RESURGENCE, STOKES CONSTANTS, AND ARITHMETIC FUNCTIONS IN TOPOLOGICAL STRING THEORY

Claudia Rella

Département de Physique Théorique, Université de Genève

Physical Mathematics Seminar

Section de Mathématiques, Université de Genève 30 March 2023

Based on arXiv:2212.10606

Enumerative invariants from resurgence

Resurgent asymptotic series arise naturally as perturbative expansions in quantum theories.

The machinery of resurgence uniquely associates them with a non-trivial collection of complex numbers, known as **Stokes constants**, capturing information about the **non-perturbative sectors** of the theory.

In some remarkable cases, the Stokes constants can be (conjecturally) interpreted in terms of **enumerative invariants** based on the counting of BPS states.

- 4d $\mathcal{N}=2$ supersymmetric gauge theory in the Nekrasov-Shatashvili limit of the Omegabackground [Grassi, Gu, Mariño, 2019]
- Complex Chern-Simons theory on the complement of a hyperbolic knot [Garoufalidis, Gu, Mariño, 2020]
- Standard topological string theory on a Calabi-Yau threefold for $g_s \to 0$ [Gu, Mariño, 2021]
- Refined topological string theory in the Nekrasov-Shatashvili limit on a Calabi-Yau threefold for $\hbar \to 0$

[Rella, 2022]

FROM TOPOLOGICAL STRINGS TO QUANTUM OPERATORS AND BACK

From topological strings to quantum operators

Let *X* be a toric Calabi-Yau (CY) threefold.

Local mirror symmetry pairs X with an algebraic curve $\Sigma \subset \mathbb{C}^* \times \mathbb{C}^*$ of genus g_{Σ} , whose quantization leads to **quantum-mechanical operators**

$$\rho_j, \quad j=1,\ldots,g_{\Sigma} \ ,$$

acting on $L^2(\mathbb{R})$. They are conjectured to be positive-definite and of trace class, under some assumptions on the mass parameters $\vec{\xi}$.

[Grassi, Hatsuda, Mariño, 2014 - Codesido, Grassi, Mariño, 2015]

Their **generalized Fredholm determinant** $\Xi(\vec{\kappa}, \vec{\xi}, \hbar)$ is an entire function of the true complex deformation parameters κ_i .

Its local expansion at $\vec{\kappa} = 0$ is

$$\Xi(\vec{\kappa}, \vec{\xi}, \hbar) = \sum_{N_1 \ge 0} \cdots \sum_{N_{g_{\Sigma}} \ge 0} \underbrace{Z(\vec{N}, \vec{\xi}, \hbar)}_{\text{analytic function}} \kappa_1^{N_1} \cdots \kappa_{g_{\Sigma}}^{N_{g_{\Sigma}}},$$
of $\hbar \in \mathbb{R}_{>0}$

where the coefficient functions $Z(\overrightarrow{N}, \overrightarrow{\xi}, \hbar)$ are the **fermionic spectral traces**.

From quantum operators to topological strings

The Topological Strings/Spectral Theory (TS/ST) correspondence gives

$$Z(\overrightarrow{N}, \overrightarrow{\xi}, \hbar) = \frac{1}{(2\pi i)^{g_{\Sigma}}} \int_{-i\infty}^{i\infty} d\mu_{1} \cdots \int_{-i\infty}^{i\infty} d\mu_{g_{\Sigma}} e^{J(\overrightarrow{\mu}, \overrightarrow{\xi}, \hbar) - \overrightarrow{N} \cdot \overrightarrow{\mu}},$$

where the chemical potentials μ_j are defined by $\kappa_j = e^{\mu_j}$. [Hatsuda, Moriyama, Okuyama, 2012 - Grassi, Hatsuda, Mariño, 2014 - Codesido, Grassi, Mariño, 2015]

The **total grand potential** $J(\overrightarrow{\mu}, \overrightarrow{\xi}, \hbar)$ can be written as

$$J(\overrightarrow{\mu}, \overrightarrow{\xi}, \hbar) = J^{\text{WS}}(\overrightarrow{\mu}, \overrightarrow{\xi}, \hbar) + J^{\text{WKB}}(\overrightarrow{\mu}, \overrightarrow{\xi}, \hbar) ,$$
 worldsheet grand potential WKB grand potential

where J^{WS} and J^{WKB} encode the contributions from the standard and Nekrasov-Shatashvili (NS) topological strings, respectively.

