

Identification de paramètres et optimisation Cours de Master 2 STIM 2015-2016

Sébastien Adam

7 janvier 2016

- **(ロ)(即)(き)(き)** - 第 - 夕へで

Plan du Cours

- Méthodes de descente
 - Contexte
 - Quelques rappels
 - Méthodes du premier ordre
 - Méthodes du second ordre

Contexte

Les moindres carrés, c'est bien ...

- ... sous réserve de vérifier deux hypothèses :
 - ① Critère d'erreur quadratique : $J_{MC}(\theta) = \sum_{i=1}^{N} (y_{S_i} y_{m_i})^2$
 - 2 Modèle linéaire par rapport aux paramètres : $Y_M(\theta) = X\theta$
- On sait calculer analytiquement l'optimal : $\frac{\partial J_{MC}(\theta)}{\partial \theta} = 0 \Rightarrow X^T X \theta = X^T Y_S \Rightarrow \theta_{MC} = \left(X^T X\right)^{-1} X^T Y_S$
- On peut adapter une estimation avec une nouvelle mesure.

Mais ...

- L'hypothèse de linéarité est forte, même si des "tricks" existent.
- Modèle non linéaire → soucis pour annuler la dérivée
- L'inversion de X^TX peut être très coûteuse (si K est grand RDN, CRF), voire impossible
- Alternative : les méthodes itératives ou méthodes de descente

S. Adam (Master STIM) Optimisation 7 janvier 2016 3 / 43

Principe général des méthodes de descente

Méthodes itératives

- On part d'un point θ_0
- On cherche à « descendre » : $J(\theta_{n+1}) < J(\theta_n)$
- On calcule $\theta_{n+1} = \theta_n + \alpha_n d_n$
 - d_n est un vecteur donnant la direction de l'itération
 - $ightharpoonup \alpha_n$ est la longueur du pas
- On continue jusqu'à ... l'arrêt

Nombreux choix à effectuer \rightarrow nombreuses variantes

- Déterminer la valeur θ_0
- Déterminer la direction d_n
- Déterminer la longueur du pas α_n
- Choisir un critère d'arrêt

Plan du Cours

- Méthodes de descente
 - Contexte
 - Quelques rappels
 - Méthodes du premier ordre
 - Méthodes du second ordre

Fonction vectorielle

- ullet On considère des fonctions J(heta) de \mathbb{R}^K dans \mathbb{R} . Ex : $J(heta)= heta_1^2+ heta_2^2$
- On va illustrer les descentes à l'aide de deux représentations :

Valeurs de critères

Lignes d'iso-coût
$$\left\{ heta \in \mathbb{R}^K | J(heta) = cte
ight\}$$

→ロ → ← 同 → ← 三 → へ ○ へ ○ ○

Fonction vectorielle

• Ca peut être un peu plus compliqué

$$J(\theta) = (1 - \theta_1)^2 + 10(\theta_2 - \theta_1^2)^2$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - り Q (C)

Variations de fonctions vectorielles

- On veut descendre : il faut analyser les variations de la fonction $J(\theta)$ au voisinage d'un point θ_0
- Cette analyse doit être faite au sens d'une direction. On parle de dérivée directionnelle, généralisant la dérivée classique
- On appelle dérivée directionnelle de J au point θ_0 et dans la direction $d \in R^K$ la limite : $D_{\theta_0}J(\theta_0,d) = \lim_{\epsilon \to 0} \frac{J(\theta_0 + \epsilon d) J(\theta_0)}{\epsilon}$
- $D_{\theta_0}J(\theta_0,d)$ "quantifie" la variation du critère lors d'un déplacement d'un vecteur d dans l'espace des paramètres (approximée linéaire). $\frac{D_{\theta_0}J(\theta_0,d)}{||d||} \text{ est la pente de la fonction en } \theta_0.$
- NB : $\varphi(\epsilon) = J(\theta_0 + \epsilon d) \to D_{\theta_0}J(\theta_0, d) = \lim_{\epsilon \to 0} \frac{\varphi(\epsilon) \varphi(0)}{\epsilon} = \varphi'(0)$
- On peut donc calculer $D_{\theta_0}J(\theta_0,d)$ en calculant $\varphi'(0)$
- Exemples : $J(\theta) = a^T \theta$, $J(\theta) = \|\theta\|^2$

S. Adam (Master STIM) Optimisation 7 janvier 2016 8 / 43

Gradient d'une fonction vectorielle

- Une fonction $J(\theta)$ est dite différentiable si ses K dérivées partielles $\frac{\partial J}{\partial \theta_k}$ existent et sont continues. On note alors J est C^1
- Le vecteur composé des différentes dérivées partielles est appelé gradient de J en θ_0 et noté $\nabla J(\theta_0) = \left[\frac{\partial J}{\partial \theta_1}(\theta_0),...,\frac{\partial J}{\partial \theta_K}(\theta_0)\right]^T$
- $\nabla J(\theta_0)$ est un déplacement dans l'espace des paramètres
- $\nabla (\alpha_1 J_1(\theta) + \alpha_2 J_2(\theta)) = \alpha_1 \nabla J_1(\theta) + \alpha_2 \nabla J_2(\theta)$
- $\nabla (J_1 \circ J_2(\theta)) = J_1'(J_2(\theta)) \cdot \nabla J_2(\theta)$
- On peut montrer que : $D_{\theta_0}J(\theta_0,d) = \nabla J(\theta_0)^T d$
- On peut donc calculer un gradient en exprimant sa dérivée directionnelle sous la forme $\nabla J(\theta_0)^T d$ ou $d^T \nabla J(\theta_0)$

S. Adam (Master STIM) Optimisation 7 janvier 2016

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T)x$

Exemples

• $K = 2 : J(\theta) = \theta_1^2 - 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T)x$

- $K = 2: J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A \theta$
 - $\nabla J(\theta_0) = [2\theta_1 + 2\theta_2, 2\theta_1 4\theta_2]^T$

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T)x$

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A \theta$
 - ► $\nabla J(\theta_0) = [2\theta_1 + 2\theta_2, 2\theta_1 4\theta_2]^T$
- $J(\theta) = a^T \theta$

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T)x$

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
 - ► $\nabla J(\theta_0) = [2\theta_1 + 2\theta_2, 2\theta_1 4\theta_2]^T$
- $J(\theta) = a^T \theta$

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T)x$

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
 - ► $\nabla J(\theta_0) = [2\theta_1 + 2\theta_2, 2\theta_1 4\theta_2]^T$
- $J(\theta) = a^T \theta$
- $J(\theta) = \|\theta\|^2$

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T)x$

Exemples

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
 - ► $\nabla J(\theta_0) = [2\theta_1 + 2\theta_2, 2\theta_1 4\theta_2]^T$
- $J(\theta) = a^T \theta$
- $J(\theta) = \|\theta\|^2$
 - $\nabla J(\theta_0) = 2\theta^T$

S. Adam (Master STIM)

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

Exemples

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
 - $\nabla J(\theta_0) = [2\theta_1 + 2\theta_2, 2\theta_1 4\theta_2]^T$
- $J(\theta) = a^T \theta$
- $J(\theta) = \|\theta\|^2$
 - $\nabla J(\theta_0) = 2\theta^T$
- $J(\theta) = \sin(a^T \theta)$

S. Adam (Master STIM)

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
 - $\nabla J(\theta_0) = [2\theta_1 + 2\theta_2, 2\theta_1 4\theta_2]^T$
- $J(\theta) = a^T \theta$
- $J(\theta) = \|\theta\|^2$
 - $\nabla J(\theta_0) = 2\theta^T$
- $J(\theta) = \sin(a^T \theta)$
 - $\nabla J(\theta_0) = a^T \cos(a^T \theta)$

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T)x$

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
 - ► $\nabla J(\theta_0) = [2\theta_1 + 2\theta_2, 2\theta_1 4\theta_2]^T$
- $J(\theta) = a^T \theta$
- $J(\theta) = \|\theta\|^2$
 - $\nabla J(\theta_0) = 2\theta^T$
- $J(\theta) = \sin(a^T \theta)$
 - $\nabla J(\theta_0) = a^T \cos(a^T \theta)$
- $J(\theta) = ||A\theta b||^2$

Propriétés importante

- La direction donnée par le gradient est celle de plus forte pente en tout point.
- $\forall d$ de norme $\|\nabla J(\theta_0)\|$, Cauchy-Schwarz nous dit que $D_{\theta_0}J(\theta_0,d) = \nabla J(\theta_0)^T d \leq \|\nabla J(\theta_0)\| \|d\| \leq \|\nabla J(\theta_0)\|^2$

