13. Copy and complete the proof of Theorem 2-6: If the exterior sides of two adjacent acute angles are perpendicular, then the angles are complementary.

Given:
$$\overrightarrow{OA} \perp \overrightarrow{OC}$$

Prove: $\angle AOB$ and $\angle BOC$ are comp. \triangle .

Proof:

Statements

Reasons

1.
$$\overrightarrow{OA} \perp \overrightarrow{OC}$$

- 2. $m \angle AOC = 90$
- 3. $m \angle AOB + m \angle BOC = m \angle AOC$
- 4. _?
- 5. _?

- 1. _?_
- 2. Def. of ⊥ lines
- 3. _?
- 4. Substitution Prop.
- 5. Def. of comp. &

In the figure $\overrightarrow{BF} \perp \overrightarrow{AE}$, $m \angle BOC = x$, and $m \angle GOH = y$. Express the measure of the angle in terms of x, y, or both.

- B 14. ∠ COA 9L tx
 - **15.** ∠ *COH*
 - **16.** ∠*HOF* × ∗ ∨
 - **17.** ∠ *DOE*

Can you conclude from the information given for each exercise that $\overrightarrow{XY} \perp \overrightarrow{XZ}$?

- **18.** $m \angle 1 = 46$ and $m \angle 4 = 44$
- 19. $\angle 1$ and $\angle 3$ are complementary.
- **20.** ∠2 ≅ ∠3
- 21. $m \angle 1 = m \angle 4$
- **22.** $\angle 1$ and $\angle 3$ are congruent and complementary.
- 23. $m \angle 1 = m \angle 2$ and $m \angle 3 = m \angle 4$
- **24.** $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$
- **25.** $\angle 1 \cong \angle 4$ and $\angle 2 \cong \angle 3$

What can you conclude from the information given?

- **26.** Given: AB bisects $\angle DAC$; CB bisects $\angle ECA$; $m \angle 2 = 45$: $m \angle 3 = 45$
- 27. Given: $\overrightarrow{AD} \perp \overrightarrow{AC}$; $\overrightarrow{CE} \perp \overrightarrow{AC}$; $m \angle 1 = m \angle 4$

