

Lecture 4: Basic Complexity Analysis

01204212 Abstract Data Types and Problem Solving

Department of Computer Engineering Faculty of Engineering, Kasetsart University Bangkok, Thailand.

Outline

- Mathematic Background
 - Logarithms and Exponents
 - Series
 - Recurrence Relations
- Complexity Analysis
 - Asymptotic Notations
 - Recurrence Relations

Efficiency of Algorithms

- In many situations, you will often have a selection of among possible algorithms or data structures, or even compare them
- It is not possible to simply say that "algorithm A is faster than algorithm B" => quality

Why?

- System dependence: execution time, memory space, compiler, ...
- Application dependence: input data
- An alternative comparison is based on the quantity metric by looking at relatively rates of growth in time requirements as the size of problem increases
 - Use mathematics and elementary calculus

L'Hôpital

If you are attempting to determine

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$

but both $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$, it follows

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f^{(1)}(n)}{g^{(1)}(n)}$$

Repeat as necessary ...

Where $f^{(k)}(n)$ is the k^{th} derivative

Logarithms and Exponents

If $n = e^m$, we define $m = \ln(n)$

Exponents grow faster than any non-constant polynomial

$$\lim_{n\to\infty}\frac{e^n}{n^d}=\infty \text{ for any } d>0$$

Thus, their inverses (i.e., logarithms) grow slower than any polynomial

$$\lim_{n\to\infty} \frac{\ln(n)}{n^d} = 0$$

Example: Logarithms and Exponents

Example: Logarithms and Exponents

after the point (5503.66, 8.61), ln(n) will grow slower than $\sqrt[4]{n}$

Logarithm with Different Bases

You have seen the formula

$$\log_b(n) = \frac{\log_x(n)}{\log_x(b)} = \frac{\ln(n)}{\ln(b)}$$
constant

So that all logarithms are scalar multiples of each others

Logarithm with Different Bases

Note: the base-2 logarithm $log_2(n)$ is written as lg(n)

Some Properties of Logarithms

- $\log_b(nm) = \log_b(n) + \log_b(m)$
- $\log_b\left(\frac{n}{m}\right) = \log_b(n) \log_b(m)$
- $\log_b(n^m) = m \log_b(n)$
- $b^{\log_b(n)} = n$
- $n^{\log_b(m)} = m^{\log_b(n)}$
- $\log_b \log_b(n) < \log_b(n) < n$ for all n > 0

Arithmetic Series

Each term in an arithmetic series is increased by a constant value (usually 1):

$$1+2+3+\cdots+n=\sum_{i=1}^{n}i=\frac{n(n+1)}{2}$$

Proof1: Adding the series twice

$$S_n = 1 + 2 + 3 + \dots + (n-2) + (n-1) + n$$

$$S_n = n + (n-1) + (n-2) + \dots + 3 + 2 + 1$$

$$2S_n = (n+1) + (n+1) + (n+1) + \dots + (n+1) + (n+1) + (n+1)$$

$$S_n = \frac{1}{2}n(n+1)$$

Proof2: By induction

- Basic step: The statement is true for n = 1
- Inductive hypothesis: Assume the statement is true for $1 < i \le n$
- Inductive step: Based on the hypothesis, the statement is also true for n+1

Quickly Algorithm Analysis

Consider the following code fragment:

```
for (i=1; i<=n; i++)
  for (j=1; j<=i; j++)
    printf("Hello\n");</pre>
```

How many times is printf() executed?

i	j	times	
1	1	1	
2	1,2	2	arithmetic series
3	1,2,3	3	n(n+1)
•••			$=\frac{n(n+1)}{2}$
n	1,2,3,,n	n	2

Other Polynomial Series

We could repeat the proven process, after all:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Geometric Series

A series for which the ratio of each two consecutive terms a_{i+1}/a_i is a constant |r| < 1

$$1 + r + r^2 + \dots + r^n = \sum_{i=0}^{n} r^i = \frac{1 - r^{n+1}}{1 - r}$$

Proof:

$$S_n = 1 + r + r^2 + \dots + r^n$$

$$rS_n = r + r^2 + r^3 + \dots + r^{n+1}$$

$$S_n - rS_n = (1 + r + r^2 + \dots + r^n) - (r + r^2 + r^3 + \dots + r^{n+1})$$

$$(1 - r)S_n = 1 - r^{n+1}$$

$$S_n = \frac{1 - r^{n+1}}{1 - r}$$

Geometric Series

A series for which the ratio of each two consecutive terms a_{i+1}/a_i is a constant |r| < 1

$$1 + r + r^{2} + \dots + r^{n} = \sum_{i=0}^{n} r^{i} = \frac{1 - r^{n+1}}{1 - r}$$

