概率论与数理统计笔记

Guotao He

2025-02-11

"All knowledge degenerates into probability." — David Hume

目录

Chapte	er 1 概率论的基本概念	1
1.1	基本概念	. 1
1.2	概率公式的基本计算	. 2
1.3	古典概率模型	. 3
_	er 2 随机变量及其分布	5
2.1	随机变量	
2.2	离散型随机变量及其分布律	
2.3	常见离散型随机变量	
	2.3.1 Bernoulli 分布	
	2.3.2 二项分布	
	2.3.3 超几何分布	
	2.3.4 Poisson 分布	
	2.3.5 几何分布	
	2.3.6 Pascal 分布	
	2.3.7 多项分布	
	2.3.8 多元超几何分布	
2.4	连续型随机变量及其分布律	
2.5	常见连续型随机变量	
	2.5.1 均匀分布	
	2.5.2 正态分布	
	2.5.3 指数分布	
	2.5.4 Erlang 分布	
	2.5.5 Γ 分布	
	$2.5.6$ χ^2 分布	
	2.5.7 多元均匀分布	
	2.5.8 多元正态分布	12
Chapte	er 3 多维随机变量	14
Chapte	er 4 杂七杂八	15
4.1	概率的连续性	15
4.2	测度论简介	15
Chapte	er 5 Typst 测试章节	16
5.1	Test Section	16
5.2	Test Test Test 02	16

Chapter 1 概率论的基本概念

1.1 基本概念

- **样本空间与样本点** 对于一个随机的试验 E,其实验的所有可能的结构构成一个集合,此集合称为随机实验 E 的**样本空间**,记为 S,样本空间的每一个元素被称为一个**样本点**。
- **随机事件** 随机试验 E 的样本空间 S 的子集 A 被称为 E 的一个**随机事件**。特别的,由一个样本点组成的单点集,称为 **基本事件**,样本空间 S 是自身的子集,且每次实验中必然发生,称 S 为 E 的**必然事件**,空集 \varnothing 不包含任何样本点,也为样本空间 S 的子集,其在每次实验中必然不发生, \varnothing 称为 E 的**不可能事件**。
- 事件空间 在随机试验 E 中的所有随机事件构成一个集合 \mathcal{F} (集合的每一个元素也是集合),此集合被称为事件空间

事件本质上是样本空间的一个子集,因此事件之间的运算自然按集合论中集合之间的运算处理。具体而言,有:

- 1. $A \subseteq B$ 表示事件 B 包含事件 A, 若 A 发生则 B 一定也发生
- 2. A = B 表示 $A \subseteq B$ 且 $B \subseteq A$
- 3. $A + B = A \cup B = \{x | x \in A \text{ or } x \in B\}$
- 4. $AB = A \cap B = \{x | x \in A \text{ and } x \in B\}$
- 5. $A B = \{x | x \in A \text{ and } x \notin B\}$
- 6. $A \cap B = \emptyset$,称 $A \ni B$ 互斥
- 7. $A \cup B = S, A \cap B = \emptyset$, 称 $A \subseteq B$ 互为**逆事件**, 互为**对立事件**
- 8. 记 A 的对立事件为 $\bar{A} = S A$

摩根率(对偶率) $\overline{A+B} = \overline{AB}, \overline{AB} = \overline{A} + \overline{B}$

Definition 1.1.1 (概率): 设随机试验 E 的样本空间为 S, $\mathscr F$ 为 S 的某些子集组成的一个事件空间,如果对任一事件 $A \in \mathscr F$, 定义在 F 上的一个实值函数 P(A) 满足如下性质:

- 1. 非负性: $\forall A \in \mathcal{F}, P(A) \geq 0$
- 2. 规范性 (归一性): P(S) = 1
- 3. 可列可加性: $\forall A_1, A_2, ... \in \mathcal{F}$, 且满足 $A_i A_j = \emptyset, i \neq j, i, j \in \mathbb{R}$, 有:

$$P\left(\bigcup_{i=1}^{\infty}\right) = \sum_{i=1}^{\infty} P(A_i)$$

则我们称 $P \in \mathcal{F}$ 上的概率测度, 称 $P(A) \in A$ 的概率。

Remark: 这里的"可列可加"实际上是由测度论带来的,这里的"可列"要求事件序列 A_i 是 $\overline{\mathbf{r}}$ 次长的,且是 $\overline{\mathbf{r}}$ 可数无穷。

当只有有限个事件序列时(比如只有n个)我们只需要简单地将 $A_i(i>n)$ 全部定义为空集即可,换句话说,对于有限个互不相容的事件序列 $A_1,...,A_n$,有:

$$P\bigg(\bigcup_{i=1}^n A_i\bigg) = \sum_{i=1}^n P(A_i)$$

实际上,上述性质被称为<u>"有限可加性"</u>,而"可列可加性"是其到无穷情况的推广,<u>"可列可加性"可以推出"有限可加性"</u>,但"有限可加性"不能推导得到"可列可加性"。因此,我们不可用"有限可加性"去替代"可列可加性",即使我们大多数情况下只处理有限的情况。

换句话说,所谓概率,就是一个从事件空间 $\mathcal F$ 到 $\mathbb R$ 上的一个映射,且满足上面三个条件。实际上,概率的公理化条件并不直接告诉我们在实际问题中如何计算 P(A),其只告诉了我们什么是 P(A)(实际上很多数学上的公理化定义都如此),P(A) 的具体计算要根据问题的条件和背景得到。

概率空间 所谓概率空间是一个三元组,包含样本空间 S,事件集合 $\mathcal F$ 和概率测度 P,记为 $(S,\mathcal F,P)$

Definition 1.1.2 (条件概率): 设 A, B 是两个事件, 且 P(A) > 0, 称:

$$P(B|A) = \frac{P(AB)}{P(A)}$$

为事件 A 发生的条件下事件 B 发生的条件概率。

独立性 对于试验 E 中的两个事件 A,B,若事件 A 发生的概率对事件 B 发生的概率无影响,即 P(AB) = P(A)P(B),则我们称事件 A 与 B 互相**独立**。 更一般地,若 $P(A_1A_2...A_n) = P(A_1)P(A_2)...P(A_n)$ 则我们称 $A_1,A_2,...,A_n$ 相互独立。

Mark: 这里需要区分 A, B 互相独立和 A, B 互相对立的区别。实际上,事件 A, B 的独立性和对立性不可能同时成立,若已知 A, B 对立,且 A 不成立,则我们可以马上得到 B 成立,显然这不符合 A, B 互相独立的定义。

另外,A, B 对立很容易在 Venn 图中表示,但 A, B 独立不然,究其原因是因为 Venn 图并无体现数量关系,故无法表示 A, B 独立这一数量关系。

1.2 概率公式的基本计算

Theorem 1.2.1 (加法公式 (Jordan 公式)): 对于概率空间 (S, \mathcal{F}, P) 若 $A_1, ..., A_n \in \mathcal{F}$,则:

$$P\!\left(\bigcup_{i=1}^n A_i\right) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \ldots < i_n \leq n} P\!\left(A_{i_1} \ldots A_{i_k}\right)$$

Theorem 1.2.2 (减法公式): 对于概率空间 (S, \mathcal{F}, P) , 若 $A, B \in \mathcal{F}$, 则:

$$P(A - B) = P(A) - P(AB)$$

Theorem 1.2.3 (乘法公式): 对于概率空间 (S, \mathcal{F}, P) ,若 $A_1, ..., A_n \in \mathcal{F}$,则:

$$P(A_1...A_n) = \prod_{i=1}^n P(A_i|A_1...A_{n-1}) = \sum_{k=1}^n \sum_{1 \leq i_1 < i_n \leq n} (-1)^{k-1} P\Big(A_{i_1} \cup ... \cup A_{i_k}\Big)$$

