

# Bölüm 14: Çoklu Ortam İşletim Sistemleri





- Farklı yerel dağıtım teknolojileri kullanarak istek üzerine video.
- ADSL (Asymmetric digital subscriber line).







- DSL (Dijital Abone Hattı),
  - telefon hattı üzerinden yüksek hızlı İnternet bağlantısı sağlar.
- ADSL (Asimetrik DSL),
  - yükleme hızından daha yüksek indirme hızı sağlar.
- SDSL (Senkronize DSL),
  - ADSL'e benzer, eşit yükleme ve indirme hızları sağlar.
- HDSL (Yüksek Hızlı DSL),
  - simetrik hızlar sağlar, daha küçük bir coğrafi alanla sınırlıdır.
- VDSL (Çok Yüksek Hızlı DSL),
  - maksimum 52 Mbps indirme ve 16 Mbps yükleme hızı sağlar.





Abonelere koaksiyel kablo, fiber optik ile sağlanan video dağıtım hizmeti.



### Kablo TV



- Kablo TV, (cable television)
  - ortak bir koaksiyel kablo ağı üzerinden internet ve TV hizmeti sunulur.
- Kablo modem, (cable modem)
  - 10 Mbps ile 100 Mbps arasında değişen bir veri hızı sağlar.
- **HFC**, (hybrid fiber-coaxial)
  - fiber optik ve koaksiyel kablo kombinasyonu kullanır.
- FTTH, (fibre to the home)
  - fiber optik kablolar kullanılarak hızlı ve güvenilir hizmetler sunar.
- Kablo TV hizmeti sağlayıcısı tarafından yönetilir, bakımı yapılır.
- Tescilli bir ağ işletim sistemiyle çalışır.

# Çoklu Ortam Temel Özellikleri



- Metin, grafik, ses, video ve animasyonun birleştirilmesini içerir.
- Medya öğeleri gecikmesiz gerçek zamanlı olarak oynatılmalıdır.
- Düğmelere tıklanarak, metin girilerek, içerikle etkileşime girilebilir.
- Çoklu ortam dosyaları oldukça büyük olabilir,
  - saklama ve iletim zor. ⊗
  - sıkıştırma gerekli.
- Çoklu ortam uygulamaları,
  - yüksek kaliteli içerik sunabilmelidir.
  - büyük miktarda bant genişliği gerektirir.
  - ses ve video gibi farklı medya öğelerini senkronize etmelidir.
  - farklı işletim sistemleri, aygıtlar ve medya türleri ile uyumlu olmalıdır.

#### Veri Hızları



#### Ses:

■ MP3 128-320 kbps, FLAC 1-5 Mbps.

#### Video:

Standart 1-2 Mbps, HD 4-8 Mbps, 4K Ultra HD 25-50 Mbps.

#### Görüntü:

■ Temel 5-20 kbps, yüksek kaliteli 100-500 kbps.

#### VR/AR:

■ Temel VR 5-20 Mbps, yüksek kaliteli VR 50-100 Mbps.

#### Akış (Streaming) Hizmetleri:

Standart 1-10 Mbps, yüksek kaliteli 25 Mbps.











NTSC video ve televizyon için kullanılan tarama modeli.



## Görüntü Kodlama



- NTSC (National Television System Committee):
  - 1940'larda Kuzey Amerika için analog televizyon yayın standardı.
  - 60 Hz yenileme hızında ve 720x480 çözünürlükte çalışır.
- PAL (Phase Alternating Line):
  - 1960'larda Avrupa ve Asya için analog televizyon yayın standardı.
  - 50 Hz yenileme hızında ve 720x576 çözünürlükte çalışır.
- Başka versiyonlar:
  - PAL-M (Brezilya),
  - PAL-N (Arjantin),
  - SECAM (Fransa).

## Ses Kodlama



- (a) Sinüs dalgası. (b) Örnekleme (sampling).
- (c) Örnekleri 4 bite niceleme (quantization).



## Ses Kodlama



- Ses sinyallerini saklama ve iletim için,
  - kompakt ve verimli bir biçimde dijital olarak temsil edilmesi.
- Örnekleme oranı: (sampling rate)
  - Bir ses sinyalini temsil etmek için saniyede alınan örnek sayısı.
- Bit derinliği: (bit depth)
  - Her bir örneği temsil etmek için gerekli bit sayısı.
- Sıkıştırma: (compression)
  - Ses verilerinin boyutunu küçültme.

## Ses Kodlama Türleri



- PCM (pulse code modulation): Darbe kodu modülasyonu.
  - Ses verilerinin doğrusal ve sıkıştırılmamış temsili.
- MP3 (MPEG audio layer III):
  - Kayıplı bir sıkıştırma algoritması kullanan popüler bir ses formatı.
- AAC (advanced audio coding):
  - Kayıplı bir sıkıştırma formatı.
- FLAC (free lossless audio codec):
  - Yüksek kaliteli ses için kayıpsız bir sıkıştırma formatı.





• (a) *RGB* girdi verileri. (b) Blok hazırlandıktan sonra.



## JPEG Sıkıştırma Algoritması



- Renk Dönüşümü:
  - Görüntü RGB'den YCbCr (luma ve chroma) renk uzayına dönüştürülür.
  - Göz parlaklık (*luma*) ve renk (*chroma*) bilgisine farklı duyarlılık gösterir.
- Alt Örnekleme (Subsampling):
  - Chroma bileşenleri, luma'dan daha düşük çözünürlükte örneklenir.
  - Renk bilgisi daha düşük çözünürlükte saklamayı ve sıkıştırmayı sağlar.
- DCT (Discrete Cosine Transform) Dönüşümü:
  - 8x8 piksel blokları, frekans uzayında daha az sayıda yüksek frekans bileşeni içeren katsayılar haline dönüştürülür.
  - Görsel açıdan önemsiz detayların çıkarılmasına yardımcı olur.





- Kuantalama: (quantization)
  - DCT katsayıları, belirli bir nicelik seviyesine kuantalama ile düşürülür.
  - Belirli frekanslardaki enerjiyi azaltır ve sıkıştırmayı artırır.
- Zigzag Sıralama:
  - Kuantalanmış katsayılar zigzag sırasında düzenlenir.
- Huffman Kodlaması:
  - Huffman kodlaması ile sıkıştırılır.
  - Sık görülen değerlerin daha kısa kodlarla temsil edilmesini sağlar.

1/20/2023





• (a) Y matrisinin 8x8 bir bloğu. (b) DCT katsayıları.







Nicelenmiş (quantized) DCT katsayılarının hesaplanması.

|     | DCT Coefficients |    |    |   |   |   | Quantized coefficients |     |    |    |   |   |   | Quantization table |   |    |    |    |    |    |    |    |    |
|-----|------------------|----|----|---|---|---|------------------------|-----|----|----|---|---|---|--------------------|---|----|----|----|----|----|----|----|----|
| 150 | 80               | 40 | 14 | 4 | 2 | 1 | 0                      | 150 | 80 | 20 | 4 | 1 | 0 | 0                  | 0 | 1  | 1  | 2  | 4  | 8  | 16 | 32 | 64 |
| 92  | 75               | 36 | 10 | 6 | 1 | 0 | 0                      | 92  | 75 | 18 | 3 | 1 | 0 | 0                  | 0 | 1  | 1  | 2  | 4  | 8  | 16 | 32 | 64 |
| 52  | 38               | 26 | 8  | 7 | 4 | 0 | 0                      | 26  | 19 | 13 | 2 | 1 | 0 | 0                  | 0 | 2  | 2  | 2  | 4  | 8  | 16 | 32 | 64 |
| 12  | 8                | 6  | 4  | 2 | 1 | 0 | 0                      | 3   | 2  | 2  | 1 | 0 | 0 | 0                  | 0 | 4  | 4  | 4  | 4  | 8  | 16 | 32 | 64 |
| 4   | 3                | 2  | 0  | 0 | 0 | 0 | 0                      | 1   | 0  | 0  | 0 | 0 | 0 | 0                  | 0 | 8  | 8  | 8  | 8  | 8  | 16 | 32 | 64 |
| 2   | 2                | 1  | 1  | 0 | 0 | 0 | 0                      | 0   | 0  | 0  | 0 | 0 | 0 | 0                  | 0 | 16 | 16 | 16 | 16 | 16 | 16 | 32 | 64 |
| 1   | 1                | 0  | 0  | 0 | 0 | 0 | 0                      | 0   | 0  | 0  | 0 | 0 | 0 | 0                  | 0 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 64 |
| 0   | 0                | 0  | 0  | 0 | 0 | 0 | 0                      | 0   | 0  | 0  | 0 | 0 | 0 | 0                  | 0 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 |





■ Nicelenmiş değerlerin iletilme sırası (zigzag).

| 150 | 80 | 20 | 4 | _ | 0 | 0 | 0 |
|-----|----|----|---|---|---|---|---|
| 92  | 75 | 18 | 3 |   | 0 | 0 | 0 |
| 26  | 19 | 13 | 2 | - | 0 | 0 | 0 |
| 3   | ω  | 2  | 1 | 0 | 0 | 0 | 0 |
|     | 0  | 0  | 0 | 0 | 0 | 0 | 0 |
| 0   | 0  | 0  | 0 | 0 | 0 | 0 | 0 |
| 0   | 0  | 0  | 0 | 0 | 0 | 0 | 0 |
| 0   | 0  | 0  | 0 | 0 | 0 | 0 | 0 |





- Kayıpsız ve Kayıplı Sıkıştırma Algoritmaları:
  - GIF, PNG, JPEG.
- Renk derinliği:
  - Bit derinliği,
  - Renk Alanı (RGB, CMYK).
- Çözünürlük:
  - İnç başına piksel (*PPI*).
  - Boyutlar (genişlik x yükseklik).
- Formatlar:
  - Raster: JPEG, PNG, BMP, TIFF.
  - Vektör: SVG, AI, EPS.





- Veri Temsili:
  - Biteşlem (piksel).
  - Tekrar Boyu Kodlama (Run-length encoding). AAAABBBCC→4A3B2C
- Meta Veriler:
  - EXIF (Exchangeable image file format).
  - IPTC (International press telecommunications council).
- Görüntü Kodlamayla İlgili Hususlar
  - Dosya boyutu, sıkıştırma kalitesi, renk doğruluğu, çözünürlük,
  - Belirli kullanım durumları için görüntü formatları (web, baskı gibi).





- Ham (raw) video verilerinin sıkıştırılarak dijital formata dönüştürülmesi.
- Dosya boyutu küçülür.
- Saklama, aktarım ve görüntüleme kolaylaşır.
- Sık kullanılan video kodlama standartları:
  - MPEG-2, MPEG-3, MPEG-4.

1/20/2023

## **MPEG Standartları**



#### MPEG-2:

- Motion Picture Experts Group tarafından geliştirildi.
- Analog televizyonda yaygın geçişme (interlaced) videoyu destekler.

#### MPEG-3:

Bu standart hiçbir zaman tamamlanmamıştır.

#### MPEG-4:

- Video kalitesini korur.
- Yüksek sıkıştırma verimliliği sağlar.
- Yüksek çözünürlük ve kare hızı (fps) destekler.

## **MPEG-2 Standard**



- Üç tür çerçeve:
  - I (Dahili kodlanmış (*intracoded*)):
    - Kendi kendine yeten (self contained) JPEG kodlu durağan resimler.
  - P (Öngörülü (*predictive*)):
    - Son (last) kare ile blok blok farklar.
  - B (Çift Yönlü (bidirectional)):
    - Son (last) kare ile sonraki (next) kare arasındaki farklılıklar.











• (a) İkili (binary) sinyal ve karelerinin ortalamasının karekökü (*root mean square*) *fourier* genlikleri (*amplitude*).







• (b) - (c) Orijinal sinyale ardışık yaklaşımlar.



1/20/2023





• (d) - (e) Orijinal sinyale ardışık yaklaşımlar







• (a) Frekansın bir fonksiyonu olarak işitilebilirlik eşiği. (b) Maskeleme etkisi.







- Monofonik: tek bir giriş akışı (input stream) var.
- Çift monofonik: çift giriş akışı (İngilizce ve Japonca film müziği).
- Ayrık stereo: her kanal ayrı ayrı sıkıştırılır.
- Ortak stereo: kanallar arası artıklık (interchannel redundancy) kullanılır.

1/20/2023





- Her biri bir film gösteren üç periyodik süreç.
- Çerçeve hızları ve işleme gereksinimleri her film için farklı.







- Her süreç, periyodu içinde tamamlanmak zorundadır.
- Hiçbir süreç başka bir sürece bağlı değildir.
- Her süreç, her adımda (burst) aynı miktarda CPU süresine ihtiyaç duyar.
- Periyodik olmayan süreçlerin son teslim zamanı (deadline) yoktur.
- Süreç önleme (preemption) beklenen zamanda,
  - ek maliyet gerektirmeden gerçekleşir.





RMS ile gerçek zamanlı çizelgeleme örneği.







- Earliest deadline first.
- Teslim zamanlarına göre süreçlere öncelik atanır.
- En yakın teslim zamanı olan sürece en yüksek öncelik atanır,
  - ve ilk olarak yürütülür.
- Tekdüze hız çizelgelemeye kıyasla daha esnektir.
- Süreçlerin bağımsız olduğunu ve birbiriyle karışmadığını varsayar.





EDF (earliest deadline first) ile gerçek zamanlı çizelgeleme.







• (a) Bir çekme (*pull*) sunucusu. (b) Bir itme (*push*) sunucusu.







- Near Video on Demand (NVOD).
- Farklı istemciler aynı anda aynı video içeriğinin farklı parçalarını izleyebilir.
- Video içeriğinin tamamı arabelleğe alınmadan izlenebilir.
- Aynı video içeriğinin birçok örneği birden çok sunucuda oynatılabilir.
- Her bir örnek farklı bir zamanda başlayabilir.
- Yüksek performanslı ağ iletişimi ve kaynak tahsis algoritmaları gerektirir.
- Kablo TV sistemlerinde, video akış hizmetlerinde yaygındır.





- Near Video on Request,
- Düzenli aralıklarla (5 dakika), başlayan (9000 çerçeve) yeni bir akış.



## VCR İşlevleri ile NVOD



• (a) Başlangıç durumu. (b) 12. dakikaya geri sardıktan sonra.



# VCR İşlevleri ile NVOD



• (c) 3 dakika sonra. (d) Tampon dolmaya başladı. (e) Tampon dolu.







Video, ses ve metin, bitişik olarak tek bir dosyada.



















### • Çerçeve indisi:

Yoğun bellek kullanımı; disk israfı az.

#### Blok indisi:

- Çerçeveler bloklara ayrılmaz.
- Düşük bellek kullanımı; disk israfı çok.

#### Blok indisi:

- Çerçeveler bloklara ayrılır.
- Düşük bellek kullanımı; disk israfı yok.
- Ekstra aramalar (seek) gerekli.











■ *Zipf* yasası *N* = *20* için grafiği.







Bir video sunucusundaki dosyaların dağılımı.







(a) Şerit (stripe) yok. (b) Aynı şeritleme (striping).







• (c) Kademeli şeritleme. (d) Rastgele şeritleme.







• (a) Aynı video içeriğini senkronize olmadan izleyen iki kullanıcı.







• (b) İki akışı birleştirme.







Bir turda, her video bir çerçeve ister.







- Tarama EDF (Earliest deadline first) algoritması,
- Çizelgeleme için son teslim zamanı ve silindir numaraları kullanılır.





### SON