<u>Signali i sustavi – 7. domaća zadaća – primjeri zadataka</u> ak. god. 2006./07.

1 Marks: 1 Koliko iznosi konačna vrijednost niza u vremenskoj domeni, ukoliko je poznata $X(z) = \frac{z(z - \frac{1}{2})}{(z - 1)(z - \frac{1}{2})}$ jednostrana 🌋 -transformacija $\mathbf{E}_{a} x(\infty) = \frac{4}{5}$ \square b. $x(\infty) = \infty$ $\square_{C} x(\infty) = 0$ $\square_{\rm d.} x(\infty) = 1$ $\mathbb{D}_{\mathrm{e}} x(\infty) = -1$ Točno Marks for this submission: 1/1. 2 Marks: 1 Ako signal u vremenskoj domeni $x(t)\mu(t)$ pomaknemo ulijevo za a , $x(t+a)\mu(t+a)$, Laplaceova transformacija X(s) množi se s: □ a. e^{-a} □ b. e^{e²a} \square c. e^{-as} $oldsymbol{arphi}$ d. e^{as} Bravo! Točan odgovor! Točno Marks for this submission: 1/1. 3 Marks: 1 Odredi prijenosnu funkciju sustava za pomak unaprijed (vidoviti sustav 3) opisanog diferencijskom jednadžbom y[n] = u[n+1] \square a. H(z) = 1 $\Box_{b} H(z) = z + 1$ \square c. H(z) = z - 1 $\mathbf{E}_{\mathsf{d}}.H(z) - z$ Izvrsno!

Točno

Marks for this submission: 1/1.

 \Box e. $H(z) = z^{-1}$

Marks: 1

Zadan je impulsni odziv sustava $y(t) = e^{-tt}$. Odredi prijenosnu funkciju sustava!

$$\square$$
 a. $H(s) = \frac{4s}{s+4}$

$$\square$$
 b $H(s) = \frac{s+1}{s+4}$

$$\mathbf{E}_{\mathrm{C.}} H(s) = \frac{1}{s+4}$$
 Bravo, bravo! **3**

$$\Box$$
 d $H(s) = \frac{s}{s+4}$

$$\mathbb{C}_{e} H(s) = \frac{4}{s+1}$$

Točno

Marks for this submission: 1/1.

5

Marks: 1

Prva dva člana impulsnog odziva diskretnog LTI sustava danog prijenosnom

$$H(z) = \frac{z^2 + 2z}{z^2 + 2z + 3}$$
su:

funkcijom

$$\mathbf{E}_{a}[h[n] = \{\underline{1}, 0, \ldots\}]$$
 Bravo, ispravan odgovor!

$$\square$$
 b. $h[n] = \{\underline{1}, 1, \ldots\}$

$$\square$$
 c. $h[n] = \{\underline{1}, 2, \ldots\}$.

$$\square$$
 d. $h[n] - \{\underline{1}, 3, \ldots\}$

e. Ne znam!

Točno

Marks for this submission: 1/1.

6

Marks: 1

Odrediti koeficijent 4 pri rastavu na parcijalne razlomke za ${\mathcal Z}$ -transformaciju :

$$\frac{X(x)}{x} - \frac{1}{x(x-1)(x-2)} - \frac{a}{x} - \frac{1}{x-1} + \frac{1}{2} \frac{1}{(x-2)}$$

$$\square$$
 a. $a=1$

$$\Box$$
 b $a = \frac{1}{2}$ Bravo, točan odgovor!

$$a = -\frac{1}{2}$$

$$\Box$$
 d. $a = -2$

$$a = 2$$

Točno

Marks: 1

Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $\mathcal{Z}(n)=2^n\mu(n)$ glasi:

$$\Box$$
 d. $0 < |z| < \infty$

$$\Box_{\rm e.} z | < \frac{1}{2}$$

Točno

Marks for this submission: 1/1.

1

Marks: 1

Ako je promatrani signal kauzalan, \mathcal{Z} -transformacija konvolucije $x(n) + \delta(n - n_0)$ jednaka je i \mathcal{Z} -transformaciji signala:

$$\square$$
 a. $x(n \cdot n_0)$

$$\square$$
 c. $x(n+n_0)$

$$\square$$
 d. $\mu(n)$

$$\square$$
 e. $x(n)$

Točno

Marks for this submission: 1/1.

2

Marks: 1

$$H(z) = T \frac{z}{z - \frac{1}{2}}$$

Impulsni odziv diskretnog LTI sustava danog prijenosnom funkcijom glasi:

$$\square_{a.} h[n] = \frac{1}{2}^n \mu[n]$$

$$\Box_{b} h[n] = T(\frac{4}{3})^n \mu[n]$$

$$\square \quad h[n] = T^{\frac{1}{2}} \mu[n]$$

$$\mathbb{E}_{\mathbf{d}} h[n] = T(\frac{1}{2})^n \mu[n]$$
 Izvrsno, točan odgovor!

$$\mathbb{C}_{e.} h[n] = T(\frac{2}{3})^n \mu[n]$$

Točno

Marks: 1

Odziv sustava na Diracovu & distribuciju nazivamo:

- a. Fazor
- **b**. Odziv mirnog sustava
- Točan odgovor! c. Impulsni odziv
- d. Prijelazna funkcija
- e. Prijenosna funkcija

Točno

Marks for this submission: 1/1.

4

Marks: 1

Nađi rješenje diferencijske jednadžbe $y[n] - y[n-1] = u[n-1]_u \times_{\text{domeni uz}} y[-1] = u[-1] = 0$.

$$\square \quad Y(z) = \frac{1}{z}U(z)$$

$$\Box_{b} Y(z) = Y(z-1) + U(z-1)$$

$$E_{c.} Y(z) = \frac{z^{-1}}{1 - z^{-1}} U(z)$$
 Bravo!

$$Y(z) = \frac{1}{1 - z^{-1}}U(z)$$

$$\Box \ _{\rm e} \ Y(z) = z^{-1}U(z)$$

Točno

Marks for this submission: 1/1.

5

Marks: 1

Područje konvergencije 🌋 -transformacije diskretnog signala $x(n) = 3^{-n} \mu(n) + 5^{-n} \mu(n)$ _{glasi:}

$$|z| > \frac{1}{8}$$

$$|\mathbf{c}|_{b}$$
, $|z| > 5$

$$\mathbb{E}_{c.} |z| > \frac{1}{3}$$
 Bravo, točno ste odgovorili!

$$\Box$$
 d. $3 < |z| < 5$

$$\square$$
 e. $|z| > 3$

Točno

Marks: 1

Odrediti koeficijente $a_i b_{za} \mathcal{Z}_{-transformaciju}$: $\frac{X(z)}{z} = \frac{1}{2(z-1)(z-2)} = \frac{a}{z-1} + \frac{b}{z-2}$.

$$\Box$$
 a. $a = 2, b = -1$

$$\Box$$
 b $a = \frac{1}{2}, b = -\frac{1}{2}$

$$a = -2, b = 1$$

$$a = -\frac{1}{2}, b = 1$$

$$\mathbf{E}_{e}$$
 $\mathbf{a} - \mathbf{-\frac{1}{2}}, \mathbf{b} - \mathbf{\frac{1}{2}}$ Odlično, točan odgovor!

Točno

Marks for this submission: 1/1.

7

Marks: 1

Jesu li Laplaceove transformacije ovih dviju funkcija jednake?

$$f(t) = (t-5)^4 e^{-2t} \mu(t-5)$$

$$f(t) = (t-5)^4 e^{-2t} \mu(t)$$

Odgovor:

Točno E Netočno

Točno

1

Marks: 1

Što je u 🌋 domeni ekvivalentno množenju s 🏗 u vremenskoj domeni?

- a. Dijeljenje s n
- L b. Konvolucija
- C. Množenje s n
- 🖸 d. Kašnjenje za 🌃 koraka
- e. Deriviranje

Točno

Marks: 1

 ${\it Z}$ transformacija ulaza je ${\it U(z)}$, a izlaza ${\it Y(z)}$. Prebacimo li diferencijsku jednadžbu u

 $oldsymbol{\mathbb{Z}}$ domenu uz početne uvjete jednake nuli prijenosnu funkciju $oldsymbol{H}(z)$ računamo kao:

$$\mathbf{E} \quad H(z) = \frac{Y(z)}{U(z)}$$
 Točno!

$$\Box_{b} H(z) = Y(z) + U(z)$$

$$\square$$
 c. $H(z) = Y(z)U(z)$

$$\Box \quad _{\rm d} \ H(z) = \frac{U(z)}{Y(z)}$$

$$\square$$
 e. $H(z) = Y(z) * U(z)$

Točno

Marks for this submission: 1/1.

3

Marks: 1

Odrediti inverznu \mathcal{Z} -transformaciju funkcije $X(z)=\frac{z}{(z-1)^2}, |z|>1.$

$$\square_{a.} x(n) = \frac{1}{n^2} \mu(n)$$

$$\square_{b} x(n) = \frac{1}{n} \mu(n)$$

$$\square$$
 $_{\mathrm{c.}} x(n) = \mu(n)$

$$\mathbf{E}_{\mathbf{d}} \mathbf{x}(n) = n \mu(n)$$
 Odlično, samo tako nastavite!

$$\square$$
 e. $x(n) = n^2 \mu(n)$

Točno

Marks for this submission: 1/1.

4

Marks: 1

Područje konvergencije 🌋 -transformacije diskretnog signala

$$x(n) = 3^{-n} \mu(n) + 5^{-n} \mu(n)_{\text{glasi}}$$

$$\Box$$
 a $|z| > 3$

$$\mathbb{E}_{b} | z > \frac{1}{3}$$
 Bravo, točno ste odgovorili!

$$\Box$$
 c $|z| > 5$

$$\Box |z| > \frac{1}{5}$$

$$\Box$$
 e. $3 < |z| < 5$

Točno

Marks: 1

Koja je Laplaceova transformacija od signala $\mu(t-a)$?

- \square a. $\frac{1}{s-a}$
- \Box b. $e^{-as}s$
- © c. e^{-as} 1/s
- □ d. e^{-as}
- □ e. e^{as}

C je točan odgovor

6

Marks: 1

Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{s^2 + 4s + 4}$. Odredi impulsni odziv sustava!

