

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

Bookmarks

Unit 0: Overview

- ▶ Entrance Survey
- ▶ Unit 1: **Probability** models and axioms
- ▶ Unit 2: Conditioning and independence
- Unit 3: Counting
- Unit 4: Discrete random variables
- Exam 1
- Unit 5: Continuous random variables
- Unit 6: Further topics on random variables
- ▶ Unit 7: Bayesian inference

Unit 8: Limit theorems and classical statistics > Lec. 18: Inequalities, convergence, and the Weak Law of Large Numbers > Lec 18 Inequalities convergence and the Weak Law of Large Numbers vertical5

■ Bookmark

Exercise: Convergence in probability

(1/3 points)

a) Suppose that $oldsymbol{X_n}$ is an exponential random variable with parameter $\lambda=n$. Does the sequence $\{X_n\}$ converge in probability?

No ▼

Answer: Yes

b) Suppose that $oldsymbol{X_n}$ is an exponential random variable with parameter $\lambda = 1/n$. Does the sequence $\{X_n\}$ converge in probability?

Yes ▼

Answer: No

c) Suppose that the random variables in the sequence $\{X_n\}$ are independent, and that the sequence converges to some number a, in probability. Let $\{Y_n\}$ be another sequence of random variables that are dependent, but where each Y_n has the same distribution (CDF) as X_n . Is it necessarily true that the sequence $\{Y_n\}$ converges to a in probability?

Yes ▼

Answer: Yes

Answer:

- a) In the first case, for any $\epsilon>0$, we have $\mathbf{P}(X_n\geq\epsilon)=e^{-n\epsilon}$, which converges to zero. Therefore, we have convergence in probability.
- b) In the second case, for any $\epsilon>0$, we have $\mathbf{P}(X_n\geq\epsilon)=e^{-\epsilon/n}$, which converges to one. Therefore, we do not have convergence in probability.
- c) Dependence will not make a difference because the definition of convergence in probability involves probabilities of the form $\mathbf{P}(|Y_n-a|\geq\epsilon)$. These probabilities are completely determined by the marginal distributions of the random variables Y_n , and these marginal distributions are the same as for the sequence X_n .

▶ Exam 2

You have used 1 of 1 submissions

▼ Unit 8: Limit theorems and classical statistics

Unit overview

Lec. 18: Inequalities, convergence, and the Weak Law of **Large Numbers**

Exercises 18 due Apr 27, 2016 at 23:59 UT 🗗

Lec. 19: The **Central Limit** Theorem (CLT) Exercises 19 due Apr 27, 2016 at 23:59 UT 🗗

Lec. 20: An introduction to classical statistics Exercises 20 due Apr 27, 2016 at 23:59 UT 🗗

Solved problems

Additional theoretical material

Problem Set 8 Problem Set 8 due Apr 27, 2016 at 23:59 UT 🗗

Unit summary

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

