

Type 8631

TOP Control on/off

Operating Instructions

Bedienungsanleitung Manuel d'utilisation

We reserve the right to make technical changes without notice. Technische Änderungen vorbehalten. Sous réserve de modifications techniques.

© 2000 - 2011 Bürkert Werke GmbH

Operating Instructions 1106/12_EU-ML_00801872 / Original DE

Contents Operating Instructions TOP Control on/off Type 8631

GENERAL NOTES

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Symbols	6
Intended use	6
Safety notes	6
Notes for units with EEx-i approval	
Notes for use in the Ex-area	
Warranty conditions	
Transport, storage	
Disposal	3
ECHNICAL DATA	
Construction and function	10
Features	11
Operating conditions	12
Mechanical data	12
Pneumatic data	12
Electrical data without bus control	13
Electrical data with bus control (AS interface)	13
Electrical data with bus control (DeviceNet)	13
Electrical data with EEx-i approval	14

COMMISSIONING

Fluidic installation	16
Installation of the valve	16
Turning the TOP Control on/off	16
Fluidic connection of the TOP Control on/off	16
Opening the housing	16
Electrical installation	17
Connection terminals for cable bushings	17
24 V - version with inductive proximity switches (make contacts)	18
24 V - version with mechanical limit switches	18
230 V - version with mechanical limit switches	19
Electrical installation of the TOP Control on/off with EEx-i approval	19
Connection terminals for cable connections	19
Setting the initiators or limit switches (option)	20
AS INTERFACE	
Programming data	22
Status display	23
Electrical connection	24
4-pole M12-circular plug connector	24
Cable bushing with connection terminals	24
DEVICENET	
Explanation of terms	26
Technical data	27
Maximum line lengths	27
Overall line length	27
Drop line length	27
Safety positions on bus failure	27
Interfaces	28
Electrical connection	28
Bus connection (circular plug M12, 5-pole)	28
Termination for DeviceNet systems	29
Network topology of a DeviceNet system	29
Configuring the TOP Control on/off	30
DIP switches	30

ited: 16.06.2011
pri
freigegeben)
(released
R
Status
Σ
Version
\mathbb{A}
1000010085
MAN

Configuring of the process data	31
LED status display	32
Statuses of the MNS LED	33
Example of configuration	34
Installation of the EDS file	34
Setting upt the process map	34
SAFETY SETTINGS AND MAINTENANCE	
Safety positions following failure of electrical and pneumatic auxiliary power	38
Maintenance	38

Contact addresses / Kontaktadressen

Germany / Deutschland / Allemange

Bürkert Fluid Control System Sales Centre Chr.-Bürkert-Str. 13-17 D-74653 Ingelfingen Tel. + 49 (0) 7940 - 10 91 111 Fax + 49 (0) 7940 - 10 91 448 E-mail: info@de.buerkert.com

International

Contact addresses can be found on the internet at:

Die Kontaktadressen finden Sie im Internet unter:

Les adresses se trouvent sur internet sous :

www.burkert.com → Bürkert → Company → Locations

burkert

GENERAL NOTES

Symbols	6
Intended use	6
Safety notes	6
Notes for units with EEx-i approval	7
Notes for use in the Ex-area	7
Warranty conditions	7
Transport, storage	8
Disnosal	Ω

Symbols

The following symbols are used in these operating instructions:

→ Marks a work step that you must carry out.

ATTENTION!

Marks notes on whose non-observance your health or the functioning of the device will be endangered.

NOTE

Marks important additional information, tips and recommendations.

Intended use

In order for the device to function perfectly and have a long service life, you must observe the information given in these operating instructions and comply with the operating conditions and the permissible data for the TOP Control on/off, in addition to the information for the respective pneumatically actuated valve, which is specified in the "Technical Data" chapter of these instructions and in the valve instructions. Please note that the Top control on/off may not be used out-of-doors.

In view of the large number of possible applications and categories of use, you should check whether the Top control on/off is suitable for your specific application, and carry out tests where necessary.

Safety notes

- · Keep to standard engineering rules in planning the use of and operating the device!
- Installation and maintenance work are only allowed by specialist personnel using suitable tools!
- Observe the current regulations on accident prevention and safety during operation and maintenance of the device!
- Switch off the supply voltage in all cases before intervening in the system!
- Note that in systems under pressure, piping and valves may not be loosened!
- Take suitable precautions to prevent inadvertent operation or damage by unauthorized action!
- Make sure that after an interruption to the electrical or pneumatic supply, the process starts up again in a well-defined, controlled manner!
- On non-observance of these notes and unauthorized interference with the device, we will refuse all liability and the warranty on device and accessories will become void!

burkert

Notes for units with EEx-i approval

- Take suitable measures to avoid an electrostatic discharge from the plastic parts of the housing (see EN 100 015 1).
- No component should be connected to the inputs and outputs of the circuit board whose electrical data is outside the limits determined for intrinsically safe operation quoted in the data sheet of the positioner.
- Work out on the device with the housing open should not be carried in very damp or aggressive atmospheres. Take precautions to exclude unintentional mechanical damage to the circuit boards or their components. Limit the period during which the unit is opened to that which is absolutely necessary.

Notes for use in the Ex-area

Please comply with the following:

- In the case of installation and operation in areas that have a risk of explosion, the respective national regulations. In Germany, this is VDE 0165.
- When making electrical connections to the inherently safe circuit, the information given in the corresponding conformity certificates.
- Always follow the information contained in the ATEX approval.

Conformity

In accordance with the EC Declaration of conformity, Type 8631 is compliant with the EC Directives.

Standards

Conformity with the EC Directives is verified by the following standards: EN 60079-0

Warranty

ATTENTION!

The guarantee only covers faults in the TOP Control on/off series, and in the integrated pneumatically-driven valve. No liability will, however, be accepted for subsequent damage of any kind that may arise as a result of the failure or incorrect functioning of the device.

Transport, storage

ATTENTION!

Transport and store the appliance in its original packing only.

Disposal

ATTENTION!

When disponsing of the appliance, observe the national standards for refuse disposal.

burkert

TECHNICAL DATA

Construction and function	10
Features	11
Operating conditions	12
Mechanical data	12
Pneumatic data	12
Electrical data without bus control	13
Electrical data with bus control (AS interface)	13
Electrical data with bus control (DeviceNet)	13
Electrical data with EEx-i approval	14

Construction and function

The TOP Control on/off serves to drive pneumatically actuated process valves. It may be combined with various vbalve types from the Bürkert process valve range (see data sheets for types 2000, 2001, 2002, 2012, 2030, 2031, 2031K, 2652, 2655 and 2658).

TOP Control and process valve are connected by an adapter. This results in an integral system consisting of repeater, actuator and valve function.

Various electrical and pneumatic connection variants are available.

Figure: Construction of the TOP Control on/off with cover removed

Features

Versions

for single and double-acting solenoid valves

Control valves

Solenoid valve working on the rocker principle

- 1 x 3/2-way control valve with single-acting valve actuators
- 2 x 3/2-way control valve with double-acting valve actuators

TOP Control on/off with EEx-i approval:

Pilot valve - solenoid valve with EEx-i approval (PTB 01 ATEX 2173)

Electrical interfaces

Cable bushings with screw terminals

Multipole circular plug connector, 12-pole

With bus control (AS interface), the 4-pole M12 circular plug connectors standardized for this purpose or cable bushings with screw terminals are used.

TOP Control on/off with EEx-i approval:

Cable connector with screw terminals

Pneumatic interfaces

1/4" connectors in various threads (G, NPT, RC)

Housing

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

The housing of the TOP Control on/off is protected by a pressure relief valve from excessive internal pressure, e.g. resulting from leaks.

TOP Control on/off with EEx-i approval:

Housing cover secured against unauthorised opening with a self-tapping screw.

Options

Position repeater and display

24 V device:

Inductive proximity switches (initiators)

Position repeat via binary outputs (make contacts)

24 V. 110 V or 230 V device:

Mechanical limit switches

Position repeat via binary outputs (make or break contacts)

Adjustment of the switching points on the position repeat switches is done during assembly of the TOP Control on/off on the valve actuator.

TOP Control on/off with EEx-i approval:

Namur sensors with manufacturer's declaration

The sensors can be changed by the operator via adjusting screws.

Intelligent communication circuit

AS interface / DeviceNET

Automatic reduction of the holding current for the control valves.

Operating conditions

ATTENTION!

The TOP Control on/off is not suitable for outdoor use!

TOP Control on/off with EEx-i approval:

Note the Manufacturer's Declaration for proximity switches.

Operating temperature $-10 \dots + 50 \,^{\circ}\text{C}$ Protection type IP 65 to EN 60529

TOP Control on/off with EEx-i approval:

Type of "e" protection II 2 G EEx ia IIC T6

Mechanical data

Dimensions see data sheet

Housing material outer: PPE / PA, PSU; inner: PA 6

Sealing material outer: EPDM; inner: NBR

Pneumatic data

Control medium quality classes to DIN ISO 8573-1

Dust content class 5: max. particle size 40 µm, max. particle density

10 mg/m³

Water content class 3: max. pressure dew point - 20°C or min. 10

degrees below the lowest operating temperature

Oil content class 5: max. 25 mg/m³

Temperature range of

compressed air -10 ... +50°C
Pressure range 3 ... 7 bar

Variation of supply pressure

Air flow rate of control valve 100 l_N / min (for pressurizing and exhausting)

 $(Q_{Nn}$ -value to definition for pressure drop from 7 to 6 bar abs.)

Internal air consumption as

dimensioned 0.0 l_N/min

Connections 1/4" internal thread G / NPT / RC

Electrical data without bus control

Connections 2 x M16 cable bushings with screw terminals for

cable cross-sections 0,14 ... 1,5 mm²

Voltage supply 24 V DC ± 10 % residual ripple 10%

ATTENTION: Do not use industrial DC!

110 V AC / 230 V AC

Power consumption < 2 W

Electrical data with bus control (AS interface)

Connections M12 circular plug connectors or

M20 cable bushings with screw terminals for

cable cross-sections 0,14 ... 1,5 mm² (seal for AS interface flat

cable is enclosed)

Voltage supply 29.5 ... 31.6 V DC (to specification)

Max. current consumption 120 mA in normal operation \leq 80 mA after current reduction \leq 50 mA

Outputs

Max. switching capacity 1 W via AS interface

Watchdog function integral

Inputs

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Sensor supply via AS interface Sensor supply voltage 24 V \pm 10 %

Current loading capacity max. 60 mA, short-circuit proof

Switching level of 1 signal \geq 10 V Input current limited to 6.5 mA Input current for 0 signal \leq 1.5 mA

Electrical data with bus control (DeviceNet)

Connection M12 - Micro Style circular plug 5-pole

Voltage supply 11 ... 24 V Max. current consumption 125 mA

Outputs

Pick-up current 120 mA Holding current 80 mA

Inputs

"0" 0 ... 1.5 V "1" ≥ 8 V

Electrical data with EEx-i approval

Connections 2 x M16 cable connector with screw terminals for

cable cross-sections 0,14 ... 1,5 mm²

Sensor power supply see Manufacturer's Declaration form Fa. Pepperl & Fuchs

(siehe Anhang)

Valve power supply see Qualification Test Certificate PTB 01 ATEX 2173

(siehe Anhang)

Safety requirements

he maximum permissible voltages and the associated maximum permissible short-circuit currents for the corresponding gas group may be taken from Table A1 in the standard DIN EN 50020, 1994 Edition.

In order that the maximum permissible temperature at the solenoid coil of the valve installed is not exceeded, the following limits to the applied power for use in the corresponding temperature class must be observed:

Temperature class Max. permissible ambient temperature 1) [°C]		Max. permissible power [W]
	+50	0,4
Т6	+45	0,5
16	+40	0,7
	+35	0,8
	+50	0,8
T5	+45	1,0
	+40	1,1

¹⁾ Ambient temperature for compl. TopControl 8631 (temperature inside the device is higher by max. 5°C)

ATTENTION!

The control head must not be exposed directly to sunshine or strong light sources: this would cause additional warming!

Functional data

Resistance at 20°C (R₂₀) 510 ohm Minimum terminal voltage 11.7 V Minimum current 23 mA

The maximum voltage and current values are determined by the permissible electrical operating equipment.

burkert

COMMISSIONING

Fluidic installation	16
Installation of the valve	16
Turning the TOP Control on/off	
Fluidic connection of the TOP Control on/off	16
Opening the housing	16
Electrical installation	17
Connection terminals for cable bushings	17
24 V version with inductive proximity switches (make contacts)	18
24 V version with mechanical limit switches	18
230 V version with mechanical limit switches	19
Electrical installation of the TOP Control on/off with EEx-i approval	19
Connection terminals for cable connections	19
Setting the initiators or limit switches (option)	20

Fluidic installation

See the relevant data sheet for dimensions of TOP Control on/off and the variants of the complete device, consisting of TOP Control on/off, pneumatic actuator and valve.

Installation of the valve

For dimensions and threads, see data sheet for the process valve.

Turning the TOP Control on/off

If, after installation of the continuous valve, the LEDs of the TOP Control on/off are poorly visible or it is difficult to attach the cable or hoses, the TOP Control on/off may be rotated relative to the pneumatic actuator.

