YAPAY SİNİR AĞLARI PROJE ÖDEVİ

 MILK QUALITY PREDICTION FATMA SENA YÜKSEL

MILK QUALITY PREDICTION

- Süt, insan beslenmesinde önemli bir role sahiptir ve sütün kalitesi, insanların sağlıklı ve dengeli beslenmesi açısından kritik önem taşır. pH, sıcaklık, tat, koku, yağ oranı, bulanıklık ve renk gibi parametreler süt kalitesini belirlemektedir. Geleneksel yöntemlerle süt kalitesinin değerlendirilmesi zaman alıcı ve maliyetli olabilmektedir.
- Yapay sinir ağları ve derin öğrenme modelleri kullanılarak daha hızlı ve doğru tahminler yapılabilmektedir. Süt kalitesinin bu yöntemlerle etkin bir şekilde değerlendirilmesi, kalite standartlarının sağlanması, gıda güvenliğinin artırılması ve tüketici memnuniyetinin yükseltilmesi gibi çok sayıda avantaj sağlar.

MILK QUALITY PREDICTION PARAMETERS

- Bu veri seti, süt kalitesini tahmin etmek için kullanılan 7 bağımsız değişkenden oluşmaktadır: pH, Sıcaklık, Tat, Koku, Yağ, Bulanıklık ve Renk. Hedef değişken ise sütün kalite sınıfıdır: Düşük (Kötü), Orta (Orta) veya Yüksek (İyi).
- Veri seti, gözlemler yoluyla elle toplanmıştır. Tat, Koku, Yağ ve Bulanıklık değişkenleri ikili olup, 1 optimal koşulları, 0 ise optimal koşulları karşılamadığını göstermektedir. Sıcaklık ve pH değişkenleri ise gerçek değerleriyle verilmiştir.

рН	Tempratu	Taste	Odor	Fat	Turbidity	Colour	Grade
6,6	35	1	0	1	0	254	high
6,6	36	0	1	0	1	253	high
8,5	70	1	1	1	1	246	low
9,5	34	1	1	0	1	255	low
6,6	37	0	0	0	0	255	mediun
6,6	37	1	1	1	1	255	high
5,5	45	1	0	1	1	250	low
4,5	60	0	1	1	1	250	low
8,1	66	1	0	1	1	255	low
6,7	45	1	1	0	0	247	mediun

Bu veri seti toplam 7sütun 1060 satırdan oluşmaktadır

UYGULANAN YÖNTEMLER

- K-Means
- LVQ
- ANFIS
- ANN
- Logistic Regression

K-Means

0.2 holdout

• Silhouette Score: 0.4719170614058787

K-Means

• Precision: 0.9980

• Recall: 0.9980

• Accuracy: 0.9980

• F1-score: 0.9980

LVQ

0.2 holdout

```
class LVOModel:
   def __init__(self, prototypes, prototype_labels):
        self.prototypes = prototypes
        self.prototype labels = prototype labels
    def predict(self, X):
        predictions = []
        for x in X:
            distances = np.sum((self.prototypes - x)**2, axis=1)
            nearest_prototype_idx = np.argmin(distances)
            predictions.append(self.prototype_labels[nearest_prototype_idx])
        return predictions
num_classes = len(np.unique(y_train))
prototypes_per_class = 3
prototypes = []
prototype labels = []
for label in range(num classes):
    class_samples = X_train[y_train == label]
    indices = np.random.choice(len(class_samples), prototypes_per_class, replace=False)
   for index in indices:
        prototypes.append(class_samples[index])
        prototype labels.append(label)
prototypes = np.array(prototypes)
prototype labels = np.array(prototype labels)
num_epochs = 30
learning_rate = 0.01
```

• Accuracy: 0.38

• Precision: 0.42

• Recall: 0.38

• F1-score: 0.34

ANFIS

0.2 holdout

```
# Train the ANFIS model
for i in range(len(X train)):
    grade_sim.input['pH'] = X_train.iloc[i, 0]
    grade sim.input['Temprature'] = X train.iloc[i, 1]
    grade sim.input['Taste'] = X train.iloc[i, 2]
    grade_sim.input['Odor'] = X_train.iloc[i, 3]
    grade_sim.input['Fat '] = X_train.iloc[i, 4]
    grade sim.input['Turbidity'] = X train.iloc[i, 5]
    grade sim.input['Colour'] = X train.iloc[i, 6]
    grade_sim.compute()
    print(f"Iterasyon {i} idin cuktu: {grade sim.output['Grade']}")
# Test the model
predictions = []
for i in range(len(X test)):
    grade_sim.input['pH'] = X_test.iloc[i, 0]
    grade sim.input['Temprature'] = X test.iloc[i, 1]
    grade sim.input['Taste'] = X test.iloc[i, 2]
    grade_sim.input['Odor'] = X_test.iloc[i, 3]
    grade_sim.input['Fat '] = X_test.iloc[i, 4]
    grade_sim.input['Turbidity'] = X_test.iloc[i, 5]
    grade sim.input['Colour'] = X test.iloc[i, 6]
    grade_sim.compute()
    predictions.append(grade sim.output['Grade'])
    print(f"Predicted: {grade sim.output['Grade']}")
```

Accuracy: 0.2713

Precision: 0.4660

Recall: 0.2713

• F1 Score: 0.1437

Confusion Matrix

ANN0.2 holdout

```
• Accuracy: 0.7287
```

Loss: 0.5504

• Precision: 0.7857

• Recall: 0.7287

• F1-Score: 0.7143

LOGISTIC REGRESSION

0.2 holdout

```
# Create a logistic regression model
model = LogisticRegression()

# Train the model
model.fit(X_train, y_train)
```

• Accuracy: 0.84

• Precision: 0.85

• Recall: 0.84

• F1-score: 0.84

SONUÇLAR

	K-MEANS	LVQ	ANFIS	ANN	LOGISTIC REGRESSION
ACCURACY	0.99	0.32	0.27	0.72	0.84
PRECISON	0.99	0.42	0.46	0.78	0.85
RECALL	0.99	0.38	0.27	0.72	0.84
F1 - SCORE	0.99	0.34	0.14	0.71	0.84