Paare, Funktionen, Folgen, I-Tupel, Familien

In der Vorlesung am 4.11. wurden Paare und Tupel erwähnt und erklärt. Hier noch etwas Hintergrund dazu.

Nicht lesen! Die Überlegungen, die im Folgenden angestellt werden, sind für jede Studenten¹ gedacht, die sich über solche Fragen gerne den Kopf zerbrechen. Die Beschäftigung mit diesen Fragen könnte Sie aber von zentraleren Themen der Linearen Algebra und Geometrie (und auch der Analysis) ablenken oder im schlimmsten Fall noch mehr verwirren. Beipackzettel beachten! Bei Bauchschmerzen konsultieren Sie bitte Arzt² oder Apotheker³, bei Hirnrauchen ihren VO-Professor⁴ oder UE-Gruppenleiter⁵. Oder den Autor.⁶

Was ist ein Paar?

Was verstehen wir unter dem "geordneten Paar" 7 , das aus x und y besteht? Eine mögliche Antwort:

• Ein geordnetes Paar ist ein grundlegendes Konzept, das man nicht durch einfachere Konzepte beschreiben muss/kann. Ein "Paar" ist einfach ein String, der aus zwei (nicht notwendigerweise verschiedenen) Buchstaben x und y besteht; man schreibt sie nebeneinander (vielleicht getrent durch einen Beistrich⁸) und erhält xy oder x, y oder (x, y). Dieses naiv definierte Paar (x, y)naiv hat zwei Komponenten: eine "erste" oder "linke" Komponente x, und eine "zweite" oder "rechte" y.

Aus dieser "Definition" ergibt sich⁹, dass ein Paar nicht nur durch seine Komponenten eindeutig bestimmt ist, sondern dass es auch seine Komponenten eindeutig bestimmt. Das heißt:

Wenn
$$(x, y)_{\text{naiv}} = (x', y')_{\text{naiv}}$$
, dann muss $x = x'$ und $y = y'$ gelten.

In der Mengenlehre möchte man aber alle Konzepte auf das (undefinierte) Grundkonzept der Menge (und die Relation \in) zurückführen. Vom polnischen Mathematiker Kazimierz Kuratowski stammt die folgende Definition:

•
$$(x,y)_{K} := \{\{x\}, \{x,y\}\}$$

Man kann leicht beweisen (etwa mit Fallunterscheidungen), dass wieder die charakteristische Eigenschaft des Paars gilt:

Wenn $(x, y)_K = (x', y')_K$, dann muss x = x' und y = y' gelten.

Auch andere Definitionen sind möglich, z.B. 10

$$(x,y)_{\mathsf{H}} := \{\{y\}, \{y,x\}\},\$$

¹m+w, no na

²Siehe vorige Fußnote

³Siehe vorige Fußnote

⁴Siehe vorige Fußnote

⁵Siehe vorige Fußnote

 $_{\rm m}$

 $^{^7}$ Wir nennen dieses Paar "geordnet", weil wir auch das "ungeordnete" Paar definieren wollen. Das ungeordnete Paar mit den Komponenten x und y ist einfach die Menge $\{x,y\}$, die x und y enthält, und sonst nichts. Beachten Sie, dass $\{x,y\}=\{y,x\}$ gilt, dass aber die Aussage "für alle x und alle y hat die Menge $\{x,y\}$ genau zwei Elemente" falsch ist. Auch kann man aus $\{x,y\}=\{x',y'\}$ nicht auf x=x' schließen.

⁸oder durch ein Komma

 $^{^9\}mathrm{Und}$ wenn es sich nicht ergibt, dann fügen wir dies als Axiom hinzu

 $^{^{10}\}mathrm{Diese}$ Definition stammt vermutlich vom umgekehrten polnischen Mathematiker Ikswotaruk.

oder auch $(x,y)_{01} := \{\{0,x\},\{1,y\}\}$. Mit jeder dieser Definitionen kann man wiederum die charakteristische Eigenschaft des Paars beweisen.

Ab jetzt halten wir EINE dieser Varianten fest, und nennen sie das geordnete Paar (x, y). (Oder $(x, y)_{\text{linag1, }2020/21}$, für den Fall, dass wir es uns nächstes Jahr anders überlegen.)

FAMILIEN

каждая несчастливая семья несчастлива по-своему.

Tripel, Quadrupel,... Wenn man schon weiß, was Paare sind, könnte man Tripel, Quadrupel, etc so definieren:

- (x,y,z):=((x,y),z). (Das ist ein Paar, dessen erste Komponente das Paar (x,y) ist.)
- (p, q, r, s) := (((p, q), r), s)
- . . .

