

Introduction to Computing and Programming in Python: A Multimedia Approach

Mark Guzdial

College of Computing/GVU Georgia Institute of Technology

PRENTICE HALL, Upper Saddle River, New Jersey 07458

"main" 2004/6/3 page ii

 \longrightarrow

ii

Copyright held by Mark Guzdial, 2003 & 2004.

"main" 2004/6/3 page iii

iii

Dedicated to my wife, Barbara Jane Ericson.

Contents

	Con	itents	iv
	Pres 0.1 0.2 0.3	To Teachers	1 3 4 4 5
Ι	Int	roduction	7
1	1.1 1.2 1.3 1.4	What is computer Science and Media Computation What is computer science about? What Computers Understand Media Computation: Why digitize media? Computer Science for Everyone 1.4.1 It's about communication 1.4.2 It's about process	8 8 12 15 16 16 17
2	2.1 2.2 2.3 2.4 2.5	Programming is about Naming 2.1.1 Files and their Names Programming in Python Programming in JES Media Computation in JES 2.4.1 Showing a Picture 2.4.2 Playing a Sound 2.4.3 Naming your Media (and other Values) Making a Recipe 2.5.1 Variable Recipes: Real functions that Take Input	19 20 21 22 24 27 28 29 33 37
II	P	ictures	41
3	Mod 3.1 3.2 3.3	How Pictures are Encoded	42 42 47 52 55 55 58 64

iv

			•
		3.3.4 Making sense of functions	. 65
		3.3.5 Lightening and darkening	. 69
		3.3.6 Creating a negative	. 70
		3.3.7 Converting to grayscale	. 71
4	Mo	difying pixels in a range	74
	4.1	Copying pixels	. 74
		4.1.1 Looping across the pixels with range	
		4.1.2 Mirroring a picture	
	4.2	Copying and transforming pictures	
		4.2.1 Copying	. 82
		4.2.2 Creating a Collage	. 88
		4.2.3 Blending Pictures	. 92
		4.2.4 Rotation	. 94
		4.2.5 Scaling	. 96
	4.3	Replacing Colors	. 100
		4.3.1 Reducing red eye	. 101
		4.3.2 Sepia toned and posterized pictures: Using conditionals to	
		choose the color	
	4.4	Combining pixels: Blurring	
	4.5	Color Figures	. 112
5	Cor	mbining Pictures	123
J	5.1	Background subtraction	
	5.2	Chromakey	
	5.3	Drawing on images with pixels	
	5.4	Drawing with drawing commands	
	0.1	5.4.1 Vector and Bitmap Representations	
	5.5	Programs as Specifying Drawing Process	
	0.0	5.5.1 Why do write programs?	
Π	ı S	Sounds	137
_			400
6		difying Sounds using Loops	138
		How Sound is Encoded	
		6.1.1 The Physics of Sound	
		6.1.2 Exploring how sounds look	
	0.0	6.1.3 Encoding the Sound	
	6.2	Manipulating sounds	
		6.2.1 Open sounds and manipulating samples	
		6.2.2 Using MediaTools for looking at captured sounds	
	0.0	6.2.3 Introducing the loop	
	6.3	Changing the volume of sounds	
		6.3.1 Increasing volume	
		6.3.2 Did that really work?	
		6.3.3 Decreasing volume	. 164

