

FIG.2

FIG.4B

GICNAC \$1,2-Mana 1,3

FIG. 11

FIG. 14

FIG. 15

FIG. 17

HO OH Man
$$\alpha$$
 Man α OMe NH α Man α OMe Me

FIG. 19

FIG. 20

CMP-SIALIC ACID

FIG. 22

FIG. 23

FIG. 24

FIG.25

FIG. 26

ATGGCCTTCCCAAAGAAGAACTTCAGGGTCTTGTGGCTGCAACCATCACGCCAATGACTGAGAATGGAGAAATCAA CTTTTCAGTAATTGGTCAGTATGTGGATTATCTTGTGAAAGAACAGGGAGTGAAGAACATTTTTGTGAATGGCACAA CAGGAGAAGGCCTGTCCCTGAGCGTCTCAGAGCGTCGCCAGGTTGCAGAGGAGTGGGTGACAAAAGGGAAAGGAACAAG CTGGATCAGGTGATAATTCACGTAGGAGCACTGAGCTTGAAGGAGTCACAGGAACTGGCCCAACATGCAGCAGAAAT AGGAGCTGATGGCATCGCTGTCATTGCACCGTTCTTCCTCAAGCCATGGACCAAAGATATCCTGATTAATTTCCTAA AGGAAGTGGCTGCTGCCCCTGCCCTTTTATTACTATCACATTCCTGCCTTGACAGGGGTAAAGATTCGT GCTGAGGAGTTGTTGGATGGGATTCTGGATAAGATCCCCACCTTCCAAGGGCTGAAATTCAGTGATACAGATCTCTT AGACTTCGGGCAATGTGTTGATCAGAATCGCCAGCAACAGTTTGCTTTCCTTTTTGGGGTGGATGAGCAACTGTTGA GTGCTCTGGTGATGGGAGCAACTGGAGCAGTGGGGCAGTTTTGTATCCAGAGATTTATCAACTTTGTTGTCAAACTAG GTTTTGGAGTGTCACAGACCAAAGCCATCATGACTCTGGTCTCTGGGATTCCAATGGGCCCACCCCGGCTTCCACTG AAAGGATGGAAACTTGGAAGCTGGTAGCTAGTGCCTCTCTATCAAATCAGGGTTTGCACCTTGAGACATAATCTACC TTAAATAGTGCATTTTTTCTCAGGGAATTTTAGATGAACTTGAATAAACTCTCCTAGCAAATGAAATCTCACAATA AGCATTGAGGTACCTTTTGTGAGCCTTAAAAAGTCTTATTTTGTGAAGGGGCAAAAACTCTAGGAGTCACAACTCTC AGTCATTCATTTCACAGATTTTTTTGTGGAGAAATTTCTGTTTATATGGATGAAATGGAATCAAGAGGAAAATTGTA ATTGATTAATTCCATCTGTCTTTAGGAGCTCTCATTATCTCGGTCTCTGGTTCCTAATCCTATTTTAAAGTTGTCTA ATTITAAACCACTATAATATGTCTTCATTTTAATAAATATTCATTTGGAATCTAGGAAAACTCTGAGCTACTGCATT TAGGCAGGCACTTTAATACCAAACTGTAACATGTCTCAACTGTATACAACTCAAAATACACCAGCTCATTTGGCTGC TCAGTCTAACTCTAGAATGGATGCTTTTGAATTCATTTCGATG

21/40

MAFPKKKLQCLYAAT ITPMTENGE INFSV IGQYVDYLVKEQGVKNIFVNGTTGEGLSLSVSERRQVAEEWVTKGKDKLDQ V I IHVGALSLKESQELAQHAAE IGADG LAVI APFFLKPWTKD ILINET LKEVAAAAPALPFYYYHIPAL TGVK I RAEELLD GILDK I PTF QGLKF SDTDLLDFGCCVDQNRQQQFAFLFGVDEQLLSALVMGATGAVGSFVSRDLSTLLSN. VLECHRPKP S. LWSLGF OMAPPGFHCRKPPGSLLIVLKU, RAWISFLSLI, RMETWKLVASASLSNQGFAPLRINL

