(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 June 2001 (21.06.2001)

PCT

(10) International Publication Number WO 01/43693 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/US00/34162

(22) International Filing Date:

15 December 2000 (15.12.2000)

(25) Filing Language:

English

A61K

(26) Publication Language:

English

(30) Priority Data: 60/172,442

17 December 1999 (17.12.1999) U

- (71) Applicant (for all designated States except US): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): SHIVER, John, W. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). LIANG, Xiaoping [CA/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). FU, Tong-Ming

[US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

- (74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

[Continued on next page]

(54) Title: POLYNUCLEOTIDE VACCINES EXPRESSING CODON OPTIMIZED HIV-1 NEF AND MODIFIED HIV-1 NEF

(57) Abstract: Pharmaceutical compositions which comprise HIV Nef DNA vaccines are disclosed, along with the production and use of these DNA vaccines. The nef-based DNA vaccines of the invention are administered directly introduced into living vertebrate tissue, preferably humans, and express the HIV Nef protein or biologically relevant portions thereof, inducing a cellular immune response which specifically recognizes human immunodeficiency virus-1 (HIV-1). The DNA molecules which comprise the open reading frame of these DNA vaccines are synthetic DNA molecules encoding codon optimized HIV-1 Nef and derivatives of optimized HIV-1 Nef, including nef modifications comprising amino terminal leader peptides, removal of the amino terminal myristylation site, and/or modification of the Nef dileucine motif. These modifications may effect wild type characteristics of Nef, such as myristylation and down regulation of host CD4.

O 01/43693

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

TITLE OF THE INVENTION

5 POLYNUCLEOTIDE VACCINES EXPRESSING CODON OPTIMIZED HIV-1 NEF AND MODIFIED HIV-1 NEF

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit, under 35 U.S.C. §119(e), of U.S. provisional application 60/172,442, filed December 17, 1999.

STATEMENT REGARDING FEDERALLY-SPONSORED R&D Not Applicable

15

20

25

30

10

REFERENCE TO MICROFICHE APPENDIX Not Applicable

FIELD OF THE INVENTION

The present invention relates to HIV Nef polynucleotide pharmaceutical products, as well as the production and use thereof which, when directly introduced into living vertebrate tissue, preferably a mammalian host such as a human or a non-human mammal of commercial or domestic veterinary importance, express the HIV Nef protein or biologically relevant portions thereof within the animal, inducing a cellular immune response which specifically recognizes human immunodeficiency virus-1 (HIV-1). The polynucleotides of the present invention are synthetic DNA molecules encoding codon optimized HIV-1 Nef and derivatives of optimized HIV-1 Nef, including nef mutants which effect wild type characteristics of Nef, such as myristylation and down regulation of host CD4. The polynucleotide vaccines of the present invention should offer a prophylactic advantage to previously uninfected individuals and/or provide a therapeutic effect by reducing viral load levels within an infected individual, thus prolonging the asymptomatic phase of HIV-1 infection.

BACKGROUND OF THE INVENTION

5

10

15

20

25

30

Human Immunodeficiency Virus-1 (HIV-1) is the etiological agent of acquired human immune deficiency syndrome (AIDS) and related disorders. HIV-1 is an RNA virus of the Retroviridae family and exhibits the 5'LTR-gag-pol-env-LTR 3'organization of all retroviruses. The integrated form of HIV-1, known as the provirus, is approximately 9.8 Kb in length. Each end of the viral genome contains flanking sequences known as long terminal repeats (LTRs). The HIV genes encode at least nine proteins and are divided into three classes; the major structural proteins (Gag, Pol, and Env), the regulatory proteins (Tat and Rev); and the accessory proteins (Vpu, Vpr, Vif and Nef).

The gag gene encodes a 55-kilodalton (kDa) precursor protein (p55) which is expressed from the unspliced viral mRNA and is proteolytically processed by the HIV protease, a product of the pol gene. The mature p55 protein products are p17 (matrix), p24 (capsid), p9 (nucleocapsid) and p6.

The pol gene encodes proteins necessary for virus replication; a reverse transcriptase, a protease, integrase and RNAse H. These viral proteins are expressed as a Gag-Pol fusion protein, a 160 kDa precursor protein which is generated via a ribosomal frame shifting. The viral encoded protease proteolytically cleaves the Pol polypeptide away from the Gag-Pol fusion and further cleaves the Pol polypeptide to the mature proteins which provide protease (Pro, P10), reverse transcriptase (RT, P50), integrase (IN, p31) and RNAse H (RNAse, p15) activities.

The *nef* gene encodes an early accessory HIV protein (Nef) which has been shown to possess several activities such as down regulating CD4 expression, disturbing T-cell activation and stimulating HIV infectivity.

The *env* gene encodes the viral envelope glycoprotein that is translated as a 160-kilodalton (kDa) precursor (gp160) and then cleaved by a cellular protease to yield the external 120-kDa envelope glycoprotein (gp120) and the transmembrane 41-kDa envelope glycoprotein (gp41). Gp120 and gp41 remain associated and are displayed on the viral particles and the surface of HIV-infected cells.

The *tat* gene encodes a long form and a short form of the Tat protein, a RNA binding protein which is a transcriptional transactivator essential for HIV-1 replication.

The rev gene encodes the 13 kDa Rev protein, a RNA binding protein. The Rev protein binds to a region of the viral RNA termed the Rev response element

(RRE). The Rev protein is promotes transfer of unspliced viral RNA from the nucleus to the cytoplasm. The Rev protein is required for HIV late gene expression and in turn, HIV replication.

5

10

15

20

25

30

Gp120 binds to the CD4/chemokine receptor present on the surface of helper T-lymphocytes, macrophages and other target cells in addition to other co-receptor molecules. X4 (macrophage tropic) virus show tropism for CD4/CXCR4 complexes while a R5 (T-cell line tropic) virus interacts with a CD4/CCR5 receptor complex. After gp120 binds to CD4, gp41 mediates the fusion event responsible for virus entry. The virus fuses with and enters the target cell, followed by reverse transcription of its single stranded RNA genome into the double-stranded DNA via a RNA dependent DNA polymerase. The viral DNA, known as provirus, enters the cell nucleus, where the viral DNA directs the production of new viral RNA within the nucleus, expression of early and late HIV viral proteins, and subsequently the production and cellular release of new virus particles. Recent advances in the ability to detect viral load within the host shows that the primary infection results in an extremely high generation and tissue distribution of the virus, followed by a steady state level of virus (albeit through a continual viral production and turnover during this phase), leading ultimately to another burst of virus load which leads to the onset of clinical AIDS. Productively infected cells have a half life of several days, whereas chronically or latently infected cells have a 3-week half life, followed by non-productively infected cells which have a long half life (over 100 days) but do not significantly contribute to day to day viral loads seen throughout the course of disease.

Destruction of CD4 helper T lymphocytes, which are critical to immune defense, is a major cause of the progressive immune dysfunction that is the hallmark of HIV infection. The loss of CD4 T-cells seriously impairs the body's ability to fight most invaders, but it has a particularly severe impact on the defenses against viruses, fungi, parasites and certain bacteria, including mycobacteria.

Effective treatment regimens for HIV-1 infected individuals have become available recently. However, these drugs will not have a significant impact on the disease in many parts of the world and they will have a minimal impact in halting the spread of infection within the human population. As is true of many other infectious diseases, a significant epidemiologic impact on the spread of HIV-1 infection will only occur subsequent to the development and introduction of an effective vaccine. There are a number of factors that have contributed to the lack of successful vaccine

5

10

15

20

25

30

development to date. As noted above, it is now apparent that in a chronically infected person there exists constant virus production in spite of the presence of anti-HIV-1 humoral and cellular immune responses and destruction of virally infected cells. As in the case of other infectious diseases, the outcome of disease is the result of a balance between the kinetics and the magnitude of the immune response and the pathogen replicative rate and accessibility to the immune response. Pre-existing immunity may be more successful with an acute infection than an evolving immune response can be with an established infection. A second factor is the considerable genetic variability of the virus. Although anti-HIV-1 antibodies exist that can neutralize HIV-1 infectivity in cell culture, these antibodies are generally virus isolate-specific in their activity. It has proven impossible to define serological groupings of HIV-1 using traditional methods. Rather, the virus seems to define a serological "continuum" so that individual neutralizing antibody responses, at best, are effective against only a handful of viral variants. Given this latter observation, it would be useful to identify immunogens and related delivery technologies that are likely to elicit anti-HIV-1 cellular immune responses. It is known that in order to generate CTL responses antigen must be synthesized within or introduced into cells, subsequently processed into small peptides by the proteasome complex, and translocated into the endoplasmic reticulum/Golgi complex secretory pathway for eventual association with major histocompatibility complex (MHC) class I proteins. CD8⁺ T lymphocytes recognize antigen in association with class I MHC via the T cell receptor (TCR) and the CD8 cell surface protein. Activation of naive CD8⁺ T cells into activated effector or memory cells generally requires both TCR engagement of antigen as described above as well as engagement of costimulatory proteins. Optimal induction of CTL responses usually requires "help" in the form of cytokines from CD4⁺ T lymphocytes which recognize antigen associated with MHC class II molecules via TCR and CD4 engagement.

As introduced above, the *nef* gene encodes an early accessory HIV protein (Nef) which has been shown to possess several activities such as down regulating CD4 expression, disturbing T-cell activation and stimulating HIV infectivity. Zazopoulos and Haseltine (1992, *Proc. Natl. Acad. Sci.* 89: 6634-6638) disclose mutations to the HIV-1 nef gene which effect the rate of virus replication. The authors show that the nef open reading frame mutated to encode Ala-2 in place of Gly-2 inhibits myristolation of the protein and results in delayed viral replication rates

in Jurkat cells and PBMCs.

5

10

15

20

25

30

Kaminchik et al. (1991, *J. Virology* 65(2): 583-588) disclose an aminoterminal nef open reading frame mutated to encode Met-Ala-Ala in place of Met-Gly-Gly. The authors show that this mutant is deficient in myristolation.

Saksela et al. (1995, *EMBO J*. 14(3): 484-491) and Lee et al. (1995, *EMBO J*. 14(20): 5006-5015) show the importance of a proline rich motif in HIV-1 Nef which mediates binding to a SH3 domain of the Hck protein. The authors conclude that this motif is important in the enhancement of viral replication but not down-regulation of CD4 expression.

Calarota et al. (1998, *The Lancet* 351: 1320-1325) present human clinical data concerning immunization of three HIV infected individuals with a DNA plasmid expressing wild type Nef. The authors conclude that immunization with a Nef encoding DNA plasmid induced a cellular immune response in the three individuals. However, two of the three patients were on alternative therapies during the study, and the authors conclude that the CTL response was most likely a boost to a pre-existing CTL response. In addition, the viral load increased substantially in two of the three patients during the course of the study.

Tobery et al. (1997, *J. Exp. Med.* 185(5): 909-920) constructed two ubiquitinnef (Ub-nef) fusion constructs, one which encoded the Nef initiating methionine and the other with an Arg residue at the amino terminus of the Nef open reading frame. The authors state that vaccinia- or plasmid-based immunization of mice with a Ub-nef construct containing an Arg residue at the amino terminus induces a Nef-specific CTL response. The authors suggest the expressed fusion protein is more efficiently presented to the MHC class I antigen presentation pathway, resulting in an improved cellular immune response.

Kim et al. (1997, *J. Immunol*. 158(2): 816-826) disclose that co-administration of a plasmid DNA construct expressing IL-12 with a plasmid construct expressing Nef results in an improved cellular immune response in mice when compared to inoculation with the Nef construct alone. The authors reported a reduction in the humoral response from the Nef / IL-12 co-administration as compared to administration of the plasmid construct expressing Nef alone.

Moynier et al. (1998, *Vaccine* 16(16): 1523-1530) show varying humoral responses in mice immunized with a DNA plasmid encoding Nef, depending upon the presence of absence of Freund's adjuvant. No data is disclosed regarding a cellular

immune response in mice vaccinated with the aforementioned DNA construct alone.

Hanna et al. (1998, *Cell* 95:163-175) suggest that wild type Nef may play a critical role in AIDS pathogenicity.

It would be of great import in the battle against AIDS to produce a prophylactic- and/or therapeutic-based HIV vaccine which generates a strong cellular immune response against an HIV infection. The present invention addresses and meets this needs by disclosing a class of DNA vaccines based on host delivery and expression of the early HIV gene, *nef*.

10 SUMMARY OF THE INVENTION

5

15

20

25

30

The present invention relates to synthetic DNA molecules (also referred to herein as "polynucleotides") and associated DNA vaccines (also referred to herein as "polynucleotide vaccines") which elicit CTL responses upon administration to the host, such as a mammalian host and including primates and especially humans, as well as non-human mammals of commercial or domestic veterinary importance. The CTL-directed vaccines of the present invention should lower transmission rate to previously uninfected individuals and/or reduce levels of the viral loads within an infected individual, so as to prolong the asymptomatic phase of HIV-1 infection. In particular, the present invention relates to DNA vaccines which encode various forms of HIV-1 Nef, wherein administration, intracellular delivery and expression of the HIV-1 nef gene of interest elicits a host CTL and Th response. The preferred synthetic DNA molecules of the present invention encode codon optimized versions of wild type HIV-1 Nef, codon optimized versions of HIV-1 Nef fusion proteins, and codon optimized versions of HIV-1 Nef derivatives, including but not limited to nef modifications involving introduction of an amino-terminal leader sequence, removal of an amino-terminal myristylation site and/or introduction of dileucine motif mutations. The Nef-based fusion and modified proteins disclosed within this specification may possess altered trafficking and/or host cell function while retaining the ability to be properly presented to the host MHC I complex and in turn elicit a host CTL and Th response.

A particular embodiment of the present invention relates to a DNA molecule encoding HIV-1 Nef from the HIV-1 jfrl isolate wherein the codons are optimized for expression in a mammalian system such as a human. The DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:1, while the expressed open

reading frame is disclosed herein as SEQ ID NO:2.

10

15

20

25

30

In another embodiment of the present invention, a codon optimized DNA molecule encoding a protein containing the human plasminogen activator (tpa) leader peptide fused with the NH₂-terminus of the HIV-1 Nef polypeptide. The DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:3, while the expressed open reading frame is disclosed herein as SEO ID NO:4.

In an additional embodiment, the present invention relates to a DNA molecule encoding optimized HIV-1 Nef wherein the open reading frame codes for modifications at the amino terminal myristylation site (Gly-2 to Ala-2) and substitution of the Leu-174-Leu-175 dileucine motif to Ala-174-Ala-175, herein described as opt nef (G2A,LLAA). The DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:5, while the expressed open reading frame is disclosed herein as SEQ ID NO:6.

Another additional embodiment of the present invention relates to a DNA molecule encoding optimized HIV-1 Nef wherein the amino terminal myristylation site and dileucine motif have been deleted, as well as comprising a tPA leader peptide. This DNA molecule, opt tpanef (LLAA), comprises an open reading frame which encodes a Nef protein containing a tPA leader sequence fused to amino acid residue 6-216 of HIV-1 Nef (jfrl), wherein Leu-174 and Leu-175 are substituted with Ala-174 and Ala-175, herein referred to as opt tpanef (LLAA) is disclosed herein as SEQ ID NO:7, while the expressed open reading frame is disclosed herein as SEQ ID NO:8.

The present invention also relates to non-codon optimized versions of DNA molecules and associated DNA vaccines which encode the various wild type and modified forms of the HIV Nef protein disclosed herein. Partial or fully codon optimized DNA vaccine expression vector constructs are preferred, but it is within the scope of the present invention to utilize "non-codon optimized" versions of the constructs disclosed herein, especially modified versions of HIV Nef which are shown to promote a substantial cellular immune response subsequent to host administration.

The DNA backbone of the DNA vaccines of the present invention are preferably DNA plasmid expression vectors. DNA plasmid expression vectors utilized in the present invention include but are not limited to constructs which comprise the cytomegalovirus promoter with the intron A sequence (CMV-intA) and a bovine growth hormone transcription termination sequence. In addition, the DNA plasmid vectors of the present invention preferably comprise an antibiotic resistance

marker, including but not limited to an ampicillin resistance gene, a neomycin resistance gene or any other pharmaceutically acceptable antibiotic resistance marker. In addition, an appropriate polylinker cloning site and a prokaryotic origin of replication sequence are also preferred. Specific DNA vectors of the present invention include but are not limited to V1, V1J (SEQ ID NO:14), V1Jneo (SEQ ID NO:15), V1Jns (Figure 1A, SEQ ID NO:16), V1R (SEQ ID NO:26), and any of the aforementioned vectors wherein a nucleotide sequence encoding a leader peptide, preferably the human tPA leader, is fused directly downstream of the CMV-intA promoter, including but not limited to V1Jns-tpa, as shown in Figure 1B and SEQ ID NO:19.

5

10

30

The present invention especially relates to a DNA vaccine and a pharmaceutically active vaccine composition which contains this DNA vaccine, and the use as a prophylactic and/or therapeutic vaccine for host immunization, preferably human host immunization, against an HIV infection or to combat an existing HIV 15 condition. These DNA vaccines are represented by codon optimized DNA molecules encoding HIV-1 Nef of biologically active Nef modifications or Nef-containing fusion proteins which are ligated within an appropriate DNA plasmid vector, with or without a nucleotide sequence encoding a functional leader peptide. DNA vaccines of the present invention relate in part to codon optimized DNA molecules encoding 20 HIV-1 Nef of biologically active Nef modifications or Nef-containing fusion proteins ligated in DNA vectors V1, V1J (SEO ID NO:14), V1Jneo (SEO ID NO:15), V1Jns (Figure 1A, SEQ ID NO:16), V1R (SEQ ID NO:26), or any of the aforementioned vectors wherein a nucleotide sequence encoding a leader peptide, preferably the human tPA leader, is fused directly downstream of the CMV-intA promoter, 25 including but not limited to VIIns-tpa, as shown in Figure 1B and SEQ ID NO:19. Especially preferred DNA vaccines of the present invention include codon optimized DNA vaccine constructs V1Jns/nef, V1Jns/tpanef, V1Jns/tpanef(LLAA) and VIJns/(G2A,LLAA), as exemplified in Example Section 2.

The present invention also relates to HIV Nef polynucleotide pharmaceutical products, as well as the production and use thereof, wherein the DNA vaccines are formulated with an adjuvant or adjuvants which may increase immunogenicity of the DNA polynucleotide vaccines of the present invention, namely by increasing a humoral response to inoculation. A preferred adjuvant is an aluminum phosphate-based adjuvant or a calcium phosphate based adjuvant,

with an aluminum phosphate adjuvant being especially preferred. Another preferred adjuvant is a non-ionic block copolymer, preferably comprising the blocks of polyoxyethylene (POE) and polyoxypropylene (POP) such as a POE-POP-POE block copolymer. These adjuvanted forms comprising the DNA vaccines disclosed herein are useful in increasing humoral responses to DNA vaccination without imparting a negative effect on an appropriate cellular immune response.

As used herein, a DNA vaccine or DNA polynucleotide vaccine or polynucleotide vaccine is a DNA molecule (i.e., "nucleic acid", "polynucleotide") which contains essential regulatory elements such that upon introduction into a living, vertebrate cell, it is able to direct the cellular machinery to produce translation products encoded by the respective nef genes of the present invention.

BRIEF DESCRIPTION OF THE FIGURES

5

10

15

20

25

30

Figure 1A-B show a schematic representation of DNA vaccine expression vectors V1Jns (A) and V1Jns/tpa utilized for HIV-1 nef and HIV-1 modified nef constructs.

Figure 2A-B show a nucleotide sequence comparison between wild type nef(jrfl) and codon optimized nef. The wild type nef gene from the jrfl isolate consists of 648 nucleotides capable of encoding a 216 amino acid polypeptide. WT, wild type sequence (SEQ ID NO:9); opt, codon-optimized sequence (contained within SEQ ID NO:1). The Nef amino acid sequence is shown in one-letter code (SEQ ID NO:2).

Figure 3A-C show nucleotide sequences at junctions between nef coding sequence and plasmid backbone of nef expression vectors V1Jns/nef (Figure 3A), V1Jns/nef(G2A,LLAA) (Figure 3B), V1Jns/tpanef (Figure 3C) and V1Jns/tpanef(LLAA) (Figure 3C, also). 5' and 3' flanking sequences of codon optimized nef or codon optimized nef mutant genes are indicated by bold/italic letters; nef and nef mutant coding sequences are indicated by plain letters. Also indicated (as underlined) are the restriction endonuclease sites involved in construction of respective nef expression vectors. V1Jns/tpanef and V1Jns/tpanef(LLAA) have identical sequences at the junctions.

Figure 4 shows a schematic presentation of nef and nef derivatives. Amino acid residues involved in Nef derivatives are presented. Glycine 2 and Leucine 174

and 175 are the sites involved in myristylation and dileucine motif, respectively. For both versions of the tpanef fusion genes, the putative leader peptide cleavage sites are indicated with "*", and a exogenous serine residue introduced during the construction of the mutants is underlined.

5

10

15

20

25

30

Figure 5 shows Western blot analysis of nef and modified nef proteins expressed in transfected 293 cells. 293 cells grown in 100 mm culture dish were transfected with respective codon optimized nef constructs. Sixty hours post transfection, supernatant and cells were collected separately and separated on 10% SDS-PAGE under reducing conditions. The proteins were transferred into a PVDF membrane and probed with a mixture of Gag mAb and Nef mAbs, both at 1:2000 dilution. The protein signals were detected with ECL. (A) cells transfected with V1Jns/gag only; (B) cells transfected with V1Jns/gag and V1Jns/nef; (C) cells transfected with V1Jns/gag and V1Jns/ref; (C) cells transfected with V1Jns/gag and V1Jns/tpanef; (E) cells transfected with V1Jns/gag and V1Jns/tpanef(LLAA). The low case letter c and m represent medium and cellular fractions, respectively. M.W. = molecular weight marker.

Figure 6 shows an Elispot assay of cell-mediated responses to Nef peptides. Three strains of mice, Balb/c, C57BL/6 and C3H, were immunized with 50 mcg of V1Jns/nef (codon optimized) and boosted twice with a two-week interval. Two weeks following the final immunization, splenocytes were isolated and tested in an Elispot assay against respective Nef peptide pools. As a control, splenocytes were from non-immunized naive mice were tested in parallel. Nef peptide pool A consists of all 21 Nef peptides; Nef peptide pool B consists of 11 non-overlapping peptide started from residue 1; Nef peptide pool C consists of 10 non-overlapping peptides started from residue 11. SFC, INF-gamma secreting spot-forming cells.

Figure 7A-C show Nef-specific CD8 and CD4 epitope mapping. The immunization regime is as per Figure 6. Mouse splenocytes were isolated and fractionated into CD8⁺ and CD8⁻ cells using Miltenyi's magnetic cell separator. The resultant CD8⁺ and CD8⁻ cells were then tested in an Elispot assay against individual Nef peptides. SFC, INF-gamma secreting spot-forming cells. The mice strains tested are Balb/c mice (Figure 7A), C57BL/6 mice (Figure 7B), and C3H mice (Figure 7C).

Figure 8A-C show identification of a Nef CTL epitope. Splenocytes from nef immunized C57BL/6 mice were stimulated in vitro with peptide-pulsed, irradiated naïve splenocytes for 7 days. Following the *in vitro* stimulation, cells were harvested

and tested in a standard ⁵¹Cr-releasing assay using peptide pulsed EL-4 cells as targets. Open symbol, specific killings of EL-4 cells without peptide; solid symbol, specific killing of EL-4 cells with peptide. Panel A - peptide Nef 51-70; Panel B - peptide Nef 60-68, Panel C - peptide Nef 58-70.

Figure 9A-B shows a comparison of the immunogenicity of codon optimized DNA vaccine vectors expressing Nef and modified forms of Nef C57BL/6 mice, five per group, were immunized with 100 mcg of the indicated nef constructs. Fourteen days following immunization, splenocytes were collected and tested against the Nef CD8 (aa58-66) and CD4 (aa81-100) peptides. Identical immunization regimens were used for both experiments. In experiment 1 (Panel A), three codon optimized nef constructs were tested, namely, V1Jns/nef, V1Jns/tpanef(LLAA) and V1Jns/nef(G2A,LLAA), whereas in experiment 2 (Panel B) all four codon optimized nef constructs were tested. The data represent means plus standard deviation of 5 mice per group.

