CS1200 Module 3: Counting & Algebraic Structures 57
We have been counting a lot for the last few weeks. In particular, we have computed the cardinalities of various finite sets, and we have compared them.
What about infinite sets?
In particular, can we compare their cardinalities?
YES, we can! Recall: Two sets are lequicardinal
So, som between them.
wring this definition, we may compare the caramantes
of various infinite sets.
Here are some infinite sets:
N, Z, Zt, D, R, Zodd, Zeven
we will compare the cardinalities of some of them;
rest are DIY.
set of odd set of even positive integers
positive integers

CS1200 Module-3: Counting & Algebraic Strudnies Let's begin by comparing | Zt & Zteven . Can we find lestablish a bijection blu these sets?

Clearly, we can. Right? f(x)=2x where f: Z+37Z even DIY: Prox that I is a bijection. Thus 17/1=17/2 even). are equicardinal.

In words, Zt & Zteren DIY: Show that 12+1=172odd.

What about Zt & Z?

Can we establish a bijection? Yes, we can ist the elements of

Z in a systematic fashion as follows: (starting from a "first" element)

Now we can define a bijection from Zto Zi In the case of 1 2 3 4 5 ... DIY: Write down

t 1 1 2 -2 ... the bijection fizt > 2.

6, 1, -1, 2, -2, 3, -3,

Sul prise Factor: Zeven &

IN = 17/1.

(58)

Ztodd are proper subsets of Z.

proper subset Sof

a set T is always smaller. Not in case of infinite sets!

CS1200 Module-3: Country & Algebraic Structures

We have thus proved existence of a bijection blw

Zt & Pt. Thus 17t = 1Pt.

DIY: Prove that |Zt|=1P1.

What about the real #5?

From the previous example, one may think that any two infinite sets are equicardinal.

This is NOT true!

We will show/discuss (in the next lecture) why the set of real #5 is a "bigger infinity" than the set of positive integers. using a method called Cantor's Diagonalization Method.

END OF SYLLABUS
FOR END SEM EXAM