Illustration

11 / 43

S. Adam (Master STIM) Optimisation 7 janvier 2016

Autre propriété intéressante

• Le gradient de J en θ_0 est orthogonal à l'ensemble de niveau $N_J(\theta_0)$: $\nabla J(\theta_0)^T v = 0$ pour tous les vecteurs v tangents à J en θ_0

Taylor-Young au premier ordre

• Taylor-Young au premier ordre approximant linéairement $J(\theta)$ en θ_0 devient $J(\theta) = J(\theta_0) + (\theta - \theta_0)^T \nabla J(\theta_0) + \|\theta - \theta_0\| \epsilon(\theta)$ avec : $\lim_{\theta \to \theta_0} \epsilon(\theta) = 0$

S. Adam (Master STIM) Optimisation 7 janvier 2016 12 / 43

Second ordre: Hessien d'une fonction vectorielle

- Si les dérivées partielles de J admettent à leur tour des dérivées partielles, on dit que J possède des dérivées partielles d'ordre 2.
 La dérivée partielle suivant la direction i de la dérivée partielle d'ordre 2.
- La dérivée partielle suivant la direction j de la dérivée partielle $\frac{\partial J}{\partial \theta_i}(a)$ est notée : $\frac{\partial^2 J}{\partial \theta_i \partial \theta_i}(a)$
- Si toutes les dérivées partielles sont continues, on dit que J est deux fois continuement différentiable. On note alors J est C^2
- La matrice de dimenson (K, K)

La matrice de dimenson
$$(K,K)$$

$$\nabla^2 J(a) = \frac{\partial^2 J}{\partial \theta \partial \theta^T}(a) = \begin{pmatrix} \frac{\partial^2 J}{\partial \theta_1^2}(a) & \frac{\partial^2 J}{\partial \theta_1 \partial \theta_2}(a) & \dots & \frac{\partial^2 J}{\partial \theta_1 \partial \theta_K}(a) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 J}{\partial \theta_K \partial \theta_1}(a) & \frac{\partial^2 J}{\partial \theta_K \partial \theta_2}(a) & \dots & \frac{\partial^2 J}{\partial \theta_K^2}(a) \end{pmatrix}$$

est appelée Hessien de J en a. Elle est symétrique par définition.

S. Adam (Master STIM) Optimisation 7 janvier 2016 13 / 43

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

Exemples

• $K = 2 : J(\theta) = \theta_1^2 - 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$

S. Adam (Master STIM) Optimisation 7 janvier 2016 14 / 43

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

Exemples

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A \theta$
 - ▶ $\nabla^2 J(\theta_0) = [2, -4]^T$

S. Adam (Master STIM) Optimisation 7 janvier 2016 14 / 43

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

Exemples

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
- $J(\theta) = a^T \theta$

S. Adam (Master STIM) Optimisation 7 janvier 2016 14 / 43

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

Exemples

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
- $J(\theta) = a^T \theta$
 - $\nabla^2 J(\theta_0) = 0$

S. Adam (Master STIM)

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

Exemples

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
- $J(\theta) = a^T \theta$
 - $\nabla^2 J(\theta_0) = 0$
- $J(\theta) = \|\theta\|^2$

S. Adam (Master STIM)

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

Exemples

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
- $J(\theta) = a^T \theta$
 - $\nabla^2 J(\theta_0) = 0$
- $J(\theta) = \|\theta\|^2$
 - $\nabla^2 J(\theta_0) = 2I$

S. Adam (Master STIM) Optimisation 7 janvier 2016

14 / 43

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

Exemples

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
- $J(\theta) = a^T \theta$
 - $\nabla^2 J(\theta_0) = 0$
- $J(\theta) = \|\theta\|^2$
 - $\nabla^2 J(\theta_0) = 2I$
- $J(\theta) = ||A\theta b||^2$

S. Adam (Master STIM)

Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

- $K = 2 : J(\theta) = \theta_1^2 2\theta_2^2 + 2\theta_1\theta_2 = \theta^T A\theta$
- $J(\theta) = a^T \theta$
 - $\nabla^2 J(\theta_0) = 0$
- $J(\theta) = \|\theta\|^2$
 - $\nabla^2 J(\theta_0) = 2I$
- $J(\theta) = ||A\theta b||^2$
 - $\nabla^2 J(\theta_0) = 2A^T A$

