

Page 1 of 46

IC Cert. No.: 11915A-BP100221

Tissue Parameters

Recipe for liquids below 1 GHz:

Water 35-58% Sugar 40-60% Salt 0-6% Hydroxyethyl-cellulose < 0.3% Preventol-D7 0.1-0.7%

Recipe for liquids above 1-3 GHz:

Water 52-75% DGBE 25-48% Salt < 1.0%

SAR measurements were made within 24 hours of the measurement of liquid parameters. Relative permittivity and conductivity are within $\pm 5\%$ of the target.

IC Cert. No.: 11915A-BP100221 SAR Test Report - Appendix C - Misc Page 2 of 46

850 MHz Body Liquid

Date	Temp (°C)	Frequency (MHz)	Relative Permativit y	Conductivity (S/m)
		824	53.553	0.9429
		825	53.5173	0.9442
		826	53.5269	0.9462
		827	53.5101	0.9476
		835	53.4087	0.9607
2014/05/30	21	836	53.3945	0.9627
		837	53.3877	0.9645
		846	53.333	0.9796
		847	53.3334	0.9811
		848	53.3288	0.9826
		849	53.3256	0.9845

CETECOM

CETECOM

FCC ID: 2ABUE-BP100-2-2-1

IC Cert. No.: 11915A-BP100221 SAR Test Report - Appendix C - Misc Page 3 of 46

1900 MHz Body Liquid

Date	Temp (°C)	Frequency (MHz)	Relative Permativit y	Conductivity (S/m)	Conductivity Target Liquic
		1850	54.1432	1.5058	Value 5% Liquid
		1855	54.1067	1.5124	Tolerance
		1860	54.0867	1.5209	1.52 -5% Liquid Tolerance
		1865	54.0704	1.5296	1.57 1.52 1.47 Value 5% Liquid Tolerance -5% Liquid Tolerance 2014/05/30
		1870	54.0688	1.5362	2014/06/11
2014/05/30	20.6	1875	54.0551	1.5446	1.42
		1880	54.0467	1.5529	1845 1895
		1885	54.0428	1.5604	Frequency (MHz)
		1890	54.0436	1.5682	
		1900	54.045	1.5829	Permittivity
		1910	54.0349	1.5955	Target Liquid
		1850	53.7887	1.4806	56 - Target Liquic Value
		1855	53.7717	1.4927	55 54 5% Liquid Tolerance
		1860	53.7586	1.5034	53 Signature Sig
		1865	53.7689	1.5125	53 Tolerance 2014/05/30
		1870	53.7811	1.5234	32 T
2014/06/11	22	1875	53.8049	1.5322	50 2014/06/11
		1880	53.8257	1.5387	1845 1895
		1885	53.8476	1.5443	
		1890	53.8648	1.5477	Frequency (MHz)
		1900	53.8754	1.5525	
		1910	53.8414	1.5539	

CETECOM

FCC ID: 2ABUE-BP100-2-2-1

IC Cert. No.: 11915A-BP100221 SAR Test Report - Appendix C - Misc Page 4 of 46

Test Equipment

SAR 3 Lab

Instrument description	Supplier / Manufacturer	Model	Serial No.	Calibration (date)	Calibration Due (date)
Robot	Staubli	TX90	F11/5G2MA 1/C/01	N/A	N/A
SAM Twin Phantom	SPEAG	SM 000 T01 DA	1637	N/A	N/A
SAM Twin Phantom	SPEAG	SM 000 T01 DA	1638	N/A	N/A
Elliptical Phantom	SPEAG	QD OVA 001 BB	1124	N/A	N/A
Software	SPEAG	Dasy52.6.2.482	N/A	N/A	N/A
Device Holder	SPEAG	SD 000H01	N/A	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE4	1266	2011/05/30	2014/05/30
SAR Probe	SPEAG	ES3DV3	3244	2014/3/19	2015/3/19

