Practice Book UNIT 10 Sequences

Answers

10.1 Constant Differences

- 1. (a) 17, 20, 23
- (b) 54, 63, 72
- (c) 18, 19, 20
- (d) 47, 55, 63

- 2. (a) 90, 88, 86
- (b) 5, 2, -1
- (c) 23, 18, 13
- (d) -3, -7, -11

- 3. (a) 4, 10, 16, 22, 28
- (b) 6
- 4. (a) 10, 18, 26, 34, 42
- (b) 8
- (c) 50, 58, 66

- 5. (a) 4, 11, 18, 25
- (b) 7
- (c) The first difference 7 is the multiple of *n* in the formula $u_n = 7n 3$.
- 6. (a) 11, 20, 29, 38
 - (b) The first difference 9 is the multiple of n in the formula $u_n = 9n + 2$.
- 7. (a) 11
- (b) 4, 15, 26, 37
- (c) 103

- 8. (a) 78, 74, 70, 66, 62
- (b) -4
- (c) The first difference 4 is the multiple of *n* in the formula $u_n = 82 4n$.
- (d) 2
- 9. (a) 795
- (b) 272
- (c) 622
- (d) 710

- 10. (a) B and C
- (b) D
- (c) B
- (d) C

11. (a) -3 and 13

The numbers on this line go up in steps of 4.

- (b) 7.9, 8.0, 8.1
- The numbers on this line go up in steps of 0.1.
- 12. (a) 3N represents the number of grey tiles in pattern N.
 - (b) 1 black and 36 grey tiles
- (c) Pattern 20
- (d) number of tiles = 1 + 6N
- (e) Any suitable pattern with first three diagrams having 5, 9 and 13 tiles,

- 13. (a) 4
- (b) 24
- (c) 36
- (d) 10

10.2 Finding the Formula for a Linear Sequence

- 1. (a) 4
- (b) $u_n = 4n + 3$
- 2. (a) $u_n = 4n + 2$
- (b) $u_n = 2n + 9$
- (c) $u_n = 7n + 2$

- (d) $u_n = 22n + 12$
- (e) $u_n = 9n + 13$

- 3. (a) 16
- (b) 5
- (c) $u_n = 5n 4$

1

10.2 Answers

4. (a)
$$u_n = 3n - 2$$
 (b) $u_n = 4n - 2$

(b)
$$u_n = 4n - 2$$

(c)
$$u_n = 9n - 5$$

(d)
$$u_n = 10n - 5$$
 (e) $u_n = 19n - 18$

(e)
$$u_n = 19n - 18$$

5. (a)
$$-2$$

(a)
$$-2$$
 (b) $u_n = 20 - 2n$

6. (a)
$$u_n = 22 - 3n$$

(b)
$$u_n = 104 - 4n$$

(c)
$$u_n = 48 - 7n$$

(d)
$$u_n = 82 - 16n$$
 (e) $u_n = 99 - 9n$

(e)
$$u_n = 99 - 9n$$

7. (a)
$$-2$$

(a)
$$-2$$
 (b) $u_n = -2n$

8. (a)
$$u_n = 5 - 5n$$

(b)
$$u_n = 2n - 20$$

(c)
$$u_n = -2 - 3n$$

(d)
$$u_n = 15 - 7n$$

(e)
$$u_n = 4n - 11$$

9. (a)
$$u_n = 31n - 11$$

10. (a)
$$u_n = 11n - 6$$

11.	(a)	pattern number	number of grey tiles	number of white tiles
		5	6	10
		16	17	32

(b)	pattern number	number of grey tiles	number of white tiles
	n	n + 1	2 n

- Total number of tiles = (n + 1) + 2n = 3n + 1(c)
- The number of grey tiles follows the sequence 4, 6, 8, 10, ... with constant first (d) difference 2, and nth term 2n + 2. The number of white tiles follows the sequence 5, 8, 11, 14 ... with constant first difference 3, and nth term 3n + 2.

: total number of tiles = number of grey tiles + number of white tiles =(2n+2)+(3n+2)=5n+4

10.3 Second Differences and Quadratic Sequences

- 4, 9, 16, 25, 36, 49 1.
- (b) The second differences are all 2.

(c) 64, 81

- 2. (a)
- (b) 6, 29, 68, 123, 194
- The second differences are all 16, as expected. (c)
- The second differences are all 2. 3. (a)
- (b) $u_n = n^2 + 5$

- (a) $u_n = 2n^2 1$ 4.
- (b) $u_n = 4n^2 + 2$
- (c)
- $u_n = 5n^2 10$ (d) $u_n = 3n^2 2$
- The second differences are all 4. 5. (a)
- (b) 0, 1, 2, 3, 4, 5
- Simpler sequence = n 1(c)
- (d) $u_n = 2n^2 + n 1$

