Recurrent Neural Network Based Visual Analytics Framework For Social Media

Ji Wang

Department of Computer Science, Virginia Tech Blacksburg, VA 24060

Abstract

Twitter is an emerging microblog service provider from 2006. Twitter users can add hashtags to label and classify their posts. But, only about 11% tweets contain at least one hashtag. Thus, hashtag prediction for any tweet texts is a necessary task for tweets analysis.

At the same time, the tweets also become a

From 2012, neural network and deep learning models have been successfully applied into different areas of computer vision, speech recognition and natural language processing (NLP). Recurrent Neural Network (RNN) is one type of neural network model which utilizes the sequential information during training process. RNN models can classify the data in high performance. But they are black-boxes. It is challenge to explore what information a RNN model learns and stores in its hidden states.

Visual analytics and relevant interaction techniques are potential to assist to understand RNN models. However, how to design efficient and usable visual representations of RNN hidden states with necessary interactions to aid sensemaking is still challenging.

To address this, my thesis work highlights three contributions:

We designed a RNN based visual analytics system for rumor tweets analysis in hashtag prediction, tweets clustering, and interactive visualization.

Opportunities and Motivation

There is an abundance of information available from Twitter. Twitter can allow users to post, publish, share and communicate by tweets, which is a 140 characters limited short message. Because of this characters limited feature, the languages in tweets is including a lot of abbreviations and emotion icons. Another important feature is that tweets allow users to use "@" for reply to specific another users and "#" for the self-tagging and self-categories.

The hashtags in tweets are the words that are preceded by a hash symbol (#). And there is no space in one hashtag. The hashtags can be used in the beginning, the middle and

Copyright © 2017, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

the end of tweets for the operation of tagging or annotation. In Twitter, if you click the hashtag, it will be linked to the page displaying other tweets that contains the same hashtag on Twitter. Hashtags do not just appear in Twitter. They are also used in Flicker, Pinterest, Instagram, and Facebook.

Social media users add hashtags in their posts for different goals, including identification label (#VT or #Hokie), sentiment label (#love, #like, or #hate), topic label (#hiking), event label (#uselection2016) and etc.. Thus, hashtags provide labels for their texts.

Twitter platform is valuable to professional journalists in developing news stories.

Problem: Twitter information is disorganized, working with it creates high cognitive load and physical demands on users, discover of relevant tweets is difficult because they are not clustered by similarity

Existing Solutions (How is it done today, second step in Heilmeir, including limits of existing solutions): Existing tools to help organize tweets include Tweet Deck, among others; elaborate on how

Proposed new solution is the tool to organize tweets efficiently.

The innovation part of my approach is creating hashtags for tweets of similar topic through RNN model. At the same time, our model also bring the tweet embedding into the tweets organizing process. User can efficiently find similar tweets within vector space of tweets embedding from RNN model

Why will it be successful? (performance tests of resulting hashtags from RNN model indicate higher accuracy of hashtags assigned for clustering than other procedures - LDA?)

who cares? what difference will it make? (journalists should care; your tools should reduce cognitive load, improve discovery of information, etc.

I dont know about risks and costs or how long it will take Heilmieir steps these may not be so pertinent for the overview.

What are the mid-term and final exams' to check for success? These would be the user evaluation studies you should describe in the overview that link back to the steps about why you think your proposed re-design of Tweetdeck will be successful (how will the user evaluation measure this?) and what difference will your re-design make (such as, cognitive and physical loads, news discovery; how will you measure

these differences between TweetDeck and your re-design of TweetDeck?).

social media is surging as a new resource for the news discovery and production.

However, traditional tweets tool, like tweet deck, has a lot of drawbacks. not good

Users need to organize the tweets better

how to organize tweets better

predict hashtags via RNN: machine learning can help solution: redesign tweet deck based on rnn model result for journalist for social media.

how to design a model. how to design

organize tweets better for news discovery. design tasks to fit the goal.

tool did this well, another well, and conclude claims. better model will achieve the better user experience.

