BSc Computer Science CS1541 Computer Graphics

MODULE I

BRESENHAM'S CIRCLE DRAWING METHOD

Prepared by

Sobha P K

SAC

Overview

Points are generated from 90° to 45°, moves will be made only in the +x & -y directions.

The best approximation of the true circle will be described by those pixels in the raster that falls the least distance from the true circle.

Basic Principle

- □ generate the points from 90° to 45°.
- ☐ Each new point closest to the true circle can be found by taking either of two actions.
 - ☐ Move in the x-direction one unit or
 - Move in the x- direction one unit & move in the negative y-direction one unit.

The Method

- □D (Si) is the distance from the origin to the true circle squared minus the distance to point P3 squared.
- D (Ti) is the distance from the origin to the true circle squared minus the distance to point P2 squared.

$$D(S_{i})=(x_{i-1}+1)^{2}+y_{i-1}^{2}-r^{2}$$

$$D(T_{i})=(x_{i-1}+1)^{2}+(y_{i-1}-1)^{2}-r^{2}$$

$$d_{i}=D(S_{i})+D(T_{i})=(x_{i-1}+1)^{2}+y_{i-1}^{2}-r^{2}+(x_{i-1}+1)^{2}+(y_{i-1}-1)^{2}-r^{2}$$

From this equation, we can drive initial values of d_i as If it is assumed that the circle is centered at the origin, then at the first step x = 0 & y = r.

The Method

Therefore,

$$d_i = (0+1)^2 + r^2 - r^2 + (0+1)^2 + (r-1)^2 - r^2$$

$$= 1+1+r^2-2r+1-r^2$$

$$= 3 - 2r$$

Thereafter, if di<0,then only x is incremented.

$$x_{i+1}=x_{i+1}$$
 $d_{i+1}=d_i+4x_i+6$ if $d_i \ge 0$, then x & y are incremented

$$x_{i+1}=x_{i+1}$$
 $y_{i+1}=y_i+1$
 $d_{i+1}=d_i+4(x_i-y_i)+10$

Algorithm

```
Algorithm BresenCircle(X<sub>0</sub>,Y<sub>0</sub>,R)
[Draw a circle with center (X0,Y0) and radius R]
Step 1: [Initialize]
                                                     P ← 3-2*R
                                       Y \leftarrow R
             x \leftarrow 0
Step 2: [Plot 8 symmetric points at each step]
             Repeat while X<=Y
                 Plot(X_0 + X, Y_0 + Y), Plot(X_0 + Y, Y_0 + X),
                 Plot(X_0 - Y, Y_0 + X), Plot(X_0 - X, Y_0 + Y),
                   Plot(X_0 - X, Y_0 - Y), Plot(X_0 - Y, Y_0 - X),
                 Plot(X_0 + Y, Y_0 - X), Plot(X_0 + X, Y_0 - Y)
                 X \leftarrow X+1
                 If (P < 0)
                          P \leftarrow P + 4 \times X + 6
                  else
                                         Y← Y- 1
                           P \leftarrow P + 4*(X-Y) + 10
                    Endif
               End Repeat
Step 3 : [Finished]
               Return
```

Example Origin $(X_0,Y_0) \rightarrow (50,50)$ and Radius $R\rightarrow 15$

Step	Х	Υ	Р	Output
1	0	15	-27	(50, 65), (65,50), (35,50), (50,65), (50,35), (35,50), (65,50), (50, 35)
2	1	15	-17	
3	2	15	-3	
4	3	15	15	
5	4	14	-15	
6	5	14	11	
7	6	13	-7	
8	7	13	27	
9	8	12	21	
10	9	11	23	
11	10	10	33	

Thank You