Exploiting symmetries in Markov Decision Processes for Reinforcement Learning

Context

- Markov decision processes
- Reinforcement learning
- Unsupervised learning
- Geometric learning
- Homomorphism

Markov decision processes (MDPs)

- States S
- Actions A
- State transition P
- Reward function R
- Policy π(S)
- MDPs scale poorly!

Waldoalvarez via Wikipedia

Reinforcement learning (RL)

- Decision maker (agent)
- Environment
- States, actions and rewards
- MDPs for mathematical formulation

Unsupervised learning

- Find structure in data without extra information
- Reduce dimensionality
- Principal component analysis

Geometric learning

- Non-euclidean data
- Graphs, manifolds

 Inherent relationships, connections and shared properties

Perozzi et al. "DeepWalk: Online Learning of Social Representations" (2014)

Homomorphism

- Structure preserving map
- Symmetry in state-action space of MDP
- Reduce the solution space
- MDP homomorphic networks!

Van der Pol et al. "MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning" (2020)

Symmetry and Equivariance

- Symmetric to a transformation means that the output does not change
- Equivariant to a transformation means that the output changes deterministically
- Invariance is a special case of equivariance
- The **orbit** O_x of point x is the set of points reachable from x via transformation operator g

Properties of a vector under E(3) Translation Rotation Magnitude Direction

Equivariance

Invariance

f(gx) = f(x)

MDPs with Symmetries

- In an MDP with symmetries there is a set of transformations on the state-action space, which leaves the reward function and transition operator invariant
- The reward and transition function are invariant along the orbits defined by L_g and $K_g^{\it s}$.

$$R(s, a) = R(L_g[s], K_g^s[a])$$

$$T(s'|s, a) = T(L_g[s']|L_g[s], K_g^s[a])$$

$$\forall g \in G, s \in S, a \in A$$

MDP homomorphism

- We call MDP homomorphism a map between an MDP $M = (S, A, R, T, \gamma)$ and another MDP $\overline{M} = (\overline{S}, \overline{A}, \overline{R}, \overline{T}, \overline{\gamma})$ such that the new system, also called *abstract MDP* maintains the essential structure removing redundancies in the problem description.
- As result we obtain a smaller state-action space, upon which we may more easily build a policy.

Ravindran and Barto «Approximate Homomorphisms: A framework for non-exact minimization in Markov Decision Processes», 2004

MDP homomorphic network

- We define as MDP homomorphic network the connection between the equivariant neural networks and the symmetries in RL.
- Equivariant neural networks are a class of NNs, which have builtin symmetries.
- E.g., Convolutional Neural Networks (CNNs) are equivariant to translations but not to other transformations.

https://samiraabnar.github.io/articles/2020-05/indist

Applications: Pong

Atari video game developed in 1972

The symmetric design reflects the way it was created

Flip symmetry over the horizontal axis

Applications: CartPole

 Game in the Open-Al Gym reinforcement learning environment

Applications: Grid world

Popular game in the reinforcement learning environment

Four-fold rotational symmetry

Conclusion

Faster convergence means better real-time applications.

Less computations needed mean cheaper hardware is required and the spread of technology will increase.

