Extremos de funciones

Definición

Sea $f:U\subseteq\mathbb{R}^n\to\mathbb{R}$; U abierto y $x_0\in U$.

- i) Un punto $f(x_0)$ se llama máximo local o relativo de f si y sólo si $f(x_0) \ge f(x)$; $\forall x \in B(x_0, \delta) \subseteq U$
- ii) Un punto $f(x_0)$ se llama mínimo local o relativo de f si y sólo si $f(x_0) \le f(x)$; $\forall x \in B(x_0, \delta) \subseteq U$
- iii) Un punto $f(x_0)$ se llama máximo absoluto o global de f si y sólo si $f(x_0) \ge f(x)$; $\forall x \in U$
- iv) Un punto $f(x_0)$ se llama mínimo absoluto o global de f si y sólo si $f(x_0) \le f(x)$; $\forall x \in U$

Observación

Sea f una función continua de dos variables x e y, definida en una región acotada y cerrada U del plan XY, entonces existe al menos un punto en U donde f toma su máximo valor y existe un punto donde f toma su mínimo valor.

Proposición

Si una función z=f(x,y) es continua y definida en una región cerrada y acotada, que tiene extremo local en (x_0,y_0) y es diferenciable en dicho puntos entonces

$$f_x(x_0, y_0) = f_y(x_0, y_0) = 0$$

Demostración

Supongamos que f posee un extremo en el punto (x_0,y_0) y es diferenciable en (x_0,y_0) . Sea el plano $y=y_0$ que corta a la superficie f(x,y), entonces la función de una variable (curva) $h(x)=f(x,y_0)$ determinada por el plano y la superficie posee un extremo local en el punto $x=x_0$; por tanto $h'(x_0)=0$. Teniendo en cuenta que $f_x(x_0,y_0)=h'(x_0)$ entonces $f_x(x_0,y_0)=0$. Análogamente si se considera el plano $x=x_0$ que determina la función de una variable (curva) $h(y)=f(x_0,y)$. La misma posee extremo en $y=y_0$; y, por tanto, la derivada $f_y(x_0,y_0)$ es nula.

Observaciones

1.- Nótese que si las derivadas parciales son nulas en (x_0, y_0) , la superficie admite plano tangente en (x_0, y_0) (ver figura 2).

En efecto , sea z = f(x, y) entonces sea

$$F(x, y, z) = f(x, y) - z = 0$$
 una superficie.

Si F es diferenciable en (x_0, y_0, z_0) , una ecuación del plano tangente a la superficie dada por F(x, y, z) = 0 en (x_0, y_0, z_0) es

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

Puesto que F(x,y,z) = f(x,y) - z entonces $F_z(x_0,y_0,z_0) = -1$, luego

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) - (z - z_0) = 0$$

Ahora

$$F_{x}(x, y, z) = f_{x}(x, y) - 0 = f_{x}(x, y)$$

$$\Rightarrow F_{x}(x_{0}, y_{0}, z_{0}) = f_{x}(x_{0}, y_{0}) = 0 \text{ (Por hipótesis)}$$

$$F_{y}(x, y, z) = f_{y}(x, y) - 0 = f_{y}(x, y)$$

$$\Rightarrow F_{y}(x_{0}, y_{0}, z_{0}) = f_{y}(x_{0}, y_{0}) = 0 \text{ (Por hipótesis)}$$

Luego se deduce que $0 + 0 - (z - z_0) = 0$

$$z = z_0$$
 (plano tangente a la superficie)

En la figura 2 se muestra que el plano tangente de una función de dos variables en una extremo local de f es horizontal

Figura 2

En general, el plano tangente a la gráfica de una función diferenciable z=f(x,y) en el punto (x_0,y_0,z_0) tiene como ecuación a : $z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)$

2.- También puede haber extremos locales en los puntos donde no existen las derivadas parciales, alguna de ellas o ambas, o también en los puntos frontera de la región del dominio de la función.

Definición de puntos críticos

Sea z=f(x,y) función. El punto $c=(x_0,y_0)$ es un punto crítico de f si $c\in Dom f$ y si $f_x(c)=f_y(c)=0$ o bien uno de ellos o ambos no existen.

