

VERSION WITH MARKINGS TO SHOW CHANGES MADE

(Added material is noted in bold underline; [deleted material] is noted in brackets)

In the Specification:

Please replace the paragraph beginning on page 4, line 17, with the following rewritten paragraph:

--OPGL is synthesised as a type II transmembrane protein consisting of 317 amino acid residues (human, cf. SEQ ID NO: 2 (corresponding DNA sequence in SEQ ID NO: 1)) or 316 amino acid residues (murine, cf. SEQ ID NOS: 4 and 6 (corresponding DNA sequences in SEQ ID NOS: 3 and 5, respectively)). Alignment of the two amino acid sequences show that identical amino acid residues are found at 87% of the homologous positions.--

Please replace the paragraph beginning on page 24, line 20, with the following rewritten paragraph:

--The promiscuous epitope can according to the invention be a naturally occurring human T-cell epitope such as epitopes from tetanus toxoid (e.g. the P2 and P30 epitopes (SEQ ID NOS: 34 and 35, respectively)), diphtheria toxoid, Influenza virus hemagglutinin (HA), and *P. falciparum* CS antigen. --

Please replace the paragraph beginning on page 25, line 31, with the following rewritten paragraph:

--One especially preferred PADRE peptide is the one having the amino acid sequence AKFVAAWTLKAAA (**SEQ ID NO: 36**) or an immunologically effective subsequence thereof. This, and other epitopes having the same lack of MHC restriction are preferred T-cell epitopes which should be present in the OPGL analogues used in the inventive method. Such super-promiscuous epitopes will allow for the most simple embodiments of the invention wherein only one single modified OPGL is presented to the vaccinated animal's immune system.--

Please replace the paragraph beginning on page 54, line 18, with the following rewritten paragraph:

--A synthetic cDNA encoding the murine OPGL residues 158-316 has been synthesized removing sub-optimal *Eschericia coli* and *Pichia pastoris* codons from the published sequence. Additionally, an N-terminal Histidine tag, part of the cleavage site of the alpha mating factor signal sequence from *Sacharomyces cerevisiae*, and suitable restriction enzymes have been incorporated into the open reading frame (cf. SEQ ID NO: 7 corresponding amino acid sequence in SEQ ID NO: 8).--

Please replace the paragraph beginning on page 54, line 25, with the following rewritten paragraph:

--This cDNA encoding wild type murine OPGL has been cloned into a standard *Eschericia coli* expression vector (pTrc99a) using *Bsp*HI and *Hind*III restriction enzymes and a standard cloning vector (pBluescript KS+) using

SacI and *KpnI* restriction enzymes (yielding SEQ ID NO: 9 (corresponding amino acid sequence in SEQ ID NO: 10)).--

Please replace the paragraph beginning on page 58, line 5, with the following rewritten paragraph:

--PCR of SEQ ID NO: 9 was performed using SEQ ID NOS: 22 and 25 as primers. The resulting PCR fragment was restriction digested with *SacII* and *KpnI* and subsequently purified from an agarose gel. A second PCR using SEQ ID NO: 9 as template was performed using primer SEQ ID NO: 26 and a vector specific primer. The resulting PCR fragment was restriction digested with *KpnI* and *HindIII*. Both fragments were then ligated to SEQ ID NO: 9 in pBluescript KS+ restriction digested with *SacII* and *HindIII*. To correct a single base mutation in this construct, PCR using the construct as template was performed with primers SEQ ID NOS: 33 and 29. The resulting PCR fragment was restriction digested with *PstI* + *EcoRI*, gel purified and subsequently ligated to the erroneous construct digested with *PstI* and *EcoRI*. The verified construct (SEQ ID NO: 13 (corresponding amino acid sequence in SEQ ID NO: 14)) was then transferred to pTrc99a using *BspHI* and *HindIII* restriction enzymes.--

Please replace the paragraph beginning on page 58, line 23, with the following rewritten paragraph:

--PCR was performed using primers SEQ ID NOS: 27 and 28 without template. The resulting PCR fragment was restriction digested with *PstI* and *EcoRI* and subsequently purified from an agarose gel. The resulting fragment was then ligated to SEQ ID NO: 9 in pBluescript KS+ restriction digested with

SacII and *HindIII*. The verified construct (SEQ ID NO: 15 (corresponding amino acid sequence in SEQ ID NO: 16)) was subsequently transferred to pTrc99a using *BspHI* and *HindIII* restriction enzymes.--

Please replace the paragraph beginning on page 59, line 1, with the following rewritten paragraph:

--PCR of SEQ ID NO: 9 was performed using primers SEQ ID NOs: 22 and 29. The resulting PCR fragment was restriction digested with *PstI* and *BstBI* and subsequently purified from an agarose gel. A second PCR using SEQ ID NO: 9 as template was performed using primer SEQ ID NO: 30 and a vector specific primer. The resulting PCR fragment was restriction digested with *BstBI* and *KpnI* and subsequently gel purified. Both fragments were then ligated to SEQ ID NO: 9 in pBluescript KS+ restriction digested with *PstI* and *KpnI*. The verified construct (SEQ ID NO: 17 (corresponding amino acid sequence in SEQ ID NO: 18)) was then transferred to pTrc99a using *BspHI* and *HindIII* restriction enzymes.--

Please replace the paragraph beginning on page 59, line 14, with the following rewritten paragraph:

--PCR of SEQ ID NO: 9 was performed using primers SEQ ID NOs: 22 and 23. The resulting PCR fragment was restriction digested with *SacII* and *KpnI* and subsequently purified from an agarose gel. A second PCR using SEQ ID NO: 9 as template was performed using primer SEQ ID NOs: 24 and 31. The PCR fragment was restriction digested with *KpnI* and *EcoRI* and subsequently gel purified. Both fragments were then ligated to SEQ ID NO: 9 in

pBluescript KS+ restriction digested with *Sac*II and *Eco*RI. The verified construct (SEQ ID NO: 19 (corresponding amino acid sequence in SEQ ID NO: 20)) was then transferred to pTrc99a using *Bsp*HI and *Hind*III restriction enzymes.-

In the Claims:

Please replace Claim 12 with the following amended claim:

Claim 12 (amended) --The method according to claim 11, wherein the natural T-cell epitope is selected from a Tetanus toxoid epitope such as P2 or P30 (SEQ ID NOS: 34 and 35, respectively), a diphtheria toxoid epitope, an influenza virus hemagglutinin epitope, and a *P. falciparum* CS epitope.--

SEQUENCE LISTING

<110> M&E Biotech A/S
HALKIER, Torben
HAANING, Jesper

<120> Method for Down-Regulating Osteoprotegerin Ligand Activity

<130> 3631-0108P

<140> US 09/787,126
<141> 2001-03-14

<160> 36

<170> PatentIn Ver. 2.1

<210> 1
<211> 2271
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (185)..(1138)

aagcttggta ccgagctcgg atccactact cgaccacgc gtccgcgcgc cccaggagcc 60
aaagccgggc tccaagtccg cggcccacgt cgaggctccg cccgcgcgc cggagttggc 120
cgccagacaag aaggggaggg agcgggagag ggaggagagc tccgaagcga gagggccgag 180
cgcc atg cgc cgc gcc agc aga gac tac acc aag tac ctg cgt ggc tcg 229
Met Arg Arg Ala Ser Arg Asp Tyr Thr Lys Tyr Leu Arg Gly Ser
1 5 10 15
gag gag atg ggc ggc ggc ccc gga gcc ccg cac gag ggc ccc ctg cac 277
Glu Glu Met Gly Gly Pro Gly Ala Pro His Glu Gly Pro Leu His
20 25 30
gcc ccg ccg ccc cct gcg ccg cac cag ccc ccc gcc gcc tcc cgc tcc 325
Ala Pro Pro Pro Ala Pro His Gln Pro Pro Ala Ala Ser Arg Ser
35 40 45
atg ttc gtg gcc ctc ctg ggg ctg ggg ctg ggc cag gtt gtc tgc agc 373
Met Phe Val Ala Leu Leu Gly Leu Gly Leu Gly Gln Val Val Cys Ser
50 55 60
gtc gcc ctg ttc tat ttc aga gca cag atg gat cct aat aga ata 421
Val Ala Leu Phe Phe Tyr Phe Arg Ala Gln Met Asp Pro Asn Arg Ile
65 70 75
tca gaa gat ggc act cac tgc att tat aga att ttg aga ctc cat gaa 469
Ser Glu Asp Gly Thr His Cys Ile Tyr Arg Ile Leu Arg Leu His Glu
80 85 90 95
aat gca gat ttt caa gac aca act ctg gag agt caa gat aca aaa tta 517
Asn Ala Asp Phe Gln Asp Thr Thr Leu Glu Ser Gln Asp Thr Lys Leu
100 105 110
ata cct gat tca tgt agg aga att aaa cag gcc ttt caa gga gct gtg 565
Ile Pro Asp Ser Cys Arg Arg Ile Lys Gln Ala Phe Gln Gly Ala Val
115 120 125
caa aag gaa tta caa cat atc gtt gga tca cag cac atc aga gca gag 613

