CE100 Algorithms and Programming II $\,$

${\it Matrix~Multiplication~/~Quick~Sort}$

Author: Asst. Prof. Dr. Uğur CORUH

Contents

0.1	CE100 Algorithms and Programming II
0.2	Week-3 (Matrix Multiplication/ Quick Sort)
0.3	Matrix Multiplication / Quick Sort
0.4	Outline
0.5	Outline
0.6	Outline
0.7	Matrix Multiplication
0.8	Matrix Multiplication
0.9	Matrix Multiplication: Standard Algorithm
0.10	Matrix Multiplication: Divide & Conquer
0.11	Matrix Multiplication: Divide & Conquer
0.12	Matrix Multiplication: Divide & Conquer
0.13	Matrix Multiplication: Divide & Conquer Analysis
0.14	Matrix Multiplication: Solving the Recurrence
0.15	Matrix Multiplication: Strassen's Idea
	Matrix Multiplication: Strassen's Idea
0.17	Matrix Multiplication: Strassen's Idea
0.18	Matrix Multiplication: Strassen's Idea
0.19	Matrix Multiplication: Strassen's Idea
	Strassen's Algorithm
0.21	Strassen's Algorithm: Solving the Recurrence
0.22	Strassen's Algorithm
0.23	Maximum Subarray Problem
0.24	Maximum Subarray Problem: Divide & Conquer
0.25	Maximum Subarray Problem: Divide & Conquer
	Maximum Subarray Problem: Divide & Conquer
0.27	Conclusion: Divide & Conquer
0.28	Quicksort
	Quicksort
0.30	References

List of Figures

List of Tables

CE100 Algorithms and Programming II

Week-3 (Matrix Multiplication/ Quick Sort) 0.2

0.2.0.1 Spring Semester, 2021-2022 Download DOC¹, SLIDE², PPTX³

Matrix Multiplication / Quick Sort

0.4Outline

- Matrix Multiplication
 - Traditional
 - Recursive
 - Strassen

0.5Outline

- Quicksort
 - Hoare Partitioning
 - Lomuto Partitioning
 - Recursive Sorting

0.6 Outline

- Quicksort Analysis
 - Randomized Quicksort
 - Randomized Selection
 - * Recursive
 - * Medians

0.7 Matrix Multiplication

 $\begin{array}{l} \bullet \ \ \mathbf{Input:} \ A = [a_{ij}], B = [b_{ij}] \\ \bullet \ \ \mathbf{Output:} \ C = [c_{ij}] = A \cdot B \Longrightarrow i, j = 1, 2, 3, \ldots, n \end{array}$

$$\begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \vdots & \ddots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \vdots & \ddots \\ b_{n1} & a_{n2} & \dots & b_{nn} \end{bmatrix}$$

 $^{^{1}}ce100\text{-week-3-matrix.md_doc.pdf}$

²ce100-week-3-matrix.md slide.pdf

 $^{^3{\}rm ce}100{\rm -week\text{-}}3{\rm -matrix.md_slide.pptx}$

0.8 Matrix Multiplication

Viewer does not support full SVG 1.1

•
$$c_{ij} = \sum_{1 \leq k \leq n} a_{ik}.b_{kj}$$

0.9 Matrix Multiplication: Standard Algorithm

```
Running Time: \Theta(n^3) for i=1 to n do for j=1 to n do C[i,j] = 0 for k=1 to n do C[i,j] = C[i,j] + A[i,k] + B[k,j] endfor endfor
```

0.10 Matrix Multiplication: Divide & Conquer

IDEA: Divide the nxn matrix into 2x2 matrix of (n/2)x(n/2) submatrices.

$$\label{lem:condition} $$ \left(\frac{11} & c_{12} \right) \ c_{21} & c_{21}$$

0.11 Matrix Multiplication: Divide & Conquer

$$\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

8 mults and 4 adds of (n/2)*(n/2) submatrices =
$$\begin{cases} c_{11} = a_{11}b_{11} + a_{12}b_{21} \\ c_{21} = a_{21}b_{11} + a_{22}b_{21} \\ c_{12} = a_{11}b_{12} + a_{12}b_{22} \\ c_{22} = a_{21}b_{12} + a_{22}b_{22} \end{cases}$$

