XRTM:

Implementation optimized equations

Greg McGarragh

$March\ 31,\ 2020,\ 18{:}19$

Contents

1	Con	nmon	9
2	Del ¹ 2.1 2.2 2.3	ta-M scaling Forward	9 10 10 10
			10
3	Sing	gle scattering	11
	3.1	Forward	11
			11
		3.1.2 Down	11
	3.2		11
	0.2	3.2.1 Up	11
		3.2.2 Down	12
	3.3	Adjoint of tangent linear	12
	5.5	3.3.1 Up	12
		· · · · · · · · · · · · · · · · · · ·	13
		5.5.2 Down	10
4	Pha	se matrices	14
	4.1	Scalar	14
		4.1.1 Forward	14
		4.1.2 Tangent linear	14
		4.1.3 Adjoint of tangent linear	14
	4.2	Vector	14
		4.2.1 Forward	14
		4.2.2 Tangent linear	14
		4.2.3 Adjoint of tangent linear	15

5	Loca	alr and t
	5.1	Forward
	5.2	Tangent linear
	5.3	Adjoint of tangent linear
6	Dou	bling 16
•	6.1	Forward
	6.2	Tangent linear
	6.3	Adjoint of tangent linear
	0.0	Trajoint of tangent inteat
7	Eige	en problem 18
	7.1	Tangent linear
	7.2	Adjoint of tangent linear
	7.3	Reduction of order
		7.3.1 Forward
		7.3.2 Tangent linear
		7.3.3 Adjoint of tangent linear
	7.4	Inversion of the reduction of order
		7.4.1 Forward
		7.4.2 Tangent linear
		7.4.3 Adjoint of tangent linear
8	Glol	bal R and T from Eigenvalues/matrix 20
O	GIO	8.0.4 Forward
		8.0.5 Tangent linear
		8.0.6 Adjoint of tangent linear
9		e approximation 22
	9.1	Forward
	9.2	Tangent linear
	9.3	Adjoint of tangent linear
10	Sola	r source 22
	10.1	Local solar source, classical, full order
		10.1.1 Forward
		10.1.2 Tangent linear
		10.1.3 Adjoint of tangent linear
	10.2	Local solar source, classical, reduced order
		10.2.1 Forward
		10.2.2 Tangent linear
		10.2.3 Adjoint of tangent linear
	10.3	Local solar source, Green's function
		10.3.1 Forward
		10.3.2 Tangent linear
		10.3.3 Adjoint of tangent linear
	10 4	Global solar source
	10.1	10.4.1 Forward
		- 1.V. 1.1 - 1.V. YY (#1.V

		10.4.2	Tangent linear	7
			Adjoint of tangent linear	7
	10.5	Scale g	lobal solar source	8
		10.5.1	Forward	8
			Tangent linear	8
			Adjoint of tangent linear	
11	The	rmal s	ource 28	3
	11.1		chermal source	3
		11.1.1	Forward	
		11.1.2	Tangent linear	
			Adjoint of tangent linear	
	11.2		thermal source	
			Forward	
			Tangent linear	
		11.2.3	Adjoint of tangent linear	J
10	ال ۸	: m	30	_
14	Add	_	$\mathrm{d}\left(\mathbf{R}_{13},\mathbf{T}_{31},\mathbf{S}_{31} ight)$	
	12.1	_	Forward \dots 30	
			Tangent linear	
		12.1.2	12.1.2.1 unlinearized + particular linearized	
			12.1.2.2 particular linearized + unlinearized	
			12.1.2.3 particular linearized + particular linearized	
			12.1.2.4 unlinearized + homogeneous linearized	
			12.1.2.5 homogeneous linearized + unlinearized	
			12.1.2.6 particular linearized + homogeneous linearized	
			12.1.2.7 homogeneous linearized + particular linearized	
			12.1.2.8 homogeneous linearized + homogeneous linearized	
		12.1.3	Adjoint of tangent linear	
			12.1.3.1 unlinearized + particular linearized	2
			12.1.3.2 particular linearized + unlinearized	2
			12.1.3.3 particular linearized + particular linearized	2
			12.1.3.4 unlinearized + homogeneous linearized	3
			12.1.3.5 homogeneous linearized + unlinearized	3
			12.1.3.6 particular linearized + homogeneous linearized	4
			12.1.3.7 homogeneous linearized + particular linearized	5
			12.1.3.8 homogeneous linearized + homogeneous linearized	5
	12.2	Downy	vard: $(\mathbf{R}_{31}, \mathbf{T}_{13}, \mathbf{S}_{13})$	6
		12.2.1	Forward	6
		12.2.2	Tangent linear	7
			12.2.2.1 unlinearized + particular linearized	7
			12.2.2.2 particular linearized + unlinearized	7
			12.2.2.3 particular linearized + particular linearized	
			12.2.2.4 unlinearized + homogeneous linearized	
			12.2.2.5 homogeneous linearized + unlinearized	3
			12.2.2.6 particular linearized + homogeneous linearized	8

	12.2.2.7 homogeneous linearized + particular linearized
	12.2.2.8 homogeneous linearized + homogeneous linearized 39
12.2.3	Adjoint of tangent linear
	12.2.3.1 unlinearized + particular linearized
	12.2.3.2 particular linearized + unlinearized
	12.2.3.3 particular linearized + particular linearized
	12.2.3.4 unlinearized + homogeneous linearized
	12.2.3.5 homogeneous linearized + unlinearized
	12.2.3.6 particular linearized + homogeneous linearized 41
	12.2.3.7 homogeneous linearized + particular linearized 41
	12.2.3.8 homogeneous linearized + homogeneous linearized 42
13 Radiance	43
13.1 Slab ra	adiance
13.1.1	Forward
13.1.2	Tangent linear
	13.1.2.1 U
	13.1.2.2 S 44
	13.1.2.3 L
	13.1.2.4 B
	Adjoint of tangent linear
13.2 TOA 1	radiance
	Forward
	Tangent linear
	Adjoint of tangent linear
	adiance
	Forward
13.3.2	Tangent linear
	13.3.2.1 U_B
	13.3.2.2 L.L
	13.3.2.3 B ₋ U
	13.3.2.4 B.S
	13.3.2.5 B.L
1000	13.3.2.6 B.B
13.3.3	Adjoint of tangent linear
	13.3.3.1 U.L
	13.3.3.2 L.P
10.4 T :	13.3.3.3 L.L
	al radiance
	Forward
	Tangent linear
13.4.3	Adjoint of tangent linear

14 Dis	crete o	rdinate method	17
14.1	Layer	quantities	47
			47
			47
		14.1.1.2 Tangent linear	47
			47
	14.1.2	Particular solution	48
		14.1.2.1 Forward	48
		14.1.2.2 Tangent linear	48
			48
14.2	2 Bound		48
			48
			49
			49
14.3		·	49
			49
			49
			49
		0	-9 49
	14.3.2	3	50
	11.0.2		50
			50
		9	50
15 Ma	trix ex	ponetial method	60
15.1	Layer	quantities	50
	15.1.1	Homogeneous solution	50
		15.1.1.1 Forward	50
		15.1.1.2 Tangent linear	50
			51
	15.1.2		51
		15.1.2.1 Forward	51
		15.1.2.2 Tangent linear	52
			52
15.2	2 Bound		52
	15.2.1	Forward	52
			52
			52
15.3	3 Radiar		52
	15.3.1		52
			52
			52
		9	52
	15.3.2	·	53
			53
			54

	15.3.2.3 Adjoint of tangent linear
16 Source fu	nction integration 55
16.1 Local	source, classical
	Upward
	16.1.1.1 Forward
	16.1.1.1.1 Solar source
	16.1.1.1.2 Thermal source
	16.1.1.1.3 Homogeneous solution
	16.1.1.2 Tangent linear
	16.1.1.2.1 Solar source
	16.1.1.2.3 Homogeneous solution
	16.1.1.3 Adjoint of tangent linear
	16.1.1.3.1 Solar source
	16.1.1.3.2 Thermal source
	16.1.1.3.3 Homogeneous solution
16.1.2	Downward
	16.1.2.1 Forward
	16.1.2.1.1 Solar source
	16.1.2.1.2 Thermal source
	16.1.2.1.3 Homogeneous solution
	16.1.2.2 Tangent linear
	16.1.2.2.1 Solar source
	16.1.2.2.2 Thermal source
	16.1.2.2.3 Homogeneous solution
	16.1.2.3 Adjoint of tangent linear
	16.1.2.3.1 Solar source
	16.1.2.3.2 Thermal source
	16.1.2.3.3 Homogeneous solution
16.2 Local	source, Green's function
	Upward
10.2.1	16.2.1.1 Forward
	16.2.1.1.1 Solar source
	16.2.1.1.2 Thermal source
	16.2.1.1.3 Homogeneous solution
	16.2.1.2 Tangent linear
	16.2.1.2.1 Solar source
	16.2.1.2.2 Thermal source
	16.2.1.2.3 Homogeneous solution
	16.2.1.3 Adjoint of tangent linear
	16.2.1.3.1 Solar source
	16.2.1.3.2 Thermal source
	16.2.1.3.3 Homogeneous solution
16.2.2	Downward
	16.2.2.1 Forward 57

			16.2.2.1.1	Solar so	urce											. 57
			16.2.2.1.2													
			16.2.2.1.3													
		16.	2.2.2 Tangent	_												
			16.2.2.2.1	Solar so												
			16.2.2.2.2	Therma												
			16.2.2.2.3													
		16.	2.2.3 Adjoint	_												
		10.	16.2.2.3.1	Solar so												
			16.2.2.3.2													
			16.2.2.3.3													
			10.2.2.0.0	110111080	.110000	2014	0101					 •		 ·	•	. 00
17	Suc	cessive or	ders of scatte	ering												58
		17.0.3 For	$rward \dots \dots$. 58
		17.0.4 Tax	ngent linear .													. 60
		17.0.5 Ad	ljoint of tangen	t linear .												. 60
18			f scattering													60
			near													
	18.3	Adjoint of	tangent linear											 •		. 60
10	TD															co
19		-stream														60
		_	near													
	19.3	Adjoint of	tangent linear					• •	• •	• •	• •	 •	•	 ٠	•	. 60
20	Four	r-stream														60
20																
			near													
		_	tangent linear													
	20.0	riajonii oi	tangent inicar					• •		• •	• •	 •	•	 •	•	. 00
21	Six-	stream														60
	21.1	Forward .														. 60
	21.2	Tangent li	near													. 60
	21.3	Adjoint of	tangent linear													. 60
22		OF Kerne														60
	22.1	Lambertia	ın													. 60
		22.1.1 For	$rward \dots \dots$. 60
		22.1.2 Ta	ngent linear .													. 60
		22.1.3 Ad	ljoint of tangen	t linear .												. 60
	22.2	Roujean .														. 60
		22.2.1 For	$rward \dots \dots$. 60
		22.2.2 Tai	ngent linear .													. 61
			ljoint of tangen													
	22.3	Li-commo	•									 _		 _		. 61

22.3.1	Forward
22.3.2	Tangent linear
22.3.3	Adjoint of tangent linear
22.4 Li-spa	rse
22.4.1	Forward
22.4.2	Tangent linear
22.4.3	Adjoint of tangent linear
22.5 Li-den	se
22.5.1	Forward
22.5.2	Tangent linear
22.5.3	Adjoint of tangent linear

Table 1: Definitions of common variables

Variable	Definition
\overline{i}	matrix row index
j	matrix column index
N	number of quadrature points
k	layer index
K	number of layers
l	level index (number of levels is $K+1$)
l	associated Legendre polynomial index (degree of the polynomial)
L	number of associated Legendre polynomials (maximum degree is $L-1$)
m	Fourier series expansion (azimuthal) term index and also the order of an associ-
	ated Legendre polynomial)
M	number of Fourier series expansion (azimuthal) terms (maximum order is $M-1$)
x_k	optical thickness of layer k
$ au_l$	optical depth from TOA to level l
v_k	optical depth from the top of layer k
ω	single scattering albedo
β	phase function Legendre expansion coefficient
λ_k	average secant of solar zenith angle for layer k (1/ μ_0 for plane-parallel)
$\mathcal{X}_{\mathrm{b},k}$	transmission of the solar beam in layer k
$\mathcal{T}_{\mathrm{b},l}$	transmission of the solar beam from TOA to level l
b_l	planck radiance at level l

1 Common

$$\mathcal{X}_{b,k} = e^{x_k \lambda_k} \tag{1}$$

$$\mathbf{M} = \operatorname{diag}[\mu_1 \dots \mu_N] \tag{2}$$

$$\mathbf{W} = \operatorname{diag}[a_1 \dots a_N] \tag{3}$$

2 Delta-M scaling

2.1 Forward

$$a_l = 2l + 1 \tag{4}$$

$$\beta_l' = \frac{\beta_l - a_l f}{1 - f} \tag{5}$$

$$\omega' = \frac{1 - f}{1 - \omega f} \omega \tag{6}$$

$$x' = (1 - \omega f)x\tag{7}$$

2.2 Tangent linear

$$\mathcal{L}(\beta_l') = \frac{\mathcal{L}(\beta_l) - a_l \mathcal{L}(f)}{1 - f} + (\beta_l - a_l f) \frac{\mathcal{L}(f)}{(1 - f)^2}$$
(8)

$$\mathcal{L}(\omega') = \frac{\mathcal{L}(\omega)(1-f) - \omega \mathcal{L}(f)}{(1-\omega f)} + \omega(1-f)\frac{\mathcal{L}(\omega)f + \omega \mathcal{L}(f)}{(1-\omega f)^2}$$
(9)

$$\mathcal{L}(x') = -\left[\mathcal{L}(\omega)f + \omega\mathcal{L}(f)\right]x + (1 - \omega f)\mathcal{L}(x) \tag{10}$$

2.3 Adjoint of tangent linear

2.3.1 β'_l

$$t_l = \frac{\mathcal{A}(\beta_l^\prime)}{1 - f} \tag{11}$$

$$\mathcal{A}(\beta_l) = \mathcal{A}(\beta_l) + t_l \tag{12}$$

$$\mathcal{A}(f) = \mathcal{A}(f) - a_l t_l \tag{13}$$

$$\mathcal{A}(f) = \mathcal{A}(f) + \mathcal{A}(\beta_l) \frac{\beta_l - a_l f}{(1 - f)^2}$$
(14)

$\mathbf{2.3.2}$ ω'

$$t = \frac{\mathcal{A}(\omega')}{1 - \omega f} \tag{15}$$

$$\mathcal{A}(\omega) = \mathcal{A}(\omega) + t(1 - f) \tag{16}$$

$$\mathcal{A}(f) = \mathcal{A}(f) - t\omega \tag{17}$$

$$t = \mathcal{A}(\omega') \frac{\omega(1-f)}{(1-\omega f)^2} \tag{18}$$

$$\mathcal{A}(\omega) = \mathcal{A}(\omega) + tf \tag{19}$$

$$\mathcal{A}(f) = \mathcal{A}(f) + t\omega \tag{20}$$

2.3.3 x'

$$t = -\mathcal{A}(x')x\tag{21}$$

$$\mathcal{A}(\omega) = \mathcal{A}(\omega) + tf \tag{22}$$

$$\mathcal{A}(f) = \mathcal{A}(f) + t\omega \tag{23}$$

$$\mathcal{A}(x) = \mathcal{A}(x) + \mathcal{A}(x')(1 - \omega f) \tag{24}$$

3 Single scattering

3.1 Forward

3.1.1 Up

$$a = \frac{1 - e^{-(\tau_l - \tau)/\mu} e^{-(\tau_l - \tau)\lambda_l}}{1/\mu + \lambda_l}$$
 (25)

$$b = \mathcal{T}_{b,l-1} e^{-(\tau - \tau_{l-1})\lambda_l} \omega_l P_l(\mu, \mu_0) a \tag{26}$$

$$I_{ss}^{\uparrow}(\tau) = \frac{F_0}{\mu} \sum_{l=L-1}^{0} I_{ss,l+1} e^{-(\tau_l - \tau)/\mu} + b$$
 (27)

3.1.2 Down

$$c = \frac{e^{-(\tau - \tau_{l-1})/\mu} - e^{-(\tau - \tau_{l-1})\lambda_l}}{\lambda_l - 1/\mu}$$
 (28)

$$d = \mathcal{T}_{b,l-1}\omega_l P_l(\mu,\mu_0)c \tag{29}$$

$$I_{ss}^{\downarrow}(\tau) = \frac{F_0}{\mu} \sum_{l=1}^{L} I_{ss,l-1} e^{-(\tau - \tau_{l-1})/\mu} + d$$
(30)

3.2 Tangent linear

3.2.1 Up

$$\mathcal{L}(a) = \frac{\left[\mathcal{L}(\tau_l) - \mathcal{L}(\tau)\right] / \mu e^{-(\tau_l - \tau)/\mu} e^{-(\tau_l - \tau)/\mu} \left\{-\left[\mathcal{L}(\tau_l) - \mathcal{L}(\tau)\right] \lambda_l - (\tau_l - \tau) \mathcal{L}(\lambda_l)\right\} e^{-(\tau_l - \tau)\lambda_l} - a\mathcal{L}(\lambda_l)}{1/\mu + \lambda_l}$$
(31)

$$\mathcal{L}(b) = \mathcal{L}(\mathcal{T}_{b,l-1})e^{-(\tau-\tau_{l-1})\lambda_{l}}\omega_{l}P_{l}(\mu,\mu_{0})a
+ -\mathcal{T}_{b,l-1}\left\{ \left[\mathcal{L}(\tau) - \mathcal{L}(\tau_{l-1}) \right] \lambda_{l} + (\tau-\tau_{l-1})\mathcal{L}(\lambda_{l}) \right\} e^{-(\tau-\tau_{l-1})\lambda_{l}}\omega_{l}P_{l}(\mu,\mu_{0})a
+ \mathcal{T}_{b,l-1}e^{-(\tau-\tau_{l-1})\lambda_{l}}\mathcal{L}(\omega_{l})P_{l}(\mu,\mu_{0})a
+ \mathcal{T}_{b,l-1}e^{-(\tau-\tau_{l-1})\lambda_{l}}\omega_{l}\mathcal{L}\left[P_{l}(\mu,\mu_{0}) \right] a
+ \mathcal{T}_{b,l-1}e^{-(\tau-\tau_{l-1})\lambda_{l}}\omega_{l}P_{l}(\mu,\mu_{0})\mathcal{L}(a)$$
(32)

$$K_{\rm ss}^{\uparrow}(\tau) = \frac{F_0}{\mu} \sum_{l=L-1}^{0} K_{\rm ss,l+1}^{\uparrow} e^{-(\tau_l - \tau)/\mu} - I_{\rm ss,l+1}^{\uparrow} \left[\mathcal{L}(\tau_l) - \mathcal{L}(\tau) \right] / \mu e^{-(\tau_l - \tau)/\mu} + b \tag{33}$$

3.2.2 Down

$$\mathcal{L}(c) = \frac{-\left[\mathcal{L}(\tau) - \mathcal{L}(\tau_{l-1})\right]/\mu e^{-(\tau - \tau_{l-1})/\mu} - \left\{-\left[\left(\mathcal{L}(\tau) - \mathcal{L}(\tau_{l-1})\right]\lambda_l - (\tau - \tau_{l-1})\mathcal{L}(\lambda_l)\right\} e^{-(\tau - \tau_{l-1})\lambda_l} - c\mathcal{L}(\lambda_l)}{\lambda_l - 1/\mu}$$
(34)

$$\mathcal{L}(d) = \mathcal{L}(\mathcal{T}_{b,l-1})\omega_{l}P_{l}(\mu,\mu_{0})c$$

$$+ \mathcal{T}_{b,l-1}\mathcal{L}(\omega_{l})P_{l}(\mu,\mu_{0})c$$

$$+ \mathcal{T}_{b,l-1}\omega_{l}\mathcal{L}\left[P_{l}(\mu,\mu_{0})\right]c$$

$$+ \mathcal{T}_{b,l-1}\omega_{l}P_{l}(\mu,\mu_{0})\mathcal{L}(c)$$

$$(35)$$

$$K_{\rm ss}^{\downarrow}(\tau) = \frac{F_0}{\mu} \sum_{l=1}^{L} K_{\rm ss,l-1}^{\downarrow} e^{-(\tau - \tau_{l-1})/\mu} - I_{\rm ss,l-1}^{\downarrow} \left[\mathcal{L}(\tau) - \mathcal{L}(\tau_{l-1}) \right] / \mu e^{-(\tau - \tau_{l-1})/\mu} + d$$
 (36)

