

6

Proteins: Crucial Components of All Body Tissues and In Depth

What Are Proteins?

Proteins: large complex molecules composed of amino acids

Contain carbon, hydrogen, oxygen, and nitrogen

Primary source of nitrogen in the diet

20 different amino acids are used to make proteins

Structure of an Amino Acid

(a)
© 2012 Pearson Education, Inc.

Figure 6.1

Amino Acids

Essential amino acids

- Cannot be produced by our bodies
- Must be obtained from food
- 9 of 20 are essential

Nonessential amino acids

- Can be made by our bodies
- Made by transferring amino groups (transamination)

Amino Acids of the Human Body

TABLE 6.1 Amino Acids of the Human Body		
Essential Amino Acids	Nonessential Amino Acids	
These amino acids must be consumed in the diet.	These amino acids can be manufactured by the body.	
Histidine	Alanine	
Isoleucine	Arginine	
Leucine	Asparagine	
Lysine	Aspartic acid	
Methionine	Cysteine	
Phenylalanine	Glutamic acid	
Threonine	Glutamine	
Tryptophan	Glycine	
Valine	Proline	
	Serine	
	Tyrosine	

Table 6.1

© 2012 Pearson Education, In

How Are Proteins Made?

Transcription: use of the genetic information in DNA to make RNA

 mRNA copies the genetic information and carries it to the ribosome

Translation: conversion of genetic information in RNA to assemble amino acids in the proper sequence to synthesize a protein on the ribosome

How Are Proteins Made?

→ **Figure 6.3** Amino acid bonding. Two amino acids join together to form a dipeptide. By combining multiple amino acids, proteins are made.

Copyright © 2014 Pearson Canada Inc.

Figure 6.3

Gene Expression

Figure 6.4

Protein Turnover: Synthesis and Breakdown

Figure 6.5

Protein Organization Determines Function

Protein structure has 4 levels

- Primary structure
 - Sequential order of amino acids
- Secondary structure
 - Spiral shape due to chemical bonding between the amino acids
- Tertiary and quaternary structure
 - Further folding into a unique 3-dimensional shape that may be globular or fibrous

Levels of Protein Structure

Figure 6.6

Protein Function

Proteins lose shape (denaturation) when subjected to

- Heat
- Acids and bases
- Heavy metals
- Alcohol
- Other damaging substances

Denaturation results in an irreversible loss in protein function

Protein Shape Determines Function

Figure 6.7

Proteins in the Diet

Incomplete protein: does not contain all essential amino acids in sufficient quantities

- Growth and health are compromised
- Considered a "low-quality" protein

Complete protein: contains sufficient amounts of all 9 essential amino acids

Considered a "high-quality" protein

Proteins in the Diet

Mutual supplementation: combining 2 incomplete proteins to make a complete protein

Complementary proteins: 2 protein sources that together supply all 9 essential amino acids

Example: beans and rice

Complementary Food Combinations

© 2012 Pearson Education, Inc.

Figure 6.8

Why Do We Need Proteins?

- Cell growth, repair, and maintenance
- Enzymes
- Hormones
- Fluid and electrolyte balance
- pH balance
- Antibodies to protect against disease
- Energy source

Digestion of Proteins

Digestion of proteins begins in the stomach

- Hydrochloric acid breaks down protein structure (denatures)
- Hydrochloric acid activates pepsin

Pepsin: an enzyme that breaks down proteins into short polypeptides and amino acids

How Do We Break Down Proteins?

Digestion of proteins continues in the small intestine

- Pancreatic enzymes called proteases complete the digestion of proteins into single amino acids
- Indigestible proteins are of lower quality for nutrition

Protein Digestion

Protein Quality

1. The quantity of essential amino acids in a protein determines its quality

2. Protein digestibility

Animal protein sources (meat, dairy), soy products, and legumes are highly digestible

Grains and vegetable proteins are less digestible

How Much Protein Should We Eat?

People who require more protein include

- Children
- Adolescents
- Pregnant or lactating women
- Athletes and active people
- Vegetarians

How Much Protein Should We Eat?

Recommended Dietary Allowance (RDA)

- 0.8 grams of protein per kilogram of body weight/day
- 10-35% of total energy intake should be from protein

 CCHS 2007 results show that the average protein intake among adults is 16.8% of energy

Nitrogen Balance

Nitrogen balance describes the relationship between how much nitrogen (or protein) we consume and excrete each day

Figure 6.13

How Much Protein Should We Eat?

