1 Short Questions [2 + 2 + 2 = 6 marks]

Solution sketch:

(i) We have $\log_2 f(n) = (\log^2 n)$ and $\log_2 g(n) = 1.5\sqrt{\log_2(n)}\log_2 n$.

For n large enough, $\log_2 g(n) < \log_2 f(n)$. Further, $\lim_{n \to \infty} \frac{\log_2 g(n)}{\log_2 f(n)} = 0$. Thus, g(n) = o(f(n)).

This implies, g(n) = O(f(n)) and $f(n) \neq O(g(n))$.

(ii) Let $B = A^3$, where A is adjacency matrix of size $n \times n$.

For any $i \in [1, n]$, we have $B[i, i] = \sum_{i,k=1}^{n} A[i, j] A[j, k] A[k, i]$.

So, $B[i, i] = 2 \times$ the number of triangles having i as one endpoint.

Therefore, the number of triangles in G is $\frac{\sum_{i=1}^{n} B[i,i]}{6}$. Using fast matrix multiplication, we can compute B in $O(n^{2.38})$ time, thus the number of triangles can be computed in $O(n^{2.38})$ time.

Alternate solution:

Let $B = A^2$, where A is adjacency matrix of size $n \times n$.

For any distinct $i, j \in [1, n]$, we have $B[i, j] = \sum_{k=1}^{n} A[i, k] A[k, j]$ =number of paths of length 2 from i to j. Using fast matrix multiplication, we can compute B in $O(n^{2.38})$ time.

Now, let
$$s = \sum_{(i,j) \in E} B[i,j]$$
.

Then, $s = 3 \times$ the number of triangles in G.

(iii) The problem is not NP-complete. This is because k is 10 which is a constant. So, we can check for all ${}^{n}C_{10}$ subsets if they form a vertex cover. This will take $O(n^{10}m) = O(n^{12})$ time.

Alternatively, an algorithm of $O(2^{10}(m+n))$ time complexity also exists. See below.

- 1 **if** G has no edges **then** Return true;
- 2 if k = 0 then return false;
- 3 $(u, w) \leftarrow$ an arbitrary edge of G;
- 4 if Vertex-Cover(G u, k 1) then Return true;
- 5 if Vertex-Cover(G w, k 1) then Return true;
- 6 Return false:

Algorithm 1: Vertex-Cover(G, k)

2 Dynamic Programming [5 marks]

Solution sketch:

We assume that M[i,j] = 1 iff there is a coin at cell (i,j). Compute a matrix A in $O(n^2)$ time as follows.

```
1 Let A be an n \times n matrix whose entries are intialized to 0.;
a A[1,1] = M[1,1];
3 for i=2 to n do
4 | A[i,1] = A[i-1,1] + M[i,1];
5 end
6 for j = 2 to n do
7 | A[1,j] = A[1,j-1] + M[1,j];
8 end
9 for i=2 to n do
      for j = 2 to n do
       A[i, j] = \max(A[i, j - 1], A[i - 1, j]) + M[i, j];
11
      end
12
13 end
14 Return A[n, n];
```

Claim: For $i, j \ge 1$, A[i, j] stores the maximum possible number coins that can be collected when reaching cell (i, j).

We can compute the optimal route to any cell (i, j) using A in O(n) time as follows.

```
      1 if i = 1 then

      2 | Return (1,1) \circ (1,2) \circ \cdots \circ (1,j-1) \circ (1,j);

      3 else if j = 1 then

      4 | Return (1,1) \circ (2,1) \circ \cdots \circ (i-1,1) \circ (i,1);

      5 end

      6 if A[i,j] = A[i,j-1] + M[i,j] then

      7 | Return COMPUTE-ROUTE(i,j-1) \circ (i,j);

      8 else

      9 | Return COMPUTE-ROUTE(i-1,j) \circ (i,j);

      10 end
```

Algorithm 2: COMPUTE-ROUTE(i, j)

3 Max Flows [3 + 3 = 6 marks]

Solution sketch:

Let f be an (s,t)-max-flow of G. Let S be vertices reachable from s in G_f . Let T be vertices having path to t in G_f .

Claim 1: (S, S^c) and (T^c, T) are (s, t)-min-cuts.

Proof: We will prove claim for (S, S^c) . Note that all edges from S to S^c are fully saturated, and edge in reverse direction are carrying zero flow. So, $c(S, S^c)$ is same as flow passing from S to S^c (which is same as (s,t)-flow value). Thus, (S,S^c) must be a min-cut as its capacity is same as (s,t)-max-flow value.

Claim 2: If $(x, y) \notin S \times T$ then (s, t)-max-flow in unchanged.

Proof: Either (S, S^c) or (T^c, T) is still an (s, t)-cut.

Claim 3: For $(x,y) \in (S \times T) \setminus E$, on addition of edge $(x,y) \in (S \times T) \setminus E$, there is path from s to t in G_f , which implies the (s,t)-max-flow increases by 1.

Proof: (i) there is path from s to x in G_f , (ii) there is path from y to t in G_f .

Remark: As the s to t path is computable in O(m+n) time in G_f , the time to compute updated flow in O(m+n).

Part (a) Compute (s,t)-max-flow f, and sets S,T described above. This takes O(mn) time. Return $(S \times T) \setminus E$.

