Travaux dirigés de mécanique du point matériel/Filières SMPC-SMIA

Série Nº 1

Exercice N°1

On donne les vecteurs suivants :

$$\vec{r_1} = 2\vec{i} + 3\vec{j} - \vec{k}$$
 , $\vec{r_2} = 3\vec{i} - 2\vec{j} + 2\vec{k}$, $\vec{r_3} = 4\vec{i} - 3\vec{j} + 3\vec{k}$

- 1- Calculer leurs modules.
- 2- Calculer les composantes et les modules des vecteurs :

$$\overrightarrow{A} = \overrightarrow{r_1} + \overrightarrow{r_2} + \overrightarrow{r_3}$$
 $\overrightarrow{B} = \overrightarrow{r_1} + \overrightarrow{r_2} - \overrightarrow{r_3}$

- 3- Déterminer le vecteur unitaire $\vec{\mathbf{u}}$ porté par le vecteur $\vec{\mathbf{C}} = \vec{\mathbf{r}_1} + 2 \vec{\mathbf{r}_2}$
- 4- Calculer les produit scalaire et vectoriel des vecteurs $\overrightarrow{\mathbf{r_1}}$ et $\overrightarrow{\mathbf{r_2}}$.
- 5- Calculer les produits \vec{A} . $(\vec{B} \land \vec{C})$ et $\vec{A} \land (\vec{B} \land \vec{C})$

Exercice N°2

On considère les vecteurs suivants ;

$$\overrightarrow{V_1} = \sin t \ \overrightarrow{i} - \cos t \ \overrightarrow{j} + 3t \ \overrightarrow{k}$$
 $\overrightarrow{V_2} = 5t^3 \ \overrightarrow{i} - 3t \ \overrightarrow{j} - 2t^4 \ \overrightarrow{k}$

- 1- Calculer le module de ces deux vecteurs
- 2-Trouver les expressions des grandeurs :

$$\frac{_{d}}{_{dt}}(\overrightarrow{V_{1}}.\overrightarrow{V_{2}}) \hspace{1cm} \text{et} \hspace{1cm} \frac{_{d}}{_{dt}}(\overrightarrow{V_{1}}\wedge\overrightarrow{V_{2}})$$

Exercice N°3

Soit les trois vecteurs : $\vec{a}(1, 2, 2), \vec{b}(2, 2\sqrt{2}, 2)$ et $\vec{c}(0, \sqrt{2}, \sqrt{2})$.

- 1- Calculer $\|\vec{a}\|$, $\|\vec{b}\|$, $\|\vec{c}\|$, et en déduire les expressions des vecteurs unitaires \vec{e}_a , \vec{e}_b , \vec{e}_c des directions de \vec{a} , \vec{b} et \vec{c} .
- 2- En considérant les angles θ_a , θ_b et θ_c compris entre 0 et $\pi,$ calculer :

$$\cos\theta_a = \cos(\widehat{e_b}, \widehat{e_c}),$$
 $\cos\theta_b = \cos(\widehat{e_a}, \widehat{e_c})$ et $\cos\theta_c = \cos(\widehat{e_b}, \widehat{e_a})$

- 3- Calculer les composantes des vecteurs : $\vec{u}_a = \vec{e}_b \wedge \vec{e}_c$, $\vec{u}_b = \vec{e}_c \wedge \vec{e}_a$ et $\vec{u}_c = \vec{e}_a \wedge \vec{e}_b$.
- 4- En déduire $\sin \theta_a$, $\sin \theta_b$ et $\sin \theta_c$. Vérifier ces résultats à l'aide de la question 2).

Exercice N°4

Soit un vecteur $\vec{v}(t)$ de module V et un référentiel R.