TABLE 6.2	Recommende	ed Protein	Intakes
------------------	------------	------------	---------

Group	Protein Intake (grams per kilogram* body weight per day)
Most adults [†]	0.8
Nonvegetarian endurance athletes [‡]	1.2 to 1.4
Nonvegetarian strength athletes [‡]	1.2 to 1.7
Vegetarian endurance athletes‡	1.3 to 1.5
Vegetarian strength athletes [‡]	1.3 to 1.8
Nonvegetarian strength athletes [‡] Vegetarian endurance athletes [‡]	1.2 to 1.7 1.3 to 1.5

^{*}To convert body weight to kilograms, divide weight in pounds by 2.2.

Weight (lb)/2.2 = Weight (kg)

Weight (kg) \times protein recommendation (g/kg body weight/day) = protein intake (g/day)

†Food and Nutrition Board, Institute of Medicine. 2002. *Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients)*, pp. 465–608. Washington, DC: National Academies Press.

‡American College of Sports Medicine, American Dietetic Association, and Dietitians of Canada. 2009. Joint Position Statement. Nutrition and athletic performance. *Med. Sci. Sports Exerc.* 41(3):709–731.

© 2012 Pearson Education, Inc

How Much Protein Should We Eat?

Most Canadians meet or exceed the RDA for dietary protein

Many foods besides meat can be good protein sources, including dairy products, legumes, eggs, nuts, and whole grains

"New" food sources of protein include quorn, quinoa, and amaranth

Protein Content of Common Foods

Food	Serving Size	Protein (g)	Food	Serving Size	Protein (g
Beef:			Beans:		
Ground, lean, baked (15% fat)	3 oz	22	Refried	1/2 cup	7
Prime rib, broiled (1/8-in. fat)	3 oz	18	Kidney, red	1/2 cup	7.7
Top sirloin, broiled (1/8-in. fat)	3 oz	23	Black	1/2 cup	7
Poultry:			Nuts:		
Chicken breast, broiled, no skin (bone removed)	1/2 breast	29	Peanuts, dry roasted	1 oz	6.7
Chicken thigh, bone and skin removed	1 thigh	13.5	Peanut butter, creamy	2 tbsp.	8
Turkey breast, roasted, Louis Rich	3 oz	15	Almonds, blanched	1 oz	6
Seafood:			Cereals, Grains, and Breads:		
Cod, cooked	3 oz	19	Oatmeal, quick instant	1 cup	5.4
Salmon, Chinook, baked	3 oz	22	Cheerios	1 cup	3
Shrimp, steamed	3 oz	18	Grape-Nuts	1/2 cup	6
Tuna, in water, drained	3 oz	22	Raisin Bran	1 cup	5
Pork:			Brown rice, cooked	1 cup	5
Pork loin chop, broiled	3 oz	25	Whole-wheat bread	1 slice	2.7
Ham, roasted, lean	3 oz	20	Bagel, 3 1/2 -indiameter	1 each	7
Dairy:			Vegetables:		
Whole milk (3.3% fat)	8 fl. oz	7.9	Carrots, raw $(7.5 \times 11/8 \text{ in.})$	1 each	0.7
1% milk	8 fl. oz	8.5	Broccoli, raw, chopped	1 cup	2.6
Skim milk	8 fl. oz	8.8	Collards, cooked from frozen	1 cup	5
Low-fat, plain yogurt	8 fl. oz	13	Spinach, raw	1 cup	0.9
American cheese, processed	1 oz	6			
Cottage cheese, low-fat (2%)	1 cup	27			
Soy Products:					
Tofu	3.3 oz	7			
Tempeh, cooked	3.3 oz	18			
Soy milk beverage	1 cup	7			

© 2012 Pearson Education, Inc.

Can Vegetarian Diets Provide Protein?

