| [EEC3600-001] 수치해석 |               |         |  |  |
|--------------------|---------------|---------|--|--|
| 소속: 전기전자공학부        | 학번: 12191529  | 이름: 장준영 |  |  |
| Python Programming | HW number: #6 |         |  |  |

## 6.1. Newton's Polynomial Method

#### a. 문제

#### Problem 6.1

The data points in the table lie on the plot of  $f(x) = 4.8 \cos \frac{\pi x}{20}$ . Interpolate this data by Newton's method at x = 0, 0.5, 1.0, ..., 8.0, and compare the results with the "exact" values  $y_i = f(x_i)$ .

| x | 0.15    | 2.30    | 3.15   | 4.85    | 6.25    | 7.95    |
|---|---------|---------|--------|---------|---------|---------|
| у | 4.79867 | 4.49013 | 4.2243 | 3.47313 | 2.66674 | 1.51909 |

#### c. 문제

```
import pandas as pd
# 1. Given data points (x_i, y_i)
x_data = np.array([0.15, 2.30, 3.15, 4.85, 6.25, 7.95])
y_data = np.array([4.79867, 4.49013, 4.22430, 3.47313, 2.66674, 1.51909])
def divided_differences(x, y):
    n = len(x)
    coef = y.copy().astype(float)
    for j in range(1, n):
        coef[j:n] = (coef[j:n] - coef[j-1]) / (x[j:n] - x[j-1])
    return coef
a = divided_differences(x_data, y_data)
def interpolation_formula(a, x_data):
    terms = [f"{a[0]:.6f}"]
    for i in range(1, len(a)):
       factors = '*'.join([f"(x - {x_data[j]:.2f})" for j in range(i)])
    terms.append(f"{a[i]:+f}*{factors}")
return "P(x) = " + ' '.join(terms)
interp_eq = interpolation_formula(a, x_data)
print("Newton Interpolation Formula:")
print(interp_eq)
def newton_eval(a, x_data, x):
    n = len(a)
    result = a[-1]
    for i in range(n - 2, -1, -1):
| result = result * (x - x_data[i]) + a[i]
x_{eval} = np.arange(0.0, 8.01, 0.5)
y_eval = [newton_eval(a, x_data, x) for x in x_eval]
real\_eval = [4.8 * np.cos(np.pi * x / 20) for x in x\_eval]
error_eval = np.array(real_eval) - np.array(y_eval)
result_df = pd.DataFrame({
     "x": x_eval,
     "P(x)": np.round(y_eval, 6),
     "f(x)": np.round(real_eval, 6),
     "Err": np.round(error_eval, 6)
print("\nInterpolated Values at x = 0, 0.5, ..., 8.0:")
print(result_df.to_string(index=False))
x_dense = np.linspace(0, 8.0, 400)
y_dense = [newton_eval(a, x_data, x) for x in x_dense]
plt.figure(figsize=(10, 6))
plt.plot(x_dense, y_dense, label="Interpolated Curve (P(x))", color='orange')
plt.plot(x_data, y_data, 'ro', label="Original Data Points")
plt.scatter(x_eval, y_eval, color='blue', label="Evaluated Points (step size=0.5)")
plt.xlabel("x")
plt.ylabel("P(x)")
plt.title("5th-order Newton Polynomial Interpolation Graph")
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()
```

