正则化原因和L_1, L_2正则化异同

正则化原因

减小参数的值,防止参数波动太大(拟合一些异常的点),造成过拟合现象。

L_1, L_2正则化的异同

• 相同: 都可以减小参数值, 防止过拟合

• *差异*: L_1公式为

||x||1=|x1|+|x2|+...+|xn|

L 1范数优化趋向于产生少量特征,即减少非零元个数

L_2公式为

||x||2=x1^2+x2^2+...+xn^2

L_2范数优化趋向于减小每个参数的值,获得小值参数。

例子

优化目标函数

Lasso: $\min_{w} \frac{1}{n} || y - X w ||^2$, $s.t. || w ||_1 \le C$

Ridge: $\min_{w} \frac{1}{n} \| y - X_{w} \|_{2}^{2} \quad s.t. \| w \|_{2} \le C$

最优值获得在第一次交点处

(a) ℓ_1 -ball meets quadratic function. ℓ_1 -ball has corners. It's very likely that the meet-point is at one of the corners.

(b) ℓ_2 -ball meets quadratic function. ℓ_2 -ball has no corner. It is very unlikely that the meet-point is on any of axes."

分析:可以看出L_1范数极大可能在尖点,也就是在与坐标轴交点处取得最优值,这种地方往往某些维度的特征取值为0,而L_2范数则倾向靠近各个分量特征都比较小的取值