Vegetarianism: a diet that does not include meat (including poultry) or seafood, or products containing those foods

- There are many versions of vegetarianism
- There are many reasons to adopt a vegetarian diet
- 4% of Canadian adults follow vegetarian diets

Types of Vegetarian Diets

TABLE 6.4 Terms and Definitions of a Vegetarian Diet			
Type of Diet	Foods Consumed	Comments	
Semivegetarian (also called partial vegetarian or flexitarian)	Vegetables, grains, nuts, fruits, legumes; sometimes seafood, poultry, eggs, and dairy products	Typically excludes or limit red meat; may also avoid other meats	
Pescovegetarian	Similar to semivegetarian but excludes poultry	Pesco means "fish," the only animal source of protein in this diet	
Lacto-ovo-vegetarian	Vegetables, grains, nuts, fruits, legumes, dairy products (<i>lacto</i>) and eggs (<i>ovo</i>)	Excludes animal flesh and seafood	
Lacto-vegetarian	Similar to lacto-ovo-vegetarian but excludes eggs	Relies on milk and cheese for animal sources of protein	
Ovovegetarian	Vegetables, grains, nuts, fruits, legumes, and eggs	Excludes dairy, flesh, and seafood products	
Vegan (also called strict vegetarian)	Only plant-based foods (vegetables, grains, nuts, seeds, fruits, legumes)	May not provide adequate vitamin B_{12} , zinc, iron, or calcium	
Macrobiotic diet	Vegan-type of diet; becomes progressively more strict until almost all foods are eliminated; at the extreme, only brown rice and small amounts of water or herbal tea are consumed	Taken to the extreme, can cause malnutrition and death	
Fruitarian	Only raw or dried fruit, seeds, nuts, honey, and vegetable oil	Very restrictive diet; deficient in protein, calcium, zinc, iron, vitamin B_{12} , riboflavin, and other nutrients	

^{© 2012} Pearson Education, Inc.

Table 6.4

Why Vegetarianism?

People chose vegetarianism because of

- Religious reasons
- Ethical reasons
- Concerns over food safety
- Ecological reasons
- Health benefits

Health Benefits of Vegetarianism

- Lower intake of fat and total energy
- Lower blood pressure
- Reduce the risk of heart disease
- Fewer digestive problems
- Reduce the risk of some types of cancer
- Reduce the risk for kidney disease, kidney stones and gallstones

Challenges of Vegetarianism

- Vegetarian diets can be low in some vitamins and minerals (iron, calcium, zinc, vitamins D, B₂ and B₁₂)
- Vegetarians must plan a balanced and adequate diet
- Soy products are an excellent protein source
- Vegetarians should include complementary proteins
- Vegetarians should use a Vegetarian Food Guide to design the diet

Nutrients of Concern for Vegetarians

TABLE 6.5 Nutrients of Concern in a Vegan Diet		
Nutrient	Functions	Non-Meat/Non-Dairy Food Sources
Vitamin B ₁₂	Assists with DNA synthesis; protection and growth of nerve fibres	Vitamin B ₁₂ –fortified cereals, yeast, soy products, and other meat analogs; vitamin B ₁₂ supplements
Vitamin D	Promotes bone growth	Vitamin D-fortified cereals, margarines, and soy products; adequate exposure to sunlight; supplementation may be necessary for those who do not get adequate exposure to sunlight
Riboflavin (vitamin B ₂)	Promotes release of energy; supports normal vision and skin health	Whole and enriched grains, green leafy vegetables, mushrooms, beans, nuts, and seeds
Iron	Assists with oxygen transport; involved in making amino acids and hormones	Whole-grain products, prune juice, dried fruits, beans, nuts, seeds, and leafy vegetables (such as spinach)
Calcium	Maintains bone health; assists with muscle contraction, blood pres- sure, and nerve transmission	Fortified soy milk and tofu, almonds, dry beans, leafy vegetables, and calcium-fortified juices
Zinc	Assists with DNA and RNA synthesis, immune function, and growth	Whole-grain products, wheat germ, beans, nuts, and seeds

Copyright © 2014 Pearson Canada Inc.

Can You Eat Too Much Protein?

The risks of too much dietary protein may include

- High cholesterol and heart disease
 - Diets high in protein from animal sources are associated with high cholesterol due to high saturated fat content
- Possible bone loss
 - High-protein diets may cause excess calcium excretion, leading to bone loss

Can You Eat Too Much Protein?

