blatt_1_abgabe

October 25, 2018

1 SMD-Übungszettel Nr.1

Abgabe von: Sebastian Pape, Andrej Kusurmann und Steven Becker

1.1 Aufgabe 1

1.1.1 Aufgabenteil a)

```
In [1]: import numpy as np
        import matplotlib.pyplot as plt
        import scipy
        from scipy.optimize import newton, brentq, minimize
```

Definiere die in der Aufgabe gegeben Funktionen

Definiere die exakten Werte f_0 und g_0 der Gleichungen:

```
In [3]: f_0 = 2/3
g_0 = 2/3
```

Führe den relativen Fehler ein

Lege den Definititionsbereich fest und plotte den relativen Fehler

```
In [5]: x = np.logspace(-7,7, 1e6)
```

Ergebnisse für f(x)

```
In [6]: rel_error_array_f = rel_error(f_0, f(x))
        # x_values where the relative error is smaller than 1%
        x_where_rel_err_lower_1per_f = x[rel_error_array_f <= 0.01]</pre>
        # Getting the last element of the list because I want to upper limit
        print('f: x value where the relative error is 1%:',int(x_where_rel_err_lower_1per_f[-1]
        # x_values where the relative error is one, this equal to f(x) = 0.
        x_where_rel_err_is_one_f = x[rel_error_array_f == 1]
        # Getting the first element of the list beacause I want the lower limit
        print('f: x value where the relative error is 1, this is equal to f(x) = 0:',int(x_where
f: x value where the relative error is 1%: 41284
f: x value where the relative error is 1, this is equal to f(x) = 0: 165140
Ergebnis für g(x)
In [7]: rel_error_array_g = rel_error(g_0, g(x))
        # x_values where the relative error is smaller than 1%
        x_where_rel_err_lower_1per_g = x[rel_error_array_g <= 0.01]</pre>
        # Getting the last element of the list because I want to upper limit
        print('g: x value where the relative error is 1%:',x_where_rel_err_lower_1per_g[0], '\s
        # x_values where the relative error is one, this equal to f(x) = 0.
        x_where_rel_err_is_one_g = x[rel_error_array_g == 1]
        # Getting the first element of the list beacause I want the lower limit
        print('g: x value where the relative error is 1, this is equal to f(x) = 0:',x_where_re
g: x value where the relative error is 1%: 1.0967206986851394e-05
g: x value where the relative error is 1, this is equal to f(x) = 0: 8.733452070893184e-06
```

1.2 Aufgabenteil b)

Plotte die relativen Fehler und führe zusätzlich noch die Grenzen mit ein.

```
plt.axhline(0.1, color = 'r', alpha = 0.6, label = '1% Grenze')
plt.xscale('log')
plt.xlabel('x value')
plt.ylabel('relative error')
plt.legend()
plt.savefig('./results/A1_rel_error.pdf')
plt.show()
```


Was in dem Plot auffällt ist, dass f(x) ungenau für groSSe x ist. Analog ist g(x) ungenau für kleine x.

Erklärung für f(x): Bei groSSen Werten für x vernachlässigt der Computer die $\frac{1}{3}$ und das Resultat ist f(x) = 0.

Erklärung für g(x): Bei sehr kleinen Werten für x kommt es mit Zähler von g(x) zur Auslöschung, da x^3 noch kleiner wird. Weiterhin sind die Fluktuation (blau gefüllter Bereich), damit zu erklären, dass in g(x) durch x geteilt wird und somit sich der Term an einer Polstelle aufhält.

1.3 Aufgabe 2

1.3.1 Aufgabenteil a)

Verwende die Werte aus der Aufgabenstellung

```
In [9]: E = 50 #in units of GeV
    me = 511e-6 # in units of GeV
```

Numerische Instabilität ensteht unter anderem, wenn durch eine kleine Zeit geteilt wird. Aus diesem Grund schaue ich mir den Nenner des differntiellen Wirkungsquerschnitt σ an.

Lege den Definitionsbereich für θ fest.

```
In [12]: theta = np.linspace(0, 2*np.pi, 2e6)
```

/home/beckstev/.local/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: Deprecation """Entry point for launching an IPython kernel.

In der obigen Grafik ist deutlich zu erkennen dass der Nenner in Umgebung um $\theta = n\pi$, $n \in \mathbb{N}_0$ gegen Null strebt. In der Nähe der Polstellen ist der differentielle Wirkungsquerschnitt σ numerisch instabil. Zusätzlich findet im Nenner eine Subtraktion gleich groSSer Zahlen statt.

