DATA 301: Data Cleaning

Data Cleaning - Outline

- Why
- Missing Values
- Duplicates
- Strings
- Categorical data
- Numerical Data
- Dates

Why

Data is usually messy.

You can minimize some problems

 For surveys, prefer comboboxes populated with a curated list rather than free form text field

Some you cannot

- external datasets (like your first project)
- free form text (like a collection of movie reviews)
- Missing and duplicate values
- Sensor data (outliers, missing values)

Either way it has to be cleaned

Remove duplicates
Handle missing data
Process strings

Many machine learning algorithms require data to be in numerical format(linear regression, neural networks, clustering), but not all (random forest). If you are using data for input to an algorithm that requires numerical data, then there are some additional steps.

Process Categorical data Scale Numerical Data Process dates (if needed) Reduce dimensionality

Remove duplicates
Handle missing data
Process strings

Did much of this when introducing project 1

Many machine learning algorithms require data to be in numerical format(linear regression, neural networks, clustering), but not all (random forest). If you are using data for input to an algorithm that requires numerical data, then there are some additional steps.

Process Categorical data Scale Numerical Data Process dates (if needed) Reduce dimensionality

Remove duplicates
Handle missing data
Process strings

Todays topics

Many machine learning algorithms require data to be in numerical format(linear regression, neural networks, clustering), but not all (random forest). If you are using data for input to an algorithm that requires numerical data, then there are some additional steps.

Process Categorical data Scale Numerical Data Process dates (if needed) Reduce dimensionality

Remove duplicates
Handle missing data
Process strings

Todays topics

Many machine learning algorithms require data to be in numerical format(linear regression, neural networks, clustering), but not all (random forest). If you are using data for input to an algorithm that requires numerical data, then there are some additional steps.

Process Categorical data Scale Numerical Data Process dates (if needed) Reduce dimensionality

This is not a complete list of steps

First see if there are any

1 df.duplicated().sum()

First see if there are any

```
1 df.duplicated().sum()
```

If so then verify them visually

```
1 df[df.duplicated()].sort_values(by='name')
```

First see if there are any

```
1 df.duplicated().sum()
```

If so then verify them visually

```
1 df[df.duplicated()].sort_values(by='name')
```

If everything looks fine, get rid of them

```
1 df.drop_duplicates(inplace=True)
```

First see if there are any

```
1 df.duplicated().sum()
```

If so then verify them visually

```
1 df[df.duplicated()].sort_values(by='name')
```

If everything looks fine, get rid of them

```
1 df.drop_duplicates(inplace=True)
```

But there could be extenuating circumstances; What if a duplicate row is missing some data?

First see if there are any

```
1 df.duplicated().sum()
```

If so then verify them visually

```
1 df[df.duplicated()].sort_values(by='name')
```

If everything looks fine, get rid of them

```
1 df.drop_duplicates(inplace=True)
```

But there could be extenuating circumstances; What if duplicate is missing some data?

Go to 31_cleaning_missing_and_duplicate_data.ipynb

weight	t_shirt_size	name	t_shirt_size_orig
138.423257	large	Shemeka Tweed	large
179.943743	large	Curtis Perry	large
192.245354	large	Jean Vanblarcom	large
110.433988	med	Marion Murphy	med
172.863897	med	Ronald Edwards	med
143.853752	med	Kathleen Ringrose	med
104.820189	small	Deborah Bradshaw	small
78.662745	small	Betty Shannon	small
76.240932	small	Mai Audet	small
112.973731	NaN	Pearl Miller	small
92.639737	NaN	Yvonne Arroyo	small
98.201594	NaN	James Dana	small
	138.423257 179.943743 192.245354 110.433988 172.863897 143.853752 104.820189 78.662745 76.240932 112.973731 92.639737	138.423257 large 179.943743 large 192.245354 large 110.433988 med 172.863897 med 143.853752 med 104.820189 small 78.662745 small 76.240932 small 112.973731 NaN 92.639737 NaN	138.423257 large Shemeka Tweed 179.943743 large Curtis Perry 192.245354 large Jean Vanblarcom 110.433988 med Marion Murphy 172.863897 med Ronald Edwards 143.853752 med Kathleen Ringrose 104.820189 small Deborah Bradshaw 78.662745 small Betty Shannon 76.240932 small Mai Audet 112.973731 NaN Pearl Miller 92.639737 NaN Yvonne Arroyo

	weight	t_shirt_size	name	t_shirt_size_orig	
199	138.423257	large	Shemeka Tweed	large	
201	179.943743	large	Curtis Perry	large	
202	192.245354	large	Jean Vanblarcom	large	
99	110.433988	med	Marion Murphy	med	
100	172.863897	med	Ronald Edwards	med	
103	143.853752	med	Kathleen Ringrose	med	
0	104.820189	small	Deborah Bradshaw	small	
1	78.662745	small	Betty Shannon	small	
2	76.240932	small	Mai Audet	small	
5	112.973731	NaN	Pearl Miller	small	
19	92.639737	NaN	Yvonne Arroyo	small	
25	98.201594	NaN	James Dana	small	
).		

Missing values here

First the easy solution; Use sklearns SimpleImputer

	weight	t_shirt_size	name	t_shirt_size_orig
199	138.423257	large	Shemeka Tweed	large
201	179.943743	large	Curtis Perry	large
202	192.245354	large	Jean Vanblarcom	large
99	110.433988	med	Marion Murphy	med
100	172.863897	med	Ronald Edwards	med
103	143.853752	med	Kathleen Ringrose	med
0	104.820189	small	Deborah Bradshaw	small
1	78.662745	small	Betty Shannon	small
2	76.240932	small	Mai Audet	small
5	112.973731	NaN	Pearl Miller	small
19	92.639737	NaN	Yvonne Arroyo	small
25	98.201594	NaN	James Dana	small
		A).	

First the easy solution; Use sklearns SimpleImputer

Installed with Anaconda

from sklearn.impute import SimpleImputer

t_shirt_size_orig	name	t_shirt_size	weight		
large	Shemeka Tweed	large	138.423257		
large	Curtis Perry	large	179.943743	201	
large	Jean Vanblarcom	large	192.245354	202	
med	Marion Murphy	med	110.433988	99	
med	Ronald Edwards	med	172.863897	100	
med	Kathleen Ringrose	med	143.853752	103	
smal	Deborah Bradshaw	small	104.820189	0	
smal	Betty Shannon	small	78.662745	1	
smal	Mai Audet	small	76.240932	2	
smal	Pearl Miller	NaN	112.973731	5	
smal	Yvonne Arroyo	NaN	92.639737	19	
smal	James Dana	NaN	98.201594	25	

name t shirt size original

Handle missing data (np.Nan)

First the easy solution; Use sklearns SimpleImputer

	weight	t_silit_size	Hame	t_sillit_size_orig
199	138.423257	large	Shemeka Tweed	large
201	179.943743	large	Curtis Perry	large
202	192.245354	large	Jean Vanblarcom	large
99	110.433988	med	Marion Murphy	med
100	172.863897	med	Ronald Edwards	med
103	143.853752	med	Kathleen Ringrose	med
0	104.820189	small	Deborah Bradshaw	small
1	78.662745	small	Betty Shannon	small
2	76.240932	small	Mai Audet	small
5	112.973731	NaN	Pearl Miller	small
19	92.639737	NaN	Yvonne Arroyo	small
25	98.201594	NaN	James Dana	small
).	

Imputation strategy, can be mean, median (numeric only), most_frequent or constant (numeric and strings)

weight t shirt size

First the easy solution; Use sklearns SimpleImputer

Imputation strategy, can be mean, median (numeric only), most_frequent or constant (numeric and strings)

Fit the imputer to the data, in this case calculate the most Frequent value seen

Shemeka Tweed

Jean Vanblarcom

Marion Murphy

Ronald Edwards

Kathleen Ringrose

Deborah Bradshaw

Betty Shannon

Mai Audet

Pearl Miller

Yvonne Arrovo

James Dana

Curtis Perry

name t_shirt_size_orig

large

large

large

med

small

small

Handle missing data (np.Nan)

First the easy solution; Use sklearns SimpleImputer

imp = imp.fit(df_med[['t_shirt_size']])

Imputation strategy, can be mean, median (numeric only), most_frequent or constant (numeric and strings)

weight t_shirt_size

large

large

small

small

NaN

NaN

138.423257

179 943743

192.245354

110.433988

172.863897

143.853752

104.820189

78.662745

76.240932

92 639737

98.201594

5 112.973731

Fit the imputer to the data, in this case calculate the most Frequent value seen

```
7 df_med['impute_t_shirt_size']=imp.transform(df_med[['t_shirt_size']])
```

Transform the data using the imputer, in this case calculate the most Frequent value seen and place df_med['it in impute_t_shirt_size']

Transform the data using the imputer, in this case calculate the most Frequent value seen and place df_med['it in impute_t_shirt_size']

But you can usually do better than this ...