SAR 4 Lab

Instrument description	Supplier / Manufacturer	Model	Serial No.	Calibration (date)	Calibration Due (date)
Robot	Staubli	TX90	F11/5GW9A 1/A/01	N/A	N/A
SAM Twin Phantom	SPEAG	SM 000 T01 DA	1639	N/A	N/A
SAM Twin Phantom	SPEAG	SM 000 T01 DA	1640	N/A	N/A
Elliptical Phantom	SPEAG	QD OVA 001 BB	1125	N/A	N/A
Software	SPEAG	Dasy52.6.2.482	N/A	N/A	N/A
Device Holder	SPEAG	SD 000H01	N/A	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE4	1265	2013/06/11	2014/06/11
SAR Probe	SPEAG	ES3DV3	3260	2014/3/19	2015/03/19

SAR Test Report - Appendix C - Misc

Page 5 of 46

Shared Equipment

Shared Equipme	Shareu Equipment						
Instrument description	Supplier / Manufacturer	Model	Serial No.	Calibration (date)	Calibration Due (date)		
900 MHz Body Tissue Simulant	SPEAG	MSL 900	110518-7	5/30/2014	N/A		
1900 MHz Body Tissue Simulant	SPEAG	MSL 1900	100824-3	5/30/2014 – 6/18/2014	N/A		
835 MHz Dipole	SPEAG	D835V2	4d155	2013/6/6	2014/6/6		
1900 MHz Dipole	SPEAG	D1900V2	5d172	2013/06/10	2014/06/30		
Network Analyzer	Agilent	FieldFox N9923A	MY51491621	2013/06/21	2014/06/21		
Directional coupler	Werlatone	C6529	11249	N/A	N/A		
RF Amplifier	Vectawave	VTL5400	N/A	N/A	N/A		
Dielectric Measurement Kit	SPEAG	DAK-3.5	1023	2012/02/20	2014/02/20		
Synthesized CW Generator	Agilent	8371213	US37101255	N/A	N/A		
Power Meter	Agilent	E4419B	MY45101996	2013/06/03	2015/06/03		
Power Sensor	Agilent	E9300A	MY41498484	2013/06/04	2015/06/04		
Power Sensor	Agilent	E9300A	MY41498492	2013/06/04	2015/06/04		
Radio Communications Tester	Rohde & Schwarz	CMU 200	101821	2013/06	2015/06		

IC Cert. No.: 11915A-BP100221 SAR Test Report - Appendix C - Misc Page 6 of 46

Equipment Calibration/Performance Documents:

Attached:

SAR Probe ES3DV3 Calibration Report 835 MHz Dipole Calibration Report 1900 MHz Dipole Calibration Report

SAR Test Report - Appendix C - Misc

CETECOM

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Cetecom USA Certificate No: ES3-3244_Mar14 Client

CALIBRATION CERTIFICATE

ES3DV3 - SN:3244 Object

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure(s)

Calibration procedure for dosimetric E-field probes

March 19, 2014 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%:

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5064 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Name **Function** Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Poković Technical Manager Issued: March 20, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ES3-3244_Mar14

Page 1 of 12

ETECOM IC Cert. No.: 11915A-BP100221

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

crest factor (1/duty_cycle) of the RF signal CF A, B, C, D modulation dependent linearization parameters

Polarization o φ rotation around probe axis

Polarization 8 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 8 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Senzor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3244_Mar14 Page 2 of 12

ES3DV3 - SN:3244 March 19, 2014

Probe ES3DV3

SN:3244

Manufactured: May 5, 2009 Calibrated: March 19, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3244_Mar14

Page 3 of 12

Page 10 of 46

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221 **CETECOM**

ES3DV3-SN:3244 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3244

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	131	1.33	1.31	± 10.1 %
DCP (mV) ^{II}	99.5	108.1	102.0	1

