LED物理世界对抗性样本

背景

主要贡献

- 提出了面向物理 LED 对抗样本的两阶段黑盒优化框架:利用 粒子群优化(PSO) 在简化空间中筛选关键 LED 子集,再用 协方差矩阵自适应进化策略(CMA-ES) 对子集内亮度 与 RGB 参数进行连续细调,实现了在高维、非凸、不可微的物理扰动空间中高效搜索。
- 设计了适应物理约束的连续优化方法:通过在实数域 [-6,6] 上搜索并使用 sigmoid 映射回 [0,1],既保持 CMA-ES 的统计自适应性,又确保 LED 参数满足真实物理可控范围。
- 提出了多任务自适应权重调节机制:在同时攻击检测器与分类器时,引入基于滑动窗口相关性的权重更新方法;当检测与副任务(可见度或分类器概率)出现负相关时自动提升惩罚权重,在协同时且副任务表现足够好时适度下调,实现了对抗效果与副任务约束的动态平衡。
- **实现了仿真—实物闭环验证流程**:基于 Blender 与 3D 重建快速搭建虚拟场景,得到最优 LED 配置后映射到真实硬件(WS2812B 阵列 + 控制器),在实际相机采集条件下验证了 仿真结果的可迁移性与攻击有效性。

Methods

设有M个可控 LED(编号 $j=1,\ldots,M$),每个 LED 的物理可控参数为亮度与 RGB 三通道,共 4 个连续量:

$$x_j = [b_j, r_j, g_j, b_j]^ op \in [0, 1]^4,$$
 (5)

其中 b_j 表示亮度(brightness), r_j,g_j,b_j 三个为颜色通道。整个系统的参数向量记为

$$\mathbf{x} = [x_1^{\top}, x_2^{\top}, \dots, x_M^{\top}]^{\top} \in [0, 1]^{4M}. \tag{6}$$

受攻击模型为黑盒,只能查询模型输出(例如检测器的平均置信度或分类器的 Top-1 置信度)。定义适应度(目标)函数 $F(\mathbf{x})$ 为我们要最小化的指标(例如目标检测平均置信度的加权和或分类 Top-1 置信度),即:

$$\min_{\mathbf{x} \in [0,1]^{4M}} F(\mathbf{x}). \tag{7}$$

为提高搜索效率,我们将优化分为两阶段: 先用 PSO 在简化空间搜索"要点亮哪些 LED(子集)",再用 CMA-ES 在所选子集上做连续参数细调。

阶段——Coarse: PSO 子集搜索(子集选择)

目标:在低维布尔空间中选出一个影响力大的 LED 子集 $S \subseteq \{1, \ldots, M\}$ 。

1.1 问题简化

为降低维数,我们将每个 LED 的颜色与亮度固定为一个预设值(例如紫色 $x^{(0)}$),仅优化每个 LED 的开关状态 $s_i\in\{0,1\}$ 。用向量 $\mathbf{s}=[s_1,\ldots,s_M]$ 。

在实现上,可以用连续编码 $y_i \in \mathbb{R}$ (或 [0,1])并以阈值方式得到二值:

$$s_j = \mathbb{I}[y_j > au_{ ext{th}}], \quad au_{ ext{th}} = 0.5.$$

1.2 Ibest PSO

我们采用 I-best PSO(局部邻域拓扑)以鼓励多样性,速度/位置更新为经典形式(使用 constriction 因子 κ):

$$\mathbf{v}_i^{t+1} = \kappa \left(\mathbf{v}_i^t + c_1 r_1 (\mathbf{p}_i^t - \mathbf{x}_i^t) + c_2 r_2 (\ell_i^t - \mathbf{x}_i^t) \right), \tag{9}$$

其中i表示粒子索引, \mathbf{p}_i^t 为粒子历史个人最优(pbest), ℓ_i^t 为其邻域最优(lbest), $r_1, r_2 \overset{ ext{iid}}{\sim} \mathcal{U}(0,1)$ 。

1.3离散化与子集输出

粒子位置 \mathbf{x}_i (维度为 M,代表开/关概率)在每次评估时通过阈值/采样映射为二值 \mathbf{s} ,并以固定颜色 $x^{(0)}$ 组合还原为物理参数用于仿真或真实评估。最终输出候选子集集合(取若干top-k 粒子最优子集)供 Finetune 阶段逐一细调。

