Table 1. Properties of the z transform

Sequence	Transform	
e(k)	$E(z) = \sum_{k=0}^{\infty} e(k)z^{-k}$	
$a_1e_1(k)+a_2e_2(k)$	$a_1E_1(z)+a_2E_2(z)$	
$e(k-n)u(k-n); n \ge 0$	$z^{-n}E(z)$	
$e(k+n)u(k); n \ge 1$	$z^{n} \bigg[E(z) - \sum_{k=0}^{n-1} e(k) z^{-k} \bigg]$	
$\epsilon^{ak} e(k)$	$E(z\epsilon^{-a})$	
ke(k)	$-z\frac{dE(z)}{dz}$	
$e_1(k) * e_2(k)$	$E_1(z)E_2(z)$	
$e_1(k) = \sum_{n=0}^k e(n)$	$E_1(z) = \frac{z}{z-1}E(z)$	
Initial value: $e(0) = \lim_{n \to \infty} E$	(z)	
Final value: $e(\infty) = \lim_{z \to 1} (z)$	$-1)E(z)$, if $e(\infty)$ exists	

Table 2. z-transforms

Sequence	z-Transform		
$\delta(k-n)$	lo noitin z ⁻ⁿ off		
1 1	$\frac{z}{z-1}$		
k	$\frac{z}{(z-1)^2}$		
k^2	$\frac{z(z+1)}{(z-1)^3}$		
a^k	$\frac{z}{z-a}$		
ka ^k	$\frac{az}{(z-a)^2}$		
sin ak	$\frac{z \sin a}{z^2 - 2z \cos a + 1}$		
cos ak	$\frac{z(z-\cos a)}{z^2-2z\cos a+1}$		
$a^k \sin bk$	$\frac{az \sin b}{z^2 - 2az \cos b + a}$		
$a^k \cos bk$	$\frac{z^2 - az \cos b}{z^2 - 2az \cos b} +$		

Table 3. z-transforms

Laplace transform $E(s)$	Time function $e(t)$	z-Transform $E(z)$	Modified z-transform $E(z,m)$
$\frac{1}{s}$	u(t)	$\frac{z}{z-1}$	$\frac{1}{z-1}$
$\frac{1}{s^2}$	1	$\frac{Tz}{(z-1)^2}$	$\frac{mT}{z-1} + \frac{T}{(z-1)^2}$
$\frac{1}{s^3}$	$\frac{t^2}{2}$	$\frac{T^2z(z+1)}{2(z-1)^3}$	$\frac{T^2}{2} \left[\frac{m^2}{z-1} + \frac{2m+1}{(z-1)^2} + \frac{2}{(z-1)^3} \right]$
$\frac{(k-1)!}{s^k}$	t ^{k-1}	$\lim_{a\to 0} (-1)^{k-1} \frac{\partial^{k-1}}{\partial a^{k-1}} \left[\frac{z}{z - e^{-aT}} \right]$	$\lim_{a \to 0} (-1)^{k-1} \frac{\partial^{k-1}}{\partial a^{k-1}} \left[\frac{\epsilon^{-amT}}{z - \epsilon^{-aT}} \right]$
$\frac{1}{s+a}$	ϵ^{-at}	$\frac{z}{z - \epsilon^{-aT}}$	$\frac{\epsilon^{-amT}}{z - \epsilon^{-aT}}$
$\frac{1}{(s+a)^2}$	$t\epsilon^{-at}$	$\frac{Tz\epsilon^{-aT}}{(z-\epsilon^{-aT})^2}$	$\frac{T\epsilon^{-amT}[\epsilon^{-aT}+m(z-\epsilon^{-aT})]}{(z-\epsilon^{-aT})^2}$
$\frac{(k-1)!}{(s+a)^k}$	$t^k \epsilon^{-at}$	$(-1)^k \frac{\partial^k}{\partial a^k} \left[\frac{z}{z - \epsilon^{-aT}} \right]$	$(-1)^k \frac{\partial^k}{\partial a^k} \left[\frac{\epsilon^{-amT}}{z - \epsilon^{-aT}} \right]$
$\frac{a}{s(s+a)}$	$1 - \epsilon^{-at}$	$\frac{z(1-\epsilon^{-aT})}{(z-1)(z-\epsilon^{-aT})}$	$\frac{1}{z-1} - \frac{\epsilon^{-amT}}{z-\epsilon^{-aT}}$
$\frac{a}{s^2(s+a)}$	$t-\frac{1-\epsilon^{-at}}{a}$	$\frac{z[(aT-1+\epsilon^{-aT})z+(1-\epsilon^{-aT}-aT\epsilon^{-aT})]}{a(z-1)^2(z-\epsilon^{-aT})}$	$\frac{T}{(z-1)^2} + \frac{amT - 1}{a(z-1)} + \frac{\epsilon^{-amT}}{a(z-\epsilon^{-aT})}$
$\frac{a^2}{s(s+a)^2}$	$1-(1+at)\epsilon^{-at}$	$\frac{z}{z-1} - \frac{z}{z - e^{-aT}} - \frac{aTe^{-aT}z}{(z - e^{-aT})^2}$	$\frac{1}{z-1} - \left[\frac{1+amT}{z-\epsilon^{-aT}} + \frac{aT\epsilon^{-aT}}{(z-\epsilon^{-aT})^2} \right] \epsilon^{-at}$
$\frac{b-a}{(s+a)(s+b)}$	$\epsilon^{-at} - \epsilon^{-bt}$	$\frac{(e^{-aT} - \epsilon^{-bT})z}{(z - \epsilon^{-aT})(z - \epsilon^{-bT})}$	$\frac{e^{-amT}}{z - e^{-a\overline{t}}} - \frac{e^{-bmT}}{z - e^{-b\overline{t}}}$
$\frac{a}{s^2 + a^2}$	sin (at)	$\frac{z\sin{(aT)}}{z^2-2z\cos{(aT)}+1}$	$\frac{z \sin(amT) + \sin(1-m)aT}{z^2 - 2z \cos(aT) + 1}$
$\frac{s}{s^2+a^2}$	cos(at)	$\frac{z(z-\cos{(aT)})}{z^2-2z\cos{aT}+1}$	$\frac{z \cos(amT) - \cos(1-m)aT}{z^2 - 2z \cos(aT) + 1}$
$\frac{1}{(s+a)^2+b^2}$	$\frac{1}{b} \epsilon^{-at} \sin bt$	$\frac{1}{b} \left[\frac{z e^{-aT} \sin bT}{z^2 - 2z e^{-aT} \cos (bT) + e^{-2aT}} \right]$	$\frac{1}{b} \left[\frac{\epsilon^{-amT} [z \sin bmT + \epsilon^{-aT} \sin (1 - m)bT]}{z^2 - 2z \epsilon^{-aT} \cos bT + \epsilon^{-2aT}} \right]$
$\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos bt$	$\frac{z^2 - z\epsilon^{-aT}\cos bT}{z^2 - 2z\epsilon^{-aT}\cos bT + \epsilon^{-2aT}}$	$\frac{\epsilon^{-amT}[z\cos bmT + \epsilon^{-aT}\sin(1-m)bT]}{z^2 - 2z\epsilon^{-aT}\cos bT + \epsilon^{-2aT}}$
$\frac{a^2 + b^2}{s[(s+a)^2 + b^2]}$	$1 - \epsilon^{-at} \left(\cos bt + \frac{a}{b} \sin bt \right)$	$\frac{z(Az+B)}{(z-1)(z^2-2z\epsilon^{-aT}\cos bT+\epsilon^{-2aT})}$	$\frac{1}{z-1}$
		$A = 1 - \epsilon^{-aT} \left(\cos bT + \frac{a}{b} \sin bT \right)$	$-\frac{e^{-amT}[z\cos bmT + e^{-aT}\sin(1-m)bT]}{z^2 - 2ze^{-aT}\cos bT + e^{-2aT}}$
		$B = \epsilon^{-2aT} + \epsilon^{-aT} \left(\frac{a}{b} \sin bT - \cos bT \right)$	$\frac{+\frac{a}{b}\left\{\epsilon^{-amT}\left[z\sin bmT - \epsilon^{-aT}\sin\left(1-m\right)bT\right]\right\}}{z^2 - 2z\epsilon^{-aT}\cos bT + \epsilon^{-2aT}}$
$\frac{1}{s(s+a)(s+b)}$	$\frac{1}{ab} + \frac{\epsilon^{-at}}{a(a-b)}$	$\frac{(Az+B)z}{(z-\epsilon^{-aT})(z-\epsilon^{-bT})(z-1)}$	$A = \frac{b(1 - \epsilon^{-aT}) - a(1 - \epsilon^{-bT})}{ab(b - a)}$
	$+\frac{\epsilon^{-b\epsilon}}{b(b-a)}$		$B = \frac{a\epsilon^{-aT}(1 - \epsilon^{-bT}) - b\epsilon^{-bT}(1 - \epsilon^{-aT})}{ab(b - a)}$

