Notes on Updated Diffusion Coefficients

Hai Wang

University of Delaware December 10, 2003

The need to update the diffusion coefficients stems from the theoretical understanding that the repulsive part of the Lennard-Jones (L-J) 12-6 potential function is too stiff to accurately account for diffusion coefficients at high temperatures [1]. Replacing the repulsive part of the potential by a softer, exponential function led to an increase in most of the diffusion coefficients involving H and H₂ [1] from those predicted by the Sandia Transport subroutine library [2]. Recent studies [3,4] showed that even the exponential function may be too restricted and suggested that the diffusion coefficients of key pairs be directly modeled without resorting to the use of tabulated L-J 12-6 collision integrals.

In this work an update for diffusion coefficients is provided for selected pairs. Within the framework of Sandia PREMIX [5] and similar codes, implementing these updates is quite easy and adequate, even if diffusion coefficients are available for only a few pairs. The current updates are based on Refs. 3, 4, and 6-9 (see Table 1). These diffusion coefficients were obtained from the potential functions directly calculated from high-level quantum chemistry calculations, and in many cases, compared to available experimental data.

To use these diffusion coefficients in flame modeling, the temperature dependence of binary diffusion coefficients at 1 atm was fitted, as in Ref. 2, by

$$\ln D_{ii} = d_0 + d_1 \ln T + d_2 (\ln T)^2 + d_3 (\ln T)^3,$$

where d_k (k=0,3) is the polynomial coefficient, tabulated in Table 1 for selected pairs. For the mixture-averaged transport formulation, the above polynomial is sufficient for flame simulations. The multi-component transport formulation as well as the computation of thermal diffusion ratio in both transport formulations, however, requires the input of the ratios of collision integrals [2,10], i.e., $A_{ij}^* = \Omega_{ij}^{(2,2)} / (2\Omega_{ij}^{(1,1)})$, $B_{ij}^* = (5\Omega_{ij}^{(1,2)} - \Omega_{ij}^{(1,3)}) / (3\Omega_{ij}^{(1,1)})$ and $C_{ij}^* = \Omega_{ij}^{(1,2)} / (3\Omega_{ij}^{(1,1)})$. These ratios are given for each pair in the following forms,

$$\begin{split} A_{ij}^* &= a_0 + a_1 \ln T_{ij}^* + a_2 \left(\ln T_{ij}^* \right)^2 + a_3 \left(\ln T_{ij}^* \right)^3, \\ B_{ij}^* &= b_0 + b_1 \ln T_{ij}^* + b_2 \left(\ln T_{ij}^* \right)^2 + b_3 \left(\ln T_{ij}^* \right)^3, \\ C_{ij}^* &= c_0 + c_1 \ln T_{ij}^* + c_2 \left(\ln T_{ij}^* \right)^2 + c_3 \left(\ln T_{ij}^* \right)^3, \end{split}$$

where a_k , b_k , and c_k (k=0,3) are the polynomial coefficients whose values are found in Table 1, and T_{ij}^* is the reduced temperature determined by the collision well depth ε_{ij} as $T_{ij}^* = kT/\varepsilon_{ij}$.

Table 1 Summary of polynomial coefficients for updated binary diffusion coefficients and ratios of collision integrals

Pair	Diffusion coefficients, D_{ij}				_		A_{ij}^*			
	d_0	d_1	$d_2 \times 10^2$	$d_3 \times 10^3$	Ref. ^a	a_0	$a_1 \times 10$	$a_2 \times 10^2$	$a_3 \times 10^3$	
Н-Не	-9.6699	2.1002	-7.7060	5.4611	[3]	0.93003	0.80150	-0.94733	0.63459	
H-Ar	-9.0511	1.6161	-0.2878	1.3054	[4]	0.68819	1.53423	-1.76995	0.88796	
$H-H_2$	-11.7498	3.1507	-25.7472	15.8916	[3]	0.68565	1.53390	-1.36735	0.32210	
$H-O_2$	-11.0410	2.4043	-10.2797	5.3264	[6]	1.29254	-1.84989	4.27103	-2.60823	
$H-N_2$	-13.2703	3.5187	-29.6649	16.4314	[7]	1.33865	-0.85454	0.92291	0.04406	
H ₂ -He	-12.7513	3.4244	-28.4726	15.9317	[3]	0.59534	2.07809	-2.48477	1.00128	
H_2-N_2	-10.9994	2.2026	-8.1155	4.4061	[8]	1.31648	-1.32021	2.41620	-1.20259	
H_2 - H_2	-9.9610	2.0560	-6.4977	4.1368	[9]	1.32209	-1.20749	2.20471	-1.05955	
	B_{ij}^*					C_{ij}^*				
	b_0	$b_1 \times 10$	$b_2 \times 10^2$	$b_3 \times 10^3$	_	c_0	$c_1 \times 10$	$c_2 \times 10^2$	$c_3 \times 10^3$	
Н-Не	0.87638	1.02383	-1.48030	0.98804		1.06002	-0.59928	1.02650	-0.73451	
H-Ar	0.69683	1.71580	-2.43568	1.36548		0.67027	1.14334	-1.50407	0.51876	
$H-H_2$	0.67795	1.37471	-1.10587	0.16577		0.65119	0.82160	-0.43894	-0.27358	
$H-O_2$	1.99270	-2.72201	2.05951	0.16444		1.27566	-2.27862	4.44995	-2.74619	
$H-N_2$	-2.20300	15.91601	-25.33938	13.64477		1.27616	-2.25934	4.64183	-3.10151	
H ₂ -He	0.67715	1.35792	-1.14253	0.18886		0.65192	0.83651	-0.44501	-0.25987	
H_2 - H_2	3.63140	-11.39793	16.94208	-8.12678		1.29811	-1.78141	2.95671	-1.70201	
H_2-N_2	1.94230	-4.19106	6.71192	-3.36850		1.29073	-1.93012	3.39899	-1.96836	

^a The fits are based on diffusion coefficients directly taken from the referenced paper, or those computed using the potential functions given in the referenced paper.

References

- 1. P. Paul, J. Warnatz, *Proc. Combust. Inst.* **27**: 495-504 (1998).
- 2. R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, *A FORTRAN Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients*, Sandia Report SAND86-8246, 1986.
- 3. P. Middha, B. H. Yang, H. Wang, Proc. Combust Inst. 29: 1361-1369 (2002).
- 4. P. Middha, H. Wang, "*Ab initio* potential energy and binary diffusion coefficient of H-Ar." 2002 Annual Meeting of American Institute of Chemical Engineers, Indianapolis, Indiana, November 2002.
- R.J. Kee, J.F. Grear, M.D. Smooke, J.A. and Miller, PREMIX: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames, Sandia Report SAND85-8240, 1985.
- 6. J. R. Stallcop, H. Partridge, E. Levin, Phys. Rev. A. 64 (2001) Art. No. 042722.
- 7. J. R. Stallcop, H. Partridge, S. P. Walch, E. Levin, *J. Chem. Phys.* 97 (1992) 3431-3436.
- 8. J. R. Stallcop, H. Partridge, E. Levin, *Phys. Rev. A*. 62 (2000) Art. No. 062709.
- 9. J. R. Stallcop, E. Levin, H. Partridge, J. Thermophys. Heat Trans. 12 (1998) 514-519.
- 10. G. Dixon-Lewis, *Proc. Roy. Soc. A* 307 (1968) 111-135.