Hierarchical Continuous Time Dynamic Models with ctsem

July, 2018

Charles Driver

Max Planck Institute for Human Development

 Common approaches to dynamic modelling (latent change, autoregressive) assume that the relation between observations at different occasions are equal.

- Common approaches to dynamic modelling (latent change, autoregressive) assume that the relation between observations at different occasions are equal.
- This is fine in some cases, however problems can arise when time intervals between measurements are not equal.

- Common approaches to dynamic modelling (latent change, autoregressive) assume that the relation between observations at different occasions are equal.
- This is fine in some cases, however problems can arise when time intervals between measurements are not equal.
- Continuous time models determine the relations between each measurement occasion via a deterministic function of the continuous time parameters and the time interval between measurements.

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

$$\frac{\partial \mathbf{n}}{\partial t} = A^* \eta_{t-1} + b^* + \zeta^*(t)$$

Time

More accuracy by incorporating time explicitly.

- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.

- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.

- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:

- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
 - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.

- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
 - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
 - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.

- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
 - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
 - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
 - Differential equations:

- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
 - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
 - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
 - Differential equations:
 - Parsimonious specification of higher order dynamics such as oscillations and slow changing trends.

- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
 - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
 - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
 - Differential equations:
 - Parsimonious specification of higher order dynamics such as oscillations and slow changing trends.
 - Direct interpretation re causality given true model!

- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
 - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
 - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
 - Differential equations:
 - Parsimonious specification of higher order dynamics such as oscillations and slow changing trends.
 - Direct interpretation re causality given true model!
 - Helps (forces?) us to think more coherently in terms of time.

- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
 - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
 - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
 - Differential equations:
 - Parsimonious specification of higher order dynamics such as oscillations and slow changing trends.
 - Direct interpretation re causality given true model!
 - Helps (forces?) us to think more coherently in terms of time.
- Downsides:

- More accuracy by incorporating time explicitly.
- More theoretically justifiable things happen between measurement occasions.
- More accurate than embedding approaches to differential equations, and no need to set embedding dimension.
- Tangible benefits:
 - More flexible data collection no longer a need for consistent measurement intervals within or between individuals.
 - Consistent parameter comparisons between different data collection schedules - between waves, studies, or both.
 - Differential equations:
 - Parsimonious specification of higher order dynamics such as oscillations and slow changing trends.
 - Direct interpretation re causality given true model!
 - Helps (forces?) us to think more coherently in terms of time.
- Downsides:
 - More mathematically and computationally demanding than autoregressive / latent change approaches.

 Latent dynamic process with measurement model, 1+ subjects, each with 1+ obs, varying time intervals. Dynamics are a linear stochastic differential equation:

$$d\eta(t) = \left(\mathbf{A}\eta(t) + \mathbf{b} + \mathbf{M}\chi(t)\right)dt + \mathbf{G}d\mathbf{W}(t) \tag{1}$$

Observations for each subject are described by:

$$\mathbf{y}(t) = \mathbf{\Lambda} \eta(t) + \mathbf{\tau} + \epsilon(t)$$
 where $\epsilon(t) \sim N(\mathbf{0}_c, \mathbf{\Theta})$ (2)

Latent dynamic process with measurement model, 1+ subjects, each with 1+ obs, varying time intervals. Dynamics are a linear stochastic differential equation:

$$d\eta(t) = \left(\mathbf{A}\eta(t) + \mathbf{b} + \mathbf{M}\chi(t)\right)dt + \mathbf{G}d\mathbf{W}(t) \tag{1}$$

Observations for each subject are described by:

$$\mathbf{y}(t) = \mathbf{\Lambda} \boldsymbol{\eta}(t) + \boldsymbol{\tau} + \boldsymbol{\epsilon}(t) \quad \text{where } \boldsymbol{\epsilon}(t) \sim \mathrm{N}(\mathbf{0}_c, \boldsymbol{\Theta})$$
 (2)

■ The SDE may be solved, for any observation $u \in \mathbf{U}$:

$$\eta_u = \mathbf{A}_u^* \eta_{u-1} + \mathbf{b}_u^* + \mathbf{M} \mathbf{x}_u + \boldsymbol{\zeta}_u^* \qquad \boldsymbol{\zeta}_u^* \sim \mathrm{N}(\mathbf{0}_v, \mathbf{Q}_u^*)$$
(3)

$$\mathbf{A}_{u}^{*} = e^{\mathbf{A}(t_{u} - t_{u-1})} \tag{4}$$

$$\mathbf{b}_{u}^{*} = \mathbf{A}^{-1}(\mathbf{A}_{u}^{*} - \mathbf{I})\mathbf{b} \tag{5}$$

$$\mathbf{Q}_{u}^{*} = \mathbf{Q}_{\infty} - \mathbf{A}_{u}^{*} \mathbf{Q}_{\infty} \mathbf{A}_{u}^{*\top}$$
 (6)

$$\mathbf{Q}_{\infty} = \mathsf{irow}(-\mathbf{A}_{\#}^{-1}\,\mathsf{row}(\mathbf{Q})) \tag{7}$$

 Complete pooling - estimate single fixed effect parameter for entire sample.