What if you calculate missing values Based on weight.

		weight	t_shirt_size	name	t_shirt_size_orig		
•	199	138.423257	large	Shemeka Tweed	large		
2	201	179.943743	large	Curtis Perry	large		
:	202	192.245354	large	Jean Vanblarcom	large		
	99	110.433988	med	Marion Murphy	med		
•	100	172.863897	med	Ronald Edwards	med		
•	103	143.853752	med	Kathleen Ringrose	med		
	0	104.820189	small	Deborah Bradshaw	small		
	1	78.662745	small	Betty Shannon	small		
	2	76.240932	small	Mai Audet	small		
	5	112.973731	NaN	Pearl Miller	small		
	19	92.639737	NaN	Yvonne Arroyo	small		
	25	98.201594	NaN	James Dana	small		
			(J			

What if you calculate missing values Based on weight.

Calculate average weight for each t-shirt size

```
1 avgs = df_better.groupby('t_shirt_size').mean()
2 avgs.weight

t_shirt_size
large 177.410759
med 138.508626
small 101.173410
Name: weight, dtype: float64
```

	weight	t_shirt_size	name	t_shirt_size_orig
199	9 138.423257	large	Shemeka Tweed	large
20	1 179.943743	large	Curtis Perry	large
202	192.245354	large	Jean Vanblarcom	large
99	9 110.433988	med	Marion Murphy	med
100	172.863897	med	Ronald Edwards	med
103	3 143.853752	med	Kathleen Ringrose	med
(104.820189	small	Deborah Bradshaw	small
	78.662745	small	Betty Shannon	small
:	76.240932	small	Mai Audet	small
	5 112.973731	NaN	Pearl Miller	small
19	92.639737	NaN	Yvonne Arroyo	small
2	98.201594	NaN	James Dana	small
			J	

What if you calculate missing values Based on weight.

Calculate average weight for each t-shirt size

```
1 avgs = df_better.groupby('t_shirt_size').mean()
2 avgs.weight

t_shirt_size
large    177.410759
med    138.508626
small    101.173410
Name: weight, dtype: float64
```

	weight	t_shirt_size	name	t_shirt_size_orig		
199	138.423257	large	Shemeka Tweed	large		
201	179.943743	large	Curtis Perry	large		
202	192.245354	large	Jean Vanblarcom	large		
99	110.433988	med	Marion Murphy	med		
100	172.863897	med	Ronald Edwards	med		
103	143.853752	med	Kathleen Ringrose	med		
0	104.820189	small	Deborah Bradshaw	small		
1	78.662745	small	Betty Shannon	small		
2	76.240932	small	Mai Audet	small		
5	112.973731	NaN	Pearl Miller	small		
19	92.639737	NaN	Yvonne Arroyo	small		
25	98.201594	NaN	James Dana	small		
			J.			

Use that info to impute missing values based on user weight

```
#map works on a column apply works on a row, which means we have access to the entire row
   def func(row):
       if row.t_shirt_size is np.NaN:
           #get a list of differences between this weight and average weights
           lst_vals = [abs(row.weight-val) for val in avgs.weight]
           #get the index of the minimum value
9
           min val = min(lst vals)
           min_index=lst_vals.index(min_val)
10
11
12
           #return t shirt size corresponding to this index
13
           return avgs.index[min index]
14
       #its not missing, return what's there
       return row.t shirt size
16 df better['impute t shirt size'] = df.apply(func, axis=1)
```

What if you calculate missing values Based on weight.

Calculate average weight for each t-shirt size

```
weight t_shirt_size
                                          name t_shirt_size_orig
199 138.423257
                                Shemeka Tweed
                                                             large
                        large
201 179.943743
                                     Curtis Perry
                        large
                                                             large
    192.245354
                        large
                                Jean Vanblarcom
                                                            large
    110.433988
                                  Marion Murphy
    172.863897
                                 Ronald Edwards
103 143.853752
                               Kathleen Ringrose
                                                             med
 0 104.820189
                              Deborah Bradshaw
                                                            small
     78.662745
                                  Betty Shannon
                        small
                                                            small
 2 76.240932
                                      Mai Audet
                        small
                                                            small
  5 112.973731
                        NaN
                                     Pearl Miller
                                                            small
 19 92 639737
                        NaN
                                  Yvonne Arroyo
 25 98.201594
                                    James Dana
```

