

## MÉTODOS NUMÉRICOS 3006907 TALLER 2, SEMESTRE 01-2023

## Tema: Métodos de Punto fijo y Newton

- 1. Falso o Verdadero (Justifique)
  - (a) Suponga que  $g \in \mathcal{C}[0,7]$  y g'(x) esta definida para todo  $x \in (0,7)$ . Si |g'(x)| < 1 para 0 < x < 7 y  $x_0 = 3$ , entonces la iteración  $x_{i+1} = g(x_i)$  converge.
  - (b) Supongamos que tenemos dos funciones  $g_1$  y  $g_2$  que satisfacen el Teorema de Existencia y Unicidad de Punto Fijo (T.E.U.P.F.) en [a,b] y tales que generan iteraciones de punto fijo convergentes al mismo punto fijo, además

$$\max_{x \in [a,b]} |g_1'(x)| = 0.8 \qquad \text{y} \qquad \max_{x \in [a,b]} |g_2'(x)| = 0.3$$

entonces la sucesión generada con  $g_1$  converge más rápido.

- 2. Considerar la función  $g(x) = \frac{1}{2} \ln (4 x^2)$ .
  - (a) Utilice el T.E.U.P.F. para demostrar que la función g tiene un único punto fijo  $p \in [0,1]$ .
  - (b) ¿Qué puede afirmar sobre la iteración de punto fijo  $x_n = g(x_{n-1}), n = 1, 2, ...$ , si tomamos  $x_0 \in [0, 1]$ ?
  - (c) ¿Cuál es el valor obtenido para  $x_5$  si tomamos  $x_0 = 0.4$ ?
  - (d) Teniendo en cuenta (a), (b) y (c), ¿cuál es el menor número de iteraciones necesarias n para que  $|p x_n| \le 10^{-5}$ ?
- 3. Repetir el ejercicio anterior con la función  $g(x) = -1 + \frac{1}{4}(e^x 2)^2$  en el intervalo [-3, 1].
- 4. Demuestre que

$$\frac{1+\sqrt{5}}{2} = \sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}$$

empleando el T.E.U.P.F. en el intervalo [1,2].

- 5. La función  $f(x) = \frac{1}{e^x} + \cos(\pi x)$  tiene infinitos ceros y se desea aproximar uno de estos ceros.
  - (a) Pruebe que la ecuación f(x) = 0 tiene una única raíz en el intervalo [4,5]
  - (b) Demuestre que la función f satisface las hipótesis **necesarias** para aplicar el método de Newton en el intervalo [4,5].
  - (c) Escriba la fórmula de iteración de Newton para **esta** función.
  - (d) ¿Cuál es el orden de convergencia del método de Newton en este caso? Justifique su respuesta
- 6. Considere la función  $f(x) = \text{sen}(x) e^{-x}$ .
  - (a) Pruebe que la ecuación f(x) = 0 tiene una única raíz en el intervalo [0, 1].
  - (b) Verifique que la función f satisface las hipótesis del método de Newton en el intervalo [0, 1].
  - (c) Halle la fórmula de iteración de Newton para la función f y aproxime la raíz en [0,1] mediante  $x_5$  obtenida por este método, tomando  $x_0 = 0$ .
  - (d) ¿Cuál es el orden de convergencia de la sucesión generada por la iteración de Newton para la raíz en [0,1] de la ecuación dada?