Theorem 1.2.4 (全概率公式): 对于概率空间 (S,\mathcal{F},P) ,若 $B,A_1,...,A_n\in\mathcal{F}$,其中 A_i 是 S 的分割,则:

$$P(B) = \sum_{j} P \left(A_{j} \right) \! P \! \left(B | A_{j} \right)$$

Theorem 1.2.5 (Bayes 公式): 对于概率空间 (S, \mathcal{F}, P) ,若 $B, A_1, ..., A_n \in \mathcal{F}$,其中 A_i 是 S 的分割,则:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{j}P(A_j)P(B|A_j)}$$

1.3 古典概率模型

古典概型 若试验 E 满足两个条件: 1. 样本空间 S 是有限的集合。2. S 中的每个样本点发生的可能性相同。则我们称这种试验为等可能概型,又称**古典概型**。

在古典概型中,取样本空间 $S = \{e_1, ..., e_n\}$,其中 $e_1, ..., e_n$ 代表该随机试验的 N 个结果,事件域 \mathcal{F} 取为 2^S (即 S 的所有子集都是事件),且每个基本事件发生的可能性相同,即

$$P(\{e_1\}) = P(\{e_2\}) = \ldots = P(\{e_n\})$$

若事件 A 包含 K 个基本事件,即 $A = \left\{e_{i_1}\right\} \cup ... \cup \left\{e_{i_n}\right\}$,则给出概率测度 P 如下:

$$P(A) = \frac{K}{N} = \sum_{e \in A} \frac{1}{N}$$

由于古典概型的概率与计数直接相关,因此下文中简要介绍一些基本的组合计数方法:

- **乘法原理** 设某个试验共包含 r 个依次执行的阶段,其中: 1. 第一个阶段总共有 n_1 个可能的结果。2. 在完全前面的 i-1 个阶段并得到一个相应的结果后,第 i 个阶段将总共有 n_i 个可能的结果。则该试验一共有 $n_1 \cdot n_2 \cdot \ldots \cdot n_r$ 个可能的结果。
- **加法原理** 设完成某个试验有r种不同的途径,且只能在这r种途径中选一种来完成该试验。 若采取第i种途径时总共有 n_i 种可能的结果,则该试验一共有 $n_1+n_2+...+n_r$ 种可能的结果。

排列 假设有 n 个不同的个体,从中选出 n 个并将其排成一个序列,则总共有:

$$n(n-1)(n-2)...(n-m+1) = \frac{n!}{(n-m)!}$$

个可能的组合方式。

组合 假设一个集合包含 n 个不同的元素,我们需要从中选出 m 个元素构成一个子集,则可能得到的子集总共有:

$$\frac{n(n-1)...(n-m+1)}{m!} = \frac{n!}{m!(n-m)!}$$

个,上式给出的整数常常又被称为二项式系数,记作 $\binom{n}{m}$

多项式系数 给定一组自然数 $n_1, n_2, ..., n_r$,以及 $n = n_1 + ... + n_r$,定义多项式系数为:

$$\binom{n}{n_1, n_2, ..., n_r} = \frac{n!}{n_1! n_2! ... n_r!}$$

Chapter 2 随机变量及其分布

2.1 随机变量

"随机变量"可以看成是将"底层"的概率空间 (S, \mathcal{F}, P) "包装"成分布函数,分布列,概率密度等方便使用微积分等分析工具的"接口",从而为我们对概率进行建模提供了莫大的便利.

Definition 2.1.1 (随机变量): 设 (S, \mathcal{F}, P) 为一概率空间,我们将定义在 S 上的实值函数 $X: S \to \mathbb{R}$ 称作一个随机变量,若对于任意 \mathbb{R} 中的区间 I,均有:

$$\{e \in S | X(e) \in I\} \in \mathcal{F}$$

上述定义中,要求 $\{e \in S | X(e) \in I\} \in \mathcal{F}$,其保证了 $\{e \in S | X(e) \in I\}$ 的概率都是有定义的,也就是对任意区间 I,我们都可以谈论"随机变量的取值落在 I 中"这一事件的概率.

