Starling-May18 Projects/Katarina Stuart/KStuart.Starling-Aug18/Sv3_Genome/Annotation/2020-04-06.LTR

PDF Version generated by

Katarina Stuart (z5188231@ad.unsw.edu.au)

or

Jun 23, 2022 @04:12 PM NZST

Table of Contents

2020-04-06.LTR 2

Katarina Stuart (z5188231@ad.unsw.edu.au) - Mar 23, 2022, 8:39 PM NZDT

LTR (long terminal repeat) retrotransposons

https://github.com/xvazquezc/genome_annotation_with_Maker2/blob/master/advanced_repeat_library/Advanced_repeat_lib.md

Set up

module add perl/5.28.0

module add repeatmasker/4.0.7

module add genometools/1.5.9

module add muscle/3.8.31

module add blast+/2.6.0

module add repeatmodeler/1.0.11

module add hmmer/3.2.1

DIR_CRL=/srv/scratch/z5188231/KStuart.Starling-

Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/adv_repeats/programs/CRL_Scripts1.0

DIR PE=/srv/scratch/z5188231/KStuart.Starling-

Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/adv_repeats/programs/ProtExcluder-master

BASE PATH=/srv/scratch/z5188231/KStuart.Starling-Aug18/Sv3 Genome/Sv3.4 GenomeAnnotation/data 2020/

AR_PATH=\${BASE_PATH}/adv_repeats

GENOME=/srv/scratch/z5188231/KStuart.Starling-

Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta

INPUT=/srv/scratch/z5188231/KStuart.Starling-

Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta

PREFIX=Starling

CPU=4

 $EUK_tRNA=/srv/scratch/z5188231/KStuart.Starling-Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/adv_repeats_lib/eukaryotictRNAs.fa$

TpasesDNA=/srv/scratch/z5188231/KStuart.Starling-

Aug18/Sv3 Genome/Sv3.4 GenomeAnnotation/data 2020/adv repeats lib/Tpases020812DNA

TpasesPROT=/srv/scratch/z5188231/KStuart.Starling-

Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/adv_repeats_lib/Tpases020812

SPROT=/srv/scratch/z5188231/KStuart.Starling-

Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/adv_repeats_lib/uniprot_sprot_clean.fasta

 $make blast db \hbox{ -in $\{SPROT\}$ -db type prot}\\$

makeblastdb -in \${EUK tRNA} -dbtype nucl

 $make blast db \hbox{ -in $\{TpasesDNA\}$ -db type prot}\\$

makeblastdb -in \${TpasesPROT} -dbtype prot

Renaming the genome fasta so contigs have simple names:

perl ~/simplifyFastaHeaders.pl \${GENOME} \${PREFIX} \${GENOME%.fasta}.simp.fasta \${GENOME%.fasta}.map INPUT=\${GENOME%.fasta}.simp.fasta

Symbolic linking to MITE library produced in 2020-04-06.Mites:

In -s /srv/scratch/z5188231/KStuart.Starling-Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/programs/MITE-Tracker/results/Sturnus_vulgaris_2.3.1.simp MITE_Tracker In -s MITE_Tracker/all.fasta MITE.lib

PART 1: LTRs (85%)

Find candidate elements

```
cd ${AR_PATH}
mkdir -p LTR
cd LTR

gt suffixerator -db ${INPUT} -indexname ${PREFIX} -tis -suf -lcp -des -ssp -dna
gt ltrharvest -index ${PREFIX} -out ${PREFIX}.out85 -outinner ${PREFIX}.outinner85 -gff3 ${PREFIX}.gff85 -minlenltr 100 -maxlenltr 6000 -
mindistltr 1500 -maxdistltr 25000 -mintsd 5 -maxtsd 5 -vic 10 > ${PREFIX}.result85
```

Find elements with PPT (poly purine tract) or PBS (primer binding site)

```
gt gff3 -sort ${PREFIX}.gff85 > ${PREFIX}.gff85.sort
gt ltrdigest -trnas ${EUK_tRNA} ${PREFIX}.gff85.sort ${PREFIX} > ${PREFIX}.gff85.dgt
perl ${DIR_CRL}/CRL_Step1.pl --gff ${PREFIX}.gff85.dgt
```

