BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

101 17 085.8

Anmeldetag:

6. April 2001

Anmelder/Inhaber:

Degussa AG, Düsseldorf/DE

Bezeichnung:

Verfahren zur fermentativen Herstellung von D-Pan-

tothensäure unter Verwendung coryneformer Bakte-

rien

Priorität:

30.9.2000 DE 100 48 604.5

IPC:

C 12 N, C 12 P, C 07 H

Bemerkung:

Die nachgereichte Seite 7 der Beschreibung ist am

3. Juli 2001 eingegangen.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 29. August 2001 Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Brand

Verfahren zur fermentativen Herstellung von D-Pantothensäure unter Verwendung coryneformer Bakterien

Gegenstand der Erfindung ist ein Verfahren zur fermentativen Herstellung von D-Pantothensäure unter Verwendung coryneformer Bakterien in denen das poxB-Gen abgeschwächt ist.

Stand der Technik

15

Die Pantothensäure stellt ein kommerziell bedeutendes Vitamin dar, das in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung Anwendung findet.

Pantothensäure kann durch chemische Synthese oder biotechnisch durch Fermentation geeigneter Mikroorganismen in geeigneten Nährlösungen hergestellt werden. Bei der chemischen Synthese ist das DL-Pantolacton eine wichtige Zwischenstufe. Es wird in einem mehrstufigen Verfahren aus Formaldehyd, Isobutylaldehyd und Cyanid hergestellt. In weiteren Verfahrensschritten wird das racemische Gemisch aufgetrennt, D-Pantolacton mit ß-Alanin kondensiert und so

20 die gewünschte D-Pantothensäure erhalten.

Der Vorteil der fermentativen Herstellung durch Mikroorganismen liegt in der direkten Bildung der gewünschten stereoisomeren D-Form, die frei von L-Pantothensäure ist.

Verschiedene Arten von Bakterien, wie z.B. Escherichia coli (E. coli), Arthrobacter ureafaciens, Corynebacterium erythrogenes, Brevibacterium ammoniagenes und auch Hefen, wie z.B. Debaromyces castellii können wie in EP-A 0 493 060 gezeigt, in einer Nährlösung, die Glucose, DL-Pantoinsäure und β-Alanin enthält, D-Pantothensäure produzieren.

EP-A 0 493 060 zeigt weiterhin, daß bei E. coli durch Amplifikation von Pantothensäure-Biosynthesegenen aus E.

coli, die auf den Plasmiden pFV3 und pFV5 enthalten sind, in einer Nährlösung, die Glucose, DL-Pantoinsäure und ß-Alanin enthält, die Bildung von D-Pantothensäure verbessert wird.

- 5 EP-A 0 590 857 und US-Patent 5,518,906 beschreiben von E. coli Stamm IFO3547 abgeleitete Mutanten, wie FV5714, FV525, FV814, FV521, FV221, FV6051 und FV5069, die Resistenzen gegen verschiedene Antimetabolite wie Salizylsäure, α -Ketobuttersäure, β -Hydroxyasparaginsäure, O-Methylthreonin
- und α -Ketoisovaleriansäure tragen. Sie produzieren in einer Nährlösung, die Glucose enthält, Pantoinsäure, und in einer Glucose- und ß-Alanin-haltigen Nährlösung D-Pantothensäure. In EP-A 0 590 857 und US-Patent 5,518,906 wird weiterhin gezeigt, daß nach Amplifikation der
- Pantothensäure-Biosynthesegene, die auf dem Plasmid pFV31 enthalten sind, in den oben genannten Stämmen in glucosehaltigen Nährlösungen, die Produktion von D-Pantoinsäure und in einer Nährlösung, die Glucose und ß-Alanin enthält, die Produktion von D-Pantothensäure verbessert wird.
- Verfahren zur Herstellung von D-Pantothensäure mit Hilfe von Corynebacterium glutamicum (C. glutamicum) sind in der Literatur nur ansatzweise bekannt. So berichten Sahm und Eggeling (Applied and Environmental Microbiology 65(5), 1973-1979 (1999)) über den Einfluss der Überexpression der Gene panB und panC und Dusch et al. (Applied and Environmental Microbiology 65(4), 1530-1539 (1999)) über
- Environmental Microbiology 65(4), 1530-1539 (1999)) über den Einfluß des Gens panD auf die Bildung der D-Pantothensäure.

Aufgabe der Erfindung

Die Erfinder haben sich die Aufgabe gestellt, neue Grundlagen für verbesserte Verfahren zur fermentativen Herstellung von Pantothensäure mit coryneformen Bakterien bereitzustellen.

Beschreibung der Erfindung

Wenn im Folgenden D-Pantothensäure oder Pantothensäure oder Pantothenat erwähnt werden, sind damit nicht nur die freien Säuren, sondern auch die Salze der D-Pantothensäure wie z.B. das Calcium-, Natrium-, Ammonium- oder Kaliumsalz gemeint.

Gegenstand der Erfindung ist ein Verfahren zur fermentativen Herstellung von D-Pantothensäure unter Verwendung von coryneformen Bakterien, in denen die für das Enzym Pyruvat-Oxidase (EC 1.2.2.2) kodierende Nucleotidsequenz (poxB-Gen) abgeschwächt wird.

Gegenstand dieser Erfindung ist weiterhin ein Verfahren zur fermentativen Herstellung von D-Pantothensäure in dem folgende Schritte durchführt werden:

- 15 a) Fermentation der D-Pantothensäure produzierenden coryneformen Bakterien, in denen zumindest die für die Pyruvat-Oxidase (EC 1.2.2.2) kodierende Nucleotidsequenz (poxB) abgeschwächt, insbesondere ausgeschaltet wird;
- 20 b) Anreicherung der D-Pantothensäure im Medium oder in den Zellen der Bakterien; und
 - c) Isolierung der produzierten D-Pantothensäure.

Die eingesetzten Stämme produzieren gegebenenfalls bereits vor der Abschwächung des poxB-Gens D-Pantothensäure.

25 Bevorzugte Ausführungsformen finden sich in den Ansprüchen.

Der Begriff "Abschwächung" beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispiels

entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel

verwendet, das für ein entsprechendes Enzym (Protein) mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.

- Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können D-Pantothensäure aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es handelt sich um Vertreter coryneformer Bakterien,
- insbesondere der Gattung Corynebacterium. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum, sind beispielsweise die bekannten Wildtypstämme

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium melassecola ATCC17965
Corynebacterium thermoaminogenes FERM BP-1539
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020

25 und daraus hergestellte, D-Pantothensäure produzierende Mutanten wie beispielsweise

Corynebacterium glutamicum ATCC13032\DeltailvA/pEC7panBC Corynebacterium glutamicum ATCC13032/pND-D2.

Es wurde gefunden, daß coryneforme Bakterien nach

30 Abschwächung des für die Pyruvat-Oxidase (EC 1.2.2.2)

kodierenden poxB-Gens in verbesserter Weise Pantothensäure produzieren.

"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.

"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Die Nukleotidsequenz des poxB-Gens ist in der SEQ ID No. 1 und die sich daraus ergebende Aminosäuresequenz des Enzymproteins in SEQ ID No. 2 dargestellt.

Das in der SEQ ID No. 1 beschriebene poxB-Gen kann erfindungsgemäß verwendet werden. Weiterhin können Allele des poxB-Gens verwendet werden, die sich aus der Degeneriertheit des genetischen Codes oder durch funktionsneutrale Sinnmutationen ("sense mutations")

15 ergeben.

20

30

Eine neue, in SEQ ID No. 6 dargestellte Nukleotidsequenz wurde gefunden, die stromaufwärts der in SEQ ID No. 1 dargestellten Nukleotidsequenz der poxB-Genregion liegt. Weiterhin wurde eine neue, in SEQ ID No. 7 dargestellte Nukleotidsequenz gefunden, die stromabwärts der in SEQ ID No. 1 dargestellten Nukleotidsequenz der poxB-Genregion liegt. Auf diese Weise wurde die in SEQ ID No. 4 dargestellte Sequenz der poxB-Genregion erhalten.

Es wurde gefunden, daß diese Polynukleotide dargestellt in SEQ ID No. 6 und 7, nützlich sind in der Herstellung von Mutanten mit abgeschwächtem, insbesondere ausgeschaltetem poxB-Gen.

Es wurde auch gefunden, daß coryneforme Bakterien nach Abschwächung des poxB-Gens in verbesserter Weise Pantothensäure produzieren.

Zur Erzielung einer Abschwächung kann entweder die Expression des poxB-Gens oder die katalytischen

Eigenschaften des Enzymproteins herabgesetzt bzw. ausgeschaltet werden. Gegebenenfalls können beide Maßnahmen kombiniert werden.

Die Erniedrigung der Genexpression kann durch geeignete Kulturführung oder durch genetische Veränderung 5 ("Mutation") der Signalstrukturen der Genexpression erfolgen. Signalstrukturen der Genexpression sind beispielsweise Repressorgene, Aktivatorgene, Operatoren, Promotoren, Attenuatoren, Ribosomenbindungsstellen, das 10 Startkodon und Terminatoren. Angaben hierzu findet der Fachmann z.B. in der Patentanmeldung WO 96/15246, bei Boyd und Murphy (Journal of Bacteriology 170: 5949 (1988)), bei Voskuil und Chambliss (Nucleic Acids Research 26: 3548 (1998), bei Jensen und Hammer (Biotechnology and Bioengineering 58: 191 (1998)), bei Patek et al. (Microbiology 142: 1297 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem Lehrbuch von Knippers ("Molekulare Genetik", 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995) oder dem von Winnacker ("Gene und Klone", VCH Verlagsgesellschaft,

Mutationen, die zu einer Veränderung bzw. Herabsetzung der katalytischen Eigenschaften von Enzymproteinen führen, sind aus dem Stand der Technik bekannt. Als Beispiele seien die Arbeiten von Qiu und Goodman (Journal of Biological 25 Chemistry 272: 8611-8617 (1997)), Sugimoto et al. (Bioscience Biotechnology and Biochemistry 61: 1760-1762 (1997)) und Möckel ("Die Threonindehydratase aus Corynebacterium glutamicum: Aufhebung der allosterischen 30 Regulation und Struktur des Enzyms", Berichte des Forschungszentrums Jülichs, Jül-2906, ISSN09442952, Jülich, Deutschland, 1994) genannt. Zusammenfassende Darstellungen können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem von Hagemann ("Allgemeine

Weinheim, Deutschland, 1990).

30

Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.

