Exercices sur les vecteurs 2

Exercice I:

Construire la section de la pyramide ABCDS par le plan (CMN).

Exercice II:

On donne A(1;-1;0), B(0;-1;1), C(3;-2;0) et D(2;-3;3). Etudier l'intersection des droites (AB) et (CD).

Exercice III:

L'espace est muni d'un repère $(O; \overrightarrow{1}, \overrightarrow{J}, \overrightarrow{k})$.

- 1. Soient les points A(3;1;2), B(2;2;1), C(3;5;8) et D(1;5;3).
 - (a) Calculer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} .
 - (b) Démontrer que les points A, B et C définissent un plan.
 - (c) Démontrer qu'il existe deux réels x et y tels que $\overrightarrow{AD} = x\overrightarrow{AB} + y\overrightarrow{AC}$.
 - (d) En déduire que $D \in (ABC)$.
 - (e) Démontrer que les droites (AB) et (CD) sont sécantes.
- 2. Soit Δ_1 la droite passant par D avec pour vecteur directeur $\overrightarrow{v}(2;1;-1)$.
 - (a) Démontrer que le vecteur \overrightarrow{v} n'est pas coplanaire à \overrightarrow{AB} et \overrightarrow{AC} .
 - (b) Déterminer la position de Δ_1 par rapport au plan (ABC).
 - (c) Donner une représentation paramétrique de Δ_1 .
- 3. Soit Δ_2 la droite dont une représentation paramétrique est $\begin{cases} x=2t\\ y=-2t+8\\ z=4t+2 \end{cases}$ où $t\in\mathbb{R}.$

1

- (a) Déterminer si le point C fait partie de Δ_2 .
- (b) Etudier la position de Δ_2 par rapport à Δ_1 .

Exercice IV: Sections

1. Construire sur l'énoncé la section du tétraèdre par le plan (IJK). Justifier la construction.

2. Construire sur l'énoncé la section du cube par le plan (IJK) dans chacun des quatre cas.

