Optimization of cost function

thoughts

- define coverage problem (with individual geometric properties of each sensor type)
- discrete problem by using grid-based model
- safety is measured by number of sensors covering grid point (constraint: ≥ 1)

better: polar coordinates with radius r and angle ϕ

Constraints:

- lidar: $CM_{lid} \in (R,s_{lid})$
- mat: $(A,B) \perp (R,CM_{mat})$
- fence: (A,B) \perp (R,CM_{fence})

parameters

(x,y)	tuple of coordinates (e.g. grid point)
S _{lid}	tuple of lidar positions (consisting out of coordinates (x,y))
S _{mat}	tuple of mat positions
S _{fence}	tuple of fence positions
n_i	number of sensors of type $i (= len(s_i))$
$R_{\rm i}$	radius of sensor type i
f(x,y,s)	local safety function
F(s)	global safety function
C(s)	cost function

functions

• sensor positions: $S_{lid}, S_{mat}, S_{fence}$

• local safety function:
$$f(x, y, s_{lid}, s_{mat}, s_{fence}) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• global safety fct.:
$$F(s_{lid}, s_{mat}, s_{fence}) = \sum_{x,y} f(x, y, s_{lid}, s_{mat}, s_{fence})$$

• cost function:
$$C(s_{lid}, s_{mat}, s_{fence}) = \sum_{i} c_{i} \cdot len(s_{i})$$

possible algorithm: stimulated annealing¹

```
\begin{array}{l} \text{if area\_sensors} < \text{area:} \\ n_i + + \\ \text{else:} \\ & \text{place sensors randomly: tuples s_1, s_2 and s_3} \\ & \text{for x in range(s_i[:][0]):} \\ & \text{for y in range(s_i[0][:]):} \\ & \text{f(x,y) = number of sensors covering grid point} \\ & \text{if f(x,y) == 0:} \\ & \text{count } + + \\ & \text{if count } > \text{(15...): stop loop} \\ & \text{F += f(x,y)} \\ & \text{if F > F_{max}:} \\ & \text{F_{max} = F} \\ & \text{else:} \\ & \text{F_{max} = F with probability exp(} \frac{F_{max} - F}{T} \text{)} \end{array}
```

problems

- variable size of sensor range → how to optimize?
 - constant size of sensors
- different types of sensors make algorithm very complicated, how to count?
 - geometrical problem + optimization of cost function (used sensor area vs. covered area; cost of each sensor; latency (only lidar?))
- sensor placement in simulated annealing process > random?
 - yes (maybe even distribution as addition)