Contents

- Robot and targets Poses
- Part 1: A. Poses of the three targets with the repect to the robot base
- Part 1: B. The joint variables to grasp the object at each location, ie.
- Part 1: C.The Jacobian matrix at each location using the joint variables

Robot and targets Poses

```
sawyer = SE3;
sawyer.t = [0 0 0.93];
target1 = SE3;
target1.t = [0.75 -0.35 1.014]
target2 = SE3.rpy([0 0 -0.785]);
target2.t = [1 0 1.014]
target3 = SE3.rpy([0 0 0.586931]);
target3.t = [0.85 0.25 1.014]
```

```
target1 =
                                    0.75
                   0
                             0
         1
                                   -0.35
         0
                   1
                             0
         0
                   0
                             1
                                   1.014
         0
                   0
                             0
                                       1
target2 =
   0.7074
             0.7068
                             0
                                       1
   -0.7068
              0.7074
                             0
                                       0
         0
                   0
                             1
                                   1.014
         0
                             0
                                       1
target3 =
   0.8326 -0.5538
                             0
                                    0.85
   0.5538
             0.8326
                             0
                                    0.25
         0
                   0
                             1
                                   1.014
                   0
         0
                             0
                                       1
```

Part 1: A. Poses of the three targets with the repect to the robot base

frame

```
sawyerTtarget1 = inv(sawyer)*target1
sawyerTtarget2 = inv(sawyer)*target2
sawyerTtarget3 = inv(sawyer)*target3
```

```
0
                                   0.084
                            1
                             0
                                       1
sawyerTtarget2 =
   0.7074
             0.7068
                             0
                                       1
             0.7074
  -0.7068
                             0
                                       0
                  0
                             1
                                   0.084
        0
                  0
                             0
                                       1
sawyerTtarget3 =
            -0.5538
   0.8326
                             0
                                    0.85
   0.5538
            0.8326
                             0
                                    0.25
                                   0.084
        0
                  0
                             1
        0
                  0
                             0
                                       1
```

Part 1: B. The joint variables to grasp the object at each location, ie.

inverse kinematics

```
L(1) = Link('alpha', -pi/2, 'a', 0.081, 'd', 0);
L(2) = Link('alpha', pi/2, 'a', 0, 'd', 0.191);
L(3) = Link('alpha', -pi/2, 'a', 0, 'd', 0.399);
L(4) = Link('alpha', pi/2, 'a', 0, 'd', -0.1683);
L(5) = Link('alpha', -pi/2, 'a', 0, 'd', 0.3965);
L(6) = Link('alpha', pi/2, 'a', 0, 'd', 0.136);
L(7) = Link('alpha', 0, 'a', 0, 'd', 0.1785);
R1 = SerialLink(L, 'name', "Sawyer");
pose1 = sawyerTtarget1*SE3.Ry(pi/2);
pose2 = sawyerTtarget2*SE3.Rx(-pi/2);
pose3 = sawyerTtarget3*SE3.Ry(pi/2);
pose4 = pose1; % discard position
pose4.t = [0.65 \ 0.4 \ 0.084];
q1dwn = R1.ikine(pose1);
% R1.teach(q1dwn);
q1up = q1dwn - [0 pi/6 0 0 0 0 0];
% R1.teach(q1up)
q2dwn = R1.ikine(pose2);
% R1.teach(q2dwn)
q2up = q2dwn - [0 pi/6 0 0 0 0 0];
% R1.teach(q2up)
q3dwn = R1.ikine(pose3);
% R1.teach(q3dwn)
q3up = q3dwn - [0 pi/6 0 0 0 0 0];
% R1.teach(q3up)
q4dwn = R1.ikine(pose4);
% R1.teach(q4dwn);
q4up = q4dwn - [0 pi/6 0 0 0 0 0];
% R1.teach(q4up)
```

```
in_radians = array2table([q1dwn; q2dwn; q3dwn;q4dwn], ...
   'VariableNames', {'q1','q2','q3','q4','q5','q6','q7'}, ...
   'RowNames', {'pos1dwn','pos2dwn','pos3dwn','pos4dwn'} )
```

in_radians =

4×7 table

	q1	q2	q3	q4	q5	q6	q7
pos1dwn	-1.5598	1.0334	1.4951	1.7613	-0.33971	-0.21166	-0.70001
pos2dwn	-0.18375	1.4313	-0.46561	-0.085423	-1.2564	-0.94749	0.26679
pos3dwn	-0.62441	0.78528	1.1561	1.4874	-0.72682	-0.2269	0.00049313
pos4dwn	1.013	1.3239	-1.3704	1.3283	0.14321	-0.29985	1.1199

