**Intelligens**, mint fogalom sokat változott az évek folyamán, az elektromos eszközökben.

#### **Determinisztikus automata**

- ugyanazokra a bemenetekre, ugyanazokat a válaszokat adja
- algoritmusok sorozata egy feladatra
- szoftver is lehet robot (pl. Google: hálózat figyel minket és próbál beazonosítani)

#### Robot vs automata

|                     | Robot | Automata |
|---------------------|-------|----------|
| Programozhatóság    | +     | +        |
| Érzékelők           | +     | +        |
| Memória             | +     | -(+)     |
| Adaptációs képesség | +     | -        |
| Tanulási képességek | +     | -        |

Adaptációs képesség: először hibásan, de tanulva hibáiból utána már helyesen oldja meg a feladatot.

#### Robotok felhasználása:

- Űrkutatás: űrszondák, leszálló egységek, mobil bolygókutató egységek
- Ipari robotok: összeszerelő robotok (hegesztő, szerelő, festő), megmunkáló robotok, karbantartó robotok
- Katasztrófaelhárító robotok: tűzoltó, felderítő (vegyi, sugár)
- Katonai robotok: akna felderítő
- Egyéb

B.E.A.M. robot: Biology Electronics Aesthetics Mechanics

napelem tölti a kondenzátort → szimmetrikus áramkör figyeli a feszültséget → szint elérve → motor mozgat → kapcsolók (bajusz) érzékeli az ütközést → cél: napfény

#### Szenzorok

Környezeti információk érzékelése és továbbítása a rendszer felé.

## Infrareflexiós szenzor (fénysorompó)

- visszavert fényt érzékeli
- egyszerű
- könnyű számítógépre kötni (1bit van/nincs akadály)
- csak egy pontban érzékel → több irányba kell érzékelőt elhelyezni

### Ultrahangos/lézeres távolságmérő

- hasonló az infrához
- akadály távolságát tudja megadni

#### Kamera

- nagy mennyiségű információ > erőforrásigényes
- képfeldolgozás nagy számítási igényű
- részletes információ az akadályról
- sok energiát fogyaszt
- energia vs felbontás problémája

#### 360 kamera

- nagyobb lefedett terület
- torzulás → információ vesztés

# Szenzorok típusai/csoportosítása

#### Passzív szenzorok

Kívülről nem érzékelhetők → nem sugároz

- hőmérséklet
- nyomás
- fény (kamera)
- hang (mikrofon)

#### Aktív szenzorok

Mérőjelet bocsájtanak ki, ennek visszaverődését más is érzékelheti.

- radarok
- fényérzékelő kamerák
- ultrahangos/lézeres távolságmérők

### Strukturált fény kibocsájtás

- lézercsík: a csík deformáltságából következtetünk a távolságra
- pontok: pl. xbox kinect

# Intelligens szenzorok



# Tulajdonságok – ZH

- önkalibrációs akár több millió paraméter lehet
- öndiagnosztika növeli a biztonságot, megbízhatóságot
- dinamikus érzékenység
- programozhatóság
- távvezérelhetőség

# Adaptív szenzorok

Alkalmazkodik a változásokhoz

Fix értékek átlagát nézzük?

Lehető legszélesebb körülmények között működjön

# Navigáció

Robot egy kijelölt célpozícióra jusson (akár robotkarról is beszélhetünk)

Figyelembeveendő szempontok

- robot mozgási lehetőségei, képességei, mechanikai tulajdonságai
- mozgáshoz szükséges energia
- idő
- Terepviszonyok
  - Ismert terep (pl. autós navigáció)
  - Ismeretlen terep -látom, de nem ismerem



piros: szabályalapú algoritmus

kék: neurális-elvű algoritmus

zöld: hullám-továbbterjesztéses algoritmus

fekete: GVD-elvű, gráfbejáráson alapuló algoritmus

### Szabályalapú navigáció/pályatervezés

Szabálytábla

- Szabályok a robot képességeihez szabva
- Minden egyes helyzetben a szabályrendszer határozza meg, hogy mit tud a robot csinálni Itt: 1 helyzet (kocka) → 8 féle cselekvés (előre, hátra, jobbra, balra, jobb-felül, stb.

