

-1	Part One		
1	Wells fargo	7	
1.1	Programming	7	
1.2	Stochastic differential equation	8	
1.3	Numerical PDE	9	
1.4	Partial differential equation	9	
1.5	Linear algebra	10	
1.6	Monte Carlo method	11	
1.7	Statistics	11	
	Index	13	

Part One

1	Wells fargo	7
1.1	Programming	
1.2	Stochastic differential equation	
1.3	Numerical PDE	
1.4	Partial differential equation	
1.5	Linear algebra	
1.6	Monte Carlo method	
1.7	Statistics	
	Index 1	3

1.1 Programming

1) Given two integers n and k, return all possible combinations of k numbers out of 1, ...,n.

For example, If n = 4 and k = 2, a solution is:

[2,4], [3,4], [2,3], [1,2], [1,3], [1,4],

source: leet code 77

answer:

Can use recursive method, after join i, next time start from i+1 to n, till selected number equal to k, add to result.

source code can be found in leet code page 147.

2) Compute and return the square root of x.

source: note that only need to find the nearest integer, leet code 69, page 193

answer: hint: can use bisection and newton method to find the iterative solution, for the newton method, use $f(t) = t^2 - x$

3) find all the arbitrage based on the following currency rate list

For example:

[[dollar:yuan,6], [dollar:yen,30],[yuan:yen,5],[yen:dollar,1/50] [yen:won,1/2]] the arbitrage can be dollar to yuan, yuan to yen and yen to dollar:

source:

answer: hint:Use graph and if a product of a loop is not equal to 1, exits arbitrage

1.2 Stochastic differential equation

1) calculate : $P(w_{t+1} < 0 | w_t > 0)$

source:

answer:

See green book page 131. 2) what is ito formula:

source:

answer:

3) how to change the $\frac{X_t}{Y_t}$ to a martingale measure, assume that X_t and Y_t follows different ito process

source:

answer: hint: can use second order differential equation and let the dt term equal to 0

4)option pricing: calculate the second derivative according to K(strike price) in the equation $E(e^{-rt}(payoff))$

source:

answer:

- 5) A stochastic process, $\{W_t : 0 \le t \le \infty\}$, is a standard Brownian motion if:
- 1. $W_0 = 0$
- 2. It has continuous sample paths
- 3. It has independent, normally -distributed increments.
- 6) A stochastic process, $\{X_t : 0 \le t \le \infty\}$, is a martingale with respect to the filtration, f_t , and probability measure, P, if:
- 1) $E^P[|X_t|] < \infty$ for all $t \ge 0$
- 2) $E^p[X_{t+s}|F_t] = X_t$ for all t, s >= 0

1.3 Numerical PDE 9

7)Quadratic Variation Consider a partition of the time interval,[0,T] given by:

$$0 = t_0 < t_1 < t_2 < \dots < t_n = T$$

Let X_t be a Brownian motion and consider the sum of squared changes:

$$Q_n(T) := \sum_{i=1}^n [\Delta X_{t_i}]^2$$

where $\Delta X_{t_i} = X_{t_i} - X_{t_{i-1}}$

The quadratic variation of a stochastic process X_t , is equal to the limit of $Q_n(T)$ as $\Delta_t := max(t_i - t_{i-1}) \to 0$

1.3 Numerical PDE

1)Use fourier transformation to find if a numerical differential equation scheme is converge

source:

answer:

2)How to find a numerical scheme to a stochastic differential equation:

source:

answer: for the stochastic term dW_t , can use the monte carlo method to to find $dW_t = (W_{t_{i+1}} - W_{t_i})/(t_{i+1} - t_i)$?

3) Given an integer, write a function to determine if it is a power of two.

source:leet code 231

answer:hint: can use the bit operation for n and (n-1), in python: n&(n-1)

4)Bisection convergence rate, newton method convergence rate? how to get it?

source:

answer:

newton method is quadratic and bisection is linear since $\varepsilon_n/\varepsilon_{n-1} = 1/2$

1.4 Partial differential equation

1)Separate variables method: Solve $u_{tt} = u_t - u_x$

source:

answer:hint:use separate variables.

