

Scattering: Doppler Spectrum

In fading channels many signal replicas arrive at the receiver with different angles. The effect is a Doppler spread rather than a single shift.

- Received signal is the sum of all scattered waves.
- Doppler shift for each path depends on angle θ , each path has a shift $f \frac{v \cos \theta}{d\theta}$
- Typically assume that the received energy is the same from all directions (uniform scattering).

Jakes' Doppler spectrum

Power spectral density = outocorrelation

Time varying channel

- The Doppler spectrum $\mathcal{S}(f)$ is the power spectral density of a sinusoid on a time varying channel.
- In the time domain $\rho(t) = J_0(2\pi f_d t) \leftrightharpoons S(f)$ is the autocorrelation function.
- $f_0(2\pi x) \approx 0$ for $x=\frac{1}{2}$ \Longrightarrow The channel can be assumed uncorrelated for $f_dT_c=\frac{1}{2}$.
- Channel coherence time is

Channel Coherence Time

• The channel coherence time T_c is defined as the time interval over which the channel can be approximated as constant.

$$T_c = \frac{1}{2f_d}$$

• In terms of distance, it is

In terms of distance, it is
$$d_c = vT_c = \frac{1}{2}v\frac{c}{f_cv} = \frac{\lambda}{2}$$

Doppler spectrum

- Doppler spread is a measure of the spectral broadening caused by
 - If the baseband signal bandwidth $B_s\gg f_d$ then the effect of Doppler spread is negligible at the receiver and the channel is *slow fading*.
 - If $B_{\rm s} < f_{\rm d}$ then the channel is *fast fading* and the Doppler spread severely distorts the received signal, which often results in an irreducible BER and synchronization problems.
- Similar considerations can be made in terms of symbol duration
 - A channel is slow fading if $T_c > T$.
 - A channel is said to be fast fading if $T_c < T$.

Fading channel example

- Consider a transmission at $f_c=2.1$ GHz in a suburban aerea (delay spread $\sigma_{7}=2~\mu s$) to a user moving at a speed $90~{\rm km/h} \Rightarrow v=25~{\rm m/s}$. The signal bandwidth is $B_S=2~{\rm MHz} \Rightarrow$ the symbol time can be approximated as $T\sim \frac{1}{B_s}=500~{\rm ns}$.
- · The Doppler spread is

$$f_d = \frac{f_c v}{c} = \frac{2.1 \cdot 10^9 \cdot 25}{3 \cdot 10^8} = 175 \text{ Hz} \Longrightarrow T_c = \frac{1}{2f_d} \sim 3 \text{ ms.}$$

signal bandwidth is $B_S=2$ MHz \Longrightarrow the symbol time can be approximated as $T\sim \frac{1}{B_S}=500$ ns. - The Doppler spread is $f_d = \frac{f_c v}{1-10^9 \cdot 25} = 175 \text{ Hz} \Longrightarrow T_c = \frac{1}{2f_d} \sim 3 \text{ ms.}$ - The channel coherence bandwidth is $B_c = \frac{1}{\sigma_\tau} = 500 \text{ kHz.}$ - The channel is slow $(B_s \gg f_d \text{ or } T \ll T_c)$ and frequency-selective $(B_s > B_c \text{ or } T < \sigma_\tau)$. The Doppler spread is

Small-scale fading recap

Small-scale fading recap

Multi-carrier signals

Multicarrier transmissions

- Main reasons for the success of multicarrier modulations:
 - Robustness versus multipath fading
 - As the data rates increase, multipath becomes a major problem for single carrier transmissions
 - Spectrally efficient

 - Low implementation complexity
 DFT and IDFT can efficiently implemented with the FFT algorithm
 - · Flexible resource allocation
 - OFDMA exploits channel frequency diversity by dynamically assigning the radio resources to the users.

OFDM technology

- ullet The wideband multipath channel is divided into N narrowband sub-
- Provided that the system is accurately dimensioned, each subchannel can be approximated as flat fading.

Channel as a tapped delay line

 \bullet Even if L might be different from N_c , the channel characteristics do not change.

OFDM signal model (1)

• The complex envelope of the signal received through the multipath

$$y(t) = s(t) \otimes h(t) = \sum_{\ell=0}^{L-1} h(\ell) s(t - \ell T)$$

ullet The signal y(t) is affected by ISI!

OFDM signal model (2) fine (2) the block of N samples. After passing through the channel, the received samples are $y(k) = \sum_{\ell=0}^{L-1} h(\ell) s(k-\ell) = \sum_{\ell=0}^{L-1} h($

$$=h(0)s(k)+\cdots+h(L-1)s(k-L+1)$$
 Since the elements of s are not defined for negative indices, the values of the samples $s(-1),s(-2),...,s(L-1)$ in Accordingly, the received signal is

$$y(0) = h(0)s(0) y(1) = h(0)s(1) + h(1)s(0) \vdots y(N-1) = h(0)s(N-1) + h(1)s(N-2) + \dots + h(L-1)s(N-L) Cest L elements of S$$

OFDM signal model (3): matrix notation

10/= h0/50 + 000 Y(1) = h(1) s(0)+ h(0) s(1)

• In matrix notation the block of received samples y can be represented as