Machine Learning (CE 40717) Fall 2024

Ali Sharifi-Zarchi

CE Department Sharif University of Technology

December 3, 2024

- Introduction
- 2 Word2Vec
- **3** References

- Introduction
- 2 Word2Vec
- 3 References

Natural Language Processing

- Language is central to human interaction; many of our daily activities revolve around text and language.
- Natural Language Processing (NLP) enables computers to understand and generate human language.

Translation

• NLP helps translate text from one language to another.

Sentiment Analysis

• Determines the sentiment (e.g., positive or negative) expressed in a text.

Figure adapted from www.mdpi.com/2079-9292/9/3/483

December 3, 2024

Text Summarization

• Automatically generates a concise summary of longer text.

Named Entity Recognition (NER)

• Identifies and classifies entities (e.g., names, dates) in text.

Speech Recognition

• Converts spoken language into text.

Text Classification

• Categorizes text into predefined groups or topics.

Question Answering

Answers questions based on a given text or dataset.

Chatbots and Dialogue Systems

• NLP powers chatbots that can interact with users through text or speech.

The Importance of Word Representation

- To process text effectively, the first step is to represent words in a way that models can understand.
- We need to transform words into vectors or dense representations to capture their meaning and relationships.
- This is crucial for enabling machines to understand and use language as humans do.

Motivation and One-Hot Encoding

- Traditional models like one-hot encoding lack semantic understanding and fail to capture word relationships.
- One-hot encoding represents words as binary vectors where only one position is 1, making the representation sparse and non-semantic.
- We need dense, semantic word representations to improve natural language processing tasks.

Example of One-Hot Encoding

- For example, given a vocabulary of 5 words:
 - apple = [1, 0, 0, 0, 0]
 - banana = [0, 1, 0, 0, 0]
 - cherry = [0, 0, 1, 0, 0]
 - date = [0, 0, 0, 1, 0]
 - elderberry = [0, 0, 0, 0, 1]
- The length of the one-hot vector depends on the number of unique words in the vocabulary.

Strengths and Limitations of One-Hot Encoding

Strengths:

- One-hot encoding is a simple and intuitive representation that can be effective in certain models, especially smaller neural networks.
- It requires minimal computation and works well for small vocabularies or categorical features in simpler tasks.

• Limitations:

- One-hot encoding does not capture semantic relationships, so similar words (e.g., hotel and motel) appear unrelated.
- The vectors are sparse, containing mostly zeros, making it inefficient for large vocabularies and prone to overfitting due to the large number of parameters in downstream models.

Example: Similar Words, Zero Cosine Similarity

- Consider the following one-hot vectors:
 - hotel = [0, 0, 0, 1, 0]
 - motel = [0, 0, 0, 0, 1]
- Even though hotel and motel are semantically similar, their cosine similarity is 0 because their vectors are orthogonal.
- Cosine Similarity:

$$\cos(\theta) = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{\|\mathbf{v}_1\| \|\mathbf{v}_2\|}$$

• In this case, the dot product of the one-hot vectors is zero, leading to a cosine similarity of zero.

Example: One-Hot Encoding for Different Words

	thank	you	love
thank	1	0	0
you	0	1	0
love	0	0	1

unique word	encoding
thank	[1, 0, 0]
you	[0, 1, 0]
love	[0, 0, 1]

• Different words can be perpendicular to each other in space regardless of their meanings.

- Introduction
- 2 Word2Vec

Continuous Bag of Words (CBOW) Skip-gram Model Word Embedding Visualization Word Analogy

3 References

Word Embedding

- To process text data, we need to represent words in a form that a machine can understand—numerical vectors.
- Word2Vec uses a neural network to learn word embeddings that capture semantic similarities.
- These embeddings allow words with similar meanings to be represented by vectors close to each other in a high-dimensional space.

Example: Word Embedding

Word2Vec as a Neural Network

- Word2Vec is a shallow neural network, with an input, hidden, and output layer.
- It takes in a target word and learns to predict either the surrounding context words or the target word from a set of context words.
- Through training, the network adjusts weights to create meaningful vector representations of words.

Word2Vec as a Neural Network

Figure adapted from machinelearningcoban.com/tabmlhook/chembedding/word2vec.html

Expected Outcome of Word2Vec

- Word2Vec aims to create a vector space where words with similar meanings or contexts are located close to each other.
- Expected Result: Semantically related words—such as "king" and "queen" or "dog" and "puppy"—should have similar vector representations.
- This proximity allows for various NLP tasks, such as:
 - Synonym detection: Identifying words with similar meanings.
 - Analogy tasks: Solving analogies by vector arithmetic (e.g., "king" "man" + "woman" "queen").
 - Clustering of concepts: Grouping related concepts together in the embedding space.
- By representing words in this way, Word2Vec enables models to make use of semantic relationships between words.

