CSE 101: Homework #5

Due on May 16, 2024 at 23:59pm $Professor\ Jones$

Ray Tsai, Kevin Yu

Problem 1

Consider the following divide and conquer algorithm that claims to find an MST when the input is a complete graph G with positive edge weights:

Algorithm Description: Given an undirected complete graph G = (V, E) with positive edge weights where $V = [v_1, \ldots, v_n]$,

- If n = 1 then return the empty set of edges.
- Otherwise, split the set of vertices into two sets: $V' = [v_1, \dots, v_{\lfloor n/2 \rfloor}]$ and $V'' = [v_{\lfloor n/2 \rfloor} + 1, \dots, v_n]$.
- Create two new graphs G' = (V', E') and G'' = (V'', E'') where $E' \subseteq E$ is the set of edges with both endpoints in V' and $E'' \subseteq E$ is the set of edges with both endpoints in V''.
- Recursively run the algorithm on G' and G'' to get T' and T'', respectively. Find the lightest edge that connects a vertex in T' to a vertex in T'' and call that edge e.
- Return $T' \cup T'' \cup \{e\}$.

Disprove the correctness of this algorithm by giving a counterexample.

Proof. Consider $G = C_4$, where the edge $\{v_3, v_4\}$ has weight 2 and the remaining edges each has weight 1. The algorithm recurses on subgraph G'' with vertex set $V'' = [v_3, v_4]$, so the resulting spanning tree T contains the edge $\{v_3, v_4\}$. Since T has 3 edges with an edges of weight 2, the total cost of T is 4. But then $\{\{2, v_i\} : i \neq 2\} \subset E$ spans G with a total weight of 3, as it only uses edges of weight 1.

Problem 2

You are given an increasing sequence of integers: $(A[1], A[2], \ldots, A[n])$. Design an algorithm that determines (returns TRUE or FALSE) if there exists an index i such that A[i] = i.

Your algorithm should run in $O(\log n)$ time.

Proof. We first give a description of the algorithm.

Algorithm Description:

Let l = 1 and r = n. While l < r: put $m = \lfloor (l+r)/2 \rfloor$. If A[m] = m, return TRUE. If A[m] < m, put l = m + 1. Otherwise, put l = m - 1. After the loop, if A[l] = l, return TRUE. Otherwise, return FALSE.

Justification of Correctness:

Let l_k and r_k denote the value of l and r at the end of the kth iteration of the loop, respectively (0th iteration means before the loop starts). Notice that $r_k \ge r_{k+1} \ge l_k$, for all $k \ge 0$

We show that for all indices $i < l_k$ and $j > r_k$, A[i] < i and A[j] > j by induction on $k \ge 0$. At the start, $l_k = 1$ and $r_k = n$. Hence, no elements are outside the range of l_k and r_k , and so the base case k = 0 is done.

Suppose $k \ge 1$. Assume that for all indices $i < l_{k-1}$ and $j > r_{k-1}$, we have A[i] < i and A[j] > j. There are three cases:

Case 1: A[m] = m.

The loop terminates without changing the values of l and r. By induction, A[i] < i and A[j] > j, for all indices $i < l_{k-1} = l_k$ and $j > r_{k-1} = r_k$.

Case 2: A[m] < m.

 l_k is set to m+1 and $r_k=r_{k-1}$. By induction, A[j]>j for all $j>r_{k-1}=r_k$, so it remains to show that A[i]< i for all $i\leq m$. Since the sequence of integers $(A[1],A[2],\ldots,A[n])$ is strictly increasing, we may observe that

$$A[i] \le A[m] - (m - i),$$

for all $i \leq m$. But then A[m] - m < 0, so indeed

$$A[i] \le A[m] - (m-i) = (A[m] - m) + i < i,$$

for all $i \leq m$.

Case 3: A[m] > m.

 r_k is set to m-1 and $l_k = l_{k-1}$. By induction, A[i] < i for all $i < l_{k-1} = l_k$, so it remains to show that A[j] < j for all $j \ge m$. Since the sequence of integers $(A[1], A[2], \ldots, A[n])$ is strictly increasing, we may observe that

$$A[j] > A[m] + (j - m),$$

for all $j \ge m$. But then A[m] - m > 0, so indeed

$$A[i] > A[m] + (i - m) = (A[m] - m) + i > i$$

for all $j \geq m$.

And this completes the induction. Note that the loop breaks half way only if there exists some A[m] = m and the algorithm returns TRUE. Now suppose the loop is terminated by the natural condition. Since $r_k \geq r_{k+1} \geq l_{k+1} \geq l_k$ for all $k \geq 0$, we must have l = r. But then by our induction result, $A[i] \neq i$ for all index $i \neq r$. Hence, there exists A[i] = i for some i if and only if A[r] = r, and the result now follows.