[Hatsuda, Mariño, Moriyama, Okuyama, 2013]

The string coupling constant g_s is related to the quantum deformation parameter \hbar by

$$g_s = \frac{4\pi^2}{\hbar}$$
 (strong-weak coupling duality).

Resurgence in quantum theories — I

Let $\phi(z)$ be a (simple) resurgent Gevrey-1 asymptotic series of the form

$$\phi(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbb{C}[[z]], \quad a_n \sim A^{-n} n! \quad n \gg 1, \quad A \in \mathbb{R}.$$

Its **Borel-Laplace resummation** is the two-step process

$$\phi(z) \longrightarrow \hat{\phi}(\zeta) = \sum_{k=0}^{\infty} \frac{a_k}{k!} \zeta^k \longrightarrow s_{\theta}(\phi)(z) = \int_{\rho_{\theta}} e^{-\zeta} \hat{\phi}(\zeta z) \, d\zeta \,,$$

$$\text{locally analytic} \qquad \text{locally analytic}$$

$$\text{at the origin } \zeta = 0 \qquad \text{in the complex z-plane}$$

$$\text{with singularities at} \qquad \text{with discontinuities at}$$

$$\zeta = \zeta_{\omega}, \omega \in \Omega \qquad \text{arg}(z) = \text{arg}(\zeta_{\omega}), \omega \in \Omega$$

where $\rho_{\theta} = e^{i\theta} \mathbb{R}_+$, $\theta = arg(\zeta)$. If ζ_{ω} is a logarithmic branch point, we have

$$\hat{\phi}(\zeta) = -\frac{S_{\omega}}{2\pi \mathrm{i}} \log(\zeta - \zeta_{\omega}) \quad \hat{\phi}_{\omega}(\zeta - \zeta_{\omega}) \quad + \dots, \quad S_{\omega} \in \mathbb{C} \quad \text{(Stokes constant)}.$$

$$\mathrm{locally\ analytic}$$

$$\mathrm{at}\ \zeta - \zeta_{\omega} = 0$$

Resurgence in quantum theories — II

When $\theta = \arg(\zeta_{\omega})$ for some $\omega \in \Omega$, the line ρ_{θ} is a **Stokes ray**.

The **discontinuity** across the Stokes ray ρ_{θ} is given by

$$\operatorname{disc}_{\theta}\phi(z) = s_{\theta_{+}}(\phi)(z) - s_{\theta_{-}}(\phi)(z) = \sum_{\omega} S_{\omega} e^{-\zeta_{\omega}/z} s_{\theta_{-}}(\phi_{\omega})(z),$$

where $\theta_{\pm} = \theta \pm \epsilon$ for some small positive angle ϵ , and the sum is performed over the singularities ζ_{ω} with

$$arg(\zeta_{\omega}) = \theta$$
.

The resurgent Gevrey-1 asymptotic series $\phi_{\omega}(z)$ is the inverse Borel transform of $\hat{\phi}_{\omega}(\zeta - \zeta_{\omega})$.

The Stokes automorphism \mathfrak{S}_{θ} across ρ_{θ} is defined by

$$s_{\theta_{+}} = s_{\theta_{-}} \circ \mathfrak{S}_{\theta}$$
.

Resurgence in quantum theories — III

We can repeat the procedure with each of the series obtained in this way. Schematically,

$$\phi \longrightarrow \{\phi_{\omega}, S_{\omega}\} \longrightarrow \{\phi_{\omega'}, S_{\omega\omega'}\}.$$

Each series in this process can be promoted to basic trans-series as

$$\Phi_{\omega}(z) = e^{-\zeta_{\omega}/z} \phi_{\omega}(z).$$

The **minimal resurgent structure** of $\phi(z)$ is

$$\mathfrak{B}_{\phi} = \ \left\{ \Phi_{\omega}(z) \right\}_{\omega \in \bar{\Omega}} \ , \quad \bar{\Omega} \subseteq \Omega \, .$$
 smallest subset closed under \mathfrak{S}

The matrix of Stokes constants is

$$\mathcal{S}_{\phi} = \{S_{\omega\omega'}\}_{\omega,\omega'\in\bar{\Omega}}.$$

Peacock patterns are expected in theories controlled by quantum curves. [Grassi, Gu, Mariño, 2019 - Garoufalidis, Gu, Mariño, 2020 - 2022 - Gu, Mariño, 2021 - Rella, 2022]

TOPOLOGICAL STRINGS BEYOND PERTURBATION THEORY

Resurgence in topological string theory — I

We assume that $Z(\overrightarrow{N}, \overrightarrow{\xi}, \hbar)$ can be analytically continued to $\hbar \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}$.

