Contents

1	Constants					
2	Agents2.1 Circular2.2 Three circles	4				
3	Linear wall	Ę				
	3.1 Properties					
	3.2 Absolute distance	-				
	3.3 Velocity relative distance	٤				
4	Motion	6				
	4.1 Social force	6				
	4.1.1 Adjusting force	6				
	4.1.2 Social force	6				
	4.1.3 Contact force	6				
	4.1.4 Random Fluctuation	6				
	4.2 Rotational	6				
	4.2.1 Adjusting torque	6				
	4.2.2 Social torque	6				
	4.2.4 Related equations	6				
	4.2.4 Itelated equations	·				
5	Integrators	7				
	5.1 Differential systems	7				
	5.2 Excelicit Euler Method	7				
	5.3 Velocity verlet	7				
6	Navigation	7				
	6.1 Theory	7				
	6.2 Manual construction	7				
	6.3 Fluid flow	7				
	6.4 Combination	7				
7	Spatial game	8				
	7.1 Game matrix	8				
	7.2 Settings and best-response dynamics					

1 Constants

0 1	name size shape	symbol	value	unit	type int (int, int)	source	explanation Number of agents Shape for arrays
2	three_circles_flag				boolean		Boolean indicating if agent is modeled with th
3	orientable_flag				boolean		Boolean indicating if agent is orientable
4	active				boolean		Boolean indicating if agent is active
5	goal_reached				boolean		Boolean indicating if goal is reahed
6	mass	m		kg	float	fds+evac	Mass
7	radius	r		\mathbf{m}	float	fds+evac	Radius
8	r_t	r_t		m	float	fds+evac	Radius of torso
9	r_s	r_s		m	float	fds+evac	Radius of shoulder
10	r_ts	r_{ts}		m	float	fds+evac	Distance from torso to shoulder
11	position	x		\mathbf{m}	float		Position
12	velocity	v		$\frac{\underline{m}}{\underline{s}}$ $\frac{\underline{m}}{\underline{s}}$	float		Velocity
13	target_velocity	v_0	5	$\frac{\text{m}}{\text{s}}$	float		Target velocity
14	target_direction	e			float		Target direction
15	force	f		N	float		Force
16	force_adjust	f_{adj}		N	float		Adjusting force
17	force_agent	f_{agent}		N	float		Agent to agent force
18	force_wall	f_{wall}	4	N	float	£1	Agent to wall force
19 20	inertia_rot	i	4	$m^2 kg$	float float	fds+evac	Rotational moment
$\frac{20}{21}$	angle	φ	$[-\pi, \pi]$	$_{rac{\mathrm{rad}}{}}$	float		Angle Angular velocity
$\frac{21}{22}$	<pre>angular_velocity target_angle</pre>	ω	$[-\pi, \pi]$	rad	float		Target angle
$\frac{22}{23}$	target_angular_velocity	$arphi_0 \ \omega_0$	4π	rad s	float	fds+evac	Target angular velocity
$\frac{25}{24}$	torque	M	47/	$\overset{\mathrm{s}}{\mathrm{N}}\mathrm{m}$	float	ids evac	Torque
$\frac{24}{25}$	position_ls	x_{ls}		m	float		Position of the left shoulder
26	position_rs	x_{rs}		m	float		Position of the right shoulder
$\frac{1}{27}$	front	x_{front}		m	float		Position of the front
28	tau_adj	$ au_{adj}$	0.5	S	float	fds+evac	Characteristic time for agent
20	-	-	0.0		0 4	C.1	adjusting its m
29	tau_adj_rot	$ au_{adjrot}$	0.2	S	float	fds+evac	Characteristic time for agent adjusting its r
30	k	k	1.5	N	float	power law	Social force scaling constant
31	tau_0	$ au_0$	3	S	float	power law	Interaction time horizon
32	mu	μ	12000	$\frac{\text{kg}}{\text{s}^2}$	float	fds+evac	Compression counteraction constant
33	kappa	κ	40000	$\frac{\text{kg}}{\text{m s}}$	float	fds+evac	Sliding friction constant
34	damping	c_d	500	N	float	fds+evac	Damping coefficient for contact force
35	a	A	2000	N	float	helbing	Scaling coefficient for social force
36	b	B	0.08	m	float	helbing	Coefficient for social force
37	std_rand_force	ξ/m	0.1		float	fds+evac	Standard deviation for
38	std_rand_torque	$-i\eta$	0.1		float	fds+evac	random force from trunc Standard deviation for
39	f_soc_ij_max		2000	N	float		random torque from trun Truncation for social force
40	-		2000	N^3	float		with agent to agen Truncation for social force
	f_soc_iw_max						with agent to wall
41	sight_soc		7	m	float		Maximum distance for social force to effect
42	sight_wall		7	m	float		Maximum distance for social force to effect

2 Agents

Table 1: Shoulder, torso and total radii.

