

Summary_

Data scientist and machine learning researcher with experience developing and deploying scalable, end-to-end AI systems in production. Skilled in building interpretable models, leading cross-functional projects, and optimizing large-scale ML pipelines using cloud infrastructure. A proven track record in providing actionable insights and tools for both research and product teams. Passionate about applying data science to complex real-world problems across industries, from healthcare to consumer technology.

Experience _____

Envisagenics New York City, NY

DATA SCIENTIST

July 2022 - Feb 2025

- Built and deployed *SplicePath*, an Azure cloud-based ML pipeline for modeling exon/transcript impact on pathway activity; adopted by crossfunctional oncology teams for experimental design and hypothesis generation of 20+ drug targets.
- Led development of network interpretation layer for SplicePath to explain transcript-pathway effects via molecular interaction graphs.
- Designed a no-code interface via Microsoft Fabric for non-technical users and improved internal adoption of SplicePath across oncology teams.
- Developed *SpliceImpact*, a transformer-based LLM model for predicting per-residue functional effects from protein sequence; optimized with PySpark and Azure ML.

Integrative Biology and Predictive Analytics Lab

Davis, CA

POSTDOCTORAL RESEARCHER, UC DAVIS

Sep 2020 - July 2022

- Built ML models for personalized diet recommendation using 5,000+ gut microbiome samples and strain-specific metabolic networks.
- · Applied ML to multi-omics data in studies on IBA tolerance and bat viral immunity; led ML development on grant-funded research.

Sinopia Biosciences San Diego, CA

MACHINE LEARNING CONSULTANT

Oct 2019 - Jan 2020

- Preprocessed and batch-corrected drug response metabolomics data from 1,000+ samples.
- Built ML models to identify metabolic signatures distinguishing drug action.

Systems Biology Research Group

UC San Diego, CA

GRADUATE STUDENT RESEARCHER, SAN DIEGO

Sep 2015 - Sep 2020

- Published 4 first-author publications and coauthored 10 papers; cited 900+ times; research featured by UCSD press release and F1000.
- Built pangenome from 1,595 pathogens and trained SVMs to predict drug resistance; identified 33 known and 24 novel resistance genes.
- Pioneered first hybrid FBA–ML framework to model biochemical effects of mutations; matched SOTA performance while improving interpretability and experimental hypotheses for 3 anti-tuberculosis drugs.
- Applied ICA and statistical modeling to link *E. coli* adaptive mutations to transcriptomic and flux-level constraints; identified 6 conserved transcriptomic strategies, 5 regulatory tradeoffs, 4 mutation-flux correlates, and 8 mutation-transcriptome correlates.

Education_

University of California, San Diego

San Diego, CA

PHD IN BIOENGINEERING, ADVISOR: BERNHARD Ø. PALSSON

THESIS: Biologically-Interpretable Machine Learning for Microbial Genomics

2015 - 2020

University of California, Davis

Davis, CA

B.S. IN CIVIL AND ENVIRONMENTAL ENGINEERING

2010 - 2015

Skills

Programming Python (Expert), R, SQL, Linux, C, Visual Basic, Fortran, Bash

Machine Learning PyTorch, scikit-learn, Deep Learning, Large Language Models, Neural Nets, Linear models, SVMs,

Interpretable ML, LIME, SHAP, Tree-based Methods, Decomposition Methods, Ensemble Methods,

Network Modeling, Recommender Systems, Model Optimization

Data Analysis & Visualization Pandas, Numpy, Matplotlib, Seaborn, Statistical Methods, A/B Testing, Experimental Design

Big Data Technologies PySpark, Microsoft Azure (Synapse, ML Studio), Microsoft Fabric, Docker, GPU Optimization

Other Skills Git, NGS Analysis, Flux Balance Analysis, LaTeX, Matlab, Affinity Designer, Ableton

Invited Talks_

Artificial Intelligence in Genomics

Potsdam, Germany

Presenter for < Association of Gene Diagnostics Meeting>

• Presented on an approach for integrating biochemical mechanisms with machine learning

Sep, 2019

Nov. 2019

• Presented on a machine learning approach for identifying drug resistance genes in M. tuberculosis

Selected Publications

_____ (*Full list at my Google Scholar)

2022	Laboratory evolution reveals unifying systems-level principles of adaptation, [1st Author]	Msystems
2020	A biochemically-interpretable machine learning classifier for microbial GWAS, [1st Author][Github link]	Nature Comm.
2020	Machine learning with random subspace ensembles identifies antimicrobial, [2nd Author]	PLoS Comp. Bio.
2018	Machine learning and structural analysis of <i>M. tuberculosis</i> pangenome, [1st Author] [Github link]	Nature Comm.
2018	Updated and standardized genome-scale reconstruction of <i>M. tuberculosis</i> , [1st Author] [<i>Github link</i>]	BMC Syst. Bio.
2018	Genome-scale metabolic reconstructions of multiple Salmonella strains, [2nd Author]	Nature Comm.

References_

Bernhard Ø. Palsson, Ph.D.

Distinguished Professor Bioengineering Jacobs School of Engineering University of California, San Diego La Jolla, CA 92093-0411 palsson@ucsd.edu

Martin Ackermann, Ph.D.

Co-Founder and CTO Envisagenics 30-02 48th Ave, Suite 140, Long Island City, NY 11101 makerman@envisagenics.com

Ilias Tagkopoulos, Ph.D.

Associate Professor Computer Science College of Engineering University of California, Davis 1 Shields Ave, Davis, CA 95616 itagkopoulos@ucdavis.edu