15

20

25

30

10

5

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to synthetic DNA molecules (also referred to herein as "nucleic acid" molecules or "polynucleotides") and associated DNA vector vaccines (also referred to herein as "polynucleotide vaccines") which elicit CTL and humoral responses upon administration to the host, including primates and especially humans. In particular, the present invention relates to DNA vector vaccines which encode various forms of HIV-1 Nef, wherein administration, intracellular delivery and expression of the HIV-1 nef gene of interest elicits a host CTL and Th response. The synthetic DNA molecules of the present invention encode codon optimized versions of wild type HIV-1 Nef, codon optimized versions of HIV-1 Nef fusion proteins, and codon optimized versions of HIV-1 Nef derivatives, including but not limited to nef modifications involving introduction of an amino-terminal leader sequence, removal of an amino-terminal myristylation site and/or introduction of dileucine motif mutations. In some instances the Nef-based fusion and modified proteins disclosed within this specification possess altered trafficking and/or host cell function while retaining the ability to be properly presented to the host MHC I complex. Those skilled in the art will recognize that the use of nef genes from HIV-2 strains which express Nef proteins having analogous function to HIV-1 Nef would be expected to generate immune responses analogous to those described herein for

HIV-1 constructs.

5

10

15

20

25

30

In order to generate a CTL response, the immunogen must be synthesized within (MHCI presentation) or introduced into cells (MHCII presentation). For intracellular synthesized immunogens, the protein is expressed and then processed into small peptides by the proteasome complex, and translocated into the endoplasmic reticulum/Golgi complex secretory pathway for eventual association with major histocompatibility complex (MHC) class I proteins. CD8⁺ T lymphocytes recognize antigen in association with class I MHC via the T cell receptor (TCR). Activation of naive CD8⁺ T cells into activated effector or memory cells generally requires both TCR engagement of antigen as described above as well as engagement of co-stimulatory proteins. Optimal induction of CTL responses usually requires "help" in the form of cytokines from CD4⁺ T lymphocytes which recognize antigen associated with MHC class II molecules via TCR.

The HIV-1 genome employs predominantly uncommon codons compared to highly expressed human genes. Therefore, the nef open reading frame has been synthetically manipulated using optimal codons for human expression. As noted above, a preferred embodiment of the present invention relates to DNA molecules which comprise a HIV-1 nef open reading frame, whether encoding full length nef or a modification or fusion as described herein, wherein the codon usage has been optimized for expression in a mammal, especially a human.

In a particular embodiment of the present invention, a DNA molecule encoding HIV-1 Nef from the HIV-1 jfrl isolate wherein the codons are optimized for expression in a mammalian system such as a human. The nucleotide sequence of the codon optimized version of HIV-1 jrfl nef gene is disclosed herein as SEQ ID NO:1, as shown herein:

GATCTGCCAC CATGGGCGG AAGTGGTCCA AGAGGTCCGT GCCCGGCTGG TCCACCGTGA GGGAGAGGAT GAGGAGGGCC GAGCCCGCCG CCGACAGGGT GAGGAGGACC GAGCCCGCCG CCGTGGGCGT GGGCGCGT TCCAGGGACC TGGAGAAGCA CGGCGCCATC ACCTCCTCA ACACCGCCGC CACCAACGCC GACTGCGCCT GGCTGGAGGC CCAGGAGGAC GAGGAGGTGG GCTTCCCCGT GAGGCCCCAG GTGCCCCTGA GGCCCATGAC CTACAAGGGC GCCGTGGACC TGTCCCACTT CCTGAAGGAG AAGGGCGGCC TGGAGGGCCT GATCCACTC CAGAAGAGGC AGGACATCCT GGACCTTGG GTGACCACAC CCCAGGGCTA CTTCCCCGAC TGGCAGAACT ACACCCCCGG CCCGGCATC AGGTTCCCC TGACCTTCG CTGCTGCACC CTGCTGCACC CCGTGGAGCC CCGTGGAGCC CCGTGGAGCC AGGAGAGGCC AGGAGAGCC AGGAGAGCC AGGAGAGCC AGGAGAGCC CTGCTGCACC CTGCTGCACC CTGCTGCACC CTGCTGCACC CTGCTGCACC CTGCTGCACC

CCATGTCCCA GCACGGCATC GAGGACCCCG AGAAGGAGGT GCTGGAGTGG AGGTTCGACT CCAAGCTGGC CTTCCACCAC GTGGCCAGGG AGCTGCACCC CGAGTACTAC AAGGACTGCT AAAGCCCGGG C (SEQ ID NO:1).

As can be discerned from comparing native to optimized codon usage in

Figure 2A-B, the following codon usage for mammalian optimization is preferred:
Met (ATG), Gly (GGC), Lys (AAG), Trp (TGG), Ser (TCC), Arg (AGG), Val (GTG),
Pro (CCC), Thr (ACC), Glu (GAG); Leu (CTG), His (CAC), Ile (ATC), Asn (AAC),
Cys (TGC), Ala (GCC), Gln (CAG), Phe (TTC) and Tyr (TAC). For an additional
discussion relating to mammalian (human) codon optimization, see WO 97/31115

(PCT/US97/02294), which is hereby incorporated by reference.

The open reading frame for SEQ ID NO:1 above comprises an initiating methionine residue at nucleotides 12-14 and a "TAA" stop codon from nucleotides 660-662. The open reading frame of SEQ ID NO:1 provides for a 216 amino acid HIV-1 Nef protein expressed through utilization of a codon optimized DNA vaccine vector. The 216 amino acid HIV-1 Nef (jfrl) protein is disclosed herein as SEQ ID NO:2, and as follows:

15

20

25

30

Met Gly Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Gly Gly Leu Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Leu Leu His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys (SEQ ID NO:2).

HIV-1 Nef is a 206 amino acid cytosolic protein which associates with the inner surface of the host cell plasma membrane through myristylation of Gly-2 (Franchini et al., 1986, *Virology* 155: 593-599). While not all possible Nef functions have been elucidated, it has become clear that correct trafficking of Nef to the inner

plasma membrane promotes viral replication by altering the host intracellular environment to facilitate the early phase of the HIV-1 life cycle and by increasing the infectivity of progeny viral particles. In one aspect of the invention regarding codon-optimized, protein-modified polypeptides, either the DNA vaccine vector molecule or the HIV-1 nef construct is modified to contain a nucleotide sequence which encodes a heterologous leader peptide such that the amino terminal region of the expressed protein will contain the leader peptide. The diversity of function that typifies eukaryotic cells depends upon the structural differentiation of their membrane boundaries. To generate and maintain these structures, proteins must be transported from their site of synthesis in the endoplasmic reticulum to predetermined destinations throughout the cell. This requires that the trafficking proteins display sorting signals that are recognized by the molecular machinery responsible for route selection located at the access points to the main trafficking pathways. Sorting decisions for most proteins need to be made only once as they traverse their biosynthetic pathways since their final destination, the cellular location at which they perform their function, becomes their permanent residence. Maintenance of intracellular integrity depends in part on the selective sorting and accurate transport of proteins to their correct destinations. Defined sequence motifs exist in proteins which can act as 'address labels'. A number of sorting signals have been found associated with the cytoplasmic domains of membrane proteins. An effective induction of CTL responses often required sustained, high level endogenous expression of an antigen. In light of its diverse biological activities, vaccines composed of wild-type Nef could potentially have adverse effects on the host cells. As membrane-association via myristylation is an essential requirement for most of Nef's function, mutants lacking myristylation, by glycine-to-alanine change, change of the dileucine motif and/or by substitution with a tpa leader sequence as described herein, will be functionally defective, and therefore will have improved safety profile compared to wild-type Nef for use as an HIV-1 vaccine component.

10

15

20

25

30

In a preferred and exemplified embodiment of this portion of the invention, either the DNA vector or the HIV-1 nef nucleotide sequence is modified to include the human tissue-specific plasminogen activator (tPA) leader. As shown in Figure 1A-B for the DNA vector V1Jns, a DNA vector which may be utilized to practice the present invention may be modified by known recombinant DNA methodology to contain a leader signal peptide of interest, such that downstream

cloning of the modified HIV-1 protein of interest results in a nucleotide sequence which encodes a modified HIV-1 tPA/Nef protein. In the alternative, as noted above, insertion of a nucleotide sequence which encodes a leader peptide may be inserted into a DNA vector housing the open reading frame for the Nef protein of interest.

5 Regardless of the cloning strategy, the end result is a polynucleotide vaccine which comprises vector components for effective gene expression in conjunction with nucleotide sequences which encode a modified HIV-1 Nef protein of interest, including but not limited to a HIV-1 Nef protein which contains a leader peptide. The amino acid sequence of the human tPA leader utilized herein is as follows: 10

MDAMKRGLCCVLLLCGAVFVSPSEISS (SEQ ID NO:19).

15

20

25

30

It has been shown that myristylation of Gly-2 in conjunction with a dileucine motif in the carboxy region of the protein is essential for Nef-induced down regulation of CD4 (Aiken et al., 1994, Cell 76: 853-864) via endocytosis. It has also been shown that Nef expression promotes down regulation of MHCI (Schwartz et al., 1996, Nature Medicine 2(3): 338-342) via endocytosis. The present invention relates in part to DNA vaccines which encode modified Nef proteins altered in trafficking and/or functional properties. The modifications introduced into the DNA vaccines of the present invention include but are not limited to additions, deletions or substitutions to the nef open reading frame which results in the expression of a modified Nef protein which includes an amino terminal leader peptide, modification or deletion of the amino terminal myristylation site, and modification or deletion of the dileucine motif within the Nef protein and which alter function within the infected host cell. Therefore, a central theme of the DNA molecules and DNA vaccines of the present invention is (1) host administration and intracellular delivery of a codon optimized nef-based DNA vector vaccine; (2) expression of a modified Nef protein which is immunogenic in terms of eliciting both CTL and Th responses; and, (3) inhibiting or at least altering known early viral functions of Nef which have been shown to promote HIV-1 replication and load within an infected host.

In another preferred and exemplified embodiment of the present invention, the nef coding region is altered, resulting in a DNA vaccine which expresses a modified Nef protein wherein the amino terminal Gly-2 myristylation residue is either deleted or modified to express alternate amino acid residues.

In another preferred and exemplified embodiment of the present invention, the nef coding region is altered, resulting in a DNA vaccine which expresses a modified

Nef protein wherein the dileucine motif is either deleted or modified to express alternate amino acid residues.

5

10

15

20

25

30

Therefore, the present invention relates to an isolated DNA molecule, regardless of codon usage, which expresses a wild type or modified Nef protein as described herein, including but not limited to modified Nef proteins which comprise a deletion or substitution of Gly 2, a deletion or substitution of Leu 174 and Leu 175 and/or inclusion of a leader sequence.

The present invention also relates to a substantially purified protein expressed from the DNA polynucleotide vaccines of the present invention, especially the purified proteins set forth below as SEQ ID NOs: 2, 4, 6, and 8. These purified proteins may be useful as protein-based HIV vaccines.

In a specific embodiment of the invention as it relates DNA vaccines encoding modified forms of HIV-1, an open reading frame which encodes a Nef protein which comprises a tPA leader sequence fused to amino acid residue 6-216 of HIV-1 Nef (jfrl) is referred to herein as opt tpanef. The nucleotide sequence comprising the open reading frame of opt tpanef is disclosed herein as SEQ ID NO:3, as shown below: CATGGATGCA ATGAAGAGAG GGCTCTGCTG TGTGCTGCTG CTGTGTGGAG CAGTCTTCGT TTCGCCCAGC GAGATCTCCT CCAAGAGGTC CGTGCCCGGC TGGTCCACCG TGAGGGAGAG GATGAGGAGG GCCGAGCCCG CCGCCGACAG GGTGAGGAGG ACCGAGCCCG CCGCCGTGGG CGTGGCCCC GTGTCCAGGG ACCTGGAGAA GCACGCCCC ATCACCTCCT CCAACACCGC CGCCACCAAC GCCGACTGCG CCTGGCTGGA GGCCCAGGAG GACGAGGAGG TGGGCTTCCC CGTGAGGCCC CAGGTGCCCC TGAGGCCCAT GACCTACAAG GGCGCCGTGG ACCTGTCCCA CTTCCTGAAG GAGAAGGGCG GCCTGGAGGG CCTGATCCAC TCCCAGAAGA GGCAGGACAT CCTGGACCTG TGGGTGTACC ACACCCAGGG CTACTTCCCC GACTGGCAGA ACTACACCCC CGGCCCCGGC ATCAGGTTCC CCCTGACCTT CGGCTGGTGC TTCAAGCTGG TGCCCGTGGA GCCCGAGAAG GTGGAGGAGG CCAACGAGGG CGAGAACAAC TGCCTGCTGC ACCCCATGTC CCAGCACGGC ATCGAGGACC CCGAGAAGGA GGTGCTGGAG TGGAGGTTCG ACTCCAAGCT GGCCTTCCAC CACGTGGCCA GGGAGCTGCA CCCCGAGTAC TACAAGGACT GCTAAAGCC (SEQ ID N0:3).

The open reading frame for SEQ ID NO:3 comprises an initiating methionine

residue at nucleotides 2-4 and a "TAA" stop codon from nucleotides 713-715. The open reading frame of SEQ ID NO:3 provides for a 237 amino acid HIV-1 Nef protein which comprises a tPA leader sequence fused to amino acids 6-216 of HIV-1 Nef, including the dileucine motif at amino acid residues 174 and 175. This 237 amino acid tPA/Nef (jfrl) fusion protein is disclosed herein as SEQ ID NO:4, and is shown as follows:

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val 10 Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Leu Leu His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His 20 Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys (SEQ ID NO:4).

Therefore, this exemplified Nef protein, Opt tPA-Nef, contains both a tPA leader sequence as well as deleting the myristylation site of Gly-2A DNA molecule encoding HIV-1 Nef from the HIV-1 jfrl isolate wherein the codons are optimized for expression in a mammalian system such as a human.

25

30

In another specific embodiment of the present invention, a DNA molecule is disclosed which encodes optimized HIV-1 Nef wherein the open reading frame codes for modifications at the amino terminal myristylation site (Gly-2 to Ala-2) and substitution of the Leu-174-Leu-175 dileucine motif to Ala-174-Ala-175. This open reading frame is herein described as opt nef (G2A,LLAA) and is disclosed as SEQ ID NO:5, which comprises an initiating methionine residue at nucleotides 12-14 and a "TAA" stop codon from nucleotides 660-662. The nucleotide sequence of this codon optimized version of HIV-1 jrfl nef gene with the above mentioned modifications is disclosed herein as SEQ ID NO:5, as follows:

GATCTGCCAC CATGGCCGGC AAGTGGTCCA AGAGGTCCGT GCCCGGCTGG TCCACCGTGA
GGGAGAGGAT GAGGAGGGCC GAGCCCGCCG CCGACAGGGT GAGGAGGACC GAGCCCGCCG
CCGTGGGCGT GGGCCCGTG TCCAGGGACC TGGAGAAGCA CGGCGCCATC ACCTCCTCA
ACACCGCCGC CACCAACGCC GACTGCGCCT GGCTGAGGC CCAGGAGGAC GAGGAGGTGG
GCTTCCCCGT GAGGCCCCAG GTGCCCCTGA GGCCCATGAC CTACAAGGGC GCCGTGGACC
TGTCCCACTT CCTGAAGGAG AAGGGCGGCC TGGAGGGCCT GATCCACTCC CAGAAGAGGC
AGGACATCCT GGACCTGTGG GTGTACCACA CCCAGGGCTA CTTCCCCGAC TGGCAGAACT
ACACCCCCGG CCCCGGCATC AGGTTCCCCC TGACCTTCGG CTGGTGCTTC AAGCTGGTGC
CCGTGGAGCC CGAGAAGGTG GAGGAGGCCA ACGAGGGCGA GAACAACTGC GCCGCCCACC
CCATGTCCCA GCACGGCATC GAGGACCCCG AGAAGGAGGT GCTGGAGTGG AGGTTCGACT
CCAAGCTGGC CTTCCACCAC GTGGCCAGGG AGCTGCACCC CGAGTACTAC AAGGACTGCT
AAAGCCCGGG C (SEQ ID NO:5).

The open reading frame of SEQ ID NO:5 encodes Nef (G2A,LLAA), disclosed herein as SEQ ID NO:6, as follows:

10

30

Met Ala Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val 20 Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Ala Ala His 25 Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys Ser (SEQ ID NO:6).

An additional embodiment of the present invention relates to another DNA molecule encoding optimized HIV-1 Nef wherein the amino terminal myristylation site and dileucine motif have been deleted, as well as comprising a tPA leader peptide. This DNA molecule, opt tpanef (LLAA) comprises an open reading frame which encodes a Nef protein containing a tPA leader sequence fused to amino acid residue 6-216 of HIV-1 Nef (jfrl), wherein Leu-174 and Leu-175 are substituted with Ala-174

and Ala-175 (Ala-195 and Ala-196 in this tPA-based fusion protein). The nucleotide sequence comprising the open reading frame of opt tpanef (LLAA) is disclosed herein as SEQ ID NO:7, as shown below:

CATGGATGCA ATGAAGAGA GGCTCTGCTG TGTGCTGCTG CTGTGTGGAG CAGTCTTCGT

TTCGCCCAGC GAGATCTCCT CCAAGAGGTC CGTGCCCGGC TGGTCCACCG TGAGGGAGAG
GATGAGGAGG GCCGAGCCCG CCGCCGACAG GGTGAGGAGG ACCGAGCCCG CCGCCGTGGG
CGTGGGCGCC GTGTCCAGGG ACCTGGAGAA GCACGGCGCC ATCACCTCCT CCAACACCGC
CGCCACCAAC GCCGACTGCG CCTGGCTGGA GGCCCAGGAG GACGAGGAGG TGGGCTTCCC
CGTGAGGCCC CAGGTGCCCC TGAGGCCCAT GACCTACAAG GGCGCCGTGG ACCTGTCCCA

CTTCCTGAAG GAGAAGGGCG GCCTGGAGGG CCTGATCCAC TCCCAGAAGA GGCAGGACAT
CCTGGACCTG TGGGTGTACC ACACCCAGGG CTACTTCCCC GACTGGCAGA ACTACACCCC
CGGCCCCGGC ATCAGGTTCC CCCTGACCTT CGGCTGGTGC TTCAAGCTGG TGCCCGTGGA
GCCCGAGAAG GTGGAGGAG CCAACGAGGG CGAGAACAAC TGCGCCGCCC ACCCCATGTC
CCAGCACGGC ATCGAGGACC CCGAGAAGGA GGTGCTGGAG TGGAGGTTCG ACTCCAAGCT

GGCCTTCCAC CACGTGGCCA GGGAGCTGCA CCCCGAGTAC TACAAGGACT GCTAAAGCCC
(SEQ ID NO:7).

The open reading frame of SEQ ID NO:7 encoding tPA-Nef (LLAA), disclosed herein as SEQ ID NO:8, is as follows:

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly 20 Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn-Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu 25 Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu 30 Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Ala Ala His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys (SEQ ID NO:8).

The present invention also relates in part to any DNA molecule, regardless of

codon usage, which expresses a wild type or modified Nef protein as described herein, including but not limited to modified Nef proteins which comprise a deletion or substitution of Gly 2, a deletion of substitution of Leu 174 and Leu 175 and/or inclusion of a leader sequence. Therefore, partial or fully codon optimized DNA vaccine expression vector constructs are preferred since such constructs should result in increased host expression. However, it is within the scope of the present invention to utilize "non-codon optimized" versions of the constructs disclosed herein, especially modified versions of HIV Nef which are shown to promote a substantial cellular immune response subsequent to host administration.

5

10

15

20

25

30

The DNA backbone of the DNA vaccines of the present invention are preferably DNA plasmid expression vectors. DNA plasmid expression vectors are well known in the art and the present DNA vector vaccines may be comprised of any such expression backbone which contains at least a promoter for RNA polymerase transcription, and a transcriptional terminator 3' to the HIV nef coding sequence. In one preferred embodiment, the promoter is the Rous sarcoma virus (RSV) long terminal repeat (LTR) which is a strong transcriptional promoter. A more preferred promoter is the cytomegalovirus promoter with the intron A sequence (CMV-intA). A preferred transcriptional terminator is the bovine growth hormone terminator. In addition, to assist in large scale preparation of an HIV nef DNA vector vaccine, an antibiotic resistance marker is also preferably included in the expression vector. Ampicillin resistance genes, neomycin resistance genes or any other pharmaceutically acceptable antibiotic resistance marker may be used. In a preferred embodiment of this invention, the antibiotic resistance gene encodes a gene product for neomycin resistance. Further, to aid in the high level production of the pharmaceutical by fermentation in prokaryotic organisms, it is advantageous for the vector to contain an origin of replication and be of high copy number. Any of a number of commercially available prokaryotic cloning vectors provide these benefits. In a preferred embodiment of this invention, these functionalities are provided by the commercially available vectors known as pUC. It is desirable to remove non-essential DNA sequences. Thus, the lacZ and lacI coding sequences of pUC are removed in one embodiment of the invention.

DNA expression vectors exemplified herein are also disclosed in PCT International Application No. PCT/US94/02751, International Publication No. WO 94/21797, hereby incorporated by reference. A first DNA expression vector

5

10

15

20

25

30

is the expression vector pnRSV, wherein the rous sarcoma virus (RSV) long terminal repeat (LTR) is used as the promoter. A second embodiment relates to plasmid V1, a mutated pBR322 vector into which the CMV promoter and the BGH transcriptional terminator is cloned. Another embodiment regarding DNA vector backbones relates to plasmid VIJ. Plasmid VIJ is derived from plasmid VI and removes promoter and transcription termination elements in order to place them within a more defined context, create a more compact vector, and to improve plasmid purification yields. Therefore, V1J also contains the CMVintA promoter and (BGH) transcription termination elements which control the expression of the HIV nef-based genes disclosed herein. The backbone of V1J is provided by pUC18. It is known to produce high yields of plasmid, is well-characterized by sequence and function, and is of minimum size. The entire lac operon was removed and the remaining plasmid was purified from an agarose electrophoresis gel, blunt-ended with the T4 DNA polymerase, treated with calf intestinal alkaline phosphatase, and ligated to the CMVintA/BGH element. In another DNA expression vector, the ampicillin resistance gene is removed from V1J and replaced with a neomycin resistance gene, to generate VIJneo. A DNA expression vector specifically exemplified herein is VIJns, which is the same as VIJ except that a unique Sfi1 restriction site has been engineered into the single Kpn1 site at position 2114 of VIJ-neo. The incidence of Sfi1 sites in human genomic DNA is very low (approximately 1 site per 100,000 bases). Thus, this vector allows careful monitoring for expression vector integration into host DNA, simply by Sfi1 digestion of extracted genomic DNA. Another DNA expression vector for use as the backbone to the HIV-1 nef-based DNA vaccines of the present invention is V1R. In this vector, as much non-essential DNA as possible is "trimmed" from the vector to produce a highly compact vector. This vector is a derivative of V1Jns. This vector allows larger inserts to be used, with less concern that undesirable sequences are encoded and optimizes uptake by cells when the construct encoding specific influenza virus genes is introduced into surrounding tissue.

It will be evident upon review of the teaching within this specification that numerous vector/Nef antigen constructs may be generated. While the exemplified constructs (V1Jns/nef, V1Jns/tpanef, V1Jns/tpanef(LLAA) and V1Jns/(G2A,LLAA) are preferred, any number of vector/Nef antigen combinations are within the scope of the present invention, especially wild type or modified Nef proteins which comprise a deletion or substitution of Gly 2, a deletion of substitution of Leu 174 and Leu 175

and/or inclusion of a leader sequence. Therefore, the present invention especially relates to DNA vaccines and a pharmaceutically active vaccine composition which contains this DNA vector vaccine, and the use as prophylactic and/or therapeutic vaccine for host immunization, preferably human host immunization, against an HIV infection or to combat an existing HIV condition. These DNA vaccines are represented by codon optimized DNA molecules encoding HIV-1 Nef of biologically active Nef modifications or Nef-containing fusion proteins which are ligated within an appropriate DNA plasmid vector, with or without a nucleotide sequence encoding a functional leader peptide. DNA vaccines of the present invention include but in no way are limited to codon optimized DNA molecules encoding HIV-1 Nef of biologically active Nef modifications or Nef-containing fusion proteins ligated in DNA vectors V1, V1J (SEQ ID NO:14), V1Jneo (SEQ ID NO:15), V1Jns (Figure 1A, SEQ ID NO:16), V1R (SEQ ID NO:26), or any of the aforementioned vectors wherein a nucleotide sequence encoding a leader peptide, preferably the human tPA leader, is fused directly downstream of the CMV-intA promoter, including but not limited to V1Jns-tpa, as shown in Figure 1B and SEQ ID NO:19. Especially preferred DNA vaccines of the present invention include as VIJns/nef, V1Jns/tpanef, V1Jns/tpanef(LLAA) and V1Jns/(G2A,LLAA), as exemplified in Example Section 2.

