SPLINES MINIMIZING ROTATION-INVARIANT SPMI-NORMS IN SOBOLEV SPACES

Jean DUCHON

Université Scientifique et Médicale Laboratoire de Mathématiques Appliquées B.P. 53 - 38041 Grenoble - France

ABSTRACT

We define a family of semi-norms $\|u\|_{m,s} = (\int_{\mathbb{R}^n} |\tau|^{2s} |\mathcal{F}| D^m u(\tau)|^2 d\tau)^{1/2}$. Minimizing such semi-norms, subject to some interpolating conditions, leads to functions of very simple forms, providing interpolation methods that:

1°) preserve polynomials of degree $\leq m-1$; 2°) commute with similarities as well as translations and rotations of \mathbb{R}^n ; and 3°) converge in Sobolev spaces $H^{m+s}(\Omega)$.

Typical examples of such splines are : "thin plate" functions (Σ $\lambda_a |t-a|^2 Log |t-a|$ + $\alpha.t$ + β with Σ λ_a = 0 , Σ λ_a a = 0) , "multi-conic" functions (Σ $\lambda_a |t-a|$ + C with Σ λ_a = 0) , pseudo-cubic splines (Σ λ_a $|t-a|^3$ + α .t + β with Σ λ_a = 0 , Σ λ_a a = 0), as well as usual polynomial splines in one dimension. In general, data functionals are only supposed to be distributions with compact supports, belonging to $H^{-m-s}(\mathbb{R}^n)$; there may be infinitely many of them. Splines are then expressed as convolutions $\mu * |t|^{2m+2s-n}$ (or $\mu * |t|^{2m+2s-n}$ Log |t|) + polynomials.

§ O - INTRODUCTION

Splines in more than one dimension are usually constructed from one-dimensional ones, via tensor products. We follow here another point of view (more analogous to the physical interpretation of elementary cubic splines as equilibrium positions of a beam) developed by M. ATTEIA [1][2][3]: his splines (minimizing $f_{\Omega}|D^2v|^2$, a functional similar to the bending energy of a thin plate) are uneasy to compute, because their characterization involves a kernel given by series. But things are much simpler if we replace Ω by the whole plane \mathbb{R}^2 , as is shown in [5] (where present extensions are announced). This leads to what we call "thin plate" functions in \mathbb{R}^2 (engineers say "surface splines" [6]). Of course, it is possible to minimize $f|D^mv|^2$ instead of $f|D^2v|^2$, and deal with \mathbb{R}^n instead of \mathbb{R}^2 (with some restriction: $m > \frac{n}{2}$, if point values are used).

We notice that these functionals $\int_{\mathbb{R}^n} |D^m v|^2$ are invariant through translations and rotations. Moreover, if a similarity $t \mapsto \lambda t$ is applied to v, they are multiplied by some power of $|\lambda|$. Thus, corresponding interpolation methods will commute with similarities: interpolating on a contracted set of points λA gives the same result as interpolating on A (with same values) and then applying contraction $t \mapsto \lambda t$.

Now, since Fourier transform is isometric on $L^2(\mathbb{R}^n)$, we may write $\int_{\mathbb{R}^n} |D^m v(t)|^2 dt = \int_{\mathbb{R}^n} |\mathbf{f} D^m v(\tau)|^2 d\tau \text{ . A natural idea, to get other interpolation methods, would be to introduce a weighting function w and minimize <math display="block">\int_{\mathbb{R}^n} w(\tau) |\mathbf{f} D^m v(\tau)|^2 d\tau \text{ . In view of the above invariance properties, it is natural to put } w(\tau) = |\tau|^{\theta} \text{ and try to minimize } \int_{\mathbb{R}^n} |\tau|^{\theta} |\mathbf{f} D^m v(\tau)|^2 d\tau \text{ , a functional which is invariant through translations and rotations, and is multiplied by a constant if the variable t is changed into <math>\lambda t$. This is actually possible (at least if $-2m-n < \theta < n$ and $2m + \theta$ is sufficiently large, depending on which kind of data are used), in a precise sense, as we shall see.

We first introduce some "Sobolev-type" spaces such as $\mathbf{\tilde{H}}^{S},\;\mathbf{D}^{-m}\!\tilde{H}^{S},\;\mathbf{H}_{\mathrm{loc}}^{m+s}$,

 H_{comp}^{-m-s} , and compare them. Central space is D^{-m} \tilde{H}^{s} / P_{m-1} with Hilbert structure. Its dual contains H_{comp}^{-m-s} \cap P_{m-1}^{o} as a dense subset (§1).

In §2 we prove existence and uniqueness for interpolation problems, and abstract characterization using reproducing kernels of semi-Hilbert spaces.

§3 is the crucial one. We compute the reproducing kernel of D^{-m} \tilde{H}^S / P_{m-1} in H^{m+s}_{loc} / P_{m-1} , i.e. the natural isometric mapping from $H^{-m-s}_{comp} \cap P^o_{m-1}$, embedded in (D^{-m} \tilde{H}^S / P_{m-1}) , into D^{-m} \tilde{H}^S / P_{m-1} .

§4 summarizes our main result (theorems 4 and 4 bis). In §5 we apply it to various examples.

§6 is concerned with convergence in Sobolev space $H^{m+s}(\Omega)$ (Ω bounded) for an interpolated function $f \in H^{m+s}(\Omega)$.

