Lecture #8

Introduction to Sequential Circuits/Synchronous versus Asynchronous/Latches/Flip-Flops/Characteristic Tables and Equations

By: Muhammad Zain Uddin

email: zuddin@iba.edu.pk

M. ZAIN UDDIN

Digital Logic Design

Muhammad Zain Uddin Lecturer, IBA

Combinational versus Sequential

Two classes of digital circuits

- Combinational Circuits
- Sequential Circuits

Combinational Circuit

- Outputs = F(Inputs)
- Function of Inputs only
- NO internal memory

Sequential Circuit

- Outputs is a function of Inputs and internal Memory
- There is an internal memory that stores the state of the circuit
- Time is very important: memory changes with time

Introduction to Sequential Circuits

A Sequential circuit consists of:

- 1. Memory elements:
 - Latches or Flip-Flops
 - Store the Present State
- 2. Combinational Logic
 - Computes the Outputs of the circuit
 - Outputs depend on Inputs and Current State
 - Computes the Next State of the circuit

Next State also depends on the Inputs and the Present State

Two Types of Sequential Circuits

1. Synchronous Sequential Circuit

- Uses a clock signal as an additional input
- Changes in the memory elements are controlled by the clock
- Changes happen at discrete instances of time

2. Asynchronous Sequential Circuit

- No clock signal
- Changes in the memory elements can happen at any instance of time
 - Our focus will be on Synchronous Sequential Circuits
- Easier to design and analyze than asynchronous sequential circuits

Synchronous Sequential Circuits

Synchronous sequential circuits use a clock signal

The clock signal is an input to the memory elements

The clock determines when the memory should be updated

The **present state** = output value of memory (stored)

The **next state** = input value to memory (not stored yet)

The Clock

The same clock cycle repeats indefinitely over time

Positive Pulse: when the level of the clock is 1

Negative Pulse: when the level of the clock is 0

Rising Edge: when the clock goes from 0 to 1

Falling Edge: when the clock goes from 1 down to 0

Memory Elements

Memory can store and maintain binary state (0's or 1's)

Until directed by an input signal to change state

Main difference between memory elements

- Number of inputs they have
- How the inputs affect the binary state

Two main types:

- Latches are level-sensitive (the level of the clock)
- Flip-Flops are edge-sensitive (sensitive to the edge of the clock)

Flip-Flips are used in synchronous sequential circuits

Flip-Flops are built with latches

SR Latch

A **latch** is a memory element that can store 0 or 1

An **SR Latch** can be built using two **cross-coupled** NOR gates

Two inputs: S (Set) and R (Reset)

Two outputs: Q and \overline{Q}

S R	QQ	
1 0 0 0	1 0 1 0	Set state
0 1 0 0	0 1 0 1	Reset state
1 1	0 0	Undefined

(b) Function table

SR Latch Operation

SR Latch Invalid Operation

Timing Diagram of an SR Latch

Gated SR Latch with Clock Enable

- ❖ An additional Clock (enable) input signal **C** is used
- Clock controls when the state of the latch can be changed
- ❖ When C=0, the S and R inputs have no effect on the latch
 The latch will remain in the same state, regardless of S and R
- ❖ When C=1, then normal SR latch operation

S R Latch with NAND Gates

Known as the $\overline{S} \overline{R}$ Latch

If
$$\overline{S}=0$$
 and $\overline{R}=1$ then **Set** $(Q=1, \overline{Q}=0)$

If
$$\overline{S}=1$$
 and $\overline{R}=0$ then Reset ($Q=0, \ \overline{Q}=1$)

When $\bar{S} = \bar{R} = 1$, Q and \overline{Q} are unchanged (remain the same)

The latch stores its outputs Q and \overline{Q} as long as $\overline{S} = \overline{R} = 1$

When $\bar{S} = \bar{R} = 0$, Q and \overline{Q} are undefined (should never be used)

S R Latch Operation

S R Latch Invalid Operation

Gated SR Latch with Clock Enable

An additional Clock (enable) input signal **C** is used

Clock controls when the state of the latch can be changed

When C=0, the latch remains in the same state

When **C=1**, then normal latch operation

The NAND gates invert the S and R inputs when C=1

D-Latch with Clock Enable

C D	Next state of Q
0 X	No change
1 0	Q = 0; Reset state
1 1	Q = 1; Set state

(b) Function table

One data input D

$$S = D$$
 and $R = \overline{D}$

No undefined state

Inverter can be removed

When
$$C = 1$$
, $R = \overline{S} = \overline{D}$

Timing of a D-Latch with Clock Enable

Time

Graphic Symbols for Latches

A bubble appears at the complemented output \overline{Q}

Indicates that \overline{Q} is the complement of Q

A bubble also appears at the inputs of an \overline{S} \overline{R} latch

Indicates that **logic-0** is used (not logic-1) to set (or reset) the latch (as in the NAND latch implementation)

Problem with Latches

A latch is **level-sensitive** (sensitive to the level of the clock)

As long as the clock signal is **high** ...