Procedure:

- → Disconnect the fluidic connection between TOP Control on/off and pneumatic actuator.
- → Loosen the grub screws (hex socket SW 3) recessed into the side of the housing.
- → Rotate the TOP Control on/off without lifting into the desired position.
- → Retighten the grub screws with moderate torque.
- → Remake the fluidic connection between TOP Control on/off and pneumatic actuator, using longer hoses if necessary.

Fluidic connection of the TOP Control on/off

- → Apply the supply pressure to connection 1 (3...7 bar, instrument air, free from oil, water and dust).
- → Attach an exhaust line or a silencer to connection 3.

ATTENTION!

No back pressure shall be built up as a result of the installations. This could be detrimental to the functioning of the device! Use a hose with sufficient cross-section!

- Exhaust connection
- double-acting pressurized at zero current single-acting not driven
- pressurized when pilot valve under current
- Pressure supply connection

Opening the housing

- → Remove any lead seals or fastenings present between cover and housing.
- → Turn the transparent cover of the TOP Control on/off slightly anticlockwise and lift it off.

Electrical installation

For making electrical contact to the TOP Control on/off, various connection concepts are available. Terminal allocation for cable bushings or plug connectors for bus control is explained in the following.

Connection terminals for cable bushings

- → Open the housing.
- → Connect the wires the terminals (see connection allocation).

The board with designation of the terminals and LEDs is shown in the following diagram.

NOTE

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Limit switches: may be used as make (terminals NO) or

break (terminals NC) contacts.

Control LEDs: light when respective limit switch is operated

mechanically, i.e. when the valve end position is reached.

24 V - version with inductive proximity switches (make contacts)

Terminal no.	Allocation	External connection
1	Valve actuation GND	2 ° 0/24 V DC ± 10 %
2	Valve actuation 0 V / 24 V	residual ripple 10 %
3	Initiator supply GND	
4	Common reference for initiators GND	9
5	not connected	\$2 _ 8
6	Binary output initiator 2 (NO)	Output 1 (0V/24V) S1 6 Output 2 (0V/24V)
7	not connected	4 GND
8	Binary output initiator 1 (NO)	3 GND
9	Initiator supply + 24 V	

24 V - version with mechanical limit switches

Terminal no.	Allocation	External connection	
1	Valve actuation GND	2 0	
2	Valve actuation 0 V / 24 V	0/24 V DC ± 10 % residual ripple 10 %	
3	Limit switch supply GND		
4	Common reference for limit switches GND	9 +24 V DC 7 NC1 24V/0V (max. 5 A)	
5	Output limit switch 2 (NC)	S2 8 NO1 0V/24V (max. 5 A)	
6	Output limit switch 2 (NO)	NC2 24V/0V (max. 5 A) NO2 0V/24V (max. 5 A)	
7	Output limit switch 1 (NC)	4 GND 3	
8	Output limit switch 1 (NO)	GND	
9	Limit switch supply + 24 V		

230 V - version with mechanical limit switches

Terminal no.	Allocation	External connection
1	Valve actuation N	2 o L1
2	Valve actuation L1	1 。 N
3	Limit switch supply	
4	Output common pole	9 L1
5	Output limit switch 2 (NC)	7 NC1 (max. 5 A)
6	Output limit switch 2 (NO)	NO1 (max. 5 A) NC2 (max. 5 A)
7	Output limit switch 1 (NC)	S1 6 NO2 (max. 5 A)
8	Output limit switch 1 (NO)	Output common pole
9	Limit switch supply	N N

Electrical installation of the TOP Control on/off with EEx-i approval

The electrical connection of the TOP Control on/off with EEx-i approval is made using the connection terminals.

Connection terminals for cable connections

→ Open the housing.

burkert

→ Connect the wire according to the Terminal Allocation Plan.

Terminal Allocation Plan

Terminal allocation - TOP Control on/off with EEx-i approval

Terminal no.	Connection	External circuitry	
2	Valve control +	2 0	Signal from barriers
1	Valve control -	1 0	see PTB 01 ATEX 2173
4	Proximity sensor 1+	4 O 8 V	(constitution to NAMILE)
3	Proximity sensor 1 -	3 O GND	(according to NAMUR recommendation) Please also note the Manufacturer's Declaration from Pepperl & Fuchs!
6	Proximity sensor 2+	6 O 8 V	
5	Proximity sensor 2 -	5 O GND	

Settings the initiators or limit switches (option)

ATTENTION!

Switch off the operating voltage before making this intervention!

- → Open the housing of the TOP Control on/off to adjust the initiatiors/proximity switches or limit switches.
- → Adjust the initiators with the setscrews.

Screw to adjust the lower proximity switch

Screw to adjust with the upper proximity switch

Sense

Turning clockwise: causes upward adjustment

Turning anticlockwise: causes downward adjustment

burkert

AS INTERFACE

Programming data	22
Status display	23
Electrical connection	24
4-pole M12 circular plug connector	24
Cable bushing with connection terminals	24

Programming data

	standard Device	Device for A/B-Slave addressing	
Certification:	Approval no. 32901 (to V.2.11)	Approval no. 47601 (to V.2.11)	
Programming data:			
E/A-configuration	D hex (1 output, 3 inputs)		
ID-Code	F hex (for allocation see below)	A hex (for allocation see below)	
ext. ID-Code 1	F hex	7 hex	
ext. ID-Code 2	F hex	E hex	
Profil	S-D.F.F	S-D.A.E	

Data bit	D3	D2	D1	D0
Signal	Input initiator 1	Input initiator 2	Input diagnosis coil current	Output control valve
Value 0	Position not reached	Position not reached	ok	Control valve off
Value 1	Position reached	Position reached	Error (interruption)	Control valve on

Parameter bits are not occupied

Initiator 2 / Data bit D2

Initiator 1 / Data bit D3

Pilot valve / Data bit D0

Status display

burkert

LED 1 bus (green)	LED 2 bus (red)	Status signalled
off	off POWER OFF	
off	on	No data traffic (watchdog expired with slave address not 0
on	off	ok
flashes	on	Slave address 0
off	flashes	Overload of sensor supply

Connections and LED configuration

Electrical connection

4-pole M12 circular plug connector

Cable bushing with screw terminals

- → Open the housing.
- →If needed, insert the enclosed seal for AS interface flat cable into the cable bushing.
- → Connect the wires to the terminals as in illustration under *Status display*.

burkert

DEVICENET

Explanation of terms	26
Technical data	27
Maximum line lengths	27
Overall line length	27
Drop line length	27
Safety positions on bus failure	27
Interfaces	28
Electrical connection	28
Bus connection (circular plug M12, 5-pole)	28
Termination for DeviceNet systems	29
Network topology of a DeviceNet system	29
Configuring the TOP Control on/off	30
DIP switches	
Configuration of the process data	31
LED status display	
Statuses of the MNS LED	33
Example of configuration	
Installation of the EDS file	
Setting up the process map	

Explanation of terms

DeviceNet

- DeviceNet is a field bus system based on the CAN (Controller Area Network) protocol. It enables networking of actuators and sensors (slaves) with higher-level control systems (masters).
- In DeviceNet TOP Control on/off is a slave device according to the Predefined Master/Slave Connection Set specified in the DeviceNet specification. The following I/O connection variants are supported: Polled I/O, Bit Strobed I/O and Change of State (COS).
- With DeviceNet one distinguishes between cyclic or event-driven transmitted process messages of high priority (I/O messages) and acyclic management messages of low priority (Explicit Messages).
- The protocol sequence corresponds to DeviceNet Specification Release 2.0.

Technical data

EDS file BUE8631.EDS

Icons BUE8631.ICO

Network data rate 125 kBit/s, 250 kBit/s, 500 kBit/s (set via DIP switches);

Factory setting: 125 kBit/s

Address 0 ... 63 (set via DIP switches);

Factory setting: 63

Process data 2 static input assemblies

(Input: from TOP Control on/off to DeviceNet-Master/Scanner)

1 static output assembly

Maximum line lengths

Maximum overall line length (sum of all main and drop lines) of a network as a function of the network data rate:

Overall line length to DeviceNet specification

Network data	Maximum overall line length ¹⁾		
rate	Thick cable	Thin cable	
125 kBaud	500 m		
250 kBaud	250 m	100 m for all network data rates	
500 kBaud	100 m		

¹⁾ To DeviceNet specification. On use of another cable type, lower maximum values apply (see DeviceNet specification).

Drop line length (Drop Lines)

Network data	Length of drop lines Maximum overall length of drop lines in network		
rate			
125 kBaud		156 m	
250 kBaud	6 m for all network data rates	78 m	
500 kBaud		39 m	

Safety positions on bus failure

On bus failure, the position corresponding to set point "0" is taken up.

Interfaces

Electrical connection

The bus line is a 4-wire cable + screen which must comply with the DeviceNet specification. Over ist, both the information (data) and energy are transmitted (voltage supply for low-power actuators and sensors).

Bus connection (circular plug M12, 5-pole)

On the TOP Control on/off there is a 5-pole micro-style circular plug connector M12. The configuration conforms to the DeviceNet specification.

Pin	Signal	Colour
1	Screen	n.c.
2	V+	red
3	V-	black
4	CAN_H	white
5	CAN_L	blue

Plug, looking at the pins from the front (not at the solder connections!)

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Termination for DeviceNet systems

On installation of a DeviceNet system, care must be taken to terminate the data lines correctly. The termination avoids disturbances by signal reflections on the data lines. For this purpose, the trunk line must be terminated at both ends, as shown, by resistors of 120 Ω and 1/4 W power dissipation.

Network topology of a DeviceNet system

Line with a trunk line and several drop lines. Trunk and drop lines are made of identical material (see sketch).

Configuring the TOP Control on/off

DIP switches

8 DIP switches are present for configuration:

- DIP switches 1 to 6 DeviceNet address.
- DIP switches 7 and 8 network data rate.

Settings of the DeviceNet address

MAC ID - Medium Access Control Identifier:

[DIP 1=off=0 / DIP 1=on=1 / MAC ID=DIP 1*20+DIP 2*21+...+DIP 6*25]

DIP 1 [2º=1]	DIP 2 [2 ¹ =2]	DIP 3 [2 ² =4]	DIP 4 [2³=8]	DIP 5 [2⁴=16]	DIP 6 [2 ⁵ =32]	MAC ID
off	off	off	off	off	off	0
on	off	off	off	off	off	1
off	on	off	off	off	off	2
				•••		
off	on	on	on	on	on	62
on	on	on	on	on	on	63

Setting the network data rate

Adaptation to the data rate of the network.

DIP 7	DIP 8	Network data rate
off	off	125 kBaud
on	off	250 kBaud
off	on	500 kBaud
on	on	not allowed

ATTENTION!

Changes in the settings by operating the DIP switches become effective only after a restart.

A restart can be performed by disconnecting and reconnecting the TOP Control on/off to the mains or by sending a corresponding Reset message. Another possibility is the switching off and on of the network power supply.

Configuration of the process data

For the transfer of process data via an I/O connection, 3 static input and 3 static output assemblies are available for selection. In these assemblies, selected attributes are collected in an object in order to be transferred together as process data via an I/O connection.

Access can be made cyclically in the connection variants "Polled I/O" and "Bitstrobed I/O" with "Change of State" when input values change, or acyclically via Explicit Messages.

The access path for acyclically access is:

class 4 instance 1 attribute 3

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

With the service *Get_Attribute_Single*, access can be made reading acyclically and with the service *Set_Attribute_Single*, access can be made writing acyclically to the starting data.

1 data byte for inputs (sensors or initiators):

Bit	Sensor	Value assigned
Bit 0	S1 (initiator 1)	0 initiator 1 OFF 1 initiator 1 ON
Bit 1	S2 (initiator 2)	0 initiator OFF 1 initiator ON
Bit 2	physically unusable	
Bit 3		
	unused	0 always
Bit 7		

1 data byte for outputs (actuators or valves):

Bit	Sensor	Value assigned
Bit 0	V1 (valve 1)	0 valve 1 OFF 1 valve 1 ON
Bit 1	A2 output 2 physically unusable	
Bit 2	A3 output 3 physically unusable	
Bit 3		
	unused	0 always
Bit 7		

LED status display

2 LEDs are provided for status display:

Name of LED	Type/colour	Function
POWER	single colour green	LED lights: device has power
MNS	two-colour red/green	Corresponds to MNS LED acc. to DeviceNet specification (MNS-Module Network Status)

Statuses of the MNS LED

After application of voltage (connection of the network line), the following functional test of the two-colour MNS LED is performed:

- LED lights briefly green (ca. 1/4 s).
- LED lights briefly red (ca. 1/4 s).
- LED off.

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

After completion of the functional test, the device statuses described in the following table can be displayed by the MNS LED.

LED status	Device status	Explanation / Problem elimination
OFF	No voltage/not online	- Device not supplied with voltage - Device has not yet ended Dublicate MAC-ID test (last ca. 2 s). > Connect further devices if device is sole net participant. > Exchange device.
Green	Online, connection to Master exists	- Normal operating status with connection made to Master.
Green flashing	Online, no connection to Master	- Normal operating status without connection made to Master.
Red flashing Connection time-out		- One or more I/O connections are in time-out status. > Make new connection to Master to assure that I/O data are transmitted cyclically.
Red Critical error		- Another device with the same MAC-IDin network > Change MAC-ID and restart - BUS OFF because of communication problems. > Check network data rate; exchange device if unsuccessful.