The risks of too much protein may include

- Kidney disease
 - High-protein diets are associated with an increased risk of kidney disease, especially for people who may be susceptible to kidney disease
 - People with diabetes have increased rates of kidney disease

Protein-Energy Malnutrition (PEM)

Protein-energy malnutrition: a disorder caused by inadequate intake of protein and energy

There are 2 common, serious forms

- Marasmus
- Kwashiorkor

Protein-Energy Malnutrition (PEM)

Marasmus: disease resulting from grossly inadequate intakes of protein, energy, and other nutrients

Marasmus symptoms include

- Severe wasting of muscle tissue
- Stunted physical growth
- Stunted brain development
- Anemia
- Severely weakened immune system

Protein-Energy Malnutrition (PEM)

Kwashiorkor: disease resulting from extremely low protein intake

Kwashiorkor symptoms include

- Some weight loss and muscle wasting
- Edema resulting in distention of the belly
- Retarded growth and development

Kwashiorkor is often seen in children in developing countries, but can also be seen in Canada and the US

Protein-Energy Malnutrition (PEM)

PEM can affect children and adults in all countries

In Canada

- Those in poverty in inner cities or isolated rural areas
- Elderly (living alone)
- Homeless
- People with eating disorders
- Drug or alcohol addiction
- People living with AIDS or cancer

In Depth: Vitamins and Minerals

Macronutrients

Carbohydrates, fats, proteins: these nutrients

- Provide energy
- Are required in relatively large amounts

In Depth: Vitamins and Minerals

Micronutrients

- Vitamins and minerals
- Do not supply energy
- Are required in relatively small amounts
- Assist with body functions (e.g., energy metabolism, maintenance of healthy cells and tissues)

Vitamins

- Carbon-containing compounds
- 13 are essential
- 9 are soluble in water
- 4 are soluble in fat
- Humans synthesize only small amounts of vitamins D and K

Fat-Soluble Vitamins

Characteristics of fat-soluble vitamins (A, D, E, K)

- Large storage capability
- Toxicity is possible
- Deficiency symptoms may take many months to develop
- May occur in numerous chemical forms

Fat-Soluble Vitamins

Vitamin Name	Primary Functions	Recommended Intake*	Reliable Food Sources	Toxicity/Deficiency Symptoms
A (retinol, retinal, retinoic acid)	Required for ability of eyes to adjust to changes in light Protects colour vision Assists cell differentiation Required for sperm production in men and fertilization in women Contributes to healthy bone Contributes to healthy immune system	RDA: Men = 900 μg Women = 700 μg UL = 3000 μg/day	Preformed retinol: beef and chicken liver, egg yolks, milk Carotenoid precur- sors: spinach, carrots, mango, apricots, canta- loupe, pumpkin, yams	Toxicity: fatigue; bone and joint pain; spontaneous abortion and birth defects of fetuses in pregnant women; nausea and diarrhea; liver damage; nervous system damage; blurred vision; hair loss; skin disorders Deficiency: night blindness, xerophthalmia; impaired growth immunity, and reproductive function
D (cholecalciferol)	Regulates blood calcium levels Maintains bone health Assists cell differentiation	RDA Adults aged 19 to 70 years = 15 μg /day Adults aged >70 years = 20 μg /day UL = 100 μg/day	Canned salmon and mackerel, milk, fortified cereals	Toxicity: hypercalcemia Deficiency: rickets in children; osteomalacia and/or osteoporosis in adults
E (tocopherol)	As a powerful antioxidant, protects cell membranes, polyunsaturated fatty acids, and vitamin A from oxidation Protects white blood cells Enhances immune function Improves absorption of vitamin A	RDA: Men = 15 mg/day Women = 15 mg/day UL = 1000 mg/day	Sunflower seeds, almonds, vegetable oils, fortified cereals	Toxicity: rare Deficiency: hemolytic anemia; impairment of nerve, muscle, and immune function
K (phylloquinone, menaquinone, menadione)	Serves as a coenzyme dur- ing production of specific proteins that assist in blood coagulation and bone metabolism	Al: Men = 120 μ g/day Women = 90 μ g/day	Kale, spinach, turnip greens, Brussels sprouts	Toxicity: none known Deficiency: impaired blood clot- ting; possible effect on bone health

Copyright © 2014 Pearson Canada Inc.

