Cinemàtica del sòlid rígid 2D

(inclou cinemàtica de vehicles)

Roda amb barra articulada - Q10 abril 2015

CIR_T(barra)?

10 La roda es mou sense lliscar sobre el terra. La barra està articulada a la roda en el punt P i el seu extrem Q llisca sobre el terra. Quin és el Centre Instantani de Rotació de la barra PQ respecte al terra?

A R

В О

с т

D J

E S

CIR bassa vermella

Quin és el CIR de la barra vermella respecte T?

Barra amb enllagos de revolució i prismàtico

- 3.3 El disc de radi r rodola sense lliscar per l'interior de la circumferència fixa de radi 2r. Quina és la celeritat del punt O del disc?
 - A 0
 - B $r\theta$
 - C $r\dot{\theta}/2$
 - D $2r\dot{\theta}$
 - E $4r\dot{\theta}$
- 3.4 Per al sistema de la qüestió anterior i per a la configuració de la figura, quin és el mòdul de l'acceleració del punt J del disc?
 - A 0
 - B ∞
 - C $r \dot{\theta}^2$
 - $D \qquad 2 r \dot{\theta}^2$
 - E $r \dot{\theta}^2 \sqrt{2}$

Pista:

Clarament, el centre del disc descriu un mov. circular amb centre a 0 i radi R, de vel. angular 60

CIR Polifia - Questio 4, oct 2012

Ascensor - Test pràc. des. 2011

2 Es proposa el mecanisme d'accionament d'un ascensor descrit a la figura. La roda de radi R₁ no llisca sobre la paret i és impulsada per la rotació de la roda de radi R₂ per mitjà de les politges de radi r, que són solidàries a les rodes. La roda de radi R₂ és impulsada pel motor per mitjà d'un cable enrotllat a la roda i al tambor del motor. És viable l'invent?

- A No és viable.
- **B** És viable si $R_1 = R_2$
- **C** És viable si $R_1 > R_2$.
- **D** És viable si $R_1 < R_2$.
- És viable per a qualsevol relació de radis.

Pista: Per a que siqui viable, quan la cabina puja amb vel. Tv, el punt P ha de tenir vel. I, ja que el cable només pot estirar cap avall, no empènyer cap amont.

Radi curvatura pedal - Qüestió 5, octubre 2004

5 En una bicicleta es fa servir un pinyó del mateix radi que el plat. El radi de la roda és 3/2 de la longitud de la manovella del pedal. Quin és el radi de curvatura de la trajectòria del pedal quan aquest passa per la posició més baixa?

Α	L
В	(1/2)L
С	(1/4)L
D	(2/3)L
E	(1/3)L

Introducció a cinemàtica de vehicles

Començarem buscant la velocitat de C, que és un punt de la roda i també del xassís, partint de les velocitats angulars psipunt i phipunt de la roda. Veurem que l'expressió d'aquesta velocitat queda molt simple, només en funció de phipunt. Això ens permetrà fer anàlisis cinemàtiques ràpides de vehicles!

Cinematica de vehicles

3 hipòtesis simplificadores

- Vehicle es mou en terra pla
- Veh. no té suspensions ⇒ Roda es manté en un pla vertical i momés cal orientar-la amb 2 angles.

Per la roda damere serien y i y:

Per la del davant serien 4+8, 9

Rodes primes > contacte puntual amb el terra. Permet introduir hipòtesi de mo lliscament a J. Si el contacte fos en un regment de recta regur que hi hauria lliscament en alguns pouts.

Anàlisi cinemàtic rada del darrere:

Per la moda del davant surt el mateix!

Aphicant CSR a roda:

Que simple!

$$\vec{v}_{\tau}(c) = \vec{v}_{\tau}(\sigma) + (\hat{\tau} \dot{\psi} + \hat{\otimes} \dot{\varphi}) \times (\hat{\tau}) = (\hat{\tau} \dot{\varphi})$$

Per la noda davant surt el mateix perquè en elloc de $\uparrow \dot{\psi}$ tenim $\uparrow (\dot{\psi} + \dot{\delta})$

I no és el CIR! Ho seria si el movim. | Ergo → rip no és roda fos pla. Pero aquí és 3D!

distancia al CIR × R, sinó el revoltat d'aplicar CSR!

En fer anàlisi cinematica de veh. pensem sempre en això Vroda És a dir, que el junt c del xassís té vel. (+r¢) Això eus permetrà fer analisis cinematiques rapides.

l'El Toda passa per J, però roda té 2 GDL. La dir. de l'El és y + v, ergo El par és indeterminat. Ni hi peuseur!

5 En el tricicle de la figura, les rodes no llisquen damunt del terra. La roda directriu, de radi r, forma un angle de 45° amb l'eix longitudinal i el seu centre avança amb celeritat $\nu_{\scriptscriptstyle 0}$. Quina és la velocitat de rotació de la roda P al voltant del seu eix?

$$\mathbf{A} \quad \frac{v_0}{r}$$

$$\mathbf{D} \quad \frac{L-s}{L} \frac{v_0}{r}$$

$$\mathbf{B} \quad \frac{v_0}{r\sqrt{2}}$$

$$\begin{array}{ccc} \mathbf{D} & \frac{L-s}{L} \frac{v_0}{r} \\ \mathbf{E} & \frac{L+s\sqrt{2}}{L} \frac{v_0}{r} \end{array}$$

$$\mathbf{B} \quad \frac{v_0}{r\sqrt{2}}$$

$$\mathbf{C} \quad \frac{L-s}{L} \frac{v_0}{r\sqrt{2}}$$

Carretons articulats - Q3, abril 2012

 ${\bm 3}$ Els dos carretons articulats a ${\bm O}$ són idèntics. Si el punt ${\bm P}$ es mou amb la velocitat v_0 indicada, amb quina celeritat es mou el punt ${\bm Q}?$

- $\begin{array}{ccc} \mathbf{A} & \mathbf{v}_0 \\ \mathbf{B} & \mathbf{v}_0 \cos \theta_1 \end{array}$
- $\mathbf{C} \quad \mathbf{v}_0 \cos \theta_1 \cos \theta_2$
- $\textbf{D} \quad v_{_{0}}\cos\theta_{_{1}}/\cos\theta_{_{2}}$
- $\textbf{E} \quad v_{0} \cos \theta_{2} / cos \theta_{1}$

3.25 The vehicle moves on a horizontal ground. The three wheels do not slide on the ground. The wheel with center C rotates around the axis p-p' parallel to O' - O''. The speed $v_E(O)$ and the change of orientation ψ are variable.

Nota: Aplicació a piblatge del vehicle

Si suposem que eb GL \dot{x} i $\dot{\phi}$ estan actuato, les funcions $\dot{x} = \dot{x} (v, \dot{\psi})$ i $\dot{\phi} = \dot{\phi}(v, \dot{\psi})$ són necessàries per convertir comandes de $(v, \dot{\psi})$ donades per un joystick, per exemple, en senyals de control $(\dot{x}, \dot{\phi})$ que han de satisfer els actuadoss.