

Operational risk evaluation and control plan design

Belgacem BETTAYEB PhD Candidate

P. Vialletelle*, S. Bassetto, M. Tollenaere

G-SCOP Laboratory - Grenoble Institute Of Technology, France

* ST microelectronics Crolles, France

Belgacem.bettayeb@grenoble-inp.fr

Centre National de la Recherche Scientifique
 Institut National Polytechnique de Grenoble
 Université Joseph Fourier

- Problem statement
- Operational risk evaluation
- Control plan added value
- Example
- Conclusion

Problem statement (1/2)

- Quality control and production control policies are usually designed separately
- Tools and processes may remain uncontrolled over a long production period → grow up of the uncertainty about products quality
- Releasing uncertainty too late may lead to manage a major scrap (thousands of defective products)

Problem statement (2/2)

- An effective monitoring of uncertainty logically leads to the limitation of risk exposure in terms of products potentially loss
- How to monitor products uncertainty?
- How to link risks to control plans design?

Uncertainty monitoring

- Assumption: once the NDE occurs it impacts production until being fixed
- Uncertainty > number of products potentially lost

Operational risks evaluation (1/3)

Notations

- R⁰(.): risk evolution during a considered horizon (H) without any control
- R^X(.): risk evolution during the considered horizon
 (H) with control plan X
- PL_j^X(.): Potential Loss evolution with control plan X if the NDE occurs in the jth run
- Pr_i: probability of occurrence of the NDE at jth run
- $-AV^{X} = f(R^{0}(.), R^{X}(.))$: added value of control plan X
 - Example: AV^X=Max R⁰(.) Max R^X(.)

Operational risks evaluation (2/3)

- Assumptions
 - PL linearly increase with the number of runs
 - A planned control (measures + corrective actions if detection) permit to change the Potential Loss evolution
 - Control efficiency is maximal: a NDE is surely detected when controlled

False alarms add only a cost, but do not modify curves

Operational risks evaluation (3/3)

 From uncertainty monitoring to Risk evaluation

$$R^{X}(i) = i.Pr(1) + (i-1).Pr(2) + ... + 1.Pr(i)$$

$$= PL_{1}^{X}(i).Pr(1) + ... + PL_{i}^{X}(i).Pr(i)$$

$$= \sum_{j=1}^{i} (i - j + 1).PL_{j}^{X}(i).Pr_{j}$$

Control plan Added value

- Control plan X defined by
 - n the number of planned controls during the considered horizon
 - $T=(t_1,t_2,...,t_n)$: planned dates of the n controls
- AV^x: added value of control plan X → difference between risk function without controls and risk function with n controls at dates defined by T

Control plan X:

$$n=2$$
; $T=(i,j)$

Example (1/2)

- Risk evaluation with/without control plan

Example (2/2)

- Risk evaluation for different positions of controls

Conclusion

- An approach for risk evaluation based on Potential Losses evaluation and adjustment depending on planned controls
- An added value function to provisionally evaluate the control plan
- An optimized design of control plan (n*, T*) is possible when optimizing the added value function
- Capacity constraints could be taken into account which will influence n* and T*

Thank you for your attention! Questions?