		6.3.4 Making sense of functions, in sounds
		6.3.5 Normalizing sounds
		6.3.6 Generating clipping
7	Mod	ifying Samples in a Range 168
•	WIOC	7.0.7 Manipulating different sections of the sound differently 168
		7.0.8 Splicing sounds
		7.0.9 Backwards sounds
		7.0.9 Backwards sounds
8	Con	bining Sounds 181
	8.1	Blending Sounds
	8.2	Creating an Echo
		8.2.1 Creating Multiple Echoes
	8.3	How Sampling Keyboards Work
		8.3.1 Sampling as an algorithm
	8.4	Additive Synthesis
		8.4.1 Making sine waves
		8.4.2 Adding sine waves together
		8.4.3 Checking our result
		8.4.4 Square waves
		8.4.5 Triangle waves
	8.5	Modern Music Synthesis
		8.5.1 MP3
		8.5.2 MIDI
9	Desi	gn and Debugging 202
	9.1	Designing programs: How do we start?
		9.1.1 Top-down
		9.1.2 Bottom-up
	9.2	Techniques of Debugging
		9.2.1 Seeing the Variables
	9.3	Algorithms and Design
ΙV	$^{\prime}$ 1	ext, Files, and Unimedia 211
10		ting and Modifying Text 212
	10.1	Strings: Making and manipulating strings
		10.1.1 String Methods: Introducing objects and dot notation 216
		10.1.2 Lists: Powerful, structured text
		10.1.3 Strings have no font
	10.2	Files: Places to put your strings and other stuff
		10.2.1 Opening and manipulating files
		10.2.2 Writing out programs
		10.2.3 Copying files
	10.3	Extending our language capabilities using modules
		10.3.1 Another fun module: Random

		VII
	10.4 Networks: Getting our text from the Web	231
	10.5 Using text to shift between media	
	10.5.1 Using lists as structured text for media representations	
	10.0.1 obing libro an burdevared voice for media representations.	. 200
11	Making Text for the Web	242
	11.1 HTML: The Notation of the Web	. 242
	11.2 Writing programs to generate HTML	. 246
	11.3 Databases: A place to store our text	. 251
	11.3.1 Relational databases	. 253
	11.3.2 Working with SQL	. 256
	11.3.3 Using a database to build Web pages	. 258
\mathbf{V}	Movies	261
·	1120 1 1 2 2	
12	Creating and Modifying Movies	262
	12.1 Generating Animations	
	12.2 Working with Video	
	12.2.1 Video manipulating examples	. 271
\mathbf{V}	Topics in Computer Science	277
12	Speed	278
10	13.1 What makes programs fast?	
	13.1.1 What computers really understand	
	13.1.2 Compilers and Interpreters	
	13.1.3 How fast can we really go?	
	13.1.4 Making searching faster	
	13.1.5 Algorithms that never finish or can't be written	
	13.1.6 Why is Photoshop faster than JES?	
14	Styles of Programming	290
	14.1 Using functions to make programming easier	
	14.2 Functional programming: Programming in very few lines	
	14.2.1 Recursion: A powerful idea	
	14.3 Object-oriented programming	
	14.3.1 An Object-Oriented Slide Show	
	14.3.2 Object-oriented media	
	14.3.3 Why objects?	
15	Creating Graphical User Interfaces	312
16	JavaScript	313
	16.1 JavaScript syntax	
	16.2 JavaScript inside of Web pages	
	16.3 User interfaces in JavaScript	
	16.4 Multimedia in JavaScript	
	10.4 Multimedia in Savascript	. 020

"main" 2004/6/3 page viii

viii

APPENDICES

\mathbf{A}	\mathbf{Qui}	ck Referei	nce to	\mathbf{Pytho}	n						325
	A.1	Variables				 	 	 	 		325