Water-Soluble Vitamins

Characteristics of water-soluble vitamins (B-complex and C)

- Minimal storage capability
- Toxicity is rare
- Deficiency symptoms occur quickly
- Excreted in urine when tissues are saturated

Water-Soluble Vitamins

Vitamin Name	Primary Functions	Recommended Intake*	Reliable Food Sources	Toxicity/Deficiency Symp
Thiamin (vitamin B ₁)	Required as enzyme cofactor for carbohydrate and amino acid metabolism	RDA: Men = 1.2 mg/day Women = 1.1 mg/day	Pork, fortified cereals, enriched rice and pasta, peas, tuna, legumes	Toxicity: none known Deficiency: beriberi; fatigue, apathy, decreased memory confusion, irritability, muscl weakness
Riboflavin (vitamin B ₂)	Required as enzyme cofactor for carbohydrate and fat metabolism	RDA: Men = 1.3 mg/day Women = 1.1 mg/day	Beef liver, shrimp, milk and other dairy foods, fortified cereals, enriched breads and grains	Toxicity: none known Deficiency: ariboflavinosis; swollen mouth and throat; seborrheic dermatitis; anen
Niacin, nicotin- amide, nicotinic acid	Required for carbohydrate and fat metabolism Plays role in DNA replication and repair and cell differentiation	RDA: Men = 16 mg/day Women = 14 mg/day UL = 35 mg/day	Beef liver, most cuts of meat/fish/poul- try, fortified cereals, enriched breads and grains, canned tomato products	Toxicity: flushing, liver dam- glucose intolerance, blurred vision differentiation Deficiency: pellagra; vomit- ing, constipation, or diarrhed apathy
Pyridoxine, pyridoxal, pyridoxamine (vitamin B ₆)	Required as enzyme cofactor for carbohydrate and amino acid metabolism Assists synthesis of blood cells	RDA: Men and women aged 19 to 50 = 1.3 mg/day Men aged >50 and over = 1.7 mg/day Women aged >50 and over = 1.5 mg/day UL = 100 mg/day	Chickpeas (garbanzo beans), most cuts of meat/fish/poultry, fortified cereals, white potatoes	Toxicity: nerve damage, skir lesions Deficiency: anemia; seborrh dermatitis; depression, con sion, and convulsions
Folate (folic acid)	Required as enzyme cofactor for amino acid metabolism Required for DNA synthesis Involved in metabolism of homo- cysteine	RDA: Men = 400 µg/day Women = 400 µg/day UL = 1000 µg/day	Fortified cereals, enriched breads and grains, spinach, legumes (lentils, chickpeas, pinto beans), greens (spinach, romaine lettuce), liver	Toxicity: masks symptoms of vitamin B12 deficiency, soft signs of nerve damage Deficiency: macrocytic ane neural tube defects in a developing fetus; elevatechomocysteine levels
Cobalamin (vitamin B ₁₂)	Assists with formation of blood Required for healthy nervous system function Involved as enzyme cofactor in metabolism of homocysteine	RDA: Men = $2.4 \mu g/day$ Women = $2.4 \mu g/day$	Shellfish, all cuts of meat/fish/poultry, milk and other dairy foods, fortified cereals	Toxicity: none known Deficiency: pernicious anen tingling and numbness of extremities; nerve damage, memory loss, disorientation and dementia
Pantothenic acid	Assists with fat metabolism	Al: Men = 5 mg/day Women = 5 mg/day	Meat/fish/poultry, shiitake mushrooms, for- tified cereals, egg yolk	Toxicity: none known Deficiency: rare
Biotin	Involved as enzyme cofactor in carbohydrate, fat, and protein metabolism	RDA: Men = 30 μ g/day Women = 30 μ g/day	Nuts, egg yolk	Toxicity: none known Deficiency: rare
Ascorbic acid (vitamin C)	Antioxidant in extracellular fluid and lungs Regenerates oxidized vitamin E Assists with collagen synthesis Enhances immune function Assists in synthesis of hormones, neurotransmitters, and DNA	RDA: Men = 90 mg/day Women = 75 mg/day Smokers = 35 mg more per day than RDA UL = 2000 mg	Sweet peppers, citrus fruits and juices, broc- coll, strawberries, kiwi	Toxicity: nausea and diarrhe nosebleeds, increased oxid tive damage, increased for tion of kidney stones in peo with kidney disease Deficiency: scurvy; bone pai and fractures, depression, a anemia