Example of configuration

This example describes the principle of the procedure for integrating the device in the network management tool *RSNetWorx for DeviceNet* (rev. 2.11.51.0) and the setting up of the process map of a DeviceNet Master/Scanner.

Installation of the EDS file

Installation of the EDS file supplied on the diskette (bue8631.eds) is done with the aid of the tool *EDS Installation Wizard* belonging to *RSNetWorx*. During the installation procedure, the icon also supplied on the diskette can be allocated (if this is not done automatically).

Setting up the process map

Setting up the scanlist

First the *Scanlist* of the DeviceNet Master/Scanner is set up. For this purpose, the devices listed on the left-hand part of the associated window are stored in the Scanlist on the right-hand side of the window. Then for each device stored in the Scanlist, the desired I/O connection variant can be selected - presetting is *Polled*.

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

Setting up the process map (mapping)

Using the function *Automap*, the input and output data of the devices in the Scanlist can be assigned to the process map of the DeviceNet Master/Scanner.

In our example, the allocation is as shown in the illustration. For example, the input process values of the TOP Control on/off with the address 4 are assigned to the internal addresses of the scanner as follows:

Status sensor (repeater) S1: I:1.2.0 (Bit 0 of I:1.2)
Status sensor (repeater) S2: I:1.2.1 (Bit 1 of I:1.2)
Status sensor (repeater) S3: I:1.2.2 (Bit 2 of I:1.2)

Thus if the status of sensor S1 of the TOP Control on/off with the address 4 is to be read out from a control program, this is done via an access to I:1.2.0.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

SAFETY SETTINGS AND MAINTENANCE

Safety position:	s following	failure of	electrical o	r pneumatic	auxiliary	power	38
Maintenance							38

Safety positions following failure of electrical or pneumatic auxiliary power

Type of driving	Designation	Safety settings following failure or auxillary power supply		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		electrical	pneumatic	
up down	single-acting WW A	down	down	
down	single-acting WW B	ир	ир	
ф down	double-acting WW I	down / up (depending on connection of control lines)	not defined	

Maintenance

The TOP Control on/off is maintenance-free if operated according to hte directions given in these instructions.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Inhaltsverzeichnis der Betriebsanleitung TOP Control on/off Typ 8631

ALLGEMEINE HINWEISE

Darstellungsmittel	44
Bestimmungsgemäße Verwendung	44
Sicherheitshinweise	44
Hinweise für Geräte mit EEx-i-Zulassung	45
Hinweise zum Einsatz im Ex-Bereich	45
Transport und Lagerung	46
Entsorgung	46
ECHNISCHE DATEN	
Aufbau und Funktion	48
Merkmale	49
Betriebsbedingungen	50
Mechanische Daten	50
Pneumatische Daten	50
Elektrische Daten ohne Busansteuerung	51
Elektrische Daten mit Busansteuerung (AS-Interface)	51
Elektrische Daten mit Busansteuerung (DeviceNet)	51
Elektrische Daten mit EEx-i-Zulassung	52

INBETRIEBNAHME

	Fluidische Installation	54
	Installation des Ventils	54
	Drehen des TOP Control on/off	54
	Fluidischer Anschluss des TOP Control on/off	54
	Öffnen des Gehäuses	54
	Elektrische Installation	55
	Anschlussklemmen für Kabelverschraubungen	55
	24 V - Variante mit induktiven Näherungsschaltern (als Schließer)	56
	24 V - Variante mit mechanischen Endschaltern	56
	230 V - Variante mit mechanischen Endschaltern	57
	Elektrische Installation des TOP Control on/off mit EEx-i-Zulassung	. 57
	Anschlussklemmen für Kabelverschraubungen	57
	Einstellen der Initiatoren bzw. Endschalter (Option)	58
_	•	
A	S-INTERFACE	
	Programmierdaten	60
	Statusanzeige	61
	Elektrischer Anschluss	
	4poliger M12-Rund-Steckverbinder	
	Kabelverschraubung mit Anschlussklemmen	62
D	EVICENET	
ט		0.4
	Begriffsklärung	
	Technische Daten	
	Maximale Leitungslängen	
	Gesamtleitungslänge	
	Stichleitungslänge	
	Sicherheitseinstellung bei Ausfall des Busses	
	Schnittstellen	
	Elektrischer Anschluss	
	Bus-Anschluss (Rundstecker M12, 5polig)	
	Abschlussbeschaltung für DeviceNet – Systeme	
	Netztopologie eines DeviceNet-Systems	
	Konfigurieren des TOP Control on/off	
	DIP-Schalter	68

MAN 1000010085 ML Version: M Status: RL (released lifreigegeben) printed: 16.06.2011

Konfiguration der Prozessdaten	69
LED-Zustandsanzeige	70
Zustände der MNS-LED	71
Konfigurierbeispiel	72
Installation der EDS-Datei	72
Einrichten des Prozessabbildes	72
SICHERHEITSSTELLUNGEN UND WARTUNG	
Sicherheitsstellungen nach Ausfall der elektrischen bzw. pneumatischen Hilfsenergie	76
Wartung	76

Contact addresses / Kontaktadressen

Germany / Deutschland / Allemange

Bürkert Fluid Control System Sales Centre Chr.-Bürkert-Str. 13-17 D-74653 Ingelfingen Tel. + 49 (0) 7940 - 10 91 111 Fax + 49 (0) 7940 - 10 91 448

E-mail: info@de.buerkert.com

International

Contact addresses can be found on the internet at:

Die Kontaktadressen finden Sie im Internet unter:

Les adresses se trouvent sur internet sous :

<u>www.burkert.com</u> → Bürkert → Company → Locations

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

ALLGEMEINE HINWEISE

Darstellungsmittel	44
Bestimmungsgemäße Verwendung	44
Sicherheitshinweise	44
Hinweise für Geräte mit EEx-i-Zulassung	45
Hinweise zum Einsatz im Ex-Bereich	45
Transport und Lagerung	46
Entsorgung	46

Darstellungsmittel

In dieser Betriebsanleitung werden folgende Darstellungsmittel verwendet:

→ Markiert einen Arbeitsschritt, den Sie ausführen müssen.

ACHTUNG!

Kennzeichnet Hinweise, bei deren Nichtbeachtung Ihre Gesundheit oder die Funktionsfähigkeit des Gerätes gefährdet ist.

HINWEIS

Kennzeichnet wichtige Zusatzinformationen, Tipps und Empfehlungen.

Bestimmungsgemäße Verwendung

Beachten Sie die Hinweise dieser Betriebsanleitung sowie die Einsatzbedingungen und zulässigen Daten, für den TOP Control on/off, sowie für das jeweilige pneumatisch betätigte Ventil, die im Kapitel "Technische Daten" dieser Anleitung und in der Ventilanleitung spezifiziert sind, damit das Gerät einwandfrei funktioniert und lange einsatzfähig bleibt.

Beachten Sie, dass der Top Control on/off nicht im Außenbereich eingesetzt werden darf.

Prüfen Sie, angesichts der Vielzahl möglicher Einsatz- und Verwendungsfälle, ob der Top Control on/off für den konkreten Einsatzfall geeignet ist und testen Sie dies falls erforderlich aus.

Allgemeine Sicherheitshinweise

- Halten Sie sich bei der Einsatzplanung und dem Betrieb des Gerätes an die allgemeinen Regeln der Technik!
- Installation und Wartungsarbeiten dürfen nur durch Fachpersonal und mit geeignetem Werkzeug erfolgen!
- Beachten Sie die geltenden Unfallverhütungs- und Sicherheitsbestimmungen während des Betriebes und der Wartung des Gerätes!
- Schalten Sie vor Eingriffen in das System in jedem Fall die Spannung ab!
- Beachten Sie, dass in Systemen, die unter Druck stehen, Leitungen und Ventile nicht gelöst werden dürfen!
- Treffen Sie geeignete Maßnahmen, um unbeabsichtigtes Betätigen oder unzulässige Beeinträchtigung auszuschließen!
- Gewährleisten Sie nach einer Unterbrechung der elektrischen oder pneumatischen Versorgung einen definierten und kontrollierten Wiederanlauf des Prozesses!
- Bei Nichtbeachtung dieser Hinweise und unzulässigen Eingriffen in das Gerät entfällt jegliche Haftung unsererseits, ebenso erlischt die Garantie auf Geräte und Zubehörteile!

Hinweise für Geräte mit EEx-i-Zulassung

- Ergreifen Sie geeignete Maßnahmen, die eine elektrostatische Aufladung von Kunststoff-Gehäuseteilen verhindern (siehe EN 100 015 1).
- An die Ein- und Ausgänge der Platinen dürfen keine Komponenten angeschlossen werden, deren elektrische Daten außerhalb der für den eigensicheren Betrieb ermittelten und im Datenblatt des Stellungsreglers angegebenen Grenzen liegen.
- Eingriffe in das Gerät bei offenem Gehäuse dürfen nicht in sehr feuchter oder aggressiver Atmosphäre vorgenommen werden. Treffen Sie Vorkehrungen, die unbeabsichtigte mechanische Beschädigungen der Platinen oder ihrer Bauelemente ausschließen. Beschränken Sie die Zeitdauer der Öffnung des Gehäuses auf das unbedingt notwendige Maß.

Hinweise zum Einsatz im Ex-Bereich

Beachten Sie:

- für Installation und Betrieb in explosionsgefährdeten Bereichen die jeweiligen nationalen Vorschriften. In Deutschland ist dies die VDE 0165.
- beim elektrischen Anschluss der eigensicheren Stromkreise die Angaben der jeweiligen Konformitätsbescheinigungen.
- unbedingt die in der ATEX-Zulassung enthaltenen Angaben.

Konformität

Der Typ 8631 ist konform zu den EG-Richtlinien entsprechend der EG-Konformitätserklärung.

Normen

Durch folgende Normen wird die Konformität mit den EG-Richtlinien erfüllt: EN 60079-0

Gewährleistung

ACHTUNG!

Die Gewährleistung erstreckt sich nur auf die Fehlerfreiheit des TOP Control on/off. Es wird jedoch keine Haftung übernommen für Folgeschäden jeglicher Art, die durch Ausfall oder Fehlfunktion des Gerätes entstehen könnten.

Transport und Lagerung

ACHTUNG!

Transportieren und lagern Sie das Gerät nur in der Originalverpackung.

Entsorung

ACHTUNG!

Beachten Sie bei der Entsorgung des Gerätes die nationalen Abfallbeseitigungsvorschriften.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

TECHNISCHE DATEN

Aufbau und Funktion	48
Merkmale	49
Betriebsbedingungen	42
Mechanische Daten	50
Pneumatische Daten	50
Elektrische Daten ohne Busansteuerung	51
Elektrische Daten mit Busansteuerung (AS-Interface)	51
Elektrische Daten mit Busansteuerung (DeviceNet)	51
Elektrische Daten mit EEx-i-Zulassung	52

Aufbau und Funktion

Der TOP Control on/off dient zur Ansteuerung pneumatisch betätigter Prozessventile. Er ist mit verschiedenen Ventiltypen aus dem Bürkert-Prozessventil-Programm kombinierbar (s. Datenblätter der Typen 2000, 2001, 2002, 2012, 2030, 2031, 2031K, 2652, 2655 und 2658).

TOP Control und Prozessventil sind durch einen Adapter miteinander verbunden. So entsteht ein integriertes System aus Rückmeldung, Ansteuerung und Ventilfunktion.

Es sind verschiedene elektrische und pneumatische Anschlussvarianten verfügbar.

Bild: Aufbau des TOP Control on/off - Deckel abgenommen

Merkmale

Ausführungen

für einfach- oder doppeltwirkende Ventilantriebe

Steuerventile

nach dem Wippenprinzip arbeitende Magnetventile

1 x 3/2-Wege - Steuerventil bei einfachwirkenden Ventilantrieben

2 x 3/2-Wege - Steuerventil bei doppeltwirkenden Ventilantrieben

TOP Control on/off mit EEx-i-Zulassung:

Pilotventil - Magnetventil mit EEx-i Zulassung (PTB 01 ATEX 2173)

Elektrische Schnittstellen

Kabelverschraubung mit Schraubklemmen

Multipol-Rundsteckverbinder, 12polia

bei Busansteuerung (AS-Interface):

genormte 4polige M12-Rund-Steckverbinder oder Kabelverschraubung mit Schraubklemmen

TOP Control on/off mit EEx-i-Zulassung:

Kabelverschraubung mit Schraubklemmen

Pneumatische Schnittstellen

1/4"-Anschlüsse in verschiedenen Gewindeformen (G, NPT, RC)

Gehäuse

Schutz des Gehäuses des TOP Control on/off vor zu hohem Innendruck, z.B. infolge von Leckagen, durch ein Druckbegrenzungsventil

TOP Control on/off mit EEx-i-Zulassung:

Sicherung des Gehäusedeckels gegen unbefugtes Öffnen durch Schneidschraube

Optionen

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

Stellungsrückmeldung und -anzeige

24 V-Gerät:

induktive Näherungsschalter (Initiatoren)

Stellungsrückmeldung über binäre Ausgänge (als Schließer arbeitend)

24 V-, 110 V- bzw. 230 V-Gerät:

mechanische Endschalter

Stellungsrückmeldung über binäre Ausgänge (Öffner oder Schließer)

Die Einstellung der Schaltpunkte für die Schalter zur Stellungsrückmeldung geschieht im Zuge der TOP Control on/off - Montage auf dem Ventilantrieb.

