# НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 3.5.1 «Изучение плазмы газового разряда в неоне»

Овсянников Михаил Александрович студент группы Б01-001 2 курс ФРКТ

г. Долгопрудный 2021 г.

**Цель работы:** изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

В работе используется: стеклянная газоразрядная трубка, наполненная неоном; высоковольтный источник питания; источник питания постоянного тока; делитель напряжения; потенциометр; амперметры; вольтметры; переключатели.

#### Экспериментальная установка



Рис. 1. Установка

Схема установки для исследования плазмы газового разряда в неоне представлена на рисунке 1. Стеклянная газоразрядная трубка имеет холодный (ненагреваемый) полый катод, три анода и геттерный узел стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая пленка (геттер). Трубка наполнена изотопом неона  $^{22}$ Ne при давлении 2 мм. рт. ст. Катод и один из анодов с помощью переключателя  $\Pi_1$  подключается через балластный резистор  $R_6 \sim 450$  кОм к регулируемому высоковольтному источнику питания (ВИП) с высоким напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый

для диагностики плазмы положительного столба.

Зонды изготовлены из молибденовой проволоки диаметром d=0,2 мм и имеют длину l=5,2 мм.

#### Выпишем все формулы, необходимые в данной работе

Электронную температуру можно будет найти из соотношения:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$

Концентрацию электронов  $n_e$  можно определить, используя формулу Бома:

$$I_{iH} = 0, 4n_e e S \sqrt{\frac{2kT_e}{m_i}}.$$
 [CII]

Плазменная частота колебаний электронов находится по формуле:

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} = 5, 6 \cdot 10^4 \sqrt{n_e} \frac{\text{рад}}{\text{c}}.$$
 [СГС]

Электронная поляризационная длина  $r_{D_e}$  вычисляется по формуле:

$$r_{D_e} = \sqrt{rac{kT_e}{4\pi n_e e^2}} \; ext{cm}.$$

По следующей формуле можно найти дебаевский радиус экранирования  $r_D$  при комнатной температуре  $T_i \approx 300~\mathrm{K}$ :

$$r_D = \sqrt{\frac{kT_i}{4\pi n_e e^2}} \; \mathrm{cm}.$$

Среднее число ионов в дебаевской сфере:

$$N_D = \frac{4}{3}\pi r_D^3 n_i.$$

Степень ионизации плазмы:

$$\alpha = \frac{n_i}{n}$$
,

где 
$$n = \frac{P}{kT_i}$$
,  $P \approx 2$  торр.

### Ход работы

Зафиксируем параметры установки:

d=0,2 мм - диаметр зонда;

l = 5, 2 мм - длина зонда;

 $L=35,5\,\,{
m MM}$  - длина трубки.

Напряжение зажигания: U = 1540 B.

Теперь снимем вольт-амперную характеристику нашего разряда. Результаты занесем в таблицу 1.

| I, мА | U, B   |
|-------|--------|
| 0,4   | 246,89 |
| 0,8   | 232,19 |
| 1,2   | 225,26 |
| 1,6   | 210,07 |
| 2,0   | 177,87 |
| 2,4   | 161,35 |
| 2,8   | 150,36 |
| 3,2   | 144,13 |
| 3,6   | 139,51 |
| 4,0   | 136,99 |
| 4,4   | 135,45 |
| 4,8   | 133,70 |
| 5,2   | 131,81 |
| 5,6   | 130,55 |

Таблица 1. ВАХ разряда

Строим график I(U).

Из него получаем 
$$R_{\text{диф}} = \left(\frac{dU}{dI}\right)_{\text{max}} = 80500 \text{ Ом}$$



Рис. 2. ВАХ разряда

Как видно, мы находимся на участке ГД ВАХ газового разряда:



Рис. 3. BAX газового разряда

Построим зондовые характеристики для разных токов разряда. 1)  $I_p = 5 \, \mathrm{mA}.$ 

| Полох | кительная ветвь | Отрицательная ветвь |         |  |  |
|-------|-----------------|---------------------|---------|--|--|
| U, B  | I, MKA          | U, B                | I, MKA  |  |  |
| 31,61 | 97,58           | -0,01               | 0,00    |  |  |
| 30,90 | 97,01           | -0,02               | -0,06   |  |  |
| 29,97 | 96,03           | -0,02               | -0,10   |  |  |
| 29,08 | 95,10           | -0,03               | -0,21   |  |  |
| 28,07 | 94,06           | -0,05               | -0,52   |  |  |
| 27,02 | 93,01           | -0,09               | -0,94   |  |  |
| 25,99 | 91,74           | -0,12               | -1,37   |  |  |
| 23,04 | 88,61           | -0,15               | -1,74   |  |  |
| 20,03 | 85,46           | -0,21               | -2,35   |  |  |
| 17,03 | 82,19           | -0,30               | -3,38   |  |  |
| 14,04 | 77,78           | -0,45               | -4,98   |  |  |
| 11,00 | 71,12           | -0,60               | -6,55   |  |  |
| 8,02  | 60,07           | -0,80               | -8,60   |  |  |
| 5,01  | 42,71           | -1,00               | -10,59  |  |  |
| 4,03  | 35,49           | -2,51               | -24,80  |  |  |
| 3,01  | 27,33           | -4,00               | -38,44  |  |  |
| 2,03  | 18,86           | -6,02               | -54,71  |  |  |
| 1,01  | 9,57            | -9,02               | -82,66  |  |  |
| 0,72  | 6,96            | -12,05              | -102,58 |  |  |
| 0,63  | 6,10            | -15,03              | -108,53 |  |  |
| 0,51  | 4,99            | -18,11              | -112,56 |  |  |
| 0,39  | 3,78            | -21,05              | -115,69 |  |  |
| 0,30  | 2,86            | -24,08              | -118,84 |  |  |
| 0,15  | 1,34            | -27,02              | -121,91 |  |  |
| 0,07  | 0,60            | -29,06              | -124,03 |  |  |
| 0,01  | 0,00            | -31,61              | -126,76 |  |  |

Таблица 2. Зондовая характеристика при  $I_p=5~\mathrm{mA}$ 

Получаем следующий график:



Рис. 4. ВАХ зонда при  $I_p=5$  мА

Из графика находим  $\overline{I_{i\mathrm{H}}}=77,15$  мкА;  $\left.\frac{dI}{dU}\right|_{U=0}=9,56$   $\frac{\mathrm{мкA}}{\mathrm{B}}.$ 

Откуда сразу можно рассчитать:

$$kT_e = 4,04 \text{ } 9B$$

$$n_e = \frac{5}{2} \frac{I_{iH}}{eS} \sqrt{\frac{m_i}{2kT_e}} \approx 6, 2 \cdot 10^{16} \text{ m}^{-3} = 6, 2 \cdot 10^{10} \text{ cm}^{-3}$$

$$\omega_p = 5, 6 \cdot 10^4 \sqrt{n_e} \approx 1, 4 \cdot 10^{10} \frac{\text{рад}}{\text{c}}$$

$$r_{D_e} = 6, 0 \cdot 10^{-3} \text{ cm}$$

$$r_D = 4.8 \cdot 10^{-4} \text{ cm}$$

$$N_D = 29$$

$$\alpha = 9, 6 \cdot 10^{-7}$$

### **2)** $I_p = 3 \text{ MA}.$

| Полох       | кительная ветвь     | Отрицательная ветвь |        |  |  |
|-------------|---------------------|---------------------|--------|--|--|
| U, B        | I, MKA              | U, B                | I, MKA |  |  |
| 30,04       | 58,91               | 0.02                | 0.00   |  |  |
| 28,96       | 58,11               | -0,02               | 0,00   |  |  |
| 28,08       | 57,48               | 0.04                | 0.05   |  |  |
| 27,01       | 56,71               | -0,04               | 0,05   |  |  |
| 25,02       | 55,31               | -0,06               | 0.20   |  |  |
| 22,99       | 53,87               | -0,00               | -0,20  |  |  |
| 21,03       | 52,50               | -0,10               | -0.57  |  |  |
| 19,08       | 51,15               | -0,10               | -0,57  |  |  |
| 17,07       | 49,75               | -2,01               | -13,20 |  |  |
| 14,98       | 48,20               | 2,01                | 10,20  |  |  |
| 13,08       | 46,56               | -3,00               | -19,30 |  |  |
| 11,02       | 44,17               | 0,00                |        |  |  |
| 8,95        | 40,58               | -5,02               | -30,35 |  |  |
| 7,05        | 35,70               | 3,02                |        |  |  |
| 5,03        | 28,25               | -5,97               | -34,87 |  |  |
| 3,52        | 21,12               | 7,01                |        |  |  |
| 3,02        | 18,40               | -9,00               | -45,4  |  |  |
| 2,25        | 15,51               | ,                   | ,      |  |  |
| 2,07        | 12,71               | -12,01              | -50,82 |  |  |
| 1,80        | 11,20               | ,                   | ,      |  |  |
| 1,60        | 10,05               | -15,03              | -53,60 |  |  |
| 1,40        | 8,84                |                     |        |  |  |
| 1,20        | 7,61                | -17,98              | -55,38 |  |  |
| 1,00        | 6,29                |                     |        |  |  |
| 0,80 $0,50$ | 5,04                | -21,04              | -57,12 |  |  |
| 0,30 $0,40$ | $\frac{2,86}{2,35}$ | -23,99              | -58,84 |  |  |
| 0,40 $0,25$ | 1,40                | -27,09              | -60,65 |  |  |
| 0,20 $0,10$ | 0,29                | -30,13              | -62,57 |  |  |
| 0,10        | 0,00                | -31,61              | -63,53 |  |  |
| 0,00        | 0,00                | -01,01              | -00,00 |  |  |

Таблица 3. Зондовая характеристика при  $I_p=3\,\,\mathrm{mA}$ 

Получаем следующий график:



Рис. 5. ВАХ зонда при  $I_p=3$  мА

Из графика получаем:  $\overline{I_{i\mathrm{H}}}=41,02$  мкА;  $\left.\frac{dI}{dU}\right|_{U=0}=6,22$   $\frac{\mathrm{MKA}}{\mathrm{B}}.$ 

Сразу считаем:

$$kT_e = 3,30 \text{ BB}$$

$$n_e = 3, 7 \cdot 10^{16} \text{ m}^{-3} = 3, 7 \cdot 10^{10} \text{ cm}^{-3}$$

$$\omega_p = 1, 1 \cdot 10^{10} \frac{\text{рад}}{\text{c}}$$

$$r_{D_e} = 7,0 \cdot 10^{-3} \text{ cm}$$

$$r_D = 6, 2 \cdot 10^{-4} \text{ cm}$$

$$N_D = 37$$

$$\alpha = 5, 7 \cdot 10^{-7}$$

## 3) $I_p = 1,5 \text{ MA}.$

| Полох | кительная ветвь | Отрицательная ветвь |        |  |  |
|-------|-----------------|---------------------|--------|--|--|
| U, B  | I, MKA          | U, B                | I, MKA |  |  |
| 31,60 | 32,69           | -0,01               | 0,00   |  |  |
| 30,03 | 32,03           | -0,02               | -0,08  |  |  |
| 29,00 | 31,58           | -0,05               | -0,23  |  |  |
| 28,01 | 31,14           | -0,10               | -0,37  |  |  |
| 27,04 | 30,72           | -0,20               | -0,74  |  |  |
| 25,06 | 29,86           | -0,29               | -1,11  |  |  |
| 22,08 | 28,59           | -0,50               | -1,86  |  |  |
| 19,00 | 27,28           | -1,01               | -3,69  |  |  |
| 16,05 | 26,01           | -2,01               | -7,22  |  |  |
| 12,98 | 24,60           | -2,50               | -8,89  |  |  |
| 10,07 | 22,72           | -3,01               | -10,55 |  |  |
| 7,06  | 19,19           | -3,50               | -12,10 |  |  |
| 3,99  | 12,91           | -4,00               | -13,58 |  |  |
| 3,01  | 10,15           | -7,01               | -20,89 |  |  |
| 2,50  | 8,64            | -10,03              | -25,21 |  |  |
| 2,00  | 7,05            | -13,00              | -27,22 |  |  |
| 1,51  | 5,29            | -16,02              | -28,17 |  |  |
| 1,00  | 3,61            | -19,06              | -28,95 |  |  |
| 0,50  | 1,85            | -22,00              | -29,68 |  |  |
| 0,30  | 1,13            | -25,01              | -30,40 |  |  |
| 0,20  | 0,77            | -28,06              | -31,34 |  |  |
| 0,10  | 0,37            | -29,04              | -31,62 |  |  |
| 0,01  | 0,00            | -30,04              | -31,92 |  |  |
| 0,01  | 0,00            | -31,60              | -32,39 |  |  |

