# Chap IX. Automates cellulaires

- I. Introduction et exemple du jeu de la vie
- II. Définitions
- III. Quelques exemples simples
- IV. Automates LGA (Lattice Gas Automata)
- V. Autres exemples

## I. Introduction et exemple du jeu de la vie

## Idée initiale (Neumann, 1940):

Trouver un système/algorithme se reproduisant, sans perte de complexité, à l'aide de règles simples

# Concrétisation par les automates cellulaires :

- Univers constitué de cellules discrètes représentant l'état
   « microscopique » du système
- Lois d'évolution des cellules *(lois simples et communes à toutes les cellules)* définies **localement** à partir de l'état des cellules voisines
  - Comportement global « macroscopique » complexe!

### I. Introduction et exemple du jeu de la vie

Un automate cellulaire simple (lois microscopiques) peut faire émerger des comportements (lois macroscopiques) d'une complexité infinie...

## Exemples:

- Simulation du comportement des éléments d'un ordinateur (transistors et câbles)
- Simulation des équations de Navier Stokes (Lattice Gaz Boltzmann)

- ...

La « qualité » de la simulation *(échelle macro)* dépendra de la « qualité » des règles d'évolution choisies *(échelle micro)*!

- Univers = Maillage 2D carré
- États des cellules : 1 = cellule vivante

0 = cellule morte



- Règles d'évolution d'une génération/d'un instant à l'autre :
  - 1 cellule morte entourée de 3 vivantes devient vivante
  - 1 cellule vivante entourée par 2 ou 3 voisines vivantes le reste, sinon elle meurt



#### II. Définitions

#### Un automate cellulaire est constitué:

- d'un réseau régulier de cellules. Une cellule *(un site)* sera noté  $\vec{r}$
- d'un ensemble de variables attachées à chacune des cellules et donnant l'état de celles-ci à un temps discret  $t=0,\ 1,\ 2,\ 3...$

$$\Phi(\vec{r},t) = \left\{ \Phi_1(\vec{r},t), \Phi_2(\vec{r},t), \Phi_3(\vec{r},t), \dots \Phi_m(\vec{r},t) \right\}$$

- de règles R qui spécifient l'évolution temporelle des états de chaque cellule :

$$\Phi(\vec{r},t+\tau) = R(\Phi(\vec{r},t),\Phi(\vec{r}+\vec{\delta}_1,t),\Phi(\vec{r}+\vec{\delta}_2,t),...,\Phi(\vec{r}+\vec{\delta}_q,t))$$

 $\vec{r} + \vec{\delta}_k$  désigne les k cellules appartenant au voisinage de  $\vec{r}$ 

# 2 voisinages très courants :



| NO | N       | NE |
|----|---------|----|
| 0  | $ec{r}$ | Е  |
| so | S       | SE |

Voisinage de Neumann

Voisinage de Moore

k = 4 voisins : k = 8 voisins

#### Plus rarement:

- le voisinage peut atteindre d'autres cellules environnantes plus éloignées
- le réseau peut être constitué de cellules hexagonales

Les règles d'évolution et la définition du voisinage étant fixes, l'automate cellulaire ainsi crée est déterministe :

son évolution à partir d'un état initial est unique!

On peut modérer les règles de transition en leur donnant une composante aléatoire, l'automate devenant alors probabiliste (ou stochastique)

## Avantages des automates cellulaires :

Modéliser un système complexe par ses <u>lois microscopiques</u> de base permet de ne pas passer par les EDP classiques...