Use that info to impute missing values based on user weight

```
#map works on a column apply works on a row, which means we have access to the entire row
   def func(row):
       if row.t_shirt_size is np.NaN:
           #get a list of differences between this weight and average weights
           lst_vals = [abs(row.weight-val) for val in avgs.weight]
8
           #get the index of the minimum value
9
           min val = min(lst vals)
10
           min_index=lst_vals.index(min_val)
           #return t shirt size corresponding to this index
           return avgs.index[min index]
14
       #its not missing, return what's there
       return row.t shirt size
16 df better['impute t shirt size'] = df.apply(func, axis=1)
```

Go to 31_cleaning_missing_and_duplicate_data.ipynb

Cardinality

Cardinality: the number of distinct elements in a set. For our purposes the number of unique values in a column

Categorical data

Categorical data can be subdivided into 2 types
Ordinal data— data that has an order, can be sorted

- ex. t-shirt size (small<medium<large)
- The average of a small and large <u>is</u> medium

Nominal data – data that has no order

- ex. t-shirt color (Red, Blue, Green) one is not greater than another
- The average of Red and Green is not Blue

Categorical data

Categorical data can be subdivided into 2 types Ordinal data— data that has an order, can be sorted

- ex. t-shirt size (small<medium<large)
- The average of a small and large is medium

Nominal data – data that has no order

- ex. t-shirt color (Red, Blue, Green) one is not greater than another
- The average of Red and Green is not Blue

Both types need to be encoded numerically in order to be used by many ML models. But their encoding techniques differ depending on the type of model used.

Ordinal data

Ordinal data- data that has an order, can be sorted

ex. t-shirt size (small<medium<large)

Since it has an order, just convert it to a number

Ordinal data

Advantages

- Establishes a numerical order
- Does not add new columns to DataFrame
- Works with tree based models (Random Forest, Boosted Trees).

<u>Disadvantages</u>

 You usually have to hand code the numbering to ensure the ordering is correct (so you do not get small=3, large=2, medium=1)

Nominal data

Does not have an order so cannot convert a nominal categorical variable to a number in the same way that you do a Ordinal one because this implies an order.

T-shirt color is nominal ts_colors = ['green', 'blue', 'orange', 'red', 'black']

How to convert t-shirt color to a number without implying an order?

Nominal data

Does not have an order so cannot convert a nominal categorical variable to a number in the same way that you do a Ordinal one because you would then imply an order.

T-shirt color is nominal ts_colors = ['green', 'blue', 'orange', 'red', 'black']

How to convert t-shirt color to a number without implying an order?

Use something called One Hot Encoding. You create 1 column for each unique nominal value.

Nominal data – One Hot Encode t shirt color

Notice that there is now 1 column per color. Only 1 of those columns will ever be 1 at a time, the rest will be 0's

	weight	t_shirt_size	name	t_shirt_color_black	t_shirt_color_blue	t_shirt_color_green	t_shirt_color_orange	t_shirt_color_red
0	87.478379	1	Timothy Bunch	1	0	0	0	0
1	101.982078	1	Miguel Williams	1	0	0	0	0
2	114.504086	1	Tommy Jennings	0	0	0	1	0
3	95.567857	1	Willie Ledet	0	0	0	0	1
4	109.106926	1	David Smith	0	0	0	1	0
						***	***	
295	149.039786	3	Irene Glover	0	0	1	0	0
296	189.241702	3	Theresa Tomlin	0	0	0	1	0
297	173.061783	3	Rebekah Millar	0	0	0	0	1
298	178.617007	3	Melinda Bonner	0	0	0	0	1
299	193.698527	3	Frank Gonzalez	0	1	0	0	0

300 rows × 8 columns

Nominal data

Advantages

 One Hot Encoding ensures that a machine learning algorithm will not deduce an order to column members.

Disadvantages

- Expands the feature space (adds n-1 columns if the nominal variable has n unique values). So high cardinality columns can dramatically expand feature space.
- Does not work as well with tree based models (Random Forest, Boosted Trees)

ML algorithms based on Euclidian distance benefit from feature scaling, these include;

- K-means
- K-nearest neighbors
- DBScan (coming soon)
- Principal Component Analysis (PCA)
- Neural Networks

ML algorithms that do not require feature scaling;

- Naive Bayes
- Tree Based methods (Random Forest, Boosted Trees)

Min-Max encoding (normalization) – rescale features to fall between [0,1]

$$x_{\text{norm}} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

If there are outliers then they will define min() and/or max()

Standardization – rescale features to a mean of 0 and a standard deviation of 1

$$x_{\text{stand}} = \frac{x - \text{mean}(x)}{\text{standard deviation }(x)}$$

Note that standardized data is centered at 0, and has both positive and negative values.