- \square a. $-2te^t$
- □ b -te^{2±}
- **©** c. ta⁻²⁶ Bravo, bravo! ♥
- □ d. e^{-2±}
- E e tet

Točno

Marks for this submission: 1/1.

7

Marks: 1

$$H(z) = T \frac{z}{z - \frac{1}{2}}$$

Impulsni odziv diskretnog LTI sustava danog prijenosnom funkcijom glasi:

$$\square \quad _{\mathbf{a}.} h[n] = \frac{1}{2}^n \mu[n]$$

$$\square_{b.} h[n] = T^{\frac{1}{2}} \mu[n]$$

$$\mathbf{E}_{c.} h[n] = T(\frac{1}{2})^n \mu[n]$$
 Izvrsno, točan odgovor!

$$\square \quad _{\mathbf{d}} \ h[n] = T(\frac{4}{3})^n \, \mu[n]$$

$$\square_{e.} h[n] = T(\frac{2}{3})^n \mu[n]$$

Točno

Odredi red sustava zadanog diferencijskom jednadžbom

$$y[n] + y[n-2] = u[n-4]$$

- a. 2
- D b. 3
- C. 1
- **d**. 0
- e. 4

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1.

Marks: 1

Područje konvergencije 🌋 -transformacije diskretnog signala $x(n) = 4^{-n} \mu(-n-1)_{iei}$

- \square_{a} |z| > 4
- \Box b z $< \frac{1}{4}$
- © _{C.} |≇| ≪ **4**
- \Box d. $0 < |z| < \infty$
- $\square_{e.} z > \frac{1}{4}$

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1.

3

Marks: 1

Prva dva člana impulsnog odziva diskretnog LTI sustava danog prijenosnom

$$H(z) = \frac{z^2 + 2z}{z^2 + 2z + 3}$$
su:

funkcijom

 E_{a} $h[n] = \{1,0,\ldots\}$ Bravo, ispravan odgovor!

- \square b $h[n] = \{\underline{1}, 1, \ldots\}$
- \square c. $h[n] = \{\underline{1}, 2, \ldots\}$
- \Box d. $h[n] = \{1, 3, ...\}$
- e. Ne znam!

Točno

Marks: 1

Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{(s-j)(s+j)}$. Odredi impulsni odziv sustava!

- \square a tan(t)
- \square b $\operatorname{arecos}(t)$
- \square cos(t)
- \square d 5 arcsin(5t)
- $\mathbf{E}_{\mathbf{e}} \sin(t)$ Bravo, bravo! $\mathbf{\Theta}$

Točno

Marks for this submission: 1/1.

5

Marks: 1

 ${\mathcal Z}$ - transformacija signala $w(n)=5x(n)-3y(n)_{
m glasi}$:

$$\square \quad a \quad W(z) = 5X(z) * 3Y(z)$$

$$\square$$
 b $W(z) = 5X(z) \cdot 3Y(z)$

$$W(z) = 3X(z) - 5Y(z)$$

$$\mathbb{E}_{d}$$
 $W(z) = 5X(z) - 3Y(z)$ Ovo je bilo lagano...

$$E = W(z) = 5X(z) + 3Y(z)$$

Točno

Marks for this submission: 1/1.

6

Marks: 1

Odrediti koeficijente a i b za z -transformaciju :

$$\frac{X(z)}{z} = \frac{1}{2(z-1)(z-2)} = \frac{a}{z-1} + \frac{b}{z-2}$$

$$a = \frac{1}{2}, b = -\frac{1}{2}$$

$$a = -\frac{1}{2}$$
, $b = \frac{1}{2}$ Odlično, točan odgovor!

$$C_{c.}$$
 $a = 2, b = -1$

$$\Box$$
 d. $a = -2, b = 1$

$$\Box_{e} a = -\frac{1}{2}, b - 1$$

Točno

Marks: 1

Što se dogodi s Laplaceovom transformacijom F(s)ako funkciju u vremenskoj domeni pomnožimo s konstantom af(t)?

- \square_{a} $F(\frac{s}{a})$
- \Box b. F(as)
- $\mathbf{E}_{\mathsf{C}} aF(s)$ Bravo! Točan odgovor!
- $\mathbb{D}_{d.} \frac{F(\frac{s}{a})}{a}$
- \Box e. $\frac{1}{s}F(as)$

Točno

Marks for this submission: 1/1.

- 1. Odziv sustava na Diracovu & distribuciju nazivamo:
- **b**. Odziv mirnog sustava
- C. Fazor
- d. Prijelazna funkcija
- C e. Prijenosna funkcija

Točno

Marks for this submission: 1/1.

2

Marks: 1

$$Z$$
 transformacija ulaza je $U(z)$, a izlaza $Y(z)$. Jednadžba sustava u Z domeni je $z^{-2}Y(z)+2Y(z)=z^{-3}U(z)$. Prijenosna funkcija $H(z)$ je:

$$\square$$
 $_{a}$ $H(z) = \frac{z^{-2} + 2}{z^{-3}}$

$$\Box_{b} H(z) = z^{-3}(z^{-2} + 2)$$

$$\mathbf{E}$$
 $_{\mathrm{c.}}^{\mathbf{H}(z)} = \frac{z^{-3}}{z^{-2} + 2}$ Točno!

$$\square \quad _{\rm d.} H(z) = \frac{1}{z^{-3}}$$

$$\mathbb{C}_{\text{e.}} H(z) = \frac{1}{z^{-2} + 2}$$

Točno

Marks: 1

Područje konvergencije ${\mathcal Z}$ -transformacije diskretnog signala $x(n)=2^n \, \mu(n)$ glasi:

- $\Box_{b} 0 < |z| < \infty$
- C c |2 < 2
- $\Box |z| > \frac{1}{2}$
- $\mathbb{E}_{e.}|z|<\frac{1}{2}$

Točno

Marks for this submission: 1/1.

4

Marks: 1

Odredite \mathcal{Z} -transformaciju signala dobivenog konvolucijom $x(n) * \delta(n)$:

- \square a $X(z)\delta(1)$
- \Box b. $\frac{x}{X(z)}$
- \square c. $\frac{X(z)}{z}$
- d. 1
- $\mathbf{E}_{\mathrm{e.}} X(z)$

Točno

Marks for this submission: 1/1.

5

Marks: 1

Koja operacija u vremenskoj domeni odgovara množenju u Laplaceovoj domeni?

- a. deriviranje
- **b**. oduzimanje
- C. množenje
- d. kvadriranje
- e. konvolucija Bravo! Točan odgovor!

Točno

Marks: 1

Odrediti koeficijent 🦚 pri rastavu na parcijalne razlomke za 🌋 -transformaciju :

$$\frac{N(x)}{x} = \frac{1}{x(x-1)(x-2)} = \frac{a}{x} - \frac{1}{x-1} + \frac{1}{2} \frac{1}{(x-2)}$$

$$\Box$$
 a. $a=2$

$$\square$$
 b. $\alpha = \frac{1}{2}$ Bravo, točan odgovor!

$$\mathbf{C} \cdot \mathbf{c} \cdot a = 1$$

$$\Box$$
 d. $a=-2$

$$a = -\frac{1}{2}$$

Točno

Marks for this submission: 1/1.

7

Marks: 1

Impulsni odziv diskretnog LTI sustava danog prijenosnom funkcijom

$$H(z) = \frac{z\frac{\sqrt{3}}{2}}{z^2 - z + 1}_{\text{glasi:}}$$

$$\square \quad _{a} \ h[n] = \sin(\frac{1}{3}n) \, \mu[n]$$

$$\mathbb{E}_{b}$$
 $h[n] = \sin(\frac{\pi}{2}n) \mu[n]$ Izvrsno, točan odgovor!

$$\square \quad {}_{c} \quad h[n] = (\frac{1}{3})^n \, \mu[n]$$

$$\square$$
 d $h[n] = (\frac{1}{5})^n \mu[n]$

$$\square \quad e \quad h[n] = \sin(\frac{\pi}{6}n) \mu[n]$$

Točno

1

Marks: 1

Odrediti inverznu ${\mathbb Z}$ -transformaciju signala $X(z)=2z-\frac{1}{2z}$.

$$\Box_{a} x(n) = 2\mu(n) - \frac{1}{2}\delta(n)$$

$$\mathbb{E}_{\mathbf{b}} x(n) = 2\delta(n+1) - \frac{1}{2}\delta(n-1)$$
 Bravo, tocan odgovor!

$$x(n) = 2\mu(n-1) - \frac{1}{2}\delta(n-1)$$

$$\square_{d} x(n) = 2\mu(-n-1) - \frac{1}{2}\mu(n-1)$$

$$rac{1}{2} = \frac{1}{2} \delta(n) - \frac{1}{2} \delta(n-1)$$

Točno

Marks: 1

Ako je promatrani signal kauzalan, 🌋 -transformacija konvolucije $x(n) * \delta(n-n_0)$ jednaka je i Z -transformaciji signala:

$$\square$$
 b. $\mu(n)$

$$\square_{\mathsf{C}} \ x(n+n_0)$$

$$\square$$
 d. $x(n)$

$$\square$$
 e. $x(n \cdot n_0)$

Točno

Marks for this submission: 1/1.

3

Marks: 1

 $H(s) = \frac{1}{(s-j)(s+j)}$. Odredi impulsni odziv Zadana je prijenosna funkcija sustava sustava!

$$\Box$$
 a. arccos(t)

$$\mathbf{E}_{\mathbf{b}} \sin(t)$$
 Bravo, bravo! \mathbf{Q}

$$\square$$
 c. $tan(t)$

$$\square$$
 d. $5 \arcsin(5t)$

$$\Box$$
 e. $\cos(t)$

Točno

Marks for this submission: 1/1.

