北京航空航天大学

2020-2021 学年 第二学期期末

《复变函数》

班 级	字号				
姓 名	成 绩				

试题	_	 三	四	总 分
得分				

1

复变函数期末考试试卷 2021-06-21

班号	学号	_ 姓名_	成	试 绩		
注意事项:	1、答案必须写在试	卷上,写在是	稿纸上无效;	;		
	2、本卷正卷共9页,	卷面满分	为100分。			
题目:						
一、 判践 "×").	新题(共 20 分,每小点	厦 2分。在 [。]	每小题后面	打上合适	的符号	"√"或
1、函数 f(z	z)在点 z ₀ 可导,则函数	女 f(z)在 z ₀ 处	:解析。()		
2、若函数	f(z)在区域 D 内具有-	一阶连续偏导	导数,则 <i>f(z)</i>)在 <i>D</i> 内解	群析。	()
	f(z)在区域 D 内解析,	则对 D 内的	力任一条简单	色闭曲线 C	C,有 ∮cf	(z)dz=0.
						`
	函数必为常数。				()
5、若函	数 f(z) 在区域 D 内	」的解析,	对于 D;	为的一个	下序 列	$\{z_n\}$,有
$f(z_n) = 0 \ n$	<i>n</i> = 1,2,3,…,则在区域	D内f(z)≡	■ 0 ∘		()
6、设 f(z)	在区域 D 内解析,且	上不为常数,	则 $ f(z) $ 只	(在 D 的 i	b界 C 上	达到最小
值。					()
7、若∞为	f(z)的可去奇点,则	$\operatorname{Res}(f(z), \circ$	\circ) = 0 \circ		()

9、满足不等式
$$\left| \frac{z-i}{z+i} \right| \le 2$$
 的所有点 z 的集合是一个有界区域。 ()

10、若函数 f(z) 在区域 D 内除去孤立奇点外解析,则 f(z) 为 D 内的亚纯函数。

二、 填空题(共30分,每空3分)

1、设
$$\sin^2 z + \cos^2 z =$$
_____。

2、(-1)ⁱ的值为____。

3、Ln(3-4i)的主值是______

4、函数 $\sqrt{z(z-1)(z-3)}$ 的支点为______,它在

内可以分出单值解析分支。

5、设
$$f(z) = \int_C \frac{e^{\xi}}{\xi - z} d\xi$$
,其中 $C: |\xi| = 4$,则 $f'(i\pi) =$ ______。

6、幂级数
$$\sum_{n=0}^{\infty} (2i)^n z^{2n+1}$$
的收敛半径为_____。

7、函数 $f(z) = z^8 + 6z^3 + z$ 在单位圆内的零点个数为 ______。

8、函数
$$\frac{\cot \pi z}{2z-3}$$
 在 $|z-i|=2$ 内的奇点个数是_____。

9、设c为沿原点z=0到点z=1+i的直线段,则 $\int_c 2\bar{z}dz=$ _____。

三、 计算题 (共 36 分) 1、(本题 8 分) 计算积分 $\oint_{|z|=2} \frac{2z-1}{z(z-1)^2} dz$ 。

2、(本题 8 分) 求函数 $f(z) = \frac{1}{(z-1)(z-2)^2}$ 在 0 < |z-1| < 1 内的洛朗展式。

3、(本题 10 分) 求将上半平面 Im z>0 映射成单位圆|w|<1 的保形映射 w=f(z),且使 f(2i)=0, $\arg f'(2i)=0$ 。

4、**(本题 10 分)** 应用留数计算实积分 $I = \int_{0}^{+\infty} \frac{x \sin x}{a^2 + x^2} dx$, 其中 a > 0。

四、证明题(本题14分,两小题)

(1) 若函数 f(z) 在区域内解析,且 $\arg f(z)$ 在 D 内为常数,试证 f(z) 必为常数。

(2) 证明代数基本定理: 任何 $n(\geq 1)$ 次代数方程至少有一个根。