j :

SEQUENCE LISTING

<110> C. Frank Bennett Kenneth Dobie <120> ANTISENSE MODULATION OF SUPEROXIDE DISMUTASE 1, SOLUBLE EXPRESSION <130> RTS-0242 <150> 2003-08-04 <151> 10/633,843 <150> 2001-06-21 <151> 09/888,360 <160> 339 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 1 tccgtcatcg ctcctcaggg 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 2 20 atgcattctg cccccaagga <210> 3 <211> 874 <212> DNA <213> Homo sapiens <220> <220> <221> CDS <222> (65)...(529)

<400> 3 ctgcagcgtc tggggtttcc gttgcagtcc tcggaaccag gacctcggcg tggcctagcg	60
agtt atg gcg acg aag gcc gtg tgc gtg ctg aag ggc gac ggc cca gtg Met Ala Thr Lys Ala Val Cys Val Leu Lys Gly Asp Gly Pro Val 1 5 10 15	109
cag ggc atc atc aat ttc gag cag aag gaa agt aat gga cca gtg aag Gln Gly Ile Ile Asn Phe Glu Gln Lys Glu Ser Asn Gly Pro Val Lys 20 25 30	157
gtg tgg gga agc att aaa gga ctg act gaa ggc ctg cat gga ttc cat Val Trp Gly Ser Ile Lys Gly Leu Thr Glu Gly Leu His Gly Phe His 35 40 45	205
gtt cat gag ttt gga gat aat aca gca ggc tgt acc agt gca ggt cct Val His Glu Phe Gly Asp Asn Thr Ala Gly Cys Thr Ser Ala Gly Pro 50 55 60	253
cac ttt aat cct cta tcc aga aaa cac ggt ggg cca aag gat gaa gag His Phe Asn Pro Leu Ser Arg Lys His Gly Gly Pro Lys Asp Glu Glu 65 70 75	301
agg cat gtt gga gac ttg ggc aat gtg act gct gac aaa gat ggt gtg Arg His Val Gly Asp Leu Gly Asn Val Thr Ala Asp Lys Asp Gly Val 80 85 90 95	349
gcc gat gtg tct att gaa gat tct gtg atc tca ctc tca gga gac cat Ala Asp Val Ser Ile Glu Asp Ser Val Ile Ser Leu Ser Gly Asp His 100 105 110	397
tgc atc att ggc cgc aca ctg gtg gtc cat gaa aaa gca gat gac ttg Cys Ile Ile Gly Arg Thr Leu Val Val His Glu Lys Ala Asp Asp Leu 115 120 125	445
ggc aaa ggt gga aat gaa gaa agt aca aag aca gga aac gct gga agt Gly Lys Gly Gly Asn Glu Glu Ser Thr Lys Thr Gly Asn Ala Gly Ser 130 135 140	493
cgt ttg gct tgt ggt gta att ggg atc gcc caa taa acattccctt Arg Leu Ala Cys Gly Val Ile Gly Ile Ala Gln 145 150 154	539
ggatgtagtc tgaggcccct taactcatct gttatcctgc tagctgtaga aatgtatcct	599
gataaacatt aaacactgta atcttaaaag tgtaattgtg tgactttttc agagttgctt	659
taaagtacct gtagtgagaa actgatttat gatcacttgg aagatttgta tagttttata	719
aaactcagtt aaaatgtctg tttcaatgac ctgtattttg ccagacttaa atcacagatg	779
ggtattaaac ttgtcagaat ttctttgtca ttcaagcctg tgaataaaaa ccctgtatgg	839
cacttattat gaggctatta aaagaatcca aattc	874

<210> 4 <211> 20 <212> DNA

gccgcggggc t	gggcctgcg	cgtggcggga	gcgcggggag	ggattgccgc	gggccgggga	1080
ggggcggggg c	cgggcgtgct	gccctctgtg	gtccttgggc	cgccgccgcg	ggtctgtcgt	1140
ggtgcctgga g	gcggctgtgc	tcgtcccttg	cttggccgtg	ttctcgttcc	tgagggtccc	1200
gcggacaccg a	agtggcgcag	tgccaggccc	agcccgggga	tggcgactgc	gcctgggccc	1260
gcctggtgtc t	tegeatece	tctccgcttt	ccggcttcag	cgctctaggt	cagggagtct	1320
tcgcttttgt a	acagctctaa	ggctaggaat	ggtttttata	tttttaaaag	gctttggaaa	1380
acaaaaatac g	gcaacagaga	ccgtttgtgt	gacactttgc	agggaagttt	gctggcctct	1440
gttctaggtc a	atgattgggc	tgcaagggca	gagaaggtag	ccttgaacag	aggtcctttt	1500
cctcctccta a	agctccggga	gccagaggtt	taactgaccc	ttttggggat	ttttgagggc	1560
agtgatctta a	actttgggtg	cacagttagc	ttatttgaag	atcttactaa	aaatacacca	1620
gagcccaacc t	tccgaccaat	tacatcaaaa	cctgtcctag	tgcagggtga	gtattgctgt	1680
tttttgaaag t	tttccaaaag	tgattttgat	gtgcacctac	gattgagaac	tgtcgtttga	1740
ggacagtggg t	tggagtttcg	tatttggaaa	ttagaagacc	tggagtttcc	attacaccga	1800
attggcactt a	aataactgtt	gtcggagcat	ttcttaagcc	acattttcgt	aaagtggctt	1860
taaaattgct o	ctgccagtag	gcaggttgct	aagatggtca	gagacaaact	tctgaacgac	1920
tcttgtaaaa t	tatacagaaa	tattttcaga	acttttatca	gtaaaattac	aaaacgtgtt	1980
gcaaggaagg t	tgcttgtgat	aacactgtcc	ccagaacctt	agtgaagtta	ccaactggtg	2040
gaaaattttc t	tcttgcactc	ggcttaaaaa	tcatgaggga	atatttacta	tacgaatgag	2100
attcagtctt t	taaaggggtt	tacagaaacg	tgagaggaca	ggaacagtta	gtctgtgtaa	2160
atgtctgaaa t	tatatgtgag	ggagataatg	agtttagcct	ttttctttaa	taggtctcca	2220
gattttctgg a	aaaaggttct	ttggcatttg	actccatttt	gctgtttcat	ttgtcagact	2280
tctttttgtc c	cctctttact	tctccccaca	taattcacca	gtactagtgt	tttgtttttc	2340
agaccaagtc t	tcgctctgtc	gcccaggctg	gagtgcagtg	gcgcgatctc	agctcactgc	2400
aacctccgcc t	tcccaggttc	aagcaattct	cctgcctcag	cctcccgggt	agctgggact	2460
acaggcgcgc g	gccgccacgc	ctggctaatt	ttttatattt	tagtagagac	ggcgtttcac	2520
catgttggcc a	aggatggtct	cgatctgttg	acgtcgtgat	ccacccgcct	cggcctccca	2580
aagtgctggg a	attacaggcg	tgagccaccc	cgcccggcca	ccagtgctat	tcttaagacg	2640
cctctgagga a	atcccttctc	cctggccatt	gagaatccat	gcatgaaccc	aggttttcca	2700
ccttccctga o	gcagcttgca	tagttccttc	ttttaagcgc	ctgacttcgt	tttgtttggt	2760
gcccgttgta	cctgagaatg	agccttggat	agtggagcat	tccagctttc	cagatatgca	2820