10.3 Answers

- The second differences are all 8. 6. (a)
- (b) $u_n = 4n^2 n + 3$

- 7.
- (a) $u_n = 4n^2 + 2n 3$ (b) $u_n = 3n^2 + 4n 2$
 - (c) $u_n = 4n^2 + 2n + 3$ (d) $u_n = 5n^2 + n 10$
- (a) The second differences are all -4. 8.
- (b) $u_n = -2n^2 + n + 10$
- (c) 20th term = $-2 \times 20^2 + 20 + 10 = -800 + 30 = -770$
- $u_n = -n^2 + 7n$ 9.
- The first differences are 7, 19, 37, 61, 91. 10. The second differences are 12, 18, 24, 30. The third differences are all 6.
 - $u_n = n^3 + 5$ (b)
- 11.
- (a) 4 black tiles and 64 grey tiles (b) 4 black tiles and 256 grey tiles (c) 4 black tiles and P^2 grey tiles (d) $T = P^2 + 4$

10.4 Special Sequences

- 29, 47, 76 1. (a)
- (b) 57, 92, 149
- (c) $\frac{6}{17}$, $\frac{7}{20}$, $\frac{8}{23}$

- (d) 1215, 3645, 10 935
- 2.
- (a) 0, 3, 3, 6, 9, 15 (b) 3, 4, 11, 26, 63, 152 (c) 6, 10, 24, 62, 162, 424 (d) 1, 2, 2, 4, 8, 32
- 3.
- (a) 1024, 4096, 16 384 (b) $u_n = 4^{n-1}$ or $u_n = \frac{1}{4} \times 4^n$
- 4.
- (a) $u_n = 3 \times 5^n$ (b) $u_n = 3^{n-1}$ or $u_n = \frac{1}{3} \times 3^n$

 - (c) $u_n = 2 \times 10^n$ (d) $u_n = 4 \times 7^{n-1}$ or $\frac{4}{7} \times 7^n$

- 5. (a) $u_n = 6n 5$ (b) $u_n = 8n 6$ (c) $u_n = \frac{6n 5}{8n 6}$
- 6. (a) $u_n = \frac{n}{n+3}$ (b) $u_n = \frac{2n-1}{8n-5}$ (c) $u_n = \frac{9n-4}{5n+2}$

(d) $u_n = \frac{6n-5}{5 \times 2^n}$

10.4 Answers

7. (a)
$$u_n = \frac{3n}{4n-1}$$

10th term
$$=\frac{30}{39} = \frac{10}{13}$$

(b)
$$u_n = \frac{5n-4}{3n+2}$$

10th term
$$=\frac{46}{32} = \frac{23}{16}$$

8. (a)

n	u_n	u _n to 3 decimal places
1	1	1.000
5	$1\frac{2}{3}$	1.667
10	$1\frac{9}{11}$	1.818
50	$1\frac{49}{51}$	1.961
100	$1\frac{99}{101}$	1.980
500	$1\frac{499}{501}$	1.996
1000	$1\frac{999}{1001}$	1.998
2000	$1\frac{1999}{2001}$	1.999

(b) As n becomes larger and larger, u_n gets closer and closer to 2.

9. (a)

n	u_n to 3 decimal places
1	4.000
5	4.800
10	4.900
50	4.980
100	4.990
500	4.998
1000	4.999
2000	5.000

As n becomes larger and larger, u_n gets closer and closer to 5.

(b) u_n to 3 decimal places 1 7.000 5 6.20010 6.100 50 6.020 100 6.010 500 6.002 1000 6.001 2000 6.001

As n becomes larger and larger, u_n gets closer and closer to 6.

10.4 Answers

(c)	n	u_n to 3 decimal places
	1	2.000
	5	2.667
	10	2.818
	50	2.961
	100	2.980
	500	2.996

2.998

2.999

1000

2000

As n becomes larger and larger, u_n gets closer and closer to 3.

(1)		
(d)	n	u_n to 3 decimal places
	1	1.000
	5	0.600
	10	0.550
	50	0.510
	100	0.505
	500	0.501
	1000	0.501
	2000	0.500
	I	1

As n becomes larger and larger, u_n gets closer and closer to $\frac{1}{2}$.

- 10. (a) $u_n \to 4$ as *n* increases
- (b) $u_n \to 7$ as *n* increases
- (c) $u_n \to 0.5$ as *n* increases
- (d) $u_n \to 2$ as *n* increases
- 11. (a) Multiply by 2 each time.
 - (b) For example,

$$1 \rightarrow 5 \rightarrow 9 \rightarrow 13 \rightarrow 17$$

+4 each time

$$1 \rightarrow 5 \rightarrow 25 \rightarrow 125 \rightarrow 625$$

×5 each time

$$1 \rightarrow 5 \rightarrow 13 \rightarrow 29 \rightarrow 61$$

 $\times 2 + 3$ each time

(There are many alternatives.)

12. (a)
$$u_n = \frac{n}{2n+1}$$

(c)
$$\frac{2}{5}, \frac{3}{10}, \frac{4}{17}$$

(d) Graph 1