For brevity, we use classical or natural notations without explicit statement. Moreover, some familiarity with distributions is assumed (convolution, derivation, Fourier transform, multiplication with C^{∞} functions, and their relations; correspondence between locally summable functions and distributions, etc.; standard reference is [9]). $D^{m}v(t)$ is the n^{m} -tuple of partial derivatives $(D_{\substack{i \\ 1}} \dots D_{\substack{i \\ m}} v(t) \; ; \; i_{1}, \dots, i_{m} = 1, \dots, n), \text{ with Euclidian norm } |D^{m}v(t)| = (\Sigma |D_{\substack{i \\ 1}} \dots D_{\substack{i \\ m}} v(t)|^{2})^{1/2}.$ Pseudo-functions Pf. $|\tau|^{\theta}$ are to be found in [9], p. 44 and their Fourier transforms p. 257. Fourier transform is \mathcal{F} or $\hat{\tau}$.

The letter c is used to denote various constants, to avoid useless complication.

§ 1 - FUNCTIONAL SPACES

1.1. Sobolev spaces HS, HS, HS, Comp.

For any real s, $\operatorname{H}^S(\mathbb{R}^n)$ is the set of tempered distributions u on \mathbb{R}^n whose Fourier transform \widehat{u} is a (locally summable) function such that $\int_{\mathbb{R}^n} (1+|\tau|^2)^S \mid \widehat{u}(\tau)|^2 d\tau < \infty. \text{In other words } \operatorname{H}^S = \mathbf{F}(1+|\tau|^2)^{-S/2} \operatorname{L}^2 \text{. It is a } \operatorname{Hilbert space.}$ Its dual is naturally identified with $\operatorname{H}^{-S}(\mathbb{R}^n)$. When s is a positive

integer, $\textbf{H}^S(\mathbb{R}^N)$ = $\{\textbf{u} \in L^2(\mathbb{R}^N) \text{ ; } D^0 \textbf{u} \in L^2(\mathbb{R}^N) \text{ , } \forall \ |\alpha| \leq s \}$.

If K is a closed subset of \mathbb{R}^n , $H^S_K(\mathbb{R}^n)$ is the set of distributions $\in H^S(\mathbb{R}^n)$ whose support is contained in K. H^S_K is a closed linear subspace of H^S .

If Ω is an open subset of \mathbb{R}^n , $H^S(\Omega)$ is the set of restrictions, to Ω , of distributions $\in H^S(\mathbb{R}^n)$. It is isomorphic to the quotient space $H^S(\mathbb{R}^n)$ / $H^S_{\Omega}(\mathbb{R}^n)$ hence a Hilbert space too. Its dual is naturally identified with $H^{-S}_{\overline{\Omega}}(\mathbb{R}^n)$.

If Ω is bounded and sufficiently regular (e.g. Ω satisfies some "uniform cone" condition) then (for non integer s>0) $H^S(\Omega)$ is the set of distributions u on Ω whose derivatives of order [s] (integral part of s) are in $L^2(\Omega)$, with

$$\int\limits_{\Omega\times\Omega} \int\limits_{|t-t'|}^{\left|D^{\left[s\right]}u(t)-D^{\left[s\right]}u(t')\right|^{2}} \mathrm{d}t \ \mathrm{d}t' < \infty$$

For integer s \geq 0 it suffices that $D^{\Omega}\!u\in L^2(\Omega)$, $\Psi|\alpha|$ = s .

Now $H^S_{loc}(\mathbb{R}^n)$ is the set of distributions on \mathbb{R}^n whose restriction to any bounded open set Ω is in $H^S(\Omega)$. Of course $C^k \subset H^S_{loc}$ for integer $k \geq s$. On the other hand, Sobolev embedding theorems assert that $H^S_{loc}(\mathbb{R}^n) \subset C^k$ for $s > k + \frac{n}{2}$.

 H^S_{loc} may be equipped with a Fréchet space structure : putting $B_N^{}$ = the open ball { |t| < N}, one defines a countable family of semi-norms $u \mapsto norm$ of $u_{|B_N^{}}$ in $H^S(B_N^{})$. It is reflexive, and its dual is naturally identified with $H^{-S}_{comp}(\mathbb{R}^n)$, the union of $H^{-S}(\mathbb{R}^n)$, equipped with the topology of (strict) inductive limit of $\overline{B_N^{}}$ this countable family of Hilbert spaces.

All previous norms could have been replaced by equivalent ones, they do not play a role by themselves in our problem. We now come to definig spaces \tilde{H}^S and D^{-m} \tilde{H}^S , whose semi-norms $\|.\|_{m.s}$ are fundamental.

1.2. $\tilde{H}^{S}(\mathbb{R}^{n})$, $s < \frac{n}{2}$

We put $\tilde{H}^S(\mathbb{R}^n) = \{u \in \boldsymbol{\mathcal{Y}'}(\mathbb{R}^n) \; ; \; \hat{u} \in L^1_{loc} \; , \; \int_{\mathbb{R}^n} |\tau|^{2S} |\hat{u}(\tau)|^2 d\tau < \infty \}.$ We equip it with norm $\|u\|_{0,s} = (\int_{\mathbb{R}^n} |\tau|^{2S} |\hat{u}(\tau)|^2 d\tau)^{1/2} \cdot \tilde{H}^S(\mathbb{R}^n)$ is a Hilbert space if (and only if) $s < \frac{n}{2}$: for $f \in L^2(\mathbb{R}^n)$, the function $|\tau|^{-S} f(\tau)$ is locally summable, since $\int_K |\tau|^{-S} |f(\tau)| d\tau \leq (\int_K |\tau|^{-2S})^{1/2} (\int_K |f(\tau)|^2 d\tau^{1/2} and |\tau|^{\lambda}$ is locally summable if (and only if) $\lambda > -n$; therefore $|\tau|^{-S} f$ defines a distribution, easily seen to be tempered, so that $f \mapsto \boldsymbol{\mathcal{T}'}(|\tau|^{-S} f)$ is an isometry from $L^2(\mathbb{R}^n)$ onto $\tilde{H}^S(\mathbb{R}^n)$. Moreover if $f_j + 0$ in L^2 , one can prove that $|\tau|^{-S} f_j + 0$ in $\boldsymbol{\mathcal{Y}'}$ (it suffices to show that $\int |\tau|^{-S} f_j(\tau) \varphi(\tau) d\tau + 0$ for any C^∞ function φ rapidly decreasing at ∞). This implies that inclusion $\tilde{H}^S \subseteq \boldsymbol{\mathcal{Y}'}$ (a fortiori $\tilde{H}^S \subseteq \boldsymbol{\mathcal{Y}'}$) is continuous, or that \tilde{H}^S is a Hilbert subspace of $\boldsymbol{\mathcal{D}'}$.

