgc	acaaccacta	cacacagaag	agcctctccc	1800
tgtctctggg	taaatgagtg	ccagggccgg	caagcccccg	ctccccgggc	tctcggggtc	1860
gcgcgaggat	gcttggcacg	taccccgtct	acatacttcc	caggcaccca	gcatggaaat	1920
aaagcaccca	ccactgccct	gggcccctgt	gagactgtga	tggttctttc	cacgggtcag	1980
gccgagtctg	aggcctgagt	gacatgagga	attcagatct	ggatcc		2026

<211> 119

<212> PRT

<213> murine

<400> 10

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala 1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr 20 25 30

Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe 50 55 60

Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Leu Thr Val Ser Ser 115

<210> 11

<211> 119

<212> PRT

<213> artificial sequence

<220>

<223> de-immunized heavy chain variable region

<400> 11

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Ala Thr Arg Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Ala Gln Lys Phe 50 55 60

Gln Asp Arg Val Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser

<210> 12

<211> 119

<212> PRT

<213> artificial sequence

<220>

<223> de-immunized heavy chain variable region

<400> 12

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Ala Thr Arg Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser 115

<210> 13

<211> 119

<212> PRT

<213> artificial sequence

<220>

<223> de-immunized heavy chain variable region

<400> 13

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Ala Thr Arg Tyr 20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe 50 55 60

Lys Asp Arg Val Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser

<210> 14

<211> 119

<212> PRT

<213> artificial sequence

<220>

<223> de-immunized heavy chain variable region

<400> 14

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Ala Thr Arg Tyr
20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Val 50 55 60

Lys Asp Arg Phe Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser 115

<210> 15

<211> 119

<212> PRT

<213> artificial sequence

<220>

<223> de-immunized heavy chain variable region

<400> 15

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr 20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe 50 60

Lys Asp Arg Val Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser 115

<210> 16

<211> 119

<212> PRT

<213> artificial sequence

2205

<223> de-immunized heavy chain variable region

<400> 16

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr 20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45 Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Ala Gln Lys Phe 50 60

Gln Asp Arg Val Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser 115

<210> 17

<211> 119

<212> PRT

<213> artificial sequence

<220>

<223> de-immunized heavy chain variable region

<400> 17

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr 20 25 30

Thr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Val 50 55 60

Lys Asp Arg Phe Thr Ile Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Val Thr Val Ser Ser 115

<210> 18

<211> 106

<212> PRT

<213> murine

<400> 18

Gln Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
20 25 30

Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala His Phe Arg Gly Ser 50 60

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Gly Met Glu Ala Glu 65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Phe Thr 85 90 95

Phe Gly Ser Gly Thr Lys Leu Glu Ile Asn 100 105

<210> 19

<211> 106

<212> PRT

<213> artificial sequence

<220>

<223> de-immunized light chain variable region

<400> 19

Gln Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Thr Cys Ser Ala Ser Ser Ser Ala Ser Tyr Met 20 25 30

Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Trp Ile Tyr 35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 50 55 60

Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Asn Ser Leu Glu Ala Glu 65 70 75 80

Asp Ala Ala Thr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Phe Thr 85 90 95

Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105

<210> 20

<211> 106

<212> PRT

<213> artificial sequence

<220>

<223> de-immunized light chain variable region

<400> 20

Gln Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
20 25 30

Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Trp Ile Tyr 35 40 45

Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 50 55 60

Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Asn Ser Leu Glu Ala Glu 65 70 75 80

Asp Ala Ala Thr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Phe Thr 85 90 95

Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105

<210> 21

<211> 819

<212> DNA

<213> artificial sequence

```
<220>
<223> de-immunized VH expression cassette
<400> 21
aagcttatga atatgcaaat cctctgaatc tacatggtaa atataggttt gtctatacca
                                                                      60
caaacagaaa aacatgagat cacagttgtc tctacagtta ctgagcacac aggacctcac
                                                                     120
                                                                     180
catqqqatqq aqctqtatca tcctcttctt ggtagcaaca gctacaggta aggggctcac
agtagcaggc ttgaggtctg gacatatata tgggtgacaa tgacatccac tttgcctttc
                                                                     240
                                                                     300
tctccacagg tgtccactcc caggtccagc tggtacagtc tggggctgaa gtcaagaaac
                                                                     360
ctqqqqcctc aqtqaaqqtq tcctgcaagg cttctggcta cacggctact aggtacacga
tgcactgggt aagacaggcg cctggacaag gtttggaatg gattggatac attaacccta
                                                                     420
qccatqqata tactaattac gctcagaagt tccaggacag ggtcacaatc actacagaca
                                                                     480
aatcttccag cacagcctac ttgcaaatga acagcctgaa aactgaggac accgcagtct
                                                                     540
attactgtgc aagatattat gatgatcatt actgtctcga ctactggggc caaggcacca
                                                                     600
                                                                     660
ctgtgacagt ctcctcaggt gagtccttac aacctctctc ttctattcag cttaaataga
ttttactgca tttgttgggg gggaaatgtg tgtatctgaa tttcaggtca tgaaggacta
                                                                     720
gggacacctt gggagtcaga aagggtcatt gggagcccgg gctgatgcag acagacatcc
                                                                     780
                                                                     819
tcagctccca gacttcatgg ccagagattt ataggatcc
<210> 22
<211> 15
<212> PRT
<213> artificial sequence
<220>
<223> signal protein
<400> 22
Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr
<210>
      23
<211> 617
<212> DNA
<213> artificial sequence
<220>
<223> de-immunized VK expression cassette
<400> 23
aagcttatga atatgcaaat cctctgaatc tacatggtaa atataggttt gtctatacca
                                                                      60
caaacaqaaa aacatgagat cacagttctc tctacagtta ctgagcacac aggacctcac
                                                                     120
```

22/41								
catgggatgg agctgtatca tcctcttctt ggtagcaaca gctacaggta aggggctcac	180							
agtagcaggc ttgaggtctg gacatatata tgggtgacaa tgacatccac tttgcctttc	240							
tetecacagg tgtecactee caaattgtte teacceagte tecageaace etetetett	300							
ctccagggga acgcgccacc ttgacatgca gtgccagctc aagtgcaagt tacatgaact	360							
ggtaccagca gaagcccggc aaagctccca aaagatggat ttatgacaca tcaaaactgg	420							
cttctggagt accgtctcgc ttcagtggca gtgggtctgg gaccgattac tctctcacaa	480							
tcaatagtct ggaagctgaa gatgccgcaa cttattactg ccagcagtgg tcaagtaacc	540							
cattcacgtt cggacaaggt acaaaggtgg aaatcaaacg tgagtagaat ttaaactttg	600							
cttcctcagt tggatcc	617							
<210> 24 <211> 15 <212> PRT <213> artificial sequence								
<220> <223> signal protein								
<400> 24	<400> 24							
Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr								

