IBM NALAIYATHIRAN

EARLY DETECTION OF CHRONIC KIDNEY DISEASE USING MACHINE LEARNING

LITERATURE SURVEY

SNO	LITERATURE PAPER	AUTHOR	PROPOSED METHOD	ACCURACY	YEAR
1	Computer-Aided Diagnosis of Chronic Kidney Disease in Developing Countries: A Comparative Analysis of Machine Learning Techniques	Andressa C. M. Da S. Queiroz, Alvaro Sobrinho, Leandro Dias Da Silva, Evandro De Barros Costa, Maria Eliete Pinheiro, Angelo Perkusich	J48 decision tree is a suitable machine learning technique for such screening in developing countries, due to the easy interpretation of its classification results	95.00%	2020
2	Chronic Kidney Disease Prediction using Machine Learning Models	S.Revathy, B.Bharathi, P.Jeyanthi, M.Ramesh	Decision tree, Random Forest and Support Vector Machine learning models are constructed to carry out the diagnosis of CKD	99.16%	2019
3	Preemptive Diagnosis of Chronic Kidney Disease Using Machine Learning Techniques	Reem A. Alassaf, Khawla A. Alsulaim, Noura Y. Alroomi, Nouf S. Alsharif, Mishael F. Aljubeir, Sunday O. Olatunji, Alaa Y. Alahmadi, Mohammed Imran, Rahma A. Alzahrani, Nora S. Alturayeif	ANN, SVM, Naïve Bayes along with k-NN comparison approach	ANN,SVM,Naïve Bayes - 98% k-NN - 93.9%	2018
4	Prediction of Chronic Kidney Disease Using Machine Learning Algorithm	Siddheshwar Tekale,Pranjal Shingavi,Sukanya Wandhekar,Ankit Chatorikar	Decision tree algorithms along comparison with SVM	Decision tree – 91.75% SVM-96.75%	2018
5	Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study	Njoud Abdullah Almansour,Hajra FahimSyed,Nuha Radwan Khayat,Rawan KanaanAltheeb,Renad Emad Juri,Jamal Alhiyafi,Saleh Alrashed,Sunday O.Olatunji	Comparative analysis was carried out on the two models-ANN and SVM	ANN - 99.75% SVM - 97.75%	2019