## 1 SQL

| Command            | Description                                                                                                                                                           |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USE                | wechselt den Ausführungskontext auf eine bestimmte Datenbank. USE master , in diesem Fall wird                                                                        |
|                    | zur Metadaten DB gewechselt.                                                                                                                                          |
| SELECT             | SELECT [Collumn name] FROM [Table name]                                                                                                                               |
| UPDATE             | UPDATE [Table name] SET [collumn name] = [value], WHERE [condition]                                                                                                   |
| DELETE             | DELETE FROM [Table name] WHERE [condition]                                                                                                                            |
| INSERT IN-<br>TO   | INSERT INTO [Table name] ([column1, column2,]) VALUES ([value1, value2,])                                                                                             |
| GO                 | wird verwendet, um die Ausführung zu erzwingen.                                                                                                                       |
| CREATE<br>DATABASE | kreiert eine neue Datenbank, zu welcher man mit USE wechseln kann                                                                                                     |
| DROP DA-<br>TABASE | schmeisst die Datenbank aus dem Fenster                                                                                                                               |
| ON                 | gibt an, wo die Daten physisch gespeichert werden.                                                                                                                    |
| CREATE<br>TABLE    | um eine Tabele zu kreieren, CREATE TABLE [table name] ([Coll1, coll2 etc])                                                                                            |
| DROP TA-<br>BLE    | schmeisst die Table aus dem Fenster                                                                                                                                   |
| ALTER TA-<br>BLE   | ALTER TABLE [Table name] [DROP / ALTER] COLUMN [column name] [datatype (only if ALTER)]                                                                               |
| CONSTRAINT         | bedingung → z.B Key CONSTRAINT [key name] PRIMARY KEY [type (optional)] ([referenz]) bzw CONSTRAINT [key name] FOREIGN KEY ([target]) REFERENCES [tabelle]([spallte]) |
| CREATE IN-<br>DEX  | CREATE [type] INDEX [index name] ON [table] ([spallte]) man kann dann mit INCLUDE andere Spallten includen.                                                           |
| DROP IN-<br>DEX    | schmeisst den Index zum Fenster raus                                                                                                                                  |

## 2 Data Type

| _                           |                              |  |
|-----------------------------|------------------------------|--|
| Data type                   | use                          |  |
| bigint                      | 64 bit number                |  |
| int                         | 32 bit number                |  |
| smallint                    | 16 bit number                |  |
| tinyint                     | 8 bit number                 |  |
| bit                         | 1 bit number                 |  |
| decimal(precision, scale)   | floating point number        |  |
| numeric                     | same as decimal              |  |
| money                       | 64 bit int shifted           |  |
| smallmoney                  | 32 bit int shifted           |  |
| float(n)                    | float 1 - 24                 |  |
| real                        | float(24)                    |  |
| datetime                    | date and time 3ms            |  |
| smalldatetime               | date and time 1min           |  |
| char                        | char max 8000                |  |
| varchar(n)                  | use this instead of char     |  |
| nchar                       | char in unicode              |  |
| nvarchar(n)                 | varchar in unicode           |  |
| text                        | long texts                   |  |
| ntext                       | unicode text                 |  |
| binary                      | malware                      |  |
| varbinary(n)                | use this instead of binary   |  |
| $\overline{\mathrm{image}}$ | binary, but longer           |  |
| cursor                      | reference as cursor          |  |
| sql_variant                 | never use this               |  |
| table                       | query result for later usage |  |
| timestamp                   | timestamp                    |  |
| uniqueidentifier            | GUID                         |  |

## 3 Indexes

- NONCLUSTERED
- CLUSTERED



#### 4 binary search tree and b-tree







#### 4.1 b-tree ersparrniss

 $maximaleSchritte = \frac{\log_{10}(n)}{\log_{10}(AnzahlVerzweigungen)}$  vs  $Heap \ n \rightarrow \emptyset \ \frac{n}{2}$ 

#### **5** DM

| Element               | Voranalyse | Konzeptionelles DM | Logisches DM |
|-----------------------|------------|--------------------|--------------|
| Entitäten Namen       | X          | X                  |              |
| Entitäten Beziehungen | X          | X                  |              |
| Attribute Namen       |            | X                  |              |
| Primärschlüssel       |            | X                  | X            |
| Fremdschlüssel        |            |                    | X            |
| Tabellen Namen        |            |                    | X            |
| Spalten Namen         |            |                    | X            |
| Datentypen            |            |                    | X            |

#### 6 4 Fälle

- überlappend (X kann auch Y sein)
- disjunkt (X kann nicht auch Y sein)
- total (jedes X muss auch zu Y gehören)
- partiell (X muss nicht unbedint zu Y gehören)

#### 7 Beziehungen

#### 7.1 Hierarchisch



#### 7.2 Netzwerkartig

(Die zweite Darstellung ist zu bevorzugen)





# 8 Spezialisierung / Generalisierung

## • Superklasse und Subklasse je eine Tabelle(bekannt)

- Eine Klasse pro Subklasse(keine Superklasse)
- Alles in einer Tabelle1 zusätzliches Attribut
- Alles in einer Tabelle mit 1 zusätzlichen Attribut pro Subklasse

## 8.1 Spezialisierung

Top Down Sicht, ein in mehrere aufteilen.

#### 8.2 Generalisierung

Bottom Up Sicht, mehrere zusammenfassen.

### 9 Diagramm



#### - UML

- Nur Attribut namen in Tabelle
- Alle Details in Tabelle

#### 9.1 TADESI

| $\mathbf{T}$ | Tabellenname                |  |
|--------------|-----------------------------|--|
| A            | Attribute                   |  |
| D            | Datentypen                  |  |
| E            | Constraints (NULL, DEAFULT) |  |
| S            | Schlüsselarten (PK, FK)     |  |
| T            | Indexe                      |  |