Inst. fysikk 2017

TFY4115 Fysikk (MTELSYS/MTTK/MTNANO) $\emptyset ving 11$

Veiledning: 7.-9. nov. Gruppeinndelingen finner du på emnets nettside.

Innlevering: Fredag 10. nov. kl. 12:00 Lever øvinger i bokser utenfor R4 eller i epost til studass.

Oppgave 1. En idealisert kretsprosess, med sin virkningsgrad.

En reversibel kretsprosess utføres på n mol ideell gass:

isokor (V = konst.) $1 \to 2$, adiabat (Q = 0) $2 \to 3$,

isoterm $(T = \text{konst.}) \ 3 \rightarrow 1.$

Temperaturene T_1 og T_2 er gitt.

(Figuren er en skisse av prosessene, bl.a. ikke rett krumning på kurvene.)

- **a.** I hvilke delprosesser absorberer gassen varme, og hvor avgir den varme? I hvilke delprosesser gjør gassen arbeid og hvor påføres arbeid? Tegn inn piler for Q og W i prosessdiagrammet.
- **b.** Finn varmemengden Q_{inn} som absorberes fra omgivelsene. Uttrykk Q_{inn} med T_1 og T_2 (og en varmekapasitet).
- c. Finn varmemengden $Q_{\rm ut}$ som avgis. Uttrykk $Q_{\rm ut}$ ved V_1 og V_3 (og gasskonstanten R samt temperaturen T_1).
- **d.** Bruk en adiabatlikning for ideell gass til å uttrykke V_3/V_1 ved T_2/T_1 og dermed $Q_{\rm ut}$ ved T_2/T_1 .
- e. Denne kretsprosessen er det sentrale elementet i en maskin som omgjør varme til mekanisk arbeid. Definer maskinens virkningsgrad η og bruk resultatene over til å uttrykke η på enkleste måte med T_1 og T_2 .

Oppgave 2. Entropiberegning i kretsprosess.

Vi tar for oss samme reversible kretsprosessen som i oppgave 1. Du kan utnytte beregninger i den oppgaven.

- a. Bruk definisjonslikningen for entropi $dS = dQ_{rev}/T$ til å beregne entropiendringen i alle delprosessene. Uttrykk svarene med temperaturene T_1 og T_2 (og konstanter som f.eks. n, R, C_V).
- **b.** Sett opp uttrykket for entropien S(T, V) i ideell gass og beregn herfra entropiendringen for hver delprosess. Forsikre deg om at du får samme svar som i **a.**
- c. Hva er entropiendringen ΔS for hele kretsprosessen? Hva er universets (system+omgivelsers) entropiendring? Kommentarer?

Oppgave 3. Entropiendringer ved oppvarming.

En kasserolle med 1,00 l (1,00 kg) vann skal varmes opp fra 20 °C til 100 °C ved ulike prosesser. Du kan i denne oppgaven se bort fra varmekapasiteten i kasserollen. Spesifikk varmekap. vann $C'_{\text{vann}} = 1,00 \, \text{cal/(g} \cdot \text{K)} = 4,19 \, \text{kJ/(kg} \cdot \text{K)}$.

- a. Kasserollen plasseres på ei varmeplate som holdes konstant på 100 °C og det hele kommer til likevekt.
 - i) Beregn entropiendringen for omgivelsene (dvs. varmeplata).
 - ii) Beregn entropiendringen i vannet.
 - iii) Beregn total entropiendring.

(Tips for ii): Finn en reversibel prosess med samme start/sluttilstand. Et forslag til prosess i pkt. c. under).

b. Oppvarmingen gjøres nå i to trinn: Først plasseres kasserollen på ei varmeplate som holder $50\,^{\circ}\text{C}$ og likevekt oppnås ved $50\,^{\circ}\text{C}$. Deretter plasseres kasserollen på $100\,^{\circ}\text{C}$ -plata og likevekt oppnås her.

Beregn som over i), ii) og iii) for den totale prosessen.

c. Oppvarmingen gjøres nå i uendelig mange infinitesimale trinn: Kasserollen plasseres på varmeplater som er stepvis varmere, f.eks. $20\,^{\circ}\text{C}$, $20,1\,^{\circ}\text{C}$, $20,2\,^{\circ}\text{C}$ osv. til $100\,^{\circ}\text{C}$, med stadig finere oppdeling.