Gln	Lys	Glu	Leu	Gln	His	Ile	Val	Gly	Ser	Gln	His	Ile	Arg	Ala	Glu	
130																140
aaa	gct	atg	gtg	gat	ggc	tca	tgg	tta	gat	ctg	gcc	aag	agg	agc	aag	661
Lys	Ala	Met	Val	Asp	Gly	Ser	Trp	Leu	Asp	Leu	Ala	Lys	Arg	Ser	Lys	
145																155
ctt	gaa	gct	cag	cct	ttt	gct	cat	ctc	act	att	aat	gcc	acc	gac	atc	709
Leu	Glu	Ala	Gln	Pro	Phe	Ala	His	Leu	Thr	Ile	Asn	Ala	Thr	Asp	Ile	
160																175
cca	tct	ggt	tcc	cat	aaa	gtg	agt	ctg	tcc	tct	tgg	tac	cat	gat	cgg	757
Pro	Ser	Gly	Ser	His	Lys	Val	Ser	Leu	Ser	Ser	Trp	Tyr	His	Asp	Arg	
180																190
ggt	tgg	gcc	aag	atc	tcc	aac	atg	act	ttt	agc	aat	gga	aaa	cta	ata	805
Gly	Trp	Ala	Lys	Ile	Ser	Asn	Met	Thr	Phe	Ser	Asn	Gly	Lys	Leu	Ile	
195																205
gtt	aat	cag	gat	ggc	ttt	tat	tac	ctg	tat	gcc	aac	att	tgc	ttt	cga	853
Val	Asn	Gln	Asp	Gly	Phe	Tyr	Tyr	Leu	Tyr	Ala	Asn	Ile	Cys	Phe	Arg	
210																220
cat	cat	gaa	act	tca	gga	gac	cta	gct	aca	gag	tat	ctt	caa	cta	atg	901
His	His	Glu	Thr	Ser	Gly	Asp	Leu	Ala	Thr	Glu	Tyr	Leu	Gln	Leu	Met	
225																235
gtg	tac	gtc	act	aaa	acc	agc	atc	aaa	atc	cca	agt	tct	cat	acc	ctg	949
Val	Tyr	Val	Thr	Lys	Thr	Ser	Ile	Lys	Ile	Pro	Ser	Ser	His	Thr	Leu	
240																255
atg	aaa	gga	gga	agc	acc	aag	tat	tgg	tca	ggg	aat	tct	gaa	ttc	cat	997
Met	Lys	Gly	Gly	Ser	Thr	Lys	Tyr	Trp	Ser	Gly	Asn	Ser	Glu	Phe	His	
260																270
ttt	tat	tcc	ata	aac	gtt	ggt	gga	ttt	ttt	aag	tta	cg	tct	gga	gag	1045
Phe	Tyr	Ser	Ile	Asn	Val	Gly	Gly	Phe	Phe	Lys	Leu	Arg	Ser	Gly	Glu	
275																285
gaa	atc	agc	atc	gag	gtc	tcc	aac	ccc	tcc	tta	ctg	gat	ccg	gat	cag	1093
Glu	Ile	Ser	Ile	Glu	Val	Ser	Asn	Pro	Ser	Leu	Leu	Asp	Pro	Asp	Gln	
290																300
gat	gca	aca	aca	tac	ttt	ggg	gct	ttt	aaa	gtt	cga	gat	ata	gat	tga	1138
Asp	Ala	Thr	Tyr	Phe	Gly	Ala	Phe	Lys	Val	Arg	Asp	Ile	Asp			
305																315
ccccagttt	ttggagtgtt	atgtatttcc	tggatgtttg	gaaacatttt	ttaaaacaag											1198
ccaagaaaga	tgtatataagg	tgtgtgagac	tactaagagg	catggcccca	acggtagcacg											1258
actcagtatc	catgctcttg	accttgtaga	gaacacgcgt	atttacagcc	agtgggagat											1318
gttagactca	tggtgtgtta	cacaatggtt	ttttaaatttt	gtaatgaatt	cctagaatta											1378
aaccagattg	gagcaattac	gggttgacct	tatgagaaac	tgcattgtgg	ctatgggagg											1438
ggttggtccc	tggtcatgtg	ccccttcgca	gctgaagtgg	agagggtgtc	atctagcgca											1498
attdaaggat	catctgaagg	ggcaaattct	tttgaattgt	tacatcatgc	ttggAACCTGC											1558
aaaaaaatact	ttttctaatg	aggagagaaa	atatatgtat	tttttatataa	tatctaaagt											1618
tatatttcag	atgtaatgtt	ttctttgcaa	agtattgtaa	attatatttg	tgctatagt											1678
tttgattcaa	aatattttaaa	aatgtcttgc	tgttgacata	ttaatgttt	taaatgtaca											1738
gacatattta	actgggtcac	tttgtaaatt	ccctgggaa	aacttgcagc	taaggagggg											1798
aaaaaaatgt	tgtttctaa	tatcaaatgc	agtatatttc	ttcgttcttt	ttaagttaat											1858
agattttttc	agacttgtca	agcctgtgca	aaaaaattaa	aatggatgcc	ttgaataata											1918
agcaggatgt	tggccaccag	gtgccttca	aatttagaaa	ctaattgact	tttagaaagct											1978
gacattgcca	aaaaggatac	ataatgggc	actgaatct	gtcaagagta	gttatataat											2038
tgttgaacag	gtgttttcc	acaagtgcgc	caaattgtac	ctttttttt	ttttcaaaat											2098
agaaaagttt	ttagtggttt	atcagcaaaa	aagtccaatt	ttaattttagt	aaatgttata											2158
ttatactgtt	caataaaaaac	attgccttt	aatgttaatt	ttttggtaca	aaaataaaatt											2218
tatatgaaaa	aaaaaaaaaa	aggcgcccg	ctctagaggg	ccctatttcta	tag											2271

<211> 317
<212> PRT
<213> Homo sapiens

<400> 2
Met Arg Arg Ala Ser Arg Asp Tyr Thr Lys Tyr Leu Arg Gly Ser Glu
1 5 10 15
Glu Met Gly Gly Pro Gly Ala Pro His Glu Gly Pro Leu His Ala
20 25 30
Pro Pro Pro Pro Ala Pro His Gln Pro Pro Ala Ala Ser Arg Ser Met
35 40 45
Phe Val Ala Leu Leu Gly Leu Gly Leu Gly Gln Val Val Cys Ser Val
50 55 60
Ala Leu Phe Phe Tyr Phe Arg Ala Gln Met Asp Pro Asn Arg Ile Ser
65 70 75 80
Glu Asp Gly Thr His Cys Ile Tyr Arg Ile Leu Arg Leu His Glu Asn
85 90 95
Ala Asp Phe Gln Asp Thr Thr Leu Glu Ser Gln Asp Thr Lys Leu Ile
100 105 110
Pro Asp Ser Cys Arg Arg Ile Lys Gln Ala Phe Gln Gly Ala Val Gln
115 120 125
Lys Glu Leu Gln His Ile Val Gly Ser Gln His Ile Arg Ala Glu Lys
130 135 140
Ala Met Val Asp Gly Ser Trp Leu Asp Leu Ala Lys Arg Ser Lys Leu
145 150 155 160
Glu Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Thr Asp Ile Pro
165 170 175
Ser Gly Ser His Lys Val Ser Leu Ser Ser Trp Tyr His Asp Arg Gly
180 185 190
Trp Ala Lys Ile Ser Asn Met Thr Phe Ser Asn Gly Lys Leu Ile Val
195 200 205
Asn Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His
210 215 220
His Glu Thr Ser Gly Asp Leu Ala Thr Glu Tyr Leu Gln Leu Met Val
225 230 235 240
Tyr Val Thr Lys Thr Ser Ile Lys Ile Pro Ser Ser His Thr Leu Met
245 250 255
Lys Gly Gly Ser Thr Lys Tyr Trp Ser Gly Asn Ser Glu Phe His Phe
260 265 270
Tyr Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ser Gly Glu Glu
275 280 285
Ile Ser Ile Glu Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp
290 295 300
Ala Thr Tyr Phe Gly Ala Phe Lys Val Arg Asp Ile Asp
305 310 315

