Best_Available Copy Int. Cl.: 860417/10 BUNDESREPUBLIK DEUTSCHLAND DEUTSCHES FR @ 1503484 Deutsche Kl.: 63 c; 34/01 B60 K17/356 Be 691.091 U.S. 3.351.147 B. 1.108 420 Offenlegungsschrift 1555 065 P 15 55 065.9 (C 41065) Aktenzeichen: 24. Dezember 1966 Anmeldetag: Offenlegungstag: 2. Juli 1970 Ausstellungspriorität: Unionspriorität 29. Dezember 1965 Datum: V. St. v. Amerika Land: Hydrostatischer Antrieb für Motorfahrzeuge Bezeichnung: Zusatz zu: Ausscheidung aus: Clark Equipment Co., Buchanan, Mich. (V. St. A.) Kuborn, Dipl.-Ing. W., Patentanwalt, 4000 Düsseldorf

@ L. Als Erfinder benannt: Williamson, William Aplin, Battle Creek, Miche (V. SEA.)

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9:1967 (BGBE I S: 960) = 7. 3. 1969

Q. 6. 70 ... 009 827/340

10/70

PATENTANWALT
DIPL-ING. WALTER KUBORN
4 DUSSELDORF
BREHMSTRASSED FERNRUF 632727
KREISSPARKASSE DUSSELDORF NR. 1835
DBUTSCHE BANK AG, DUSSELDORF
POSTSCHECK-KONTO: KOLN 115211

4 DUSSELDORF, den 23.12.1966 Dr.P/th.-Case: 206

1555065

CLARKEQUIPMENT COMPANY
Buchanan, Mich. (U.S.A.)

Hydrostatischer Antrieb für Motorfahrzeuge:

Die Erfindung bezieht sich auf einen hydrostatischen Antrieb für Motorfahrzeuge mit angetriebenen und gelenkten Radpaaren , mit hydraulischen Motoren mit veränderlichem Schluckvolumen an jedem angetriebenen Rad, mit einer hydraulischen Pumpe zur Versorgung der hydraulischen Motoren, mit einem Leitungssystem, in dem die Pumpen und die Motoren hintereinander geschaltet sind, sowie mit Vorrichtungen zur gegenseitigen Ausrichtung der Räder beim Lenken.

Ziel der Erfindung ist die Schaffung eines vereinfachten hydrostatischen Antriebes, der von einer kostensparenden Konstruktion, kompakt und so ausgebildet ist, daß das wirksame Antriebsmoment eines jeden angetriebenen Rades unabhängig vom wirksamen Antriebsmoment der anderen angetriebenen Räder ist. Insbesondere soll dabei die Drehzahl der Räder den unterschiedlichen Kurvenradien und den unterschiedlichen zurückzulegenden. Wegen angepaßt werden.

Erfindungsgemäß stehen die hydraulischen Motoren mit dem Lenkmechanismus des Fahrzeugs im Wirkverbindung Übertragungselemente übertragen die

009827/0340

Lenkbewegungen auf jeden einzelnen Motor. Dadurch wird bei einer Lenkbewegung der Räder des Fahrzeugs das Schluckvolumen der zugehörigen Motoren so geregelt, daß die kurveninneren und kurvenäusseren angetriebenen Räder je nach ihrem Lenkausschlag veränderliche Drehzahlen erhalten. Die einzelnen Motoren sind dabei hintereinander geschaltet, so daß ein Durchdrehen der Räder auf einer nicht griffigen Oberfläche dadurch vermieden wird, daß mindestens ein Rad zu jeder Zeit noch greift.

Zweckmässig wird dabei das Schluckvolumen der hydraulischen Motoren in an sich bekannter Weise durch Änderung des Winkels zwischen der Abtriebswelle und dem Motorgehäuse beeinflußt und sind die Motoren schwenkbar um die Achsschenkelbolzen des Fahrzeugs angeordnet.

