Метод оценки сходства текстовых деревьев с помощью расстояния редактирования и языковых моделей.

Соболевский Ф. А., д. ф.-м. н. Воронцов К. В.

Московский физико-технический институт

2025

Цели исследования

- ▶ Предложить агрегированный критерий сходства текстовых деревьев по нескольким аспектам сходства.
- Исследовать теоретические свойства предложенной метрики.
- Сравнить предложенный метод с существующими методами оценки сходства текстовых деревьев.

Пример применения: оценивание качества иерархической суммаризации текстов путём сравнения с суммаризациями, построенными экспертами.

Основная идея

- Объект сравнения текстовые деревья (деревья с текстовыми метками вершин).
- Несколько аспектов сходства, в т. ч. структурные и семантические.
- Проблема: существующие критерии сходства текстовых деревьев недостаточно отражают многокритериальность их сходства.
- Решение совместить расстояние редактирования и языковые модели для агрегирования структурных и семантических аспектов сходства.

Литература

- Zhang Z., Hu M., et al. Coreference Graph Guidance for Mind-Map Generation // Proceedings of the AAAI Conference on Artificial Intelligence. — 2024. — Vol. 38. — P. 19623–19631.
- ➤ Zhang K., Statman R., Shasha D. On the editing distance between unordered labeled trees. // Information processing letters. 1992 May 25; 42(3): 133-9.
- ▶ Vrbanec T., Meštrović A. Comparison study of unsupervised paraphrase detection: Deep learning — The key for semantic similarity detection. // Expert systems. 2023 Nov; 40(9): e13386.

Постановка задачи

- ▶ Пусть S множество всевозможных фрагментов текста. Определим текстовое дерево как дерево T=(V,E), где $E\subset V^2$ и для каждого $v\in V$ определена текстовая метка $s(v)\in S$. Обозначим множество всевозможных текстовых деревьев за \mathcal{T} .
- ▶ Зададим функцию семантической близости текстовых фрагментов: $r: \mathcal{S}^2 \to [0, +\infty)$. Для $v, v' \in V$ обозначим r(v, v') := r(s(v), s(v')), а $r(v) := r(s(v), \lambda)$, где λ пустая строка.
- ▶ *Найти:* функцию сходства $\rho: \mathcal{T}^2 \to [0, +\infty)$, отвечающую заданным требованиям учета семантической и структурной близости.

Постановка задачи: продолжение

Пусть $T, T' \in \mathcal{T}$. Зададим следующие требования к метрике ρ на множестве \mathcal{T} (здесь f — некоторая неубывающая функция):

- 1. $\rho(T, T') = \rho(T', T)$.
- 2. $\rho(T, T') \ge 0$, $\rho(T, T) = 0$.
- 3. Если T' получено из T добавлением в T вершины v, то $\rho(T,T')=f(r(v)).$
- 4. Если T' получено из T удалением из T вершины v, то $\rho(T,T')=f(r(v)).$
- 5. Если T' получено из T заменой вершины v на v', то $\rho(T,T')=f(r(v,v')).$
- 6. $\forall T, T', T'' \in \mathcal{T}$ $\rho(T, T'') \leq \rho(T, T') + \rho(T', T'')$.

Из последнего условия естественным образом следует, что расстояние ρ будет соответствовать наименьшему по стоимости набору операций редактирования дерева.

Предлагаемое решение

- Общепринятый критерий структурного сходства деревьев — расстояние редактирования (наименьшая стоимость преобразования одного дерева в другое при помощи операций добавления, удаления и замены вершины при заданной стоимости данных операций).
- ▶ Требованиям выше удовлетворяет расстояние редактирования, для которого стоимости операций редактирования f(r(v)) и f(r(v, v')) соответственно.
- ▶ Для аппроксимации семантического расстояния можно применить языковую модель LM : $S \to \mathbb{R}^n$ и определить для $s, s' \in \mathcal{S}$ семантическое расстояние как $r(s,s') = \rho_n(\mathsf{LM}(s),\mathsf{LM}(s'))$, где ρ_n функция близости в \mathbb{R}^n .