10

15

20

25

30

The DNA vector vaccines of the present invention may be formulated in any pharmaceutically effective formulation for host administration. Any such formulation may be, for example, a saline solution such as phosphate buffered saline (PBS). It will be useful to utilize pharmaceutically acceptable formulations which also provide long-term stability of the DNA vector vaccines of the present invention. During storage as a pharmaceutical entity, DNA plasmid vaccines undergo a physiochemical change in which the supercoiled plasmid converts to the open circular and linear form. A variety of storage conditions (low pH, high temperature, low ionic strength) can accelerate this process. Therefore, the removal and/or chelation of trace metal ions (with succinic or malic acid, or with chelators containing multiple phosphate ligands) from the DNA plasmid solution, from the formulation buffers or from the vials and closures, stabilizes the DNA plasmid from this degradation pathway during storage. In addition, inclusion of non-reducing free radical scavengers, such as ethanol or glycerol, are useful to prevent damage of the DNA plasmid from free radical production that may still occur, even in apparently demetalated solutions. Furthermore, the buffer type, pH, salt concentration, light exposure, as well as the

5

10

15

20

25

30

type of sterilization process used to prepare the vials, may be controlled in the formulation to optimize the stability of the DNA vaccine. Therefore, formulations that will provide the highest stability of the DNA vaccine will be one that includes a demetalated solution containing a buffer (phosphate or bicarbonate) with a pH in the range of 7-8, a salt (NaCl, KCl or LiCl) in the range of 100-200 mM, a metal ion chelator (e.g., EDTA, diethylenetriaminepenta-acetic acid (DTPA), malate, inositol hexaphosphate, tripolyphosphate or polyphosphoric acid), a non-reducing free radical scavenger (e.g. ethanol, glycerol, methionine or dimethyl sulfoxide) and the highest appropriate DNA concentration in a sterile glass vial, packaged to protect the highly purified, nuclease free DNA from light. A particularly preferred formulation which will enhance long term stability of the DNA vector vaccines of the present invention would comprise a Tris-HCl buffer at a pH from about 8.0 to about 9.0; ethanol or glycerol at about 3% w/v; EDTA or DTPA in a concentration range up to about 5 mM; and NaCl at a concentration from about 50 mM to about 500 mM. The use of such stabilized DNA vector vaccines and various alternatives to this preferred formulation range is described in detail in PCT International Application No. PCT/US97/06655, PCT International Publication No. WO 97/40839, which is hereby incorporated by reference.

The DNA vector vaccines of the present invention may, in addition to generating a strong CTL-based immune response, provide for a measurable humoral response subsequent immunization. This response may occur with or without the addition of adjuvant to the respective vaccine formulation. To this end, the DNA vector vaccines of the present invention may also be formulated with an adjuvant or adjuvants which may increase immunogenicity of the DNA polynucleotide vaccines of the present invention. A number of these adjuvants are known in the art and are available for use in a DNA vaccine, including but not limited to particle bombardment using DNA-coated gold beads, co-administration of DNA vaccines with plasmid DNA expressing cytokines, chemokines, or costimulatory molecules, formulation of DNA with cationic lipids or with experimental adjuvants such as saponin, monophosphoryl lipid A or other compounds which increase immunogenicity of the DNA vaccine. One preferred adjuvant for use in the DNA vector vaccines of the present invention are one or more forms of an aluminum phosphate-based adjuvant. Aluminum phosphate is known in the art for use with live, killed or subunit vaccines, but is only recently

5

10

15

20

25

30

disclosed as a useful adjuvant in DNA vaccine formulations. The artisan may alter the ratio of DNA to aluminum phosphate to provide for an optimal immune response. In addition, the aluminum phosphate-based adjuvant possesses a molar PO₄/Al ratio of approximately 0.9, and may again be altered by the skilled artisan to provide for an optimal immune response. An additional mineral-based adjuvant may be generated from one or more forms of a calcium phosphate. These mineral-based adjuvants are useful in increasing humoral responses to DNA vaccination without imparting a negative effect on an appropriate cellular immune response. Complete guidance for use of these mineral-based compounds for use as DNA vaccines adjuvants are disclosed in PCT International Application No. PCT/US98/02414, PCT International Publication No. WO 98/35562, which are hereby incorporated by reference in their entirety. Another preferred adjuvant is a non-ionic block copolymer which shows adjuvant activity with DNA vaccines. The basic structure comprises blocks of polyoxyethylene (POE) and polyoxypropylene (POP) such as a POE-POP-POE block copolymer. Newman et al. (1998, Critical Reviews in Therapeutic Drug Carrier Systems 15(2): 89-142) review a class of non-ionic block copolymers which show adjuvant activity. The basic structure comprises blocks of polyoxyethylene (POE) and polyoxypropylene (POP) such as a POE-POP-POE block copolymer. Newman et al. id., disclose that certain POE-POP-POE block copolymers may be useful as adjuvants to an influenza protein-based vaccine, namely higher molecular weight POE-POP-POE block copolymers containing a central POP block having a molecular weight of over about 9000 daltons to about 20,000 daltons and flanking POE blocks which comprise up to about 20% of the total molecular weight of the copolymer (see also U.S. Reissue Patent No. 36,665, U.S. Patent No. 5,567,859, U.S. Patent No. 5,691,387, U.S. Patent No. 5,696,298 and U.S. Patent No. 5,990,241, all issued to Emanuele, et al., regarding these POE-POP-POE block copolymers). WO 96/04932 further discloses higher molecular weight POE/POP block copolymers which have surfactant characteristics and show biological efficacy as vaccine adjuvants. The above cited references within this paragraph are hereby incorporated by reference in their entirety. It is therefore within the purview of the skilled artisan to utilize available adjuvants which may increase the immune response of the polynucleotide vaccines of the present ivention in comparison to administration of a non-adjuvanted polynucleotide vaccine.

The DNA vector vaccines of the present invention are administered to the host by any means known in the art, such as enteral and parenteral routes. These routes of delivery include but are not limited to intramusclar injection, intraperitoneal injection, intravenous injection, inhalation or intranasal delivery, oral delivery, sublingual administration, subcutaneous administration, transdermal administration, transcutaneous administration, percutaneous administration or any form of particle bombardment, such as a biolostic device such as a "gene gun" or by any available needle-free injection device. The preferred methods of delivery of the HIV-1 Nefbased DNA vaccines disclosed herein are intramuscular injection and needle-free injection. An especially preferred method is intramuscular delivery.

5

10

15

20

25

30

The amount of expressible DNA to be introduced to a vaccine recipient will depend on the strength of the transcriptional and translational promoters used in the DNA construct, and on the immunogenicity of the expressed gene product. In general, an immunologically or prophylactically effective dose of about 1 μ g to greater than about 20 mg, and preferably in doses from about 1 mg to about 5 mg is administered directly into muscle tissue. As noted above, subcutaneous injection, intradermal introduction, impression through the skin, and other modes of administration such as intraperitoneal, intravenous, inhalation and oral delivery are also contemplated. It is also contemplated that booster vaccinations are to be provided in a fashion which optimizes the overall immune response to the Nef-based DNA vector vaccines of the present invention.

The aforementioned polynucleotides, when directly introduced into a vertebrate *in vivo*, express the respective HIV-1 Nef protein within the animal and in turn induce a cytotoxic T lymphocyte (CTL) response within the host to the expressed Nef antigen. To this end, the present invention also relates to methods of using the HIV-1 Nef-based polynucleotide vaccines of the present invention to provide effective immunoprophylaxis, to prevent establishment of an HIV-1 infection following exposure to this virus, or as a post-HIV infection therapeutic vaccine to mitigate the acute HIV-1 infection so as to result in the establishment of a lower virus load with beneficial long term consequences. As noted above, the present invention contemplates a method of administration or use of the DNA nef-based vaccines of the present invention using an any of the known routes of introducing polynucleotides into living tissue to induce expression of proteins.

Therefore, the present invention provides for methods of using a DNA nef-

based vaccine utilizing the various parameters disclosed herein as well as any additional parameters known in the art, which, upon introduction into mammalian tissue induces in vivo, intracellular expression of these DNA nef-based vaccines. This intracellular expression of the Nef-based immunogen induces a CTL and humoral response which provides a substantial level of protection against an existing HIV-1 infection or provides a substantial level of protection against a future infection in a presently uninfected host.

The following examples are provided to illustrate the present invention without, however, limiting the same hereto.

10

5

EXAMPLE 1

Vaccine Vectors

V1 – Vaccine vector V1 was constructed from pCMVIE-AKI-DHFR (Whang et al., 1987, J. Virol. 61: 1796). The AKI and DHFR genes were removed by cutting the vector with EcoRI and self-ligating. This vector does not contain intron A in the CMV promoter, so it was added as a PCR fragment that had a deleted internal SacI site [at 1855 as numbered in Chapman, et al., (1991, Nuc. Acids Res. 19: 3979)]. The template used for the PCR reactions was pCMVintA-Lux, made by ligating the HindIII and NheI fragment from pCMV6a120 (see Chapman et al., ibid.), which includes hCMV-IE1 enhancer/promoter and intron A, into the HindIII and XbaI sites of pBL3 to generate pCMVIntBL. The 1881 base pair luciferase gene fragment (HindIII-SmaI Klenow filled-in) from RSV-Lux (de Wet et al., 1987, Mol. Cell Biol. 7: 725) was ligated into the SalI site of pCMVIntBL, which was Klenow filled-in and phosphatase treated. The primers that spanned intron A are: 5' primer:

- 5'-CTATATAAGCAGAGCTCGTTTAG-3' (SEQ ID NO:10); 3' primer:
 5'-GTAGCAAAGATCTAAGGACGGTGACTGCAG-3' (SEQ ID NO:11). The primers used to remove the SacI site are: sense primer, 5'-GTATGTGTCTG AAAATGAGC GTGGAGATTGGGCTCGCAC-3' (SEQ ID NO:12) and the antisense primer, 5'-GTGCGAGCCCAATCTCCACGCTCATTTTCAGAC
- 30 ACATAC-3' (SEQ ID NO:13). The PCR fragment was cut with Sac I and Bgl II and inserted into the vector which had been cut with the same enzymes.
 - VIJ Vaccine vector VIJ was generated to remove the promoter and transcription termination elements from vector VI in order to place them within a more defined context, create a more compact vector, and to improve plasmid

purification yields. VIJ is derived from vectors V1 and pUC18, a commercially available plasmid. V1 was digested with SspI and EcoRI restriction enzymes producing two fragments of DNA. The smaller of these fragments, containing the CMVintA promoter and Bovine Growth Hormone (BGH) transcription termination elements which control the expression of heterologous genes, was purified from an 5 agarose electrophoresis gel. The ends of this DNA fragment were then "blunted" using the T4 DNA polymerase enzyme in order to facilitate its ligation to another "blunt-ended" DNA fragment. pUC18 was chosen to provide the "backbone" of the expression vector. It is known to produce high yields of plasmid, is wellcharacterized by sequence and function, and is of small size. The entire lac operon 10 was removed from this vector by partial digestion with the HaeII restriction enzyme. The remaining plasmid was purified from an agarose electrophoresis gel, blunt-ended with the T4 DNA polymerase treated with calf intestinal alkaline phosphatase, and ligated to the CMVintA/BGH element described above. Plasmids exhibiting either of two possible orientations of the promoter elements within the pUC backbone were 15 obtained. One of these plasmids gave much higher yields of DNA in E. coli and was designated VIJ. This vector's structure was verified by sequence analysis of the junction regions and was subsequently demonstrated to give comparable or higher expression of heterologous genes compared with V1. The nucleotide sequence of V1J 20 is as follows: TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG 25 CTATTGGCCA TTGCATACGT TGTATCCATA TCATAATATG TACATTTATA TTGGCTCATG TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCGCGTT ACATAACTTA CGGTAAATGG CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC 30 TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCCTAC TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGGATTT CCAAGTCTCC ACCCCATTGA CGTCAATGGG AGTTTGTTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA

	CTCCGCCCCA	TTGACGCAAA	TGGGCGGTAG	GCGTGTACGG	TGGGAGGTCT	ATATAAGCAG
	AGCTCGTTTA	GTGAACCGTC	AGATCGCCTG	GAGACGCCAT	CCACGCTGTT	TTGACCTCCA
	TAGAAGACAC	CGGGACCGAT	CCAGCCTCCG	CGGCCGGGAA	CGGTGCATTG	GAACGCGGAT
	TCCCCGTGCC	AAGAGTGACG	TAAGTACCGC	CTATAGAGTC	TATAGGCCCA	CCCCCTTGGC
5	TTCTTATGCA	TGCTATACTG	TTTTTGGCTT	GGGGTCTATA	CACCCCCGCT	TCCTCATGTT
•	ATAGGTGATG	GTATAGCTTA	GCCTATAGGT	GTGGGTTATT	GACCATTATT	GACCACTCCC
	CTATTGGTGA	CGATACTTTC	CATTACTAAT	CCATAACATG	GCTCTTTGCC	ACAACTCTCT
	TTATTGGCTA	TATGCCAATA	CACTGTCCTT	CAGAGACTGA	CACGGACTCT	GTATTTTTAC
	AGGATGGGGT	CTCATTTATT	ATTTACAAAT	TCACATATAC	AACACCACCG	TCCCCAGTGC
10	CCGCAGTTTT	TATTAAACAT	AACGTGGGAT	CTCCACGCGA	ATCTCGGGTA	CGTGTTCCGG
	ACATGGGCTC	TTCTCCGGTA	GCGGCGGAGC	TTCTACATCC	GAGCCCTGCT	CCCATGCCTC
	CAGCGACTCA	TGGTCGCTCG	GCAGCTCCTT	GCTCCTAACA	GTGGAGGCCA	GACTTAGGCA
	CAGCACGATG	CCCACCACCA	CCAGTGTGCC	GCACAAGGCC	GTGGCGGTAG	GGTATGTGTC
	TGAAAATGAG	CTCGGGGAGC	GGGCTTGCAC	CGCTGACGCA	TTTGGAAGAC	TTAAGGCAGC
15	GGCAGAAGAA	GATGCAGGCA	GCTGAGTTGT	TGTGTTCTGA	TAAGAGTCAG	AGGTAACTCC
	CGTTGCGGTG	CTGTTAACGG	TGGAGGGCAG	TGTAGTCTGA	GCAGTACTCG	TTGCTGCCGC
	GCGCGCCACC	AGACATAATA	GCTGACAGAC	TAACAGACTG	TTCCTTTCCA	TGGGTCTTTT
	CTGCAGTCAC	CGTCCTTAGA	TCTGCTGTGC	CTTCTAGTTG	CCAGCCATCT	GTTGTTTGCC
	CCTCCCCGT	GCCTTCCTTG	ACCCTGGAAG	GTGCCACTCC	CACTGTCCTT	TCCTAATAAA
20	ATGAGGAAAT	TGCATCGCAT	TGTCTGAGTA	GGTGTCATTC	TATTCTGGGG	GGTGGGGTGG
	GGCAGCACAG	CAAGGGGGAG	GATTGGGAAG	ACAATAGCAG	GCATGCTGGG	GATGCGGTGG
	GCTCTATGGG	TACCCAGGTG	CTGAAGAATT	GACCCGGTTC	CTCCTGGGCC	AGAAAGAAGC
	AGGCACATCC	CCTTCTCTGT	GACACACCCT	GTCCACGCCC	CTGGTTCTTA	GTTCCAGCCC
	CACTCATAGG	ACACTCATAG	CTCAGGAGGG	CTCCGCCTTC	AATCCCACCC	GCTAAAGTAC
25	TTGGAGCGGT	CTCTCCCTCC	CTCATCAGCC	CACCAAACCA	AACCTAGCCT	CCAAGAGTGG
	GAAGAAATTA	AAGCAAGATA	GGCTATTAAG	TGCAGAGGGA	GAGAAAATGC	CTCCAACATG
•	TGAGGAAGTA	ATGAGAGAAA	TCATAGAATT	TCTTCCGCTT	CCTCGCTCAC	TGACTCGCTG
	CGCTCGGTCG	TTCGGCTGCG	GCGAGCGGTA	TCAGCTCACT	CAAAGGCGGT	AATACGGTTA
	TCCACAGAAT	CAGGGGATAA	CGCAGGAAAG	AACATGTGAG	CAAAAGGCCA	GCAAAAGGCC
30	AGGAACCGTA	AAAAGGCCGC	GTTGCTGGCG	TTTTTCCATA	GGCTCCGCCC	CCCTGACGAG
	CATCACAAAA	ATCGACGCTC	AAGTCAGAGG	TGGCGAAACC	CGACAGGACT	ATAAAGATAC
	CAGGCGTTTC	CCCCTGGAAG	CTCCCTCGTG	CGCTCTCCTG	TTCCGACCCT	GCCGCTTACC
	GGATACCTGT	CCGCCTTTCT	CCCTTCGGGA	AGCGTGGCGC	TTTCTCAATG	CTCACGCTGT
	AGGTATCTCA	GTTCGGTGTA	GGTCGTTCGC	TCCAAGCTGG	GCTGTGTGCA	CGAACCCCCC

GTTCAGCCCG ACCGCTGCGC CTTATCCGGT AACTATCGTC TTGAGTCCAA CCCGGTAAGA CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAACAGGA TTAGCAGAGC GAGGTATGTA GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG AAGGACAGTA TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTCTTGA TCCGGCAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTTG TTTGCAAGCA GCAGATTACG CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTTT CTACGGGGTC TGACGCTCAG TGGAACGAAA ACTCACGTTA AGGGATTTTG GTCATGAGAT TATCAAAAAG GATCTTCACC TAGATCCTTT TAAATTAAAA ATGAAGTTTT AAATCAATCT AAAGTATATA TGAGTAAACT TGGTCTGACA GTTACCAATG CTTAATCAGT GAGGCACCTA TCTCAGCGAT CTGTCTATTT CGTTCATCCA TAGTTGCCTG ACTCCCCGTC GTGTAGATAA CTACGATACG GGAGGGCTTA 10 CCATCTGGCC CCAGTGCTGC AATGATACCG CGAGACCCAC GCTCACCGGC TCCAGATTTA TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGCGCAGAA GTGGTCCTGC AACTTTATCC GCCTCCATCC AGTCTATTAA TTGTTGCCGG GAAGCTAGAG TAAGTAGTTC GCCAGTTAAT AGTTTGCGCA ACGTTGTTGC CATTGCTACA GGCATCGTGG TGTCACGCTC GTCGTTTGGT ATGGCTTCAT TCAGCTCCGG TTCCCAACGA TCAAGGCGAG TTACATGATC CCCCATGTTG 15 TGCAAAAAAG CGGTTAGCTC CTTCGGTCCT CCGATCGTTG TCAGAAGTAA GTTGGCCGCA GTGTTATCAC TCATGGTTAT GGCAGCACTG CATAATTCTC TTACTGTCAT GCCATCCGTA AGATGCTTTT CTGTGACTGG TGAGTACTCA ACCAAGTCAT TCTGAGAATA GTGTATGCGG CGACCGAGTT GCTCTTGCCC GGCGTCAATA CGGGATAATA CCGCGCCACA TAGCAGAACT TTAAAAGTGC TCATCATTGG AAAACGTTCT TCGGGGCGAA AACTCTCAAG GATCTTACCG 20 CTGTTGAGAT CCAGTTCGAT GTAACCCACT CGTGCACCCA ACTGATCTTC AGCATCTTTT ACTTTCACCA GCGTTTCTGG GTGAGCAAAA ACAGGAAGGC AAAATGCCGC AAAAAAGGGA ATAAGGGCGA CACGGAAATG TTGAATACTC ATACTCTTCC TTTTTCAATA TTATTGAAGC ATTTATCAGG GTTATTGTCT CATGAGCGGA TACATATTTG AATGTATTTA GAAAAATAAA 25 CAAATAGGGG TTCCGCGCAC ATTTCCCCGA AAAGTGCCAC CTGACGTCTA AGAAACCATT ATTATCATGA CATTAACCTA TAAAAATAGG CGTATCACGA GGCCCTTTCG TC (SEQ ID NO:14).

VIJneo - Construction of vaccine vector V1Jneo expression vector involved removal of the ampr gene and insertion of the kanr gene (neomycin phosphotransferase). The ampr gene from the pUC backbone of V1J was removed by digestion with SspI and Eam1105I restriction enzymes. The remaining plasmid was purified by agarose gel electrophoresis, blunt-ended with T4 DNA polymerase, and then treated with calf intestinal alkaline phosphatase. The commercially available kanr gene, derived from transposon 903 and contained within the pUC4K plasmid,

30

5

10

15

20

25

30

was excised using the PstI restriction enzyme, purified by agarose gel electrophoresis, and blunt-ended with T4 DNA polymerase. This fragment was ligated with the VIJ backbone and plasmids with the kan^r gene in either orientation were derived which were designated as V1Jneo #'s 1 and 3. Each of these plasmids was confirmed by restriction enzyme digestion analysis, DNA sequencing of the junction regions, and was shown to produce similar quantities of plasmid as VIJ. Expression of heterologous gene products was also comparable to V1J for these V1Jneo vectors. VIJneo#3, referred to as VIJneo hereafter, was selected which contains the kan^r gene in the same orientation as the ampr gene in VIJ as the expression construct and provides resistance to neomycin, kanamycin and G418. The nucleotide sequence of VIJneo is as follows: TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG CTATTGGCCA TTGCATACGT TGTATCCATA TCATAATATG TACATTTATA TTGGCTCATG TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCGCGTT ACATAACTTA CGGTAAATGG CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCCTAC TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATTT CCAAGTCTCC ACCCCATTGA CGTCAATGGG AGTTTGTTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA CTCCGCCCA TTGACGCAAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG AGCTCGTTTA GTGAACCGTC AGATCGCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA TAGAAGACAC CGGGACCGAT CCAGCCTCCG CGGCCGGGAA CGGTGCATTG GAACGCGGAT TCCCCGTGCC AAGAGTGACG TAAGTACCGC CTATAGAGTC TATAGGCCCA CCCCCTTGGC TTCTTATGCA TGCTATACTG TTTTTGGCTT GGGGTCTATA CACCCCCGCT TCCTCATGTT ATAGGTGATG GTATAGCTTA GCCTATAGGT GTGGGTTATT GACCATTATT GACCACTCCC CTATTGGTGA CGATACTTTC CATTACTAAT CCATAACATG GCTCTTTGCC ACAACTCTCT TTATTGGCTA TATGCCAATA CACTGTCCTT CAGAGACTGA CACGGACTCT GTATTTTTAC AGGATGGGT CTCATTTATT ATTTACAAAT TCACATATAC AACACCACCG TCCCCAGTGC

CCGCAGTTTT TATTAAACAT AACGTGGGAT CTCCACGCGA ATCTCGGGTA CGTGTTCCGG ACATGGGCTC TTCTCCGGTA GCGGCGGAGC TTCTACATCC GAGCCCTGCT CCCATGCCTC CAGCGACTCA TGGTCGCTCG GCAGCTCCTT GCTCCTAACA GTGGAGGCCA GACTTAGGCA CAGCACGATG CCCACCACCA CCAGTGTGCC GCACAAGGCC GTGGCGGTAG GGTATGTGTC 5 TGAAAATGAG CTCGGGGAGC GGGCTTGCAC CGCTGACGCA TTTGGAAGAC TTAAGGCAGC GGCAGAAGAA GATGCAGGCA GCTGAGTTGT TGTGTTCTGA TAAGAGTCAG AGGTAACTCC CGTTGCGGTG CTGTTAACGG TGGAGGGCAG TGTAGTCTGA GCAGTACTCG TTGCTGCCGC GCGCGCCACC AGACATAATA GCTGACAGAC TAACAGACTG TTCCTTTCCA TGGGTCTTTT CTGCAGTCAC CGTCCTTAGA TCTGCTGTGC CTTCTAGTTG CCAGCCATCT GTTGTTTGCC 10 CCTCCCCGT GCCTTCCTTG ACCCTGGAAG GTGCCACTCC CACTGTCCTT TCCTAATAAA GGCAGCACAG CAAGGGGGAG GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG GCTCTATGGG TACCCAGGTG CTGAAGAATT GACCCGGTTC CTCCTGGGCC AGAAAGAAGC AGGCACATCC CCTTCTCTGT GACACACCCT GTCCACGCCC CTGGTTCTTA GTTCCAGCCC 15 CACTCATAGG ACACTCATAG CTCAGGAGGG CTCCGCCTTC AATCCCACCC GCTAAAGTAC TTGGAGCGGT CTCTCCCTCC CTCATCAGCC CACCAAACCA AACCTAGCCT CCAAGAGTGG GAAGAAATTA AAGCAAGATA GGCTATTAAG TGCAGAGGGA GAGAAAATGC CTCCAACATG TGAGGAAGTA ATGAGAGAAA TCATAGAATT TCTTCCGCTT CCTCGCTCAC TGACTCGCTG CGCTCGGTCG TTCGGCTGCG GCGAGCGGTA TCAGCTCACT CAAAGGCGGT AATACGGTTA 20 TCCACAGAAT CAGGGGATAA CGCAGGAAAG AACATGTGAG CAAAAGGCCA GCAAAAGGCC AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTTCCATA GGCTCCGCCC CCCTGACGAG CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT ATAAAGATAC CAGGCGTTTC CCCCTGGAAG CTCCCTCGTG CGCTCTCCTG TTCCGACCCT GCCGCTTACC GGATACCTGT CCGCCTTTCT CCCTTCGGGA AGCGTGGCGC TTTCTCAATG CTCACGCTGT 25 AGGTATCTCA GTTCGGTGTA GGTCGTTCGC TCCAAGCTGG GCTGTGTGCA CGAACCCCC GTTCAGCCCG ACCGCTGCGC CTTATCCGGT AACTATCGTC TTGAGTCCAA CCCGGTAAGA CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAACAGGA TTAGCAGAGC GAGGTATGTA GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG AAGGACAGTA TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTCTTGA 30 TCCGGCAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTTG TTTGCAAGCA GCAGATTACG CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTTT CTACGGGGTC TGACGCTCAG TGGAACGAAA ACTCACGTTA AGGGATTTTG GTCATGAGAT TATCAAAAAG GATCTTCACC TAGATCCTTT TAAATTAAAA ATGAAGTTTT AAATCAATCT AAAGTATATA TGAGTAAACT TGGTCTGACA GTTACCAATG CTTAATCAGT GAGGCACCTA TCTCAGCGAT CTGTCTATTT

