Raymond Chang: Capitulo 16 Brown: Capitulo 17

EQUILIBRIO DE SOLUBILIDAD

- La solubilidad y el producto de solubilidad.
- Efecto de ion común y la solubilidad.
- La precipitación, predicción de las reacciones de precipitación.
- Precipitación selectiva.
- Interconversión de precipitados
- Disolución de precipitados
- pH y solubilidad.

Equilibrios de disolución o precipitación son de tipo heterogéneo

Solubilidad de un soluto en un disolvente:

- Máxima cantidad de soluto que puede disolverse en una cantidad fija de disolvente, a determinada temperatura.
- Cantidad de soluto necesaria para formar una disolución saturada en una cantidad dada de disolvente, a determinada temperatura

EQUILIBRIO DE SOLUBILIDAD

Ejemplo NaCl en agua a 0°C S=35,7 g/100 mL agua

Insaturada

Saturada

ANÁLISIS DE LA SOLUBILIDAD

1- Aspecto cualitativo:

¿Qué tipo de solutos son más o menos solubles en un determinado solvente?

2- Aspecto cuantitativo:

¿Qué cantidad de compuesto se solubiliza? ¿Qué factores afectan la solubilidad del mismo?

Sólidos iónicos

- Solubles
- Ligeramente solubles
- Insolubles

$$(s > 2x10^{-2} \text{ mol/L})$$

 $(mol/L10^{-5} \text{ mol/L} < s < 2x10^{-2})$
 $(s < 10^{-5} \text{ mol/L})$

Equilibrio que se establece entre un compuesto iónico poco soluble y sus iones en disolución

Al agregar un soluto al solvente:

Equilibrio
Velocidad disolución = velocidad precipitado

$$AgCI(s) \longrightarrow Ag^{+}(ac) + CI^{-}(ac)$$

Equilibrio heterogéneo: entre 2 fases (sólido y disolución saturada)

Reacciones de precipitación: Aquellas que dan como resultado la formación de un producto insoluble.

Precipitado: Sólido insoluble que se forma por una reacción en disolución.

Al mezclar dos sales solubles que forman un precipitado

PbCl₂(ac) + K₂CrO₄(ac)
$$\longrightarrow$$
 PbCrO₄(s) + 2K⁺(ac) Cl⁻(ac)

Constante de Producto de Solubilidad (Kps)

Kps: Constante de equilibrio para el equilibrio que se establece entre un soluto y sus iones en una disolución saturada

PbCrO₄(s)
$$\longrightarrow$$
 Pb⁺²(ac) + CrO₄⁻² (ac)

$$Kc = [Pb^{+2}][CrO_4^{-2}] = 2.0x10^{-14} = Kps$$

Recordar: Los sólidos puros no intervienen en la expresión de Kc, por ser su concentración constante.

Escribir la ecuación para el equilibrio de solubilidad y la expresión de Kps para a) Ca F_2 , b) $Ca_3(PO_4)_2$

Constante de Producto de Solubilidad (Kps)

