Um Curso Intuitivo de Probabilidade (e Estatística)

para a área de dados

Caio Velasco

Engenheiro Mecânico, UFRJ Master in Public Policy, University of California Los Angeles Junho 2023 When you explain a why, you have to be in some framework that allows something to be true. Otherwise, you're perpetually asking why. ??

Richard Feynman, Theoretical Physicist

Contents

Pa	arte I	- Rumo ao Modelo Estatístico			
1	Pro	bability	5		
	1.1	O que é um fenômeno "Determinístico"?	6		
	1.2	O que é um fenômeno "Estocástico"?	7		
	1.3	O que é "Probabilidade"?	12		

List of Figures

1.1	A Caixa Preta de uma Função	6
1.2	Histograma da soma de dois dados jogados 100 vezes	Ö
1.3	Gráfico da sequência cronológica da soma das 100 jogadas dos dados	11
1.4	Tabela com todos os possíveis resultados da face dos dois dados jogados ao mesmo tempo	12
1.5	Gráfico que tenta capturar a ideia da distribuição da probabilidade do nosso experimento	13
1.6	Moeda lançada várias vezes e sua proporção atual de Caras	16

A Real Motivação

Apesar de ter estudado *Probabilidade e Estatística* na Engenharia (UFRJ) e de ter feito alguns cursos no mestrado em UCLA, percebi que não dominava o assunto. Até mesmo quando iniciei o PhD em Economia na pandemia na Holanda (que infelizmente não pude continuar), onde as disciplinas eram altamente matemáticas (por exemplo, *Análise Real* e noções de *Teoria da Medida* eram pré-requisitos), percebi que algo estava faltando.

Eu tinha um bom entendimento dos conceitos, mas quanto as coisas ficaram complexas, comecei a ter dificuldades. Porém, ainda não sabia o porquê. Então, resolvi dar uns passos atrás e aumentar o nível matemático.

Foi com base nessa experiência que percebi o problema e criei o **Um Curso Intuitivo de Probabilidade e Estatística**, para a área de dados. Eu acredito no seguinte:

• Não importa qual seja seu objetivo no mundo dos dados, **é crucial** entender a estrutura matemática da teoria da probabilidade.

Convido você a se fazer a seguinte pergunta: Será que eu realmente sei o que está descrito abaixo?

O Modelo Estatístico foi desenvolvido para formalizar padrões de regularidade estatística (ou seja, as informações sistemáticas) presentes nos dados observados. A formalização matemática deste modelo é baseada na teoria da probabilidade e busca capturar tal informação sistemática gerada por mecanismos estocásticos. Portanto, para tomar uma decisão sob incerteza de maneira lógica e consistente, precisamos estabelecer um framework (de modelagem) para tais fenômenos estocásticos.

Bem, se sua resposta for não, faça o curso :)

Acredito que você romperá barreiras se dedicar um tempo para este curso.

Chapter 1

Probability

Nesse capítulo, o objetivo principal é aprender o conceito de **Probabilidade**.

Começaremos com o entendimento sobre o que é algo *Estocástico*, conceito que fundamenta o mundo da estatística e o mundo dos dados. Em seguida, aprenderemos sobre a ideia de *Regularidade Estatística*, uma característica de **crucial** que é **observada** em situações que acreditamos ser do tipo "fenômeno estocástico" (a palavra observada é bem importante e muito usada). Ao aprender sobre esses conceitos, você perceberá que Probabilidade nada mais é do que uma tentativa de "adestrar" (matematicamente) a tal regularidade estatística.

Você usará esse conceitos para construir um **Modelo Estatístico** e para isso precisará saber construir um **Modelo Probabilístico**.

Com isso, você estará pronto para entender criteriosamente sobre o que é um Experimento na Estatística.

Este capítulo foi baseado, em sua maioria, no livro *Probability Theory and Statistical Inference*, do Aris Spanos [1], um dos meus preferidos.

Vamos lá.

1.1 O que é um fenômeno "Determinístico"?

Um fenômeno é dito determinístico quando seu futuro **não é** incerto.

Um exemplo é a função matemática, que é uma regra com certas propriedades (todos os elementos do domínio devem ser cobertos e você não pode associar o mesmo elemento do domínio com vários elementos do contradomínio - você não deve esquecer disso, mas a maioria esquece). Portanto, se você conhece a regra, assim que conhece a entrada (o argumento da função), também conhece a saída (o valor que essa função assume).

Figure 1.1: A Caixa Preta de uma Função

Se pegarmos uma função f cuja regra é f(x) = 2x e avaliarmos o valor dessa função para o x = 3, sabemos $com\ certeza$ que a função assumirá o valor f(3) = 6. Não há incerteza sobre o futuro nesse processo. (note que a terminologia aqui é importante!)

Outra maneira de colocar é: uma situação é determinística quando o estado anterior pode prever com certeza o próximo estado. Em outras palavras, dado que temos um estado inicial, sempre podemos prever qualquer estado futuro de interesse porque o caminho para chegar lá é determinístico.

Não se esqueça: Determinismo diz respeito à certeza em prever o futuro.

1.2 O que é um fenômeno "Estocástico"?

Vamos definir o que entendemos por fenômenos estocásticos e introduzir o conceito de regularidade estatística.

Definição - Fenômeno Estocástico e Regularidade Estatística

Fenômeno Estocástico é aquela situação onde os dados apresentam padrões de *Regularidade Estatística*. Em inglês, também é chamado de *chance regularity*. Okay, mas o que isso significa?

Os dados que nós observamos no mundo real **exibem certos padrões**, chamados de *padrões de regularidade estatística*, e o que queremos é justamente tentar matematizar (ou modelar matematicamente) esses padrões.

Construir esse o modelo é justamente o que usaremos para tirar conclusões sobre o que está acontecendo.

Preste bastante atenção agora, pois toda a construção do conceito de probabilidade é baseada na seguinte ideia:

O conceito de probabilidade é construído sobre a propriedade de que os dados que observamos **exibem certos padrões regulares**.

Ótimo, mas como algo incerto pode exibir um comportamento regular?

Para responder a essa pergunta, precisamos dividir o conceito em duas partes:

$$chance + regularity$$

ou, no português, $regularidade + da\ chance.$

Ao dividi-lo em duas partes, podemos diferenciar a ideia por trás de cada uma e entender como que a ideia de *incerteza* (a chance de algo acontecer) está conectada a um certo **padrão**:

O mundo real apresenta incertezas e, claro, não sabemos sobre o futuro. No entanto, essa noção está intimamente ligada ao fato de que no nível **individual** temos incerteza, mas no nível **agregado** notamos um certo padrão. (Isto é **muito importante**. Veja abaixo).

Intuição - Regularidade Estatística

Considere o seguinte experimento: Jogar dois dados e observar a soma. Você sabe (com certeza) os resultados: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 Mas onde está a parte *incerta* e onde está a parte *regular*?

Nível Individual Se você jogar os dois dados pela primeira vez, você não saberá qual será o resultado. Se jogar na segunda vez, também não saberá. Se jogar pela milésima vez (sem memorizar os valores anteriores), também não saberá.

Então, no nível *individual*, observamos nos dados a ideia de **chance** ou **incerteza**.

Nível Agregado

Agora, se você jogar os dados várias vezes, **acompanhar** todos os resultados e plotá-los em um gráfico do tipo histograma (aquele que agrega a **frequência** de resultados iguais em um experimento - veja mais abaixo), você poderá observar um certo padrão.

Portanto, no nível agregado, observamos **uma certa regularidade** nos dados.

Abaixo, extraída do livro [1] e traduzida para o português, coloco um frase muito forte que resume tudo isso:

"De fato, a essência da regularidade estatística decorre do fato de que a desordem no nível individual cria (de alguma forma) ordem no o nível agregado." Note que esta figura possui uma propriedade interessante, a agregação dos

Figure 1.2: Histograma da soma de dois dados jogados 100 vezes

dados.

Neste caso particular, a regra de agregação foi uma contagem simples de cada resultado igual que apareceu nas 100 tentativas. Por exemplo, se soma = 7 apareceu 17 vezes, este histograma de frequências relativas tem uma altura (eixo y) de 17%, ou 0, 17.

Obs.: o **Histograma** pode ser apresentado de duas formas:

- mostrando a frequência absoluta no eixo y, que representa a contagem de cada resultado
- ou mostrando a frequência relativa no eixo y, que representa a porcentagem de cada resultado no todo, neste caso, nas 100 tentativas.

 De qualquer forma, o histograma apresenta a ideia de agregação.

Nota: O histograma foi apenas um exemplo para nos ajudar a visualizar os padrões de regularidade estatística e justificar toda a história da Probabilidade. Há outras formas de visualizar tais padrões e é justamente nessas outras formas que surgem conceitos **extremamente** importantes, como:

• o conceito de **Distribuição** dos dados, que se refere a como os resultados

do experimento estão distribuídos após várias tentativas, que nos faz acreditar que há uma lei que seja estável o suficiente para chegar a esse formato (o que pode ser visualizado pelo histograma).

- o conceito de **Independência** se refere à (não) influência que um resultado anterior (ou resultados anteriores) exerce sobre os seguintes. Nesse caso, a forma de visualizar é perceber que se você tapar **um pedacinho** da parte de dentro da janela vermelha da figura abaixo e tentar prever o próximo resultado, não conseguirá prever. Se você tapar um outro pedacinho, ainda não será capaz de prever. Portanto, saber as informações que não foram tapadas não ajudam a *prever* o resultado seguinte. Neste caso, dizemos que os resultados do experimento são *independentes*.
- e o conceito de **Homogeneidade**, que se refere a uma propriedade exibida pelos dados que nos faz acreditar que, ao deslizarmos a janela vermelha para a direita, a variação vertical observada nos resultados é praticamente constante. Quando não é, dizemos que os dados exibem heterogeneidade.

Você notou que tocamos no assunto frequência com a introdução do histograma, certo? Notou que extraímos conceitos muito importantes como Distribuição e Independência do mesmo assunto? Além disso, notou que focamos na ideia de frequência relativa?

Bem, é aí que começamos a desvendar a **intuição** por trás da Probabilidade. Considere o mesmo experimento: lançar dois dados e observar a soma.

No entanto, vamos nos concentrar na estrutura dos dados por trás da soma, ou seja, vamos observar o que aparece nas duas faces dos dados (também conhecido como espaço amostral, sobre o qual aprenderemos mais adiante).

Observe na figura abaixo que é mais provável que a soma seja 4 do que 12,

Figure 1.3: Gráfico da sequência cronológica da soma das 100 jogadas dos dados

pois há uma propriedade inerente a esse experimento de que alguns resultados são mais **frequentes** do que outros. Neste caso, poderíamos dizer que é *três* vezes mais provável obter uma soma de 4 do que uma soma de 12.

Se voltarmos ao histograma, você verá que essa ideia de frequência, na forma de frequência *relativa*, está intimamente relacionada ao significado intuitivo de probabilidade no sentido de ser *proporcional ao todo*.

O histograma, neste caso, transmite a ideia da frequência relativa com que aparecem os resultados da experiência e indica que quanto mais lançamos os dados, mais fácil se torna perceber o padrão da regularidade estatística que parece estar por trás da explicação do conceito de probabilidade. Isso é o coração da definição de Probabilidade, como veremos ma seguir.

No entanto, embora o histograma nos ajude a entender o fenômeno estocástico observado de regularidade estatística, ele não formaliza o conceito de probabilidade. Afinal, vemos apenas as contagens de resultados iguais quando repetimos um experimentos. Para entender, vamos começar com a tabela

abaixo.

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	$(3,2)^4$	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	$(6,5)_{12}$	(6,6)

Figure 1.4: Tabela com todos os possíveis resultados da face dos dois dados jogados ao mesmo tempo

Nesta tabela, fica claro que existe uma possível conexão entre o histograma e a Probabilidade. É justamente nessa tentativa de capturar a chance de cada resultado dentre todos os resultados possíveis que surge a ideia de avaliar o quão provável (**ou quão frequente é**) observar um determinado resultado após **muitas** tentativas. A razão pela qual *muitas* está em negrito é porque isso está no centro da definição. Nós chegaremos lá.

1.3 O que é "Probabilidade"?

Observe que, por exemplo, se a possibilidade de obter uma soma de 4 aparece com mais frequência (ou seja, com maior frequência) do que uma soma de 12, é muito provável que a probabilidade de a soma ser 4 seja menor do que a da soma sendo 12, conforme mostrado em vermelho na figura abaixo. Essa comparação é feita para todos os resultados possíveis quando lançamos os dados várias vezes e observamos o padrão que surge quando contamos os resultados obtidos e os plotamos em um gráfico semelhante a um histograma.

Figure 1.5: Gráfico que tenta capturar a ideia da distribuição da probabilidade do nosso experimento

Intuição - Probabilidade e seu comportamento a longo prazo

O conceito de **Probabilidade** está intimamente ligado à ideia da **frequência relativa** com que ocorrem os resultados ao repertirmos um experimento **muitas** vezes. Nós agrupamos os resultados idênticos, os contamos e, finalmente, comparamos suas proporções em todas as tentativas do experimento.

Para ser mais preciso, a realidade é que a essência da Probabilidade não está apenas embutida na frequência com que resultados idênticos aparecem durante várias tentativas de um experimento, mas também está relacionada à uma certa estrutura física por trás do experimento, que poderíamos apontar como a simetria ou geometria natural do problema em questão.

No caso de jogarmos dois dados, a geometria dos mesmos é um bom indicador da razão pela qual observamos os resultados da tabela acima, ou seja, é uma boa razão para argumentar que algumas somas ocorrem com mais frequência do que outros.

O último ponto importante nesta seção é que nosso objetivo é apresentar o caminho que a modelagem matemática percorreu para modelar tais situações estocásticas, partindo da observação de fenômenos estocásticos, capturando sua regularidade estatística) com o conceito de probabilidade (e a tal distribuição de probabilidade) e formalizando todo esse meio de campo com o

tal Modelo Estatístico. Tudo isso baseado na Teoria da Probabilidade.

É dentro desta formalização que surgem os conceitos de *Probabilidade*, *Distribuição de Probabilidade*, *Espaço de Probabilidade*, *Variável Aleatória*, *Independência*, *Modelo Probabilístico*, *Parâmetros*, *Estimativa*, *Especificação*, *Identificação*, entre outros.

Esta formalização via modelos estatísticos (incluindo uma de suas partes, os modelos probabilísticos) é feita dentro de um *Modeling Framework*.

Este framework (de modelagem) é conhecido como **Teoria da Probabili-dade**, uma disciplina ensinada em matemática, estatística e física, mas que geralmente não é abordada em profundidade nem mesmo na Engenharia, onde geralmente é chamada de Probabilidade e Estatística que é apresentada de uma forma mais condensada, o que acaba deixando de lado a essência que apresentamos aqui e contribuindo para a motivação que eu descrevi no início: tive que voltar do zero e me aprofundar matematicamente para realmente dominar o assunto.

A teoria da probabilidade é um framework de modelagem que visa formalizar matematicamente a regularidade estatística, característica presente nos mecanismos que constituem a "essência" dos fenômenos estocásticos. Chegaremos lá.

E é isso que vamos aprender neste curso :)

Nota: Frequentistas vs. Bayesianos

Não vou entrar em detalhes sobre as diferentes **interpretações de probabilidade**¹ no mundo dos estudiosos da estatística. Porém, vale ressaltar que é justamente pela relação entre *Probabilidade* e *Frequência* que dizemos que estamos no reino da *Probabilidade Frequentista*, também conhecida como *Probabilidade Clássica*. Esta última parece estar até mais ligada à tal simetria (ou geometria) natural de um problema, uma ideia que veio primeiro na história. O outro lado da história são os Bayesianos, mas é muito cedo para aprofundar nisso. Por enquanto, vamos **finalmente** nos ater à definição do conceito de Probabilidade. Veja abaixo.

Veja Wikipedia

Para finalize, vamos finalmente definir Probabilidade, dentro do mundo dos Frequentistas/Clássicos.

Definição: Frequência Relativa de Longo Prazo ou Probabilidade!)

A **Probabilidade** de um evento é definida como o *limite* da frequência relativa de seus resultados em um número muito grande de tentativas hipotéticas.

A ideia **limitante** refere-se a um contexto onde tentamos responder sobre a probabilidade de um evento numa ideia hipotética pautada em "COMO SE" fôssemos repetir o experimento muitas vezes. Esta é a Interpretação Frequentista (ou Clássica) da Probabilidade.

Apenas para ver um exemplo, veja a figura abaixo, onde uma moeda foi lançada várias vezes e a frequência relativa do aparecimento de *Caras* foi avaliada para que pudéssemos perceber qual poderia ser sua probabilidade

de ocorrência. Veja a foto abaixo. ²

Figure 1.6: Moeda lançada várias vezes e sua proporção atual de Caras

Na figura acima, nota-se que conforme jogamos a moeda cada vez mais, o comportamento no limite de obter Cara se aproxima de 0,5 ou 50% ou $\frac{1}{2}$.

Pronto, agora você aprendeu sobre o que é o conceito de Probabilidade e percebeu que a tal Distribuição de Probabilidade saiu da regularidade estatística presente em fenômenos estocásticos que o estatístico quer tentar adestrar.

A ideia agora é entender como que o estatístico vai adestrar esses fenômenos e para isso daremos mais um passo em direção ao **Modelo Estatístico**. Este próximo passo será entender o que é um **Modelo de Probabilidade**.

²Veja Fonte

Bibliography

[1] Aris Spanos. Probability Theory and Statistical Inference. Wiley, 2003.