Marks: 1

Profesor je na ploči počeo pisati impulsni odziv diskretnog LTI sustava danog

prijenosnom funkcijom Vi:

$$H(z) = \frac{z^2 + 2z}{2z^2 + 4z + 3}$$
. Napisao je $h[n] = \{1, 4, ...\}$

9

Bravo, ispravan odgovor!

a. ispravljate profesora jer je točno

a. Ispravijate profesora jer je too
$$h[n] = \{\frac{1}{2}, 0, \ldots\}$$

b. ispravljate profesora jer je točno $h[n] = \{\underline{2}, 4, \ldots\}$

e. ispravljate profesora jer je točno
$$h[n] = \{\underline{1}, 0, \ldots\}$$

Marks: 1

 ${\cal Z}$ transformacija ulaza je ${\cal U}(z)$, a izlaza ${\cal Y}(z)$. Jednadžba sustava u ${\cal Z}$ domeni je $z^{-2}Y(z)+2Y(z)=z^{-3}U(z)$. Prijenosna funkcija ${\cal H}(z)$ je:

$$\Box \quad \ \ \, H(z) = \frac{z^{-2} + 2}{z^{-3}}$$

$$H(z) = \frac{1}{z^{-2} + 2}$$

$$\Box$$
 C. $H(z) = z^{-3}(z^{-2} + 2)$

$$\qquad \qquad \mathbf{E} \quad _{\mathrm{d.}} H(z) = \frac{z^{-3}}{z^{-2} + 2} \qquad \text{Točno!}$$

$$\qquad \qquad \text{e. } H(z) = \frac{1}{z^{-3}}$$

Točno

Marks for this submission: 1/1.

6

Marks: 1

Područje konvergencije \mathbb{Z} -transformacije diskretnog signala $x(n) = 3^{-n} \mu(n) + 5^{-n} \mu(n)$ glasi:

$$\mathbb{E}_{a} |z| > \frac{1}{3}$$
 Bravo, točno ste odgovorili!

$$\square_{b.} |z| > \frac{1}{5}$$

$$\Box$$
 d. $|z| > 5$

Točno

Marks for this submission: 1/1.

7

Marks: 1

Množenjem nekog signala signala u vremenskoj domeni, njegov ekvivalent u Laplaceovoj domeni glasi:

$$\square$$
 a $X(s)-a$

$$\square_{\mathsf{b}} X(s) + a$$

$$\square$$
 C. $X(s+a)$

$$\mathbf{E}_{\mathsf{d}} X(s-a)$$
 Bravo! Točan odgovor!

$$\square$$
 e. $aX(s)$

Točno

Izraz $X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$ predstavlja dvostranu \mathcal{Z} -transformaciju diskretnog vremenskog signala x(n).

Odgovor:

Točno Netočno

Ovo je dvostrana z-transformacija

Točno

Marks for this submission: 1/1.

2

Odrediti inverznu Z -transformaciju signala $X(z)=\frac{1}{z^2}$.

$$\square_{a} x(n) = \mu(n-2)$$

$$E_{b}$$
 $x(n) = \delta(n-2)$ Bravo, samo tako nastavite!

$$\square \quad x(n) = \delta(n-1)$$

$$\square$$
 d. $x(n) = \mu(n-1)$

$$\square$$
 e $x(n) = \delta(n+2)$

Točno

Marks for this submission: 1/1.

3

Uzastopnim integriranjem funkcije u vremenskoj domeni, njenu Laplaceovu transformaciju:

Točno

Marks for this submission: 1/1.

4

 ${\cal Z}$ - transformacija signala $w(n)=5x(n)+3y(n)_{
m glasi}$:

$$\mathbb{E}_{a}$$
. $W(z) = 5X(z) + 3Y(z)$ Ovo je bilo lagano...

$$\mathbb{D}_{-\mathbf{b}} W(z) = 5X(z) - 3Y(z)$$

$$\square_{-\mathrm{c.}} \ W(z) = 3X(z) + 5Y(z)$$

$$\square _{\mathsf{d}} W(z) = 5X(z) * 3Y(z)$$

$$\mathbb{D}$$
 e. $W(z) = 5X(z) \cdot 3Y(z)$

Točno

Marks: 1

$$H(z) = 2\frac{z}{z-0.5}$$
 koliki je impulsni odziv tog sustava?

$$\Box$$
 a. $h(n) = 2^{n+1}$

$$\square_{-\mathrm{b.}} \ h(n) = \tfrac{1}{2} 2^n$$

$$\square_{\mathsf{d}} \ h(n) = \left(\frac{1}{2}\right)^{n+1}$$

$$\Box$$
 e. $h(n) = \frac{1}{2}2^{-n}$

Točno

Marks for this submission: 1/1.

6

Marks: 1

Sustav je opisan diferencijskom jednadžbom y[n] = 2u[n] + u[n-1]. Nađi odziv sustava u \mathcal{Z} domeni.

$$\square$$
 a $Y(z) = 2U(z) + z^{-1}U(z) - y[-1]$

$$\Box _{b} Y(z) = 2U(z) + z^{-1}U(z) + u[-1]$$

$$\Box$$
 c $Y(z) = 2U(z) + z^{-1}U(z)$

$$U_{-1} V(z) = U(z) + zU(z) + u[-1]$$

$$\Gamma = Y(z) = 2U(z) + zU(z) - y[-1]$$

7

Marks: 1

Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{s^2 + 4s + 4}$. Odredi impulsni odziv sustava!

$$\square$$
 a. $-te^{2t}$

$$\Box$$
 b $-2te^t$

$$\mathbf{E}$$
 c. te^{-2t} Bravo, bravo!

Točno

Marks: 1

Odrediti koeficijent 4 pri rastavu na parcijalne razlomke za 🌋 -transformaciju :

$$\frac{X(z)}{z} = \frac{1}{z(z-1)(z-2)} = \frac{a}{z} - \frac{1}{z-1} + \frac{1}{2} \frac{1}{(z-2)}$$

$$a = \frac{1}{2}$$
 Bravo, točan odgovor!

$$\Box$$
 b. $a = -2$

$$\square$$
 c. $a=1$

$$\Box_{d} a = -\frac{1}{2}$$

$$\square$$
 e. $a=2$

Točno

Marks for this submission: 1/1.

2

Marks: 1

Jesu li Laplaceove transformacije ovih dviju funkcija jednake?

$$f(t) = (t-5)^4 e^{-2t} F(t-5)$$

$$f(t) = (t-5)^{1}e^{-2t}\,\mu(t)$$

Odgovor:

Točno

Marks for this submission: 1/1.

3

Marks: 1

Primjenom jednostrano beskonačne \mathcal{Z} transformacije (koju uobičajeno koristimo) na jednadžbu diferencija y(n+1)-y(n)=2u(n+1)+u(n) dobivamo:

$$\underline{a}$$
 $zY(z) - zy(0) - zY(z) = 2U(z) + U(z)$

$$\stackrel{\text{b.}}{=} xY(z) - xy(0) - Y(z) = 2xU(z) - 2xu(0) + U(z)$$
 Bravo, točan odgovor!

$$\square \quad zY(z) - zY(z) = 2U(z) + U(z)$$

$$\sum_{z \in S} zY(z) - zY(z) = 2U(z) - 2zu(0) + U(z)$$

$$\Box_{e} zY(z) - zy(-1) - zY(z) = 2U(z) - U(z)$$

Točno

Marks: 1

Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{(s-1)(s-2)}$. Odredi impulsni odziv sustava!

- \Box_a $e^t(1+e^t)$
- \Box b. $(5 + e^{\epsilon})$
- $e^t(-1+e^t)$
- \Box d. $(-1+e^t)$
- $\mathbb{E}_{\mathbf{e}} e^{\mathbf{t}}(-1-e^{\mathbf{t}})$

5

Marks: 1

Impulsni odziv h[n] sustava je dan izrazom $Z^{-1}[H(z)]$. Odgovor:

E Točno L Netočno

Bravo!

Točno

Marks for this submission: 1/1.

6

Marks: 1

Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $x(n) = \mathbf{4}^{-n} \, \mu(-n-1)_{ie}$:

- \Box a. |z| > 4
- \Box b. $0 < |z| < \infty$
- \Box $|z| < \frac{1}{4}$
- © d |z| <4
- $||\mathbf{c}||_{e.}|z| > \frac{1}{4}$

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1.

Marks: 1

Koliko iznosi konačna vrijednost niza u vremenskoj domeni, ukoliko je poznata

jednostrana Z -transformacija $X(z)=rac{z(z-rac{1}{3})}{(z-1)(z-rac{1}{2})}$?

$$\mathbf{E}_{\mathsf{a}} x(\infty) = 0$$

$$\Box$$
 b. $x(\infty) = \infty$

$$\square_{c} x(\infty) = 1$$

$$\Box$$
 d. $x(\infty) = -1$

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1

1

Marks: --/1

Odrediti koeficijente a i b za Z -transformaciju :

$$\frac{N(x)}{x} = \frac{1}{N(x-1)(x-2)} = \frac{a}{x-1} + \frac{b}{x-2}$$

$$a = 2, b = -1$$

$$\Box$$
 b. $a = -2, b = 1$

$$\alpha = -\frac{1}{2}, b - \frac{1}{2}$$

$$\Box$$
 $a = -\frac{1}{2}, b = 1$

$$a = \frac{1}{2}, b = -\frac{1}{2}$$

2

Marks: --/1

Impulsni odziv diskretnog LTI sustava danog prijenosnom funkcijom

$$H(z) = T \frac{z}{z - 1}$$
glasi:

$$\square$$
 a $h(n) = 1 \mu(n)$

$$\square_{\mathrm{b.}} h(n) = (\frac{1}{2})^n \mu(n)$$

$$\square h(n) = T \mu(n)$$

$$\square$$
 d. $h(n) = (\frac{1}{3})^n \mu(n)$

$$\square \quad _{\mathbf{p}} \quad h(n) = (\frac{1}{5})^n \mu(n)$$

Marks: --/1

 ${\it Z}$ - transformacija signala $w(n)=5x(n)+3y(n)_{\rm glasi:}$

$$\square$$
 a. $W(z) = 5X(z) \cdot 3Y(z)$

$$\square_{\text{b.}} W(z) = 3X(z) + 5Y(z)$$

$$\square$$
 c. $W(z) = 5X(z) * 3Y(z)$

$$W(z) = 5X(z) + 3Y(z)$$

$$\square$$
 \overline{e} $W(z) = 5X(z) - 3Y(z)$

4

Marks: --/1

Kako glasi Laplaceova transformacija funkcije $G(t) = \mu(t-a) - \mu(t-b)$?

$$\square$$
 a. $(e^{-as} - e^{-bs})s$

$$\Box c. (e^{as} - e^{bs})s$$

$$\Box$$
 d. $(e^{as} + e^{bs})s$

$$\Box$$
 e. $e^{as} - e^{bs}s$

5

Marks: --/1

Izraz $X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$ predstavlja dvostranu Z -transformaciju

diskretnog vremenskog signala $x^{(n)}$.