Compuesto	K _{ps}	Compuesto	K _{ps}
Hidróxido de aluminio [Al(OH) ₃]	1.8×10^{-33}	Cromato de plomo(II) (PbCrO ₄)	2.0×10^{-14}
Carbonato de bario (BaCO ₃)	8.1×10^{-9}	Fluoruro de plomo(II) (PbF ₂)	4.1×10^{-8}
Fluoruro de bario (BaF ₃)	1.7×10^{-6}	Yoduro de plomo(II) (PbI ₂)	1.4×10^{-8}
Sulfato de bario (BaSO ₄)	1.1×10^{-10}	Sulfuro de plomo(II) (PbS)	3.4×10^{-28}
Sulfuro de bismuto (Bi ₂ S ₃)	1.6×10^{-72}	Carbonato de magnesio (MgCO ₃)	4.0×10^{-5}
Sulfuro de cadmio (CdS)	8.0×10^{-28}	Hidróxido de magnesio [Mg(OH) ₂]	1.2×10^{-11}
Carbonato de calcio (CaCO ₃)	8.7×10^{-9}	Sulfuro de manganeso(II) (MnS)	3.0×10^{-14}
Fluoruro de calcio (CaF ₂)	4.0×10^{-11}	Cloruro de mercurio(I) (Hg ₂ Cl ₂)	3.5×10^{-18}
Hidróxido de calcio [Ca(OH) ₂]	8.0×10^{-6}	Sulfuro de mercurio(II) (HgS)	4.0×10^{-54}
Fosfato de calcio [Ca ₃ (PO ₄) ₂]	1.2×10^{-26}	Sulfuro de níquel(II) (NiS)	1.4×10^{-24}
Hidróxido de cromo(III) [Cr(OH) ₃]	3.0×10^{-29}	Bromuro de plata (AgBr)	7.7×10^{-13}
Sulfuro de cobalto(II) (CoS)	4.0×10^{-21}	Carbonato de plata (Ag ₂ CO ₃)	8.1×10^{-12}
Bromuro de cobre(I) (CuBr)	4.2×10^{-8}	Cloruro de plata (AgCl)	1.6×10^{-10}
Yoduro de cobre(I) (CuI)	5.1×10^{-12}	Yoduro de plata (AgI)	8.3×10^{-17}
Hidróxido de cobre(II) [Cu(OH)2]	2.2×10^{-20}	Sulfato de plata (Ag ₂ SO ₄)	1.4×10^{-5}
Sulfuro de cobre(II) (CuS)	6.0×10^{-37}	Sulfuro de plata (Ag ₂ S)	6.0×10^{-51}
Hidróxido de hierro(II) [Fe(OH)2]	1.6×10^{-14}	Carbonato de estroncio (SrCO ₃)	1.6×10^{-9}
Hidróxido de hierro(III) [Fe(OH) ₃]	1.1×10^{-36}	Sulfato de estroncio (SrSO ₄)	3.8×10^{-7}
Sulfuro de hierro(II) (FeS)	6.0×10^{-19}	Sulfuro de estaño(II) (SnS)	1.0×10^{-26}
Carbonato de plomo(II) (PbCO ₃)	3.3×10^{-14}	Hidróxido de zinc [Zn(OH)2]	1.8×10^{-14}
Cloruro de plomo(II) (PbCl ₂)	2.4×10^{-4}	Sulfuro de zinc (ZnS)	3.0×10^{-23}

TABLA 16.3	Relación entre $K_{\rm ps}$ y solubilidad	molar (s)		
Compuesto	Expresión $K_{\rm ps}$	Catión	Anión	Relación entre $K_{ m ps}$ y s
AgCl	[Ag ⁺][Cl ⁻]	S	S	$K_{\rm ps} = s^2; s = (K_{\rm ps})^{\frac{1}{2}}$
$BaSO_4$	$[Ba^{2+}][SO_4^{2-}]$	S	S	$K_{ps} = s^2; s = (K_{ps})^{\frac{1}{2}}$ $K_{ps} = s^2; s = (K_{ps})^{\frac{1}{2}}$
Ag_2CO_3	$[Ag^{+}]^{2}[CO_{3}^{2-}]$	2s	S	$K_{\mathrm{ps}} = 4s^3; \mathbf{s} = \left(\frac{K_{\mathrm{ps}}}{4}\right)^{\frac{1}{3}}$
PbF ₂	$[Pb^{2+}][F]^2$	S	2s	$K_{\rm ps} = 4s^3; s = \left(\frac{K_{\rm ps}}{4}\right)^{\frac{1}{3}}$
Al(OH) ₃	[Al ³⁺][OH ⁻] ³	S	3s	$K_{\rm ps} = 27s^4; s = \left(\frac{K_{\rm ps}}{27}\right)^{\frac{1}{4}}$
Ca ₃ (PO ₄) ₂	$[Ca^{2+}]^3[PO_4^{3-}]^2$	3.5	2s	$K_{ps} = 108s^5; s = \left(\frac{K_{ps}}{100}\right)^{\frac{1}{5}}$