• in degrees

```
in_degrees = array2table(rad2deg([q1dwn; q2dwn; q3dwn;q4dwn]), ...
   'VariableNames', {'q1','q2','q3','q4','q5','q6','q7'}, ...
   'RowNames', {'pos1dwn','pos2dwn','pos3dwn','pos4dwn'} )
```

in_degrees =

4×7 table

	q1	q2	q3	q4	q5	q6	q7
pos1dwn	-89.372	59.208	85.664	100.91	-19.464	-12.127	-40.108
pos2dwn	-10.528	82.006	-26.677	-4.8944	-71.989	-54.287	15.286
pos3dwn	-35.776	44.993	66.24	85.221	-41.644	-13	0.028254
pos4dwn	58.043	75.854	-78.516	76.105	8.2056	-17.18	64.165

Part 1: C.The Jacobian matrix at each location using the joint variables

```
disp("Jacobian for target1")
R1.jacob0(q1dwn)
disp("Jacobian for target2")
R1.jacob0(q2dwn)
disp("Jacobian for target3")
R1.jacob0(q3dwn)
disp("Jacobian for target4")
R1.jacob0(q4dwn)
```

Jacobian for target1

ans =

0.3500 0.0009 0.0666 -0.1228 0.0286 0.0000 0

0 0 1.0000 -0.0000 -0.0000	0.1150 -0.1365 0.0000 0.7648 0.6442	-0.1143 0.0775 0.9777 0.1353 -0.1607	0.4833 -0.2784 0.0700 0.5113 0.8566	0.2849 0.4769 0.0094 -0.8590 0.5119	-0.0840 -0.2772 0.9999 0.0110 0.0000	0.7500 -0.0000 -0.0000 0.0000 1.0000
					r target2	Jacobian fo
						ans =
0 0 0.7068 0.7074 0.0000	0.1218 -0.1217 0.0471 0.1865 -0.1863 -0.9646	-0.0031 0.1592 0.1189 0.9666 -0.1407 0.2141	-0.0201 -0.2274 -0.4536 0.2247 0.8671 -0.4446	0.0089 0.0414 -0.0082 0.9736 -0.1809 0.1391	0.0826 -0.0153 -0.9022 0.1827 0.9832 0.0000	-0.0000 1.0000 0.0000 -0.0000 0.0000 1.0000
					r target3	Jacobian fo
						ans =
0 0 0.8326 0.5538 0.0000	0.0000 -0.0001 -0.1785 -0.5538 0.8326 -0.0005	0.0477 -0.0164 0.1325 0.8114 0.5395 -0.2250	-0.3386 0.2298 -0.4020 -0.2896 0.7053 0.6471	-0.1354 0.4275 0.3597 0.5736 -0.4133 0.7072	0.0681 -0.0491 -0.4625 0.5846 0.8113 0.0000	-0.2500 0.8500 0.0000 0.0000 0.0000 1.0000
					r target4	Jacobian fo
						ans =
0 0 1.0000 -0.0000 0.0000	0.0000 -0.1607 -0.0778 0.0000 0.4358 -0.9001	0.0402 0.0940 0.1041 0.9554 -0.2659 -0.1287	-0.0974 -0.5369 -0.1700 -0.0422 0.3086 -0.9503	0.0129 0.1449 -0.5147 0.5132 0.8227 0.2444	0.0445 0.0713 -0.6024 -0.8484 0.5293 0.0000	-0.4000 0.6500 0.0000 -0.0000 -0.0000 1.0000

Published with MATLAB® R2021b