The sum converges as $n \to \infty$

$$1 + r + r^2 + \dots = \sum_{i=0}^{\infty} r^i = \frac{1}{1 - r}$$

Recurrence Relations

- Sequences may be defined explicitly
 - For example, the harmonic sequence $x_n = \frac{1}{n}$, we have $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$
- A recurrence relationship is a means of defining a sequence based on previous values in the sequence
 - Such definitions of sequences are said to be recursive
 - For example,

```
the odd number sequence: x_n = x_{n-1} + 2 where x_1 = 1 the Fibonacci sequence: x_n = x_{n-1} + x_{n-2} where x_0 = 0, x_1 = 1
```


Recurrence Relations

- In some cases, given the recurrence relation, we can find the explicit formula (closed form)
 - For example,

```
the odd number sequence: x_n = x_{n-1} + 2 where x_1 = 1 its closed form is given by x_n = 2n - 1
```

the Fibonacci sequence: $x_n=x_{n-1}+x_{n-2}$ where $x_0=0, x_1=1$ its closed form is given by $x_n=\frac{\left(1+\sqrt{5}\right)^n-\left(1-\sqrt{5}\right)^n}{2^{n\sqrt{5}}}$

Recurrence Relations

We may use a functional form for a recurrence relation:

Mathematic

$$x_1 = 1$$

$$x_n = x_{n-1} + 2$$

$$x_n = x_{n-1} + x_{n-2}$$

Function

$$f(1) = 1$$

$$f(n) = f(n-1) + 2$$

$$f(n) = f(n-1) + f(n-2)$$

Weighted Averages

Given n objects $x_1, x_2, x_3, ..., x_n$, the average is

$$\frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

If we are given a sequence of coefficients $c_1, c_2, c_3, ..., c_n$ where

$$c_1 + c_2 + c_3 + \dots + c_n = 1$$

then we refer to

$$c_1 x_1 + c_2 x_2 + c_3 x_3 + \dots + c_n x_n$$

as a weighted average

For an average,
$$c_1=c_2=c_3=\cdots=c_n=\frac{1}{n}$$

Combinations

Given n distinct items, in how many ways can you choose k of these?

The number of ways such items can be chosen is written

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

where $\binom{n}{k}$ is read as "n choose k"

Combinations

You have also seen this in expanding polynomials:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

For example,

$$(x+y)^4 = \sum_{k=0}^4 {4 \choose k} x^k y^{4-k}$$

The coefficients of Pascal's triangle:

$$= {4 \choose 0} y^4 + {4 \choose 1} xy^3 + {4 \choose 2} x^2 y^2 + {4 \choose 3} x^3 y + {4 \choose 4} x^4$$
$$= y^4 + 4xy^3 + 6x^2 y^2 + 4x^3 y + x^4$$

Outline

- Mathematic Background
 - Logarithms and Exponents
 - Series
 - Recurrence Relations
- Complexity Analysis
 - Asymptotic Notations
 - Recurrence Relations

Algorithm Analysis

In an algorithm analysis, you always have to know as the size of an algorithm's input grows

- Time: How much longer does it run?
- Space: How much memory does it use?

How do you answer these questions?

For now, we will focus on time only.

Problems with Timing

- Why not just code the algorithm and time it?
 - Hardware: processor, memory, etc.
 - OS, programming language, libraries, compiler/interpreter
 - Programs running in the background
 - Choice of input, number of inputs
- Timing does not really evaluate the algorithm but merely evaluates a specific implementation
- At the core of CS, a backbone of theory & mathematics
 - Examine the algorithm itself, not the implementation
 - Reason about performance as a function of n
 - Mathematically proven things about performance
- Yet, timing has its place
 - In real world, we do want to know whether implementation A runs faster than implementation B on data set C, e.g., Benchmarking

Evaluations

Evaluate an algorithm

→ Use asymptotic analysis

Evaluate an implementation

→ Use timing

Motivation for Algorithm Analysis

- Suppose you are given two algorithms A and B for solving the problem
- The running times (operations) $T_A(n)$ and $T_B(n)$ of A and B as a function of input size n are given

Which is better?

