目录

1 ca 模块介绍	
2 使用步骤	2
2.1 主配置界面参数设置	2
2.2 土地利用类型和栅格数值对应关系设置	
3.3 转换控制矩阵设置	8
2.4 输出界面	8
2.5 kappa 系数计算界面	10
3.案例	
3.1 示例数据介绍	12
3.2 验证结果	13
3.2.1 随机森林 ca	
3.2.2 神经网络 ca	15
4.2.3 决策树 ca	16
3.2.4 logistic ca	17

1 ca 模块介绍

GeoSOS 的元胞自动机(ca)土地利用变化模拟模块,是在 GeoSOS 系统上实现了常用的 ca 算法,kappa 精度计算等功能。能够满足用户一般的 ca 使用需求。

- ca 模块分为三个子模块,c++ ca 模块,c# ca 模块,算法模块,其中最重要的是 c# ca 模块。
- 1) c# ca 模块,细分为多类土地利用模拟和二类土地利用模拟模块。
- 2) 算法模块,提供了 kappa 系数计算和 logistic 概率图层生成模块。
- 3) c++ ca 模块是为了提高运行效率的实验模块,它和 c#模块相比,缺少了模拟结果动态展示的功能。

表 I C# Cd 模块				
大类	小类			
多类土地利用变化模拟	随机森林 ca			
多矢工地利用文化侯1K	神经网络 ca			
	Logistic ca			
二类土地利用变化模拟	决策树 ca			
	多准则 ca(ahp 层次分析法)			

表 1 c# ca 模块

2 使用步骤

本部分以随机森林 ca 的使用介绍具体的使用步骤。

2.1 主配置界面参数设置

点击"RandomForest"按钮,将弹出一个配置界面。

RandomForestSetUpForm	1	- 🗆	×
起始和终止年份数据———			
起始年份影像		打开	
终止年份影像		打开	
- 驱动数据			_
添加 移除			
- 参数			_
采样数目 10000	样本使用率(0-1)	0.66	
模拟次数 10	是否计算变量重要性	ŧ 🗆	
邻域大小 5	城市发展概率修正	0	
随机因子 2	目标城市栅格数目	2	
树数目 100			
—土地利用类型对应关系—— 设置		矩阵 ————————————————————————————————————	
		确定	

图 2-1 ca 设置界面 (初始)

配置界面分为四个小部分。分别为,土地利用数据设置,驱动数据设置,参数设置,元数据设置。 在土地利用数据设置区,用户点击文本框右侧的按钮,在文件系统中选择两期土地利用数据,或者直 接在文本框中输入数据文件的路径。

在驱动数据设置区,用户通过点击左侧的"添加"按钮,在文件系统中选择驱动数据文件。如果用户错误添加了数据文件,也可以先在右边的列表框中选中要删除的项目,然后点击"移除"按钮移除。在参数设置区,用户需要根据 ca 的类型,研究区域的特点,凭借其它的一些先验知识输入参数。

表 2-1 参数说明(这里说明了所有参数,并非每个模型都需要使用全部参数)

夜 Z-1 参数优明(及主优明)所有参数,	开非母丨铁空即而安区用主即参数/
参数名称	说明
采样数目	模型的训练样本数目,采样使用分层等比
木件数日	采样法
+# +N \/ */	元胞自动机模拟的控制参数,控制模拟的
模拟次数	最大迭代次数
邻域大小	元胞自动机的邻域半径
M2 10 0 7	随机因子决定要在模型中加入多大的随机
随机因子	性
□ -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	元胞自动机模拟的控制参数,当城市栅格
目标城市栅格数目	的数目超过设定值,模型运行终止
树数目	随机森林模型使用的 CART 决策树数目
兴 大体田泰	随机森林训练每一棵决策树时随机采样样
样本使用率	本的比例
	如果勾选,模型将使用随机森林的 OOB 数
是否计算变量重要性	据来计算变量的重要性。这一项将重复训
定百月昇文里里安住	练和变量数目等同的随机森林模型,使模
	型的训练时间变长
	允许用户根据其它知识输入对城市发展概
城市发展概率修正	率的修正,它将在模型的归一化概率上,
城市及依帆平杉正	对城市发展概率进行修改,并且归一化其
	它概率
	神经网络的训练次数,本模型使用的是3
	层的 BP 神经网络,使用梯度下降的方法来
训练次数	优化权重,训练次数代表优化的次数,一
州 综入	般训练到一定次数后,正确率将稳定,用
	户可以通过设定一个较大的值来实验训练
	次数
壮 'A '	控制土地利用类型的变化阈值,较低的转
转换阈值	换阈值会使模型快速稳定并结束运行

