(19) 日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-299995

(43)公開日 平成5年(1993)11月12日

(51) Int.CL⁵

識別配号 庁内整理番号

FΙ

技術表示箇所

H03K 17/687

17/12 17/693

9184-5J

A 8221-5J

8221-5J

H03K 17/687

G

審査請求 未請求 請求項の数4(全 10 頁)

(21)出願番号

(22)出顧日

特願平4-106472

平成4年(1992)4月24日

(71)出順人 000004226

日本電信電話株式会社

東京都千代田区内幸町一丁目1番6号

(72)発明者 徳満 恒雄

東京都千代田区内幸町一丁目1番6号 日

本電信電話株式会社内

(72)発明者 相川 正義

東京都千代田区内幸町一丁目1番6号 日

本電信電話株式会社内

(74)代理人 弁理士 本間 崇

(54) 【発明の名称】 マイクロ波半導体スイッチ

(57)【要約】

【目的】 マイクロ波半導体スイッチに関し、アイソレ ーション特性に勝れ、かつ、同一スイッチ案子での処理 可能な送信電力を向上させ得るスイッチの実現を目的と する.

【構成】 半導体スイッチとインダクタ (L) を直列接 、 続した回路と、 両端子にインダクタ (L') を装荷した 半導体スイッチとキャパシタ (C) を直列接続した回路 とを並列接続すると共に両半導体スイッチが連動して共 にオンあるいはオフとなる如く成し、餃半導体スイッチ 素子の両端子間寄生容量Csに対してL′(C+Cs) =LCとなるようにL、L'、Cの値を設定し、両半導 体スイッチ案子がオンあるいはオフ時において同一の周 波数で並列共振あるいは直列共振するように構成する。

本発明の第1の実施の構成を示す図

Best Available Copy

【特許請求の範囲】

【請求項1】 第1の半導体スイッチとインダクタ (L)を直列接続した回路と、

両端子間にインダクタ (L') を装荷した第2の半導体 スイッチとキャパシタ(C)を直列接続した回路とを並 列接続すると共に、

上記第1の半導体スイッチと第2の半導体スイッチの内 の一方がオンであるときには他方もオンであるように連 動して動作する如く構成し、

第1の半導体スイッチおよび第2の半導体スイッチそれ 10 ッチ。 ぞれの両端子間の寄生容量をCsとするときL'(C+ Cs) =LCとなるようにLおよびL′およびCの値を 設定し、

動作周波数 f において"数 1"を満足する如く成したこ とを特徴とするマイクロ波半導体スイッチ。

【数1】

$$f = \frac{1}{2\pi\sqrt{LC}}$$

(C)を直列接続した回路と、

両端子間にキャパシタ(C′)を装荷した第2の半導体 スイッチとインダクタ(L)を直列接続した回路とを並 列接続すると共に、

上記第1の半導体スイッチと第2の半導体スイッチの内 の一方がオンであるときには他方もオンであるように連 動して動作する如く構成し、

第1の半導体スイッチおよび第2の半導体スイッチそれ ぞれの両端子間の寄生容量をCsとするときC′+Cs =CとなるようにCおよびC′の値を設定し、

動作周波数fにおいて請求項1に記載の"数1"を満足 する如く成したことを特徴とするマイクロ波半導体スイ ッチ。

【蘭求項3】 第1の半導体スイッチとキャパシタ (C) を直列接続した回路の両端子間にインダクタ (L)を装荷した回路と、

、第2の半導体スイッチの両端子間にキャパシタ(C´) を装荷した回路とを直列接続すると共に、

上記第1の半導体スイッチと第2の半導体スイッチの内 動して動作する如く構成し、

第1の半導体スイッチおよび第2の半導体スイッチそれ ぞれの両端子間の寄生容量をCsとするときC´+Cs +CCs/(C+Cs) =CとなるようにCおよびC' の値を設定し、

動作周波数 f において請求項1に記載の"数1"を満足 する如く成したことを特徴とするマイクロ波半導体スイ ッチ。

【請求項4】 第1の半導体スイッチとインダクタ (C)を装荷した回路と、

第2の半導体スイッチの両端子間にインダクタL^を装 荷した回路とを直列接続してなり、

2

第1の半導体スイッチおよび第2の半導体スイッチそれ ぞれの両端子間の寄生容量をCsとするときL'・〔C s+C¹ / (C-Cs))=LCとなるようにLおよび L′およびCの値を設定し、

動作周波数 f において請求項 1 に記載の"数 1"を満足 する如く成したことを特徴とするマイクロ波半導体スイ

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、信号の伝搬経路を導通 /開放するマイクロ波半導体スイッチに関するものであ り、電波(信号)の受信あるいは送信に応じて伝達経路 を切り替えるマイクロ波回路に利用できるものである。 [0002]

【従来の技術】図8は従来の信号経路切り替えマイクロ 波半導体スイッチの基本構成を示すプロック図であっ 【請求項2】 第1の半導体スイッチとキャパシタ 20 て、直列スイッチ21 (SW1) と23 (SW3)、お よび並列スイッチ22 (SW2) と24 (SW4) で構 成されている。このようなスイッチは、接続すべき端子 の選択を可能とする端子切り替えスイッチ(以下、SP DTスイッチともいう) や、レーダ、移動通信用基地局 /携帯機、等において受信時/送信時の経路切り替えス イッチ(以下、T/Rスイッチともいう)として使用さ れる。

> 【0003】 T/Rスイッチの場合、 端子25はアンテ ナ給電烙子、端子 2 6 は低雑音増幅器(L N A)あるい 30 は周波数変換ミクサへの接続端子、端子27は高出力増 **幅器への接続端子である。31~34はスイッチ案子制** 御増子である。

【0004】同図において、SW1およびSW4が導通 で、SW2およびSW3が開放となるように制御端子3 1、32、33、34にそれぞれ所定の直流電圧を印加 すると、端子25と端子26との間の経路は導通し、端 子25と娘子27との間の経路は開放となって、婚子2 5と端子26との間にのみ信号が伝達される。

[0005] 一方SW1およびSW4が開放となり、S の一方がオンであるときには他方もオンであるように連 40 W 2 および S W 3 が導通するように各制御端子に上記と 異なる直流電圧を印加すると、端子25と端子27との 間の経路は導通し、端子25と端子26との間の経路は 開放となって、 燃子 2 7 と 端子 2 5 の間にのみ信号が伝 達される。

【0006】このように、いずれの経路が導通している 場合においても端子26と端子27との間は分離され、 接続端子あるいは信号経路の切り替えが可能となる。半 導体スイッチ素子としては、二烷子素子で、電圧により 電流を制御してスイッチング動作させるPINダイオー (L)を直列接続した回路の両端子間にキャパシタ 50 ドや、三端子素子で、一端子に与える電圧により他の二

端子間の抵抗を制御してスイッチング動作させる電界効 果トランジスタ(以下、FETともいう)が一般に用い られている。集積回路では製造が比較的簡易で電圧制御 により高速切り替えが可能なFETを用いたスイッチが 主流となっている。また、移動通信用携帯機では小型・ 軽量かつ低消費電力が重要な項目であるため、電力を消 費しないFETを用いるスイッチICが不可欠である。

【0007】図9はスイッチ案子としてFETを用いた 場合の従来のT/Rスイッチ (SPDTスイッチも同 様)の構成を示す。対応する部分は図8と同じ番号を付 10 している。各FETのドレインおよびソース電極は接地 電位にパイアスされており、ゲート端子31、32、3 3、34に対し0Vあるいはピンチオフ電圧以下の、互 いに異なる制御電圧1、2を印加してFETのドレイン -ソース間抵抗を変化させスイッチとして動作させる。 尚、FETを用いる場合、ゲート端子電圧OVの時導 通、ピンチオフ電圧以下の時期放である。

[0008]

【発明が解決しようとする課題】上述したような従来の 技術においては、FETをスイッチ素子として用いる場 20 半導体スイッチおよび第2の半導体スイッチそれぞれの 合に、関放状態の時のドレインーソース両端子間の寄生 容量の影響により、周波数が高くなるにしたがって両端 子間のアイソレーション特性が劣化するという問題があ った。

【0009】また、FETをスイッチ素子として用いる 場合に処理可能な最大電力Pmaxには限界があり、そ のため、商出力増幅器側(端子25-端子27)が導通 した時の最大送信電力が制約を受ける。

【0010】この制約は開放状態のSW1およびSW4 電力の1/2乗に比例した大きな電圧が印加されるため である。上記最大電力Pmaxは"数2"で表される。

[0011]

【数2】

$$P_{\text{max}} = \frac{|V_0 - V_p|^2}{2.70}$$

[0012] ここで、Vc、Vp、Zoはそれぞれゲー ト塔子制御電圧、ピンチオフ電圧、負荷インピーダンス であり、 | Vc-Vp | は最大送僧信号電圧である。最 40 大電力Pmaxを向上するためには制御電圧Vcを大き くすることが必要であるが、Vcはドレインーゲート間 またはソースーゲート間に印加可能な最大許容電圧以上 には大きくできず、さらにドレイン(ソース)に印加さ れる信号電圧分だけ小さくする必要があるため、自ずと 送信電力を制限せざるを得なかった。

【0013】また、携帯機等では、極力、小形の電池を 用いることにより、小型化・軽量化を図ることが重要で あり、したがって、制御電圧を大きくできないために更 に送信電力が制限されることになる。

【0014】本発明は、このような従来の問題点を解決 するために成されたもので両端子間アイソレーション特 性が優れたスイッチ構成を提供すると共に、スイッチ制 御の極性が従来構成のものに対して反転していることを 利用して、関放時にスイッチ素子 (FET) に印加され る高周波信号電圧を微小に保ち、処理可能な送信電力を 大幅に向上させ得るマイクロ波半導体スイッチを提供す ることを目的としている。

[0015]

【課題を解決するための手段】本発明によれば上記目的 は前記特許請求の範囲に記載された手段により達成され

【0016】すなわち、請求項1の発明は、第1の半導 体スイッチとインダクタ (L) を直列接続した回路と、 両端子間にインダクタ(L') を装荷した第2の半導体 スイッチとキャパシタ (C) を直列接続した回路とを並 列接続すると共に、上記第1の半導体スイッチと第2の 半導体スイッチの内の一方がオンであるときには他方も オンであるように連動して動作する如く構成し、第1の 両端子間の寄生容量をC8とするときL′(C+Cs) =LCとなるようにL、L′、Cの値を設定し、動作時 波数 f において前記請求項1に記載の"数1"を満足す る如く成したマイクロ波半導体スイッチである。

【0017】また、請求項2の発明は、第1の半導体ス イッチとキャパシタ(C)を直列接続した回路と、両端 子間にキャパシタ(C´)を装荷した第2の半導体スイ ッチとインダクタ(L)を直列接続した回路とを並列接 統すると共に、上記第1の半導体スイッチと第2の半導 により生じており、これが高抵抗であることから、送信 30 体スイッチの内の一方がオンであるときには他方もオン であるように運動して動作する如く構成し、第1の半導 体スイッチおよび第2の半導体スイッチそれぞれの両端 子間の寄生容量をCsとするときC′+Cs=Cとなる ようにCおよびC′の値を設定し、動作周波数fにおい て前記讃求項1に記載の"数1"を満足する如く成した ことを特徴とするマイクロ波半導体スイッチである。

【0018】また、鯖求項3の発明は、第1の半導体ス イッチとキャパシタ(C)を直列接続した回路の両端子 間にインダクタ(L)を装荷した回路と、第2の半導体 スイッチの両端子間にキャパシタ(C´)を装荷した回 曙とを直列接続すると共に、上記第1の半導体スイッチ と第2の半導体スイッチの内の一方がオンであるときに は他方もオンであるように連動して動作する如く構成 し、第1の半導体スイッチおよび第2の半導体スイッチ それぞれの両端子間の寄生容量をCsとするときC'+ Cs+CCs/(C+Cs) =CとなるようにCおよび C'の値を設定し、動作周波数 f において前記請求項 l に記載の"数1"を満足する如く成したマイクロ液半導 体スイッチである。

【0019】また、請求項4の発明は、第1の半導体ス 50

イッチとインダクタ(L)を直列接続した回路の両端子 間にキャパシタ(C)を装荷した回路と、第2の半導体 スイッチの両端子間にインダクタL^を装荷した回路と を直列接続してなり、第1の半導体スイッチおよび第2 の半導体スイッチそれぞれの両端子間の寄生容量をCs とするときL'・(Cs+C1/(C-Cs))=LC となるようにLとL、およびCの値を設定し、動作周波 数 f において前記請求項 1 に記載の"数 1"を満足する 如く成したマイクロ波半導体スイッチである。

[0020]

【作用】上述の手段によれば、スイッチ素子を全て導通 にすればLC並列(反)共振回路となって、寄生容量の 有無にかかわらず該共振周波数foで開放となり、アイソ レーション特性の優れたマイクロ波半導体スイッチが実 現できる。

【0021】また、後述の実施例の項で述べるように、 スイッチ素子を全て関放にした場合に該共振周波数foで 導通となるようにできる。このような共振/反共振モー ド切り替えによるスイッチ回路を、以下の説明では、共 **振モード切替回路とも甘う。**

【0022】本発明の共振モード切替回路を大きな信号 電圧が印加される箇所(図8, 9ではSW1およびSW 4) に用いると、高出力増幅器からの出力信号電圧が上 記の共振モード切替回路に印加される時、眩共振モード 切替回路内のスイッチは導通状態であり、その両端子に は電位差が生じないから、送信電力にかかわらずドレイ ン(ソース)-ゲート間の電位差をほぼ0V一定に保持 できる.

【0023】すなわち、FET単体をスイッチとして用 ン(ソース)-ゲート間の電位差の増加を解消すること ができるため、印加信号電圧制限が無くなり、処理可能 な送信電力を大幅に向上させることができる。

【0024】 首い換えれば、スイッチ索子(あるいは回 路)に対する要求条件を耐電圧性から耐電流性に置き換 えることによって送信可能な電力を向上している。すな わち、高出力FETの出力に限界があるのと同じ理由に より、耐電圧性の高いFETの開発は非常に高度なプロ セス技術と長い開発期間とを必要とし、その上、限界が あるが、耐電流性は複数のFETを並列接続しゲート幅 40 を増加することにより向上させることができるので、従 来のFETを用いて容易に実現できる。

[0025]

【実施例】図1は、本発明のマイクロ波半導体スイッチ の第1の実施例を示す図である。 本実施例はスイッチ素 子20 aおよび20 bと、インダクタ50(L)および 50′(L′)、キャパシタ60(C)を図のように組 み合わせて構成している。 端子10および10′ は制御 **電圧印加のための端子を表わしている。**

とはその一方がオンのときは他方もオンとなるように連 動して動作する。 スイッチ素子の両端子間に寄生容量が なく、該スイッチ索子が理想的に動作するとすれば、両 スイッチ案子が導通の時インダクタ50(L)とキャパ シタ60 (C) とが並列 (反) 共振し、本スイッチの両 増子間100-101は開放となる。 また、 陶スイッチ 素子が開放の時インダクタ50′(L´)とキャパシタ 60 (C) とが直列共振し、本スイッチの両端子間10 0-101は導通となる。

6

【0027】ここで、スイッチ寮子の両端子間にCsな る寄生容量が存在する場合、直列共振周波数fo〔s〕は "数3"のようになり並列共扱周波数fo〔p〕は"数 4" のようになる。

[0028]

【数3】

$$fo[s] = \frac{1}{2\pi\sqrt{L'(C+Cs)}}$$

[0029]

【数4】

$$fo[p] = \frac{1}{2\pi \sqrt{1C}}$$

【0030】"数3"はスイッチ来子がオフのときであ り、図1の娘子100~101間は導通状態となる。ま た"数4"はスイッチ案子がオンのときであり、図1の 増子100~101間は開放状態となる。

【0031】したがって、L′(C+Cs)=LCを消 たすようにL、L^の値を設定することにより、同一周 いた従来の場合に生じていた送信電力増加に伴うドレイ 30 波数で導通/開放のスイッチングが可能となり、スイッ チ案子の寄生容量の有無にかかわらず、マイクロ液領域 において高いアイソレーションを実現できる。 また、従 来のFETなどを用いるスイッチに対し、制御の極性を 反転している。この特徴は後述する第5の実施例である T/Rスイッチの耐電力性向上に大変効果がある。この ことは、第2および第3の実施例においても同様であ る.

> 【0032】図2は、本発明のマイクロ波半導体スイッ チの第2の実施例を示す図である。 本実施例はスイッチ ヤパシタ60(C) および60'(C') を図のように 組み合わせて構成している。始子10および10′は制 御電圧印加のための端子である。

【0033】スイッチ茶子の両端子間に寄生容量がな く、該スイッチ素子が理想的に動作するとすれば、両ス イッチ索子が導通の時インダクタ50 (L) とキャパシ 夕60 (C) とが並列(反) 共振し、本スイッチの両端 子間100-101は開放となる。また、闷スイッチ案 子が開放の時インダクタ50(L)とキャパシタ60′ [0026] スイッチ素子20aとスイッチ素子20b 50 (C')とが直列共振し、本スイッチの両端子間100

-101は導通となる。

【0034】ここで、スイッチ素子の両端にCsなる寄 生容量が存在する場合の直列共振周波数fo (s) は "数 5"のように、また、並列共振周波数fo〔p〕は前記 "数4"で示すようになる。

[0035]

【数5】

$$fo[s] = \frac{1}{2\pi\sqrt{L(C'+Cs)}}$$

【0036】したがって、C'+Cs=Cを満たすよう にC、C′の値を設定することにより、同一周波数で導 **通/開放のスイッチングが可能となり、スイッチ案子の** 寄生容量の有無にかかわらず、マイクロ波領域において 高いアイソレーションを実現できる。

【0037】図3は、本発明のマイクロ波スイッチの第 3の実施例を示す図である。本実施例はスイッチ素子2 0 a および2 0 b と、インダクタ5 0 (L)、キャパシ* *夕60(C)および60′(C′)を図のように組み合 わせて構成している。 端子10および10′は制御電圧 印加のための増子である。

【0038】スイッチ素子の両端子間に寄生容量がな く、嵌スイッチ案子が理想的に動作するとすれば、两ス イッチ来子が導通の時インダクタ50(L)とキャパシ 夕60 (C)とが並列 (反) 共振し、本スイッチの両端 子間100-101は閉放となる。また、両スイッチ素 子が開放の時インダクタ50(L)とキャパシタ60^ (C')とが直列共振し、本スイッチの両端子間100 -101は導通となる。

【0039】ここで、スイッチ素子の両端にCsなる寄 生容量が存在する場合、直列共振周波数fo [s] は "数 6"に示すようになり、並列共振周波数[o [p] は前記 "数4" に示すようになる。

[0040]

【数6】

fo[s] = 2π√ L[C'+Cs+CCs/(C+Cs)]

【0041】 したがって、C'+Cs+CCs/(C+ Cs) = Cを満たすようにC、C′の値を設定することに より、同一周波数で導通/開放のスイッチングが可能と なり、スイッチ素子の寄生容量の有無にかかわらず、マ イクロ波領域において高いアイソレーションを実現でき ۵.

【0042】尚、実施例1と実施例2との関係と同様 に、実施例3のインダクタとキャパシタを入れ替えた構 成においても同様な効果を得ることができる。図4は、 上記のいずれかのスイッチ(図では共振モード切替回路 30 30a、30bとして表示している)を組み合わせた婚 子切り替えを行なうSPDTスイッチの構成を示す図で あって、第1の端子25と第2の端子26との間および 第1の端子25と第3の端子27との間にそれぞれ直列 にスイッチを接続している。

【0043】各スイッチのアイソレーション特性がスイ 、ッチ素子の寄生容量の影響により劣化しないため、共振 周波数付近のマイクロ波帯において良好な端子切り替え 特性を実現できる。SPDTスイッチは本実施例に限ら ず、スイッチを直列/並列に組み合わせてさらにアイソ 40 レーション特性を向上させることができる。

【0044】図5は、上記のいずれかの共振モード切替 回路を組み合わせたT/Rスイッチの基本構成を示す図 である。ここで、共振モード切替回路として第1の実施 例のものを用いているが、第2および第3の実施例のも のを用いても同様である。

【0045】図において、本発明のT/Rスイッチは、 インダクタ51、52 (L1)、キャパシタ61 (C1) および、スイッチ素子1a、1bを組み合わせて構成し た共扱モード切替回路1(SW1)、インダクタ54、

55 (L₂)、キャパシタ56 (C₂) およびスイッチ来 子4a、4bを組み合わせて構成した共振モード切替回 路4 (SW4) と、スイッチ索子2 (SW2) 、3 (S W3) とで構成される。SW1とSW3はそれぞれ経路 25-26、経路25-27に対して直列に接続され る。SW2とSW4はそれぞれ経路25-26、経路2 5-27と接地との間に並列に接続される。

[0046] ここで、11、11′、12、13、1 4、14'は各スイッチ素子のON/OFF制御端子で あり、1 a と 1 b、および 4 a と 4 b がそれぞれ同種の スイッチ素子である場合、11と11′および14と1 4'には同一の制御電圧を印加する。以下、各スイッチ 来子が寄生容量を持たないとして動作を説明する。

【0047】まず、SW1およびSW4における共振モ ード切替機能を説明する。 SW1において、1 a および 1 bが導通となるように制御電圧11および11′に電 圧を印加すると、インダクタ52の両端は短絡し、イン ダクタ51とキャパシタ61は電気的に両端で接続され るので、インダクタ51 (L1) とキャパシタ61 (C1) との並列回路が経路25-26に対して直列に 接続される。

【0048】この時、該L1C1並列回路の共振周波数と その近傍において経路25-26は開放となる。また、 1 a および 1 b が開放となるように制御電圧 1 1 および 11'に電圧を印加すると、インダクタ51とキャパシ タ61の接続およびインダクタ52の両端の短絡は解除 され、インダクタ52 (L1) とキャパシタ61 (C1) との直列回路が経路25-26に対して直列に接続され る.

【0049】この時、骸L1C1直列回路の共振周波数と 50

その近傍において経路25-26は導通となりうる。こ こで、上配の直列共振および並列共振の周波数は同一で あり、"数 7"に示す同一周被数の信号に対してスイッ チとして動作する。

[0050] 【数7】

1/2 π / LC

【0051】 SW4において、4 a および4 b が導通と なるように、制御電圧14、および14′に電圧を印加 10 すると、インダクタ55の阿嬪は短絡し、インダクタ5 4とキャパシタ62は電気的に阿端で接続されるので、 インダクタ54 (La) とキャパシタ62 (Ca) との並 列回路が経路25-27と接地との間に並列に接続され

【0052】この時、該L:C:並列回路の共振周波数と その近傍においてSW4は高インピーダンスとなり、S ₩3が導通の時経路25-27は導通となる。また、4 aおよび4bが開放となるように制御電圧14および1 62の接続およびインダクタ55の両端の短絡は解除さ れ、インダクタ55 (L:) とキャパシタ62 (C:) と の底列回路が経路25-27と接地との間に並列に接続 される。

【0053】この時、該L2C2直列回路の共振周波数と その近傍において経路25-26は接地電位に短絡され る。ここで、上記の直列共振および並列共振の周波数は 同一であり、"数8"に示す同一周被数の信号に対して スイッチとして動作する。

[0054]

【数8】

1/2 m / L' C'

【0055】次に、図5において、SW1とSW4の共 振周波数が同一となるようにL1、L2、C1、C2の値を 設定した場合の動作を説明する。

- 、(1) スイッチ素子la、1b、2が閉放となるよう に制御端子11、11′、12に電圧を印加し、かつス イッチ素子4a、4b、3も開放となるように制御端子 14, 14′、13に電圧を印加すると、
 - ・SW1が導通
 - ・SW2が開放
 - ・SW3が開放
 - ・SW4が導通

となるので、経路25-26が導通し、経路25-27 が開放となる。

【0056】したがって、端子25からの入力信号は端 子26に伝達し(または、端子26からの入力信号が端 子25に伝達し)、端子27には伝達されない。

10

に制御端子11、11′、12に電圧を印加し、かつス イッチ索子4a、4b、3も導通となるように制御端子 14、14′、13に電圧を印加すると、

- ・SW1が開放
- SW2が導通
- ・SW3が導通
- ・SW4が開放

となるので、経路25-26が開放となり、経路25-27が導通する。したがって、端子25からの入力信号 は端子27に伝達し(または、端子27からの入力信号 が端子25に伝達し)、端子26には伝達されない。

【0057】したがって、T/Rスイッチとして動作す る。ここで、増子25を送・受信共用アンテナ増子、増 子26を低雑音増幅・周波数変換器接続端子、端子27 を高出力増幅器接続増子とし、微弱電波をアンテナから 低雑音増幅器に伝達する受信経路25-26と、高出力 増幅器出力をアンテナに伝達する送信経路25-27を 有するT/Rスイッチを考える。

[0058] また、受信経路25-26が導通の時(送 4'に電圧を印加すると、インダクタ54とキャパシタ 20 信経路25-27が開放の時)高出力増幅器は出力停止 または出力抑制されるものとする(消費電力を削減し通 話および待時間を延長することが重要な携帯機では周知 の事項である)。

【0059】上配の(1) および(2) で説明したよう に、送信経路25-27が導通している場合、SW1お よびSW4は開放であり、これらを構成するスイッチ素 子1a、1b、4a、4bは全て導通である。また、S W2およびSW3も導通である。SW1およびSW4は 送信経路25-27と接地との間に接続され、かつ開放 (高インピーダンス)であるから、その両端子には送信 出力が大きい程高い電圧が印加される。

[0060] しかし、SW1およびSW4を構成するス イッチ案子1a、1b、4a、4bは全て導通であるか ら、これらのスイッチ素子には電圧が印加されず、丙烯 子の電位は送信出力の大きさによらずおおむね接地電位 となる。 したがって、接地されたスイッチ案子を開放に して送信経路を導通としていた従来のT/Rスイッチに 比べて大幅に送僧電力を向上させることができる。尚、 SW3は導通であるから両端子に電圧差が生じないの 40 で、負荷インピーダンスの1/2乗に反比例した電流が 流れる。また、SW2も導通しているが、高インピーダ ンスのSW1を介して信号電圧が印加されているので、 **電流は流れない。**

【0061】受信経路25-26が導通している場合、 SW1およびSW4は導通であり、これらを構成するス イッチ来子1a、1b、4a、4bは全て開放である。 また、SW2およびSW3も開放である。ここで、受信 **信号は微弱であるから、これに対してどのスイッチ案子** においても電圧および電流について十分に許容範囲内に (2) スイッチ索子 1 a、 1 b、 2 が導通となるよう 50 ある。 更に、 高出力増幅器が出力停止または出力抑圧の

【0062】したがって、信号電流の通路となるSW4 においてインダクタ55と並列に接続されたスイッチ素 子4 bの両端子にかかる電圧は非常に小さくすることが できる。以上述べたように、共振モード切替回路を受信 経路に直列に、かつ送僧経路と接地との間に並列に接続 することにより従来に比べ最大処理電力を大幅に向上さ せることができる。

【0063】図6は、図1に示した実施例のスイッチ素 換えたものである。 対応するものは図1と同じ番号およ び記号を付している。制御婚子は各FETのゲートに接 続している。

【0064】 FETのドレイン-ソース関抵抗は、これ ら両電極が同電位(図では接地電位)にパイアスされて いる場合、ゲート電位が0Vの時数オーム以下で、ゲー ト電位がピンチオフ電圧Vp(<0)以下の時数十キロ オームないし数メガオームとなり、FETをスイッチ業 子として用いることにより高い抵抗比を実現できる。

【0065】このスイッチング特性を利用し、図5につ 20 いて述べた動作原理に基づいたT/Rスイッチを実現で きる。ここで、送信経路25-27が導通の時、つま り、SW1およびSW4に大きな電圧が印加される時、 FET4a、4bは導通であるから、送信電力にかかわ らず、ドレインおよびソースは接地電位にパイアスされ る。したがって、最大送信電力を大幅に向上させること ができる。

[0066] この最大送信電力は、インダクタL1(5 1) およびL: (5 4) に流れる高周波電流により制限 される。しかし、籔高周波電流に見合うゲート幅のFE 30 Tを1aおよび1bに採用することにより、最大送信電 力を高めることができる。ここで、最大送僧電力をPm ax、最大高周波電流を1max、共振周波数をfoとす れば、Imaxは"数9"で与えられる。

[0067]

【数9】

[0068] ゲート幅1mm程度のFBTを使用すれ 40 ば、200mA程度の電流を流すことができるから、2 π[oLが40程度の場合30W以上の送信電力に耐えう る。図7は、図6と同一のT/Rスイッチにおいて、各 制御端子を一つにまとめた例である。 図中で一部の番号 は省略した。 図1で説明したように、送信あるいは受信 経路が導通の状態において各FETに対する制御電圧は それぞれ同一であるから、各制御端子は共通の端子に接 続することができる。これを図中の破線で示している。 [0069]

【発明の効果】以上説明したように本発明は、スイッチ 50 60

素子を導通/開放状態にスイッチングすることにより並 列(反)共振/直列共振状態にスイッチングするスイッ チであるため、マイクロ波などの高周波領域において、 スイッチ索子の寄生容量に影響されない良好なアイソレ ーション特性を有する。また、開放時において、スイッ チ素子に印加される高周波信号電圧を微小に保つ効果が あるので、T/Rスイッチにおける処理可能な送信電力 を大幅に向上させることができる。

12

[0070] また、本発明はFETに限らず、PINダ 子1a、1b、2、3、4a、4bを全てFETで置き 10 イオードなどの種々の半導体スイッチ素子を用いても構 成することができ、それぞれの半導体スイッチによる従 来のT/Rスイッチに比べ送信電力を大にすることがで きる。また、制御婦子の系統を共通にできるため、制御 回路を簡潔なものと成し得る利点がある。

【図面の簡単な説明】

【図1】本発明の第1の実施例の構成を示す図である。

【図2】本発明の第2の実施例の構成を示す図である。

【図3】本発明の第3の実施例の構成を示す図である。

【図4】本発明のマイクロ波半導体スイッチを適用した SPDTスイッチの実施例の構成を示す図である。

【図5】本発明のマイクロ波半導体スイッチを適用した T/Rスイッチの実施例の構成を示す図である。

【図6】図1の実施例の構成において、スイッチ案子を FETとした場合の回路図である。

【図7】図6の構成において、スイッチ素子の制御端子 を共通にした例を示す図である。

【図8】従来のマイクロ波半導体スイッチの基本構成を 示す図である。

【図9】従来のマイクロ波半導体スイッチの一例を示す 図である。

【符号の説明】

1,4 共振動モード切替回路

1 a, 1 b, 2, 3, 4 a, 4 b, 20 a, 20 b スイッチ素子

10, 10', 11, 11', 12, 13, 14, 1 スイッチ素子の制御始子

21~24 スイッチ条子

31~34 上配スイッチ来子の制御帽子

マイクロ波半等体スイッチの端子(アンテナ接 統兇子)

26 マイクロ波半導体スイッチの嫡子(低雑音増幅 器・周波数変換器接続端子)

27 マイクロ波半導体スイッチの端子(高出力増幅 器接続端子)

30a、30b 共振モード切替回路

インダクタ (L)

501 インダクタ (L')

5 1 インダクタ (L1)

54, 55 インダクタ (L1)

キャパシタ (C)

(8)

ーキャパシタ (C') 61 キャパシタ (C1)

62 キャパシタ (C₂)

100, 101 マイクロ波半導体スイッチの端子

【図1】

【図3】

本発明の第3の実施興の構成を示す図

[図4]

本発明のマイクロ波半導体スイッチを適用した SPDTスイッチの実施例の構成を示す図

[图2]

水発明の第2の実施例の構成を示す図

[図5]

【図6】

本発明のマイラロ波半等はスイッチを適用した T/Rスイッチの実施例の構成を示す図

図1の実施例の構成においてスイッチ素子を FETとした場合の回路図

【図8】

[図9]

従来のマイクロ波半導体スイッチの基本構成を示す図

従来のマイフロ波半導体スイッチの一例を示す図

[図7]

図6の構成においてスイッチ素子の制御補子 を共通にした例を示す図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS	
Mage cut off at top, bottom or sides	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
GRAY SCALE DOCUMENTS	- -
☑ LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POO	DR QUALITY
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.