Chapter 2: Data preprocessing

outline

- Introduction to Data Quality Dimensions and Data Quality Assessments
 - Definition of Data Quality
 - Data Quality Dimensions
- Data pre-processing
 - Data Cleaning
 - ➤ Missing Data
 - **≻**Outliers
 - Data Transformation
 - ➤ Normalization
 - ➤ Encoding Categorical Features

Objectives

- Ddescribe importance of quality data for proper data use
- List data quality dimensions and data quality assessment ways
- Apply Python libraries to pre-process data.
- Apply data quality assurance techniques.
- Transform the data into form appropriate for Data Modeling.

Introduction to Data Quality Dimensions and Assessments

- Data is at most important in data science as it mainly works on data, and the quality of data is equally critical.
- Data quality dimensions are a notion that defines data quality using a set of data quality attributes.
- Data pre-processing is a crucial step in which data scientists select relevant data and address issues such as noise and redundancy

Introduction to Data Quality Dimensions and Assessments

- Data quality can be broadly defined as follows:
 - ✓ Fitness for use: Data must fit for its planned and intended uses.
- In order to satisfy the above-mentioned basic criteria's data must fulfills requirements to the following quality dimensions:
 - ✓ Completeness
 - ✓ Uniqueness
 - ✓ Timeliness
 - √ Validity
 - ✓ Accuracy
 - √ Consistency

Introduction to Data Quality Dimensions and Assessments

 Even though, there are multiple and advanced processes for assessing data quality, below is the generalized steps to assess data quality dimensions:

Step1: Identify Data

Step 2: Assess which data quality dimensions are/are not satisfied

Step 3: Define values or ranges representing good and bad quality

Step 4: Review the results and determine if data quality is acceptable Step

5: Take correctives measures

Data pre-processing

- Data Cleaning
 - Missing Data

Data Exploration with Pandas profiling

Imputing new values

Remove outliers

Transform log (Skewed Distribution)

Categorical one hot encoding

Scaling

ML Model

Data pre-processing

- Data preprocessing is a technique that involves preparing the given raw data into suitable and understandable format.
- Real world data is often incomplete, inconsistent, and is likely to contain many errors.
- Such challenges are overcome through a set of tasks that are performed to clean, integrate, transform, and reduce the data before running any analysis

Data pre-processing

- It's crucial to remember that data preprocessing is typically the most time-consuming part of the data science lifecycle.
- And it should be addressed seriously because bad data leads to weak models, poor performance, and bad results.

Data Pre-processing | Data Cleaning

- Data in the real world is typically messy in the sense that:
 - ✓ it may be incomplete: e.g. missing data
 - ✓ noisy : e.g. random error or outlier values that deviate from the expected baseline.
 - ✓ or inconsistent : e.g. patient age 18 and admission service is neonatal intensive care unit.

Data Pre-processing | Data Cleaning

- The process of identifying, correcting, or eliminating observations that are outside the scope of the dataset is known as data cleaning.
- It refers to techniques to clean data by removing outliers and replacing missing values

Data Cleaning | Missing Data

- In real-world datasets, missing data is common, and it has a significant impact on the final analysis result, potentially making the conclusion inaccurate.
- Identifying the source of missing values is crucial, as it influences the choice the handling methods

Data Cleaning | Missing Data

- For example, the sources of missing data could be :
 - √The variable is measured, but the value is not recorded for unknown reasons.
 - √The variable is not measured during a certain period of time due to an identifiable reason.
 - √The variable is not measured because it is unrelated with the patient's condition and provides no clinical useful information to the physician

- It is normally a reasonable rule of thumb to reject variables with an excessive amount of missing values (e.g. > 50%).
- However rejecting a variable can reduce predictive power and the capacity to discover statistically significant changes, as well as be a source of bias.
- For these reasons, variable selection needs to be tailored to the missing data mechanism.

- Imputation can be done before and/or after variable selection.
- The general steps that should be followed for handling missing data are:
 - ➤ Identify patterns and reasons for missing data.
 - Analyze the proportion(percentage) of missing data.
 - ➤ Choose the best imputation method

- The most widely used methods of handling missing data fall into three main categories:
 - 1. Deletion Methods
 - 2. Single Value Imputation Methods
 - 3. Model based Imputation Methods

1. Deletion Methods

- The simplest way to deal with missing data is to discard the cases or observations that have missing values.
- There are two ways of doing this:
 - ➤ Complete case analysis (Listwise deletion): All the observations with at least one missing variable are discarded.
 - Available-Case Analysis (Pairwise deletion): This method discards data only in the variables that are needed for a specific analysis. For example, if only 4 out of 20 variables are needed for a study, this method would only discard the missing observations of the 4 variables of interest

2. Single value imputation Method

- Missing values are filled by some type of "predicted" values.
- It ignores uncertainty and almost always underestimates the variance.
- The simplest imputation method is to substitute missing values by the **mean**, **mode** or the **median** of that variable.

