■ 重心 (座標) 系 ¹⁾

1. 重心と重心速度

系の重心の座標 x_G は,

$$x_{\rm G} = 1$$

であった. Δt での $x_{\rm G}$ の変化量 $\Delta x_{\rm G}$ は、 Δt での x_1, x_2 の変化量を $\Delta x_1, \Delta x_2$ と表すと、

$$\Delta x_{\rm G} = _2$$

であるから,

$$\frac{\Delta x_{\rm G}}{\Delta t} = 3$$

と表される. 従って,

重心速度は、運動量保存則が成り立つとき、4_____.

といえる.

※ 特に,系の運動量の総和がゼロのとき, $v_{\rm G}={}_{5-}$ となるため,重心の座標は ${}_{6-}$ _ _ _ .

¹⁾ center-of-mass system

2. 重心(座標)系

重心から見た物体 A, B の相対速度 u_1, u_2 は,

$$u_1 = 7 = 8$$

$$= \frac{m_2}{m_1 + m_2}(v_1 - v_2)$$

$$u_2 = 9 = 10$$

$$= \frac{m_1}{m_1 + m_2}(v_2 - v_1)$$

と書かれる. 従って,

$$u_2 = -\frac{m_1}{m_2} u_1 \quad \Longrightarrow \quad _{11}$$

これは, 言い換えると,

重心から見ると、物体 A, B はそれぞれ、

12_____ に, 13____ に, 13____ で運動している

ように見える

ということである.

※ 速度が「質量の逆比の大きさに逆向き」ということは、

14_____ も「質量の逆比の大きさに逆向き」である.