Эвристики для модификации алгоритма

- Конкатенация меток вершин с предложениями из родительских вершин в качестве контекста предложений в дочерних вершинах.
- ▶ Умножение весов операций на фактор глубины γ : $f(r(v,v')) = \gamma^d r(v,v')$, где d глубина вершины v.
- Предварительное вычисление эмбеддингов и попарных расстояний для всех предложений в вершинах сравниваемых деревьев. Тогда совершается O(|V|) вызовов языковой модели и $O(|V|^2)$ вызовов функции сходства.

Baseline-метод

Для сравнения мы используем критерий оценки сходства текстовых деревьев, использованный в работе Zhang et al., 2024 для оценки сходства автоматически сгенерированных интеллект-карт из предложений с эталонными. Для текстовых деревьев T=(V,E) и T'=(V',E') он определяется как:

$$\mathsf{Sim}(\mathcal{T},\mathcal{T}') = \min_{P \subset E \times E'} \sum_{(e,e') \in P} \left(\mathsf{ROUGE}(e_0,e_0') + \mathsf{ROUGE}(e_1,e_1') \right).$$

где P — однозначное сопоставление ребер T ребрам T', ROUGE(v,v') — усредненная оценка ROUGE-1, ROUGE-2 и ROUGE-L сходства s(v) и s(v').

В экспериментах для единообразия мы используем в качестве оценки расстояния $\rho(T, T') = -\text{Sim}(T, T')$.

Вычислительный эксперимент — постановка

Использовалась distiluse-base-multilingual-cased-v1 из библиотеки sentence-transformers.

Эксперименты — вычисление оценок попарного сходства на трех выборках по 5 деревьев:

- 1. которые идентичны по семантическому значению и структуре, но предложения в узлах дерева перефразированы (выборка D_1 paraphrase);
- 2. которые сформированы из одних и тех же предложений, но с разной *структурой* дерева (выборка D_2 restructure);
- 3. которые идентичны по структуре и схожи по наборам слов в предложениях, но значительно *отличаются по значению* (выборка D_3 meaning).

Цель алгоритма сравнения деревьев $\rho(\cdot,\cdot)$ — минимизация значений в $\{\rho(T,T')\}_{T,T'\in D_1}$ относительно значений в $\{\rho(T,T')\}_{T,T'\in D_2}$ и $\{\rho(T,T')\}_{T,T'\in D_3}$.

Вычислительный эксперимент — результаты

Рис.: Оценки baseline-метода

Рис.: Оценки нашего метода

Baseline-метод дает самую высокую среднюю оценку расстояния парам деревьев из выборки paraphrase и высокий разброс значений. Наш метод дает самые высокие оценки расстояния в среднем парам деревьев в restructure и примерно равные в meaning и paraphrase.

Вычислительный эксперимент — результаты

Эксперимент	Значения
Meaning	$-5,55 \pm 2,60$
Restructure	$-5,14 \pm 3,00$
Paraphrase	$-3,95 \pm 3,21$

Эксперимент	Значения
Meaning	1,43 \pm 1,11
Restructure	$5,75 \pm 4,02$
Paraphrase	$\textbf{1,95}\pm\textbf{1,37}$

Таблица: Оценки baseline-метода

Таблица: Оценки нашего метода

Предварительное вычисление	Время вычисления, с
нет	9,60
есть	0,06

Таблица: Зависимость времени работы от наличия предвычисления

Предварительное вычисление на порядок уменьшает время работы алгоритма.

Заключение

Полученные результаты:

- Предложен метод сравнения текстовых деревьев, учитывающий как структурные, так и семантические их различия.
- Показано, что такой метод сравнения лучше отражает значительные различия в текстовых деревьях, чем используемый до этого.
- Успешно оптимизировано время подсчёта расстояния.

Перспективы исследований:

- Подбор оптимальной языковой модели для моделирования семантического сходства предложений в вершинах деревьев.
- Применение и исследование полученного критерия в задаче иерархической суммаризации.