Lecture 11: Binary Search Tree

Binary Search Tree

- It's a binary tree!
- For each node in a BST
 - left subtree is smaller than it
 - right subtree is greater than it

Applications of Binary Search Tree

- Used in many search applications where data is constantly entering/leaving
- Used to represent arithmetic expressions
- ➤ Used in Unix kernels for managing a set of virtual memory areas (VMAs). Each VMA represents a section of memory in a Unix process. VMAs vary in size from 4KB to 1GB.

Node Structure & Operations

- > 3 common operations are:
 - INSERT
 - QUERY
 - DELETE

Operation - Insert

- \triangleright Insert(T,z)
 - Insert a node with KEY=z into BST T
 - Time complexity: O(h)

Step1: if the tree is empty, then Root(T)=z

Step2: Search for z in BST T, until we meet a null node

• Step3: Insert z

The light nodes are compared with k

Insert - Algorithm

NEWNODE is a pointer variable to hold the address of the newly created node. DATA is the information to be pushed.

- 1. Input the DATA to be pushed and ROOT node of tree.
- 2. NEWNODE = Create a New Node.
- 3. If (ROOT == NULL)
 - (a) ROOT=NEW NODE
- 4. Else If (DATA \leq ROOT \rightarrow Info)
 - (a) ROOT = ROOT \rightarrow Lehild
 - (b) GoTo Step 4
- 5. Else If (DATA > ROOT \rightarrow Info)
 - (a) ROOT = ROOT \rightarrow Rchild
 - (b) GoTo Step 4

- 6. If (DATA < ROOT \rightarrow Info)
- (a) $ROOT \rightarrow LChild = NEWNODE$
- 7. Else If (DATA > ROOT \rightarrow Info)
- (a) $ROOT \rightarrow RChild = NEWNODE$
- 8. Else
- (a) Display ("DUPLICATE NODE")
- (b) EXIT
- 9. NEW NODE \rightarrow Info = DATA
- 10. NEW NODE → LChild = NULL
- 11. NEW NODE \rightarrow RChild = NULL
- 12. EXIT

Insert()

```
struct node* insert(struct node* node, int data) {
                                        // 1. If the tree is empty, return a new, single node
 if (node == NULL) {
  return(newNode(data));
 else {
                                        // 2. Otherwise, recur down the tree
   if (data <= node->data)
     node->left = insert(node->left, data);
   else
   node->right = insert(node->right, data);
 return(node);
                                        // return the (unchanged) node pointer
```

Operation - Query

- > The QUERY operation can be further split into:
 - Search
 - Max/Min
 - Successor/Predecessor

Operation - Search

- > Search(T,k)
 - search the BST T for a value k

Search operation takes time O(h), where h is the height of a BST

Search - Algorithm

- 1. Input the DATA to be searched and assign the address of the root node to ROOT.
- 2. If (DATA == ROOT \rightarrow Info)
 - (a) Display "The DATA exist in the tree"
 - (b) GoTo Step 6
- 3. If (ROOT == NULL)
 - (a) Display "The DATA does not exist"
 - (b) GoTo Step 6
- 4. If(DATA > ROOT \rightarrow Info)
 - (a) $ROOT = ROOT \rightarrow RChild$
 - (b) GoTo Step 2
- 5. If(DATA < ROOT \rightarrow Info)
 - (a) $ROOT = ROOT \rightarrow Lehild$
 - (b) GoTo Step 2
- 6. Exit

Search()

```
static int lookup(struct node* node, int target) {
                                               // 1. Base case == empty tree
                                               // in that case, target is not found so return false
 if (node == NULL) {
  return(false);
 else {
                                               // 2. see if found here
  if (target == node -> data)
           return(true);
     else {
                                               // 3. otherwise recur down the correct subtree
      if (target < node->data)
         return(lookup(node->left, target));
   else return(lookup(node->right, target));
```

Operation –Min/Max

- For Min, we simply follow the left pointer until we find a null node
- ➤ Why? Because if it's not the minimum node, then the real min node must reside at some node's right subtree
- > By the property of BST, it's a contradiction
- Similar for Max
- ➤ Time complexity: O(h)

Operation –Min/Max

```
findMin( Node* t )
  if( t == NULL )
    return NULL;
  if( t->left == NULL )
    return t;
  return findMin( t->left);
findMax( Node* t )
  if( t != NULL )
     while( t->right != NULL )
       t = t->right;
  return t; }
```

Operation Predecessor/Successor

- Successor(x)
 - If we sort all elements in a BST to a sequence,
 - return the element just after x
 - Time complexity: O(h)

Finding the

ancestor whose left subtree contains X

Find Successor

- if Right(x) exists,
- then return Min(Right(x));
- else // **Step 2**
- Find the **first ancestor** of x whose left subtree contains x;

// Step 1

Operation Predecessor/Successor

If X has two children, its predecessor is the maximum value in its left subtree and its successor the minimum value in its right subtree.

Operation Predecessor/Successor

In the above diagram, inorder successor of **8** is **10**, inorder successor of **10** is **12** and inorder successor of **14** is **20**.

- Delete (T,z)
 - Delete a node with key=z from BST T
 - Time complexity: O(h)

Case 1: z has no child

We can simply remove it from the tree

Case 2: z has one child

Case 3: z has two child

What if successor has two children?

