SALES PREDICTION

→ IMPORTING LIBRARIES

```
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
```

→ IMPORT DATASET

data=pd.read_csv("advertising.csv")
data.head()

	Unnamed:	0	TV	Radio	Newspaper	Sales
0		1	230.1	37.8	69.2	22.1
1		2	44.5	39.3	45.1	10.4
2		3	17.2	45.9	69.3	9.3
3		4	151.5	41.3	58.5	18.5
4		5	180.8	10.8	58.4	12.9

→ REMOVE UNWANTED COLUMNS

```
data = data.drop(columns=['Unnamed: 0'])
```

- DATA ANALYSIS

data.shape
 (200, 4)

data.describe()

8		TV	Radio	Newspaper	Sales
	count	200.000000	200.000000	200.000000	200.000000
	mean	147.042500	23.264000	30.554000	14.022500
	std	85.854236	14.846809	21.778621	5.217457
	min	0.700000	0.000000	0.300000	1.600000
	25%	74.375000	9.975000	12.750000	10.375000
	50%	149.750000	22.900000	25.750000	12.900000
	75%	218.825000	36.525000	45.100000	17.400000
	max	296.400000	49.600000	114.000000	27.000000

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 4 columns): # Column Non-Null Count Dtype 0 TV 200 non-null float64 Radio 200 non-null float64 1 Newspaper 200 non-null float64 200 non-null float64

```
dtypes: float64(4)
memory usage: 6.4 KB
```

import seaborn as sns

correlation = data.corr()

correlation

	TV	Radio	Newspaper	Sales
TV	1.000000	0.054809	0.056648	0.782224
Radio	0.054809	1.000000	0.354104	0.576223
Newspaper	0.056648	0.354104	1.000000	0.228299
Sales	0.782224	0.576223	0.228299	1.000000

sns.heatmap(correlation,annot=True)

→ SPLITING DATA INTO TWO DATASETS

```
x=data.iloc[:, 0:-1]
```

х

	TV	Radio	Newspaper			
0	230.1	37.8	69.2			
1	44.5	39.3	45.1			
2	17.2	45.9	69.3			
3	151.5	41.3	58.5			
4	180.8	10.8	58.4			
195	38.2	3.7	13.8			
196	94.2	4.9	8.1			
197	177.0	9.3	6.4			
198	283.6	42.0	66.2			
199	232.1	8.6	8.7			
200 rows × 3 columns						

y=data.iloc[:,-1]

У

0 22.1 1 10.4 2 9.3 3 18.5 4 12.9

195

 $https://colab.research.google.com/drive/1p-YBEI5UnoQs7kiUqG5s1vX9qHe2dM4_\#scrollTo=d6023fda\&printMode=true$

```
196 9.7
197 12.8
198 25.5
199 13.4
Name: Sales, Length: 200, dtype: float64
```

→ SPLITTING INTO TRAIN AND TEST DATA

```
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3)
```

→ CONVERTING DATA INTO INTEGERS

```
xtrain=xtrain.astype(int)
ytrain=ytrain.astype(int)
xtest=xtest.astype(int)
ytest=ytest.astype(int)
xtrain,ytrain
            TV
               Radio Newspaper
     137
           273
                              59
                   28
                              75
      141
          193
                   35
      66
            31
                   24
                               2
      135
           48
                   47
                               8
      6
            57
                   32
                              23
           44
      15
           195
                   47
                              52
      184 253
                   21
                              30
      197
           177
                    9
                               6
                   42
                              51
           289
      98
      [140 rows x 3 columns],
      137
             20
      141
             19
      66
              9
      135
             11
             10
      1
      15
             22
      184
             17
      197
             12
      98
             25
      Name: Sales, Length: 140, dtype: int32)
```

xtest,ytest

```
720
      170
              8
      148
              10
      51
              10
      108
      69
              22
      105
              19
      153
              19
      57
              13
      114
              14
      44
              8
      65
               9
      107
               8
      160
      162
              9
      121
      27
              15
      95
              16
      18
              11
      14
              19
      24
              9
      73
              11
      142
              11
      Name: Sales, dtype: int32)
from \ sklearn.preprocessing \ import \ StandardScaler
sc=StandardScaler()
scaled_x_train=sc.fit_transform(xtrain)
scaled_x_test=sc.fit_transform(xtest)
```

→ TRAINING LINEAR REGRESSION MODEL

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(scaled_x_train,ytrain)
    LinearRegression()
print("accuracy:",lr.score(scaled_x_test,ytest))
    accuracy: 0.883714891274296
```

×