Expected Outcome of Word2Vec

	KING	QUEEN	MAN	GIRL	PRINCE	
Royalty Masculinity	0.96	0.98 0.07	0.05	0.56	0.95	
Femininity Age	0.08	0.93 0.71	0.10 0.56	0.91	0.15 0.42	
7.195	0.01	0.11	0.50	O.n	0.72	

Hypothetical features to understand word embeddings

Figure adapted from medium.com/@manansuri/a-dummys-guide-to-word2vec-456444f3c673

Word2Vec: Contextual Word Representation

- The core idea is based on distributional semantics: "You shall know a word by the company it keeps."
- Word2Vec uses two main algorithms for learning word vectors:
 - Continuous Bag of Words (CBOW)
 - Skip-gram Model

- Introduction
- 2 Word2Vec

Continuous Bag of Words (CBOW)

Skip-gram Model Word Embedding Visualization Word Analogy

3 References

CBOW: How It Works

- CBOW predicts the target word using the context (surrounding words) in a fixed window.
- For each word in the corpus, CBOW takes a set of context words and predicts the center word.
- Example: Given the context words {"the", "brown", "fox", "over"}, CBOW predicts the center word "jumps."
- CBOW tends to perform better on smaller datasets and is computationally more efficient.

Example: Continuous Bag of Words

- Introduction
- 2 Word2Vec

Continuous Bag of Words (CBOW)

Skip-gram Model

Word Embedding Visualization Word Analogy

3 References

Skip-gram: How It Works

- Skip-gram is the reverse of CBOW. It predicts the surrounding context words given a target word.
- For each word w_t , the model predicts the words in the window of size m around it (e.g., words $w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2}$).
- Example: If the center word is "jumps," Skip-gram predicts the context words "the,"
 "brown," "fox," and "over."
- Skip-gram is better suited for larger datasets and can capture rare words more effectively.

Why Skip-gram?

- Skip-gram is preferred for large datasets because it handles rare words more effectively than CBOW.
- It captures detailed information about the surrounding words, leading to better word representations in the vector space.
- Word2Vec embeddings from Skip-gram have been widely adopted in various NLP tasks such as machine translation, sentiment analysis, and document classification.

Skip-gram Example

Window Size	Text	Skip-grams
2	[The wide road shimmered] in the hot sun.	wide, the wide, road wide, shimmered
	The [wide road shimmered in the] hot sun.	shimmered, wide shimmered, road shimmered, in shimmered, the
	The wide road shimmered in [the hot sun].	sun, the sun, hot
3	[The wide road shimmered in] the hot sun.	wide, the wide, road wide, shimmered wide, in
	[The wide road shimmered in the hot] sun.	shimmered, the shimmered, wide shimmered, road shimmered, in shimmered, the shimmered, hot
	The wide road shimmered [in the hot sun].	sun, in sun, the sun, hot

Different window sizes and samples drawn from context words and their target

Skip-gram as a Neural Network

Skip-gram Model as Neural Network

December 3, 2024

CBOW vs. Skip-gram

- CBOW and Skip-gram are the two primary architectures for Word2Vec.
- CBOW predicts a target word given its surrounding context, making it efficient and
 effective for smaller datasets.
- **Skip-gram**, on the other hand, predicts the surrounding words for a given target word. It is well-suited for larger datasets and can handle rare words more effectively.
- In essence, the Skip-gram model captures more detailed word relationships and is robust in large vocabularies.

CBOW vs. Skip-gram

This is a visual comparison

Difference between CBOW and Skip-gram

Skip-gram: Objective Function

- The objective of Skip-gram is to maximize the likelihood of predicting context words w_o given a center word w_c .
- The probability of a context word w_o given a center word w_c is defined as:

$$P(w_o|w_c) = \frac{\exp(v_{w_o} \cdot v_{w_c})}{\sum_x \exp(v_x \cdot v_{w_c})}$$

• v_{w_o} and v_{w_c} are the word vectors for the context and center words, respectively.

Skip-gram: Loss Function

• The goal is to minimize the negative log-likelihood over the entire training corpus:

$$J(\theta) = -\frac{1}{C} \sum_{c=1}^{C} \sum_{-m \le j \le m, j \ne 0} \log P(w_{c+j} | w_c)$$

- Here, T is the total number of words, and m is the window size.
- Skip-gram adjusts the word embeddings to maximize the probability of observing the context words around the center word.

Skip-gram: Gradient Calculation

• The detailed steps for the gradient calculation are:

$$\frac{\partial \log P(w_o|w_c)}{\partial \nu_{w_c}} = \frac{\partial}{\partial \nu_{w_c}} \log \frac{e^{\nu_{w_o}^T \nu_{w_c}}}{\sum_x e^{\nu_x^T \nu_{w_c}}}$$

$$= \frac{\partial}{\partial \nu_{w_c}} \left(\log e^{\nu_{w_o}^T \nu_{w_c}} - \log \sum_x e^{\nu_x^T \nu_{w_c}} \right)$$

$$= \nu_{w_o} - \frac{1}{\sum_x e^{\nu_x^T \nu_{w_c}}} \sum_x \nu_x e^{\nu_x^T \nu_{w_c}}$$

$$= \nu_{w_o} - \sum_x P(w_x|w_c) \nu_x$$

• The update rule for v_{w_c} is:

$$v_{w_c} \leftarrow v_{w_c} + \eta \left(v_{w_o} - \sum_{x} P(w_x | w_c) v_x \right)$$

• Here, η is the learning rate.

Skip-gram Example with Gradient Calculation

- Consider the sentence: "Cats chase mice in the dark night."
- If the center word is "chase", the model predicts context words such as "cats", "mice", "in", "the", and "dark".
- Skip-gram calculates the probability of a context word w_o given the center word w_c
- Example:
 - Word vectors: $v_{chase} = [0.1, 0.2], v_{cats} = [0.3, 0.4], v_{mice} = [0.2, 0.5].$
 - For $w_o = "cats"$: Compute dot product $v_{w_o}^T v_{w_c} = (0.3)(0.1) + (0.4)(0.2) = 0.11$.
 - Softmax denominator: $\exp(0.11) + \exp((0.2)(0.1) + (0.5)(0.2)) = 1.116 + 1.148 = 2.264$.
 - Probability: $P("cats"|"chase") = \frac{1.116}{2.264} \approx 0.493$.
- Gradient for v_{chase} : $\nabla v_{w_c} = \sum_w (P(w|w_o) y_w) v_w$, where $y_w = 1$ if $w = w_c$, else 0.

Skip-Gram Pseudocode

Algorithm 1 Skip-Gram Model

```
Require: Corpus D, window size w, embedding dimension d, learning rate \alpha, number of epochs n Initialize word embeddings W and C randomly, where W maps words to embeddings and C maps context words to embeddings for each epoch in 1 to n do for each sentence S in D do for each word w_t in S do Extract context words within window size w around w_t for each context word c of w_t do Compute dot product score = W(w_t) \cdot C(c) Compute probability P(c|w_t) using softmax: P(c|w_t) = \frac{\exp(\operatorname{score})}{\sum_{c' \in \operatorname{vocab}} \exp(W(w_t) \cdot C(c'))} Calculate loss L = -\log P(c|w_t) Update W(w_t) and C(c) using gradient descent with learning rate \eta
```

end for end for end for

return Word embeddings W

Why Do We Need Negative Sampling?

- The softmax function normalizes over all words in the vocabulary *V*, which can be very large (millions of words).
- This makes the calculation of $\sum_{w \in V} \exp(v_w \cdot v_{w_c})$ expensive, as it requires summing over all words in the vocabulary.
- **Solution**: Use **Negative Sampling** to only update a few randomly chosen "negative" words instead of the entire vocabulary.

Skip-gram: Negative Sampling

- **Negative sampling** involves sampling *k* "negative" words that do not appear in the context of the target word for each positive pair (center word and context word).
- Instead of maximizing the probability of all words in the vocabulary, we only
 maximize the probability of the context words and minimize the probability of the
 negative sampled words.
- Example: If the center word is "cat", and the context word is "cute", we sample negative words like "computer", "sky", and "table" to minimize their probability in this context.

Skip-gram: Negative Sampling

Figure adapted from amitness.com/posts/fasttext-embeddings

- Introduction
- 2 Word2Vec

Continuous Bag of Words (CBOW) Skip-gram Model

Word Embedding Visualization

Word Analogy

3 References

Visualizing Words in 2D

- After training the model, words are mapped into a high-dimensional vector space.
- Using techniques like PCA or t-SNE, these vectors can be reduced to 2D for visualization, where similar words appear closer together.

Visualizing Words in 2D

Words represented in a 2D space after dimensionality reduction

- Introduction
- 2 Word2Vec

Continuous Bag of Words (CBOW) Skip-gram Model Word Embedding Visualization Word Analogy

3 References

Word Analogy: Vector Arithmetic in Word2Vec

- Word2Vec embeddings can solve analogy tasks by performing vector arithmetic.
- The analogy task takes the form:

• The analogy is solved by finding the word vector closest to $\mathbf{v}_{king} - \mathbf{v}_{man} + \mathbf{v}_{woman}$.

Word Analogy Formula

• The formal formula for solving word analogies is:

$$d = \arg\max_{i} \frac{(x_b - x_a + x_c)^T x_i}{\|x_b - x_a + x_c\|}$$

- Definitions:
 - x_a : Vector for the first word (e.g., "man").
 - x_b : Vector for the second word (e.g., "woman").
 - x_c : Vector for the third word (e.g., "king").
 - x_i : Candidate word vectors in the vocabulary.
- Example: To solve "man is to woman as king is to?", the formula computes a vector closest to $x_b x_a + x_c$ (e.g., "queen").

Word Analogy Example

• Example:

$$king[0.30, 0.70] - man[0.20, 0.20] + woman[0.60, 0.30] \approx queen[0.70, 0.80]$$

• This means the vector difference between "king" and "man" is similar to the difference between "queen" and "woman."

Word Analogy Example

Word analogy example

- Introduction
- 2 Word2Vec
- **3** References

Contribution

- These slides were prepared with contribution from:
 - Omid Daliran

References

- [1] M. Soleymani, "Machine learning." Sharif University of Technology.
- [2] M. Soleymani, "Modern information retrieval." Sharif University of Technology.
- [3] C. Manning, "Natural language processing with deep learning." Stanford.
- [4] E. Asgari, "Natural language processing." Sharif University of Technology.