期中考试:

- 时间: 11月17日(周二)上午8:00-9:50, 请7:50之前到.
- 地点: 二教105

复习

- $\xi_n \stackrel{P}{\to} \eta$: $P(A_n) \to 0$, $\sharp P(A_n) = \{|\xi_n \eta| \ge \varepsilon\}$.
- $\xi_n \stackrel{\text{a.s.}}{\to} \eta$: $P(\xi_n \to \eta) = 1$ iff $P(\cup_{m \ge n} A_m) \to 0$.
- $S_n = X_1 + \dots + X_n$, $\frac{1}{n}S_n \stackrel{P. \text{ a.s.}}{\longrightarrow} EX$. 特别地: EX = 0 时, 理解为 $S_n = o(n)$.
- 切比雪夫不等式.

§4.1 随机序列的收敛性(续)

定义 (依分布收敛)

 $\xi_n \stackrel{d}{\to} \eta \ \text{if} F_{\xi_n}(x) \to F_{\eta}(x) \ \text{if} F_{\eta} \ \text{off} \ \text{seeds} \ \text{if} \ \text{if$

- $\xi_n = \frac{1}{n} \to \eta = 0$, $(\sqsubseteq F_{\xi_n}(0) = 0, F_{\eta}(0) = 1.$
- 定理1.2. 若 $\xi_n \stackrel{P}{\to} \eta$, 则 $\xi_n \stackrel{d}{\to} \eta$. $A_n = \{ |\xi_n \eta| \ge \varepsilon \}$.

$$|P(\xi_n \le x) - P(\eta \le x)|$$

$$\le P(|\xi_n - \eta| \ge \varepsilon) + P(x - \varepsilon \le \eta \le x + \varepsilon).$$

- $A_n =$ 第n 次投到正面, B =色子投到大. 则 $1_{A_n} \stackrel{d}{\to} 1_B$.
- 假设 $\xi_n, n \ge 1, \eta$ 是定义在同一个概率空间上的随机变量, $\xi_n \stackrel{d}{\to} \eta$ 推不出 $\xi_n \stackrel{P}{\to} \eta$ (反例: 例1.2)

§4.3 中心极限定理

假设随机变量序列 X_1, X_2, \cdots 满足 $0 < var(X_n) < \infty, \forall n.$ 令

$$S_n = X_1 + \dots + X_n.$$

- Linderberg-Lévy CLT (定理3.1). i.i.d. 序列满足CLT.
- Berry-Esseen bound: 假设 $E|X|^3 < \infty$. 那么, $|F_n(x) \Phi(x)| \leq \frac{3E|X^*|^3}{\sqrt{n}}, \quad \forall x.$
- $S_n^* = \sum_{i=1}^n \frac{X_i \mu}{\sqrt{n}\sigma} = \sum_{i=1}^n \frac{1}{\sqrt{n}} X_i^* = \sum_{i=1}^n Y_i \stackrel{d}{\approx} Z.$

CLT特例证明(选读) 假设 X_1, X_2, \cdots i.i.d.,

$$P(X_1 = 1) = P(X_1 = -1) = 1/2$$
. 于是 $\mu = 0$, $\sigma^2 = 1$, $S_n^* = \frac{S_n}{\sqrt{n}}$. 下面证明CLT

•
$$P(a \leqslant \frac{S_{2n}}{\sqrt{2n}} \leqslant b) = \sum_{a \leqslant \frac{2k}{\sqrt{2n}} \leqslant b} C_{2n}^{n+k} \frac{1}{2^{2n}},$$

 $x_k^2 = 2\frac{k^2}{n}, \ \Delta x_k = \sqrt{\frac{2}{n}}.$

- Stirling $\triangle \vec{\pi}$: $m! \approx \sqrt{2\pi} \cdot \sqrt{m} (\frac{m}{e})^m$. $C_{2n}^{n+k} = \frac{(2n)!}{(n+k)!(n-k)!} \approx \frac{\sqrt{2\pi(n+k)} (\frac{n+k}{e})^{n+k}}{\sqrt{2\pi(n+k)} (\frac{n+k}{e})^{n+k}} \sqrt{2\pi(n-k)} (\frac{n-k}{e})^{n-k}}$
- $\bullet \ C_{2n}^{n+k} \frac{1}{2^{2n}} \approx \frac{1}{\sqrt{2\pi}} \cdot \sqrt{\frac{2n}{(n+k)(n-k)}} \cdot \frac{n^{2n}}{(n+k)^{n+k}(n-k)^{n-k}}$

$CLT \Rightarrow WLLN.$

- 不妨设 $\mu = 0, \sigma^2 = 1.$
- WLLN: $\frac{1}{n}S_n \stackrel{P}{\to} 0$, CLT: $\frac{S_n}{\sqrt{n}} \stackrel{d}{\to} Z$.
- 粗略地, WLLN: $S_n = o(n)$, CLT: $S_n = O(\sqrt{n})$.
- 对任意 $\epsilon > 0$ 固定,考虑 $A_n = \{ |\frac{1}{n}S_n| \ge \epsilon \}$. 对任意 $\delta > 0$. n充分大时,

$$P(A_n) = P(|S_n^*| \geqslant \sqrt{n\varepsilon}) \leqslant P(|S_n^*| \geqslant x) \leqslant \delta(n \geqslant (\frac{x}{\varepsilon})^2)$$

因此, $P(A_n) \to 0$.