Part (b) Compute sets S, T. Recall that if $(x, y) \notin S \times T$ then (s, t)-max-flow in unchanged. If $(x, y) \in (S \times T) \setminus E$, then the new flow is computable in O(m + n) time as described above.

4 NP completeness [7 marks]

Solution sketch:

- (1) Let H = (V, E) be an instance of vertex-cover with n vertices and m edges.
- (2) Compute a graph G with m + n vertices such that:

```
Layer 1 has n vertices (\{x_v \mid v \in V\}), and Layer 2 has m vertices (\{x_e \mid e \in E\}).
```

- (3) The edge set of G is as follows:
 - Connect each pair of vertices in layer 1 by an edge.
 - For each x_e in layer 2 connect x_e with x_u and x_v , where u and v are endpoints of e.
- (4) Define "S" as the set of all vertices in layer 2.
- (5) Set $k = m + \alpha$.
- (6) Claim: G has a vertex cover of size α iff H has a tree covering S with $m + \alpha$ vertices.

Proof: Let us suppose G has a vertex-cover $W = \{w_1, \ldots, w_\alpha\}$ of size α . Then H has a tree covering set S of size $m + \alpha$: take path (w_1, \ldots, w_α) in layer 1, and connect each vertex in layer 2 to some vertex in set W.

Now, let us suppose there is a tree in H containing set S with $m+\alpha$ nodes. Such a tree contains all vertices of layer 2, and some α vertices of layer 1 (say U). Then U must be a vertex cover in G.

Alternate Solution:

(2) Compute a graph G with m + n + 1 vertices such that:

Layer 0 has a single vertex (say s),

Layer 1 has n vertices $(\{x_v \mid v \in V\})$, and

Layer 2 has m vertices $(\{x_e \mid e \in E\})$.

- (3) The edge set of G is as follows:
 - Connect each vertex in layer 1 to s.
 - For each x_e in layer 2 connect x_e with x_u and x_v , where u and v are endpoints of e.
- (5) Set $k = m + \alpha + 1$.
- (6) Claim: G has a vertex cover of size α iff H has a tree covering S of size $m + \alpha + 1$.

Proof: Similar to above

5 Divide and Conquer

Solution sketch:

For each $p, q \ (p \leqslant q)$ compute an array A such that

$$A[k] = M[p, k] + M[p+1, k] + \dots + M[q-1, k] + M[q, k].$$

Use divide an conquer approach to find subarray of A of largest sum as follows:

- 1. Recursively search in A[1, n/2],
- 2. Recursively search in A[1 + n/2, n],
- 3. Find a sub array containing A[n/2] and A[1+n/2] of largest sum as follows:

```
1 Let L, R be two arrays of size n whose entries are intialized to 0;

2 for i = (n/2) to (1) do L[i] = L[i+1] + A[i];

3 for j = (1+n/2) to (n) do R[j] = R[j-1] + A[j];

4 i_0 = \arg\max_{1 \le i \le n/2} L[i];

5 j_0 = \arg\max_{1+n/2 \le j \le n} R[j];

6 Return (A[i_0] + \cdots + A[n/2] + A[1+n/2] + \cdots + A[j_0]);
```

Argument:

For $i \leq n/2$, L[i] stores the sum $A[i] + A[i+1] + \cdots + A[n/2]$.

For j > n/2, R[j] stores the sum $A[1 + n/2] + A[2 + n/2] + \cdots + A[j]$.

So, the sub array containing A[n/2] and A[1+n/2] of largest sum has sum as

$$\max_{1 \le i \le n/2} L[i] + \max_{1+n/2 \le j \le n} R[j].$$

The recurrence relation is T(n) = 2T(n/2) + O(n). So, the time complexity for any $p, q \in [1, n]$ is $O(n \log n)$. The total time complexity of algorithm is therefore $O(n^3 \log n)$.

OR

Claim 1: For each $s \in S$, the shortest cycle through s in G is computable in O(n) time.

Proof: For each node $i(\neq s)$, define LABEL(i) as the child of s lying on BFSPATH(s,i). The labels are computable in O(m) time. Let A be the set of all non-tree edges (i,j) satisfying that i,j have no common ancestor other than s. Such a set is computable in O(m) time as an edge (i,j) can lie in A iff LABEL $(i) \neq$ LABEL(j). Let $(i_0,j_0) \in A$ be an edge for which DEPTH $(i_0) +$ DEPTH (j_0) is smallest, then BFSPATH $(s,i_0) :: (i_0,j_0) ::$ BFSPATH (j_0,s) is a shortest cycle. (This must be proved).

Algorithm:

- 1. Partition the input graph G into three subsets S, A, B according to the planar separator theorem.
- 2. Recursively search for the shortest cycles in induced graphs G[A] and G[B].
- 3. Use BFS algorithm to find, for each vertex $s \in S$, the shortest cycle through s in G.
- 4. Return the shortest of the cycles found by the above steps.

Time complexity: We have $T(n) = T(n_1) + T(n_2) + O(n\sqrt{n})$, where n_1, n_2 sum upto n and are both bounded by 2n/3. So time complexity is $O(n^{1.5} \log n)$ as depth of recursion is $O(\log n)$.