Reinforcement Learning - Course notes -

Chapter 1

Dynamic programming

1.1 The value function

The value function is a staple from the literature on dynamic programming, whether it be for discrete or continuous problems (as in control theory). It measures just how good a control u – or, in our case, a policy π – is regarding the desired target of our problem.

Definition 1 (Value function) The value function $V^{\pi}: \mathcal{S} \to \mathbb{R}$ of a policy π is the expectation of the cumulative (discounted) future rewards starting from a point $s_0 = s$

$$V^{\pi}(s) := \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s \right]$$
 (1.1)

where the trajectory τ is generated under the policy π .

This notion can be generalized to the case where the rewards are generated by the transitions (s_t, a_t, s_{t+1}) rather than the (state, action) couple:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^t r(s_t, a_t, s_{t+1}) \mid s_0 = s\right]$$

Under a deterministic policy $\pi \colon \mathcal{S} \to \mathcal{A}$ and associated decision rule $d^{\pi}(s) = \pi(s)$, the dynamic programming principle leads to a dynamic programming equation called the **Bellman equation**:

$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s, \pi(s), s') V^{\pi}(s')$$
 (1.2)

With generalizations:

- for stochastic policies $\pi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}_+$, the sum becomes $\sum_{s' \in \mathcal{S}} \sum_{a \in \mathcal{A}} \pi(s, a) p(s, a, s') V^{\pi}(s')$
- non-discrete state space, the sum can be replaced by an integral with respect to a measure $p(s, \pi(s), ds')$ see Sutton's book [1]
- for a transition reward r(s, a, s'), we introduce $r(s, a) = \sum_{s' \in \mathcal{S}} r(s, a, s')$.

1.2 The Q-function

Definition 2 (State-action value function) The state-action value function of a policy π is the function $Q^{\pi} : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is defined by

$$Q^{\pi}(s,a) := \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, a_{0} = a \right]$$

$$(1.3)$$

where the trajectory τ is generated under the decision rule d^{π} . The horizon T of the problem can be finite or infinite (T can be a stopping time).

1.3 Temporal-difference estimation - TD(0)

The real value function V^{π} satisfies the Bellman equation. This means that the **temporal difference error** of a good estimate \hat{v}^{π} of V^{π} , defined as

$$\delta_t = r_t + \gamma \hat{v}^{\pi}(s_{t+1}) - \hat{v}^{\pi}(s_t),$$

should be small.

Chapter 2

Approximate solving of Markov Decision Processes

Solving MDPs is seeking the maximizing policy of the value function. For approximate solving of MDPs, we target what could be a more general **policy performance metric**. Often, it is connected to the value function: the expected (discounted) cumulative reward of the policy"

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right] = \mathbb{E}_{\tau \sim \pi} \left[R(\tau) \right]$$
 (2.1)

where $\tau = \{s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T\}$ and $R(\tau) = \sum_{t=0}^{T} \gamma^t r_t$.

We seek to compute the maximizing policy in a parametric search space $\{\pi_{\theta} : \theta \in \Theta\}$:

$$\max_{\theta} J(\pi_{\theta})$$

The expectation J could be computed if we are given the complete structure of the Markov decision process: the transition probabilities p(s, a, s') and reward function r(s, a). But then we could just use the usual Q-learning algorithm.

Instead, we can use a gradient ascent method, by iteratively updating the policy parameter θ using a direction provided by the gradient.

Proposition 1 (Gradient under a parametric law) Given a set of probability models $\{P_{\theta} : \theta \in \Theta \subseteq \mathbb{R}^d\}$ on a set \mathcal{X} and a function $f : \mathcal{X} \to \mathbb{R}$, we have that

$$\nabla_{\theta} \mathbb{E}_{X \sim P_{\theta}}[f(X)] = \mathbb{E}_{X \sim P_{\theta}}[f(X)\nabla_{\theta} \log P_{\theta}(X)]$$

This is a useful property for deriving estimators of the derivatives in optimization problems with stochastic objectives.

This can be shown either by either writing the expectation as an integral, or by a change of measures with a Radon-Nikodym derivative.

Proposition 1 allows us to write the gradient of (2.1), called the **policy gradient** as

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[R(\tau) \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(s_{t}, a_{t}) \right]$$
 (2.2)

and we will need to derive estimations for this quantity.

This makes sense in the finite (or almost surely finite) horizon.

2.1 Monte Carlo policy gradient: the REINFORCE algorithm

The idea. The policy performance J using a Monte Carlo approximation:

$$\widehat{J}(\pi_{\theta}) = \frac{1}{M} \sum_{i=1}^{M} \sum_{t=0}^{T_i} \gamma^t r_t^i = \frac{1}{M} \sum_{i=1}^{M} R(\tau_i)$$
(2.3)

where τ_i are simulated trajectories under the policy π_{θ} , and eq. (2.2)

We obtain the following estimate:

$$\widehat{\nabla_{\theta} J}(\pi_{\theta}) = \frac{1}{M} \sum_{i=1}^{M} R(\tau_i) \sum_{t=0}^{T_i} \nabla_{\theta} \log \pi_{\theta}(s_t^i, a_t^i)$$
(2.4)

This is an unbiased Monte Carlo estimate of the policy gradient. It only requires suitable regularity of the parametric policy model $\theta \mapsto \pi_{\theta}$.