<210> 3
<211> 951
<212> DNA
<213> Mus musculus

<220>
<221> CDS
<222> (1)..(951)

<220>

<221> misc_feature
<222> (142)..(213)
<223> Transmembrane domain

<220>
<221> misc_feature
<222> (454)..(948)
<223> Tumour Necrosis Factor(TNF)-like domain

<400> 3
atg cgc cgg gcc agc cga gac tac ggc aag tac ctg cgc agc tcg gag 48
Met Arg Arg Ala Ser Arg Asp Tyr Gly Lys Tyr Leu Arg Ser Ser Glu
1 5 10 15
gag atg ggc agc ggc ccc ggc gtc cca cac gag ggt ccg ctg cac ccc 96
Glu Met Gly Ser Gly Pro Gly Val Pro His Glu Gly Pro Leu His Pro
20 25 30
gcg cct tct gca ccg gct ccg gcg cca ccc gcc gcc tcc cgc tcc 144
Ala Pro Ser Ala Pro Ala Pro Pro Pro Ala Ala Ser Arg Ser
35 40 45
atg ttc ctg gcc ctc ctg ggg ctg gga ctg ggc cag gtg gtc tgc agc 192
Met Phe Leu Ala Leu Leu Gly Leu Gly Leu Gly Gln Val Val Cys Ser
50 55 60
atc gct ctg ttc ctg tac ttt cga gcg cag atg gat cct aac aga ata 240
Ile Ala Leu Phe Leu Tyr Phe Arg Ala Gln Met Asp Pro Asn Arg Ile
65 70 75 80
tca gaa gac agc act cac tgc ttt tat aga atc ctg aga ctc cat gaa 288
Ser Glu Asp Ser Thr His Cys Phe Tyr Arg Ile Leu Arg Leu His Glu
85 90 95
aac gca ggt ttg cag gac tcg act ctg gag agt gaa gac aca cta cct 336
Asn Ala Gly Leu Gln Asp Ser Thr Leu Glu Ser Glu Asp Thr Leu Pro
100 105 110
gac tcc tgc agg agg atg aaa caa gcc ttt cag ggg gcc gtg cag aag 384
Asp Ser Cys Arg Arg Met Lys Gln Ala Phe Gln Gly Ala Val Gln Lys
115 120 125
gaa ctg caa cac att gtg ggg cca cag cgc ttc tca gga gct cca gct 432
Glu Leu Gln His Ile Val Gly Pro Gln Arg Phe Ser Gly Ala Pro Ala
130 135 140
atg atg gaa ggc tca tgg ttg gat gtg gcc cag cga ggc aag cct gag 480
Met Met Glu Gly Ser Trp Leu Asp Val Ala Gln Arg Gly Lys Pro Glu
145 150 155 160
gcc cag cca ttt gca cac ctc acc atc aat gct gcc agc atc cca tcg 528
Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro Ser
165 170 175
ggt tcc cat aaa gtc act ctg tcc tct tgg tac cac gat cga ggc tgg 576
Gly Ser His Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly Trp
180 185 190
gcc aag atc tct aac atg acg tta agc aac gga aaa cta agg gtt aac 624
Ala Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val Asn
195 200 205
caa gat ggc ttc tat tac ctg tac gcc aac att tgc ttt cgg cat cat 672
Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His His
210 215 220
gaa aca tcg gga agc gta cct aca gac tat ctt cag ctg atg gtg tat 720
Glu Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val Tyr
225 230 235 240
gtc gtt aaa acc agc atc aaa atc cca agt tct cat aac ctg atg aaa 768
Val Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu Met Lys

245	250	255	
Gly Gly Ser Thr Lys Asn Trp Ser Gly Asn Ser Glu Phe His Phe Tyr			816
260	265	270	
Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile			864
275	280	285	
Ser Ile Gln Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp Ala			912
290	295	300	
acg tac ttt ggg gct ttc aaa gtt cag gac ata gac tga			951
Thr Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp			
305	310	315	

<210> 4
<211> 316
<212> PRT
<213> Mus musculus

<400> 4			
Met Arg Arg Ala Ser Arg Asp Tyr Gly Lys Tyr Leu Arg Ser Ser Glu			
1	5	10	15
Glu Met Gly Ser Gly Pro Gly Val Pro His Glu Gly Pro Leu His Pro			
20	25	30	
Ala Pro Ser Ala Pro Ala Pro Ala Pro Pro Pro Ala Ala Ser Arg Ser			
35	40	45	
Met Phe Leu Ala Leu Leu Gly Leu Gly Leu Gly Gln Val Val Cys Ser			
50	55	60	
Ile Ala Leu Phe Leu Tyr Phe Arg Ala Gln Met Asp Pro Asn Arg Ile			
65	70	75	80
Ser Glu Asp Ser Thr His Cys Phe Tyr Arg Ile Leu Arg Leu His Glu			
85	90	95	
Asn Ala Gly Leu Gln Asp Ser Thr Leu Glu Ser Glu Asp Thr Leu Pro			
100	105	110	
Asp Ser Cys Arg Arg Met Lys Gln Ala Phe Gln Gly Ala Val Gln Lys			
115	120	125	
Glu Leu Gln His Ile Val Gly Pro Gln Arg Phe Ser Gly Ala Pro Ala			
130	135	140	
Met Met Glu Gly Ser Trp Leu Asp Val Ala Gln Arg Gly Lys Pro Glu			
145	150	155	160
Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro Ser			
165	170	175	
Gly Ser His Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly Trp			
180	185	190	
Ala Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val Asn			
195	200	205	
Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His His			
210	215	220	
Glu Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val Tyr			
225	230	235	240
Val Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu Met Lys			
245	250	255	
Gly Gly Ser Thr Lys Asn Trp Ser Gly Asn Ser Glu Phe His Phe Tyr			
260	265	270	
Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile			
275	280	285	

Ser Ile Gln Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp Ala
 290 295 300
 Thr Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp
 305 310 315

<210> 5
 <211> 2299
 <212> DNA
 <213> Mus musculus

<220>
 <221> CDS
 <222> (170)..(1120)

