



### Lecture «Robot Dynamics»: Intro to Dynamics

151-0851-00 V

lecture: HG F3 Tuesday 10:15 – 12:00, every week

exercise: HG D7.1 Wednesday 8:15 – 10:00, according to schedule

Marco Hutter, Roland Siegwart, and Thomas Stastny

#### ETHzürich

| 17.09.2019 | Intro and Outline      | Course Introduction; Recapitulation Position, Linear Velocity                                                      |            |             |                                                |
|------------|------------------------|--------------------------------------------------------------------------------------------------------------------|------------|-------------|------------------------------------------------|
| 24.09.2019 | Kinematics 1           | Rotation and Angular Velocity; Rigid Body Formulation, Transformation                                              | 25.09.2019 | Exercise 1a | Kinematics Modeling the ABB arm                |
| 01.10.2019 | Kinematics 2           | Kinematics of Systems of Bodies; Jacobians                                                                         | 02.10.2019 | Exercise 1a | Differential Kinematics of the ABB arm         |
| 08.10.2019 | Kinematics 3           | Kinematic Control Methods: Inverse Differential Kinematics, Inverse Kinematics; Rotation Error; Multi-task Control | 09.10.2019 | Exercise 1b | Kinematic Control of the ABB Arm               |
| 15.10.2019 | Dynamics L1            | Multi-body Dynamics                                                                                                | 16.10.2019 | Midterm 1   | Programming kinematics with matlab             |
| 22.10.2019 | Dynamics L2            | Floating Base Dynamics                                                                                             | 23.10.2019 | Exercise 2a | Dynamic Modeling of the ABB Arm                |
| 29.10.2019 | Dynamics L3            | Dynamic Model Based Control Methods                                                                                | 30.10.2019 | Exercise 2b | Dynamic Control Methods Applied to the ABB arm |
| 05.11.2019 | Legged Robot           | Dynamic Modeling of Legged Robots & Control                                                                        | 06.11.2019 | Midterm 2   | Programming dynamics with matlab               |
| 12.11.2019 | Case Studies 1         | Legged Robotics Case Study                                                                                         | 13.11.2019 | Exercise 3  | Legged robot                                   |
| 19.11.2019 | Rotorcraft             | Dynamic Modeling of Rotorcraft & Control                                                                           | 20.11.2019 |             |                                                |
| 26.11.2019 | Case Studies 2         | Rotor Craft Case Study                                                                                             | 27.11.2019 | Exercise 4  | Modeling and Control of Multicopter            |
| 03.12.2019 | Fixed-wing             | Dynamic Modeling of Fixed-wing & Control                                                                           | 04.12.2019 |             |                                                |
| 10.12.2019 | Case Studies 3         | Fixed-wing Case Study (Solar-powered UAVs - AtlantikSolar, Vertical Take-off and Landing UAVs – Wingtra)           | 11.12.2019 | Exercise 5  | Fixed-wing Control and Simulation              |
| 17.12.2019 | Summery and<br>Outlook | Summery; Wrap-up; Exam                                                                                             |            | Robo        | t Dynamics - Dynamics 1 15.10.2019 2           |



#### Midterm exam tomorrow

- WED 8.15-10
  - Like the exercises, the exam will be done with matlab. Bring your own laptop! We will distribute the exam files at the beginning of the exam through piazza.
  - Additionally, you will get a printout version of the exam to write down your name and to answer a couple of questions.
  - We will ask you to write down numeric results that are generated with matlab on your paper
  - You have to hand in the exam paper and upload the matlab files in a single compressed folder (.zip, .gz, .tar, .rar).
  - We check the matlab files if they produce the correct results.
  - The exam will be open book, which means you can use the script, slides, exercises, etc.
  - You are not allowed to communicate or share results.
  - The use of internet (beside for licenses) is forbidden.
- Due to limited space, the group will be split based on your surname:
  - A-K in HG F3
  - L-Z in HG D7.1