CGTTCATCCA TAGTTGCCTG ACTCCGGGGG GGGGGGGCGC TGAGGTCTGC CTCGTGAAGA AGGTGTTGCT GACTCATACC AGGCCTGAAT CGCCCCATCA TCCAGCCAGA AAGTGAGGGA GCCACGGTTG ATGAGAGCTT TGTTGTAGGT GGACCAGTTG GTGATTTTGA ACTTTTGCTT TGCCACGGAA CGGTCTGCGT TGTCGGGAAG ATGCGTGATC TGATCCTTCA ACTCAGCAAA 5 AGTTCGATTT ATTCAACAAA GCCGCCGTCC CGTCAAGTCA GCGTAATGCT CTGCCAGTGT TACAACCAAT TAACCAATTC TGATTAGAAA AACTCATCGA GCATCAAATG AAACTGCAAT TTATTCATAT CAGGATTATC AATACCATAT TTTTGAAAAA GCCGTTTCTG TAATGAAGGA GAAAACTCAC CGAGGCAGTT CCATAGGATG GCAAGATCCT GGTATCGGTC TGCGATTCCG ACTCGTCCAA CATCAATACA ACCTATTAAT TTCCCCTCGT CAAAAATAAG GTTATCAAGT 10 GAGAAATCAC CATGAGTGAC GACTGAATCC GGTGAGAATG GCAAAAGCTT ATGCATTTCT TTCCAGACTT GTTCAACAGG CCAGCCATTA CGCTCGTCAT CAAAATCACT CGCATCAACC AAACCGTTAT TCATTCGTGA TTGCGCCTGA GCGAGACGAA ATACGCGATC GCTGTTAAAA GGACAATTAC AAACAGGAAT CGAATGCAAC CGGCGCAGGA ACACTGCCAG CGCATCAACA ATATTTCAC CTGAATCAGG ATATTCTTCT AATACCTGGA ATGCTGTTTT CCCGGGGATC 15 GCAGTGGTGA GTAACCATGC ATCATCAGGA GTACGGATAA AATGCTTGAT GGTCGGAAGA GGCATAAATT CCGTCAGCCA GTTTAGTCTG ACCATCTCAT CTGTAACATC ATTGGCAACG CTACCTTTGC CATGTTTCAG AAACAACTCT GGCGCATCGG GCTTCCCATA CAATCGATAG ATTGTCGCAC CTGATTGCCC GACATTATCG CGAGCCCATT TATACCCATA TAAATCAGCA TCCATGTTGG AATTTAATCG CGGCCTCGAG CAAGACGTTT CCCGTTGAAT ATGGCTCATA 20 ACACCCCTTG TATTACTGTT TATGTAAGCA GACAGTTTTA TTGTTCATGA TGATATATTT TTATCTTGTG CAATGTAACA TCAGAGATTT TGAGACACAA CGTGGCTTTC CCCCCCCCC CATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT TAGAAAATA AACAAATAGG GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC TAAGAAACCA TTATTATCAT GACATTAACC TATAAAAATA GGCGTATCAC GAGGCCCTTT 25 CGTC (SEQ ID NO:15).

VIJns - The expression vector VIJns was generated by adding an SfiI site to V1Jneo to facilitate integration studies. A commercially available 13 base pair SfiI linker (New England BioLabs) was added at the KpnI site within the BGH sequence of the vector. V1Jneo was linearized with KpnI, gel purified, blunted by T4 DNA polymerase, and ligated to the blunt SfiI linker. Clonal isolates were chosen by restriction mapping and verified by sequencing through the linker. The new vector was designated V1Jns. Expression of heterologous genes in V1Jns (with SfiI) was comparable to expression of the same genes in V1Jneo (with KpnI).

The nucleotide sequence of VIJns is as follows:

30

	TCGCGCGTTT	CGGTGATGAC	GGTGAAAACC	TCTGACACAT	GCAGCTCCCG	GAGACGGTCA
	CAGCTTGTCT	GTAAGCGGAT	GCCGGGAGCA	GACAAGCCCG	TCAGGGCGCG	TCAGCGGGTG
	TTGGCGGGTG	TCGGGGCTGG	CTTAACTATG	CGGCATCAGA	GCAGATTGTA	CTGAGAGTGC
	ACCATATGCG	GTGTGAAATA	CCGCACAGAT	GCGTAAGGAG	AAAATACCGC	ATCAGATTGG
5	CTATTGGCCA	TTGCATACGT	TGTATCCATA	TCATAATATG	TACATTTATA	TTGGCTCATG
	TCCAACATTA	CCGCCATGTT	GACATTGATT	ATTGACTAGT	TATTAATAGT	AATCAATTAC
	GGGGTCATTA	GTTCATAGCC	CATATATGGA	GTTCCGCGTT	ACATAACTTA	CGGTAAATGG
	CCCGCCTGGC	TGACCGCCCA	ACGACCCCCG	CCCATTGACG	TCAATAATGA	CGTATGTTCC
	CATAGTAACG	CCAATAGGGA	CTTTCCATTG	ACGTCAATGG	GTGGAGTATT	TACGGTAAAC
10	TGCCCACTTG	GCAGTACATC	AAGTGTATCA	TATGCCAAGT	ACGCCCCCTA	TTGACGTCAA
	TGACGGTAAA	TGGCCCGCCT	GGCATTATGC	CCAGTACATG	ACCTTATGGG	ACTTTCCTAC
	TTGGCAGTAC	ATCTACGTAT	TAGTCATCGC	TATTACCATG	GTGATGCGGT	TTTGGCAGTA
	CATCAATGGG	CGTGGATAGC	GGTTTGACTC	ACGGGGATTT	CCAAGTCTCC	ACCCCATTGA
	CGTCAATGGG	AGTTTGTTTT	GGCACCAAAA	TCAACGGGAC	TTTCCAAAAT	GTCGTAACAA
15	CTCCGCCCCA	TTGACGCAAA	TGGGCGGTAG	GCGTGTACGG	TGGGAGGTCT	ATATAAGCAG
	AGCTCGTTTA	GTGAACCGTC	AGATCGCCTG	GAGACGCCAT	CCACGCTGTT	TTGACCTCCA
	TAGAAGACAC	CGGGACCGAT	CCAGCCTCCG	CGGCCGGGAA	CGGTGCATTG	GAACGCGGAT
	TCCCCGTGCC	AAGAGTGACG	TAAGTACCGC	CTATAGACTC	TATAGGCACA	CCCCTTTGGC
	TCTTATGCAT	GCTATACTGT	TTTTGGCTTG	GGGCCTATAC	ACCCCCCCTT	CCTTATGCTA
20	TAGGTGATGG	TATAGCTTAG	CCTATAGGTG	TGGGTTATTG	ACCATTATTG	ACCACTCCCC
	TATTGGTGAC	GATACTTTCC	ATTACTAATC	CATAACATGG	CTCTTTGCCA	CAACTATCTC
	TATTGGCTAT	ATGCCAATAC	TCTGTCCTTC	AGAGACTGAC	ACGGACTCTG	TATTTTTACA
	GGATGGGGTC	CCATTTATTA	TTTACAAATT	CACATATACA	ACAACGCCGT	CCCCCGTGCC
	CGCAGTTTTT	ATTAAACATA	GCGTGGGATC	TCCACGCGAA	TCTCGGGTAC	GTGTTCCGGA
25	CATGGGCTCT	TCTCCGGTAG	CGGCGGAGCT	TCCACATCCG	AGCCCTGGTC	CCATGCCTCC
	AGCGGCTCAT	GGTCGCTCGG	CAGCTCCTTG	CTCCTAACAG	TGGAGGCCAG	ACTTAGGCAC
				CACAAGGCCG		
	GAAAATGAGC	GTGGAGATTG	GGCTCGCACG	GCTGACGCAG	ATGGAAGACT	TAAGGCAGCG
	GCAGAAGAAG	ATGCAGGCAG	CTGAGTTGTT	GTATTCTGAT	AAGAGTCAGA	GGTAACTCCC
30	GTTGCGGTGC	TGTTAACGGT	GGAGGGCAGT	GTAGTCTGAG	CAGTACTCGT	TGCTGCCGCG
	CGCGCCACCA	GACATAATAG	CTGACAGACT	AACAGACTGT	TCCTTTCCAT	GGGTCTTTTC
	TGCAGTCACC	GTCCTTAGAT	CTGCTGTGCC	TTCTAGTTGC	CAGCCATCTG	TTGTTTGCCC
	CTCCCCCGTG	CCTTCCTTGA	CCCTGGAAGG	TGCCACTCCC	ACTGTCCTTT	ССТААТАААА
	TGAGGAAATT	GCATCGCATT	GTCTGAGTAG	GTGTCATTCT	ATTCTGGGGG	GTGGGGTGGG

	GCAGGACAGC	AAGGGGGAGG	ATTGGGAAGA	CAATAGCAGG	CATGCTGGGG	ATGCGGTGGG
	CTCTATGGCC	GCTGCGGCCA	GGTGCTGAAG	AATTGACCCG	GTTCCTCCTG	GGCCAGAAAG
	AAGCAGGCAC	ATCCCCTTCT	CTGTGACACA	CCCTGTCCAC	GCCCCTGGTT	CTTAGTTCCA
	GCCCCACTCA	TAGGACACTC	ATAGCTCAGG	AGGGCTCCGC	CTTCAATCCC	ACCCGCTAAA
5	GTACTTGGAG	CGGTCTCTCC	CTCCCTCATC	AGCCCACCAA	ACCAAACCTA	GCCTCCAAGA
	GTGGGAAGAA	ATTAAAGCAA	GATAGGCTAT	TAAGTGCAGA	GGGAGAGAAA	ATGCCTCCAA
	CATGTGAGGA	AGTAATGAGA	GAAATCATAG	AATTTCTTCC	GCTTCCTCGC	TCACTGACTC
	GCTGCGCTCG	GTCGTTCGGC	TGCGGCGAGC	GGTATCAGCT	CACTCAAAGG	CGGTAATACG
	GTTATCCACA	GAATCAGGGG	ATAACGCAGG	AAAGAACATG	TGAGCAAAAG	GCCAGCAAAA
10	GGCCAGGAAC	CGTAAAAAGG	CCGCGTTGCT	GGCGTTTTTC	CATAGGCTCC	GCCCCCTGA
	CGAGCATCAC	AAAAATCGAC	GCTCAAGTCA	GAGGTGGCGA	AACCCGACAG	GACTATAAAG
	ATACCAGGCG	TTTCCCCCTG	GAAGCTCCCT	CGTGCGCTCT	CCTGTTCCGA	CCCTGCCGCT
	TACCGGATAC	CTGTCCGCCT	TTCTCCCTTC	GGGAAGCGTG	GCGCTTTCTC	ATAGCTCACG
	CTGTAGGTAT	CTCAGTTCGG	TGTAGGTCGT	TCGCTCCAAG	CTGGGCTGTG	TGCACGAACC
, 15	CCCCGTTCAG	CCCGACCGCT	GCGCCTTATC	CGGTAACTAT	CGTCTTGAGT	CCAACCCGGT
	AAGACACGAC	TTATCGCCAC	TGGCAGCAGC	CACTGGTAAC	AGGATTAGCA	GAGCGAGGTA
	TGTAGGCGGT	GCTACAGAGT	TCTTGAAGTG	GTGGCCTAAC	TACGGCTACA	CTAGAAGAAC
	AGTATTTGGT	ATCTGCGCTC	TGCTGAAGCC	AGTTACCTTC	GGAAAAAGAG	TTGGTAGCTC
	TTGATCCGGC	AAACAAACCA	CCGCTGGTAG	CGGTGGTTTT	TTTGTTTGCA	AGCAGCAGAT
20	TACGCGCAGA	AAAAAAGGAT	CTCAAGAAGA	TCCTTTGATC	TTTTCTACGG	GGTCTGACGC
	TCAGTGGAAC	GAAAACTCAC	GTTAAGGGAT	TTTGGTCATG	AGATTATCAA	AAAGGATCTT
	CACCTAGATC	CTTTTAAATT	AAAAATGAAG	TTTTAAATCA	ATCTAAAGTA	TATATGAGTA
	AACTTGGTCT	GACAGTTACC	AATGCTTAAT	CAGTGAGGCA	CCTATCTCAG	CGATCTGTCT
	ATTTCGTTCA	TCCATAGTTG	CCTGACTCGG	GGGGGGGGG	CGCTGAGGTC	TGCCTCGTGA
25	AGAAGGTGTT	GCTGACTCAT	ACCAGGCCTG	AATCGCCCCA	TCATCCAGCC	AGAAAGTGAG
	GGAGCCACGG	TTGATGAGAG	CTTTGTTGTA	GGTGGACCAG	TTGGTGATTT	TGAACTTTTG
	CTTTGCCACG	GAACGGTCTG	CGTTGTCGGG	AAGATGCGTG	ATCTGATCCT	TCAACTCAGC
	AAAAGTTCGA	TTTATTCAAC	AAAGCCGCCG	TCCCGTCAAG	TCAGCGTAAT	GCTCTGCCAG
	TGTTACAACC	AATTAACCAA	TTCTGATTAG	AAAAACTCAT	CGAGCATCAA	ATGAAACTGC
30	AATTTATTCA	TATCAGGATT	ATCAATACCA	TATTTTTGAA	AAAGCCGTTT	CTGTAATGAA
	GGAGAAAACT	CACCGAGGCA	GTTCCATAGG	ATGGCAAGAT	CCTGGTATCG	GTCTGCGATT
	CCGACTCGTC	СААСАТСААТ	ACAACCTATT	AATTTCCCCT	CGTCAAAAAT	AAGGTTATCA
	AGTGAGAAAT	CACCATGAGT	GACGACTGAA	TCCGGTGAGA	ATGGCAAAAG	CTTATGCATT
	TCTTTCCAGA	CTTGTTCAAC	AGGCCAGCCA	TTACGCTCGT	CATCAAAATC	ACTCGCATCA

ACCAAACCGT TATTCATTCG TGATTGCGCC TGAGCGAGAC GAAATACGCG ATCGCTGTTA
AAAGGACAAT TACAAACAGG AATCGAATCC AACCGGCGCA GGAACACTGC CAGCGCATCA
ACAATATTTT CACCTGAATC AGGATATTCT TCTAATACCT GGAATGCTGT TTTCCCGGGG
ATCGCAGTGG TGAGTAACCA TGCATCATCA GGAGTACGGA TAAAATGCTT GATGGTCGGA
AGAGGCATAA ATTCCGTCAG CCAGTTTAGT CTGACCATCT CATCTGTAAC ATCATTGGCA
ACGCTACCTT TGCCATGTTT CAGAAACAAC TCTGGCGCAT CGGGCTTCCC ATACAATCGA
TAGATTGTCG CACCTGATTG CCCGACATTA TCGCGGGCCC ATTTATACCC ATATAAATCA
GCATCCATGT TGGAATTTAA TCGCGGCCTC GAGCAAGACG TTTCCCGTTG AATATGGCTC
ATAAACACCCC TTGTATTACT GTTTATGTAA GCAGACAGTT TTATTGTTCA TGATGATATA
TTTTTATCTT GTGCAATGTA ACATCAGAGA TTTTGAGACA CAACGTGGCT TCCCCCCCC
CCCCATTATT GAAGCATTTA TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAATGT
ATTTAGAAAA ATAAACAAAT AGGGGTTCCG CGCACATTTC CCCGAAAAGT GCCACCTGAC
GTCTAAGAAA CCATTATTAT CATGACATTA ACCTTATAAAA ATAGGCGTAT CACGAGGCCC
TTTCCGTC(SEQ ID NO:16).

5

10

15

20

25

30

The underlined nucleotides of SEQ ID NO:16 represent the Sfi1 site introduced into the Kpn 1 site of V1Jneo.

VIJns-tPA - The vaccine vector V1Jns-tPA was constructed in order to fuse an heterologous leader peptide sequence to the nef DNA constructs of the present invention. More specifically, the vaccine vector V1Jns was modified to include the human tissue-specific plasminogen activator (tPA) leader. As an exemplification, but by no means a limitation of generating a nef DNA construct comprising an aminoterminal leader sequence, plasmid V1Jneo was modified to include the human tissuespecific plasminogen activator (tPA) leader. Two synthetic complementary oligomers were annealed and then ligated into VIJneo which had been BglII digested. The sense and antisense oligomers were 5' GATCACCATGGATGCAATGAAGAGAG GGCTCTGCTGTGCTGCTGCTGTGGAGCAGTCTTCGTTTCGCCCAG CGA-3' (SEQ ID NO:17); and, 5'-GATCTCGCTGGGCGAAACGAAGACTGC TCCACACAGCAGCAGCACACAGCAGCCCTCTCTTCATTGCATCCAT GGT-3' (SEQ ID NO:18). The Kozak sequence is underlined in the sense oligomer. These oligomers have overhanging bases compatible for ligation to BglII-cleaved sequences. After ligation the upstream BglII site is destroyed while the downstream BgIII is retained for subsequent ligations. Both the junction sites as well as the entire tPA leader sequence were verified by DNA sequencing. Additionally, in order to conform with V1Jns (=V1Jneo with an SfiI site), an SfiI restriction site was placed at

the KpnI site within the BGH terminator region of V1Jneo-tPA by blunting the KpnI site with T4 DNA polymerase followed by ligation with an SfiI linker (catalogue #1138, New England Biolabs), resulting in V1Jns-tPA. This modification was verified by restriction digestion and agarose gel electrophoresis.

The V1Jns-tpa vector nucleotide sequence is as follows: TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG 10 CTATTGGCCA TTGCATACGT TGTATCCATA TCATAATATG TACATTTATA TTGGCTCATG TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCGCGTT ACATAACTTA CGGTAAATGG CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC 15 TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCCTAC TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATTT CCAAGTCTCC ACCCCATTGA CGTCAATGGG AGTTTGTTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA 20 CTCCGCCCCA TTGACGCAAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG AGCTCGTTTA GTGAACCGTC AGATCGCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA TAGAAGACAC CGGGACCGAT CCAGCCTCCG CGGCCGGGAA CGGTGCATTG GAACGCGGAT TCCCCGTGCC AAGAGTGACG TAAGTACCGC CTATAGACTC TATAGGCACA CCCCTTTGGC TCTTATGCAT GCTATACTGT TTTTGGCTTG GGGCCTATAC ACCCCCGCTT CCTTATGCTA 25 TAGGTGATGG TATAGCTTAG CCTATAGGTG TGGGTTATTG ACCATTATTG ACCACTCCCC TATTGGTGAC GATACTTTCC ATTACTAATC CATAACATGG CTCTTTGCCA CAACTATCTC TATTGGCTAT ATGCCAATAC TCTGTCCTTC AGAGACTGAC ACGGACTCTG TATTTTTACA GGATGGGGTC CCATTTATTA TTTACAAATT CACATATACA ACAACGCCGT CCCCCGTGCC CGCAGTTTTT ATTAAACATA GCGTGGGATC TCCACGCGAA TCTCGGGTAC GTGTTCCGGA 30 CATGGGCTCT TCTCCGGTAG CGGCGGAGCT TCCACATCCG AGCCCTGGTC CCATGCCTCC AGCGGCTCAT GGTCGCTCGG CAGCTCCTTG CTCCTAACAG TGGAGGCCAG ACTTAGGCAC AGCACAATGC CCACCACCAC CAGTGTGCCG CACAAGGCCG TGGCGGTAGG GTATGTGTCT GAAAATGAGC GTGGAGATTG GGCTCGCACG GCTGACGCAG ATGGAAGACT TAAGGCAGCG GCAGAAGAAG ATGCAGGCAG CTGAGTTGTT GTATTCTGAT AAGAGTCAGA GGTAACTCCC

	GTTGCGGTGC	TGTTAACGGT	GGAGGGCAGT	GTAGTCTGAG	CAGTACTCGT	TGCTGCCGCG
	CGCGCCACCA	GACATAATAG	CTGACAGACT	AACAGACTGT	TCCTTTCCAT	GGGTCTTTTC
	TGCAGTCACC	GTCCTT <u>AGAT</u>	CACCATGGAT	GCAATGAAGA	GAGGGCTCTG	CTGTGTGCTG
	CTGCTGTGTG	GAGCAGTCTT	CGTTTCGCCC	AGCGAGATCT	GCTGTGCCTT	CTAGTTGCCA
5	GCCATCTGTT	GTTTGCCCCT	CCCCCGTGCC	TTCCTTGACC	CTGGAAGGTG	CCACTCCCAC
	TGTCCTTTCC	TAATAAAATG	AGGAAATTGC	ATCGCATTGT	CTGAGTAGGT	GTCATTCTAT
	TCTGGGGGGT	GGGGTGGGGC	AGGACAGCAA	GGGGGAGGAT	TGGGAAGACA	ATAGCAGGCA
	TGCTGGGGAT	GCGGTGGGCT	CTATGGCCGC	TGCGGCCAGG	TGCTGAAGAA	TTGACCCGGT
	TCCTCCTGGG	CCAGAAAGAA	GCAGGCACAT	CCCCTTCTCT	GTGACACACC	CTGTCCACGC
10	CCCTGGTTCT	TAGTTCCAGC	CCCACTCATA	GGACACTCAT	AGCTCAGGAG	GGCTCCGCCT
	TCAATCCCAC	CCGCTAAAGT	ACTTGGAGCG	GTCTCTCCCT	CCCTCATCAG	CCCACCAAAC
	CAAACCTAGC	CTCCAAGAGT	GGGAAGAAAT	TAAAGCAAGA	TAGGCTATTA	AGTGCAGAGG
	GAGAGAAAAT	GCCTCCAACA	TGTGAGGAAG	TAATGAGAGA	AATCATAGAA	TTTCTTCCGC
	TTCCTCGCTC	ACTGACTCGC	TGCGCTCGGT	CGTTCGGCTG	CGGCGAGCGG	TATCAGCTCA
15	CTCAAAGGCG	GTAATACGGT	TATCCACAGA	ATCAGGGGAT	AACGCAGGAA	AGAACATGTG
	AGCAAAAGGC	CAGCAAAAGG	CCAGGAACCG	TAAAAAGGCC	GCGTTGCTGG	CGTTTTTCCA
	TAGGCTCCGC	CCCCTGACG	AGCATCACAA	AAATCGACGC	TCAAGTCAGA	GGTGGCGAAA
	CCCGACAGGA	CTATAAAGAT	ACCAGGCGTT	TCCCCCTGGA	AGCTCCCTCG	TGCGCTCTCC
	TGTTCCGACC	CTGCCGCTTA	CCGGATACCT	GTCCGCCTTT	CTCCCTTCGG	GAAGCGTGGC
20	GCTTTCTCAT	AGCTCACGCT	GTAGGTATCT	CAGTTCGGTG	TAGGTCGTTC	GCTCCAAGCT
	GGGCTGTGTG	CACGAACCCC	CCGTTCAGCC	CGACCGCTGC	GCCTTATCCG	GTAACTATCG
	TCTTGAGTCC	AACCCGGTAA	GACACGACTT	ATCGCCACTG	GCAGCAGCCA	CTGGTAACAG
	GATTAGCAGA	GCGAGGTATG	TAGGCGGTGC	TACAGAGTTC	TTGAAGTGGT	GGCCTAACTA
	CGGCTACACT	AGAAGAACAG	TATTTGGTAT	CTGCGCTCTG	CTGAAGCCAG	TTACCTTCGG
25	AAAAAGAGTT	GGTAGCTCTT	GATCCGGCAA	ACAAACCACC	GCTGGTAGCG	GTGGTTTTTT
	TGTTTGCAAG	CAGÇAGATTA	CGCGCAGAAA	AAAAGGATCT	CAAGAAGATC	CTTTGATCTT
	TTCTACGGGG	TCTGACGCTC	AGTGGAACGA	AAACTCACGT	TAAGGGATTT	TGGTCATGAG
	ATTATCAAAA	AGGATCTTCA	CCTAGATCCT	TTTAAATTAA	AAATGAAGTT	TTAAATCAAT
	CTAAAGTATA	TATGAGTAAA	CTTGGTCTGA	CAGTTACCAA	TGCTTAATCA	GTGAGGCACC
30	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	CATAGTTGCC	TGACTCGGGG	GGGGGGGCG
	CTGAGGTCTG	CCTCGTGAAG	AAGGTGTTGC	TGACTCATAC	CAGGCCTGAA	TCGCCCCATC
	ATCCAGCCAG	AAAGTGAGGG	AGCCACGGTT	GATGAGAGCT	TTGTTGTAGG	TGGACCAGTT
	GGTGATTTTG	AACTTTTGCT	TTGCCACGGA	ACGGTCTGCG	TTGTCGGGAA	GATGCGTGAT
	CTGATCCTTC	AACTCAGCAA	AAGTTCGATT	TATTCAACAA	AGCCGCCGTC	CCGTCAAGTC

AGCGTAATGC TCTGCCAGTG TTACAACCAA TTAACCAATT CTGATTAGAA AAACTCATCG AGCATCAAAT GAAACTGCAA TTTATTCATA TCAGGATTAT CAATACCATA TTTTTGAAAA AGCCGTTTCT GTAATGAAGG AGAAAACTCA CCGAGGCAGT TCCATAGGAT GGCAAGATCC TGGTATCGGT CTGCGATTCC GACTCGTCCA ACATCAATAC AACCTATTAA TTTCCCCTCG TCAAAAATAA GGTTATCAAG TGAGAAATCA CCATGAGTGA CGACTGAATC CGGTGAGAAT GGCAAAAGCT TATGCATTTC TTTCCAGACT TGTTCAACAG GCCAGCCATT ACGCTCGTCA TCAAAATCAC TCGCATCAAC CAAACCGTTA TTCATTCGTG ATTGCGCCTG AGCGAGACGA AATACGCGAT CGCTGTTAAA AGGACAATTA CAAACAGGAA TCGAATGCAA CCGGCGCAGG AACACTGCCA GCGCATCAAC AATATTTTCA CCTGAATCAG GATATTCTTC TAATACCTGG 10 AATGCTGTTT TCCCGGGGAT CGCAGTGGTG AGTAACCATG CATCATCAGG AGTACGGATA AAATGCTTGA TGGTCGGAAG AGGCATAAAT TCCGTCAGCC AGTTTAGTCT GACCATCTCA TCTGTAACAT CATTGGCAAC GCTACCTTTG CCATGTTTCA GAAACAACTC TGGCGCATCG GGCTTCCCAT ACAATCGATA GATTGTCGCA CCTGATTGCC CGACATTATC GCGAGCCCAT TTATACCCAT ATAAATCAGC ATCCATGTTG GAATTTAATC GCGGCCTCGA GCAAGACGTT 15 TCCCGTTGAA TATGGCTCAT AACACCCCTT GTATTACTGT TTATGTAAGC AGACAGTTTT ATTGTTCATG ATGATATATT TTTATCTTGT GCAATGTAAC ATCAGAGATT TTGAGACACA ACGTGGCTTT CCCCCCCCC CCATTATTGA AGCATTTATC AGGGTTATTG TCTCATGAGC GGATACATAT TTGAATGTAT TTAGAAAAAT AAACAAATAG GGGTTCCGCG CACATTTCCC CGAAAAGTGC CACCTGACGT CTAAGAAACC ATTATTATCA TGACATTAAC CTATAAAAAT 20 AGGCGTATCA CGAGGCCCTT TCGTC (SEQ ID NO:9).

