Program Extraction from Large Proof Developments

Luís Cruz-Filipe Bas Spitters

Disclaimer

For reasons beyond the authors' control, none of the programs which will be discussed were executable. Therefore, all statements of type

$$\begin{array}{c} \text{program A is } \left\{ \begin{array}{c} \text{more} \\ \text{as} \\ \text{less} \end{array} \right\} \begin{array}{c} \text{efficient } \left\{ \begin{array}{c} \text{than} \\ \text{as} \\ \text{than} \end{array} \right\} \begin{array}{c} \text{program B} \end{array}$$

should be taken with the proverbial grain of salt.

Connectives

where $\{s,s_1,s_2\}$ denote either Set or Prop, t_{\forall} is a type of propositions or a datatype, and t_{\exists} is a generic datatype

$$\frac{|(x_m - x_n)| \leq \frac{\varepsilon}{2}}{|(x_m - x_n) + (y_m - y_n)| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}} \leq + \leq -|\cdot|$$

$$\frac{|(x_m - x_n) + (y_m - y_n)| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}}{|(x_m - x_n) + (y_m - y_n)| \leq \varepsilon} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x+y)_m - (x+y)_n| \le \frac{\varepsilon}{2} \quad \frac{\varepsilon}{2} < \varepsilon}{|(x+y)_m - (x+y)_n| < \varepsilon} \le -<-\text{trans}$$

Kneser Lemma

Lemma: For every $n \ge 2$ there exists a real number $q \in]0,1[$ such that for every polynomial with leading coefficient 1

$$f(x) = x^{n} + b_{n-1}x^{n-1} + \dots + b_{1}x + b_{0}$$

one has

$$\forall_{c>|b_0|} \exists_{z \in \mathbb{C}} \left[|z| < c^{\frac{1}{n}} \wedge |f(z)| < qc \right]$$

Proof: Let r=|z|, $a_i=|b_i|$ and $q=1-3^{-2n^2-n}$; there exist a_0 , η , ε and k such that the following chain of inequalities holds:

$$\left| \sum_{i=0}^{n} b_{i} z^{i} \right| \leq \left| b_{0} + b_{k} z^{k} \right| + \sum_{i \neq 0, k} a_{i} r^{i}$$

$$\leq \left(a_{0} - a_{k} r^{k} + \eta \right) + \left(\left(1 - 3^{-n} \right) a_{k} r^{k} + 3^{n} \varepsilon \right)$$

$$= a_{0} - 3^{-n} a_{k} r^{k} + 3^{n} \varepsilon + \eta$$

$$\leq a_{0} - 3^{-n} \left(3^{-2n^{2}} a_{0} - 2\varepsilon \right) + 3^{n} \varepsilon + \eta$$

$$= \left(1 - 3^{-2n^{2} - n} \right) a_{0} + 3^{n} \varepsilon + 3^{-n} 2\varepsilon + \eta$$

$$\leq \left(1 - 3^{-2n^{2} - n} \right) a_{0} + 3^{n} \varepsilon + \varepsilon + \eta$$

$$= q a_{0} + 3^{n} \varepsilon + \varepsilon + \eta$$

$$< q c$$

$$\frac{|f(z)| \le qa_0 + 3^n \varepsilon + \varepsilon + \eta \quad qa_0 + 3^n \varepsilon + \varepsilon + \eta < qc}{|f(z)| < qc} \le -<-\text{tr}$$

Change	Reals (Mb)	fta (Mb)	Total (Mb)	$\Delta(\%)$
Original	7.5	7.5	15	
New Cauchy seq.	1.5	6.5	8	47
New Kneser proof	1.5	5.0	6.5	19
New Division	1.4	2.0	3.4	48
Various	1.4	1.6	3.0	12

Description	Size (kb)	% of total
"Relevant" code	110	6.5
Unfolding of $\mathbb C$	1050	62.5
Unfolding of polynomials $(R[x])$	330	19.5
Coercions	190	11.5
Total	1680	100