gagataatac	attggctatc	agctacttgg	cttggcctat	tccgtgttta	aaatcttgga	2880
ctctttgcta	gtttttacag	atcagaattt	ttcacgtatt	aatccagttt	tcctagcttc	2940
tcttgaagaa	tttttggaga	tctcttcata	ctgagccttc	attagcccag	gacagtactg	3000
ctgtagcagt	tcatatattt	tttcgcttcc	caggcctgtg	ttattcactt	aagttcatag	3060
cctggtccct	gcagggttgt	acccgagcac	agctacttag	atgtcctgaa	tgtattaccg	3120
gttaaatgga	ggtttcaaag	aacctgctgt	ttttggccct	gtgctcttga	taacagagtg	3180
tttgagggac	aactttcaca	tttgagtttt	tccaaaatta	aaggttgtag	aagagtcaca	3240
gtatctattg	tcaaaaagaa	aagaatttaa	aaaggcagca	attgccagga	tacttcattt	3300
gagcaatgat	attttccagt	ggaaagtcac	atcttaaggg	ttaatgcccc	ttaactgttg	3360
gccgtatttg	aaaacaaacc	aagctaaaaa	caagagacac	tgacatgttg	tatgacggtg	3420
tggtgtggat	gttgtgttta	ttttagtcct	gagatctagt	tgtaacttcc	ttgatttctg	3480
tatgtagcca	cggagcacca	ttacctgtca	ccattacctg	aatggctata	ctgcttgctt	3540
tcattttggt	agagtggaaa	ggttacctag	gtttcagtgc	ttgaaaagat	ttcagaaagc	3600
agtagtacgt	ctggttagac	tagaatcagt	cctctcctgg	gggcagtgga	atataatatt	3660
ttctgactgc	taattaaaaa	tacctgtgat	agccgggcgt	ggtggcttac	gcctgtaatc	3720
ccagcacttt	gggaggccga	gacgggtgga	tcacgaggtc	agcagatgga	gaccatcctg	3780
gctaacacgg	tgaaaccccg	tctctactaa	aaatgcaaaa	aaattagccg	ggtgtggtgg	3840
tgggcgcctg	tagtcccagc	tactcaggag	gctgaggcag	gagaatggca	tgaacctggg	3900
aggcggagct	tgcagtgagc	cgagatcatg	tcactgcact	ccagcctggg	cgacagagcg	3960
agactcgtct	caaaaaaaaa	aagaaaaaaa	cttatgatgg	acacttaaaa	acactcactg	4020
agtggggagt	ggagagcagg	ggtcccaggg	tagcctgttg	gacatttcca	gggcgacttt	4080
ttctttttt	ttttttaaag	tcaagtgagt	atgccatatg	gaaaagggtg	tgcgtggaga	4140
aaaagcaagg	ggctccagag	tgtaggatga	gacatacacc	ttttgggtta	aaaaggctga	4200
ggcaggagaa	tggcgtgaac	ccgggaggcg	gagcttgcag	tgagctgaga	tcatgccact	4260
gcactccagc	ctgggcgaca	gagcgagact	cttgtctcaa	aataaaaaac	gtttacatgt	4320
acatgtatat	tcaacatgta	caaatataac	ctattcaaaa	gtatttacta	cataaatagg	4380
tacttacatt	acctatttac	tgtaatagtc	aaagcctatg	aagtatctaa	cactgatgtg	4440
taggtactca	ctttgcttgc	cactctatta	ggtgcttttt	atgttattta	atcatgaagc	4500
ctggccacag	ggtgcttgtg	cattgagtgt	gggaacaaga	ttaccatctc	ccttttgagg	4560

acacaggcct	agagcagtta	agcagcttgc	tggaggttca	ctggctagaa	agtggtcagc	4620
ctgggatttg	gacacagatt	tttccactcc	caagtctggc	tgctttttac	ttcactgtga	4680
ggggtaaagg	taaatcagct	gttttctttg	ttcagaaact	ctctccaact	ttgcactttt	4740
cttaaaggaa	agtaatggac	cagtgaaggt	gtggggaagc	attaaaggac	tgactgaagg	4800
cctgcatgga	ttccatgttc	atgagtttgg	agataataca	gcaggtgggt	gttgtgctgt	4860
gctggtgacc	catacttgtt	caccctagtt	agataaacag	tagagtagcc	cctaaacgtt	4920
aaaacccctc	aacttgtttt	tgtttttgag	aaagggtctt	gctctgtcgc	tcaggctgga	4980
gtgcagtggc	gctgtgcgat	catggctgac	cttagccttg	acctcccagg	ctccattgat	5040
cctcatgcct	tggcccgtag	ctgggactac	aggtacacac	caccacgcct	ggctaatttt	5100
tgtattttt	tctagaggtg	gggtttcatc	atgttgccca	ggctggtctt	gaactgctgg	5160
gctcaagtgg	tctatcctcc	tcgacctccc	aaagtgctgg	gattacatgt	gtgagccact	5220
gtgcctggga	aaaccctcaa	cttttctttt	aaaaaagagg	tcaactttat	tgtatataag	5280
cactgtgcta	aaattgcagg	aactgggacc	atatcctgat	ttttgtaata	atgccagcag	5340
agtacacaca	agaaaagtaa	ctgcactaga	ttgtgaagac	tggggtggac	ctgcttctga	5400
aggtccagtg	ccctttgtct	taagatttgg	tgtagtgtgt	ctttagaaac	caaaaaaaga	5460
gaagaagatc	aaccttaaga	ttagccacaa	aactgggctt	tgatacctag	gtgtggaaaa	5520
gaaagggaaa	gagttgatgt	tttgtcttac	agcatcattg	tagaagaggg	tgtttttttg	5580
tttgtttgtt	ttttgagacg	gagtcttact	ctgtggccca	ggctggagtg	cagtggcgcg	5640
atctcggctc	actgcaagct	ccgcctcccg	ggttcatgcc	attctcctgc	ctcagccccc	5700
tgagtagctg	ggactacagg	tgcccgccac	cccgcctggc	taattttttg	tatttttagt	5760
agagacgggg	tttcactgtg	ttagccaaga	tggtctctct	cctgacctcg	tgatccgcct	5820
gtctcagcct	cccaaagtgc	tgggattaca	ggcatgagcc	accgcaccca	gccagaagag	5880
ggtgttttt	aaagaaggca	aataggaaat	aaaaacttgg	gctcttaact	tttgtaatga	5940
tcccaggtgt	ttgagctggg	ggttgagggt	gggtgcctcg	agcaaagggg	ctgcatttat	6000
ttgcataatg	ccatgtaaga	gtagctctac	accccaaaca	caggcttctt	agtgggacca	6060
aagtatgata	caaactgaag	atggaatgca	gaggattatt	ggtactttgg	aatatgctta	6120
aaaaaaattt	ttttaaagta	tttttaaaaa	atcaggcaac	ccctgaacca	gagtaggttc	6180
agagaaactg	ccaaatttta	ttttcttaat	ttgggattgg	aagcaagtta	acagaagttt	6240
atgagttaag	ttgcatttag	tgatcttttg	ccatatttga	gtaataatct	gatttttttg	6300
tttatagatt	tcttcttaaa	ttaactttat	tcatcttgct	aatttagttt	caaatagtga	6360

tttgtaatga	tcagatttga	tccatttctg	taattgctga	aattcccccg	agttgctttt	6420
tggctttacc	gcctctggtc	tgggaggtga	ttgctctgct	gcttcctgta	acttgcctgc	6480
ctttctccct	gtgtgggact	cctgcgggtg	agagcgtggc	tgaagacagc	cgtgttatga	6540
aagggcctcc	tgtgctgtcg	aggttgtgct	ctgtgaatgt	catcccctgg	tgcacagcag	6600
caccttctac	acaggataca	gttggaatgc	cgccccctcg	agttgtgtaa	ggcagcagcc	6660
ttggcccttg	cacataagat	gctgttgaat	attctgcctg	caccaagtaa	agggcacaga	6720
tagaactgct	tggcatatgt	tgctggggag	atgagttttt	tgtaaagtat	actacgttct	6780
taagaatttg	gatcataacc	atgggatttt	aataatagaa	aaactgttga	agatcagtct	6840
ggtcccttat	ttttacagtg	aagaagccaa	agcccagaga	agggtgttaa	ctttacaagt	6900
gtcagacagt	agttagaact	tggtggggtt	ttttttttt	tttttttgag	atggagtctt	6960
gctctgttgc	ccaggctgga	gtgcagtggt	gcgatctcag	ctcactgcaa	cctctgcctc	7020
ccaggttcaa	gcgattctcc	tgcctcagcc	tactaagtag	ctgggactat	aggtgcgcac	7080
caccacgcct	agctaatttt	tgtattttt	cagtagagac	agggttttgc	tatgctggcc	7140
aggctggtct	caaactcctg	acctcagatg	atccagccac	ctcagcttcc	caaagtgctg	7200
gggttccagg	tgttagccac	catgcctggc	catagacttg	tttctgttcc	cttctcactg	7260
tggctgtacc	aaggtgttgc	ttatcccaga	agtcgtgatg	caggtcagca	ctttctccat	7320
gggaagtttt	agcagtgttt	ctttttagaa	tgtatttggg	aactttaatt	cataatttag	7380
ctttttttc	ttcttcttat	aaataggctg	taccagtgca	ggtcctcact	ttaatcctct	7440
atccagaaaa	cacggtgggc	caaaggatga	agagaggtaa	caagatgctt	aactcttgta	7500
ataatggcga	tagctttctg	gagttcatat	ggtatactac	ttgtaaatat	gtgctaagat	7560
aattccgtgt	ttcccccacc	tttgcttttg	aacttgctga	ctcatctaaa	cccctgctcc	7620
caaatgctgg	aatgctttta	cttcctgggc	ttaaaggaat	tgacaaatgg	ggacacttaa	7680
aacgatttgg	ttttgtagca	tttattgaat	atagaactaa	tacaagtgcc	aaaggggaac	7740
taatacagga	aatgtcatga	acagtactgt	caaccactag	caaaatcaat	catcattgtg	7800
aaacatagga	agcttctgta	gataaaaaaa	aaaattgata	ctgaaaacta	gtcgagactc	7860
catttatatg	tgtatgtttt	ctgaaagcct	ttcagaaaaa	tattaaattt	aaggacaaga	7920
tttttatatc	agaggccttg	ggacatagct	ttgttagcta	tgccagtaat	taacaggcat	7980
aactcagtaa	ctgagagttt	accctttggt	acttctgaaa	tcaggtgcag	ccccatcttt	8040
cttcccagag	cattagtgtg	tagacgtgaa	gccttgtttg	aagagctgta	tttagaatgc	8100

