The Phoenix Board

Group 8

Hanser Gonzalez CpE
Alex Lapegna CpE
Simeon Richards EE

Motivations

- We each wanted different ideas incorporated into a project
 - Solar energy/power management
 - Mobile communications (Wi-Fi or Bluetooth)
 - Computer vision
- We wanted something fun that would keep us all motivated throughout the duration of the project
- We wanted something that could be used regularly and reliably
- Quick travel within a college campus

Goals and Objectives

Core Features:

- A smooth and fast electric motor with easy speed control
- Rechargeable battery via solar and standard outlets
- PCB manages all onboard sensors
- Fast and consistent mobile communications
- Weight-sensitive safety mechanism
- Efficient and reliable

Specifications

Total Board Weight	< 25 lbs	
Maximum Board Speed	>= 15 mph	
Battery	36V, 10Ah, < = 10A	
Battery Charge Time	< 5 hours	
Communication	< 0.5s response time between app and PCB	
Motor Efficiency	> 70%	
Battery Efficiency	> 80%	
Cost	< \$1000	

Existing Projects

Halo Board - 2nd Edition

- 14 lbs
- 286 lb weight limit
- 14 miles of ride time
- Max speed: 26 mph
- Recharge time: 3 hrs
- Cost: \$1,497.00 USD

Evolve Boards - Bamboo GTX

- 19.4 lbs
- 220 lb weight limit
- 19 miles of ride time
- Max speed: 26 mph
- Recharge time: 4-5 hrs
- Cost: \$1,779.99 USD

Boosted Boards - Boosted Plus

- 17 lbs
- 250 lb weight limit
- 14 miles of ride time
- Max speed: 22 mph
- Recharge time: 1.75 hrs
- Cost: \$1,399.00 USD

Block Diagram

Board and Enclosure

Longboard Selection

Stability/Maneuverability Factors:

- Length
- Width
- Weight
- Flex
- Style (Truck height)
- Shape

Battery/Component Enclosure

DIYE Electric Skateboard Battery & Electronics Customizable & Scratch-Proof Battery Enclosure

• Outside: 21" x 7 1/40" x 1 3/4"

• Inside: 19 1/9" x 5 3/4" x 1 1/2"

• Heavy-Duty, Durable and Flexible

Protection for ESC, Battery and Electronics

Designed for custom built skateboards

Peripherals

Microcontroller

ATMega2560

- Selected over MSP430F5529
 - Multiple UARTs which are needed for Bluetooth and motor control
 - Higher number of GPIO pins, needed for multiple sensors
 - Arduino libraries are widely available and easy to implement

	MSP430F5529	ATMega2560
Architecture	16-Bit	8-Bit
Speed	Up to 25 MHz	Up to 16 MHz
Flash	128 KB	256 KB
RAM	8 KB	8 KB
UART	1	4
I2C	1	1
SPI	1	5
GPIO Pins	64	86

Embedded System IDE

Embedded IDE: Arduino IDE

- Used for developing applications for Arduino based processors
- Supports C/C++
- Wide availability of documentation, tutorials, and ready-to-use libraries for peripherals

Motors: Hub vs. Belt

Hub Motors

- Motor is integrated into wheel reducing the amount of noise made
- Less drag which provides a longer battery life
- Reduced resistance allows users to free roll
- Thinner urethane sleeving around motor as opposed to full-sized wheel reduces shock absorption
- Typically weigh less

Belt Motors

- Involve a belt/pulley system which can create significant amounts of noise
- Provide higher levels of torque
- Present a lot of resistance essentially barring free roll
- Can cause rider to feel a vibration when running
- Can use full-sized wheels for better shock absorption
- Typically weigh more

Motor Selection

- Dual 6364 Hub Motors
- Weight: 9.57 lbs
- Motor size: 74.5 mm x 52 mm
- Wheel size: 90 mm
- Top Speed: 25 mph
- Operating voltage: 24V 42V
- Simple integration
- Replaceable urethane sleeving

