Homework 9 David Yang

Chapter VIII (The Logarithmic Integral) Problems.

Section VIII.4 (Open Mapping and Inverse Function Theorems), Problem 1

Suppose D is a bounded domain with piecewise smooth boundary. Let f(z) be meromorphic and g(z) analytic on D. Suppose that both f(z) and g(z) extend analytically across the boundary of D, and that $f(z) \neq 0$ on ∂D . Show that

$$\frac{1}{2\pi i} \oint_{\partial D} g(z) \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{n} m_j g(z_j)$$

where z_1, \ldots, z_n are the zeros and poles of f(z) and m_j is the order of f(z) at z_j . Note that $g(z)\frac{f'(z)}{f(z)}$ is analytic $D \cup \partial D$ except for a finite number of isolated singularities at z_1, \ldots, z_n . Consequently, by the Residue Theorem that

$$\oint_{\partial D} g(z) \frac{f'(z)}{f(z)} dz = 2\pi i \sum_{j=1}^{n} \operatorname{Res} \left[g(z) \frac{f'(z)}{f(z)}, z_j \right]$$

Consider a given singularity z_j which is either a zero or pole of ordfer m_j at f(z). By definition, we have that

$$f(z) = (z - z_j)^{m_j} h(z)$$

for a function h(z) satisfying $h(z_j) \neq 0$ and h(z) analytic at z_j . By the Chain Rule, we also find that

$$f'(z) = m_j(z - z_j)^{m_j - 1}h(z) + (z - z_j)^{m_j}h'(z)$$

and so

Section VIII.6 (Winding Numbers), Problem 6

Let γ be a closed path in a domain D such that $W(,\gamma,\xi)=0$ for all $\xi\notin D$. Suppose that f(z) is analytic on D except possibly at finite number of isolated singularities $z_1,\ldots,z_m\in D\setminus\Gamma$. Show that

$$\int_{\gamma} f(z) \, dz = 2\pi i \sum W(\gamma, z_k) \mathrm{Res}[f, z_k].$$