

ARQUITECTURA DE COMPUTADORAS

Unidad Nº 1

- Introducción
- Sistemas Numéricos

Profesor: Fabio Bruschetti

Ver 2013-01

Historia

Generación	Años	Características
0	hasta 1945	Sistemas mecánicos y electromecánicos
1	1945 – 1954	Tubos al vacío, tableros
2	1955 – 1965	Transistores y sistemas por lotes
3	1965 – 1980	Circuitos integrados
4	desde 1980	Computadores personales y supercomputadoras

- Máquina diferencial (1823 1833)
 - Tabulación de polinomios de segundo grado por diferencias
 - Nunca se terminó de construir
- Máquina analítica (1833 1842)
 - Sus operaciones eran programables
 - Basada en el concepto de tarjetas perforadas de Joseph Jackard
 - Los programas podían tener bifurcaciones condicionadas (IF)
 - Tenía 3 componentes principales
 - La "fábrica" (Unidad Aritmético Lógica) 4 operaciones
 - El "almacén" (Memoria)
 - Unidad de control y secuencia

Historia – Arquitecturas

 Control Flow (secuenciamiento de las instruciones)

Von Newman

Hardvard

- Data Flow (disponibilidad de los datos)
 - Dinámica

Sistemas numéricos

- Sistema numéricos basados (base = b)
 - La base define el conjunto de símbolos
 - Un número = es una secuencia de símbolos
 - Reglas
 - Los dígitos (d) se enumeran de derecha a izquierda desde 0 (d₃ d₂ d₁ d₀)
 - La ubicación de cada dígito tiene un "peso" definido por la base
 peso = base posición
 - El valor del dígito depende del símbolo y de su ubicación
 - Valor = dígito * peso
 - El valor del número es la suma de los valores de sus dígitos

$$Valor = \sum_{i=0}^{n} d_{i} * b^{i}$$

Sistemas numéricos

Sistema Decimal

- Base = 10
- Símbolos {0,1,2,3,4,5,6,7,8,9}
- Notación: NNN_d NNN₁₀
- Ejemplo de 4 dígitos
 - $d_3 d_2 d_1 d_0 = 1436_d$ • $= d_3 \times 10^3 + d_2 \times 10^2 + d_1 \times 10^1 + d_0 \times 10^0$ • $= 1 \times 10^3 + 4 \times 10^2 + 3 \times 10^1 + 6 \times 10^0$ • = 1000 + 400 + 30 + 6

Nota:

- Sumas y Restas: Pueden llevar o quitar 10's
- Multiplicación y División por 10: Agrego o quito un cero de la derecha. Desplazo el número agregando o quitando de a un cero en la posición de menor peso d₀ ("Shift")

Números binarios enteros positivos

- Sistema Binario
 - Base = 2
 - Símbolos = {0,1}
 - Notación: NNN_b NNN₂
 - Ejemplo de 4 dígitos

```
• d_3 d_2 d_1 d_0 = 1010_b

• = d_3 \times 2^3 + d_2 \times 2^2 + d_1 \times 2^1 + d_0 \times 2^0

• = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0

• = 1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1

• = 8 + 2

• = 10_d
```

Nota:

- Sumas y Restas: Pueden llevar o quitar 2's
- Multiplicación y División por 2: "Shift" a Izquierda o Derecha

Números binarios enteros positivos

+ 10 _b	+ 111 _b	- 10 _b	- 111 _b
111 _b	1010 _b	101 _b	1001 _b
<u>Suma</u>		<u>Resta</u>	

Multiplicación por potencias de 2

10001_h

Por 2^1 : $100_b * 10_b = 1000_b$

1001_b

Por 2^2 : $11_b * 100_b = 1100_b$

Por 2^3 : $100_b * 1000_b = 100000_b$

División por potencias de 2

 010_{h}

Por 2^1 : $100_b / 10_b = \frac{10_b}{10_b}$

 $011_{\rm b}$

Por 2^2 : $1100_b / 100_b = 11_b$

Por 2^3 : $100000_b / 1000_b = 100_b$

Números octales enteros positivos

Sistema Octal

- Base = 8 = 23
- Notación: NNN_o NNN₈
- Símbolos = $\{0,1,2,3,4,5,6,7\}$
- Ejemplo de 4 dígitos

```
• d_3 d_2 d_1 d_0 = 1703_8

• = d_3 \times 8^3 + d_2 \times 8^2 + d_1 \times 8^1 + d_0 \times 8^0

• = 1 \times 8^3 + 7 \times 8^2 + 0 \times 8^1 + 3 \times 8^0

• = 1 \times 512 + 7 \times 64 + 0 \times 8 + 3 \times 1

• = 512 + 448 + 0 + 3

• = 963_d
```

