

## 8. COMMUNICATION

#### SYNOPSIS

- Communication is the act of transmission of information
- Space Communication

Radio waves & microwaves are used in television, radio & other communication system

(i) Ground wave

Height of transmitting & receiving antenna

$$h \propto \frac{\lambda}{4}$$

- (ii) Sky wave
  - (a) Critical Frequency: Highest frequencies of radio wave which get reflected to earth by the Ionosphere

$$f_c = 9(N_{max})^{\frac{1}{2}}$$

 $N_{max} \longrightarrow$  electron density of the ionosphere.

(b) Skip distance:- Smallest distance from a transmitter along the earth's surface at which a sky wave of a fixed frequency sent back to earth

$$D_{skip} = 2h \sqrt{\frac{f^2}{f_c^2} - 1}$$

(iii) Space wave

Television signal propagation:-

Height of transmitting antenna

$$h = \frac{d^2}{2R}$$

d → distance covered by signal

 $R \rightarrow Radius of Earth$ 

Area covered (A)

$$A = \pi d^2 = 2\pi Rh$$

Population cover = population density × area covered

 Modulation: It is a process of Superimposition of low frequency signal over a high frequency carrier signals.

Effective Power radiated by an antenna.

Power 
$$\propto \left(\frac{\ell}{\lambda}\right)^2$$



# Types of modulation





 $c(t) \rightarrow sinusoidal carrier wave. m(t) \rightarrow modulating signal$ 





### SOLVED EXAMPLE

- Show that the minimum length of antenna required to transmit a radio signal of frequency 10 MHz is 7.5 m.
- Sol: Here,  $f = 10 \text{ MHz} = 10^7 \text{ Hz}$

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{10^7} = 30 \, \text{m}$$

Minima length of antenna =  $\frac{\lambda}{4} = \frac{30}{4} = 7.5 \,\text{m}$ 

- 2. What should be the height of transmitting antenna if the T.V. telecast is to cover a radius of  $128 \, \text{km}$ ?  $R_c = 6.4 \times 10^6 \, \text{m}$ . If the average population density around the tower is  $1000 \, / \, \text{km}^2$ , how much population is covered?
- Sol: Height of transmitting antenna

$$h = \frac{d^2}{2R} = \frac{\left(128 \times 10^3\right)^2}{2 \times 6.4 \times 10^6} = 1280 \,\text{m}$$

Total population covereds

 $= \pi d^2 \times population density$ 

$$=3.14\times(128)^2\times1000=5.14\times10^7$$

- For sky wave propagation of a 10 MHz signal, what should be the minimum electron density in ionosphere
- Sol: The critical frequency of a sky wave for reflection from a layer of atmosphere is

$$f_c = 9(N_{max})^{1/2}$$

$$10 \times 10^6 = 9(N_{max})^{1/2}$$

$$N_{\text{max}} = \left(\frac{10 \times 10^6}{9}\right)^2$$
$$= 1.2 \times 10^{12} \,\text{m}^{-3}$$

 If both the length of an antenna and the wavelength of the signal to be transmitted are doubled, the power radiated by the antenna

Sol: 
$$P \propto \left(\frac{\ell}{\lambda}\right)^2$$

Hence Power will remain constant



#### EXERCISE

| 1. | Which of the | following has | maximum | energy? |
|----|--------------|---------------|---------|---------|
|----|--------------|---------------|---------|---------|

- (1) Radio waves
- (2) infrared rays
- (3) Ultraviolet rays
- (4) Microwaves
- Frequency of infra red wave is approximately (in hertz) 2.
  - $(1) 10^{16}$
- $(2)10^{19}$
- $(3) 10^{14}$
- $(4) 10^9$
- If a radio receiver amplifies all the signal frequencies equally well, it is said to have high 3.
  - (1) fidelity
- (2) distortion
- (c) sensitivity
- (4) selectivity
- If a radio receiver is tuned is 885 kHz radio wave, the frequency of local oscillator in kHz is, 4.
  - (1) 1510
- (2)455
- (3) 1310
- (4) 885

- 5. For line communication
  - A two wire transmission line is useful at very high frequency.
  - (2) A co-axial cable is more useful at very high frequency than optical fibres.
  - (3) Optical fibre is a good choice because a large number of channels can be transmitted simultaneously by using it
  - (4) none of these
- The time variation of signals are given as in a, b, and c; point out TRUE statement from the 6. following







- (1) a, b, and c are analogue signals
- (2) a and c are digital, but b is analogue signal
- (3) a and c are digital, but b is analogue signal (4) a and c analogue but b is digital signal
- The maximum line of sight distance d<sub>m</sub> two antennas having heights h<sub>r</sub> and h above earth is 7.
- (1)  $\sqrt{R(h_r + h_g)}$  (2)  $\sqrt{R/(h_r + h_g)}$  (3)  $\sqrt{2Rh_r} + \sqrt{2Rh_g}$  (4)  $\sqrt{2Rh_r} + \sqrt{2Rh_r}$
- What fraction of the surface area of Earth can be covered to establish communication by one 8. geostationary satellite?
  - (1)  $\frac{1}{2}$
- (3)  $\frac{1}{4}$
- $(4) \frac{1}{8}$
- 9. AT.V. tower has a height 150 m. What is the total population covered by the T.V. tower, if the population density around the T.V. tower is 10<sup>3</sup> km<sup>-2</sup>? Radius of the earth is 6.4×10<sup>6</sup> m
  - (1) 60.288 lakhs
- (2) 40.192 lakhs
- (3) 100 lakhs
- (d) 20.228 lakhs



|    |                                                                                                                                                                                                                                                                             | WIND                                                                                                        | OW TO JEE MAIN         |                 |                     |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------|-----------------|---------------------|--|--|--|
| 1. | Consider telecommunication through optical fibers. Which of the following statements is not true?  [AIEEE 2003]                                                                                                                                                             |                                                                                                             |                        |                 |                     |  |  |  |
|    | (2) Optical fibers                                                                                                                                                                                                                                                          | can be of graded refraction are subjected to electron                                                       | omagnetic interference | from outside.   |                     |  |  |  |
|    |                                                                                                                                                                                                                                                                             | have extremely low tra<br>may have homogenous                                                               |                        | ladding.        |                     |  |  |  |
| 2. | the one that best of                                                                                                                                                                                                                                                        | Statement -1 and State                                                                                      | ment.                  |                 | [ AIEEE-2011]       |  |  |  |
|    | Statement-1: Sky wave signals are used for long distance radio communication. These signals are in general, less stable than ground wave signals.                                                                                                                           |                                                                                                             |                        |                 |                     |  |  |  |
|    | Statement-2: The state of ionosphere varies from hour to hour, day to day and season to season  (1) Statement-1 is true, Statement-2 is false  (2) Statement 1 is true, Statement 2 is true and Statement 2 is the correct explanation of Statement 1.                      |                                                                                                             |                        |                 |                     |  |  |  |
|    | (2) Statement-1 is true, Statement-2 is true and Statement-2 is the correct explanation of Statement-1<br>(3) Statement-1 is true, Statement-2 is true and Statement-2 is not the correct explanation of<br>Statement-1.                                                    |                                                                                                             |                        |                 |                     |  |  |  |
|    | (4) Statement-1 is false, Statement-2 is true.                                                                                                                                                                                                                              |                                                                                                             |                        |                 |                     |  |  |  |
| 3. | Which of the following four alternatives is not correct? We need modulation [AIEEE-2011]  (1) to reduce the time lag between transmission and reception of the information signal  (2) to reduce size of antenna                                                            |                                                                                                             |                        |                 |                     |  |  |  |
|    | <ul><li>(2) to reduce size of antenna</li><li>(3) to reduce the fractional band width, that is, the ratio of the signal band width to the centre</li></ul>                                                                                                                  |                                                                                                             |                        |                 |                     |  |  |  |
|    | frequency (4) to increase the selectivity                                                                                                                                                                                                                                   |                                                                                                             |                        |                 |                     |  |  |  |
| 4. | A radar has power of 1 kW and is operating at a frequency of $10\text{GHz}$ . It is located on a mountain top of height 500 m. The maximum distance upto which it can detect object located on the surface of the earth. (Radius of earth = $6.4 \times 10^6\text{m}$ ) is- |                                                                                                             |                        |                 |                     |  |  |  |
|    | (1) 16 km                                                                                                                                                                                                                                                                   | (2) 40 km                                                                                                   | (3) 64 km              | (4) 80 km       |                     |  |  |  |
| 5. | If a carrier way                                                                                                                                                                                                                                                            | $c(t) = A \sin \omega_C t$ , v                                                                              | vere to be amplitude   | e modulated by  | a modulating signal |  |  |  |
|    | $m(t) = A \sin \omega_m t$                                                                                                                                                                                                                                                  | $m(t) = A \sin \omega_m t$ , the equation representing the modulated signal $[C_m(t)]$ , and its modulation |                        |                 |                     |  |  |  |
|    | index, would be respectively: [JEE MAIN ONLINE 2013]                                                                                                                                                                                                                        |                                                                                                             |                        |                 |                     |  |  |  |
|    | (1) $C_m(t) = A(1 + \sin \omega_C t) \sin \omega_m t$ and 1                                                                                                                                                                                                                 |                                                                                                             |                        |                 |                     |  |  |  |
|    | (2) $C_m(t) = A(1 + \sin \omega_c t) \sin \omega_m t$ and 2                                                                                                                                                                                                                 |                                                                                                             |                        |                 |                     |  |  |  |
|    | (3) $C_m(t) = A(1 + \sin \omega_m t) \sin \omega_C t$ and 2                                                                                                                                                                                                                 |                                                                                                             |                        |                 |                     |  |  |  |
|    | (4) $C_m(t) = A(1 + \sin \omega_m t) \sin \omega_C t$ and 1                                                                                                                                                                                                                 |                                                                                                             |                        |                 |                     |  |  |  |
| 6. | Which of the following modulated signal has the best noise-tolerance? [JEE MAIN ONLINE 2013]                                                                                                                                                                                |                                                                                                             |                        |                 |                     |  |  |  |
|    | (1) long-wave                                                                                                                                                                                                                                                               | (2) short–wave                                                                                              | (3) medium-wave        | e (4) amplitude | e-modulated         |  |  |  |
| 7. | A transmitting antenna at the top of a tower has a height 32 m and the height of the receiving antenna is 50 m. What is the maximum distance between them for satisfactory communication in line of sight (LOS) mode?  [JEE MAIN ONLINE 2014]                               |                                                                                                             |                        |                 |                     |  |  |  |
|    | (1) 55.4 km                                                                                                                                                                                                                                                                 | (2) 45.5 km                                                                                                 | (3) 54.5 km            | (4) 455 km      | OTHER BOITS         |  |  |  |



Communication Rg-Phy. XII

8. Long range radio transmission is possible when the radiowaves are reflected from the ionosphere. For this to happen the frequency of the radiowaves must be in the range :

[JEE MAIN ONLINE 2014]

(1) 80 - 150 MHz

(2) 8 - 25 MHz

(3) 1 - 3 MHz

(4) 150 - 500 kHz

9. For sky wave propagation, the radio waves must have a frequency range in between :

[JEE MAIN ONLINE 2014]

(1) 1 MHz to 2 MHz

(2) 5 MHz to 25 MHz

(3) 35 MHz to 40 MHz

(4) 45 MHz to 50 MHz

 A signal of 5 kHz frequency is amplitude modulated on a carrier wave of frequency 2 MHz. The frequencies of the resultant signal is/are [JEE MAIN ONLINE 2015]

(1) 2 MHs only

(2) 2005 kHz and 1995 kHz

(3) 2005 kHz, 2000 kHz and 1995 kHz

(4) 2000 kHz and 1995 kHz



# ANSWER KEY

1. (3) 2. (3) 3. (3) 4. (4) 5. (3)

6. (4) 7. (4) 8. (2) 9. (1)

# WINDOW TO JEE MAIN

1. (1) 2. (4) 3. (1) 4. (4) 5. (4)

6. (2) 7. (2) 8. (2) 9. (2) 10. (3)