0.12 Matrix Multiplication: Divide & Conquer

```
MATRIX-MULTIPLY(A, B)
 // Assuming that both A and B are nxn matrices
if n == 1 then
    return A * B
 else
     //partition A, B, and C as shown before
     C[1,1] = MATRIX-MULTIPLY (A[1,1], B[1,1]) +
              MATRIX-MULTIPLY (A[1,2], B[2,1]);
    C[1,2] = MATRIX-MULTIPLY (A[1,1], B[1,2]) +
             MATRIX-MULTIPLY (A[1,2], B[2,2]);
     C[2,1] = MATRIX-MULTIPLY (A[2,1], B[1,1]) +
     MATRIX-MULTIPLY (A[2,2], B[2,1]);
    C[2,2] = MATRIX-MULTIPLY (A[2,1], B[1,2]) +
     MATRIX-MULTIPLY (A[2,2], B[2,2]);
 endif
return C
```

0.13 Matrix Multiplication: Divide & Conquer Analysis

$$T(n) = 8T(n/2) + \Theta(n^2)$$

- 8 recursive calls $\Longrightarrow 8T(\cdots)$
- each problem has size $n/2 \Longrightarrow \cdots T(n/2)$
- Submatrix addition $\Longrightarrow \Theta(n^2)$

0.14 Matrix Multiplication: Solving the Recurrence

$$\begin{split} \bullet & \ T(n) = 8T(n/2) + \Theta(n^2) \\ & - \ a = 8, \ b = 2 \\ & - \ f(n) = \Theta(n^2) \\ & - \ n^{\log_b^a} = n^3 \end{split}$$

$$\bullet & \ \text{Case 1: } \frac{n^{\log_b^a}}{f(n)} = \Omega(n^\varepsilon) \Longrightarrow T(n) = \Theta(n^{\log_b^a}) \end{split}$$

Similar with ordinary (iterative) algorithm.

0.15 Matrix Multiplication: Strassen's Idea

Compute $c_{11}, c_{12}, c_{21}, c_{22}$ using 7 recursive multiplications.

In normal case we need 8 as below.

$$\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

8 mults and 4 adds of (n/2)*(n/2) submatrices =
$$\begin{cases} c_{11} = a_{11}b_{11} + a_{12}b_{21} \\ c_{21} = a_{21}b_{11} + a_{22}b_{21} \\ c_{12} = a_{11}b_{12} + a_{12}b_{22} \\ c_{22} = a_{21}b_{12} + a_{22}b_{22} \end{cases}$$

0.16 Matrix Multiplication: Strassen's Idea

- Reminder:
 - Each submatrix is of size (n/2) * (n/2)
 - Each add/sub operation takes $\Theta(n^2)$ time
- Compute P1 ... P7 using 7 recursive calls to matrix-multiply

$$\begin{split} P_1 &= a_{11} * (b_{12} - b_{22}) \\ P_2 &= (a_{11} + a_{12}) * b_{22} \\ P_3 &= (a_{21} + a_{22}) * b_{11} \\ P_4 &= a_{22} * (b_{21} - b_{11}) \\ P_5 &= (a_{11} + a_{22}) * (b_{11} + b_{22}) \\ P_6 &= (a_{12} - a_{22}) * (b_{21} + b_{22}) \\ P_7 &= (a_{11} - a_{21}) * (b_{11} + b_{12}) \end{split}$$

0.17 Matrix Multiplication: Strassen's Idea

$$\begin{split} P_1 &= a_{11} * (b_{12} - b_{22}) \\ P_2 &= (a_{11} + a_{12}) * b_{22} \\ P_3 &= (a_{21} + a_{22}) * b_{11} \\ P_4 &= a_{22} * (b_{21} - b_{11}) \\ P_5 &= (a_{11} + a_{22}) * (b_{11} + b_{22}) \\ P_6 &= (a_{12} - a_{22}) * (b_{21} + b_{22}) \\ P_7 &= (a_{11} - a_{21}) * (b_{11} + b_{12}) \end{split}$$

• How to compute c_{ij} using $P1 \dots P7$?

