CH NG 1:

Các Mô hình Xác su t trong K thu t i n và K thu t Máy tính

Ngày nay các k s thi t k th ng ph i xây d ng nh ng h th ng làm vi c trong các môi tr ng "h n lo n" (chaotic environment):

- H th ng máy tính l n ph i tho mãn nh ng yêu c u khác nhau thay i b t th ng c a c ng ng ng i mà h th ng ó ph c v.
- M ng truy n thông ph i luôn luôn s n sàng i phó v i nh ng yêu c u b t th ng, hi m g p c a khách hàng v "các kênh truy n tin (information pipeline)" i v i âm thanh và d li u.
- Các h th ng truy n thông ph i cung c p d ch v liên l c thông su t không gián o n và không g p l i trên các kênh khó tránh kh i nhi u.
- Các h th ng nh n d ng ti ng nói ph i gi i mã c ti ng nói t vào v i tin c y cao.

Các mô hình xác su t là m t trong nh ng công c cho phép k s thi t k hi u c hi n t ng h n n, khó xác nh quy lu t nh m xây d ng thành công các h th ng ch t ch , áng tin c y và có hi u qu v m t kinh t . Quy n sách này là ph n m u vào lý thuy t c s c a mô hình xác su t c ng nh các k thu t c b n c s d ng trong vi c phát tri n nh ng mô hình nh v y.

Ch ng này gi i thi u các mô hình xác su t và cho th y s khác bi t gi a chúng v i các mô hình t t nh — lo i mô hình bao trùm trong k thu t. Chúng tôi c p n nh ng tính ch t quan tr ng nh t c a các khái ni m xác su t c phát tri n, và vô vàn các ví d trong k thu t i n và k thu t máy tính, nh ng l nh v c mà các mô hình xác su t óng vai trò ch o, c ng c trình bày. Ph n 1.6 tóm t t toàn b cu n sách.

1.1 MÔ HÌNH TOÁN H C NH LÀ CÔNG C TRONG PHÂN TÍCH VÀ THI T K

Vi c thi t k ho c s a i b t c m t h th ng ph c t p nào u òi h i vi c ch n l a t nhi u ph ng án thay th kh thi. Các l a ch n a ra u d a trên các tiêu chí nh nh là chi phí, tin c y và vi c trì n khai. Nh ng phân tích nh l ng các tiêu chí trên r t ít khi c ti n hành thông qua ki m nghi m trong th c ti n ho c th nghi m trên các mô hình l a ch n. Trái l i, nh ng quy t nh l i c a ra c n c trên nh ng c l ng thu c nh s d ng các mô hình c a các ph ng án l a ch n.

Mô hình (model) là bi u di n g n úng, t ng i chính xác c a m t hi n t ng v t lý. Mô hình c g ng mô ph ng nh ng thu c tính quan sát c nh s d ng t p h p các lu t mô t n gi n và d hi u. Nh ng lu t ó c s d ng d oán k t qu các thí nghi m liên quan n các hi n t ng v t lý cho tr c. M t *mô hình h u d ng* (*useful* model) mô t t t c các m t liên quan c a hi n t ng xem xét. Do v y, nh ng mô hình ó có th c s d ng thay th các thí nghi m nh m tr l i nh ng câu h i liên quan t i thí nghi m xem xét. Vì th các mô hình cho phép k s tránh nh ng chi phí cho thí nghi m, t c là ti t ki m lao ng, trang thi t b, và th i gian.

Mô hình toán h c (mathematical models) c s d ng khi hi n t ng quan sát c có nh ng i l ng thu c tính là o c. M t mô hình toán h c là t p h p các gi nh v ho t ng c a h th ng ho c quá trình v t lý. Các gi nh ó n m trong m u các quan h toán h c ch a tham s quan tr ng c a h th ng. Các i u ki n mà thí nghi m òi h i t h th ng c ti n hành xác nh các giá tr cho tr c trong các quan h toán h c và vi c gi i quy t các m i quan h ó cho phép ta d oán các phép o mà s thu c n u thí nghi m c ti n hành.

Các mô hình toán h c c các k s s d ng m t cách ph bi n trong các h th ng ch d n thi t k và các quy t nh s i. Tr c giác và các kinh nghi m th c t, ph ng pháp th c nghi m (rules of thumb) không ph i bao gi c ng áng tin c y trong nh ng d oán vi c s d ng nh ng h th ng ph c t p và m i l c ng nh trong vi c th nghi m là không th trong giai o n u c a thi t k h th ng. H n n a, chi phí cho nh ng th nghi m t th ng hi n hành th ng cho th y là không th ch p nh n c. Tính có giá tr c a mô hình t ng x ng h p c a các thành ph n h th ng ph c t p k t h p v i nh ng tri th c v t ng tác gi a chúng cho phép các khoa h c gia và các k s phát tri n toàn b mô hình toán h c cho h th ng. Do ó có th a ra các câu tr l i cho vi c s d ng h th ng ph c t p m t cách nhanh chóng và không t . Th c v y, các ch ng trình tìm l i gi i cho các mô hình toán h c t o n n t ng cho các phân tích thi t k h th ng s d ng máy tính.

tr nên h u d ng, m t mô hình ph i tho mãn các i u ki n th c ti n c a tr ng h p quan sát. T ó quá trình phát tri n và ki m nh mô hình nh t nh ph i bao hàm chu i các th nghi m và s a i mô hình bi u di n trên hình 1.1. M i thí nghi m xem xét nh ng khía c nh th c s c a hi n t ng qua nghiên c u và òi h i nh ng quan sát và o c ph i c ti n hành trong

nh ng i u ki n xác nh. Mô hình c s d ng d báo h qu c a thí c so sánh v i nh ng m u quan sát thu nghi m và nh ng d oán ó khi ti n hành th nghi m trong th c ti n. N u nh phát sinh s sai khác nghiêm tr ng, mô hình csa i làm rõ hi n t ng ó. Quá trình mô hình hoá kéo dài cho n khi nhà nghiên c u th y tho mãn khi nh ng ph ng án gi i quy t t t c tr ng h p c a hi n t ng u có th c d oán v i xác mong mu n. C n ph i nh n m nh r ng quy t khi nào cho d ng quá trình mô ph ng ph thu c vào các m c ích nh t nh c a nhà nghiên c u. Do ó, m t mô hình t ng x ng v i m t l nh v c này có th c ch ng minh là hoàn toàn không thích h p v i trong các l nh v c khác.

HÌNH 1.1: Quá trình làm m u

Nh ng d oán c a mô hình toán h c có th c coi nh gi thuy t cho c ki m nh qua i chi u v i nh ng o c trong th c nghi m. n khi nó Trong thi t k h th ng, tr ng h p sau có th coi là d n vào ngõ c t: không th ki m nh mô hình b ng th c nghi m c vì h th ng ó trong th c t không t n t i. Các mô ph ng trên máy tính óng vai trò quan tr ng trong a ra nh ng ph ng ti n thay th d tr ng h p này nh c a h th ng và do ó các ph ng ti n xác minh nh ng d báo ó d ng t các mô hình toán h c. M t mô ph ng b ng máy tính bao g m ch ng trình mô ph ng ho c b t ch c ho t ng c a h th ng. K t h p ch t ch v i h th ng là nh ng h ng d n cho phép o các tham s ho t ng liên quan. M t cách t ng quát, các mô hình trên máy có kh n ng bi u di n các h th ng ó chi ti th n là các mô hình toán h c. Tuy v y chúng t ra kém linh ho th n và th ng xuyên òi h i nhi u th i gian tính toán h n là các mô hình toán h c.

Trong hai ph n ti p sau ây chúng ta s c p n hai d ng c b n c a mô hình toán h c: mô hình quy t nh và mô hình xác su t.

1.2 MÔ HÌNH QUY T NH

Trong mô hình quy t nh các i u ki n mà trong ó thí nghi m c ti n hành xác nh chính xác k t qu c a thí nghi m. Trong mô hình quy t nh toán h c, nghi m c a h các ph ng trình toán h c xác nh rõ k t qu chính xác c a thí nghi m. Lý thuy t m ch là ví d v mô hình quy t nh toán h c.

Lý thuy t m ch mô ph ng s liên k t trong s c a các thi t b i n t thông qua b ng m ch lít ng ch a các thành ph nr ir c c i m v th hi u và dòng lí t ng. Lý thuy t m ch gi nh r ng t ng tác gi a các thành ph n lí t ng ó hoàn toàn tuân theo các nh lu t v th hi u và dòng i n c a Kirchhoff. L v ví d nh lu t Ohm phát bi u r ng quan h c thù gi a hi u in the và dòng in ca in trelà I = V/R. Hi u in the và dòng in trong m t m ch i n b t k ch a ngu n và các i n tr u có th xác nh b ng cách gi i h các ph ng trình tuy n tính thu c nh áp d ng các nh lu t Kirchhoff và Ohm.

N u thí nghi m òi h i ol ng trên t p các hi u i n th l p l i m t s l n trong cùng i u ki n. Lý thuy t m ch d báo r ng các k t qu thu c luôn không i. Trong thí nghi m s có s thay i v k t qu o c do sai s ol ng và các y u t không ki m soát c.

1.3 MÔ HÌNH XÁC SU T

Nhi u h th ng xem xét bao g m các hi n t ng v i các bi u hi n thay i m t các ng u nhiên và không l ng tr c c. Chúng ta nh ngh a *thí nghi m ng u nhiên* là thí nghi m trong ó k t qu bi n i theo cách không th d báo c khi thí nghi m ó c l p l i trong nh ng i u ki n h t tr c. Các mô hình quy t nh không tho áng v i các thí nghi m ng u nhiên do chúng d

báo m t k t qu không i cho m i l n l p thí nghi m. Trong ph n này chúng tôi gi i thi u các mô hình xác su t ã c phát tri n cho các thí nghi m ng u nhiên

Nh là m t ví d v thí nghi m ng u nhiên, gi s r ng qu bóng c ch n t m t cái bình ch a ba qu bóng gi ng nhau c ánh s 0, 1 và 2. Cái bình ban u c 1 c t o s ng u nhiên cho v trí c a các viên bi và sau ó ch n m t viên. S c a viên bi c ghi 1 i và tr 1 i viên bi vào bình. K t qu c a thí nghi m là s trong t p $S = \{0, 1, 2\}$. Chúng ta g i t p S c a t t c các k t qu là **không gian m u**. Hình 1.2 th hi n k t qu c a 100 1 n 1 p (phép th) c a ch ng trình máy tính mô ph ng thí nghi m nh t bi. Hoàn toàn hi n nhiên r ng k t qu k t qu c a thí nghi m này không th tiên oán m t cách duy nh t m t cách chính xác c.

HÌNH 1.2: K t qu th nghi m URN

Tính ng xác su t

tr nên h u d ng, m t mô hình ph i cho phép chúng ta a ra nh ng d oán v ho t ng trong t ng lai c a m t h th ng, và cho tr nên d báo c, m t hi n t ng ph i th hi n tính u n trong ho t ng c a nó. Nhi u mô hình xác su t trong k thu t d a trên th c t là trung bình thu c trong chu i dài các phép l p (phép th) c a thí nghi m ng u nhiên sinh ra m t giá tr m t cách nh t quán. Tính ch t ó c g i là *tính ng xác su t*.

$$f_k(n) = \frac{N_k(n)}{n} \tag{1.1}$$

Trên c s c a tính ng xác su t, chúng ta hi u r ng $f_k(n)$ bi n i càng ít h n quanh m t giá tr h ng khi n càng t ng, có ngh a là

$$\lim_{n \to \infty} f_k(n) = p_k \tag{1.2}$$

HÌNH 1.3: K t qu c a th nghi m URN

H ng s p_k c g i là $x\acute{a}c$ su t c a k t qu k. Ph ng trình (1.2) kh ng nh r ng xác su t c a k t qu là t l c a s l n xu t hi n trong chu i dài c a các phép th . Trong xuyên su t cu n sách chúng ta s th y r ng ph ng trình (1.2) ã m ra con ng i t o c các i l ng v t lý cho n các mô hình xác su t c c p trong cu n sách. Hình 1.3 và 1.4 cho th y các t n s t ng i c a ba k t qu trong thí nghi m nh t bi nói trên khi s phép th n t ng lên. D th y r ng t t c các t n s t ng i u h i t v 1/3. i u ó không mâu thu n v i "linh c m" c a chúng ta là c ba k t qu là ng xác su t.

Gi s r ng chúng ta thay th thí nghi m nh t bi nói trên b ng cách cho thêm viên bi th t gi ng chúng c ánh s 0. Xác su t c a k t qu 0 bây gi là 2/4 b i vì hai trong s b n viên bi trong bình c ánh s 0. Xác su t c a k t qu 1 và 2 u gi m xu ng ch còn 1/4. i u này b c l tính ch t c b n c a các mô hình xác su t, ó là: Các i u ki n mà trong ó m t thí nghi m ng u nhiên c ti n hành xác nh xác su t c a các k t qu c a thí nghi m.

Các tính ch t c a t n s t ng i

Bây gi chúng tôi s gi i thi u vài tính ch t c a t n s t ng i. Gi s r ng m t thí nghi m có K k t qu kh d, có ngh a là $S = \{1, 2, ..., K\}$. Do s l n xu t hi n c a b t k k t qu nào trong n phép th u là s n m gi a 0 và n, chúng ta có

$$0 \le N_k(n) \le n$$
 v i k = 1, 2,..., K

HÌNH 1.4: K t qu c a th nghi m URN

và do ó khi chia các ph ng trình trên cho n, ta phát hi n ra r ng các t n s t ng i u là s n m gi a 0 và 1

$$0 \le f_k(n) \le 1$$
 v i k = 1, 2,..., K (1.3)

T ng c as cácl n xu thi n c at t c k t qu kh d ph i làn:

$$\sum_{k=1}^{K} N_k(n) = 1$$

N u chúng ta chia hai v c a ph ng trình trên cho n, chúng ta th y r ng t ng c a các t n s t ng i b ng 1:

$$\sum_{k=1}^{K} f_k(n) = 1 \tag{1.4}$$

ôi khi ta quan tâm n s xu t hi n c a các s ki n liên quan n các k t qu c a m t thí nghi m. Ví d xét s ki n "xu t hi n m t viên bi ánh s ch n" trong thí nghi m nói trên. T n s t ng i c a s ki n ó s là bao nhiêu? S ki n s xu t hi n h khi s c a viên bi là 0 ho c 2. S l n thí nghi m

trong ók t
 qu là s ch n do ós là $N_E(n) = N_0(n) + N_2(n)$. T n s t ng ic as ki n ó vì v y là:

$$f_E(n) = \frac{N_E(n)}{n} = \frac{N_0(n) + N_2(n)}{n} = f_0(n) + f_2(n)$$

Ví d ó cho th y r ng t n s t ng i c a s ki n là t ng các t n s t ng i c a các k t qu liên quan. M t cách t ng quát h n, t C là s ki n "A ho c B xu t hi n", trong ó A và B là hai s ki n không th xu t hi n ng th i. Do ó s l n s ki n C xu t hi n là $N_C(n) = N_A(n) + N_B(n)$ do ó

$$f_C(n) = f_A(n) + f_B(n)$$
 (1.5)

Các ph ng trình (1.3), (1.4) và (1.5) là ba tính ch t c b n c a t n s t ng i mà t ó ta s thu c nhi u k t qu h u ích.

Nghiên c u lý thuy t xác su t thông qua các tiên

Ph ng trình (1.2) a ra gi thuy t là chúng ta nh ngh a xác su t c a s ki n thông qua t n s t ng i kéo dài theo th i gian c a nó. Ta v p ph i khi s d ng nh ngh a ó v xác su t v i m c ích phát tri n lý thuy t toán h c v xác su t. Tr c tiên là không rõ là khi nào và theo ngh a nào v m t toán h c gi i h n trong ph ng trình (1.2) t n t i. Th hai, chúng ta không bao gi có th ti nhành m t thí nghi m v i vô s phép th, chính vì v y chúng ta không bao gi có th bi t c các xác su t p_k m t cách chính xác. Cu i cùng, vi c s d ng t n s t ng i nh ngh a xác su t s làm h ng kh n ng ng d ng c a lý thuy t xác su t trong các tr ng h p thí nghi m c 1 p 1 i. Do ó nó làm cho ý ngh a th c ti n c a vi c phát tri n lý thuy t toán h c v xác su t không liên quan gì n b t c m t ng d ng cá bi t nào ho c b t c m t ý ni m gì v nh ng i u xác su t hàm ý. M t khác chúng tôi nh n m nh r ng m t lý thuy t chính xác ph i cho phép chúng ta s d ng "linh c m" và làm sáng t xác su t nh là t n s t ng

cho nh t quán v i l i gi i thích cho t n s t ng i, b t k m t nh ngh a nào v "xác su t c a m t s ki n" ph i tho mãn các tính ch t trong các ph ng trình (1.3) cho n (1.5). Lý thuy t xác su t hi n ibt uvivic xác nh rõ vi c gán xác su t ph i tho mãn các xây d ng t p các tiên nh r ng: (1) cho tr c m t thí nghi m ng u tính ch t ó. Lý thuy t ó gi nhiên và S là t p c a các k t qu c ng c ch rõ; (2) 1 p các t p con c a S, c g i là các s ki n, ph i c xác nh; (3) m i s ki n A c g n v i m t s P[A] sao cho các tiên sau c tho mãn:

- 1.0 P[a] 1.
- 2. P[S] = 1.
- 3. N u A và B là các s ki n xu t hi n không ng th i thì P[A ho c B] = P[A] + P[B].

S t ng ng gi a ba tiên v i các tính ch t c a t n s t ng i c nêu trong các ph ng trình (1.3) n (1.5) là hoàn toàn d th y. Ba tiên này d n n nhi u h qu có giá tr và r t m nh. Th c v y, chúng ta s s d ng toàn b ph n còn l i c a cu n sách cho vi c phát tri n nhi u trong s nh ng h qu ó.

Chú ý r ng lý thuy t xác su t không t g n nó v i cách thu c các xác su t ho c các xác su t ó có ngh a gì. B t k vi c gán xác su t v i các s ki n tho mãn các tiên trên u tho áng. Vi c gán còn ph thu c vào ng i áp d ng lý thuy t, ng i thi t k mô hình, xác nh vi c gán xác su t ph i làm nh th nào và vi c làm sáng t xác su t u có ngh a trong b t k m t ng d ng nào.

Thi tk mô hình xác su t

Chúng ta hãy cân nh c làm sao xu t phát t các bài toán th c ti n hàng ngày có liên quan n s ng u nhiên n mô hình xác su t cho bài toán ó. Lý thuy t òi h i chúng ta ph i xác nh rõ các thành ph n c a các tiên trên. i u này òi h i:

- (1) ph i nh ngh a thí nghi m ng u nhiên v n có trong ng d ng
- (2) ch rõt pSc a các k t qu có th và các s ki n quan tâm
- (3) ch rõ vi c gán xác su t mà t ó các xác su t c a t t c các s ki n xem xét u có th tính toán trên máy c. i u thách th c là ph i phát tri n m t mô hình d nh t có th c có th gi i thích c t t c các khía c nh liên quan c a v n trong hi n th c.

Nh là m t ví d, gi nh r ng chúng ta th nghi m v i cu c trò xác nh m t ng i ang nói hay im l ng. Chúng ta chuy n qua i n tho i bi trng v trung bình m tng is d ng in tho i bình th ng ch dùng 1/3 nói; toàn b ph n th i gian còn l i anh ta ho c là nghe th i gian cu c g i ng i còn l i ho c ng ng gi a các t và o n câu. Chúng ta có th mô ph ng tr ng h p này nh là m t thí nghi m nh t bi trong ó chúng ta nh t bi t m t bình ch a hai bi tr ng (im l ng) và m t bi en (ang nói). Chúng ta ang ti n n gi n hoá r t l n khâu này: không ph i ng i dùng i n tho i nào c ng nh nhau, không ngôn ng nào c ng c ng có ho t ng im l ng-nói nh nhau, v.v... Tính có ích và s c m nh c a vi c n gi n hoá này tr nên rõ ràng khi chúng ta b t u t câu h i mà s c trakhithitk h th ng i lo i nh: Xác su t c a s ki n h n 24 ng i dùng i n tho i trong s 48 ng i dùng c l p cùng nói trong cùng m t th i i m là bao nhiều? Câu h i này ng v i: Xác su t c a s ki n h n 24 viên bi tr ng c ch n ra trong 48 l n l p l i thí nghi m nh t bi m t cách c l p là bao nhiêu? Tr c khi k t thúc ch ng 2 b n c s có th tr l i câu h i sau và toàn b các bài toán hi n th c có th quy v nó!

1.4 VÍ D C TH : H TH NG TRUY N GÓI ÂM THANH

Trong ph n u c a ch ng này, chúng tôi ã kh ng nh r ng mô hình xác su t cho ng i thi t k công c xây d ng các h th ng m t cách thành công mà có tác d ng trong môi tr ng ng u nhiên, nh ng nó tuy th mà ph i hi u qu , áng tin c y, và hi u qu v kinh t . Trong ph n này chúng tôi gi i thi u m t ví d c th v m t trong nh ng h th ng nh v y. Vi c gi i thi u ó có m c ích là ánh th c t ng t ng c a b n c. Nhi u k t qu thu c các b c có th xu t hi n m t cách không chính xác gi s c làm chính xác v sau trong cu n sách.

Gi nh r ng m t h th ng truy n tin ph i t i 48 cu c trò chuy n t thành ph A n thành ph B s d ng các "gói" thông tin âm thanh. L i c a m i ng i trò chuy n c chuy n thành các hi u i n th có d ng hình sóng mà tr c tiên s c s hoá (có ngh a là chuy n thành dãy các s nh phân) và sau ó s c gom l i trong các gói thông tin t ng ng v i các o n 10 ms c a câu chuy n. a ch ngu n và ích c thêm vào m i gói tin tr c khi nó c chuy n (Xem hình 1.5).

HÌNH 1.5

Thi t k n gi n nh t cho h th ng truy n tin này có th t i 48 gói tin trong m i 10 ms theo m i h ng. S thi t k nh v y là không hi u qu , tuy v y do ta bi t r ng v trung bình có t i kho ng 2/3 c a t t c các gói ch a "im l ng" và do ó không có thông tin gì v l i nói. Nói cách khác, v trung bình trong s 48 ng i trò chuy n ch có 48/3 = 16 ng i ang nói trong m i gói v i chu k 10 ms. T ó chúng ta xem xét h th ng khác mà ch t i M < 48 gói tin trong 10 ms.

C 10 ms, h th ng m i s xác nh nh ng ng i trò chuy n nào ã "làm ra" các gói tin v i l i nói. G i k t qu c a thí nghi m ng u nhiên này là A, s các gói tin có l i nói c sinh trong o n 10 ms. i l ng A nh n các

giá tr t 0 (t t c các ng i trò chuy n u im l ng) n 48 (t t c u nói). N u A M, thì t t c các gói u c t i. Tuy v y n u A > M thì h th ng s không th t i t t c các gói ch a âm thanh v y A - M gói tin có âm s c ch n m t cách ng u nhiên và b b t. Vi c lo i b các gói tin có âm s gây ra vi c m t l i, vì v y chúng ta s mu n gi l i ph n nào ó c a các gói tin b lo i n m c mà ng i trò chuy n s không th y khó ch u.

Tr c tiên xác nh xác su t t ng i c a A. Gi nh r ng thí nghi m nói trên c l p n l n. t A(j) là k t qu c a l n th th j. t $N_k(n)$ là s các phép th trong ó s các gói tin là k. T n s t ng i c a k t qu k trong n phép th u tiên là $f_k(n) = N_k(n) \, / \, n$ trong ó chúng gi nh r ng nó h i t v p_k :

$$\lim_{n \to \infty} f_k(n) = p_k \qquad 0 \quad k \quad 48 \tag{1.6}$$

Ti p theo xét t c t o ra các gói âm thanh. S trung bình c a các gói âm thanh c t o ra m i kho ng th i gian 10 ms c cho b i trung bình m u c a s gói âm thanh:

$$\langle A \rangle_n = \frac{1}{n} \sum_{j=1}^n A(j) \tag{1.7}$$

$$= \frac{1}{2} \sum_{k=0}^{48} k N_k(n) \tag{1.8}$$

Bi u th c u c ng gói các s âm thanh c t o ra trong n phép th u tiên theo th t quan sát c. Bi u th c th 2 tính xem co bao nhiêu quan sát có k gói âm thanh theo các giá tr có th c a k, và l y t ng c a $k^{(1)}$. Khi n ti n ra vô cùng. T s $N_k(n)/n$ trong bi u th c th 2 ti n t i p_k . Nh v y s trung bình các gói âm thanh c t o ra m i 10-ms ti n t i:

$$\langle A \rangle_n \to \sum_{k=0}^{48} k p_k \triangleq E[A]$$
 (1.9)

Bi u th c v ph i c nh ngh a là giá tr k v ng c a A trong ph n 3.6. Chú ý r ng E[A] hoàn toàn c xác nh b i các xác su t p_k . H th c (1.9) phát bi u r ng giá tr gi i h n c a s trung bình c a các gói âm thanh c t o ra trong m i chu k 10 - ms b ng E[A].

T s c a s âm thanh b lo i b i h th ng trong n phép th là:

- (1) Gi s b n l y t túi c a b n nh sau; 1 ng 25 cent, 1 ng 10 cent, 1 ng 25 cent, 1 ng 5 cent. H th c (1.7) nói r ng t ng s c a b n là: 25 + 10 + 25 + 5 = 65 cent. H th c (1.8) nói r ng t ng s c a là: (1) 5 + (1/10 + (2/25) = 65 cent.
- S các gói âm thanh b lo i.....

$$\frac{\sum_{\hat{k}=N+1}^{48}(k-M)N_{\hat{k}}(n)/n}{\sum_{\hat{k}=0}^{48}kN_{\hat{k}}(n)/n} \rightarrow \frac{\sum_{\hat{k}=M+1}^{48}(k-M)p_{\hat{k}}}{\sum_{\hat{k}=0}^{48}kp_{\hat{k}}} (1.10)$$

Bi u th c v ph i là t s gi i h n c a s các gói âm thanh b lo i. Nh v y chúng ta ã ch ra r ng t t c các o mà chúng ta quan tâm trong bài toán này có th tính c n u ta bi t các xác su t p_k c a s gói âm thanh c t o ra trong m i kho ng th i gian 10-ms.

Nói chung c n ph i th c hi n thí nghi m m t s 1 n tính t n su t t ng i và dùng các t n su t này c 1 ng các xác su t p_k . Tuy nhiên trong bài t p th c t này, nó ch ng t r ng i u này là không c n thi t do lý thuy t xác su t cho phép chúng ta tìm c xác su t p_k d a vào xác su t c a thí nghi m n. Trong ch ng sau chúng ta nh n th y r ng p_k c cho b i phân ph i nh th c (công th c 2.32 ch ng 2).

Nh v y chúng ta nh n c bi u di n chính xác cho t t c các o mà ta quan tâm trong h th ng truy n t i âm thanh này.

Hình 1.6 ch ra t s gi i h n c a các gói âm thanh b lo i trong h có 48-b phát âm thanh v i chính xác cao. Chúng ta có th nh n th yr ng các t s này gi m khi M t ng. N u chúng ta gi thi t r ng các khách hàng s cho phép m t 1% gói âm thanh, khi ó hình 1.6 ch ra r ng giá tr M c n thi t là 24. Nh v y chúng ta có th m b o vi c truy n t i âm thanh cho t t c 48-b phát âm ch v i 1 n a t c c n thi t mà v n t x p x t t. N u chúng ta th c hi n v i các cu c i n àm ng dài t , h th ng m i có th a n m t s ti t ki m có ý ngh a.

Chúng ta tóm l c nh ng i u chúng ta ã trình bày trong ph n này. Chúng ta ã a ra m t ví d mà ó s ho t ng c a h th ng di n ra m t cách ng u nhiên, và ó các o c phát bi u theo thu t ng các thành ph n gi i h n. Chúng ta c ng ch ra r ng các o gi i h n này d n t i các bi u th c ch a các xác su t c a các k t c c khác nhau. Cu i cùng chúng ta ã ch ra r ng trong m t s tr ng h p lý thuy t xác su t cho phép tìm ra các xác su t này. Khi ó chúng ta có th d oán c các trung bình gi i h n c a các i l ng khác nhau mà ta quan tâm và ti n hành vi c thi t k h th ng.

HÌNH 1.6

T 1 c a các gói âm thanh b lo i t 48 – máy phát âm v i t c truy n M, v i M = 24, cho phép t 1 m t âm là1%.

1.5 CÁC VÍ D KHÁC

Trong ph n này chúng ta s trình bày thêm các ví d t k thu t i n và k thu t máy tính, ó các mô hình xác su t cs d ng thi t k các h th ng làm vi c trong m i tr ng h p ng u nhiên. ay chúng ta mu n ch ra các xác su t và các trung bình gi i h n ti n n m t cách t o trong các h th ng. Tuy nhiên chúng ta nhiên nh th nào t i các c ng l u ý r ng, cu n sách này ch trình bày các khái ni m c s c a lý thuy t xác su t mà không i trình bày chi ti t các ng d ng. V i các b n c quan tâm, các tài li u tham kh o cho vi c c sâu h n c gi i thi u ph n cu i các ch ng.

Truy n thông trên kênh không tin c y

Nhi u h th ng truy n thông h at ng theo cách sau. M i T giây, máy phát nh n c tín hi u vào nh phân, ký hi u là 0 và 1 và truy n i tín hi u t ng ng.

Vào th i i m k t thúc T giây, máy thu s a ra quy t nh tín hi u nào ã c a vào, d a trên tín hi u mà nó nh n c. H u h t các h truy n thông là không tin c y do quy t nh c a máy thu không luôn trùng v i tín hi u vào c a ng truy n. Hình 1.7(a) mô hình hóa các h truy n thông mà ó sai sót khi truy n x y ra m t cách ng u

nhiên v i xác su t ϵ . Nh c ch ra trong hình v , tín hi u ra, khác v i tín hi u vào v i xác su t là ϵ . Nh v y ϵ là t l gi i h n c a các bit c nh n sai b i máy thu. Trong i u ki n mà ó t c sai s này là không ch p nh n c, các k thu t ki m ta sai s c gi i thi u gi m b t sai s trong thông tin nh n c.

M t ph ng pháp gi m t c sai s trong thông tin nh n c là dùng mà hi u ch nh sai s nh c ch ra hình 1.7(b). Nh m t ví d n gi n chúng ta xét mà l p, ó m i bit thông tin c truy n l p l i 3 l n:

$$0 \rightarrow 0 0 0$$

$$1 \rightarrow 111$$

N u chúng ta gi thi t r ng máy gi i mã a ra quy t nh v bit thông tin b i cách l y a s trong 3 bit u ra nh n c b i máy thu.

HÌNH 1.7(b)

H ki m tra sai s

Khi ó b gi i mã s a ra quy t nh sai n u 2 ho c 3 bit nh n c b sai. Trong ví d 2.37 chúng ta ch ng t r ng i u này x y ra v i xác su t $3 \, \epsilon^2 - 2 \, \epsilon^3$. Nh v y n u t c bit sai c a kênh không mã là 10^{-3} , khi ó t c bit sai c a mã n gi n trên là 3.10^{-6} , nh v y t c bit sai

c gi m i 3 b c. Tuy nhiên, s c i thi n này nh n c v i cái giá ph i tr là: t c truy n thông tin gi m xu ng còn 1 bit m i 3 T giây. B ng vi c nghiên c u ti p nh ng mã ph c t p h n, nó cho phép gi m t c sai s nh ng không làm gi m m nh t c truy n tin nh trong ví d n gi n này.

X lý các tín hi u ng u nhiên

K t c c c a m t thí nghi m ng u nhiên không nh t thi t là m t s n nh ng có th là m t hàm nh n giá tr nguyên c a th i gian. Ví d k t c c c a m t thí nghi m có th là i n áp t ng ng v i gi ng nói hay i u nh c. Khi ó chúng ta s quan tâm n tính ch t c a tín hi u và các phiên b n ã c x lý c a tín hi u.

Nh m t ví d c bi t, gi s chúng ta quan sát i n áp Y(t), k t qu c a t ng 2 i n áp mà ta quan tâm S(t), (tín hi u thông tin) v i i n áp không mong mu n, N(t); (tín hi u n). Ví d máy ghi âm t , tín hi u có th là i n áp t ng ng v i i u nh c và ti ng n, có th là i n áp s n có c a nó trong môi tr ng t tính. Phép o ch t l ng c a các h th ng d ng này là t l gi a tín hi u và ti ng n (SNR) c xác nh nh là t s gi a công su t trung bình c a tín hi u v i công su t trung bình c a ti ng n. Ch t l ng c a tín hi u c quan sát c c i ti n khi, SNR t ng, do khi o ti ng n, gây ra nh h ng nh h n lên tín hi u mong mu n.

Các h th ng có chung ngu n tài nguyên

Trong nhi u ng d ng, các ngu n t nh là kênh truy n thông và máy tính là i t ng ph c v vào nh ng yêu c u không n nh và ng u nhiên. Nh ng ng i dùng r i rác a ra nh ng yêu c u ph c v trong nh ng chu k ph c v ng n gi a các chu k nhàn r i dài. Nh ng yêu c u c a ng i dùng có th g p c nh ng ngu n áp ng t i m i ng i riêng l . Tuy nhiên, cách ti p c n này là c c k lãng phí do các ngu n áp ng này không c s d ng n khi khách hàng không c n. Thách th c i v i ng i thi t k là t o ra h th ng kinh t và hi u qu , mà ó yêu c u c a các khách hàng c áp ng thông qua s chia s n ng ng các ngu n tài nguyên .

Các h máy tính nhi u ng i dùng là m t ví d c a h th ng có chung ngu n tài nguyên. M t h máy tính nguyên v n có th coi nh m t ngu n tài nguyên riêng l . N u ch m t ng i dùng c phép s d ng h th ng, h luon phiên gi a chu k , máy tính nhàn r i và i l nh t ng i dùng, v i chu k máy tính làm vi c và ng i dùng ch i máy áp ng yêu c u. Trong m t ng d ng i n hình, máy tính s d ng c m t l ng l n th i gian nhàn r i.

HÌNH 1.8(a)

Tín hi u c ng ti ng n

HÌNH 1.8(b)

Tín hi u cl c c ng ti ng n

HÌNH 1.9: Mô

hình n gi n
cho m t h
máy tính
nhi u ng i dùng

kh c ph c tình tr ng này, các máy tính th ng cktn i dùng chung trong nhóm các ng i s d ng. H máy tính c thi t k i u hành s ng i dùng b ng vi c a vào m thàng i mà ó các yêu c u i c ch ra trong hình 1.9. T i m t kho ng th i gian ph c v t máy tính nh xác nh b t k, s các dùng ang trong quá trình chu n b ra các m nh l nh và ch s áp ng t h th ng.

ây, mà ta quan tâm là th i gian áp ng trung bình tr i qua k t thi i m ng i dùng a ra yêu c u m t thao tác n thi i m nh n máy tính th c hi n xong m t thao tác áp yêu c u và t c trung bình (kh n ng thông qua). Các o này có th d báo c khi dùng mô hình c th o lu n trong ph n 9.5. Hình 1.10(a) và 1.10(b) ch ra th i gian áp ng trung bình và kh n ng thông qua trung bình khi s ng i dùng trong h th ng t ng lên. K t qu nh n c úng nh mong i: Khi s ng i dùng t ng lên, th i gian mà h th ng máy tính b n s nhi u h n, và do ó máy tính s hoàn thành c nhi u công vi c h n m i giây, nh ng các công vi c c x lý c ng t ng lên cùng v i s t ng lên c a th i gian áp ang trung bình và s không hài lòng c a khách hàng c ng t ng lên.

HÌNH 1.10(b)

H s th i gian áp ng c a h nhi u ng i dùng

tine ye ah th ng

tin c y là m t khái ni m r t quan tr ng trong thi t k các h th ng hi n i. Ví d u tiên là h máy tính và các m ng tr y n thông h tr vi c chuy n kho n i n t , gi a các ngân hàng. V n quan tr ng là ch h th ng v n ti p t c làm vi c ngay c khi m t ph n h th ng b h ng. Câu h i then ch t là, thi t m t h tin c y t các thành ph n không tin c y nh th nào? Các mô hình xác su t cung c p cho chúng ta các công c tr l i câu h i này m t cách nh l ng

S ho t ng c a m th th ng yêu c u s ho t c a m t s ho c t t c các thành ph n c a nó. Ví d hình 1.11(a) ch ra m th th ng ch làm vi c khi t t c các thành ph n c a nó làm vi c; hình 1.11(b) a ra m th th ng làm vi c khi còn ít nh t m t thành ph n c a nó làm vi c. Các h th ng ph c t p h n có th nh n c nh làt h p c a hai d ng th c c b n này.

T t c chúng ta u bi t t kinh nghi m là không th d báo chính xác khi nào m t thành ph n s b h ng. Lý thuy t xác su t cho phép chúng ta tính c tin c y, c ng nh th i gian trung bình b h ng và xác su t m t thành ph n còn làm vi c sau khi ã ho t ng m t kho ng th i gian nào ó. H n n a chúng ta s nh n th y trong ch ng 2 và ch ng 3 là ... T

Xác su t cho phép chúng ta xác nh các giá tr trung bình và xác su t này c a c h th ng d a vào xác su t và giá tr trung bình c a các thành ph n c a nó. i u này cho phép chúng ta c l ng c tin c y c a h th ng, và ch n thi t k h th ng t c tin c y c n thi t.

1.6 T NG QUAN V GIÁO TRÌNH

Trong ch ng này chúng ta ã th o lu n vai trò quan tr ng c a các mô hình xác su t trong vi c thi t k các h th ng có s tham gia c a các y u t ng u nhiên. Nhi m v c a Giáo trình là gi i thi u cho sinh viên nh ng khái ni m c s c a lý thuy t xác su t, nh ng khái ni m c n thi t hi u c các mô hình xác su t trong k thu t i n và k thu t máy tính. Giáo trình không có ý nh t p trung vào các ng d ng, mà các ng d ng thì có r t nhi u, m i ng d ng òi h i th o lu n chi ti t c a riêng mình. M t khác chúng ta c gi các ví d liên quan t i các c gi ã nh h ng vi c ch n l a t nh ng l nh v c ng d ng liên quan.

M c tiêu khác c a Giáo trình là trình bày m t s k thu t c s c n thi t phát trì n các mô hình xác su t. Th o lu n ch ng này làm sáng t m t i u là các xác su t c s d ng trong m t mô hình c n ph i c xác nh thông qua th c nghi m. Các k thu t th ng kê giúp chúng ta làm vi c này, vì v y chúng ta s a vào m t s th o lu n v k thu t th ng kê c s nh ng b n ch t chúng ta c ng s c p n s có ích c a các mô hình mô ph ng b ng máy tính khi xây d ng các mô hình xác su t. H u h t các ch ng u có ph n trình bày ph ng pháp máy tính h u ích. Các ph n này c ánh d u b i d u hoa th , và có th b qua.

H n n a, sinh viên c khám phá các k thu t này. ây là m t vi c làm thú v và chúng a n m t s hi u bi t sâu s c v b n ch t c a s ng u nhiên.

Ph n còn l i c a cu n sách ct ch c nh sau:

- Ch ng 2 trình bày các khái ni m c s c a lí thuy t xác su t. Chúng ta b t u t h tiên xác su t c phát bi u ph n 1.3 và chúng ta s th o lu n tính quan tr ng c a chúng. M t s mô hình xác su t c s c gi i thi u trong ch ng 2.
- . Nói chung lí thuy t xác su t không yêu c u các k t c c c a thí nghi m ng u nhiên là m t s . Khi ó các k t c c có th là m t s v t (Ví d bóng en hay tr ng) ho c hi n t ng (ví d h máy tính làm vi c hay là không). H n n a, chúng ta th ng quan tâm n nh ng thí nghi m mà ó k t c c là các s . Khái ni m bi n ng u nhiên h ng n các thí nghi m này. Ch ng 3 và ch ng 4 th o lu n các thí nghi m mà ó các k t c c là các s riêng l ho c các véc t s m t cách t ng ng. Trong hai ch ng này chúng ta phát tri n m t s k thu t c bi t h u ích gi i các bài toán.
- . Ch ng 5 trình bày các k t qu toán h c (các nh lí gi i h n) tr l i câu h i i u gì s x y ra khi các thí nghi m c l p l p l i vô h n l n. Các k t qu c trình bày s ch ng minh tính úng n c a vi c dùng r ng rãi t n s t ng i a ra khái ni m xác su t.
- . Ch ng 6 gi i thi u khái ni m quá trình ng u nhiên, mà m t thí nghi m ng i n là thí nghi m mà ó k t c c là m t hàm c a th i gian.
- .Ch ng 7 gi i thi u m t ph công su t và ng d ng c a nó phân tích và x lí các tín hi u ng u nhiên.
- . Ch ng 8 th o lu n xích Markov, m t d ng c bi t c a quá trình ng u nhiên cho phép chúng ta mô hình hóa dãy các thí nghi m không c l p.
- . Trình bày nh p môn lí thuy t hàng i và các ng d ng khác nhau.

TÓM T T

- Các mô hình toán h c liên quan n các tham s và các bi n quan tr ng khi s d ng các quan h toán h c. Các mô hình này cho phép các nhà thi t k h th ng b ng vi c s d ng các ph ng trình khi các thí nghi m là không kh thi ho c quá t .
- . Các mô hình mô ph ng b ng máy tính là m t s l a ch n thay th khi d báo hi u su t h th ng. Chúng có th c s d ng công nh n các mô hình toán h c.
- . Trong các mô hình t t nh các i u | .

- quy t nh xác su t c a các k t c c có th . Nhi m c a các ph ng trình trong các mô hình xác su t là các xác su t c a các k t c c và các bi n c c ng nh các d ng khác nhau c a các giá tr trung bình.
- . Các xác su t và các giá tr trung bình liên quan n thí nghi m ng u nhiên có th tìm c m t cách th c nghi m b ng cách tính các t n su t và trung bình m u liên quan khi l p l i thí nghi m m t s l n l n.
- o trong nhi u h th ng ng

ki n th c hi n thí nghi m quy t nh k t c c m t cách chính xác.

Trong các mô hình xác su t các i u ki n th c hi n thí nghi m ng u nhiên

d ng th c ti n là t n su t t ng i và trung bình gi i h n. Các mô hình xác su t c s d ng thi t k các h th ng này.

DANH SÁCH CÁC THU T NG QUAN TR NG

Mô hình t t nh	Mô hình xác su t	Trung bình m u
Bi n c (s ki n)	Thí nghi m ng u nhiên	Không gian m u
Giá tr k v ng	Tn sutt ng i	S chính quy th ng kê
Xác su t		

TÀILI U THAM KH O

- M. E. Van Valkenburg, Network Anlysis, Prentice Hall, Englewood Cliffs, N. J., 1974.
- 2. L. Breiman, Probabylity and Stochastic Processes: With a View Toward Applications, Hougton Mifflin, Boston 1969.
- 3. P. L. Meyer, Introductory Probability and Statiscal Applications, Addison— Wesley, Reading, Mass., 1970.
- 4. W. B. Davenport, Probability and Random Processes: An Introduction for Applied Scientists and Engineers, McGraw–Hill, New York, 1970.
- 5. A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw–Hill, New York, 1965.
- 6. A. B. Clarke and R. L. Disney, Probability and Random processes: A. First Course with Applications, Wiley, New York, 1985.
- 7. C. W. Helstrom, Probability and Stochastic processes for

- 9. W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, 1968.
- 10. G. C. Clark and J. B. cain, Error–Correction Coding for Digital Communications, plenum Press, New York, 1981.
- 11. S. Lin and R. Costello, Error Cotrol Coding: Fundamentals and Applications, Prentice–all, Englewod Cliffs, N. J., 1983.
- 12. S. Haykin, Communication Systems, Wiley, New York, 1983.
- 13. N. Jayant and P. Noll, Digital Coding of Waveforms, Prentice–Hall, Englewod Cliffs, N. J., 1984.
- 14. A. V. Oppenheimand and R. W. Schafer, Digital Signal Processing, Prentice–Hall, Englewod Cliffs, N. J., 1975.
- 15. M.Schawrtz, Telecommunication Networks: Protocols, Modeling, and Analysis, Addison–Wesley, Reading, Mass., 1987.
- 16. D. Bertsekas and R. G. Gallager, Data, Neworks,

- Engineers, Macmillan, New York, 1984.
- 8. H. Cramer, mathematical Methods of Statistics, Princeton University Press, Princeton, N. J., 1946.
- Prentice–Hall, Englewood Cliffs, N. J., 1987.
- 17. J. F. Hayes, Modeling and Analysis of Communications Netwoorks, Plenum Press, New York, 1984.

BÀIT P

- 1. M t thí nghi m ng u nhiên là vi c ch n hai qu bóng k ti p t 1 h p ch a hai qu bóng en và m t qu bóng tr ng.
 - a. Hãy bi u di n không gian m u c a thí nghi m này.
 - b. Gi s r ng thí nghi m c thay i nh sau, qu bóng u tiên c hoàn l i vào h p ngay sau khi c l y. Khi ó không gian m u nh th nào?
 - c. T n su t c a k t c c (tr ng, tr ng) b ng bao nhiều n u s 1 n 1 p 1 i thí nghi m là 1 n trong ph n a? trong ph n b?
 - d. K t qu c a l n l y th 2 ph thu c nh th nào vào k t c c c a l n l y th nh t trong c hai thí nghi m
- 2. Hãy gi i thích các thí nghi m sau t ng ng nh th nào v i thí nghi m ng u nhiên h p?
 - a. Tung 1 ng ti n cân i.
 - b. Tung m t c p xúc x c cân i.
 - c. Lyt b bài 52 quân khác nhau.
- 3. Thí nghi m ng u nhiên có không gian m u $S = \{a, b, c\}$ và các xác su t $p_a = 1/7$, $p_b = 2/7$ và $p_c = 4/7$. Hãy mô t m t thí nghi m ng u nhiên h p có th c dùng mô ph ng thí nghi m ng u nhiên này.
- 4. V i nh ng i u ki n nào các thí nghi m sau có th c mô hình hóa b i vi c tung m t ng xu:
 - a. K t qu c a vi c ki m tra m t thi t b i n t trong m t m ch g m nhi u linh ki n
 - b. Quan tr c tín hi u ra nh phân (1 ho c 0) c t o b i m t ngu n thông tin i n t (ví d nh máy tính ho c máy fax):
- 5. Gi s A làs ki ng m nhi u k t c c c a m t thí nghi m ng u nhiên, và gi s B làs ki n "x y ra khi A không x y ra". Ch ng t r ng $f_B(n) = 1 f_A(n)$.
- 6. Gi s A, B và C là các s ki n không ng th i x y ra ôi 1 ho c b ba, và gi s D là s ki n "A ho c B ho c C x y ra". Ch ng t r ng: $f_D(n) = f_A(n) + f_B(n) + f_C(n).$
- 7. Giá tr trung bình m u c a các dãy k t c c s X(1), X(2), ..., X(n) c a dãy các thí nghi m ng u nhiên c nh ngh a b i:

$$(X)_n = \frac{1}{n} \sum_{j=1}^n X(j)$$

Ch ng t r ng trung bình m u th a mãn công th c quy n p sau:

$$\langle X \rangle_n = \langle N \rangle_{n-1} + \frac{X(n) - \langle X \rangle_{n-1}}{n} : \langle X \rangle_0 = 0.$$

8. Giá tr trung bình bình ph ng m u c a các k t c c s X(1), X(2),...,X(n) c a dãy n thí nghi m ng u nhiên c xác nh b i:

$$(X^2)_n = \frac{1}{n} \sum_{j=1}^n X^2(j)$$

- a. b n có th hy v ng gì v s m h i t c a bi n này t i m t s khi n 1 n?
- b. Hãy tìm công th c quy n p cho $(X^2)_n$ t ng t nh công th c trong bài t p 7.
- 9. Ph ng sai m u c nh ngh a nh là giá tr trung bình bình ph ng c a l ch c a m u kh i trung bình m u:

$$(V^2)_n = \frac{1}{n} \sum_{j=1}^n \{X(j) - (X)_n\}^2$$
.

Chú ý r ng $\{X\}_n$ c ng ph thu c vào các giá tr m u. Theo t p quán thay n trong m u s b i n-1 b i lý do k thu t mà chúng ta s xét ch ng 5. T gi chúng ta s s d ng nh ngh a trên.

- a. Ch ng t r ng ph ng sai m u c ng có th tính theo công th c: $(V^2)_n = (X^2)_n (X)_n^2$
- b. Ch ng t r ng ph ng sai m u th a mãn công th c truy h i sau:

$$\left(V^{2}\right)_{n} = \left(1 - \frac{1}{n}\right)V^{2}\right)_{n-1} + \frac{1}{n}\left(X(n) - \left(X\right)_{n-1}\right)^{2}, \text{ v i } \left(V^{2}\right)_{0} = 0$$

10. Các s li u sau nh n c b i vi c l y m u t m t vôn k:

$$7, 3, -9, 4, 7, -2, -8, 4, 3, 4, -5, 5, 4, 1, -6, 3, -7, 1, -9, 0.$$

- a. Hãy tìm t n su tt ng i c a hi u i n th là d ng.
- b. Hãy tìm trung bình m u và ph ng sai m u.
- c. Hãy tìm hàm phân ph i th c nghi m c xác nh theo công th c:

$$F(x) = \frac{\text{So cac ket cuc nho hon hoac bang } x}{\text{Tong so cac ket cuc}}; -\infty p \ x p \infty$$

- 11. Xét t p d li u sau v th i gian làm vi c (tính theo mi li giây) c a m t h máy tính: 14, 3, 11, 4, 12, 10, 2, 3, 7, 8, 14, 1, 5, 16, 14, 10, 2, 3, 20, 12.
 - a. Hãy tìm trung bình m u và ph ng sai m u.
 - b. Hãy tìm t n su t t ng i c a s ki n "kho ng th i gian làm vi c l n h n 10 ms".
 - c. Hãy v hàm phân ph i th c nghi m c nh ngh a nh bài toán trên.

- 12. M t ng i th có trách nhi m s a n máy trong m t c a hàng. Hãy gi i thích hình 1.9 có th c s d ng mô hình hóa s th c hi n công vi c c a ng i th nh th nào?
- 13. Gi s n thi t b c l p t theo m ng n i ti p và song song nh c ch ra trong hình 1.11. hãy gi i thích t i sao m ng song song làm vi c lâu h n m ng n i ti p.

CH NG 2:

Nh ng Khái ni m C s c a Lý thuy t Xác su t

Ch ng này trình bày nh ng khái ni m c s c a lý thuy t xác su t. Trong ph n còn l i c a cu n sách, chúng ta s phát tri n h n n a ho c trình bày k h n n a nh ng khái ni m c s c a ra ây. B n c s c chu n b t t ti p thu nh ng ph n còn l i c a cu n sách, n u có ki n th c y nh ng khái ni m c s ây sau khi c xong ch ng này.

Sau ây nh ng khái ni m c s s c trình bày. Tr ch t, lý thuy t mô t không gian m u và các bi n c c a thí tphp ã c dùng nghi m ng u nhiên. Th hai, các tiên c a xác su t ch rõ các tính cách xác su t c a các bi n c . Th ba, khái ni m xác su t có i u ki n cho phép chúng ta xác nh thông tin m t ph n v k t c c c a m t phép th ng u n xác su t c a bi n c . Xác su t có i u nhiên nh h ng nh th nào ki n c ng cho phép chúng ta a ra khái ni m c l p c a các bi n c và thí nghi m. Cu i cùng, chúng ta xét dãy các thí nghi m ng u nhiên thành b i m t dãy các thí nghi m ng u nhiên n gi n. Chúng ta c ng ch ra xác su t c a các bi n c trong các thí nghi m này có th nh th nào t các xác su t c a các thí nghi m n gi n. Ngoài ra, cu n sách c ng ch ra r ng các thí nghi m ng u nhiên ph c t p có th phân tích thành các thí nghi m n gi n.

2.1 MÔT CÁC THÍ NGHI M NG U NHIÊN

Thí nghi m ng u nhiên là thí nghi m mà ta không th nói ch c k t c c c a nó khi thí nghi m c l p i l p l i trong cùng m t i u ki n. *Thí nghi m ng u nhiên là m t cách ti n hành thí nghi m và t p h p g m m t hay nhi u phép o ho c quan tr c*.

VÍ D 2.1 *Thí nghi m E*₁: L y 1 viên bi t h p g m nh ng viên bi c ánh s t 1 n 50. Ghi s c a viên bi l i.

Thí nghi $m E_2$: L y m t viên bi t h p c ánh s t 1 n 4. Gi s r ng nh ng viên bi 1 và 2 có màu en, viên bi 3 và 4 có màu tr ng. Ghi l i s và màu c a viên bi c 1 y.

Thí nghi $m E_3$: Tung ng xu 3 1 n và ghi dãy <math>m t ng a và m t s p xu t hi n.

Thí nghi m E_4 : Tung ng xu 3 l n và ghi s l n xu t hi n m t ng a.

Thí nghi $m E_5$: m s gói âm thanh im l ng t nhóm n i n tho i trong chu k th l0.

Thí $nghi \ m \ E_6$: M t block thông tin c phát l p l i trên kênh có nhi u cho n khi m t block không sai c g i t i n i nh n. m s l n phát block thông tin c n thi t.

Thí nghi m E₇: Ch n m t s m t cách ng u nhiên gi a 0 và 1.

Thí nghi $m E_8$: o thi gian gi a hail n i n báo n t i m t trung tâm i n báo.

Thí $nghi \ m \ E_9$: o th i gian s ng c a m t chip máy tính trong m t i u ki n môi tr ng nào ó.

Thí nghi $m E_{10}$: Xác nh giá tr c a m t vôn k t i th i i m t_1 .

Thí nghi $m E_{II}$: Xác nh giá tr c a m t vôn k t i th i i m t_1 và t_2 .

Thí nghi $m E_{12}$: Ch n hai s m t cách ng u nhiên gi a 0 và 1.

Thí nghi m E_{13} : L y m t s X m t cách ng u nhiên gi a 0 và 1, sau ó 1 y 1 s Y m t cách ng u nhiên gi a 0 và X.

Thí nghi $m E_{14}$: M th th ng cl p ráp tith i i m t = 0. V i $t \ge 0$, X(t) = 1 cho n khi các thành ph n còn làm vi c, và X(t) = 0 sau khi thi t b không làm vi c.

Xác nh thí nghi m ng u nhiên c n ph i phát bi u rõ ràng, th c hi n phép o hay là quan tr c. Ví d , thí nghi m ng u nhiên có th là trên cùng m t s n ph m nh ng khác nhau các quan tr c, nh c minh h a thí nghi m E_3 và thí nghi m E_4 .

M t thí nghi m ng u nhiên có th bao g m nhi u h n m t phép o ho c quan tr c, nh là các thí nghi m E_2 , E_3 , E_{11} , E_{12} và E_{13} . M t thí nghi m th m chí bao g m t p continum các phép o nh c ch trong thí nghi m E_{14} .

Các thí nghi m E_3 , E_4 , E_5 , E_6 , E_{12} và E_{13} là ví d v các thí nghi m liên ti p mà nó c quan sát nh là dãy các thí nghi m n gi n. B n có th xác nh c các thí nghi m n gi n trong các thí nghi m này hay không? Chú ý r ng, trong thí nghi m E_{13} , thí nghi m nh th 2 ph thu c vào k t c c c a thí nghi m nh th nh t.

Không gian M u

Do các thí nghi m ng u nhiên không th g m các k t c c gi ng nhau, cho nên c n thi t ph i xác nh t p các k t c c có th . Chúng ta nh ngh a m t k t c c hay m t i m m u c a m t thí nghi m ng u nhiên nh là m t k t c c không th phân chia thành các k t c c khác. Khi chúng ta th c hi n thí nghi m ng u nhiên, thì 1 và ch 1 k t c c x y ra. Nh v y các k t c c là xung kh c nhau theo ngh a là chúng không th x y ra ng th i. Không gian m u S c a m t thí nghi m ng u nhiên c xác nh nh là t p t t c các k t c c có th .

Chúng ta s ký hi u m t k t c c c a m t thí nghi m b i ζ , ây ζ là m t ph n t hay m t i m c a S. M i l n th c hi n m t thí nghi m ng u nhiên có th coi nh là m t phép ch n ng u nhiên m t i m (k t c c) riêng l t S.

Không gian m u có th c mô t hoàn toàn b i vi c s d ng các ký hi u t p h p. Nó có th mô t b i các b ng v , các s , các kho ng c a ng th ng th c, ho c là các mi n c a m t ph ng.

VÍ D 2.2 Các không gian m u t ng ng v i các thí nghi m trong ví d 2.1 c a ra v i vi c dùng các ký hi u t p h p sau:

```
S_1 = \{1, 2, ..., 50\}
        S_2 = \{(1, b), (2, b), (3, \mathcal{W}), (4, \mathcal{W})\}
        S_3 = \{HHH, HHT, HTH, THH, TTH, THT, HTT, TTT\}
        S_4 = \{0, 1, 2, 3\}
        S_5 = \{0, 1, 2, 3, ..., N\}
        S_6 = \{1, 2, 3, ...\}
        S_7 = \{x : 0 \le x \le 1\} = [0, 1] Xem Hình 2.1(a).
        S_8 = \{t : t \ge 0\} = [0, \infty)
        S_9 = \{t : t \ge 0\} = [0, \infty) Xem Hình 2.1(b).
        S_{10} = \{ v : -\infty < v < \infty \} = (\infty, \infty)
        S_{11} = \{(v_1, v_2) : -\infty < v_1 < \infty \ va - \infty < v_2 < \infty\}
        S_{12} = \{(x, y) : 0 \le x \le 1 \text{ và } 0 \le y \le 1\} Xem Hình 2.1(c).
        S_{13} = \{(x, y) : 0 \le y \le x \le 1\} Xem Hình 2.1(d).
        S_{14} = T p h p các hàm X(t) mà nó tho mãn X(t) = 1 v i
0 \le t < t_0 và X(t) = 0 v i t \ge t_0, ây t_0 > 0 là th i i m t i ó chi
ti t máy không làm vi c.
```

Các thí nghi m ng u nhiên có cùng m t k t qu thí nghi m có th có các không gian m u khác nhau nh \tilde{a} c ch ra trong các thí nghi m E_3 và E_4 . Nh v y m c ích c a thí nghi m nh h ng n vi c ch n không gian m u.

Có ba kh n ng có th x y ra v s l ng các k t c c trong không gian m u. M t không gian m u có th h a h n vô h n m c ho c vô h n không

m c. Chúng ta s g i S là không gian m u m c, ngh a là các k t c c c a nó có th c t ng ng 1-1 v i các s nguyên d ng. Chúng ta s g i S là không gian m u liên t c n u S là không m c. Các thí nghi m E_1 , E_2 , E_3 , E_4 và E_5 có không gian m u r i r c h u h n. Thí nghi m E_6 có không gian m u vô h n m c. Các thí nghi m E_7 và E_{13} có không gian m u liên t c.

HÌNH 2.1

Không gian m u c a các Thí nghi m \mathcal{E}_7 , \mathcal{E}_9 , \mathcal{E}_{12} , và \mathcal{E}_{13} .

(a) Không gian m u cho Thí nghi m E_7 .

(b) Không gian m u cho Thí nghi m E_9 .

(c) Không gian m u cho Thí nghi m E_{12} .

(d) Không gian m u cho Thí nghi m E_{13} .

Do m t k t c c c a m t thí nghi m ng u nhiên có th g m 1 ho c h n 1 phép o ho c quan tr c, không gian m u S có th nhi u chi u. Ví d , các k t c c trong các thí nghi m E_2 , E_{11} , E_{12} và E_{13} là hai chi u và các k t c c trong thí nghi m E_3 là 3 chi u. Trong m t s tr ng h p, không gian m u có th c vi t nh là tích Descartes c a các t p h p khác $^{(1)}$. Ví d , $S_{11} = R \times R$, ây R là t p các s th c, và $S_3 = S \times S \times S$, ây $S = \{H; T\}$.

thu n ti n ta l y c không gian m u bao g m c nh ng k t c c không th . Ví d , trong ví d E_9 thu n ti n ta xác nh không gian m u nh là ng th ng th c d ng, m c dù r ng thi t b không th có th i gian s ng vô h n.

Các Binc

Có hai bi n c c quan tâm c bi t ó là **bi n c ch c ch n** S, là bi n c bao g m t t c các k t c c và do ó luôn luôn x y ra, và **bi n c không** th ho c **bi n c không**, Ø, mà nó không ch a m t k t c c nào c và do ó chúng ta nh ngh a m t bi n c nh là m t t p con c a S.

VÍ D 2.3 Trong các thí nghi m sau A_k là bi n c t ng ng v i thí nghi m E_k trong Ví d 2.1.

 E_1 : "Qu bóng có s ch n c ch n", $A_1 = \{2, 4, ..., 50\}$.

 E_2 : "Qu bóng có màu tr ng và s ch n c ch n", $A_2 = \{(4, w)\}.$

 E_3 : "Ba l n tung cho k t c c nh nhau", $A_3 = \{HHH; TTT\}$.

 E_4 : "S 1 n xu thi n m t ng a b ng s 1 n xu thi n m t s p", $A_4 = \emptyset$.

 E_5 : "Không có m t gói âm nào t o ra", $A_5 = \{0\}$.

 E_6 : "Ít h n 10 phép chuy n ã c th c hi n", $A_6 = \{1, 2, ..., 9\}$.

 E_7 : "S c 1 y ra là m t s không âm", $A_7 = S_7$.

 E_8 : "Kho ng th i gian gi a hai l n i n báo n nh h n to"

$$A_8 = \{t: 0 \le t < t_0\} = [0, t_0).$$

 E_9 : "Chip làm vi c nhi u h n 1000 gi nh ng nh h n 1500 gi " $A_9 = \{t: 1000 < t < 1500\} = (1000, 1500).$

(1) Tích Descartes c a các t p h p A và B là t p các c p có th t (a, b), v i thành ph n th nh t thu c A và thành ph n th hai thu c B.

 E_{10} : "Giá tr tuy t i c a vôn k là nh h n 1 vôn"

$$A_{10} = \{v: -1 < v < 1\} = (-1, 1).$$

 E_{11} : "Hai vôn k có d u ng c nhau", $A_{11} = \{(v_1, v_2): (v_1 < 0 \text{ và } v_2)\}$

> 0) ho c $(v_1 > 0 \text{ và } v_2 < 0)$ }.

 E_{12} : "Hai s khác nhau m t l ng ít h n 1/10", $A_{12} = \{(x, y) : (x, y) \text{ thu c } S_{12} \text{ và } | x - y | < 1/10 \}.$

 E_{13} : "Hai s khác nhau m t l ng ít h n 1/10", $A_{13} = \{(x, y) : (x, y) \text{ thu } c S_{13} \text{ và } | x - y | < 1/10 \}.$

 E_{14} : "H làm vi c t i th i i m t_1 ", $A_{14} = t$ p con c a S_{14} mà $\delta X(t_1) = 1$.

M t bi n c có th ch g m m t k t c c riêng l, nh các bi n c A_2 và A_5 . M t bi n c t không gian m u r i r c ch g m m t k t c c riêng l c g i là **bi n c s c p**. Các bi n c A_2 và A_5 là các bi n c s c p. M t bi n c c ng có th là c không gian m u nh bi n c A_7 . Bi n c không, \emptyset , x y ra khi không có k t c c nào tho mãn các i u ki n c a bi n c này, nh bi n c A_4 .

Các Phép toán T ph p

Chúng ta c ng có th k t h p các bi n c b ng vi c dùng **các phép toán t p h p** nh n c các bi n c khác. Chúng ta c ng có th t o ra các bi n c ph c t p nh làt h p các bi n c n gi n.

Phép h p c a hai bi n c A và B c ký hi u b i $A \cup B$ và c xác nh nh là t p h p các k t c c thu c vào A ho c thu c vào B, ho c thu c c 2. Bi n c $A \cup B$ x y ra nên ho c A ho c B x y ra ho c c A và B x y ra.

Phép l y giao hai t p h p A và B c ký hi u b i $A \cap B$ và c xác nh nh là t p h p c a các k t c c thu c vào c A và B. Bi n c $A \cap B$ x y ra khi c hai bi n c A và B x y ra. Hai bi n c c g i là **xung kh c** n u giao c a chúng là bi n c không, $A \cap B = \emptyset$. Các bi n c xung kh c không th x y ra ng th i.

Phép l y ph n bù c a m t bi n c A c ký hi u A^c và c xác nh nh là t p h p c a t t c các k t c c không thu c A. Bi n c A^c x y ra khi bi n c A không x y ra và ng c l i.

Các Hình 2.2(a), 2.2(b) và 2.2(c) ch ra các phép toán t p h p c s khi dùng s Venn. Trong các s này hình ch nh t th hi n không gian m u S, và các mi n c g ch chéo bi u di n các bi n c khác nhau. Hình 2.2(d) ch ra hai bi n c xung kh c.

N u m t bi n c A là t p con c a bi n c B, ngh a là A = B, khi ó bi n c B s x y ra khi bi n c A x y ra b i vì t t c các k t c c thu c A c ng thu c B (Xem Hình 2.2(d)). B i lý do này, chúng ta nói r ng, bi n c A **kéo theo** bi n c B. Rõ ràng r ng, t các s trong các hình 2.2(a) và 2.2(b) suy ra A \cap B kéo theo c B và m i bi n c A và B kéo theo A \cup B.

Các bi n c $\ A$ và $\ B$ là $\ b$ ng nhau, $\ A = \ B$, n u chúng g m các k t c c nh nhau.

Ba phép toán t p h p trên có th k t h p t o thành các bi n c khác. Các tính ch t sau ây c a các phép toán t p h p và t h p c a chúng là có ích:

Tính ch t giao hoán:

$$A \cup B = B \cup A$$
 và $A \cap B = B \cap A$. (2.1)

Tính ch tk th p:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
 và $A \cap (B \cap C) = (A \cap B) \cap C$ (2.2)

HÌNH 2.2 Các phép toán t p h p và các quan h t p h p

(e) $A \subset B$

Tính ch t phân ph i:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 và

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C). \tag{2.3}$$

Qui t c De Morgan:

$$(A \cap B)^{c} = A^{c} \cup B^{c} \quad va) \quad (A \cup B)^{c} = A^{c} \cap B^{c}$$
 (2.4)

VÍ D 2.4 V i thí nghiêm E_{10} , gi s các bị n c A, B và C c xác nh

nh sau:

$$A = \{v: \mid v \mid > 10\}, \text{ "Gi\'a tr tuy t} \quad \text{i c a } v \text{ 1 n h n } 10$$
vôn,"

B = {
$$v : v < -5$$
}, " v nh h n -5 vôn," và
C = { $v : v > 0$ }, " v là d ng".

Các b n có th ki m tra l i

$$A \cup B = \{v : v < -5 \text{ ho } c \ v > 10\},\$$

$$A \cap B = \{v : v < -10\},\$$

$$C^{c} = \{v : v \le 0\},\$$

$$(A \cup B) \cap C = \{v : v > 10\},\$$

$$A \cup B \cup C = \emptyset$$
, và

$$(A \cup B)^c = \{v : -5 \le v \le 10\}.$$

VÍ D 2.5 Hình 2.3 bi u di n 3 h th ng g m 3 thành ph n C₁, C₂ và C₃. Hình 2.3(a) là h n i ti p mà ó h làm vi c ch khi 3 thành ph n cùng m c cùng làm vi c. Hình 2.3(b) là h m c song song mà ó h làm vi c cho n khi còn ít nh t m t trong ba thành ph n làm vi c. Hình 2.3(c) là h "hai-t -ba" mà ó h làm vi c cho n khi có ít nhât hai trong ba thành ph n làm vi c. Gi s A_k là bi n c "thành ph n th k làm vi c". V i m i cách b trí c a ba h th ng có th bi u di n bi n c "h ang làm vi c" theo thu t ng c a các bi n c A_k.

$$D_a = A_1 \cap A_2 \cap A_3.$$

H m c song song làm vi c cho n khi còn ít nh t m t thành ph n làm vi c, ngh a là, n u thành ph n 1 ho c thành ph n 2 ho c thành ph n 3 ho c m t t h p b t k c a chúng còn làm vi c. do v y bi n c D_b , "H m c song song b làm vi c", c a ra b i

$$D_b = A_1 \cup A_2 \cup A_3$$
.

Cu i cùng, h hai-t -ba làm vi c cho n khi có không quá 1 thành ph n không làm vi c. Do v y, bi n c D_c , "H hai-t -ba làm vi c", c a ra b i

$$D_c = (A_1 \cap A_2 \cap A_3) \cup (A_1^c \cap A_2 \cap A_3)$$

$$\cup \; (A_1 \cap A^c_{\;2} \cap A_3) \cup (A_1 \cap A_2 \cap$$

 A^{c}_{3}).

HÌNH 2.3

D ng th c c a m t h ba thành ph n. Khi m t thành ph n b h ng nó b b i kh i s . H th ng làm vi c khi có m t ng i t bên ph i sang bên trái.

(a) H m c n i ti p

(b) H m c song song

(c) H hai-t -ba

Phép toán h p và giao có th $$clpliv\ i\ m\ t\ s\ tu\ \circ các\ bi\ n\ c\ .$ Do v y bi n c

$$\bigcup_{k=1}^{n} A_k = A_1 \cup A_2 \cup ... \cup A_n$$

x y ra m tho c h n m thi n c t các A_k x y ra. Bi n c

$$\prod_{k=1}^n \ A_K = A_1 \cap A_2 \cap ... \cap A_n$$

xy ra khi t t c các bi n c $A_1,\,...,\,A_n\,x$ y ra. Các phép toán c ng có th c s d ng v i dãy vô h n m c các bi n c . Khi ó chúng ta c ng có các bi n c d ng

$$\overset{\circ}{\underset{k=1}{\mathsf{U}}} A_k \quad \text{và} \quad \overset{\circ}{\underset{k=1}{\mathsf{I}}} A_k.$$

Các xác su t là các s c gán cho các bi n c ch ra kh n ng x y ra các bi n c này khi thí nghi m c th c hi n. Lu t xác su t cho m t thí nghi m ng u nhiên là lu t gán các xác su t cho các bi n c c a thí nghi m này. Do v y m t lu t xác su t là m t hàm mà nó gán m t s v i m t t p h p (bi n c). Trong ph n 1.3 chúng ta ã tìm c m t s tính ch t c a dãy t n su t mà m t nh ngh a b t k c a xác su t có th tho mãn. Các tiên xác su t ch ra r ng các lu t xác su t c n ph i tho mãn các tính ch t này. Trong ph n này, chúng ta phát trì n m t s các k t qu c suy ra t các tiên này.

Gi s E là m t thí nghi m ng u nhiên v i không gian m u S. M t lu t xác su t cho thí nghi m E là m t lu t gán cho m i bi n c A m t s P[A], c g i là xác su t c a A, mà nó tho mãn các tiên sau:

$$\begin{split} &\textit{Tiên} \quad I \quad 0 \leq P[A]. \\ &\textit{Tiên} \quad \textit{II} \quad P[S] = 1. \\ &\textit{Tiên} \quad \textit{III} \quad N \text{ u } A \cap B = \varnothing, \text{ thì } P[A \cup B] = P[A] + P[B]. \\ &\textit{Tiên} \quad \textit{III'} \quad N \text{ u } A_1, A_2, \dots \text{ là dãy các bi n c } \text{ tho mãn} \\ &A_i \cap A_j = \varnothing \ \forall \ i \quad j, \text{ thì khi} \quad \acute{o} \\ &P\bigg[\bigcup_{k=1}^{\infty} A_k \ \bigg] = \sum_{k=1}^{\infty} P[A_k]. \end{split}$$

Các tiên I, II, và III gi i quy t các thí nghi m có không gian m u h u h n. s d ng v i các thí nghi m có không gian m u vô h n, tiên III c n ph i c thay b i tiên III'. Chú ý r ng, khi ta gi thi t $A_k = \emptyset$ v i $k \ge 3$. do v y chúng ta th c s ch c n các tiên I, II, và III. Tuy v y chúng ta s thu c s hi u bi t sâu s c b i s b t u v i các tiên I, II, và III.

Các tiên cho phép chúng ta nhìn các bi n c nh là các i t ng có tính ch t (t c là, xác su t c a chúng) mà nó có thu c tính n gi n nh là tr ng l ng v t lý. Tiên I ch ra r ng, xác su t (tr ng l ng) là không âm, tiên II ch ra r ng t ng các xác su t (tr ng l ng) là m t s c nh mà ta t là m t n v . Tiên III ch ra r ng xác su t c a t ng hai bi n c không ng th i b ng t ng c a các xác su t thành ph n.

Các tiên cung c p cho chúng ta m t t p h p các qui lu t b t bu c mà m t phép gán giá tr xác su t b t k ph i tho mãn. Bây gi chúng ta s phát tri n m t s tính ch t n y sinh t các tiên này mà nó có ích khi tính các xác su t.

K t qu u tiên ch ra r ng, n u chúng ta phân không gian m u thành hai bi n c xung kh c, A và A^c, thì xác su t c a hai bi n c c ng l i b ng 1.

H QU 1.
$$P[A^c] = 1 - P[A]$$

Ch ng minh: T bi n c A và A^c xung kh c nhau $A \cap A^c = \emptyset$, chúng ta nh n c t tiên III r ng

$$P[A \cup A^{c}] = P[A] + P[A^{c}].$$

Do $S = A \cup A^c$, tiên II

$$1 = P[S] = P[A \cup A^{c}] = P[A] + P[A^{c}].$$

H qu c ch ng minh sau khi tìm ra $P[A^c]$.

H qu ti p theo ch ra r ng xác su t c a m t bi n c luôn luôn nh h n ho c b ng 1. H qu II k t h p v i tiên I cho chúng ta phép ki m tra h t khi gi i m t bài toán: N u xác su t tìm ra c a b n là s âm ho c l n h n 1, khi ó b n ã m c ph i m t sai l m âu ó.

H QU 2. $P[A] \le 1$.

Ch ng minh: t h qu 1,

$$P[A] = 1 - P[A^{c}] \le 1$$

do $P[A^c] \ge 0$.

H qu 3 ch ra r ng, bi n c không th có xác su t 0.

H QU 3. $P[\emptyset] = 0$

Ch ng minh: Gi s $A = S \text{ và } A^c = \emptyset \text{ trong h qu } 1$:

$$P[\emptyset] = 1 - P[S] = 0.$$

H qu 4 cung c p cho chúng ta m t ph ng pháp chu n tính xác su t c a m t bi n c h p A. Ph ng pháp d n n vi c phân tích bi n c A thành h p c a các bi n c r i nhau $A_1, A_2, ..., A_n$. Xác su t c a A b ng t ng các xác su t c a các bi n c tính ch t.

 $\mbox{\bf H}$ $\mbox{\bf QU}$ $\mbox{\bf 4.}$ N u $A_1,\,A_2,\,...,\,A_n$ là xung kh c v i nhau t ng $\,$ ôi, khi $\,$ ó :

$$P\left[\bigcup_{k=1}^{n} A_{K}\right] = \sum_{k=1}^{n} P[A_{k}] \quad \text{v i } n \ge 2.$$

Ch ng minh: Chúng ta s d ng ph ng pháp quy n p toán h c. Tiên III ch ra r ng, k t qu là úng v i n = 2. Ti p theo chúng ta ch ra r ng n u k t qu là úng v i n nào ó, thì nó c ng úng v i n + 1. i u này, k t h p v i k t lu n r ng k t qu là úng v i n = 2, ch ra r ng k t qu úng v i $n \ge 2$.

Gi s r ng k t qu úng v i n > 2 nào ó, ngh a là:

$$P\left[\bigcup_{k=1}^{n} A_{K}\right] = \sum_{k=1}^{n} P[A_{k}], \qquad (2.5)$$

và xét t ng tr ng h p n + 1

$$P\left[\bigcup_{n=k}^{n+1} A_{k}\right] = P\left\{\bigcup_{k=1}^{n} A_{k}\right\} \cup A_{n+1} = P\left[\bigcup_{k=1}^{n} A_{k}\right] + P\left[A_{n+1}\right], \tag{2.6}$$

ây chúng ta s $\,$ d ng tiên $\,$ III v $\,i$ bi $\,$ u th $\,$ c th $\,$ hai sau khi chú ý r $\,$ ng h $\,$ p c $\,$ a các bi n $\,$ c t $\,$ A_{1} $\,$ n A_{n} là xung kh c $\,$ v i A_{n+1}. Khi $\,$ ó chúng s $\,$ d ng tính ch $\,$ t phân ph $\,$ i

$$\left\{\bigcup_{k=1}^n A_k\right\} \cap A_{n+1} = \bigcup_{k=1}^n \left\{A_k \cap A_{n+1}\right\} = \bigcup_{k=1}^n \varnothing = \varnothing.$$

Th ng th c (2.5) vào ng th c (2.6) cho tr ng h p n + 1

$$P\left[\bigcup_{k=1}^{n+1} A_k\right] = \sum_{k=1}^{n+1} P[A_k].$$

H qu 5 cho m t bi u di n c a h p hai bi n c không nh t thi t là ph i xung kh c.

H QU 5.
$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

Ch ng minh: Tr ch t chúng ta phân tích $A \cup B$, A và B nh là h p c a các bi n c r i nhau. t s Venn trong hình 2.4,

$$P[A \cup B] = P[A \cap B^{c}] + P[B \cap A^{c}] + P[A \cap B]$$
$$P[A] = P[A \cap B^{c}] + P[A \cap B]$$

$$P[B] = P[B \cap A^{c}] + P[A \cap B]$$

B i vi c th $P[A \cap B^c]$ và $P[B \cap A^c]$ t hai ng th c sau vào ng th c u, chúng ta nh n c h qu .

V i vi c nhìn vào s Venn 2.4, b n s nh n th y r ng t ng P[A] + P[B] tính xác su t c a t p h p $A \cap B$ hai l n. Bi u th c trong h qu 5 làm m t s hi u ch nh thích h p.

H qu 5 d dàng t ng quát hoá cho tr ng h p 3 bi n c:

$$P[A \cup B \cup C] = P[A] + P[B] + P[C] - P[A \cap B]$$

- $P[A \cap C] - P[B \cap C] + P[A \cap B \cap C], \quad (2.7)$

và t ng quát hoá cho tr ng h p n bi n c c ch ra trong h qu 6.

H QU 6.

$$P\left[\bigcup_{k=1}^{n} A_{k}\right] = \sum_{j=1}^{n} P[A_{j}] - \sum_{j < k} P[A_{j} \cap A_{k}] + \dots + (-1)^{n+1} P[A_{1} \cap \dots \cap A_{n}]$$

Ch ng minh: B ng ph ng pháp quy n p (xem các Bài t p 18 và 19).

Do các xác su t là không âm, h qu 5 kéo theo r ng xác su t c a h p hai bi n c không l n h n b n t ng xác su t c a các bi n c thành ph n.

$$P[A \cup B] \le P[A] + P[B]. \tag{2.8}$$

HÌNH 2.4 Phân tích A ∪ B thành 3 t ph pr i nhau.

HÌNH 2.5 N u A ⊂ B,

thì $P(A) \le P(B)$.

B t ng th c trên là tr ng h p riêng c a k t lu n r ng, m t t p h p con c a m t t p h p c n ph i có xác su t nh h n. K t qu này th ng c dùng nh n c c n trên c a xác su t mà ta quan tâm. Tr ng h p i n hình là khi ta c n tính xác su t c a bi n c A, nh ng xác su t c a bi n c này khó tính, khi ó ta tính xác su t c a bi n c B ch a bi n c A nh m t t p h p con.

H QU 7. N u A \subset B, thì P[A] \leq P[B].

Ch ng minh: Trong hình 2. 5, B là h p c a A và $A^c \cap B$, do v y

$$P[B] = P[A] + P[A^{c} \cap B] \ge P[A],$$

do $P[A^c \cap B] \ge 0$.

Các tiên cùng v i các h qu cung c p cho chúng ta các quy t c tính xác su t c a m t biên c ã cho d a vào các bi n c khác. Tuy v y, chúng ta v n c n **phép gán xác su t ban u (initial probability assignment)** cho t p các bi n c c b n nào ó, d a vào ó có th tính xác su t c a t t c các bi n c khác. Bài toán này c gi i quy t trong hai m c ti p sau.

Không gian M u R i r c

Trong ph n này chúng ta s ch ra r ng lu t xác su t c a thí nghi <math>m v i không gian m u m c có th c xác nh b i vi c a vào xác su t c a các bi n c s c p. Tr c h t, gi thi t r ng không gian <math>m u là <math>h u h n, $S\{a_1, a_2, ..., a_n\}$. t t c các bi n c s c p khác nhau u là xung <math>kh c, do h qu 4, xác su t c a bi n c b t k $B = <math>\{a_1, a_2, ..., a_m\}$ c cho b i công th c

$$P[B] = P[\{a_1, a_2, ..., a_m\}]$$

$$= P[\{a_1\}] + P[\{a_2\}] + P[\{a_m\}];$$
(2.9)

ngh a là xác su t c a m t bi n c b ng t ng c a các xác su t c a các k t c c thu c vào bi n c . N u S là vô h n m c, khi ó tiên III' ch ra r ng xác su t c a bi n c $D = \{b_1, b_2, ...\}$ c cho b i công th c

$$P[D] = P[\{b_1^{'}\}] + P[\{b_2^{'}\}] + \dots$$
 (2.10)

H n n a, xác su t c a m t bi n c c xác nh t xác su t c a các k t c c c a nó. Do v y, chúng ta k t lu n r ng, lu t xác su t c a m t thí nghi m ng u nhiên v i không gian m u r i r c c xác nh b i xác su t c a các bi n c s c p.

N u không gian m u có n ph ng trình, $S = \{a_1, ..., a_n\}$, phép gán xác su t u nhau là tr ng h p **các k t c c ng kh n ng (equally likely outcomes)**. Khi ó xác su t c a các bi n c s c p b ng:

$$P[\{a_1\}] = P[\{a_2\}] = L = P[\{a_n\}] = \frac{1}{n}.$$
(2.11)

Xác su tc a bi n c b tk ch a k k tc c, $B = \{a_1, ..., a_k\}$, b ng

$$P[B] = P[\{a_1^i\}] + L + P[\{a_k^i\}] = \frac{k}{n}.$$
 (2.12)

Nh v y, n u các k t c c ng kh n ng, khi ó xác su t c a m t bi n c b ng s các k t c c ph thu c vào bi n c chia cho t ng s các k t c c c a không gian m u. Ph n 2.3 th o lu n các ph ng pháp tính th ng c tìm xác su t trong thí nghi m có các k t c c ng th i kh n ng.

VÍ D M th p ch a 10 viên bi c ánh s 0, 1, ..., 9. Phép th ng u nhiên là phép l y l viên bi t h p và ghi l i s viên bi. Hãy tìm xác su t c a các bi n c sau:

A ="S c a viên bi là s 1 ",

B = "S c a viên bi là tích c a 3",

C ="S c a viên bi c l y nh h n 5",

và xác su t c a các bi n c $A \cup B$ và $A \cup B \cup C$.

Không gian m u là $S = \{0, 1, ..., 9\}$, và t p h p c a các k t c c t ng ng v i các bi n c trên là:

$$A = \{1, 3, 5, 7, 9\}, B = \{3, 6, 9\}, và C = \{0, 1, 2, 3, 4\}.$$

N u chúng ta gi s r ng, các k t c c ng kh n ng, khi ó

$$P[A] = P[\{1\}] + P[\{3\}] + P[\{5\}] + P[\{7\}] + P[\{9\}] = \frac{5}{10}.$$

$$P[B] = P[{3}] + P[{6}] + P[{9}] = \frac{3}{10}$$

$$P[C] = P[\{1\}] + P[\{2\}] + P[\{3\}] + P[\{4\}] = \frac{5}{10}$$

T H qu 5,

$$P[A \cup B] = P[A] + P[B] - P[A \cap B] = \frac{5}{10} + \frac{3}{10} - \frac{2}{10} = \frac{6}{10}$$

ây ta \tilde{a} s d ng th c t là $A \cap B = \{3, 9\}$, do v y $P[A \cap B] = 2/10$.

T H qu 6,

$$P[A \cup B \cup C] = P[A] + P[B] + P[C] - P[A \cap B]$$

$$-P[A \cap C] - P[B \cap C] + P[A \cap B \cap C]$$

$$= \frac{5}{10} + \frac{3}{10} + \frac{5}{10} - \frac{2}{10} - \frac{2}{10} - \frac{1}{10} + \frac{1}{10}$$

$$= \frac{9}{10}.$$

B n có th ki m tra l i các xác su t $P[A \cup B]$ và $[A \cup B \cup C]$ b ng cách tính ra s các k t c c c a bi n c này.

Nhi u mô hình xác su t c phát minh cho không gian m u và các bi n c b ng cách thay i phép gán xác su t; trong tr ng h p không gian m u h u h n chúng ta c n làm sao t ng xác su t c a t t c các bi n c s c p b ng 1. T t nhiên trong tình hu ng c th b t k, phép gán xác su t có th c ch n d i s nh h ng c a các quan tr c thí nghi m t i giá tr xác su t. Ví d sau ch ra r ng, m t tình hu ng có th xu t hi n khi có h n m t phép gán xác su t "h p lý" và khi k t qu thí nghi m òi h i l a ch n m t phép gán thích h p.

VÍ D 2.7 Gi s r ng m t ng xu c tung 3 l n, n u chúng ta quan sát dãy xu t hi n m t ng a và m t s p, thì có 8 k t c c có th $S_3 = \{HHH, HHT, HTH, THH, TTH, THT, HTT, TTT\}$. N u chúng ta gi s r ng các k t c c c a S_3 là ng kh n ng, khi ó xác su t c a m i m t bi n c s c p b ng 1/8. Phép gán xác su t này kéo theo xác su t nh n c 2 l n xu t hi n m t ng a trong 3 l n tung ra, do H qu 3,

P["21 n xu t hi n m t ng a trong 31 n tung"] =

 $= P[{HHT, HTH, THH}]$

$$= P[\{ HHT\}] + P[\{ HTH\}] + P[\{ THH\}] = \frac{3}{8}.$$

Bây gi gi s r ng chúng ta tung ng xu 3 l n, nh ng chúng ta ch m s l n xu t hi n m t ng a trong 3 l n tung thay vì quan sát dãy m t ng a và m t s p. Khi ó không gian m u là $S_4 = \{0, 1, 2, 3\}$. N u chúng ta gi thi t các k t c c c a S_4 là xác su t, thì m i m t bi n c s c p c a S_4 có xác su t = 1/4 . phép gán xác su t th hai này d n n xác su t nh n c 2 l n xu t hi n m t s p trong 3 l n tung là:

 $P["2 \ 1 \ n \ xu \ t \ hi \ n \ m \ t \ ng \ a \ trong \ 3 \ 1 \ n \ tung"] = P[\{2\}] =$

 $\frac{1}{4}$

Phép gán xác su t th nh t kéo theo xác su t xu t hi n m t s p 2 l n trong 3 l n tung b ng 3/8, và phép gán xác su t th 2 d n t i xác su t c a bi n c này b ng 1/4. Nh v y hai phép gán là không nh t quán v i nhau. V m t lý thuy t chúng ta quan tâm n m t phép gán khác là ch p nh n c. i u ó v n ti p di n cho n khi chúng ta ch n c m t phép gán h p lý h n. Trong ph n sau c a ch ng chúng ta s th y r ng ch phép gán th nh t là phù h p gi thi t r ng ng xu là cân i và các l n tung là c l p. Phép gán này phù h p v i t n su t t ng i mà ã c quan sát trong thí nghi m tung ng xu th c t .

Cu i cùng chúng ta xét ví d v i không gian m u vô h n m c.

VÍD 2.8 M t ng xu cân i c tung l p l i cho n khi l n u tiên xu t hi n m t ng a; k t c c c a thí nghi m là s l n tung cho n khi m t ng a l n u tiên xu t hi n. Tìm lu t xác su t cho thí nghi m này.

Có th x y ra s 1 n tung 1 n tu ý cho n khi xu t hi n m t ng a, do v y không gian m u là $S = \{1, 2, 3, ...\}$. Gi s r ng thí nghi m c l p l i n l n. t N_j là s các phép th mà 1 n tung xu th j m t ng a l n u tiên xu t hi n. N u n là s r t l n chúng ta hy v ng N_1 x p x n/2 do ng xu là cân i. i u này kéo theo k t qu l n tung th hai c n kho ng $n - N_1 \approx n/2$ l n, và m t l n n a ta hy v ng r ng kho ng m t n a c a s này, ngh a là n/4, s có k t qu là m t ng a, và vân vân, nh c ch ra trong Hình 2.6. Nh v y v i n l n, t n su t t ng i là:

$$f_j \approx \frac{N_j}{n} \left(\frac{1}{2}\right)^j$$
 $j = 1, 2, \dots$

Do ó chúng ta k t lu n r ng lu t xác su t h p lý cho thí nghi m này là

P[j l n tung xu m t ng a l n u tiên xu t hi n] =
$$\left(\frac{1}{2}\right)^{j}$$

 $j = 1, 2, ...$ (2.13)

Chúng ta có the ki m tra l i r ng các xác su t này c ng l i b ng l b ng cách dùng c p s nhân v i công b i $\alpha = 1/2$:

$$\sum_{j=1}^{\infty} \alpha^{j} = \frac{\alpha}{1 - \alpha} = 1.$$

Không gian M u Liên t c

Các không gian m u liên t c xu t hi n trong các thí nhi m mà các k t c c là các s , các bi n c mà ta quan tâm trong các thí nghi m này là các kho ng c a ng th ng th c ho c các mi n hình ch nh t trong m t ph ng và các phép l y ph n bù, h p và giao c a các bi n c này, v i các không gian m u liên t c là qui t c gán các s cho các kho ng c a ng th ng th c ho c các mi n hình ch nh t trong m t ph ng.

VÍ D 2.9 Xét thí nghi m ng u nhiên "l y ng u nhiên m t s x n m gi a 0 và 1." Không gian m u S cho thí nghi m này là o n n v [0, 1], không có s i m vô h n không c. N u chúng ta gi s m c 1 y ng kh n ng, thì chúng ta rngt tc k tcác c c c a S có th d oán r ng xác su t k t c c thu c vào kho ng [0; 1/2] b ng v i xác su t k t c c thu c kho ng [1/2; 1]. Chúng ta c ng oán r ng xác su t x y ra giá tr úng b ng 1/2 có th b ng 0 do có m t s vô h n không m c các bi n c n ng.

Xét lu t xác su t sau: "Xác su t k t c c thu c vào m t t p con c a S là b ng dài c a t p con ó," ngh a là,

$$P[[a, b]] = (b - a)$$
 v i $0 \le a \le b \le 1$, (2.14)

ây chúng ta ký hi u P[[a, b]] có ngh a là xác su t c a bi n c t ng ng v i kho ng [a, b]. Rõ ràng r ng, Tiên I tho mãn do $b \ge a \ge 0$. Tiên II c suy ra t S = [a, b] v i a = 0 và b = 1.

Bây gi chúng ta ch ra r ng lu t xác su t là phù h p v i d oán trên v các xác su t c a các bi n c [0, 1/2], [1/2, 1], và $\{1/2\}$:

$$P[[0, 0.5]] = 0.5 - 0 = .5$$

 $P[[0.5, 0]] = 1 - 0.5 = .5$

H n n a, n u x_0 là i m b t k c a S, khi ó $P[[x_0, x_0]] = 0$ do các i m riêng bi t có dài b ng 0.

Bây gi gi s r ng, chúng ta quan tâm n m t bi n c là h p c a m t vài kho ng ví d "k t c c cách tâm c a o n th ng n v t i thi u 0,3", ngh a là, A = [0, 0.2] ∪ [0,8, 1]. Do hai kho ng là không giao nhau, chúng ta có k t qu t Tiên III

$$P[A] = P[[0, 0.2]] + P[[0.8, 1]] = .4.$$

HÌNH 2.6

Trong //
phép th ,
m t ng a
xu t hi n
I n gieo u
tiên trong
x p x //2
I n gieo,
I n gieo th
hai trong
x p x //4
I n gieo, và
vân vân.

Ví d ti p theo ch ra r ng phép gán xác su t ban u mà xác nh rõ xác su t c a các kho ng n a vô h n c ng xác nh xác su t c a t t c các bi n c mà ta quan tâm.

VÍ D 2.10

Gi s r ng th i gian s ng c a m t chip nh máy tính c o, và chúng ta tìm c r ng "T l th i gian s ng c a chip v t qua t là hàm m âm v i t c α ". Hãy tìm m t lu t xác su t x p x .

Ly không gian mu trong thí nghi m này là $S=(0,\infty)$. Nu chúng ta làm sáng t khái ni ma ra trên nh là "xác su tath i gian sang cachip vat quat là hàm mâm vi taca", khi ó chúng tanh na chép gán xác su t sau cho các bi nac có dang (t,∞) :

$$P[(t, \infty)] = e^{-\alpha t}$$
 v i $t > 0$. (2.15)

ây $\alpha > 0$. Chú ý r ng giá tr hàm m này là m t s n m gi a 0 và 1 v i t > 0, b i v y Tiên I c tho mãn. Tiên II c tho mãn do:

$$P[S] = P[(0, \infty)] = 1.$$

Còn xác su t th i gian s ng n m trong kho ng (r, s] c tìm b i chú ý trong Hình 2.7 r ng $(r, s] \cup (s, C) = (r, \infty)$, b i vì Tiên III,

$$P[(r, \infty)] = P[(r, s]] + P[(s, \infty)].$$

Chuy n v ng th c trên chúng ta nh n c

$$P[(r, s]] = P[(r, \infty)] - P[(s, \infty)] = e^{-\alpha r} - e^{-\alpha s}.$$

Trong c hai Ví d 2.9 và 2.10 u có k t c c 1 y xác su t b ng 0. B n có th h i: Li u m t k t c c (ho c bi n c) có xác su t 0, không có ngh a là nó không x y ra hay không? Và b n c ng có th h i: Trong m t không gian m u có th có bao nhiều k t c c có xác su t 0? Chúng ta có th gi i thích ngh ch lý này b ng vi c dùng t n su t t ng i gi i thích xác su t. M t bi n c x y ra ch m t l n trong s vô h n l n các phép th s có t n su t t ng i b ng 0. Do th c t này m t bi n c ho c k t c c có t n su t t ng i b ng 0 không th suy ra c r ng nó không th x y ra, nh ng có th nói r ng nó r t hi m khi x y ra. Trong tr ng h p không gian m u liên t c, t p t t c các k t c c có th nhi u n m c t t c các k t c c hi m x y ra có t n su t t ng i úng b ng 0.

Chúng ta k t thúc ph n này b ng m t ví d mà $\ \,$ ó các k t c c là các mi n c a m t ph ng.

VÍ D 2.11

Xét thí nghi m E_{12} , mà ó chúng ta 1 y m t cách ng u nhiên 2 s x và y n m gi a 0 và 1. Khi ó không gian m u là hình vuông n v c ch ra Hình 2.8(a). N u chúng ta gi s r ng t t c các c p s trong hình vuông n v c 1 y ng kh n ng, khi ó là h p 1ý v i phép gán xác su t mà ó xác su t c a mi n R b t k c a hình vuông n v b ng di n tích c a nó. Bây gi ta tìm xác su t c a các bi n c : $A = \{x > 0.5\}$, $B = \{y > 0.5\}$, và $C = \{x > y\}$.

Các Hình t 2.8(b) t i 2.8(d) bi u di n các mi n t ng ng v i các bi n c A, B và C. Rõ ràng m i m t mi n này có di n tích b ng 1/2. Do 6:

$$P[A] = \frac{1}{2}, \qquad P[B] = \frac{1}{2}, \qquad P[C] = \frac{1}{2}.$$

HÌNH 2.8 M t không gian m u hai chi u và ba bi n c

y 4

(a) Không gian m u.

Chúng ta l p l i nh th nào trong ph n sau t vi c thi t l p bài toán n mô hình xác su t c a nó. Phép t bài toán xác nh n hay hi n m t thí nghi m ng u nhiên, mà nó ch rõ k t qu thí nghi m và t p h p các phép o và quan tr c. các phép o và quan tr c quy t nh t p t t c các k t c c có th và do ó không gian m u S.

M t phép gán xác su t ban u ch rõ xác su t c a các bi n c có th c n ph i c xác nh ti p ngay sau ó. Phép gán xác su t này c n ph i tho mãn các tiên xác su t. N u S là r i r c, khi ó nó xác nh xác su t c a m t bi n c s c p. N u S là liên t c, nó xác nh xác su t c a các kho ng c a ng th ng th c ho c các mi n c a m t ph ng. Xác su t c a các bi n c khác mà ta quan tâm có th c xác nh t phép gán xác su t ban u và các tiên xác su t và các h qu c a nó. Nhi u phép gán xác su t có th , song c n ph i ch n phép gán xác su t c n ph i liên quan n các quan tr c thí nghi m và/ho c thí nghi m tr c ây.

*2.3 TÍNH XÁC SU TB NG PH NG PHÁP M⁽²⁾

Trong nhi u thí nghi m v i không gian m u h u h n, các k t c c có th gi thi t ng xác su t. Xác su t c a m t bi n c là t s c a s các k t c c thu c vào bi n c mà ta quan tâm v i t ng s các k t c c c a không gian m u (ng th c 2.12). Phép tính xác su t qui v vi c m s các k t c c thu c vào bi n c . Trong ph n này chúng ta phát tri n m t vài công th c (t h p m hay d ng).

Gi s r ng m t bài ki m tra tr c nghi m có k câu h i và câu th i sinh viên c n ph i l a ch n l trong n_i câu tr l i có th . H i r ng, t ng s t t c các cách tr l i bài ki m tra này b ng bao nhiêu? Câu tr l i c a câu h i th i có th c coi nh thành ph n th i c a m t véct k-chi u, do ó câu h i trên t ng ng v i: có bao nhiêu b -k s p th t khác nhau $(x_1, ..., x_k)$ trong ó x_i là m t ph n t c a m t t p h p n_i ph n t khác nhau?

Chúng ta xét tr ng h p k = 2. N u nh chúng ta s p x p t t c các phép ch n có th c a x_1 và x_2 d c theo các c nh c a b ng c ch ra trong Hình 2.9, chúng ta nh n th y r ng có n_1n_2 c p s p th t khác. V i b 3 chúng ta có th s p x p n_1n_2 c p (x_1, x_2) d c theo c nh th ng ng c a b ng và n_3 cách ch n x_3 d c theo c nh n m ngang. Rố ràng r ng, s các b 3 có th là $n_1n_2n_3$.

M t cách t ng quát, s c a các b k s p th t khác nhau $(x_1, ..., x_k)$ v i $thành ph n <math>x_i$ t t p có n_i ph n t khác là

s các b
$$k$$
 s p th t khác nhau = $n_1 n_2 \dots n_k$. (2.16)

(2). Ph n này và t t c các ph n c ánh d u hoa th có th b l c qua mà không m t tính liên t c.

Nhi u bài toán m có th t nh bài toán l y m u mà ó chúng ta l y "nh ng viên bi" t "nh ng chi c h p" ho c "nh ng i t ng" t "nh ng ám ông." Bây gi chúng ta s dùng ng th c (2.16) phát tri n bài toán t h p cho d ng ã bi t c a bài toán l y m u.

Phép L y M u Có Hoàn I i và Có Th t

Gi s r ng chúng ta ch n k i t ng t t p h p A có n i t ng khác nhau theo cách có hoàn l i, ngh a là, sau khi l y m t i t ng và ghi l i các c i m c a nó vào m t danh sách theo th t , i t ng c tr l i t p h p tr c khi ch n l n ti p theo. Chúng ta coi A nh là m t "qu n th ." K t qu thí

nghi m là m t b -k có th t

 $(x_1, ..., x_k)$

v i $x_i \in A$ và i = 1, ..., k. ng th c (2.16) v i $n_1 = n_2 = ... = n_k = n$ d n n r ng:

s c a các b -k có th t khác nhau = n^k . (2.17)

VÍ D 2.12 M th p có 5 viên bi ánh s t 1 n 5. Gi s ta l y 2 viên bi t h p có thay th . Có bao nhiều b ôi có th t khác nhau? Xác su t b ôi có hai s nh nhau b ng bao nhiều?

ng th c (2.17) ch ra r ng s các b ôi có th t là $5^2=25$. Hình 2.10(a) ch ra 25 c p có th . N m trong 25 k t c c có hai l n l y c s nh nhau. N u chúng ta gi thi t t t c các c p ng xác su t, thì xác su t hai l n l y c cùng m t s là 5/25=0.2.

Phép L y M u Có Hoàn I i và Có Th t

Gi s chúng ta ch n k i t ng theo th t mà không hoàn lit m t qu n th A g m n i t ng khác nhau. Rỗ ràng r ng $k \le n$. S các k t c c có th có trong l n rút u tiên là $n_1 = n$; s k t c c có th trong l n l y th 2 là $n_2 = n - 1$, g m t t c n i t ng tr m t i t ng c ch n trong l n l y th nh t; và vân vân t i $n_k = n - (k-1)$ trong l n l y cu i cùng. Khi ó ng th c (2.16) cho:

s các b -k s p th t khác nhau = n(n-1) ... (n-k+1). (2.18)

HìNH 2.10 B n li t kê các k t c c có th c a các d ng khác nhau t phép I y m u 2 viên bi t h p có 5 qu bong khác nhau	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)
	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2,5)
	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)
	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)
	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)
	(a) Các c p	cspth t t phéplymucó hoàn li			
		(1, 2)	(1, 3)	(1, 4)	(1, 5)
	(2, 1)		(2, 3)	(2, 4)	(2, 5)
	(3, 1)	(3, 2)		(3, 4)	(3, 5)
	(4, 1)	(4, 2)	(4, 3)		(4, 5)
	(5, 1)	(5, 2)	(5, 3)	(5, 4)	
	(b) Các c p	p cspth t t phéplym ukhông hoàn li			
		(1, 2)	(1, 3)	(1, 4)	(1, 5)
			(2, 3)	(2, 4)	(2, 5)
				(3, 4)	(3, 5)
					(4, 5)
	(c) Các c p t phép l y m u không hoàn l i và không tính n th t				

VÍ D 2.13

M th p có 5 viên bi c ánh s t 1 n 5. Gi s chúng ta 1 y 5 viên bi theo th t mà không hoàn 1 i. H i có th có bao nhiều c p s p th t khác nhau? H i xác su t viên bi th nh t có s 1 n h n s c a viên bi th hai b ng bao nhiều?

ng th c (2.18) ch ra r ng s c a các b ôi s p th t là: 5(4) = 20. 20 b ôi s p th t có th ch ra c trong Hình 2.10(b). 10 b ôi s p th t trong Hình 2.10(b) có s th t th nh t l n h n s th hai, do ó xác su t c a bi n c này là 10/20 = 1/2.

VÍ D 2.14

M th p có 5 viên bi ánh s t 1 n 5. Gi s chúng ta 1 y 3 viên bi có hoàn 1 i. xác su t c 3 viên bi khác nhau b ng bao nhiệu?

T ng th c (2.17) có $5^3 = 125$ k t c c có th , mà chúng ta s gi thi t ng xác su t. S c a các k t c c mà 3 l n l y d c a ra b i ng th c (2.18): 5(4)(3) = 60. do ó xác su t 3 viên bi khác nhau là 60/125 = .48.

Các phép Hoán v c a n ph n t

s các hoán v c a *n* ph n t = $n(n-1)...(2)(1) \triangleq n!$ (2.19)

Chúng ta g i n! là n giai th a (factorial).

Chúng ta s g p n! xu t hi n trong nhi u công th c t h p. V i n l n, công th c Stirling là r t có ích :

$$n! \sim 2\pi n^{n+1/2} e^{-n},$$
 (2.20)

ây kí hi u ~ ch ra t s c a 2 v ti n n 1 khi $n \to \infty$ (Feller, p. 52).

VÍ D 2.15

Hãy tìm s các hoán v c a 3 i t ng khác nhau $\{1, 2, 3\}$. ng th c (2.19) cho 3! = 3(2)(1) = 6. Sáu hoán v là :

123 312 231 132 213 321

VÍ D 2.16

Gi s r ng 12 viên bi c t m t cách ng u nhiên vào 12 ô, có th t nhi u h n 1 bi vào m t ô. H i xác su t t t c các ô u có bi b ng bao nhiêu?

Phép t m i bóng vào m t ô có th hình dung nh phép ch n m i ô m t s t 1 12. ng th c (2.17) có 12¹² phép t có th 12 bi vào 12 ô. t t c các ô u có bi, viên bi th

nh t t vào ô b t k t 12 ô, viên bi th 2 t vào ô b t k t 11 ô còn 1 i, và vân vân. Do ó s các phép t t t c các ô u có bi b ng 12!. N u chúng ta gi thi t r ng t t c 12^{12} phép t có th là ng xác su t, chúng ta tìm c xác su t t c các ô u có bóng là

$$\frac{12!}{12^{12}} = \left(\frac{12}{12}\right)\left(\frac{11}{12}\right) \cdot \left(\frac{1}{12}\right) = 5.37(10^{-5}).$$

Câu tr 1 i này là áng ng c nhiên n u chúng ta n u chúng ta gi i thích 1 i câu h i nh sau ây. Gi s r ng có 12 v r i máy bay, x y ra m t cách ng u nhiên trong m t n m, xác su t có úng m t v r i máy bay m i tháng b ng bao nhiêu? K t qu trên ch ra r ng xác su t này là r t nh . Nh v y m t mô hình v i gi nh r ng s r i máy bay x y ra m t cách ng u nhiên theo th i gian không d báo tr c r ng chúng phân ph i u theo th i gian (Feller, p. 32).

Phép L y M u Không Hoàn I i và Không tính Th t

Gi s chúng ta l y k it ng t t p h p có n it ng khác nhau b ng cách l y không hoàn l i và chúng ta ghi l i k t qu mà không chú ý t i th t l y ra. (B n có th hình dung t m i i t ng c l y ra vào m t bình khác nhau, nh v y chúng ta có t p h p k i t ng mà không chú ý t i th t ch n các i t ng. Chúng ta g i t p k i t ng c l y là m t "t h p ch p k".