	Total		Torso	Shoulder	
	r	±	$k_t = \frac{r_t}{r}$	$k_s = \frac{r_s}{r}$	$k_{ts} = \frac{r_{ts}}{r}$
adult	0.255	0.035	0.5882	0.3725	0.6275
child	0.210	0.015	0.5714	0.3333	0.6667
eldery	0.250	0.020	0.6000	0.3600	0.6400
female	0.240	0.020	0.5833	0.3750	0.6250
male	0.270	0.020	0.5926	0.3704	0.6296

Table 2: Properties

\overline{r}	m		Total radius
r_t	\mathbf{m}		Torso radius
r_s	m		Shoulder radius
r_{ts}	m		Distance from torso to shoulder
m	kg	80	Mass
\underline{I}	$kg \cdot m^2$	4.0	Rotational moment
X	m		Position
\mathbf{v}	m/s		Velocity
v_0	m/s		Goal velocity
$\hat{\mathbf{e}}_0$			Goal direction
$\hat{\mathbf{e}}$			Target direction
φ	rad	$[-\pi,\pi]$	Body angle
ω	rad/s		Angular velocity
φ_0	rad	$[-\pi,\pi]$	Target angle
ω_0	rad/s	0.4π	Max angular velocity
\overline{p}	<u> </u>	0 - 1	Herding tendency

2.1 Circular

Table 3: Relative

$\tilde{\mathbf{x}} = \mathbf{x}_i - \mathbf{x}_j$	Relative position
$\tilde{\mathbf{v}} = \mathbf{v}_i - \mathbf{v}_j$	Relative velocity

$d = \ \tilde{\mathbf{x}}\ $	Distance
$\hat{\mathbf{n}} = \tilde{\mathbf{x}}/d$	Normal vector
$\hat{\mathbf{t}} = R(-90^\circ) \cdot \hat{\mathbf{n}}$	Tangent vector

Total radius and relative distance

$$\tilde{r} = r_i + r_j$$
$$h = d - \tilde{r}$$

2.2 Three circles

$$\mathbf{x}_r = \mathbf{x}_c + \hat{\mathbf{t}}r_{ts}$$

$$\mathbf{x}_l = \mathbf{x}_c - \hat{\mathbf{t}}r_{ts}$$

$$\hat{\mathbf{t}} = \begin{bmatrix} -\sin(\varphi) & \cos(\varphi) \end{bmatrix}$$

$$\mathbf{r}_{tot} = \begin{bmatrix} r_t & r_s & r_s \end{bmatrix}_i + \begin{bmatrix} r_t \\ r_s \\ r_s \end{bmatrix}_j$$

$$\mathbf{d} = \left\| \begin{bmatrix} \mathbf{x}_c & \mathbf{x}_r & \mathbf{x}_l \end{bmatrix}_i - \begin{bmatrix} \mathbf{x}_c \\ \mathbf{x}_r \\ \mathbf{x}_l \end{bmatrix}_j \right\|$$

$$= \left\| \begin{bmatrix} 0 & \hat{\mathbf{t}}r_{ts} & -\hat{\mathbf{t}}r_{ts} \end{bmatrix}_i - \begin{bmatrix} 0 \\ \hat{\mathbf{t}}r_{ts} \\ -\hat{\mathbf{t}}r_{ts} \end{bmatrix}_j + (\mathbf{x}_i - \mathbf{x}_j) \right\|$$

$$= \left\| \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} (\hat{\mathbf{t}}r_{ts})_i - \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} (\hat{\mathbf{t}}r_{ts})_j + \tilde{\mathbf{x}} \right\|$$

$$= \left\| \mathbf{k} (\hat{\mathbf{t}}r_{ts})_i - \mathbf{k}^T (\hat{\mathbf{t}}r_{ts})_j + \tilde{\mathbf{x}} \right\|$$

$$= \left\| \mathbf{c}_i - \mathbf{c}_j^T + \tilde{\mathbf{x}} \right\|$$

$$\mathbf{h} = \mathbf{d} - \mathbf{r}_{tot}$$

1. Find

$$h = \min(\mathbf{h})$$

and track minimizing values

$$\hat{\mathbf{e}}_{ij}, k_i, k_j, r_i, r_j$$

2.

