Procesos y Planificación

PROCESOS

Un programa en ejecución

H. M. Deitel.

El concepto central en cualquier sistema operativo es el proceso: una abstracción de un programa en ejecución.

Andrew S. Tanenbaum.

Bloque de Control de Proceso (BCP)

- Es una Estructura de datos, que permite al Sistema Operativo manejar la información relacionada con cada uno de los procesos. Esto incluye:
 - ✓ Estado Actual del Proceso.
 - ✓ Identificador del Proceso.
 - ✓ Un apuntador hacia el padre del proceso.
 - ✓ Apuntadores a los hijos del proceso.
 - ✓ Prioridad del Proceso.
 - ✓ Información de Administración de memoria del proceso.
 - ✓ Apuntadores a los recursos asignados al proceso.
 - ✓ Un área para salvaguarda de los registros relacionados con la ejecución del proceso.
 - ✓ El Procesador en que se está ejecutando el proceso en un sistema de procesadores múltiples).

Estados de un Proceso

Operaciones sobre Procesos

- Crear un proceso.
- Destruir un proceso.
- Cambiar la prioridad de un proceso.
- Bloquear un proceso.
- Despachar un proceso.
- Permitir la comunicación entre procesos.
- Suspender un proceso.
- Reanudar un proceso.

Planificación de Procesos.

- Cuando son ejecutables varios procesos, el sistema operativo debe decidir cuál conviene ejecutar si el CPU se encuentra disponible
- El elemento del sistema quien toma esta decisión se llama PLANIFICADOR (Scheduling) y el algoritmo del cual hace uso se denomina ALGORITMO PLANIFICADOR.

Tipos de Planificación

No Apropiativa:

- Una vez que el CPU ha sido asignado a un proceso, ya no se le puede arrebatar.
- Ejemplos:
 - ✓ FIFO
 - ✓ Primer trabajo más corto

Tipos de Planificación

Apropiativa:

- Cuando a un proceso, el sistema operativo le puede quitar el CPU antes asignado.
- Ejemplos:
 - ✓ Round Robin,
 - ✓ Prioridades,
 - ✓ Tiempo restante más corto,
 - ✓ Colas múltiples.

Objetivos de la Planificación

- 1. Los procesos deben tratarse de la misma forma.
- 2. Evitar el aplazamiento indefinido.
- 3. Atender la mayor cantidad de procesos por unidad de tiempo.
- 4. Mantener ocupados los recursos del sistema.
- 5. Lograr un equilibrio entre la respuesta y el uso de los recursos.
- 6. Una tarea debe ejecutarse aproximadamente en el mismo tiempo, cada vez que se ejecute.

Criterios de Planificación

- 1. Si el proceso utiliza exhaustivamente el CPU (CPU Bound) o los diversos dispositivos (I/O Bound).
- 2. Importancia del proceso. Tipo de procesamiento.
- 3. Cuánto tiempo real de ejecución lleva un proceso y cuánto tiempo estimado necesita para terminar.
- 4. Frecuencia con la que el proceso utiliza la memoria principal.

Políticas de Planificación

FIFO

- Los procesos son atendidos en el orden en que entraron a la lista de Ready. El proceso tiene asignado el CPU hasta que termina su ejecución.
 - ✓ No Apropiativa.
 - ✓ Generalmente se utiliza combinando con otros esquemas.

Primer Trabajo más corto (SJF)

- Se ejecuta primero el proceso en espera que tiene el próximo menor tiempo estimado de ejecución, hasta terminar.
 - ✓ No Apropiativa
 - ✓ Favorece a los trabajos cortos a expensa de los largos.
 - ✓ La prioridad del proceso es inversamente proporcional al tiempo de ejecución.

Políticas de Planificación:

ROUND ROBIN

- Consiste en asignar el CPU al primer proceso de la lista de Ready durante un tiempo de ejecución (Quantum), el cual es igual para todos los procesos.
 - ✓ Variación del FIFO
 - ✓ Apropiativa.
 - ✓ El quantum puede variar: Carga del sistema, prioridad de los procesos.

FIFO

Tiempo restante más corto (SRT)

- Una vez que un proceso comienza su ejecución, puede ser desplazado por un nuevo con menor tiempo de ejecución estimado.
- ✓ Apropiativa.
- ✓ Implica mayor actividad que el Primer Trabajo Más Corto (SJF).

Prioridades

- A cada proceso se le asigna una prioridad. Se le permite la ejecución al trabajo que tenga la mayor prioridad.
- Las prioridades pueden ser:
 - ✓ Externas: Definidas por el usuario.
 - ✓ Internas: Determinadas por el sistema.
- Pueden además clasificarse en:
 - ✓ Estáticas: Cuando los procesos mantienen su prioridad constante durante su existencia en el sistema
 - ✓ Dinámicas: Cuando las prioridades sufren cambios.

Colas Múltiples

- El movimiento de los procesos se determina a través de varias colas de diferentes niveles.
- Un proceso nuevo entra a la red de colas, al final de la primera cola.
 Se desplaza por FIFO.
- Cuando a un proceso se le termina su quantum de tiempo, se coloca al final de la cola del siguiente nivel.
- El quantum asignado a un proceso cuando pasa a una cola de nivel inferior alcanza un valor mayor.
- Un proceso en cierta cola no puede ejecutarse a menos que estén vacías las colas de los niveles más altos.

Colas Múltiples

Evaluación de los Algoritmos de Planificación

Elementos de Medida:

 Tiempo de respuesta (T): Tiempo durante el cual el proceso está presente en el sistema

T= tiempo finalización - tiempo de llegada

- Tiempo de ejecución en el CPU (t)
- Tiempo desperdiciado(W) : W = T t
- Tasa de penalización (P) : P = T/t

Evaluación del Algoritmo F.I.F.O. (P.E.P.S.)

L: listo
U: instante
E: ejecución

L				E														
U		11		12		13		14			16			18		19		20
Ε	D		D		D		D		D	Е		Е	Е		Е		Е	

Proceso	Tiempo		Tiempo	Tiempo			
	llegada	t	Arranque	Finalización	Т	W	Р
А	0	3	0	3	3	0	1.0
В	1	5	3	8	7	2	1.4
С	3	2	8	10	7	5	3.5
D	9	5	10	15	6	1	1.2
E	12	5	15	20	8	3	1.6

Promedio: 6.2 2.2 1.74

Evaluación del Algoritmo Primer Trabajo más corto (S.J.F.)

L: listo

U: instante

E: ejecución

L				Ε																
U		11		12		13		14		15		16		17		18		19		20
E	D		D		D		D		D		Ε		Ε		Ε		Ε		Ε	

Proceso	Tiempo		Tiempo	Tiempo			
	llegada	t	Arranque	Finalización	Т	W	Р
Α	0	3	0	3	3	0	1.0
В	1	5	5	10	9	4	1.8
С	3	2	3	5	2	0	1.0
D	9	5	10	15	6	1	1.2
E	12	5	15	20	8	3	1.6

Promedio: 5.6

1.6

1.32

Evaluación del Algoritmo Tiempo restante más corto (S.R.T.)

L: listo

U: instante

E: ejecución

Proceso			Tiempo Arranque	Tiempo Finalización	Т	W	Р	
Α	0	2	0	2	2	0	1.0	
В	1	5	2	9	8	3	1.6	
С	3	2	3	5	2	0	1.0	
D	9	4	9	15	6	2	1.5	
Е	10	2	10	12	2	0	1.0	

Promedio: 4 1 1.22

Evaluación del Algoritmo Prioridades

15

16

17

Promedio: 6.6

18

19

4.3

20

1.7

14

11

Menor numero,

mayor prioridad

U

E

12

13

Proceso	Tiempo Ilegada	t	Prioridad	Tiempo Arranque	Tiempo Finalización	Т	w	Р
Α	0	3	4	0	10	10	7	3.3
В	1	5	2	1	8	7	2	1.4
С	3	2	0	3	5	2	0	1.0
D	9	5	4	10	15	6	1	1.2
Е	12	5	4	15	20	8	3	1.6

Evaluación del Algoritmo: Round Robin

L: listo

U: instante

E: ejecución

Proceso	Tiempo Ilegada	t	Tiempo Arrangue	Tiempo Finalización	Т	W	Р
Α	0	3	0	3	3	0	1.0
В	1	5	3	10	9	4	1.8
С	3	2	7	9	6	4	3.0
D	9	5	10	19	10	5	2.0
Е	12	5	14	20	8	3	1.6

Promedio: 7.2

3.2

1.88