TOP Control on/off mit EEx-i-Zulassung:

Namursensoren mit Herstellererklärung

Die Sensoren sind über Stellschrauben vom Betreiber veränderbar.

Intelligente Kommunikationsschaltung

AS-Interface / DeviceNET

automatische Absenkung des Haltestroms für die Steuerventile

Betriebsbedingungen

ACHTUNG!

Der Top Control on/off ist nicht für den Einsatz im Außenbereich geeignet!

TOP Control on/off mit EEx-i-Zulassung:

Beachten Sie die Herstellererklärung für Näherungsschalter.

Betriebstemperatur -10 ... + 50 °C Schutzart IP 65 nach EN 60529

TOP Control on/off mit EEx-i-Zulassung:

Zündschutzart II 2 G EEx ia IIC T6

Mechanische Daten

Maße siehe Datenblatt

Gehäusematerial außen: PPE / PA, PSU; innen: PA 6

Dichtungsmaterial außen: EPDM; innen: NBR

Pneumatische Daten

Steuermedium Qualitätsklassen nach DIN ISO 8573-1

Staubgehalt Klasse 5: max. Teilchengröße 40 µm, max. Teilchendichte 10

mg/m³

Wassergehalt Klasse 3: max. Drucktaupunkt - 20°C oder min. 10 Grad unter-

halb der niedrigsten Betriebstemperatur

Ölgehalt Klasse 5: max. 25 mg/m³

Temperaturbereich

der Druckluft -10 ... +50°C

Druckbereich 3 ... 7 bar

Schwankung des

Versorgungsdrucks -

Luftleistung Steuerventil 100 l_N / min (für Belüftung und Entlüftung)

(Q_{Nn} - Wert nach Definition bei Druckabfall von 7 auf 6 bar absolut)

Eigenluftverbrauch im

ausgeregelten Zustand 0,0 l_N/min

Anschlüsse 1/4" - Innengewinde G / NPT / RC

Elektrische Daten ohne Busansteuerung

Anschlüsse 2 x M16 Kabelverschraubungen mit Schraubklemmen für

Leitungsquerschnitte 0,14 ... 1,5 mm²

Spannungsversorgung 24 V DC ± 10 % - Restwelligkeit 10%

Achtung: Keine technische Gleichspannung verwenden!

110 V AC / 230 V AC

Leistungsaufnahme < 2 W

Elektrische Daten mit Busansteuerung (AS-Interface)

Anschlüsse M12 - Rundsteckverbinder oder

M20 Kabelverschraubung mit Schraubklemmen für

Leistungsquerschnitte 0,14 ... 1,5 mm² (Dichtung für AS-Interface-

Flachkabel liegt bei)

Spannungsversorgung 29,5 ... 31,6 V DC (gemäß Spezifikation)

max. Stromaufnahme 120 mA

Stromaufnahme

im Normalbetrieb \leq 80 mA nach Stromabsenkung \leq 50 mA

Ausgänge

max. Schaltleistung 1 W über AS-Interface

Watchdogfunktion integriert

Eingänge

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

Sensorversorgung über AS-Interface

Sensorversorgungsspannung 24 V ± 10 %

Strombelastbarkeit max. 60 mA, kurzschlussfest

Schaltpegel 1-Signal \geq 10 V Eingangsstrom begrenzt auf 6,5 mA Eingangsstrom 0-Signal \leq 1,5 mA

Elektrische Daten mit Busansteuerung (DeviceNet)

Anschluss M12 - Micro Style - Rundstecker 5polig

Spannungsversorgung 11 ... 24 V max. Stromaufnahme 125 mA

Ausgang

Anzugsstrom 120 mA Haltestrom 80 mA

Eingänge

"0" 0 ... 1,5 V "1" ≥ 8 V

Elektrische Daten mit EEx-i-Zulassung

Anschlüsse 2 x M16 Kabelverschraubungen mit Schraubklemmen für

Leitungsquerschnitte 0,14 ... 1,5 mm²

Versorgung Sensor: siehe Herstellererklärung der Fa. Pepperl & Fuchs (siehe Anhang)

Versorgung Ventil: siehe EG-Baumusterprüfbescheinigung PTB 01 ATEX 2173

(siehe Anhang)

Sicherheitstechnische Daten:

Die maximal zulässigen Spannungen und die dazugehörigen maximal zulässigen Kurzschlußströme können für die entsprechende Gasgruppe der Tabelle A1 in der Norm DIN EN 50020, Ausgabe 1994 entnommen werden.

Damit die max. zulässige Temperatur an der Magnetspule des eingebauten Ventils nicht überschritten wird, sind für den Einsatz in der entspr. Temperaturklasse folgende Grenzwerte für die angelegte Leistung einzuhalten:

Temp Klasse	Max. zul. Umgebungs- temperatur ¹) [°C]	Max. zul. Leistung [W]
	+50	0,4
Т6	+45	0,5
16	+40	0,7
	+35	0,8
	+50	0,8
T5	+45	1,0
	+40	1,1

¹⁾ Umgebungstemperatur für kompl. TopControl 8631 (Temperatur im Inneren des Gerätes ist um max. 5°C höher)

ACHTUNG!

Der Steuerkopf darf nicht direkter Sonneneinstrahlung oder starken Lichtquellen ausgesetzt sein, da sonst eine zusätzliche Erwärmung auftritt!

Funktionstechnische Daten:

Widerstand bei 20°C (R₂₀): 510 Ohm Mindestklemmenspannung: 11,7 V Mindeststrom: 23 mA

Die maximalen Spannungs- und Stromwerte werden durch die zulässigen elektrischen Betriebsmittel vorgegeben.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

INBETRIEBNAHME

Fluidische Installation	54
Installation des Ventils	54
Drehen des TOP Control on/off	54
Fluidischer Anschluss des TOP Control on/off	54
Öffnen des Gehäuses	54
Elektrische Installation	55
Anschlussklemmen für Kabelverschraubungen	55
24 V - Variante mit induktiven Näherungsschaltern (als Schließer)	56
24 V - Variante mit mechanischen Endschaltern	56
230 V - Variante mit mechanischen Endschaltern	57
Elektrische Installation des TOP Control on/off mit EEx-i-Zulassung	57
Anschlussklemmen für Kabelverschraubungen	57
Einstellen der Initiatoren bzw. Endschalter (Option)	58

Fluidische Installation

Die Abmessungen des TOP Control on/off und der verschiedenen Komplettgerätevarianten, bestehend aus TOP Control on/off, pneumatischem Antrieb und Ventil, entnehmen Sie den jeweiligen Datenblättern.

Installation des Ventils

Abmessungen und Gewindearten entnehmen Sie dem Datenblatt des Prozessventils.

Drehen des TOP Control on/off

Falls nach Einbau des Stetigventils die LEDs des TOP Control on/off schlecht einsehbar sind oder die Anschlusskabel bzw. Schläuche schlecht montiert werden können, verdrehen Sie den TOP Control on/off gegen den pneumatischen Antrieb.

Gehen Sie dabei wie folgt vor:

- → Lösen Sie die fluidische Verbindung zwischen dem TOP Control on/off und dem pneumatischen Antrieb.
- → Lösen Sie die seitlich im Gehäuse versenkte Madenschraube (Innensechskant SW3).
- → Drehen Sie den TOP Control on/off **ohne Anheben** in die gewünschte Stellung.
- → Ziehen Sie die Madenschraube mit mäßigem Drehmoment wieder an.
- → Stellen Sie die fluidischen Verbindungen zwischen dem TOP Control on/off und dem pneumatischen Antrieb wieder her. Verwenden Sie bei Bedarf längere Schläuche.

Fluidischer Anschluss des TOP Control on/off

- → Legen Sie den Versorgungsdruck an den Druckanschluss 1 (3 ... 7 bar; Instrumentenluft, öl-, wasserund staubfrei).
- → Montieren Sie eine Abluftleitung oder einen Schalldämpfer an den Abluftanschluss 3.

ACHTUNG!

Durch die Installationen darf sich kein Rückdruck aufbauen, da sonst die Funktion des Geräts beeinträchtigt werden könnte! Achten Sie auf einen Schlauch mit genügendem Querschnitt!

Abluftanschluss

doppeltwirkend stromlos druckbeaufschlagt einfachwirkend nicht angesteuert

druckbeaufschlagt, wenn Vorsteuerventil bestromt

Versorgungsdruckanschluss

Öffnen des Gehäuses

- → Entfernen Sie zunächst evtl. vorhandene Verplombungen oder Verschraubungen zwischen Deckel und Gehäuse.
- → Heben Sie den Klarsichtdeckel des TOP Control on/off nach einer kurzen Linksdrehung ab.

Elektrische Installation

Für die elektrische Kontaktierung des TOP Control on/off stehen verschiedene Anschlusskonzepte zur Auswahl. Die Belegung der Anschlussklemmen für Kabelverschraubungen, bzw. der Steckverbinder für Busansteuerung wird im Folgenden erläutert.

Anschlussklemmen für Kabelverschraubungen

- → Öffnen Sie das Gehäuse.
- → Klemmen Sie die Adern an (s. Anschlussbelegung).

Die Platine mit Bezeichnung der Schraubklemmen und der Leuchtdioden ist im folgenden Bild dargestellt.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

HINWEIS

Endschalter: wahlweise als Schließer (Klemmen NO) oder

als Öffner (Klemmen NC) verwendbar.

Kontroll-LEDs: leuchten, wenn der jeweilige Endschalter mechanisch

betätigt ist, d. h. wenn die Ventilendstellung erreicht ist.

24 V - Variante mit induktiven Näherungsschaltern (als Schließer)

Klemme Nr.	Belegung	äußere Beschaltung
1	Ventilansteuerung GND	2 o 0/24 V DC ± 10 %
2	Ventilansteuerung 0 V / 24 V	Restwelligkeit 10 %
3	Versorgung Initiatoren GND	
4	gemeinsamer Bezug für Initatoren GND	9 +24 V DC
5	nicht belegt	S2 8 Ausgang 1 (0V/24V) S1 6
6	binärer Ausgang Initiator 2 (NO)	Ausgang 2 (0V/24V) 4 GND
7	nicht belegt	3 GND
8	binärer Ausgang Initiator 1 (NO)	
9	Versorgung Initiatoren + 24 V	

24 V - Variante mit mechanischen Endschaltern

Klemme Nr.	Belegung	äußere Beschaltung
1	Ventilansteuerung GND	2 •
2	Ventilansteuerung 0 V / 24 V	0/24 V DC ± 10 % Restwelligkeit 10 %
3	Versorgung Endschalter GND	
4	gemeinsamer Bezug für Endschalter GND	+24 V DC 7 NC1 24V/0V (max. 5 A)
5	Ausgang Endschalter 2 (NC)	NO1 0V/24V (max. 5 A) 5 NC2 24V/0V (max. 5 A)
6	Ausgang Endschalter 2 (NO)	NO2 0V/24V (max. 5 A) 4 GND
7	Ausgang Endschalter 1 (NC)	3 GND
8	Ausgang Endschalter 1 (NO)	
9	Versorgung Endschalter + 24 V	

230 V - Variante mit mechanischen Endschaltern

Klemme Nr.	Belegung	äußere Beschaltung
1	Ventilansteuerung N	2 o L1
2	Ventilansteuerung L1	1 。 N
3	Versorgung Endschalter	9
4	Ausgang gemeinsamer Pol	L1 7 NC1 (max. 5 A)
5	Ausgang Endschalter 2 (NC)	S2
6	Ausgang Endschalter 2 (NO)	NC2 (max. 5 A) NO2 (max. 5 A)
7	Ausgang Endschalter 1 (NC)	4 Ausgang gem. Pol
8	Ausgang Endschalter 1 (NO)	N N
9	Versorgung Endschalter	

Elektrische Installation des TOP Control on/off mit EEx-i-Zulassung

Die elektrische Kontaktierung des TOP Control on/off mit EEx-i-Zulassung erfolgt über die Anschluss-klemmen.

Anschlussklemmen für Kabelverschraubungen

→ Öffnen Sie das Gehäuse.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

→ Klemmen Sie die Adern laut Klemmenbelegungsplan an.

Klemmenbelegungsplan

Klemmenbelegung - TOP Control on/off mit EEx-i-Zulassung

Klemme Nr.	Belegung	äußere Beschaltung		
2	Ventilansteuerung +	2 0	Signal von Barriere	
1	Ventilansteuerung -	10	siehe PTB 01 ATEX 2173	
4	Näherungsschalter 1+	4 O		
3	Näherungsschalter 1 -	3 O GND	(nach NAMUR-Empfehlung) Beachten Sie auch die Herstellererklärung der Fa. Pepperl & Fuchs!	
6	Näherungsschalte 2+	6 O		
5	Näherungsschalter 2 -	5 O GND		

Einstellen der Initiatoren bzw. Endschalter (Option)

ACHTUNG!

Schalten Sie vor diesem Eingriff die Betriebsspannung ab!

