

Tarea 5: Política monetaria Macroeconomía II

Profesor: Santiago Bazdresch Barquet

Equipo 7:

Diego Alfonso Valencia Flores Claudia Josselyn Barranco Santamaria Raúl Antonio Tirado Cossío Benjamín Elam Rodríguez Alcaraz

Maestría en Economía

22 de mayo del 2022

Contenido

1.		suelva los ejercicios 12.2 y 12.3. Realice estos con ayuda de su laboratorista y entregue soluciones a máquina, utilizando LaTeX. [2 horas, 2 puntos cada ejercicio]:	2
	1.1.	Ejercicio 12.2	2
		1.1.1. Considere un modelo en que el tiempo es discreto y los precios se muestran absolutamente insensibles ante una perturbación monetaria imprevista durante el primer periodo para volverse completamente flexibles a partir de ese momento. Supongamos que la curva IS es Y=c-ar y que la condición de equilibrio en el mercado de dinero es $m-p=b+hy$, donde y, m y p, son los logaritmos de la producción, la oferta de dinero y el nivel de precios, respectivamente; r, el tipo de interés real; i, el tipo de interés nominal; y a, h y k son parámetros positivos. Suponga que el valor inicial de m es constante a un nivel determinado, que normalizamos a cero, y que y es también constante en el nivel que le correspondería bajo el supuesto de precios flexibles, que también normalizamos a cero. Supongamos ahora que en un determinado periodo (el periodo 1, por simplificar) la autoridad monetaria pasa inesperadamente a practicar una política consistente en aumentar en cada periodo m en una cuantía g>0	2
	1.2.	Ejercicio 12.3	4
		1.2.1. Suponga, como en el Problema 12.2, que los precios son sensibles a las perturbaciones monetarias imprevistas durante un periodo y completamente flexibles a partir de ese momento. Suponga también que las expresiones se cumplen en cada periodo, mientras que, por el contrario, la oferta de dinero sigue un paseo aleatorio, donde ut es una perturbación no correlacionada cuya media es cero. Sea Et las expectativas en el periodo t. Explique por qué ()	4
2.		udie la inflación y la política monetaria en México siguiendo estos pasos: [2 horas, puntos cada inciso]. Por favor documente su trabajo para que se pueda replicar.	5
	2.1.	Obtenga datos de las inflaciones ANUALES general y subyacente (del Índice Nacional de Precios al Consumidor) de México, por lo menos desde 1980, datos del desempleo a nivel nacional en México, y datos de la tasa de interés a corto plazo de México, todos a frecuencia MENSUAL, y grafíquelos individualmente.	5
	2.2.	Produzca una tabla de estadísticas descriptivas de estos datos, incluyendo medias, varianzas y autocorrelaciones, para todo el periodo para el que tenga datos y para dos subperiodos, antes y después del año 1999	7
	2.3.	Una "regla de Taylor' es una función que define a la tasa de interés de corto plazo del periodo t en términos de la distancia entre la inflación y su objetivo y del desempleo y su objetivo en el periodo t-1 (y de una constante). Asuma que el objetivo de inflación es 3 % y tome el objetivo de desempleo como 3 % y estime los coeficientes de una regla de Taylor para México para tres grupos de datos: el periodo completo para el que tenga datos, y los dos sub-periodos definidos anteriormente. Estime las regresiones con la inflación general y con la subyacente. (John Taylor famosamente empezó por decir que era sólamente una relación empírica – positiva –, y ya que se hizo famosa su regla, empezó a decir que debería usarse como regla para la determinación de la tasa de interés de política – normativa.)**	9
		2.3.1. Interprete los resultados de las regresiones, en general, y a la luz de la adopción en México de un régimen de objetivos de inflación en el año 1999. (En realidad, el objetivo de inflación, fue 3 % solamente a partir de 2003 cuando se volvió ''la meta permanente ''.)	10
3.		udie la velocidad del dinero en México siguiendo estos pasos: [2 horas, 1.5 puntos a inciso]. Por favor documente su trabajo para que se pueda replicar.	15

1.	Ane	exo	18
	3.4.	Explique en qué medida el dinero parece comportarse o no de acuerdo a la teoría económica, considerando la demanda de dinero como una función de la actividad económica, los precios y la tasa de interés	18
	3.3.	Produzca una tabla de estadísticas descriptivas de las tasas de crecimiento de las distintas formas de dinero real, incluyendo medias y varianzas, para todo el periodo para el que tenga datos de cada variable	17
	3.2.	Obtenga el PIB nominal, y calcule la cantidad real de dinero M0,M1, M2,M3,M4 en México y grafique las tasas de crecimiento de los distintos tipos de dinero, todo a frecuencia trimestral.	15
	3.1.	Obtenga datos de la cantidad de dinero de distintos tipos M0,M1,M2,M3,M4 en México y grafíquelos (en logaritmos), a frecuencia trimestral	15

- 1. Resuelva los ejercicios 12.2 y 12.3. Realice estos con ayuda de su laboratorista y entregue las soluciones a máquina, utilizando LaTeX. [2 horas, 2 puntos cada ejercicio]:
- 1.1. Ejercicio 12.2
- 1.1.1. Considere un modelo en que el tiempo es discreto y los precios se muestran absolutamente insensibles ante una perturbación monetaria imprevista durante el primer periodo para volverse completamente flexibles a partir de ese momento. Supongamos que la curva IS es Y=c-ar y que la condición de equilibrio en el mercado de dinero es m p = b + hy, donde y, m y p, son los logaritmos de la producción, la oferta de dinero y el nivel de precios, respectivamente; r, el tipo de interés real; i, el tipo de interés nominal; y a, h y k son parámetros positivos. Suponga que el valor inicial de m es constante a un nivel determinado, que normalizamos a cero, y que y es también constante en el nivel que le correspondería bajo el supuesto de precios flexibles, que también normalizamos a cero. Supongamos ahora que en un determinado periodo (el periodo 1, por simplificar) la autoridad monetaria pasa inesperadamente a practicar una política consistente en aumentar en cada periodo m en una cuantía g>0
- 1.1.1.1. ¿Cuál sería el valor de r, inflación esperada, i y p antes de producirse el cambio en la política monetaria? Como hemos supuesto un valor normalizado de 0 en la producción, tenemos lo siguiente

$$0 = c - ar$$

Despejando para la tasa de interes real tenemos lo que sigue:

$$r_0 = c/a$$

Dado que el shock que se espera de política monetaria será constante, se espera también que el nivel de precios también sea constante, y por tanto la inflación esperada del periodo t_0 al periodo t_1 será:

$$\pi^e = E_0[p_1] = 0$$

Por tanto, el valor del tipo de interés nomoinal i, siguiendo la ecuación de Fisher, estará dado por:

$$i_0 = r_0 = c/a = r_0$$

Si sustituimos los valores para m_0 y y_0 en la ecuación del mercado de dinero, tenemos

$$-p_o = b - k * i_0$$

$$-p_0 = b - k(c/a)$$

$$p_0 = kc/a - b$$

Una vez que los precios se han ajustado por completo. Utilice este hecho para hallar los valores de las variables en el periodo 2.

Para t_2 tenemos que la economía se encuentra de nuevo en el nivel normalizado, es decir, 0. Sustituyéndolo en la ecuación de la curva IS tenemos lo siguiente:

$$c - ar_2 = 0$$

Despejando para r $_2$

$$r_2 = c/a$$

Tomando el supuesto de que se espera que el nivel de precios aumente en el mismo monto que la oferta monetaria, la inflación que se espera para los periodos 2 y 3 es g, por lo que el i será el que sigue:

$$i_2 = r_2 * \pi_2^2$$

Sustituyéndolo en la ecuación tenemos lo que sigue:

$$i_2 = c/a + g$$

De los supuestos tenemos que $m_2 = 2g$. Sustituyéndolo tenemos lo siguiente:

$$2q - p_2 = b - k * i_2$$

Despejando el nivel de precios tenemos:

$$p_2 = kc/a + (k+2)g - b$$

En el periodo 1, ¿cuáles son los valores de las variables entre el periodo 1 y el 2? El nivel de precios en t_1 es el siguiente:

$$p_1 = kc/a - b$$

La expectativa de la inflación para el periodo t_1 es:

$$\pi_1^e = E[\frac{kc}{a} + (k+2)g - b] - \frac{kc}{a} + b$$

El i estará definido como:

$$i_1 = r_1 + (k+2)g$$

La condición de equilibrio queda dada por:

$$m_1 - p_1 = b + hc - har_1 - ki_1$$

Con el supuesto de que $m_1 = g$ tenemos:

$$g - \frac{kc}{a} + b = b + hc - har_1 - kr_1 + k(k+2)g$$

Resolviendo para el interés real en t_1 :

$$r_1 = \frac{hc - g + kc/a - k(k+2)g}{ha + k}$$

El interés nominal será:

$$i_1 = \frac{hc - g + kc/a - k(k+2)g}{ha + k} + (k+2)g$$

Simplificando:

$$i_1 = \frac{hc - g + kc/a + ha(k+2)g}{ha + k}$$

¿Qué es lo que determina que el efecto a corto plazo de la expansión monetaria sea un aumento o una reducción de i? La condición estará dada por:

$$i_1 - i_0 = \frac{ha(k+2)g - g}{ha + k} < 0$$

Es decir, necesitamos que el efecto de la liquidez sea mayor al efecto esperado de la inflación. Esto implica que la tasa de interés real debe de caer más de lo que se espera que aumente la inflación.

1.2. Ejercicio 12.3

1.2.1. Suponga, como en el Problema 12.2, que los precios son sensibles a las perturbaciones monetarias imprevistas durante un periodo y completamente flexibles a partir de ese momento. Suponga también que las expresiones se cumplen en cada periodo, mientras que, por el contrario, la oferta de dinero sigue un paseo aleatorio, donde ut es una perturbación no correlacionada cuya media es cero. Sea Et las expectativas en el periodo t. Explique por qué (...)

Para que el nivel de precios cambie se requiere que u_t sea distinto de 0. Sin embargo, dado que $E_t[u_{t+1}] = 0$ no se espera que haya un cambio en el nivel de precios.

Dada la condición de equilibrio entonces podemos escribir lo siguiente:

$$m_{t+1} - p_{t+1} = b + hy_{t+1} - kr_{t+1} - k(E_{t+1[p_{t+2} - p_{t+1}]})$$

Si utilizamos el supuesto sobre i_{t+1} y sacando expectativas tenemos que:

$$E_t m_{t+1} - E_t p_{t+1} = b + h y^n - k r^n$$

Esto implica que sus valores son iguales a sus valores de precios flexibles

1.2.1.1. Use el resultado del inciso a) para expresar a las variables en términos de m y de u Partiendo de la última ecuación del inciso a y restándole p_t en ambos lados, tenemos lo siguiente:

$$E_t p_{t+1} - p_t = (m_t - p_t) - b - hy^n + kr^n$$

Reduciendo términos:

$$U_t = (m_t - p_t) - b - hy^n + kr^n$$

Obteniendo la expresión para los precios de cada periodo tenemos:

$$p_t = m_{t-1} - b - hy^n + kr^n$$

Despejando i_t de la condición de equilibrio:

$$i_t = \frac{b + hy_t - (m_t - p_t)}{k}$$

Despejando:

$$(m_t - p_t) = u_t + b + hy^n + kr^n$$

Luego,

$$i_t = \frac{h(y_t - y^n) + kr^n - u_t}{k}$$

Resolviendo para y_t

$$y_t = \frac{kc + a[hy^n - kr^n + (1-k)u_t]}{k + ah}$$

Hallando la expresión para r_t

$$r_t = \frac{kc + a[hy^n - kr^n + (1+k)u_t]}{k + ah}$$

Hallando la expresión para i_t

$$i_t = \frac{kc + a[hy^n - kr^n + (ah - 1)u_t]}{k + ah}$$

1.2.1.2. ¿Puede hablarse de un efecto Fisher en esta economía? Es decir, ¿se traducen los cambios en la inflación esperada en el tipo de interés nominal en la proporción uno a uno? De la ecuación de i_t , asumiendo que $u_t = \pi_t^e$, tenemos:

$$i_t = \frac{kc + a[hy^n - kr^n + (ah - 1)\pi_t^e]}{k + ah}$$

De esta ecuación se observa que los cambios en la inflación esperada no se reflejan en la proporción indicada (uno a uno) en la tasa de interés nominal, por lo que los precios no responden completamente al choque de la oferta monetaria durante un periodo.

- 2. Estudie la inflación y la política monetaria en México siguiendo estos pasos: [2 horas, 1.5 puntos cada inciso]. Por favor documente su trabajo para que se pueda replicar.
- 2.1. Obtenga datos de las inflaciones ANUALES general y subyacente (del Índice Nacional de Precios al Consumidor) de México, por lo menos desde 1980, datos del desempleo a nivel nacional en México, y datos de la tasa de interés a corto plazo de México, todos a frecuencia MENSUAL, y grafíquelos individualmente.

Los datos fueron obtenidos de fuentes oficiales, como lo son el Inegi y El Banco de México.

Figura 1: Inflación

Figura 2: Inflación subyacente

Figura 3: Tasa de desempleo

Figura 4: tasa de Cetes a 28 días

2.2. Produzca una tabla de estadísticas descriptivas de estos datos, incluyendo medias, varianzas y autocorrelaciones, para todo el periodo para el que tenga datos y para dos subperiodos, antes y después del año 1999.

En la tabla 1 se muestran los principales estadísticos descriptivos de los datos. En dicha tabla, primero se muestran los datos para todo el periodo; después se presentan descriptivos para el periodo previo a 1999 así como para el periodo posterior.

Los datos para todo el periodo son muy volátiles para todas las variables menos para el desempleo. Podemos destacar que se observa un nivel promedio de inflación alta, de un $22\,\%$ a proximadamente.

Al analizar el periodo previo al 99 vemos que los datos son todavía más volátiles. El desempleo se mantuvo relativamente estable, pero la inflación fue mayor con un $35\,\%$

En el periodo posterior a 1999 los estadísticos muestran varianzas y desviaciones más pequeñas, es decir, hubo menos volatilidad. También, el valor promedio de la inflación fue mucho menor, pasando a un nivel promedio de aproximadamente $5\,\%$.