Remark: 上述条件实际上是从可测性而来,即对于实数轴上的任意的"合理"的子集(Borel集),其原像都必须是一个可测事件(即属于事件域)同时,上述要求的一个常见的等价描述如下: "对于任意实数 x, 集合 $\{e|X(e) < x\}$ 有确定的概率".

另外,不满足上述条件的情况实际应用中极少出现,相关例子基本属于高等概率论的内容,其基本都是数学上卡 BUG 而来,一般可忽略不理.

对于给定的随机变量 X 以及关于实数 x 的命题 $\varphi(x)$,我们常用记号 $\{\varphi(X)\}$ 表示集合 $\{e\in S|\varphi(X(x))$ 成立 $\}$,例如:

$$\{X>2\} = \{e \in S \mid X(x)>2\}$$

同时,上述集合显然构成一个事件,此事件发生的概率可简记为: $P\{\varphi(X)\}$.

随机变量之间可以进行运算,具体而言,给定 n 个随机变量 $X_1, X_2, ..., X_n$ 以及函数 f: $\mathbb{R}^n \to \mathbb{R}$,我们用 $f(X_1, ..., X_n)$ 表示将 $e \in S$ 映射为 $f(X_1(e), X_2(e), ..., X_n(e))$ 的函数.

许多情况下,我们关系不止一个随机变量,而是多个随机变量 $X_1,...,X_n$ 的相互关系,此时我们可以将这些随机变量作为整体进行研究,故有随机向量定义如下:

Definition 2.1.2 (随机向量): 给定 n 个随机变量 $X_1, ..., X_n$,我们将它们构成的有序组 $(X_1, ..., X_n)$ 称为 n 维随机向量.

Note: 我们默认将形如 $(a_1,...,a_n)$ 的有序组(包括数组和随机向量)均看成列向量.

2.2 离散型随机变量及其分布律

Definition 2.2.1 (离散型随机变量、分布列): 设 X 为一随机变量,若 X 只有可数 多个可能的取值,则称 X 为**离散型随机变量**.

同时, 我们定义分布列 $p_X: \mathbb{R} \to [0,1]$ 为:

$$p_X(x)=P\{X=x\},\quad x\in\mathbb{R}$$

显然,分布列满足如下性质:

Theorem 2.2.1: 设 X 为一离散型随机变量, p_X 为其分布列,则:

- 1. 对任意 $x \in \mathbb{R}$, 均有 $p_X(x) \ge 0$
- 2. $\{x \in \mathbb{R} | p_X(x) > 0\}$ 为可数集
- 3. $\sum_{x} p_{X(x)} = 1$

此定理的逆定理同样成立.

对于随机向量,上述定义可进行推广如下:

Definition 2.2.2 (离散型随机向量、联合分布列): 若 $X_1,...X_n$ 均为离散型随机变量,则称 $X = (X_1,...,X_n)$ 为离散型随机向量,其联合分布列被定义为函数:

$$p_{X_1,...X_n}(x_1,...,x_n) = P\{X_1 = x_1,...X_n = x_n\}$$

2.3 常见离散型随机变量

2.3.1 Bernoulli 分布

Bernoulli 试验 我们称事件 E 为 Bernoulli 试验, 当试验 E 中有且只有两种可能的结果: A 以及 \overline{A} .

Definition 2.3.1 (Bernoulli 分布): 若事件 E 为 Bernoulli 试验,记随机变量 X 为事件 A 出现的次数,且只可能取 0 或 1,则称随机变量 X 服从 Bernoulli 分布,记为 $X \sim B(1,p)$,其分布列为:

$$P\{X=k\}=p^k(1-p)^{1-k}, k\in\{0,1\}$$

其中p为事件A发生的概率.

