Project: Gram-Schmidt algorithm

In this project, we will go into the basics of the Gram-Schmidt algorithm and also give you a piece of code which computes an orthonormal basis for you, so you don't have to do it anymore (by hand at least).

First, we need to do a short revision on orthogonal projections:

Now we use that to proof the Gram-Schmidt-process:

We will proof the Gram - Schmidt process:
Let $\{b_1,,b_n\}$ be a basis, so $\{v_1,,v_n\}$ is an orthonormal
basis with span (b ₁ ,, b _n)
(1) $v_{j} = b_{j} - \sum_{i=1}^{3-1} \langle b_{j}, v_{i} \rangle \cdot v_{i}$
(2) $V_{\dot{j}} = \frac{4}{ v_{\dot{j}} } V_{\dot{j}} \qquad \dot{j} = 4n$
Proof: We only show that {v ₁ ,, v _n } is an orthogonal basis
all vj j=1n are normalized after construction (2).
induction start:
for $n=1$, $b_1=v_1$ $v_1=\frac{v_1'}{\ v_1'\ }$ { v_1 } is an orthogonal basis
induction assumption:
For any but fixed n, the above expression applies
inductive step (n => n+1)
Let $k \leq n$
$\langle V_{k}, V_{n+1} \rangle = \langle V_{k}, b_{n+1} - \sum_{i=1}^{n} \langle b_{n+1}, V_{i} \rangle \cdot V_{i} \rangle$
$= \langle v_{k}, b_{n+1} \rangle - \langle \sum_{i=1 \atop n}^{n} \langle b_{n+1}, v_{i} \rangle \rangle \langle v_{k}, v_{i} \rangle$
$= \langle V_{k_{k_{1}}} b_{n+1} \rangle - \left(\sum_{i=1}^{k_{k_{1}}} \langle b_{n+1} V_{i} \rangle \right) \cdot \int_{k_{k_{1}}} \ v_{k}\ $ $V_{k_{k_{1}}} b_{n+1} \rangle - \left(\sum_{i=1}^{k_{k_{1}}} \langle b_{n+1} V_{i} \rangle \right) \cdot \int_{k_{k_{1}}} \ v_{k}\ $
= < V _V 1 b _{n+1} > - < b _{n+1} , V _K > V _K =
$= \langle V_{\mathcal{U}}, b_{n+1} \rangle - \langle b_{n+1}, V_{\mathcal{U}} \rangle = 0$
$\Rightarrow \{v_1, \dots, v_{n+1}\}$ is an orthogonal basis
because $V_i \perp v_k$ for $i_i k \leq n$, according to the induction assumption
Thus, the formula holds for n=n+1 0

Now we translate all of this into code, we start with the orthogonal projection, so the code stays as simple as possible:

```
#
def projection(v,w):
    pV =(v.dot_product(w)/norm(w)^2)*w #Formula for the orthogonal projection
    return (pV)
#
```

Using our command called "projection", we can finally code the Gram-Schmidt-process into sage:

Applying our code onto the following matrix, gives us the orthonormal vectors which you can validate quickly by hand:

Matrix that has been given:
$$\left(egin{array}{ccc} 1 & 2 & 5 \\ 1 & 1 & 1 \\ 1 & 0 & 3 \end{array}
ight)$$