## 6.2. Natural Cubic Spline(3차 다항식 보간법)

a. 문제

Problem 6.2

Use a natural cubic spline to determine y at x = 1.5. The data points are

| x | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| y | 0 | 1 | 0 | 1 | 0 |



```
import numpy as np
x_vals = [1, 2, 3, 4, 5]
y_vals = [0, 1, 0, 1, 0]
# 방정식 개수 = 16 (4구간 x 4계수)
A = np.zeros((16, 16))
b = np.zeros(16)
row = 0
for i in range(4):
    x0 = x_vals[i]
       x1 = x_vals[i+1]
      # Si(xi) = yi
A[row, i*4:i*4+4] = [x0**3, x0**2, x0, 1]
b[row] = y_vals[i]
row += 1
      A[row, i*4:i*4+4] = [x1**3, x1**2, x1, 1]
b[row] = y_vals[i+1]
row += 1
for i in range(3): # between S1-S2, S2-S3, S3-S4

x = x_vals[i+1]
A[row, i*4:i*4+4] = [3*x**2, 2*x, 1, 0] # S_i'
A[row, (i+1)*4:(i+1)*4+4] = [-3*x**2, -2*x, -1, 0] # -S_{i+1}'
      b[row] = 0
 for i in range(3):
   x = x_vals[i+1]
      A[row, i*4:i*4+4] = [6*x, 2, 0, 0] # S_i''
A[row, (i+1)*4:(i+1)*4+4] = [-6*x, -2, 0, 0] # -S_{i+1}''
b[row] = 0
      row += 1
A[row, 0:4] = [6*x_vals[0], 2, 0, 0]
b[row] = 0
row += 1
A[row, 12:16] = [6*x_vals[-1], 2, 0, 0]
b[row] = 0
def gauss_elimination(A, b):
      n = len(b)
     M = np.hstack([A.astype(float), b.reshape(-1,1)])
           max_row = np.argmax(abs(M[k:, k])) + k
M[[k, max_row]] = M[[max_row, k]]
           for i in range(k+1, n):
    factor = M[i, k] / M[k, k]
    M[i, k:] = M[i, k:] - factor * M[k, k:]
      # Back substitution
      x = np.zeros(n)
      for i in range(n-1, -1, -1):
| x[i] = (M[i, -1] - np.dot(M[i, i+1:n], x[i+1:n])) / M[i, i]
coeffs = gauss_elimination(A, b)
# 결과 출력 (특히 a1~d1만 확인)
print("Coefficients a1~d1:")
print( coefficients alood
print("a1 =", coeffs[0])
print("b1 =", coeffs[1])
print("c1 =", coeffs[2])
print("d1 =", coeffs[3])
```

[Newton-Raphson Method]

$$\bullet \quad x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

d. Python 출력 결과

## 6.3. Lagrange Polynomial Interpolation

a. 문제

Problem 6.3

Density of air  $\rho$  varies with elevation h in the following manner:

| h (km)                      | 0     | 3     | 6     |  |
|-----------------------------|-------|-------|-------|--|
| $\rho$ (kg/m <sup>3</sup> ) | 1.225 | 0.905 | 0.652 |  |

Express  $\rho(h)$  as a quadratic function using Lagrange's method.

$$P_0(h) = \frac{(0-3)(p-6)}{(p-3)(p-6)} = \frac{18}{(p-3)(p-6)}$$

$$P_3(h) = \frac{(h-0)(h-6)}{(3-0)(3-6)} = \frac{h(h-6)}{-9}$$

$$P_6(h) = \frac{(h-0)(h-3)}{(6-0)(6-3)} = \frac{h(h-3)}{18}$$

= 
$$\frac{1.225}{18}$$
 (h-3)(h-6) -  $\frac{0.905}{9}$  h(h-6) +  $\frac{0.652}{18}$  h(h-3)

$$= 0.00312h^2 - 0.11783h + 1.225$$

## 6.4. Polynomial Interpolation via Linear System

## a. 문제

Problem 6.4 (Interpolation via solving a linear system)

**Polynomial Interpolation via Linear System** Let f(x) be a polynomial of degree at most 2 (i.e., quadratic) that passes through the following three points:

- (a) Assume  $f(x) = ax^2 + bx + c$ . Write down a system of linear equations based on the interpolation condition  $f(x_i) = y_i$  for each given point.
- (b) Write the above system in matrix form  $A\mathbf{x} = \mathbf{b}$ , where  $\mathbf{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ , and solve for  $\mathbf{x}$ .
- (c) Write the explicit form of the interpolating polynomial f(x).
- (d) Plot the polynomial f(x) and verify visually that it passes through the given three points.