List of Figures

- 0.1 TO TEACHERS
- 0.2 TYPOGRAPHICAL NOTATIONS
- 0.3 ACKNOWLEDGEMENTS

1.1	Eight wires with a pattern of voltages is a byte, which gets inter-	
	preted as a pattern of eight 0's and 1's, which gets interpreted as a	
	decimal number.	13
2.1	JES (with annotations)	23
2.2	The File Picker	26
2.3	File picker with media types identified	28
2.4	Picking, making, and showing a picture, using each function as input	
	to the next	29
2.5	Picking, making, and showing a picture, naming the pieces	30
2.6	O Company of the Comp	34
2.7	Defining and executing pickAndShow	35
3.1	An example matrix	43
3.2	Cursor and icon at regular magnification on top, and close-up views	
	of the cursor (left) and the line below the cursor (right)	44
3.3	Image shown in JES MediaTools picture tool: 100% image on left	
	and 500% on right \dots	45
3.4	Merging red, green, and blue to make new colors	46
3.5	The ends of this figure are the same colors of gray, but the middle	
	two quarters contrast sharply so the left looks darker than the right	46
3.6	The Macintosh OS X RGB color picker	47
3.7	Picking a color using RGB sliders from JES	47
3.8	RGB triplets in a matrix representation	48
3.9	Directly modifying the pixel colors via commands: Note the small	
	yellow line on the left	53
3.10	An example JES Help entry	54
3.11	An example JES Explain entry	54
3.12	Opening a picture in the JES MediaTools picture tool	55
3.13	Using the MediaTools image exploration tools	55
		59
3.15	Using the MediaTools picture tool to convince ourselves that the red	
	was decreased	62
3.16	Overly blue (left) and red increased by 20% (right)	63
		64
3.18	Original beach scene (left) and at (fake) sunset (right)	65
3.19	Lightening and darkening of original picture	70
3.20	Negative of the image	71

ix

x LIST OF FIGURES

3.21	Color picture converted to grayscale	72
4.1	Once we pick a mirrorpoint, we can just walk $xOffset$ halfway and	
	subtract/add to mirrorpoint	76
4.2	Original picture (left) and mirrored along the vertical axis (right)	77
4.3	Santa mirrored horizontally, bottom to top (left) and top to bottom	
	(right)	78
4.4	Temple of Zeus from the Ancient Agora in Athens, Greece	
4.5	Coordinates where we need to do the mirroring	79
4.6	The manipulated temple	80
4.7	Copying a picture to a canvas	83
4.8	Copying a picture midway into a canvas	85
4.9	Copying part of a picture onto a canvas	86
4.10	Flowers in the mediasources folder	88
4.11	Collage of flowers	89
4.12	Blending the picture of mom and daughter	94
4.13	Copying a picture to a canvas	95
	Scaling the picture down	
	Scaling up a picture	
	Increasing reds in the browns	
	Increasing reds in the browns, within a certain range	
	Finding the range of where Jenny's eyes are red	
	Finding the range of where Jenny's eyes are red	
	Original scene (left) and using our sepia-tone recipe	
	Reducing the colors (right) from the original (left)	
	Pictures posterized to two levels (left) and four levels (right) \dots	
	Making the flower bigger, then blurring to reduce pixellation	
	Merging red, green, and blue to make new colors	
	Color: RGB triplets in a matrix representation	
	Color: The original picture (left) and red-reduced version (right)	
	Color: Overly blue (left) and red increased by 20% (right)	
	Color: Original (left) and blue erased (right)	
	Original beach scene (left) and at (fake) sunset (right)	
	Color: Lightening and darkening of original picture	
	Color: Negative of the image	
	Color: Color picture converted to grayscale	
	Color: Increasing reds in the browns	
	Color: Increasing reds in the browns, within a certain range	
4.35	Finding the range of where Jenny's eyes are red, then changing them	
4.00	to black	
	Frames from the slow sunset movie	
	Frames from the slow fade-out movie	
	Frames from the Mommy watching Katie movie	
	Frames from the original too dark movie	
	Frames from the modified lighter movie	121
4.41	Frames from the original movie with kids crawling in front of a blue	101
4 40	Screen	
4.47	Frames from the kids on the moon movie	122