Table 4. Laplace transform properties

Name	Theorem	
Derivative	$\mathscr{L}\left[\frac{df}{dt}\right] = sF(s) - f(0^+)$	
nth-order derivative	$\mathscr{L}\left[\frac{d^n f}{dt^n}\right] = s^n F(s) - s^{n-1} f(0^+)$	
	$-\cdots f^{(n-1)}(0^+)$	
Integral	$\mathscr{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{F(s)}{s}$	
Shifting	$\mathscr{L}[f(t-t_0)u(t-t_0)]=e^{-t_0s}F(s)$	
Initial value	$\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$	
Final value	$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$	
Frequency shift	$\mathscr{L}[e^{-at}f(t)] = F(s+a)$	
Convolution integral	$\mathcal{L}^{-1}[F_1(s)F_2(s)] = \int_0^t f_1(t-\tau)f_2(\tau) d\tau$	
ation with constant or of this system can be t	$= \int_0^t f_1(\tau) f_2(t-\tau) d\tau$	

Table 5 Optimum coefficients of T(s) Based on the ITAE Criterion for a Step Input

$$s + \omega_{n}$$

$$s^{2} + 1.4\omega_{n}s + \omega_{n}^{2}$$

$$s^{3} + 1.75\omega_{n}s^{2} + 2.15\omega_{n}^{2}s + \omega_{n}^{3}$$

$$s^{4} + 2.1\omega_{n}s^{3} + 3.4\omega_{n}^{2}s^{2} + 2.7\omega_{n}^{3}s + \omega_{n}^{4}$$

$$s^{5} + 2.8\omega_{n}s^{4} + 5.0\omega_{n}^{2}s^{3} + 5.5\omega_{n}^{3}s^{2} + 3.4\omega_{n}^{4}s + \omega_{n}^{5}$$

$$s^{6} + 3.25\omega_{n}s^{5} + 6.60\omega_{n}^{2}s^{4} + 8.60\omega_{n}^{3}s^{3} + 7.45\omega_{n}^{4}s^{2} + 3.95\omega_{n}^{5}s + \omega_{n}^{6}$$