# Quantum Neural Network 회로 구성

https://youtu.be/CVY30tzUm40





## QNN과 Quantum gate

- QNN을 구성하는 Parameterized Quantum Circuit에서는 다음과 같은 게이트들이 주로 사용
- H: 중첩 상태로 만들기 위함
- Ry: y축 기준 큐비트 회전 연산 (큐비트의 상태를 바꿈)
  - z축에 대한 값이 변화 → 0 또는 1이 될 결과 확률 (확률 진폭의 제곱)이 변함
  - Rx도 동일한 확률이 나오지만, Ry는 실수 확률 진폭을 갖고, Rx는 복소수 확률 진폭을 가짐 ; Ry가 더 주로 사용되는 듯
- X: NOT 연산 → 0 또는 1이 될 확률을 바꾸는 의미
- Ry, Rx, X 등의 게이트들은 Control qubit을 통해 얽힘 상태로 구성됨 → 큐비트 상태를 제어하므로 매우 중요..
  - → 이를 통해 회로를 조건부 확률처럼 제어할 수도 있음
  - → CX, CCX, CRy, CCRy 등

## 큐비트 측정

#### • 측정

- 큐비트를 얽힘 상태로 두고 마지막 큐비트만을 측정하여 해당 값을 실제 Label과 비교하는 경우
- 큐비트를 얽힘 상태로 두고 모든 큐비트를 측정하는 경우
- 적어도 하나는 측정해야 함
- 큐비트에 입력데이터를 인코딩한 후, 양자 게이트를 적용하고 측정
   → 즉, 입력 데이터가 회로의 게이트를 거친 후 측정까지 하고, 해당 값이 정답 label이 나오도록
- Z-measure를 하는 이유? Z축을 기저로 하여 측정할 경우, 0 또는 1로 결정

## 회로 구성 방법

- 회로를 구성하는 게이트나 데이터 인코딩 방식은 논문마다 다름
  - 실험을 통해 게이트들을 직접 구성
  - pennylane과 같은 프레임워크를 활용하여 **랜덤 회로 또는 주어진 회로 사용**

#### PennyLane

- 양자 및 하이브리드 양자 고전 신경망의 최적화를 위한 Python 3 소프트웨어 프레임워크
- 다양한 플러그인 제공
- Tensorflow, Pytorch, Cirq, Qiskit, IBM Q, Amazon braket 등과 호환 가능
- TF, Pytorch의 함수 사용 가능, Keras layer로 작성 가능
- 회로를 분할하여 병렬처리 가능, 여러 회로 통합 가능, 다른 디바이스에서 동시 수행 가능 등 다양한 기능



## Pennylane - 간단한 회로 구성

```
import pennylane as qml
from pennylane import expval
from pennylane.optimize import GradientDescentOptimizer
dev = qml.device('default.qubit', wires=1)
@qml.qnode(dev)
def circuit1(var):
    qml.RX(var[0], wires=0)
    qml.RY(var[1], wires=0)
    return expval(qml.PauliZ(0))
opt = GradientDescentOptimizer(0.25)
var = [0.1, 0.2]
for it in range(30):
    var = opt.step(circuit1, var)
    print("Step {}: cost: {}".format(it, circuit1(var)))
```

## Pennylane - 필요한 기능

```
def loss(labels, predictions):
    # Compute loss
    ...

def regularizer(var):
    # Compute regularization penalty
    ...

def statepreparation(x):
    # Encode x into the quantum state
    ...
```

```
def layer(W):
    # Layer of the model
    . . .
def circuit3(x, weights):
    # Encode input x into quantum state
    statepreparation(x)
    # Execute layers
    for W in weights:
        layer(W)
    return ... # Return expectation(s)
def model(x, var):
    weights = var[0]
    bias = var[1]
    return circuit3(x, weights) + bias
def cost(var, X, Y):
    # Compute prediction for each input
    preds = [model(x, var) for x in X]
    # Compute the cost
    loss = loss(Y, preds)
    regul = regularizer(var)
    return loss + 0.01 * regul
```