Odgovor:

6

Marks: --/1

Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{(s-j)(s+j)}$. Odredi impulsni odziv sustava!

$$\square$$
 a. $\cos(t)$

$$\Box$$
 b. $\sin(t)$

$$\square$$
 c. $5 \arcsin(5t)$

$$\square$$
 d. $tan(t)$

$$\square$$
 e. $arccos(t)$

Marks: --/1

Primjenom jednostrano beskonačne \mathbb{Z} transformacije (koju uobičajeno koristimo) na jednadžbu diferencija y[n+2] - 3y[n+1] + 2y[n] = 2u[n+1] - 2u[n] dobivamo:

a.
$$z^2Y(z) - z^2y[0] - zy[1] - 3zY(z) + 3zy[0] + 2Y(z) = 2zU(z) - 2U(z)$$

$$\mathbb{C}_{\text{b.}} z^2 Y(z) - 3zY(z) + 2Y(z) = 2zU(z) - 2U(z)$$

C.
$$z^2Y(z) - z^2y[-1] - zy[1] - 3zY(z) + 2Y(z) - 2zU(z) - 2zu[0] - 2U(z) - 2zu[0] - 2u[0] - 2u[0$$

C. d.
$$z^2Y(z) - zy[1] - 3zY(z) + 3zy[0] + 2Y(z) - 2zU(z) - 2zu[0] - 2U(z)$$

$$z^{2}Y(z) - z^{2}y[0] - zy[1] - 3zY(z) + 3zy[0] + 2Y(z) = 2zU(z) - 2zu[0] - 2zu[0$$

1

Marks: --/1

Ako je promatrani signal kauzalan, \mathbb{Z} -transformacija konvolucije $x(n) * \delta(n - n_0)$ jednaka je i \mathbb{Z} -transformaciji signala:

$$\square$$
 a $x(n)$

$$\sqsubseteq$$
 b. $x(n \cdot n_0)$

$$\square$$
 $x(n-n_0)$

$$\square$$
 d. $\mu(n)$

$$\square$$
 e. $x(n+n_0)$

2

Marks: --/1

Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $x(n) = \mathbf{4}^{-n} \mu(-n-1)_{ie}$.

$$C_a |z| < 4$$

$$\Box_b |z| > 4$$

$$\square$$
 d z $> \frac{1}{4}$

$$\mathbf{E} = 0 < |z| < \infty$$

Marks: --/1

Laplaceova transformacija od $\cos(2t+\pi)_{\rm je}$:

$$^{\text{C}}~_{\text{a.}}\frac{s}{2t+\pi+s^2}$$

$$\frac{s}{4+s^2}$$

$$\frac{-1}{4+s^2}$$

$$\frac{-s}{4+s^2}$$

$$E_{e.} \frac{-2}{2+s^2}$$

4

Marks: --/1

Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{(s-1)(s-2)}$. Odredi impulsni odziv sustava!

$$\square$$
 a. $e^t(1+e^t)$

$$\mathbb{D}_{b.}(-1+e^t)$$

$$\square$$
 c. $(5+e^2)$

$$\qquad \qquad \square \quad \text{d.} \ e^t(-1-e^t)$$

$$e^t(-1+e^t)$$

5

Marks: --/1

Impulsni odziv h[n] sustava je dan izrazom $Z^{-1}[H(z)]$. Odgovor:

Točno Netočno

Marks: --/1

Primjenom jednostrano beskonačne \mathbb{Z} transformacije (koju uobičajeno koristimo) na jednadžbu diferencija y[n+2] - 3y[n+1] + 2y[n] = 2u[n+1] - 2u[n] dobivamo:

$$\Box_{a, z^2Y(z) - 3zY(z) + 2Y(z) = 2zU(z) - 2U(z)}$$

$$z^2 Y(z) - z^2 y[0] - zy[1] - 3zY(z) + 3zy[0] + 2Y(z) = 2zU(z) - 2zu[0] - 2zv[0] - 2zv[0]$$

C.
$$z^2Y(z) - zy[1] - 8zY(z) + 3zy[0] + 2Y(z) = 2zU(z) - 2zu[0] - 2U(z)$$

e.
$$z^2Y(z) - z^2y[0] - zy[1] - 3xY(z) + 3zy[0] + 2Y(z) = 2zU(z) - 2U(z)$$

7

Marks: --/1

Odrediti inverznu ${\mathcal Z}$ -transformaciju funkcije $X(z)=\frac{1}{z-2}+\frac{1}{(z-2)^2}, |z|>2.$

$$\square$$
 a $v(n) = (2^n + n2^n) \mu(n)$

$$\square$$
 b $x(n) = (2^n + 2^{n+1})\mu(n)$

$$\square_{c} x(n) = (2^{-n} + n2^{-n-1})\mu(n)$$

$$x(n) = (2^n + n2^{n-1})\mu(n)$$

$$\mathbb{C}_{=0}$$
 $x(n) = (2^n + n2^{n+1})\mu(n)$

1

Marks: 1

Za niz $x(n) = \delta(n-2)Z$ -transformacija glasi:

$$\mathbb{E}_{a} X(z) = z^{-2}$$
 Bravo, točan odgovor!

$$\square$$
 $X(z) = 2z^{-n}$

$$\square$$
 d. $X(z) = z^2$

$$\mathbb{E}_{\mathbf{e}} X(z) = \frac{z}{(z-2)}$$

Točno

Marks: 1

Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $x(n) = -4^n \, \mu(-n-1)_{\text{qlasi}}$:

$$|C|_{C} |z| > \frac{1}{4}$$

$$\mathbb{E}_{d}$$
, $z^{\dagger} < \frac{1}{4}$

$$\Box$$
 e. $0 < |z| < \infty$

Točno

Marks for this submission: 1/1.

3

Marks: 1

Odrediti inverznu Z -transformaciju funkcije $X(z) = \frac{z}{z-1} - \frac{z}{z-2}, |z| > 2.$

$$\Box$$
 a. $x(n) = (2^n - 1)\mu(n)$

$$x(n) = (1-2^n)\mu(n)$$

$$\mathbf{E}_{c} x(n) = (1-2^{n})\mu(n)$$

$$\mathbf{E}_{-d} \ x(n) = (2^{-n} - 1)\mu(n)$$

$$\square$$
 e. $x(n) = (1 - 2^{-n})\mu(n)$

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1.

4

Marks: 1

Nađi rješenje diferencijske jednadžbe $y[n] - y[n-1] = u[n-1]_{\mathsf{U}} \ \mathcal{Z}_{\mathsf{domeni}}$ uz y[-1] = u[-1] = 0

$$\Gamma_{a} Y(z) = z^{-1}U(z)$$

$$Y(z) = \frac{z^{-1}}{1 - z^{-1}} U(z)$$

$$\Box \quad Y(z) = \frac{1}{z}U(z)$$

$$\Gamma_{d} Y(z) = Y(z-1) + U(z-1)$$

$$Y(z) = \frac{1}{1 - z^{-1}}U(z)$$

Marks: 1

Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{(s-j)(s+j)}$. Odredi impulsni odziv sustava!

- $\mathbf{c} = \sin(t)$ Bravo, bravo! 🥹
- \Box b tan(t)
- \square c. $5 \arcsin(5t)$
- \square d. $\cos(t)$
- \square e. arccos(t)

Točno

Marks for this submission: 1/1.

6

Marks: 1

Prva dva člana impulsnog odziva diskretnog LTI sustava danog prijenosnom

funkcijom
$$H(z)=rac{z^2+2z}{z^2+2z+3}$$
su:

- \Box a. $h[n] = \{\underline{1}, 0, ...\}$ [\Box b. $h[n] = \{\underline{1}, 1, ...\}$
- \square c. $h[n] = \{\underline{1}, 2, \ldots\}$
- e. Ne znam!

7

Marks: 1

Ako signal u vremenskoj domeni $x(t) \mu(t)$ pomaknemo ulijevo za a , $x(t+a)\mu(t+a)$, Laplaceova transformacija X(s) množi se s:

- □ a. e^{-a}
- \Box b. $\frac{e^{\alpha \epsilon}}{s}$
- \Box c. ϵ^{-as}
- $leve{d}_{\cdot}e^{as}$ Bravo! Točan odgovor!
- □ e. e^{a™a}

Točno

Marks: --/1

Koliko iznosi početna vrijednost <u>niza u</u> vremenskoj domeni, ukoliko je poznata jednostrana Z -transformacija $X(z) = \frac{z}{(z-1)(z-2)}$?

- $\mathbf{E}_{a} \ x(0) = 1$
- $x_0 = x_0 = 0$
- $\mathbf{E}_{\mathbf{C}} x(0) = 0$
- $\Box \ \overline{\ d.} \ x(0) = -1$
- \square e. $x(0) \infty$

Marks: --/1

Koja je Laplaceova transformacija od signala $\,^{\mu(t-a)}$?

- \square d. e^{as}
- \square e. e^{-as}

3

Marks: --/1

 $H(z)=2rac{z}{z-0.5}$ koliki je impulsni odziv tog sustava?

- \mathbb{C} a. $h(n) = \frac{1}{2}2^{-n}$ \mathbb{C} b. $h(n) = 2^{-n-1}$ \mathbb{C} c. $h(n) = 2^{n+1}$

- $\operatorname{\mathbf{L}}_{\operatorname{d.}} h(n) = \frac{1}{2} 2^n$
- \square e. $h(n) = \left(\frac{1}{2}\right)^{n+1}$

Marks: --/1

Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{(s-j)(s+j)}$. Odredi impulsni odziv sustava!

- \square a. arccos(t)
- \Box b. $\cos(t)$
- \Box c. $\sin(t)$
- \square d. tan(t)
- \square e. $5 \arcsin(5t)$

5

Marks: --/1

Odrediti inverznu Z -transformaciju funkcije $X(z)=\frac{z}{(z-1)^2}, |z|>1.$

- \square a. $x(n) = \frac{1}{n^2}\mu(n)$
- \square b $x(n) = \mu(n)$
- $\Box_{c} x(n) = n^2 \mu(n)$
- $\square \quad \mathbf{g}(n) = n \, \mu(n)$
- \square e. $x(n) = \frac{1}{n}\mu(n)$

6

Marks: --/1

Odredi prijenosnu funkciju sustava za pomak unaprijed (vidoviti sustav @) opisanog diferencijskom jednadžbom y[n]=u[n+1] .

