Partiel S2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge ou au crayon à papier.

Exercice 1 (5 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Exercice 2 (5 points)

Répondre aux questions présentes sur le document réponse.

Exercice 3 (6 points)

On souhaite réaliser la séquence du tableau présent sur le <u>document réponse</u> à l'aide de bascules JK.

- 1. Remplissez le tableau présent sur le <u>document réponse</u>.
- 2. Sur le <u>document réponse</u>, donnez les expressions les plus simplifiées des entrées *J* et *K* de chaque bascule <u>en justifiant par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (par exemple : J0 = 1, K1 = \overline{Q2}).

Exercice 4 (2 points)

On souhaite réaliser la séquence du tableau présent sur le <u>document réponse</u> à l'aide de bascules D.

- 1. Remplissez le tableau présent sur le document réponse.
- 2. Sur le <u>document réponse</u>, donnez les expressions les plus simplifiées des entrées D chaque bascule <u>en</u> <u>justifiant par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (par exemple : D0 = 1, $D1 = \overline{Q0}$).

Partiel S2 – Corrigé

Exercice 5 (2 points)

Que réalisent les deux montages ci-dessous ? Répondre sur le document réponse.

Figure 1

Figure 2

Partiel S2 – Corrigé 2/5

Nom : Classe :	
----------------	--

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1.

Nombre	S	E	M
19,03125	0	10000011	0011000010000000000000
69 × 2 ⁻¹⁰¹	0	00100000	00010100000000000000000

2.

Représentation IEEE 754	Représentation associée
433200000000000016	9×2^{49}
236000000000000016	2 ⁻⁴⁵⁷
$00{\rm EE}0000000000_{16}$	15 × 2 ⁻¹⁰¹²

Exercice 2

Question	Réponse
Combien de fils d'adresse possède une mémoire d'une profondeur de 32 Ki mots ?	15 fils
Un mémoire possède un bus de donnée de 16 fils et un bus d'adresse de 16 fils. En puissance de deux, quelle est la capacité en bits de cette mémoire ?	2 ²⁰ bits
Une mémoire M1 possède un bus de donnée de 8 fils et un bus d'adresse de 16 fils. On assemble deux mémoires M1 en série pour former une mémoire M2 . Quelle est la taille du bus d'adresse de la mémoire M2 ?	17 bits
Un microprocesseur possède un bus d'adresse de 24 fils. Cinq fils d'adresse sont utilisés pour la sélection des composants. À l'aide du décodage par zone, quel est le nombre maximum de fils d'adresse que peut posséder un composant connecté à ce microprocesseur ?	19 fils
Un microprocesseur possède un bus d'adresse de 20 fils. Il est connecté en mode linéaire aux composants suivants : • une ROM (15 fils d'adresse); • une RAM (12 fils d'adresse); • un périphérique quelconque (10 fils d'adresse). Combien de fils d'adresse sont inutilisés dans le cas de la mémoire RAM?	5 fils

Partiel S2 – Corrigé 3/5

Exercice 3

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
0	0	0	0	Ф	1	Ф	0	Ф
0	1	0	1	Ф	Ф	1	0	Ф
1	0	0	Φ	0	1	Ф	0	Ф
1	1	0	Φ	1	Φ	1	1	Ф
0	0	1	0	Ф	1	Ф	Ф	0
0	1	1	1	Φ	Φ	1	Ф	0
1	0	1	Φ	0	1	Φ	Ф	0
1	1	1	Φ	1	Φ	1	Ф	1

Utilisez les tableaux de Karnaugh uniquement pour les solutions qui ne sont pas évidentes.

		Q1 Q0				
	Ј0	00	01	11	10	
03	0	0	Ф	Ф	0	
Q2	1	0	Φ	Φ	1	

$$J0 = Q2.Q1$$

J1 = 1

J2 = Q1

$$K0 = Q2.Q1$$

		Q1 Q0				
	K1	00	01	11	10	
03	0					
Q2	1					

K1 = 1

		Q1 Q0				
	K2	00	01	11	10	
03	0					
Q2	1					

K2 = Q1

Exercice 4

Q1	Q0	D1	D0
0	0	1	1
1	1	0	1
0	1	1	0
1	0	0	0

Utilisez les tableaux de Karnaugh uniquement pour les solutions qui ne sont pas évidentes.

$$D0 = \overline{Q1}.\overline{Q0} + Q1.Q0$$

$$D0 = \overline{Q1} \oplus \overline{Q0}$$

		$\mathbf{Q0}$			
	D1	0	1		
01	0				
Q1	1				

$$D1 = \overline{Q1}$$

Exercice 5

Figure 1:

Décompteur asynchrone modulo 13

Figure 2:

Décompteur asynchrone modulo 10

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.

Partiel S2 – Corrigé 5/5