LIST OF FIGURES xi

5.1	A picture of a child (Katie), and her background without her	123
5.2	A new background, the moon	124
5.3	Katie on the moon	125
5.4	Two people in front of a wall, and a picture of the wall	125
5.5	Swapping a jungle for the wall, using background subtraction, with	
	a threshold of 50	126
5.6	Mark in front of a blue sheet	126
5.7	Mark on the moon	127
5.8	Mark in the jungle	128
5.9	Student in front of a red background, and with flash on	128
5.10	Using chromakey recipe with red background	129
5.11	A very small, drawn picture	129
5.12	A very small, drawn picture	130
5.13	A programmed gray scale effect	132
5.14	Nested colored rectangles image	133
5.15	Nested blank rectangles image	134
6.1	Raindrops causing ripples in the surface of the water, just as sound	
	causes ripples in the air	138
6.2	One cycle of the simplest sound, a sine wave	139
6.3	The distance between peaks in ripples in a pond are not constant—	
	some gaps are longer, some shorter	140
6.4	The note A above middle C is 440 Hz	141
6.5	Some synthesizers using triangular (or sawtooth) or square waves	142
6.6	Sound editor main tool	142
6.7	Viewing the sound signal as it comes in	143
6.8	Viewing the sound in a spectrum view	
6.9	Viewing a sound in spectrum view with multiple "spikes"	145
6.10	Viewing the sound signal in a sonogram view	
	Area under a curve estimated with rectangles	
6.12	A depiction of the first five elements in a real sound array	148
6.13	A sound recording graphed in the MediaTools	149
	Turning on Expert errors mode	
6.15	The sound editor open menu	153
6.16	MediaTools open file dialog	153
6.17	A sound opened in the editor	154
6.18	Exploring the sound in the editor	154
6.19	Picking a sound in JES MediaTools	155
6.20	JES MediaTools Sound tool	155
6.21	Zoomed in to the JES MediaTools Sound tool	156
6.22	Comparing the graphs of the original sound (bottom) and the louder	
	one (top)	160
6.23	Comparing specific samples in the original sound (top) and the louder	
	one (bottom)	161
7.1	Comparing the original sound (top) to the spliced sound (bottom) .	175
8.1	The top and middle waves are added together to create the bottom	
	wave	199

xii LIST OF FIGURES

8.2	The raw 440 Hz signal on top, then the 440+880+1320 Hz signal on	
	the bottom	200
8.3	FFT of the 440 Hz sound	200
8.4	FFT of the combined sound	200
8.5	The 440 Hz square wave (top) and additive combination of square	
	waves (bottom)	201
8.6	FFT's of the 440 Hz square wave (top) and additive combination of	
	square waves (bottom)	201
9.1	Seeing the variables using showVars()	
9.2	Stepping through the makeSunset() function with the Watcher	
9.3	Watching the variable value in the makeSunset() function with the	
	Watcher	208
10.1	Diagram of a directory tree	
	Diagram for the tree described in the list	
	Using Jython outside of JES, even to do media	
	Sound-as-text file read into Excel	
	Sound-as-text file graphed in Excel	
	A visualization of the sound "This is a test"	
	Simple HTML page source	
	Simple HTML page open in Internet Explorer	
	HTML styles	
	Inserting an image into an HTML page	
	An HTML page with a link in it	
	Inserting a table into an HTML page	
	Creating a thumbnail page	
	Using the simple database	
	An example relational table	
	ORepresenting more complex relationships across multiple tables	
	MovieMaker application on CD	
	A few frames from the first movie: Moving a rectangle down and up	
	Tracing the computation of position	
	From execution of tickertape function	
	Moving two rectangles at once	
	Frames from the slow sunset movie	
	Frames from the slow fade-out movie	
	Movie tools in MediaTools	
	Frames from the Mommy watching Katie movie	
	OFrames from the original kids crawling in front of a blue screen	
	1Frames from the kids on the moon movie	
	2Frames from the original too dark movie	
	BFrames from the new lightened movie	
	Running the doGraphics interpreter	
	A hierarchy of functions for creating a samples page	
	Changing the program is only a slight change to the hierarchy	
	Examples of rectangle methods	
	Examples of oval methods	
	Examples of arc methods	

LIST OF FIGURES xi	ii
14.6 Examples of text methods	9
16.1 Simple JavaScript function	5
16.2 Showing the parts of the simple JavaScript function	5
16.3 Using JavaScript to insert HTML	6
16.4 Using JavaScript to compute a loop	6
16.5 Computing a list that counts to ten	7
16.6 Inserting the date and time into a web page	8
16.7 Example JavaScript dialog windows	8
16.8 Example catching the onClick event	0
16.9 Opening a JavaScript window	0
16.10Changing the new JavaScript window	1
16.11Changing color of list items	2
16.12A simple HTML form	2
16.13Inch/centimeter converter in JavaScript	3

"main"
2004/6/3
page xiv

xiv LIST OF FIGURES

Preface

One of the clearest lessons from the research on computing education is that one doesn't just "learn to program." One learns to program *something* [5, 18], and the motivation to do that something can make the difference between learning to program or not [7]. People want to communicate. We are social creatures, and the desire to communicate is one of our primal motivations. Increasingly, the computer is used as a tool for communication, even more than a tool for calculation. Virtually all published text, images, sounds, music, and movies today are prepared using computing technology.

