Examenul de bacalaureat național 2020

Proba E. c)

Matematică M_mate-info

Test 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numărul complex z = 1 + i. Arătați că $2z z^2 = 2$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 mx + 2m$, unde m este număr real. Determinați mulțimea valorilor reale ale lui m, știind că f(x) > 0 pentru orice număr real x.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_5(\sqrt{x}+1) + \log_5(\sqrt{x}-1) = 2$.
- **5p** | **4.** Determinați numărul de elemente ale unei mulțimi, știind că aceasta are exact 32 de submulțimi.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,1) B(2,5) și C(6,1). Determinați coordonatele punctului D, știind că $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$.
- **5p 6.** Determinați $x \in \left(0, \frac{\pi}{2}\right)$ pentru care $\sin\left(\frac{\pi}{2} x\right) \cos\left(\frac{\pi}{2} x\right) = \sin x \cos x$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A(a) = \begin{pmatrix} a & 0 & 2-a \\ 0 & 2 & 0 \\ 2-a & 0 & a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(2)) = 8$.
- **5p b**) Demonstrați că A(a)A(b) = 2A(ab-a-b+2), pentru orice numere reale $a \neq b$.
- **5p** c) Determinați perechile de numere întregi p și q pentru care $A(p)A(q) = 4I_3$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x * y = -\frac{3}{5}xy + x + y$.
- **5p** a) Arătați că $x * y = -\frac{3}{5} \left(x \frac{5}{3} \right) \left(y \frac{5}{3} \right) + \frac{5}{3}$, pentru orice numere reale x și y.
- **5p b)** Arătați că $\frac{5x}{3} * \frac{5}{3x} \ge \frac{5}{3}$, pentru orice $x \in (0, +\infty)$.
- **5p** c) Calculați $\frac{1}{3} * \frac{2}{3} * \frac{3}{3} * ... * \frac{2020}{3}$.

SUBIECTUL al III-lea

(30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x \ln(x^2 + 1)$
- **5p** a) Arătați că $f'(x) = \frac{2(2x^2 x + 2)}{x^2 + 1}, x \in \mathbb{R}$.
- **5p b**) Calculați $\lim_{x \to +\infty} (f(x+1) f(x)).$
- **5p** (c) Demonstrați că funcția f este bijectivă.
 - **2.** Se consideră funcția $f:(-5,5) \to \mathbb{R}$, $f(x) = \sqrt{25 x^2}$.
- **5p a)** Arătați că $\int_{0}^{1} f^{2}(x) dx = \frac{74}{3}$.

5p b) Calculați
$$\int_{-3}^{3} |x f(x)| dx$$
.

5p c) Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int_0^1 \frac{1}{f^n(x)} dx$. Demonstrați că șirul $(I_n)_{n \ge 1}$ este monoton.