Note that standardized data is spread out more and preserves outlier information

In general prefer Standardization

Process Dates

Date/Times must be converted into a numerical format. The following call will convert many forms of date/time strings into a pandas datetime64 object

```
data["Dt_Customer"] = pd.to_datetime(data["Dt_Customer"])
```

We will use datetime fields a bit more later

Reduce Dimensionality

Columns for a Pandas DataFrame

The more features you have:

- the more data you need to train a ML model
- the longer it takes for a ML algorithm to converge
- the higher the probability that your model will not generalize
- the higher the likelyhood that some are redundant*

So reduce the number of features to only those that you need. Two ways presented here.

- Eliminate Redundant Features
- Principle Components Analysis (PCA)

^{*}Redundant features are features that are highly correlated, they also skew analyzing which features are the most important (feature importance - coming soon with Random For)

Eliminate Redundant features

- Redundant features are columns that are highly correlated. They provide little to no additional information.
- Find them by correlation analysis, then drop them.

Eliminate Redundant features

Advantages:

- Eliminates highly correlated features
- Preserves rest of original columns so you can determine which are the most important

Disadvantages

- Eliminates few columns (what if you have hundreds?)
- You have to manually decide correlation threshold for elimination

Principle Components Analysis (PCA)

PCA is the process of computing the principal components and using them to perform a change of basis on the data, sometimes using only the first few principal components and ignoring the rest. The principal components are eigenvectors of the data's covariance matrix.*

Bit of a mental handfull, how about:

Principle Components Analysis (PCA)

PCA takes original features and recombines them into a list of new features. Each new feature is:

- a combination of the original features
- is not correlated with any other <u>new</u> feature

Additionally the components are sorted by the amount of information they capture. The first captures the most, the next captures less and so on.

Generally you use a subset of these components to represent the data. Or PCA reduces number of features.

Principle Components Analysis - ELI5

Suppose you have a list of 1000 students with the following features, and you want to predict which are going to do well in college

	IQ	SAT	GPA	clubs	teacher_ratings	class_rank	HS_quality	hh_income	discipline	essay_score	campus_visits	study_prep_course
0	110	1130	4.2	3	4	72	5	77000	0	90	2	1
1	105	1230	3.9	4	5	33	4	45000	1	75	1	0
2	108	1020	4.8	2	7	65	9	145000	0	75	1	1

Principle Components Analysis - ELI5

Suppose you have a list of 1000 students with the following features, and you want to predict which are going to do well in college

	IQ	SAT	GPA	clubs	teacher_ratings	class_rank	HS_quality	hh_income	discipline	essay_score	campus_visits	study_prep_course
0	110	1130	4.2	3	4	72	5	77000	0	90	2	1
1	105	1230	3.9	4	5	33	4	45000	1	75	1	0
2	108	1020	4.8	2	7	65	9	145000	0	75	1	1

Standardize data then run PCA. Top 3 new features that capture the most information may be;

Does not have to be 3, but the more you choose, the better you represent the original dataset

$$X = B1*IQ + B2*SAT + B3*GPA$$

Principle Components Analysis - ELI5

Suppose you have a list of 1000 students with the following features, and you want to predict which are going to do well in college

	IQ	SAT	GPA	clubs	teacher_ratings	class_rank	HS_quality	hh_income	discipline	essay_score	campus_visits	study_prep_course
0	110	1130	4.2	3	4	72	5	77000	0	90	2	1
1	105	1230	3.9	4	5	33	4	45000	1	75	1	0
2	108	1020	4.8	2	7	65	9	145000	0	75	1	1

Standardize data then run PCA. Top 3 new features that capture the most information <u>may</u> be;

```
X = B1*IQ + B2*SAT + B3*GPA
Y = B4*clubs + B5*teacher_rating + B6*discipline
Z = B6*income + B6*HS quality + B7*class rank
```

The dataset is reduced from (1000,12) to (1000,3)

None of the new features are correlated

Much of the original information is still captured (but not all)

But it is usually hard to interpret the new PCA features

Summary

- Handle duplicates
- Impute missing data (or drop it)
- Pre process strings
- Determine if string columns are ordinal or nominal categorical variables
- Transform categorical variables
- Scale data
- Consider dimensionality reduction