Таблица 4. Зондовая характеристика при  $I_p=1,5\,\,\mathrm{mA}$  Снова строим график:



Рис. 6. ВАХ зонда при  $I_p=1,5$  мА

Из графика находим:  $\overline{I_{i\text{H}}}=21,38$  мкА;  $\left.\frac{dI}{dU}\right|_{U=0}=3,43~\frac{\text{мкA}}{\text{B}}.$ 

И считаем:

$$kT_e = 3,12 \text{ 9B}$$

$$n_e = 2, 0 \cdot 10^{16} \text{ m}^{-3} = 2, 0 \cdot 10^{10} \text{ cm}^{-3}$$

$$\omega_p = 0, 8 \cdot 10^{10} \, \frac{\text{рад}}{\text{c}}$$

$$r_{D_e} = 9, 3 \cdot 10^{-3} \text{ cm}$$

$$r_D = 8.5 \cdot 10^{-4} \text{ cm}$$

$$N_D = 51$$

$$\alpha = 3, 1 \cdot 10^{-7}$$

Итак, основываясь на полученных данных и рассчитанных величинах, можно с уверенностью сказать, что:

- $1) \; L \gg r_{D_e} \Longrightarrow \;$  плазму можно считать квазиней<br/>тральной
- $2) \; N_D \gg 1 \Longrightarrow \;$ плазму можно считать идеальной

Теперь построим графики  $T_e(I_p)$  и  $n_e(I_p)$ . Первый,  $T_e(I_p)$ :



Рис. 7. Зависимость  $T_e(I_p)$ 

График должен описывать линейную зависимость, однако тут это не совсем так. Он не совсем линейный - это связано с неточностью измерений.

Теперь построим  $n_e(I_p)$ :



Рис. 8. Зависимость  $n_e(I_p)$ 

Этот график должен описывать линейную зависимость. На этот раз удачно - видно невооруженным глазом, что зависимость является линейной.

Напоследок, сведем все полученные и рассчитанные величины в одну табличку:

| $R_{\text{диф}}$ , Ом | $I_p$ , мА | $kT_e$ , эВ | $n_e, 10^{10} \text{ cm}^{-3}$ | $\omega_p,~10^{10}~{ m pag/c}$ | $r_{D_e}, 10^{-3} \text{ cm}$ | $r_D, 10^{-4} \text{ cm}$ | $N_D$ | $\alpha$ , $10^{-7}$ |
|-----------------------|------------|-------------|--------------------------------|--------------------------------|-------------------------------|---------------------------|-------|----------------------|
|                       | 5          | 4,04        | 6,2                            | 1,4                            | 6,0                           | 4,8                       | 29    | 9,6                  |
| 80500                 | 3          | 3,30        | 3,7                            | 1,1                            | 7,0                           | 6,2                       | 37    | 5,7                  |
|                       | 1,5        | 3,12        | 2,0                            | 0,8                            | 9,3                           | 8,5                       | 51    | 3,1                  |

Таблица 5. Итоговая таблица

**Вывод:** в работе была изучена вольт-амперная характеристика тлеющего разряда и изучены свойства плазмы методом зондовых характеристик. Была продемонстрирована зависимость следующих величин от тока разряда  $I_p$ : электронная температура  $T_e$ , концентрация электронов  $n_e$ , плазменная частота их колебаний  $\omega_p$ , электронная поляризационная длина  $r_{D_e}$ , дебаевский радиус экранирования  $r_D$ , число Дебая  $N_D$  и степень ионизации плазмы  $\alpha$ . Помимо этого, было найдено максимальное дифференциальное сопротивление плазмы  $R_{\text{диф}} = 80500$  Ом. Также в работе было получено, что плазму при этих условиях и величинах можно считать квазинейтральной и идеальной. Все ошибки связаны с неточностью измерений.