Motivation for Algorithm Analysis

For large n, the running times of A and B are:

Goals of Algorithm Analysis

- Concentrate on large inputs
 - Some algorithms only work fine for small inputs
- Be independent of hardware, OS, language, etc.
- Be general, not specific in some test cases

Assumptions in Analyzing Code

- Basic operations take a unit (constant) running time, e.g.,
 - Arithmetic
 - Assignment
 - Comparing two simple values
 - Accessing array with an index
- Other operations are summations or products
 - Consecutive statements are summed
 - Loops are (cost of loop body)×(number of loops)

Examples: Analyzing Code

What are the running times for the following codes?

```
n
                   n
for (i=0; i<n; i++)
  x = x+1;
                 1+2n
for ([i=0; i<n; i++])
  for (j=0; j<n; j++)</pre>
    x = x+1;
                   n(1 + 4n)
        1 + 2n
for ([i=0; i<n; i++])
  for (j=0; j<=i; j++)</pre>
    x = x+1;
```

$$\approx 1 + 4n$$

$$\approx 1 + 2n + n(1 + 4n)$$
$$\approx 1 + 3n + 4n^2$$

$$\approx 1 + 2n + n + \frac{4n(n+1)}{2}$$
$$\approx 1 + 5n + 2n^2$$

No Need to be so Exact

Constant coefficients do not matter

For example: Given $T_A(n) = n^2$ and $T_B(n) = 10n^2$, which has the faster growth rate?

$$\lim_{n\to\infty} \frac{n^2}{10n^2} = \lim_{n\to\infty} \frac{1}{10} = 0.1$$
 a constant

Lower-order terms are less important

For example: Given $T_A(n) = n^2$ and $T_B(n) = 10n^2 + 5n + 2$, which has the faster growth rate?

$$\lim_{n \to \infty} \frac{n^2}{10n^2 + 5n + 2} = \lim_{n \to \infty} \frac{2n}{20n + 5} = \lim_{n \to \infty} \frac{1}{10} = 0.1$$

"We will focus on the dominant term only"

Worst-Case Analysis

- In general, we are interested in three types of performance
 - Best-case
 - Average-case
 - Worst-case
- When determining worst-case, we tend to be pessimistic
 - If there is a conditional, count the branch that runs the slowest
 - This will give a loose bound on how slow the algorithm may run

Algorithmic Complexity

How the running time of an algorithm increases with the size of the input in the limit (growth rate), as the size of the input increase without bound

Asymptotic Notation

Notations are used to describe the asymptotic running time (complexity) of an algorithm, defined as functions whose domains are the set of natural numbers $N = \{0, 1, 2, ...\}$

Asymptotic: Big-Oh Notation

Given two functions f(n) and g(n) for inputs n, we say "f(n) is in O(g(n)) iff there exist positive constants c

and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$ "

Proof:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0, c ; c \neq \infty$$

g(n) is an asymptotic upper bound for f(n)

Examples: Big-Oh

Are the following statements TRUE or FALSE?

•
$$4 + 3n$$
 is in $O(n)$

$$\lim_{n \to \infty} \frac{4 + 3n}{n} = 3$$
We select $c = 4$ and $n_0 = 4$, so that $0 \le f(n) \le 4g(n)$ for all $n > 4$.

for all $n \geq 4$.

TRUF

• $n + 2\ln(n)$ is in $O(\ln(n))$

$$\lim_{n\to\infty} \frac{n+2\ln(n)}{\ln(n)} = \lim_{n\to\infty} \frac{1+\frac{2}{n}}{\frac{1}{n}} = \lim_{n\to\infty} (n+2) = \infty \quad \text{FALSE}$$

• n^{50} is in $O(2^n)$

$$\lim_{n \to \infty} \frac{n^{50}}{2^n} = \lim_{n \to \infty} \frac{50n^{49}}{\ln(2) \, 2^n} = \lim_{n \to \infty} \frac{50 \cdot 49n^{48}}{\ln^2(2) \, 2^n}$$
$$= \dots = \lim_{n \to \infty} \frac{50!}{\ln^{50}(2) \, 2^n} = 0$$

Increasing running time

Big-Oh Common Comparisons

Big-Oh	Description
0(1)	Constant (or $O(k)$ for constant k)
$O(\log \log n)$	Log log
$O(\log n)$	Logarithmic
$O(\log^2 n)$	Log squared
O(n)	Linear
$O(n \log n)$	n log n
$O(n^2)$	Quadratic
$O(n^3)$	Cubic
$O(n^k)$	Polynomial (where k is constant)
$O(k^n)$	Exponential (where constant $k > 1$)

Comment on Notation

- 4 + 3n is in O(n)?
- 4 + 3n is in $O(n \log n)$?
- 4 + 3n is in $O(n^2)$?
- 4 + 3n is in $O(n^3)$?
- 4 + 3n is in $O(n^k)$, for all $k \ge 1$?
- 4 + 3n is in $O(k^n)$, for all k > 1?

