Specification Document

Omkar Girish Kamath

November 21, 2022

Contents

1	\mathbf{Pro}	cessor	2				
	1.1	Instruction Set	2				
	1.2	Input Output Interface	3				
	1.3	Timing Diagrams	3				
2	Memory						
	2.1	Description	4				
	2.2	I/O of the Memory device	4				

1 Processor

1.1 Instruction Set

In this instruction syntax X=Not used, K=Constant, A=Instruction Address, P=Data Address

Table 1: Instruction Set of the Simple CPU

Opcode	Instruction	RTL				
Load ACC kk	OOOO XXXX KKKKKKKK	ACC <- KK				
Add ACC kk	0100 XXXX KKKKKKKK	ACC <- ACC + KK				
And ACC kk	0001 XXXX KKKKKKKK	ACC <- ACC & KK				
Sub ACC kk	O11O XXXX KKKKKKKK	ACC <- ACC - KK				
Input ACC pp	1010 XXXX PPPPPPPP	ACC <- M[PP]				
Output ACC pp	1110 XXXX PPPPPPPP	M[PP] <- ACC				
Jump U aa	1000 XXXX AAAAAAA	PC <- AA				
Jump Z aa	1001 OOXX AAAAAAA	IF Z=1 PC <- AA ELSE PC <- PC + 1				
Jump C aa	1001 10XX AAAAAAA	IF C=1 PC <- AA ELSE PC <- PC + 1				
Jump NZ aa	1001 O1XX AAAAAAA	IF Z=O PC <- AA ELSE PC <- PC + 1				
Jump NC aa	1001 11XX AAAAAAA	IF C=O PC <- AA ELSE PC <- PC + 1				

Here '->' indicates updated with .

The processor has an extra cycle to save on hardware which would have been required for incrementing the PC. So the processor follows **fetch-decode-execute-increment** cycle. The processor uses a 1 GHz frequency clock.

1.2 Input Output Interface

Table 2: I/O interface of the processor

Signals	Type	Size	Active	Description
clk	input	1 bit	-	square wave used to main-
				tain synchronousity in the
				device
rst	input	1 bit	Low	resets the chip to a pre de-
				cided state
[15:0] d_in	input	16 bits	-	the instruction sent from
				memory
[7:0] adrs	output	8 bits	-	the address of the required
				instruction sent to memory
rw	output	1 bit	-	read write control signal
				sent to memory
[7:0] d_out	output	8 bits	-	output data from the pro-
				cessor

1.3 Timing Diagrams

Figure 2: Timing Diagrams of the processor

clk
rst
c_e
d_in
adrs
rw
d_out

2 Memory

2.1 Description

Size of RAM -> 4 Kilobytes

RAM used is Volatile BJT type Synchronous Static RAM . Instruction length is $16\ bit$, maximum number of instructions and data than can be stored is $\bf 256$ (address 0 to 255). Address length required is 8 bits.

2.2 I/O of the Memory device

Table 3: I/O of the Memory device

Signals	Type	Size	Active	Description
clk	input	1 bit	-	square wave used
				to maintain syn-
				chronousity in the
				device
rst	input	1 bit	Low	resets the memory to a
				pre decided state
[15:0] mem_in	input	16 bits	-	the data sent by chip
[7:0] adrs	input	8 bits	-	the address of the re-
				quired instruction
rw	input	1 bit	-	read write control signal
				sent to memory
[15:0] mem_out	output	16 bits	-	output data/instruction
				from the memory