<211> 467

<212> PRT

<213> murine

<400> 25

Met Glu Arg His Trp Ile Phe Leu Leu Leu Leu Ser Val Thr Ala Gly
1 5 10 15

Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg 20 25 30

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Tyr Thr Phe Thr 35 40 45

Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu 50 55 60

Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln 65 70 75 80

Lys	Phe	Lys	Asp	Lys 85	Ala	Thr	Leu	Thr	Thr 90	Asp	Lys	Ser	Ser	Ser 95	Thr
Ala	Tyr	Met	Gln 100	Leu	Ser	Ser	Leu	Thr 105	Ser	Glu	Asp	Ser	Ala 110	Val	Tyr
Tyr	Cys	Ala 115	Arg	Tyr	Tyr	Asp	Asp 120	His	Tyr	Cys	Leu	Asp 125	Tyr	Trp	Gly
Gln	Gly 130	Thr	Thr	Leu	Thr	Val 135	Ser	Ser	Ala	Lys	Thr 140	Thr	Ala	Pro	Ser
Val 145	Tyr	Pro	Leu	Ala	Pro 150	Val	Cys	Gly	Asp	Thr 155	Thr	Gly	Ser	Ser	Val 160
Thr	Leu	Gly	Cys	Leu 165	Val	Lys	Gly	Tyr	Phe 170	Pro	Glu	Pro	Val	Thr 175	Leu
Thr	Trp	Asn	Ser 180	Gly	Ser	Leu	Ser	Ser 185	Gly	Val	His	Thr	Phe 190	Pro	Ala
Val	Leu	Gln 195	Ser	Asp	Leu	Tyr	Thr 200	Leu	Ser	Ser	Ser	Val 205	Thr	Val	Thr
Ser	Ser 210	Thr	Trp	Pro	Ser	Gln 215	Ser	Ile	Thr	Cys	Asn 220	Val	Ala	His	Pro
Ala 225	Ser	Ser	Thr	Lys	Val 230	Asp	Lys	Lys	Ile	Glu 235	Pro	Arg	Gly	Pro	Thr 240
Ile	Lys	Pro	Cys	Pro 245	Pro	Cys	Lys	Cys	Pro 250	Ala	Pro	Asn	Leu	Leu 255	Gly
Gly	Pro	Ser	Val 260	Phe	Ile	Phe	Pro	Pro 265	Lys	Ile	Lys	Asp	Val 270	Leu	Met
Ile	Ser	Leu 275	Ser	Pro	Ile	Val	Thr 280	Cys	Val	Val	Val	Asp 285	Val	Ser	Glu
Asp	Asp 290	Pro	Asp	Val	Gln	Ile 295	Ser	Trp	Phe	Val	Asn 300	Asn	Val	Glu	Val
His 305	Thr	Ala	Gln	Thr	Gln 310	Thr	His	Arg	Glu	Asp 315	Tyr	Asn	Ser	Thr	Leu 320

Arg	Val	Val	Ser	Ala 325	Leu	Pro	Ile	Gln	His 330	Gln	Asp	Trp	Met	Ser 335	Gly	
Lys	Glu	Phe	Lys 340	Cys	Lys	Val	Asn	Asn 345	Lys	Asp	Leu	Pro	Ala 350	Pro	Ile	
Glu	Arg	Thr 355	Ile	Ser	Lys	Pro	Lys 360	Gly	Ser	Val	Arg	Ala 365	Pro	Gln	Val	
Tyr	Val 370	Leu	Pro	Pro	Pro	Glu 375	Glu	Glu	Met	Thr	Lys 380	Lys	Gln	Val	Thr	
Leu 385	Thr	Cys	Met	Val	Thr 390	Asp	Phe	Met	Pro	Glu 395	Asp	Ile	Tyr	Val	Glu 400	
Trp	Thr	Asn	Asn	Gly 405	Lys	Thr	Glu	Leu	Asn 410	Tyr	Lys	Asn	Thr	Glu 415	Pro	
Val	Leu	Asp	Ser 420	Asp	Gly	Ser	Tyr	Phe 425	Met	Tyr	Ser	Lys	Leu 430	Arg	Val	
Glu	Lys	Lys 435	Asn	Trp	Val	Glu	Arg 440	Asn	Ser	Tyr	Ser	Cys 445	Ser	Val	Val	
His	Glu 450	Gly	Leu	His	Asn	His 455	His	Thr	Thr	Lys	Ser 460	Phe	Ser	Arg	Thr	
Pro 465	Gly	Lys														
<210 <210 <210 <210	l> : 2> :	26 1570 DNA muri:	ne													
<400 gaat		26 cct	ctcca	acaga	ac a	ctgaa	aaacı	t ct	gacto	caac	atg	gaaa	ggc	ctgga	atcttt	60
cta	ctcc	tgt	tgtca	agta	ac to	gcag	gtgt	c ca	ctcc	cagg	tcc	agct	gca	gcagt	ctggg	120
gct	gaac	tgg ·	caaga	acct	39 g	gcct	cagt	g aaq	gatg	cct	gca	aggc	ttc	tggc	cacacc	180
ttta	acta	ggt	acac	gatg	ca c	tgggt	taaaa	a ca	gagg	cctg	gac	aggg	tct	ggaat	tggatt	240
ggai	caca	tta	atcc	tagc	cg t	ggtta	atacı	t ta	atta	caat	cag	aagt	tca	agga	caaggc	300
cac	attg	act	acag	acaa	at c	ctcca	agca	c ag	ccta	catg	caa	ctga	gca	gcct	gacatc	360
tga	ggac	tct	gcag	tcta	tt a	ctgt	gcaa	gat	atta	tgat	gat	catt	act	gccti	tgacta	420