(b) 
$$\begin{bmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 16 & 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

(c) 
$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 4 & 2 & 1 & 3 \\ 16 & 4 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -2 & -3 & -5 \\ 0 & -12 & -15 & -31 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -2 & -3 & -5 \\ 0 & 0 & 3 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ b \\ c \end{bmatrix} = \begin{bmatrix} -2/3 \\ 3 \\ -1/3 \end{bmatrix}$$

: 
$$f(x) = -\frac{2}{3}x^2 + 3x - \frac{1}{3}$$



```
import numpy as np
      def gaussian_elimination(A, b):
          A = A.copy().astype(float)
          b = b.copy().astype(float)
          n = len(b)
          for i in range(n):
               max_row = np.argmax(np.abs(A[i:, i])) + i
               if i != max_row:
                 A[[i, max_row]] = A[[max_row, i]]
                   b[[i, max_row]] = b[[max_row, i]]
18
                  factor = A[j, i] / A[i, i]
                    A[j, i:] -= factor * A[i, i:]
                    b[j] -= factor * b[i]
          x = np.zeros(n)
          for i in reversed(range(n)):
              x[i] = (b[i] - np.dot(A[i, i+1:], x[i+1:])) / A[i, i]
          return x
     A = np.array([
      ], dtype=float)
      b = np.array([2, 3, 1], dtype=float)
      x = gaussian_elimination(A, b)
      print(f''f(x) = \{a:.3f\}x^2 + \{b_{:.3f}\}x + \{c:.3f\}'')
          return a * x**2 + b_ * x + c
     x_vals = np.linspace(0, 5, 100)
     y_vals = f(x_vals)
     x_data = [1, 2, 4]
y_data = [2, 3, 1]
     plt.figure(figsize=(8, 5))
     plt.plot(x_vals, y_vals, label='Interpolating Polynomial')
plt.plot(x_data, y_data, 'ro', label='Data Points')
plt.title('Quadratic Interpolation via Gaussian Elimination')
      plt.xlabel('x')
plt.ylabel('f(x)')
      plt.grid(True)
      plt.legend()
      plt.show()
[Newton-Raphson Method]
```

$$\bullet \quad x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

## d. Python 출력 결과



### 6.5. Prediction via Polynomial Interploation

## a. 문제

**Problem 6.5** (Prediction via polynomial interpolation) This method is also applicable to beam deflection profiles, blade surface fitting, and trajectory reconstruction in robotic arms. When more data points are available, higher-order or piecewise polynomial interpolation (e.g., splines) may provide better robustness.

**Problem Description** An aerospace engineer is analyzing the surface profile of an airfoil. Due to limitations in measurement equipment, only a few height measurements are available along the chord line (length) of the airfoil. The surface is assumed to be smooth and can be approximated by a quartic polynomial:

$$y(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

The following data points (in meters) represent measurements of the airfoil surface at different chord positions:

| x (m) | y (m) |
|-------|-------|
| 0.00  | 0.00  |
| 0.25  | 0.03  |
| 0.50  | 0.04  |
| 0.75  | 0.03  |
| 1.00  | 0.00  |

#### Tasks

- (a) Formulate a system of linear equations using the interpolation conditions, and solve for the coefficients  $a_0, a_1, a_2, a_3, a_4$ .
- (b) Write the explicit form of the polynomial y(x).
- (c) Estimate the surface height at  $x=0.6\,\mathrm{m}$ . Briefly discuss whether the resulting profile exhibits leading/trailing edge symmetry.
- (d) Plot the resulting interpolated polynomial together with the original data points. Use software such as Python/Matlab/Mathematica for visualization.



```
import numpy as np
      import matplotlib.pyplot as plt
      x_{vals} = np.array([0.00, 0.25, 0.50, 0.75, 1.00])
      y_vals = np.array([0.00, 0.03, 0.04, 0.03, 0.00])
     A = np.vander(x_vals, 5)
     b = y_vals.copy()
      # Augmented matrix [A | b]
      Ab = np.hstack((A, b.reshape(-1, 1)))
      n = len(b)
      # Gauss elimination
      def gauss_elimination(Ab):
          for i in range(n):
               max_row = i + np.argmax(np.abs(Ab[i:, i]))
               Ab[[i, max_row]] = Ab[[max_row, i]]
               for j in range(i+1, n):
                   factor = Ab[j, i] / Ab[i, i]
                   Ab[j, i:] -= factor * Ab[i, i:]
          x = np.zeros(n)
          for i in range(n-1, -1, -1):
               x[i] = (Ab[i, -1] - np.dot(Ab[i, i+1:n], x[i+1:n])) / Ab[i, i]
          return x
      coeffs = gauss_elimination(Ab)
      print("Coefficients (a4 ~ a0):")
      for i, a in enumerate(coeffs[::-1]):
          print(f"a{i} = {a:.6f}")
      x_data = np.linspace(0, 1, 200)
      y_data = np.polyval(coeffs, x_data)
      plt.plot(x_data, y_data, label="Interpolated Curve")
      plt.plot(x_vals, y_vals, 'ro', label="Data Points")
plt.axvline(0.6, linestyle='--', color='gray')
      plt.title("Airfoil Surface Interpolation")
      plt.xlabel("x (m)")
      plt.ylabel("y (m)")
      plt.grid(True)
      plt.legend()
      plt.show()
[Newton-Raphson Method]
         x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}
```

# d. Python 출력 결과



## 6.6. (Least Square Method 적용 5) 다변수

a. 문제

| 풀이       | (a) (1     | ) ILLE TO LEGA                             | H /12.       |                 |                    |               |                                     |      |
|----------|------------|--------------------------------------------|--------------|-----------------|--------------------|---------------|-------------------------------------|------|
|          | (a), (b    | )  世째 🕏                                    |              |                 |                    |               |                                     |      |
|          |            | χ₀(ŧ)                                      | X,(t)        |                 | χ <sub>2</sub> (t) | χ₃(t)         |                                     |      |
|          | a          | oot2+boot2+Coot+do                         |              |                 |                    |               | attob                               |      |
|          |            | у.(+)                                      | y, (t)       |                 | y2 (b)             | y,(t)         |                                     |      |
|          | a,         | t3 + b10 t2 + C10t +cl                     | . ant3+bnt3+ | C,,++d,, a12+3+ | brata+Gat+dra      | ant+but+c     | t+do                                |      |
|          | t* 0       |                                            | 0.25         | 0.5             | 0.                 | ns            | i                                   |      |
|          | []         | interpolation                              | <b>T</b> U]  |                 |                    |               |                                     |      |
|          |            | শীয় প্রশ্নপ্র                             |              | 2 42 8          | 선속성                |               | 5 94%                               |      |
|          |            | · %(o) = 0 , %(                            | n 25)= [     |                 | 25) = 1/10.25      |               | (0.25) = X((0.2                     |      |
|          |            | · x1(0.25)=1,                              |              |                 | (5) = X1 (0.5)     |               | (0.5) = 1/2 (0.5                    | 5)   |
|          |            | $\chi_1(0.25) = 1$ , $\chi_2(0.5) = 2.5$ , |              | · 1/2 (0.       | ns) = X, (0.15     | ) · x';       | (6.D5) = X7 (6.1                    | 5)   |
| (a), (b) |            | · X1(0.75) - 4,                            |              | - y'(o.         | .25) = y, (0.2     | 5) · y'       | (0.25) = y,"(0.3                    | 25)  |
| . ,, , , |            |                                            |              |                 | s) = y'(0.5)       |               | (0.5) = y2"(0.5                     |      |
|          |            | · y.(0)= 0, y(0                            | (05) = 1     | · 42 (0.        | ns)= y; (0.1s      | ) • 42        | (0.75) = y; (0.7                    | 5)   |
|          |            | · y, (0.25) -2, y,                         |              |                 | Boundary (         |               |                                     |      |
|          |            | · y_(0.5)= 1,y                             |              |                 | ) / X(1)=0         | andition      |                                     |      |
|          |            | ·y;(0.75) = 2, !                           | (1)±0        |                 | , y*(() = 0        |               |                                     | -    |
|          |            |                                            |              | 9 (8) -0        | , 9(1)             |               |                                     |      |
|          | (0/01/41)  | 74471782                                   | Python       | 코드 참고행          | 72.                |               |                                     |      |
|          | 답:         | t                                          |              | χ;(ы            |                    |               | y: (+)                              |      |
|          |            | [0.0 , 0.25)                               | 8t³          | + 3,5           | 5t                 | -64t³         | + 12                                | ь    |
|          |            | [0.25, 0.5)                                | -8(t-0.25)3+ | 6(t-0.25)2+ 5(t | t-0.25)+           | 128(t-0.25)"- | 48(t-0.25)°                         | +2   |
|          |            |                                            | -8(t-0.5)3   |                 | t-0.5)+2.5         | -128(t-0.5)3+ |                                     | +1   |
|          |            | [0.75,1)                                   | 8(t-0.95)3-  | -6(t-0.75)°+5(  | t-0.05)+4          | 64 (t-0.95)2- | 48(t-0.95)2                         | +2   |
|          |            |                                            |              |                 |                    |               | t x(t)                              | y(t  |
|          |            |                                            |              |                 |                    |               | 0.000                               |      |
|          |            |                                            |              |                 |                    |               | 3.1 0.358<br>3.2 0.764              |      |
|          |            |                                            |              |                 |                    |               | 3.3 1.264                           |      |
|          |            |                                            |              |                 |                    |               | 9.4 1.858                           |      |
| (c)      |            |                                            |              |                 |                    |               | 0.5 2.500                           | 1.00 |
|          | (a) + 1    | 0 01 02                                    | . 09.1 0     | 에만 XH           | b). リ(も) と         |               | 3.6 3.142                           |      |
|          | ((,) T = ( | 010.1.0.21                                 |              |                 |                    | /             | 3.7 3.736                           |      |
|          |            |                                            |              |                 |                    | · ·           |                                     |      |
|          | (a),(b     | 0,01,01,012,<br>6) 에서 구현<br>4정 및 경과        | λi(t), yi(   | ty에 각각          | 데취하여               | 구한 것!         | 3.7 3.730<br>3.8 4.236<br>3.9 4.642 | 1.88 |