Bei Geradeaus-Fahrt stehen die Motoren und die Übertragungselemente symmetrisch zur senkrechten Längsmittelebene des Fahrzeugs. Die Motoren weisen dann im wesentlichen gleiches Schluckvolumen auf. Eine Lenkbewegung veranlaßt eine derartige Anderung des Schluckvolumens, daß die Drehzahl des kurveninneren Rades ab- und die Drehzahl des kurvenäusseren Rades proportional zum Lenkausschlag zunimmt.

Die lenkbaren Räder werden zweckmässig durch eine Spurstange ausgerichtet und deren Bewegung durch Hebelarme auf die Motoren übertragen.

Die Erfindung kann beispielsweise im Motorfahrzeugen mit zwei angetriebenen und gelenkten Radpaaren und in Motorfahrzeugen mit je einem angetriebenen und gelenkten Radpaar Verwendung finden Zw.: Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt.

Fig. 1 ist eine Draufsicht auf den schematische dargestellten hydrostatischen Antrieb nach der Erfindung in einem Vierradfahrzeug zusammen mit der hydraulischen Lenkung;

Fig. 2 1st eine Teilansicht des linken hinteren Rades und hydraulischen Motors nach Fig. 1, teilweise im Schnitt:

Fig. 3 ist eine Vorderansicht eines Teils von Fig. 2, teilweise im Schnitt;

Fig. 4 ist eine Teilansicht der Anordnung nach Fig. 2, in der die gegenseitige Lage der verschiedenen Teile bei Musserstem Radausschlag nach links und rechts dargestellt ist;

Fig. 5 ist eine Draufsicht auf eine schematische Darstellung eines anderen Ausführungs-beispiels der Erfindung in einem Fahrzeug mit zwei, angetriebenen und zwei gelenkten Rädern, bei dem Antrieb und Lenkung auf verschiedene Radpaare wirken.

Bei dem schematisch in Fig. 1 dargestellten hydrostatischen Antrieb ist ein hydraulisches Lenkungssystem für ein vierradangetriebenes, vierradgelenktes Fahrzeug gezeigt, in dem die beiden Vorderräder die Nummer 12 und die rückwärtigen Räder die Nummer 14 tragen. Jedes der Räder ist drehbar an einem Achsschenkelbolzen 16 gelagert, der über einen oberen und unteren Tragarm 18 vom nicht gezeigten Rahmen des Fahrzeuges gehalten wird (Fig. 5) und an dem ein Achsrohr 20 zur Lenkung des Rades über die oberen und unteren Lenkspurhebel 22 (Fig. 7) drehbar angelenkt ist kvon denen jedoch in Fig. 2 der Deutlichkeit halber nur eine gezeigt ist. Auf der Nabe 26 eines jeden nur eine gezeigt ist. Auf der Nabe 26 eines jeden Rades ist eine Bremstrommel 24 (Fig. 2) durch einen Rades ist eine Bremstrommel 24 (Fig. 2) durch einen

Kranz von Befestigungsbolzen befestigt. Mit der Nabe 26 ist durch Bolzen 36 eine Antriebsscheibe 32 verschraubt, die gegenüber dem Antriebszapfen 30 durch einen Keil gegen Verdrehen geschützt ist. Sie ist über Rollenlager 38 auf dem Achsrohr 20 gelagert (Fig. 2). Eine Spurstange 40 ist drehbar an den Enden 42 der jeweiligen Lenkhebel 22 angelenkt. Das Lenkgestänge ist vom bekannten "Ackermann"-Typ.