We might even prove that, for $-\frac{n}{2} < s < \frac{n}{2}$, \tilde{H}^S is a <u>normal</u> subspace of $\boldsymbol{\mathcal{Y}}$ ' (i.e. contains $\boldsymbol{\mathcal{Y}}$ as a dense subspace) with dual \tilde{H}^{-S} .

(Some of these spaces are known and used in other fields. For example, $\widetilde{H}^{-1}(\mathbb{R}^3)$ and $\widetilde{H}^1(\mathbb{R}^3)$ are respectively spaces of charges and potentials of finite energy, in the theory of Newtonian potentials in \mathbb{R}^3 . See [10], §11).

From definitions, it is obvious that $H^S(\mathbb{R}^n) \subseteq \widetilde{H}^S(\mathbb{R}^n)$ if s>0, the converse if s<0 (and $\widetilde{H}^o=H^o=L^2$). In general $H^S(\mathbb{R}^n) \neq \widetilde{H}^S(\mathbb{R}^n)$ (\widetilde{H}^S is not contained in L^2 , for s>0, while $H^S \subseteq L^2$). But (at least for $-\frac{n}{2} < s < \frac{n}{2}$) equality holds on bounded subsets, as we now see.

1.3.
$$H^{S}(\Omega) = H^{S}(\Omega)$$
, if $-\frac{n}{2} < s < \frac{n}{2}$

Of course, $\tilde{H}^S(\Omega)$ is the set of restrictions, to Ω (bounded), of elements of $\tilde{H}^S(\mathbb{R}^n)$, with corresponding Hilbert structure. In fact, we can prove that any $u \in \tilde{H}^S(\mathbb{R}^n)$ (s > 0) is sum of $u_1 \in H^S(\mathbb{R}^n)$ and a C^∞ function u_2 . We first note that $|\tau|^{2S} \leq (1+|\tau|^2)^S \leq 2|\tau|^{2S}$ except for $\tau \in \text{some ball B. Now for } u \in \tilde{H}^S$, \tilde{u} is a function. We write it as $v_1 + v_2$ where v_2 coincides with \tilde{u} a.e. on B and

is zero outside. v_1 satisfies $\int_{\mathbb{R}^n} (1+|\dot{\tau}|^2)^S |v_1(\tau)|^2 d\tau = \int_{\mathbb{R}^c} (1+|\tau|^2)^S |v_1(\tau)|^2 d\tau \le 2 \int_{\mathbb{R}^c} |\tau|^{2S} |v_1(\tau)|^2 d\tau < \infty$, so that its inverse Fourier transform $u_1 \in \mathbb{H}^S(\mathbb{R}^n)$. On the other hand, v_2 has compact support, hence its (inverse) Fourier transform u_2 is a C^∞ function (in fact, an "entire function of exponential type", moreover $\to 0$ at ∞ since $v_2 \in L^1$). Case s < 0 is exactly similar: we prove $H^S \subseteq \tilde{H}^S + C^\infty$.

We have already seen that $C^{\infty} \subseteq H^S_{loc}$, so that $H^S(\Omega) = H^S(\Omega)$ if s > 0. For s < 0 we must prove that $C^{\infty} \subseteq \overset{\sim}{H^S_{loc}}$; but for $s > -\frac{n}{2}$ we have $\mathfrak{Y} \subseteq \overset{\sim}{H^S}$, which gives the result. So in general $H^S(\Omega) = H^S(\Omega)$ for Ω bounded, whenever $-\frac{n}{2} < s < \frac{n}{2}$.

Inclusion $H^S \subseteq H^S$ for s>0 ($H^S \subseteq H^S$ for s<0) is continuous, so that the two Hilbert structures induced on $H^S(\Omega)=H^S(\Omega)$ are comparable, hence equivalent, from one of Banach's theorems.

1.4. Semi-Hilbert spaces D^{-m} H^S

We put $D^{-m} \tilde{H}^S = \{u \in \mathfrak{D}'(\mathbb{R}^n) ; D^{\alpha}u \in \tilde{H}^S(\mathbb{R}^n) , V_{|\alpha|} = m\}$, equipped with natural semi-norm $\|u\|_{m,S} = (f_{\mathbb{R}^n}|\tau|^{2s}|\mathfrak{D}^mu(\tau)|^2d\tau)^{1/2}$. We also consider the quotient space $D^{-m} \tilde{H}^S / P_{m-1}$ with corresponding norm. These are spaces of Beppo Levi type (see [4], where these spaces would be denoted BL_m (\tilde{H}^S) and $BL_m^*(\tilde{H}^S)$ respectively): since \tilde{H}^S is a Hilbert subspace of \mathfrak{D}' , $D^{-m} \tilde{H}^S / P_{m-1}$ is a Hilbert subspace of \mathfrak{D}' , see §2). In fact, since $\tilde{H}^S \subset \mathfrak{P}'$, and a distribution whose derivatives are tempered is tempered, we have $D^{-m} \tilde{H}^S \subset \mathfrak{P}'$, hence $D^{-m} \tilde{H}^S / P_{m-1} \subset \mathfrak{F}' / P_{m-1}$ and the closed graph theorem shows that this inclusion is continuous. So $D^{-m} \tilde{H}^S$ is even a semi-Hilbert subspace of \mathfrak{P}' .