Hessien d'une fonction vectorielle

- Soit $d \in \mathbb{R}^K$. La grandeur $\frac{d^T \nabla^2 J(a)d}{\|d\|}$ est appelée courbure de la fonction J en a dans la direction d
- Soit un point θ_0 tel que $\nabla J(\theta_0) = 0$ et $\nabla^2 J(\theta_0)$ définie positive (c'est à dire $D^T \nabla^2 J(\theta_0) D > 0$). Alors θ_0 est un minimiseur local strict de J.
- Attention : ce n'est pas forcément un minimum global
- On a la formule de Taylor-Young au second ordre

$$J(\theta) = J(\theta_0) + (\theta - \theta_0)^T \nabla J(\theta_0) + \frac{1}{2} (\theta - \theta_0)^T \nabla^2 J(\theta_0) (\theta - \theta_0) + \|\theta - \theta_0\|^2 \epsilon(\theta)$$

$$\text{avec: } \lim_{\theta \to a} \epsilon(\theta) = 0$$

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Plan du Cours

- Méthodes de descente
 - Contexte
 - Quelques rappels
 - Méthodes du premier ordre
 - Méthodes du second ordre

Méthodes itératives

- ullet On part d'un point $heta_0$
- On cherche $\grave{\mathsf{a}} \ll \mathsf{descendre} \gg$: $J(\theta_{n+1}) < J(\theta_n)$
- On calcule $\theta_{n+1} = \theta_n + \alpha_n d_n$
 - d_n est un vecteur donnant la direction de l'itération
 - $ightharpoonup \alpha_n$ est la longueur du pas
- On continue jusqu'à ... l'arrêt

Principes

- Les méthodes de descente de gradient considèrent l'anti-gradient comme direction de descente : $d_n = -\nabla J(\theta_n)$
- On pose donc : $\theta_{n+1} = \theta_n \alpha_n \nabla J(\theta_n)$

40 140 140 140 1 100

Principes

- Taylor-Young au premier ordre : $J(\theta + h) = J(\theta) + h^T \nabla J(\theta)$
- D'où : $J(\theta_{n+1}) = J(\theta_n \alpha_n \nabla J(\theta_n)) = J(\theta_n) \alpha_n \nabla J(\theta_n)^T \nabla J(\theta_n)$
- Donc $J(\theta_{n+1}) = J(\theta_n) \alpha_n \|\nabla J(\theta_n)\|^2 \le J(\theta_n)$
- C'est donc bien une direction de descente du critère, au voisinage de θ_n
- On peut montrer que c'est la direction de plus grande descente :

Preuve:

Soit $h \in \mathbb{R}^K$ une direction quelconque de norme $\|\nabla J(\theta)\|$.

On a
$$J(\theta + h) - J(\theta) = h^T \nabla J(\theta)$$

Cauchy-Schwarz nous donne $J(\theta + h) - J(\theta) \le \|h^T\| \|\nabla J(\theta)\|$

Donc :
$$J(\theta + h) - J(\theta) \le \|\nabla J(\theta)\|^2$$

Algorithme général des méthodes de descente de gradient

- 0 n=0
- ② Déterminer θ_0
- 3 Tant que critère d'arrêt non satisfait
 - **1** $d_n = -\nabla J(\theta_n)$ (ou, en version normalisée, $d_n = -\frac{\nabla J(\theta_n)}{\|\nabla J(\theta_n)\|^2}$)
 - **2** Déterminer α_n
 - $\theta_{n+1} = \theta_n \alpha_n d_n$
 - $0 \quad n = n + 1$
- **o** Retourner θ_n

Paramétrage de la méthode

- Une valeur initiale θ_0
- Une valeur pour α_n
- Le critère d'arrêt

4 0 > 4 6 | > 4 5 > 4 5 > 5 | 4)

Méthode à pas fixe

- On fixe $\alpha_n = \alpha$
- $\theta_{n+1} = \theta_n \alpha \nabla J(\theta_n)$

Impact du choix de α

•
$$J(\theta) = (\theta - 1)(\theta - 2)(\theta - 3)(\theta - 5)$$

•
$$\frac{dJ}{d\theta} = 4\theta^3 - 33\theta^2 + 82\theta - 61$$

Testons quelques valeurs :

θ_0	5	5	5	5	5
α_n	0.001	0.01	0.05	0.17	0.1

 \Rightarrow Importance cruciale de θ_0 et α_n

Méthode à pas adaptatif

- On fait évoluer α_n par une régle heuristique
- $\theta_{n+1} = \theta_n \alpha_n \nabla J(\theta_n)$

