On-chamber Fiber Testing

Procedure

Fiber documentation

Technical specs and mapping:
 https://edms.cern.ch/ui/file/2406136/1/GE21_fibers_on_chamber_technical_specs.pdf

 OH optical interface: https://edms.cern.ch/ui/file/2512093/1/GE2 1 fibers interface to OH.pdf

Connect the fiber in loopback

- Connect all LCD#A to LCD#B
- For GBT fiber:

LCD1A to LCD1B LCD2A to LCD2B

LCD3A to LCD3B

.

o For Trigger fiber:

LCD1A to LCD1B

LCD2A to LCD2B

LCD3A to LCD3B

LCD4A to LCD4B

Figure 1: GE21_C1 fanout assembly

Run the fiber test procedure on the backend (see next slide)

- Measure the light level coming back to the receivers
- Also runs GBT data through the links and checks GBT lock and FEC error cnt
- Print the info, and PASS / FAIL

Figure 2: GE21_C5 fanout assembly

Evaldas Juska (TAMU)

Procedure

The script always tests all OHs supported by the firmware

- If you see less than 4 OHs reported by the script, you need to upgrade backend firmware to with support for at least 4 OHs
- When testing GBT fibers, all 4 OHs must pass
- When testing trigger fibers, only 2 OHs are used per fiber bundle
 - If testing only one bundle, connect it to QSFP #0 in this case OH0 and OH1 must pass
 - You can test two bundles at the same time by connecting them to QSFP #0 and QSFP #1

Test script

- The script supports two modes:
 - Loopback: use this mode when testing fibers in loopback
 - Normal: use this mode if you want to test both the fibers and VTRX (fibers connected to OH)
- Run the script: python3 gem/fiber_test.py <mode>, e.g.:
 - python3 gem/fiber_test.py loopback
 - python3 gem/fiber_test.py normal
- Script measures received light power, and prints pass/fail
- Script measures GBT lock and FEC errors down to a Bit Error Rate of 10⁻¹⁰, prints pass/fail
 - This measurement only takes ~3 seconds
- Script then asks if you would like to make a more thorough Bit Error Rate test
 - If the quick test passed, and time permits, please do a BER test to 10⁻¹² by entering 12
 - BER test down to 10⁻¹² is industry standard
 - This takes 3.5 minutes (progress is reported every 10% to make it seem faster:))
 - If you don't want to run the longer test, just press enter
- Sample output of the script in the next slide

Procedure

```
onfiguring the links for loopback
>>>>> OPTICAL POWER TEST <
GBT0 RX power: 958uW (PASS)
GBT1 RX power: 1113uW (PASS)
--- OH1 ----
GBT0 RX power: 1256uW (PASS)
GBT1 RX power: 1044uW (PASS)
--- OH2 ----
--- OH3 ----
>>>>> QUICK GBT LOCK AND FEC ERROR TEST TO BER 10^10 <
laiting for 2 seconds to allow 10^10 bits to pass through for error counting...
   progress: 80%
GBTO locked = 1, had unlocks = 0, FEC error count = 0 (PASS)
GBT1 locked = 1, had unlocks = 0, FEC error count = 0 (PASS)
GBT0 locked = 1, had unlocks = 0, FEC error count = 0 (PASS)
GBT1 locked = 1, had unlocks = 0, FEC error count = 0 (PASS)
Would you like to do a longer and more thorough FEC error test? If yes, please enter the BER power to test to (12 is the industry standard,
would take around 3.5 minutes):12
>>>>> GBT LOCK AND FEC ERROR TEST TO BER 10^12 <<<<<
Waiting for 208 seconds to allow 10^12 bits to pass through for error counting...
GBTO locked = 1, had unlocks = 0, FEC error count = 0 (PASS)
GBT1 locked = 1, had unlocks = 0, FEC error count = 0 (PASS)
GBT0 locked = 1, had unlocks = 0, FEC error count = 0 (PASS)
GBT1 locked = 1, had unlocks = 0, FEC error count = 0 (PASS)
onfiguring the links for normal operation
```

Script output when testing a single MTP12 cable in loopback (like trigger fiber test)