EXAMPLE

18. CURRENT-PROGRAMMED SWITCHED-MODE REGULATOR

The power stage has an internal current loop and a voltage feedforward loop.

STEP 1

Strategy: absorb both loops into an equivalent power stage model, by Doing Some Algebra on the Circuit Diagram (Ch.2)

$$v(P) = -E_2 v_i + v_c - E_1 R_f i$$

split the voltage and current modulation generators into three: http://www.RDMiddlebrook.com

Since the voltage generator $A_c E_1 R_f i$ is proportional to the current through it, it can be replaced by a resistance $A_c E_1 R_f$. Also, since the current generator $A_c E_2 v_i / R_L$ is proportional to the voltage Dv_i across it, it can be replaced by a (negative) resistance $-DR_L / A_c E_2$.

The consequence of the current loop is that it introduces a (lossless) damping resistance $A_cE_1R_f$ in series with R_f and R_4 , to form an effective resistance R_e :

STEP 2

Normalize the element values in the filter (Ch. 5):

$$\omega_{\rm o} \equiv \frac{1}{\sqrt{LC}}$$
 $f_o = 11.2kHz$ $R_o \equiv \sqrt{\frac{L}{C}} = 70.7m$

$$Q_e \equiv \frac{R_o}{R_e} = 0.300$$

$$Q_c \equiv \frac{R_o}{R_c} = 70.7$$

$$Q_L \equiv \frac{R_L}{R_o} = 2.83$$
 v.0.1 3/07 http://www.RDMiddlebrook.co

http://www.RDMiddlebrook.com 18. Current-Programmed Switcher

The voltage transfer function H for this triple-damped RLC filter was obtained in Ch. 12:

$$H = \frac{1}{1 + \frac{1}{Q_e Q_L}} \frac{1}{1 + \left(\frac{1}{Q_e Q_L}\right) + \frac{1}{Q_c} + \frac{1}{Q_e} \frac{1}{1 + \frac{1}{Q_e Q_L}}\right) \left(\frac{S}{\omega_0}\right) + \frac{1}{1 + \frac{1}{Q_e Q_L}} \left(\frac{S}{\omega_0}\right)^2}$$

$$= \frac{1}{1 + \frac{1}{Q_e Q_L}} \frac{1}{1 + \frac{1}{Q_e Q_L}} \frac{1}{Q_c Q_L} \frac{1}{Q_c Q_L} \frac{1}{Q_c Q_L} \frac{1}{Q_c Q_L} \frac{1}{Q_e Q_L} \frac{1}{Q$$

 Q_cQ_L

For QeQc>>1, QeQL>>1, the result reduces to that previously obtained by extrapolation of the result for Qc = 00:

$$H \approx \frac{1 + \frac{1}{Q_e} \left(\frac{\varsigma}{\omega_o}\right)}{1 + \left(\frac{1}{Q_e} + \frac{1}{Q_e} + \frac{1}{Q_e} + \frac{1}{Q_e}\right) \left(\frac{\varsigma}{\omega_o}\right) + \left(\frac{\varsigma}{\omega_o}\right)^2}$$

V.U.T 3/U/

For the LM3495, however, the inequality $Q_cQ_L = 70.7 * 2.83 = 200 >> 1$ still holds, but the inequality $Q_{\rho}Q_{L} = 0.300 * 2.83 = 0.848 >> 1$ does not.

The result therefore becomes

$$H = \frac{1}{1 + \frac{1}{Q_e Q_L}} \frac{1}{1 + \frac{1}{Q_e Q_L}} \frac{1}{1 + \frac{1}{Q_e Q_L}} \frac{1}{1 + \frac{1}{Q_e Q_L}} \frac{1}{Q_e Q_L} \frac{1}{Q_e Q_L$$

$$H = \frac{1}{1 + \frac{1}{Q_e Q_L}} \frac{1 + \frac{1}{Q_e} \left(\frac{s}{\omega_o}\right)}{1 + \frac{1}{1 + \frac{1}{Q_e Q_L}} \frac{1}{Q_e \|Q_L} \left(\frac{s}{\omega_o}\right) + \frac{1}{1 + \frac{1}{Q_e Q_L}} \left(\frac{s}{\omega_o}\right)^2}$$

where
$$Q_e \| Q_L = 0.300 \| 2.83 = 0.271$$
 and $\frac{1}{1 + \frac{1}{Q_e Q_L}} = \frac{1}{2.18} = 0.459$

The Q_t of the denominator quadratic is (Ch. 4)

$$Q_t \equiv \frac{\sqrt{ac}}{b} = \sqrt{\left(1 + \frac{1}{Q_e Q_L}\right)} (Q_e \| Q_L) = 0.400, \ Q_t = -7.96 dB$$

$$\omega_b$$
 $0 \neq 3 \left(0 + \frac{1}{Q_e Q_L}\right) \omega_o$,

The power stage control-to-output voltage gain is $v_o/v_c|_{v_i=0} = A_c H$ where $A_c = 16.86$.