Als Mutationen kommen Transitionen, Transversionen, Insertionen und Deletionen in Betracht. In Abhängigkeit von der Wirkung des Aminosäureaustausches auf die Enzymaktivität wird von Fehlsinnmutationen ("missense mutations") oder Nichtsinnmutationen ("nonsense mutations") gesprochen. Insertionen oder Deletionen von mindestens einem Basenpaar (bp) in einem Gen führen zu

10 Rasterverschiebungsmutationen ("frame shift mutations"), die dazu führen, daß falsche Aminosäuren eingebaut werden oder die Translation vorzeitig abbricht. Deletionen von mehreren Kodonen führen typischerweise zu einem vollständigen Ausfall der Enzymaktivität. Anleitungen zur

15 Erzeugung derartiger Mutationen gehören zum Stand der Technik und können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem Lehrbuch von Knippers ("Molekulare Genetik", 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995), dem von Winnacker ("Gene und

Klone", VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990) oder dem von Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.

Ein Beispiel für ein Plasmid, mit Hilfe dessen eine Insertionsmutagenese des poxB-Gens durchgeführt werden kann, ist pCR2.1poxBint (Figur 1).

Plasmid pCR2.1poxBint besteht aus dem von Mead at al. (Bio/Technology 9:657-663 (1991)) beschriebenen Plasmid pCR2.1-TOPO, in das ein internes Fragment des poxB-Gens, dargestellt in SEQ-ID No. 3, eingebaut wurde. Dieses Plasmid führt nach Transformation und homologer Rekombination in das chromosomale poxB-Gen (Insertion) zu einem Totalverlust der Enzymfunktion.

Ein anderes Beispiel für ein mutiertes poxB-Gen ist das in Plasmid pCRB1-poxBdel (Figur 2) enthaltene Δ poxB-Allel. Das

15

ΔpoxB-Allel enthält lediglich die 5'- und die 3'-Flanke des poxB-Gens. Der 1737 bp lange Abschnitt der Kodierregion fehlt (Deletion). Die Nukleotidsequenz des ΔpoxB-Allels bzw. der 5'- und der 3'-Flanke ist in der SEQ ID No. 12 dargestellt. Dieses $\Delta poxB-Allel$ kann durch Integrationsmutagenese in coryneforme Bakterien eingebaut werden. Hierzu bedient man sich des oben angegebenen Plasmides pCRB1-poxBdel oder überführt das Δ poxB-Allel in das Plasmid pK18mobsacB und verwendet das dabei entstehende Plasmid vom Typ pK18mobsacBpoxBdel. Nach Übertragung durch Konjugation oder Transformation und homologer Rekombination mittels eines ersten, Integration bewirkenden "cross over"-Ereignisses und eines zweiten, eine Excision bewirkenden "cross over"-Ereignisses im poxB-Gen erreicht man den Einbau des ΔpoxB-Allels und erzielt einen Totalverlust der Enzymfunktion in dem jeweiligen Stamm. Das durch SEQ ID No. 12 charakterisierte ΔpoxB-Allel ist Gegenstand der Erfindung.

Anleitungen und Erläuterungen zur Insertionsmutagenese bzw.

20 Integrationsmutagenese und Genaustausch findet man
beispielsweise bei Schwarzer und Pühler (Bio/Technology
9,84-87 (1991)), Peters-Wendisch et al. (Microbiology 144,
915-927 (1998)) oder Fitzpatrick et al. (Applied
Microbiology and Biotechnology 42, 575-580 (1994)).

- Weiterhin kann es für die Produktion von Pantothensäure vorteilhaft sein, zusätzlich zur Abschwächung des für die Pyruvat-Oxidase kodierenden Gens eines oder mehrere der Gene ausgewählt aus der Gruppe
- das für die Ketopantoat-Hydroxymethyltransferase
 kodierende panB-Gen (Sahm et al., Applied and Environmental Microbiology, 65, 1973-1979 (1999)),
 - das für die Pantothenat-Synthetase kodierende panC-Gen (Sahm et al., Applied and Environmental Microbiology, 65, 1973-1979 (1999)),

- das für die Acetohydroxysäure Isomeroreduktase kodierende ilvC-Gen (EMBL-GenBank: Accession Nr. L09232), und
- das für die Dihydroxysäure-Dehydratase kodierende ilvD-Gen (EP-A-1006189);

zu verstärken, insbesondere zu überexprimieren.

Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

15 Weiterhin kann es für die Produktion von Pantothensäure vorteilhaft sein, zusätzlich zur Abschwächung des für die Pyruvat-Oxidase kodierenden Gens das für die Phosphoenolpyruvat-Carboxykinase (PEP-Carboxykinase) kodierende pck-Gen (DE: 19950409.1, DSM 13047)

20 abzuschwächen.

25

Schließlich kann es für die Produktion von Pantothensäure vorteilhaft sein, neben der Abschwächung der Pyruvat-Oxidase unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Microorganisms,, in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982), die die Produktion der Pantothensäure vermindern.

Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Pantothensäure-Produktion kultiviert werden.

10

Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Mikroorganismen genügen. Beschreibungen von Kulturmedien verschiedenerer Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology

Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose,

Melasse, Stärke und Cellulose, Öle und Fette wie z.B.

Sojaöl, Sonnenblumenöl, Erdnussöl und Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und Linolsäure,

Alkohole wie z.B. Glycerin und Ethanol und organische Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.

(Washington D.C., USA, 1981) enthalten.

Als Stickstoffquelle können organische, Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat,

Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Als Phosphorquelle können Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium30 haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten wie z.B.

Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe, wie Aminosäuren und Vitamine zusätzlich zu den oben

genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies zur zusätzlichen Steigerung der Pantothensäure-Produktion Vorstufen der Pantothensäure, wie Aspartat, β -Alanin, Ketoisovalerat, Ketopantoinsäure oder Pantoinsäure, und gegebenenfalls deren Salze zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.

- Zur pH Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z.B.
- 15 Fettsäurepolyglykolester eingesetzt werden. Zur
 Aufrechterhaltung der Stabilität von Plasmiden können dem
 Medium geeignete selektiv wirkende Stoffe, z.B.
 Antibiotika, hinzugefügt werden. Um aerobe Bedingungen
 aufrechtzuerhalten werden Sauerstoff oder Sauerstoff-
- haltige Gasmischungen wie z.B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt bis sich ein Maximum an Pantothensäure gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die Konzentration an gebildeter Pantothensäure kann mit bekannten chemischen (Velisek; Chromatographic Science 60, 515-560 (1992)) oder mikrobiologischen Verfahren wie z.B. dem Lactobacillus plantarum Test (DIFCO MANUAL, 10th Edition, S. 1100-1102; Michigan, USA) bestimmt werden.

Folgender Mikroorganismus wurde am 19. Oktober 1999 als Reinkultur bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) gemäß Budapester Vertrag hinterlegt: • Escherichia coli Stamm DH5 α /pCR2.1poxBint als DSM 13114.

Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.

Beispiel 1

5 Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032

Chromosomale DNA aus C. glutamicum ATCC 13032 wurde wie bei Tauch et al., (1995, Plasmid 33:168-179) beschrieben, isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250)

- dephosphoryliert. Die DNA des Cosmid-Vektors SuperCosl (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCosl Cosmid Vektor Kit, Code no. 251301) wurde mit dem
- 20 Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert.
- Anschließend wurde die Cosmid-DNA mit dem Restriktionsenzym
 BamHI (Amersham Pharmacia, Freiburg, Deutschland,
 Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten.
 Die auf diese Weise behandelte Cosmid-DNA wurde mit der
 behandelten ATCC13032-DNA gemischt und der Ansatz mit T4DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland,
 Produktbeschreibung T4-DNA-Ligase, Code no.27-0870-04)
 behandelt. Das Ligationsgemisch wurde anschließend mit
 Hilfe des Gigapack II XL Packing Extracts (Stratagene, La
 Jolla, USA, Produktbeschreibung Gigapack II XL Packing

Extract, Code no. 200217) in Phagen verpackt. Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Res. 16:1563-1575) wurden die Zellen in 10 mM MgSO₄ aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 100 µg/ml Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektioniert.

Beispiel 2

10

Isolierung und Sequenzierung des poxB-Gens

Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep

Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden,
Germany) nach Herstellerangaben isoliert und mit dem
Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg,
Deutschland, Produktbeschreibung Sau3AI, Product No. 270913-02) partiell gespalten. Die DNA-Fragmente wurden mit
shrimp alkalischer Phosphatase (Roche Molecular
Biochemicals, Mannheim, Deutschland, Produktbeschreibung
SAP, Product No. 1758250) dephosphoryliert. Nach
gelelektrophoretischer Auftrennung erfolgte die Isolierung
der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp
mit dem QiaExII Gel Extraction Kit (Product No. 20021,
Qiagen, Hilden, Germany).

Die DNA des Sequenziervektors pZero-1 bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01) wurde 30 mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold

Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences, U.S.A., 87:4645-4649) elektroporiert (Tauch et al., 1994, FEMS Microbiol Letters, 123:343-7) und auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 50 μg/ml Zeocin ausplattiert.

- Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgte nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academies of Sciences, U.S.A., 74:5463-
- 15 5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wurde der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und
- Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).
- Die erhaltenen Roh-Sequenzdaten wurden anschließend unter Anwendung des Staden-Programmpakets (1986, Nucleic Acids Research, 14:217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZerol-Derivate wurden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurden mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14:217-231) angefertigt.

Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 1737 Basenpaaren, welches als poxB- Gen bezeichnet wurde. Das poxB-Gen kodiert für ein Polypeptid von 579 Aminosäuren dargestellt in SEQ ID No. 2.