# Pennylane - 코드

Qiskit + pennylane

## Pennylane – keras와의 호환

```
import pennylane as qml
                                                                                AngleEmbedding(M0)—
                                                                                                  BasicEntanglerLayers(M1) (Z)
                                                                                LAngleEmbedding(M0)—
                                                                                                  BasicEntanglerLayers(M1) (Z)
n qubits = 2
dev = qml.device("default.qubit", wires=n_qubits)
@qml.qnode(dev)
def qnode(inputs, weights):
                                                                            데이터 인코딩
    qml.AngleEmbedding(inputs, wires=range(n qubits))
    qml.BasicEntanglerLayers(weights, wires=range(n_qubits)) —
                                                                               레이어
    #print(weights)
    #drawer = qml.draw(qnode)
    #print(drawer(inputs, weights))
    return [qml.expval(qml.PauliZ(wires=i)) for i in range(n_qubits)]
                                                    import pennylane as gml
                                                    n qubits = 2
                                                    dev = qml.device("default.qubit", wires=n_qubits)
                                                    @gml.gnode(dev)
                                                    def qnode(inputs, weights):
                                                        qml.AngleEmbedding(inputs, wires=range(n qubits))
                                                        qml.RandomLayers(weights, wires=range(n_qubits))
                                                        #print(weights)
                                                        #drawer = gml.draw(gnode)
                                                        #print(drawer(inputs, weights))
       AngleEmbedding(MO)
                          RandomLayers (M1)
                                             (Z)
                                                        return [qml.expval(qml.PauliZ(wires=i)) for i in range(n_qubits)]
       LAngleEmbedding(M0)
                          LRandomLayers (M1)
                                             (Z)
```

## Pennylane – keras와의 호환

```
n_layers = 6
weight_shapes = {"weights": (n_layers, n_qubits)}

qlayer = qml.qnn.KerasLayer(qnode, weight_shapes, output_dim=n_qubits)
```

```
clayer_1 = tf.keras.layers.Dense(2)
clayer_2 = tf.keras.layers.Dense(2, activation="softmax")
model = tf.keras.models.Sequential([clayer_1, qlayer, clayer_2])
```

```
clayer_1 = tf.keras.layers.Dense(2)
clayer_2 = tf.keras.layers.Dense(2, activation="softmax")
model = tf.keras.models.Sequential([qlayer])
```

```
opt = tf.keras.optimizers.SGD(learning_rate=0.2)
model.compile(opt, loss="mae", metrics=["accuracy"])
```

### Pennylane – keras와의 호환

- 양자 회로만 사용할 수도 있고, hybrid 형태로 사용 가능
- 주어진 간단한 데이터(parity bit)로 실험한 결과 (basic entangler layers 사용), 고전 레이어를 출력층으로 사용한 경우가 양자 회로만 사용한 것보다 낮은 loss 및 높은 정확도 달성

```
Epoch 1/6
30/30 - 9s - loss: 0.4367 - accuracy: 0.6733 - val_loss: 0.3004 - val_accuracy: 0.8000 - 9s/epoch - 314ms/step
Epoch 2/6
30/30 - 9s - loss: 0.2712 - accuracy: 0.7867 - val_loss: 0.2226 - val_accuracy: 0.8400 - 9s/epoch - 312ms/step
Epoch 3/6
30/30 - 10s - loss: 0.2066 - accuracy: 0.8267 - val_loss: 0.1947 - val_accuracy: 0.8000 - 10s/epoch - 321ms/step
Epoch 4/6
30/30 - 9s - loss: 0.1830 - accuracy: 0.8533 - val_loss: 0.1794 - val_accuracy: 0.8400 - 9s/epoch - 312ms/step
Epoch 5/6
30/30 - 9s - loss: 0.1693 - accuracy: 0.8600 - val_loss: 0.1730 - val_accuracy: 0.8600 - 9s/epoch - 311ms/step
Epoch 6/6
30/30 - 9s - loss: 0.1529 - accuracy: 0.8667 - val_loss: 0.1935 - val_accuracy: 0.8400 - 9s/epoch - 315ms/step
```