Runtime Analysis:

Since every iteration of the loop cuts out half the current list, the loop will iterate at most $\log n$ times until l meets r, given an input list of size n. Checking and updating l or r only takes constant time. Hence, in total, the algorithm has a runtime of $O(\log n)$.

Problem 3

You are given a list of n ordered pairs $[(x_1, f_1), \ldots, (x_n, f_n)]$. This list describes a list of length $\sum f_i$ that contains f_1 copies of the value x_1 , f_2 copies of the value x_2 and so on.

You wish to find the median value of this list in expected runtime of O(n). (You can assume that $\sum f_i$ is odd.)

Proof. We give a description of the algorithm:

Algorithm Description:

Let $\ell([(x_1, f_1), \dots, (x_u, f_u)])$ denote the length of the list described by $[(x_1, f_1), \dots, (x_u, f_u)]$, namely $\sum_{i=1}^u f_i$.

We first define $Selection(L = [(x_1, f_1), \dots, (x_m, f_m)], k)$, which takes in a list L of ordered pairs and an integer k, and outputs the kth smallest number in the list described in L:

If |L| = 1, return x_1 . Otherwise, pick x_v randomly from L. Split L into L_l , $[(x_v, f_v)]$, and L_r , where L_l contains all the ordered pairs with x_i less than x_v and L_r contains the ordered pairs with x_i greater than x_v . If $k \leq \ell(L_l)$, return $Selection(L_l, k)$. Else, if $k \leq \ell(L_l) + f_v$, return x_v . Otherwise, return $Selection(L_r, k - \ell(L_l) - f_v)$.

Now for finding the median value of the list described in L, we simply run $Selection(L, \lceil \frac{n}{2} \rceil)$.

Runtime Analysis:

Since we select the pivot x_v uniformly at random, the input list L will be split into a list L_l of length v-1 and a list L_r of length n-v. Hence, when we recurse on L_l , L_r , it will take time proportional to $\max(v-1,n-v)$. Note that if $\frac{n}{4} \leq v-1 \leq \frac{3}{4}n$, then $\max(v-1,n-v) \leq \frac{3}{4}n$. Otherwise, $\frac{3}{4}n \leq \max(v-1,n-v) < n$. Let ET(n) denote the expected runtime for Selection on a list of length n. It now follows that

$$ET(n) \le \frac{1}{2}ET\left(\frac{3}{4}n\right) + \frac{1}{2}ET(n) + cn,$$

where the cn term derived from the splitting process of L. But then

$$ET(n) \le ET\left(\frac{3}{4}n\right) + cn,$$

and thus

$$ET(n) \in O(n)$$
.

by the Master Theorem.

Problem 4

(a) Let T(n) be the runtime of a divide and conquer algorithm on an input of size n. The algorithm has 6 recursive calls each of size n/4 and the non-recursive part takes $O(n^{1.5})$ time. Use the Master theorem to find the best Big-Oh runtime.

Proof. We first note that

$$T(n) = 6T(n/4) + cn^{1.5}.$$

By the Master Theorem,

$$T(n) \in O(n^{1.5}),$$

as $6 < 4^{1.5} = 8$.

(b) Let R(n) be the runtime of a divide and conquer algorithm on an input of size n. The algorithm has 1 recursive call of size n/2 and the non-recursive part takes $O(\log n)$ time. Find the best Big-Oh runtime.

Proof. We first note that

$$R(n) = R(n/2) + c \log n.$$

Consider the levels of recurrence of this algorithm. Since the algorithm has 1 recursive call of size n/2, there are $\log n$ levels of recurrence, with 1 recursive call per level. It now follows that

$$R(n) = R(n/2) + c \log n$$

$$= \left(R(n/4) + c \log \frac{n}{2}\right) + c \log n$$

$$= c \sum_{k=0}^{\log n} \log \frac{n}{2^k}$$

$$= c \sum_{k=0}^{\log n} (\log n - k)$$

$$= c \log^2 n - c \sum_{k=0}^{\log n} k$$

$$= c \log^2 n - \frac{c(\log n + 1) \log n}{2}$$

$$\in O\left(\log^2 n\right).$$

(c) Let S(n) be the runtime of a divide and conquer algorithm on an input of size n. The algorithm has 2 recursive calls each of size 2n/3 and the non-recursive part takes O(n) time. Find the best Big-Oh runtime.

Proof. We first note that

$$S(n) = 2T(2n/3) + cn.$$

By the Master Theorem,

$$S(n) \in O(n^{\log_{3/2} 2}) = O(n^{\frac{\log 2}{\log 3 - \log 2}}) \approx O(n^{1.71}),$$

as 2 > 3/2.