Ejemplo 1

Sea $f: \mathbb{R}^2 \to \mathbb{R}$, tal que $f(x,y) = x^2 + y^2$. Determine valores extremos.

Solución

$$f_x = 2x = 0$$

$$f_{v} = 2y = 0$$

entonces x=0 y y=0, por tanto (0,0) es el único punto crítico de f. Pero $f(x,y)=x^2+y^2\geq 0$; $\forall (x,y)\in \mathbb{R}^2$

Figura 3

Entonces

$$f(0,0) = 0 \le x^2 + y^2 = f(x,y)$$

Por tanto, f(0,0) = 0 es mínimo local de f y como es el único este es además absoluto o global (ver figura 3)

Ejemplo 2

Sea $f: \mathbb{R}^2 \to \mathbb{R}$, tal que $f(x,y) = x^2 - y^2$. Determine valores extremos (ver figura 4).

Solución

$$f_x = 2x = 0$$

$$f_y = 2y = 0$$

entonces x=0 y y=0, por tanto (0,0) es el único punto crítico de la función f .

No es ni máximo ni mínimo

Figura 4

Tomemos un punto cercano al origen sobre el eje X,

$$x = (h, 0) \Rightarrow f(h, 0) = h^2 - 0^2 = h^2 > 0$$

Tomemos un punto cercano al origen sobre el eje Y,

$$y = (0, k) \Rightarrow f(0, k) = 0^2 - k^2 = -k^2 < 0$$

Por tanto

$$-k^2 = f(0,k) < f(0,0) = 0 < f(h,0) = h^2$$

Por tanto

$$f(0,0) = 0$$
 no es máximo ni mínimo

Ejemplo 3

Sea $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$, tal que $f(x,y) = \sqrt{4 - x^2 - y^2}$. Determine valores extremos (ver figura 5).

$$D = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 4\}$$

Figura 5

$$f_x = \frac{-2x}{2\sqrt{4 - x^2 - y^2}} = 0 \Rightarrow x = 0$$

$$f_y = \frac{-2y}{2\sqrt{4 - x^2 - y^2}} = 0 \Rightarrow y = 0$$

Por tanto (0,0) es punto crítico de f , $f(0,0)=\sqrt{4}=2$. Ahora bien, para

$$z = \sqrt{4 - x^2 - y^2} \Rightarrow z^2 = 4 - x^2 - y^2$$

 $\Rightarrow x^2 + y^2 + z^2 = 4$

Luego en la frontera del dominio,

$$z = f(x_0, y_0) = \sqrt{4 - 4} = 0 \text{ es mínimo pues } x_0^2 + y_0^2 = 4$$
 Por tanto $f(0,0) = 2$ es máximo absoluto de f ; $\forall (x_0, y_0) \in D$.

Definición de punto silla

La función z=f(x,y) posee un punto silla P en la superficie que representa, si en cualquier vecindad de centro (x_0,y_0) y radio δ , si existen puntos del dominio que cumplen

$$f(x,y) > f(x_0, y_0) \forall f(x,y) < f(x_0, y_0)$$

Figura 6

Ejemplo 4

Sea $f: \mathbb{R}^2 \to \mathbb{R}$, tal que $f(x,y) = y^2 - x^2$. Determine valores extremos (ver figura 7).

Solución

$$f_x = -2x = 0$$

$$f_{y} = 2y = 0$$

entonces x=0 y y=0, por tanto (0,0) es el único punto crítico de la función f .

La siguiente figura muestra la superficie dada por la función $f(x,y) = y^2 - x^2$, se observa que en (0,0) no hay extremo si no un punto silla (ver ejemplo 2).

Condiciones suficiente para la existencia de extremos locales

La prueba de la derivada de segundo orden proporciona una condición suficiente para determinar dichos extremos; pero antes de enunciarla, es necesario definir una determinante, llamado HESSIANO.