<400> 5
 gagctcgat ccactactcg acccacgcgt ccgcccacgc gtccggccag gacctctgtg 60
 aaccggtcgg ggccccggc gcctggccgg gagtctgctc ggccgtgggt ggccgaggaa 120
 gggagagaac gatcgccggag cagggcgccc gaactccggg cgccgcgcc atg cgc cgg 178
 Met Arg Arg
 1
 gcc agc cga gac tac ggc aag tac ctg cgc agc tcg gag gag atg ggc 226
 Ala Ser Arg Asp Tyr Gly Lys Tyr Leu Arg Ser Ser Glu Glu Met Gly
 5 10 15
 agc ggc ccc ggc gtc cca cac gag ggt ccg ctg cac ccc gcg cct tct 274
 Ser Gly Pro Gly Val Pro His Glu Gly Pro Leu His Pro Ala Pro Ser
 20 25 30 35
 gca ccg gct ccg gcg ccg cca ccc gcc gcc tcc cgc tcc atg ttc ctg 322
 Ala Pro Ala Pro Pro Ala Ala Ser Arg Ser Met Phe Leu
 40 45 50
 gcc ctc ctg ggg ctg gga ctg ggc cag gtg gtc tgc agc atc gct ctg 370
 Ala Leu Leu Gly Leu Gly Gln Val Val Cys Ser Ile Ala Leu
 55 60 65
 ttc ctg tac ttt cga gcg cag atg gat cct aac aga ata tca gaa gac 418
 Phe Leu Tyr Phe Arg Ala Gln Met Asp Pro Asn Arg Ile Ser Glu Asp
 70 75 80
 agc act cac tgc ttt tat aga atc ctg aga ctc cat gaa aac gca ggt 466
 Ser Thr His Cys Phe Tyr Arg Ile Leu Arg Leu His Glu Asn Ala Gly
 85 90 95
 ttg cag gac tgc act ctg gag agt gaa gac aca cta cct gac tcc tgc 514
 Leu Gln Asp Ser Thr Leu Glu Ser Glu Asp Thr Leu Pro Asp Ser Cys
 100 105 110 115
 agg agg atg aaa caa gcc ttt cag ggg gcc gtg cag aag gaa ctg caa 562
 Arg Arg Met Lys Gln Ala Phe Gln Gly Ala Val Gln Lys Glu Leu Gln
 120 125 130
 cac att gtg ggg cca cag cgc ttc tca gga gct cca gct atg atg gaa 610
 His Ile Val Gly Pro Gln Arg Phe Ser Gly Ala Pro Ala Met Met Glu
 135 140 145
 ggc tca tgg ttg gat gtg gcc cag cga ggc aag cct gag gcc cag cca 658
 Gly Ser Trp Leu Asp Val Ala Gln Arg Gly Lys Pro Glu Ala Gln Pro
 150 155 160
 ttt gca cac ctc acc atc aat gct gcc agc atc cca tcg ggt tcc cat 706
 Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro Ser Gly Ser His
 165 170 175
 aaa gtc act ctg tcc tct tgg tac cac gat cga ggc tgg gcc aag atc 754
 Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly Trp Ala Lys Ile
 180 185 190 195

tct aac atg acg tta agc aac gga aaa cta agg gtt aac caa gat ggc	802
Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val Asn Gln Asp Gly	
200 205 210	
ttc tat tac ctg tac gcc aac att tgc ttt cggtt cat cat gaa aca tcg	850
Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His His Glu Thr Ser	
215 220 225	
gga agc gta cct aca gac tat ctt cag ctg atg gtg tat gtc gtt aaa	898
Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val Tyr Val Val Lys	
230 235 240	
acc agc atc aaa atc cca agt tct cat aac ctg atg aaa gga ggg agc	946
Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu Met Lys Gly Gly Ser	
245 250 255	
acg aaa aac tgg tcg ggc aat tct gaa ttc cac ttt tat tcc ata aat	994
Thr Lys Asn Trp Ser Gly Asn Ser Glu Phe His Phe Tyr Ser Ile Asn	
260 265 270 275	
gtt ggg gga ttt ttc aag ctc cga gct ggt gaa gaa att agc att cag	1042
Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile Ser Ile Gln	
280 285 290	
gtg tcc aac cct tcc ctg ctg gat ccg gat caa gat gcg acg tac ttt	1090
Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp Ala Thr Tyr Phe	
295 300 305	
ggg gct ttc aaa gtt cag gac ata gac tga gactcatttc gtggAACATT	1140
Gly Ala Phe Lys Val Gln Asp Ile Asp	
310 315	
agcatggatg tccttagatgt ttggaaactt cttaaaaaat ggatgatgtc tatacatgtg	1200
taagactact aagagacatg gcccacggtg tatgaaactc acagccctct ctcttgagcc	1260
tgtacagggtt gtgtatatgt aaagtccata ggtgatgtt gattcatggt gattacacaa	1320
cgggtttaca atttttaat gatttcctag aattgaacca gattgggaga ggtattccga	1380
tgcttatgaa aaacttacac gtgagctatg gaagggggtc acagtctctg ggtctaacc	1440
ctggacatgt gccactgaga accttgaat taagaggatg ccatgtcatt gcaaagaaat	1500
gatagtgtga agggtaatgt tcttttaatg tgttacattt cgctgggacc tgcaaataag	1560
ttctttttt ctaatgagga gagaaaaata tatgtatTTT tatataatgt ctaaagttat	1620
atttcaggtg taatgtttt tttgttgc tatgttgc tatagtattt	1680
gattcaaat atttaaaaat gtctactgt tgacatattt aatgttttaa atgtacagat	1740
gtatTTTact ggtgcacttt gtaattcccc tgaaggtaact cgtagctaag gggcagaat	1800
actgtttctg gtgaccacat gtatTTTatt tcttttattt tttaactt atagagtctt	1860
cagacttgc aaaactatgc aagcaaaata aataaataaa aataaaatga ataccctgaa	1920
taataagttag gatgttggtc accaggtgcc tttcaattt agaagctaatt tgactttagg	1980
agctgacata gccaaaaagg atacataata ggctactgaa atctgtcagg agtattttat	2040
caattattga acaggtgtct ttttttacaa gagctacaaa ttgttaattt tgtttcttt	2100
ttttccata gaaaatgtac tatagtttat cagccaaaaa acaatccact tttaattt	2160
gtgaaagtta ttttattata ctgtacaata aaagcattgt ctctgaatgt taatTTT	2220
gtacaaaaaaa taaatttgta cgaaaacctg aaaaaaaaaa aaaaaaaggc cggccgctct	2280
agaggccctt attctata	2299

<210> 6
<211> 316
<212> PRT
<213> Mus musculus

<400> 6
Met Arg Arg Ala Ser Arg Asp Tyr Gly Lys Tyr Leu Arg Ser Ser Glu
1 5 10 15
Glu Met Gly Ser Gly Pro Gly Val Pro His Glu Gly Pro Leu His Pro
20 25 30
Ala Pro Ser Ala Pro Ala Pro Pro Pro Ala Ala Ser Arg Ser

35	40	45
Met Phe Leu Ala Leu Leu Gly	Leu Gly Leu Gly Gln Val Val Cys Ser	
50	55	60
Ile Ala Leu Phe Leu Tyr	Phe Arg Ala Gln Met Asp Pro Asn Arg Ile	
65	70	75
Ser Glu Asp Ser Thr His Cys	Phe Tyr Arg Ile Leu Arg Leu His Glu	80
85	90	95
Asn Ala Gly Leu Gln Asp Ser Thr	Leu Glu Ser Glu Asp Thr Leu Pro	
100	105	110
Asp Ser Cys Arg Arg Met Lys	Gln Ala Phe Gln Gly Ala Val Gln Lys	
115	120	125
Glu Leu Gln His Ile Val Gly	Pro Gln Arg Phe Ser Gly Ala Pro Ala	
130	135	140
Met Met Glu Gly Ser Trp	Leu Asp Val Ala Gln Arg Gly Lys Pro Glu	
145	150	155
Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro Ser		160
165	170	175
Gly Ser His Lys Val Thr Leu Ser	Ser Trp Tyr His Asp Arg Gly Trp	
180	185	190
Ala Lys Ile Ser Asn Met Thr	Leu Ser Asn Gly Lys Leu Arg Val Asn	
195	200	205
Gln Asp Gly Phe Tyr Tyr	Leu Tyr Ala Asn Ile Cys Phe Arg His His	
210	215	220
Glu Thr Ser Gly Ser Val Pro	Thr Asp Tyr Leu Gln Leu Met Val Tyr	
225	230	235
Val Val Lys Thr Ser Ile Lys	Ile Pro Ser Ser His Asn Leu Met Lys	
245	250	255
Gly Gly Ser Thr Lys Asn Trp	Ser Gly Asn Ser Glu Phe His Phe Tyr	
260	265	270
Ser Ile Asn Val Gly Gly	Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile	
275	280	285
Ser Ile Gln Val Ser Asn Pro	Ser Leu Leu Asp Pro Asp Gln Asp Ala	
290	295	300
Thr Tyr Phe Gly Ala Phe	Lys Val Gln Asp Ile Asp	
305	310	315

