VC210 Recitation Class 2

Wei Xiwen

UM-SJTU JI

2020 Sep 28

Contents

- More About Quantum
- 2 Atom
 - Atomic Orbitals
 - Electron Configuration
- Peridicity
 - Atomic Radius
 - Ionization Energy
 - Electron Affinity
 - Metallic Character

- More About Quantum
- 2 Atom
- Peridicity

Degeneracy

What is Degeneracy?

Different wave functions(state) have same energy.

example

 $(n_x, n_y, n_z) = (2,1,1), (1,2,1), (1,1,2)$ have same energy for a particle in a box $L_x = L_y = L_z$.

- More About Quantum
- 2 Atom
- Peridicity

Quantum Number

Name	Symbol	Values	Specifies	Indicates
principal	n	1, 2,	shell	size and energ
orbital angular momentum*	1	$0, 1, \ldots, n-1$	subshell: $l = 0, 1, 2, 3, 4,$ s, p, d, f, g,	shape
magnetic	m_l	$l, l-1, \ldots, -l$	orbitals of subshell	orientation
spin magnetic	m_s	$+\frac{1}{2}, -\frac{1}{2}$	spin state	spin direction

Nodes

- total nodes: n-1
- planar nodes: I
- radial nodes: n-l-1

Examples

4d orbital: 3=2+1 6f orbital: 5=3+2

Exercise: write the quantum numbers for 4d.

Principles & Rules

Aufbau principle – electron occupies the lowest energy orbital first

Pauli exclusion principle – each orbital may be occupied by two electrons at most. In the case of double occupation, the electron spins are paired.

Hund rule – in degeneracy sub-shell, electrons occupy different subshells in parallel spin states, instead of occupy the same sub-shell with paired spins.

Electron Configuration

Pay attention to s-orbital & d-orbital!! When you figure out the electron configuration, treat 4s first; but when you **write your answer**, write 4s after 3d.

Exercises

Exercises

Write the electron configuration of Cr(24) and Fe(26).

Special Case for Hund Principle

```
Cr(24): 1s^22s^22p^63s^23p^63d^54s^1
Fe(26): 1s^22s^22p^63s^23p^63d^64s^2
```

Why?

In some special shell, electrons tend to form a structure of **full**, **half-full**, **empty**.

e.g. Cu(29)

- More About Quantum
- 2 Atom
- Peridicity

Atomic Radius

Two determinants:

- Number of valence shells: number of shells↑, radius ↑.
- Effective nuclear charge: effective nuclear charge ↑, radius ↓. Effective nuclear charge:
 - Atom (non-charged): proton number ↑, effective nuclear charge ↑.
 - lons (charged): charge number ↑, effective nuclear charge ↑.

Atomic Radius

When proton numbers are equal...

The more the electron numbers, the bigger the radius.

When two atoms have the same principal quantum number...

The more the proton numbers, the smaller the radius.

When two ions have the same electron numbers...

The more the proton numbers, the smaller the radius.

e.g.
$$O^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$$

Atomic Radius

Ionization Energy

- Definition: the minimum energy needed to remove 1 electron from a gas atom.
- Unit:kJ/mol
- Trend of the first ionization energy:
 - Valence shells \uparrow , $I_1 \downarrow$.
 - Effective nuclear charge \uparrow , $I_1 \uparrow$.

Special Cases

But there are special cases...

How could this happen?

Half-shell or full shell are more stable, so that the additional electron is less stable

Electron Affinity

- Definition: the energy released when 1 electron is added to a neutral atom in gaseous state to form a negative ion.
 - Positive: energy released
 - Negative: energy absorbed
- Contrast to ionization energy.

Metallic Character

Comparison between metal & nonmetal

Metals:

Malleable (bend) and ductile (make a wire).

Shiny so reflect light (mirrors).

Electrical and thermal conduct.

Basic.

Lose electrons—oxidized.

Nonmetals:

Brittle.

Dull.

Electrical and thermal insulators.

Acidic.

Gain electrons—reduced.

The End

Thanks for attendance. Q& A