

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Exercise 6: Value Function Approximation

Nico Meyer

Overview

Exercise Content

Week	Date	Торіс	Material	Who?
0			no exercises	
1	23.04.	MDPs		Nico
2	30.04.	Dynamic Programming		Alex
3	07.05.	OpenAl Gym, PyTorch-Intro		Alex
4	14.05.	TD-Learning		Nico
5	22.05.	Practical Session (zoom@home)	Attention: Lecture Slot!	Nico + Alex
6	28.05.	TD-Control		Nico
7	04.06.	DQN		Nico
8	11.06.	VPG		Alex
9	18.06.	A2C		Nico
10	25.06.	Multi-armed Bandits		Alex
11	02.07.	RND/ICM		Alex
12	09.07.	MCTS		Alex
13	16.07.	BCQ		Nico

Overview

Overall Picture

Deep Q-Networks

Why it is necessary and how it can be done

- Challenge: In real world problems, the state space can be large
 - Backgammon: 10²⁰ states
 - Computer Go: 10¹⁷⁰ states
 - Robot arm: infinite number of states! (continuous)
- Exact:
 - A table with a distinct value for each case
- Approximate:
 - Approximate V or Q with a function approximator (e.g., NN, polynomials, RBF, ...)

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$

 $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$

- + We only need to store the approximator parameters
- Convergence properties do not hold anymore

Policy Evaluation and Improvement

Our goal is to learn good parameters w that approximate the true value function well:

Policy Improvement: Generate $\pi' \geq \pi$ e.g., ϵ -greedy Policy Improvement

Linear Approximation

Linear Value Function Approximation (careful: non-linear features)

$$\hat{Q}^{\pi}(s,a;w) = \phi(s,a)^T w$$

Example features: Polynomial Basis, for instance:

$$(s_1, s_2)^T \to (1, s_1, s_2, s_1 s_2)^T$$

 $(s_1, s_2)^T \to (1, s_1, s_2, s_1 s_2, s_1^2, s_2^2, s_1 s_2^2, s_1^2 s_2, s_1^2 s_2^2)$

Convergence Guarantees

- Idea: Why don't we replace linear approximation with NNs?
 - Because theory tells us that this doesn't work out

Algorithm	Table Lookup	Linear	Non-linear
Monte-Carlo Control	✓	(✓)	X
SARSA	✓	(✓)	X
Q-learning	✓	X	X

(**√**) =chatters around near-optimal value function

Besides some few hand-crafted and tuned successes NNs have not been managed to be applied "as is" to RL -> at least till 2014!!

Deep Q-Networks (DQNs)

- Then a game-changing result was published in Nature:
 - **DQN from DeepMind (now Google DeepMind)**
- How does it work?
 - A convolutional neural network reads the image from the game (i.e., a framestack that uses the last N=4 frames).
 - The CNN is a value function approximator for the Q(s,a) function.
 - The reward is the game score.
 - The network weights are tuned using backpropagation signals of the rewards.
- DQNs are "Q-Learning on steroids" (Deep NN as VFA)
- Training possible in Tensorflow (or Pytorch, Keras, ...)
- Objective function for gradient descent:

$$L(w_i) = \mathbb{E}_{s,a,r,s' \sim D_i}[(y_i - Q(s,a,w))^2]$$

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

Deep Q-Networks (DQNs)

DQN Algorithm

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $\left(y_j - Q(\phi_j, a_j; \theta)\right)^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

https://sites.google.com/view/deep-rl-bootcamp/lectures

Exercise Sheet 6

Deep Q-Networks

Fraunhofer-Institut für Integrierte Schaltungen IIS

Thank you for your attention!