Producto de Solubilidad v/s Solubilidad

Kps

- Constante del producto de solubilidad (adimensional)
- Sólo varía con la T

- Concentración de una solución saturada (g/ml, mol/L)
- Es afectada por diversos factores (además de T)

Concentración mol/L del compuesto en una disolución saturada

Cálculo de Kps a partir de datos de solubilidad

La solubilidad del oxalato de calcio (CaC₂O₄) a cierta temperatura es 6.1x10⁻³ g/L de disolución. ¿Cuál es su Kps a esa temperatura? (MM: 128 g/mol)

$$CaC_{2}O_{4}(s) \stackrel{\longrightarrow}{\longleftarrow} Ca^{+2}(ac) + C_{2}O_{4}^{-2}(ac)$$

$$Kps = [Ca^{+2}][C_{2}O_{4}^{-2}]$$

$$S \longrightarrow S \text{ (molar)} \longrightarrow []eq \longrightarrow Kps$$

Dato:
$$S = 6.1 \times 10^{-3} \text{ g/I}$$
 $\rightarrow S_M = \frac{S(g/I)}{PM(g/mol)} = mol/I$
 $S_M = 6.1 \times 10^{-3} \text{ g/I} \times \frac{1 \text{ mol}}{128 \text{ g}} = 4.76 \times 10^{-5} \text{ mol/I } \text{CaC}_2\text{O}_4$

$$CaC_2O_4(s) \longrightarrow Ca^{+2}(ac) + C_2O_4^{-2}(ac)$$

$$[Ca^{2+}] = [C_2O_4^{2-}] = X$$
 $X = S(molar) = S_M = 4,76x10^{-5} mol/l$

$$K_{ps} = [Ca^{2+}][C_2O_4^{2-}] = X.X = X^2 = S_M^2$$

S(molar)=Concentración en equilibrio

Kps =
$$(4,76x10^{-5})^2$$
 = $2,27x10^{-9}$

De la estequiometría

$$[Ca^{2+}] = \frac{1 \text{mol } Ca^{2+}}{1 \text{mol } CaC_2O_4} \cdot \frac{4,76 \text{x} 10^{-5} \text{ mol } CaC_2O_4}{1 \text{I}} = 4,76 \text{x} 10^{-5} \text{M}$$

$$[C_2O_4^{2-}] = \frac{1\text{mol } C_2O_4^{2-}}{1\text{mol } CaC_2O_4} \cdot \frac{4,76x10^{-5} \text{ mol } CaC_2O_4}{1I} = 4,76x10^{-5} \text{ M}$$

Cálculo de Kps a partir de datos de solubilidad

¿Cuál es el Kps del Ca(OH)₂ si su solubilidad es 0.932 g/L? ¿Cuáles son las concentraciones de Ca⁺² y OH⁻? Ca: 40.0 g/mol; O: 16.0 g/mol; H: 1.0 g/mol

El Kps del CaF₂ a 25 °C es 4.00x10⁻¹¹ ¿Cuál es su solubilidad en g/L de solución a esa temperatura?

$$CaF_2(s) \xrightarrow{\qquad} Ca^{+2}(ac) + 2F^{-}(ac)$$

Se disuelven x moles de $CaF_2 \Rightarrow S_M(mol/L) = X$

$$K_{ps}$$
 = [Ca²⁺].[F-]²
 K_{ps} = X . (2X)² = 4X³
 K_{ps} = 4S_M³ = 4x10-¹¹
 S_{M} = 2,15 x 10-⁴ mol/l PM = 78 g/mol
S = 2,15 x 10-⁴ mol/l x 78 g/mol
S = 1,68 x 10-² g/l

El Kps del Ca₃(PO₄)₂ es 2.10x10⁻²⁶. Calcule la solubilidad molar (S) de la sal.