<210> 7
<211> 564
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (1)..(564)

<220>
<223> Description of Artificial Sequence: Synthetic PCR
product with optimum codons for E. coli and P.
pastoris expression

<220>
<221> misc_binding
<222> (43)..(84)
<223> His tag

<220>

<221> misc_feature
 <222> (1)..(36)
 <223> C-terminal part of *Saccharomyces cerevisiae*
 alpha-mating factor

<220>
 <221> misc_feature
 <222> (85)..(561)
 <223> Encoding wild type murine OPGL, residues 158-316

<400> 7

gag ctc gga tcc ctc gag aaa aga gag gct gaa gct cat gtc atg aaa	48
Glu Leu Gly Ser Leu Glu Lys Arg Glu Ala Glu Ala His Val Met Lys	
1 5 10 15	
cac caa cac caa cat caa cat caa cat caa aaa cct gaa gct	96
His Gln His Gln His Gln His Gln His Gln Lys Pro Glu Ala	
20 25 30	
cag cca ttc gct cat ctg acc atc aac gct gca tcg atc cct tct ggt	144
Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro Ser Gly	
35 40 45	
tct cat aaa gtt acc ctg tct tct tgg tat cac gac cgc ggt tgg gct	192
Ser His Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly Trp Ala	
50 55 60	
aaa atc tct aac atg acc ctg tct aac ggt aaa ctg aga gtt aac cag	240
Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val Asn Gln	
65 70 75 80	
gac ggt ttc tac tac ctg tac gct aac atc tgt ttc aga cat cac gaa	288
Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His His Glu	
85 90 95	
acc tct ggt tct gtt cca acc gac tac ctg cag ctg atg gtt tac gtt	336
Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val Tyr Val	
100 105 110	
gtt aaa acc tct atc aaa atc cca tct tca cat aac ctg atg aaa ggt	384
Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu Met Lys Gly	
115 120 125	
ggt tct acc aaa aac tgg tct ggt aac tct gaa ttc cat ttc tac tct	432
Gly Ser Thr Lys Asn Trp Ser Gly Asn Ser Glu Phe His Phe Tyr Ser	
130 135 140	
atc aac gtt ggt ttc ttc aaa ctg aga gct ggt gaa gaa atc tct	480
Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile Ser	
145 150 155 160	
atc cag gtt tct aac cct tct ctg ctg gac cca gac cag gac gct acc	528
Ile Gln Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp Ala Thr	
165 170 175	
tac ttc ggg gcc ttc aaa gtt cag gac atc gac tag	564
Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp	
180 185	

<210> 8
 <211> 187
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic PCR
 product with optimum codons for *E. coli* and *P.*

pastoris expression

<400> 8
Glu Leu Gly Ser Leu Glu Lys Arg Glu Ala Glu Ala His Val Met Lys
1 5 10 15
His Gln His Gln His Gln His Gln His Gln Lys Pro Glu Ala
20 25 30
Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro Ser Gly
35 40 45
Ser His Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly Trp Ala
50 55 60
Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val Asn Gln
65 70 75 80
Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His His Glu
85 90 95
Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val Tyr Val
100 105 110
Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu Met Lys Gly
115 120 125
Gly Ser Thr Lys Asn Trp Ser Gly Asn Ser Glu Phe His Phe Tyr Ser
130 135 140
Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile Ser
145 150 155 160
Ile Gln Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp Ala Thr
165 170 175
Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp
180 185

<210> 9
<211> 519
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: DNA encoding
murine OPGL, residues 158-316, fused to His tag

<220>
<221> CDS
<222> (1)..(519)

<220>
<221> misc_binding
<222> (1)..(42)
<223> His tag

<220>
<221> misc_feature
<222> (43)..(519)
<223> Murine OPGL, residues 158-316

<400> 9
atg aaa cac caa cac caa cat caa cat caa cat caa aaa cct 48
Met Lys His Gln His Gln His Gln His Gln His Gln Lys Pro
1 5 10 15
gaa gct cag cca ttc gct cat ctg acc atc aac gct gca tcg atc cct 96

Glu	Ala	Gln	Pro	Phe	Ala	His	Leu	Thr	Ile	Asn	Ala	Ala	Ser	Ile	Pro	
20																30
tct	ggt	tct	cat	aaa	gtt	acc	ctg	tct	tct	tgg	tat	cac	gac	cgc	ggt	144
Ser	Gly	Ser	His	Lys	Val	Thr	Leu	Ser	Ser	Trp	Tyr	His	Asp	Arg	Gly	
35															45	
tgg	gct	aaa	atc	tct	aac	atg	acc	ctg	tct	aac	ggt	aaa	ctg	aga	gtt	192
Trp	Ala	Lys	Ile	Ser	Asn	Met	Thr	Leu	Ser	Asn	Gly	Lys	Leu	Arg	Val	
50															60	
aac	cag	gac	ggt	ttc	tac	tac	ctg	tac	aac	atc	tgt	ttc	aga	cat		240
Asn	Gln	Asp	Gly	Phe	Tyr	Tyr	Leu	Tyr	Ala	Asn	Ile	Cys	Phe	Arg	His	
65															80	
cac	gaa	acc	tct	ggt	tct	gtt	cca	acc	gac	tac	ctg	cag	ctg	atg	gtt	288
His	Glu	Thr	Ser	Gly	Ser	Val	Pro	Thr	Asp	Tyr	Leu	Gln	Leu	Met	Val	
85															95	
tac	gtt	gtt	aaa	acc	tct	atc	aaa	atc	cca	tct	tca	cat	aac	ctg	atg	336
Tyr	Val	Val	Lys	Thr	Ser	Ile	Lys	Ile	Pro	Ser	Ser	His	Asn	Leu	Met	
100															110	
aaa	ggt	ggt	tct	acc	aaa	aac	tgg	tct	ggt	aac	tct	gaa	ttc	cat	ttc	384
Lys	Gly	Gly	Ser	Thr	Lys	Asn	Trp	Ser	Gly	Asn	Ser	Glu	Phe	His	Phe	
115															125	
tac	tct	atc	aac	gtt	ggt	ttc	ttc	aaa	ctg	aga	gct	ggt	gaa	gaa		432
Tyr	Ser	Ile	Asn	Val	Gly	Gly	Phe	Phe	Lys	Leu	Arg	Ala	Gly	Glu	Glu	
130															140	
atc	tct	atc	cag	gtt	tct	aac	cct	tct	ctg	ctg	gac	cca	gac	cag	gac	480
Ile	Ser	Ile	Gln	Val	Ser	Asn	Pro	Ser	Leu	Leu	Asp	Pro	Asp	Gln	Asp	
145															160	
gct	acc	tac	ttc	ggg	gcc	ttc	aaa	gtt	cag	gac	atc	gac				519
Ala	Thr	Tyr	Phe	Gly	Ala	Phe	Lys	Val	Gln	Asp	Ile	Asp				
165															170	

<210> 10

<211> 173

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: DNA encoding
murine OPGL, residues 158-316, fused to His tag

<400> 10

Met	Lys	His	Gln	Lys	Pro											
1														15		
Glu	Ala	Gln	Pro	Phe	Ala	His	Leu	Thr	Ile	Asn	Ala	Ser	Ile	Pro		
														30		
Ser	Gly	Ser	His	Lys	Val	Thr	Leu	Ser	Ser	Trp	Tyr	His	Asp	Arg	Gly	
														45		
Trp	Ala	Lys	Ile	Ser	Asn	Met	Thr	Leu	Ser	Asn	Gly	Lys	Leu	Arg	Val	
														60		
Asn	Gln	Asp	Gly	Phe	Tyr	Tyr	Leu	Tyr	Ala	Asn	Ile	Cys	Phe	Arg	His	
														80		
His	Glu	Thr	Ser	Gly	Ser	Val	Pro	Thr	Asp	Tyr	Leu	Gln	Leu	Met	Val	
														95		
Tyr	Val	Val	Lys	Thr	Ser	Ile	Lys	Ile	Pro	Ser	Ser	His	Asn	Leu	Met	
														110		
Lys	Gly	Gly	Ser	Thr	Lys	Asn	Trp	Ser	Gly	Asn	Ser	Glu	Phe	His	Phe	
														125		
115																
120																