Beispiel 3

Herstellung des Integrationsvektors pCR2.1poxBint für die Mutagenese des poxB-Gens

Aus dem Stamm ATCC 13032 wurde nach der Methode von Eikmanns et al. (Microbiology 140: 1817 - 1828 (1994)) chromosomale DNA isoliert. Aufgrund der aus Beispiel 2 für C. glutamicum bekannten Sequenz des poxB-Gens wurden die folgenden Oligonukleotide für die Polymerase Kettenreaktion ausgewählt:

poxBint1:

10

5 TGC GAG ATG GTG AAT GGT GG 3 poxBint2:

15 5 GCA TGA GGC AAC GCA TTA GC 3

Die dargestellten Primer wurden von der Firma MWG Biotech (Ebersberg, Deutschland) synthetisiert und nach der Standard-PCR-Methode von Innis et al. (PCR protocols. A Guide to Methods and Applications, 1990, Academic Press)

- mit Pwo-Polymerase der Firma Boehringer die PCR Reaktion durchgeführt. Mit Hilfe der Polymerase-Kettenreaktion wurde ein ca. 0,9 kb großen DNA-Fragment isoliert, welches ein internes Fragment des poxB-Gens trägt und in der SEQ ID No. 3 dargestellt ist.
- Das amplifizierte DNA Fragment wurde mit dem TOPO TA
 Cloning Kit der Firma Invitrogen Corporation (Carlsbad, CA,
 USA; Katalog Nummer K4500-01) in den Vektor pCR2.1-TOPO
 (Mead at al. (1991) Bio/Technology 9:657-663) ligiert.
 Anschließend wurde der E. coli Stamm Top10F' (Grant et al.
 (1990) Proceedings of the National Academy of Sciences,
- (1990) Proceedings of the National Academy of Sciences, USA, 87:4645-4649) elektroporiert. Die Selektion von Plasmid-tragenden Zellen erfolgte durch Ausplattieren des Transformationsansatzes auf LB Agar (Sambrook et al.,

Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), der mit 50 mg/l Kanamycin supplementiert worden war. Plasmid-DNA wurde aus einer Transformante mit Hilfe des QIAprep Spin Miniprep Kit der Firma Qiagen isoliert und durch Restriktion mit dem Restriktionsenzym EcoRI und anschließender Agarosegel-Elektrophorese (0,8%) überprüft. Das Plasmid wurde pCR2.1poxBint (Figur 1) genannt.

Beispiel 4

- 10 Herstellung eines Austauschvektors für die Deletionsmutagenese des poxB-Gens
 - 4.1 Bestimmung der Nukleotidsequenz der Flanken des poxB-Gens
- In weiteren Sequenzierschritten wurde die Nukleotidsequenz
 der in SEQ ID No. 1 dargestellten poxB-Genregion um jeweils
 ca. 500 bis 600 bp stromaufwärts und stromabwärts
 erweitert. Hierzu wurde die in Beispiel 2 beschriebene
 Methodik angewendet. Auf diese Weise wurde die in SEQ ID
 No. 4 dargestellte, erweiterte Nukleotidsequenz der poxBGenregion erhalten. Die neue stromaufwärts der in SEQ ID
 No. 1 dargestellten poxB-Genregion ist in SEQ ID No. 6
 dargestellt. Die neue stromabwärts der in SEQ ID No. 1
 dargestellten poxB-Genregion ist in SEQ ID No. 7
 dargestellt.
- 25 4.2 Konstruktion eines ΔpoxB-Allels

Für die Konstruktion des ΔpoxB-Allels wurde die von Horton (Molecular Microbiology 3:93-99 (1995)) beschriebene Methode der GenSOEing-PCR angewendet. Hierfür wurden die in der Tabelle 1 angegebenen Primerpaare (Siehe auch SEQ ID No. 8 bis 11) konstruiert. Mittels einer PCR wurde mit dem Primerpaar 1 der 5'-Bereich vor dem poxB-Gen und mit dem Primerpaar 2 der 3'-Bereich hinter dem poxB-Gens amplifiziert. Eine weitere PCR wurden dann mit den beiden

Amplifikaten und den Primern pox-dell und pox-del4 durchgeführt, wodurch mittels GenSOEing die beiden Amplifikate verbunden wurden. Das so erhaltene Deletionsfragment bzw. Δ poxB-Allel enthält die flankierenden Sequenzen des poxB-Gens. Die Nukleotidsequenz des Δ poxB-Allels ist in SEQ ID No. 12 angegeben.

Tabelle 1

Primer	5'-Sequenz-3'	Primerpaar
pox-del1	ATGAGGAACATCCGGCGGTG	×-34
pox-del2	GAGAACAGCAGGAGTATCAATCATCACTGAACT CCTCAACGTTATGGC	1
pox-del3	TGATGATTGATACACCTGCTGTTCTC	
pox-del4	TCATTGCCACCTGCTTCTCA	2

4.3 Konstruktion eines Austauschvektors

Das so erhaltene DNA Fragment wurde mit dem Zero Blunt TOPO 10 PCR Cloning Kit der Firma Invitrogen Corporation (Carlsbad, CA, USA; Katalog Nummer K2800-20) in den Vektor pCR-Blunt II-TOPO Vektor (Shuman et al., (1994) Journal of Biological Chemistry 269:32678-32684; Bernard et al., (1983) Journal of Molecular Biology 234:534-541) ligiert. Anschließend wurde der E. coli Stamm Top10 (Grant et al. (1990) Proceedings of the National Academy of Sciences, USA 87:4645-4649) mit dem Ligationsansatz transformiert. Die Selektion von Plasmid-tragenden Zellen erfolgte durch 20 Ausplattieren des Transformationsansatzes auf LB Agar (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), der mit 50 mg/l Kanamycin supplementiert worden war. Plasmid-DNA wurde aus einer Transformante mit 25 Hilfe des QIAprep Spin Miniprep Kit der Firma Qiagen

isoliert und durch Restriktion mit dem Restriktionsenzym EcoRI und anschließender Agarosegel-Elektrophorese (0,8%) überprüft. Das Plasmid wurde pCRB1-poxBdel (Figur 2) genannt.

5 Aus diesem Plasmid wurde das ΔpoxB-Allel tragende Insert mittels EcoRI herausgespalten, aus dem Gel isoliert und in den ebenfalls EcoRI-gespaltenen, nicht-replikativen Integrationsvektor pK18mobsacB (Schäfer et al., Gene 145, 69-73 (1994)) ligiert. Die Klonierungen wurden in E. coli DH5αmcr (Grant et al., (1990) Proceedings of the National Academy of Sciences, USA, 87: 4645-4649) als Wirt durchgeführt. Das resultierende Plasmid wurde als pK18mobsacB-poxBdel bezeichnet.

Beispiel 5

15 Mutagenese des poxB-Gens in dem Stamm FERM BP-1763

Für die Deletion des poxB-Gens wurde das

In der Patentschrift US-A-5,188,948 ist der L-Valin produzierende Stamm Brevibacterium lactofermentum FERM BP-1763 beschrieben.

20 Integrationsplasmid pK18mobsacB-poxBdel in den Stamm FERM BP-1763 elektroporiert. Nach Selektion auf Kanamycin (25 μg/ml) wurden Einzelklone erhalten, bei denen der Inaktivierungsvektor im Genom integriert vorlag. Um die Excision des Vektors zu ermöglichen wurden Einzelkolonien 25 in 50 ml flüssigem LB-Medium ohne Antibiotika 24 Stunden bei 30°C und 130 rpm inkubiert und dann auf Saccharosehaltigen Agarplatten (LB mit 15 g/l Agar und 10% Saccharose) ausgestrichen. Durch diese Selektion wurden Klone erhalten, die den Vektoranteil durch ein zweites 30 Rekombinationsereignis wieder verloren hatten (Jäger et al. 1992, Journal of Bacteriology 174:5462-5465). Um solche Klone zu identifizieren, die das ΔpoxB-Allel trugen, wurde eine Polymerase Kettenreaktion mit den Primern pox-dell und pox-del4 (Tabelle 1 und SEQ ID No. 8 und 11) durchgeführt. Diese Primer amplifizieren auf Gesamt-DNA des Ausgangsstamms Stamm FERM BP-1763 ein ca. 3150 bp großes Fragment, während die Primer auf der DNA von poxB-Deletionsmutanten ein verkürztes. 1422 bp großes Fragment

Deletionsmutanten ein verkürztes, 1422 bp großes Fragment amplifizierten. Einer so identifizierten Deletionsmutante fehlt folglich ein 1,7 kb großer Bereich des poxB-Gens.

Ein auf diese Weise hergestellter und geprüfter Stamm wurde als FERM BP-1763 Δ poxB bezeichnet und für die weiteren Untersuchungen eingesetzt.

Beispiel 6

10

Herstellung von Pantothensäure

6.1 Herstellung der Stämme

- Aus der EP-A-1006192 ist das Plasmid pND-DBC2 bekannt,

 welches die Gene panB, panC und panD von Corynebacterium
 glutamicum trägt. Das Plasmid ist in Form des Stammes

 ATCC13032/pND-DBC2 als DSM 12437 bei der Deutschen Sammlung
 für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig,
 Deutschland) gemäß Budapester Vertrag hinterlegt.
- Durch Transformation der Stämme FERM BP-1763 und FERM BP-1763ΔpoxB mit dem Plasmid pND-DBC2 entstanden die Pantothensäure produzierenden Stämme FERM BP-1763/pND-DBC2 und FERM BP-1763ΔpoxB.
 - 6.2 Herstellung von Pantothensäure
- Jeweils eine Probe der Stämme Brevibacterium lactofermentum FERM BP-1763/pND-DBC2 und FERM BP-1763ΔpoxB/pND-DBC2 wurde auf HHK-Agar ausgestrichen.

HHK-Agar besteht aus Hirn-Herz-Agar, der von der Firma Merck KgaA (Darmstadt, Deutschland) bezogen und mit 30 Kanamycin supplementiert wurde. Die Zusammensetzung des HHK-Agars ist in Tabelle 2 angegeben. Diese Agarplatten-Kultur wurde 17 Stunden bei 37°C inkubiert und dann im Kühlschrank bei +4°C aufbewahrt. Ausgewählte Einzelkolonien wurden anschließend auf dem gleichen Medium weiter vermehrt. Mit einer Impföse wurde Zellmaterial eines Klons vom HHK-Agar abgenommen und in 100 mL HHK-Bouillion übertragen, die in einem Schüttelkolben von 1000 mL Gesamtvolumen enthalten waren.

HHK-Bouillion besteht aus Hirn-Herz-Medium, das von der Firma Merck KgaA (Darmstadt, Deutschland) bezogen und mit Glucose und Kanamycin supplementiert wurde. Die Zusammensetzung der HHK-Bouillion ist in Tabelle 3 angegeben.

Tabelle 2

HHK-Agar

Substanz	Menge pro Liter
Hirn-Herz-Agar	52,0 g
Kanamycin	25 mg

15

10

Tabelle 3

HHK-Boullion

Substanz	Menge pro Liter
Hirn-Herz-Medium	37,0 g
Kanamycin	25 mg
Glucose	20,0 g

Die Ansätze wurde bei 30°C und 150 rpm für 22 Stunden 20 inkubiert. Nach Ende der Kultivierung wurde im Photometer bei einer Wellenlänge von 660 nm (OD 660) eine optische Dichte von jeweils ca. 6 gemessen. Diese Kultur des Stammes wurden zur Beimpfung des Produktionsfermenters verwendet.

