Arithmétique

Rappels. Les principaux ensembles de nombres sont :

 \mathbb{N} (Entiers naturels) $\subset \mathbb{Z}$ (Entiers relatifs) $\subset \mathbb{D}$ (Nombres décimaux) $\subset \mathbb{Q}$ (Rationnels) $\subset \mathbb{R}$ (Réels)

Définition. Soit *a* et *b* deux entiers relatifs.

a est un **multiple** de **b** ssi $\frac{a}{b}$ est un entier relatif. $(\frac{a}{b} \in \mathbb{Z})$

On dit aussi que b est un **diviseur** de a, ou que a est **divisible** par b.

Exemple. 35 est un multiple de 7 car $\frac{35}{7}$ = 5 est un entier.

Exemple. 42 n'est pas multiple de 10 car $\frac{42}{10}$ = 4,2 $\notin \mathbb{Z}$

Exemple. 30 est un diviseur de 90 car $\frac{90}{30} = 3 \in \mathbb{Z}$.

Définition. Un entier n est pair ssi n = 2k où k est <u>un entier relatif</u>.

Remarque. n est pair $\Leftrightarrow n$ multiple de $2 \Leftrightarrow \frac{n}{2} \in \mathbb{Z} \Leftrightarrow 2$ divise $n \Leftrightarrow n$ est divisible par 2.

Définition. Un entier n est **impair** ssi n = 2k + 1 où k est <u>un entier relatif</u>.

Remarque. Tout entier n est soit pair, soit impair.

Exemples. 13 est impair. En effet $13 = 2 \times 6 + 1$. 10 est pair. En effet $10 = 2 \times 5$.

Remarque. Un entier n admet toujours 1 et n comme diviseurs. Donc tout $n \ge 2$ a au moins 2 diviseurs.

Définition. Un entier ≥ 2 est **premier** si on ne peut pas l'obtenir en multipliant deux entiers naturels plus petits. Autrement dit, s'il a exactement deux diviseurs (1 et lui-même).

Exemple. Liste des 10 premiers nombres premiers : 2; 3; 5; 7; 11; 13; 17; 19; 23; 29.

3 est premier car ses seuls diviseurs sont 3 et 1.

6 n'est pas premier car $3 \times 2 = 6$.

10 n'est pas premier car $2 \times 5 = 10$.

Test de primalité. Un entier n <u>non premier</u> a toujours un diviseur $d \ge 2$ tel que $d \le \sqrt{n}$. Si on a trouvé aucun diviseur $\le \sqrt{n}$, on peut s'arrêter en concluant que n est premier.

Exemple. 11 est-il premier ? $\sqrt{11} \approx 3{,}32$. 11 n'est pas divisible par 2 ni par 3. Donc 11 est premier.

Théorème de décomposition en facteurs premiers. Tout nombre entier naturel peut se décomposer sous la forme d'un produit de nombres <u>premiers</u>. Par ailleurs, cette décomposition est <u>unique</u>.

Idée de la preuve. Soit un entier naturel n. S'il est premier, on a fini. Sinon on peut l'écrire n = ab avec a < n et b < n. Si a et b sont premiers, on a fini. Sinon, on continue à décomposer les facteurs non premiers jusqu'à ce qu'ils le deviennent. Ce processus termine puisqu'à chaque étape les facteurs sont plus petits.

Exemples. $20 = 2^2 \times 5^1$ $22 = 2^1 \times 11^1$ $1400 = 2^3 \times 5^2 \times 7^1$

Rappel. Un nombre x est rationnel s'il peut s'écrire sous la forme $x = \frac{p}{q}$ avec p, q des entiers, ($q \neq 0$)

Propriété. Il existe des nombres réels qui ne sont pas rationnels. Le nombre $\sqrt{2}$ est irrationnel.

Définition. Une fraction $\frac{a}{b}$ est **irréductible** ssi le numérateur a et le dénominateur b n'ont pas de diviseur commun (autre que 1).

Exemples. $\frac{5}{13}$ est irréductible car le seul diviseur commun à 5 et 13 est 1.

 $\frac{12}{15}$ n'est pas irréductible car 3 est un diviseur de 12 et de 15.