University of St Andrews

HONOURS M. A. AND HONOURS M. Math. EXAMINATION MATHEMATICS AND STATISTICS

Paper MT5823 Advanced Semigroup Theory
May 2008

Time allowed: Two hours

Attempt all THREE questions

1. Let S be the semigroup defined by the following multiplication table

	a	\boldsymbol{b}	\boldsymbol{c}	d	e	f	g
\overline{a}	a	b	c	\overline{d}	e	\overline{f}	g
\boldsymbol{b}	b	b	d	d	\boldsymbol{g}	g	g
\boldsymbol{c}	c	e	\boldsymbol{a}	f	b	d	g
d	d	g	b	g	b	d	\boldsymbol{g}
e	e	e	f	f	g	\boldsymbol{g}	\boldsymbol{g}
f	$\int f$	g	e	g	e	f g d d g f g	g
g	g	g	\boldsymbol{g}	g	\boldsymbol{g}	g	g

- (a) Prove that the elements b and c generate S. Is S generated by a single element? Fully justify your answer. [3]
- (b) Draw the left and right Cayley graphs of S with respect to the generating set $\{b,c\}$.
- (c) Determine Green's \mathcal{L} -, \mathcal{R} -, \mathcal{H} -, and \mathcal{D} -relations on S and draw the eggbox diagrams of the \mathcal{D} -classes. [4]

See over

- (d) Define what it means for a semigroup to be inverse. Prove that S is an inverse semigroup. [2]
 - (e) Let T be the semigroup defined by the presentation

$$\langle x, y | x^2 = x, xy^2 = x, y^2x = x, y^3 = y, (xy)^2 = xyx, (yx)^2 = xyx \rangle.$$

Find the elements of T. Prove that $S \cong T$.

[3]

- (f) Prove that S is isomorphic to the symmetric inverse semigroup on the set $\{1, 2\}$.
- 2. (a) Give the definition of a completely simple semigroup and a Rees matrix semigroup. [2]
 - (b) Let $\mathcal{M}[G; I, \Lambda; P]$ be a Rees matrix semigroup. Prove that $(i, g, \lambda)\mathcal{R}(j, h, \mu)$ if and only if i = j. Prove that $(i, g, \lambda)\mathcal{L}(j, h, \mu)$ if and only if $\lambda = \mu$.

 Deduce that $(i, g, \lambda)\mathcal{H}(j, h, \mu)$ if and only if i = j and $\lambda = \mu$. [3]
 - (c) Let S be an arbitrary semigroup and let ρ and σ be congruences on S. Prove that $\rho \cap \sigma$ is a congruence on S. [1]
 - (d) Prove that \mathcal{R} and \mathcal{L} are two-sided congruences on $\mathcal{M}[G; I, \Lambda; P]$. Deduce that \mathcal{H} is a congruence on $\mathcal{M}[G; I, \Lambda; P]$. [2]
 - (e) Prove that $\mathcal{M}[G; I, \Lambda; P]/\mathcal{R}$ is a semigroup of left zeros. Prove that $\mathcal{M}[G; I, \Lambda; P]/\mathcal{H}$ is a rectangular band. [4]
 - (f) Give the definition of a Clifford semigroup. [1]
 - (g) Let S be a finite simple semigroup. Prove that the following are equivalent:
 - (i) S is an inverse semigroup;
 - (ii) S is a Clifford semigroup;
 - (iii) S is a group.

(Hint: use the Rees Theorem to represent S as a Rees matrix semigroup.) [3]

3. Let S be the semigroup generated by the mappings

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 4 & 1 & 5 \end{pmatrix} & \& g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 3 & 5 \end{pmatrix}.$$

Then the elements of S are

$$f^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 5 \end{pmatrix}, f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 4 & 1 & 5 \end{pmatrix}, gf^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 5 & 1 & 5 \end{pmatrix},$$

$$gf = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 5 & 4 & 5 \end{pmatrix}, g^2f^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 5 & 5 & 5 \end{pmatrix}, f^2g^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 3 & 3 & 3 & 5 \end{pmatrix},$$

$$fg^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 3 & 5 & 3 & 5 \end{pmatrix}, g^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 5 & 5 & 5 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 3 & 5 \end{pmatrix},$$

$$fg = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 4 & 3 & 4 & 5 \end{pmatrix}, f^{2}g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 4 & 4 & 4 & 5 \end{pmatrix}, fg^{2}f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 4 & 5 & 4 & 5 \end{pmatrix},$$

$$g^{2}f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 5 & 5 & 5 \end{pmatrix}, g^{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 5 & 5 & 5 & 5 \end{pmatrix}$$

and the \mathcal{D} -classes of S are

$$\begin{split} D_f = \{f, gf, fg, g\}, D_{f^2} = \{f^2, gf^2, g^2f^2, f^2g, fg^2f, g^2f, f^2g^2, fg^2, g^2\}, \\ \& \ D_{g^3} = \{g^3\}. \end{split}$$

(You do not need to prove that the above are the elements and \mathcal{D} -classes of S.)

- (a) Find the idempotent elements of S. [2]
- (b) Give the definition of a regular semigroup. [1]
- (c) Prove that S is a regular semigroup. [2]

Let T be an arbitrary semigroup. Recall that if $x \in T$, then $y \in T$ is an *inverse* for x if xyx = x and yxy = y.

- (d) Prove that $x \in T$ has an inverse if and only if $x \in T$ is regular. [3]
- (e) Find inverses of the elements f, f^2 , and g^3 . [3]
- (f) How many \mathcal{L} and \mathcal{R} -classes do the \mathcal{D} -classes D_f, D_{f^2} , and D_{g^3} have? [3]
- (g) Prove that S is not an inverse semigroup. [2]