#### **Dynamics in Robotics**





#### **Dynamics in Robotics**





#### **Dynamics in Robotics**





### **Dynamics**Outline

- Description of "cause of motion"
  - Input τ Force/Torque acting on system
  - Output q Motion of the system
- Principle of virtual work
  - Newton's law for particles
  - Conservation of impulse and angular momentum
- 3 methods to get the EoM
  - Newton-Euler: Free cut and conservation of impulse & angular momentum for each body
  - Projected Newton-Euler (generalized coordinates)
  - Lagrange II (energy)
- Introduction to dynamics of floating base systems
  - External forces



#### **Principle of Virtual Work**

- Principle of virtual work (D'Alembert's Principle)
  - Dynamic equilibrium imposes zero virtual work

$$\delta W = \int_{\mathcal{B}} \mathbf{\hat{r}}^T \cdot (\ddot{\mathbf{r}} dm - d\mathbf{F}_{ext}) = 0$$
variational parameter

Newton's law for every particle in direction it can move

 $d\mathbf{F}_{ext}$  external forces acting on element i  $\ddot{\mathbf{r}}$  acceleration of element i dm mass of element i  $\delta \mathbf{r}$  virtual displacement of element i



#### Virtual Displacements of Single Rigid Bodies

#### Rigid body Kinematics

$$\mathbf{r} = \mathbf{r}_{OS} + \boldsymbol{\rho}$$

$$\dot{\mathbf{r}} = \mathbf{v}_{S} + \boldsymbol{\Omega} \times \boldsymbol{\rho} = \begin{bmatrix} \mathbb{I}_{3\times3} & -[\boldsymbol{\rho}]_{\times} \end{bmatrix} \begin{pmatrix} \mathbf{v}_{s} \\ \boldsymbol{\Omega} \end{pmatrix}$$

$$\ddot{\mathbf{r}} = \mathbf{a}_{S} + \boldsymbol{\Psi} \times \boldsymbol{\rho} + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{\rho}) = \begin{bmatrix} \mathbb{I}_{3\times3} & -[\boldsymbol{\rho}]_{\times} \end{bmatrix} \begin{pmatrix} \mathbf{a}_{s} \\ \boldsymbol{\Psi} \end{pmatrix} + [\boldsymbol{\Omega}]_{\times} [\boldsymbol{\Omega}]_{\times} \boldsymbol{\rho}$$

$$\delta \mathbf{r} = \delta \mathbf{r}_{S} + \boldsymbol{\delta} \boldsymbol{\Phi} \times \boldsymbol{\rho} = \begin{bmatrix} \mathbb{I}_{3\times3} & -[\boldsymbol{\rho}]_{\times} \end{bmatrix} \begin{pmatrix} \delta \mathbf{r}_{s} \\ \boldsymbol{\delta} \boldsymbol{\Phi} \end{pmatrix}$$

#### Applied to principle of virtual work

$$0 = \delta W = \int_{\mathcal{B}} \begin{pmatrix} \delta \mathbf{r}_{s} \\ \delta \mathbf{\Phi} \end{pmatrix}^{T} \begin{bmatrix} \mathbb{I}_{3 \times 3} \\ [\boldsymbol{\rho}]_{\times} \end{bmatrix} \begin{pmatrix} [\mathbb{I}_{3 \times 3} - [\boldsymbol{\rho}]_{\times}] \begin{pmatrix} \mathbf{a}_{s} \\ \boldsymbol{\Psi} \end{pmatrix} dm + [\boldsymbol{\Omega}]_{\times}^{2} \boldsymbol{\rho} dm - d\mathbf{F}_{ext} \end{pmatrix}$$