阶段二 — Finetune: CMA-ES 连续参数细调

目标:对候选子集 S 中的 LED 做连续参数 $\in [0,1]^{4|S|}$ 的精调,最小化 F 。

2.1 实数域搜索与 Sigmoid 映射

为不直接破坏 CMA-ES 的自适应统计特性,在内部在无界实数域 $y\in\mathbb{R}^d$ (d=4|S|)中搜索,并通过 sigmoid 映射到物理区间:

$$x=\sigma(y)\equiv rac{1}{1+\exp(-y)}\in (0,1). \hspace{1.5cm} (10)$$

为让搜索覆盖近 [0,1] 边界,可以在 y 空间使用较大范围(例如初始均值可设在 [-1,1]],或更宽 ([-3,3]]),并通过缩放使映射分布合适。实现细节:在文中我们建议搜索区间 ([-6,6](经验值),以便 sigmoid 可实现接近 [0,1]的值。

2.2 CMA-ES 基本步骤(简记)

采用标准 CMA-ES 采样与更新,核心为:

■ 采样:

$$\mathbf{y}_i^{t+1} \sim \mathcal{N}(\mathbf{m}^t, (\sigma^t)^2 \mathbf{C}^t), \quad i = 1, \dots, \lambda,$$

■ 选择并更新均值:

$$\mathbf{m}^{t+1} = \sum_{k=1}^{\mu} w_k \mathbf{y}_{k:\lambda}^{t+1}, \qquad (12)$$

■ 协方差矩阵与步长更新(rank-one 和 rank- μ 更新,CSA):

$$\mathbf{C}^{t+1} = (1-c_1-c_\mu)\mathbf{C}^t + c_1\mathbf{p}_c\mathbf{p}_c^ op + c_\mu\sum_{k=1}^\mu w_k\mathbf{y}_{k:\lambda}\mathbf{y}_{k:\lambda}^ op,$$
 (13)

(以上变量符号与 Hansen 标准定义一致;)

2.3 k-random-start (多次重启)

为了增强稳定性并减少对初值敏感性,对同一候选子集 S 进行 k 次独立 CMA-ES 运行(不同初始 \mathbf{m}^0 、初始步长 σ^0 或随机种子),取 k 次中最优结果:

$$\hat{\mathbf{x}} = \arg\min_{i=1,\dots,k} F(\sigma(\mathbf{y}_{\text{best}}^{(i)})). \tag{14}$$

 $k=3\sim7$ (经验),默认k=3。

2.4 适应度函数设计

最终的优化目标函数由三部分组成:

(a) 检测器抑制损失

对于图像 I,检测器返回一组阈后框 $\mathcal{D}_{ au}(I)$ 。优化目标是阈后置信度的总和:

$$L_{\mathrm{det}}(I; au) = \sum_{i \in \mathcal{D}_{ au}(I)} s_i,$$
 (15)

若无检测框,则 $L_{\mathrm{det}}=0$ 。

(b) 可见度约束

利用与原图 I_0 的像素均方根差:

$$L_{
m vis}(I,I_0) = \sqrt{rac{1}{|\Omega|} \sum_{p \in \Omega} \|I(p) - I_0(p)\|_2^2}, \quad \lambda_{
m pix} = 0.04.$$

(c) 分类器损失

压低原始图像的 Top-1 类别 \hat{y}_0 在当前图上的概率:

$$L_{\rm cls}(I) = P(\hat{y}_0 \mid I), \tag{17}$$

若分类器不可用则置零。

2.5 最终适应度函数设计

固定权重版本

早期实验中, 我们使用固定权重组合:

$$L = \alpha L_{
m det} + \beta \lambda_{
m pix} L_{
m vis} + \gamma L_{
m cls},$$
 (18)

其中 $\alpha, \beta, \gamma \geq 0$ 为常数。

自适应权重版本

损失定义为:

$$L^{(t)} = w_1^{(t)} L_{
m det}^{(t)} + w_2^{(t)} \lambda_{
m pix} L_{
m vis}^{(t)} + w_3^{(t)} L_{
m cls}^{(t)}, \qquad \sum_{i=1}^3 w_i^{(t)} = S^*, \qquad (19)$$

其中:

- L_{det}: 检测器抑制损失;
- ullet $L_{
 m vis}$: 像素 L2 距离正则, $\lambda_{
 m pix}=0.04$;
- L_{cls}: 分类器概率损失;
- $\mathbf{w}^{(t)}=(w_1^{(t)},w_2^{(t)},w_3^{(t)})$,保持和为常数 S^* (实现中 sum_target)。

