Measurement Task 1

Irini Adel section 1

7/10/2018

1 Exercise 8

Determine in the appropriate SI units the value with the correct number of significant figures of the work done by a $1.460 \times 10^6 lbf$ force over a 2.3476m

Force in newtons= $\frac{1.460\times10^6}{0.2248}$ =6494661.922N Force in significant figures=6.495 × 10⁶N

 $\textbf{Work} \small{=} Force \times distance$

Work= $6.495 \times 10^6 \times 2.3476 = 15.247662 \times 10^6$ Joules

Work in significant figures= 1.524×10^7 joules

If we continue with the original force, then:

 $Work=6494661.922 \times 2.3476 = 1524686.33$ joules

Then work in significant figures= 1.5247×10^7 joules

2 Exercise 7

How many significant figures does the number 001001.0110 have ?? Solution

8 significant figures

3 Exercise 9

The proof for wheatstone bridge:

Using KVL on outer loop:

$$-E_o - I_3 R_3 + I_1 R_1 = 0$$

Then $E_o = I_1 R_1 - I_3 R_3$

Then $E_o = V_1 - V_3$

Because $I_1=I_2$ and $I_3=I_4$ and and by using voltage divider: $E_o=\frac{E_iR_1}{R_1+R_2}-\frac{E_iR_3}{R_3+R_4}$ To derive the balance equation:

Put
$$E_o = 0$$

Then $\frac{R_1}{R_1 + R_2} = \frac{R_3}{R_3 + R_4}$
Then $R_1 (R_3 + R_4) = R_3 (R_1 + R_2)$
Then $R_1 R_4 = R_3 R_2$
Then $\frac{R_1}{R_2} = \frac{R_3}{R_4}$

4 Exercise 10

when wheatstone bridge is balanced: a. $\frac{R_1}{R_2}=\frac{R_3}{R_4}$ If $R_1=1\Omega,~R_2=3\Omega$ and $R_3=2\Omega$ Then $R_4=6\Omega$

b. Bridge output voltage = 0 volts