ctggggccaa	ggcaccactc	tcacagtctc	ctcagccaaa	acaacagccc	catcggtcta	480
tccactggcc	cctgtgtgtg	gagatacaac	tggctcctcg	gtgactctag	gatgcctggt	540
caagggttat	ttccctgagc	cagtgacctt	gacctggaac	tctggatccc	tgtccagtgg	600
tgtgcacacc	ttcccagctg	tcctgcagtc	tgacctctac	accctcagca	gctcagtgac	660
tgtaacctcg	agcacctggc	ccagccagtc	catcacctgc	aatgtggccc	acccggcaag	720
cagcaccaag	gtggacaaga	aaattgagcc	cagagggccc	acaatcaagc	cctgtcctcc	780
atgcaaatgc	ccagcaccta	acctcttggg	tggaccatcc	gtcttcatct	tccctccaaa	840
gatcaaggat	gtactcatga	tctccctgag	ccccatagtc	acatgtgtgg	tggtggatgt	900
gagcgaggat	gacccagatg	tccagatcag	ctggtttgtg	aacaacgtgg	aagtacacac	960
agctcagaca	caaacccata	gagaggatta	caacagtact	ctccgggtgg	tcagtgccct	1020
ccccatccag	caccaggact	ggatgagtgg	caaggagttc	aaatgcaagg	tcaacaacaa	1080
agacctccca	gcgcccatcg	agagaaccat	ctcaaaaccc	aaagggtcag	taagagctcc	1140
acaggtatat	gtcttgcctc	caccagaaga	agagatgact	aagaaacagg	tcactctgac	1200
ctgcatggtc	acagacttca	tgcctgaaga	catttacgtg	gagtggacca	acaacgggaa	1260
aacagagcta	aactacaaga	acactgaacc	agtcctggac	tctgatggtt	cttacttcat	1320
gtacagcaag	ctgagagtgg	aaaagaagaa	ctgggtggaa	agaaatagct	actcctgttc	1380
agtggtccac	gagggtctgc	acaatcacca	cacgactaag	agcttctccc	ggactccggg	1440
taaatgagct	cagcacccac	aaaactctca	ggtccaaaga	gacacccaca	ctcatctcca	1500
tgcttccctt	gtataaataa	agcacccagc	aatgcctggg	accatgtaaa	aaaaaaaaa	1560
aaaggaattc						1570

<211> 235

<212> PRT

<213> murine

<400> 27

Met Asp Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser

Val Ile Ile Ser Arg Gly Gln Ile Val Leu Thr Gln Ser Pro Ala Ile 20 25 30

Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser 35 40 45

Ser	Ser 50	Val	Ser	Tyr	Met	Asn 55	Trp	Tyr	Gln	Gln	Lys 60	Ser	Gly	Thr	Ser
Pro 65	Lys	Arg	Trp	Ile	Tyr 70	Asp	Thr	Ser	Lys	Leu 75	Ala	Ser	Gly	Val	Pro 80
Ala	His	Phe	Arg	Gly 85	Ser	Gly	Ser	Gly	Thr 90	Ser	Tyr	Ser	Leu	Thr 95	Ile
Ser	Gly	Met	Glu 100	Ala	Glu	Asp	Ala	Ala 105	Thr	Tyr	Tyr	Cys	Gln 110	Gln	Trp
Ser	Ser	Asn 115	Pro	Phe	Thr	Phe	Gly 120	Ser	Gly	Thr	Lys	Leu 125	Glu	Ile	Asn
Arg	Ala 130	Asp	Thr	Ala	Pro	Thr 135	Val	Ser	Ile	Phe	Pro 140	Pro	Ser	Ser	Glu
Gln 145	Leu	Thr	Ser	Gly	Gly 150	Ala	Ser	Val	Val	Cys 155	Phe	Leu	Asn	Asn	Phe 160
Tyr	Pro	Lys	Asp	Ile 165	Asn	Val	Lys	Trp	Lys 170	Ile	Asp	Gly	Ser	Glu 175	Arg
Gln	Asn	Gly	Val 180	Leu	Asn	Ser	Trp	Thr 185	Asp	Gln	Asp	Ser	Lys 190	Asp	Ser
Thr	Tyr	Ser 195	Met	Ser	Ser	Thr	Leu 200	Thr	Leu	Thr	Lys	Asp 205	Glu	Tyr	Glu
Arg	His 210	Asn	Ser	Tyr	Thr	Cys 215	Glu	Ala	Thr	His	Lys 220	Thr	Ser	Thr	Ser
Pro 225	Ile	Val	Lys	Ser	Phe 230	Asn	Arg	Asn	Glu	Cys 235					
<210> 28 <211> 943 <212> DNA <213> murine															
<400 gaat		28 caa a	agaca	aaaat	tg ga	attt	caaç	g tgo	cagat	ttt	cago	cttco	ctg (ctaat	cagtg
cct	cagt	cat a	aata	tccag	ga g	gacaa	aatt	g tto	ctcad	ccca	gtct	gtctccagca atcatgtctg			

catctccagg ggagaaggtc accatgacct gcagtgccag ctcaagtgta agttacatga 180

60

120

actggtacca	gcagaagtca	ggcacctccc	ccaaaagatg	gatttatgac	acatccaaac	240
tggcttctgg	agtccctgct	cacttcaggg	gcagtgggtc	tgggacctct	tactctctca	300
caatcagcgg	catggaggct	gaagatgctg	ccacttatta	ctgccagcag	tggagtagta	360
acccattcac	gttcggctcg	gggacaaagt	tggaaataaa	ccgggctgat	actgcaccaa	420
ctgtatccat	cttcccacca	tccagtgagc	agttaacatc	tggaggtgcc	tcagtcgtgt	480
gcttcttgaa	caacttctac	cccaaagaca	tcaatgtcaa	gtggaagatt	gatggcagtg	540
aacgacaaaa	tggcgtcctg	aacagttgga	ctgatcagga	cagcaaagac	agcacctaca	600
gcatgagcag	caccctcacg	ttgaccaagg	acgagtatga	acgacataac	agctatacct	660
gtgaggccac	tcacaagaca	tcaacttcac	ccattgtcaa	gagcttcaac	aggaatgagt	720
gttagagaca	aaggtcctga	gacgccacca	ccagctccca	gctccatcct	atcttccctt	780
ctaaggtctt	ggaggcttcc	ccacaagcgc	ttaccactgt	tgcggtgctc	taaacctcct	840
cccacctcct	tctcctcctc	ctccctttcc	ttggctttta	tcatgctaat	atttgcagaa	900
aatattcaat	aaagtgagtc	tttgccttga	aaaaaaaaa	aaa		943

<211> 123

<212> PRT

<213> murine

<400> 29

Gly Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala 1 5 10 15

Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr 20 25 30

Phe Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly 35 40 45

Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr 50 55 60

Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser 65 70 75 80

Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala 85 90 95

Val Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr 100 105 110

Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser

<210> 30

<211> 110

<212> PRT

<213> murine

<400> 30

Gly Val His Ser Gln Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser

Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser 20 25 30

Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys

Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala His 50 60

Phe Arg Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Gly 65 70 75 80

Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser 85 90 95

Asn Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys 100 105 110

<210> 31

<211> 12

<212> PRT

<213> human

<400> 31

Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro 1 10

<210> 32

<211> 110

<212> PRT

<213> human

<400> 32

Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
1 10 15

Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 20 25 30

Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr 35 40 45

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 50 55 60

Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His 65 70 75 80

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85 90 95

Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys
100 105 110

<210> 33

<211> 107

<212> PRT

<213> human

<400> 33

Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu 1 5 10 15

Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe 20 25 30

Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu 35 40 45

Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe 50 55 60

Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly 65 70 75 80

Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr 85 90 95 Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 100 105

<210> 34

<211> 12

<212> PRT

<213> human

<400> 34

Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro 1 5 10

<210> 35

<211> 109

<212> PRT

<213> human

<400> 35

Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 1 5 10 15

Lys Asp Thr Leu Asn Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 20 25 30

Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 35 40 45

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 50 60

Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 65 70 75 80

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 85 90 95

Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys

<210> 36

<211> 107

<212> PRT

<213> human

<400> 36

Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu 10 5 Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe 30 20 25 Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu 35 40 Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe 55 Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly 70 75 Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr 85 90 Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys <210> 37 <211> 43 <212> DNA <213> artificial sequence <220> <223> oligonucleotide <400> 37 gaagtcaaga aacctggggc ctcagtgaag gtgtcctgca agg 43 <210> 38 <211> 47 <212> DNA <213> artificial sequence <220> <223> oligonucleotide 47 gccccaggtt tcttgacttc agccccagac tgtaccagct ggacctg <210> 39 <211> 31 <212> DNA <213> artificial sequence <220>

<223> oligonucleotide

<400> tgggtaa	39 agac aggcgcctgg acaaggtttg g	31
<210><211><211><212><213>	40 29 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> gtccag	40 gege etgtettace cagtgeate	29
<210><211><211><212><213>	41 48 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> aggcgc	41 ctgt cttacccagt gcatcgtgta cctagtagcc gtgtagcc	48
<210><211><211><212><213>	43	
<220> <223>	oligonucleotide	
<400> caatca	42 gaag ttcaaggaca gggtcacaat cactacagac aaa	43
<210><211><211><212><213>		
<220> <223>	oligonucleotide	
<400> cgctca	43 gaag ttccaggaca gggtcacaat cactacagac aaa	43
<210><211><211><212><213>	43	
<220> <223>	oligonucleotide	

<400> cgctgad	44 cagt gtcaagggca ggttcacaat cactacagac aaa	43
<210><211><211><212><213>	45 43 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> caatcag	45 gaag gtcaaggaca ggttcacaat cactacagac aaa	43
<210><211><211><212><213>	46 37 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> gtccttq	46 gaac ttctgattgt aattagtata tccacgg	37
<210><211><211><212><213>		
<220> <223>	oligonucleotide	
	47 gaac ttctgagcgt aattagtata tccacgg	37
<210><211><211><212><213>	48 37 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> gccctt	48 gaca ctgtcagcgt aattagtata tccacgg	37
<210><211><211><212><213>	37	
<220> <223>	oligonucleotide	

	49 gacc ttctgattgt aattagtata tccacgg	37
<210><211><211><212><213>	50 35 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> agcctg	50 aaaa ctgaggacac cgcagtctat tactg	35
<210><211><211><212><213>	DNA	
<220> <223>	oligonucleotide	
<400> gtcctc	51 agtt ttcaggctgt tcatttgcaa gtaggctgtg ct	42
<210><211><211><212><213>		
<220> <223>	oligonucleotide	
<400> ccaagg	52 cacc actgtgacag tctcctcagg	30
<210><211><211><212><213>		
<220> <223>	oligonucleotide	
<400> cctgag	53 gaga ctgtcacagt ggtgccttgg	30
<210><211><211><212><213>	24 DNA	
<220>	oligonucleotide	

	54 cact cccaggtcca gctg	24
<210><211><212><212><213>	55 29 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> cagctgg	55 gacc tgggagtgga cacctgtgg	29
<210><211><211><212><213>	56 37 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> gcatgt	56 tgac cctgacgcaa gcttatgaat atgcaaa	37
<210><211><211><212><213>		
<220> <223>	oligonucleotide	
<400> gcgata	57 gctg gactgaatgg atcctataaa tctctg	36
<210><211><211><212><213>		
<220> <223>	oligonucleotide	
<400> ccctcte	58 ctct ttctccaggg gaacgcgcca ccttgacatg cagtg	45
<210><211><211><212><213>	36	
<220>	oligonucleotide	

```
<400> 59
                                                                      36
cctggagaaa gagagaggt tgctggagac tgggtg
<210> 60
<211> 48
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide
<400> 60
catgaactgg taccagcaga agcccggcaa agctcccaaa agatggat
                                                                      48
<210> 61
<211> 38
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide
<400> 61
                                                                      38
cgggcttctg ctggtaccag ttcatgtaac ttacactt
<210> 62
<211> 38
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide
<400> 62
                                                                      38
cttctgctgg taccagttca tgtaacttgc acttgagc
<210> 63
<211> 49
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide
gggtctggga ccgattactc tctcacaatc aatagtctgg aagctgaag
                                                                      49
<210> 64
<211> 47
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide
```

	64 ggtc ccagacccac tgccactgaa gcgagacggt actccag	47
<210><211><211><212><213>	65 38 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> ttcacg	65 ttcg gacaaggtac aaaggtggaa atcaaacg	38
<210><211><211><212><213>	66 38 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> ctttgt	66 acct tgtccgaacg tgaatgggtt acttgacc	38
<210><211><212><212><213>		
<220> <223>	oligonucleotide	
<400> gcggat	67 ccag tcgacgaagc a	21
<210><211><211><212><213>		
<220> <223>	oligonucleotide	
<400> ctgaat	68 ggat ccaactgagg aagcaaagtt taaattctac tcacg	45
<210><211><211><212><213>	28	
<220>	oligonucleotide	

<400> caaatt	69 gttc tcacccagtc tccagcaa	28
<210><211><211><212><213>	70 32 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> ttgctg	70 gaga ctgggtgaga acaatttggg ag	32
<210><211><211><212><213>	71 41 DNA artificial sequence	
<220> <223>	oligonucleotide	
<400> tggaga	71 .ctgg gtgagaacaa tttgggagtg gacacctgtg g	41
<210><211><211><212><213>		
<220> <223>	oligonucleotide	
<400> agagag	72 ggtt gctggagact gggtgagaac aatttg	36
<210><211><211><212><213>		
<220> <223>	oligonucleotide	
<400> gcatgt	73 tgac cctgacgcaa gcttatgaat atgcaaa	37
<210><211><211><212><213>	36 DNA	
<220>	oligonucleotide	

36

```
<400> 74
gcgatagctg gactgaatgg atccaactga ggaagc
<210> 75
<211> 122
<212> PRT
<213> artificial sequence
<220>
<223> de-immunized OKT3 VH
<400> 75
Val Ser Thr Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys
1 5
Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Ala
                              25
Thr Arg Tyr Thr Met His Trp Tyr Arg Gln Ala Pro Gly Gln Gly Leu
       35
                          40
Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Ala
                                          60
Gln Lys Phe Gln Gln Arg Val Thr Ile Thr Thr Asp Lys Ser Ser Ser
                   70
Thr Ala Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val
                    90
Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp
                   105
Gly Gln Gly Thr Thr Val Thr Val Ser Gly
<210> 76
<211> 110
<212> PRT
<213> artificial sequence
<220>
<223> de-immunized OKT3 VK
<400> 76
Gly Val His Ser Gln Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser
```

Leu Ser Pro Gly Glu Arg Ala Thr Leu Thr Cys Ser Ala Ser Ser Ser 20 25 30	
Ala Ser Tyr Met Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys 35 40 45	
Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ser Arg 50 55 60	
Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Asn Ser 70 75 80	
Leu Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser 85 90 95	
Asn Pro Phe Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 105 110	
<210> 77	
<211> 21 <212> DNA	
<213> artificial sequence	
<220> <223> primer	
<400> 77 ttgtgagcgg ataacaattt c	21
<210> 78	
<211> 23 <212> DNA	
<213> artificial sequence	
<220> <223> primer	
<400> 78	
	23
<210> 79	
<211> 30 <212> DNA	
<213> artificial sequence	
<220> <223> primer	
<400> 79 cttgcagcct ccaccaaggg cccatccgtc	30

<210><211><211><212><213>	80 25 DNA artificial sequence	
<220> <223>	primer	
<400> cccttg	80 gtgg aggctgcaag agagg	25
<210><211><211><212><213>		
<220> <223>	primer	
<400> gagcct	81 ctcc ctgtctctgg gtaaatgagt gcc	33
<210><211><211><212><213>	82 35 DNA artificial sequence	
<220> <223>	primer	
<400> tcattt	82 accc agagacaggg agaggetett etgtg	35
<210><211><211><212><213>		
<220> <223>	primer	
<400>	83 ggga tccagatctg aattcctcat gtcac	35