We now come to comparing \textbf{D}^{-m} $\tilde{\textbf{H}}^{\textbf{S}}$ with $\textbf{H}^{m+\textbf{s}}.$ For Ω bounded we have :

1.5.
$$(D^{-m} \stackrel{\sim}{H^{S}})(\Omega) = H^{m+S}(\Omega)$$
, if $-m - \frac{n}{2} < s < \frac{n}{2}$

We first prove that any $u \in H^{m+s}(\Omega)$ extends to an element of $D^{-m} \widetilde{H}^s(\mathbb{R}^n)$. We know that u extends to some $Pu \in H^{m+s}(\mathbb{R}^n)$ with compact support. Then $\widehat{P}u$ is \widehat{C}^{∞} and we can easily see that $\int |\tau|^{2s} |\tau^{\alpha} \widehat{P}u(\tau)|^2 d\tau < \infty$, $|\alpha| = m$, since $|\tau^{\alpha}|^2 \le |\tau|^{2m}$ and $|\tau|^{2m+2s}$ is locally summable (since 2m+2s > -n), and $|\tau|^{2m+2s} \le 2(1+|\tau|^2)^{m+s}$ outside some ball. Thus $H^{m+s}(\Omega) \subset (D^{-m} \widetilde{H}^s)(\Omega)$.

Conversely, we may write $(D^{-m} \tilde{H}^S)(\Omega) \subset D^{-m} (\tilde{H}^S(\Omega))$, with obvious meaning; on the other hand, $\tilde{H}^S(\Omega)$ is always contained in $H^S(\Omega)$ for $s < \frac{n}{2}$; and it is known that $D^{-m}(H^S(\Omega)) = H^{m+s}(\Omega)$.

This proves that $D^{-m} \tilde{H}^S(\mathbb{R}^n) \subset H^{m+s}_{loc}(\mathbb{R}^n)$, hence $D^{-m} \tilde{H}^S(\mathbb{R}^n) / P_{m-1} \subset H^{m+s}_{loc}(\mathbb{R}^n) / P_{m-1}$, and the closed graph theorem again tells us this inclusion is continuous. Thus $D^{-m} \tilde{H}^S(\mathbb{R}^n)$ is a (dense) semi-Hilbert subspace of $H^{m+s}_{loc}(\mathbb{R}^n)$.

Another point is that, on $(D^{-m} \ \tilde{H}^S)(\Omega) / P_{m-1} = H^{m+S}(\Omega) / P_{m-1}$, the two Hilbert structures are equivalent (both of them are Hilbert subspaces of $\mathfrak{D}^{\bullet}(\Omega) / P_{m-1}$, so apply the closed graph theorem). From this one can easily deduce that $H^{m-S}(\mathbb{R}^n) \cap P_{m-1}^{\bullet}$, the dual of $H^{m+S}(\Omega) / P_{m-1}$, is closed in $(D^{-m} \ \tilde{H}^S / P_{m-1})$.

§ 2 - EXISTENCE AND UNIQUENESS

We begin with stating an abstract frame : let E be a locally convex topological vector space, E' its dual, N a finite-dimensional (for simplicity) subspace of E, N° its orthogonal in E'. N° is naturally identified with the dual space of E / N .

A linear subspace X of E is called a semi-Hilbert subspace of E with mullspace N if X is equipped with a semi-norm $\|.\|$ (with nullspace N) deriving from a "semi-inner product" (nonnegative bilinear form) ((.,.)) such that X / N equipped with the natural norm $\|x+N\| = \|x\|$ is a Hilbert space, and inclusion X/N \subsetneq E/N is continuous. Equivalently, X / N is a Hilbert subspace of E / N in the sense of

L. SCHWARTZ [10]. We know that X / N has a (unique) reproducing kernel in E / N, which is a linear mapping L from (E / N)' into X / N , satisfying ((y,x)) = $\langle e', x + N \rangle$, $\forall x \in X$, $\forall y \in Le'$. To be slightly simpler, we will say that a linear mapping $\theta : N^o \rightarrow E$ is reproducing kernel of X in E, if $\theta e' \in Le'$ $\forall e' \in N^o \supseteq (E / N)'$. Equivalently, a mapping θ from N^o into X is a reproducing kernel of X in E, if and only if $((\theta e', x)) = \langle e', x \rangle$, $\forall x \in X$.

Semi-Hilbert spaces and reproducing kernels provide a simple and convenient language for splines. However, following theorems 2.1. and 2.2. could be easily deduced from [8], chapter 4.

THEOREM 2.1.

Let M be a linear subspace of E' such that, if $x \in N$ and $\langle e', x \rangle = 0$ $\forall e' \in M$, then x = 0. Let $f \in X$. There exists a unique element f^M in X satisfying $\langle e', f^M \rangle = \langle e', f \rangle \quad \forall e' \in M$, with $||f^M||$ minimum.

<u>Proof</u>: The set $f + M^{\circ} \cap X + N$ is a nomempty closed affine subspace of X / N, it has an element of minimum norm which is exactly $f^{M} + N$, which in turn contains one element $f^{M} \in f + M^{\circ} \cap X$, i.e. f^{M} satisfies $< e', f^{M} > = < e', f > \forall e' \in M$.