Additional filtering of the candidate elements

```
perl ${DIR_CRL}/CRL_Step2.pl --step1 CRL_Step1_Passed_Elements.txt --repeatfile ${PREFIX}.out85 --resultfile ${PREFIX}.result85 --sequencefile ${INPUT} --removed_repeats CRL_Step2_Passed_Elements.fasta mkdir fasta_files
mkdir fasta_files
mv Repeat_*.fasta fasta_files/
mv CRL_Step2_Passed_Elements.fasta fasta_files/
cd fasta_files/
perl ${DIR_CRL}/CRL_Step3.pl --directory ./ --step2 CRL_Step2_Passed_Elements.fasta --pidentity 60 --seq_c 25
mv CRL_Step3_Passed_Elements.fasta ../
cd ..
```

Identify elements with nested insertions

perl \${DIR_CRL}/ltr_library.pl --resultfile \${PREFIX}.result85 --step3 CRL_Step3_Passed_Elements.fasta --sequencefile \${INPUT} cat ILTR_Only.lib \${AR_PATH}/MITE/MITE.lib > repeats_to_mask_LTR85.fasta

Search the repeats (so far) with RepeatMasker in Katana:

```
#!/bin/bash

#PBS -N 2020-04-11.RepeatMasker.pbs

#PBS -I nodes=1:ppn=16

#PBS -I walltime=12:00:00

#PBS -j oe

#PBS -M katarina.stuart@student.unsw.edu.au

#PBS -m ae

module purge

module load perl/5.28.0

module load repeatmasker/4.0.7

PREFIX=Starling

BASE_PATH=/srv/scratch/z5188231/KStuart.Starling-Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/
```

AR_PATH=\${BASE_PATH}/adv_repeats library=\${AR_PATH}/LTR/repeats_to_mask_LTR85.fasta DIR_RM1=/srv/scratch/z5188231/KStuart.Starling-

 $Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/adv_repeats/programs/repeatmasker/4.0.7/2016/scales/accord/acc$

cd \${AR PATH}/LTR

\${DIR_RM1}/RepeatMasker -pa 16 -lib \${library} -nolow -dir . \${AR_PATH}/LTR/\${PREFIX}.outinner85

Only ran for 2 mins then finished

perl \${DIR CRL}/cleanRM.pl \${PREFIX}.outinner85.out \${PREFIX}.outinner85.masked > \${PREFIX}.outinner85.unmasked

 $blastx - query \$\{PREFIX\}. out inner 85. clean - db \$\{TpasesDNA\} - evalue 1e-10 - num_threads \$\{CPU\} - num_descriptions 10 - out \$\{PREFIX\}. out inner 85. clean_blastx. out.txt$

perl \${DIR CRL}/outinner blastx parse.pl --blastx \${PREFIX}.outinner85.clean blastx.out.txt --outinner \${PREFIX}.outinner85

Building examplars

perl \${DIR_CRL}/CRL_Step4.pl --step3 CRL_Step3_Passed_Elements.fasta --resultfile \${PREFIX}.result85 --innerfile passed_outinner_sequence.fasta --sequencefile \${INPUT}

makeblastdb -in ILTRs_Seq_For_BLAST.fasta -dbtype nucl

blastn -query ILTRs_Seq_For_BLAST.fasta -db ILTRs_Seq_For_BLAST.fasta -evalue 1e-10 -num_descriptions 1000 -out ILTRs_Seq_For_BLAST.fasta.out -num_threads \${CPU}

makeblastdb -in Inner Seq For BLAST.fasta -dbtype nucl

 $blastn - query \ Inner_Seq_For_BLAST. fasta - evalue \ 1e-10 - num_descriptions \ 1000 - out \ Inner_Seq_For_BLAST. fasta. out - num_threads \ CPU \}$

perl \${DIR_CRL}/CRL_Step5.pl --LTR_blast ILTRs_Seq_For_BLAST.fasta.out --inner_blast Inner_Seq_For_BLAST.fasta.out --step3 CRL_Step3_Passed_Elements.fasta --final LTR85.lib --pcoverage 90 --pidentity 80

Repetitive elements with RepeatModeler

Merge MITE and LTR libraries:

cd \${AR_PATH}
mkdir ADV_REP
cd ADV_REP
cat ../LTR/LTR85.lib ../MITE/MITE.lib > allMITE_LTR.lib

Mask the genome:

DIR_RM1=/srv/scratch/z5188231/KStuart.Starling-

Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/adv_repeats/programs/repeatmasker/4.0.7/

BASE_PATH=/srv/scratch/z5188231/KStuart.Starling-Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/

AR PATH=\${BASE PATH}/adv repeats

PREFIX=Starling

library=\${AR_PATH}/ADV_REP/allMITE_LTR.lib

INPUT=/srv/scratch/z5188231/KStuart.Starling-

 $Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta_$

cd \${AR_PATH}/LTR

\${DIR RM1}/RepeatMasker -pa 16 -lib \${library} -dir . \${INPUT}

This removes the masked elements (no need to predict them again) --up to here

cd \${AR_PATH}/LTR
perl \${DIR_CRL}/rmaskedpart.pl \${INPUT##*/}.masked 50 > um_\${INPUT##*/}

Now run RepeatModeler on Katana: the below took about 16 hrs.