This book is about teaching people to program in order to communicate. The book focuses how to manipulate images, sounds, text, and movies as professionals might, but with programs written by the students. There are no illusions here: most people will use professional-grade applications to perform these same manipulations. But knowing *how* to do it with your own programs means that you *can* do it if you need to. Want to say something with your media, but you don't know how to make PhotoShop or Final Cut Pro do what you want? Knowing how to program means that you have power of expression that is not limited by the application software.

It might also be true that knowing how the algorithms in the media applications work allows you to use them better, or move from one application to the next more easily. If your focus in an application is what menu item does what, every application is different. But if your focus is to move or color the pixels in the way that you want, then maybe it's easier to get past the menu items and focus on what you want to say.

This book is not just about programming in media. Media manipulation programs can get hard to write, or behave in unexpected ways. Natural questions arise like "Why is this same image filter faster in Photoshop?" and "That was hard to debug—are there ways of writing programs that are *easier* to debug?" Answering questions like these is what computer scientists do. There are several chapters at the end of the book that are about *computing*, not just programming, and more generally than just media.

The computer is the most amazingly creative device that humans have ever conceived of. It is literally completely made up of mind-stuff. The notion "Don't just dream it, be it" is really possible on a computer. If you can imagine it, you can make it "real" on the computer. Playing with programming can be and *should* be enormous fun.

0.1 TO TEACHERS

The curricular content of this book matches the "Imperative-first" approach described in the ACM/IEEE Computing Curriculum 2001 standards document [4]. The book starts with a focus on fundamental programming constructs: assignments, sequential operations, iteration, conditionals, and defining functions. Abstractions (such as algorithmic complexity, program efficiency, computer organization, hierarchical decomposition, recursion, and object-oriented programming) are emphasized more later, after the students have a context for understanding them.

2 LIST OF FIGURES

The reason for this unusual ordering is research in learning sciences. Memory is associative—we remember things based on what else we relate to those things. People can learn concepts and skills on the promise that it will be useful some day, but those concepts and skills will be related only to those promises, not to everyday life. The result has been described as "brittle knowledge" [8]—the kind of knowledge that gets you through the exam, but promptly gets forgotten because it doesn't relate to anything but being in that class. If we want students to gain transferable knowledge (knowledge that can be applied in new situations), we have to help them to relate the knowledge to more general problems, so that the memories get indexed in ways that associate with those kinds of problems [22]. Thus, we teach with concrete experiences that students can explore and relate to (e.g., iteration for removing red-eye in pictures), and later lay abstractions on top of that (e.g., achieving the same goal using recursion or functional filters and maps). But even the concrete experiences are first anchored in relevant contexts.

We do know that starting from the abstractions doesn't really work for students. Ann Fleury has shown that novice students just don't buy what we tell them about encapsulation and reuse (e.g., [11]). Students prefer simpler code that they can trace easily, and actually think that such code is *better*. It takes time and experience for students to realize that there is value in well-designed systems, and without experience, it's very difficult for students to learn the abstractions.

The *media computation* approach used in this book is to start from what people use computers for: Image manipulation, exploring digital music, viewing and creating web pages, and so on. We then explain programming and computing in terms of these activities. We want students to visit Amazon (for example) and think, "Here's a catalog website—and I know that these are implemented with a database and a set of programs that format the database entries as Web pages." Starting from a relevant context makes transfer of knowledge and skills more likely, but it also helps with retention.