In der Grafik oben erkennt man die Auswirkung der Polstellen sehr gut.

1.3.2 Aufgabenteil b)

Ziel ist es den Nenner so umzuformulieren, das dieser numerisch stabiler ist. Verwende dazu

Nenner =
$$1 - \beta^2 \cos^2(\theta)$$

mit
 $\cos^2(\theta) = 1 - \sin^2(\theta)$
 $\beta^2 = 1 - \frac{1}{\gamma^2}$
folgt
Nenner = $1 - \left(1 - \frac{1}{\gamma^2}\right) \left(1 - \sin^2(\theta)\right)$
 $= \sin^2(\theta) + \frac{1}{\gamma^2} - \frac{1}{\gamma^2} \sin^2(\theta)$
 $= \sin^2(\theta) + \frac{1}{\gamma^2} \cos^2(\theta)$

Durch den Faktor $\frac{1}{\gamma^2}$ wird aber immer noch bei $\theta=0,\pi,\ldots$ durch eine sehr kleine Zahl geteilt. Aus diesem Grund erweitere ich σ mit γ

$$\sigma \propto \frac{2 + \sin^2(\theta)}{\sin^2(\theta) + \frac{1}{\gamma^2}\cos^2(\theta)}$$

$$\Leftrightarrow = \frac{(2 + \sin^2(\theta))\gamma^2}{\gamma^2\sin^2(\theta) + \cos^2(\theta)}$$

Im Nenner findet nun somit keine Subtraktion gleich groSSer Zahlen statt.

Definiere den neuen Wirkungsquerschnitt in python.

/home/beckstev/.local/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: Deprecation """Entry point for launching an IPython kernel.

Auf den ersten Blick zeigen sich keine numerische Effekte. Erst bei einer sehr genauen Betrachtung der Maxima sind numerische Effekte erkennbar.

```
In [18]: theta = np.linspace(np.pi-1e-7, np.pi+1e-7, 1e6)

    plt.plot(theta,new_differential_crosssection(E, me, theta), label = 'New Crosssection
    plt.plot(theta, differential_crosssection(E, beta(E, me), theta), label = 'Old Crossse

    plt.xlabel(r'$\theta$')
    plt.ylabel('value of the crosssection')
    plt.legend()

    plt.savefig('./results/A2_differenz.pdf')
```

/home/beckstev/.local/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: Deprecation """Entry point for launching an IPython kernel.

Ergebnis Deutlich zu erkennen sind numerische Effekte, Stufen, bei dem alten Wirkungsquerschnitt. Erst die Stabilisierung von γ führt zu einer glatten Kurve.

1.3.3 Aufgabenteil c)

Die Konditionszahl einer Funktion f(x) ist definiert als:

$$K(x) = \left| x \frac{f'(x)}{f(x)} \right|$$

Aus der Quotientenregel folgt für σ' :

$$\sigma' = \frac{\alpha^2}{s} \frac{2\sin(\theta)\cos(\theta)(-3\beta^2 + 1)}{(1 - \beta^2\cos^2(\theta))^2}$$

In [20]: theta = np.linspace(0,2*np.pi, 5e6)

/home/beckstev/.local/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:1: Deprecation """Entry point for launching an IPython kernel.

In [21]: K = np.abs(theta * derivation_differential_crosssection(E, beta(E,me), theta)/differential_crosssection

plt.savefig('./results/A2_konditionierung.pdf')

Der obige Plot zeigt in orange die Bereiche die eine schlechte Konditionierung respektive K > 1 besitzen. Der blaue Bereich ist gut Konditioniert $K \le 1$.

1.4 Aufgabe 3

Bestimmte zunächst die Nomierung N.

$$1 = \int_0^\infty N \exp\left(-\frac{mv^2}{2k_B T}\right) 4\pi v^2 dv$$
$$= 4N\pi \int_0^\infty \left(\exp\left(-\Gamma v^2\right)v\right) v dv$$

Partielle Integration

$$\begin{split} &=4N\pi\left(\left[-\frac{1}{2\Gamma}\mathrm{exp}\left(-\Gamma v^{2}\right)v\right]_{0}^{\infty}+\frac{1}{2\Gamma}\int_{0}^{\infty}\mathrm{exp}\left(-\Gamma v^{2}\right)\mathrm{d}v\right)\\ &=N\sqrt{\frac{\pi^{3}}{\Gamma^{3}}}\\ \Leftrightarrow &N=\left(\frac{m}{2\mathrm{k_{B}}T\pi}\right)^{\frac{3}{2}} \end{split}$$