Dual 90mm Hub Motor Kit

Electronic Speed Control

Dual FSESC4.20 100A with Anodized Aluminum Heatsink (VESC Based)

- 50 A Continous/single, 100A continous/dual
- 8V 60V (3-13S LiPo)
- DC, BLDC, FOC modes
- UART capable

FSESC 4.12 50A Based on VESC® 4.12

- 50 A Continous/single
- 8V 60V (3-13S LiPo)
- DC, BLDC, FOC modes
- UART capable

Ultrasonic Sensor

SMAKN Ultrasonic Module HY-SRF05 Distance Sensor

Power Supply: +5V DC

• Idle Current: < 2mA

Ranging Distance: 2 cm - 450 cm

• Resolution: 0.3 cm

• Full measuring angle: 30 degrees

• Effective angle: < 15 degrees

Pins: VCC, GND, TRIG, ECHO, OUT

 Used for obstacle detection in front of the board and assist with engaging emergency slowdown to prevent/minimize rider injury

Night Mode LEDs

CHINLY 16.4ft WS2812B Individually Addressable LED Strip

- Power Supply: +5V DC
- 5050 RGB LEDs
- 24-bit color (8-bit red, green, and blue data)
- LED strip can be cut to desired length without damaging LEDs.

Load Cell and Load Cell Amplifier

Load Cell: TAS606 Load Cell - 200 kg

- 200 kg weight capacity
- Consists of 4 Strain gauges hooked up into a wheatstone bridge
- 20 mm x 11 mm, 2000 mm wire
- Operating Voltage: 5 15 V

Load Cell Amplifier: SparkFun Load Cell Amplifier - HX711

- ADC to convert analog Load Cell signal into a Digital signal
- Operating Voltage: 2.7 V 5 V
- Operating Current: < 1.5 mA

Power Management System

Solar Panel

Solar Power

Monocrystalline Panel - Pros

- First choice for highest efficiency
- Highest power output
- Requires least amount of space
- Longevity and long warranty from manufacturers

Monocrystalline Panel - Cons

- More expensive
- Open circuit if covered by shade, dirt or snow (use of micro inverters required)
- More efficient in warmer weather

Power Management Flowchart

Battery - 36V Lithium-Ion

Pros

- Greatest electrochemical potential
- Largest energy per weight
- High energy density
- Low internal resistance
- Low self discharge rate & low maintenance

Cons

- Fragile
- Requires protection circuit for safe operation (most)
- Expensive to manufacture and requires frequent upgrade

Battery Meter

- Voltage range of 12 84 volts
- Battery Meter with real time voltage reading
- Liquid Crystal Display for battery state
- Waterproof design
- No external switch needed
- Lead-acid and Lithium-ion compatible

Wireless Charging

Magnetic Induction (Inductive)

High resonant frequency wirelessly transfers energy using inductive coupling.

Pros

Cons

- Simple and efficient
- Safe
- Scalable
- Mature
- Good coupling

Has to be in close proximity

PCB

Pins and connectors for external devices

PCB Board Layout

PCB Design

Mobile App / Wireless Communication

Bluetooth Module

DSD Tech HC-05 Bluetooth Serial Pass-Through module

- Bluetooth Classic 2.0 module
- +5 V
- Default baud rate of 9600
- Connected to PCB UART
- Used to received data from the mobile app

Mobile Application IDE

Mobile IDE: React Native

- React Native selected for ability to natively develop for both Android and iOS
- Utilizes Node.js, Python2, and Java SE Development Kit 8
- Development done in Android Studio
- Current goal is developing Android version only, future goal can expand to iOS version
- Testing done on Samsung Galaxy S5 and Android Virtual Device