The media computation approach spend about 2/3 of the time on giving students experiences with a variety of media in contexts that they find motivating. After that 2/3, though, they start to develop questions. "Why is that Photoshop is faster than my program?" and "Movie code is slow – how slow do programs get?" are typical. At that point, we introduce the abstractions and the valuable insights from Computer Science that answer *their* questions. That's what the last part of this book is about.

A different body of research in computing education has been exploring why withdrawal or failure rates in introductory computing have been so high. One of the common themes is that computing courses seem "irrelevant" and unnecessarily focusing on "tedious details" such as efficiency [26][1]. A communications context is perceived as relevant by the students (as they tell us in surveys and interviews [13][23]). The relevant context is part of the explanation for the success we have had with retention in the Georgia Tech course for which this book was written.

The abstraction-late ordering isn't the only unusual ordering in this approach. We start using arrays and matrices in chapter 3, in our first significant programs. Typically, introductory computing courses push arrays off until later, since they're obviously more complicated than variables with simple values. But a relevant context is very powerful [18]. The matrices of pixels in images occur in the students'

everyday life—a magnifying class on a computer monitor or television makes that clear.

The rate of students with drawing from introductory computing courses or receiving a D or F grade (commonly called the $WDF\ rate$) has been reported in the 30–50% range, or even higher. At Georgia Tech, from 2000–2002, we had an average WDF rate of 28% in our introductory course which was required by all majors. We use this text in our course $Introduction\ to\ Media\ Computation$. Our first pilot offering of the course had 121 students, no computing or engineering majors, and 2/3 of the course was female. Our WDF rate was 11.5%. Spring 2004 was the first semester taught by instructors other than the author, and the WDF rate dropped to 9.5% for the 395 students who enrolled. Charles Fowler at Gainesville College in Georgia has been having similar results in his courses there.

Our publisher, Alan Apt of Prentice-Hall, recognizes that this book represents a new and radical approach to teaching introductory computing. The publisher is willing to provide textbooks at no cost for a trial offering of a course (or a section of a large course) to encourage you to try this approach in your own school.

0.1.1 Ways to Use This Book

This book represents what we teach at Georgia Tech in pretty much the ordering that we use. Individual teachers may skip some sections (e.g., the section on additive synthesis, MIDI, and MP3), but all of the content here has been tested with our students.

However, we can imagine using this material in many other ways:

- A short introduction to computing could be taught with just chapters 2 (introduction to programming) and 3 (introduction to image processing), perhaps with some material from chapters 4 and 5. We have taught even single day workshops on media computation using just this material.
- Chapters 6 through 8 basically replicate the computer science concepts from chapters 3 through 5, but in the context of sounds rather than images. We find the replication useful—some students seem to relate better to the concepts of iteration and conditionals better when working with one medium than the other. Further, it gives us the opportunity to point out that the same algorithm can have similar effects in different media (e.g., scaling a picture up or down and shifting a sound higher or lower in pitch is the same algorithm). But it could certainly be skipped to save time.
- Chapter 12 (on movies) introduces no new programming or computing concepts. While motivating, movie processing could be skipped for time.
- We do recommend getting to at least some of the chapters in the last unit, in order to lead students into thinking about the computing and programming in a more abstract manner, but clearly not *all* of the chapters have to be covered.

4 LIST OF FIGURES

0.1.2 Python and Jython

The programming language used in this book is Python. Python has been described as "executable pseudo-code." We have found that Python is learnable and usable by non-CS majors (and presumably, by Computer Science majors as well), and since it's actually used for communications tasks (e.g., Web site development), it's a relevant language for an introductory computing course. For example, job advertisements posted to the Python website (http://www.python.org) show that companies like Google and Industrial Light & Magic hire Python programmers.

The specific dialect of Python used in this book is *Jython* (http://www.jython.org). Jython *IS* Python. The differences between Python (normally implemented in C) and Jython (which is implemented in Java) are akin to the differences between any two language implementations (e.g., Microsoft vs. GNU C++ implementations)—the basic language is *exactly* the same, with some library and details differences that most students will never notice.