ctagctactt	gtttgcaaat	ttgtgtctac	tcagtcaagt	tttaatttag	ctcatgaact	8160
accttgatgt	ttagtggcat	cagccctaat	ccatctgatg	ctttttcatt	attaggcatg	8220
ttggagactt	gggcaatgtg	actgctgaca	aagatggtgt	ggccgatgtg	tctattgaag	8280
attctgtgat	ctcactctca	ggagaccatt	gcatcattgg	ccgcacactg	gtggtaagtt	8340
ttcataaaag	gatatgcata	aaacttcttc	taacatacag	tcatgtatct	tttcactttg	8400
attgttagtc	gcggtttcta	aagatccaga	taaactgtac	ttgcagttca	aattaggaaa	8460
agcaatttta	ttggacaatt	acggtgaaaa	tgaattattt	tatctaggtc	agttaagaac	8520
actgttctgc	taagatgcag	taaaaagcag	gttacatttg	accatattag	atctgagttt	8580
ggaaaacaga	agtagtcttt	agttttaaaa	tggccagatt	ttcttgccag	gattgggttt	8640
ctcacttgtt	aaacagaaca	ttttgttaag	tttaaaacct	gggatggact	taagtattca	8700
tgttcattca	tgttcattca	ggactgcagg	ttatcatgac	ttgtttaact	tgtgggaagc	8760
tgttgtccca	agttatcctg	gggaactgca	tctggttctt	gcaaaacacc	aagtagacag	8820
gctctctttt	acctcccctt	gagggcatta	acattcagta	gtcacttcca	ttcagttaac	8880
cctttatttt	tatggttttt	cttgagccat	agttgtaaag	cagaaaaatc	atttataaag	8940
gtttgttgaa	caaaattcaa	aatactgttg	cttaaagtat	taagattttt	taggattata	9000
ccttacttat	aggcccgtca	ttcatttggc	atgaaatttt	gagttttatt	cactttcact	9060
ttccttttt	tccaaagcaa	ttaaaaaaac	tgccaaagta	agagtgactg	cggaactaag	9120
gttactgtaa	cttaccatgg	aggattaagg	gtagcgtgtg	gtggtctaca	acatagttat	9180
ttgggtttta	gtatttcatt	tagacagcaa	cacttaccta	atgtttaaag	gtaatgtctt	9240
tgcaacacca	agaaaaagct	ttgagtagta	gtttctactt	ttaaactact	aaatattagt	9300
atatctctct	actaggatta	atgttatttt	tctaatatta	tgaggttctt	aaacatcttt	9360
tgggtattgt	tgggaggagg	tagtgattac	ttgacagccc	aaagttatct	tcttaaaatt	9420
ttttacaggt	ccatgaaaaa	gcagatgact	tgggcaaagg	tggaaatgaa	gaaagtacaa	9480
agacaggaaa	cgctggaagt	cgtttggctt	gtggtgtaat	tgggatcgcc	caataaacat	9540
tcccttggat	gtagtctgag	gccccttaac	tcatctgtta	tcctgctagc	tgtagaaatg	9600
tatcctgata	aacattaaac	actgtaatct	taaaagtgta	attgtgtgac	tttttcagag	9660
ttgctttaaa	gtacctgtag	tgagaaactg	atttatgatc	acttggaaga	tttgtatagt	9720
tttataaaac	tcagttaaaa	tgtctgtttc	aatgacctgt	attttgccag	acttaaatca	9780
cagatgggta	ttaaacttgt	cagaatttct	ttgtcattca	agcctgtgaa	taaaaaccct	9840
gtatggcact	tattatgagg	ctattaaaag	aatccaaatt	caaactaaat	tagctctgat	9900

acttatttat ataaacagct tcagtggaac agatttagta atactaacag tgatagcatt 9960 ttattttgaa agtgttttga gaccatcaaa atgcatactt taaaacagca ggtcttttag 10020 ctaaaactaa cacaactctg cttagacaaa taggctgtcc tttgaaagct ttagggaaat 10080 gttcctgctt agtcatttta gcattttgat tcataaagta cctcctcatt ttaaaaagac 10140 attatgatgt aagagagcca tttgataact ttttagtgag ctttgaaagg caagttacag 10200 cctcagctag ctagtaagat tatctacctg ccagaatggc acaaattcta cattcaaggg 10260 tagacgctgg cacaacctac ttacagatta gccctttaaa gcaatctgta gcattagaag 10320 atggaaccaa ggaaatgttt gactgtgggt tctggctgtt gagaaataat ttacacaccg 10380 aattaqtqaa atqaqtcact ttctcttaat qtatttatgt acctgagaga atgcttttca 10440 atgttaacct aactcaggtt tgactaaatt attcaattgg aaattgtaga atattatttc 10500 tgataaacca gaaataagtg aaatgctgtt tgttcataaa tatgtacttt atcaaatgta 10560 ggagagatca tttaggagag gaaaagctaa attggaagac aaatctgtag tgtttccaaa 10620 gttttaaaat tatggtaaac aacagtatgt tcacagtaag tggttaaaac aaccattctt 10680 taaatotoag tagagaattt ttaaaaagca gtatttaaca catttoocta atgtagtttg 10740 ttgcctatgt ggaataactc aattagagac tcacttatgc cttttgaaac ttcaaatata 10800 attacactac cagtttttac atgtgcatat aggatggtcc caatacttta aattggaaat 10860 acaggetgta agteetteaa gtetggatgt tgggtaatea egttttette cagaageeat 10920 ttgttaggac tttaaaactt ctcagtgggc cagtgtaaaa ttaaggacaa gttttataat 10980 11000 ttaaatttac agataaatat

<210> 11

<211> 438 <212> DNA

<213> Homo sapiens

<220>

<400> 11

cactttaatc ctctatccag aaaacacggt gggccaaagg atgaagagag gcatgttgga 120
gacttgggca atgtgactgc tgacaaagat ggtgtggccg atgtgtctat tgaagattct 180
gtgatctcac tctcaggaga ccattgcatc attggccgca cactggtggt ccatgaaaaa 240
gcagatgact tgggcaaagg tggaaatgaa gaaagtacaa agacaggaaa cgctggaagt 300

<223> Antisense Oligonucleotide

ISPH-	0788	-12-	PATENT
<400>	14		
gccctt	cage acgeacaegg		20
<210><211><211><212><213>	20		
<220>			
<223>	Antisense Oligonucleotide		
<400> gtcgcc	15 ectte agcacgeaca		20
<210><211><212><212><213>	20		
<220>			
<223>	Antisense Oligonucleotide		
<400> cgagga	16 octgc aacggaaacc		20
<210><211><211><212><213>	20		
<220>			
<223>	Antisense Oligonucleotide		
<400> ggttco	17 egagg actgcaacgg		20
<210><211><211><212><213>	20		
<220>			
<223>	Antisense Oligonucleotide		
<400> tcctgg	18 gttcc gaggactgca		20
<210> <211>			

ISPH-0788	-13-	PATENT
<212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 19 gaggtcctgg ttccgaggac		20
<210> 20 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 20 taggccacgc cgaggtcctg		20
<210> 21 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 21 gtcgccataa ctcgctaggc		20
<210> 22 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 22 gecetgeact gggeegtege		20
<210> 23 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		

ISPH-0788	-14-	PATENT
<400> 23 aattgatgat gccctgcact		20
<210> 24 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 24 cactggtcca ttactttcct		20
<210> 25 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 25 acaccttcac tggtccatta		20
<210> 26 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 26 ccacaccttc actggtccat		20
<210> 27 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 27 agtcctttaa tgcttcccca		20
<210> 28 <211> 20 <212> DNA		

ISPH-0788	-15-	PATENT
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 28 aggccttcag tcagtccttt		20
<210> 29 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 29 caggcettea gteagteett		20
<210> 30 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 30 tatctccaaa ctcatgaaca		20
<210> 31 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 31 gctgtattat ctccaaactc		20
<210> 32 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 32		

ISPH-0788	-16-	PATENT
gtacageetg etgtattate		20
<210> 33 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 33 tgcccaagtc tccaacatgc		20
<210> 34 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 34 cacattgccc aagtctccaa		20
<210> 35 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 35 teggecacae catetttgte		20
<210> 36 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 36 catcggccac accatctttg		20
<210> 37 <211> 20 <212> DNA <213> Artificial Sequence		

<210> 42 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 42 ggcgatccca attacaccac	20
<210> 43 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 43 ggaatgttta ttgggcgatc	20
<210> 44 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 44 cctcagacta catccaaggg	20
<210> 45 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 45 gataacagat gagttaaggg	20
<210> 46 <211> 20 <212> DNA <213> Artificial Sequence	

