Fair Risk Aggregation

With Bob Williamson (ANU-Tübingen) and Aditya Krishna Menon (Microsoft, NY)

LEARNING BINARY CLASSIFIERS

Learn a classifier which has maximal accuracy of predicting a target label

LEARNING FAIR BINARY CLASSIFIERS

Learn a classifier which has maximal accuracy of predicting a target label, **and** does not discriminate on some sensitive feature

Input set X; Label set Y; Sensitive feature S

SET UP

- lack A feature set X and a label set Y
- lacksquare A predictor $f: X \to A$ for some action set A
- A class of predictors $\mathcal{F} \subset A^X$
- lacksquare A probability distribution P over X
- lack A sensitive feature S is a partition of X

Review of previous approaches

PERFECT FAIRNESS

- Demographic Parity A 业 S
 - i.e. $P(A = a \text{ and } S = s) = P(A = a) \cdot P(S = s) \quad \forall a, s$
 - Knowledge of A = f(X) provides no knowledge of the sensitive feature S

- ▶ Equalised Odds A 业 S | Y
 - ▶ $P((A = a \text{ and } S = s) | Y = y) = P(A = a | Y = y) \cdot P(S = s | Y = y) \quad \forall a, s, y$ i.e.
 - Given knowledge of the true label Y, knowledge of the predictions A provides no knowledge of the sensitive feature S.

APPROXIMATE PERFECT FAIRNESS

Can almost never attain perfect fairness: need a measure of imperfection; allows trade-offs. Only really done when $S = A = \{1,2\}$ i.e. binary features

Mean-Difference Score:

$$MD(f) = |P(A = 2 | S = 2) - P(A = 2 | S = 1)|$$

Disparate Impact Factor:

DI(f) :=
$$\frac{\mathbb{P}(A = 2 | S = 2)}{\mathbb{P}(A = 2 | S = 1)} \wedge \frac{\mathbb{P}(A = 2 | S = 1)}{\mathbb{P}(A = 2 | S = 2)}$$

BEYOND BINARY FEATURES

- Several attempts in the literature...
- Obvious: $\sup_{a,s,s'} |\mathbb{P}(A = a | S = s) \mathbb{P}(A = a | S = s')|$.
- $lackbox{ Combinatorial explosion for large S}$
- Use mutual information to measure independence

$$MI(A; S) = KL(\mathbb{P}_{AS} || \mathbb{P}_{A} \cdot \mathbb{P}_{S})$$

- lacktriangle Approximate fairness becomes MI(A; S) < ϵ
- Choice of KL divergence is arbitrary, so use $\mathbb{I}_{arphi}(\mu \parallel
 u) := \mathbb{E}_{\mu} \left[\varphi \left(rac{\mathrm{d} \mu}{\mathrm{d}
 u}
 ight) \right]$

THE TROUBLE WITH INDEPENDENCE BASED APPROACHES TO FAIRNESS

Suppose A and S are finite

$$MI(A; S) = KL(\mathbb{P}_{AS} || \mathbb{P}_{A} \cdot \mathbb{P}_{S})$$

$$= \sum_{a,s} \mathbb{P}_{AS}((a, s)) \cdot \log \frac{\mathbb{P}_{AS}(a, s)}{\mathbb{P}_{A}(a) \cdot \mathbb{P}_{S}(s)}$$

One needs sample from

- 1. the marginal distribution of the predictions \mathbb{P}_A
- 2. the conditional distribution $\mathbb{P}_{A|S=s}$ for all sensitive feature value

Plus these constrains, the optimization might not be convex

A Decision Theoretical Approach

LOSS FUNCTION

• A loss function $\ell: Y \times A \to \mathbb{R}_{\geq 0}$ measuring the disagreement between target label and its prediction.

EXAMPLES OF THE LOSS FUNCTIONS

- Given a sample $Z = \{(x_1, y_1), \dots, (x_n, y_n)\} \in (X \times Y)^n$ and a predictor h,
- \bigstar 0-1 loss function is defined: for all $(x, y) \in Z$,

$$\mathcal{E}_{0-1}(y, h(x)) := \begin{cases} 0 & \text{if } h(x) = y \\ 1 & \text{if } h(x) \neq y \end{cases}$$

