notes on mirror symmetry

3 may (Alex)

We wish to understand

Theorem 1 (Bogomolov-Tian-Todorov). Any Calabi-Yau manifold has unobstructed deformations.

Definition. An *almost compelx structure* is an endomorphism J...

Remark. It is a fact by Borel & Serre (1953) that the only spheres which admit an almost complex structure are S^2 and S^6 .

Example. All complex manifolds are almost complex manifolds.

Theorem 2. A necessary and sufficient condition for a 2u-smooth manifold M to admit an almost complex structure is that the group of tangent bundle of M could be reduced to U(n).

Theorem 3 (Newlander-Nirenberg). Let (M, J) be an almost complex manifold. Then, the following are equivalent:

1. (six conditions...)

proposition 4. An almost complex structure on a real 2-dimensional manifold is a complex structure.

Proof. By the Newlander-Nirenberg theorem, given a point $\mathfrak{p}\in U\subset M$ and a vector field $\mathfrak{X}U$, we have that (V,JV) is a frame, and

$$N(V, JV) = [V, JV] + J[V, JV] + J[V, J^2V] - [JV, J^2V] = 0$$

Definition. A *deformation* of complex analytic space M over a germ (S, s_0) of complex analytic space is a triple $\pi_i X, i$) such that

$$\begin{matrix} X \xleftarrow{embedding} & M \\ \pi \downarrow & & \downarrow \\ (S, s_0) \xleftarrow{s_0} & pt \end{matrix}$$

where M is a compact manifold, $M \simeq \pi^{-1}(s_0)$ and π is proper smooth.

Theorem 5 (Ehresmann). Let $\pi: X \to S$ be a proper family of differentiable manifold. If S is connected, then all fibres are diffeomorphic.

Theorem 6 (Kodaira). Let X_0 be a compact Kähler manifold. If $X \to S$ is a deformation, then any fibre X_t is again Kähler.

Theorem 7 (Kuranashi).

- 1. Any compact complex manifold admits a universal deformation.
- 2. If $\Gamma(X_0, T_{x_0}) = 0$ then it admits a universal deformation.

Lemma. Let J be an almost complex structure sufficiently close to J_0 so that it is represented by a form $\lambda \in A^{0,1}T^{1,0}M$. Then J is integrable if and only if

$$\bar{\eth}\lambda_{\mathfrak{i}}+\frac{1}{2}[\lambda_{\mathfrak{j}},\lambda_{\mathfrak{j}}]=0.$$

Theorem 8 (Maurer-Cartan).

$$\bar{\partial} \phi + [\phi, \phi] = 0$$

where

$$\varphi = \varphi(t) = \sum_{i=1} \varphi_i t_i$$

Definition.

- The *Kodaira-Spencer class* of a one-parameter deformation J_t of a complex stucture J is induced by a homology class $\varphi_1 \in H^1(X, Tx)$.
- The Kodaira-Spancer map is

$$T_sS \rightarrow H^1(X_s, T_{X_s}) = T_{[X_s]} \operatorname{Def}(X_{s_0})$$

10 May

1 Sergey: preliminaries

We work in the category of schemes over \mathbb{C} .

Definition. A morphism $f: X \to Y$ is *projective* if

where i is a closed embedding and in fact $Y \times \mathbb{P}^n = \operatorname{Spec} \mathbb{C}$.

Definition. A *Hilbert function* for a given $Z \hookrightarrow \mathbb{P}^N$ is

$$h_Z(n) = \chi(Z, \mathcal{O}_Z(n))$$

Claim (Criterium for flatness of projective morphisms). A projective morphism is flat if and only if $h_{X_+}(n)$ is constant as a function of t?

$$Y\to \mathbb{Q}[n].$$

Example (non-flat projective morphism (blowup), which is also a non-submersion). Let's find some $f: X \to Y$ projective but not flat. Suppose X, Y are smooth and connected.

A closed embedding.

We tried

$$\mathbb{C}^2 \times \mathbb{P}^1$$

$$X = \operatorname{Bl}_0 \mathbb{C} \xrightarrow{\pi} Y = \mathbb{C}^2$$

but (I think) its differential is not surjective due to the tangent space of the exceptional divisor.

Definition (Wiki). In algebraic geometry, a morphism $f: X \to S$ between schemes is said to be *smooth* if

- 1. it is locally of finite presentation.
- 2. it is flat, and
- 3. for every geometric point $\bar{s} \to S$ the fiber $X_{\bar{s}} = X \times_X \bar{s}$.

2 Bruno: more on deformation

Definition (of smooth submersion). A map whose differential is surjective.

Definition (Gross). A *deformation* X consists of a smooth proper morphism $\mathcal{X} \to S$, where \mathcal{X} and S are connected complex spaces, and an isomorphism $X \cong \mathcal{X}_0$, where $0 \in S$ is a distinguished point. We call $\mathcal{X} \to S$ a *family of complex manifolds*.

In order to define the deformation space Def(X) suppose X is Kähler with $H^0(X, \mathcal{T}_X) = 0$. Then there exists a universal deformation:

Definition (Gross). A deformation $X \to (S,0)$ of X is called *universal* if any other deformation $X' \to (S',0')$ is isomorphic to the pullback under a uniquely determined morphism $\varphi: S' \to S$ with $\varphi(0') = 0$.

$$\begin{array}{ccc} \mathcal{X}_S & \longrightarrow & \mathcal{X} \\ \pi_s \downarrow & & \downarrow \\ S & \xrightarrow{\exists !} & Def_S(X) \end{array}$$

Definition. The *Teichmüller space* of X is

$$Teich(X) = \frac{complex \ structures \ on \ M}{Diff_0}$$

and it is such that

$$\mathcal{T}_X \operatorname{Teich}(X) = H^1(X, \mathcal{T}_I X^{1,0})$$

Remark (The Misha Verbitsky way). Let X=(M,I) and $\bar{\eth}:C^\infty(M)\to\Omega^1(M,\mathbb{C})$ and remember that

- $\operatorname{img} \bar{\mathfrak{d}} = \Omega^{0,1}_{(1)}(M)$
- $\bar{\partial}^2 = 0$.

Take a solution of the Maurer-Carten equation:

$$\bar{\partial}\gamma + [\gamma, \gamma] = 0$$

where $\gamma \in T^{1,0} \otimes \Omega^{0,1}$. Then we do

$$\begin{split} (\bar{\eth} + \gamma)(\bar{\eth}f + \gamma f) &= \bar{\eth}(\gamma f) + \gamma \bar{\eth}f + \gamma(\gamma f) \\ \bar{\eth}_{new}f &= \bar{\eth}f + \gamma f. \\ \dots ? \end{split}$$

Now take $s \in T^{1,0} \otimes \Omega^{0,1}$ such that

$$\bar{\partial}s + [s,s] = 0$$

and consider also its cohomology class $[s] \in H^1(T^{1,0})$. We have the \textit{Kodaira-Spencer map}

$$KS: T_{s_0}S \to H^1(T^{1,0}) \cong T_X \text{ Def } X$$
$$s \mapsto [s]$$

which is useful because de *deformation space* of X is

$$(Def X, 0) = \frac{solutions \ to \ Maurer-Cartan}{Diff_0}$$

Ok, but what is the bracket? Answer: take the usual vector field commutator on vector fields and the wedge product on differential forms. This makes $(\mathcal{T}_X^{1,0} \otimes \Omega_X^{0,\bullet}, [,], \bar{\mathfrak{d}})$ into a differential graded Lie algebra (DGLA).

So suppose

$$s = \sum_{n \geqslant 1} t^m s_m$$

and we wish to find

$$ar{\eth} s_1 = 0$$
 and $ar{\eth} s_n = \sum_{i+j=n-1} [s_i, s_j]$

The right-hand-side equation says s_n is $\bar{\eth}\text{-exact}$.

Now since our objective is to understand Tian-Tudorov-Bogomolov, we are interested in what *unobsturctedness* is. It means that

$$\bar{\eth} s_1 = 0$$
 and $\bar{\eth} s_2 = [s_1, s_2]$

Also recall that

Definition. Two manifolds $M_1, M_2 \subseteq \mathbb{C}^n$ define the same *germ* at $0 \in \mathbb{C}^n$ if there is an open set $U \subseteq \mathbb{C}^n$ containing 0 such that

$$M_1\cap U=M_\cap U.$$

3 Griffths transversality