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ¹ (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	218.8	±3.5 %
		Y	0.0	0.0	1.0	10000	223.8	
VII-1000-1-		Z	0.0	0.0	1.0	ar-o	217.8	
10011- CAB	UMTS-FDD (WCDMA)	Х	3.25	66.2	17.8	2.91	148.9	±0.7 %
		Y	3.18	66.9	18.3		130.8	3
		Z	3.36	67.6	19.0		148.5	
10021- DAB	GSM-FDD (TDMA, GMSK)	X	9.11	84,3	23.0	9.39	129.6	±2.5 %
		Υ	8.67	84.9	22.2		125.6	
40004		Z	13.05	91.6	25.3		149.9	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	×	20.01	93.1	23.5	6,56	136.3	±2.5 %
		Y	25.37	96.2	23.4		134.6	
10000		Z	30.55	99.9	25.2		131.7	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	×	44,40	99,9	23.5	4,80	127.1	±1.7 %
		Y	42.34	99.5	22.7		127.8	
		Z	35.89	99.8	23.7		124.8	
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	46.50	100.0	22.7	3.55	135.1	±1.9 %
		Υ	61.01	100.0	21.3		139.1	
40004	COLUMN TO THE PARTY	Z	43.47	99.7	22.4		134.2	
10081- CAB	CDMA2000 (1xRTT, RC3)	×	3.68	65.5	18.0	3.97	142.1	±0.9 %
		Y	3.70	65.6	18.0		128.6	
		Z	3.99	66.7	19.0		142.8	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.33	66.9	19.3	5,67	138.3	±1.7 %
		Y	6.39	67.9	19.9		147.6	8
		Z	6.45	67.7	19.9		141.6	
10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	9.50	73.3	24.8	9.29	126.6	±3.0 %
		Y	9.04	73.3	25.1		129.6	
40400	LTE EDD 100 EDM4 11000 DD 10	Z	9.26	73.2	24.9		126.2	71 - 74 - 87 BA
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	×	6.25	66.6	19.3	5.80	137.7	±1.4 %
		Υ	6.25	67.4	19.8		146.6	5
10151-	LTE TOD (CC FOMA FOR DR COLET	Z	6.30	67.2	19.8	0.00	139.3	10.0.01
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.78	75.0	25.9	9.28	149.8	±3.3 %
	-	Y	B.47	72.4	24.8		124.9	
10154-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz,	Z	9.42	74.6	25.9	D / D	147.7	41 4 W
CAB	QPSK)	Х	5.92	66.1	19.0	5.75		±1.4 %
		Y	5.81	66.4	19.2		142.4	
		Z	5.97	66.7	19.6		135.8	

Certificate No: ES3-3244_Mar14

Page 11 of 46

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

SAR Test Report - Appendix C - Misc

ES3DV3-SN:3244 March 19, 2014

10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	4.94	66.2	19.3	5.73	138.0	±1.4 %
		Y.	4.87	67.1	19.9		145.7	
		Z	4.89	66.7	19.8		137.5	
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	7.95	75.9	26.5	9.21	137.3	±3.0 %
2017.201		Y	7.63	77.2	27.7		139.2	
20000	9292707-029-122	Z	7.50	75.5	26.6		133.2	
	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	Х	4.95	66.2	19.3	5.72	136.9	±1.4 %
		Y	4.86	67.1	19.9		144.9	
		Z	4.87	66.7	19.8		135.5	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	6.24	66.6	19.3	5.81	136.6	±1.4 %
		Y	6.31	67.7	20.0		146.2	
		Z	6.26	67.0	19.7		136.5	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	Х	4.56	67.0	16.0	3.76	131.3	±0.7 %
		Y	4.77	69.3	19.3		137.4	
		7	4.76	68.8	19.2		131.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3244_Mar14

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

SAR Test Report - Appendix C - Misc

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

Page 12 of 46

ES3DV3-SN:3244

March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3244

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth d (mm)	Unct. (k=2)
750	41,9	0.89	6.44	6.44	6.44	0.62	1.30	± 12.0 %
835	41.5	0.90	6.21	6.21	6.21	0.42	1.58	± 12.0 %
900	41.5	0.97	6.09	6.09	6.09	0.45	1.52	± 12.0 %
1750	40.1	1.37	5.54	5.54	5.54	0.37	1.71	± 12.0 %
1900	40.0	1.40	5.22	5.22	5.22	0.77	1.24	± 12.0 %
1950	40.0	1.40	5.03	5.03	5.03	0.53	1.45	± 12.0 %
2300	39.5	1.67	4.93	4.93	4.93	0.80	1.23	± 12.0 %
2450	39.2	1.80	4.56	4.56	4.56	0.73	1.32	± 12.0 %
2550	39.1	1.91	4.48	4.48	4.48	0.80	1.28	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the Com/F uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Substituting the communication of the communicat

Certificate No: ES3-3244_Mar14

Page 6 of 12

neasured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is shways less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip

diameter from the boundary.