3.3 Adjoint of tangent linear

3.3.1 Up

$$\mathcal{A}(I_{\mathrm{ss},l+1}^{\uparrow}) = \mathcal{A}(I_{\mathrm{ss},l+1}^{\uparrow}) + \mathcal{A}\left[I_{\mathrm{ss}}^{\uparrow}(\tau)\right] \frac{F_0}{\mu} e^{-(\tau_l - \tau)/\mu} \tag{37}$$

$$\mathcal{A}(\tau_l) = \mathcal{A}(\tau_l) - \mathcal{A}\left[I_{\rm ss}^{\uparrow}(\tau)\right]I_{\rm ss,l+1}^{\uparrow} \frac{F_0}{\mu^2} e^{-(\tau_l - \tau)/\mu} \tag{38}$$

$$\mathcal{A}(\tau) = \mathcal{A}(\tau) + \mathcal{A}\left[I_{\rm ss}^{\uparrow}(\tau)\right]I_{\rm ss,l+1}^{\uparrow}\frac{F_0}{\mu^2}e^{-(\tau_l - \tau)/\mu}$$
(39)

$$\mathcal{A}(b) = \mathcal{A}(b) + \mathcal{A}\left[I_{ss}^{\uparrow}(\tau)\right] \frac{F_0}{\mu} \tag{40}$$

$$\mathcal{A}(\mathcal{T}_{b,l-1}) = \mathcal{A}(\mathcal{T}_{b,l-1}) + \mathcal{A}(b)e^{-(\tau - \tau_{l-1})\lambda_l}\omega_l P_l(\mu, \mu_0)a$$
(41)

$$\mathcal{A}(\tau) = \mathcal{A}(\tau) - \mathcal{A}(b)\mathcal{T}_{b,l-1}\lambda_l e^{-(\tau - \tau_{l-1})\lambda_l}\omega_l P_l(\mu, \mu_0)a \tag{42}$$

$$\mathcal{A}(\tau_{l-1}) = \mathcal{A}(\tau_{l-1}) + \mathcal{A}(b)\mathcal{T}_{b,l-1}\lambda_l e^{-(\tau - \tau_{l-1})\lambda_l}\omega_l P_l(\mu, \mu_0)a$$
(43)

$$\mathcal{A}(\lambda_l) = \mathcal{A}(\lambda_l) - \mathcal{A}(b)\mathcal{T}_{b,l-1}(\tau - \tau_{l-1})e^{-(\tau - \tau_{l-1})\lambda_l}\omega_l P_l(\mu, \mu_0)a$$
(44)

$$\mathcal{A}(\omega_l) = \mathcal{A}(\omega_l) + \mathcal{A}(b)\mathcal{T}_{b,l-1}e^{-(\tau - \tau_{l-1})\lambda_l}P_l(\mu, \mu_0)a$$
(45)

$$\mathcal{A}\left[P_l(\mu,\mu_0)\right] = \mathcal{A}\left[P_l(\mu,\mu_0)\right] + \mathcal{A}(b)\mathcal{T}_{b,l-1}e^{-(\tau-\tau_{l-1})\lambda_l}\omega_l a \tag{46}$$

$$\mathcal{A}(a) = \mathcal{A}(a) + \mathcal{A}(b)\mathcal{T}_{b,l-1}e^{-(\tau - \tau_{l-1})\lambda_l}\omega_l P_l(\mu, \mu_0)$$
(47)

$$t = \frac{\mathcal{A}(a)}{1/\mu + \lambda_l} \tag{48}$$

$$\mathcal{A}(\eta) = \mathcal{A}(\eta) + t \frac{1}{\mu} e^{-(\eta - \tau)/\mu} e^{-(\eta - \tau)\lambda_l}$$
(49)

$$\mathcal{A}(\tau) = \mathcal{A}(\tau) - t \frac{1}{\mu} e^{-(\tau_l - \tau)/\mu} e^{-(\tau_l - \tau)\lambda_l}$$
(50)

$$\mathcal{A}(\tau_l) = \mathcal{A}(\tau_l) + te^{-(\tau_l - \tau)/\mu} \lambda_l e^{-(\tau_l - \tau)\lambda_l}$$
(51)

$$\mathcal{A}(\tau) = \mathcal{A}(\tau) - te^{-(\tau_l - \tau)/\mu} \lambda_l e^{-(\tau_l - \tau)\lambda_l}$$
(52)

$$\mathcal{A}(\lambda_l) = \mathcal{A}(\lambda_l) + te^{-(\tau_l - \tau)/\mu} (\tau_l - \tau) e^{-(\tau_l - \tau)\lambda_l}$$
(53)

$$\mathcal{A}(\lambda_l) = \mathcal{A}(\lambda_l) - ta \tag{54}$$

3.3.2 Down

$$\mathcal{A}(I_{\mathrm{ss},l-1}^{\downarrow}) = \mathcal{A}(I_{\mathrm{ss},l-1}^{\downarrow}) + \mathcal{A}\left[I_{\mathrm{ss}}^{\downarrow}(\tau)\right] \frac{F_0}{\mu} e^{-(\tau - \tau_{l-1})/\mu} \tag{55}$$

$$\mathcal{A}(\tau) = \mathcal{A}(\tau) - \mathcal{A}\left[I_{ss}^{\downarrow}(\tau)\right]I_{ss,l-1}^{\downarrow} \frac{F_0}{\mu^2} e^{-(\tau - \tau_{l-1})/\mu}$$
(56)

$$\mathcal{A}(\tau_{l-1}) = \mathcal{A}(\tau_{l-1}) + \mathcal{A}\left[I_{ss,l-1}^{\downarrow} \left(\tau\right)\right] I_{ss,l-1}^{\downarrow} \frac{F_0}{\mu^2} e^{-(\tau - \tau_{l-1})/\mu}$$
(57)

$$\mathcal{A}(d) = \mathcal{A}(d) + \mathcal{A}\left[I_{\rm ss}^{\downarrow}(\tau)\right] \frac{F_0}{\mu} \tag{58}$$

$$\mathcal{A}(\mathcal{T}_{b,l-1}) = \mathcal{A}(\mathcal{T}_{b,l-1}) + \mathcal{A}(d)\omega_l P_l(\mu,\mu_0)c$$
(59)

$$\mathcal{A}(\omega_l) = \mathcal{A}(\omega_l) + \mathcal{A}(d)\mathcal{T}_{b,l-1}P_l(\mu,\mu_0)c$$
(60)

$$\mathcal{A}\left[P_l(\mu,\mu_0)\right] = \mathcal{A}\left[P_l(\mu,\mu_0)\right] + \mathcal{A}(d)\mathcal{T}_{b,l-1}\omega_l c \tag{61}$$

$$\mathcal{A}(c) = \mathcal{A}(c) + \mathcal{A}(d)\mathcal{T}_{b,l-1}\omega_l P_l(\mu,\mu_0)$$
(62)

$$t = \frac{\mathcal{A}(c)}{\lambda_l - 1/\mu} \tag{63}$$

$$\mathcal{A}(\tau) = \mathcal{A}(\tau) - t \frac{1}{\mu} e^{-(\tau - \tau_{l-1})/\mu} \tag{64}$$

$$\mathcal{A}(\tau_{l-1}) = \mathcal{A}(\tau_{l-1}) + t \frac{1}{\mu} e^{-(\tau - \tau_{l-1})/\mu}$$
(65)

$$\mathcal{A}(\tau) = \mathcal{A}(\tau) + t\lambda_l e^{-(\tau - \tau_{l-1})\lambda_l} \tag{66}$$

$$\mathcal{A}(\tau_{l-1}) = \mathcal{A}(\tau_{l-1}) - t\lambda_l e^{-(\tau - \tau_{l-1})\lambda_l}$$
(67)

$$\mathcal{A}(\lambda_l) = \mathcal{A}(\lambda_l) + t(\tau - \tau_{l-1})e^{-(\tau - \tau_{l-1})\lambda_l}$$
(68)

$$\mathcal{A}(\lambda_l) = \mathcal{A}(\lambda_l) - tc \tag{69}$$

4 Phase matrices

- 4.1 Scalar
- 4.1.1 Forward
- 4.1.2 Tangent linear
- 4.1.3 Adjoint of tangent linear
- 4.2 Vector
- **4.2.1** Forward

$$\mathbf{B}_{l} = \begin{bmatrix} a_{1,l} & -b_{1,l} & 0 & 0\\ -b_{1,l} & a_{2,l} & 0 & 0\\ 0 & 0 & a_{3,l} & b_{2,l}\\ 0 & 0 & -b_{2,l} & a_{4,l} \end{bmatrix}$$
(70)

$$\mathbf{P}^{++} = \sum_{l=m}^{2n-1} \mathbf{\Pi}_l \mathbf{B}_l \mathbf{\Pi}_l^T \tag{71}$$

$$f(x) = \begin{cases} 1 & \text{if } \text{mod}(x - m) = 0\\ -1 & \text{otherwise} \end{cases}$$
 (72)

$$\mathbf{P}^{-+} = \sum_{l=m}^{2n-1} f(l) \mathbf{\Pi}_l \mathbf{B}_l \mathbf{D} \mathbf{\Pi}_l^T$$
 (73)

4.2.2 Tangent linear

$$\mathcal{L}(\mathbf{B}_l) = \begin{bmatrix}
\mathcal{L}(a_{1,l}) & -\mathcal{L}(b_{1,l}) & 0 & 0 \\
-\mathcal{L}(b_{1,l}) & \mathcal{L}(a_{2,l}) & 0 & 0 \\
0 & 0 & \mathcal{L}(a_{3,l}) & \mathcal{L}(b_{2,l}) \\
0 & 0 & -\mathcal{L}(b_{2,l}) & \mathcal{L}(a_{4,l})
\end{bmatrix}$$
(74)

$$\mathcal{L}(\mathbf{P}^{++}) = \sum_{l=m}^{2n-1} \mathbf{\Pi}_l \mathcal{L}(\mathbf{B}_l) \mathbf{\Pi}_l^T$$
 (75)

$$\mathcal{L}(\mathbf{P}^{-+}) = \sum_{l=m}^{2n-1} f(l) \mathbf{\Pi}_l \mathcal{L}(\mathbf{B}_l) \mathbf{D} \mathbf{\Pi}_l^T$$
(76)

4.2.3 Adjoint of tangent linear

$$\mathcal{A}(\mathbf{B}_l) = \sum_{l=m}^{2n-1} \mathbf{\Pi}_l^T \mathcal{A}(\mathbf{P}^{++}) \mathbf{\Pi}_l$$
 (77)

$$\mathcal{A}(\mathbf{B}_l) = \mathcal{A}(\mathbf{B}_l) + \sum_{l=m}^{2n-1} f(l) \mathbf{\Pi}_l^T \mathcal{A}(\mathbf{P}^{-+}) \mathbf{\Pi}_l \mathbf{D}$$
 (78)

$$\mathcal{A}(a_{1,l}) = \mathcal{A}(B_{l,1,1}) \tag{79}$$

$$\mathcal{A}(a_{2,l}) = \mathcal{A}(B_{l,2,2}) \tag{80}$$

$$\mathcal{A}(a_{3,l}) = \mathcal{A}(B_{l,3,3}) \tag{81}$$

$$\mathcal{A}(a_{4,l}) = \mathcal{A}(B_{l,4,4}) \tag{82}$$

$$\mathcal{B}(b_{1,l}) = -\mathcal{A}(B_{l,1,2}) - \mathcal{A}(B_{l,2,1}) \tag{83}$$

$$\mathcal{B}(b_{2,l}) = \mathcal{A}(B_{l,3,4}) - \mathcal{A}(B_{l,4,3}) \tag{84}$$

5 Local r and t

5.1 Forward

$$\mathbf{r} = -(1 + \delta_{0,m}) \frac{\omega}{4} \mathbf{M}^{-1} \mathbf{P}^{-} \mathbf{W}$$
(85)

$$\mathbf{t} = -\mathbf{M}^{-1} + (1 + \delta_{0,m}) \frac{\omega}{4} \mathbf{M}^{-1} \mathbf{P}^{+} \mathbf{W}$$
(86)

5.2 Tangent linear

$$\mathcal{L}(\mathbf{r}) = -(1 + \delta_{0,m}) \frac{1}{4} \mathbf{M}^{-1} \left[\mathcal{L}(\omega) \mathbf{P}^{-} + \omega \mathcal{L}(\mathbf{P}^{-}) \right] \mathbf{W}$$
 (87)

$$\mathcal{L}(\mathbf{t}) = (1 + \delta_{0,m}) \frac{1}{4} \mathbf{M}^{-1} \left[\mathcal{L}(\omega) \mathbf{P}^{+} + \omega \mathcal{L}(\mathbf{P}^{+}) \right] \mathbf{W}$$
 (88)

5.3 Adjoint of tangent linear

$$\mathbf{t} = -(1 + \delta_{0,m}) \frac{1}{4} \mathbf{M}^{-1} \mathcal{A}(\mathbf{r}) \mathbf{W}$$
(89)

$$\mathcal{A}(\omega) = \sum_{i}^{n} \sum_{j}^{n} \mathbf{t}_{ij} (\mathbf{P}^{-})_{ij}$$
(90)

$$\mathcal{A}(\mathbf{P}^{-}) = \omega \mathbf{t} \tag{91}$$

$$\mathbf{t} = -(1 + \delta_{0,m}) \frac{1}{4} \mathbf{M}^{-1} \mathcal{A}(\mathbf{t}) \mathbf{W}$$
(92)

$$\mathcal{A}(\omega) = \mathcal{A}(\omega) + \sum_{i}^{n} \sum_{j}^{n} \mathbf{t}_{ij}(\mathbf{P}^{+})_{ij}$$
(93)

$$\mathcal{A}(\mathbf{P}^+) = \omega \mathbf{t} \tag{94}$$

6 Doubling

6.1 Forward

$$\mathcal{T}_0 = e^{-d\tau\lambda} \tag{95}$$

$$\mathcal{L}(\mathcal{T}_0) = \left[-\mathcal{L}(d\tau)\lambda \right] \mathcal{T}_0 \tag{96}$$

$$f_0 = (b_{l+1}/b_l - 1)/n_{\text{doub}}^2 \tag{97}$$

$$\mathcal{L}(f_0) = (\mathcal{L}(b_{l+1}) - b_{l+1}\mathcal{L}(b_l)/b_l)/b_l/n_{\text{doub}}^2$$
(98)

$$\mathbf{P}_n = (\mathbf{E} - \mathbf{R}_n \mathbf{R}_n)^{-1} \tag{99}$$

$$\mathbf{A}_n = \mathbf{T}_n \mathbf{P}_n \tag{100}$$

$$\mathbf{B}_n = \mathbf{R}_n \mathbf{T}_n \tag{101}$$

$$\mathbf{a}_n = \mathbf{R}_n \mathbf{S} \mathbf{e}_n^- + \mathbf{S} \mathbf{e}_n^+ \mathcal{T}_n \tag{102}$$

$$\mathbf{b}_n = \mathbf{R}_n \mathbf{S} \mathbf{e}_n^+ \mathcal{T}_n + \mathbf{S} \mathbf{e}_n^- \tag{103}$$

$$\mathbf{c}_n = \mathbf{R}_n \mathbf{L}_n^- + \mathbf{L}_n^+ \tag{104}$$

$$\mathbf{d}_n = \mathbf{R}_n \mathbf{L}_n^+ + \mathbf{L}_n^- \tag{105}$$

$$\mathbf{e}_n = \mathbf{R}_n \mathbf{S} \mathbf{l}_n^- + \mathbf{S} \mathbf{l}_n^+ + \mathbf{L}_n^+ f \tag{106}$$

$$\mathbf{f}_n = \mathbf{R}_n(\mathbf{Sl}_n^+ + \mathbf{L}_n^+ f) + \mathbf{Sl}_n^- \tag{107}$$

$$\mathcal{T}_{n+1} = \mathcal{T}_n^2 \tag{108}$$

$$f_{n+1} = 2f_n \tag{109}$$

$$\mathbf{S}\mathbf{e}_{n+1}^{+} = \mathbf{A}_{n}\mathbf{a}_{n} + \mathbf{S}\mathbf{e}_{n}^{+} \tag{110}$$

$$\mathbf{S}\mathbf{e}_{n+1}^{-} = \mathbf{A}_n \mathbf{b}_n + \mathbf{S}\mathbf{e}_n^{-} \mathcal{T}_n \tag{111}$$

$$\mathbf{L}_{n+1}^{+} = \mathbf{A}_n \mathbf{c}_n + \mathbf{L}_n^{+} \tag{112}$$

$$\mathbf{L}_{n+1}^{-} = \mathbf{A}_n \mathbf{d}_n + \mathbf{L}_n^{-} \tag{113}$$

$$\mathbf{Sl}_{n+1}^{+} = \mathbf{A}_n \mathbf{e}_n + \mathbf{Sl}_n^{+} \tag{114}$$

$$\mathbf{Sl}_{n+1}^{-} = \mathbf{A}_n \mathbf{f}_n + \mathbf{Sl}_n^{-} + \mathbf{L}_n^{-} f \tag{115}$$

$$\mathbf{R}_{n+1} = \mathbf{R}_n + \mathbf{A}_n \mathbf{B}_n \tag{116}$$

$$\mathbf{T}_{n+1} = \mathbf{A}_n \mathbf{T}_n \tag{117}$$

6.2 Tangent linear

$$\mathcal{L}(\mathcal{T}_{n+1}) = 2\mathcal{L}(\mathcal{T}_n)\mathcal{T}_n \tag{118}$$

$$\mathcal{L}(f_{n+1}) = 2\mathcal{L}(f_n) \tag{119}$$

$$\mathcal{L}(\mathbf{A}_n) = \mathcal{L}(\mathbf{T}_n)\mathbf{P}_n + \mathbf{A}_n(\mathcal{L}(\mathbf{R}_n)\mathbf{R}_n + \mathbf{R}_n\mathcal{L}(\mathbf{R}_n))\mathbf{P}_n$$
(120)

$$\mathcal{L}(\mathbf{S}\mathbf{e}_{n+1}^{+}) = \mathcal{L}(\mathbf{A}_{n})\mathbf{a} + \mathbf{A}_{n}(\mathcal{L}(\mathbf{R}_{n})\mathbf{S}\mathbf{e}_{n}^{-} + \mathbf{R}_{n}\mathcal{L}(\mathbf{S}\mathbf{e}_{n}^{-}) + \mathcal{L}(\mathbf{S}\mathbf{e}_{n}^{+})\mathcal{T}_{n} + \mathbf{S}\mathbf{e}_{n}^{+}\mathcal{L}(\mathcal{T}_{n})) + \mathcal{L}(\mathbf{S}\mathbf{e}_{n}^{+})$$
(121)

$$\mathcal{L}(\mathbf{S}\mathbf{e}_{n+1}^{-}) = \mathcal{L}(\mathbf{A}_n)\mathbf{b}_n + \mathbf{A}_n[\mathcal{L}(\mathbf{R}_n)\mathbf{S}\mathbf{e}_n^{+}\mathcal{T}_n + \mathbf{R}_n(\mathcal{L}(\mathbf{S}\mathbf{e}_n^{+})\mathcal{T}_n + \mathbf{S}\mathbf{e}_n^{+}\mathcal{L}(\mathcal{T}_n)) + \mathcal{L}(\mathbf{S}\mathbf{e}_n^{-})] + \mathcal{L}(\mathbf{S}\mathbf{e}_n^{-})\mathcal{T}_n + \mathbf{S}\mathbf{e}_n^{-}\mathcal{L}(\mathcal{T}_n)$$
(122)

$$\mathcal{L}(\mathbf{L}_{n+1}^{+}) = \mathbf{A}_{n} \left[\mathcal{L}(\mathbf{R}_{n}\mathcal{L}(\mathbf{L}_{n}^{-}) + \mathcal{L}(\mathbf{L}_{n}^{+})) \right] + \mathcal{L}(\mathbf{L}_{n}^{+})$$
(123)

$$\mathcal{L}(\mathbf{L}_{n+1}^{-}) = \mathbf{A}_n \left[\mathcal{L}(\mathbf{R}_n \mathcal{L}(\mathbf{L}_n^{+}) + \mathcal{L}(\mathbf{L}_n^{-})) \right] + \mathcal{L}(\mathbf{L}_n^{-})$$
(124)

$$\mathcal{L}(\mathbf{L}_{n+1}^{+}) = \mathcal{L}(\mathbf{A}_n)\mathbf{c}_n + \mathbf{A}_n \left[\mathcal{L}(\mathbf{R}_n)\mathbf{L}_n^{-} + \mathbf{R}_n\mathcal{L}(\mathbf{L}_n^{-}) + \mathcal{L}(\mathbf{L}_n^{+}) \right] + \mathcal{L}(\mathbf{L}_n^{+})$$
(125)

$$\mathcal{L}(\mathbf{L}_{n+1}^{-}) = \mathcal{L}(\mathbf{A}_n)\mathbf{d}_n + \mathbf{A}_n \left[\mathcal{L}(\mathbf{R}_n)\mathbf{L}_n^{+} + \mathbf{R}_n\mathcal{L}(\mathbf{L}_n^{+}) + \mathcal{L}(\mathbf{L}_n^{-}) \right] + \mathcal{L}(\mathbf{L}_n^{-})$$
(126)

$$\mathcal{L}(\mathbf{Sl}_{n+1}^{+}) = \mathbf{A}_n \left[\mathbf{R}_n \mathcal{L}(\mathbf{Sl}_n^{-}) + \mathcal{L}(\mathbf{Sl}_n^{+}) + \mathcal{L}(\mathbf{L}_n^{+}) f + \mathbf{L}_n^{+} \mathcal{L}(f) \right] + \mathcal{L}(\mathbf{Sl}_n^{+})$$
(127)

$$\mathcal{L}(\mathbf{Sl}_{n+1}^{-}) = \mathbf{A}_n \left[\mathbf{R}_n (\mathcal{L}(\mathbf{Sl}_n^{+}) + \mathcal{L}(\mathbf{L}_n^{+})f + \mathbf{L}_n^{+} \mathcal{L}(f)) + \mathcal{L}(\mathbf{Sl}_n^{-}) \right] + \mathcal{L}(\mathbf{Sl}_n^{-}) + \mathcal{L}(\mathbf{L}_n^{-})f + \mathbf{L}_n^{-} \mathcal{L}(f)$$
(128)

$$\mathcal{L}(\mathbf{Sl}_{n+1}^+) = \mathcal{L}(\mathbf{A}_n)\mathbf{e}_n + \mathbf{A}_n \left[\mathcal{L}(\mathbf{R}_n)\mathbf{Sl}_n^- + \mathbf{R}_n \mathcal{L}(\mathbf{Sl}_n^-) + \mathcal{L}(\mathbf{Sl}_n^+) + \mathcal{L}(\mathbf{L}_n^+)f + \mathbf{L}_n^+ \mathcal{L}(f) \right] + \mathcal{L}(\mathbf{Sl}_n^+)$$
(129)

$$\mathcal{L}(\mathbf{Sl}_{n+1}^{-}) = \mathcal{L}(\mathbf{A}_n)\mathbf{f}_n + \mathbf{A}_n \left[\mathcal{L}(\mathbf{R}_n)(\mathbf{Sl}_n^{+} + \mathbf{L}_n^{+}f) + \mathbf{R}_n(\mathcal{L}(\mathbf{Sl}_n^{+}) + \mathcal{L}(\mathbf{L}_n^{+})f + \mathbf{L}_n^{+}\mathcal{L}(f)) + \mathcal{L}(\mathbf{Sl}_n^{-}) \right] + \mathcal{L}(\mathbf{Sl}_n^{-}) + \mathcal{L}(\mathbf{L}_n^{-})f + \mathbf{L}_n^{-}\mathcal{L}(f)$$
(130)

$$\mathcal{L}(\mathbf{R}_{n+1}) = \mathcal{L}(\mathbf{R}_n) + \mathcal{L}(\mathbf{A}_n)\mathbf{B}_n + \mathbf{A}_n(\mathcal{L}(\mathbf{R}_n)\mathbf{T}_n + \mathbf{R}_n\mathcal{L}(\mathbf{T}_n))$$
(131)

$$\mathcal{L}(\mathbf{T}_{n+1}) = \mathcal{L}(\mathbf{A}_n)\mathbf{T}_n + \mathbf{A}_n\mathcal{L}(\mathbf{T}_n)$$
(132)

