MAR 1 2 2007

REPLACEMENT SHEET

11 Electrons between 16 and 20

Figure 1: Perspective view of the micropulse gun for a hollow beam in the TM_{020} mode. The inner conductor is not shown.

Figure 2: Schematic of rf gun operating in TM_{020} mode.

Figure 3: Schematic of micropulse gun for solid beam (TM_{010}) mode. A coaxial feed is used for rf input (not shown).

- 1 Secondary emission yield of GaP
- 2 Secondary emission yield of MgO

Figure 4: Secondary electron emission yield curve for GaP and MgO.

- 14 Emitting electrodes
- 11 Electron bunch
- 1 A back particle/electron
- 2 A center particle/electron
- 3 A front particle/electron

Figure 5. Schematic drawing of model used in theoretical analysis.

- ① Plot of normalized peak current density at steady state versus rf field.
- ② Plot of normalized electron bunch length versus rf field.

Figure 6: Steady-state current density and bunch length vs. rf field, all parameters are normalized.

- ① Plot of resonant electric field versus frequency for 0.5 cm gap
- 2 Plot of resonant electric field versus frequency for 1.0 cm gap
- 3 Plot of resonant electric field versus frequency for 1.5 cm gap
- 4 Plot of Kilpatrick breakdown electric field versus frequency.

Figure 7: Plot of resonant electric fields for $\alpha_0 = 0.453$ and various gap spacings. Also shown is the critical Kilpatrick electric field as a function of rf frequency.

1.3 GHz, xy plot

- ① Plot of electron distribution in the cavity at t = 0.335 ns.
- ② Plot of electron distribution in the cavity at t = 0.636 ns.
- ③ Plot of electron distribution in the cavity at t = 2.462 ns.
- 4 Plot of electron distribution in the cavity at t = 3.35 ns.

Figure 8: Series of time "snapshots" for a 1.3 GHz, d = 0.5 cm cavity using the two-dimensional PIC code with secondary emission. Note the rapid particle build-up and bunching by phase selection. Electrons traverse the horizontal axis. On the vertical axis, emission is limited to the region 0.25 to 0.32 cm.

Figure 12: Steady-state current density vs. rf frequency for cavity with $\alpha_0 = 0.453$ and gap lengths of ① 0.5 cm (solid line is a fit using $J_x = 0.008f^{3.15}$) and ② 1.0 cm (dashed line is a fit using $J_x = 0.03f^{3.1}$).

- ① Electron micro-pulse full width at half maximum.
- ② Electron micro-pulse full width at the base of the pulse.

Figure 13: Micro-pulse duration vs. frequency for $\alpha_0 = 0.453$.

- ① (solid square) Beam full width at different rf cycle.
- ② (open circle) Beam full width at half maximum at different rf cycle.

Figure 14: Micro-pulse width (as a fraction of the half-cycle) vs. rf cycle number near the output grid. The full beam pulse width decreases with time, and reaches a minimum at the fourth rf cycle. After saturation there is a slight increase in pulse-width due to space-charge effects.

Figure 16: ① Plot of the current density in kA/cm² (solid line) and ② the longitudinal electric field (dashed line) for the 6.4 GHz, 105 kV simulation.

Figure 43: Peak rf power in coaxial feed line for a hollow beam, d = 0.5 cm.

Figure 44: Peak rf power in coaxial feed line for a hollow beam, d = 1.0 cm.

Figure 46: Schematic drawing of a possible design for electrostatic focusing in the MPG.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.