Diâmetro

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Seja G = (V, E) um grafo conexo ponderado com n = |V| vértices e m = |E| arestas, tal que o peso da aresta $e_i \in E$ é dado por w_i .

Definimos a **distância** entre dois vértices como o peso do caminho mínimo entre eles. E o **diâmetro** desse grafo como a maior distância entre dois de seus vértices. Se dois vértices atingirem essa maior distância, eles podem ser chamados de **vértices diametrais**.

Encontre o diâmetro do grafo G, dois vértices diametrais e um caminho mínimo entre esses vértices.

Input

A primeira linha da entrada contém dois inteiros separados por um espaço, n e m, representando respectivamente o número de vértices do grafo e o número de arestas entre eles. Seguem m linhas, cada uma com três inteiros, u_i , v_i e w_i , indicando que existe uma aresta de peso w_i entre os vértices u_i e v_i .

Output

A primeira linha da saída deve conter um inteiro representando o valor do diâmetro do grafo. A segunda linha da saída deve conter o índice de dois vértices diametrais, separados por espaços. A terceira linha deve conter a quantidade de vértices em um caminho mínimo entre o par de vértices diametrais da linha 2. A última linha deve conter o índices dos vértices do caminho mínimo escolhido na linha 3.

O diâmetro é um valor único, mas um grafo pode possuir mais de um par de vértices diametrais e mais de um caminho mínimo entre eles. Você pode escolher qualquer par de vértices diametrais e caminho mínimo, desde que eles realmente sejam válidos.

Examples

standard input	standard output
4 3	6
1 2 1	1 4
2 3 2	4
3 4 3	1 2 3 4
4 6	1
1 2 1	1 2
1 3 1	2
1 4 1	1 2
2 3 1	
2 4 1	
3 4 1	
5 8	130
2 4 64	3 4
2 5 62	4
3 5 41	3 1 2 4
1 5 40	
2 3 70	
1 3 62	
1 2 4	
4 5 99	

Note

- Você deve considerar que nesse grafo não há arestas paralelas nem laços.
- O grafo fornecido é conexo.
- A quantidade máxima de vértices no grafo é 300. Portanto, $2 \le n \le 300$ e $n-1 \le m \le \binom{n}{2}$.
- Toda aresta possui peso positivo menor que 300. Portanto, para toda aresta $e_i \in E, 1 \leq w_i \leq 100.$