Nincsen garancia, hogy eljut a célig, de sok esetben működik

probléma: "beragadás" → memória kell, hogy kijusson egy "mélyebb" akadályból, mert mindig a cél felé akar lépni

## Öntanuló (tapasztalat szerzésen alapuló) navigáció

Szabályalapún alapszik, de a szabálytábla kitöltését a gépre bízzuk.

### Algoritmus:

Amíg el nem éri a célt:

- 1. Cél irányának meghatározása
- Legjobb jóságú lépés kiválasztása legmagasabb érték, vagy a sorrendben a legelső felé megy
- 3. Új lépés kiszámítása (lépés)
- 4. Távolság ellenőrzése (cselekvések értékelése)
  - ha csökken a céltól a távolság a cselekvés felértékelődik (+1)
  - ha nő, akkor leértékelődik (-1)
  - ha akadálynak ütközik, nagyon leértékelődik (-3)

Kis kóborlás (tréning) után egyre jobb válaszokat tud adni a rendszer

# Előnyök

• <u>Ismert és ismeretlen terepen is</u> működik

### Hátrányok

- Nem garantált a cél elérése
- Nem tudni, hogy elérhető e a cél

### Neurális elvű navigáció

Szabály alapú ez is

pl. 20 esetből tanul a hálózat, a többit ebből generálja

Soha nemlátott mintára is tud választ adni

Nem ad egzakt eredményt → valószínűsíthető (pl. 98% eséllyel jut célba → egzakt megoldásokhoz nem alkalmazható (nincsen garancia a célba jutásra)

### Hullám-továbbterjesztéses tervezés

Hullám algoritmus
Pontból indul a hullám

Hullám nem gyengül, nem verődik vissza, mint a fizikában

- 1. Csupa nulla a pont köré
- 2. Utána 1, 2, 3, 4, ... körbe
- 3. Falak elnyelik → nem megy tovább
- 4. Amíg fel nem töltjük a terepet

Célból monoton csökkenve lépkedünk vissza, ha azonosak az értékek, akkor egy szabály dönti el, hogy merre (pl. mindig jobbra)

## Előnyök

- Egzakt megoldás → már az elején tudja, hogy eljut e, s ha nem el se indul
- Ha létezik, a legrövidebb utat adja!

# Hátrányok

• Csak ismert terepen működik

Hullám ismeretlen terepen

- Szenzorok
- 2. Lépés a szenzorok által detektált akadályokat figyelembe véve
- 3. Amit látott beépíti a térképébe (emlékezőképesség)

# GVD-elvű, gráfbejáráson alapuló tervezés

Legbiztonságosabb utat adja → minden akadálytól a legtávolabb megy

Gráf létrehozás → valamilyen tulajdonság alapján beveszek, vagy kizárok éleket

"Edény" faláról (terep széléről) indul a hullám, majd a lehető legmagasabb pontokon haladunk

#### Neurális hálózatok

biológiai inspirációjú információ feldolgozás, ahol a modell az idegrendszer

#### Jellemzői

- neuronokból (egyszerű processzorokból) épül fel
- hálózatot alkotnak, ahol az összeköttetések változtatható súlytényezőjűek
- a tárolt információk a hálózatban elosztottan a súlytényezők segítségével ábrázolhatók
- nem programozzuk, hanem tanítjuk
- neurális hálózatok hibatűrők

## Neuronokat az idegsejtekről mintázzuk

- működése mindent, vagy semmit jellegű
- ingerületbe hozáshoz legalább két bemenetét ingerelni kell
- jelentős késleltetés csak a szinapszisoknál jön létre
- bármilyen gátló szinapszis megakadályozhatja az idegsejt ingerületbe kerülését
- összeköttetési hálózat időben nem változik

# Mesterséges neuronok hogyan épülnek fel?

A McCulloch és Pitts formális neutron (1943)



### Logikai műveletek a McCullock-Pitts neuronokkal



### Perceptron (Frank Rosenblatt - 1957)

Első mesterséges neurális hálózat: vetített nyomtatott betűk felismerése taníntás alapján