The underlined nucleotides of SEQ ID NO:9 represent the Sfi1 site introduced into the Kpn 1 site of V1Jneo while the underlined/italicized nucleotides represent the human tPA leader sequence.

25

30

VIR – Vaccine vector V1R was constructed to obtain a minimum-sized vaccine vector without unneeded DNA sequences, which still retained the overall optimized heterologous gene expression characteristics and high plasmid yields that V1J and V1Jns afford. It was determined that (1) regions within the pUC backbone comprising the E. coli origin of replication could be removed without affecting plasmid yield from bacteria; (2) the 3'-region of the kan¹ gene following the kanamycin open reading frame could be removed if a bacterial terminator was inserted in its place; and, (3) ~300 bp from the 3'- half of the BGH terminator could be removed without affecting its regulatory function (following the original KpnI restriction enzyme site within the BGH element). V1R was constructed by using PCR to synthesize three segments of DNA from V1Jns representing the CMVintA

promoter/BGH terminator, origin of replication, and kanamycin resistance elements, respectively. Restriction enzymes unique for each segment were added to each segment end using the PCR oligomers: SspI and XhoI for CMVintA/BGH; EcoRV and BamHI for the kan r gene; and, BclI and SalI for the ori r. These enzyme sites were chosen because they allow directional ligation of each of the PCR-derived DNA segments with subsequent loss of each site: EcoRV and SspI leave blunt-ended DNAs which are compatible for ligation while BamHI and BcII leave complementary overhangs as do Sall and Xhol. After obtaining these segments by PCR each segment was digested with the appropriate restriction enzymes indicated above and then ligated together in a single reaction mixture containing all three DNA segments. The 10 5'-end of the ori r was designed to include the T2 rho independent terminator sequence that is normally found in this region so that it could provide termination information for the kanamycin resistance gene. The ligated product was confirmed by restriction enzyme digestion (>8 enzymes) as well as by DNA sequencing of the ligation junctions. DNA plasmid yields and heterologous expression using viral genes 15 within VIR appear similar to VIJns. The net reduction in vector size achieved was 1346 bp (VIJns = 4.86 kb; VIR = 3.52 kb). PCR oligomer sequences used to synthesize VIR (restriction enzyme sites are underlined and identified in brackets following sequence) are as follows: (1) 5'-GGTACAAATATTGGCTATTGGC CATTGCATACG-3' (SEQ ID NO:20) [SspI]; (2) 5'-CCACATCTCGAGGAA 20 CCGGGTCAATTCTTCAGCACC-3' (SEQ ID NO:21) [XhoI] (for CMVintA/BGH segment); (3) 5'-GGTACAGATATCGGAAAGCCACGTTGTG TCTCAAAATC-3' (SEQ ID NO:22) [EcoRV]; (4) 5'-CACATGGATCCGTAATGCTCTGCCAGTGT TACAACC-3' (SEQ ID NO:23) [BamHI], (for kanamycin resistance gene segment) (5) 5'-GGTACATG ATCACGTAGAAAAGATCAAAGGATCTTCTTG-3' (SEQ ID 25 NO:24) [BcII]; (6) 5'-CCACATGTCGACCCGTAAAAAGGCCGCGTTGCTGG-3' (SEQ ID NO:25): [Sall], (for E. coli origin of replication). The nucleotide sequence of vector V1R is as follows: TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG 30 TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG CTATTGGCCA TTGCATACGT TGTATCCATA TCATAATATG TACATTTATA TTGGCTCATG TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC

	GGGGTCATT	A GTTCATAGCO	CATATATGGA	GTTCCGCGTT	` АСАТААСТТА	CGGTAAATGG
	CCCGCCTGG	TGACCGCCCA	ACGACCCCCG	CCCATTGACG	TCAATAATGA	CGTATGTTCC
	CATAGTAACO	G CCAATAGGG	CTTTCCATTG	ACGTCAATGG	GTGGAGTATT	TACGGTAAAC
	TGCCCACTT	GCAGTACATO	AAGTGTATCA	TATGCCAAGT	ACGCCCCTA	TTGACGTCAA
5	TGACGGTAA	TGGCCCGCCT	GGCATTATGC	CCAGTACATG	ACCTTATGGG	ACTTTCCTAC
	TTGGCAGTAC	ATCTACGTAT	TAGTCATCGC	TATTACCATG	GTGATGCGGT	TTTGGCAGTA
	CATCAATGG	G CGTGGATAGC	GGTTTGACTC	ACGGGGATTT	CCAAGTCTCC	ACCCCATTGA
	CGTCAATGG	AGTTTGTTT	GGCACCAAAA	TCAACGGGAC	TTTCCAAAAT	GTCGTAACAA
٠.	CTCCGCCCCA	TTGACGCAAA	TGGGCGGTAG	GCGTGTACGG	TGGGAGGTCT	ATATAAGCAG
10	AGCTCGTTTA	GTGAACCGTC	AGATCGCCTG	GAGACGCCAT	CCACGCTGTT	TTGACCTCCA
	TAGAAGACAC	CGGGACCGAT	CCAGCCTCCG	CGGCCGGGAA	CGGTGCATTG	GAACGCGGAT
	TCCCCGTGCC	AAGAGTGACG	TAAGTACCGC	CTATAGAGTC	TATAGGCCCA	CCCCCTTGGC
	TTCTTATGCA	TGCTATACTG	TTTTTGGCTT	GGGGTCTATA	CACCCCCGCT	TCCTCATGTT
	ATAGGTGATG	GTATAGCTTA	GCCTATAGGT	GTGGGTTATT	GACCATTATT	GACCACTCCC
15	CTATTGGTGA	CGATACTTTC	CATTACTAAT	CCATAACATG	GCTCTTTGCC	ACAACTCTCT
	TTATTGGCTA	TATGCCAATA	CACTGTCCTT	CAGAGACTGA	CACGGACTCT	GTATTTTTAC
	AGGATGGGGT	CTCATTTATT	ATTTACAAAT	TCACATATAC	AACACCACCG	TCCCCAGTGC
	CCGCAGTTTT	TATTAAACAT	AACGTGGGAT	CTCCACGCGA	ATCTCGGGTA	CGTGTTCCGG
	ACATGGGCTC	TTCTCCGGTA	GCGGCGGAGC	TTCTACATCC	GAGCCCTGCT	CCCATGCCTC
20	CAGCGACTCA	TGGTCGCTCG	GCAGCTCCTT	GCTCCTAACA	GTGGAGGCCA	GACTTAGGCA
			CCAGTGTGCC			
			GGGCTTGCAC			
			GCTGAGTTGT			
	CGTTGCGGTG	CTGTTAACGG	TGGAGGGCAG	TGTAGTCTGA	GCAGTACTCG	TTGCTGCCGC
25			GCTGACAGAC		•	
			TCTGCTGTGC			
			ACCCTGGAAG			
			TGTCTGAGTA			•
			GATTGGGAAG			
30	•		CTGAAGAATT			
	AGGCACATCC	CCTTCTCTGT	GACACACCCT	GTCCACGCCC	CTGGTTCTTA	GTTCCAGCCC
•			CTCAGGAGGG			
			CTCATCAGCC			
	GAAGAAATTA	AAGCAAGATA	GGCTATTAAG	TGCAGAGGGA	GAGAAAATGC	CTCCAACATG

	TGAGGAAGTA	ATGAGAGAAA	TCATAGAATŤ	TCTTCCGCTT	CCTCGCTCAC	TGACTCGCTG
	CGCTCGGTCG	TTCGGCTGCG	GCGAGCGGTA	TCAGCTCACT	CAAAGGCGGT	AATACGGTTA
	TCCACAGAAT	CAGGGGATAA	CGCAGGAAAG	AACATGTGAG	CAAAAGGCCA	GCAAAAGGCC
	AGGAACCGTA	AAAAGGCCGC	GTTGCTGGCG	TTTTTCCATA	GGCTCCGCCC	CCCTGACGAG
5	CATCACAAAA	ATCGACGCTC	AAGTCAGAGG	TGGCGAAACC	CGACAGGACT	ATAAAGATAC
	CAGGCGTTTC	CCCCTGGAAG	CTCCCTCGTG	CGCTCTCCTG	TTCCGACCCT	GCCGCTTACC
	GGATACCTGT	CCGCCTTTCT	CCCTTCGGGA	AGCGTGGCGC	TTTCTCAATG	CTCACGCTGT
	AGGTATCTCA	GTTCGGTGTA	GGTCGTTCGC	TCCAAGCTGG	GCTGTGTGCA	CGAACCCCCC
	GTTCAGCCCG	ACCGCTGCGC	CTTATCCGGT	AACTATCGTC	TTGAGTCCAA	CCCGGTAAGA
10	CACGACTTAT	CGCCACTGGC	AGCAGCCACT	GGTAACAGGA	TTAGCAGAGC	GAGGTATGTA
	GGCGGTGCTA	CAGAGTTCTT	GAAGTGGTGG	CCTAACTACG	GCTACACTAG	AAGGACAGTA
	TTTGGTATCT	GCGCTCTGCT	GAAGCCAGTT	ACCTTCGGAA	AAAGAGTTGG	TAGCTCTTGA
	TCCGGCAAAC	AAACCACCGC	TGGTAGCGGT	GGTTTTTTTG	TTTGCAAGCA	GCAGATTACG
	CGCAGAAAAA	AAGGATCTCA	AGAAGATCCT	TTGATCTTTT	CTACGGGGTC	TGACGCTCAG
15	TGGAACGAAA	ACTCACGTTA	AGGGATTTTG	GTCATGAGAT	TATCAAAAAG	GATCTTCACC
	TAGATCCTTT	ТАААТТАААА	ATGAAGTTTT	AAATCAATCT	AAAGTATATA	TGAGTAAACT
	TGGTCTGACA	GTTACCAATG	CTTAATCAGT	GAGGCACCTA	TCTCAGCGAT	CTGTCTATTT
	CGTTCATCCA	TAGTTGCCTG	ACTCCGGGGG	GGGGGGGCGC	TGAGGTCTGC	CTCGTGAAGA
	AGGTGTTGCT	GACTCATACC	AGGCCTGAAT	CGCCCCATCA	TCCAGCCAGA	AAGTGAGGGA
20	GCCACGGTTG	ATGAGAGCTT	TGTTGTAGGT	GGACCAGTTG	GTGATTTTGA	ACTTTTGCTT
	TGCCACGGAA	CGGTCTGCGT	TGTCGGGAAG	ATGCGTGATC	TGATCCTTCA	ACTCAGCAAA
	AGTTCGATTT	ATTCAACAAA	GCCGCCGTCC	CGTCAAGTCA	GCGTAATGCT	CTGCCAGTGT
	TACAACCAAT	TAACCAATTC	TGATTAGAAA	AACTCATCGA	GCATCAAATG	AAACTGCAAT
-	TTATTCATAT	CAGGATTATC	AATACCATAT	TTTTGAAAAA	GCCGTTTCTG	TAATGAAGGA
25	GAAAACTCAC	CGAGGCAGTT	CCATAGGATG	GCAAGATCCT	GGTATCGGTC	TGCGATTCCG
	ACTCGTCCAA	CATCAATACA	ACCTATTAAT	TTCCCCTCGT	CAAAAATAAG	GTTATCAAGT
	GAGAAATCAC	CATGAGTGAC	GACTGAATCC	GGTGAGAATG	GCAAAAGCTT	ATGCATTTCT
	TTCCAGACTT	GTTCAACAGG	CCAGCCATTA	CGCTCGTCAT	CAAAATCACT	CGCATCAACC
	AAACCGTTAT	TCATTCGTGA	TTGCGCCTGA	GCGAGACGAA	ATACGCGATC	GCTGTTAAAA
30	GGACAATTAC	AAACAGGAAT	CGAATGCAAC	CGGCGCAGGA	ACACTGCCAG	CGCATCAACA
	ATATTTTCAC	CTGAATCAGG	ATATTCTTCT	AATACCTGGA	ATGCTGTTTT	CCCGGGGATC
	GCAGTGGTGA	GTAACCATGC	ATCATCAGGA	GTACGGATAA	AATGCTTGAT	GGTCGGAAGA
	GGCATAAATT	CCGTCAGCCA	GTTTAGTCTG	ACCATCTCAT	CTGTAACATC	ATTGGCAACG
	CTACCTTTGC	CATGTTTCAG	AAACAACTCT	GGCGCATCGG	GCTTCCCATA	CAATCGATAG

ATTGTCGCAC CTGATTGCCC GACATTATCG CGAGCCCATT TATACCCATA TAAATCAGCA TCCATGTTGG AATTTAATCG CGGCCTCGAG CAAGACGTTT CCCGTTGAAT ATGGCTCATA ACACCCCTTG TATTACTGTT TATGTAAGCA GACAGTTTTA TTGTTCATGA TGATATATTT TTATCTTGTG CAATGTAACA TCAGAGATTT TGAGACACAA CGTGGCTTTC CCCCCCCCC CATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT TAGAAAAAATA AACAAATAGG GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC TAAGAAAACCA TTATTATCAT GACATTAACC TATAAAAAATA GGCGTATCAC GAGGCCCTTT CGTC (SEQ ID NO:26).

10

15

20

25

30

5

EXAMPLE 2

Codon Optimized HIV-1 Nef and HIV-1 Nef Derivatives as DNA Vector Vaccines HIV-1 Nef Vaccine Vectors - Codon optimized nef gene coding for wt Nef protein of HIV-1 jrfl isolate was assembled from complementary, overlapping synthetic oligonucleotides by polymerase chain reaction (PCR). The PCR primers used were designed in such that a BglII site was included in the extension of 5' primer and an SrfI site and a BglII site in the extension of 3' primer. The PCR product was digested with BglII and cloned into BglII site of a human cytomeglovirus early promoter-based expression vector, V1Jns (Figure 1A). The proper orientation of nef fragment in the context of the expression cassette was determined by asymmetric restriction mapping. The resultant plasmid is V1Jns/nef. The 5' and 3' nucleotide sequence junctions of codon optimized V1Jns/nef are shown in Figure 3A.

The mutant nef (G2A,LLAA) was also made from synthetic oligonucleotides. To assist in cloning, a PstI site and an SrfI site were included in the extensions of 5' and 3' PCR primers, respectively. The PCR product was digested with PstI and SrfI, and cloned into the PstI and SrfI sites of V1Jns/nef, replacing the original nef with nef(G2A,LLAA) fragment. This resulted in V1Jns/nef(G2A,LLAA). The 5' and 3' nucleotide sequence junctions of codon optimized V1Jns/nef (G2A,LLAA) are shown in Figure 3B.

To construct the expression vector containing human tissue plasminogen activator leader peptide and the nef fusion gene, i.e., V1Jns/tPAnef, a truncated nef gene fragment, lacking the coding sequence for the five amino terminal residues, was first amplified by PCR using V1Jns/nef as template. Both 5' and 3' PCR primers used in this reaction contained a BgIII extension. The PCR amplified fragment was then digested with BgIII and cloned into BgIII site of the expression vector, V1Jns/tpa

(Figure 1B). The ligation of the 3' end of tpa leader peptide coding sequence to the 5' end of the nef PCR product restored the BglII site and yielded an in-frame fusion of the two genes. The 5' and 3' nucleotide sequence junctions of codon optimized V1Jns/tPAnef are shown in Figure 3C.

Construction of V1Jns/tpanef(LLAA) was carried out by replacing the Bsu36-SacII fragment of V1Jns/tpanef, which contains the 3' half of the nef gene and part of the vector backbone, with the Bsu36-SacII fragment from V1Jns/nef(G2A,LLAA). The 5' and 3' nucleotide sequence junctions of codon optimized V1Jns/tpanef (LLAA) are shown in Figure 3C.

5

10

15

20

25

30

All the nef constructs were verified by sequencing. The amino acid junctions of these constructs is shown schematically in Figure 4.

Transfection and protein expression - 293 cells (adenovirus transformed human embryonic kidney cell line 293) grown at approximately 30% confluence in minimum essential medium (MEM; GIBCO, Grand Island, MD) supplemented with 10% fetal bovine serum (FBS; GIBCO) in a 100 mm culture dish, were transfected with 4 ug gag expression vector, V1Jns/gag, or a mixture of 4 ug gag expression vector and 4 ug nef expression vector by Lipofectin following manufacture's protocol (GIBCO). Twelve hours post-transfection, cells were washed once with 10 ml of serum-free medium, Opti-MEM I (GIBCO) and replenished with 5 ml of Opti-MEM. Following an additional 60 hr incubation, culture supernatants and cells were collected separately and used for Western blot analysis.

Western blot analysis - Fifty microliter of samples were separated on a 10% SDS-polyacrylamide gel (SDS-PAGE) under reducing conditions. The proteins were blotted onto a piece of PVDF membrane, and reacted to a mixture of gag mAb (#18; Intracel, Cambridge, MA) and Nef mAbs (aa64-68, aa195-201; Advanced Biotechnologies, Columbia, MD), both at 1:2000 dilution, and horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (Zymed, San Francisco, CA). The protein bands were visualized by ECL Western blotting detection reagents, according to the manufacture's protocol (Amersham, Arlington Heights, IL).

Enzyme-linked immunosorbent assay (ELISA) - 96-well Immulon II, round-bottom plates were coated with 50 ul of Nef protein at the concentration of 2ug/ml in bicarbonate buffer, pH 9.8., per well at 4°C overnight. Plates were washed three times with PBS containing 0.05% Tween-20 (PBST), and blocked with 5% skim milk in PBST (milk-PBST) at 24°C for 2 hr, and then incubated with serial dilutions of

testing samples in milk-PBST at 24°C for 2 hr. Plates were washed with PBST three times, and added with 50 ul of HRP-conjugated goat anti-mouse IgG (Zymed) per well and incubated at 24°C for 1 hr. This was followed by three washes, and the addition of 100 ul of 1 mg/ml ABTS [(2,2'-amino-di-(3-ethylbenzthiozoline sulfonate)] (KPL, Gaithersburg, MD) per well. After 1 hr at 24°C, plates were read at a wavelength of 405nm using an ELISA plate reader.

5

10

15

20

25

30

Enzyme-linked spot assay (Elispot) - Nitrocellulose membrane-backed 96 well plates (MSHA plates; Millipore, Bedford, MA) were coated with 50 ul of rat antimouse IFN-gamma mAb, capture antibody, (R4-6A2; PharMingen, San Diego, CA) at a concentration of 5ug/ml in PBS per well at 4°C overnight. Plates were washed three times with PBST and blocked with 10% FBS in RPMI-1640 (FBS-RPMI) at 37°C in a CO2 incubator for 2 to 4 hrs. Splenocytes were suspended in RPMI-1640 with 10% FBS at 4 x 10⁶ cells per ml. 100 ul cells were added to each well and plates were incubated at 37°C for 20 hrs. Each sample was tested in triplicate wells. After incubation, plates were rinsed briefly with distilled water and washed three times with PBST. Fifty ul of biotinylated rat anti-mouse IFN-y mAb, detecting antibody (XMG1.2; PharMingen), diluted in 1% BSA in PBST at a concentration of 2 ug/ml was then added to each well. Plates were incubated at 24°C for 2 hr, followed by washes with PBST. Fifty ul of streptavidin-conjugated alkaline phosphatase (KPL) at a dilution of 1:1000 in FBS-RPMI was added to each well. The plates were incubated at 24C for an additional one hr. Following extensive wash with BPST, 100ul BCIT/NBT substrate (KPL) was added for 15 min, and color reaction was stopped by washing the plate with tap water. Plates were air-dried and spots were countered using a dissection microscope.

Cytotoxic T cell (CTL) assay - Splenocytes from immunized mouse were cocultured with syngenic peptide-pulsed, irradiated naive splenocytes for 7 days. EL-4 cells were incubated at 37°C for 1 hr with or without 20ug/ml of a designated peptide in the presence of sodium 51Cr-chromate and used as target cells. For the assay, 10⁴ target cells were added to a 96-well plate along with different numbers of splenocytes cells. Plates were incubated at 37°C for 4 hr. After incubation, supernatants were collected and counted in a Wallac gamma-counter. Specific lysis was calculated as ([experimental release - spontaneous release]/maximum release- spontaneous release]) x 100%. Spontaneous release was determined by incubating target cells in

medium alone, and maximum release was determined by incubating target cells in 2.5% TritonX-100. The assay was performed with triplicate samples.

Animal experiments - Female mice (Charles River Laboratories, Wilmington, MA), 6 to 10 weeks old, were injected in quadriceps with 100 ul of DNA in PBS. Two weeks after immunization, spleens from individual mice were collected and used for CTL and Elispot assays.

5

10

15

20

25

30

Results (DNA Vector Vaccine Construction) - The exemplified Nef protein sequence is based on HIV-1 clade B jrfl isolate. A codon-optimized nef gene was chosen for vaccine construction and for use as the parental gene for other exemplified constructs. Figure 2A-B show the comparison of coding sequence of wt nef(jrfl) and the codon optimized nef(jrfl). Two forms of myristylation site mutations were constructed; one contains a Gly2Ala change and the other a human tissue plasminogen activator (tpa) leader sequence was fused to sixth residue, Ser, of Nef (tpanef). The dileucine motif mutation was made by introducing both Leu174Ala and Leu175Ala changes. Figure 4 shows the schematic depiction of the Nef and Nef mutants. For in vitro expression and in vivo immunogenicity studies, the nef genes were cloned into expression vector, V1Ins. The resultant plasmids containing wt nef, tpanef, tpanef with dileucine motif mutation, and nef mutant with the Gly2Ala myristylation site and dileucine motif mutations were named as V1Ins/nef, V1Ins/tpanef, V1Ins/tpanef(LLAA) and V1Ins/(G2A,LLAA), respectively.