Any change in the value of input *D* appears in the output *Q*

Output Q keeps changing its value during a clock cycle

Final value of output Q is uncertain

Due to this uncertainty, latches are NOT used as memory elements in synchronous circuits

Flip-Flops

A Flip-Flop is a better memory element for synchronous circuits

Solves the problem of latches in synchronous sequential circuits

A **latch** is sensitive to the **level** of the clock

However, a **flip-flop** is sensitive to the **edge** of the clock

A flip-flop is called an **edge-triggered** memory element

It changes it output value at the **edge** of the clock

Edge-Triggered D Flip-Flop

Built using two latches in a master-slave configuration

A master latch (D-type) receives external inputs

A slave latch (SR-type) receives inputs from the master latch

Only one latch is enabled at any given time

When Clk=0, the master is enabled and the D input is latched (slave disabled)

When Clk=1, the slave is enabled to generate the outputs (master is disabled)

Outputs change when *Clk* changes **from 0** to 1

Negative Edge-Triggered D Flip-Flop

Similar to positive edge-triggered flip-flop

The first inverter at the Master C input is removed

Only one latch is enabled at any given time

When **Clk=1**, the master is enabled and the D input is latched (slave disabled)

When Clk=0, the slave is enabled to generate the outputs (master is disabled)

Outputs change when *Clk* changes **from 1** to **0**

D Flip-Flop Timing Diagram

The diagram shows the timing of a positive-edge D Flip-Flop

The master latch changes its output Qm when the clock C is 0

The rising edge of the clock triggers the D Flip-Flop

Notice the slight delay in the output Q after the rising edge

Graphic Symbols for Flip-Flops

A Flip-Flop has a similar symbol to a Latch

The difference is the arrowhead at the clock input

The arrowhead indicates sensitivity to the edge of the clock

A circle at the Clk input indicates negative edge-triggered FF

Asynchronous Set and Reset

When Flip-Flops are powered, their initial state is unknown

Some flip-flops have an asynchronous Set and Reset inputs

Set forces Q to become 1, independently of the clock

Reset forces Q to become 0, independently of the clock

Inputs			Out	puts	
<u>Set</u>	Reset	Data	Clk	Q	\overline{Q}
0	1	Χ	Χ	1	0
1	0	X	X	0	1
1	1	0	1	0	1
1	1	1	1	1	0

Function Table

JK Flip-Flop

The D Flip-Flop is the most commonly used type

The JK is another type of Flip-Flop with inputs: J, K, and Clk

When $JK = 10 \rightarrow \text{Set}$, When $JK = 01 \rightarrow \text{Reset}$

When $JK = 00 \rightarrow$ No change, When $JK = 11 \rightarrow$ Invert outputs

T Flip-Flop

The T (Toggle) flip-flop has inputs: T and Clk

When $T = 0 \rightarrow$ No change, When $T = 1 \rightarrow$ Invert outputs

The T flip-flop can be implemented using a JK flip-flop

It can also be implemented using a D flip-flop and a XOR gate

Flip-Flop Characteristic Table

Defines the operation of a flip-flop in a tabular form

Next state is defined in terms of the current state and the inputs

Q(t) refers to current state **before** the clock edge arrives

Q(t+1) refers to next state **after** the clock edge arrives

D Flip-Flop			
D	Q((t+1)	
0	0	Reset	
1	1	Set	

JK Flip-Flop			
J K	Q(t+1)		
0 0	Q(t)	No change	
0 1	0	Reset	
1 0	1	Set	
1 1	Q'(t)	Complement	

T Flip-Flop			
Т		Q(t+1)	
0	Q(t)	No change	
1	Q'(t)	Complement	

Flip-Flop Characteristic Equation

The characteristic equation defines the operation of a flip-flop

For D Flip-Flop: Q(t+1) = D

For JK Flip-Flop: Q(t+1) = J Q'(t) + K' Q(t)

For T Flip-Flop: $Q(t+1) = T \oplus Q(t)$

Clearly, the D Flip-Flop is the simplest among the three

D Flip-Flop			
D	Q((t+1)	
0	0	Reset	
1	1	Set	

JK Flip-Flop			
JK	Q(t+1)		
0 0	Q(t)	No change	
0 1	0	Reset	
1 0	1	Set	
1 1	Q'(t)	Complement	

T Flip-Flop			
Т	Q(t+1)		
0	Q(t)	No change	
1	Q'(t)	Complement	

Summary

In a sequential circuit there is internal memory

- Output is a function of current inputs and present state
- The stored memory value defines the present state
- Similarly, the next state depends on current inputs and present state

Two types of sequential circuits:

- Synchronous sequential circuits are clocked (easier to implement)
- Asynchronous sequential circuits are not clocked

Two types of Memory elements: Latches and Flip-Flops

Latches are level-sensitive, flip-flops are edge-triggered

Flip-flops are better memory elements for synchronous circuits

A flip-flop is described using a characteristic table and equation