THEOREM 2.2.

Let us suppose that X is dense is E, so that $N^{\circ} \subset (X / N)'$; and assume that M \cap N $^{\circ}$ is closed in (X / N)'. Let θ be a reproducing kernel of X in E. Then f^{M} coincides with the only $g \in \theta(M \cap N^{\circ}) + N$ satisfying $< e', g > = < e', f > \Psi e' \in M$.

<u>Proof</u>: f^{M} + N is the orthogonal projection of $O(\in X / N)$ onto $f+M^{\circ} \cap X + N$ and therefore is the only element of $f+M^{\circ} \cap X + N$ belonging to the orthogonal of $M^{\circ} \cap X + N$ (in X / N for Hilbert structure), which is the image of $(M^{\circ} \cap X + N)^{\circ}$ (orthogonal in $(X / N)^{\circ}$) by the canonical isometry from $(X / N)^{\circ}$ onto X / N. But

if M \cap N° is closed in (X / N)', (M° \cap X + N)° is exactly M \cap N°, whose image is $\theta(M \cap N^\circ)$ + N.

<u>REMARK</u>: Frequently M is finite-dimensional (finitely many data to interpolate) so that $M \cap N^{\circ}$ is automatically closed in $(X / N)^{\circ}$.

Applying this to X = D^m \tilde{H}^S with N = P_m-1 and E = H_loc , E' = H_comp , we get :

THEOREM 2.3.

Let M be a closed linear subspace of $H^{-m-s}(\mathbb{R}^n)$ (Ω bounded), such that if $p \in P_{m-1}$ and $<\mu$, p > = 0 $\forall \mu \in M$ then p = 0. Let $f \in H^{m+s}(\Omega)$. There exists exactly one element $f^M \in D^{-m} \overset{\sim}{H^S}$ satisfying $<\mu$, $f^M > = <\mu$, f >, $\forall \mu \in M$, with minimum semi-norm $\|f^M\|_{m,s}$. Let θ be a reproducing kernel of $D^{-m} \overset{\sim}{H^S}$ in H^{m+s}_{loc} . Then the only g of the form $\theta \mu + p$ with $\mu \in M \cap P^o_{m-1}$ and $p \in P_{m-1}$, satisfying $<\mu$, g > 0.

<u>Proof</u>: We just have to check that M Ω P_{m-1}° is closed in $(D^{-m} \tilde{H}^S / P_{m-1})^{\dagger}$. But M is closed in H^{-m-s} , hence M Ω N° is closed in $H^{-m-s} \Omega$ N°, which is exactly the orthogonal, in $(D^{-m} \tilde{H}^S / P_{m-1})^{\dagger}$, of the subset of (equivalence classes mod P_{m-1} of) elements in $D^{-m} \tilde{H}^S$ which are zero on Ω . Thus M Ω N° is closed in a closed subset of $(D^{-m} \tilde{H}^S / P_{m-1})^{\dagger}$, hence closed itself. All this is useless if M is finite-dimensional.

§ 3 - REPRODUCING KERNEL OF $D^{-m} \stackrel{\sim}{H}^{S}$.

THEOREM 3

 $\frac{\theta: \mu \mapsto (2\pi)^{-2m} \ \mu * \mathcal{F}_{Pf}. |\tau|^{-2m-2s} \ \text{maps}}{\text{is a reproducing kernel of D}^{-m} \ \overset{\tilde{H}^{S}}{H^{S}} \ \text{as a semi-Hilbert subspace of H}_{loc}^{m+s} (\mathbb{R}^{n}).}$

<u>Proof</u>: Since $D^{-m} \overset{\tilde{H}^S}{H^S} / P_{m-1}$ is a Hilbert subspace of H^{m+s}_{loc} / P_{m-1} , it has a reproducing kernel, say L, which maps $H^{-m-s}_{comp} \cap P_{m-1}^{o}$ (dual space of $D^{-m} \overset{\tilde{H}^S}{H^S} / P_{m-1}$) into $D^{-m} \overset{\tilde{H}^S}{H^S} / P_{m-1}$, and is characterized by : L μ is the set of distributions $u \in D^{-m} \overset{\tilde{H}^S}{H^S}$ satisfying :

$$(\star) \qquad (2\pi)^{2m} \int_{\mathbb{R}^n} |\tau|^{2s} (\tau^m \widehat{\mathfrak{q}})(\tau) \cdot (\tau^m \widehat{\mathfrak{w}}(\tau) d\tau = \langle \mu, w \rangle, \forall w \in \mathbb{D}^{-m} \overset{\cdot}{H^s}$$