FIG.28

ATGGACTCGGTGGAGAAGGGGGCCGCCACCTCCGTCTCCAACCCGCGGGGGCGACCGTCCCGGGGCCGCCGCCGAAGCT GCAGCGCAACTCTCGCGGCGGCCAGGCCGAGGTGTGGAGAAGCCCCCGCACCTGGCAGCCCTAATTCTGGCCCGGGGAG GCAGCAAAGGCATCCCCCTGAAGAACATTAAGCACCTGGCCGCGCTCATTGGCTGGGTCCTGGTGCGGCCCTG GATTCAGGGGCCTTCCAGAGTGTATGGGTTTCGACAGACCATGATGAAATTGAGAATGTGGCCAAACAATTTGGTGCACA AGTTCATCGAAGAAGTTCTGAAGTTTCAAAAGACAGCTCTACCTCACTAGATGCCATCATAGAATTTCTTAATTATYATA ATGAGGKTGACATTGTAGGAAATATTCAAGCTACTTCTYCATGTTTACATCCTACTGATCTTCAAAAAGTTGCAGAAATG ATTICGAGAAGGATGATTCTGKTTTCTCTGTTGTGAGACGCCATCAGTTTCGATGGAGTGAAATTCAGAAAGGAGT TCGTGAAGTGACCGAACCTCTGAATTTAAATCCAGCTAAACCGCCTCGTCGACAAGACTGGGATGGAGAATTATATGAAA ATGCCTCATTTTATTTTGCTAAAAGACATTTGATAGAGATGGGTTACTTGCAGGGTGGAAAATGGCATACTACGAAATGC CAGGAGACCAAAAAGAAATAATATCTTATGATGTAAAAGATGCTATTGGGATAAGTTTATTAAAGAAAAGTGGTATTGAG GTGAGGCTAATCTCAGAAAGGGCCTGTTCAAAGCAGACGCTGTCTTCTTTAAAACTGGATTGCAAAATGGAAGTCAGTGT ATCAGACAAGCTAGCACTTGTAGATGAATGGAGAAAAGAAATGGGCCTGTGCTGGAAAGAAGTGGCATATCTTGGAAATG AAGTGTCTGATGAAGAGTGCTTGAAGAGAGTGGGCCTAAGTGGCGCTCCTGCTGATGCCTGTTCCTACGCCCAGAAGGCT GTTGGATACATTTGCAAATGTAATGGTGGCCGTGGTGCCATCCGAGAATTTGCAGAGCACATTTGCCTACTAATGGAAAA AGTTAATAATTCATGCCAAAAATAG

FIG.29

MDSVEKGAATSVSNPRGRPSRGRPPKLQRNSRGGQGRGVEKPPHLAALILARGGSKGIPLKNIKHLAGVPLIGWVLRAAL
DSGAFQSVWYSTOHDEIENVAKQFGAQVHRRSSEVSKDSSTSLDAIIEFLNYXNEXDIVGNIQATSXCLHPTDLQKVAEM
IREEGYDSXFSVVRRHGIFRWSEIQKCVREVTEPLNLNPAKRPRRQDWDGELYENGSFYFAKRHLIENGYLQGGKWHTTKC
ELEHSVDIDVDIDWPIAEGRVLRFYGKEKLKEILVCNIDGCLTNGHIYVSGDQKEIISYDVKDAIGISLLKKSGIE
WILISERAGSKQTLSSLKLDCKMEVSVSDKLAVVDENRKENGLCWKEVAYLGNEVSDEECLKRVGLSGAPADACSYAQKA
VGYICKONGGRGAIREFAEHIGLLMEKVNNSCOK.

22/40

FIG.31

MPLELELCPGRWYGGOHPCF I I AE IGONHOGDLDVAKRMIRMAKECGADCAKFOKSELEFKFNRKALERPYTSKHSWGKT YGEHKRHLEFSHDQYRELORYAEEVGIFFTASSMOEMAVEFLHELNVPFFKVGSGDTNNFPYLEKTAKKGRPMVISSGMOSMDTNKQVYQIVKPLNPNFCFLOCTSAYPLOPEDVNIR RYISEYGKLFPDIPIGYSGHETGIAISVAAVALGAKVLERHIT LDKTIWGSDHSASLEPGELAELVRSVRLVERALGSPTKQLLPCEMACNEKLGKSVVAKVKIPEGTILTMOMLTVKVGEPK AYPPEDIFN, VGKKVLVTVEEDDTIMEELVONHOKKIKS