Results - Expression and Western blotting analysis - To evaluate the expression of the codon optimized nef constructs, adenovirus-transformed human kidney 293 cells were cotransfected with individual nef plasmids and a gag expression vector, V1Jns/gag. 72 hours post transfection, cells and medium were collected separately and analyzed by Western blotting, using both Nef- and Gag-specific mAbs. The results are shown in Figure 5. Cells transfected with V1Jns/gag only revealed a single distinct band of approximately 55 Kd, whereas the cells cotransfected with gag and nef plasmids revealed, in addition to the 55 Kd band, a major 30 Kd band and several minor bands. This pattern is consistent with that the 55 Kd species represents Gag polypeptide and the 30 Kd and other minor species are the Nef-related products. Therefore, all the nef constructs were expressed in the transfected cells. When measured against the relatively constant Gag signal as a reference, four nef genes seem to be expressed at different levels, with the following descending order, tpanef, nef, tpanef(LLAA) and nef(G2A, LLAA). With the exception of nef(G2A, LLAA),

products of nef, tpanef, tpanef(LLAA) could be detected in both cellular and medium fractions.

5

10

15

20

25

30

Mapping of Nef-specific CD8 and CD4 epitopes in mice - There was no information available with respect to the properties of Nef(jrfl) in eliciting cellmediated immune responses in mice. Therefore, to characterize immunogenicity of Nef and Nef mutants exemplified herein, CD8 and CD4 epitopes were mapped. An overlapping set of overlapping nef peptides that encompass the entire 216 aa Nef polypeptide were generated. A total 21 peptides were made, which include twenty 20mers and one 16mer. Three strains of mice, Balb/c, C3H and C57BL/6, were immunized with plasmid V1Jns/Nef; splenocytes from immunized and naive mice were isolated and assessed for Nef specific INF-gamma secreting cells (SFC) by the Elispot assay. Figure 6 shows where Elispot assays were performed against separate pools of the Nef peptides. All three strains of immunized mice responded to the Nef plasmid immunization; each developed positive Nef peptide-specific INF-y SFCs. Based on this, further studies were carried out with fractionated CD8 and CD4 cells against individual peptides. The results are shown in Figure 7A-C. In Balb/c mice (Figure 7A), four Nef peptides, namely, aa11-30, aa61-80, aa191-210 and aa200-216, were found to be able to induce significant numbers of CD4 SFCs. In C57BL/6 mice (Figure 7B), only one peptide, ie., aa81-100, elicited significant numbers of CD4 SFCs. Compared to Balb/c and C57BL/6 mice, C3H mice (Figure 7C) showed no dominant CD4 SFC responses with particular peptides; instead, there were modest number of SFCs in response to an array of peptides, including aa21-40, aa31-50, aa121-140 aa131-150, aa181-200 and aa191-210. With respect to CD8 cells, significant SFC responses were detected with a single peptide, ie., aa51-70, in C57BL/6 mice only.

The results from Elispot assay suggested that Nef peptide aa51-70 contained an H-2b restricted CD8 cell epitope. In order to ascertain whether this CD8 epitope also represents the cytotoxic T cell (CTL) epitope, a conventional CTL assay was carried out. The peptide aa51-70 (Figure 8A) induced low level of specific killings only. Peptides longer than 9 amino acids of a typical CTL epitope often have lower binding affinity to MHC class I molecule. It was contemplated that the low specific killings observed with peptide aa51-70 could be potentially resulted from the low binding affinity of this 20 amino acid peptide. Therefore, two shortened peptides, namely, aa60-68 and aa58-70, were synthesized and tested in CTL assays. While the

peptide aa60-68 failed to elicit any specific killings (Figure 8B), the peptide aa58-70 exhibited a drastic increase of specific killing as compared to its longer counterpart, peptide aa61-80 (Figure 8C). For example, the percentage of specific killings induced by peptide aa58-70 at an effector/target ratio of 5 to 1 was comparable to that induced by peptide aa51-80 at an effector/target ratio of 45. Thus, between peptide aa58-70 and peptide aa51-70, the former was almost ten-fold more effective in terms of inducing Nef-specific killing. The results from CTL assay therefore confirmed that the CD8 epitope detected by the Elispot assay was indeed a CTL epitope. To further map the minimum amino acid sequence for the Nef CTL epitope, additional 5 peptides were synthesized and analyzed by Elispot assay, which mapped the CTL epitope to Nef aa58-66, as shown in Table 1.

TABLE 1

	Nef peptides**	INF-γ SFC*/10 ⁶ splenocytes
Nef58-70	TAATNADCAWLEA	85
Nef59-69	AATNADCAWLE	1
Nef58-68	TAATNADCAWL	69
Nef58-67	TAATNADCAW	66
Nef58-66	TAATNADCA	92
Medium		1

Average of duplicate samples.

10

^{**} Amino acid sequence of all peptides contained within SEQ ID NO:2.

Results (Evaluation of Immunogenicity of nef Mutants in Mice) - Having identified H-2b restricted CTL and CD4 cell epitopes, the immunogenicity of the different codon optimized nef constructs in C57BL/6 mice was examined. This was performed in two separate experiments with identical immunization regimens. The first experiment involved nef, tpanef(LLAA) and nef(G2A,LLAA) and the second experiment involved nef, tpanef, tpanef(LLAA) and nef(G2A,LLAA). Mice were immunized with plasmids containing these respective codon optimized nef genes. Two weeks post immunization, splenocytes from individual mice were isolated and analyzed by Elispot assay for Nef-specific CD8 and CD4 IFN-gamma SFCs using Nef peptide aa58-66 and aa81-100, respectively. The results are shown in Figure 9A-B. In the experiment 1 (Figure 9A), among the three groups tested, the mice receiving the codon optimized tpanef(LLAA) construct developed the highest CD8 and CD4 cell responses; comparing between tpanef(LLAA) and the nef, the former elicited about 40-fold higher CD8 SFCs and 10-fold higher CD4 SFCs. In contrast to tpanef(LLAA), nef(G2A,LLAA) mutant was poorly immunogenic; mice receiving this mutant had barely detectable CD8 and CD4 SFCS, under conditions tested. Similar response profiles between the three mutants were also observed in the experiment 2 (Figure 9B), except that the overall CD8 response of mice receiving tpanef(LLAA) was approximately 10-folder higher in experiment 2 than that observed in experiment 1. The tPAnef mutant showed comparable responses as that of tpanef(LLAA). The results therefore showed that both codon optimized tpanef and tpanef(LLAA) had significantly enhanced immunogenicity.

10

15

20

Results (Evaluation of Immunogenicity of nef Mutants in Rhesus Monkeys)
Monkeys were immunized with 5 mg of indicated codon optimized plasmids at week 0, 4, and 8. Four weeks after each immunization, peripheral blood mononuclear cells were collected and tested for Nef-specific INF-gamma secreting cells as described for the mice studies in this Example section. The results are shown in Table 2. As with the mouse study, tpanef(LLAA) shows significantly enhanced immunogenicity when compared to tPAnef.

TABLE 2

		Nef specific INF-gamma secreting cells/million PBMC												
Vaccine	Animal No.	We	ek 0	W	eek 4	We	ek 8	Week 12						
	i	Mediu	m nef	Medi	um nef	Medium	nef	Medium	nef					
V1Jns-	ı	74	39	30	208	6	148	89	559					
TpaNef	2	ı	3	28	45	13	44	13	146					
(LLAA)	3	5	5	14	45	11	11	14	35					
V1Jns-nef	ı	0	1	24	33	16	43	6	34					
	2	28	9	31	35	13	34	24	80					
	3	ı	0	16	31	18	38	13	185					
Control	1	1	3	16	33	16	16	18 ·	13					

Monkeys were immunized with 5 mg of indicated plasmids at week 0, 4 and 8. Four weeks after each immunization, peripheral blood mononuclear cells were collected and tested for the Nef-specific IFN-gamma secreting cells.

10

15

A codon-optimized nef gene coding for HIV-1 jrfl isolate Nef polypeptide was synthesized. The resultant synthetic nef gene was well expressed in the *in vitro* transfected cells. Using this synthetic gene as parental molecule, nef mutants involving myristylation site and dileucine motif mutations were constructed. Two forms of myristylation site mutation were made, one involving a single Gly2Ala change and the other by fusing human plasminogen activator(tpa) leader peptide with the N-terminus of Nef polypeptide. The dileucine motif mutation was generated by Leu174Ala and Leu175Ala changes. The resultant nef constructs were named as nef, tpanef, tpanef(LLAA) and nef(G2A,LLAA). The addition of tpa leader peptide sequence resulted in significantly increased expression of the nef gene *in vitro*; in contrast, either Gly2Ala mutation or dileucine mutation reduced the nef gene

expression. In an effort to characterize immunogenicity of nef and nef mutants, experiments were carried out to map nef CTL and Th epitopes in mice. A single CTL epitope and a dominant Th epitope, both restricted by H-2b, were identified. Consequently, C57BL/6 mice were immunized with different nef constructs by DNA immunization means, and splenocytes from immunized mice were determined for Nef-specific CTL and Th responses using Elisopt assay and the defined T cell epitopes. The results showed that tpanef and tpanef(LLAA) were significantly more immunogenic than nef in terms of eliciting both CTL and Th responses.

Therefore, these aforementioned polynucleotides, when directly introduced into a vertebrate *in vivo*, including mammals such as primates and humans, should express the respective HIV-1 Nef protein within the animal and in turn induce at least a cytotoxic T lymphocyte (CTL) response within the host to the expressed Nef antigen.

The present invention is not to be limited in scope by the specific

15 embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims.

WHAT IS CLAIMED IS:

- 1. A pharmaceutically acceptable DNA vaccine, which comprises:
- (a) a DNA expression vector; and,
- (b) a DNA molecule containing a codon optimized open reading frame encoding a Nef protein or immunogenic Nef derivative thereof, wherein upon administration of the DNA vaccine to a host the Nef protein or immunogenic Nef derivative is expressed and generates an immune response which provides a substantial level of protection against HIV-1 infection.

10

- 2. A DNA vaccine of claim 1 wherein the DNA molecule encodes wild type Nef.
- 3. A DNA vaccine of claim 2 wherein the DNA molecule contains the nucleotide sequence as set forth in SEQ ID NO:1.
 - 4. The DNA vaccine of claim 3 which is V1Jns-opt nef (jrfl).
- A DNA vaccine of claim 2 wherein the DNA molecule expresses a
 wild type Nef protein which comprises the amino acid sequence as set forth in SEQ ID NO:2.
- A DNA vaccine of claim I wherein the DNA molecule encodes an immunogenic Nef derivative which contains a nucleotide sequence encoding a leader
 peptide.
 - 7. A DNA vaccine of claim 6 wherein the DNA molecule encodes an immunogenic Nef derivative which contains a nucleotide sequence encoding a human tissue plasminogen activator leader peptide.

- 8. A DNA vaccine of claim 7 wherein the DNA molecule contains the nucleotide sequence as set forth in SEQ ID NO:3.
 - 9. The DNA vaccine of claim 8 which is V1Jns-opt tpanef.

10. A DNA vaccine of claim 7 wherein the DNA molecule expresses an immunogenic Nef derivative which comprises the amino acid sequence as set forth in SEQ ID NO:4.

5

- 11. A DNA vaccine of claim 6 wherein the DNA molecule encodes an immunogenic Nef derivative modified at the dileucine motif of amino acid residue 174 and amino acid residue 175.
- 10 12. A DNA vaccine of claim 11 wherein the DNA molecule encodes an immunogenic Nef derivative which contains a nucleotide sequence encoding a human tissue plasminogen activator leader peptide.
- 13. A DNA vaccine of claim 12 wherein the DNA molecule contains the nucleotide sequence as set forth in SEQ ID NO:7.
 - 14. The DNA vaccine of claim 13 which is V1Jns-opt tpanef (LLAA).
- 15. A DNA vaccine of claim 11 wherein the DNA molecule expresses an
 20 immunogenic Nef derivative which comprises the amino acid sequence as set forth in SEQ ID NO:8.
 - 16. A DNA vaccine of claim 11 wherein the DNA molecule encodes a Nef protein where the glycine residue of amino acid residue 2 of Nef is modified to encode for an amino acid residue other the glycine.
 - 17. A DNA vaccine of claim 16 wherein the DNA molecule contains the nucleotide sequence as set forth in SEQ ID NO:5.
- 30 18. A DNA vaccine of claim 17 which is VIJns-opt nef (G2A LLAA).
 - 19. A DNA vaccine of claim 16 wherein the DNA molecule expresses an immunogenic Nef derivative which comprises the amino acid sequence as set forth in SEQ ID NO:6.

- 20. A DNA vaccine of claim I which further comprises an adjuvant.
- 21. A DNA vaccine of claim 20 wherein the adjuvant is selected from the
 5 group consisting of alumunum phosphate, calcium phosphate and a non-ionic block copolymer.
 - 22. A pharmaceutically acceptable DNA vaccine, which comprises:
 - (a) a DNA expression vector; and,
- 10 (b) a DNA molecule containing an open reading frame encoding a Nef protein or immunogenic Nef derivative thereof, wherein upon administration of the DNA vaccine to a host the Nef protein or immunogenic Nef derivative is expressed and generates an immune response which provides a substantial level of protection against HIV-1 infection.

15

23. The DNA vaccine of claim 22wherein the DNA molecule expresses a wild type Nef protein which comprises the amino acid sequence as set forth in the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8.

20

- 24. A DNA vaccine of claim 22 which further comprises an adjuvant.
- 25. A DNA vaccine of claim 23 wherein the adjuvant is selected from the group consisting of alumunum phosphate, calcium phosphate and a non-ionic block copolymer.

25

30

26. A method for inducing a cell mediated immune (CTL) response against infection or disease caused by virulent strains of HIV which comprises administering into the tissue of a vertebrate host a pharmaceutically acceptable DNA vaccine composition which comprises a DNA expression vector and a DNA molecule containing a codon optimized open reading frame encoding a Nef protein or immunogenic Nef derivative thereof, wherein upon administration of the DNA vaccine to the vertebrate host the Nef protein or immunogenic Nef derivative is expressed and generates the cell-mediated immune (CTL) response.

- 27. The method of claim 26 wherein the vertebrate host is a human.
- 28. The method of claim 26 wherein the DNA vaccine is selected from the group consisting of V1Jns-opt nef (jrfl), V1Jns-opt tpanef, V1Jns-opt tpanef (LLAA), and V1Jns-opt nef (G2A LLAA).
- 29. A substantially purified protein which comprises an amino acid sequence selected from the group consisting of SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8.

10

SUBSTITUTE SHEET (RULE 26)

WT OPT	ATG	 GGC	GGC	 AAG	 TGG	 TCC	 AAG		TCC	 GTG	CCC	 GGC	 TGG	11	٠	-42 -14
WT OPT	ACT	 GTG	 AGG	 GAG	 AGG	 ATG	 AGG	-	 GCC	 GAG	CCC	GCC	 GCC	 GAC		-84
WT OPT	AGG	 GTG	 AGG	 AGG	ACC-	 GAG	CCC	$\parallel \parallel$	 GCC	 GTG	 GGC	 GTG	 GGC	 GCC		-126 -42
WT OPT	GTG	 TCC	 AGG	GAC	 CTG	 GAG	 AAG	11	 GGC	II GCC	 ATC	 ACC	TCC	TCC		-168 -56
WT OPT	AAC	 ACC	 GCC	 GCC	ACC	 AAC	 GCC	11	 TGC	 GCC	 TGG	 CTG	 GAG	GCC		-210 -70
WT OPT	CAA CAG Q	 GAG	 GAC	 GAG	 GAG	 GTG	 GGC	11		 GTG	 AGG	CCC	 CAG	 GTG		-252 -84
WT OPT	CCC	 CTG	 AGG	CCC	 ATG	 ACC	 TAC		 GGC	 GCC	 GTG	 GAC	 CTG	TCC		-294 -98
WT OPT	CAC CAC H	 		AAG	 GAG	 AAG	 GGC	 GGC	 CTG	 GAG	 GGC	 CTG	 ATC			-336 -112
WT OPT	TCA TCC S	 CAG		 AGG	 CAG	 GAC	 ATC		 GAC	 CTG	 TGG	11.		CAC		-378 -126
WT OPT	ACC	 CAG	 GGC	 TAC		CCC	 GAC			III AAC	 TAC	11	11	Π		-420 -140

WT	- CCA GGA ATC AGA TTT CCA TTG ACC TTT GGA TGG TGC TTC AAG -46	2
OPT	- CCC GGC ATC AGG TTC CCC CTG ACC TTC GGC TGG TGC TTC AAG P G I R F P L T F G W C F K -15	4
WT	- CTA GTA CCA GTT GAG CCA GAA AAG GTA GAA GAG GCC AAT GAA -50	4
OPT	- CTG GTG CCC GTG GAG CCC GAG AAG GTG GAG GCC AAC GAG L V P V E P E K V E E A N E -16	8
WT	- GGA GAG AAC AAC TGC TTG TTA CAC CCT ATG AGC CAG CAT GGG -54	6
OPT	- GGC GAG AAC AAC TGC CTG CTG CAC CCC ATG TCC CAG CAC GGC G E N N C L L H P M S Q H G -18	2
WT	- ATA GAG GAC CCG GAG AAG GAA GTG TTA GAG TGG AGG TTT GAC -58	8
OPT	- ATC GAG GAC CCC GAG AAG GAG GTG CTG GAG TGG AGG TTC GAC I E D P E K E V L E W R F D -19	6
WT	- AGC AAG CTA GCA TTT CAT CAC GTG GCC CGA GAG CTG CAT CCG -63	0
OPT	- TCC AAG CTG GCC TTC CAC CAC GTG GCC AGG GAG CTG CAC CCC S K L A F H H V A R E L H P -21	.0
WT	- GAG TAC TAC AAG GAC TGC TGA (SEQ ID NO:30) -65	1
OPT	- GAG TAC TAC AAG GAC TGC TAA (contained within SEQ ID NO:1) E Y Y K D C (SEQ ID NO:2) -21	.6

FIG.2B

TGCCACC ATG GGC GGC AAG TGG TCC AAG AGG TCC GTG CCC M S K R S V P VIJns/nef

CAC CCC GAG TAC TAC AAG GAC TGC TAA $\overline{\textit{AGCCCGGGCAGAICIGCTGTGCCTTCTAG77GCCAGC}}$ (SEQ ID NO:27) H P E Y Y K D C * (contained within SEQ ID NO:2

V1Jns/nef(G2A,LLAA)

PstI CATGGGTCTTTT<u>CTGCAG</u>GTCACCGTCCTTGAGAICIGCCACC ATG GCC GGC AAG TGG TCC AAG AGG TCC GTG CCC

CAC CCC GAG TAC TAC AAG GAC TGC TAA AGCCCGGCAGAICIGCTGTGCCTTCTAG77GCCAGC (SEQ ID NO.28) H P E Y Y K D C * (contained within SEQ ID NO:6)

VlJns/tpanef & VlJns/tpanef(LLAA)

CATGGGTCTTTTCTGCAGTCACCGTCCTTATATCTAGATCACC ATG GAT GCA ATG AAG AGA GGG CTC TGC TGT GTG

M D A M K R G L C C V

CTG CTG CTG TGT GGA GCA GTC TTC GTT TCG CCC AGC GAG ATC ICC TCC AAG AGG TCC GTG CCC . L L C G A V F V S P S $\overline{
m E}$ I S S K R S V P

CAC CCC GAG TAC TAC AAG GAC TGC TAA AGCCCGGGCAGATCTGCTGTCCTTCTAGTTGCCAGC (SEQ ID NO:29) H P E Y Y K D C * (contained withon SEQ ID NO:8) FIG.3C

FIG.5

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

<110> APPLICANT: Merck & Co., Inc.

<120> TITLE: POLYNUCLEOTIDE VACCINES EXPRESSING CODON
 OPTIMIZED HIV-1 NEF AND MODIFIED HIV-1 NEF

OPTIMIZED HIV-1 NEF AND MODIFIED HIV-1 NEF														
<130> DOCKET/FILE REFERENCE: 20602Y														
<160> NUMBER OF SEQUENCES: 30														
<170> SOFTWARE: FastSEQ for Windows Version 4.0														
<210> SEQ ID NO:1 <211> LENGTH: 671 <212> TYPE: DNA <213> ORGANISM:Human Immunodeficiency Virus - 1														
<220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (12)(662)														
<pre><400> SEQ ID NO:1 gatctgccac c atg ggc ggc aag tgg tcc aag agg tcc gtg ccc ggc tgg</pre>	50													
tcc acc gtg agg gag agg atg agg gcc gag ccc gcc gcc gac agg Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg 15 20 25	98													
gtg agg agg acc gag ccc gcc gcc gtg ggc gtg ggc gcc gtg tcc agg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg 30 35 40 45	146													
gac ctg gag aag cac ggc gcc atc acc tcc tcc aac acc gcc gcc acc Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr 50 55 60	194													
aac gcc gac tgc gcc tgg ctg gag gcc cag gag gac gag gtg ggc Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly 65 70 75	242													
ttc ccc gtg agg ccc cag gtg ccc ctg agg ccc atg acc tac aag ggc Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly 80 85 90	290													
gcc gtg gac ctg tcc cac ttc ctg aag gag aag ggc ggc ctg gag ggc Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly 95 100 105	3,38													
ctg atc cac tcc cag aag agg cag gac atc ctg gac ctg tgg gtg tac Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr 110 115 120 125	386													

434

cac acc cag ggc tac ttc ccc gac tgg cag aac tac acc ccc ggc ccc His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro

130 140 135 ggc atc agg ttc ccc ctg acc ttc ggc tgg tgc ttc aag ctg gtg ccc 482 Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro 530 gtg gag ccc gag aag gtg gag gcc aac gag ggc gag aac aac tgc Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys 165 ctg ctg cac ccc atg tcc cag cac ggc atc gag gac ccc gag aag gag 578 Leu Leu His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu 180 gtg ctg gag tgg agg ttc gac tcc aag ctg gcc ttc cac cac gtg gcc 626 Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala 200 195 agg gag ctg cac ccc gag tac tac aag gac tgc taa agcccgggc 671 Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys * 210 <210> SEQ ID NO:2 <211> LENGTH: 216 <212> TYPE: PRT <213> ORGANISM: Human Immunodeficiency Virus - 1 <400> SEQ ID NO:2 Met Gly Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val 5 10 Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg 25 Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg Asp Leu Glu 40 45 Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val 70 75 Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp 90 85 Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile His 105 Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln 120 125 Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg 135 140 Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro 155 150 Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Leu Leu His 165 170 Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu 185 190 Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala Arg Glu Leu 195 200 His Pro Glu Tyr Tyr Lys Asp Cys 210

<210> SEQ ID NO:3 <211> LENGTH: 719

<212> TYPE: DNA <213> ORGANISM: Human Immunodeficiency Virus - 1 <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (2)...(715) <400> SEQ ID NO:3 c atg gat gca atg aag aga ggg ctc tgc tgt gtg ctg ctg tgt gga Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly 10 gca gtc ttc gtt tcg ccc agc gag atc tcc tcc aag agg tcc gtg ccc 97 Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro ggc tgg tcc acc gtg agg gag agg atg agg gcc gag ccc gcc gcc 145 Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala 40 gac agg gtg agg agg acc gag ccc gcc gcc gtg ggc gtg ggc gcc gtg 193 Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val 55 tee agg gae etg gag aag cac gge gee ate ace tee tee aac ace gee 241 Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala gcc acc aac gcc gac tgc gcc tgg ctg gag gcc cag gag gac gag gag 289 Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu 90 gtg ggc ttc ccc gtg agg ccc cag gtg ccc ctg agg ccc atg acc tac 337 Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr 105 aag ggc gcc gtg gac ctg tcc cac ttc ctg aag gag aag ggc ggc ctg 385 Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Leu 115 120 gag ggc Ctg atc cac tcc cag aag agg cag gac atc ctg gac ctg tgg 433 Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp 135 gtg tac cac acc cag ggc tac ttc ccc gac tgg cag aac tac acc ccc 481 Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro 150 155 ggc ccc ggc atc agg ttc ccc ctg acc ttc ggc tgg tgc ttc aag ctg 529 Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu 170 gtg ccc gtg gag ccc gag aag gtg gag gcc aac gag ggc gag aac 577 Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn 185 aac tgc ctg ctg cac ccc atg tcc cag cac ggc atc gag gac ccc gag 625 Asn Cys Leu Leu His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu 200 aag gag gtg ctg gag tgg agg ttc gac tcc aag ctg gcc ttc cac cac 673

```
Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His
    210
                        215
gtg gcc agg gag ctg cac ccc gag tac tac aag gac tgc taa
                                                                      715
Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys *
225
                    230
agcc
                                                                      719
<210> SEQ ID NO:4
<211> LENGTH: 237
<212> TYPE: PRT
<213> ORGANISM: Human Immunodeficiency Virus - 1
<400> SEQ ID NO:4
Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly
                5
                                    10
Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro
         . 20
Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala
        35
                            40
                                                45
Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val
                        55
Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala
65
Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu
                85
                                    90
Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr
                                105
Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Leu
                            120
                                                125
Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp
                        135
Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro
                    150
                                        155
Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu
                                    170
                165
                                                        175
Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn
            180
                                185
                                                    190
Asn Cys Leu Leu His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu
        195
                            200
                                                205
Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His
                       215
                                          . 220
Val Ala Arg Glu Leu His Pro Gļu Tyr Tyr Lys Asp Cys
                    230'
<210> SEQ ID NO:5
<211> LENGTH: 671
<212> TYPE: DNA
<213> ORGANISM: Human Immunodeficiency Virus - 1
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (12)...(662)
<400> SEQ ID NO:5
gatetgecae c atg gee gge aag tgg tee aag agg tee gtg eee gge tgg
                                                                      50
             Met Ala Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp
tee ace gtg agg gag atg agg agg gee gag eee gee gee gac agg
                                                                      98
```

