UNSW AUSTRALIA.

SCHOOL OF MATHEMATICS AND STATISTICS MATH5645 TOPICS IN NUMBER THEORY

1. SOME CLASSICAL NUMBER THEORY:

- Find all positive integers n such that
 - **b.** $\phi(2n) = \phi(n)$ and show that $\phi(n) = 14$ is impossible. **a.** $\phi(n) = 12$
- Suppose m and n are relatively prime positive integers, show that

$$m^{\phi(n)} + n^{\phi(m)} \equiv 1 \mod mn.$$

- Show that $\phi(n) = n \prod_{\substack{p \mid n \\ p \text{ prime}}} \left(1 \frac{1}{p}\right).$
- Prove that

$$\sum_{(x,n)=1} x = \frac{1}{2} n \phi(n), \qquad (1 \le x \le n).$$

(**Hint:** If $\mathbb{U}_n = \{x_1, x_2, \dots, x_{\phi(n)}\}$ then \mathbb{U}_n can also be written as $\{n - x_1, \dots, n - x_{\phi(n)}\}$.)

- How many fractions $\frac{r}{s}$ are there satisfying (r,s) = 1 and $0 < r < s \le n$?
- **6** a. If g is a primitive root modulo p, an odd prime, show that $h = g^k$, where (k, p-1) = 1, is also a primitive
 - **b.** Compute all primitive roots for p = 13, and p = 17.
- Consider a prime p of the form 4t + 1. Show that a is a primitive root modulo p iff -a is a primitive root
- **a.** Find the number of primitive roots in \mathbb{Z}_{13} , \mathbb{Z}_{101} , \mathbb{Z}_{12} . **b.** If $q=2^{2^p}+1$ is a prime show that \mathbb{Z}_q has 2^{2^p-1} primitive roots.
- **a.** Use the existence of a primitive root modulo p to prove Wilson's Theorem.
 - **b.** Suppose p is prime. Prove that $1^k + 2^k + \cdots + (p-1)^k \equiv 0 \mod p$ if $(p-1) \not k$ The converse, which would conclude the primality of p from this congruence, is an unsolved problem.
- 10 If a has order 3 mod p, p a prime greater than 5, show that (1+a) has order 6.
- 11 Suppose p is prime and $p \equiv 1 \mod 4$. Prove that the product of the quadratic residues mod p is -1. What if $p \equiv 3 \mod 4$?
- 12Show that for p prime, the set of quadratic residues mod p forms a subgroup of \mathbb{U}_p .
- Suppose q and p = 4q + 1 are **both** prime. Prove that $2^{2q} \equiv -1 \mod p$ and deduce that 2 is a primitive root mod p. (Hint: $p \equiv 5 \mod 8$. What does this tell us about the number 2 in \mathbb{Z}_p ?)
- Suppose $p \equiv 3 \mod 4$ and q = 2p + 1 are **both** prime.
 - **a.** Show that $\left(\frac{2}{q}\right) = 1$.
 - **b.** Use Euler's criterion to deduce that $2^p \equiv 1 \mod q$.
 - **c.** Find a prime factor of $2^{251} 1$.
- **15** a. Explain why every primitive root modulo a prime p must also be a quadratic non-residue.
 - **b.** How many quadratic non-residues in \mathbb{Z}_{47} are not primitive roots? Can you find them?
- If p and q = 2p + 1 are both odd primes, show that -4 and $2(-1)^{\frac{p-1}{2}}$ are both primitive roots modulo q.

- 17 Evaluate $\left(\frac{666}{2137}\right)$, $\left(\frac{1001}{19991}\right)$ (Note that 19991 and 2137 are both primes.)
- Evaluate $\left(\frac{-31}{127}\right)$, and hence prove that $127x^2 y^2 = 31$ has no integer solutions.
- Prove the following, $(q.r. \equiv \text{quadratic residue}, p \text{ is a prime}).$
 - **a.** -2 is a q.r. iff $p \equiv 1, 3 \mod 8$
- **b.** 3 is a q.r. iff $p = 12n \pm 1$
- **c.** 5 is a q.r. iff $p = 10n \pm 1$
- **d.** 6 is q.r. iff $p \equiv 1, -1, 5, -5 \mod 24$.
- Show that if -3 is a quadratic residue modulo a prime p, then $p \equiv 1 \mod 6$.
- A triangular number has the form $\frac{1}{2}n(n+1)$. Prove that if m is the sum of 2 triangular numbers then 4m+1is the sum of two squares.
- Show that 21 is not the sum of two rational squares. 22
- Let p be an odd prime. Show that if p can be represented in the form $p = x^2 + 2y^2$ then $p \equiv 1$ or 3 mod 8.
- Find all right triangles with sides of integral length such that one leg differs by 2 from the hypotenuse. 24
- If $a^2 + b^2 = c^2$ when a, b, c integers, show that abc is a multiple of 60. **25**
- **a.** If a, b are both even or both odd what can you say about a + b and a b? **b.** If $\left(\frac{a+b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2 + \left(\frac{c+d}{2}\right)^2 + \left(\frac{c-d}{2}\right)^2 = k(a^2 + b^2 + c^2 + d^2)$ find k. **c.** Given $1^2 + 3^2 + 5^2 + 7^2 = 84$ express 42 as the sum of 4 squares.
- Show that a number of the form 16n-1 cannot be expressed as the sum of fewer than 15 fourth powers.

BRIEF SOLUTIONS

1 a. 28, 21, 42, 36, 13, 26

b. n is any odd number.

5 $\sum_{k=2}^{n} \phi(k)$. 14 c. 503

6 $\pm 2, \pm 6; \pm 3, \pm 5, \pm 6, \pm 7.$

8 a. 4,40, none

15 There is only one, namely -1.

17 1, −1.

 $(k^2-1,2k,k^2+1)$, or $(2k-2,4k^2-4k,4k^2-4k+2)$, where k is a positive integer greater than 1.

26 c. $1^2 + 2^2 + 6^2 + 1^2$.