SAR Test Report - Appendix C - Misc

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

Page 13 of 46

ES3DV3-SN:3244 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3244

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^r	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ⁰	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.20	6.20	6.20	0.79	1.20	± 12.0 %
835	55.2	0.97	6.15	6.15	6.15	0.4D	1.70	± 12.0 %
900	55.0	1.05	6.01	6.01	6.01	0.52	1,47	± 12.0 %
1750	53.4	1.49	4.87	4.87	4.87	0.56	1.47	± 12.0 %
1900	53.3	1.52	4.66	4.66	4.66	0.55	1.55	± 12.0 %
1950	53.3	1.52	4.77	4.77	4.77	0.47	1.78	± 12.0 %
2300	52.9	1.81	4.44	4.44	4.44	0.70	1,17	± 12.0 %
2450	52.7	1.95	4.24	4.24	4.24	0.80	1.03	± 12.0 %
2550	52.6	2.09	4.15	4.15	4.15	0.67	1.00	± 12.0 %

Certificate No: ES3-3244_Mar14 Page 7 of 12

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the Corn/F uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^C Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

CETECOM FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ES3DV3-SN:3244 March 19, 2014

Receiving Pattern (ϕ), $9 = 0^{\circ}$

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ES3DV3-SN:3244 March 19, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{oval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3244_Mar14 Page 10 of 12

CETECOM FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

Page 18 of 46

ES3DV3-SN:3244 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3244

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-76.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3244_Mar14 Page 12 of 12

CETECOM

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swise Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Cetecom USA

Certificate No: ES3-3260_Mar14

S

C

S

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3260

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

March 19, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID.	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S6277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN; 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID .	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by: Claudio Leublier Euboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: March 20, 2014

record, march 2

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

ETECOM

IC Cert. No.: 11915A-BP100221

Calibration Laboratory of Schmid & Partner

Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system.

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques*, June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)*, February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sonoor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3260_Mar14

ES3DV3 - SN:3260 March 19, 2014

Probe ES3DV3

SN:3260

Manufactured: January 25, 2010 Calibrated: March 19, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3260_Mar14

Page 3 of 12

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221 Page 22 of 46

ES3DV3- SN:3260 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.30	1.37	1.18	± 10.1 %
DCP (mV) ^B	104.8	102.1	104.2	

Modulation Calibration Parameters

UID	Communication System Name		dB A	B dB√μV	С	D dB	VR mV	Unc ^b (k=2)
0	CW	X	0.0	0.0	1.0	0.00	211.8	±3.3 %
		Y	0.0	0.0	1.0	3 3	195.7	
		2	0.0	0.0	1.0		208.8	201.00000
10011- CAB	UMTS-FDD (WCDMA)	×	3.31	67.4	18.8	2.91	127.8	±0.7 %
		Y	3.40	67.4	18.7		134.6	
		Z	3.34	67.6	18.8		145.4	
10021- DAB	GSM-FDD (TDMA, GMSK)	х	30.39	99.4	28.9	9.39	135.6	±1.9 %
(0.00)		Y	28.56	99.7	28.9		131.2	
SERVICE	AND	Z	29.91	99.6	28.7		119.9	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	×	44.86	99.9	26.3	6,56	123.6	±1.4 %
		Y	44.01	99.9	25.9		126.4	
70000		Z	42.79	99,7	26.1		147.0	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	×	53.01	99.7	24.7	4.80	130.0	±1,7 %
		Y.	50.58	99.6	24.5		137.2	
Contract.		Z	52.82	99.6	24.4	L	123.5	Pro-
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	59.40	99.6	23.5	3.55	137.7	±1.7 %
		Y	59.13	99.9	23.3		140.0	
		Z	56.71	99.7	23.4		126.5	
10081- CAB	CDMA2000 (1xRTT, RC3)	Х	4.12	67.1	19.1	3.97	149.5	±0.7 %
		Y	4.00	66.0	18.4		131.8	
		Z	4.09	67.0	19.1	-	146.9	-
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.60	68.2	20.1	5.67	144.1	±1.2 %
		Y	6.35	67.0	19.4		125.9	
79702		Z	6.59	68.2	20.1		141.7	
10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	×	12.38	77.7	26.5	9.29	127.9	±3.0 %
		Y	12:64	78.8	27.1		136.2	
		2	12,27	78.1	26.9		122.6	100
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.50	67.8	20.0	5.80	142.8	±1.2 %
		Y	6.34	66.9	19.5		128.4	
		2	6.47	67.7	20.0		140.9	25.5.5
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	×	11.69	76.9	26.3	9.28	122.6	#3.3 %
		Y	11.83	77.7	26.7		130.6	
10154-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz,	2	13,11	80.6	28,1	8.10	149.4	44.4.4
10104- CAB	QPSK) CPSK) CPSK)	×	6.18	67.2	19,7	5.75	139.6	±1.4 %
		Y	6.25	67.2	19.7		146.4	
		2	6.11	67.0	19.6		138.3	

Certificate No: ES3-3260_Mar14

SAR Test Report - Appendix C - Misc

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

Page 23 of 46

March 19, 2014 ES3DV3-- SN:3260

10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	×	5,19	67.1	19.8	5.73	143.7	±1.2 %
		Y	5.26	67.3	19.9		149.8	
		Z	5.20	67.2	19.9	17.5-3.1	143.3	Filet State 2007
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	13.41	86.4	30.9	9.21	138.5	±3.3 %
VV = Y		Y	10.53	80.4	28.2		121.8	
		Z	12.56	85.1	30.3		139.8	
10175- CAB	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	×	5.20	67.1	19.9	5.72	139.5	±1.2 %
47.10		Y	5.10	66.5	19.5		130.7	
		Z	5.14	66.9	19.8		139.8	Reserve
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	6.44	67.5	19.9	5.8*	136.9	±1.2 %
1000	2000000	Y	6.34	66.9	19.5		127.4	Z.
		Z	6.44	67.6	19.9		140.9	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	×	4.64	66.9	18.3	3,76	131.9	±0.7 %
T.F.ID.		Y	4.81	67.4	18.5		143.6	
		Z	4.68	67.1	18.4		135.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3260_Mar14 Page 5 of 12

The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).
 Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 24 of 46

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

> ES3DV3-SN:3260 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^c	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.47	6.47	6.47	0.80	1.12	± 12.0 %
835	41.5	0.90	6.25	6.25	6.25	0.31	1.77	± 12.0 %
900	41.5	0.97	6.19	6.19	6.19	0.57	1,31	± 12.0 %
1750	40.1	1.37	5.49	5.49	5.49	0.41	1.64	± 12.0 %
1900	40.0	1.40	5.47	5.47	5.47	0.80	1.16	± 12.0 %
1950	40.0	1.40	5,28	5.28	5.28	0.65	1.32	± 12.0 %
2300	39.5	1.67	4.88	4.88	4.88	0.80	1,30	± 12.0 %
2450	39.2	1.80	4.56	4.56	4.56	0.80	1.24	± 12.0 %
2550	39.1	1.91	4.41	4.41	4.41	0.71	1.36	± 12.0 %

⁶ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
⁶ At frequencies below 3 GHz, the validity of tissue parameters (a and a) can be relaxed to ± 10% if liquid compensation formula is applied to

Certificate No: ES3-3260_Mar14

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is slaways less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the grobe tip diameter from the boundary.

Page 25 of 46

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

> ES3DV3-SN:3260 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^S (mm)	Unct. (k=2)
750	55.5	0.96	6.22	6.22	6.22	0.34	1.88	± 12.0 %
835	55.2	0.97	6.14	6.14	6.14	0.37	1,79	± 12.0 %
900	55.0	1.05	6.02	6.02	6.02	0.56	1,38	± 12.0 %
1750	53.4	1.49	4.90	4.90	4.90	0.56	1.48	± 12.0 %
1900	53.3	1.52	4,69	4.69	4.69	0.60	1.45	± 12.0 %
1950	53.3	1,52	4.81	4.81	4,81	0.54	1.58	± 12.0 %
2300	52.9	1.81	4.42	4.42	4.42	0.80	1.22	± 12.0 %
2450	52.7	1.95	4.26	4.26	4.26	0.68	1.12	± 12.0 %
2550	52.6	2.09	4.15	4.15	4.15	0.80	1.01	± 12.0 %