2) For the composite function f(g(x)), g(x) is one PDE equation solution, and also g(x) is the optimal solution for f(g(x)), find g(x)

source:

answer:not very clear question, need further discussion.

3)Some first order partial differential equation:

$$u_t + u_x = 0$$

source:

answer:hint:prepare all kinds of first order differential equation, homegeneous and non homegeneous

4) Wave equation:

$$u_{tt} = au_{xx}, x \in [0, 1], u(x, 0) = 1$$

what is solution for a>0 and a<0?

source:

answer:

1.5 Linear algebra

1) Calculate minimum polynomials of matrices

source:

answer:

2) Given a matrix A, find the A^{100}

source:

answer:hint:can use Jordan canonical form to find $A = UBU^{-1}$ where B is a diagonal matrix.

3) How the verify if a matrix is positive definite or not?

source:

answer:

- a)A matrix is positive definite if it's symmetric and all its eigenvalues are positive
- b)A matrix is positive definite if it's symmetric and all its pivots are positive.
- c)A matrix is positive definite if $x^T A x > 0$ for all vectors x 0.

- d)Hermitian matrix, leading principal submatrix is positive definite
- e)Hermitian matrix, $A = A^*A$ and A is convertible.
- 4)Calculate eigen values and eigen vectors of a matrix, how to make a matrix become upper triangular or lower triangular.

source:

answer: Prepare basic materials of linear algebra.

1.6 Monte Carlo method

1) How to generate random numbers of a distribution, given that we can generate a uniform random numbers.

source:

answer:Prepare monte carlo course materials. Inverse function method and accept rejection method, see green book page 184.

2) What is the convergent rate of monte carlo method:

source:

answer: for monte carlo method, $o(\frac{1}{\sqrt{n}})$, hint: central limit theorem

3) Variance reduction method:

source:

answer:hint:control variate, importance sampling,...,prepare materials

1.7 Statistics

1)Linear regression, how to define if a regression model is linear and why choose linear regression model.

source:

answer:

2) x is independent variable and y is dependent variable, \hat{y} is the linear regression model of x, find the correlation of y and \hat{y}

source:

answer:

the correlation of y and \hat{y} is same to the correlation of x and y, proof can be derived using definition.

3)X and Y are two iid exponential distribution, find the density of X+Y

source:

answer:

using the convolution method , $f(x+y) = \int_{-\infty}^{+infty} f_{X,Y}(x,z-x) dx$, the answer for the problem is $\frac{\lambda_1 \lambda_2}{\lambda_1 - \lambda_2} \exp^{-\lambda_2 Z}$

4)n bulbs, each is a iid exponential distribution, light up all the bulbs, x_1 is the time when the first bulb become dark, x_2 is the time when the second bulb become dark,..., x_m is the time when the mth bulb become dark. find the maximum log likelihood of λ based on the above observation.

source:

answer:

Note, should use the pdf not the cdf to deal with this problem, since x_i is the exact time the bulb dark. The answer is the mean of x_i . 5)X, Y are two different normal distribution, find the variance of $X\dot{Y}$

source:

answer:hint: calculate from the definition.

 $6)1,2,3x,x^2,5x$, the mean of the above numbers is 6, find the mode of them

source:

answer:hint: solve the one variable equation.

С	P		
Citation 8 Corollaries 10	Paragraphs of Text		
D	Several Equations 10 Single Line 10		
Definitions			
E	Remarks		
Examples 10 Equation and Text 10	T		
Paragraph of Text	Table 15 Theorems 9		
F	Several Equations 9 Single Line 9		
Figure	V		
L	Vocabulary		
Lists8Bullet Points8Descriptions and Definitions8Numbered List8			
N			
Notations 10			