Groupes

Exercice 1 Stabilisateur

Soient E un ensemble et $x \in E$. On pose

$$S(x) = {\sigma \in S(E), \sigma(x) = x}$$

Montrer que S(x) est un sous-groupe de $(S(E), \circ)$.

Exercice 2

Soit $G = \mathbb{R}^* \times \mathbb{R}$. On pose pour tous éléments (x, y) et (x', y') de G:

$$(x, y) * (x', y') = (xx', xy' + y)$$

- 1. Vérifier que * est une loi interne associative sur G.
- **2.** Vérifier que (G, *) est un groupe. Est-il commutatif?
- **3.** Donner une expression de $(x, y)^{*n}$.

Exercice 3

Soit G =]-1,1[. On pose pour tous éléments x et y de G:

$$x * y = \frac{x + y}{1 + xy}$$

- 1. Vérifier que \ast est une loi interne associative sur G.
- **2.** Vérifier que (G, *) est un groupe. Est-il commutatif?
- **3.** Donner une expression de x^{*n} .

Exercice 4

Soient G un groupe et H, K deux sous-groupes de G.

- **1.** Montrer que $H \cap K$ est un sous-groupe de G.
- **2.** Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 5

Soit G un groupe d'élément neutre e tel que $\forall x \in G$, $x^2 = e$. Montrer que G est commutatif.

Exercice 6

Centre d'un groupe

Soit G un groupe. On définit le centre de G par

$$Z(G) = \{a \in G, \forall x \in G, ax = xa\}$$

i.e. l'ensemble des éléments de G qui commutent avec tous les éléments de G. Montrer que Z(G) est un sous-groupe de G.

Exercice 7

On munit \mathbb{R} de la loi interne * définie par : $\forall a, b \in \mathbb{R}$, a * b = a + b + ab. (\mathbb{R} , *) est-il un groupe?

Exercice 8 Sous-groupes de $\mathbb R$

Soit G un sous-groupe de $(\mathbb{R}, +)$. On suppose G non trivial i.e. $G \neq \{0\}$.

- **1.** Question préliminaire : soient $\alpha \in \mathbb{R}_+^*$ et $\beta \in \mathbb{R}$. Montrer qu'il existe $n \in \mathbb{Z}$ tel que $n\alpha \le \beta < (n+1)\alpha$.
- **2.** Justifier que $G \cap \mathbb{R}_+^*$ possède une borne inférieure que l'on notera a.
- **3.** On suppose que a > 0.
 - **a.** On suppose que $a \notin G$. Justifier l'existence de deux éléments distincts x et y de G appartenant à l'intervalle]a, 2a[.
 - **b.** Aboutir à une contradiction et en déduire que $a \in G$.
 - **c.** En déduire que $a\mathbb{Z} \subset G$.
 - **d.** Soit $z \in G$. En utilisant la question 1, montrer qu'il existe $n \in \mathbb{Z}$ tel que z = na.
 - **e.** En déduire que $G = a\mathbb{Z}$.
- **4.** On suppose que a = 0.
 - **a.** Soient $t \in \mathbb{R}$ et $\varepsilon > 0$. En utilisant la question 1, montrer qu'il existe $g \in G$ tel que $|g t| < \varepsilon$.
 - **b.** En déduire que G est dense dans \mathbb{R} .

Exercice 9

Soit G un groupe abélien fini d'ordre impair. Calculer le produit des éléments de G.

Exercice 10

Transport de structures

Soient (G, *) un groupe et H un ensemble. On suppose qu'il existe une bijection f de G sur H. On définit la loi . sur H de la manière suivante :

$$\forall (x, y) \in H^2, x.y = f(f^{-1}(x) * f^{-1}(y))$$

Montrer que (H, .) est un groupe.

Exercice 11

Transport de structures

Soient (G, *) un groupe et (H, .) un ensemble muni d'une loi interne. On suppose qu'il existe une surjection de G sur H vérifiant

$$\forall (x, y) \in G^2, f(x * y) = f(x).f(y)$$

Montrer que (H, .) est un groupe. Que peut-on dire de f?