Nota:

- Sumas y Restas: Pueden llevar o quitar 8's
- Multiplicación y División por 8: "Shift" a Izquierda o Derecha

Números hexadecimales enteros positivos

Sistema Hexadecimal

- Base = $16 = 2^4$
- Permite manejar mejor los números binarios grandes
- Notación: NNN_h NNN₁₆
- Símbolos = {0,1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
- Ejemplo de 4 dígitos

```
• d_3 d_2 d_1 d_0 = 12AF_h

• = d_3 \times 16^3 + d_2 \times 16^2 + d_1 \times 16^1 + d_0 \times 16^0

• = 1 \times 16^3 + 2 \times 16^2 + A \times 16^1 + F \times 16^0

• = 1 \times 4096 + 2 \times 256 + 10 \times 16 + 15 \times 1

• = 4096 + 512 + 160 + 15

• = 4783_d
```

Nota:

- Sumas y Restas: Pueden llevar o quitar 16's
- Multiplicación y División por 16: "Shift" a Izquierda o Derecha

Números hexadecimales enteros positivos

<u>Suma</u>

$$181_{h}$$
 1510_{h} $+ 89_{h}$ $+ E11_{h}$ $----- 20A_{h}$ 2321_{h}

Resta

$$1E1_{h}$$
 1001_{h}
 $- 1F_{h}$ $- 111_{h}$
 $---- 1C2_{h}$ $EF0_{h}$

Multiplicación por potencias de 16

Por
$$16^1 : 20_h * 10_h = 200_h$$

Por
$$16^2: 3_h * 100_h = 300_h$$

División por potencias de 16

Por
$$16^1 : 105_h / 10_h = 10_h$$

Por
$$16^2$$
: $10E0_h / 100_h = 10_h$

- Dentro del computador, todos los números son representados sobre una cantidad fija de bits.
- Rango de representación
 - Con n bits se pueden formar 2ⁿ combinaciones binarias distintas. Cada una de ellas corresponde a su respectivo número decimal
 - Si se comienza la representación en 0, entonces el número más grande representable es 2ⁿ −1
 - Se pueden usar n bits para representar los números decimales
 - Ejemplo con 4 bits

Binario	Decimal	Binario	Decimal
0000	0	1000	8
0001	1	1001	9
0010	2	1010	10
0011	3	1011	11
0100	4	1100	12
0101	5	1101	13
0110	6	1110	14
0111	7	1111	15

Cambio de base

- Binario a Hexadecimal
 - 10 bits: 1001011001_2 (= 601_{10})
 - Agrupando en 4:
 0010 0101 1001
 - Reemplazo con Hex: $2 5 9_{16}$
- Hexadecimal a Binario
 - Binario: Reemplazar cada dígito hexadecimal por sus 4 dígitos binarios
 - Ejemplo: $A9F_h = 1010100111111_b$

Cambio de base

- Binario a Octal
 - 16 bits: 1000101001101110_2 (= 35468_d)
 - Agrupando en 3:
 001 000 101 001 101 110
 - Reemplazo con Hex: $1 \quad 0 \quad 5 \quad 1 \quad 5 \quad 6_8$
- Octal a Binario
 - Binario: Reemplazar cada dígito octal por sus 3 dígitos binarios
 - Ejemplo: $134_8 = 001011100_b$

Cambio de base

- Decimal a Binario, Octal, Hexadecimal
 - Dividir el número decimal por la base a la que se lo quiere cambiar
 - Cuando se obtenga un cociente que menor a la base, formar el número partiendo desde el último cociente y, de derecha a izquierda completar sucesivamente con todos los restos

Preguntas

- ¿Qué significa cuando se dice "diez hex"?
- ¿Es verdad que $10100010_b = A2_h$?
- ¿Es verdad que $107_h = 407_8$
- ¿Cuántos bits tienen los siguientes números?
 - 0010010_b
 - 2_h
 - 22_h
 - 1010_h
 - 1010_b
 - 372₈

Unidades de Medidas

- Algunas abreviaturas:
 - Nibble = 4 bits
 - Byte = 8 Bits
 - Word (palabra)
 - 8 bits, 16 bits, 32 bits, 64 bits +
 - DWord (palabra doble)

.