1.4.1 Aufgabenteil a)

Die wahrscheinlichste Geschwindigkeit v_m . Der Wert v_m kann berechnet werden, indem der Hochpunkt der Verteilung f(v) gesucht wird:

$$f'(v_m) \stackrel{!}{=} 0$$

Dazu die Ableitung der Verteilung:

$$f'(v) = 8\pi N \exp(-\Gamma v^2) v (1 - v^2 \Gamma)$$

Daraus folgt mit der obigen Extremalbedingung für v_m :

$$v_m = \pm \sqrt{rac{1}{\Gamma}} = \pm \sqrt{rac{2 \mathrm{k_B} T}{m}}$$

Der Definitionsbereich der Geschwindigkeit ist $v \in \mathbb{R}^+$, deshalb wird nur die positive Lösung betrachtet.

1.4.2 Aufgabenteil b)

Der Mittelwert $\langle v \rangle$ Der Mittelwert einer Verteilung kann im allgemein über die erste Kommulante bestimmt werden:

$$\begin{split} \langle v \rangle &= \int v \, f(v) \mathrm{d}v \\ \langle v \rangle &= 4\pi N \int_0^\infty v^3 \exp\left(-\Gamma v^2\right) \mathrm{d}v \\ &= 4\pi N \left(\left[\frac{-v^2}{2\Gamma} \exp(-\Gamma v^2) \right]_0^\infty + \frac{1}{\Gamma} \int_0^\infty v \exp(-\Gamma v^2) \mathrm{d}v \right) \\ &= 4\pi N \left[-\frac{1}{2\Gamma^2} \exp(-\Gamma v^2) \right]_0^\infty \\ &= \frac{2\pi N}{\Gamma^2} = \frac{2}{\sqrt{\pi}} v_m \end{split}$$

1.4.3 Aufgabenteil c)

Bestimmung des Medians $v_{0,5}$. Berechnet werden kann der Median wie folgt:

$$\int_0^{v_{0,5}} f(v) \mathrm{d}v = \frac{1}{2}$$

Die Lösung der folgenden Aufgabe orrientiert sich an diesem Paper.

$$\frac{1}{2} = \int_{0}^{v_{0,5}} 4\pi N v^{2} \exp\left(-v^{2}/v_{m}\right) dv$$

$$= \frac{4}{\sqrt{\pi}v_{m}} \int_{0}^{v_{0,5}} \frac{v^{2}}{v_{m}^{2}} \exp\left(-\frac{v^{2}}{v_{m}^{2}}\right) dv$$
Substitution: $s := \frac{v}{v_{m}}, \quad v_{m} ds = dv$

$$\frac{1}{2} = \frac{4}{\sqrt{\pi}} \int_{0}^{s_{0,5}} s^{2} \exp\left(-s^{2}\right) ds$$

$$\Leftrightarrow \quad \frac{\sqrt{\pi}}{8} = \left[\frac{-s}{2} \exp\left(-s^{2}\right)\right]_{0}^{s_{0,5}} + \frac{1}{2} \int_{0}^{s_{0,5}} \exp\left(-s^{2}\right) ds$$

$$= \frac{-s_{0,5}}{2} \exp\left(-s_{0,5}^{2}\right) + \frac{\sqrt{\pi}}{4} \operatorname{erf}\left(s_{0,5}\right)$$

$$\Rightarrow \quad g(s_{0,5}) := \operatorname{erf}(s_{0,5}) - \frac{2}{\sqrt{\pi}} s_{0,5} \exp\left(-s_{0,5}^{2}\right) - \frac{1}{2} = 0$$

Bestimmte numerisch die Nullstelle der Funktion $g(s_{0.5})$.