Choose $O(\cdot)$ with the least running time as possible!

Comment on Notation

- We say " $3n^2 + 17$ is in $O(n^2)$ "
- We may also say/write it as

$$3n^2 + 17$$
 is $O(n^2)$
 $3n^2 + 17 = O(n^2)$
 $3n^2 + 17 \in O(n^2)$

• But '=' does not mean an equality, so that we would never say $O(n^2) = 3n^2 + 17$

Asymptotic Notations

- Big-Oh: upper bound
 - f(n) is in O(g(n)) iff there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$
- Big-Omega: lower bound f(n) is in $\Omega(g(n))$ iff there exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$
- Big-Theta: tight bound
 - f(n) is in $\Theta(g(n))$ iff there exist positive constants c_1 , c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

Asymptotic Notations

Less common notations

Little-oh: like Big-Oh but strictly less than

```
f(n) is in o(g(n)) iff for any positive constant c > 0, there exists a constant n_0 > 0 such that 0 \le f(n) < cg(n) for all n \ge n_0
```

For example, $2n = o(n^2)$, but $2n^2 \neq o(n^2)$

Little-omega: like Big-Omega but strictly greater than

```
f(n) is in \omega(g(n)) iff for any positive constant c > 0, there exists a constant n_0 > 0 such that 0 \le cg(n) < f(n) for all n \ge n_0
```

For example, $2n^2 = \omega(n)$, but $2n^2 \neq \omega(n^2)$

Asymptotic Notations

$$f(n) = o(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$f(n) = O(g(n))$$

$$0 \le \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$f(n) = \Theta(g(n))$$

$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$f(n) = \Omega(g(n))$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}>0$$

$$f(n) = \omega(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Example: Big-Oh Analysis

Compute the sum of n integers stored in the array a:

Code Fragment:

```
1: int sum_array(int a[], int n) {
2: int sum = 0, i;
3:
4: for (i=0; i<n; i++)
5: sum += a[i];
6: return sum;
7: }</pre>
```

- Lines 2 and 6 take constant time, i.e., O(1)
- Lines 4 and 5 perform n iterations, i.e., O(n)
- So that the running time is $O(1+n) \Rightarrow O(n)$
- Actually, $\Theta(n)$ since all n integers are exactly accessed

Example: Big-Oh Analysis

Find the value v in the array a of n integers

Code Fragment:

```
1: int find(int a[], int n, int v) {
2: int i;
3:
4: for (i=0; i<n; i++)
    if (a[i] == v)
    return 1;
7: return -1;
8: }</pre>
```

Lines 4-6 are the dominant costs of the running time

- Worst-case: v is the last element $\rightarrow O(n)$
- Best-case: if you are lucky, v is the first element $\Rightarrow \Omega(1)$
- Average-case: the probability of v stored in each position ⇒ ...

Example: Big-Oh Analysis

Again, compute the sum of n integers stored in the array a:

Code Fragment:

```
1: int sum_array(int a[], int n) {
2:    if (n == 1)
3:        return a[n-1];
4:    else
5:        return a[n-1] + sum_array(a, n-1);
6: }
```

- Lines 2-3 take constant O(1)
- Let T(n) be the running time of summing all n integers
- Then, in lines 4-5, the cost is O(1) + T(n-1)
- So that we got the recurrence relation:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1, \\ T(n-1) + O(1) & \text{otherwise} \end{cases}$$

• How can we find O(T(n))?

Recurrence Relations

Substitution method

 Expand the recurrence and express it as a summation of terms dependent only on n and the initial conditions

Recursion tree

Visualize what happens when a recurrence is iterated

Master theorem

Provide a cookbook method for solving recurrences of the specific form

Example: Sum of n Elements in Array

$$T(n) = \begin{cases} O(1) & \text{if } n = 1, \\ T(n-1) + O(1) & \text{otherwise} \end{cases}$$
branching workload