Flowchart

Mobile App Design

- Bold header with current Ride Mode
- Speed, in MPH or KPH displayed prominently in center of screen
- Stopwatch used in tracking trip duration as well as average speed
- Reset button
 - Resets the stopwatch
 - Resets the board's speed
 - Logs trip into local memory
- Buttons to traverse to map screen and setting screen

Mobile App Design

- Integrated map
 - Using the phone's internal GPS in order to get this information
 - Tracks location in real time
- Tracking Ride Data
 - Can be used in various ways in order to maximize ride efficiency
 - Metrics can be used to compare different routes

Mobile App Design

- Toggle switches, for the LEDs and for unit of measurement for speed/distance
- Access to multiple screens
 - Ride Mode Selection
 - LED Customization
 - Previous Rides
 - Safety
 - About

Mobile App Design

- Ride Modes
 - Beginner
 - Includes ultrasonic sensor safety feature
 - Intermediate
 - Advanced
 - o ECO
 - Disables safety features to extend battery life

Embedded Design

- Board_Main Setup
 - Initializes 3 UARTS: Bluetooth adapter and 2 VESC motor controls
 - Clears LED strip in case of any residual
 PWM signal on signal line
 - Initialize load cell for weight sensing
 - Initialize ultrasonic sensor for obstacle detection

Embedded Design

- Board_Main Loop
 - Check for load cell for rider, if non-zero input detected over threshold, transmit flag to app, signals app is safe to transmit data
 - Check for obstacles, if obstacle detected under threshold distance, begin emergency stop procedure, transmit flag to app

Embedded Design

- Board_Main Loop Cont'd
 - Check for incoming serial commands
 - LED Change
 - Speed Change
 - Ride Mode Change

Complete Internals & Externals

Class Diagram

Constraints

- Economic
 - Exceeded project budget
- Size and weight
- User experience
 - Accessible for any level of rider
 - Customizable and easy-to-use app
- Ensuring safety of user without compromising experience

Issues

- Having to switch from MSP430F5529 to ATmega2560 in last month of development
- Initial time lost designing MSP430 software and PCB
- Accidentally damaging part of our ESC
- Physically fitting all components into enclosure
- Communications between different mobile app components
- Finding best placement of wireless charging coils to maximize charging voltage
- Battery shorted the day before the presentation and damaged multiple components

Distribution of Responsibilities

Name	Mobile App	РСВ	Sensor Suite	Battery / Power Management	Motor / ESC	Components Enclosure
Alex	S	S	Р		Р	S
Hanser	Р	S	S		S	Р
Simeon		Р		Р	S	S

P = Primary

S = Secondary

Initial Budget

Part	Price (USD)	Part	Price (USD)
Longboard	\$60	Ultrasonic Sensor	\$6
Load Cell	\$60	PCB Fabrication	\$50
Load Cell Amp	\$10	Voltage Regulator	\$7
Battery	\$146	RGB LED Strip	\$20
Battery Fuel Gauge	\$4	Launchpad	\$13
Hub Motor	\$220	MPPT Charge Cont.	\$47
Solar Panel	\$87	Boost Converter	\$34
Bluetooth Module	\$30		
Camera	\$40	Total	\$834.00

Actual Expenses

Part	Price (USD)	Part	Price (USD)
Longboard	\$60	Ultrasonic Sensor	\$6
Load Cell	\$60	PCB Fabrication	\$150
Load Cell Amp	\$10	Voltage Regulator	\$7
Battery	\$146	RGB LED Strip	\$20
Battery meter	\$10	Arduino MEGA	\$30
Hub Motor	\$220	Boost Converter	\$60
Solar Panel	\$87	VESC	\$120
Bluetooth Module	\$30		
Miscellaneous	\$100	Total	\$1180.00

Any Questions?

Demo: Dual Motors

Demo: Dual Motors, Max Speed

Demo: LEDs (App and PCB)

Demo: App, Motors, and PCB

Demo: Wireless Charging (fast, DC power supply)

Demo: Wireless Charging via Solar Panel