$$\mathbf{r}_{i}^{moment} = \mathbf{x}_{i}^{c} + k_{i} \cdot \hat{\mathbf{t}}_{i} r_{i}^{ts} + r_{i} \hat{\mathbf{e}}_{ij}$$

$$\mathbf{r}_{j}^{moment} = \mathbf{x}_{j}^{c} + k_{j} \cdot \hat{\mathbf{t}}_{j} r_{j}^{ts} - r_{j} \hat{\mathbf{e}}_{ij}$$

3. Return $(\tilde{\mathbf{x}}, r_{tot}, h, \mathbf{r}_i^{moment}, \mathbf{r}_j^{moment})$

3 Linear wall

3.1 Properties

\mathbf{p}_0	Start point
\mathbf{p}_1	End point
$h_{iw} = d_{iw} - r_i$	
$l_w = \ \mathbf{p}_1 - \mathbf{p}_0\ $	Length
$\hat{\mathbf{t}}_w = \left(\mathbf{p}_1 - \mathbf{p}_0\right)/l_w$	
$\hat{\mathbf{n}}_w = R(90^\circ) \cdot \hat{\mathbf{t}}_w$	

3.2 Absolute distance

Solving linear system of equations determining the position of the agent \mathbf{x}_i in relation to wall

$$\begin{cases} \mathbf{p}_0 + l_{n_0} \hat{\mathbf{n}}_w = \mathbf{x}_i + l_{t_0} \hat{\mathbf{t}}_w \\ \mathbf{p}_1 + l_{n_1} \hat{\mathbf{n}}_w = \mathbf{x}_i + l_{t_1} \hat{\mathbf{t}}_w \end{cases}$$
$$\begin{cases} l_{n_0} \hat{\mathbf{n}}_w - l_{t_0} \hat{\mathbf{t}}_w = \mathbf{x}_i - \mathbf{p}_0 = \mathbf{q}_0 \\ l_{n_1} \hat{\mathbf{n}}_w - l_{t_1} \hat{\mathbf{t}}_w = \mathbf{x}_i - \mathbf{p}_1 = \mathbf{q}_1 \end{cases}$$

In matrix form

$$\begin{bmatrix} l_{n_0} & l_{n_1} \\ l_{t_0} & l_{t_1} \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} \mathbf{q}_0 & \mathbf{q}_1 \end{bmatrix}$$

$$\begin{split} \mathbf{A} &= \begin{bmatrix} \hat{\mathbf{n}}_w & -\hat{\mathbf{t}}_w \end{bmatrix} = \begin{bmatrix} -t_1 & -t_0 \\ t_0 & -t_1 \end{bmatrix} \\ \mathbf{A}^{-1} &= \frac{1}{t_0^2 + t_1^2} \begin{bmatrix} -t_1 & t_0 \\ -t_0 & -t_1 \end{bmatrix} = \begin{bmatrix} -t_1 & t_0 \\ -t_0 & -t_1 \end{bmatrix} \\ &= \begin{bmatrix} \hat{\mathbf{n}}_w \\ -\hat{\mathbf{t}}_w \end{bmatrix} = \mathbf{A}^T \end{split}$$

Conditions

$$l_n = l_{n_0} \vee l_{n_1} = \hat{\mathbf{n}}_w \cdot \mathbf{q}_0 \vee \hat{\mathbf{n}}_w \cdot \mathbf{q}_1$$
$$l_t = l_{t_1} + l_{t_0} = -\hat{\mathbf{t}}_w \cdot \mathbf{q}_1 - \hat{\mathbf{t}}_w \cdot \mathbf{q}_0$$