- \Box a. $H(z) = z^{-1}$
- H(z) = z
- \Box H(z) = 1
- \Box d. H(z) = z 1
- $E_{e.} H(z) = z + 1$

Marks: --/1

Područje konvergencije ${\mathcal Z}$ -transformacije diskretnog signala ${\mathcal Z}(n)=2^n\,\mu(n)$ glasi:

- □ a. |z| < 2
- $\Box_{b} |z| > \frac{1}{2}$
- |z| > 2
- $\square \quad \frac{-}{\mathsf{d}} \quad z | < \frac{1}{2}$
- $\Box = 0 < |z| < \infty$

1

Marks: --/1

Odrediti inverznu ${\mathbb Z}$ -transformaciju funkcije $X(z)=\frac{z}{z-2}+\frac{z}{(z-2)^2}, |z|>2.$

- \square a. $x(n) = (2^{-n} + n2^{-n-1}) \mu(n)$
- $x(n) = (2^n + n2^{n-1})\mu(n)$
- $\Box c. x(n) = (2^n + n2^{n+1}) \mu(n)$
- $\square_{-d} x(n) = (2^n + 2^{n+1}) \mu(n)$
- \square e. $x(n) = (2^n + n2^n) \mu(n)$

2

Marks: --/1

Odredite Z -transformaciju signala dobivenog konvolucijom $x(n)*\delta(n)$:

- $\mathbb{C}_{a.} \frac{X(z)}{z}$
- □ b. 1
- \square c. $X(z)\delta(1)$
- \square d. X(z)
- $\mathbb{C}_{\mathsf{e}} \frac{\mathbb{Z}}{X(z)}$

Marks: --/1

Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $x(n) = 3^n \mu(n) + 5^n \mu(n)$ glasi:

$$\square_{a}$$
 $z > \frac{1}{5}$

$$\Box$$
 b. $|z| > 3$

$$\Box \frac{1}{|z|} > 5$$

$$\square = \frac{1}{8} |z| > \frac{1}{3}$$

4

Marks: --/1

Primjenom jednostrano beskonačne $\mathcal Z$ transformacije (koju uobičajeno koristimo) na jednadžbu diferencija y(n+1)-y(n)=2u(n+1)+u(n) dobivamo:

$$\Box z Y(z) - zY(z) = 2U(z) - 2zu(0) + U(z)$$

$$\Box_{b} zY(z) - zy(0) - zY(z) = 2U(z) + U(z)$$

$$\Box \quad zY(z) - zY(z) = 2U(z) + U(z)$$

$$\Box_{d} zY(z) - zy(-1) - zY(z) = 2U(z) - U(z)$$

$$zY(z) - zy(0) - Y(z) = 2zU(z) - 2zu(0) + U(z)$$

5

Marks: --/1

Zadan je impulsni odziv sustava $v(t) = e^{-tt}$. Odredi prijenosnu funkciju sustava!

$$\Box _{a} H(s) = \frac{4s}{s+4}$$

$$\square \quad H(s) = \frac{1}{s+4}$$

$$\square$$
 $H(s) = \frac{s+1}{s+4}$

$$\mathbb{D}_{\mathrm{d.}} H(s) = \frac{s}{s+4}$$

$$\mathbb{D}_{e.} II(s) = \frac{4}{s+1}$$

Marks: --/1

Profesor je na ploči počeo pisati impulsni odziv diskretnog LTI sustava danog

prijenosnom funkcijom $H(z) = \frac{z^2 + 2z}{2z^2 + 4z + 3}$. Napisao je $h[n] = \{1,4,\ldots\}$. Vi:

- a. ne znate točno rješenje
- **b**. ne ispravljate profesora, jer je profesor uvijek u pravu.
- \square c. ispravljate profesora jer je točno $h[n] = \{1,0,\ldots\}$
- d. ispravljate profesora jer je točno $h[n] \{\frac{1}{2}, 0, \ldots\}$
- \square e. ispravljate profesora jer je točno $h[n] = \{2,4,\ldots\}$

7

Marks: --/1

Množenjem nekog signala with s w u vremenskoj domeni, njegov ekvivalent u Laplaceovoj domeni glasi:

- \square a X(s)-a
- $\square_{b} X(s) + a$
- \square c. X(s+a)
- \square X(s-a)
- $\square \ \overline{e} \ aX(s)$

1

Marks: --/1

Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $x(n) = 3^n \mu(n) + 5^n \mu(n)$ glasi:

- |z| = 3 < |z| < 5
- $\Box_{b} |z| > \frac{1}{3}$

- $\Box_{e} |z| > 3$

Marks: --/1

Odrediti koeficijente a i b za \mathcal{Z} -transformaciju :

$$\frac{X(z)}{z} = \frac{1}{2(z-1)(z-2)} = \frac{a}{z-1} + \frac{b}{z-2}$$

$$a = -2, b = 1$$

$$a = 2, b = -1$$

$$a = -\frac{1}{2}, b = 1$$

$$\Box$$
 d $a = \frac{1}{2}, b = -\frac{1}{2}$

$$a = -\frac{1}{2}, b = \frac{1}{2}$$

3

Marks: --/1

Ako signal u vremenskoj domeni $x(t) \mu(t)$ pomaknemo ulijevo za a, $x(t+a) \mu(t+a)$, Laplaceova transformacija X(s) množi se s:

$$lacksquare$$
 b. e^{as}

$$\Box$$
 c. e^{-a}

1

Marks: --/1

 \mathcal{Z} transformacija ulaza je U(z), a izlaza Y(z). Jednadžba sustava u \mathcal{Z} domeni je $z^{-2}Y(z)+2Y(z)-z^{-3}U(z)$. Prijenosna funkcija H(z) je:

$$H(z) = z^{-3}(z^{-2} + 2)$$

$$\mathbb{D}_{\mathbf{b}} H(z) = \frac{1}{z^{-2} + 2}$$

$$\Box \quad H(z) = \frac{z^{-2} + 2}{z^{-3}}$$

$$\square \quad \text{d.} \quad H(z) = \frac{1}{z^{-3}}$$

$$H(z) = \frac{z^{-3}}{z^{-2} + 2}$$

Marks: --/1

Prva dva člana impulsnog odziva diskretnog LTI sustava danog prijenosnom

$$H(z) = \frac{z^2 + 2z}{z^2 + 2z + 3}$$
su:

$$\square$$
 b. $h[n] = \{\underline{1}, 1, \ldots\}$

$$\square$$
 c. $h[n] = \{\underline{1}, 2, \ldots\}$.

$$abla_{d} h[n] = \{\underline{1}, 3, \ldots\}$$

6

Marks: --/1

Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{(s-j)(s+j)}$. Odredi impulsni odziv sustava!

$$\square$$
 a $\cos(t)$

$$\Box_b \tan(t)$$

$$\Box$$
 c. $\sin(t)$

$$\square$$
 d. $5 \arcsin(5t)$

$$\square$$
 e. $arccos(t)$

7

Marks: --/1

Ako je promatrani signal kauzalan, \mathcal{Z} -transformacija konvolucije $x(n) * \delta(n - n_0)$ jednaka je i \mathcal{Z} -transformaciji signala:

$$\square$$
 a. $\mu(n)$

$$\square$$
 b. $x(n-n_0)$

$$\Box$$
 c. $x(n \cdot n_2)$

$$\square$$
 d. $x(n)$

$$\square$$
 e. $x(n+n_0)$

Marks: --/1

Impulsni odziv diskretnog LTI sustava danog prijenosnom funkcijom

$$H(z) = \frac{z\frac{\sqrt{3}}{2}}{z^2 - z + 1}$$
 glasi:

$$\square$$
 a. $h[n] = (\frac{1}{3})^n \mu[n]$

$$\square$$
 b. $h[n] = (\frac{1}{5})^n \mu[n]$

$$\Box d h[n] = \sin(\frac{1}{3}n) \mu[n]$$

$$\square_{e.} h[n] = \sin(\frac{\pi}{6}n) \mu[n]$$

2

Marks: --/1

Koliko iznosi konačna vrijednost niza u vremenskoj domeni, ukoliko je poznata

jednostrana Z -transformacija $X(z)=\frac{z(z-\frac{1}{3})}{(z-1)(z-\frac{1}{2})}$?

$$\square$$
 a. $x(\infty) = \infty$

$$\sum_{b} x(\infty) = \frac{4}{3}$$

$$\Box \ \overline{\ } x(\infty) = 0$$

$$\square_{\rm d} x(\infty) = -1$$

$$\mathbb{Z}_{-\mathrm{e.}} x(\infty) = 1$$

3

Marks: --/1

Odredi prijenosnu funkciju elementa za kašnjenje (odugovlačenje 🤪) opisanog diferencijskom jednadžbom 💴 u 🤼 — 2 .

$$\square$$
 a $H(z)=2$

$$\Box_{b.} H(z) = z^2$$

$$\square$$
 $_{\rm C}$ $H(z)=z-2$

$$\square$$
 d. $H(z) = z + 2$

$$\Box = H(z) = z^{-2}$$

Marks: --/1

Zadan je impulsni odziv sustava $v(t) = e^{-tt}$. Odredi prijenosnu funkciju sustava!

$$\square$$
 a. $H(s) = \frac{s}{s+4}$

$$\mathbb{D}_{\mathbf{b}} H(s) = \frac{s+1}{s+4}$$

$$\square_{C.} H(s) = {}^{4s}_{s+4}$$

$$\square$$
 d. $H(s) = \frac{4}{s+1}$

$$\blacksquare H(s) = \frac{1}{s+4}$$

5

Marks: --/1

Odrediti inverznu ${\mathbb Z}$ -transformaciju signala $X(z)=2z-\frac{1}{2z}$.

$$\Box_{a} x(n) = 2 \delta(n) - \frac{1}{2} \delta(n-1)$$

$$\Gamma_{n} r(n) = 2\mu(-n-1) - \frac{1}{2}\mu(n-1)$$

$$\Box_{c} x(n) = 2 \mu(n) - \frac{1}{2} \delta(n)$$

$$\mathbb{Z}_{d} x(n) = 2\mu(n-1) - \frac{1}{2}\delta(n-1)$$

$$x(n) = 2\delta(n+1) - \frac{1}{2}\delta(n-1)$$

6

Marks: --/1

Množenjem nekog signala (1) s • u vremenskoj domeni, njegov ekvivalent u Laplaceovoj domeni glasi:

$$\square$$
 a $X(s) - a$

$$\square_{b.} X(s) + a$$

$$\square$$
 c. $X(s-a)$

$$\square$$
 d. $X(s+a)$

$$\Box$$
 e. $aX(s)$

Marks: --/1

Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $x(n) = -4^n \mu(-n-1)_{\text{glasi}}$:

- \square a. $z < \frac{1}{4}$
- $||\mathbf{c}||_{b} ||z|| > \frac{1}{4}$
- \square c. |z| > 4
- □ d. |z| < 4.</p>
- \Box e. $0 < |z| < \infty$

1

Marks: 1

$$H(z) = T \frac{z}{z - \frac{1}{2}}$$

Impulsni odziv diskretnog LTI sustava danog prijenosnom funkcijom glasi:

- $\square \quad _a \quad h[n] = T(\frac{4}{3})^n \mu[n]$
- $\Box_{b} h[n] = T(\frac{2}{3})^n \mu[n]$
- $\square_{c.} h[n] = \frac{1}{2}^n \mu[n]$
- $\square_{\mathrm{d.}} h[n] = T_{\frac{1}{2}} \mu[n]$
- $\mathbb{E}_{e} h[n] = T(\frac{1}{2})^n \mu[n]$ Izvrsno, točan odgovor!

