Steiner Triple Systems

Existence, representation and construction

Luca Vecchi

University of Milan

December 4, 2018

Introduction

Outline

- Challenge on combinatorial design
- What is it?:
 - existence or non-existence
 - representation
 - construction

What is Steiner Triple System

(Definition) Steiner Triple Systems (STS)

is an ordered pair (S, T) (a *design*) where S is a finite set of *point/symbol* and T is a set of subsets of 3-symbol in which all possible pair of S are contained **once and only once**.

What is Steiner Triple System

(Definition) Steiner Triple Systems (STS)

is an ordered pair (S, T) (a *design*) where S is a finite set of *point/symbol* and T is a set of subsets of 3-symbol in which all possible pair of S are contained **once and only once**.

More formally:

- define S such that |S| = v
- then $T = \{ \forall \{a,b,c\} \in S \times S \times S \}$ such that $\forall a,b \in S \times S \ a \neq b$ $\sum_{\forall \{x,v,z\} \in T} (\mathbb{I}_{\{a,b\} \in \{x,y\}} + \mathbb{I}_{\{a,b\} \in \{y,z\}} + \mathbb{I}_{\{a,b\} \in \{z,x\}}) = 1$

More compact way to define STS by define the order v of STS by v = |S|

Examples of STS

$$S = \{a\}, T = \emptyset$$

$$S = \{a, b\}, T = \emptyset$$

$$S = \{a, b, c\}, T = \{\{a, b, c\}\}$$

$$S = \{a, b, c, d\}, T = \emptyset$$

$$S = \{a, b, c, d, e\}, T = \emptyset$$

$$S = \{a, b, c, d, e, f\}, T = \emptyset$$

$$S = \{a, b, c, d, e, f\}, T = \emptyset$$

$$S = \{a, b, c, d, e, f, g\}, T = \{\{a, b, c\}, \{c, d, e\}, \{c, g, h\}, \{c, g, f\}\}$$

٠.

Balanced incomplete blocks design

(Definition) $(v, k, \lambda) - BIBD$

v,k and λ be positive integers such that $v>k\geq 2$. A balanced incomplete block design is a design (S,T) such that satisfy these properties:

- **1** |S| = v
- lacktriangle for all distinct pairs are contained in exactly λ blocks (t)

Why balanced and incomplete?

balanced they share the same property (2)

incomplete by reason of
$$v = |S| > k = |t| \ \forall t \in T$$

What is Steiner Triple System 2

 λ blocks (t) of (v, k, λ) – BIBD iff $\lambda = 1$, k = 3.

$$(v, k, \lambda) - BIBD$$

v,k and λ be positive integers such that $v>k\geq 2$. A balanced incomplete block design is a *design* (S,T) such that satisfy these properties:

- **1** |S| = v
- **③** $\forall s \in S$ is contained in exactly λ blocks (t)

What is Steiner Triple System 2

 λ blocks (t) of (v, k, λ) – BIBD iff $\lambda = 1$, k = 3.

$$(v, k, \lambda) - BIBD$$

v,k and λ be positive integers such that $v>k\geq 2$. A balanced incomplete block design is a *design* (S,T) such that satisfy these properties:

- **1** |S| = v
- **③** $\forall s \in S$ is contained in exactly λ blocks (t)

All theory from BIBD is shared too in STS

Existence proof

Theorem

A STS of order v exists if and only if $v \equiv 1, 3 \mod(6)$

Proof.