#### Jellemzők

- 20x20 fotóérzékelő
- McCulloch-Pitts neuronok
- Előre-csatolt egyrétegű hálózat
- Csak lineárisan elválasztható csoportokat tud osztályozni

# Felügyeletes tanítás algoritmusa

Addig változtatjuk a súlytényezőket, amíg a bemenő mintákra a hálózat a megfelelő-, előre kiszámított válaszokat nem adja

- Kezdeti súlytényezők beállítása
- Tanítóminta bemeneti értékei alapján a hálózat kimeneti értékeinek kiszámítása
- Tanítóminta célértékeinek összehasonlítása a hálózat célértékével
- Szükség esetén a súlytényezők módosítása
- Tanítás addig, amíg az összes tanítómintával az előre meghatározott hibahatárnál kisebb hibával elő nem állítjuk a meghatározott kimeneti értéket

# Neurális hálózat legfontosabb tényezői

- neuronok (neuron/node/unit/cell)
- topológia (összeköttetési séma) súlymátrix
- tanító szabályokat tartalmazó algoritmus

# Alap neutron felépítése



# Leggyakoribb átviteli függvények

# Ugrásfüggvény



# Korlátozott lineáris függvény



$$O_j=0, ha\ s\leq 0$$

$$O_j = S$$
,  $ha \ 0 \le S < 1$ 

$$O_i = 1, ha S > 1$$

# Szimoid függvény





$$O_j = 1 - \frac{1}{1+S}, ha S \ge 0$$

$$O_j = -1 + \frac{1}{1 - S}, ha S < 0$$

Neurális hálózat összeköttetések (topológiák)

# Előrecsatolt (rétegelt) hálózat



# alternatív ábrázolás:



### Visszacsatolt



Mikor használjuk?

Meddig tanítunk egy neurális hálót?

Mi a rétegszám?

Hibatűrés

Inicializálás

# **Genetikus algoritmus**



Biológiai inspiráció alapján: egy egyedhalmazból, az újonnan létrejött populáció (jól szabályozott rendszer esetén) jobb "minőségű" egyedek jönnek létre

# Mikor használjuk?

- Ismert az elérni kívánt eredmény kritériumfüggvény
- Nem ismert, de az egyes részeremények egymáshoz való viszonyából megállapítható
- Nem ismert az eredményhez vezető optimális út
- Több megoldási mód is ismert, de nincs olyan, ami optimális eredményt ad

A genetikus/evolúciós algoritmusokat sztochasztikus szélsőérték keresésnek nevezzük

Heurisztikus algoritmus

#### Kiindulás

Létezik egy probléma tér, amit egy felület reprezentál:



*Probléma* lehet, hogy olyan lokális minimumba, vagy maximumba kerülnek a kezdeti egyedek, amelyekből nem tudnak továbbfejlődni, "beragadnak". (gradiens módszer esetén)

Zajt (*véletlenszám generátort*) használunk a kezdeti egyedek létrehozására, hogy:

- a "beragadást" elkerüljük
- beletaláljunk abba a területbe, ahonnan a legsikeresebb egyedek kifejlődhetnek

### Eljárás sebességét befolyásolják

### 1.) Kezdeti populációszám

Nagy populáció elvileg gyorsabb eredményt ad, de nagyobb a számítási igénye  $\rightarrow$  meg kell keresni az optimális populáció számot

A populáció mértéke nincsen befolyással az eredmény jóságára

### 2.) Mutáció

Biztosítja a rendszer folyamatos működését (jóság növekedését)

- Mutáció nélkül a rendszer gyorsan leáll
- Lassú mutáció esetén lassú eredmény
- Gyors mutáció esetén "szétesik" a rendszer

konklúzió: optimális mutációs sebesség kell

### Algoritmus

- 1.) Induló egyedek (individuumok) számának meghatározása
- 2.) Szelekciós eljárás kiválasztása
- 3.) Populáció kezdőértékeinek megadása (generálása)
- 4.) Individuumok értékelése (fitness számolása)

#### Generációs ciklus:

- 1.) szülők kiválasztása → utódok generálása
- 2.) utódok értékelése (fitness számolás)
- 3.) új populáció kiválasztása (változó stratégiákkal)

megállási feltétel: általában adott számú ismétlés (generációszám), vagy adott jóság elérése után

### Szelekciós eljárások

## Fitess arányos szelekció (Roland-kerekes szelekció?)

Egy rulett kereket felosztunk úgy szeletekre, hogy minden egyednek jut egy szelet, az egyed fittségének megfelelő arányban.