We first deduce that $|2\pi\tau|^{2m}$ $\hat{\mathbf{u}}=\hat{\boldsymbol{\mu}}|\tau|^{-2s}$ (lemma 1). Now it is easily seen that $\mathbf{v}=(2\pi)^{2m}$ $\boldsymbol{\mu}$ * $\boldsymbol{\sigma}$ Pf. $|\tau|^{-2m-2s}$ satisfies $|2\pi\tau|^{2m}$ $\hat{\mathbf{v}}=\hat{\boldsymbol{\mu}}|\tau|^{-2s}$, since $\hat{\mathbf{v}}=(2\pi)^{-2m}$ $\hat{\boldsymbol{\mu}}$ Pf. $|\tau|^{-2m-2s}$ and $|\tau|^{2m}$ Pf. $|\tau|^{-2m-2s}=|\tau|^{-2s}$. On the other hand, lemma 2 proves that τ^{α} $\hat{\boldsymbol{v}}\in L^1_{loc}$, \boldsymbol{v} $|\alpha|=m$. So that for any $\boldsymbol{u}\in L\boldsymbol{\mu}$ we have $|\alpha|^{2m}$ $(\hat{\mathbf{u}}-\hat{\boldsymbol{v}})=0$ and $\tau^{\alpha}(\hat{\mathbf{u}}-\hat{\boldsymbol{v}})\in L^1_{loc}$, \boldsymbol{v} $|\alpha|=m$. Lemma 3 then shows that $\boldsymbol{u}-\boldsymbol{v}\in P_{m-1}$, i.e. $\boldsymbol{v}\in L\boldsymbol{\mu}$ since $L\boldsymbol{\mu}$ is an equivalence class modulo P_{m-1} . In other words $L\boldsymbol{\mu}=(2\pi)^{2m}$ $\boldsymbol{\mu}$ * $\boldsymbol{\sigma}$ Pf. $|\tau|^{-2m-2s}+P_{m-1}$, i.e. $\boldsymbol{\theta}$ is a reproducing kernel of \mathbf{D}^{-m} $\tilde{\mathbf{H}}^s$.

Lemma 1 : $|2πτ|^{2m}$ û = $\hat{\mu}|\tau|^{-2s}$ if $u \in L\mu$.

Proof : Condition $s > -m - \frac{n}{2}$ implies $\mathscr{G} \subset D^{-m} \tilde{H}^{S}$, so that we may apply (*) whith $w = \mathring{\phi}$, $\phi \in \mathscr{D}$, and get $(2\pi)^{2m} f |\tau|^{2s} (\tau^m \hat{u})(\tau) . \tau^m \phi(\tau) d\tau = \langle \mu, \mathring{\phi} \rangle = \langle \widehat{\mu}, \phi \rangle$, $\forall \phi \in \mathscr{D}$. This implies $(2\pi)^{2m} |\tau|^{2s} \tau^m . (\tau^m \hat{u})(\tau) = \widehat{\mu}(\tau)$ a.e., hence $(2\pi)^{2m} \tau^m . (\tau^m \hat{u})(\tau) = |\tau|^{-2s} \hat{\mu}(\tau)$ a.e. and $|2\pi\tau|^{2m} \hat{u} = \widehat{\mu}|\tau|^{-2s}$ as distributions.

Lemma 2 : If μ is a distribution with compact support, orthogonal to P_{m-1} , i.e. $\mu \in \mathscr{C} \cap P_{m-1}^o$, then τ^α $\hat{\mu}$ $Pf. |\tau|^{-2m-2s} \in L^1_{loc}$, $\forall |\alpha| = m$.

 $\frac{\text{Proof}}{\text{constant}}: \text{ It suffices to show that the } \underbrace{\text{function}}_{\text{constant}} \text{ (in usual sense)} \ \tau^{\alpha} \ \widehat{\mu}(\tau) |\tau|^{-2m-2s}$ is locally summable. But, since μ is orthogonal to P_{m-1} , the C^{∞} function $\widehat{\mu}$ has derivatives of order \leq m-1 vanishing at 0, so that $|\widehat{\mu}(\tau)| \leq c |\tau|^m$ on a neighbourhood of 0. Then $\tau^{\alpha} \ \widehat{\mu}(\tau) |\tau|^{-2m-2s} \leq c |\tau|^{-2s}$ on that neighbourhood of 0, and is C^{∞} elsewhere, so is locally summable since $s < \frac{n}{2}$.

Lemma 3 : Any tempered distribution T such that $|\tau|^{2m} \, \hat{T}$ = 0 and $\tau^{\alpha} \, \hat{T} \in L^1_{loc}$ is in P_{m-1} .

<u>Proof</u>: \hat{T} is supported by {0}, since $|\tau|^{2m}$ vanishes only for τ = 0. Then τ^{α} \hat{T} is also supported by {0} and should be in L^1_{loc} , which is possible only if τ^{α} \hat{T} = 0, and then $D^{\alpha}T$ = 0, $\forall |\tau|$ = m, i.e. $T \in P_{m-1}$.

§ 4 - A GENERAL CHARACTERIZATION RESULT

To be more explicit, we now use formulas giving Fourier transforms of pseudo-functions $\mathrm{Pf}.|\tau|^{\lambda}$. In general $\mathrm{Pf}.|\tau|^{\lambda}=\mathrm{c}\;\mathrm{Pf}.|t|^{-n-\lambda}$ except if λ or -n- λ is an even positive integer $2k:\boldsymbol{\mathcal{F}}|\tau|^{2k}=\mathrm{c}\;\Delta^k\delta$, $\boldsymbol{\mathcal{F}}\mathrm{Pf}.|\tau|^{-n-2k}=\mathrm{c}|t|^{2k}\log|t|+\mathrm{c}|t|^{2k}$.

For simplicity, we assume s > -m. Then \mathbf{F} Pf. $|\tau|^{-2m-2s}$ is $c|t|^{2m+2s-n}$ Log $|t|+c|t|^{2m+2s-n}$ if 2m+2s-n is an even positive integer, $c|t|^{2m+2s-n}$ if not. It is easyly seen that, in the first case (2m+2s-n=2k), if $\mu \in \mathbb{P}^{o}_{m-1}$ then $\mu \neq |t|^{2m+2s-n} \in \mathbb{P}_{m-1}$. So that, putting K_{λ} $(t)=|t|^{\lambda} \log|t|$ if λ is an even positive integer, K_{λ} $(t)=|t|^{\lambda}$ otherwise, the mapping $\mu \mapsto \mu \neq K_{2m+2s-n}$ is

proportional to a reproducing kernel of $D^{-m} \stackrel{\sim}{H}^{S}$ when m+s > 0.

Now we are able to explicit theorem 2.3. (in the case m+s > 0, that is, H_{loc}^{m+s} is a space of (classes of locally summable) functions):

THEOREM 4:

Let M be a closed linear subspace of some $H^{-m-s}(\mathbb{R}^n)$ (Ω bounded), satisfying: if $p \in P_{m-1}$ and $< \mu$, p > = 0, $\forall \mu \in M$, then p = 0. Let $f \in H^{m+s}(\Omega)$. Then there exists a unique function $f^M \in D^{-m} \tilde{H}^s(\mathbb{R}^n)$ satisfying $< \mu$, $f^M > = < \mu$, $f > \forall \mu \in M$, with minimum semi-norm $\|f^M\|_{m,s}$. Moreover, if $g = \nu * K_{2m+2s-n} + p$ (with $\nu \in M \cap P^o_{m-1}$ and $p \in P_{m-1}$) satisfies $< \mu$, $g > = < \mu$, $f > \nu$, $\psi \in M$, then $g = f^M$.

Let us now restrict ourselves to the important case where $m + s > \frac{n}{2}$, so that H_{loc}^{m+s} is a space of continuous functions (Sobolev theorem), and <u>data are</u> finitely many point values.

THEOREM 4 bis :

Let A be a finite subset of \mathbb{R}^n , containing a P_{m-1} - unisolvent subset. Then there exists exactly one function of the form $\sigma(t) = \sum_{a \in A} \lambda_a K_{2m+2s-n}(t-a) + p(t)$ with $p \in P_{m-1}$ and $\sum_{a \in A} \gamma_a q(a) = 0$, $\forall_{a \in A} \gamma_{m-1}$, taking prescribed values on A. Moreover, if f is another function taking the same values on A, one has $\|f\|_{m,s} \ge \|\sigma\|_{m,s}$.

Actually, Σ λ_a $K_{2m+2s-n}(t-a)$ is $(\Sigma$ λ_a δ_a * $K_{2m+2s-n}(t)$. Existence of a function $f \in D^{-m} \widetilde{H}^S$ taking prescribed values on A (finite) is obvious : f may even be chosen in $\boldsymbol{\mathscr{D}}$.

§ 5 - EXAMPLES

5.1. Pseudo-polynomial splines

We put s = $\frac{n-1}{2}$ and consider a finite set A \subseteq \mathbb{R}^n containing some P_{m-1} -unisolvent subset. Then there exists exactly one function of the form $\sigma(t)$ = $\sum_{a \in A} |t-a|^{2m-1} + p(t)$ where $p \in P_{m-1}$ and $\sum_{a \in A} q(a) = 0$, $\forall q \in P_{m-1}$, taking prescribed values on A. For all f taking the same values on A one has $||f||_{m,\frac{n-1}{2}} \ge ||g||_{m,\frac{n-1}{2}}$.

For m = 1 we get <u>multi-conic functions</u> $\sum_{a \in A} \lambda_a |t-a| + C$ with $\sum_a = 0$, and the set A must only contain two distinct points. The functional minimized is $\int_{\mathbb{R}^n} |\tau|^{n-1} |\mathscr{G} \operatorname{Dv}(\tau)|^2 d\tau \ .$

For m = 2 we get <u>pseudo-cubic splines</u>, if A is not contained in a hyperplane (a line if n = 2): functions of the form $\sum \lambda_a |t-a|^3 + \alpha \cdot t + \beta$ with $\sum \lambda_a = 0$ and $\sum \lambda_a = 0$. Coefficients $(\lambda_a; a \in A)$ and $\alpha_1, \alpha_2, \beta$ may be computed from the linear system:

the linear system :
$$\begin{cases} \sum_{a \in A} |a-b|^3 \lambda_a + b_1 \alpha_1 + b_2 \alpha_2 + \beta = f(b) \\ a \in A \end{cases}$$
 (b \in A)
$$\begin{cases} \sum_{a \in A} \lambda_a a_1 = 0 \\ \sum_{a \in A} \lambda_a a_2 = 0 \\ a \in A \end{cases}$$

$$\sum_{a \in A} \lambda_a = 0$$

We notice that, for n = 1, we get simply polynomial splines : polynomials of degree $\leq 2m-1$ on intervals, C^2 , and degenerating to polynomials of degree $\leq m-1$ at both ends (thanks to conditions Σ λ_a a^k = 0, k=0,...,m-1).

5.2. Thin plate functions

Putting s = 0 and, as an example, n = 2 and m = 2, we get functions of the form $\sigma(t) = \sum_{a \in A} \lambda_a |t-a|^2 \text{Log } |t-a| + \alpha \cdot t + \beta \text{ with } \sum_a = 0 \text{ and } \sum_a a = 0$ (function $|t|^2 \text{Log } |t|$ is extended to 0 at 0, so as to be continuous). In this case

we have f $|D^2\sigma|^2 \le \int_{\mathbb{R}^2} |D^2f|^2$ for all f that coincides with σ on A. The set A must not be contained in a line.

5.3. Hermite interpolation $\frac{2+\frac{n-1}{2}}{\text{Since H}_{loc}}(\mathbb{R}^n) \subset \mathbb{C}^1, \text{ we may minimize semi-norm } \|.\|_{2,\frac{n-1}{2}} \text{subject to}$ Hermite conditions: values and gradients prescribed on a finite set A. We get functions of the form $\sigma(t) = \sum_{a \in A} \lambda_a |t-a|^3 + \sum_a \lambda_a^i \cdot (t-a)|t-a| + \alpha \cdot t + \beta$, with $\sum_a \lambda_a = 0$, $\sum_a \lambda_a + \frac{1}{3} \sum_a \lambda_a^i = 0$. In one dimension this corresponds to ordinary piecewise cubic Hermite interpolation.