$$Ca_3(PO_4)_2(s) \implies 3Ca^{2+}(ac) + 2PO_4^{3-}(ac);$$

3S 2S

Kps =
$$[Ca^{2+}]^3[PO_4^{3-}]^2$$

Ca: 40 g/mol

Equilibrio:

P: 31 g/mol

O: 15 g/mol

¿Solubilidad g/L?

$$Kps = [3S]^3[2S]^2$$

$$2,1x10^{-26} = 108S^{5}$$

$$S = \sqrt[5]{(1,94x10^{-28})}$$

$$S = 2.87 \times 10^{-6} \text{ mol/L}$$

Producto de Solubilidad v/s Solubilidad

Sal	K _{ps}	S _M (mol/l)	S (g/l)
CaC ₂ O ₄	2,27 x 10 ⁻⁹	4,76 x 10 ⁻⁵	6,1 x 10 ⁻³
CaF ₂	4,0 x 10 ⁻¹¹	2,15 x 10 ⁻⁴	1,68 x 10 ⁻²

IMPORTANTE!

- Menor valor de Kps no siempre implica menor S. CaC_2O_4 : $S_M = (Kps)^{1/2}$; CaF_2 : $S_M = (Kps)^{1/3}$
- Solo pueden compararse en forma directa las sales con igual estequiometria \Rightarrow sus S_M están relacionadas de la misma forma que sus valores de Kps.

Comparar: AgCl (Kps=1,8x10⁻¹⁰), AgBr (Kps=3,3x10⁻¹³), AgI (Kps=1,5x10⁻¹⁶)

S(AgCI) > S(AgBr) > S(AgI); En todas: $S = (Kps)^{1/2}$

17

Producto de Solubilidad v/s Solubilidad

A partir de la siguiente tabla ordene las sales en orden creciente por su solubilidad.

Sal	Kps
Ag_3PO_4	1.3x10 ⁻²⁰
$Ca_3(PO_4)_2$	2.0x10 ⁻²⁹
$AI(OH)_3$	5.0x10 ⁻³³
Agl	8.3x10 ⁻¹⁷
$Cu(OH)_2$	2.2x10 ⁻²⁰

Consideremos el siguiente equilibrio de solubilidad:

$$AgCl(s) \longrightarrow Ag^{+}(ac) + Cl^{-}(ac)$$

$$Kps = [Ag+][CI-] = 1,6x10^{-10}$$

Sí el sistema no esta en equilibrio

$$Qps = [Ag+]_0[Cl^-]_0 Qps \neq Kps$$

Disolución Insaturada

Disolución Sobresaturda

Predicción de Precipitación

Se mezclan dos disoluciones que contienen dos iones que pueden formar una sal insoluble (AB)

$$AB(s) \longrightarrow A^{+}(ac) + B^{-}(ac) Kps = [A^{+}] [B^{-}]$$

¿Cómo determinar si se formará un precipitado?

Comparar: Qps con Kps

Q = Kps Equilibrio: Solución saturada

Q > Kps Solución sobresaturada: El exceso precipita (se desplaza hacia la izquierda)

Q < Kps Solución no saturada: La precipitación no puede ocurrir

Al mezclar 5 ml de NaCl $1.00x10^{-3}$ mol/L con 50 ml de AgNO $_3$ $1.00x10^{-5}$ mol/L.

¿Precipita el AgCI?

AgCl(s)
$$\Rightarrow$$
 Ag⁺(ac) + Cl⁻(ac) Kps = 1,8x10⁻¹⁰

$$[CI^{-}]_{o}$$
 = 1x10⁻³x5/55 = 9,09x10⁻⁵ M
 $[Ag^{+}]_{o}$ = 1x10⁻⁵x50/55 = 9,09x10⁻⁶ M

$$Q = [CI-]_o[Ag+]_o$$

$$Q = 9,09x10^{-5}x9,09x10^{-6} = 8,3x10^{-10}$$

200 mL de BaCl $_2$ 0.00400 mol/L se agregan exactamente 600 mL de $\rm K_2SO_4$ 0.00800 mol/L ¿Se formará precipitado? $\rm K_{ps}$ =1.10x10 $^{-10}$

Las soluciones salinas en ocasiones es conveniente separarlas en sus iones constituyentes. Se puede realizar esta separación mediante la utilización de un reactivo especifico ó por ajuste del pH de la solución.