T ng th c (2.19), có k! b k! s p th t có th nh th C_n^k ký hi u s các t h p ch p k c a n ph n t , khi ó $C_n^k k!$ là t ng s t t c các ch nh h p không l p ch p k c a n ph n t c cho b i ng th c (2.18). Do ó:

$$C_n^k k! = n(n-1)...(n-k+1),$$
 (2.21)

và s các t h p ch p k khác nhau c a n ph ng trình, $k \le n$, là :

$$C_n^k = \frac{n(n-1)...(n-k+1)}{k!} = \frac{n!}{k!(n-k)!} \stackrel{\triangle}{=} \binom{n}{k}.$$
 (2.22)

Bi u th $c \binom{n}{k}$ c g i là **h** s c a khai tri n nh th c Newton và c c là "t h p ch p k c a n ph n t" (hay "n ch n k").

Chú ý r ng vi c ch n k it ng t n it ng là t ng ng v i vi c ch n (n-k) it ng t n it ng. Khi ó chúng ta có (xem Bài t p 46):

$$\binom{n}{k} = \binom{n}{n-k}$$
.

VÍ D 2.17 Tìm s cách l y 2 i t ng t $A = \{1, 2, 3, 4, 5\}$ mà không chú ý t i th t .

ng th c(2.22) cho:

$$\binom{5}{2} = \frac{5!}{2!3!} = 10.$$

Hình 2.10(c) cho 10 c p.

VÍ D 2.18

Hãy tìm s các hoán v khác nhau c a k bi tr ng và n - k bi en.

Bài toán này là t ng ng v i bài toán l y m u sau: t n v t c ánh s t l n n vào trong m th p, mà ó m i v t th hi n m t ví trí s p x p c a bi; l y m t t h p ch p k v t và t k qu bóng tr ng vào các v trí t ng ng. M i m t t h p ch p k cho m t s s p x p khác nhau c a k qu bóng tr ng và n - k viên bi en. Do v y s các hoán v khác nhau c a k viên bi en là C_n^k .

Nh là m t tr ng h p riêng l y n=4 và k=2. S các t h p ch p 2 c a 4 ph n t là:

$$\binom{4}{2} = \frac{4!}{2!2!} = \frac{4(3)}{2(1)} = 6$$

6 hoán v khác nhau c a 2 bi tr ng (s 0) và 2 bi en (s 1) là 1100 0110 0011 1001 1010 0101.

VÍ D 2.19 Qu n lý Ch t I ng M t lô có 50 s n ph m trong ó có 10 ph ph m. Gi s 10 s n ph m c l y ng u nhiên và c ki m tra. H i xác su t có úng 5 s n ph m c ki m tra là ph ph m b ng bao nhiêu?

S cách l yra 10 s n ph m t $1\hat{0}$ có 50 s n ph m b ng s t h p ch p 10 t 50 it ng:

$$\binom{50}{10} = \frac{50!}{10!40!}$$

S các cách ch n 5 ph ph m và 5 chính ph m t lô 50 s n ph m là tính N_1N_2 , ây N_1 là s cách ch n 5 ph ph m t 10 ph ph m, và N_2 là cách ch n 5 chính ph m t 40 chính ph m. Do ó xác su t úng 5 s n ph m c ki m tra là ph ph m b ng:

$$\frac{\binom{10}{5}\binom{40}{5}}{\binom{50}{10}} = \frac{10!40!10!40!}{5!5!35!5!50!} = .016$$

Ví d 2.18 ch ra r ng phép l y m u không hoàn l i và không tính n th t là t ng ng v i phép phân chia t p g m n i t ng khác nhau thành 2 t p: B, g m k i t ng c l y ra kh i h p, và B^c g m n - k i t ng còn l i trong h p. Gi s chúng ta chia t p g m n i t ng thành F t p con B_1 , B_2 , ..., B_F , ây B_i có k_i ph n t và $k_1 + k_2 + ... + k_F = n$.

Trong Bài t p 47 ã ch ra s các cách phân chia khác nhau là

$$\frac{n!}{k_1!k_2!...k_3!}.$$

ng th c (2.23) c g i là **h** s c a khai tri n a th c. H s c a khai tri n nh th c là tr ng h p F = 2 c a h s khai tri n a th c.

VÍ D 2.20 M t con xúc x c c tung 12 l n. H i có bao nhiều dãy khác nhau c a s xu thi n các m t c a con xúc x c (có s thu c t p {1, 2, 3, 4, 5, 6}) có m i s xu thi n úng 2 l n? Xác su t xu t hi n các dãy nh v y b ng bao nhiều?

S các dãy khác nhau mà ó m i m t con xúc x c xu t hi n úng 2 l n là b ng s cách phân chia t p h p $\{1, 2, 3, ..., 12\}$ thành 6 t p con, m i t p có 2 ph ng trình b ng:

$$\frac{12!}{2!2!2!2!2!} = \frac{12!}{2^6} = 7,484,400$$

T ng th c (2.17) chúng ta có 6^{12} k t c c có th trong 12 l n tung 1 con xúc x c. N u chúng ta gi thi t r ng t t c các k t c c này ng xác su t khi ó xác su t nh n c dãy mà ó m i m t xu t hi n úng 2 l n là

$$\frac{12!/2^6}{6^{12}} = \frac{7,484,400}{2,176,782,336} \approx 3,4(10^{-3}).$$

Phép L y M u Có Hoàn I i và Không tính n Th t

Gi s chúng ta l y k it ng t t p n it ng khác nhau theo cách có hoàn l i và chúng ta ghi l i k t qu mà không chú ý t i th t . i u này có th hoàn thành b ng cách i n vào m t b ng có n c t, m i m t c t dành cho m t i t ng. M i l n m t i t ng c l y ra, m t d u "x" c t vào c t t ng ng. Ví d , n u chúng ta l y 5 i t ng t 4 i t ng khác nhau, m t k t c c có th nh sau:

ây, ký hi u g ch chéo ("/") c dùng phân ra các c t khác nhau. Chú ý r ng b ng này có th tóm t t thành dãy:

ây n - 1 d u "/" là ng gi a các c t, và không có gì gi a các g ch chéo "/" n u i t ng t ng ng không c ch n ra. M i cách s p x p khác nhau c a 5 "x" và 3 "/" d n t i t i m t b ng khác. N u chúng ta ng nh t "x" v i

"viên bi tr ng" và "/" v i "viên bi en", khi ó bài toán này \tilde{a} c nh n xét ví d 2.18 và s các cách s p x p khác nhau b ng $\binom{8}{3}$.

Trong tr ng h p t ng quát, khi b ng có k ký hi u "x" và n-1 ký hi u "/". Khi ó s các cách l y ra k ph n t t p n ph n t khác nhau theo cách không hoàn l i và không y n t t p n p

$$\binom{n-1+k}{k} = \binom{n-1+k}{n-1}.$$

2.4 XÁC SU T CÓ I U KI N

Hoàn toàn t nhiên chúng ta xác nh s ki n liên quan gi a hai bi n c , A và B, khi thông tin v s su t hi n c a m t bi n c , g i là B, làm thay i xác su t xu t hi n c a bi n c khác, g i là A. i u này d n n vi c tìm **xác su t có i u ki n**, P[A | B], c a bi n c A khi bi n c B ã x y ra.

Xác su t có i u ki n c xác nh b i:

$$P[A \mid B] = \frac{P[A \cap B]}{P[B]} \qquad \text{v i P[B]} > 0.$$
 (2.24)

Thông tin v s x y ra c a bi n c B d n n k t c c c a thí nghi m n m trong t p B. Do ó khi tính P[A | B] chúng ta có th coi nh thí nghi m có không gian m u B nh c ch ra trong hình v 2.11. Bi n c A x y ra trong không gian m u rút g n n u và ch n u k t c c ζ n m trong A \cap B. ng th c (2.24) chu n hoá xác su t c a các bi n c x y ra ng th i v i B. Khi ó, n u chúng ta l y A = B, ng th c (2.24) d n n P[B | B] = 1, nh c ch i. T ó d dàng ch ra r ng P[A | B], v i B c nh tho mãn các tiên xác su t 9 xem Bài t p 49.)

N u ã bi t B x y ra, khi ó A x y ra

HÌNH 2.11

ch n u A∩Bxy ra.

N u chúng ta coi xác su t nh là t n su t t ng i, khi ó P[A | B] có th t n su t t ng i c a bi n c $A \cap B$ trong các thí nghi m mà ó B x y ra. Gi s r ng thí nghi m c ti n hành n l n, và gi s r ng bi n c B x y ra n_B l n, và bi n c $A \cap B$ x y ra $n_{A \cap B}$ l n. T n su t t ng i c a bi n c mà ta quan tâm là:

$$\frac{n_{A \cap B}}{n_B} = \frac{n_{A \cap B}/n}{n_B/n} \to \frac{P[A \cap B]}{P[B]},$$

ây chúng ta gi thi t r ng P[B] > 0. i u này phù h p v i ng th c (2.24).

VÍ D 2.21 M t viên bi c l y t m t h p có hai bi en, c ánh s 1 và 2, và hai bi tr ng c ánh s 3 và 4. S và màu c a viên bi l y ra c ghi l i, khi ó không gian m u là {(1, b), (2, b), (3, b)}

w),

(4, w)}. Gi s r ng các k t c c là ng kh n ng, hãy tìm $P[A \mid B]$ và $P[A \mid C]$, ây A, B và C là các bi n c sau:

$$A = \{(1, b), (2, b)\},$$
 "bi en cly,"

$$B = \{(2, b), (4, w)\},$$
 "bi có s ch n c l y," và

$$C = \{(3, w), (4, w)\},$$
 "s c a viên bi 1 n h n 2."

Do P[A \cap B] = P[(2, b) và P[A \cap C] = P[\emptyset] = 0, ng th c (2.21) d n n:

$$P[A \mid B] = \frac{P[A \cap B]}{P[B]} = \frac{.25}{.5} = .5 = P[A]$$

$$P[A \mid C] = \underbrace{P[A \cap C]}_{P[C]} = \underbrace{0}_{.5} \neq P[A].$$

Trong tr ng h p th nh t, thông tin c a B không nh h ng t i xác su t c a A. Trong tr ng h p th hai, thông tin v B d n n r ng A không x y ra.

Nu chúng ta nhân c $\ 2\ v$ c $\ a$ $\$ nh ngh a P[A | B] v i P[B] chúng ta nh n $\ \ c$

$$P[A \cap B] = P[A \mid B] P[B].$$
 (2.25a)

B ng cách t ng t chúng ta c ng nh n c

$$P[A \cap B] = P[B \mid A] P[A].$$
 (2.25b)

Trong ví d sau ây chúng ta ch ng t ng th c này có ích nh th nào trong vi c tìm xác su t trong các dãy các thí nghi m. Ví d c ng d n s **hình cây** d dàng tính xác su t.

M th p có hai viên bi en và 3 viên bi tr ng. Hai viên bi c ch n m t cách ng u nhiên t h p theo cách không hoàn l i và ghi l i dãy các màu c a viên bi c l y ra. Hãy tìm xác su t c hai viên bi u màu en.

Thí nghi m này là dãy c a 2 thí nghi m nh . Chúng ta có th hình dung d i d ng s hình cây c ch ra trong hình 2.12 t i nh cao nh i t i m i t i các nh sau i chúng ta i n i nh i c a cây n i k t i c i a i n i th i nh i t i a cây n i k i c i a i n i th i nh i t i a cây n i k i c i a i n i t i nh i t i a i a i nh i t i nh i nh i t i nh i nh i t i nh i

en; khi ó thí nghi m nh ti p theo là vi c l y m t viên bi t h p có m t viên bi en và ba viên bi tr ng. Trên m t cách khác, n u k t c c c a l n l y th nh t là viên bi tr ng khi ó chúng ta i n nh 2 c a cây và thí nghi m th 2 là vi c l y m t viên bi t h p có 2 viên bi tr ng và hai viên bi en. Do ó n u chúng ta bi t nh i n sau b c th nh t, khi ó chúng ta có th a ra c xác su t c a k t c c trong thí nghi m n ti p theo.

 $t\ B_1\ v\grave{a}\ B_2\ l\grave{a}\ c\acute{a}c\ bi\ n\ c\ ch\ a\ k\ t\ c\ c\ l\ y \qquad c\ viện$ bi en l n th nh t và l n th $\ 2\ m$ t cách t $\ ng\ ng.\ T \qquad ng$ th $\ c\ (2.25b)$ chúng ta có

$$P[B_1 \cap B_2] = P[B_2 | B_1]P[B_1].$$

Theo s thu t ng c a s hình cây trong hình 2.12, $P[B_1]$ là xác su t i n nh 1 và $P[B_2 \mid B_1]$ là xác su t i n nh trái nh t sau ó t nh 1. Ta có $P[B_1] = 2/5$ do 1 n 1 y th nh t t h p có 2 bóng en và 3 bóng tr ng; $P[B_2 \mid B_1] = 1/4$ do B_1 x y ra, phép 1 y th 2 t h p có 1 bi en và 3 bi tr ng. Nh y v

$$P[B_1 \cap B_2] = \frac{12}{45} = \frac{1}{10}.$$

M t cách t ng quát, xác su t c a dãy b t k các màu nh n c b i vi c nhân các xác su t t ng ng v i nh phép chuy n t nh n t i nh kia trong Hình 2.12.

HÌNH 2.12

Các phép chuy n t nh cao nh t, t i nh ti p theo t ng ng v i các k t c c có th khily hai viên bi t h p mà không hoàn I i. Xác su t c a phép chuy n là tích c a các xác su t c a các phép chuy n liên h p.

VÍ D 2.23 H th ng Thông

R t nhi u h th ng thông tin có th

c mô t theo cách nh

tin Nh th c

sau: The nh t, ng i g i dùng tín hi u 0 ho c 1 truy n i. Th hai, máy thu a ra quy t nh tín hi u nào c truy n i, d a trên c s tín hi u s nh n c. Gi s r ng ng i g i tín hi u 0 v i xác su t 1-p và tín hi u 1 v i xác su t p, và gi s r ng máy thu a ra quy t nh m t cách ng u nhiên v i xác su t sai 1à ε. t A_i là bi n c "tín hi u i i = 0, 1c truy n i," và B_i là bi n c "máy thu quy t nh tín hi u i ã c truy n i." Hãy tìm các xác su t $P[A_i \cap B_i]$ v i i = 0, 1 và j = 0, 1.

S hình cây cho thí nghi m này c ch ra trong Hình 2.13. Khi ó chúng ta nh n c các xác su t c n thi t

$$P[A_0 \cap B_0] = (1 - p) (1 - \varepsilon),$$

$$P[A_0 \cap B_1] = (1 - p) \epsilon$$
,

$$P[A_1 \cap B_0] = p \, \varepsilon, \quad va$$

$$P[A_1 \cap B_1] = p (1 - \varepsilon).$$

HÌNH 2.13

Xác su t c a các c p vào ra trong h truy n tin nh phân.

Gi s B_1 , B_2 ,..., B_n là các bi n c xung kh c t ng ôi mà h p c a chúng b ng không gian m u nh c ch ra trong Hình 2.14. Chúng ta coi các t p h p này nh là m t **phân ho ch** (**partion**) c a S. Bi n c A b t k có th bi u di n nh là h p c a các bi n c xung kh c t ng ôi theo cách sau:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup ... \cup B_n)$$
$$= (A \cap B_1) \cup (A \cap B_2) \cup ... \cup (A \cap B_n).$$

HÌNH 2.14

M t phân ho ch S thành n t p h p r i nhau.

(xem Hình 2.14). Do H qu 4, xác su t c a A b ng:

$$P[A] = P[A \cap B_1] + P[A \cap B_2] + L + P[A \cap B_n].$$

B ng vi c áp d ng $\,$ ng th c (2.25a) t i m i t $\,$ c a v $\,$ ph i chúng ta nh n c công th c **xác su t toàn ph n (theorem on total probability**):

$$P[A] = P[A|B_1] P[B_1] + P[A|B_2] P[B_2] + ... P[A|B_n] P[B_n].$$
 (2.26)

K t qu này th c s có ích khi thí nghi m có th coi nh m t dãy g m hai thí nghi m n nh c c h ra trong s hình cây Hình 2.12.

VÍ D 2.24 Trong thí nghi m c th o lu n trong Ví d 2.22, hãy tìm xác su t c a bi n c W_2 sao cho viên bi th 2 có màu tr ng.

Các bi n c $B_1 = \{(b, b), (b, w)\}$ và $W_1 = \{(w, b), (w, w)\}$ là m t phân ho ch c a không gian m u, b ng vi c ng d ng ng th c (2.26) chúng ta có:

$$P[W_2] = P[W_2 \mid B_1] \ P[B_1] + P[W_2 \mid W_1] \ P[W_1]$$

$$=\frac{32}{45}+\frac{13}{25}=\frac{3}{5}$$
.

Th t thú v khi chúng ta chú ý r ng xác này là b ng xác su t l y c viên bi tr ng trong l n l y u tiên. K t qu này có c do chúng ta gi thi t r ng chúng ta không bi t k t c c c a l n l y th nh t.

VÍ D 2.25

M t quá trình s n xu t t o ra m t h n h p g m chip nh "t t" và chip nh "x u". Th i gian s ng c a chip t t tuân theo lu t phân ph i m c a ra trong Ví d 2.10, v i t c h ng α . Th i gian s ng c a chip x u c ng tuân theo lu t m , nh ng v i t c h ng là 1000α . Gi s r ng, t l chip t t là 1-p và chip x u là p. Hãy tìm xác su t m t chip c l y m t cách ng u nhiên v n làm vi c sau t giây.

L y C là bi n c "chip v n làm vi c sau t giây," và 1 y

G là bi n c "chip c l y là chip t t" và B là bi n c "chip d c l y là chip x u." Do nh lý xác su t toàn ph n chúng ta có:

$$P[C] = P[C \mid G] P[G] + P[C \mid B] P[B]$$

$$= P[C \mid G] (1 - p) + P[C \mid B] p$$

$$= (1 - p)e^{-\alpha t} + pe^{-1000\alpha t},$$
ây ta s d ng gi thi t P[C | G] = $e^{-\alpha t}$ và P[C | B] = $e^{-1000\alpha t}$.

Quy t c Bayes

Gi s $B_1, B_2, ..., B_n$ là phân ho ch c a không gian m u S. Gi s r ng, bi n c A x y ra, khi ó xác su t c a bi n c B_j b ng bao nhiêu? Do nh ngh a xác su t có i u ki n chúng ta có:

$$P[B_j \mid A] = \underbrace{P[A \cap B_j]}_{P[A]} = \underbrace{P[A \mid B_j]P[B_j]}_{\sum_{k=1}^n P[A \mid B_k]P[B_k]}$$
(2.27)

ây chúng ta s d ng nh lý xác su t toàn ph n i v i P[A]. ng th c (2.27) c g i là **quy t c Bayes**.

Quy t c Bayes c ng th ng c s d ng trong tình th sau chúng ta có m t thí nghi m ng u nhiên mà ó các bi n c mà ta quan tâm t o ra m t phân ho ch "xác su t tiên nghi m" c a các bi n c này, $P[B_j]$, là xác su t c a các bi n c tr c khi thí nghi m c th c hi n. Bây gi chúng ta gi thi t r ng thí nghi m ã c th c hi n, và chúng ta bi t r ng, bi n c A ã x y ra; "Xác su t h u nghi m" là xác su t theo phân ho ch, $P[B_j \mid A]$, c tính theo thông tin ã có. Hai ví d sau ây minh h a cho tình th này.

VÍ D 2.26 H th ng Thông tin Nh th c Trong h truy n thông nh th c trong Ví d 2.23, hãy tìm tín hi u vào có xác su t l n h n v i tín hi u ra là 1. Gi s r ng xác su t tiên nghi m c a 2 tín hi u u vào 0 và 1 là ng xác su t.

 $G \ i \ A_k \ l\grave{a} \ bi \ n \ c \qquad tín \ hi \ u \ v\grave{a}o \ l\grave{a} \ k, \ k=0, \ 1 \ do \ A_0 \ v\grave{a}$ $A_1 \ l\grave{a} \ m \ t \ ph\hat{a}n \ ho \ ch \ c \ a \ không \ gian \ m \ u \ c \ a \ c \ p \ v\grave{a}o-ra. \qquad t$ $B_1 \ l\grave{a} \ bi \ n \ c \quad \text{``máy nh } n \ tín \ hi \ u \ ra \ l\grave{a} \ 1\text{''}. \ X\acute{a}c \ su \ t \ c \ a \ B_1 \ b \ ng :$

$$P[B_1] = P[B_1 | A_0] P[A_0] + P[B_1 | A_1] P[A_1]$$
$$= \varepsilon \left(\frac{1}{2}\right) + (1 - \varepsilon) \left(\frac{1}{2}\right) = \frac{1}{2}$$

ng d ng quy t c Bayes, chúng ta nh n c xác su t h u nghi m

$$P[A_0 \mid B_1] = \frac{P[B_1 \mid A_0]P[A_0]}{P[B_1]} = \frac{\varepsilon/2}{1/2} = \varepsilon$$

$$P[A_1 \mid B_1] = \frac{P[B_1 \mid A_1]}{P[B_1]} = \frac{(1-\varepsilon)/2}{1/2} = (1-\varepsilon).$$

Do \acute{o} , n u ϵ nh h n 1/2 , tín hi u vào là 1 h p lý h n tín hi u vào là 0 khi m t tín hi u nh n c u ra c a kênh.

VÍ D 2.27 Qu n lý Ch t I ng Xét các chip nh c tho lu n Ví d 2.25. G i t l chip x u là p và t c h ng c n ph i nhanh h n chip t t. Gi s r ng, "lo i b" chip x u, m i chip c ki m tra t giây tr c khi xu t x ng. Chip h ng b lo i chip v n làm vi c c a ra th tr ng. Hãy tìm giá tr t 99% chip c a ra th tr ng là chip t t.

t t là bi n c "chip v n làm vi c sau t giây", t G là bi n c "chip là t t" và B bi n c "chip là x u". Bài toán d n n tìm giá tr t sao cho:

$$P[G | C] = .99.$$

Chúng ta tìm c P[G | C] b ng vi c áp d ng quy t c Bayes:

$$P[G \mid C] = \frac{P[C \mid G]P[G]}{P[C \mid G]P[G] + P[C \mid B]P[B]}$$

$$= \frac{(1-p)e^{-\alpha t}}{(1-p)e^{-\alpha t} + pe^{-\alpha 1000t}}$$

$$= \frac{1}{1 + \frac{pe^{-\alpha 1000t}}{(1-p)e^{-\alpha t}}} = .99$$

ng th c trên có th gi i c theo t:

$$t = \frac{1}{999\alpha} \ln \left(\frac{99p}{1-p} \right).$$

Ví d , n u $1/\alpha = 20,000 \text{ h và } p = .10, \text{ khi } \acute{0} t = 48 \text{ h.}$

2.5 S CLPCACÁCBINC

N u thông tin v s x y ra c a bi n c B không nh h ng n xác su t c a bi n c A nào ó, khi ó m t cách hoàn toàn t nhiên chúng ta nói r ng bi n c A là c l p v i bi n c B. Theo khái ni m xác su t tình th này x y ra khi:

$$P[A] = P[A \mid B] = \frac{P[A \cap B]}{P[B]}.$$

ng th $\, c \,$ trên có $\, v \,$ n $\,$ khi mà $\, v \,$ ph $\, i \,$ không xác $\,$ nh $\, v \,$ i $\,$ P[B] = 0.

Chúng ta s nh ngh a 2 bi n c A và B c l p n u:

$$P[A \cap B] = P[A] P[B] \tag{2.28}$$

ng th c (2.28) kéo theo c 2 ng th c:

$$P[A \mid B] = P[A] \tag{2.29a}$$

và

$$P[B | A] = P[B]$$
 (2.29b)

Chú ý r ng, ng th c (2.29a) kéo ng th c (2.28) khi P[B] 0.

VÍ D 2.28 M t viên bi c l y t h p g m hai viên bi en, c ánh s l và 2, và hai viên bi tr ng c ánh s 3 và 4. t các bi n c A, B và C c xác nh nh sau:

$$A = \{(1, b), (2, b)\},$$
 "viên bi en c 1 y"

 $B = \{(2, b), (4, w)\},$ "viên bi có s ch n c

$$C = \{(3, w), (4, w)\},$$
 "s trên viên bi 1 n h n 2".

Các bi n c A và B có c l p? Các bi n c A và C có c l p? Tr c h t chúng ta xét bi n c A và B. Các xác su t theo yêu c u c a ng th c (2.28) là:

$$P[A] = P[B] = \frac{1}{2},$$

và

$$P[A \cap B] = P[\{(2,b)\}] = \frac{1}{4}$$

Nh v y

$$P[A \cap B] = \frac{1}{4} = P[A]P[B],$$

và các bi n c A và B c l p. ng th c (2.29b) cho cái nhìn sáng t h n ý ngh a c a s c l p:

$$P[A \mid B] = \frac{P[A \cap B]}{P[B]} = \frac{P[\{(2,b)\}]}{P[\{(2,b),(4,w)\}]} = \frac{1/4}{1/2} = \frac{1}{2}$$

$$P[A] = \frac{P[A]}{P[S]} = \frac{P[\{(1,b),(2,b)\}]}{P[\{(1,b),(2,b),(3,w),(4,w)\}]} = \frac{1/2}{1}.$$

Hai ng th c này d n n P[A] = P[A | B] do t 1 c a các k t c c trong S thu n 1 i cho s x y ra A là b ng t 1 c a các k t c c trong B thu n 1 i cho A. Nh v y, thông tin v s x y ra c a B không n h n g n x a c s u t x y ra a.

Các bi n c A và C không c l p do $P[A \cap C] = P[\emptyset] = 0$, v y

$$P[A \mid C] = 0$$
 $P[A] = .5$.

The ct A và C là hai bi ne xung khe c do $A \cap C = \emptyset$, vys

x y ra c a C có ngh a r ng A không th x y ra.

Xét t ng quát, n u hai bi n c có xác su t khác không và xung kh c, khi ó chúng không th c l p. Gi s có hai bi n c c l p và xung kh c, khi ó:

$$0 = P[A \cap B] = P[A] P[B],$$

mà i u này d n n ít nh t m t trong hai bi n c có xác su t b ng 0.

VÍ D 2.29 Hai s x và y c l y m t cách ng u nhiên gi a 0 và 1. t các bi n c A, B và C c xác nh nh sau:

$$A = \{x > 0.5\}, \quad B = \{y > 0.5\}, \quad \text{và } C = \{x > y\}.$$

Các bi n c A và B có c l p hay không? Các bi n c A và C có c l p hay không?

Hình 2.15 ch ra các mi n c a hình vuông n v t ng ng v i các bi n c trên. S d ng ng th c (2.29a), chúng ta có:

$$P[A \mid B] = \frac{P[A \cap B]}{P[B]} = \frac{1/4}{1/2} = \frac{1}{2} = P[A],$$

nh vy các bi n c A và B clp. H n n a chúng ta có t l c a các k t c c trong S thu n l i v i A là b ng t l c a các k t c c trong B thu n l i v i A.

S d ng ng th c (2.29b) chúng ta có:

$$P[A \mid C] = \frac{P[A \cap C]}{P[C]} = \frac{3/8}{1/2} = \frac{3}{4} \neq \frac{1}{2} = P[A]$$

nh v y các bi n c A và C là không c l p. Th c v y, t Hình 2.15(b) chúng ta có th nh n th y r ng, thông tin v vi c x l n h n y làm t ng xác su t l n h n 0.5.

i u ki n nào ba bi n c A, B và C tho mãn i u ki n c l p? Tr c h t chúng ta c n ph i ôi l c l p, ngh a là,

$$P[A \cap B] = P[A] P[B], \quad P[A \cap C] = P[A] P[C], va$$

$$P[B \cap C] = P[B] P[C].$$

H n n a thông tin v s x y ra ng th i c a hai bi n c b t k , g i là A và B , s không nh h ng n xác su t c a bi n c th 3, ngh a là:

$$P[C \mid A \cap B] = P[C].$$

cho i u này x y ra chúng ta c n ph i có:

$$P[C \mid A \cap B] = \frac{P[A \cap B \cap C]}{P[A \cap B]} = P[C].$$

n l t mình, i u này có ngh a là chúng ta c n ph i có

$P[A \cap B \cap C] = P[A \cap B] P[C] = P[A] P[B] P[C],$

ây chúng ta ãs d ng gi thi t A và B c l p v i nhau. Nh th chúng ta k t lu n r ng ba bi n c A, B và C c l p n u xác su t c a tích hai bi n c b t k và c a ba bi n c là b ng tích c a các bi n c thành ph n.

HÌNH 2.15

Víd v s clpvà không clp cacácbin c

(a) Bi n c A và B c l p.

(b) Bi n c A và C không c l p.

Ví d sau ây ch ra r ng n u ba bi n c ôi 1 c l p, không nh t thi t kéo theo $P[A \cap B \cap C] = P[A] P[B] P[C]$.

VÍ D 2.30 Xét thí nghi m c th o lu n trong Ví d 2.29, ó hai s c l y m t cách ng u nhiên t kho ng n v. t các bi n c B, D và F c xác nh nh sau:

B =
$$\left\{ y > \frac{1}{2} \right\}$$
, D = $\left\{ x < \frac{1}{2} \right\}$
F = $\left\{ x < \frac{1}{2} \text{ và } y < \frac{1}{2} \right\} \cup \left\{ x > \frac{1}{2} \text{ và } y > \frac{1}{2} \right\}$.

Ba bi n c c ch ra trong hình 2.16. Chúng ta d dàng ki m tra r ng c p b t k c a các bi n c này là c l p:

$$P[B \cap D] = \frac{1}{4} = P[B]P[D]$$

$$P[B \cap F] = \frac{1}{4} = P[B]P[F], \text{ và}$$

$$P[D \cap F] = \frac{1}{4} = P[D]P[F].$$

Tuy nhiên, ba bi n c là c l p, do $B \cap D \cap F = \emptyset$, nên:

$$P[B \cap D \cap F] = P[\emptyset] = 0$$
 $P[B] P[D] P[F] = \frac{1}{8}$

HÌNH 2.16

Các bi n c B, D và F là ôi m t c I p, nh ng b ba B, D và F là không c I p.

(c)
$$F = \{x < \frac{1}{2} \text{ và } y > \frac{1}{2}\} \cup \{x > \frac{1}{2} \text{ và } y < \frac{1}{2}\}.$$

t p n bi n c b t k c l p, xác su t có i u ki n c a m t bi n c nào ó không thay i khi x y ra ng th i t p con b t k c a các bi n c khác. Yêu c u này m t cách t nhiên d n t i nh ngh a sau c a s c l p. Các bi n c $A_1, A_2, ..., A_n$ c g i l a c l p y i k = 2, ..., n,

$$A_{1}, A_{2}, ..., A_{n}$$
 $c g i l a$ **c l p** v i $k = 2, ..., n,$

$$P[A_{i_{1}} \cap A_{i_{2}} \cap K \cap A_{i_{k}}] = P[A_{i_{1}}]P[A_{i_{2}}]K P[A_{i_{k}}], \qquad (2.30)$$

ây $1 \le i_1 < i_2 < ... < i_k \le n$. V i t p g m n bi n c chúng ta c n ph i ki m tra xác su t c a $2^n - n - 1$ giao có th v i nhân t trong v ph i.

nh ngh a trên c a tính cl p có v quá c ng k nh do nó yêu c u quá nhi u i u ki n c n ph i ki m tra. Tuy nhiên, ng d ng ph bi n nh t c a tính cl p là khi chúng ta gi nh r ng các bi n c c a các thí nghi m riêng l là cl p. Chúng ta quy cho các thí nghi m nh v y là các **thí nghi m cl p**. Ví d, chúng ta th ng gi nh r ng, k t c c c a phép tung ng xu là các k t c c cl p v i t t c các l n tung tr c và sau ó.

VÍ D 2.31

Gi s r ng m t ng xu cân i c tung ba l n và chúng ta quan tr c dãy k t qu c a m t s p và m t ng a. Hãy tìm xác su t c a các bi n c s c p.

Không gian m u c a thí nghi m này là $S=\{HHH, HHT, HTH, THH, TTH, THT, HTT, TTT\}$. Gi thi t v tính cân i c a ng xu có ngh a là các k t c c c a các l n tung riêng l là ng xác su t, ngh a là, P[H]=P[T]=1/2. N u chúng ta gi thi t thêm v tính c l p c a các l n tung ng xu, khi ó:

$$P[\{HHH\}] = P[\{H\}] P[\{H\}] P[\{H\}] = \frac{1}{8},$$

$$P[\{HHT\}] = P[\{H\}] P[\{H\}] P[\{T\}] = \frac{1}{8},$$

$$P[\{HTH\}] = P[\{H\}] P[\{T\}] P[\{H\}] = \frac{1}{8},$$

$$P[\{THH\}] = P[\{T\}] P[\{H\}] P[\{H\}] = \frac{1}{8},$$

$$P[\{TTH\}] = P[\{T\}] P[\{T\}] P[\{H\}] = \frac{1}{8},$$

$$P[\{THT\}] = P[\{T\}] P[\{H\}] P[\{T\}] = \frac{1}{8},$$

$$P[\{HTT\}] = P[\{H\}] P[\{T\}] P[\{T\}] = \frac{1}{8},$$

$$P[\{TTT\}] = P[\{T\}] P[\{T\}] P[\{T\}] = \frac{1}{8}.$$

VÍD 2.32 tincyca H th ng

M th g m m tb i u khi n và ba n v ngo i vi. H c g i là s n sàng n u b i u khi n và ít nh t hai n v ngo i vi còn làm vi c. Hãy tìm xác su t h s n sàng gi thi t r ng t t c các thành ph n h ng c l p v i nhau.

nh ngh a các bi n c sau: A là bi n c "b i u khi n còn làm vi c" và B_i là bi n c "n v ngo i vi th i còn làm vi c", $\hat{a}y i = 1, 2, 3$. Bi n c F, "hai ho c h n hai n v ngo i vi còn làm vi c", x y ra n u c ba n v còn làm vi c ho c n u có úng hai n v còn làm vi c. Do v y:

$$F = (B_1 \cap B_2 \cap B_3^c) \cup (B_1 \cap B_2^c \cap B_3)$$
$$\cup (B_1^c \cap B_2 \cap B_3) \cup (B_1 \cap B_2 \cap B_3)$$

Chú ý r ng các bi n c trong phép h p trên là ôi m t xung kh c. Do ó:

$$P[F] = P[B_1] P[B_2] P[B_3] + P[B_1] P[B_2] P[B_3]$$
$$+ P[B_1] P[B_2] P[B_3] + P[B_1] P[B_2] P[B_3]$$
$$= 3(1-a)^2 a + (1-a)^3,$$

ây chúng ta gi thi t r ng m i n v ngo i vi h ng v i xác su t a, do v y $P[B_i] = 1 - a$ và $P[B_i^c] = a$.

Bi n c "h s n sàng" là khi $A \cap F$. N u chúng ta gi thi tr ng b i u khi n h ng v i xác su tp, khi ó:

$$P["H s n sàng"] = P[A \cap F] = P[A] P[F]$$

=
$$(1 - p) P[F]$$

= $(1 - p) \{3(1 - a)^2 a + (1 - a)^3\}.$

Gi s a = 10%, khi ó t t c ba n v ngo i vi làm vi c $(1-a)^3 = 72.9\%$ th i gian và hai n v ngo i vi làm vi c và m t h ng $3(1-a)^2a = 24.3\%$ th i gian. Nh v y hai ho c h n hai n v ngo i vi làm vi c 97.2% th i gian. Gi s r ng b i u khi n r t không n nh v i p = 20%, khi ó h ch s n sàng 77.8% th i gian, ph n l n do b i u khi n b h ng.

Gi s b i u khi n y h t th hai c g n vào h th ng và là s n sàng n u có ít nh t m t b i u khi n ang làm vi c và có ít nh t hai ho c h n hai n v ngo i vi ang làm vi c. Trong Bài t p 69, các b n s c h i ch ra r ng ít nh t m t b i u khi n ang làm vi c v i 96% th i gian, và là h th ng làm vi c v i 93.3% th i gian. i u này làm t ng thêm 16% th i gian làm vi c c a h so v i h ch có m t b i u khi n.

2.6 DÃY CÁC THÍ NGHI M LIÊN TI P

Nhi u thí nghi m ng u nhiên có th coi nh các thí nghi m liên ti p, mà nó g m m t dãy các thí nghi m n. Các thí nghi m n này có th c l p, ho c không. Trong ph n này chúng ta s tho lu n các ph ng pháp nh n c các xác su t c a các bi n c trong các thí nghi m liên ti p.

Dãy các Thí nghi m clp

Gi s r ng m t dãy thí nghi m g m các thí nghi m E_1, E_2, \ldots, E_n . Khi ó m t k t c c c a thí nghi m này là m t b -n S = (S₁, ..., S_n), ây S_k là k t c c c a thí nghi m n th k. Không gian m u c a thí nghi m liên ti p c xác nh nh là t p các b -n c ch ra trên và c ký hi u b i tích Descartes c a các không gian m u n S₁ × S₂ × ... × S_n.

 $P[A_1 \cap A_2 \cap ... \cap A_n] = P[A_1] \ P[A_2] \ ... \ P[A_n]. \tag{2.31}$ Bi u th c này cho phép chúng ta tính t t c các xác su t c a t t c các bi n c c a thí nghi m liên ti p.

VÍ D 2.33

Gi s r ng 10 s c l y m t cách ng u nhiên t kho ng [0, 1]. Hãy tìm xác su t 5 s u tiên nh h n 1/4 và 5 s sau l n h n 1/2. G i $x_1, x_2, ..., x_{10}$ là dãy 10 s , khi ó các bi n c mà ta quan tâm là :

$$A_{k} = \left\{ x_{k} < \frac{1}{4} \right\} \quad \text{v i } k = 1, ..., 5$$
$$A_{k} = \left\{ x_{k} > \frac{1}{2} \right\} \quad \text{v i } k = 6, ..., 10$$

N u chúng ta gi thi t r ng m i l n l y là m t s c l p v i các l n l y khác, thì khi ó:

$$\begin{split} P[A_1 \cap A_2 \ \cap \dots \cap A_{10}] &= P[A_1] \ P[A_2] \ \dots \ P[A_{10}] \\ &= \left(\frac{1}{4}\right)^5 \left(\frac{1}{2}\right)^5. \end{split}$$

Bây gi chúng ta s b t u v i m t s mô hình quan tr ng c a các thí nghi m bao g m dãy các thí nghi m n c l p.

Lu t Xác su t Nh th c

M t **phép th Bernoulli** bao g m vi c ti n hành thí nghi m m t l n và vi c ghi l i bi n c A x y ra hay không. K t c c c a phép th Bernoulli c g i là "thành công" n u A x y ra và "th t b i" n u A không x y ra. Trong ph n này chúng ta s quan tâm t i vi c tìm xác su t c a k l n thành công trong khi l p l i n l n phép th Bernoulli m t cách c l p.

Chúng ta có th coi k t c c c a phép th Bernoulli n nh k t c c c a m t l n tung ng xu mà ó xác su t xu t hi n m t ng a (thành công) là p = P[A]. Xác su t c a k l n thành công trong n phép th Bernoulli t ng ng v i xác su t m t ng a xu t hi n k l n trong n l n tung ng xu.

VÍ D 2.34

Gi s r ng m t ng xu c tung ba l n. N u chúng ta gi s r ng $c\acute{a}c$ l n tung là c l p và xác su t xu t hi n m t ng a là p, khi \acute{o} xác su t c a dãy m t ng a và s p là:

$$P[\{HHH\}] = P[\{H\}] P[\{H\}] P[\{H\}] = p^{3},$$

$$P[\{HHT\}] = P[\{H\}] P[\{H\}] P[\{T\}] = p^{2}(1-p),$$

$$P[\{HTH\}] = P[\{H\}] P[\{T\}] P[\{H\}] = p^{2}(1-p),$$

$$P[\{THH\}] = P[\{T\}] P[\{H\}] P[\{H\}] = p^{2}(1-p),$$

$$P[\{TTH\}] = P[\{T\}] P[\{T\}] P[\{H\}] = p(1-p)^{2},$$

$$P[\{THT\}] = P[\{T\}] P[\{H\}] P[\{T\}] = p(1-p)^{2},$$

$$P[\{HTT\}] = P[\{H\}] P[\{T\}] P[\{T\}] = p(1-p)^{2},$$

$$P[\{TTT\}] = P[\{T\}] P[\{T\}] P[\{T\}] = (1-p)^{3}.$$

ây chúng ta s d ng vi c là các phép tung là c 1 p. t k là s 1 n xu t hi n m t ng a trong ba 1 n tung, khi ó:

$$P[k=0] = P[{TTT}] = (1-p)^3,$$

$$P[k = 1] = P[{TTH, THT, HTT}] = 3p(1-p)^2,$$

$$P[k = 2] = P[{HHT, HTH, THH}] = 3p^{2}(1-p), va$$

$$P[k=3] = P[{HHH}] = p^3.$$

K t qu trong Ví d 2.34 là tr ng h p n = 3 c a lu t xác su t nh th c.

NH LÝ Gi s k là s 1 n thành công trong n phép th Bernoulli, khi ó xác su t c a k c cho b i **lu t xác su t nh th c**:

$$p_n(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 v i $k = 0, ..., n,$ (2.32)

ây $\mathrm{p_n}(k)$ là xác su t
 c a kl n
 thành công trong n phép th , và

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \tag{2.33}$$

là h s nh th c.

Ký hi u n! trong ng th c (2.33) c g i là n giai th a và c xác nh b i: n! = n(n-1) ... (2)(1). V i nh ngh a 0! = 1.

Bây gi chúng ta ch ng minh nh lý trên. T Ví d 2.34 chúng ta nh n th y r ng m i m t dãy v i k thành công và (n-k) th t b i có cùng xác su t b ng $p^k(1-p)^{n-k}$. t $N_n(k)$ là s các dãy khác nhau mà ó có k thành công và (n-k) th t b i, khi ó:

$$p_n(k) = N_n(k) p^k (1-p)^{n-k}.$$
 (2.34)

Bi u th c $N_n(k)$ là s cách l y k i m t n i m bi u th cho thành công. Theo nh ch ng minh trong Ví d 2.18 ta s có:

$$N_{\rm n}(k) = \binom{n}{k} \tag{2.25}$$

nh lý nh n c b i vi c thay ng th c (2.35) vào ng th c (2.34).

VÍ D 2.35 Ki m tra ng th c (2.32) cho các xác su t tìm c trong Ví d 2.24.

Trong Ví d 2.34, t "k t qu tung c m t ng a" t ng ng v i "thành công", khi ó:

$$p_3(0) = \frac{3!}{0!3!} p^0 (1-p)^3 = (1-p)^3,$$

$$p_{3}(1) = \frac{3!}{1!2!} p^{1} (1-p)^{2} = p(1-p)^{2},$$

$$p_{3}(2) = \frac{3!}{2!1!} p^{2} (1-p)^{1} = p^{2} (1-p), \text{ và}$$

$$p_{3}(3) = \frac{3!}{3!0!} p^{3} (1-p)^{0} = p^{3},$$

mà i u này phù h p v i k t qu tr c ây.

Các b n \tilde{a} c làm quen v i h s nh th c trong giáo trình tính toán nh p môn khi **nh lý nh th c** c th o lu n :

$$(a+b)^{n} = \sum_{k=0}^{n} {n \choose k} a^{k} b^{n-k}.$$
(2.36)

N u chúng ta t a = b = 1, khi ó:

$$2^n = \sum_{k=0}^n \binom{n}{k} = \sum_{k=0}^n N_n(k),$$

mà i u này phù h p v i s vi c r ng có 2^n dãy có th khác nhau c a s 1 n thành công và th t b i trong n phép th . N u chúng ta t a = p và b = 1 - p trong ng th c (2.36), chúng ta khi ó nh n c:

$$1 = \sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k} = \sum_{k=0}^{n} p_{n}(k),$$

mà i u này ch ng t r ng các xác su t c a lu t xác su t nh th c có t ng b ng 1.

Giá tr c a n! t ng r t nhanh theo n, nên các bài toán s th ng g p ph i nh ng giá tr t ng i nh c a n n u th tính $p_n(k)$ tr c ti p theo ng th c (2.32). Công th c truy h i sau tránh kh i c l ng tr c ti p c a n! và do v y m r ng mi n giá tr c a n mà t i ó $p_n(k)$ có th tính c tr c khi g p s khó tính:

$$p_{n}(k+1) = \underbrace{\frac{(n-k)p}{(k+1)(1-p)}} p_{n}(k)$$
 (2.37)

Trong ph n sau c a cu n sách chúng ta s trình bày hai công th c x p x xác su t nh th c cho tr ng h p n l n.

VÍ D 2.36

 $t\,k\,$ là s các loa ang ho t ng (không im l ng) trong nhóm 8 loa không t ng tác v i nhau (t c là c l p v i nhau). Gi s r ng m i loa ho t ng v i xác su t 1/3. Hãy tìm xác su t s loa ho t ng là l n h n 6.

V i i = 1, ..., 8 t A_i là bi n c "loa th i ho t ng". S các loa ho t ng là s thành công trong 8 phép th Bernoulli v i p = 1/3. Do v y xác su t h n 6 loa ho t ng là :

$$p[k=7] + p[k=8] = {8 \choose 7} {1 \over 3}^{7} {2 \choose 3} + {8 \choose 8} {1 \over 3}^{8}$$
$$= .00244 + .00015 = .00259.$$

VÍ D 2.37 Mã S a Sai M th truy n thông thông tin nh th c trên m t kênh mà m i bit ng u nhiên b sai v i xác su t $\epsilon = 10^{-3}$. Máy phát truy n m i bit thông tin 3 l n, và máy c quy t nh l y bit có s l n su t hi n nhi u h n làm bit c truy n trên kênh. Hãy tìm xác su t máy thu có c quy t nh úng n.

Máy thu có th hi u ch nh m t sai 1 m riêng 1, nh nó s a ra quy t nh sai 1 m n u kênh m c ph i 2 sai 1 m tr lên. N u chúng ta coi m i phép chuy n nh m t phép th Bernoulli mà ó m i "thành công" t ng ng v i m t 1 n sai, khi ó xác su t có hai 1 n sai tr lên trong ba phép th Bernoulli là:

$$P[k \ge 2] = {3 \choose 2} .001)^2 (.999) + {3 \choose 3} (.001)^3 = 3(10^{-6}).$$

Lu t Xác su t a th c

Lu t xác su t nh th c có th c t ng quát hoá cho tr ng h p mà ó chúng ta ghi c s x y ra c a h n m t bi n c . Gi s B_1 , B_2 ,... B_M là m t phân ho ch c a không gian m u S c a thí nghi m ng u nhiên và t $P[B_j] = p_j$. Các bi n c là xung kh c, b i v y:

$$p_1 + p_2 + \ldots + p_M = 1$$
.

Gi s r ng n l n l p l i thí nghi m m t cách c l p c th c hi n. t k_j là s l n x y ra bi n c B_j , khi ó vect $(k_1, k_2, ..., k_M)$ mô t s l n xu t hi n c a m i bi n c B_j , xác su t c a vect $(k_1, ..., k_M)$ tho mãn **lu t xác su t a th c**:

$$P[(k_1, k_2, ..., k_M)] = \frac{n!}{k_1! k_2! K k_M!} p_1^{k_1} p_2^{k_2} K p_M^{k_M}$$
 (2.38)

ây $k_1 + k_2 + ... + k_M = n$. Lu t xác su t nh th c là tr ng h p M = 2 c a lu t xác su t a th c. L i ch ng minh cho lu t xác su t a th c hoàn toàn t ng t nh cho lu t xác su t nh th c. Chúng ta ch c n chú ý r ng s các dãy khác nhau v i $k_1, k_2, ..., k_M$ là s 1 n xu t hi n các bi n c $B_1, B_2, ..., B_M$ c cho b i h s a th c trong ng th c (2.23).

VÍ D 2.38 M t phi tiêu ném 9 l n vào bia g m 3 mi n. M i l n ném có xác su t .2, .3, và .5 trúng vào mi n 1, 2 và 3 t ng ng. Hãy tìm xác su t phi tiêu ném trúng 3 l n vào m i mi n.

Thí nghi m này là s 1 p 1 i m t cách c 1 p 9 1 n m t thí nghi m n có 3 k t c c có th . Xác su t c a s 1 n x y ra m i k t c c c a ra b i xác su t a th c v i các tham s n

= 9,
$$v \grave{a} p_1 = .2$$
, $p_2 = .3$, $v \grave{a} p_3 = .5$:

$$P[(3,3,3)] = \underbrace{9!}_{3!3!3!} (.2)^3 (.3)^3 (.5)^3 = .04536.$$

VÍ D 2.39

Gi s r ng chúng ta l y 10 s i n tho i m t cách ng u nhiên t m t danh b i n tho i và ghi l i ch s cu i cùng m i s i n tho i. H i xác su t b ng bao nhiêu chúng ta nh n c m i s nguyên t 0 n 9 ch 1 l n?

Xác su t c a s 1 n x y ra s nguyên c cho b i nh th c v i các tham s M = 10, và n = 10, và $p_j = 1/10$, n u ta gi thi t r ng 10 s nguyên t 0 n 9 là ng xác su t. Khi ó xác su t nh n c m i s nguyên 11 n trong 101 n 1 y b ng:

$$\frac{10!}{1!1!...1!}(.1)^{10} = 3.6(10^{-4}).$$

Lu t Xác su t Hình h c

Xét m t thí nghi m liên ti p mà ó chúng ta 1 p 1 i các phép th Bernoulli cho n khi x y ra thành công u tiên. t k t c c c a thí nghi m này là m, là s các phép th c th c hi n cho n khi xu t hi n thành công u tiên. Không gian m u c a thí nghi m này là t p các s nguyên d ng. Xác su t p(m), th c hi n m phép th tìm c b ng s 1 u ý r ng, i u này ch có th x y ra n u m-1 phép th u tiên k t qu th t b i và phép th th m thành công $^{(3)}$. Xác su t c a bi n c này là :

$$p(m) = P[A_1^c A_2^c ... A_{m-1}^c A_m] = (1-p)^{m-1} p \qquad m = 1, 2, ..., (2.39)$$

ây A_i là bi n c "thành công phép th th i". Phép gán xác su t c môt b i ng th c (2.39) c g i là lu t xác su t hình h c.

Các xác su t trong ng th c (2.39) có t ng b ng 1:

$$\sum_{m=1}^{\infty} p(m) = p \sum_{m=1}^{\infty} q^{m-1} = p \frac{1}{1-q} = 1,$$

ây q = 1 - p, và chúng ta s d ng công th c tính t ng c a c p s nhân. Xác su t h n K phép th c th c hi n tr c khi thành công có công th c n gi n:

$$P[\{m > K\}] = p \sum_{m=K+1}^{\infty} q^{m-1} = p q^{K} \sum_{j=0}^{\infty} q^{j}$$

$$= p q^{K} \frac{1}{1-q}$$

$$= q^{K}$$
(2.40)

VÍD 2.40 Kim tra L i b ng Phép L p

Máy tính A g i m t tin nh n t i máy tính B trên kênh i n tho i không tin c y. Tin nh n c c mã hoá sao cho B có th phát hi n ra m t l i x y ra trong quá trình truy n. N u B phát hi n ra m t l i, nó s yêu c u A phát l i. N u xác su t x y ra l i khi truy n tin nh n là q = .1, xác su t tin nh n ph i truy n nhi u h n 2 l n b ng bao nhiêu?

M i phép truy n tin là m t phép th Bernoulli v i xác su t thành công p = 1 - q. Các phép th Bernoulli c l p l i cho n khi nh n c thành công u tiên (phép truy n không l i). Xác su t có h n hai l n truy n c th c hi n c cho b i ng th c (2.40):

$$P[m > 2] = q^2 = 10^{-2}$$
.

(3) Xem Ví d $\,$ 2.8 trong Ph n $\,$ 2.2 v $\,$ cách gi $\,$ i thích b $\,$ ng t $\,$ n su t $\,$ t $\,$ ng $\,$ i v $\,$ vi c lu t xác su t hình h $\,$ c x $\,$ y ra nh $\,$ th $\,$ nào

Dãy các Thí nghi m clp

Trong ph n này chúng ta xét dãy ho c "xích" các thí nghi m n mà ó k t c c c a thí nghi m n quy t nh vi c th c hi n ti p. Tr c h t chúng ta a ra m t thí d n gi n v m t thí nghi m nh và ch ra s nh th nào có th c dùng mô t không gian m u.

VÍ D 2.41

Thí nghi m liên ti p là phép l y l p l i m t viên bi t m t trong hai h p, ghi l i s trên viên bi và hoàn l i h p c a nó. H p 0 g m m t viên bi v i s 1 và hai viên bi v i s 0 và h p 1 g m 5 viên bi v i s 1 và m t viên bi v i s 0. H p mà t ó phép th th nh t c th c hi n c ch n m t cách ng u nhiên b i k t qu tung ng xu cân i. H p 0 c dùng n u k tc clàm tng a vàh p 1 c dùng n u k t c c là s p. Sau óh p c dùng trong thí nghi m n là h p có s t ng ng v i s trên viên bi c l y trong thí nghi m n tr c ó.

Không gian m u c a thí nghi m này g m các dãy 0 và 1. M i dãy có thư ng ng v i m t ng i xuyên qua s "l i m t cáo" c trình bày trong hình 2.17(a). Các nh này ký hi u các h p c dùng thí nghi m th ra, và các nhân c a các nhánh ký hi u k t c c c a thí ng i 0011 t ng ng v i dãy: phép nghi m n. Nh v y ng xu xu thi n m t ng a b i v y l n l y th nh t là t h p s 0; k t c c c a l n l y th nh t là 0, b i v y l n l y bi th hai làt h ps 0; k t c c c a l n l y th hai là bi s 1, b i vylnlybith 3 làt hps 1; vàk tcccalnlyth 3 c bis 1, b iv yl n l y bith t làt h ps 1.

Bây gi gi s r ng chúng ta mu n tính xác su t c a dãy riêng các k t c c, g i là s_0 , s_1 , s_2 . Ký hi u xác su t này b i $P[\{s_0\} \cap \{s_1\} \cap \{s_2\}]$. t $A = \{s_2\}$

 $B = \{s_0\} \cap \{s_1\}$, khi ó $P[A \cap B] = P[A \mid B] P[B]$ chúng ta có

$$P[\{s_0\} \cap \{s_1\} \cap \{s_2\}] = P[\{s_2\} \mid \{s_0\} \cap \{s_1\}] P[\{s_0\} \cap \{s_1\}]$$

$$= P[\{s_2\} \mid \{s_0\} \cap \{s_1\}] P[\{s_1\} \mid \{s_0\}] P[\{s_0\}]$$
(2.41)

Bây gi chú ý r ng trong ví d trên xác su t $P[\{s_n\} \mid \{s_0\} \cap ... \cap \{s_{n-1}\}]$ ch ph thu c vào $\{s_{n-1}\}$ do k t c c g n nh t quy t nh thí nghi m n nào s c th c hi n:

$$P[\{s_n\} \mid \{s_0\} \cap \dots \cap \{s_{n-1}\}] = P[\{s_n\} \mid \{s_{n-1}\}]$$
(2.42)

T ó v i dãy mà ta quan tâm chúng ta có:

$$P[\{s_0\} \cap \{s_1\} \cap \{s_2\}] = P[\{s_2\} \mid \{s_1\}] P[\{s_1\} \mid \{s_0\}] P[\{s_0\}] (2.43)$$

HÌNH 2.17

S hình m t cáo c a xích Markov

(a) M i dãy k t c c t ng ng v i m t qu o xuyên qua s hình m t cáo này.

(b) Xác su t c a dãy các k t c c là tích các xác su t d c theo qu o k t n i.

Các thí nghi m liên ti p tho mãn ng th c (2.42) c g i là **xích Markov** (**Markov chains**). V i các thí nghi m này, xác su t c a dãy s_0 , s_1 , ..., s_n c cho b i:

$$P[s_0, s_1, ..., s_n] = P[s_n \mid s_{n-1}] P[s_{n-1} \mid s_{n-2}] ... P[s_1 \mid s_0] P[s_0] (2.44)$$

ây chúng ta có bi u th c \tilde{a} c n gi n b i s b qua ký hi u móc n i. Do v y xác su t c a dãy s_0, \ldots, s_n c cho b i tích xác su t c a k t c c th

nh t s_0 và các xác su t c a t t c các phép chuy n v sau, s_0 t i s_1 , s_1 t i s_2 , và vân vân. Ch s_0 ng 8 s bàn v xích Markov.

VÍ D 2.42 Hãy tìm xác su t c a dãy 0011 v i thí nghi m h p c gi i thi u trong Ví d 2.41.

Gilih p 0 g m hai bi v i nhãn 0 và m t bi v i nhãn 1, và h p 1 g m 5 bi v i nhãn 1 và m t bi v i nhãn 0. Chúng ta hoàn toàn có th tính c xác su t c a dãy các k t c c theo nhãn các nhánh trong s hình m t cáo v i xác su t t ng ng v i phép chuy n nh hình 2.17(b). Nh v y xác su t c a dãy 0011 c cho b i

 $P[0011] = P[1 \mid 1] P[1 \mid 0] P[0 \mid 0] P[0],$

ây các xác su t chuy n c cho nh sau:

$$P[1 \mid 0] = \frac{1}{3}$$
 và $P[0 \mid 0] = \frac{2}{3}$

$$P[1|1] = \frac{5}{6}$$
 và $P[0|1] = \frac{1}{6}$,

và các xác su t ban u:

$$P(0) = \frac{1}{2} = P[1].$$

N u chúng ta thay th các giá tr này vào bi u th c c a

$$P[0011] = \left(\frac{5}{6}\right)\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{2}\right) = \frac{5}{54}.$$

Thí nghi m hai h p trong các Ví d 2.41 và 2.42 là ví d n gi n nh t c a các mô hình xích Markov mà s c th o lu n trong Ch ng 8. Thí nghi m hai h p th o lu n ây ó ch có hai k t c c, và các k t c c dùng cho mô hình mà t nhiên. Ví d, mô hình hai hình ã c dùng cho mô hình xu t hi n t nhiên c a gói âm thanh ctorab im t loa riêng l mà ós xu t hi n t nhiên c a gói âm tách ra b i chu k yên l ng t ng i dài. Mô hình c ng áp d ng cho dãy các ch m en và tr ng là k t qu t vi c scan các ng nh en tr ng.

*2.7 PH NG PHÁP T O RA S NG U NHIÊN:

S N XU T S NG U NHIÊN

Ph n này chúng ta s gi i thi u ph ng pháp s n xu t dãy s ng u nhiên b ng máy tính. B t k s mô ph ng nào b ng máy tính m t h có tính ng u nhiên nh t thi t ph i có ph ng pháp t o ra dãy s ng u nhiên. Các s ng u nhiên này c n ph i tho mãn các tính ch t trung bình mà chúng mô ph ng. Trong ph n này chúng ta t p trung vào bài toán t o ra s ng u nhiên có "phân

ph i u" trên kho ng [0, 1]. Trong ch ng sau chúng ta s ch ra các s ng u nhiên này s c dùng nh th nào t o ra các s tuân theo lu t xác su t tu ý.

V n u tiên chúng ta c n ph i gi i quy t khi t o ra s ng u nhiên trong kho ng [0, 1] là vi c có m t s vô h n không m c các i m trong kho ng

[0, 1], nh ng s tính toán ch gi i h n v i các s i di n ch v i chính xác h u h n. B i v y chúng ta c n ph i b ng lòng v i vi c t o ra các s ng xác su t t t p h u h n, g i là $\{0, 1, ..., M-1\}$ ho c $\{1, 2, ..., M\}$. B ng vi c chia các s này cho M, chúng ta nh n c các s trong kho ng n v các s này có th làm trù m t trong kho ng n v b ng vi c l y M r t l n.

B c ti p theo bao g m vi c tìm c ch s n sinh s ng u nhiên. Cách ti p c n tr c ti p bao g m c vi c th c hi n các phép th ng u nhiên. Chúng ta có th t o ra các s nguyên t 0 t i $2^m - 1$ b ng phép tung ng xu cân i m l n và thay dãy m t ng a và s p b ng các s 0 và l nh n c bi u di n nh th c c a m t s nguyên. Ví d khác g m vi c l y m t viên bi t h p có các viên bi c ánh s t 1 t i M. Mô ph ng tính toán g m vi c t o ra dãy các s ng u nhiên dài. N u chúng ta s d ng c ch trên t o các s ng u nhiên, chúng ta s ti n hành thí nghi m v i s 1 n 1 n và ch a các k t c c vào b nh máy tính b tr thêm ch ng trình mô ph ng. Rõ ràng r ng s ti p c n này là v ng v và nhanh chóng t ra không th c t .

Cách ti p c n thích h p h n t o ra các s ng u nhiên b ng máy tính là vi c s d ng các công th c truy h i mà nó có th c hi n y m t cách d dàng và nhanh chóng. Chúng ta s th o lu n **ph ng pháp th ng d lu th a** (**power residue method**), mà nó bao g m công th c truy h i sau:

$$Z_k = \alpha Z_{k-1} \bmod M, \tag{2.45}$$

ây α là m t s nguyên c ch n c n th n gi a 1 và M, và M là s nguyên t p ho c lu th a nguyên c a s nguyên t p^m . ng th c (2.45) g m c vi c 1 y tích α và Z_{k-1} , chia tích này cho M, 1 y Z_k là ph n d c a phép chia. S nh n c n m trong kho ng t 0 t i M-1.

VÍ D 2.43 Hãy tìm các dãy c tính theo ng th c (2.45) v i: M = 11, $\alpha = 7$, $Z_0 = 1$; M = 11, $\alpha = 3$, $Z_0 = 1$; $M = 2^2$, $\alpha = 2$, $Z_0 = 1$.

V i M = 11, $\alpha = 7$, và $Z_0 = 1$, chúng ta có $Z_1 = \text{ph nd c a} \frac{(7 \times 1)}{11} = 7$, $Z_2 = \text{ph nd c a} \frac{(7 \times Z_1)}{11} = \text{ph nd c a} \frac{49}{11} = 5$, và vân vân. Các b n có th ki m tra dãy k t qu là:

1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1,

Chú ý r ng dãy ch $\,y$ vòng trên qua t t c $\,$ các s $\,$ nguyên n m trong kho ng t $\,$ 1 t $\,i$ 10, và sau $\,$ ó dãy l $\,$ p l $\,i$ vô h $\,$ n l $\,$ n.

V i M=11, $\alpha=3$, và $Z_0=1$, dãy c tính theo ng th c (2.45) là:

Dãy này không ch y vòng tròn qua t t c các s nguyên trong kho ng 1 n 10 tr c khi b t u quá trình 1 p.

V i $M=2^2=4$, $\alpha=2$, và $Z_0=1$, dãy c tính theo ng th c (2.45) là:

1, 2, 0, 0,

Chú ý r ng n u α chia u M, khi ó dãy c t o b i ng th c (2.45) ph n cu i g m toàn s 0. M t khác dãy tu n hoàn có chu k 1 n nh t là M-1. dãy có dài l n nh t có th α c n ph i là "nghi m nguyên thu c a M". Chúng ta không th o lu n nghi m nguyên thu c ch n th nào. Chúng ta h ng c gi quan tâm t i tài li u tham kh o [6] cu i ch ng c thêm.

Ví d 2.43 ch ra r ng các dãy c t o b i ng th c (2.45) là tu n hoàn và không th c s ng u nhiên. ng th c (2.43) d n n r ng dãy a vào s b t u l p l i khi có s xu t hi n l n th hai trong dãy. Vì lý do này mà các dãy c t o b i ng th c (2.45) c g i là gi ng u nhiên.

N u *M* c 1 y c c 1 n, khi ó các s trong dãy không 1 p 1 i trong su t quá trình mô ph ng. Khi ó câu h i then ch t dãy s xu t hi n m t cách ng u nhiên, có ch ng và ki m tra i u này nh th nào? M t cách là tính các t n s t ng i. N u chúng ta ki m tra dãy s chu n hoá b i *M*, các s n có th xu t hi n theo ph ng pháp u trong kho ng n v, các c p s xu t hi n theo ph ng pháp u trong hình vuông n v, các b ba trong hình h p n v và vân vân. Ch ng 3 trình bày các tính ch t th ng kê k t lu n các t n su t t ng i c quan sát có phù h p v i ph ng pháp c mô t hay không.

$$Z_i = 7^5 Z_{i-1} \mod (2^{31} - 1).$$
 (2.46)

Phép sinh này v i nhân t $\alpha = 7^5 = 16,807$ t o ra dãy có dài $M - 1 = 2^{31} - 2$ =

= 2,147,483,646. Phép ch n Z_0 c g i là "h t gi ng " c a phép sinh s ng u nhiên, và nó quy t nh i m mà t i ó dãy b t u.

Các b n có th không có v n khi vi t ch ng trình máy tính th c hi n ng th c (2.46). Ph 1 c C ch a ch ng trình nh v y theo ngôn ng 1 p trình C. Thu t toán t n ít th i gian nh t trong ch ng trình nh v y là phép chia cho M. i u này d n n m t chú ý quan tr ng r ng, khi mô hình hoán yêu c u t o ra s ng u nhiên có giá tr r t l n. Ph ng pháp th c hi n ng th c (2.46) c g i là **phép chia ph ng theo** (**simulated division**), c phát minh ra t c nhanh h n th c s phép chia thông th ng. Tài li u tham

kh o [6] và [7] gi i thích phép chia mô ph ng và tài li u tham kh o [7] trình bày ch ng trình vi t theo ngôn ng FORTRAN th c hi n ph ng pháp.

TÓM T T

- Mô hình xác su t c ng nh t v i không gian m u S, các bi n c c quan tâm và m t phép gán xác su t ban u, m t "lu t xác su t" t ó có th tính xác su t c a t t c các bi n c .
- Không gian m u S là t p t t c các k t c c có th . N u nó g m m t s h u h n ho c m c các ph ng trình,
 S c g i là r i r c, ng c l i, g i là liên t c.
- Các bi n c là các t p con c a S tho mãn các i u ki n mà ta quan tâm trong thí nghi m c th . Khi S r i r c, các bi n c g m h p c a các bi n c s c p. Khi S là liên t c, các bi n c là h p ho c giao c a các kho ng trên ng th ng th c.
- Các tiên xác su t là t p các tính ch t mà xác su t c a các bi n c c n ph i tho mãn. Các h qu suy ra t các tiên cung c p các quy t c tính xác su t c a các bi n c d a vào xác su t c a các bi n c khác.
- Phép gán xác su t ban u ch ra r ng xác su t c a nh ng bi n c ch c ch n c n ph i c xác nh riêng v i t ng mô hình. N u S là r i r c, nó c n ph i ch ra xác su t c a các bi n c s c p. N u S là liên t c thì nó ph i ch ra xác su t c a các kho ng ho c là n a kho ng h u h n.
- Các công th c t h p c dùng tính các xác su t trong các thí nghi m mà ó có m t s h u h n các bi n c ng xác su t.

- Xác su t có i u ki n nh l ng s nh h ng c a thông tin riêng v k t c c c a m t thí nghi m lên xác su t c a m t bi n c . Nó c bi t có ích trong các thí nghi m liên ti p, mà ó các k t c c c a các thí nghi m n t o thành thông tin riêng
- Quy t c Bayes ch ra xác su t h u nghi m c a m t bi n c d a trên s x y ra c a bi n c khác. Nó có th c dùng t ng h p các quy t c ra quy t nh, mà t ó th xác nh "nguyên nhân" có kh n ng nh t d i ánh sáng c a k t qu quan tr c.
- Hai bi n c c l p v i nhau n u thông tin v vi c x y ra c a bi n c này không nh h ng n xác su t c a bi n c kia. Hai thí nghi m là c l p n u t t c các bi n c c a m i thí nghi m c l p v i t t c các bi n c c a thí nghi m kia. Khái ni m c l p là r t có ích tính xác su t trong các thí nghi m mà nó g m các thí nghi m n là không t ng tác.
- R t nhi u thí nghi m có th coi nh là dãy c a các thí nghi m c l p. Trong ch ng này chúng ta ã trình bày lu t xác su t nh th c, a th c và hình h c nh là các mô hình xu t hhi n trong i u ki n này.
- M t xích Markov là m t dãy các thí nghi m n mà ó các k t c c c a thí nghi m n xác nh thí nghi m n ti p theo c xác nh nh th nào. Xác su t c a dãy các k t c c trong xích Markov c cho b i tích c a các xác su t c a các thí nghi m

th nh t và xác su t c a t t c các d n ch ng.

 S mô ph ng máy tính dùng ph ng trình h i quy t o ra dãy các s gi ng u nhiên.

DANH SÁCH CÁC THU T NG QUAN TR NG

Quy t c Bayes
Phép th Bernoulli
H s nh th c
nh lý xác su t nh th c
Xác su t có i u ki n
Không gian m u liên t c
Không gian m u r i r c

Bincscp
Binc
Các binc clp
Các thí nghi m clp
Phép gán xác su t ban u
Xích Markov

Phân ho ch
Lu t xác su t
Không gian m u
Các phép toán t p h p
nh lý xác su t toàn ph n
S hình cây

<u>CHÚ GI I TÀI LI U THAM KH O</u>

Có nhi u sách nh p môn v xác su t và th ng kê. Các tài li u tham kh o t [1] n [5] là nh ng cu n sách yêu c a tôi, chúng b t u t nh ng v n s khai, ch n nh ng ví d tr c quan, ch ra quy lu t nh ng n i ngoài r c r i bí hi m và thích thú khi c chúng! Các tài li u tham kh o [6] và [7] là s m u tuy t v i các ph ng pháp mô ph ng các h ng u nhiên b ng máy tính.

- 1. Y. A. Rozanov, *Probability Theory: A Concise Course*, Dover Publications, New York, 1969.
- 2. P. L. Meyr, *Itroductory Proba-bility* and *Statistical, Applications*, Addison-Wesley, Reading, Mass., 1970.
- 3. K. L. Chung, *Elementary Probability Theory*, Springer-Verlag, New York, 1974.

- 4. A. B. Clarke and R. L. Disney, *Probability and Random Processes*, 2d ed., Wiley, New York, 1985.
- 5. L. Breiman, *Probability and Stochastic processes*, Houghton Mifflin, Boston, 1969.
- 6. H. Kobayashi, Modeling and Analysis: An Introduction to System Performance Evanluation Methods, Addison-Wesley, Reading, Mass., 1978.
- 7. A. M. Law and W. D. Kelton, *Simulation Modeling and Analisis*, McGraw-Hill, New York, 1982.
- 8. W. Feller, An Introduction to Probability Theory and Its Applications, 3d ed., Wiley, New York, 1968.

BÀIT P

PH N 2.1

Mô t các Thí

1. M t qu xúc x c c tung và s các ch m c a m t ng a trên m và ghi 1 i.

nghi m Ng u nhiên

- a. Không gian m u là gì?
- b. T p h p A t ng ng v i bi n c "s các ch m c a m t trên là s ch n" là gì?
- c. Hãy tìm t p h p A^c và mô t bi n c t ng ng b ng l i.
- 2. M t quân xúc x c c tung hai l n và s các ch m c a m t trên c m và ghi l i theo th t x y ra.
 - a. Tìm không gian m u.
 - b. Tìm t p A t ng ng v i bi n c "t ng s ch m xu t hi n là ch n."
 - c. Tîm t p h p B t ng ng v i bi n c "c hai l n tung c s ch m ch n.
 - d. A kéo theo B hay B kéo theo A?
 - e. Tìm $A \cap B^c$ và mô t bi n c này b ng l i.
- 3. Hai con xúc x c c tung và c t ng s ch m c a các m t trên c m và ghi l i.
 - a. Tìm không gian m u.
 - b. Tìm t p A t ng ng v i bi n c "t ng s ch m xu t hi n là ch n".
 - c. Bi u di n m i bi n c s c p trong thí nghi m này nh là h p c a các bi n c s c p t Bài t p 2.
- 4. M t con xúc x c c tung và N_1 là s i m c a m t trên c tính và ghi 1 i, N_2 là m t s nguyên c l y m t cách ng u nhiên t kho ng 1 t i N_1 .
 - a. Tìm không gian m u.
 - b. Tìm t p các k t c c t ng ng v i bi n c "quân xúc x c xu t hi n m t 4 ch m."
 - c. Tìm t p các k t c c t ng ng v i bi n c " $N_2 = 3$ ".
 - d. Tìm t p các k t c c t ng ng v i bi n c " $N_2 = 6$ ".
- 5. M t ng n kéo bàn có 5 bút m c, ba chi c trong ó b khô.
 - a. Các bút c l y m t cách ng u nhiên t ng chi c m t cho n khi l y c bút t t. K t qu c a dãy ki m tra d c ghi l i. Không gian m u là gì?
 - b. Gi s r ng s các bút, mà không ph i dãy, a ra ki m tra c ghi l i. Hãy mô t không gian m u.

- c. Gi s r ng các bút c l y t ng chi c m t và c ki m tra cho n khi nh n c hai bút t t, và k t qu c a dãy c ki m tra ghi l i. Không gian m u là gì?
- d. Hãy mô t không gian m u trong t ng tr ng h p c n u ch s bút c ki m tra c ghi l i.
- 6. Hai thành ph n trong m th, C_1 và C_2 , cki m tra và ghi l i m t trong ba tr ng thái có th: F, làm vi c; R, không làm vi c nh ng có th s a ch a; và K, b h ng.
 - a. Trong thí nghi m này không gian m u là gì?
 - b. T p h p t ng ng v i bi n c "không có thành ph n nào b h ng" là gì?
- 7. Ba viên bi c ánh s t 1 n 3 trong m t h p c l y m t cách ng u nhiên t ng viên m t cho n khi h p r ng. Dãy s các viên bi c l y c ghi l i.
 - a. Tìm không gian m u.
 - b. Tìm t p A_k t ng ng v i các bi n c "viên bi s k c 1 y vào 1 n th k", v i k = 1, 2, 3.
 - c. Tìm t p h p $A_1 \cap A_2 \cap A_3$ và hãy mô t bi n c b ng l i.
 - d. Tìm t p h p $A_1 \cup A_2 \cup A_3$ và hãy mô t bi n c b ng l i.
 - e. Tìm t p h p $(A_1 \cup A_2 \cup A_3)^c$ và mô t b ng l i.
- 8. Không gian m u c a m t thí nghi m là ng th ng th c. t các bi n c A và B t ng ng v i các t p con sau c a ng th ng th c: $A = (-\infty, r]$ và $B = (-\infty, s]$, ây $r \le s$. Hãy tìm bi u di n c a bi n c C = (r, s] qua các bi n c A và B. Hãy ch ng t r ng $A = B \cup C$ và $A \cap C = \emptyset$.
- 9. Trong thí nghi m E_9 Ví d 2.3, th i gian s ng c a chip c o. t các bi n c A, B và C c xác nh b i: $A = (5, \infty)$, $B = (7, \infty)$, và C = (0, 3]. Hãy mô t các bi n c này b ng l i. Tìm các bi n c $A \cap B$, $A \cap C$, và $A \cup B$ và mô t các bi n c này b ng l i.
- 10. Dùng s Venn ki m ch ng s ng nh t c a các t p h p trong ng th c (2.2) và ng th c (2.4). Các b n c n dùng các màu khác nhau ho c các v ch khác nhau ánh d u các mi n khác nhau cho rõ ràng.
- 11. Dùng s Venn ch ng t r ng:
 - a. N u bi n c A kéo theo B, và B kéo theo C, thì A kéo theo C.

- b. N u bi n c A kéo theo B, thì khi ó B^c kéo theo A^c.
- 12. Gi s A và B là hai bi n c . Tìm bi u di n c a bi n c " úng m t bi n c trong hai bi n c A và B". Bi u di n b ng s Venn cho bi n c này.
- 13. t A, B và C là các bi n c . Dùng s Venn hãy tìm bi u di n c a các bi n c sau :
 - a. Có úng m t bi n c trong ba bi n c x y ra.
 - b. Có úng hai bi n c t các bi n c này x y ra.
 - c. Có m tho ch nn at các bi nc này x y ra.
 - d. Có hai ho ch nn a t các bi n c này x y ra.
 - e. Không có bi n c nào x y ra.
- 14. M t h g m ba con khoá gi ng h t nhau. H là "s n sàng" n u trong m i h con có ít nh t m t n v làm vi c.
 - a. $t A_{jk} t$ ng ng là bi n c " n v k trong h con j là làm vi c", v i j=1,2,3 và k=1,2. Gi i thích t i sao bài toán trên t ng ng v i bài toán có m t s k t n i trong m ng n i m ch c ch ra Hình P2.1.
 - b. Hãy tìm m ng t ng ng v i h "s n sàng" n u c hai n v c a h con th nh t làm vi c và có ít nh t m t n v trong các h con còn l i làm vi c.

HÌNH P2.1

- 15. Trong chu k 24 gi , m t sinh viên th c d y lúc T_1 và i ng lúc T_2 .
 - a. Hãy tìm không gian m u và bi u di n trên m t ph ng t a x y n u k t c c c a thí nghi m là c p (T_1, T_2) .
 - b. Mô t t p A và bi u di n mi n trên m t ph ng t ng ng v i bi n c "sinh viên d y vào lúc 9 gi".
 - c. Hãy mô t t p h p B và bi u di n mi n trên m t ph ng t ng

ng v i bi n c "sinh viên ng nhi u h n là th c".

d. Bi u din min t ng ng v i $A^c \cap B$ và din t bin c t ng ng b ng l i.

PH N 2.2 Các Tiên Xác su t

- 16. M t con xúc x c c tung và s i m c a m t h ng lên trên c ghi l i.
 - a. Hãy tìm xác su t c a các bi n c s c p v i gi thi t r ng t t c các m t c a con xúc x c là ng xác su t h ng lên trên sau khi tung.
 - b. Hãy tìm xác su t c a các bi n c s c p v i gi thi t r ng m t m t ch m có xác su t h ng lên trên g p ôi các m t còn l i.
 - c. Tìm xác su t k t c c c a phép tung là s ch m ch n v i các gi thi t nh trong ph n a và b c a Bài t p này.
- 17. Con xúc x c c tung hai l n và s các i m c a m t h ng lên trên c ghi l i theo th t x y ra. Gi s t t c các k t c c ng kh n ng x y ra, tìm xác su t c a các bi n c sau:
 - a. A_k : t ng c a hai k t c c b ng k, v i k = 2, ..., 12.
 - b. B: các k t c c c a hai l n tung là khác nhau.
- 18. M t thí nghi m ng u nhiên có không gian m u S = {a, b, c}. Gi s r ng P[{a, c}] = 5/8 và P[{b, c}] = 7/8. Hãy dùng các tiên xác su t tìm xác su t c a các bi n c s c p.
- 19. Ch ng t r ng có úng m t bi n c t hai bi n c A và B x y ra c cho b i $P[A] + P[B] 2P[A \cap B]$.
- 20. Gi s các bi n c A và B có xác su t sau P[A] = x, P[B] = y và $P[A \cap B] = z$. Dùng s Venn tìm $P[A^c \cup B^c]$, $P[A \cap B^c]$, $P[A^c \cup B]$, và $P[A^c \cap B^c]$.
- 21. Ch ng minh r ng:

$$P[A \cup B \cup C] = P[A] + P[B] + P[C]$$

- $-P[A \cap B] P[A \cap C] P[B \cap C] + P[A \cap B \cap C].$
- 22. Dùng các bi n t Bài t p 21 ch ng minh h qu 6 b ng ph ng pháp quy n p.
- 23. M t ng xu cân i c tung 4 l n, t A_i là bi n c "k t qu l n tung th i là ng a". hãy tìm xác su t c a các bi n c sau: A_2 , $A_1 \cap A_3$, $A_1 \cap A_2 \cap A_3 \cap A_4$, và $A_1 \cup A_2 \cup A_3 \cup A_4$.
- 24. M t ng xu cân i c tung cho n khi m t ng a l n u tiên xu t hi n. t k mà s l n tung ó m t ng a l n u tiên xu t hi n. t A là bi n c "k > 5", và B là bi n c "k > 10". Hãy tìm

xác su t c a các bi n c A, B, B^c, A \cap B, và A \cup B.

- 25. Hãy dùng H qu 7 ch ng minh các h th c sau:
 - a. $P[A \cup B \cup C] \le P[A] + P[B] + P[C]$.

$$P\left[\bigcup_{k=1}^{n} A_{k}\right] \leq \sum_{k=1}^{n} P[A_{k}]$$

Bi u th c th hai c g i là bao h p [union bound].

- 26. M t tài li u g m n ký t c ghi vào trong máy tính. Xác su t m t tín hi u n b ghi sai là p. Dãy dùng bao h p nh n c c n trên c a xác su t ghi sai ký t b t k trong tài li u c ghi.
- 27. M t s x c l y ng u nhiên trong kho ng [-1, 1]. Gi s các bi n c $A = \{x < 0\}, B = \{|x 0.5| < 1\}, và C = \{x > 0.75\}.$
 - a. Tìm xác su t c a các bi n c B, $A \cap B$ và $A \cap C$.
 - b. Tìm xác su t c a các bi n c A ∪ B, A ∪ C, và A ∪ B ∪ C, tr c h t b ng cách tính tr c ti p các t p h p và xác su t c a chúng, và th hai, b ng cách dùng các Tiên và H qu thích h p.
- 28. Ch n s c l y ng u nhiên trong kho ng [-1, 1]. Các s t kho ng con [0, 1] x y ra hai l n nhi u h n t kho ng [-1, 0).
 - a. Tìm phép gán xác su t cho toàn kho ng [-1, 0), toàn kho ng [0,1], và t ng ph n trong m i kho ng trên.
 - b. L pl i Bài t p 27 v i phép gán xác su t này.
- 29. Thi gian s ng c a m t thi t b phù h p v i lu t xác su t m c gi i thi u Ví d 2.10, v i $\alpha = 1$. t A là bi n c "thi gian s ng l n h n 5", và B là bi n c "thi gian s ng l n h n 10".
 - a. Tìm xác su t c a các bi n c $A \cap B$ và $A \cup B$.
 - b. Hãy tìm xác su t c a bi n c "th i gian s ng l n h n 5 nh ng nh h n ho c b ng 10".
- 30. Xét m t thí nghi m mà không gian m u là ng th ng th c. Lu t xác su t gán các xác su t cho các t p con có d ng $(-\infty, r]$.
 - a. Ch ng minh r ng ph i có: $P[(-\infty, r]] \le P[(-\infty, s]]$ khi r < s.
 - b. Hãy tìm bi u di n c a P[(r, s]] qua $P[(-\infty, r]]$ và $P[(-\infty, s]]$.
- 31. Hai s c ch n ng u nhiên t kho ng [0, 1]. Hãy tìm xác su t chúng khác nhau m t l ng l n h n 1/2.

PH N *2.3 Tính Xác su t

32. M tt khoá c t o b i ba s t t p h p {0, 1, 2, ..., 59}. Hãy tìm s các t p h p có th .

b ng các Ph ng pháp Tính

- 33. M t con xúc x c sáu m t c tung, m t ng xu c gieo, và m t quân bài c l y ng u nhiên t b bài 52 quân. Hãy tìm s các k t c c có th .
- 34. Có m t sinh viên có b n ôi giày khác nhau và không bao gi mang cùng m t ôi trong hai ngày liên ti p. Có bao nhiều cách anh ta có th mang giày trong 5 ngày?
- 35. Có bao nhiều s i n tho i g m 7 ch s có th , n u ch s khác 0 và 1.
- 36. S p th t các bánh Pizza h o h ng các b n có b n s 1 a ch n t 15 lo i th ng h ng s n có. H i có bao nhiều t h p có th n u các lo i th ng h ng có th 1 p 1 i? N u chúng không th 1 p 1 i?
- 37. H i có bao nhiều cách có th 10 sinh viên ng i vào 10 chi c bàn? 12 chi c bàn?
- 38. M t a bé kéo ba t p c a cu n bách khoa toàn th t giá sách và sau khi b qu m ng, ã t chúng tr l i giá sách theo th t ng u nhiên. Xác su t b ng bao nhiêu các cu n sách c t úng th t?
- 39. M t t p bài g m 10 quân bài c ánh s t 1 n 10, và 10 quân bài en c ánh s t 1 n 10. H i có bao nhiều cách x p 20 quân bài thành m t hàng? Gi s r ng chúng ta 1 y các quân bài m t cách ng u nhiên và t chúng thành hàng. Xác su t b ng bao nhiêu các quân bài và en xen k nhau?
- 40. M t qu y th c n nhanh cung c p hành tây, h ng li u, mù t c, ketchup và t cay cho món "hot dog" c a b n. Có bao nhiều t h p có th khi dùng m t gia v ? Hai gia v ? Không, m t vài ho c t t c các gia v ?
- 41. M t lô 100 s n ph m có k ph ph m. M s n ph m c ch n ng u nhiên và ki m tra. Xác su t b ng bao nhiêu M s n ph m ó có m ph ph m?
- 42. M t khu r ng có N g u trúc, trong ó có 10 con tr c ây ã b b t và c gán nhãn. Gi s r ng 20 ã b b t. Hãy tìm xác su t trong ó có 5 con ã c gán nhãn. Ký hi u xác su t này là p(N). Hãy tìm giá tr N xác su t này t giá tr 1 n nh t. G i \acute{y} : so sánh t s p(N)/p(N-1) v i 1.
- 43. B n th ng x s n u b n d oán úng s c a 6 qu bóng c l y t h p g m các qu bóng c ánh s t l n 49, v i phép l y không hoàn l i và không ý n th t . Xác su t b ng bao nhiều n u b n mua m t vé?

- 44. H i r ng có bao nhiều hoán v khác nhau c a t p g m 4 viên bi và 2 viên bi tr ng, và 3 viên bi en?
- 45. Hãy tìm xác su t t ng các k t c c c a ba l n tung m t con xúc x c là 7.
- 46. Ch ng minh r ng

$$\binom{n}{k} = \binom{n}{n-k}.$$

- 47. Trong Bài t p này chúng ta nh n ch s a th c. Gi s chúng ta phân ho ch m t t p g m n ph ng trình khác nhau thành F t p con B₁, B₂, ..., B_F c k_1 , ..., k_F , m t cách t ng ng, ây $k_i > 0$, và $k_1 + k_2 + ... + k_F = n$.
 - a. Gi s N_i là s các k t c c có th khi t p con th i c ch n Ch ng minh r ng:

$$N_1 = \binom{n}{k_1}, \ N_2 = \binom{n-k_1}{k_2}, \dots, \ N_{3-1} = \binom{n-k_1-L-k_{3-2}}{k_{3-1}}.$$

b. Ch ng minh r ng khi ó s các phân ho ch:

$$N_1 N_2 ... N_{3-1} = \frac{n!}{k_1! k_2! ... k_3!}.$$

PH N 2.4

Xác su t có i u ki n

- 48. a. Hãy tìm $P[A \mid B]$ n u $A \cap B = \emptyset$, n u $A \subset B$, và n u $B \subset A$.
 - b. Ch $\mbox{ng minh } r \mbox{ ng } n \mbox{ u } P[A \mid B] > P[A], \mbox{ thì } P[B \mid A] > P[B]. \mbox{ Hãy cho nh } n \mbox{ xét.}$
- 49. Hãy ch ng minh P[A | B] th a mãn các Tiên xác su t:
 - i. $0 \le P[A \mid B] \le 1$.
 - ii. P[S | B] = 1.
 - iii. N u $A \cap C = \emptyset$, khi $\circ P[A \cup C \mid B] = P[A \mid B] + P[C \mid B]$.
- 50. Ch $\operatorname{ng} \operatorname{minh} r \operatorname{ng} P[A \cap B \cap C] = P[A \mid B \cap C] P[B \mid C] P[C].$
- 51. M t con xúc x c c tung hai l n và s các i m c a m t trên c tính và c ghi l i theo th t x y ra. t bi n c A là bi n c "t ng các i m là s ch n", và t B là bi n c "c hai l n tung có s i m ch n". Hãy tìm P[A | B] và P[B | A].
- 52. S x c l y ng u nhiên trong kho ng [-1, 1]. t B là bi n c $\{|x-1/2|<1\}$ và t C là bi n c $\{x>3/4\}$. Hãy tìm P[B | C] và P[C | B].
- 53. Trong m i lô 100 s n ph m có 2 s n ph m c ki m tra, và lô b

lo in u c hai s n ph m c ki m tra là ph ph m.

- a. Hãy tìm xác su t lô có 5 ph ph m. l p l i v i lô có 10 ph ph m.
- b. Tính l i xác su t trong ph n a n u 3 s n ph m c ki m tra và lô c ch p nh n khi có nhi u nh t 1 ph ph m trong 3 s n ph m c ki m tra.
- 54. Hãy tìm xác su t 2 sinh viên ho c h n n a trong 1 p có 20 sinh viên có cùng ngày sinh. G i ý: Dùng H qu 1.
- 55. Hãy dùng xác su t có i u ki n và s hình cây tìm xác su t c a các bi n c s c p trong các thí nghi m ng u nhiên c xác nh trong các ph n a t i d c a Bài t p 5.
- 56. Th i gian n n i làm vi c c a m t giáo s có phân ph i u trong kho ng t 8 n 9 gi sáng. Hãy tìm xác su t giáo s n n i làm vi c trong kho ng m t phút, bi t r ng giáo s không n n i làm vi c tr c 8 gi 30 phút. L p l i v i 8 gi 50 phút. Hãy gi i thích các k t qu .
- 57. Kênh truy n thông nh th c không i x ng nh c ch ra trong Hình P2.2. Gi s r ng các tín hi u vào ng xác su t.
 - a. Hãy tìm xác su t tín hi u ra là 0.
 - b. Hãy tìm xác su t tín hi u vào là 0 khi bi t r ng tín hi u ra là
 1. Hãy tìm xác su t tín hi u vào là 1 bi t r ng tín hi u ra là 1.
 Tín hi u vào nào có xác su t 1 n h n?

HÌNH P2.2

- 58. M t con xúc x c c tung và s các i m là N_1 c ghi 1 i; khi ó s nguyên N_2 c l y m t cách ng u nhiên t $\{1, ..., N_1\}$.
 - a. Dùng s hình cây mô t không gian m u.

- b. Hãy tìm xác su t c a bi n c $\{N_2 = 3\}$.
- c. Hãy tìm xác su t c a bi n c $\{N_1 = 4\}$ bi t $\{N_2 = 3\}$.
- d. Hãy tìm xác su t c a bi n c $\{N_1 = 4\}$ bi t $\{N_2 = 5\}$.
- 59. M t trong hai ng xu c l y m t cách ng u nhiên và c tung. ng xu th nh t có xác su t hi n m t ng a là p_1 và ng xu th hai có xác su t xu t hi n m t ng a là p_2 .
 - a. Xác su t xu t hi n k t c c c a phép tung là m t ng a b ng bao nhiêu?
 - b. Xác su t s d ng ng xu th 2 b ng bao nhiêu khi bi t r ng m t ng a ã x y ra.
- 60. M t kênh truy n thông t m phân c ch ra Hình P2.3. Gi s r ng các tín hi u vào là 0, 1, và 2 x y ra v i xác su t 1/2, 1/4, và 1/4 m t cách t ng ng.
 - a. Hãy tìm xác su t c a các tín hi u ra.
 - b. Gi s r ng tín hi u ra quan sát c là 1. Xác su t tín hi u vào là 1, 2, 3 b ng bao nhiều?

HÌNH P2.3

- 61. M t nhà s n su t máy tính s d ng các chip t 3 ngu n. Các chip t ngu n A, B và C là ph ph m v i xác su t .001, .005, và .01 m t cách t ng ng. N u chip c l y ng u nhiên và là ph ph m, hãy tìm xác su t chip ó là c a nhà s n xu t A; t nhà s n xu t C.
- PH N 2.5 S clpca các Binc
- 62. Ch ng minh r ng, n u A và B là các bi n c c l p thì khi ó các c p A và B^c ; A^c và B, và A^c và B^c c ng c l p.
- 63. Ch ng minh r ng, các bi n c A và B c l p n u $P[A \mid B] = P[A \mid B^{c}].$

- 64. Gi s A và B là nh ng bi n c có xác su t P[A] và P[B].
 - a. Hãy tìm xác su t p[$A \cup B$] n u A và B c l p.
 - b. Hãy tìm xác su t $P[A \cup B]$ n u A và B xung kh c.
- 65. M t thí nghi m g m phép l y m t h p m t cách ng u nhiên và l y m t viên bi t h p và ghi l i màu c a nó (en ho c tr ng). t A là bi n c "h p l c ch n" và B là bi n c "bi màu en c l y". V i i u ki n nào thì A và B s c l p?
- 66. Hãy tìm xác su t trong Bài t p 13 gi thi t r ng A, B và C c l p?
- 67. Hãy tìm xác su t h là "s n sàng" trong Bài t p 14 ph n a và b. Gi thi t là các n v trong h th ng b h ng m t cách c l p v i nhau và n v th k b h ng v i xác su t p_k .
- 68. Có m t thí nghi m cl plim t s l nl n, và s xu t hi n bi n c A và B c ghi l i. B n có th ki m tra s cl p c a các bi n c A và B nh th nào?
- 69. Hãy tính xác su t h trong Ví d 2.32 là 's n sàng" khi b i u ki n th hai c g n vào h th ng.
- 70. Trong m th truy n thông nh phân trong Ví d 2.23, hãy tìm giá tr c a ε v i giá tr này tín hi u vào c a kênh là c l p v i tín hi u ra c a kênh. Có th s d ng m t kênh nh v y truy n thông tin hay không?

PH N 2.6 Dãy Thí nghi m Liên ti p

- 71. M t block g m 100 bit c truy n kênh trên nh th c v i xác su t bit sai là $p = 10^{-3}$. Hãy tìm xác su t block g m 3 ho c h n n a s bit sai.
- 72. M i ph n tr m s n ph m c a m t dây chuy n s n xu t là ph ph m. Xác su t có h n m t ph ph m trong lô g m n s n ph m b ng bao nhiều?
- 73. M t sinh viên c n 10 chip d ng nào ó làm m t m ch i n. Bi t r ng 5% các chip d ng này là ph ph m. Anh ta c n ph i mua bao nhiều chip v i xác su t l n h n 90% có chip làm m ch i n?
- 74. tk là s các loa ho t ng trong nhóm n loa không t ng tác (t c là c l p v i nhau). Hãy vi t m t ch ng trình tính P[k] v i k = 0, 1, ..., n và v i n = 8, 24 và 48. Dùng k t qu c a b n tính l i Hình 1.6 trong Ch ng 1.
- 75. M th g m 10 chip. Th i gian s ng c a m i chip tuân theo phân ph i m v i tham s . Hãy tìm xác su t ít nh t m t n a s bit làm vi c sau $1/\alpha$ giây.

- 76. M t máy m c l i trong thao tác nào ó v i xác su t p. Có hai d ng l i. T l c a lo i I là a, và t l c a l i lo i II là 1 a.
 - a. Xác su t m c k l i trong n thao tác b ng bao nhiêu?
 - b. Xác su t m c k_1 1 i lo i I trong n thao tác b ng bao nhiều?
 - c. Xác su t m c k_2 l i lo i II trong n thao tác b ng bao nhiều?
 - d. Xác su t x y ra ng th i k_1 l i lo i I, k_2 l i lo i II trong n thao tác b ng bao nhiêu?
- 77. Có ba d ng i n báo n t i m t trung tâm i n báo. 10% là i n báo " u tiên cao", 40% " u tiên trung bình", và 50% là " u tiên th p".
 - a. Hãy tìm xác su t k i n báo trong N i n báo không ph i là u tiên cao.
 - b. Gi s r ng m i b c i n g i n m t l n. Hãy tìm xác su t có k i n báo u tiên cao n.
 - c. Hãy tìm xác su t trong 20 i n báo có 5 u tiên cao, 10 u tiên th ng và 5 u tiên th p.
- 78. M t b 1 p mã m t dãy thông tin nh phân thành m t dãy g m m t o n k s "0" c k t thúc b i s "1", v i k = 0, ..., m 1, ho c m t dòng g m m s "0". Tr ng h p m = 3 là:

<u>dòng mã</u>	ký hius k
1	0
01	1
001	2
000	3

- Gi s r ng dãy thông tin c t o b i dãy các phép th Bernoulli c l p v i P["1"] = P[thành công] = p.
- a. Hãy tìm xác su t có k ký t 0 trong tr ng h p m = 3.
- b. Hãy tìm xác su t- có k ký t-0 trong tr-ng h $\,$ pmt ng quát.
- 79. Th i gian ô tô bãi xe tuân theo lu t phân ph i m v i tham s là 1. Ti n ph i tr bãi trong th i gian n a ti ng tr 1 i là \$1.
 - a. Hãy tìm xác su t $\hat{0}$ tô ph i tr \$k.
 - b. Gi s r ng s ti n ph i tr t i a là \$5. Hãy tìm xác su t $\hat{0}$ tô ph i tr k.
- 80. M t ng xu không i x ng c tung l p l i cho n khi m t ng a xu t hi n hai l n. Hãy tìm xác su t k l n c th c hi n. G i \acute{y} : Ch ng minh r ng $\{$ "k l n tung c th c hi n" $\}$ = A \cap B,

- ây $A = \{\text{"1 n tung th } k \text{ c m t ng a"}\}$ và $B = \{\text{"trong } k 1 \text{ 1 n tung u tiên xu t hi n m t ng a 1 l n"}\}.$
- 81. M th p ban u ch a hai viên bi en và hai viên bi tr ng. Thí nghi m sau cl p l i vô h n l n, m t viên bi cl y th p; n u bi màu tr ng thì nó c t r l i h p n u khác nó c t ra ngoài.
 - a. Hãy v s tam phân cho thí nghi m này và g n nhãn các cành b ng xác su t chuy n. *G i ý:* H p ch có th 1 trong 3 tr ng thái.
 - b. Hãy tìm xác su t c a các k t c c: www, bww, bbw và bbwww.
 - c. Hãy tìm xác su t h p không còn bi en sau 31 n l y.
 - d. Hãy tìm xác su t h p còn 2 bi en sau n phép th .
- 82. Trong Ví d 2.42, t $p_0(n)$ và $p_1(n)$ là xác su t h p 0 hay h p 1 c s d ng trong thí nghi m n th n.
 - a. Hãy tìm $p_0(1)$ và $p_1(1)$.
 - b. Bi u di n $p_0(n + 1)$ và $p_1(n + 1)$ qua $p_0(n)$ và $p_1(n)$.
 - c Hãy tính $p_0(n)$ và $p_1(n)$ v i n = 2, 3, 4.
 - d. Hãy tìm nghi m cho phép quy trong ph n b v i i u ki n ban u c cho trong ph n a.
 - e. Các xác su t trên b ng bao nhiều khi $n \to \infty$?

PH N 2.7 Ph ng pháp T o gi S Ng u nhiên b ng Máy tính: S S n sinh S Ng u nhiên

- 83. Thí nghi m h p c s d ng mô ph ng thí nghi m ng u nhiên v i không gian m u S = $\{1, 2, 3, 4, 5\}$ và các xác su t $p_1 = 1/3$, $p_2 = 1/5$, $p_3 = 1/4$, $p_4 = 1/7$ và $p_5 = 1 (p_1 + p_2 + p_3 + p_4)$. H p có th g m bao nhiêu viên bi? T ng quát hoá ch ng t r ng thí nghi m h p có th c dùng mô t thí nghi m ng u nhiên b t k v i không gian m u h u h n và v i xác su t c cho b i các s t l .
- 84. Gi s chúng ta quan tâm t i vi c s d ng phép tung ng xu cân i mô ph ng thí nghi m ng u nhiên mà \acute{o} có \acute{o} k t c c ng kh n ng, \acute{a} y S = {0, 1, 2, 3, 4, 5}. Thu t toán sau c a ra:
 - 1. Tung ng xu cân i ba l n và nh n c s nh i th c b ng vi c ng nh t m t s p v i 0 và m t ng a v i 1.
 - 2. Nuktccca phép tung ng xu trong b c 1 là bi u di n nh th c c a m t s trong S, s c l y ra n u khác quay l i b c 1.

Thu t toán này là s n gi n hoá "ph ng pháp lo i b" c th o lu n trong Ph n 3.12.

- a. Hãy tìm xác su t m t s clyra b c 2.
- b. Ch ng minh r ng các s c l y ra b c 2 là ng xác su t.
- c. T ng quát hoá thu t toán trên ch ng t r ng phép tung ng xu có th c s d ng nh th nào mô ph ng thí nghi m h p ng u nhiên b t k .
- 85. Hãy vi t ch ng trình máy tính th c hi n vi c t o ra s ng u nhiên c mô t b i Ph ng trình (2.32).
 - a. ki m tra ch ng trình c a b n, hãy tìm Z_{1000} ; v i h t gi ng ban u $Z_0 = 1$, nó s ph i b ng 522,329,230.
 - b. Hãy to ra 10,000 s ng u nhiên trong kho ng n v và c t các s này n 1 ch s sau d u ph y. Hãy tính bi u thu g n t n s cho các s n, b ôi các s và b ba các s. Chú ý r ng m i s s tham gia tích c c vào tích c a hai b ôi, m t 1 n nh là thành ph n th nh t, m t 1 n nh là thành ph n th hai, và t ng t nh i v i b ba. Các bi u có phù h p v i các k t qu c mong i?
- 86. Gi s b n có m t ch ng trình cho b n các s U_n có phân ph i u trong kho ng [0, 1]. t $Y_n = \alpha U_n + \beta$. Hãy tìm α và β sao cho Y_n có phân ph i u trong kho ng [a, b]. L y a = -5 và b = 15. Hãy vi t ch ng trình máy tính t o ra Y_n và hãy tính trung bình m u và ph ng sai m u trong tr ng h p n = 1000. Hãy so sánh trung bình m u và ph ng sai m u v i (a + b)/2 và $(b a)^2/12$ m t cách t ng ng.
- 87. Gi s b n có m t ch ng trình cho b n các s U_n có phân ph i u trong kho ng [0, 1].
 - a. Gi s chúng ta t o ra dãy s nh th c B_n theo cách nh sau: N u $U_n \le 1/2$, khi ó $B_n = 0$; n u khác $B_n = 1$. B ng cách nào dãy B_n là s mô ph ng phép tung ng xu cân i?
 - b. B n có th ph ng theo cách làm ph n a mô ph ng dãy phép th Bernoulli?
 - c. B n có th ph ng theo cách làm ph n a mô ph ng phép tung con xúc x c cân i?
 - d. B n có th ph ng theo cách làm ph n a mô ph ng m t thí nghi m ng u nhiên b t k có h u h n k t c c? Có th có ph ng pháp t o ra m t s vô h n m c các k t c c hay không?
- 88. Hãy vi t ph ng trình mô ph ng thí nghi m h p c th o lu n

- trong Ph n 1.3. Hãy tính t n su t t ng i c a các k t c c trong 1000 l n l y t h p.
- 89. Hày tìm ph ng pháp s d ng các s ng u nhiên có phân ph i u trong kho ng [0, 1] t o ra dãy các s nguyên tuân theo lu t xác su t hình h c. Hãy vi t ch ng trình máy tính mô ph ng thí nghi m tung ng xu c th o lu n trong Ví d 2.8. L p l i thí nghi m 100 l n và tính s hình cây c ch ra Hình 2.6.
- 90. Hãy tìm ph ng pháp s d ng dãy các s ng u nhiên U_n có phân ph i u trong kho ng [0, 1] t o ra dãy các s nguyên lu t xác su t nh th c. Ph ng theo ph ng pháp này t o ra vect $(k_1, ..., k_M)$ tuần theo lu t xác su t a th c.

CÁC BÀI TOÁN YÊU C U KI N TH C T NG H P

- 91. Có hai ng i, m i ng i tung ng xu cân i 31 n, xác su t h nh n c cùng m t s 1 n xu t hi n m t ng a b ng bao nhiêu?
- 92. Gi s r ng trong Ví d 2.40, máy tính A g i t ng gói tin t i máy tính B cùng m t lúc trên hai kênh i n tho i không tin c y. Máy tính B có th phát hi n khi có l i trên c hai ng truy n. Gi s xác su t gói tin b truy n sai trên kênh l và 2 là q_1 và q_2 m t cách t ng ng. Máy tính B ngh phát l i cho n khi nó nh n c gói tin không l i trên c hai ng truy n.
 - a. Hãy tìm xác su tcó k ln truy ncyêu cu
 - b. Hãy tìm xác su t trong l n truy n cu i cùng, gói tin trên kênh 2 c nh n không l i.
- 93. m t b ng m ch i n làm vi c, c n ph i có 7 chip gi ng nhau làm vi c. t ng tin c y ta g n thêm m t chip vào b ng i n và thi t k cho phép nó có th thay th 1 trong 7 chip b t k , khi nó b h ng.
 - a. Hãy tìm xác su t P_b b ng i n làm vi c, bi t r ng xác su t t ng chip riêng l làm vi c là p.
 - b. Gi s r ng n b ng m ch i n c m c song song, và chúng ta yêu c u v i xác su t 99.9% có ít nh t 1 b ng m ch i n làm vi c. C n thi t ph i có bao nhiều b ng m ch i n?
- 94. M t t hai ng xu c l y ra m t cách ng u nhiên và c tung ba l n. Bi t r ng các ng xu có xác su t xu t hi n m t ng a b ng p_1 và p_2 m t cách t ng ng, v i $p_1 > p_2$.
 - a. Hãy tìm xác su t ng xu 1 c tung, bi t r ng s 1 n xu t hi n m t ng a b ng k, v i k = 0, 1, 2, 3.
 - b. Trong ph n a, ng xu nào có xác su t l n h n khi có k l n xu t

- hi n m t ng a?
- c. T ng quát hoá l i gi i trong ph n b cho tr ng h p ng xu c ch n c tung m l n. Trong th c t hãy tìm giá tr ng ng T sao cho khi k > T (s l n xu t hi n m t ng a), ng xu l có xác su t c ch n l n h n, và khi $k \le T$, ng xu 2 có xác su t c ch n là l n h n.
- 95. Gi s r ng m t b bài g m 52 quân khác nhau c xáo tr n k , trong ó có 4 quân Át và 4 quân K.
 - a. Hãy tìm xác su t nh n c m t quân Át l n rút u tiên.
 - b. Hãy rút m t quân bài t b bài và quan sát quân bài l y c. Xác su t nh n c m t quân bài Át l n l y th hai b ng bao nhiều? Câu tr l i có thay i không, n u b n ã không quan sát l n rút th nh t?
 - c. Gi s ta rút 7 quân bài t b bài. Xác su t có 3 quân Át trong 7 quân bài b ng bao nhiêu? Xác su t trong 7 quân bài có 2 quân K b ng bao nhiêu? Xác su t trong 7 quân bài có 3 quân Át và (ho c) 2 quân K b ng bao nhiêu?
 - d. Gi s r ng toàn b bài c chia u cho 4 ng i ch i. Xác su t b ng bao nhiều m i ng i ch i nh n c m t quân Át?