Информатика

Лабораторная работа 1. Системы счисления

Система счисления – это способ записи чисел с помощью заданного набора специальных символов и соответствующие ему правила действий над числами.

Алфавит системы счисления — это набор символов используемых для записи чисел в данной системе счисления. Количество символов, использующихся в алфавите, называется его размерностью.

Все системы счисления можно разделить на две большие группы: позиционные и непозиционные.

Аудиторные задачи с примерами:

1. Переведите:

Примеры:

1)
$$101_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5_{10}$$

2)
$$341_8 = 3 * 8^2 + 4 * 8^1 + 1 * 8^0 = 255_{10}$$

3)
$$FA_{16} = 15 * 16^{1} + 10 * 16^{0} = 250_{10}$$

a)
$$1010_2 \rightarrow A_{10}$$

б)
$$783_8$$
 → A_{10}

в)
$$1FE_{16} \to A_{10}$$

Примеры:

1)
$$11_{10} \rightarrow A_2$$

Otbet:
$$11_{10} = 1011_2 \quad 363_{10} \rightarrow 553_8$$

2)
$$363_{10} \rightarrow A_{8}$$

$$363_{10} \rightarrow 553_{8}$$

3) $363_{10} \rightarrow A_{16}$

$$363_{10}^{} \rightarrow 16B_{16}^{}$$

$$\Gamma$$
) 58₁₀ $\to A_2$

д)
$$58_{10} \rightarrow A_8$$

e)
$$58_{10} \rightarrow A_{16}$$

Примеры:

1)
$$0.75_8 = 0.8^0 + 7.8^{-1} + 5.8^{-2} = 0.953125_{10}$$

2)
$$F$$
, $A_{16} = 15 * 16^{0} + 10 * 16^{-1} = 15$, 625_{10}

ж) 101, 11₂
$$\rightarrow$$
 A_{10} 3) 26, 77₈ \rightarrow A_{10}

3) **26,**
$$77_8 \rightarrow A_{10}$$

и) 5
$$F$$
, 6₁₆ $\rightarrow A_{10}$

Примеры:

1) 0,
$$75_{10} \rightarrow A_2$$

$$\begin{array}{ccc}
0,75 & \cdot 2 = 1, & 5 \\
0,50 & \cdot 2 = 1, & 0
\end{array}$$

Ответ:
$$0,75_{10} = 0,11_{2}$$

Напомним, что правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается. При этом целая часть последовательно заносится в результат.

2)
$$0,24_{10} \rightarrow A_{8}$$

$$0.24 \cdot 8 = 1, 92$$

$$0.92 \cdot 8 = 7, 36$$

$$0.36 \cdot 8 = 2, 88$$

$$0.88 \cdot 8 = 7,04$$

$$\begin{array}{ccc}
0.88 & \cdot 8 = 7, & 04 \\
0.04 & \cdot 8 = 0, & 32
\end{array}$$

Ответ: $0,24_{10} \approx 0,17270_{8}$

точность 3 знака

$$\kappa$$
) 0, 67₁₀ → A_2

л) 0,
$$34_{10} \rightarrow A_{8}$$

м) 17, 225₁₀
$$\rightarrow A_2$$

к) 0, 67
$$_{10} \rightarrow A_{2}$$
 л) 0, 34 $_{10} \rightarrow A_{8}$ н) 17, 225 $_{10} \rightarrow A_{8}$ о) 17, 225 $_{10} \rightarrow A_{16}$

o) 17, 225₁₀
$$\rightarrow A_{16}$$

Примеры представления однобайтовых отрицательных чисел в ЭВМ:

Прямой код — старший бит кода равен нулю, остальные биты представляют двоичное представление числа.

Дополнительный код получается из прямого путем инверсии (замена нулей единицами, а единиц нулями) с последующим добавлением единицы.

прямой код: 01000001 инверсия: 10111110 дополнительный: 10111111

Ответ: 10111111