Zur Fermentation wurde das in Tabelle 4 angegebene Medium SK-71 verwendet. Alle Komponenten des SK-71-Mediums wurden direkt entsprechend der Arbeitskonzentrationen im Fermenter vorgelegt und in situ sterilisiert.

Tabelle 4

Medium SK-71

Verbindung	Menge pro Liter
Glucose Hydrat	110,0000g
Cornsteep Liquor (CSL)	5,0000g
ß-Alanin	5,0000g
Nicotinsaure	0,0050g
l-Isoleucin	0,1500g
Homoserin	0,1500g
Ammoniumsulfat	25,0000g
K-dihydrogenphosphat	0,1000g
Mg-Sulfat 7H ₂ O	1,0000g
Fe-Sulfat 7H ₂ O	0,0100g
Mn-Sulfat H ₂ O	0,0050g
CaCl ₂ * 2H ₂ O	0,0100g
Thiamin HCl	0,0002g
D(+)Biotin	0,0003g
Struktol	0,60g

w/v) verwendet.

10

15

20

Als Fermenter wurden 10 l Rührreaktoren der Firma B.Braun (BBI, Deutschland, Melsungen, Modell Biostat E/ED) verwendet.

Zur Inokulierung von 1950 g des Fermentationsmediums SK-71 wurden jeweils 100 mL der oben beschriebenen Schüttelkolbenvorkulturen in HHK-Bouillion eingesetzt.

Der Ansatz wurde über die gesamte Fermentationsdauer bei

einer Temperatur von 30°C, einer volumenspezifischen Belüftung von 0,75 vvm, einer vom Sauerstoffverbrauch abhängigen Rührung von 800 - 1700 rpm und einem pH von 7,0 und einem Sauerstoffpartialdruck von 20% der Luftsättigung kultiviert. Die Kultur wurde insgesamt für ca. 49 Stunden unter den obengenannten Bedingungen bis zum Erreichen einer OD660 von ca. 26 kultiviert. Als Korrekturmittel zur pH-Wertregulierung wurde eine wässrige Ammoniak-Lösung (25 %

Anschließend wurden die optische Dichte (OD) mit einem Digitalphotometer vom Typ LP1W der Firma Dr. Bruno Lange GmbH (Berlin, Deutschland) bei einer Meßwellenlänge von 660 nm und die Konzentration an gebildeter D- Pantothensäure mittels HPLC (Hypersil APS 2 5 μ m, 250x5 mm, RI-Detektion) bestimmt.

In der Endprobe (ca. 49 Stunden) der Fermentationskultur
des Stammes FERM BP-1763/pND-DBC2 wurde eine D25 Pantothensäure Konzentration von ca. 0,20 g/l gemessen. Die
Pantothensäure Konzentration in der entsprechenden Probe
des Stammes FERM BP-1763ΔpoxB/pND-DBC2 betrug ca. 0,23 g/l.

Folgende Figuren sind beigefügt:

- Figur 1: Karte des Plasmides pCR2.1poxBint
- 30 Figur 2: Karte des Plasmides pCRBl-poxBdel

Bei der Angabe der Basenpaarzahlen handelt es sich um ca.-Werte, die im Rahmen der Reproduzierbarkeit erhalten werden.

Die verwendeten Abkürzungen und Bezeichnungen haben folgende Bedeutung:

Figur 1:

ApR

Ampicillin-Resistenzgen

ColE1 ori

Replikationsursprung ColE1

flori

Replikationsursprung des Phagen fl

KmR

Kanamycin-Resistenzgen

lacZ

Reste des lacZα-Genfragmentes

poxBint

internes Fragment des poxB-Gens

Figur 2:

'lacZa

3'-Ende des lac $Z\alpha$ -Genfragmentes

3'-Region

3'-Flanke des poxB-Gens

5'-Region

5'-Flanke des poxB-Gens

ccdB

ccdB-Gen

Km

Kanamycin-Resistenzgen

lacZa'

5'-Ende des lacZα-Genfragmentes

plac

Promotor des lac-Operons

pMB1

Replikationsursprung des Plasmids pMB1

Zeocin

Zeocin-Resistenzgen

Darüberhinaus wurden folgende Abkürzungen verwendet:

BamHI: Schnittstelle des Restriktionsenzyms BamHI

ClaI Schnittstelle des Restriktionsenzyms ClaI

EcoRI: Schnittstelle des Restriktionsenzyms EcoRI

HindIII: Schnittstelle des Restriktionsenzyms HindIII

SalI: Schnittstelle des Restriktionsenzyms SalI

```
SEQUENZPROTOKOLL
```

<110> Degussa AG

5 <120> Verfahren zur fermentativen Herstellung von D-Pantothensäure unter Verwendung coryneformer Bakterien.

<130> 000439 BT

10 <140>

15

<141>

<160> 12

<170> PatentIn Ver. 2.1

<210> 1

<211> 2160

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

25 <222> (327)..(2063)

<220>

<221> -35 signal

<222> (227)..(232)

30

40

45

<220>

<221> -10_signal

<222> (256)..(261)

35 <400> 1

ttagaggcga ttctgtgagg tcactttttg tggggtcggg gtctaaattt ggccagtttt 60

cgaggcgacc agacaggcgt gcccacgatg tttaaatagg cgatcggtgg gcatctgtgt 120

ttggtttcga cgggctgaaa ccaaaccaga ctgcccagca acgacggaaa tcccaaaagt 180

gggcatccct gtttggtacc gagtacccac ccgggcctga aactccctgg caggcgggcg 240

aagcgtggca acaactggaa tttaagagca caattgaagt cgcaccaagt taggcaacac 300

aatagccata acgttgagga gttcag atg gca cac agc tac gca gaa caa tta 353 Met Ala His Ser Tyr Ala Glu Gln Leu

_

att gac act ttg gaa gct caa ggt gtg aag cga att tat ggt ttg gtg 401 Ile Asp Thr Leu Glu Ala Gln Gly Val Lys Arg Ile Tyr Gly Leu Val 10 15 20 25

ggt gac agc ctt aat ccg atc gtg gat gct gtc cgc caa tca gat att 449 55 Gly Asp Ser Leu Asp Pro Ile Val Asp Ala Val Arg Gln Ser Asp Ile

		gag Glu	tgg Trp	gtg Val	cac His 45	gtt Val	cga Arg	aat Asn	gag Glu	gaa Glu 50	gcg Ala	gcg Ala	gcg Ala	ttt Phe	gca Ala 55	gcc Ala	ggt Gly	497
	5	gcg Ala	gaa Glu	tcg Ser 60	ttg Leu	atc Ile	act Thr	Gly	gag Glu 65	ctg Leu	gca Ala	gta Val	tgt Cys	gct Ala 70	gct Ala	tct Ser	tgt Cys	545
	10	ggt Gly	cct Pro 75	gga Gly	aac Asn	aca Thr	cac His	ctg Leu 80	att Ile	cag Gln	ggt Gly	ctt Leu	tat Tyr 85	gat Asp	tcg Ser	cat His	cga Arg	593
	15	aat Asn 90	ggt Gly	gcg Ala	aag Lys	gtg Val	ttg Leu 95	gcc Ala	atc Ile	gct Ala	agc Ser	cat His 100	att Ile	ccg Pro	agt Ser	gcc Ala	cag Gln 105	641
	`20	att Ile	ggt Gly	tcg Ser	acg Thr	ttc Phe 110	ttc Phe	cag Gln	gaa Glu	acg Thr	cat His 115	ccg Pro	gag Glu	att Ile	ttg Leu	ttt Phe 120	aag Lys	689
		gaa Glu	tgc Cys	tct Ser	ggt Gly 125	tac Tyr	tgc Cys	gag Glu	atg Met	gtg Val 130	aat Asn	ggt Gly	ggt Gly	gag Glu	cag Gln 135	ggt Gly	gaa Glu	737
	25	cgc Arg	att Ile	ttg Leu 140	cat His	cac His	gcg Ala	att Ile	cag Gln 145	tcc Ser	acc Thr	atg Met	gcg Ala	ggt Gly 150	aaa Lys	ggt Gly	gtg Val	785
	30	tcg Ser	gtg Val 155	gta Val	gtg Val	att Ile	cct Pro	ggt Gly 160	gat Asp	atc Ile	gct Ala	aag Lys	gaa Glu 165	gac Asp	gca Ala	ggt Gly	gac Asp	833
	35	ggt Gly 170	act Thr	tat Tyr	tcc Ser	aat Asn	tcc Ser 175	act Thr	att Ile	tct Ser	tct Ser	ggc Gly 180	act Thr	cct Pro	gtg Val	gtg Val	ttc Phe 185	881
	40	ccg Pro	gat Asp	cct Pro	act Thr	gag Glu 190	gct Ala	gca Ala	gcg Ala	ctg Leu	gtg Val 195	gag Glu	gcg Ala	att Ile	aac Asn	aac Asn 200	gct Ala	929
7 7 . "		aag Lys	tct Ser	gtc Val	act Thr 205	ttg Leu	ttc Phe	tgc Cys	ggt Gly	gcg Ala 210	ggc Gly	gtg Val	aag Lys	aat Asn	gct Ala 215	cgc Arg	gcg Ala	977
	45	cag Gln	gtg Val	ttg Leu 220	gag Glu	ttg Leu	gcg Ala	gag Glu	aag Lys 225	att Ile	aaa Lys	tca Ser	ccg Pro	atc Ile 230	ggg Gly	cat His	gcg Ala	1025
	50	ctg Leu	ggt Gly 235	ggt Gly	aag Lys	cag Gln	tac Tyr	atc Ile 240	cag Gln	cat His	gag Glu	aat Asn	ccg Pro 245	ttt Phe	gag Glu	gtc Val	ggc Gly	1073
	55	atg Met 250	tct Ser	ggc Gly	ctg Leu	ctt Leu	ggt Gly 255	tac Tyr	ggc Gly	gcc Ala	tgc Cys	gtg Val 260	gat Asp	gcg Ala	tcc Ser	aat Asn	gag Glu 265	1121
		gcg Ala	gat Asp	ctg Leu	ctg Leu	att Ile 270	cta Leu	ttg Leu	ggt Gly	acg Thr	gat Asp 275	ttc Phe	cct Pro	tat Tyr	tct Ser	gat Asp 280	ttc Phe	1169

