R Workshop: CFA & Structural Equation Modeling

Brier Gallihugh, M.S. 2023-06-19

Table of contents

Confirmatory Factor Analysis	 . 2
Structural Equation Modeling	 . 5
<pre>set.seed(5212023) library(tidyverse) library(lavaan) library(psych) library(semTools) library(semPlot)</pre>	
data <- psych::bfi[,16:25]	1
<pre>cfa_data <- data[sample(nrow(data),300),]</pre>	2
<pre>sem_data <- lavaan::PoliticalDemocracy %>% na.omit()</pre>	3

- (1) Create overall data for CFA
- 2 Randomly sample 300 observations from data using sample() function
- (3) Create data for SEM using the PoliticalDemocracy data set from the lavaan package. Omit missing data using the na.omit() function

Confirmatory Factor Analysis

- 1 Run a CFA on the model above using the cfa() function
- ② Generate CFA output and fit measures using the summary() function with the fit.measures argument set to TRUE
- (3) Create a basic path diagram of the CFA model using the semPaths() function with standardized coefficients using the std argument

lavaan 0.6.15 ended normally after 39 iterations

Estimator ML Optimization method NLMINB

Number of model parameters	21	
	Used	Total
Number of observations	284	300
Model Test User Model:		
Test statistic	126.828	
Degrees of freedom	34	
P-value (Chi-square)	0.000	
Model Test Baseline Model:		
Test statistic	785.605	
Degrees of freedom	45	
P-value	0.000	
User Model versus Baseline Model:		
Comparative Fit Index (CFI)	0.875	
Tucker-Lewis Index (TLI)	0.834	
Loglikelihood and Information Criteria:		
Loglikelihood user model (HO)	-4737.244	
Loglikelihood unrestricted model (H1)		
Akaike (AIC)	9516.489	
Bayesian (BIC)	9593.117	
Sample-size adjusted Bayesian (SABIC)	9526.525	
Root Mean Square Error of Approximation:		
• • •		
RMSEA	0.098	
90 Percent confidence interval - lower	0.080	
90 Percent confidence interval - upper	0.117	
P-value H_0: RMSEA <= 0.050	0.000	
P-value H_0: RMSEA >= 0.080	0.952	
Standardized Root Mean Square Residual:		
SRMR	0.084	

Parameter Estimates:

Standard errors	Standard
Information	Expected
Information saturated (h1) model	Structured

Latent Variables:

Latent Variables.				
	Estimate	Std.Err	z-value	P(> z)
nfactor =~				
N1	1.000			
N2	0.979	0.067	14.513	0.000
N3	0.809	0.071	11.478	0.000
N4	0.794	0.070	11.382	0.000
N5	0.746	0.076	9.796	0.000
ofactor =~				
01	1.000			
02	-0.580	0.159	-3.635	0.000
03	1.314	0.250	5.249	0.000
04	0.266	0.125	2.134	0.033
05	-0.799	0.158	-5.051	0.000
Covariances:				
	Estimate	Std.Err	z-value	P(> z)
nfactor ~~				
ofactor	-0.070	0.072	-0.967	0.333
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.N1	0.838	0.109	7.720	0.000
.N2	0.759	0.101	7.491	0.000
.N3	1.442	0.139	10.387	0.000
.N4	1.424	0.137	10.427	0.000
.N5	1.921	0.175	10.953	0.000
.01	0.879	0.115	7.630	0.000
.02	2.025	0.177	11.468	0.000
.03	0.595	0.158	3.769	0.000
.04	1.415	0.120	11.787	0.000
.05	1.583	0.147	10.733	0.000
nfactor	1.779	0.224	7.947	0.000
ofactor	0.491	0.125	3.932	0.000

🕊 Tip

For SEM and CFA models, the $=\sim$ syntax is used. You can interpret it as an "equals" sign more or less

Structural Equation Modeling

```
# Create SEM Model
sem_model <- 'ind60 =- x1 + x2 + x3
    dem60 = y1 + y2 + y3 + y4
    dem65 = ~y5 + y6 + y7 + y8
    dem60 \sim ind60
    dem65 \sim ind60 + dem60
    y1 ~~ y5
    y2 \sim y4 + y6
    у3 ~~ у7
    y4 ~~ y8
    y6 ~~ y8'
fit_sem <- sem(sem_model, data = sem_data)</pre>
                                                                            (1)
summary(fit sem, standardized = TRUE, fit.measures = TRUE)
                                                                            (2)
semPaths(fit_sem,'std')
                                                                            3
```