图 2-2 ca 设置界面(结果)

2.2 土地利用类型和栅格数值对应关系设置

在元数据设置去,用户需要设置"土地利用类型和栅格数值的对应表"告知系统和栅格值对应的土地利用类型。点击按钮后,将弹出新的设置界面:

图 2-3 土地利用类型设置界面(初始)

在这个界面,首先点击加载按钮,在文件系统中选择文件加载土地利用数据。

图 2-4 土地利用类型设置界面(数据加载后)

这个界面枚举了输入的土地利用数据中的栅格数值,用户需要在"land use"列,输入土地利用类型,在"Property"列中选择土地利用的性质,在"Color"列中选择土地类型的显示颜色。

图 2-5 土地利用类型设置界面(操作)

图 2-6 土地利用类型设置界面(结果)

用户完成相应的设置后,点击"确定"按钮,完成设置。

3.3 转换控制矩阵设置

完成上述设置后,点击"转换矩阵设置"按钮将弹出"转换控制矩阵设置界面",这个界面,让用户根据先验知识,设置各种土地利用类型之间是否可以互相转换,'1'代表允许转换,'0'代表不允许转换。

图 2-7 转换矩阵设置界面

注意:由于这个矩阵的设置使用了土地利用信息,所以需要先完成前面的"土地利用类型和栅格数值的对应关系"设置。

2.4 输出界面

点击确定以后即开始模拟, 弹出模拟界面。

图 2-8 模拟监控界面(训练中)

在模拟界面上显示"训练准备",代表正在进行模型训练,用户可以在控制台界面观察训练的进度。

图 2-9 模拟监控界面(运行中)

开始模拟后,界面上将显示当前模拟的次数,左边的栅格图像将随着模拟进行变化,右边的图表 也将随着模拟进行变化。用户可以观察模拟的状况。

起始的城市数目:61920 终止的城市数目:107554

平均误差5.30106666666734%

变量1C:\tasks\geosos\GEOSOS20170505\ca_data\city_dist.tif的重要性分数oobrmserror是0.0207422815986332 变量2C:\tasks\geosos\GEOSOS20170505\ca_data\highway_dist.tif的重要性分数oobrmserror是0.00801648776344738 变量3C:\tasks\geosos\GEOSOS20170505\ca_data\railway_dist.tif的重要性分数oobrmserror是0.009727589969378 变量4C:\tasks\geosos\GEOSOS20170505\ca_data\road_dist.tif的重要性分数oobrmserror是0.00292972321128515 变量5C:\tasks\geosos\GEOSOS20170505\ca_data\town_dist.tif的重要性分数oobrmserror是0.00502157640159834

---当前城市数目: 72354

转化了:25693

---当前城市数目: 79560

转化了:16791

---当前城市数目: 85004

转化了:12560

----当前城市数目: 89424

转化了:10309

---当前城市数目: 93132

转化了:8862

---当前城市数目: 96292

转化了:7945

---当前城市数目: 98990

转化了:7215

---当前城市数目: 101428

转化了:6689

模拟结束

kappa值: 0.73238667841194

图 2-10 控制台界面

在模拟进行的同时,控制台上也将打印相应的信息。平均误差是随机森林的分类误差率。如果用户勾选了计算变量重要性,将显示每个变量的重要性分数,用户可以据此对每个变量对土地利用类型的重要性做出判断,数值代表 OOB 数据的 RMSE 的减少值,数值越大说明变量越重要。当前城市数目代表当前模拟周期的城市栅格数目。转换数目,代表当前模拟周期土地利用类型发生变化了得栅格数目。

模拟结束后,数据将自动加载到系统中,用户可以使用系统的其它空间分析功能进行进一步研究。同时数据也会保存到输出目录,数据包含有地理变化和空间参照信息,可以直接在其它通用的地理信息系统中使用。

2.5 kappa 系数计算界面

使用系统提供的 kappa 系数计算模块来计算精度。点击菜单上的 kappa 按钮弹出设置界面。

				_	×
_数据				7	
真实影像		打开			
模拟影像		打开			
		1171			
 土地利用类型对应关系					
设置					
生成	kappa: 0				
	 正确率: 0				
	FoM: 0				
		(注:行代表真实情况,	列代表模拟情》	兄)	

图 2-11 kappa 系数计算界面(初始)

这个界面的设置分成两部分,分别是输入设置模块,和元数据设置模块。和元胞自动机的设置界面相同。

用户选择对照的验证图像和模型输出的模拟图像,然后设置土地利用类型和栅格数值对应表之后, 点击生成即可生成 kappa 系数,总体进度,FoM 和混淆矩阵。

图 2-12 kappa 系数计算界面(结果)

3.案例

3.1 示例数据介绍

表 3-1 示例数据清单

类型	文件名	数据说明	用途	
	dg2000.tif	2000 年东莞市 100 米分辨率土地利用 数据	初始年份土地利用 数据,模型输入	
土地利用数据	dg2005.tif	2005 年东莞市 100 米分辨率土地利用 数据	在神经网络 ca 中它是网络训练数据,在所有 ca 中用于kappa 系数计算	
	city_dist.tif	到市中心距离		
土地利用变化驱动	town_dist.tif	到城镇中心距离		
工 地 利 用 受 化 躯 幼 一 数 据	railway_dist.tif	到铁路距离	计算适应性概率	
	road_dist.tif	到主干道距离		
	highway_dist.tif	到高速公路距离		

图 3-1 2000 年和 2005 年真实土地利用分类数据

3.2 验证结果

3.2.1 随机森林 ca

参数设置:

表 3-2 随机森林 ca 参数设置

参数名称	参数值
采样数目	10000
模拟次数	100
邻域大小	5
随机因子	2
目标城市栅格数目	110000
树数目	100
样本使用率	0.66
城市发展概率修正	0

表 3-3 随机森林 ca 混淆矩阵

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A DENKIN CO	107 H 7 L 1				
左爪	그 내 チョ	土地利用类型 -		模拟					
平彻	丰份 土地禾			森林	草地	水体	城市	未利用地	
		农田	24430	4409	236	265	15270	0	
	right VIII.	森林	3957	44051	744	184	11741	0	
2010		☆ /⊏		草地	573	2589	2285	34	838
2010	实际	水体	540	267	14	23982	317	116	
		城市	12194	8046	627	3921	82766	0	
		未利用地	0	0	0	0	0	3	
	kappa				0.72				
	整体精度				0.73				
	FoM				0.61				

图 3-2 随机森林 ca 模拟结果与实际数据对比

3.2.2 神经网络 ca

参数设置:

表 3-3 神经网络 ca 参数设置

参数名字	参数值
采样数目	10000
模拟次数	500
邻域大小	5
随机因子	1.1
目标城市栅格数目	107554
转换阈值	0.75

表 3-4 神经网络 ca 混淆矩阵

上	土地利用类型		模拟						
年份	土地利	用矢室 -	农田	森林	草地	水体	城市	未利用地	
2010 实际		农田	37115	224	32	267	6972	0	
		森林	376	42105	353	191	17652	0	
	分に	草地	35	111	5013	313	847	0	
	关 协	水体	591	201	27	23994	236	187	
		城市	16371	4606	712	3967	81898	0	
		未利用地	0	0	0	0	0	3	
	kappa				0.79				
整体精度					0.79				
	FoM				0.60				

图 3-3 神经网络 ca 模拟结果与实际数据对比

4.2.3 决策树 ca

参数设置:

表 3-5 决策树 ca 参数设置

参数名称	参数值
采样率	0.01
模拟次数	100
邻域大小	5
目标城市栅格数目	107554

表 3-6 决策树 ca 混淆矩阵

年份	土地利用类型		模拟						
平勿	工业的	用矢室	农田	森林	草地	水体	城市	未利用地	
		农田	30011	266	36	265	14032	0	
		森林	386	48529	296	184	11282	0	
2005	实际	草地	35	127	5296	34	827	0	
2005	天 协	水体	592	267	38	23982	196	161	
		城市	12639	8223	877	3921	81894	0	
		未利用地	0	0	0	0	0	3	
kappa 整体精度					0.77				
				0.78					
	FoM				0.61				

图 3-4 决策树 ca 模拟结果与实际数据对比

3.2.4 logistic ca

参数设置:

表 3-7 logistic ca 参数设置

参数名称	参数值
采样数目	10000
模拟次数	500
邻域大小	3
目标城市栅格数目	107554
转换阈值	0.7
随机因子	1.1

表 3-8 logistic ca 混淆矩阵

					-				
年份	土地利用类型		模拟						
			农田	森林	草地	水体	城市	未利用地	
2005	实际	农田	30728	279	37	265	13301	0	
		森林	440	50850	296	184	8907	0	
		草地	34	133	5723	34	395	0	
		水体	602	268	38	23982	159	187	
		城市	12867	9065	998	3921	80703	0	
		未利用地	0	0	0	0	0	3	
	kappa			0.78					
	整体精度			(0.79				
	FoM			(0.62				

图 3-5 logistic ca 模拟结果与实际数据对比