$$= \begin{pmatrix} \delta \mathbf{r}_{s} \\ \delta \mathbf{\Phi} \end{pmatrix}^{T} \int_{\mathcal{B}} \begin{pmatrix} [\mathbb{I}_{3 \times 3} dm & [\boldsymbol{\rho}]_{\times}^{T} dm \\ [\boldsymbol{\rho}]_{\times} dm & -[\boldsymbol{\rho}]_{\times}^{2} dm \end{bmatrix} \begin{pmatrix} \mathbf{a}_{s} \\ \boldsymbol{\Psi} \end{pmatrix} + \begin{pmatrix} [\boldsymbol{\Omega}]_{\times}^{2} \boldsymbol{\rho} dm \\ [\boldsymbol{\rho}]_{\times} [\boldsymbol{\Omega}]_{\times}^{2} \boldsymbol{\rho} dm \end{pmatrix} - \begin{pmatrix} d\mathbf{F}_{ext} \\ [\boldsymbol{\rho}]_{\times} d\mathbf{F}_{ext} \end{pmatrix} \end{pmatrix}$$

$$0 = \delta W = \begin{pmatrix} \delta \mathbf{r}_{s} \end{pmatrix}^{T} \begin{pmatrix} [\mathbb{I}_{3 \times 3} m & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{s} \\ \mathbf{I} \mathbf{U} \end{pmatrix} + \begin{pmatrix} \mathbf{0} \\ [\mathbf{\Omega}]_{\times} \mathbf{0} & \mathbf{0} \end{pmatrix} - \begin{pmatrix} \mathbf{F}_{ext} \\ \mathbf{I} \mathbf{U} \end{pmatrix} + \begin{pmatrix} \delta \mathbf{r}_{s} \\ \mathbf{0} \end{pmatrix} \begin{pmatrix} \delta \mathbf{r}_{s} \\ \delta \mathbf{\Phi} \end{pmatrix}$$

$$\delta W = \int_{\mathcal{B}} \delta \mathbf{r}^T \cdot (\ddot{\mathbf{r}} dm - d\mathbf{F}_{ext}) = 0$$



#### Impulse and angular momentum

Use the following definitions

$$\mathbf{p}_S = m\mathbf{v}_S$$
 linear momentum  $\mathbf{N}_S = \mathbf{\Theta}_S \mathbf{\Omega}_S$  angular momentum  $\dot{\mathbf{p}}_S = m\mathbf{a}_S$  change in linear momentum  $\dot{\mathbf{N}}_S = \mathbf{\Theta}_S \mathbf{\Psi} + \mathbf{\Omega} \times \mathbf{\Theta}_S \mathbf{\Omega}$  change in angular momentum

Conservation of impulse and angular momentum



#### 1<sup>st</sup> Method for EoM

#### Newton-Euler for single bodies

- Cut all bodies free
- Introduction of constraining force
- Apply conservation p and N to individual bodies
- System of equations
  - 6n equation
  - Eliminate all constrained forces (5n)
- Pros and Cons
  - + Intuitively clear
  - + Direct access to constraining forces
  - Becomes a huge combinatorial problem for large MBS



# Free Cut Cart pendulum example

F

Find the equation of motion





#### **Newton-Euler in Generalized Motion Directions**

- For multi-body systems  $0 = \delta W = \sum_{i=1}^{n_b} \begin{pmatrix} \delta \mathbf{r}_{S_i} \\ \delta \mathbf{\Phi}_{S_i} \end{pmatrix}^T \begin{pmatrix} \begin{pmatrix} \dot{\mathbf{p}}_{S_i} \\ \dot{\mathbf{N}}_{S_i} \end{pmatrix} \begin{pmatrix} \mathbf{F}_{ext,i} \\ \mathbf{T}_{ext,i} \end{pmatrix} \end{pmatrix} \qquad \forall \begin{pmatrix} \delta \mathbf{r}_s \\ \delta \mathbf{\Phi}_{S_i} \end{pmatrix}_{\text{consistent}}$
- Express the impulse/angular momentum in generalized coordinates

$$\begin{pmatrix} \mathbf{v}_{s} \\ \mathbf{\Omega} \end{pmatrix} = \begin{bmatrix} \mathbf{J}_{P} \\ \mathbf{J}_{R} \end{bmatrix} \dot{\mathbf{q}}$$