CLT:
$$P(S_n \le x) = P(S_n^* \le x^*) \approx p,$$

 $x^* = \frac{x - n\mu}{\sqrt{n}\sigma}, \ p = \Phi(x^*), \ \Phi(-x) = 1 - \Phi(x).$

附表 1 标准正态分布数值表					
x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
0.00	0.5000	1.40	0.9192	2.30	0.9893
0.05	0.5199	1.42	0. 9222	2.33	0.9901
0.10	0.5398	1.45	0.9265	2.35	0.9906
0.15	0.5596	1.48	0.9306	2.38	0.9913
0.20	0.5793	1.50	0. 9332	2.40	0.9918
0.25	0.5987	1.55	0.9394	2.42	0. 9922
0.30	0.6179	1.58	0.9429	2. 45	0.9929
0.35	0.6368	1.60	0.9452	2.50	0.9938
0.40	0.6554	1.65	0.9505	2.55	0.9946
0.45	0.6736	1.68	0.9535	2.58	0. 9951
0.50	0.6915	1.70	0.9554	2.60	0.9953

例3.1 加法器同时收到20个i.i.d.噪声电压 $V_k \sim U(0,10)$,

$$k = 1, \dots, 20.$$
 $\forall V = \sum_{k=1}^{20} V_k, \ \Re P(V > 105).$

- 此题已知n = 20, x = 105, 求 p.
- $P(V > 105) = P\left(V^* > \frac{105 20 \times 5}{\sqrt{20 \times \frac{100}{12}}} =: x^*\right) \approx 1 \Phi(x^*) =: p.$
- 计算得 $x^* \approx 0.387$. 查表得 $\Phi(x^*) = 0.652$, 从而所求之p = 1 0.652 = 0.348.

例3.2 旅馆有500间客房,每间有一台2千瓦的空调. 开房率 为80%. 问: 需多少千瓦的电力能有99% 的把握保证电力足够?

- 己知n, p, 求x. 假设提供x 千瓦.
- $A_i =$ 第i 间房开空调, $P(A_i) = 80\%$, $X_i = 2 \times 1_{A_i}$. n = 500.
- 要求x 满足: $P(S_n \le x) \ge 99\% = p$. 即 $P(S_n^* \le x^*) \ge 0.99$. 查表得 $\Phi(2.33) = 0.99$.
- 故需 $x^* = \frac{x 500 \times 2 \times 0.8}{\sqrt{500 \times 2^2 \times 0.8 \times 0.2}} \ge 2.33.$ 即 $x \ge 800 + 2.33 \times \sqrt{320} = 841.68$,从而需842 千瓦.

 $\mathbf{M}(\mathbf{R意调查})$ 为保证调查结果与真实值的误差不超过 $\varepsilon=0.1$ (或0.05, 0.01) 的概率至少为95%. 至少需调查多少人?

- 己知 $x = \varepsilon$, p = 0.95, 求n.
- $A_i = \hat{\pi}_i$ 人支持该候选人, $P(A_i) = q = \bar{q}$ 实值. $X_i = 1_{A_i}$. $\frac{1}{n}S_n$ =调查结果. 目标: $P(|\frac{1}{n}S_n - q| \le \varepsilon) \ge 0.95$.
- $P(|S_n^*| \le \frac{\varepsilon \sqrt{n}}{\sqrt{g(1-g)}} = x^*) \ge 0.95.$ 要求 $\Phi(x^*) - \Phi(-x^*) = \Phi(x^*) - (1 - \Phi(x^*)) \ge 0.95$. 即 $\Phi(x^*) \ge \frac{1}{2}(1+0.95) = 0.975$, 查表得 $x^* \ge 1.96$.
- 要求 $\frac{\varepsilon\sqrt{n}}{\sqrt{a(1-q)}} \ge 1.96$, $\mathbb{P}\sqrt{n} \ge \frac{1.96}{\varepsilon} \times \sqrt{q(1-q)}$.
- 为"保证", 要求 $\sqrt{n} \ge \frac{1.96}{\varepsilon} \times \max_{q} \sqrt{q(1-q)} = \frac{1.96}{2\varepsilon}$. 若 $\varepsilon = 0.1$, 则至少需调查 $n_0 = [9.8^2] = 97$;

习题四、13. $e^{-n} \sum_{k=0}^{n} \frac{1}{k!} n^k \to \frac{1}{2}$.

- X_1, X_2, \cdots 独立同分布, $X_1 \sim \mathcal{P}(1)$, 则 $S_n \sim \mathcal{P}(n)$,从而, 左边= $P(S_n \leq n)$.
- $P(S_n \le n) = P(S_n^* \le 0) \to P(Z \le 0) = \frac{1}{2},$ $\sharp P(Z \le n) = \frac{1}{2},$