Der hydraulische Motor 50 mit veränderlichem Schluckvolumen kann beispielsweise ein Axialkolbenmotor mit schräger Anlaufscheibe oder mit Taumelscheibe sein. Er ist auf dem Achsschenkelbolzen 18 drehbar gelagert und kann aus der Geradeaus-Stellung, die in den Fig. in ausgezogenen Strichen dargestellt ist, je nach dem Einschlagwinkel der Räder 24 in verschiedene Winkelstellungen bezüglich der Achse des Antriebszapfens 30 geschwenkt werden. Die maximalen Ausschläge des linken hinteren Rades und die sich daraus ergebenen Stellungen des Motors 50 sind in Fig. 2 durch die Winkel 9' und 9'' dargestellt, worauf nachstehend noch im einzelnen eingegangen wird. Ein fester Gehauseteil 52 jedes Motors 50 ist am ausseren Rand am Achsrohr 20 angesetzt, wobei sich der Achszapfen 30 in den Gehäuseteil 52 erstreckt und darin geeignet mit der Antriebswelle des Motors 50 zum Antrieb jedes Rades 14 in bekannter Weise verbunden ist.

Jeder Motor 50 umfaßt mehrere, in axialen
Bohrungen eines umlaufenden Rotorkörpers verschieblich
geführte Kolben, deren Hubvolumen in bekannter Weise
in Abhängigkeit vom der Winkelstellung des Rotorkörpers geändert werden kann. Der Rotorkörper ist im
vorliegenden Fall mit dem Motorgehäuse 54 um den Achs-

- 5 -

schenkelbolzen 16 schwenkbar; um das Hubvolumen der Motorkolben zu beeinflussen. Motoren dieses Typs werden beispielsweise von der Firma Eaton Yale & Towne Inc. hergestellt. Je ein Paar oberer und unterer Übertragungshebel 56 verbinden die innengelegenen Enden Jedes Motorgehäuses 54 mit. dem benachbarten Abschnitt der Spurstange 40 über die Gelenkbolzen 58 und 60, so daß eine Bewegung der Spurstange 40 nach rechts oder links während der Lenkung der betreffenden Räder durch die Hebel 56 auf die Motorgehäuse 54 um die Achsschenkelbolzen 16 schwenkt und dadurch einen Lekungsausgleich herbeiführt, indem die Drehzahl eines jeden Rades in Abhängigkeit von seinem Ausschlag geändert wird, wie noch im einzelnen beschrieben wird. Die Paare von Motoren 50 und Hebeln 56 an den Radpaaren 12 und 14 sind symmetrisch zur Längsmittelebene des Fahrzeugs angeordnet.

jeder Strassen- und Lastbedingung erteilt. Der Antriebsmotor der Pumpe (nicht gezeigt) kann beliebiger Art
sein, z.B. Benzin, Diesel, Gasturbine. Die Geschwindigkeit des Fahrzeugs wird durch die Drehzahlkontrolle des
Antriebsmotors geregelt, wodurch das Auslassvolumen
der Pumpe 62, die Drehzahl der Motoren 50 und somit
der Rader 12 bzw. 14 proportional zur Drehzahl des
Antriebsmotors bestimmt sind.

In Fig. 1 ist schematisch eine hydraulische Lenkung gezeigt. Sie umfaßt ein Lenkrad 80, das ein Spindelventil 82 zur Steuerung des Druckflüssigkeitsstroms betätigt: Wenn der Fahrer das Fahrzeug lenken will, wird Druckflüssigkeit von der Pumpe 84 mit festem Schluckvolumen zu dem einen oder anderen Ende der Lenkungszylinder 86 geleitet, deren Kolbenstangen an den jeweiligen Lenkhebeln 88 angreifen. Die Spindel des Ventils 82 weist drei Dichtflächen auf. Eine Leitung 90 verbindet die Kammer 87 des Ventils 82, die zwischen den beiden rechtsgelegenen Dichtflächen gebildet ist, mit entgegengesetzten Enden des an der Vorderachse sitzenden Zylinderpaars 86 über eine Zweigleitung 92 und mit den entsprechenden Enden des rückwartigen Zylinderpaars 86 über eine Leitung 94 und eine -Zweigleitung 96. Die Kammer 97 des Ventils 82, die zwischen den auf der linken Seite gelegenen Dichtflächen gebildet ist, ist mit den jeweils anderen Enden der vorderen Zylinder 86 über Leitungen 98 und 100 und mit den entsprechenden Enden der rückwartigen Zylinder 86 uber Leitungen lo2 und lo4 verbunden. Wenn das Spindelventil, wie gezeigt, seine Mittellage einrimmt, sind die Kammern 87 und 97 beide mit dem 01 sumpt 64 verbunden und die Fördermenge der wird über die Leitungen Tob und 108 an diesen Kammern

vorbei in den Sumpf zurlickgeleitet, da die Einlaßoffnung 110 breiter als die mittlere Dichtfläche ist, so daß die Pumpe 84 unter allen Bedingungen gleichmasig arbeitet. Die Fördermenge wird entweder in den Sumpf zurlickgeleitet oder den einen oder anderen Enden der vier Zylinder 86 zugeführt. Eine Lenkung nach rechts ist durch eine Drehung des Lenkrades 80 im Uhrzeigersinn zu erreichen. Dadurch wird die Spindel nach links verschoben und der Auslassdruck der Pumpe auf die linken Enden der vorderen Zylinder 86 über die Leitungen 90 und 92 gelenkt und auf die linken Enden der rückwärtigen Zylinder 86 über die Leitungen 90.94 und 96. Dadurch ergibt sich eine steuerbare Schwenkung der Räder 12 im Uhrzeigersinn und der Räder 14 entgegen dem Uhrzeigersinn. Eine Lenkung nach links wird durch eine Drehung des Lenkrades 80 entgegen dem Uhrzeigersinn erzielt. Dadurch wird die Spindel nach rechts verschoben und der Auslassdruck der Pumpe auf die rechten Enden der vorderen Zylinder 86 und der rückwärtigen Zylinder 86 über die Leitungen 98,100, 102 und 104 gelenkt. Die den flüssigkeitsbeaufschlagten entgegengesetzten Enden der Zylinder 86 werden über die Leitungen, die diese Enden mit den Leitungen 106 und 108 liber die nicht druckbeaufschlagte Kammer des Spindelventils 82 verbinden, in den Ölsumpf entleert. Whrend der Lenkung des Fahrzeuges nach rechts oder inks betätigen die Spurstangen 40 die Hebel 56 im Sinne einer derartigen Anderung des Schluckvolumens der Motorem 50; daß die Drehzahl des jeweils kurven-Kusseren Motors zu-und die Drenzahl des kurveninneren Motors abnimmt so daß sichtein Geschwindigkeitsunterschied zwischen den Radern einstellt; wie es zur Ver-

In Fig. 4 sind durch strichpunktierte Linien die Positionen der verschiedenen beweglichen Teile des Antriebs-und Lenkmechanismus dargestellt, sowie sie sich am linken Hinterrad 14 bei maximalem Lenkausschlag nach links und rechts ergeben. 0 bezeichnet den Winkel der Anlaufplatte des Motors 50, wenn das Rad 14 in Geradeaus-Stellung steht. 9' bezeichnet den Winkel der Anlaufplatte, wenn das Rad in der aussersten Rechtsstellung steht und 911, wenn das Rad in der äussersten Linksstellung steht. Die Buchstaben A, B, C und D bezeichnen die Positionen der damit gekennzeichneten Teile bei Geradeaus-Stellung, die Buchstaben A., B., C. und D. die Positionen der gleichen Teile bei ausserstem Rechtseinschlag und die Buchstaben A'', B'', C'' und D'' bei Eusserstem Linkseinschlag. Der Winkel 0' ist ersichtlich wesentlich kleiner als der Winkel 9. Dies veranlaßt das linke Rad 14 zu einer proportional schnelleren Umdrehung bei gegebenem Durchsatzvolumen des Motors 50, während der Winkel 0' wesentlich größer als der Winkel 0 ist und das Rad 14 entsprechend wesentlich langsamer läuft. Mit anderen Worten: Wenn das linke hintere Rad 14 durch den linken hinteren Zylinder 86 entgegen dem. Uhrzeigersinn für einen beliebigen Lenkungswinkel nach rechts geschwenkt wird, erhält das Motorgehäuse 54 eine Winkeländerung auf einen Wert zwischen 0 und 0/ die proportional zum Lenkausschlag des besagten Hades ist und somit eine Drehzahlzunahme des Kurvenkusseren Rades mit sich bringt die proportional zum Lenkausschlag dieses Rades ist Umgekehrt bedingt eine Hetktigung des Zylinders 85 im umgekehrten Sinn hwenkung des Rades | 4 im Uhrzeigersinn für halinks eine Anderung im Winkel des