Funktionen. Um aber auch unendliche Tupel definieren zu können, führen wir den Begriff der Funktion ein: Seien I und X Mengen, und sei $I \times X$ die Menge¹¹ aller Paare (i, x) mit $i \in I$ und x in $X: I \times X := \{(i, x) \mid i \in I, x \in X\}$.

Eine Teilmenge $T \subseteq I \times X$ mit der Eigenschaft $\forall i \in I \exists ! x \in X \ (i, x) \in T$ nennt man Funktion von I nach X. Statt $(i, x) \in T$ schreibt man auch x = T(i) ("x ist die Auswertung von T an der Stelle i", oder "der Wert an der Stelle i", "der i-te Eintrag von T").

I-Tupel. Wenn die Menge I relativ einfache Struktur hat (oder: einfachere Struktur als die Menge X – z.B. ist die Menge I vielleicht eine Menge von natürlichen Zahlen, die Menge X eine Menge von Vektoren), oder wenn man die Rolle der Werte T(i) betonen will und die Rolle der Arguments i herunterspielen will, nennt man T auch ein Tupel oder I-Tupel. Statt T(i) schreibt man dann auch I I und statt I schreibt man I oder I oder I oder I oder I wenn die Menge I sich aus dem Kontext ergibt), nur I oder besonders faulsparsam nur I

Familien. Wenn die Werte T(i) komplizierte Objekte sind (also zB nicht nur Zahlen, sondern Mengen von Zahlen, oder noch komplizierter Objekte wie Funktionen oder Vektorräume), dann nennt man T auch <u>Familie</u> oder "Familie mit Indexmenge I". Das Wort "Familie" verwendet man auch dann oft an Stelle von "I-Tupel", wenn uns die Wertemenge, also die Menge $\{T_i \mid i \in I\}$ mehr interessiert als die Frage, welches x denn an welcher Stelle steht.

Man "identifiziert" also eine Familie $T=(T_i:i\in I)$ manchmal mit der Menge $\{T_i\mid i\in I\}$, d.h., man ignoriert den Unterschied zwischen diesen beiden Konzepten. Dies kommt insbesondere dann häufig vor, wenn die Familie T injektiv¹³ ist, wenn also verschiedenen Argumenten $i\neq j$ auch verschiedene Werte $T_i\neq T_j$ entsprechen.

Die Menge aller I-Tupel mit Werten in M bezeichnet man mit M^I . (Manchmal auch mit IM , um sich daran zu erinnern, dass die Funktionen von I nach M gehen, und nicht umgekehrt.)

 $^{^{11}}$ Falls Sie mit der Mengenschreibweise $\{x \mid \text{Eigenschaft}(x)\}$ "Menge aller x, für die gilt..." nicht vertraut sind, werfen Sie einen Blick auf die Erklärungen und UE-Aufgaben zur Mengenlehre, die im tuwel-Kurs zur linag1 verfügbar sind.

 $^{^{12}}$ Die Rolle von i wird hier im wörtlichen Sinn "herunter"gespielt (oder vielleicht hinunter?), von i nach i.

 $^{^{13}}$ Bei nicht-injektiven Familien muss man beachten, dass manche Werte mehrfach vorkommen, während in einer Menge M jedes Objekt x entweder vorkommt $(x \in M)$ oder nicht vorkommt $(x \notin M)$; "mehrfaches" Vorkommen gibt es hier nicht.

FOLGEN

Eine unendliche Folge (von reellen Zahlen, von Vektoren in V, etc) ist eine Funktion $x: \mathbb{N} \to \mathbb{R}$ oder $x: \mathbb{N} \to V$. Den Wert von x an der Stelle n nennen wir wiederum x_n (statt x(n)). Statt xschreiben wir auch $(x_n)_{n\in\mathbb{N}}$ oder¹⁴ $x=(x_0,x_1,\ldots)$.

Die Menge aller Folgen mit Einträgen (Werten) in M bezeichnen wir mit $M^{\mathbb{N}}$. Eine endliche Folge, z.B. der Länge 5, von Elementen einer Menge M,

- (1) ... ist eine Funktion von $x:\{0,1,2,3,4\}\to M$. So eine Folge x schreibt man auch als $(x_0, x_1, x_2, x_3, x_4)$ oder $\langle x_0, \dots, x_4 \rangle$.
- (2) Manchmal ist es aber praktischer, eine andere Indexmenge zu verwenden. Mit "Folge der Länge 5" bezeichnet man auch (je nach Bedarf) Tupel mit Indexmenge $\{1, 2, 3, 4, 5\}$.

Was heisst A^2 ?