Notemos pues, que para todos los cortes temporales, la tasa de los Cetes a 28 días se mantuvieron en niveles similares a la inflación, es decir, se ofrecían tasas altas, en promedio, previo al año 1999. Después de dicho periodo, las tasas del valor gubernamental bajaron considerablemente hasta un nivel promedio de 7%-

Cuadro 1: Estadísticas descriptiva

Periodo completo	Media	Varianza	Desv.	Max	Min
Inflación	22.078	945.389	30.747	179.73	2.13
Inflación subyacente	22.513	1182.287	34.384	176.85	2.30
Tasa de desempleo	3.838	1.065	1.032	7.60	1.90
Cetes a 28 días	19.973	615.939	24.818	157.07	2.67
Periodo previo a 1	999				
Inflación	35.662	1282.805	35.816	179.73	4.05
Inflación subyacente	48.345	1763.079	41.989	176.85	7.09
Tasa de desempleo	3.791	1.280	1.131	7.60	2.10
Cetes a 28 días	41.492	875.215	29.584	157.07	9.45
Periodo posterior	a 1999				
Inflación	5.085	7.856	2.803	18.54	2.13
Inflación subyacente	4.688	8.892	2.982	18.49	2.30
Tasa de desempleo	3.869	0.938	0.968	6.42	1.90
Cetes a 28 días	7.003	16.451	4.056	28.76	2.67

Las siguientes figuras muestran el coeficiente de autocorrelación para cada una de las variables. Para un lag=1, la inflación, así como la inflación subyacente tienen una autocorrelación de 0.7 aproximadamente. La tasa de desempleo presenta una autocorrelación de 0.75 aproximadamente, sin embargo, conforme aumenta el lag, la disminución de la autocorrelación es más lineal. La tasa de interés tiene un coeficiente de autocorrelación de 0.8.

2.3. Una "regla de Taylor' es una función que define a la tasa de interés de corto plazo del periodo t en términos de la distancia entre la inflación y su objetivo y del desempleo y su objetivo en el periodo t-1 (y de una constante). Asuma que el objetivo de inflación es 3% y tome el objetivo de desempleo como 3% y estime los coeficientes de una regla de Taylor para México para tres grupos de datos: el periodo completo para el que tenga datos, y los dos sub-periodos definidos anteriormente. Estime las regresiones con la inflación general y con la subyacente. (John Taylor famosamente empezó por decir que era sólamente una relación empírica – positiva –, y ya que se hizo famosa su regla, empezó a decir que debería usarse como regla para la determinación de la tasa de interés de política – normativa.)**

Se estimaron la siguientes regresiones:

$$Cetes28 = \beta_0 + \beta_1 Br\pi + \beta_2 BrU + u$$

$$Cetes 28 = \beta_0 + \beta_1 Br \pi_s + \beta_2 Br U + u$$

En donde Cetes28 se refiere a la tasas del valor gubernamental a 28 días, $Br\pi$ es la brecha en el objetivo de inflación, $Br\pi_s$ se refiere a la brecha usando la inflación subyacente y BrU es la brecha de desempleo. Se estimo cada regresión para todo el periodo, el periodo previo a 1999 y el periodo posterior al mismo año.

los resultados de la regresión, usando la inflación, se muestran en el cuadro 2; los resultados, al incluir la inflación subyacente, aparecen en el cuadro 3.

Cuadro 2: Regla de Taylor

	$Dependent\ variable:$				
		Cetes a 28 días			
	Completo	Antes de 1999	Después de 1999		
	(1)	(2)	(3)		
Brecha de inflación	0.709***	0.591***	0.986***		
	(0.016)	(0.029)	(0.043)		
Brecha de desempleo	-0.601	2.082*	-1.457***		
_	(0.494)	(1.077)	(0.124)		
Constante	8.879***	16.144***	6.215***		
	(0.698)	(1.772)	(0.200)		
Observations	446	167	278		
\mathbb{R}^2	0.814	0.732	0.815		
Adjusted R ²	0.813	0.728	0.814		

Note:

*p<0.1; **p<0.05; ***p<0.01

2.3.1. Interprete los resultados de las regresiones, en general, y a la luz de la adopción en México de un régimen de objetivos de inflación en el año 1999. (En realidad, el objetivo de inflación, fue 3% solamente a partir de 2003 cuando se volvió ''la meta permanente''.)

Al utilizar los datos para el periodo completo podemos destacar que lo predicho por Taylor se cumple, es decir, la brecha de inflación tiene un efecto positivo en la tasa de interés, pues un incremento porcentual de la brecha, produce un incremento del 0.7% en la tasa de interés. Además, un incremento porcentual en la brecha de desempleo produce una caida del 0.6% de la tasa de referencia.

Si analizamos los resultados tomando solo datos previos a 1999 notamos que el efecto de la brecha de inflación en la tasa es similar. Sin embargo, hay que destacar el cambio en el signo del coeficiente de la brecha en el desempleo. Además el coeficiente es estadísticamente significativo solo a un nivel de confianza del 90 %. Estos resultados van en contra de la regla de Taylor, pues un aumento porcentual en la brecha de desempleo, generaría un incremento del 2 % en la tasa de referencia.

En el periodo posterior a 1999, cuando se establece el régimen de objetivos de inflación los coeficientes vuelven a ir en línea con la regla de Taylor. Además, ambos coeficientes son significativos para un nivel del confianza del 99 %. El coeficiente de la brecha de inflación es más grande que en los casos analizados previamente y muy cercando a 1 ¹. El coeficiente de la brecha de desempleo también aumento en términos absolutos, con un valor de -1.47.

Al incluir la inflación subyacente en el análisis, las conclusiones no cambian en términos generales.

¹Recordemos que según el principio de Taylor, la tasa de interés debe de aumentar, en términos porcentuales, más que la inflación para tener un efecto contracíclico.

3. Estudie el efecto de cambios en la tasa de interés de México sobre la curva de tasas de interés.

(a) Datos

Obtenga datos de la tasa de interés de referencia del Banco de México, y datos de las tasas de interés en pesos a distintos plazos.

A partir de la información disponible en el Sistema de Información Económica del Banco de México, se realizó una búsqueda y recolección de datos para el periodo de 1995 al último dato publicado que corresponde a Abril de 2022.

En principio, todas las series tienen una periodicidad mensual y están expresadas en términos porcentuales. Para analizar la tasa de interés de referencia, utilizamos la Tasa de interés interbancaria o TIIE a 28 días con una periodicidad mensual.

En cuanto a la información disponible para las tasa de interés en distintos plazos; en un principio, utilizaremos los CETES a 28 días y a 1 año. Asímismo, se utilizarán series de Udibonos y Bonos a tasa fija para explorar las tasas de interés a largo plazo. Es importante mencionar que las series a mediano plazo, los Bondes de 2, 3 y 5 años, así como los Udibonos a 5 años dejaron de emitirse en 2005. Por esa razón, existen muy pocas observaciones correspondientes a estas variables lo que puede subestimar los resultados de las estimaciones. También, hay que recalcar que los resultados pueden presentar discontinuidades que son consecuencia de la falta de disponibilidad de datos.

Figura 1: Evolución de las tasas de interés

En el gráfico anterior podemos observar la evolución de las variables a lo largo del tiempo para el periodo de 1995 a 2022. Como es evidente en la mayoría de los casos se observa la misma tendencia con un decremento al inicio de la serie que después converge a una tendencia entre el 5 al $15\,\%$ para la mayoría de las tasas de referencia.

(b) Estadísticas descriptivas

Cuadro 1: Estadísticas descriptivas

	(1)	(2)	(3)	(4)	(5)	(6)
Variables	N	mean	sd	Var	\min	max
$tiie_28$	326	11.39	11.61	134.8	3.290	89.48
$cetes_28$	328	10.60	10.72	114.9	2.670	74.75
$cetes_{-}1$	319	10.41	8.705	75.78	3.010	48.02
$bondes_2$	78	0.819	0.948	0.898	0	4.300
$bondes_3$	51	0.860	0.370	0.137	0.380	1.920
$bondes_5$	69	0.451	0.278	0.0772	0.140	1.160
udibon $_{-}3$	201	2.869	1.957	3.829	0.400	8.610
$udibon_{-}5$	37	7.056	0.848	0.719	5.730	8.510
udibon_ 10	248	3.709	1.344	1.805	1.100	7.680
$bontf_3$	266	7.338	2.728	7.444	4	17.70
$bontf_{-}5$	248	7.550	2.359	5.565	4.140	17.40
$bontf_{-}10$	193	7.734	1.505	2.266	4.640	11.17

Las estadísticas descriptivas ilustran, en principio la discontinuidad de las series de datos. Hay casos en donde el número de observaciones se acerca a la tasa de referencia del TIIE y hay otros como en el caso de los bondes que al dejarse de emitir en 2005 ocasionan ese número bajo de observaciones. Del mismo modo, podemos observar que la tasa de interés más alta en cuanto a la media corresponde a la Tasa de Interés Interbancaria.

(c) Regresiones

Calcule una regresión de los cambios en cada una de las tasas excepto la del Banco de México, en función de los cambios en la tasa de interés del Banco de México y compare.

Para calcular los cambios en las tasas de interés, se utiliza la fórmula clásica de las tasas de crecimiento. Considerando que todas las variables están en la misma unidad de medida, tendremos regresiones de tipo log-log.

Todas las regresiones se ven de la siguiente manera:

$$\Delta \% Activo = \beta_0 + \beta_1 \Delta \% TIIE + u_i$$

Donde: $\Delta \% Activo$ es el cambio en la tasa de interés nominal y $\Delta \% TIIE$ es el cambio en la tasa interbancaria del Banco de México.

(d) Cook y Hahn

Interprete sus resultados a la luz de lo obtenido por Cook y Hahn para el caso de Estados Unidos.

Para poder concluir el análisis de los efectos del cambio de la tasa de referencia o, en este caso, tasa de interés interbancaria sobre otras tasas de interés, es importante compararlo con los resultados que obtienen Cook Hahn. Estos autores encuentran que a mayor madurez el efecto de los cambios en la tasa de interés de Política Monetaria sobre otras tasas tiende a cero.

Los resultados obtenidos a partir de las estimaciones lineales planteadas con anterioridad muestran que los cambios en la TIIE tienen un efecto directo sobre la tasa de interés de los CETES a 28 días. Es decir, un incremento de 1pp en la TIIE implica un aumento de la misma magnitud sobre los CETES a 28 días. Sin embargo, al comparar el efecto sobre los CETES a 1 año, encontramos un efecto positivo y significativo pero de menor magnitud. Esto es consistente con la investigación de Cook Hahn.

En cuanto a las tasas de mediano plazo, un incremento en la TIIE de 1pp tiene un efecto positivo y de aproximadamente 0.150pp sobre las tasas de Udibonos a 3 años y de BonosTF a 3 años. Algo interesante es que al comparar el efecto sobre los BonosTF a 3 y 5 años, hay un efecto positivo y significativo pero menor. Lo que refuerza los hallazgos de los autores.

Finalmente, si observamos la tasa de interés a largo plazo o a 10 años, encontramos un efecto positivo pero de apenas 0.05 pp y sin significancia estadística.

A partir de lo anterior, podemos concluir que las variaciones en la Tasa de Interés de Referencia tiene un efecto sobre las tasas de interés de bonos a corto, mediano y largo plazo. Es decir, que el caso de México es consistente con los resultados que encuentran Cook Hahn para Estados Unidos. A mayor madurez de los bonos, los cambios en la tasa de política monetaria tienen un efecto menor y que tiende a cero.

Cuadro 2: Estimaciones de los modelos

(8) Bonotf 10		(0.0232) (0.00115)		0.007	
(7) Bonotf 5	0.133***	0.000679	328	0.045	
(6) Bonotf 3	0.175***	(0.0911) (0.000130)	328	0.070	
(5) (6) (7) Udibon 10 Bonotf 3 Bonotf 5	0.0735**	0.00160	328	900.0	arentheses ^k p<0.1
(3) (4) Udibon 3 Udibon 5	0.0413***	0.000242	328	0.036	Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
	0.145**	0.0109 0.0109	325	900.0	bust standar *** p<0.01,
(2) Cetes 1 año	0.397***	-0.000191	328	0.263	Ro
(1) Cetes 28	1.085***	0.00420*	328	0.773	
Variables	$TIIE_{-28}$	Constant	Observations	R-squared	

Cuadro 3: Regla de Taylor usando inflación subyacente

		$Dependent\ varia$	ble:
		Cetes a 28 día	s
	Completo	Después de 1999	Después de 1999
	(1)	(2)	(3)
Brecha de inflación subyacente	0.711***	0.594***	0.950***
	(0.016)	(0.029)	(0.039)
Brecha de desempleo	-0.513	2.138**	-1.388***
•	(0.492)	(1.079)	(0.121)
Constante	9.008***	16.108***	6.606***
	(0.695)	(1.777)	(0.181)
Observations	446	167	278
\mathbb{R}^2	0.815	0.731	0.828
Adjusted R ²	0.814	0.727	0.827

Note:

*p<0.1; **p<0.05; ***p<0.01

- 3. Estudie la velocidad del dinero en México siguiendo estos pasos: [2 horas, 1.5 puntos cada inciso]. Por favor documente su trabajo para que se pueda replicar.
- 3.1. Obtenga datos de la cantidad de dinero de distintos tipos M0,M1,M2,M3,M4 en México y grafíquelos (en logaritmos), a frecuencia trimestral.

Podemos notar como el comportamiento de los agregados monetarios es en esencia el mismo que el de la base monetaria. Las expansiones de la base monetaria más grandes se dan de M_0 a M_1 , y de M_1 a M_2 . M_3 y M_4 fueron pracricamente iguales para el inicio del periodo, pero a partir de 2010 podemos ver un ligero incremento de M_4 que se explica por el incremento de los instrumentos monetarios en poder de no residentes.

3.2. Obtenga el PIB nominal, y calcule la cantidad real de dinero M0,M1, M2,M3,M4 en México y grafique las tasas de crecimiento de los distintos tipos de dinero, todo a frecuencia trimestral.

En este inciso estaremos calculamos la cantidad de dinero real de la economía, tal que:

$$\frac{M_i}{P} = \frac{Y}{V_i}$$

siendo M_i el agregado monetario $i \in [0, 1, 2, 3, 4]$ y PY el pib nominal obtenido de INEGI. Para encontrar $\frac{M_i}{P}$ podemos deflactar los agregados monetarios. Pero para complementar el ejercicio también obtendremos la velocidad del dinero.

Figura 5: Agregados monetarios, $2000\mathrm{Q}4\text{-}2022\mathrm{Q}1$

En la primera gráfica podemos notar como la velocidad del dinero ha venido disminuyendo para todos los agregados monetarios. Otra característica importante es que la velocidad del dinero esta estrechamente relacionada con la liquidez, ya que sabemos que en términos de liquidez M_0 es más liquido que M_1 y así sucesivamente.