$$\begin{pmatrix} \dot{\mathbf{p}}_{S_{i}} \\ \dot{\mathbf{N}}_{S_{i}} \end{pmatrix} = \begin{pmatrix} m\mathbf{a}_{S_{i}} \\ \boldsymbol{\Theta}_{S_{i}} \boldsymbol{\Psi}_{S_{i}} + \boldsymbol{\Omega}_{S_{i}} \times \boldsymbol{\Theta}_{S_{i}} \boldsymbol{\Omega}_{S_{i}} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{a}_{s} \\ \boldsymbol{\Psi} \end{pmatrix} = \begin{bmatrix} \mathbf{J}_{P} \\ \mathbf{J}_{R} \end{bmatrix} \ddot{\mathbf{q}} + \begin{bmatrix} \dot{\mathbf{J}}_{P} \\ \dot{\mathbf{J}}_{R} \end{bmatrix} \dot{\mathbf{q}}$$

$$= \begin{pmatrix} m\mathbf{J}_{S_{i}} \\ \boldsymbol{\Theta}_{S_{i}} \mathbf{J}_{R_{i}} \end{pmatrix} \ddot{\mathbf{q}} + \begin{pmatrix} m\dot{\mathbf{J}}_{S_{i}} \dot{\mathbf{q}} \\ \boldsymbol{\Theta}_{S_{i}} \mathbf{J}_{R_{i}} \dot{\mathbf{q}} + \mathbf{J}_{R_{i}} \dot{\mathbf{q}} \times \boldsymbol{\Theta}_{S_{i}} \mathbf{J}_{R_{i}} \dot{\mathbf{q}} \end{pmatrix}$$

Virtual displacement in generalized coordinates

$$egin{pmatrix} \delta \mathbf{r}_s \ oldsymbol{\delta} \mathbf{\Phi} \end{pmatrix} = egin{bmatrix} \mathbf{J}_P \ \mathbf{J}_R \end{bmatrix} \delta \mathbf{q}$$

With this, the principle of virtual work transforms to

$$0 = \delta \mathbf{W} = \delta \mathbf{q}^{T} \sum_{i=1}^{n_{b}} \left( \mathbf{J}_{S_{i}} \right)^{T} \left( \mathbf{m} \mathbf{J}_{S_{i}} \right) \ddot{\mathbf{q}} + \left( \mathbf{J}_{S_{i}} \right)^{T} \left( \mathbf{\Theta}_{S_{i}} \dot{\mathbf{J}}_{R_{i}} \dot{\mathbf{q}} + \mathbf{J}_{R_{i}} \dot{\mathbf{q}} \times \mathbf{\Theta}_{S_{i}} \mathbf{J}_{R_{i}} \dot{\mathbf{q}} \right) - \left( \mathbf{J}_{P_{i}} \right)^{T} \left( \mathbf{F}_{ext,i} \right) \qquad \forall \delta \mathbf{q}$$

$$\mathbf{M}(\mathbf{q}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) \qquad \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}$$

#### **Projected Newton-Euler**

- Equation of motion  $M(q)\ddot{q} + b(q,\dot{q}) + g(q) = 0$
- Directly get the dynamic properties of a multi-body system with n bodies

$$\begin{split} \mathbf{M} &= \sum_{i=1}^{n_b} \left(_{\mathcal{A}} \mathbf{J}_{S_i}^T \cdot m \cdot _{\mathcal{A}} \mathbf{J}_{S_i} + _{\mathcal{B}} \mathbf{J}_{R_i}^T \cdot _{\mathcal{B}} \mathbf{\Theta}_{S_i} \cdot _{\mathcal{B}} \mathbf{J}_{R_i} \right) \\ \mathbf{b} &= \sum_{i=1}^{n_b} \left(_{\mathcal{A}} \mathbf{J}_{S_i}^T \cdot m \cdot _{\mathcal{A}} \dot{\mathbf{J}}_{S_i} \cdot \dot{\mathbf{q}} + _{\mathcal{B}} \mathbf{J}_{R_i}^T \cdot \left(_{\mathcal{B}} \mathbf{\Theta}_{S_i} \cdot _{\mathcal{B}} \dot{\mathbf{J}}_{R_i} \cdot \dot{\mathbf{q}} + _{\mathcal{B}} \mathbf{\Omega}_{S_i} \times _{\mathcal{B}} \mathbf{\Theta}_{S_i} \cdot _{\mathcal{B}} \mathbf{\Omega}_{S_i} \right) \right) \\ \mathbf{g} &= \sum_{i=1}^{n_b} \left( -_{\mathcal{A}} \mathbf{J}_{S_i}^T \mathbf{A} \mathbf{F}_{g,i} \right) \end{split}$$

