Matemática I Lógica Bivalente

Diogo Ribeiro

POLITÉCNICO DO PORTO ESCOLA SUPERIOR DE MEDIA ARTES E DESIGN

Termo e Proposição

- ► Termo (ou designação): Designa algo.
- Proposição: Afirmação passível de ter valor lógico.

Exercício: Distinga os termos das proposições:

- **▶** 2+3
- Par
- \triangleright 2 + 3 = 6
- ▶ 2 é par
- Lisboa
- Lisboa é a capital de Espanha

Princípios Lógicos

- Princípio da Não Contradição: Uma proposição não pode ser simultaneamente verdadeira e falsa.
- Princípio do Terceiro Excluído: Uma proposição é verdadeira ou falsa, sem uma terceira hipótese.

Equivalência de Proposições

- Proposições com o mesmo valor lógico são equivalentes.
- ► Exemplo: 2+3 = 6 e Lisboa é capital de Espanha são proposições equivalentes.

$$2+3=6 \iff$$
Lisboa é capital de Espanha

Operações com Proposições

р	$\neg p$
V	F
F	V

Table: Tabela verdade para negação

Tabela Verdade para Conjunção (∧)

р	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

Table: Tabela verdade para conjunção

Tabela Verdade para Disjunção (∨)

р	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

Table: Tabela verdade para disjunção

Tabela Verdade para Implicação (⇒)

р	q	$p \Rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Table: Tabela verdade para implicação

Tabela Verdade para Bicondicional (⇔)

р	q	$p \Leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Table: Tabela verdade para bicondicional

Princípios e Tautologias

- Princípio da Não Contradição: p∧ ~ p ← F
- ▶ Princípio do Terceiro Excluído: p∨ ~ p ⇔ V
- ► Tautologia: Proposição sempre verdadeira.
- Contradição: Proposição sempre falsa.

Propriedades das Operações Lógicas

- **Comutativa**: $p \land q \iff q \land p$, $p \lor q \iff q \lor p$
- ► Associativa: $(p \land q) \land r \iff p \land (q \land r),$ $(p \lor q) \lor r \iff p \lor (q \lor r)$
- **▶ Distributiva**: $p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$
- ▶ Idempotência: $p \land p \iff p, p \lor p \iff p$
- **Elementos Neutros**: $p \land V \iff p, p \lor F \iff p$
- **Elementos Absorventes**: $p \land F \iff F, p \lor V \iff V$

Leis de DeMorgan e Outras Propriedades

Leis de DeMorgan:

$$\sim (p \land q) \iff (\sim p \lor \sim q)$$

 $\sim (p \lor q) \iff (\sim p \land \sim q)$

- Princípio da Dupla Implicação:
 - $p \Rightarrow q \land q \Rightarrow p \iff (p \iff q)$
- ▶ Princípio da Transitividade: $p \Rightarrow q \land q \Rightarrow r \Rightarrow (p \Rightarrow r)$
- ▶ Lei da Conversão: $p \Rightarrow q \iff (\sim q \Rightarrow \sim p)$

Exercícios

- Provar usando tabelas de verdade:
 - 1. A propriedade distributiva da conjunção em relação à disjunção: $p \land (q \lor r) \iff (p \land q) \lor (p \land r)$
 - 2. A primeira Lei de DeMorgan: $\sim (p \lor q) \iff (\sim p \land \sim q)$
 - 3. A Lei da Conversão: $p \Rightarrow q \iff (\sim p \lor q)$