2015

2020

2010

M4

0 -

2000

2005

Las tasas de crecimiento de los agregados monetarios se presenta en la segunda gráfica. Podemos notar dos cosas, que la tasa de crecimiento de los dos primero agregados monetarios ha sido superior a la de los últimos tres. Como se anticipó en la gráfica del inciso anterior, el comportamiento de M_0 es replicado muy de cerca por M_1 , es por eso que la correlación entre ambas tasas es de 0.74 significativa al 99 %. Otra cosa que llama la atención es que a medida que avanzamos en los agregados monetarios dependen menos de la base monetaria. Por ejemplo, la correlación entre M_0 y M_4 no es significativamente distinto de cero.

3.3. Produzca una tabla de estadísticas descriptivas de las tasas de crecimiento de las distintas formas de dinero real, incluyendo medias y varianzas, para todo el periodo para el que tenga datos de cada variable.

median vars \mathbf{n} mean sd trimmed mad \min max range skew kurtosis se M01 82 13.194.82 13.1713.224.94 2.56 24.04 21.47-0.05-0.270.532 M182 12.55 4.5212.60 12.56 3.50 1.53 26.07 24.530.14 0.290.50M23 82 9.113.43 8.77 8.91 2.94 1.47 22.42 20.951.02 2.570.38 M34 82 9.50 3.38 9.51 9.29 2.95 2.54 21.59 19.05 0.731.17 0.37M45 82 10.19 4.44 8.82 9.70 3.89 4.0522.5518.49 0.90 0.050.49

Cuadro 4: Estadisticas descriptivas

como era de esperarse, el agregado monetario con mayor volatilidad es el asociado a la base monetaria. De ahí en adelante, podemos decir que los agregados van capturando una fracción de la volatilidad, a excepción de M_4 que depende en mayor medida de la cantidad de moneda en manos de extranjeros. Otra cosa que resalta es que para todos los casos, y para todo el periodo hubo una tasa de crecimiento positiva, a pesar que hay dos recesiones importantes (2008 y 2020).

3.4. Explique en qué medida el dinero parece comportarse o no de acuerdo a la teoría económica, considerando la demanda de dinero como una función de la actividad económica, los precios y la tasa de interés.

Para este inciso tomaremos en cuenta la inflación, y veremos cual es la correlación que existe entre dicha variable y los agregados monetarios. La teoría dicta que a mayor tasa de crecimiento de los saldos monetarios reales mayor será el cambio en el nivel de precios.

Cuadro 5: Correlación							
	π	$\Delta\%rac{M_0}{P}$	$\Delta\%rac{M_1}{P}$	$\Delta\%rac{M_2}{P}$	$\Delta \% \frac{M_3}{P}$		
π							
$\Delta \% \frac{M_0}{P}$	0.28***						
$\Delta \% \frac{\dot{M}_1}{P}$	0.19	0.76***					
$\Delta \% \frac{\dot{M}_2}{P}$	0.28**	0.33***	0.55***				
$\Delta \% \frac{\dot{M}_3}{P}$	0.27**	0.41***	0.53***	0.91***			
$\Delta\%rac{\dot{M}_4}{P}$	0.23**	0.13	0.34***	0.71***	0.74***		

Lo interesante del ejercicio es que de acuerdo con la teoría la tasa de crecimiento de los agregados monetarios afecta de manera positiva a la inflación. Aunque de manera moderada, podemos confirmar que hay una relación contemporánea entre el nivel de saldos que mantienen las personas y los precios del mercado. De manera sorpresiva, el agregado monetario M_1 no guarda una relación significativa con la inflación.

4. Anexo


```
<unnamed>
        name:
               C:\Users\DELL\Documents\tarea5\PS5 ej3.smcl
         loa:
               smcl
    log type:
   opened on:
               23 May 2022, 14:19:42
1
 . /*
2
  >
                     El Colegio de México
            Maestría en Economía (2021-2023)
                       Macroeconomía II
                               Tarea 5
  > */
 . cd "C:\Users\DELL\Documents\tarea5"
  C:\Users\DELL\Documents\tarea5
6 . global graf = "C:\Users\DELL\Documents\tarea5\graph"
7 . global tabl = "C:\Users\DELL\Documents\tarea5\tables"
8 .
9.
10. /*
  > 3. Estudie el efecto de cambios en la tasa de interés de referencia de México sobre
  > la curva de tasas de interés.
11.
12. /*
  > (a) Obtenga datos de la tasa de interés de referencia del Banco de México y datos de
   las tasas de interés en pesos a distintos plazos 28 días, 1 año, 2 años, 5 años, 10
  > años.
  > Para analizar la tasa de interés de referencia, utilizaremos la TIIE a 28 días con u
  > na periodicidad mensual. Así mismo, utilizaremos los CETES a 28 días.
  > Mientras que para observas las tasas de interés en pesos a distintos plazos comparar
  > emos de nueva cuenta los CETES a 28 días y a un año. También, se emplean series de U
  > dibonos y Bonos a tasa fija para explorar las tasas de interés a largo plazo.
  > Es importante mencionar que las series a mediano plazo, los Bondes de 2, 3 y 5 años, > así como los Udibonos a 5 años dejaron de emitirse en 2005. Por esa razón hay muy p
  > ocas observaciones correspondientes a estas variables.
  > El resto de variables tienen una periodicidad anual y su unidad de medida es porcent
  > Es importante acentuar que las discontinuidades que pueda presentar el análisis se d
  > eben a una falta de disponibilidad de datos.
  > */
13.
14. * llamamos a la base de datos
15.
16. import excel using "Base3.xlsx", sheet("datos") firstrow case(lower)
  (15 vars, 484 obs)
17.
18. * Declaramos la serie de tiempo
19.
20. destring date, replace force
 date already numeric; no replace
```

```
21. rename date fecha
22.
23. gen periodo = n // ordenamos las fechas
24. gen date = tm(1982m1) + periodo-1 // Generamos una nueva variable de tiempo
25. drop periodo
26. format date %tm // Damos formato mensual
28. order date, before (fecha)
29. drop fecha
30.
31.
32. * Acortamos el periodo de análisis a partir de los datos TIIE 28 días
33. keep if date >= 420
  (156 observations deleted)
34.
35.
36. * Graficamos para ver la evolución de las variables a lo largo del tiempo
38. graph twoway (line tiie_28 date) (line cetes_28 date) (line cetes_1 date) (line udib > on_3 date) (line udibon_5 date) (line udibon_10 date) (line bontf_3 date) (line bont > f_5 date) (line bontf_10 date), ///
  > r_3 date, (The Bond_10 date, ///)
> xtitle("Fecha", size(vsmall)) ytitle("tasa de interés (%)", size(vsmall)) ///
> ylabel(0(10)90, angle(horizontal) labsize(vsmall)) ///
> xlabel(420(12)747, valuelabel angle(vertical) labsize(vsmall)) ///
  > graphregion(fcolor(white)) bgcolor(white) ///
  > legend(size(vsmall) col(3)) ///
  > caption("Fuente: Elaboración propia a partir de datos Banxico", size(tiny) span)
40. graph export "$graf/grafico1.pdf", replace
  file C:\Users\DELL\Documents\tarea5\graph/grafico1.pdf saved as PDF format
41.
42. /*
  > (b) Produzca una tabla de estadísticas descriptivas de estos datos, incluyendo media
  > s y varianzas, para todo el periodo para el que tenga datos de cada variable.
44. sum tiie_28 cetes_28 cetes_1 udibon_3 udibon_5 udibon_10 bontf_3 bontf_5 bontf_10 bo
  > ndes_2 bondes_3 bondes_5, det // nos permite conocer las estadísticas descriptivas d
> e las series de interés
```