Forog → egy egyed

Probléma: ha azonos fittségűek az egyedek, akkor minden egyednek közel azonos esélye van

### Rang szerinti szelekció

Hasonlóan rulett-kerék elven, a szeletek a sorba rendezett populációban betöltött hely szerint kerülnek megállapításra. A leggyengébb egyed egy egység, a legjobb n egységnyit. (n a populációszám)

## Verseny szelekció

Sorrend szerint rendezünk.

Két egyed véletlenszerűen a populációból.

Véletlen számot r-t generálunk 0 és 1 között, ha r<k, ahol k egy paraméter (pl. 0.75), akkor a jobb oldali elem kerül kiválasztásra, különben a bal.

# Legjobb szelekció

Mindig a populáció legjobb eleme kerül kiválasztásra.

### Véletlen szelekció

Véletlenszerűen egy egyedet választunk ki.

#### Interaktív szelekció

Olyan helyzetekben, ahol a felhasználó tud választani az egyedek közül, mert a fitness függvényt nem tudjuk megalkotni.

Sokszor grafikai elemeknél használjuk

Tervezéshez és alakfelismeréshez

### Szigma scaling

Rulettkerék alapú

Szelet meghatározása:

- egyed fitness értéke
- populáció átlaga
- populáció szórása

$$f*(i) = \begin{cases} 1 + \frac{f(i) - F}{2s}, has \neq 0\\ 1, has = 0 \end{cases}$$

Ahol,

f\*(i) - az i egyed módosított fitness értéke

f(i) – az i egyedhez tartozó eredeti fitness érték

F - a populáció átlag fitness értéke

s – a populáció fitness értékeinek a szórása

#### Boltzmann szelekció

A szigma scaling, a "szelekciós nyomást" egy konstans érték körül tartja, szükség lehet, hogy jobban kihangsúlyozzunk a magasabb fitness értékű egyedeket.

Egy szelet meghatározása:

$$f * (i) = \frac{\exp\left(\frac{f(i)}{T}\right)}{< \exp\left(\frac{f(i)}{T}\right)>}$$

Ahol.

f\*(i) - az i egyed módosított fitness értéke

f(i) – az i egyedhez tartozó eredeti fitness érték

<...> - az aktuális populáció középértékét jelöli

T – egy hőmérséklet, amely egyenletesen csökken a folyamat során. Alacsonyabb T érték mellett nő a különbség az f\*(i)-ben az alacsony és magas fitness értékek között

GNSS - Global Navigational Satellite System

GLONASS (orosz)

GALILEO/EGNOS (EU)

**GPS** (amerikai)

Föld körül pontosan ismert pályákon keringő műholdak rendszere

#### **GPS** rendszer

GPS műholdak

- NAVSTAR rendszerben
  - o 21 aktív műhold / 3 tartalék
  - o távolság (pálya sugár) 26.370km
  - orbitális sík 55 fok az egyenlítő síkjához
  - keringési idő 12 óra
- élettartam 7-8 év
  - elektronika elavul
  - üzemanyag elfogy (pályamódosításhoz)
- időt cézium <u>atomórával</u>

Földi állomások feladata (Nemzetvédelmi minisztérium)

- műholdak nyomon követése
- állapot, pozíció figyelés
- pályaadat korrekciókat küldeni radarral vizsgálják a holdakat (magasság, helyzet, sebesség), megadják a pályahibát
- holdak óráját összeszinkronizálni

#### GPS vezérterv

A műholdak pályája úgy van megtervezve, hogy a föld minden pontján legalább öt műhold egyszerre látható legyen

Minden vevőkészülékben van egy *almanach*, amely pontosan megmondja, hogy az egyes műholdak adott pillanatban épp hol tartózkodnak, új adat esetén frissül

### GPS vevő paraméterek

csak vevőkészülék

csatornaszám: egyszerre hány műholdat tud érzékelni

- 5-6 még rossz pozíció
- 7-8 már elfogadható
- 12: drón

update rate (ismétlési frekvencia)

- autó/séta: 1Hz
- robotrepülő: 5-10-20Hz

acquisition time (készenléti idő)

- warm: 15s
- cold: 45s (akár 30 min)

### Pontosság

- hol és milyen irányban pontos?
- abszolút pontosság?