				23/40			
hTf b	1%) +GalT	10.1	5.5	23.5	5.5	13.4	
Secreted hTf	(mol%) GalT +-G	3,9	2.3	11.6	2.3	4.7	
	PA-oligosaccharide structure	Mana2-Mana6 Mana3 Mana2-Mana2-Mana3	Mana2-Mana6 Mana3 Manb4-GlcNAcb4-GlcNAc Mana2-Mana3	Mana2-Mana3 Mana2-Mana3 Mana2-Mana2-Mana3	Mana5 Mana2-Mana3 Mana2-Mana3	Mana6 Mana3 Mana2-Mana3 Mana2-Mana3	
	Peak/code G.U. ODS, amide)	A/W8.1 (4.9,9.0)	B1/M7.2 (5.1,8.1)	B2/M9.1 (5.2,9.7)	C/M7.1 (5.8,8.0)	D/M6.1 (6.1,7.1)	

FIG.33A

		alT	3.7	8.0	24/40	 -	3.1	1.1 FIG.33B
Secreted hTf	~	+GalT	ĸ	0	2.			
Secr	Secret (m. – Gall 1.3				4.6	9.0	6.5	12
	PA-oligosaccharide	structure	Mana2-Mana6, Mana2-Mana3 Glca3-Mana2-Mana2-Mana3	Mana2-Mana3 Mana2-Mana2-Mana3	Mana5 Mana3 Mana3 Mana3	Mana6 Manb4-GicNacb4-GicNAc Mana3	Mana6 Manb4-GicNAcb4-GicNAc GicNAcb2-Mana3	Mana2-Mana3 Mana2-Mana3 Mana3
	Peak/code	(G.U. ODS, amide)	E1/M9.2 (6.3,10.3)	E2/M8.2 (6.4,8.5)	F1/M5.1 (7.2,6.2)	F2/000.1 (7.4,4.3)	F3/100.2 (7.4,4.7)	G1/M6.10 (7.9,6.8)

Secreted hTf	101%) +GalT				FIG.33C			
Secre	-GalT	5.0	1.7	1.3	4.0	6.1		
		pu	5.9	pu	23.4	15.7		
	PA-oligosaccharide structure	Mana6 Manb4-GicNAcb4-GicNAc Galb4-GicNAcb2-Mana3	Fuca 6 Mana6 Mana3 Fuca 3	Fuca 6 Mana6 Manb4—GlcNAcb4—GlcNAc Galb4—GlcNAcb2—Mana3 Fuca 3	Fuca 6 Mana6 Manb4-GicNAcb4-GicNAc	Fuca 6 Mana6 Manb4-GicNAcb4-GicNAc Mana3		
	Peak/code (G.U. ODS, amide)	G2/100.4 (8.0,5.7)	H/000.1FF (8.5,5.5)	1/100.4FF (8.9,7.0)	J1/010.0 (7.2,6.2)	J2/010.1 10.2,4.7)		

d hTf %) +GalT	P	4.3	0.7
Secreted hTf (mol%) -GalT +Gal7	3.5	рu	3.9
PA-oligosaccharide structure	Fuca 6 Mana6 Manb4—GlcNAcb4—GlcNAc GlcNAcb2—Mana3	Fuca 6 Mana6 Manb4-GicNacb4-GicNac Galb4-GicNacb2-Mana3	Fuca 6 GlcNAcb2-Mana6 Manb4-GlcNAcb4-GlcNAc
Peak/code	(10.2,5.1)	K/110.4 (10.9,6.3)	L/110.1 (12.7,5.1)

FIG.33D

FIG.34

Bacterial Pathways

28/40

				10			20		30			40			50				60		
1	CGG	ACC	CAG	ACT	GGT	AGT	GCA	GGC	TTT	GGA	ccc	CGA	GCC	GCT	GCA	ATG M	CCG P	CIG L	GAG E	CIG L	
			-	70			80			90			10	00			110			120	
61	GAG	CTG	TGT	ccc	GGG	CGC	TGG	GIG	GGC	GGG	CAA	CAC	CCG	TGC	TTC	ATC	ATT	GCC	GAG	ATC	120
6	Е	L	C 13	-	G	R	W L40	V	G	G 150	Q	Н	P 16	-	F	Ι	I 170	A	Е	I 180	25
121 26		CAG O	AAC N		CAG 0	GGC G	GAC n	CIG L		GTA V		AAG K	CGC R	ATG M	ATC I	CGC R	ATG M	GCC A	AAG K	GAG E	180 45
20	u	Q	19		Ď	_	200	ш	Б	210	A	Λ	22		1		230	А	V	240	40
181	TGT	GGG	GCT	GAT	TGT	GCC	AAG	TTC	CAG	AAG	AGT	GAG	CTA	GAA	TTC	AAG	TTT	AAT	CGG	AAA	240
46	С	G	A	-	С	A		F	Q	K	S	E		E	F	K	F	N	R	K	65
			25	50		2	260			270			28	30		2	290			300	
241	GCC	TIG	GAG	AGG	CCA	TAC	ACC	TCG	AAG	CAT	TCC	TGG	GGG	AAG	ACG	TAC	GGG	GAG	CAC	AAA	300
66	A	L	E	R	P	Y	T	S	K	H	S	W	G	K	T	Y	G	E	H	K	85
			3:				320			330			34				350			360	
			CIG	GAG			CAT										GCC		GAG		
86	R	H	L 3'	E	F	S	H 380	D	Q	Y 390	R	Ε	L 40	Q	R	Y	A 110	Ε	Е	V 420	105
			J			•				J90			41			•				420	
							TCT														
106	G	Ι	F 43	-	T	A	S 140	G	M	D 450	Е	M	A 46	V sn	Е	F	ь 170	Н	E	L 480	125
			-2.			-							70							-200	
							GIT											CIG			
126	N	V	P	F	F	K	V	G	S	G	D	T	N	N	F	Р	Y	L	Е	K	145