•		ctt Leu	cct Pro	aaa Lys	gac Asp 285	aac Asn	gtt Val	gcc Ala	cag Gln	gtg Val 290	Asp	atc Ile	aac Asn	ggt Gly	gcg Ala 295	cac His	att Ile	1217
	5	ggt Gly	cga Arg	cgt Arg 300	acc Thr	acg Thr	gtg Val	aag Lys	tat Tyr 305	ccg Pro	gtg Val	acc Thr	ggt Gly	gat Asp 310	gtt Val	gct Ala	gca Ala	1265
	10	aca Thr	atc Ile 315	gaa Glu	aat Asn	att Ile	ttg Leu	cct Pro 320	cat His	gtg Val	aag Lys	gaa Glu	aaa Lys 325	aca Thr	gat Asp	cgt Arg	tcc Ser	1313
	15	ttc Phe 330	ctt Leu	gat Asp	cgg Arg	atg Met	ctc Leu 335	aag Lys	gca Ala	cac His	gag Glu	cgt Arg 340	aag Lys	ttg Leu	agc Ser	tcg Ser	gtg Val 345	1361
	[^] 20	gta Val	gag Glu	acg Thr	tac Tyr	aca Thr 350	cat His	aac Asn	gtc Val	gag Glu	aag Lys 355	cat His	gtg Val	cct Pro	att Ile	cac His 360	cct Pro	1409
سر	1	gaa Glu	tac Tyr	gtt Val	gcc Ala 365	tct Ser	att Ile	ttg Leu	aac Asn	gag Glu 370	ctg Leu	gcg Ala	gat Asp	aag Lys	gat Asp 375	gcg Ala	gtg Val	1457
	25	ttt Phe	act Thr	gtg Val 380	gat Asp	acc Thr	ggc Gly	atg Met	tgc Cys 385	aat Asn	gtg Val	tgg Trp	cat His	gcg Ala 390	agg Arg	tac Tyr	atc Ile	1505
	30	gag Glu	aat Asn 395	ccg Pro	gag Glu	gga Gly	acg Thr	cgc Arg 400	gac Asp	ttt Phe	gtg Val	ggt Gly	tca Ser 405	ttc Phe	cgc Arg	cac His	ggc Gly	1553
	35	acg Thr 410	atg Met	gct Ala	aat Asn	gcg Ala	ttg Leu 415	cct. Pro	cat His	gcg Ala	att Ile	ggt Gly 420	gcg Ala	caa Gln	agt Ser	gtt Val	gat Asp 425	1601
·	40	cga Arg	aac Asn	cgc Arg	cag Gln	gtg Val 430	atc Ile	gcg Ala	atg Met	tgt Cys	ggc Gly 435	gat Asp	ggt Gly	ggt Gly	ttg Leu	ggc Gly 440	atg Met	1649
/ **		ctg Leu	ctg Leu	ggt Gly	gag Glu 445	ctt Leu	ctg Leu	acc Thr	gtt Val	aag Lys 450	ctg Leu	cac His	caa Gln	ctt Leu	ccg Pro 455	ctg Leu	aag Lys	1697
	45	gct Ala	gtg Val	gtg Val 460	ttt Phe	aac Asn	aac Asn	agt Ser	tct Ser 465	ttg Leu	ggc Gly	atg Met	gtg Val	aag Lys 470	ttg Leu	gag Glu	atg Met	1745
	50	ctc Leu	gtg Val 475	gag Glu	gga Gly	cag Gln	cca Pro	gaa Glu 480	ttt Phe	ggt Gly	act Thr	gac Asp	cat His 485	gag Glu	gaa Glu	gtg Val	aat Asn	1793
	55	ttc Phe 490	gca Ala	gag Glu	att Ile	gcg Ala	gcg Ala 495	gct Ala	gcg Ala	ggt Gly	atc Ile	aaa Lys 500	tcg Ser	gta Val	cgc Arg	atc Ile	acc Thr 505	1841
		gat Asp	ccg Pro	aag Lys	aaa Lys	gtt Val 510	cgc Arg	gag Glu	cag Gln	cta Leu	gct Ala 515	gag Glu	gca Ala	ttg Leu	gca Ala	tat Tyr 520	cct Pro	1889

	5				ctg Leu 525													1937
		cca Pro	cca Pro	acc Thr 540	atc Ile	acg Thr	tgg Trp	gaa Glu	cag Gln 545	gtc Val	atg Met	gga Gly	ttc Phe	agc Ser 550	aag Lys	gcg Ala	gcc Ala	1985
	10																gcc Ala	2033
	15				ata Ile							tgat	tgati	tga 1	tacad	cctg	et	2083
,		gtt	ctca	ttg a	accg	cgago	cg ct	ttaad	ctgc	c aad	catt	cca	ggat	tggca	agc 1	tcac	gccggt	2143
	20	gcc	catga	aga 1	ttgc	cct			•					-				2160
	25	<21 <21	0> 2 1> 5' 2> PI 3> Co	RT	ebact	teri	ım gl	Lutar	nicum	n								
	30		0> 2 Ala	His	Ser	Tyr 5	Ala	.Glu	Gln	Leu	Ile 10	Asp	Thr	Leu	Glu	Ala 15	Gln	
		Gly	Val	Lys	Arg 20		Tyr ·	Gly	Leu	Val 25	Gly	Asp	Ser	Leu	Asn 30		Ile	
	35	Val	Asp	Ala 35	Val	Arg	Gln	Ser	Asp 40	Ile	Glu	Trp	Val	His 45	Val	Arg	Asn	
	40	Glu	Glu 50	Ala	Ala	Ala	Phe	Ala 55	Ala	Gly	Ala	Glu	Ser 60	Leu	Ile	Thr	Gly	
X	40	Glu 65	Leu	Ala	Val	Cys	Ala 70	Ala	Ser	Cys	Gly	Pro 75	Gly	Asn	Thr	His	Leu 80	
	45	Ile	Gln	Gly	Leu	Tyr 85	Asp	Ser	His	Arg	Asn 90	Gly	Ala	Lys	Val	Leu 95	Ala	
		Ile	Ala	Ser	His 100	Ile	Pro	Ser	Ala	Gln 105	Ile	Gly	Ser	Thr	Phe 110	Phe	Gln	
	50	Glu	Thr	His 115	Pro	Glu	Ile	Leu	Phe 120	Lys	Glu	Cys	Ser	Gly 125	Tyr	Cys	Glu	
	55	Met	Val 130	Asn	Gly	Gly	Glu	Gln 135	Gly	Glu	Arg	Ile	Leu 140	His	His	Ala	Ile	
		Gln	Ser	Thr	Met	Ala	Gly	Lys	Gly	Val	Ser	Val	Val	Val	Ile	Pro	Gly	

		Asp	Ile	Ala	Lys	Glu 165	Asp	Ala	Gly	Asp	Gly 170	Thr	Tyr	Ser	Asn	Ser 175	Thr
	5	Ile	Ser	Ser	Gly 180	Thr	Pro	Val	Val	Phe 185	Pro	Asp	Pro	Thr	Glu 190	Ala	Ala
		Ala	Leu	Val 195	Glu	Ala	Ile	Asn	Asn 200	Ala	Lys	Ser	Val	Thr 205	Leu	Phe	Cys
	10	Gly	Ala 210	Gly	Val	Lys	Asn	Ala 215	Arg	Ala	Gln	Val	Leu 220	Glu	Leu	Ala	Glu
	15	Lys 225	Ile	Lys	Ser	Pro	Ile 230	Gly	His	Ala	Leu	Gly 235	Gly	Lys	Gln	Tyr	Ile 240
	10	Gln	His	Glu	Asn	Pro 245	Phe	Glu	Val	Gly	Met 250	Ser	Gly	Leu	Leu	Gly 255	Tyr
	20	Gly	Ala	Cys	Val 260	Asp	Ala	Ser	Asn	Glu 265	Ala	Asp	Leu	Leu	Ile 270	Leu	Leu
		Gly	Thr	Asp 275	Phe	Pro	Tyr	Ser	Asp 280	Phe	Leu	Pro	Lys	Asp 285	Asn	Val	Ala
	25 .	Gln	Val 290	Asp	Ile	Asn	Gly	Ala 295	His	Ile	Gly	Arg	Arg 300	Thr	Thr	Val	Lys
	30	Tyr 305	Pro	Val	Thr		Asp 310	Val	Ala	Ala	Thr	Ile 315	Glu	Asn	Ile	Leu	Pro 320
	30	His	Val	Lys	Glu	Lys 325	Thr	Asp	Arg	Ser	Phe 330	Leu	Asp	Arg	Met	Leu 335	Lys
	35	Ala	His	Glu	Arg 340	Lys	Leu	Ser	Ser	Val 345	Val	Glu	Thr	Tyr	Thr 350	His	Asn
		Val	Glu	Lys 355	His	Val	Pro	Ile	His 360	Pro	Glu	Tyr	Val	Ala 365	Ser	Ile	Leu
*	40	Asn	Glu 370	Leu	Ala	Asp	Lys	Asp 375	Ala	Val	Phe	Thr	Val 380	Asp	Thr	Gly	Met
	45	Cys 385	Asn	Val	Trp	His	Ala 390	Arg	Tyr	Ile	Glu	Asn 395	Pro	Glu	Gly	Thr	Arg 400
	10	Asp	Phe	Val	Gly	Ser 405	Phe	Arg	His	Gly	Thr 410	Met	Ala	Asn	Ala	Leu 415	Pro
	50	His	Ala	Ile	Gly 420	Ala	Gln	Ser	Val	Asp 425	Arg	Asn	Arg	Gln	Val 430	Ile	Ala
		Met	Cys	Gly 435	Asp	Gly	Gly	Leu	Gly 440	Met	Leu	Leu	Gly	Glu 445	Leu	Leu	Thr
	55	Val	Lys 450	Leu	His	Gln	Leu	Pro 455	Leu	Lys	Ala	Val	Val 460	Phe	Asn	Asn	Ser
		Ser 465	Leu	Gly	Met	Val	Lys 470	Leu	Glu	Met	Leu	Val 475	Glu	Gly	Gln	Pro	Glu 480

```
Phe Gly Thr Asp His Glu Glu Val Asn Phe Ala Glu Ile Ala Ala Ala
                     485
                                          490
 5
     Ala Gly Ile Lys Ser Val Arg Ile Thr Asp Pro Lys Lys Val Arg Glu
                 500
                                      505
     Gln Leu Ala Glu Ala Leu Ala Tyr Pro Gly Pro Val Leu Ile Asp Ile
10
     Val Thr Asp Pro Asn Ala Leu Ser Ile Pro Pro Thr Ile Thr Trp Glu
         530
                                                  540
     Gln Val Met Gly Phe Ser Lys Ala Ala Thr Arg Thr Val Phe Gly Gly
15
     Gly Val Gly Ala Met Ile Asp Leu Ala Arg Ser Asn Ile Arg Asn Ile
                     565
                                         570
20
     Pro Thr Pro
25
     <210> 3
     <211> 875
     <212> DNA
     <213> Corynebacterium glutamicum
30
     <400> 3
     tgcgagatgg tgaatggtgg tgagcagggt gaacgcattt tgcatcacgc gattcagtcc 60
     accatggcgg gtaaaggtgt gtcggtggta gtgattcctg gtgatatcgc taaggaagac 120
     gcaggtgacg gtacttattc caattccact atttcttctg gcactcctgt ggtgttcccg 180
     gatectactg aggetgeage getggtggag gegattaaca aegetaagte tgteaetttg 240
35
     ttctgcggtg cgggcgtgaa gaatgctcgc gcgcaggtgt tggagttggc ggagaagatt 300
     aaatcaccga tcgggcatgc gctgggtggt aagcagtaca tccagcatga gaatccgttt 360
     gaggtcggca tgtctggcct gcttggttac ggcgcctgcg tggatgcgtc caatgaggcg 420
     gatctgctga ttctattggg tacggatttc ccttattctg atttccttcc taaagacaac 480
     gttgcccagg tggatatcaa cggtgcgcac attggtcgac gtaccacggt gaagtatccg 540
40
     gtgaccggtg atgttgctgc aacaatcgaa aatattttgc ctcatgtgaa ggaaaaaca 600
     gatcgttcct tccttgatcg gatgctcaag gcacacgagc gtaagttgag ctcggtggta 660
     gagacgtaca cacataacgt cgagaagcat gtgcctattc accctgaata cgttgcctct 720
     attttgaacg agctggcgga taaggatgcg gtgtttactg tggataccgg catgtgcaat 780
     gtgtggcatg cgaggtacat cgagaatccg gagggaacgc gcgactttgt gggttcattc 840
45
     cgccacggca cgatggctaa tgcgttgcct catgc
                                                                        875
     <210> 4
     <211> 3248
50
     <212> DNA
     <213> Corynebacterium glutamicum
     <220>
     <221> CDS
55
     <222> (802)..(2538)
     <400> 4
     gctctcgcag caacaagagc ccacgcagtt ggagcaaacg cagcaccaag tgaagcgatt 60
```

