Question 2 (20 points): When building models for deep learning, lower-precision floating-point representation can be used. Thus, there is a growing interest in floating-point representation that use fewer bits. Last year a minifloat representation was proposed. Minifloat borrows the same ideas used in floating-point formats to represent integer values in a large range using only 8 bits. An 8-bit minifloat has 1 sign bit, 4 exponent bits and 3 mantissa bits and an exponent bias equal +2 for normalized numbers.

- Minifloat has representations for +infinity (0 1111 000) and -infinity (1 1111 000).
- Minifloat has a representation for Not-a-Number (NaN): x 1111 yyy where yyy! = 000.
- When the exponent is 0000 the number represented is subnormal, and the value is $0.mmm \times 2^3$ where mmm are the three bits of the mantissa.
- When the exponent is not zero, then the number represented is normalized. Given a representation s eeee mmm, the value represented is $1.\text{mmm} \times 2^{e+2}$ where e is the value of the exponent eeee in the representation.
- The standard rules of rounding to the nearest even apply to minifloat.

1.	(5 points) Which is the smallest, non-zero, positive value that can be represented in minifloat? Provide the binary representation and the decimal value.
2.	(5 points) Which is the largest positive value that can be represented in minifloat? Provid the binary representation and the decimal value.
3.	(5 points) There are many numbers within the range between the smallest and the larges value that cannot be represented precisely in minifloat. In such a case the value is rounded to the nearest value. What is the binary representation of 46_{10} in minifloat? Which is the actual value of the number represented after rounding?
4.	(5 points) A hardware that supports minifloat has an adder with a guard bit, a round bit and a sticky bit. Show how the operation 5+64 is performed in this hardware, and what it the value of the result both in binary and in decimal. What is the minifloat representation of the result?