z軸に沿って粒子を単位時間単位面積当たり n 個入射する. z軸から距離 b (衝突パラメータ),角度  $\mathrm{d}\phi$ ,面積  $\mathrm{d}S'$ のスリットを単位時間当たりに通過する粒子数は,

$$n \, \mathrm{d}S' = n \, \mathrm{d}\phi \, (b \, \mathrm{d}\phi) \tag{0.0.1}$$

を満たす.また、単位時間に検出器に到達する粒子数は微分断面積の定義から、

$$dN = \sigma(\theta) N d\Omega \tag{0.0.2}$$

である. 古典力学ではこれらは必ず一致するため,

$$\sigma(\theta) n \, d\Omega = n \, d\phi \, (b \, d\phi) \tag{0.0.3}$$

を得る. よって、微分断面積は、

$$\sigma(\theta) = \frac{1}{\sin \theta} b \left| \frac{\mathrm{d}b}{\mathrm{d}\theta} \right| \tag{0.0.4}$$

と表される.

## 例題 0.1: 剛体球

散乱体を半径 a の剛体球

$$V(r) = \begin{cases} \infty & r < a \\ 0 & r > a \end{cases} \tag{0.0.5}$$

とする. 衝突パラメータを b, 粒子が散乱体の角度  $\phi$  の位置で散乱し、その散乱角を  $\theta$  とする. これらのパラメータは、

$$\begin{cases} 2\phi + \theta = \pi \\ b = a\sin\phi \end{cases} \tag{0.0.6}$$

を満たすため,

$$b = a\cos\frac{\theta}{2} \tag{0.0.7}$$

を得る. よって、微分断面積は

$$\sigma(\theta) = \frac{1}{\sin \theta} b \left| \frac{\mathrm{d}b}{\mathrm{d}\theta} \right| \tag{0.0.8}$$

$$= \frac{a^2}{4} \tag{0.0.9}$$

となる.  $\theta$  に依存しない等方散乱であることがわかる. また、全断面積は

$$\sigma^{\text{tot}} = \int \sigma(\theta) \, d\Omega = \pi a^2 \tag{0.0.10}$$

である. 剛体球の断面積と一致する.