

Story Ending Generation with Incremental Encoding and Commonsense Knowledge

Jian Guan* , Yansen Wang*, Minlie Huang†

Dept. of Computer Science & Technology, Tsinghua University, Beijing 100084, China Institute for Artificial IntelligenceTsinghua University (THUAI), China Beijing National Research Center for Information Science and Technology, China guanj15@mails.tsinghua.edu.cn; ys-wang15@mails.tsinghua.edu.cn; aihuang@tsinghua.edu.cn

Story Ending Generation Tasks

- Given a story context
- Conclude the story and complete the plot

Context: Today is Halloween .

Jack is so excited to go trick or treating tonight.

He is going to dress up like a monster.

The costume is real scary.

Ending: He hopes to get a lot of candy.

Story Ending Generation Tasks

Generating a good ending requires:

- Representing the **context clues** which contain key information for planning a reasonable ending
- Using implicit knowledge (e.g., commonsense knowledge) to facilitate understanding of the story and better predict what will happen next.

Story Ending Generation Tasks

Context: Today is **Halloween**.

Jack is so excited to go **trick or treating** tonight.

He is going to dress up like a monster.

The **costume** is real **scary**.

Ending: He hopes to get a lot of candy.

Implicit Knowledge

Context Clues

Task Overview

• Given a story context consisting of a sentence sequence:

$$X = \{X_1, X_2, X_2, \dots, X_K\}, \text{ where } X_i = x_1^{(i)} x_2^{(i)} \dots x_{l_i}^{(i)}$$

• The model should generate a one-sentence ending:

$$Y = y_1 y_2 \dots y_l$$

• Formally:

$$Y^* = \underset{Y}{argmax} \mathcal{P}(Y|X).$$

Background

Sequence to Sequence:

• Encoder:

$$\mathbf{h}_t = \mathbf{LSTM}(\mathbf{h}_{t-1}, \boldsymbol{e}(x_t)),$$

• Decoder:

$$\mathcal{P}(y_t|y_{< t}, X) = \mathbf{softmax}(\mathbf{W}_0 \mathbf{s}_t + \mathbf{b}_0),$$

$$\mathbf{s}_t = \mathbf{LSTM}(\mathbf{s}_{t-1}, \mathbf{e}(y_{t-1}), \mathbf{c}_{t-1}),$$

 \mathbf{c}_{t-1} in the decoder is an attentive read of the encoder states.

$$\mathbf{c}_{t-1} = \sum_{i=1}^{m} \alpha_{(t-1)i} \mathbf{h}_i,$$

Model Overview

Encode the story context

- Concatenating the K sentences to a long sentence and encoding it with an LSTM
- Using a hierarchical LSTM with hierarchical attention (Yang et al. 2016)
- Incremental Encoding

Incremental Encoding

- Effective to represent the context clues which may capture the key logic information.
- When encoding the current sentence X_i , it obtains a context vector which is **an attentive read of the preceding sentence** X_{i-1} :

$$\mathbf{h}_{j}^{(i)} = \mathbf{LSTM}(\mathbf{h}_{j-1}^{(i)}, e(x_{j}^{(i)}), \mathbf{c}_{\mathbf{l}j}^{(i)}), i \ge 2.$$

• During the decoding process, the decoder obtains a context vector from the last sentence X_K in the context to utilize the context clues:

$$\mathbf{s}_t = \mathbf{LSTM}(\mathbf{s}_{t-1}, \boldsymbol{e}(y_{t-1}), \mathbf{c}_{\mathbf{l}t}),$$

$$\mathcal{P}(y_t|y_{< t}, X) = \mathbf{softmax}(\mathbf{W}_0 \boldsymbol{s}_t + \mathbf{b}_0),$$

Context vector

- Capture the relationship between words (or states) in the current sentence and those in the preceding sentence
- Contains implicit knowledge that is beyond the text
- Formally: $\mathbf{c}_{\mathbf{l}j}^{(i)} = \mathbf{W}_{\mathbf{l}}([\mathbf{c}_{\mathbf{h}j}^{(i)}; \mathbf{c}_{\mathbf{x}j}^{(i)}]) + \mathbf{b}_{\mathbf{l}},$
 - $\mathbf{c}_{hj}^{(i)}$ is called state context vector
 - $\mathbf{c}_{\mathbf{x}j}^{(i)}$ is called knowledge context vector

Context vector

state context vector

$$\mathbf{c}_{hj}^{(i)} = \sum_{k=1}^{l_{i-1}} \alpha_{h_k,j}^{(i)} \mathbf{h}_k^{(i-1)},$$

$$\alpha_{h_k,j}^{(i)} = \frac{e^{\beta_{h_k,j}^{(i)}}}{\sum_{m=1}^{l_{i-1}} e^{\beta_{h_m,j}^{(i)}}},$$

$$\beta_{h_k,j}^{(i)} = \mathbf{h}_{j-1}^{(i)T} \mathbf{W}_{\mathbf{s}} \mathbf{h}_k^{(i-1)},$$

knowledge context vector

$$\mathbf{c}_{\mathbf{x}j}^{(i)} = \sum_{k=1}^{l_{i-1}} \alpha_{x_k,j}^{(i)} \mathbf{g}(x_k^{(i-1)}),$$

$$\alpha_{x_k,j}^{(i)} = \frac{e^{\beta_{x_k,j}^{(i)}}}{\sum_{m=1}^{l_{i-1}} e^{\beta_{x_m,j}^{(i)}}},$$

$$\beta_{x_k,j}^{(i)} = \mathbf{h}_{i-1}^{(i)T} \mathbf{W}_{\mathbf{k}} \mathbf{g}(x_k^{(i-1)}),$$

Knowledge graph retrieval

- ConceptNet
 - A commonsense semantic network
 - Consists of triples R = (h, r, t) meaning that head concept h has the relation r with tail concept t
 - e.g. (costume, /R/MannerOf, dress)
 - Each word in a sentence is used as a query to **retrieve a one-hop graph** from ConceptNet.

