國立	清	華	大	學
----	---	---	---	---

科目.		
系級		
學號		
姓 名	P31	

Next,

How to solve nonhomogeneous linear 2nd-order ODES

Preliminary: About nonhomogeneous linear 2nd-order ODES

- The For a nonhomogeneous ODE, any function y_1 satisfies is called a " ex: y'' + 9y = 27,
- is called the "

 ex:
- 3) If a set y1, yz is a fundamental set of & yp is a of L(y) = g(t), the general solution of the nonhomogeneous DE is expressed by their
- F If L(g) = g(x) has a

then the general solution of Lcy)

In the following, we will learn two techniques to solve Lcy)=8(t)

Method of "undetermined coefficients"

Description:

Q: What's your best guess of the particular solution for ex: $y'' - y' + y = 2 \sin 4t$ $= 2t^2 + 1$ $= e^3t$ $= te^3t + 2 \sin 4t + 2t^2 + 1$

I dea: For a nonhomogeneous ODE L(y)=g(t),

General guess of particular solutions yp for L(y)=get)

g(t)

guess of yp

國立	「清	華	大	學
----	----	---	---	---

科目		
系級 -		
學號		
姓 名	P33	

Example 1: $y''-2y'-3y = 4t-5+6te^{2t}$

Example 2: y"-5y744 = 8 et

科目 ______ 系級 ____ 學號 ____ 姓名 <u>P</u>3 4

Example 3: 4"+24+4= et

Remarks:

- O General procedures:
 - 1) Solve the
 - 2) Categorize gits by then find
 - 3) Obtain general solution by
- 2 When yp you guess belongs to , we just keep
- 3) This method can also be used to solve $ex: y''' + y'' = 1 t^2e^{-t}$

姓名 735

Method of "variation of parameters" & Cordition:

Idea: Use the solution of

Since we just need to find any U1, 42 that satisfy (*), we can choose the simplest case where

So now we have two unknowns, ui, uz, with the equations

$$(y_1 y_2' - y_1'y_2) u_1' = -y_2 g_{(t)}$$

科目 ______ 系級 _____ 學號 ____ 姓名 __P3ん

$$\Rightarrow u_1' = \frac{-y_2 f^{(t)}}{}$$

It's easier to express Uí, uz' in a determinant form:

$$y_1 = \frac{-y_2 g(t)}{t} = \frac{-y_2 g(t)}{t}$$

By a similar procedure, we can find

Then, N1, 42 can be obtained by integration:

$$U_1 = U_2 =$$

Example: Solve y'-4y+4y=(t+1)e2t by variation of parameters

科目	
系級	
學號	
姓名	P37

Remarks:

- 1 General procedures of method of "variation of parameters"
 - 1) Express the DE in
 - 2) Find
 - 3) Set
- This method can also be used in higher-order nonhomogeneous ODE. ex: y"+py"+Qy'+Ry=q(t)