ISPH-0788	-19-	PATENT
<220>		
<223> Antisense Oligonucleotide		
<400> 46 cacaattaca cttttaagat		20
<210> 47 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 47 agtcacacaa ttacactttt		20
<210> 48 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 48 ctcactacag gtactttaaa		20
<210> 49 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 49 aatcagtttc tcactacagg		20
<210> 50 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 50 ataaatcagt ttctcactac		20

<220>

	ISPH-0788	-21-	PATENT
	<223> Antisense Oligonucleotide		
	<400> 55 aactgagttt tataaaacta		20
	<210> 56 <211> 20 <212> DNA <213> Artificial Sequence		
	<220>		
	<223> Antisense Oligonucleotide		
	<400> 56		
	acagacattt taactgagtt		20
·	<210> 57 <211> 20 <212> DNA <213> Artificial Sequence		
	<220>		
	<223> Antisense Oligonucleotide		
	<400> 57		20
	attgaaacag acattttaac		20
	<210> 58 <211> 20 <212> DNA <213> Artificial Sequence		
	<220>		
	<223> Antisense Oligonucleotide		
	<400> 58 tcattgaaac agacatttta		20
	<210> 59 <211> 20 <212> DNA <213> Artificial Sequence		
	<220>		
	<223> Antisense Oligonucleotide		
	<400> 59 atacaggtca ttgaaacaga		20

ISPH-0788	-22-	PATENT
<210> 60 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 60 ccatctgtga tttaagtctg		20
<210> 61 <211> 20 <212> 'DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 61 tttaataccc atctgtgatt		20
<210> 62 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 62 agtttaatac ccatctgtga		20
<210> 63 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 63 caaagaaatt ctgacaagtt		20
<210> 64 <211> 20 <212> DNA <213> Artificial Sequence <220>		
\LLU/		

ISPH-0788	-23-	PATENT
<223> Antisense Oligonucleotide		
<400> 64 ttgaatgaca aagaaattct		20
<210> 65 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 65 acaggcttga atgacaaaga		20
<210> 66 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 66 attcacaggc ttgaatgaca		20
<210> 67 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 67 ggtttttatt cacaggcttg		20
<210> 68 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 68 agggttttta ttcacaggct		20
<210> 69		

ISPH-0788	-24-	PATENT
<211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 69 atacagggtt tttattcaca		20
<210> 70 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 70 ccatacaggg tttttattca		20
<210> 71 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 71 aagtgccata cagggttttt		20
<210> 72 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 72 taataagtgc catacagggt		20
<210> 73 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		

ISPH-0788	-25-	PATENT
<400> 73 tcataataag tgccatacag		20
<210> 74 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 74 ctcataataa gtgccataca		20
<210> 75 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 75 gcctcataat aagtgccata		20
<210> 76 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 76 ttttaatagc ctcataataa		20
<210> 77 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 77 ggattctttt aatagcctca		20
<210> 78 <211> 20		

ISPH-0788	-26-	PATENT
<212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 78 cagecettge ettetgeteg		20
<210> 79 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 79 agtagctggg actacaggcg		20
<210> 80 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 80 cattactttc ctttaagaaa		20
<210> 81 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 81 aagatcacta aatgcaactt		20
<210> 82 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		

ISPH-0788	-27-	PATENT
<400> 82 caggagaatc gcttgaacct		20
<210> 83 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 83 ctggtacagc ctatttataa		20
<210> 84 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 84 gcttcacgtc tacacactaa		20
<210> 85 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 85 tccaacatgc ctaataatga		20
<210> 86 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 86 tggtacagcc ttctgctcga		20
<210> 87 <211> 20 <212> DNA		

ISPH-0788	-28-	PATENT
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 87 taggccagac ctccgcgcct		20
<210> 88 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 88 actttatagg ccagacctcc		20
<210> 89 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 89 gacgcaaacc agcaccccgt		20
<210> 90 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 90 acgctgcagg agactacgac		20
<210> 91 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 91 gcacacggcc ttcgtcgcca		20

ISPH-0788	-31-	PATENT
<400> 102 ctccaacatg cctctcttca		20
<210> 103 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 103 tetecaacat geetetette		20
<210> 104 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 104 gtctccaaca tgcctctctt		20
<210> 105 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 105 ctcctgagag tgagatcaca		20
<210> 106 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 106 tctcctgaga gtgagatcac		20
<210> 107 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 107 cacctttgcc caagtcatct		20
<210> 108		

ISPH-	-0788	-32-	PATENT
<211> <212> <213>			
<220> <223>	Antisense Oligonucleotide		
<400> ccacct	108 Ettgc ccaagtcatc	·	20
<210> <211> <212> <213>	20		•
<220> <223>	Antisense Oligonucleotide		
<400> tccacc	109 ctttg cccaagtcat		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> ttccac	110 cettt geecaagtea		20
<210> <211> <212> <213>	20	·	
<220> <223>	Antisense Oligonucleotide		
<400> atttcc	111 acct ttgcccaagt		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> catttc	112 cacc tttgcccaag		20
<210> <211> <212> <213>	20		

ISPH-0788	-33-	PATENT
<220> <223> Antisense Oligonucleotide		
<400> 113 tcatttccac ctttgcccaa		20
<210> 114 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 114 ttcatttcca cctttgccca		20
<210> 115 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 115 cttcatttcc acctttgccc		20
<210> 116 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 116 tcttcatttc cacctttgcc		20
<210> 117 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 117 ttcttcattt ccacctttgc		20
<210> 118 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 118		

ISPH-0788	-34-	PATENT
tttcttcatt tccacctttg		20
<210> 119		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 119		
ctttcttcat ttccaccttt		20
<210> 120		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 120		
actttettea ttteeacett		20
<210> 121		
<211> 20		
<212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 121		
tactttcttc atttccacct		20
<210> 122		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 122		
gtactttctt catttccacc		20
<210> 123		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 123		
tgtactttct tcatttccac		20
<210> 124		
<211> 20		

ISPH-	0788	-35-	PATENT
<212> <213>	DNA Artificial Sequence		
<220> <223>	Antisense Oligonucleotide		
<400> ttgtac	124 tttc ttcatttcca		20
<210><211><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> tttgta	125 cttt cttcatttcc		20
<210><211><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> ctttgt	126 actt tcttcatttc		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> tctttg	127 tact ttcttcattt		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400>	128 gtac tttcttcatt		20
<210> : <211> : <211> : <212> : <213> : <	20		
<220>	-		

ISPH-0788	-36-	PATENT
<223> Antisense Oligonucleotide		
<400> 129 cattactttc cttctgctcg		20
<210> 130 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 130 tccaacatgc ctctcttcat		20
<210> 131 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 131 cattactttc ctttaagaaa		20
<210> 132 <211> 20 <212> DNA <213> Artificial Sequence	•	
<220> <223> Antisense Oligonucleotide		
<400> 132 caacacccac ctgctgtatt		20
<210> 133 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide	•	
<400> 133 ctggtacagc ctatttataa		20
<210> 134 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 134 catcttgtta cctctcttca		20

ISPH	-0788	-37-	PATENT
<210>			
<211>			
<212>	DNA Artificial Sequence		
(215)	micrificial bequence		
<220>			
<223>	Antisense Oligonucleotide		
<400>	135		
tccaa	catgc ctaataatga		20
<210>	136		
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
	Antisense Oligonucleotide		
<400>	126		
	ttac caccagtgtg		20
9 4 4 4 4	occup cucoug cg cg		20
<210>			
<211><212>			
	Artificial Sequence		
<220>	7-1		
<223>	Antisense Oligonucleotide		
<400>	137		
ttttca	atgga cctgtaaaaa		20
<210>	138		
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Antisense Oligonucleotide		
<400>	138		
ggatto	ctttt aatagcctca		20
<210>	130		
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Antisense Oligonucleotide		
<100>	130		
<400> cacttt	cett etget		15
<210> <211>			
<211>			

ISPH-0788	-38-	PATENT
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 140		
aacatgcctc tcttc		15
<210> 141		
<211> 15 <212> DNA		
<213> Artificial Sequence		
-		
<220>		
<223> Antisense Oligonucleotide		
<400> 141		
tactttcctt taaga		15
(010) 140		
<210> 142 <211> 15		
<212> DNA		
<213> Artificial Sequence		
.000		
<220> <223> Antisense Oligonucleotide		
(223) iniciscuse origonacreotrae		
<400> 142		
cacccacctg ctgta		15
<210> 143		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 143		1.5
gtacagccta tttat		15
<210> 144		
<211> 15		
<212> DNA <213> Artificial Sequence		
12137 Altilicial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 144		
cttgttacct ctctt		15
		= =
<210> 145		
<211> 15 <212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		

ISPH-0788	-39-	PATENT
<400> 145 aacatgccta ataat		15
<210> 146 <211> 15 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 146 aacttaccac cagtg		15
<210> 147 <211> 15 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 147 tcatggacct gtaaa		15
<210> 148 <211> 15 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 148 ttcttttaat agcct		15
<210> 149 <211> 650 <212> DNA <213> R. norvegicus		
<220> <221> CDS <222> (94)(558)		
<400> 149 gttttgcacc ttcgtttcct geggeggett o gttccgagge egeegeget etecegggga a	etgtegtete ettgettttt geteteceag age atg geg atg aag gee gtg tge Met Ala Met Lys Ala Val Cys 1	60 114
gtg ctg aag ggc gac ggt ccg gtg ca Val Leu Lys Gly Asp Gly Pro Val Gl 10 15		162
aag gca agc ggt gaa cca gtt gtg gt Lys Ala Ser Gly Glu Pro Val Val Va 25 30	g tca gga cag att aca gga tta Il Ser Gly Gln Ile Thr Gly Leu 35	210

act gaa ggo Thr Glu Gly 40	c gag cat o	ggg ttc Gly Phe 45	cat o	gtc ca Val Hi	t caa s Gln 50	tat Tyr	GJÀ ādā	gac Asp	aat Asn	aca Thr 55	258
caa ggc tgt Gln Gly Cys	t acc act of the second terms of the second te	gca gga Ala Gly	cct o	cat tt His Ph 6	e Asn	cct Pro	cac His	tct Ser	aag Lys 70	aaa Lys	306
cat ggc ggt His Gly Gl	cca gcg o Pro Ala P 75	gat gaa Asp Glu	gag a Glu A	agg ca Arg Hi 80	t gtt s Val	gga Gly	gac Asp	ctg Leu 85	ggc Gly	aat Asn	354
gtg gct gct Val Ala Ala 90	a Gly Lys <i>F</i>										402
gtg atc tca Val Ile Ser 105											450
gtc cac gag Val His Glu 120	ı Lys Gln A	_		-				-	-	_	498
aca aag act Thr Lys Thr					ı Ala						546
att gcc caa Ile Ala Gln		cccta t	gtggt	ctga (gtetea	agact	cat	ctgc	etgt		598
cctgctaaac <210> 150 <211> 2026	tgtagaaaaa	aaccaa	acca	ttaaa	ctgta	atct	taac	ag t	t		650
<212> DNA <213> R. no <400> 150	orvegicus										
ggatccgatg gactctccag tgtagccaat cctcagaatt ttgggagacc acaactttaa aagagacaat cagggactcc gtctccccac atcttccttg gcatcttgtt tgttactatg gggtactgag aaagttaaaa aggcagggag caaggtatac tgtcacgagg aataagtaac	gatagtcata cagttcctcc aaatcctgcc acagagattt cggtccccag tctgttttta ccatatatct ctttttttgt aagcactatg ctccagcgca aagtaacacg acggagggta gaaagccagg agccctgtga acggtgtgtgat ggtgtgtgta	gagcag tgtttc tcctga caattt ctccgg gttaag ttctag agtttg tctcac ggctgt actggg tacacg gtttga attttt gtcaaa	agec tetgtaaaaatteetgtaaaatteetgtaaa aacacegagetetaacegaacegaace	caggggggcctagaaaaaaaactctctttctgatttttggaacaaagggggatcttaaccaggggaggggaggga	gteta gagtt acagt acagt acaga ctta ggagt ctaga cca cc	cata aggt gcag tttc aaga tcca tcca gacat tcaa gacat aacac taac	agta tttttaacca taacaa gtaaaa gggggg tcaaa	actactacagtgggtaccaa	gtatted general state of the control	cccag gccat agcaa ttaaa ggcgat atcaat accaa gatat gatat gatat gttagc attagc attagc attagc attagc attagc attagc	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

```
gctcagtggt agacggcttg cctaggaagc gcaaggccct gggttcgatt ccccagctcc 1140
gaaaaaaaga acccccccc caaaaaaaag aaacctgcag agaaaaaaaa aaaacctgca 1200
gagacacaga ggtgtgtctg gagatagaac atgggcctta cacatattac accgagcatc 1260
catcttggct caccccaact ttcacacagc aactgcggcg cgctgcaaag tcagtcgcaa 1320
tecgeattte tagacagage ggetteagae ettecaggeg egeaegeagg ectegeegag 1380
gtttcctccg cgactcggcc gacttcacag ttagaagaca atagcgactt tcccagctct 1440
gtctcgattc tggaactttc tcagtcgcaa gctcctgaag ctggcgctcc cctcagcccc 1500
gcccccaacg tgccccgcgg ccagggaact tcaggaaggg taggcagaga ccgcggctag 1560
cgattggttc cctgccaagg tgggagtggc caggcacagg catataaaag ctccqcqqcq 1620
ctgggccctc gttttgcacc ttcgtttcct gcggcggctt ctgtcgtctc cttgcttttt 1680
gctctcccag gttccgaggc cgccgcgcgt ctcccgggga agcatgatgg cgacgatggc 1740
cgtgtgcgtg ctgaagggcg acggtccggt gcagggcgtc attcacttcg agcagaaggc 1800
aaggcccggg gcgctggagc cagagccagc ggtgacggcg gacacctagt gcgggacgca 1860
gecacgeece egeegegee tgageeegtt aaatgetgag teacegegge ettgaggagg 1920
ggcggcgcgg actagggagg cggggcgcg cggggacctt cggcgggtct ctcgcgcccc 1980
gagtgcgggc gccgagagag cagtttgcat cgctatccta tggact
                                                                   2026
<210> 151
<211> 550
<212> DNA
<213> R. norvegicus
<400> 151
ggatccccac aggcagtagg acacaattat tttctggcta ctggataaat tatgggaact 60
gataaacatc actgaatgtg gagtagaggt ttctgggcag ccaatgttct gaagagtcaa 120
gcctgacaca gtgcagtagc catccattcc ctagttctga cattgagctg cccccttttg 180
ttcctctggg tgcttttcaa gtgctgttga gtccaggtgt ctgcacacgt gcatctggaa 240
acaagtgtta gggccgatgg gtagggaggg aqaggcctag aqctaaqcaq ctctagagtc 300
accotggagg aaatgggtot acttggattt ggacataggt ttgattttgt tttgtttttt 360
gcattgtgcc tttttcatgt gattcagagt attacacaaa cttgatgtct tatttttgta 420
ttttttaaat aaggcaagcg gtgaaccagt tgtggtgtca ggacagatta caggattaac 480
tgaaggcgag catgggttcc atgtccatca atatggggac aatacacaag gtaggtccta 540
ggctggctag
                                                                   550
<210> 152
<211> 338
<212> DNA
<213> R. norvegicus
<400> 152
ctctagagtc accctggagg aaatgggtct acttggattt ggacataggt ttgttttgat 60
tttgtttttt gacttgtgcc ttttactgtg attcagaagt attaacacaa acttgatgtc 120
ttaatttttg tattttttta aataaaggca agcggtgaac cagttgtggt gtcaggacag 180
attacaggat taactgaagg cgagcatggg ttccatgtcc atcaatatgg qqacaataca 240
caaggtaagt cttaatctat ctctacctgg tctgactagt gagatgaatg ggtcagagtc 300
aggaccaatt actaaccatt taaaaccatc aatttttt
                                                                  338
<210> 153
<211> 799
<212> DNA
<213> R. norvegicus
<400> 153
ctgcagatat catgggctgt ggtagtgaga ccctgtctca aatctcaaaa caaacaaaca 60
tgacagtcta gtgaaaaagc gggtagcttg aaaattgcaa ggccatatag tccagcctat 120
ttgtaccagg gtgctgcttc ctgtttgtat cactccagca cataccagct ccatgtttgc 180
tgtgttggaa gttgtaagaa ttccgatgtc attgcataca gaggtttact tcataatctg 240
actgctggtt tctggtaata ggctgtacca ctqcaqqacc tcattttaat cctcactcta 300
agaaacatgg cggtccagcg gatgaagaga ggtgagcagc attctctcat gcatggtggt 360
```

```
ggagaggggt ctgtggaaaa cacctgaaga cagaactgag tggtctcact gccttttctt 420
ttgtatgttt ccattcaccc aactcccaca tccccaagta ctggaatagt ttatattggg 480
tgaaggagct gacaaatgtg gactcttaag tgatttagtt ttgtagcatt tattgaagat 540
gaactaatac aagtgccaaa aggaaccaat acagaaaata tcatggataa cagtactatc 600
acgtcactag caaaggtaaa tcattgtata atatcattaa tgcagattaa taaaaactag 660
ttgagattcc gtttgtatgt gaaccttagg aagtccttca tattaagagg ctagctcttt 720
gaatgagctg gagcaaacct tcgtaatcag gagctgcata cttcgtaacc tcgaagtgcc 780
ttcttctaga gcagagtga
<210> 154
<211> 476
<212> DNA
<213> R. norvegicus
<400> 154
attagacatt agatccctat gattgggaaa taggcatgtt ggagacctgg gcaatgtggc 60
tgctggaaag gacggtgtgg ccaatgtgtc cattgaagat cgtgtgatct cactctcaqg 120
agagcattcc atcattggcc gtactatggt ggtaagtttc catatagtag tagatgtagg 180
atttetteta acatagttat gtacetttee atgaettegt ggtggtggtt aaactagtte 240
ctaaaagatc acataaattg gtaagatgtt cagaatagga aaaaatatta ttttattgqa 300
tgtaatagta aagaattaat ttgcctagtc agttaagaac gctcgttctg ctcgaagtgc 360
tggtagaaag ctggttacat ttgatcagac tggatctgag ttgaggatac aatagtcttt 420
agtttaaaac agctggattt tcttqccatq attqccccct tacaqttaat catttc
<210> 155
<211> 630
<212> DNA
<213> R. norvegicus
<400> 155
cttagtagtc tgacttttag ctgatggcaa aaaattagct tattgattta ctaatagatt 60
tgaacatttt ctaatataca tggtcctttg aagtattgct gggaagaagt gctaattact 120
tacttgatca cagaaaccta aatgttctta attcttttca aaggtccacg agaaacaaga 180
tgacttgggc aaaggtggaa atgaagaaag tacaaagact ggaaatgctg gaagccgctt 240
ggcttgtggt gtgattggga ttgcccaata aacattccct atgtggtctg agtctcagac 300
tcatctgctg tcctgctaaa ctgtagaaac caaaccatta aactgtaatc ttaacagttg 360
ttccaatgtg tgtgcatccc tttgcttact gctaaggcat ccgtgagtga gaggtgctac 420
gagtaggttt ggaggtatgt ggttgacaat tcctgaatgt gtacaactct tagaactaaa 480
tagtgttgtt ttctgtgccc agaccctcac tgggtggttt aagctgaaat ttctctttca 540
agagagaga actgagactt atttagagct
<210> 156
<211> 544
<212> DNA
<213> R. norvegicus
<400> 156
ttagtattca tctagaaata gccacgagca aggaaacact tagtagtctg cttttagctg 60
atagcataaa aattagctta ttgatttact aatagatttg aacattttct aatacatg 120
gtcctttgaa gtattgctgg gaagaagtgc taattacttg atcaccgaaa cctaaatgtt 180
cttaattctt ttcaaaggtc cacgagaaac aagatgactt gggcaaaggt ggaaatgaag 240
aataaacatt coctatgtgg totgagtote agacteatet getgteetge taaactgtag 360
aaaaaaacca aaccattaaa ctgtaatctt aacagttgtt aactgtgtga ctcctttgac 420
ttgctctaag gacttgcagt gagaggtgac tgacgatgtt tggaggatgt gtagaacttc 480
ctgaatgtgt acaactcatt gaactaaaat ctgttgtttc tgtgccagac ctcactggtg 540
taag
                                                              544
```

