Осенний коллоквиум курса «Теория вероятностей»

ФКН НИУ ВШЭ, 2-й курс ОП ПМИ, 2-й модуль, 2016 учебный год

Билет 10

Случайная величина и ее распределение. Функция распределения вероятностной меры и функция распределения случайной величины.

Случайная величина и ее распределение

Случайной называют величину, которая в результате испытания принимает одно и только одно возможное значение, наперед неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены. Дадим формальное определение:

Определение 1. Функция $\xi \colon \Omega \to \mathbb{R}$ называется *случайной величиной*, если

$$\{w \colon \xi(w) \in \langle a, b \rangle\} \in \mathfrak{A}.$$

 $\it Замечание 1. \ \langle a,b
angle \ -$ промежуток от а до b, это может быть отрезок, интервал или полуинтервал.

Замечание 2. Напомним, что если есть некоторая функция $f: X \to Y$, то прообразом множества $S \subseteq Y$ называется множество $f^{-1}(S) = \{x \in X : f(x) \in S\}$.

Тогда определение случайной величины можно переписать следующим образом:

Функция $\xi \colon \Omega \to \mathbb{R}$ называется *случайной величиной*, если

$$\xi^{-1}(\langle a,b\rangle) \in \mathfrak{A}.$$

Замечание 3. Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. При этом число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями. Его можно задавать таблично, аналитически (в виде формулы) и графически. При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения, а вторая — их вероятности. При этом важно понимать, что так как случайная величина в одном испытании может принимать одно и только одно возможное значение, то сумма вероятностей во второй строке таблицы должна быть равна единице.

Пример 1. (Пример дискретной случайной величины) Бросание монетки:

$$\xi(w) = egin{cases} 1, \ ext{если} \ w \ - \ ext{Орел} \ 0, \ ext{если} \ w \ - \ ext{Решка} \end{cases}$$

При этом закон распределения этой дискретной случайной величины можно задать следующим образом (аналитически):

$$P(\xi=w) = egin{cases} p, \ ext{ecли} \ w \ - \ ext{Open} \ 1-p, \ ext{ecли} \ w \ - \ ext{Peшкa} \end{cases}$$

где p — вероятность выпадания Орла.

Утверждение.

Если ξ — случайная величина, то $\forall B \in \mathfrak{B}(\mathbb{R})$ $\xi^{-1}(B) \in \mathfrak{A}$ или (что есть то же самое) $\xi^{-1}(B)$ является событием.

Доказательство. Определим σ как $\{C\colon \xi^{-1}(C)\in\mathfrak{A}\}$ и докажем, что σ является σ -алгеброй.

$$\xi^{-1}(\mathbb{R}) = \Omega \in \mathfrak{A} \Rightarrow \mathbb{R} \in \sigma$$
 и $\xi^{-1}(\emptyset) = \emptyset \in \mathfrak{A} \Rightarrow \emptyset \in \sigma$.

Пусть теперь $C_1,C_2\in\sigma$. Докажем, что $C_1\cup C_2,\ C_1\cap C_2,\ C_1\setminus C_2\in\sigma$:

$$\xi^{-1}(C_1 \cup C_2) = \xi^{-1}(C_1) \cup \xi^{-1}(C_2)$$

Но $\xi^{-1}(C_1) \in \mathfrak{A}$ и $\xi^{-1}(C_2) \in \mathfrak{A}$, а значит и $\xi^{-1}(C_1) \cup \xi^{-1}(C_2) \in \mathfrak{A}$, то есть $C_1 \cup C_2 \in \sigma$.

Аналогично для объединения и разности событий C_1, C_2 . Более того, это выполняется и для счетного объединения (пересечения). Значит, σ является σ -алгеброй.

По определению случайной величины ξ эта σ -алгебра содержит промежутки. А минимальная σ -алгебра, содержащая все промежутки — $\mathfrak{B}(\mathbb{R})$. Значит, $\mathfrak{B}(\mathbb{R}) \subseteq \sigma$. А что есть σ ? Это $\{C \colon \xi^{-1}(C) \in \mathfrak{A}\}$ (множества, чьи прообразы лежат в \mathfrak{A}). Следовательно, $\forall B \in \mathfrak{B}(\mathbb{R}) \ \xi^{-1}(B) \in \mathfrak{A}$ (прообраз всякого B лежит в \mathfrak{A}).

На $\mathfrak{B}(\mathbb{R})$ определена вероятностная мера

$$\mu_{\xi}(B) = P\left(\xi^{-1}(B)\right).$$

Определение 2. Вероятностная мера μ_{ξ} называется распределением ξ .

Функция распределения вероятностной меры И ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Вспомним, что дискретная случайная величина может быть задана перечнем всех ее возможных значений и их вероятностей. Такой способ задания не является общим. Для того, чтобы дать общий способ задания любых типов случайных величин, вводят функции распределения вероятностей случайной величины. Пусть x — действительное число. Вероятность события, состоящего в том, что ξ примет значение, меньшее или равное x, то есть вероятность события $\xi \leqslant x$, обозначим через $F_{\xi}(x)$. Разумеется, если x изменяется, то, вообще говоря, изменяется и $F_{\xi}(x)$, то есть $F_{\xi}(x)$ — функция от x.

Определение 3. Функцией распределения случайной величины ξ называют функцию $F_{\xi}(x)$, определяющую вероятность того, что случайная величина ξ в результате испытания примет значение, меньшее или равное x, то есть

$$F_{\varepsilon}(x) = P(\xi \leqslant x).$$

Замечание 4. Геометрически это равенство можно истолковать так: $F_{\xi}(x)$ есть вероятность того, что случайная величина ξ примет значение, которое изображается на числовой оси точкой на полуинтервале $(-\infty, x]$.

Свойство 1. Значение функции распределения принадлежит отрезку [0,1]:

$$\forall \xi \ 0 \leqslant F_{\xi}(x) \leqslant 1.$$

Доказательство. Свойство возникает из определения функции распределения как вероятности: вероятность всегда есть неотрицательное число, не превышающее единицы.

Свойство 2. $F_{\xi}(x)$ — неубывающая функция, то есть

$$\forall \xi \ F_{\varepsilon}(x_2) \geqslant F_{\varepsilon}(x_1), \ ecnu \ x_2 > x_1.$$

Доказательство. Пусть $x_2 > x_1$. Событие, состоящее в том, что ξ примет значение, меньшее или равное x_2 , можно подразделить на следующие два несовместимых события: 1) ξ примет значение, меньшее или равное x_1 , с вероятностью $P(\xi \le x_1)$; 2) ξ примет значение, удовлетворяющее неравенству $x_1 < \xi \le x_2$, с вероятностью $P(x_1 < \xi \leqslant x_2)$.

Тогда имеем:

$$P(\xi \leqslant x_2) = P(\xi \leqslant x_1) + P(x_1 < \xi \leqslant x_2).$$

Отсюда

$$P(\xi \leqslant x_2) - P(\xi \leqslant x_1) = P(x_1 < \xi \leqslant x_2)$$

или

$$F_{\xi}(x_2) - F_{\xi}(x_1) = P(x_1 < \xi \leqslant x_2).$$

Так как любая вероятность есть число неотрицательное, то $F_{\xi}(x_2) - F_{\xi}(x_1) \geqslant 0$, или $F_{\xi}(x_2) \geqslant F_{\xi}(x_1)$, что и требовалось доказать.

Свойство 3. Если возможные значения случайной величины ξ принадлежат интервалу (a,b), то:

- (1) $F_{\xi}(x) = 0$ npu $x \le a$, (2) $F_{\xi}(x) = 1$ npu $x \ge b$.

Доказательство. (1) Пусть $x_1 \leqslant a$. Тогда событие $\xi \leqslant x_1$ невозможно (так как значений, меньших или равных x_1 , величина ξ по условию не принимает) и, следовательно, вероятность такого события равна нулю.

(2) Пусть $x_2 \geqslant b$. Тогда событие $\xi \leqslant x_2$ достоверно (так как все возможные значения ξ меньше x_2) и, следовательно, вероятность такого события равна единице.

Следствие 1. Если возможные значения случайной величины ξ расположены на всей оси x, то справедливы следующие предельные соотношения:

$$\lim_{x \to -\infty} F_{\xi}(x) = 0, \ \lim_{x \to +\infty} F_{\xi}(x) = 1.$$

Замечание 5. Доказанные свойства позволяют представить, как выглядит график распределения случайной величины.

График расположен в полосе, ограниченной прямыми $y=0,\ y=1$ (первое свойство).

При возрастании x в интервале (a,b), в котором заключены все возможные значения случайной величины, график "поднимается вверх" (второе свойство).

При $x \leqslant a$ ординаты графика равны нулю; при $x \geqslant b$ ординаты графика равны единице (третье свойство).

Замечание 6. График функции распределения дискретной случайной величины имеет ступенчатый вид.