NTIN071 A&G: Tutorial 2 – Pumping Lemma, Myhill—Nerode theorem Solve 1, 2a, 3a-f, 4, 5, 6a-f first (the rest is for practice).

Problem 1 (Pumping lemma: statement). (a) Formulate the Pumping lemma for regular languages (without consulting your notes).

- (b) How is the number n form its statement related to a recognizing automaton?
- (c) Prove it (without consulting your notes).

Problem 2 (Pumping lemma: generalization). (a) Can we change the condition $|uv| \le n$ with $|vw| \le n$, that is, iterate near the end? Prove or disprove.

(b) Can we iterate near a chosen position in the word? How to formulate (and prove) such a generalization?

Problem 3 (Pumping lemma: application). Determine which of the following languages are nonregular and show that using the Pumping lemma. (The alphabet is $\Sigma = \{a, b\}$.)

- (a) $L = \{aa, ab, ba\}$
- (b) $L = \{a^i b^j \mid i \le j\}$
- (c) $L = \{a^i b^j \mid i \ge j\}$
- (d) $L_k = \{a^i b^j \mid i \le j \le k\}$ for a given $k \in \mathbb{N}$
- (e) $L = \{a^{2^i} \mid i \ge 0\}$
- (f) $L = \{ww^R \mid w \in \Sigma^*\}$, where w^R denotes the word w written in reverse
- (g) $L = \{a^i b^{i+j} a^j \mid i, j \ge 0\}$
- (h) $L = \{ww \mid w \in \Sigma^*\}$

Problem 4 (Equivalences on words). Give an example of an equivalence relation \sim on Σ^* which:

- (a) is a right and a left congruence
- (b) is a right but not a left congruence
- (c) is of finite index

Problem 5 (Myhill–Nerode theorem: statement). Formulate the Myhill–Nerode theorem and recall the idea of its proof (without consulting your notes).

Problem 6 (Myhill–Nerode theorem: application). Prove or disprove using the Myhill–Nerode theorem that the following languages are regular.

- (a) $L = \{aa, ab, ba\}$
- (b) $L = \{a^i b^j \mid i \le j\}$
- (c) $L = \{a^i b^j \mid i \ge j\}$
- (d) $L_k = \{a^i b^j \mid i \leq j \leq k\}$ for a fixed $k \in \mathbb{N}$
- (e) $L = \{a^{2^i} \mid i \ge 0\}$
- (f) $L = \{ww^R \mid w \in \Sigma^*\}$, where w^R is w reversed
- (g) $L = \{a^i b^{i+j} a^j \mid i, j \ge 0\}$
- (h) $L = \{ww \mid w \in \Sigma^*\}$