Codificación de Caracteres

- Representación de caracteres mostrables:
 - Caracteres: { A, B, . . . , Y, Z }
 - 26 × 2 = 52 (mayúsculas y minúsculas)
 - Dígitos (10) decimales: {0, 1, . . . , 8, 9 }
 - Puntuación: ! "', . -? / : ;
 - Símbolos matemáticos: + * = (− /)
 - Paréntesis: () [] { } < >
 - Otros: @ # \$ % ^ & \| ~
 - Espacio en blanco: " "
 - 90+ Símbolos (??)
 - Varios esquemas de codificación han sido usado

Codificación ASCII

- ASCII = <u>A</u>merican <u>S</u>tandard <u>C</u>ode for <u>I</u>nformation
 <u>I</u>nterchange (7 bits)
 - 7 bits para codificar cada caracter (128 códigos)
 - Se extiende a 8 bits (byte) poniendo el bit más significativo = 0
 - 2 dígitos hexadecimales
- Ejemplo
 - "306 is FUN!" \rightarrow 33_h 30_h 36_h 20_h 69_h 73_h 20_h 46_h 55_h 4E_h 21_h
- ASCII Estendido (8 bits)
 - Van del 128 hasta el 255
 - Incluye caracteres propios de diferentes lenguajes (á, é, ĉ), caracteres gráficos (∭), símbolos especiales (√), etc.

Codificación ASCII (7-bits)

ASCII Code Table

ASCII Hex Symbol	ASCII Hex Symbol	ASCII Hex Symbol	ASCII Hex Symbol
0 0 NUL	16 10 DLE	32 20 (space)	48 30 0
1 1 SOH	17 11 DC1	33 21 !	49 31 1
2 2 STX	18 12 DC2	34 22 "	50 32 2
3 3 ETX	19 13 DC3	35 23 #	51 33 3
4 4 EOT	20 14 DC4	36 24 \$	52 34 4
5 5 ENQ	21 15 NAK	37 25 %	53 35 5
6 6 ACK	22 16 SYN	38 26 &	54 36 6
7 7 BEL	23 17 ETB	39 27 '	55 37 7
8 8 BS	24 18 CAN	40 28 (56 38 8
9 9 TAB	25 19 EM	41 29)	57 39 9
10 A LF	26 1A SUB	42 2A *	58 3A :
11 B VT	27 1B ESC	43 2B +	59 3B ;
12 C FF	28 1C FS	44 2C ,	60 3C <
13 D CR	29 1D GS	45 2D -	61 3D =
14 E SO	30 1E RS	46 2E .	62 3E >
15 F SI	31 1F US	47 2F /	63 3F ?
ASCII Hex Symbol	ASCII Hex Symbol	ASCII Hex Symbol	ASCII Hex Symbol
64 40 @	80 50 P	96 60 .	112 70 p
64 40 @ 65 41 A	81 51 Q	97 61 a	113 71 q
66 42 B	82 52 R	98 62 b	114 72 r
67 43 C	83 53 S	99 63 c	115 73 s
68 44 D	84 54 T	100 64 d	116 74 t
69 45 E	85 55 U	101 65 e	117 75 u
70 46 F	86 56 V	102 66 f	118 76 v
71 47 G	87 57 W	103 67 g	119 77 w
72 48 H	88 58 X	104 68 h	120 78 x
73 49 1	89 59 Y	105 69 i	121 79 y
74 4A J	90 5A Z	106 6A j	122 7A z
75 4B K	91 5B [107 6B k	123 7B {
76 4C L	92 5C \	108 6C I	124 7C
77 4D M	93 5D]	109 6D m	125 7D }
78 4E N	94 5E ^	110 6E n	126 7E ~
79 4F O	95 5F	111 6F o	127 7F •

Codificación EBCDIC (8-bits)

EBCDIC (Extended Binary Coded Decimal Interchange Code)

 Código estándar de 8 bits usado por computadoras mainframe de IBM. IBM adaptó el EBCDIC del código de tarjetas perforadas en los

años 1960

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0000	NUL	DLE	DS		SP	&	-						{	}	V.	0
0	0	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240
0001	SOH	DCI	sos			/			a	j			A	J		1
1	1	17	33	49	65	81	97	113	129	145	161	177	193	209	225	241
0010	STX	DC2	FS	SYN					b	k	s		В	К	S	2
2	2	18	34	50	66	82	98	114	130	146	162	178	194	210	226	242
0011	ETX	TM							c	1	t		С	L	T	3
3	3	19	35	51	67	83	99	115	131	147	163	179	195	211	227	243
0100	PF	RES	BYP	PN					d	т	u		D	M	U	4
4	4	20	36	52	68	84	100	116	132	148	164	180	196	212	228	244
0101	HT	NL	LF	RS					e	n	v		E	N	v	5
5	5	21	37	53	69	85	101	117	133	149	165	181	197	213	229	245
0110	LC	BS	ETB	UC					f	0	w		F	0	w	6
6	6	22	38	54	70	86	102	118	134	150	166	182	198	214	230	246
0111	DEL	IL	ESC	EOT					g	P	x		G	P	X	7
7	7	23	39	55	71	87	103	119	135	151	167	183	199	215	231	247
1000		CAN							h	q	у		H	Q	Y	8
8	8	24	40	56	72	88	104	120	136	152	168	184	200	216	232	248
1001	RLF	EM						١.	i	r	Z		I	R	Z	9
9	9	25	41	57	73	89	105	121	137	153	169	185	201	217	233	249
1010	SMM	cc	SM		cent	!		:								
Α	10	26	42	58	74	90	106	122	138	154	170	186	202	218	234	250
1011	VT	CUI	CU2	CU3	·	\$,	#								
В	11	27	43	59	75	91	107	123	139	155	171	187	203	219	235	251
1100	FF	IFS	l	DC4	<	*	%	@	l <u>.</u>				 			
C	12	28	44	60	76	92	108	124	140	156	172	188	204	220	236	252
1101	CR	IGS	ENQ	NAK	()		l .			4.50					
D	13	29	45	61	77	93	109	125	1 41	157	173	189	205	221	237	253
1110	so	IRS	ACK		+ 70	;	>,,,	=			174		200			ا میر ا
E	14	30	46	62	78	94	110	126	142	158	174	190	206	222	238	254
1111	SI	IUS	BEL	SUB	70	٦,,	?	l	1.40	1.50	175	10,	207	222	220	,,,
F	15	31	47	63	79	95	111	127	1 43	1 59	175	191	207	223	239	255

Código BCD Natural

- Representa los dígitos decimales del 0 al 9 con una combinación de 4 bits para cada uno de ellos
- Ejemplo
 - **348**₁₀
 - = 001101001000 en BCD
- Los números decimales no se representan por su correspondiente combinación binaria
- Ejemplo
 - **348**₁₀
 - $= 101011100_2$

	BCD						
Decimal	Natural						
N°	8	4	2	1			
0	0	0	0	0			
1	0	0	0	1			
2 3	0	0	1	0			
3	0	0	1	1			
4 5	0	1	0	0			
5	0	1	0	1			
6	0	1	1	0			
7	0	1	1	1			
8	1	0	0	0			
9	_ 1	0	0	1			

- El rango de los números reales comprende desde -∞ hasta +∞.
- Los registros de un procesador tienen resolución finita.
- Por lo tanto un computador solo puede representar un sub conjunto de R. (No es solo un tema de magnitud sino de resolución)

Números Reales

- En general se puede formalizar la representación de un número real expresado en los siguientes formatos:
 - Punto Fijo
 - Con Módulo y signo
 - Con complemento a 2
 - Punto Flotante
- Como convertir un número decimal a binario:

```
0,828125
0,65625
0,3125
0,625
2 = 1,65625
2 = 1,3125
2 = 0,625
2 = 1,25
```

• 0,5 * 2 = **1**

 $0.828125_{d} = 0.110101_{b}$

Números Reales – Punto Fijo

- Punto Fijo con signo
 - Se representan mediante una expresión del tipo
 - $(a_n a_{n-1} ... a_0 ... a_{-1} a_{-2} ... a_{-m})_2 = (-1)^s (a_n 2^n + ... + a_0 2^0 + a_{-1} 2^{-1} + ... + a_{-m} 2^{-m})$
 - Donde: s=0 si el número es positivo o =1 si el número es negativo
 - a_i es un entero y 0 ≤a_i ≤ 1, para todo i = -m, ...-1, 0, 1, ...n
 - Distancia entre dos números consecutivos es 2^{-m} (su base elevado a la –m)
 - Deja de ser un rango continuo de números y pasa a ser un rango discreto.

Números Reales – Punto Fijo

- Cuando la cantidad de dígitos disponible no alcanza para representar el número ...
 - Problema: Representar un número de n dígitos decimales en un sistema con m dígitos decimales, siendo m < n

Truncamiento:

 Descarta los dígitos fraccionarios de orden mayor a m.

Redondeo:

 Descarta los dígitos fraccionarios de orden mayor a m pero se suma 1 al menos significativo en caso que el bit inmediato (m+1) descartado valga 1.

Números Reales – Punto Fijo

Con truncamiento y redondeo
 Punto fijo en posición 4 con 11 bits:

```
31,9375_{10} = 0011111.1111_{2}

0,0625_{10} = 0000000.0001_{2}

32,0000_{10} = 0100000.0000_{2}
```

- Si tenemos el siguiente número 31,906025₁₀ 0011111.111010₂
- Si se trunca en 4 bits $0011111.11110_2 \rightarrow 31,875_{10}$
- Si se redondea y trunca en 4 bits $0011111.1111_2 \rightarrow 31,921875_{10}$
- Vemos que con truncamiento hay menor error

Números Reales – Punto Flotante

- Para el caso de los números reales se trabaja en notación científica.
 - $-725.832 = -7.25832 \cdot 10^2 = -725.832 \times 10^0$
 - \bullet 3.14 = 0.314 * 10¹ = 3.14 * 10⁰
 - \bullet 0.000001 = 0.1 * 10⁻⁵ = 1.0 * 10⁻⁶
 - \bullet 1941 = 0.1941 * 10⁴ = 1.941 * 10³
- Para unificar la representación se recurre a la notación científica normalizada, en donde
 - $n = \pm f * 10^e$
 - $0.1 \le f < 1$
 - e es un entero con signo
- En el sistema binario la expresión de un número en notación científica normalizada es:
 - $n = \pm f * 2^e$
 - $0.5 \le f < 1$
 - e es un entero con signo

Números Reales - Punto Flotante

- Representación en Punto Flotante
 - Se representan con los pares de valores (m, e), denotando:
 - $(m, e) = m * b^e$
 - **m** llamado mantisa, y que representa un número fraccionario
 - e, llamado exponente, al cual se debe elevar la base numérica (b) de representación para obtener el valor real
 - Mantisa y exponente pueden representarse:
 - con signo
 - sin signo
 - con notación complemento
 - con notación exceso m (biased)
 - Para que las representaciones sean únicas, la mantisa deberá estar normalizada.
 - Cuando un número fraccionario tiene su dígito más significativo distinto de 0, se dice que está normalizado

Números Reales – Punto Flotante

- Representación en Punto Flotante de 32 bits:
 - los bits 0 al 22 (b₀ a b₂₂) representa la mantisa normalizada para el sistema Módulo y Signo
 - los bits 23 al 30 (b₂₃ a b₃₀) representa el exponente en exceso a 128
 - el bit 31 (b_{31}), para representar el signo de la mantisa (0 para el +)
 - la base de exponenciación es 2
 - el 0 se representa con todos los bits en 0.
- Ej: Representar el número 12 en formato de 32 bits:
 - 12 en notación normalizada de base 2 es 0,75 * 2⁴
 - el exponente de valor 4 en exceso a 128 es: $4 + 128 = 132_{10} = 10000100_2$
 - la mantisa 0,75 en binario es 0,11
 - de donde la representación del número 12 quedará como:

signo (+) exponente 4 mantisa 0,75

646362

Números Reales – Punto Flotante

- Punto Flotante: Formato IEEE 754 (Institute of Electrical and Electronics Engineers, Inc. Año 1985)
 - Cuatro formatos
 - Precisión simple (32 bits)
 - Precisión doble (64 bits)
 - Precisión simple extendida (≥ 43 bits), no muy usada
 - Precisión doble extendida (80 bits)
 - Sólo los valores de 32 bits son requeridos por el estándar, los otros son opcionales

1.18 × 10⁻³⁸ to 3.40 × 10³⁸

2,23 × 10⁻³⁰⁸ to 1.79 ×

3.37 × 10⁻⁴⁹³² to 1.18 ×

10⁴⁹³²

Números Enteros Negativos

- Para números sin signo:
 - Los n bits son usados para la magnitud del número
 - Ejemplo: Número de 4-bits: 0000b 1111_b
- Para números con signo: (Negativos)
 - Un bit debe ser usado para el signo
 - Usualmente el bit mas significativo: 0= positivo 1=negativo
 - n-1 bits son usados para la magnitud del número
- Codificación de la magnitud (2 aproximaciones)
 - Codificación magnitud con signo
 - Progresión natural de los números sin signo
 - Inadecuado para las matemáticas
 - Codificación complemento a 2
 - Excelente para las matemáticas