2

Marks: 1

Odredi prijenosnu funkciju sustava za pomak unaprijed za dva koraka (jako vidoviti sustav $\mathfrak{P}(n)$) opisanog diferencijskom jednadžbom $\mathfrak{P}(n)=\mathfrak{P}(n+2)$.

- $\mathbf{E}_{a} H(z) = z^2$ Ide Vam to!
- $\mathbb{D}_{-b} H(z) = z 2$
- $\Box_{c} H(z) = z^{-2}$
- \square d H(z) = z + 2
- \square e H(z) = 2

Marks: 1

Odziv sustava na Diracovu δ distribuciju nazivamo:

- a. Odziv mirnog sustava
- b. Prijenosna funkcija
- c. Prijelazna funkcija
- d. Fazor

4

Marks: 1

Odredite \mathcal{Z} -transformaciju signala dobivenog konvolucijom $x(n) * \delta(n)$:

- \Box a. $\frac{\pi}{X(z)}$
- $\mathbf{E}_{\mathbf{b}}$ X(z)
- \square c. $X(z)\delta(1)$
- \square d. $\frac{X(z)}{z}$
- **E** e. **1**

5

Marks: 1

Izraz $X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$ predstavlja dvostranu z -transformaciju diskretnog vremenskog signala x(n).

Odgovor:

Točno E Netočno

Ovo je dvostrana z-transformacija

6

Marks: 1

Odrediti inverznu \mathcal{Z} -transformaciju funkcije $X(z) = \frac{z}{z-2} + \frac{z}{(z-2)^2}, |z| > 2.$

$$\Box = x(n) - (2^n + n2^n) \mu(n)$$

$$\mathbb{E}_{-\mathbf{b}} \ x(n) = (2^n + n2^{n-1}) \, \mu(n)$$

$$\square_{c} x(n) = (2^n + 2^{n+1}) \mu(n)$$

$$\square_{-d} x(n) = (2^{-n} + n2^{-n-1}) \mu(n)$$

$$\square_{e} x(n) = (2^{n} + n2^{n-1}) \mu(n)$$

Marks: 1

Ako signal u vremenskoj domeni $x(t) \mu(t)$ pomaknemo ulijevo za a, $x(t+a) \mu(t+a)$, Laplaceova transformacija X(s) množi se s:

- □ a. e^{a²}s
- \Box b. $\frac{e^{\alpha s}}{s}$
- E c. e Bravo! Točan odgovor!
- \Box d. e^{-a}
- \square e. e^{-as}

1

Marks: 1

Odrediti inverznu $\mathcal Z$ -transformaciju funkcije $X(z)=rac{z}{z-3}-rac{z}{z-2},|z|>3.$

$$\square_{a} x(n) = (2^{-n} - 3^{-n}) \mu(n)$$

$$\mathbb{E}_{b} x(n) = (3^n - 2^n) \mu(n)$$
 Bravo, točan odgovor!

$$\square_{-c} x(n) = (3^{-n} - 2^{-n}) \mu(n)$$

$$\square \quad d \quad x(n) = (3^n - 2^n) \, \delta(n)$$

$$\Box$$
 $e^{-x(n)} = (2^n - 3^n) \mu(n)$

Točno

Marks for this submission: 1/1.

2

Marks: 1

Ako je
$$H(z) = \frac{z}{z-2} + \frac{z}{z-3}$$
 koliki je impulsni odziv sustava?

 \square a. $(-2)^n - (-3)^n$

$$\Box$$
 b. $2^{-n} + 3^{-n}$

$$\mathbb{C}_{c.} 2^n + 3^n$$

$$\Box_{d.} (-2)^n + (-3)^n$$

$$\square_{e.} (-2)^{-n} + (-3)^{-n}$$

Točno

Marks: 1

Zadan je impulsni odziv sustava $y(t) = e^{-4t}$. Odredi prijenosnu funkciju sustava!

$$E_{a.}H(s)=\frac{1}{s+4}$$
 Bravo, bravo!

$$\square$$
 b. $H(s) = \frac{s+1}{s+4}$

$$E_{c} H(s) = \frac{4}{s+1}$$

$$\square$$
 d. $H(s) = \frac{4s}{s+4}$

$$\square$$
 e $H(s) = \frac{s}{s+4}$

Točno

Marks for this submission: 1/1.

4

Marks: 1

Sustav je opisan diferencijskom jednadžbom y[n] - 2u[n] + u[n-1]. Nađi odziv sustava u \mathbb{Z} domeni.

$$\square$$
 a $Y(z) = 2U(z) + z^{-1}U(z) - y[-1]$

$$E_{b.} Y(z) = 2U(z) + z^{-1}U(z) + u[-1]$$
 Bravo!

$$\square$$
 d $Y(z) = 2U(z) + z^{-1}U(z)$

$$_{\rm e} \ Y(z) = U(z) + zU(z) + u[-1]$$

Točno

Marks for this submission: 1/1.

5

Marks: 1

Odredite \mathbb{Z} -transformaciju signala dobivenog konvolucijom $x(n) * \delta(n)$.

$$\square$$
 a. $X(z)\delta(1)$

$$\square$$
 b. $\frac{X(z)}{z}$

$$\square$$
 d. $\frac{z}{X(z)}$

$$\mathbf{E}_{-\mathbf{e}} X(z)$$

Točno

Marks: 1

Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $a(n) = 3^{-n} \mu(n) + 5^{-n} \mu(n)_{\text{glasi:}}$

$$\Box$$
 a $|z| > 5$

$$[]$$
 b. $3 < |z| < 5$

$$\mathbb{E}_{-c} |z| > \frac{1}{5}$$

$$\Box$$
 d $|z| > 3$

$$\mathbb{E}_{e} |z| > \frac{1}{3}$$

Točno

Marks for this submission: 1/1.

7

Marks: 1

Koja je Laplaceova transformacija signala $(t-a)\,\mu(t)\,$?

$$\Box$$
 $\frac{1}{s}e^{-as}$

$$\square$$
 d $\frac{1}{s^2} - a$

$$\mathbb{E}_{e} = \frac{1}{8} (\frac{1}{8} - a)$$
 Bravo! Točan odgovor!

Točno

Marks for this submission: 1/1.

1. Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{(s-1)(s-2)}$. Odredi impulsni odziv sustava!

$$\square$$
 a. $(-1 + e^t)$

$$\Box_{b.} (5 + e^t)$$

$$\mathbf{E}_{c.} e^{t}(-1+e^{t})$$
 Bravo, bravo!

$$\Box_{d} e^{t}(1+e^{t})$$

$$\mathbf{E}_{e} e^{t}(-1-e^{t})$$

$$H(z) = \frac{z}{z - a}$$

2. Impulsni odziv diskretnog LTI sustava danog prijenosnom funkcijom glasi (a je konstanta):

$$\square \quad _a \quad h[n] = (\frac{1}{3})^n \, \mu[n]$$

$$\square_{b} h[n] = (\frac{1}{4})^n \mu[n]$$

$$\square_{c.} h[n] = (\frac{1}{5})^n \mu[n]$$

$$\square_{d} h[n] = 1 \mu[n]$$

$$\mathbf{c}_{e}$$
 $h[n] = a^n \mu[n]$

3. Ako signal u vremenskoj domeni $x(t)\mu(t)$ pomaknemo ulijevo za a, $x(t+a)\mu(t+a)$, Laplaceova transformacija X(s) množi se s:

$$\Box$$
 a. e^{a^2a}

$$\mathbb{E}_{b} \frac{e^{cs}}{s}$$

$$\Box$$
 c e^{-as}

$$\square$$
 d. e^{-a}

4. Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $x(n) = 2^n \mu(n) - 4^n \mu(-n-1)_{\text{glasi:}}$

$$|z| > \frac{1}{4}$$

$$\mathbb{E}_{b}$$
 $2 < |z| < 4$ Bravo, ovdje je trebalo jako dobro paziti!

$$C_c \mid z \mid > 2$$

$$\mathbb{C}_{d, \frac{1}{2}} \le |z| \le \frac{1}{4}$$

5. Koliko iznosi konačna vrijednost niza u vremenskoj domeni, ukoliko je poznata

jednostrana Z -transformacija $X(z) = \frac{z(z-\frac{1}{2})}{(z-1)(z-\frac{1}{2})}$?

$$\square$$
 a. $x(\infty) - 1$

$$\mathbf{E}_{\mathbf{b}} x(\infty) = \frac{4}{3}$$

$$\mathbf{c}_{c} x(\infty) = -1$$

$$\square_{d} x(\infty) = \infty$$

$$\Box_{e.} x(\infty) = 0$$

6. Odrediti koeficijent 🦚 pri rastavu na parcijalne razlomke za 🌋 -transformaciju :

$$\frac{X(z)}{z} = \frac{1}{z(z-1)(z-2)} = \frac{a}{z} - \frac{1}{z-1} + \frac{1}{2} \frac{1}{(z-2)}$$

$$\Box$$
 a. $a=-2$

$$\mathbf{E}_{\mathbf{b}} a = \frac{1}{2}$$
 Bravo, točan odgovor!