Remark 1 The expression (2.4) can be used as-is for functions with simple closed-form derivatives. In an automatic differentiation framework such as PyTorch, we can instead get the policy gradient from a computational graph with the following pseudo-loss function:

$$\tilde{J}(\theta) = \frac{1}{M} \sum_{i=1}^{M} R(\tau_i) \sum_{t=0}^{T_i} \log \pi_{\theta}(s_t^i, a_t^i) = \frac{1}{M} \sum_{i=1}^{M} \left(\sum_{t=0}^{T_i} \gamma^t r_t \right) \sum_{t=0}^{T_i} \log \pi_{\theta}(s_t^i, a_t^i)$$
(2.5)

2.1.1 Variance reduction: temporal structure and baselines

We can re-weigh the log-probability gradients in eq. (2.2) by exploiting the fact that, for any time t, the cumulative rewards $\sum_{t'=0}^{t-1} \gamma^{t'} r_{t'}$ from 0 to t-1 are measurable with respect to the trajectory up to t, $\tau_{0:t}$:

Proposition 2 The policy gradient can be rewritten as

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}\left[\sum_{t=0}^{T} \sum_{t'=t}^{T} \gamma^{t'} r_{t'} \nabla_{\theta} \log \pi_{\theta}(s_{t}, a_{t})\right]$$
(2.6)

which leads to the policy gradient estimate

$$\widehat{\nabla_{\theta} J}(\pi_{\theta}) = \frac{1}{M} \sum_{i=1}^{M} \sum_{t=0}^{T_i} \gamma^t \widehat{q}_t^i \nabla_{\theta} \log \pi_{\theta}(s_t^i, a_t^i)$$
(2.7)

where $\hat{q}_t^i = \sum_{t'=t}^T \gamma^{t'-t} r_{t'}$.

^aThis quantity can be seen as an estimate of the state-action value function $Q^{\pi}(s_t, a_t) = \mathbb{E}\left[\sum_{t'=t}^{T} \gamma^{t'-t} r_{t'} \mid s_t, a_t\right].$

Given any **baseline** function $b \colon \mathcal{S} \to \mathbb{R}$, we can rewrite the policy gradient again as

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \left(\sum_{t'=t}^{T} \gamma^{t'} r_{t'} - b(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) \right]$$
(2.8)

The resulting policy gradient estimate we get is

$$\widehat{\nabla_{\theta}J}(\pi_{\theta}) = \frac{1}{M} \sum_{i=1}^{M} \sum_{t=0}^{T_i} \left(\widehat{q}_t^i - b(s_t^i) \right) \nabla_{\theta} \log \pi_{\theta}(s_t^i, a_t^i)$$
(2.9)

which is an unbiased estimate.

It can be shown that the best baseline b^* is the value function:

$$b^*(t_0, s) = \mathbb{E}_{\pi} \left[\sum_{t=t_0}^{T} \gamma^{t-t_0} r_t \mid s_{t_0} = s \right]$$

...which we are trying to approximate. This suggests that we use some kind of **bootstrap** estimate for the baseline.

2.1.2 Parametric Bootstrapping of the baseline

We define the bootstrap estimate $\hat{b} = \hat{v}_{\nu}(\cdot)$, where \hat{v}_{ν} is in a parametric search space with parameter $\nu \in \mathcal{V}$. The parameter can be iteratively updated using gradient steps by alternating with the policy optimization steps.

For a given trajectory sample $\tau = \{s_0, a_0, r_0, \ldots\}$, introduce the mean-squared error between the forward cumulative rewards (a nonparametric estimate of the value function) and the output of the value model:

$$\mathcal{L}(\nu; \tau) = \sum_{t=0}^{T} \left(\sum_{t'=t}^{T} \gamma^{t'-t} r_{t'} - \hat{v}_{\nu}(s_t) \right)^2$$

Then before each update of the policy π_{θ} , update the value parameter ν using either the gradient of \mathcal{L} .

2.2 Parametric approximation: Actor-Critic algorithms

The idea. The REINFORCE algorithm builds estimates of the Q-function to compute the policy gradient as it runs: this is computationally expensive and may lead to high variance. To combat this, it might be a good idea to *learn* from the Q-function estimates in a way that gives a consistent estimate that follows the policy gradient updates.

The class of actor-critic methods introduces a second search space for approximation of the state(-action) value function.

2.2.1 Actor-critic

The policy learning is still done by gradient ascent following a policy gradient estimate of the form eq. (2.9) – but this time, we replace the Monte Carlo estimate \hat{q}_t^i of the Q-function by a parametric estimator $\hat{q}_{\omega}(s_t, a_t)$

$$\widehat{\nabla_{\theta} J}(\pi_{\theta}) = \frac{1}{M} \sum_{i=1}^{M} \sum_{t=0}^{T_i} \widehat{q}_{\omega}(s_t^i, a_t^i) \nabla_{\theta} \log \pi_{\theta}(s_t^i, a_t^i)$$

2.2.2 Actor-critic with baselines: advantage

Bibliography

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second. The MIT Press, 2018. URL: http://incompleteideas.net/book/the-book-2nd.html.