Ser	Thr 15	Val	Arg	Glu	Arg	Met 20	Arg	Arg	Ala	Glu	Pro 25	Ala	Ala	Asp	Arg		
												gcc Ala				14	6
gac Asp	ctg Leu	gag Glu	aag Lys	cac His 50	ggc Gly	gcc Ala	atc Ile	acc Thr	tcc Ser 55	tcc Ser	aac Asn	acc Thr	gcc Ala	gcc Ala 60	acc Thr	19	4
												gag Glu				24	2
ttc Phe	ccc Pro	gtg Val 80	agg Arg	ccc Pro	cag Gln	gtg Val	ccc Pro 85	ctg Leu	agg Arg	ccc Pro	atg Met	acc Thr 90	tac Tyr	aag Lys	ggc Gly	29	0
gcc Ala	gtg Val 95	gac Asp	ctg Leu	tcc Ser	cac His	ttc Phe 100	ctg Leu	aag Lys	gag Glu	aag Lys	ggc Gly 105	ggc Gly	ctg Leu	gag Glu	ggc Gly	33	8
ctg Leu 110	atc Ile	cac His	tcc Ser	cag Gln	aag Lys 115	agg Arg	cag Gln	gac Asp	atc Ile	ctg Leu 120	gac Asp	ctg Leu	tgg Trp	gtg Val	tac Tyr 125	38	6
												acc Thr				43	4
												aag Lys				48	32
gtg Val	gag Glu	ccc Pro 160	gag Glu	aag Lys	gtg Val	gag Glu	gag Glu 165	gcc Ala	aac Asn	gag Glu	ggc Gly	gag Glu 170	aac Asn	aac Asn	tgc Cys	53	0
gcc Ala	gcc Ala 175	cac His	ccc Pro	atg Met	tcc Ser	cag Gln 180	cac His	ggc Gly	atc Ile	gag Glu	gac Asp 185	ccc Pro	gag Glu	aag Lys	gag Glu	57	8 8
gtg Val 190	ctg Leu	gag Glu	tgg Trp	agg Arg	ttc Phe 195	gac Asp	tcc Ser	aag Lys	ctg Leu	gcc Ala 200	ttc Phe	cac His	cac His	gtg Val	gcc Ala 205	. 62	26
		ctg Leu									taa *	agc	ccgg	gc		67	71

<210> SEQ ID NO:6

<400> SEQ ID NO:6 Met Ala Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val

<211> LENGTH: 217

<212> TYPE: PRT

<213> ORGANISM: Human Immunodeficiency Virus - 1

```
10
                                                         15
 Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg
                                 25
 Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg Asp Leu Glu
                             40 .
 Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp
                         55
 Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val
                     70
                                         75
 Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp
                 85
                                     90
 Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile His
            100
                                 105
 Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln
                            120
                                                 125
Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg
    130
                        135
                                             140
Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro
                    150
                                         155
Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Ala Ala His
                165
                                    170
Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu
            180
                                185
                                                    190
Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala Arg Glu Leu
        195
                            200
His Pro Glu Tyr Tyr Lys Asp Cys Ser
    210
<210> SEQ ID NO:7
<211> LENGTH: 720
<212> TYPE: DNA
<213> ORGANISM: Human Immunodeficiency Virus - 1
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (2)...(715)
<400> SEQ ID NO:7
c atg gat gca atg aag aga ggg ctc tgc tgt gtg ctg ctg tgt gga
                                                                       49
  Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly
gca gtc ttc gtt tcg ccc agc gag atc tcc tcc aag agg tcc gtg ccc
                                                                       97
Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro
             20
ggc tgg tcc acc gtg agg gag agg atg agg ggc gag ccc gcc gcc
                                                                     .145
Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala
         35
                             40
gac agg gtg agg agg acc gag ccc gcc gcc gtg ggc gtg ggc gcc gtg
                                                                      193
Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val
                         55
tee agg gae etg gag aag eae gge gee ate ace tee tee aae ace gee
                                                                    . 241
Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala
65
gee ace aac gee gae tge gee tgg etg gag gee cag gag gac gag gag
Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu
```

				85		٠			90					95			
				gtg Val													337
				gac Asp													385
				cac His													433
gtg Val 145	tac Tyr	cac His	acc Thr	cag Gln	ggc Gly 150	tac Tyr	ttc Phe	ccc Pro	gac Asp	tgg Trp 155	cag Gln	aac Asn	tac Tyr	acc Thr	ccc Pro 160		481
				agg Arg 165													529
				ccc Pro													577
				cac His													625
				gag Glu													673
				ctg Leu									taa *				715
agco	cc																720
<210> SEQ ID NO:8 <211> LENGTH: 237 <212> TYPE: PRT <213> ORGANISM:Human Immunodeficiency Virus - 1										·							
			NO:		•	03	.	0	C	17.7	T 011	T 011	T 011	C	Clv		
1				Lys 5					10					15			
			20	Ser	·			25					30				
		35		Val			40					45					
	50			Arg	•	55					60						
Ser 65	Arg	Asp	Leu	Glu	Lys 70	His	Gly	Ala	Ile	Thr 75	Ser	Ser	Asn	Thr	Ala 80		
Ala	Thr	Asn	Ala	Asp 85	Суз	Ala	Trp	Leu	Glu 90	Ala	Gln	Glu	Asp	Glu 95	Glu		
Val	Gly	Phe	Pro 100	Val	Arg	Pro	Gln	Val 105	Pro	Leu	Arg	Pro	Met 110	Thr	Tyr		

```
Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu
         115
                             120
                                                  125
 Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp
                         135
 Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro
                     150
                                         155
 Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu
                 165
                                     170
 Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn
             180
                                 185
 Asn Cys Ala Ala His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu
                             200
 Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His
                         215
 Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys
                                         235
<210> SEQ ID NO:9
<211> LENGTH: 4945
<212> TYPE: DNA
<213> ORGANISM: E. coli
<400> SEQ ID NO:9
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca
                                                                        60
cagettgtet gtaageggat geegggagea gacaageeeg teagegggtg
                                                                        120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc
                                                                       180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg
                                                                       240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata ttggctcatg
                                                                       300
tccaacatta ccgccatgtt gacattgatt attgactagt tattaatagt aatcaattac
                                                                       360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg
                                                                       420
ecegeetgge tgacegeeca acgaceceeg eceattgaeg teaataatga egtatgttee
                                                                       480
catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac
                                                                       540
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa
                                                                       600
tgacggtaaa tggcccgcct ggcattatgc ccagtacatg accttatggg actttcctac
                                                                       660
ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcggt tttggcagta
                                                                       720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga
                                                                       780
cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa
                                                                       840
ctccgcccca ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataagcag
                                                                       900
agetegttta gtgaacegte agategeetg gagaegeeat ceaegetgtt ttgaeeteea
                                                                       960
tagaagacac cgggaccgat ccagcctccg cggccgggaa cggtgcattg gaacgcggat
                                                                      1020
teceegtgee aagagtgaeg taagtaeege etatagaete tataggeaea eeeetttgge
                                                                      1080
tettatgeat getatactgt ttttggettg gggeetatae acceeegett cettatgeta
                                                                      1140
taggtgatgg tatagcttag cctataggtg tgggttattg accattattg accactcccc
                                                                      1200
tattggtgac gatactttcc attactaatc cataacatgg ctctttgcca caactatctc
                                                                      1260
tattggctat atgccaatac tetgteette agagaetgae aeggaetetg tatttttaea
                                                                      1320
ggatggggtc ccatttatta tttacaaatt cacatataca acaacgccgt cccccgtgcc
                                                                      1380
cgcagttttt attaaacata gcgtgggatc tccacgcgaa tctcgggtac gtgttccgga
                                                                      1440
catgggctct tctccggtag cggcggagct tccacatccg agccctggtc ccatgcctcd
                                                                      1500
ageggeteat ggtegetegg cageteettg etectaacag tggaggeeag aettaggeae
                                                                      1560
agcacaatgc ccaccaccac cagtgtgccg cacaaggccg tggcggtagg gtatgtgtct
                                                                      1620
gaaaatgagc gtggagattg ggctcgcacg gctgacgcag atggaagact taaggcagcg
                                                                      1680
gcagaagaag atgcaggcag ctgagttgtt gtattctgat aagagtcaga ggtaactccc
                                                                      1740
gttgcggtgc tgttaacggt ggagggcagt gtagtctgag cagtactcgt tgctgccgcg
                                                                      1800
egegecacea gacataatag etgacagaet aacagaetgt teettteeat gggtetttte
                                                                      1860
tgcagtcacc gtccttagat caccatggat gcaatgaaga gagggctctg ctgtgtgctg
                                                                      1920
ctgctgtgtg gagcagtctt cgtttcgccc agcgagatct gctgtgcctt ctagttgcca
                                                                      1980
gccatctgtt gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac
                                                                      2040
tgtcctttcc taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat
                                                                      2100
tctggggggt ggggtggggc aggacagcaa gggggaggat tgggaagaca atagcaggca
                                                                      2160
tgctggggat gcggtgggct ctatggccgc tgcggccagg tgctgaagaa ttgacccggt
                                                                      2220
teeteetggg ceagaaagaa geaggeacat eeeettetet gtgacacace etgteeaege
                                                                      2280
```

```
coctggttct tagttccage cocacteata ggacacteat agetcaggag ggctccgect
                                                                      2340
tcaatcccac ccgctaaagt acttggagcg gtctctccct ccctcatcag cccaccaaac
                                                                      2400
caaacctagc ctccaagagt gggaagaaat taaagcaaga taggctatta agtgcagagg
                                                                      2460
gagagaaaat gcctccaaca tgtgaggaag taatgagaga aatcatagaa tttcttccgc
                                                                      2520
ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca
                                                                      2580
ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg
                                                                     2640
agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca
                                                                     2700
taggeteege ecceetgaeg ageateacaa aaategaege teaagteaga ggtggegaaa
                                                                     2760
cccgacagga ctataaagat accaggcgtt tccccctgga agctccctcg tgcgctctcc
                                                                     2820
tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc
                                                                     2880
gettteteat ageteacget gtaggtatet cagtteggtg taggtegtte getecaaget
                                                                     2940
gggctgtgtg cacgaaccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg
                                                                     3000
tottgagtoc aaccoggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag
                                                                     3060
gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta
                                                                     3120
cggctacact agaagaacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg
                                                                     3180
aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt
                                                                     3240
tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt
                                                                     3300
ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgag
                                                                     3360
attatcaaaa aggatcttca cctagatcct tttaaattaa aaatgaagtt ttaaatcaat
                                                                     3420
ctaaagtata tatgagtaaa cttggtctga cagttaccaa tgcttaatca gtgaggcacc
                                                                     3480
tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactcgggg ggggggggg
                                                                     3540
ctgaggtctg cctcgtgaag aaggtgttgc tgactcatac caggcctgaa tcgccccatc
                                                                     3600
atccagccag aaagtgaggg agccacggtt gatgagagct ttgttgtagg tggaccagtt
                                                                     3660
ggtgattttg aacttttgct ttgccacgga acggtctgcg ttgtcgggaa gatgcgtgat
                                                                     3720
ctgatccttc aactcagcaa aagttcgatt tattcaacaa agccgccgtc ccgtcaagtc
                                                                     3780
agogtaatgc totgccagtg ttacaaccaa ttaaccaatt ctgattagaa aaactcatcg
                                                                     3840
                                                                     3900
agcatcaaat gaaactgcaa tttattcata tcaggattat caataccata tttttgaaaa
agccgtttct gtaatgaagg agaaaactca ccgaggcagt tccataggat ggcaagatcc
                                                                     3960
                                                                     4020
tggtatcggt ctgcgattcc gactcgtcca acatcaatac aacctattaa tttcccctcg
tcaaaaataa ggttatcaag tgagaaatca ccatgagtga cgactgaatc cggtgagaat
                                                                     4080
ggcaaaagct tatgcatttc tttccagact tgttcaacag gccagccatt acgctcgtca
                                                                     4140
tcaaaatcac tcqcatcaac caaaccqtta ttcattcgtg attgcgcctg agcgagacga
                                                                     4200
aatacgcgat cgctgttaaa aggacaatta caaacaggaa tcgaatgcaa ccggcgcagg
                                                                     4260
aacactgcca gcgcatcaac aatattttca cctgaatcag gatattcttc taatacctgg.
                                                                     4320
aatgctgttt tcccggggat cgcagtggtg agtaaccatg catcatcagg agtacggata
                                                                     4380
aaatgcttga tggtcggaag aggcataaat tccgtcagcc agtttagtct gaccatctca
                                                                     4440
tctgtaacat cattggcaac gctacctttg ccatgtttca gaaacaactc tggcgcatcg
                                                                     4500
ggcttcccat acaatcgata gattgtcgca cctgattgcc cgacattatc gcgagcccat
                                                                     4560
ttatacccat ataaatcagc atccatgttg gaatttaatc gcggcctcga gcaagacgtt
                                                                     4620
tcccgttgaa tatggctcat aacacccctt gtattactgt ttatgtaagc agacagtttt
                                                                     4680
attgttcatg atgatatatt tttatcttgt gcaatgtaac atcagagatt ttgagacaca
                                                                     4740
acgtggcttt cccccccc ccattattga agcatttatc agggttattg tctcatgagc
                                                                     4800
ggatacatat ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg cacatttccc
                                                                     4860
cgaaaagtgc cacctgacgt ctaagaaacc attattatca tgacattaac ctataaaaaat
                                                                     4920
aggcgtatca cgaggccctt tcgtc
                                                                     4945
```

```
<210> SEQ ID NO:10
```

23

<210> SEQ ID NO:11 <211> LENGTH: 30

<211> LENGTH: 23

<212> TYPE: DNA

<213> ORGANISM:Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: oligonucleotide

<400> SEQ ID NO:10

ctatataagc agagctcgtt tag

```
<212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: oligonucleotide
 <400> SEQ ID NO:11
 gtagcaaaga tctaaggacg gtgactgcag
                                                                         30
 <210> SEQ ID NO:12
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQ ID NO:12
gtatgtgtct gaaaatgagc gtggagattg ggctcgcac
                                                                         39
<210> SEQ ID NO:13
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQ ID NO:13
gtgcgagccc aatctccacg ctcattttca gacacatac
                                                                        39
<210> SEQ ID NO:14
<211> LENGTH: 4432
<212> TYPE: DNA
<213> ORGANISM: E. coli
<400> SEQ ID NO:14
tegegegttt eggtgatgae ggtgaaaace tetgaeacat geageteeeg gagaeggtea
                                                                        60
cagettgtet gtaageggat geegggagea gacaageeeg teaggggegeg teagegggtg
                                                                       120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc
                                                                       180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg
                                                                       240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata ttggctcatg
                                                                       300
tccaacatta ccgccatgtt gacattgatt attgactagt tattaatagt aatcaattac
                                                                       360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg
                                                                       420
cccgcctggc tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc
                                                                       480
catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac
                                                                       540
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa
                                                                       600.
tgacggtaaa tggcccgcct ggcattatgc ccagtacatg accttatggg actttcctac
                                                                       660
ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcggt tttggcagta
                                                                       720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga
                                                                       780
cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa
                                                                       840
ctccgcccca ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataagcag
                                                                       900
agetegttta gtgaacegte agategeetg gagaegeeat ceaegetgtt ttgaeeteea
                                                                       960
tagaagacac cgggaccgat ccagcctccg cggccgggaa cggtgcattg gaacgcggat
                                                                      1020
teccegtgee aagagtgaeg taagtaeege etatagagte tataggeeca ecceettgge
                                                                      1080
ttettatgea tgetataetg tttttggett ggggtetata cacceceget teeteatgtt
                                                                      1140
ataggtgatg gtatagetta geetataggt gtgggttatt gaecattatt gaecacteee
                                                                      1200
ctattggtga cgatactttc cattactaat ccataacatg gctctttgcc acaactctct
                                                                      1260
ttattggcta tatgccaata cactgtcctt cagagactga cacggactct gtattttac
                                                                      1320
aggatggggt ctcatttatt atttacaaat tcacatatac aacaccaccg tccccagtgc
                                                                      1380
ccgcagtttt tattaaacat aacgtgggat ctccacgcga atctcgggta cgtgttccgg
                                                                      1440
```

```
acatgggctc ttctccggta gcggcggagc ttctacatcc gagccctgct cccatgcctc
                                                                    1500
cagcgactca tggtcgctcg gcagctcctt gctcctaaca gtggaggcca gacttaggca
                                                                    1560
cagcacgatg cccaccacca ccagtgtgcc gcacaaggcc gtggcggtag ggtatgtgtc
                                                                    1620
tgaaaatgag ctcggggagc gggcttgcac cgctgacgca tttggaagac ttaaggcagc
                                                                    1680
                                                                    1740
qqcaqaaqaa qatqcaqqca gctgagttgt tgtgttctga taagagtcag aggtaactcc
                                                                    1800
cqttqcqqtq ctqttaacqq tqqaqgqcaq tqtaqtctqa gcaqtactcq ttqctqccgc
                                                                    1860
gcgcgccacc agacataata gctgacagac taacagactg ttcctttcca tgggtctttt
ctgcagtcac cgtccttaga tctgctgtgc cttctagttg ccagccatct gttgtttgcc
                                                                    1920
                                                                    1980
cctccccgt gccttccttg accctggaag gtgccactcc cactgtcctt tcctaataaa
2040
ggcagcacag caagggggag gattgggaag acaatagcag gcatgctggg gatgcggtgg
                                                                    2100
gctctatggg tacccaggtg ctgaagaatt gacccggttc ctcctgggcc agaaagaagc
                                                                    2160
aggeacatec cettetetgt gacacacect gtecaegece etggttetta gttecagece
                                                                    2220
cactcatagg acactcatag ctcaggaggg ctccgccttc aatcccaccc gctaaagtac
                                                                    2280
                                                                    2340
ttggageggt ctctcctcc ctcatcagcc caccaaacca aacctagcct ccaagagtgg
gaagaaatta aagcaagata ggctattaag tgcagaggga gagaaaatgc ctccaacatg
                                                                    2400
tgaggaagta atgagagaaa tcatagaatt tcttccgctt cctcgctcac tgactcgctg
                                                                    2460
cgctcggtcg ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta
                                                                    2520
                                                                    2580
tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaaggcca gcaaaaggcc
                                                                    2640
aggaaccgta aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag
catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac
                                                                    2700
caggogittc cocctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc
                                                                    2760
ggatacetgt ccgcctttct cccttcggga agcgtggcgc tttctcaatg ctcacgctgt
                                                                    2820
aggtatetea gtteggtgta ggtegttege tecaagetgg getgtgtgea egaaceeece
                                                                    2880
gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga
                                                                    2940
cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta
                                                                    3000
qqcqqtqcta caqaqttctt qaagtggtgg cctaactacg gctacactag aaggacagta
                                                                    3060
tttggtatct gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga
                                                                    3120
tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg
                                                                    3180
cgcagaaaaa aaggatctca agaagatcct ttgatctttt ctacggggtc tgacgctcag
                                                                    3240
tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag gatcttcacc
                                                                    3300
tagatccttt taaattaaaa atgaagtttt aaatcaatct aaagtatata tgagtaaact
                                                                    3360
tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt
                                                                    3420
                                                                    3480
cgttcatcca tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta
ccatctggcc ccagtgctgc aatgataccg cgagacccac gctcaccggc tccagattta
                                                                    3540
tcagcaataa accagccagc cggaagggcc gagcgcagaa gtggtcctgc aactttatcc
                                                                    3600
                                                                    3660
qcctccatcc aqtctattaa ttqttqccqq gaagctagag taagtagttc gccagttaat
                                                                    3720
agtttgcgca acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt
atggetteat teageteegg tteceaacga teaaggegag ttacatgate ecceatgttg
                                                                    3780
tgcaaaaaag cggttagctc cttcggtcct ccgatcgttg tcagaagtaa gttggccgca
                                                                    3840
gtgttatcac tcatggttat ggcagcactg cataattctc ttactgtcat gccatccgta
                                                                    3900
agatgctttt ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg
                                                                    3960
cgaccgagtt gctcttgccc ggcgtcaata cgggataata ccgcgccaca tagcagaact
                                                                    4020
ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg
                                                                    4080
ctgttgagat ccagttcgat gtaacccact cgtgcaccca actgatcttc agcatctttt
                                                                    4140
                                                                    4200
actttcacca qcqtttctqq qtqaqcaaaa acaggaaggc aaaatgccgc aaaaaaggga
                                                                    4260
ataagggega cacggaaatg ttgaatactc atactettee tttttcaata ttattgaage
                                                                    4320
atttatcagg gttattgtct catgagcgga tacatatttg aatgtattta gaaaaataaa
caaatagggg ttccgcgcac atttccccga aaagtgccac ctgacgtcta agaaaccatt
                                                                    4380
                                                                    4432
attatcatga cattaaccta taaaaatagg cgtatcacga ggccctttcg tc
<210> SEQ ID NO:15
<211> LENGTH: 4864
<212> TYPE: DNA
<213> ORGANISM: E. coli
<400> SEQ ID NO:15
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca
                                                                       60
cagettgtet gtaageggat geegggagea gacaageeeg teagggegeg teagegggtg
                                                                      120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc
                                                                     180
                                                                     240
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg
```

