МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №1

по дисциплине: Теория информации

тема: «Исследование кодирования по методу Хаффмана. Оценка эффективности кода."

Выполнил: ст. группы ПВ-233 Мороз Роман Алексеевич

Проверил:

Твердохлеб Виталий Викторович

Задание 1. Построить кодовое представление сообщения, вероятности появления символов в пределах алфавита которого приведены в табл.1.

Таблица 1 – Вероятности появления символов в пределах алфавита исходного сообщения

Символ	s1	s2	s3	s4	s5	s6	s7	s8
Вероятность	0.23	0.19	0.16	0.16	0.10	0.10	0.05	0.01

Полученная таблица с кодами

Символы	Значения
S1	00
S2	01
S3	100
S4	101
S5	110
S6	1110
S7	11110
S8	11111

Задание 2. Построить кодовое представление сообщения, вероятности появления символов в пределах алфавита которого приведены в табл.2.

Таблица 2 – Вероятности появления символов в пределах алфавита исходного сообщения

Символ	s1	s2	s3	s4	s5	s6	s7	s8
Вероятность	0.2	0.2	0.1	0.1	0.1	0.0	0.0	0.0
	5	2	3	1		9	7	3

s1 - 10

s2 - 00

s3 - 110

s4 - 010

s5 - 011

s6 - 1110

s7 - 11110

s8 - 11111

Задание 3. Построить кодовое представление сообщения:

оитомии о ими оооитми о о о ооиимтомиимотоим оои тоо и и м оио и омтоо тоимо т и

Кодовое представление сообщения:

Вероятности:

Символ	Вероятность
' 0'	0.3125
'и'	0.2375
٠*٬	0.225
'M'	0.125
'T'	0.1

Символ	Код
o'	11
'и'	10
·* ²	01
'M'	001
'T'	000

Задание 4

Для условий, приведенных в заданиях 1 и 2 и 3, выявить возможность построения альтернативных кодовых моделей сообщения. В случае обнаружения таковых, выявить наиболее эффективные из них по критериям K_{comp} и σ .

Задание 1.

Вычислим σ:

$$\sigma = \sum_{i} p_{i} (l_{i} - l_{cp})^{2}$$

$$l_{cp} = 2.8$$

$$\sigma = 0.72$$

Задание 2.

Вычислим σ:

$$\sigma = \sum_{i} p_{i} (l_{i} - l_{cp})^{2}$$

$$l_{cp} = 2.82$$

$$\sigma = 0.9276$$

Задание 3.

Вычислим K_{comp} :

$$K_{comp} = \frac{B}{B}$$

$$B = n * i$$

n = 80 – число символов в сообщении

i = 3 – количество бит для одного символа

$$B = 240$$

$$B' = 178$$

$$K_{comp} = \frac{240}{178} = 1.35$$

Вычислим σ:

$$\sigma = \sum_{i} p_{i} (l_{i} - l_{cp})^{2}$$

$$l_{cp} = 2.25$$

$$\sigma = 0.174$$

Вывод: были получены навыки построения кода Хаффмана и определения основных метрик кодовых моделей сжатия информации.