(\Rightarrow)We know that all possible pairs are $\binom{v}{2}$, and by definition these pairs are partitioned (non-overlapping and union make all) into 3-element groups. Thoose groups are $|T| = \frac{\binom{v}{2}}{3} = \frac{v(v-1)}{6}$. Then for $\forall x \in S$ can be defined $T(x) = \{t \ \{x\} | x \in t \in T\}$. So if an $x \in S$ is fixed and then for every set t which contain x we remove the point x then we carry out v-1 point partitioned in 2-element set. As we can't make 2-element partition from a group of odd element, v-1 is even! So v is odd and it's equal to say $v \equiv 1, 3, 5 \mod(6)$. The $\frac{v(v-1)}{6}$ is not an integer for every $v \equiv 5 \mod(6)$. As a result STS $\Rightarrow v \equiv 1, 3 \mod(6)$

Existence proof 2

$$(S,T): |S| = v \land v \equiv 1,3 \mod(6) \Rightarrow STS(v)$$

In addition we suppose:

- each dinstict pair of S belongs to at least one triple in T
- $\bullet |T| \leq \frac{v(v-1)}{6}$

Proof.

(Absurd) Assume the contrary and make a list L as follows: for every pair write down the triple with which it is associated. Then $|L| > {v \choose 2}$ as there exists a pair with towo triples. Now since each triple is counted by exactly three pairs so $|T| = |L|/3 > {{v \choose 2} \over 3}$, a contradiction.

Proof.

For each distinct pair of S belongs to at least one triple and if the number of triples is less than or equal to the right number of triples, then each pair of sumbols in S belongs to exactly one triple in T.

Corollary

A STS of order v has $|T| = \frac{v(v-1)}{6}$

Representation

How to represent

- through display each 3-set of T ({{a, b, c}, {b, d, e}, ..., {d, f, g}})
- through a complete graph

Figure: A complete graph of order v = 7

Example

Why a focus on representation?

- we talk about combinatorial design (display somehow somethings)
- help to design algorithm

Figure: A complete graph of order v = 7

Focus on

How to choose a proper partition of the graph?

Example

First non-dummy: STS of order 7

Figure: Fano plane

Figure: Building methods on STS(7)

Construction methods

How to create

- Bose method
- Skolem
- 6n + 5
- With quasigroups with holes
- Wilson
- 2n + 1
- 2n + 7
- Even-Odd

Bose construction

We need first define:

idempotent commutative quasigroups of order 2n+1

But first: recap

(Definition) latin square of order n

is an $n \times n$ array where each row and column contains all symbols $\{1,...,n\}$ exactly one time.

1	3	2
2	1	3
3	2	1

Table: Latin square of order 3

(Definition) Quasigroup

A quasigroup of order n is an algebric structure, a pair (Q, \circ) where |Q| = n and $\circ: Q \times Q \to Q$. $\forall a, b \in Q$ then $\exists ! x, y$ (unique!) to the equations $a \circ x = b$ and $x \circ a = b$.

An examples of quasigroup are $(Z_n, -)$, $(Z_n, +)$.

Quasigroup and latin square

Theorem

The multiplication table of a quasigroup is a Latin square

A quasigroup (G, \circ) is a latin square of order v = |G|:

1	3	2
2	1	3
3	2	1

3

Table: Latin square of order 3

Table: Quasigroup of order 3

3

Quasigroup and latin square

Theorem

The multiplication table of a quasigroup is a Latin square

A quasigroup (G, \circ) is a latin square of order v = |G|:

1	3	2
2	1	3
3	2	1

0	1	2	3
1	1	2	3
2	3	1	2
3	2	3	1

Table: Latin square of order 3

Table: Quasigroup of order 3

A (Q, \circ) is said:

idempotent $\forall i: 1 \leq i \leq |G|$ the cell (i,i) contains α such that $\alpha \leq i$ commutative $\forall i,j: 1 \leq i < j \leq |G|$ the cell (i,j) contains the same of (j,i)

Commutative idempotent latin square

1	3	2
3	2	1
2	1	3

Table: C. I. latin square of order 3

Commutative idempotent latin square

1	3	2
3	2	1
2	1	3

Table: C. I. latin square of order 3

How can we create a C.I. latinsquare/quasigroup of order v?

contenuto...

Theorem

idempotent commutative quasigroups exist **if and only if** they have odd order.