$$C_{c.} a = 2$$

$$\Box$$
 d $a=1$

$$\Box_{e} a = -\frac{1}{2}$$

7. Odredi prijenosnu funkciju elementa za kašnjenje opisanog diferencijskom jednadžbom y(n)=u(n-1) ,

$$\mathbf{E}_{a} H(z) = z^{-1}$$
 Izvrsno!

$$\Box_{b} H(z) = 1$$

$$\square$$
 c $H(z) = z - 1$

$$\square$$
 d $H(z) = z + 1$

$$\square$$
 e. $H(z) - z$

1

Marks: 1

 \mathcal{Z} transformacija ulaza je U(z), a izlaza Y(z). Jednadžba sustava u \mathcal{Z} domeni je $z^{-2}Y(z)+2Y(z)=z^{-3}U(z)$. Prijenosna funkcija H(z) je:

Točno!

$$\Box \frac{1}{b} H(z) = z^{-3}(z^{-2} + 2)$$

$$\square$$
 c. $H(z) = \frac{1}{z^{-2} + 2}$

$$\Box \ \ _{\rm d.} H(z) = \frac{z^{-2} + 2}{z^{-3}}$$

$$\qquad \qquad _{\mathrm{e.}} H(z) = \frac{1}{z^{-3}}$$

Točno

Marks: 1

Množenjem nekog signala u vremenskoj domeni, njegov ekvivalent u Laplaceovoj domeni glasi:

- \square a. X(s) a
- \square b. X(s) + a
- $\square \ _{\rm c} \ X(s-a)$
- 🖸 d. X(* + 4) Bravo! Točan odgovor!
- $\square \quad e \quad aX(s)$

Točno

Marks for this submission: 1/1.

3

Marks: 1

Zadana je prijenosna funkcija sustava **H(s) - (s-1)(s+1)**. Odredi impulsni odziv sustava!

- 🖂 a. 5 arcsin(5t)
- \Box b arecos(t)
- \Box c tan(t)
- \Box d $\cos(t)$
- o sir(t)

Bravo, bravo! 🎱

Točno

Marks for this submission: 1/1.

4

Marks: 1

Koliko iznosi konačna vrijednost niza u vremenskoj domeni, ukoliko je poznata jednostrana

$$\mathcal{Z}_{\text{-transformacija}} X(z) = \frac{z(z-\frac{1}{2})}{(z-1)(z-\frac{1}{2})}$$
?

$$\Box_{b.} x(\infty) = \infty$$

$$\square_{-c} x(\infty) = 0$$

$$\Box$$
 d. $x(\infty) = -1$

$$\square_{\mathrm{e.}} x(\infty) - 1$$

Točno

Marks: 1

Impulsni odziv diskretnog LTI sustava danog prijenosnom funkcijom $H(z) = T \frac{\pi}{z-1}$ glasi:

$$\square$$
 $h(n) = (\frac{1}{6})^n \mu(n)$

$$\Box$$
 b. $h(n) = 1\mu(n)$

$$\square \quad {}_{C} h(n) = (\frac{1}{3})^n \mu(n)$$

$$\square$$
 d $h(n) = (\frac{1}{2})^n \mu(n)$

$$h(n) = T \mu(n)$$
 Izvrsno, točan odgovor!

Točno

Marks for this submission: 1/1.

6

Marks: 1

Odrediti inverznu ${\mathcal Z}$ -transformaciju signala $X(z) = 2z - {1\over 2z}$.

$$\square_{a} x(n) = 2\mu(n-1) - \frac{1}{2}\delta(n-1)$$

$$\square$$
 b $x(n) = 2\delta(n) - \frac{1}{2}\delta(n-1)$

$$\Box_{c} x(n) = 2\mu(n) - \frac{1}{2}\delta(n)$$

$$\square_{e.} x(n) = 2\mu(-n-1) - \frac{1}{2}\mu(n-1)$$

Točno

Marks for this submission: 1/1.

7

Marks: 1

Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $x(n) = -4^n \mu(-n-1)$ glasi:

$$\Box_b |z| > \frac{1}{4}$$

$$\square_{c.} | x > 4$$

 $\Box = 0 < |z| < \infty$

Točno

Marks: --/1

Odrediti inverznu ${\mathcal Z}$ -transformaciju funkcije $X(z)=\frac{z}{(z-1)^2}, |z|>1.$

$$\square$$
 a $x(n) = \frac{1}{n}\mu(n)$

$$\square$$
 b. $x(n) = n^2 \mu(n)$

$$\square$$
 d $x(n) = \mu(n)$

$$\square$$
 e. $x(n) = \frac{1}{n^2} \mu(n)$

2

Marks: --/1

Impulsni odziv diskretnog LTI sustava danog prijenosnom funkcijom $H(z) = T \frac{z}{z-\frac{1}{2}}$ glasi:

$$H(z) = T \frac{z}{z - \frac{1}{2}}$$
 glasi:

$$\square$$
 a $h[n] = \frac{1}{2}^n \mu[n]$

$$\Box_{b} h[n] = T(\frac{4}{3})^n \mu[n]$$

$$\square \quad {}_{\mathrm{C}} \quad h[n] = T \frac{1}{2} \, \mu[n]$$

$$\bigcap_{\mathbf{d}} h[n] = T(\frac{1}{2})^n \mu[n]$$

$$\square \quad \overline{h[n] - T(\frac{2}{3})^n \mu[n]}$$

3

Marks: --/1

Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{(s-1)(s-2)}$. Odredi impulsni odziv sustava!

$$\square_{a.} (-1 + e^t)$$

$$\Box$$
 b. $e^{t}(-1-e^{t})$

$$C_{c.} \epsilon^{\delta} (-1 + \epsilon^{\delta})$$

$$\Box$$
 d. $(5 + e^2)$

$$\square_{e} e^{\varepsilon}(1+e^{\varepsilon})$$

Marks: --/1

Ako je promatrani signal kauzalan, \mathcal{Z} -transformacija konvolucije $x(n) * \delta(n-n_0)$ jednaka je i \mathcal{Z} -transformaciji signala:

$$\sum_{\mathbf{a}} x(n-n_{\mathbf{0}})$$

- \square b. $\mu(n)$
- \square c. $x(n+n_0)$
- \square d. $x(n \cdot n_0)$
- \square e. x(n)

5

Marks: --/1

Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $x(n) = 3^n \mu(n) + 5^n \mu(n)$ glasi:

- \square a. 3 < |z| < 5
- \square b. $|z| > \frac{1}{2}$
- □ c. |z| > 3
- 🖸 d. 🕏 🥦 🖔
- □ e. |z| > ‡

6

Marks: --/1

Koja je Laplaceova transformacija od signala $\mu(t-a)$?

- 🖸 a. **g^{—as}**
- \square b $\frac{1}{s-a}$
- C. Sast
- © d ହ^{ଲଞ}
- С е. **© −**азд

Marks: --/1

Nađi rješenje diferencijske jednadžbe $y[n]-y[n-1]=u[n-1]_{\text{u}}$ $\mathcal{Z}_{\text{domeni}}$ uz y[-1]=u[-1]=0

$$\Box \quad Y(z) = \frac{1}{z}U(z)$$

$$\Box \quad Y(z) = \frac{1}{1-z^{-1}}U(z)$$

$$\Box \quad C \quad Y(z) = z^{-1}U(z)$$

$$\Box \quad d \quad Y(z) = Y(z-1) + U(z-1)$$

$$\Box \quad Y(z) = \frac{z^{-1}}{1-z^{-1}}U(z)$$

$$e \quad e \quad$$

1

Marks: --/1

Koliko iznosi konačna vrijednost niza u vremenskoj domeni, ukoliko je poznata jednostrana \mathcal{Z} -transformacija X(z) = (z-1)(z-2)?

2

Marks: --/1

Sustav je opisan diferencijskom jednadžbom y[n] = 2u[n] + u[n-1]. Nađi odziv sustava u Z domeni.

$$\begin{array}{ll} \square_{\text{a.}} Y(z) = 2U(z) + z^{-1}U(z) \\ \square_{\text{b.}} Y(z) = 2U(z) + z^{-1}U(z) - y[-1] \\ \square_{\text{c.}} Y(z) = 2U(z) + z^{-1}U(z) + u[-1] \\ \square_{\text{d.}} Y(z) = U(z) + zU(z) + u[-1] \\ \square_{\text{e.}} Y(z) = 2U(z) + zU(z) - y[-1] \end{array}$$

Marks: --/1

Odrediti koeficijent $\,a\,$ pri rastavu na parcijalne razlomke za $\,\mathcal{Z}\,$ -transformaciju :

$$\frac{N(x)}{x} = \frac{1}{x(x-1)(x-2)} = \frac{a}{x} - \frac{1}{x-1} + \frac{1}{2} \frac{1}{(x-2)}$$

$$\square$$
 a. $\alpha = -2$

$$a = \frac{1}{2}$$

$$\square$$
 e $a = -\frac{1}{2}$

4

Marks: --/1

Zadan je impulsni odziv sustava y(t) = sin(2t). Odredi prijenosnu funkciju sustava!

$$H(s) = \frac{2}{4+s^2}$$

$$\Box \quad \frac{1}{b} H(s) = \frac{1}{4+s^2}$$

$$\square$$
 C. $H(s) = \frac{2}{4+s}$

$$\square_{\mathsf{d}} H(s) = \frac{1}{1+s^2}$$

$$\square \quad _{\mathbf{e}} \quad H(s) = \frac{2}{1+s^2}$$

5

Marks: --/1

Prva dva člana impulsnog odziva diskretnog LTI sustava danog prijenosnom

 $funkcijom H(z) = \frac{z^2 + 2z}{z^2 - 2z + z^2}$

$$\square \quad \overline{b} \quad h[n] = \{\underline{1}, \underline{1}, \ldots\}$$

$$\square$$
 c. $h[n] = \{1, 2, \ldots\}$

$$\Box_{d} h[n] = \{1, 3, \ldots\}$$

e. Ne znam!