其特征如下:

- 数学期望: E(X) = P(A)
- 方差: D(X) = p(1-p)

Bernoulli 分布又被称为两点分布或(0-1) 分布.

2.3.2 二项分布

n **重 Bernoulli** 试验 若事件 E 为 Bernoulli 试验,且<u>独立</u>重复 n 次,则称这一串重复的 试验为 n **重** Bernoulli 试验.

Definition 2.3.2 (二项分布): 若事件 E 为 n 重 Bernoulli 试验,记 X 为事件 A 出现的次数,取值为 0,1,...,n,则称随机变量 X 服从二项分布,记为 $X \sim B(n,p)$,其分布列为:

$$P\{X = k\} = b(k; n, p) = \binom{n}{k} p^k (1 - p)^{n - k}$$

其中,p 为每一此试验中 A 出现的概率.

其具有如下性质:

- 对称性: b(k; n, p) = b(n k; n, 1 p)
- 单调性: 当 $k \le (n+1)p$ 时单调增, 当 k > (n+1)p 时单调减
- 当 p 相当小时,可以使用 Poisson 逼近,有:

$$b(k; n, p) \approx \frac{(np)^k}{k!} e^{-np}$$

其特征如下:

- 数学期望: E(X) = np
- 方差: D(X) = np(1-p)
- 特征函数: $f(t) = (pe^{it} + q)^n$

2.3.3 超几何分布

Definition 2.3.3 (超几何分布): 某批 N 件产品有 M 件次品,随机抽出 n 件,令随机变量 X 为抽出次品数量,称其满足超几何分布,记为 $X \sim H(n,M,N)$,其分布列为:

$$P\{X=k\}=f(k;n,M,N)=\frac{\binom{M}{N}\binom{N-M}{n-k}}{\binom{N}{n}}, 0\leq K\leq n\leq N, k\leq M$$

当 $N \gg n$ 时,可以使用二项分布近似.

2.3.4 Poisson 分布

Definition 2.3.4 (Poisson 分布): 设 $\lambda > 0$ 且随机变量 X 可以取一切非负整数,则称随机变量 X 服从 Poisson 分布,若:

$$P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}, k \in \mathbb{N}$$

其特征如下:

- 数学期望: $E(X) = \lambda$
- 方差: D(X) = λ
- 特征函数: $f(t) = e^{\lambda(e^{it}-1)}$

2.3.5 几何分布

Definition 2.3.5 (几何分布): 在成功概率为 p 的 Bernoulli 试验中,记随机变量 X 为首次试验时试验的次数,其可能的取值为 1,2,...,则称随机变量 X 服从几何分布,记为 $X \sim G(p)$,其分布列为:

$$P\{X=k\} = g(k;p) = p(1-p)^{k-1}, k \in \mathbb{N}^+$$

其特征如下:

• 数学期望: $E = \frac{1}{p}$

同时,几何分布还具有<u>无记忆性</u>,即若已知前 m 次都没有成功,设达到首次成功的等待时间为 T,则 $P(T=k)=p(1-p)^{k-1}, k\in\mathbb{N}^+$ 同 m 无关,离散分布中只有几何分布有此性质.

2.3.6 Pascal 分布

Definition 2.3.6 (Pascal 分布): 在成功概率为 p 的 Bernoulli 试验中,记随机变量 X 为成功第 r 次出现时的试验次数,取值为 r, r+1, ...,称随机变量 X 服从 Pascal 分布, 其分布列为:

$$P\{X=k\} = \binom{k-1}{r-1} p^{r(1-p)^{k-r}}, k=r,r+1,\dots$$

上述可推广成负二项分布:

Definition 2.3.7 (负二项分布): 对任意实数 r > 0,称

$$Nb(k;r,p) = \binom{-r}{k} p^r (p-1)^k, k \in \mathbb{N}$$

为负二项分布.