		ccgaaaatgo	tcaagcccat	gaggaacato	cggcggtggc	cgattttgtc a	acccaaagtg	120
		ccggtaccca	aaagaaggcc	cgccatgago	aggggatatg	cgttgatgat	ccacaacgct	180
	5	tgggtttcgg	tggctgcgag	ctgttcacgo	agcagaggga	gtgcggtgta	gagaatcgag	240
		ttgtctacac	cgatcagaaa	gagaccacco	g ctgataacgg	cgaggaaagc (ccaacgttgg	300
	10	gttttcgtag	gegettgege	ctgtaaggtt	tctgaagtca	tggatcgtaa d	ctgtaacgaa	360
		tggtcggtac	agttacaact	cttttgttgg	, tgttttagac	cacggcgctg t	tgtggcgatt	420
		taagacgtcg	gaaatcgtag	gggactgtca	gcgtgggtcg	ggttctttga 🤉	ggcgcttaga	480
•	15	ggcgattctg	tgaggtcact	ttttgtgggg	, tcggggtcta	aatttggcca	gttttcgagg	540
		cgaccagaca	ggcgtgccca	cgatgtttaa	ataggcgatc	ggtgggcatc t	tgtgtttggt	600
	20	ttcgacgggc	: tgaaaccaaa	ccagactgcc	cagcaacgac	ggaaatccca a	aaagtgggca	660
<u>ب</u>		tccctgtttc	gtaccgagta	cccacccggg	g cctgaaact _c c	cctggcaggc q	gggcgaagcg	720
		tggcaacaac	: tggaatttaa	gagcacaatt	gaagtcgcac	caagttaggc a	aacacaatag	780
	25	ccataacgtt	gaggagttca			gca gaa caa Ala Glu Gln		831
	30					tat ggt ttg Tyr Gly Leu		879
	35					caa tca gat Gln Ser Asp 40		927
	4.0	Trp Val Hi				ttt gca gcc Phe Ala Ala 55		975
' R')	40					gct gct tct Ala Ala Ser 70		1023
	45		n Thr His L			gat tcg cat Asp Ser His		1071
	50					ccg agt gcc Pro Ser Ala		1119
	55					att ttg ttt Ile Leu Phe 120		1167
		tgc tct gc Cys Ser Gl 12	y Tyr Cys G	ag atg gtg lu Met Val 130	aat ggt ggt Asn Gly Gly	gag cag ggt Glu Gln Gly 135	gaa cgc Glu Arg	1215

		att Ile	ttg Leu 140	cat His	cac His	gcg Ala	att Ile	cag Gln 145	tcc Ser	acc Thr	atg Met	gcg Ala	ggt Gly 150	aaa Lys	ggt Gly	gtg Val	tcg Ser	1263
	5	gtg Val 155	gta Val	gtg Val	att Ile	cct Pro	ggt Gly 160	gat Asp	atc Ile	gct Ala	aag Lys	gaa Glu 165	gac Asp	gca Ala	ggt Gly	gac Asp	ggt Gly 170	1311
	10	act Thr	tat Tyr	tcc Ser	aat Asn	tcc Ser 175	act Thr	att Ile	tct Ser	tct Ser	ggc Gly 180	act Thr	cct Pro	gtg Val	gtg Val	ttc Phe 185	ccg Pro	1359
	15	gat Asp	cct Pro	act Thr	gag Glu 190	gct Ala	gca Ala	gcg Ala	ctg Leu	gtg Val 195	gag Glu	gcg Ala	att Ile	aac Asn	aac Asn 200	gct Ala	aag Lys	1407
	\20 ⁻	tct Ser	gtc Val	act Thr 205	Leu	ttc Phe	Cys	ggt Gly	gcg Ala 210	ggc Gly	gtg Val	aag Lys	aat Asn	gct Ala 215	cgc Arg	gcg Ala	cag Gln	1455
>>		gtg Val	ttg Leu 220	gag Glu	ttg Leu	gcg Ala	gag Glu	aag Lys 225	att Ile	aaa Lys	tca Ser	ccg Pro	atc Ile 230	Gly	cat His	gcg Ala	ctg Leu	. 1503
	25	ggt Gly 235	ggt Gly	aag Lys	cag Gln	tac Tyr	atc Ile 240	.cag Gln	cat His	gag Glu	aat Asn	ccg Pro 245	ttt Phe	gag Glu	gtc Val	ggc Gly	atg Met 250	1551
	30	tct Ser	ggc Gly	ctg Leu	Leu	ggt Gly 255	tac Tyr	ggc Gly	gcc Ala	tgc Cys	gtg Val 260	gat Asp	gcg Ala	tcc Ser	aat Asn	gag Glu 265	gcg Ala	1599
	35	gat Asp	ctg Leu	ctg Leu	att Ile 270	cta Leu	ttg Leu	ggt Gly	acg Thr	gat Asp 275	ttc Phe	cct Pro	tat Tyr	tct Ser	gat Asp 280	ttc Phe	ctt Leu	1647
	40	cct Pro	aaa Lys	gac Asp 285	aac Asn	gtt Val	gcc Ala	Gln	gtg Val 290	gat Asp	atc Ile	aac Asn	ggt Gly	gcg Ala 295	cac His	att Ile	ggt Gly	1695
)	cga Arg	cgt Arg 300	acc Thr	acg Thr	gtg Val	aag Lys	tat Tyr 305	ccg Pro	gtg Val	acc Thr	ggt Gly	gat Asp 310	gtt Val	gct Ala	gca Ala	aca Thr	1743
	45	atc Ile 315	gaa Glu	aat Asn	att Ile	ttg Leu	cct Pro 320	cat His	gtg Val	aag Lys	gaa Glu	aaa Lys 325	aca Thr	gat Asp	cgt Arg	tcc Ser	ttc Phe 330	1791
	50	ctt Leu	gat Asp	cgg Arg	atg Met	ctc Leu 335	aag Lys	gca Ala	cac His	gag Glu	cgt Arg 340	aag Lys	ttg Leu	agc Ser	tcg Ser	gtg Val 345	gta Val	1839
	55	gag Glu	acg Thr	tac Tyr	aca Thr 350	cat His	aac Asn	gtc Val	gag Glu	aag Lys 355	cat His	gtg Val	cct Pro	att Ile	cac His 360	cct Pro	gaa Glu	1887
		tac Tyr	gtt Val	gcc Ala 365	tct Ser	att Ile	ttg Leu	Asn	gag Glu 370	ctg Leu	gcg Ala	gat Asp	aag Lys	gat Asp 375	gcg Ala	gtg Val	ttt Phe	1935