6.3 Adjoint of tangent linear

7 Eigen problem

7.1 Tangent linear

$$\mathbf{A} = \begin{bmatrix} 2\xi_{i}\chi_{1i} & \xi_{i}^{2} - \Gamma_{11} & -\Gamma_{12} & \cdots & -\Gamma_{1n} \\ 2\xi_{i}\chi_{2i} & -\Gamma_{21} & \xi_{i}^{2} - \Gamma_{22} & \cdots & -\Gamma_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2\xi_{i}\chi_{ni} & -\Gamma_{n1} & -\Gamma_{n2} & \cdots & \xi_{i}^{2} - \Gamma_{nn} \\ 0 & \chi_{1i} & \chi_{1i} & \cdots & \chi_{ni} \end{bmatrix}$$
(133)

$$\mathbf{b} = \begin{bmatrix} \mathbf{\Delta} \chi_i \\ 0 \end{bmatrix} = \begin{bmatrix} b_i \\ b_i \\ \vdots \\ b_n \\ 0 \end{bmatrix} = \begin{bmatrix} \sum_j^n \mathcal{L}(\Gamma_{1j})\chi_{j,i} \\ \sum_j^n \mathcal{L}(\Gamma_{2j})\chi_{j,i} \\ \vdots \\ \sum_j^n \mathcal{L}(\Gamma_{nj})\chi_{j,i} \\ 0 \end{bmatrix}$$
(134)

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \begin{bmatrix} \mathcal{L}(\xi_i) \\ \mathcal{L}(\chi_{1i}) \\ \mathcal{L}(\chi_{2i}) \\ \vdots \\ \mathcal{L}(\chi_{ni}) \end{bmatrix} = \mathbf{\Gamma} \boldsymbol{\chi}_i$$
 (135)

7.2 Adjoint of tangent linear

$$\mathcal{A}(\mathbf{b}) = \mathbf{A}^{-T} \mathcal{A}(\mathbf{x}) \tag{136}$$

$$\mathcal{A}(\mathbf{\Delta}) = \mathcal{A}(\mathbf{b}) \mathbf{\chi}_i^T \tag{137}$$

7.3 Reduction of order

- 7.3.1 Forward
- 7.3.2 Tangent linear
- 7.3.3 Adjoint of tangent linear
- 7.4 Inversion of the reduction of order
- 7.4.1 Forward

$$\nu_i = \sqrt{\xi_i} \tag{138}$$

$$\mathbf{a} = \operatorname{diag}(\nu_i) \tag{139}$$

$$\mathbf{b} = (\mathbf{t} + \mathbf{r})\boldsymbol{\chi}\mathbf{a}^{-1} \tag{140}$$

$$\mathbf{X}_{+} = \frac{1}{2}(\boldsymbol{\chi} + \mathbf{b}) \tag{141}$$

$$\mathbf{X}_{-} = \frac{1}{2}(\boldsymbol{\chi} - \mathbf{b}) \tag{142}$$

7.4.2 Tangent linear

$$\mathcal{L}(\nu_i) = \mathcal{L}(\xi_i) \tag{143}$$

$$\mathbf{c} = \operatorname{diag}[\mathcal{L}(\nu_i)] \tag{144}$$

$$\mathbf{d} = \{ [\mathcal{L}(\mathbf{t}) + \mathcal{L}(\mathbf{r})] \, \boldsymbol{\chi} + (\mathbf{t} + \mathbf{r}) \mathcal{L}(\boldsymbol{\chi}) - \mathbf{bc} \} \, \mathbf{a}^{-1}$$
(145)

$$\mathcal{L}(\mathbf{X}_{+}) = \frac{1}{2}(\mathcal{L}(\boldsymbol{\chi}) + \mathbf{d})$$
 (146)

$$\mathcal{L}(\mathbf{X}_{-}) = \frac{1}{2}(\mathcal{L}(\boldsymbol{\chi}) - \mathbf{d})$$
(147)

7.4.3 Adjoint of tangent linear

$$\mathcal{A}(\chi) = \frac{1}{2}(\mathcal{A}(\mathbf{X}_{+}) + \mathcal{A}(\mathbf{X}_{-}))$$
(148)

$$\mathcal{A}(\mathbf{d}) = \frac{1}{2} (\mathcal{A}(\mathbf{X}_{+}) - \mathcal{A}(\mathbf{X}_{-}))$$
(149)

$$\mathbf{t} = \mathcal{A}(\mathbf{d})\mathbf{a}^{-T} \tag{150}$$

$$\mathcal{A}(\mathbf{t} + \mathbf{r}) = \mathbf{t} \boldsymbol{\chi}^T \tag{151}$$

$$A(\chi) = A(\chi) + (\mathbf{t} + \mathbf{r})^T \mathbf{t}$$
(152)

$$\mathcal{A}(\mathbf{c}) = -\mathbf{b}^T \mathbf{t} \tag{153}$$

$$\mathcal{A}(\nu_i) = \mathcal{A}(\nu_i) + \mathcal{A}(\mathbf{c}_{ii}) \tag{154}$$

$$\mathcal{A}(\xi_i) = \mathcal{A}(\nu_i) \tag{155}$$

8 Global R and T from Eigenvalues/matrix

8.0.4 Forward

$$\mathbf{\Lambda} = \operatorname{diag}(e^{-\nu_i x}) \tag{156}$$

$$\mathbf{a} = \mathbf{X}_{+} \mathbf{\Lambda} \tag{157}$$

$$\mathbf{b} = \mathbf{a} \mathbf{X}_{-}^{-1} \tag{158}$$

$$\mathbf{c} = \mathbf{X}_{-} - \mathbf{b}\mathbf{a} \tag{159}$$

$$\mathbf{d} = \mathbf{X}_{+}\mathbf{c}^{-1} \tag{160}$$

$$\mathbf{e} = \mathbf{X}_{-} \mathbf{\Lambda} \mathbf{c}^{-1} \tag{161}$$

$$\mathbf{R} = \mathbf{eb} - \mathbf{d} \tag{162}$$

$$T = e - db (163)$$

8.0.5 Tangent linear

$$\mathbf{\Lambda} = \operatorname{diag}(e^{-\nu_i x}) \tag{164}$$

$$\mathbf{f} = \mathcal{L}(\mathbf{a}) = \mathcal{L}(\mathbf{X}_{+})\mathbf{\Lambda} + \mathbf{X}_{+}\mathcal{L}(\mathbf{\Lambda})$$
(165)

$$\mathbf{g} = \mathcal{L}(\mathbf{b}) = \left[\mathbf{f} - \mathbf{b}\mathcal{L}(\mathbf{X}_{-})\right]\mathbf{X}_{-}^{-1} \tag{166}$$

$$\mathbf{h} = \mathcal{L}(\mathbf{c}) = \mathcal{L}(\mathbf{X}_{-}) - \mathbf{ga} - \mathbf{bf}$$
 (167)

$$\mathbf{p} = \mathcal{L}(\mathbf{d}) = \left[\mathcal{L}(\mathbf{X}_{+}) - \mathbf{dh}\right] \mathbf{c}^{-1}$$
(168)

$$\mathbf{q} = \mathcal{L}(\mathbf{e}) = \left[\mathcal{L}(\mathbf{X}_{-})\mathbf{\Lambda} + \mathbf{X}_{-}\mathcal{L}(\mathbf{\Lambda}) - \mathbf{e}\mathbf{h} \right] \mathbf{c}^{-1}$$
(169)

$$\mathcal{L}(\mathbf{R}) = \mathbf{q}\mathbf{b} + \mathbf{e}\mathbf{g} - \mathbf{p} \tag{170}$$

$$\mathcal{L}(\mathbf{T}) = \mathbf{q} - \mathbf{pb} - \mathbf{dg} \tag{171}$$

8.0.6 Adjoint of tangent linear

$$\mathcal{A}(\mathbf{q}) = \mathcal{A}(\mathbf{T}) \tag{172}$$

$$\mathcal{A}(\mathbf{p}) = -\mathcal{A}(\mathbf{T})\mathbf{b}^T \tag{173}$$

$$\mathcal{A}(\mathbf{g}) = -\mathbf{d}^T \mathcal{A}(\mathbf{T}) \tag{174}$$

$$\mathcal{A}(\mathbf{q}) = \mathcal{A}(\mathbf{q}) + \mathcal{A}(\mathbf{R})\mathbf{b}^{T} \tag{175}$$

$$\mathcal{A}(\mathbf{g}) = \mathcal{A}(\mathbf{g}) + \mathbf{e}^T \mathcal{A}(\mathbf{R}) \tag{176}$$

$$\mathcal{A}(\mathbf{p}) = \mathcal{A}(\mathbf{p}) - \mathcal{A}(\mathbf{R}) \tag{177}$$

$$\mathbf{t} = \mathcal{A}(\mathbf{q})\mathbf{c}^{-T} \tag{178}$$

$$\mathcal{A}(\mathbf{X}_{-}) = \mathbf{t}\mathbf{\Lambda}^{T} \tag{179}$$

$$\mathcal{A}(\mathbf{\Lambda}) = \mathbf{X}_{-}^{T} \mathbf{t} \tag{180}$$

$$\mathbf{t} = \mathcal{A}(\mathbf{p})\mathbf{c}^{-T} \tag{181}$$

$$\mathcal{A}(\mathbf{X}_{+}) = \mathbf{t} \tag{182}$$

$$\mathcal{A}(\mathbf{h}) = \mathcal{A}(\mathbf{h}) - \mathbf{d}^T \mathbf{t} \tag{183}$$

$$\mathcal{A}(\mathbf{X}_{-}) = \mathcal{A}(\mathbf{X}_{-}) + \mathcal{A}(\mathbf{h}) \tag{184}$$

$$\mathcal{A}(\mathbf{g}) = \mathcal{A}(\mathbf{g}) - \mathcal{A}(\mathbf{h})\mathbf{a}^{T} \tag{185}$$

$$\mathcal{A}(\mathbf{f}) = -\mathbf{b}^T \mathcal{A}(\mathbf{h}) \tag{186}$$

$$\mathbf{t} = \mathcal{A}(\mathbf{g})\mathbf{X}_{-}^{T} \tag{187}$$

$$\mathcal{A}(\mathbf{f}) = \mathcal{A}(\mathbf{f}) + \mathbf{t} \tag{188}$$

$$\mathcal{A}(\mathbf{X}_{-}) = \mathcal{A}(\mathbf{X}_{-}) - \mathbf{b}^{T}\mathbf{t}$$
(189)

$$\mathcal{A}(\mathbf{X}_{+}) = \mathcal{A}(\mathbf{X}_{+}) + \mathcal{A}(\mathbf{f})\mathbf{\Lambda}^{T}$$
(190)

$$\mathcal{A}(\mathbf{\Lambda}) = \mathcal{A}(\mathbf{\Lambda}) + \mathbf{X}_{+}^{T} \mathcal{A}(\mathbf{f})$$
(191)

9 Pade approximation

- 9.1 Forward
- 9.2 Tangent linear
- 9.3 Adjoint of tangent linear
- 10 Solar source
- 10.1 Local solar source, classical, full order
- 10.1.1 Forward

$$\mathbf{B} = \lambda \mathbf{E} - \mathbf{A} \tag{192}$$

$$\mathbf{C}^{\mp} = \frac{F_0}{4\pi} \mathbf{M} \tag{193}$$

$$\mathbf{D}^{\mp} = \mathbf{C}^{\mp} \mathbf{P}_{\circ}^{\mp} \tag{194}$$

$$\mathbf{F}^{\pm} = \mathbf{B}^{-1} \omega \mathbf{D}^{\mp} \tag{195}$$

10.1.2 Tangent linear

$$\mathcal{L}(\mathbf{F}^{\pm}) = \mathbf{B}^{-1} \left[-\mathcal{L}(\mathbf{B})\mathbf{F}^{\pm} + \mathcal{L}(\omega)\mathbf{D}^{\mp} + \omega \mathbf{C}^{\mp} \mathcal{L}(\mathbf{P}_{\circ}^{\mp}) \right]$$
(196)

- 10.1.3 Adjoint of tangent linear
- 10.2 Local solar source, classical, reduced order
- 10.2.1 Forward

$$\mathbf{a} = \frac{F_0 \omega}{4\pi} \mathbf{M}^{-1} \tag{197}$$

$$\mathbf{b} = \mathbf{a} \mathbf{P}_{\circ}^{+} \tag{198}$$

$$\mathbf{c} = \mathbf{a} \mathbf{P}_{\circ}^{-} \tag{199}$$

$$\mathbf{d} = \mathbf{b} + \mathbf{c} \tag{200}$$

$$\mathbf{e} = \mathbf{b} - \mathbf{c} \tag{201}$$

$$\mathbf{f} = \left(\mathbf{\Gamma} - \lambda^2 \mathbf{E}\right)^{-1} \tag{202}$$

$$\mathbf{g} = [-(\mathbf{t} - \mathbf{r})\mathbf{e} - \lambda \mathbf{d}] \tag{203}$$

$$\mathbf{p} = \mathbf{fg} \tag{204}$$

$$\mathbf{h} = (\mathbf{t} + \mathbf{r})\mathbf{p} + \mathbf{e} \tag{205}$$

$$\mathbf{F}^{+} = \frac{1}{2} (\frac{1}{\lambda} \mathbf{h} + \mathbf{p}) \tag{206}$$

$$\mathbf{F}^{-} = \mathbf{F}^{+} - \mathbf{p} \tag{207}$$

10.2.2 Tangent linear

$$\mathcal{L}(\mathbf{a}) = \frac{F_0 \mathcal{L}(\omega)}{4\pi} \mathbf{M}^{-1} \tag{208}$$

$$\mathcal{L}(\mathbf{b}) = \mathcal{L}(\mathbf{a})\mathbf{P}_{\circ}^{+} + \mathbf{a}\mathcal{L}(\mathbf{P}_{\circ}^{+})$$
(209)

$$\mathcal{L}(\mathbf{c}) = \mathcal{L}(\mathbf{a})\mathbf{P}_{\circ}^{-} + \mathbf{a}\mathcal{L}(\mathbf{P}_{\circ}^{-})$$
(210)

$$\mathcal{L}(\mathbf{d}) = \mathcal{L}(\mathbf{b}) + \mathcal{L}(\mathbf{c}) \tag{211}$$

$$\mathcal{L}(\mathbf{e}) = \mathcal{L}(\mathbf{b}) - \mathcal{L}(\mathbf{c}) \tag{212}$$

$$\mathcal{L}(\mathbf{p}) = \mathbf{f} \left\{ -\left[\mathcal{L}(\mathbf{\Gamma}) - 2\mathcal{L}(\lambda)\lambda\mathbf{E} \right] \mathbf{p} - \left[\mathcal{L}(\mathbf{t}) - \mathcal{L}(\mathbf{r}) \right] \mathbf{e} - (\mathbf{t} - \mathbf{r})\mathcal{L}(\mathbf{e}) - \mathcal{L}(\lambda)\mathbf{d} - \lambda\mathcal{L}(\mathbf{d}) \right\}$$
(213)

$$\mathcal{L}(\mathbf{h}) = \left[\mathcal{L}(\mathbf{t}) + \mathcal{L}(\mathbf{r})\right]\mathbf{p} + (\mathbf{t} + \mathbf{r})\mathcal{L}(\mathbf{p}) + \mathcal{L}(\mathbf{e})$$
(214)

$$\mathcal{L}(\mathbf{F}^{+}) = \frac{1}{2} \left[-\frac{\mathcal{L}(\lambda)}{\lambda^{2}} \mathbf{h} + \frac{1}{\lambda} \mathcal{L}(\mathbf{h}) + \mathcal{L}(\mathbf{p}) \right]$$
 (215)

$$\mathcal{L}(\mathbf{F}^{-}) = \mathcal{L}(\mathbf{F}^{+}) - \mathcal{L}(\mathbf{p}) \tag{216}$$

10.2.3 Adjoint of tangent linear

$$\mathcal{A}(\mathbf{F}^+) = \mathcal{A}(\mathbf{F}^+) + \mathcal{A}(\mathbf{F}^-) \tag{217}$$

$$\mathcal{A}(\mathbf{p}) = -\mathcal{A}(\mathbf{F}^{-}) \tag{218}$$

$$\mathcal{A}(\lambda) = -\frac{1}{2\lambda^2} \mathbf{h}^T \mathcal{A}(\mathbf{F}^+)$$
 (219)

$$\mathcal{A}(\mathbf{h}) = \frac{1}{2\lambda} \mathcal{A}(\mathbf{F}^+) \tag{220}$$

$$\mathcal{A}(\mathbf{p}) = \mathcal{A}(\mathbf{p}) + \frac{1}{2}\mathcal{A}(\mathbf{F}^+)$$
 (221)

$$\mathcal{A}(\mathbf{t} + \mathbf{r}) = \mathcal{A}(\mathbf{h})\mathbf{p}^T \tag{222}$$

$$\mathcal{A}(\mathbf{p}) = \mathcal{A}(\mathbf{p}) + (\mathbf{t} + \mathbf{r})^T \mathcal{A}(\mathbf{h})$$
(223)

$$\mathcal{A}(\mathbf{e}) = \mathcal{A}(\mathbf{h}) \tag{224}$$

$$\mathbf{t} = \mathbf{f}^T \mathcal{A}(\mathbf{p}) \tag{225}$$

$$\mathbf{t}_2 = -\mathbf{t}\mathbf{p}^T \tag{226}$$

$$\mathcal{A}(\Gamma) = \mathbf{t}_2 \tag{227}$$

$$\mathcal{A}(\lambda) = \mathcal{A}(\lambda) - 2\lambda \mathbf{t}_2 \tag{228}$$

$$A(\mathbf{t} + \mathbf{r}) = A(\mathbf{t} + \mathbf{r}) - \mathbf{t}\mathbf{e}^{T}$$
(229)

$$\mathcal{A}(\mathbf{e}) = \mathcal{A}(\mathbf{e}) - (\mathbf{t} + \mathbf{r})^T \mathbf{t}$$
(230)

$$\mathcal{A}(\lambda) = \mathcal{A}(\lambda) - \mathbf{td}^T \tag{231}$$

$$\mathcal{A}(\mathbf{d}) = \lambda \mathbf{t} \tag{232}$$

$$\mathcal{A}(\mathbf{b}) = \mathcal{A}(\mathbf{e}) \tag{233}$$

$$\mathcal{A}(\mathbf{c}) = -\mathcal{A}(\mathbf{e}) \tag{234}$$

$$\mathcal{A}(\mathbf{b}) = \mathcal{A}(\mathbf{b}) + \mathcal{A}(\mathbf{d}) \tag{235}$$

$$\mathcal{A}(\mathbf{c}) = \mathcal{A}(\mathbf{c}) + \mathcal{A}(\mathbf{d}) \tag{236}$$

$$\mathcal{A}(\mathbf{a}) = \mathcal{A}(\mathbf{c})(\mathbf{P}_{\circ}^{-})^{T} \tag{237}$$

$$\mathcal{A}(\mathbf{P}_{\circ}^{-}) = \mathbf{a}^{T} \mathcal{A}(\mathbf{c}) \tag{238}$$

$$\mathcal{A}(\mathbf{a}) = \mathcal{A}(\mathbf{a}) + \mathcal{A}(\mathbf{b})(\mathbf{P}_{\circ}^{+})^{T}$$
(239)

$$\mathcal{A}(\mathbf{P}_{\circ}^{+}) = \mathbf{a}^{T} \mathcal{A}(\mathbf{b}) \tag{240}$$

$$\mathcal{A}(\omega) = \frac{F_0}{4\pi} \sum_{i}^{n} (\mathbf{M}^{-1} \mathcal{A}(\mathbf{a}))_i$$
 (241)