Tyr	Ser	Ile	Asn	Val	Gly	Gly	Phe	Phe	Lys	Leu	Arg	Ala	Gly	Glu	Glu
130					135					140					
Ile	Ser	Ile	Gln	Val	Ser	Asn	Pro	Ser	Leu	Leu	Asp	Pro	Asp	Gln	Asp
145					150					155				160	
Ala	Thr	Tyr	Phe	Gly	Ala	Phe	Lys	Val	Gln	Asp	Ile	Asp			
					165					170					

<210> 11
<211> 519
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Fusion of murine OPGL, residues 158-316 with C to S mutation, and His tag

<220>
<221> CDS
<222> (1)..(519)

<220>
<221> misc_binding
<222> (1)..(42)
<223> His tag

<220>
<221> misc_feature
<222> (43)..(228)
<223> Murine OPGL, residues 158-219

<220>
<221> misc_feature
<222> (232)..(519)
<223> Murine OPGL, residues 221-316

<220>
<221> mutation
<222> (229)..(231)
<223> tgt (Cys) to tcc (Ser)

<220>

<400> 11																
atg	aaa	cac	caa	cac	caa	cat	caa	cat	caa	cat	caa	aaa	cct	48		
Met	Lys	His	Gln	His	Pro											
1		5				10						15				
gaa	gct	cag	cca	ttc	gct	cat	ctg	acc	atc	aac	gct	gca	tcg	atc	96	
Glu	Ala	Gln	Pro	Phe	Ala	His	Leu	Thr	Ile	Asn	Ala	Ala	Ser	Ile	Pro	
						20		25				30				
tct	ggg	tct	cat	aaa	gtt	acc	ctg	tct	tct	tgg	tat	cac	gac	cgc	144	
Ser	Gly	Ser	His	Lys	Val	Thr	Leu	Ser	Ser	Trp	Tyr	His	Asp.	Arg	Gly	
						35		40			45					
tgg	gct	aaa	atc	tct	aac	atg	acc	ctg	tct	aac	ggg	aaa	ctg	aga	gtt	192
Trp	Ala	Lys	Ile	Ser	Asn	Met	Thr	Leu	Ser	Asn	Gly	Lys	Leu	Arg	Val	
						50		55			60					

aac cag gac ggt ttc tac tac ctg tac gct aac atc tcc ttc aga cat	240
Asn Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Ser Phe Arg His	
65 70 75 80	
cac gaa acc tct ggt tct gtt cca acc gac tac ctg cag ctg atg gtt	288
His Glu Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val	
85 90 95	
tac gtt gtt aaa acc tct atc aaa atc cca tct tca cat aac ctg atg	336
Tyr Val Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu Met	
100 105 110	
aaa ggt ggt tct acc aaa aac tgg tct ggt aac tct gaa ttc cat ttc	384
Lys Gly Gly Ser Thr Lys Asn Trp Ser Gly Asn Ser Glu Phe His Phe	
115 120 125	
tac tct atc aac gtt ggt ttc ttc aaa ctg aga gct ggt gaa gaa	432
Tyr Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu	
130 135 140	
atc tct atc cag gtt tct aac cct tct ctg ctg gac cca gac cag gac	480
Ile Ser Ile Gln Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp	
145 150 155 160	
gct acc tac ttc ggg gcc ttc aaa gtt cag gac atc gac	519
Ala Thr Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp	
165 170	

<210> 12
<211> 173
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Fusion of murine OPGL, residues 158-316 with C to S mutation, and His tag

<400> 12	
Met Lys His Gln His Gln His Gln His Gln His Gln Lys Pro	
1 5 10 15	
Glu Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro	
20 25 30	
Ser Gly Ser His Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly	
35 40 45	
Trp Ala Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val	
50 55 60	
Asn Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Ser Phe Arg His	
65 70 75 80	
His Glu Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val	
85 90 95	
Tyr Val Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu Met	
100 105 110	
Lys Gly Gly Ser Thr Lys Asn Trp Ser Gly Asn Ser Glu Phe His Phe	
115 120 125	
Tyr Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu	
130 135 140	
Ile Ser Ile Gln Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp	
145 150 155 160	
Ala Thr Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp	
165 170	

```

<210> 13
<211> 564
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Fusion of
      murine OPGL, residues 158-316 modified by
      introduction of tetanus toxoid P30 epitope, and
      His tag

<220>
<221> CDS
<222> (1)..(564)

<220>
<221> misc_binding
<222> (1)..(42)
<223> His tag

<220>
<221> misc_feature
<222> (43)..(336)
<223> Murine OPGL, residues 158-255

<220>
<221> misc_feature
<222> (337)..(399)
<223> Tetanus toxoid P30 epitope

<220>
<221> misc_feature
<222> (400)..(564)
<223> Murine OPGL, residues 262-316

<400> 13
atg aaa cac caa cac caa cat caa cat caa cat caa aaa cct      48
Met Lys His Gln His Gln His Gln His Gln His Gln His Gln Lys Pro
   1           5           10          15
gaa gct cag cca ttc gct cat ctg acc atc aac gct gca tcg atc cct      96
Glu Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro
   20          25          30
tct ggt tct cat aaa gtt acc ctg tct tgg tat cac gac cgc ggt     144
Ser Gly Ser His Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly
   35          40          45
tgg gct aaa atc tct aac atg acc ctg tct aac ggt aaa ctg aga gtt     192
Trp Ala Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val
   50          55          60
aac cag gac ggt ttc tac tac ctg tac gct aac atc tgt ttc aga cat     240
Asn Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His
   65          70          75          80
cac gaa acc tct ggt tct gtt cca acc gac tac ctg cag ctg atg gtt     288
His Glu Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val
   85          90          95
tac gtt gtt aaa acc tct atc aaa atc cca tct tca cat aac ctg atg     336
Tyr Val Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu Met

```

100	105	110	
ttc aac aac ttc acc gtt tct ttc tgg ctg agg gta ccg aaa gtt tct	Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys Val Ser		384
115	120	125	
gct tct cac ctg gaa aac tgg tct ggt aac tct gaa ttc cat ttc tac	Ala Ser His Leu Glu Asn Trp Ser Gly Asn Ser Glu Phe His Phe Tyr		432
130	135	140	
tct atc aac gtt ggt ttc ttc aaa ctg aga gct ggt gaa gaa atc	Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile		480
145	150	155	160
tct atc cag gtt tct aac cct tct ctg ctg gac cca gac cag gac gct	Ser Ile Gln Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp Ala		528
165	170	175	
acc tac ttc ggg gcc ttc aaa gtt cag gac atc gac	Thr Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp		564
180	185		

<210> 14
<211> 188
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Fusion of murine OPGL, residues 158-316 modified by introduction of tetanus toxoid P30 epitope, and His tag

<400> 14			
Met Lys His Gln His Gln His Gln His Gln His Gln Lys Pro			
1	5	10	15
Glu Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro			
20	25	30	
Ser Gly Ser His Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly			
35	40	45	
Trp Ala Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val			
50	55	60	
Asn Gln Asp Gly Phe Tyr Tyr Ala Asn Ile Cys Phe Arg His			
65	70	75	80
His Glu Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val			
85	90	95	
Tyr Val Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu Met			
100	105	110	
Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys Val Ser			
115	120	125	
Ala Ser His Leu Glu Asn Trp Ser Gly Asn Ser Glu Phe His Phe Tyr			
130	135	140	
Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile			
145	150	155	160
Ser Ile Gln Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp Ala			
165	170	175	
Thr Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp			
180	185		

<210> 15

<211> 546
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Fusion
 between murine OPGL, residues 158-316 with tetanus
 toxoid P2 epitope introduced, and His tag

<220>
 <221> CDS
 <222> (1)..(546)

<220>
 <221> misc_binding
 <222> (1)..(42)
 <223> His tag

<220>
 <221> misc_feature
 <222> (43)..(336)
 <223> Murine OPGL, residues 158-255

<220>
 <221> misc_feature
 <222> (382)..(546)
 <223> Murine OPGL, residues 262-316

