

Mark Scheme (Results)

June 2011

International GCSE

Mathematics (4MPO) Paper 01

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UG027960
All the material in this publication is copyright
© Edexcel Ltd 2011

Question number	Scheme	Marks		
1.	$7+x=x^2-3x+2$ $y=(y-7)^2-3(y-7)+2$	M1		
	$x^2 - 4x - 5 = 0$ $y^2 - 18y + 72 = 0$	A1		
	(x-5)(x+1) = 0 $(y-6)(y-12) = 0$	M1		
	$x = 5 \qquad y = 12 \qquad \qquad y = 6 y = 12$			
	$x = -1 y = 6 \qquad x = -1 x = 5$	A1 A1 (5)		
2.	(a) $\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$	M1A1		
	(b) $\log_x 8 - 6\log_8 x = 1$			
	$\log_x 8 - \frac{6}{\log_x 8} = 1$	M1		
	$(\log_x 8)^2 - \log_x 8 - 6 = 0$	M1		
	$(\log_x 8-3)(\log_x 8+2)=0$	M1		
	$\log_{x} 8 = 3 \Rightarrow 8 = x^{3} x = 2$			
	$(\log_x 8 = -2 x \notin \mathbf{Z}^+)$	M1A1 (7)		
	$\frac{1}{\log_8 x} - 6\log_8 x = 1$			
	$6(\log_8 x)^2 + \log_8 x - 1 = 0$			
	$(3\log_8 x - 1)(2\log_8 x + 1) = 0$			
	$\log_8 x = \frac{1}{3} \qquad x = 8^{\frac{1}{3}} = 2$			
	$(\log_8 x = -\frac{1}{2}, x = 8^{-\frac{1}{2}} \notin \mathbf{Z}^+)$			
3.	(a) $\frac{dy}{dx} = 2e^{2x} \sin 3x + 3e^{2x} \cos 3x$	M1A1A1		
	(b) $\frac{d^2y}{dx^2} = 4e^{2x}\sin 3x + 6e^{2x}\cos 3x + 6e^{2x}\cos 3x - 9e^{2x}\sin 3x$	M1A1		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\frac{\mathrm{d}y}{\mathrm{d}x} - 9y + 6\mathrm{e}^{2x}\cos 3x$	M1A1		
	$or \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 2y + 3e^{2x}\cos 3x$			
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\frac{\mathrm{d}y}{\mathrm{d}x} - 9e^{2x}\sin 3x + 6e^{2x}\cos 3x$			
	$=2\frac{\mathrm{d}y}{\mathrm{d}x}-9y+6e^{2x}\cos 3x$	(7)		

Question number	Scheme	Marks
4.	(a) $\sin 2A = \sin A \cos A + \cos A \sin A$ (= $2 \sin A \cos A$)	B1
	(b) $\cos 2A = \cos^2 A - \sin^2 A = (1 - \sin^2 A) - \sin^2 A$ $(= 1 - 2\sin^2 A)$	M1A1
	(c) $\sin 3A + \sin A = \sin(2A + A) = \sin 2A \cos A + \cos 2A \sin A + \sin A$ = $2 \sin A \cos^2 A + (1 - 2\sin^2 A) \sin A + \sin A$	M1
	$= 2\sin A \left(1 - \sin^2 A\right) + \sin A - 2\sin^3 A + \sin A$	M1 M1
	$=4\sin A-4\sin^3 A$	A1 (7)
5.	(a) $a^2 = 5a$ $a = 5$	M1A1
	(b) $y-5 = -\frac{5}{7}(x-5)$	M1
	y = 0 $(x-5) = 7$ $x = 12$	M1A1
	(c) Vol. of cone = $\frac{1}{3}\pi \times 5^2 \times (12-5) = \frac{175}{3}\pi$	B1
	$\int_0^5 \pi y^2 dx = \int_0^5 \pi \times 5x dx = 5\pi \left[\frac{x^2}{2} \right]_0^5$	M1A1ft
	$= \frac{125}{2}\pi$ Total vol. = $\frac{125}{2}\pi + \frac{175}{3}\pi = \frac{725}{6}\pi$	A1
	2 3 6	B1ft (9)
6.	(a) $a+2d=70$	M1
	$\frac{10}{2}(2a+9d) = 450$	A1
	2a + 9d = 90	
	$5d = -50 \Rightarrow d = -10$ (b) $a = 70 + 20 = 90$	M1A1 B1
	$S = \frac{n}{2} (180 - 10(n - 1))$	M1
	$\frac{n}{2}(190-10n)350$ $190n-10n^2700$	A1
	$n^2 - 19n + 70,, 0$	
	(n-5)(n-14),, 0 critical values: 5,14	M1
	5, n , 14 $n \in \emptyset$ $(n = 5, 7,, 13, 14)$	A1
		A1ft (10)

