HEALTHCARE TRENDS ANALYSIS PROJECT

- SRIJA BASAK

OVERVIEW OF THE GIVEN DATASET

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 55500 entries, 0 to 55499
Data columns (total 20 columns):
                        Non-Null Count
     Column
                                       Dtype
                        55500 non-null object
     Name
     Age
                        55500 non-null int64
     Gender
                        55500 non-null object
     Blood Type
                        55500 non-null object
    Medical Condition
                        55500 non-null object
     Date of Admission
                        55500 non-null datetime64[ns]
     Doctor
                        55500 non-null object
     Hospital
                        55500 non-null object
     Insurance Provider 55500 non-null object
    Billing Amount
                        55500 non-null float64
 10 Room Number
                        55500 non-null int64
    Admission Type
                        55500 non-null object
    Discharge Date
                        55500 non-null datetime64[ns]
 13 Medication
                        55500 non-null
                                       object
 14 Test Results
                        55500 non-null object
 15 Days in Hospital
                        55500 non-null timedelta64[ns]
 16 Admission Year
                        55500 non-null int32
 17 Admission Month
                        55500 non-null int32
 18 Admission Day
                        55500 non-null int32
 19 Admission Weekday
                        55500 non-null int32
dtypes: datetime64[ns](2), float64(1), int32(4), int64(2), object(10), timedelta64[ns](1)
memory usage: 7.6+ MB
```

DESCRIPTIVE STATISTICS OF EACH COLUMN OF THE DATASET

	Age	Date of Admission	Billing Amount	Room Number	Discharge Date	Days in Hospital	Admission Year	Admission Month	Admission Day	Admission Weekday
ount	55500.000000	55500	55500.000000	55500.000000	55500	55500	55500.000000	55500.00000	55500.000000	55500.000000
mean	51.539459	2021-11-01 01:02:22.443243008	25539.316097	301.134829	2021-11-16 13:15:20.821621504	15 days 12:12:58.378378378	2021.334631	6.52845	15.679 <mark>0</mark> 81	2.998955
min	13.000000	2019-05-08 00:00:00	-2008.492140	101.000000	2019-05-09 00:00:00	1 days 00:00:00	2019.000000	1.00000	1.000000	0.000000
25%	35.000000	2020-07-28 00:00:00	13241.224655	202.000000	2020-08-12 00:00:00	8 days 00:00:00	2020.000000	4.00000	8.000000	1.000000
50%	52.000000	2021-11-01 00:00:00	25538.069380	302.000000	2021-11-17 00:00:00	15 days 00:00:00	2021.000000	7.00000	16.000000	3.000000
75%	68.000000	2023-02-03 00:00:00	37820.508432	401.000000	2023-02-18 00:00:00	23 days 00:00:00	2023.000000	9.25000	23.000000	5.000000
max	89.000000	2024-05-07 00:00:00	52764.276740	500.000000	2024-06-06 00:00:00	30 days 00:00:00	2024.000000	12.00000	31.000000	6.000000
std	19.602454	NaN	14211.454431	115.243069	NaN	8 days 15:49:49.456115772	1.497310	3.43689	8.824412	1.997530

VALUE-COUNTS OF CATEGORICAL COLUMNS

```
df['Gender'].value_counts()
Gender
Male
          27774
Female
          27726
Name: count, dtype: int64
df['Admission Type'].value_counts()
Admission Type
Elective
             18655
Urgent
             18576
Emergency
             18269
Name: count, dtype: int64
```

```
df['Blood Type'].value_counts()
Blood Type
       6969
       6956
       6947
       6945
       6945
       6944
       6917
       6877
Name: count, dtype: int64
df['Test Results'].value_counts()
Test Results
Abnormal
                18627
                18517
Normal
Inconclusive
                18356
Name: count, dtype: int64
```

PRINTING THE NAME OF THE DOCTOR HAVING MOST NO. OF PATIENTS

Printing the name of the doctor having most no of patients

```
[ ] #Doctor having most no of patients
    doctor_max_admission=df['Doctor'].value_counts().idxmax()
    print("Doctor with most no of patients -" ,doctor_max_admission)

Doctor with most no of patients - Michael Smith
```

Double-click (or enter) to edit

```
[ ] df1=df.copy()
```

PRINTING THE DETAILS OF THE OLDEST PATIENT IN THE DATASET

```
[ ] df1=df.copy()
```

Printing the details of the oldest patient in the dataset