Square loss function is defined: for all $(x, y) \in Z$,

$$\ell_{sq}(y, h(x)) := (h(x) - y)^2$$

LEARNING GOAL

Learning goal: Expected loss minimisation

$$\min_{f \in \mathcal{F}} \mathbb{E}_{(X,Y) \sim P} \ell(Y, f(X))$$

$$= \min_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, f(x_i))$$

MINIMISING EXPECTED LOSS

MINIMISING EXPECTED LOSS WITH SENSITIVE ATTRIBUTES VISIBLE

MINIMISING EXPECTED LOSS WITH SENSITIVE ATTRIBUTES VISIBLE

MINIMISING AGGREGATED EXPECTED LOSS

- Standard problem: minimise average loss
- ▶ Fairness problem: also take account of variation
- Overall problem: mixture of both

150

MINIMISING AGGREGATED EXPECTATION AND DEVIATION

- Given the sensitive feature $S = \{S_1, \dots, S_n\}$, for all $S_i \in S$.
- Consider $R_f: S \to \mathbb{R}$ viewed as a random variable

$$\mathsf{R}_f^S \colon S \ni S_i \mapsto \mathbb{E}_P \left[\mathscr{E}(\mathsf{Y}, f(\mathsf{X})) \mid \mathsf{S} = S_i \right]$$

Standard ERM:

$$\min_{f \in \mathscr{F}} \mathbb{E}(\mathsf{R}^{S}_{f})$$

Fairness Augmented ERM:

$$\min_{f \in \mathcal{F}} \mathbb{E}(\mathsf{R}^{S}_{f}) + \mathcal{D}(\mathsf{R}^{S}_{f}) = \min_{f \in \mathcal{F}} \mathcal{R}(\mathsf{R}^{S}_{f})$$

WHAT AXIOM SHOULD R SATISFIES?

- Positive homogeneity is desirable, but not essential
 - It provides an invariance to scaling the loss, and simplifies the maths
- Covexity and Monotonicity are desirable, these two ensures the overall objective function remains convex
- Translation invariance means if we replace ℓ by $\ell+C$ we have not changed our measure of fairness
- Law invariance ensures the risk only depends on the distribution, not the indexing

WHAT AXIOM SHOULD R SATISFIES?

Aversity ensures deviation from perfect fairness is penalised

$$E(\ell) \leq \mathcal{R}(\ell)$$

Lower semicontinuity is a technical assumption that avoids problems with limits

WHAT IS R IN DECISION THEORY?

-Maxmin with probabilistic sophistication

FAIR RISK AGGREGATOR

We can always write

$$\Re(R) = \mathbb{E}(R) + \Im(R)$$

Fair risk aggregator

Deviation measure

the corresponding fairness/ inequality measure

$$I(f) = 1 - \frac{\Re(f)}{\mathbb{E}(f)}$$

TAKING INTO ACCOUNT THE FAIRNESS WITHIN SENSITIVE FEATURES

- Given the sensitive feature $S = \{S_1, \dots, S_n\}$, for all $S_i \in S$
- ▶ The random variable becomes

$$R_f^S \colon S \ni S_i \mapsto \mathcal{R}_{S_i}(\mathcal{C}(Y, f(X)) \cdot 1_{S_i})$$

Fairness Augmented ERM:

$$\min_{f \in \mathcal{F}} \mathcal{R}(\mathsf{R}^{S}_{f}) = \min_{f \in \mathcal{F}} \mathcal{R}^{*}(\mathsf{R}_{f})$$

A IMPOSSIBILITY RESULT

can not ensure same aggregator independent of choice of Sensitive Feature choice of Sensitive Feature essentially matters

FORMAL THEOREM

- Aggregators are all -maxmin with linear u and strictly monotonic.
- We use ℓ to represent the random variable (lottery/prospect) over X.
- For any two the sensitive features $S=\{S_1,\cdots,S_n\}$ and $P=\{P_1,\cdots,P_n\}$,
- the random variables are

$$R_f^S \colon S \ni S_i \mapsto \mathscr{R}_{s_i}(\ell \cdot 1_{S_i}) \text{ and } R_f^P \colon P \ni P_i \mapsto \mathscr{R}_{P_i}(\ell \cdot 1_{P_i})$$

$$\mathscr{R}(R_f^S) = \mathscr{R}(R_f^P) \text{ for all } \ell.$$

If and only if all aggregators are expectations.

FURTHER WORK OF THIS PROJECT DONE

CONCLUSION

- New approach to fairness in ML problems:
 - * Key principle: never actually "touch" the prediction ... just its loss ("strongly typed ML!")
 - ❖ Based on decision theory: Interpretations can be known from DT.