

Data Mining -- Association Rules

Instructor: Jen-Wei Huang

Office: 92528 in the EE building jwhuang@mail.ncku

Association Rules

- Finding association, correlation or causal structures among sets of items or objects in transactional, relational DB
- Examples
 - bread ^ milk -> butter
 - age("25~35") ^ income("35,000~40,000) -> buyer(Lancer)

Example

Tid	Items
100	A, C, D
200	В, С, Е
300	A, B, C, E
400	B, E

min_support = 2 min_conf = 2/3

- Frequent itemsets
 - {A}, {B}, {C}, {E}, {A,C}, {B,C}, {B,E}, {C,E}, {B,C,E}
- Strong rules
 - \circ {B, E} \to C (2/3)
 - \circ C \rightarrow A (2/3)
 - \circ A \rightarrow C (2/2)

Data Mining & Social Network Analysis 2021/02/24

3

Definitions

- $I = \{i_1, i_2, i_3...i_n\}$: the set of all items
 - Itemset: a set of items
- Association rule: A→B,
 - where A \subset I, B \subset I, A \cap B = \varnothing
- ▶ support $(A \rightarrow B) = Prob.(A \cup B)$
- ▶ confidence($A \rightarrow B$) = Prob.($A \cup B/A$)
 - Strong rule: satisfy both minimum support & confidence

Definitions

- $I = \{i_1, i_2, i_3...i_n\}$: the set of all items
- ▶ $T \subseteq I$: a transaction
- D: a set of T, transaction DB
- itemset: a set of items
- k-itemset: an itemset that contains k items

Tid	Items
100	A, C, D
200	B, C, E
300	A, B, C, E
400	B, E

Data Mining & Social Network Analysis 2021/02/24

_

Frequent Pattern

- First proposed by Agrawal [1]
- A pattern that occurs frequently in a data set
- Finding inherent regularities in data
- Foundation for many essential data mining tasks
- In association rule mining, we want to find frequent itemsets, i.e., itemsets whose support are no less than a min_supp threshold.

Apriori Algorithm [2]

- A candidate generation and test approach
- Two steps:
 - Finding all frequent itemsets
 - Deriving valid association rules
- Downward closure property
 - Any subset of a frequent itemset must be frequent
 - E.g.) If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - If there is any itemset which is infrequent, its superset should not be frequent

7

Apriori Algorithm

- Scan DB once to get frequent 1-itemset
- For frequent k-itemsets, repeat followings
 - Generate length (k+1) candidate itemsets from frequent-k itemsets
 - Test the candidate itemsets against DB
 - Terminate when no frequent or candidate set can be generated
- Compute confidences from all frequent kitemsets (k>1)

An Example

$min_support = 2$

Database DB

Tid	Items	
100	A, C, D	
200	B, C, E	
300	A, B, C, E	
400	B, E	

	C_{I}
1 st	scan

ltemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	ltemset	sup
L_{1}	{A}	2
	{B}	3
-	{C}	3
	{E}	3

L_2	ltemset	sup
_	{A, C}	2
	{B, C}	2
	{B, E}	3
7	{C, E}	2
7		

C_2	ltemset	sup
2	{A, B}	1
	{A, C}	2
	{A, E}	1
←	{B, C}	2
	{B, E}	3
	{C, E}	2
	·	

3 rd scan	L_3
	_

ltemset	sup
{B, C, E}	2

Data Mining & Social Network Analysis 2021/02/24

.

Candidate Generation

- Step 1: self–joining L_k
- Step 2: pruning
- ▶ E.g.)
 - $L_3=\{abc, abd, acd, ace, bcd\}$
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - · acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L_3
 - ∘ *C*₄ = {*abcd*}

Pseudo-Code

 C_k : Candidate itemset of size k

```
L_k: frequent itemset of size k

L_I = \{ \text{frequent items} \}; 
for (k = 1; L_k! = \emptyset; k++) do begin

C_{k+I} = \text{candidates generated from } L_k; 
for each transaction t in database do

increment the count of all candidates in C_{k+I} that are contained in t

L_{k+I} = \text{candidates in } C_{k+I} with min_support end

return \bigcup_k L_k;
```

Association Rules Computation

```
for each large itemset m do
  for each subset p of m do
    if (sup(m)/sup(m-p)>= minconf) then
        output the rule (m-p)=>p with
        conf= sup(m)/sup(m-p) and
        support=sup(m)
```

Data Mining & Social Network Analysis 2021/02/24

11

Example

- Frequent k-itemsets (k>1) generated from the previous step:
 - {A, C}, {B, C}, {B, E}, {C, E}, {B, C, E}
- Scan DB to test if the confidences of the corresponding ARs are valid.
 - ∘ A->C, C->A
 - ∘ B->C, C->B
 - ∘ B->E, E->B
 - ∘ C->E, E->C
 - \circ B->CE, C->BE, E->BC, BC->E, BE->C, CE->B

13

Redundant Rules

- For the same support and confidence, if we have a rule {a,d}->{c,e,f,g}, do we need
 - {a,d}->{c,e,f}
 - {a}->{c,e,f,g}
 - {a,d,c}->{e,f,g}
 - {a}->{d,c,e,f,g}?
- Maximal association rules

Interestingness Measure

- play basketball ⇒ eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift(B, \neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

Data Mining & Social Network Analysis 2021/02/24

15

Improvements of Apriori

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Scan Reduction

- Reduce Scans of database
- Compute candidate k-itemsets from candidate (k-1)-itemsets instead of frequent (k-1)-itemsets
- Two scan methods:
 - Scan DB the first time for frequent 1-itemsets
 - Compute all candidate k-frequent itemsets from frequent 1-itemsets
 - Scan DB the second time to test if candidate kitemsets are frequent

Partition Database

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB [3]
 - Step 1: partition database and find local frequent patterns
 - Step 2: consolidate global frequent patterns

17

Hash-based Algorithm

- Algorithm DHP [4]: Direct Hashing and Pruning
- Hash table scheme
 - Eliminate infrequent candidate itemsets in the early phase
- Transaction items pruning
 - Eliminate infrequent items from the database

Candidate Itemsets Pruning

Hash table building

Candidate pruning

Data Mining & Social Network 20 **2021/93**/24

19

Transaction Items Pruning

- A transaction should contain at least k+1 k-itemsets to support (k+1)-itemsets
 - Each item should appear at least k times

Trimming information collecting

Transaction trimming

Data Mining & Social Network Analysis 2021/02/24

21

References

- [1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93
- ▶ [2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94
- [3] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95.
- [4] J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95

References

- Slides from Prof. J.-W. Han, UIUC
- ▶ Slides from Prof. M.–S. Chen, NTU
- ▶ Slides from Prof. W.–Z. Peng, NCTU

Data Mining & Social Network Analysis 2021/02/24

23

HW₁

- Compute strong association rules from the following DB with
 - o min_supp = 50%
 - o min_conf = 66%
- DB:
 - 100 A, C, D
 - 200 B, C, E
 - 300 A, B, C, E
 - 400 B, E
 - 500 A, C, E
 - 600 B, C, D