10.3 Local solar source, Green's function

10.3.1 Forward

$$a = \frac{F_0}{4\pi} \tag{242}$$

$$b_i^-(v) = \frac{e^{-v\nu_i} - e^{-v\lambda}}{\lambda - \nu_i} \tag{243}$$

$$b_i^+(v) = \frac{e^{-v\lambda} - e^{-x\lambda}e^{-(x-v)\nu_i}}{\lambda + \nu_i}$$
(244)

$$c_i = \mu_j w_j \tag{245}$$

$$d_{i} = \sum_{j=1}^{N} c_{j} \left[X_{+,ji} X_{+,ji} - X_{-,ji} X_{-,ji} \right]$$
(246)

$$e_i = \frac{a\omega}{d_i} \tag{247}$$

$$f_i^-(v) = e_i b_i^-(v)$$
 (248)

$$f_i^+(v) = e_i b_i^+(v)$$
 (249)

$$g_i = \sum_{j=1}^{N} w_j (P_j^+ X_{-,ji} - P_j^- X_{+,ji})$$
 (250)

$$h_i = \sum_{j=1}^{N} w_j (P_j^+ X_{+,ji} - P_j^- X_{-,ji})$$
 (251)

$$q_i(v) = f_i^-(v)g_i \tag{252}$$

$$r_i(v) = f_i^+(v)h_i \tag{253}$$

$$\mathbf{F}^{+}(0) = \mathbf{X}_{-}\mathbf{r}(0) \tag{254}$$

$$\mathbf{F}^{+}(x) = \mathbf{X}_{+}\mathbf{q}(x) \tag{255}$$

$$\mathbf{F}^{-}(0) = -\mathbf{X}_{+}\mathbf{r}(0) \tag{256}$$

$$\mathbf{F}^{-}(x) = -\mathbf{X}_{-}\mathbf{q}(x) \tag{257}$$

10.3.2 Tangent linear

$$\mathcal{L}\left[b_{i}^{-}(v)\right] = \frac{\left[-\mathcal{L}(v)\nu_{i} - v\mathcal{L}(\nu_{i})\right]e^{-v\nu_{i}} - \left[-\mathcal{L}(v)\lambda - v\mathcal{L}(\lambda)\right]e^{-v\lambda} - b_{i}^{-}(v)\left[\mathcal{L}(\lambda) - \mathcal{L}(\nu_{i})\right]}{\lambda - \nu_{i}}$$
(258)

$$\mathcal{L}\left[b_{i}^{+}(v)\right] = \frac{\left[-\mathcal{L}(v)\lambda - v\mathcal{L}(\lambda)\right]e^{-v\lambda} - \left[-\mathcal{L}(x)\lambda - x\mathcal{L}(\lambda)\right]e^{-x\lambda}e^{-(x-v)\nu_{i}} - e^{-x\lambda}\left\{-\left[\mathcal{L}(x) - \mathcal{L}(v)\right]\nu_{i} - (x-v)\mathcal{L}(\nu_{i})\right\}e^{-(x-v)\nu_{i}} - b_{i}^{+}(v)\left[\mathcal{L}(\lambda) + \mathcal{L}(\nu_{i})\right]}{\lambda + \nu_{i}}$$

$$\mathcal{L}(d_i) = \sum_{j=1}^{N} c_j 2 \left[\mathcal{L}(X_{+,ji}) X_{+,ji} - \mathcal{L}(X_{-,ji}) X_{-,ji} \right]$$
 (260)

$$\mathcal{L}(e_i) = \frac{a\mathcal{L}(\omega) - e_i\mathcal{L}(d_i)}{d_i}$$
(261)

$$\mathcal{L}\left[f_i^-(v)\right] = \mathcal{L}(e_i)b_i^-(v) + e_i \mathcal{L}\left[b_i^-(v)\right] \tag{262}$$

$$\mathcal{L}\left[f_i^+(v)\right] = \mathcal{L}(e_i)b_i^+(v) + e_i \mathcal{L}\left[b_i^+(v)\right] \tag{263}$$

$$\mathcal{L}(g_i) = \sum_{j=1}^{N} w_j \left[\mathcal{L}(P_j^+) X_{-,ji} + P_j^+ \mathcal{L}(X_{-,ji}) - \mathcal{L}(P_j^-) X_{+,ji} - P_j^- \mathcal{L}(X_{+,ji}) \right]$$
(264)

$$\mathcal{L}(h_i) = \sum_{j=1}^{N} w_j \left[\mathcal{L}(P_j^+) X_{+,ji} + P_j^+ \mathcal{L}(X_{+,ji}) - \mathcal{L}(P_j^-) X_{-,ji} - P_j^- \mathcal{L}(X_{-,ji}) \right]$$
(265)

$$\mathcal{L}\left[q_i(v)\right] = \mathcal{L}\left[d_i^-(v)\right]g_i + d_i^-(v)\mathcal{L}(g_i)$$
(266)

$$\mathcal{L}\left[r_i(v)\right] = \mathcal{L}\left[d_i^+(v)\right]h_i + d_i^+(v)\mathcal{L}(h_i)$$
(267)

$$\mathcal{L}\left[\mathbf{F}^{+}(0)\right] = \mathcal{L}(\mathbf{X}_{-})\mathbf{r}(0) + \mathbf{X}_{-}\mathcal{L}\left[\mathbf{r}(0)\right]$$
(268)

$$\mathcal{L}\left[\mathbf{F}^{+}(x)\right] = \mathcal{L}(\mathbf{X}_{+})\mathbf{q}(x) + \mathbf{X}_{+}\mathcal{L}\left[\mathbf{q}(x)\right]$$
(269)

$$\mathcal{L}\left[\mathbf{F}^{-}(0)\right] = -\mathcal{L}(\mathbf{X}_{+})\mathbf{r}(0) - \mathbf{X}_{+}\mathcal{L}\left[\mathbf{r}(0)\right]$$
(270)

$$\mathcal{L}\left[\mathbf{F}^{-}(x)\right] = -\mathcal{L}(\mathbf{X}_{-})\mathbf{q}(x) - \mathbf{X}_{-}\mathcal{L}\left[\mathbf{q}(x)\right]$$
(271)

10.3.3 Adjoint of tangent linear

10.4 Global solar source

10.4.1 Forward

$$\mathbf{S}^{+} = \mathbf{F}^{+} - \mathbf{T}^{+} \mathbf{F}^{+} \mathcal{X}_{b} - \mathbf{R}^{-} \mathbf{F}^{-}$$

$$(272)$$

$$\mathbf{S}^{-} = \mathbf{F}^{-} \mathcal{X}_{b} - \mathbf{T}^{-} \mathbf{F}^{-} - \mathbf{R}^{+} \mathbf{F}^{+} \mathcal{X}_{b}$$
 (273)

10.4.2 Tangent linear

$$\mathcal{L}(\mathcal{X}_{b}) = \left[-\mathcal{L}(x)\lambda \right] \mathcal{X}_{b} \tag{274}$$

$$\mathbf{A} = \mathcal{L}(\mathbf{F}^{+})\mathcal{X}_{b} + \mathbf{F}^{+}\mathcal{L}(\mathcal{X}_{b}) \tag{275}$$

$$\mathcal{L}(\mathbf{S}^{+}) = \mathcal{L}(\mathbf{F}^{+}) - \mathcal{L}(\mathbf{T}^{+})\mathbf{F}^{+}\mathcal{X}_{b} - \mathbf{T}^{+}\mathbf{A} - \mathcal{L}(\mathbf{R}^{-})\mathbf{F}^{-} - \mathbf{R}^{-}\mathcal{L}(\mathbf{F}^{-})$$
(276)

$$\mathcal{L}(\mathbf{S}^{-}) = \mathcal{L}(\mathbf{F}^{-})\mathcal{X}_{b} + \mathbf{F}^{-}\mathcal{L}(\mathcal{X}_{b}) - \mathcal{L}(\mathbf{T}^{-})\mathbf{F}^{-} - \mathbf{T}^{-}\mathcal{L}(\mathbf{F}^{-}) - \mathcal{L}(\mathbf{R}^{+})\mathbf{F}^{+}\mathcal{X}_{b} - \mathbf{R}^{+}\mathbf{A}$$
(277)

10.4.3 Adjoint of tangent linear

$$\mathcal{A}(\mathbf{F}^{-}) = \mathcal{A}(\mathbf{S}^{-})\mathcal{X}_{\mathbf{b}} \tag{278}$$

$$\mathcal{A}(t) = (\mathbf{F}^{-})^{T} \mathcal{A}(\mathbf{S}^{-}) \tag{279}$$

$$\mathcal{A}(\mathbf{T}^{-}) = -\mathcal{A}(\mathbf{S}^{-})(\mathbf{F}^{-})^{T} \tag{280}$$

$$\mathcal{A}(\mathbf{F}^{-}) = \mathcal{A}(\mathbf{F}^{-}) - (\mathbf{T}^{-})^{T} \mathcal{A}(\mathbf{S}^{-})$$
(281)

$$\mathcal{A}(\mathbf{R}^+) = -\mathcal{A}(\mathbf{S}^-)(\mathbf{F}^+)^T \mathcal{X}_{\mathbf{b}}$$
 (282)

$$\mathcal{A}(\mathbf{A}) = -(\mathbf{R}^+)^T \mathcal{A}(\mathbf{S}^-) \tag{283}$$

$$\mathcal{A}(\mathbf{F}^+) = \mathcal{A}(\mathbf{S}^+) \tag{284}$$

$$\mathcal{A}(\mathbf{W}^{+}) = -\mathcal{A}(\mathbf{S}^{+})(\mathbf{F}^{+})^{T}\mathcal{X}_{b}$$
 (285)

$$\mathcal{A}(\mathbf{A}) = \mathcal{A}(\mathbf{A}) - (\mathbf{T}^+)^T \mathcal{A}(\mathbf{S}^+)$$
(286)

$$\mathcal{A}(\mathbf{R}^{-}) = -\mathcal{A}(\mathbf{S}^{+})(\mathbf{F}^{-})^{T} \tag{287}$$

$$\mathcal{A}(\mathbf{F}^{-}) = \mathcal{A}(\mathbf{F}^{-}) - (\mathbf{R}^{-})^{T} \mathcal{A}(\mathbf{S}^{+})$$
(288)

$$\mathcal{A}(\mathbf{F}^+) = \mathcal{A}(\mathbf{F}^+) + \mathcal{A}(\mathbf{A})\mathcal{X}_{b} \tag{289}$$

$$\mathcal{A}(\mathcal{X}_{b}) = \mathcal{A}(\mathcal{X}_{b}) + (\mathbf{F}^{+})^{T} \mathcal{A}(\mathbf{A})$$
(290)

10.5 Scale global solar source

10.5.1 Forward

$$\mathbf{S}^{+\prime} = \mathcal{T}_{\mathbf{b},l} \mathbf{S}^{+} \tag{291}$$

$$\mathbf{S}^{-\prime} = \mathcal{T}_{\mathbf{b},l}\mathbf{S}^{-} \tag{292}$$

10.5.2 Tangent linear

$$\mathcal{L}(\mathbf{S}^{+\prime}) = \mathcal{L}(\mathcal{T}_{b,l})\mathbf{S}^{+} + \mathcal{T}_{b,l}\mathcal{L}(\mathbf{S}^{+})$$
(293)

$$\mathcal{L}(\mathbf{S}^{-\prime}) = \mathcal{L}(\mathcal{T}_{b,l})\mathbf{S}^{-} + \mathcal{T}_{b,l}\mathcal{L}(\mathbf{S}^{-})$$
(294)

10.5.3 Adjoint of tangent linear

$$\mathcal{A}(\mathcal{T}_{b,l}) = (\mathbf{S}^+)^T \mathcal{A}(\mathbf{S}^{+\prime}) \tag{295}$$

$$\mathcal{A}(\mathbf{S}^+) = \mathcal{T}_{b,l} \mathcal{A}(\mathbf{S}^{+\prime}) \tag{296}$$

$$\mathcal{A}(\mathcal{T}_{b,l}) = \mathcal{A}(\mathcal{T}_{b,l}) + (\mathbf{S}^{-})^{T} \mathcal{A}(\mathbf{S}^{-\prime})$$
(297)

$$\mathcal{A}(\mathbf{S}^{-}) = \mathcal{T}_{b,l}\mathcal{A}(\mathbf{S}^{-\prime}) \tag{298}$$

11 Thermal source

11.1 Local thermal source

11.1.1 Forward

$$\mathbf{a} = \mathbf{A}^{-1} \begin{bmatrix} +1/\mu_0 \\ \vdots \\ +1/\mu_N \\ -1/\mu_0 \\ \vdots \\ -1/\mu_N \end{bmatrix}$$
 (299)

$$\mathbf{b} = (1 - \omega)\mathbf{a} \tag{300}$$

$$\mathbf{c} = \mathbf{A}^{-1}\mathbf{b} \tag{301}$$

$$a = (b_0 - b_1)/x (302)$$

$$\mathbf{F0}^+ = b_0 \mathbf{b}^+ - a \mathbf{c}^+ \tag{303}$$

$$\mathbf{F0}^- = b_0 \mathbf{b}^- - a \mathbf{c}^- \tag{304}$$

$$\mathbf{F1}^+ = b_1 \mathbf{b}^+ - a \mathbf{c}^+ \tag{305}$$

$$\mathbf{F}\mathbf{1}^{-} = b_1 \mathbf{b}^{-} - a\mathbf{c}^{-} \tag{306}$$

11.1.2 Tangent linear

$$\mathcal{L}(\mathbf{a}) = -\mathbf{A}^{-1}\mathcal{L}(\mathbf{A})\mathbf{a} \tag{307}$$

$$\mathcal{L}(\mathbf{b}) = -\mathcal{L}(\omega)\mathbf{a} + (1 - \omega)\mathcal{L}(\mathbf{a}) \tag{308}$$

$$\mathcal{L}(\mathbf{c}) = \mathbf{A}^{-1} \left[-\mathcal{L}(\mathbf{A})\mathbf{c} + \mathcal{L}(\mathbf{b}) \right]$$
(309)

$$\mathcal{L}(a) = \frac{\left[\mathcal{L}(b_0) - \mathcal{L}(b_1) - a\mathcal{L}(x)\right]}{x} \tag{310}$$

$$\mathcal{L}(\mathbf{F0}^+) = \mathcal{L}(b_0)\mathbf{b}^+ + b_0\mathcal{L}(\mathbf{b}^+) - \mathcal{L}(a)\mathbf{c}^+ - a\mathcal{L}(\mathbf{c}^+)$$
(311)

$$\mathcal{L}(\mathbf{F0}^{-}) = \mathcal{L}(b_0)\mathbf{b}^{-} + b_0\mathcal{L}(\mathbf{b}^{-}) - \mathcal{L}(a)\mathbf{c}^{-} - a\mathcal{L}(\mathbf{c}^{-})$$
(312)

$$\mathcal{L}(\mathbf{F1}^+) = \mathcal{L}(b_1)\mathbf{b}^+ + b_1\mathcal{L}(\mathbf{b}^+) - \mathcal{L}(a)\mathbf{c}^+ - a\mathcal{L}(\mathbf{c}^+)$$
(313)

$$\mathcal{L}(\mathbf{F1}^{-}) = \mathcal{L}(b_1)\mathbf{b}^{-} + b_1\mathcal{L}(\mathbf{b}^{-}) - \mathcal{L}(a)\mathbf{c}^{-} - a\mathcal{L}(\mathbf{c}^{-})$$
(314)

11.1.3 Adjoint of tangent linear

11.2 Global thermal source

11.2.1 Forward

$$Sl^{+} = F0^{+} - T^{+}F1^{+} - R^{-}F0^{-}$$
 (315)

$$Sl^{-} = F1^{-} - R^{+}F1^{+} - T^{-}F0^{-}$$
 (316)

11.2.2 Tangent linear

$$\mathbf{Sl}^{+} = \mathcal{L}(\mathbf{F0}^{+}) - \mathcal{L}(\mathbf{T}^{+})\mathbf{F1}^{+} - \mathbf{T}^{+}\mathcal{L}(\mathbf{F1}^{+}) - \mathcal{L}(\mathbf{R}^{-})\mathbf{F0}^{-} - \mathbf{R}^{-}\mathcal{L}(\mathbf{F0}^{-})$$
(317)

$$\mathbf{Sl}^{-} = \mathcal{L}(\mathbf{F1}^{-}) - \mathcal{L}(\mathbf{R}^{+})\mathbf{F1}^{+} - \mathbf{R}^{+}\mathcal{L}(\mathbf{F1}^{+}) - \mathcal{L}(\mathbf{T}^{-})\mathbf{F0}^{-} - \mathbf{T}^{-}\mathcal{L}(\mathbf{F0}^{-})$$
(318)

11.2.3 Adjoint of tangent linear

12 Adding

$$\mathcal{X}_{12} = e^{-x_{12}\lambda_{12}} \tag{319}$$

12.1 Upward (R_{13}, T_{31}, S_{31})

12.1.1 Forward

$$\mathbf{P}_{31} = (\mathbf{E} - \mathbf{R}_{23}\mathbf{R}_{21})^{-1} \tag{320}$$

$$\mathbf{A}_{31} = \mathbf{T}_{21} \mathbf{P}_{31} \tag{321}$$

$$\mathbf{B}_{13} = \mathbf{R}_{23} \mathbf{T}_{12} \tag{322}$$

$$\mathbf{C}_{31} = \mathbf{S}_{32} \mathcal{X}_{12} + \mathbf{R}_{23} \mathbf{S}_{12} \tag{323}$$

$$\mathbf{S}_{31} = \mathbf{S}_{21} + \mathbf{A}_{31}\mathbf{C}_{31} \tag{324}$$

$$\mathbf{a}_{31} = \mathbf{A}_{31}(\mathbf{R}_{23}\mathbf{a}_{12} + \mathbf{a}_{32}) + \mathbf{a}_{21} \tag{325}$$

$$Sl_{31} = A_{31}(R_{23}Sl_{12} + Sl_{32} + a_{31}f) + Sl_{21}$$
(326)

$$\mathbf{R}_{13} = \mathbf{R}_{12} + \mathbf{A}_{31} \mathbf{B}_{13} \tag{327}$$

$$\mathbf{T}_{31} = \mathbf{A}_{31} \mathbf{T}_{32} \tag{328}$$

12.1.2 Tangent linear

$$\mathcal{L}(\mathcal{X}_{12}) = \left[-\mathcal{L}(\tau_{12})\lambda_{12} \right] \mathcal{X}_{12} \tag{329}$$

12.1.2.1 unlinearized + particular linearized

$$\mathcal{L}(\mathbf{S}_{31}) = \mathbf{A}_{31}\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12} \tag{330}$$

12.1.2.2 particular linearized + unlinearized

$$\mathcal{L}(\mathbf{S}_{31}) = \mathcal{L}(\mathbf{S}_{21}) + \mathbf{A}_{31}\mathbf{R}_{23}\mathcal{L}(\mathbf{S}_{12}) \tag{331}$$

12.1.2.3 particular linearized + particular linearized

$$\mathcal{L}(\mathbf{S}_{31}) = \mathcal{L}(\mathbf{S}_{21}) + \mathbf{A}_{31}(\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12} + \mathbf{R}_{23}\mathcal{L}(\mathbf{S}_{12}))$$
(332)

12.1.2.4 unlinearized + homogeneous linearized

$$\mathbf{D}_{31} = \mathbf{A}_{31} \mathcal{L}(\mathbf{R}_{23}) \tag{333}$$

$$\mathbf{E}_{31} = \mathbf{D}_{31} \mathbf{R}_{21} \mathbf{P}_{31} \tag{334}$$

$$\mathcal{L}(\mathbf{S}_{31}) = \mathbf{E}_{31}\mathbf{C}_{31} + \mathbf{A}_{31}(\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12} + \mathcal{L}(\mathbf{R}_{23})\mathbf{S}_{12})$$
(335)

$$\mathcal{L}(\mathbf{R}_{13}) = \mathbf{E}_{31}\mathbf{B}_{13} + \mathbf{D}_{31}\mathbf{T}_{12} \tag{336}$$

$$\mathcal{L}(\mathbf{T}_{31}) = \mathbf{E}_{31}\mathbf{T}_{32} + \mathbf{A}_{31}\mathcal{L}(\mathbf{T}_{32}) \tag{337}$$

12.1.2.5 homogeneous linearized + unlinearized

$$\mathbf{D}_{31} = \mathbf{A}_{31}\mathbf{R}_{23} \tag{338}$$

$$\mathbf{E}_{31} = [\mathcal{L}(\mathbf{T}_{21}) + \mathbf{D}_{31}\mathcal{L}(\mathbf{R}_{21})] \mathbf{P}_{31}$$
(339)

$$\mathcal{L}(\mathbf{S}_{31}) = \mathcal{L}(\mathbf{S}_{21}) + \mathbf{E}_{31}\mathbf{C}_{31} + \mathbf{A}_{31}(\mathbf{S}_{32}\mathcal{L}(\mathcal{X}_{12}) + \mathbf{R}_{23}\mathcal{L}(\mathbf{S}_{12}))$$
(340)

$$\mathcal{L}(\mathbf{R}_{13}) = \mathcal{L}(\mathbf{R}_{12}) + \mathbf{E}_{31}\mathbf{B}_{13} + \mathbf{D}_{31}\mathcal{L}(\mathbf{T}_{12})$$
(341)

$$\mathcal{L}(\mathbf{T}_{31}) = \mathbf{E}_{31}\mathbf{T}_{32} \tag{342}$$

12.1.2.6 particular linearized + homogeneous linearized

$$\mathbf{D}_{31} = \mathbf{A}_{31} \mathcal{L}(\mathbf{R}_{23}) \tag{343}$$

$$\mathbf{E}_{31} = \mathbf{D}_{31} \mathbf{R}_{21} \mathbf{P}_{31} \tag{344}$$

$$\mathcal{L}(\mathbf{S}_{31}) = \mathcal{L}(\mathbf{S}_{21}) + \mathbf{E}_{31}\mathbf{C}_{31} + \mathbf{A}_{31}(\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12} + \mathcal{L}(\mathbf{R}_{23})\mathbf{S}_{12} + \mathbf{R}_{23}\mathcal{L}(\mathbf{S}_{12}))$$
(345)

$$\mathcal{L}(\mathbf{R}_{13}) = \mathbf{E}_{31}\mathbf{B}_{13} + \mathbf{D}_{31}\mathbf{T}_{12} \tag{346}$$

$$\mathcal{L}(\mathbf{T}_{31}) = \mathbf{E}_{31}\mathbf{T}_{32} + \mathbf{A}_{31}\mathcal{L}(\mathbf{T}_{32}) \tag{347}$$

12.1.2.7 homogeneous linearized + particular linearized

$$\mathbf{D}_{31} = \mathbf{A}_{31} \mathbf{R}_{23} \tag{348}$$

$$\mathbf{E}_{31} = (\mathcal{L}(\mathbf{T}_{21}) + \mathbf{D}_{31}\mathcal{L}(\mathbf{R}_{21}))\mathbf{P}_{31} \tag{349}$$

$$\mathcal{L}(\mathbf{S}_{31}) = \mathcal{L}(\mathbf{S}_{21}) + \mathbf{E}_{31}\mathbf{C}_{31} + \mathbf{A}_{31}(\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12} + \mathbf{S}_{32}\mathcal{L}(\mathcal{X}_{12}) + \mathbf{R}_{23}\mathcal{L}(\mathbf{S}_{12}))$$
(350)

$$\mathcal{L}(\mathbf{R}_{13}) = \mathcal{L}(\mathbf{R}_{12}) + \mathbf{E}_{31}\mathbf{B}_{13} + \mathbf{D}_{31}\mathcal{L}(\mathbf{T}_{12})$$
(351)

$$\mathcal{L}(\mathbf{T}_{31}) = \mathbf{E}_{31}\mathbf{T}_{32} \tag{352}$$

12.1.2.8 homogeneous linearized + homogeneous linearized

$$\mathbf{D}_{31} = \left[\mathcal{L}(\mathbf{T}_{21}) + \mathbf{A}_{31} (\mathcal{L}(\mathbf{R}_{23}) \mathbf{R}_{21} + \mathbf{R}_{23} \mathcal{L}(\mathbf{R}_{21})) \right] \mathbf{P}_{31}$$
(353)

$$\mathcal{L}(\mathbf{S}_{31}) = \mathcal{L}(\mathbf{S}_{21}) + \mathbf{D}_{31}\mathbf{C}_{31} + \mathbf{A}_{31}(\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12} + \mathbf{S}_{32}\mathcal{L}(\mathcal{X}_{12}) + \mathcal{L}(\mathbf{R}_{23})\mathbf{S}_{12} + \mathbf{R}_{23}\mathcal{L}(\mathbf{S}_{12})) \quad (354)$$

$$\mathcal{L}(\mathbf{R}_{13}) = \mathcal{L}(\mathbf{R}_{12}) + \mathbf{D}_{31}\mathbf{B}_{13} + \mathbf{A}_{31}(\mathcal{L}(\mathbf{R}_{23})\mathbf{T}_{12} + \mathbf{R}_{23}\mathcal{L}(\mathbf{T}_{12}))$$
(355)

$$\mathcal{L}(\mathbf{T}_{31}) = \mathbf{D}_{31}\mathbf{T}_{32} + \mathbf{A}_{31}\mathcal{L}(\mathbf{T}_{32}) \tag{356}$$

12.1.3 Adjoint of tangent linear

12.1.3.1 unlinearized + particular linearized

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{S}_{31}) \mathcal{X}_{12} \tag{357}$$

12.1.3.2 particular linearized + unlinearized

$$\mathcal{A}(\mathbf{S}_{21}) = \mathcal{A}(\mathbf{S}_{31}) \tag{358}$$

12.1.3.3 particular linearized + particular linearized

$$\mathcal{A}(\mathbf{S}_{21}) = \mathcal{A}(\mathbf{S}_{31}) \tag{359}$$

$$\mathbf{t} = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{S}_{31}) \tag{360}$$

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{t}\mathcal{X}_{12} \tag{361}$$

$$\mathcal{A}(\mathbf{S}_{12}) = \mathbf{R}_{23}^T \mathbf{t} \tag{362}$$

12.1.3.4 unlinearized + homogeneous linearized

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{T}_{31})\mathbf{T}_{32}^{T} \tag{363}$$

$$\mathcal{A}(\mathbf{T}_{32}) = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{T}_{31}) \tag{364}$$

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{E}_{31}) + \mathcal{A}(\mathbf{R}_{13})\mathbf{B}_{13}^{T}$$
(365)

$$\mathcal{A}(\mathbf{D}_{31}) = \mathcal{A}(\mathbf{R}_{13})\mathbf{T}_{12}^{T} \tag{366}$$

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{E}_{31}) + \mathcal{A}(\mathbf{S}_{31})\mathbf{C}_{31}^{T}$$
(367)

$$\mathbf{t} = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{S}_{31}) \tag{368}$$

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{t}\mathcal{X}_{12} \tag{369}$$

$$\mathcal{A}(\mathbf{R}_{32}) = \mathbf{t}\mathbf{S}_{12}^T \tag{370}$$

$$\mathcal{A}(\mathbf{D}_{31}) = \mathcal{A}(\mathbf{D}_{31}) + \mathcal{A}(\mathbf{E}_{31})\mathbf{P}_{31}^T\mathbf{R}_{21}^T$$
(371)

$$\mathcal{A}(\mathbf{R}_{23}) = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{D}_{31}) \tag{372}$$

12.1.3.5 homogeneous linearized + unlinearized

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{T}_{31})\mathbf{T}_{32}^{T} \tag{373}$$

$$\mathcal{A}(\mathbf{R}_{12}) = \mathcal{A}(\mathbf{R}_{13}) \tag{374}$$

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{E}_{31}) + \mathcal{A}(\mathbf{R}_{13})\mathbf{B}_{13}^{T}$$
(375)

$$\mathcal{A}(\mathbf{T}_{12}) = \mathbf{D}_{31}^T \mathcal{A}(\mathbf{R}_{13}) \tag{376}$$

$$\mathcal{A}(\mathbf{S}_{21}) = \mathcal{A}(\mathbf{S}_{31}) \tag{377}$$

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{E}_{31}) + \mathcal{A}(\mathbf{S}_{31})\mathbf{C}_{31}^{T}$$
(378)

$$\mathbf{t} = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{S}_{31}) \tag{379}$$

$$\mathcal{A}(\mathcal{X}_{12}) = \mathbf{S}_{32}^T \mathbf{t} \tag{380}$$

$$\mathcal{A}(\mathbf{S}_{12}) = \mathbf{R}_{23}^T \mathbf{t} \tag{381}$$

$$\mathbf{t} = \mathcal{A}(\mathbf{E}_{31})\mathbf{P}_{31}^T \tag{382}$$

$$\mathcal{A}(\mathbf{T}_{21}) = \mathbf{t} \tag{383}$$

$$\mathcal{A}(\mathbf{R}_{21}) = \mathbf{D}_{31}^T \mathbf{t} \tag{384}$$

12.1.3.6 particular linearized + homogeneous linearized

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{T}_{31})\mathbf{T}_{32}^{T} \tag{385}$$

$$\mathcal{A}(\mathbf{T}_{32}) = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{T}_{31}) \tag{386}$$

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{E}_{31}) + \mathcal{A}(\mathbf{R}_{13})\mathbf{B}_{13}^{T}$$
(387)

$$\mathcal{A}(\mathbf{D}_{31}) = \mathcal{A}(\mathbf{R}_{13})\mathbf{T}_{12}^{T} \tag{388}$$

$$\mathcal{A}(\mathbf{S}_{21}) = \mathcal{A}(\mathbf{S}_{31}) \tag{389}$$

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{E}_{31}) + \mathcal{A}(\mathbf{S}_{31})\mathbf{C}_{31}^{T} \tag{390}$$

$$\mathbf{t} = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{S}_{31}) \tag{391}$$

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{t}\mathcal{X}_{12} \tag{392}$$

$$\mathcal{A}(\mathbf{R}_{23}) = \mathbf{t}\mathbf{S}_{12}^T \tag{393}$$

$$\mathcal{A}(\mathbf{S}_{12}) = \mathbf{R}_{23}^T \mathbf{t} \tag{394}$$

$$\mathcal{A}(\mathbf{D}_{31}) = \mathcal{A}(\mathbf{E}_{31})\mathbf{P}_{31}^T\mathbf{R}_{21}^T \tag{395}$$

$$\mathcal{A}(\mathbf{R}_{23}) = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{D}_{31}) \tag{396}$$

12.1.3.7 homogeneous linearized + particular linearized

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{T}_{31})\mathbf{T}_{32}^{T} \tag{397}$$

$$\mathcal{A}(\mathbf{R}_{12}) = \mathcal{A}(\mathbf{R}_{13}) \tag{398}$$

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{E}_{31}) + \mathcal{A}(\mathbf{R}_{13})\mathbf{B}_{13}^{T}$$
(399)

$$\mathcal{A}(\mathbf{T}_{12}) = \mathbf{D}_{31}^T \mathcal{A}(\mathbf{R}_{13}) \tag{400}$$

$$\mathcal{A}(\mathbf{S}_{21}) = \mathcal{A}(\mathbf{S}_{31}) \tag{401}$$

$$\mathcal{A}(\mathbf{E}_{31}) = \mathcal{A}(\mathbf{E}_{31}) + \mathcal{A}(\mathbf{S}_{31})\mathbf{C}_{31}^{T} \tag{402}$$

$$\mathbf{t} = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{S}_{31}) \tag{403}$$

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{t}\mathcal{X}_{12} \tag{404}$$

$$\mathcal{A}(\mathcal{X}_{12}) = \mathbf{S}_{32}^T \mathbf{t} \tag{405}$$

$$\mathcal{A}(\mathbf{S}_{12}) = \mathbf{R}_{23}^T \mathbf{t} \tag{406}$$

$$\mathbf{t} = \mathcal{A}(\mathbf{E}_{31})\mathbf{P}_{31}^T \tag{407}$$

$$\mathcal{A}(\mathbf{T}_{21}) = \mathbf{t} \tag{408}$$

$$\mathcal{A}(\mathbf{R}_{21}) = \mathbf{D}_{31}^T \mathbf{t} \tag{409}$$

12.1.3.8 homogeneous linearized + homogeneous linearized

$$\mathcal{A}(\mathbf{D}_{31}) = \mathcal{A}(\mathbf{T}_{31})\mathbf{T}_{32}^{T} \tag{410}$$

$$\mathcal{A}(\mathbf{T}_{32}) = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{T}_{31}) \tag{411}$$

$$\mathcal{A}(\mathbf{R}_{12}) = \mathcal{A}(\mathbf{R}_{13}) \tag{412}$$

$$\mathcal{A}(\mathbf{D}_{31}) = \mathcal{A}(\mathbf{D}_{31}) + \mathcal{A}(\mathbf{R}_{13})\mathbf{B}_{13}^{T}$$
(413)

$$\mathbf{t} = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{R}_{13}) \tag{414}$$

$$\mathcal{A}(\mathbf{R}_{23}) = \mathbf{t}\mathbf{T}_{12}^T \tag{415}$$

$$\mathcal{A}(\mathbf{T}_{12}) = \mathbf{R}_{23}^T \mathbf{t} \tag{416}$$

$$\mathcal{A}(\mathbf{S}_{21}) = \mathcal{A}(\mathbf{S}_{31}) \tag{417}$$

$$\mathcal{A}(\mathbf{D}_{31}) = \mathcal{A}(\mathbf{D}_{31}) + \mathcal{A}(\mathbf{S}_{31})\mathbf{C}_{31}^{T} \tag{418}$$

$$\mathbf{t} = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{S}_{31}) \tag{419}$$

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{t}\mathcal{X}_{12} \tag{420}$$

$$\mathcal{A}(\mathcal{X}_{12}) = \mathbf{S}_{32}^T \mathbf{t} \tag{421}$$

$$\mathcal{A}(\mathbf{R}_{23}) = \mathbf{t}\mathbf{S}_{12}^T \tag{422}$$

$$\mathcal{A}(\mathbf{S}_{12}) = \mathbf{R}_{23}^T \mathbf{t} \tag{423}$$

$$\mathbf{t} = \mathcal{A}(\mathbf{D}_{31})\mathbf{P}_{31}^T \tag{424}$$

$$\mathcal{A}(\mathbf{T}_{21}) = \mathbf{t} \tag{425}$$

$$\mathbf{t}_2 = \mathbf{A}_{31}^T \mathbf{t} \tag{426}$$

$$\mathcal{A}(\mathbf{R}_{23}) = \mathbf{t}_2 \mathbf{R}_{21}^T \tag{427}$$

$$\mathcal{A}(\mathbf{R}_{21}) = \mathbf{R}_{23}^T \mathbf{t}_2 \tag{428}$$

12.2 Downward: (R_{31}, T_{13}, S_{13})

12.2.1 Forward

$$\mathbf{P}_{13} = (\mathbf{E} - \mathbf{R}_{21} \mathbf{R}_{23})^{-1} \tag{429}$$

$$\mathbf{A}_{13} = \mathbf{T}_{23} \mathbf{P}_{13} \tag{430}$$

$$\mathbf{B}_{31} = \mathbf{R}_{21} \mathbf{T}_{32} \tag{431}$$

$$\mathbf{C}_{13} = \mathbf{S}_{12} + \mathbf{R}_{21}\mathbf{S}_{32}\mathcal{X}_{12} \tag{432}$$

$$\mathbf{S}_{13} = \mathbf{S}_{23} \mathcal{X}_{12} + \mathbf{A}_{13} \mathbf{C}_{13} \tag{433}$$

$$\mathbf{a}_{13} = \mathbf{A}_{13}(\mathbf{R}_{21}\mathbf{a}_{32} + \mathbf{a}_{12}) + \mathbf{a}_{23} \tag{434}$$

$$Sl_{13} = A_{13} [R_{21}(Sl_{32} + a_{32}f) + Sl_{12}] + Sl_{23} + a_{23}f$$
 (435)

$$\mathbf{R}_{31} = \mathbf{R}_{32} + \mathbf{A}_{13}\mathbf{B}_{31} \tag{436}$$

$$\mathbf{T}_{13} = \mathbf{A}_{13} \mathbf{T}_{12} \tag{437}$$

12.2.2 Tangent linear

12.2.2.1 unlinearized + particular linearized

$$\mathcal{L}(\mathbf{S}_{13}) = \mathcal{L}(\mathbf{S}_{23})\mathcal{X}_{12} + \mathbf{A}_{13}\mathbf{R}_{21}\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12}$$

$$\tag{438}$$

12.2.2.2 particular linearized + unlinearized

$$\mathcal{L}(\mathbf{S}_{13}) = \mathbf{A}_{13}\mathcal{L}(\mathbf{S}_{12}) \tag{439}$$

12.2.2.3 particular linearized + particular linearized

$$\mathcal{L}(\mathbf{S}_{13}) = \mathcal{L}(\mathbf{S}_{23})\mathcal{X}_{12} + \mathbf{A}_{13} \left[\mathcal{L}(\mathbf{S}_{12}) + \mathbf{R}_{21}\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12} \right]$$
(440)

12.2.2.4 unlinearized + homogeneous linearized

$$\mathbf{D}_{13} = \mathbf{A}_{13} \mathbf{R}_{21} \tag{441}$$

$$\mathbf{E}_{13} = (\mathcal{L}(\mathbf{T}_{23}) + \mathbf{D}_{13}\mathcal{L}(\mathbf{R}_{23}))\mathbf{P}_{13}$$
(442)

$$\mathcal{L}(\mathbf{S}_{13}) = \mathcal{L}(\mathbf{S}_{23})\mathcal{X}_{12} + \mathbf{E}_{13}\mathbf{C}_{13} + \mathbf{A}_{13}\mathbf{R}_{21}\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12}$$
(443)

$$\mathcal{L}(\mathbf{R}_{31}) = \mathcal{L}(\mathbf{R}_{32}) + \mathbf{E}_{13}\mathbf{B}_{31} + \mathbf{D}_{13}\mathcal{L}(\mathbf{T}_{32}) \tag{444}$$

$$\mathcal{L}(\mathbf{T}_{13}) = \mathbf{E}_{13}\mathbf{T}_{12} \tag{445}$$

12.2.2.5 homogeneous linearized + unlinearized

$$\mathbf{D}_{13} = \mathbf{A}_{13} \mathcal{L}(\mathbf{R}_{21}) \tag{446}$$

$$\mathbf{E}_{13} = \mathbf{D}_{13} \mathbf{R}_{23} \mathbf{P}_{13} \tag{447}$$

$$\mathcal{L}(\mathbf{S}_{13}) = \mathbf{S}_{23}\mathcal{L}(\mathcal{X}_{12}) + \mathbf{E}_{13}\mathbf{C}_{13} + \mathbf{A}_{13}\left[\mathcal{L}(\mathbf{S}_{12}) + \mathcal{L}(\mathbf{R}_{21})\mathbf{S}_{32}\mathcal{X}_{12} + \mathbf{R}_{21}\mathbf{S}_{32}\mathcal{L}(\mathcal{X}_{12})\right]$$
(448)

$$\mathcal{L}(\mathbf{R}_{31}) = \mathbf{E}_{13}\mathbf{B}_{31} + \mathbf{D}_{13}\mathbf{T}_{32} \tag{449}$$

$$\mathcal{L}(\mathbf{T}_{13}) = \mathbf{E}_{13}\mathbf{T}_{12} + \mathbf{A}_{13}\mathcal{L}(\mathbf{T}_{12}) \tag{450}$$

12.2.2.6 particular linearized + homogeneous linearized

$$\mathbf{D}_{13} = \mathbf{A}_{13} \mathbf{R}_{21} \tag{451}$$

$$\mathbf{E}_{13} = \left[\mathcal{L}(\mathbf{T}_{23}) + \mathbf{D}_{13}\mathcal{L}(\mathbf{R}_{23}) \right] \mathbf{P}_{13} \tag{452}$$

$$\mathcal{L}(\mathbf{S}_{13}) = \mathcal{L}(\mathbf{S}_{23})\mathcal{X}_{12} + \mathbf{E}_{13}\mathbf{C}_{13} + \mathbf{A}_{13}\left[\mathcal{L}(\mathbf{S}_{12}) + \mathbf{R}_{21}\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12}\right]$$
(453)

$$\mathcal{L}(\mathbf{R}_{31}) = \mathcal{L}(\mathbf{R}_{32}) + \mathbf{E}_{13}\mathbf{B}_{31} + \mathbf{D}_{13}\mathcal{L}(\mathbf{T}_{32})$$
(454)

$$\mathcal{L}(\mathbf{T}_{13}) = \mathbf{E}_{13}\mathbf{T}_{12} \tag{455}$$

12.2.2.7 homogeneous linearized + particular linearized

$$\mathbf{D}_{13} = \mathbf{A}_{13} \mathcal{L}(\mathbf{R}_{21}) \tag{456}$$

$$\mathbf{E}_{13} = \mathbf{D}_{13} \mathbf{R}_{23} \mathbf{P}_{13} \tag{457}$$

$$\mathcal{L}(\mathbf{S}_{13}) = \mathcal{L}(\mathbf{S}_{23})\mathcal{X}_{12} + \mathbf{S}_{23}\mathcal{L}(\mathcal{X}_{12}) + \mathbf{E}_{13}\mathbf{C}_{13} + \mathbf{A}_{13} \left\{ \mathcal{L}(\mathbf{S}_{12}) + \mathcal{L}(\mathbf{R}_{21})\mathbf{S}_{32}\mathcal{X}_{12} + \mathbf{R}_{21} \left[\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12} + \mathbf{S}_{32}\mathcal{L}(\mathcal{X}_{12}) \right] \right\}$$

$$(458)$$

$$\mathcal{L}(\mathbf{R}_{31}) = \mathbf{E}_{13}\mathbf{B}_{31} + \mathbf{D}_{13}\mathbf{T}_{32} \tag{459}$$

$$\mathcal{L}(\mathbf{T}_{13}) = \mathbf{E}_{13}\mathbf{T}_{12} + \mathbf{A}_{13}\mathcal{L}(\mathbf{T}_{12}) \tag{460}$$

12.2.2.8 homogeneous linearized + homogeneous linearized

$$\mathbf{D}_{13} = \left[\mathcal{L}(\mathbf{T}_{23}) + \mathbf{A}_{13} (\mathcal{L}(\mathbf{R}_{21}) \mathbf{R}_{23} + \mathbf{R}_{21} \mathcal{L}(\mathbf{R}_{23})) \right] \mathbf{P}_{13}$$
(461)

$$\mathcal{L}(\mathbf{S}_{13}) = \mathcal{L}(\mathbf{S}_{23})\mathcal{X}_{12} + \mathbf{S}_{23}\mathcal{L}(\mathcal{X}_{12}) + \mathbf{D}_{13}\mathbf{C}_{13} + \mathbf{A}_{13} \left[\mathcal{L}(\mathbf{S}_{12}) + \mathcal{L}(\mathbf{R}_{21})\mathbf{S}_{32}\mathcal{X}_{12} + \mathbf{R}_{21}(\mathcal{L}(\mathbf{S}_{32})\mathcal{X}_{12} + \mathbf{S}_{32}\mathcal{L}(\mathcal{X}_{12})) \right]$$

$$(462)$$

$$\mathcal{L}(\mathbf{R}_{31}) = \mathcal{L}(\mathbf{R}_{32}) + \mathbf{D}_{13}\mathbf{B}_{31} + \mathbf{A}_{13}(\mathcal{L}(\mathbf{R}_{21})\mathbf{T}_{32} + \mathbf{R}_{21}\mathcal{L}(\mathbf{T}_{32}))$$
(463)

$$\mathcal{L}(\mathbf{T}_{13}) = \mathbf{D}_{13}\mathbf{T}_{12} + \mathbf{A}_{13}\mathcal{L}(\mathbf{T}_{12}) \tag{464}$$

12.2.3 Adjoint of tangent linear

12.2.3.1 unlinearized + particular linearized

$$\mathcal{A}(\mathbf{S}_{23}) = \mathcal{A}(\mathbf{S}_{13})\mathcal{X}_{12} \tag{465}$$

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{R}_{21}^T \mathbf{A}_{13}^T \mathcal{A}(\mathbf{S}_{13}) \mathcal{X}_{12} \tag{466}$$

12.2.3.2 particular linearized + unlinearized

$$\mathcal{A}(\mathbf{S}_{12}) = \mathbf{A}_{13}^T \mathcal{A}(\mathbf{S}_{13}) \tag{467}$$

12.2.3.3 particular linearized + particular linearized

$$\mathcal{A}(\mathbf{S}_{23}) = \mathcal{A}(\mathbf{S}_{13})\mathcal{X}_{12} \tag{468}$$

$$\mathbf{t} = \mathbf{A}_{13}^T \mathcal{A}(\mathbf{S}_{13}) \tag{469}$$

$$\mathcal{A}(\mathbf{S}_{12}) = \mathbf{t} \tag{470}$$

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{R}_{21}^T \mathcal{A}(\mathbf{S}_{13}) \mathcal{X}_{12} \tag{471}$$

12.2.3.4 unlinearized + homogeneous linearized

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{T}_{13})\mathbf{T}_{12}^{T} \tag{472}$$

$$\mathcal{A}(\mathbf{R}_{32}) = \mathcal{A}(\mathbf{R}_{31}) \tag{473}$$

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{E}_{13}) + \mathcal{A}(\mathbf{R}_{31})\mathbf{B}_{31}^{T} \tag{474}$$

$$\mathcal{A}(\mathbf{T}_{32}) = \mathbf{D}_{13}^T \mathcal{A}(\mathbf{R}_{31}) \tag{475}$$

$$\mathcal{A}(\mathbf{S}_{23}) = \mathcal{A}(\mathbf{S}_{13})\mathcal{X}_{12} \tag{476}$$

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{E}_{13}) + \mathcal{A}(\mathbf{S}_{13})\mathbf{C}_{13}^{T} \tag{477}$$

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{R}_{21}^T \mathbf{A}_{13}^T \mathcal{A}(\mathbf{S}_{13}) t_{32} \tag{478}$$

$$\mathbf{t} = \mathcal{A}(\mathbf{E}_{13})\mathbf{P}_{13}^T \tag{479}$$

$$\mathcal{A}(\mathbf{T}_{23}) = \mathbf{t} \tag{480}$$

$$\mathcal{A}(\mathbf{R}_{23}) = \mathbf{D}_{13}^T \mathbf{t} \tag{481}$$

12.2.3.5 homogeneous linearized + unlinearized

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{T}_{13})\mathbf{T}_{12}^{T} \tag{482}$$

$$\mathcal{A}(\mathbf{T}_{12}) = \mathbf{A}_{13}^T \mathcal{A}(\mathbf{T}_{13}) \tag{483}$$

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{E}_{13}) + \mathcal{A}(\mathbf{R}_{31})\mathbf{B}_{31}^{T} \tag{484}$$

$$\mathcal{A}(\mathbf{D}_{13}) = \mathcal{A}(\mathbf{R}_{31})\mathbf{T}_{32}^{T} \tag{485}$$

$$\mathcal{A}(\mathcal{X}_{12}) = \mathbf{S}_{23}^T \mathcal{A}(\mathbf{S}_{13}) \tag{486}$$

