Connectives

1. Explanation of Theorem 1.1.22 (d), (h), (k)

- (d) Distributive Law: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)A \cap (B \cup C) = (A \cap B) \cup (A \cap C)A$
 - This follows because taking the intersection of AA with the union $B \cup CB \cup C$ means we consider elements in AA that also belong to either BB or CC. This is equivalent to taking the union of the two intersections.
- (h) De Morgan's Law: $\neg(A \cap B) = \neg A \cup \neg B \neg (A \cap B) = \neg A \cup \neg B$
 - The left-hand side represents the complement of the intersection, meaning elements that are missing from at least one of AA or BB. This is equivalent to taking the union of the complements.
- (k) Involution Law: $\neg(\neg A) = A \neg(\neg A) = A$
 - Applying negation twice restores the original set.

2. Conversion of Set Identities to Propositional Logic

- $A \cap B \rightarrow p \wedge qA \cap B \rightarrow p \wedge q$
- $\bullet \ \ A \cup B \to p \vee qA \cup B \to p \vee q$
- ullet $\neg A
 ightarrow
 eg p
 eg A
 ightarrow
 eg p$
- ullet U o TU o T
- $\bullet \quad \emptyset \to F\emptyset \to F$

Some converted expressions:

- $\bullet \ \ A \cup A = A \Rightarrow p \vee p = pA \cup A = A \Rightarrow p \vee p = p$
- $A \cap A = A \Rightarrow p \wedge p = pA \cap A = A \Rightarrow p \wedge p = p$
- $\quad \neg (\neg A) = A \Rightarrow \neg (\neg p) = p \neg (\neg A) = A \Rightarrow \neg (\neg p) = p$

3. Applying De Morgan's Laws to Three Variables

$$\neg (p1 \lor p2 \lor p3) = \neg ((p1 \lor p2) \lor p3) \neg (p_1 \lor p_2 \lor p_3) = \neg ((p_1 \lor p_2) \lor p_3) \text{ Applying De Morgan's Theorem:} = (\neg p1 \land \neg p2) \land \neg p3 = (\neg p_1 \land \neg p_2) \land \neg p_3$$

Final result: $\neg p1 \land \neg p2 \land \neg p3 \neg p_1 \land \neg p_2 \land \neg p_3$

Similarly, for sets:

$$\neg(A\cap B\cap C) = \neg A \cup \neg B \cup \neg C \neg(A\cap B\cap C) = \neg A \cup \neg B \cup \neg C \neg(A\cup B\cup C) = \neg A \cap \neg B \cap \neg C \neg(A\cup C) = \neg A \cap \neg B \cap \neg C \cap \neg$$

4. Writing Equivalent Expressions Using ¬, ∧

•
$$\neg (p \lor q) = \neg p \land \neg q \neg (p \lor q) = \neg p \land \neg q$$

$$\bullet \ \, \neg(\neg p \vee \neg q) = p \wedge q \neg (\neg p \vee \neg q) = p \wedge q$$

•
$$\neg (p \lor \neg q) = \neg p \land q \neg (p \lor \neg q) = \neg p \land q$$

$$\bullet \ \ p \lor q = \neg (\neg p \land \neg q)p \lor q = \neg (\neg p \land \neg q)$$

$$\bullet \ \ p \vee \neg q = \neg (\neg p \wedge q)p \vee \neg q = \neg (\neg p \wedge q)$$

$$ullet \ \
eg p \lor
eg q =
eg (p \land q)
eg p \lor
eg q =
eg (p \land q)$$

5. Expressing Logical Connectives Using \neg , \wedge , \vee

```
ullet p 
ightarrow r = 
eg p ee rp 
ightarrow r = 
eg p ee r
```

$$ullet \
eg (p
ightarrow r) = p \wedge
eg r
eg (p
ightarrow r) = p \wedge
eg r$$

$$ullet p \oplus r = (p \wedge
eg r) ee (
eg p \wedge r) p \oplus r = (p \wedge
eg r) ee (
eg p \wedge r)$$

$$\bullet \quad p \oplus (r \wedge s) = (p \wedge \neg (r \wedge s)) \vee (\neg p \wedge (r \wedge s)) p \oplus (r \wedge s) = (p \wedge \neg (r \wedge s)) \vee (\neg p \wedge (r \wedge s))$$

$$\bullet \ \ p \leftrightarrow r = (p \land r) \lor (\neg p \land \neg r) p \leftrightarrow r = (p \land r) \lor (\neg p \land \neg r)$$

6. Proving Functional Completeness Using NOR (↓)

•
$$\neg p = p \downarrow p \neg p = p \downarrow p$$

$$\bullet \ \ p \lor q = (p \downarrow p) \downarrow (q \downarrow q) p \lor q = (p \downarrow p) \downarrow (q \downarrow q)$$

$$\bullet \ \ p \wedge q = (p \downarrow q) \downarrow (p \downarrow q) p \wedge q = (p \downarrow q) \downarrow (p \downarrow q)$$

7. Proving Functional Completeness of \neg , \lor

Using De Morgan's Laws:

•
$$\neg p = \neg p \neg p = \neg p$$

$$\bullet \ \ p \vee q = p \vee qp \vee q = p \vee q$$

$$\bullet \ \ p \wedge q = \neg (\neg p \vee \neg q) p \wedge q = \neg (\neg p \vee \neg q)$$