Consider the semiclassical perturbative expansion

$$\phi_{\overrightarrow{N}}(\hbar) = \log Z(\overrightarrow{N}, \overrightarrow{\xi}, \hbar \to 0), \quad \overrightarrow{N} \in \mathbb{N}^{g_{\Sigma}},$$

which is a (simple) resurgent Gevrey-1 asymptotic series.

We describe a conjectural proposal for the **minimal resurgent** structure of $\phi_{\overrightarrow{N}}(\hbar)$ at fixed \overrightarrow{N} :

$$\Phi_{\sigma,n;\overrightarrow{N}}(\hbar) = \underbrace{\mathrm{e}^{-n\frac{A}{\hbar}}}_{\text{non-analytic}} \Phi_{\sigma;\overrightarrow{N}}(\hbar) ,$$
 infinite family of basic trans-series
$$\hbar\text{-corrections}$$
 asymptotic series

where $n \in \mathbb{N}$, $\sigma \in \{0,...,l\}$, $l \in \mathbb{N}_+$, and $A \in \mathbb{C}$.

The series $\phi_{\sigma; \overrightarrow{N}}(\hbar)$ resurge from $\phi_{\overrightarrow{N}}(\hbar) = \phi_{0; \overrightarrow{N}}(\hbar)$ at the singular points in the Borel plane.

Resurgence in topological string theory — II

The basic trans-series $\Phi_{\sigma,n;\overrightarrow{N}}(\hbar)$ capture **additional**, **non-perturbative sectors** of the theory.

The corresponding infinitely-many Stokes constants are conjectured to be

$$S_{\sigma,\sigma',n;\overrightarrow{N}} \in \mathbb{Q}, \quad \sigma,\sigma' \in \{0,...,l\}, \quad n \in \mathbb{N},$$

They have natural generating functions

$$S_{\sigma,\sigma';\overrightarrow{N}}(q) = \sum_{n \in \mathbb{N}} S_{\sigma,\sigma',n;\overrightarrow{N}} q^n,$$

which can be expressed in closed form as q-series.

We expect that the Stokes constants $S_{\sigma,\sigma',n;\vec{N}}$ are closely related to non-trivial **enumerative** invariants of the geometry.

In summary,

$$\phi(\hbar) = \log Z(\hbar \to 0) \ \longrightarrow \ \mathfrak{B}_{\phi} = \{ \Phi_{\sigma,n}(\hbar) = \mathrm{e}^{-n\frac{A}{\hbar}} \phi_{\sigma}(\hbar) \} \ \longrightarrow \ \mathcal{S}_{\phi} = \{ S_{\sigma,\sigma',n} \in \mathbb{Q} \} \ .$$

Resurgence in topological string theory — III

Consider the dual weakly-coupled regime $g_s \propto \hbar^{-1} \rightarrow 0$.

At fixed \overrightarrow{N} , the (simple) resurgent Gevrey-1 asymptotic series

$$\psi_{\overrightarrow{N}}(g_s) = \log Z(\overrightarrow{N}, \vec{\xi}, \hbar \to \infty), \quad \overrightarrow{N} \in \mathbb{N}^{g_{\Sigma}},$$

is conjectured to have the same resurgent structure described before:

$$\begin{array}{c} \text{peacock pattern} \\ \text{in the Borel plane} \end{array} \longrightarrow \begin{array}{c} \text{infinitely-many} \\ \text{Stokes constants in } \mathbb{Q} \end{array} \longrightarrow \begin{array}{c} \text{integer invariants} \\ \text{of the geometry} \end{array}$$

Some remarks:

- 1. The asymptotic expansion $Z(\vec{N}, \vec{\xi}, \hbar \to \infty)$ has an exponential pre-factor of the form e^{-1/g_s} (conifold volume conjecture for toric CYs). Its Stokes constants are integers. [Gu, Mariño, 2021]
- 2. The asymptotic expansion $Z(\vec{N}, \vec{\xi}, \hbar \to 0)$ has no exponential pre-factor of the form $e^{-1/\hbar}$ (new analytic prediction of the TS/ST correspondence), and its Stokes constants are generally complex numbers.

