aws re: Invent

CMP423

Hands-on deep learning inference with Amazon EC2 Inf1 instances

Wenming Ye

Sr. Specialist Architect (ML) Amazon Web Services

Agenda

- AWS Inf1 Review from CMP324 [35 min]
- Lab Logistics and Setup: [5 min]
- Lab 1-4 [80 min]
- Learning Resources and Summary

More machine learning happens on AWS than anywhere else

Inference accounts for the majority of machine learning infrastructure costs

% infrastructure cost

AWS Inferentia

Optimizing ML performance with a custom chip

AWS Inferentia quick tour

AWS custom built: chip, software, and server

- 4 Neuron Cores
- Up to 128 TOPS
- 2-stage memory hierarchy
 - Large on-chip cache and commodity DRAM
- Supports FP16, BF16, INT8 data types
- Fast chip-to-chip interconnect

Low-latency inference at high load

NeuronCore pipeline

- Very low latency
- Full bandwidth due to on-chip cache

AWS Neuron

Introducing AWS Neuron

Software suite enabling highperformance deep learning inference on AWS Inferentia

Compiler

Runtime

Profiling and debugging tools

Supports all major frameworks

O PyTorch

github.com/aws/aws-neuron-sdk

AWS Neuron support forum

AWS Neuron quick tour

Smart partitioning

Automatically optimize neural-net compute

Smart partitioning

Automatically optimize neural-net compute

Auto FP32 casting

Ingest FP32 trained models and Neuron auto-casts to BF16

Smart partitioning

Automatically optimize neural-net compute

Auto FP32 casting

Ingest FP32 trained models and Neuron auto-casts to BF16

NeuronCore pipeline

Very low latency Full bandwidth

Smart partitioning

Automatically optimize neural-net compute

Auto FP32 casting

Ingest FP32 trained models, and Neuron auto casts to BF16

NeuronCore pipeline

Very low latency Full bandwidth

NeuronCore Groups

Concurrently run multiple models

Neuron runtime

Profile

Profiling with Neuron tools

Amazon EC2 Inf1 instances

Introducing Inf1 instances for ML inferencing

ML inference deployment options on Amazon EC2

Custom chip EC2 Inf1 instances

Applications that leverage common ML frameworks

Powered by AWS Inferentia

Best price/performance for ML inferencing in the cloud
 Up to 40% lower inference than EC2
 G4 instances

GPU based EC2 G4 instances

Applications that require access to CUDA, CuDNN or TensorRT libraries

Amazon EC2 G4 instances based on NVIDIA T4 GPUs

CPU based EC2 C5 instances

Low sensitivity to inference performance

Intel Skylake CPUs
Support for AVX-512/
VNNI instruction set

Available today

Launched

Launched

Inf1 instance sizes

Instance size	vCPUs	Memory (GIB)	Storage	Inferentia Chips	NeuronCore Pipeline Mode	Network B/W	EBS B/W
inf1.xlarge	4	8	EBS only	1	N/A	Up to 25 Gbps	Up to 3.5 Gbps
inf1.2xlarge	8	16	EBS only	1	N/A	Up to 25 Gbps	Up to 3.5 Gbps
inf1.6xlarge	24	48	EBS only	4	Yes	25 Gbps	3.5 Gbps
inf1.24xlarge	96	192	EBS only	16	Yes	100 Gbps	14 Gbps

- Available in 4 sizes
- Single and multi-chip instances

- AWS 2nd Gen Intel Xeon Scalable Processors
- Up to 100 Gbps networking bandwidth

 Available to use with Amazon SageMaker, Amazon Elastic Kubernetes Service, and Amazon Elastic Container Service (coming soon)

Best price/performance for ML inference in the cloud

Instance type	Throughput (Seq/Sec)	OD Price (\$/Hr)	Cost per inference	Throughput: Inf1 vs. G4	Cost-per-inference: Inf1 vs. G4
inf1.24xlarge	19,200	\$7.619	\$0.0003968	3.28x	40.7%
G4.12xlarge	5,846	\$3.912	\$0.0006692	3.20 X	

Results based on running BERT-base model end-to-end with TensorFlow

EC2 Inf1 offers up to 3x higher throughput and 40% lower cost per inference than EC2 G4 instances

Highest price-to-performance in the cloud for ML inference

Try Inf1 instances today

Inf1 instances are now available in the US-East-1 (N. Virginia) and US-West-2 (Oregon) Regions More Regions coming soon!

EC2 Inf1 instances support on demand, reserved and spot purchasing options; also available as part of Savings Plan

Instance size	On Demand	1-Year Standard RI (40% discount)	3-Year Standard RI (60% discount)
inf1.xlarge	\$ 0.368/Hr	\$ 0.221/Hr	\$ 0.147/Hr
inf1.2xlarge	\$ 0.584/Hr	\$ 0.351/Hr	\$ 0.234/Hr
inf1.6xlarge	\$ 1.905/Hr	\$ 1.143/Hr	\$ 0.762/Hr
inf1.24xlarge	\$ 7.619/Hr	\$ 4.572/Hr	\$ 3.048/Hr

Alexa use case

Neural text-to-speech challenges

- Low latency requirement for dialog system

 High throughput requirement implied by streaming of output speech
- Context generation is a sequence-to-sequence auto-regressive model Inference-bound memory bandwidth
- High temporal density of speech production model resulting in 90 GFLOPs to generate 1 second of output

 Compute-bound inference
- Using EC2 GPU instances to meet requirements results in high operational cost

Alexa TTS migration to EC2 Inf1: Ease of integration

Alexa TTS uses MXNet supported natively by AWS Neuron

Support for C and Python APIs

Options to migrate original FP32 models to FP16 or Bfloat16

Alexa TTS migration to EC2 Inf1: Architecture

Alexa TTS migration to EC2 Inf1: Long text

Alexa long text traffic (ex: books, news) has even higher gains

Getting started

Github
Tutorials/drivers

AWS Neuron developer forum

EC2 Inf1 landing page

Hands-on labs

- 1. Set up development instance on a c5d.4xlarge
- 2. Deploy and model-serve on Inf1.2xlarge instance
- 3. Load test run
- 4. Debugging and profiling

Full URL:

https://github.com/awshlabs/reinvent19Inf1Lab

Questions? Use Forum at:

https://forums.aws.amazon.com/forum.jspa?forumID=355

Thank you!

Subgraph Compilation – under the hood

We start with a normal computation graph for an MXNet model

We search for subgraphs of supported operators