Assignment No:01

CSE-0408 Summer 2021

Md. Khaled Saifullah Sadi

Department of Computer Science and Engineering State University of Bangladesh (SUB) Dhaka, Bangladesh mdsadi4@gmail.com

Abstract—The 8-puzzle is the largest puzzle of its type that can be completely solved. It is simple, and yet obeys a combinatorially large problem space of 9!/2 states. The N x N extension of the 8-puzzle is NP-hard.

r

Index Terms—heuristic, 8 puzzle

I. Introduction

Heuristic is a function which is used in Informed Search, and it finds the most promising path. Many problems, such as game-playing and path-finding, can be solved by search algorithms. To do so, the problems are represented by a search graph or tree in which the nodes correspond to the states of the problem.

II. LITERATURE REVIEW

The 8-puzzle is a prominent workbench model for measuring the performance of heuristic search algorithms [Gaschnig, 1979; Nilsson, 1980; Pearl, 1985; Russell, 1992], learning methods [Laird et a/., 1987] and the use of macro operators [Korf, 1985a].

III. PROPOSED METHODOLOGY

The 8-puzzle problem is a puzzle invented and popularized by Noyes Palmer Chapman in the 1870s. It is played on a 3-by-3 grid with 8 square blocks labeled 1 through 8 and a blank square. Your goal is to rearrange the blocks so that they are in order

IV. SOME SCREANSOOT FROM CODE

```
from copy import deepcopy
from colorama import Fore, Back, Style

DIRECTIONS = {"U": [-1, 0], "D": [1, 0], "L": [0, -1], "R": [0, 1]}
END = [[1, 2, 3], [4, 5, 6], [7, 0, 0]]

# unicode
left_down_angle = '\u2514'
right_down_angle = '\u2518'
right_down_angle = '\u2518'
left_up_angle = '\u2518'
left_up_angle = '\u2518'
left_up_angle = '\u2526'

middle_junction = '\u2526'
botton_junction = '\u2526'
botton_junction = '\u2524'
left_junction = '\u2524'
left_junction = '\u2584'
left_junction = '\u2586'

bar = Style.BRIGHT + Fore.CYAN + '\u2502' + Fore.RESET + Style.RESET_ALL
dash = '\u2506'

first_line = Style.BRIGHT + Fore.CYAN + left_up_angle + dash + dash + top_junction + dash + dash + dash + dash + style.BRIGHT + Fore.CYAN + left_junction + dash + dash + bottom_junction + dash + dash + dash
```

Fig. 1. Code

Fig. 2. Code

Fig. 3. Code

V. Some Screansoot from OutPut

Fig. 1. Output

Fig. 2. Output

VI. CONCLUSION

We tested our code to see how many states it would take to get from the current state to the goal state, and we came up with seven.

ACKNOWLEDGMENT

I would like to thank my honourable**Khan Md. Hasib Sir** for his time, generosity and critical insights into this project.

REFERENCES

Piltaver, R., Lustrek, M., and Gams, M. (2012). The pathology of heuristic search in the 8-puzzle. Journal of Experimental and Theoretical Artificial Intelligence, 24(1), 65-94