Vorkurs Mathematik 2019 | Lösungen zum Thema

Zahlbereiche

imes Aufgabe 1

Berechne für x=2i, y=1+i und z=2-3i folgende Ausdrücke:

- 1. $y \cdot z$
- $2. \ \overline{y \cdot (x-z)}$
- 3. |x+z|
- 4. $\operatorname{Re}(x \cdot y \cdot z)$
- 5. $\operatorname{Im}(x+yz)$

Lösung:

1.
$$y \cdot z = (1+i) \cdot (2-3i) = (1 \cdot 2 - 1 \cdot (-3)) + i(1 \cdot (-3) + 1 \cdot 2) = (2+3) + i(-3+2) = 5-i$$

2.
$$\overline{y \cdot (x-z)} = \overline{(1+i) \cdot (-2+5i)} = \overline{(1 \cdot (-2) - 1 \cdot 5) + i(1 \cdot 5 + 1 \cdot (-2))} = \overline{-7+3i} = -7 - 3i$$

3.
$$|x+z| = |2-i| = \sqrt{2^2+1^2} = \sqrt{5}$$

4.
$$\operatorname{Re}(x \cdot y \cdot z) = \operatorname{Re}((0 + 2 \cdot i) \cdot (5 - i)) = 0 \cdot 5 - 2 \cdot (-1) = 2$$

5.
$$\operatorname{Im}(x + yz) = \operatorname{Im}(2i + 5 - i) = \operatorname{Im}(5 + i) = 1$$

Aufgabe 2

Bestimme Real- und Imaginärteil sowie Betrag der komplexen Zahl

$$z = \left(\frac{1+\sqrt{3}}{1-i}\right)^2.$$

Lösung:

$$\left(\frac{1+\sqrt{3}}{1-i}\right)^2 = \left(\frac{1+\sqrt{3}}{1-i}\right) \cdot \left(\frac{1+\sqrt{3}}{1-i}\right) = \left(\frac{4+2\sqrt{3}}{-2i}\right) \cdot \left(\frac{2i}{2i}\right)$$
$$= \left(\frac{8i+4\sqrt{3}i}{-4i^2}\right) = \left(\frac{(8+4\sqrt{3})i}{4}\right) = 0 + (2+\sqrt{3})i$$

Damit gilt: Re(z) = 0, $\text{Im}(z) = 2 + \sqrt{3}$, sowie $|z| = \sqrt{0^2 + (2 + \sqrt{3})^2} = 2 + \sqrt{3}$.

× Aufgabe 3

Für $z\in\mathbb{C}$ zeige man

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2} \text{ und } \operatorname{Im}(z) = \frac{z - \overline{z}}{2i}.$$

Lösung:

Wähle: z = a + ib, $d.h. \overline{z} = a - ib$. Dann gilt:

$$\frac{z+\overline{z}}{2} = \frac{a+ib+a-ib}{2} = \frac{2a}{2} = a = \operatorname{Re}(z)$$
$$\frac{z-\overline{z}}{2i} = \frac{a+ib-a+ib}{2i} = \frac{2ib}{2i} = b = \operatorname{Im}(z).$$

Aufgabe 4

Beweise folgende Rechenregeln:

1.
$$\overline{\overline{x}} = x$$

2.
$$\operatorname{Re}(x+y) = \operatorname{Re}(x) + \operatorname{Re}(y)$$

Mithilfe von 2. zeige:

3.
$$\operatorname{Im}(x+y) = \operatorname{Im}(x) + \operatorname{Im}(y)$$

Hinweis: Für $z \in \mathbb{C}$ gilt $\text{Im}(z) = \frac{z - \text{Re}(z)}{i}$. Wieso?

Lösung: Für $x, y \in \mathbb{C}$, mit x = a + ib, y = c + id und $a, b, c, d \in \mathbb{R}$ gilt:

1.
$$\overline{\overline{x}} = \overline{\overline{a+ib}} = \overline{a-ib} = a+ib = x$$

2.
$$\operatorname{Re}(x+y) = \operatorname{Re}(a+ib+c+id) = a+c = \operatorname{Re}(a+ib) + \operatorname{Re}(c+id) = \operatorname{Re}(x) + \operatorname{Re}(y)$$

3.
$$\operatorname{Im}(x+y) = \frac{(x+y)-\operatorname{Re}(x+y)}{i} = \frac{x-\operatorname{Re}(x)}{i} + \frac{y-\operatorname{Re}(y)}{i} = \operatorname{Im}(x) + \operatorname{Im}(y)$$

× Aufgabe 5

- 1. Man zeichne die folgenden komplexen Zahlen in die Gauß'sche Zahlenebene ein:
 - a) 3 i
- b) 2i
- c) -1+3i
- d) z mit Re(z) = 2 und Im(z) = 1
- 2. Man zeichne eine Gaußsche Zahlenebene und markiere die Menge aller $z\in\mathbb{C},$ für die gilt:
 - a) Im(z) = 1
 - b) $\operatorname{Re}(z) \leq 2$
 - c) |Re(z)| = 2
 - d) |Im(z)| < 3
 - e) $|\text{Re}(z)| \le 2 \text{ und } |\text{Im}(z)| > 2$
 - f) $z = \overline{z}$