Die Nullstelle der Funktion g liegt bei: 1.0876520317581668

Mit Hilfe der Nullstelle kann der Median allgemein über die Relation

$$s_{0,5} = \frac{v_{0,5}}{v_m}$$

$$\Leftrightarrow v_{0,5} = s_{0,5} v_m \approx 1,088 v_m$$

1.4.4 Aufgabenteil d.)

Bestimmen von v_{FWHM} .

$$\frac{f(v_m)}{2} = f(v_{\text{FWHM}})$$

$$\Leftrightarrow 0 = 2\left(\frac{v_{\text{FWHM}}}{v_m}\right)^2 \exp\left(-\left(\frac{v_{\text{FWHM}}}{v_m}\right)^2\right) - \frac{1}{e}$$

Substituiere wie in Aufgabenteil c), wie folgt: $u:=\frac{v_{FWHM}}{v_m}$ und erhalte damit:

$$2u^2 \exp(-u^2) - \frac{1}{e} = 0$$

Numerisch kann die Nullstelle durch das Newtonverfahren bestimmt werden. Die halbe Höhe der Verteilung wird zweimal erreicht, weshalb $v_{\text{FWHM}, 1}$ und $v_{\text{FWHM}, 2}$ gesucht werden.

$$v_{\text{FWHM, 1}} \approx 0.48 v_m$$

 $v_{\text{FWHM, 2}} \approx 1.64 v_m$

1.4.5 Aufgabenteil e.)

Bestimmen der Standardabweichung σ .

$$\sigma^{2} = \int_{0}^{\infty} (v - \bar{v})^{2} \cdot f(v) dv$$

$$\Rightarrow \sigma^{2} = \int_{0}^{\infty} \frac{4}{\sqrt{\pi}} (v^{2} - 2\bar{v}v + \bar{v}) \cdot \frac{v^{2}}{v_{m}^{3}} \exp\left(-\left(\frac{v^{2}}{v_{m}}\right)^{2}\right) dv$$

$$1.) \int_{0}^{\infty} v^{2} \cdot f(v) dv = \frac{3v_{m}^{2}}{2} \int_{0}^{\infty} f(v) dv = \frac{3v_{m}^{2}}{2}$$

$$2.) \int_{0}^{\infty} -2\bar{v}v \cdot f(v) dv = -2\bar{v}^{2} = -\frac{4v_{m}^{2}}{\pi}$$

$$3.) \int_{0}^{\infty} \bar{v}^{2} \cdot f(v) dv = \bar{v}^{2} = \frac{2v_{m}^{2}}{\pi}$$

$$\Rightarrow \sigma = \sqrt{v_{m}^{2} \left(\frac{3}{2} - \frac{4}{\pi}\right)} = v_{m} \sqrt{\left(\frac{3}{2} - \frac{4}{\pi}\right)}$$

1.5 Aufgabe 4

1.5.1 Aufgabenteil a.)

$$P(W_{\text{rot}} + W_{\text{blau}} = 9) = P(W_{\text{rot}} = 6 \mid W_{\text{blau}} = 3) + P(W_{\text{rot}} = 3 \mid W_{\text{blau}} = 6) + P(W_{\text{rot}} = 4 \mid W_{\text{blau}} = 5) + P(W_{\text{rot}} = 5 \mid W_{\text{blau}} = 4) = \frac{1}{9}$$

1.5.2 Aufgabenteil b.)

$$P(W_{\text{rot}} + W_{\text{blau}} \ge 9) = P(W_{\text{blau}} \ge 6 \mid W_{\text{rot}} = 3) + P(W_{\text{blau}} \ge 5 \mid W_{\text{rot}} = 4) + P(W_{\text{blau}} \ge 4 \mid W_{\text{rot}} = 5) + P(W_{\text{blau}} \ge 3 \mid W_{\text{rot}} = 6) = \frac{5}{18}$$

1.5.3 Aufgabenteil c.)

$$P(W_{\text{rot}} = 4 \mid W_{\text{blau}} = 5) + P(W_{\text{rot}} = 5 \mid W_{\text{blau}} = 4) = \frac{2}{36} = \frac{1}{18}$$

1.5.4 Aufgabenteil d.)

$$P(W_{\text{rot}} = 4 \land W_{\text{blau}} = 5) = \frac{1}{36}$$

1.5.5 Aufgabenteil e.)

$$P(W_{\text{blau}} = 5 \mid W_{\text{rot}} = 4) = \frac{1}{6}$$

1.5.6 Aufgabenteil f.)

$$P(W_{\text{rot}} + W_{\text{blau}} \ge 9 | W_{\text{rot}} = 4) = P(W_{\text{blau}} = 5) + P(W_{\text{blau}} = 6) = \frac{1}{3}$$

1.5.7 Aufgabenteil g.)

$$P(W_{\text{blau}} = 5 \mid W_{\text{rot}} = 4) = \frac{1}{6}$$

In []: