bladerRF - USB 3.0 Software Defined Radio

Title				
	Nuand			
	I. D M			Б
Size B	Document Number			Rev
B	<doc></doc>			Α
Date:	Saturday, March 30, 2013	Sheet		

FPGA CONFIGURATION

Title	Nuand					
Size B	Document Number <doc></doc>					Rev A
Date:	Saturday, March 30, 2013	Sheet	2	of	14	

Avoid VREF pins due to their slow IO times. UDCLK has to be a CTL pin. DATA[0..7] have to be from GPIF[0..15]

FPGA "LEFT" BANK

FX3 GPIO52>>

FX3 GPIO51>>

FX3_GPIO50>>

EP4CE15A115F484

J64 1 FX3 UART RX 2 FX3 UART TX HEADER 1x3 100mil

VD3P3 D11 LTST-C190KGKT R278 820 820 820 LED1 LED2 LED3

Nuand Document Number <Doc> Α Saturday, March 30, 2013 Sheet

USB CONNECTIONS

USB Positive Overvoltage Protection Controller

USB3.0 MICRO TYPE B

PART_NUMBER = GSB343133HR Manufacturer = Amphenol USB_3

Title	Nuand					
Size B	Document Number <doc></doc>					Rev A
Date:	Tuesday, March 19, 2013	Sheet	8	of	14	

LMS ANALOG + RF -<<LMS_TX_V1 V3P3_TX_LMS √CLMS_TX_V2 V2 C226 C245 8.2nF C246 8.2nF AS211-334 0.1uF L39 36nH 3 L38 36nH 300MHz - 2.8GHz C318 20pF TC1-1-13M 00 00 C225 C322 U1D DNP 6.8pF DNP 00 TXOUT1P R268 > Hzu. TXOUT1N L40 R269 R267 R266 C317 20pF 51 C320 51 U1C 52 51 54 56 20pF **TXINIP** TXININ TXINQP ESD0P8RFL TXINQN C313 3.6pF C314 3.6pF TXOUT2N 46 TXOUT2P TC1-1-43+ R265 C316 3.6pF C223 L37 DNP **TXCPOUT TXVTUNE** DNP 1.2K C212 470pF C214 8.2nF C213 150pF OEXLNA1P IEXMIX1P IEXMIX1N C312 C315 R264 00 3.6pF RXOUTIP RXOUTIN 1.5GHz - 3.8GHz 820 OEXLNA1N 36nH L34 36nH L35 RXOUTQP RXIN1EP AS211-334 **RXOUTQN** RXIN1EN 00 V3P3_TX_LMS -<<LMS_RX_V1 PWR HDR6 GND C224 **RXCPOUT** RXVTUNE KLMS_RX_\ R263 0.1uF 1uF RXIN1P RXIN1N C243 8.2nF C244 8.2nF 1.2K 300MHz - 2.8GHz C209 470pF C210 8.2nF XRES12K C211 150pF XRESAD L32 2.7nH VREFAD R262 820 TC1-1-13M R270 100 RXIN2P TP17 102 6800 RXIN2N 42 ATP L33 2.7nH PLLCLKOUT L31 R271 R272 103 104 106 105 12K > 390 C331 OEXLNA2P 6.8pF IEXMIX2P TC1-1-43+ L43 2.7nH C324 3.6pF IEXMIX2N OEXLNA2N UNUSED UNUSED UNUSED UNUSED ESD0P8RFL LMS_PLLOUT >>-108 R279 110 51 L44 2.7nH RXIN3P LMS6002D RXIN3N RF Shield tabs LMS6002D 1.5GHz - 3.8GHz U73 / R282 > 51 GND RFSHIELDTAB RFSHIELDTAB C328 100pF U72 GND GND Nuand RESHIELDTAB Document Number Rev A <Doc>

POWER SELECTION + DEBUG

Jumpered power selection DC barrel vs USB3 bus

Scatter these testpoints throughout the design. Testpoints will be $\ensuremath{\mathsf{PTH}}$

Title
Nuand
Size Document Number Rev A
Date: Saturday, March 30, 2013 Sheet 14 of 14