- For actuated systems, include actuation force as external force for each body
  - If actuators act in the direction of generalized coordinates, au corresponds to stacked actuator commands

### Projected Newton-Euler Cart pendulum example

Find the equation of motion





#### 3<sup>rd</sup> Method for EoM

#### Lagrange II

#### kinetic energy

- Lagrangian
- $\mathcal{L} = \mathcal{T} \mathcal{U}$  potential energy

Lagrangian equation 
$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{q}}} \right) - \left( \frac{\partial \mathcal{L}}{\partial \mathbf{q}} \right) = \boldsymbol{\tau}$$

Since 
$$\frac{\mathcal{U} = \mathcal{U}(\mathbf{q})}{\mathcal{T} = \mathcal{T}(\mathbf{q}, \dot{\mathbf{q}})} \qquad \frac{\mathbf{inertial forces}}{\frac{d}{dt} \left(\frac{\partial \mathcal{T}}{\partial \dot{\mathbf{q}}}\right) - \frac{\partial \mathcal{T}}{\partial \mathbf{q}}} + \frac{\partial \mathcal{U}}{\partial \mathbf{q}} = \tau$$

$$\mathbf{\mathcal{T}} = \frac{1}{2}\dot{\mathbf{q}}^T \mathbf{M}\dot{\mathbf{q}}$$

with 
$$\frac{\partial \mathcal{T}}{\partial \dot{\mathbf{q}}} = \mathbf{M}\dot{\mathbf{q}}$$

$$\mathbf{M}\ddot{\mathbf{q}} + \dot{\mathbf{M}}\dot{\mathbf{q}} - \frac{1}{2} \begin{pmatrix} \dot{\mathbf{q}}^T \frac{\partial \mathbf{M}}{\partial q_1} \dot{\mathbf{q}} \\ \vdots \\ \dot{\mathbf{q}}^T \frac{\partial \mathbf{M}}{\partial q_n} \dot{\mathbf{q}} \end{pmatrix} + \mathbf{g} = \mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{g}(\mathbf{q}) = \mathbf{\tau}$$

### Lagrange II Kinetic energy

- Kinetic energy in joint space
- Kinetic energy for all bodies

From kinematics we know that

Hence we get

$$\mathbf{\mathcal{T}} = \frac{1}{2}\dot{\mathbf{q}}^T \mathbf{M}\dot{\mathbf{q}}$$

$$\mathcal{T} = \sum_{i=1}^{n_b} \left( \frac{1}{2} m_i \mathbf{A} \dot{\mathbf{r}}_{S_i}^T \mathbf{A} \dot{\mathbf{r}}_{S_i} + \frac{1}{2} \mathbf{B} \mathbf{\Omega}_{S_i}^T \cdot \mathbf{B} \mathbf{\Theta}_{S_i} \cdot \mathbf{B} \mathbf{\Omega}_{S_i} \right)$$

$$\dot{\mathbf{r}}_{S_i} = \mathbf{J}_{S_i} \dot{\mathbf{q}}$$

$$\mathbf{\Omega}_{S_i} = \mathbf{J}_{R_i} \dot{\mathbf{q}}$$

$$\mathcal{T}(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} \dot{\mathbf{q}}^T \underbrace{\left(\sum_{i=1}^{n_b} \left(\mathbf{J}_{S_i}^T m \mathbf{J}_{S_i} + \mathbf{J}_{R_i}^T \boldsymbol{\Theta}_{S_i} \mathbf{J}_{R_i}\right)\right)}_{\mathbf{M}(\mathbf{q})} \dot{\mathbf{q}}$$