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{E}_{13}) + \mathcal{A}(\mathbf{S}_{13})\mathbf{C}_{13}^{T}$$

$$\tag{487}$$

$$\mathbf{t} = \mathbf{A}_{13}^T \mathcal{A}(\mathbf{S}_{13}) \tag{488}$$

$$\mathcal{A}(\mathbf{S}_{12}) = \mathbf{t} \tag{489}$$

$$\mathcal{A}(\mathbf{R}_{12}) = \mathcal{A}(\mathbf{S}_{13})\mathbf{S}_{32}^T \mathcal{X}_{12} \tag{490}$$

$$\mathcal{A}(\mathcal{X}_{12}) = \mathcal{A}(\mathcal{X}_{12}) + \mathbf{S}_{32}^T \mathbf{R}_{21}^T \mathcal{A}(\mathbf{S}_{13})$$

$$\tag{491}$$

$$\mathcal{A}(\mathbf{D}_{13}) = \mathcal{A}(\mathbf{E}_{13})\mathbf{D}_{13}^T\mathbf{R}_{23}^T \tag{492}$$

$$\mathcal{A}(\mathbf{R}_{21}) = \mathcal{A}(\mathbf{R}_{21}) + \mathbf{A}_{13}^T \mathcal{A}(\mathbf{D}_{13}) \tag{493}$$

12.2.3.6 particular linearized + homogeneous linearized

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{T}_{13})\mathbf{T}_{12}^{T} \tag{494}$$

$$\mathcal{A}(\mathbf{R}_{32}) = \mathcal{A}(\mathbf{R}_{31}) \tag{495}$$

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{E}_{13}) + \mathcal{A}(\mathbf{R}_{31})\mathbf{B}_{31}^{T} \tag{496}$$

$$\mathcal{A}(\mathbf{T}_{32}) = \mathbf{D}_{13}^T \mathcal{A}(\mathbf{R}_{31}) \tag{497}$$

$$\mathcal{A}(\mathbf{S}_{23}) = \mathcal{A}(\mathbf{S}_{13})\mathcal{X}_{12} \tag{498}$$

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{E}_{13}) + \mathcal{A}(\mathbf{S}_{13})\mathbf{C}_{13}^{T} \tag{499}$$

$$\mathbf{t} = \mathbf{A}_{13}^T \mathcal{A}(\mathbf{S}_{13}) \tag{500}$$

$$\mathcal{A}(\mathbf{S}_{12}) = \mathbf{t} \tag{501}$$

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{R}_{21}^T \mathcal{A}(\mathbf{S}_{13}) \mathcal{X}_{12} \tag{502}$$

$$\mathbf{t} = \mathcal{A}(\mathbf{E}_{13})\mathbf{P}_{13}^T \tag{503}$$

$$\mathcal{A}(\mathbf{T}_{23}) = \mathbf{t} \tag{504}$$

$$\mathcal{A}(\mathbf{R}_{23}) = \mathbf{D}_{13}^T \mathbf{t} \tag{505}$$

12.2.3.7 homogeneous linearized + particular linearized

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{T}_{13})\mathbf{T}_{12}^{T} \tag{506}$$

$$\mathcal{A}(\mathbf{T}_{12}) = \mathbf{A}_{13}^T \mathcal{A}(\mathbf{T}_{13}) \tag{507}$$

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{E}_{13}) + \mathcal{A}(\mathbf{R}_{31})\mathbf{B}_{31}^{T}$$
(508)

$$\mathcal{A}(\mathbf{D}_{13}) = \mathcal{A}(\mathbf{R}_{31})\mathbf{T}_{32}^{T} \tag{509}$$

$$\mathcal{A}(\mathbf{S}_{23}) = \mathcal{A}(\mathbf{S}_{13})\mathcal{X}_{12} \tag{510}$$

$$\mathcal{A}(\mathcal{X}_{12}) = \mathbf{S}_{23}^T \mathcal{A}(\mathbf{S}_{13}) \tag{511}$$

$$\mathcal{A}(\mathbf{E}_{13}) = \mathcal{A}(\mathbf{E}_{13}) + \mathcal{A}(\mathbf{S}_{13})\mathbf{C}_{13}^{T}$$

$$\tag{512}$$

$$\mathbf{t} = \mathbf{A}_{13}^T \mathcal{A}(\mathbf{S}_{13}) \tag{513}$$

$$\mathcal{A}(\mathbf{S}_{12}) = \mathbf{t} \tag{514}$$

$$\mathcal{A}(\mathbf{R}_{21}) = \mathbf{t}\mathbf{S}_{32}^T \mathcal{X}_{12} \tag{515}$$

$$\mathbf{t}_2 = \mathbf{R}_{21}^T \mathbf{t} \tag{516}$$

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{t}_2 \mathcal{X}_{12} \tag{517}$$

$$\mathcal{A}(\mathcal{X}_{12}) = \mathcal{A}(\mathcal{X}_{12}) + \mathbf{S}_{32}^T \mathbf{t}_2 \tag{518}$$

$$\mathcal{A}(\mathbf{D}_{13}) = \mathcal{A}(\mathbf{E}_{13})\mathbf{P}_{13}^T\mathbf{R}_{23}^T \tag{519}$$

$$\mathcal{A}(\mathbf{R}_{21}) = \mathbf{A}_{31}^T \mathcal{A}(\mathbf{D}_{13}) \tag{520}$$

12.2.3.8 homogeneous linearized + homogeneous linearized

$$\mathcal{A}(\mathbf{D}_{13}) = \mathcal{A}(\mathbf{T}_{13})\mathbf{T}_{12}^{T} \tag{521}$$

$$\mathcal{A}(\mathbf{T}_{12}) = \mathbf{A}_{13}^T \mathcal{A}(\mathbf{T}_{13}) \tag{522}$$

$$\mathcal{A}(\mathbf{R}_{32}) = \mathcal{A}(\mathbf{R}_{31}) \tag{523}$$

$$\mathcal{A}(\mathbf{D}_{13}) = \mathcal{A}(\mathbf{D}_{13}) + \mathcal{A}(\mathbf{R}_{31})\mathbf{B}_{31}^{T}$$

$$(524)$$

$$\mathbf{t} = \mathbf{A}_{13}^T \mathcal{A}(\mathbf{R}_{31}) \tag{525}$$

$$\mathcal{A}(\mathbf{R}_{21}) = \mathbf{t}\mathbf{T}_{32}^T \tag{526}$$

$$\mathcal{A}(\mathbf{T}_{32}) = \mathbf{R}_{21}^T \mathbf{t} \tag{527}$$

$$\mathcal{A}(\mathbf{S}_{23}) = \mathcal{A}(\mathbf{S}_{13})\mathcal{X}_{12} \tag{528}$$

$$\mathcal{A}(\mathcal{X}_{12}) = \mathbf{S}_{23}^T \mathcal{A}(\mathbf{S}_{13}) \tag{529}$$

$$\mathcal{A}(\mathbf{D}_{13}) = \mathcal{A}(\mathbf{D}_{13}) + \mathcal{A}(\mathbf{S}_{13})\mathbf{C}_{13}^{T}$$

$$\tag{530}$$

$$\mathbf{t} = \mathbf{A}_{13}^T \mathcal{A}(\mathbf{S}_{13}) \tag{531}$$

$$\mathcal{A}(\mathbf{S}_{12}) = \mathbf{t} \tag{532}$$

$$\mathcal{A}(\mathbf{R}_{21}) = \mathcal{A}(\mathbf{R}_{21}) + \mathbf{t}\mathbf{S}_{32}^T \mathcal{X}_{12}$$
(533)

$$\mathbf{t}_2 = \mathbf{R}_{21}^T \mathbf{t} \tag{534}$$

$$\mathcal{A}(\mathbf{S}_{32}) = \mathbf{t}_2 \mathcal{X}_{12} \tag{535}$$

$$\mathcal{A}(\mathcal{X}_{12}) = \mathcal{A}(\mathcal{X}_{12}) + \mathbf{S}_{32}^T \mathbf{t}_2 \tag{536}$$

$$\mathbf{t} = \mathcal{A}(\mathbf{D}_{31})\mathbf{P}_{13}^T \tag{537}$$

$$\mathcal{A}(\mathbf{T}_{23}) = \mathbf{t} \tag{538}$$

$$\mathbf{t}_2 = \mathbf{A}_{31}^T \mathbf{t} \tag{539}$$

$$\mathcal{A}(\mathbf{R}_{21}) = \mathcal{A}(\mathbf{R}_{21}) + \mathbf{t}_2 \mathbf{R}_{23}^T \tag{540}$$

$$\mathcal{A}(\mathbf{R}_{23}) = \mathbf{R}_{21}^T \mathbf{t}_2 \tag{541}$$

13 Radiance

13.1 Slab radiance

13.1.1 Forward

$$\mathbf{I}_{1}^{+} = \mathbf{R}_{12}^{-} \mathbf{I}_{1}^{-} + \mathbf{T}_{12}^{+} \mathbf{I}_{2}^{+} + \mathbf{S}_{12}^{+}$$
(542)

$$\mathbf{I}_{2}^{-} = \mathbf{R}_{12}^{+} \mathbf{I}_{2}^{+} + \mathbf{T}_{12}^{-} \mathbf{I}_{1}^{-} + \mathbf{S}_{12}^{-}$$
(543)

13.1.2 Tangent linear

13.1.2.1 U

$$\mathbf{K}_{1}^{+} = \mathbf{R}_{12}^{-} \mathbf{K}_{1}^{-} + \mathbf{T}_{12}^{+} \mathbf{K}_{2}^{+} \tag{544}$$

$$\mathbf{K}_{2}^{-} = \mathbf{R}_{12}^{+} \mathbf{K}_{2}^{+} + \mathbf{T}_{12}^{-} \mathbf{K}_{1}^{-} \tag{545}$$

13.1.2.2 S

$$\mathbf{K}_{1}^{+} = \mathbf{R}_{12}^{-} \mathbf{K}_{1}^{-} + \mathbf{T}_{12}^{+} \mathbf{K}_{2}^{+} + \mathcal{L}(\mathbf{S}_{12}^{+})$$
(546)

$$\mathbf{K}_{2}^{-} = \mathbf{R}_{12}^{+} \mathbf{K}_{2}^{+} + \mathbf{T}_{12}^{-} \mathbf{K}_{1}^{-} + \mathcal{L}(\mathbf{S}_{12}^{-})$$
(547)

13.1.2.3 L

$$\mathbf{K}_{1}^{+} = \mathcal{L}(\mathbf{R}_{12}^{-})\mathbf{I}_{1}^{-} + \mathbf{R}_{12}^{-}\mathbf{K}_{1}^{-} + \mathcal{L}(\mathbf{T}_{12}^{+})\mathbf{I}_{2}^{+} + \mathbf{T}_{12}^{+}\mathbf{K}_{2}^{+}$$
(548)

$$\mathbf{K}_{2}^{-} = \mathcal{L}(\mathbf{R}_{12}^{+})\mathbf{I}_{2}^{+} + \mathbf{R}_{12}^{+}\mathbf{K}_{2}^{+} + \mathcal{L}(\mathbf{T}_{12}^{-})\mathbf{I}_{1}^{-} + \mathbf{T}_{12}^{-}\mathbf{K}_{1}^{-}$$
(549)

13.1.2.4 B

$$\mathbf{K}_{1}^{+} = \mathcal{L}(\mathbf{R}_{12}^{-})\mathbf{I}_{1}^{-} + \mathbf{R}_{12}^{-}\mathbf{K}_{1}^{-} + \mathcal{L}(\mathbf{T}_{12}^{+})\mathbf{I}_{2}^{+} + \mathbf{T}_{12}^{+}\mathbf{K}_{2}^{+} + \mathcal{L}(\mathbf{S}_{12}^{+})$$
(550)

$$\mathbf{K}_{2}^{-} = \mathcal{L}(\mathbf{R}_{12}^{+})\mathbf{I}_{2}^{+} + \mathbf{R}_{12}^{+}\mathbf{K}_{2}^{+} + \mathcal{L}(\mathbf{T}_{12}^{-})\mathbf{I}_{1}^{-} + \mathbf{T}_{12}^{-}\mathbf{K}_{1}^{-} + \mathcal{L}(\mathbf{S}_{12}^{-})$$
(551)

13.1.3 Adjoint of tangent linear

$$\mathcal{A}(\mathbf{R}_{12}^+) = \mathcal{A}(\mathbf{R}_{12}^+) + \mathcal{A}(\mathbf{I}_2^-)(\mathbf{I}_2^+)^T \tag{552}$$

$$\mathcal{A}(\mathbf{I}_2^+) = \mathcal{A}(\mathbf{I}_2^+) + (\mathbf{R}_{12}^+)^T \mathcal{A}(\mathbf{I}_2^-)$$

$$\tag{553}$$

$$\mathcal{A}(\mathbf{T}_{12}^{-}) = \mathcal{A}(\mathbf{T}_{12}^{-}) + \mathcal{A}(\mathbf{I}_{2}^{-})(\mathbf{I}_{1}^{-})^{T}$$

$$(554)$$

$$\mathcal{A}(\mathbf{I}_1^-) = \mathcal{A}(\mathbf{I}_1^-) + (\mathbf{T}_{12}^-)^T \mathcal{A}(\mathbf{I}_2^-)$$
(555)

$$\mathcal{A}(\mathbf{S}_{12}^{-}) = \mathcal{A}(\mathbf{S}_{12}^{-}) + \mathcal{A}(\mathbf{I}_{2}^{-}) \tag{556}$$

$$\mathcal{A}(\mathbf{R}_{12}^{-}) = \mathcal{A}(\mathbf{R}_{12}^{-}) + \mathcal{A}(\mathbf{I}_{1}^{+})(\mathbf{I}_{1}^{-})^{T}$$

$$(557)$$

$$\mathcal{A}(\mathbf{I}_1^-) = \mathcal{A}(\mathbf{I}_1^-) + (\mathbf{R}_{12}^-)^T \mathcal{A}(\mathbf{I}_1^+)$$
(558)

$$\mathcal{A}(\mathbf{T}_{12}^+) = \mathcal{A}(\mathbf{T}_{12}^+) + \mathcal{A}(\mathbf{I}_1^+)(\mathbf{I}_2^+)^T$$

$$\tag{559}$$

$$\mathcal{A}(\mathbf{I}_2^+) = \mathcal{A}(\mathbf{I}_2^+) + (\mathbf{T}_{12}^+)^T \mathcal{A}(\mathbf{I}_1^+)$$

$$\tag{560}$$

$$\mathcal{A}(\mathbf{S}_{12}^+) = \mathcal{A}(\mathbf{S}_{12}^+) + \mathcal{A}(\mathbf{I}_1^+) \tag{561}$$

- 13.2 TOA radiance
- **13.2.1** Forward
- 13.2.2 Tangent linear
- 13.2.3 Adjoint of tangent linear
- 13.3 BOA radiance
- 13.3.1 Forward

$$\mathbf{P} = (\mathbf{E} - \mathbf{R}_{12}^{+} \mathbf{R}_{23}^{-})^{-1} \tag{562}$$

$$\mathbf{I}_{2}^{-} = \mathbf{P}(\mathbf{R}_{12}^{+}\mathbf{I}_{3}^{+} + \mathbf{T}_{12}^{-}\mathbf{I}_{1}^{-} + \mathbf{S}_{12}^{-})$$
(563)

$$\mathbf{I}_{2}^{+} = \mathbf{R}_{23}^{-} \mathbf{I}_{2}^{-} + \mathbf{I}_{3}^{+} \tag{564}$$

13.3.2 Tangent linear

13.3.2.1 U₋B

$$\mathbf{Q} = \mathbf{R}_{12}^+ \mathcal{L}(\mathbf{R}_{23}^-) \tag{565}$$

$$\mathbf{K}_{2}^{-} = \mathbf{P}(\mathbf{Q}\mathbf{I}_{2}^{-} + \mathbf{R}_{12}^{+}\mathbf{K}_{3}^{+} + \mathbf{T}_{12}^{-}\mathbf{K}_{1}^{-})$$
(566)

$$\mathbf{K}_{2}^{+} = \mathcal{L}(\mathbf{R}_{23}^{-})\mathbf{I}_{2}^{-} + \mathbf{R}_{23}^{-}\mathbf{K}_{2}^{-} + \mathbf{K}_{3}^{+}$$
(567)

13.3.2.2 L₋L

$$\mathbf{Q} = \mathcal{L}(\mathbf{R}_{12}^+)\mathbf{R}_{23}^- + \mathbf{R}_{12}^+ \mathcal{L}(\mathbf{R}_{23}^-)$$
 (568)

$$\mathbf{K}_{2}^{-} = \mathbf{P}(\mathbf{Q}\mathbf{I}_{2}^{-} + \mathcal{L}(\mathbf{R}_{12}^{+})\mathbf{I}_{3}^{+} + \mathcal{L}(\mathbf{T}_{12}^{-})\mathbf{I}_{1}^{-} + \mathbf{T}_{12}^{-}\mathbf{K}_{1}^{-})$$
(569)

$$\mathbf{K}_{2}^{+} = \mathcal{L}(\mathbf{R}_{23}^{-})\mathbf{I}_{2}^{-} + \mathbf{R}_{23}^{-}\mathbf{K}_{2}^{-} \tag{570}$$

13.3.2.3 B₋U

$$\mathbf{Q} = \mathcal{L}(\mathbf{U}_{12}^+)\mathbf{R}_{23}^- \tag{571}$$

$$\mathbf{K}_{2}^{-} = \mathbf{P}(\mathbf{Q}\mathbf{I}_{2}^{-} + \mathcal{L}(\mathbf{R}_{12}^{+})\mathbf{I}_{3}^{+} + \mathbf{R}_{12}^{+}\mathbf{K}_{3}^{+} + \mathcal{L}(\mathbf{T}_{12}^{-})\mathbf{I}_{1}^{-} + \mathbf{T}_{12}^{-}\mathbf{K}_{1}^{-} + \mathbf{V}_{12}^{-})$$
(572)

$$\mathbf{K}_{2}^{+} = \mathbf{R}_{23}^{-} \mathbf{K}_{2}^{-} + \mathbf{K}_{3}^{+} \tag{573}$$

13.3.2.4 B₋S

$$\mathbf{Q} = \mathcal{L}(\mathbf{R}_{12}^+)\mathbf{R}_{23}^- \tag{574}$$

$$\mathbf{K}_{2}^{-} = \mathbf{P}(\mathbf{Q}\mathbf{I}_{2}^{-} + \mathcal{L}(\mathbf{R}_{12}^{+})\mathbf{I}_{3}^{+} + \mathbf{R}_{12}^{+}\mathbf{K}_{3}^{+} + \mathcal{L}(\mathbf{T}_{12}^{-})\mathbf{I}_{1}^{-} + \mathbf{T}_{12}^{-}\mathbf{K}_{1}^{-} + \mathcal{L}(\mathbf{S}_{12}^{-}))$$
(575)

$$\mathbf{K}_{2}^{+} = \mathbf{R}_{23}^{-} \mathbf{K}_{2}^{-} + \mathbf{K}_{3}^{+} \tag{576}$$

13.3.2.5 B_LL

$$\mathbf{Q} = \mathcal{L}(\mathbf{R}_{12}^+)\mathbf{R}_{23}^- + \mathbf{R}_{12}^+ \mathcal{L}(\mathbf{R}_{23}^-)$$
 (577)

$$\mathbf{K}_{2}^{-} = \mathbf{P}(\mathbf{Q}\mathbf{I}_{2}^{-} + \mathcal{L}(\mathbf{R}_{12}^{+})\mathbf{I}_{3}^{+} + \mathcal{L}(\mathbf{T}_{12}^{-})\mathbf{I}_{1}^{-} + \mathbf{T}_{12}^{-}\mathbf{K}_{1}^{-} + \mathcal{L}(\mathbf{S}_{12}^{-}))$$
(578)

$$\mathbf{K}_{2}^{+} = \mathcal{L}(\mathbf{R}_{23}^{-})\mathbf{I}_{2}^{-} + \mathbf{R}_{23}^{-}\mathbf{K}_{2}^{-}$$
(579)

13.3.2.6 B₋B

$$\mathbf{Q} = \mathcal{L}(\mathbf{R}_{12}^+)\mathbf{R}_{23}^- + \mathbf{R}_{12}^+ \mathcal{L}(\mathbf{R}_{23}^-)$$
 (580)

$$\mathbf{K}_{2}^{-} = \mathbf{P}(\mathbf{Q}\mathbf{I}_{2}^{-} + \mathcal{L}(\mathbf{R}_{12}^{+})\mathbf{I}_{3}^{+} + \mathbf{R}_{12}^{+}\mathbf{K}_{3}^{+} + \mathcal{L}(\mathbf{T}_{12}^{-})\mathbf{I}_{1}^{-} + \mathbf{T}_{12}^{-}\mathbf{K}_{1}^{-} + \mathcal{L}(\mathbf{S}_{12}^{-}))$$
(581)

$$\mathbf{K}_{2}^{+} = \mathcal{L}(\mathbf{R}_{23}^{-})\mathbf{I}_{2}^{-} + \mathbf{R}_{23}^{-}\mathbf{K}_{2}^{-} + \mathbf{K}_{3}^{+}$$
(582)