8. Proving Functional Completeness of \neg, \rightarrow

Using transformations:

$$\neg p = \neg p \neg p = \neg p$$

$$\bullet \ \ p \lor q = \lnot(p \to \lnot q)p \lor q = \lnot(p \to \lnot q)$$

$$\bullet \ \ p \wedge q = \neg(p \to \neg q) \vee \neg(q \to \neg p) p \wedge q = \neg(p \to \neg q) \vee \neg(q \to \neg p)$$

9. Functional Completeness of ¬,⋄

Define $p \diamond q \equiv \neg (p \rightarrow q) p \diamond q \equiv \neg (p \rightarrow q)$:

- $\bullet \ \ \, \neg p = p \diamond p \neg p = p \diamond p$
- $\bullet \ \ p \lor q = \neg (\neg p \diamond \neg q) p \lor q = \neg (\neg p \diamond \neg q)$
- $\bullet \ \ p \wedge q = \neg((p \diamond \neg q) \diamond (q \diamond \neg p)) p \wedge q = \neg((p \diamond \neg q) \diamond (q \diamond \neg p))$

Normal Forms

10. Expressing R3, R4, and Q3 in \neg , \lor , \land

- (a) $R3 = \neg p \wedge q \wedge \neg rR_3 = \neg p \wedge q \wedge \neg r$
- (b) $R4 = \neg p \wedge q \wedge \neg rR_4 = \neg p \wedge q \wedge \neg r$
- (c) $R4 = \neg p \wedge \neg q \wedge \neg rR_4 = \neg p \wedge \neg q \wedge \neg r$
- ullet (d) $Q3=pee
 eg qee rQ_3=pee
 eg qee r$
- ullet (e) $Q4=pee
 eg qee
 eg rQ_4=pee
 eg r$
- (f) $Q8 = p \lor q \lor rQ_8 = p \lor q \lor r$

11. Finding the DNF of Logical Expressions

- $p \oplus q = (p \land \neg q) \lor (\neg p \land q)p \oplus q = (p \land \neg q) \lor (\neg p \land q)$
- $\bullet \ \ p \leftrightarrow q = (p \land q) \lor (\neg p \land \neg q) p \leftrightarrow q = (p \land q) \lor (\neg p \land \neg q)$
- $\bullet \ \, \neg(p \to q) = p \land \neg q \neg (p \to q) = p \land \neg q$

12. Truth Table R_1

р	q	r	R1	R2	R3
Т	Т	Т	Т	Т	F
Т	Т	F	F	Т	Т
Т	F	Т	Т	F	Т
Т	F	F	F	F	F
F	Т	Т	Т	Т	Т
F	Т	F	F	F	Т
F	F	Т	F	F	F
F	F	F	F	Т	F

13. Finding DNF and CNF of R_1

• DNF:

$$R1 = (p \wedge q \wedge r) \vee (p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r) R_1 = (p \wedge q \wedge r) \vee (p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r)$$

CNF:

$$R1 = (p \lor q \lor r) \land (p \lor \neg q \lor r) \land (\neg p \lor q \lor r)R_1 = (p \lor q \lor r) \land (p \lor \neg q \lor r) \land (\neg p \lor q \lor r)$$

14. Completing R_2 and Finding its CNF

Fill in the values for R_2 :

CNF:

15. Completing R_3 and Finding its DNF

• DNF:

$$R3 = (p \wedge q \wedge r) \vee (p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge r) \vee (\neg p \wedge \neg q \wedge \neg r) R_3 = (p \wedge q \wedge r) \vee (p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge \neg r) \wedge (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge \neg r) \wedge (\neg p \wedge q \wedge \neg$$

Circuit Boolean Expressions

Circuit	Boolean Expression		
D1	$ eg((x1 \wedge x2) \lor (x2 \wedge x3)) eg((x_1 \wedge x_2) \lor (x_2 \wedge x_3))$		
D2	$(x2\wedge x3)\vee (x1\oplus x2)(x_2\wedge x_3)\vee (x_1\oplus x_2)$		
D3	$ eg x 1 \wedge eg x 2 \wedge eg x 3 eg x_1 \wedge eg x_2 \wedge eg x_3$		
D4	$\neg (x3 \lor (x1 \oplus x2)) \neg (x_3 \lor (x_1 \oplus x_2))$		
D5	$x1 \wedge x2x_1 \wedge x_2$		
D6	$x1 \wedge (x1 \wedge x2)x_1 \wedge (x_1 \wedge x_2)$		
D7	$x1 \wedge x2x_1 \wedge x_2$		
D8	$x1 \oplus x2x_1 \oplus x_2$		
D9	$x1 \oplus x2x_1 \oplus x_2$		
D10	$(x1\oplus x2)ee (x1\oplus x2)(x_1\oplus x_2)ee (x_1\oplus x_2)$		
D11	$(x1 \wedge x2) ee (eg x1 \oplus x2)(x_1 \wedge x_2) ee (eg x_1 \oplus x_2)$		
D12	$(\lnot x1 \oplus x2) \lor (x1 \land x2)(\lnot x_1 \oplus x_2) \lor (x_1 \land x_2)$		