Motorgehäuses 15 auf einen Wert zwischen 0 und 0!

die proportional zum Lenkausschlag des besagten Rades
14 nach links ist und somit ein Abfall der Drehzahl

des Rades mit sich bringt der proportional zum Lenkausschlag ist. Durch die zur senkrechten Längsmittelebene symmetrische Anordnung der Motoren 50 wird eine
entgegengesetzte Anderung der Raddrehzahl bei den
beiden Rädern Jedes Radpaares erzielt. Bei einer Rechtslenkung kommt eine Zunahme der Drehzahl des
hinteren Rades 14 mit einer Abnahme der Drehzahl des
rechten hinteren Rades 14 zusammen, so daß beide Räder
den Bodenkontakt behalten, ohne durchzurutschen. Das
Entsprechende gilt für das vordere Radpaar.

In der vorstehend beschriebenen Ausführungsform der Erfindung sind die einzelnen hydraulischen Motoren an den Rädern hintereinander geschaltet. Das Schluckvolumen dieser Motoren wird in Abhängigkeit vom Lenkausschlag geändert, um die richtigen Geschwindigkeitsunterschiede innerhalb der Radpaare während einer Kurvenfahrt herbeizuführen. Einer der weiteren Vorteile der Erfindung beruht darin. daß das Widerstandsmoment eines jeden Rades unabhängig vom Widerstandsmoment aller anderen Rader ist - Wenn bei dem gezeigten Vierradantrieb drei der Rader durchrutschen. kann das vierte Rad immer noch das volle Antriebs momenteaufiders Bodens bringers Dies istreinerFolge der Rei-henschaltung der Motoren, ob das Fahrzeug nur geradeausführt oder in irgendeiner Kurvenbewegung adrefenktes Rahrzeur Heschrieben indur exidure responsible with the comment illacio la lice con la finica di la

So ist z.B. in Fig. 5, in der der ersten Ausführungsform entsprechende Teile gleich numeriert sind,
schematisch ein Fahrzeug mit nicht lenkbaren, angetriebenen Vorderrädern 12' und nicht angetriebenen,
lenkbaren Hinterrädern 14' dargestellt. Die Lenkung
ist ähnlich der von Fig. 1, mit der Ausnahme, daß
sie nur auf die beiden Hinterräder 14' wirkt. Das
Lenkrad 80' betätigt das Spindelventil 82', welches
dem in Fig. 1 gleicht, um die Druckflüssigkeit von der
Pumpe 84' über die Leitungen 95', 96' öund 102' den
rückwärtigen Zylindern 86' zuzuführen. Die Räder 14'
sind durch eine Spurstange 40' verbunden, um wie in
Fig. 4 verschiedene Lenkausschläge bei Kurvenfahrt
herbeizuführen.

An den nicht lenkbaren Vorderrädern 12! sitzen hydraulische Motoren 50' mit veränderlichem Schluckvolumen, die wie in Fig. 1 an Bolzen 16' schwenkbar gelagert sind. Die Bolzen 16' der Fig. 5 erlauben natürlich keine Schwenkbewegung der Räder 121, sondern nur des Motorgehäuses 541. Die Pumpe 621 liefert Druckflüssigkeit über die Leitungen 681, 70',72' und 120 zu den hintereinander geschalteten Motoren 50!. Übertragungshebel 56 verbinden die jeweils inneren Enden der Motorgehäuse 54' drehbar mit einem Steuerhebel 122 zur Regelung des Schluckvolumens der Motoren 50 der in der Mitte an einem festen Gelenkbolzen 124 gelagert ist. Eine Verbindungsstange: 126 ist in der Nähe des Angriffspunktes des Linken Hebels 56 an dem Steuerhebels 122 ange-Ienkt und an threm anderen Ende ar dem einen Arms eines-Winkelhebels 128 den über den Bolzen 190 am Fahrzeug gelagertrist und ansdem ein Hebet 192 angelenkt ist, der befet # ar der Spurstanger 4c in der

Nihe des rechten Spurstangengelenks 22 angreift. Im Betrieb bei Geradeaus-Stellung befinden: sich die Motoren 50 aund ihre Verbindungen mit dem Hebel 122 in symmetrischer Stellung zur Mitte, wie in Fig. 5 dargestellt, und die Gestänge 126 und 132 sowie der Winkelhebel 128 stehen, wie durch die ausgezogenen Linien dargestellt. Wenn der Fahrer nach rechts zu lenken winscht, wird das Spindelventil 82 so betätigt. daß ees Druckflüssigkeit durch die Leitungen 941 und 96 schickt und dadurch die Lenkungszylinder 86 nach rechts ausfährt, um die Rader in eine Stellung für eine Rechtslenkung zu bringen, wie sie in strichpunktierten Linien dargestellt ist. Dabei erzeugt die Spurstange 40 Lunterschiedliche Lenkausschläge der beiden Hinter rader in der bekannten Art. Die sich ergebende Linksbewegung der Spurstange 40 verschiebt den Hebel 134 nach links und dreht den Winkelhebel 128 im Uhrzeigersinn, wodurch das Gestänge 126 nach vorne gedrückt und der Steuerhebel 122 über den Lagerbolzen 124 in eine Stellung gedreht wird, die durch seine strichpunktierte neue Mittellinie dargestellt ist. Die Drehung des Steuerhebels 122 wird über die Hebel 56' auf die jeweiligen Motoren 50 übertragen und vermindert das Schluckvolumen des Motors und vergrößert. der Schluckvolumen des rechten Motors. Diese Bewegung der schwenkbaren Gehäuseteile 54 der Motoren verursacht eine Zunahme der Drehzahlides linken Rades 12! und eine Abnahmerder Drehzahl des rechten Rades 12. Das die Spurstange for mitt dem Motoren 50 verbindende (lestlinger multimaturisch geometrisch so ausgebildet das die Motorgensuse um zu dene Lenkausschlägen de

009827/0340

Hinterräder proportionale Beträge geschwenkt werden, so daß die Drehzahländerung der Räder 12 gerade so ist, daß eine Kurvenfahrt ohne Durchrutschen zustande kommt.

Wenn der Fahrer eine Linkskurve zurückzulegen wünscht, tritt das umgekehrte des vorstehend
beschriebenen ein. Der linke Motor 50' vermindert die
Drehzahl des linken Rades durch sein vergrößertes
Schluckvolumen, und der rechte Motor 50' vergrößert
die Drehzahl des rechten Rades 12' durch sein vermindertes Schluckvolumen.

Obwohl vorst-ehend nur zwei Ausführungsformen der Erfindung beschrieben sind, kann ein
Fachmann manche weiteren Abwandlungen in Form und
Aufbau der ERfindung entwickeln, ohne den Erfindungsgedanken zu verlassen.

Patentansprüche.

1. Hydrostatischer Antrieb für Motorfahrzeuge mit angetriebenen und gelenkten Radpaaren, mit hydraulischen Motoren mit veränderlichem Schluckvolumen an jedem angetriebenen Rad, mit einer hydraulischen Pumpe zur Versorgung der hydraulischen Motoren, mit einem Leitungssystem, in dem die Pumpe und die Motoren hintereinander geschaltet sind, sowie mit Vorrichtungen zur gegenseitigen Ausrichtung der Räder beim Lenken. dadurch gekennzeichnet, daß die Bewegung der Vorrichtungen zur Ausrichtung der Räder über Übertragungselemente auf jeden einzelnen Motor übertragen wird und dadurch bei einer Lenkbewegung der Räder des Fahrzeuges das Schluckvolumen der zugehörigen Motoren so geregelt wird, daß die kurveninneren und kurvenäusseren angetriebenen Räder je nach ihrem Lenkausschlag veränderliche Drehzahlen erhalten.

participated in the first out of the suppliers of the state of the sta

- 2. Hydrostatischer Antrieb nach Anspruch 1, dadurch gekennzeichnet, daß das Schluckvolumen der hydraulischen Motoren (50) in an sich bekannter Weise durch Änderung des Winkels zwischen der Abtriebswelle (30) und dem Motorgehäuse (54) beeinflußt wird und daß die hydraulischen Motoren (50) zur Änderung des Schluckvolumens durch die Lenkbewegung der Räder schwenkbar um die Achsschenkelbolzen (16) angeordnet sind.
- J. Hydrostatischer Antrieb nach Anspruch 1
 oder 2; dadurch gekennzeichnet, daß die hydraulischen
 Motoren (50) und die Übertragungselemente (56) bei
 Geradeaus-Fahrt symmetrisch zur senkrechten Längsmittelebene des Fahrzeugs stehen, wobei die hydrau-

lischen Motoren im wesentlichen untereinander gleiches Schluckvolumen aufweisen, und daß eine Lenkbewegung der Räder in der einen oder anderen Richtung die Vorrichtungen zur Ausrichtung der Räder und die Übertragungselemente zu einer derartigen Änderung des Schluckvolumens der Motoren veranlaßt, daß proportional zum Lenkausschlag die Drehzahl des kurveninneren Rades ab- und die Drehzahl des kurvenäusseren Rades zunimmt.

- 4. Hydrostatischer Antrieb nach einem der Ansprüche 1 bis 3, dadurch gekennézeichnet, daß die Vorrichtung zur Ausrichtung der Räder eine Spurstange (40) und einen daran und an jedem lenkbaren Rad befestigten Spurhebel (22) umfaßt und die Übertragungselemente aus drehbar an einem schwenkbaren Teil (54) jedes hydraulischen Motors (50) und in der Nähe der Enden der Spurstange (40) an dieser angelenkten Hebelarmen (56) bestehen.
- 5. Hydrostatischer Antrieb nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Fahrzeug zwei angetriebene und gelenkte Radpaare aufweist, deren Räder von je einem hydraulischen Motor (50) veränderlichen Schluckvolumens angetrieben wird, wobei die Pumpe (62) und sämtliche Motoren (50) hintereinander geschaltet sind.
- 6. Hydrostatischer Antrieb nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Motorfahrzeug ein Paar lenkbarer, nicht angetriebener Räder (14',14') und ein Paar angetriebener; nicht lenkbarer Räder (12',12') aufweist, wobei zwischen diesen Radpaaren eine Übertragungsvorrichtung (128,130,130) die Lenkbewegung auf die Motoren (50') überträgt.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

■ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☑ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

und so eine Änderung des Schluckvolumens der Motoren (50°) der angetriebenen, nicht lenkbaren Räder bei einer Lenkbewegung der lenkbaren, nicht angetriebenen Räder herbeiführt.

7. Hydrostatischer Antrieb nach Anspruch 6, dadurch gekennzeichnet, daß die Übertragungsvor-richtung ein die Motoren verbindendes Gestänge (56', 122, 124) zur Regelung des Schluckvolumens und ein Verbindungsgestänge (126,128,130,132) dieses Gestänges zu der die lenkbaren Räder (14', 14') ausrichtenden Spurstange (40') umfaßt.

0.0.9827/0.3.4.0

Clark Equipment Company Buchanan / Michigan, U.S.A.

009827/0340

Clark Equipment Company Buchanan / Michigan, U.S.A.

009827/0340

Clark Equipment Company Buchanan | Michigan, U.S.A. 63c 34-01

AT: 24.12.1966 OT: 02.07.1970

1555065

-009827/0340