Se añade nitrato de plata poco a poco a una disolución 0.0200 mol/L de iones Cl⁻ y 0.0200 mol/L de iones Br⁻. Calcúlese la concentración de los iones Ag⁺ (en mol/L) que se necesita para iniciar:

- a) La precipitación del AgBr K_{PS}=7.70x10⁻¹³
- b) La precipitación del AgCl K_{PS}=1.60x10⁻¹⁰
- c) Cuál precipita primero

¿Cuál es la concentración de los iones Br que queda en disolución justo antes de que el AgCl comience a precipitar?

¿Cuál es el porcentaje de Br que queda en disolución (el Bromuro disuelto) cuando precipita el AgCl

Se dispone de una solución que contiene iones: Cl⁻, Br⁻ y CrO₄²⁻ en una concentración de 0.0100 mol/L y se agrega lentamente sobre esta solución AgNO₃, considerando que no hay cambio de volumen:

- a) Que anión precipita primero.
- b) cual es la concentración del primer anión cuando comienza a precipitar el segundo.
- c) que % de los dos primeros aniones ha precipitado cuando comienza a precipitar el tercer anión.

Datos: $Kps_{AqCl}=1.80x10^{-10}$, $Kps_{AqBr}=7.70x10^{-13}$, $Kps_{Aq2CrO4}=1.20x10^{-12}$

Datos:
$$Kps_{AgCl}=1,8x10^{-10}, Kps_{AgBr}=7,7x10^{-13}, Kps_{Ag2CrO4}=1,2x10^{-12}$$

a) CI⁻; [Ag⁺] = Kps_{AgCl} /0,01 = 1,8x10⁻¹⁰/0,01 = 1,8x10⁻⁸ M (pp. 2°)
Br-; [Ag⁺] = Kps_{AgBr} /0,01 = 7,7x10⁻¹³/0,01 = 7,7x10⁻¹¹M (pp. 1°)
CrO₄²⁻; [Ag⁺] =
$$\sqrt{\text{Kps}_{Ag2CrO4}}$$
/0,01) = 1,1x10⁻⁵ M (pp. 3°)

Por lo tanto; Precipita primero Br

b)
$$[Br^-] = Kps_{AgBr} / 1.8x10^{-8} = 4.3x10^{-5} M$$

c) [Br-] =
$$Kps_{AgBr} / 1,1x10^{-5} = 7x10^{-8} M$$

 $(0,01-7x10^{-8})/(0,01)x100 = 99,9993 \% pp de Br-$

[Cl⁻] = KpsAgCl /1,1x10⁻⁵ = 1,6x10⁻⁵ M

$$(0,01-1,6x10^{-5})/(0,01)x100 = 99,84 \%$$
 pp. de Cl⁻

Intercorvensión de Precipitados

Sí a 20 mL de BaCO₃ se agrega 10 mL de K₂CrO₄ 0.10 mol/L, prediga si presipita el BaCrO₄(s). Kps(BaCrO₄):8.5x10⁻¹¹, Kps(BaCO₃): 1.6x10⁻⁹

FACTORES QUE AFECTAN A LA SOLUBILIDAD.

1. Temperatura

Afecta a Kps, dado que es un constante de equilibrio.

Para la reacción de disolución:

AB (s)
$$\Rightarrow$$
 A⁺ (ac) + B⁻ (ac) $\Delta H_{dis}^0 = ?$

Si
$$\Delta H^0_{dis} > 0$$
 (endotérmica) \rightarrow T \uparrow K_{PS} \uparrow s \uparrow Si $\Delta H^0_{dis} < 0$ (exotérmica) \rightarrow T \uparrow K_{PS} ψ s ψ

En la mayoría de los casos, S aumenta con un aumento de la temperatura

29

FACTORES QUE AFECTAN A LA SOLUBILIDAD.

2. Efecto del Ión Común

Efecto ión común y la solubilidad

¿Cuál es la solubilidad en mol/l de Pbl₂ en una disolución de Kl 0.100 mol/L?

Pbl₂ (s)
$$\leftrightarrows$$
 Pb⁺² (ac) + 2l⁻ (ac) Kps= 7.1x10⁻⁹
S 2S + 0.1

Kps= S(2S+0,1)² como S <<<0,1
$$S = \frac{7.1 \Box 10^{-9}}{(0.1)^2} 7.1 \Box 10^{-7} mol / L$$
 Kps≈S(0,1)²

La solubilidad de una sal poco soluble disminuye en presencia de una sal soluble que proporcione un ión común

La presencia de un ion común disminuye la solubilidad de la sal.

¿Cuál es la solubilidad molar del AgBr en (a) agua pura y (b) 0.0010 M NaBr?

AgBr (s)
$$\longrightarrow$$
 Ag+ (ac) + Br- (ac)
 $K_{ps} = 7.7 \times 10^{-13}$
 $s^2 = K_{ps}$
 $s = 8.8 \times 10^{-7}$

NaBr (s)
$$\longrightarrow$$
 Na⁺ (ac) + Br⁻ (ac)

[Br⁻] = 0.0010 M

AgBr (s) \Longrightarrow Ag⁺ (ac) + Br⁻ (ac)

[Ag⁺] = s

[Br⁻] = 0.0010 + s \approx 0.0010

 K_{ps} = 0.0010 x s

 $s = 7.7 \times 10^{-10}$

3. pH

$$Mg(OH)_2$$
 (s) $\rightleftharpoons Mg^{+2}$ (ac) + $2OH^{-1}$ (ac)

Si pH **Ψ** (agregar H⁺)

Reacción de neutralización:

$$2OH^{-} + 2H^{+} \rightarrow 2H_{2}O$$

Consecuencia: La reacción se desplaza aumentando la solubilidad de la sal.

Este efecto ocurre en todas las sales cuyo anión presente carácter básico (OH⁻, base conjugada de un ácido débil)

El pH y la solubilidad

Consecuencia: La solubilidad de las sales que contienen aniones básicos aumenta con la disminución de pH

¿La disminución del pH, aumentará la solubilidad del AgCI?

- Las bases Insolubles se disuelven en las disoluciones ácidas
- Los ácidos Insolubles se disuelven en las disoluciones básicas

$$Mg(OH)_2(s) \longrightarrow Mg^{2+}(ac) + 2OH^{-}(ac)$$

$$K_{ps} = [Mg^{2+}][OH^{-}]^{2} = 1.2 \times 10^{-11}$$
 $K_{ps} = (s)(2s)^{2} = 4s^{3}$
 $4s^{3} = 1.2 \times 10^{-11}$
 $s = 1.4 \times 10^{-4} M$
 $[OH^{-}] = 2s = 2.8 \times 10^{-4} M$
 $pOH = 3.55 pH = 10.45$

Con pH menor que 10.45 disminuye [OH-]

$$OH^{-}(ac) + H^{+}(ac) \longrightarrow H_{2}O(I)$$

Aumenta la solubilidad de Mg(OH)₂

Con pH mayor que 10.45

Aumenta [OH⁻]

Disminuye la solubilidad de Mg(OH)₂

La solubilidad mol/L del Mg(OH)₂ en agua pura es 1.4x10⁻⁴ mol/L. Calcúlese su solubilidad molar en un medio amortiguador cuyo pH es:

- a) 12.00
- b) 9.00

Calcule el pH de una disolución saturada en hidróxido de aluminio.

$$Kps = 1.8x10^{-33}$$

El pH y la solubilidad

Consecuencia: La solubilidad de las sales que contienen aniones básicos aumenta con la disminución de pH

¿La disminución del pH, aumentará la solubilidad del AgCI?