Marks: --/1

Množenjem nekog signala ♣��s �━� u vremenskoj domeni, njegov ekvivalent u Laplaceovoj domeni glasi:

$$\square$$
 a. $X(s) - a$

$$\square$$
 b. $X(s) + a$

$$\square$$
 C. $X(s-a)$

$$\square$$
 e. $aX(s)$

7

Marks: --/1

Područje konvergencije \mathbb{Z} -transformacije diskretnog signala $x(n) = -4^n \mu(-n-1)_{\text{qlasi}}$:

$$\Box_b |z| < \frac{1}{c}$$

$$\square_{d}$$
 $|z| > \frac{1}{4}$

$$\Box$$
 e. $0 < |z| < \infty$

1

Marks: --/1

Odrediti inverznu ${\mathcal Z}$ -transformaciju signala X(z) = 2z - $\frac{1}{2}$.

$$\square_{a} x(n) = 2 \mu(n-1) - \frac{1}{2} \delta(n-1)$$

$$\square_{\quad \ b} \quad x(n) = 2\,\mu(n) - \tfrac{1}{2}\,\delta(n)$$

$$\Box_{c.} x(n) = 2 \mu(-n-1) - \frac{1}{2} \mu(n-1)$$

$$\square_{-\mathbf{e}_{-}} x(n) = 2 \, \delta(n) - \tfrac{1}{2} \, \delta(n-1)$$

Marks: --/1

Koliko iznosi početna vrijednost niza u vremenskoj domeni, ukoliko je poznata

jednostrana \mathcal{Z} -transformacija $X(z) = \frac{z(z-\frac{1}{2})}{(z-1)(z-\frac{1}{2})}$?

$$b x(0) = 1$$

$$\Box$$
 c. $x(0) = \infty$

$$\Box d x(0) = \frac{4}{3}$$

$$E_{e.} x(0) = -1$$

3

Marks: --/1

Zadan je impulsni odziv sustava (**) - ** . Odredi prijenosnu funkciju sustava!

$$E_{b} H(s) = \frac{4}{s+1}$$

$$\square \quad _{\mathbf{C}} \quad H(s) = \tfrac{4s}{s+4}$$

$$\Box_{d} H(s) = \frac{s}{s+4}$$

$$E = H(s) = \frac{s+1}{s+4}$$

4

Marks: --/1

Impulsni odziv h[n] sustava je dan izrazom $Z^{-1}[H(z)]$. Odgovor:

5

Marks: --/1

Područje konvergencije $\mathcal Z$ -transformacije diskretnog signala

$$x(n) = -4^n \mu(-n-1)_{\text{glasi:}}$$

$$\square_{b.} |z| < \frac{1}{4}$$

$$\square$$
 c. $|z| > \frac{1}{4}$

$$\Box$$
 d. $0 < |z| < \infty$

Marks: --/1

Nađi rješenje diferencijske jednadžbe $y[n]-y[n-1]=u[n-1]_{\text{u}}$ $\mathcal{Z}_{\text{domeni}}$ uz y[-1]=u[-1]=0

7

Marks: --/1

Ako (jednom) deriviramo funkciju u vremenskoj domeni, njenu smo Laplaceovu transformaciju:

- 🔼 a. pomnožili sa 🖇 i oduzeli joj vrijednost funkcije u 🐧 🖚 📭
- C. oduzeli od vrijednosti funkcije u t 0
- C d. podijelili sa S i oduzeli joj vrijednost funkcije u * = 0
- 🖸 e. integrirali i dodali joj 🖇

1

Marks: --/1

Područje konvergencije \mathcal{Z} -transformacije diskretnog signala $x(n) = 2^n \mu(n)$ glasi:

Marks: --/1

Odrediti inverznu ${\mathcal Z}$ -transformaciju signala $X(z) = {1\over 2}$

$$\square$$
 a $x(n) = \delta(n+2)$

$$\square$$
 b. $x(n) = \mu(n-1)$

$$\square$$
 d $x(n) = \delta(n-1)$

$$\Box_{e} x(n) = \mu(n-2)$$

3

Marks: --/1

 ${\mathcal Z}$ transformacija ulaza je ${\it U}(z)$, a izlaza ${\it Y}(z)$. Jednadžba sustava u ${\it Z}$ domeni je $z^{-2}Y(z) + 2Y(z) = z^{-3}U(z)$. Prijenosna funkcija H(z) je:

$$E = H(z) = \frac{z^{-2} + 2}{z^{-3}}$$

$$\Box_{b.} H(z) = \frac{1}{z^{-3}}$$

$$E_{c.} H(z) = z^{-2}(z^{-2} + 2)$$

$$E = H(z) = \frac{1}{z^{-2} + 2}$$

Marks: --/1

Koliko iznosi početna vrijednost niza u vremenskoj domeni, ukoliko je poznata

jednostrana \mathcal{Z} -transformacija $X(z) = \frac{z(z-\frac{1}{2})^{\frac{1}{2}}}{(z-1)(z-\frac{1}{2})^{\frac{1}{2}}}$

$$\square$$
 a. $x(0) = \infty$

$$\Box_{b} x(0) = 0$$

$$\Box _{d} x(0) - \frac{4}{3}$$

$$E_{e.} x(0) = -1$$

Marks: --/1

Zadana je prijenosna funkcija sustava $H(s) = \frac{1}{(s-1)^{s+1}}$. Odredi impulsni odziv sustava!

- $\sin(t)$
- □ b. 5 arcsin(5t)
- \square c. tan(t)
- \Box d. arecos(t)
- \Box e. $\cos(t)$

6

Marks: --/1

Impulsni odziv diskretnog LTI sustava danog prijenosnom funkcijom

$$H(z) = \frac{z\frac{\sqrt{3}}{2}}{z^2 - z + 1}_{\text{glasi}}$$

- \square a $h[n] = \sin(\frac{1}{3}n) \mu[n]$
- $\Box_{b} h[n] = (\frac{1}{3})^n \mu[n]$
- $\square \quad \frac{h[n] (\frac{1}{5})^n \, \mu[n]}{}$
- $\square_{\mathrm{e.}} h[n] = \sin(\tfrac{\pi}{2}n) \mu[n]$

7

Marks: --/1

Koja je Laplaceova transformacija signala $(t-a)\mu(i)$?

- $\square_{a,\frac{1}{a^2}} a$
- □ c e^{-as}
- □ e. 🕬

Sedma domaća zadaća

Review of Attempt 1

Started on:	Tuesday, 5.06.2007, 15:06
Završen :	Tuesday, 5.06.2007, 15:16
Time taken:	10 min 2 sek
Raw score:	7/7 (100 %)
Ocjena:	od maksimalno

Nastavi

Primjenom jednostrano beskonačne $\mathcal Z$ transformacije (koju uobičajeno 1 koristimo) na jednadžbu diferencija y(n+1) - y(n) = 2u(n+1) + u(n)Marks: 1 dobivamo:

> Choose one answer.

$$\bullet$$
 a.
$$zY(z)-zy(0)-Y(z)=2zU(z)-2zu(0)+U(z) \mbox{ bravo, točan odgovor!}$$

$$\bigcirc$$
 b. $zY(z) - zY(z) = 2U(z) + U(z)$

$$\bigcirc \text{ c. } zY(z)-zy(0)-zY(z)=2U(z)+U(z)$$

$$\bigcirc$$
 d. $zY(z) - zY(z) = 2U(z) - 2zu(0) + U(z)$

$$\odot$$
 e. $zY(z)-zy(-1)-zY(z)=2U(z)+U(z)$

Točno

Marks for this submission: 1/1.

2 Ako je
$$H(z) = \frac{z}{z-2} + \frac{z}{z-3}$$
 koliki je impulsni odziv sustava?

answer.

Choose one
$$\bigcirc$$
 a. $(-2)^n + (-3)^n$

• b.
$$2^n + 3^n$$

$$\circ$$
 c. $(-2)^n - (-3)^n$

$$\bigcirc$$
 d. $(-2)^{-n} + (-3)^{-n}$

$$\circ$$
 e. $2^{-n} + 3^{-n}$

Točno

$$f(t) = (t-5)^4 e^{-2t} \, \mu(t)$$

Odgovor:

Točno

Netočno

Točno

Marks for this submission: 1/1.

Odrediti inverznu $\mathcal Z$ -transformaciju funkcije $X(z)=\frac{z}{z-1}, |z|>1$. 4

Marks: 1

Choose one answer.

$$x(n) = \mu(-n-1)$$

$$\bigcirc$$
 b. $x(n) = \delta(n)$

$$\bigcirc \ \mathrm{c.} \ x(n) = (-1)^n \, \mu(n)$$

$$\bigcirc \ \mathrm{d.} \ x(n) = \mu(n-1)$$

$$\bullet \ \text{e.} \ x(n) = \mu(n)$$

Bravo, točan odgovor!

Točno

Marks for this submission: 1/1.

5 Za niz
$$x(n) = \delta(n-2)Z$$
-transformacija glasi:

Marks: 1

answer.

Choose one
$$\bullet$$
 a. $X(z) = z^{-2}$

Bravo, točan odgovor!

$$\bigcirc \ \text{b.} \ X(z) = 2z^{-n}$$

$$C$$
 c. $X(z) = \frac{1}{2}z^{-n}$

$$\bigcirc$$
 d. $X(z)=z^2$

$$\bigcirc$$
 e. $X(z)=\frac{z}{(z-2)}$

Točno

Marks for this submission: 1/1.

Zadana je prijenosna funkcija sustava
$$H(s) = \frac{1}{(s-j)(s+j)}$$
. Odredi impulsni odziv sustava!

Choose one answer.

- \bigcirc a. arccos(t)
 - \bigcirc b. $\cos(t)$
 - \bigcirc c. $5 \arcsin(5t)$

Područje konvergencije ${\mathcal Z}$ -transformacije diskretnog signala $\,x(n)=2^n\,\mu(n)\,$

Marks: 1

glasi:

answer.

- - ullet b. |z|>2

- Izvrsno, samo tako nastavite!
- \odot c. $0<|z|<\infty$
- $\bigcirc \ \ \mathrm{d.} \ |z| < \tfrac{1}{2}$
- \bigcirc e. $|z| > \frac{1}{2}$

Točno

Marks for this submission: 1/1.

Nastavi

Prijavljeni ste sustavu kao

FER_sis2