Insertion of numbers gives

$$A_c H = 17.77 dB \frac{1 + \frac{s/2\pi}{792kHz}}{1 + \frac{1}{0.400} \left(\frac{s/2\pi}{16.5kHz}\right) + \left(\frac{s/2\pi}{16.5kHz}\right)^2}$$

STEP 3

Error Amplifier

The flat gain that sets the loop gain crossover occurs when C_1 is short, and C_4 open, so take this gain as reference (Ch. 3). The two poles are obviously well separated, so the gain can be written by inspection as

can be written by inspection as
$$A = A_{em} \frac{1}{\left(\frac{1}{sC_1R_3} + 1\right)\left(1 + sC_4R_3\right)}$$

where

$$A_{em} = \frac{R_1}{R_1 + R_2} G1R_3 = 0.563 \Rightarrow -5.0dB$$

With substitution of numbers,

$$\sqrt[A]{0.7} \ \sqrt[3]{0.7} \frac{1}{\sqrt[3]{2\pi}} \frac{1}{\left(\frac{10.6kHz}{s/2\pi} + 1\right)\left(1 + \frac{s/2tp://www.RDMiddlebrook.com/rent-Programmed Switcher)}\right)}$$

STEP 4

The loop gain T is:

$$T = A_e A_c H = 12.77 dB \frac{1 + \frac{s/2\pi}{792kHz}}{\left(\frac{10.6kHz}{s/2\pi} + 1\right) \left[1 + \frac{1}{0.400} \left(\frac{s/2\pi}{16.5kHz}\right) + \left(\frac{s/2\pi}{16.5kHz}\right)^2\right] \left(1 + \frac{s/2\pi}{1.06MHz}\right)}$$

Since three poles close together determine the crossover frequency f_c , there is no point in trying to predict its value. Instead, the simulation shows it to be $f_c = 28kHz$. From the predicted corner frequencies of T, \sqrt{T} can then be calculated as:

$$\frac{T}{T} = -90^{\circ} + \tan^{-1} \frac{28}{10.6} - \left(180^{\circ} + \tan^{-1} \frac{\frac{1}{0.4} \frac{28}{16.5}}{1 - \left(\frac{28}{16.5} \right)^{2}} \right) + \tan^{-1} \frac{28}{792} - \tan^{-1} \frac{28}{1060}$$

$$= -90^{\circ} + 70^{\circ} - (180^{\circ} - 66^{\circ}) + 2^{\circ} - 2^{\circ}$$

$$= -134^{\circ}$$

This agrees with the simulation:

STEP 5: Closed-loop gain G

The closed-loop gain $G = G_{\infty}D$ where $G_{\infty} = \frac{R_1 + R_2}{R_1} = 2 = 6.02 dB$ is the ideal closed-loop gain, and $D = \frac{T}{1+T}$ is the discrepancy factor (Ch. 10).

Since D is a unique function of T, D can be evaluated at the loop gain crossover frequency in terms of the phase margin φ_M .

In polar form,

$$T = |T|e^{j\angle T}, \quad |D| = \left|\frac{T}{1+T}\right| = \left|\frac{1}{1+\frac{1}{T}}\right| = \left|\frac{1}{1+\frac{1}{|T|}}e^{-j\angle T}\right|$$

If the phase margin is $\varphi_{\mathbf{M}}$, then $-\angle T = (\pi - \varphi_{\mathbf{M}})$ at the crossover frequency where $|\mathbf{T}| = 1$. Substitute in $|\mathbf{D}|$:

$$|D|_{f_c} = \left| \frac{1}{1 + e^{j(\pi - \varphi_{M})}} \right| = \left| \frac{1}{1 + e^{-j\varphi_{M}}} \right| = \left| \frac{1}{1 - (\cos \varphi_{M} - j \sin \varphi_{M})} \right| = \frac{1}{\sqrt{(1 - \cos \varphi_{M})^{2} + \sin^{2} \varphi_{M}}}$$

$$= \frac{1}{\sqrt{2(1 - \cos \varphi_{M})}} = \frac{1}{2 \sin \frac{\varphi_{M}}{2}}$$