- Complete pooling estimate single fixed effect parameter for entire sample.
 - Contaminates within subject model with between subjects differences, and not a great way to understand individual differences...

- Complete pooling estimate single fixed effect parameter for entire sample.
 - Contaminates within subject model with between subjects differences, and not a great way to understand individual differences...
- No pooling assume individuals have no similarities, estimate seperate model for each.

- Complete pooling estimate single fixed effect parameter for entire sample.
 - Contaminates within subject model with between subjects differences, and not a great way to understand individual differences...
- No pooling assume individuals have no similarities, estimate seperate model for each.
 - Simple and perfect if sufficient data exists 'sufficient' may be extremely large – otherwise prone to finite sample biases and high variance.

- Complete pooling estimate single fixed effect parameter for entire sample.
 - Contaminates within subject model with between subjects differences, and not a great way to understand individual differences...
- No pooling assume individuals have no similarities, estimate seperate model for each.
 - Simple and perfect if sufficient data exists 'sufficient' may be extremely large – otherwise prone to finite sample biases and high variance.
- Partial pooling estimate population distribution for individual models.

- Complete pooling estimate single fixed effect parameter for entire sample.
 - Contaminates within subject model with between subjects differences, and not a great way to understand individual differences...
- No pooling assume individuals have no similarities, estimate seperate model for each.
 - Simple and perfect if sufficient data exists 'sufficient' may be extremely large – otherwise prone to finite sample biases and high variance.
- Partial pooling estimate population distribution for individual models.
 - More complex models but most flexible parameters are not either 'freely varying' or 'not varying at all' but the extent of allowed variation is estimated.

$$p(\mathbf{\Phi}, \boldsymbol{\mu}, \mathbf{R}, \boldsymbol{\beta} | \mathbf{Y}, \mathbf{Z}) = \frac{p(\mathbf{Y} | \mathbf{\Phi}) p(\mathbf{\Phi} | \boldsymbol{\mu}, \mathbf{R}, \boldsymbol{\beta}, \mathbf{Z}) p(\boldsymbol{\mu}, \mathbf{R}, \boldsymbol{\beta})}{p(\mathbf{Y})}$$
(9)

Where subject specific parameters Φ_i are determined in the following manner:

$$\mathbf{\Phi}_{i} = \mathsf{tform} \left(\boldsymbol{\mu} + \mathbf{R} \mathbf{h}_{i} + \boldsymbol{\beta} \mathbf{z}_{i} \right) \tag{10}$$

$$\mathbf{h}_i \sim \mathrm{N}(\mathbf{0}, \mathbf{1}) \tag{11}$$

$$\mu \sim N(\mathbf{0}, \mathbf{1})$$
 (12)

$$\beta \sim N(\mathbf{0}, \mathbf{1})$$
 (13)

ctsem - open source R software

- ctsem open source R software
 - Originally only mixed effects models, using OpenMx as backend.

- ctsem open source R software
 - Originally only mixed effects models, using OpenMx as backend.
 - Using Stan as backend, added support for fully random effects with Bayesian estimation.

- ctsem open source R software
 - Originally only mixed effects models, using OpenMx as backend.
 - Using Stan as backend, added support for fully random effects with Bayesian estimation.
- ctModel function constructs a ctsem model based on specified matrices of free and fixed parameters.

- ctsem open source R software
 - Originally only mixed effects models, using OpenMx as backend.
 - Using Stan as backend, added support for fully random effects with Bayesian estimation.
- ctModel function constructs a ctsem model based on specified matrices of free and fixed parameters.
- Modify between subject effects, covariates, priors etc as needed.

- ctsem open source R software
 - Originally only mixed effects models, using OpenMx as backend.
 - Using Stan as backend, added support for fully random effects with Bayesian estimation.
- ctModel function constructs a ctsem model based on specified matrices of free and fixed parameters.
- Modify between subject effects, covariates, priors etc as needed.
- ctStanFit function constructs a Stan model and calls rstan for estimation, using either Kalman filter for continuous variables or direct sampling of states for other measurement models.

Non-linear dynamics and measurement via unscented Kalman filter.

- Non-linear dynamics and measurement via unscented Kalman filter.
- Binary and ordinal measurement models.

- Non-linear dynamics and measurement via unscented Kalman filter.
- Binary and ordinal measurement models.
- Optimization followed by importance sampling for faster results.

- ctsem and vignettes
 https://cran.r-project.org/web/packages/ctsem/index.html
- Other articles: https://www.researchgate.net/profile/Charles_Driver
- Overview of provided R script:
 - Generate some data.
 - Fit a univariate linear growth curve with random effects and a covariate.
 - Add in dynamics.
 - Add in an intervention.
 - And a second latent process.
 - Drop the second latent process and try a state-dependent (non-linear) intervention.