Only Quantum layer

#### With classical layer

```
Epoch 1/6
30/30 - 9s - loss: 0.5467 - accuracy: 0.5333 - val_loss: 0.3565 - val_accuracy: 0.7400 - 9s/epoch - 300ms/step
Epoch 2/6
30/30 - 9s - loss: 0.3474 - accuracy: 0.7467 - val_loss: 0.3397 - val_accuracy: 0.8000 - 9s/epoch - 295ms/step
Epoch 3/6
30/30 - 9s - loss: 0.3448 - accuracy: 0.7667 - val_loss: 0.3559 - val_accuracy: 0.7000 - 9s/epoch - 297ms/step
Epoch 4/6
30/30 - 9s - loss: 0.3525 - accuracy: 0.7600 - val_loss: 0.3750 - val_accuracy: 0.7800 - 9s/epoch - 302ms/step
Epoch 5/6
30/30 - 9s - loss: 0.3515 - accuracy: 0.7200 - val_loss: 0.3534 - val_accuracy: 0.7200 - 9s/epoch - 300ms/step
Epoch 6/6
30/30 - 9s - loss: 0.3503 - accuracy: 0.7800 - val_loss: 0.3612 - val_accuracy: 0.7400 - 9s/epoch - 302ms/step
```

#### 입력 데이터 인코딩 회로

Angle Embedding

입력 데이터를 Rotation 게이트의 회전 각으로 사용 (Rx, Ry, Rz, default = Rx)

qml.AngleEmbedding(inputs, wires=range(n\_qubits))

Amplitude Embedding

2<sup>n</sup>개의 입력 데이터를 n개의 큐비트에 임베딩

벡터 표현을 위해 입력 feature는 자동 패딩 및 정규화 됨

→ 큐비트가 2개, 입력 데이터가 2개면 입력데이터를 4차원으로 zero-padding

#### Layers

Basic Entangler Layers



qml.BasicEntanglerLayers(weights, wires=range(n\_qubits))

- 매개변수
   가중치(회전 각)와 큐비트(wire), 회전게이트 (default = Rx)
- 이웃 큐비트들끼리 연결하고, 마지막 큐비트는 첫번째 큐비트와 얽힘

Strongly Entangler Layers \*



- 매개변수
  가중치(회전 각)와 큐비트(wire), r(레이어 반복 수),
   얽힘 게이트 (default = CNOT),
- r값만큼
  - 레이어 반복
  - r번째 레이어에서의 얽힘
  - → i번째 큐비트와 (i+r mod M(큐비트 수)) 번째 큐비트

#### Layers

Random Layers



- 매개변수 가중치(회전 각)와 큐비트(wire), 얽힘 게이트 비율
- 게이트 및 큐비트 무작위 구성
  - → 단일 큐비트 회전 및 두 개의 큐비트에 대한 얽힘 회전
  - → 얽힘 게이트 비율이 0.3이면, 전체 게이트가 30개일 때, 10개는 얽힘 회전 게이트로 설정

qml.RandomLayers(weights, wires=range(n\_qubits))

### Simplified Two Design

Simplified Two Design



- 매개변수 초기 가중치, 가중치(회전 각)와 큐비트(wire)
- 초기 레이어:Ry
- 이후 레이어
  - Ry, Controlled Z로만 구성
  - 각 큐비트 당 Ry 게이트 쌍 하나씩 (게이트 쌍에 대해 동일한 가중치)
  - 즉, M-1개의 가중치 쌍 가짐
    - → 가중치는 (레이어 개수, M-1, 2)의 형태

<sup>\*</sup>Cerezo, M., Sone, A., Volkoff, T. et al. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat Commun 12, 1791 (2021). 에서 제안

