ASSIGNMENT 9

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ 2022 JULY 26, SHIFT 1

1)	The minimum value of the sum of the squares of the roots of $x^2 + (3-a)x + 1 =$	= 2 <i>a</i>
	s:	

a) 4

b) 5

c) 6

d) 8

2) If
$$z = x + iy$$
 satisfies $|z| - 2 = 0$ and $|z - i| - |z + 5i| = 0$, then

a)
$$x + 2y - 4 = 0$$

a) x + 2y - 4 = 0 b) $x^2 + y - 4 = 0$ c) x + 2y + 4 = 0 d) $x^2 - y + 3 = 0$

1

3) Let
$$A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 9^2 & -10^2 & 11^2 \\ 12^2 & 13^2 - 14^2 \\ -15^2 & 16^2 & 17^2 \end{bmatrix}$, then the value of A^TBA is:

- a) 1224
- b) 1042
- c) 540
- d) 539

4)
$$\sum_{i,j=0}^{n} nC_i nC_j$$
 is equal to

- a) $2^{2n} 2nC_n$
- b) $2^{2n-1} 2n 1C_{n-1}$
- c) $2^{2n} \frac{1}{2}2nC_n$ d) $2^{n-1} + 2n 1C_n$

5) Let
$$P$$
 and Q be any points on the curves $(x-1)^2 + (y+1)^2 = 1$ and $y=x^2$, respectively. The distance between P and Q is minimum for some value of the abscissa of P in the interval

- a) $(0, \frac{1}{4})$
- b) $(\frac{1}{2}, \frac{3}{4})$ c) $(\frac{1}{4}, \frac{1}{2})$ d) $(\frac{3}{4}, 1)$

6) If the maximum value of
$$a$$
, for which the function $f_a(x) = \tan^{-1} 2x - 3ax + 7$ is non-decreasing in $\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$, is \overline{a} , then $f_{\overline{a}}\left(\frac{\pi}{8}\right)$ is equal to:

- a) $8 \frac{9\pi}{4(9+\pi^2)}$ b) $8 \frac{4\pi}{9(4+\pi^2)}$ c) $8\left(\frac{1+\pi^2}{9+\pi^2}\right)$ d) $8 \frac{\pi}{4}$

7) Let
$$\beta = \lim_{x \to 0} \frac{\alpha x \left(e^{-3x} - 1\right)}{\alpha x \left(e^{3x} - 1\right)}$$
 for some $\alpha \in \mathbb{R}$. Then the value of $\alpha + \beta$ is:

- a) $\frac{14}{5}$
- b) $\frac{3}{2}$

c) $\frac{5}{2}$

d) $\frac{7}{2}$

8) The value of
$$\log_e 2\frac{d}{dx} (\log_{\cos x} \csc x)$$
 at $x = \frac{\pi}{4}$ is

d) 4

10)	Let the solution curve $y=f\left(x\right)$ of the differential equation $\frac{dy}{dx}+\frac{xy}{x^2-1}=\frac{x^4+2x}{\sqrt{1-x^2}}, x\in\left(-1,1\right)$ pass through the origin. Then $\int_{\frac{\sqrt{5}}{2}}^{1}f\left(x\right)dx$ is equal to:					
	a) $\frac{\pi}{3} - \frac{1}{4}$	b) $\frac{\pi}{3} - \frac{\sqrt{3}}{4}$	c) $\frac{\pi}{6} - \frac{\sqrt{3}}{4}$	d) $\frac{\pi}{6} - \frac{\sqrt{3}}{2}$		
11)) The acute angle between the pair of tangents drawn to the ellipse $2x^2+3y^2=5$ from the point $(1,3)$ is					
	a) $\tan^{-1}\left(\frac{16}{7\sqrt{5}}\right)$	b) $\tan^{-1}\left(\frac{24}{7\sqrt{5}}\right)$	c) $\tan^{-1}\left(\frac{32}{7\sqrt{5}}\right)$	$d) \tan^{-1}\left(\frac{3+8\sqrt{5}}{35}\right)$		
12)	2) The equation of a common tangent to the parabolas $y = x^2$ and $y = -(x-2)^2$ is					
	a) $y = 4(x-2)$	b) $y = 4(x - 1)$	c) $y = 4(x+1)$	d) $y = 4(x+2)$		
13)	3) Let the abscissae of the two points P and Q on a circle be the roots of $x^2-4x-6=0$ and the ordinates of P and Q be the roots of $y^2+2y-7=0$. If PQ is a diameter of the circle $x^2+y^2+2ax+2by+c=0$, then the value of $a+b-c$ is					
	a) 12	b) 13	c) 14	d) 16		
14)) If the line $x-1=0$ is a directrix of the hyperbola $kx^2-y^2=6$, then the hyperbola passes through the point					
	a) $(-2\sqrt{5}, 6)$	b) $(-\sqrt{5},3)$	c) $(\sqrt{5}, -2)$	d) $(2\sqrt{5}, 3\sqrt{6})$		
15)	A vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\hat{i},\hat{i}+\hat{j}$ and the plane determined by the vectors $\hat{i}-\hat{j},\hat{i}+\hat{k}$. The obtuse angle between \vec{a} and the vector $\vec{b}=\hat{i}-2\hat{j}+2\hat{k}$ is					
	a) $\frac{3\pi}{4}$	b) $\frac{2\pi}{3}$	c) $\frac{4\pi}{5}$	d) $\frac{5\pi}{6}$		

a) $10(\pi + 4)$ b) $10(\pi + 2)$ c) $20(\pi - 2)$ d) $20(\pi + 2)$

a) $-2\sqrt{2}$ b) $2\sqrt{2}$ c) -4

9) $\int_0^{20\pi} (|\sin x| + |\cos x|)^2 dx$ is equal to: