Homework

- Pick one country which is not the US
- If you choose Germany, I recommend dropping hyperinflation years. Or for any country, dropping observations with inflation > 200%.
- Assume risk aversion $\gamma=$ 10, impatience $\delta=$ 0.01 (1%)
- Calculate the implied safe rate
- Calculate the implied risky rate
- Calculate the average real return on equity and government bill rate
- Do the predictions of the model match the data?

Homework – specifics I

- Data: www.macrohistory.net (or country of your choice)
- Variables: eq_tr, cpi, bill_rate, rconpc
- Log real consumption growth: ln∆c = log(rconpc_t) - log(rconpc_{t-1})
 - \blacksquare E(ln \triangle c): mean of ln \triangle c for this country
 - lacksquare σ^2 [ln Δ c]: variance of ln Δ c for this country
- Log real equity return in the data: $r_{eq}tr = (1 + eq_tr) * cpi_{t-1}/cpi_t - 1 (\approx 7\%)$
- Log real bill rate: $r_bill_rate = (1 + bill_rate) * cpi_{t-1}/cpi_t - 1 (\approx 1\%)$

Homework - specifics II

Consumption beta:

$$\begin{split} \beta_{\text{Rrisky}},_{\Delta \text{C}} &= \text{cov}(\text{r_eq_tr}, \text{ln}\Delta\text{c})/\sigma^2 \left[\text{ln}\Delta\text{c}\right] \\ &= \text{corr}(\text{r_eq_tr}, \text{ln}\Delta\text{c})\sigma(\text{r_eq_tr})/\sigma(\text{ln}\Delta\text{c}) \end{split}$$

- If you are struggling:
 - Forget about logs; use "normal" growth rates

$$\left(\frac{X_{t}-X_{t-1}}{X_{t}}\right)$$

- Assume $\beta_{R^{risky},\Delta c} = 2$
- Assume $E(\ln \Delta c) = 0.015$; $\sigma^2 [\ln \Delta c] = 0.035^2 = 0.0012$

$$\begin{split} r^{\text{safe}} &= \text{ln}(R^{\text{safe}}) = \delta + \gamma \mathbb{E}\left[\text{ln}\Delta c\right] - 0.5\gamma^2\sigma^2\left[\text{ln}\Delta c\right] \\ R^{\text{risky}} &- R^{\text{safe}} = \beta_{R^{\text{risky}},\Delta c}\gamma\sigma^2(\Delta c) \end{split}$$

Homework - submission

- Construct table(s), or send me a list of the following variables:
 - Ingredients for model-implied risky and safe rates: $E(\ln \Delta c)$, $\sigma^2 [\ln \Delta c]$, $\beta_{R^{risky},\Delta c}$
 - 2 Model-implied risky and safe rate
 - 3 Average real equity return and real bill rate in the data
- Deadline: 15:00 on 22 April
- Note: it's fine if the model does not fit the data; just report the results