13.3.3 Adjoint of tangent linear

13.3.3.1 U₋L

13.3.3.2 L_P

13.3.3.3 L_L

$$\mathcal{A}(\mathbf{R}_{23}^{-}) = \mathcal{A}(\mathbf{R}_{23}^{-}) + \mathcal{A}(\mathbf{I}_{2}^{+})(\mathbf{I}_{2}^{-})^{T}$$

$$(583)$$

$$\mathcal{A}(\mathbf{I}_2^-) = \mathcal{A}(\mathbf{I}_2^-) + (\mathbf{R}_{23}^-)^T \mathcal{A}(\mathbf{I}_2^+)$$

$$\tag{584}$$

$$\mathcal{A}(\mathbf{I}_3^+) = \mathcal{A}(\mathbf{I}_3^+) + \mathcal{A}(\mathbf{I}_2^+) \tag{585}$$

$$t = \mathbf{P}\mathcal{A}(\mathbf{I}_2^-) \tag{586}$$

$$\mathcal{A}(\mathbf{Q}) = \mathcal{A}(\mathbf{Q}) + t(\mathbf{I}_2^-)^T \tag{587}$$

$$\mathcal{A}(\mathbf{R}_{12}^+) = \mathcal{A}(\mathbf{R}_{12}^+) + t(\mathbf{I}_3^+)^T \tag{588}$$

$$\mathcal{A}(\mathbf{I}_3^+) = \mathcal{A}(\mathbf{I}_3^+) + (\mathbf{R}_{12}^+)^T t \tag{589}$$

$$\mathcal{A}(\mathbf{T}_{12}^{-}) = \mathcal{A}(\mathbf{T}_{12}^{-}) + t(\mathbf{I}_{1}^{-})^{T}$$

$$\tag{590}$$

$$\mathcal{A}(\mathbf{I}_1^-) = \mathcal{A}(\mathbf{I}_1^-) + (\mathbf{T}_{12}^-)^T t \tag{591}$$

$$\mathcal{A}(\mathbf{S}_{12}^-) = \mathcal{A}(\mathbf{S}_{12}^-) + t \tag{592}$$

$$\mathcal{A}(\mathbf{R}_{12}^+) = \mathcal{A}(\mathbf{R}_{12}^+) + \mathcal{A}(\mathbf{Q})(\mathbf{R}_{23}^-)^T \tag{593}$$

$$\mathcal{A}(\mathbf{R}_{23}^{-}) = \mathcal{A}(\mathbf{R}_{23}^{-}) + (\mathbf{R}_{12}^{+})^{T} \mathcal{A}(\mathbf{Q})$$

$$(594)$$

13.4 Internal radiance

13.4.1 Forward

$$\mathbf{P}_{31} = (\mathbf{E} - \mathbf{R}_{23}^{-} \mathbf{R}_{12}^{+})^{-1} \tag{595}$$

$$\mathbf{I}_{2}^{+} = \mathbf{P}_{31} \left[\mathbf{R}_{23}^{-} \mathbf{T}_{12}^{-} \mathbf{I}_{1}^{-} + \mathbf{T}_{23}^{+} \mathbf{I}_{3}^{+} + \mathbf{R}_{23}^{-} \mathbf{S}_{12}^{-} + \mathbf{S}_{23}^{+} \right]$$
(596)

$$\mathbf{P}_{13} = (\mathbf{E} - \mathbf{R}_{12}^{+} \mathbf{R}_{23}^{-})^{-1} \tag{597}$$

$$\mathbf{I}_{2}^{-} = \mathbf{P}_{13} \left[\mathbf{R}_{12}^{+} \mathbf{T}_{23}^{+} \mathbf{I}_{3}^{+} + \mathbf{T}_{12}^{-} \mathbf{I}_{1}^{-} + \mathbf{R}_{12}^{+} \mathbf{S}_{23}^{+} + \mathbf{S}_{12}^{-} \right]$$
(598)

13.4.2 Tangent linear

$$\mathbf{K}_{2}^{+} = \mathbf{P}_{31} \left[\mathcal{L}(\mathbf{R}_{23}^{-}) \mathbf{R}_{12}^{+} \mathbf{I}_{2}^{+} + \mathbf{R}_{23}^{-} \mathcal{L}(\mathbf{R}_{12}^{+}) \mathbf{I}_{2}^{+} + \mathcal{L}(\mathbf{R}_{23}^{-}) \mathbf{T}_{12}^{-} \mathbf{I}_{1}^{-} + \mathbf{R}_{23}^{-} (\mathcal{L}(\mathbf{T}_{12}^{-}) \mathbf{I}_{1}^{-} + \mathbf{T}_{12}^{-} \mathbf{K}_{1}^{-}) \right. \\
+ \left. \mathcal{L}(\mathbf{T}_{23}^{+}) \mathbf{I}_{3}^{+} + \mathbf{T}_{23}^{+} \mathbf{K}_{3}^{+} + \mathcal{L}(\mathbf{R}_{23}^{-}) \mathbf{S}_{12}^{-} + \mathbf{R}_{23}^{-} \mathcal{L}(\mathbf{S}_{12}^{-}) + \mathcal{L}(\mathbf{S}_{23}^{+}) \right]$$
(599)

$$\mathbf{K}_{2}^{-} = \mathbf{P}_{13} \left[\mathcal{L}(\mathbf{R}_{12}^{+}) \mathbf{R}_{23}^{-} \mathbf{I}_{2}^{-} + \mathbf{R}_{12}^{+} \mathcal{L}(\mathbf{R}_{23}^{-}) \mathbf{I}_{2}^{-} + \mathcal{L}(\mathbf{R}_{12}^{+}) \mathbf{T}_{23}^{+} \mathbf{I}_{3}^{+} + \mathbf{R}_{12}^{+} (\mathcal{L}(\mathbf{T}_{23}^{+}) \mathbf{I}_{3}^{+} + \mathbf{T}_{23}^{+} \mathbf{K}_{3}^{+}) \right. \\
+ \left. \mathcal{L}(\mathbf{T}_{12}^{-}) \mathbf{I}_{1}^{-} + \mathbf{T}_{12}^{-} \mathbf{K}_{1}^{-} + \mathcal{L}(\mathbf{R}_{12}^{+}) \mathbf{S}_{23}^{+} + \mathbf{R}_{12}^{+} \mathcal{L}(\mathbf{S}_{23}^{+}) + \mathcal{L}(\mathbf{S}_{12}^{-}) \right]$$
(600)

13.4.3 Adjoint of tangent linear

14 Discrete ordinate method

14.1 Layer quantities

14.1.1 Homogeneous solution

14.1.1.1 Forward

14.1.1.2 Tangent linear

14.1.1.3 Adjoint of tangent linear

14.1.2 Particular solution

14.1.2.1 Forward

14.1.2.2 Tangent linear

14.1.2.3 Adjoint of tangent linear

14.2 Boundary value problem

14.2.1 Forward

$$\Lambda_k = \operatorname{diag}(e^{-\nu_{i,k}x_k}) \tag{601}$$

$$U_k^{\pm} = X_k^{\pm} \Lambda_k \tag{602}$$

$$V_k^{\pm} = X_k^{\pm} - X_k^{\mp} R_s \tag{603}$$

$$W_k^{\pm} = V_k^{\pm} \Lambda_k \tag{604}$$

$$G_k^+ = F_K^+ - R_s F_K^- (606)$$

$$\mathbf{b} = \begin{bmatrix} I_{0}^{-} - F_{1}^{-} \\ F_{2}^{+} - F_{1}^{+} \mathcal{X}_{b,1} \\ F_{2}^{-} - F_{1}^{-} \mathcal{X}_{b,1} \\ F_{3}^{-} - F_{2}^{+} \mathcal{X}_{b,2} \\ F_{3}^{-} - F_{2}^{-} \mathcal{X}_{b,2} \\ F_{4}^{+} - F_{3}^{+} \mathcal{X}_{b,3} \\ F_{4}^{-} - F_{3}^{-} \mathcal{X}_{b,3} \\ \vdots \\ F_{K}^{+} - F_{K-1}^{+} \mathcal{X}_{b,K-1} \\ F_{K}^{-} - F_{K-1}^{-} \mathcal{X}_{b,K-1} \\ I_{K}^{+} - G_{K}^{+} \mathcal{X}_{b,K} \end{bmatrix}$$

$$(607)$$

$$\mathbf{x} = \begin{bmatrix} x_1^+ \\ x_1^- \\ x_2^+ \\ x_2^- \\ x_3^- \\ x_3^+ \\ x_4^- \\ \vdots \\ x_K^+ \\ x_K^- \end{bmatrix}$$

$$(608)$$

14.2.2 Tangent linear

$$\mathcal{L}(\Lambda_k) = \operatorname{diag}\left[\left(-\mathcal{L}(\nu_{i,k})x_k - \nu_{i,k}\mathcal{L}(x_k)\right]e^{-\nu_{i,k}x_k}\right)$$
(609)

$$\mathcal{L}(U^{\pm}) = \mathcal{L}(X_k^{\pm})\Lambda_k + X_k^{\pm}\mathcal{L}(\Lambda_k)$$
(610)

$$\mathcal{L}(V^{\pm}) = \mathcal{L}(X_k^{\pm}) - \mathcal{L}(X_k^{\mp})R_s - X_k^{\mp}\mathcal{L}(R_s)$$
(611)

$$\mathcal{L}(W^{\pm}) = \mathcal{L}(V_k^{\pm})\Lambda_k + V_k^{\pm}\mathcal{L}(\Lambda_k)$$
(612)

$$\mathcal{L}(G^{\pm}) = \mathcal{L}(F_K^+) - \mathcal{L}(R_s)F_K^- - R_s\mathcal{L}(F_K^-)$$
(613)

$$\mathcal{L}(\mathbf{I}_{0}^{-}) - \mathcal{L}(F_{1}^{-}) + \mathcal{L}(X_{1}^{-})x_{1}^{+} + \mathcal{L}(U_{1}^{+})x_{1}^{-}$$

$$\mathcal{L}(F_{2}^{+}) - \mathcal{L}(F_{1}^{+})\mathcal{X}_{b,1} - F_{1}^{+}\mathcal{L}(\mathcal{X}_{b,1}) - \mathcal{L}(U_{1}^{+})x_{1}^{+} - \mathcal{L}(X_{1}^{-})x_{1}^{-} + \mathcal{L}(X_{2}^{+})x_{2}^{+} + \mathcal{L}(U_{2}^{-})x_{2}^{-}$$

$$\mathcal{L}(F_{2}^{-}) - \mathcal{L}(F_{1}^{-})\mathcal{X}_{b,1} - F_{1}^{-}\mathcal{L}(\mathcal{X}_{b,1}) + \mathcal{L}(U_{1}^{-})x_{1}^{+} + \mathcal{L}(X_{1}^{+})x_{1}^{-} - \mathcal{L}(X_{2}^{-})x_{2}^{+} - \mathcal{L}(U_{2}^{+})x_{2}^{-}$$

$$\mathcal{L}(F_{3}^{+}) - \mathcal{L}(F_{2}^{+})\mathcal{X}_{b,2} - F_{2}^{+}\mathcal{L}(\mathcal{X}_{b,2}) - \mathcal{L}(U_{2}^{+})x_{2}^{+} - \mathcal{L}(X_{2}^{-})x_{2}^{-} + \mathcal{L}(X_{3}^{+})x_{3}^{+} + \mathcal{L}(U_{3}^{-})x_{3}^{-}$$

$$\mathcal{L}(F_{3}^{+}) - \mathcal{L}(F_{2}^{-})\mathcal{X}_{b,2} - F_{2}^{-}\mathcal{L}(\mathcal{X}_{b,2}) + \mathcal{L}(U_{2}^{-})x_{2}^{+} + \mathcal{L}(X_{2}^{+})x_{2}^{-} - \mathcal{L}(X_{3}^{-})x_{3}^{+} + \mathcal{L}(U_{3}^{+})x_{3}^{-}$$

$$\mathcal{L}(F_{3}^{+}) - \mathcal{L}(F_{2}^{+})\mathcal{X}_{b,3} - F_{3}^{+}\mathcal{L}(\mathcal{X}_{b,3}) - \mathcal{L}(U_{3}^{+})x_{3}^{+} - \mathcal{L}(X_{2}^{-})x_{2}^{-} + \mathcal{L}(X_{3}^{+})x_{3}^{+} + \mathcal{L}(U_{3}^{+})x_{3}^{-}$$

$$\mathcal{L}(F_{4}^{+}) - \mathcal{L}(F_{3}^{+})\mathcal{X}_{b,3} - F_{3}^{+}\mathcal{L}(\mathcal{X}_{b,3}) - \mathcal{L}(U_{3}^{+})x_{3}^{+} - \mathcal{L}(X_{3}^{-})x_{3}^{-} + \mathcal{L}(X_{4}^{+})x_{4}^{+} + \mathcal{L}(U_{4}^{+})x_{4}^{-}$$

$$\mathcal{L}(F_{4}^{+}) - \mathcal{L}(F_{3}^{+})\mathcal{X}_{b,3} - F_{3}^{-}\mathcal{L}(\mathcal{X}_{b,3}) + \mathcal{L}(U_{3}^{-})x_{3}^{+} + \mathcal{L}(X_{3}^{+})x_{3}^{-} - \mathcal{L}(X_{4}^{+})x_{4}^{+} + \mathcal{L}(U_{4}^{+})x_{4}^{-}$$

$$\mathcal{L}(F_{4}^{+}) - \mathcal{L}(F_{3}^{+})\mathcal{X}_{b,3} - F_{3}^{-}\mathcal{L}(\mathcal{X}_{b,3}) + \mathcal{L}(U_{3}^{-})x_{3}^{+} + \mathcal{L}(X_{3}^{+})x_{3}^{-} - \mathcal{L}(X_{4}^{+})x_{4}^{+} + \mathcal{L}(U_{4}^{+})x_{4}^{-}$$

$$\mathcal{L}(F_{4}^{+}) - \mathcal{L}(F_{3}^{+})\mathcal{X}_{b,K-1} - F_{K-1}^{+}\mathcal{L}(\mathcal{X}_{b,K-1}) - \mathcal{L}(U_{K-1}^{+})x_{K-1}^{+} - \mathcal{L}(X_{K-1}^{-})x_{K-1}^{-} + \mathcal{L}(X_{K}^{+})x_{4}^{+} + \mathcal{L}(U_{K}^{-})x_{K}^{-}$$

$$\mathcal{L}(F_{K}^{+}) - \mathcal{L}(F_{K}^{+})\mathcal{X}_{b,K-1} - F_{K-1}^{+}\mathcal{L}(\mathcal{X}_{b,K-1}) + \mathcal{L}(U_{K-1}^{-})x_{K-1}^{+} + \mathcal{L}(X_{K}^{+})x_{K-1}^{-} - \mathcal{L}(X_{K}^{+})x_{K}^{+} - \mathcal{L}(V_{K}^{+})x_{K}^{-}$$

$$\mathcal{L}(F_{K}^{+}) - \mathcal{L}(F_{K}^{+})\mathcal{L}(F_{K}^{+}) - \mathcal{L}(F_{K}^{+})\mathcal{L}(F_{K}^{+})\mathcal{L}(F_{K}^{+})\mathcal{L}(F_{K$$

14.2.3 Adjoint of tangent linear

14.3 Radiance

14.3.1 At levels

14.3.1.1 Forward

14.3.1.2 Tangent linear

14.3.1.3 Adjoint of tangent linear

- 14.3.2 At optical depth
- 14.3.2.1 Forward
- 14.3.2.2 Tangent linear
- 14.3.2.3 Adjoint of tangent linear

15 Matrix exponetial method

- 15.1 Layer quantities
- 15.1.1 Homogeneous solution
- 15.1.1.1 Forward

$$\alpha = \operatorname{diag}(e^{-\nu_i x}) \tag{615}$$

$$\mathbf{a} = \mathbf{X}_{+} - \mathbf{X}_{-} \tag{616}$$

$$\mathbf{b} = \mathbf{X}_{+} + \mathbf{X}_{-} \tag{617}$$

$$\mathbf{c} = \frac{1}{2}(\mathbf{a}^{-1} + \mathbf{b}^{-1}) \tag{618}$$

$$\mathbf{d} = \frac{1}{2}(\mathbf{a}^{-1} - \mathbf{b}^{-1}) \tag{619}$$

$$\mathbf{e} = \alpha \mathbf{c} \tag{620}$$

$$\mathbf{f} = \alpha \mathbf{d} \tag{621}$$

$$\mathbf{A}_1 = \begin{bmatrix} \mathbf{e} & \mathbf{f} \\ -\mathbf{d} & -\mathbf{c} \end{bmatrix} \tag{622}$$

$$\mathbf{A}_2 = \begin{bmatrix} -\mathbf{c} & -\mathbf{d} \\ \mathbf{f} & \mathbf{e} \end{bmatrix} \tag{623}$$

15.1.1.2 Tangent linear

$$\mathcal{L}(\boldsymbol{\alpha}) = \operatorname{diag}\left\{ \left[-\mathcal{L}(\nu_i)x - \nu_i \mathcal{L}(x) \right] e^{-\nu_i x} \right\}$$
 (624)

$$\mathcal{L}(\mathbf{a}) = \mathcal{L}(\mathbf{X}_{+}) - \mathcal{L}(\mathbf{X}_{-}) \tag{625}$$

$$\mathcal{L}(\mathbf{b}) = \mathcal{L}(\mathbf{X}_{+}) + \mathcal{L}(\mathbf{X}_{-}) \tag{626}$$

$$\mathcal{L}(\mathbf{a}^{-1}) = -\mathbf{a}^{-1}\mathcal{L}(\mathbf{a})\mathbf{a}^{-1} \tag{627}$$

$$\mathcal{L}(\mathbf{b}^{-1}) = -\mathbf{b}^{-1}\mathcal{L}(\mathbf{b})\mathbf{b}^{-1} \tag{628}$$

$$\mathcal{L}(\mathbf{c}) = \frac{1}{2} \left[\mathcal{L}(\mathbf{a}^{-1}) + \mathcal{L}(\mathbf{b}^{-1}) \right]$$
 (629)

$$\mathcal{L}(\mathbf{d}) = \frac{1}{2} \left[\mathcal{L}(\mathbf{a}^{-1}) - \mathcal{L}(\mathbf{b}^{-1}) \right]$$
 (630)

$$\mathcal{L}(\mathbf{e}) = \mathcal{L}(\alpha)\mathbf{c} + \alpha\mathcal{L}(\mathbf{c}) \tag{631}$$

$$\mathcal{L}(\mathbf{f}) = \mathcal{L}(\alpha)\mathbf{d} + \alpha\mathcal{L}(\mathbf{d}) \tag{632}$$

$$\mathcal{L}(\mathbf{A}_1) = \begin{bmatrix} \mathcal{L}(\mathbf{e}) & \mathcal{L}(\mathbf{f}) \\ -\mathcal{L}(\mathbf{d}) & -\mathcal{L}(\mathbf{c}) \end{bmatrix}$$
(633)

$$\mathcal{L}(\mathbf{A}_2) = \begin{bmatrix} -\mathcal{L}(\mathbf{c}) & -\mathcal{L}(\mathbf{d}) \\ \mathcal{L}(\mathbf{f}) & \mathcal{L}(\mathbf{e}) \end{bmatrix}$$
(634)

15.1.1.3 Adjoint of tangent linear

15.1.2 Particular solution

15.1.2.1 Forward

$$b_1(\nu_i x) = \frac{e^{-(\tau_k + \nu_i x)} - e^{-\tau_{k+1}}}{\tau_{k+1} - \tau_k - \nu_i x}$$
(635)

$$\beta_1 = \operatorname{diag}\left[b_1(\nu_i x)\right] \tag{636}$$

$$b_2(\nu_i x) = \frac{e^{-(\tau_{k+1} + \nu_i \Delta \tau)} - e^{-\tau_k}}{\tau_k - \tau_{k+1} - \nu_i \Delta \tau}$$
(637)

$$= b_1(-\nu_i x)e^{-\nu_i x} (638)$$

$$\boldsymbol{\beta_2} = \operatorname{diag}\left[b_2(\nu_i x)\right] \tag{639}$$

$$\mathbf{\Sigma}^{\pm} = \frac{F_0}{4\pi} \mathbf{M}^{-1} \omega \mathbf{P}_0^{\pm} \tag{640}$$

$$\mathbf{o} = \beta_1 (\mathbf{c} \Sigma^+ + \mathbf{d} \Sigma^-) \tag{641}$$

$$\mathbf{p} = \beta_2(-\mathbf{d}\Sigma^+ + -\mathbf{c}\Sigma^-) \tag{642}$$

15.1.2.2 Tangent linear

$$\mathcal{L}[b_{1}(\nu_{i}x)] = \frac{\left[-\mathcal{L}(\tau_{k}) - \mathcal{L}(\nu_{i})x - \nu_{i}\mathcal{L}(x)\right]e^{-(\tau_{k}+\nu_{i}x)} + \mathcal{L}(\tau_{k+1})e^{-\tau_{k+1}} - \beta_{1}\left[\mathcal{L}(\tau_{k+1}) - \mathcal{L}(\tau_{k}) - \mathcal{L}(\nu_{i})x - \nu_{i}\mathcal{L}(x)\right]}{\tau_{k+1} - \tau_{k} - \nu_{i}x}$$
(643)

$$\mathcal{L}(\boldsymbol{\beta_1}) = \operatorname{diag} \left\{ \mathcal{L} \left[b_1(\nu_i x) \right] \right\} \tag{644}$$

$$\mathcal{L}[b_{2}(\nu_{i}x)] = \frac{\left[-\mathcal{L}(\tau_{k+1}) - \mathcal{L}(\nu_{i})x - \nu_{i}\mathcal{L}(x)\right]e^{-(\tau_{k+1} + \nu_{i}x)} + \mathcal{L}(\tau_{k})e^{-\tau_{k}} - \beta_{2}\left[\mathcal{L}(\tau_{k}) - \mathcal{L}(\tau_{k+1}) - \mathcal{L}(\nu_{i})x - \nu_{i}\mathcal{L}(x)\right]}{\tau_{k} - \tau_{k+1} - \nu_{i}x}$$
(645)

$$\mathcal{L}(\boldsymbol{\beta_2}) = \operatorname{diag} \left\{ \mathcal{L} \left[b_2(\nu_i x) \right] \right\} \tag{646}$$

$$\mathcal{L}(\mathbf{\Sigma}^{\pm}) = \frac{F_0}{4\pi} \mathbf{M}^{-1} \left[\mathcal{L}(\omega) \mathbf{P}_0^{\pm} + \omega \mathcal{L}(\mathbf{P}_0^{\pm}) \right]$$
 (647)

$$\mathcal{L}(\mathbf{o}) = \mathcal{L}(\beta_1)(\mathbf{c}\mathbf{g} + \mathbf{d}\mathbf{h}) + \beta_1 \left[\mathcal{L}(\mathbf{c})\mathbf{g} + \mathbf{c}\mathcal{L}(\mathbf{g}) + \mathcal{L}(\mathbf{d})\mathbf{h} + \mathbf{d}\mathcal{L}(\mathbf{h}) \right]$$
(648)

$$\mathcal{L}(\mathbf{p}) = \mathcal{L}(\beta_2)(\mathbf{dg} + \mathbf{ch}) + \beta_2 \left[\mathcal{L}(\mathbf{d})\mathbf{g} + \mathbf{d}\mathcal{L}(\mathbf{g}) + \mathcal{L}(\mathbf{c})\mathbf{h} + \mathbf{c}\mathcal{L}(\mathbf{h}) \right]$$
(649)