### Lagrange II Potential energy

- Two sources for potential forces
  - Gravitational forces  $\mathbf{F}_{g_i} = m_i \, g_I \mathbf{e}_g$   $\longrightarrow$   $\mathcal{U}_g = -\sum_{i=1}^{\infty} \mathbf{r}_{S_i}^T \, \mathbf{F}_{g_i}$

## Lagrange II Cart pendulum example

Find the equation of motion





15.10.2019



#### **External Forces**

- Given:  $n_{f,ext}$  external forces  $\mathbf{F}_j$
- Generalized forces are calculated as:

$$oldsymbol{ au}_{F,ext} = \sum_{j=1}^{n_{f,ext}} \mathbf{J}_{P,j}{}^T \, \mathbf{F}_j$$

- Given:  $n_{m,ext}$  external torques  $T_k$
- Generalized forces are calculated

$$oldsymbol{ au}_{T,ext} = \sum_{k=1}^{n_{m,ext}} \mathbf{J}_{R,k}{}^T \mathbf{T}_{ext,k}$$

• For actuator torques:  $\boldsymbol{\tau}_{a,k} = \left(\mathbf{J}_{S_k} - \mathbf{J}_{S_{k-1}}\right)^T \mathbf{F}_{a,k} + \left(\mathbf{J}_{R_k} - \mathbf{J}_{R_{k-1}}\right)^T \mathbf{T}_{a,k}$ 

### **External Forces**

#### Cart pendulum example

Equation of motion without actuation

$$\begin{bmatrix}
m_c + m_p & lm_p \cos(\varphi) \\
lm_p \cos(\varphi) & m_p l^2 + \theta_p
\end{bmatrix} \ddot{\mathbf{q}} + \underbrace{\begin{pmatrix} -\dot{\varphi}^2 lm_p \sin(\varphi) \\
0 \end{pmatrix}}_{\mathbf{b}} + \underbrace{\begin{pmatrix} 0 \\
m_p g l \sin(\varphi) \end{pmatrix}}_{\mathbf{g}} = \mathbf{0}$$

- Add actuator for the pendulum
  - Action on pendulum
  - Reaction on cart
- pendulum  $T_a$   $T_p = \tau_a \qquad \mathbf{J}_{Rp} = \begin{bmatrix} 0 & 1 \end{bmatrix}$   $T_c = -\tau_a \qquad \mathbf{J}_{Rc} = \begin{bmatrix} 0 & 0 \end{bmatrix}$   $\tau = \sum_{R_c} \mathbf{J}_{R_c}^T \mathbf{T}_i = \mathbf{J}_{Rc}^T \mathbf{T}_c + \mathbf{J}_{Rp}^T \mathbf{T}_p = \begin{pmatrix} 0 \\ \tau_a \end{pmatrix}$
- Add spring to the pendulum
  - (world attachment point P, zero length 0, stiffness k)
  - Action on pendulum

$$\mathbf{F}_{s} = \begin{pmatrix} -F_{x} \\ -F_{y} \end{pmatrix} \qquad \mathbf{r} = \begin{pmatrix} x + 2l\sin(\varphi) \\ -2l\cos(\varphi) \end{pmatrix} \\ \mathbf{J}_{s} = \frac{\partial \mathbf{r}_{s}}{\partial \mathbf{q}} = \begin{bmatrix} 1 & 2l\cos(\varphi) \\ 0 & 2l\sin(\varphi) \end{bmatrix}$$
 
$$\boldsymbol{\tau} = \mathbf{J}^{T} \mathbf{F}_{s} = \begin{pmatrix} -F_{x} \\ -2l(F_{x}\cos(\varphi) + F_{y}\sin(\varphi)) \end{pmatrix}$$
Robot

$$\mathbf{\tau} = \mathbf{J}^T \mathbf{F}_s = \begin{pmatrix} -F_x \\ -2l(F_x \cos(\varphi) + F_y \sin(\varphi)) \end{pmatrix}$$



# Quiz 2min 1min

### **External Forces**Cart pendulum example

What is the external force coming from the motor and how does it influence the EoM