Research Questions

RQ 1: - Can we use the results from RNN to develop for journalists? how to utilize rnn

- opportunity / motivation
- problem statement
- solution: organize tweets
- existing solution
- however, the failure of existing one
- one orngize is hashtag, but not all have hashtag
- solution to orgnize tweets better with hashtag and embedding
 - RNN model for hashtag and embedding.
 - solution

Recurrent Neural Network

Neural networks is a machine learning approach to map the features of data into an abstract and high-dimensional representation. From 2012, neural network and deep learning models have been successfully applied into different areas of computer vision, speech recognition and natural language processing (NLP) (LeCun, Bengio, and Hinton 2015).

Recurrent Neural Network (RNN) is one type of neural network models. RNN model utilizes the sequential information during training process. It processes the same computation for each sequential input, and the output relies on its previous sequential result. In another word, RNN model can be thought as a memory to store the sequential inputs which have been processed earlier. RNN model has been proved as Turing-complete by Siegelmann et al.(Siegelmann and Sontag 1995) in 1995. It means that just like Turing Machines, any algorithm can be encoded via a RNN model with parameters tuning.

In NLP research and application area, RNN model has remarkable achievement recently in language modeling (word embedding (Mikolov et al. 2013), sentence embedding (Kiros et al. 2015)), machine translation (Sutskever, Vinyals, and Le 2014), sentiment analysis (Socher et al. 2013), question answering (Iyyer et al. 2014), and etc..

RNN for Hashtag Prediction

Hashtag can label and classify tweets. It is useful in many scenarios, including tweets search and retrieval (Efron 2010), sentiment analysis (Davidov, Tsur, and Rappoport 2010), and etc.. But, not all the tweets contain hashtag. Based on a survey on a collection of 62, 556, 331 tweets, Hong et al. find that there are only about 11% of tweets in their collection contain at least one hashtag (Hong, Convertino, and Chi 2011). So, hashtag prediction for any tweet texts is a necessary task for tweets analysis.

Hashtag prediction is a multi-class classification task to assign one or several hashtags to the corresponding tweet texts. Hashtag prediction has multiple applications in tweets analysis. For example, predicted hashtags of tweets would help users to view tweets via different hashtag categories, especially improve the social media journalists to explore tweets efficiently.

In this thesis, we utilize recurrent neural network (RNN) to train a classification model for hashtag prediction of tweet texts. The model can achieve 51.86% in prediction rate, which is 2x higher than the traditional Bag-Of-Word (BOW) prediction model.

Hidden States Visual Analytics for RNN

After training process, RNN models can classify the data in high performance. However, RNN models are blackboxes. Even model creators cannot interpret why their models achieves in high performance. They also do not have hints about what features the model has learned from the data. Thus, except high performance, model creators do not have evidences from model itself to support their decision making. For example, our RNN hashtag prediction model can achieve 51.86% in prediction rate. But from model itself, we cannot find any evidence to let us understand how the model achieve this high prediction rate.

Under the hood of RNN models, they have tons of parameters and repeatedly compute non-linear activation functions for large number of their hidden states. Due to these factors, how to interpret and understand RNN model is a challenge work and an active research topic in deep learning area. Few researchers tried to interpret RNN models via studying the changes in hidden states over time (Strobelt et al. 2016) (Li et al. 2016), . But they found some interpretable patterns with large noise and interruptions.

Visual analytics and relevant interaction techniques are potential to aid sensemaking process (Pirolli and Card 2005) of RNN models understanding and interpretion. It can support users to find latent patterns of RNN hidden states and reveal them in visual context. However, how to design efficient and usable visual representations of RNN hidden states with necessary interactions to assist sensemaking is still challenging.

Design a UI for news discovery application Usability of news discovery application Research Questions

In this thesis, we will explore how to utilize the Recurrent Neural Network (RNN) techniques for tweets analysis, such as hashtag prediction, tweets clustering, and interactive visualization?

In order to state them, two key research questions (RQs) are listed as following:

RQ 1: How to build a Recurrent Neural Network (RNN) based tweets visual analytics system?

- How we can build a RNN model to predict the hashtag of tweets?
- How we can build a RNN model to search
- How to design a system to organize tweets with the results from our RNN model?

To answer Research Question 1, firstly, we utilize recurrent neural network (RNN) to train a classification model for hashtag prediction of any texts. Our RNN model can achieve 51.86% in prediction rate, which is 2x higher than the traditional Bag-Of-Word (BOW) prediction model. Secondly, we built a RNN we designed a rumor tweets visualization system with the sentence embeddings from our RNN model. Thirdly, we will conduct a user study to find the key design trade off among our RNN model, visualization representations, and interactive strategy.

RQ 2: How effective are our tweets organization system designed to support sensemaking process of tweets understanding?

- What is the key design trade off among our RNN model, tweets representations, and interactive strategy?
- Would our proposed design visualization in RQ1 be able to help users more effectively gain insights about how the black-box RNN model works?
- How does our proposed RNN hidden states visualization impact users understanding and interpretation of RNN model?
- Can users answer what information a RNN model learns and stores in its hidden states via our design?
- Can users find the abstract, sentiment information, concepts of inputs with the hidden states pattern in our visualization design?
- What are the strategies of users to use in our design to find latent patterns and form hypotheses about RNN hidden states?
- Compare to other RNN visualization approaches(Strobelt et al. 2016), what differences can be observed in the users workflow, process, and, insight?
- Can our design be deployed on crowdsourcing platform to scale up the sensemaking process of RNN model understanding?

Significance

Exploring these research questions above would help researchers build tools with fully leverage of RNN models. It would lead them to gain more insight of RNN models understanding and to build more usable visual analytics system with RNN models.

General Explanation of Tweet Embedding How the tweet embedding works?

RNNłŁ łNłN-1łłł

RNN is more like a dynamic programming. The distance of

rnnvectorincremental lvector ŁŁ

Proposed Solution Proposed Evaluation

We will conduct a controlled user study in Virginia Tech. This section will introduce the research questions we would explore and detail information about our participants, experimental setting, and the study methodology we would deploy.

We will conduct a controlled experiment to evaluate the effectiveness of predicted hashtags and tweet embedding from RNN model for the tweets news discovery task.

We will compare the TwitterDeck like app with predicted hashtags and tweet embedding from RNN model to the other normal TwitterDeck like app without RNN model support.

We will recruit the undergraduate students from Department of Communication, Virginia Tech for this study. We suppose the participants would have experience with news discovery and news article writing with social media.

Compared Techniques

We will compare four different techniques in our study:

- TwitterDeck Like App (T) is implemented with the basic keywords search and tweets drag-and-drop functions of TwitterDeck. This widely adopted technique will be served as a baseline condition in our study.
- TwitterDeck Like App with Predicted Hashtag only
 (H) adds the predicted hashtag from RNN model for each tweets in TwitterDeck Like App. Users can organize tweets via the predicted hashtags in different columns.
- TwitterDeck Like App with Tweet Embedding only (E) plugs the tweet embedding from RNN model to each tweets in TwitterDeck Like App. In this technique, users can
- TwitterDeck Like App with both Predicted Hashtags and Tweet Embedding (T&E)

Visual links (L) are routed, straight lines that visually elements highlighted as in technique H. Connection lines are according to the algorithm given in Section 6.3. However, the base representation is not taken into account for links routing.

Figure 1: The UI view of vector deck for organizing tweets.

Context-preserving visual links (CL) use our algorithm, which the optimization criteria, as proposed in Section 4.

The top row of images in Figure 10 shows an example of the three highlighting techniques applied to the same base representation. The appearance adjustments described in Section 5, were applied to all three techniques if the highlight regions were evaluated as subjectively to perceive in a pilot study.

Tasks

Apparatus

Design and Procedure

Hypotheses

Results

Research Questions

In this paper, the goal we want to evaluate are two things:

Predicted Hashtags By RNN

Will the predicted hashtag can help the users to organize the tweets? How it works? Would the predicted hashtag would reduce the mental demand and physical demands of users?

Compared self-defined hashtag by users, what's the advantages of predicted hashtags and other previous techniques?

Vector Space Search by RNN

Will the vector space search feature can help users

А	В	С	D
Without Predicted	With Predicted	Without Predicted	With Predicted
Hashtag;	Hashtag;	Hashtag;	Hashtag;
Without Tweet	Without Tweet	With Tweet	With Tweet
Embedding	Embedding	Embedding	Embedding

Figure 2: The UI view of vector deck for organizing tweets.

Proposed Study Methodology

Evaluation Results

Contributions

The first contribution of this paper is to use the RNN model to predict the hashtag and generate RNN based tweet embedding to support the vector space model. These two highlight spots

We utilize recurrent neural network (RNN) to train a classification model for hashtag prediction of any texts. Our RNN model can achieve 51.86% in prediction rate, which is

2x higher than the traditional Bag-Of-Word (BOW) prediction model. Secondly, we built a RNN we designed a rumor tweets visualization system with the sentence embeddings from our RNN model.

The second contribution is that we conducted a controlled experiment that compared the use of four different techniques to support typical tweets news discovery tasks of social media journalists: simple twitter deck like approach, approach with predicted hashtag only, approach with tweet embedding search only, and approach with both predicted hashtags and tweet embedding search.

We expect the results of this experiment would show that predicted hashtags and tweet embedding search from RNN model could improve performance on tasks for social media news discovery related mounts of tweets. We also expect the results would show that the approach with both predicted hashtags and tweet embedding search is the most effective of the four techniques we tested.

References

Davidov, D.; Tsur, O.; and Rappoport, A. 2010. Enhanced Sentiment Learning Using Twitter Hashtags and Smileys. *Proceedings of the 23rd International Conference on Computational Linguistics: Posters* (August):241–249.

Efron, M. 2010. Hashtag retrieval in a microblogging environment. *Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval - SIGIR '10 787.*

Hong, L.; Convertino, G.; and Chi, E. H. 2011. Language Matters in Twitter: A Large Scale Study. *Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media* (1):518–521.

Iyyer, M.; Boyd-Graber, J.; Claudino, L.; Socher, R.; Daumé III, H.; Daum, H.; and III, H. 2014. A Neural Network for Factoid Question Answering over Paragraphs. *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)* 633–644.

Kiros, R.; Zhu, Y.; Salakhutdinov, R.; Zemel, R. S.; Torralba, A.; Urtasun, R.; and Fidler, S. 2015. Skip-Thought Vectors. *NIPS* (786):1–11.

LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning. *Nature* 521(7553):436–444.

Li, J.; Chen, X.; Hovy, E.; and Jurafsky, D. 2016. Visualizing and Understanding Neural Models in NLP. *Naacl* 1–10.

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Distributed Representations of Words and Phrases and their Compositionality. *Nips* 1–9.

Pirolli, P., and Card, S. 2005. The Sensemaking Process and Leverage Points for Analyst Technology as Identified Through Cognitive Task Analysis. In *International Conference on Intelligence Analysis*.

Siegelmann, H., and Sontag, E. 1995. On the Computational Power of Neural Nets.

Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C.; Ng, A.; and Potts, C. 2013. Recursive deep models for se-

mantic compositionality over a sentiment treebank. In *NIPS*, 1631–1642.

Strobelt, H.; Gehrmann, S.; Huber, B.; Pfister, H.; and Rush, A. M. 2016. Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks. *Arxiv*.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to Sequence Learning with Neural Networks. *Advances in Neural Information Processing Systems (NIPS)* 3104–3112.