Eine Folge der Länge 2 ist aus formaler Sicht etwas anderes als ein geordnetes Paar. Zum Beispiel ist die Folge der Länge 2, deren erster Term 7 und zweiter Term 9 ist, die Funktion $\{(0,7),(1,9)\}$ (oder, wenn wir Definition (2) statt (1) verwenden, die Funktion $\{(1,7),(2,9)\}$.) In jedem Fall aber etwas anderes als das geordnete Paar (7,9).

In der Praxis spielt diese Unterscheidung aber keine Rolle!

Sei $A := \{7, 9\}$. Wie können wir den Ausdruck A^2 bzw. $\{7,9\}^2$ interpretieren?

- (1) A^2 ist Menge von Paaren: $A^2 = A \times A = \{(7,7), (7,9), (9,7), (9,9)\}.$ (2) A^2 ist Menge von $\{0,1\}$ -Folgen: $A^2 = {0,1}A = \{ \{(0,7), (1,7)\}, \dots \{(0,9), (1,9)\} \}.$ (3) A^2 ist Menge von $\{1,2\}$ Folgen: $A^2 = {1,2}A = \{ \{(1,7), (2,7)\}, \dots \{(1,9), (2,9)\} \}.$

Welche dieser Mengen wir nun mit A^2 bezeichnen, ist nicht so wichtig (solange wir unsere Notation konsistent verwenden). Wenn wir über mehr als eine dieser Mengen sprechen müssen, 15 verwenden wir einfach eine neue Notation: A_{\times}^2 für die erste Menge, A_{01}^2 für die zweite, A_{12}^2 für

Beachten Sie, dass es kanonische Bijektionen zwischen diesen Mengen gibt. Das erlaubt es uns, die Mengen zu identifizieren. 16

¹⁴oder, wenn wir mit 1 beginnen wollen: $(x_n)_{n\in\mathbb{N}_{\geq 1}}$ oder $x=(x_1,x_2,x_3,\dots)$

 $^{^{15}}$ was aber nie vorkommen wird

 $^{^{16}}$ Das heißt: Ich denke an eine dieser Mengen, Du denkst auch an eine dieser Mengen, vielleicht eine andere, und trotzdem können wir über Eigenschaften DER betrachteten Menge sprechen, als ob es die selbe wäre. Wir sind uns einig, dass die Menge 4 Elemente enthält, dass es darauf eine natürliche lexikographische Ordnung gibt, dass das zweite Elemente der Menge durch eine einfache Vertauschung von Werten in das dritte übergeführt wird, etc.

FUNKTIONEN VON FUNKTIONEN

Big fleas have little fleas, Upon their backs to bite 'em, And little fleas have lesser fleas, and so, ad infinitum.

Wir wissen bereits, dass für jeden Körper K und für jede Menge I die Menge K^I aller I-Tupel aus K in natürlicher Weise die Struktur eines Vektorraums trägt. ¹⁷

Wenn wir zum Beispiel mit dem Vektorraum K^I arbeiten, dessen Elemente ja I-Tupel (also Funktionen) sind, und wir eine Familie $F = (x_j : j \in J)$ von Vektoren betrachten, dann scheint F eine Funktion zu sein, deren Werte selbst wieder Funktionen sind.

Geht das überhaupt? Ist das erlaubt?

Jа.

Ja natürlich. Die Elemente einer Menge dürfen auch selbst wieder Mengen sein, und sowohl Argumente wie auch Werte von Funktionen dürfen Funktionen (oder Mengen, oder Vektorräume etc) sein.

Aber: Das ist einer der Gründe, warum wir oft lieber abstrakte Vektorräume betrachten ("Sei V ein Vektorraum...") an Stelle konkreter Vektorräume ("Sei $V:=\mathbb{R}^2$ "). Wenn wir nichts über die innere Struktur unserer Vektoren wissen, sondern nur wissen, wie wir sie addieren und mit Skalaren multiplizieren, dann werden wir nicht von irrelevanten Details abgelenkt. Wir stellen uns Vektoren als Pfeile oder einfach nur als Punkte vor; eine Familie von Punkten macht uns weniger Kopfzerbrechen als eine Familie von Familien.

ÜBUNGSAUFGABEN

NICHT LESEN! (Oder jedenfalls nicht lösen. Diese Aufgaben helfen Ihnen nicht weiter.)

- (1) семья?
- (2) Was kann "umgekehrt polnisch" noch bedeuten?
- (3) "Obey"? Anders gefragt: Who lives?
- (4) Wie kann man ohne viel physikalisches Wissen erkennen, dass $E = mc^3$ sicher falsch ist?

 $^{^{17}\}mathrm{Aber}$: Nicht jeder Vektorraum hat die Form $K^I!!$