Exercice 12

Soit G un groupe. On définit une relation binaire ~ sur G par

$$\forall (x, y) \in G^2, \ x \sim y \iff \exists g \in G, y = g^{-1}xg$$

Montrer que ~ est une relation d'équivalence.

Exercice 13

Soient G un groupe et H un sous-groupe de G. On définit une relation binaire \sim sur G par

$$\forall (x, y) \in G^2, \ x \sim y \iff \exists h \in H, \ y = xh$$

Montrer que ∼ est une relation d'équivalence.

Exercice 14

Dans cette exercice, on pourra identifier le plan à $\mathbb C$ via un repère orthonormé. On pourra en particulier identifier une transformation du plan à une application de $\mathbb C$ dans $\mathbb C$.

- **1.** On note G l'ensemble des translations et des similitudes directes du plan. Montrer que G muni de la loi de composition est un groupe.
- **2.** On note H l'ensemble des translations et des rotations du plan. Montrer que H est un sous-groupe de G.

Morphismes de groupes

Exercice 15

Théorème de Cayley

Soit G un groupe. Notre but est de montrer que G est isomorphe à un sous-groupe de S(G).

1. Pour cela considérons pour tout $g \in G$ l'application translation à gauche par g

$$\varphi_g: G \to G, h \mapsto gh$$
.

Montrer que $\varphi_g \in S(G)$.

2. Montrer que $G \longrightarrow S(G), g \longmapsto \varphi_g$, est un morphisme injectif. Conclure.

Exercice 16 ★

Automorphismes intérieurs

Soit G un groupe. Étant donné un élément a de G on définit l'application :

$$\varphi_a: \left\{ \begin{array}{ccc} G & \longrightarrow & G \\ x & \longmapsto & axa^{-1} \end{array} \right.$$

- 1. Soit $a \in G$. Montrer que φ_a est un automorphisme de G.
- **2.** On pose $\mathfrak{F}(G) = \{ \varphi_a, a \in G \}$. Montrer que l'ensemble $\mathfrak{F}(G)$ est un sous-groupe de $(Aut(G), \circ)$.
- 3. Montrer que φ : $\begin{cases} G & \longrightarrow & Aut(G) \\ a & \longmapsto & \varphi_a \end{cases}$ est un morphisme de groupes.

Exercice 17

Soit G un groupe. Montrer que $f: \left\{ \begin{array}{ccc} G & \longrightarrow & G \\ x & \longmapsto & x^{-1} \end{array} \right.$ est un automorphisme de G si et seulement si G est commutatif.

Exercice 18

Déterminer les morphismes de groupes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$.

Exercice 19

Montrer que les endomorphismes de groupe de $(\mathbb{R}, +)$ continus sont les homothéties i.e. les applications $x \mapsto \lambda x$ avec $\lambda \in \mathbb{R}$.

Anneaux et corps

Exercice 20 ★

Montrer que l'ensemble des nombres décimaux

$$\mathbb{D} = \left\{ \frac{k}{10^n} : (k, n) \in \mathbb{Z} \times \mathbb{N} \right\}$$

est un sous-anneau de Q. Est-ce aussi un sous-corps?

Exercice 21 ***

Montrer que tout anneau commutatif intègre fini est un corps.

Exercice 22 ★★

Entiers de Gauss

On note $\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}.$

- **1.** Montrer que $(\mathbb{Z}[i], +, \times)$ est un anneau commutatif.
- **2.** Déterminer les éléments inversibles de $\mathbb{Z}[i]$.

Exercice 23 ★★

Éléments nilpotents

Soit $(A, +, \times)$ un anneau. Un élément a de A est dit nilpotent s'il existe $n \in \mathbb{N}$ tel que $a^n = 0_A$.

- **1.** Soit $(x, y) \in A^2$. Montrer que si $x \times y$ est nilpotent, alors $y \times x$ est nilpotent.
- 2. Soit $(x, y) \in A^2$. Montrer que si x et y commutent et que l'un des deux est nilpotent, alors $x \times y$ est nilpotent.
- 3. Soit $(x, y) \in A^2$. Montrer que si x et y sont nilpotents et commutent, alors x + y est nilpotent.
- **4.** Soit $x \in A$. Montrer que si x est nilpotent, alors $1_A x$ est inversible et calculer son inverse.

