Harmonic Measure TD6

2025年04月20日 aytony

Exercise 1: Let μ be a σ -finite measure on a set X, and let $f \in \mathscr{L}^+_{\mu}$. Consider the sets

$$G_f = \{(x,y) \in X \times [0,\infty] \mid y \leqslant f(x)\} \quad \text{and} \quad G_f' = \{(x,y) \in X \times [0,\infty] \mid y < f(x)\}.$$

Show that the sets G_f and G_f' are measurable with respect to the product measure $\mu \otimes \mathscr{L}^1$, where \mathscr{L}^1 is the Lebesgue measure. Deduce that

$$\mu \otimes \mathscr{L}^1(G_f) = \mu \otimes \mathscr{L}^1(G'_f) = \int_X f(x)\mu(\mathrm{d}x),$$

and give a geometric interpretation of this result. Give alternative expressions for $\mu \otimes \mathcal{L}^1(G_f)$ and $\mu \otimes \mathcal{L}^1(G_f')$.

Proof: Define $F(x,y): X \times [0,\infty] \to \mathbb{R}$, $(x,y) \mapsto f(x) - y$. Since $f \in \mathscr{L}^+_{\mu}$, $\{F(x,y) > t\}$ is $\mu \otimes \mathscr{L}^1(G_f)$ measurable, hence G_f, G_f' are measurable. For second problem, we observe that

$$\int_X f(x)\mu(\mathrm{d} x) = \int_X \int_{[0,\infty]} \mathscr{L}(f>y)\,\mathrm{d}\mathscr{L}^1\,\mathrm{d}\mu = \mu\otimes \mathscr{L}^1\big(G_f\big).$$

Exercise 2: Recall that the Lebesgue measure on \mathbb{R}^N is the measure defined for any set $A \subseteq \mathbb{R}^N$ by the formula

$$\mathscr{Z}^N(A) = \inf \Biggl\{ \sum_{i=1}^{\infty} \left(2r_i \right)^N, A \subseteq \bigcup_{i=1}^{\infty} Q(x_i, r_i) \Biggr\},$$

where the infimum is over all coverings of A by open cubes $Q(x,r)=\{y\in\mathbb{R}^N\mid\max_{1\leqslant i\leqslant N}|x_i-y_i|< r\}$. Show that the Lebesgue measure \mathscr{L}^N is translation invariant, i.e., for any $x\in\mathbb{R}^N$ and any set $A\subseteq\mathbb{R}^N$, we have $\mathscr{L}^N(x+A)=\mathscr{L}^N(A)$, where $x+A=\{x+y\mid y\in A\}$.

Proof: For $A \subset \mathbb{R}^N$, set $\{Q(x_i, r_i)\}$ such that $A \subset \bigcup_i Q(x_i, r_i)$, then it is easy to inform that $A + x \subset \bigcup_i (Q(x_i, r_i) + x)$, so $\mathscr{L}^N(A) \geqslant \mathscr{L}^N(A + x)$, and the other side of inequality can be proved similarly.

Exercise 3: Let $A \subseteq \mathbb{R}^N$ and let $f: A \to \mathbb{R}^N$ be a mapping such that for some constants $c, \alpha > 0$, and for all $x, y \in A$,

$$|f(x) - f(y)| \leqslant c|x - y|^{\alpha}.$$

Show that for all $s \ge 0$, we have $\mathcal{H}^{s/\alpha}(f(A)) \le c^{s/\alpha}\mathcal{H}^s(A)$, where \mathcal{H}^s is the s-dimensional Hausdorff measure. In particular, if f is Lipschitz continuous (i.e., $\alpha = 1$), then $\mathcal{H}^s(f(A)) \le 0$

 $c^s\mathscr{H}^s(A)$. What can you deduce about Hausdorff dimensions? Finally, consider the special case of a similarity transformation of scale factor $\lambda>0$, i.e., an invertible mapping $f:\mathbb{R}^N\to\mathbb{R}^N$ such that $|f(x)-f(y)|=\lambda|x-y|$.

 $\begin{array}{l} \textbf{Proof: } \textit{Set } \delta \in (0, \infty], \textit{prove } \mathscr{H}^{s/\alpha}_{\delta}(f(A)) \leqslant c^{s/\alpha} \mathscr{H}^{s}_{\delta}(A) \textit{ then let } \delta \rightarrow 0. \; \forall \varepsilon > 0, \textit{set } \{A_i\} \textit{ s.t. } \\ |A_i| \leqslant \delta, A \subset \bigcup A_i \textit{ and } \sum_i |A_i|^s \leqslant \mathscr{H}^{s}_{\delta}(A) + \varepsilon. \; \textit{Then } f(A) \subset \bigcup f(A_i), \textit{ and } \end{array}$

$$\sum_i |f(A_i)|^{s/\alpha} \leqslant c^{s/\alpha} \sum_i |A_i|^s \leqslant c^{s/\alpha} \mathcal{H}^s_\delta(A) + \varepsilon,$$

and the result follows according to the arbitrariness of ε .

Exercise 4: Let C be the middle-third Cantor set $\bigcap_n C_n$, where $C_0 = [0,1]$ and C_{n+1} is obtained from C_n as follows: split each interval of C_n into three equal parts and remove the open middle third.

- 1. Show that C is compact, uncountable, and of Lebesgue measure zero.
- 2. Show that C has Hausdorff dimension $\log 2/\log 3$.

Proof:

1. Since C_n is closed for $n\geqslant 1$, then $C=\bigcap_n C_n$ is closed, hence compact. For any $x\in C$, set a_n be the part of C_n x is in (left for 0 and right for 1), then $0.a_1a_2a_3\cdots$ constructs a biject between x and [0,1]. Since $\mathscr{L}(C_n)=(2/3)^n$ we can know $\mathscr{L}(C)=0$.

2.

Exercise 5: Consider C and C_n as above. Define piecewise linear functions $f_n:[0,1]\to\mathbb{R}$ and linear functionals I_n on $C_c((0,1))$ by

$$f_n(x) = \int_0^x (3/2)^n \mathbf{1}_{C_n}(t) dt \quad \text{and} \quad I_n(\phi) = \int_0^1 (3/2)^n \mathbf{1}_{C_n}(t) \phi(t) dt.$$

- 1. Show that $(f_n)_{n\geqslant 0}$ is a Cauchy sequence in C([0,1]) with the uniform norm. Deduce that this sequence converges to a continuous and monotone function ψ . The function ψ is called the Cantor-Vitali function.
- 2. Show that the sequence $\left(I_n(\phi)\right)_{n\geqslant 0}$ converges to $-\int_0^1 \psi(t)\phi'(t)dt$ for any C^1 -function ϕ with support contained in (0,1).
- 3. Deduce that the mapping $\phi\mapsto -\int_0^1 \psi(t)\phi'(t)dt$ extends as a linear functional on $C_c((0,1))$, representable by $\phi\mapsto \int_{[0,1]}\phi d\mu$ for some Radon measure μ on [0,1].
- 4. Show that μ is the weak limit of the measures $\mu_n=(3/2)^n\mathscr{L}^1\mid_{C_n}$.
- 5. Show that supp $\mu \subseteq C$. Deduce that μ is singular with respect to the Lebesgue measure.
- 6. Show that the sequence $(f_n)_{n\in\mathbb{N}}$ is equicontinuous. Deduce that μ has no atoms.