Codificación con signo

- La magnitud se codifica en los n-1 bits restantes usando el sistema binario usado para contar
 - Ejemplo: $10000001_b = -1_d$
 - magnitud: 000 0001b = 1
 - signo: 1 o sea, número negativo
 - Problemas:
 - Dos representaciones para el 0
 - 0 positivo signo=00 negativo signo=1
 - Problemas con la aritmética:

- La magnitud de los números positivos se codifica normalmente como número binario
- La magnitud de los números negativos se codifica como "flip&add"
- Definiciones:
 - Complemento de un bit:
 - Complemento de 1: 0
 - Complemento de 0: 1
 - Complemento a 1 de un valor de n-bits:
 - Complemento de cada bit
 - Complemento a 2 de un valor de n-bits:
 - Complemento de cada bit y luego (add) sumar 1
 - Se ignora cualquier carry del bit mas significativo.

Ejemplo:

Encuentre la representación de -1 en complemento a 2 con 8 bits.

Operación de complemento a 2

$$\bullet$$
 +1₁₀ 0000 0001_b = 01_h

Encuentre el valor decimal del valor FEh en complemento a 2

Operación de complemento a 2

•
$$FE_h$$
 0000 0010_b = (bit de signo) $2_{10} = -2_{10}$

Codificación complemento a 2

Ejemplo:

- Encuentre el valor decimal del valor 79h en complemento a 2
 - Bit de signo = 0

$$0111\ 1001_b = 64 + 32 + 16 + 8 + 1 = 121_d$$

• $79_h = 121_d$

Ejercicios:

- Encuentre el valor decimal del valor 90_h en complemento a 2
- Encuentre el valor decimal del valor 8D_h en complemento a 2
- Encuentre el valor decimal del valor 6F_h en complemento a 2

- Rango:
 - Con n-bits se pueden representar a lo sumo 2ⁿ números naturales diferentes pero...
 - Usando la mitad de los valores para los número negativos y el resto para los positivos y el 0 nos quedan (2ⁿ⁻¹ valores positivos y 2 ⁿ⁻¹ valores negativos)
 - Rango para valores positivos y negativos:
 - Todos los negativos comienzan con 1
 - Rango: -2ⁿ⁻¹ 0 2ⁿ⁻¹-1

Negar un número negativo se obtiene el número original [- (-x) = x]

Cuantas representaciones para 0? [única]

- Como se obtiene la codificación de −128?
 - Usando matemáticas

Usando Complemento a 2

Suma y resta aritmética

Aritmética sin signo

Aritmética con signo

Restas en binario:

• Negar y sumar:
$$X - Y = X + (-Y)$$

• Ejemplo:
$$32 - 65 = 32 + (-65)$$

$$32_{10} = 0010\ 0000_b$$

•
$$+ -65_{10} = 1011 \ 1111_b \ (0100 \ 0000_b + 1 = 41_h = 65_d)$$

$$-33_{10} = 1101 \ 1111_b \ (0010 \ 0000_b + 1 = 21_h = 33_d)$$

Aritmética y Lógica

Multiplicación binaria

 Procedimiento de resolución del cálculo de forma idéntica al de la multiplicación decimal

$$\begin{array}{c}
1101 & \longrightarrow & \text{Multiplicando} \\
\times & 101 & \longrightarrow & \text{Multiplicador} \\
1101 & + & 0000 \\
\underline{1101} \\
1000001
\end{array}$$

- Por cada cifra del multiplicador, me desplazo en la suma final
- Por cada 1 del multiplicador, repito el multiplicando en la suma final
- La multiplicación es una "sucesión de sumas y desplazamientos"
- Multiplicar 2 cifras binarias de n bits darán como resultado otra cifra binaria de 2.n bits! $(1111_2 \times 1111_2 = 11100001_2)$

Aritmética y Lógica

División binaria

 Procedimiento de resolución del cálculo de forma idéntica al de la multiplicación decimal

- Ejemplo: 27 / 5 = 5 con resto 2
- La división es una "sucesión de restas y desplazamientos"

Pentium – Formatos de datos

- General → contenido binario arbitrario
- Entero → binario entero con signo representado en Ca2
- Ordinal → binario entero sin signo
- BCD → 1 ó 2 dígitos BCD por byte
- Punto flotante → precisión simple, doble y ampliada