3. Model based imputation methods (Reading assignment)

- In this method, a predictive model is created to estimate values that will substitute the missing data.
- The dataset is divided into training and test data.
- Several modeling methods can be used such as regression, logistic regression, Random forest, K-Nearest Neighbors

Data pre-processing

- Data Cleaning
 - Outliers

Data Cleaning | Outliers

- •An outlier is a data point which is different from the remaining data.
- •The main sources of outliers are:
 - ✓ Equipment malfunctions
 - ✓ Human errors
 - ✓ Anomalies arising from specific behaviors
 - ✓ Natural variation eg. within patients

Data Cleaning | Outliers

- The negative effects of outliers can be summarized in:
 - ➤ Increase in error variance and reduction in statistical power.
 - ➤ Decrease in normality for the cases where the outliers are non-randomly distributed.
 - Model bias by corrupting the true relationship between exposure and outcome.

Finding Outliers | Using visualization tools

1. Scatter Plot

■ It is a type of plot or mathematical diagram using Cartesian coordinates to display values for typically two variables for a set of

data.

Finding Outliers | Using visualization tools

2. Z-Score (Reading assignment)

- The Z-value test computes the number of standard deviations by which the data varies from the mean.
- The Z-score find the distribution of data where mean is 0 and standard deviation is 1 i.e. normal distribution.
- While calculating the Z-score we rescale and center the data and look for data points which are too far from zero

$$Z = \frac{X_i - \overline{X}}{S}$$

Xi=value of score \bar{x} =mean s=standard deviation

Z-score Vs Raw score

AREAS UNDER THE THEORETICAL NORMAL CURVE

Finding Outliers | Using visualization tools

- These data points which are way too far from zero will be treated as the outliers.
- While calculating the Z-score we rescale and center the data and look for data points which are too far from zero.
- These data points which are way too far from zero will be treated as the outliers.

Finding Outliers | Using visualization tools

3. Box Plot

- It is a method for graphically representing groups of numerical data through their quartiles.
 - Data should be sorted in ascending
 - IQR=q3-q1

Exercise: determine the outlier ranges using IQR

Location	PM_{10}	Order	
Edinburgh centre	0.4	1	
Glasgow centre	7.0	2	
Middlesbrough	12.2	3	
Nottingham centre	13.0	4	
Bristol centre	13.4	5	
Belfast centre	14.3	6	
Thurrock	14.6	7	← first quartile is 14.6
Cardiff centre	15.0	8	_
Liverpool centre	15.2	9	
Birmingham east	15.5	10	
Hull centre	15.6	11	
Birmingham centre	15.7	12	
Wolverhampton centre	16.2	13	
Manchester Piccadilly	16.6	14	← middle value is 16.6
Leeds centre	18.0	15	
Leicester centre	18.5	16	
Port Talbot	20.1	17	
Swansea centre	23.0	18	
London Bexley	23.2	19	
Sutton roadside	24.8	20	
London Kensington	24.9	21	← third quartile is 24.9
London Brent	25.0	22	_
London Bloomsbury	29.4	23	
Southampton centre	30.0	24	
London Hillingdon	30.7	25	
Camden kerbside	32.8	26	
Bury roadside	38.0	27	

Normalization

- Data normalization, also called feature scaling,
- is the process where the values for each numerical variable are scaled in order to range between a specified set of value
- Example: Converting the values to a common scale, such as 0 to 1 or -1 to 1
- Goal
 - To ensure large values in the dataset don't influence the learning process and have a similar impact on the model's learning process

Normalization

- It is used in machine learning:
 - To make model training less sensitive to the scale of feature and
 - allows our model to converge to better weights and, in turn, leads to a more accurate model.
- Normalization makes the features more consistent with each other, which allows the model to predict outputs more accurately.

Type of Normalization

Single feature scaling:

- Converts every value of a column into a number between 0 and 1.
- The new value is calculated as the current value divided by the max value of the column

Min Max:

- Converts every value of a column into a number between 0 and 1.
- The new value is calculated as the difference between the current value and the min value, divided by the range of the column value

Z-score:

- Converts every value of a column into a number around 0.
- Typical values obtained by a z-score transformation range from -3 and 3.
- The new value is calculated as the difference between the current value and the average value, divided by the standard deviation.

Log Scaling:

 Log scaling involves the conversion of a column to the logarithmic scale

Clipping:

It involves the capping of all values below or above a certain value.
Clipping is useful when a column contains some outliers.

Encoding categorical features

- Many times the data we use may not have the features values in a continuous form,
- But instead the forms of categories with text labels,
 - For example, a person could have features ["male", "female"].
- To get this data processed by the machine learning model, it is necessary for converting these categorical features into a machine-understandable form.

 There are two functions available through which we can encode our categorical features:

OrdinalEncoder.

 This estimator transforms each categorical feature to one new feature of integers (0 to n_catergories-1)

OneHotEncode:

 This encoder function transforms each categorical feature with n_categories possible values into n_categories binary features, with one of them 1, and all others 0