Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина: Основы профессиональной деятельности

Лабораторная работа №3

Выполнил: Конаныхина Антонина

Группа: P3115 Вариант: 1514

Преподаватель: Перцев Тимофей

Сергеевич

Цель работы:

Задание: По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Вариант:

022F 22D: 21F: - 1 CEFB A000 22E: 0100 220: E000 | 22F: 0000 221: E000 222: 230: 0000 223: + 0200 231: 0000 224: EEFD | 232: 0B00 225: AF04 226: **EEFA** 227: 4EF7 228: EEF7 229: ABF6 22A: F001 22B: 6AF6 22C: 8221

Адрес	Код команды	Мнемоника	Комментарий				
21F	022F	-	Адрес начала массива				
220	A000	-	Текущий элемент массива				
221	E000	-	Итератор				
222	E000	-	Результат				
223	0200	CLA	Очистка аккумулятора, старт программы				
224	EEFD	ST (IP-3)	Сохранение аккумулятора в ячейку 222				
225	AF04	LD #4	Запись в аккумулятор числа 4				
226	EEFA	ST (IP-6)	Сохранение аккумулятора в ячейку 221				
227	4EF7	ADD (IP-9)	Сложение аккумулятора и ячейки 21F, затем запись в				
			аккумулятор				
228	EEF7	ST (IP-9)	Сохранение аккумулятора в ячейку 220				
229	ABF6	LD –(IP-10)	Уменьшение значения ячейки 220 на 1. Переход по				
			данному адресу и запись значения в аккумулятор.				
22A	F001	BEQ 01	Если Z = 0 (значение текущего элемента массива равно				
			0), то переход в 22D				
22B	6AF6	SUB (IP-10)+	Инкремент ячейки 222.				
22C	8221	LOOP 221	Повтор цикла 4 раза (если значение ячейки 221 не				
			меньше, чем 0 - пропуск следующей команды)				
22D	CEFB	JUMP (IP-5)	Переход в ячейку 229 (Запись в ІР числа 229)				
22E	0100	HLT	Остановка, конец программы				
22F	0000	-	Элемент массива 0				
230	0000	-	Элемент массива 1				
231	0000	-	Элемент массива 2				
232	0B00	-	Элемент массива 3				

Трассировка:

Массив:

AEFF

0101 3FFF

0000

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знчн
223	0200	224	0200	223	0200	000	0223	0000	0100	Адр	Энчн
224	EEFD	225	EEFD	222	0000	000	FFFD	0000	0100	222	0000
———							0004			222	0000
225	AF04	226	AF04	225	0004	000		0004	0000	221	0004
226	EEFA	227	EEFA	221	0004	000	FFFA	0004	0000	221	0004
227	4EF7	228	4EF7	21F	022F	000	FFF7	0233	0000		
228	EEF7	229	EEF7	220	0233	000	FFF7	0233	0000	220	0233
229	ABF6	22A	ABF6	232	0000	000	FFF6	0000	0100	220	0232
22A	F001	22C	F001	22A	F001	000	0001	0000	0100		
22C	8221	22D	8221	221	0003	000	0002	0000	0100	221	0003
22D	CEFB	229	CEFB	22D	0229	000	FFFB	0000	0100		
229	ABF6	22A	ABF6	231	3FFF	000	FFF6	3FFF	0000	220	0231
22A	F001	22B	F001	22A	F001	000	022A	3FFF	0000		
22B	6AF6	22C	6AF6	000	0000	000	FFF6	3FFF	0001	222	0001
22C	8221	22D	8221	221	0002	000	0001	3FFF	0001	221	0002
22D	CEFB	229	CEFB	22D	0229	000	FFFB	3FFF	0001		
229	ABF6	22A	ABF6	230	0101	000	FFF6	0101	0001	220	0230
22A	F001	22B	F001	22A	F001	000	022A	0101	0001		
22B	6AF6	22C	6AF6	001	0000	000	FFF6	0101	0001	222	0002
22C	8221	22D	8221	221	0001	000	0000	0101	0001	221	0001
22D	CEFB	229	CEFB	22D	0229	000	FFFB	0101	0001		
229	ABF6	22A	ABF6	22F	AEFF	000	FFF6	AEFF	1001	220	022F
22A	F001	22B	F001	22A	F001	000	022A	AEFF	1001		
22B	6AF6	22C	6AF6	002	0000	000	FFF6	AEFF	1001	222	0003
22C	8221	22E	8221	221	0000	000	FFFF	AEFF	1001	221	0000
22E	0100	22F	0100	22E	0100	000	022E	AEFF	1001		

Назначение программы:

Программа считает количество ненулевых элементов массива.

Расположение в памяти исходных данных и результата (назначение ячеек):

Программа: [223; 22E] Массив: [22F; 232]

Адрес начала массива: 21F

Анализируемый элемент массива (вспомогательная ячейка): 220

Итератор для LOOP: 221

Результат: 222

Размер массива: лежит в ячейке 225.

Область представления:

Размер массива (Ү): Беззнаковое число.

Адрес первого элемента массива (Х): Адрес ячейки памяти.

Элементы массива: Любые знаковые/беззнаковые числа.

Область допустимых значений:

При $22F \le X \le 7FF$: $1 \le Y \le 127$ При $0 \le X \le 19F$: $1 \le Y \le 127$

При $1A0 \le X \le 21E$: $1 \le Y \le (21F - X)$

Элементы массива: зависит от области представлений:

Для беззнаковых: $[0; 2^{16}-1]$ Для знаковых: $[-2^{15}; 2^{15}-1]$

Результат: [0; 127]

Вывод:

В ходе выполнения лабораторной работы была изучена работа команд циклов и ветвлений, типы адресации в БЭВМ.