Minerals

General properties of minerals

- Inorganic
- Cannot be synthesized by plants or animals
- Not digested or broken down prior to absorption
- 2 classifications based on need

Major Minerals

Characteristics of major minerals

- Required in amounts of at least 100 mg/day
- 7 major minerals: sodium

potassium
phosphorous
chloride
calcium
magnesium
sulphur

Major Minerals

Mineral Name	Primary Functions	Recommended Intake*	Reliable Food Sources	Toxicity/Deficiency Symptoms
Sodium	Fluid balance Acid-base balance Transmission of nerve impulses Muscle contraction	Al: Adults = 1.5 g/day (1500 mg/day)	Table salt, pickles, most canned soups, snack foods, cured luncheon meats, canned tomato products	Toxicity: water retention, high blood pressure, loss of calcium Deficiency: muscle cramps, dizzi- ness, fatigue, nausea, vomiting, mental confusion
Potassium	Fluid balance Transmission of nerve impulses Muscle contraction	Al: Adults = 4.7 g/day (4700 mg/day)	Most fresh fruits and veg- etables: potatoes, bananas, tomato juice, orange juice, melons	Toxicity: muscle weakness, vomit- ing, irregular heartbeat Deficiency: muscle weakness, pa- ralysis, mental confusion, irregular heartbeat
Phosphorus	Fluid balance Bone formation Component of ATP, which provides energy for our bodies	RDA: Adults = 700 mg/ day	Milk/cheese/yogurt, soy milk and tofu, legumes (lentils, black beans), nuts (almonds, peanuts and peanut butter), poultry	Toxicity: muscle spasms, convul- sions, low blood calcium Deficiency: muscle weakness, muscle damage, bone pain, dizziness
Chloride	Fluid balance Transmission of nerve impulses Component of stomach acid (HCI) Antibacterial	Al: Adults = 2.3 g/day (2300 mg/day)	Table salt	Toxicity: none known Deficiency: dangerous blood acid-base imbalances, irregular heartbeat
Calcium	Primary component of bone Acid-base balance Transmission of nerve impulses Muscle contraction	Al: Adults aged 19 to $50 = 1000 \text{ mg/day}$ Adults aged $> 50 = 1200 \text{ mg/day}$ UL = 2500 mg/day	Milk/yogurt/cheese (best- absorbed form of calcium), sardines, collard greens and spinach, calcium-fortified juices	Toxicity: mineral imbalances, shockidney failure, fatigue, mental confusion Deficiency: osteoporosis, convulsions, heart failure
Magnesium	Component of bone Muscle contraction Assists more than 300 enzyme systems	RDA: Men aged 19 to 30 = 400 mg/day Men aged >30 = 420 mg/day Women aged 19 to 30 = 310 mg/day Women aged >30 = 320 mg/day UL = 350 mg/day	Greens (spinach, kale, collard greens), whole grains, seeds, nuts, legumes (navy and black beans)	Toxicity: none known Deficiency: low blood calcium, muscle spasms or seizures, nausez weakness, increased risk for chron diseases, such as heart disease, hypertension, osteoporosis, and type 2 diabetes
Sulphur	Component of certain B vita- mins and amino acids Acid-base balance Detoxification in liver	No DRI	Protein-rich foods	Toxicity: none known Deficiency: none known

Table 3 In Depth

Trace Minerals

Characteristics of trace minerals

- Required in amounts of less than 100 mg/day
- Body contains less than 5 g
- 8 trace minerals: selenium