FIG. 35A

490	500	510	520 530	540
481 ACA GCC AAA AAA 146 T A K K 550		I S S		GAC ACC ATG 540 D T M 165 600
541 AAG CAA GIT TAT 166 K Q V Y 610		C CTC AAC CCC . L N P 630	AAC TIC TGC TIC TIG N F C F L 640 650	CAG TGT ACC 600 Q C T 185 660
601 AGC GCA TAC CCCG 186 S A Y P 670		V N L	R V I S E	TAT CAG AAG 660 Y Q K 205 720
661 CTC TTT CCT GAC 206 L F P D 730	ATT CCC ATA GGG TAI I P I G Y 740		GAA ACA GGC ATA GCG E T G I A 760 770	ATA TCT GTG 720 I S V 225 780
721 GCC GCA GTG GCT 226 A A V A 790		L E R	CAC ATA ACT TIG GAC H I T L D 820 830	AAG ACC TGG 780 K T W 245 840
781 AAG GOG AGT GAC 246 K G S D 850	CAC TOG GOC TOG CTG H S A S L 860		GAA CTG GCC GAG CTG E L A E L 880 890	GIG CGG TCA 840 V R S 265 900
841 GIG CGT CTT GIG 266 V R L V 910	GAG CGT GCC CTG GGC E R A L G 920	S P T	K Q L L P	TGT GAG ATG 900 C E M 285 960
901 GCC TGC AAT GAG 286 A C N E	AAG CTG GGC AAG TCT K L G K S		AAA GIG AAA AIT CCG K V K I P	GAA GGC ACC 960 E G T 305

FIG. 35B

-1880	476
	Ü
1	C
-	13
-	100
:	-
:	
	NE NE
ŧ	
	14
-	ō
******	÷
-	Įì.

			9'	70		9	980			990) 10		100	1000		1010		1020			
961	ATT	CTA	ACA	ATG	GAC	ATG	CIC	ACC	GIG	AAG	GIG	GGT	GAG	CCC	AAA	GCC	TAT	CCT	CCT	GAA	1020
306	T	T ₁	Т	М	D	М	T ₁	Т	V	K	V	G	E	Р	K	Α	γ	P	P	R	325
	_	_	103	an.	_	10)40	-	٠.	1050	•	•	106	_	••		070	*	-	1080	525
			10.	30		Τ(710			LUJU			TO	00		Τ(110		-	TOOU	
							٠														
1021	GAC	ATC	TTT	AAT	CTA	${\tt GTG}$	GGC	AAG	AAG	GIC	CIG	GIC	ACT	GIT	GAA	GAG	GAT	GAC	ACC	ATC	1080
326	D	Ι	F	N	L	V	G	K	K	V	L	V	T	V	Ε	Ε	D	D	T	Ι	345
			109	an.		11	L00			1110			112	20		11	130		1	1140	
			10.	, 0			200			LIIO			112			1.1	130		-	LITIO	
				•						٠				•			•			•	
1081	ATG	GAA	GAA	TTG	GTA	GAT	AAT	CAT	GGC	AAA	AAA	ATC	AAG	TCT	TAA	$A\!A\!A$	TAA	AGT	GCC	ATT	1140
346	M	E	Ε	L	V	D	N	Η	G	K	K	Ι	K	S	*						359
1141	ama	mora	114	_																	
1141	CIC	TGA	1146)																	

FIG. 35C

FIG. 35D

FIG.36B

TOCCHUL DOLLDA

CONTROL CITTLE OCC.

DOG THERT TO ICH

noo muth to and