§ 6 - CONVERGENCE IN $H^{m+s}(\Omega)$

Let $f\in H^{m+s}(\Omega),$ and let (M_{k}) be a sequence of closed linear subspaces of $H^{-m-s}(\mathbb{R}^n)$. We suppose that for any $\mu \in H^{-m-s}_{\overline{\Omega}}(\mathbb{R}^n)$, the distance from μ to M_k converges to O. Then:

1°) For k sufficiently large, M_k is such that : if $p \in P_{m-1}$ satisfies <\mu,p>= 0 , $\forall \mu \in M_k$, then p = 0. So that there exists a unique $f_k \in D^{-m} \stackrel{\sim}{H}^S$ satisfying < μ , f_k > = < μ , f >, \forall $\mu \in M_k$, with $\|f_k\|_{m,S}$ minimum.

2°) $f_{1a} \rightarrow f$ in $H^{m+s}(\Omega)$.

This is a straightforward consequence of a general result of J.L. JOLY [7], putting X = $H^{m+s}(\Omega)$, Y = $H^{m+s}(\Omega)$ / P_{m-1} with a norm derived from $\|.\|_{m,s}$. Another way to see it (partially) is the following : put f^{Ω} = the minimal extension of f, relatively to $\|.\|_{m,s}$, i.e. the unique element in D^{-m} \tilde{H}^3 that coincides with f on Ω with minimum semi-norm $\|.\|_{m,s}$. It is uniquely written $\mu * K + p$ with $p \in P_{m-1}$ and $\mu \in H^{-m-s}(\mathbb{R}^n) \cap \mathbb{P}_{m-1}^o$ (K = \mathcal{F} Pf. $|\tau|^{-2m-2s}$). Same thing for $f_k = \mu_k * A + p_k$ with $p_k \in P_{m-1}$ and $\mu_k \in M_k \cap P_{m-1}^o$. And μ_k is simply the orthogonal projection of μ_k onto $M_k \cap P_{m-1}^o$, in Hilbert space $H^{-m-s}(\mathbb{R}^n) \cap P_{m-1}^o$ equipped with norm induced by $(D^{-m} \stackrel{\sim}{H^s} / P_{m-1})$ ' (equivalent to that induced by

$$\begin{split} &H^{-m-s}(\mathbb{R}^n)). \text{ So that } \|\mu_k - \mu\| \leq c \ d(\mu, M_k) \to 0, \text{ hence } \|\mu_k * K - \mu * K\|_{m,s} \to 0 \text{ and} \\ &\text{this proves that } f_k + P_{m-1} \to f + P_{m-1} \text{ in } H^{m+s}(\Omega) \ / \ P_{m-1} \ . \end{split}$$

Let us now specialize to the case where m + s > $\frac{n}{2}$ and M $_k$ is spanned by Dirac masses (δ_a ; a \in A $_k$) where (A $_k$) is a sequence of subsets of $\bar{\Omega}$. Then the condition $d(\mu,M_k) \to 0$, $\forall \ \mu \in H^{-m-S}$ is equivalent to saying that any point in Ω is limit of a sequence (a $_k \in A_k$), or that Hausdorff distance from A $_k$ to Ω tends to zero. This results from complete continuity of inclusion $H^{m+S}(\Omega) \subseteq C(\bar{\Omega})$ (a bounded subset of $H^{m+S}(\Omega)$ is an equicontinuous set of functions on $\bar{\Omega}$). We then get :

THEOREM 6:

If (A_k) is a sequence of subsets of $\overline{\Omega}$ (Ω bounded open subset of \mathbb{R}^n) such that $d(t,A_k) \to 0$, $\forall \ t \in \Omega$, and $f \in H^{m+s}(\Omega)$ with $m+s > \frac{n}{2}$, then the sequence (f_k) of functions coinciding with f on A_k with minimum semi-norm $\|.\|_{m,s}$ (uniquely determined for sufficiently large k) satisfies $f_k \to f$ in $H^{m+s}(\Omega)$.

REFERENCES

- [1] M. ATTEIA: Etude de certains noyaux et théorie des fonctions "spline" en analyse numérique. Thèse, Grenoble (1966).
- [2] M. ATTEIA: Existence et détermination des fonctions "spline" à plusieurs variables. C.R. Acad. Sci. Paris 262 (1966), 575-578.
- [3] M. ATTEIA: Fonctions "spline" et noyaux reproduisants d'Aronszajn-Bergman. Revue Française d'Informatique et de Recherche Opérationnelle, <u>R-3</u> (1970), 31-43.
- [4] J. DENY & J.L. LIONS: Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5 (1954), 305-370.
- [5] J. DUCHON: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. Revue Française d'Automatique, Informatique, Recherche Opérationnelle (to appear, 1976).
- [6] R.L. HARDER & R.N. DESMARAIS: Interpolation using surface splines. J. Aircraft, U.S.A., 9, N° 2 (1972), 189-191.
- [7] J.L. JOLY: Théorèmes de convergence des fonctions "spline" générales d'interpolation et d'ajustement. C.R. Acad. Sci. Paris 264 (1967),126-128.
- [8] P.J. LAURENT : Approximation et Optimisation. Hermann, Paris (1972).
- [9] L. SCHWARTZ: Théorie des distributions. Hermann, Paris (1966).
- [10] L. SCHWARTZ: Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants). J. Anal. Math. 13 (1964), 115-256.