 [Rella, 2022]

LOCAL \mathbb{P}^2 — A CASE STUDY

Introduction to the local \mathbb{P}^2 geometry

Local \mathbb{P}^2 is the total space of the canonical bundle over the projective surface \mathbb{P}^2 , that is,

$$X = \mathcal{O}(-3) \to \mathbb{P}^2$$
.

It is a **toric del Pezzo CY threefold** with one complex modulus κ and no mass parameters.

The mirror curve is

$$\Sigma : e^x + e^y + e^{-x-y} + \kappa = 0, \quad x, y \in \mathbb{C},$$

and its Weyl quantization gives a **quantum-mechanical operator** acting on $L^2(\mathbb{R})$, that is, [Grassi, Hatsuda, Mariño, 2014]

$$O_{\mathbb{P}^2}(x,y) = e^x + e^y + e^{-x-y}$$
, $[x,y] = i\hbar$ (self-adjoint Heisenberg operators).

The inverse operator $\rho_{\mathbb{P}^2} = \mathsf{O}_{\mathbb{P}^2}^{-1}$ is positive-definite and of **trace class**. [Kashaev, Mariño, 2015]

The fermionic spectral traces $Z_{\mathbb{P}^2}(N,\hbar), N \in \mathbb{N}$, can be expressed as **matrix model integrals**. [Mariño, Zakany, 2015 - Kashaev, Mariño, Zakany, 2015]

Exact solution to the resurgent structure at weak coupling — I

The first spectral trace is known in **closed form**, showing an explicit factorization into holomorphic/anti-holomorphic blocks.

[Kashaev, Mariño, 2015 - Gu, Mariño, 2021]

We obtain the all-orders perturbative expansion

$$Z_{\mathbb{P}^{2}}(1,\hbar\to 0) = \frac{\Gamma(1/3)^{3}}{6\pi\hbar} \exp\left(3\sum_{n=1}^{\infty} (-1)^{n-1} \frac{B_{2n}B_{2n+1}(2/3)}{2n(2n+1)!} (3\hbar)^{2n}\right).$$

$$\phi(\hbar) = \sum_{n=1}^{\infty} a_{2n}\hbar^{2n} \in \mathbb{Q}[\![\hbar]\!]$$

We present a **fully analytic solution** to the resurgent structure of $\phi(\hbar)$. [Rella, 2022]

The coefficients of $\phi(\hbar)$ grow factorially for $n \gg 1$ as

$$a_{2n} \sim (-1)^n (2n)! (4\pi^2/3)^{-2n}$$
 (Gevrey-1 asymptotic series).

<u>Proposition</u>: The Borel transform $\hat{\phi}(\zeta)$ can be explicitly resummed into a well-defined, exact function of $\zeta \in \mathbb{C}$.

Exact solution to the resurgent structure at weak coupling — II

<u>Corollary 1:</u> The Borel transform $\hat{\phi}(\zeta)$ is simple resurgent, and its singularities are **logarithmic branch points** at

$$\zeta_n = \frac{4\pi^2 \mathrm{i}}{3} n, \quad n \in \mathbb{Z}_{\neq 0}.$$

<u>Corollary 2:</u> The **local expansion** of $\hat{\phi}(\zeta)$ at $\zeta = \zeta_n$ is given by

$$\hat{\phi}(\zeta) = -\frac{S_n}{2\pi i} \log(\zeta - \zeta_n) + \dots, \quad n \in \mathbb{Z}_{\neq 0},$$

where $\hat{\phi}_n(\zeta) = 1$. The Stokes constants S_n are accessible analytically.