# Helymeghatározás

A GPS műhold pályáját <u>ismerjük</u> → <u>műhold helyét</u> tudjuk

A vevő egység csak a műhold távolságát tudja mérni

- műhold rádió jelet bocsájt ki, aminek <u>ismerjük</u> a <u>terjedési sebességét</u> (300.000km/s)
- vevő a rádió jel futási idejét méri, s ebből számítja a távolságot
- probléma:
  - o a mért idő nagyon rövid
  - a vevő órahibája (adó-vevő óra nincsen szinkronban) miatt nem lesz pontos a távolság → késleltetés: a vevő késleltetési ideje megegyezik a műhold jelének futási idejével (ál-véletlen kód)

### Műholdas trilateráció (háromszögelés)

#### Adott:

- első műhold 20,000km távolságra
- második műhold 21,000km távolságra
- harmadik műhold 22,000km távolságra

### Ekkor:

1 műhold megmutatja, hogy ha a műhold egy 20,000km-s sugarú gömb középpontja, akkor mi ennek a gömbnek a felületén vagyunk valahol.

2 műhold megmutatja, hogy a két gömb áthallásán: <u>egy</u> <u>körön vagyunk</u>

3 műhold esetén 3 gömb áthallásán: két ponton vagyunk



4 műhold mutatja meg, hogy a <u>két pont közül melyiken</u> vagyunk, de általában az egyik pont túl messze esik a földtől, hogy valós legyen. Emiatt sok esetben a negyedik mérés nélkül is eldönthető a kérdés.

# **GPS** jelek

#### L1 vivőhullám

- 1575,42 MHz
- helyzeti üzenetek
- ál-véletlen kód időmeghatározáshoz

### L2 vivőhullám

- 1227,60 MHz
- katonai ál-véletlen kód

#### Ál-véletlen kódok

- durva kód (C/A Coarse Acquisition)
  - vivő hullámot modulálja
  - 1023 bitenként ismétlődik
  - minden műholdnak saját ál-véletlen kód az azonosításhoz
  - o polgári GPS alapja
- P (precise) kód
  - 266,4 naponként ismétli önmagát
  - o egyedi kód azonosításhoz
  - kód generálás minden GPS-hét kezdetekor (vasárnaponként)
  - o modulálja L1 és L2 vivőfrekvenciát
  - katonai felhasználás
  - bonyolult, ezért a katonai is először C/A-ra csatlakozik
  - ellenállóbb a zavarásra
- Y kód
  - P titkosított változata

## Ál-véletlen kód előnye

- időmérő jel
- minden műhold használhatja ugyanazt a frekvenciát, anélkül, hogy egymást zavarnák. (egyedi azonosítás)
- lehetővé teszi a gyenge GPS jelek erősítését

### Problémák / Pontosság

### 1. Órahiba kiejtése

A vevő az órahibája miatt nem tudja pontosan megmérni a műhold távolságát, amíg ez a helyzet fennáll úgynevezett Pszeudo-mérést végeztünk csak el.

Pszeudo-mérés: a mérésben még szerepel az órahiba



Probléma: A és B műhold pszeudo-távolságai egy pontot metszenek ki, XX-et, a C pszeudo-távolsága nem tud átmenni ezen a ponton. (itt csak 2D-ben vázoltuk fel a problémát, a 3D-s megoldás, plusz egy mérést tesz szükségessé)

Az órahiba minden mérést befolyásol

# Megoldás:

A vevő számítógépe egy olyan egyszerű korrekciót keres, amellyel eléri, hogy az összes mérés egy pontot metsszen ki.

