Proximity Measure for Binary Attributes

A contingency table for binary data

		Ob	ject j		
		1	0	sum	
Object i	1	q	r	q+r	
Object i	0	s	t	s+t	
	sum	q + s	r+t	p	

variables
$$d(i,j) = \frac{r+s}{q+r+s+t}$$

- Distance measure for symmetric binary variables
- Distance measure for asymmetric binary variables: $d(i, j) = \frac{r+s}{q+r+s}$
- Jaccard coefficient (*similarity* measure for asymmetric binary variables): sim_{Jaco}

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Note: Jaccard coefficient is the same as

(a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Distance measure for symmetric binary variable (Imaxharith Maraharith) unsignification 2 76

Name	Gende	r Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M 1	Y 1	N 0	P 1	N 0	N 0	NO
Mary	\mathbf{F} 0	Y 1	N O	P 1	N 0	P	NO
Jim	M	Y	P	N	N	N	N

	1	0	SUM
1	2 g	1 7	3
0	1 8	3 +	4
SNM	3	4	7

$$\frac{d(i,j)}{q+r+s+t} = \frac{r+s}{q+r+s+t}$$

$$= \frac{1+1}{2+1+1+3}$$

$$= \frac{2}{7}$$

Distance measure for symmetric binary variable (Imaxharith Maraharith) unsignification 2 76

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M ¹	Y 1	N 0	P 1	N 0	N 0	NO
Mary	F	Y	N	P	N	P	N
Jim	M 1	Y 1	P 1	N 0	N 0	N O	N 0

	1	0	SUM
	2 9	1 7	3
0	1 8	3 +	
SNM	3	4	7

$$\frac{d(i,j)}{q+r+s+t} = \frac{r+s}{q+r+s+t}$$

$$= \frac{1+1}{2+1+1+3}$$

$$= \frac{2}{7}$$

สคาวมปาว พื้นที่ค่าที่ใช้จะไม่เท่ากิน

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F/	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute (not counted in)
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be 0
- Distance: $d(i, j) = \frac{r+s}{q+r+s}$

$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$
$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$
$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$

la	Jack	1		2		0	
30	Jack			1		3	
		Σ	ol	3		3	
	J	im					
	1		0		\sum_{r}	ow	
1	1		1		2		
Ω	1		2		1		

Mary

6

			_	-001
		1	0	Σ_{row}
	1	1	1	2
Jim	0	2	2	4
	\sum_{col}	3	3	6

Proximity Measure for Categorical Attributes

- Categorical data, also called nominal attributes
- Minth coant content the obution.
- Example: Color (red, yellow, blue, green), profession, etc.
- Method 1: Simple matching

$$m$$
: # of matches, p : total # of variables
$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - Creating a new binary attribute for each of the *M* nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
 - lacktriangle Replace an ordinal variable value by its rank: $r_{if} \in \{1,...,M_f\}$
 - Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by $z_{if} = \frac{r_{if} 1}{M_f 1}$
 - Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
 - Compute the dissimilarity using methods for interval-scaled variables

3 > R,G,B ONEW> hand, onnsi, Andron, GRAB

a y	อางีพ
R	M.M.
R	0.
G	L,M,

R	6	B	MINIL	ð.	[L.O].	6RAB
1	0	0	O	0	1	0
1	O	Ó	0	1	0	0
0	1	0	0	0	1	0

p = 7

₩ =

Attributes of Mixed Type

- A dataset may contain all attribute types
- DAY MAZUIZA YUJU DA
- Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- One may use a weighted formula to combine their effects:

$$d(i,j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}}$$

- \Box If f is numeric: Use the normalized distance
- □ If f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; or $d_{ij}^{(f)} = 1$ otherwise
- \Box If f is ordinal
 - Compute ranks z_{if} (where $z_{if} = \frac{r_{if} 1}{M_f 1}$)
 - ☐ Treat z_{if} as interval-scaled

Cosine Similarity of Two Vectors

A document can be represented by a bag of terms or a long vector, with each attribute recording the frequency of a particular term (such as word, keyword, or phrase) in the document

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: Gene features in micro-arrays
- □ Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- \square Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

L HREELINKUME

- URTUICHAIOPELIERO] = URHAIOPRATUITAN
- Myllyon rot : totaknyttes

วัดโภการแนกและสามารถและสามารถเลือง ได้ เมื่อเกาสารถและสามารถานารถเลาเลี้ยง

Example: Calculating Cosine Similarity

$$sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

- where \bullet indicates vector dot product, ||d||: the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$
 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

☐ First, calculate vector dot product

$$d_1 \bullet d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

■ Then, calculate $||d_1||$ and $||d_2||$

$$||d_1|| = \sqrt{5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0} = 6.481$$

$$||d_2|| = \sqrt{3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1} = 4.12$$

Calculate cosine similarity: $cos(d_1, d_2) = 25/(6.481 \times 4.12) = 0.94$

Announcements: Meetine of the 4th Credit Project

- □ CS412: **Assignment #1** was distributed last Tuesday!
 - □ The due date is Sept. 15. No late homework will be accepted!!
- □ Waitlist is cleared: We took 50 additional students into the video only session
 - □ Please find your status with Holly. You are either in or out (wait for Spring 2017)
- Meeting for Project for the 4th Credit
 - You can change from 4 to 3 credit or from 3 to 4 credits by sending me e-mails
 - Meeting time and location: 10-11am Friday (tomorrow!) at 0216 SC
 - This project is part of WSDM 2017 Cup
 - Choice #1: Triple Scoring: Computing relevance scores for triples from type-like relations
 - ☐ Choice #2: **Vandalism Detection** for Wikipages
 - Tas/PhD student/postdoc will give you the details in the Friday meeting! Must attend if you want to do the 4th credit project!!!