- → Öffnen Sie das Gehäuse des TOP Control on/off, um die Initiatoren / Näherungsschalter bzw. die Endschalter einzustellen.
- → Stellen Sie die Initiatoren über die Stellschrauben ein.

Schraube zum Verteilen des unteren Näherungsschalters

Schraube zum Verteilen des oberen Näherungsschalters

Bedeutung

Drehung nach rechts: Verstellen nach oben

Drehung nach links: Verstellen nach unten

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

AS-INTERFACE

Programmierdaten	60
Statusanzeige	61
Elektrischer Anschluss	62
4poliger M12-Rund-Steckverbinder	62
Kahelverschraubung mit Anschlussklemmen	62

Programmierdaten

	Standard Gerät	Gerät für A/B-Slave Adressierung		
Zertifizierung:	Zulassungs-Nr. 32901 (nach V.2.11)	Zulassungs-Nr. 47601 (nach V.2.11)		
Programmierdaten:				
E/A-Konfiguration	D hex (1 Ausgang, 3 Eingänge)	D hex (1 Ausgang, 3 Eingänge)		
ID-Code F hex (Belegung siehe u		A hex (Belegung siehe unten)		
erweiterter ID-Code 1	F hex	7 hex		
erweiterter ID-Code 2	F hex	E hex		
Profil	S-D.F.F	S-D.A.E		

Datenbit	D3	D2	D1	D0
Signal	Eingang Initiator 1	Eingang Initiator 2	Eingang Diagnose Spulenstrom	Ausgang Steuerventil
Wert 0	Stellung nicht erreicht	Stellung nicht erreicht	ok	Steuerventil aus
Wert 1	Stellung erreicht	Stellung erreicht	Fehler (Unterbrechung)	Steuerventil ein

Parameterbits sind nicht belegt

Statusanzeige

burkert

LED 1 Bus (grün)	LED 2 Bus (rot)	signalisierter Status
aus	aus	POWER OFF
aus	ein	kein Datenverkehr (abgelaufener Watchdog bei Slaveadresse ungleich 0
ein	aus	ok
blinkt	ein	Slaveadresse gleich 0
aus	blinkt	Überlast der Sensorversorgung

Anschlüsse und LED-Konfiguration

Elektrischer Anschluss

4poliger M12-Rund-Steckverbinder

Kabelverschraubung mit Anschlussklemmen

- → Öffnen Sie das Gehäuse.
- → Setzen Sie bei Bedarf in die Kabelverschraubung die beigelegte Dichtung für AS-Interface-Flachkabel ein
- → Klemmen Sie die Adern entsprechend der Abbildung unter Statusanzeige an.

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

DEVICENET

Begriffsklärung			
Technische Daten	65		
Maximale Leitungslängen	65		
Gesamtleitungslänge	65		
Stichleitungslänge	65		
Sicherheitseinstellung bei Ausfall des Busses	65		
Schnittstellen	66		
Elektrischer Anschluss	66		
Bus-Anschluss (Rundstecker M12, 5polig)	66		
Abschlussbeschaltung für DeviceNet – Systeme	67		
Netztopologie eines DeviceNet-Systems	67		
Konfigurieren des TOP Control on/off	68		
DIP-Schalter	68		
Konfiguration der Prozessdaten	69		
LED-Zustandsanzeige			
Zustände der MNS-LED	71		
Konfigurierbeispiel	72		
Installation der EDS-Datei	72		
Einrichten des Prozessabbildes	72		

Begriffsklärung

DeviceNet

- Das DeviceNet ist ein Feldbussystem, das auf dem CAN-Protokoll (Controller Area Network) basiert.
 Es ermöglicht die Vernetzung von Aktoren und Sensoren (Slaves) mit übergeordneten Steuereinrichtungen (Master).
- Im DeviceNet ist der TOP Control on/off ein Slave-Gerät nach dem in der DeviceNet-Spezifikation festgelegten Predefined Master/Slave Connection Set. Als I/O-Verbindungsvarianten werden Polled I/O, Bit Strobed I/O und Change of State (COS) unterstützt.
- Beim DeviceNet unterscheidet man zwischen zyklisch oder ereignisgesteuert übertragenen Prozessnachrichten hoher Priorität (I/O Messages) und azyklischen Managementnachrichten niederer Priorität (Explicit Messages).
- Der Protokollablauf entspricht der **DeviceNet-Spezifikation Release 2.0**

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Technische Daten

EDS-Datei BUE8631.EDS

Icons BUE8631.ICO

Baudrate 125 kBit/s, 250 kBit/s, 500 kBit/s (über DIP-Schalter);

Werkseinstellung: 125 kBit/s

Adresse 0 ... 63 (über DIP-Schalter);

Werkseinstellung: 63

Prozessdaten 2 statische Input-Assemblies

(Input: vom TOP Control on/off zum DeviceNet-Master/Scanner)

1 statische Output-Assemblies

Maximale Leitungslängen

Maximale Gesamtleitungslänge (Summe von Haupt- und Stichleitungen) eines Netzwerks in Abhängigkeit von der Baudrate:

Gesamtleitungslänge nach DeviceNet-Spezifikation

Baudrate	Maximale Gesamtleitungslänge 1)		
Baudrate	Dickes Kabel (Thick Cable)	Dünnes Kabel (Thin Cable)	
125 kBaud	500 m		
250 kBaud	250 m	100 m für alle Baudraten	
500 kBaud	100 m		

Nach DeviceNet-Spezifikation. Bei Verwendung eines anderen Kabeltyps gelten geringere Maximalwerte (s. DeviceNet-Spezifikation)

Stichleitungslänge (Drop Lines)

Baudrate	Länge der Stichleitungen (Drop Lines)		
Baudrate	Maximale Länge	Maximale Gesamtlänge Stichleitungen im Netzwerk	
125 kBaud		156 m	
250 kBaud	6 m für alle Baudraten	78 m	
500 kBaud		39 m	

Sicherheitseinstellung bei Ausfall des Busses

Bei Busausfall wird die Stellung angefahren, die dem Sollwert 0 entspricht.

Schnittstellen

Elektrischer Anschluss

Die Busleitung ist ein 4-adriges Kabel + Schirm, das der DeviceNet-Spezifikation entsprechen muss und über das sowohl Informationen (Daten) als auch Energie (Spannungsversorgung für leistungsarme Aktoren und Sensoren) übertragen werden.

Bus-Anschluss (Rundstecker M12, 5polig)

Der TOP Control on/off besitzt einen 5-poligen Micro-style-Rundstecker M12. Die Belegung entspricht der DeviceNet-Spezifikation.

Pin	Signal	Farbe
1	Schirm	nicht belegt
2	V+	rot
3	V-	schwarz
4	CAN_H	weiß
5	CAN_L	blau

Stecker, von vorn auf die Stifte gesehen (nicht auf die Lötanschlüsse!)

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

Abschlussbeschaltung für DeviceNet - Systeme

Bei der Installation eines DeviceNet–Systems ist auf die korrekte Abschlussbeschaltung der Datenleitungen zu achten. Die Beschaltung vermeidet die Entstehung von Störungen durch Signalreflexionen auf den Datenleitungen. Die Hauptleitung ist dazu an beiden Enden, wie gezeigt, mit Widerständen von je 120 Ω und 1/4 W Verlustleistung abzuschließen.

Netztopologie eines DeviceNet-Systems

Linie mit einer Hauptleitung (Trunk Line) und mehreren Stichleitungen (Drop Lines). Haupt- und Stichleitungen bestehen aus identischem Material (siehe Skizze).

Konfigurieren des TOP Control on/off

DIP-Schalter

Zur Konfigurierung sind 8 DIP-Schalter vorhanden:

- DIP-Schalter 1 bis 6 DeviceNet-Adresse.
- DIP-Schalter 7 und 8 Baudrate.

Einstellungen der DeviceNet-Adresse

MAC ID - Medium Access Control Identifier:

[DIP 1=off=0 / DIP 1=on=1 / MAC ID=DIP 1*20+DIP 2*21+...+DIP 6*25]

DIP 1 [2º=1]	DIP 2 [2 ¹ =2]	DIP 3 [2 ² =4]	DIP 4 [2³=8]	DIP 5 [2 ⁴ =16]	DIP 6 [2 ⁵ =32]	MAC ID
off	off	off	off	off	off	0
on	off	off	off	off	off	1
off	on	off	off	off	off	2
off	on	on	on	on	on	62
on	on	on	on	on	on	63

Einstellen der Baudrate

Anpassen an die Baudrate des Netzwerkes.

DIP 7	DIP 8	Baudrate
off	off	125 kBaud
on	off	250 kBaud
off	on	500 kBaud
on	on	nicht erlaubt

ACHTUNG!

Eine Änderung von Einstellungen durch Betätigen der DIP-Schalter wird erst nach einem Neustart des Gerätes wirksam.

Ein Neustart kann durch Ab- und anschließendes Anklemmen des TOP Control on/off vom bzw. an das Netz oder durch das Senden einer entsprechenden Reset Message bewirkt werden. Möglich ist auch das Aus-/Anschalten der Netzwerkversorgung.

Konfiguration der Prozessdaten

Zur Übertragung von Prozessdaten über eine I/O-Verbindung stehen 3 statische Input- und 3 statische Output-Assemblies zur Auswahl. In diesen Assemblies sind ausgewählte Attribute in einem Objekt zusammengefasst, um als Prozessdaten gemeinsam über eine I/O-Verbindung übertragen werden zu können.

Auf die Prozessdaten kann entweder zyklisch in den Verbindungsvarianten "Polled I/O" und "Bitstrobed I/O", mit "Change of state", wenn sich Eingangswerte ändern, oder azyklisch über Explicit Messages zugegriffen werden.

Der Zugriffspfad für den azyklischen Zugriff ist:

class 4 instance 1 attribute 3

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Mit dem Dienst *Get_Attribute_Single* kann azyklisch lesend auf die Eingangsdaten und mit dem Dienst *Set_Attribute_Single* azyklisch schreibend auf die Ausgangsdaten zugegriffen werden.

1 Datenbyte für Eingänge (Sensoren bzw. Initiatoren):

Bit	Sensor	Wertezuordnung
Bit 0	S1 (Initiator 1)	0 Initiator 1 OFF 1 Initiator 1 ON
Bit 1	S2 (Initiator 2)	0 Initiator OFF 1 Initiator ON
Bit 2	physikalisch nicht verwendbar	
Bit 3		
	nicht benutzt	0 immer
Bit 7		

1 Datenbyte für Ausgänge (Aktoren bzw. Ventile):

Bit	Ventil	Wertezuordnung	
Bit 0	V1 (Ventil 1)	0 Ventil 1 OFF 1 Ventil 1 ON	
Bit 1	A2 Ausgang 2 physikalisch nicht verwendbar		
Bit 2	A3 Ausgang 3 physikalisch nicht verwendbar		
Bit 3			
	nicht benutzt	0 immer	
Bit 7			

LED-Zustandsanzeige

Für die Zustandsanzeige sind 2 LED's vorgesehen:

Name der LED	Art / Farbe	Funktion
POWER	einfarbig grün	LED leuchtet: Gerät ist mit Spannung versorgt
MNS	zweifarbig rot / grün	Entspricht MNS-LED laut DeviceNet Spezifikation (MNS-Module Network Status)

Zustände der MNS-LED

Nach dem Anlegen von Spannung (Anschluss der Netzwerkleitung) wird folgender Funktionstest der zweifarbigen MNS-LED ausgeführt:

- LED leuchtet kurzzeitig grün (ca. 1/4 s).
- LED leuchtet kurzzeitig rot (ca. 1/4 s).
- LED aus.

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

Nach Abschluss des Funktionstestes können durch die MNS-LED die in der folgenden Tabelle beschriebenen Gerätezustände angezeigt werden.

LED-Zustand	Gerätezustand	Erläuterung / Problembeseitigung	
OFF	Keine Spannung / nicht online	 Gerät ist nicht mit Spannung versorgt Gerät hat Duplicate MAC-ID Test noch nicht beendet (Testdauert ca. 2 s). Weitere Geräte anschließen, falls Gerät einziger Netzwerkteilnehmer ist. Austausch des Gerätes. 	
Grün	Online, Verbindung zum Master existiert	Normaler Betriebszustand mit aufgebauter Verbindung zum Master.	
Grün blinkend	Online, keine Verbindung zum Master	Normaler Betriebszustand ohne aufgebaute Verbindung zum Master. to the Master.	
Rot blinkend	Verbindungs- Time-out	- Eine oder mehrere I/O-Verbindungen befinden sich im Time out-Zustand. > Neuer Verbindungsaufbau durch Master, um sicherzustellen, dass I/O-Daten zyklisch übertragen werden	
Rot	Kritischer Fehler	 - Anderes Gerät mit derselben MAC-ID im Netzwerk > MAC-ID ändern und neu starten. - BUS OFF infolge von Kommunikationsproblemen. > Baudrate überprüfen; Austausch des Geräte, falls nicht erfolgreich. 	

Konfigurierbeispiel

Das Beispiel beschreibt das prinzipielle Vorgehen zur Einbindung des Gerätes in das Netzwerkmanagement-Tool *RSNetWorx for DeviceNet* (Rev. 2.11.51.0) sowie das Einrichten des Prozessabbildes eines DeviceNet-Masters/Scanners.

