MA211 **Lecture 19: Improper Integrals**

Wed 12th Nov 2008

MA211 — Lecture 19: Improper Integrals

0/33

3/33

Improper Integrals

- Some improper integrals evaluate as a real, finite number.
 These are are said to converge, or to be convergent or to exist.
- Those that don't evaluate to a finite number are said to diverge, or to be divergent or not to exist.

Proper Integrals

So far, the definite integrals we have considered:

$$\int_{a}^{b} f(x) dx,$$

have all been *Proper*: they are integrals of bounded functions on closed, finite intervals.

So we when we think of the integral as the area between the graph of the function and the x-axis, it is clear that that is well-defined.

MA211 — Lecture 19: Improper Integrals

1/33

4/33

Improper Integrals of Type I

MA211 — Lecture 19: Improper Integrals

Improper Integrals

Type I: if $a = -\infty$ or $b = \infty$

A definite integral $\int_{-\infty}^{\infty} f(x) dx$ is *Improper* if:

 $\int_{a}^{\infty} f(x) dx$

2/33

1

x=b

Type II: if f(x) is unbounded (infinite) near a or b.

- **1** Evaluate $\mathcal{I}(t) = \int_a^t f(x) dx$;
- 2 and then compute $\mathcal{I} = \lim_{t = \infty} \mathcal{I}(t)$.
- If the limit exists, call it L and write $\int_a^\infty f(x) \, dx = L$. We say that $\int_a^\infty f(x) \, dx$ converges to L.
- 4 If no such limit exists, $\int_a^\infty f(x) dx$ is said to **diverge**.

Improper Integrals of Type I

Improper Integrals of Type I are of the form

To evaluate these, note that $\int_a^\infty f(x)dx = \lim_{t=\infty} \int_a^t f(x)dx$. So:

- Evaluate $\mathcal{I}(t) = \int_a^t f(x) dx$;
- \blacksquare and then compute $\lim_{t=\infty} \mathcal{I}(t)$.

MA211 — Lecture 19: Improper Integrals

MA211 — Lecture 19: Improper Integrals

5/33

MA211 — Lecture 19: Improper Integrals

Improper Integrals of Type I

 $\int_{a}^{\infty} f(x) dx$

Improper Integrals of Type I

 $\int_{a}^{\infty} f(x) dx$

Improper Integrals of Type I

 $\int_a^\infty f(x) dx$

Example

Evaluate $\mathcal{I} = \int_{1}^{\infty} \frac{1}{x^2} dx$

Example

Evaluate the improper integral $\mathcal{I} = \int_1^\infty \frac{dx}{x}$

Example

Evaluate $\mathcal{I} = \int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$

MA211 — Lecture 19: Improper Integrals

MA211 — Lecture 19: Improper Integrals

MA211 — Lecture 19: Improper Integrals

Improper Integrals of Type I

 $\int_{a}^{\infty} f(x) dx$

 $\int_{1}^{\infty} 1/x^{p} dx \text{ converges for } p > 1, \text{ and diverges for } p \leq 1.$

$$\int_{1}^{t} x^{-p} dx = \int_{1}^{t} \frac{1}{x} dx = \ln(x) \Big|_{1}^{t} = \ln(t) - \ln(1) = \ln(t).$$

If
$$p \neq 1$$
 then $\int_{1}^{t} x^{-p} dx = \frac{x^{1-p}}{1-p} \Big|_{1}^{t} = \frac{t^{1-p}-1}{1-p}$

Proof: If p=1 then $\int_1^t x^{-p} dx = \int_1^t \frac{1}{x} dx = \ln(x) \Big|_1^t = \ln(t) - \ln(1) = \ln(t).$ But $\lim_{t \to \infty} \ln(t)$ does not exists, so $\int_1^t \frac{1}{x} dx$ diverges. If $p \neq 1$ then $\int_1^t x^{-p} dx = \frac{x^{1-p}}{1-p} \Big|_1^t = \frac{t^{1-p}-1}{1-p}.$ If p < 1 then 1-p > 0 so the limit $\lim_{t \to \infty} t^{1-p}$ does not exist, so the integral diverges in that case. integral diverges in that case.

If however p>1 then 1-p<0 and $\lim_{t\to\infty}t^{1-p}=0$, so the integral

converges to $\frac{-1}{1-p}$

Improper Integrals of Type I

 $\int_{a}^{\infty} f(x) dx$

Example: $\int_{-\infty}^{\infty} x^{-2} dx$

MA211 — Lecture 19: Improper Integrals

Improper Integrals of Type I

 $\int_{a}^{\infty} f(x) dx$

Example: $\int_{0}^{\infty} x^{-1} dx$

MA211 — Lecture 19: Improper Integrals

MA211 — Lecture 19: Improper Integrals

9/33

10/33

11/33

Improper Integrals of Type I

 $\int_{a}^{\infty} f(x) dx$

Example: $\int_{0}^{\infty} x^{-1/2} dx$

Improper Integrals of Type I

 $\int_{a}^{\infty} f(x) dx$

Example

Evaluate the integral $\int_{1}^{\infty} \frac{1}{1+x^2} dx$

Improper Integrals of Type I

 $\int_{-\infty}^{b} f(x) dx$

For problems of the form:

$$\int_{-\infty}^{b} f(x) dx$$

- 2 and then compute $\mathcal{I} = \lim_{t = -\infty} \mathcal{I}(t)$.
- If the limit exists, call it $\mathcal I$ and write $\int_{-\infty}^b f(x) \, dx = L$. We say that the integral **converges to** L.
- 4 If no such limit exists, it is said to diverge.

MA211 — Lecture 19: Improper Integrals

Example

Evaluate $\int_{-\infty}^{-1} \frac{dx}{x^2}$

12/33

MA211 - Lecture 19: Improper Integral

Improper Integrals of Type I

 $\int_{-\infty}^{b} f(x) dx$

Improper Integrals of Type I

 $\int_{-\infty}^{b} f(x) dx$

13/33

16/33

Example

Show that $\int_{-\infty}^{0} e^{x} dx$ converges, but that $\int_{0}^{\infty} e^{x} dx$ diverges.

Improper Integrals of Type I

 $\int_{-\infty}^{\infty} f(x) dx$

We also have to deal with the case where ${\it both}$ limits of integration are at infinity:

$$\int_{-\infty}^{\infty} f(x) \, dx$$

To do this we recall that

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx.$$

So
$$\int_{-\infty}^{\infty} f(x) dx$$
 converge if and only if **both** $\int_{-\infty}^{0} f(x) dx$ and $\int_{0}^{\infty} f(x) dx$ converge.

Improper Integrals of Type I

 $\int_{-\infty}^{\infty} f(x) dx$

Example

Show that $\int_{-\infty}^{\infty} \frac{dx}{1 + x^2} = \pi$

MA211 — Lecture 19: Improper Integrals

18/33

Improper Integrals: Type 2

Example

 $\int_{0}^{1} \frac{dx}{x}$ converge? Does the integral

Improper Integrals: Type 2

Finally we consider integrals of the form

$$\int_{a}^{b} f(x) \, dx$$

where f(x) may be unbounded at a or b, or at some point in

MA211 — Lecture 19: Improper Integrals

Improper Integrals: Type 2

Example

Evaluate the improper integral $\int_{0}^{1} \frac{dx}{x^2}$

Improper Integrals: Type 2

f(x) unbounded at x = a

When function f(x) is defined for $a < x \le b$ then evaluate

$$\mathcal{I}(t) = \int_t^b f(x) dx$$
 and then use that:

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx.$$

19/33

22/33

- So:

 Evaluate $\mathcal{I}(t) = \int_{t}^{b} f(x) dx$ Compute the limit $L = \lim_{t \to a^{+}} \mathcal{I}(t)$
- If L is finite then $\int_{a}^{b} f(x) dx = L$, and we can say that $\int_{a}^{b} f(x) dx$ converges to L.
- If L is not finite, then integral is said to diverge.

MA211 — Lecture 19: Improper Integrals

20/33

Improper Integrals: Type 2

 $x^{-p}dx$ will *converge* when p < 1, and **diverge** for $p \ge 1$.

$$\int_{t}^{1} x^{-\rho} dx = \int_{t}^{1} \frac{1}{x} dx = \ln(x) \Big|_{t}^{1} = \ln(t) - \ln(1) = \ln(t).$$

But $\lim_{t\to 0} \ln(t)$ does not exists, so $\int_0^1 \frac{1}{x} dx$ diverges.

If
$$p \neq 1$$
 then $\int_{t}^{1} x^{-p} dx = \frac{1}{1-p} x^{1-p} \Big|_{t}^{1} = \frac{1-t^{1-p}}{1-p}$.
If $p < 1$ then $1-p > 0$ so the limit $\lim_{t \to 0} t^{1-p} = 0$. So the integral

converges to $\frac{1}{1-p}$

If however p>1 then 1-p<0 and $\lim_{t\to 0}t^{1-p}$ does not exist, so the integral diverges.

Improper Integrals: Type 2

If f is defined on [a,b) and $\lim_{t\to b^-}\int_a^t f(x)\,dx$ exists, call the limit L and write

$$\int_{a}^{b} f(x) \, dx = L.$$

Again, $\int_a^b f(x) dx$ is said to **converge to** *L*. If no such limit exists, the integral is divergent.

Improper Integrals: Type 2

Example

Does the $\int_0^4 \frac{dx}{\sqrt{4-x}}$ converge or diverge?

MA211 — Lecture 19: Improper Integrals

24/33

27/33

The Comparison Test

Often, we just want to know if some integral converges or diverges – and not necessarily evaluate the integral.

In that case we can compare the integral with one that we know. This is helpful because:

Comparison Test

MA211 — Lecture 19: Improper Integrals

Suppose f and g are defined on $[a, \infty)$ and

$$0 \le f(x) \le g(x)$$
 for all $x \in [a, \infty)$.

Then
$$\int_{a}^{\infty} f(x)dx \le \int_{a}^{\infty} g(x)dx$$
. Therefore

If
$$\int_{a}^{\infty} g(x) dx$$
 converges, so does $\int_{a}^{\infty} f(x) dx$

2 if
$$\int_{a}^{\infty} f(x) dx$$
 diverges, so does $\int_{a}^{\infty} g(x) dx$

MA211 — Lecture 19: Improper Integrals

25/33

28/33

The Comparison Test

Comparison Test

Suppose f and g are defined on $[a, \infty)$ and

$$0 \le f(x) \le g(x)$$
 for all $x \in [a, \infty)$.

Then

$$\int_{a}^{\infty} f(x)dx \le \int_{a}^{\infty} g(x)dx.$$

Therefore

- If $\int_a^\infty g(x) dx$ converges, so does $\int_a^\infty f(x) dx$
- **2** if $\int_a^\infty f(x) dx$ diverges, so does $\int_a^\infty g(x) dx$

There are corresponding results for the other types of improper integrals.

MA211 — Lecture 19: Improper Integrals

Improper Integrals: Type 2

If a function f is defined on [a,b] except at some point c in (a,b) at which f is *unbounded*, then use that

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

The integral converges if and only if $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ both converge.

Example

Does the improper integral $\int_{-1}^{1} \frac{dx}{x}$ converge or diverge?

MA211 — Lecture 19: Improper Integrals

26/33

The Comparison Test

Example

Does the integral $\int_{1}^{\infty} \frac{dx}{x^2 + x^3}$ converge or diverge?

MA211 — Lecture 19: Improper Integrals

29/33

The Comparison Test

The Comparison Test

The Comparison Test

Example

$$\int_{1}^{\infty} \frac{dx}{x + x^2}$$

Example

Does the improper integral $\int_0^1 \frac{dx}{2x^2 + 3x^3}$ converge or diverge?

Example

Establish if $\int_0^1 \frac{dx}{2\sqrt{x} + x^2}$ is convergent or divergent.

MA211 — Lecture 19: Improper Integrals

30/33

MA211 — Lecture 19: Improper Integrals

31 /

MA211 — Lecture 19: Improper Integrals

The Comparison Test

Example

Test for convergence of the following integral:

$$\int_{1}^{\infty} \frac{\cos x \, dx}{1 + x^2}$$

MA211 — Lecture 19: Improper Integrals

33/33