 $L\ddot{o}sung:$

1. Hier die Zahlen in der Gaußschen Zahlenebene:

2. Hier die Mengen in der Gaußschen Zahlenebene:

Aufgabe 6

Begründe oder widerlege (z.B. durch Angabe eines Gegenbeispiels):

- 1. Multipliziert man eine komplexe Zahl mit (-i), so werden Real- und Imaginärteil getauscht.
- 2. Für alle komplexen Zahlen $z\in\mathbb{C}$ gilt: $z=\operatorname{Re}z+\operatorname{Im}z.$

Pachschaft
Mathematik+
Elementarmathematik

- 3. Es ist möglich, als Summe komplexer Zahlen, deren Realteil jeweils 0 ist, 1 zu erhalten.
- 4. Im Allgemeinen gilt: $Re(x \cdot y) = Re(x) \cdot Re(y)$, für $x, y \in \mathbb{C}$.
- 5. Ist Re(Im(z)) = 0, dann ist $z \in \mathbb{R}$.

Lösung:

- 1. Falsch, denn sei $z \in \mathbb{C}$, dann gilt mit z = a + ib: $(a + ib) \cdot (-i) = -ia i^2b = b ia$.
- 2. Falsch, denn es gilt i. A. nur z = Re z + i Im z. Die Aussage wäre wahr für Im z = 0, d. h. für die reellen Zahlen.
- 3. Falsch, da zwei rein imaginäre Zahlen stets einen Realteil von Null haben. Für $x, y \in \mathbb{C}$ mit $x = ib_1$ und $y = ib_2$ gilt: $x + y = i(b_1 + b_2)$.
- 4. Falsch, für x = a + ib, y = c + id, mit $a, b, c, d \in \mathbb{R}$ gilt nach Rechenregel $\operatorname{Re}(x \cdot y) = ac bd$. Dies ist i. A. ungleich $\operatorname{Re}(x) \cdot \operatorname{Re}(y) = ac$.
- 5. Wahr, denn für z = a + ib gilt: Re(Im(z)) = Re(b) = b, also nach Voraussetzung b = 0. D.h. gerade, dass z = a + i0 = a reell ist.

! Aufgabe 7

Sei $z \in \mathbb{C}$. Bringe die komplexen Zahlen z_1 und z_2 in ihre kartesische Form a+ib mit $a,b \in \mathbb{R}$:

1.
$$z_1 = z + \frac{1}{z}$$

2.
$$z_2 = \overline{z}^2 + \frac{1}{z^2}$$

Lösung: Mit z = x + iy und $x, y \in \mathbb{R}$.

1.
$$z_1 = z + \frac{1}{\overline{z}} = (x + iy) + \frac{1}{x - iy} = (x + iy) + \frac{x + iy}{x^2 + y^2} = \underbrace{x + \frac{x}{x^2 + y^2}}_{2} + i\underbrace{\left(y + \frac{y}{x^2 + y^2}\right)}_{2}$$

$$2. \ z_2 = \overline{z}^2 + \frac{1}{z^2} = \overline{z}^2 + \frac{\overline{z}^2}{z^2 \cdot \overline{z}^2} = \overline{z}^2 + \frac{\overline{z}^2}{|z|^4} = \overline{z}^2 (1 + \frac{1}{|z|^4}) = \underbrace{(x^2 - y^2) \left(1 + \frac{1}{|z|^4}\right)}_{a} + i \underbrace{\left(-2xy \left(1 + \frac{1}{|z|^4}\right)\right)}_{b}$$

! Aufgabe 8

Für welche $z \in \mathbb{C}$ gilt die Gleichheit $\left(\frac{1+z}{1-z}\right)^2 = -1$? Lösung: Wieder z=a+ib, wobei $a,b\in\mathbb{R}$. Per Definition von i sind die einzigen möglichen Lösungen der Gleichheit $\left(\frac{1+z}{1-z}\right)^2 = -1$ durch $\frac{1+z}{1-z} = \pm i$ gegeben. Wir machen also eine Falluntenscheidungs also eine Fallunterscheidung:

1.) Angenommen $\frac{1+z}{1-z} = +i$ Es folgt

$$1 + z = i(1 - z) \Leftrightarrow 1 + a + ib = i - ia + b$$

und durch Vergleich von Real- und Imaginärteil

$$1 + a = b$$
$$1 - a = b,$$

also a = 0, b = 1. Dies ist tatsächlich eine Lösung.

2.) Angenommen $\frac{1+z}{1-z} = -i$ Es folgt

$$1 + z = -i(1 - z) \Leftrightarrow 1 + a + ib = -i + ia - b$$

und durch Vergleich von Real- und Imaginärteil

$$1 + a = -b$$
$$-1 + a = b.$$

also a = 0, b = -1. Dies ist ebenfalls eine Lösung der Gleichung.

Anmerkung: Bei dieser Aufgabe sind selbstverständlich verschiedenste Lösungswege möglich und auch richtig!