<220>
 <221> misc_feature
 <222> (337)..(381)
 <223> Tetanus toxoid P2 epitope

<400> 15		
atg aaa cac caa cac caa cat caa cat caa cat caa aaa cct	48	
Met Lys His Gln His Gln His Gln His Gln His Gln His Gln Lys Pro		
1 5 10 15		
gaa gct cag cca ttc gct cat ctg acc atc aac gct gca tcg atc cct	96	
Glu Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro		
20 25 30		
tct ggt tct cat aaa gtt acc ctg tct tct tgg tat cac gac cgc ggt	144	
Ser Gly Ser His Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly		
35 40 45		
tgg gct aaa atc tct aac atg acc ctg tct aac ggt aaa ctg aga gtt	192	
Trp Ala Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val		
50 55 60		
aac cag gac ggt ttc tac ctg tac gct aac atc tgt ttc aga cat	240	
Asn Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His		
65 70 75 80		
cac gaa acc tct ggt tct gtt cca acc gac tac ctg cag ctg atg gtt	288	
His Glu Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val		
85 90 95		
tac gtt gtt aaa acc cct atc aaa atc caa tct tca cat aac ctg atg	336	
Tyr Val Val Lys Thr Pro Ile Lys Ile Gln Ser Ser His Asn Leu Met		
100 105 110		
cag tac atc aaa gct aat tcg aaa ttc atc ggt atc acc gaa ctg aac	384	
Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Leu Asn		

115	120	125	
tgg tct ggt aac tct gaa ttc cat ttc tac tct atc aac gtt ggt ggt			432
Trp Ser Gly Asn Ser Glu Phe His Phe Tyr Ser Ile Asn Val Gly Gly			
130	135	140	
ttc ttc aaa ctg aga gct ggt gaa gaa atc tct atc cag gtt tct aac			480
Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile Ser Ile Gln Val Ser Asn			
145	150	155	160
cct tct ctg ctg gac cca gac cag gac gct acc tac ttc ggg gcc ttc			528
Pro Ser Leu Leu Asp Pro Asp Gln Asp Ala Thr Tyr Phe Gly Ala Phe			
165	170	175	
aaa gtt cag gac atc gac			546
Lys Val Gln Asp Ile Asp			
180			

<210> 16
<211> 182
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Fusion
between murine OPGL, residues 158-316 with tetanus
toxoid P2 epitope introduced, and His tag

<400> 16			
Met Lys His Gln His Gln His Gln His Gln His Gln Lys Pro			
1	5	10	15
Glu Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro			
20	25	30	
Ser Gly Ser His Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly			
35	40	45	
Trp Ala Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val			
50	55	60	
Asn Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Arg His			
65	70	75	80
His Glu Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val			
85	90	95	
Tyr Val Val Lys Thr Pro Ile Lys Ile Gln Ser Ser His Asn Leu Met			
100	105	110	
Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Leu Asn			
115	120	125	
Trp Ser Gly Asn Ser Glu Phe His Phe Tyr Ser Ile Asn Val Gly Gly			
130	135	140	
Phe Phe Lys Leu Arg Ala Gly Glu Glu Ile Ser Ile Gln Val Ser Asn			
145	150	155	160
Pro Ser Leu Leu Asp Pro Asp Gln Asp Ala Thr Tyr Phe Gly Ala Phe			
165	170	175	
Lys Val Gln Asp Ile Asp			
180			

<210> 17
<211> 519
<212> DNA
<213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Fusion between
 murine OPGL, residues 158-316 with tetanus toxoid
 P2 epitope introduced, and His tag

<220>
 <221> CDS
 <222> (1)..(519)

<220>
 <221> misc_binding
 <222> (1)..(42)
 <223> His tag

<220>
 <221> misc_feature
 <222> (43)..(432)
 <223> Murine OPGL, residues 158-287

<220>
 <221> misc_feature
 <222> (478)..(519)
 <223> Murine OPGL, residues 303-316

<220>
 <221> misc_feature
 <222> (433)..(477)
 <223> Tetanus toxoid P2 epitope

<400> 17

atg	aaa	cac	caa	cac	caa	cat	caa	cat	caa	cat	caa	aaa	cct	48		
Met	Lys	His	Gln	His	Lys	Pro										
1		5				10							15			
gaa	gct	cag	cca	ttc	gct	cat	ctg	acc	atc	aac	gct	gca	tcg	atc	cct	96
Glu	Ala	Gln	Pro	Phe	Ala	His	Leu	Thr	Ile	Asn	Ala	Ala	Ser	Ile	Pro	
20						25							30			
tct	ggt	tct	cat	aaa	gtt	acc	ctg	tct	tct	tgg	tat	cac	gac	cgc	ggt	144
Ser	Gly	Ser	His	Lys	Val	Thr	Leu	Ser	Ser	Trp	Tyr	His	Asp	Arg	Gly	
35					40							45				
tgg	gct	aaa	atc	tct	aac	atg	acc	ctg	tct	aac	ggt	aaa	ctg	aga	gtt	192
Trp	Ala	Lys	Ile	Ser	Asn	Met	Thr	Leu	Ser	Asn	Gly	Lys	Leu	Arg	Val	
50					55			60								
aac	cag	gac	ggt	ttc	tac	tac	ctg	tac	gct	aac	atc	tgt	ttc	aga	cat	240
Asn	Gln	Asp	Gly	Phe	Tyr	Tyr	Leu	Tyr	Ala	Asn	Ile	Cys	Phe	Arg	His	
65					70			75			80					
cac	gaa	acc	tct	ggt	tct	gtt	cca	acc	gac	tac	ctg	cag	ctg	atg	ggt	288
His	Glu	Thr	Ser	Gly	Ser	Val	Pro	Thr	Asp	Tyr	Leu	Gln	Leu	Met	Val	
85					90			95								
tac	gtt	aaa	acc	tct	atc	aaa	atc	cca	tct	tca	cat	aac	ctg	atg	336	
Tyr	Val	Val	Lys	Thr	Ser	Ile	Lys	Ile	Pro	Ser	Ser	His	Asn	Leu	Met	
100					105			110								
aaa	ggt	ggt	tct	acc	aaa	aac	tgg	tct	ggt	aac	tct	gaa	ttc	cat	ttc	384
Lys	Gly	Gly	Ser	Thr	Lys	Asn	Trp	Ser	Gly	Asn	Ser	Glu	Phe	His	Phe	
115					120			125								
tac	tct	atc	aac	gtt	ggt	ttc	ttc	aaa	ctg	aga	gct	ggt	gaa	gaa	432	
Tyr	Ser	Ile	Asn	Val	Gly	Gly	Phe	Phe	Lys	Leu	Arg	Ala	Gly	Glu	Glu	
130					135			140								

cag tac atc aaa gct aat tcg aaa ttc atc ggt atc acc gaa ctg gac 480
Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Leu Asp
145 150 155 160
gct acc tac ttc ggg gcc ttc aaa gtt cag gac atc gac 519
Ala Thr Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp
165 170

<210> 18
<211> 173
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Fusion between
murine OPGL, residues 158-316 with tetanus toxoid
P2 epitope introduced, and His tag

<400> 18
Met Lys His Gln His Gln His Gln His Gln His Gln Lys Pro
1 5 10 15
Glu Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro
20 25 30
Ser Gly Ser His Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly
35 40 45
Trp Ala Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val
50 55 60
Asn Gln Asp Gly Phe Tyr Tyr Ala Asn Ile Cys Phe Arg His
65 70 75 80
His Glu Thr Ser Gly Ser Val Pro Thr Asp Tyr Leu Gln Leu Met Val
85 90 95
Tyr Val Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu Met
100 105 110
Lys Gly Gly Ser Thr Lys Asn Trp Ser Gly Asn Ser Glu Phe His Phe
115 120 125
Tyr Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu
130 135 140
Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Leu Asp
145 150 155 160
Ala Thr Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp
165 170

<210> 19
<211> 519
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Fusion between
murine OPGL, residues 158-316 with tetanus toxoid
P30 epitope introduced, and His tag

<220>
<221> CDS
<222> (1)..(519)

<220>
 <221> misc_binding
 <222> (1)..(42)
 <223> His tag

<220>
 <221> misc_feature
 <222> (43)..(231)
 <223> Murine OPGL, residues 158-220

<220>
 <221> misc_feature
 <222> (295)..(519)
 <223> Murine OPGL, residues 242-316

<220>
 <221> misc_feature
 <222> (232)..(294)
 <223> Tetanus toxoid P30 epitope

<400> 19

atg	aaa	cac	caa	cac	caa	cat	caa	cat	caa	cat	caa	aaa	cct		48	
Met	Lys	His	Gln	Lys	Pro											
1		5				10						15				
gaa	gct	cag	cca	ttc	gct	cat	ctg	acc	atc	aac	gct	gca	tcg	atc	cct	96
Glu	Ala	Gln	Pro	Phe	Ala	His	Leu	Thr	Ile	Asn	Ala	Ala	Ser	Ile	Pro	
						20		25					30			
tct	ggt	tct	cat	aaa	gtt	acc	ctg	tct	tgg	tat	cac	gac	cgc	ggt		144
Ser	Gly	Ser	His	Lys	Val	Thr	Leu	Ser	Ser	Trp	Tyr	His	Asp	Arg	Gly	
						35		40				45				
tgg	gct	aaa	atc	tct	aac	atg	acc	ctg	tct	aac	ggt	aaa	ctg	aga	gtt	192
Trp	Ala	Lys	Ile	Ser	Asn	Met	Thr	Leu	Ser	Asn	Gly	Lys	Leu	Arg	Val	
						50		55				60				
aac	cag	gac	ggt	ttc	tac	ctg	tac	gct	aac	atc	tgt	ttc	aac	aac		240
Asn	Gln	Asp	Gly	Phe	Tyr	Tyr	Leu	Tyr	Ala	Asn	Ile	Cys	Phe	Asn	Asn	
						65		70			75		80			
ttc	acc	gtt	tct	ttc	tgg	ctg	agg	gta	ccg	aaa	ggt	tct	gct	tct	cac	288
Phe	Thr	Val	Ser	Phe	Trp	Leu	Arg	Val	Pro	Lys	Val	Ser	Ala	Ser	His	
						85		90			95					
ctg	gaa	gtt	aaa	acc	tct	atc	aaa	atc	cca	tct	tca	cat	aac	ctg	atg	336
Leu	Glu	Val	Lys	Thr	Ser	Ile	Lys	Ile	Pro	Ser	Ser	His	Asn	Leu	Met	
						100		105			110					
aaa	ggt	gtt	tct	acc	aaa	aac	tgg	tct	ggt	aac	tct	gaa	ttc	cat	ttc	384
Lys	Gly	Gly	Ser	Thr	Lys	Asn	Trp	Ser	Gly	Asn	Ser	Glu	Phe	His	Phe	
						115		120			125					
tac	tct	atc	aac	gtt	ggt	ttc	ttc	aaa	ctg	aga	gct	ggt	gaa	gaa		432
Tyr	Ser	Ile	Asn	Val	Gly	Gly	Phe	Phe	Lys	Leu	Arg	Ala	Gly	Glu	Glu	
						130		135			140					
atc	tct	atc	cag	gtt	tct	aac	cct	tct	ctg	ctg	gac	cca	gac	cag	gac	480
Ile	Ser	Ile	Gln	Val	Ser	Asn	Pro	Ser	Leu	Leu	Asp	Pro	Asp	Gln	Asp	
						145		150			155		160			
gct	acc	tac	ttc	ggg	gcc	ttc	aaa	gtt	cag	gac	atc	gac				519
Ala	Thr	Tyr	Phe	Gly	Ala	Phe	Lys	Val	Gln	Asp	Ile	Asp				
						165		170								

<210> 20

<211> 173
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Fusion between murine OPGL, residues 158-316 with tetanus toxoid P30 epitope introduced, and His tag

<400> 20
Met Lys His Gln His Gln His Gln His Gln His Gln Lys Pro
1 5 10 15
Glu Ala Gln Pro Phe Ala His Leu Thr Ile Asn Ala Ala Ser Ile Pro
20 25 30
Ser Gly Ser His Lys Val Thr Leu Ser Ser Trp Tyr His Asp Arg Gly
35 40 45
Trp Ala Lys Ile Ser Asn Met Thr Leu Ser Asn Gly Lys Leu Arg Val
50 55 60
Asn Gln Asp Gly Phe Tyr Tyr Leu Tyr Ala Asn Ile Cys Phe Asn Asn
65 70 75 80
Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys Val Ser Ala Ser His
85 90 95
Leu Glu Val Lys Thr Ser Ile Lys Ile Pro Ser Ser His Asn Leu Met
100 105 110
Lys Gly Gly Ser Thr Lys Asn Trp Ser Gly Asn Ser Glu Phe His Phe
115 120 125
Tyr Ser Ile Asn Val Gly Gly Phe Phe Lys Leu Arg Ala Gly Glu Glu
130 135 140
Ile Ser Ile Gln Val Ser Asn Pro Ser Leu Leu Asp Pro Asp Gln Asp
145 150 155 160
Ala Thr Tyr Phe Gly Ala Phe Lys Val Gln Asp Ile Asp
165 170

<210> 21
<211> 68
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR primer

<400> 21
agctgcagg agtcgggtgg aacagaacca gaggtttcgt gatgtctgaa acagatgtta 60
gcgtacag 68

<210> 22
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR primer

<400> 22
ctcatctgac catcaacgct gcat 24

<210> 23
<211> 64
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR primer

<400> 23
tttcggtacc ctcagccaga aagaaacggt gaagttgttg aaacagatgt tagcgtacag 60
gttag 64

<210> 24
<211> 61
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR primer

<400> 24
tgagggtacc gaaagttct gcttctcacc tggaagttaa aaccctatac aaaatccaat 60
c 61

<210> 25
<211> 63
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR primer

<400> 25
tttcggtacc ctcagccaga aagaaacggt gaagttgttg aacatcaggt tatgtgaaga 60
ttg 63

<210> 26
<211> 62
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR primer

<400> 26
tgagggtacc gaaagttct gcttctcacc tgaaaaactg gtctggtaac tctgaattcc 60

<210> 27
<211> 79
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR
primer

<400> 27
tacctgcagc ttaggttta cgttgtaaa acccstatca aaatccaatc ttcacataac 60
ctgatgcagt acatcaaag 79

<210> 28
<211> 83
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR
primer

<400> 28
tggaaattcag agttaccaga ccagttcagt tcggtgatac cgatgaattt cgaatttagct 60
ttgatgtact gcatcagggtt atg 83

<210> 29
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR
primer

<400> 29
gaatttcgaa ttagcttga tgtactgttc ttcaccagct cttagttt 49

<210> 30
<211> 53
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR
primer

<400> 30
gctaattcga aattcatcggtatcaccgaa ctggacgcta cctacttcgg ggc 53

<210> 31
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR primer

<400> 31
cttactagtc gatgtcctga actttg 26

<210> 32
<211> 74
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic PCR primer

<400> 32
agtggattc agagttacca gaccagttt tggtagaacc acctttcatc agttatgtg 60
aagatggat tttg 74

<210> 33
<211> 65
<212> DNA
<213> Clostridium tetani

<400> 33
actacactgca gctgatggtt tacgttgtt aaacctctat caaaatccca tcttcacata 60
acctg 65

*a 10
a Cont*

<210> 34
<211> 15
<212> PRT
<213> Clostridium tetani

<400> 34
Gln Tyr Ile Lys Ala Asn Ser Lys Phe Ile Gly Ile Thr Glu Leu
1 5 10 15

<210> 35
<211> 21
<212> PRT
<213> Clostridium tetani

<400> 35
Phe Asn Asn Phe Thr Val Ser Phe Trp Leu Arg Val Pro Lys Val Ser
1 5 10 15
Ala Ser His Leu Glu
20

<210> 36
<211> 13
<212> PRT
<213> Artificial Sequence

*A¹⁰
Cont*
<220>
<223> A pan DR epitope ("PADRE") peptide

<400> 36
Ala Lys Phe Val Ala Ala Trp Thr Leu Lys Ala Ala Ala
1 5 10
