Decoders

Module 7

10/2/2023

1 Active Inputs And Outputs

Logic device inputs and outputs can be active high or low.

- Active HIGH is when a 1 activates a given input, or output.
- Active LOW is when a 0 activates a given input, or output.

2 Decoding

It's taking an input combination, which can be called a code, and translating it to one or more active ouputs.

- BCD Decoder Decodes the BCD input to various outputs BCD to 7 segment
- X of Y decoder (standard decoder)-Decodes input X to activate (only) one of the Y outputs.

2.1 Standard Decoder

- One output is active at a time. Active high refers to only one output being 1 at a time, while active low refers to only one being 0.
- number of outputs is 2^n , n being the number of inputs. Its typical nomenclature is <number of inputs> to <number of outputs> (not including enable input) decoder.
- 3 to 8 decoder, 3 x 8 decoder

Most decoders are active low outputs which use active low enable.

2.1.1 2 x 4 decoder

- if enable is not active, output is inactive
- only one output is active at a time
- Negation bubble on an enable, input, and an output indicates that it's an active low

G	В	Α	YO	Y1	Y2	Y3
1	Х	Х	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

If input is decimal 0, then output 0 is a If input is decimal 1, then output 1 is a If input is decimal 2, then output 2 is a

3 x 8 Decoder

oll >3 43

	G1	G2A	G2B	С	В	A	YO	Y1	Y2	<u>-Y3</u>	Y4	Y5	Y6	Y7
7	-	*	*	X	X	X	1	1	1	1	1	1	1	1
	1	0	0	0	0	0	0	1	1	1	1	1	1	1
	1	0	0	0	0	1	1	0	1	1	1	1	1	1
	1	0	0	0	1	0	1	1	0	1	1	1	1	1
	1	0	0	0	1	1	1	1	1	0	1	1	1	1
	1	0	0	1	0	0	1	1	1	1	0	1	1	1
	1	0	0	1	0	1	1	1	1	1	1	0	1	1
	1	0	0	1	1	0	1	1	1	1	1	1	0	1
-	1	0	0	1	1	1	1	1	1	1	1	1	1	۵
İ	* Any inpu	ut that is no	ot 100 will r	nake enco	der inactiv	re .								

3 Cascading Decoders

Cascading another decoder will add 1 more input and double the output.

- Cascading 2x4 decoders will produce a 3x8 decoder
- Enable input becomes MSB of input of cascaded decoder

Z is MSB of 3 x 8 decoder

The reason for having a not gate at the bottom enabler input, is that only one decoder is desired to be active at a time for any input combination.

0	0
0	1
1	0
1	1
0	0
0	0 1
	0 1

The top Decoder takes the first half of the inputs, while the bottom takes the bottom half of the inputs

Cascading Decoders

3.1 adding enables

Whenever decoders are cascaded together, the enables are used to add a new input.

- ullet for active low enables use an OR gate
- for active high enables use an AND gate

$$X \text{ AND } 1 = X$$

Figure 1: Example of adding active low enable

$$X \text{ OR } 0 = X$$

4 Using Decoders to Implement Minterms

The decoder is active LOW and needs NOT gate on output

5 Where Decoders are Used

5.1 Memory Addressing

- Microprocessor needs to write to memory location
- \bullet Microprocessor will send out binary code
- Binary code determines which memory location should be active
- Works the same for reading a memory location

Selecting Sensors & translating Binary Code