Definición

Sea z = f(x, y) una función que admite derivadas de segundo orden continuas; llamamos hessiano de la función en el punto (x_0, y_0) simbolizado por $H(x_0, y_0)$, al determinante

$$\begin{vmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{vmatrix} = \begin{vmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{xy}(x_0, y_0) & f_{yy}(x_0, y_0) \end{vmatrix}$$

Observe que $f_{xy}(x_0,y_0)=f_{yx}(x_0,y_0)$ por la continuidad de las derivadas de segundo orden.

Criterio que entrega las condiciones suficiente para la existencia de extremos locales

Sea z=f(x,y) una función que admite derivadas parciales de primer y segundo orden continuas en una vecindad $B((x_0,y_0),\delta)$ y donde $f_x(x_0,y_0)=0$ y $f_y(x_0,y_0)=0$. Si:

- i) $H(x_0,y_0)>0$ y $f_{xx}(x_0,y_0)<0$ ($\therefore f_{yy}(x_0,y_0)<0$) entonces f presenta un máximo local en $f(x_0,y_0)$.
- ii) $H(x_0, y_0) > 0$ y $f_{xx}(x_0, y_0) > 0$ (: $f_{yy}(x_0, y_0) < 0$) entonces f presenta un mínimo local en $f(x_0, y_0)$.
- iii) $H(x_0, y_0) < 0$ entonces f presenta un punto silla en $f(x_0, y_0)$.
- iv) $H(x_0, y_0) = 0$ nada puede afirmarse sobre la existencia de extremos o puntos sillas (puede ser punto máximo, mínimo o punto silla)

Ejemplo 4

Sea $f: \mathbb{R}^2 \to \mathbb{R}$, tal que $f(x,y) = 2x^2 + y^2$. Determine valores extremos (ver figura 8).

Solución

$$f_x = 4x = 0 \Rightarrow f_{xx} = 4$$

$$f_{\nu} = 2y = 0 \Rightarrow f_{\nu\nu} = 2$$

entonces x=0 y y=0, por tanto (0,0) es el único punto crítico de la función f.

Calculemos ahora el Hessiano de la función f:

$$H(x,y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix} \Rightarrow H(0,0) = \begin{vmatrix} 4 & 0 \\ 0 & 2 \end{vmatrix} = 8 > 0$$

Y como $f_{xx}(0,0) = 4 > 0 \Rightarrow$ la función f presenta un mínimo local (absoluto) en f(0,0) = 0.

Figura 8

Ejemplo 5

Sea $f: \mathbb{R}^2 \to \mathbb{R}$, tal que $f(x,y) = -2x^2 - y^2$. Determine valores extremos (ver figura 9).

$$f_x = -4x = 0$$

$$f_{v} = -2y = 0$$

entonces x=0 y y=0, por tanto (0,0) es el único punto crítico de la función f .

Calculemos ahora el Hessiano de la función f:

$$H(x,y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix} \Rightarrow H(0,0) = \begin{vmatrix} -4 & 0 \\ 0 & -2 \end{vmatrix} = 8 > 0$$

Y como $f_{xx}(0,0) = -4 < 0 \Rightarrow$ la función f presenta un máximo local (absoluto) en f(0,0) = 0.

Figura 9

Ejemplo 6

Sea $f: \mathbb{R}^2 \to \mathbb{R}$, tal que $f(x,y) = y^2 - x^2$. Determine valores extremos y puntos sillas si existen.

Solución

$$f_x = -2x = 0$$

$$f_{v} = 2y = 0$$

Entonces x = 0 y y = 0, por tanto (0,0) es el único punto crítico de la función f.

Calculemos ahora el Hessiano de la función f:

$$H(x,y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix} \Rightarrow H(x,y) = \begin{vmatrix} -2 & 0 \\ 0 & 2 \end{vmatrix}$$
$$\Rightarrow H(0,0) = \begin{vmatrix} -2 & 0 \\ 0 & 2 \end{vmatrix} = -4 < 0$$

la función f presenta un punto silla en f(0,0) = 0, no existen puntos extremos (ver figura 7).

Ejemplo 7

Sea $f: \mathbb{R}^2 \to \mathbb{R}$, tal que $f(x,y) = x^3 + y^3 + 3x^2 - 9x - 12y$. Determine valores extremos y puntos sillas si existen.

Solución

Dado que
$$f(x,y) = x^3 + y^3 + 3x^2 - 9x - 12y$$
 , entonces
$$f_x = 3x^2 + 6x - 9 = 0 \cdots (1)$$

$$f_y = 3y^2 - 12 = 0 \cdots (2)$$

Entonces en(1) $3x^2 + 6x - 9 = 0 \iff x^2 + 2x - 3 = 0$ lo que implica que $x_1 = 1$ y $x_2 = -3$.

$$\operatorname{En}\left(2\right) \Leftrightarrow 3y^2 - 12 = 0 \iff y^2 = 4 \iff y_1 = -2 \text{ y } y_2 = 2$$

Luego existen los siguientes puntos críticos

$$(1,-2), (-3,-2), (1,2) y (-3,2)$$

Además

$$f_{xx} = 6x + 6$$
$$f_{yy} = 6y$$
$$f_{xy} = 0$$

Entonces el Hessiano de la función f es

$$H(x,y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix} \Rightarrow H(x,y) = \begin{vmatrix} 6x + 6 & 0 \\ 0 & 6y \end{vmatrix} = 36y(x+1)$$

y considerando los puntos críticos, resulta

$$H(1,-2) = 36(-2)(1+1) = 36(-4) = -144 < 0$$

luego la función f presenta un punto silla en f(1, -2)

$$H(-3, -2) = 36(-2)(-3 + 1) = 36(4) = 144 > 0$$

Y como

$$f_{rr}(-3, -2) = 6(-3) + 6 = -12 < 0$$

entonces la función f presenta un máximo local en f(-3, -2).

Para (1,2)

$$H(1,2) = 36(2)(1+1) = 36(4) = 144 > 0$$

y como

$$f_{xx}(1,2) = 6(1) + 6 = 12 > 0$$

entonces la función f presenta un mínimo local en f(1,2)Para (-3,2)

$$H(-3,2) = 36(2)(-3+1) = 36(-4) = -144 < 0$$

luego la función f presenta un punto silla en f(-3,2).

Ejemplo 8

Hallar y clasificar todos los puntos críticos de la función

$$f(x, y) = 2x^3 + 6y^2x - 6y^2 - 6x^2 + 5$$

Sea
$$f(x,y) = 2x^3 + 6y^2x - 6y^2 - 6x^2 + 5 \Rightarrow$$

$$f_x = 6x^2 + 6y^2 - 12x = 0$$

$$f_y = 12yx - 12y = 0$$

$$x^2 + y^2 - 2x = 0$$

$$y(x - 1) = 0$$

Por tanto

$$\begin{cases} x^2 + y^2 - 2x = 0 \\ y = 0 \end{cases}$$

entonces

$$x^{2} - 2x = 0 \Rightarrow x(x - 2) = 0$$
$$\Rightarrow x = 0 \lor x = 2$$

Puntos críticos (0,0) y (2,0)

$$\begin{cases} x^2 + y^2 - 2x = 0 \\ x = 1 \end{cases}$$

entonces

$$1 + y^{2} - 2 = 0 \Rightarrow y^{2} - 1 = 0$$
$$\Rightarrow y^{2} = 1$$
$$\Rightarrow y = -1 \lor y = 1$$

Puntos críticos (1,-1) y (1,1)

$$f_x = 6x^2 + 6y^2 - 12x = 0$$
$$f_y = 12yx - 12y = 0$$

Ahora

$$f_{xx} = 12x - 12$$
$$f_{yy} = 12x - 12$$

$$f_{xy} = 12y$$

Entonces

$$H(x,y) = \begin{vmatrix} 12x - 12 & 12y \\ 12y & 12x - 12 \end{vmatrix}$$

$$H(0,0) = \begin{vmatrix} -12 & 0 \\ 0 & -12 \end{vmatrix} = 144 > 0 \land f_{xx}(0,0) = -12 < 0$$

$$\Rightarrow f(0,0) \ m\'{a}ximo \ local \ (absoluto)$$

$$H(2,0) = \begin{vmatrix} 12 & 0 \\ 0 & 12 \end{vmatrix} = 144 > 0 \land f_{xx}(2,0) = 12 > 0$$

$$\Rightarrow f(2,0) \ m\'{n}imo \ local \ (absoluto)$$

$$H(1,-1) = \begin{vmatrix} 0 & -12 \\ -12 & 0 \end{vmatrix} = -144 < 0 \Rightarrow f(1,-1) \ punto \ silla$$

$$H(1,1) = \begin{vmatrix} 0 & 12 \\ 12 & 0 \end{vmatrix} = -144 < 0 \Rightarrow f(1,1) \ punto \ silla$$

Generalización del criterio para determinar extremos locales

Sea $f:U\subseteq\mathbb{R}^n\to\mathbb{R}$ función que admite derivadas parciales de orden 2 y además son continuas en un conjunto abierto U, y sea $x=(x_1,\cdots,x_n)\in U$ luego el Hessiano H(x) es definido como:

$$H(x) = \begin{vmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(x) \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) \cdots \frac{\partial f}{\partial x_{n} \partial x_{1}}(x) \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) \frac{\partial^{2} f}{\partial x_{2}^{2}}(x) \cdots \frac{\partial f}{\partial x_{n} \partial x_{2}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_{1} \partial x_{n}}(x) \frac{\partial f}{\partial x_{2} \partial x_{n}}(x) \cdots \frac{\partial^{2} f}{\partial x_{n}^{2}}(x) \end{vmatrix}$$

$$\uparrow \uparrow$$

$$col fila$$

0 bien para $x = (x_1, \dots, x_n)$

$$H(x) = \begin{vmatrix} f_{x_1x_1}(x) & f_{x_1x_2}(x) & \cdots & f_{x_1x_n}(x) \\ f_{x_2x_1}(x) & f_{x_2x_2}(x) & \cdots & f_{x_2x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(x) & f_{x_nx_2}(x) & \cdots & f_{x_nx_n}(x) \end{vmatrix}$$

$$fila\ col$$

Sea x_0 un punto crítico de f tal que

$$\frac{\partial f}{\partial x_1}(x_0) = \dots = \frac{\partial f}{\partial x_n}(x_0) = 0$$

Si $H(x_0) > 0$ y $\frac{\partial^2 f}{\partial {x_1}^2}(x_0) > 0$, entonces f presenta un mínimo

local en $f(x_0)$.

Si $H(x_0) > 0$ $y \frac{\partial^2 f}{\partial x_1^2}(x_0) < 0$, entonces f presenta un máximo local en $f(x_0)$.

Si $H(x_0) < 0$ entonces f presenta un punto silla en $f(x_0)$ Si $H(x_0) = 0$ no hay información.

Ejemplo 9

Determinar los valores extremos para la función

$$f(x, y, z) = x^2 + (y - 3)^2 + (z + 1)^2$$

El Hessiano a considerar es

$$H(x,y,z) = \begin{vmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{vmatrix}$$

donde

$$f(x,y,z) = x^2 + (y-3)^2 + (z+1)^2$$

$$f_x = 2x \implies f_x = 0 \text{ si } x = 0$$

$$f_y = 2(y-3) \implies f_y = 0 \text{ si } y = 3$$

$$f_z = 2(z+1) \implies f_z = 0 \text{ si } z = -1$$

entonces (0,3,-1) es el punto crítico.

Observe que f(0,3,-1) = 0 y $\forall x, y, z \in \mathbb{R}$,

$$f(0,3,-1) = 0 \le x^2 + (y-3)^2 + (z+1)^2 = f(x,y,z)$$

Por tanto,

f presenta un punto mínimo absoluto en f(0,3,-1)

Otra forma, aplicando el criterio

Dado que:
$$f_x = 2x$$
; $f_y = 2(y-3)$; $f_z = 2(z+1) \Rightarrow$

$$f_{xx} = 2, f_{xy} = 0; f_{xz} = 0$$

$$f_{yy} = 2, f_{yx} = 0; f_{yz} = 0$$

$$f_{zz} = 2, f_{zx} = 0; f_{zy} = 0$$
Luego $H(0,3,-1) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 8 > 0 \text{ y } f_{xx}(0,3,-1) = 2 > 0$

Por tanto,

f presenta un punto mínimo absoluto en f(0,3,-1)

Extremos de funciones continuas en regiones cerradas y acotadas.

