TP5 - IFT2105

par Ilan Elbaz 10 juin 2019

1. Montrez que $L \notin HC$ sur $\Sigma = \{0, 1\}$

$$L = \{0^n 1^n 0^n 1^n \mid n \ge 0\}$$

Supposons que L soit un langage HC. Soit p la longueur donnée par le lemme du pompiste. Considérons le mot $w=0^p1^p0^p1^p$, $w\in L$ et |w|>p. Le lemme nous donne u,v,x,y,z tel que $w=uvxyz,\,|vy|>0$, et $|vxy|\leq p$. Distinguons deux cas possibles:

- Si v et y ne contiennent chacun que des 0 ou que des 1, alors $uv^0xy^0z \notin L$.
- Sinon v ou y chevauche deux sous-chaînes consécutives parmi $0^p, 1^p, 0^p, 1^p$. Dès lors, $uv^2xy^2z \notin \{0^*1^*0^*1^*\}$ et donc, $uv^2xy^2z \notin L$.

Comme ces deux cas sont exhaustifs, on conclut que ${\bf L}$ ne peut être horscontexte.

2. Montrez que $L \notin HC$ sur $\Sigma = \{0, 1\}$

$$L = \{0^i 1^j \mid j = i^2\}$$

Considérons le mot $0^p1^{p^2}$. Soit |vxy|=m un découpage quelconque de w. Si l'on a $vxy\in 0^+$ et si l'on pompe de manière avec un i positif on aura : $0^{p+(i-1)|vy|}1^{p^2}$ or $(p+(i-1)|vy|)\neq p^2$. De manière analogue pour le cas ou vxy ne contient que des 1. Si maintenant $vxy\in 0^+1^+$ et que l'on pompe de manière positif on sait que $w\not\in L$ car $(n+i)^2\neq n^2+i$

3. Construisez une grammaire en forme normale de Chomsky pour la gram- maire suivante :

$$\begin{split} S &\to TST \mid aB \\ T &\to B \mid S \\ B &\to b \mid \epsilon \end{split}$$

1. Ajout d'une nouvelle variable initiale

$$S_0 \to S$$

$$S \to TST \mid aB$$

$$T \to B \mid S$$

$$B \to b \mid \epsilon$$

2. Élimination de la règle nulle : $B \to \epsilon$

$$S_0 \rightarrow S$$

$$S \rightarrow TST \mid aB \mid a \mid ST \mid TS$$

$$T \rightarrow B \mid S$$

$$B \rightarrow b$$

3. Élimination de la règle $T \to B$

$$S_0 \rightarrow TST \mid aB \mid a \mid ST \mid TS$$

$$S \rightarrow TST \mid aB \mid a \mid ST \mid TS$$

$$T \rightarrow b \mid TST \mid aB \mid a \mid ST \mid TS$$

$$B \rightarrow b$$

4. Élimination des règles $S_0 \to aB$, $S \to aB$ et $T \to aB$

$$S_0 \rightarrow TST \mid UB \mid a \mid ST \mid TS$$

$$S \rightarrow TST \mid UB \mid a \mid ST \mid TS$$

$$T \rightarrow b \mid TST \mid UB \mid a \mid ST \mid TS$$

$$B \rightarrow b$$

$$U \rightarrow a$$

5. Élimination des règles $S_0 \to TST, \, S \to TST$ et $T \to TST$

$$S_0 \rightarrow TZ \mid UB \mid a \mid ST \mid TS$$

$$S \rightarrow TZ \mid UB \mid a \mid ST \mid TS$$

$$T \rightarrow b \mid TZ \mid UB \mid a \mid ST \mid TS$$

$$B \rightarrow b$$

$$U \rightarrow a$$

$$Z \rightarrow ST$$

4. Pour les langages suivants, donner un automate à pile le reconnaissant $\,$

 $L_1 = \{ w \in \{a, b\}^* \mid |w|_a = |w|_b \}$

AP reconnaissant \mathcal{L}_1

 $L_2 = \{ va^n \mid v \in \{a, b\}^* et |v|_a = n \}$

AP reconnaissant L_2

AP reconnaissant L_3

$$L_4 = \{ w \mid w \neq w^R \}$$

AP reconnaissant L_4