Distance between agent and linear wall

$$d_{iw} = \begin{cases} \|\mathbf{q}_0\| & l_t > l_w \\ |l_n| & \text{otherwise} \\ \|\mathbf{q}_1\| & l_t < -l_w \end{cases}$$

Normal vector away from the wall

$$\hat{\mathbf{n}}_{iw} = \begin{cases} \hat{\mathbf{q}}_0 & l_t > l_w \\ \operatorname{sign}(l_n)\hat{\mathbf{n}}_w & \text{otherwise} \\ \hat{\mathbf{q}}_1 & l_t < -l_w \end{cases}$$

3.3 Velocity relative distance

Relative position
Relative velocity
Total radius
Distance
Relative distance

$$\begin{aligned} \mathbf{q}_0 &= \mathbf{p}_0 - \mathbf{x} \\ \mathbf{q}_1 &= \mathbf{p}_1 - \mathbf{x} \\ \hat{\mathbf{n}}_{iw} &= -\operatorname{sign}(\hat{\mathbf{n}}_w \cdot \mathbf{q}_0) \hat{\mathbf{n}}_w \end{aligned}$$

$$\boldsymbol{\alpha} = [\text{angle}(\mathbf{q}_0), \text{angle}(\mathbf{q}_1), \text{angle}(\hat{\mathbf{n}}_{iw})]$$
 $\varphi = \text{angle}(\mathbf{v})$
 $\boldsymbol{\alpha}_2 = \boldsymbol{\alpha} - \boldsymbol{\varphi} \mod 2\pi$

$$i = (\arg\min(\boldsymbol{\alpha}_2), \arg\max(\boldsymbol{\alpha}_2))$$

Intersection

$$\mathbf{x} + a\mathbf{v} = \mathbf{p}_0 + b(\mathbf{p}_1 - \mathbf{p}_0), \quad a \in \mathbb{R}^+, \quad b \in [0, 1]$$
$$[\mathbf{v}, -\mathbf{p}] \cdot [a, b] = \mathbf{q}_0, \quad \mathbf{p} = \mathbf{p}_1 - \mathbf{p}_0$$

4 Motion

4.1 Social force

Total force exerted on the agent is the sum of movement adjusting, social and contact forces between other agents and wall.

$$\mathbf{f}_{i}(t) = \mathbf{f}_{i}^{adj} + \sum_{j \neq i} \left(\mathbf{f}_{ij}^{soc} + \mathbf{f}_{ij}^{c} \right) + \sum_{w} \left(\mathbf{f}_{iw}^{soc} + \mathbf{f}_{iw}^{c} \right) + \boldsymbol{\xi}_{i}$$

4.1.1 Adjusting force

Force adjusting agent's movement towards desired in some characteristic time

$$\mathbf{f}^{adj} = \frac{m}{\tau^{adj}} (v_0 \cdot \hat{\mathbf{e}} - \mathbf{v})$$

4.1.2 Social force

Psychological force for collision avoidance. Naive velocity independent equation

$$\mathbf{f}^{soc} = A \exp\left(-\frac{h}{B}\right)\hat{\mathbf{n}}$$

Improved velocity dependent algorithm

$$\mathbf{f}^{soc} = -\nabla_{\tilde{\mathbf{x}}} E(\tau)$$

$$= -\nabla_{\tilde{\mathbf{x}}} \left(\frac{k}{\tau^2} \exp\left(-\frac{\tau}{\tau_0}\right) \right)$$

$$= -\left(\frac{k}{a\tau^2}\right)\left(\frac{2}{\tau} + \frac{1}{\tau_0}\right)\exp\left(-\frac{\tau}{\tau_0}\right)\left(\tilde{\mathbf{v}} - \frac{a\tilde{\mathbf{x}} + b\tilde{\mathbf{v}}}{d}\right),$$

where

$$\begin{split} a &= \tilde{\mathbf{v}} \cdot \tilde{\mathbf{v}} \\ b &= -\tilde{\mathbf{x}} \cdot \tilde{\mathbf{v}} \\ c &= \tilde{\mathbf{x}} \cdot \tilde{\mathbf{x}} - \tilde{r}^2 \\ d &= \sqrt{b^2 - ac}, \quad b^2 - ac > 0 \\ \tau &= \frac{b - d}{a}. \end{split}$$

