

Learning Graphical Models for Hypothesis Testing

SUJAY SANGHAVI, VINCENT Y. F. TAN AND ALAN S. WILLSKY[†]

Stochastic Systems Group, Laboratory for Information and Decision Systems
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
Cambridge, MA 02139, USA

†{sanghavi, vtan, willsky}@mit.edu

Introduction

- Motivation: Can sparse graphical models be learnt better if intended purpose is known?
- Contribution: Given training data from 2 distributions, we learn models to be used **specifically** for hypothesis testing.

The Problem

The Hypothesis Testing Problem

 $X = (X_1, \dots X_n)$ is a length-n vector of finite-valued random variables, generated from one of two hypotheses

$$H_0: X \sim p \quad \text{or} \quad H_1: X \sim q$$
 (1)

p, q are not available *a priori*.

Given: Labeled training sets \mathcal{T}_0 , \mathcal{T}_1 , consisting of K samples each that are generated IID according to p,q respectively.

Task: Given a new test sample x, decide between H_0 and H_1 .

Natural Solutions

- 1. Generate empiricals p_e from \mathcal{T}_0 and q_e from \mathcal{T}_1 and do a Likelihood Ratio Test (LRT) using p_e, q_e .
 - **Problem**: When n is large, the number of possible sample vectors is large. For e.g. if each X_i is binary, this number is 2^n . Unless K is of the order 2^n , p_e , q_e will be poor approximations of p, q, and be inefficient at classification.
- 2. Learn sparse models \widehat{p} from \mathcal{T}_0 and \widehat{q} from \mathcal{T}_1 . Then do a LRT. **Problem**: Each model uses information about only of the two hypotheses.

Our Approach

We learn \widehat{p} , \widehat{q} each using **both** \mathcal{T}_0 and \mathcal{T}_1 and then do a LRT.

$$\begin{array}{ccc}
\operatorname{declare} H_0 \\
\widehat{p}(x) & \gtrless & \widehat{q}(x) \\
\operatorname{declare} H_1
\end{array} \tag{2}$$

Learning Graphical Models Specifically for Hypothesis Testing

Ideally, we would like to learn \widehat{p} , \widehat{q} to minimize Pr(err), given by

$$P(e_0) = P(\text{declare } H_1|H_0) = \sum_x p(x) \, \mathbf{1}_{\{\widehat{q}(x) \ge \widehat{p}(x)\}}$$
 (3)

and $P(e_0)$. But we do not know p,q so instead we minimize

$$P(\tilde{e}_0) = \sum_{x} p_e(x) \mathbf{1}_{\{\widehat{q}(x) \ge \widehat{p}(x)\}}$$

$$\tag{4}$$

and $P(\tilde{e}_1)$. $P(\tilde{e}_0)$ counts the fraction of samples in \mathcal{T}_0 that are misclassified. Learning \hat{p}, \hat{q} involves

- 1. Learning the **graph structure** of models \hat{p} , \hat{q} .
- 2. Learning the parameters of the models.

Learning Graph Structure

We first concentrate on learning the graph structures G_0 , G_1 of the models \widehat{p} , \widehat{q} . The **projection** p_{G_0} of p onto G_0 is the closest distribution (in KL-divergence) to p that is Markov on G_0 .

$$D(p || p_{G_0}) \le D(p || p')$$
 (5)

for all p' that is Markov on G_0 . For structure learning, for any given G_0 assume that \hat{p} is projection of p_e onto G_0 .

For low $P(\tilde{e}_0)$ and $P(\tilde{e}_1)$, we would like $\log{(\widehat{p}(x)/\widehat{q}(x))}>0$ if $p_e(x)>q_e(x)$ and <0 otherwise. Thus, choose G_0 and G_1 to maximize

$$\sum_{x} (p_e(x) - q_e(x)) \log \left(\frac{\widehat{p}(x)}{\widehat{q}(x)} \right)$$
 (6)

This decomposes into two independent objectives with the first maximization problem being:

$$\max_{G_0} \left\{ \sum_{x} (p_e(x) - q_e(x)) \log \widehat{p}(x) \right\} \equiv \min_{G_0} \left\{ D(p_e||p_{G_0}) - D(q_e||p_{G_0}) \right\}.$$

This is similar to $\min_{G_0} D(p||p_{G_0})$ in the classical objective. So **any** classical learning method may be adapted to this objective. In this work, \hat{p} and \hat{q} are **Markov on trees**. Objective (7) becomes a **MaxWeight Spanning Tree** (MWST) problem with edge weights

$$w_{ij} = \sum_{(x_i, x_j)} (p_e(x_i, x_j) - q_e(x_i, x_j)) \log \left(\frac{p_e(x_i, x_j)}{p_e(x_i) p_e(x_j)} \right).$$
 (8)

The space and time **complexity** of the tree-finding procedure is the **same** as the Chow-Liu procedure [1].

Learning Model Parameters

LRT can be done with \widehat{p},\widehat{q} being the projections of the p_e,q_e onto G_0,G_1 . However, further reductions of $P(\widetilde{e}_0)$ and $P(\widetilde{e}_1)$ are possible by optimizing the **parameters** of \widehat{p} and \widehat{q} so that they remain Markov on the same graphs G_0,G_1 . For this, we upper bound

$$P(\tilde{e}_0) \le \min_{\lambda \ge 0} \sum_{x} p_e(x) \left(\frac{\widehat{q}(x)}{\widehat{p}(x)}\right)^{\lambda}.$$
 (9)

Consider \widehat{p} and \widehat{q} to be members of exponential families:

$$\widehat{p}(x; \theta_{\widehat{p}}) = \exp\left[\langle \theta_{\widehat{p}}, \phi_p(x) \rangle - \Phi(\theta_{\widehat{p}})\right], \tag{10}$$

where $\phi_p(x), \phi_q(x)$ are the (fixed) features of G_0, G_1 and determine the family. $\theta_{\widehat{p}}, \theta_{\widehat{q}}$ are the **exponential parameters** to which we optimize using **convex programming**. $\Phi(\cdot)$ is the log-partition function.

Lemma 1 Let $A_0(\theta_{\widehat{p}}, \theta_{\widehat{q}}, \lambda) \stackrel{\triangle}{=} \sum_x p_e(x) \left(\frac{\widehat{q}(x)}{\widehat{p}(x)}\right)^{\lambda}$, then

- 1. A_0 is convex in $\theta_{\widehat{v}}$ for fixed $(\theta_{\widehat{q}}, \lambda)$.
- 2. A_0 is convex in λ for fixed $(\theta_{\widehat{p}}, \theta_{\widehat{q}})$.

We use an alternating minimizing procedure parameterized by a discrete set of λ 's (from 0 to 1) to find the optimal θ_n^* , θ_n^* .

For each value of λ , $\theta_{\widehat{p}}$, $\theta_{\widehat{q}}$ are initialized by transforming the mean parameters of p_e , q_e to exponential parameters. Finally, $\theta_{\widehat{p}}^*$, $\theta_{\widehat{q}}^*$ are chosen as the pair that **minimize the sum**:

$$A(\theta_{\widehat{p}}, \theta_{\widehat{q}}, \lambda) = A_0(\theta_{\widehat{p}}, \theta_{\widehat{q}}, \lambda) + A_1(\theta_{\widehat{p}}, \theta_{\widehat{q}}, 1 - \lambda). \tag{11}$$

Alternating-Minimization Algorithm

 $\begin{array}{l} \textbf{for } \lambda \leftarrow 0 \ \text{to } 1 \ \textbf{do} \\ \text{Evaluate } \theta_{\widehat{p}}^{(\lambda)}, \theta_{\widehat{q}}^{(\lambda)} \ \text{as follows ;} \\ \textbf{repeat} \\ \theta_{\widehat{p}} = \operatorname{argmin}_{\theta_{\widehat{p}}} \ A_0 \left(\theta_{\widehat{p}}, \theta_{\widehat{q}}, \lambda\right) \ ; \\ \theta_{\widehat{q}} = \operatorname{argmin}_{\theta_{\widehat{q}}} \ A_1 \left(\theta_{\widehat{p}}, \theta_{\widehat{q}}, 1 - \lambda\right) \ ; \end{array}$

until convergence;

endFor

The following examples
$$\lambda_{\min} = \operatorname{argmin}_{\lambda} \left[A_0 \left(\theta_{\widehat{p}}^{(\lambda)}, \theta_{\widehat{q}}^{(\lambda)}, \lambda \right) + A_1 \left(\theta_{\widehat{p}}^{(\lambda)}, \theta_{\widehat{q}}^{(\lambda)}, 1 - \lambda \right) \right];$$

$$\theta_{\widehat{p}}^* = \theta_{\widehat{p}}^{(\lambda_{\min})};$$

$$\theta_{\widehat{p}}^* = \theta_{\widehat{p}}^{(\lambda_{\min})};$$

Connection to Error Exponents

The parameter learning procedure above is related to the **error exponent** [2] of the hypothesis test. Suppose we are given M new samples. Let e_0^M be the (conditional) error event that H_1 is declared when the truth was H_0 . The error exponent is:

$$E_0(\hat{p}, \hat{q}) = \lim_{M \to \infty} -\frac{1}{M} P(e_0^M).$$
 (12)

Lemma 2
$$E_0(\widehat{p}, \widehat{q}) = \max_{\lambda \ge 0} -\log \left[\sum_x p(x) \left(\frac{\widehat{q}(x)}{\widehat{p}(x)} \right)^{\lambda} \right].$$

Note the close similarity between the above expression and that of A_0 in Lemma 1. If we replace p with p_e , then the right hand side is exactly $-\log A_0(\theta_{\widehat{p}},\theta_{\widehat{q}},\lambda)$. Thus **minimizing** A_0 is equivalent to **maximizing** (an empirical version of) the error exponent.

Numerical results

We perform simulations on synthetic examples and on a handwritten digit dataset. Each figure shows 4 curves.

- 1. CL: Learning models according to the Chow-Liu [1] algorithm. (\widehat{p} is learnt only from \mathcal{T}_0 and \widehat{q} only from \mathcal{T}_1 .)
- 2. **LGMHT-proj**: \widehat{p},\widehat{q} are simply the projections of p_e,q_e onto G_0,G_1 respectively.
- 3. **LGMHT-altmax**: $\theta_{\widehat{p}}, \theta_{\widehat{q}}$ are further optimized.
- 4. **kNN**: Using k-Nearest Neighbours with k = 11.

Synthetic examples

X is a **binary** vector of length n. The true distributions p and q are randomly chosen **tree-structured distributions**. Tree structures enable easy generation of training samples \mathcal{T}_0 , \mathcal{T}_1 .

The Pr(err) is plotted as a function of K for a n = 20 node synthetic example.

The Pr(err) is plotted as a function of K for a n=100 node synthetic example.

Handwritten Digits dataset

We used the MNIST handwritten digit dataset and classified the feature vectors corresponding to class labels 6 and 8. The pixel values are quantized to binary levels.

The 8×8 images are concatenated into length n = 64 vectors the Pr(err) is plotted as a function of K.

Conclusion

- In general, learning the reduced-order distributions \widehat{p} , \widehat{q} from both datasets \mathcal{T}_0 , \mathcal{T}_1 (instead of learning \widehat{p} from \mathcal{T}_0 only as in CL) results in **lower** $\Pr(err)$, especially on the handwritten digits dataset.
- The parameter optimization procedure gives lower Pr(err) for the handwritten digits dataset but seems to be overfitting the synthetic datasets.
- In general, kNN performs better than CL and LGMHT but kNN requires distances to be calculated for **each** new test sample. LGMHT computes both distributions \hat{p} , \hat{q} offline.
- Future work: Examine how the idea of learning graphical models from both datasets can be applied to dimensionality reduction together with classification/clustering.

References

- C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. *IEEE Transactions on Information Theory*, 14(3):462–7, May 1968.
- [2] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 2nd edition, 2006.