Vocabulary Review

Short-answer, multiple-choice, and select-all questions about key vocabulary.

Question 1 A linear system of equations is *inconsistent* if the system has no solutions and *consistent* if the system does have solutions.

Question 2 A matrix E is in (row) echelon form if two conditions hold.

- (a) The first nonzero entry in each row of E is equal to 1. This leading entry 1 is called a pivot.
- (b) A pivot in the $(i+1)^{st}$ row of E occurs in a column to the right of the column where the pivot in the i^{th} row occurs.

Note: A consequence of this definition is that all rows in an echelon form matrix that are identically zero occur at the bottom of the matrix.

Question 3 Two $m \times n$ matrices are <u>rowequivalent</u> if one can be transformed to the other by a sequence of elementary row operations.

Question 4 A matrix E is in $\boxed{reducedechelon form}$ if

- (a) E is in echelon form, and
- (b) in every column of E having a pivot, every entry in that column other than the pivot is 0.

Question 5 Let A be an $m \times n$ matrix that is row equivalent to a reduced echelon form matrix E. Then the a of A is the number of nonzero rows in a

Learning outcomes:

Author(s): Martin Golubitsky

Question 6 A mapping $L: \mathbb{R}^n \to \mathbb{R}^m$ is linear if

- (a) L(x+y) = L(x) + L(y) for all $x, y \in \mathbb{R}^n$.
- (b) L(cx) = cL(x) for all $x \in \mathbb{R}^n$ and all scalars $c \in \mathbb{R}$.

Question 7 Let j be an integer between 1 and n. The n-vector e_j is the vector that has a $\boxed{1}$ in the j^{th} entry and a $\boxed{0}$ in every other entries.

Question 8 The $n \times n$ matrix A is invertible if there is an $n \times n$ matrix B such that $AB = I_n$ and $BA = I_n$. The matrix B is called an [inverse] of A. If A is not invertible, then A is noninvertible or [singular].

Question 9 The determinant of the 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is $det(A) = \begin{bmatrix} ad - bc \end{bmatrix}$.