#!/bin/bash

#PBS -N 2020-05-14.RepeatModeler.pbs

#PBS -I nodes=1:ppn=16

#PBS -I mem=124gb

#PBS -I walltime=24:00:00

#PBS -j oe

#PBS -M katarina.stuart@student.unsw.edu.au

#PBS -m ae

module purge

module load perl/5.28.0

module load recon/1.08

module load repeatscout/1.0.5

module load trf/4.09

module load rmblast/2.6.0

module load repeatmasker/4.0.7

module load repeatmodeler/1.0.11

PREFIX=Starling

BASE_PATH=/srv/scratch/z5188231/KStuart.Starling-Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/AR_PATH=\${BASE_PATH}/adv_repeats

GENOME=/srv/scratch/z5188231/KStuart.Starling-

Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/genome_assembly/Sturnus_vulgaris_2.3.1.fasta

INPUT=/srv/scratch/z5188231/KStuart.Starling-

Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/genome_assembly/Sturnus_vulgaris_2.3.1.simp.fasta

cd \${AR_PATH}/LTR

 $BuildDatabase \ -name \ um_\$\{INPUT\#\#*/\} db \ -engine \ ncbi \ um_\$\{I$

nohup RepeatModeler -pa 16 -database um_\${INPUT##*/}db >& um_\${PREFIX}.out

RepeatModeler is able to identify some repeats but not other. Let's separate them and keep processing the unknowns:

cd /srv/scratch/z5188231/KStuart.Starling-

Aug18/Sv3_Genome/Sv3.4_GenomeAnnotation/data_2020/adv_repeats/LTR/RM_32721.TueMay191046472020 perl \${DIR_CRL}/repeatmodeler_parse.pl --fastafile consensi.fa.classified --unknowns repeatmodeler_unknowns.fasta --identities repeatmodeler_identities.fasta

repeatmodeler unknowns.fasta are searched against the transposase database and the matching sequences are classified as such:

blastx -query repeatmodeler_unknowns.fasta -db \${TpasesPROT} -evalue 1e-10 -num_descriptions 10 -out modelerunknown_blast_results.txt -num_threads 16

perl \${DIR_CRL}/transposon_blast_parse.pl --blastx modelerunknown_blast_results.txt --modelerunknown repeatmodeler_unknowns.fasta

The completely unknown elements are renamed and all the identified ones (from RepeatModeler and Blast) merged:

mv unknown_elements.txt ModelerUnknown.lib cat identified_elements.txt repeatmodeler_identities.fasta > ModelerID.lib

cd \${AR_PATH}/LTR
mkdir final_libs
cp RM_32721.TueMay191046472020/ModelerID.lib final_libs/
cp \${AR_PATH}/MITE/MITE.lib final_libs/
cp LTR85.lib final_libs/
cp RM_32721.TueMay191046472020/ModelerUnknown.lib final_libs/
cd final_libs
sed 's/(//g' LTR85.lib | sed 's/)//g' > allLTR_rename.lib

Excluding gene fragments

module load hmmer/3.3

for lib in ModelerID.lib allLTR_rename.lib MITE.lib ModelerUnknown.lib; do

blastx -query \${lib} -db \${SPROT} -evalue 1e-10 -num_descriptions 10 -num_threads \${CPU} -out \${lib}_blast_results.txt

perI ProtExcluder.pl \${lib}_blast_results.txt \${lib}

echo -e "\${lib}\tbefore\t\$(grep -c ">" \${lib})\tafter\t\$(grep -c ">" \${lib}noProtFinal)"

done

The final (wanted) output will be the \${lib}noProtFinal files.

All filtered known repeats are merged:

cat MITE.libnoProtFinal allLTR rename.libnoProtFinal ModelerID.libnoProtFinal > KnownRepeats.lib

And finally, we create the final repeat library:

cat KnownRepeats.lib ModelerUnknown.libnoProtFinal > allRepeats.lib