Chapter 2. Approximation Methods for Solving Differential Equations

1. Given the following stiff initial-value problems

$$y' = -20y + 20cost - sint$$
, $y(0) = 0$, $h = 0.025$

Prove that it has the actual solution $y = -e^{-20t} + cost$

2. **Using Euler's method** and then **Improved Euler's method** to find the value of y when t=0.075, and compare the results with the actual solution. (*Note: unit of trigonometric function is in radian*)

$$y' = -20y + 20cost - sint$$
, $y(0) = 0$, $h = 0.025$

3. Solve the Exercise 1 using Runge-Kutta fourth-order method.

t	Exact	Euler	Error	Improved	Error	Runge-	Error
		method		Euler		Kutta	
0							
0.025							
0.050							
0.075							

4. Problem

An engineer whose major is in Heat & Refrigeration engineering is having a project of designing insulation walls for a building. The mathematical model of the rate of temperature change for the building could be described by the following ODE:

$$T'(t) = \frac{\mathbf{k}}{\mathbf{k}}[T(t) - T_A] \tag{1}$$

where $T(t)^{\circ}C$ is the instant temperature inside the building and T_A is the outside temperature (suppose that it is constant). In this model, k is the heat transfer coefficient which heavily depends on the material used for the wall. Assuming that the material he used has k = -0.0603. Suppose that in winter the daytime temperature in a certain office of that building is always maintained at 21°C by a heating system. This system is shut off at 10 P.M. and turned on again at 6 A.M. On a certain day the outside temperature was approximately 7°C throughout the night. Estimate the temperature inside the building when the heat was turned on at 6 A.M. on the following day by:

- a) Using the 1st-order Euler approximation method with time step h = 2.0 hours.
- b) Using the 3^{rd} -order Runge-Kutta approximation method with time step h = 2.0 hours.
- c) Compare the approximation results with the exact value if the exact solution of Eq. (1) is $T(t) = 7 + 14e^{kt}$
- Notes: the 3rd-order Runge-Kutta approximation formula for solving the ODE y' = f(x, y)

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf\left(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1\right)$$

$$k_3^* = hf(x_{n+1}, y_n - k_1 + 2k_2)$$

$$x_{n+1} = x_n + h$$

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 4k_2 + k_3^*)$$