Project Euler #178: Step Numbers

This problem is a programming version of Problem 178 from projecteuler.net

Consider the number 45656.

It can be seen that each pair of consecutive digits of 45656 has a difference of one.

A number for which every pair of consecutive digits has a difference of one is called a step number.

A pandigital number contains every decimal digit from $\mathbf{0}$ to $\mathbf{9}$ at least once.

How many pandigital step numbers less than \boldsymbol{k} are there?

Input Format

The input contains only one integer k.

Constraints

• $10^{10} \le k \le 10^{10^4}$

Output Format

Print the only integer which is the answer to the problem.

Sample Input 0

10000000000

Sample Output 0

1

Explanation 0

The only pandigital step-number less than 10^{10} is 9876543210.