⁶ Frequency validity of ± 100 MHz only applies for DASY w4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
⁶ At frequencies below 3 GHz, the validity of tissue parameters (e and a) can be relaxed to ± 10% if liquid compensation formula is applied to

Certificate No: ES3-3260_Mar14

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and a) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

AphaDepth are determined curing calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

CETECOM FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

CETECOM

FCC ID: 2ABUE-BP100-2-2-1

IC Cert. No.: 11915A-BP100221

Page 30 of 46

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

ES3DV3- SN:3260 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-79.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No. ES3-3260_Mar14 Page 12 of 12

Page 31 of 46

IC Cert. No.: 11915A-BP100221 SAR Test Report - Appendix C - Misc

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Cetecom USA Client

Certificate No: D835V2-4d155_Jun13

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d155

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: June 06, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
ype-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
ower sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
F generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
etwork Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Leff Klysner	Laboratory Technician	Sef Ille
approved by:	Katja Pokovic	Technical Manager	OOK

Issued: June 6, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d155_Jun13

Page 1 of 8

IC Cert. No.: 11915A-BP100221 Page 32 of 46

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

ETECOM

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x.v.z. N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions". Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d155, Jun13 Page 2 of 8

Page 33 of 46

SAR Test Report - Appendix C - Misc

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.48 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.54 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.17 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.5 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.55 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.27 W/kg ± 16.5 % (k=2)

Page 34 of 46

SAR Test Report - Appendix C - Misc

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω - 2.6 jΩ	
Return Loss	- 29.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.8 Ω - 4.5 jΩ		
Return Loss	- 25.8 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1,433 ns
and the analytical and the control of the control o	1.433118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 28, 2012	

Certificate No: D835V2-4d155_Jun13

IC Cert. No.: 11915A-BP100221 Page 35 of 46

DASY5 Validation Report for Head TSL

Date: 06.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d155

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.245 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.78 W/kg SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 2.91 W/kg

0 dB = 2.91 W/kg = 4.64 dBW/kg

IC Cert. No.: 11915A-BP100221 SAR Test Report - Appendix C - Misc Page 36 of 46

CETECOM

IC Cert. No.: 11915A-BP100221 Page 37 of 46

DASY5 Validation Report for Body TSL

Date: 05.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d155

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1 \text{ S/m}$; $\epsilon_r = 54.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.423 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

CETECOM

CETECOM

IC Cert. No.: 11915A-BP100221 SAR Test Report - Appendix C - Misc

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Celibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multillateral Agreement for the recognition of calibration certificates

Client Cetecom USA

Accreditation No.: SCS 108

Certificate No: D1900V2-5d172 Jun13

CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d172 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 10, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Oct-13 Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100006 04-Aug-99 (in house check Oct-11) In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) In house check: Oct-13 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: June 11, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d172_Jun13

Page 1 of 8

ETECON

IC Cert. No.: 11915A-BP100221 SAR Test Report - Appendix C - Misc

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Celibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d172_Jun13

Page 2 of 8

SAR Test Report - Appendix C - Misc

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

Page 41 of 46

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.70 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.50 mha/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.97 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.34 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

SAR Test Report - Appendix C - Misc

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

Page 42 of 46

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 4.0 jΩ	
Return Loss	- 25.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω + 5.0 jΩ	
Return Loss	- 25.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	June 08, 2012	

Certificate No: D1900V2-5d172_Jun13

Page 43 of 46

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

DASY5 Validation Report for Head TSL

Date: 10.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d172

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.34 \text{ S/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.877 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.7 W/kg; SAR(10 g) = 5.11 W/kgMaximum value of SAR (measured) = 12.0 W/kg

0 dB = 12.0 W/kg = 10.79 dBW/kg

IC Cert. No.: 11915A-BP100221 SAR Test Report - Appendix C - Misc Page 44 of 46

CETECOM

Page 45 of 46

FCC ID: 2ABUE-BP100-2-2-1 IC Cert. No.: 11915A-BP100221

DASY5 Validation Report for Body TSL

Date: 10.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d172

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ S/m}$; $\epsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.877 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.97 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

IC Cert. No.: 11915A-BP100221 SAR Test Report - Appendix C - Misc Page 46 of 46

CETECOM