- (1) Run an SEM model using the sem() function
- ② Generate a summary of the SEM model with standardized results and fit measures using the summary() function with the standardized and fit.measures() arguments set to TRUE
- 3 Generate a basic path diagram of the SEM model usign the semPaths() function with standardized coefficients using the std argument.

lavaan 0.6.15 ended normally after 68 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	31
Number of observations	75
Model Test User Model:	
Test statistic	38.125
Degrees of freedom	35
P-value (Chi-square)	0.329
Model Test Baseline Model:	
Test statistic	730.654
Degrees of freedom	55
P-value	0.000
User Model versus Baseline Model:	
Comparative Fit Index (CFI)	0.995

Tucker-Lewis	Index	(TLI)	0.993

Loglikelihood and Information Criteria:

Loglikelihood user model (HO)	-1547.791
Loglikelihood unrestricted model (H1)	-1528.728
Akaike (AIC)	3157.582
Bayesian (BIC)	3229.424
Sample-size adjusted Bayesian (SABIC)	3131.720

Root Mean Square Error of Approximation:

RMSEA	0.035
90 Percent confidence interval - lower	0.000
90 Percent confidence interval - upper	0.092
P-value H_0: RMSEA <= 0.050	0.611
P-value H_0: RMSEA >= 0.080	0.114

Standardized Root Mean Square Residual:

SRMR 0.044

Parameter Estimates:

Standard errors Standard Information Expected Information saturated (h1) model Structured

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
ind60 =~						
x1	1.000				0.670	0.920
x2	2.180	0.139	15.742	0.000	1.460	0.973
x3	1.819	0.152	11.967	0.000	1.218	0.872
$dem60 = \sim$						
у1	1.000				2.223	0.850
у2	1.257	0.182	6.889	0.000	2.794	0.717
у3	1.058	0.151	6.987	0.000	2.351	0.722
у4	1.265	0.145	8.722	0.000	2.812	0.846
dem65 = ~						
у5	1.000				2.103	0.808
у6	1.186	0.169	7.024	0.000	2.493	0.746

у7	1.280	0.160	8.002	0.000	2.691	0.824
y8	1.266	0.158	8.007	0.000	2.662	0.828
Regressions:			_	- () ()		
1 60	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
dem60 ~	4 400	0 200	0 715	0 000	0 447	0 447
ind60	1.483	0.399	3.715	0.000	0.447	0.447
dem65 ~ ind60	0 570	0.221	0 506	0.010	0 100	0.182
dem60	0.572 0.837	0.221	2.586 8.514	0.010	0.182 0.885	0.162
demoo	0.637	0.090	0.514	0.000	0.000	0.000
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.y1 ~~						
.y5	0.624	0.358	1.741	0.082	0.624	0.296
.y2 ~~						
.y4	1.313	0.702	1.871	0.061	1.313	0.273
.y6	2.153	0.734	2.934	0.003	2.153	0.356
.y3 ~~						
.y7	0.795	0.608	1.308	0.191	0.795	0.191
.y4 ~~						
.y8	0.348	0.442	0.787	0.431	0.348	0.109
.y6 ~~						
. y8	1.356	0.568	2.386	0.017	1.356	0.338
Variances:						
var rancos.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.x1	0.082	0.019	4.184	0.000	0.082	0.154
.x2	0.120	0.070	1.718	0.086	0.120	
.x3	0.467	0.090	5.177	0.000	0.467	0.239
.y1	1.891	0.444	4.256	0.000	1.891	0.277
.y2	7.373	1.374	5.366	0.000	7.373	0.486
.y3	5.067	0.952	5.324	0.000	5.067	0.478
.y4	3.148	0.739	4.261	0.000	3.148	0.285
.y5	2.351	0.480	4.895	0.000	2.351	0.347
.y6	4.954	0.914	5.419	0.000	4.954	0.443
.y7	3.431	0.713	4.814	0.000	3.431	0.322
.y8	3.254	0.695	4.685	0.000	3.254	0.315
ind60	0.448	0.087	5.173	0.000	1.000	1.000
.dem60	3.956	0.921	4.295	0.000	0.800	0.800
.dem65	0.172	0.215	0.803	0.422	0.039	0.039

? Tip

As stated above, for SEM models we want the $=\sim$ syntax. For reference, a regression syntax is simply \sim while residuals syntax are $\sim\sim$. Each of these can as with SEM, be interpreted as an "equals" sign.