	5	act Thr	gtg Val 380	Asp	acc Thr	ggc	atg Met	tgc Cys 385	aat Asn	gtg Val	tgg Trp	cat His	gcg Ala 390	agg Arg	tac Tyr	atc	gag Glu	1983	
		aat Asn 395	Pro	gag Glu	gga Gly	acg Thr	cgc Arg 400	gac Asp	ttt Phe	gtg Val	ggt Gly	tca Ser 405	ttc Phe	cgc Arg	cac His	ggc	acg Thr 410	2031	
	10	atg Met	gct Ala	aat Asn	gcg Ala	ttg Leu 415	cct Pro	cat His	gcg Ala	att Ile	ggt Gly 420	gcg Ala	caa Gln	agt Ser	gtt Val	gat Asp 425	cga Arg	2079	
	15	aac Asn	cgc Arg	cag Gln	gtg Val 430	atc Ile	gcg Ala	atg Met	tgt Cys	ggc Gly 435	gat Asp	ggt Gly	ggt Gly	ttg Leu	ggc Gly 440	atg Met	ctg Leu	2127	
	20	ctg Leu	ggt Gly	gag Glu 445	ctt Leu	ctg Leu	acc Thr	gtt Val	aag Lys 450	ctg Leu	cac His	caa Gln	ctt Leu	ccg Pro 455	ctg Leu	aag Lys	gct Ala	2175	
	25	gtg Val	gtg Val 460	ttt Phe	aac Asn	aac Asn	agt Ser	tct Ser 465	ttg Leu	ggc Gly	atg Met	gtg Val	aag Lys 470	ttg Leu	gag Glu	atg Met	ctc Leu	2223	
		gtg Val 475	gag Glu	gga Gly	cag Gln	cca Pro	gaa Glu 480	ttt Phe	ggt Gly	act Thr	gac Asp	cat His 485	gag Glu	gaa Glu	gtg Val	aat Asn	ttc Phe 490	2271	
•	.30	gca Ala	gag Glu	att Ile	gcg Ala	gcg Ala 495	gct Ala	gcg Ala	ggt Gly	atc Ile	aaa Lys 500	tcg Ser	gta Val	cgc Arg	atc Ile	acc Thr 505	gat Asp	2319	
. •	35	ccg Pro	aag Lys	aaa Lys	gtt Val 510	cgc Arg	gag Glu	cag Gln	cta Leu	gct Ala 515	gag Glu	gca Ala	ttg Leu	gca Ala	tat Tyr 520	cct Pro	gga Gly	2367	
	40	cct Pro	gta Val	ctg Leu 525	atc Ile	gat Asp	atc Ile	gtc Val	acg Thr 530	gat Asp	cct Pro	aat Asn	gcg Ala	ctg Leu 535	tcg Ser	atc Ile	cca Pro	2415	
, •	45	cca Pro	acc Thr 540	atc Ile	acg Thr	tgg Trp	gaa Glu	cag Gln 545	gtc Val	atg Met	gga Gly	ttc Phe	agc Ser 550	aag Lys	gcg Ala	gcc Ala	acc Thr	2463	
	.0	cga Arg 555	acc Thr	gtc Val	ttt Phe	ggt Gly	gga Gly 560	gga Gly	gta Val	gga Gly	gcg Ala	atg Met 565	atc Ile	gat Asp	ctg Leu	gcc Ala	cgt Arg 570	2511	
	50	tcg Ser	aac Asn	ata Ile	Arg	aat Asn 575	att Ile	cct Pro	act Thr	cca Pro	tgat	gatt	ga t	acac	ctgo	et		2558	
	55	gtto	tcat	tg a	ccgc	gagc	g ct	taac	tgcc	aac	attt	cca	ggaț	ggca	gc t	cacg	ccggt	2618	
		gccc	atga	ga t	tgcc	ctgc	g to	cgca	tgtg	aaa	acgc	aca	aaat	catt	ga a	attg	cgcag	2678	
		atgo	aggt	cg a	cgcc	ggtg	c cc	gagg	gato	acc	tgcg	caa	ccat	tggc	ga g	gcgg	aaatt	2738	

	tttgcc	ggcg	cagg	tttta	ac g	gaca	tctt	t at	tgca	tatc	cgc	tgta	tct	aacc	gatcat	2798
5	gcagtg	caac	gcct	gaaco	gc ga	atcc	ccgga	a ga	aatt	tcca	ttg	gcgt	gga	ttcg	gtagag	2858
J	atggcad	cagg	cgac	ggcgg	gg t	ttgc	ggga	a ga	tatc	aagg	ctc	tgat	tga	agtg	gattcg	2918
	ggacato	cgta	gaag	tggag	gt c	acgg	cgact	t gc	ttca	gaat	tga	gtca	gat	ccgc	gaggcg	2978
10	ctgggca	agca	ggta	tgcaç	gg a	gtgti	ttaci	t tt	tcct	gggc	att	ctta	tgg	cccg	ggaaat	3038
	ggtgag	cagg	cagca	agctç	ga t	gagci	ttca	g gc	tcta	aaca	aca	gcgt	cca	gcga	cttgct	3098
15	ggcggcd	ctga	cttc	tggcg	gg t	tcct	cgcc	g tc	tgcg	cagt	tta	caga	cgc	aatc	gatgag	3158
	atgcgad	ccag	gcgt	gtato	gt g	tttaa	acgat	t to	ccag	caga	tca	cctc	ggg	agca	tgcact	3218
	gagaago	cagg	tggc	aatga	ac go	gtgc	tgtci	t				-				3248
2.0	<210> 5	5														
	<211> 5	579							•	- ;						
25	<213> 0	Coryn	ebact	teriu	ım gi	lutar	micur	n								
	<400> 5 Met Ala		Ser	Tyr 5	Ala	Glu	Gln	Leu	Ile 10	Asp	Thr	Leu	Glu	Ala 15	Gln	
30	Gly Val	Lys	Arg 20	Ile	Tyr	Gly	Leu	Val 25	Gly	Asp	Ser	Leu	Asn 30		Ile	
35	Val Asp	Ala 35		Arg	Gln	Ser	Asp 40	Ile	Glu	Trp	Val	His 45	Val	Arg	Asn	
	Glu Glu 50		Ala	Ala	Phe	Ala 55	Ala	Gly	Ala	Glu	Ser 60	Leu	Ile	Thr	Gly	
40	Glu Leu 65	ı Ala	Val	Cys	Ala 70	Ala	Ser	Cys	Gly	Pro 75	Gly	Asn	Thr	His	Leu 80	
	Ile Glr	ı Gly	Leu	Tyr 85	Asp		His			Gly	Ala	Lys	Val	Leu 95	Ala	
45	Ile Ala	Ser	His 100	Ile	Pro	Ser	Ala	Gln 105	Ile	Gly	Ser	Thr	Phe 110	Phe	Gln	
50	Glu Thr	His 115		Glu	Ile	Leu	Phe 120	Lys	Glu	Cys	Ser	Gly 125	Tyr	Cys	Glu	
	Met Val		Gly	Gly	Glu	Gln 135	Gly	Glu	Arg	Ile	Leu 140	His	His	Ala	Ile	
55	Gln Ser 145	Thr	Met	Ala	Gly 150	Lys	Gly	Val	Ser	Val 155	Val	Val	Ile	Pro	Gly 160	
	Asp Ile	e Ala	Lys	Glu 165	Asp	Ala	Gly	Asp	Gly	Thr	Tyr	Ser	Asn	Ser	Thr	

		Ile	Ser	Ser	Gly 180	Thr	Pro	Val	Val	Phe 185	Pro	Asp	Pro	Thr	Glu 190	Ala	Ala
	5	Ala	Leu	Val 195	Glu	Ala	Ile	Asn	Asn 200	Ala	Lys	Ser	Val	Thr 205	Leu	Phe	Cys
		Gly	Ala 210	Gly	Val	Lys	Asn	Ala 215	Arg	Ala	Gln	Val	Leu 220	Glu	Leu	Ala	Glu
	10	Lys 225	Ile	Lys	Ser	Pro	Ile 230	Gly	His	Ala	Leu	Gly 235	Gly	Lys	Gln	Tyr	Ile 240
	15	Gln	His	Glu	Asn	Pro 245	Phe	Glu	Val	Gly	Met 250	Ser	Gly	Leu	Leu	Gly 255	Tyr
		Gly	Ala	Cys	Val 260	Asp	Ala	Ser	Asn	Glu 265	Ala	Asp	Leu	Leu	Ile 270	Leu	Leu
15	20	Gly	Thr	Asp 275	Phe	Pro	Tyr	Ser	Asp 280	Phe	Leu	Pro	Lys	Asp 285	Asn	Val	Ala
	٠	Gln	Val 290	Asp	Ile	Asn	Gly	Ala 295	His	Ile	Gly	Arg	Arg 300	Thr	Thr	Val	Lys
	25	Tyr 305	Pro	Val	Thr	Gly	Asp 310	Val	Ala	Ala	Thr	Ile 315	Glu	Asn	Ile	Leu	Pro 320
	30	His	Val	Lys	Glu	Lys 325	Thr	Asp	Arg	Ser	Phe 330	Leu	Asp	Arg	Met	Leu 335	Lys
		Ala	His	Glu	Arg 340	Lys	Leu	Ser	Ser	Val 345	Val	Glu	Thr	Tyr	Thr 350	His	Asn
	35	Val	Glu	Lys 355	His	Val	Pro	Ile	His 360		Glu	Tyr	Val	Ala 365	Ser	Ile	Leu
		Asn.	Glu 370	Leu	Ala	Asp	Lys	Asp 375		Val	Phe	Thr	Val 380	Asp	Thr	Gly	Met
	40	Cys 385	Asn	Val	Trp	His	Ala 390	Arg	Tyr	Ile	Glu	Asn 395	Pro	Glu	Gly	Thr	Arg 400
	45	Asp	Phe	Val	Gly	Ser 405	Phe	Arg	His	Gly	Thr 410	Met	Ala	Asn	Ala	Leu 415	Pro
		His	Ala	Ile	Gly 420	Ala	Gln	Ser	Val	Asp 425	Arg	Asn	Arg	Gln	Val 430	Ile	Ala
	50	Met	Cys	Gly 435	Asp	Gly	Gly	Leu	Gly 440	Met	Leu	Leu	Gly	Glu 445	Leu	Leu	Thr
		Val	Lys 450	Leu	His	Gln	Leu	Pro 455	Leu	Lys	Ala	Val	Val 460	Phe	Asn	Asn	Ser
	55	Ser 465	Leu	Gly	Met	Val	Lys 470	Leu	Glu	Met	Leu	Val 475	Glu	Gly	Gln	Pro	Glu 480
		Phe	Gly	Thr	Asp	His 485	Glu	Glu	Val	Asn	Phe 490	Ala	Glu	Ile	Ala	Ala 495	Ala