维护长度为 W 的滑动窗口:

$$\mathcal{H}_{ ext{det}} = \{L_{ ext{det}}^{(t-W+1)}, \dots, L_{ ext{det}}^{(t)}\}, \quad \mathcal{H}_{ ext{vis}}, \quad \mathcal{H}_{ ext{cls}}.$$

计算一阶差分:

$$\Delta \mathcal{H}_k = \{L_k^{(au)} - L_k^{(au-1)}\}_{ au=t-W+2}^t, \quad k \in \{ ext{det}, ext{vis}, ext{cls}\}.$$

得到相关性系数:

$$r_{
m det, vis} = {
m corr} igl(\Delta {\cal H}_{
m det}, \Delta {\cal H}_{
m vis} igr), \qquad r_{
m det, cls} = {
m corr} igl(\Delta {\cal H}_{
m det}, \Delta {\cal H}_{
m cls} igr).$$

权重更新规则

设相关阈值为 ho,上调率 η_{\uparrow} ,下调率 η_{\downarrow} ,目标阈值分别为 $T_{
m vis}, T_{
m cls}$ 。更新规则如下:

1. 冲突时上调惩罚权重(负相关):

若
$$r_{
m det, vis} < -
ho: \quad w_2 \leftarrow w_2(1+\eta_{\uparrow}),$$
 (23)

2.协同时且惩罚均值不高则下调:

若
$$r_{
m det, vis} >
ho$$
 \wedge $\overline{L}_{
m vis} < T_{
m vis}: \quad w_2 \leftarrow w_2 (1 - \eta_\downarrow),$ (24)

如果副任务的均值本来就很低(比如 L2 距离已经小于设定的目标 $T_{\rm vis}$,或者分类器概率已经低于 $T_{\rm cls}$),说明副任务已经"够好"了,不需要再过度约束。在这种情况下,才允许下调权重。

反例:假设相关性 > 0,但可见度均值其实很高(扰动很明显),那就不能因为"它和检测器损失协同"就盲目降低权重,否则会导致扰动越来越明显,破坏物理隐蔽性。

T_vis,T_cls 是相当于保证只有在副任务表现已经足够好(低于阈值)时,才允许去下调其权重;否则即使是r > 0,也要保持或提高权重,避免副任务恶化。

3.主任务收敛缓慢时微调检测器权重:

若

$$\overline{\Delta L_{
m det}} > -arepsilon, \quad (\overline{L}_{
m vis} \geq T_{
m vis} \, ee \, \, \overline{L}_{
m cls} \geq T_{
m cls}), \qquad \qquad (25)$$

则

$$w_1 \leftarrow w_1(1+0.05).$$
 (26)

4.裁剪与归一化:

$$w_i \leftarrow ext{clip}(w_i; \ w_i^{ ext{min}}, w_i^{ ext{max}}), \quad i = 1, 2, 3,$$

Early Stopping

若检测器返回 ${
m success}={
m True}$ 或 $L_{
m det}\leq au_{
m det}$ (阈值由 ${
m CLASS_LOSS_THRESHOLD}$ 设定),立即触发早停标记,结束当前运行。

实验

状态	实验名称	实验目的	主要对比/设置	指标输出
✓	基础攻击有 效性	验证 LED 两阶段 攻击能否显著降 低模型性能	YOLOv8 (det),ResNet- 101(cls),仿真场景	confidence、Top-1 prob、L2 距离
✓	仿真→实物 迁移	检验在真实 LED 阵列上是否仍有 效	Blender 优化结果映射到 真实硬件	攻击成功率、置信 度下降、迁移率
	鲁棒性测试	考察在不同物理 条件下的稳定性	光照强度、相机距离/角 度、噪声/模糊	指标分布(均值 ±SD)
	多任务冲突 & 自适应权 重	展示自适应权重 缓解 det/cls 冲突 的效果	固定权重 vs 自适应权重	sum_conf、Top-1 prob、相关系数轨 迹、权重曲线
	消融实验	验证设计的必要 性	(a) 两阶段 vs 单阶段,(b) Sigmoid vs Clamp,(c) k-start 数量?	成功率、收敛速 度、L2
	可感知性分 析?	证明扰动的隐蔽 性?	L2、SSIM、LED 点亮率	视觉差异图、定量 指标
	跨模型迁移 性(看来得 及吗?)	考察同一配置对 其它模型是否有 效	ResNet-101→ ResNet- 50;YOLOv8 → 其它检 测器	降幅对比、迁移率