Knowledge graph representation

- The knowledge graph for a word extends (encodes) its meaning by **representing the graph** from neighboring concepts and relations.
 - Graph Attention (Velikovi et al. 2018; Zhou et al. 2018)
 - Contextual attention (Mihaylov and Frank 2018)

Knowledge graph representation

Graph Attention

$$\mathbf{g}(x) = \sum_{i=1}^{N_x} \alpha_{R_i} [\mathbf{h}_i; \mathbf{t}_i],$$

$$\alpha_{R_i} = \frac{e^{\beta_{R_i}}}{\sum_{j=1}^{N_x} e^{\beta_{R_j}}},$$

$$\beta_{R_i} = (\mathbf{W_r} \mathbf{r}_i)^{\mathrm{T}} \tanh(\mathbf{W_h} \mathbf{h}_i + \mathbf{W_t} \mathbf{t}_i),$$

Contextual Attention

$$\mathbf{g}(x) = \sum_{i=1}^{N_x} \alpha_{R_i} \mathbf{M}_{R_i},$$

$$\mathbf{M}_{R_i} = BiGRU(\mathbf{h}_i, \mathbf{r}_i, \mathbf{t}_i),$$

$$\alpha_{R_i} = \frac{e^{\beta_{R_i}}}{\sum_{j=1}^{N_x} e^{\beta_{R_j}}},$$

$$\beta_{R_i} = \mathbf{h}_{(x)}^{\mathrm{T}} \mathbf{W}_{\mathbf{c}} \mathbf{M}_{R_i},$$

Loss Function

• To better model the chronological order and causal relationship between adjacent sentences, we **impose supervision on both the encoding network and decoding network:**

$$\Phi = \Phi_{en} + \Phi_{de}$$

$$\Phi_{en} = \sum_{i=2}^{K} \sum_{j=1}^{l_i} -\log \mathcal{P}(x_j^{(i)} = \tilde{x}_j^{(i)} | x_{< j}^{(i)}, X_{< i}),$$

$$\Phi_{de} = \sum_{t} -\log \mathcal{P}(y_t = \tilde{y}_t | y_{< t}, X),$$

• The parameters of the LSTMs are **shared** by the encoder and the decoder: **data augmentation.**

Resources

- ROCStories corpus
 - Each story consists of **five sentences**, our task is to generate the ending given the first 4 sentence
 - 90,000 for training and 8,162 for evaluation
 - Average length of $X_1/X_2/X_3/X_4/Y$ is 8.9/9.9/10.1/10.0/10.5
- Concept Net
 - Only retrieve the relations whose head entity and tail entity are **noun or verb**, meanwhile **both occurring in SCT**.
 - Retain at most 10 triples if there are too many for a word.
 - Average number of triples for each query word is 3.4

Evaluation

- Automatic Evaluation
 - Perplexity, BLEU-1 and BLEU-2
 - How well a model fits the data
- Manual Evaluation
 - Grammar (Gram.)
 - Score 2 : without any grammar errors
 - Score 1 : with a few errors but still understandable
 - Score 0 : with severe errors and incomprehensible
 - Logicality (Logic.)
 - Score 2 : totally reasonable endings
 - Score 1 : relevant but with some discrepancy
 - Score 0 : totally incompatible endings

Evaluation result

Model	PPL	BLEU-1	BLEU-2	Gram.	Logic.
Seq2Seq	18.97	0.1864	0.0090	1.74	0.70
HLSTM	17.26	0.2459	0.0242	1.57	0.84
HLSTM+Copy	19.93	0.2469	0.0248	1.66	0.90
HLSTM+MSA(GA)	15.75	0.2588	0.0253	1.70	1.06
HLSTM+MSA(CA)	12.53	0.2514	0.0271	1.72	1.02
IE (ours)	11.04	0.2514	0.0263	1.84	1.10
IE+MSA(GA) (ours)	9.72	0.2566	0.0284	1.68	1.26
IE+MSA(CA) (ours)	8.79	0.2682	0.0327	1.66	1.24

Table 1: Automatic and manual evaluation results.

Context:

family.

Case study

Table 3: Generated endings from different models.
Bold words denote the key entity and event in the story. Improper words in ending is in italic and proper words are underlined.

Golden Ending:	She wants everything to be just right for when they eat. Martha perfects everything and puts her dinner into the oven. Martha goes to lay down for a quick nap. She oversleeps and runs into the kitchen to take out her burnt dinner.
Seq2Seq:	She was so happy to have a new cake.
HLSTM:	Her family <i>and her family</i> are very happy with her food .
HLSTM+	Martha is happy to be able to eat her fam-
Copy:	ily.
HLSTM+ GA:	She is happy to be able to cook her dinner .
HLSTM+	She is very happy that she has made a new
CA:	<u>cook</u> .
IE:	She is very happy with her family .
IE+GA:	When she gets back to the kitchen , she sees
	a burning light on the stove .
IE+CA:	She realizes the food and is happy she was ready to cook .
	ready to cook.

Case study

Figure 3: An example illustrating how incremental encoding builds connections between context clues.

Summary

- Effective representation and utilization of context clues and implicit knowledge contributes to a reasonable story ending
- Addressing the problem to generate story ending from the perspective of logicality
- Still a long way to go:
 - Extended to the whole story generation?
 - Applied to other tasks e.g. multi-turn conversational system?

Thanks for your attention!

Any questions?