tiie	28

		_		
1% 5% 10%	Percentiles 3.3 3.33 4.1	Smallest 3.29 3.29 3.29	Obs	326
25%	4.86	3.3	Sum of wat.	326
50%	7.57	Largest	Mean Std. dev.	11.38813 11.6089
75%	10.01	57.43		
90%	23.95	60.45	Variance	134.7666
95%	35.8	85.22	Skewness	3.069293
99%	57.43	89.48	Kurtosis	15.64833

		cetes_28		
328 328 10.60424	Obs Sum of wgt. Mean	Smallest 2.67 2.77 2.81 2.81	Percentiles 2.81 3.04 3.78 4.385	1% 5% 10% 25%
10.71947 114.907 2.726648 11.94108	Std. dev. Variance Skewness Kurtosis	Largest 53.16 59.17 69.54 74.75	9.515 22.64 34.86 53.16	75% 90% 95% 99%
		cetes_1		
319 319	Obs Sum of wgt.	Smallest 3.01 3.03 3.09 3.1	Percentiles 3.1 3.54 4	1% 5% 10% 25%
10.41163 8.705237	Mean Std. dev.	Largest	7.5	50%
75.78116 1.972717 6.473864	Variance Skewness Kurtosis	40.91 43.11 43.77 48.02	9.71 23.55 31.27 40.91	75% 90% 95% 99%
		udibon_3		
201 201	Obs Sum of wgt.	Smallest	Percentiles .47 .68 .83 1.33	1% 5% 10% 25%
2.869353 1.956799	Mean Std. dev.	Largest	2.34	50%
3.829063 1.115419 3.594227	Variance Skewness Kurtosis	7.85 8.35 8.42 8.61	3.55 6.16 7.08 8.35	75% 90% 95% 99%
		udibon_5		
37 37	Obs Sum of wgt.	Smallest 5.73 5.76 5.95 6.01	Percentiles 5.73 5.76 6.01 6.25	1% 5% 10% 25%
7.056216 .8476712	Mean Std. dev.	Largest	6.98	50%
.7185464 .135732 1.726219	Variance Skewness Kurtosis	8.26 8.35 8.36 8.51	7.83 8.26 8.36 8.51	75% 90% 95% 99%
		udibon_10		
248 248	Obs Sum of wgt.	Smallest 1.1 1.25 1.36 1.41	Percentiles 1.36 1.93 2.2 2.75	1% 5% 10% 25%

50%	3.505	Largest	Mean Std. dev.	3.709073 1.343562
75% 90% 95% 99%	4.26 5.78 6.56 7.52	7.47 7.52 7.64 7.68	Variance Skewness Kurtosis	1.80516 .8354022 3.505906
		bontf_3		
1% 5% 10% 25%	Percentiles 4.12 4.48 4.69 5.11	Smallest 4 4.04 4.12 4.19	Obs Sum of wgt.	266 266
50%	7.045	Largest	Mean Std. dev.	7.337519 2.728318
75% 90% 95% 99%	8.35 9.83 14.94 16.1	15.95 16.1 16.9 17.7	Variance Skewness Kurtosis	7.443721 1.62697 5.868929
		bontf_5		
1% 5% 10% 25%	Percentiles 4.53 4.79 5.04 5.62	Smallest 4.14 4.15 4.53 4.57	Obs Sum of wgt.	248 248
50%	7.435	Largest	Mean Std. dev.	7.549758 2.358954
75% 90% 95% 99%	8.38 9.86 12.62 15.57	15.44 15.57 16.2 17.4	Variance Skewness Kurtosis	5.564662 1.473147 5.977066
		bontf_10		
1% 5% 10% 25%	Percentiles 5 5.61 5.9 6.33	Smallest 4.64 5 5.03 5.12	Obs Sum of wgt.	193 193
50%	7.66	Largest	Mean Std. dev.	7.734404 1.505476
75% 90% 95% 99%	8.6 10.02 10.27 11.09	10.9 10.96 11.09 11.17	Variance Skewness Kurtosis	2.266458 .2486163 2.231426
		bondes_2		
1% 5% 10% 25%	Percentiles 0 0 0 0 0	Smallest 0 0 0 0 0	Obs Sum of wgt.	78 78
50%	. 83	Largest	Mean Std. dev.	.8188462 .9476971
75% 90% 95% 99%	1.37 1.94 2.25 4.3	2.25 2.88 4.15 4.3	Variance Skewness Kurtosis	.8981298 1.321377 5.295473

bondes	3
-	_

		_		
51 51	Obs Sum of wgt.	Smallest .38 .42 .42 .43	Percentiles .38 .42 .5	1% 5% 10% 25%
.8596078 .3695617	Mean Std. dev.	Largest	.79	50%
.1365758 .8913613 3.082886	Variance Skewness Kurtosis	1.39 1.58 1.74 1.92	1.16 1.34 1.58 1.92	75% 90% 95% 99%
		bondes_5		
69 69	Obs Sum of wgt.	Smallest .14 .14 .15 .15	Percentiles .14 .15 .16 .22	1% 5% 10% 25%
.4513043 .2779278	Mean Std. dev.	Largest	. 4	50%
.0772439 .9670193 2.985836	Variance Skewness Kurtosis	1.02 1.06 1.08 1.16	.52 .93 1.02 1.16	75% 90% 95% 99%

45.

^{46.} outreg2 using summary, tex replace sum(detail) keep(tiie_28 cetes_28 cetes_1 udibon_
> 3 udibon_5 udibon_10 bontf_3 bontf_5 bontf_10 bondes_2 bondes_3 bondes_5) eqkeep(N m
> ean sd Var min max)

		date		
1% 5% 10% 25%	Percentiles 423 436 452 501.5	Smallest 420 421 422 423	Obs Sum of wgt.	328 328
50%	583.5	Largest	Mean Std. dev.	583.5 94.82967
75% 90% 95% 99%	665.5 715 731 744	744 745 746 747	Variance Skewness Kurtosis	8992.667 0 1.799978
		tiie_28		
1% 5% 10% 25%	Percentiles 3.3 3.33 4.1 4.86	Smallest 3.29 3.29 3.29 3.3	Obs Sum of wgt.	326 326
50%	7.57	Largest	Mean Std. dev.	11.38813 11.6089
75% 90% 95% 99%	10.01 23.95 35.8 57.43	57.43 60.45 85.22 89.48	Variance Skewness Kurtosis	134.7666 3.069293 15.64833