fluoride

iodine

chromium

manganese

iron

zinc

copper

Trace Minerals

Mineral Name	Primary Functions	Recommended Intake*	Reliable Food Sources	Toxicity/Deficiency Symptom
Selenium	Required for carbohydrate and fat metabolism	RDA: Adults = 55 μ g/day UL = 400 μ g/day	Nuts, shellfish, meat/fish/ poultry, whole grains	Toxicity: brittle hair and nails, skin rashes, nausea and vomit- ing, weakness, liver disease Deficiency: specific forms of heart disease and arthritis, im- paired immune function, musc pain and wasting, depression, hostility
Fluoride	Development and maintenance of healthy teeth and bones	RDA: Men = 4 mg/day Women = 3 mg/day UL: 2.2 mg/day for children aged 4 to 8; children aged >8 = 10 mg/day	Fish, seafood, legumes, whole grains, drinking water (variable)	Toxicity: fluorosis of teeth and bones Deficiency: dental caries, low bone density
lodine	Synthesis of thyroid hormones Temperature regulation Reproduction and growth	RDA: Adults = 150 μ g/day UL = 1100 μ g/day	lodized salt, saltwater seafood	Toxicity: goitre Deficiency: goitre, hypothy- roidism, cretinism in infant of mother who is iodine deficient
Chromium	Glucose transport Metabolism of DNA and RNA Immune function and growth	Al: Men aged 19 to $50 = 35 \mu g/day$ Men aged $>50 = 30 \mu g/day$ Women aged 19 to $50 = 25 \mu g/day$ Women aged $>50 = 20 \mu g/day$	Whole grains, brewer's yeast	Toxicity: none known Deficiency: elevated blood glu- cose and blood lipids, damage to brain and nervous system
Manganese	Assists many enzyme systems Synthesis of protein found in bone and cartilage	Al: Men = 2.3 mg/day Women = 1.8 mg/day UL = 11 mg/day for adults	Whole grains, nuts, leafy vegetables, tea	Toxicity: impairment of neuro- muscular system Deficiency: impaired growth and reproductive function, reduced bone density, impaire glucose and lipid metabolism, skin rash
Iron	Component of hemoglobin in blood cells Component of myoglobin in muscle cells Assists many enzyme systems	RDA: Adult men = 8 mg/day Women aged 19 to 50 = 18 mg/day Women aged >50 = 8 mg/day	Meat/fish/poultry (best- absorbed form of iron), fortified cereals, legumes, spinach	Toxicity: nausea, vomiting, and diarrhea; dizziness, confusion; rapid heartbeat, organ damage death Deficiency: iron-deficiency microcytic (small red blood cells), hypochromic anemia
Zinc	Assists more than 100 enzyme systems Immune system function Growth and sexual maturation Gene regulation	RDA: Men 11 = mg/day Women = 8 mg/day UL = 40 mg/day	Meat/fish/poultry (best- absorbed form of zinc), fortified cereals, legumes	Toxicity: nausea, vomiting, and diarrhea; headaches, depressed immune function, reduced absorption of copper Deficiency: growth retardation, delayed sexual maturation, eye and skin lesions, hair loss, increased incidence of illness and infection
Copper	Assists many enzyme systems Iron transport	RDA: Adults = $900 \mu g/$ day UL = $10 mg/day$	Shellfish, organ meats, nuts, legumes	Toxicity: nausea, vomiting, and diarrhea; liver damage Deficiency: anemia, reduced levels of white blood cells, osteoporosis in infants and growing children

Table 4 In Depth

Copyright © 2014 Pearson Canada Inc.

Absorption of Micronutrients

Absorption depends on numerous factors

- Chemical form (e.g., absorption of heme iron from meats, fish, poultry is ~25%, whereas non-heme iron from plant products is ~3-5%)
- Numerous factors in foods bind micronutrients and prevent absorption
- Other nutrients within a meal alter absorption

Supplementation of Micronutrients

Supplementation of micronutrients is controversial

- Easier to develop toxicity with supplements
- Some may be harmful to certain subgroups of consumers
- Most minerals are better absorbed from food
- Eating a variety of foods provides many other nutrients (e.g., phytochemicals)
- Supplements may alter the balance between nutrients

Role in Disease Prevention and Treatment

Research studies have suggested a link between consumption of some micronutrients and disease

Adequate intake of these vitamins has been associated with lower disease risk

- Vitamin C and cataracts
- Vitamin D and colon cancer
- Vitamin E and complications of diabetes
- Vitamin K and osteoporosis

Role in Disease Prevention and Treatment

Adequate intake of these minerals has been associated with lower disease risk

- Calcium and hypertension
- Chromium and type 2 diabetes in older adults
- Magnesium and muscle wasting in older adults
- Selenium and certain types of cancer

Do More Micronutrients Exist?

Nutrition researchers continue to explore the possibility of other substances being essential

Vitamin-like factors (e.g., carnitine) and numerous minerals (e.g., boron, nickel, silicon) may prove to be essential in our diet