Ezt a korrekciót már a többi méréshez is fel tudja használni -> így már szinkronban lesz a műhold és a vevő órája

Ezeket a korrekciós eljárásokat ismételni kell

### 2. Pályahibák

- hold és nap gravitációs hatásától
- napszél hatása a műholdra

### Megoldás:

- Földi állomás korrekciós információkat küld a műholdnak szükség esetén
- A tipikus pályahibákat óránként javítják

Ezután ellenőrzésképpen "kimérik" a műhold időjelét (álvéletlen kódját), így úgymond a kód már pályahiba információ szerzésre is alkalmas.

# 3. Légköri hibák



# Ionoszféra (50-500km)

ionizált részecskék → GPS jelt zavarja (a jel, mint a fény törik, vagy lassul)

# Troposzféra (alsó 51km)

- vízgőzzel telített
- változó légnyomás/hőmérséklet
- viszonylag kisebb hibát okoz

Megoldások:

### a) Matematikai modellek

A jel útjának késleltetése az atmoszférán keresztül, jól jósolható

Az atmoszféra matematikai modelljei számolnak a ionizált részecskék és a gáznemű összetevők hatásaival is.

A vevő figyeli, hogy a jel milyen szögben lépett be az atmoszférába, mert a belépési szög meghatározza a zavaró közegben megtett út hosszát.

## b) Kétfrekvenciás mérés

Megoldás lehet még a légkör hatásainak kiküszöbölésére, ha kétfrekvenciás mérést használunk, ám ez csak fejlettebb eszközökön elérhető.

Ha egy fény áthalad egy közegen, akkor az alacsony frekvenciájú jelek megtörnek, vagy jobban lassulnak, mint a magas frekvenciájúak.

A GPS L1 és L2 jelét összehasonlítva következtethetünk az atmoszféra hatásaira és ennek megfelelően javításokat alkalmazhatunk.

Csak a katonai vevők tudnak vivőfrekvencián mérni

Polgári eszközökön "csalással" megy

### 4. Földfelszíni terjedési hibák (visszhang)



## Többutas terjedés

A jel nem egyenes vonal mentén terjed, mert visszaverődik a környezeti tárgyakról → ugyanaz a jel időben késve többször érkezik meg a vevőre (először a közvetlen, majd a visszavert)

Ha a visszavert jel elég erős, hibát okozhat

### Megoldás:

Jobb vevők ki tudják választani a közvetlen jelet

### 5. GDOP (Geometric Dilution of Precision) hiba

Pontosság geometriai felhígulása: ha túl közeli műholdakat választ ki a vevő, akkor a metszéspontok/körök nagyon lapos szögben metszik egymást:



# Megoldás:

- Jó vevők figyelembe veszik a GDOP hibát
- Legjobb metszés a derékszögű

### 6. Szándékos zavarás (SA = Selective Availability)

Alapvetően a Nemzetvédelmi Minisztérium egy bizonyos algoritmus szerint "elrontja" a műholdak idő- és pályainformációit.

Egy vevős felhasználókat érinti leginkább

Katonai dekóderek ezt el tudják tüntetni

GPS differenciális módszerrel ezek a "hibák" jelentősen csökkenthetők

Clinton 2000 május 2-án kikapcsoltatta → helymeghatározás pontosággal 10x nőt



IRE DGPS – Differenciális GPS

# Real-Time Differential GPS



# Differenciális javítási technika

Létezik egy bázis (referencia) állomás, ami pontosan tudja a helyzetét, de meghatározza azt a GPS műholdak segítségével is és ezt a két értéket összehasonlítja.

A bázis által kiszámolt differencia átadható egy másik vevőnek, amit az alkalmazhat saját számításaihoz.

# GPS vs DGPS hibák összehasonlítása

|                   | szabályos GPS | DGPS |
|-------------------|---------------|------|
| Műhold óra        | 1,5m          | 0m   |
| Pályahiba         | 2,5m          | 0m   |
| Ionoszféra        | 5,0m          | 0,3m |
| Troposzféra       | 0,5m          | 0,2m |
| Vevő zaj          | 0,3m          | 0,3m |
| Többutas terjedés | 0,6m          | 0,6m |
| SA                | 30m           | 0m   |