ISPH	-0788	-43-	PATENT
<210><211><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> gtgcg	157 cgcga gcccgaaatc		20
<210>	158		
<220>			
<400> 000	158		
<210><211><212><212><213>	16		
<220> <223>	PCR Primer		
<400> tgctg	159 aaggg cgacgg		16
<210> <211> <212> <213>	19		
<220> <223>	PCR Primer		
<400> gttca	160 ccgct tgccttc t g		19
<210><211><211><212><213>	23		
<220> <223>	PCR Probe		
<400> ccggt	161 gcagg gcgtcattca ctt		23
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		

ISPH-0788		-44-	PATENT
<400> 162 cgcaggaaac gaa	aggtgcaa		20
<210> 163 <211> 20 <212> DNA <213> Artifici	.al Sequence		
<220> <223> Antisens	se Oligonucleotide	·	
<400> 163 gccgcaggaa acg	gaaggtgc		20
<210> 164 <211> 20 <212> DNA <213> Artifici	al Sequence		
<220> <223> Antisens	e Oligonucleotide		
<400> 164 ctcggaacct ggg	agagcaa		20
<210> 165 <211> 20 <212> DNA <213> Artifici	al Sequence		
<220> <223> Antisens	e Oligonucleotide		
<400> 165 ttcatcgcca tgc	ttccccg		20
<210> 166 <211> 20 <212> DNA <213> Artifici	al Sequence		
<220> <223> Antisens	e Oligonucleotide		
<400> 166 acggccttca tcg	ccatgct		20
<210> 167 <211> 20 <212> DNA <213> Artificia	al Sequence		
<220> <223> Antisens	e Oligonucleotide		
<400> 167 cacacggcct tca	tcgccat		20
<210> 168			

ISPH-0788	-46-	PATENT
<220> <223> Antisense Oligonucleotide		
<400> 173 cttgccttct gctcgaagtg		20
<210> 174 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 174 caccgcttgc cttctgctcg		20
<210> 175 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 175 tggttcaccg cttgccttct		20
<210> 176 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 176 acaactggtt caccgcttgc		20
<210> 177 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 177 taatctgtcc tgacaccaca		20
<210> 178 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 178		

ISPH-0788	-47-	PATENT
tootgtaato tgtootgaca		20
<210> 179 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 179 ttaatcctgt aatctgtcct		20
<210> 180 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 180 ccatgctcgc cttcagttaa		20
<210> 181 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 181 acatggaacc catgctcgcc		20
<210> 182 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 182 attgatggac atggaaccca		20
<210> 183 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 183 ccttgtgtat tgtccccata		20
<210> 184 <211> 20		

ISPH-0788	-48-	PATENT
<212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 184 tacageettg tgtattgtee		20
<210> 185 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 185 gtgaggatta aaatgaggtc		20
<210> 186 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 186 cttagagtga ggattaaaat		20
<210> 187 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 187 tgtttcttag agtgaggatt		20
<210> 188 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 188 ttgcccaggt ctccaacatg		20
<210> 189 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		

ISPH-0788	-49-	PATENT
<223> Antisense Oligonucleotide		
<400> 189 acattgecea ggtetecaae		20
<210> 190 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 190 cacaccgtcc tttccagcag		20
<210> 191 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 191 ttggccacac cgtcctttcc		20
<210> 192 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 192 acattggcca caccgtcctt		20
<210> 193 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 193 acacattggc cacaccgtcc		20
<210> 194 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 194 aatggacaca ttggccacac		20

<212> DNA

ISPH-0788	-51-	PATENT
<213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 200 tagtacggcc aatgatggaa		20
<210> 201 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 201 tcgtggacca ccatagtacg		20
<210> 202 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 202 ttctcgtgga ccaccatagt		20
<210> 203 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 203 cggcttccag catttccagt		20
<210> 204 <211> 20 <212> DNA <213> Artificial Sequence		
<220> . <223> Antisense Oligonucleotide		
<400> 204 ccaagcggct tccagcattt		20
<210> 205 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		

ISPH-0788	-52-	PATENT
<400> 205 cacaagccaa gcggcttcca		20
<210> 206 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 206 tcacaccaca agccaagcgg		20
<210> 207 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 207 gcaatcccaa tcacaccaca		20
<210> 208 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 208 tgggcaatcc caatcacacc		20
<210> 209 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 209 ttattgggca atcccaatca		20
<210> 210 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 210 cacataggga atgtttattg		20

ISI	PH-0788	-53-	PATENT
<21 <21	0> 211 1> 20 2> DNA 3> Artificial Sequence		
<22 <22	0> 3> Antisense Oligonucleotide		
	0> 211 gaccaca tagggaatgt		20
<21 <21	0> 212 1> 20 2> DNA 3> Artificial Sequence		
<22 <22	0> 3> Antisense Oligonucleotide		
	0> 212 ctcagac cacataggga		20
<21 <21	0> 213 1> 20 2> DNA 3> Artificial Sequence		
<22 <22	0> 3> Antisense Oligonucleotide		
	0> 213 gagactc agaccacata		20
<21 <21	0> 214 1> 20 2> DNA 3> Artificial Sequence		
<22 <22	0> 3> Antisense Oligonucleotide		
	0> 214 gacagca gatgagtctg		20
<21 <21	0> 215 1> 20 2> DNA 3> Artificial Sequence		
<22 <22	0> 3> Antisense Oligonucleotide		
	0> 215 caggaca gcagatgagt		20
<21 <21	0> 216 1> 20 2> DNA 3> Artificial Sequence		

.