Installation der EDS-Datei

Die Installation der auf Diskette mitgelieferten EDS-Datei (bue8631.eds) erfolgt mit Hilfe des zu *RSNetWorx* zugehörigen Tools *EDS Installation Wizards*. Im Verlauf der Installationsprozedur kann das ebenfalls auf Diskette mitgelieferte Icon zugeordnet werden (falls dies nicht automatisch erfolgt).

Einrichten des Prozessabbildes

Einrichten der Scanlist

Zunächst wird die *Scanlist* des DeviceNet-Masters/Scanners eingerichtet. Dazu werden die im linken Teil des zugehörigen Fensters aufgelisteten Geräte in die Scanlist im rechten Teil des Fensters aufgenommen. Dann kann für jedes in die Scanlist aufgenommene Gerät die gewünschte I/O-Verbindungsvariante ausgewählt werden - Voreinstellung ist *Polled*.

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

Einrichten des Prozessabbilds (Mapping)

Unter Verwendung der Funktion *AutoMap* können die Input- und Output-Daten der in der Scanlist aufgeführten Geräte dem Prozessabbild des DeviceNet-Masters/Scanners zugeordnet werden.

In unserem Beispiel ergibt sich so die im Bild gezeigte Zuordnung. Beispielsweise werden die Input-Prozesswerte des TOP Control on/off mit der Adresse 4 in folgender Weise den internen Adressen des Scanners zugeordnet:

Status Sensor (Rückmelder) S1: I:1.2.0 (Bit 0 von I:1.2) Status Sensor (Rückmelder) S2: I:1.2.1 (Bit 1 von I:1.2) Status Sensor (Rückmelder) S3: I:1.2.2 (Bit 2 von I:1.2)

Soll also der Status von Sensor S1 des TOP Control on/off mit der Adresse 4 von einem Steuerungsprogramm aus gelesen werden, so erfolgt dies über einen Zugriff auf I:1.2.0.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

SICHERHEITSSTELLUNGEN UND WARTUNG

nach Ausfall der elektrischen bzw. pneumatischen Hilfsenergie
nach Austali der eiektrischen dzw. Pheumatischen Hilfsenergie

Sicherheitsstellungen nach Ausfall der elektrischen bzw. pneumatischen Hilfsenergie

Antriebsart	Bezeichnung	Sicherheitseinstellungen nach Ausfall der Hilfsenergie	
	3	elektrisch	pneumatisch
up down	einfachwirkend WW A	down	down
down	einfachwirkend WW B	ир	ир
up down	doppeltwirkend WW I	down / up (je nach Anschluss der Steuerleitungen)	nicht definiert

Wartung

Der TOP Control on/off ist bei Betrieb entsprechend den in dieser Anleitung gegebenen Anweisungen wartungsfrei.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Table des matières des instructions de service pour TOP Control on/off type 8631

INDICATIONS GENERALES

Symboles graphiques	82
Utilisation conforme à la destination	82
Consignes de sécurité	82
Instructions pour appareils homologués EEx-i	83
Instructions pour la mise en oeuvre dans le domaine Ex	83
Transport et stockage	0.4
Réglementation concernant les déchets	84
CARACTERISTIQUES TECHNIQUES	
Structure et fonction	86
Propriétés	87
Conditions de service	88
Caractéristiques méchaniques	88
Caractéristiques pneumatiques	88
Caractéristiques électriques sans bus de commande	89
Caractéristiques électriques avec bus de commande (interface AS)	89
Caractéristiques électriques avec bus de commande (DeviceNet)	89
Caractéristiques électriques avec homologation EEx-i	90

MISE EN SERVICE

Installation fluidique	92
Installation de la vanne	92
Rotation du TOP Control on/off	92
Raccordement des fluides au TOP Control on/off	92
Ouverture du boîtier	92
Installation électrique	93
Bornes de raccordement pour raccords à vis de câble	93
Variante 24 V avec détecteurs de proximité inductifs (contact de fermeture)	94
Variante 24 V avec interrupteurs de fin de course méchaniques	94
Variante 230 V avec interrupteurs de fin de course méchaniques	95
Installation électrique du TOP Control on/off avec homologation EEx-i	95
Bornes de branchement pour passe-câbles à vis	95
Réglage des détecteurs de proximité ou interrupteurs de fin de course (option)	96
INTERFACE AS	
Données de progammation	98
Affichage d'état	99
Raccordement électrique	100
Connecteur M12 rond à 4 pôles	100
Raccords à vis de câble avec bornes de connexion	100
DEVICENET	
Terminologie	102
Caractéristiques techniques	103
Longueur maximale des lignes	103
Longueur totale des lignes	
Longueur des lignes de dérivation	103
Réglages de sécurité en cas du panne du bus	103
Interfaces	104
Raccordement électrique	104
Raccordement du bus (connecteur M12 rond, 5 pôles)	104
Terminaison pour système DeviceNet	
Topologie de réseau d'un système DeviceNet	105
Configuration du TOP Control on/off	106
Commutateurs DIP	106

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

Configuration des données de processus	107
LED d'affichage d'état	108
Etat des MNS-LED	109
Exemple de configuration	110
Installation du fichier EDS	110
Création de la fenêtre de processus	110
POSITIONS DE SECURITE ET ENTRETIEN	
Positions de sécurité avec panne de l'électronique ou de l'alimentation pneumatique auxiliaire	114
Entretien	114

Contact addresses / Kontaktadressen

Germany / Deutschland / Allemange

Bürkert Fluid Control System Sales Centre Chr.-Bürkert-Str. 13-17 D-74653 Ingelfingen Tel. + 49 (0) 7940 - 10 91 111

Fax + 49 (0) 7940 - 10 91 448 E-mail: info@de.buerkert.com

International

Contact addresses can be found on the internet at:

Die Kontaktadressen finden Sie im Internet unter:

Les adresses se trouvent sur internet sous :

<u>www.burkert.com</u> → Bürkert → Company → Locations

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

INDICATIONS GENERALES

Symbols graphiques	82
Consignes de sécurité	82
Utilisation conforme à la destination	82
Instructions pour appareils homologués EEx-i	83
Instructions pour la mise en oeuvre dans le domaine Ex	83
Transport et stockage	84
Réglementation concernant les déchets	84

Symboles graphiques

Les symboles suivants sont utilisés dans ce mode d'emplois:

→ Indique une opération que vous devez exécuter.

ATTENTION!

Signale des consignes, dont l'inobservation peut mettre en danger votre santé ou altérer la capacité de fonctionnement de l'appareil.

REMARQUE

Signale des informations complémentaires improtantes, des conseils ou des recommandation.

Utilisation conforme à la destination

Veuillez tenir compte des directives de ces instructions de service de même que des conditions de mise en oeuvre et des caractéristiques tolérées pour le TOP Control on/off ainsi que pour la soupape à commande pneumatique spécifiée au chapitre "Caractéristiques techniques" des présentes instructions de même que de celles de la soupape afin que l'appareil fonctionne parfaitement et reste longtemps en service.

Notez que le Top Control on/off ne doit pas être utilisé à l'extérieur.

Compte tenu de la multiplicité d'emplois et de cas d'application possibles, vérifiez si le Top Control on/off convient au cas concret d'emploi envisagé et faites un essai auparavant si cela est nécessaire.

Consignes de sécurité

- Respectez les règles générales de la technique lors du planning d'utilisation et de l'exploitation de l'appareil!
- L'installation et les travaux d'entretien ne doivent être effectués que par des spécialistes et au moyen d'un outillage approprié!
- Durant l'exploitation et l'entretien de l'appareil, observez les prescriptions applicables en matière de prévention des accidents et de sécurité!
- Couper chaque fois l'alimentation électrique avant toute intervention dans le système!
- Tenir compte que dans les systémes sous pression, les conduites et soupapes ne doivent pas être desserrées!
- Prenez les mesures appropriées pour exclure un actionnement involontaire ou un préjudice inadmissible!
- Assurez un redémarrage défini et contrôlé du processus après une interruption de l'alimentation électrique ou pneumatique!
- En cas de non-observation de ces consignes ou d'interventions prohibées sur l'appareil, nous déclinons toute responsabilité, et la garantie sur l'appareil et les accessoires devient alors caduque!

Instructions pour appareils homologués EEx-i

- Prendre les mesures adéquates pour éviter une charge électrostatique des pièces de boîtier en plastique (voir EN 100 015 1).
- Aucun composant dont les caractéristiques électriques se situent en dehors des limites établies pour la sécurité intrinsèque d'opération et figurant dans les fiches techniques du régleur de position ne doit être branché aux entrées et sorties de la platine.
- Les interventions dans l'appareil avec le boîtier ouvert ne doivent pas avoir lieu dans une atmosphère très humide ou agressive. Prendre des mesures en vue d'exclure tout dommage mécanique involontaire aux platines ou à leurs composants. Limiter la durée d'ouverture du boîtier au strict minimum.

Instructions pour la mise en oeuvre dans le domaine Ex

Tenir compte:

- pour l'installation et la mise en service dans des zones exposées aux déflagrations des prescriptions nationales respectives. En Allemagne, c'est la VDE 0165.
- des indications des certificats de conformité respectifs lors du branchement électrique des circuits à protection intrinsèque.
- impérativement des indications figurant dans l'homologation ATEX.

Conformité

Le type 8631 est conforme aux directives CE sur la base de la déclaration de conformité CE.

Normes

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

La conformité avec les directives CE est satisfaite avec les normes suivantes : EN 60079-0

Garantie lègale

ATTENTION!

La prestation de garantie ne s'étend que sur l'absence de défauts de la TOP Control on/ off. Toute responsabilité est cependant déclinée pour les dégâts de toute nature qui seraient consécutifs à une défaillance ou un mauvais fonctionnement de l'appareil.

Transport et stockage

ATTENTION!

Le transport et le stockage sont autorisés uniquement en emballage d'origine.

Réglementation concernant les déchets

ATTENTION!

Respectez les réglementations nationales en matière d'élimination des déchets.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

CARACTÉRISTIQUES TECHNIQUES

Structure et fonction	86
Propriétés	87
Conditions de service	88
Caractéristiques méchaniques	88
Caractéristiques pneumatiques	88
Caractéristiques électriques sans commande par bus	89
Caractéristiques électriques avec commande par bus (interface AS)	89
Caractéristiques électriques avec commande par bus (DeviceNet)	89
Caractéristiques électriques avec homologation EEx-i	90

Structure et fonction

Le type TOP Control on/off sert à piloter des vannes de processus à commande pneumatique. Il est combinable avec différents types de vannes de processus Bürkert (voir fiche technique des types 2000, 2001, 2002, 2012, 2030, 2031, 2031K, 2652, 2655 et 2658).

Le TOP Control et la vanne de processus sont assemblés au moyen d'un adaptateur. On crée ainsi un système intégré réalisant les fonctions de quittance, pilotage et vanne.

Différentes variantes de raccordement pneumatique et électrique sont disponibles.

Figure: Structure du TOP Control - couvercle enlevé

Propriétés

Exécution

Pour commande de vannes à simple et à double effet

Vannes de commande

Electrovanne fonctionnant selon le principe de bascule

1 x 3/2 voies - électrovanne pour vanne à simple effet

2 x 3/2 voies - électrovanne pour vanne à double effet

TOP Control on/off avec homologation EEx-i:

Soupape pilote - électrovanne avec homologation EEx-i (PTB 01 ATEX 2173)

Interfaces électriques

Raccords à vis de câble avec bornes à vis

Connecteur multipole rond, 12 pôles

Pour l'excitation du bus (inferface AS), les connecteurs multibroches ronds M12 à 4 pôles normalisés à cet effet ou des raccords à vis de câble avec des bornes de raccordement sont utilisés.

TOP Control on/off avec homologation EEx-i:

Passe-câble à vis avec bornes à vis

Interfaces pneumatiques

Raccords 1/4" avec différents filetages (G, NPT, RC)

Boîtier

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

Le boîtier du TOP Control on/off est protégé contre les pressions internes élevées, consécutives notamment à des fuites, par une soupape limitatrice de pression.

TOP Control on/off avec homologation EEx-i:

Dispositif de sûreté du couvercle de boîtier contre ouverture non autorisée par vis autoaraudeuse.

Options

Quittance et affichage de position

Appareils 24V:

Détecteurs de proximité inductifs (interrupteurs)

Quittance de position via sorties binaires (contact de travail)

Appareils 24, 110 ou 230 V:

Interrupteur de fin de course méchanique

Quittance de position via sorties binaires (contact de travail ou de repos)

Le réglage du point de commutation pour les interrupteurs de quittance de position s'effectue au moment du montage du TOP Control on/off sur la commande de vanne.

TOP Control on/off avec homologation EEx-i:

Capteurs Namur avec déclaration du constructeur

L'exploitant peut modifier les capteurs par des vis de réglage.

Circuit de communication intelligent

Interface AS/DeviceNet

Réduction automatique du courant de maintien pour la vanne de commande.

Conditions de service

ATTENTION!

Le TOP Control on/off n'est pas approprié pour l'application dans le secteur extérieur!

TOP Control on/off avec homologation EEx-i:

Tenir compte de la déclaration du constructeur pour détecteur de proximité.

