4. Zadania do wykładu analiza 3B

1. Obliczyć całki iterowane.

(a)
$$\int_{-1}^{1} \int_{0}^{1} (xy^4 + y^2) \, dy \, dx$$
 (b) $\int_{0}^{\pi/2} \int_{0}^{1} (y \cos x + 2) \, dy \, dx$ (c) $\int_{0}^{1} \int_{0}^{1} (xye^{x+y}) \, dy \, dx$ (d) $\int_{-1}^{0} \int_{1}^{2} (-x \ln y) \, dy \, dx$

- 2. Obliczyć całki z zadania 1 przez całkowanie najpierw względem x a potem względem y.
- 3. Za pomocą piły łańcuchowej wycięto fragment drzewa w kształcie klina w następujący sposób. Promień pnia drzewa wynosi r. Wykonano dwa cięcia aż do środka pnia: jedno cięcie poziome a drugie pod kątem θ . Obliczyć objętość klina korzystając z zasady Cavalieri'ego.
- **4.** Obliczyć całki podwójne na prostokącie $R = [0, 2] \times [-1, 0]$.

$$\int_{R} (x^2 y^2 + x) dx dy, \qquad \int_{R} (-xe^x \sin \frac{1}{2}\pi y) dx dy.$$

- 5. Znaleźć objętość bryły ograniczonej wykresem funkcji f(x,y) = 1 + 2x + 3y, prostokątem $R = [1,2] \times [0,1]$, i czterema pionowymi płaszczyznami wyznaczonymi przez R.
- **6.** Powtórzyć poprzednie zadanie dla powierzchni $f(x,y)=x^4+y^2$ i prostokąta $[-1,1]\times[-3,-2]$.
- 7. Niech $f:[0,1]\times[0,1]\to\mathbb{R}$ będzie określona wzorem

$$f(x,y) = \begin{cases} 1 & \text{jeśli } x \text{ jest wymierna} \\ 2y & \text{jeśli } x \text{ jest niewymierna.} \end{cases}$$

Pokazać, że całka iterowana $\int_0^1 \left[\int_0^1 f(x,y) \, dy \right] dx$ istnieje, ale funkcja f nie jest całkowalna.

8. Załóżmy, że f jest ciągła na $R = [a, b] \times [c, d]$. Dla a < x < b, c < y < d określamy

$$F(x,y) = \int_a^x \int_c^y f(u,v) \, dv \, du.$$

Pokazać, że $\partial^2 F/\partial x \partial y = \partial^2 F/\partial y \partial x = f(x,y)$. Wskazać inny dowód, że dla funkcji F(x,y) klasy C^2 pochodne mieszane rzędu 2 są równe.

9. Podzielmy kwadrat $[0,1] \times [0,1]$ na nieskończenie wiele prostokątów postaci $R_{m,n} = [1/(m+1), 1/m] \times [1/(n+1), 1/n]$. Określmy funkcję f w ten sposób, aby (znakowana) objętość pod wykresem funkcji f na prostokącie $R_{m,n}$ przybierała wartości zgodnie z poniższą tabelą.

Niech f(0,0) = 0. Suma w każdym wierszu wynosi 0, czyli sumując wiersze a potem kolumny otrzymujemy w wyniku 0. Kolumny sumują się do liczb

$$\cdots$$
 $-\frac{1}{32}$ $-\frac{1}{16}$ $-\frac{1}{8}$ $-\frac{1}{4}$ $-\frac{1}{2}$ -1 ,

zatem sumowanie kolumn a potem wierszy daje w wyniku -2. Dlaczego twierdzenie Fubini'ego nie zachodzi dla tej funkcji ?

10. Niech f będzie ciągła i $f \ge 0$ na prostokącie R. Pokazać, że jeśli $\int_R f \, dx \, dy = 0$, to f = 0 na R.

11. Funkcja f jest ciągła na [a, b] a g ciągła na [c, d]. Pokazać, że

$$\int_{R} [f(x)g(y)] dx dy = \left[\int_{a}^{b} f(x) dx \right] \left[\int_{c}^{d} g(y) dy \right].$$

- 12. Obliczyć objętość bryły ograniczonej płaszczyznami $xz,\,yz,\,xy,\,x=1,\,y=1$ i powierzchnią $z=x^2+y^4.$
- 13. Niech f,g będą całkowalne na prostokącie R. Niech $\mathcal P$ będzie podziałem prostokąta R a S pewnym prostokątem tego podziału. Pokazać, że

$$m_S(f) + m_S(g) \le m_S(f+g), \quad M_S(f) + M_S(g) \ge M_S(f+g).$$

Wywnioskować, że

$$L(f,\mathcal{P}) + L(g,\mathcal{P}) \leqslant L(f+g,\mathcal{P}), \quad U(f,\mathcal{P}) + U(g,\mathcal{P}) \geqslant U(f+g,\mathcal{P}).$$

Korzystając z tych nierówności pokazać, że f + g jest całkowalna oraz

$$\int_{R} (f+g) dx dy = \int_{R} f dx dy + \int_{R} g dx dy.$$

- 14. Niech f będzie całkowalna. Pokazać, że |f| też jest całkowalna oraz $|\int_R f \, dx \, dy| \leqslant \int_R |f| \, dx \, dy$.
- 15. Pokazać, że jeśli funkcja f(x,y) jest całkowalna na prostokącie R, a funkcja $\varphi(u)$ jest ciągła na \mathbb{R} , to funkcja $\varphi(f(x,y))$ jest całkowalna na R. Wywnioskować, że $f^2(x,y)$ jest całkowalna. Pokazać, że iloczyn f(x,y)g(x,y) dwu funkcji całkowalnych na R jest funkcją całkowalną.