<u>Proposition</u>: After being normalized, the Stokes constants S_n are rational numbers and simply related to an **interesting sequence of integers** α_n .

$$S_1 = 3\sqrt{3}i, \quad \frac{S_n}{S_1} = \frac{\alpha_n}{n} \in \mathbb{Q}_{>0} \quad n \in \mathbb{Z}_{\neq 0,1},$$

 $\alpha_n = -\alpha_{-n}, \quad \alpha_n \in \mathbb{Z}_{>0} \quad n \in \mathbb{Z}_{>0}.$

Exact solution to the resurgent structure at strong coupling

As before, we obtain an **all-orders perturbative expansion** for $Z_{\mathbb{P}^2}(1, \hbar \to \infty)$, which gives a Gevrey-1 asymptotic series

$$\psi(\tau) = \sum_{n=1}^{\infty} b_{2n} \tau^{2n-1} \in \mathbb{Q}[\pi, \sqrt{3}] \llbracket \tau \rrbracket, \quad \tau = -\frac{2\pi}{3\hbar}.$$

$$b_{2n} \sim (-1)^n (2n)! (2\pi/3)^{-2n}, \quad n \gg 1.$$

We present a **fully analytic solution** to the resurgent structure of $\psi(\tau)$. [Rella, 2022]

- 2. Logarithmic branch points at $\zeta_n = \frac{2\pi i}{3}n, n \in \mathbb{Z}_{\neq 0}$.
- 3. Local expansion at $\zeta = \zeta_n$:

$$\hat{\psi}(\zeta) = -\frac{R_n}{2\pi i} \log(\zeta - \zeta_n) + \dots \longrightarrow \hat{\psi}_n(\zeta) = 1, \quad n \in \mathbb{Z}_{\neq 0}.$$

$$R_1 = 3, \quad R_n = R_1 \frac{\beta_n}{n} \in \mathbb{Q}_{\neq 0} \quad n \in \mathbb{Z}_{\neq 0,1},$$
$$\beta_n = \beta_{-n}, \quad \beta_n \in \mathbb{Z}_{\neq 0} \quad n \in \mathbb{Z}_{>0}.$$

Closed formulae for the Stokes constants — I

We present **exact number-theoretic statements** on the Stokes constants S_n , R_n , $n \in \mathbb{Z}_{>0}$. [Rella, 2022]

Proposition: The normalized Stokes constants are **divisor sum functions**.

$$\frac{S_n}{S_1} = \sum_{d \mid n} \frac{1}{d} - \sum_{d \mid n} \frac{1}{d}, \quad \frac{R_n}{R_1} = \sum_{d \mid n} \frac{d}{n} - \sum_{d \mid n} \frac{d}{n}.$$

$$d \equiv_3 1 \qquad d \equiv_3 2 \qquad \qquad d \equiv_3 1 \qquad d \equiv_3 2$$

<u>Corollary 1:</u> The normalized Stokes constants are multiplicative arithmetic functions.

$$\frac{S_n}{S_1} = \prod_{p \in \mathbb{P}} \frac{S_{p^e}}{S_1}, \quad \frac{R_n}{R_1} = \prod_{p \in \mathbb{P}} \frac{R_{p^e}}{R_1}, \quad n = \prod_{p \in \mathbb{P}} p^e, \quad e \in \mathbb{N},$$

where S_{p^e} and R_{p^e} are known in closed form.

<u>Corollary 2:</u> The Stokes constants have **generating functions given by** *q***-series**.

$$\sum_{n=1}^{\infty} S_n x^n = -i\pi - 3\log \frac{(e^{\frac{2\pi}{3}}i; x)_{\infty}}{(e^{-\frac{2\pi}{3}}i; x)_{\infty}}, \quad \sum_{n=1}^{\infty} R_n x^{n/3} = 3\log \frac{(x^{2/3}; x)_{\infty}}{(x^{1/3}; x)_{\infty}}, \quad |x| < 1.$$

Closed formulae for the Stokes constants — II

As a consequence, we obtain **exact expressions for the discontinuities** of $\phi(\hbar)$, $\psi(\tau)$ across the Stokes line on the positive imaginary axis.

$$\operatorname{disc}_{\pi/2}\phi(\hbar) = \sum_{n=1}^{\infty} S_n e^{-n\frac{4\pi^2}{3}i\hbar} = -i\pi - 3\log(e^{\frac{2\pi}{3}i}; \tilde{q})_{\infty} + 3\log(e^{-\frac{2\pi}{3}i}; \tilde{q})_{\infty}, \quad \tilde{q} = e^{-\frac{4\pi^2}{3\hbar}i},$$

$$\operatorname{disc}_{\pi/2}\psi(\tau) = \sum_{n=1}^{\infty} R_n e^{-n\frac{2\pi}{3}i\tau} = 3\log(q^{2/3}; q)_{\infty} - 3\log(q^{1/3}; q)_{\infty}, \quad q = e^{-\frac{2\pi}{\tau}i} = e^{3i\hbar}.$$

<u>Proposition</u>: The perturbative coefficients $a_{2n}, b_{2n}, n \in \mathbb{Z}_{>0}$, satisfy the **exact large order relations**

$$a_{2n} = \frac{(-1)^n}{\pi i} \frac{\Gamma(2n)}{A^{2n}} \sum_{m=1}^{\infty} \frac{S_m}{m^{2n}} , \quad b_{2n} = \frac{(-1)^n}{\pi} \frac{\Gamma(2n-1)}{A^{2n-1}} \sum_{m=1}^{\infty} \frac{R_m}{m^{2n-1}} ,$$
L-series

L-series

$$\sum_{\substack{m=1\\ m = 1}}^{\infty} \frac{S_m/S_1}{m^{2n}} = \frac{\zeta(2n)}{3^{2n+1}} \left(\zeta \left(2n+1, \frac{1}{3} \right) - \zeta \left(2n+1, \frac{2}{3} \right) \right) ,$$

$$\sum_{m=1}^{\infty} \frac{R_m/R_1}{m^{2n-1}} = \frac{\zeta(2n)}{3^{2n-1}} \left(\zeta \left(2n-1, \frac{1}{3} \right) - \zeta \left(2n-1, \frac{2}{3} \right) \right) .$$

A bridge to analytic number theory

Recall that the multiplication of Dirichlet series is compatible with the **Dirichlet convolution** of arithmetic functions, that is,

$$f(m) = (f_1 * f_2)(m), m \in \mathbb{Z}_{>0} \longrightarrow \sum_{m=1}^{\infty} \frac{f(m)}{m^s} = \sum_{m=1}^{\infty} \frac{f_1(m)}{m^s} \sum_{m=1}^{\infty} \frac{f_2(m)}{m^s}, s \in \mathbb{C}, \Re(s) > 1.$$

<u>Proposition 1:</u> The perturbative coefficients are particular values of a known L-function, which admits a **remarkable factorization dictated by the Dirichlet decomposition** of the Stokes constants.

<u>Proposition 2:</u> The weak and strong coupling L-functions are related by a symmetric **unitary shift** in the arguments of the factors:

$$\frac{S_m}{S_1} = \left(\chi_{3,2} F_{-1} * F_0\right)(m) \longrightarrow \sum_{m=1}^{\infty} \frac{S_m / S_1}{m^s} = \underbrace{L(s+1,\chi_{3,2}) \, \zeta(s)}_{\text{L-function}} \qquad (\hbar \to 0),$$

$$\frac{R_m}{R_1} = \left(\chi_{3,2} F_0 * F_{-1}\right)(m) \longrightarrow \sum_{m=1}^{\infty} \frac{R_m / R_1}{m^s} = \underbrace{L(s,\chi_{3,2}) \, \zeta(s+1)}_{\text{L-function}} \qquad (\hbar \to \infty),$$

where $F_{\alpha}(m) = m^{\alpha}$, $\chi_{3,2}(m) = [m]_3$ (non-principal Dirichlet character mod 3).

Final remarks and open questions

The resurgent analysis of the weak and strong coupling perturbative expansions arising naturally in topological string theory unveils a **universal mathematical structure** of hidden non-perturbative sectors (*peacock patterns*) and **infinitely-many rational Stokes constants** (*enumerative invariants*).

A geometric and physical understanding of the non-perturbative sectors and an explicit identification of the Stokes constants as topological invariants are still missing.

The full resurgent structure of the first spectral trace of local \mathbb{P}^2 in both limits is analytically solvable and displays a striking **number-theoretic structure**, which makes the duality between the two regimes manifest.

We would like to test the arithmetic framework for other CY geometries and higher-order spectral traces in support of a potential generalization.

Our asymptotic series can be defined a priori on the topological strings side of the **TS/ST correspondence** directly via the integral representation of the fermionic spectral traces.

A WKB 't Hooft-like regime associated to $\hbar \to 0$ is used to present a new analytic prediction on the semiclassical asymptotics of the fermionic spectral traces from the NS topological string in a suitable symplectic frame. Further work is required to obtain a full geometric picture.

[Rella, 2022]