- 1- Peut-on dire que la dérivée de $\vec{v}(t)$ est égale à la dérivée du module de $\vec{v}(t)$?
- 2- Montrer que si $\vec{v}(t)$ à un module constant, le vecteur dérivé $\frac{d\vec{v}(t)}{dt}$ lui est orthogonal.
- 3- Montrer que, d'une manière générale : $\vec{v}(t) \cdot \frac{d\vec{v}(t)}{dt} = V \frac{dV}{dt}$

Exercice N°5

Dans un repère $R(\mathbf{0}, \vec{\mathbf{i}}, \vec{\mathbf{j}}, \vec{\mathbf{k}})$ orthonormé direct, on considère un vecteur $\vec{\mathbf{U}} = \overrightarrow{\mathbf{O}} \vec{\mathbf{A}}$ que fait un angle α avec l'axe $(\mathbf{0}, \vec{\mathbf{i}})$ et un angle β avec l'axe $(\mathbf{0}, \vec{\mathbf{j}})$ (Figur ci – dessous).

Exprimer:

- 1- le vecteur \vec{U} en fonction de α , le module U et les vecteurs unitaires \vec{i} et \vec{j} .
- 2- le vecteur \vec{U} en fonction de β , le module \vec{U} et les vecteurs unitaires \vec{i} et \vec{j} .
- 3- Même questions de 1 et 2 si en faisant une rotation au sens positive suivant l'axe $(0, \vec{k})$ de $\frac{\pi}{2}$.
- 4- Même questions de 1 et 2 si en faisant une rotation au sens négative suivant l'axe $(0, \vec{k})$ de $\frac{\pi}{2}$.

Exercice N°6

Un point **M** est repéré dans (**xOy**) par les coordonnées polaires, $\rho(t) = \|\overrightarrow{OM}\|$ et $\theta(t) = (\widehat{OM}, \widehat{Ox})$. Soit \overrightarrow{u} le vecteur unitaire de même direction et sens que \overrightarrow{OM} .

- 1- Tracer dans le plan (xOy) le point M en y précisant les coordonnées polaires ρ et θ ;
- 2- Ecrire l'expression de $\vec{\mathbf{u}}$ dans la base $(\vec{\mathbf{l}}, \vec{\mathbf{j}})$;
- 3- Calculer la dérivée de $\vec{\mathbf{u}}$ par rapport à $\boldsymbol{\theta}$; on note $\vec{\mathbf{v}}$ ce vecteur ;
- 4- Calculer le produit scalaire des vecteurs $\vec{\mathbf{u}}$ et $\vec{\mathbf{v}}$; conclure ;
- 5- Calculer la dérivée de \vec{v} par rapport à θ Que constater vous ?
- 6- Calculer les dérivées première et seconde par rapport au temps de $\vec{\mathbf{u}}$.

Exercice N°7

Soit le référentiel R(0,x,y,z) et la base $B(\vec{e}_x,\vec{e}_y,\vec{e}_z)$. Dans le plan (Oxy), on considère un point P mobile le long d'une courbe (C) en tout point de laquelle on peut définir un vecteur tangent \vec{V} . Le point P est successivement repéré dans les bases $B(\vec{e}_x,\vec{e}_y)$, $B'(\vec{e}_r,\vec{e}_\theta)$ et $B''(\vec{e}_t,\vec{e}_n)$

On pose
$$(\widehat{\overrightarrow{\mathbf{0x}}, \overrightarrow{\mathbf{e_r}}}) = \mathbf{\theta}$$
 et $(\widehat{\overrightarrow{\mathbf{0x}}, \overrightarrow{\mathbf{e_r}}}) = \mathbf{\phi}$.

Exprimer:

- 1- Les vecteurs unitaires \vec{e}_r et \vec{e}_θ en fonction des vecteurs unitaires \vec{e}_x et \vec{e}_y .
- 2- Les vecteurs unitaires \vec{e}_t et \vec{e}_n en fonction des vecteurs unitaires \vec{e}_x et \vec{e}_y .
- 3- Calculer les expressions suivantes où **t** désigne le temps. **Conclure :**

$$\frac{d\vec{e}_x}{dt}|_R \text{ et } \frac{d\vec{e}_y}{dt}|_R \qquad ; \qquad \frac{d\vec{e}_r}{dt}|_R \text{ et } \frac{d\vec{e}_\theta}{dt}|_R ; \qquad \frac{d\vec{e}_t}{dt}|_R \text{ et } \frac{d\vec{e}_n}{dt}|_R$$