Si z = f(x, y) es una función continua en una región cerrada y acotada en el plano XY, entonces la función posee extremos absolutos, esto es un máximo y un mínimo absoluto.

Los extremos pueden ocurrir:

1.-en los puntos críticos de la función, es decir en los puntos donde $f_x = f_y = 0$ o bien en los que no existen f_x o f_y .

2.- en los puntos frontera del dominio.

Ejemplo

Hallar los extremos absolutos de la función

$$f(x,y) = 9 - x + 12y - x^2 - 3y^2$$

definida en la región del plano XY limitado por las rectas

$$y = 0$$
; $x = 0$; $-\frac{x}{4} + \frac{y}{4} = 1$

Solución

$$-\frac{x}{4} + \frac{y}{4} = 1 \Leftrightarrow y = x + 4$$

Luego la región R del plano XY limitado por las rectas $\ y=0$; x=0 y $\ y=x+4$ es un triángulo como se muestra en la siguiente figura,

Analizaremos primero los posible extremos de la función en los puntos críticos de f dentro de la región R, en efecto

$$f_x(x,y) = -1 - 2x = 0 \Rightarrow x = -\frac{1}{2}$$

 $f_y(x,y) = 12 - 6y = 0 \Rightarrow y = 2$

Luego el punto crítico es

$$f(x,y) = 9 - x + 12y - x^2 - 3y^2$$

$$\left(-\frac{1}{2},2\right) \in R \text{ entonces } f\left(-\frac{1}{2},2\right) = \frac{85}{4}$$

Consideremos ahora los puntos frontera del triángulo

i) En la recta y = 0

$$f(x,0) = 9 - x - x^2$$
; $x \in [-4,0]$

Los valores extremos pueden darse en los extremos del intervalo:

$$x = -4$$
; $x = 0$ tales que
 $f(-4,0) = 9 + 4 - 16 = -3$
 $f(0,0) = 9 - 0 - 0^2 = 9$

Y en los puntos interiores del intervalo]-4,0[entonces

$$f'(x,0) = -1 - 2x = 0 \Rightarrow x = -\frac{1}{2}$$

Luego
$$f\left(-\frac{1}{2},0\right) = \frac{37}{4}$$

ii) En la recta x = 0, resulta

$$f(0,y) = 9 + 12y - 3y^2$$
; $y \in [0,4]$

Los extremos pueden ocurrir en y=0; en y=4 tales que:

$$f(0,0) = 9 + 12 \cdot 0 - 3 \cdot 0^2 = 9$$

$$f(0,4) = 9 + 12 \cdot 4 - 3 \cdot 16 = 9$$

Y en los puntos interiores de]0,4[, entonces

$$f'(0, y) = 12 - 6y = 0 \Rightarrow y = 2$$

Luego f(0,2) = 21

iii) En la recta y = x + 4

$$f(x,x+4) = 9 - x + 12(x+4) - x^2 - 3(x+4)^2$$
$$f(x,x+4) = 9 - 13x - 4x^2$$

Como ya se han calculados los posibles extremos en los vértices del triángulo, sólo nos resta averiguar en los puntos interiores del segmento determinado por los puntos (-4,0) y (0,4); en consecuencia

$$f'(x, x + 4) = -8x - 13 = 0 \implies x = -\frac{13}{8}$$
$$\Rightarrow f\left(-\frac{13}{8}, \frac{19}{8}\right) = \frac{313}{16}$$

Por lo tanto, los valores extremos obtenidos son:

$$\frac{85}{4}$$
, -3, 9, $\frac{37}{4}$, 21 y $\frac{313}{16}$

El mayor es $\frac{85}{4}$ y el menor es -3, entonces la función presenta

un máximo absoluto en $f\left(-\frac{1}{2},2\right) = \frac{85}{4}$

y un mínimo absoluto en f(-4,0) = -3