ISPH-0788	-54-	PATENT
<220> <223> Antisense Oligonucleotide		
<400> 216 acagtttagc aggacagcag		20
<210> 217 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 217 tctacagttt agcaggacag		20
<210> 218 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 218 gattacagtt taatggtttg		20
<210> 219 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 219 tagcgatgca aactgctctc		20
<210> 220 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 220 ataggatagc gatgcaaact		20
<210> 221 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		

ISPH-0788	-55-	PATENT
<400> 221 taggacctac cttgtgtatt		20
<210> 222 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 222 taagacttac cttgtgtatt		20
<210> 223 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 223 actctgaccc attcatctca		20
<210> 224 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 224 gctgctcacc tctcttcatc		20
<210> 225 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 225 ttgctagtga cgtgatagta		20
<210> 226 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 226 atacaaacgg aatctcaact		20
<210> 227		

ISPH-0788	-57-	PATENT
<220> <223> Antisense Oligonucleotide		
<400> 232 gcaaattaat totttactat		20
<210> 233 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 233 gtatecteaa eteagateea		20
<210> 234 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 234 tctcgtggac ctttgaaaag		20
<210> 235 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 235 agcagactac taagtgtttc		20
<210> 236 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 236 ttttatgcta tcagctaaaa		20
<210> 237 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 237		

ISPH-0788	-58-	PATENT
taaatcaata agctaatttt		20
<210> 238 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 238 gttcaaatct attagtaaat		20
<210> 239 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 239 ctcgtggacc tttgaaaaga		20
<210> 240 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 240 tgggagagca aaaagcaagg		20
<210> 241 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 241 gaacctggga gagcaaaaag		20
<210> 242 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 242 gcctcggaac ctgggagagc		20
<210> 243 <211> 20		

ISPH-	-0788	-59-	PATENT
<212> <213>	DNA Artificial Sequence		
<220> <223>	Antisense Oligonucleotide		
<400> cggcct	243 cegga acetgggaga		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> ggcggd	244 ectcg gaacctggga		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> catgct	245 :tccc cgggagacgc		20
<210><211><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> tcgcca	246 atgct teceegggag		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> catcgo	247 ccatg cttccccggg		20
<210> <211> <212> <213>	20		
<220>			

ISPH-0788	-60-	PATENT
<223> Antisense Oligonucleotide		
<400> 248 gccttcatcg ccatgcttcc		20
<210> 249 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 249 gcacgcacac ggccttcatc		20
<210> 250 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 250 cttcagcacg cacacggcct		20
<210> 251 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 251 ttctgctcga agtgaatgac		20
<210> 252 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 252 tgccttctgc tcgaagtgaa		20
<210> 253 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 253 cgcttgcctt ctgctcgaag		20

<210> 254 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 254 ttcaccgctt gccttctgct	20
<210> 255 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 255 ccacaactgg ttcaccgctt	20
<210> 256 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 256 caccacact ggttcaccgc	20
<210> 257 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 257 tgtcctgaca ccacaactgg	20
<210> 258 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 258 tctgtcctga caccacact	20
<210> 259 <211> 20 <212> DNA	

ISPH-0788	-62-	PATENT
<213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 259 tgtaatctgt cctgacacca		20
<210> 260 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide	·	
<400> 260 aatcctgtaa tctgtcctga		20
<210> 261 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 261 agttaatcct gtaatctgtc		20
<210> 262 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 262 tcagttaatc ctgtaatctg		20
<210> 263 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 263 acccatgctc gccttcagtt		20
<210> 264 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		

ISPH-0788	-63-	PATENT
<400> 264 atggaaccca tgctcgcctt		20
<210> 265 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 265 ggacatggaa cccatgctcg		20
<210> 266 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 266 tgatggacat ggaacccatg		20
<210> 267 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 267 catattgatg gacatggaac		20
<210> 268 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 268 cccatattga tggacatgga		20
<210> 269 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 269 tccccatatt gatggacatg		20

ISPH-0788	-64-	PATENT
<210> 270 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 270 tgtccccata ttgatggaca		20
<210> 271 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 271 attgtcccca tattgatgga		20
<210> 272 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 272 tgtgtattgt ccccatattg		20
<210> 273 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 273 agccttgtgt attgtcccca		20
<210> 274 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 274 ttcttagagt gaggattaaa		20
<210> 275 <211> 20 <212> DNA <213> Artificial Sequence		

ISPH-	-0788	-65-	PATENT
<220> <223>	Antisense Oligonucleotide		
<400> catgtt	275 Etett agagtgagga		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> gccato	276 stttc ttagagtgag		20
<210><211><211><212><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> gaccgc	277 catg tttcttagag		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> tggacc	278 gcca tgtttcttag		20
<210><211><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> gctgga	279 ccgc catgtttctt		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		

ISPH-0788	-66-	PATENT
<400> 280 ccgctggacc gccatgtttc		20
<210> 281 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide	e	
<400> 281 atccgctgga ccgccatgtt		20
<210> 282 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide	e	
<400> 282 tcatccgctg gaccgccatg		20
<210> 283 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide	3	
<400> 283 cttcatccgc tggaccgcca		20
<210> 284 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide	e	
<400> 284 ctctcttcat ccgctggacc		20
<210> 285 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide	e	
<400> 285 gcctctcttc atccgctgga		20
<210> 286		

ISPH-0788	-67-	PATENT
<211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 286 ccacattgcc caggtctcca		20
<210> 287 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 287 agccacattg cccaggtctc		20
<210> 288 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 288 gtcctttcca gcagccacat		20
<210> 289 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 289 accgtccttt ccagcagcca		20
<210> 290 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 290 ggacacattg gccacaccgt		20
<210> 291 <211> 20 <212> DNA <213> Artificial Sequence		

ISPH-0788	-68-	PATENT
<220> <223> Antisense Oligonucleotide		
<400> 291 ttcaatggac acattggcca		20
<210> 292 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 292 tacggccaat gatggaatgc		20
<210> 293 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 293 gtggaccacc atagtacggc		20
<210> 294 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 294 gcttccagca tttccagtct		20
<210> 295 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 295 agccaagegg ettecageat		20
<210> 296 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 296		

ISPH-0788	-69-	PATENT
accacaagcc aagcggcttc		20
<210> 297 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 297 attgggcaat cccaatcaca		20
<210> 298 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 298 gtttattggg caatcccaat		20
<210> 299 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 299 accacatagg gaatgtttat		20
<210> 300 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 300 agaccacata gggaatgttt		20
<210> 301 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 301 actcagacca catagggaat		20
<210> 302 <211> 20		

ISPH-0788	-70-	PATENT
<212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 302 tgagactcag accacatagg		20
<210> 303 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 303 tgagtctgag actcagacca		20
<210> 304 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 304 gatgagtctg agactcagac	•	20
<210> 305 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 305 cagatgagtc tgagactcag		20
<210> 306 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 306 agcagatgag tetgagaete		20
<210> 307 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		

ISPH-0788	-71-	PATENT
<223> Antisense Oligonucleotide		
<400> 307 ggacagcaga tgagtctgag		20
<210> 308 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 308 tttagcagga cagcagatga		20
<210> 309 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 309 agtttagcag gacagcagat		20
<210> 310 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 310 tttctacagt ttagcaggac		20
<210> 311 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 311 tttttctaca gtttagcagg		20
<210> 312 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 312 ttaagattac agtttaatgg		20

<210> 313 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 313 tgttaagatt acagtttaat	20
<210> 314 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 314 tttccacctt tgcccaagtc	20
<210> 315 <211> 18 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide <400> 315 cttcagcacg cacacggc	18
<210> 316 <211> 650 <212> DNA <213> R. norvegicus	
<220> <221> CDS <222> (94)(558)	
<pre><400> 316 gttttgcacc ttcgtttcct gcggcggctt ctgtcgtctc cttgcttttt gctctcccag gttccgaggc cgccgcgct ctcccgggga agc atg gcg atg aag gcc gtg tgc</pre>	60 114
gtg ctg aag ggc gac ggt ccg gtg cag ggc gtc att cac ttc gag cag Val Leu Lys Gly Asp Gly Pro Val Gln Gly Val Ile His Phe Glu Gln 10 15 20	162
aag gca agc ggt gaa cca gtt gtg gtg tca gga cag att aca gga tta Lys Ala Ser Gly Glu Pro Val Val Val Ser Gly Gln Ile Thr Gly Leu 25 30 35	210
act gaa ggc gag cat ggg ttc cat gtc cat caa tat ggg gac aat aca Thr Glu Gly Glu His Gly Phe His Val His Gln Tyr Gly Asp Asn Thr	258

gcggtgacgc ggggcacctg tgcgggagaa cgccacgcc ccgccgggc ctgagcccgg 900 taaatgctga gtcaccgcgg ccttgaggca ggggccgggc gcgggagagg gaggccgggg 960 cgccgcgggg ccttccgggc gggtccctct tcgcgcccc gagtggccgg gccggcccga 1020 gagagcgggc ttggcatccg ctatccctct ggggctgctg cttttccggt gtccctgtcc 1080 cacaggggct cagacccttg tggccaccgg ctgcatttgt tgtaagaata tttgaacctg 1140 gtggtgccaa accggactaa cgcagcaagc agaacgcatt tgtggcattt taaagccaag 1200 ccctggctat attaggtcag ggtcgtgccg caagggggaa agaaaagaga tggccttggg 1260