Température de service -10 ... + 50 °C

Degré de protection IP 65 selon EN 60529

TOP Control on/off avec homologation EEx-i:

Protection "e" II 2 G EEx ia IIC T6

Caractéristiques méchaniques

Dimensions Voir fiche technique

Matière du boîtier Extérieur PPE / PA, PSU; intérieur PA 6

Matière des joints Extérieur EPDM; intérieur NBR

Caractéristiques pneumatiques

Milieu de commande Classes de qualité selon DIN ISO 8573-1

Teneur en poussière Classe 5: Taille max. des particules 40 µm, densité max. des

particules 10 mg/m³

Teneur en eau Classe 3: Point de condensation max. sous pression - 20°C ou

min. 10 degrés au-dessous de la température de

service minimale

Teneur en huile Classe 5: max. 25 mg/m³

Plage de température de

l'air comprimé -10 ... +50°C

Plage de pression 3 ... 7 bar

Variation de la pression

d'alimentation -

Débit d'air vanne pilote 100 l_N / min (pour aération et désaération)

(valeur Q_{Nn} selon définition en cas de chute de

pression de 7 à 6 bars absolut)

Autoconsummation en état déroulé 0,0 l,/min

Raccords Taraudage 1/4" G / NPT / RC

Caractéristiques électriques sans bus de commande

Raccordement 2 x M16 raccords à vis de câble avec bornes à vis

pour sections de câble 0,14 ... 1,5 mm²

Tension d'alimentation 24 V DC ± 10 % - ondulation résiduelle 10%

Attention: Ne pas utiliser de tension continue

technique!

110 V AC / 230 V AC

Puissance absorbée < 2 W

Caractéristiques électriques avec bus de commande (interface AS)

Raccordement Connecteur à broches rond M12 ou

raccords à vis de câble M20 avec bornes à vis pour sections

de câble 0,14 ... 1,5 mm² (joint pour

câble plat interface AS ci-joint)

Tension d'alimentation 29,5 ... 31,6 V DC (selon spécification)

Courant max, absorbé 120 mA

Courant absorbé

en service normal $\leq 80 \text{ mA}$ après réduction $\leq 50 \text{ mA}$

Sorties

pouvoir de coupure 1 W via interface AS

fonction watchdog intégrée

Entrées

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

Alimentation des capteurs via interface AS Tension d'alimentation de capteurs 24 V \pm 10 %

Courant de charge max. max. 60 mA, protégé contre les courtcircuits

Niveau de commutation signal 1 \geq 10 V Courant d'entrée limité à 6,5 mA Courant d'entrée signal 0 \leq 1,5 mA

Caractéristiques électriques avec bus de commande (DeviceNet)

Raccordement Microconnecteur M12 rond 5 pôles

Tension d'alimentation 11 ... 24 V Courant max. absorbé 125 mA

Sortie

Courant d'attraction 120 mA
Courant de maintien 80 mA

Entrées

"0" 0 ... 1,5 V
"1" ≥ 8 V

Caractéristiques électriques avec homologation EEx-i

Raccords 2 x M16 passe-câbles à vis avec bornes à vis

pour sections de câble 0,14 ... 1,5 mm²

Alimentation capteur Voir déclaration du constructeur de la firme Pepperl & Fuchs

(voir annexe)

Alimentation soupape Voir certificat d'essai de modèle PTB 01 ATEX 2173

(voir annexe)

Données techniques de sécurité:

Les tensions maximales tolérées et les courants de court-circuit maximaux tolérés qui s'y rattachent pour le groupe de gaz correspondant figurent sur la table A1 dans la norme DIN EN 50020, édition 1994.

Afin que la température maximale tolérée sur la bobine magnétique de la soupape incorporée ne soit pas dépassée, les valeurs limites suivantes pour l'utilisation dans la classe de température correspondante doivent être respectées en fonction de la puissance mise:

Temp Classe	Température ambiante max. tolérée ¹¹ [°C]	Puissance max tolérée [W]
	+50	0,4
Т6	+45	0,5
16	+40	0,7
	+35	0,8
	+50	0,8
Т5	+45	1,0
	+40	1,1

¹⁾ Température ambiante pour TopControl 8631 compl. (température à l'intérieur de l'appareil est au max. 5°C plus haute)

ATTENTION!

La tête de commande ne doit pas être exposée directement aux rayons de soleil ou à une forte source de lumière, sinon un échauffement additionnel intervient!

Données techniques fonctionnelles:

Résistance à 20° C (R_{20}): 510 ohms Tension minimale aux bornes: 11,7 V Courant minimal: 23 mA

Les valeurs maximales de tension et de courant sont définies par les moyens d'exploitation admissibles.

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

MISE EN SERVICE

Installation fluidique	92
Installation de la vanne	92
Rotation du TOP Control on/off	92
Raccordement des fluides au TOP Control on/off	92
Ouverture du boîtier	92
Installation électrique	93
Bornes de connexion avec raccords à vis de câble	93
Variante 24 V avec détecteurs de proximité inductifs (contact de travail)	94
Variante 24 V avec interrupteurs de fin de course méchaniques	94
Variante 230 V avec interrupteurs de fin de course méchaniques	95
Installation électrique du TOP Control on/off avec homologation EEx-i	95
Bornes de branchement pour passe-câbles à vis	95
Réglage des détecteurs de proximité ou interrupteurs de fin de course (option)	96

Installation fluidique

Les dimensions du TOP Control on/off et des différents types d'appareils complets, formé du TOP Control on/off, de la servocommande pneumatique et de la vanne, sont indiquées sur les fiches techniques respectives.

Installation de la vanne

Les dimensions et types de filetages sont indiqués dans la fiche technique de la vanne de processus.

Rotation du Top Control on/off

En cas de mauvaise visibilité des LED du TOP Control on/off après le montage de la vanne, ou si le raccordement des câbles ou des flexibles s'avère difficile, le TOP Control on/off peut être retourné sur la servocommande pneumatique.

Procéder de la manière suivante:

- → Découpler le raccordement des fluides entre le TOP Control on/off et la servocommande pneumatique.
- → Desserrer la vis sans tête noyée dans le boîtier (6 pans intérieur 3mm).
- → Tourner le TOP Control on/off dans la position voulue sans le soulever.
- → Resserrer la vis sans tête avec un couple de serrage modéré.
- → Rétablir le raccordement des fluides entre le TOP Control on/off et la servocommande pneumatique. Le cas échéant, utiliser des flexibles plus longs.

Raccordement des fluides au TOP Control on/off

- → Brancher la pression d'alimentation au raccord de pression 1 (3 à 7 bar, air d'instrumentation exempt d'huile, d'eau et de poussière).
- → Brancher une conduite d'échappement ou un silencieux au raccord d'échappement 3.

ATTENTION!

Les raccordements ne doivent pas occasionner de contre-pression qui pourrait perturber le fonctionnement de l'appareil. S'assurer d'utiliser des flexibles d'une section suffisante!

- Raccord d'échappement
- à double effet pressurisé sans courant à simple effet non excité
- pressurisé quand la soupape pilote est sous courant
- Raccord de pression d'alimentation

Ouverture du boîtier

- → Retirer ensuite les plombs de scellement ou raccords entre couvercle et boîtier.
- → Retirer le couvercle transparent du TOP Control on/off par une courte rotation à gauche.

Installation électrique

Divers concepts de raccordement se trouvent au choix pour établir les contacts électriques du TOP Control on/off. L'occupation des bornes de raccordement pour les raccords à vis de câble resp. les connecteurs à broches pour l'excitation du bus est expliquée dans ce qui suit.

Bornes de raccordement pour raccords à vis de câble

- → Ouvrir le boîtier.
- → Connecter les bornes (voir schéma de câblage).

La carte avec l'identification des bornes à vis et les diodes luminescentes sont représentés sur l'illustration ci-dessous.

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

REMARQUE

Détecteur de proximité: utilisable indifféremment avec contact de travail (borne

NO) ou de repos (borne NC).

LED de contrôle: s'allume lorsque de détecteur correspondant est activé

mécaniquement, c'est-à-dire lorsque la vanne a atteint

sa fin de course.

Variante 24 V avec détecteurs de proximité inductifs (contact de fermeture)

Borne n°	Connexion	Circuit extérieur	
1	Masse commande de vanne GND	2 o 0/24 V DC ± 10 %	
2	0 V / 24 V commande de vanne	ondulation résiduelle 10 %	
3	Masse alimentation détecteurs GND		
4	Référence commune pour masse détecteurs GND	9 +24 V DC	
5	non connecté	S2 8 → sortie 1 (0V/24V)	
6	Sortie binaire détecteur 2 (NO)	S1 6 → sortie 2 (0V/24V)	
7	non connecté	4 GND 3 GND	
8	Sortie binaire détecteur 1 (NO)	- GND	
9	+ 24 V alimentation détecteurs	7	

Variante 24 V avec interrupteurs de fin de course méchaniques

Borne n°	Connexion	Circuit extérieur
1	Masse commande de vanne GND	2 0
2	0 V / 24 V commande de vanne	0/24 V DC ± 10 % ondulation résiduelle 10 %
3	Masse alimentation détecteurs GND	
4	Référence commune pour masse détecteurs GND	9 +24 V DC 7 NC1 24V/0V (max. 5 A)
5	non connecté	S2 8 NO1 0V/24V (max. 5 A) NC2 24V/0V (max. 5 A)
6	Sortie binaire détecteur 2 (NO)	S1 6 NO2 0V/24V (max. 5 A)
7	non connecté	GND 3 GND
8	Sortie binaire détecteur 1 (NO)	GND GND
9	+ 24 V alimentation détecteurs	

Variante 230 V avec interrupteurs de fin de course méchaniques

Borne n°	Connexion	Circuit extérieur
1	Commande vanne N	2 o L1
2	Commande vanne L1	1 o N
3	Alimentation interrupteurs	
4	Sortie pôle commun	9 L1 7
5	Sortie interrupteur 2 (NC)	NC1 (max. 5 A) 8 NO1 (max. 5 A)
6	Sortie interrupteur 2 (NO)	S1 6 NC2 (max. 5 A)
7	Sortie interrupteur 1 (NC)	NO2 (max. 5 A) 4 Sortie pôle commun
8	Sortie interrupteur 1 (NO)	3 N
9	Alimentation interrupteurs	

Installation électrique du TOP Control on/off avec homologation EEx-i

Les contacts électriques du TOP Control on/off avec homologation EEx-i ont lieu par des bornes.

Bornes de branchement pour passe-câbles à vis

→ Ouverture du boîtier.

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

→ Connecter les conducteurs selon le plan d'occupation des bornes.

Plan d'occupation des bornes

Occupation des bornes - TOP Control on/off avec homologation EEx-i

N° borne	Occupation	Branchement extérieur		
2	Excitation soupape +	2 0	Signal de la barrière voir PTB 01 ATEX 2173	
1	Excitation soupape -	1 0		
4	Détecteur de proximité 1 +	4 o8 V	(Selon recommandation NAMUR)	
3	Détecteur de proximité 1 -	3 o GND	Tenir compte aussi de la déclaration du constructeur de la firme Pepperl & Fuchs!	
6	Détecteur de proximité 2 +	6 o8V		
5	Détecteur de proximité 2 -	5 o GND		

Réglage des détecteurs de proximité ou interrupteurs de fin de course (Option)

ATTENTION!

Avant toute intervention, couper la tension de service!

- → Ouvrir le boîtier du TOP Control on/off pour donner accès aux détecteurs de proximité ou interrupteurs de fin de course.
- → Régler les détecteurs au moyen de leur vis de réglage.

Vis de réglage du détecteur inférieur

Vis de réglage du détecteur supérieur

Signification

Rotation vers la droite: déplacement vers le haut

Rotation vers la gauche: déplacement vers le bas

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

INTERFACE AS

Données de programmation	98
Affichage d'état	99
Raccordement électrique	100
Connecteur M12 rond à 4 pôles	100
Raccord à vis de câble avec hornes de raccordement	100

Données de programmation

	Appareil standard	Appareil pour A/B-Slave adressage	
Certification:	Homologation n° 32901 (après V.2.11)	Homologation n° 47601 (après V.2.11)	
Données de programmation:			
Configuration E/A	D hex (1 sortie, 3 entrées)		
ID Code	F hex (occupation voir cidessous)	A hex (occupation voir cidessous)	
ID Code 1 étendu	F hex	7 hex	
ID-Code 2 étendu	F hex	E hex	
Profil	S-D.F.F	S-D.A.E	

Bit	D3	D2	D1	D0
Signal	Entrée détecteur 1	Entrée détecteur 2	Entrée Diagnostic Courant de bobine	Sortie vanne de commande
Valeur 0	Position pas atteinte	Position pas atteinte	ok	Vanne de commande hors fonction
Valeur 1	Position atteinte	Position atteinte	Erreur (coupure)	Vanne de commande en fonction

Les binaires de paramètre ne sont pas occupés.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Affichage d'état

LED 1 bus (vert)	LED 2 bus (rouge)	Signalisation
éteinte éteinte		HORS TENSION
éteinte	allumée	Pas de communication (dépassement de temps du watchdog avec adresse d'esclave différente de 0)
allumée éteinte		ok
clignote allumée		Adresse d'esclave égale 0
éteinte clignote		Surcharge à l'entrée capteur

Raccordements et LED configuration

Raccordement électrique

Connecteur M12 rond à 4 pôles

Raccord à vis de câble avec bornes de raccordement

- → Ouvrir le boîtier.
- → Insérer au besoin le joint ci-joint dans le raccord à vis de câble plat de l'interface AS.
- → Connecter les fils comme ilustré sous Affichage d'état.

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

DEVICE-NET

Terminologie		
Caractéristiques techniques	103	
Longueur maximale des lignes	103	
Longueur totale des lignes	103	
Longueur des lingnes de dérivation	103	
Réglages de sécurité en cas du panne du bus	103	
Interfaces	104	
Raccordement électrique	104	
Raccordement du bus (connecteur M12 rond, 5 pôles)	104	
Terminaison pour système DeviceNet	105	
Topologie de réseau d'un système DeviceNet	105	
Configuration du TOP Control on/off	106	
Commutateurs DIP	106	
Configuration des données de processus	107	
LED d'affichage d'état	108	
Etat des MNS-LED	109	
Exemple de configuration	110	
Installation du fichier EDS	110	
Création de la fenêtre de processus	110	

Terminologie

DeviceNet

- DeviceNet est un système de bus local basé sur le protocole CAN (Controller Area Network). Il autorise la mise en réseau des acteurs et capteurs (slaves) avec les systèmes de commande d'ordre supérieur (Master).
- Conformément aux spécifications DeviceNet définies dans le Predefined Master/Slave Connection Set, le TOP Control on/off joue le rôle d'esclave (slave au sein du DeviceNet. Les variantes de connexion I/O supportées sont Polled I/O, Bit Strobed I/O et Change of State (COS).
- Dans DeviceNet, on procède à une distinction entre les messages du processus cycliques ou asservis aux évènements de haute priorité (I/O Messages) et les messages de gestion acycliques de basse priorité (Explicit Messages)
- Le déroulement du protocole correspond à la Spécification DeviceNet Release 2.0.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Caractéristiques techniques

Fichier EDS BUE8631.EDS

Icônes BUE8631.ICO

Débit binaire 125 kBit/s, 250 kBit/s, 500 kBit/s (réglable via commutateur DIP);

Réglage d'origine: 125 kBit/s

Adresse 0 ... 63 (réglable via commutateur DIP);

Réglage d'origine: 63

Données de processus 2 Input Assemblies statiques

(entrée: du TOP Control on/off au DeviceNet-Master/Scanner)

1 Output Assembly statique

Longueur maximale des lignes

Longueur maximale de ligne selon les spécifications DeviceNet (Longueur totale = somme de toutes les lignes principales et de dérivation) d'un réseau en fonction du débit binaire:

Longueur totale des lignes selon spécification DeviceNet

Dábit bloodes	Longueur totale maximale des lignes 1)			
Débit binaire	Câble épais (thick cable)	Câble fin (thin cable)		
125 kBaud	500 m	100 m pour tous les débits binaires		
250 kBaud	250 m			
500 kBaud	100 m			

¹⁾ Selon spécification DeviceNet. En cas d'utilisation d'un câble différent, des valeurs maximales différentes sont applicables (voir spécification DeviceNet).

Longueur des lignes de dérivation (Drop Lines)

Débit binaire		Longueur des dérivations (Drop lines)		
Debit billane	Longueur max.	Longueur totale max. des dérivations dans le réseau		
125 kBaud	6 m pour tous les débits binaires	156 m		
250 kBaud	debits binaires	78 m		
500 kBaud		39 m		

Réglages de sécurité en cas du panne du bus

En cas de panne de bus, l'appareil revient à la position correspondant à la valeur de consigne 0.

Interfaces

Raccordement électrique

La ligne de bus doit être un câble à 4 conducteurs + blindage conforme aux spécifications DeviceNet, assurant la transmission aussi bien des informations (données) que de l'énergie (alimentation en tension d'acteurs et capteurs à basse énergie).

Raccordement du bus (connecteur M12 rond, 5 pôles)

Sur le TOP Control on/off se trouve un connecteur coaxial micro-style à 5 pôles M12. L'occupation correspond à la spécification du DeviceNet.

Broche	Signal	Couleur
1	Blindage	non connecté
2	V+	rouge
3	V-	noir
4	CAN_H	blanc
5	CAN_L	bleu

Connecteur vu du côte broches (et non pas du côte soudures)!

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Terminaison pour système DeviceNet

Lors de l'installation d'un système DeviceNet, il s'agit de veiller à la terminaison correcte des lignes de données. Cette connexion produit un potentiel défini et prévient l'émission de parasites par réflexion des signaux sur les lignes de données. La ligne principale doit être terminée à ses deux extrémités par des résistances de $120~\Omega~1/4~W$ chacune.

Topologie de réseau d'un système DeviceNet

Ligne composée d'une artère principale (Trunk Line) et de plusieurs dérivations (Drop lines). Les lignes principales et de dérivation sont formées de câble identique (voir schéma).

Configuration du TOP Control on/off

Commutateurs DIP

8 commutateurs DIP sont disponibles pour la configuration:

- Commutateurs DIP 1 à 6 pour les adresses DeviceNet.
- Commutateurs DIP 7 et 8 pour le débit binaire.

Réglage des adresses DeviceNet

MAC ID - Medium Access Control Identifier:

[DIP 1=off=0 / DIP 1=on=1 / MAC ID=DIP 1*2°+DIP 2*2¹+...+DIP 6*2⁵]

DIP 1 [2º=1]	DIP 2 [2 ¹ =2]	DIP 3 [2 ² =4]	DIP 4 [2 ³ =8]	DIP 5 [2⁴=16]	DIP 6 [2 ⁵ =32]	MAC ID
off	off	off	off	off	off	0
on	off	off	off	off	off	1
off	on	off	off	off	off	2
off	on	on	on	on	on	62
on	on	on	on	on	on	63

Réglage du débit binaire

Adaptation du débit binaire au réseau.

DIP 7	DIP 8	Débit binaire
off	off	125 kBaud
on	off	250 kBaud
off	on	500 kBaud
on	on	non autorisé

ATTENTION!

La modification de réglages par le repositionnement de commutateurs DIP n'est prise en compte qu'après un nouveau démarrage de l'appareil.

Un nouveau démarrage peut être opéré en débranchant puis rebranchant le TOP Control on/off du réseau, ou en transmettant le signal Reset correspondant. Il est également possible de couper et de reconnecter l'alimentation secteur.

Configuration des donnés de processus

Pour la transmission des données de processus à travers une liaison I/O, on dispose au choix de 3 Assemblies et de 3 Output Assemblies statiques. Ces Assemblies rassemblent les attributs sélectionnés en un objet, afin de permettre la transmission de l'ensemble des données de processus à travers la liaison I/O.

Il est possible d'accéder aux données de processus de façon cyclique dans les variantes de connexion "Polled I/O" et "Bitstrobed I/O" avec "Change of State" lorsque les valeurs d'entrées changent, ou acyclique via des Explicit Messages.

Le chemin pour l'accès acyclique est:

class 4 instance 1 attribute 3

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

Il est possible d'accéder de façon acyclique en lecture aux données de sorties avec le service *Get_Attribute_Single*, et en écriture avec *Set_Attribute_Single*.

1 byte de donnée pour entrées (capteurs et détecteurs)

Bit	Capteur	Valeur attribuée
Bit 0	S1 (détecteur 1)	0 détecteur 1 OFF 1 détecteur 1 ON
Bit 1	S2 (détecteur 2)	0 détecteur OFF 1 détecteur ON
Bit 2	non utilisable physiquement	
Bit 3		
	inutilisé	0 toujours
Bit 7		

1 byte de donnée pour sorties (acteurs et vannes):

Bit	Capteur	Valeur attribuée	
Bit 0	V1 (vanne 1)	0 vanne 1 OFF 1 vanne 1 ON	
Bit 1	A2 sortie 2 Non utilisable physiquement		
Bit 2	A3 sortie 3 Non utilisable physiquement		
Bit 3			
	inutilisé	0 toujours	
Bit 7			

LED d'affichage d'état

2 LED sont prévue pour l'affichage des états:

Nom de la LED	Nature / couleur	Fonction
POWER	monocolore verte	LED allumée: tension d'alimentation appliquée à l'appareil
IMNS		Correspond à MNS-LED selon les spécifications DeviceNet (MNS-Module Network Status)

Etat des MNS-LED

Après la mise sous tension (raccordement de la ligne réseau), le test de fonctions suivants des MNS-LED bicolores est exécuté:

- La LED s'allume brièvement en vert (env. 1/4 s).
- La LED s'allume briévement en rouge (env. 1/4 s).
- LED éteinte.

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

Une fois le test de fonctions accompli, les MNS-LED peuvent signaler les états indiqués dans le tableau ci-dessous.

Etat LED	Etat de l'appareil	Explication / élimination du problème
Eteinte	Pas de tension/pas en ligne	 - La tension n'est pas appliquée à l'appareil. - Le test Duplicate MAC-ID n'est pas terminé (durée env. 2 s). > Connecter d'autres appareils, au cas où celui-ci est le seul participant sur le réseau. > Remplacer l'appareil.
Verte	En ligne, liaison établie avec le master	- Etat normal de service lorsque la liaison est établie avec le master.
Verte clignotante	En ligne, pas de liaison avec le master	- Etat normal de service lorsque la liaison n'est pas établie avec le master.
Rouge clignotante	Dépassement de temps	- Une ou plusieurs liaisons I/O se trouvent en dépassement de temps. > Nouvel établissement de liaison avec le master, pour s'assurer que les données I/O sont transmises cycliquement.
Rouge	Erreur critique	 - Autre appareil sur le réseau avec MAC-ID identique. > Changer le MAC-ID et redémarrer. - BUS OFFsuite à un problème de communication. > Vérifier le débit binaire; si contrôle infructueux, remplacer l'appareil.

Exemple de configuration

L'exemple ci-dessous décrit la procédure générale d'intégration de l'appareil à l'aide du logiciel RSNetWorx for DeviceNet (Rev. 2.11.51.0) ainsi que la configuration de la page de processus d'un DeviceMet-Master/Scanner.

Installation du fichier EDS

L'installation du fichier EDS fourni sur la disquette s'effectue à l'aide de l'assistant *EDS Installation Wizard* faisant partie du *RSNetWorx*. Au cours de la procédure d'installation, il est également possible de charger l'icône fournie sur la disquette (au cas où si cette opération n'est pas exécutée automatiquement).

Création de la fenêtre de processus

Configuration de la Scanlist

Il s'agit ensuite de configurer la Scanlist du DeviceNet-Master/Scanner. A cet effet, les appareils figurant dans la partie gauche de la fenêtre correspondante sont reportés dans la liste Scanlist, occupant la partie droite de la fenêtre. Il est ensuite possible, pour chaque appareil transféré dans la Scanlist, de sélectionner la variante de liaison I/O - le préréglage est fixé sur Polled.

MAN 1000010085 ML Version: M Status: RL (released | freigegeben) printed: 16.06.2011

Configuration de la fenêtre de processus (Mapping)

A l'aide de la fonction *AutoMap*, il est possible d'attribuer les données d'entrée des appareils figurant dans la Scanlist à la fenêtre de processus du DeviceNet-Master/Scanner.

Dans notre exemple, on obtient les attributions présentées sur la figure ci-dessous. A titre d'exemple, les valeurs de processus d'entrée du TOP Control on/off d'adresse 4 sont attribuées aux adresses internes du scanner comme ci-dessous:

Etat capteur (quittance) S1: I:1.2.0 (Bit 0 de I:1.2)
Etat capteur (quittance) S2: I:1.2.1 (Bit 1 de I:1.2)
Etat capteur (quittance) S3: I:1.2.2 (Bit 2 de I:1.2)

Si l'état du capteur S1 du TOP Control on/off affecté de l'adresse 4 doit également pouvoir être accédé par un programme de commande, ceci s'effectue par un accès à I:1.2.0.

MAN 1000010085 ML Version: M Status: RL (released I freigegeben) printed: 16.06.2011

POSITIONS DE SECURITE ET ENTRETIEN

Positions de sécurité avec panne d'électronique ou de	
l'alimentation pneumatique auxiliaire	114
·	
Entretien	114

Positions de sécurité avec panne d'électronique ou de l'alimentation pneumatique auxiliaire

Mode d'entraînement	Désignation	Réglage de sécurité après une panne d'energie auxiliaire	
		électrique	pneumatique
up down	à simple effet WW A	bas	bas
up down	à simple effet WW B	haut	haut
up down	à double effet WW I	bas/haut (selon le raccordement des conduites de commande)	pas défini

Entretien

La TOP Control on/off ne nécessite pas d'entretien, pour autant qu'elle soit exploitée conformément aux instructions contenues dans ce mode d'emploi.

Contact addresses / Kontaktadressen

Germany / Deutschland / Allemange

Bürkert Fluid Control System Sales Centre Chr.-Bürkert-Str. 13-17 D-74653 Ingelfingen Tel. + 49 (0) 7940 - 10 91 111 Fax + 49 (0) 7940 - 10 91 448

E-mail: info@de.buerkert.com

International

Contact addresses can be found on the internet at:

Die Kontaktadressen finden Sie im Internet unter:

Les adresses se trouvent sur internet sous :

<u>www.burkert.com</u> → Bürkert → Company → Locations