Choix de α_n : régle heuristique

- si $J(\theta_{n+1}) < J(\theta_n)$ alors
 - ightharpoonup augmenter α_n
- si $J(\theta_{n+1}) = J(\theta_n)$ alors
 - \triangleright augmenter α_n
- si $J(\theta_{n+1}) > J(\theta_n)$ alors
 - diminuer α_n et abandonner θ_{n+1}

Méthode à pas optimal

- ullet On cherche à chaque itération la valeur optimale de $lpha_n$
- On considère une fonction $\varphi : \alpha_n \to J(\theta \alpha_n \nabla J(\theta))$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (^)

22 / 43

Méthode à pas optimal

- On cherche à chaque itération la valeur optimale de α_n
- On considère une fonction $\varphi: \alpha_n \to J(\theta \alpha_n \nabla J(\theta))$
- On cherche alors à trouver le α_n qui minimise $\varphi(\alpha_n)$, c'est à dire qui annule la dérivée $\varphi'(\alpha_n) = -\nabla J(\theta_n)^T \nabla J(\theta_n \alpha_n \nabla J(\theta_n))$

Exemple

- Considérons $J(\theta) = \frac{\theta_1^2}{2} + \frac{7\theta_2^2}{2}$
- Exprimer $\theta_{n+1} = f(\theta_n)$ en utilisant la méthode du pas optimal

Remarque

- $\varphi'(\alpha_n) = 0 \Rightarrow \nabla J(\theta_n)^T \nabla J(\theta_n \alpha_n \nabla J(\theta_n)) = 0$
- On a donc $\nabla J(\theta_n)^T \nabla J(\theta_{n+1}) = 0$. Les directions de descentes sont orthogonales

S. Adam (Master STIM) Optimisation 7 janvier 2016 23 / 43

Illustration

Problèmes

• $\varphi'(\alpha_n) = 0$ rarement calculable analytiquement et doit être effectuée à chaque pas du gradient

→ロト → □ ト → 三 ト → 三 ・ りへで

Recherche approchée

- On a $\varphi(\alpha_n) = J(\theta_n \alpha_n \nabla J(\theta_n))$
- On a $\varphi'(0) = -\nabla J(\theta_n)^T \nabla J(\theta_n) < 0 \rightarrow \varphi$ est décroissante au voisinage de 0
- On approxime $\varphi(\alpha_n)$ par une parabole $\varphi_p(\alpha_n) = a\alpha_n^2 + b\alpha_n + c$ sur [0, L]

4 D > 4 A > 4 B > 4 B > B 9 9 9

25 / 43

Recherche approchée

Rappel équation tangente d'une fonction f en a: y = f(a) + f'(a)(x - a) i.e $y = c + b\alpha_n$

26 /

- $\varphi(0) = \varphi_p(0) \rightarrow c = J(\theta_n)$
- $\varphi'(0) = \varphi'_p(0) \to b = -\nabla J(\theta_n)^T \nabla J(\theta_n)$
- $\varphi(L) = \varphi_p(L) \rightarrow a = (J(L) bL c)/L^2$
- La tangente en 0 coupe l'axe des abcisse en L/2 : L=-2c/b

• $\alpha_n = -b/2a$

S. Adam (Master STIM) Optimisation 7 janvier 2016

Autres alternatives pour déterminer α_n

- Dichotomie
- Méthode du nombre d'or
- Toute autre méthode de recherche unidimensionnelle

Propriétés de l'algorithme du gradient

- Algorithme simple à mettre en œuvre
- Grand domaine de convergence (domaine où la convergence est assurée)
- Se bloque dans les minimums locaux
- Ralentit au voisinage de la solution

101401421421 2 000

Limites de la méthode du gradient

- Constat : la direction de l'anti-gradient n'est pas toujours la direction optimale
- Exemple :

4 D > 4 A > 4 B > 4 B > B 9 Q C

Idée

• Ce qu'on voudrait idéalement : des directions orthogonales qui en choississant bien le α converge en n itérations.

• Mais il faudrait connaître la cible...

Une alternative

• Méthodes de gradient conjugué

Origine de la méthode

Initialement conçue pour minimiser en au plus n itérations une fonction quadratique telle que $J(\theta) = \frac{1}{2}\theta^T A\theta + b^T \theta + c$, avec A définie positive.