<212> DNA

```
Ala Gly Ile Lys Ser Val Arg Ile Thr Asp Pro Lys Lys Val Arg Glu
                                      505
 5
     Gln Leu Ala Glu Ala Leu Ala Tyr Pro Gly Pro Val Leu Ile Asp Ile
             515
                                  520
     Val Thr Asp Pro Asn Ala Leu Ser Ile Pro Pro Thr Ile Thr Trp Glu
                              535
                                                  540
10
     Gln Val Met Gly Phe Ser Lys Ala Ala Thr Arg Thr Val Phe Gly Gly
     545
                                              555
     Gly Val Gly Ala Met Ile Asp Leu Ala Arg Ser Asn Ile Arg Asn Ile
15
                      565
                                          570
     Pro Thr Pro
20
     <210> 6
     <211> 475
     <212> DNA
    . <213> Corynebacterium glutamicum
     <400> 6
     gctctcgcag caacaagagc ccacgcagtt ggagcaaacg cagcaccaag tgaagcgatt 60
     ccgaaaatgc tcaagcccat gaggaacatc cggcggtggc cgattttgtc acccaaagtg 120
30
     ccggtaccca aaagaaggce cgccatgagc aggggatatg cgttgatgat ccacaacgct 180
     tgggtttcgg tggctgcgag ctgttcacgc agcagaggga gtgcggtgta gagaatcgag 240
     ttgtctacac cgatcagaaa gagaccaccg ctgataacgg cgaggaaagc ccaacgttgg 300
     gttttcgtag gcgcttgcgc ctgtaaggtt tctgaagtca tggatcgtaa ctgtaacgaa 360
     tggtcggtac agttacaact cttttgttgg tgttttagac cacggcgctg tgtggcgatt 420
35
     taagacgtcg gaaatcgtag gggactgtca gcgtgggtcg ggttctttga ggcgc
     <210> 7
     <211> 613
40
     <212> DNA
     <213> Corynebacterium glutamicum
     <400> 7
     gcgtccgcat gtgaaaacgc acaaaatcat tgaaattgcg cagatqcagg tcgacqccgg 60
45
     tgcccgaggg atcacctgcg caaccattgg cgaggcggaa atttttgccg gcgcaggttt 120
     tacggacatc tttattgcat atccgctgta tctaaccgat catgcagtgc aacgcctgaa 180
     cgcgatcccc ggagaaattt ccattggcgt ggattcggta gagatggcac aggcgacggc 240
     gggtttgcgg gaagatatca aggctctgat tgaagtggat tcgggacatc gtagaagtgg 300
     agtcacggcg actgcttcag aattgagtca gatccgcgag gcgctgggca gcaggtatgc 360
50
     aggagtgttt acttttcctg ggcattctta tggcccggga aatggtgagc aggcagcagc 420
     tgatgagett caggetetaa acaacagegt ccagegactt getggeggee tgacttetgg 480
     eggtteeteg cegtetgege agtttacaga egcaategat gagatgegae caggegtgta 540
     tgtgtttaac gattcccagc agatcacctc gggagcatgc actgagaagc aggtggcaat 600
     gacggtgctg tct
                                                                        613
55
     <210> 8
     <211> 20
```

```
<213> Künstliche Sequenz
     <220>
     <223> Beschreibung der künstlichen Sequenz: Primer
 5
           pox-del1
     <400> 8
     atgaggaaca tccggcggtg
                                                                          20
.10
     <210> 9
     <211> 48
     <212> DNA
     <213> Künstliche Sequenz
15
     <220>
     <223> Beschreibung der künstlichen Sequenz: Primer
           pox-del2
     <400> 9
     gagaacagca ggagtatcaa tcatcactga actcctcaac gttatggc
                                                                          48
     <210> 10
25
     <211> 26
     <212> DNA
     <213> Künstliche Sequenz
30
     <223> Beschreibung der künstlichen Sequenz: Primer
           pox-del3
     <400> 10
     tgatgattga tacacctgct gttctc
                                                                          26
35
     <210> 11
     <211> 20
     <212> DNA
40
     <213> Künstliche Sequenz
     <220>
     <223> Beschreibung der künstlichen Sequenz: Primer
           pox-del4
45
     <400> 11
     tcattgccac ctgcttctca
                                                                         20
50
     <210> 12
     <211> 1422
     <212> DNA
     <213> Corynebacterium glutamicum
55
     <220>
     <221> misc feature
     <222> (1)..(1422)
     <223> Sequenz des delta poxB-Allels
```

```
<220>
     <221> misc feature
     <222> (723)..(724)
     <223> Deletion der Kodierregion des poxB-Gens
 5
     atgaggaaca tccggcggtg gccgattttg tcacccaaag tgccggtacc caaaagaagg 60
     cccgccatga gcaggggata tgcgttgatg atccacaacg cttgggtttc ggtggctgcg 120
     agetytteae geageagagg gagtyegyty tagagaateg agttytetae aeegateaga 180
10
     aagagaccac cgctgataac ggcgaggaaa gcccaacgtt gggttttcgt aggcgcttgc 240
     gcctgtaagg tttctgaagt catggatcgt aactgtaacg aatggtcggt acagttacaa 300
     ctcttttgtt ggtgttttag accacggcgc tgtgtggcga tttaagacgt cggaaatcgt 360
     aggggactgt cagcgtgggt cgggttcttt gaggcgctta gaggcgattc tgtgaggtca 420
     ctttttgtgg ggtcggggtc taaatttggc cagttttcga ggcgaccaga caggcgtgcc 480
15
     cacgatgttt aaataggcga tcggtgggca tctgtgtttg gtttcgacgg gctgaaacca 540
     aaccagactg cccagcaacg acggaaatcc caaaagtggg catccctgtt tggtaccgag 600
     tacccacccg ggcctgaaac tccctggcag gcgggcgaag cgtggcaaca actggaattt 660
     aagagcacaa ttgaagtcgc accaagttag gcaacacaat agccataaag ttgaggagtt 720
     cagtgatgat tgatacacct gctgttctca ttgaccgcga gcgcttaact gccaacattt 780
     ccaggatggc agctcacgcc ggtgcccatg agattgccct gcgtccgcat gtgaaaacgc 840
     acaaaatcat tgaaattgcg cagatgcagg tcgacgccgg tgcccgaggg atcacctgcg 900
     caaccattgg cgaggcggaa atttttgccg gcgcaggttt tacggacatc tttattgcat 960
     atccgctgta tctaaccgat catgcagtgc aacgcctgaa cgcgatcccc ggagaaattt 1020
     ccattggcgt ggattcggta gagatggcac aggcgacggc gggtttgcgg gaagatatca 1080
25
     aggetetgat tgaagtggat tegggacate gtagaagtgg agteaeggeg actgetteag 1140
     aattgagtca gatccgcgag gcgctgggca gcaggtatgc aggagtgttt acttttcctg 1200
     ggcattctta tggcccggga aatggtgagc aggcagcagc tgatgagctt caggctctaa 1260
     acaacagcgt ccagcgactt gctggcggcc tgacttctgg cggttcctcg ccgtctgcgc 1320
     agtttacaga cgcaatcgat gagatgcgac caggcgtgta tgtgtttaac gattcccagc 1380
30
     agatcacctc gggagcatgc actgagaagc aggtggcaat ga
                                                                       1422
```


Patentansprüche

5

10

20

- 1. Verfahren zur fermentativen Herstellung von D-Pantothensäure d a d u r c h g e k e n n z e i c h n e t, daß man folgende Schritte durchführt:
 - a) Fermentation der D-Pantothensäure produzierenden coryneformen Bakterien, in denen zumindest die für die Pyruvat-Oxidase (EC 1.2.2.2) kodierende Nucleotidsequenz (poxB) abgeschwächt, insbesondere ausgeschaltet wird;
 - b) Anreicherung der D-Pantothensäure im Medium oder in den Zellen der Bakterien; und
 - c) Isolierung der produzierten D-Pantothensäure.
- Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß man zur Erzielung der Abschwächung das Verfahren der Insertion insbesondere mittels des Vektors pCR2.1poxBint, dargestellt in Figur 1 und hinterlegt in E. coli als DSM 13114, verwendet.
 - 3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß man zur Erzielung der Abschwächung das Verfahren der Deletion insbesondere mittels des Vektors pCRB1-poxBdel dargestellt in Figur 2, verwendet.
- 4. Verfahren gemäß Anspruch 1, d a d u r c h
 g e k e n n z e i c h n e t, daß man coryneforme
 Bakterien einsetzt, in denen man zusätzlich weitere
 Gene des Biosyntheseweges der D-Pantothensäure
 verstärkt.
- 5. Verfahren gemäß Anspruch 1, d a d u r c h
 g e k e n n z e i c h n e t, daß man coryneforme
 Bakterien einsetzt, in denen die Stoffwechselwege

10

15

25

zumindest teilweise ausgeschaltet sind, die die Bildung der D-Pantothensäure verringern.

- 6. Verfahren gemäß Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß man coryneforme Bakterien einsetzt, in denen man gleichzeitig das für die Ketopantoat-Hydroxymethyltransferase kodierende panB-Gen verstärkt.
- 7. Verfahren gemäß Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß man coryneforme Bakterien einsetzt, in denen man gleichzeitig das für die Pantothenat-Synthetase kodierende panC-Gen verstärkt.
- 8. Verfahren gemäß Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß man coryneforme Bakterien einsetzt, in denen man gleichzeitig das für die Acetohydroxysäure Isomeroreduktase kodierende ilvC-Gen verstärkt.
- Verfahren gemäß Anspruch 3, d a d u r c h
 g e k e n n z e i c h n e t, daß man coryneforme
 Bakterien einsetzt, in denen man gleichzeitig das für
 die Dihydroxysäure-Dehydratase kodierende ilvD-Gen
 verstärkt.
 - 10. Verfahren gemäß Anspruch 1 oder 4, d a d u r c h g e k e n n z e i c h n e t, daß man coryneforme Bakterien einsetzt, in denen man gleichzeitig das für die Phosphoenolpyruvat-Carboxykinase kodierende pck-Gen abschwächt.
- 11. Verfahren gemäß den Ansprüchen 5 bis 8, d a d u r c h g e k e n n z e i c h n e t, daß man die genannten Gene in coryneformen Bakterien verstärkt, die bereits D-Pantothensäure produzieren.

- 12. Verfahren gemäß den Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man coryneforme Bakterien einsetzt die bereits D-Pantothensäure produzieren, in denen man das pck Gen abschwächt.
- 5 13. Isoliertes Polynukleotid aus coryneformen Bakterien das stromaufwärts der SEQ ID No. 1 liegt, und in SEQ ID No. 6 dargestellt ist.
 - 14. Isoliertes Polynukleotid aus coryneformen Bakterien das stromabwärts der SEQ ID No. 1 liegt und in SEQ ID No. 7 dargestellt ist.
 - 15. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine Deletionsmutation des poxB-Gens dargestellt in SEQ ID No. 12.
- 16. Coryneforme Bakterien, die die in SEQ ID No. 12dargestellte Deletionsmutation tragen.

Zusammenfassung

10

Die Erfindung betrifft ein Verfahren zur Herstellung von D-Pantothensäure durch Fermentation coryneformer Bakterien, bei dem man Bakterien einsetzt, in denen man die für die Pyruvat-Oxidase (EC 1.2.2.2) kodierende Nucleotidsequenz (poxB-Gen) abschwächt, wobei man folgende Schritte ausführt:

- a) Fermentation der D-Pantothensäure produzierenden Bakterien, in denen zumindest das für Pyruvat-Oxidase kodierende Gen abgeschwächt wird;
- b) Anreicherung der D-Pantothensäure im Medium oder in den Zellen der Bakterien; und
- c) Isolieren der produzierten D-Pantothensäure.

Figur 1: Karte des Plasmids pCR2.1poxBint

20

Figur 2:

