Chapter 25: Electric Charges and Forces

Coulomb's Law: $\overrightarrow{F} = \frac{|q_1||q_2|}{4\pi\epsilon_0 r^2} \hat{r}$

Superposition: $\overrightarrow{F}_{Total} = \overrightarrow{F}_{12} + \overrightarrow{F}_{13} + \dots$

Force on charge in an E-Field: $\overrightarrow{F}_{\text{ong}} = q\overrightarrow{E}$

E-Field at (x,y,z): $\vec{E}(x,y,z) = \frac{\vec{F}_{onq} at(x,y,z)}{a}$

E-Field - point charge: $\overrightarrow{E} = \frac{q}{4\pi\epsilon_0 r^2} \hat{r}$

Chapter 26: The Electric Field

Electric dipole moment: $\vec{p} = q\vec{d}$

E-Field - Electric dipole (on axis): $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{2\vec{p}}{r^3}$

E-Field - Electric dipole (bisecting plane): $\vec{E} = -\frac{1}{4\pi\epsilon_0} \frac{\vec{p}}{r^3}$

Linear charge density: $\lambda = \frac{Q}{L}$

Surface charge density: $\eta = \frac{Q}{4}$

E-Field - charged ring (on axis): $\vec{E}_{ring} = \frac{zQ}{4\pi\epsilon_0(z^2+R^2)^{3/2}}$

E-Field - above a plane of charge: $\frac{\overrightarrow{L}}{E} = \frac{\eta}{2\epsilon_0}$

E-Field - below a plane of charge: $\overrightarrow{E} = \frac{-\eta}{2\epsilon_0}$

E-Field - Outside a Sphere of charge: $\overrightarrow{E}_{sphere} = \frac{|Q|}{4\pi\epsilon_0 r^2} \hat{r}$

E-Field - Capacitor (+ to -): $\vec{E}_{capacitor} = \frac{\eta}{\epsilon_0}$

Motion in a uniform field: $\vec{a} = \frac{q\vec{E}}{m}$

Torque on a dipole: $\vec{\tau} = \vec{p} \times \vec{E}$

Prefixes μ nano n

 10^{-15} femto f

pico

Constants

 10^{-6}

 10^{-9}

 10^{-12}

$$\epsilon_0 = 8.854 \times 10^{-12} \ \frac{\mathrm{C}^2}{\mathrm{Nm}^2}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$m_e = 9.109 \times 10^{-31} \text{ kg}$$

$$k = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2}$$

$$m_p = 1.673 \times 10^{-27} kg$$

Units

Force: $1 N = 1 kg \frac{m}{s^2}$

Energy (Joules): 1 J = 1 Nm

Energy (eV) $1 eV = 1.6 \times 10^{-19} J$

Electric Field: $1 \frac{N}{C} = 1 \frac{V}{m}$

Electric Potential $1 V = 1 \frac{J}{C}$

Charge: 1 C = (1 A)(1 s)

Current: $1 A = 1 \frac{C}{a}$

Chapter 26: Gauss's Law

Electric Flux (constant E-field): $\Phi_E = \overrightarrow{E} \cdot \overrightarrow{A}$

Electric Flux: $\Phi_E = \int \vec{E} \cdot d\vec{A}$

Gauss's Law: $\epsilon_0 \Phi_E = q_{enc}$

Gauss's Law: $\epsilon_0 \oint \vec{E} \cdot d\vec{A} = q_{enc}$

Chapter 28: The Electric Potential

Work from a constant force: $W = \overrightarrow{F} \cdot \Delta \overrightarrow{r}$

Potential Energy and work: $\Delta U = -W$

Work (general) : $W = \int_{i}^{f} \overrightarrow{F} \cdot d\overrightarrow{s}$

Pot. Energy - uniform E-field: $U_{elec} = U_0 + qEs$

Pot. Energy - 2 point charges: $U_{elec} = k \frac{q_1 q_2}{r}$

Pot. Energy - Multiple point charges: $U_{elec} = \sum_{i < j} k \frac{q_i q_j}{r}$

Potential Energy - dipole: $U = -\vec{p} \cdot \vec{E}$

Potential Difference: $\Delta V = V_f - V_i$

 $\Delta V = \frac{\Delta U}{q}$

 $\Delta V = -\frac{W}{q}$

Potential - capacitor: V = Es

Potential - point charge: $V = \frac{q}{4\pi\epsilon_0 r}$

Potential - many point charges: $V = \sum_i \frac{q_i}{4\pi\epsilon_0 r_i}$

Potential - dipole: $V = \frac{p cos \theta}{4 \pi \epsilon_0 r^2}$

Potential - charge distr: $V = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r}$

Potential - ring of charge (on axis): $V_{ring} = \frac{1}{4\pi\epsilon_0} \frac{Q}{\sqrt{R^2 + z^2}}$

Potential - charged disk (on axis): $V_{disk} = \frac{Q}{2\pi\epsilon_0 R^2} (\sqrt{z^2 + R^2} - z)$