2.3.7 多项分布

Definition 2.3.8 (多项分布): 设试验可能的结果为 $A_1, ..., A_r$, $P(A_i) = p_i$, 且 p_1 + $...+p_i=1$, 重复 n 次试验, 每次试验独立, 记随机变量 X_i 为 A_i 出现次数, 则称随 机向量 $(X_1,...,X_r)$ 服从多项分布,分布列为:

$$P\{X_1=k_1,...,X_r=k_r\}=\frac{n!}{k_1...k_r!}p_1^{k_1}...p_r^{k_r}$$

其具有如下性质:

- ・ 协方差: $\operatorname{con}(X_i, X_j) = -np_ip_j$ ・ 相关系数: $\rho = -\sqrt{\frac{p_ip_j}{(1-p_i)(1-p_j)}}$

2.3.8 多元超几何分布

Definition 2.3.9 (多元超几何分布): 设袋子中有 $N_i \uparrow i = 1, 2, ..., r$, 且 $N_1 + i = 1, 2, ..., r$, 且 $N_1 + i = 1, 2, ..., r$, 且 $N_1 + i = 1, 2, ..., r$, 且 $N_2 + i = 1, 2, ..., r$, 且 $N_1 + i = 1, 2, ..., r$, 且 $N_2 + i = 1, 2, ..., r$, 且 $N_2 + i = 1, 2, ..., r$, 且 $N_3 + i = 1, 2, ..., r$, 日 $N_3 + i = 1, 2, ...$ $\ldots + N_r = N$,从中摸出 n 只,记随机变量 X_i 为 i 号球出现的次数,则称随机向量 $(X_1,...,X_r)$ 服从多元超几何分布,分布列为:

$$P(X_1=n_1,...X_r=n_r)\frac{\binom{N_1}{n_1}...\binom{N_r}{n_r}}{\binom{N}{n}}$$

2.4 连续型随机变量及其分布律

2.5 常见连续型随机变量

2.5.1 均匀分布

Definition 2.5.1 (均匀分布): 设 a, b 为有限数,则密度函数为:

$$p(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{Others} \end{cases}$$

此被称为 [a,b] 上的均匀分布.

• 其分布函数如下:

$$F(x) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{b-a} & \text{if } a < x \le b \\ 1 & \text{if } x > b \end{cases}$$

• 若 θ 服从[0,1]均匀分布,那么对任意分布函数F(x),令 $\xi = F^{-1}(\theta)$,则不难看出 ξ 是 服从分布函数 F 的随机变量.

其特征如下:

- 数学期望: $E(X) = \frac{b+a}{2}$ 方差: $D(X) = \frac{(b-a)^2}{12}$

2.5.2 正态分布

Definition 2.5.2 (正态分布): 密度函数为

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}$$

其中 $\sigma > 0, \mu, \sigma$ 为常数,上述分布记为 $N(\mu, \sigma^2)$.

• 其分布函数如下:

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} \frac{e^{-(y-\mu)^2}}{2\sigma^2} \, \mathrm{d}y, x \in \mathbb{R}$$

- 当 $\mu = 0, \sigma = 1$ 时称其为标准正态分布,其密度函数和分布函数分别记为 ϕ 和 Φ 其具有如下性质:
- 若 $\xi \sim N(\mu, \sigma^2)$, 则 $\eta = \frac{\xi \mu}{\sigma} \sim N(0, 1)$
- 若 $\xi \sim N(\mu, \sigma^2)$,则 $F(x) = P\left(\frac{\xi \mu}{\sigma} < \frac{x \mu}{\sigma}\right) = \Phi\left(\frac{x \mu}{\sigma}\right)$,且 $P(|\xi \mu| < k\sigma) = 2\Phi(k) 1$,且 $P(a \le \xi \le b) = \Phi\left(\frac{b \mu}{\sigma}\right) \Phi\left(\frac{a \mu}{\sigma}\right)$
- 相互独立分布相同的两个随机变量 ξ, η 如果满足密度函数不等于 0 且二阶可导,且 $\xi + \eta, \xi \eta$ 相互独立,那么 $\xi, \eta, \xi + \eta, \xi \eta$ 都服从正态分布.

其特征如下:

- 数学期望: $E(X) = \mu$
- 方差: $D(X) = \sigma^2$, σ 被称为标准差
- 特征函数: $f(t) = \exp(i\mu t \frac{1}{2}\sigma^2 t^2)$

2.5.3 指数分布

Definition 2.5.3 (指数分布): 密度函数为

$$p(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

这里 $\lambda > 0$ 为参数, 称为指数分布, 记为 $Exp(\lambda)$.

其具有如下性质:

• 无记忆性: 对于任意的 s,t>0,有 $P(\xi \ge s+t|\xi \ge s)=P(\xi \ge t)$ (连续分布里只有指数分布有此性质)

其特征如下:

• 数学期望: $E = \frac{1}{4}$

2.5.4 Erlang 分布

Definition 2.5.4 (Erlang 分布): 对于任意的 $r \in \mathbb{N}^+, \lambda > 0$, 密度函数:

$$p(x) = \frac{\lambda^r}{(r-1)!} x^{r-1} e^{-\lambda x}, x > 0$$

称为 Erlang 分布.

2.5.5 Γ 分布

Definition 2.5.5 (Γ 分布): 对任意的 r, $\lambda > 0$,密度函数:

$$f(x) = \begin{cases} \frac{\lambda^2}{\Gamma(r)} x^{r-1} e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

称为 Γ 分布.

2.5.6 χ^2 分布

Definition 2.5.6 (χ^2 分布): 密度函数为:

$$p(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} \mathrm{e}^{-(x/2)}, x > 0$$

的分布称为具有自由度 n 的 χ^2 分布,记作 χ_n^2 .

- 不难得知 χ^2 分布是 Γ 分布的特例.
- 若相对独立的 χ^2 分布 ξ,η 自由度分别为 m,n,则 $\xi+\eta$ 服从 m+n 的 χ^2 分布.
- 对相对独立且服从 N(0,1) 的随机变量 $\xi_1,...,\xi_n$,则 $\eta=\xi_1^2+...+\xi_n^2$ 服从 χ^2 分布.

2.5.7 多元均匀分布

Definition 2.5.7 (多元均匀分布): 若 $G \subset \mathbb{R}^n$ 的正测有限区域,则密度函数:

$$p(x_1,...,x_n) = \begin{cases} \frac{1}{m(G)} & \text{if } (x_1,...,x_n) \in G \\ 0 & \text{if } (x_1,...,x_n) \notin G \end{cases}$$

称为多元均匀分布.

2.5.8 多元正态分布

Definition 2.5.8 (多元正态分布): 若 $\Sigma = (\sigma_{ij})$ 是 n 阶正定矩阵,设逆矩阵 $\Sigma^{-1} = (\gamma_{ij})$,设 $\mu = (\mu_1, ..., \mu_n)^\mathsf{T}$ 为任意实值列向量,则有密度函数:

$$\begin{split} p(x_1,...,x_n) &= \frac{1}{(2\pi)^{n/2}(\det \mathbf{\Sigma})^{1/2}} \exp\Biggl(-\frac{1}{2} \sum_{j,k=1}^n r_{jk} \bigl(x_j - \mu_j\bigr) (x_k - \mu_k) \Biggr) \\ &= \frac{1}{(2\pi)^{n/2}(\det \mathbf{\Sigma})^{1/2}} \exp\Bigl(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\mathsf{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \Bigr) \end{split}$$

定义的分布为 n 元正态分布, 记为 $N(\mu, \Sigma)$.

Chapter 3 多维随机变量

Chapter 4 杂七杂八

- 4.1 概率的连续性
 - 4.2 测度论简介

Chapter 5 Typst 测试章节

5.1 Test Section

§5.1

5.2 Test Test Test 02

