Übungen zur Algebraischen Zahlentheorie II

Sommersemester 2022

Universität Heidelberg Mathematisches Institut DR. K. HÜBNER DR. C. DAHLHAUSEN

Blatt 2

Abgabe: Freitag, 06.05.2022, 09:15 Uhr

Aufgabe 1. (4 Punkte)

Sei μ die Gruppe aller Einheitswurzeln in einem algebraischen Abschluss von \mathbb{Q} . Für $a = (a_n)_n \in \widehat{\mathbb{Z}} = \lim_n \mathbb{Z}/n\mathbb{Z}$ und $\zeta \in \mu$ setzen wir $\zeta^a := \zeta^{a_{\text{ord}(\zeta)}}$. Zeigen Sie, dass für alle $a, b \in \widehat{\mathbb{Z}}$ und alle $\zeta, \xi \in \mu$ folgendes gilt:

- (a) Ist $\zeta^n = 1$ für ein $n \in \mathbb{N}_{>1}$, so ist $\zeta^a = \zeta^{a_n}$.
- (b) Es ist $(\zeta^a)^b = \zeta^{ab}$ und $\zeta^a \cdot \zeta^b = \zeta^{a+b}$.
- (c) Es ist $\zeta^a \cdot \xi^a = (\zeta \cdot \xi)^a$.

Aufgabe 2. (4 Punkte)

Sei μ die Gruppe aller Einheitswurzeln in einem algebraischen Abschluss von \mathbb{Q} und sei K/\mathbb{Q} eine endliche Erweiterung. Zeigen Sie:

- (a) Es existiert ein stetiger Gruppenhomomorphismus χ : $Gal(\overline{K}/K) \to \widehat{\mathbb{Z}}^{\times}$, so dass für jedes $\zeta \in \mu$ und jedes $\sigma \in Gal(\overline{K}/K)$ gilt, dass $\sigma(\zeta) = \zeta^{\chi(\sigma)}$. *Hinweis:* Benutzen Sie Aufgabe 1.
- (b) Es ist $ker(\chi) = Gal(\overline{K}/K(\mu))$.
- (c) Ist $K = \mathbb{Q}$, so ist χ surjektiv und induziert einen Isomorphismus $\operatorname{Gal}(\mathbb{Q}(\mu)/\mathbb{Q}) \stackrel{\cong}{\longrightarrow} \widehat{\mathbb{Z}}^{\times}$ pro-endlicher Gruppen.

Aufgabe 3. (4 Punkte)

Eine pro-endliche Gruppe G heißt pro-zyklisch, wenn G topologisch durch ein einziges Element $g \in G$ erzeugt wird, d.h. G ist der Abschluss $\overline{\langle g \rangle}$ der zyklischen Untergruppe $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$. Zeigen Sie:

- (a) Ist G eine pro-zyklische Gruppe, so sind die offenen Untergruppen von G genau die Untergruppen der Form $G^n = \{h^n | h \in G\}$ für ein $n \in \mathbb{N}$.
- (b) Jede prozyklische Gruppe ist ein Quotient von $\widehat{\mathbb{Z}}$.

Aufgabe 4. (4 Punkte)

Seien X und Y topologische Räume und es bezeichne $\operatorname{Map}(X,Y)$ die Menge der stetigen Abbildungen von X nach Y. Für eine kompakte Menge $K \subseteq X$ und eine offene Menge $U \subseteq Y$ definieren wir die Menge

$$C(K,U) := \{ f \in \operatorname{Map}(X,Y) \mid f(K) \subseteq U \}.$$

Die kompakt-offene Topologie (kurz: KO-Topologie) auf Map(X,Y) ist die gröbste Topologie, so dass alle Mengen C(K,U) offen sind. Es bezeichne $Map(X,Y)^{ko}$ die Menge Map(X,Y) versehen mit der KO-Topologie. Zeigen Sie:

- (a) Die Abbildung Map $(\{*\},Y)^{\text{ko}} \to Y, f \mapsto f(*)$ ist ein Homöomorphismus.
- (b) Ist X lokal-kompakt (d.h. jeder Punkt besitzt eine kompakte Umgebung), so ist die Auswertungsabbildung $\operatorname{Map}(X,Y)^{\operatorname{ko}} \times X \to Y, (f,x) \mapsto f(x)$ stetig.
- (c) Ist Y hausdorffsch, so ist auch $Map(X,Y)^{ko}$ hausdorffsch.