Exercice 24 ★

Soit A un anneau tel que $\forall x \in A$, $x^2 = x$ (on dit que les éléments de A sont idempotents).

- 1. Montrer que $\forall x \in A, 2x = 0$.
- 2. Montrer que A est commutatif.

Exercice 25 ★★

Différence symétrique

Soit E un ensemble non vide. Pour A, B $\in \mathcal{P}(E)$, on définit la différence de A et B par $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

- **1.** Montrer que $(\mathcal{P}(E), \Delta, \cap)$ est un anneau commutatif. Préciser les éléments neutres pour Δ et \cap .
- **2.** Quels sont les éléments de $\mathcal{P}(E)$ inversibles pour \cap ?
- **3.** L'anneau $(\mathcal{P}(E), \Delta, \cap)$ est-il intègre?

Exercice 26 ★

Corps quadratique

On note $\mathbb{Q}[\sqrt{3}]$ l'ensemble des réels de la forme $a+b\sqrt{3}$ avec $(a,b)\in\mathbb{Q}^2$. Montrer que $\mathbb{Q}[\sqrt{3}]$ est un corps.

Exercice 27 ★

Soit A un anneau intègre commutatif fini.

- **1.** Soit a un élément non nul de A. Montrer que l'application ϕ : $\begin{cases} A & \longrightarrow & A \\ x & \longmapsto & ax \end{cases}$ est bijective.
- 2. En déduire que A est un corps.

Morphismes d'anneaux

Exercice 28 ★★

Endomorphismes de corps de ${\mathbb R}$

Soit f un endomorphisme de corps de \mathbb{R} .

- **1.** Montrer que $f_{|\mathbb{Q}} = \mathrm{Id}_{\mathbb{Q}}$.
- **2.** Montrer que f est croissant.
- **3.** Montrer que $f = Id_{\mathbb{R}}$.

Exercice 29 ★

On note $\mathbb{Z}[\sqrt{3}]$ l'ensemble des réels de la forme $a + b\sqrt{3}$ avec $a, b \in \mathbb{Z}$.

- **1.** Montrer que $\mathbb{Z}[\sqrt{3}]$ est un sous-anneau de $(\mathbb{R}, +, \times)$.
- **2. a.** Montrer que $\sqrt{3}$ est irrationnel. On pourra raisonner par l'absurde en écrivant $\sqrt{3}$ sous la forme d'une fraction irréductible $\frac{p}{q}$ i.e. avec $(p,q) \in \mathbb{Z} \times \mathbb{Z}^*$ tel que $p \wedge q = 1$.
 - **b.** Montrer que f: $\begin{cases} \mathbb{Z}^2 & \longrightarrow \mathbb{Z}[\sqrt{3}] \\ (a,b) & \longmapsto a+b\sqrt{3} \end{cases}$ est un isomorphisme du groupe $(\mathbb{Z}^2,+)$ sur le groupe $(\mathbb{Z}[\sqrt{3}],+)$.
- 3. Pour tout $x \in \mathbb{Z}[\sqrt{3}]$, il existe donc un unique couple $(a, b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{3}$.
 - **a.** Pour tout réel $x = a + b\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ avec $(a, b) \in \mathbb{Z}^2$, on appelle *conjugué* de x, noté \tilde{x} , le réel $a b\sqrt{3}$.

Montrer que $g: \left\{ \begin{array}{ccc} \mathbb{Z}[\sqrt{3}] & \longrightarrow & \mathbb{Z}[\sqrt{3}] \\ x & \longmapsto & \tilde{x} \end{array} \right.$ est un automorphisme d'anneau.

- **b.** Pour tout réel $x = a + b\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ avec $(a,b) \in \mathbb{Z}^2$, on pose $N(x) = x\tilde{x}$. Vérifier que pour tout $(x,y) \in \left(\mathbb{Z}[\sqrt{3}]\right)^2$, N(xy) = N(x)N(y).
- **c.** Montrer que $x \in \mathbb{Z}[\sqrt{3}]$ est inversible si et seulement si N(x) = 1 ou N(x) = -1. Que vaut alors son inverse ? On distinguera les cas N(x) = 1 et N(x) = -1.