$$\begin{split} c_{11} &= P_5 + P_4 \text{--} P_2 + P_6 \\ c_{12} &= P_1 + P_2 \\ c_{21} &= P_3 + P_4 \\ c_{22} &= P_5 + P_1 \text{--} P_3 \text{--} P_7 \end{split}$$

0.18 Matrix Multiplication: Strassen's Idea

- 7 recursive multiply calls
- 18 add/sub operations

0.19 Matrix Multiplication: Strassen's Idea

e.g. Show that
$$c_{12}=P_1+P_2$$

$$\begin{split} c_{12}&=P_1+P_2\\ &=a_{11}(b_{12}-b_{22})+(a_{11}+a_{12})b_{22}\\ &=a_{11}b_{12}-a_{11}b_{22}+a_{11}b_{22}+a_{12}b_{22}\\ &=a_{11}b_{12}+a_{12}b_{22} \end{split}$$

0.20 Strassen's Algorithm

• **Divide:** Partition A and B into (n/2) * (n/2) submatrices. Form terms to be multiplied using + and -.

• Conquer: Perform 7 multiplications of (n/2) * (n/2) submatrices recursively.

• Combine: Form C using + and - on (n/2)*(n/2) submatrices.

Recurrence: $T(n) = 7T(n/2) + \Theta(n^2)$

0.21 Strassen's Algorithm: Solving the Recurrence

•
$$T(n) = 7T(n/2) + \Theta(n^2)$$

$$\begin{array}{l} -\ a = 7,\ b = 2 \\ -\ f(n) = \Theta(n^2) \\ -\ n^{log^a_b} = n^{lg7} \end{array}$$

• Case 1:
$$\frac{n^{log_b^a}}{f(n)} = \Omega(n^{\varepsilon}) \Longrightarrow T(n) = \Theta(n^{log_b^a})$$

$$T(n) = \Theta(n^{\log_2^7})$$

$$2^3 = 8, 2^2 = 4 \text{ so} \Longrightarrow log_2^7 \approx 2.81$$

or use https://www.omnicalculator.com/math/log

0.22 Strassen's Algorithm

• The number 2.81 may not seem much smaller than 3

• But, it is significant because the difference is in the exponent.

• Strassen's algorithm beats the ordinary algorithm on today's machines for $n \geq 30$ or so.

- Best to date: $\Theta(n^{2.376\dots})$ (of theoretical interest only)

0.23 Maximum Subarray Problem

Input: An array of values Output: The contiguous subarray that has the largest sum of elements

max. contiguous subarray

• Input array: [13][-3][-25][20][-3][-16][-23] $\overbrace{[18][20][-7][12]}$ [-22][-4][7]

0.24 Maximum Subarray Problem: Divide & Conquer

• Basic idea:

• Divide the input array into 2 from the middle

• Pick the **best** solution among the following:

- The max subarray of the **left half**

- The max subarray of the **right half**

- The max subarray crossing the mid-point

0.25 Maximum Subarray Problem: Divide & Conquer

0.26 Maximum Subarray Problem: Divide & Conquer

- **Divide:** Trivial (divide the array from the middle)
- Conquer: Recursively compute the max subarrays of the left and right halves
- Combine: Compute the max-subarray crossing the mid-point
 - (can be done in $\Theta(n)$ time).
 - Return the max among the following:
 - * the max subarray of the left-subarray
 - * the max subarray of the rightsubarray
 - * the max subarray crossing the mid-point

TODO: detailed solution in textbook...

0.27 Conclusion: Divide & Conquer

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- Can lead to more efficient algorithms

0.28 Quicksort

- One of the most-used algorithms in practice
- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm
- In-place algorithm
 - The additional space needed is O(1)
 - The sorted array is returned in the input array
 - Reminder: Insertion-sort is also an in-place algorithm, but Merge-Sort is not in-place.
- Very practical

0.29 Quicksort

- **Divide:** Partition the array into 2 subarrays such that elements in the lower part ≤ elements in the higher part
- Conquer: Recursively sort 2 subarrays
- Combine: Trivial (because in-place)

Key: Linear-time $(\Theta(n))$ partitioning algorithm

	\leq x			\geq x	
p		Viewer does not st	pport full SVG 1.1		r

0.30 References

TODO