cagttgtttt	gccaccaaga	gctccaagaa	agagacctga	ctctggttgt	tgtctacgac	1320
agcgagtctc	tgagcacaat	ttgaaaagta	tacagaaata	ttttcgaaac	tactgcagtt	1380
					gttcagagcc	
					aatgagcgtt	
	_			_	tgaatccaag	
		_		-	ctagtctcag	
					ttttqtcttt	
	_			_	agaaaqctqa	
					attctttggt	
					cagctgtaac	
					tcagtttttt	
					aagtagaaag	
				_	ctccctgttg	
					ttttgttaag	
					ctctggttag	
					ggataaaatt	
					caatgttctg	
_					cattgagctg	
					ctgcacacgt	
					agctaagcag	
					ttgattttgt	
tttgttttt	gacttgtgcc	ttttactgtg	attcagaagt	attaacacaa	acttgatgtc	2580
ttaatttttg	tatttttta	aataaaggca	agcggtgaac	cagttgtggt	gtcaggacag	2640
attacaggat	taactgaagg	cgagcatggg	ttccatgtcc	atcaatatgg	ggacaataca	2700
caaggtaagt	cttaatctat	ctctacctgg	ctgactagtg	agatgaatgg	gactgagtca	2760
ggaccaatta	ctaaccattt	aaaaccatca	atttttttct	ttttctttta	gattaagtta	2820
aaataaccac	ttaggtcaac	ctcggaaaat	agccacaaaa	gtattttagt	tagtatcgag	2880
					gattattata	
gcttgacttt	aatatacaga	aacaaatacq	caccttcctt	attttggata	atcctttgag	3000
					gacagctatg	
					aatgcttaga	
					ttacattgca	
					cttttaagag	
					tttcccctcc	
					gtcttagatg	
					acagttactt	
					tttgcctctg	
	_		-		tatttcttgg	
					gctgttgaga	
					tttacacctg	
					tctgccccaa	
					agtgttttta	
					gtgccactaa	
					acactaccat	
					catgggctgt	
geteetggea	ccctgtatgt	natatanan	gggtcattaa	tananatata	gtgaaaaagc	4020
					gctgcttcct	
					tgtaagaatt	
					tggtaaatag	
getgtaeeae	tgcaggacct	cattttaatc	ctcactctaa	gaaacatggc	ggtccagcgg	4260
					ctgtggaaaa	
					ccattcaccc	
					gacaaatgtg	
					aagtgccaaa	
					aaagtaaatc	
					gtatgtgaaa	
					aggcctggga	
					gtggctctct	
cctttaaact	ggaagagcta	tgtgtcaagg	tatcctggct	acctgttttg	aaatttgtgt	4800

```
ttccagacct ttgtctggaa aagccatcat atttgatagt gtatgtgcac tctttaatcc 4860
actcatagca tttgacttcg atgtgaattt agctattgaa ctctattgat gtgaaataga 4920
tatcattgct tatccacctg gtgctgtttt aatgttaggc atgttggaga cctgggcaat 4980
gtggctgctg gaaaggacgg tgtggccaat gtgtccattg aagatcgtgt gatctcactc 5040
tcaggagagc attccatcat tggccgtact atggtggtaa qtttccatat aqtagtagat 5100
gtaggatttc ttctaacata gttatgtacc tttccatgac ttcgtggtgg tggttaaact 5160
agttcctaaa agatcacata aattggtaag agttcagaat aggaaaaaat attattttat 5220
tggatgtaat agtaaagaat taatttgcct aggtcagtta agaacgctgt tctgctgaag 5280
tgcggtagaa agctggttac atttgatcag actggatctg agttgaggat acaatagtct 5340
ttagtttaaa acagctggat tttcttgcca tgattgcccc cttacagtta atcatttcgt 5400
tgagcttaaa atctgcgatg gatgtcagta ttcaagtctg caggttatcg cttggttacc 5460
atatgggagc cgtcttccca agttaccctc gggagatgaa tctggttcat gcagaacacc 5520
aagtagtaaa agctcttgcc cacttcgggc agctaacttt tcagtaggca cttcctttca 5580
gttgaccctt tatccttaga attttcttca gccctattgg tgaagcagaa caatcattca 5640
taaatgttct aaaaataaaa tttaaaatct tgttgctaag taaagatatt tagaattgcc 5700
tcttatgtgt aggcctatag ttcactcacc aagagatttt gatagagaaa tttgtaagaa 5760
tgactactgt acagtggggt gagggtgagg gctaagatca gcatgtgcct ggtagttatt 5820
tgggtcctta gtattcatct agaaatagcc acgagcaagg aaacacttag tagtctgctt 5880
ttagctgata gcataaaaat tagcttattg atttactaat agatttgaac attttctaat 5940
atacatggtc ctttgaagta ttgctgggaa gaagtgctaa ttacttgatc accgaaacct 6000
aaatgttett aattetttte aaaggteeac gagaaacaag atgaettggg caaaggtgga 6060
aatgaagaaa gtacaaagac tggaaatgct ggaagccgct tggcttgtgg tgtgattggg 6120
attgcccaat aaacattccc tatgtggtct gagtctcaga ctcatctgct gtcctgctaa 6180
actgtagaaa aaaaccaaac cattaaactg taatcttaac agttgttaac tgtgtgactc 6240
ctttgacttg ctctaaggac ttgcagtgag aggtgactga cgatgtttgg aggatgtgta 6300
gaactteetg aatgtgtaca acteattgaa etaaaatetg ttgtttetgt gecagaeete 6360
actggtgtta agctgaaatt ctcattcaag cctctctct tctctgtgtg tgtctgtgtg 6420
agactgagac ttatttagag cctcgagaga tagagactta tttcaagcct attaatgtat 6540
accaaaaaga cctaagctct atacactgag catcaacaac agactcaatg aggctctcat 6600
agtatttaat tttgaaagtg tttcatgtga taccatcaaa atgacgtgtg gtagcccaaa 6660
ccqqatttqa tcttaqaaaa ttttctqccc tttqttatca tcaqaaatta ctgaaagctc 6720
tctttaagat tcagagtacc taaccttatt ttaaaatcgt attagagtta gaagccatga 6780
tttaagataa agccctttag taaacttgta taaaactcat aaaaggcaaa taggtagcct 6840
cagctagcca agtttaatac ctcctctacc tgccaagtga agttggtacc acctgctttt 6900
ttaaggttgg cactcaggaa atacatagca ctgggagatg agaccaagtg gttctggcgg 6960
ttgtggctaa atcgactttt acagcctcag ttaatgaaac t
```

```
<210> 318
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
<400> 318
caccgcttgc cttctgctcg
<210> 319
<211> 20
<212> DNA
<213> Artificial Sequence
```

<223> Antisense Oligonucleotide

20

ISPH-0788	-76-	PATENT
<400> 319 tctcgtggac caccatagta		20
<210> 320 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 320 tgcaaaacga gggcccagcg		20
<210> 321 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 321 gggccttgcc ttctgctcga		20
<210> 322 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 322 caccgcttgc ctttatttaa		20
<210> 323 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 323 ttaagactta ccttgtgtat		20
<210> 324 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 324 gtggtacagc ctatttacca		20
<210> 325		

ISPH-0788	-77-	PATENT
<211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 325 tgctgctcac ctctcttcat		20
<210> 326 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 326 tccaacatgc ctaacattaa		20
<210> 327 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 327 ggaaacttac caccatagta		20
<210> 328 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 328 tctcgtggac ctttgaaaag		20
<210> 329 <211> 15 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 329 cgcttgcctt ctgct		15
<210> 330 <211> 15 <212> DNA <213> Artificial Sequence		

ISPH	-0788	-78-	PATENT
<220> <223>	Antisense Oligonucleotide		
<400> cgtgg	330 accac catag		15
<210> <211> <212> <213>	15		
<220> <223>	Antisense Oligonucleotide		
<400> aaaac	331 gaggg cccag		15
<210> <211> <212> <213>	15		
<220> <223>	Antisense Oligonucleotide		
<400> ccttg	332 cette tgete		15
<210> <211> <212> <213>	15		
<220> <223>	Antisense Oligonucleotide		
<400>	333 gcctt tattt		15
<210><211><211><212><212><213>	15		
<220> <223>	Antisense Oligonucleotide		
<400> agactt	334 cacct tgtgt		15
<210><211><211><212><213>	15		
<220> <223>	Antisense Oligonucleotide		
<400>	335		

ISPH-0788	-79-	PATENT
gtacagccta tttac		15
<210> 336		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	·	
<400> 336		
tgctcacctc tcttc		15
<210> 337		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 337		
aacatgccta acatt		15
<210> 338		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 338		
aacttaccac catag		15
<210> 339		
<211> 15		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 339		
cgtggacctt tgaaa		15
•		