1) Cubic Spline의 장점: 왜 경로가 부드러운가?

A: Cubic Spline은 수학적으로 다음의 조건을 만족하기 때문:

- 위치 연속성( $C^0$ ): 경로가 끊기지 않고 연결된다.
- 속도 연속성( $\mathcal{C}^1$ ): 로봇이 방향을 급격히 바꾸지 않고, 매끄럽 게 회전한다.
- 가속도 연속성( $C^2$ ): 로봇이 가속/감속할 때 충격 없이 부드럽 게 움직인다.

(e)

- 2) 하지만 장애물이 있는 환경에서는:
- A. Cubic Spline은 기본적으로 모든 점을 반드시 통과해야 하므로:
  - 전역적 최적화 불가능: Spline은 구간 단위로 국소적으로만 조 정되므로, 전체 맥락에서 최적 경로를 고려하지 않는다.
  - 유연성 부족: 경로 수정이 필요할 때 모든 spline을 다시 구해 야 한다.

```
import numpy as np
import pandas as pd
segments = [
    (0.00, 0.25, # Segment 0
     [8.0, 0.0, 3.5, 0.0], # x(t) 계수 a,b,c,d
    [-64.0, 0.0, 12.0, 0.0]), # y(t) 계수 a,b,c,d
    (0.25, 0.50, # Segment 1
    [-8.0, 6.0, 5.0, 1.0],
    [128.0, -48.0, 0.0, 2.0]),
    (0.50, 0.75, # Segment 2
    [-8.0, 0.0, 6.5, 2.5],
    [-128.0, 48.0, 0.0, 1.0]),
    (0.75, 1.00, # Segment 3
    [8.0, -6.0, 5.0, 4.0],
    [64.0, -48.0, 0.0, 2.0])
# 평가할 t 값
t_values = np.round(np.arange(0.0, 1.01, 0.1), 2)
x_results, y_results = [], []
# 각 t에 대해 해당 구간을 찾아 계산
for t in t_values:
    for (t_start, t_end, x_coeffs, y_coeffs) in segments:
        if t_start <= t <= t_end:</pre>
            tau = t - t start
            a, b, c, d = x_coeffs
            e, f, g, h = y_coeffs
            x_t = a * tau**3 + b * tau**2 + c * tau + d
            y_t = e * tau**3 + f * tau**2 + g * tau + h
            x_results.append(round(x_t, 6))
            y_results.append(round(y_t, 6))
            break
df = pd.DataFrame({
    "t": t_values,
    "x(t)": x_results,
    "y(t)": y_results
print(df.to_string(index=False))
```