		Tondeo_bane		
328 328 11.0057 11.39632	Obs Sum of wgt. Mean Std. dev.	Smallest 3 3 3 3 01 Largest 56.95	Percentiles 3.01 3.07 3.8 4.52 7.11 9.73	1% 5% 10% 25% 50%
129.8761 2.848808 13.12915	Variance Skewness Kurtosis	58.2 76.88 82.79	24.45 34.62 56.95	90% 95% 99%
		fondeo_gob	Dorgontiles	
328 328	Obs Sum of wgt.	Smallest 3.02 3.02 3.02 3.04	Percentiles 3.04 3.1 3.82 4.5	1% 5% 10% 25%
10.52662 10.43782	Mean Std. dev.	Largest	7.04	50%
108.9481 2.738547 12.09307	Variance Skewness Kurtosis	55.09 56.62 64.83 75.09	9.315 22.99 32.98 55.09	75% 90% 95% 99%
		cetes_28		
328 328	Obs Sum of wgt.	Smallest 2.67 2.77 2.81 2.81	Percentiles 2.81 3.04 3.78 4.385	1% 5% 10% 25%
10.60424 10.71947	Mean Std. dev.	Largest	7.055	50%
114.907 2.726648 11.94108	Variance Skewness Kurtosis	53.16 59.17 69.54 74.75	9.515 22.64 34.86 53.16	75% 90% 95% 99%
		cetes_1		
319 319	Obs Sum of wgt.	Smallest 3.01 3.03 3.09 3.1	Percentiles 3.1 3.54 4 4.79	1% 5% 10% 25%
10.41163 8.705237	Mean Std. dev.	Largest	7.5	50%
75.78116 1.972717 6.473864	Variance Skewness Kurtosis	40.91 43.11 43.77 48.02	9.71 23.55 31.27 40.91	75% 90% 95% 99%
		bondes_2		
78 78	Obs Sum of wgt.	Smallest 0 0 0 0	Percentiles 0 0 0 0 0	18 58 108 258

50%	.83	Largest	Mean Std. dev.	.8188462 .9476971
75% 90% 95% 99%	1.37 1.94 2.25 4.3	2.25 2.88 4.15 4.3	Variance Skewness Kurtosis	.8981298 1.321377 5.295473
		bondes_3		
1% 5% 10% 25%	Percentiles .38 .42 .5 .55	Smallest .38 .42 .42 .43	Obs Sum of wgt.	51 51
50%	.79	Largest	Mean Std. dev.	.8596078 .3695617
75% 90% 95% 99%	1.16 1.34 1.58 1.92	1.39 1.58 1.74 1.92	Variance Skewness Kurtosis	.1365758 .8913613 3.082886
		bondes_5		
1% 5% 10% 25%	Percentiles .14 .15 .16 .22	Smallest .14 .14 .15 .15	Obs Sum of wgt.	69 69
50%	. 4	Largest	Mean Std. dev.	.4513043 .2779278
75% 90% 95% 99%	.52 .93 1.02 1.16	1.02 1.06 1.08 1.16	Variance Skewness Kurtosis	.0772439 .9670193 2.985836
		udibon_3		
1% 5% 10% 25%	Percentiles .47 .68 .83 1.33	Smallest .4 .41 .47 .5	Obs Sum of wgt.	201 201
50%	2.34	Largest	Mean Std. dev.	2.869353 1.956799
75% 90% 95% 99%	3.55 6.16 7.08 8.35	7.85 8.35 8.42 8.61	Variance Skewness Kurtosis	3.829063 1.115419 3.594227
		udibon_5		
1% 5% 10% 25%	Percentiles 5.73 5.76 6.01 6.25	Smallest 5.73 5.76 5.95 6.01	Obs Sum of wgt.	37 37
50%	6.98	Largest	Mean Std. dev.	7.056216 .8476712
75% 90% 95% 99%	7.83 8.26 8.36 8.51	8.26 8.35 8.36 8.51	Variance Skewness Kurtosis	.7185464 .135732 1.726219

udibon_10

1% 5% 10% 25%	Percentiles 1.36 1.93 2.2 2.75	Smallest 1.1 1.25 1.36 1.41	Obs Sum of wgt.	248 248
50%	3.505	Largest	Mean Std. dev.	3.709073 1.343562
75% 90% 95% 99%	4.26 5.78 6.56 7.52	7.47 7.52 7.64 7.68	Variance Skewness Kurtosis	1.80516 .8354022 3.505906
		bontf_3		
1% 5% 10% 25%	Percentiles 4.12 4.48 4.69 5.11	Smallest 4 4.04 4.12 4.19	Obs Sum of wgt.	266 266
50%	7.045	Largest	Mean Std. dev.	7.337519 2.728318
75% 90% 95% 99%	8.35 9.83 14.94 16.1	15.95 16.1 16.9 17.7	Variance Skewness Kurtosis	7.443721 1.62697 5.868929
		bontf_5		
1% 5% 10% 25%	Percentiles 4.53 4.79 5.04 5.62	Smallest 4.14 4.15 4.53 4.57	Obs Sum of wgt.	248 248
50%	7.435	Largest	Mean Std. dev.	7.549758 2.358954
75% 90% 95% 99%	8.38 9.86 12.62 15.57	15.44 15.57 16.2 17.4	Variance Skewness Kurtosis	5.564662 1.473147 5.977066
		bontf_10		
1% 5% 10% 25%	Percentiles 5 5.61 5.9 6.33	Smallest 4.64 5 5.03 5.12	Obs Sum of wgt.	193 193
50%	7.66	Largest	Mean Std. dev.	7.734404 1.505476
75% 90% 95% 99%	8.6 10.02 10.27 11.09	10.9 10.96 11.09 11.17	Variance Skewness Kurtosis	2.266458 .2486163 2.231426

