Libre Silicon process specification

David Lanzendörfer

March 3, 2018

Abstract

Copyright © 2017 LANCEVILLE TECHNOLOGY GROUP CO., LIMITED. All rights reserved.

This process is licensed under the Libre Silicon public license; you can redistribute it and/or modify it under the terms of the Libre Silicon public license as published by the Libre Silicon alliance, either version 1 of the License, or (at your option) any later version.

This design is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Libre Silicon Public License for more details.

This is the specification of the free silicon manufacturing standard for manufacturing the LibreSilicon standard logic cells¹ and related free technology nodes from the LibreSilicon project.

¹https://github.com/chipforge/StdCellLib

Contents

1	\mathbf{CM}	OS in	a nutshell	4
2	Phy	sics		6
	2.1	Infusio	on	6
	2.2	Consta	ant source diffusion (Predeposition)	7
	2.3		plant	9
	2.4		in (limited source diffusion)	9
	2.5		Capacitance	10
	2.6		nold voltage (V_T)	10
	2.7		(V_T) adjustment	12
	CI.	. ,		10
3		mistry		13
	3.1			13
	3.2		g silicon nitride	
	3.3	Grown	ng silicon nitride	14
4	Pro	cess de	esign	15
	4.1	Substr	rate	16
	4.2	Isolati	on	16
	4.3	Interco	onnect	16
	4.4		gate	17
		4.4.1	Subthreshold leakage	17
		4.4.2	Gate tunneling current	18
	4.5		Sthreshold	19
	4.6		Sthreshold	20
	1.0	1 11100	, unconoid	20
5		cess st		21
	5.1	Shallo	w trench isolation	22
		5.1.1	Initial cleaning	23
		5.1.2	Sulfuric Cleaning	23
		5.1.3	HF dip	23
		5.1.4	Pad oxide	23
		5.1.5	Nitride layer	23
		5.1.6	Patterning positive	24
		5.1.7	Nitride etching	24
		5.1.8	Resist removal	24
		5.1.9	Silicon etching	24
		5.1.10	Deep oxidation	
			Oxide deposition	25
			Patterning negative	$\frac{25}{25}$
			Nitride+pad oxide etching	$\frac{25}{25}$
			Resist removal	$\frac{25}{25}$
	E 0			
	5.2	N-well		26
		5.2.1	Mask dioxide layer	27
		5.2.2	Patterning	27
		5.2.3	Etching	27
		5.2.4	Cleaning	28
		5.2.5	Injection	28
		5.2.6	Oxide for drive-in	28
		5.2.7	Drive-in	28
		5.2.8	Oxide mask removal	29
	5.3	P-well		30
	-	5.3.1	Mask dioxide layer	31
		5.3.2	Patterning	31
		5.3.3	Etching	31
				$\frac{31}{32}$
		5.3.4	Cleaning	
		5.3.5	Injection	32
		5.3.6	Oxide for drive-in	32
		5.3.7	Drive-in	32

	5.3.8	Oxide mask removal	33
5.4	n+ Im	ant	34
	5.4.1	Mask dioxide layer	34
	5.4.2	Pattering	34
	5.4.3	Etching	35
	5.4.4	Cleaning	35
	5.4.5	njection	35
	5.4.6	Oxide removal	35
5.5	p+ Im	ant	36
	5.5.1	Mask dioxide layer	36
	5.5.2	Pattering	36
	5.5.3	Etching	37
	5.5.4	Cleaning	37
	5.5.5	njection	37
	5.5.6	Oxide removal	37
5.6	Gate .		38
5.7	First v	18	39
5.8	First n	tal layer	40
5.9	Additi	nal vias	41
5.10	Additi	nal metal laver	42

1 CMOS in a nutshell

This basic initial project is dedicated to the CMOS Technology only and for this reason two types of metal-oxide-semiconductor field-effect transistors (MOSFET) are required.

Historically, the first chips with MOSFETs on the mass market were p-channel MOSFETs in enhancement-mode.

Figure 1: enhancement-mode PMOS transistor use-case

The sectional view of a PMOS transistor in silicon is shown below

Figure 2: Sectional view of a PMOS transistor

Historically later, faster chips with MOSFETs on the mass market were marked as n-channel MOSFETs in enhancement mode also.

Figure 3: enhancement-mode NMOS transistor use-case

The sectional view of a NMOS transistor in silicon is shown here also.

Figure 4: Sectional view of a NMOS transistor

Both technologies, the older PMOS as the newer NMOS, have the same disadvantage. Every time, the transistor is switched on, the current between drain and source of the transistor is limited by the resistor on drain only. Higher currents here means higher power consumption for the chip where the transistors are integrated as well. If the transistors are switched off, no current flows between drain and source anymore, the power consumption of the chip also goes low. Et violá, the US-Patent with Number 3356858² changed the world and combines both technologies to the new complementary metal-oxide-semiconductor (CMOS) technology. Instead of every transistor working against a weak resistor, the transistor works against a complementary switched-off transistor. With the eyes of our antecessor CMOS doubles the transistor count, but contemporary chips all are built in CMOS.

 $^{^2 {\}tt https://www.google.com/patents/US3356858}$

Figure 5: complementary PMOS and NMOS transistor couple use-case

Below the sectional view of the inverter circuitry can be seen. For the run through of this process we will use this cross section diagram as reference.

Figure 6: Sectional view of a NMOS-PMOS transistor circuit

2 Physics

In this chapter we deal with all the physics related to solid state device manufacturing. In case there is anything unclear, please look up this chapter and its sub-chapters.

2.1 Infusion

The redistribution process depends on the ratio of the solubility of the doping material in silicon and SiO_2 . At the Si/SiO_2 interface the dopants are redistributed by segregation until the ratio of their concentration at the interface is the same as the ratio of their solubility in both materials. The ratio of dopant solubility is expressed by the segregation coefficient m which is

$$m = \frac{\text{solubility in silicon}}{\text{solubility in SiO}_2} \tag{1}$$

As listed in Table 1 below there are dopant species which solubilize better in SiO_2 than in silicon (m < 1) and species which have a reversed behavior (m > 1). In case of m < 1, as for Boron, the dopant concentration is enhanced at the SiO_2 side, whereas beneath the interface, there is a dopant depletion at the silicon surface. For reversed solubility ratios (m > 1), like Phosphorus), only few dopant atoms penetrate the interface. In order to obtain the by m determined concentration ratio at the interface, dopant atoms from deeper silicon zones diffuse back to the surface zone. Therefore, the dopant concentration at the silicon surface is enhanced, as illustrated in Figure 7b. In Figure 7, C_c denotes the dopant concentration in the silicon surface zone before oxidation. x is the distance from the silicon surface.

Figure 7: Schematic illustration of dopant redistribution

Dopant species	Boron	Phosphor	Antimon	Arsen	Gallium
m	0.1-0.3	10	10	10	20

Table 1: Segregation coefficients m for important dopant species in silicon

2.2 Constant source diffusion (Predeposition)

Although the diffusion process of donors and acceptors into the silicon crystal is a three dimensional process for simplicity we first only discuss the one dimensional mathematics for it in order to get a "simple" equation for the depth-time-temperature relation.

This is only valid for a constant source of dopants on the surface of the wafer (gas, for instance). These equations are used for predicting the pre-deposition step (in case this process would be adapted by someone for predeposition instead of ion implant)

We start with Ficks³ law (for all German speakers: Yes that's his name) where the dopant concentration N is coupled with time and place

$$\frac{\partial N}{\partial t} = D \cdot \frac{\partial^2 N}{\partial x^2} \tag{2}$$

The diffusion coefficient is as well material as well as temperature dependent and can be calculated with the following equation:

$$D = D_0 \cdot \exp\left(-\frac{E_a}{k \cdot T}\right) \tag{3}$$

With $k = 8.62 \cdot 10^{-5} \frac{eV}{K}$ being the Boltzman constant and in table 2.2 we can see the D_0 and E_a values for the most common materials⁴ which we can use within the further calculations for our well dimensioning phases. The temperature usually is in the area of $1000^{\circ}C$ or 1273.15K.

Element	$D_0\left[\frac{cm^2}{s}\right]$	$E_a [eV]$
P	10.50	3.69
As	0.32	3.56
Sb	5.60	3.95
В	10.50	3.69
Al	8.00	3.47
Ga	3.60	3.51
Cu	0.0025	0.65

Table 2: D_0 and E_a values for boron and phosphorus

The law stated above

$$\frac{\partial N}{\partial t} = D \cdot \frac{\partial^2 N}{\partial x^2} \tag{4}$$

has the same form as the temperature conductivity equation (Laplace) for which we already have a general solution

$$\frac{\partial u}{\partial t} = a^2 \cdot \frac{\partial^2 u}{\partial x^2} \tag{5}$$

Which means that we can map the general solution for the temperature conductivity equations after Laplace

$$u(x,t) = \frac{1}{2 \cdot a \cdot \sqrt{\pi \cdot t}} \cdot \int_{-\infty}^{\infty} f(a) \cdot \exp\left(\frac{-(x-a)^2}{4 \cdot a^2 \cdot t^2}\right) da$$
 (6)

to our Ficks law with $a = \sqrt{D}$ and u = N

$$N(x,t) = \frac{1}{2 \cdot \sqrt{D} \cdot \sqrt{\pi \cdot t}} \cdot \int_{-\infty}^{\infty} f(\sqrt{D}) \cdot \exp\left(\frac{-(x - \sqrt{D})^2}{4 \cdot D \cdot t^2}\right) da$$
 (7)

with the edge conditions

$$N(x=0, t>0) = N_0 \tag{8}$$

$$N(x \ge 0, t = 0) = 0 \tag{9}$$

we get the resulting function from the solving process for the Laplace temperature conduction equations

$$u(x,t) = u_0 \cdot \operatorname{erfc}\left(\frac{x}{2 \cdot a \cdot \sqrt{t}}\right) \tag{10}$$

³https://en.wikipedia.org/wiki/Fick%27s_laws_of_diffusion

⁴ISBN 3-8023-1588:Hoppe Bernhard, Mikroelektronik 2, Page 24, Table 2.1

with the error function being an integral of the form

$$erfc(z) = \left(1 - \frac{2}{\sqrt{\pi}}\right) \cdot \int_0^z e^{-a^2} da \tag{11}$$

Or in case of our dopant concentration equation we can replace a with the square root of the diffusion coefficient in order to get the error function for our dopant density equation:

$$erfc(z) = \left(1 - \frac{2}{\sqrt{\pi}}\right) \cdot \int_0^z e^{-D} d\sqrt{D}$$
 (12)

$$N(x,t) = N_0 \cdot erfc\left(\frac{x}{2 \cdot \sqrt{D \cdot t}}\right) = N_0 \cdot erfc\left(\frac{x}{x_l(t)}\right)$$
(13)

Now we can extract the layer thickness and the depth of the well in dependency of the time and the temperature, respectively:

$$x_l(t) = 2 \cdot \sqrt{D \cdot t} \tag{14}$$

$$x_l(t) = 2 \cdot \sqrt{D_0 \cdot \exp\left(-\frac{E_a}{k \cdot T}\right) \cdot t}$$
 (15)

And plot the result for multiple different drive in times

Figure 8: Different predeposition times

We can now describe the dosage based on the time and temperature of the diffusion

$$Q = \frac{2}{\sqrt{\pi}} \cdot N_0 \cdot \sqrt{D \cdot t} \tag{16}$$

Where N_0 (concentration at the surface) equals the maximum solubility of a given element (e.g. boron) within the given medium (e.g. silicon).⁵

 $^{^{5}}$ If someone really wants to do this in his basement he can google these values and make a pull request

2.3 Ion implant

We can use the following equation to calculate the carrier distribution after implantation:

$$N(x) = N_p \exp\left(-\frac{(x - R_p)^2}{2\Delta R_p^2}\right) = \frac{Q}{\sqrt{2\pi}\Delta R_p} \exp\left(-\frac{(x - R_p)^2}{2\Delta R_p^2}\right)$$
(17)

Where the projected range (R_p) and the projected straggle (ΔR_p) need to be looked up in tables or looked up using an online tool like the one linked in the footnote⁶

If you do implant before the diffusion just set $x_v = R_p$

2.4 Drive-in (limited source diffusion)

After pre-deposition or ion implant of the initial dosage we need to drive in the ions deeper into the crystal. In order to prevent back-diffusion into the gas we seal off the oxide window with another layer of oxide in order to make sure that all the dopants stay inside the silicon crystal.

Figure 9: Drive-in well depths and concentrations

We set the condition that the pre-deposition/implant depth is much lower than the depth of the final diffused volume with the following inequation:

$$x_e = 2 \cdot \sqrt{D_e \cdot t_e} \gg 2 \cdot \sqrt{D_v \cdot t_v} = x_v \tag{18}$$

Where x_v is the the depth of the predeposition/implant step.

By neglecting the distribution thickness of the original implantation dosage and assuming that it's comparably thin compared to the medium thickness we can replace $f(a) \approx \delta(a)$ within Equation 7 which makes

$$N(x,t) = \frac{1}{2 \cdot \sqrt{D} \cdot \sqrt{\pi \cdot t}} \cdot \int_{-\infty}^{\infty} f(\sqrt{D}) \cdot \exp\left(\frac{-(x - \sqrt{D})^2}{4 \cdot D \cdot t^2}\right) da$$
 (19)

become

$$N(x,t) = \frac{1}{2 \cdot \sqrt{D} \cdot \sqrt{\pi \cdot t}} \cdot \int_{-\infty}^{\infty} \delta(\sqrt{D}) \cdot \exp\left(\frac{-(x - \sqrt{D})^2}{4 \cdot D \cdot t^2}\right) da$$
 (20)

and finally

$$N(x,t) = \sqrt{\frac{Q}{\pi \cdot D_e \cdot t}} \cdot \exp\left(\frac{-x^2}{4 \cdot D_e \cdot t^2}\right) \tag{21}$$

For a drive-in of boron and phosphorus at $1000^{\circ}C(1273.15K)$ we can use for both $D=2.62\cdot 10^{-14}\frac{cm^2}{s}=2.62\cdot 10^{-18}\frac{m^2}{s}$

⁶http://cleanroom.byu.edu/rangestraggle

2.5MOS Capacitance

https://ecee.colorado.edu/~bart/book/book/chapter6/ch6_3.htm

Threshold voltage (V_T)

The formula for calculating the threshold voltage of a MOS device is the following:

$$V_T = V_{t-mos} + V_{FB} (22)$$

where V_{t-mos} is the threshold voltage of an ideal MOS capacitor, V_{FB} is the flat-band voltage and V_{t-mos} is the threshold. The MOS threshold voltage, V_{t-mos} is calculated by considering the MOS capacitor structure that form the gate of the MOS transistor.

The ideal threshold voltage may be expressed as:

$$V_{t-mos} = 2\phi_F + \frac{Q_b}{C_{or}} \tag{23}$$

$$Q_b = \sqrt{2\epsilon_{Si} \cdot q \cdot N_{implant} \cdot (|2\phi_F| + V_{SB})}$$
(24)

where C_{ox} is the oxide capacitance and Q_b which is called the bulk charge term.

The bulk potential is given by:

$$\phi_F = V_{th} \cdot \ln\left(\frac{p}{N_i}\right) = V_{th} \cdot \ln\left(\frac{N_i}{n}\right) \tag{25}$$

 V_{th} is the thermal voltage.⁷

$$V_{th} = \frac{kT}{q} \approx 0.026 \frac{J}{C} = 0.026 V = 26 mV \tag{26}$$

With the variables being:

- $k=1.38064852\cdot 10^{-23}\frac{J}{K}$ is the Boltzmann constant
- $q = 1.602 \cdot 10^{-19} C$ is the elementary charge
- T = 300K the temperature, which we assume to be the room temperature for simplicity further on in this document as well.

We can directly switch $\frac{J}{C}$ with Volts because these two units are equal!^a Also V_{th} will be treated as a constant for any further calculations within this document.

The same goes for the eV to V conversion, wherever we have work functions to potentials because (e.g. Φ_M for Aluminum): $4.1eV \approx 6.5689241452810^{-19}J$ $\Phi_M = \frac{E_M}{q} = \frac{4.1eV}{q} = \frac{6.5689241452810^{-19}J}{q} = \frac{6.5689241452810^{-19}J}{1.60217663410^{-19}C} \approx 4.099999966220953 \frac{J}{C} = \underline{4.1V}$

$$\Phi_{M} = \frac{E_{M}}{q} = \frac{4.1 eV}{q} = \frac{6.5689241452810^{-19} J}{q} = \frac{6.5689241452810^{-19} J}{1.60217663410^{-19} C} \approx 4.099999966220953 \frac{J}{C} = \underline{4.1V}$$

Since we connect bulk and source $V_{SB} = 0$ we can simplify the equation to become

$$Q_b = \sqrt{2 \cdot \epsilon_{Si} \cdot q \cdot N_{implant} \cdot (|2 \cdot \phi_F|)}$$
 (27)

$$Q_b = 2 \cdot \sqrt{\epsilon_{Si} \cdot q \cdot N_{implant} \cdot |\phi_F|}$$
(28)

 V_{FB} , is given by:

$$V_{FB} = \phi_{MS} - \frac{Q_f}{C_{ox}} - \frac{1}{C_{ox}} \int_0^{t_{ox}} \frac{x}{x_{ox}} \rho(x) dx$$
 (29)

Because we're not yet dealing with non-volatile memory devices which contain an oxide surface state charge we can just set $Q_f = 0$ as well as $\rho(x) = 0$

$$V_{FB} = \phi_{MS} \tag{30}$$

ahttps://en.wikipedia.org/wiki/Volt

 $^{^7}$ https://en.wikipedia.org/wiki/Boltzmann_constant#Role_in_semiconductor_physics:_the_thermal_voltage

with

$$V_{FB} = \phi_{MS} = \phi_M - \phi_S = \phi_M - \left(\chi + \frac{E_g}{2q} + \phi_F\right)$$
 (31)

And because of the simplifications we did to F_{FB} which essentially led to $F_{FB} = \phi_{MS}$ we get to:

$$V_T = V_{t-mos} + \phi_{MS} \tag{32}$$

$$V_T = 2\phi_F + \frac{Q_b}{C_{ox}} + \phi_{MS} \tag{33}$$

$$V_T = 2\phi_F + \frac{2\sqrt{\epsilon_{Si} \cdot q \cdot |\phi_F| \cdot N_{implant}}}{C_{ox}} + \phi_{MS}$$
(34)

$$V_T = 2\phi_F + \frac{2\sqrt{\epsilon_{Si} \cdot q \cdot |\phi_F| \cdot N_{implant}}}{C_{ox}} + \phi_M - \left(\chi + \frac{E_g}{2q} + \phi_F\right)$$
(35)

$$V_T = 2\phi_F + \frac{2\sqrt{\epsilon_{Si} \cdot q \cdot |\phi_F| \cdot N_{implant}}}{C_{ox}} + \phi_M - \chi - \frac{E_g}{2q} - \phi_F$$
(36)

$$V_T = \phi_F + \frac{2\sqrt{\epsilon_{Si} \cdot q \cdot |\phi_F| \cdot N_{implant}}}{C_{ox}} + \phi_M - \chi - \frac{E_g}{2q}$$
(37)

With the variables and constants being the following we now can put the formula together:

- N_i is the carrier concentration in intrinsic (undoped) silicon. N_i is equal to $1.45 \times 10^{10} cm^{-3} = 1.45 \times 10^{16} m^{-3}$ at 300° K
- $E_M = q \cdot \phi_M = 4.1 eV$ is the "work function" of our metal at the gate (Aluminum)
- $E_g = E_g(300)[eV]$ $E_g(T) = E_g(0) - \frac{\alpha T^2}{T+\beta} = 1.166 - 4.73 \cdot 10^{-4} \cdot \frac{T^2}{T+636}[eV]$ is the band gap energy of silicon at a given temperature⁸ for which the parameters can be taken from Table 3

	Germanium	Silicon	GaAs
Eg(0)[eV]	0.7437	1.166	1.519
$\alpha[eV/K]$	4.77 x 10-4	4.73 x 10-4	5.41 x 10-4
$\beta[K]$	235	636	204

Table 3: Band cap energy parameters

- $C_{ox}\left[\frac{F}{m^2}\right]$ is the capacity of the gate oxide
- $\epsilon_0=8.85\cdot 10^{-14}\frac{F}{cm}$. = $8.85\cdot 10^{-12}\frac{F}{m}$ is the electric permittivity in vacuum
- $\epsilon_{Si} = 11.68 \cdot \epsilon_0$ is the relative permittivity of silicon
- $\epsilon_{ox} = 3.9 \cdot \epsilon_0$ is the relative permittivity of silicon oxide
- $t_{ox}[cm]$ is the thickness of the oxide layer in cm
- $E_{ef} = q \cdot \chi = 4.05 eV$ is the electron affinity of a silicon crystal surface⁹
- $q = 1.602 \cdot 10^{-19} C$ is the elementary charge

The contact potential from the Aluminum contact to the surface of the gate (silicon below the oxide) is fixed for $T = 300^{\circ} K$:

$$\phi_M - \chi - \frac{E_g}{2q} = 4.1V - 4.05V - \frac{1.12eV}{2q} = 4.1V - 4.05V - 0.56V = -0.51V$$
(38)

From that we get

$$V_T = \phi_F + \frac{2\sqrt{\epsilon_{Si} \cdot q \cdot |\phi_F| \cdot N_{implant}}}{C_{ox}} - 0.51V$$
(39)

⁸https://ecee.colorado.edu/~bart/book/eband5.htm

 $^{^9 {\}tt https://en.wikipedia.org/wiki/Electron_affinity}$

Now we can calculate the thresholds for P substrate (V_{Tp}) and N substrate (V_{Tn}) , respectively the wells we build on unpredoped substrated, which makes the equation for single-doped substrate valid for both wells with

$$\phi_{Fn} = V_{th} \cdot ln \left(\frac{N_i}{N_{implant}} \right) \tag{40}$$

$$\phi_{Fp} = V_{th} \cdot ln \left(\frac{N_{implant}}{N_i} \right) \tag{41}$$

Which brings us to the equations for the N-channel and P-channel thresholds: (N-Channel MOSFETs are built on p-substrate)

$$V_{Tn} = \phi_{Fp} + \frac{2\sqrt{\epsilon_{Si} \cdot q \cdot |\phi_{Fp}| \cdot N_{implant}}}{C_{ox}} - 0.51V$$

$$(42)$$

(P-Channel MOSFETs are built on n-substrate)

$$V_{Tp} = \phi_{Fn} + \frac{2\sqrt{\epsilon_{Si} \cdot q \cdot |\phi_{Fn}| \cdot N_{implant}}}{C_{ox}} - 0.51V$$

$$(43)$$

This equation will be used further on to find the optimum gate oxide thickness for our transistors.

2.7 Threshold voltage (V_T) adjustment

At some point in the future this will be of very high relevance, because the lower the size of the transistors becomes, the higher the offset to V_{Tp} and V_{Tn} needs to be in order to stay on TTL 5V logic level, or at least compensate for the lowered voltages in order to reach the 3.3V CMOS logic levels. Adjustment of the threshold voltage can be achieved by:

- A relatively small dose N_I (units: ions/ cm^2) of dopant atoms is implanted into the near-surface region of the semiconductor.
- When the MOS device is biased in depletion or inversion, the implanted dopants add to (or substract from) the depletion charge near the oxide-semiconductor interface

The formula to calculate the voltage offset is:

$$\Delta V_T = -\frac{qN_I}{C_{ox}} \begin{cases} N_I > 0 \text{ for donor atoms } (Phosporus/N) \\ N_I < 0 \text{ for acceptor atoms } (Boron/P) \end{cases}$$
(44)

3 Chemistry

3.1 Etching silicon dioxide

A very "selective" chemical for SiO_2 - i.e. does not etch silicon at all - is hydrofluoric acid (HF). If used directly such etchant has a too fast and aggresive action on the oxide, making very difficult the undercut and the linewidth control. For such reason, HF is universally used as a "buffered" solution, which can keep the etch rate low and constant, by moderating the PH level of the bath. This allows the etching time to be reliably correlated to the etching depth.

The industry standard buffered hydrofluoric acid solution (BHF) has the following formulation:

- 6 volumes of ammonium floride $(NH_4F, 40\% \text{ solution})$
- 1 volume of HF.

This can be prepared, for example, by mixing 113 g of NH_4F in 170 ml of H_2O , and adding 28 ml of HF. The etch rate at room temperature can range from 1000 to 2500 Å/min (100-250nm/min). This depends on the actual density of the oxide which, as an amorphous layer, can have a more compact structure (if thermally grown in is oxygen) or less compact (if grown by CVD). The following etching reaction holds:

$$SiO_2 + 6HF \rightarrow H_2SiF_6 + H_2O$$
 (45)

where H_2SiF_6 is water soluble.

A common buffered oxide etch solution comprises a 6:1 volume ratio of $40\% NH_4F$ in water to 49% HF in water. This solution will etch thermally grown oxide at approximately 2 nanometres per second at 25 degrees Celsius. ¹⁰

Another popular etching formulation is the P-etch:

60 volumes of H_2O+3 vol. of HF + 2 vol. of HNO_3 , that is: 300 ml of H_2O+15 ml of HF + 10 ml of HNO_3 .

The P-etch action is strongly dependent on oxide density, as it results from the growth technique. An example is reported in the literature¹¹, indicating 120 Å/min for thermal oxide and 250-700 Å/min for sputtered oxide. A slow etching bath is preferred for opening mask windows for a silicon substrate. However, the etching process could be used just for removing the oxide film from the whole surface. In this case the etching speed is not critical, and a fast solution can be used, such as HF diluited 1:10 in water. The etching time can be easily evaluated by visually inspecting the surface. Once the oxide film is removed, the metal-grey color of the silicon surface appears.

Sometimes a very light etch is required, for removing just a few atomic layers. This is the case of surface cleaning and decontamination. HF diluited 1 : 50 in water can be used. The etching speed will be around 70 $\rm \mathring{A}$ / min. For example, a typical 50 $\rm \mathring{A}$ "native" oxide on silicon can be removed with a 45 - 50 sec light etch.

 $^{^{10}}$ Wolf, S.; R.N. Tauber (1986). Silicon Processing for the VLSI Era: Volume 1 - Process Technology. pp. 532–533. ISBN 978-0-9616721-3-3

¹¹A. Pliskin, J.Vac.Sci Technol., vol. 14, p.1064, 1977

3.2 Etching silicon nitride

Thin films made of amorphous silicon nitride (Si_3N_4) are usually deposited by chemical vapour deposition from silane (SiH_4) and ammonia (NH_3) . Since they act as a barrier for water and sodium, they have a major role as passivation layers in microchip fabrication. Patterned nitride layers are also used as a mask for spatially selective silicon oxide growth, and as an etch mask when SiO_2 masks cannot be used.

One example of the latter situation is given by the anisotropic etching of silicon in KOH. The etching rate of SiO_2 in KOH is nearly 1000 times slower than the etching rate of silicon, and in most cases a SiO_2 mask can be used successfully. However, a very deep selective etch may require a long etching time, and the 1000:1 etching rate ratio may result still too small to prevent the SiO_2 mask from being etched off before the process is completed. In this circumstance Si_3N_4 , thanks to its reduced etched rate, can successfully replace the oxide mask layer.

The wet etching of nitride films is often performed in concentrated hot orthophosphoric acid (H_3PO_4) . The bath temperature can range from 150°C to 180°C (boiling point) with a corresponding etch rate between 10 and 100 Å/min. It is good practice to bring the vapours into contact with a cold surface and to drive the condensed liquid back into the etching bath. This technique is referred to as "reflux".

The etching rates of silicon nitride, silicon oxide, and silicon in H_3PO_4 are respectively in the 50: 5: 1 ratio.

3.3 Growing silicon nitride

In order to grow a high quality layer of silicon nitride on top of a silicon wafer which is adapted to be patterned and to serve as a mask for diffusion or implantation of selected impurities, the wafer is best put into a chamber evacuated to a pressure less than about 1 Torr and heated between 650 and 900 °C. A gaseous mixture comprising primarily of ammonia and a silicon compound, having a ratio of relative concentrations in the range on 4:1 and 20:1 ¹², is flooded into that chamber with a silicon compound flow rate of greater than approximately 12 cubic centimeters per minute. The growth rate will be around 50 Angstroms per minute. That setup is called Low-Pressure Chemical Vapor Deposition (LPCVD), which is commonly available in basically any semiconductor manufacturing plant or laboratory.

¹²http://www.freepatentsonline.com/4395438.html

4 Process design

We need to optimize our process to be TTL compatible (5V logic levels) and at the same time being as fast and power efficient as possible. In order to have a good propagation delay with a technology node of around $1\mu m$ we will have to have gates with up to four stacked MOS transistors.

Acceptable input signal voltages range from 0 volts to 0.8 volts for a low logic state, and 2 volts to 5 volts for a high logic state. Acceptable output signal voltages shall range from 0 volts to 0.5 volts for a low logic state, and 2.7 volts to 5 volts for a high logic state 13

Figure 10: TTL logic levels

As shown in Figure 10 we have some margin to make our PMOS and NMOS transistors work with each other in order to form a CMOS circuit which is actually working without getting warm.

Or more clearly defined

$$V_{off} \le 0.8V \tag{46}$$

and

$$V_{on} \ge 2V \tag{47}$$

which are limits, elementary to our design.

Figure 11: CMOS 3.3V logic levels

This means that we also will be compatible to CMOS logic level output pins since their ON/OFF levels are within our tolerance range 14 as it is shown in Figure 11.

 $^{^{13}}$ https://www.allaboutcircuits.com/textbook/digital/chpt-3/logic-signal-voltage-levels

 $^{^{14} \}mathtt{https://learn.sparkfun.com/tutorials/logic-levels/33-v-cmos-logic-levels}$

4.1 Substrate

For this process undoped mono crystalline silicon substrate is being used, but forks and modifications will be very well possible based on a Graphene substrate or alike, still under the LSPL. The starting material is a undoped <100> oriented mono crystalline silicon wafer with no doping.

Reasons for using undoped substrate:

- We can't use two different substrates for our design because in the design both PMOS and NMOS is present. We have to choose which is more beneficial from fabrication point of view. In general or say it's true that NMOS devices are always more in the Semiconductor Industry in comparison to PMOS devices. For your reference-SRAM requires 6 transistors (4 NMOS, 2 PMOS).
- Another reason for more number of NMOS is because of difference of mobility of electron and holes. Electron mobility is almost twice of holes mobility and because of this ON-RESISTANCE of n-channel device is half of p-channel device with the same geometry and under the same operating conditions. That means to achieve same impedance size of n-channel transistors is almost half of p-channel devices. Same thing I can say in the different way that for same size of wafer, we can have more number of NMOS (means can perform more logical operation) in comparison to PMOS.
- Doping the substrate our self makes us more independent from suppliers, since each supplier has his own
 doping values. Using undoped silicon solves this problem because the values of elementary silicon has
 been defined by nature and the stars where it has been bred in and is always the same, independent of
 the supplier. All that counts is the purity of the substrate.
- We get rid of the parasitic diode effect and can make the wells less deep which saves time during drive-in.

4.2 Isolation

For the isolation (subsection 5.1) in this design the STI approach is being chosen. Shallow trench isolation (STI), also known as box isolation technique, is an integrated circuit feature which prevents electric current leakage between adjacent semiconductor device components.¹⁵ STI is generally used on CMOS process technology nodes of 250 nanometers and smaller.

Reasons for using box isolation:

- We want to be forward compatible to future LibreSilicon nodes with a size of 100nm or smaller
- It simplifies the construction of the gate and allows us to use Aluminum instead of Polysilicon for the gate contact

4.3 Interconnect

The interconnects and the gate electrode are being made using Aluminum which is a very commonly used material to do interconnects in low-frequency and low-resolution applications

Reasons for using Aluminum:

- It's a well explored material for interconnect with a lot of literature on how to process it
- Aluminum is easy to etch compared to copper
- It isn't contaminating everything like copper does and doesn't require special separated setup for handling
- The machines at HKUST can do CMP for copper only on 4 inch wafers which would limit us in wafer size

As soon as we've got CMOS all figured out, we will tackle copper interconnect in release 2.0

 $^{^{15} \}mathtt{https://www.google.com/patents/US7985656}$

4.4 MOS gate

As the continuous down-scaling of the device size has lead to very thin gate oxides, the leakage current that can flow from the channel to the gate comes into the order of the subthreshold leakage current and the gate cannot be considered as an ideally insulated electrode anymore. This affects the circuit functionality and increases the standby power consumption due to the static gate current. For dynamic logic concepts the gate leakage drastically reduces the maximum clock cycle time¹⁶. Two tunneling mechanisms are responsible for the gate leakage, Fowler-Nordheim tunneling and direct tunneling¹⁷. The gate leakage increases exponentially as the oxide thickness is reduced. This limits the down-scaling of the oxide thickness to about 1.5-2 nm when looking at the total standby power consumption of a chip¹⁸. To further decrease the effective oxide thickness alternative high dielectric constant materials can be used¹⁹. On the other hand, a thin gate oxide reduces the short-channel effect and improves the driving capabilities of a MOS transistor. However, a tradeoff between this benefit and the gate leakage is necessary.

With $1\mu m$ we don't have to worry about this leakage yet because our gate oxide thickness is too high for these effects to actually become a problem, but we want to do our home work already in preparation of scale-down and also for curiosity.

We for now just use 40 nm. That's still doable with a precision high enough when using dry oxidation and a temperature of 1000°Celsius.

4.4.1 Subthreshold leakage

The sub-threshold leakage current can be calculated with²⁰

$$I_{sub} = I_0 \cdot \left(1 - \exp\left(-\frac{V_{ds}}{V_{th}}\right)\right) \cdot \exp\left(\frac{V_{gs} - V_T}{n \cdot V_{th}}\right) \tag{48}$$

where

$$I_0 = \frac{W}{L} \mu_0 V_{th}^2 \sqrt{\frac{N_A \cdot q \cdot \epsilon_{Si}}{2 \cdot \phi_{sub}}} \tag{49}$$

 $V_{th}=26mV$ is the thermal voltage, V_T is the threshold voltage, V_{ds} and V_{gs} are the drain-to-source and gate-to-source voltages respectively. W and L are the effective transistor width and length, respectively. C_{ox} is the gate oxide capacitance, μ_0 is the carrier mobility and $n=1+\frac{C_{dep}}{C_{ox}}$ is the subthreshold swing coefficient. First of all, lets say W=L which leads to a square:

$$I_0 = \mu_0 V_{th}^2 \sqrt{\frac{N_A \cdot q \cdot \epsilon_{Si}}{2 \cdot \phi_{sub}}} \tag{50}$$

With

- $\epsilon_0 = 8.85 \cdot 10^{-14} \frac{F}{cm}$ is the electric permittivity in vacuum
- $\epsilon_{ox} = 3.9 \cdot \epsilon_0$ is the relative permittivity of silicon dioxide
- $\epsilon_{Si} = 11.68 \cdot \epsilon_0$ is the relative permittivity of silicon

The carrier mobility μ_0 can be calculated with²¹

$$\mu(N) = \mu_{min} + \frac{\mu_{max} - \mu_{min}}{1 + \left(\frac{N}{N_r}\right)^{\alpha}} \tag{51}$$

using the fitting parameters from Table 4

¹⁶N. Wang, Digital MOS Integrated Circuits, Prentice-Hall, Englewood Cliffs, NJ, 1989

¹⁷A. Schenk and G. Heiser, "Modeling and Simulation of Tunneling through Ultra-Thin Gate Dielectrics" J.Appl.Phys., vol. 81, no. 12, pp. 7900, 1997

¹⁸Y. Taur, "The Incredible Shrinking Transistor," IEEE Spectrum, pp. 25-29, July 1999.

¹⁹S. Thompson, P. Packan, and M. Bohr, "MOS Scaling: Transistor Challenges for the 21st Century," Intel Technology Journal, vol. Q3, 1998

²⁰http://ecee.colorado.edu/~bart/book/book/chapter3/ch3_4.htm#3_4_2

 $^{^{21} \}mathtt{https://ecee.colorado.edu/~bart/book/book/chapter2/ch2_7.htm\#2_7_2}$

	Arsenic	Phosphorus	Boron
$\mu_{min}[\frac{cm^2}{Vs}]$	52.2	68.5	44.9
$\mu_{max}[\frac{cm^2}{Vs}]$	1417	1414	470.5
$N_r[\frac{1}{cm^3}]$	$9.68 \cdot 10^{16}$	$9.20 \cdot 10^{16}$	$2.23 \cdot 10^{17}$
α	0.68	0.711	0.719

Table 4: Parameters for calculation of the mobility as a function of the doping density

We can now plot multiple leakages for N- and P-channel transistors with a gate oxide thickness²² wit a surface concentration of $1e16\frac{1}{cm^3}$

Figure 12: Subthreshold leakage plot(in Ampere)

In Figure 12 we see that with our gate oxide thickness this is really no problem, as we had expected. From 0V up to 5V and further there is basically no leakage on the gate from the sub threshold current with $V_{Tn} \approx 0.28V$ and $V_{Tp} \approx -0.29V$. That's good enough, as we will see in subsection 4.5 and subsection 4.6. There is actually a reduction of current when reaching the threshold because of the inversion of the capacity in the depletion zone²³, but I didn't include this into the calculation, because "TL;DR". It's a TODO for release 2.1 of this process which will go sub $1\mu m$

4.4.2 Gate tunneling current

The tunneling of electrons (or holes) from the bulk and source/drain overlap region through the gate oxide potential barrier into the gate (or vice-versa) is referred as gate oxide tunneling current. This phenomenon is related with the MOS capacitance concept. There are three major gate leakage mechanisms in a MOS structure. The first one is the electron conduction-band tunneling (ECB), where electrons tunneling from conduction band of the substrate to the conduction band of the gate (or vice versa). The second one is the electron valence-band tunneling (EVB). In this case, electrons tunneling from the valence band of the substrate to the conduct band of the gate. The last one is known as hole valence-band (HVB) tunneling, where holes tunneling from the valence band of the substrate to the valence band of the gate (or vice- versa)

Each mechanism is dominant or important in different regions of operation for NMOS and PMOS transistors. For each mechanism, gate leakage current can be modeled by

$$I = W \cdot L \cdot A \cdot \left(\frac{V_{ox}}{t_{ox}}\right)^2 \exp\left(\frac{-B\left(1 - \left(1 - \frac{V_{ox}}{\phi_{ox}}\right)^{\frac{3}{2}}\right)}{\frac{T_{ox}}{t_{ox}}}\right)$$
(52)

²²See simulation/gate.wxmx

²³https://people.eecs.berkeley.edu/~hu/Chenming-Hu_ch5.pdf

4.5 NMOS threshold

First we take a look at the worst case of 4 stacked NMOS transistors, which is the highest stacking amount which will be possible in technologies relying on this process.

Figure 13: AND4 gate

As shown in Figure 10 our acceptable voltages for our CMOS "ON" state range from 2V to VDD (which typically is around $5V \pm 0.25V$)

$$V_{on} \ge 2V \tag{53}$$

Because there are four transistors dividing the voltage by being in series, the power supply voltage is being divided by the amount of transistors in series. In order to match the threshold voltages of all of the transistors, which is needed for a working digital logic, the following equation need to be satisfied

$$V_{on} > 4 \cdot V_{Tn} \tag{54}$$

Lets assume the worst case with

$$V_{on} = 2V (55)$$

Which leads to the required worst case threshold tolerance value

$$4 \cdot V_{Tn} < 2V \Rightarrow V_{Tn} < 500mV \tag{56}$$

With the values derived from subsection 4.4 and a surface concentration for our P-well of $10^{22} \frac{1}{m^3}$ we are already

set because $\approx 0.28V$ are already better than we need. So we target a surface concentration of $10^{16} \frac{1}{cm^3} = 10^{22} \frac{1}{m^3}$ which gives us margin of error in case of temperature variations and too long diffusion.

The depletion zone thickness at its peak will be $W_{dmax} \approx 2.73 \cdot 10^{-7} m = 273 nm$ so making the well $\approx 2 \mu m$ is ok.

 $\approx 2\mu m$ come mainly from the need to fulfill the condition from subsection 2.4

$$x_e = 2 \cdot \sqrt{D_e \cdot t_e} \gg 2 \cdot \sqrt{D_v \cdot t_v} = x_v \tag{57}$$

4.6 PMOS threshold

Now we take a look at the worst case of 4 stacked PMOS transistors, which is the highest stacking amount which will be possible in technologies relying on this process.

Figure 14: OR4 gate

With our ϕ_F for a doped n-well

$$\phi_F = V_{th} ln \left(\frac{N_A \cdot N_D}{N_i^2} \right) \tag{58}$$

5 Process steps

The general flow chart of the overall process flow can be seen in Figure 15. These process steps will be discussed within the following sections.

Figure 15: Frontend and backend process flow

The six overall process steps are part of an active part of the technology, while the final metal (respectively contact) layers will be used for making a contact between the logic gates and macro cells and making them available to the exterior world.

For this process p-substrate is the required basic substrate, but forks and modifications will be very well possible based on a Graphene substrate or alike, still under the LSPL. The starting material is a p-type, <100> oriented silicon with a doping concentration of $\approx 9\times 10^{14}cm^{-3}$.

5.1 Shallow trench isolation

The geometry of a substrate with STI implemented can be seen in Figure 16.

Figure 16: Shallow trench isolation target geometry

As can be seen in section 1, the n-well and the STI trench are supposed to have approximately the same depth. Because the n-well will be $\approx 4\mu m$ in depth we have to match this with our trench depth.

Figure 17: Shallow trench isolation layout

In Figure 17 we can see the layout for the STI area. The STI area will be everywhere, where no active areas are. The deep isolating oxide needs to be grown out of trenches which can't been etched out of the silicon by using resist as a mask. For that reason we will have to resort to a protective mask made from a nitride layer which has to be etched before hand. So the mask will be exposed onto positive resist on top of the nitride in order to form a protective mask covering the active areas from having etched trenches into them as show in subsubsection 5.1.7. After that we will use a dry etching method for cutting into the silicon substrate and making the active area become islands with trenches in between, as shown in subsubsection 5.1.9. After these steps we have to remove the nitride mask, for which we expose the same mask again, only this time to a layer of inverted resist.

5.1.1 Initial cleaning

In order to remove the initial naturally grown silicon dioxide from the wafer, acid is being applied to the wafer which leads to a pure silicon substrate wafer as in the process illustration shown in Figure 18.

Figure 18: Initial cleaning

This needs to be done because the naturally grown initially existing silicon oxide is not pure and may contain contamination which may render the final product unusable.

5.1.2 Sulfuric Cleaning

The sulfuric acid mixture, $H_2SO_4 + H_2O_2$ is being applied to the wafer for 10 minutes at a temperature of 120 °C.

5.1.3 HF dip

After the sulfuric cleaning a HF (HF: H_2O ,1:50) dip is being performed for one minute.

Hydrofluoric acid (HF) is used to remove native silicon dioxide from wafers. Since it acts quickly, one needs to only expose the wafer for a short time ("dip").

After that the wafer needs to be dried and quickly processed further before new uncontrolled natural oxide can build up on the wafer through the contact with air.

5.1.4 Pad oxide

We need a thin layer of oxide as surface to grow our protective nitride layer on top.

Figure 19: Pad oxide growth

The thin layer of "pad" oxide (around 300nm) is grown in dry ambient for 45 minutes at 1000°C.²⁴

5.1.5 Nitride layer

We need a protective nitride layer for dry etching the trenches into the silicon. This nitride will be grown in this step.

Figure 20: Nitride growth

The required thickness of this layer is not that critical, it can very well variate between 6nm and 10nm.²⁵ For this reason we can put it into the LPCVD for around one or two minutes as explained in subsection 3.3.

²⁴http://cleanroom.byu.edu/OxideTimeCalc

²⁵https://www.google.com/patents/US7985656

5.1.6 Patterning positive

Figure 21: Patterning with positive resist

5.1.7 Nitride etching

We open the access to the silicon outside of the active areas in order to etch the trenches.

Figure 22: Nitride mask etching

We use the reflux method as described in subsection 3.2

5.1.8 Resist removal

Figure 23: Resist removal

5.1.9 Silicon etching

Silicon can only be etched by a very aggressive chemical cocktail of KOH and TMAH (25%) or by plasma etching.

Figure 24: Trench etching

We take the machine "DRIE Etcher #1" from HKUST²⁶ as reference here, which has a normal etching rate of up to $2\frac{\mu m}{min}$.

5.1.10 Deep oxidation

Figure 25: Resist removal

 $^{^{26} {\}tt http://www.nff.ust.hk/en/equipment-and-process/equipment-list/dry-etching-and-sputtering-module.html}$

5.1.11 Oxide deposition

Figure 26: Resist removal

5.1.12 Patterning negative

Figure 27: Patterning with negative resist

5.1.13 Nitride+pad oxide etching

Now we have to remove the nitride mask for further processing.

Figure 28: Trench etching

We use the reflux method as described in subsection 3.2

5.1.14 Resist removal

Figure 29: Cleaning wafer

5.2 N-well

In order to build CMOS on the same substrate, an n-well is required for building the complementary P-channel transistor for a n-p-channel logic circuitry as shown above in the example section. The cross section as well as the top view of the targeted geometry are shown in Figure 30

Figure 30: N-well target geometry

The n-well will serve us as an island of n-doped substrate within the undoped basis substrate.

The dopant dose will be: $2.5 \times 10^{12} cm^{-2}$

The surface concentration of the n-well ($\approx 1 \times 10^{16} cm^{-3}$) is determined primarily by the need to maintain a sufficiently high surface concentration to prevent field inversion of the n-nwell.

The depth of the n-well ($\approx 2\mu m$) is then determined by the need to fulfill the condition from subsection 2.4

$$x_e = 2 \cdot \sqrt{D_e \cdot t_e} \gg 2 \cdot \sqrt{D_v \cdot t_v} = x_v \tag{59}$$

Figure 31: N-Well layout

In Figure 31 the layout of the n-well region on top of the active area region can be seen. You should make the active area always a little bit bigger than the n-well area in order to avoid hitting parts of the trench oxide with your dopant.

5.2.1 Mask dioxide layer

In order to selectively inject charge carrying atoms into the crystalline structure a protective dioxide (SiO_2) layer needs to be grown on top of a p-type substrate.

Figure 32: Dioxide layer growth

The industrial best practice is a layer of around $(500 \text{nm} \approx 5000 \text{Å})$ thickness or more. For this purpose the wafer is being oxidized for at least 90 minutes at 1000°C using wet oxidation which results in a dioxide layer at least $500 \text{nm} (\approx 5000 \text{Å})$ in thickness.

5.2.2 Patterning

The resist is being deposited using spin coating and then baked depending on the baking time for the specific resist. The layout for being exposed onto the resist is being extracted from the "nwell" layer within the GDS2 file.

Figure 33: Cross/top view of n-well layout on resist

The thickness of the resist layer and the baking duration will variate depending on the specific equipment for which this process will be implemented with.

5.2.3 Etching

We now need to open a window in the dioxide layer, through which we will inject carrier atoms into the silicon crystal structure.

Figure 34: Cross/top view of n-well oxide window

Since the silicon dioxide layer is 500nm thick and we wanna reach the silicon below we can use wet etching as described in the chemistry chapter. Using BHF (6:1) (Equation 3.1) we can etch with a speed of approximately

2 nm/s at 25 °C, we can calculate the etching time to be $\frac{500nm}{2nm/s}$ =250s=4 minutes 10 seconds (or make it rather 30 seconds instead of 10)

5.2.4 Cleaning

In order to avoid contamination of the machines we need to make sure all the resist has been stripped off from the wafer.

Figure 35: Resist removal

Please just use the solvent for the specific resist.

5.2.5 Injection

We now need to inject the carriers into the upper level of the n-channel area so that we can later on drive them into the crystal during the drive-in step.

Figure 36: Doping process

The n-well is implanted with a Phosphorus (P^{31}) dose of $2.5 \times 10^{12} cm^{-2}$ at an energy of 100 KeV. The n-well is then annealed.

5.2.6 Oxide for drive-in

Now we need to cover the now doped and annealed areas with an oxide layer for the drive-in phase.

Figure 37: Oxide growth

The wafer is being oxidized for 32 minutes at 1000°C in order to achieve a cover silicon layer of 250nm thickness ($\approx 2500 \text{Å}$).

5.2.7 Drive-in

In order to drive the carrier atoms deeper into the crystalline structure the wafer needs to be driven in after predeposition.

Figure 38: Drive-in process

In this step the wafer is driven-in for 96 minutes at 1150°C in an inert ambient.

5.2.8 Oxide mask removal

We want to remove the silicon mask from the wafer so that the n-well becomes accessible for the further process steps but we don't want to etch "way too much" of the trench material.

Figure 39: Oxide removal

Since the silicon dioxide layer is 750nm (500nm+250nm) thick and we wanna reach the silicon below we can use wet etching as described in the chemistry chapter. Using BHF (6:1) (Equation 3.1) we can etch with a speed of approximately 2 nm/s at 25 °C. We can calculate the etching time to be $\frac{750nm}{2nm/s}$ =375s=6 Minutes and 15 Seconds.

Etching away a "little bit too much" of the oxide isn't that bad, because the oxide within the trenches will be "filled up" again during the later steps.

5.3 P-well

In order to build CMOS on the same substrate, an P-well is required for building the complementary P-channel transistor for a n-p-channel logic circuitry as shown above in the example section. The cross section as well as the top view of the targeted geometry are shown in Figure 30

Figure 40: P-well target geometry

The P-well will serve us as an island of p-doped substrate within the undoped basis substrate.

The dopant dose will be: $2.5 \times 10^{12} cm^{-2}$

The surface concentration of the n-well ($\approx 1 \times 10^{16} cm^{-3}$) is determined primarily by the need to maintain a sufficiently high surface concentration to prevent field inversion of the p-nwell.

The depth of the n-well ($\approx 2\mu m$) is then determined by the need to fulfill the condition from subsection 2.4

$$x_e = 2 \cdot \sqrt{D_e \cdot t_e} \gg 2 \cdot \sqrt{D_v \cdot t_v} = x_v \tag{60}$$

Figure 41: P-Well layout

In Figure 41 the layout of the P-well region on top of the active area region can be seen. You should make the active area always a little bit bigger than the P-well area in order to avoid hitting parts of the trench oxide with your dopant.

5.3.1 Mask dioxide layer

In order to selectively inject charge carrying atoms into the crystalline structure a protective dioxide (SiO_2) layer needs to be grown on top of a p-type substrate.

Figure 42: Dioxide layer growth

The industrial best practice is a layer of around $(500 \text{nm} \approx 5000 \text{Å})$ thickness or more. For this purpose the wafer is being oxidized for at least 90 minutes at 1000°C using wet oxidation which results in a dioxide layer at least $500 \text{nm} (\approx 5000 \text{Å})$ in thickness.

5.3.2 Patterning

The resist is being deposited using spin coating and then baked depending on the baking time for the specific resist. The layout for being exposed onto the resist is being extracted from the "nwell" layer within the GDS2 file.

Figure 43: Cross/top view of P-well layout on resist

The thickness of the resist layer and the baking duration will variate depending on the specific equipment for which this process will be implemented with.

5.3.3 Etching

We now need to open a window in the dioxide layer, through which we will inject carrier atoms into the silicon crystal structure.

Figure 44: Cross/top view of P-well oxide window

Since the silicon dioxide layer is 500nm thick and we wanna reach the silicon below we can use wet etching as described in the chemistry chapter. Using BHF (6:1) (Equation 3.1) we can etch with a speed of approximately

2 nm/s at 25 °C, we can calculate the etching time to be $\frac{500nm}{2nm/s}$ =250s=4 minutes 10 seconds (or make it rather 30 seconds instead of 10)

5.3.4 Cleaning

In order to avoid contamination of the machines we need to make sure all the resist has been stripped off from the wafer.

Figure 45: Resist removal

Please just use the solvent for the specific resist.

5.3.5 Injection

We now need to inject the carriers into the upper level of the n-channel area so that we can later on drive them into the crystal during the drive-in step.

Figure 46: Doping process

The P-well is implanted with a Phosphorus (P^{31}) dose of $2.5 \times 10^{12} cm^{-2}$ at an energy of 100 KeV. The P-well is then annealed.

5.3.6 Oxide for drive-in

Now we need to cover the now doped and annealed areas with an oxide layer for the drive-in phase.

Figure 47: Oxide growth

The wafer is being oxidized for 32 minutes at 1000°C in order to achieve a cover silicon layer of 250nm thickness ($\approx 2500 \text{Å}$).

5.3.7 Drive-in

In order to drive the carrier atoms deeper into the crystalline structure the wafer needs to be driven in after predeposition.

Figure 48: Drive-in process

In this step the wafer is driven-in for 96 minutes at 1150°C in an inert ambient.

5.3.8 Oxide mask removal

We want to remove the silicon mask from the wafer so that the P-well becomes accessible for the further process steps but we don't want to etch "way too much" of the trench material.

Figure 49: Oxide removal

Since the silicon dioxide layer is 750nm (500nm+250nm) thick and we wanna reach the silicon below we can use wet etching as described in the chemistry chapter. Using BHF (6:1) (Equation 3.1) we can etch with a speed of approximately 2 nm/s at 25 °C. We can calculate the etching time to be $\frac{750nm}{2nm/s}$ =375s=6 Minutes and 15 Seconds.

Etching away a "little bit too much" of the oxide isn't that bad, because the oxide within the trenches will be "filled up" again during the later steps.

5.4 n+ Implant

For the bulk of the PMOS transistors and for the source and drain of the NMOS transistors highly doped n+ areas are required. In this step we're going to build these.

Figure 50: N+ implant geometry target

Figure 51: N+ layout

5.4.1 Mask dioxide layer

Figure 52: Oxide layer

5.4.2 Pattering

Figure 53: N+ region resist mask

5.4.3 Etching

Figure 54: N+ region opened

5.4.4 Cleaning

Figure 55: Resist removal

5.4.5 Injection

Figure 56: N+ injection process

5.4.6 Oxide removal

Figure 57: Oxide removal

5.5 p+ Implant

For the bulk of the NMOS transistors and for the source and drain of the PMOS transistors highly doped p+ areas are required. In this step we're going to build these.

Figure 58: P+ implant geometry target

Figure 59: P+ layout

5.5.1 Mask dioxide layer

Figure 60: Oxide layer

5.5.2 Pattering

Figure 61: P+ region resist mask

5.5.3 Etching

Figure 62: P+ region opened

5.5.4 Cleaning

Figure 63: Resist removal

5.5.5 Injection

Figure 64: P+ injection process

5.5.6 Oxide removal

Figure 65: Oxide removal

5.6 Gate

Figure 66: Aluminum gate contacts with gate oxide

Figure 67: Gate layout

5.7 First vias

Figure 68: First via layout

5.8 First metal layer

Figure 69: First metal layout

5.9 Additional vias

Figure 70: Additional via layout

5.10 Additional metal layer

Figure 71: Additional metal layout