Directions conjuguées

La méthode utilise des directions A-orthogonales, aussi appelées
 A-conjuguées, telles que x^TAy = 0

S. Adam (Master STIM) Optimisation 7 janvier 2016 30 / 43

Principe de la méthode

- Le principe reste le même : on construit une suite de valeurs $\theta_{n+1} = \theta_n + \alpha_n d_n$ avec une valeur de α_n qui minimise $J(\theta_n + \alpha_n d_n)$
- L'idée fondamentale : on prend des directions d_n mutuellement A-conjuguées
- Pour K > 2, il en existe une infinité. On cherche d_n telle qu'elle soit une combinaison linéaire de d_{n-1} avec le gradient en θ_n : $d_n = -\nabla J(\theta_n) + \beta_n d_{n-1}$
- On choisit β_n tel que d_{n-1} et d_n soient A-conjuguées : $d_{n-1}^T A d_n = 0$
- $\bullet \ \beta_n = \frac{d_{n-1}^T A \nabla J(\theta_n)}{d_{n-1}^T A d_{n-1}}$
- d₀ est toujours la direction de l'anti grandient

Algorithme de la méthode

- **1** Déterminer θ_0
- $d_0 = -\nabla J(\theta_0)$
- 3 Tant que critère d'arrêt non satisfait

$$\bullet \quad \alpha_n = -\frac{\nabla J(\theta_n)d_n}{d_n^T A d_n}$$

$$\theta_{n+1} = \theta_n + \alpha_n d_n$$

$$\beta_n = \frac{\nabla J(\theta_{n+1})Ad_n}{d_n^T Ad_n}$$

$$\mathbf{d}_{n+1} = -\nabla J(\theta_{n+1}) + \beta_n d_n$$

3
$$n = n + 1$$

L'algorithme du gradient conjugué converge en n pas au maximum pour des formes QDP.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩ભ

Généralisation à des fonctions non quadratiques

Fletcher et Reeves ont étendu le GC aux fonctions non quadratiques.

- **1** Déterminer θ_0
- $d_0 = -\nabla J(\theta_0)$
- 3 Tant que critère d'arrêt non satisfait
 - \bullet $\alpha_n \leftarrow$ recherche linéaire du pas optimal suivant d_n
 - $\theta_{n+1} = \theta_n + \alpha_n d_n$
 - 3 $\beta_n = \frac{||\nabla J(\theta_{n+1})||^2}{||\nabla J(\theta_n)||^2}$
 - $\mathbf{d}_{n+1} = -\nabla J(\theta_{n+1}) + \beta_n d_n$
 - **6** n = n + 1
- **1** Retourner θ_n

Il existe une variante réputée plus performante (Polak et Ribière) :

$$\beta_n = \frac{(\nabla J(\theta_{n+1}) - \nabla J(\theta_n))^T \nabla J(\theta_{n+1})}{||\nabla J(\theta_n)||^2}$$

Il faut parfois redémarrer l'algorithme en repartant du gradient

S. Adam (Master STIM) Optimisation 7 janvier 2016 33 / 43

Illustration de Fletcher-Reeves sur une fonction compliquée

S. Adam (Master STIM)

Impact d'un restart

Plan du Cours

- Méthodes de descente
 - Contexte
 - Quelques rappels
 - Méthodes du premier ordre
 - Méthodes du second ordre

Méthode de Newton

Principes

• Approximation quadratique du critère (en supposant que le critère est dans C^2).

Équations

- On pose $\theta_{n+1} = \theta_n + \delta_n$
- Taylor-Young au second ordre nous donne $J(\theta_{n+1}) = J(\theta_n + \delta_n) = J(\theta_n) + \nabla J(\theta_n)^T \delta_n + \frac{1}{2} \delta_n^T H(\theta_n) \delta_n$
- Avec

$$H(\theta_n) = \frac{d^2 J}{d\theta d\theta^T}(\theta_n) = \begin{pmatrix} \frac{d^2 J}{d\theta_1^2}(\theta_n) & \frac{d^2 J}{d\theta_1 d\theta_2}(\theta_n) & \dots & \frac{d^2 J}{d\theta_1 d\theta_K}(\theta_n) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{d^2 J}{d\theta_K d\theta_1}(\theta_n) & \frac{d^2 J}{d\theta_K d\theta_2}(\theta_n) & \dots & \frac{d^2 J}{d\theta_K^2}(\theta_n) \end{pmatrix}$$