```
[ ] #oldest patient in the dataset, age, medical condition, admission type and test result oldest_patient_age=df1['Age']=max() oldest_patient_name=df1[df['Age']==oldest_patient_name].iloc[0].upper() print(f"Oldest patient in the dataset: {oldest_patient_name}\nAge: {oldest_patient_age}") med_oldest_patient_name=df1[df['Age']==oldest_patient_age]['Medical Condition'].iloc[0] print(f"Medical Condition: {med_oldest_patient_name}") admission_oldest_patient_name=df1[df['Age']==oldest_patient_age]['Admission Type'].iloc[0] print(f"Admission Type: {admission_oldest_patient_name}") test_oldest_patient_name=df1[df['Age']==oldest_patient_age]['Test Results'].iloc[0] print(f"Test Result: {test_oldest_patient_name}")
```

Oldest patient in the dataset: DAVID NEWTON
Age: 89
Medical Condition: Arthritis
Admission Type: Elective
Test Result: Inconclusive

PRINTING THE DETAILS OF THE YOUNGEST PATIENT IN THE DATASET

Printing the details of the youngest patient in the dataset

```
#youngest patient in the dataset, age, medical condition, admission type and test result
youngest_patient_age=df1['Age'].min()
youngest_patient_name=df1[df['Age']==youngest_patient_age]['Name'].iloc[0].upper()
print(f"Youngest patient in the dataset: {youngest_patient_name}\nAge: {youngest_patient_age}")
med_youngest_patient_name=df1[df['Age']==youngest_patient_age]['Medical Condition'].iloc[0]
print(f"Medical Condition: {med_youngest_patient_name}")
admission_youngest_patient_name=df1[df['Age']==youngest_patient_age]['Admission Type'].iloc[0]
print(f"Admission Type: {admission_youngest_patient_name}")
test_youngest_patient_name=df1[df['Age']==youngest_patient_age]['Test Results'].iloc[0]
print(f"Test Result: {test_youngest_patient_name}")
```

Youngest patient in the dataset: JAMES BASS PHD
Age: 13
Medical Condition: Asthma
Admission Type: Emergency
Test Result: Inconclusive

MONTHLY ADMISSIONS YEARWISE

Monthly admissions yearwise

[]	monthly_admission	s=df.gr	oupby([Admiss	ion Ye	ar','Ad	dmissio
	monthly_admission monthly_admission			/_admis	sions.	pivot(index='
₹	Admission Year	2019	2020	2021	2022	2023	2024
	Admission Month						
	1	NaN	950.0	933.0	969.0	931.0	909.0
	2	NaN	881.0	837.0	777.0	880.0	880.0
	3	NaN	937.0	969.0	938.0	922.0	906.0
	4	NaN	924.0	870.0	880.0	898.0	946.0
	5	686.0	978.0	903.0	892.0	927.0	213.0
	6	907.0	935.0	926.0	970.0	961.0	NaN
	7	957.0	1007.0	978.0	951.0	919.0	NaN
	8	1001.0	1014.0	894.0	955.0	968.0	NaN
	9	936.0	904.0	867.0	919.0	920.0	NaN
	10	1013.0	962.0	893.0	912.0	898.0	NaN
	11	959.0	904.0	908.0	896.0	881.0	NaN
	12	928.0	889.0	953.0	958.0	921.0	NaN

DATA VISUALIZATIONS USING MATPLOTLIB, SEABORN AND PLOTLY

TRENDS OF MONTHLY ADMISSIONS YEARWISE

As per the given data, the admissions have been the least in May 2024 and the admissions have been the most in October 2019

Overview of medical conditions

Arthritis and Diabetes have the most occurence (16.8%)

0

BAR GRAPH FOR AVERAGE AGE FOR EACH ADMISSION TYPE

BOX PLOT REPRESENTING STATISTICS OF MEDICAL CONDITIONS AS PER GENDER

Box Plot for medical conditions as per gender

PIE CHART DEPICTING PERCENTAGE OF PEOPLE HAVING EACH BLOOD TYPE

Overview of Blood Type

CATEGORICAL PLOT DEPICTING BILLING AMOUNT FOR EACH ADMISSION TYPE AS PER GENDER

BOX PLOT DEPICTING STATISTICS OF MEDICAL CONDITIONS IN PATIENTS

BOX PLOT DEPICTING STATISTICS OF BLOOD TYPE IN PATIENTS

BAR GRAPH DEPICTING PATIENT COUNT AS FOR EACH INSURANCE PROVIDER

CATEGORICAL PLOT FOR PATIENT COUNT AS PER ADMISSION TYPE FOR EACH MEDICAL CONDITION

DISTRIBUTION OF TEST RESULTS AS PER MEDICAL CONDITION

STACKED BAR PLOT DEPICTING DISTRIBUTION OF MEDICAL CONDITIONS AS PER GENDER

STACKED BAR PLOT DEPICTING DISTRIBUTION OF TEST RESULTS PER ADMISSION TYPES