15.1.2.3 Adjoint of tangent linear

- 15.2 Boundary value problem
- 15.2.1 Forward
- 15.2.2 Tangent linear
- 15.2.3 Adjoint of tangent linear
- 15.3 Radiance
- **15.3.1** At levels
- 15.3.1.1 Forward
- 15.3.1.2 Tangent linear
- 15.3.1.3 Adjoint of tangent linear

15.3.2 At optical depth

15.3.2.1 Forward

$$\mathbf{a} = +(\mathbf{X}^{-1})_{11}\mathbf{I}^{+} + (\mathbf{X}^{-1})_{12}\mathbf{I}^{-}$$
(650)

$$\mathbf{b} = -(\mathbf{X}^{-1})_{12}\mathbf{I}^{+} - (\mathbf{X}^{-1})_{11}\mathbf{I}^{-}$$
(651)

$$\mathbf{c} = +(\mathbf{X}^{-1})_{11}\mathbf{\Sigma}^{+} + (\mathbf{X}^{-1})_{12}\mathbf{\Sigma}^{-}$$
(652)

$$\mathbf{d} = -(\mathbf{X}^{-1})_{12}\mathbf{\Sigma}^{+} - (\mathbf{X}^{-1})_{11}\mathbf{\Sigma}^{-}$$
(653)

$$\mathbf{d}_1 = \operatorname{diag}(e^{-\nu_i v}) \tag{654}$$

$$\mathbf{d}_2 = \operatorname{diag}\left[e^{-\nu_i(x-\nu)}\right] \tag{655}$$

$$c_1(y) = \frac{e^{-(\tau_k + y)} - e^{-[(1 - \upsilon/x)\tau_k + (\upsilon/x)\tau_{k+1}]}}{\tau_{k+1} - \tau_k - \upsilon_i x}$$
(656)

$$\mathbf{d}_3 = \operatorname{diag}\left[-c_1(\nu_i \upsilon)\right] \tag{657}$$

$$c_2(y) = \frac{e^{-(\tau_{k+1}+y)} - e^{-[(1-\upsilon/x)\tau_k + (\upsilon/x)\tau_{k+1}]}}{\tau_k - \tau_{k+1} - \nu_i x}$$
(658)

$$\mathbf{d}_4 = \operatorname{diag}\left\{c_2\left[\nu_i(x-v)\right]\right\} \tag{659}$$

$$\mathbf{g} = \mathbf{d}_1 \mathbf{a} \tag{660}$$

$$\mathbf{h} = \mathbf{d}_2 \mathbf{b} \tag{661}$$

$$\mathbf{o} = \mathbf{d}_3 \mathbf{c} \tag{662}$$

$$\mathbf{d} = \mathbf{d}_4 \mathbf{d} \tag{663}$$

$$\mathbf{I}^{+} = +\mathbf{X}_{+}(\mathbf{g} + \mathbf{o}) + \mathbf{X}_{-}(\mathbf{h} + \mathbf{p}) \tag{664}$$

$$\mathbf{I}^{-} = -\mathbf{X}_{-}(\mathbf{g} + \mathbf{o}) - \mathbf{X}_{+}(\mathbf{h} + \mathbf{p}) \tag{665}$$

15.3.2.2 Tangent linear

$$\mathcal{L}(\mathbf{a}) = +\mathcal{L}(\mathbf{X}^{-1})_{11}\mathbf{I}^{+} + (\mathbf{X}^{-1})_{11}\mathbf{K}^{+} + \mathcal{L}(\mathbf{X}^{-1})_{12}\mathbf{I}^{-} + (\mathbf{X}^{-1})_{12}\mathbf{K}^{-}$$
(666)

$$\mathcal{L}(\mathbf{b}) = -\mathcal{L}(\mathbf{X}^{-1})_{12}\mathbf{I}^{+} - (\mathbf{X}^{-1})_{12}\mathbf{K}^{+} - \mathcal{L}(\mathbf{X}^{-1})_{11}\mathbf{I}^{-} - (\mathbf{X}^{-1})_{11}\mathbf{K}^{-}$$
(667)

$$\mathcal{L}(\mathbf{c}) = +\mathcal{L}(\mathbf{X}^{-1})_{11}\mathbf{\Sigma}^{+} + (\mathbf{X}^{-1})_{11}\mathcal{L}(\mathbf{\Sigma}^{+}) + \mathcal{L}(\mathbf{X}^{-1})_{12}\mathbf{\Sigma}^{-} + (\mathbf{X}^{-1})_{12}\mathcal{L}(\mathbf{\Sigma}^{-})$$
(668)

$$\mathcal{L}(\mathbf{d}) = -\mathcal{L}(\mathbf{X}^{-1})_{12}\mathbf{\Sigma}^{+} - (\mathbf{X}^{-1})_{12}\mathcal{L}(\mathbf{\Sigma}^{+}) - \mathcal{L}(\mathbf{X}^{-1})_{11}\mathbf{\Sigma}^{-} - (\mathbf{X}^{-1})_{11}\mathcal{L}(\mathbf{\Sigma}^{-})$$
(669)

$$\mathcal{L}(\mathbf{d}_1) = -\mathcal{L}(\nu_i) v e^{-\nu_i v} \tag{670}$$

$$\mathcal{L}(\mathbf{d}_2) = -\left[\mathcal{L}(\nu_i)(x-\nu) + \nu \mathcal{L}(x)\right] e^{-\nu_i(x-\nu)}$$
(671)

$$\mathcal{L}(\alpha_1)(y_1, y_2, y_3) = \left[-\mathcal{L}(\tau_k) - y_2 \right] e^{-(\tau_k + y_1)} + \left[\frac{v\mathcal{L}(x)}{(x)^2} \tau_k + (1 - \frac{v}{x})\mathcal{L}(\tau_k) - \frac{v\mathcal{L}(x)}{(x)^2} \tau_{k+1} + \frac{v}{x} \mathcal{L}(x_{k+1}) \right] e^{-\left[(1 - \frac{v}{x})\tau_k + (\frac{v}{x})\tau_{k+1} \right]}$$
(672)

$$\mathcal{L}(c_1)(y_1, y_2, y_3) = \frac{\mathcal{L}(\alpha_1)(y_1, y_2, y_3) - y_3 \left[\mathcal{L}(\tau_{k+1}) - \mathcal{L}(\tau_k) - \mathcal{L}(\nu_i)x - \nu_i \mathcal{L}(x)\right]}{\tau_{k+1} - \tau_k - \nu_i x}$$
(673)

$$\mathcal{L}(\mathbf{d}_3) = \operatorname{diag} \left\{ -\mathcal{L}(c_1) \left[\nu_i v, \mathcal{L}(\nu_i) v, \mathbf{d}_3 \right] \right\}$$
(674)

$$\mathcal{L}(\alpha_2)(y_1, y_2, y_3) = \left[-\mathcal{L}(\tau_{k+1}) - y_2 \right] e^{-(\tau_{k+1} + y_1)} + \left[\frac{v\mathcal{L}(x)}{(x)^2} \tau_k + (1 - \frac{v}{x})\mathcal{L}(\tau_k) - \frac{v\mathcal{L}(x)}{(x)^2} \tau_{k+1} + \frac{v}{x}\mathcal{L}(x_{k+1}) \right] e^{-\left[(1 - \frac{v}{x})\tau_k + (\frac{v}{x})\tau_{k+1} \right]}$$
(678)

$$\mathcal{L}(c_2)(y_1, y_2, y_3) = \frac{\mathcal{L}(\alpha_2)(y_1, y_2, y_3) - y_3 \left[\mathcal{L}(\tau_k) - \mathcal{L}(\tau_{k+1}) - \mathcal{L}(\nu_i)x - \nu_i \mathcal{L}(x)\right]}{\tau_k - \tau_{k+1} - \nu_i x}$$
(676)

$$\mathcal{L}(\mathbf{d}_4) = \operatorname{diag} \left\{ \mathcal{L}(c_2) \left[\nu_i(x - v), \mathcal{L}(\nu_i)(x - v) + \nu_i \mathcal{L}(x), \mathbf{d}_4 \right] \right\}$$
(677)

$$\mathcal{L}(\mathbf{g}) = \mathcal{L}(\mathbf{d}_1)\mathbf{a} + \mathbf{d}_1\mathcal{L}(\mathbf{a}) \tag{678}$$

$$\mathcal{L}(\mathbf{h}) = \mathcal{L}(\mathbf{d}_2)\mathbf{b} + \mathbf{d}_2\mathcal{L}(\mathbf{b}) \tag{679}$$

$$\mathcal{L}(\mathbf{o}) = \mathcal{L}(\mathbf{d}_3)\mathbf{c} + \mathbf{d}_3\mathcal{L}(\mathbf{c}) \tag{680}$$

$$\mathcal{L}(\mathbf{p}) = \mathcal{L}(\mathbf{d}_4)\mathbf{d} + \mathbf{d}_3\mathcal{L}(\mathbf{d}) \tag{681}$$

$$\mathbf{K}^{+} = +\mathbf{Y}_{+}(\mathbf{g} + \mathbf{o}) + \mathbf{X}_{+} [\mathcal{L}(\mathbf{g}) + \mathcal{L}(\mathbf{o})] + \mathbf{Y}_{-}(\mathbf{h} + \mathbf{p}) + \mathbf{X}_{-} [\mathcal{L}(\mathbf{h}) + \mathcal{L}(\mathbf{p})]$$
(682)

$$\mathbf{K}^{-} = -\mathbf{Y}_{-}(\mathbf{g} + \mathbf{o}) - \mathbf{X}_{-} \left[\mathcal{L}(\mathbf{g}) + \mathcal{L}(\mathbf{o}) \right] - \mathbf{Y}_{+}(\mathbf{h} + \mathbf{p}) - \mathbf{X}_{+} \left[\mathcal{L}(\mathbf{h}) + \mathcal{L}(\mathbf{p}) \right]$$
(683)

15.3.2.3 Adjoint of tangent linear

16 Source function integration

16.1 Local source, classical

16.1.1 Upward

16.1.1.1 Forward

$$e_{1,i} = e^{-(x_k - v_k)/\mu_i} (684)$$

$$I_{l,i}^{+} = I_{l-1,i}^{+} e_{1,i} \tag{685}$$

16.1.1.1.1 Solar source

$$\mathbf{F}_{u}^{+} = \frac{F_{0}\omega}{4\pi} \mathbf{P}_{u0}^{+-} + (1 + \delta_{0,m}) \frac{\omega}{4} (\mathbf{P}_{uq}^{++} \mathbf{W} \mathbf{F}^{+} + \mathbf{P}_{uq}^{-+} \mathbf{W} \mathbf{F}^{-})$$
 (686)

$$e_{2,i} = e^{-\nu_k/\mu_i} (687)$$

$$E_{0,i}^{+} = \frac{e_{2,i} - \mathcal{X}_{b,k} e_{1,i}}{1 + \mu_i \lambda_k} \tag{688}$$

$$I_{l,i}^{+} = I_{l,i}^{+} + F_{i}^{+} E_{0,i}^{+}$$

$$(689)$$

16.1.1.1.2 Thermal source

$$\mathbf{A}_{\mathrm{u},i}^{+} = \frac{\omega}{2} (\mathbf{P}_{\mathrm{uq}}^{++} \mathbf{W} \mathbf{A}_{i}^{+} + \mathbf{P}_{\mathrm{uq}}^{-+} \mathbf{W} \mathbf{A}_{i}^{-})$$

$$(690)$$

$$z_{0,j} = 1 - e_{1,j} (691)$$

$$z_{i,j} = v^i - x^i e_{1,j} + i\mu_j z_{i-1,j}$$
(692)

$$I_{l,j}^{+} = I_{l,j}^{+} + \sum_{i=0}^{2} (\mathbf{A}_{\mathbf{u},i,j}^{+} + (1-\omega)c_{j})z_{i,j}$$
(693)

16.1.1.1.3 Homogeneous solution

$$\mathbf{X}_{\mathrm{u}}^{+} = \mathbf{P}_{\mathrm{uq}}^{++} \mathbf{W} \mathbf{X}^{+} + \mathbf{P}_{\mathrm{uq}}^{-+} \mathbf{W} \mathbf{X}^{-} \tag{694}$$

$$X_{u}^{-} = P_{uq}^{++}WX^{-} + P_{uq}^{-+}WX^{+}$$
 (695)

$$e_{3,i} = e^{-\nu_i v} (696)$$

$$e_{4,i} = e^{-\nu_i x} \tag{697}$$

$$e_{5,i} = e^{-\nu_i(x-\nu)} \tag{698}$$

$$E_{i,j}^{+} = \frac{e_{3,j} - e_{4,j}e_{1,i}}{1 + \mu_i \nu_j} \tag{699}$$

$$E_{i,j}^{-} = \frac{e_{5,j} - e_{1,i}}{1 - \mu_i \nu_j} \tag{700}$$

$$I_{l,i}^{+} = I_{l,i}^{+} + \sum_{j=0}^{N} \omega(b_{j}^{+} \mathbf{X}_{i,j}^{+} E_{i,j}^{+} + b_{j}^{-} \mathbf{X}_{i,j}^{-} E_{i,j}^{-})$$

$$(701)$$

- 16.1.1.2 Tangent linear
- 16.1.1.2.1 Solar source
- 16.1.1.2.2 Thermal source
- 16.1.1.2.3 Homogeneous solution
- 16.1.1.3 Adjoint of tangent linear
- 16.1.1.3.1 Solar source
- 16.1.1.3.2 Thermal source
- 16.1.1.3.3 Homogeneous solution
- 16.1.2 Downward
- 16.1.2.1 Forward
- 16.1.2.1.1 Solar source
- 16.1.2.1.2 Thermal source
- 16.1.2.1.3 Homogeneous solution
- 16.1.2.2 Tangent linear
- 16.1.2.2.1 Solar source
- 16.1.2.2.2 Thermal source

- 16.1.2.2.3 Homogeneous solution
- 16.1.2.3 Adjoint of tangent linear
- 16.1.2.3.1 Solar source
- 16.1.2.3.2 Thermal source
- 16.1.2.3.3 Homogeneous solution
- 16.2 Local source, Green's function
- 16.2.1 Upward
- 16.2.1.1 Forward
- 16.2.1.1.1 Solar source
- 16.2.1.1.2 Thermal source
- 16.2.1.1.3 Homogeneous solution
- 16.2.1.2 Tangent linear
- 16.2.1.2.1 Solar source
- 16.2.1.2.2 Thermal source
- 16.2.1.2.3 Homogeneous solution
- 16.2.1.3 Adjoint of tangent linear
- 16.2.1.3.1 Solar source
- 16.2.1.3.2 Thermal source
- 16.2.1.3.3 Homogeneous solution
- 16.2.2 Downward
- 16.2.2.1 Forward
- 16.2.2.1.1 Solar source
- 16.2.2.1.2 Thermal source

16.2.2.1.3 Homogeneous solution

16.2.2.2 Tangent linear

- 16.2.2.2.1 Solar source
- 16.2.2.2.2 Thermal source
- 16.2.2.2.3 Homogeneous solution
- 16.2.2.3 Adjoint of tangent linear
- 16.2.2.3.1 Solar source
- 16.2.2.3.2 Thermal source
- 16.2.2.3.3 Homogeneous solution

17 Successive orders of scattering

17.0.3 Forward

$$\mathcal{T}_{k} = \operatorname{diag}(e^{-x_{k}/\mu_{i}}) \tag{702}$$

$$\mathcal{E}_k = \mathbf{E} - \mathcal{T}_k \tag{703}$$

$$t_k = \frac{e^{-\tau_{k+1}\lambda_{k+1}} - e^{-\tau_k\lambda_k}}{2} \tag{704}$$

$$\mathbf{I}_{1}^{+}(\tau_{k}) = \mathcal{T}_{k}\mathbf{I}_{1}^{+}(\tau_{k+1}) + \frac{F_{0}}{4\pi}(\boldsymbol{\mathcal{E}}_{k}\omega\mathbf{P}_{0}^{+}t)_{k}$$

$$(705)$$

$$\mathbf{I}_{1}^{-}(\tau_{k+1}) = \boldsymbol{\mathcal{T}}_{k}\mathbf{I}_{1}^{-}(\tau_{k}) + \frac{F_{0}}{4\pi}(\boldsymbol{\mathcal{E}}_{k}\omega\mathbf{P}_{0}^{-}t)_{k}$$

$$(706)$$

$$\mathcal{L}(t_k) = \frac{\left[-\mathcal{L}(\tau_{k+1})\lambda_{k+1}\right]e^{-\tau_{k+1}\lambda_{k+1}} - \left[-\mathcal{L}(\tau_k)\lambda_k\right]e^{-\tau_k\lambda_k}}{2} \tag{707}$$

$$\mathbf{K}_{1}^{+}(\tau_{k}) = \mathcal{W}_{k}\mathbf{I}_{1}^{+}(\tau_{k+1}) + \mathcal{T}_{k}\mathbf{K}_{1}^{+}(\tau_{k+1}) + \frac{F_{0}}{4\pi} \left[\mathcal{F}\omega\mathbf{P}_{0}^{+}t + \mathcal{E}\mathcal{L}(\omega)\mathbf{P}_{0}^{+}t + \mathcal{E}\omega\mathbf{Q}_{0}^{+}t + \mathcal{L}\omega\mathbf{P}_{0}^{+}\mathcal{L}(t) \right]_{k}$$
(708)

$$\mathbf{K}_{1}^{-}(\tau_{k+1}) = \mathcal{W}_{k}\mathbf{I}_{1}^{-}(\tau_{k}) + \mathcal{T}_{k}\mathbf{K}_{1}^{-}(\tau_{k}) + \frac{F_{0}}{4\pi} \left[\mathcal{F}\omega\mathbf{P}_{0}^{-}t + \mathcal{E}\mathcal{L}(\omega)\mathbf{P}_{0}^{-}t + \mathcal{E}\omega\mathbf{Q}_{0}^{-}t + \mathcal{L}\omega\mathbf{P}_{0}^{-}\mathcal{L}(t) \right]_{k}$$
(709)

$$\mathbf{W}_{k} = \operatorname{diag}(w_{i}) \tag{710}$$

$$\mathbf{I}(\tau_{k+0.5}) = \frac{\left[\mathbf{I}(\tau_k) + \mathbf{I}(\tau_{k+1})\right]}{2} \tag{711}$$

$$\mathbf{I}_{j}^{+}(\tau_{k}) = \mathcal{T}_{k}\mathbf{I}_{j}^{+}(\tau_{k+1}) + (1 + \delta_{0,m})\frac{1}{4}\mathcal{E}_{k}\omega_{k}\left[\mathbf{P}_{k}^{++}\mathbf{I}_{n-1}^{+}(\tau_{k+0.5}) + \mathbf{P}_{k}^{-+}\mathbf{I}_{n-1}^{-}(\tau_{k+0.5})\right]\mathbf{W}$$
 (712)

$$\mathbf{I}_{j}^{-}(\tau_{k+1}) = \mathcal{T}_{k}\mathbf{I}_{j}^{-}(\tau_{k}) + (1 + \delta_{0,m})\frac{1}{4}\mathcal{E}_{k}\omega_{k}\left[\mathbf{P}_{k}^{--}\mathbf{I}_{n-1}^{-}(\tau_{k+0.5}) + \mathbf{P}_{k}^{+-}\mathbf{I}_{n-1}^{+}(\tau_{k+0.5})\right]\mathbf{W}$$
 (713)

- 17.0.4 Tangent linear
- 17.0.5 Adjoint of tangent linear
- 18 Two orders of scattering
- 18.1 Forward
- 18.2 Tangent linear
- 18.3 Adjoint of tangent linear
- 19 Two-stream
- 19.1 Forward
- 19.2 Tangent linear
- 19.3 Adjoint of tangent linear
- 20 Four-stream
- 20.1 Forward
- 20.2 Tangent linear
- 20.3 Adjoint of tangent linear
- 21 Six-stream
- 21.1 Forward
- 21.2 Tangent linear
- 21.3 Adjoint of tangent linear
- 22 BRDF Kernels
- 22.1 Lambertian
- **22.1.1** Forward

$$f(\theta_i, \theta_r, \phi) = 1 \tag{714}$$

22.1.2 Tangent linear

$$\mathcal{L}\left[f(\theta_i, \theta_r, \phi)\right] = 0 \tag{715}$$

- 22.1.3 Adjoint of tangent linear
- 22.2 Roujean
- **22.2.1** Forward

$$a = \tan \theta_i + \tan \theta_r \tag{716}$$

$$b = \tan^2 \theta_i + \tan^2 \theta_r \tag{717}$$

$$t = \tan \theta_i \tan \theta_r \tag{718}$$

$$c = 2t (719)$$

$$d = \frac{t}{2\pi} \tag{720}$$

$$t = \begin{cases} -1 & \text{if } \phi < 0\\ +1 & \text{otherwise} \end{cases}$$
 (721)

$$f(\theta_i, \theta_r, \phi) = \left[(\pi - t\phi)\cos\phi + \sin\phi \right] d - \frac{1}{\pi} (a + \sqrt{b - c\cos\phi})$$
 (722)

22.2.2 Tangent linear

$$\mathcal{L}\left[f(\theta_i, \theta_r, \phi)\right] = 0 \tag{723}$$

22.2.3 Adjoint of tangent linear

22.3 Li-common

22.3.1 Forward

$$\tan \theta_i' = x \tan \theta_i \tag{724}$$

$$\tan \theta_r' = x \tan \theta_r \tag{725}$$

$$a = \cos \theta_i' \cos \theta_r' \tag{726}$$

$$b = \sin \theta_i' \sin \theta_r' \tag{727}$$

$$c = \tan^2 \theta_i' + \tan^2 \theta_r' \tag{728}$$

$$d = 2 \tan \theta_i' \tan \theta_r' \tag{729}$$

$$e = \tan^2 \theta_i' \tan^2 \theta_r' \tag{730}$$

$$r = 1/\cos\theta_i' + 1/\sin\theta_i' \tag{731}$$

$$g = y/r \tag{732}$$

$$f(\theta_i, \theta_r, \phi) = \tag{733}$$

- 22.3.2 Tangent linear
- 22.3.3 Adjoint of tangent linear
- 22.4 Li-sparse
- **22.4.1** Forward

$$f(\theta_i, \theta_r, \phi) = \tag{734}$$

- 22.4.2 Tangent linear
- 22.4.3 Adjoint of tangent linear
- 22.5 Li-dense
- **22.5.1** Forward

$$f(\theta_i, \theta_r, \phi) = \tag{735}$$

- 22.5.2 Tangent linear
- 22.5.3 Adjoint of tangent linear