Seja V o espaço vetorial sobre \mathbb{R} , de todas as funções diferenciáveis. Mostre que $v_1 = e^x$ e $v_2 = e^{2x}$ são linearmente independentes.

Resolução:

Vamos supor que v_1 e v_2 sejam LD, ou seja, que existam a e b reais, $a \neq 0 \lor b \neq 0$, tais que $av_1 + bv_2 = 0$.

$$ae^x + be^{2x} = 0 \text{ (I)}$$

Diferenciando:

$$ae^x + 2be^{2x} = 0 \text{ (II)}$$

Subtraindo (I) de (II):

$$be^{2x} = 0 \implies b = 0 \text{ (III)}$$

Substituindo (III) em (I):

$$ae^x = 0 \implies a = 0$$

Onde temos uma contradição com a hipótese de que ao menos um coeficiente deve ser não nulo. Logo, por absurdo, e^x e e^{2x} são linearmente independentes.

Quod Erat Demonstrandum.

Documento compilado em Wednesday 12th March, 2025, 23:40, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

Licença de uso: 🐧 💲 🧿 Atribuição-NãoComercial-CompartilhaIgual (CC BY-NC-SA).