Question number	Scheme	Marks
7.	(a) $(5p-1)(p-2)=0$	M1
	$p = \frac{1}{5} p = 2$	A1
	(b) $5(3^x)^2 - 11(3^x) + 2 = 0$	M1
	$3^{x} = \frac{1}{5} \qquad x \ln 3 = \ln 0.2 x = \frac{\ln 0.2}{\ln 3} = -1.464 = -1.46$	M1A1
	$3^{x} = 2$ $x \ln 3 = \ln 2$ $x = \frac{\ln 2}{\ln 3} = 0.6309 = 0.631$	A1
	(c) $y = 5(3^{2x}) - 6(3^x) = 5(3^x) - 2$	
	$5(3^{2x}) - 11(3^x) + 2 = 0$	M1
	$3^{x} = 0.2$ $y = 5 \times 0.2 - 2 = -1$	M1
	$3^{x} = 2$ $y = 5 \times 2 - 2 = 8$ Points are $(-1.46, -1)$ and $(0.631, 8)$	A1
	Tomas are (-1.40,-1) and (0.031,8)	B1ft
0		(10)
8.	(a) $\frac{y-5}{7-5} = \frac{x-1}{9-1}$ $8(y-5) = 2(x-1)$ $4y-20 = x-1$ $y = \frac{1}{4}x + \frac{19}{4}$	M1A1
	(b) Grad. of $l = -4$	B1ft
	Midpoint of $AB = (5,6)$	B1tt
	Eqn. of $l: y-6=-4(x-5) (y=-4x+26)$	М1 А 1
	(c) $x=3$ $q=-4\times-2+6=14$	M1A1 M1A1ft
	(d) $y = 0$ $x = 6\frac{1}{2}$	WIII
	length $CD = \sqrt{(6\frac{1}{2} - 3)^2 + 14^2} = \sqrt{\frac{7^2}{2^2} + 14^2} = \frac{7}{2}\sqrt{17}$	B1ft
	length $AB = \sqrt{(7-5)^2 + (9-1)^2} = \sqrt{68} = 2\sqrt{17}$	M1
	Area of kite $=\frac{1}{2} \times \frac{7}{2} \sqrt{17} \times 2\sqrt{17} = 59\frac{1}{2}$	A1
	(accept 59.5 provided surds seen)	B1 cao
	or $14 \times 8 - \frac{1}{2}(9 \times 2 + 7 \times 6 + 7 \times 2\frac{1}{2} + 5 \times 5\frac{1}{2})$	
	or $2 \times 3\frac{1}{2} + \frac{1}{2}(9 \times 2 + 7 \times 6 + 7 \times 2\frac{1}{2} + 5 \times 5\frac{1}{2})$	(13)

Question number	Scheme	Marks
9.	(a) $x = 2$ oe	B1
	(b) $\frac{dy}{dx} = \frac{4x(3x-6)-3(2x^2-6)}{(3x-6)^2}$	M1A1A1
	$\frac{dy}{dx} = 0 \qquad 12x^2 - 24x - 6x^2 + 18 = 0$ $x^2 - 4x + 3 = 0$	M1
	(2)(2)(3) = 0	
	(x-3)(x-1)=0 2×9=6 12	M1
	$x = 3$ $y = \frac{2\times 5}{9-6} = \frac{12}{3}$ (3,4)	A1
	$(x-3)(x-1) = 0$ $x = 3 y = \frac{2 \times 9 - 6}{9 - 6} = \frac{12}{3} \qquad (3,4)$ $x = 1 y = \frac{-4}{-3} = \frac{4}{3} \qquad (1,\frac{4}{3})$	
	(c) $x = 0$ $y = 1$	A1
	$\frac{dy}{dx} = \frac{18}{36} = \frac{1}{2} \text{grad. normal} = -2$	B1
eqn.	eqn. normal: $y-1=-2x$ oe	B1
	(d) $-2x+1=\frac{2x^2-6}{3x-6}$	B1
	$-6x^2 + 15x - 6 = 2x^2 - 6$	M1
	$8x^2 - 15x = 0$	
	$(x = 0 \text{ (at } A)) \qquad \therefore \text{ at } B x = \frac{15}{8}$	M1A1
		A1 (15)

Question number	Sch	Marks	
10.	V h h A N	(a) $AC = 10x$ $\frac{VN}{5x} = \tan 60$ $VN = 5x\sqrt{3}$	B1 M1A1ft A1
	$VA^2 = (5x)^2 + (5\sqrt{3}x)^2$ or	(b) $\frac{5x}{VA} = \cos 60^{\circ}$ $VA = 10x$	M1A1ft A1 cao
	$ \begin{array}{c c} V \\ h \\ \hline M \\ M \\ AB \end{array} $ midpoint N	(c) $\tan \theta = \frac{VN}{4x} = \frac{5x\sqrt{3}}{4x} = \frac{5\sqrt{3}}{4}$ $\theta = 65.20 = 65.2^{\circ}$	M1A1ft A1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(d) $\tan \frac{1}{2}\phi = \frac{3}{4}$ $\phi = 2 \times 36.86 = 73.7^{\circ}$ (or obtuse 106.3°)	M1A1 A1
	$(6x)^2 = (5x)^2 + (5x)^2 - 2(5x)(5x)\cos\phi$	Vol. = $\frac{1}{3}$ × base area × height $\frac{1}{3}$ × $48x^2$ × $5x\sqrt{3}$ = 1110	
		$x^{3} = \frac{1110 \times 6}{48 \times 5\sqrt{3}} = 8.010$ $x = 2.0008 = 2$	M1 A1ft A1
			(16)

Further copies of this publication are available from International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit www.edexcel.com

Alternatively, you can contact Customer Services at www.edexcel.com/ask or on + 44 1204 770 696

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