La structure même du problème est adaptée au traitement numérique par parallélisation massive

#### Inconvénients des automates cellulaires :

Nécessité de traiter des très grosses populations de cellules pour avoir une représentativité <u>statistique</u> du système

Tous les problèmes, et de loin, ne se traitent pas par cette approche

**Automate**: maillage 2D; chaque cellule a la valeur  $\Phi = 0$  (mort) ou 1 (vivant)

#### Modèle de croissance:

$$\operatorname{si} \sum_{k} \Phi(\vec{r} + \vec{\delta}_{k}, t) = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$$
et si  $\Phi(\vec{r}, t) = 1$  alors  $\Phi(\vec{r}, t + 1) = 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0$ 
et si  $\Phi(\vec{r}, t) = 0$  alors  $\Phi(\vec{r}, t + 1) = 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0$ 



Peu d'intérêt autre qu'esthétique ...

**Automate**: maillage 2D; chaque cellule prend la valeur  $\Phi = 0$  ou 1

Modèle de croissance = règle de la majorité sur un voisinage de Moore

si 
$$\sum_{k} \Phi(\vec{r} + \vec{\delta}_{k}, t) + \Phi(\vec{r}, t) = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9$$
  
alors  $\Phi(\vec{r}, t+1) = 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1$ 



La vitesse de croissance normale de l'interface obtenue est proportionnelle à son rayon de courbure ...

Simulation réaliste d'un recuit, pourtant aucune donnée physique utilisée...

**Automate**: maillage 2D; chaque cellule prend la valeur  $\Phi = 0$  ou 1

Modèle de croissance = règle de la compétition sur un voisinage de Moore

si 
$$\sum_{k} \Phi(\vec{r} + \vec{\delta}_{k}, t) = 0 1 2 3 4 5 6 7 8$$
  
alors  $\Phi(\vec{r}, t+1) = 1000000000$ 



Représentation acceptable de la différentiation des cellules dans les embryons 11

**Automate**: maillage 1D; chaque cellule prend la valeur  $\Phi = 0$  ou 1

Règle de l'automates : 
$$\left\{ \Phi(\vec{r}-1,t)\Phi(\vec{r},t)\Phi(\vec{r}+1,t) \right\} \rightarrow \Phi(\vec{r},t+1)$$

$$(111) \rightarrow 1$$
 ;  $(110) \rightarrow 0$  ;  $(101) \rightarrow 1$  ;  $(100) \rightarrow 1$    
  $(011) \rightarrow 1$  ;  $(010) \rightarrow 0$  ;  $(001) \rightarrow 0$  ;  $(000) \rightarrow 0$ 





Améliorations possibles: - 2D avec gestion des carrefours et priorités

- Accélération et freinages aléatoires ...

Applications: trafic urbain, évacuation d'un immeuble ...

## IV. Automates LGA (Lattice gas automata)

Les automates de type « lattice gas automata » forment une classe particulière : ils représentent des particules se mouvant sur une matrice carrée, de manière à imiter la dynamique moléculaire d'un gaz



Voisinage type Neumann

 $\Phi(\vec{r},t) = \{1,0,01\}$  indique la présence de deux particules se déplaçant respectivement selon les directions 1 et 4



Exemple de configuration typique durant une simulation de type LGA

# Règles d'évolution:

à chaque étape - gérer les collisions site par site

#### **PUIS**

- faire se déplacer les particules d'un site à l'autre en n'oubliant pas de gérer les rebonds / collisions sur les obstacles

# Simulation d'un gaz dont le libre parcours moyen est grand (vide poussé)

# Règles d'évolution :





# Simulation d'un gaz dont le libre parcours moyen est grand (vide poussé)



# Simulation d'un gaz dont le libre parcours moyen est court

(pression atmosphérique)

Cette fois le nombre de chocs inter-particules est grand

on considère que chaque particule prend une direction aléatoire à chaque pas de temps ET que le principe d'exclusion empêche deux particules de partir par la même direction



(pression atmosphérique)

# Diffusion d'un spot de matière



# V. Autres exemples



Optimisation assistée par automate cellulaire



Initial thermal gradients

☐ Maximum ■ Minimum



Thermal gradients at convergence



Initial temperature



Temperature at convergence

☐ Maximum ■ Minimum



# Écoulement d'une poudre





Figure 5. Sloshing: Different time step for large amplitudes.