Great! We look at the half of all possible

Construction method of CI quasigroup

- **1** Let v be the order of quasigroup, take $(Z_v, +)$ where + is the addition in Z_v .
- ② For all element i := i + 1
- **3** Take the elements of main diagonal $\langle d_1, ..., d_v \rangle$. Build a permutation $\sigma_v = \{(d_1, 1), (d_2, 2), ..., (d_v, v)\}$.
- **4** Apply σ_v for all element of the *multiplication table*

As result you have a CI quasigroup.

Construction method of CI quasigroup of order 7

Z_{7} ,+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	3	4	5	6	7	1
3	3	4	5	6	7	1	2
4	4	5	6	7	1	2	3
5	5	6	7	1	2	3	4
6	6	7	1	2	3	4	5
7	7	1	2	3	4	5	6

- **1** Let v be the order of quasigroup, take $(Z_v, +)$ where + is the addition in Z_v .
- ② For all element i := i + 1

Construction method of CI quasigroup of order 7

	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	3	4	5	6	7	1
3	3	4	5	6	7	1	2
4	4	5	6	7	1	2	3
5	5	6	7	1	2	3	4
6	6	7	1	2	3	4	5
7	7	1	2	3	4	5	6

$$\sigma_{v} = \{(1,1), (3,2), (5,3), (7,4), (2,5), (4,6), (6,7)\}$$

- Let v be the order of quasigroup, take $(Z_v, +)$ where + is the addition in Z_v .
- 2 For all element i := i + 1
- **3** Take the elements of main diagonal $\langle d_1, ..., d_v \rangle$. Build a permutation $\sigma_v = \{(d_1, 1), (d_2, 2), ..., (d_v, v)\}.$
- **4** Apply σ_{ν} for all element of the *multiplication table*

Construction method of CI quasigroup of order 7

	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	3	4	5	6	7	1
3	3	4	5	6	7	1	2
4	4	5	6	7	1	2	3
5	5	6	7	1	2	3	4
6	6	7	1	2	3	4	5
7	7	1	2	3	4	5	6

	1	2	3	4	5	6	7
1	1	5	2	6	3	7	4
5	5	2	6	3	7	4	1
2	2	6	3	7	4	1	5
6	6	3	7	4	1	5	2
3	3	7	4	1	5	2	6
7	7	4	1	5	2	6	3
4	4	1	5	2	6	3	7
4	4	1	5				7

We apply $\sigma_{\nu} = \{(1,1), (3,2), (5,3), (7,4), (2,5), (4,6), (6,7)\}$ as result we have a idempotent commutative quasigroup of order ν .

Bose construction($v \equiv 3 mod(6)$)

Let v=6n+3 and let (Q,\circ) be an idempotent commutative quasigroup of order 2n+1, where $Q=\{1,2,3,...,2n+1\}$. Let $S=Q\times\{1,2,3\}$ and define T to contain the following types of triples.

Type 1: For
$$1 \le i \le 2n + 1$$
, $\{(i,1),(i,2),(i,3)\} \in T$
Type 2: For $1 \le i < j \le 2n + 1$, $\{\{(i,1),(j,1),(i \circ j,2)\},\{(i,2),(j,2),(i \circ j,3)\}\{(i,3),(j,3),(i \circ j,1)\}\} \in T$

Then (S, T) is a Steiner triple system of order 6n + 3.

Type of partitions

Figure: Type 1

Proof

|T| is made up with 2 type:

- Type 1: 2n + 1 triples
- Type 2: $\binom{2n+1}{2}$ choices for i and j, for all of them there are 3 another type.

Then $|T| = (2n+1) + 3\frac{(2n+1)2n}{2} = \frac{(2n+1)(6n+2)}{2} = v(v-1)/6$ have the right number of triple.

Show that at least one every pairs is contained in at least 1 triple:

Practical example

Cyclic Steiner triple system

$STS \Rightarrow Idempotent totally symmetric quasigroup construction$

Kirkamn triple systems

Intersections of Steiner Triple Systems

Teirlink's Algorithm

Embedding partial of Steiner Triple Systems

Teirlink's Algorithm

References I