

Quick sort using recursive method

- ➤ Recursive Algorithm
 - **Example**
- ➤ Quick sort complexity

Recursive Algorithm cont...

- QUICKSORT(A, p, r): A: array,p: LB,r=UB
 - 1. if p < r
 - 2. q = PARTITION(A, p, r)
 - 3. QUICKSORT(A, p, q-1)
 - 4. QUICKSORT(A, q + 1, r)
 - 5. Exit

Recursive Algorithm(partition)

```
PARTITION(A, p, r)
1. x = A[r]// pivot is last value
2. i = p-1
3. Repeat steps 4 to 6 for j = p to r - 1
       if A[j] <= x
               i=i+1
               exchange A[i]with A[j]
6.
7. exchange A[i+1] with A[r]
8. return i + 1
```

Example:

ED

Complexity of Quick sort

- Worst case
 - \bullet O(n²)
- Average case
 - O(n log n)
- Best case
 - O(n log n)

Thank You