### 관련 논문 간단한 소개

## DECENTRALIZING FEATURE EXTRACTION WITH QUANTUM CONVOLUTIONAL NEURAL NETWORK FOR AUTOMATIC SPEECH RECOGNITION

Chao-Han Huck Yang<sup>1</sup> Jun Qi<sup>1</sup> Samuel Yen-Chi Chen<sup>2</sup> Pin-Yu Chen<sup>3</sup> Sabato Marco Siniscalchi<sup>1,4,5</sup> Xiaoli Ma<sup>1</sup> Chin-Hui Lee<sup>1</sup>

<sup>1</sup>School of Electrical and Computer Engineering, Georgia Institute of Technology, USA
 <sup>2</sup>Brookhaven National Laboratory, NY, USA and <sup>3</sup>IBM Research, Yorktown Heights, NY, USA
 <sup>4</sup>Faculty of Computer and Telecommunication Engineering, University of Enna, Italy
 <sup>5</sup>Department of Electronic Systems, NTNU, Trondheim, Norway

- 1. 연합 학습 (데이터 프라이버시 보장 위해 cloud와 local로 나누어 학습)
- 2. 양자 컨볼루션 신경망 사용 (cloud), 시계열 신경망 사용 (local)
- 3. 음성 인식 (10개의 label)
- 4. QCNN을 통한 음성 데이터 특징 추출 / RNN을 통한 분류 작업

## 시스템 구성도



#### 회로 구성

#### 양자 회로를 구성하여 양자 커널(고전 CNN에서의 filter)로 사용

→ 입력 데이터의 특징을 추출



(a) QCNN Computing Process.

(b) Deployed Quantum Circuit.

```
f_i = \mathbf{Q}(\mathbf{u}_i, \mathbf{e}, \mathbf{q}, \mathbf{d}), \text{ where } \mathbf{u}_i = \text{Mel-Spectrogram}(\mathbf{x}_i).
```

fx : 인코딩 된 feature q : 양자 회로 파라미터

x : 입력 데이터

e : 인코딩

d: 디코딩 (measurement)

Phase 1: 
$$\Phi_1 = R_y |0\rangle R_y |0\rangle R_y |0\rangle R_y |0\rangle$$
.

**Phase 2**: 
$$\Phi_2 = (R_x R_y | 0\rangle) \text{CNOT}(R_y | 0\rangle) R_y | 0\rangle R_z R_y | 0\rangle$$
.

**Phase 3**: 
$$\Phi_3 = \text{CNOT}((R_x R_y | 0)) \text{CNOT}(R_y | 0) R_y | 0 R_z R_y | 0$$
.

Phase 4: 
$$\Phi_4 = R_x R_y \Phi_3$$

이 때 사용한 회로는 Pennylane에서 배포한 랜덤 회로를 사용

## 실험 결과

- 실험 결과 분석은 음성 신호 관련이라 생략
- 고전 신경망만 사용한 것보다 QCNN을 사용하여 특징을 추출하였을 때 더 높은 정확도를 얻음
- 큐비트 관련 분석
   3x3 커널(9개의 큐비트)를 사용할 때가 2x2 보다 성능이 안 좋음
   → 오류 발생으로 인한 결과로 생각됨
- 큐비트에는 오류가 발생하게 됨 그러나 현재 NISQ에서는 오류 정정까지는 어려운 상황이므로 커널이 크다고 좋은 성능을 얻지는 않음

## 향후 계획

- 양자 게이트나 얽힘, 측정 관련한 개념에 대해 좀 더 공부
- 데이터 인코딩 부분 세부사항 공부
- 간단한 고전 암호 데이터부터 원하는 형태로 회로 구성해볼 계획
  - → Amplitude Embedding 적용해볼 생각… (2<sup>n</sup>개의 데이터를 n개의 큐비트로 표현하는 방식)

감사합니다.