S. Adam (Master STIM) Optimisation 7 janvier 2016 37 / 43

Méthode de Newton

Résolution

$$J(\theta_{n+1}) = J(\theta_n + \delta_n) = J(\theta_n) + \nabla J(\theta_n)^T \delta_n + \frac{1}{2} \delta_n^T H(\theta_n) \delta_n$$

- Si la matrice $H(\theta)$ est définie positive, le minimum de cette quadratique en δ_n existe
- II sera atteint pour $\frac{dJ}{d\delta_n}=0$
- $\nabla J(\theta_n) + H(\theta)\delta_n = 0$
- Si $H(\theta_n)$ est inversible : $\delta_n = -H(\theta_n)^{-1} \nabla J(\theta_n)$
- Soit finalement :

$$\theta_{n+1} = \theta_n - H(\theta_n)^{-1} \nabla J(\theta_n)$$

• Remarque : en pratique, pas d'inversion : $H(\theta_n) \, \delta_n = -\nabla J(\theta_n)$

S. Adam (Master STIM) Optimisation 7 janvier 2016 38 / 43

Méthode de Newton

Remarques

- Comparaison avec le gradient :
 - ► Calculs beaucoup plus lourds à chaque itération
 - Domaine de convergence réduit (Hessien inversible)
 - Direction et pas connus simultanément
 - Convergence beaucoup plus rapide
- Si le modèle est linéaire par rapport aux paramètres et le critère quadratique : moindres carrés

Variantes de Newton

Newton avec line search

- Idée : utiliser la direction de Newton quand elle est définie, et la plus forte pente sinon
- En pratique : δ_n est la solution de $(H(\theta_n) + D) \delta_n = -\nabla J(\theta_n)$ où D est une matrice diagonale qui rend la parenthèse définie positive
- Le pas de descente est alors optimisé en mono-dimensionnel

Méthodes quasi-Newton

- Idée : Estimer $(H(\theta_n))^{-1}$ par B_n
- Davidon-Fletcher-Powell : $B_n = B_{n-1} \frac{B_{n-1}Y_nY_n^TB_{n-1}}{Y_n^TB_{n-1}Y_n} + \frac{d_{n-1}d_{n-1}^T}{d_{n-1}^TY_n}$
- Boyden-Fletcher-Goldfarb-Shanno (BFGS) : $B_n = B_{n-1} + \left(1 + \frac{Y_n^T B_{n-1} Y_n}{Y_n d_{n-1}}\right) \frac{d_{n-1} d_{n-1}^T}{Y_n^T d_{n-1}} \frac{B_{n-1} Y_n d_{n-1} + d_{n-1} Y_n^T B_{n-1}}{Y_n^T D_{n-1}}$
- Avec : $Y_n = \nabla J(\theta_n) \nabla J(\theta_{n-1})$

40 /

Comparaison des méthodes de gradient sur des formes QDP

Définitions

- Une fonction quadratique est définie par $J(\theta) = \frac{1}{2}\theta^T A\theta b^T \theta + c$
 - \blacktriangleright A est une matrice, b et θ sont des vecteurs, c est un scalaire
 - Variations suivant A

S. Adam (Master STIM) Optimisation 7 janvier 2016 41 / 43

Comparaison des méthodes de gradient sur des formes QDP

Définitions

- On s'intéresse au cas où A est symétrique (i.e. $A^T = A$) et définie positive (i.e $\theta^t A \theta > 0 \ \forall \theta \neq 0$)
- Dans ce cas $\nabla J(\theta) = A\theta b$ et minimiser J est équivalent à résoudre un système d'équations linéaires (de solution $\theta = A^{-1}b$)
- Exemple : $A = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ -8 \end{pmatrix}$, c = 0

S. Adam (Master STIM) Optimisation 7 janvier 2016 42 / 43

Comparaison des méthodes de gradient sur des formes QDP

Application du gradient

- Le gradient en θ_n vaut $\nabla J(\theta_n) = A\theta_n b$
- Le pas optimal vaut $\alpha_n = \frac{(A\theta_n b)^T (A\theta_n b)}{(A\theta_n b)^T A (A\theta_n b)}$, le Hessien vaut A
- Comparons pas fixe, pas adaptatif, pas optimal et Newton

S. Adam (Master STIM) Optimisation 7 janvier 2016 43 / 43