0.2 TYPOGRAPHICAL NOTATIONS

Examples of Python code look like this: x = x + 1. Longer examples look look like this:

```
def helloWorld():
   print "Hello, world!"
```

When showing something that the user types in with Python's response, it will have a similar font and style, but the user's typing will appear after a Python prompt (>>>):

```
>>> print 3 + 4
```

User interface components of JES (Jython Environment for Students) will be specified using a smallcaps font, like SAVE menu item and the LOAD button.

There are several special kinds of sidebars that you'll find in the book.

Recipe 1: An Example Recipe

Recipes (programs) appear like this:

```
def helloWorld():
   print "Hello, world!"
```


Computer Science Idea: An Example Idea Key computer science concepts appear like this.

-

Common Bug: An Example Common Bug Common things that can cause your recipe to fail appear like this.

Debugging Tip: An Example Debugging Tip If there's a good way to keep those bugs from creeping into your recipes in the first place, they're highlighted here.

Making it Work Tip: An Example How To Make It Work

Best practices or techniques that really help are highlighted like this.

0.3 ACKNOWLEDGEMENTS

Our sincere thanks go out to the following:

- Jason Ergle, Claire Bailey, David Raines, and Joshua Sklare who made JES a reality with amazing quality in an amazingly short amount of time. Jason and David took JES the next steps, improving installation, debugging, and process support. Adam Wilson and Toby Ho added the wonderful support for identifying blocks, MIDI music, and a debugger. Eric Mickley improved the error messages significantly. Keith McDermott gave us MovieMaker and worked on the picture support. Adam has been the caretaker of the project and brought it to the point it is today.
- Adam Wilson built the MediaTools that are so useful for exploring sounds and images and processing video.
- Andrea Forte, Mark Richman, Matt Wallace, Alisa Bandlow, Derek Chambless, Larry Olson, and David Rennie helped build course materials. Derek, Mark, and Matt created many example programs. Barbara Ericson reviewed the book as we worked on the Java version together, and made numerous suggestions and improvements.
- There were several people who really made the effort come together at Georgia Tech. Bob McMath, Vice-Provost at Georgia Tech, and Jim Foley, Associate Dean for Education in the College of Computing, invested in this effort early on. Kurt Eiselt worked hard to make this effort real, convincing others to take it seriously. Janet Kolodner and Aaron Bobick were excited and encouraging about the idea of media computation for students new to computer science. Jeff Pierce reviewed and advised us on the design of the media functions used

6 LIST OF FIGURES

in the book. Aaron Lanterman gave me lots of advice on how to convey the digital material content accurately.

- Joan Morton, Chrissy Hendricks, and all the staff of the GVU Center made sure that we had what we needed and that the details were handled to make this effort come together.
- Charles Fowler was the first person outside of Georgia Tech willing to take the gamble and trial the course in his own institution (Gainesville College), for which we're very grateful.
- The pilot course offered in Spring 2003 at Georgia Tech was very important in helping us improve the course. Andrea Forte, Rachel Fithian, and Lauren Rich did the assessment of the pilot offering of the course, which was incredibly valuable in helping us understand what worked and what didn't. The first Teaching Assistants (Jim Gruen, Angela Liang, Larry Olson, Matt Wallace, Adam Wilson, and Jose Zagal) did a lot to help create this approach. Blair MacIntyre, Colin Potts, and Monica Sweat helped make the materials easier for others to adopt.
- Many students pointed out errors and made suggestions to improve the book.
 Thanks to Catherine Billiris, Jennifer Blake, Karin Bowman, Maryam Doroudi,
 Suzannah Gill, Baillie Homire, Jonathan Laing, Mireille Murad, Michael
 Shaw, Summar Shoaib, and especially Jonathan Longhitano who has a real flair for oopy-editing.
- Most of the clip art is used with permission from the *Art Explosion* package by Nova Development.
- Thanks for permission to use their snapshots from class in examples are former *Media Computation* students Constantino Kombosch, Joseph Clark, and Shannon Joiner.
- Finally but most importantly, Barbara Ericson, and Matthew, Katherine, and Jennifer Guzdial, who allowed themselves to be photographed and recorded for Daddy's media project and were supportive and excited about the class.

