Supervised learning

customer of type	t of new recipents	errail lenath	country	email type
صاط	0	2	germany	-
silver	1	4	germany	-
Bonze	5	2	Myeria	Spam
Broh2e	2	4	russia	Spain
Bronze	3	4	USA	_
gold	0	1	USA	-
-"[)'?~ 1/k	p""q	CINIC	راله کارم	:>G1/3 (c

instance lings and of

feature lings is instance of

labels arian instance of

Y a prion label air

1 mi ~ 17 mi)2 L= (han-y)2

22N9.74 - 4(x)

J- w.c

L(x,y,h) = (h(x)-y) $L_{s} = \frac{1}{h} \sum_{i}^{m} L(x_{i},y_{i},h) = \frac{1}{h} \sum_{i}^{m} (h(x_{i})-y_{i})^{2}$

LD = E[l(x; y; h)

h(x) = & + ax, - ax+....+ ax

יש כל היני פרבית לרגניר עם ל הביא פר בית לרגניר מטל , כשאשים הביח לרגניר מטל , כשאשים להביע לרגניר מטל , כשאשים לא הביא לא היא הביא לא הביא לא הביא אר היאן הפיצ'רים הרגאום

 $\sum_{x_1} = \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_$

אכן, כיוו (ני (הישת אהמום (הישתלה יבו אויה אויה לבינ האיחק אויה אויה אויה לבינ לאיני לאיני לאיני לאיני לאיני אויה אויה לאיני של הפיצריש.

$$h(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \dots + \theta_{n}x_{n}$$

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^$$

myn , nx1 ->mx1 541 12510 1855 W $L_s = \frac{1}{2n} \| \underline{X}Q - \underline{y} \|^2 = \frac{1}{2n} (\underline{X}Q - \underline{y}) (\underline{X}Q - \underline{y})$ (751, 10. 1251, 6 190, Uld. (361) 30(zm (xo-y) (xo-y))= $\frac{\partial}{\partial \theta} \left(\frac{1}{2m} \left(\frac{\partial x^t}{\partial x^t} - y^t \right) \left(\frac{x}{2} \partial - y \right) \right) \right)$ > $\frac{1}{2}$ $\frac{1$ $2 \underbrace{x^{t}}_{2} \underbrace{y}_{1} - x^{t}y_{1} - x^{t}y_{1} = 0$

$$2 \underbrace{x^{t}}_{1 \times 1} \underbrace{y}_{1 \times 1} \underbrace{x_{t}}_{1 \times 1} \underbrace{x_{t$$

$$\mathcal{D} = \left(x + x \right)^{-1} x^{\dagger} y$$

ins 6, sar v.l. 3

https://youtu.be/FCWrduAxf-Q

Common identities:

$$\begin{split} \frac{\partial (\boldsymbol{u}(\mathbf{x}) + \boldsymbol{v}(\mathbf{x}))}{\partial \mathbf{x}} &= \frac{\partial \boldsymbol{u}(\mathbf{x})}{\partial \mathbf{x}} + \frac{\partial \boldsymbol{v}(\mathbf{x})}{\partial \mathbf{x}} \\ &\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}^{\top} \\ &\frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a} \\ &\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x} \\ &\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = 2 \mathbf{A} \mathbf{x} \text{ if } \mathbf{A} \text{ is symmetric} \\ &\frac{\partial |\mathbf{X}|}{\partial \mathbf{X}} = |\mathbf{X}| (\mathbf{X}^{-1})^{\top} \\ &\frac{\partial \ln |\mathbf{X}|}{\partial \mathbf{X}} = (\mathbf{X}^{-1})^{\top} \end{split}$$