Loan prediction Project

• TA: Dr . Verena Nashaat

• Team members

Section no.	ID	Names
Section 16	20201700449	عبدالرحمن محمد نجيب محي الدين
Section 4	20201700102	أدهم مصطفى محسن محمد
Section 31	20201700909	نانیس عادل شحاته حسن
Section 7	20201700176	باسم عاطف السيد محمد
Section 4	20201700091	أحمد وائل صلاح الدين حسن
Section 34	202017001019	يوسف عبد الرؤوف أمين محمود
Section 6	20201701060	أندرو عصام جورجي عطا

Introduction

Topic:

Loans are the core business of banks. The main profit comes directly from the loan's interest. The loan companies grant a loan after an intensive process of verification and validation. However, they still don't have assurance if the applicant can repay the loan with no difficulties.

Goal:

Predict if the user can take loan or not from the given features.

Dataset description:

The dataset is composed of 614 persons with their Loan ID Gender , Married

Dependents, Education, Self Employed, Applicant Income Co-applicant Income, Loan Amount, Loan Amount Term, Credit History Property Area and Loan Status.

The project processes

First:

We started by importing the libraries as (pandas and sklearn) then the dataset loading and displaying the head of data

H	ead												
	Loan_ID	Gender	Married Dep	pendents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History F	roperty_Area Lo	an_Status
0	LP001002	Male	No	θ	Graduate	No	5849	0.0	NaN	360.0	1.0	Urban	Y
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural	N
2	LP001005	Male	Yes	θ	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban	Υ
3	LP001006	Male	Yes	θ	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban	Y
4	LP001008	Male	No	θ	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban	Υ

then the description of it (count, std and mean)

Shape :	(614, 13)						
Describe	Applicant1	Income Coappli	cantIncome	LoanAmount	Loan_Amoun	t_Term	Credit_History
count	614.000000	614.000000	592.00000	600	0.00000	564.6	00000
mean	5403.459283	1621.245798	146.41216	2 342	2.00000	0.8	342199
std	6109.041673	2926.248369	85.58732	5 6	5.12041	0.3	64878

Then we counted null values

NULLS Loan_ID		
Gender	13	
Married	3	
Dependents	15	
Education	0	
Self_Employed	32	
ApplicantIncome	0	
CoapplicantIncome	0	
LoanAmount	22	
Loan_Amount_Term	14	
Credit_History	50	
Property_Area	0	
Loan_Status	0	

Second:

Pre-process:

Then we removed the null values from the dataset.

We made label encoding to the data by changing the data which has string values by giving it an integer value then We did the data scaling and displayed the new data description after the scaling.

Data after preprocess												
	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area
count	480.000000	480.000000	480.000000	480.000000	480.000000	480.000000	480.000000	480.000000	480.000000	480.000000	480.000000	480.000000
mean	239.500000	0.820833	0.647917	0.777083	0.202083	0.137500	5364.231250	1581.093583	144.735417	342.050000	0.854167	1.022917
std	138.708327	0.383892	0.478118	1.020815	0.401973	0.344734	5668.251251	2617.692267	80.508164	65.212401	0.353307	0.776411

Then we split data to x and y where x means the data which the prediction depends on it so it contained the data set except Loan id and Loan status and y means the predicted data which is loan status

Then we split data to 80% for train and 20% for test So, data become as the following

```
x shape , x tarin , y test (480, 11) (384, 11) (96, 11)
y shape , y tarin , y test (480,) (384,) (96,)
```

Third:

Classification:

We made algorithms to calculate the accuracy of data like and print the accuracy before and after scaling:

support-vector machine (SVM).

SVM algorithm accuracy is equals to:

before scaling= 0.5833333333333334.

after scaling = 0.7291666666666666.

"Logistic Regression" we made logistic regression to return the probability value by sigmoid function which gave us an accuracy equals to:

Fourth:

extracted a new feature principal component analysis (PCA).