Assignment 2

- 1. Suppose $M=(Q,\Sigma,\delta,q_0,A)$ with extended transition function $\delta^*:Q\times\Sigma^*\to Q$. Prove that for any $q\in Q$ and $x,y\in\Sigma^*$ that $\delta^*(q,xy)=\delta^*(\delta^*(q,x),y)$. Hint: prove by induction on |y|.
- 2. Prove by induction on n that if L is a language and R is a regular expression such that L = L(R) then there exists a regular expression R_n such that $L(R_n) = L^n$. Be sure to use the fact that if R_1 and R_2 are regular expressions then $L(R_1R_2) = L(R_1) \cdot L(R_2)$.
- 3. Every finite-sized language L has a regular expression that accepts it. Informally, the expression for $\{w, x, y\}$ is w + x + y. Prove this is true for all finite-sized languages using induction on the number of words in L. You may need to use these definitions in your proof: (i) if w is a word then w is also a regular expression with $L(w) = \{w\}$, (ii) if R_1 and R_2 are regular expressions then $R_1 + R_2$ is a regular expression, and (iii) $L(R_1 + R_2) = L(R_1) \cup L(R_2)$.
- 4. Give a generic construction for a finite state machine that accepts a non-empty finite-size language $L = \{w_1, \dots w_n\}$. Define all parts of the machine. (You do not need to prove it accepts the language). Hint: do this for a simple language like $\{\epsilon, a, aa, ba, ab\}$ and then generalize what you did so it can work for any finite language. Hint: if you make $Q \subseteq \Sigma^*$ you can have an easy to describe construction.
- 5. Suppose L is a regular language, and $M=(Q,\Sigma,\delta,q_0,A)$ is a deterministic finite state machine such that L(M)=L. Prove that if |Q|=2 then at least one of the following hold: (i) $L=\emptyset$ (ii) $\epsilon\in L$, or (iii) $\exists a\in\Sigma$ such that $a\in L$. Note that different M with |Q|=2 may have a different property that holds. Hint: do a case analysis for configurations of A.