In the LM3495, $G_{\infty}=2=6.02dB$ and $\varphi_{\rm M}=46^{\circ}$ at the crossover frequency $f_c=28kHz$. Hence, $|D|_{28kHz}=1.28\Rightarrow 2.10dB$. These results are in agreement with the simulation using the http://www.RDMiddlebrook.com 15 Intusoft ICAP/4 GFT Template 18. Current-Programmed Switcher

Model for simulation using the Intusoft ICAP/4 GFT Template. (No input filter)

Output voltage response to a 1v step in reference voltage

STEP 6: Check for nonidealities The ICAP/4 simulation also delivers the null loop gain T_n :

Since $T_n >> 1$ at all frequencies of interest, the nonidealities are negligible.

STEP 7: Output Impedance

As seen in Ch. 7, for a ladder network such as

the output impedance is

$$Z_0 = Z_1 H$$

Here,

$$\frac{R_{o}}{Q_{e}} \qquad R_{o} \left(\frac{s}{\omega_{o}}\right) \qquad R_{o} \left(\frac{\omega_{o}}{s}\right)$$

$$Z_{1} = R_{o} \frac{1}{Q_{e}} \left(1 + \frac{s}{\omega_{o}/Q_{e}}\right)$$

$$Z_{1} = R_{o} \frac{1}{Q_{e}} \left(1 + \frac{s}{\omega_{o}/Q_{e}}\right)$$

and H is already known, so

$$Z_{o} = \left(R_{e} \, \middle\| R_{L}\right) \frac{\left(1 + \frac{s}{\omega_{o} \, \middle| \, Q_{e}}\right) \left(1 + \frac{s}{Q_{c} \omega_{o}}\right)}{1 + \frac{1}{1 + \frac{1}{Q_{e} Q_{L}}} \frac{1}{Q_{e} \, \middle\| \, Q_{L}} \left(\frac{s}{\omega_{o}}\right) + \frac{1}{1 + \frac{1}{Q_{e} Q_{L}}} \left(\frac{s}{\omega_{o}}\right)^{2}}$$

Closed loop output impedance Z_{of}

$$Z_{of} = \frac{Z_o}{1+T}$$

Since *T* is already known, 1+T and $\frac{1}{1+T}$ can be found by the methods of Ch. 6.

Since $v_c = 0$, the voltage and current modulation generators are zero:

The power stage line-to-output voltage gain is $v_o/v_i|_{v_c=0} = Dv_i \left(1 - \frac{A_c E_2}{D}\right) H = 0.157 DH v_i$

Insertion of numbers gives

$$v_o / v_i \Big|_{v_c = 0} = -42.85 dB \frac{1 + \frac{s/2\pi}{792kHz}}{1 + \frac{1}{0.400} \left(\frac{s/2\pi}{16.5kHz}\right) + \left(\frac{s/2\pi}{16.5kHz}\right)^2}$$

STEP 9: Line input impedance TF Z_i

$$Z_i = \frac{1}{D^2} \left| -\frac{DR_L}{A_c E_2} \right| \frac{Z_{i1}}{1 - \frac{A_c E_2}{D}}$$
 where $Z_{i1} = \frac{1}{1 - \beta} Z_{i2}$ in which

 Z_{i2} = input impedance of the filter, which is already known.

Since β >1, the result can be written

$$Z_{i} = -\frac{1}{D^{2}} \left[\frac{DR_{L}}{A_{c}E_{2}} \left\| \frac{Z_{i2}}{(\beta - 1)\left(1 - \frac{A_{c}E_{2}}{D}\right)} \right\|$$

STEP 9: Line input impedance TF Z_i

Since
$$Z_{i2}(0) = R_e + R_L = 0.236 + 0.2 = 0.436$$
,

$$Z_{i}(0) = -\frac{1}{0.1^{2}} \left[0.237 \left\| \frac{0.436}{(1.146 - 1)0.157} \right| = -100 \left[0.237 \right| 19 \right] = -100 \left[0.234 \right] = -23.4 \Rightarrow 27.38 dB$$

Since
$$Z_{i2}(\infty) = \infty$$
,

$$Z_i(\infty) = -\frac{1}{0.1^2} [0.237 \parallel \infty] = -100 [0.237] = -23.7 \Rightarrow 27.49 dB$$

Conclusion: the current-programming loop makes the filter input impedance look high, and the megative) line input impedance wis depression tend by the term due to the line feedfor and.

18. Current-Programmed Switcher

Input impedance Z_i by the ICAP/4 GFT Template:

The result is in agreement with that predicted by the modified model.