Examenul de bacalaureat național 2016 Proba E. c)

Matematică *M_tehnologic*

Clasa a XI-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

		1
1.	Rația progresiei este egală cu 4	2p
	$b_1 + b_2 + b_3 = 2 + 8 + 32 = 42$	3 p
2.	$f(5) = 6$, $f(a-5) = a^2 - 14a + 46$	2p
	$a^2 - 14a + 40 = 0 \Leftrightarrow a = 4 \text{ sau } a = 10$	3 p
3.	$2^{x+1} = 2^{2x-4} \iff x+1 = 2x-4$	3p
	x=5	2p
4.	Cifra sutelor se poate alege în 3 moduri, cifra zecilor se poate alege în câte 4 moduri	3 p
	Cifra unităților se poate alege, pentru fiecare mod de alegere a celorlalte două cifre, în câte 4 moduri, deci se pot forma $3 \cdot 4 \cdot 4 = 48$ de numere	2p
5.	Punctul M este mijlocul segmentului AB	2p
	M(2,1)	3 p
6.	Înălțimea din A a triunghiului ABC este de $\frac{1}{2} \cdot 8 = 4$	2p
	Aria triunghiului <i>ABC</i> este egală cu $\frac{4.12}{2} = 24$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$d(0) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 3 & 2 \end{vmatrix} = 0 + 6 + 3 - 0 - 3 - 4 =$	3р
	= 2	2p
b)	$d(x) = 0 + 6 + 3(x+1) - 0 - 2(x^2 + 2) - 3(x+1) = -2x^2 + 2 =$	3 p
	$=-2(x^2-1)=-2(x-1)(x+1)$, pentru orice număr real x	2p
c)	$-2(x-1)(x+1) = -2(y-1)(y+1) \Leftrightarrow x^2 - y^2 = 0$	2p
	Cum $x \neq y$, din $(x-y)(x+y) = 0$, obținem $x + y = 0$	3 p
2.a)	$A + I_2 = \begin{pmatrix} 0+1 & 1+0 \\ -1+0 & 0+1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$	2p
b)	$A \cdot A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I_2 \Rightarrow M = A + I_2 + (-I_2) = A$	2p
	Cum $A \cdot (-A) = (-A) \cdot A = I_2$, obținem că inversa matricei M este matricea $-A$	3p

c)
$$(A+I_2)(B+I_2) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & x \\ x^2 & 1 \end{pmatrix} = \begin{pmatrix} 1+x^2 & x+1 \\ -1+x^2 & -x+1 \end{pmatrix}$$
 $= \begin{pmatrix} 1+x^2 & x+1 \\ -1+x^2 & -x+1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \Leftrightarrow x = -1$ 2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to 1} \frac{\sqrt{x^2 + 3x + 5}}{x + 2} = \frac{\sqrt{1^2 + 3 \cdot 1 + 5}}{1 + 2} =$	3p
	$x \to 1 \qquad x+2 \qquad 1+2$ $=1$	2p
b)		2p
	$\lim_{x \to -2} f(x) = \lim_{\substack{x \to -2 \\ x > -2}} \frac{\sqrt{x^2 + 3x + 5}}{x + 2} =$	3p
	$=+\infty$, deci dreapta de ecuație $x=-2$ este asimptotă verticală la graficul funcției f	2p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\sqrt{x^2 + 3x + 5}}{x + 2} = \lim_{x \to +\infty} \frac{\sqrt{1 + \frac{3}{x} + \frac{5}{x^2}}}{1 + \frac{2}{x}} = 1$	3р
	Dreapta de ecuație $y=1$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
2.a)	f(-1) = -1	2p
	$f(1) = 0 \Rightarrow f(-1) + f(1) = -1$	3p
b)	$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} (2x+1) = 1$	1p
	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} (1 - x^3) = 1$	1p
	Cum $f(0)=1$, obținem $\lim_{x\to 0} f(x) = f(0)$, deci funcția f este continuă în punctul $x=0$	3p
c)	$f(x) = 0 \Leftrightarrow x = -\frac{1}{2} \text{ sau } x = 1$	2p
	Funcția f este continuă pe $\mathbb R$, deci funcția f are semn constant pe fiecare din intervalele	
	$\left(-\infty, -\frac{1}{2}\right), \left(-\frac{1}{2}, 1\right)$ și $\left(1, +\infty\right)$	2 p
	$f(x) \ge 0 \Leftrightarrow x \in \left[-\frac{1}{2}, 1\right]$	1p