4.1.3 Contact force

Physical contact force

$$\mathbf{f}^c = -h \cdot \left(\mu \cdot \hat{\mathbf{n}} - \kappa \cdot (\mathbf{v} \cdot \hat{\mathbf{t}}) \hat{\mathbf{t}} \right), \quad h < 0$$

with damping

$$\mathbf{f}^c = -h \cdot \left(\mu \cdot \hat{\mathbf{n}} - \kappa \cdot (\mathbf{v} \cdot \hat{\mathbf{t}}) \hat{\mathbf{t}} \right) + c_n \cdot (\mathbf{v} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}, \quad h < 0$$

4.1.4 Random Fluctuation

Uniformly distributed random fluctuation force

$$\boldsymbol{\xi} = f \cdot \begin{bmatrix} \cos(\varphi) & \sin(\varphi) \end{bmatrix},$$

where

$$f \in [0, f_{max}], \quad \varphi \in [0, 2\pi]$$

4.2 Rotational

Total torque exerted on agent, is the sum of adjusting contact and social torques

$$M_{i}(t) = M_{i}^{adj} + \sum_{j \neq i} \left(M_{ij}^{soc} + M_{ij}^{c} \right) + \sum_{w} \left(M_{iw}^{soc} + M_{iw}^{c} \right) + \eta_{i}(t)$$

4.2.1 Adjusting torque

Torque adjusting agent's rotational motion towards desired

$$M^{adj} = \frac{I}{\tau} \left((\varphi(t) - \varphi^0) \omega^0 - \omega(t) \right)$$

4.2.2 Social torque

Torque from social forces acting with other agent or wall

$$\mathbf{M}^{soc} = \mathbf{r}^{soc} \times \mathbf{f}^{soc}$$

4.2.3 Contact torque

Torque from contact forces acting with other agent or wall

$$\mathbf{M}^c = \mathbf{r}^c \times \mathbf{f}^c$$

4.2.4 Related equations

Torque calculated using cross product

$$\mathbf{M} = \mathbf{r} \times \mathbf{f} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ R_1 & R_2 & R_3 \\ f_1 & f_2 & f_3 \end{vmatrix}$$

which in two dimensions is

$$M = \begin{vmatrix} R_1 & R_2 \\ f_1 & f_2 \end{vmatrix} = R_1 \cdot f_2 - R_2 \cdot f_1$$

5 Integrators

5.1 Differential systems

Position and velocity

$$m\frac{d^2}{dt^2}\mathbf{x}(t) = \mathbf{f}(t)$$

Rotational motion

$$I\frac{d^2}{dt^2}\varphi(t) = M(t)$$

5.2 Excelicit Euler Method

Updating using discrete time step Δt

$$t_0 = 0$$

$$t_1 = t_0 + \Delta t$$

$$\vdots$$

$$t_k = t_{k-1} + \Delta t$$

Acceleration on an agent

$$a_k = \mathbf{f}_k / m$$

$$\mathbf{v}_{k+1} = \mathbf{v}_k + a_k \Delta t$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{v}_{k+1} \Delta t$$

Angular acceleration

$$\alpha_k = M_k / I$$

$$\omega_{k+1} = \omega_k + \alpha_k \Delta t$$

$$\varphi_{k+1} = \varphi_k + \omega_{k+1} \Delta t$$

5.3 Velocity verlet

Velocity verlet algorithm

$$\begin{aligned} \mathbf{v}_{k+\frac{1}{2}} &= \mathbf{v}_k + \frac{1}{2} a_k \Delta t \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + \mathbf{v}_{k+\frac{1}{2}} \Delta t \\ \mathbf{v}_{k+1} &= \mathbf{v}_{k+\frac{1}{2}} + \frac{1}{2} a_{k+1} \Delta t \end{aligned}$$

or more simply

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{v}_k \Delta t + \frac{1}{2} a_k \Delta t^2$$
$$\mathbf{v}_{k+1} = \mathbf{v}_k + \frac{1}{2} (a_k + a_{k+1}) \Delta t$$

6 Navigation

6.1 Theory

Navigation algorithm is a function that takes at least coordinate \mathbf{x} as an argument and returns an unit vector $\hat{\mathbf{e}}$ that is used as target direction for the agent

$$f(\mathbf{x},\ldots) \to \hat{\mathbf{e}}$$

6.2 Manual construction

6.3 Fluid flow

One way to find suitable function is to solve how *incompressible*, *irrotational* and *inviscid* fluid (ideal fluid) would flow out of the constructed space.

https://en.wikipedia.org/wiki/Conservative_vector_field#Irrotational_flows

https://en.wikipedia.org/wiki/Inviscid_flow

https://en.wikipedia.org/wiki/Euler_equations_
(fluid_dynamics)

6.4 Combination

7 Spatial game

Spatial game for egress congestion.

7.1 Game matrix

$T_i = \lambda_i/\beta$	Estimated evacuation time
λ_i	Number of other agents closer to the
	exit
β	Capacity of the exit
$T_{ij} = \left(T_i + T_j\right)/2$	Average evacuation time
T_{ASET}	Available safe egress time
T (T)	Time difference between T and

$$T_0(=T_{ASET})$$
 Time difference between T_{ASET} and T_i before agents start playing the

game

$$C > 0$$
 Cost of conflict

Number of other agents closer to the exit can be solved

$$\lambda = \operatorname{argsort} \|\mathbf{p}_0 - \mathbf{x}\|$$

where \mathbf{p}_0 is the center of the exit

Cost function

$$u(T_i, T_{ASET}), \quad u'(T_i) \ge 0, \quad u''(T_i) \ge 0$$

Increase/decrease in cost

$$\Delta u(T_{ij}) = u(T_{ij}) - u(T_{ij} - \Delta T) \approx u'(T_{ij})\Delta T$$

	Impatient	Patient
Impatient	C,C	$-\Delta u(T_{ij}), \Delta u(T_{ij})$
Patient	$\Delta u(T_{ij}), -\Delta u(T_{ij})$	0,0

	Impatient	Patient
Impatient	$rac{C}{\Delta u(T_{ij})}, rac{C}{\Delta u(T_{ij})}$	-1,1
Patient	1, -1	0,0

i) Prisoner's dilemma (PD)

$$0 < \frac{C}{\Delta u(T_{ij})} \le 1$$

ii) Hawk-dove (HD)

$$\frac{C}{\Delta u(T_{ij})} > 1$$

Assumptions

1. Game is not played

$$T_{ij} \leq T_{ASET} - T_0$$

2. Cost function starts to increase quadratically

$$T_{ij} > T_{ASET} - T_0$$

3. Game turns into prisoner's dilemma

$$u'(T_{ASET}) = C, \quad T_{ij} \ge T_{ASET}$$

Cost function that meets the assumptions

$$u(T_{ij}) = \begin{cases} 0 & T_{ij} \le T_{ASET} - T_0 \\ \frac{C}{2T_0} (T_{ij} - T_{ASET} + T_0)^2 & T_{ij} > T_{ASET} - T_0 \end{cases}$$

Derivative

$$u'(T_{ij}) = \begin{cases} 0 & T_{ij} \le T_{ASET} - T_0 \\ \frac{C}{T_0} (T_{ij} - T_{ASET} + T_0) & T_{ij} > T_{ASET} - T_0 \end{cases}$$

Loss/gain of overtaking

$$\Delta u(T_{ij}) \approx u'(T_{ij})\Delta T = \frac{C}{T_0} (T_i - T_{ASET} + T_0) \Delta T$$

Value parameter of the game matrix

$$\frac{C}{\Delta u(T_{ij})} \approx \frac{T_0}{T_{ij} - T_{ASET} + T_0}$$

7.2 Settings and best-response dynamics

	Unit	Value	
		4	von Neumann neighborhood
		8	Moore neighborhood
r_n	\mathbf{m}	0.40	Distance to agent that is considered
			as neighbor
v_i			Loss defined by game matrix
S			Set of strategies
			$\{Patient, Impatient\}$
s			$Strategy \in \{Patient, Impatient\}$

The best-response strategy

$$s_i^{(t)} = \arg\min_{s_i' \in S} \sum_{j \in N_i} v_i \left(s_i', s_j^{(t-1)}; T_{ij} \right)$$

 $s_j^{(t-1)}$ strategy neighbor played on period t-1 Updating strategy using poisson process.