Procedure for 3D migration of RFs in spherical coordinates for the AlpArray RF group (version 6.7.2020. GH)

- select station
- select earthquake
- calculate back-azimuth at start baz_0 (ray will remain in plane but this will need to be updated at each step)
- calculate P wave ray parameter p_0P
- correct ray parameter p for P-to-S wave at assumed Moho (Leonardo's step)
- **migration itself**, from station [phy_0, lambda_0, z_0+elev.] downwards (loop on _i, _i being index of next level)
 - step down deltaZ from current z_i-1 to next z_i (_i=1 in the figure below)
 - use departing level's velocity, interpolated from 3D model (ideally: in that plane only) v_i-1
 - o calculate departing incidence angle id_i-1 from spherical ray param. def. $p = ([R_{Earth} (i-1) * deltaZ + elev] * sin(id_i-1)) / v_i-1$
 - calculate great-circle distance travelled delta_i-1
 - from sine law the arrival angle at layer _i is: $ia_i = asin \{ sin(id_i-1) / (R_{Earth} i * deltaZ) * (R_{Earth} (i-1) * deltaZ) \}$ (NB: verify that $ia_i > 90^\circ$!)
 - from simple triangle angle sum: delta_i-1 = 180° id_i-1 ia_i
 - calculate new position [phy_i, lambda_i] using original position, delta_i-1 and baz_i-1
 - update local back-azimuth *baz_i* for next step using [*phy_i*, *lambda_i*] and earthquake coordinates
- assign RF time samples to depth mesh
- stack, mean, etc. (as usual, using neighbouring cells)
- change representation to spherical (paraview?)

Below is a tentative sketch accompanying the text, top part refers to the step from level 0 to 1, the bottom part is generic (with index _i).