Substitution method

$$T(n) = T(n-1) + O(1)$$

$$= T(n-2) + O(1) + O(1)$$

$$= T(n-3) + O(1) + O(1) + O(1)$$
...
$$= T(1) + O(1) + \dots + O(1)$$

$$= O(1) + O(1) + \dots + O(1)$$

$$n \text{ times}$$

$$= O(n)$$

Recursion tree

$$n \longrightarrow 0(1)$$

$$n-1 \longrightarrow 0(1)$$

$$n \longrightarrow 0(1)$$

$$n \text{ times}$$

$$n \longrightarrow 0(1)$$

$$0(1)$$

$$0(1)$$

$$0(1)$$

$$0(1)$$

$$0(1)$$

Example: Towers of Hanoi

```
1:
    #include <stdio.h>
 2:
 3:
    void toh(int n, char from, char to, char aug) {
 4:
      if (n == 1)
        printf("Move %d from %c to %c\n", n, from, to); - → base case
 5:
 6:
      else {
 7:
        printf("Move %d from %c to %c\n", n, from, to); - → workload
 8:
        toh(n-1, aug, to, from); ---------- \rightarrow branching
 9:
10:
11:
    int main(void) {
  int n = 0; -----> O(1)
T(n) = \begin{cases} O(1) & \text{if } n = 1, \\ 2T(n-1) + O(1) & \text{otherwise} \end{cases}
12:
13:
14:
15:
16:
      printf("Enter n: "); - \rightarrow 0(1)
      scanf("%d", &n); ---- \rightarrow 0(1)
17:
      toh(n, 'A', 'B', 'C'); -> O(T(n))
18:
       return 0; ---->0(1)
19:
20:
```


Recurrence Relation: Tower of Hanoi

$$T(n) = \begin{cases} O(1) & \text{if } n = 1, \\ 2T(n-1) + O(1) & \text{otherwise} \end{cases}$$

Substitution method

$$T(n) = 2T(n-1) + O(1)$$

$$= 2(2T(n-2) + O(1)) + O(1) = 2^{2}T(n-2) + 2O(1) + O(1)$$

$$= 2^{2}(2T(n-3) + O(1)) + 2O(1) + O(1) = 2^{3}T(n-3) + 2^{2}O(1) + 2O(1) + O(1)$$

$$= 2^{4}T(n-4) + 2^{3}O(1) + 2^{2}O(1) + 2O(1) + O(1)$$
...
$$= 2^{n-1}T(1) + 2^{n-2}O(1) + \dots + 2^{2}O(1) + 2O(1) + O(1)$$

$$= 2^{n-1}O(1) + 2 + 2^{n-2}O(1) + \dots + 2^{2}O(1) + 2^{1}O(1) + 2^{0}O(1)$$

$$= O(1) \sum_{i=0}^{n-1} 2^{i}$$
n n-1 ... 3 2 1 0

 $= (2^{n} - 1)O(1) = O(2^{n} - 1) = O(2^{n})$

Recurrence Relation: Tower of Hanoi

$$T(n) = \begin{cases} O(1) & \text{if } n = 1, \\ 2T(n-1) + O(1) & \text{otherwise} \end{cases}$$

Example: Recursion Tree

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Example: Recursion Tree

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + n$$

Recurrence Relations

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) \qquad ; a \ge 1, b > 1$$

Master theorem

- If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1, then $T(n) = \Theta(f(n))$

Example: Master Theorem

$$T(n) = 9T\left(\frac{n}{3}\right) + n$$

- We have a = 9, b = 3, f(n) = n
- Thus $n^{\log_b a} = n^{\log_3 9} = n^2$
- Since $f(n) = n = O(n^{\log_3 9 \varepsilon})$, where $0 < \varepsilon \le 1$, we can apply the case 1
- So that $T(n) = \Theta(n^{\log_3 9}) = \Theta(n^2)$

Example: Master Theorem

$$T(n) = T\left(\frac{n}{3}\right) + 1$$

- We have a = 1, b = 3, f(n) = 1
- Thus $n^{\log_b a} = n^{\log_3 1} = 1$
- Since $f(n) = 1 = \Theta(n^{\log_3 1})$, we can apply the case 2
- So that $T(n) = \Theta(n^{\log_3 1} \log n) = \Theta(\log n)$

Example: Master Theorem

$$T(n) = 3T\left(\frac{n}{4}\right) + n\log n$$

- We have a = 3, b = 4, $f(n) = n \log n$
- Thus $n^{\log_b a} = n^{\log_4 3} \approx n^{0.793}$
- Since $f(n) = n \log n = \Omega(n^{\log_3 4 + \varepsilon})$, where $0 < \varepsilon \le 0.207$, the case 3 will apply if we can show $af\left(\frac{n}{b}\right) \le cf(n)$, c < 1
- $3\left(\frac{n}{4}\right)\log\left(\frac{n}{4}\right) = \left(\frac{3}{4}\right)n(\log n \log 4) \le \left(\frac{3}{4}\right)n\log n \text{ for } c = \frac{3}{4}$
- So that $T(n) = \Theta(f(n)) = \Theta(n \log n)$

Any Question?