PCT/US00/34162

```
ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata ttggctcatg
                                                                       300
 tccaacatta ccgccatgtt gacattgatt attgactagt tattaatagt aatcaattac
                                                                       360
 ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg
                                                                       420
 cccgcctggc tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc
                                                                       480
catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac
                                                                       540
 tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa
                                                                       600
 tgacggtaaa tggcccgcct ggcattatgc ccagtacatg accttatggg actttcctac
                                                                       660
 ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcggt tttggcagta
                                                                      720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga
                                                                      780
cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa
                                                                      840
ctccgcccca ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataagcag
                                                                      900
agetegttta gtgaacegte agategeetg gagaegeeat ceaegetgtt ttgaceteea
                                                                      960
tagaagacac cgggaccgat ccagcctccg cggccgggaa cggtgcattg gaacgcggat
                                                                      1020
tccccgtgcc aagagtgacg taagtaccgc ctatagagtc tataggccca cccccttggc
                                                                      1080
ttcttatgca tgctatactg tttttggctt ggggtctata cacccccgct tcctcatgtt
                                                                     1140
ataggtgatg gtatagctta gcctataggt gtgggttatt gaccattatt gaccactccc
                                                                     1200
ctattggtga cgatactttc cattactaat ccataacatg gctctttgcc acaactctct
                                                                     1260
ttattggcta tatgccaata cactgtcctt cagagactga cacggactct gtatttttac
                                                                     1320
aggatggggt ctcatttatt atttacaaat tcacatatac aacaccaccg tccccagtgc
                                                                     1380
ccgcagtttt tattaaacat aacgtgggat ctccacgcga atctcgggta cgtgttccgg
                                                                     1440
acatgggctc ttctccggta gcggcggagc ttctacatcc gagccctgct cccatgcctc
                                                                     1500
cagcgactca tggtcgctcg gcagctcctt gctcctaaca gtggaggcca gacttaggca
                                                                     1560
cagcacgatg cccaccacca ccagtgtgcc gcacaaggcc gtggcggtag ggtatgtgtc
                                                                     1620
tgaaaatgag ctcggggagc gggcttgcac cgctgacgca tttggaagac ttaaggcagc
                                                                     1680
ggcagaagaa gatgcaggca gctgagttgt tgtgttctga taagagtcag aggtaactcc
                                                                     1740
cgttgcggtg ctgttaacgg tggagggcag tgtagtctga gcagtactcg ttgctgccgc
                                                                     1800
gcgcgccacc agacataata gctgacagac taacagactg ttcctttcca tgggtctttt
                                                                     1860
ctgcagtcac cgtccttaga tctgctgtgc cttctagttg ccagccatct gttgtttgcc
                                                                     1920
cctccccgt gccttccttg accctggaag gtgccactcc cactgtcctt tcctaataaa
                                                                     1980
2040
ggcagcacag caagggggag gattgggaag acaatagcag gcatgctggg gatgcggtgg
                                                                     2100
gctctatggg tacccaggtg ctgaagaatt gacccggttc ctcctgggcc agaaagaagc
                                                                     2160
aggeacatee cettetetgt gacacaceet gtecaegeee etggttetta gttecageee
                                                                     2220
cactcatagg acactcatag ctcaggaggg ctccgccttc aatcccaccc gctaaagtac
                                                                     2280 .
ttggagcggt ctctccctcc ctcatcagcc caccaaacca aacctagcct ccaagagtgg
                                                                     2340
gaagaaatta aagcaagata ggctattaag tgcagaggga gagaaaatgc ctccaacatg
                                                                     2400
tgaggaagta atgagagaaa tcatagaatt tcttccgctt cctcgctcac tgactcgctg
                                                                     2460
cgctcggtcg ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta
                                                                     2520
tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc
                                                                     2580
aggaaccgta aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag
                                                                     2640
catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac
                                                                     2700
caggegitte eccetggaag etecetegtg egeteteetg treegaceet geegettace
                                                                     2760
ggatacctgt ccgcctttct cccttcggga agcgtggcgc tttctcaatg ctcacgctgt
                                                                     2820
aggtatetea gtteggtgta ggtegttege tecaagetgg getgtgtgea egaaceeeee
                                                                     2880
gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga
                                                                     2940
cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta
                                                                     3000
ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag aaggacagta
                                                                     3060
tttggtatet gegetetget gaageeagtt acetteggaa aaagagttgg tagetettga
                                                                     3120
tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg
                                                                     3180
cgcagaaaaa aaggatetea agaagateet ttgatetttt etaeggggte tgaegeteag
                                                                     3240
tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag gatcttcacc
                                                                     3300
tagatccttt taaattaaaa atgaagtttt aaatcaatct aaagtatata tgagtaaact
                                                                     3360
tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt
                                                                     3420
cgttcatcca tagttgcctg actccggggg gggggggcgc tgaggtctgc ctcgtgaaga
                                                                     3480
aggtgttgct gactcatacc aggcctgaat cgccccatca tccagccaga aagtgaggga
                                                                     3540
gccacggttg atgagagctt tgttgtaggt ggaccagttg gtgattttga acttttgctt
                                                                     3600
tgccacggaa cggtctgcgt tgtcgggaag atgcgtgatc tgatccttca actcagcaaa
                                                                     3660
agttcgattt attcaacaaa gccgccgtcc cgtcaagtca gcgtaatgct ctgccagtgt
                                                                     3720
tacaaccaat taaccaatto tgattagaaa aactcatcga gcatcaaatg aaactgcaat
                                                                     3780
ttattcatat caggattatc aataccatat ttttgaaaaa gccgtttctg taatgaagga
                                                                     3840
gaaaactcac cgaggcagtt ccataggatg gcaagatcct ggtatcggtc tgcgattccg
                                                                     3900
```

```
3960
actogtocaa catcaataca acctattaat ttcccctcgt caaaaataag gttatcaagt
                                                                     4020
gagaaatcac catgagtgac gactgaatcc ggtgagaatg gcaaaagctt atgcatttct
ttccagactt gttcaacagg ccagccatta cgctcgtcat caaaatcact cgcatcaacc
                                                                     4080
aaaccgttat tcattcgtga ttgcgcctga gcgagacgaa atacgcgatc gctgttaaaa
                                                                     4140
ggacaattac aaacaggaat cgaatgcaac cggcgcagga acactgccag cgcatcaaca
                                                                     4200
atattttcac ctgaatcagg atattcttct aatacctgga atgctgtttt cccggggatc
                                                                     4260
gcagtggtga gtaaccatqc atcatcagga gtacggataa aatgcttgat ggtcggaaga
                                                                     4320
ggcataaatt ccgtcagcca gtttagtctg accatctcat ctgtaacatc attggcaacq
                                                                     4380
ctacctttgc catgtttcag aaacaactct ggcgcatcgg gcttcccata caatcgatag
                                                                     4440
attgtcgcac ctgattgccc gacattatcg cgagcccatt tatacccata taaatcagca
                                                                     4500
tccatgttgg aatttaatcg cggcctcgag caagacgttt cccgttgaat atggctcata
                                                                     4560
acaccccttg tattactgtt tatgtaagca gacagtttta ttgttcatga tgatatattt
                                                                     4620
ttatcttgtg caatgtaaca tcagagattt tgagacacaa cgtggctttc ccccccccc
                                                                     4680
cattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt
                                                                     4740
tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc
                                                                     4800
taagaaacca ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt
                                                                     4860
cgtc
                                                                     4864
<210> SEO ID NO:16
<211> LENGTH: 4867
<212> TYPE: DNA
<213> ORGANISM: E. coli
<400> SEQ ID NO:16
tegegegttt eggtgatgae ggtgaaaace tetgacacat geageteeeg gagaeggtea
                                                                      60
cagettgtet gtaageggat geegggagea gacaageeeg teagggegeg teagegggtg
                                                                      120
                                                                     180
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg
                                                                     240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata ttggctcatg
                                                                     300
tccaacatta ccccatqtt qacattqatt attgactagt tattaatagt aatcaattac
                                                                     360
qqqqtcatta qttcataqcc catatatqqa qttccgcgtt acataactta cggtaaatgg
                                                                      420
cccgcctggc tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc
                                                                      480
catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac
                                                                     540
                                                                      600
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa
tgacggtaaa tggcccgcct ggcattatgc ccagtacatg accttatggg actttcctac
                                                                     660
ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcggt tttggcagta
                                                                     720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga
                                                                     780
cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa
                                                                      840
                                                                      900
ctccgcccca ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataagcag
agctcgttta gtgaaccgtc agatcgcctg gagacgccat ccacgctgtt ttgacctcca
                                                                      960
tagaagacac cgggaccgat ccagcctccg cggccgggaa cggtgcattg gaacgcggat
                                                                     1020
teccegtgee aagagtgaeg taagtaeege etatagaete tataggeaea eecetttgge
                                                                     1080
tottatgcat gotatactgt ttttggottg gggootatac accoccgott cottatgcta
                                                                     1140
taggtgatgg tatagcttag cctataggtg tgggttattg accattattg accactcccc
                                                                     1200
tattggtgac gatactttcc attactaatc cataacatgg ctctttgcca caactatctc
                                                                     1260
tattggctat atgccaatac tctgtccttc agagactgac acggactctg tatttttaca
                                                                     1320
ggatggggtc ccatttatta tttacaaatt cacatataca acaacgccgt cccccgtgcc
                                                                     1380
cgcagttttt attaaacata gcgtgggatc tccacgcgaa tctcgggtac gtgttccgga
                                                                     1440
                                                                     1500
catgggctct tctccggtag cggcggagct tccacatccg agccctggtc ccatgcctcc
                                                                     1560
agcggctcat ggtcgctcgg cagctccttg ctcctaacag tggaggccag acttaggcac
agcacaatgc ccaccaccac cagtgtgccg cacaaggccg tggcggtagg gtatgtgtct
                                                                     1620
gaaaatgagc gtggagattg ggctcgcacg gctgacgcag atggaagact taaggcagcg
                                                                     1680
gcagaagaag atgcaggcag ctgagttgtt gtattctgat aagagtcaga ggtaactccc
                                                                     1740
                                                                     1800
gttgcggtgc tgttaacggt ggagggcagt gtagtctgag cagtactcgt tgctgccgcg
                                                                     1860
cgcgccacca gacataatag ctgacagact aacagactgt tcctttccat gggtcttttc
                                                                     1920
tgcagtcacc gtccttagat ctgctgtgcc ttctagttgc cagccatctg ttgtttgccc
                                                                     1980
ctccccgtg ccttccttga ccctggaagg tgccactccc actgtccttt cctaataaaa
2040
                                                                     2100
gcaggacagc aagggggagg attggggaaga caatagcagg catgctgggg atgcggtggg
ctctatggcc gctgcggcca ggtgctgaag aattgacccg gttcctcctg ggccagaaag
                                                                     2160
aagcaggcac atccccttct ctgtgacaca ccctgtccac gcccctggtt cttagttcca
                                                                     2220
```

```
gccccactca taggacactc atagctcagg agggctccgc cttcaatccc acccgctaaa
                                                                      2280
 gtacttggag cggtctctcc ctccctcatc agcccaccaa accaaaccta gcctccaaga
                                                                      2340
 gtgggaagaa attaaagcaa gataggctat taagtgcaga gggagagaaa atgcctccaa
                                                                      2400
 catgtgagga agtaatgaga gaaatcatag aatttcttcc gcttcctcgc tcactgactc
                                                                      2460
 gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg cggtaatacg
                                                                      2520
 gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa
                                                                      2580
 ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc gccccctga
                                                                      2640
 cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag gactataaag
                                                                      2700
ataccaggeg tttccccctg gaagetecet egtgegetet eetgtteega eeetgeeget
                                                                      2760
 taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc atagctcacg
                                                                      2820
ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg tgcacgaacc
                                                                      2880
ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt ccaacccggt
                                                                      2940
aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta
                                                                      3000
tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca ctagaagaac
                                                                      3060
agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaaagag ttggtagctc
                                                                      3120
ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca agcagcagat
                                                                      3180
tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc
                                                                      3240
tcagtggaac gaaaactcac gttaagggat tttggtcatg agattatcaa aaaggatctt
                                                                      3300
cacctagatc cttttaaatt aaaaatgaag ttttaaatca atctaaagta tatatgagta
                                                                      3360
aacttggtct gacagttacc aatgcttaat cagtgaggca cctatctcag cgatctgtct
                                                                      3420
atttegttea tecatagitg eetgactegg gggggggggg egetgaggte tgeetegtga
                                                                      3480
agaaggtgtt gctgactcat accaggcctg aatcgcccca tcatccagcc agaaagtgag
                                                                      3540
ggagccacgg ttgatgagag ctttgttgta ggtggaccag ttggtgattt tgaacttttg
                                                                      3600
ctttgccacg gaacggtctg cgttgtcggg aagatgcgtg atctgatcct tcaactcagc
                                                                      3660
aaaagttcga tttattcaac aaagccgccg tcccgtcaag tcagcgtaat gctctgccag
                                                                      3720
tgttacaacc aattaaccaa ttctgattag aaaaactcat cgagcatcaa atgaaactgc
                                                                      3780
aatttattca tatcaggatt atcaatacca tatttttgaa aaagccgttt ctgtaatgaa
                                                                      3840
ggagaaaact caccgaggca gttccatagg atggcaagat cctggtatcg gtctgcgatt
                                                                      3900
ccgactcgtc caacatcaat acaacctatt aatttcccct cgtcaaaaat aaggttatca
                                                                      3960
agtgagaaat caccatgagt gacgactgaa tccggtgaga atggcaaaag cttatgcatt
                                                                      4020
tetttecaga ettgtteaac aggeeageea ttacgetegt cateaaaate actegeatea
                                                                      4080
accaaaccgt tattcattcg tgattgcgcc tgagcgagac gaaatacgcg atcgctgtta
                                                                      4140
aaaggacaat tacaaacagg aatcgaatgc aaccggcgca ggaacactgc cagcgcatca
                                                                      4200
acaatatttt cacctgaatc aggatattct tctaatacct ggaatgctgt tttcccgggg
                                                                      4260
atcgcagtgg tgagtaacca tgcatcatca ggagtacgga taaaatgctt gatggtcgga
                                                                      4320
agaggcataa attccgtcag ccagtttagt ctgaccatct catctgtaac atcattggca
                                                                      4380
acgctacctt tgccatgttt cagaaacaac tctggcgcat cgggcttccc atacaatcga
                                                                      4440
tagattgtcg cacctgattg cccgacatta tcgcgagccc atttataccc atataaatca
                                                                      4500
gcatccatgt tggaatttaa tcgcggcctc gagcaagacg tttcccgttg aatatggctc
                                                                      4560
ataacacccc ttgtattact gtttatgtaa gcagacagtt ttattgttca tgatgatata
                                                                      4620
titttatctt gigcaatgta acatcagaga tittgagaca caacgigget ticcccccc
                                                                      4680
ccccattatt gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt
                                                                      4740
atttagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaagt gccacctgac
                                                                      4800
gtctaagaaa ccattattat catgacatta acctataaaa ataggcgtat cacgaggccc
                                                                      4860
tttcgtc
                                                                      4867
<210> SEQ ID NO:17
<211> LENGTH: 78
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQ ID NO:17
gatcaccatg gatgcaatga agagagggct ctgctgttgtg ctgctgctgt gtggagcagt
                                                                        60
cttcgtttcg cccagcga
                                                                        78
```

<210> SEQ ID NO:18 <211> LENGTH: 78

<212> TYPE: DNA <213> ORGANISM:Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQ ID NO:18 gatctcgctg ggcgaaacga agactgctcc acacagcagc agcacacagc agagccctct 60 cttcattgca tccatggt 78 <210> SEQ ID NO:19 <211> LENGTH: 27 <212> TYPE: PRT <213> ORGANISM: Homo sapien <400> SEQ ID NO:19 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly 10 Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser 20 <210> SEQ ID NO:20 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQ ID NO:20 ggtacaaata ttggctattg gccattgcat acg 33 <210> SEQ ID NO:21 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQ ID NO:21 ccacatctcg aggaaccggg tcaattcttc agcacc 36 <210> SEQ ID NO:22 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide <400> SEQ ID NO:22 ggtacagata tcggaaagcc acgttgtgtc tcaaaatc 38 <210> SEQ ID NO:23 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide

```
<400> SEQ ID NO:23
 cacatggatc cgtaatgctc tgccagtgtt acaacc
                                                                         36
 <210> SEQ ID NO:24
 <211> LENGTH: 39
 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQ ID NO:24
ggtacatgat cacgtagaaa agatcaaagg atcttcttg
                                                                        39
<210> SEQ ID NO:25
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotide
<400> SEQ ID NO:25
ccacatgtcg acccgtaaaa aggccgcgtt gctgg
                                                                        35
<210> SEQ ID NO:26
<211> LENGTH: 4864
<212> TYPE: DNA
<213> ORGANISM: E. coli
<400> SEQ ID NO:26
tegegegttt eggtgatgae ggtgaaaace tetgacacat geageteeeg gagaeggtea
                                                                        60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg
                                                                       120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc
                                                                       180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcagattgg
                                                                       240
ctattggcca ttgcatacgt tgtatccata tcataatatg tacatttata ttggctcatg
                                                                       300
tccaacatta ccgccatgtt gacattgatt attgactagt tattaatagt aatcaattac
                                                                       360
ggggtcatta gttcatagcc catatatgga gttccgcgtt acataactta cggtaaatgg
                                                                       420
cccgcctggc tgaccgccca acgacccccg cccattgacg tcaataatga cgtatgttcc
                                                                       480
catagtaacg ccaataggga ctttccattg acgtcaatgg gtggagtatt tacggtaaac
                                                                       540
tgcccacttg gcagtacatc aagtgtatca tatgccaagt acgcccccta ttgacgtcaa
                                                                       600
tgacggtaaa tggcccgcct ggcattatgc ccagtacatg accttatggg actttcctac
                                                                       660
ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcggt tttggcagta
                                                                       720
catcaatggg cgtggatagc ggtttgactc acggggattt ccaagtctcc accccattga
                                                                       780
cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac tttccaaaat gtcgtaacaa
                                                                       840
ctccgcccca ttgacgcaaa tgggcggtag gcgtgtacgg tgggaggtct atataagcag
                                                                       900
agctcgttta gtgaaccgtc agatcgcctg gagacgccat ccacgctgtt ttgacctcca
                                                                       960
tagaagacac cgggaccgat ccagcctccg cggccgggaa cggtgcattg gaacgcggat
                                                                      1020
teccegtgee aagagtgaeg taagtaeege etatagagte tataggeeea ecceettgge
                                                                      1080
ttottatgca tgctatactg tttttggctt ggggtctata cacccccgct tcctcatgtt
                                                                      1140
ataggtgatg gtatagctta gcctataggt gtgggttatt gaccattatt gaccactccc
                                                                      1200
ctattggtga cgatactttc cattactaat ccataacatg gctctttgcc acaactctct
                                                                      1260
ttattggcta tatgccaata cactgtcctt cagagactga cacggactct gtattttac
                                                                      1320
aggatggggt ctcatttatt atttacaaat tcacatatac aacaccaccg tccccagtgc
                                                                     1380
ccgcagtttt tattaaacat aacgtgggat ctccacgcga atctcgggta cgtgttccgg
                                                                      1440
acatgggete tteteeggta geggeggage ttetacatee gageeetget eccatgeete
                                                                      1500
cagcgactca tggtcgctcg gcagctcctt gctcctaaca gtggaggcca gacttaggca
                                                                      1560
cagcacgatg cccaccacca ccagtgtgcc gcacaaggcc gtggcggtag ggtatgtgtc
                                                                      1620
tgaaaatgag ctcggggagc gggcttgcac cgctgacgca tttggaagac ttaaggcagc
                                                                      1680
ggcagaagaa gatgcaggca gctgagttgt tgtgttctga taagagtcag aggtaactcc
```

1740

```
cgttgcggtg ctgttaacgg tggagggcag tgtagtctga gcagtactcg ttgctgccgc
                                                                    1800
gcgcgccacc agacataata gctgacagac taacagactg ttcctttcca tgggtctttt
                                                                    1860
                                                                    1920
ctgcagtcac cgtccttaga tctgctgtgc cttctagttg ccagccatct gttgtttgcc
                                                                    1980
cctccccgt gccttccttg accctggaag gtgccactcc cactgtcctt tcctaataaa
2040
ggcagcacag caagggggag gattgggaag acaatagcag gcatgctggg gatgcggtgg
                                                                    2100
gctctatggg tacccaggtg ctgaagaatt gacccggttc ctcctgggcc agaaagaagc
                                                                    2160
aggeacated cettetetgt gacacaceet gtecaegeee etggttetta gttecageee
                                                                    2220
cactcatagg acactcatag ctcaggaggg ctccgccttc aatcccaccc gctaaagtac
                                                                    2280
ttggagcggt ctctccctcc ctcatcagcc caccaaacca aacctagcct ccaagagtgg
                                                                    2340
gaagaaatta aagcaagata ggctattaag tgcagaggga gagaaaatgc ctccaacatg
                                                                    2400
tgaggaagta atgagagaaa tcatagaatt tcttccgctt cctcgctcac tgactcgctg
                                                                    2460
                                                                    2520
cgctcggtcg ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta
tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaaggcca gcaaaaggcc
                                                                    2580
aggaaccgta aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag
                                                                    2640
                                                                    2700
catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac
                                                                    2760
caggogtttc cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc
ggatacetgt eegeetttet eeetteggga agegtggege ttteteaatg eteaegetgt
                                                                    2820
                                                                    2880
aggtatetea gtteggtgta ggtegttege tecaagetgg getgtgtgea egaaceeece
gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga
                                                                    2940
cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta
                                                                    3000
ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag aaggacagta
                                                                    3060
tttggtatct gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga
                                                                    3120
tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg
                                                                    3180
                                                                    3240
cgcagaaaaa aaggatctca agaagatcct ttgatctttt ctacggggtc tgacgctcag
tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag gatcttcacc
                                                                    3300
tagatccttt taaattaaaa atgaagtttt aaatcaatct aaagtatata tgagtaaact
                                                                    3360
                                                                    3420
tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt
cgttcatcca tagttgcctg actccggggg gggggggcgc tgaggtctgc ctcgtgaaga
                                                                    3480
aggtgttgct gactcatacc aggcctgaat cgccccatca tccagccaga aagtgaggga
                                                                    3540
gccacggttg atgagagett tgttgtaggt ggaccagttg gtgattttga acttttgett
                                                                    3600
tgccacggaa cggtctgcgt tgtcgggaag atgcgtgatc tgatccttca actcagcaaa
                                                                    3660
agttcgattt attcaacaaa gccgccgtcc cgtcaagtca gcgtaatgct ctgccagtgt
                                                                    3720
tacaaccaat taaccaattc tgattagaaa aactcatcga gcatcaaatg aaactgcaat
                                                                    3780
                                                                    3840
ttattcatat caggattatc aataccatat ttttgaaaaa gccgtttctg taatgaagga
                                                                    3900
gaaaactcac cgaggcagtt ccataggatg gcaagatcct ggtatcggtc tgcgattccg
actcgtccaa catcaataca acctattaat ttcccctcgt caaaaataag gttatcaagt
                                                                    3960
gagaaatcac catgagtgac gactgaatcc ggtgagaatg gcaaaagctt atgcatttct
                                                                    4020
                                                                    4080
ttccagactt gttcaacagg ccagccatta cgctcgtcat caaaatcact cgcatcaacc
aaaccgttat tcattcgtga ttgcgcctga gcgagacgaa atacgcgatc gctgttaaaa
                                                                    4140
ggacaattac aaacaggaat cgaatgcaac cggcgcagga acactgccag cgcatcaaca
                                                                    4200
atattttcac ctgaatcagg atattcttct aatacctgga atgctgtttt cccggggatc
                                                                    4260
gcagtggtga gtaaccatgc atcatcagga gtacggataa aatgcttgat ggtcggaaga
                                                                    4320
                                                                    4380
ggcataaatt ccgtcagcca gtttagtctg accatctcat ctgtaacatc attggcaacg
ctacctttgc catgtttcag aaacaactct ggcgcatcgg gcttcccata caatcgatag
                                                                    4440
                                                                    4500
attgtcgcac ctgattgccc gacattatcg cgagcccatt tatacccata taaatcagca
tccatgttgg aatttaatcg cggcctcgag caagacgttt cccgttgaat atggctcata
                                                                    4560
                                                                    4620
acaccccttg tattactgtt tatgtaagca gacagtttta ttgttcatga tgatatattt
ttatcttgtg caatgtaaca tcagagattt tgagacacaa cgtggctttc cccccccc
                                                                    4680
cattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt
                                                                    4740
tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc
                                                                    4800
                                                                    4860
taagaaacca ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt
                                                                     4864
cgtc
```

```
<210> SEQ ID NO:27
```

catgggtctt ttctgcagtc accgtccttg agatctgcca ccatgggcgg caagtggtcc

60

<211> LENGTH: 139

<212> TYPE: DNA

<213> ORGANISM:E. coli / HIV-1

<400> SEQ ID NO:27

aagaggtccg tgccccaccc cgagtactac aaggactgct aaagcccggg cagatctgct gtgccttcta gttgccagc	120 139
<210> SEQ ID NO:28 <211> LENGTH: 139 <212> TYPE: DNA <213> ORGANISM:E. coli / HIV-1	
<400> SEQ ID NO:28	
catgggtett ttetgeagte acegteettg agatetgeea ceatggeegg caagtggtee aagaggteeg tgeeceacee egagtaetae aaggaetget aaageeeggg cagatetget gtgeetteta gttgeeage	60 120 139 ~
<210> SEQ ID NO:29 <211> LENGTH: 203 <212> TYPE: DNA	
<213> ORGANISM:E. coli / HIV-1	
<400> SEQ ID NO:29	
catgggtctt ttctgcagtc accgtcctta tatctagatc accatggatg caatgaagag	60
agggetetge tgtgtgetge tgetgtgtgg ageagtette gtttegeeca gegagatete	120
ctccaagagg tccgtgcccc accccgagta ctacaaggac tgctaaagcc cgggcagatc tgctgtgcct tctagttgcc agc	180 203
<210> SEQ ID NO:30	
<211> LENGTH: 651	
<212> TYPE: DNA	
<213> ORGANISM: Human Immunodificiency Virus - 1	
<400> SEQ ID NO:30	
atgggtggca agtggtcaaa acgtagtgtg cctggatggt ctactgtaag ggaaagaatg	60
agacgagetg agecageage agatagggtg agacgaaetg agecageage agtaggggtg	120
ggagcagtat ctcgagacct ggaaaaacat ggagcaatca caagtagcaa tacagcagct	180
accaatgctg attgtgcctg gctagaagca caagaggatg aggaagtggg ttttccagtc	240
agacctcagg tacctttaag accaatgact tacaagggag ctgtagatct tagccacttt	300
ttaaaagaaa aggggggact ggaagggcta attcactcac agaaaagaca agatatcctt	360
gatetgtggg tetaceacae acaaggetae tteeetgatt ggeagaacta cacaceaggg	420
ccaggaatca gatttccatt gacctttgga tggtgcttca agctagtacc agttgagcca	480
gaaaaggtag aagaggccaa tgaaggagag aacaactgct tgttacaccc tatgagccag	540
catgggatag aggacccgga gaaggaagtg ttagagtgga ggtttgacag caagctagca tttcatcacg tggcccgaga gctgcatccg gagtactaca aggactgctg a	600
	651