summary.tex
dir : seeout

```
47.
48.
49. /*
  > (c) Calcule una regresión de los cambios en cada una de las tasas, excepto la del Ba
  > nco de México en función de los cambios en la tasa de interés del banco de México. P
  > roduzca una tabla comparando los resultados de las distintas regresiones.
  > Para calcular los cambios en las tasas, se realizan los cálculos a partir de la fórm
  > ula clásica de las tasas de crecimiento
  > \Delta Xt = Xt - Xt-1 / Xt-1
  > puesto que todas las variables están ya como porcentajes.
 > Y las regresiones se ven de la siguiente manera:
            \Delta%Activo = b0 + b1\Delta%TIEE + ui
  > Donde \Delta%Activo es el cambio en la tasa de interés nominal
  > y Δ%TIEE es el cambio en la tasa interbancaria del banco de México
50.
51. * Generamos los lags de cada variable
52. gen lagTiie = tiie 28[n-1]
 (3 missing values generated)
53. replace lagTiie = 0 if lagTiie==.
  (3 real changes made)
55. gen lagcetes 28 = cetes 28[n-1]
  (1 missing value generated)
56. replace lagcetes 28 = 0 if lagcetes 28 == .
  (1 real change made)
58. gen lagcetes 1 = cetes 1[n - 1]
  (10 missing values generated)
59. replace lagcetes_1 = 0 if lagcetes_1 == .
  (10 real changes made)
61. gen lagud_3 = udibon_3[_n - 1]
  (127 missing values generated)
62. replace lagud_3 = 0 if lagud_3 == .
  (127 real changes made)
64. gen lagud_5 = udibon_5[_n - 1]
(291 missing values generated)
65. replace lagud_5 = 0 if lagud_5 == \cdot
  (291 real changes made)
67. gen lagud 10 = udibon 10[ n - 1]
  (81 missing values generated)
```

```
68. replace lagud 10 = 0 if lagud 10 == \cdot
  (81 real changes made)
70. gen lagbontf 3 = bontf 3[n - 1]
  (63 missing values generated)
71. replace lagbontf 3 = 0 if lagbontf 3 == .
  (63 real changes made)
73. gen lagbontf 5 = bontf 5[n - 1]
  (80 missing values generated)
74. replace lagbontf 5 = 0 if lagbontf 5 == .
  (80 real changes made)
76. gen lagbontf 10 = bontf 10[n - 1]
  (136 missing values generated)
77. replace lagbontf 10 = 0 if lagbontf 10 == .
 (136 real changes made)
78.
80. * Ahora, calculamos las tasas de crecimiento.
81.
82. gen ttiie 28 = (tiie 28/lagTiie) - 1
 (3 missing values generated)
83. replace ttiie_28 = 0 if ttiie_28 == .
  (3 real changes made)
85. gen tcetes 28 = (cetes 28/lagcetes 28) - 1
 (1 missing value generated)
86. replace tcetes 28 = 0 if tcetes 28 == .
  (1 real change made)
88. gen tcetes 1 = (cetes 1/lagcetes 1) - 1
 (13 missing values generated)
89. replace tcetes_1 = 0 if tcetes_1 == .
  (13 real changes made)
91. gen tudibon 3 = (udibon 3/lagud 3) - 1
 (130 missing values generated)
92. replace tudibon 3 = 0 if udibon 3 == .
  (127 real changes made)
94. gen tudibon 5 = (udibon 5/lagud 5) - 1
 (295 missing values generated)
95. replace tudibon 5 = 0 if tudibon 5 == .
  (295 real changes made)
```

```
96.
97. gen tudibon 10 = (udibon 10/lagud 10) - 1
  (100 missing values generated)
98. replace tudibon 10 = 0 if tudibon 10 == .
  (100 real changes made)
100 gen thought 3 = (bontf 3/lagbontf 3) - 1
  (65 missing values generated)
101 replace tbontf 3 = 0 if tbontf_3 == .
  (65 real changes made)
103 gen tbontf 5 = (bontf 5/lagbontf 5) - 1
  (87 missing values generated)
104 replace thoutf 5 = 0 if thoutf 5 == .
  (87 real changes made)
106 gen tbontf 10 = (bontf 10/lagbontf 10) - 1
  (187 missing values generated)
107 replace tbontf 10 = 0 if tbontf 10 == \cdot
  (187 real changes made)
108
109
110 /*
  > Ahora, realizamos las estimaciones de las regresiones lineales. En todos los casos l
  > a variable explicativa es la Tasa Interbancaria a 28 días. Son dos modelos para el c
  > aso de tasas en Cetes, y el resto son para udibonos y fondos a largo plazo.
 > */
111
112
113 * Modelos Cetes:
114
115 reg tcetes_28 ttiie_28, robust
                                                   Number of obs
                                                                               328
  Linear regression
                                                   F(1, 326)
                                                                            596.64
                                                   Prob > F
                                                                      =
                                                                            0.0000
                                                   R-squared
                                                                      =
                                                                            0.7734
                                                   Root MSE
                                                                            .04527
                               Robust
                 Coefficient std. err.
                                                             [95% conf. interval]
     tcetes 28
                                              t
                                                   P>|t|
      ttiie 28
                                                             .9978846
                   1.085294
                               .0444316
                                           24.43
                                                   0.000
                                                                          1.172702
         _cons
                   .0042008
                               .0025387
                                            1.65
                                                   0.099
                                                             -.0007935
                                                                          .0091951
```

116 outreg2 using models, tex replace ctitle(Cetes 28) label
 models.tex
 dir : seeout

118 reg tcetes_1 ttiie_28, robust

Linear regression	Number of obs	=	328
-	F(1, 326)	=	17.05
	Prob > F	=	0.0000
	R-squared	=	0.2629
	Root MSE	=	.05119

tcetes_1	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ttiie_28	.3966557	.0960531	4.13	0.000	.2076935	.5856179
_cons	0001907	.0029983	-0.06	0.949	0060891	.0057077

119 outreg2 using models, tex append ctitle(Cetes 1 año) label models.tex

<u>dir</u>: <u>seeout</u>

120

121 * Modelos Udibonos:

122

123 reg tudibon_3 ttiie_28, robust

325	=	Number of obs	regression	Linear
5.44	=	F(1, 323)		
0.0203	=	Prob > F		

R-squared 0.0055 Root MSE .14997

tudibon_3	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ttiie_28	.1453876	.0623377	2.33	0.020	.0227485	.2680268
_cons	.010886	.0083205	1.31	0.192	0054833	.0272553

124 outreg2 using models, tex append ctitle(Udibon 3) label models.tex
dir : seeout

126 reg tudibon_5 ttiie_28, robust

Linear regression	Number of obs	=	328
-	F(1, 326)	=	7.40

Prob > F 0.0069 R-squared = 0.0361 Root MSE .01642

tudibon_5	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ttiie_28	.0412656	.0151668	2.72	0.007	.0114284	.0711028
cons	.0002423	.0009148	0.26	0.791	0015574	.002042

127 outreg2 using models, tex append ctitle(Udibon 5) label $\underline{\text{models.tex}}$

<u>dir</u> : <u>seeout</u>

128

129 reg tudibon 10 ttiie 28, robust

Linear regression

Number of obs = 328 F(1, 326) = 4.46 Prob > F = 0.0354 R-squared = 0.0058 Root MSE = .07395

tudibon_10	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ttiie_28	.073462	.0347759	2.11	0.035	.0050485	.1418754
_cons	.0016027	.0040852	0.39	0.695	006434	

130 outreg2 using models, tex append ctitle(Udibon 10) label $\underline{\text{models.tex}}$

<u>dir</u> : <u>seeout</u>

131

132 * Modelos Fondos de Largo Plazo:

133

134 reg tbontf_3 ttiie_28, robust

Linear regression

Number of obs = 328 F(1, 326) = 11.77 Prob > F = 0.0007 R-squared = 0.0699 Root MSE = .04928

tbontf_3	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ttiie_28	.1753587	.0511152	3.43	0.001	.0748015	.2759159
_cons	0001296	.002758	-0.05	0.963	0055553	.0052962

135 outreg2 using models, tex append ctitle(Bonotf 3) label $\underline{\text{models.tex}}$

<u>dir</u>: <u>seeout</u>

136

137 reg tbontf_5 ttiie_28, robust

Linear regression

Number of obs = 328 F(1, 326) = 10.48 Prob > F = 0.0013 R-squared = 0.0449 Root MSE = .0472

tbontf_5	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ttiie_28	.1327735	.0410106	3.24	0.001	.0520947	.2134523
_cons	.0006793	.0026217	0.26	0.796	0044783	.0058369

138 outreg2 using models, tex append ctitle (Bonotf 5) label models.tex

<u>dir</u> : <u>seeout</u>

140 reg tbontf_10 ttiie_28, robust

Linear regression 328

Number of obs = F(1, 326) = Prob > F = 3.57 = Prob > F 0.0598 0.0073 R-squared Root MSE .04272

tbontf_10	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ttiie_28	.0475306	.0251666	1.89	0.060	0019788	.09704
_cons	0011482	.0023653	-0.49	0.628	0058014	

141 outreg2 using models, tex append ctitle(Bonotf 10) label models.tex

<u>dir</u>: <u>seeout</u>

142

143

144 145

146 log close

name: <unnamed>

log: C:\Users\DELL\Documents\tarea5\PS5_ej3.smc1

log type: smcl

closed on: 23 May 2022, 14:19:50