

Grupo 3

Relatório de amostragem

Exploratória dos dados

Testes e estatísticas da amostra

Teste qui-quadrado

Tipos de avaria	Prateleira 1	Prateleira 2	Prateleira 3	Prateleira 4	Total
Capa	0	10	1	2	13
Oxidação	10	2	3	12	27
Rabiscos	6	1	3	5	15
Total	16	13	7	19	55

H0 : O tipo de avaria é independente da prateleira ao qual o livro se encontra H1 : Existe dependência do tipo de avaria à prateleira em que o livro se encontra

Pelo teste Qui-quadrado, concluímos que existe relação entre o tipo de avaria e a prateleira em que o livro se encontra. Isso pois o teste rejeita H0

H0 : As medianas de livros avariados das prateleiras são iguais

H1 : Existe pelo menos uma prateleira com mediana diferente

Variável	Teste Kruskall-Wallis	Decisão do teste	
Medianas das prateleiras	0.005	Rejeita H0	

Rejeitados alguns dos pressupostos, devemos portanto utilizar uma abordagem não paramétrica para testar a hipótese da diferença das médias de avarias nas prateleiras. Utilizaremos o teste de Kruskall-Wallis. Pelo teste de Kruskall-Wallis, concluímos que existem diferenças entre as medianas de avarias nas prateleiras.

Estatística pontual	Intervalo de confiança	
0,55	0,4525 - 0,6475 (%)	

Aqui, não estamos fazendo correção de população finita, que deve ser posteriormente realizado caso o parâmetro N seja conhecido.

Segundo COCHRAN,1977 [1], temos que a máxima variância, portanto maior tamanho amostral necessário, para uma proporção é quando na população a proporção p = 0, 5. Com uma estatística pontual calculada em 0,55 na amostra, é razoável pensar que a proporção da população pode ser de 0,5. Para conferir esta hipótese, faremos um teste de proporção para 1 amostra.

Obrigado.