Dette er en reversibel prosess, begrunn dette.

Beregn som over i), ii) og iii) for den totale prosessen.

Oppgave 4. Flervalgsoppgaver.

a.	Med grunnlag i kinetisk teori for gasser:	Når absolutt	temperatur	dobles,	vil den	midlere	kinetiske	energien	til
ga	ssmolekylene endres med en faktor								

A) 4

B) 2

C) $\sqrt{2}$

D) $1/\sqrt{2}$

E) 1/2

b. Trykket i et system med luftmolekyler ved 20 °C blir halvert i en adiabatisk prosess. Hvis adiabatkonstanten for luft er lik 1,41, finn sluttvolumet til gassen:

- A) 2,66 ganger opprinnelig volum
- B) 2,00 ganger opprinnelig volum
- C) 1,64 ganger opprinnelig volum
- D) 0.50 ganger opprinnelig volum
- E) 0,38 ganger opprinnelig volum

c. Når $S(T,V) = nC_V \ln(T/T_0) + nR \ln(V/V_0) + S_0$ for n mol ideell gass, hva blir S(T,p) for den samme gassen? (Her er $S_0 = S(T_0,V_0) = S(T_0,p_0)$, og $p_0V_0 = nRT_0$.)

- A) $S(T, p) = nC_p \ln(T/T_0) + nR \ln(p/p_0) + S_0$
- B) $S(T, p) = nC_p \ln(T/T_0) nR \ln(p/p_0) + S_0$
- C) $S(T, p) = nC_p \ln(p/p_0) + nR \ln(T/T_0) + S_0$
- D) $S(T,p) = nC_V \ln(p/p_0) nR \ln(T/T_0) + S_0$
- E) $S(T, p) = nC_V \ln(T/T_0) nR \ln(p/p_0) + S_0$

I de følgende tre oppgaver bringes n mol vann med temperatur T_0 og varmekapasitet C i termisk kontakt med et varmereservoar med temperatur T_1 . Vannets molare varmekapasitet $C_p = C_V = C$ og er uavhengig av T.

d. Hva er endringen i vannets entropi når vannet har nådd samme temperatur som varmereservoaret?

- A) nCT_0/T_1
- B) nCT_1/T_0
- C) $nC \ln(T_0/T_1)$
- D) $nC \ln(T_1/T_0)$
- E) $nC(T_1 T_0)/T_0$

e. Hva er entropiendringen til varmereservoaret?

- A) $nC(T_0 T_1)/T_1$
- B) $nC(T_1 T_0)/T_0$
- C) $nC(T_1 T_0)/T_1$
- D) $nC \ln(T_0/T_1)$
- E) $nC \ln(T_1/T_0)$

f. Hya kan du, uten videre, sikkert si om den totale entropiendringen (vann+reservoar) i prosessen?

- A) Positiv.
- B) Negativ.
- C) Null.
- D) Intet sikkert kan sies. (kun fire alternativer her)

g. En ideell (reversibel) Carnotvarmepumpe leverer en varmeeffekt på 2,0 kW ved å overføre varme fra utvendig luft ved -10° C til husets varmluftforsyning ved $+30^{\circ}$ C. Hvor mye elektrisk effekt (arbeid per tidsenhet) bruker varmepumpa?

A) 0.26 kW

B) 0,30 kW

C) 0.56 kW

D) 0,86 kW

E) 1,16 kW

h. Hvordan ser en Carnotprosess ut i et (S,T)-diagram?

Utvalgte fasitsvar:

1d: $-nC_V T_1 \ln \frac{T_2}{T_1}$; 1e: $1 - \frac{T_1}{T_2 - T_1} \ln \frac{T_2}{T_1}$. 2a: $nC_V \ln T_2/T_1$, 0 og $-nC_V \ln T_2/T_1$; 3a: i) -0,90 kJ/K; ii) 1,01 kJ/K; iii) 0,11 kJ/K; 3b: iii) 60 J/K; 3c: ii) 1,01 kJ/K;