THE COGNITIVE HOURGLASS: AGENT ABSTRACTIONS IN THE LARGE MODELS ERA

A. RICCI, S. BURATTINI University of Bologna, Italy

S. MARIANI, F. ZAMBONELLI, University of Modena-Reggio Emilia, Italy C. CASTELFRANCHI ISTC-CNR, Italy

AAMAS BLUESKY + EMAS 2024

PREQUEL

- A Future for Agent Programming (2015) [B. Logan, EMAS 2015 invited talk]
- Agent Programming in the Cognitive Era (2020) [R. Bordini, B. Logan, K. Hindriks, A. El-Falla Segrouchni, A. Ricci JAAMAS]
- Agent Programming in the Cognitive Era:
 A New Era for Agent Programming? (2021)

 [A. Ricci, EMAS 2021 invited talk]

THE DANGER OF **ELIMINATIVISM**

- Deeming higher-level abstractions unnecessary once lower-level mechanisms are understood
 - deeming
 macro-level cognitive concepts
 unnecessary, relying only on
 micro-level implementing mechanisms

GENERAL PRINCIPLE

- Importance of Abstraction and Levels of Abstraction
 - both from a *scientific* and *engineering* perspective
- To specify | understand | explain | predict | control the behaviour of complex artificial/natural systems

EXTENDED TO SOCIAL LEVEL

[Jennings, 2000]

Dimension	Description	Knowledge level	Social level
System	Entity to be de-	(asocial) Agent	Agent organisation
	scribed		
Components	The system's primi-	Goals, Actions	Agents, Interaction chan-
	tive elements		nels, Dependencies, Organi-
			sational relationships
Compositional	How the components	Various	Roles, Organisation's rules
law	are assembled		
Behaviour law	How the system's	Principle of rationality	Principle of organisational
	behaviour depends		rationality
	upon its composition		
	and components		
Medium	The elements to be	Knowledge	Organisation and social obli-
	processed to obtain		gations, Means of influenc-
	the desired behaviour		ing others, Means of chang-
			ing organisational structures

THE HOURGLASS MODEL

- Design blueprint
 - great diversity of applications
 - great diversity of supporting services
- Distinguished layer in the center (narrow waist or *neck*)
 - a stack of abstractions
 - the sole means of accessing the lower-level resources of the system

[Beck 2019, CACM]

THE INTERNET HOURGLASS

A COGNITIVE HOURGLASS

A COGNITIVE HOURGLASS

THE COGNITIVE NECK

- An abstraction barrier to preserve the KL
- An effective enabler to exploit theories, methods & mechanisms

A COGNITIVE HOURGLASS \Designed Multi-agent Systems/ \Deployed Multi-agent Systems/ AOSE nethodologies languages , Domain Developers & Users XAI tools Agents experts Engineers / Cognitive Neck Cognitive Neck Agent-based technology Agent-oriented architectures (systems / applications) Generative Al BDI Generative AI BDI **RUNTIME DESIGN TIME**

"VERTICAL" EXAMPLES

design

programming

Developers

Generative BDI Platform

Cognitive Neck

LLM

BDI

WHAT STACK OF ABSTRACTIONS IN THE COGNITIVE NECK?

SOME REQUIREMENTS

- To be "human-compatible" [Russell 2020]
 - => cognitive, at the Knowledge Level
- To be effective as domain-independent meta-model
 - => to be applicable to any domain
- To be effective in exploiting "AI masteries"
- To feature *learning* as developmental core capability
- To cross the full engineering processes

ONGOING | FUTURE WORK

- Working on the stack of abstractions in the neck
- Developing & refining the conceptual framework by using concrete examples and use cases
 - one is about the "Generative BDI" case, applied to specific application domains
- Exploring the value (?) of the framework to rethink & refine the full development process and related tools

<connection with previous research about learning>

