河北大学 物理科学与技术学院《激光原理》测试题

第一章 激光的基本原理

_	简答题
•	旧台政

— 、	简答题
1.	什么是光波模式密度? 试写出真空中 ν 频率处的光波模式密度。
2.	什么是光子简并度? 光子简并度与光场相干性之间是什么关系?
3.	什么是单色能量密度? 若在温度为 T 的热平衡状态下,黑体辐射源在频率 ν 处的光子简并度为 $\bar{n}=\left(e^{\frac{\hbar\nu}{k_bT}}-1\right)^{-1}$,试写出黑体辐射源的单色能量密度。
4.	光与原子相互作用包含哪三个基本过程?哪个过程是激光器的物理基础?
5.	激光器一般包括哪三个基本单元?各单元的主要作用是什么?

二、证明题

6. 在两能级原子模型中,若原子从高能级 E_2 到低能级 E_1 的自发跃迁概率是 A_{21} 。试证明原子在 E_2 能级的自发辐射寿命 $\tau_{s_2}=\frac{1}{A_{21}}$ 。

7. 对于空腔体积为 V 的立方体,试用驻波条件求证空腔 V 内的每个模式在波矢空间中占有的体积元为 $\frac{\pi^3}{V}$ 。

8. 按照驻波条件,能够稳定存在于空腔 V 中的每个模式(包含两个偏振)在波矢空间中所占的体积为 $\frac{\pi^3}{V}$,求证空腔 V 中处于 ν 频率附近单位频带内的模式数目为

$$N_{\nu} = \frac{8\pi\nu^2}{c^3}V$$

三、综合题

- 9. 一弱光束通过一长度为 $10 {
 m cm}$ 、质地均匀的激光工作物质。未加泵浦时该材料对光的吸收为 $0.1 {
 m \, cm}^{-1}$ 。
 - (1) 请计算未加泵浦时出射光强与入射光强的百分比?
 - (2) 在均匀泵浦的情况下,如果出射光强是入射光强的 2.72 倍, 试求该物质的增益系数。(假设光很弱,可以忽略增益或吸收的饱和效应)。